Importer les packages

In [16]:

```
import pyforest
from sklearn import metrics
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
# Hide warnings
import warnings
warnings.filterwarnings('ignore')
```

Importer les données

In [3]:

```
Data_Urbanization_Forest = pd.read_csv('data/concat_data/Data_Urbanization_Forest.csv')
```

In [4]:

```
Data Urbanization Forest.tail()
```

Out[4]:

	region	Date	Effectif de la population	Population rurale	Population urbaine	Taux d'urbanisation	Nombre de ménages ruraux	Nombre de ménages urbains	Taille moyenne des ménages	Taille moyenne des ménages ruraux	Taille moyenne des ménages urbains	Superficie Perdue
507	Ziguinchor	2014	565940.00	303344.00	262596.00	46.40	50814.08	40063.58	7.91	9.19	7.95	2988.99
508	Ziguinchor	2015	583528.00	309854.00	273674.00	46.90	50814.08	40063.58	7.91	9.19	7.95	1926.69
509	Ziguinchor	2016	601929.00	317216.00	284713.00	47.30	50814.08	40063.58	7.91	9.19	7.95	1988.32
510	Ziguinchor	2017	621168.00	324250.00	296918.00	47.80	50814.08	40063.58	7.91	9.19	7.95	3788.39
511	Ziguinchor	2018	641254.00	332170.00	309084.00	48.20	50814.08	40063.58	7.91	9.19	7.95	1706.27

Exploration des données

In [5]:

```
pd.set_option("display.float", "{:.2f}".format)
Data_Urbanization_Forest.describe()
```

Out[5]:

												_	4
	Date	Effectif de la population	Population rurale	Population urbaine	Taux d'urbanisation	Nombre de ménages ruraux	Nombre de ménages urbains	Taille moyenne des ménages	Taille moyenne des ménages ruraux	Taille moyenne des ménages urbains	Superficie Perdue	d€	
count	512.00	512.00	512.00	512.00	512.00	512.00	512.00	512.00	512.00	512.00	512.00		
mean	1994.80	786769.36	463799.61	322712.98	30.05	50814.08	40063.58	7.91	9.19	7.95	555.18		
std	14.41	521011.50	234370.01	550205.13	23.56	17966.71	55553.61	0.17	0.73	0.69	1160.85		
min	1970.00	122333.00	27614.74	20054.00	7.51	2785.35	3867.33	7.42	7.00	6.10	0.07		
25%	1982.00	480522.11	338683.24	82088.50	15.54	49939.38	12643.48	7.91	8.80	7.69	1.69		
50%	1995.00	642156.40	456375.94	137861.49	21.83	50814.08	25930.51	7.91	9.19	7.95	9.36		
75%	2007.00	885796.16	573673.31	259445.00	35.69	56703.03	40063.58	7.91	9.19	8.05	744.32		
max	2018.00	3630324.00	1463564.00	3499631.00	97.22	100729.97	321110.09	9.20	11.43	10.39	12172.03	¥	-

In [6]:

Data_Urbanization_Forest['risque déforestation'].value_counts().plot(kind="bar", color=["salmon", "lightblue"])

Out[6]:

<AxesSubplot:>

In [7]:

Data Urbanization Forest.isna().sum()

Out[7]:

region	0
Date	0
Effectif de la population	0
Population rurale	0
Population urbaine	0
Taux d'urbanisation	0
Nombre de ménages ruraux	0
Nombre de ménages urbains	0
Taille moyenne des ménages	0
Taille moyenne des ménages ruraux	0
Taille moyenne des ménages urbains	0
Superficie Perdue	0
risque déforestation	0
dtype: int64	

Sélection des variables continues

In [8]:

```
Data_Urbanization_Forest = Data_Urbanization_Forest.drop(['region', 'Date'], axis= 1 )
Data_Urbanization_Forest.head()
```

Out[8]:

	Effectif de la population	Population rurale	Population urbaine	Taux d'urbanisation	Nombre de ménages ruraux	Nombre de ménages urbains	Taille moyenne des ménages	Taille moyenne des ménages ruraux	Taille moyenne des ménages urbains	Superficie Perdue	risque déforestation
0	724461.69	27614.74	696846.95	96.19	2785.35	97871.76	7.55	9.91	7.12	4.44	1
1	759203.25	28805.87	730397.38	96.21	2928.70	101632.29	7.52	9.84	7.19	4.44	1
2	795610.84	30048.38	765562.46	96.22	3079.63	105546.30	7.48	9.76	7.25	4.44	1
3	833764.36	31344.49	802419.87	96.24	3238.55	109620.20	7.45	9.68	7.32	4.44	1
4	873747.53	32696.50	841051.03	96.26	3405.89	114397.58	7.42	9.60	7.35	4.44	1

Matrice de corrélation

In [9]:

Out[9]:

(11.5, -0.5)

In [10]:

Out[10]:

<AxesSubplot:title={'center':'Correlation avec la variable risque_déforestation'}>

Commentaires

- On voit les variables 'Population rurale', 'Population urbaine', 'Taux d'urbanisation', 'Nombre de ménages urbains' et 'Superficie Perdue' sont plus correlées avec la variable 'risque déforestation' contrairement aux autres.
- Donc les variables citées ci-dessus sont considérées comme de bons prédicteurs.

