

Réduction de modèle

Vincent Vadez

Dorea Technology

vincent.vadez@dorea.fr

Qu'évoque la réduction de modèle pour vous?

Compressed Image, k = 128

 Vous en avez déjà tous fait, peut-être sans le savoir!
 (SVD projet MAM3, interpolation, changement de base réduite d'un système linéaire, développement de Taylor...)

original, k = 512100 200 300 100 200

Contexte

• Réduire la <u>complexité</u> de calcul des modèles mathématiques dans les simulations numériques

 Réduction de la <u>dimension d'espace d'état</u> ou des <u>degrés de liberté</u> associés au modèle, une approximation du modèle d'origine est calculée, communément appelée modèle d'ordre réduit

Contexte

 Modèles réduits: utiles quand impossible de mener des simulations numériques avec modèle complet

 Causes: limitations des ressources de calcul ou aux exigences du paramètre de simulation (temps réel, requêtes multiples)

De multiples applications

• Premiers travaux : Lumley, J.L. (1967). The Structure of Inhomogeneous Turbulence

Fig. 2. F-16 aeroelastic model. (a) Detailed FE structural model and (b) fluid surface grid.

Full order model of an F16 fighter-aircraft with over 2.1 million degrees of freedom, reduced to a model of just 90 degrees of freedom (*Lieu, T.; Farhat, C.; Lesoinne, M. (2006).* "Reduced-order fluid/structure modeling of a complete aircraft configuration". Computer Methods in Applied Mechanics and Engineering. 195 (41–43): 5730–5742.)

J

De multiples applications

Réduction de modèle géométrique d'un maillage surfacique

De multiples applications

SOFA Inria Lille

Contraintes

Modèle réduit → erreur d'approximation

 Besoin de conserver propriétés et caractéristiques du modèle complet

 Modélisation sur ordre réduit se doit d'être efficace et robuste au niveau informatique

A retenir

Modèle initial trop volumineux de par le nombre de pas de temps, le nombre de degrés de liberté et/ou le nombre de paramètres. Ceci entraîne des limitations en termes de moyens matériels (CPU, mémoire), humains (préparation et analyse des résultats) et financiers.

Motivations

- Maillage d'objets (triangles ou tétraèdres) indispensable pour calculs physiques via éléments finis
- Inconvénients: très chronophage (plus le nombre d'éléments du maillage augmente, plus le calcul physique est fiable, mais plus le temps de calcul augmente).
- En laboratoire: précision au détriment du temps de calcul

En entreprise: compromis entre temps de calcul et precision souhaitée (modèle d'origine rarement acceptable niveau temps de calculs...)

Exemple: calcul radiatif d'un satellite

 Problème quadratique en fonction du nombre d'éléments de maillage surface n (O(n²)). Une pièce (~1% du sat) peut avoir plusieurs millions de faces. (considerer que chaque face voit potentiellement les n-1 autres).

$$\dot{Q}_{1 o 2} = \sigma A_1 F_{1 o 2} (T_1^4 - T_2^4)$$

Calculs infaisables pour du temps réel → nécessité de réduction

Possibilités d'ajustement

• Simplifier/approximer le modèle sans trop le degrader (pour ne pas avoir des modèles totalement différents)

Autre solution: découper le modèle en sous-systèmes

Résumé du principe

Décomposition en sous-systèmes

• Découpage du système en noeuds (isovaleurs ou isoquantités) en fonction de la géométrie du modèle et de l'environnement (mais requiert l'expertise métier, jusqu'à l'apprentissage via machine learning?)

Décomposition en sous-systèmes

- Intégration des sous-modèles avec plusieurs modes dans un modèle complexe (très utilisé en aéronautique, aérospatial, aérodynamique, électronique intégrée, biologie, automobile...)
- Remarque: facilité d'intégration du modèle réduit dans des plateformes de simulation de systèmes (Simulink, Abaqus, Modelica, AMEsim etc) -> très utilisées pour la conception de systèmes complexes

Jumeaux numériques (digital twins)

• Représentation numérique de l'objet permettant d'effectuer des simulations afin d'anticiper le comportement de l'objet <u>en temps réel</u>.

• Exemples d'application: satellite, moteurs d'avion, effet d'un médicament sur un patient, éoliennes, navires, chauffage/ventilation,

locomotives...

