Plan & deliverables (what I will create & where)

Files I will add to GitHub and Canvas

- data/data_set_large.csv
 - ~100k samples (configurable) for smooth plots.
 - Columns (all numeric):
 - incidence_angle (rad)
 - num_ris_elements (discrete: e.g., 16,32,64,128)
 - snr db (dB) and snr linear
 - nakagami_m (shape parameter)
 - reflection_coeff (per-sample reflection factor from the "other" paper)
 - refraction_coeff (if applicable)
 - path_loss (dB or linear)
 - effective_snr (computed combining above)
 - achievable_rate = log2(1 + effective_snr)
 - outage (0/1 for achievable_rate < R_threshold)
 - Saved as CSV (Excel-compatible): data_set_large.csv.
- scripts/generate_dataset.py
 - Script to reproduce the dataset in Colab (with seed, parameters at top).
 - Will include comments linking each generated variable to the corresponding equation/section in the two papers (so it's traceable).
- 3. models/dnn_trio_duo.py
 - o Baseline DNN (Trio/Duo style), configurable input size.
- 4. models/dnn_enhanced.py
 - Enhanced DNN that uses the extra channel/reflection/refraction features from Rahman et al.
- 5. training/train compare.py

- Runs training for: baseline DNN, enhanced DNN; saves histories, model weights, and evaluation.
- Exposes hyperparams at the top (epochs, batch size, learning rate, dataset path).

6. analysis/plot_results.py

- o Produces publication-quality figures:
 - Training/validation/test loss (with test-loss overlay).
 - Outage Probability vs SNR curves with plt.ylim(1e0, 1e-6)
 (configurable), one curve per RIS configuration and per model (Sim / DNN / DNN-predicted).
 - Optionally smoothed OP curves (rolling average) and confidence bands.
- Saves PNGs to results/.

7. README.md (updated)

- Clear instructions: run order in Colab, where to open files, how to change parameters (e.g., number of RIS elements, m, R_threshold).
- References to the two papers and which parts of the code correlate to which equations/sections.

Modeling details I will implement (how variables are computed)

- Nakagami-m fading: per-sample amplitude/power drawn as Gamma(shape=m, scale=Ω/m) as in Rahman et al.
- RIS gain model: simple aggregated gain proportional to number of RIS elements N
 and incidence angle factor cos(θ) (I'll include an option to use a more precise
 phase-alignment model if you want later).
- Reflection / refraction: add per-sample reflection_coeff and refraction_coeff
 (drawn from realistic ranges cited in Paper A). These are multiplied into path gain for
 the RIS-assisted and through-surface paths respectively, then combined (sum of
 powers) to form effective_snr. I'll include both additive and interference models
 (configurable).

- **Path loss**: Free-space / urban path-loss formula option; default is free-space + altitude term for UAV.
- Effective SNR: snr_linear * nakagami * RIS_gain * reflection_term / path_loss (exact formula commented and referenced).
- Achievable rate: R = log2(1 + effective_snr) → outage R < R_threshold.

I'll make the formulas and constants explicit and comment with pointers to paper sections (so reviewers/readers can follow).

Plots / Experiments included

- OP vs SNR for several RIS configurations (e.g., N = 16, 32, 64, 128), overlaying:
 - Analytical/simulation baseline (Nakagami model).
 - o DNN (Trio/Duo) predicted OP.
 - Enhanced DNN predicted OP (with reflection/refraction).
 - o (Later) BiLSTM predicted OP.
- Training/validation/test loss curves with test-loss horizontal line.
- Option: confidence intervals from repeated Monte-Carlo runs (configurable; slows runtime).

Performance / Colab practicality

- Default dataset size: 100k samples should run on Colab (I'll keep RAM usage in mind). I'll make num_samples a parameter; default 100k but I'll include recommended values and notes for Colab RAM/GPU.
- OP Monte Carlo uses num_op_samples parameter (default 100k for smooth curves; can be lowered for speed).

Next steps (I will do now unless you tell me otherwise)

1. Implement all files above and push to your GitHub RIS_NN_Simulations repo (under new folders data/, scripts/, models/, training/, analysis/, results/).

- 2. Also place the same scripts into Canvas (so you can copy into Colab).
- 3. Run a quick test in Canvas/Colab environment (dataset generation + one training epoch + OP curve with reduced samples) and report back the key outputs (file names, example plots).
- 4. After you confirm everything works and the plots look reasonable, I'll produce the BiLSTM implementation and run the full experiments for paper-quality figures.

If that plan looks good I'll proceed to implement and push the changes now. If you want any specific choices (e.g., default RIS element set, R_threshold value, Nakagami-m ranges, dataset size), tell me now — otherwise I'll use sensible defaults consistent with the two papers (I'll document them in the README).