

WHERE INITCAP(capitol) = 'Proiectarea Bazelor De Date Relaţionale'
AND topic = 'Modelul Entitate/Asociere'

Mihaela Elena Breabăn © FII 2023-2024

Baze de date – cuprinsul cursului

- Concepte din Baze de date (C1)
- → Algebra relaţională (C2-C3)
- Dependențe funcționale și multivaluate (C4-C5)
- ▶ Normalizare (C6-C7)

- Proiectarea conceptuală: Modelarea Entitate/Asociere (C9)
- Proiectarea fizică (CI0-CII)
- Indexarea (C12-C13)
- Procesarea interogărilor (C14)

Proiectarea și optimizarea Bazelor de date Relaționale

Proiectarea Bazelor de date Relaționale Metodologie

Planul prelegerii

- Problematica proiectării schemei
- Proiectarea E/A în notația lui Chen
 - Concepte E/A
 - Modelarea constrângerilor
 - Capcane de conectare
- Proiectarea E/A în UML
- Din E/A în schemă relațională

Proiectarea schemei bazei de date

- Pentru o bază de date putem propune mai multe scheme
 - Unele sunt (mult) mai bune decât altele
 - Redundanţă?
 - ▶ Eficiență?
 - Consistență?
- Cum generăm scheme bune?
- Două abordări:
 - Descompunere normalizare (Codd, '70-'74)
 - Modelarea E/A (Chen,'76)
- De obicei sunt aplicate împreună, în doi pași: se începe cu proiectarea E/A și se continuă cu normalizarea

Concepte E/A clasice (Chen 1976)

Entitate

- Date ce pot fi modelate ca obiecte având existență idenpendentă
- Mulțime-entitate sau tip-entitate corespunde unui grup de obiecte de același tip, deci unei mulțimi omogene de entități; este caracterizată de un nume și o listă de propietăți
- O instanță entitate este un obiect din grup și trebuie să fie unic identificabilă în cadrul mulțimii

Asociere (Relationship)

- Conexiune/asociere între două sau mai multe entități de tip diferit sau de același tip
- Mulțime-asociere sau tip-asociere corespunde unei mulțimi omogene de asocieri, modelează interacțiuni între mulțimientitate
- O instanță-asociere este identificabilă prin instanțele-entitate participante
- Gradul asocierii = numărul de mulțimi-entitate participante
 - unare/recursive, binare, ternare...

Atribut

- Pentru entități reprezintă proprietăți ce descriu obiectele/instanțele entitate
- Pentru asocieri
 - Atribute ale entităților implicate
 - Atribute specifice asocierii ce reprezintă informații noi (atribute proprii)

Diagrame E/A

Reprezentare grafică a conceptelor E/A

Există mai multe standarde grafice, aici varianta Chen

Un graf

- Mulțimile-entitate, mulțimile-asociere și atributele sunt noduri
- Există muchii doar între
 - noduri-entitate și noduri-asociere
 - noduri-entitate şi noduri-atribute
 - noduri-asociere şi noduri-atribute

Exemplu

- Putem determina notele obținute la cursuri pentru orice student, precum și profesorii care au pus notele
- Putem determina mentorul (profesorul îndrumător al) oricărui student
- Putem identifica condițiile necesare pentru a studia un curs (fiecare curs ar putea necesita cunoasterea informațiilor din alte cursuri)

Alte concepte E/A

Rol

Explică semnificația entităților în asocieri

Cheie primară

- Un atribut sau o submulțime minimală de atribute ce identifică unic o instanță-entitate sau o instanță-asociere
- Dbligatorie pentru entități, pentru a indica care instanțe participă în asocieri

Cheie străină pentru o asociere

 Un atribut sau o mulțime de atribute care constituie cheie primară pentru entitățile implicate

Exemplu

Care sunt cheile străine pentru cele trei mulțimi de asocieri?

Constrângeri de conectivitate/participare

- Modelul E/A permite declararea de constrângeri asupra numărului de instanțeasociere în care o instanță-entitate participă
- Fie R o mulțime-asociere între n mulțimi-entitate E_i, i=1..n. Baza de date satisface constrângerea (E_i, u,v,R) dacă fiecare instanță-entitate din E_i participă în cel puțin u și cel mult v instanțe-asociere din R.

