Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Feuille 6 — Bases orthogonales, projections

Exercice 1. Orthogonalité et somme directe.

- 1. Trouver un exemple de trois sous-espaces vectoriels F_1 , F_2 , F_3 d'un espace vectoriel E tels que $F_1 \cap F_2 = F_2 \cap F_3 = F_1 \cap F_3 = \{0\}$ alors que la somme $F_1 + F_2 + F_3$ n'est pas directe.
- 2. On suppose maintenant E euclidien et F_1 , F_2 , F_3 deux à deux orthogonaux. Montrer que F_1 , F_2 et F_3 sont en somme directe.

Exercice 2. Appliquer la méthode d'orthonormalisation de Gram-Schmidt dans les cas suivants :

- 1. $u = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$, $v = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$, $w = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ dans \mathbf{R}^3 muni du produit scalaire usuel.
- 2. $P = 1, Q = X, R = X^2$ dans $\mathbf{R}[X]$ muni du produit scalaire $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$.
- 3. $P = 1, Q = X, R = X^2$ dans $\mathbf{R}[X]$ muni du produit scalaire $\langle f, g \rangle = \int_0^1 t f(t) g(t) dt$. (Vérifier auparavant qu'il s'agit bien d'un produit scalaire.)

Remarque : les polynômes obtenus à la question 2 sont connus sous le nom de polynômes de Legendre.

Exercice 3. Dans \mathbb{R}^3 muni du produit scalaire usuel, on considère les trois vecteurs

$$u = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
 $v = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ $w = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$

et le sous-espace F = Vect(u, v). On note π la projection orthogonale sur F.

- 1. Trouver une base de E dans laquelle la matrice de π est diagonale.
- 2. En déduire la matrice de π dans la base canonique.
- 3. En déduire $\pi(w)$ (dans la base canonique).

Exercice 4. Soit E un espace euclidien et $S = (u_1, \ldots, u_p)$ une famille de vecteurs de E. On pose $G(S) = \det((\langle u_i, u_j \rangle)_{ij})$.

- 1. Montrer que, si S est orthogonale, on a $G(S) = ||u_1|| \dots ||u_p||$.
- 2. Montrer que G(S) ne change pas si l'on ajoute à u_i une combinaison linéraire de u_1, \ldots, u_{i-1} .
- 3. Soit S' la famille obtenue en appliquant le procédé de Gram-Schmidt à S. Montrer que G(S) = G(S').
- 4. Soit $w \in E$, et T la famille (u_1, \ldots, u_p, w) . On note de plus F = Vect(S). Montrer que la distance de w à F est donnée par $\sqrt{G(T)/G(S)}$.