# Aufgabe 2: DNF

Die boolsche Funktion f ist durch die folgende Wertetabelle gegeben:

| a | b | C | f |  |  |  |  |
|---|---|---|---|--|--|--|--|
| 0 | 0 | 0 | 0 |  |  |  |  |
| 0 | 0 | 1 | 1 |  |  |  |  |
| 0 | 1 | 0 | 1 |  |  |  |  |
| 0 | 1 | 1 | 0 |  |  |  |  |
| 1 | 0 | 0 | 0 |  |  |  |  |
| 1 | 0 | 1 | 1 |  |  |  |  |
| 1 | 1 | 0 | 0 |  |  |  |  |
| 1 | 1 | 1 | 1 |  |  |  |  |
|   |   |   |   |  |  |  |  |

Stellen Sie f als disjunktive Normalform (DNF) dar.

#### Aufgabe 6: KNF [4P]

Die boolsche Funktion f ist durch die folgende Wertetabelle gegeben:

# Definition: Disjunktive Form, Konjunktive Form

**Gegeben:** Variablenvektor  $\vec{x} = (x_1, ..., x_n)$ 

Eine boolesche Funktion f ist eine eine Disjunktive/Konjunktive Form, wenn

Disjunktive Form (DF): f besteht nur aus disjunktiv verknüpften Produkttermen z.B.  $f(a,b,c) = a\bar{b} + bc + ab\bar{c}$ 

Konjunktive Form (KF): f besteht nur aus konjunktiv verknüpften Summentermen z.B.  $f(a,b,c) = (\bar{a}+b)\cdot(a+c)\cdot(a+\bar{c})$ 

Eine boolesche Funktion f ist eine:

 $= (a+\overline{b}+c+\overline{d}) \cdot (a+\overline{b}+c+\overline{d}) \cdot (\overline{a}+\overline{b}+\overline{c}+\overline{d}) \cdot (\overline{a}+\overline{b}+\overline{c}+\overline{d}) \cdot (\overline{a}+\overline{b}+\overline{c}+\overline{d})$ 

Disjunktive Normal form (DNF), wenn f nur aus disjunktiv verknüpften Mintermen besteht.

Minterm: Produktterm, der alle Literale entweder negiert oder nicht-negiert enthält

- Minterm für genau eine Eingangsbelegung "1", sonst immer "0".



# Aufgabe 1: deMorgan Präsenz

Welche der folgenden Gleichungen wenden das "De Morgansche Gesetz" direkt an?

a) 
$$a + a \cdot b = a$$
 Absorption geset 2

b) 
$$\overline{a \cdot b} = \overline{b \cdot a}$$
 Idominutativitat

# Weitere Rechenregeln

c) 
$$a+b=\overline{a}\cdot\overline{b}$$
 De Mogan und doppelte Negation

d) 
$$\overline{(a+b)}+\overline{c}=\overline{(a+b)}\cdot c$$
 De Magan " "

e) 
$$a(b+c) = ab + ac$$
 Distributy genet 2

"DeMorgansches Gesetz":

$$\overline{a+b} = \bar{a} \cdot \bar{b}$$
$$\overline{a \cdot b} = \bar{a} + \bar{b}$$

$$x + 1 = 1$$
$$x \cdot 0 = 0$$

$$x + x = x$$
$$x \cdot x = x$$

$$a + (b+c) = (a+b) + c$$
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$a \cdot (a+b) = a$$
  
 $a + (a \cdot b) = a$ 

$$a + (a \cdot b) = a$$

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

$$a + b = \bar{a}$$

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

# Rechenregeln

Kommutativität:

Assoziativität:

a + b = b + a und  $a \cdot b = b \cdot a$ 

$$a + (b + c) = (a + b) + c$$
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

Distributivität:

$$a \cdot (b+c) = ab + ac,$$
  

$$a + (bc) = (a+b)(a+c)$$

Neutrale Elemente

$$x + 0 = x \text{ und } x \cdot 1 = x$$

Komplementäres Element:

 $a + \neg a = 1$  und  $a \cdot \neg a = 0$ 

# Aufgabe 5: Boolsche Algebra [6P]

Überprüfen sie die Äquivalenz der folgenden Formeln mithilfe der Regeln der boolschen Algebra:

- $((a+b)(c)) + a\bar{b} = (bc)$
- $ab + a\bar{b} + ac + abc = ac$

Überprüfen Sie die Äquivalent der folgenden Formel mithilfe von Wertetabellen:

•  $ab + \bar{b}c = (\bar{a}\bar{b}c) + c(a+b)$ Distributivgesetz = (ac + bc) + ab + bc

Distributivgesetz

$$= q.(b+\overline{b}) + ac + abc = \emptyset$$

Komplementäres Element

Neutrales Element

Absorptionsgesetz

Assoziativgesetz

#### Aufgabe 5: Boolsche Algebra [6P]

Überprüfen sie die Äquivalenz der folgenden Formeln mithilfe der Regeln der boolschen Algebra:

- ((a+b)(c)) + ab = (bc)
- ab + ab + ac + abc = ac

Überprüfen Sie die Äquivalent der folgenden Formel mithilfe von Wertetabellen:

| - us + oc = (usc) + c(u + s) |     |   |     |   |   | 1      |    |            |                 |     |     |                                    |   |
|------------------------------|-----|---|-----|---|---|--------|----|------------|-----------------|-----|-----|------------------------------------|---|
| _ d                          | 6   | C | a.b | + | 6 | • 0    | 10 | z - (b - c | <del>(</del> )+ | c•( | a+6 | 2)                                 |   |
| C                            | 0   | 0 | 0   | 0 | 1 | ٥      | 1  | 1 0        | 0               | 0   | 0   |                                    |   |
| C                            | ) 0 | Λ | 0   | 1 | 1 | 1      | 1  | 1 1        | 1               | 0   | 0   | Ausdrücke sind nicht<br>äquivalent | 1 |
| C                            | ) 1 | 0 | 0   | 0 | 0 | ٥      |    | 10         | ð               | 0   | 1   |                                    |   |
| C                            | ) 1 | 1 | 0   | Q | 0 | 0      | 1  | 10         | 1               | 1   | 1   |                                    |   |
| 1                            | 6   | 0 | 10  | ٥ | 1 | 0      |    | 00         | 0               | 0   | 1   |                                    |   |
|                              | 0   | 1 | 0   | 1 | Λ | 1      |    | 0 0        | Λ               | 1   | 1   |                                    |   |
| Λ                            |     |   | 1   | 1 | 0 | 0      |    | 0 0        | 0               | O   | 1   |                                    |   |
| 1                            | 1   | 0 | 11  | 1 | 6 | $\cap$ |    | 100        | 1               | 1   | 1   |                                    |   |
| 1                            | 1   | 1 | ( ' | U | 0 | U      |    |            |                 |     |     |                                    |   |

# Shannonscher Entwicklungssatz

## Aufgabe 3: Shannonscher Entwicklungssatz

Die boolsche Funktion g ist gegeben durch  $g=\bar{a}\bar{b}c+\bar{a}b\bar{c}+a\bar{b}c+abc$ Stellen Sie g nach der in der Vorlesung vorgestellten if-then-else Schreibweise mit der Variablenordnung:

a) a < b < c

b) b < c < a

a) 
$$g(a_1b_1c) = a \cdot (\overline{b}c + bc) + \overline{a} \cdot (\overline{b}c + b\overline{c}) =$$

b) 
$$g(a_1b_1c) = b \cdot (\overline{a}\overline{c} + ac) + \overline{b} \cdot (\overline{a}c + ac)$$

$$g(a,b,c) = b \cdot (\overline{a}\overline{c} + ac) + \overline{b} \cdot (\overline{a}c + ac)$$

# Grundlage von BDDs ist der Shannonscher Entwicklungssatz:

$$f(x_1, ..., x_i, ... x_n) = x_i \cdot f(x_1, ..., x_i = 1, ..., x_n) + \bar{x}_i \cdot f(x_1, ..., x_i = 0, ..., x_n)$$

- Ausdruck  $f|_{x_i} = f(x_1, \dots, x_i = 1, \dots, x_n)$  heißt auch Kofaktor von f nach  $x_i$
- Ausdruck  $f|_{x_i} = f(x_1, \dots, x_i = 0, \dots, x_n)$  heißt auch Kofaktor von f nach  $-x_i$

 $f(x_1,\ldots,x_i,\ldots x_n) = x_i \cdot f\big|_{x_i} + \bar{x}_i \cdot f\big|_{x_i}$ Damit kurz:

# Binäre Entscheidungsdiagramme, if-then-else-Darstellung

Beispiel:

 $ab + cd = \text{if } a \text{ then } f |_a \text{ else } f |_a$ = if a then (b+cd) else (cd)= if a then ( if b then 1 else (cd)) else ( if b then (cd) else (cd)) cd = if c then (d) else (0)= if c then ( if d then 1 else 0) else 0

#### Aufgabe 4: BDD

- a) Zeichnen Sie den zur Funktion  $q=a\bar{b}c+ab\bar{c}+a\bar{b}c+ab\bar{c}$  (siehe Aufgabe 7) gehörenden OBDD mit der Variablenordnung c < b < a
- b) Reduzieren Sie den OBDD aus Aufgabenteil a) unter Angabe aller Zwischenschritte und zeichnen Sie den entsprechenden ROBDD.



### BDD, Beispiel







# Eliminationsregel (engl. Deletion Rule)

#### Eliminationsregel:

Wenn O(v) = 1(v), dann entferne Knoten (v), leite eingehende Kante auf O(v) um.



# Isomorphieregel (engl. Merging Rule)

#### Isomorphieregel:

Wenn (label(v) = label( $v^*$ )) (0(v) = 0( $v^*$ )) (1(v) = 1( $v^*$ )) entferne  $v^*$  und lenke alle nach  $v^*$  führenden Kanten nach v um.

#### Beispiel:







• Reduzieren sie den gegebenen BDD und geben sie die Wertetabelle an.





# Eliminationsregel (engl. Deletion Rule)

# Eliminations regel:

Wenn O(v) = 1(v), dann entferne Knoten (v), leite eingehende Kante auf O(v) um.



# Isomorphieregel (engl. Merging Rule)

# Isomorphieregel:

Wenn (label(v) = label( $v^*$ ))  $\vee$  (0(v) = 0( $v^*$ ))  $\vee$  (1(v) = 1( $v^*$ )) entferne  $v^*$  und lenke alle nach  $v^*$  führenden Kanten nach v um.

## Beispiel:





