AMIE configuration documentation

Alain B. Giorla

December 12, 2014

This document shows how to write initiation files for AMIE. These files can be used to set up variables in simulations without re-compiling the main executable. An example of initiation file usage in AMIE can be found in the main_2d_composite example.

Contents

1	Firs	st-level objects	4
2	Beh	naviour	4
	2.1	Common parameters	4
	2.2	Elastic behaviour	5
	2.3	Elastic and damage behaviour	5
	2.4	Elastic and imposed deformation behaviour	5
	2.5	Viscous behaviour	5
	2.6	Kelvin-Voigt viscoelastic behaviour	5
	2.7	Maxwell viscoelastic behaviour	6
	2.8	Burger viscoelastic behaviour	6
	2.9	Generalized Kelvin-Voigt viscoelastic behaviour	6
	2.10	Generalized Maxwell viscoelastic behaviour	6
	2.11	Predefined cement paste behaviour	6
	2.12	Predefined aggregate behaviour	7
	2.13	Predefined alkali-silica reaction gel behaviour	7
	2.14	Predefined concrete behaviour	8
	2.15	Predefined rebar behaviour	8
	2.16	Predefined steel behaviour	8
	2.17	Generalized logarithmic creep behaviour	9
3	Bou	indary Conditions	9
	3.1	Common parameters	9
	3.2	Constant boundary conditions	10
	3.3	Time-dependent boundary conditions	10
4	Bou	andary Condition Time Evolution	10
5	Bou	anding Box Restriction	11
6	Dar	mage Model	11
	6.1	Common parameters	11
	6.2	Isotropic Linear Damage	11
	6.3	Isotropic Incremental Linear Damage	11
	6.4	Plastic Strain	12

7	Discretization	12
8	Export	12
9	Fracture Criterion	12
	9.1 Common parameters	12
	9.2 Maximum tensile strain criterion	13
	9.3 Maximum tensile stress criterion	13
	9.4 Maximum tensile strain criterion with linear softening	13
	9.5 Maximum tensile stress criterion with ellipsoidal softening	13
	9.6 Mohr-Coulomb criterion	14
	9.7 Linear softening Mohr-Coulomb criterion	14
	9.8 Exponential softening Mohr-Coulomb criterion	14
	9.9 Von Mises stress criterion	14
	9.10 Modified Compressive Field Theory criterion	15
	9.11 Space-time asymmetric multi-linear softening fracture criterion	15
	9.11 Space-time asymmetric mutti-linear softening fracture criterion	10
10	Geometry	15
11	Inclusions	16
12	Inclusion Output	17
12	Material Parameters	17
10	13.1 Elastic behaviour	17
	13.2 Creep behaviour	18
	13.3 Imposed deformation	
		18
	13.4 Damage	18
	13.5 Additional parameters	19
14	Material Law	20
	14.1 Common parameters	20
	14.2 Thermal expansion	20
	14.3 Drying shrinkage	20
	14.4 Arrhenius law	20
	14.5 Arrhenius law for the creep parameters	21
	14.6 Relative humidity effect for the creep parameters	21
	14.7 Material law function of the space and time coordinates	21
	14.8 Material law function of a single parameter	
	14.9 Material law function of a set of parameters	$\frac{21}{22}$
	14.10 Linearly interpolated material law	$\frac{22}{22}$
	• -	
	14.11Assignment material law	23
	14.12Minimum material law	23
	14.13Maximum material law	23
	14.14Field extractor material law	23
	14.15Time derivative material law	24
	14.16Time integral material law	24
15	Output	24
16	Parallelism	25

17	Particle Size Distribution 17.1 Common parameters	25 25 25 26 26 26 26
18	Particle Size Distribution Cutoff	27
19	Placement	27
20	Point	27
21	Rebar	28
22	Sample	28
23	Stepping 23.1 Common parameters	28 28 28 29 29
24	Time step output	29
25	Viscoelastic Unit	29
	Enumerations 26.1 Behaviour Type	30 30 30 31 33 33 34 34 35 35 36 36 36
	History	37

1 First-level objects

Required parameters

Object	Type	Description
.sample	Sample	Box in which the simulation is performed.
$. { t discretization}$	Discretization	Parameters for the mesh generation.
.stepping	Stepping	Parameters for the time-stepping and damage iterations.
.output	Output	Exports specified field values in a table format.
.export	Export	Exports the mesh in SVG files.

Optional parameters

Object	Type	Description
.inclusions	Inclusions	Defines the geometry and mechanical behaviour of the
		inclusions.
$. {\tt boundary_condition}$	BoundaryCondition	Mechanical boundary conditions applied to the sample.
.parallel	Parallelism	Manages parallel computation.

2 Behaviour

There are many types of mechanical behaviour available in AMIE. The main flag which differentiates them is:

- .behaviour
- ..type

2.1 Common parameters

The following parameters can be used for all mechanical behaviours.

Required parameters

Object	Type	Description
.type	BehaviourType	Defines the general type of mechanical behaviour.

Optional parameters

Object	Type	Description
.additional_viscoelastic_variables	Numeral	In the case of a space-time finite element analysis,
		this indicates the number of unused visco-elastic
		displacement fields must be added to the model.
		The total number of used and unused visco-elastic
		displacement fields must be equal between all the
		Behaviour defined in the simulation.

Note: in the following, each time the pair .young_modulus/.poisson_ratio is found, it can be replaced with the pair .bulk_modulus/.shear_modulus, unless specified otherwise.

2.2 Elastic behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	ELASTICITY
.young_modulus	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).

2.3 Elastic and damage behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	ELASTICITY_AND_FRACTURE
$. {\tt fracture_criterion}$	FractureCriterion	Defines the failure surface and post-peak behaviour of the
		material.
.damage_model	DamageModel	Defines the damage algorithm used.
.young_modulus	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).

2.4 Elastic and imposed deformation behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	ELASTICITY_AND_FRACTURE
$.young_modulus$	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
$. {\tt imposed_deformation}$	Numeral	Imposed deformation of the material (in meter/meter).

2.5 Viscous behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	VISCOSITY
.young_modulus	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
.characteristic_time	Numeral	Characteristic time of the dashpot unit (in days).

2.6 Kelvin-Voigt viscoelastic behaviour

Object	Type	Description
.type	BehaviourType	KELVIN_VOIGT
$.young_modulus$	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
$. \verb characteristic_time $	Numeral	Characteristic time of the dashpot unit (in days).

2.7 Maxwell viscoelastic behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	MAXWELL
$. \mathtt{young_modulus}$	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
.characteristic_time	Numeral	Characteristic time of the dashpot unit (in days).

2.8 Burger viscoelastic behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	BURGER
.kelvin_voigt	ViscoelasticUnit	Deredefined steelscribes the Kelvin-Voigt section of the behaviour.
.maxwell	ViscoelasticUnit	Describes the Maxwell section of the behaviour.

2.9 Generalized Kelvin-Voigt viscoelastic behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	GENERALIZED_KELVIN_VOIGT
$.first_branch$	ViscoelasticUnit	Describes the initial elastic stiffness of the visco-elastic model.

Optional parameters

Object	Type	Description
.branch	ViscoelasticUnit	Describes each Kelvin-Voigt unit in the model. The model can have as
		many branches as required.

