

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 1/24

SUMMER – 2013 EXAMINATION MODEL ANSWER

Subject: BASIC MATHEMATICS

Subject Code: 12003

Important Instructions to examiners:

• The model answer shall be the complete solution for each and every question on the question paper.

• Numericals shall be completely solved in a step by step manner along with step marking.

• All alternative solutions shall be offered by the expert along with self-explanatory comments from the expert.

• In case of theoretical answers, the expert has to write the most acceptable answer and offer comments regarding marking scheme to the assessors.

• In should offer the most convincing figures / sketches / circuit diagrams / block diagrams / flow diagrams and offer comments for step marking to the assessors.

• In case of any missing data, the expert shall offer possible assumptions / options and the ensuing solutions along with comments to the assessors for effective assessment.

 In case of questions which are out of the scope of curricular requirement, the expert examiner shall solve the question and mention the marking scheme in the model answer. However, the experts are requested to submit their clear cut opinion about the scope of such question in the paper separately to the coordinator.

• Experts shall cross check the DTP of the final draft of the model answer prepared by them.

Subject Code: (12003) Summer 2013 **Page No: 2/24**

		Tugo		1
Que. No.	Sub. Que.	Model answers	Marks	Total Marks
1.	Que.	A444 TENI		TVICING
1.		Attempt any TEN of the following:		
	a)	what is the value of N if, $\log_{32} N = \frac{-3}{5}$		
	Ans.	$\log_{32} N = \frac{-3}{5}$		
		$N = (32)^{\frac{-3}{5}}$	1/2	
		$N = (2^5)^{\frac{-3}{5}}$	1/2	
		$= 2^{-3} = \frac{1}{2^3}$	1	
		$N = \frac{1}{8}$		02
	b)	Resolve into partial fraction, $\frac{1}{x^2+3x+2}$		
	Ans.	$\frac{1}{x^2 + 3x + 2} = \frac{1}{(x+2)(x + 1)}$		
		$\frac{1}{x^2 + 3x + 2} = \frac{A}{(x+2)} + \frac{B}{(x-1)}$	1/2	
		1 = A(x+1) + B(x+2)		
		Put $x = -1$		
		B = 1	1/2	
		Put $x = -2$		
		1 = A(-2+1)	1/2	02
		A = -1	1/	02
		$\frac{1}{x^2 + 3x + 2} = \frac{-1}{(x+2)} + \frac{1}{(x+1)}$	1/2	
	c)	If $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & -1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 4 & 3 \\ 2 & 1 & 4 \end{bmatrix}$ find $3A+2B$		
	Ans.	Consider $3A + 2B = 3\begin{bmatrix} 2 & 1 & 3 \\ 3 & -1 & 4 \end{bmatrix} + 2\begin{bmatrix} 5 & 4 & 3 \\ 2 & 1 & 4 \end{bmatrix}$		
		$= \begin{bmatrix} 6 & 3 & 9 \\ 9 & -3 & 12 \end{bmatrix} + \begin{bmatrix} 10 & 8 & 6 \\ 4 & 2 & 8 \end{bmatrix}$	1	
		$= \begin{bmatrix} 16 & 11 & 15 \\ 13 & -1 & 20 \end{bmatrix}$	1	02

Subject Code: (12003) Summer 2013 **Page No: 3/24**

Que.	Sub.	Model energes	Manlaa	Total
No.	Que.	Model answers	Marks	Marks
1.	d)	Find x, if $\begin{vmatrix} x & 2 \\ 9 & 1 \end{vmatrix} = 0$		
	Ans.	Given		
		$\begin{vmatrix} x & 2 \\ 9 & 1 \end{vmatrix} = 0$		
		x - 18 = 0	1	02
		x = 18	1	02
	e)	Prove that $\csc^2\theta - \cos^2\theta \csc^2\theta = 1$		
	Ans.	Consider		
		$L.H.S. = cosec^2\theta - cos^2\theta \ cosec^2\theta.$		
		$= cosec^2\theta (1 - cos^2\theta)$	1	
		$= cosec^2\theta \ sin^2\theta$		
		$=\frac{1}{\sin^2\theta}\sin^2\theta$	1/2	
		= 1	1/2	02
	f)	Find the slope and intercept on Y-axis for line $\frac{x}{2} - \frac{y}{3} = \frac{1}{4}$		
	Ans.	Given line is		
		$\frac{x}{2} - \frac{y}{3} = \frac{1}{4}$		
		Slope = $\frac{-a}{b}$		
		$=\frac{\frac{-1}{2}}{\frac{2}{-1}}$		
		$-\frac{-1}{3}$	1	
		$=\frac{3}{2}$		
		Y-intercept is $= -\frac{c}{b}$		
		$= -\frac{\left(\frac{-1}{4}\right)}{\left(\frac{-1}{3}\right)}$		
			1	
		$=-\frac{3}{4}$		02
	g)	Find $\cos 3\alpha$, $if \cos \alpha = 0.4$		
	Ans.	Given, $\cos \alpha = 0.4$		
		$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$	1/2	
		$= 4 (0.4)^3 - 3(0.4)$	1/2	
		=-0.944	1	02

Subject Code: (12003) Page No: 4/24 Summer 2013

	Sub.		<u> </u>	Total
Que.	Que.	Model answers	Marks	Marks
1.	h)	Prove that $\sin(45^{\circ} + A) \cdot \sin(45^{\circ} - A) = \frac{1}{2}\cos 2A$		
	Ans.	Consider,		
		$L.H.S. = \sin(45 + A) . \sin(45 - A)$	1/	
		$=\sin^2 45 - \sin^2 A$	1/2	
		$= \left(\frac{1}{\sqrt{2}}\right)^2 - 1 + \cos^2 A$	1/2	
		$= -\frac{1}{2} + \cos^2 A$	1/2	
		$= \frac{2\cos^2 A - 1}{2} = \frac{1}{2}\cos 2A$	1/2	02
	i)	Find the principle value of $cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$		
	Ans.	Let $cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \theta$		
		$\cos \theta = -\frac{1}{\sqrt{2}}$		
		$-\cos\theta = \frac{1}{\sqrt{2}}$	1/2	
		$\cos(\pi - \theta) = \frac{1}{\sqrt{2}}$	1/2	
		$\cos(\pi - \theta) = \cos\frac{\pi}{4}$		
		$\pi - \theta = \frac{\pi}{4}$	1/2	
		$\theta = \pi - \frac{\pi}{4}$		02
		$\theta = \frac{3\pi}{4}$	1/2	
		The principal value of $cos^{-1}\left(\frac{-1}{\sqrt{2}}\right) = \frac{3\pi}{4}$		
	j)	If one end of a diameter of a circle whose center is		
		(4,3) is (2,1). Find other end of the diameter.		
	Ans.	Let other end of diameter is (x, y)		
		By mid point formula		
		$4 = \frac{x+2}{2}$; $3 = \frac{y+1}{2}$	1	
		x = 6 ; $y = 5$	1	02
		Other end of the diameter is (6,5)		

