

H220r高精度定位定向板卡 用户手册

深圳市东安华科技有限公司

文档修订记录

版本	修订日期	描述
V1. 0	2018-09	文档新建
		→

目录

1	简介		2
		1 关于板卡	
		2 主要特点	
2		2 工文 1 点	
2			
		1 定位定向参数	
		2 物理电气参数	
	2. 3	3 环境参数	3
	2. 4	4 接口参数	3
3	接口		
		1 机械接口	
	3.2	2 电气接口	
	0. 2	3. 2. 1 电源接口	
		3. 2. 2 RS232串口	
		3. 2. 3 USB接口	
	レヒコサム		
4		安装	
		1 板卡实物图	
		2 整机实物图	
	4. 3	3 安装	
5			
	5. 1	1 上位机软件与EVK串口连接	
		2 RTCM数据源配置	
		5. 2. 1 指示灯说明	
		5.2.2 定位状态	
		5.2.3 查看RTCM数据	
6	其他	2/	10

1 简介

本手册详细介绍了高精度定位板卡H220r性能和技术参数,指导您安装、设置及使用H220r板卡。本手册中包含了硬件结构的说明、客户端软件的使用及详细的命令解析。技术支持和有特定应用需求的用户,都可参考本手册,来高效的使用客户端软件及进行相应软件的开发。

使用本手册的用户需要对全球卫星定位导航系统(GNSS)原理及相关术语有一定了解,即使您有使用 其它GNSS产品的经验,建议您花一定时间仔细阅读本手册。

1.1 关于板卡

高精度定位板卡H220r可广泛应用于各种高精度定位导航应用场景,包括无人驾驶、精准农业、机械控制、测量测绘等需要可靠、高频输出、低延时的厘米级定位应用领域,可提供基于载波相位RTK的厘米级定位及基于码的亚米级定位。

板卡可灵活设置成基站或移动站,可在不同定位模式间自动切换,获取最佳的定位结果,同时可低延时(低于30毫秒)、高频率(达20hz)输出位置、速度、时间、跟踪卫星数、DOP值及PPS等信息,为各种精确动态应用提供保障。

1.2 主要特点

- 适应于移动应用的小尺寸、紧凑型、全EMI屏蔽设计。
- 可嵌入、紧凑型模块,尺寸71.1mmX45.7mmX11mm,与国际主流板卡兼容。
- 支持GPS、GLONASS、BDS、SBAS多卫星信号220通道同时跟踪。
- 支持GPS L1/L2、BDS B1/B2、GLONASS G1/G1)2、SBAS L1C/A频段信号。
- 超强的处理能力,支持高达50hz PVT与原始观测数据输出及20hz RTK解算。

2 技术参数

本章主要介绍板卡详细的技术参数,包含定位参数、物理电气参数、环境参数、通信参数四部分。

2.1 定位定向参数

这些参数会受大气状况、多径效应及卫星分布几何结构等因素影响,标准差为1σ。

初始化时间	<1min (典型)
初始化置信度	>99.9%
单基线RTK定位(<5km)	水平 10mm+1ppm
- SARTINGE (VOIII)	垂直 20mm+1ppm
定向 (航向角)	0.2°/m (双天线基线长)
RTD	水平 0.25m
	垂直 0.5m
SBAS	水平 0.5m

	垂直 1m
	冷启动〈45s
首次定位时间	热启动 <30s
	信号重捕获〈2s

2.2 物理电气参数

尺寸 (L x W x H)	71. 1mmX45. 7mmX11mm
输入电压	
	3.3 V DC +5%/-3%
功耗	1.68 W (典型)
重量	28. 6g
1/0接口	2.0间距,20pin双排针
天线接口	天线连接器
	MMCX-KWHD female 50Ω
	天线供电电压
	+3.3V ±2% DC @ 0−100mA
	天线增益
	20 ~ 45dB

2.3 环境参数

工作温度	−40°C— +85°C
存储温度	-55°C— +95°C
湿度	95%(无冷凝)

2.4 接口参数

接口	RS232 串口 2个
1	USB 2.0 1个
定位数据输出速率	1hz, 2hz, 5hz, 10hz, 20hz(可选)
差分数据	RTCM 2.0 - 2.4, RTCM 3.X, 3.2

3 接口

3.1 机械接口

板卡详细尺寸71.1mmX45.7mmX11mm, 其机械结构如图所示

机械结构图

3.2 电气接口

RTK高精度板卡与用户板或者测试底板采用28Pin的引脚接口, 间距2.0mm, 见下图;

详细定义见下表:

