JP6-182548 A

b, n.=, c>di

PAT-NO: JP406182548A

DOCUMENT-IDENTIFIER: JP 06182548 A

TATLE: BATTERY ARC WELDING DEVICE

PUBN-DATE: July 5, 1994

INVENTOR-INFORMATION: NAME KUNUGINO, MASAMITSU FURUYA, KENGO

ASSIGNEE-INFORMATION:

NAME COUNTRY MATSUSHITA ELECTRIC IND CO LTD N/A

APPL-NO: JP04340856

APPL-DATE: December 22, 1992

INT-CL (IPC): B23K009/073, H01J007/02, H02M009/06

US-CL-CURRENT: 219/130.4

ABSTRACT:

PURPOSE: To effectively supply the necessary electric power to a welding and to improve the welding workability under stable welding current in a battery arc welder using the commercial power source together with the battery power source.

CONSTITUTION: The battery arc welding device is provided with an input current detector 2 for detecting the input current to the primary side of an insulating transformer 3, a control rectifier circuit 4 for controlling so that the input current becomes the constant at the secondary side of the insulating transformer 3 and the battery device 5 connected with the control rectifier circuit 4 in series. By this method, the necessary load voltage to the arc welding can effectively be supplied from the insulating transformer 3 as an auxiliary power source and the welding workability under the stable welding current can be improved.

COPYRIGHT: (C)1994, JPO& Japio

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-182548

(43)公開日 平成6年(1994)7月5日

(51)Int.CL ⁵ B 2 3 K	9/073	識別記号 5 2 5	庁内整理番号 9348-4E	FI	技術表示箇所
H01J	-	В	7354-5E		
H02M	9/06	D B	8325-5H 8325-5H		

審査請求 未請求 請求項の数3(全 6 頁)

(21)出願番号	特顯平4-340856	(71)出願人 000005821 松下電器産業株式会社
(22)出顧日	平成 4 年(1992)12月22日	大阪府門真市大字門真1006番地
		(72)発明者 栩野 雅充 大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(72)発明者 古谷 健吾
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(74)代理人 弁理士 栗野 重孝

(54)【発明の名称】 パッテリーアーク溶接装置

(57)【要約】

【目的】 商用電源とバッテリー電源を併用したバッテ リーアーク溶接機において、溶接に必要な電力を効果的 に供給し、溶接電流が安定して溶接作業性を向上するこ とを目的とする。

【構成】 絶縁変圧器3の一次側に入力電流を検出する 入力電流検出器2と、絶縁変圧器3の二次側に入力電流 が一定となるように制御する制御整流回路4と、制御整 流回路4と直列に接続したバッテリー装置5を備えた構 成。

【効果】 アーク溶接に必要な負荷電圧を補助電源とし ての絶縁変圧器3から効果的に供給でき、溶接電流が安 定して溶接作業性を向上できる。

1

【特許請求の範囲】

』【請求項1】絶縁変圧器の一次側に入力電流を検出する 入力電流検出器と、前記絶縁変圧器の二次側に入力電流 が一定となるように制御する制御整流回路と、前記制御 **整流回路と直列に接続したバッテリー装置を備えたバッ** テリーアーク溶接装置。

【請求項2】出力回路に出力電流検出回路と、溶接電流 を一定に保つ出力電流制御回路を備えた請求項1記載の バッテリーアーク溶接装置。

【請求項3】溶接作業の停止中は自動的に絶縁変圧器の 10 出力よりバッテリー装置に充電する充電手段を備えた請 求項1または請求項2記載のバッテリーアーク溶接装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、商用電源とバッテリー 電源を併用したバッテリーアーク溶接装置に関する。 [0002]

【従来の技術】以下に従来のバッテリーアーク溶接装置 について説明する。

【0003】図5において、21はAC100Vの商用 電源、22は絶縁変圧器、23は整流素子、24はバッ テリーの充電電流抑制抵抗、25は出力電流制限抵抗、 26は溶接棒27などを連結する出力端子、28は複数 個(4個)のDC12Vのバッテリーを直列に接続した DC48Vのバッテリー装置である。

【0004】上記各構成要素よりなるバッテリーアーク 溶接装置について、各構成要素の関係と動作を説明す る。

【0005】溶接出力は主にDC48Vのバッテリー装 30 置28から出力電流抑制抵抗25を通して供給され、絶 縁変圧器22からは、溶接作業中、充電電流抑制抵抗2 4、出力電流制限抵抗25を介して出力電流重畳電流が 供給される。

【0006】図6に示すように、直流アーク溶接に必要 な所定のアーク電圧 (JIS負荷特性: 20+0.04 I, I:出力電流)を得るためには、アーク電圧よりも 高い溶接機出力電圧を出力する必要があった。

【0007】また、溶接作業の停止中は、充電電流抑制 抵抗24を通してバッテリー装置28を充電するように 40 構成されていた。

[0008]

【発明が解決しようとする課題】しかしながら上記従来 の構成では、溶接装置の出力は主にバッテリー装置28 から供給されるので、出力電流制限抵抗25による電力 損失のために効率が悪くなり、また、溶接中アーク長の 変動により溶接電流が安定しないので良好な溶接結果が 得られず、さらに、アーク長が長くなったり、長い出力 ケーブルを使用したときに、所定の出力電流が得られな くなるという問題点を有していた。

【0009】本発明は上記従来の問題点を解決するもの で、溶接に必要な電力を効果的に供給し、溶接電流が安 定して溶接作業性を向上したバッテリーアーク溶接装置 を提供することを目的とする。

2

[0010]

【課題を解決するための手段】この目的を達成するため に本発明のバッテリーアーク溶接装置は、絶縁変圧器の 一次側に入力電流を検出する入力電流検出器と、絶縁変 圧器の二次側に入力電流が一定となるように制御する制 御整流回路と、制御整流回路と直列に接続したバッテリ 一装置を備えたものである。