Subject Code: (12003)	Summer 2013	Page No: 5/24
Bubject Couc. (12003)	Summer 2013	I age I to SIET

Que.	Sub.	Model energes	Montro	Total
No.	Que.	Model answers	Marks	Marks
1.	k)	Find the distance between two parallel lines		
		3x + 2y - 6 = 0 and $3x + 2y - 12 = 0$		
	Ans.	Distance between two parallel line is $= \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right $		
		$= \left \frac{-6+12}{\sqrt{9+4}} \right $	1	
		$=\left \frac{6}{\sqrt{13}}\right $	1	02
	1)	Find the center and radius of circle		
		$2x^2 + 2y^2 + 5x - 6y + 3 = 0$		
	Ans.	$2x^2 + 2y^2 + 5x - 6y + 3 = 0$		
		$x^2 + y^2 + \frac{5}{2}x - 3y + \frac{3}{2} = 0$		
		Comparing above equation with		
		$x^2 + y^2 + 2gx + 2fy + c = 0$		
		$2g = \frac{5}{2}$; $2f = -3$; $c = \frac{3}{2}$		
		$g = \frac{5}{4}$; $f = -\frac{3}{2}$; $c = \frac{3}{2}$	1	
		Center is $\left(-g, -f\right) = \left(-\frac{5}{4}, \frac{3}{2}\right)$		
		$radius = \sqrt{g^2 + f^2 - c}$	1/2	
		$= \sqrt{\frac{25}{16} + \frac{9}{4} - \frac{3}{2}}$		
		$=\sqrt{\frac{25+36-24}{16}}$		
		$=\frac{\sqrt{37}}{4}$	1/2	02
	m)	Expand $(x + 3y)^4$ using binomial theorem.		
	Ans.	$(x+3y)^4 = 4_{c_0} x^4 (3y)^0 + 4_{c_1} x^3 (3y)^1 + 4_{c_2} x^2 (3y)^2$	1	
		$+4_{c_3}x^1(3y)^3+4_{c_4}x^0(3y)^4$	1	
		$= x^4 + 4x^3 \cdot 3y + 6x^2 \cdot 9y^2 + 4x \cdot 27y^3 + 81y^4$		
		$-x + 4x \cdot 3y + 0x \cdot 3y + 4x \cdot 2/y^2 + 01y$	1/2	
		$= x^4 + 12x^3y + 54x^2y^2 + 108xy^3 + 81y^4$	1/2	
				02

Subject Code: (12003) Page No: 6/24 Summer 2013

D.	G 1		F	
Que.	Sub. Que.	Model answers	Marks	Total Marks
	_	3 4		Warks
1.	n)	If $\sin \theta = \frac{3}{5}$ and $\cos \theta = \frac{4}{5}$ find $\tan \theta$ and $\cot \theta$		
	Ans.	$sin\theta = \frac{3}{5}$, $cos\theta = \frac{4}{5}$		
		$\tan \theta = \frac{\sin \theta}{\cos \theta}$		
		$= \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$	1	
		5		
		$\cot \theta = \frac{\cos \theta}{\sin \theta}$		
		$=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}$	1	02
2.		Attempt any FOUR of the following:		
۷.	a)	Resolve into partial fraction $\frac{x-5}{x^3+x^2-5x}$		
	Ans.	$\therefore \frac{x-5}{x^3 + x^2 - 5} = \frac{x-5}{x(x^2 + x - 5)}$		
		$\frac{x-5}{x(x^2+x-5)} = \frac{A}{x} + \frac{Bx+c}{x^2+x-5}$	1/2	
		$\therefore x - 5 = A\left(x^2 + x - 5\right) + \left(Bx + C\right)x$		
		x = 0		
		-5 = A(-5)	1	
		$\therefore A = 1$ $x = 1, A = 1$		
		$\begin{array}{c} x - 1, A - 1 \\ \therefore 1 - 5 = 1(1 + 1 - 5) + (B + C) \end{array}$		
		$\therefore -4 = -3 + B + C \therefore B + C = -1 \qquad(1)$	1/2	
		x = -1, A = 1	'-	
		-1-5=1(1-1-5)+(-B+C)(-1)		
		-6 = -5 + B - C	1/2	
		$\therefore B - C = -1 \qquad \dots (2)$,-	
		(1)+(2)		
		B+C=-1		
		B-C=-1		
		2B=-2	1	
		∴ B=-1		
		∴ C=0		
	-			

Subject Code: (12003) **Page No: 7/24** Summer 2013

Bubje	er coue.	(12003) Summer 2013 1 age 110.	.,	
Que.	Sub.	Madal an arrang	M1	Total
No.	Que.	Model answers	Marks	Marks
2.		$\therefore \frac{x-5}{x(x^2+x-5)} = \frac{1}{x} - \frac{x}{x^2+x-5}$	1/2	04
	b)	Resolve into partial fraction $\frac{13x+19}{(x+3)(x-2)(x+1)}$		
	Ans.	Let $\frac{13x+19}{(x+3)(x-2)(x+1)} = \frac{A}{x+3} + \frac{B}{x-2} + \frac{c}{x+1} \rightarrow (1)$	1/2	
		13x + 19 = A(x - 2)(x + 1) + B(x + 3)(x + 1)		
		+c(x+3)(x-2)		
		Put $x = -3$		
		13(-3) + 19 = A(-3-2)(-3+1)		
		-39 + 19 = 10 A		
		10A = -20		
		A = -2	1	
		put x = 2		
		13(2) + 19 = B(2+3)(2+1)		
		45 = 15 B		
		B=3	1	
		$put \ x = -1$	1	
		13(-1) + 19 = c(-1+3)(-1-2)		
		6 = -6c		
		c = -1	1	
		$\frac{13x+19}{(x+3)(x-2)(x+1)} = \frac{-2}{x+3} + \frac{3}{x-2} + \frac{-1}{x+1}$		
			1/2	04
	c)	Find 7 th term of $\left(\frac{x}{y} - \frac{y}{x}\right)^{10}$		
	Ans.	Let $r = 6$, here		
		$a = \frac{x}{y} ; b = -\frac{y}{x} ; n = 10$		
		$T_{r+1} = 10_{c_r} \left(\frac{x}{y}\right)^{10-6} \left(\frac{-y}{x}\right)^6$	1	
		$=210 \frac{x^4}{y^4} \frac{y^6}{x^6}$	2	
		$=210\frac{y^2}{x^2}$	1	04
				l