Exemplu

- ▶ (Studenţi, I, I Mentori)
- ► (Profesori,0,7,Mentori)
- Fiecare student are un singur profesor drept mentor iar un profesor poate fi mentor pentru cel mult 7studenti

Constrângeri de conectivitate pentru asocieri binare (1)

Constrângeri de conectivitate pentru asocieri binare (2)

Entitate slabă

 O mulțime-entitate este slabă dacă existența instanțelor sale depinde de existența instanțelor altei mulțimi-entitate (dependență existențială)

- Nu are cheie
- Satisface constrângerea de conectivitate (Entitate_slaba, I, I,R), deci participă într-o asociere de tip unu la mulți relativ la entitatea tare

Exemplu

STUDENTI

0:10

IMPRUMUTĂ

I:I

ÎMPRUMUTURI

Capcane de conectare (Fan traps)

Problema: La ce facultate aparține profesorul X? Soluția: Model restructurat

Capcane de conectare (Chasm traps)

Problema:

Care sunt toate sălile ce aparțin unei facultăți?

Soluția: Noi asocieri

Modelul E/A extins Specializare

- Subgrupuri distinctive de instanțe-entitate
 - ▶ Au în plus anumite atribute
 - Participă în asocieri la care nu participă toate instanțele-entitate
 - Corespund unei mulțimi de entități specializate care se află într-o asociere de tip IS-A cu mulțimea de entități de bază

Constrângeri specifice specializării

- Instanțele specializării moștenesc toate atributele și asocierile mulțimii de entități de bază, inclusiv cheia
- Clasificare
 - O instanță a unei mulțimi-entitate poate aparține la una sau la mai multe specializări
 - Specializări disjuncte (exclusive)
 - Specializări cu suprapunere

- O instanță a unei mulțimi-entitate trebuie sau nu să aparțină la cel puțin o specializare
 - Complet
 - Incomplet (parţial)

Modelare UML

Unified Modeling Language

- Utilizat în ingineria software
- Bazat pe concepte orientate obiect
- Instrument de comunicare cu clientul în termenii utilizați în companie
- Un limbaj bogat, utilizăm un set restrâns de elemente (diagrama de clase) pentru a modela o bază de date.

Mapare E/A – UML

E/R	UML
Mulțime-entitate cu atribute	Clasă
Mulțime-asociere fără atribute proprii	Asociere
Mulțime-asociere cu atribute proprii	Clasă de asociere
Specializare	Subclasă
	Compoziție și agregare

Clase

- ▶ Componente: nume, atribute, metode
- ▶ BD: nume, atribute (cheia primară)

STUDENTI CNP (pk) nume prenume localitate

Asocieri

- Exprimă asocierea dintre obiectele aparținând la două clase
- ▶ BD: asocierea dintre instanțele a două mulțimi-entitate

Dbs: constrângerile de conectivitate se specifică invers decât în diagramele E/A

Asocieri

Constrângeri de conectivitate/multiplicitate

- ▶ (CI,u,v,A)
- ► (C2,x,y,A)

- Fiecare obiect (instanță-entitate) din CI este asociat cu cel puțin u și cel mult v obiecte (instanțe-entitate) din C2
- Fiecare obiect (instanță-entitate) din C2 este asociat cu cel puțin x și cel mult y obiecte (instanțe-entitate) din C2

xy	uv	Tip asociere
01	01	unu la unu incompletă
11 (1)	11 (1)	unu la unu completă
01	0* (*)	unu la multi incompletă
•••	•••	•••

555

Modelați asocierea dintre STUDENTI și UNIVERSITĂȚI. Un student poate studia la cel mult 2 universități si e necesar să studieze la cel putin una. O universitate primește cel mult 10.000 studenti.

▶ Fie asocierea

Care e numărul minim de instanțe pentru mulțimea-entitate CI și pentru C2?

Asocieri recursive

Asocieri n-are

STUDENTI
CNP (pk)
nume
prenume
localitate

PROFESORI
CNP (pk)
nume
prenume
birou

CURSURI
cod (pk)
denumire
credite

Clase de asociere

STUDENTI LICENTA PROFESORI sesiune titlu LICENTA titlu sesiune STUDENTI PROFESORI

Clase de asociere

Eliminarea claselor de asociere

▶ Atunci când avem multiplicitate 0.. I sau 1.. I

Subclasă (1)

(Specializare completă, disjunctă)

Subclasă (2)

(Specializare completă, cu suprapunere)