État de l'art de la réduction du modèle mathématique (non exhaustif)

- Méthode de la synthèse modale
- Méthodes de sous-structuration
- Méthodes optimales
- Réduction pour des problèmes non-linéaires

Méthode de la synthèse modale

• Extraction préliminaire des valeurs propres et des vecteurs propres de l'équation différentielle sans second membre : x'=Ax

- Valeurs propres et vecteurs propres : pulsations propres et modes propres en dynamique des structures et comme étant les constantes de temps et les modes propres de diffusion en thermique
- Différentes méthodes: Jacobi, puissance itérée, itération de LANCZOS, la méthode d'itération sur les sous-espaces

Exemple: puissance itérée

Soit la matrice $A \in M_{n,n}(IR)$, ave A diagonalisable. Supposons que A possède n valeurs propres telles que $|\lambda_1| < |\lambda_2| < \cdots$ $< |\lambda_n|$ et soient $\mathbf{u_1}, \mathbf{u_2}, \ldots, \mathbf{u_n}$ les vecteurs propres associés. Alors, si $\mathbf{x_0}$ est un vecteur quelconque:

$$\mathbf{x_0} = \mathbf{a_1}\mathbf{u_1} + \mathbf{a_2}\mathbf{u_2} + \cdots + \mathbf{a_n}\mathbf{u_n}$$

Supposons que $\mathbf{a_n} \neq 0$, on calcule la suite $\mathbf{x_{k+1}} = A\mathbf{x_k}$
ie: $\mathbf{x_k} = A^k\mathbf{x_0} = \lambda_1^k \mathbf{a_1}\mathbf{u_1} + \lambda_2^k \mathbf{a_2}\mathbf{u_2} + \cdots + \lambda_n^k \mathbf{a_n}\mathbf{u_n}$
 $= \lambda_n^k ((\lambda_1/\lambda_n)^k \mathbf{a_1}\mathbf{u_1} + \cdots + (\lambda_{n-1}/\lambda_n)^k \mathbf{a_{n-1}}\mathbf{u_{n-1}} + \mathbf{a_n}\mathbf{u_n})$

Si i \neq n, $(\lambda_i/\lambda_n)^k \rightarrow 0$ donc le terme dominant devient $\lambda_n^k a_n \mathbf{u_n}$

Exemple: puissance itérée

Plus grande valeur propre: $|\lambda_n| \approx (\mathbf{x_{k+1}}/||\mathbf{x_k}||)$

Vecteur propre associé: **u**_n ≈ **x**_k

On normalise la suite:

$$\mathbf{b_k} = (\mathbf{x_k} / || \mathbf{x_k} ||)$$
 et $\mathbf{x_{k+1}} = A\mathbf{b_k}$

On obtient: ${}^{t}\mathbf{b}_{k}\mathbf{x}_{k+1} = {}^{t}\mathbf{b}_{k}A\mathbf{b}_{k} -> \lambda_{n}{}^{t}\mathbf{b}_{k}\mathbf{b}_{k} = \lambda_{n}$

Exemple: puissance itérée

Algorithme:

fin

Exemple: puissance inverse

Problème: recherche de la valeur propre de plus petit module

- -> Revient à appliquer puissance itérée à A-1
- 1) PA = LU (décomposition LU de A)
- 2) On construit les suites $\mathbf{b_k}$ et λ_k pour :
 - 1) Résoudre $LUx_{k+1} = Pb_k$
 - 2) On pose $\mathbf{b_k} = \mathbf{x_k} / ||\mathbf{x_k}||$ et $\lambda_k = 1/^t \mathbf{x_{k+1}} \mathbf{b_k}$
- 3) Jusqu'à convergence, ie: $|\lambda_{k+1} \lambda_k| < epsilon$

Exemple: puissance inverse

Données : A, P, L, U tels que PA = LU, \overrightarrow{x}_0 et ε

Algorithme:

$$\overrightarrow{x} \leftarrow \overrightarrow{x}_0$$
 $\lambda_{anc} \leftarrow 1$

$$\lambda \leftarrow 0$$

tant que $|\lambda - \lambda_{anc}| > arepsilon$ faire

$$\overrightarrow{b} \leftarrow \frac{\lambda}{\|\overrightarrow{x}\|}$$

résoudre $LU\overrightarrow{x} = P\overrightarrow{b}$

$$\lambda \leftarrow \frac{1}{\stackrel{\text{t}}{\overrightarrow{x}}\overrightarrow{b}}$$

retourner λ et \overline{b}

fin

Méthodes de sous-structuration

• Diviser la structure principale en sous-structures puis approcher champ de solution de chaque sous-structure sur la base de ses modes propres

 Exemples: méthodes de Guyan, Craig Bampton, modes de composantes etc.