Subject Code: (12003)	Summer 2013	Page No: 8/24

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Wiodel answers	Warks	Marks
2.	d)	The current I_1 , I_2 and I_3 in three loops gave the following		
		Equations. $2I_1 - I_2 + I_3 = 0, 4I_1 - I_3 = 2, 2I_2 + I_3 = 2$ Find the values		
		of I_1 , I_2 , I_3 .		
	Ans.	$D = \begin{vmatrix} 2 & -1 & 1 \\ 4 & 0 & -1 \\ 0 & 2 & 1 \end{vmatrix}$		
		= 2(0+2) + 1(4-0) + 1(8-0)	1	
		= 16	1	
		$D_{I_1} = \begin{vmatrix} 0 & -1 & 1 \\ 2 & 0 & -1 \\ 2 & 2 & 1 \end{vmatrix}$		
		= 0(0+2) + 1(2+2) + 1(4-0)		
		= 8	1	
		$D_{I_2} = \begin{vmatrix} 2 & 0 & 1 \\ 4 & 2 & -1 \\ 0 & 2 & 1 \end{vmatrix}$		
		= 2(2+2) - 0 + 1(8-0)		
		= 8 + 8		
		= 16	1	
		$D_{I_3} = \begin{vmatrix} 2 & -1 & 0 \\ 4 & 0 & 2 \\ 0 & 2 & 2 \end{vmatrix}$		
		= 2(0-4) + (8-0) + 0		
		=0		
		By Cramer's rule	1	
		$I_1 = \frac{8}{16} = \frac{1}{2}$		
		$I_2 = \frac{D_{I_2}}{D} = \frac{16}{16} = 1$		
		$I_3 = \frac{D_{I_3}}{D} = \frac{0}{16} = 0$		04
	c)	Using binomial Theorem , prove that $(1+\sqrt{3})^4+(1-\sqrt{3})^4=56$		
	Ans.	$(1+\sqrt{3})^{4} = 4_{c_{0}} 1^{4} (\sqrt{3})^{0} + 4_{c_{1}} 1^{3} (\sqrt{3})^{1} + 4_{c_{2}} 1^{2} (\sqrt{3})^{2} + 4_{c_{3}} 1^{1} (\sqrt{3})^{3} + 4_{c_{4}} 1^{0} (\sqrt{3})^{4}$	1	
		$= 1 + 4\sqrt{3} + 18 + 4.3\sqrt{3} + 9$		

Subject Code: (12003)	Summer 2013	Page No: 9/24
Dubject Coue: (12005)	builded 2015	1 450 1101 2/24

No. Que.	$-4\sqrt{3}+18-12\sqrt{3}+9$	Marks 1 1	Marks
$(1 - \sqrt{3})^4 = 1 - L.H.S. = (1 + \sqrt{3})^4 + (1 - \sqrt{3})^4$	$-4\sqrt{3} + 18 - 12\sqrt{3} + 9$ $\sqrt{3}$) ⁴		
$L.H.S. = (1 + \sqrt{3})^4 + (1 - \sqrt{3})^4$	$\sqrt{3}$) ⁴	1	
	$-9 - \left(1 - 4\sqrt{3} + 18 - 12\sqrt{3} + 9\right)$		04
-11773710712737			01
= 56		1	
f) If $\log\left(\frac{m+n}{3}\right) = \frac{1}{2}(\log m + 1)$	$\log n$) then show that		
$\frac{m}{n} + \frac{n}{m} = 7$			
Ans. Given that,			
$\log\left(\frac{m+n}{3}\right) = \frac{1}{2}$	$(\log m + \log n)$		
$\log\left(\frac{m+n}{3}\right) = \frac{1}{2}$	$(\log mn)$	1/2	
$\log\left(\frac{m+n}{3}\right) = 1$	$\log(mn)^{\frac{1}{2}}$	1/2	
$\left(\frac{m+n}{3}\right) = (mn)$	$n)^{\frac{1}{2}}$	1	
$\left(\frac{m+n}{3}\right)^2 = mn$	ı		
$\frac{m^2+2mn+n^2}{9}=$	- mn	1	
$m^2 + 2mn$	$+ n^2 = 9mn$		
$m^2 + n^2 = 7$	⁷ mn		04
$\frac{m}{n} + \frac{n}{m} = \frac{1}{n}$	7	1	
3. Attempt any FOUR of the fo	ollowing:		
a) Find the adjoint of the matrix	$A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 5 & 12 \end{bmatrix}$		
	$\begin{bmatrix} 1 & 5 \\ 1 & 42 \end{bmatrix}$		
Ans. Matrix of minors = $\begin{bmatrix} \begin{vmatrix} 3 & 5 \\ 5 & 12 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 5 & 12 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$	$ \begin{vmatrix} 1 & 12 & 1 & 5 \\ 1 & 3 & 1 & 2 \\ 1 & 12 & 1 & 5 \\ 1 & 3 & 1 & 2 \\ 1 & 5 & 1 & 3 \\ 1 & 5 & 1 & 3 \end{vmatrix} $	1	

Subject Code: (12003)	Summer 2013	Page No: 10/24
242,000 (2200)	S 421111111	1 680 1 100 107 1

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
3.		$= \begin{bmatrix} 11 & 7 & 2 \\ 9 & 9 & 3 \\ 1 & 2 & 1 \end{bmatrix}$	1	
		Matrix of cofactors = $\begin{bmatrix} 11 & -7 & 2 \\ -9 & 9 & -3 \\ 1 & -2 & 1 \end{bmatrix}$	1	
		$Adj (A) = \begin{bmatrix} 11 & -9 & 1 \\ -7 & 9 & -2 \\ 2 & -3 & 1 \end{bmatrix}$	1	04
	b)	If $A = \begin{bmatrix} 2 & 5 & 6 \\ 0 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 1 \\ 0 & 4 \\ 5 & 7 \end{bmatrix}$ verify that $(AB)' = B'A'$		
	Ans.	$AB = \begin{bmatrix} 2 & 5 & 6 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 & 1 \\ 0 & 4 \\ 5 & 7 \end{bmatrix}$		
		$= \begin{bmatrix} 12+0+30 & 2+20+42 \\ 0+0+10 & 0+4+14 \end{bmatrix}$	1	
		$= \begin{bmatrix} 42 & 64 \\ 10 & 18 \end{bmatrix}$		
		$(AB)' = \begin{bmatrix} 42 & 10 \\ 64 & 18 \end{bmatrix}$	1	
		$(A)' = \begin{bmatrix} 2 & 0 \\ 5 & 1 \\ 6 & 2 \end{bmatrix} ; (B)' = \begin{bmatrix} 6 & 0 & 5 \\ 1 & 4 & 7 \end{bmatrix}$		
		$B'A' = \begin{bmatrix} 6 & 0 & 5 \\ 1 & 4 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 5 & 1 \\ 6 & 2 \end{bmatrix}$		
		$= \begin{bmatrix} 12+0+30 & 0+0+10 \\ 2+20+42 & 0+4+14 \end{bmatrix}$	1	
		$= \begin{bmatrix} 42 & 10 \\ 64 & 18 \end{bmatrix}$	1	04
		Hence $(AB)' = B'A'$		
	c)	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$		
	Ans.	$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$		

