- Professor: Jun Li, 383Z, 723-4508, jli@math.stanford.edu.
- Course website: math.stanford.edu/jli/.
- Every week: HW due Wed. 5pm to his office.
- Solutions will be posted on Coursework.
- Office hours: Mon, Tues?, Wed 2:05-2:40; Tues 12-1, 3-4.
- One evening? midterm (1.5 hr), one final (3 hr, Fri. Jun. 8 8:30-11:30am).
- Course grade: 20% homework, 30% midterm, 50% final.
- All information available on course website.

This course is primarily concerned with functions of one complex variable (effectively two real variables); inherently concerned with line integrals (i.e. Math 52).

1 Complex Numbers

The complex plane can be represented as an ordered pair $(x,y) \in \mathbb{R} \times \mathbb{R}$, corresponding to element $x+iy \in \mathbb{R}$. $i^2=-1$. These numbers arise naturally from the problem of finding quadratic roots for equations $ax^2 + bx + c = 0$, i.e.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Real roots correspond to $b^2 - 4ac \ge 0$. If $b^2 - 4ac < 0$, then we create a pair of roots

$$x = \frac{-b \pm i\sqrt{4ac - b^2}}{2a},$$

i.e. $\sqrt{-5} = \sqrt{5}\sqrt{-1} = \sqrt{5}i$. Complex numbers are defined as a sum z = x + iy, where x and y are real numbers (z conventionally denotes such a complex number).

Really hoping this gets more interesting later on...

Alternatively, complex numbers z = x + iy can also be represented in polar form $z = r \cos \theta + ir \sin \theta =$ $re^{i\theta}$, where $r=|z|=\sqrt{x^2+y^2}$ and θ is the counterclockwise angle from the positive x axis to z. This derives from the Euler equation, $e^{i\theta} = \cos\theta + i\sin\theta$. For a canonical form, take r nonnegative and take $\theta \in [0, 2\pi)$.

Example: $\theta = \frac{\pi}{6}, \frac{\sqrt{3}}{2} + \frac{1}{2}i = e^{\frac{\pi}{6}i}$.

Operations:

- (a+bi) + (c+di) = (a+c) + (b+d)i.
- (a+bi)(c+di) = (ac-bd) + (ad+bc)i.
- Complex conjugate: if z=x+iy with x,y real, $\bar{z}=x-iy$. If $z=re^{i\theta}$, $\bar{z}=re^{-i\theta}$. $|x+iy|=\sqrt{x^2+y^2}, |re^{i\theta}|=|r|$. Note: $z\bar{z}=(x+iy)(x-iy)=x^2+y^2=|z|^2$, or $z\bar{z}=re^{i\theta}re^{-i\theta}=r^2e^0=r^2$. This depends on the fact that $e^ae^b=e^{a+b}$ for complex a,b (not yet proved). $\frac{1}{z}=\frac{\bar{z}}{|z|^2}$. Thus, if $z=re^{i\theta}$, then $\frac{1}{z}=\frac{1}{re^{i\theta}}=\frac{1}{r}e^{-i\theta}$.

Note that there is a correspondence from (x,y) to (z,\bar{z}) , since $x=\frac{1}{2}(z+\bar{z})$ and $y=\frac{1}{2i}(z-\bar{z})$.

$\mathbf{2}$ Complex-valued Functions

By comparison, \mathbb{R} -valued functions can be graphed with the relation y = f(x), e.g. $f(x) = x^2 + 3x$. Two-argument functions (i.e. \mathbb{R} -valued functions on the real plane \mathbb{R}^2) can be represented by z = f(x, y)where $f:\mathbb{R}^2\to\mathbb{R}$ assigns to each pair $(x,y)\in\mathbb{R}^2$ a value $f(x,y)\in\mathbb{R}$, e.g. $f(x,y)=x^2+y^2$. Can also be graphed in \mathbb{R}^3 in the natural way.

 \mathbb{R} -valued functions on the complex plane \mathbb{R} is a function $f:\mathbb{R}\to\mathbb{R}$ which assigns to every complex number $z = x + iy \in \mathbb{R}$ an associated complex number $f(z) \in \mathbb{R}$. Can equivalently view \mathbb{R} as \mathbb{R}^2 with the natural bijection $x + iy \mapsto (x, y)$.

Constructive definition: A complex-valued function f is given by

$$f: x+iy \mapsto u(x,y)+iv(x,y)$$

where u, v are \mathbb{R} -valued functions on the real plane.

Examples:

 $f(z) = f(x,y) = f(x+iy) = (x+iy)^2 = z^2 = (x^2-y^2) + i(2xy) = u(x,y) + iv(x,y)$ where $u(x,y) = x^2 - y^2$ and v(x,y) = 2xy. z^2 and u(x,y) + iv(x,y) are two canonical forms for writing the function.

$$f(z) = e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y) = e^x \cos y + i(e^x \sin y) = u(x,y) + iv(x,y)$$

where $u(x,y) = e^x \cos y$ and $v(x,y) = e^x \sin y$. Again, canonical forms e^z and $u(x,y) + iv(x,y)$.

$$g(z) = z\overline{z} = (x+iy)(x-iy) = x^2 + y^2 = u(x,y) + iv(x,y)$$
 where $u(x,y) = x^2 + y^2$ and $v(x,y) = 0$. Again, canonical forms $z\overline{z}$ and $u(x,y) + iv(x,y)$.

3 Calculus

For the moment, define $f: \mathbb{R}^2 \to \mathbb{R}$. Then f(x,y) = u(x,y) + iv(x,y) is C^1 iff both u and v are C^1 (i.e. have continuous partial derivatives).

$$\frac{\partial f}{\partial x} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \frac{\partial f}{\partial y} = \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y}.$$

Consider $f(x,y) = (x + iy)^2 = (x^2 - y^2) + i(2xy)$. Then

$$\frac{\partial f}{\partial x} = 2x + i(2y)$$
$$\frac{\partial f}{\partial y} = -2y + i(2x).$$

Interesting question: How do we consider $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \bar{z}}$? Intuitive response: $f(z)=z^2$, so $\frac{\partial f}{\partial z}=2z$ and $\frac{\partial f}{\partial \bar{z}}=0$ (view z and \bar{z} as independent variables for this differentiation).

Next lecture: how to compute $\frac{\partial f}{\partial z}$, $\frac{\partial f}{\partial \bar{z}}$. Method: Use the change of variables z=x+iy and $\bar{z}=x-iy$, and apply chain rule formally (i.e. the correspondences $x=\frac{1}{2}(z+\bar{z})$ and $y=\frac{1}{2i}(z-\bar{z})$ from before). Holomorphic functions are those where $\frac{\partial f}{\partial \bar{z}}=0$, based on this definition.