122COM: Searching

David Croft

Introduction

Linear search

Rinary coarc

String

Recap

122COM: Searching

David Croft

Coventry University david.croft@coventry.ac.uk

2016

Overview

Introduction

Linear search

String searching

Recap

- 1 Introduction
- 2 Linear search
- 3 Binary search
- 4 String searching
- 5 Recap

Introduction
Linear search
Binary search
String

Searching is used everywhere in computing.

- Obvious applications.
 - Text files.
 - Databases.
 - File systems.
- Hidden applications.
 - Computer games.
 - FOV search for objects in view.

Path finding

- Path finding algorithms in games
 - https://www.youtube.com/watch?v=19h1g22hby8
- Brute force approaches that find the best/shortest/fastest solution are too slow (travelling salesman).
- Heuristic aproaches are used instead.
 - Find "good enough" solutions.
 - Not always the best solution.
 - Dijkstra's algorithm.
 - A* algorithm.

Introduction

Linear search

String

Reca

Simplest search.

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
- O(n)
 - Will discuss *O*() notation in a later week.

													13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R
\uparrow					•	•	•							
Z	Z	Z												
\uparrow														
R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Linear search Binary search

String

Recap

Muuuuuuch faster than linear search.

- Divide & conquer.
- Only works on sorted sequences.
- Algorithm is:
 - 1 Find middle value of sequence.
 - If search value == middle value then success.
 - If search value is < middle value then forget about the top half of the sequence.
 - 4 If search value is > middle value then forget about the bottom half of the sequence.
 - Repeat from step 1 until len(sequence) == 0.

Linear search Binary search

String searching Find E.

Binary search

How many comparisons do we need to do for binary search?

- How many times can we divide our list by 2?
- Ideally depth of tree is $log_2(n)$
 - n = 15.
 - $\log_2(15) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Will cover *O*() complexity in later week.
- Find E.

ntroduction inear search

String searching Clearly much faster than linear search.

- To search a trillion elements linearly could mean a trillion comparisons.
- 40 with binary search.

But...

- Have to sort the list first.
- Sorting lists can be expensive.
- Can't always sort sequences.
- Ordering is important.
- Cant always search for sequences.
 - Text documents.
 - Genetic codes.

C

David Croft

Linear search

Binary search
String

searching

I.e. Text searching.

- Finding one sequence in another sequence.
- Naive search.
 - Like linear search.
 - Is very slow.

etc, etc, etc.

A

Introduction Linear search

Linear search

String searching Boyer-Moore string searching algorithm.

- **1977.**
- Not going to talk about the whole algorithm here.
 - Gets really complex.
- Right to left comparison.
- Can skip sections of the text.
 - Don't need to test every position.
- How?
- Pre-processes the search string.
 - Bad character rule table.
 - Explained in a minute.

Linear search

String searching

Recai

Creating the bad character table.

- For each character.
- Just count number of places between it and end of search string.

ntroduction Linear search

String searching Doesn't need to sort or modify the sequence being searched.

■ Small amount of pre-processing on the search value.

Worst case.

Linear time.

Average case

Sub-linear.

Not the only string searching algorithm.

- Knuth-Morris-Pratt.
- Finite State Machine (FSM).
- Rabin-Karp.

122COM: Searching

David Croft

Introduction

Linear searcr

Binary searc

String searching

Recan

- Searching
 - Applications everywhere.
- Linear search.
 - Simple.
 - Slow.
- Binary search.
 - Ordered sequence.
 - Very fast.
 - Divide & Conquer.
- String searching.
 - Finding subsequence in sequence.
 - Boyers-Moore.
 - Preprocessing.
 - Skipping sections.

122COM: Searching

David Croft

Introduction

Linear search

Rinary spare

String searching

Recan

The End