Subject Code: (12003)	Summer 2013	Page No: 11/24
Subject Code: (12003)	Summer 2013	rage No: 11/24

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
3.		$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ $ A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{vmatrix}$		
		$= 1(24 - 25) - 2(12 - 15) + 3(10 - 12)$ $= -1$ $\neq 0$ $A^{-1} exists$	1	
		$Matrix of minors = \begin{bmatrix} \begin{vmatrix} 4 & 5 \\ 15 & 6 \end{vmatrix} & \begin{vmatrix} 2 & 5 \\ 13 & 6 \end{vmatrix} & \begin{vmatrix} 2 & 4 \\ 3 & 5 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 15 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 3 & 6 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 3 & 5 \end{vmatrix} \\ \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} \end{bmatrix}$	1	
		$= \begin{bmatrix} -1 & -3 & -2 \\ -3 & -3 & -1 \\ -2 & -1 & 0 \end{bmatrix}$ $Matrix of cofactors = \begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$		
		$Adj (A) = \begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$ $A^{-1} = \frac{1}{ A } adj(A)$	1	
		$= \frac{1}{-1} \begin{bmatrix} -1 & 3 & -2 \\ 3 & -3 & 1 \\ -2 & 1 & 0 \end{bmatrix}$ OR	1	04
		$= \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}$		
	d)	Solve the equation using matrix method $2x + 3y - z + 3 = 0$; $5x + y + 3z = 10$; $4x + 3y - 2z + 3 = 0$		
	Ans.	$A = \begin{bmatrix} 2 & 3 & -1 \\ 5 & 1 & 3 \\ 4 & 3 & -2 \end{bmatrix}; X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} ; B = \begin{bmatrix} -3 \\ 10 \\ -3 \end{bmatrix}$		

Subject Code: (12003) Page No: 12/24 Summer 2013

Bubje	ci Couc.	(12003) Summer 2013	1 age 110. 12/	// // T	
Que. No.	Sub. Que.	Model answers	N	Marks	Total Marks
3.	Ųue.	$ A = \begin{vmatrix} 2 & 3 & -1 \\ 5 & 1 & 3 \\ 4 & 3 & -2 \end{vmatrix}$ $= 2(-2-9) - 3(-10-12) - 1(15-4)$ $= 33$ $\neq 0$ $A^{-1} \text{ exists}$ $\text{Matrix of minors} = \begin{bmatrix} \begin{vmatrix} 1 & 3 \\ 3 & -2 \end{vmatrix} & \begin{vmatrix} 5 & 3 \\ 4 & -2 \end{vmatrix} & \begin{vmatrix} 5 & 1 \\ 4 & 3 \end{vmatrix} \\ \begin{vmatrix} 3 & -1 \\ 3 & -2 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ 4 & 2 \end{vmatrix} & \begin{vmatrix} 2 & -3 \\ 4 & 3 \end{vmatrix} \\ \begin{vmatrix} 3 & -1 \\ 1 & 3 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ 5 & 3 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 5 & 1 \end{vmatrix} \end{bmatrix}$ $= \begin{bmatrix} -11 & -22 & 11 \\ -3 & 0 & -6 \\ 10 & 11 & -13 \end{bmatrix}$ $\text{Matrix of cofactors} = \begin{bmatrix} -11 & 22 & 11 \\ 3 & 0 & 6 \\ 10 & -11 & -13 \end{bmatrix}$ $\text{adj}(A) = \begin{bmatrix} -11 & 3 & 10 \\ 22 & 0 & -11 \\ 11 & 6 & -13 \end{bmatrix}$ $A^{-1} = \frac{1}{ A } \text{ adj}(A)$ $A^{-1} = \frac{1}{ A } \text{ adj}(A)$ $X = A^{-1}B$ $= \frac{1}{33} \begin{bmatrix} -11 & 3 & 10 \\ 22 & 0 & -11 \\ 11 & 6 & -13 \end{bmatrix} \begin{bmatrix} -3 \\ 10 \\ -3 \end{bmatrix} = \frac{1}{33} \begin{bmatrix} 33 + 30 - 30 \\ -66 + 0 + 33 \\ -33 + 60 + 39 \end{bmatrix}$ $= \frac{1}{33} \begin{bmatrix} 33 \\ -33 \\ 66 \end{bmatrix}$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ Hence solution is $x = 1$; $y = -1$; $z = 2$		1 1 1	04

