Freshwater fish faunas from two Permian rift valleys of Zambia, novel additions to the ichthyofauna of southern Pangea

Freshwater fish faunas from two Permian rift valleys of Zambia, novel additions to the ichthyofauna of southern Pangea

Brandon R. Peecook, Allison W. Bronson, Benjamin K.A. Otoo, Christian A. Sidor

PII: S1464-343X(21)00226-0

DOI: https://doi.org/10.1016/j.jafrearsci.2021.104325

Reference: AES 104325

To appear in: Journal of African Earth Sciences

Received Date: 18 December 2018

Revised Date: 3 July 2021 Accepted Date: 7 July 2021

Please cite this article as: Peecook, B.R., Bronson, A.W., Otoo, B.K.A., Sidor, C.A., Freshwater fish faunas from two Permian rift valleys of Zambia, novel additions to the ichthyofauna of southern Pangea, *Journal of African Earth Sciences* (2021), doi: https://doi.org/10.1016/j.jafrearsci.2021.104325.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

____ Journal Pre-proof

1	
2	
3	
4	
5	
6	
7	
8	FRESHWATER FISH FAUNAS FROM TWO PERMIAN RIFT VALLEYS OF ZAMBIA
9	NOVEL ADDITIONS TO THE ICHTHYOFAUNA OF SOUTHERN PANGEA
10	
11	Brandon R. Peecook ^{1,2,3,4*} , Allison W. Bronson ⁵ , Benjamin K. A. Otoo ^{3,6} , and Christian A
12	Sidor ^{4,7}
13	
14	¹ Idaho Museum of Natural History, Pocatello, ID, USA
15	² Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
16	³ Field Museum of Natural History, Chicago, IL, USA
17	⁴ Burke Museum, University of Washington, Seattle, WA, USA
18	⁵ Humboldt State University, Arcata, CA, USA
19	⁶ University of Chicago, Chicago, IL, USA
20	⁷ Department of Biology, University of Washington, Seattle, WA, USA
21	
22	
23	*Corresponding author; <u>brandonpeecook@isu.edu</u>
24	

ABSTRACT

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Toward the end of the Paleozoic, Earth's land masses formed the supercontinent Pangea. Despite the relative lack of large-scale physical dispersal barriers, patterns of endemism and regionalization existed, likely driven by climate. During the later Permian he fossiliferous southern region of Pangea has proven to be remarkably homogeneous in terms of terrestrial floras and faunas. However, these signals among vertebrates are best documented amongst tetrapods, and little attention has been paid to freshwater fish assemblages often occurring in the same rocks. Given the increasingly arid and landlocked conditions of the interior of Pangea, the study of freshwater vertebrate communities can help contribute to an understanding of biogeographic patterns across the supercontinent. Here we report two Permian fish assemblages from the Madumabisa Mudstone Formation of Zambia consisting of actinopterygians and largebodied elasmobranchs: 1) a middle Permian assemblage from the Mid-Zambezi Basin; and 2) a late Permian assemblage from the Luangwa Basin. These assemblages are compared with other middle and late Permian freshwater ichthyofaunas from Australia, Brazil, Chile and South Africa and found to reinforce signals of faunal homogeneity for terrestrial assemblages found using the richer and more well-documented tetrapod fossil record.

- 41 *Keywords:*
- 42 Chondrichthyes
- 43 Actinopterygii
- 44 Permian
- 45 Madumabisa Mudstone Formation
- 46 Luangwa Basin
- 47 Mid-Zambezi Basin

48

49

50

51

1. Introduction

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Today, less than 1% of the Earth's habitable aquatic environments are freshwater (>99%) of the planet's available surface water is marine), but these freshwater environments are home to approximately 40% of fish species diversity (Tedesco et al. 2017). The diversification of freshwater fishes is often viewed from a modern teleost-focused perspective that emphasizes Mesozoic and Cenozoic evolutionary events (Friedman and Sallan 2012), and indeed the marine record generally receives more attention (Alfaro et al., 2018; Bazzi et al., 2018; Capobianco et al., 2020; Friedman, 2009). Though the Silurian and Devonian have been recognized as important times for the origin of most high-level gnathostome taxa, the Carboniferous and Permian have traditionally been considered an interval of evolutionary stasis in nonmarine fish evolution (Friedman & Sallan 2012; Giles et al. 2017; Romano et al. 2016; Sallan et al. 2011) following the end-Devonian mass extinction and the elimination of placoderms, ostracoderm stem-gnathostomes, and multiple sarcopterygian lineages (Sallan & Coates 2010). It is recognized that after the end-Devonian extinction, the modern freshwater (and marine) vertebrate assemblage of actinopterygians, chondrichthyans, and tetrapods was established. However, this view of stasis is largely the result of phylogenetic uncertainty (particularly in the case of actinopterygians) and a lack of fossils (particularly in the case of early tetrapods); both of these are improving as part of a general increase in our knowledge of the Devonian-Carboniferous fossil record (Ahlberg and Clack, 2020; Anderson et al., 2015; Bronson et al., 2018; Challands et al., 2019; Chen et al., 2018; Clack et al., 2016, 2018, 2019; Figueroa et al., 2021; Goedert et al., 2018; Maisey et al., 2017a, b; Olive et al., 2016a, b; Pais de Rezende et al., 2021; Richards et al., 2018; Sallan and Coates, 2013; Smithson et al., 2012, 2016; Wilson et al., 2018). This is particularly significant as the initial crown group diversifications for

75	actinopterygians, chondrichthyans, and tetrapods have all been dated to between the Middle
76	Devonian and Early Carboniferous (Coates et al., 2017, 2018; Giles et al., 2017; Pardo et al.,
77	2020). Irrespective of phylogenetics, diverse nonmarine fish faunas are known from the
78	Devonian onwards, though their taxonomic compositions vary (Carpenter et al., 2011, 2015,
79	2014; Cressler et al., 2010; Friedman and Sallan, 2012; Gess and Whitfield, 2020; Olive et al.,
80	2016b, 2015; Otoo et al., 2018) and our knowledge of early and middle Early Carboniferous
81	(Mississippian) faunas generally is still lacking. By the middle/late Permian
82	(Guadalupian/Lopingian), a stereotyped freshwater fish assemblage had been established:
83	xenacanthiform and hybodontiform stem-group elasmobranchs, stem-group lungfishes, and
84	'palaeoniscoid' actinopterygians (Cavin et al. 2007; Coates & Gess 2007; Friedman 2015;
85	though xenacanthiforms may be stem-group chondrichthyans: Gillis & Donoghue 2007; Ginter
86	2004). However, these Permian ichthyofaunas are more infrequently preserved than
87	contemporary tetrapod assemblages; thus, most Permian hypotheses of vertebrate biogeography
88	make use of the tetrapod, rather than fish, record (Friedman & Sallan 2012; Sidor et al. 2013).
89	Middle and upper Permian tetrapod assemblages are distributed across Pangea, with the
90	best records coming from the Karoo Basin in South Africa, the Ruhuhu Basin of Tanzania, and
91	the Zambezi and Luangwa basins of Zambia in south central Pangea, and the Cis-Ural region of
92	European Russia in north-central Pangea (Peecook 2016; Rubidge 2005; Sennikov & Golubev
93	2017; Smith et al. 2012). Mid-high latitude tetrapod assemblages of the middle-upper Permian,
94	particularly those in southern Pangea, consistently show patterns of biogeographic homogeneity
95	in terms of taxonomic and ecological diversity, ecosystem structure, and interconnectedness
96	(Bernardi et al. 2017; Peecook 2016; Roopnarine et al. 2018; Sidor et al. 2013). However,
97	biogeographic studies of middle-upper Permian terrestrial vertebrate assemblages have not

usually taken into account freshwater fish occurrences despite the existence of numerous Gondwanan freshwater fish localities: the Rangal Coal Measures in Australia, the Rio do Rasto Formation in Brazil, the Peine Formation of northern Chile, and the Karoo Basin sequence in South Africa. Here we provide a preliminary report on ichthyofaunas from the Mid-Zambezi and Luangwa basins of Zambia, a heretofore neglected part of the Permian vertebrate faunas of southern Pangea.

2. Gondwanan freshwater fishes from the middle and upper Permian

2.1 Rangal Coal Measures

Fossil fishes occur in shales that are interspersed with coal seams within the larger Rangal Coal Measures in the Bowen Basin, Queensland, Australia. Fish specimens are frequently associated with plant material, including *Glossopteris* leaves and upper Permian palynomorphs (Campbell & Duy Phuoc 1983). The depositional environment of the coals, shales, mudstones, and sandstones within the Rangal Coal Measures is interpreted as a floodplain with well-vegetated ephemeral lakes and laterally migrating river channels (Burgis 1975; Campbell & Duy Phuoc 1983; Ritchie & Edgecombe 2001). Several fish localities are mass mortality sites, producing numerous specimens (Leu 1989; Ritchie & Edgecombe 2001). The fish fauna of the Rangal Coal Measures is reported to be impressively rich: at least 12 genera of actinopterygians and two genera of elasmobranchs, though to date only two species have been formally named and described (McLoughlin 2017; Ritchie & Edgecombe 2001). The first, *Surcaudalus rostratus*, possesses prominent dorsal fin spines and a mix of traits seen in ctenacanths and different early elasmobranchs, leading Leu (1989) and Ivanov et al. (2018) to place *Surcaudalus* as an indeterminate euselachian (Ctenacanthiformes + Neoselachii). The

second, *Ebenaqua ritchiei*, is a deep-bodied actinopterygian with an advanced mobile maxilla, and has been allied with other deep-bodied forms like *Bobasatrania* since its description (Bender 2005; Campbell & Duy Phuoc 1983; Mickle & Bader 2009; Xu et al. 2014). In phylogenetic analyses *Ebenaqua* is found to be on the neopterygian stem (Argyriou et al. 2018; Giles et al. 2017; Hurley et al. 2007; Xu et al. 2014). Future work on Permian fishes must include the description of the outstanding Rangal Coal Measures taxa.

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

126

121

122

123

124

125

2.2 Passa Dois Group

In southeastern Brazil, the Permian Rio do Rasto Formation includes several localities spread over the Paraná Basin (Cisneros et al. 2005; Dias-da-Silva 2012; Langer 2000; Olroyd & Sidor 2017). Fishes in the Rio do Rasto Formation are often found as isolated elements in conglomerates and red mudstones representing lacustrine and channel deposits. Correlations between the localities are tentative and though there are few species-level shared taxa, most can reasonably considered middle Permian in age based on the biostratigraphy of tetrapod taxa such as dinocephalian and anomodont therapsids, pareiasaurs, and temnospondyl amphibians (Boos et al. 2015; Cisneros et al. 2011, 2012; Olroyd & Sidor 2017). Chondrichthyans are represented by the sphenocanthid Sphenacanthus riorastoensis (Pauliv et al. 2012), hybodontiforms (50 mm dorsal fin spine), and xenacanthiforms (Dias 1996; Malabarba et al. 2003; Richter & Langer 1998), including the named taxa *Xenacanthus ragonhai* and *Triodus richterae* (Pauliv et al. 2014, 2017). Gnathorhizid lungfish and a coelacanth are evidenced by isolated toothplates and isolated scales, respectively, while scales, dermal fragments, and fin rays represent indeterminate 'palaeonisciform' actinopterygians (Cíone et al. 2010; Dias 1996; Figueroa et al. 2017; Richter & Langer 1998; Toledo & Bertini 2005; see Vega-Dias et al. (2000) for figures of articulated

specimens of three as possibly novel species of actinopterygian). Two actinopterygian skeletons have been named: 1) *Rubidus pascoalensis* is an actinopterygian of dubious affinity, and 2) *Paranaichthys longianalis* is a deep-bodied form with a crushing dentition that has been allied to the platysomid stem-neopterygians (Dias 2012; Richter 2002).

