

UNIVERSITY EXAMINATIONS MAIN CAMPUS

FIRST SEMESTER 2018 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF SCIENCE IN INFORMATION TECHNOLOGY

COMP 214 /COMP324

STREAM: Y2S1 TIME: 2:00-4:00PM

EXAMINATION SESSION: DEC DATE 5/12/2018

1. This question paper has five questions

- 2. QUESTION ONE IS COMPULSORY AND HAS 30 MARKS
- 3. Answer any other two questions worth 20 marks each.

QUESTION ONE (30 marks)

- (a) Determine with the use of stack operations whether the following nested parentheses is given in the correct pattern ((()())) (4mks)
- (b) Explain Fibonacci series as an implementation of recursion. Explain its base and recursive cases and their importance. (4mks)
- (c) What is complexity analysis? Give two forms of complexity analysis with examples.

(5mks)

(d) Explain best, worst and average analysis of an algorithm

(3mks)

- (e) The alphabets A to H are stored in a 2x3 matrix; Explain how to declare these alphabets in an array and show their respective positions of each element in the array. (5mks)
- (f) What is an array? Explain how to declare and assign values to a two-dimensional array in C language. (5mks)
- (g) What is a pointer? Explain indirection

(2mks)

(h) When does best case analysis occur in a linear search?	(2mks)	
QUESTION TWO (20 marks)		
(a) Performing dequeue and enqueue operations on linear queue brings about challenge.		
Explain this challenge and how circular queue solves this problem	(4mks)	
(b) Explain how you can use array in stack representation.	(3mks)	
(c) Give any three applications of a graph.	(3mks)	
(d) Explain the use of stack in matching of braces in an expression	(5mks)	
(e) What is a tree? Explain with the aid of a diagram, root, ancestors, siblings, descendants		
and leaves in a tree	(5mks)	
QUESTION THREE (20 marks)		
(a) Explain with the aid of diagrams circular linked list and doubly linked list	(4mks)	
(b) What is a binary tree? Explain symmetric order in binary tree.	(5mks)	
(c) What is the difference between full and complete binary tree	(2mks)	
(d) What is the position of rear and front in an empty queue	(2mks)	
(e) Draw any weighted and directed graph with five vertices and demonstrate how to		
represent it using adjacency matrix	(5mks)	
(f) What is the difference between the height of a tree and the depth of a node?	(2mk)	
QUESTION FOUR (20 marks)		
(a) The time complexity when determining the efficiency of algorithm is measured by	y using	
which parameters	(2mks)	
(b) What is hashing? Explain how it is used to represent large digit numbers	(2mks)	
(c) Explain the tower of Hanoi as an implementation of recursion	(5mks)	
(d) Explain two ways of handling collision.	(2mks)	
(e) Assume that you want to store integer elements named 'numbers' in list. Explain which		
structure to use and how to implement the storage of these elements in C	(5mks)	

(f) How does underflow and overflow condition occur? Explain how to test these condition in C language. (4mks)

QUESTION FIVE (20 marks)

- a) Every Algorithm must satisfy the different properties. Explain five of those properties (5mks)
- b) What is recursion? Write the procedure of executing the minimal number for the tower of Hanoi having any number of disks (5mks)
- c) Show how a sequence of enqueing and dequeing represented by a linear array can cause overflow to occur upon an attempt to insert an element into an empty queue (5mks)
- d) Draw a perfect binary search tree with seven nodes and demonstrate how to search for one of the leaf nodes (5mks)

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST SEMESTER, 2017/2018 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE IN COMPUTER SCIENCE

COMP 214/ COMP123: DATA STRUCTURE IN C

STREAM: Y2S1/Y1S2 TIME: 2.00-4.00 PM

EXAMINATION SESSION: DECEMBER DATE: 11/12/2017

INSTRUCTIONS:

- 1. This question paper has five questions
- 2. QUESTION ONE IS COMPULSORY AND HAS 30 MARKS
- 3. Answer any other two questions worth 20 marks each.

QUESTION ONE (30 marks)

- (a) Given the stack S and item i show how to use stack operations to push and pop an item to and from a stack respectively (2mks)
- (b) Performing dequeue and enqueue operations on linear queue brings about challenge.

