

Programozási alapismeretek

- > További programozási tételek
- ➤ <u>Másolás</u> függvényszámítás
- > Kiválogatás
- > Szétválogatás
- > Programozási tételek visszatekintés
- ➤ <u>Mátrixok</u>

További programozási tételek

Mi az, hogy programozási tétel?

Típusfeladat általános megoldása.

- ➤ Sorozat → érték
- \triangleright Sorozat \rightarrow sorozat
- \triangleright Sorozat \rightarrow sorozatok
- >Sorozatok → sorozat

Feladatok:

- Egy számsorozat tagjainak adjuk meg az abszolút értékét!
- > Egy szöveget alakítsunk át csupa kisbetűssé!
- > Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- Ismerünk N dátumot 'éé.hh.nn' alakban, adjuk meg őket 'éé. hónapnév nn.' alakban!

Feladatok:

- Egy számsorozat tagjainak adjuk meg az abszolút értékét!
- Egy szöveget alakítsunk át csupa kisbetűssé!
- > Számoljuk ki két vektor összegét!
- Készítsünk függvénytáblázatot a sin(x) függvényről!
- Ismerünk N dátumot ,éé.hh.nn' alakban, adjuk meg ,éé. hónapnév nn' alakban!

Mi bennük a közös?

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám, a sorrend is marad. Az elemeken operáló függvény ugyanaz.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in \mathbb{H}_1^N$$

$$f:H_1 \rightarrow H_2$$

 \triangleright Kimenet: $Y_{1..N} \in \mathbb{H}_2^N$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$

Másként: $Y_{1..N} = f(X_{1..N})$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Algoritmus:

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$ $f: H_1 \rightarrow H_2$

≻ Kimenet: Y_{1..N}∈H₂^N

> Előfeltétel: -

> Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Megjegyzés: nem feltétlenül kell ugyanaz az i index a két tömbhöz, pl.:

Utófeltétel:
$$\forall i (1 \le i \le N)$$
: $Y_{p(i)} = f(X_i)$

$$i = 1..N$$

$$Y[p(i)] := f(X[i])$$

$$Y[p(i)] := f(X[i])$$

p(i) lehet pl. 2*i, N-i+1, ... (megfelelő Y tömb mérettel, ill. indexintervallummal definiálva; Y részsorozata a kimenet; p injektív)

Specifikáció (egy gyakori speciális eset)₁:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in H^{N}$$

$$g: H \rightarrow H$$

$$T: H \rightarrow L$$

- \triangleright Kimenet: $Y_{1..N} \in \mathbb{H}^N$
- ➤ Előfeltétel: –
- \triangleright Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$
- > Definíció: $f(x) := \begin{cases} g(x), & \text{ha } T(x) \\ x, & \text{egyébként} \end{cases}$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

- ▶ Bemenet: N∈N
 - $X_{1..N} \in H_1^N$ $f:H_1 \rightarrow H_2$
- ≻ Kimenet: Y_{1 N}∈H₂^N
- > Előfeltétel: -
- > Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

f:H → H

Specifikáció (egy gyakori speciális eset)₁:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in \mathbb{H}^N$$

 $g:H \rightarrow H$

 $T:H \rightarrow L$

- > Kimenet: $Y_1 \in H^N$
- ➤ Előfeltétel: –
- ➤ Utófeltétel: ∀i(1≤i≤N):

$$(T(X_i) \to Y_i = g(X_i) \quad \text{\'es}$$

$$\text{nem } T(X_i) \to Y_i = X_i)$$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$

≻ Kimenet: Y_{1 N}∈H₂^N

Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Algoritmus₁:

Specifikáció (egy gyakori speciális eset)₁:

▶ Bemenet: N∈N

 $X_{1..N} \in H^N$

g:H→H T:H→L

➤ Kimenet: Y_{1 N}∈H^N

> Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N):

$$(T(X_i) \rightarrow Y_i = g(X_i)$$
 és

nem $T(X_i) \rightarrow Y_i = X_i$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció (egy másik speciális eset)₂:

 \triangleright Bemenet: $N \in \mathbb{N}$

$$X_{1..N} \in \mathbb{H}^N$$

- \triangleright Kimenet: $Y_{1..N} \in \mathbb{H}^N$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $Y_i = X_i$

N darab "valamihez" kell hozzárendelni másik N darab "valamit", ami akár az előbbitől különböző típusú is lehet. A darabszám marad, a sorrend is marad.

