Section 4.5

7.
$$y = \ln[(x+5)^{1/2}] = \frac{1}{2}\ln(x+5) \Rightarrow \frac{dy}{dx} = \frac{1}{2(x+5)}$$

9.
$$y = \frac{3}{2}\ln(x^4 + 5x^2) \Rightarrow \frac{dy}{dx} = \frac{3}{2} \cdot \frac{4x^3 + 10x}{x^4 + 5x^2} = \frac{6x^2 + 15}{x^3 + 5x}$$

11.
$$\frac{dy}{dx} = -5x \cdot \frac{3}{3x+2} - 5\ln(3x+2) = -\frac{15x}{3x+2} - 5\ln(3x+2)$$

14.
$$\frac{dy}{dx} = x \cdot \frac{-2x}{2 - x^2} + \ln|2 - x^2| = -\frac{2x^2}{2 - x^2} + \ln|2 - x^2|$$

16.
$$\frac{d\nu}{du} = \frac{\frac{1}{u} \cdot u^3 - 3u^2 \ln u}{u^6} = \frac{1 - 3\ln u}{u^4}$$

$$23. \ \frac{dy}{dx} = \frac{1/x}{\ln x} = \frac{1}{x \ln x}$$

27.
$$\frac{dy}{dx} = \frac{e^x \ln x - e^x/x}{(\ln x)^2} = \frac{xe^x \ln x - e^x}{x(\ln x)^2}$$

34.
$$\frac{dy}{dx} = \frac{3}{(\ln 10)3x} = \frac{1}{(\ln 10)x}$$

36.
$$y = \frac{1}{2}\log_7(4x - 3) \Rightarrow \frac{dy}{dx} = \frac{1}{2} \cdot \frac{4}{(\ln 7)(4x - 3)} = \frac{2}{(\ln 7)(4x - 3)}$$

37.
$$y = \frac{3}{2}\log_3(x^2 + 2x) \Rightarrow \frac{dy}{dx} = \frac{3}{2} \cdot \frac{2x + 2}{(\ln 3)(x^2 + 2x)} = \frac{3x + 3}{(\ln 3)(x^2 + 2x)}$$

47. If two functions differ by a constant then they will have the same derivative since the derivative of a constant is 0. Since $\ln 6x = \ln 6 + \ln x$ differs from $\ln x$ by the constant $\ln 6$, the two functions have the same derivative even though they are not equal.

58. $P'(t) = \frac{t+100}{t+2} + \ln(t+2)$ so that $P'(2) \approx 26.9$ and $P'(8) \approx 13.1$ where in both cases the units are ants/day.

Section 4.6

1.
$$\frac{dy}{dx} = \frac{1}{2} \cdot \cos 8x \cdot 8 = 4\cos 8x$$

3.
$$\frac{dy}{dx} = 12 \cdot \sec^2(9x+1) \cdot 9 = 108 \sec^2(9x+1)$$

4.
$$\frac{dy}{dx} = -4 \cdot -\sin(7x^2 - 4) \cdot 14x = 56x\sin(7x^2 - 4)$$

6.
$$y = -9(\sin x)^5 \Rightarrow \frac{dy}{dx} = -9 \cdot 5(\sin x)^4 \cdot \cos x = -45\sin^4 x \cos x$$

9.
$$\frac{dy}{dx} = -6x \cdot (\cos 2x \cdot 2) - 6\sin 2x = -12x\cos 2x - 6\sin 2x$$

12.
$$\frac{dy}{dx} = \frac{(\sec^2 x)(x-1) - \tan x}{(x-1)^2}$$

13.
$$\frac{dy}{dx} = \cos e^{4x} \cdot (e^{4x} \cdot 4) = 4e^{4x} \cos e^{4x}$$

15.
$$\frac{dy}{dx} = (-\sin x)e^{\cos x}$$

17.
$$\frac{dy}{dx} = \cos(\ln 3x^4) \cdot \frac{12x^3}{3x^4} = \frac{4}{x}\cos(\ln 3x^4)$$