 Explain the challenge and its solution (4mks)
- (c) Determine whether the following nested expression is given in a correct pattern by using matching of braces application; ((A+B)*(C-D))E) (5mks)

Page 1 of 3

(d) What is complexity analysis? Give two forms of complexity analysis wit	n examples.			
	(5mks)			
(e) How does underflow and overflow condition occur? Explain how to test	these condition			
in C language.	(4mks).			
(f) Explain best, worst and average analysis of an algorithm	(3mks)			
(g) What is an array? Explain how to declare and initialize two-dimensional array in C				
language.	(5mks)			
(h) Explain how you can use array in stack representation.	(3mks)			
(i) What is a pointer? Explain indirection	(2mks)			
QUESTION TWO (20 marks)				
(a) The progression of numbers from 1 to 8 are stored in a 4x2 matrix; Exp				
declare these numbers in an array and show their respective positions o				
in the array.	(5mks)			
(b) Give any three applications of a graph.	(3mks)			
(c) When does best case performance occur in a linear search?	(2mks)			
(d) Explain the tower of Hanoi as an implementation of recursion	(5mks)			
(e) What is a tree? Explain with the aid of a diagram, root, ancestors, sibling	ngs, descendants			
and leaves in a tree	(5mks)			
QUESTION THREE (20 marks) (a) The time factor when determining the efficiency of algorithm is measured by using				
which parameters	(2mks)			
(b) What is the advantage of circular doubly linked lists over other types of	linked lists			
	(4mks)			
(c) What is a binary tree? Explain depth first order in binary tree.	(5mks)			
(d) What is the difference between full and complete binary tree	(2mks)			
(e) What is the position of rear and front in an empty queue	(2mks)			
	Page 2 of 3			

(f) Explain the use of stack in manipulation of expression notations (5mks)

QUESTION FOUR (20 marks)

- (a) Draw any weighted and directed graph with five vertices and demonstrate how to represent it using adjacency matrix (5mks)
- (b) What is hashing? Explain how it is used to represent large digit numbers (2mks)
- (c) What is the difference between the height of a tree and the depth of a node?(2mk)
- (d) Explain two ways of handling collision. (2mks)
- (e) Explain Fibonacci series as an implementation of recursion. Explain its base and recursive cases and their importance. (4mks)
- (f) Assume that you want to store integer elements named Num in list. Explain which structure to use and how to implement the storage of these elements in C (5mks)

QUESTION FIVE (20 marks)

- a) Write a code in C programming language to define a stack structure and explain the contents of that code (3mks)
- b) If the index position of the rear and the front of the queue are 1 and 3 respectively, how many elements are there in that queue? (4mks)
- c) If h is the height of the tower representing the number of disks and A B and C representing the three rods, explain the steps of using the minimal moves in playing the Tower of Hanoi puzzle (6mks)
- d) Demonstrate how you delete a node with two child nodes in a binary search tree(BST) (4mks)
- e) What is a hash function? Name two desirable properties of a hash function. (3mks)

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND SEMESTER, 2016/2017 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE IN COMPUTER SCIENCE

COMP 214/INTE 123/COMP123: DATA STRUCTURE

STREAM: Y2S1& Y1S2 TIME: 11.00-1.00PM

EXAMINATION SESSION: AUGUST DATE: 27/7/2017

INSTRUCTIONS:

- 1. This question paper has five questions
- 2. QUESTION ONE IS COMPULSORY AND HAS 30 MARKS
- 3. Answer any other two questions worth 20 marks each.

QUESTION ONE (30 marks)

- a) Write a code in C programming language to define a stack structure and explain the contents of that code (3mks)
- b) Show how to implement stack of integers in C using array with the size defined globally (3mks)
- c) Write a code in C to implement a queue using an array. Explain all the variables used in the implementation (3mks)
- d) Show how a sequence of enqueing and dequeing represented by a linear array can cause overflow to occur upon an attempt to insert an element into an empty queue (5mks)

Page 1 of 3

	e) f) g) h) i)	What are the disadvantages of representing a stack or a queue by a linked lists How do you choose a good hash function? Explain any two application of a graph Convert the following infix expressions to postfix and prefix A+B*(C*B-D). Explain using an example the best, worst and average case analysis of an algorithm List any three application areas of queues	(2mks) (2mks) (2mks) (4mks) n (3mks) (3mks)	
QU	JES	TION TWO (20 marks)		
	a) If the index position of the rear and the front of the queue are 0 and -1 respectively, how			
	h)	many elements are there in that queue? What is the value of the postfix expression 6 3 2 4 + - *	(4mks) (3mks)	
		If h is the height of the tower representing the number of disks and A B and C	(Siliks)	
	representing the three rods, explain the steps of using the minimal moves in playing the			
		Tower of Hanoi puzzle	(6mks)	
	d)	Write a code in C to declare the following elements into one dimensional array an		
	e)	their respective index positions; A, B, C, D, F What is a pointer? Explain the use of pointer in linked list	(5mks) (2mks)	
	υ,	What is a pointer. Explain the use of pointer in linked list	(211113)	
QU	JES	TION THREE (20 marks)		
		What is a hash function? Name two desirable properties of a hash function.	(3mks)	
		Explain the three cases of deletion in a binary search tree(BST) Explain underflow and overflow in stack and how to test this conditions in C lange	(6mks)	
	c)	Explain undernow and overnow in stack and now to test this conditions in C lang	(3mks)	
	d)			
		of each element in the matrix	(3mks)	
	e)	Write a code in C to define a linked list and explain the parts of this structure	(4mks)	
ου	JES	TION FOUR (20 marks)		
		Given a hash table of size 6, show the contents of your hash table after inserting the	ne	
		values {15, 13, 23, 16, 20, 16} using modulo 10 division with linear probing for c		
	1-)	resolution.	(5mks)	
	b) c)	Write the code in C that will test the emptiness of a linear queue What is a binary tree? Explain depth first order in binary tree	(4mks) (5mks)	
		Explain the difference between a tree and a graph?	(2mks)	
	(2.11.6)			
	d) What is recursion? Explain the factorial of a number as a recursive method showing the		ng the	
		base case and the recursive case	(4mks)	