2.10 Generalized Maxwell viscoelastic behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	GENERALIZED_MAXWELL
$.first_branch$	ViscoelasticUnit	Describes the final relaxed stiffness of the visco-elastic model.

Optional parameters

Object	Type	Description	
.branch	ViscoelasticUnit	Describes each Maxwell unit in the model. The model can have as many	
		branches as required.	

2.11 Predefined cement paste behaviour

For this behaviour, the pair .young_modulus/.poisson_ratio CANNOT be replaced by .bulk_modulus/.shear_modulus.

Object	Type	Description
.type	BehaviourType	PASTE_BEHAVIOUR

Optional parameters

Object	Type	Description
.young_modulus	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
.tensile_strain_limit	Numeral	Maximum tensile strain the material can be subjected to be-
		fore failure (in meter/meter). This will not be used if the .damage variable is set to FALSE
.short_term_creep_modulus	Numeral	Elastic modulus of short-term Kelvin-Voigt unit. This will only be used in space-time finite element analysis.
.long_term_creep_modulus	Numeral	Elastic modulus of long-term Kelvin-Voigt unit. This will only be used in space-time finite element analysis.
.damage	Boolean	Indicates whether to activate the damage model for this behaviour.

If the user does not provide the values for these parameters, the program will use the default values.

2.12 Predefined aggregate behaviour

For this behaviour, the pair .young_modulus/.poisson_ratio CANNOT be replaced by .bulk_modulus/.shear_modulus.

Required parameters

Object	Type	Description
.type	BehaviourType	AGGREGATE_BEHAVIOUR

Optional parameters

Object	Type	Description
.young_modulus	Numeral	Young's modulus of the material (in pascal).
$. { t poisson_ratio}$	Numeral	Poisson ratio of the material (arbitrary unit).
.tensile_strain_limit	Numeral	Maximum tensile strain the material can be subjected to before
		failure (in meter/meter). This will not be used if the .damage
		variable is set to FALSE
.damage	Boolean	Indicates whether to activate the damage model for this behaviour.

If the user does not provide the values for these parameters, the program will use the default values.

2.13 Predefined alkali-silica reaction gel behaviour

For this behaviour, the pair .young_modulus/.poisson_ratio CANNOT be replaced by .bulk_modulus/.shear_modulus.

Object	Type	Description
.type	BehaviourType	ASR_GEL_BEHAVIOUR

Optional parameters

Object	Type	Description
.young_modulus	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
$. {\tt imposed_deformation}$	Numeral	Imposed deformation of the material (in meter/meter).

If the user does not provide the values for these parameters, the program will use the default values.

2.14 Predefined concrete behaviour

For this behaviour, the pair .young_modulus/.poisson_ratio CANNOT be replaced by .bulk_modulus/.shear_modulus. This behaviour CANNOT be used in space-time finite element analysis.

Required parameters

Object	Type	Description
.type	BehaviourType	CONCRETE_BEHAVIOUR

Optional parameters

Object	Type	Description
.young_modulus	Numeral	Young's modulus of the material (in pascal).
$. { t poisson_ratio}$	Numeral	Poisson ratio of the material (arbitrary unit).
$. {\tt compressive_strength}$	Numeral	Compressive strength of the material (in pascal).

If the user does not provide the values for these parameters, the program will use the default values.

2.15 Predefined rebar behaviour

For this behaviour, the pair .young_modulus/.poisson_ratio CANNOT be replaced by .bulk_modulus/.shear_modulus. This behaviour CANNOT be used in space-time finite element analysis.

Required parameters

Object	Type	Description
.type	BehaviourType	REBAR_BEHAVIOUR

Optional parameters

Object	Type	Description
.young_modulus	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
$.tensile_strength$	Numeral	Tensile strength of the material (in pascal).

If the user does not provide the values for these parameters, the program will use the default values.

2.16 Predefined steel behaviour

For this behaviour, the pair .young_modulus/.poisson_ratio CANNOT be replaced by .bulk_modulus/.shear_modulus. This behaviour CANNOT be used in space-time finite element analysis.

Object	Type	Description
.type	BehaviourType	STEEL_BEHAVIOUR

Optional parameters

Object	Type	Description
.young_modulus	Numeral	Young's modulus of the material (in pascal).
.poisson_ratio	Numeral	Poisson ratio of the material (arbitrary unit).
.tensile_strength	Numeral	Tensile strength of the material (in pascal).

If the user does not provide the values for these parameters, the program will use the default values.

2.17 Generalized logarithmic creep behaviour

Required parameters

Object	Type	Description
.type	BehaviourType	LOGARITHMIC_CREEP
.parameters	MaterialParameters	Lists of all material parameters used in the model.

Optional parameters

Object	Type	Description
.fracture_criterion	FractureCriterion	Defines the failure surface and post-peak behaviour of the
		material.
.damage_model	DamageModel	Defines the damage algorithm used.
$.{ t material_law}$	MaterialLaw	Defines the evolution of the material parameters with time,
		or other material parameters. Any arbitrary number of ma-
		terial laws may be defined.

3 Boundary Conditions

Note: multiple .boundary_conditions can be defined as first-level objects. If several boundary conditions are defined on the same edge, their effects stack.

The boundary conditions can either be defined with constant values, or with values varying with time.

3.1 Common parameters

The following parameters can be used for both of the cases described below.

Object	Type	Description
.condition	BoundaryConditionType	Defines which type of boundary condition is to be applied.
.position	BoundingBoxPosition	Defines on which position of the sample the boundary condition must be applied.

Optional parameters

Object	Type	Description
.axis	Numeral	Indicates the index of the unknown on which the bound-
		ary condition acts. This is only used when making a space-
		time finite element analysis. See the BoundaryCondition-
		Type SET_ALONG_INDEXED_AXIS for more details.
.restriction	BoundingBoxRestriction	Limits the area on which the boundary condition is applied.
.point	Point	Limits the boundary condition to the node closest to the
		specified point.

The .restriction and .point option are incompatible one with another. The first limits the section on which the condition is applied (for example, only half of one edge is under load), while the second applies the boundary condition to a single node.

3.2 Constant boundary conditions

The following parameters can be used for both of the cases described below.

Optional parameters

Object	Type	Description	
.value	Numeral	Defines the value of the imposed displacement (in meters) or stress (in pascals).	
		Positive values correspond to tension, negative values to compression.	

If .value is not defined, it takes the value 0.

3.3 Time-dependent boundary conditions

The following parameters can be used for both of the cases described below.

Required parameters

Object	Type	Description
.time_evolution	BCTimeEvolution	Indicates how the value of the boundary condition evolves in
		time.

4 Boundary Condition Time Evolution

One (and only one) of the three parameters below must be set:

Optional parameters

Object	Type	Description	
.file_name	String	Path to the file in the values of the boundary condition are stored. They must	
		be set as a two-column file, the first column being the instants, the second the	
		value at those instants. The value will be linearly interpolated between these	
		points.	
.function	Function	The value will be set following a specified function of time.	
.rate	Numeral	The value will be set using a constant rate.	

5 Bounding Box Restriction

This object is used with the boundary_condition+ object to restrict the surface where the condition is applied. The effective surface will be defined as the intersection between .boundary_condition.position and the box defined by the restriction.

Required parameters

Object	Type	Description
.top_right	Point	Top-right corner of the restriction.
.bottom_left	Point	Bottom-left corner of the restriction.