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$

≻ Kimenet: Y_{1 N}∈H₂^N

Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Megjegyzés:

nincs f függvény, helyesebben identikus (f(x):=x).

Algoritmus₂:

Specifikáció: > Bemenet: N∈N $X_1 \in H_1^N$ $f:H_1 \rightarrow H_2$ ≻ Kimenet: Y_{1..N}∈H₂^N > Előfeltétel: -> Utófeltétel: $\forall i$ (1≤i≤N): Y_i = $f(X_i)$

Megjegyzés:

Az Y:=X értékadással helyettesíthető, ha a két tömb azonos típusú. Ha az indexek különbözőek (p nem identikus), akkor:

Specifikáció: $f(X[i]) \rightarrow P[i]+Q[i]$

» Számoljuk ki két vektor összegét!

 $(P,Q) \in (R \times R)^N$

 \triangleright Bemenet: $N \in \mathbb{N}$

$$P_{1..N}, Q_{1..N} \in \mathbb{R}^N$$

$$\mathbf{f}: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \ \mathbf{f}(x,y) := x + y$$

- > Kimenet: $R_1 \in \mathbb{R}^N$
- ➤ Előfeltétel: –
- \rightarrow Utófeltétel: $\forall i(1 \le i \le N)$: $R = P_i + Q_i$

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$

- ≻ Kimenet: Y_{1..N}∈H₂^N
- > Előfeltétel: –
- > Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

Algoritmus:

$$i=1..N$$

$$R[i] := P[i] + Q[i]$$

Változó i:Egész

Feladatok:

- > Adjuk meg egy osztály kitűnő tanulóit!
- > Adjuk meg egy természetes szám összes osztóját!
- > Adjuk meg egy mondat magas hangrendű szavait!
- > Adjuk meg emberek egy halmazából a 180 cm felettieket!
- > Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- Soroljuk föl egy szó magánhangzóit!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

Feladatok:

- > Adjuk meg egy osztály kitűnő tanulóit!
- Adjuk meg egy természetes szám összes osztóját!
- Adjuk meg egy mondat magas hangrendű szavait!
- Adjuk meg emberek egy halmazából a 180 cm felettieket!
- Adjuk meg egy év azon napjait, amikor délben nem fagyott!
- > Soroljuk föl egy szó magánhangzóit!

Specifikáció:

➤ Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{H}^N$

 $T: \mathbb{H} \rightarrow \mathbb{I}$

- \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}$
- ➤ Előfeltétel: –
- > Utófeltétel: Db= \sum 1 \deces $T(X_i)$

 $\forall i (1 \le i \le Db): T(X_{\mathbf{Y}}) \text{ és}$

$$Y \subseteq (1,2,\ldots,N)$$

Másképp: (Db, Y) = Kiválogat i

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

> Az első Db elemet használya

L. Megszámolás tételt!

16/57

BUDANNING SOLVANING SOLVAN

Algoritmus:

Megjegyzés:

A sorszám általánosabb, mint az érték. Ha mégis érték kellene, akkor Y[Db]:=X[i] szerepelne. (Ekkor a specifikációt is módosítani kell! Lásd később!)

Értékek kiválogatása (tömören): Specifikáció₂:

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{H}^{\mathbb{N}}$

Vtófeltétel: Db =
$$\sum_{i=1}^{N} 1$$
 és $T(X_i)$

$$\forall i (1 \le i \le Db): T(Y_i) \text{ és}$$

 $Y \subset X$

Másképp: (Db, Y) = Kiválogat
$$X_i$$

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

➤ Kimenet: $Db \in N, Y_{1..N} \in N^N$

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és } Y \subseteq (1,2,...,N)$