管脚	信号	类型	描述	备注
1	USB0_UID	Ю	USB Identification according to USB 2.0	
			specification. Selects Host or Device mode.	
2	USB0_VBUS	PWR	5V output for hosted USB devices	
3	ETH_LED_LINK_	0	Activity/Link indicator output.	
	ACT			
4	ETH_BIAS	PWR	Center tap power for Ethernet magnetics.	
5	NC	-	reserve	
6	VCC_3V3	PWR	Supply voltage input	
7	USB_D-	10	USB data (-)	
8	USB_D+	Ю	USB data (+)	
9	/RESETIN	ı	Reset input	
10	RXD3	Ю	COM3 receive data	
11	EVENT1	Ю	Event 1 Input	
12	CAN2RX	I	CAN2 receive data	
13	TXD3a	Ю	COM3 transmit data	
14	GND	PWR	Signal and power ground	
15	TXD1	0	COM1 transmit data	

16	RXD1	I	COM1 receive data
17	GND	PWR	Signal and power ground
18	TXD2	0	COM2 transmit data
19	RXD2	I	COM2 receive data
20	GND	PWR	Signal and power ground
21	PV	0	Position valid indicator
22	GND	PWR	Signal and power ground
23	PPSb	0	Timemark output,
			synchronous to GPS time
24	CAN2TX	0	CAN2 transmit data
25	ETH_TD+	0	This is one half of the Ethernet transmit
			differential pair (100 Ω pair).
26	ETH_RD+	I	This is one half of the Ethernet receive
			differential pair (100 Ω pair).
27	ETH_TD-	0	This is one half of the Ethernet transmit
			differential pair (100 Ω pair).
28	ETH_RD-	I	This is one half of the Ethernet receive
			differential pair (100 Ω pair).

3.2.1 电源接口

- 1) 模块供电支持DC3. 3V和DC5V标称电压, 极限电压范围DC3. 0V-5. 25V;
- 2) 模块启动电流小于0.7A, 最大电流小于0.5A;
- 3) 天线供电支持DC3. 3V, 电流不超过0. 1A;

3. 2. 2 RS232串口

- 1) 模块提供3路RS232串口输出;
- 2) 电平为3.3v

3.2.3 USB接口

1) 模块支持USB 2.0协议;

4 板卡及其安装

4.1 板卡实物图

H220r高精度定位板卡

H220r的EVK板卡

4.2 整机实物图

4.3 安装

为保证移动站板卡高效安装,请于安装前,准备好以下内容: H220r板卡、用户手册、 上位机软件 CZ(v1.2)、评估板套件(EVK)、性能可靠的天线、天线连接线缆、带有串口的台式机或笔记本电脑。按以下步骤进行安装:

- 1、将H220r板卡定位孔和插针与EVK对准,安装在EVK上,EVK为H220r板卡供电,并把H220r板卡的接口引出来,提供与外部设备直接通讯的标准接口。注意,在H220r插针未对准EVK插座的情况下,通电后会导致板卡损坏!
- 2、选择适当增益的GNSS天线,并将GNSS天线架设在稳定、无遮挡的区域,通过同轴射频电缆连接天线和板卡。请小心插拔连接头,以免损坏板卡。
 - 3、连接PC和EVK的串口, PC与EVK之间采用串口线连接;
 - 4、连接12V适配器到EVK的电源(芯为电源正极),启动H220r板卡;
 - 5、启动PC机上上位机控制软件(CZv1.2),并通过软件连接接收机并记录相关数据。

5 设置

要进行RTK定位,移动站必须同时接收基准站发送过来的RTCM数据,结合本地的观测值数据做差分解算,从而获得厘米级精度定位,获取RTCM差分数据有电台或无线通讯网络方式实时从基准站获取差分数据。

5.1 上位机软件与 EVK 串口连接

在上位机软件CZ(v1.2)配置好EVK与PC连接的串口和波特率(115200)

5.2 RTCM 数据源配置

打开CZ(V1.2)软件, Configuration——Ntrip Client, 设置好Ntrip caster的IP、端口、用户名、密码。

5.2.1 指示灯说明

红灯表示电源灯, 红灯亮, 表示底板已通电。绿色灯表示卫星灯, 绿灯闪烁表示已经搜到卫星, 闪烁次数即为卫星颗数。黄灯表示差分信号灯, 通信模块准备就绪, 开始接收到差分数据。

5.2.2 定位状态

初始阶段,移动站进入单点定位模式(3D Fix)。当收到基站发送的差分数据后,进入float解定位模式(RTK-FLOAT),开始整周模糊度解算,获得模糊度固定(RTK-FIX)。

5.2.3 查看RTCM数据

可实时监测移动站RTCM数据流的状态。

6 其他

详细使用说明请联系厂家;