21.
$$\frac{dy}{dx} = \frac{2\cos x(3 - 2\sin x) - 2\sin x \cdot (-2\cos x)}{(3 - 2\sin x)^2} = \frac{6\cos x}{(3 - 2\sin x)^2}$$

33.
$$\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{\cos x}{\sin x}\right) = \frac{-\sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^2 x} = -\frac{1}{\sin^2 x} = -\csc^2 x$$

34.

$$\frac{d}{dx}(\sec x) = \frac{d}{dx}\left(\frac{1}{\cos x}\right) = \frac{d}{dx}\left((\cos x)^{-1}\right) = -(\cos x)^{-2} \cdot (-\sin x)$$
$$= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} = \sec x \tan x$$

Section 5.1

3. (a)
$$(-\infty, -2)$$
 (b) $(-2, +\infty)$

4. (a)
$$(3, +\infty)$$
 (b) $(-\infty, 3)$

6. (a)
$$(1,5)$$
 (b) $(-\infty,1)$ and $(5,+\infty)$

16. (a)
$$x = -1, 2$$
 (b) $(-\infty, -1)$ and $(2, +\infty)$ (c) $(-1, 2)$

The steps in the solution are below.

(i) Domain of $f: (-\infty, \infty)$ (ii) $f'(x) = 2x^2 - 2x - 4 = 2(x - 2)(x + 1)$ is defined everywhere and 0 at the (only) critical numbers x = -1, 2. These critical numbers partition the number line as below.

 $(-\infty, -1)$: Both factors of f'(x) are negative so f'(x) > 0 and f is increasing on this interval.

(-1,2): First factor negative, second positive, so f'(x) < 0 and f is decreasing on this interval.

 $(2,+\infty)$: Both factors are positive, so f'(x)>0 and f is increasing on this interval.

19. (a)
$$x = -2, -1, 0$$
 (b) $(-2, -1)$ and $(0, +\infty)$ (c) $(-\infty, -2)$ and $(-1, 0)$

The steps in the solution are below.

(i) Domain of $f: (-\infty, \infty)$ (ii) $f'(x) = 4x^3 + 12x^2 + 8x = 4x(x+1)(x+2)$ is defined everywhere and 0 at the (only) critical numbers x = -2, -1, 0. These critical numbers partition the number line as below.

 $(-\infty, -2)$: All three factors of f'(x) are negative so f'(x) < 0 and f is decreasing on this interval.

(-2,-1): First two factors negative, third positive, so f'(x) > 0 and f is increasing on this interval.

(-1,0): First factor negative, next two positive so f'(x) < 0 and f is decreasing on this interval.

 $(0,+\infty)$: All three factors are positive so f'(x)>0 and f is increasing on this interval.

24. (a) None (b) None (c) $(-\infty, 4)$ and $(4, +\infty)$

The steps in the solution are below.

(i) Domain of $f: (-\infty, 4)$ and $(4, +\infty)$ (ii) $f'(x) = \frac{(1)(x-4) - (x+3)(1)}{(x-4)^2} = \frac{-7}{(x-4)^2}$ is undefined at x = 4, but since x = 4 is not in the domain of f it is not a critical number The derivative f'(x) is nowhere zero, so there are no critical numbers. Since f'(x) < 0 for all x in the domain of f it follows that f is decreasing on $(-\infty, 4)$ and $(4, +\infty)$.

(b) $(0, +\infty)$ (c) $(-\infty, 0)$. 25. (a) x = 0

The steps in the solution are below.

(i) Domain of $f: (-\infty, +\infty)$ (ii) $y = f(x) = (x^2 + 1)^{1/2} \Rightarrow f'(x) = \frac{1}{2}(x^2 + 1)^{-1/2} \cdot 2x = \frac{1}{2}(x^2 + 1)^{-1/$ $\frac{x}{\sqrt{x^2+1}}$ is defined everywhere and is 0 only at x=0. This critical number splits the domain of f into two intervals.

