【高速先生原创|生产与高速系列】铜箔厚度加工偏差对电源性能 的影响

作者: 吴均 一博科技高速先生团队队长

上一篇文章结尾,我引用了 IPC 对铜箔厚度偏差的定义,我们来回顾一下:

表3-12 电镀后外层导体厚度

	铜最小绝对值 (比IPC-4562 中的标称	对于1级和 2级产品,	对于3级产品。	加工允许减	加工后的最小表面导体铜厚度 (μm][μin]		
重量1.4	值减少10%) (μm)[μin]	加上最小镀层 ² (20μm)[787μin]	加上最小镀层 ² (25μm)[984μin]	少的最大值 ³ (μm)[μin]	1级和2级	3級	
1/8oz.	4.60[181]	24.60[967]	29.60[1,165]	1.50[59]	23.1[909]	28.1[1,106]	
1/4oz.	7.70[303]	27.70[1,091]	32.70[1,287]	1.50[59]	26.2[1,031]	31.2[1,228]	
3/8oz.	10.80[425]	30.80[1,213]	35.80[1,409]	1.50[59]	29.3[1,154]	34.3[1,350]	
1/2oz.	15.40[606]	35.40[1,394]	40.40[1,591]	2.00[79]	33.4[1,315]	38.4[1,512]	
1 oz.	30.90[1,217]	50.90[2,004]	55.90[2,201]	3.00[118]	47.9[1,886]	52.9[2,083]	
2oz.	61.70[2,429]	81.70[3,217]	86.70[3,413]	3.00[118]	78.7[3,098]	83.7[3,295]	
3oz.	92.60[3,646]	112.60[4,433]	117.60[4,630]	4.00[157]	108.6[4,276]	113.6[4,472]	
4oz.	123.50[4,862]	143.50[5,650]	148.50[5,846]	4.00[157]	139.5[5,492]	144.5[5,689]	

往1. 基底铜箔重量依据采购文件中的设计要求。

1级=20μm[787μin] 2级=20μm[787μin] 3级=25μm[984μin]

往4. 对于重量大于4oz的铜箔,采用3.6.2.13节中的公式。

表3-11 加工后内层铜箔厚度

重量	铜最小绝对值(比IPC-4562 中的标称值减少10%) (μm)[μin]	加工中允许减少的最大值 ¹ (µm)[µin]	加工后的铜箔最小厚度 (μm)[μin]
1/8oz.[5.10]	4.60[181]	1.50[59]	3.1[122]
1/4oz.[8.50]	7.70[303]	1.50[59]	6.2[244]
3/8oz.[12.00]	10.80[425]	1.50[59]	9.3[366]
1/2oz.[17.10]	15.40[606]	4.00[157]	11.4[449]
1oz.[34.30]	30.90[1,217]	6.00[236]	24.9[980]
2oz.[68.60]	61.70[2,429]	6.00[236]	55.7[2,193]
3oz.[102.90]	92.60[3,646]	6.00[236]	86.6[3,409]
4oz.[137.20]	123.50[4,862]	6.00[236]	117.5[4,626]
大于4oz. [137.20]	比IPC-4562中的 标称值减少10%	6.00[236]	比IPC-4562中的铜箔厚度 减少10%得出的值少 (6μm)[236μin]

往1: 对于重量低于1/2oz的铜箔,加工减少厚度值不允许再次进行返工,对于重量为1/2oz及其以上的铜箔,加工减少厚度值允 许进行一次返工。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

往2. 对于重量低于1/2oz的铜箔,加工减少厚度值不允许再次进行返工;对于重量为1/2oz及其以上的铜箔,加工减少厚度值允 许进行一次返工。

注3. 参考: 最小铜镀层厚度

提取内层 0.5oz 的数据来简单做个描述: 这也是多层板层叠中的常见内层厚度

内层 0.5oz 的铜箔正常厚度是 0.7mil(17um),也是见到有人用这个厚度来做仿真和设计的。也有的公司会选择 0.5oz 的铜厚是 0.6mil(15.4um),这是 IPC 允许的铜的最小值。但是还有一个加工中允许减少的铜厚是 4um,加工后允许的铜箔极限最小厚度是 0.45mil(11.4um)。

我们都知道,铜厚变化,首先会影响阻抗,然后会影响载流能力、压降、电流密度 等指标,那我们来看看影响到底有多大?