Subject Code: (12003) Page No: 13/24 Summer 2013

Ove	Cub			Total
Que.	Sub. Que.	Model answers	Marks	Total Marks
3.	e)	Prove that $\frac{\sin 2A + 2\sin 4A + \sin 6A}{\sin A + 2\sin 3A + \sin 5A} = \cos A + \cot 3A \sin A$		
	Ans.	$\sin A + 2\sin 3A + \sin 5A$ Consider		
	7 1113.	$L.H.S. = \frac{\sin 2A + 2\sin 4A + \sin 6A}{\sin A + 2\sin 3A + \sin 5A}$		
		$= \frac{2\sin(\frac{2A+6A}{2}).\cos(\frac{2A-6A}{2}) + 2\sin 4A}{2\sin(\frac{A+5A}{2}).\cos(\frac{A-5A}{2}) + 2\sin 3A}$	1	
		$= \frac{2 \sin 4A \cdot \cos(-2A) + 2 \sin 4A}{2 \sin 3A \cdot \cos(-2A) + 2 \sin 3A}$		
		$= \frac{2\sin 4A \left[\cos(-2A)+1\right]}{2\sin 3A \left[\cos(-2A+1)\right]}$	1/2	
		$=\frac{\sin 4A}{\sin 3A}$	1	
		$=\frac{\sin(3A+A)}{\sin 3A}$	1	
		$=\frac{\sin 3A.\cos A + \cos 3A.\sin A}{\sin 3A}$		
		$=\cos A + \frac{\cos 3A}{\sin 3A}\sin A$	1/2	04
		= cosA + cot3A sinA	/2	
	f)	Prove that : $sinA sin(60^{\circ} - A) sin(60^{\circ} + A) = \frac{1}{4} sin3 A$		
	Ans.	$L.H.S. = sinA \sin(60^{\circ} - A) \sin(60^{\circ} + A)$		
		$= \sin A \left[\sin 60^{\circ} \cos A - \cos 60^{\circ} \sin A \right] \left[\sin 60^{\circ} \cos A + \right]$	1/2	
		$\cos 60^{\circ} \sin A)$,,,	
		$= \sin A \left[\frac{\sqrt{3}}{2} \cos A - \frac{1}{2} \sin A \right] \left[\frac{\sqrt{3}}{2} \cos A + \frac{1}{2} \sin A \right]$		
		$= sinA \left[\left(\frac{\sqrt{3}}{2} cosA \right)^2 - \left(\frac{1}{2} sinA \right)^2 \right]$	1	
		$= \sin A \left[\frac{3}{4} \cos^2 A - \frac{1}{4} \sin^2 A \right]$		
		$= \frac{1}{4}\sin A \left[3\cos^2 A - \sin^2 A\right]$	1	
		$= \frac{1}{4} \sin A \left[3 \left(1 - \sin^2 A \right) - \sin^2 A \right]$		
		$= \frac{1}{4}\sin A \left[3 - 3\sin^2 A - \sin^2 A\right]$	1	
		$= \frac{1}{4} [3 \sin A - 3 \sin^3 A - \sin^3 A]$		
		$= \frac{1}{4} \left[3 \sin A - 4 \sin^3 A \right]$	1/2	04
		$=\frac{1}{4}\sin 3 A$		

Subject Code: (12003) Page No: 14/24 Summer 2013

Bubje	ci Couc.	(12003) Summer 2013 Page No.	17/27	
Que.	Sub.	M- 1-1	M1	Total
No.	Que.	Model answers	Marks	Marks
4.		Attempt any TEN of the following:		
	a)	Prove that $\sqrt{\frac{1-\sin A}{1+\sin A}} = \sec A - \tan A$		
	Ans.	Consider		
		$L.H.S. = \sqrt{\frac{1-\sin A}{1+\sin A}}$		
		$= \sqrt{\frac{1-\sin A}{1+\sin A}} \times \frac{1-\sin A}{1-\sin A}$	1	
		$=\sqrt{\frac{(1-\sin A)^2}{1-\sin^{2A}}}$	1	
		$=\sqrt{\frac{(1-\sin A)^2}{\cos^2 A}}$	1	
		$ \frac{\sqrt{\cos^2 A}}{\cos A} $ $ = \frac{1 - \sin A}{\cos A} $	1/2	
		$= \frac{1}{\cos A} - \frac{\sin A}{\cos A}$ $= \sec A - \tan A$	1/2	04
	b)	$= \sec A - \tan A$ If $\tan(x + y) = \frac{3}{4}$ and $\tan(x - y) \frac{8}{15}$ prove that $\tan 2x = \frac{77}{36}$		
	b)	Consider $\frac{1}{4} \operatorname{consider} \frac{1}{4} consi$		
	Ans.	2x = x + y + x - y		
		$\tan(2x) = \tan(x + y + x - y)$		
		$= \tan((x+y) + (x-y))$	1	
		$= \frac{\tan(x+y) + \tan(x-y)}{1 - \tan(x+y)\tan(x-y)}$	1/2	
		$=\frac{\frac{3}{4} + \frac{8}{15}}{1 - \frac{3}{4} \cdot \frac{8}{15}}$	1	
		$= \frac{\frac{77}{60}}{\frac{36}{60}}$	1	
		$=\frac{77}{36}$	1/2	04
	c)	Prove that $\frac{\tan A}{\sin^3 A \cdot \sec A + \sin A \cdot \cos A} = 1$		
	Ans	Consider		
		$L.H.S. = \frac{\tan A}{\sin^3 A \sec A + \sin A \cdot \cos A}$		
			j	j

Subject Code: (12003) Page No: 15/24 Summer 2013

Bubje	ci Couc.	(12003) Summer 2013 1	age 110. 13/24	
Que. No.	Sub. Que.	Model answers	Marks	Total Marks
4.	d) Ans	$= \frac{\tan A}{\sin^3 A \frac{1}{\cos A} + \sin A \cdot \cos A}$ $= \frac{\tan A}{\frac{\sin^3 A + \sin A \cdot \cos^2 A}{\cos A}}$ $= \frac{\tan A}{\frac{\sin A(\sin^2 A + \cos^2 A)}{\cos A}}$ $= \frac{\tan A}{\frac{\sin A}{\cos A}}$ $= \frac{\tan A}{\tan A}$ $= 1$ $= R. H. S.$ Prove that $\frac{\cos A}{1 - \sin A} = \frac{1 + \tan \frac{A}{2}}{1 - \tan \frac{A}{2}}$ Consider	1/2 1 1/2 1	04
		$L.H.S. = \frac{\cos A}{1-\sin A}$ $= \frac{\cos A}{1-\sin A} \times \frac{1+\sin A}{1+\sin A}$ $= \frac{\cos A (1+\sin A)}{1-\sin^2 A}$ $= \frac{\cos A (1+\sin A)}{\cos^2 A}$ $= \frac{1+\sin A}{1-\sin A}$	1/2	
		$= \frac{\cos\frac{A}{2} + \sin\frac{A}{2}}{\cos\frac{A}{2} - \sin\frac{A}{2}}$ $= \frac{\left(\cos\frac{A}{2} + \sin\frac{A}{2}\right)^2}{\left(\cos\frac{A}{2} + \sin\frac{A}{2}\right)\left(\cos\frac{A}{2} - \sin\frac{A}{2}\right)}$	1	
		$= \frac{\sin^2(\frac{A}{2}) + \cos^2(\frac{A}{2}) + 2\sin(\frac{A}{2})\cos(\frac{A}{2})}{\cos^2(\frac{A}{2}) - \sin^2(\frac{A}{2})}$ $= \frac{1 + \frac{\sin\frac{A}{2}}{\cos\frac{A}{2}}}{1 - \frac{\sin\frac{A}{2}}{\cos\frac{A}{2}}}$	1	
		$1 - \frac{\sin\frac{\pi}{2}}{\cos\frac{A}{2}}$ $= \frac{1 + \tan\frac{A}{2}}{1 - \tan\frac{A}{2}}$	1	04