QUESTION FIVE (20 marks)

- a) Explain the use of stack operations to demonstrate whether the following sequence of parentheses are balanced, (() (()) (())) (4mks)
- b) Demonstrate how to declare and assign values to a three dimensional array (5mks)
- c) Given a weighted, undirected graph with 5 nodes, how do you implement the storage of this graph (5mks)
- d) How do you handle a situation where a hash function produces the same result of the position of index in the list of elements? Explain (4mks)
- e) What is the index position of any top of stack if n is the number of elements

(2mks)

KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND SEMESTER, 2016/2017 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR SCIENCE IN COMPUTER SCIENCE

COMP 214: DATA STRUCTURES

STREAM: Y2S1 TIME: 9.00-11.00 A.M

EXAMINATION SESSION: APRIL DATE: 10/04/ 2017

INSTRUCTIONS:

- 1. This question paper has five questions
- 2. QUESTION ONE IS COMPULSORY AND HAS 30 MARKS
- 3. Answer any other two questions worth 20 marks each.

Question One: [30 MARKS]

- a. What is the characteristic of computer memory that makes it simpler to organize data efficiently (2mks)
- b. Write a code in C to show the use of array in defining stack. Show how underflow and overflow are tested (4mks)
- c. How many leaf and non-leaf nodes are present in a perfect binary tree if its depth is 3? (3mks)
- d. Write a small code to define linked list as a structure in C programming language

(3mks)

As members of Kabarak University family, we purpose at all times and in all places, to set apart in one's heart Jesus as Lord. (1 Peter 3:15)

- e. Explain base case and recursive case in both factorial of a number and Fibonacci series (4mks)
- f. Draw a perfect binary tree of two levels with labeled nodes and show all the three traversal methods (6mks)
- g. What is complexity analysis? Give two forms of complexity analysis with examples. (5mks)
- h. Explain using an example the best, worst and average case analysis of an algorithm (3mks)

Question Two: [30 MARKS]

- a. List any two application areas of queues (2mks)
- b. A company contains 100 employees each having a unique 5 digit number. Demonstrate how to represent these employees uniquely using two digit numbers (5mks)
- c. Consider the following nested parenthesis. Explain how to use the stack operations to prove if the expression is nested correctly.

- d. If the index position of rear=2 and that of front=0, how many elements are present in that queue (3mks)
- e. What is an array? Explain how to declare and initialize one-dimensional array in C language. (5mks)

Question Three: [30 MARKS]

- a. Write a C function that tests the recursive and the base case of a Fibonacci of a number n (2mks)
- **b.** Transform the following expression to prefix and postfix;

$$(A+B)*(C-D)/E-F \tag{4mks}$$

- c. Draw any directed graph of six nodes. Demonstrate how to represent it using adjacency matrix (4mks)
- d. Explain with the aid of a diagram circular linked list and doubly linked list (4mks)
- e. Explain the following terms:
 - 1. Collision
 - 2. Linear Probing
 - 3. Quadratic Probing (6mks)

Question Four: [30 MARKS]

a.	Express the recursive solution of the Tower of Hanoi problem of moving n disks from	
	rod A to C using B as an auxiliary	(5mks)
b.	Why do we consider an array elements as 'similar' and 'finite'	(2mks)
c.	What is the use of pointers? Demonstrate with the use of a diagram	(3mks)
d.	Write an algorithm for finding duplicate of a value in a binary search tree	(6mks)
e.	What is the advantage of circular doubly linked list over other types of linked	lists
		(2mks)
f.	What is the difference between a tree and a graph.	(2mks)

Question Five: [30 MARKS]

a. Explain the three dimensional array using a two dimensional array (4mks)
b. Write a code in C programming language to define a stack structure and explain the contents of that code (3mks)
c. If h is the height of the tower representing the number of disks and A B and C representing the three rods, explain the steps of using the minimal moves in playing the Tower of Hanoi puzzle (6mks)
d. Demonstrate how you delete a node with two child nodes in a binary search tree(BST) (4mks)
e. What is a hash function? Name two desirable properties of a hash function. (3mks)