

Module 8: Network Layer

Introduction to Networks v7.0 (ITN)

Module 8: Topics

What will I learn to do in this module?

Topic Title	Topic Objective	
Network Layer Characteristics	Explain how the network layer uses IP protocols for reliable communications.	
IPv4 Packet	Explain the role of the major header fields in the IPv4 packet.	
IPv6 Packet	Explain the role of the major header fields in the IPv6 packet.	
How a Host Routes	Explain how network devices use routing tables to direct packets to a destination network.	
Router Routing Tables	Explain the function of fields in the routing table of a router.	

The Network Layer

- Provides services to allow end devices to exchange data
- IP version 4 (IPv4) and IP version 6 (IPv6) are the principal network layer communication protocols.
- The network layer performs four basic operations:
 - Addressing end devices
 - Encapsulation
 - Routing
 - De-encapsulation

IP Encapsulation

- IP encapsulates the transport layer segment.
- IP can use either an IPv4 or IPv6 packet and not impact the layer 4 segment.
- IP packet will be examined by all layer 3 devices as it traverses the network.
- The IP addressing does not change from source to destination.

Note: NAT will change addressing, but will be discussed in a later module.

Transport Layer Encapsulation Segment Header Data Transport Layer PDU IP Header Data Network Laver Encapsulation Network Laver PDU

IP Packet

Characteristics of IP

IP is meant to have **low overhead** and may be described as:

- Connectionless
- Best Effort
- Media Independent

Connectionless

IP is Connectionless

- IP does not establish a connection with the destination before sending the packet.
- There is **no control information needed** (synchronizations, acknowledgments, etc.).
- The destination will receive the packet when it arrives, but no pre-notifications are sent by IP.
- If there is a need for **connection-oriented** traffic, then **another protocol will handle this** (typically TCP at the transport layer).

Best Effort

IP is Best Effort

- IP will not guarantee delivery of the packet.
- IP has reduced overhead since there is no mechanism to resend data that is not received.
- IP does not expect acknowledgments.
- IP does not know if the other device is operational or if it received the packet.

Media Independent

IP is unreliable:

- It cannot manage or fix undelivered or corrupt packets.
- IP cannot retransmit after an error.
- IP cannot realign out of sequence packets.
- IP <u>must rely on other protocols for</u> these functions.

IP is media Independent:

- IP does not concern itself with the type of frame required at the data link layer or the media type at the physical layer.
- IP can be sent over any media type: copper, fiber, or wireless.

Media Independent (Contd.)

The network layer will establish the Maximum Transmission Unit (**MTU**).

- Network layer receives this from control information sent by the data link layer.
- The network then establishes the MTU size.

Fragmentation is when Layer 3 splits the IPv4 packet into smaller units.

- Fragmenting causes latency.
- IPv6 does not fragment packets.
- Example: Router goes from Ethernet to a slow WAN with a smaller MTU

8.2 IPv4 Packet

IPv4 Packet

IPv4 Packet Header

IPv4 is the primary communication protocol for the network layer.

The network header has many purposes:

- It ensures the packet is sent in the correct direction (to the destination).
- It contains information for network layer processing in various fields.
- The information in the header is used by all layer 3 devices that handle the packet

IPv4 Packet

IPv4 Packet Header Fields

The IPv4 network header characteristics:

- It is in binary.
- Contains several fields of information
- Diagram is read from left to right, 4 bytes per line
- The two most important fields are the source and destination.

Protocols may have one or more functions.

IPv4 Packet

IPv4 Packet Header Fields

Significant fields in the IPv4 header:

Function	Description	
Version	This will be for v4, as opposed to v6, a 4 bit field= 0100	
Differentiated Services	Used for QoS: DiffServ – DS field or the older IntServ – ToS or Type of Service	
Header Checksum	Detect corruption in the IPv4 header	
Time to Live (TTL)	Layer 3 hop count. When it becomes zero the router will discard the packet.	
Protocol	I.D.s next level protocol: ICMP, TCP, UDP, etc.	
Source IPv4 Address	32 bit source address	
Destination IPV4 Address	32 bit destination address	

8.3 IPv6 Packets

Limitations of IPv4

IPv4 has three major **limitations**:

- IPv4 address depletion We have basically run out of IPv4 addressing.
- Lack of end-to-end connectivity To make IPv4 survive this long, private addressing and NAT were created. This ended direct communications with public addressing.
- Increased network complexity NAT was meant as temporary solution and creates issues on the network as a side effect of manipulating the network headers addressing. NAT causes latency and troubleshooting issues.

IPv6 Overview

- IPv6 was developed by Internet Engineering Task Force (IETF).
- IPv6 overcomes the limitations of IPv4.
- Improvements that IPv6 provides:
 - Increased address space based on 128 bit address, not 32 bits
 - Improved packet handling simplified header with fewer fields
 - Eliminates the need for NAT since there is a huge amount of addressing, there is no need to use private addressing internally and be mapped to a shared public address

IPv4 and IPv6 Address Space Comparison

Number Name	Scientific Notation	Number of Zeros
1 Thousand	10^3	1,000
1 Million	10%	1,000,000
Billion	10^9	1,000,000,000
Trillion	10^12	1,000,000,000,000
Quadrillion	10^15	1,000,000,000,000
Quintillion	10^18	1,000,000,000,000,000
Sextillion	10'21	1,000,000,000,000,000,000
Septilion	10*24	1,000,000,000,000,000,000,000
Octillion	10'27	1,000,000,000,000,000,000,000,000
Nonillion	10'30	1,000,000,000,000,000,000,000,000,000
Decillion	10^33	1,000,000,000,000,000,000,000,000,000,0
Undecillion	10^36	1,000,000,000,000,000,000,000,000,000,0

There are 4 billion IPv4 addresses

There are 340 undecillion IPv6 addresses

IPv4 Packet Header Fields in the IPv6 Packet Header

- The IPv6 header is simplified, but not smaller.
- The header is fixed at 40 Bytes or octets long.
- Several IPv4 fields were removed to improve performance:
 - Flag
 - Fragment Offset
 - Header Checksum

IPv6 Packet Header

Significant fields in the IPv6 header:

Function	Description
Version	This will be for v6, as opposed to v4, a 4 bit field= 0110
Traffic Class	Used for QoS: Equivalent to DiffServ – DS field
Flow Label	Informs device to handle identical flow labels the same way, 20 bit field
Payload Length	This 16-bit field indicates the length of the data portion or payload of the IPv6 packet
Next Header	I.D.s next level protocol: ICMP, TCP, UDP, etc.
Hop Limit	Replaces TTL field Layer 3 hop count
Source IPv4 Address	128 bit source address
Destination IPV4 Address	128 bit destination address

CISCO

Host Forwarding Decision

- Packets are always created at the source.
- Each host devices creates their own routing table.
- A host can send packets to the following:
 - Itself 127.0.0.1 (IPv4), ::1 (IPv6)
 - Local Hosts destination is on the same LAN
 - Remote Hosts devices are not on the same LAN

Host Forwarding Decision (Cont.)

- The Source device determines whether the destination is local or remote.
- Method of determination:
 - IPv4 Source uses its own IP address and Subnet mask, along with the destination IP address.
- Local traffic is dumped out the host interface to be handled by an intermediary device.
- Remote traffic is forwarded directly to the default gateway on the LAN.

Default Gateway

A router or layer 3 switch can be a default-gateway.

Features of a default gateway (DGW):

- It must have an IP address in the same range as the rest of the LAN.
- It can accept data from the LAN and is capable of forwarding traffic off of the LAN.
- It can route to other networks.

If a device has no default gateway or a bad default gateway, its traffic will not be able to leave the LAN.

A Host Routes to the Default Gateway

- The host will know the default gateway (DGW) either statically or through DHCP in IPv4.
- A DGW is static route which will be a last resort route in the routing table.
- All device on the LAN will need the DGW of the router if they intend to send traffic remotely.

Host Routing Tables

- On Windows, route print or netstat -r to display the PC routing table
- Three sections displayed by these two commands:
 - Interface List all potential interfaces
 - IPv4 Routing Table
 - IPv6 Routing Table

IPv4 Routing Table for PC1

8.5 Introduction to Routing

Introduction to Routing

Router Packet Forwarding Decision

What happens when the router receives the frame from the host device?

- Packet arrives on the Gigabit Ethernet 0/0/0 interface of router R1. R1 de-encapsulates the Layer 2 Ethernet header and trailer.
- Router R1 examines the destination IPv4 address of the packet and searches for the best match in its IPv4 routing table.The route entry indicates that this packet is to be forwarded to router R2.
- Router R1 encapsulates the packet into a new Ethernet header and trailer, and forwards the packet to the next hop router R2.

ılıılı CISCO

R1 Routing Table

Route	Next Hop or Exit Interface
192.168.10.0 /24	G0/0/0
209.165.200.224/30	G0/0/1
10.1.1.0/24	via R2
Default Route 0.0.0.0/0	via R2

Introduction to Routing

IP Router Routing Table

There three types of routes in a router's routing table:

- Directly Connected These routes are automatically added by the router, provided the interface is active and has addressing.
- **Remote** These are the routes the router does not have a direct connection and may be learned:
 - Manually with a static route.
 - Dynamically by using a routing protocol to have the routers share their information with each other.
- Default Route this forwards all traffic to a specific direction when there is not a match in the routing table.

Introduction to Routing Static Routing

Static Route Characteristics:

- Must be configured manually
- Must be adjusted manually by the administrator when there is a change in the topology
- Good for small non-redundant networks
- Often used in conjunction with a dynamic routing protocol for configuring a default route

R1 is manually configured with a static route to reach the 10.1.1.0/24 network. If this path changes, R1 will require a new static route

Introduction to Routing Dynamic Routing

Dynamic Routes Automatically:

- Discover remote networks
- Maintain up-to-date information
- Choose the best path to the destination
- Find new best paths when there is a topology change

Dynamic routing can also share static default routes with the other routers.

- R1 is using the routing protocol OSPF to let R2 know about the 192.168.10.0/24 network.
- R2 is using the routing protocol OSPF to let R1 know about the 10.1.1.0/24 network.

R1, R2, and R3 are using the dynamic routing protocol OSPF. If there is a network topology change, they can automatically adjust to find a new best path.

Introduction to Routing

Introduction to an IPv4 Routing Table

The **show ip route** command shows the following route sources:

- L Directly connected local interface IP address
- **C** Directly connected network
- S Static route was manually configured by an administrator
- **0** OSPF
- **D** EIGRP

This command shows types of routes:

- Directly Connected C and L
- Remote Routes O, D, etc.
- Default Routes S*


```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP, 1 - LISP
       a - application route
       + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is 209.165.200.226 to network 0.0.0.0
      0.0.0.0/0 [1/0] via 209.165.200.226, GigabitEthernet0/0/1
      10.0.0.0/24 is subnetted, 1 subnets
         10.1.1.0 [110/2] via 209.165.200.226, 00:02:45, GigabitEthernet0/0/1
      192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.10.0/24 is directly connected, GigabitEthernet0/0/0
         192.168.10.1/32 is directly connected, GigabitEthernet0/0/0
      209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
         209.165.200.224/30 is directly connected, GigabitEthernet0/0/1
         209.165.200.225/32 is directly connected, GigabitEthernet0/0/1
R1#
```

8.6 Module Practice and Quiz

Module Practice and Quiz

What did I learn in this module?

- IP is connectionless, best effort, and media independent.
- IP does not guarantee packet delivery.
- IPv4 packet header consists of fields containing information about the packet.
- IPv6 overcomes IPv4 lack of end-to-end connectivity and increased network complexity.
- A device will determine if a destination is itself, another local host, and a remote host.
- A default gateway is router that is part of the LAN and will be used as a door to other networks.
- The routing table contains a list of all known network addresses (prefixes) and where to forward the packet.
- The router uses longest subnet mask or prefix match.
- The routing table has three types of route entries: directly connected networks, remote networks, and a default route.

