STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Feb 8

Lecturer: Xianyang Zhang

1 Maximum likelihood estimation

1.1 Basic setup

We have a family $\{P_{\theta}\}_{{\theta}\in\Theta}$ of distributions on χ , where $\Theta\subseteq\mathbb{R}^d$.

Assumption: Suppose P_{θ} has a density w.r.t a base measure μ on χ , that is $p_{\theta} = \frac{\partial P_{\theta}}{\partial \mu}$.

Definiation: The log likelihood $l_{\theta}(x) = \log p_{\theta}(x)$ with

$$\nabla l_{\theta}(x) = \left[\frac{\partial}{\partial \theta_{1}} l_{\theta}(x), \dots, \frac{\partial}{\partial \theta_{d}} l_{\theta}(x) \right]^{\top},$$

$$\nabla^{2} l_{\theta}(x) = \left[\frac{\partial^{2} l_{\theta}(x)}{\partial \theta_{i} \partial \theta_{j}} \right]_{i,j=1}^{d}.$$

Observe that $\{X_1, \ldots, X_n\} \stackrel{i.i.d}{\sim} P_{\theta_0}$ with $\theta_0 \in \Theta$. We aim to estimate θ_0 based on $\{X_1, \ldots, X_n\}$. A standard estimator for θ_0 is the maximum likelihood estimator (MLE) given by

$$\hat{\theta}_n \in \operatorname{argmax}_{\theta \in \Theta} P_n l_{\theta} \quad \text{where} \quad P_n l_{\theta} = \frac{1}{n} \sum_{i=1}^n l_{\theta}(X_i).$$

1.2 Main questions

- 1. Consistency: Whether the MLE converges to the true parameter, that is $\hat{\theta}_n \stackrel{p}{\to} \theta_0$? It comprises of two components!
 - Identifiability of the paremeter;
 - Convergence of $\hat{\theta}_n$.
- 2. Does there exist a r_n such that
 - $r_n(\hat{\theta}_n \theta_0) = O_p(1)$,
 - $r_n(\hat{\theta}_n \theta_0) \stackrel{d}{\longrightarrow} ?$ (some distribution)
- 3. Optimality: Is the MLE better than the MOME?

1.3 Identifiability Condition

A family of models $\{P_{\theta}\}_{\theta\in\Theta}$ is identifiable if $P_{\theta_1}\neq P_{\theta_2}$ for all $\theta_1\neq\theta_2$ and $\theta_1,\theta_2\in\Theta$. If $P_{\theta_1}\neq P_{\theta_2}$, then we have

- There exists $A \subseteq \chi$ such that $P_{\theta_1}(A) \neq P_{\theta_2}(A)$,
- $D_{KL}(P_{\theta_1}||P_{\theta_2}) > 0.$

1.4 **Proposition**

Suppose $\{P_{\theta}\}_{\theta\in\Theta}$ is identifiable and cardinlity $(\Theta)<\infty$. Then, if $\hat{\theta}_n\in \operatorname{argmax}_{\theta\in\Theta}P_nl_{\theta}$, we can say that,

$$\hat{\theta}_n \stackrel{P}{\to} \theta_0$$
.

1.4.1 **Proof**

Since $\{X_1,\ldots,X_n\} \stackrel{i.i.d}{\sim} P_{\theta_0}$, by the strong law of large numbers, we have

$$P_n l_\theta \stackrel{a.s}{\to} P_{\theta_0} l_\theta, \quad \forall \theta \in \Theta.$$

Note that

$$P_{\theta_0} l_{\theta_0} - P_{\theta_0} l_{\theta} = E_{\theta_0} \left[\log \frac{p_{\theta_0}(X)}{p_{\theta}(X)} \right] = D_{KL}(P_{\theta_0} || P_{\theta}), \quad X \sim P_{\theta_0}$$

which implies that $P_{\theta_0}l_{\theta_0} - P_{\theta_0}l_{\theta} > 0$ if $\theta \neq \theta_0$. As $P_nl_{\theta} \stackrel{a.s}{\to} P_{\theta_0}l_{\theta}$ and $\operatorname{cardinlity}(\Theta) < \infty$, there exists A such that P(A) = 1 and for any $\omega \in A$

$$P_n l_{\theta}(\omega) \to P_{\theta_0} l_{\theta}$$
 uniformly over Θ .

Note that this is possible as cardinlity $(\Theta) < \infty$ (a more general result requires empirical process theory). There exists $N(\omega)$ such that when $n \geq N(\omega)$

$$P_n l_{\theta_0}(\omega) - P_n l_{\theta}(\omega) = [P_n l_{\theta_0}(\omega) - P_{\theta_0} l_{\theta_0}] - [P_n l_{\theta}(\omega) - P_{\theta_0} l_{\theta}] + [P_{\theta_0} l_{\theta_0} - P_{\theta_0} l_{\theta}] > 0,$$

for $\theta \neq \theta_0$. Then, from the definition of $\hat{\theta}_n(\omega)$, we have $\hat{\theta}_n(\omega) \to \theta_0$, which implies that $\hat{\theta}_n \to a.s.$

Proposition 1.5

Assume that

- $\sup_{\theta \in \Theta} |P_n l_{\theta} P_{\theta_0} l_{\theta}| \stackrel{p}{\to} 0,$ $P_{\theta_0} l_{\theta_0} > \sup_{\theta: ||\theta \theta_0|| > \epsilon} P_{\theta_0} l_{\theta}$ for any $\epsilon > 0.$

Then we have $\hat{\theta} \stackrel{p}{\to} \theta_0$.

1.5.1Proof

For every $\epsilon > 0$, there exists $\eta > 0$ such that

$$P_{\theta_0}l_{\theta} < P_{\theta_0}l_{\theta_0} - \eta$$

whenever $\|\theta_0 - \theta\| > \epsilon$. Notice that

$$P(||\hat{\theta}_n - \theta_0|| > \epsilon) \le P(P_{\theta_0} l_{\hat{\theta}_n} < P_{\theta_0} l_{\theta_0} - \eta) = P(\eta < P_{\theta_0} l_{\theta_0} - P_{\theta_0} l_{\hat{\theta}_n}).$$

To complete the proof, we only need to show $P_{\theta_0}l_{\theta_0} - P_{\theta_0}l_{\hat{\theta}_n} \leq o_p(1)$. To this end, we note that

$$P_n l_{\hat{\theta}_n} \ge P_n l_{\theta_0},$$

$$P_n l_{\theta_0} \stackrel{p}{\to} P_{\theta_0} l_{\theta_0},$$

where the second result follows from Condition 1. Thus

$$\begin{split} P_n l_{\hat{\theta}_n} &\geq P_n l_{\theta_0} - P_{\theta_0} l_{\theta_0} + P_{\theta_0} l_{\theta_0} \\ &\geq P_{\theta_0} l_{\theta_0} - |P_n l_{\theta_0} - P_{\theta_0} l_{\theta_0}| \\ &= P_{\theta_0} l_{\theta_0} - o_p(1). \end{split}$$

We then have

$$P_{\theta_0}l_{\theta_0} - P_{\theta_0}l_{\hat{\theta}_n} \le P_nl_{\hat{\theta}_n} - P_{\theta_0}l_{\hat{\theta}_n} + o_p(1)$$

$$\le \sup_{\theta \in \Theta} |P_nl_{\theta} - P_{\theta_0}l_{\theta}| + o_p(1)$$

$$= o_p(1).$$