6 Damage Model

6.1 Common parameters

The following parameters can be defined for all types of damage models.

Required parameters

Object	Type	Description
.type	${\bf Damage Model Type}$	Describes which damage model to use.

Optional parameters

Object	Type	Description
.maximum_damage	Numeral	Sets a threshold above which the material is considered to be totally
		damaged.

6.2 Isotropic Linear Damage

This damage model cannot be used for space-time finite element analysis.

Required parameters

Object	Type	Description
.type	${\bf Damage Model Type}$	ISOTROPIC_LINEAR_DAMAGE.

6.3 Isotropic Incremental Linear Damage

Required parameters

Object	Type	Description
.type	${\bf Damage Model Type}$	ISOTROPIC_INCREMENTAL_LINEAR_DAMAGE.
$.\mathtt{damage_increment}$	Numeral	The damage increment to apply at each step of the algo-
		rithm.

Optional parameters

Object	Type	Description
.time_tolerance	Numeral	Tolerance in the detection of the instant at which damage occurs. This
		is not used in purely spatial finite element applications.

6.4 Plastic Strain

This damage model cannot be used for space-time finite element analysis.

Required parameters

Object	Type	Description
.type	DamageModelType	PLASTIC_STRAIN.

7 Discretization

Required parameters

Object	Type	Description
.sampling_number	Numeral	Number of mesh points on a edge of the sample.
.order	ElementOrder	Order of the finite element discretization.

Optional parameters

Object	Type	Description
.sampling_restriction	SamplingRestriction	Determines if the smallest inclusions are meshed or
		not.

8 Export

Note: the .export object can be left empty, in which case no deformed mesh files will be extracted from the simulation.

Required parameters

Object	Туре	Description
.at_time_step	TimeStepOuput	Defines when at which time steps the deformed mesh files must
		be extracted.
.file_name	String	Path template for the files in which the deformed mesh will be written. If these files already exist, their content will be overwritten.
.field	${\bf ExtendedFieldType}$	Defines which fields will be exported.

The export will create a set of deformed mesh files which show the fields defined by .field. All files will share the same base name, followed by a number which corresponds to the index of the file in the set. Two sets of files will be generated: one set of text files formatted for AMIE internal viewer, and one set of corresponding SVG files. Furthermore, the export will write one header file containing the list of all files generated.

9 Fracture Criterion

9.1 Common parameters

The following parameters can be defined for all types of fracture criteria.

Object	Type	Description
.type	${\bf Fracture Criterion Type}$	Describes which fracture criterion to use.

Optional parameters

Object	Type	Description
.material_characteristic_radius	Numeral	Sets the characteristic radius of the non-local damage
		band.

9.2 Maximum tensile strain criterion

Required parameters

Object	Type	Description
.type	FractureCriterionType	MAXIMUM_TENSILE_STRAIN.
$.limit_tensile_strain$	Numeral	The strain at which failure occurs (in meter/meter).

9.3 Maximum tensile stress criterion

Required parameters

Object	Type	Description
.type	FractureCriterionType	MAXIMUM_TENSILE_STRESS.
$.limit_tensile_stress$	Numeral	The stress at which failure occurs (in pascal).

9.4 Maximum tensile strain criterion with linear softening

Required parameters

Object	Type	Description
.type	FractureCriterionType	LINEAR_SOFTENING_MAXIMUM_TENSILE_STRAIN.
$.limit_tensile_strain$	Numeral	The strain at which failure starts (in me-
		ter/meter).
.limit_tensile_stress	Numeral	The corresponding stress (in pascal).
$.\verb"maximum_tensile_strain"$	Numeral	The strain at which failure ends (in meter/meter).

9.5 Maximum tensile stress criterion with ellipsoidal softening

Object	Type	Description
.type	FractureCriterionType	ELLIPSOIDAL_SOFTENING_MAXIMUM_TENSILE_STRESS.
$.limit_tensile_strain$	Numeral	The strain at which failure starts in instantaneous
		loading conditions (in meter/meter).
$.limit_tensile_stress$	Numeral	The stress at which failure starts in infinitely slow
		loading conditions (in pascal).
$.instantaneous_modulus$	Numeral	The value of apparent elastic modulus of the mate-
		rial in instantaneous loading conditions (in pascal).
.relaxed_modulus	Numeral	The value of apparent elastic modulus of the mate-
		rial in infinitely slow loading conditions (in pascal).

9.6 Mohr-Coulomb criterion

Required parameters

Object	Type	Description
.type	FractureCriterionType	MOHR_COULOMB.
$.limit_tensile_strain$	Numeral	The strain at which failure occurs in tension (in
		meter/meter).
$.limit_compressive_strain$	Numeral	The strain at which failure occurs in compres-
		sion (in meter/meter).

9.7 Linear softening Mohr-Coulomb criterion

Required parameters

Object	Type	Description
.type	FractureCriterionType	LINEAR_SOFTENING_MOHR_COULOMB.
.limit_tensile_strain	Numeral	The strain at which failure occurs in tension
		(in meter/meter).
.limit_compressive_strain	Numeral	The strain at which failure occurs in com-
		pression (in meter/meter).
$.\mathtt{maximum_tensile_strain}$	Numeral	The strain at which failure ends in tension
		(in meter/meter).
$.\verb"maximum_compressive_strain"$	Numeral	The strain at which failure ends in compres-
		sion (in meter/meter).

9.8 Exponential softening Mohr-Coulomb criterion

Required parameters

Object	Type	Description
.type	FractureCriterionType	EXPONENTIAL_SOFTENING_MOHR_COULOMB.
.limit_tensile_strain	Numeral	The strain at which failure occurs in tension
		(in meter/meter).
.limit_compressive_strain	Numeral	The strain at which failure occurs in com-
		pression (in meter/meter).
$.{\tt maximum_tensile_strain}$	Numeral	The strain at which failure ends in tension
		(in meter/meter).
.maximum_compressive_strain	Numeral	The strain at which failure ends in compres-
		sion (in meter/meter).

9.9 Von Mises stress criterion

Object	Type	Description
.type	FractureCriterionType	VON_MISES.
.limit_tensile_stress	Numeral	The stress at which failure occurs (in pascal).
.material_characteristic_radius	Numeral	Sets the characteristic radius of the non-local damage band.

9.10 Modified Compressive Field Theory criterion

Required parameters

Object	Type	Description
.type	FractureCriterionType	MCFT.
.limit_compressive_strain	Numeral	The strain at which failure occurs in compression (in meter/meter).
.material_characteristic_radius	Numeral	Sets the characteristic radius of the non-local damage band.
.rebar	Rebar	Describes the location and diameter of the rebars. Several .rebar objects may be defined in the same criterion.

9.11 Space-time asymmetric multi-linear softening fracture criterion

For this criterion, the parent behaviour must have the properties parameters.young_modulus explicitly defined.

Required parameters

Object	Type	Description
.type	${\bf Fracture Criterion Type}$	MULTI_LINEAR_SOFTENING_TENSILE_COMPRESSIVE_STRESS.

