Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2020

Ścieżka i cykl Hamiltona

Niech G = (V, E) będzie grafem spójnym nieskierowanym.

Ścieżka Hamiltona grafu G to ścieżka (wierzchołki się nie powtarzają), która zawiera każdy wierzchołek $v \in V$.

Cykl Hamiltona grafu G to cykl (wierzchołki się nie powtarzają), który zawiera każdy wierzchołek $v \in V$.

Ścieżka/cykl Hamiltona

Sprawdzenie, czy graf G = (V, E) zawiera ścieżkę lub cykl Hamiltona jest problemem trudnym obliczeniowo - jest to problem NP-trudny.

Warunki konieczne na istnienie cyklu Hamiltona

- Jeśli graf $G = (A \cup B, E)$ jest dwudzielny, to warunkiem koniecznym na istnienie cyklu Hamiltona jest: |A| = |B|.
- Jeśli graf G=(V,E) zaiera cykl Hamiltona, to dla dowolnego zbioru $S\subseteq V$, graf G-S (powstały po usunięciu wierzchołków z S wraz z incydentnymi krawędziami) zawiera co najwyżej |S| spójnych składowych.

Warunki dostateczne na istnienie cyklu Hamiltona

Twierdzenie Diraca

Jeśli G=(V,E) jest grafem prostym o co najmniej trzech wierzchołkach i minimalnym stopniu wierzchołka $\delta(G) \geq |V|/2$, to G zawiera cykl Hamiltona.

Warunki dostateczne na istnienie cyklu Hamiltona

Twierdzenie Ore'a

Jeśli G=(V,E) jest grafem prostym o co najmniej trzech wierzchołkach i takim, że dla każdych dwóch wierzchołków u i v niepołączonych krawędzią zachodzi $deg(u) + deg(v) \geq |V|$, to G zawiera cykl Hamiltona.

Kolorowanie grafu

Niech G = (V, E) będzie grafem prostym.

Kolorowaniem wierzchołkowym grafu G nazywamy funkcję

 $f: V \to Kolory \text{ taka, } \dot{z}e \ \forall_{(u,v) \in E} f(u) \neq f(v).$

 $\chi(G)$ - liczba chromatyczna G to najmniejsza liczba kolorów, jaką można pokolorować graf G.

lle wynosi $\chi(G)$, jeśli G jest:

- grafem dwudzielnym?
- kliką n- wierzchołkową?
- cyklem o długości 2n + 1?

Liczba chromatyczna - własności

 $\omega(G)$ to wielkość największej kliki zawartej w G.

Zauważamy, że $\chi(G) \ge \omega(G)$.

Czy istnieją grafy, dla których zachodzi: $\chi(G) > \omega(G)$?

Algorytm sekwencyjny kolorowania grafu

Niech *Kolory* =
$$\{1, 2, 3, ...\}$$
. $G = (V, E)$

Algorytm sekwencyjny:

- 1 Ustaw wierzchołki z V w pewien ciąg.
- Ola każdego wierzchołka v w kolejności dyktowanej przez ciąg wykonaj:

przypisz wierzchołkowi ν najmniejszą liczbę naturalną spośród takich, które nie są przypisane żadnemu sąsiadowi ν .

Liczba chromatyczna - własności

 $\Delta(G)$ to największy stopień wierzchołka w G.

$$\chi(G) \leq \Delta(G) + 1$$

Twierdzenie Brooksa

Twierdzenie Brooksa

Jeśli G nie jest kliką ani nieparzystym cyklem, to $\chi(G) \leq \Delta(G)$.