Stabilité des équilibres

On considère ici l'équation différentielle autonome :

$$x'(t) = f(x(t)) \tag{1}$$

où le champ de vecteurs $f: \Omega \subset \mathbf{R}^n \longrightarrow \mathbf{R}^n$ est de classe \mathscr{C}^1 .

Définition

On dit qu'un point x_0 est un **équilibre** de (1) si la fonction constante $x(.) \equiv x_0$ est solution de (1) ou, de façon équivalente, si $f(x_0) = 0$.

Définition

On dira d'un *équilibre* qu'il est **stable** si, pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que :

$$||x - x_0|| < \delta \text{ et } t > 0 \Rightarrow ||\phi_t(x) - x_0|| < \epsilon$$

Ainsi, « toute solution proche de x_0 en reste proche ».

Définition

On dira qu'un équilibre x_0 est **asymptotiquement** stable s'il est stable et s'il existe un *voisinage* $\mathcal V$ de x_0 tel que :

$$\forall x \in \mathcal{V}, \ \lim_{t \to +\infty} \phi_t(x) = x_0$$

1 Cas linéaire

On se ramène ici à l'étude de :

$$x'(t) = Ax(t), x \in \mathbf{R}^n$$

Propriété :

- L'origine est un équilibre asymptotiquement stable si et seulement si toutes les valeurs propres de A sont de partie réelle strictement négative (c'est-à-dire $E^s = \mathbb{R}^n$).
- **2** Si A a au moins une valeur propre de partie réelle strctement positive, alors l'origine n'est pas un équilibre stable de x' = Ax.

1.1 Cas affine

Considérons

$$x' = Ax + b$$

et un point d'équilibre x_0 qui vérifie $Ax_0+b=0$ (si $b\in {\rm Im}A$). En remplaçant b par $-Ax_0$ on obtient :

$$\frac{\mathrm{d}(x(t)-x_0)}{\mathrm{d}t} = A(x(t)-x_0)$$

Ainsi, on se ramène à l'étude du cas linéaire.

2 La stabilité par linéarisation

On considère x_0 un équilibre de (1).

Théorème:

Si toutes les valeurs propres de $Df(x_0)$ sont de partie réelle strictement négative, alors x_0 est un équilibre asymptotiquement stable.

Attention : Contrairement au cas des équations linéaires, ceci est une condition suffisante et pas nécessaire. Il existe des cas où les valeurs propres de $Df(x_0)$ sont non strictement négatives alors que x_0 est un équilibre asymptotiquement stable $(y'(t) = -y^3(t))$.

Théorème:

Si x_0 est un équilibre stable alors toutes les valeurs propres de $Df(x_0)$ sont de partie réelle négative ou nulle.

Attention : Il est important de noter que les réciproques des deux derniers théorèmes sont fausses.

2.1 Équilibres hyperboliques

Définition

Un équilibre x_0 de (1) est dit **hyperbolique** si toutes les valeurs propres de $Df(x_0)$ ont une partie réelle non nulle.

D'après les deux théorèmes précédents :

Propriété :

Un équilibre hyperbolique est soit asymptotiquement stable (si les valeurs propres de $Df(x_0)$ sont de partie réelle strictement négative) soit non stable.

Remarque : les protraits de phase du système et de son linéarisé ont la même allure car il sont de *topologie* équivalente.

3 Fonctions de LJAPUNOV

On reconsidère (1).

Définition

Soient x_0 un équilibre de (1), $U \subset \Omega$ un voisinage de x_0 et $L: U \longrightarrow \mathbf{R}$ une fonction continue. On dit que L est une fonction de LJAPUNOV pour (1) en x_0 si :

- **1** $L(x_0) = 0$ et, pour tout $x \neq x_0$, L(x) > 0;
- **2** la fonction $t \mapsto L(\phi_t(x))$ est décroissante.

Si de plus, pour tout $x \neq x_0$, la fonction $t \mapsto L\left(\phi_t(x)\right)$ est *strictement* décroissante, on dit que L est une fonction de LJAPUNOV *stricte* pour (1) en x_0 .

Si L est \mathscr{C}^1 , on peut remplacer la condition (2) par :

$$\forall x \in U, \langle \nabla L(x), f(x) \rangle \leq 0$$

et la condition (3) par :

$$\forall x \in U, x \neq x_0, \langle \nabla L(x), f(x) \rangle < 0$$

% Théorème:

Si l'équation différentielle (1) admet une fonction de Ljapunov en un équilibre x_0 , alors x_0 est un équilibre stable. Si de plus la fonction de Ljapunov est stricte, x_0 est asymptotiquement stable.