Definition

The principal unit normal vector is defined by

$$N = \frac{1}{\kappa} \frac{dT}{ds}$$

(This **is** a unit vector since by definition $\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$

An alternative formula

$$\mathbf{N} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|} \qquad \mathbf{w}$$

where $T = \frac{V}{V}$

Example

Find \mathbf{T}, \mathbf{N} and κ for the helix

$$\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j} + (bt)\mathbf{k}, \quad a, b \ge 0, \quad a^2 + b^2 \ne 0$$

Solution

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = (-a\sin t)\mathbf{i} + (a\cos t)\mathbf{j} + b\mathbf{k}$$

Tangential and Normal Components of Acceleration

It is often useful to write the acceleration vector of a moving object as

$$\mathbf{a} = a_{\mathrm{T}}\mathbf{T} + a_{\mathrm{N}}\mathbf{N}$$
 the (common) direction of $\frac{d\mathbf{T}}{ds}$ and $\frac{d\mathbf{T}}{dt}$

We will derive formulas for $a_{\rm T}$ and $a_{\rm N}$ - the *tangential* and *normal* components of a.

Recall that **T** is the direction of **v** i.e. $\mathbf{v} = v_T \mathbf{T}$ where $v_T = |\mathbf{v}| = |\mathbf{v}| = 0$

where $v_{\rm T} = |\mathbf{v}| \quad (v_{\rm N} = 0)$ $\left[\kappa |\mathbf{v}|^2 \mathbf{N} \right]$

 $a_{\rm T} = \frac{d}{|\mathbf{v}|} |\mathbf{v}|$ and $a_{\rm N} = \kappa |\mathbf{v}|^2$

 $a_{\rm T} = \frac{a}{dt} |\mathbf{v}| \quad \text{and} \quad a_{\rm N} = \kappa |\mathbf{v}|^2$

 $a_{\rm T} = \frac{d^2 s}{dt^2}$ and $a_{\rm N} = \kappa \left(\frac{ds}{dt}\right)^2$

 $\begin{bmatrix} \frac{dt}{ds} = \frac{1}{\frac{|\mathbf{v}|}{ds/dt}} = \frac{1}{|\mathbf{v}|} \end{bmatrix}$ $s(t) = \int_{t_0}^{t} |\mathbf{v}| d\tau$

Not

- 1) If $\kappa = 0$ (no turning) then $a_N = 0$, and so the direction of **a** is **T**.
- 2) Otherwise, $a_{\rm N}$ is proportional to the square of the speed (κ = coeff. of proportionality). If the object's speed is constant, then $a_{\rm T}$ = 0, and so the direction of **a** is **N**.

1