Smart Audio
Sensors: Anomalous
Detection for IIoT

Eric Leclair

What is a Smart Audio Sensor?

 Everyday devices are becoming more powerful and highly connected everyday, allowing us to push more computation towards the IoT edge

 A smart audio sensor could be any form of edge-connected IoT device that combines an audio sensor with local computation to record and preprocess data

Why Smart Audio Sensors?

 Greater sense of automation in Industry 4.0

Early detection of problems in machinery

Highly applicable, and easy to install

How can we Make Smart Audio Sensors?

 Through tinyML we can achieve distributed intelligence, by bringing machine learning to microcontrollers and other IoT edge devices

 We can then devise a new framework for IoT edge devices, implementing machine learning for audio signals

The Smart Audio Sensor Framework

Visualizing Audio

Abnormal signal

Machine #id 00 - 2D representation of the wave forms

Using Fourier Transforms

How do Humans Perceive Audio?

 Humans perceive audio logarithmically, hence why audio is measured in decibels (dB)

$$P_{dB} = 10log_{10} \left(\frac{P}{P_{res}}\right)$$

 We can take a logarithmic transformation of the power spectrum, to help extrapolate audio features and carriers

The Mel Scale

 However decibels are not good enough to model human hearing, resulting in the Mel Scale:

$$m=2595\log_{10}\left(1+rac{f}{700}
ight)$$

 The Mel Scale aims to correct for our perception of pitch, in equal intervals, however, this can also help a computer dilate the spectrogram for analysis

Autoencoder Topology

 Autoencoders are a unique form of artificial neural networks, that contain the same amount of inputs and outputs

 Through an Encoder and Decoder stage we can 'compress' information into a smaller dimension and train it on its ability to reconstruct the signal

Using Autoencoders for Anomalous Detection

 Through autoencoders we can reconstruct our signal from a lower dimensional information based on the features of our input

 This can then be compared with the actual data stream, highlighting any anomalies

Anomalous Detection in an Audio Sample

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 320)]	0
dense (Dense)	(None, 128)	41088
dense_1 (Dense)	(None, 128)	16512
dense_2 (Dense)	(None, 16)	2064
dense_3 (Dense)	(None, 128)	2176
dense_4 (Dense)	(None, 128)	16512
dense_5 (Dense)	(None, 320)	41280

Total params: 119,632 Trainable params: 119,632 Non-trainable params: 0

Layer (type)	Output Shape	Param #
input_7 (InputLayer)	[(None, 64, 32, 1)]	0
conv2d_16 (Conv2D)	(None, 64, 32, 32)	320
max_pooling2d_10 (MaxPoolin g2D)	(None, 32, 16, 32)	0
conv2d_17 (Conv2D)	(None, 32, 16, 32)	9248
<pre>max_pooling2d_11 (MaxPoolin g2D)</pre>	(None, 16, 8, 32)	0
conv2d_transpose_10 (Conv2D Transpose)	(None, 32, 16, 32)	9248
conv2d_transpose_11 (Conv2D Transpose)	(None, 64, 32, 32)	9248
conv2d_18 (Conv2D)	(None, 64, 32, 1)	289

Total params: 28,353 Trainable params: 28,353 Non-trainable params: 0