第三章中值定理不等式练习题解答(15分钟)

1. 设函数 f(x) 在闭区间 [0, 1] 上可微,对于 [0, 1] 上的每一个 x, 函数 f(x) 的值都在开区间 (0, 1) 内,且 $f'(x) \neq 1$,证明在 (0, 1) 区间内有且仅有一个 x 使得 f(x) = x 成立. (2004 秋)

证: ①令 F(x) = f(x) - x, 由原题设可知 F(x)在[0, 1]上连续,

又 $F(\theta) = f(\theta) > \theta$, $F(1) = f(1) - 1 < \theta$, 由连续函数的介值定理可知在(0, 1)内

至少存在一个x, 使F(x) = 0, 即f(x) = x.

②唯一性: 用反证法,假设在(0, 1)内使得 f(x) = x 的 x 不唯一,则至少应有两个,不妨设为 x_1 和 x_2 且 $x_1 < x_2$,则 F(x) 在 $\left[x_1, x_2\right]$ 上连续,在 $\left(x_1, x_2\right)$ 内可导,且 $F(x_1) = F(x_2) = 0$,由罗尔定理知至少存在一点 $\xi \in (x_1, x_2)$ 使 $F'(\xi) = 0$,即 $f'(\xi) = 1$, 与原题设 $f'(x) \neq 1$ 矛盾.

2.证明: 当x>1时,有 $\ln x>\frac{2(x-1)}{x+1}$ 成立. (2005 秋) 证 令 $f(x)=(x+1)\ln x-2(x-1)$ 则 f(1)=0, $f'(x)=\ln x+\frac{1}{x}-1$, f'(1)=0, $f''(x)=\frac{(x-1)}{x^2}$ 从而,当x>1时,f''(x)>0,即f'(x)是单调增加的 于是 f'(x)>f'(1)>0,即 f(x)是单调增加的. 这样有,f(x)>f(1)=0,即 $f(x)=(x+1)\ln x-2(x-1)>0$,所以,不等式

成立.

3. 设 f(x)在[0,1]上连续,在(0,1)内可导,且 f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$,

试证至少存在一点 $\xi \in (0,1)$, 使得 $f'(\xi)=1$. (2006 秋)

证 令 F(x) = f(x) - x, 显然, F(x)在[0,1]上连续, 在(0,1)内可导,

又
$$F(1) = f(1) - 1 = -1 < 0$$
, $F\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) - \frac{1}{2} = \frac{1}{2} > 0$, **由零点定理可**

知,存在一个 $\eta \in \left(\frac{1}{2}, 1\right)$, 使 $F(\eta) = 0$.

又 $F(0) = 0 = F(\eta)$, 对 F(x) 在 $[0, \eta]$ 上用罗尔定理,存在一个 $\xi \in (0, \eta) \subset (0, 1)$, 使 $F'(\xi) = 0$, 即 $f'(\xi) = 1$, $\xi \in (0, 1)$.