Optional parameters

Object	Type	Description
.strain_renormalization_factor	Numeral	Arbitrary scaling coefficient to avoid geometrical singularities (default value 10 ⁴).
.stress_renormalization_factor	Numeral	Arbitrary scaling coefficient to avoid geometrical singularities (default value 10^{-6}).
.tension_file_name	String	Path to the file containing the strain-stress values for the tensile part of the behaviour. If no file is defined, then the material does not fail in tension.
.compression_file_name	String	Path to the file containing the strain-stress values for the compressive part of the behaviour (all values should be negative). If no file is defined, then the material does not fail in compression.

10 Geometry

Required parameters

Object	Type	Description
.type	GeometryType	Defines which type of inclusion to generate.

Optional parameters for standard particle size distributions

Object	Type	Description
.aspect_ratio	Numeral	Defines the elongation of the inclusion. This parameter will not be used for
		circles or spheres.
.orientation	Numeral	Defines the random spread of the orientation of the inclusions. This param-
		eter will not be used for circles or spheres.

Parameters for manually-placed circles

Object	Type	Description
.type	GeometryType	CIRCLE
.radius	Numeral	The radius of the inclusion.
.center	Point	The center of the inclusion.

Parameters for manually-placed ellipses

Object	Type	Description
.type	GeometryType	ELLIPSE
.major_radius	Numeral	The major radius of the inclusion.
.minor_radius	Numeral	The minor radius of the inclusion (must be smaller than the major
		radius).
.center	Point	The center of the inclusion.
$.{ t major_axis}$	Point	The direction of the major axis of the inclusion (must be a vector of
		norm 1).

Parameters for manually-placed rectangle

Object	Type	Description
.type	GeometryType	RECTANGLE
.height	Numeral	The height of the rectangle.
.width	Numeral	The width of the rectangle.
.center	Point	The center of the inclusion.

11 Inclusions

Note: multiple .inclusions may be defined in the same parent object, in which case each family of inclusion will be generated sequentially one after the other. .inclusions defined at the same level may not intersect nor overlap.

Required parameters

Object	Type	Description
.behaviour	Behaviour	Defines the mechanical behaviour of the in-
		clusions in the family.
$.particle_size_distribution$	ParticleSizeDistribution	Defines the particle size distribution of the
		inclusions in the family.

Optional parameters

Object	Type	Description
geometry	Geometry	Defines the mechanical behaviour of the inclusions in
		the family.
.placement	Placement	Defines how the particles are placed in the sample.
.inclusions	Inclusions	Generates families of inclusions within the current fam-
		ily of inclusion.
.sampling_factor	Numeral	Multiplies the number of mesh points in all inclusions
		in the family.
.intersection_sampling_factor	Numeral	Multiplies the number of mesh points in all inclusions
		in the family which intersects with the edges of the
		sample.

There are five different ways the inclusions might be generated. The choice of generation is controlled by the following flag:

- .inclusions
- ..particle_size_distribution
- ...type

The five different methods are:

- using an analytic particle size distribution curve,
- using a particle size distribution defined in a text file,
- using a pre-generated inclusion distribution defined in a text file (including a pre-defined placement of said inclusions)
- manually placing of a single inclusion,
- creating the inclusions at the center of a parent list of inclusions.

These are explained in more details in the ParticleSizeDistribution object.

12 Inclusion Output

These objects are used in the output to extract the average fields over certain inclusions.

Required parameters

Object	Type	Description
.index	Numeral	Indicates the family of inclusions on which the fields will be computed. 0 denotes
		the material matrix. Other number indicates the inclusions families define above,
		in the order in which they are generated.
.field	${\rm FieldType}$	Indicates the field to export in the output. Several of these can be defined.

13 Material Parameters

This object is related to the generalized logarithmic creep behaviour. In addition to the common material properties, it allows the user to define any additional properties or local variables like temperature or relative humidity, which may then be used with the material laws.

13.1 Elastic behaviour

The following properties MUST be defined for any generalized logarithmic creep behaviour. The .young_modulus/.poisson_repair can be replaced with the .bulk_modulus/shear_modulus pair (both values in pascal).

Object	Type	Description
.young_modulus	Numeral	The elastic stiffness of the material (in pascal).
.poisson_ratio	Numeral	The poisson ratio of the material (no unit).

13.2 Creep behaviour

The following properties describe the viscoelastic creep of the behaviour. If they are not defined, then the material behaves like an elastic material. The .creep_modulus/.creep_poisson pair can be replaced with the .creep_bulk/creep_shear pair (both values in pascal); same with .recoverable_modulus/recoverable_poisson.

Object	Type	Description
.creep_modulus	Numeral	The initial creep viscosity of the material (in pascal).
.creep_poisson	Numeral	The initial creep poisson ratio of the material (no unit).
.recoverable_modulus	Numeral	The recoverable creep modulus of the material (in pascal).
.recoverable_poisson	Numeral	The recoverable creep poisson ratio of the material (no unit).
<pre>.creep_characteristic_time</pre>	Numeral	The characteristic time of the logarithmic creep law (in
		days).

If recoverable_poisson or recoverable_modulus are not defined, then it will be set equal to .creep_poisson or creep_modulus respectively.

13.3 Imposed deformation

The following properties describe the imposed deformation of the behaviour. If they are not defined, then the material has no imposed deformation and behaves as a elastic (or visco-elastic) material.

Object	Type	Description	
.imposed_deformation	Numeral	The value of the imposed deformation.	

13.4 Damage

The following properties describe the material failure behaviour. If they are defined, then there is no need to specify the .fracture_criterion or .damage_model. There are two options possible: importing a file with the stress-strain curves, or defining the start and end point of the curve manually. The two methods are mutually exclusive (priority is given to the files if they are defined).

Common parameters

Object	Type	Description
.material_characteristic_radius	Numeral	Radius of the area for the non-local averaging (in me-
		ters).
$.strain_normalization_factor$	Numeral	Normalization of the strain to improve the accuracy
		of the computation of intersections in the stress-strain
		space (optional, default value is 10^4).
$.stress_normalization_factor$	Numeral	Normalization of the stress to improve the accuracy
		of the computation of intersections in the stress-strain
		space (optional, default value is 10^{-6}).
.damage_increment	Numeral	Amount of damage to apply at each step (no unit).
.maximum_damage	Numeral	Amount of damage above which the element is con-
		sidered entirely broken (no unit).
.time_tolerance	Numeral	Minimum time between two damage events (no unit).

Stress-strain curve imported from a file

Object	Type	Description
.tension_file_name	String	Path to the stress-strain curve in tension (optional).
$. {\tt compression_file_name}$	String	Path to the stress-strain curve in compression (optional).

The files must contain a table with the strain (first column) and the stress (second column) of the stress-strain curve. Stresses and strains must be in standard units. Values must be positive for tension and negative for compression. If one of the files is not defined, then the material does not fail in this direction.

Simplified model

Object	Type	Description
.tensile_strength	Numeral	Value of the stress at the peak (in Pascal).
$. { t tensile_ultimate_strength}$	Numeral	Value of the stress at the end of the damage process (in
		Pascal).
$. { t tensile_ultimate_strain}$	Numeral	Value of the strain at the end of the damage process
		(in meter/meter).
.compressive_strength	Numeral	Value of the stress at the peak (in Pascal).
.compressive_ultimate_strength	Numeral	Value of the stress at the end of the damage process (in
		Pascal).
.compressive_ultimate_strain	Numeral	Value of the strain at the end of the damage process
		(in meter/meter).

