





# **ENSTA Paris PIE XRef Project**

STMicroelectronics - Corporate Strategy team

## Agenda

1 Project Context

2 Sub-Projects & Teams

3 Available Files & Test Method

4 Next Steps



# **Project Context**



### We are creators and makers of technology







#### **Jean-Marc Chery** President & Chief Executive Officer







Marco Cassis Analog, Power & Discrete. MEMS and Sensors Group



Remi El-Ouazzane Microcontrollers, Digital ICs and RF products Group



Jerome Roux Sales & Marketing



**Fabio Gualandris** Quality, Manufacturing, & Technology



Lorenzo Grandi Finance, Purchasing, ERM & Resilience. **CFO** 



Rajita D'Souza **Human Resources** & Corporate Social Responsibility



Steven Rose Legal Counsel & Public Affairs

Frédérique

Le Grevès

Europe & France

Public Affairs

**President & CEO Office** 

Alexandre Balmefrezol **Imaging** 

Stefano Cantù

**Smart Power Solutions** 

Matteo Lo Presti

Analog

Ricardo De-Sa-Earp **General Purpose** Microcontrollers

**Michael Anfang EMEA & Automotive** Marketing & Apps\*

**Henry Cao** 

China & Power/Energy

Marketing & Apps\*

Hiroshi Noguchi

APeC & Industrial

Marketing & Apps\*

Rino Peruzzi

Americas & PE/CECP

Marketing & Apps\*

**Christophe Ayela** Manufacturing & Technology

Analog & Power Front-End

**Fabrice Gomez** 

**Back-End Manufacturing** 

& Technology

**Nicolas Yackowlew** 

Product Quality &

Reliability

Audit\*\*\*, ERM & Resilience

**Franck Freymond** 

**Giuseppe Notarnicola** 

Treasury

**Laurent Malier Bertrand Stoltz** Finance, Global Business Services & Digital Front-End Manufacturing Financial System & Technology

**Geoff West Global Purchasing** 

**Giuseppe Notarnicola** Italy Public Affairs

Integrated Marketing & Communications

Alberto Della Chiesa

Supply Chain

Claudia Levo

**Bertrand Stoltz** Asia Pacific **Public Affairs** 

**Chouaib Rokbi** Digital Transformation & Information Technology,

Corporate Development

**Edoardo Merli** 

Power Transistors

Alessandro Cremonesi \*\* System Research & Applications, Innovation

APeC = Asia-Pacific excluding China PE/CECP = Personal Electronics/ Communication **Equipment & Computer Peripherals/** \* Application marketing organization by market segment

<sup>\*\*\*</sup> Reports to the Chairman of the Supervisory Board Audit Committee and dotted line to the CEO

<sup>\*\*</sup> Reports dotted line to MDRF President

### We address four end markets



**Automotive** 





Industrial





**Personal electronics** 





Communications equipment, computers & peripherals





### Differentiated technologies are our foundation



**MEMS** 

for sensors & micro-actuators

FD-SOI CMOS

FinFET through Foundry

**Analog & RF CMOS** 

**eNVM CMOS** 

**Smart Power: BCD** 

(Bipolar - CMOS - Power DMOS)

Discrete, Power MOSFET, IGBT Silicon Carbide, Gallium Nitride

**Vertical Intelligent Power** 

**Optical sensing solutions** 

**Packaging technologies** 

Leadframe – Laminate – Sensor module – wafer level

### Our products and solutions enable customer innovation







**GP MCU & MPU, Wireless MCU** 







### Cross-Reference for customer

#### Request from customer to find a replacement part for a competition product

Customers are using a specific part from the competition

E.g.: Operational amplificatory OPA2828

- → Customers wants to check ST catalog for different reason
  - 1. For better prices / performances
  - 2. Part is obsolete
  - 3. Want a 2<sup>nd</sup> source
  - 4. ...



### Cross-Reference for customer

#### Request from customer to find a replacement part for a competition product

### Customers are using a specific part from the competition

- E.g.: Operational amplificatory OPA2828
- → Customers wants to check ST catalog for different reason
  - 1. For better prices / performances
  - 2. Part is obsolete
  - 3. Want a 2<sup>nd</sup> source
  - 4. ..







### Cross-Reference for customer

#### Request from customer to find a replacement part for a competition product

### Customers are using a specific part from the competition

- E.g.:Operational amplificatory OPA2828
- Customers wants to check ST catalog for different reason
  - For better prices / performances
  - Part is obsolete
  - Want a 2<sup>nd</sup> source

www.st.com





### Cross-Reference for internal benchmarking

#### Current Xref is exhaustive but is a very large Yes/No match with many parts

- Too large: For each part, up to >100 cross-references
- No ranking: No score is provided (info "pin to pin" to "Nearest")
- Limited alternative: Internal Xref are accurate, but limited (coverage, refresh rate)







### Cross-Reference by Application

#### Part to part is interesting, but customers are building systems

- www.st.com provides application block diagrams and associated best products for the application
- Could compare to competition

#### Benchmarking at application

Compare website to website



Competition website



### weekly delivery from external company

#### **Cross-reference (Xref)**

A competitor product that has "equivalent" features to a given ST CPN

#### **E-datasheet**

Main (\*) datasheet parameters
For each CPN from Xref
ST + competitor
Only Mass Market

#### **Pricing**

Distributor prices, stock and lead time
For each CPN in parameters
when available

#### www.st.com



#### Portfolio & Price exploration







Target: Accuracy, acceptance criteria by marketing

Algorithm already existing
But possible improvements // Other pathes



#### Class Pin to pin В **Competitor Part** Class ST Part C C 1 ST<sub>1</sub> D D Nearest ST<sub>1</sub> C 2 D **Main Inputs**

## Target Improvement

| Score |  |
|-------|--|
| 90%   |  |
| 75%   |  |

#### **Problem 1**

Xref by classes e-Datasheets Prices



Compute
Static
Scores

each week



Тор Х

**Problem 2** 

ST Expertise
Many Formats
Small coverage
Unregular

Internal Xref



Improved
Static
Scores

"with new inputs"

Improve Benchmarking

> Improve Customer Experience

> > Top 3



limit workload to Marketing teams
Embed ST Expertise in the algorithm



# Different parts





- Objectifs du projet :
- Utiliser des méthodes d'apprentissage supervisé pour évaluer la similitude entre des composants en fonction de leurs caractéristiques.
- Explorer des algorithmes de Machine Learning et progresser vis-à-vis des thématiques d'IA et de Data Science.
- Mettre en place un système de spécialisation du modèle sur un nouveau dataset fourni.
- Travailler en étroite collaboration avec des ingénieurs pour comprendre les données et les enjeux du projet.
- Mettre en pratique des compétences en programmation Python, en statistiques et en traitement de données.
- Résultats attendus :
- Algorithme qui prend en entrée deux composants microélectroniques et renvoie un score de similitude (pourcentage).
- **Méthode qui permet de raffiner les résultats** en prenant en compte les feedbacks successifs des ingénieurs vis-à-vis de la proposition faite par l'IA.
- Rapport final détaillant les méthodes utilisées, les résultats obtenus et les conclusions du projet.



# **Necessity of Match Score**

1 Matrix per Product Line





# Data 1: Op Amps Features

|                     |                   | Family           | Manufacturer<br>Type    | Maximum<br>Input Bias<br>Current | Maximum<br>Input<br>Offset<br>Current | Maximum<br>Input<br>Offset<br>Voltage | Maximum<br>Operating<br>Supply<br>Voltage | Maximum<br>Operating<br>Temperature | Maximum<br>Single<br>Supply<br>Voltage | Maximum<br>Supply<br>Voltage<br>Range | Minimum<br>CMRR | <br>Power<br>Supply<br>Type | Shut<br>Down<br>Support |
|---------------------|-------------------|------------------|-------------------------|----------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------------|---------------------------------------|-----------------|-----------------------------|-------------------------|
| MPN                 | MANUFACTURER      |                  |                         |                                  |                                       |                                       |                                           |                                     |                                        |                                       |                 |                             |                         |
| 5962-<br>0051701VCA | Analog Devices    | Not<br>Mentioned | Precision<br>Amplifier  | 3.500000e-<br>07                 | 5.000000e-<br>08                      | 0.000200                              | 36.0                                      | 125.0                               | 36.0                                   | 37.0                                  | 86.0            | Single Dual                 | No                      |
| 5962-<br>0051701VDA | Analog Devices    | Not<br>Mentioned | Precision<br>Amplifier  | 3.500000e-<br>07                 | 5.000000e-<br>08                      | 0.000200                              | 36.0                                      | 125.0                               | 36.0                                   | 37.0                                  | 86.0            | Single Dual                 | No                      |
| 5962-<br>0620601VZA | Texas Instruments | Not<br>Mentioned | Precision<br>Amplifier  | 2.700323e-<br>06                 | 6.000000e-<br>12                      | 0.000036                              | 5.0                                       | 125.0                               | 5.0                                    | 5.5                                   | 100.0           | Single                      | No                      |
| 5962-<br>0721901VHA | Texas Instruments | Not<br>Mentioned | High Speed<br>Amplifier | 1.200000e-<br>05                 | 1.000000e-<br>06                      | 0.004000                              | 5.0                                       | 125.0                               | 5.0                                    | 5.5                                   | 78.0            | Single Dual                 | No                      |
| 5962-<br>7704301VCA | Texas Instruments | Not<br>Mentioned | High Gain<br>Amplifier  | 1.500000e-<br>07                 | 3.000000e-<br>08                      | 0.005000                              | 32.0                                      | 125.0                               | 32.0                                   | 36.0                                  | 70.0            | Single Dual                 | No                      |

Op Amps example: 19,868 x 31



| STMicro MPN   | STMicro Name       | Competitor MPN      | Competitor Name                     | Cross Reference Type |
|---------------|--------------------|---------------------|-------------------------------------|----------------------|
| LD2981ABU33TR | STMicroelectronics | MIC5206-3.3BM5      | Microchip Technology                | D                    |
| LD2981ABU33TR | STMicroelectronics | ADP7118AUJZ-3.3-R7  | Analog Devices                      | D                    |
| LD2981ABU33TR | STMicroelectronics | GGA1117R-3.3TR      | Golden Gate Integrated Circuits Inc | D                    |
| LD2981ABU33TR | STMicroelectronics | TAR5S34U(BRA,F)     | Toshiba                             | D                    |
| LD2981ABU33TR | STMicroelectronics | NJM2800U3342-TE1    | Nisshinbo Micro Devices Inc         | D                    |
|               |                    |                     |                                     |                      |
| STM32G474VET6 | STMicroelectronics | R5F524T8ADFP#30     | Renesas Electronics                 | D                    |
| SMC50J10A     | STMicroelectronics | SMCJ10A             | Yageo                               | C                    |
| STM32F437IGT6 | STMicroelectronics | S6E2DH5J0AGV20000   | Infineon Technologies AG            | D                    |
| STTH30L06WY   | STMicroelectronics | VS-HFA30PB120-N3    | Vishay                              | С                    |
| STD9NM50N     | STMicroelectronics | PJD60R900S_L2_00201 | PANJIT International Inc.           | С                    |

#### SE XRef data

|                      | STMicro MPN | STMicro Name | Competitor MPN | Competitor Name |
|----------------------|-------------|--------------|----------------|-----------------|
| Cross Reference Type |             |              |                |                 |
| Α                    | 8           | 8            | 8              | 8               |
| В                    | 30708       | 30708        | 30708          | 30708           |
| B-                   | 363         | 363          | 363            | 363             |
| С                    | 36315       | 36315        | 36315          | 36315           |
| C-                   | 1172        | 1172         | 1172           | 1172            |
| D                    | 50746       | 50746        | 50746          | 50746           |
| Р                    | 10500       | 10500        | 10500          | 10500           |
| х                    | 13          | 13           | 13             | 13              |

# Data 2: Op Amps XRef

| Cross Reference Type | Cross Reference Definition                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                    | Pin to Pin drop-in replacement with exact electrical features.                                                                                                     |
| A/Upgrade            | Pin to Pin drop-in replacement, but the crossed device has better performance in specific key parameters.                                                          |
| A/Downgrade          | Pin to Pin drop-in replacement, but the original device has better performance in specific key parameters.                                                         |
| В                    | Pin to Pin compatible with minor electrical differences and/or minor package dimension.                                                                            |
| B/Upgrade            | Pin to Pin compatible with minor electrical differences and/or minor package dimension, but the crossed device has better performance in specific key parameters.  |
| B/Downgrade          | Pin to Pin compatible with minor electrical differences and/or minor package dimension, but the original device has better performance in specific key parameters. |
| С                    | Pin to Pin compatible with major electrical differences.                                                                                                           |
| C/Upgrade            | Pin to Pin compatible with major electrical differences, but the crossed device has better performance in specific key parameters.                                 |
| C/Downgrade          | Pin to Pin compatible with major electrical differences, but the original device has better performance in specific key parameters.                                |
| D                    | The two devices have similar functionality with a different package and/or pinout.                                                                                 |

SE XRef types explanation



Op Amps distribution of types

### 1<sup>st</sup> Method: Gower Score

Unsupervised

Manhattan Distance

For numerical Features

**Gower Distance** Between 0 and 1



**Dice Distance** 

For non numerical Features

$$S_{ij} = \frac{\sum_{k=1}^{n} w_{ijk} S_{ijk}}{\sum_{k=1}^{n} w_{ijk}}$$

· where:

 $S_{ijk}$  denotes the contribution provided by the k-th variable, and

 $w_{ijk}$  is usually 1 or 0 depending if the comparison is valid for the k-th variable.



