TER HPC

Rui, Ammar

April 29, 2024

Overview

- Task-Based Runtime Systems
 - Overview of Systems
 - StarPU
 - Parsec
 - Features and Benefits
- 2 Implementation Code
 - Matrix/Tiles Implementation
 - Integration with CUDA and MPI
- Optional Parts
 - Out of Core Support
 - Parallel Worker Support
 - Hierarchical DAG
- Benchmark

Rui, Ammar TER HPC April 29, 2024 2 / 24

StarPU

- Task Based Runtime System
- Manage and optimized Heterogeneous machine combining CPU/GPU
- Efficient for cluster
- Data Management via Handle
- DAG task system

Rui, Ammar April 29, 2024 3 / 24

ParSEC

- Parametrized Task graph
- More compact Representation of task dependency
- More flexibility in thread utilisation
- unlike StarPU Support communication network like UCX or LCI

Rui, Ammar April 29, 2024 4 / 24

ParSEC

Figure 1: The PaRSEC runtime walks the DAG using a concise representation that instantiates only the relevant tasks at each computing node. Only the active, local tasks need to be stored and considered.

Rui, Ammar April 29, 2024 5 / 24

Matrix and Tile implementation

Matrix

- Vector of Tile
- Size of Matrix, Arrangement and size of tile

Tile

- A vector of double/float that is allocate with starPU
- A handle to manage the vector
- Size of Tile

Rui, Ammar April 29, 2024 6 / 24

Gemm

Done in two step

- First do the Computation of $C = \beta * C$
- Second do the Computation αAB

Rui, Ammar TER HPC April 29, 2024 7 / 24

Cuda Support

Add for cuda support

- Function that support cuda in kernels.cu
- add .cuda_funcs in the codelets to use cuda

Rui, Ammar TER HPC April 29, 2024 8 / 24

MPI Support

- Init with Mpi starpu special function
- Put Tag to all tile to know which nodes control which tile
- Shutdown with starpu mpi special function

Rui, Ammar April 29, 2024 9 / 24

Reduction Support

In matrix.cpp in the gemm function

- We declared the reduction method + its initialisation for its data handle
- In task we used STARPU_REDUX for the handle that use reduction

Out of Core Support

There is Out of core support

- We declared a new disk with starpu_disk_register
- if it is full it will be flush out for new memory
- When we declared data in the data handle we put -1 to let starpu manage the memory disk

Rui, Ammar TER HPC April 29, 2024 11/2

Parallel Worker Support

- We declare Parallel worker with starpu parallel worker function
- When calling a task use STARPU_POSSIBLY_PARALLEL
- Since we use gemm of openBLAS, we supposed that it will be divided between thread
- unregister Parallel worker with starpu parallel worker function

Rui, Ammar April 29, 2024 12 / 24

Hierarchical DAG

In matrix in gemm function

• We Partition and unpartition the Data Handle in 4 bloc

Then the bubble task

• We do a sort of 2D tiling in a 2x2 Grid

1D vs 2D Tiling

Scheduler comparaison

Figure 2: DM Scheduler.

Figure 3: DMDA Scheduler.

Scheduler comparaison

Figure 4: LWS Scheduler.

Figure 5: PRIO Scheduler.

LWS Scheduler Data Receive and Send

Figure 6: LWS Scheduler Data Receive.

Figure 7: LWS Scheduler Data Send.

Rui, Ammar April 29, 2024 17 / 24

LWS Scheduler Data Receive and Send

Figure 8: DMDA Scheduler Data Receive.

Figure 9: DMDA Scheduler Data Send.

Rui, Ammar FER HPC April 29, 2024 18 / 24

LWS Scheduler Data Receive and Send

Figure 10: PRIO Scheduler Data Receive.

Figure 11: PRIO Scheduler Data Send.

Rui, Ammar April 29, 2024 19 / 24

Monitoring Activity LWS

Figure 12: LWS Scheduler.

Monitoring Activity Eager

Figure 13: Eager Scheduler.

Monitoring Activity PRIO

Figure 14: PRIO Scheduler.

Monitoring Activity DM

Figure 15: DM Scheduler.

Monitoring Activity DMDA

Figure 16: DMDA Scheduler.