The values must be positive in tension, negative in compression.

tensile_strength can be replaced with tensile_strain (the value of the strain at the peak). tensile_ultimate_strength can be replaced with tensile_strength_decrease_factor (value between 0 and 1) which is the ratio between tensile_strength and tensile_ultimate_strength. tensile_ultimate_strain can be replaced with tensile_strain_increase_factor (value greater than 1) which is the ratio between tensile_ultimate_strain and tensile_strain.

Similar replacements can be made for the compressive strains or stresses.

If tensile_strength and tensile_strain are both not defined, then the material does not fail in tension (same with compression).

13.5 Additional parameters

Any additional parameter can be defined. These parameters will not affect the material behaviour unless they are used in a subsequent material law.

Object	Type	Description
.\$\$\$	Numeral	The value of the parameter called \$\$\$.

For example, the following object defines a temperature and relative humidity field with an initial value of 293 K and 95%:

- .parameters
- ..temperature = 293
- ..relative_humidity = 0.95

If these values are not constant through the simulation (for example, if there is a gradient in temperature or if the temperature changes in time), then an appropriate Material Law must be defined to describe these evolutions.

Note that these additional parameters do NOT affect the material behaviour (modulus, creep or imposed deformation) unless an according Material Law has been defined. For example, only defining the temperature field is not enough to simulate thermal expansion; a Thermal Expansion Material Law must be added to the model.

14 Material Law

These objects relate the material properties of a generalized logarithmic creep behaviour one to another, and allow changes to the elastic, viscoelastic or imposed deformation properties dynamically in the simulation according to various effects.

14.1 Common parameters

The following parameter must be defined for all types of material laws.

Required parameters

Object	Type	Description
.type	MaterialLawType	Describes the type of material laws.

14.2 Thermal expansion

For this material law to be valid, the material parameters must include temperature (in Kelvin) and thermal_expansion_coefficient.

Required parameters

Object	Type	Description
.type	MaterialLawType	THERMAL_EXPANSION.
.reference_temperature	Numeral	Temperature at which the mechanical properties of the
		material were measured (in Kelvin).

14.3 Drying shrinkage

For this material law to be valid, the material parameters must include relative_humidity (in Kelvin) and drying_shrinkage_coefficient.

Required parameters

Object	Type	Description
.type	MaterialLawType	DRYING_SHRINKAGE.
$. {\tt reference_relative_humidity}$	Numeral	Relative humidity above which there is no drying
		shrinkage.

14.4 Arrhenius law

For this material law to be valid, the material parameters must include temperature (in Kelvin), the selected parameter \$\$\$, and the activation energy \$\$\$_activation_energy (in 1/Kelvin).

Object	Type	Description
.type	MaterialLawType	ARRHENIUS.
.parameter_affected	String	Name of the parameters affected by the Arrhenius law.
.reference_temperature	Numeral	Temperature at which the nominal properties of the ma-
		terial were measured (in Kelvin).

14.5 Arrhenius law for the creep parameters

For this material law to be valid, the material parameters must include temperature (in Kelvin), the three creep parameters creep_modulus, creep_poisson and creep_characteristic_time, and the creep activation energy creep_activation_energy (in 1/Kelvin).

Required parameters

Object	Type	Description
.type	MaterialLawType	CREEP_ARRHENIUS.
.reference_temperature	Numeral	Temperature at which the creep properties of the material were measured (in Kelvin).

14.6 Relative humidity effect for the creep parameters

For this material law to be valid, the material parameters must include relative_humidity, the three creep parameters creep_modulus, creep_poisson and creep_characteristic_time, and the creep relative humidity coefficient creep_humidity_coefficient).

Required parameters

Object	Type	Description
.type	MaterialLawType	CREEP_HUMIDITY.

14.7 Material law function of the space and time coordinates

This material laws sets one of the predefined internal variable as the result of a function of the space and time coordinates.

Required parameters

Object	Type	Description
.type	MaterialLawType	SPACE_TIME_DEPENDENT.
.output_parameter	String	The name of the parameter in which the results will be stored.
.function	Function	The function to apply.
.additive	Boolean	If TRUE, then the result of the function will be added to the
		pre-existing value of the output parameter.

14.8 Material law function of a single parameter

This material laws sets one of the predefined internal variable as the result of a function of another existing internal variable.

Object	Type	Description
.type	MaterialLawType	SIMPLE_DEPENDENT.
.input_parameter	String	The name of the parameter used as the x argument of the
		function.
.output_parameter	String	The name of the parameter in which the results will be stored.
.function	Function	The function to apply. This function must only be defined
		as a function of the \mathbf{x} coordinate. Any other variable will be
		ignored.
.additive	Boolean	If TRUE, then the result of the function will be added to the
		pre-existing value of the output parameter.

14.9 Material law function of a set of parameters

This material laws sets one of the predefined internal variable as the result of a function of several existing internal variable or any of the space-time coordinate.

Required parameters

Object	Type	Description
.type	MaterialLawType	VARIABLE_DEPENDENT.
.output_parameter	String	The name of the parameter in which the results will be stored.
.function	Function	The function to apply.
.additive	Boolean	If TRUE, then the result of the function will be added to the
		pre-existing value of the output parameter.

Optional parameters

Object	Type	Description
. X	String	Replaces the x argument in the function with the variable defined here.
. y	String	Replaces the y argument in the function with the variable defined here.
.z	String	Replaces the z argument in the function with the variable defined here.
.t	String	Replaces the t argument in the function with the variable defined here.
.u	String	Replaces the u argument in the function with the variable defined here.
.v	String	Replaces the v argument in the function with the variable defined here.
.W	String	Replaces the w argument in the function with the variable defined here.

14.10 Linearly interpolated material law

This material laws sets one of the predefined internal variable as the result of the linear interpolation of another variable.

Object	Type	Description
.type	MaterialLawType	LINEAR_INTERPOLATED.
$.input_parameter$	String	The name of the parameter used as the argument of the func-
		tion.
$.output_parameter$	String	The name of the parameter in which the results will be stored.
.file_name	String	Path to the file in which the points for the linear interpola-
		tion are stored. The file must contain two columns, the first
		one being the values of the input parameter, the second the
		corresponding values of the output parameter.

14.11 Assignment material law

This material laws assigns the value of the input variable to the output variable.

Required parameters

Object	Type	Description
.type	MaterialLawType	ASSIGN.
.input_parameter	String	The name of the input parameter.
.output_parameter	String	The name of the output parameter.

14.12 Minimum material law

This material laws extracts the minimum value of a set of input parameters.

Required parameters

Object	Type	Description
.type	MaterialLawType	MINIMUM.
$.input_parameter$	String	The name of the parameter used as the argument of the min-
		imum function. Several of these parameters may be defined.
.output_parameter	String	The name of the parameter in which the results will be stored.

14.13 Maximum material law

This material laws extracts the maximum value of a set of input parameters.

Required parameters

Object	Type	Description
.type	MaterialLawType	MAXIMUM.
$. \verb"input_parameter"$	String	The name of the parameter used as the argument of the max-
		imum function. Several of these parameters may be defined.
.output_parameter	String	The name of the parameter in which the results will be stored.

14.14 Field extractor material law

This material laws extracts the value of one standard field (strain, stress, etc) and assigns it to a specific internal variable.

Object	Type	Description
.type	MaterialLawType	GET_FIELD.
.field	FieldType	Defines which field to extract.

