61	Arman Sethi
31)	Hamework 8
a)	9, = 9, - 2 (9, - 9, -,)
	2, = E(K)eijkbx
=	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Ee ijkox = e ijkax - 2 (EN e i (j-1) kox - e i (j-1) kox)
	= 1- = (eikAx - e-ikAx) = 1-xisin (xbx)
7	This method converges when $ \xi \le 1$
=>	$\sqrt{ 1-i\alpha\sin(\kappa\Delta x) ^2} = \sqrt{1+\alpha^2\sin^2(\kappa\delta x)} \leq 2 = \sqrt{1+\alpha^2\sin^2(\kappa\delta x)} \leq 1$
0- 0	since \sin^2 ranges between 0 and 1, and $k\neq 0$, this could
	only be stable when 1x:0, which would accomplish nothing. Since Ax #0, this method would be unconditionally unstable.
Ъ)	$q_{j}^{N+1} = \frac{1}{2} \left(q_{j}^{N} + q_{j+1}^{N} \right) - \frac{\alpha}{2} \left(q_{j+1}^{N} - q_{j-1}^{N} \right)$
	END 1 cirex = = ((PN e i ()-1) x &x + e i ()+1) x &x - x (PN e i ()+1) x &x - EN i ()-1) x &x }
	ξeυκά = ½(eiG-1)κά + e, (3+1)κόχ) - α (e, (3+1)κόχ - eiG-1)κόχ)
E	$\frac{1}{6} = \frac{1}{2} \left(e^{-ik\delta x} + e^{ik\delta x} \right) - \frac{\alpha}{2} \left(e^{ik\delta x} - e^{-ik\delta x} \right)$
=>	\$ = cos(Kdx) - ixsin(Kbx) V, This method converges when 18151
	cos2(KAX) + d2sin2(KAX) & 1 , 1-sin2(KAX) + d2sin2(KAX) & 1
=) an	$(1+\sin^2(k\delta x)(\alpha^2-1) \le 1$, we can replace \sin^2 term with 1 since its gest value is $1 \cdot z \cdot 1 + \alpha^2 - 1 \le 1 \Rightarrow \alpha^2 \le 1$. This method
is	stable when d = 1.
A	

2]	N. Americanist O
c)	9 Not = 2 (9, -1 + g) - cht (9, +1 - 8, -1)
	9: N+1 - EN - 1 (2 N + EN) - C (2 N - EN) - EN Dt
	8 Not - 9: N - 1 (8 N - 29 N + 8 N) - c (8: +1 - 9: -1)
	=> ℓ) ℓ) ℓ
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	When this term approaches O, the diffusion term will not have an effect on the solution. When DE is very lone or Dx is very small then this will occur. When the
	derivative of q is not changing much (32 × 0) this may also occurs
6)	Done in Code.
	1. I can confirm, very unstable. For $\alpha = 0.1$, the gold. changes from mostly constant to very oscillatory with an increasing amplitude.
4	2. The lax method works as expected for a= 2. The numerical results agree with the analytical results. This works since
	we are using periodic boundary conditions, d=1, and we are simply shifting every index over by 1.
	3. For d=0.5, the numerical results have a gaussian-like shape , for d=0.1, it seems to have a gaussian-like shape
	where g ranges between 40.4 and 0.6 . As 0.20 , 0.9 $\frac{1}{2}$ because $0.41 = \frac{1}{2}(0.4 + 0.41) = 0.4$ for this scenario.
4.	

	A Armaon Sothi
3	
0)	1. 9 N+1 = 8 N-1 - a (9 1+1 - 9 1-1)
+)	
	2) = q; N-1 - cot (q; N - q; -1), 3t = 2; N-1 - 2; N-1
	Ci - fi 20t
	We know that give - give is something that 2Dt is O(n2).
	2 Dt 15 O(n2).
	2. leapfrog egrees with the analytic solution for d= 2 on the
	habit scenario. When & D.S, the morning less son
	(1) les molytical salution, however there 15 a lot 24
	oscillatory noise. When d=0.1, results look extremely similar
	to d=0.5.
	Since the gaussian distribution is continuous and differentiable
	it works better than tophat. It can not handle discontinuity
0	well.
-)	The Lax- Wendroff handles discontinuities better than the
9)	leapfrog method. This means it is better for the
	tophat scenario. They both handle the gaussian scenario
	similarly.
h)	1. implemented in code
	To The upwind scheme has no oscillation, but is more diffusive
	than the Lax-Wendroff method. It is better in some aspects,
	but worse in others. In certain situations it may be beneficial
	to choose either.
Company of the last	
	3. The upwind loses some information due to its diffusive
0	nature, but does not add oscillations like the leapfrog and
	Lax- Wendroff methods do. Thus, the upwind performed the task
	of advecting the tophot grafile for d=0.5 dest since it did
	not create undestrable oscillations.