Exemple: méthode de Guyan

$$K.d = f$$

avec **K** matrice de raideur, **f** le vecteur force et **d** le vecteur déplacement En séparant les degrés de liberté master/slave, il vient:

$$egin{bmatrix} \mathbf{K}_{mm} & \mathbf{K}_{ms} \ \mathbf{K}_{sm} & \mathbf{K}_{ss} \end{bmatrix} igg\{ egin{matrix} \mathbf{d}_m \ \mathbf{d}_s \end{matrix} igg\} = igg\{ egin{matrix} \mathbf{f}_m \ \mathbf{0} \end{matrix} igg\}$$

Puis:
$$\left\{ egin{array}{l} \mathbf{d}_m \ \mathbf{d}_s \end{array}
ight\} = \left[egin{array}{c} \mathbf{I} \ -\mathbf{K}_{ss}^{-1}\mathbf{K}_{sm} \end{array}
ight] \left\{ \mathbf{d}_m \right\} = \left\{ \mathbf{T}_G \right\} \left\{ \mathbf{d}_m \right\}$$

Le système devient donc: $\mathbf{K}_G \mathbf{d}_m = \mathbf{f}_m$ avec $\mathbf{K}_G = \mathbf{T}_G^T \mathbf{K} \mathbf{T}_G$ et \mathbf{T}_G la matrice de transformation de la réduction de Guyan

Méthodes optimales

Méthodes dites "a posteriori"

• Exemples: POD, SVD, POD snapshots, PGD

Exemple: Proper Generalized Decomposition

- 1) Formulation variationnelle du problème
- 2) Discrétisation du domaine (éléments finis)
- 3) Solution u approximée par une représentation séparée

$$\mathbf{u} pprox \mathbf{u}^N(x_1, x_2, \dots, x_d) = \sum_{i=1}^N \mathbf{X_1}_i(x_1) \cdot \mathbf{X_2}_i(x_2) \cdots \mathbf{X_d}_i(x_d)$$

Avec les produits de fonctions $x_1(x_1)$, $x_2(x_2)$, ..., $x_d(x_d)$, chacun dépendant d'une ou plusieurs variables

4) Algorithme de résolution (point fixe)

Exemple: Proper Generalized Decomposition

La solution est recherchée en appliquant un algorithme glouton (en général point fixe) à la formulation faible du problème.

Pour chaque itération i de l'algorithme, un mode de la solution est calculé. Chaque mode est constitué d'un ensemble de valeurs numériques des produits de fonctions $\mathbf{X_1}(\mathbf{x_1})$, ..., $\mathbf{X_d}(\mathbf{x_d})$, qui enrichissent l'approximation de la solution.

Réduction pour des problèmes non linéaires

- La méthode de réduction a priori (APR) est une méthode incrémentale basée sur un enrichissement de la base de projection à l'aide des sous-espaces de Krylov. Le principe de base de cette méthode peut se résumer en quatre étapes :
 - 1. Initialisation de la base
 - 2. Résolution du système réduit
 - 3. Utilisation de la solution du système réduit et du modèle pour déterminer un résidu
 - 4. Enrichissement de la base par le résidu
- Les étapes 2, 3 et 4 sont répétées jusqu'à convergence du modèle réduit vers une précision fixée par l'utilisateur.

Exemple d'application: thermique spatiale

- Rappels de thermique
- Exemple de réduction du modèle mathématique
- Exemple de réduction du modèle géométrique

Différents transferts de chaleur

- Q : transfert de chaleur(W)
- A : aire de la surface(m²)
- L : longueur considérée (m)
- h : coefficient de transfert de chaleur conductif (W.K⁻¹)
- ε : émissivité de la surface (pas d'unité)
- σ : constante de Stefan-Boltzmann (W.m⁻².K⁻⁴)
- m : masse du composant(kg)
- Cp : capacité thermique massique (J.kg⁻¹.K⁻¹)
- T1 & T2 : temperature des corps (K)
- Remarque: pas de convection dans l'espace

Heat Transfer Mechanism	Governing Equation
Conduction	$Q = kA \frac{T_2 - T_1}{L}$
Convection	$Q = hA(T_2 - T_1)$
Radiation	$Q = \varepsilon \sigma A (T_2^4 - T_1^4)$
Heat Absorbed	$Q = mc_p(T_2 - T_1)$