Specifikáció: $T(X_i) \rightarrow H_i > 0$

 \triangleright Bemenet: $N \in \mathbb{N}, H_{1..N} \in \mathbb{R}^{N},$

 $Poz: \mathbb{R} \rightarrow \mathbb{L}, Poz(x):=x>0$

 \triangleright Kimenet: $Db \in \mathbb{N}, NF_{1..N} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: –

 \rightarrow Utófeltétel₁: Db= $\sum_{i=1}^{1}$ 1 és

 $\forall i (1 \le i \le Db): H_{NF_i} > 0$ és $NF \subseteq (1,2,...,N)$

► Utófeltétel₂: (Db, NF) = Kiválogat i $\lim_{\substack{i=1\\H_i>0}}$

 Adjuk meg egy év azon napjait, amikor délben nem fagyott!

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

➤ Kimenet: Db∈N, Y_{1..N}∈N^N

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és } Y \subseteq (1,2,...,N)$

i:Egész

Algoritmus: $T(X[i]) \rightarrow H[i] > 0$

i=1.. N

Db:=Db+1

Y[Db]:=i

T(X[i])

8. Kiválogatás helyben

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{N}^N$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1,N} \in \mathbb{H}^{\mathbb{N}}$

➤ Előfeltétel: –

▶ Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $Y_{1..Db} \subseteq X$ és $\forall i (1 \le i \le Db)$: $T(Y_i)$

Itt a bemenetben szereplő X és a kimenetben szereplő Y lehet a programban ugyanaz a változó. Jelöljük ezt is X-szel. Teljesülni kell rá a megálláskor (meghagyva a specifikációbeli műveleteket):

 $X_{1 \text{ Db}}^{\text{kimeneti}} \subseteq X_{1 \text{ N}}^{\text{bemeneti}}$ és $\forall i (1 \le i \le Db): T(X_{i}^{\text{kimeneti}})$

Programparaméterek: Konstans

MaxN:**Egész**(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

8. Kiválogatás helyben

i:Egész

Ötlet:

Itt olyan helyre tesszük a kiválogatott elemet, amelyre már nincs szükségünk.

Algoritmus:

Specifikáció:

- > Bemenet: N∈N, X∈H^N
- \succ Kimenet: Db \in N, X' \in H^N
- > Előfeltétel: -
- > Utófeltétel: $Db = \sum 1$ $\begin{matrix} & & & \\ X'_{1..Db} \underline{\subseteq} X & \text{\'es} \end{matrix}$ $\forall i(1 \le i \le Db): T(X'_i)$

	<u>Változó</u>
Db:=0	i:Egé
i=1N	
T(X[i])	N
Db:=Db+1	
X[Db]:=X[i]	

Speciális sorozat típus: dinamikus tömb

A programozás a tömb típuson kívül sokféle sorozat típust ismer. Közülük az egyik egy olyan indexelhető típus, aminek az elemszáma futás közben növelhető (ebből a szempontból a szöveg típusra hasonlít).

Műveletei:

- Hossz(S) az S sorozat és a neki megfelelő tömb elemei száma
- ➤ Végére(S,x) az S tömb végére egy új elemet, az x-et illeszti
- ➤ S[i] az S tömb i-edik eleme
- További műveletek is lehetnek, most nem térünk ki rá.
- Figyelem: e típus használata jelentősen megnövelheti a program futási idejét!

Speciális sorozat típus: dinamikus tömb C#-ban

Deklaráció:

```
S:Tömb[TElem] - List<TElem> S
```

... és az üres tömb létrehozása:

```
new List<TElem>();
```

Deklaráció + létrehozás:

Műveletek:

- \rightarrow Hossz(S) S. Count
- \triangleright Végére(S,x) S. Add (x)
- > S[i] S[i]

8. Kiválogatás dinamikus tömbbe

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N$,

 $T:H\rightarrow L$

 \triangleright Kimenet: $Y_{1..} \in \mathbb{N}$

➤ Előfeltétel: -

> Utófeltétel: $\underset{T(X_i)}{\text{Hossz}(Y)} = \sum_{i=1}^{\infty} 1$ és

 $\forall y \in Y : T(X_y) \text{ és}$

 $Y \subseteq (1,2,...,N)$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt!