The early middle Permian Teresina Formation underlies the Rio do Rasto Formation, and though salinity measurements vary throughout the formation, an isotopic analysis of fishes indicate that they at least inhabited continental (freshwater) systems, potentially representing allochthonous deposition (Richter 2005). Undescribed fish fragments and a partial scorpion, *Suraju itayma*, are known from the upper reaches of the Teresina Formation, which is considered to represent freshwater habitat (Martine et al. 2020). Additional fishes are known from lower in section: xenacanthiforms *Wurdigneria obliterata* and *Xenacanthus santosi*, a spine referred to *Ctenacanthus sp.*, and locally abundant actinopterygian teeth, as well as chondrichthyan teeth, fin spines, and scales (Richter 2005; Wüdig-Maciel 1975).

2.3 Peine Formation

The middle member (Miembro Medio) of the Peine Formation in Quebrada Sipico, near Salar de Atacama, in northern Chile consists of freshwater facies preserving low-energy environments of ephemeral lakes and floodplains with episodic input of eolian and coarsegrained alluvial-fan deposits (Richter and Breitkreuz 1997). U/Pb radiometric dates in overlying ignimbrites and palynomorph analyses from industry reported by Flint et al. (1993) imply a late Permian age for the Miembro Medio of the Peine Formation.

Alongside conchostracans, the concretionary lacustrine deposits have produced a single named taxon of actinopterygian fish: *Arratiaichthys chilensis*. *Arratiaichthys*, is a contoured

fusiform fish with weakly ornamented scales that were found to be histologically "paleonsicoid" (Richter & Breitkreuz 1997).

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

167

168

2.4 Beaufort Group

The middle and upper Permian rocks of the Beaufort Group in the Karoo Basin are the global standard for terrestrial ecosystems during the latest Paleozoic (Rubidge 2005). An evolving scheme of tetrapod-defined vertebrate assemblages zones (AZs) in the Karoo has been used to correlate terrestrial Permian and Triassic rocks worldwide, and recently radiometric dates from within the Permian sequence have tied the scheme to the chronostratigraphic time scale (Rubidge 2013; Smith et al. 2020; Viglietti et al. 2016). The middle and upper Permian Beaufort sequence is famous for its preservation of numerous and abundant therapsid taxa, as well as early reptiles and amphibians, in fluvio-lacustrine deposits (Nicolas & Rubidge 2010; Rubidge 2005; Smith et al. 2012). To date, no Permian elasmobranchs or lungfishes have been described from the Karoo, but several actinopterygians are known: Atherstonia scutata, A. minor, Blourugia seeleyi, Bethesdaichthys kitchingi, and Namaichthys digitata range through middle and upper Permian AZs, while Caruichthys ornatus, Elonichthys whaitsi, Pteronisculus meiringi, and Kompasia delaharpei are restricted to the upper Permian Cistecephalus and Daptocephalus AZs (Bender 1998, 2001, 2002, 2005; Bender et al. 1991; Broom 1913; Jubb & Gardiner 1975; Murray 2000). Most original phylogenetic hypotheses and taxonomic classifications place these taxa as stem-actinopterygians (Bender 2001, 2002, 2005; Gardiner et al. 2005; Gardiner & Schaeffer 1989; Jubb & Gardiner 1975), but each would benefit from inclusion in more recent phylogenetic datasets (Argyriou et al. 2018; Giles et al. 2017). Importantly, Bender (1999) remarked that undescribed specimens from the Rangal Coal Measures share characters with the

deep-bodied taxon *Blourugia seeleyi*, thereby forming a potential biogeographic link between the Karoo and Bowen basins (Bender 2005).

2.5 Zambian basins

Here, we document additional Permian fossil fish occurrences from south central Pangea. Permo-Triassic fossils of terrestrial and aquatic vertebrates have been found in fluvio-lacustrine rocks within three rift basins in Zambia: the Luangwa, Luano, and Zambezi basins.

Paleontological fieldwork in Zambia's Luangwa Basin occurred sporadically throughout the early and middle twentieth century, and has been ongoing since 2009 (Figure 1; Angielczyk et al. 2014; Attridge et al. 1964; Dixey 1937; Drysdall and Kitching 1963; Kemp 1975; Kerr 1974; Sidor and Nesbitt 2018; Sidor et al. 2013). The fossil record of the Luangwa Basin is the richest in Zambia. The 1974 joint expedition between the Geological Survey of Zambia and Oxford University was the first to discover freshwater fish fossils from the upper Permian upper Madumabisa Mudstone Formation (Kemp 1975; Murray 2000), but they remained formally undescribed until now. In his initial publication Kemp (1975:415) described the upper Permian discoveries from the mid-luangwa Basin and listed: "... at one particular locality, numerous remains of fishes, including hybodont-like fin spines, palaeoniscid scales and the partial skull of an *Acrolepis-like* palaeoniscid." Peecook et al. (2018) described ptychoceratodontid lungfish toothplates and hybodontoid shark fin spines from the Middle-Upper Triassic Ntawere Formation, Luangwa Basin.

The Luano Basin is the smallest of the three Zambian basins discussed here and a single locality in the Madumabisa Shales along the Lunsempfwa River has produced several small actinopterygian fish skeletons. Haughton (1934) named *Ischnolepis bancrofti* for the most

abundant taxon present, referring a single small bodied specimen to ?*Pygopterus* and several larger-bodied specimens to cf. *Atherstonia*. Hutchinson (1973) redescribed *I. bancrofti* as a redfieldiiform, an assignment later confirmed by cladistic analysis (Schaeffer 1984). The age of the Maduambisa Shales in the Luano Basin is considered vaguely Early Triassic, but is poorly constrained (Schaeffer 1984).

Gair (1959) was the first to report Permian-aged vertebrate fossils from the Mid-Zambezi Basin in southern Zambia. Recent fieldwork there has confirmed the presence of a middle Permian vertebrate assemblage consisting of dinocephalian, biarmosuchian, gorgonopsian, and dicynodont therapsids, rhinesuchid temnospondyls, and the osteichthyan specimen described below (Olroyd & Sidor 2017; Peecook 2016; Sidor et al. 2014).

3. Methods

With the exception of NHCC LB597, all specimens in this manuscript were collected in 1974 as part of a joint expedition between the Geological Survey of Zambia and Oxford University and hail from a single locality (Kerr 1974; Locality 5 of Kemp 1975). A productive horizon of fish material encased in hematite nodules was fortuitously found on a hillside, and the productive layer excavated. This locality was relocated by our team in 2018 and we determined that it is near the middle of the section of Madumabisa Mudstone exposed in the Munyamadzi Game Management Area, suggesting a Wuchiapingian age. Large gorgonopsians and several dicynodonts (identified to Dicynodontoidea and ?Diictodon before preparation) were found in the immediate vicinity of the fish horizon, but the fossiliferous layer itself was no longer productive (Peecook 2016; Peecook et al. 2020). The 1974 collection was at the University of Oxford until 2018 when it was transferred to the Natural History Museum, London.

236	NHMUK PV P75419, P75420, P75421, P75422, and P75423 were studied and
237	photographed using a Olympus SZX 16 dissecting microscope with an attached digital camera.
238	We have not mechanically or chemically prepared the specimens, and are unaware of the precise
239	chemical preparation conducted at Oxford: Kemp (1975) claimed the specimens are very suitable
240	for acetic acid preparation.
241	NHCC LB597 was thin sectioned according to standard procedures outlined in Lamm
242	(2013). The scale was embedded in Epothin Epoxy/Resin 2, sectioned to a thickness of
243	approximately 2 mm on an Isomet 1000 saw and glued to glass slides using 2-ton epoxy. Slides
244	were ground using a Metaserv 3000 lapidary plate until the specimen was approximately 80 um
245	thick or until optical clarity was reached. Thin sections were imaged using a Nikon Eclipse
246	LV100POL microscope. Composite images were processed using Nikon NIS-ELEMENTS BR
247	(version 4.3) imaging software.
248	Institutional Abbreviations. NHCC, National Heritage Conservation Commission,
249	Lusaka, Zambia; NHMUK, Natural History Museum, London, United Kingdom.
250	
251	4. Systematic Palaeontology
252	Chondrichthyes Huxley, 1880
253	Elasmobranchii Bonaparte, 1838
254	Referred Material. NHMUK PV P75421a (Figure 2)
255	Horizon and Locality. Wuchiapingian, upper Permian. Locality 5 of Kemp (1975), upper
256	Madumabisa Mudstone Formation, central Luangwa Basin.
257	Identification. Infraclass Euselachii (Bonaparte 1838) incertae sedis

258	Description. Fragment of the intramuscular portion of a dorsal fin spine of approximately 6cm in
259	length. The ventralmost portion of the exposed ornamented surface, which shows a tuberculate ridge
260	ornamentation, is visible dorsoanteriorly. The intramuscular portion is large and unornamented and tapers
261	proximally towards the base of the dorsal fin (Fig. 2 I, J). The posterior concavity for articulation with
262	the basal cartilage of the dorsal fin is filled by sediment but appears to extend through the whole length of
263	the fragment.
264	Referred Material. NHMUK PV P75423 (Figures 2, 3)
265	Horizon and Locality. Wuchiapingian, upper Permian. Locality 5 of Kemp (1975), upper
266	Madumabisa Mudstone Formation, central Luangwa Basin.
267	Identification. Euselachii incertae sedis, may be within Order Synechodontiformes
268	(Duffin and Ward 1993), based on the presence of denticles arranged in longitudinal ridges and
269	the enameloid rib on the keel, as well as the slightly laterally compressed appearance.
270	Description. Spine fragment with denticles organized into longitudinal ridges and
271	enameloid rib at its keel, slightly laterally compressed (Fig. 2 G, H; Fig. 3). Tubercles between
272	0.52 and 1.73 mm apart on lateral surfaces. Spine triangular to ovoid in cross section.
273	
274	Referred Material. NHMUK PV P75420 (Figure 4)
275	Horizon and Locality. Wuchiapingian, upper Permian. Locality 5 of Kemp (1975), upper
276	Madumabisa Mudstone Formation, central Luangwa Basin.
277	Identification. Elasmobranchii incertae sedis, may be within Hybodontiformes (Maisey,
278	1978, 1989) based on strong concavity of the posterior surface (Fig. 4 A) and ornamentation in
279	the form of rows of tubercles (Fig. 4 D) though much of this has been lost to taphonomy in this
280	specimen, some denticles remain at the proximal end of the fragment), however no obvious sharp
281	hook-denticles are apparent on the posterior surface of the spine.