内层铜厚偏差对性能的影响

先看看阻抗: 影响小于±1 欧姆,不算太大的影响,并且这个影响是在整体阻抗 10%的偏差里面的,设计中我们可以忽略不计。

			_			
Substrate 1 Height	H1 4.900	Substrate 1 Height	H1 [4.9000 Substrate 1 Height	H1	4.9000
Substrate 1 Dielectric	Er1 4.200	O Substrate 1 Dielectric	Er1	4,2000 Substrate 1 Dielectric	Er1	4.2000
Substrate 2 Height	H2 8.000	0 Substrate 2 Height	H2	8,0000 Substrate 2 Height	H2	8.0000
Substrate 2 Dielectric	Er2 4.200	00 Substrate 2 Dielectric	Er2	4.2000 Substrate 2 Dielectric	Er2	4.2000
Lower Trace Width	W1 4.000	00 Lower Trace Width	W1	4.0000 Lower Trace Width	W1	4.0000
Upper Trace Width	W2 5.000	00 Upper Trace Width	W2	5.0000 Upper Trace Width	W2	5.0000
Trace Thickness	T1 0.700	Trace Thickness	T1 [0.6000 Trace Thickness	T1	0.4500
			050			
Impedance	Zo 50.0	00 Impedance	Zo [50.57 Impedance	Zo	51.45

再看看载流的影响: 我们找了一个实际项目, 0.5oz 铜分别按标准值(0.6mil)与加工最小值(0.45mil)设置的仿真结果对比

0.5oz 铜厚设置为 0.6mil 时:

用电端电压: 839mV

Nominal Current (A)	Nominal Voltage (V)	Upper Tolerance(+%)	Lower Tolerance(-%)	Actual Voltage (V)	Margin (V)
5	0.85	3	3	0.839472 🗸	0.0149722

VRM 端输出电压: 890mV

VRM Name	Output Nominal Voltage (V)	Output Tolerance (%)	Actual Current (A)
VRM_VCCINT_IO_0V850	0.890286	0	5

回路直流电阻: 8.98m Ω

Pin1 Name	Pin1 Net	Pin2 Name	Pin2 Net	Resistance (Ohm)
Positive Pin	VCCINT_IO_0V85	Negative Pin	GND	0.008984

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

0.5oz 铜厚设置为 0.45mil 时:

用电端电压: 838mV, 看起来压降变化不大

Nominal Current (A)	Nominal Voltage (V)	Upper Tolerance(+%)	Lower Tolerance(-%)	Actual Voltage (V)	Margin (V)
5	0.85	3	3	0.838037 🏑	0.0135375

VRM 端输出电压: 897mV

VRM Name	Output Nominal Voltage (V)	Output Tolerance (%)	Actual Current (A)
VRM_VCCINT_IO_0V850	0.897726	0	5

回路直流电阻: 10.76m Ω

Pin1 Name	Pin1 Net	Pin2 Name	Pin2 Net	Resistance (Ohm)
Positive Pin	VCCINT_IO_0V85	Negative Pin	GND	0.0107575

看起来压降和 VRM 端输出电压变化不算太大,但是直流电阻差值随铜厚变化 1.78m Ω, 所以压降的变化是引入远端反馈的结果,直流电阻抬升明显,还是有一定隐患。同时看到电流密度的变化,影响会更大:

0.5oz 铜厚设置为 0.6mil 时的电流密度,最大在 120A/mm² 左右

0.5oz 铜厚设置为 0.45mil 时的电流密度,最大在 160A/mm² 左右

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

直流电阻抬升,电流密度变大,加工误差的影响不可忽略。回顾我们上一个话题开 始的故事,可能板厂的加工都在行业规范允许的误差范围,但是最终导致影响到产品性 能,这本质上是设计裕量的问题。凡是生产,必有偏差,设计裕量要预留出生产允许的 偏差。

【关于一博】

- 一博科技成立于 2003 年 3 月,专注于高速 PCB 设计、PCB 制板、SMT 焊接加工和供应 链服务。我司在中国、美国、日本设立研发机构,全球研发工程师600余人。
- 一博旗下 PCB 板厂位于深圳松岗,采用来自日本、德国等一流加工设备,TPS 精益生产 管理以及品质管控体系的引入,致力为广大客户提供高品质、高多层的制板服务。
- 一博旗下 PCBA 总厂位于深圳,并在上海、成都设立分厂,厂房面积 15000 平米,现有 20 条 SMT 产线,配备全新进口富士 XPF、NXT3、AIMEX III、全自动锡膏印刷机、十温 区回流炉、波峰焊等高端设备,并配有 AOI、XRAY、SPI、智能首件测试仪、全自动分 板机、BGA 返修台、三防漆等设备,专注研发打样、中小批量的 SMT 贴片、组装等服 务。作为国内SMT快件厂商,48小时准交率超过95%。常备一万余种YAGEO、MURATA、 AVX、KEMET 等全系列阻容以及常用电感、磁珠、连接器、晶振、二三极管,源自原厂 或一级代理,现货在库,并提供全 BOM 元器件供应。

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

【关于高速先生】

高速先生由深圳市一博科技有限公司 R&D 技术研究部创办,用浅显易懂的方式讲述高 速设计,成立至今保持每周发布两篇原创技术文章,已和大家分享了百余篇呕心沥血之 作,深受业内专业人士欢迎,是中国高速电路第一自媒体品牌。

扫一扫,即可关注

- 1、搜索微信号"高速先生"
- 2、扫描右侧二维码,开始学习

