1. Gün1. Ders:Bulaşıcı hastalıkmodellemesine giriş

Bulaşıcı hastalık dinamiklerinin R'de modellenmesi üzerine kısa kurs

Ankara, Türkiye, Eylül 2025

Dr Juan F Vesga

Oturumun amaçları

- Bulaşıcı hastalık modelleriyle ne demek istediğimizi anlamak
- Bulaşıcı hastalık dinamiklerine ait temel kavramları tanıtmak
- Mevcut ID modeli türleri hakkında bilgi sahibi olmak

[Aslında tüm modeller yanlıştır, ancak bazıları faydalıdır]

Modeller nelerdir

- Bazı modeller, daha fazla veri topladıkça sonuç çıkarmayı amaçlar
 - Çoğu istatistiksel model -> verilerden ortaya çıkan model!
- Bazı modellerin amacı bir olgunun arkasındaki mekanizmayı tanımlamaktır
 - Matematiksel modeller
 - Örneğin, hava, fizik, mühendislik, ekoloji ve bulaşıcı hastalıklar için kullanılır!

Bu olguyu anlamalıyız

Hava: oldukça öngörülebilir -> fizik yasaları

Bulaşıcı hastalıklar -> çok karmaşık!

- Patojen biyolojisi
- Klinik özellikler
- Konak davranışı
- Popülasyon dinamikleri

Tanımı gereği multidisipliner bir alan (hepiniz hoşgeldiniz!)

Peki bir ID modeli nasıl görünür?

Bu siyah kutuyu açalım (üç günde!)

Peki bir ID modeli nasıl görünür?

tanımlanan

olgumuzun tasarımı

Gerçekte nasıl göründüğü...

dikkatlice seçilmiş veriler

Ne tür veri girişleri?

Açıklamak istediğimiz mekanizmayı anladığımıza göre:

- Model girdileri, model tasarımımızı birbirine bağlayan bilgi (gerçek) parçalarıdır.
- Bu bağlayıcı bağlantıları yorumlamak için istatistiklere ihtiyacımız vardır.

Enfekte olmuş kişilerin semptomatik hale geldiği bir kohort düşünelim

$$\theta = \frac{1}{mean\ incubation\ period}$$

Matematiksel bir model tasarlamak için neye ihtiyacımız var?

- Biraz matematik
- Bölmeli modeller için sıradan diferansiyel denklemler (ODE'ler) kullanırız
- Biraz istatistik: model girdilerini özetlemek ve model sonuçlarını işlemek için

Sıradan diferansiyel denklemler (ODE'ler)

 Bir sistem değişikliğini tanımlamak için kullanılan matematik, örneğin: hız (mesafe/zaman):

- 70 mph'lik sabit bir hızla 2 saatte ne kadar mesafe gidebiliriz?
 Çözüm:
- $t(2) = 70 \times 2 = 140 \text{ miles}$
- Bunu bulaşıcı hastalıklara uygulayarak da gözden geçireceğiz!

Peki ya bölmeler?

- Önceki örnek tek bir fonksiyon gerektirir
- Birden fazla durumu olan ODE sistemleriyle ilgileniyoruz

 Bu sistemin bu tür bir olgu için ortalama davranışı tanımladığı açıktır

Model çıktısını nasıl üretiriz?

Önceki sistemimize geri dönün

$$\frac{dI}{dt} = -I(t)\theta$$

$$\frac{dS}{dt} = I(t)\theta$$

Yazılım (R) kullanarak sayısal entegrasyon!

Çıktı nedir?

- Belirli bir zaman diliminde sistemimizin entegrasyonudur
- Durum değişkenlerinin (/ ve Sy) değerini 60 günlük süre için tahmin ederiz
- Sonuçlarımızı basitleştirilmiş sistemlerden ve varsayımlardan elde ettiğimiz için öngörmeyiz
- Öngörme istatistikler içindir!

Peki ya sonuçlarımızdaki belirsizlik?

Matematiksel model türleri

- Deterministik
- Aynı model parametresi seti her zaman aynı sonuçları verecektir
- Sonuçlar sistemde verilen parametre değerlerine göre belirlenir
- Yani enfekte bir kişi her zaman ortalama hızda semptom geliştirecektir θ .
- Bunlara odaklanacağız!!

- Stokastik
- Aynı model parametresi seti farklı sonuçlar verebilir
- Sonuçlar, geçiş olaylarında girdi ve rastgeleliği birleştirir
- Örn. enfekte olmuş bir kişi semptom geliştirebilir veya geliştirmeyebilir.

Matematiksel model türleri

- Bölmeli
- Popülasyon seviyesinde ilgi sistemi tanımlanır
- Bir olgunun ortalama davranışını anlamak için faydalıdır
- Yorumlaması kolaydır
- Bazen kodlamak zordur!

- Bireysel
- Kişileri simüle eder
- Kodlaması daha kolaydır
- Yorumlaması daha zordur
- Pahalıdır
- Çok daha fazla veri gerektirir

Bu kısa kursa odaklanın

Konumuz matematik değil halk sağlığı!

 Bulaşıcı hastalıkları anlamak için matematik ve istatistikten faydalanmak istiyoruz

• Bu yöntemler mevcut halk sağlığı açısından önemli bir rol oynar ve küresel sağlığın iyileştirilmesine yardımcı olabilir!

Bulaşma modellerinin halk sağlığındaki rolleri

Sağlık hizmetlerinin sunulmasını destekler

Bilgiye dayalı karar verme

Temel bilim: politika oluşturmak için gerekli kanıtlara katkıda bulunur

Şimdiye kadar bilmemiz gerekenler

- Matematiksel model nedir
- Modellerin yapı taşları nelerdir
- Bir modeli tanımlamak için kullanılan temel matematik nedir
- Ne tür matematiksel modeller vardır
- Modeller halk sağlığına nasıl katkıda bulunur