

Topic 4: Building memory

Flip-flop 触发器
Register(寄存器) and Counter(计数器)

Setting an S-R flip-flop

S=0, R=1; Q=1 置位

R=S=0, not allowed

S=1,R=0,Q=0复位

Q_0	S	R	Q
0	1	1	0
1	1	1	1
0	0	1	1
1	0	1	1
0	1	0	0
1	1	0	0

9

Lancaster University

A simple sequential logic

S-R flip-flop (触发器)

- This "remembers" one of 2 possible states
 - Two outputs Q and Q' and feedback is introduced
 - Qn is the 'present' state; Qn+1 is the 'next' state(状态)
 - Q_n means without input, Q_{n+1} means with inputs
- Q depends on the S and R inputs:
 - A low pulse on S always make the Q=1 state (set)
 A low pulse on R always make the Q=0 state (reset)
 - When S or R returns to high after the low pulse, Q stays where it is
 - and so the flip-flop "remembers" if it is in state Q=1 or state Q=0
 - We're "not allowed" to have S and R both low simultaneously

Combinational logic and sequential logic 组合逻辑 时序逻辑

- The defining feature of combinatorial logic is that its outputs are purely a function of its inputs (ALU, voter, flags.....)
- The defining feature of sequential logic is that its outputs are a function of its inputs and of its current outputs(Register)
 - This involves feedback(反馈) of the outputs to the inputs
 - This feedback is the hook on which we hang memory

- Feedback is introduced
- Output Qn+1 is related to original Q_n
- R,S can set or reset output
- R,S=1,the output remain (keep unchanged)
- It means this bit is reserved
- Basic logic gate for sequential circuit
- Qn+1=S'+QR' state equation

Limitations of the S-R flip-flop

- There are two problems in using an S-R flip-flop to implement a bit in a register
- It has distinct SET and RESET inputs
 - We'd ideally like just a single input that "sets" the state if it's 1 and "resets" the state if it's 0
- We have no way of telling the flip-flop exactly when it should store input data
 - We'd like a "latch" signal for this to work in a practical system under the supervision of a control unit

D-type flip-flop RS→D触发器

- Add a latch as control to two gates
- · D is input data
- Add a NAND Gates

Lancaster University

D-type latch

D锁存器

Latch?

锁存

Truth table

8

Latching in a 1

Lancaster University

L=1, RS flip-flop

L=0 reserved

Qn	D	L	Q _{n+1}
0	0	0	0
1	0	0	1
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	1

} "latch"

"latch"

Difference from RS flip flop

· One input

 $Q_{(n+1)} = D$

L=1, Q=D

One control

 $Q=Q_0$

L=0: keep D

- Latch one bit
- Hold the one bit in latch high

D latch symbol

L=1 Latch is open

L=0 Latch is closed

D flip flop is one bit register

D flip flop is the basic unit for register

D flip flop D触发器

In what case, Q=D? Benefit?

.11 5GA 92

Master latch

Slave latch

Waveform 波形 Draw Q1, Q

CP control to store

下降沿触发, 脉冲触发

在瞬间触发,降低干扰

Waveform 波形

Draw Q1, Q

D₀ is effective input
D₁ ,D₂ D₃ are interference
D₄ is effective input
Only D₁ and D₄ are reserved

Compare Q1, Q, Q1: interference Q: No interference In CP edge, Q=D CP control to store

D1 D2 D3 D4

Q1

D0

D4

CP=0,外部信号进入Q1,Q不变

Assume: interference

CP=1, Q1进入Q输出,外部信号不进入,D1,D2,D3抑制

CP rising edge triggering

CP=0, Q1=D, Q remain; CP=1, Q1 remain, Q=D and remain

Q =D at rising edge

Advantage: anti-interference

D flip flop

Rising edge trigger

What tools are used?

11 5GA 92

JK flip-flop

$$CP=1, J=1, K=1$$
 Q' Q

JK flip-flop

$$CP=1,J=K=0, Q'$$

T flip-flop

Lancaster University

Т	Qn+1
0	Qn
1	~Qn

Where is CP from?

Clock pulse circuit

Where is CP to?

- CP is control signal
- CP is input to control unit of each computer components, such as CPU CU, memory CU, other controller.
- CU is the core of CPU

How to build register?

图 建硫烷 Implementing a register using multiple

Lancaster University

Draw the sequential diagram
Analyze the logic gate function

(S is set control, R is reset control, assume $Q_0=0$, $Q'_0=1$) (low level is effective)

Write logic status equation

Draw sequential waveform

Assume
$$Q_{0,1,2}=0$$
, $Q'_{0,1,2}=1$

$$Q_{n+1} = D = Q'_n$$

When CP ascending is coming

Base?

Draw the sequential diagram
Analyze the logic gate function

(S is set control, R is reset control, assume Q₀=0)

Lancaster Walter University

Counter (Timer) Frequency divider, (分频器)

Frequency divider

(分频器)

Generate different

Used for different

CU control

frequency signal

Counter

(计数器) Cp1:Q0=1

Cp2: Q1=1

Cp3: 11

Cp4: Carry out

Frequency meter

Shift right register

Serial input D1 and parallel out

shifting right

synchronous trigger

Loop shift register

_	1	0	- 0	- 0
0	1	U	U	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	0	0	0

F4 F3 F2 F1

Initial state: F4F3F2F1:1000

Buses: connecting the blocks

- Buses are the "glue" of the computer architecture
 - They connect the elements of the von Neumann architecture: the ALU, the control unit, memory chips, and I/O devices
 - They are essentially bundles of wires, one for each bit
- There are three types of bus
 - An address bus runs between the control unit and main memory
 - · Used to tell main memory to access a specific address (whether for reading or writing)
 - The "width" of the address bus corresponds to the amount of addressable memory
 - Examples: 16 bits → 65536 bytes (2¹⁶); 32 bits → 4 GB (2³²)
 - Data buses carry data around the computer
 - An "n-bit" processor will have a data bus n bits wide (e.g. n=8 or 32 or 64)
 - This means we can read/ write n bits from/ to memory in one go
 - · Some processors have distinct internal and external data buses
 - External bus may be narrower to reduce the number of external connections/ pins, and thus cost
 - -- Control bus

25

Data buses: connecting to registers Explanation

Bus wires are shared

... so we must ensure that there is only one active output at a given time?

A job for output enable...

Summary

- We know the difference between combinatorial and sequential logic
- We know how logic components can be used to build one bit of static storage (static memory)flip flop we know how these bits can then be combined into multi-bit Registers and counter
- We understand how the elements of the computer architecture can be glued together using buses

- 1: Draw out the D flip-flop symbol, explain the meaning of CP, D, Sd, Rd, Q, Enable.
- 2: Draw base-6 counter logic circuit

Draw the waveform of base_6 counter

3. Design any number system counter(任意进制,如54进制,前50个10进制,后4个位5进制)

Exercise after class

- Design 60 base counter
- Design a timer(counter based on subtraction)