2 Let A= 11,2,3,4} B= {a,b,c,d} detamine whether the function from A -> B are invertible or not

1. {(1,a) (2,a) (3,c) (4,d)} $9: \{(1,a)(2,c)(3,a)(4,d)\}$

 501° $\{09(1) = \{\{q(1)\} = \{\{a\}\}$ insufficient data

7/2/2020.

3. Let A=B=R, the set of all real no.s and the j: A > B and g: B > A be defined by f(n): 2n3-1 V. n E A g(y)= (y+1) 3 V y E B ST fand g one the inverses of each other

 601° : $609(9) = 1{9(9)} = 1{\frac{9+1}{2}}^{3}$ $= 2\left(\frac{y+1}{2}\right)^{8} = 2\left(\frac{y+1}{2}\right)^{8} - 1$

> : y = I8. $gof(n) = g\{f(n)\} = g\{2n^3 - 1\}$

Hence they are inverse of each other $\left\{\frac{2x^3-1+r}{2}\right\}^{\frac{1}{3}}$, $n=I_A$ This shows $1-\frac{1}{2}$

This shows of and g are invertible function.

Theorem: 1

If a function $f: A \rightarrow B$ is invatible then it has unique invase, further if f(a) = b then $f^{-1}(b) = a$

Theorem: 2

A function f: A > B is invertible iff it is one to Dne and onto

Theorem.

Let A and B be two finite sets with IAI=1BI and f be the function from A to B then the following statements are equivalent i. f is one to one.

ii. I is onto

iii. ¿ is invertible

Theorem.

If $f:A \rightarrow B$ and $g:B \rightarrow C$ are invertible function then $g \circ f:A \rightarrow C$ is an invertible function. and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

1. Let
$$A = B = C = R$$
 and $f : A \rightarrow B$ and $g : B \rightarrow C$ are defined by $f(a) = 2a + 1$ and $g(b) = \frac{1}{3}b$
 $\forall a \in A . b \in B$ then compute got and show that got is invertible. Also find $(got)^{-1}$

50/n:
$$90f(a) = 9\{f(a)\}$$

= $9\{2a+1\}$
= $1_2(2a+1)$

We have
$$f(a) = b \Rightarrow f'(b) = a$$

 $\Rightarrow 2a+1 = b$
 $a = b-1$
 $a = b-1$

$$111^{19}$$
 $g(b) = C = 3C$
 $\frac{1}{3}b = C$ $\frac{1}{3}c$

Now let us find $(901)^{-1}(-109)^{-1}(0)$ $1^{-1}(9)(0)$

$$= \frac{3C-1}{2}$$

2 Consider a function $f: A \rightarrow B$ defined by $f(a) = \sqrt{a+1}$ $\forall a \in A$ show that f is invertible and determine f^{-1} soln let us consider $a_1, a_2 \in A$ $f(a_1) = \sqrt{a_1+1}$ and $f(a_2) = \sqrt{a_2+1}$ $\Rightarrow f(a_1) = f(a_2)$ $\sqrt{a_1+1} = \sqrt{a_2+1}$ $\Rightarrow a_1 = a_2$ f is one to one

Take any beB then b = 1(a) $= > b = \sqrt{a+1}$ $b^{2} = a+1$ $b^{2}-1 = a$

Since $b \ge 0$ and $b^2 - 1 \ge -1$

 $\Theta \rightarrow A : \{n \mid n \text{ is real } n \geq -1\}$ $B = \{n \mid n \text{ is real. and } n \geq 0\}.$

Thus every $b \in B$ has $a = b^2 - 1$ as its preimage in A. and $a = b^2 - 1$ as its preimage. This proves $a = b^2 - 1$ is onto.

This proves $a = b^2 - 1$ is invertible $a = b^2 - 1$ $a = b^2 -$

MATHEMATICAL LOGIC

$$(PVQ) \equiv (QVP)$$

 $N(PVQ) \equiv NPNNQ$
 $PV(QVI) \equiv (PVQ)VI$
 $PV(QNI) \equiv (PVQ) \land (PVI)$.
 $N(P \rightarrow Q) \equiv p \Rightarrow P \land NQ$
Suppose $P \rightarrow Q$ is given preposition
i. $Q \rightarrow P \rightarrow Converse$
ii. $NP \rightarrow NQ \rightarrow inverse$

iii. $Ng \rightarrow Np \rightarrow Contrapositive.$

Conjuctive simplification: $(p \land q) \Rightarrow p$ Disjunctive Amplification $p \Rightarrow (p \lor q)$

 $P,q,1 \qquad P \rightarrow q$ $\frac{q \rightarrow r}{p \rightarrow r}$ $P \land (p \rightarrow q) = > q$ $(p \rightarrow q) \land nq \Rightarrow p$

1. Let p and 9 be primitive states for which $P \rightarrow 9$ is false. Determine the buth values of the foll compound proposition.

i. p^9 ii. ~pv9 iii. ~9 -> ~p

P $9 p \rightarrow 9 p \rightarrow 9$ $\sim p \vee 9$ $\sim q \rightarrow \sim p$

T T

T F F F F

7

2. PT $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology

	9	J	-	200	9-1	(p-	→9)n(9	>1) b > 1.	Given
T	T	T		T	T	·	7	7	Pir
								F	
T	F	T		F	T		F		T
					T			F	T
F	T	T		T	T		T	T	Separation of the second
f	T	F		T	F		F	T	T
	F			T	T		T	T	T
-	F	F		T	T		T	T	T

3. $[p \rightarrow (q \land r)] (=) [(p \rightarrow q) \land (p \rightarrow r)]$ wring truth table 501° .

Hence verified