Description. Fragment of dorsal fin spine approximately 3.3 cm in length, likely partially
from within the intramuscular region of the spine, with sparse tubercles, overall cross-sectional
shape rounded, approximately 1.1 cm wide, with strongly concave posterior surface (0.7 cm deep
concavity within the approximately 1.4 cm anteroposterior length of the entire spine); tubular
dentine visible in cross section and laterally where ornamentation is worn or broken away.
Referred Material. NHMUK PV P75422a/b (Figure 4)
Horizon and Locality. Wuchiapingian, upper Permian. Locality 5 of Kemp (1975), upper
Madumabisa Mudstone Formation, central Luangwa Basin.
Identification. Euselachii incertae sedis
Description. A 4 cm long fragment of a dorsal fin spine, with concave posterior face. No
visible ornamentation. Proximally, the fragment is 3 cm long (anterior to posterior) and 2 cm
wide, decreasing to 2.4 cm long 1.5 cm wide at the distal portion of the fragment. Both the pulp
cavity and exposed components are preserved, visible in cross section (Fig. 4 B, C). The exposed
component of the spine is strongly concave posteriorly, which could indicate ctenacanth or
xenacanth affinity (Fig. 4 C).
Chan bi abdance Hamber 1990
Chondrichthyes Huxley, 1880
Elasmobranchii Bonaparte, 1838
Xenacanthida, Glikman 1964
Xenacanthidae, Fritsch 1889
Referred Material. NHMUK PV P75419, a dorsal fin spine (Figures 2, 5)
Horizon and Locality. Locality 5 of Kemp (1975), upper Madumabisa Mudstone
Formation central Luangwa Basin

Identification. Potentially within Order Xenacanthida, Family Xenacanthidae, based on the presence of large posterior tubercles along the edges of a concave, finely striated posterior wall, as well as the absence of anterolateral tubercles, presence of fine longitudinal costae on the anterolateral and posterior surfaces, and deep insertion of spine. However, this identification is putative due to preservation, pending detailed histological study of this specimen.

Description. Large spine, approximately 13.5 cm long, with many very small costae along the anterolateral and posterior surfaces, strongly concave posterior surface, and large denticles on posterolateral margins (Fig. 2 A-F and Fig. 5). Anterior edge of spine angular, and axis of spine is straight with a very slight curve nearing the apex; terminal apex of spine is broken off.

Osteichthyes Huxley, 1880

Actinopterygii Klein, 1885

319 Actinopterygii indet.

Referred Material. NHMUK PV75415, maxilla and cranial dermal bone (Figure 6A-F)

Horizon and Locality. Wuchiapingian, upper Permian. Locality 5 of Kemp (1975), upper

322 Madumabisa Mudstone Formation, central Luangwa Basin.

Identification. Apparent acrodin caps on the maxillary teeth allow for an actinopterygian identification. The maxilla is too damaged for its ornament (mostly or entirely lost) to be compared to the dermal bones, but their ornamentation is most consistent with that of actinopterygians. There are no diagnostic features preserved with which to provide a more precise identification but based on body size the Karoo taxa *Kompasia* (Bender 2002), *Blourgia* (Bender 2005), *Namaichthys* (Gardiner 1962) are all too small; *Bethesdaichthys* (Bender 2001) is

a possibility. NHMUK PV75415 is approximately half again as long as the maxilla of *Arratiaichthys* from the Peine Formation of Chile (Richter and Breitkreuz 1997).

Description and Comparison. Both of the dermal bones are contained in the same specimen, P75415A, on opposite surfaces. There are scales and other fossil material visible at different horizons within the specimen. The dermal bone retains only part of its original ornamented material (1.3 cm of ornamented bone, 3.4 cm total length). The ornamented portion is located at the slightly rounded end, which may be the anterior of the bone. The rest of the bone is represented by an elongate, posteriorly-incomplete impression with straight edges. The combination of size and shape suggest it might be a frontal or dermopterotic, but as there is no clear evidence of canals it could be any large dermal bone on the skull.

The maxilla (Fig. 6) is very worn and has lost its original ornament, as well as much of its original bone. There may be faint traces of striated ornament at the posterior end. It is also incomplete posteriorly and dorsally. However, partially due to an (incomplete) impression in the matrix extending posterodorsally, the postorbital expansion characteristic to actinopterygian maxillae is more readily seen. The anterior portion is elongated into the suborbital process, which has a finished edge and is gently convex. Additionally, at least three teeth are preserved, either by original material or impressions (Fig. 6). From what can be seen, the teeth are the simple conical shape typical of 'palaeoniscid' fishes, with a likely acrodin cap present on at least one (Fig. 6D). Overall, the maxilla as preserved is 7 cm long and 2.8 cm tall, including the impression. In terms of size, *Bethesdaicthys* is the closest match, with the caveat that size is a weak criterion for comparison, even with- or especially because of- the limitations of this material. However, the slope of the dorsal margin in this specimen is considerably gentler than in *Bethesdaicthys* (Bender 2001), even accounting for incompleteness. The ventral curve of the

jaw articulation (Fig. 6) appears to be genuine, as the bone in that region is not occluded by
matrix and is reasonably complete; this feature also discounts a deep-bodied form such as
Blourgia. While only additional, well-preserved specimens will determine whether the PR75415
maxilla represents Bethesdaichthys or a new taxon, it clearly implies a similarly large (body
length ~30cm) fusiform fish.
Referred Material. NHMUK PV P75399, block with articulated fish body specimen
Horizon and Locality. Wuchiapingian, upper Permian. Locality 5 of Kemp (1975), upper
Madumabisa Mudstone Formation, central Luangwa Basin.
Identification. Based on the shape of the body outline as preserved, fusiform Karoo taxa
such as Kompasia and Namaichthys are most likely.
Description and Comparison. P75399 is notable as it seems to preserve a partial body
outline (Fig. 6G, H). Ridge scales are visible and taper towards one end, presumably the tail. At
the end of this taper there is a rectangular ornamented scale. At the other end, the ridge scales
grow smaller, and a patchy field of flank scales is visible. The flank scales are poorly preserved
and presently provide no useful information. In the same specimen, there are approximately five
ovoid scales preserved on-end (Fig. 6G, H). The surrounding area suggests a triangular shape
reminiscent of a fin base, but the quality of the material prevents (and discourages) additional
interpretation.
Referred Material. NHMUK PV P75415b/c, P75416a/b: hematite nodules filled with
dermal bone, large/small scales articulated (Figure 7)
Horizon and Locality. Wuchiapingian, upper Permian. Locality 5 of Kemp (1975), upper
Madumahisa Mudstone Formation, central Luangwa Basin

Identification. see below

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

Description and Comparison. The rest of the material consists of scales that can only be treated as morphotypes for the time being. P75415b has a scale field on each side, each with a different morphology (Fig. 7A, C). Morphotype 1, on the numbered side of the specimen (Fig. 7A), is represented by five subcircular overlapping scales. Most of the enamel has been worn away. The ornament consists of ridges that curve in opposite directions away from the midline. Each is approximately 1 cm long by 1.5 cm broad. P75416b has a single scale of similar size with the same ornament pattern, though it appears to be less circular. On the opposite side, there is a scale field consisting of Morphotype 2. These scales are rhomboid in shape, 0.5–1 cm in length. The ornament consists of slightly curved subparallel ridges. Scales with this morphotype are also seen on both sides of PR75415c (Fig. 7D). Morphotype 3 is present in P75416a, and consists of very small (0.1 cm) rectangular scales in rows. No ornament is visible. These scales are significantly smaller than those known from named South African Permian actinopterygians, and may in fact be fin rays and not scales at all. Morphotype 3 is visible in P75416c and is mostly represented by impressions. As far as can be determined as present, the scales are ~0.3cm in length and have an elongate diamond shape. P75416d contains scales of Morphotype 4. These scales are small (~0.2 cm), diamond-shaped, and smooth. However, the lack of ornament could be due to wear; possible traces of ridges on several scales suggests that this is the case.

None of the morphotypes preserve diagnostic features and are not accompanied by material that allows for conclusive taxonomic assignments; improved identification would require histological study. However, some speculation is possible. The size of Morphotype 1 is comparable to those of *Bethesdaichthys* scales from 'Area A' (Bender 2001), but their different ornamentation and rounded shape imply a different identity, possibly coelacanth. *Namaichthys*

(Gardiner 1962) is a possibility for Morphotype 2, being too large for <i>Blourgia</i> and <i>Kompasia</i> .
Alternatively, Morphotype 2 may represent ridge scales from Bethesdaichthys, based on their
shape. Morphotype 4 is small enough in size and general enough in morphology that it is
difficult to disqualify taxa or identify a body region (though <i>Bethesdaichthys</i> is less likely than
smaller taxa), and must be relegated to Actinopterygii indet. In summary, the collection includes
partial cranial bones, a partial body outline, and at least three, possibly four scale morphotypes.
Fishes similar to Bethesdaicthys and Namaicthys are likely represented, though smaller taxa and
a coelacanth may be present as well.
Referred Material. NHCC LB597, articulated and disarticulated scales as well as several
fragmentary bones (Figure 8)

Horizon. Middle calcareous member of the Madumabisa Mudstone Formation, Lower

Karoo Group, Mid-Zambezi Basin (Gair, 1959; Nyambe and Dixon, 2000; see Sidor et al. 2014 for review of stratigraphic nomenclature). The associated tetrapod assemblage indicates a Guadalupian age, likely correlating with either the *Eodicynodon* or *Tapinocephalus* assemblage zones of South Africa (Day et al. 2015).

Locality. Collected at locality L183, a locality within a relatively large outcrop that preserves fossils of burnetiamorph, dicynodont, and tapinocephalid therapsids, as well as temnospondyls (Sidor et al. 2014). Located approximately 18 km southwest of the village of Chamwe, Gwembe District, Southern Province, Zambia. Detailed coordinates are available to qualified researchers from the NHCC or by contacting BRP or CAS.

Identification. These rhomboid scales are referable to Actinopterygii based on the presence of peg-and-socket articulations in combination with stacked couplets of enamel and orthodentine superficial to a base of cellular bone.

Description. NHCC LB597 is the most complete actinopterygian material collected by our team from the lower Madumabisa Mudstone Formation (the only other material consists of small concentrations of jumbled 'fish hash'). It consists of a large association of articulated and disarticulated scales, as well as some small, unidentified pieces of bone collected from a restricted area measuring less than 0.5-meters-squared. The specimen is notable in preserving a number of relatively large scales (over 2 cm in dorsoventral height) with a roughly parallelogram-shaped outline (Fig. 8A).

The external surface of the scales is mostly covered by a shiny capping tissue, except for a bony bar that is present along the anterior margin of the scale. The capping tissue bears fine, subparallel ridges that are oriented longitudinally and occasionally branch. On the internal surface, a trough-like depression extends from the ventral margin of the scale towards its midpoint, indicating the presence of a typical osteichthyan peg-and-socket mode of articulation. Small clusters of articulated scales are occasionally preserved (Fig. 8B) and show how the enamel-covered sections of the scales overlapped the non-enamel covered bars of adjacent scales.

We thin-sectioned a scale of NHCC LB597 to assess its internal organization (see Methods). The deepest tissue is a relatively thick layer of laminar cellular bone, which is overlain by couplets of orthodentine with a hypermineralized covering (Fig. 8C). We identify the latter as enamel based on its organization (Schultze 2016). Vascular spaces, visible as dark areas in Figure 8C, are concentrated near the junction of the bone and dentine layers. At higher magnification (Fig. 8D), the base of each unit of orthodentine has a vascular space present at its base, sometimes with a capping tissue still in place.

As with the rest of the osteichthyan/actinopterygian material described here, identifications are difficult to make and must be considered extremely preliminary. That said, the large size and ornamentation of the scales (particularly in Fig. 8A) are consistent with *Bethesdaichthys* (Bender 2001). Fig. 8A might be from 'Area A' posterior to the operculum (Bender 2001: Fig. 9) and the Fig. 8B scales might be ridge scales, though their orientation suggests otherwise.

