# 机器学习工程师纳米学位毕业项目

俞伟山 September 3th, 2018

猫狗大战(Dogs vs. Cats Redux: Kernels Edition)。

## 1 定义

## 1.1 项目概览

此项目最早源于 Kaggle 2013年的 Dogs vs. Cats比赛。那时,网站为了防止恶意攻击,一般会提供一些验证问题,用来区别人和机器,即 CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart)。这些问题,要设计得容易让人解决,而让计算机不好解决。在那时, Asirra (Animal Species Image Recognition for Restricting Access),就是人容易解决,而计算机不好解决的问题。

猫狗大战属于图像识别的问题,那时已经有了一些机器学习算法应用于图像识别,文献[1] 使用机器学习算法,可以在猫狗的图像识别中,达到 80% 的分类准确率。

随着这几年机器学习的发展,特别是深度学习和图像分析的发展,各种深度学习框架、ConvNet 模型相继出现。 Kaggle 于2017年,再次举办了猫狗大战的比赛,排在第一名的,LogLoss 得分达到了 0.03302 。

图像识别问题,属于 计算机视觉 领域。 计算机视觉 是一个跨学科的领域,它处理计算机如何高度理解数字图像或视频的问题。它包含如何自动从图像和视频中抽取、分析和理解一些有用的信息。

图像识别是 计算机视觉 的典型问题。目前,最好的解决图像识别问题的算法是基于 ConvNet 的算法。2012年, Alex Krizhevsky 使用 AlexNet 在 ImageNet 举办的 ILSVRC-2012 中达到了 15.3% 的top-5错误率[2],领先第二名的 26.2%,被认为是深度学习的革命。

本人对 计算机视觉 比较感兴趣,而用深度 ConvNet 来处理图像识别问题又是目前比较常见的操作, 所以,我选择这个毕业项目。

## 1.2 问题说明

本次项目使用深度学习方法识别一张图片是猫还是狗。

输入:一张彩色图片输出:狗的概率

图片来源主要是 petfinder 网站,一家致力于帮人们找回宠物、收养流浪狗的网站。网站提供的图片都是真实的图片,所以会看到很多真实而又复杂的场景。比如,猫狗和人的合影、寻找猫狗的广告、一张图片出现多只猫、猫狗同时出现、猫狗品种多样、姿态万千,都增加了分类的难度。还有图片像素不一,需要进行数据预处理。

使用 ConvNet 最适合解决图片识别问题。它会通过卷积层的滤波器,来学习图片的特征。通过深度 的卷积网络,当深度越深时,可以学习到的特征越复杂,复杂的特征由前几层学习的基础特征组合而

学习到图片特征后,就可以进行对象分类了,可以使用 softmax 和 sigmoid 等进行最后的分类。

#### 1.3 指标

早期,2013年的版本,评估是用的简单的 accuracy ,但是在 ConvNet 模型横行的时代,使用简单 的几层 ConvNet 就能达到 90% 以上的准确度。

LogLoss 方法提供了更精细的项目指标,项目的评估指标参见 Dogs vs. Cats Redux: Kernels Edition Evaluation。它根据 LogLoss 来评估, LogLoss 越低越好。

LogLoss 定义如下:

$$\text{LogLoss} = -\frac{1}{n} \sum_{i=1}^{n} \left[ y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$

其中:

- n 是测试集的大小。
- $\hat{y}_i$  是预测的图片是狗的概率。
- y<sub>i</sub> 是真实值,是狗时为1,是猫时为0。
- log() 是自然对数。

在 keras 中, loss函数 使用 binary\_crossentropy 即是 LogLoss 。

## 2 分析

## 2.1 数据可视化

本次数据集使用项目提供的数据集。它提供了25,000张猫狗图片用来训练,其中标记为猫狗的图片各 半。猫狗图片通过文件名来区分。如下展示了,前5只狗和前5只猫的图片。

dog.0.jpg (499, 375)









dog.4.jpg (300, 287)

cat.0.jpg (500, 374)



cat.1.jpg (300, 280)







可以看到图片像素质量不一,猫狗品种、姿态等场景都不一样。通过随机可视化,我们还可以发现一 些可能的异常值。比如,如下所示:

cat.8456.jpg







这些图片与猫狗关系不大,但把它们标记为猫了。虽然说这些异常图片给我们模型性能可能造成大影 响,但在大数据集下,这些影响很少,而且我们,在项目结束时,可以进一步找到和发现这些异常的 图片。

