Fonctions

1. Fonction polynomiale

Soit $P(x) = ax^2 + bx + c$ avec $a, b, c \in \mathbb{R}$, $a \neq 0$. Soit $\Delta = b^2 - 4ac$ le

Racines

— Si $\Delta > 0$, l'équation P(x) = 0 a deux solutions réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

— Si $\Delta = 0$, l'équation P(x) = 0 a une solution double :

$$x_0 = \frac{-b}{2a}$$

— Si Δ < 0, l'équation P(x) = 0 n'a pas de solution réelle.

Factorisation

- Si
$$\Delta > 0$$
, $P(x) = a(x - x_1)(x - x_2)$.

— Si $\Delta = 0$, $P(x) = a(x - x_0)^2$.

Signe

- Si $\Delta > 0$, P(x) est du signe de a à l'extérieur des racines (c'est-à-dire sur $]-\infty, x_1] \cup [x_2, +\infty[)$.
- Si $\Delta = 0$ ou $\Delta < 0$, P(x) est du signe de a sur \mathbb{R} .

2. Exponentielle

La fonction *exponentielle* : exp : $\mathbb{R} \to]0, +\infty[$. Pour $x \in \mathbb{R}$ on note aussi e^x pour $\exp x$.

La fonction exponentielle vérifie les propriétés suivantes :

- $\exp(a + b) = \exp(a) \times \exp(b)$
- $-\exp(nx) = (\exp x)^n$

- exp : $\mathbb{R} \to]0,+\infty[$ est une fonction continue, strictement crois-
- $-\lim_{x\to-\infty}\exp x=0,$
- $-\lim_{x\to+\infty} \exp = +\infty$,
- $--\exp(1) = e \simeq 2,718...$

3. Logarithme

Le *logarithme népérien* ln : $]0, +\infty[\to \mathbb{R}.$

—
$$\ln(a \times b) = \ln a + \ln b$$
 (pour tout $a, b > 0$),

$$-\ln(\frac{1}{2}) = -\ln a$$

$$-\ln(\frac{1}{a}) = -\ln a,$$

$$-\ln(a^n) = n\ln a, \text{ (pour tout } n \in \mathbb{N}),$$

-
$$\ln'(x) = \frac{1}{x}$$
 pour tout $x > 0$,
- $\ln(1) = 0$, $\ln(e) = 1$,

$$-\ln(1) = 0$$
, $\ln(e) = 1$

$$- \lim_{x \to +\infty} \ln x = +\infty,$$

$$- \lim_{x \to 0^+} \ln x = -\infty.$$

Lien logarithme/exponentielle:

$$\exp(\ln x) = x$$
 pour tout $x > 0$

$$ln(\exp x) = x \text{ pour tout } x \in \mathbb{R}$$

Pour $x \in \mathbb{R}$ et y > 0:

$$y = \exp(x) \iff x = \ln(y)$$