5. Discussion

5.1 Chondrichthyan Fin Spines

Specimen NHMUK P 75419 is identified as a xenacanth based on the finely striated concave posterior face of the fin spine (as opposed to the generally convex posterior face of hybodont fin spines), as well as the presence of fine costae, absence of tubercles or large ridges over the anterolateral surfaces of the spine (which would be more consistent with a ctenacanth or hybodont affinity), and presence of denticulated ridges on the posterior face of the spine (Beck et al. 2016). Importantly, these traits must be considered altogether - ctenacanth fin spines can also have concave posterior faces, and severity of this concavity can vary depending on the level at which the spine is observed. Both ctenacanths and hybodonts are also known to have denticulated ridges on the posterior face of the spine, but the distribution and size of these denticles vary from the condition in xenacanths (for example, the typically downturned posterior denticles of hybodonts). Taken as a group of characteristics, this spine can be tentatively assigned to the xenacanth group, pending further study. Xenacanths were large, elongate predators bearing two anal fins and extremely characteristic teeth (Zangerl, 1981), specialized for grasping (Whitenack et al., 2011; Williams 2001). They were common throughout freshwater

Permian environments and likely represent a monophyletic group (Coates et al. 2018; Pradel et al. 2011).

Specimens NHMUK P25423 and 75421 cannot be identified definitively to the order level, but could represent ctenacanth selachians, based on the overall shape and posterior concavity of the fin spines. Ctenacanths are probably not a monophyletic group, and are more likely a paraphyletic group of stem-euselachians (Coates et al. 2018; Maisey et al. 2019; Pradel et al. 2011). Ctenacanths possess the cleaver-shaped palatoquadrate and cladodont dentition of many early euselachians, but are best known for their ornamented spines (Zangerl 1981), which can be differentiated on the basis of that ornamentation, including the distribution and shape of tubercles and costae, which are largely lost to taphonomy in the Zambian specimens described here. Ctenacanths have been described from North American and European localities spanning the Upper Devonian through the Triassic (Zangerl 1981), including freshwater deposits (*Bandringa*, Baird 1978), as well as from the lower Permian Irati Formation (Parána Basin) (Chahud et al. 2010) and the lower Permian Pedra de Fogo Formation (Figueroa & Gallo 2017; Figueroa & Machado 2018) of Brazil.

Lastly, it is possible that NHMUK PV P75420, P75422, and P75423 belong to the Order Hybodontiformes, which are characterized by dorsal fin spines that bear posterior marginal denticles and longitudinal ribbed costae, with a convex posterior surface and a deeply inserted base, as well as characteristic dentition and cephalic spines (Zangerl 1981). Hybodonts were particularly common from the Early Triassic through the Late Cretaceous (Cappetta 1987), but they originated by at least the Early Carboniferous (Coates et al. 2007, 2017) and may be as old as the Middle Devonian (Zangerl 1981). However, they are also known from the early Permian of North America, on the basis of isolated teeth and dorsal fin spines from freshwater deposits in

Texas (Johnson, 1979, 1981; Simpson 1974) and Oklahoma (May 2013), as well as from
durophagous teeth from the middle Permian marine Kaibab Formation in the US southwest
(Hodnett et al. 2013). Hybodonts are believed to be marine in origin, but representatives of
several genera are known from freshwater or brackish deposits (Capetta 1987; Duffin 1985;
Fischer 2008, Peecook et al. 2018). The Permian taxon Wodnika (Munster 1843), originally
assigned to the Hybodontidae but now more likely a sphenacanthid (Maisey 1982), is known
from skeletal remains, spines, and teeth. However, in general, hybodont remains from this period
are more commonly teeth or spines, as is the case with Arctacanthus (Nielsen 1932), but
generally freshwater Permian hybodonts were fairly small, as exemplified by the former waste-
basket genus Lissodus. Lissodus africanus (Broom 1909) has been described from the Early-
Middle Triassic Cynognathus AZ in the Karoo Basin, including skeletal material, though the
specimen was initially described as <i>Hybodus africanus</i> , based on similarities of the dorsal fin
spines with the genus <i>Hybodus</i> including characteristic ridging and posterior denticles. The
denticle distribution on fin spine NHMUK PV 75423a appears somewhat similar to that of the
genus Asteracanthus, but the denticles are not star-shaped in aspect (Cappetta 1987); however,
this could be due to taphonomic wear. Importantly, all of the specimens are broken or obscured
by matrix where they would have inserted on the dorsum of the shark, so it is not possible to
determine how the costae originate (whether they are bifurcations or additions from the
posterolateral margins). However, the spine may also be similar to that of Sphenacanthus, which
has similar ribbing between costae (Agassiz 1837), but lacks down curved posterior denticles
(Maisey 1982). Sphenacanthids were also inhabitants of freshwater, and have been described
from the Permian Rio do Rasto Formation (Pauliv et al. 2012).

5.2 Actinopterygian Material

The actinopterygian material is limited in both quantity and preservation. However, what is available indicates morphological similarity (if not taxonomic identity) with *Namaichthys* and *Bethesdaichthys* from the Karoo Basin, South Africa. *Namaichthys* and *Bethesdaichthys* were recovered as phylogenetically distinct in the analysis of Bender (2002), though the tree is generally poorly resolved. However, given the lack of resolution in 'lower' actinopterygian phylogeny (Giles et al. 2017) and the lack of inclusion of these taxa in more recent analyses, phylogenetic interpretations of both these taxa and this material are not practicable at this time. Further collecting and study will likely supersede the highly provisional identifications and interpretations made here.

6. Conclusions

6.1 Chondrichthyan Remains

The combination of chondrichthyan taxa reported here is interesting, not only for potential ecological inference but also because of the taxonomic diversity present. These represent the first xenacanth and putative ctenacanth fin spines (as well as potentially sphenacanthid or hybodont fin spines) recorded from the Madumabisa Mudstone Formation. As is often the case in chondrichthyan paleontology, without pristine preservation of spine ornamentation, and without associated dentition, these fossils cannot be placed below the family or superfamily level. Interestingly, xenacanths, ctenacanths, and hybodonts all persisted through the end-Permian extinction, and hybodonts survived well into the Cretaceous (Zangerl, 1981).

6.2 Osteichthyan Remains

Insofar as the actinopterygian material can be identified, it indicates a link to the ichthyofauna of the lower Beaufort Group, which agrees with the similarity previously noted for the corresponding tetrapod assemblages (Sidor et al. 2013; Peecook 2016; Bernardi et al. 2017; Roopnarine et al. 2018). However, there is as yet no evidence of *Blourgia* or a similar deepbodied form in Zambia, which may suggest potential palaeoecological and palaeoenvironmental differences between the faunas. While the nature of the material limits severely limits comparisons, none of the unnamed species from the Rio do Rasto formation described by Vega-Diaz et al. (2000)- or similar fishes- appear to be present. This supports the hypothesis that there was biogeographic differentiation of nonmarine osteichthyan faunas by at least this point in the Permian. The Permian ichthyofauna of Chile (Richter and Breitkreuz 1997) is a possible further point of comparison if more material becomes available. The material does also raise thecurrently remote-possibility a coelacanth (P75415b, numbered side, see Fig. 7A) taxon is present, one comparable in size to the largest actinopterygian fishes present. If correct, it would represent the first coelacanth occurence in the Madumabisa Mudstone Formation. However, the circumstantial nature of this evidence must be strongly emphasized.

553

554

555

556

557

558

559

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

6.3 Summary

Although the fragmentary nature of the Zambian material precludes detailed conclusions, the fossils described in this contribution allow for the following broad inferences to be made:

1) The taxonomic composition of the ichthyofaunas suggest entirely freshwater communities, in accordance with data on the development of these basins (Catuneanu et al. 2005).

2)	The composition of the Madumabisa Mudstone ichthyofauna is consistent with
	freshwater ichthyofaunas globally in the middle and late Permian, at least to the level of
	taxonomic resolution available: xenacanth, and possibly hybodont and ctenacanth,
	chondrichthyans, at least two taxa of actinoptyergians, and possibly a coelacanth. This
	observation parallels the better sampled tetrapod fossil record, which suggests a
	regionally homogenous fauna across southern Pangea during middle-late Permian times
	(Sidor et al. 2013).

- 3) More complete material will be needed to assess the ecology of the Permian fish of Zambia, although it is clear that some fossils represent large-bodied forms.
- 4) Freshwater ichthyofaunas are likely under-reported, especially during comparatively uneventful periods in fish or Earth history, but more work will be needed if the dynamics leading to modern freshwater biodiversity are to be understood. Yemane and Kelts (1990) noted that lacustrine systems were widespread and might have been the predominant deposition environment during the middle/late Permian in southern Africa, which is a promising avenue for future research.

7.	Ack	know	led	lgm	ent	S
. •		,				~~

Special thanks to T. Kemp for access to the specimens when they were still at Oxford in 2015, and to NHMUK curators M. Day and E. Bernard who facilitated loans of the material. Research on the Permian vertebrate fauna of Zambia has been supported by the National Geographic Society (grant 8571-08 to J. S. Steyer; 8962-11 to CAS; 158R-18 to BRP), The Grainger Foundation and Field Museum/IDP Foundation, Inc. African Partners Program (to K. D. Angielczyk), and the National Science Foundation (DDIG 1501097 to BRP; EAR-1337569 to CAS; EAR-1337291 to K. D. Angielczyk; EAR-1336986 to P. D. Roopnarine). We thank M. Whitney for assistance with thin-sectioning and C. Shin for illustrating the specimen in Figure 7A.

References
Agassiz, L. 1833-1844. Recherches sur les poissons fossiles. Neuchatel, 5 vols., 1420 pp.1837
Ahlberg, P.E., Clack, J.A., 2020. The smallest known Devonian tetrapod shows unexpectedly
derived features. Royal Society Open Science 7, 192117. https://doi.org/10.1098/rsos.192117
Alfaro, M.E., Faircloth, B.C., Harrington, R.C., Sorenson, L., Friedman, M., Thacker, C.E.,
Oliveros, C.H., Černý, D., Near, T.J., 2018. Explosive diversification of marine fishes at the
Cretaceous-Palaeogene boundary. Nature Ecology & Evolution 2, 688-696.
https://doi.org/10.1038/s41559-018-0494-6
Anderson, J.S., Smithson, T., Mansky, C.F., Meyer, T., Clack, J., 2015. A Diverse Tetrapod
Fauna at the Base of "Romer's Gap." PLOS ONE 10, e0125446.
https://doi.org/10.1371/journal.pone.0125446
Angielczyk, K.D., Steyer, J.S., Sidor, C.A., Smith, R.M.H., Whatley, R.L., and Tolan, S., 2014.
Permian and Triassic dicynodont (Therapsida: Anomodontia) faunas of the Luangwa Basin,
Zambia: taxonomic update and implications for dicynodont biogeography and biostratigraphy;
pp. 93–138 in C. F. Kammerer, K. D. Angielczyk, and J. Fröbisch (eds.), Early Evolutionary
History of the Synapsida. Springer, Dordrecht.
Argyriou, T., Giles, S., Friedman, M., Romano, C., Kogan, I., Sánchez-Villagra, M.R., 2018.
Internal cranial anatomy of Early Triassic species of †Saurichthys (Actinopterygii:

616	†Saurichthyiformes): implications for the phylogenetic placement of †saurichthyiforms. BMC
617	Evolutionary Biology 18. https://doi.org/10.1186/s12862-018-1264-4
618	
619	Attridge, J., Ball, H.W., Charig, A.J., and Cox, C.B., 1964. The British Museum (Natural
620	History)-University of London joint palaeontological expedition to Northern Rhodesia and
621	Tanganyika, 1963. Nature 201, 445–449.
622	
623	Baird, D., 1978. Studies on Carboniferous freshwater fishes. American Museum Novitates No.
624	2641, 1–22.
625	
626	Bazzi, M., Kear, B.P., Blom, H., Ahlberg, P.E., Campione, N.E., 2018. Static Dental Disparity
627	and Morphological Turnover in Sharks across the End-Cretaceous Mass Extinction. Curr. Biol.
628	28, 2607-2615.e3. https://doi.org/10.1016/j.cub.2018.05.093
629	
630	Beck, K., Soler-Gijon, R., Carlucci, J., and Willis, R., 2016. Morphology and histology of dorsal
631	spines of the xenacanthid shark Orthacanthus platypternus from the Lower Permian of Texas,
632	USA: palaeobiological and palaeoenvironmental implications. Acta Palaeontologica Polonica 61
633	97–117.
634	
635	Bender, P.A., 1998. A late Permian fish shoal: first recorded diverse acinopterygian fish fauna
636	from the Lower Beaufort Group of South Africa. South African Journal of Science 94, 445–447.
637	

638	Bender, P.A., 1999. First documentation of similar late Permian actinopterygian fish from
639	Australia and South Africa. Records of the Western Australia Museum 57(supplement), 183-
640	189.
641	
642	Bender, P.A., 2001. A new Late Permian ray-finned (Actinopterygian) fish from the Beaufort
643	Group, South Africa. Palaeontologica Africana 37, 25–40.
644	
645	Bender, P.A., 2002. A new Late Permian ray-finned (Actinopterygian) fish from the Beaufort
646	Group, South Africa. Palaeontologica Africana 38, 33–47.
647	
648	Bender, P.A., 2005. A new deep-bodied Late Permian actinopterygian fish from the Beaufort
649	Group, South Africa. Palaeontologica Africana 41, 7–22.
650	
651	Bender, P.A., Rubidge, B.S., Gardiner, B.G., Loock, J.C., and Bremner, A.T., 1991. The
652	stratigraphic range of the palaeoniscoid fish Namaichthys digitata in rocks of the Karoo
653	Sequence and its palaeoenvironmental significance. South African Journal of Science 87, 468–
654	470.
655	
656	Bernardi, M., Petti, F.M., Kustatscher, E., Franz, M., Hartkopf-Fröder, C., Labandeira, C.C.,
657	Wappler, T., van Konijnenburg-van Cittert, J.H.A., Peecook, B.R., and Angielczyk, K.D., 2017
658	Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the
659	low-latitude Bletterbach Biota. Earth-Science Reviews 175, 18–43.
660	

661	Bonaparte, C.L., 1838. Iconografia della Fauna Italica per le Quattro classi delgi Animali
662	Vertebrati. Tomo 3. Tipografia Salviucci. Rome.
663	
664	Boos, A. D. S., Kammerer, C.F., Schultz, C.L., and Paes Neto, C.D., 2015. A tapinocephalid
665	dinocephalian (Synapsida, Therapsida) from the Rio do Rasto Formation (Paraná Basin, Brazil)
666	taxonomic, ontogenetic, and biostratigraphic considerations. Journal of South American Earth
667	Sciences 63, 375–384.
866	
669	Bronson, A.W., Mapes, R.H., Maisey, J.G., 2018. Chondrocranial morphology of Carcharopsis
670	wortheni(Chondrichthyes, Euselachii incertae sedis) based on new material from the
671	Fayetteville Shale (upper Mississippian, middle Chesterian). Papers in Palaeontology 4, 349–
672	362. https://doi.org/10.1002/spp2.1110
673	
674	Broom, R., 1909. The Fossil Fishes of the Upper Karroo Beds of South Africa. Annals of the
675	South African Museum 7, 251–269.
676	
677	Broom, R., 1913. On some fossil fishes from the lower and middle Karroo beds. Annals of the
678	South African Museum 12, 1–5.
679	
680	Burgis, W.A., 1975. Environmental significance of folds in the Rangal Coal Measures at
681	Blackwater, Queensland. Report of the Bureau of Mineral Resources, Geology and Geophysics
682	Australia 171, 1–64.
683	

684	Campbell, K.S.W. and Duy Phuoc, L., 1983. A late Permian actinopterygian fish from Australia.
685	Palaeontology 26, 33–70.
686	
687	Capetta, H., 1987. Handbook of Paleoichthyology: Chondrichthyes II: Mesozoic and Cenozoic
886	Elasmobranchii (HP. Schultze (ed.)). Gustav Fischer Verlag, New York, 1–193 pp.
689	
690	Capobianco, A., Beckett, H.T., Steurbaut, E., Gingerich, P.D., Carnevale, G., Friedman, M.,
691	2020. Large-bodied sabre-toothed anchovies reveal unanticipated ecological diversity in early
692	Palaeogene teleosts. Royal Society Open Science 7, 192260. https://doi.org/10.1098/rsos.192260
693	
694	Carpenter, D., Falcon-Lang, H.J., Benton, M.J., Nelson, W.J., 2011. Fish and tetrapods in the
695	Upper Pennsylvanian (Kasimovian) Cohn Coal Member of the Mattoon Formation of Illinois,
696	United States: systematics, paleoecology, and paleoenvironments. PALAIOS 26, 639-657.
697	https://doi.org/10.2110/palo.2010.p10-121r
698	
699	Carpenter, D.K., Falcon-Lang, H.J., Benton, M.J., Grey, M., 2015. Early Pennsylvanian
700	(Langsettian) fish assemblages from the Joggins Formation, Canada, and their implications for
701	palaeoecology and palaeogeography. Palaeontology 58, 661-690.
702	https://doi.org/10.1111/pala.12164
703	
704	Carpenter, D.K., Falcon-Lang, H.J., Benton, M.J., Henderson, E., 2014. Carboniferous
705	(Tournaisian) fish assemblages from the Isle of Bute, Scotland: systematics and palaeoecology.
706	Palaeontology 57, 1215–1240. https://doi.org/10.1111/pala.12112

707	
708	Catuneanu, O., Wopfner, H., Eriksson, P.G., Cairncross, B., Rubidge, B.S., Smith, R.M.H., and
709	Hancox, P.J., 2005. The Karoo basins of south-central Africa. Journal of African Earth Sciences
710	43, 211–253.
711	
712	Cavin, L., Suteethorn, V., Buffetaut, E., and Tong, H., 2007. A new Thai Mesozoic lungfish
713	(Sarcopterygii, Dipnoi) with an insight into post-Palaeozoic dipnoan evolution. Zoological
714	Journal of the Linnean Society 149, 141–177.
715	
716	Chahud, A., Fairchild, T.R., and Petri, S., 2010. Chondrichthyans from the base of the Irati
717	Formation (Early Permian, Parána Basin), São Paulo, Brazil. Gondwana Research 18, 528–537.
718	
719	Challands, T.J., Smithson, T.R., Clack, J.A., Bennett, C.E., Marshall, J.E.A., Wallace-Johnson,
720	S.M., Hill, H., 2019. A lungfish survivor of the end-Devonian extinction and an Early
721	Carboniferous dipnoan radiation. Journal of Systematic Palaeontology 17, 1825–1846.
722	https://doi.org/10.1080/14772019.2019.1572234
723	
724	Chen, D., Alavi, Y., Brazeau, M.D., Blom, H., Millward, D., Ahlberg, P.E., 2018. A partial
725	lower jaw of a tetrapod from "Romer's Gap." Earth and Environmental Sciences Transactions of
726	the Royal Society of Edinburgh 108, 55–65.
727	

Cione, A. L., Gouiric-Cavalli, S., Mennucci, J.A., Cabrera, D.A., and Freije, R.H., 2010. First 728 729 vertebrate body remains from the Permian of Argentina (Elasmobranchii and Actinopterygii). 730 Proceedings of the Geologists' Association 121, 301–312. 731 Cisneros, J. C., Abdala, F., and Malabarba, M.C., 2005. Pareiasaurids from the Rio do Rasto 732 733 Formation, southern Brazil: biostratigraphic implications for Permian faunas of the Paraná Basin. 734 Revista Brasileira de Paleontologica 8, 13–24. 735 Cisneros, J. C., Abdala, F., Rubidge, B.S., Dentzien-Dias, P.C., and de Oliveira Bueno, A., 2011. 736 737 Dental occlusion in a 260-million-year-old therapsid with saber canines from the Permian of 738 Brazil. Science 331, 1603–1605. 739 Cisneros, J. C., Abdala, F., Atayman-Güven, S., Rubidge, B.S., Celâl Sengör, A.M., and Schultz, 740 741 C.L., 2012. Carnivorous dinocephalian from the middle Permian of Brazil and tetrapod dispersal 742 in Pangaea. Proceedings of the National Academy of Sciences of the United States of America 743 109, 1584–1588. 744 Clack, J.A., Bennett, C.E., Carpenter, D.K., Davies, S.J., Fraser, N.C., Kearsey, T.I., Marshall, 745 746 J.E.A., Millward, D., Otoo, B.K.A., Reeves, E.J., Ross, A.J., Ruta, M., Smithson, K.Z., 747 Smithson, T.R., Walsh, S.A., 2016. Phylogenetic and environmental context of a Tournaisian 748 tetrapod fauna. Nature Ecology and Evolution 1, 0002. https://doi.org/10.1038/s41559-016-0002 749

750	Clack, J.A., Challands, 1.J., Smithson, 1.R., Smithson, K.Z., 2018. Newly recognized
751	Famennian lungfishes from East Greenland reveal tooth plate diversity and blur the Devonian-
752	Carboniferous boundary. Papers In Palaeontology. https://doi.org/10.1002/spp2.1242
753	
754	Clack, J.A., Bennett, C.E., Davies, S.J., Scott, A.C., Sherwin, J.E., Smithson, T.R., 2019. A
755	Tournaisian (earliest Carboniferous) conglomerate-preserved non-marine faunal assemblage and
756	its environmental and sedimentological context. PeerJ 6, e5972.
757	https://doi.org/10.7717/peerj.5972
758	
759	Coates, M.I., and Gess, R.W., 2007. A new reconstruction of Onychoselache traquairi,
760	comments on early chondrichthyan pectoral girdles and hybodontiform phylogeny.
761	Palaeontology 50, 1421–1446. https://doi.org/10.1111/j.1475-4983.2007.00719.x
762	
763	Coates, M.I., Gess, R.W., Finarelli, J.A., Criswell, K.E., Tietjen, K., 2017. A symmoriiform
764	chondrichthyan braincase and the origin of chimaeroid fishes. Nature 541, 208-211.
765	https://doi.org/10.1038/nature20806
766	
767	Coates, M.I., Finarelli, J.A., Sansom, I.J., Andreev, P.S., Criswell, K.E., Tietjen, K., Rivers,
768	M.L., and La Riviere, P.J., 2018. An early chondrichthyan and the evolutionary assembly of a
769	shark body plan. Proceedings of the Royal Society B 285, 20172418. doi:
770	10.1098/RSPB.2017.2418
771	

Cox, B.C., and Hutchinson, P., 1991. Fishes and amphibians from the Permian Pedra de Fogo 772 773 Formation of Northern Brazil. Palaeontology 34, 561–573. 774 775 Cressler, W.L., Daeschler, E.B., Slingerland, R., Peterson, D.A., 2010. Terrestrialization in the 776 Late Devonian: a palaeoecological overview of the Red Hill site, Pennsylvania, USA. Geological 777 Society of London Special Publication 339, 111–128. https://doi.org/10.1144/SP339.10 778 779 Day, M.O., Ramezani, J., Bowring, S.A., Sadler, P.M., Erwin, D.H., Abdala, F., and Rubidge, 780 B.S., 2015. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from 781 the tetrapod record of the Karoo Basin, South Africa. Proceedings of the Royal Society B 282, 782 20150834. 783 Dias, E.V., 1996. New fish (Actinopterygii, Platysomidae) from the upper Permian of Paraná 784 Basin, Brazil. Ameghiniana 33, 463. 785 786 Dias, E.V., 2012. A new deep-bodied fossil fish (Actinopterygii) from the Rio do Rasto 787 788 Formation, Paraná Basin, Brazil. Zootaxa 3912, 1–23. 789 790 Dias-da-Silva, S., 2012. Middle-late Permian tetrapods from the Rio do Rasto Formation, 791 southern Brazil: a biostratigraphic reassessment. Lethaia 45, 109–120. 792 Dixey, F., 1937. The geology of part of the Upper Luangwa Valley, North-Eastern Rhodesia. 793 794 Quarterly Journal of the Geological Society of London 93, 52–74.

795	
796	Drysdall, A. R., and Kitching, J.W., 1963. A re-examination of the Karroo succession and fossil
797	localities of part of the Upper Luangwa Valley. Memoir of the Geological Survey of Northern
798	Rhodesia 1, 1–62.
799	
800	Duffin, C.J., 1985. Revision of the hybodont selachian genus <i>Lissodus</i> Brough (1935).
801	Palaeontographica Abteilung A 188, 105–152.
802	
803	Duffin, C.J., and Ward, D.J., 1993. The Early Jurassic palaeospinacid sharks of Lyme Regis,
804	southern England. Belgian Geological Survey, Professional Paper 264, 53–102.
805	
806	Figueroa, R.T. and Gallo, V., 2017. New chondrichthyan fin spines from the Pedra de Fogo
807	Formation, Brazil. Journal of South American Earth Sciences 76, 398–396.
808	
809	Figueroa, R.T. and Machado, D., 2018. Paleoictiofauna da Formação Pimenteira (Devoniano),
810	Bacia do Parnaíba, Pl, Brazil. Revista Brasileira de Paleontologia 19, 3.
811	
812	Figueroa, R.T., Miguel, R., Gallo, V., 2017. New sarcopterygians from the Carboniferous Poti
813	Formation and from the Permian Rio do Rasto Formation, Brazil. Revista Brasileira de
814	Paleontologia 19, 401–406. https://doi.org/10.4072/rbp.2016.3.05
815	
816	Figueroa, R.T., Weinschütz, L.C., Friedman, M., 2021. The oldest Devonian circumpolar ray-
817	finned fish? Biology Letters 17, 20200766. https://doi.org/10.1098/rsbl.2020.0766

818	
819	Fischer, J., 2008. Brief synopsis of the hybodont form taxon Lissodus Brough, 1935, with
820	remarks on the environment and associated fauna. Freiberger Forschungshefte C 528, 1–23.
821	
822	Flint, S., Turner, P., Jolley, E.J., and Hartley, A.J., 1993. Extensional tectonics in convergent
823	margin basins: an example from the Salar de Atacama, Chilean Andes. Geological Society of
824	America Bulletin 105, 603–617.
825	
826	Friedman, M., 2009. Ecomorphological selectivity among marine teleost fishes during the end-
827	Cretaceous extinction. Proceedings of the National Academy of Sciences of the United States of
828	America 106, 5218-5223. https://doi.org/10.1073/pnas.0808468106
829	
830	Friedman, M., 2015. The early evolution of ray-finned fishes. Palaeontology 58, 213–228.
831	
832	Friedman, M., and Sallan, L.C., 2012. Five hundred million years of extinction and recovery: a
833	Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55, 707–742.
834	
835	Fritsch, A., 1889. Fauna der Gaskhohle und der Kalksteine der Permformoration Böhmens. 2. P.
836	1–114. Prague.
837	
838	Gair, S. H., 1959. The Karroo System and coal resources of the Gwembe District, north-east
839	section. Geological Survey of Northern Rhodesia Bulletin 1, 1–88.
840	

841	Gardiner, B.G., 1962. Namaichthys schroederi Gürich and other Palaeozoic fishes from South
842	Africa. Palaeontology 5, 9–21.
843	
844	Gardiner, B. G., and Schaeffer, B., 1989. Interrelationships of lower actinopterygian fishes.
845	Zoological Journal of the Linnean Society 97, 135–187.
846	
847	Gardiner, B. G., Schaeffer, B., and Masserie, J.A., 2005. A review of the lower actinopterygian
848	phylogeny. Zoological Journal of the Linnean Society 144, 511–525.
849	
850	Gess, R.W., and Whitfield, A.K., 2020. Estuarine fish and tetrapod evolution: insights from a
851	Late Devonian (Famennian) Gondwanan estuarine lake and a southern African Holocene
852	equivalent. Biological Reviews brv.12590. https://doi.org/10.1111/brv.12590
853	
854	Giles, S., Xu, G.H., Near, T.J., Friedman, M., 2017. Early members of "living fossil" lineage
855	imply later origin of modern ray-finned fishes. Nature 549, 265-268.
856	
857	Gillis, J.A., and Donoghue, P.C.J., 2007. The homology and phylogeny of chondrichthyan tooth
858	enameloid. Journal of Morphology 268, 33–49.
859	
860	Ginter, M., 2004. Devonian sharks and the origin of Xenacanthiformes. <i>In</i> Arratia, G., M.V.H.
861	Wilson, and R. Cloutier (eds.) Recent advances in the origin and early radiation of vertebrates.
862	Honoring Hans-Peter Schultze, p. 473-486. (Friedrich Pfeil), München.
863	

864	Glikman, L.S., 1964. Class Chondrichthyes, Subclass Elasmobranchii. In Fundamentals of
865	Paleontology. Acad. Nauk SSSR, 11: Agnatha, Pisces; Obruchev, D.V. (ed.) p. 196-237. (in
866	Russian; p. 292-352 in English translation, Jerusalem, 1967)
867	
868	Goedert, J., Lécuyer, C., Amiot, R., Arnaud-godet, F., Wang, X., Cui, L., Cuny, G., Douay, G.,
869	Fourel, F., Panczer, G., Simon, L., Steyer, J., Zhu, M., 2018. Euryhaline ecology of early
870	tetrapods revealed by stable isotopes. Nature. https://doi.org/10.1038/s41586-018-0159-2
871	
872	Haughton, S. H., 1934. On some Karroo fishes from central Africa. Annals of the South African
873	Museum 31, 97–104.
874	
875	Hodnett, JP. M., Elliott, D.K., and Olson, T.J., 2013. A New Basal Hybodont (Chondrichthyes
876	Hybodontiformes) form the Middle Permian (Roadian) Kaibab Formation of Northern Arizona.
877	New Mexico Museum of Natural History and Science Bulletin 60, 103-108.
878	
879	Hurley, I.A., Mueller, R.L., Dunn, K.A., Schmidt, E.J., Friedman, M., Ho, R.K., Prince, V.E.,
880	Yang, Z., Thomas, M.G., and Coates, M.I., 2007. A new time-scale for ray-finned fish evolution.
881	Proceedings of the Royal Society, B 274, 489–498.
882	
883	Hutchinson, P., 1973. A revision of the redfieldiiform and perleidiform fishes from the Triassic
884	of Bekker's Kraal (South Africa) and Brookvale (New South Wales). Bulletin of the British
885	Museum (Natural History) Geology 22, 233–354.
886	

887	Huxley, T. H., 1880. On the applications of the laws of evolution to the arrangement of the
888	Vertebrata and more particularly of the Mammalia. Proceedings of the Zoological Society of
889	London 1880, 649–662.
890	
891	Ivanov, A.O., Nestell, M.K., Nestell, G.P., and Bell Jr., G.L., 2018. New fish assemblages from
892	the middle Permian from the Guadalupe Mountains, west Texas, USA. Palaeoworld.
893	
894	Johnson, G.D., 1979. Early Permian vertebrates from Texas: Actinopterygii (Schaefferichthys),
895	Chondrichthyes (including north American Pennsylvanian and Triassic Xenacanthodii), and
896	Acanthodii. Unpublished PhD dissertation, Southern Methodist University, Dallas. 653 p.
897	
898	Johnson, G.D., 1981. Hybodontoidei (Chondrichthyes) from the Wichita-Albany Group (Early
899	Permian) of Texas. Journal of Vertebrate Paleontology 1, 1–41.
900	
901	Jubb, R.A., and Gardiner, B.G., 1975. A preliminary catalogue of identifiable fossil fish material
902	from southern Africa. Annals of the South African Museum 67, 381–440.
903	
904	Kemp, T.S., 1975. Vertebrate localities in the Karroo System of the Luangwa Valley, Zambia.
905	Nature 254, 415–416.
906	
907	Kerr, C.D., 1974. Preliminary report on the 1974 Geological Survey of Zambia & Oxford
908	University Museum Joint Palaeontological Expedition to Luangwa Valley. Geological Survey of
909	Zambia, Lusaka. Unpublished.

___ Journal Pre-proof

910	
911	Klein, E.F., 1885. Beiträge zur Bildung des Schädels der Knochenfische, 2. Jahreshefte des
912	Vereins für Vaterländische Naturkunde in Württemberg 42, 205–300.
913	
914	Lamm, ET., 2013. Preparation and sectioning of specimens; pp. 55–160 in K. Padian and ET.
915	Lamm (eds.), Bone Histology of Fossil Tetrapods. University of California Press, Berkeley,
916	California.
917	
918	Langer, M.C., 2000. The first record of dinocephalians in South America: late Permian (Rio do
919	Rasto Formation) of the Paraná Basin, Brazil. Neues Jahrbuch für Geologie und Paläontologie
920	Abhandlungen 215, 69–95.
921	
922	Leu, M.R., 1989. A late Permian freshwater shark from eastern Australia. Palaeontology 32,
923	265–286.
924	
925	Maisey, J.G., 1978. Growth and form of fin spines in hybodont sharks. Palaeontology 21, 657–
926	666.
927	
928	Maisey, J. G., 1982. Studies on the Paleozoic Selachian Genus Ctenacanthus Agassiz: No. 2.
929	Bythiacanthus St. John and Worthen, Amelacanthus, New Genus, Eunemacanthus St. John and
930	Worthen, Sphenacanthus Agassiz, and Wodnika Munster. American Museum Novitates 2722, 1-
931	24.
932	

933	Maisey, J. G., 1989. <i>Hamiltonichthys mapesi</i> , g. & sp. nov. (Chondrichthyes; Elasmobranchii),
934	from the Upper Pennsylvanian of Kansas. American Museum Novitates 2931, 1–42.
935	
936	Maisey, J.G., Bronson, A.W., Williams, R.R., McKinzie, M., 2017a. A Pennsylvanian
937	'supershark' from Texas. Journal of Vertebrate Paleontology 37, e1325369.
938	
939	Maisey, J.G., Miller, R., Pradel, A., Denton, J.S.S., Bronson, A., Janvier, P., 2017b. Pectoral
940	Morphology in <i>Doliodus</i> : Bridging the 'Acanthodian'-Chondrichthyan Divide. Am. Mus. Novit.
941	3875, 1–15.
942	
943	Maisey, J. G., Janvier, P., Pradel, A., Denton, J.S.S., Bronson, A.W., Miller, R., and Burrow,
944	C.J., 2019. <i>Doliodus</i> and Pucapampellids: Contrasting perspectives on stem chondrichthyan
945	morphology. <i>In</i> : Evolution and Development of Fishes. Z. Johanson (ed.). pp. 87–109.
946	
947	Malabarba, M.C., Abdala, F., Weiss, F.E., and Perez, P.A., 2003. New data on the late Permian
948	vertebrate fauna of Posto Queimado, Rio do Rasto Formation, southern Brazil. Revista Brasileira
949	de Paleontologica 6, 49–54.
950	
951	Martine, A.M., Ricardi-Branco, F., Beloto, B., and Jurigan, I. 2020. Suraju itayma: the first
952	Paleozoic fossil scorpion in South America. Journal of South American Earth Sciences 101,
953	102600.