## 2.2 算法和技术

#### 2.2.1 深度学习

深度学习 的概念源于 人工神经网络 的研究。含多隐层的 多层感知器 就是一种深度学习结构。深度学 习通过组合低层特征形成更加抽象的高层表示属性类别或特征、以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。其主要算法是 反向传播(BP)算法 。 BP算法 通过反向 传播误差,来达到训练参数(权重)的目的。

深度学习随着计算机硬件的发展,中间的隐含层可以加到很多,可以大到几百层,参数的个数也达到 几百万。深度学习已经应用于CNN、RNN、GAN等,对图像识别、文本分类、对抗网络等都有很大的 应用。

#### 2.2.2 卷积网络

Lecun 等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数 目以提高训练性能。

卷积是基于 权重共享 的思想,比如一张图片,猫可能只是从左上角移到右下角,这部分可以用相同的 权重映射到下一层的神经元。每个卷积层的每个滤波器可以学习到图片的一个特征,随着深度增加, 模型会把学到的特征组合,并学到更高级的特征。

通过卷积和池化等技术、可以大规模降低训练参数、提高训练性能、同时减少了过拟合。

#### 2.2.3 深度卷积网络

2012年的时候, Alex Krizhevsky 使用 AlexNet 在 ImageNet 举办的 ILSVRC-2012 中达到了 15.3% 的top-5错误率,他使用了非常深的 ConvNet 。

现在主流的卷积网络架构更深了。比如:

| Model             | Size   | Top-1 Accuracy | Top-5 Accuracy | Parameters | Depth |
|-------------------|--------|----------------|----------------|------------|-------|
| Xception          | 88 MB  | 0.790          | 0.945          | 22,910,480 | 126   |
| ResNet50          | 99 MB  | 0.759          | 0.929          | 25,636,712 | 168   |
| InceptionV3       | 92 MB  | 0.788          | 0.944          | 23,851,784 | 159   |
| InceptionResNetV2 | 215 MB | 0.804          | 0.953          | 55,873,736 | 572   |

这些网络深度都有上百层,但Top-5 accuracy表现都非常好。

### 2.3 技术实现

要实现一个深度卷积网络,可以使用目前主流的深度计算框架,如TensorFlow、Caffe、Torch、MXNet、Theano等,还有更高层的封装 Keras 。

这些深度学习框架,都提供了张量、计算图等基础功能。

张量是所有深度学习框架中的通用数据格式。比如,可以把图片数据转化为三维张量(width,height,color\_depth)。通过将各种数据转化成张量,可以定义统一的数据结构,方便数据计算和表达。

深度学习框架还都提供了计算图功能。开发者先定义一个图的网络,如添加输入层、输出层、卷积层、池化层、Dropout、全连接层等,然后输入数据并启动图计算,就可以输出结果了。计算图的引入,开发者得以从宏观上掌握整个神经网络的内部结构,计算图也可以从决定代码运行时的 总体GPU内存分配,以及分布式环境中不同底层设备间的相互协作方式。计算图还可以使计算模块化,方便高效。使用计算图,还可以把只训练某几层,导出某层的输出,导出某些层的权重数据等,使得模型微调成为可能。

由于深度学习网络的计算量非常大,需要用到 GPU 资源。 Nvidia 提供了对深度学习的硬件加速, cuDNN(CUDA Deep Neural Network) ,通过它,各种深度学习框架可以方便地协调 GPU 资源,使得深度学习的计算成为可能。

本项目使用了 Keras 提供的深度学习框架。 keras 是一个前端,它是对 tensorflow 或 Theano 等更底层库的高层API的封装,使用它非常方便。 Keras 的作者, François Chollet ,也 是 Xception 深度卷积网络的作者,提供了很多深度学习方面的技术共享。

## 2.4 基准测试

根据 Kaggle 上目前的Leaderboard排行榜,要进入前10%,则 LogLoss 至少要少于 0.06127 。

训练深度ConvNet 需要大量的 GPU 资源与计算时间,受限于客观条件,项目不会对所有的25,000张图片进行训练,只会使用大概5,000张图片进行训练,所以项目设定的目标为分类对数损失分数小于0.06。

## 3 方法

## 3.1 数据预处理

首先,我们看到图片的像素尺寸都不相同,我们需要把它们转成深度网络输入的格式。

然后,由于图片数据较大,不好一次加载进内存,我们需要构造数据生成器(generator),让它分批加载数据,真正需要计算时才加载到内存。

这两个问题,都可以同过 keras 的图片处理库 keras.preprocessing.image 的 ImageDataGenerator 图片数据生成器解决。

