Scatterplots and Correlation

Objectives

Create and analyze scatterplots

Determine the type of correlation of a scatterplot

Scatterplots

Scatterplot

A **scatterplot** is a visual display which can be used to examine an association between two variables, usually x and y.

Scatterplots

Scatterplot

A **scatterplot** is a visual display which can be used to examine an association between two variables, usually x and y.

The independent variable, x, is called the **explanatory variable** and the dependent variable, y, is called the **response variable**.

Scatterplots

Scatterplot

A **scatterplot** is a visual display which can be used to examine an association between two variables, usually x and y.

The independent variable, x, is called the **explanatory variable** and the dependent variable, y, is called the **response variable**.

Scatterplots allow us to see if there is a relationship between the two variables.

Example 1

The table below shows the age of a certain model of car (in years) with the cars current value (in thousands of dollars). Create a scatterplot for the data.

Age	Value
2	15
3	12
3	13
2	14
4	13
5	10
6	10.5
1	16.5
0	18
4	14
7	11

Example 1

The table below shows the age of a certain model of car (in years) with the cars current value (in thousands of dollars). Create a scatterplot for the data.

Age	Value
2	15
3	12
3	13
2	14
4	13
5	10
6	10.5
1	16.5
0	18
4	14
7	11

Objectives

Create and analyze scatterplots

2 Determine the type of correlation of a scatterplot

Direction of Points

Often times, the data in a scatterplot has some pattern to it.

Direction of Points

Often times, the data in a scatterplot has some pattern to it.

Correlation

A **correlation** between two variables examines how the response variable's (y) values change as the explanatory variable's (x) values change.

Direction of Points

Often times, the data in a scatterplot has some pattern to it.

Correlation

A **correlation** between two variables examines how the response variable's (y) values change as the explanatory variable's (x) values change.

We will examine three correlation types: positive, negative, and none (a.k.a. no correlation)

Positive Correlation

As x increases, so does y.

Positive Correlation

As x increases, so does y.

We can also get a *general idea* of the type of correlation by looking at the counts of observations in the quadrants formed by the means of x and y.

We can also get a *general idea* of the type of correlation by looking at the counts of observations in the quadrants formed by the means of x and y.

We can also get a *general idea* of the type of correlation by looking at the counts of observations in the quadrants formed by the means of x and y.

Q1: 5 values Q3: 8 values Total = 13

We can also get a *general idea* of the type of correlation by looking at the counts of observations in the quadrants formed by the means of x and y.

Q1: 5 values Q3: 8 values Total = 13

Q2: 2 values Q4: 0 values Total: 2

We can also get a *general idea* of the type of correlation by looking at the counts of observations in the quadrants formed by the means of x and y.

Q1: 5 values Q3: 8 values Total = 13

Q2: 2 values Q4: 0 values Total: 2

11 more points in Q1 and Q3

We can also get a *general idea* of the type of correlation by looking at the counts of observations in the quadrants formed by the means of x and y.

Q1: 5 values Q3: 8 values Total = 13

Q2: 2 values Q4: 0 values Total: 2

11 more points in Q1 and Q3 suggests positive correlation

Negative Correlation

As *x* increases, *y* decreases.

Negative Correlation

As *x* increases, *y* decreases.

Q1: 3 values Q3: 3 values Total = 6

Q1: 3 values Q3: 3 values Total = 6

Q2: 5 values Q4: 4 values Total: 9

Q1: 3 values Q3: 3 values Total = 6

Q2: 5 values Q4: 4 values Total: 9

3 more points in Q2 and Q4

Q1: 3 values Q3: 3 values Total = 6

Q2: 5 values Q4: 4 values Total: 9

3 more points in Q2 and Q4 suggests a very weak negative correlation

No Correlation

There is no visible pattern between x and y.

No Correlation

There is no visible pattern between x and y.

Q1: 4 values Q3: 3 values Total = 7

Q1: 4 values Q3: 3 values Total = 7

Q2: 5 values Q4: 3 values Total: 8

Q1: 4 values Q3: 3 values Total = 7

Q2: 5 values Q4: 3 values Total: 8

1 more point in Q2 and Q4

Q1: 4 values Q3: 3 values Total = 7

Q2: 5 values Q4: 3 values Total: 8

1 more point in Q2 and Q4 suggests almost no correlation

It is important to note that just because there may be a strong correlation (an association) between two variables it does not mean that one causes the other to happen.

It is important to note that just because there may be a strong correlation (an association) between two variables it does not mean that one causes the other to happen.

For instance, we can look at the association of a dog's paw size with the dog's weight.

It is important to note that just because there may be a strong correlation (an association) between two variables it does not mean that one causes the other to happen.

For instance, we can look at the association of a dog's paw size with the dog's weight.

We might notice that larger paws tend to have larger weights, but we can not conclude that large paws cause a large weight.

It is important to note that just because there may be a strong correlation (an association) between two variables it does not mean that one causes the other to happen.

For instance, we can look at the association of a dog's paw size with the dog's weight.

We might notice that larger paws tend to have larger weights, but we can not conclude that large paws cause a large weight.

If there is a strong correlation there may be lurking variables or confounding at play.

Lurking Variables and Confounding

Lurking Varaible

A **lurking variable** is an explanatory variable that is not considered in a study or experiment that has an influence on the response variable.

Lurking Variables and Confounding

Lurking Varaible

A **lurking variable** is an explanatory variable that is not considered in a study or experiment that has an influence on the response variable.

Confounding

Confounding occurs when we can not distinguish the effect(s) one (or many) explanatory variables has (have) on a response variable.