Annyi elemet használva, amennyit kell.

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^{\mathbb{N}},$

T:H→L

 \triangleright Kimenet: $Db \in N, Y_{1.N} \in N^N$

➤ Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és } Y \subseteq (1,2,...,N)$

8. Kiválogatás dinamikus tömbbe

Algoritmus:

Megjegyzés:

A sorszám általánosabb, mint az érték. Ha mégis **érté**k kellene, akkor Végére(Y,X[i]) szerepelne. (Ekkor a specifikációt is módosítani kell!)

Feladatok:

- > Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!
- > Adjuk meg emberek egy halmazából a 140 cm alattiakat, a 140 és 180 cm közöttieket és a 180 cm felettieket!
- Adjuk meg emberek egy halmazából a télen, tavasszal, nyáron, illetve ősszel születetteket!

Mi bennük a közös?

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt! Azaz az összes bemeneti elemet "besoroljuk" a kimenet valamely sorozatába.

A többfelé szétválogatás visszavezethető a kétfelé szétválogatásra.

Feladatok:

- Adjuk meg egy számsorozatból a páros és a páratlan számokat is!
- Adjuk meg egy év azon napjait, amikor délben fagyott és amikor nem fagyott!
- Adjuk meg egy angol szó magán- és mássalhangzóit!
- Adjuk meg emberek egy halmazából a 140 cm alattiakat, a 140 és 180 cm közöttieket és a 180 cm felettieket!
- Adjuk meg emberek egy halmazából a télen, tavasszal, nyáron, illetve ősszel születetteket!

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1.N} \in \mathbb{H}^N$,

 $T:H \rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{N}^{\mathbb{N}}, Z_{1..N} \in \mathbb{N}^{\mathbb{N}}$

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i})$ és

 $\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és

 $Y\subseteq(1,2,...,N)$ és $Z\subseteq(1,2,...,N)$

N darab "valami" közül kell megadni az

illetve nem rendelkezőt!

összes, adott T tulajdonsággal rendelkezőt,

Specifikáció₂:

► Utófeltétel₂: (Db, Y, Z) = Szétválogat i

Értékek szétválogatása esetén:

$$(Db, Y, Z) = Sz\acute{e}tv\acute{a}logat X_i$$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

Algoritmus:

Specifikáció:		
> Bemenet:	N∈N	
	$X_{1.N} \in H^N$	
	T:H→L	
➤ Kimenet:	Db∈N	
	$Y_{1N} \in N^N, Z_{1N} \in N^N$	
> Előfeltétel: –		
> Utófeltétel:	: Db= $\sum_{i=1}^{N} 1$ és	
	i=1 T(X _i)	
	∀i(1≤i≤Db): T(X _Y) és	
	$\forall i (1 \le i \le N - Db)$: nem $T(X_{Z_i})$ és	
	Y⊆(1,2,,N) és Z⊆(1,2,,N)	

Megjegyzés:

Itt is szerepelhetne := i helyett := X[i], ha csak az értékekre lenne szükségünk. (A specifikáció is módosítandó!)

Probléma:

Y-ban és Z-ben együtt csak N darab elem van, azaz elég lenne egyetlen N-elemű sorozat.

Megoldás:

► Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, T: \mathbb{H} \to \mathbb{L}$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: –

➤ Utófeltétel: Db= $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ \'es}$

 $\forall i(Db+1\leq i\leq N)$: nem $T(X_{Y_i})$ és

 $Y \in Permutáció(1,2,...,N)$

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H^N$

T:H→L

> Kimenet: Db∈N

 $Y_{1.N} \in N^N, Z_{1.N} \in N^N$

> Előfeltétel: –

> Utófeltétel: Db= $\sum_{\substack{i=1\\T(X_i)}}^{N} 1$ és

 $\forall i (1 \le i \le Db)$: $T(X_{Y_i})$ és

 $\forall i(1 \le i \le N-Db)$: nem $T(X_{Z_i})$ és

Y⊆(1,2,...,N) és Z⊆(1,2,...,N)

Specifikáció₂:

► Utófeltétel₂: (Db, Y) = Szétválogat₂i $\underset{\mathsf{T}(X_i)}{\overset{\mathsf{i}=1}{\text{otd}}}$

Értékek szétválogatása esetén:

$$(Db, Y) = Sz\acute{e}tv\acute{a}logat_2 X_i$$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

Algoritmus:

```
> Bemenet: N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^{\mathbb{N}}

> Kimenet: Db \in \mathbb{N}, Y_{1..N} \in \mathbb{N}^{\mathbb{N}}

> Előfeltétel: -

> Utófeltétel: Db = \sum_{\stackrel{i=1}{T(X_i)}}^{\mathbb{N}} 1 és \forall i(1 \le i \le Db): T(X_{Y_i}) és \forall i(Db+1 \le i \le N): nem T(X_{Y_i}) és Y \in \operatorname{Permutácio}(1,2,...,\mathbb{N})
```


Megjegyzés: Itt célszerű egy segédváltozó arra, hogy hol tartunk Y-ban hátulról: ind2.

10. Szétválogatás dinamikus tömbökbe

A kiválogatáshoz hasonlóan itt is használhatunk az eredmények tárolásához bővíthető elemszámú sorozatokat.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^{N}, T: \mathbb{H} \to \mathbb{L}$

N darab "valami" közül kell megadni az összes, adott T tulajdonsággal rendelkezőt, illetve nem rendelkezőt!

$$\succ$$
 Kimenet: $Y_1 \in \mathbb{N}^*, Z_1 \in \mathbb{N}^*$

► Utófeltétel: –

Utófeltétel: hossz(Y)=
$$\sum_{i=1}^{N} 1$$
 és Y⊆(1,2,...,N) és

 $T(X_i)$

 $\forall y \in Y : T(X_v)$ és

$$hossz(Z) = \sum_{i=1}^{N} 1 \text{ \'es } Z \subseteq (1,2,...,N) \text{ \'es}$$

$$nem T(X_i)$$

 $\forall z \in Z$: nem T

10. Szétválogatás dinamikus tömbökbe

Algoritmus:

Specifikáció:
Bemenet: N∈N, $X_{1,N}$ ∈H ^N , T:H→L
> Kimenet: $Y \in N^*$, $Z \in N^*$
> Előfeltétel: – <u>N</u>
> Utófeltétel: hossz(Y)= $\sum_{i=1}$ 1 és Y⊆(1,2,,N) és
$T = T(X_i)$ $\forall y \in Y: T(X_y)$ és
$hossz(Z) = \sum_{i=1}^{N} 1 \text{ \'es } Z \subseteq (1,2,,N) \text{ \'es}$
nem $T(X_i)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{N}^N$

 \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}$

➤ Előfeltétel: – N

> Utófeltétel: Db= $\sum_{i=1}^{1} 1$ és Y∈Permutáció(X)

 $\forall i (1 \le i \le Db): T(Y_i)$ és $\forall i (Db+1 \le i \le N): nem T(Y_i)$

Programparaméterek:

Konstans

MaxN:**Egész**(???)

Típus

THk=**Tömb**[1..MaxN:TH]

Változó

N:**Egész**, X:THk

. . .

és

Megjegyzés: bemenetben szereplő X és a kimenetben szereplő Y legyen a programban ugyanaz az X változó!

Algoritmikus ötlet:

- 1. Vegyük ki (másoljuk le) a sorozat első elemét:
- 2. Keresünk hátulról egy elemet, aminek elől a helye (mert T tulajdonságú, nem od<u>avaló):</u>

3. A megtalált elemet tegyük az előbb keletkezett lyukba:

$$\otimes$$
 x x x x x x X O x x x x x

A lyuk mögött és az 1. elemmel már rendben vagyunk.

4. Most keletkezett egy lyuk hátul. Az előbb betöltött lyuktól indulva elölről keressünk hátra teendő (nem odavaló: nem T-tulajdonságú) elemet:

5. A megtalált elemet tegyük a hátul levő lyukba, majd újra hátulról kereshetünk!

$$\otimes$$
 x x O x x \otimes x x x x x

Az elől keletkezett lyuk előttiek és a hátrébb mozgatott elemmel kezdve rendben vagyunk.

