Experiments of RedSVD

Daisuke Okanohara

RedSVD

- RedSVD is a C++ library for matrix decompositions
 - New BSD license
 - http://code.google.com/p/redsvd/
- The implementation of the algorithm in [1]
 - [1] "Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions", N. Halko, P.G. Martinsson, J. Tropp, arXiv 0909.4061

RedSVD (contd.)

- RedSVD differs from the original work [1].
 - To reduce the memory requirement further, redsvd sample both rows and columns and solve the smaller SVD problem.
- RedSVD is optimized for truncated SVD and for sparse matrices

Experiments

- Conducted the following two experiments
 - Performance
 - Accuracy

Performance Test Setup

- Compare the result for the following cases
 - Dense Matrix
 - # row is fixed, and # col is increased
 - Square matrix
 - Sparse Matrix
 - Square matrix and the nonzero ratio is changed
 - svd : Eigen::SVD Version 3.0
 - redsvd : REDSVD::RedSVD Version 0.0.3
 - Some results are not examined due to the lack of memory requirement

The result of SVD for dense matrices row=500, col=x

The result of SVD for dense matrices row=x col=x

The result of SVD for sparse matrices row = x, col = x, nonZero ratio = 0.1%

Time (sec).

The result of SVD for sparse matrices row = x, col = x, nonZeroRatio = 1%

Time (sec).

Accuracy Test Setup

- Generate random square matrices U and V
 - These are ortho-normalized by Gram-Schmidt
- Set a singular vector as S_i = 0.9ⁱ
- Set a sample matrix A := USV^T
- Compute a SVD of A := $U_tS_tV_t^T$ with top-10 singular values
 - n : the row/col of A
 - r: the actual rank of A

Singular Values

Order of Magnitude = $log(S_i)$

LSA (SVD for Doc-Term Matrix)

- Data: English Wikipedia
- A_{ij} = I(term j is appeared in a doc i)
 - I(x) returns 1 if x is true and 0 otherwise
 - A is very sparse; the nonzero ratio is 0.2% 0.5%
- SVD of A is known as Latent Semantic Analysis

The result of LSA (ms) Time Performance of RedSVD

 The numbers of docs are 3560, 46857, 118110, 233717, and those of terms are 27106, 147144, 261495, 402239