Différentes sources de chaleur

Différents outils de régulation de la température

Caloducs

Radiateurs

Exemple d'application: méthode des conductances équivalentes

- Méthode de réduction de matrice conductrice similaire utilisée à Thales Alenia Space & Airbus
 - Utilisée pour la réduction de modèles mathématiques des satellites
 - Efficacité des outils prouvée (en usage depuis de nombreuses années)

 La méthodologie peut être utilisée par le fournisseur du sous-système pour fournir un modèle réduit plus précis

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software

- Équation conductive thermique du système:
- 3 types de noeuds:

$$[C_{DD}]\{T_D\} + \{Q_D\} + \{P_D\} - [M_{DD}]\left\{\frac{\partial T_D}{\partial t}\right\} = \{0\}$$

- K = gardés
- S = supprimés
- G = groupés (définissant des noeuds moyens A)

$$\begin{bmatrix} C_{KK} & C_{KS} & C_{KG} \\ C_{SK} & C_{SS} & C_{SG} \\ C_{GK} & C_{GS} & C_{GG} \end{bmatrix} \begin{bmatrix} T_K \\ T_S \\ T_G \end{bmatrix} + \begin{bmatrix} Q_K \\ Q_S \\ Q_G \end{bmatrix} + \begin{bmatrix} P_K \\ 0 \\ P_G \end{bmatrix} - \begin{bmatrix} M_{KK} & 0 & 0 \\ 0 & M_{SS} & 0 \\ 0 & \mathbf{M}_{GG} \end{bmatrix} \begin{bmatrix} \frac{\partial I_K}{\partial t} \\ \frac{\partial T_S}{\partial t} \\ \frac{\partial T_G}{\partial t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software

- Définition d'un noeud moyen: $T_A = \sum_G a_{AG} T_G$
- a_{AG} = ratio aire/capacitance du noeud G par rapport au noeud A
- Hypothèse physique: flux, échanges radiatifs ou convectifs proportionnels à l'aire du noeud

$$P_G = a_{GA} P_A$$

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software

• Approximation:
$$\sum_{j} \left(M_{i,j} \frac{\partial T_{j}}{\partial t} \right) \approx \sum_{j} \left(M_{i,j} \right) \frac{\partial T_{i}}{\partial t}$$

Remarque: les facteurs de la matrice M sont plus importants pour les noeuds j qui sont conductivement proches du noeud i

Reference: TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software

- Équations équivalentes:
 - Équation de la chaleur du système réduit:

$$\left[C_{RR}^{'}\right] \left\{T_{A}^{T}\right\} + \left[PwD_{RD}\right] \left\{Q_{S}^{Q}\right\} + \left\{P_{A}^{T}\right\} - \left[M_{RR}^{'}\right] \left\{\frac{\partial T_{K}}{\partial t}\right\} = \left\{0\right\}$$

Rappel, système d'origine:

$$\begin{bmatrix} C_{KK} & C_{KS} & C_{KG} \\ C_{SK} & C_{SS} & C_{SG} \\ C_{GK} & C_{GS} & C_{GG} \end{bmatrix} \begin{bmatrix} T_K \\ T_S \\ T_G \end{bmatrix} + \begin{bmatrix} Q_K \\ Q_S \\ Q_G \end{bmatrix} + \begin{bmatrix} P_K \\ 0 \\ P_G \end{bmatrix} - \begin{bmatrix} M_{KK} & 0 & 0 \\ 0 & M_{SS} & 0 \\ 0 & \mathbf{0} & \mathbf{M}_{GG} \end{bmatrix} \begin{bmatrix} \frac{\partial T_K}{\partial t} \\ \frac{\partial T_S}{\partial t} \\ \frac{\partial T_G}{\partial t} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Réduction du modèle géométrique

• Problème: aucune connexion avec la physique (aucune garantie sur le respect des propriétés)

État de l'art (non exhaustif)

- Suppresion des sommets, edge collapse / halfedge collapse
- Fonctions de coût et de placement
 - Lindstrom-Turk: preserve la forme, le volume et les frontières
 - Garland-Heckbert: encode la distance approximée au maillage d'origine en utilisant des matrices quadriques attribuées à chacun des sommets
 - Préservation du volume "memoryaware"
 - Préservation des normales

Suppression de sommets

- Supprime un sommet et ses faces et côtés adjacents, créant un trou de valence k.
- Le trou est triangulé en ajoutant k-2 triangles.
- Le nombre de sommets et de triangles est réduit de 1 et 2, respectivement.

Edge collapse

- Sélectionne un côté et le "collapse" en un nouveau point. Les deux triangles adjacents sont transformés en deux côtés.
- Le nombre de sommets et de triangles est réduit de 1 et de 2, respectivement.
- Remarque: liberté de placement du nouveau sommet!

