DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

COURSE: MATHEMATICAL STRUCTURES

COURSE CODE: 21MAT41A

MODULE - 4- RELATIONS

Multiple Choice Questions

Q.No.	Questions	
1.	Which of the following is not an equivalence re (a) xRy iff x – y is an even integer (b)	lation on the set of integers? b) xRy iff x + y is even integer
	(c) $xRy iff x = y$ (d)	$\int xRy \text{ iff } x \leq y$
2		(b,c)} in a set A ,then R is) Symmetric relation) None of these
3.	` `	ry of a college ,given by R = {(x,y): x and y Symmetric) All the above
4.	Let R_1 be a relation from $A = \{1, 3, 5, 7\}$ to $B = \{2, 4, 6, 8\}$ and R_2 be another relation from B to $C = \{1, 2, 3, 4\}$ as defined below: i. An element a in A is related to an element b in B (under R_1) if a * b is divisible by 3. ii. An element a in B is related to an element b in C (under R_2) if a * b is even but not divisible by 3. Which is the composite relation R_1R_2 from A to C? (a) $R_1R_2 = \{(1, 2), (1, 4), (3, 3), (5, 4), (5, 6), (7, 3)\}$ (b) Φ (c) $R_1R_2 = \{(1, 2), (1, 6), (3, 2), (3, 4), (5, 4), (7, 2)\}$ (d) $R_1R_2 = \{(2, 2), (3, 2), (3, 4), (5, 1), (5, 3), (7, 1)\}$	
5.	How many relations exist from set X to set Y if the set X and set Y has 7 and 8 elements? (a) 2^{56} (b) 2^{72} (c) 3^{56} (d) 56	
6.	(a) 2 ⁵⁶ (b) 2 ⁷² (c) 3 ⁵⁶ (d) 56 Which statement is incorrect if X and Y are the two non-empty relations on the set S. (a) If X and Y are transitive, then the intersection of X and Y is also transitive. (b) If X and Y are reflexive, then the intersection of X and Y is also reflexive. (c) If X and Y are symmetric, then the union of X and Y is not symmetric. (d) If X and Y are transitive, then the union of X and Y is not transitive.	
7.	Relations may exist between? (a) objects of the same set (b) between objects of two or more sets. (c)Both A and B (d) None of the above	

DAYANANDA SAGAR COLLEGE OF ENGINEERING

(An Autonomous Institute Affiliated to VTV, Belagavi)
Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

DEPARTMENT OF MATHEMATICS

8.	If A = $\{a, b, c\}$, B = $\{0,1\}$ and R = $\{(a,0), (b,0), (c,1)\}$ is a relation from A to B then M_R =	
	(a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	
9.	If $ A = 6$ for a finite set A then the number of equivalence relations that can be defined on A	
	is	
	(a) 213 (b) 230 (c) 203 (d) None of these	
10.	Let R be a relation defined on Z as (a, b) \in R such that $a^2 + b^2 = 25$. Then domain of R is	
	(a) $\{3,4,5\}$ (b) $\{0,3,4,5\}$ (c) $\{0,\pm 3,\pm 4,\pm 5\}$ (d) None of these	