實驗六

編碼器

實驗目的

- 了解何謂編碼器
- 了解編碼器的特性與設計

實驗項目

- 8 x 3 編碼器
- 8 x 3 優先編碼器

表 8 - 1 中所列材料均為TTL 規格,若讀者欲改用 CMOS IC 請參考表 8 - 2。

項次	符 数	名 稍	規 格	敷 量 備	Y,
1	IC,	CMOS	4069	1	
2	I C2	CMOS	4081	1	
3	I C ₃	CMOS	4073	1	
4	IC.	CMOS	4002	2	
5	I Cs	CMOS	4072	1	
6	I C ₆	CMOS	4532	1	
7	Rı	電 阻 器	220Ω ½W	3	
8	R ₂	電 阻 器	1KΩ ½W	9	
9		發光二極體	LED 紅色	3	

表8-2

四、相關知識

所謂編碼器 (encoder) 是 2°個分離的資料轉換成 n 個二進制的資料。因此有n 條輸入線,而輸出有m條的資料線,則我們稱為n×m的編碼器。例如有一組資料,具有 4 條的輸入線 (同時只有一條資料線為 ° 1 °),而輸出則為 2 位元的資料。如圖 8 - 1 所示。

Input	Output			
ABCD	XY			
0 0 0 1	0 0			
0 0 1 0	0 1			
0 1 0 0	1 0			
1000	1 1			

(b) 與值表

圖8-1 4×2編碼器

而編碼器依照輸入及輸出的資料多少來分類。

A、8×3編碼器

輸入有 8 條資料線 (同時只有一條資料線為 " 1 "),輸出有 3 條資料線。

1.8×3編碼器的真值表如表8-3所示。

A 0 A 1 A 2 A 3 A 4 A 5 A 6 A 7								Q:	Q	Q
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

表8-3

2.由表 8 - 3 的 真值表我們可導出輸出 布林函數。

$$Q_0 = A_1 + A_2 + A_3 + A_7$$

$$Q_1 = A_2 + A_3 + A_6 + A_7$$

$$Q_2 = A_4 + A_5 + A_6 + A_7$$

3.電路圖如圖8-2所示。

圖8-2

4.在圖8-2的編碼電路中,若有同時二個輸入為HIGH時,輸出結果就 會發生錯誤,為了解決這個問題便有了"優先編碼器"。具有特性是每個位 元的資料都有優先權位,權位高者就會遭沒權位低者。

5-8 編碼器

- 設計一個8×3編碼器
 - 1.根據題意共有8個輸入,3個輸出
 - 2. 寫出真值表
 - 3. 輸出之布林函數為:

$$O_2 = I_4 + I_5 + I_6 + I_7$$

$$O_1 = I_2 + I_3 + I_6 + I_7$$

$$O_0 = I_1 + I_3 + I_5 + I_7$$

4.實現

	輸 入									輸出			
I_7	I ₆	I ₅	I_4	I_3	I_2	I_1	Io	0_2	01	O_0			
0	0	0	0	0	0	0	1	0	0	0			
0	0	0	0	0	0	1	0	0	0	1			
0	0	0	0	0	1	0	0	0	1	0			
0	0	0	0	1	0	0	0	0	1	1			
0	0	0	1	0	0	0	0	1	0	0			
0	0	1	0	0	0	0	0	1	0	1			
0	1	0	0	0	0	0	0	1	1	0			
1	0	0	0	0	0	0	0	1	1	1			

5-8 編碼器

■ 右圖優先編碼器真值表中,以P₇為最高優先權 前入啟動,P₀為最低優 先權輸入啟動,其輸出 之布林代數表示式分別 為:

$$O_2 = P_7 + \overline{P}_7 P_6 + \overline{P}_7 \overline{P}_6 P_5 + \overline{P}_7 \overline{P}_6 \overline{P}_5 P_4$$

= $P_7 + P_6 + P_5 + P_4$

$$O_1 = P_7 + \overline{P}_7 P_6 + \overline{P}_7 \overline{P}_6 \overline{P}_5 \overline{P}_4 P_3 + \overline{P}_7 \overline{P}_6 \overline{P}_5 \overline{P}_4 \overline{P}_3 P_2$$

$$= \mathbf{P}_7 + \mathbf{P}_6 + \overline{\mathbf{P}}_5 \overline{\mathbf{P}}_4 \mathbf{P}_3 + \overline{\mathbf{P}}_5 \overline{\mathbf{P}}_4 \mathbf{P}_2$$

$$O_0 = P_7 + \overline{P}_7 \overline{P}_6 P_5 + \overline{P}_7 \overline{P}_6 \overline{P}_5 \overline{P}_4 P_3 + \overline{P}_7 \overline{P}_6 \overline{P}_5 \overline{P}_4 \overline{P}_3 \overline{P}_2 P_1$$

= $P_7 + \overline{P}_6 P_5 + \overline{P}_6 \overline{P}_4 P_3 + \overline{P}_6 \overline{P}_4 \overline{P}_2 P_1$

輸 入									輸出	
P	P	P	P	P	P	P	P	0	0	0
7	6	5	4	3	2	1	0	2	1	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	×	0	0	1
0	0	0	0	0	1	×	×	0	1	0
0	0	0	0	1	×	×	×	0	1	1
0	0	0	1	×	×	×	×	1	0	0
0	0	1	×	×	×	×	×	1	0	1
0	1	×	×	×	×	×	×	1	1	0
1	×	×	×	×	×	×	×	1	1	1

5-8 編碼器

8×3優先編碼器之符號