Sélection des variables les plus corrélées avec la variable cible

In [11]:

```
Selected_columns = ['Population urbaine',
"Taux d'urbanisation", 'Nombre de ménages urbains', 'Superficie Perdue','risque déforestation']
```

In [12]:

```
Data_Urbanization_Forest = Data_Urbanization_Forest[Selected_columns]
```

Transformation des données

In [13]:

```
X = Data_Urbanization_Forest.drop(['risque déforestation'], axis = 1 )
y = Data_Urbanization_Forest['risque déforestation']
```

```
In [14]:
```

```
# from sklearn.preprocessing import StandardScaler
# s_sc = StandardScaler()
# X = s_sc.fit_transform(X)
```

Fractionner les données

```
In [15]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
```

Application de la méthode RandomForest sur les données

In [16]:

```
from sklearn.metrics import accuracy score, confusion matrix, classification report
def print_score(clf, X_train, y_train, X_test, y_test, train=True):
   if train:
       pred = clf.predict(X train)
#
         clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True))
       print("Train Result:\n=========="")
       print(f"Accuracy Score: {accuracy_score(y_train, pred) * 100:.2f}%")
#
         print("
         print(f"CLASSIFICATION REPORT:\n{clf report}")
#
       print("
       print(f"Confusion Matrix: \n {confusion_matrix(y_train, pred)}\n")
   elif train==False:
       pred = clf.predict(X test)
         clf\_report = pd.DataFrame(classification\_report(y\_test, pred, output\_dict=True))
#
       print("Test Result:\n==
       print(f"Accuracy Score: {accuracy_score(y_test, pred) * 100:.2f}%")
         print("
         print(f"CLASSIFICATION REPORT:\n{clf report}")
#
       print("
       print(f"Confusion Matrix: \n {confusion_matrix(y_test, pred)}\n")
```

Trouver les paramètres optimaux

In [17]:

```
rfc =RandomForestClassifier(random_state=42)
```

In [18]:

```
param_grid = {
    'n_estimators': [200, 500],
    'max_features': ['auto', 'sqrt', 'log2'],
    'max_depth' : [4,5,6,7,8],
    'criterion' :['gini', 'entropy']
}
```

```
In [19]:
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
CV_rfc.fit(X_train, y_train)
Out[19]:
GridSearchCV(cv=5, error score=nan,
             estimator=RandomForestClassifier(bootstrap=True, ccp alpha=0.0,
                                              class weight=None,
                                              criterion='gini', max depth=None,
                                              max features='auto',
                                              max_leaf_nodes=None,
                                              max_samples=None,
                                              min_impurity_decrease=0.0,
                                              min impurity split=None,
                                              min_samples_leaf=1,
                                              min_samples_split=2,
                                              min_weight_fraction_leaf=0.0,
                                              n_estimators=100, n_jobs=None,
                                              oob_score=False, random_state=42,
                                              verbose=0, warm start=False),
             iid='deprecated', n jobs=None,
             param grid={'criterion': ['gini', 'entropy'],
                         'max_depth': [4, 5, 6, 7, 8],
                         'max_features': ['auto', 'sqrt', 'log2'],
                         'n_estimators': [200, 500]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=0)
In [25]:
CV_rfc.best_params_
Out[25]:
{'criterion': 'gini',
 'max_depth': 5,
 'max_features': 'auto',
 'n estimators': 200}
Application du modèle avec les paramètres optimaux obtenus
In [26]:
rfc1=RandomForestClassifier(random_state=42, max_features='auto', n_estimators= 200,
                            max_depth=5, criterion='gini')
rfc1.fit(X_train, y_train)
Out[26]:
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                       criterion='gini', max depth=5, max features='auto',
                       max_leaf_nodes=None, max_samples=None,
                       min impurity decrease=0.0, min impurity split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=200,
                       n_jobs=None, oob_score=False, random_state=42, verbose=0,
                       warm_start=False)
In [27]:
print_score(rfc1, X_train, y_train, X_test, y_test, train=True)
print_score(rfc1, X_train, y_train, X_test, y_test, train=False)
Train Result:
_____
Accuracy Score: 99.44%
Confusion Matrix:
 [[216 0]
 [ 2 140]]
Test Result:
Accuracy Score: 93.51%
Confusion Matrix:
 [[87 3]
 [ 7 57]]
```

Prédiction

```
In [28]:

def Prédiction(Value):
    if Value == [1]:
        print('PREDICTION : \n La région est fortement menacée par la déforestation')
    else:
        print('PREDICTION : \n La région est faiblement menacée par la déforestation')

In [29]:

Value = rfc1.predict([[213312.93, 24.78, 4983.11, 8.87]])
Prédiction(Value)

PREDICTION :
    La région est faiblement menacée par la déforestation

In []:
```