954	May, W.J., 2013. First report of coelacanth and hybodont remains from the Lower Permian
955	Wellington Formation of Oklahoma. Transactions of the Kansas Academy of Science 115, 134-
956	138.
957	
958	McLoughlin, S., 2017. Australia's Permian vertebrates. Australian Age of Dinosaurs 14, 70–75.
959	
960	Mickle, K.E. and Bader, K., 2009. A new platysomid from the Upper Carboniferous of Kansas
961	(USA) and remarks on the systematics of deep-bodied lower actinopterygians. Acta Zoologica
962	90, 211–219.
963	
964	Munster, G., 1843. Nachtrag zu der Beschreibung einiger merkwurdigen Fische aus den
965	Kupferschiefern in V. HeftBeitrage zur Petrefactenkunde, vol. 6, 47–52. Bayreuth.
966	1-70.
967	
968	Murray, A.M., 2000. The Paleozoic, Mesozoic, and early Cenozoic fishes of Africa. Fish and
969	Fisheries 1, 111–145.
970	
971	Nicolas, M., and Rubidge, B.S., 2010. Changes in Permo-Triassic terrestrial tetrapod ecological
972	representation in the Beaufort Group (Karoo Supergroup) of South Africa. Lethaia 43, 45–59.
973	
974	Nielsen, E., 1932. Permo-Carboniferous fishes from East Greenland. Meddel. GrØnland, vol. 86
975	pp. 1–63.
976	

977	Nyambe, I. A., and Dixon, O., 2000. Sedimentology of the Madumabisa Mudstone Formation
978	(Late Permian), Lower Karoo Group, mid-Zambezi Valley Basin, southern Zambia. Journal of
979	African Earth Sciences 30, 535–553.
980	
981	Olive, S., Clément, G., Daeschler, E.B., Dupret, V., 2015. Characterization of the placoderm
982	(Gnathostomata) assemblage from the tetrapod-bearing locality of Strud (Belgium, upper
983	Famennian). Palaeontology 58, 981–1002. https://doi.org/10.1111/pala.12190
984	
985	Olive, S., Ahlberg, P.E., Pernègre, V.N., Poty, É., Steurbaut, É., Clément, G., 2016a. New
986	discoveries of tetrapods (ichthyostegid-like and whatcheeriid-like) in the Famennian (Late
987	Devonian) localities of Strud and Becco (Belgium). Palaeontology 59, 827–840.
988	https://doi.org/10.1111/pala.12261
989	
990	Olive, S., Clément, G., Daeschler, E.B., Dupret, V., 2016b. Placoderm Assemblage from the
991	Tetrapod-Bearing Locality of Strud (Belgium, Upper Famennian) Provides Evidence for a Fish
992	Nursery. PLOS ONE 11, e0161540. https://doi.org/10.1371/journal.pone.0161540
993	
994	Olroyd, S. L., and Sidor, C.A., 2017. A review of the Guadalupian (middle Permian) global
995	tetrapod fossil record. Earth-Science Reviews 171, 583–597.
996	
997	Otoo, B.K.A., Clack, J.A., Timothy, R., Bennett, C.E., Kearsey, T.I., Michael, I., 2018. A fish
998	and tetrapod fauna from Romer's Gap preserved in Scottish Tournaisian floodplain deposits.
999	Palaeontology 1–29. https://doi.org/10.1111/pala.12395

1000	
1001	Pardo, J. D., Lennie, K., and Anderson, J.S., 2020. Can we reliably calibrate deep nodes in the
1002	tetrapod tree? Case studies in deep tetrapod divergences. Frontiers in Genetics 11, 506749.
1003	
1004	Pais de Rezende, J.M., Figueroa, R.T., Ponciano, L.C.M. de O., Gallo, V., 2021. A new Late
1005	Devonian fish fauna from Northeastern Brazil. Historical Biology 1–10.
1006	
1007	Pauliv, V. E., Dias, E.V., and Sedor, F.A., 2012. A new species of sphenacanthid
1008	(Chondichthyes, Elasmobranchii) from the Rio do Rasto Fromation (Parana Basin), southern
1009	Brazil. Revista Brasileira de Paleontologia 15, 243–250.
1010	
1011	Pauliv, V. E., Dias, E.V., Sedor, F.A., and Ribeiro, A.M., 2014. A new Xenacanthiformes shark
1012	(Chondrichthyes, Elasmobranchii) from the Late Paleozoic Rio do Rasto Formation (Parana
1013	Basin), southern Brazil. Anais da Academia Brasileira de Ciências 86, 135–145.
1014	
1015	Pauliv, V. E., Martinelli, A.G., Francischini, H., Dentzien-Dias, P., Soares, M.B., Schultz, C.L.,
1016	and Ribeiro, A.M., 2017. The first western Gondwanan species of <i>Triodus</i> Jordan 1849: a new
1017	Xenacanthiformes (Chondrichthyes) from the late Paleozoic of southern Brazil. Journal of South
1018	American Earth Sciences 80, 482–493.
1019	
1020	Peecook, B.R., 2016. Vertebrate patterns of taxonomic and ecological diversity and recovery
1021	from the End-Permian Mass Extinction: two novel test cases from southern Pangea. Unpublished
1022	PhD Dissertation. University of Washington. 216 pp.

1023	
1024	Peecook, B.R., Steyer, J.S., Tabor, N.J., and Smith, R.M.H., 2018. Updated geology and
1025	vertebrate paleontology of the Triassic Ntawere Formation of northeastern Zambia, with special
1026	emphasis on the archosauromorphs. Pp. 8–38. <i>In</i> C.A. Sidor, and S.J. Nesbitt, eds. Vertebrate
1027	and Climatic Evolution in the Triassic Rift Basins of Tanzania and Zambia, Society of
1028	Vertebrate Paleontology Memoir 17. Journal of Vertebrate Paleontology 37 (6, supplement).
1029	
1030	Peecook, B. R., Angielczyk, K.D., Kammerer, C.F., Lungmus, J.K., McIntosh, J.A., Sidor, C.A.,
1031	Smith, R.M.H., Tolan, S., Viglietti, P.A., and Whitney, M.R., 2020. A new stratigraphic
1032	framework for the Permo-Triassic strata of the mid-Luangwa Basin, Zambia: upper Permian
1033	turnover and Middle-Upper Triassic vertebrate assemblages. Journal of Vertebrate Paleontology
1034	40(supplement), 266.
1035	
1036	Pradel, A., Tafforeau, P., Maisey, J.G., and Janvier, P., 2011. A new paleozoic symmoriiformes
1037	(chondrichthyes) from the late carboniferous of Kansas (USA) and cladistic analysis of early
1038	chondrichthyans. PLoS ONE 6.
1039	
1040	Richards, K.R., Sherwin, J.E., Smithson, T.R., Bennion, R.F., Davies, S.J., Marshall, J.E.A.,
1041	Clack, J.A., 2018. Diverse and durophagous: Early Carboniferous chondrichthyans from the
1042	Scottish Borders. Earth and Environmental Sciences Transactions of the Royal Society of
1043	Edinburgh 108, 67–87.
1044	

____Journal Pre-proof

1045	Richter, M., 2002. A ray-finned fish (Osteichthyes) from the late Permian of the state of Santa
1046	Catarina (Paraná Basin), southern Brazil. Revista Brasileira de Paleontologia 5, 56-61.
1047	
1048	Richter, M., 2005. A new xenacanthid shark (Chondrichthyes) from the Teresina Formation,
1049	Permian of the Paraná Basin, southern Brazil. Revista Brasileira de Paleontologia 8, 149–158.
1050	
1051	Richter, M., and Breitkreuz, C., 1997. Permian fish remains from the Peine Formation of
1052	Northern Chile. Modern Geology 21, 171–18.
1053	
1054	Richter, M., and Langer, M.C., 1998. Fish remains from the upper Permian Rio do Rasto
1055	Formation (Paraná Basin) of southern Brazil. Journal of African Earth Science 27, 158-159.
1056	
1057	Ritchie, A., and Edgecombe, G.D., 2001. An odontogriphid from the upper Permian of Australia.
1058	Palaeontology 44, 861–874.
1059	
1060	Romano, C., Koot, M.B., Kogan, I., Brayard, A., Minikh, A.V., Brinkmann, W., Bucher, H., and
1061	Kriwet, J., 2016. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size
1062	evolution. Biological Reviews 91, 106–147.
1063	
1064	Roopnarine, P. D., Angielczyk, K.D., Olroyd, S.L., Nesbitt, S.J., Botha-Brink, J., Peecook, B.R.,
1065	Day, M.O., and Smith, R.M.H., 2018. Comparative ecological dynamics of Permian-Triassic
1066	communities from the Karoo, Luangwa, and Ruhuhu basins of southern Africa. Pp. 254–272. In
1067	C.A. Sidor, and S.J. Nesbitt, eds. Vertebrate and Climatic Evolution in the Triassic Rift Basins of

1068	Tanzania and Zambia, Society of Vertebrate Paleontology Memoir 17. Journal of Vertebrate
1069	Paleontology 37 (6, supplement).
1070	
1071	Rubidge, B.S., 2005. Re-uniting lost continents — Fossil reptiles from the ancient Karoo and
1072	their wanderlust. South African Journal of Geology 108, 135–172.
1073	
1074	Rubidge, B.S., Erwin, D.H., Ramezani, J., Bowring, S.A., and de Klerk, W.J., 2013. High-
1075	precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon
1076	constraints from the Karoo Supergroup, South Africa. Geology 41(3), 363–366.
1077	
1078	Sallan, L.C., and Coates, M.I., 2010. End-Devonian extinction and a bottleneck in the early
1079	evolution of modern jawed vertebrates. Proceedings of the National Academy of Sciences of the
1080	United States of America 107, 10131–10135.
1081	
1082	Sallan, L.C., and Coates, M.I., 2013. Styracopterid (Actinopterygii) ontogeny and the multiple
1083	origins of post-Hangenberg deep-bodied fishes: Early Carboniferous styracopterid fishes.
1084	Zoological Journal of the Linnean Society 169, 156–199. https://doi.org/10.1111/zoj.12054
1085	
1086	Sallan, L.C., Kammer, T.W., Ausich, W.I., and Cook, L.A., 2011. Persistent predator-prey
1087	dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences of the
1088	United States of America 108, 8335–8338.