- 6. ... és így tovább ...
- 7. Befejezzük a keresést, ha valahonnan elértük a lyukat.

8. Erre a helyre az 1. lépésben kivettet visszatesszük.

Utófeltétel pontosítása:

Teljesülni kell az X vektorra a megálláskor (meghagyva a specifikációbeli műveleteket):

$$\mathbf{X}_{1..N}^{\text{kimeneti}} = \text{permutáció}(\mathbf{X}_{1..N}^{\text{bemeneti}}) \text{ és}$$
 $\forall i (1 \leq i \leq Db): T(\mathbf{X}_{i}^{\text{kimeneti}}) \text{ és } \forall i (Db+1 \leq i \leq N): \text{nem } T(\mathbf{X}_{i}^{\text{kimeneti}})$

Algoritmus:

Specifikáció:

- > Bemenet: N∈N, $X_{1.N}$ ∈ H^N
- > Kimenet: $Db \in N$, $X_{l-N} \in H^N$
- > Előfeltétel: -
- > Utófeltétel: Db = $\sum_{i=1}^{N} 1$ és X'∈Permutáció(X)

és $\forall i (1 \le i \le Db)$: $T(X'_i)$ és $\forall i (Db+1 \le i \le N)$: nem $T(X'_i)$

e:=1 [a szétválogatandók elsője]	
u:=N [a szétválogatandók utolsója]	
y:=X[e]	
e <u< td=""><td></td></u<>	
HátulrólKeres(e, <mark>u,Van</mark>)	
Van	N
X[e]:=X[u]	·
e:=e+1	
ElölrőlKeres(e,u,Van)	
Van	
X[u]:=X[e]	
u:=u-1	
·	***********

Változó e,u**:Egész** y:TH Van:**Logikai**

Algoritmus:

Megjegyzés: Az X változóról az algoritmus végrehajtása közben különböző állításokat mondhatunk:

- 1. kezdetben a bemenetbeli sorozat;
- 2. a futás végén a bemeneti X permutációja a szétválogatás utófeltétele szerint; Ún. ciklusinvariáns
- közben e-ig T tulajdonságú elemek, u-tól nem T tulajdonságú elemek, köztük nem vizsgált elemek.

ElölrőlKeres(e,u:**Egész,**Van:**Logikai**)

e = e + 1

Van:=e<u

HátulrólKeres(e,**u:Egész,**Van:**Logikai**)

e<u és nem T(X[u])

u:=u-1

Van:=e<u

Programozási tételek

- ➤ Sorozat → sorozat
- 7. Másolás függvényszámítás
- 8. Kiválogatás
- 9. Rendezés (később lesz)
- ➤ Sorozat → sorozatok
- 10. Szétválogatás

Feladat:

Egy N×M-es raszterképet nagyítsunk a kétszeresére pontsokszorozással: minden régi pont helyébe 2×2 azonos színű pontot rajzolunk a nagyított képen.

Problémák/válaszok:

- Hogyan ábrázoljunk egy képet? A kép rendezett pontokból áll, azaz biztosan valamilyen sorozatként adható meg.
- > Nehézkes lenne azonban a pontokra egy sorszámozást adni. Kézenfekvőbb azt megmondani, hogy egy képpont a kép hányadik sorában, illetve oszlopában található, azaz alkalmazzunk dupla indexelést!
 - A kétindexes tömböket hívjuk **mátrix**nak.

Specifikáció:

- ➤ Bemenet: $N,M \in \mathbb{N}, K_{1..N,1..M} \in \mathbb{N}^{N \times M}$
- > Kimenet: $NK_{1..2*N.1..2*M} \in \mathbb{N}^{2*N\times 2*M}$
- ➤ Előfeltétel: –
- ightharpoonup Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

$$NK_{2*i,2*j}=K_{i,j}$$
 és $NK_{2*i-1,2*j}=K_{i,j}$ és $NK_{2*i,2*j-1}=K_{i,j}$ és $NK_{2*i-1,2*i-1}=K_{i,j}$ és

Feladat:

Egy N*M-es raszterképet nagyítsunk a kétszeresére *pontsokszorozás*sal: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen.

$$:=(\mathbb{N}^{\mathrm{M}})^{\mathrm{N}}$$

N - a sorok,

M – az oszlopok száma

Ez a **másolás** tétel egy variációja, csak egy elemből négy elem keletkezik.

Algoritmus – adatleírás:

Konstans

MaxN:**Egész**(???)

MaxM:**Egész**(???)

Típus

TMátrix=Tömb[1..MaxN,1..MaxM:Egész]

Változó

N,M:Egész

K,NK:TMátrix

Specifikáció:

➤ Bemenet: $N,M \in N, K_{1..N,1..M} \in N^{N\times M}$

> Kimenet: NK_{1,,2*N,1,,2*M}∈N^{2⋅N×2⋅M}

Előfeltétel: –

> Utófeltétel: ∀i(1≤i≤N): ∀j(1≤j≤M):

 $NK_{2\cdot i,2\cdot j}=K_{i,j}$ és

 $NK_{2\cdot i-1,2\cdot j}=K_{i,j}$ és

 $NK_{2\cdot i,2\cdot j-1}=K_{i,j}$ és

 $NK_{2\cdot i-1,2\cdot j-1}=K_{i,j}$

Algoritmus:

Specifikáció:

➤ Bemenet: $N,M \in N, K_{1..N,1..M} \in N^{N\times M}$

- > Kimenet: $NK_{1..2*N,1..2*M} \in N^{2\cdot N \times 2\cdot M}$
- ➤ Előfeltétel: –
- > Utófeltétel: ∀i(1≤i≤N): ∀j(1≤j≤M):

 $\begin{array}{l} NK_{2\cdot i,2\cdot j}{=}K_{i,j} \ \ \acute{e}s \\ NK_{2\cdot i-1,2\cdot j}{=}K_{i,j} \ \acute{e}s \end{array}$

 $NK_{2\cdot i,2\cdot j-1}=K_{i,j}$ és

 $NK_{2\cdot i-1,2\cdot j-1} = K_{i,j}$

i=1..N

j=1..M

NK[2*i,2*j]:=K[i,j]

NK[2*i-1,2*j]:=K[i,j]

NK[2*i,2*j-1]:=K[i,j]

NK[2*i-1,2*j-1]:=K[i,j]

Feladat:

Egy N×M-es raszterképet kicsinyítsünk a felére (N/2×M/2 méretűre) pontátlagolással: a kicsinyített kép minden pontja az eredeti kép 2×2 pontjának "átlaga" legyen!

"átlag": színkódok átlaga

Specifikáció: (másolás)

➤ Bemenet: $N,M \in \mathbb{N}, K_{1..N,1..M} \in \mathbb{N}^{N \times M}$

> Kimenet: $KK_{1..N/2.1..M/2} \in \mathbb{N}^{N/2 \times M/2}$

- ➤ Előfeltétel: PárosE(N) és PárosE(M)
- ➤ Utófeltétel: $\forall i(1 \le i \le N/2)$: $\forall j(1 \le j \le M/2)$:

$$KK_{i,j} = (K_{2*i,2*j} + K_{2*i-1,2*j} + K_{2*i,2*j-1} + K_{2*i-1,2*j-1}) \text{ Div } 4$$

➤ Definíció: PárosE:N→L

 $P\acute{a}rosE(x):=(x Mod 2)=0$

Feladat:

Egy N*M-es raszterképet kicsinyítsünk a felére (N/2*M/2 méretűre) *pontátlagolás*sal: a kicsinyített kép minden pontja az eredeti kép 2*2 pontjának "átlaga" legyen!