Subject Code: (12003) Summer 2013 Page No: 16/24

Subje	ct Coae:	(12003) Summer 2013	Page No: 16/24	
Que.	Sub.	Madalanaman	Madra	Total
No.	Que.	Model answers	Marks	Marks
4.	e)	Prove that $\frac{1-\tan 2\theta \cdot \tan \theta}{1+\tan 2\theta \cdot \tan \theta} = \frac{\cos 3\theta}{\cos \theta}$		
		Consider		
	Ans	$L.H.S. = \frac{1 - \tan 2\theta . \tan \theta}{1 + \tan 2\theta . \tan \theta}$		
		$= \frac{1 - \frac{\sin 2\theta}{\cos 2\theta} \cdot \frac{\sin \theta}{\cos \theta}}{1 + \frac{\sin 2\theta}{\cos 2\theta} \cdot \frac{\sin \theta}{\cos \theta}}$	1	
		$= \frac{\cos 2\theta \cdot \cos \theta - \sin 2\theta \cdot \sin \theta}{\cos 2\theta \cdot \cos \theta + \sin 2\theta \cdot \sin \theta}$	1	
		$\cos 2\theta . \cos \theta$		
		$=\frac{\cos(2\theta+\theta)}{\cos(2\theta-\theta)}$	1	
		$=\frac{\cos 3\theta}{\cos \theta}$	1	04
		= R.H.S.		
	f)	Prove that $sec^{-1}\left(\frac{5}{4}\right) + tan^{-1}\left(\frac{3}{5}\right) = tan^{-1}\left(\frac{27}{11}\right)$		
	Ans.	Let		
		$sec^{-1}\left(\frac{5}{4}\right) = \theta$		
		$\sec \theta = \frac{5}{4}$		
		$sec^2\theta = \frac{25}{16}$	1	
		$1 + tan^2\theta = sec^2\theta$		
		$tan^2\theta = sec^2\theta - 1$		
		$tan^2\theta = \frac{25}{16} - 1$		
		$=\frac{9}{16}$		
		$\tan\theta = \frac{3}{4}$		
		$\theta = tan^{-1}\left(\frac{3}{4}\right)$	1	
		$sec^{-1}\left(\frac{5}{4}\right) = tan^{-1}\left(\frac{3}{4}\right)$		
		Consider,		
		$L.H.S. = sec^{-1}\left(\frac{5}{4}\right) + tan^{-1}\left(\frac{3}{5}\right)$		
		$= tan^{-1}\left(\frac{3}{4}\right) + tan^{-1}\left(\frac{3}{5}\right)$		
		$= tan^{-1} \left(\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{3} \cdot \frac{3}{5}} \right)$	1	
		$\left(1-\frac{1}{4},\frac{1}{5}\right)$		

Subject Code: (12003) Page No: 17/24 Summer 2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
No. 4.	Que. a) Ans.	$= tan^{-1} \left(\frac{\frac{15+12}{20}}{\frac{20-9}{20}}\right)$ $= tan^{-1} \left(\frac{27}{11}\right)$ $= R. H. S$ Attempt any FOUR of the following: Show that the points $A(-1, -4)$, $B(4,6)$, $c(-4, 10)$ are vertices of a right angle triangle. Let $A(-1, -4)$, $B(4,6)$, $c(-4, 10)$ be the points $AB = \sqrt{(4+1)^2 + (6+4)^2}$	1	Marks 04
		$= \sqrt{25 + 100}$ $= \sqrt{125}$ $BC = \sqrt{(-4 - 4)^2 + (10 - 6)^2}$ $= \sqrt{64 + 16}$ $= \sqrt{80}$ $AC = \sqrt{(-4 + 1)^2 + (10 + 4)^2}$ $= \sqrt{9 + 196}$ $= \sqrt{205}$ $(\sqrt{205})^2 = (\sqrt{125})^2 + (\sqrt{80})^2$ $(AC)^2 = (AB)^2 + (BC)^2$ This shows that the given points are vertices of right angled triangle.	1 1 1 1	04
	b) Ans.	Find the ratio in which the point p(-8,3) divides the join of $(2,-2)$ and $(-4,1)$. Let the point P(-8, 3) divides the join of $(2,-2)$ and $(-4,1)$ in the ratio k:1 Therefore, $-8 = \frac{-4k+2}{k+1} \qquad \text{OR} \qquad 3 = \frac{k-2}{k+1}$ $-8k-8 = -4k+2 \qquad ! \qquad 3k+3 = k-2$	1	

Subject Code: (12003) Page No: 18/24 Summer 2013

				Total
No.	Que.	Model answers	Marks	Marks
Que. No. 5.	Sub.			Total Marks 04
		Slope of ThB $6-8$ $= \frac{6}{-2}$ $= -3$ Slope of perpendicular bisector $= \frac{-1}{slope \ of \ AB}$ $= \frac{-1}{-3} = \frac{1}{3}$	1	

Subject Code: (12003) Summer 2013 Page No: 19/24

Subje	ci Coue.	(12003) Summer 2013 Page No.	No: 19/24	
Que.	Sub. Que.	Model answers	Marks	Total Marks
	Que.			Warks
5.		Equation of perpendicular bisector is		
		$y - y_1 = m \left(x - x_1 \right)$	1	
		$y - 1 = \frac{1}{3} (x - 7)$		
		3y - 3 = x - 7		
		x - 3y - 4 = 0	1	04
		Find the equation of line which passes through (-3.8) and sum of the		
	e)	intercepts made by the line on the co ordinate axes is 7.		
		Let $x - intercept = a$		
	Ans.	y-intercept = b		
		Also given that,		
		a + b = 7		
		b = 7 - a	1	
		Equation of line by double intercept form is,		
		$\frac{x}{a} + \frac{y}{b} = 1$		
		$\frac{x}{a} + \frac{y}{7-a} = 1$		
		But line is passing through point (-3,8)	1/2	
		$\frac{-3}{a} + \frac{8}{7-a} = 1$		
		$\frac{-3(7-a)+8a}{a(7-a)} = 1$		
		$-21 + 3a + 8a = 7a - a^2$	1/2	
		$a^2 + 4a - 21 = 0$		
		a = -7 or $a = 3$		
		When $a = -7$; $b = 14$		
		Line is ,		
		$\frac{x}{-7} + \frac{y}{14} = 1$		
		-2x + y = 14		
		2x - y + 14 = 0	1	
		When $a = 3$; $b = 4$		
		Line is,		
				<u> </u>

