Median: Median is the middle most value of a set of observations when the values are annuaged in order of magnitude. That means, it devides the whole ordered observations in to two equal parts, It is also called a position on location measure of central tendency.

Median from ungrouped data:

First order the observations in ascending on descending order of magnitude.

Rule: 1= if numbers of observations of is odd, then median will be (n+1)th observation

Rule: 2= if number of observations n is even, then median will be another mean of the $(\frac{n}{2})^{th}$ and $(\frac{n}{2})^{th}$ ordereleved observation.

median:
$$\frac{\left(\frac{n}{2}\right)^{th} + \left(\frac{n}{2} + 1\right)^{th}}{2}$$
 observation.

Forample: the following data give the monthly wages in take of Z workers of a factory.

wage (in taka): 2700, 27500, 2680, 2720, 2760, 2720)
2740

compute the median wage of workers.

Solution: First annuange the data set in ascending order of magnitude.

2680, 2700, 2720, 2740, 2750, 2760, 2780

here nie odd $n=\chi$ $Mcdian=\frac{n+1}{2}$ th ordered-observation

 $= \left(\frac{7+1}{2}\right)^{th} u$ $= 4^{-th} \text{ ordered } u$

= 2740

the profits of a storce in thousands taka for the last 12 months are

3, 6, 8, 9, 6, 10, 5, 12, 9, 8, 11,7 Compute the median profit of the store.

Solsi,

Finst annunge the observations in ascending onder of magnitude.

3, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 12 Hene n=12 is even

Median =
$$\frac{\binom{n}{2}th}{obsenvation} + \binom{n}{2}+1$$
 th obsenvation.
= $\frac{\binom{n}{2}\binom{12}{2}th}{\binom{n}{2}}$ obs $\frac{\binom{n}{2}+1}{\binom{n}{2}+1}$ th obs $\frac{\binom{n}{2}}{\binom{n}{2}}$

$$=\frac{8+8}{8+8}=8$$

The formula for median is $Me = L + \frac{72 - F}{f} \times C$

Herre, Mc = median,

L= lower limit of the median class,

n = Total of observations

F = Cumulative frequency of prie-median class.

f=frequency of the median class C= width of the median class.

Example: the following frequency distribution refers to the number of hours worked per month of 50 workers of factory.

Compute the median of the frequency distribution

Numbers of hours worked per month	30-55	55-80	80-105	105-130	130-155	155-80
Number of wonkens	3	4	6	Ø	12	11
	18020	-			-	
	5					

Interpretation: 50% of the workers worked for 136.26 hours.

Mode:
Mode is the value of a variable
which occurs the maximum number of times
For ungrouped data;
Example: Find Mode of the data sets.

a) 4,5,5,5,6,6,7,8,12

Soluri Mode is 5

Exemple:

Class interival Friequency Cumulative friequency

Friequency

Mode from grouped data! the formula for computing mode is

Mo= Lt - AI x C

Hene, Mo= mode, L= lower limit of the modal class,

1= Frequency difference blacen the modal class and pre modal-class.

_	
()	ution
20	UTON'

class interval	Friequency	Cumulative frequency
30-55	3	3/
চচ-৪০	G G	1 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
30-105	6	13 decet 131
105-130	50 1 9 11 60 110	(22)
L130-155	12	
155-180	11	45
180-205	9	50

Median class is 130-155
Henc L=130,
$$\frac{2}{2}=25$$
, $f=22$ $\int=12$
 $c=25$

$$Mc = 1 + \frac{7}{2} - \frac{1}{7} \times e$$

$$= 130 + \frac{f_{25-22}}{12} \times 25$$

$$= 136.26$$

12= Frequency between between the modal class.

class and most modal class.

c= width of the modal class.

Example:

class interval	friequenez	
30-55	3	
55-80	9 9 9 7	
80-105	G	
105-130	9	
130-155	124	
155-180	man sol	
180-205	5	

Soln: From the table, we see that class 130-155 contains highest frequency $Mo = L + \frac{41}{41+42} \times C$ L=130, $4_1=12-9=3$, $4_2=12-11=1$, c=25 $Mo = 130 + \frac{3}{3+1} \times 25$ =130 + 18.75 = 148.75 hours por month.

Greometric means— it is denoted by G.M, of n positive and non-zero observations. 2012..., orn is not noot of their product and is defined by

Harrmonic mean: It is defined as the reciprocal of the arithmatic mean of the reciprocal of the individual observations. Suppose 2172...24 are non-zero observations of a data set.

It is computed by the formula

Theorems For two-positive non-zero
quantities
AM>, G.M>, H.M

Hene, A.M = Anithmatic mean.

GiM = Greometric mean.

H.M = Harmonic mean.

Proof: Suppose, x, andx cre two positive and non-zerro quantities.

then
$$A.M = \frac{2(1+2)(2)}{2}$$

$$G_1 M = \sqrt{\frac{2}{2(1+2)(2)}}$$

$$H_1 M = \frac{n}{2(1+2)(2)}$$

Herre $(\sqrt{x_1} - \sqrt{x_2})^{\frac{1}{2}}$ Since x_1 and x_2 are positive. $(\sqrt{x_1})^{\frac{1}{2}} - 2\sqrt{x_1}\sqrt{x_2}\sqrt{x_2})^{\frac{1}{2}}$, o $\Rightarrow x_1^{\frac{1}{2}} + x_2 - 2\sqrt{x_1}x_2 = 7/7$ $\Rightarrow x_1^{\frac{1}{2}} + x_2 \ge 2\sqrt{x_1}x_2$ $\frac{x_1 + x_2}{2} = 2\sqrt{x_1}x_2$ $\frac{x_1 + x_2}{2} = 7/\sqrt{x_1}x_2$ $\therefore A \cdot M \cdot (G \cdot M \cdot - G)$

(No. 1 - No. 5 Jie Siene Dung)

OF (SONE VENICA OF (14)

0, 14 role 1.6 - 50 by a Co

chelele de de the

General La garage

(i) - i milly knick !