README.md 9/16/2021

Smart Health Monitor

status active

Smart Health Monitor

Table of Contents

- About
- Getting Started
- RPiClient Installation
- Circuit
- Usage
- Built Using
- Authors

This repo contains

- Firmware
- Circuit Diagram
- PCB Files
- · Detailed instructions

for Smart Health Monitor project.

Getting Started

These instructions will get you a copy of the project up and running on your system.

Prerequisites

Things you need to install the FW.

- Arduino IDE

README.md 9/16/2021

Installing

A step by step series that tell you how to get the Firmware and Backend running

ESP32 Configuration

You should have Arduino IDE Installed

1. Add ESP8266 Board to your Arduino IDE 1. In your Arduino IDE, go to File> Preferences Installing ESP8266 Add-on in Arduino IDE Windows, Mac OS X, Linux open preferences 2. Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into the "Additional Board Manager URLs" field then, click the "OK" button: Note: if you already have the ESP8266 boards URL, you can separate the URLs with a comma(each board will go to neaw line) as follows: https://dl.espressif.com/dl/package_esp32_index.json, \n
http://arduino.esp8266.com/stable/package_esp8266com_index.json

- 2. Open the Boards Manager. Go to Tools > Board > Boards Manager...
- 3. Search for ESP8266 and press install button for the ESP8266 by Espressif Systems":
- 4. That's it. It should be installed after a few seconds.
- 5. Close and re-open the Arduino IDE.
- 6. Now copy the contents of the libs folder to the libraries directory of your Arduino
 - 1. If you are using windows, the libraries directory will be Documents/Arduino/libraries

ESP8266 Node FW Uploading

- 1. Select NodeMCU 1.0(ESP-12E Module) from Tools->Board->ESP8266
- 2. Select the correct port from Tools->Port
- 3. Then open Firmware.ino file,
- 4. Now Upload the Code to your NodeMCU 1.0(ESP-12E Module).
- 5. Your ESP8266 is now ready to be used.

Circuit

ESP8266 Dev Module Pinout

Follow the pinout diagram given below to connect different components to your ESP8266 Module.

Other Components

Other components pin connection details

Temperature Sensor LM35

README.md 9/16/2021

LM35 Connections

LM35 Pins	ESP8266 Module Pins
OUT	104
VCC	3.3V
GND	GND

Pulse Sensor

Pulse Sensor Connections

Pulse Sensor Pins	ESP8266 Module Pins
3.3V	3.3V
GND	GND
DATA	A0

GPRS Module

SIM800L Connections

SIM800L Pins	ESP8266 Module Pins
VCC	3.7V
GND	GND
RXD	GPI014
TXD	GPI012

Complete Schematics

Here's the complete circuit diagram of the system.

README.md 9/16/2021

Usage

List of Components

• BOM is available in Circuit/PCB/BOM_SmartHealthMonitor_2021-09-16.csv of this repository

K Built Using

- Python For Cloud Gateway Pogramming
- Arduino Embedded Framework and IDE For Sensor Node Design

Authors

• @Nauman3S - Development and Deployment