Subject Code: (12003) Page No: 20/24 Summer 2013

Que.	Sub.	Model energes	Monlya	Total
No.	Que.	Model answers	Marks	Marks
5.		$\frac{x}{3} + \frac{y}{4} = 1$	1	
		4x + 3y = 12		04
		Which are required equations of line.		
		Find the equation of the line passing through		
	f)	(2,5) and the point of intersection of		
		x + y = 0 and 2x - y = 0		
		Consider,		
	Ans.	$x + y = 0 \to (1)$		
		$2x - y = 9 \rightarrow (2)$		
		Adding (1) & (2), we get		
		3x = 9	1	
		x = 3	1	
		y = -3	1	
		Point of intersection is $(3, -3)$		
		Equation of required line is,		
		$\frac{y - y_1}{y_1 - y_2} = \frac{x - x_1}{x_1 - x_2}$	1	
		$\frac{y-5}{5+3} = \frac{x-2}{2-3}$	1	
		$\frac{y-5}{8} = \frac{x-2}{-1}$		
		$\begin{vmatrix} 8 & -1 \\ -y + 5 = 8x - 16 \end{vmatrix}$	1	04
		8x + y - 21 = 0		
6.		Attempt any FOUR of the following:		
	a)	If A ,B,C are the three points		
		A(-1,5), $B(3,1)$ and $C(5,7)$ respectively and D,E,F		
		Are the mid points of BC, CA and AB respectively. Prove that area		
		of $\triangle ABC = 4 \times area \ of \ \triangle DEF$		
	Ans.	Given that,		
		A(-1,5), B(3,1), C(5,7) be three points		
		By mid point formula	1/4	
		point $D\left(\frac{3+5}{2}, \frac{1+7}{2}\right)$	1/2	
				L

Subject Code: (12003) Page No: 21/24 Summer 2013

Que.	Sub.		. 21/24	Total
No.	Que.	Model answers	Marks	Marks
6.		$=D\left(\frac{8}{2},\frac{8}{2}\right)$ $=D(4,4)$	1/2	
		Point E is $E\left(\frac{-1+5}{2}, \frac{5+7}{2}\right)$ $= E(2,6)$	1/2	
		Point F is, $F\left(\frac{-1+3}{2}, \frac{1+7}{2}\right) = F(1,3)$ Area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} -1 & 5 & 1\\ 3 & 1 & 1\\ 5 & 7 & 1 \end{vmatrix}$	1/2	
		$= \frac{1}{2} (-1 (1-7) - 5 (3-5) + 1(21-5))$ $= \frac{1}{2} 32$ $= 16 \text{ sq. unit} \rightarrow (1)$ Area of $\triangle DEF = \frac{1}{2} \begin{bmatrix} 4 & 4 & 1 \\ 2 & 6 & 1 \\ 1 & 3 & 1 \end{bmatrix}$ $= \frac{1}{2} (4 (6-3) - 4 (2-1) + 1 (6-6))$	1	
		$= \frac{1}{2} 8$ $= 4 sq. unit \rightarrow (2)$ From (1) & (2), we get Area of $\triangle ABC = 4 x$ Area of $\triangle DEF$	1	04
	b)	Hence proved. Find the equation of circle passing through the point (2,3) And concentric with the circle $x^2 + y^2 + 6x - 4y - 12 = 0$.		
	Ans.	$x^{2} + y^{2} + 6x - 4y - 12 = 0 comparing with$ $x^{2} + y^{2} + 2gx + 2 fy + c = 0$ $2g = 6 ; 2f = -4 ; c = -12$ $g = 3 ; f = -2 ; c = -12$ Center is $(-g, -f) = (-3, 2)$	1	

Subject Code: (12003) Summer 2013 Page No: 22/24

Sub.			Total
Que.	Model answers	Marks	Total Marks
Que.	Radius = distance between $(-3,2)$ and $(2,3)$ = $\sqrt{(2+3)^2 + (3-2)^2}$ = $\sqrt{25+1}$ = $\sqrt{26}$ unit Equation of required circle is, $(x+3)^2 + (y-2)^2 = (\sqrt{26})^2$ $x^2 + 6x + 9 + y^2 - 4y + 4 = 26$ $x^2 + y^2 + 6x - 4y - 13 = 0$ OR	1 1	04
	Let required equation of be, $x^{2} + y^{2} + 6x - 4y + c = 0$ But circle passing through point (2,3) $2^{2} + 3^{2} + 6(2) - 4(3) + c = 0$ $4 + 9 + 12 - 12 + c = 0$ $c = -13$ Required equation of circle is, $x^{2} + y^{2} + 6x - 4y - 13 = 0$	1 1 1	04
c)	Find the equation of a circle which passes through the origin And cut-off positive intercept of 2 and 5 units on X-axis and Y-axis		
Ans.	$x - intercept = a = 2$ $y - intercept = b = 5$ Equation of circle is, $x^{2} + y^{2} - ax - by = 0$ $x^{2} + y^{2} - 2x - 5y = 0$	1 1 1 1	04
d) Ans.	Given $\bar{a}=2\bar{\imath}+2\bar{\jmath}+\bar{k}$ and $\bar{b}=3\bar{\imath}+6\bar{\jmath}+2\bar{k}$ find acute angle between \bar{a} and \bar{b} . Also find projection of \bar{b} on \bar{a} . $\bar{a}=2\bar{\imath}+2\bar{\jmath}+\bar{k} \;\; ; \bar{b}=3\bar{\imath}+6\bar{\jmath}+2\bar{k}$		
	Ans.	$= \sqrt{(2+3)^2 + (3-2)^2}$ $= \sqrt{25+1}$ $= \sqrt{26} \text{ unit}$ Equation of required circle is, $ (x+3)^2 + (y-2)^2 = (\sqrt{26})^2$ $x^2 + 6x + 9 + y^2 - 4y + 4 = 26$ $x^2 + y^2 + 6x - 4y - 13 = 0 $ OR Let required equation of be, $ x^2 + y^2 + 6x - 4y + c = 0$ But circle passing through point (2,3) $ 2^2 + 3^2 + 6(2) - 4(3) + c = 0$ $ 4 + 9 + 12 - 12 + c = 0$ $ c = -13$ Required equation of circle is, $ x^2 + y^2 + 6x - 4y - 13 = 0$ c) Find the equation of a circle which passes through the origin And cut-off positive intercept of 2 and 5 units on X-axis and Y-axis $ x - intercept = a = 2$ $ y - intercept = b = 5$ Equation of circle is, $ x^2 + y^2 - ax - by = 0$ $ x^2 + y^2 - ax - by = 0$ $ x^2 + y^2 - 2x - 5y = 0$ d) Given $ \overline{a} = 2\overline{a} + 2\overline{b} + \overline{b} $ and $ \overline{b} = 3\overline{a} + 6\overline{b} + 2\overline{b} $ find acute angle between $ \overline{a} $ and $ \overline{b} $. Also find projection of $ \overline{b} $ on $ \overline{a} $. $ \overline{a} = 2\overline{a} + 2\overline{b} + \overline{b} + \overline{b} = 2\overline{a} + 6\overline{b} + 2\overline{b} $ find acute angle between $ \overline{a} $ and $ \overline{b} $. Also find projection of $ \overline{b} $ on $ \overline{a} $.	$= \sqrt{(2+3)^2 + (3-2)^2}$ $= \sqrt{25+1}$ $= \sqrt{26} \text{ unit}$ Equation of required circle is, $(x+3)^2 + (y-2)^2 = (\sqrt{26})^2$ $x^2 + 6x + 9 + y^2 - 4y + 4 = 26$ $x^2 + y^2 + 6x - 4y - 13 = 0$ OR Let required equation of be, $x^2 + y^2 + 6x - 4y + c = 0$ But circle passing through point $(2,3)$ $2^2 + 3^2 + 6(2) - 4(3) + c = 0$ $4 + 9 + 12 - 12 + c = 0$ $c = -13$ Required equation of circle is, $x^2 + y^2 + 6x - 4y - 13 = 0$ 1 C) Find the equation of a circle which passes through the origin And cut-off positive intercept of 2 and 5 units on X-axis and Y-axis. Ans. $x - intercept = a = 2$ $y - intercept = b = 5$ Equation of circle is, $x^2 + y^2 - ax - by = 0$ $x^2 + y^2 - 2x - 5y = 0$ d) Given $\bar{a} = 2\bar{1} + 2\bar{1} + \bar{k}$ and $\bar{b} = 3\bar{1} + 6\bar{1} + 2\bar{k}$ find acute angle between \bar{a} and \bar{b} . Also find projection of \bar{b} on \bar{a} .

