Name:	
MATH 108	"The linear programming was—and
Fall 2023	is—perhaps the single most important real-life problem."
HW 15: Due 12/12	– Keith Devin

Problem 1. (10pt) Consider the function $z=5x_1-6x_2$ on the region $\mathcal R$ shown below. Does z have a maximum or minimum value on $\mathcal R$? Explain. If the function has a maximum or minimum value on $\mathcal R$, find the maximum and minimum value.

Problem 2. (10pt) Consider the function $z=-3x_1+8x_2$ on the region \mathcal{R} shown below. Does z have a maximum or minimum value on \mathcal{R} ? Explain. If the function has a maximum or minimum value on \mathcal{R} , find the maximum and minimum value.

Problem 3. (10pt) Consider the function $z=x_1-9x_2$ on the region $\mathcal R$ shown below. Does z have a maximum or minimum value on $\mathcal R$? Explain. If the function has a maximum or minimum value on $\mathcal R$, find the maximum and minimum value.

Problem 4. (10pt) Find the dual problem for the minimization problem shown below.

$$\min w = 4y_1 + 6y_2 - 9y_3$$

$$\begin{cases}
7y_1 + 3y_2 + 8y_3 \ge 37 \\
4y_1 - y_2 + 5y_3 \ge 55 \\
y_1 - y_2 + 3y_3 \le 18 \\
y_1, y_2, y_3 \ge 0
\end{cases}$$