# 2<sup>nd</sup> Method: Neural Network Regressor

Supervised





# 3<sup>rd</sup> Method: Random Forest Regressor

Supervised







|                  |             | Gower<br>Score | Neural Network | Random Forest |
|------------------|-------------|----------------|----------------|---------------|
| Op Amps Test set | % in Top 6  | 51%            | 50%            | 71%           |
|                  | % in Top 5% | 80%            | 79%            | 91%           |





83.69

83.21

82 87

Selected Parts Reference :1

STMicroelectronics

LM358ST

LM358ST

LM358WST

LM358AST

**Feature Filtering for Competitor** 

LM258DMR2G

LM258DMR2G

LM258DMR2G

Selected Parts Competitors :1

LM258DMR2G

onsemi

onsemi

onsemi

onsemi

| onsemi | LM258DMR2G                                                                    | LM358AWST         | 82.82 | 4 | 0.15 |
|--------|-------------------------------------------------------------------------------|-------------------|-------|---|------|
| onsemi | LM258DMR2G                                                                    | LM2904ST          | 82.47 | 5 | 0.25 |
|        |                                                                               |                   |       |   |      |
|        |                                                                               |                   |       |   |      |
|        |                                                                               | Matching Selec    | tion  |   |      |
|        | Part                                                                          | ts are Matching : | Yes   |   |      |
|        | Matching Scores :<br>(100% = Perfect Match)                                   |                   | 55 %  |   |      |
|        | Competitivity Score :<br>(<0: Competitor best,<br>0: equivalent, >0: ST best) |                   | 0     |   |      |
|        |                                                                               |                   |       |   |      |



81.36

81.30

81 14

4

 $\cap$ 

LM2904DGKR

LM2904M8-13

LM2904∩M8\_13

**Feature Filtering for ST** 

All

Texas Instruments

Diodes Incorporated

Diodes Incorporated



0.16

0.16

0.37



# **Sub-Projects & Teams**



### **Data Expansion**







Distribution Websites Bill of Materials





### Once Finished first 2:

1 Specialization method for new data arrivals

2 Try many supervised models (Networks, SVR, Boosting, LLM...)

3 Try many methods (semi-supervised, self-supervised...)

4 Fine-tuning the best model



### **Available Files & Test Method**





#### Op Amps Features

| MPN     | MANUFACTURE | Maximum Input ( | Maximum Single | Minimum Single | Number of Chan | Supplier_Packag | Typical Gain Bandwidth Product |
|---------|-------------|-----------------|----------------|----------------|----------------|-----------------|--------------------------------|
| PN-100  | MN-103      | 0.0002          | 36             | 2              | 4              | CDIP            | 48144417.37                    |
| PN-101  | MN-103      | 0.0002          | 36             | 2              | 4              | CFPAK           | 48144417.37                    |
| PN-102  | MN-1036     | 3.60E-05        | 5              | 2.7            | 2              | CSOIC           | 3000000                        |
| PN-103  | MN-1036     | 0.004           | 5              | 2.7            | 1              | CFPAK           | 1000000000                     |
| PN-104  | MN-1036     | 0.005           | 32             | 3              | 4              | CDIP            | 1200000                        |
| PN-105  | MN-1036     | 0.002           | 40             | 1.1            | 2              | TO-99           | 48144417.37                    |
| PN-106  | MN-1036     | 0.005           | 32             | 3              | 2              | CLLCC           | 700000                         |
| PN-107  | MN-1036     | 0.005           | 32             | 3              | 2              | CDIP            | 700000                         |
| PN-108  | MN-1036     | 0.002           | 32             | 3              | 2              | CLLCC           | 700000                         |
| PN-109  | MN-1036     | 0.002           | 32             | 3              | 2              | TO-99           | 1000000                        |
| PN-1010 | MN-1036     | 0.002           | 32             | 3              | 2              | CDIP            | 700000                         |
| PN-1011 | MN-1036     | 0.002           | 32             | 3              | 2              | CSOIC           | 1000000                        |