Subject Code: (12003) Page No: 23/24 Summer 2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
6.		Consider,		
		$\bar{a}.\bar{b} = (2\bar{\imath} + 2\bar{\jmath} + \bar{k}).(3\bar{\imath} + 6\bar{\jmath} + 2\bar{k})$		
		= 2(3) + 2(6) + 1(2)		
		= 6 + 12 + 2		
		$\bar{a}.\bar{b}=20$	1½	
		$a = \bar{a} = \sqrt{2^2 + 2^2 + 1^2}$		
		$=\sqrt{9}$		
		a = 3	1/2	
		$b = \bar{b} = \sqrt{3^2 + 6^2 + 2^2}$		
		$=\sqrt{9+36+4}$		
		$=\sqrt{49}$		
		= 7	1/2	
		$\cos \theta = \frac{\bar{a}.\bar{b}}{ab}$		
		$=\frac{20}{3\times7}$		
		$\cos \theta = \frac{20}{21}$		
		$\theta = \cos^{-1}\left(\frac{20}{21}\right)$	1	04
		Projection of \bar{b} on $\bar{a} = \frac{\bar{a}.\bar{b}}{a}$	1	04
		$=\frac{20}{3}$	1/2	
	e)	A force of magnitude 7 units in the direction $3\bar{\iota} + 2\bar{\jmath} - 6\bar{k}$		
		Displaced a body from a point with positive vector $\bar{t} + \bar{j} - \bar{k}$		
		to a point with positive vector $2\bar{\imath} - \bar{\jmath} + 3\bar{k}$. Find the work done.		
	Ans.	Let $\bar{a} = 3\bar{\imath} + 2\bar{\jmath} - 6\bar{k}$		
		$ \bar{a} = \sqrt{(3)^2 + (2)^2 + (-6)^2}$		
		$=\sqrt{9+4+36}$		
		$=\sqrt{49}$		
		= 7	1/2	
		Unit vector along $\bar{a} = \frac{\bar{a}}{ \bar{a} }$		
		$=\frac{3\bar{\iota}+2\bar{\jmath}-6\bar{k}}{7}$	1/2	

Subject Code: (12003) Page No: 24/24 Summer 2013

Que.	Sub.	Model engages	Montro	Total
No.	Que.	Model answers	Marks	Mark s
6.		A force of magnitude 7 in the direction of $3\bar{\iota} + 2\bar{\jmath} - 6\bar{k}$		
		$=7\frac{3\bar{\imath}+2\bar{\jmath}-6\bar{k}}{7}$		
		$= 3\bar{\iota} + 2\bar{\jmath} - 6\bar{k}$	1	
		A body is displaced from a point say A to B		
		$ar{d}=position\ vector\ of\ B-position\ vector\ of\ A$		
		$= (2\bar{\iota} - \bar{\jmath} + 3\bar{k}) - (\bar{\iota} + \bar{\jmath} - \bar{k})$		
		$= \bar{\iota} - 2\bar{\jmath} + 4\bar{k}$	1	
		Work done = \overline{F} . \overline{d}		
		$= (3\bar{\iota} + 2\bar{\jmath} - 6\bar{k}).(\bar{\iota} - 2\bar{\jmath} + 4\bar{k})$		
		= 3(1) + 2(-2) + (-6)4		04
		= 3 - 4 - 24	1	04
		= -25		
	f)	Two force $\bar{\iota} + \bar{\jmath} - \bar{k}$ and $-2\bar{\iota} - \bar{\jmath} + \bar{k}$ are applied at the point		
		$3\bar{\iota} - \bar{\jmath}$. Find the moment of the force system about the point $2\bar{\iota} + \bar{\jmath}$		
		$2ar{k}$.		
	Ans.	Let $\overline{F_1} = \overline{\iota} + \overline{\jmath} - \overline{k}$, $\overline{F_2} = -2\overline{\iota} - \overline{\jmath} + \overline{k}$		
		$\bar{F} = \overline{F_1} + \overline{F_2}$		
		$= (\bar{\iota} + \bar{\jmath} - \bar{k}) + (-2\bar{\iota} - \bar{\jmath} + \bar{k})$	1	
		$= -\bar{\iota}$		
		Here $\bar{a} = \overline{OA} = 3\bar{\iota} - \bar{\jmath}$, $\bar{b} = \overline{OB} = 2\bar{\iota} + \bar{\jmath} - 2\bar{k}$		
		$\overline{BA} = \bar{a} - \bar{b}$		
		$= 3\bar{\iota} - \bar{\jmath} - (2\bar{\iota} + \bar{\jmath} - 2\bar{k})$		
		$= \bar{\iota} - 2\bar{\jmath} + 2\bar{k}$	1	
		Moment of \overline{F} at point A about B = $\overline{BA} \times \overline{F}$		
		$= \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ 1 & -2 & 2 \\ -1 & 0 & 0 \end{vmatrix}$	1	
		$= \bar{\iota} (0) - \bar{\jmath} (0+2) + \bar{k} (0-2)$		