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_height, img_width),
    batch_size=batch_size,
    class_mode='binary')
```

ImageDataGenerator 还可以对图片数据进行变换,如缩放、平移变换、翻转等,适合小数据集训练时,做数据增强。

flow\_from\_directory 可以对文件夹下的图片数据进行按 batch 流化,还能缩放成指定的图片大小。

flow\_from\_directory 需要图片按分类放在各个分类目录下。我们可以把训练文件组织成如下目录 层级:

```
|----train
| |----cat
| |----dog
|---validation
| |----cat
| |----dog
|----test
| |----1.jpg
|----input
| |----train
```

```
| |----test
| | |---1.jpg
| | |---2.jpg
```

如图结构, 把目录处理成 train 、 validation 和 test 。

- train 中放训练的图片,需要按 dog 和 cat 子目录来放图片。
- validation 中放验证的图片, 需要按 dog 和 cat 子目录进行存放。
- test 中放测试的图片。
- input 中放原全部数据集的图片,包含原有的 train 目录和原有的 test 目录。上面几个目录可以通过符号软链接,链接到这里的真实图片。

### 3.2 实施

项目整体使用迁移学习的思想,项目充分使用 ImageNet 上做过预训练的模型学习到的特征。

鉴于计算图的强大,我们可以对 ImageNet 上做过预训练的模型进行微调(fine-tuning),即对它们的 top层进行微调,而保持前面卷积层的参数不变。也可以去掉它们的top,使用我们自己的top层,并 训练top层参数。

## 3.2.1 使用 fine-tuning

比如我们参照 `Inceptionv3 这个模型,只训练最后三层(top层)的参数:

```
base_model = inception_v3.Inceptionv3(input_tensor=Input((224, 224, 3)),
weights='imagenet', include_top=True)

for layers in base_model.layers[:-3]:
    layers.trainable = False

base_model.fit_generator(
        train_generator,
        steps_per_epoch=train_generator.n//batch_size,
        epochs=10,
        validation_data=validation_generator,
        validation_steps=validation_generator.n//batch_size)
```

InceptionV3 的架构如下:

| type        | patch size/stride<br>or remarks | input size                 |  |
|-------------|---------------------------------|----------------------------|--|
| conv        | $3\times3/2$                    | $299 \times 299 \times 3$  |  |
| conv        | 3×3/1                           | $149 \times 149 \times 32$ |  |
| conv padded | $3\times3/1$                    | $147 \times 147 \times 32$ |  |
| pool        | $3\times3/2$                    | $147 \times 147 \times 64$ |  |
| conv        | $3\times3/1$                    | $73 \times 73 \times 64$   |  |
| conv        | $3\times3/2$                    | $71 \times 71 \times 80$   |  |
| conv        | 3×3/1                           | $35 \times 35 \times 192$  |  |
| 3×Inception | As in figure 5                  | $35\times35\times288$      |  |
| 5×Inception | As in figure 6                  | $17 \times 17 \times 768$  |  |
| 2×Inception | As in figure 7                  | $8\times8\times1280$       |  |
| pool        | 8 × 8                           | $8 \times 8 \times 2048$   |  |
| linear      | logits                          | $1 \times 1 \times 2048$   |  |
| softmax     | classifier                      | $1 \times 1 \times 1000$   |  |

## 3.2.2 使用自己的top层

我们也可以去掉预训练模型的top层,添加我们自己的池化层、全连接层、dropout等。

```
base_model = resnet50.ResNet50(input_tensor=Input((224, 224, 3)),
weights='imagenet', include_top=False)

for layers in base_model.layers:
    layers.trainable = False

x = GlobalAveragePooling2D()(base_model.output)
x = Dropout(0.5)(x)
x = Dense(1, activation='sigmoid')(x)
topModel = Model(base_model.input, x)

topModel.fit_generator(
    train_generator,
    steps_per_epoch=train_generator.n//batch_size,
    epochs=10,
    validation_data=validation_generator.n//batch_size)
```

## 3.3 改进

我们可以试着整合多个模型的训练的特征输出,并添加我们的top层,并训练top层参数。其中,每个模型的输出可以用 h5y 存起来,方便以后训练时加载。为了统一模型输出,同时也减少存储大小,我们给每个模型的原有输出添加一个 GlobalAveragePooling2D 层,再输出,确保输出数据是2-dim的。