14.15 Time derivative material law

This material laws sets one of the predefined internal variable as the time derivation of another variable.

Required parameters

Object	Type	Description
.type	MaterialLawType	TIME_DERIVATIVE.
.input_parameter	String	The name of the parameter to derive.

Optional parameters

Object	Type	Description
.output_parameter	String	The name of the parameter in which the results of the derivation will be
		stored. If this is not defined, then the results will be stored in \$\$_rate,
		where \$\$\$ is the name of the input parameter.

14.16 Time integral material law

This material laws sets one of the predefined internal variable as the integration over time of another variable.

Required parameters

Object	Type	Description
.type	MaterialLawType	TIME_INTEGRAL.
$.input_parameter$	String	The name of the parameter to derive.

Optional parameters

Object	Type	Description
.output_parameter	String	The name of the parameter in which the results of the derivation will
		be stored. If this is not defined, then the results will be stored in
		\$\$\$_integral , where \$\$\$ is the name of the input parameter.

15 Output

Note: the .output object can be left empty, in which case no results will be extracted from the simulation.

Object	Type	Description
.at_time_step	TimeStepOuput	Defines at which time steps the results must be extracted.
.file_name	String	Path to the file in which the results will be written. If the file already
		exists, its content will be overwritten.
.field	FieldType	Defines which fields will be exported.

Optional parameters

Object	Type	Description
.inclusions	InclusionOuput	Defines families of inclusion from which fields can be extracted.

The output file is a simple text file containing a table describing the results. Each line corresponds to a time step of the simulation. Each column corresponds to the average value in the sample of the field specified in the .field objects (except for the first column, which corresponds to the current time of the simulation). The columns are ordered from the left to the right in the same order the .fields are declared (most fields span several columns).

16 Parallelism

This object manages the number of threads used for the computations. It is not required. If not defined, then AMIE will use the current settings with which AMIE was compiled.

Optional parameters

Object	Type	Description
.number_of_threads	Numeral	Number of threads used in the simulation.

17 Particle Size Distribution

There are four different methods to generate particles:

- using an analytic particle size distribution curve,
- using a particle size distribution defined in a text file,
- using a pre-generated inclusion distribution defined in a text file (including a pre-defined placement of said inclusions)
- creating the inclusions at the center of a parent list of inclusions.

17.1 Common parameters

The following parameters can be used for all type of particle size distributions.

Required parameters

Object	Type	Description
.type	PSDType	Indicates which generation method to use.

17.2 Analytic particle size distribution

Object	Type	Description
.type	PSDType	CONSTANT, BOLOME_A, BOLOME_B, BOLOME_C, or BOLOME_D.
.rmax	Numeral	Radius of the largest inclusion.
.number	Numeral	Number of inclusions to generate.
.fraction	Numeral	Surface or volume fraction of the placement box to cover (no unit).

17.3 Particle size distribution from file

Required parameters

Object	Type	Description
.type	PSDType	FROM_CUMULATIVE_FILE.
.rmax	Numeral	Radius of the largest inclusion.
.number	Numeral	Number of inclusions to generate.
.fraction	Numeral	Surface or volume fraction of the placement box
		to cover (no unit).
.file_name	String	Path to the file in which the particle size distri-
		bution is located.
.psd_specification_type	${\bf PSDSpecificationType}$	Defines the format in which the file is written.

Optional parameters

Object	Type	Description
.factor	Numeral	Multiplies all radii in the distribution by the specified number.
.cutoff	PSDCutoff	Removes the largest or smallest inclusions in the distribution.

17.4 Pregenerated inclusions

Required parameters

Object	Type	Description
.type	PSDType	FROM_INCLUSION_FILE.
.number	Numeral	Number of inclusions to import.
.file_name	String	Path to the file in which the inclusions geometric information is located.
.column	ColumnIdentifier	Indicates the data contained in each column of the file to import. In
		general, several .column objects must be defined.

17.5 Manually placed inclusion

Required parameters

Object	Type	Description	
.type	PSDType	UNIQUE.	

The placement of the inclusion in then covered in the .inclusions.geometry object

17.6 Concentric inclusions

This will generate the inclusions at the center the p

Object	Type	Description
.type	PSDType	FROM_PARENT_DISTRIBUTION.

Optional parameters

Object	Type	Description
.layer_thickness	Numeral	Indicates the radius difference between the parent set of in-
		clusions and the current.
$.layer_thickness_function$	Function	Indicates the radius difference between the parent set of in-
		clusions and the current as a function of the radius of the
		parent distribution.

 ${\bf Note:}$ at least one parameter between .layer_thickness and .layer_thickness_function must be declared.

18 Particle Size Distribution Cutoff

Describes whether to include or remove the largest and/or smallest aggregates in a particle size distribution.

Optional parameters

Object	Type	Description
.up	Numeral	Describes the largest aggregate radius authorized in the distribution. If it is not
		defined, then there is no upper limit.
. down	Numeral	Describes the smallest aggregate radius authorized in the distribution. If it is not
		defined, then there is no lower limit.

19 Placement

Required parameters

Object	Type	Description
.tries	Numeral	Number of tries to make during the random placement of particles.
.spacing	Numeral	Defines the minimum distance between two particles or one particle and the edges of the placing box.

Optional parameters

Object	Type	Description
.box	Sample	Defines a rectangle in which the particles will be generated. If this variable
		is not set, the first-level .sampl will be used instead.
.orientation	Numeral	Defines the random spread of the orientation of the inclusions. This param-
		eter will not be used for circles or spheres.

20 Point

Optional parameters

Object	Type	Description
. x	Numeral	Value of the x coordinate.
. у	Numeral	Value of the y coordinate.
.z	Numeral	Value of the z coordinate.
.t	Numeral	Value of the t coordinate.

The default values for any unspecified coordinate is equal to 0.

21 Rebar

Required parameters

Object	Type	Description
.location	Numeral	Position of the rebar (in meter).
$. {\tt diameter}$	Numeral	Diameter of the rebar (in meter).

22 Sample

Required parameters

Object	Type	Description
.width	Numeral	Width of the box (in meters).
.height	Numeral	Height of the box (in meters).
.behaviour	Behaviour	Mechanical behaviour of the matrix phase.

Optional parameters

Object	Type	Description
.center	Point	Coordinates of the center.

23 Stepping

The stepping procedure can be initialized either with a constant predefined time steps, or from a file which lists the instants at which the simulation is carried out.

23.1 Common parameters

The following parameters can be used for both of the cases described below.

Optional parameters

Object	Type	Description
.minimum_time_step	Numeral	Minimum duration between two damage events.
$.\verb"maximum_iterations_per_step"$	Numeral	Maximum number of iterations of the damage algorithm
		between two time steps.

23.2 Constant time step

Object	Type	Description
.time_step	Numeral	Duration of a time step (in days).
.number_of_time_steps	Numeral	Number of time steps to perform.

23.3 Logarithmic time step

Required parameters

Object	Type	Description
.logarithmic	Boolean	Must be TRUE to use a time step constant in the logarithmic space.
$. { t first_time_step}$	Numeral	Duration of the first time step (in the normal time space).
.time_step	Numeral	Duration of a time step in the logarithmic space.
.number_of_time_steps	Numeral	Number of time steps to perform.