1090	Schaeffer, B., 1984.On the relationships of the Triassic-Liassic redfieldiiform fishes. American
1091	Museum Novitates 2795, 1–18.
1092	
1093	Schultze, HP., 2016. Scales, enamel, cosmine, ganoine, and early osteichthyans. Comptes
1094	Rendus Palevol 15, 87–106.
1095	
1096	Sennikov, A.G. and Golubev, V.K, 2017. Sequence of Permian tetrapod faunas of Eastern
1097	Europe and the Permian-Triassic ecological crisis. Paleontological Journal 51, 600-611.
1098	
1099	Sidor, C.A., and Nesbitt, S.J., 2018. Introduction to vertebrate and climatic evolution in the
1100	Triassic rift basins of Tanzania and Zambia. Pp. 1–7. In C.A. Sidor, and S.J. Nesbitt, eds.
1101	Vertebrate and Climatic Evolution in the Triassic Rift Basins of Tanzania and Zambia, Society
1102	of Vertebrate Paleontology Memoir 17. Journal of Vertebrate Paleontology 37 (6, supplement).
1103	
1104	Sidor, C.A., Vilhena, D.A., Angielczyk, K.D., Huttenlocker, A.K., Nesbitt, S.J., Peecook, B.R.,
1105	Steyer, J.S., Smith, R.M.H., and Tsuji, L.A., 2013. Provincialization of terrestrial faunas
1106	following the end-Permian mass extinction. Proceedings of the National Academy of Sciences of
1107	the United States of America 110, 8129–8133.
1108	
1109	Sidor, C.A., Angielczyk, K.D., Smith, R.M.H., Goulding, A.K., Nesbitt, S.J., Peecook, B.R.,
1110	Steyer, J.S., and Tolan, S., 2014. Tapinocephalids (Therapsida: Dinocephalia) from the Permian
1111	Madumabisa Mudstone Formation (Lower Karoo, Mid-Zambezi Basin) of southern Zambia.
1112	Journal of Vertebrate Paleontology 34, 980–986.

1113	
1114	Simpson, L.C., 1974. <i>Acanthodes</i> and <i>Hybodus</i> in the Permian of Texas and Oklahoma. Journal
1115	of Paleontology 48, 1291–1293.
1116	
1117	Smith, R.M.H., Rubidge, B.S., and van der Walt, M., 2012. Therapsid biodiversity patterns and
1118	paleoenvironments of the Karoo Basin, South Africa. Pp. 30-62. In A. Chinsamy-Turan, ed.
1119	Forerunners of mammals: radiation, histology, biology. Indiana University Press, Indianapolis.
1120	
1121	Smith, R.M.H., Rubidge, B.S., Day, M.O., and Botha, J., 2020. Introduction to the tetrapod
1122	biozonation of the Karoo Supergroup. South African Journal of Geology 123, 131-140.
1123	
1124	Smithson, T.R., Wood, S.P., Marshall, J.E.A., Clack, J.A., 2012. Earliest Carboniferous tetrapod
1125	and arthropod faunas from Scotland populate Romer's Gap. Proceedings of the National
1126	Academy of Sciences of the United States of America 109, 4532–4537.
1127	
1128	Smithson, T.R., Richards, K.R., Clack, J.A., 2016. Lungfish diversity in Romer's Gap: reaction
1129	to the end-Devonian extinction. Palaeontology 59, 29-44.
1130	
1131	Tedesco, P.A., Beauchard, O., Bigorne, R., Blanchet, S., Buisson, L., Conti, L., Cornu, J.F.,
1132	Dias, M.S., Grenouillet, G., Hugueny, B., Jézéquel, C., Leprieur, F., Brosse, S., Oberdorff, T.,
1133	2017. Data Descriptor: A global database on freshwater fish species occurrence in drainage
1134	basins. Scientific Data 4, 1–6.
1135	

1136	Toledo, C.E.V., and Bertini, R., 2005. Occurrences of the fossil Dipnoiformes in Brazil and its
1137	stratigraphic and chronological distributions. Revista Brasileira de Paleontologica 8, 47–56.
1138	
1139	Vega-Dias, C., Dias, E.V., Richter, M., 2000. Actinopterygian remains from the Rio do Rasto
1140	Formation, Upper Permian of the Paraná Basin, Brazil. Acta Geol. Leopoldensia 23, 21–31.
1141	
1142	Viglietti, P.A., Smith, R.M.H., Angielczyk, K.D., Kammerer, C.F., Fröbisch, J., and Rubidge,
1143	B.S., 2016. The <i>Daptocephalus</i> Assemblage Zone (Lopingian), South Africa: a proposed
1144	biostratigraphy based on a new compilation of stratigraphic ranges. Journal of African Earth
1145	Sciences 113, 1–12.
1146	
1147	Whitenack L.B., Simkins, D.C., and Motta, P.J., 2011. Biology meets engineering: The structural
1148	mechanics of fossil and extant shark teeth. Journal of Morphology 272, 169–179.
1149	
1150	Williams, M.E., 2001. Tooth Retention in Cladodont Sharks: With a Comparison between
1151	Primitive Grasping and Swallowing , and Modern Cutting and Gouging Feeding Mechanisms.
1152	Journal of Vertebrate Paleontology 21, 214–226.
1153	
1154	Wilson, C.D., Pardo, J.D., Anderson, J.S., 2018. A primitive actinopterygian braincase from the
1155	Tournaisian of Nova Scotia. Royal Society Open Science 5, 171727.
1156	https://doi.org/10.1098/rsos.171727
1157	

1158	Würdig-Maciel, N.L. 1975. Ichthyodontes e ichthyodorulitos (Pisces) da Formação Estrada Nova
1159	e sua aplicação na estratigrafía do Grupo Passa Dois. Pesquisas 5, 7–85.
1160	
1161	Xu, GH., Gao, KQ., and Finarelli, J.A., 2014. A revision of the Middle Triassic scanilepiform
1162	fish Fukangichthys longidorsalis from Xinjiang, China, with comments on the phylogeny of the
1163	Actinopteri. Journal of Vertebrate Paleontology 34, 747–759.
1164	
1165	Yemane, K., and Kelts, K., 1990. A short review of palaeoenvironments for Lower Beaufort
1166	(Upper Permian) Karoo sequences from southern to central Africa: A major Gondwana
1167	lacustrine episode. Journal of African Earth Sciences 10, 169–185.
1168	
1169	Zangerl, R., 1981. Chondrichthyes I. Paleozoic Elasmobranchii. Handbook of Paleoichthyology,
1170	3A. (Stuttgart: Gustave Fischer Verlag).

1171	Figure Legends
1172	
1173	Fig 1. Map of Permo-Triassic basins in Zambia with the positions of the upper Permian (A) and
1174	middle Permian (B) fossil fish localities marked with circles, with the stratigraphic position of
1175	the Madumabisa Mudstone Formation below. Approximate ages of Madumabisa Mudstone fossil
1176	assemblages based on biostratigraphic correlation with Karoo Basin Assemblage Zones, with
1177	lighter shading denoting a more confident correlation. Black stars indicate radiometric dates for
1178	fossiliferous horizons in the Karoo Basin (Rubidge et al. 2013).
1179	
1180	Fig 2. Upper Permian chondrichthyan fin spines from the upper Madumabisa Mudstone
1181	Formation (Luangwa Basin; Lopingian). NHMUK PV P75419, photographs of xenacanthiform
1182	fin spine in anterior (A), right lateral (B), posterior (C), and left lateral (D) views. Magnified
1183	photographs of lateral costae (E), and posterior surface with posterior denticles along the lateral
1184	margins (F). NHMUK PV P75423, photograph of ornamented elasmobranch dorsal fin spine in
1185	anterior (G) and right lateral (H) views. NHMUK PV P75421a, base of dorsal fin spine in left
1186	lateral (I) and right lateral (J) views.
1187	
1188	Fig 3. Detailed images of the euselachian (possibly synechodontiform) fin spine NHMUK PV
1189	75423, showing anterior (A) and lateral (B) views of ornamentation. Scale = 2 mm.
1190	
1191	Fig 4. Cross sectional breaks through NHMUK PV 75420 (A), NHMUK 75422a (B) and 75422b
1192	(C) showing concave posterior surfaces and tubular dentine in NHMUK PV 75420. Detail of

1193	ornamentation of NHMUK PV 75420 (D). A, C, and D posterior to top, B anterior to top. Scale
1194	= 2 mm.
1195	
1196	Fig 5. Detailed images of the probable xenacanthid fin spine NHMUK PV 75419, showing fine
1197	costae (A) in lateral view, and posterior tubercles (B) in posterior view. Scale = 2 mm.
1198	
1199	Fig 6. Upper Permian Actinopterygii indet. fossils from the upper Madumabisa Mudstone
1200	Formation (Luangwa Basin; Lopingian). NHMUK PV P79415a, actinopterygian maxilla. (A)
1201	Specimen photograph with maxilla bone and natural mold in outline, and line drawing (B). (C)
1202	Photograph highlighting preserved tooth with its position on the maxilla noted and line drawing
1203	(D). NHMUK PV P79415a, actinopterygian dermal bones. (E) Specimen photograph with
1204	dermal cranial bone and natural mold in outline, and line drawing (F). NHMUK PV P75399,
1205	actinopterygin articulated scales, fin rays, and body outline. (G) Line drawing of articulated body
1206	section, and specimen photograph with outline (H).
1207	
1208	Fig 7. Upper Permian actinopterygian scales showing different scale morphotypes from the
1209	upper Madumabisa Mudstone Formation (Luangwa Basin; Lopingian). (A) NHMUK PV
1210	P75415b and (B) NHMUK PV P75416b showing Morphotype 1. (C) NHMUK PV P75416b and
1211	(D) NHMUK PV P75415c showing Morphotype 2. (E) NHMUK PV P75416a showing
1212	Morphotype 3. (F) NHMUK PV P75416a opposite side showing Morphotype 4.
1213	
1214	Fig 8. Middle Permian Actinopterygii indet. (NHCC LB597) fossils from the lower
1215	Madumabisa Mudstone Formation (Mid-Zambezi Basin; Guadalupian). (A) Isolated scale and

interpretative drawing in external view. (B) Group of articulated scales in external view. (C)
Thin section of entire scale under polarized light. (D) Higher magnification view of orthodentine
and capping tissues, with cellular bone visible near the bottom of the image. Anatomical
abbreviations: b, bone; d, dentine; e, enamel; vc, vascular canal. Scale bars represent 1 cm (A
and B), 1 mm (C) and 100 um (D).

John Marie Colonia de la colon

Highlights

FRESHWATER FISH FAUNAS FROM TWO PERMIAN RIFT VALLEYS OF ZAMBIA, NOVEL ADDITIONS TO THE ICHTHYOFAUNA OF SOUTHERN PANGEA

Peecook, Bronson, Otoo, & Sidor

- New freshwater vertebrate occurrences for the well-sampled Permian of Zambia
- Freshwater sharks (synechodontiform, xenacanth, hybodontiform) & ray-finned fishes
- Freshwater ichthyofaunas show patterns of faunal homogeneity across Permian Pangaea
- Zambian ichthyofaunas compared with Chile, Brazil, South Africa, & Australia

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships hat could have appeared to influence the work reported in this paper.
☐The authors declare the following financial interests/personal relationships which may be considered is potential competing interests: