Zadanie 1

Pewne przedsiębiorstwo lotnicze musi podjąć decyzje o zakupie konkretnej ilości paliwa do samolotów. Paliwo dostarczają trzy firmy. Każda z tych firm ma ograniczoną ilość paliwa, oraz ze względu na koszty transportu ceny paliwa w poszczególnych firmach różnią się dla każdego lotniska. Wynikiem zadania powinno być zminimalizowanie kosztów.

1. Dane

Maksymalna ilość paliwa jaką firmy są w stanie dostarczyć.

Firma 1	275 000
Firma 2	550 000
Firma 3	660 000

Zapotrzebowanie lotnisk na paliwo.

Lotnisko 1	110 000
Lotnisko 2	220 000
Lotnisko 3	330 000
Lotnisko 4	440 000

Koszty paliwa (za jeden galon) i jego transportu między poszczególnymi firmami i lotniskami.

	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

2. Rozwiązanie

a. Definicje zmiennych decyzyjnych

buy_{ac} – ilość paliwa kupionego przez lotnisko w danej firmie

b. Ograniczenia

Limit paliwa jakie posiadają firmy:

$$\forall_{c \in Company} \sum buy_{ac} \leq available_fuel_c$$
 $a \in Airports$
 $\forall_{a \in Airports} \sum buy_{ac} = needed_fuel_a$
 $c \in Company$

c. Funkcja celu

Minimalizacja sumy:

$$\sum buy_{ac} * fuel_cost_{ac}$$
 $a \in Airports, c \in Company$

d. Wynik

Ilość paliwa dostarczonego na poszczególne lotniska

	Firma 1	Firma 2	Firma 3
Lotnisko 1	0	110000	0
Lotnisko 2	165000	55000	0
Lotnisko 3	0	0	330000
Lotnisko 4	110000	0	330000

Ilość paliwa dostarczonego przez poszczególne firmy paliwowe

Firma 1	275 000
Firma 2	550 000
Firma 3	660 000

Minimalny koszt paliwa dla przedsiębiorstwa wynosi 8 525 000.

Zadanie 2.

1. Opis problemu

Dana jest sieć połączeń miedzy n miastami reprezentowana za pomoca grafu skierowanego G=(V,A), gdzie V jest zbiorem miast, a A jest zbiorem połaczeń miedzy nimi. Dla każdego połaczenia mamy koszt c_{ij} oraz czas t_{ij} przejazdu.

Celem zadania jest znaleźć scieżkę pomiędzy dwoma danymi miastami, tak aby koszt przejazdu był najmniejszy, a czas nie przekraczał z góry założonego T.

2. Dane

a. Definicje zmiennych decyzyjnych

 x_{ij} – zmienna Boole'owska; 1 – łuk należy do ścieżki, 0 – w przeciwnym przypadku

b. Ograniczenia

Istnienie połączenia między miastami:

$$\forall_{i \in V} \sum_{i \in V} x_{ij} + (if \ i = from \ then \ 1) = \sum_{i \in V} x_{ij} + (if \ i = to \ then \ 1)$$
$$(j,i) \in A \qquad (i,j) \in A$$

Maksymalny czas jaki mamy na przebycie ścieżki:

$$\sum_{(i,j)\in A} t_{ij} * x_{ij} \le T$$

c. Funkcja celu

Minimalizacja sumy:

$$\sum_{(\boldsymbol{i},\boldsymbol{j})\in A} x_{ij} * c_{ij}$$

3. Wnioski

W przypadku pominięcia ograniczenia czasowego otrzymane połączenie nie zawsze jest akceptowalne. Ograniczenie całkowitoliczbowe w przypadku tego zadania jest potrzebne, ponieważ bez tego solver może wybierać części drogi, które są mu potrzebne do zminimalizowania funkcji zamiast pełnej drogi.

Zadanie 3.

1. Opis problemu

Policja w małym miasteczku posiada w swoim zasięgu trzy dzielnice oznaczone jako p1, p2 i p3. Każda dzielnica ma przypisaną pewną liczbę radiowozów wyposażonych w radiotelefony i sprzęt pierwszej pomocy. Policja pracuje w systemie trzyzmianowym. Wynikiem zadania powinien być przydział radiowozów spełniający wymagania i minimalizujący ich całkowitą liczbę podając jako problem cyrkulacji.

2. Dane

Minimalne liczby radiowozów dla każdej zmiany i dzielnicy.

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	2	4	3
Dzielnica 2	3	6	5
Dzielnica 3	5	7	6

Maksymalne liczby radiowozów dla każdej zmiany i dzielnicy.

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	3	7	5
Dzielnica 2	5	7	10
Dzielnica 3	8	12	10

Minimalna potrzebna liczba dostępnych radiowozów dla zmian

	Liczba radiowozów
Zmiana 1	10
Zmiana 2	20
Zmiana 3	18

Minimalna potrzebna liczba dostępnych radiowozów dla dzielnic

	Liczba radiowozów
Dzielnica 1	10
	10
Dzielnica 2	20
Dzielnica 3	13

3. Rozwiązanie

a. Definicje zmiennych decyzyjnych

carsac – ilość radiowozów dla wybranej zmiany oraz dzielnicy

b. Ograniczenia

Minimalna liczba radiowozów dla dzielnic:

$$\sum cars_{ca} \ge needed_cars_for_area[c]$$

$$c \in Areas, a \in Shifts$$

Minimalna liczba radiowozów dla zmian:

$$\sum cars_{ac} \geq needed_cars_for_shift[c]$$

$$a \in Areas, c \in Shifts$$

Minimalny limit radiowozów według dzielnic:

 $cars_{ac} \ge \min \ cars_{ac} \ dla \ a \in Areas, \ c \in Shifts$

Minimalny limit radiowozów według zmian:

 $cars_{ac} \ge \min \ cars_{ac} \ dla \ a \in Areas, \ c \in Shifts$

Maksymalny limit radiowozów według zmian oraz dzielnic:

 $cars_{ac} \leq \max \ cars_{ac} \ dla \ a \in Areas, \ c \in Shifts$

c. Funkcja celu

Minimalizacja sumy:

 \sum cars_{ac}

 $a \in Areas, c \in Shifts$

d. Wynik

Uwzględniając maksimum:

Ilość radiowozów dla poszczególnych zmian oraz dzielnic

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	2	6	3
Dzielnica 2	4	7	9
Dzielnica 3	5	7	6

Minimalna potrzebna liczba dostępnych radiowozów dla dzielnic oraz zmian 49.

Bez uwzględnienia maksimum:

Ilość radiowozów dla poszczególnych zmian oraz dzielnic

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica 1	2	5	3
Dzielnica 2	3	8	9
Dzielnica 3	5	7	6

Minimalna potrzebna liczba dostępnych radiowozów dla dzielnic oraz zmian 48.