#### Op Amps XRef

| STMicro MPN | STMicro Name | Competitor MPN | Competitor Name | Cross Reference Type |
|-------------|--------------|----------------|-----------------|----------------------|
| PN-1017594  | MN-1030      | PN-1017599     | MN-1036         | A                    |
| PN-1017602  | MN-1030      | PN-1017598     | MN-1036         | A                    |
| PN-1017602  | MN-1030      | PN-1017597     | MN-1036         | A                    |
| PN-1017594  | MN-1030      | PN-1017598     | MN-1036         | A                    |
| PN-1017602  | MN-1030      | PN-1017599     | MN-1036         | A                    |
| PN-1017594  | MN-1030      | PN-1017600     | MN-1036         | A                    |
| PN-1017602  | MN-1030      | PN-1017600     | MN-1036         | A                    |
| PN-1017594  | MN-1030      | PN-1017597     | MN-1036         | A                    |
| PN-103390   | MN-1030      | PN-103428      | MN-1036         | В                    |
| PN-105094   | MN-1030      | PN-1013125     | MN-1036         | В                    |
| PN-105094   | MN-1030      | PN-105021      | MN-1036         | В                    |
| PN-1017551  | MN-1030      | PN-1010834     | MN-1019         | В                    |
| PN-105123   | MN-1030      | PN-109528      | MN-103          | В                    |



| insights results division_test_data.csv manuf_encoder.pkl mpn_encoder.pkl | encoded data     |         |  |
|---------------------------------------------------------------------------|------------------|---------|--|
|                                                                           | insights         |         |  |
|                                                                           | results          |         |  |
|                                                                           | _division_test_d | ata.csv |  |
|                                                                           |                  | r.pkl   |  |
|                                                                           |                  | okl     |  |
| run-accuracy.py                                                           | run-accuracy.py  | ,       |  |

| Cross Reference Type | Cross Reference Definition                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                    | Pin to Pin drop-in replacement with exact electrical features.                                                                                                     |
| A/Upgrade            | Pin to Pin drop-in replacement, but the crossed device has better performance in specific key parameters.                                                          |
| A/Downgrade          | Pin to Pin drop-in replacement, but the original device has better performance in specific key parameters.                                                         |
| В                    | Pin to Pin compatible with minor electrical differences and/or minor package dimension.                                                                            |
| B/Upgrade            | Pin to Pin compatible with minor electrical differences and/or minor package dimension, but the crossed device has better performance in specific key parameters.  |
| B/Downgrade          | Pin to Pin compatible with minor electrical differences and/or minor package dimension, but the original device has better performance in specific key parameters. |
| С                    | Pin to Pin compatible with major electrical differences.                                                                                                           |
| C/Upgrade            | Pin to Pin compatible with major electrical differences, but the crossed device has better performance in specific key parameters.                                 |
| C/Downgrade          | Pin to Pin compatible with major electrical differences, but the original device has better performance in specific key parameters.                                |
| D                    | The two devices have similar functionality with a different package and/or pinout.                                                                                 |
| F/Upgrade            | The crossed device has the same functionality with a larger number of logic cells (in FPGA   CPLD projects).                                                       |
| F/Downgrade          | The crossed device has the same functionality with a smaller number of logic cells (in FPGA   CPLD projects).                                                      |
| F                    | The crossed device has the same functionality (in FPGA   CPLD projects).                                                                                           |





```
array([[0.9947077 , 0.9947077 , 0.4382915 , ..., 0.5984667 , 0.5984667 ],
        [0.9947077 , 0.9947077 , 0.39232178, ..., 0.65109137, 0.65109137],
        [0.4382915 , 0.39232178, 0.9947077 , ..., 0.56951336, 0.56951336],
        ...,
        [0.5984667 , 0.65109137, 0.56951336, ..., 0.9947077 , 0.9947077 ],
        [0.5984667 , 0.65109137, 0.56951336, ..., 0.9947077 , 0.9947077 ],
        [0.5984667 , 0.65109137, 0.56951336, ..., 0.9947077 , 0.9947077 ],
        [0.5984667 , 0.65109137, 0.56951336, ..., 0.9947077 , 0.9947077 ])
```

18,352 x 18,352







# **Next Steps**



### **Next Steps**

1 2 Groups (at least 1 person from each staying in 2<sup>nd</sup> semester)

2 Understand Topic, Data and provided folder

3 Study State of the Art and plan project advancement

4 Set regular meetings for questions and feedback



# Our technology starts with You



© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <a href="https://www.st.com/trademarks">www.st.com/trademarks</a>.
All other product or service names are the property of their respective owners.

