Probability & Statistics

Problem set Nº4. Week starting March 30th

- 1. Given is function $f(x,y) = C(x+y) \exp\{-(x+y)\}$, where x > 0, y > 0.
 - (a) Compute the value of C such that f(x,y) is the density of 2-dimensional r.v. (X,Y).
 - (b) Check if variables X, Y are independent.
 - (c) Find moments m_{10}, m_{01} .

In exercises 2–11 we assume continuous random variables are considered. Symbols $f_X(x)$ and $F_X(x)$ mean – respectively – density and cdf of random variable X.

2. Is it possible to find C such that function $f_{XY}(x,y) = Cxy + x + y$, where $0 \le x \le 3$, $1 \le y \le 2$, would be density of 2-dimensional random variable?

ABOUT EXERCISES 3-4. Given is function $f_{XY}(x,y) = -xy + x$, where $0 \le x \le 2$, $0 \le y \le 1$.

- 3. Check if X and Y are independent.
- 4. Find probability: $P(1 \le X \le 3, 0 \le Y \le 0.5)$.

NOTATION: Symbol $X \sim U[a,b]$ means that random variable X has uniform distribution on the interval [a,b]. In other words: $f_X(x) = \frac{1}{b-a}$, where $x \in [a,b]$.

- 5. Suppose that $X \sim U[0,1]$ and let $Y = X^n$. Prove that $f_Y(y) = \frac{y^{1/n-1}}{n}$, where $0 \le y \le 1$.
- 6. Let $Y = X^2$ (in addition X is defined on \mathbb{R}). Prove that

$$f_Y(y) = \frac{f_X(\sqrt{y}) + f_X(-\sqrt{y})}{2\sqrt{y}}$$
, where $y > 0$.

- 7. Let $X \sim U[-1; 1]$. Find density of Y = |X|.
- 8. Let X be (continuous) r.v. and let $Y = F_X(X)$. Prove that $Y \sim U[0;1]$.
- 9. Density of random variable X is given by the formula $f_X(x) = xe^{-x}$, where $x \ge 0$. Find density of random variable $Y = X^2$.
- 10. Let $X \sim U[a;b]$. Find value of variance V(X)
- 11. Random variable X has (standard) Cauchy distribution, i.e. $f_X(x) = \frac{1}{\pi(1+x^2)}$, where $x \in \mathbb{R}$. Prove that $Y = \frac{1}{X}$ has – also – (standard) Cauchy distribution.

Witold Karczewski