Agregation Interne de Mathématiques

Suites et Séries de Fonction

2011-2012

Ι.

1)

$$U_n: [0,1] \to \mathbb{R}$$

$$x \mapsto \frac{2^n \cdot x}{1 + n2^n x^2}$$

Etudier la convergence simple et uniforme de la suite (U_n) .

2) Même question que 1 avec la suite :

$$U_n: [0,1] \to \mathbb{R}$$

$$x \mapsto n.x^n.\sin(\pi x)$$

 Π .

Calculer
$$\lim_{n\to\infty} \left(\int_0^1 (1+x) \frac{ne^x + xe^{-x}}{n+x} dx \right)$$

 III .

- 1) $\lambda \in [0,1], (U_n)_{n \in \mathbb{N}}$ la suite définie par $U_0=0$ et $\forall n \in \mathbb{N}:$ $U_{n+1}=U_n+\tfrac{1}{2}(\lambda-U_n^2).$ Etudier la suite $(U_n).$
- 2) $(P_n)_{n\in\mathbb{N}}$ la suite de fonctions définies par :

$$P_0: [0,1] \to \mathbb{R}$$

$$x \mapsto 0$$

et $\forall n \in \mathbb{N}$:

$$P_{n+1}: [0,1] \to \mathbb{R}$$

$$x \mapsto P_n(x) + \frac{1}{2} (x - (P_n(x))^2)$$

Etudier la convergence simple et uniforme de la suite (P_n) .

IV . Premier théorème de Dini.

(E,d) espace métrique. $(f_n)_{n\in\mathbb{N}}$ suite de fonctions continues et croissantes d'élément de $\mathfrak{C}(E,\mathbb{R})$, et qui converge simplement vers une fonction $f\in\mathfrak{C}(E,\mathbb{R})$. Pour $\epsilon>0$, on pose $F_{n,\epsilon}=\{x\in E\ t.q.\ f(x)-f_n(x)\geq\epsilon\}.$

- 1) Montrer que $(F_{n,\epsilon})_{n\in\mathbb{N}}$ est une suite décroissante de compactes.
- 2) Montrer que $\bigcap_{n\in\mathbb{N}}(F_{n,\epsilon})=\emptyset$.
- 3) En déduire que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformement vers f sur E.
- 4) Application: Retrouver le résultat du III.2.

V . Deuxième théorème de Dini.

- 1) Soient $a, b \in \mathbb{R}$ avec a < b, et pour $n \in \mathbb{N}$, $f_n : [a, b] \to \mathbb{R}$ fonction croissante. On suppose que la suite $(f_n)_{n \in \mathbb{N}}$ converge (simplement) vers une fonction $f : [a, b] \to \mathbb{R}$ continue. Alors la suite $(f_n)_{n \in \mathbb{N}}$ converge unifromement vers f sur [a, b].
- 2) Application:

$$f_n: \mathbb{R}_+ \to \mathbb{R}$$

$$x \mapsto (1 + \frac{x}{n})^n$$

la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformement vers la fonction exponentielle sur tout segment de \mathbb{R}_+ .

VI . Théorème d'approximation de Weierstross (produit de convolution).

- 1) Montrer que $\forall n \in \mathbb{N}$, il existe $a_n > 0$ t.q. $a_n \cdot \int_{-1}^1 (1 x^2)^n dx = 1$.
- 2) Calculer $\int_0^1 (1-x^2)^n x dx$, et en déduire que $0 < a_n < n+1$.
- 3) soit $\delta > 0$. Montrer que $\left(\int_{[-1,-\delta] \cup [\delta,1]} a_n (1-x^2)^n dx \right) \to_{n \to +\infty} 0$.
- 4) soit $f\in\mathfrak{C}([0,1];\mathbb{R})$ dont le support est inclus dans [0,1] et

$$K_n: [-1,1] \to \mathbb{R}$$

$$x \mapsto a_n (1-x^2)^n$$

et soit:

$$P_n = f * K_n : [0,1] \to \mathbb{R}$$

$$x \mapsto \int_{-1}^{1} f(x-t).K_n(t)dt$$

- a) Montrer que la suite $(P_n)_{n\in\mathbb{N}}$ converge uniformement vers f sur [0,1].
- b) Montrer que $\forall x \in [0,1]$ $P_n(x) = \int_0^1 K_n(x-t).f(t)dt$ et en déduire que P_n est une fonction polynomiale.
- 5) $g:[a,b]\to\mathbb{R}$ fonction continue. Montrer que g est limite uniforme sur [a,b] d'une suite de fonction polynomiale.

VII .

- 1) a) $f:[0,1]\to\mathbb{R}$ continue. On suppose que $\forall\ k\in\mathbb{N}$: $\int_0^1 t^k.f(t)dt=0.$ Montrer que f=0.
 - b) On munit $E = \mathfrak{C}([0,1];\mathbb{R})$ du produit scalaire :

$$<.,.>: E \times E \to \mathbb{R}$$

$$(f,g) \mapsto \int_0^1 f(t)g(t)dt$$

Déduire de a) que le sous-espace vectoriel de E de fonctions polynomiales définies sur [0,1] n'a pas de supplémentaire orthogonale dans l'espace préhilbertien (E,<.,.>).

- 2) Montrer que $\forall n \in \mathbb{N}: \int_0^{+\infty} t^n.e^{-(1-i)t}dt = 0.$ Que peut-on conclure ?
- VIII . Pour quelle valeur de x la série suivante converge.

-Calculer dans ce cas sa somme :

a)
$$\sum \frac{1}{n^2} \left(x^n + (\frac{-x}{1-x})^n \right)$$
.

b)
$$\sum \frac{1}{n^2} (x^n + (1-x)^n)$$
.