23.4 Function-defined time step

Required parameters

Object	Type	Description
.time_step	Numeral	Duration of the first time step (in days).
.next_time_step	Function	Function used to compute the next time step from the previous, with "x" being the previous time step and "t" the actual time at the end of the previous time step.

23.5 File-defined time steps

Required parameters

Object	Type	Description
.list_of_time_steps	String	Path to the file which lists the instants at which calculations are per-
		formed. The file must contain only one column of increasing numbers
		starting with 0.

24 Time step output

Required parameters

Object	Type	Description
.at	TimeStepSelection	Defines at which time steps output or export must be done.

Optional parameters

Object	Type	Description
.every	Numeral	In case of a REGULAR type of output, this indicates at which time steps the output
		must be done.

25 Viscoelastic Unit

This object stores the mechanical properties of a spring-dashpot pair. However, their assembly (in parallel or in series) is managed by the parent viscoelastic behaviour object.

Note: the .young_modulus/.poisson_ratio pair can be replaced with the .bulk_modulus/shear_modulus pair (both values in pascal).

Object	Type	Description
.young_modulus	Numeral	The elastic stiffness of the spring (in pascal).
.poisson_ratio	Numeral	The poisson ratio of the spring (no unit).
$.\mathtt{characteristic_time}$	Numeral	The characteristic time of the dashpot (in days).

26 Enumerations

This section details the list of accepted values for the different enumerations found in the configuration.

26.1 Behaviour Type

VOID_BEHAVIOUR (default value), ELASTICITY, ELASTICITY_AND_FRACTURE, ELASTICITY_AND_IMPOSED_DEFORMATION, LOGARITHMIC_CREEP, PASTE_BEHAVIOUR, AGGREGATE_BEHAVIOUR, ASR_GEL_BEHAVIOUR, CONCRETE_BEHAVIOUR, REBAR_BEHAVIOUR, STEEL_BEHAVIOUR, VISCOSITY, KELVIN_VOIGT, MAXWELL, BURGER, GENERALIZED_KELVIN_VOIGT, GENERALIZED_MAXWELL,

26.2 Boolean

TRUE, FALSE

26.3 Boundary Condition Type

GENERAL,
FIX_ALONG_ALL,
FIX_ALONG_XI,
SET_ALONG_XI,
FIX_ALONG_ETA,
SET_ALONG_ETA,
FIX_ALONG_ZETA,
SET_ALONG_ZETA,
SET_ALONG_ZETA,
FIX_ALONG_XI_ETA,
SET_ALONG_XI_ETA,
FIX_ALONG_XI_ETA,
FIX_ALONG_XI_ZETA,
FIX_ALONG_XI_ZETA,

SET_ALONG_XI_ZETA, FIX_ALONG_ETA_ZETA,

SET_ALONG_ETA_ZETA,

FIX_ALONG_INDEXED_AXIS,

SET_ALONG_INDEXED_AXIS,

SET_FORCE_XI,

SET_FORCE_ETA,

SET_FORCE_ZETA,

SET_FORCE_INDEXED_AXIS,

SET_FLUX_XI,

 ${\tt SET_FLUX_ETA},$

SET_FLUX_ZETA,

SET_VOLUMIC_STRESS_XI,

SET_VOLUMIC_STRESS_ETA,

SET_VOLUMIC_STRESS_ZETA,

SET_STRESS_XI,

SET_STRESS_ETA,

SET_STRESS_ZETA,

SET_NORMAL_STRESS,

SET_TANGENT_STRESS,

VERTICAL_PLANE_SECTIONS,

HORIZONTAL_PLANE_SECTIONS,

nullptr_CONDITION,

SET_GLOBAL_FORCE_VECTOR

26.4 Bounding Box Position

TOP,

LEFT,

BOTTOM,

RIGHT,

FRONT,

BACK,

BEFORE,

NOW,

AFTER,

TOP_LEFT,

TOP_RIGHT,

BOTTOM_LEFT,

BOTTOM_RIGHT,

FRONT_LEFT,

FRONT_RIGHT,

BACK_LEFT,

BACK_RIGHT,

FRONT_TOP,

FRONT_BOTTOM,

BOTTOM_BACK,

TOP_BACK,

TOP_LEFT_FRONT,

TOP_LEFT_BACK,

BOTTOM_LEFT_FRONT,

BOTTOM_LEFT_BACK,

TOP_RIGHT_FRONT,

TOP_RIGHT_BACK,

BOTTOM_RIGHT_FRONT,

BOTTOM_RIGHT_BACK,

TOP_BEFORE,

LEFT_BEFORE,

BOTTOM_BEFORE,

RIGHT_BEFORE,

FRONT_BEFORE,

BACK_BEFORE,

TOP_LEFT_BEFORE,

TOP_RIGHT_BEFORE,

BOTTOM_LEFT_BEFORE,

BOTTOM_RIGHT_BEFORE,

FRONT_LEFT_BEFORE,

FRONT_RIGHT_BEFORE,

BACK_LEFT_BEFORE,

BACK_RIGHT_BEFORE,

FRONT_TOP_BEFORE,

FRONT_BOTTOM_BEFORE,

TOP_LEFT_FRONT_BEFORE,

TOP_LEFT_BACK_BEFORE,

BOTTOM_LEFT_FRONT_BEFORE,

BOTTOM_LEFT_BACK_BEFORE,

TOP_RIGHT_FRONT_BEFORE,

TOP_RIGHT_BACK_BEFORE,

BOTTOM_RIGHT_FRONT_BEFORE,

BOTTOM_RIGHT_BACK_BEFORE,

BOTTOM_BACK_BEFORE,

TOP_BACK_BEFORE,

TOP_NOW,

LEFT_NOW,

BOTTOM_NOW,

RIGHT_NOW,

FRONT_NOW,

BACK_NOW,

TOP_LEFT_NOW,

TOP_RIGHT_NOW,

BOTTOM_LEFT_NOW,

 ${\tt BOTTOM_RIGHT_NOW},$

 ${\tt FRONT_LEFT_NOW},$

 ${\tt FRONT_RIGHT_NOW},$

 ${\tt BACK_LEFT_NOW},$

BACK_RIGHT_NOW,

FRONT_TOP_NOW,

FRONT_BOTTOM_NOW,

 ${\tt TOP_LEFT_FRONT_NOW},$

 ${\tt TOP_LEFT_BACK_NOW},$

 ${\tt BOTTOM_LEFT_FRONT_NOW},$

 ${\tt BOTTOM_LEFT_BACK_NOW},$

 ${\tt TOP_RIGHT_FRONT_NOW},$

TOP_RIGHT_BACK_NOW,

BOTTOM_RIGHT_FRONT_NOW,

BOTTOM_RIGHT_BACK_NOW, TOP_AFTER, LEFT_AFTER, BOTTOM_AFTER, RIGHT_AFTER, FRONT_AFTER, BACK_AFTER, TOP_LEFT_AFTER, TOP_RIGHT_AFTER, BOTTOM_LEFT_AFTER, BOTTOM_RIGHT_AFTER, FRONT_LEFT_AFTER, ${\tt FRONT_RIGHT_AFTER},$ BACK_LEFT_AFTER, BACK_RIGHT_AFTER, FRONT_TOP_AFTER, FRONT_BOTTOM_AFTER, TOP_LEFT_FRONT_AFTER, TOP_LEFT_BACK_AFTER, BOTTOM_LEFT_FRONT_AFTER, BOTTOM_LEFT_BACK_AFTER, TOP_RIGHT_FRONT_AFTER, TOP_RIGHT_BACK_AFTER, BOTTOM_RIGHT_FRONT_AFTER, BOTTOM_RIGHT_BACK_AFTER, BOTTOM_BACK_AFTER, TOP_BACK_AFTER.