[0011]

【作用】この構成において、アーク溶接に必要な負荷電 圧を補助電源としての絶縁変圧器から効果的に供給する こととなる。

[0012]

【実施例】以下本発明の一実施例について図面を参照し ながら説明する。

【0013】図1に示すように、AC100Vの商用電 源1から入力電流検出器2を経て入力される絶縁変圧器 3と、絶縁変圧器3の入力を制御整流する制御整流回路 4と、制御整流回路4と直列に接続したDC12Vのバ ッテリー2個を直列接続したDC24Vのバッテリー装 置5と、バッテリー電流を流す整流素子6と、出力電流 検出器7と、溶接電流を一定に保つ出力電流制御回路8 と、出力電流検出器7に連結した接点9a,9bを有す る回路切換器9と、出力電流平滑用リアクタ10と、溶 接棒11などに連結する出力端子12で構成されてい る。

【0014】回路切換器9は、溶接作業中は出力電流検 出器7により出力電流の流れが検出されているときは、 接点9 a 傾に接続され、出力電流の流れが検出されてい ないときは、接点9b側に接続されるように構成されて いる。図中の13はバッテリー充電用整流器、14は充 電電流抑制器である。

【0015】以上のように構成されたバッテリーアーク 溶接機について、以下その動作を説明する。

【0016】溶接作業中、バッテリー装置5の出力は回 路切換器9(接点9a)、整流器6、出力電流制御回路 8、出力電流検出器7を通して溶接出力として供給され

【0017】溶接出力は出力電流検出器7と出力電流制 御回路8により定電流制御され、図2に示すような出力 特性を得ることができる(なお、出力特性は回路部品、 回路インピーダンスによる電圧降下がないものと仮定し ている。)。

【0018】 商用電源1からは、絶縁変圧器3、制御整 流回路4、出力電流制御回路8、出力電流検出回路7を 介しバッテリー装置5の出力に重畳して溶接出力として 50 供給される。

【0019】入力電流検出器2は、絶縁変圧器3の一次 電流を検出し、一次電流が一定となるよう制御整流回路 4にて出力を制御する。

【0020】絶縁変圧器3の一次電流をAC15Aとし たときの出力電流と出力電圧は、図3に示すように、交 流から直流への校正率を考慮して下式に基づいて算出し

【0021】Vac=1.11×Vdc(Vac:交流実 効電圧, Vdc=直流平均電圧)

c=直流平均電圧)

すなわち、バッテリー装置5の出力に絶縁変圧器3の定 電流入力 (15A) 時の出力を重畳することにより、図 4に示すような出力特性を得ることができる(溶接機無 負荷電圧は本実施例では、DC60Vと仮定した。)。 【0022】図4において直線AはJIS規格によって 定められた直流アーク溶接の出力負荷特性(V=20+ 0.04 I V:出力電圧、I:出力電流)を示し、直線 Bは溶接機に22mm²の延長ケーブル40mを接続し た場合の負荷特性を示し、直線Cは同じく延長ケーブル 20 50mを接続した場合の負荷特性を示す。...

【0023】すなわち、本実施例の構成によりJIS規 格に定められた出力電流DC150A時の負荷電圧(D C26V)を十分に得ることができ、さらに延長ケーブ ルを接続した状態でも、40m接続時DC150A、5 Om接続時DC140Aの溶接電流を得ることができ

【0024】また、溶接作業の休止中、すなわち出力電 流検出器7に出力電流が流れないときは、回路切換器9 が接点9b側に接続されるので、絶縁変圧器3からバッ 30 テリー充電用整流器13、充電電流抑制器14を介して バッテリー装置5が充電される。

【0025】以上のように本実施例によれば、バッテリ ー装置5の電圧に定入力電流制御した絶縁変圧器3の出 力を重畳することにより従来例に比してDC24Vの低 電圧のバッテリー装置5で構成された小形・軽量・安価 なバッテリーアーク溶接機でも溶接に必要な出力電圧を 効果的に供給することができ、また、出力電流を定電流 制御することにより溶接電流が安定し、溶接作業性も向 上することができる。

4

【0026】なお、バッテリー装置5の充電は制御整流 回路2の出力を利用して定電流充電してもよい。

[0027]

【発明の効果】以上の説明から明らかなように本発明 Iac=1.11×Idc(Iac:交流実効電圧, Id 10 は、絶縁変圧器の一次側に入力電流を検出する入力電流 検出器と、絶縁変圧器の二次側に入力電流が一定となる ように制御する制御整流回路と、制御整流回路と直列に 接続したバッテリー装置を備えた構成により、溶接に必 要な電力を効果的に供給し、溶接電流が安定して溶接作 業性を向上した優れたバッテリーアーク溶接装置を実現 できるものである。

【図面の簡単な説明】

【図1】本発明の一実施例のバッテリーアーク溶接装置 の概略構成図

- 【図2】同バッテリーアーク溶接装置の直流出力特性図 【図3】同バッテリーアーク溶接装置の電流制御された ときの絶縁変圧器の出力の直流変換後の出力特性図 【図4】同バッテリーアーク溶接装置の直流出力特性図 【図5】従来のバッテリーアーク溶接装置の概略構成図 【図6】同バッテリーアーク溶接装置の直流出力特性図 【符号の説明】
 - 2 入力電流検出器
 - 3 絶縁変圧器
 - 制御教流回路
 - 5 バッテリー装置
 - 7 出力電流検出器
 - 8 出力電流制御回路
 - 9 回路切換器(充電手段)
 - 13 バッテリー充電用整流器(充電手段)
 - 14 充電電流抑制器(充電手段)

【図1】

