Machine Learning: Linear Regression

Elliott Saslow

Help from Moses & Chyld

- What is a Model?
- How can we evaluate our Model?
- Why is it called Linear Regression?
- How can we interpret our Model Output?
- What are the Assumptions of Linear Regression?
- How can we verify these assumptions are met?

High Level: What is a model?

 Machine Learning is a set of tools to learn a very good approximation of the relation between features and a label.

True Models:

- Machine Learning learns an approximation of $\hat{f}(x)$ of f(x)
- Use $\hat{f}(x)$ to predict y from new values of x

Example of a function

 $y = f(x) + \epsilon$

Supervised Machine Learning Models:

Supervised: Models a label with a feature

- Regression (Continuous Outcome)
 - Price
 - Demand
- Classification (Categorical or Discrete Outcome)
 - Fraud
 - Churn

Un - Supervised Machine Learning Models:

Unsupervised: Models without a label with a feature

- Clustering
 - Housing Prices
 - kmeans
- Dimensionality Reduction
 - o Image Compression / Audio Compression
 - PCA, SVD, NMF, ect

Types of Data

Cross Section: x_i

- One observation per individual or cross-sectional unit
- Computed at one point in time
- Many i, One t

Time Series: x_t

- Multiple observations of a quantity over time (Ex. GDP)
- Computed at multiple instants
- One i, Many t

Panel Data: x_{it} - Observe units over

- Observe units over time, e.g. securities
- Many i at many t

And Many More....

Types of Features

Continuous:

- Price, Quantity, Sales,
 Tenure
- May bin using quantiles to model non-linearities better

Categorical:

- Takes Discretes Levels
- Also called a factor
- e.g. 1/0, Yes/No,
 Treated/Control, High,
 Medium, Low

Text/Audio/Image:

 Need to Engineer Features

What are some of the issues we could run into with Continuous Features?

What about Categorical Features?

Exact Linear Relationship

Are we always going to have a Perfect Linear Relationship?

If not a Perfect Linear Relationship, what should we do?

In-Exact Linear Relationship

Add an Error Term!

$$y = 2 * x + 5 + \epsilon$$

galvanize

Linear Regression Model

 $lacksymbol{ ilde{\gamma}} y_i = x_i^T eta + \epsilon_i$

In the 1-D case this becomes:

$$\longrightarrow y_i = eta_0 + x_1 * eta_1 + \epsilon$$

Expected value of the outcome, conditional on features

Example 1 Dimensional!

The form of our equation is:

$$y_i = \beta_0 + x_1 * \beta_1$$

Here we have x1 = weight

Based on this visually, we could come up with a Beta_0 and Beta_1

$$y = m*x + b$$

Example Multidimensional:

Assume we have 3 features: Engine Size, Number of tires, and Car Weight

Given the best Beta values for each, can you calculate the MPG for each car?

$$E[y|x] = X^T \beta$$

$$X^T = egin{array}{c|cccc} & \textbf{Engine Size} & \textbf{Number of Tires} & \textbf{Car Weight} \\ \hline 1500 & 4 & 3000 \\ 2500 & 6 & 5000 \\ \hline 1000 & 2 & 1200 \\ 3000 & 4 & 6000 \\ \hline \end{array}$$

$$\beta = \frac{\beta \, EngineSize = -.000025}{\beta \, NumberTires = 3.113}$$

$$\beta \, Carweight = -.0003$$

Example Multidimensional Continued

$$E[y|x] = X^T \beta$$

Engine Size	Number of Tires	Car Weight
1500	4	3000
2500	6	5000
1000	2	1200
3000	4	6000

Example Multidimensional Continued

- Linear Regression Predicts the mean value of y holding x constant
- Model is linear in parameters Beta but features may be non-linear functions of the date (e.g. polynomials)

https://phet.colorado.edu/sims/html/least-squares-regression/latest/least-squares-regression_en.html