Változó

i,j:Egész

Algoritmus:

> Utófeltétel:
$$\forall i(1 \le i \le N/2)$$
: $\forall j(1 \le j \le M/2)$: $KK_{i,j} = (K_{2*i,2*j} + K_{2*i-1,2*j} + K_{2*i,2*j-1} + K_{2*i-1,2*j-1})$ Div 4

i=1..N/2 j=1..M/2 KK[i,j]:=(K[2*i,2*j]+K[2*i-1,2*j]+ K[2*i,2*j-1]+K[2*i-1,2*j-1]) Div 4

Megjegyzés:

- 1) a színes képeknél az átlagolással baj lehet! Milyen szín egy piros és egy kék színű pont átlaga? (hamis színek)
- 2) **RGB** esetén a szín: **Rekord**(piros,zöld,kék:**Egész**); és az átlag? (komponensenkénti átlag)

Feladat:

A Rák-köd képére alkalmazzunk egyféle Rank-szűrőt! Minden pontot helyettesítsünk magának és a 8 szomszédjának maximumával!

Specifikáció: (másolás+maximum-kiválasztás)

- > Bemenet: N,M \in N, K_{1.N.1.M} \in N^{N×M}
- \triangleright Kimenet: $RK_{1..N,1..M} \in \mathbb{N}^{N \times M}$
- ➤ Előfeltétel: –
- \gt Utófeltétel: $\forall i(1 \le i \le N)$: $\forall j(1 \le j \le M)$:

$$RK_{i,j} = \max_{p=i-1} \max_{q=j-1} K_{p,q} \text{ \'es}$$

$$\forall j (1 \leq j \leq M): RK_{1,j} = K_{1,j}$$
 és $RK_{N,j} = K_{N,j}$

$$\forall i(1 \le i \le N): RK_{i,1} = K_{i,1}$$
 és $RK_{i,M} = K_{i,M}$

Feladat:

A Rák-köd képére alkalmazzunk egyféle Rank-szűrőt! Minden pontot helyettesítsünk magának és a 8 szomszédjának maximumával!

Algoritmus:

▶ Utófeltétel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$: $RK_{i,j} = \max_{p=i-1} \max_{q=j-1} K_{p,q} \text{ és}$ $\forall i \ (1 \le i \le N): \ \forall j \ (1 \le j \le M):$ $RK_{1,j} = K_{1,j} \text{ és } RK_{N,j} = K_{N,j}$ $RK_{i,1} = K_{i,1} \text{ és } RK_{i,M} = K_{i,M}$

Változó max, i,j:Egész

Algoritmus:

➤ Utófeltétel: $\forall i (1 \le i \le N)$: $\forall j (1 \le j \le M)$: $RK_{i,j} = \max_{p=i-1} \max_{q=j-1} K_{p,q} \text{ \'es}$ $\forall i \ (1 \le i \le N): \ \forall j \ (1 \le j \le M):$ $RK_{1,j} = K_{1,j} \text{ \'es } RK_{N,j} = K_{N,j}$ $RK_{i,1} = K_{i,1} \text{ \'es } RK_{i,M} = K_{i,M}$

Specifikáció:

- > Bemenet: N ∈ N,
 - $X \in H^N$
- ➤ Kimenet: Max ∈ N
- ➤ Előfeltétel: N>0
- ➤ Utófeltétel: 1≤Max≤N és

Maximumértékkiválasztás tétel.

```
i=2..N-1
         j=2..M-1
max = 0
         p=i-1..i+1
           q = j-1..j+1
            K[p,q] > max
      max:=K[p,q]
RK[i,j]:=\max
```


Algoritmus (folytatás):

 $\begin{tabular}{lll} \searrow Ut\'ofelt\'etel: $\forall i (1 \le i \le N): & \forall j (1 \le j \le M): \\ & RK_{i,j} = \max_{p=i-1} \max_{q=j-1} K_{p,q} & \'es \\ & \forall j (1 \le j \le M): \\ & RK_{1,j} = K_{1,j} & \'es & RK_{N,j} = K_{N,j} \\ & \forall i (1 \le i \le N): \\ & RK_{i,1} = K_{i,1} & \'es & RK_{i,M} = K_{i,M} \\ \end{tabular}$

•••
j=1M
RK[1,j]:=K[1,j]
RK[N,j]:=K[N,j]
i=1N
RK[i,1]:=K[i,1]
RK[i,M]:=K[i,M]

Változó i,j:Egész