```
def generate_features(MODEL=xception.Xception,
                        input_shape=(299, 299, 3),
                        batch_size=16,
                        preprocess=xception.preprocess_input):
    input_tensor = Input(input_shape)
    x = input_tensor
    # 使用`imagenet`预训练的权重, 去掉FC层, 用来提取特征map
    base_model = MODEL(input_tensor=x, weights='imagenet',
include_top=False)
    # 添加GlobalAveragePooling层
    model = Model(base_model.input, GlobalAveragePooling2D()
(base_model.output))
    gen = image.ImageDataGenerator(preprocessing_function=preprocess)
    # 生成训练数据集batch流
    train_generator = gen.flow_from_directory(TRAIN_DIR,
                                           batch_size=batch_size,
                                           shuffle=False,
                                           class_mode='binary',
                                           target_size=input_shape[:-1])
    # 生成测试数据集batch流
    test_generator = gen.flow_from_directory(TEST_DIR,
                                           batch_size=batch_size,
                                          shuffle=False,
                                           class_mode=None,
                                           target_size=input_shape[:-1])
    # train 特征
    train_features = model.predict_generator(train_generator,
test_generator.n/test_generator.batch_size)
    # test 特征
    test_features = model.predict_generator(test_generator,
test_generator.n/test_generator.batch_size)
    # 保存训练集、测试集的features、训练label
    saveToH5(train_features, test_features, train_generator.classes,
MODEL.__name___)
```

```
class EnsembleModel:
    def __init__(self, dropout_p = 0.5, batch_size = 32, input_shape=
(2048,)):
        self.batch_size = batch_size
        input_tensor = Input(input_shape)
        x = Dropout(0.5)(input_tensor)
        x = Dense(1, activation='sigmoid')(x)
        self.model = Model(input_tensor, x)
        self.model.compile(optimizer='adadelta',
                      loss='binary_crossentropy',
                      metrics=['accuracy'])
        log_dir = 'logs/' + datetime.now().strftime('%Y%m%d-%H%M%S') + '/'
        self.tb_cb = TensorBoard(log_dir=log_dir,
                                 batch_size=self.batch_size,)
        self.early_cb = EarlyStopping(monitor='val_loss',
                              min_delta=0,
                              patience=2,
                              verbose=0, mode='auto')
    def fit(self, train_features, train_labels, valid_features,
valid_labels, epochs, *args, **kwargs):
        return self.model.fit(train_features,
                              train_labels,
                              batch_size=self.batch_size,
                              epochs=epochs,
                              validation_data=(valid_features,
valid_labels),
                              callbacks=[self.tb_cb,self.early_cb],
                              **kwargs).history
    def predict(self, test_features, *args, **kwargs):
        return self.model.predict(test_features,
batch_size=self.batch_size, **kwargs)
```

## 4 结果

## 4.1 模型评价与验证

我们训练了Top-5排行比较高的 Xception , InceptionV3 , InceptionResNetV2 的特征, 并整合后, 对5,000张图片进行训练, 结果如下:

• 对 Xception 使用 EnsembleModel

● 对 InceptionV3 使用 EnsembleModel

• 对 InceptionResNetV2 使用 EnsembleModel

● 整合后使用 EnsembleModel

#### 4.2 理由

总体看,这些模型都取得了不错的效果。其中, InceptionResNetv2 结果,比整合的效果还好。可能是这个模型本身就结合了Inception和ResNet,所以效果比较好。

整合后的效果也不错,总体达到0.0172。用Kaggle的测试,Logloss分别是0.04093,达到了0.06的目标。

## 5. 结论

项目使用主流的深度卷积网络模型,对猫狗大赛的图片进行了训练。通过,调整这些模型的top层参数,或添加整合这些模型的特征输出,达到了LogLoss 0.06 的目标。

## 参考文献

- [1] Philippe Golle. Machine Learning Attacks Against the Asirra CAPTCHA. 2008.
- [2] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. 2012.
- [3] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
- [4] Sinno Jialin Pan and Qiang Yang Fellow. A Survey on Transfer Learning. IEEE, 2009.
- [5] François Chollet. Building powerful image classification models using very little data. <a href="https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html">https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html</a>. Published: 2018-01-29.
- [6] François Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. 2017.
- [7] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna. Rethinking the Inception Architecture for Computer Vision. 2015.

[8] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger. Densely Connected Convolutional Networks. 2016.