## Formal Definition of Finite Automaton

- 1. Finite set of states, typically Q.
- 2. Alphabet of input symbols, typically  $\Sigma$ .
- 3. One state is the start/initial state, typically  $a_0$ .
- 4. Zero or more final/accepting states; the set is typically F.
- 5. A transition function, typically  $\delta$ . This function:
  - Takes a state and input symbol as arguments.
  - Returns a state.
  - One "rule" of  $\delta$  would be written  $\delta(q, a) = p$ , where q and p are states, and a is an input symbol.
  - Intuitively: if the FA is in state q, and input a is received, then the FA goes to state p (note: q = p OK).
- A FA is represented as the five-tuple:  $A = (Q, \Sigma, \delta, q_0, F)$ .

# Example: Clamping Logic

We may think of an accepting state as representing a "1" output and nonaccepting states as representing "0" out.

A "clamping" circuit waits for a 1 input, and forever after makes a 1 output. However, to avoid clamping on spurious noise, we'll design a FA that waits for two 1's in a row, and "clamps" only then.

In general, we may think of a state as representing a summary of the history of what has been seen on the input so far. The states we need are:

- 1. State  $q_0$ , the start state, says that the most recent input (if there was one) was not a 1, and we have never seen two 1's in a row.
- 2. State  $q_1$  says we have never seen 11, but the previous input was 1.
- 3. State  $q_2$  is the only accepting state; it says that we have at some time seen 11.
- Thus,  $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}),$  where  $\delta$  is given by:

|                  | 0     | 1     |
|------------------|-------|-------|
| $ ightarrow q_0$ | $q_0$ | $q_1$ |
| $q_{1}$          | $q_0$ | $q_2$ |
| $*q_2$           | $q_2$ | $q_2$ |

By marking the start state with 

accepting states with \*, the transition table that defines δ also specifies the entire FA.

# Conventions

It helps if we can avoid mentioning the type of every name by following some rules:

- Input symbols are a, b, etc., or digits.
- Strings of input symbols are  $u, v, \ldots, z$ .
- States are q, p, etc.

# Transition Diagram

A FA can be represented by a graph; nodes = states; arc from q to p is labeled by the set of input symbols a such that  $\delta(q, a) = p$ .

- No arc if no such a.
- Start state indicated by word "start" and an arrow.
- Accepting states get double circles.

#### Example

For the clamping FA:



#### Extension of $\delta$ to Paths

Intuitively, a FA accepts a string  $w = a_1 a_2 \cdots a_n$  if there is a path in the transition diagram that:

- 1. Begins at the start state,
- 2. Ends at an accepting states, and
- 3. Has sequence of labels  $a_1, a_2, \ldots, a_n$ .

Formally, we extend transition function  $\delta$  to  $\hat{\delta}(q, w)$ , where w can be any string of input symbols:

- Basis:  $\hat{\delta}(q, \epsilon) = q$  (i.e., on no input, the FA doesn't go anywhere.
- Induction:  $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$ , where w is a string, and a a single symbol (i.e., see where the FA goes on w, then look for the transition on the last symbol from that state).
- Important fact with a straightforward, inductive proof:  $\hat{\delta}$  really represents paths. That is, if  $w = a_1 a_2 \cdots a_n$ , and  $\delta(p_i, a_i) = p_{i+1}$  for all  $i = 0, 1, \ldots, n-1$ , then  $\hat{\delta}(p_0, w) = p_n$ .

#### Acceptance of Strings

A FA  $A = (Q, \Sigma, \delta, q_0, F)$  accepts string w if  $\hat{\delta}(q_0, w)$  is in F.

## Language of a FA

FA A accepts the language  $L(A) = \{ w \mid \hat{\delta}(q_0, w) \text{ is in } F \}.$ 

# Aside: Type Errors

A major source of confusion when dealing with automata (or mathematics in general) is making "type errors."

- Example: Don't confuse A, a FA, i.e., a program, with L(A), which is of type "set of strings."
- Example: the start state  $q_0$  is of type "state," but the accepting states F is of type "set of states"
- Trickier example: Is a a symbol or a string of length 1?
  - Answer: it depends on the context, e.g., is it used in  $\delta(q, a)$ , where it is a symbol, or  $\hat{\delta}(q, a)$ , where it is a string?

#### Nondeterministic Finite Automata

Allow (deterministic) FA to have a choice of 0 or more next states for each state-input pair.

- Important tool for designing string processors, e.g., grep, lexical analyzers.
- But "imaginary," in the sense that it has to be implemented deterministically.

#### Example

In this somewhat contrived example, we shall design an NFA to accept strings over alphabet  $\{1,2,3\}$  such that the last symbol appears

previously, without any intervening higher symbol, e.g.,  $\cdots 11, \cdots 21112, \cdots 312123$ .

- Trick: use start state to mean "I guess I haven't seen the symbol that matches the ending symbol yet.
- Three other states represent a guess that the matching symbol has been seen, and remembers what that symbol is.



#### Formal NFA

 $N = (Q, \Sigma, \delta, q_0, F)$ , where all is as DFA, but:

•  $\delta(q, a)$  is a set of states, rather than a single state.

# Extension to $\hat{\delta}$

• Basis:  $\hat{\delta}(q, \epsilon) = \{q\}.$ 

• Induction: Let:

 $\hat{\delta}(q,w) = \{p_1, p_2, \dots, p_k\}.$ 

# Language of an NFA

An NFA accepts w if any path from the start state to an accepting state is labeled w. Formally:

•  $L(N) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$ 

# Subset Construction

- For every NFA there is an equivalent (accepts the same language) DFA.
- But the DFA can have exponentially many states.

Let  $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$  be an NFA. The equivalent DFA constructed by the subset construction is  $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ , where:

- 1.  $Q_D = 2^{Q_N}$ ;. i.e.,  $Q_D$  is the set of all subsets of  $Q_N$ .
- 2.  $F_N$  is the set of sets S in  $Q_D$  such that  $S \cap F \neq \emptyset$ .

$$\delta_D(\{q_1, q_2, \dots, q_k\}, a) = \delta_N(p_1, a) \cup \delta_N(p_2, a) \cup \dots \cup \delta_N(p_k, a).$$

- Key theorem (induction on |w|, proof in book):  $\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$ .
- Consequence: L(D) = L(N).

# Example: Subset Construction From Previous NFA

An important practical trick, used in lexical analyzers and other text-processors is to ignore the (often many) states that are not accessible from the start state (i.e., no path leads there).

• For the NFA example above, of the 32 possible subsets, only 15 are accessible. Computing transitions "on demand" gives the following  $\delta_D$ :

|                 | 1     | 2    | 3   |
|-----------------|-------|------|-----|
| $\rightarrow p$ | pq    | pr   | ps  |
| pq              | pqt   | pr   | ps  |
| *pqt            | pqt   | pr   | ps  |
| pr              | pqr   | prt  | ps  |
| *prt            | pqr   | prt  | ps  |
| ps              | pqs   | prs  | pst |
| *pst            | pqs   | prs  | pst |
| prs             | pqrs  | prst | pst |
| *prst           | pqrs  | prst | pst |
| pqs             | pqst  | prs  | pst |
| *pqst           | pqst  | prs  | pst |
| pqr             | pqrt  | prt  | ps  |
| *pqrt           | pqrt  | prt  | ps  |
| pqrs            | pqrst | prst | pst |
| *pqrst          | pqrst | prst | pst |