Nouveau point

Halfedge collapse

- Soit un côté sélectionné avec pour sommets p et q, l'opérateur du halfedge collapse déplace p sur q ou q sur p (cas particulier du edge collapse)
- Remarques: déplacer q sur p ou p sur q constituent deux operations différentes
- ici aucun degré de liberté dans le placement du nouveau point

Minimisation de la fonction de coût

- Respect du volume de la géométrie
- Respect de l'orientation des faces
- Respect de la forme des frontières
- Etc
- => via descente de gradient appliquée à la fonction de coût considérée

Réduction géométrique guidée par la physique

Références

- [1] Frédéric da Silva. Méthodologies de réduction de modèles multiphysiques pour la conception et la commande d'une chaîne de traction électrique. Autre. Université Paris-Saclay, 2015. Français. ffNNT : 2015SACLC022ff. fftel-01275878
- [2] Peter Lindstrom and Greg Turk. Fast and memory efficient polygonalsimplification. In IEEE Visualization, pages 279–286, 1998.
- [3] M. Garland and P. S. Heckbert. Surface simplification using quadric errormetrics. In Proc. SIGGRAPH '97, pages 209–216, 1997.
- [4] David Cohen-Steiner, Pierre Alliez, Mathieu Desbrun. Variational Shape Approximation. [Research Report] RR-5371, INRIA. 2004, pp.29. inria-0007063
- [5] TMRT A thermal model reduction tool, 23rd European Workshop on Thermal and ECLS Software
- [6] https://pages.mtu.edu/~shene/COURSES/cs3621/SLIDES/Simplification.pdf

Clustering

- Partitionnement de données en sous-ensembles partageant des caractéristiques communes
- Bon clustering si: clusters homogènes et bien différenciés

Différentes approches

- Par des méthodes de partitionnement:
 - Différentes partitions évaluées via différents critères (kmeans, CLARANS etc)
- Par des méthodes hiérarchiques
 - Décomposition hiérarchique des données via différents critères (BIRCH, Diana etc)
- Par des méthodes basées sur une densité
 - Via connectivité et fonctions de densité (OPTICS, DBSCAN etc)

K-means

• Etape 1: k (entrée) centroides initiaux auxquels sont assignés les points les plus proches

 Etape 2: calcul des nouveaux centroides via moyenne des points du cluster

 Etape 3: répéter étape 2 jusqu'à convergence

Algorithme de Lloyd pour les diagrammes de Voronoi

Tournois, Alliez, Devillers: 2D Centroidal Voronoi Tessellations with Constraints.

Clustering hiérarchique

- Résulte en un ensemble de clusters imbriqués selon un arbre hiérarchique
- Peut être perçu comme un dendrogramme avec clustering obtenu en "coupant" selon le niveau désiré

Clustering hiérarchique

Clustering selon densité: DBSCAN

- Sélectionne arbitrairement un point p
- Collecte tous les points "densitéatteignable" depuis p selon un rayon Epsilon et un nombre minimum de points Nmin
- Si p a une haute densité (bcp de points dans son rayon = core point): création d'un cluster
- Si p a une faible densité mais est dans le voisinage d'un core point: process réitéré pour un autre point p
- Sinon p point isolé
- Fin de l'algorithme quand tous les points ont été visité

Clustering via libraire Scikit-learn

comparison of the clustering algorithms in scikit-learn

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters, inductive	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry, inductive	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry, inductive	Distances between points
Spectral clustering	number of clusters	Medium n samples, small n_clusters	Few clusters, even cluster size, non-flat geometry, transductive	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters or distance threshold	Large n samples and n_clusters	Many clusters, possibly connectivity constraints, transductive	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances, transductive	Any pairwise distance
DBSCAN	neighborhood size	Very large n samples, medium n_clusters	Non-flat geometry, uneven cluster sizes, transductive	Distances between nearest points
OPTICS	minimum cluster membership	Very large n samples, large n_clusters	Non-flat geometry, uneven cluster sizes, variable cluster density, transductive	Distances between points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation, inductive	Mahalanobis distances to centers
BIRCH	branching factor, threshold, optional global clusterer.	Large n clusters and n_samples	Large dataset, outlier removal, data reduction, inductive	Euclidean distance between points
4				•
Ion-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard euclidean				

Ion-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard euclidean listance is not the right metric. This case arises in the two top rows of the figure above.