The bounding box positions involving TOP and BOTTOM are only used in three dimensions. The bounding box positions involving BEFORE, NOW and AFTER are only used in space-time finite element analysis.

26.5 Column Identifier

RADIUS_A, RADIUS_B, CENTER_X, CENTER_Y, CENTER_Z,

26.6 Damage Model Type

ISOTROPIC_LINEAR_DAMAGE,
ISOTROPIC_INCREMENTAL_LINEAR_DAMAGE,
PLASTIC_STRAIN,

26.7 Element Order

CONSTANT, LINEAR (default value), QUADRATIC, CUBIC, QUADRIC. QUINTIC, CONSTANT_TIME_LINEAR, CONSTANT_TIME_QUADRATIC, LINEAR_TIME_LINEAR, LINEAR_TIME_QUADRATIC, QUADRATIC_TIME_LINEAR, QUADRATIC_TIME_QUADRATIC, CUBIC_TIME_LINEAR, CUBIC_TIME_QUADRATIC, QUADRIC_TIME_LINEAR, QUADRIC_TIME_QUADRATIC, QUINTIC_TIME_LINEAR, QUINTIC_TIME_QUADRATIC, QUADTREE_REFINED, REGULAR_GRID.

26.8 Extended Field Type

CRITERION, STIFFNESS, VISCOSITY.

This object can also take the value of any Field Type defined above. They can also accept any String, as long as they correspond to material parameters defined in the case of generalized logarithmic creep behaviour.

26.9 Field Type

DISPLACEMENT_FIELD, ENRICHED_DISPLACEMENT_FIELD, SPEED_FIELD, FLUX_FIELD, GRADIENT_FIELD, STRAIN_FIELD, STRAIN_RATE_FIELD, EFFECTIVE_STRESS_FIELD, REAL_STRESS_FIELD, PRINCIPAL_STRAIN_FIELD, PRINCIPAL_EFFECTIVE_STRESS_FIELD, PRINCIPAL_REAL_STRESS_FIELD, NON_ENRICHED_STRAIN_FIELD, NON_ENRICHED_STRAIN_RATE_FIELD, NON_ENRICHED_EFFECTIVE_STRESS_FIELD, NON_ENRICHED_REAL_STRESS_FIELD, VON_MISES_STRAIN_FIELD, VON_MISES_REAL_STRESS_FIELD, VON_MISES_EFFECTIVE_STRESS_FIELD, PRINCIPAL_ANGLE_FIELD, INTERNAL_VARIABLE_FIELD, GENERALIZED_VISCOELASTIC_DISPLACEMENT_FIELD, GENERALIZED_VISCOELASTIC_ENRICHED_DISPLACEMENT_FIELD, GENERALIZED_VISCOELASTIC_SPEED_FIELD,

GENERALIZED_VISCOELASTIC_STRAIN_FIELD,
GENERALIZED_VISCOELASTIC_STRAIN_RATE_FIELD,
GENERALIZED_VISCOELASTIC_EFFECTIVE_STRESS_FIELD,
GENERALIZED_VISCOELASTIC_REAL_STRESS_FIELD,
GENERALIZED_VISCOELASTIC_PRINCIPAL_STRAIN_FIELD,
GENERALIZED_VISCOELASTIC_PRINCIPAL_EFFECTIVE_STRESS_FIELD,
GENERALIZED_VISCOELASTIC_PRINCIPAL_REAL_STRESS_FIELD,
GENERALIZED_VISCOELASTIC_NON_ENRICHED_STRAIN_FIELD,
GENERALIZED_VISCOELASTIC_NON_ENRICHED_STRAIN_RATE_FIELD,
GENERALIZED_VISCOELASTIC_NON_ENRICHED_EFFECTIVE_STRESS_FIELD,
GENERALIZED_VISCOELASTIC_NON_ENRICHED_REAL_STRESS_FIELD,
SCALAR_DAMAGE_FIELD

26.10 Fracture Criterion Type

MAXIMUM_TENSILE_STRAIN,
MAXIMUM_TENSILE_STRESS,
LINEAR_SOFTENING_MAXIMUM_TENSILE_STRAIN,
ELLIPSOIDAL_SOFTENING_MAXIMUM_TENSILE_STRESS,
MOHR_COULOMB,
LINEAR_SOFTENING_MOHR_COULOMB,
EXPONENTIAL_SOFTENING_MOHR_COULOMB,
MCFT,
VON_MISES,
MULTI_LINEAR_SOFTENING_TENSILE_COMPRESSIVE_STRESS,

26.11 Geometry Type

CIRCLE (default value), LAYERED_CIRCLE, TRIANGLE, RECTANGLE, PARALLELOGRAMME, CONVEX_POLYGON, SEGMENTED_LINE, ORIENTABLE_CIRCLE, CLOSED_NURB, TETRAHEDRON, HEXAHEDRON, SPHERE, LAYERED_SPHERE, REGULAR_OCTAHEDRON, ELLIPSE, LEVEL_SET, TIME_DEPENDENT_CIRCLE,

26.12 Material Law Type

THERMAL_EXPANSION, DRYING_SHRINKAGE, ARRHENIUS.

CREEP_ARRHENIUS,
CREEP_HUMIDITY,
SPACE_TIME_DEPENDENT,
SIMPLE_DEPENDENT,
VARIABLE_DEPENDENT,
LINEAR_INTERPOLATED,
ASSIGN,
MINIMUM,
MAXIMUM,
GET_FIELD,
TIME_DERIVATIVE,
TIME_INTEGRAL,

26.13 Particle Size Distribution Type

CONSTANT (default value),
BOLOME_A,
BOLOME_B,
BOLOME_C,
BOLOME_D,
FROM_CUMULATIVE_FILE,
FROM_INCLUSION_FILE,
FROM_PARENT_DISTRIBUTION,

26.14 Particle Size Distribution Specification Type

CUMULATIVE_PERCENT, CUMULATIVE_FRACTION, CUMULATIVE_ABSOLUTE, CUMULATIVE_PERCENT_REVERSE, CUMULATIVE_FRACTION_REVERSE, CUMULATIVE_ABSOLUTE_REVERSE

26.15 Sampling Restriction

SAMPLE_RESTRICT_4,
SAMPLE_RESTRICT_8,
SAMPLE_RESTRICT_16,
SAMPLE_NO_RESTRICTION (default value).

26.16 Time Step Selection

NONE ALL, FIRST LAST REGULAR

27 History

Version 1.2

- Added embedded fracture properties for the logarithmic creep material.
- Added restriction- and point-defined boundary conditions.
- Added manually pre-placed inclusions.
- Added parallelism object.

Version 1.1

- Added Space-time asymmetric multi-linear softening fracture criterion.
- Added Inclusion Output.
- Added Assignment, Minimum, Maximum and Field extractor material laws.
- Completed Output.
- Added logarithmic and incremental time stepping.

Version 1.0

• Initial version.