

Multimodal NLP

MIPT 28.04.2022 Anton Emelianov

Multimodal NLP tasks

Sources:

- Speech
- Music
- Image
- Video
- ...

Optical character recognition or optical character reader (OCR) is the electronic or mechanical conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a scene-photo (for example the text on signs and billboards in a landscape photo, license plates in cars...) or from subtitle text superimposed on an image (for example: from a television broadcast)

Tesseract OCR

Tesseract was originally developed at Hewlett-Packard Laboratories Bristol and at Hewlett-Packard Co, Greeley Colorado between 1985 and 1994, with some more changes made in 1996 to port to Windows, and some C++izing in 1998. In 2005 Tesseract was open sourced by HP. From 2006 until November 2018 it was developed by Google.

tesseract --tessdata-dir /usr/share imagename outputbase -l eng --psm 3

Following examples use this image which has text in multiple languages.

The (quick) [brown] {fox} jumps!
Over the \$43,456.78 <lazy> #90 dog
& duck/goose, as 12.5% of E-mail
from aspammer@website.com is spam.
Der "schnelle" braune Fuchs springt
über den faulen Hund. Le renard brun
«rapide» saute par-dessus le chien
paresseux. La volpe marrone rapida
salta sopra il cane pigro. El zorro
marrón rápido salta sobre el perro
perezoso. A raposa marrom rápida
salta sobre o cão preguiçoso.

StackMix and Blot Augmentations for Handwritten Text Recognition 2021

Text to speech

Text to speech

mel spectrogram

Text to speech

Tacotron 2

The Tacotron 2 model form a text-to-speech system that enables user to synthesise a natural sounding speech from raw transcripts without any additional prosody information. The Tacotron 2 model produces mel spectrograms from input text using encoder-decoder architecture. WaveNet, a deep generative model of

<u>WaveNet</u>, a deep generative model of raw audio waveforms

 To build a model that can generate a descriptive caption for an image we provide it.

a tan dog is playing in the grass a tan dog is playing with a red ball in the grass a tan dog with a red collar is running in the grass

a yellow dog runs through the grass a yellow dog is running through the grass a brown dog is running through the grass

a group of people stand in front of a building a group of people stand in front of a white building a group of people stand in front of a large building

a man and a woman walking on a sidewalk a man and a woman stand on a balcony a man and a woman standing on the ground

Datasets:

- <u>COCO</u> (Microsoft Common Objects in Context)
 - The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection, segmentation, key-point detection, and captioning dataset. The dataset consists of 328K images.
- Flickr30k
 - The Flickr30k dataset contains 31,000 images collected from Flickr,
 together with 5 reference sentences provided by human annotators.
- And more...

Metrics

- <u>CIDEr</u>: Consensus-based Image Description Evaluation
- <u>SPICE</u>: Semantic Propositional Image Caption Evaluation
- <u>BLUE</u>: Bilingual Evaluation Understudy Score
- METEOR: Metric for Evaluation of Translation with Explicit ORdering

CIDEr

CIDEr score for n-grams of length n is computed using the average cosine similarity between the candidate sentence and the reference sentences, which accounts for both precision and recall

CIDEr_n
$$(c_i, S_i) = \frac{1}{m} \sum_{i} \frac{\boldsymbol{g^n}(c_i) \cdot \boldsymbol{g^n}(s_{ij})}{\|\boldsymbol{g^n}(c_i)\| \|\boldsymbol{g^n}(s_{ij})\|}$$

use higher order (longer) n-grams to capture grammatical properties as well as richer semantics. We combine the scores from n-grams of varying lengths as follows:

$$\text{CIDEr}(c_i, S_i) = \sum_{n=1}^{N} w_n \text{CIDEr}_n(c_i, S_i)$$

Empirically, found that uniform weights wn = 1/N work the best. Use N = 4.

SPICE

Semantic Parsing—Captions to Scene Graphs

$$T(G(c)) \triangleq O(c) \cup E(c) \cup K(c)$$

{ (girl), (court), (girl, young), (girl, standing) (court, tennis), (girl, on-top-of, court) }

"two women are sitting at a white table"

"two women sit at a table in a small store"

"two women sit across each other at a table smile for the photograph"

"two women sitting in a small store like business"

$$P(c,S) = \frac{|T(G(c)) \otimes T(G(S))|}{|T(G(c))|}$$

$$R(c,S) = \frac{|T(G(c)) \otimes T(G(S))|}{|T(G(S))|}$$

$$SPICE(c,S) = F_1(c,S) = \frac{2 \cdot P(c,S) \cdot R(c,S)}{P(c,S) + R(c,S)}$$

VIVO

(b) Fine-tuning: learn sentence description

[CLS] a person holding a

black umbrella and [MASK]

person, umbrella, accordion

(c) Inference: novel object captioning

hamburger Softmax Linear Add & Norm **Feed Forward** × N Add & Norm **Self-Attention** fries [MASK] lettuce Object tags Image region features

umbrella and accordion.

IC-GAN

Figure 2: CNN and RNN-based discriminator architectures. Best viewed in colour.

Results (28 Jul 2021) of the overall performance on MS COCO Karpathy test split

Method	CIDEr	SPICE
Resnet Baseline	111.1	20.2
UpDown	120.1	21.4
MLE Maximization	110.2	20.3
*RL Maximization	120.4	21.3
*MLE + RL Maximization	119.3	21.2
*Meta Learning	121.0	21.7
IC-GAN (Updown/CNN-GAN)	123.2	22.1
IC-GAN (Updown/RNN-GAN)	122.2	22.0
IC-GAN (Updown/ensemble)	125.9	22.3

Tutorial

<u>DALL·E</u> is a 12-billion parameter version of GPT-3 trained to generate images from text descriptions, using a dataset of text–image pairs.

TEXT PROMPT

an armchair in the shape of an avocado....

AI-GENERATED IMAGES

Edit prompt or view more images +

DALL·E

Stage 1: Train a discrete Variational Autoencoder(<u>DVAE</u>) to compress each 256 X 256 RGB image to 32 X 32 grid of image tokens, each element of which can assume 8192 possible values. This reduces the context size of the transformer by a factor of 192 without a large degradation in visual quality.

Stage 2: Concatenate up to 256 BPE-encoded text tokens with the $32 \times 32 = 1024$ image tokens, and train an autoregressive transformer to model the joint distribution over the text and image tokens.

CLIP (Contrastive Language—Image Pre-training)

1. Contrastive pre-training


```
# image encoder - ResNet or Vision Transformer
# text encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
                - minibatch of aligned texts
# T[n, 1]
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_{normalize(np.dot(T_f, W_t), axis=1)}
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
      = (loss_i + loss_t)/2
```

Figure 3. Numpy-like pseudocode for the core of an implementation of CLIP.

CLIP (Contrastive Language—Image Pre-training)

2. Create dataset classifier from label text

ruDALL-E

- ruDALL-E Kandinsky (XXL) 12b parameters;
- ruDALL-E Malevich (XL) c 1.3 b parameters.

Pipeline:

- ruDALL-E Malevich (XL)
- 2. Sber VQ-GAN
- 3. <u>ruCLIP</u>
- 4. <u>Super Resolution</u> (Real ESRGAN)

<u>ruDALL-E</u>, finetune colab <u>example</u>

text, seed = 'красивая тян из аниме', 6955

Questions