Reproducible workflows

- Reports from .R files
- e.g. 04_5_bootstrap_p-value.R

- MCMC: Monte Carlo Markov Chain
- Series of random numbers where each number depends on the previous one
- Sample less from low probability areas; more bang for your random buck
- Algorithms
 - Metropolis-Hastings
 - Gibbs sampling
 - HMC: Hamiltonian Monte Carlo
- We'll mostly use HMC

MCMC algorithms

- Get an intuition for their behavior:
- https://chi-feng.github.io/mcmcdemo/app.html#HamiltonianMC,standard

Bayesian tools

- Stan
 - Gelman group
 - Hamiltonian Monte Carlo
 - Betancourt (2017) A conceptual introduction to Hamiltonian Monte Carlo (https://arxiv.org/abs/1701.02434A)
 - open source
 - models with continuous parameters only
 - state of the art
- http://mc-stan.org

Bayesian tools

- BUGS (Bayesian inference Using Gibbs Sampling) (and Metropolis-Hastings)
- http://www.openbugs.info
- Older, original standard tool for MCMC
- Exceedingly difficult to run on Mac
- Several newer tools are based on BUGS code style
- Lots of books and publications use BUGS
- Recommend: don't use anymore

Bayesian tools

- JAGS (Just Another Gibbs Sampler)
- http://mcmc-jags.sourceforge.net/
 - cross platform, open source
 - basically the same as BUGS
 - often faster
 - highly recommended for models that can't be fit in Stan (e.g. discrete parameters)
 - easy install
- Best to run from R
 - Install R2jags package (install from R)

- Using HMC via Stan to fit models
- Now getting posterior samples from HMC
- First use map2stan in rethinking to do HMC to follow examples. Same syntax as sampost or map
- rstanarm does the same
 - Stan group's linear models package
 - syntax like lm

- rstanarm also uses Stan, HMC
 - Stan group's linear models package
 - syntax like lm
 - default priors

map2stan or sampost

```
m1 <- map2stan(
alist(
  y ~ dnorm(mu, sigma),
  mu <- a + b*x,
  a ~ dnorm(0,100),
  b ~ dnorm(0,10),
  sigma ~ dcauchy(0,2)
),
data=d1)</pre>
```

rstanarm

```
m1 <- stan_glm(y ~ b, data=d1)</pre>
```

- Good choice of priors (weakly informative) can be helpful to tame model fit
 - e.g. Half-Cauchy instead of uniform
- Look at MCMC diagnostics to judge convergence of fit
 - rhat, n eff
 - plot chain traces ("time series")
- Visualize posteriors
 - histograms, pairs plot

Chains