Compoziție și agregare

Dbiecte dintr-o clasă aparțin obiectelor din altă clasă

▶ Tipuri speciale de asociere

- Compoziția: toate obiectele unei clase părți aparțin obiectelor dintr-o clasă compusă; clasei părți îi corespunde de obicei o entitate slabă (multiplicitate I..I; fără cheie primară);
- Agregarea: unele obiecte din clasa părți aparțin obiectelor din clasa compusă (multiplicitate 0.. I)

Mapare E/A, UML -> schema BD relațională

E/A	UML	Schema relațională
Mulțime-entitate cu atribute	Clasă	Relație cu cheie primară
Mulțime-asociere fără atribute proprii	Asociere	Relație cu chei străine
Mulțime-asociere cu atribute proprii	Clasă de asociere	Relație cu chei străine și alte atribute
Specializare	Subclasă	Relație cu cheie primară (cea a superclasei) și atribute particulare/specializate
	Compoziție și agregare	Relație cu cheie străină și atribute particulare

Mulțimi-entitate/clase și asocieri

 $\{CI(\underline{KI}, XI), C2(\underline{K2}, X2), A(KI,K2)\}$

Cheia primară pentru asociere depinde de multiplicitate

xy	uv	Cheia primară pt A	Observații
01 11	*	K2	Nu e necesară relația A {CI(<u>KI,</u> XI), C2 <u>(K2,</u> X2,KI)}
*	01 11	KI	Nu e necesară relația A {C1(<u>K1,</u> X1,K2), C2 <u>(K2,</u> X2)}
*	*	(K1,K2)	

▶ Fie diagrama

Mai este posibilă renuntarea la relația corespunzătoare asocierii?

Asocieri recursive

{CURSURI (<u>cod</u>, denumire, credite) PRE (<u>cod I</u>, <u>cod 2</u>)}

{UNIVERSITATI (cod, numeU, oras) RAMURI (codFiliala, codParinte)}

Clase de asociere

{STUDENTI (<u>ID,</u> nume, prenume) UNIVERSITATI (<u>cod</u>, numeU, oras) APLICATII (ID, cod, data, rezultatul)}

Specializare/Subclase

Posibilități

- Relații subclasă ce conțin cheia superclasei și atributele specializate CI(KI,XI), C2(KI,X2), C3(KI,X3)
- Relații subclasă ce conțin atributele superclasei (inclusiv atributul cheie) si atributele specializate; superclasa conține doar tuple nespecializate
 - $CI(\underline{KI},XI), C2(\underline{K2},XI,X2), C3(\underline{K2},XI,X3)$
- O singură relație ce conține atributele din superclasă și subclasă C(KI,XI,X2,X3)

Fie superclasa S cu un număr de subclase. Considerăm că relația de specializare este incompletă și cu suprapunere. Dacă n I, n2 și n3 reprezintă numărul total de tuple necesare fiecărei scheme de decodificare din cele 3 date anterior (în ordinea dată), care este relația dintre cele 3 valori?

- \circ nI<n2<n3
- \circ n l \leq n 2 \leq n 3
- $_{\circ}$ n3<n2<n1
- o n3 ≤n2 ≤n1

Compoziție și agregare

{ UNIVERSITATI(cod, numeU, oras)
DEPARTAMENTE(codU, numeD, cladire)
BIROURI (codU, adresa)}
NU acceptă NULL
acceptă NULL

Modelare EA/UML Sumar

PROS

- ▶ Tehnică populară de modelare conceptuală
- Construcții expresive, descriu punctul de vedere personal asupra aplicației
- Permite exprimarea unor tipuri de constrângeri (chei primare, străine, multiplicitate, exclusivitate...)

CONS

- Tehnică subiectivă (entitate sau atribut, entitate sau asociere, subclasare sau nu, compoziție sau nu)
- Nu permite modelarea tuturor dependentelor
- Necesită utilizarea ulterioară a normalizării

Bibliografie

- Capitolele II și I2 in Thomas Connolly, Carolyn Begg: Database Systems: A Practical Approach to Design, Implementation and Management, (5th edition) Addison Wesley, 2009
- Hector Garcia-Molina, Jeff Ullman, Jennifer Widom: Database Systems: The Complete Book (2nd edition), Prentice Hall; (June 15, 2008)

Instrumente:

- https://creately.com (diagrame EA, diagrame UML de clasă)
- <u>http://diagramo.com/</u> (diagrame EA)
- https://argouml-tigris-org.github.io/tigris/argouml/