Dawid Żywczak, zadanie 9, lista 3

08.05.2020

Jakie jest prawdopodobieństwo wygenerowania permutacji identycznościowej przez sieć Benesa-Waksmana, w której przełączniki ustawiane są losowo i niezależnie od siebie z prawdopodobieństwem $\frac{1}{2}$?

Weźmy sieć S_n oraz pierwszy przełącznik z lewej strony i załóżmy, że znajduje się on w stanie α_1 i bez starty ogólności załóżmy, że kieruje on wyjście do dolnej sieci $S_{\frac{n}{2}}$. Żeby otrzymać identyczność, pierwszy przełącznik po prawej stronie również musi mieć stan α_1 oraz musi łączyć pierwszą linię wyjściową z dolną siecią $S_{\frac{n}{2}}$. Podobnie dla każdej innej pary przełączników z lewej i prawej strony. Warto też zauważyć, że obie podsieci również muszą być identycznościami. Daje nam to zależność $P(S_n=id)=(\frac{1}{2})^{\frac{n}{2}}\cdot P(S_{\frac{n}{2}}=id)^2$, którą wystarczy rozwiązać. Teraz niech $a_n=log P(S_n=id)$. Wtedy

$$a_n = rac{1}{2} nlog(rac{1}{2}) + 2log P(S_{rac{n}{2}} = id) = -rac{n}{2} + 2log P(S_{rac{n}{2}} = id) \ a_n = -rac{n}{2} + 2log a_{rac{n}{2}}, \; a_2 = -1$$

Po rozpisaniu zauważamy, że $a_n=-rac{n}{2}logn$, czyli $P(S_n)=2^{-rac{n}{2}logn}=(rac{1}{n})^{rac{n}{2}}.$