

Terminology

- O U and V are the endpoints of
- Edges incident on a vertex
 - o a, d, and b are incident on V
- Adjacent vertices
 - U and V are adjacent
- Degree of a vertex
 - W has degree 4
- Loop
 - j is a loop (we will consider only loopless graphs)

3/13/2007 12:28 PM

5

Terminology (cont'd)

For directed graphs:

- Origin, destination of an edge
- Outgoing edge
- Incoming edge
- Out-degree of vertex v: number of outgoing edges of v
- In-degree of vertex v: number of incoming edges of v

3/13/2007 12:28 PM

Paths

- sequence of alternating vertices and edges
- begins with a vertex
- o ends with a vertex
- each edge is preceded and followed by its endpoints
- Path length
 - the total number of edges on the path
- Simple path
 - path such that all vertices are distinct (except that the first and last could be the same)
- Examples
 - \bigcirc P₁=(V,b,X,h,Z) is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

3/13/2007 12:28 PM

L.EU I IVI

Properties – Undirected Graphs

Property 1

 $\sum_{\mathbf{v}} \deg(\mathbf{v}) = 2\mathbf{E}$

Proof: each edge is counted twice

Property 2

In an undirected graph with no loops

 $E \le V (V - 1)/2$

Proof: each vertex has degree at most (V – 1)

What is the bound for a directed graph?

Notation

V number of vertices

E number of edges

deg(v) degree of vertex v Example

 $\bigcirc V = 4$

 $\bigcirc E = 6$

 $\bigcirc \deg(\mathbf{v}) = 3$

3/13/2007 12:28 PM

Cycles

- Cycle
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints
- Simple cycle
 - o cycle such that all its vertices are distinct (except the first and the last)
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,V) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple
- A directed graph is acyclic if it has no cycles ⇒ called DAG (directed acyclic graph)

3/13/2007 12:28 PM

9

Connectivity

connected

not connected

 An undirected graph is connected if there is a path from every vertex to every other vertex.

3/13/2007 12:28 PM

Connectivity (cont'd)

 If a directed graph is not strongly connected, but the corresponding undirected graph is connected, then the directed graph is said to be weakly connected.

3/13/2007 12:28 PM

Data Structures

3/13/2007 12:28 PM

Representation of Graphs

- Two popular computer representations of a graph:
 Both represent the vertex set and the edge set, but in different ways.
 - Adjacency Matrices
 Use a 2D matrix to represent the graph
 - Adjacency Lists
 Use a set of linked lists, one list per vertex

3/13/2007 12:28 PM 13

Adjacency Matrix Representation

- 2D array of size n x n where n is the number of vertices in the graph
- A[i][j]=1 if there is an edge connecting vertices i and j; otherwise, A[i][j]=0

	a	b	c	d	e	
a	0	0	1	1	1	
b	0	0	0	0	0	
c	1	0	0	0	1	
d	1	0	0	0	1	
e	1	0	1	1	0	

3/13/2007 12:28 PM

Adjacency Matrix Example

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

3/13/2007 12:28 PM

15

Adjacency Matrices (cont'd)

- The storage requirement is $\Theta(V^2)$.
 - Onot efficient if the graph has few edges.
 - Oappropriate if the graph is dense; that is $E = \Theta(V^2)$
- If the graph is undirected, the matrix is symmetric. There exist methods to store a symmetric matrix using only half of the space. But the space requirement is still $\Theta(V^2)$.
- We can detect in O(1) time whether two vertices are connected.

3/13/2007 12:28 PM 16

Adjacency Lists

- If the graph is sparse, a better solution is an adjacency list representation.
- For each vertex v in the graph, we keep a list of vertices adjacent to v.

3/13/2007 12:28 PM

17

Adjacency List Example

3/13/2007 12:28 PM

Adjacency Lists (cont'd)

Space =
$$\Theta(V + \Sigma_v \deg(v)) = \Theta(V + E)$$

 Testing whether u is adjacency to v takes time O(deg(v)) or O(deg(u)).

3/13/2007 12:28 PM

Adjacency Lists vs. Adjacency Matrices

- An adjacency list takes Θ(V + E).
 - If E = O(V^2) (dense graph), both use $\Theta(V^2)$ space.
 - \bigcirc If E = O(V) (sparse graph), adjacency lists are more space efficient.
- Adjacency lists
 - More compact than adjacency matrices if graph has few edges
 - O Requires more time to find if an edge exists
- Adjacency matrices
 - Always require $\Theta(V^2)$ space
 - This can waste lots of space if the number of edges is small
- Can quickly find if an edge exists 3/13/2007 12:28 PM

Next time ...

- Graph traversal
 - Opepth first search
 - OBreadth first search
- Topological sort

3/13/2007 12:28 PM 21