In [1]: pip install seaborn

Requirement already satisfied: seaborn in c:\users\venka\appdata\local\programs\python\python311\lib\site-packages (0.12.2)

Requirement already satisfied: numpy!=1.24.0,>=1.17 in c:\users\venka\appdat a\local\programs\python\python311\lib\site-packages (from seaborn) (1.24.3) Requirement already satisfied: pandas>=0.25 in c:\users\venka\appdata\local \programs\python\python311\lib\site-packages (from seaborn) (2.0.1)

Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in c:\users\venka\app data\local\programs\python\python311\lib\site-packages (from seaborn) (3.7. 1)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\venka\appdata\lo cal\programs\python\python311\lib\site-packages (from matplotlib!=3.6.1,>=3. 1->seaborn) (1.0.7)

Requirement already satisfied: cycler>=0.10 in c:\users\venka\appdata\local \programs\python\python311\lib\site-packages (from matplotlib!=3.6.1,>=3.1-> seaborn) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\venka\appdata\l ocal\programs\python\python311\lib\site-packages (from matplotlib!=3.6.1,>= 3.1->seaborn) (4.39.4)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\venka\appdata\l ocal\programs\python\python311\lib\site-packages (from matplotlib!=3.6.1,>= 3.1->seaborn) (1.4.4)

Requirement already satisfied: packaging>=20.0 in c:\users\venka\appdata\loc al\programs\python\python311\lib\site-packages (from matplotlib!=3.6.1,>=3.1 ->seaborn) (23.1)

Requirement already satisfied: pillow>=6.2.0 in c:\users\venka\appdata\local \programs\python\python311\lib\site-packages (from matplotlib!=3.6.1,>=3.1-> seaborn) (9.5.0)

Requirement already satisfied: pyparsing>=2.3.1 in c:\users\venka\appdata\lo cal\programs\python\python311\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.0.9)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\venka\appdat a\local\programs\python\python311\lib\site-packages (from matplotlib!=3.6.1, >=3.1->seaborn) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\venka\appdata\local \programs\python\python311\lib\site-packages (from pandas>=0.25->seaborn) (2 023.3)

Requirement already satisfied: tzdata>=2022.1 in c:\users\venka\appdata\loca l\programs\python\python311\lib\site-packages (from pandas>=0.25->seaborn) (2023.3)

Requirement already satisfied: six>=1.5 in c:\users\venka\appdata\local\prog rams\python\python311\lib\site-packages (from python-dateutil>=2.7->matplotl ib!=3.6.1,>=3.1->seaborn) (1.16.0)

Note: you may need to restart the kernel to use updated packages.

In [1]: # step1: importing all the required libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing,svm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

```
In [2]: # step 2:
    df=pd.read_csv(r"C:\Users\venka\Downloads\bottle.csv.zip",low_memory=False)
    df
```

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2 :
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	N
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	N
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	N
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	N
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	N
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107

Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC SaInty O2ml_L STheta O2 20-1611SR-093.4 MX-310-864862 34404 864863 15 17.533 33.3880 5.774 24.15297 105 026.4 2239-09340264-0015A-3

864863 rows × 74 columns

```
In [3]: df= df[['Salnty','T_degC']]
        df.columns=['Sal','Temp']
```

In [4]: df.head(10)

Out[4]:

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
5	33.431	10.45
6	33.440	10.45
7	33.424	10.24
8	33.420	10.06

df.tail() In [5]:

9 33.494

Out[5]:

	Sal	Temp
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

9.86

In [6]: sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[6]: <seaborn.axisgrid.FacetGrid at 0x269371ad010>

In [7]: df.describe()

Out[7]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

C:\Users\venka\AppData\Local\Temp\ipykernel_17268\4116506308.py:1: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

```
In [10]: df.fillna(method='ffill',inplace=True)
    x=np.array(df['Sal']).reshape(-1,1)
    y=np.array(df['Temp']).reshape(-1,1)
    df.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression: ",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

C:\Users\venka\AppData\Local\Temp\ipykernel_17268\228254547.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

C:\Users\venka\AppData\Local\Temp\ipykernel_17268\228254547.py:4: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

Regression: 0.20494681482797805

In [11]: y_pred=regr.predict(x_test)
 plt.scatter(x_test,y_test,color='b')
 plt.plot(x_test,y_pred,color='k')
 plt.show()


```
In [12]: df=df[:][:500]
```

In [13]: sns.lmplot(x="Sal",y="Temp",data=df,order=1,ci=None)

Out[13]: <seaborn.axisgrid.FacetGrid at 0x26931aa4690>


```
In [14]: df.fillna(method='ffill',inplace=True)
    x=np.array(df['Sal']).reshape(-1,1)
    y=np.array(df['Temp']).reshape(-1,1)
    df.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression: ",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.82489339514693


```
In [15]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("r2 score:",r2)
```

r2 score: 0.82489339514693

```
In [16]: #elasticnet
    from sklearn.linear_model import ElasticNet
    regr=ElasticNet()
    regr.fit(x,y)
    print(regr.coef_)
    print(regr.intercept_)
    y_pred_elastic=regr.predict(x_train)
    mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
    print("Mean Squared Error on test set",mean_squared_error)

[-1.23013343]
    [49.21076752]
    Mean Squared Error on test set 9.112679796417485
In []:
```