 $(-\infty,0)$: f'(x) < 0 so f is decreasing on this interval

 $(0,+\infty)$: f'(x) > 0 so f is increasing on this interval

26. (a) ± 3 and $\pm 3\sqrt{2}/2 \approx \pm 2.12$ (b) $(-3\sqrt{2}/2, 3\sqrt{2}/2)$ (c) $(-3, -3\sqrt{2}/2)$ and $(3\sqrt{2}/2,3)$

The steps in the solution are below.

(i) Domain of $y = f(x) = x(9 - x^2)^{1/2}$: [-3.3]

(ii) $f'(x) = x \cdot \frac{1}{2} (9 - x^2)^{-1/2} \cdot (-2x) + (9 - x^2)^{1/2} = -\frac{x^2}{\sqrt{9 - x^2}} + \sqrt{9 - x^2} = \frac{9 - 2x^2}{\sqrt{9 - x^2}}$ is undefined for $x = \pm 3$ and is 0 for $x = \pm 3\sqrt{2}/2$. These critical numbers divide the domain

 $(-3, -3\sqrt{2}/2)$: $f'(-2.5) \approx -2.11 < 0$ so f is decreasing on this interval.

 $(-3\sqrt{2}/2, 3\sqrt{2}/2)$: f'(0) = 3 > 0 so f is increasing on this interval.

of f into three intervals and we use test points as follows.

 $(3\sqrt{2}/2,3)$: $f'(2.5) \approx -2.11 < 0$ so f is decreasing on this interval.

27. (a) x = 0 (b) $(0, +\infty)$ (c) $(-\infty, 0)$ The steps in the solution are below. (i) Domain of f: $(-\infty, +\infty)$ (ii) $f'(x) = \frac{2}{3}x^{-1/3} = \frac{2}{3\sqrt[3]{x}}$ is undefined at x = 0 and is 0 nowhere. The critical number x=0 divides the domain of f into $(-\infty,0)$ and $(0,+\infty)$. On the first interval f'(x) < 0 and on the second interval f'(x) > 0 so f is decreasing on

 $(-\infty,0)$ and is increasing on $(0,+\infty)$.

32. (a)
$$x = 1/2, 1$$
 (b) $(-\infty, 1/2)$ and $(1, +\infty)$ (c) $(1/2, 1)$

The steps in the solution are below.

(i) Domain of
$$y = f(x) = xe^{x^2-3x}$$
: $(-\infty, +\infty)$

(ii)
$$f'(x) = x \cdot (2x - 3)e^{x^2 - 3x} + e^{x^2 - 3x} = (2x^2 - 3x + 1)e^{x^2 - 3x} = (2x - 1)(x - 1)e^{x^2 - 3x}$$
 is defined everywhere and is 0 at $x = 1/2, 1$. These critical numbers divide the domain of f into 3 intervals and we use test point as follows.

$$(-\infty, 1/2)$$
: $f'(0) = 1 > 0$ so f is increasing on this interval.

$$(1/2,1)$$
: $f'(0.6) \approx -0.019 < 0$ so f is decreasing on this interval.

$$(1,+\infty)$$
: $f'(3)=3/e^2>0$ so f is increasing on this interval.

- 41. You never "go to the left ..." when making a decision about increasing/decreasing behavior. You always ask what happens to the graph of f as you move to the right.
- 54. Since t is hours after the drug is administered the domain of f is $[0, +\infty)$. Since $K'(t) = \frac{4(3t^2+27)-(4t)\cdot(6t)}{(3t^2+27)^2} = \frac{108-12t^2}{(3t^2+27)^2} = \frac{12(3-t)(3+t)}{(3t^2+27)^2}$ is defined on the domain of f and is 0 for $t=\pm 3$ the only critical number of K is t=3. (We discard t=-3 since this number does not belong to the domain of f.) Since K'(t)>0 on the interval (0,3), f is increasing on this interval. Since K'(t)<0 on the interval $(3,+\infty)$, K is decreasing on this interval.