Let $\{s_i \in \mathcal{L}_{\epsilon} : i \in \mathbb{N}\}$ s.t., for a theory T of \mathcal{L}_{ϵ} :

- (i): $\forall_{i < \mathbb{N}} (T \not\models s_i \land T \not\models \neg s_i)$
- (ii): $\forall_{i,j\in\mathbb{N}}^- (i\neq j\Rightarrow T+s_i\models \neg s_j)$.

From (i) I derive that $\forall_{i \in \mathbb{N}} Con(T) \to Con(T+s_i)$, then choose a model of $T+s_i$ and call it \mathfrak{A}_i s.t.

(iii): for a function f, $\mathfrak{A}_i \models f : \{\emptyset\} \to \mathbb{N} \land (f(\emptyset) = i \leftrightarrow s_i)$.

To clarify what I denote with (iii), I slit it into the two following cases, so that it's clear how \mathfrak{A}_i can trivially be defined by induction given interpretations " $1^{\mathfrak{A}_i}$ " and " $+^{\mathfrak{A}_i}$ ":

(iii.i): $\mathfrak{A}_1 \models f(\emptyset) = 1$

(iii.ii): $(\mathfrak{A}_i \models f(\emptyset) = i) \Rightarrow (\mathfrak{A}_{i+1} \models f(\emptyset) = i+1)$

Note in " \mathfrak{A}_i " and " s_i ", $i \in \mathbb{N}$ but $f(\emptyset) \in \mathbb{N}^{\mathfrak{A}_i} = \{n : n = 1^{\mathfrak{A}_i} + \mathfrak{A}_i \dots + \mathfrak{A}_i \ 1^{\mathfrak{A}_i}\}$. Since $f(\emptyset)^{\mathfrak{A}_i} \in \mathbb{N}^{\mathfrak{A}_i}$ for $i = 1 + \dots + 1 \in \mathbb{N}$, $\mathfrak{A}_i \models f(\emptyset) = 1 + \dots + 1$.

Then, for a non-principal ultrafilter \mathcal{U} on \mathbb{N} , define $\mathfrak{U} := \prod_{i \in \mathbb{N}} \mathfrak{A}_i / \mathcal{U}$, if not specified \mathcal{U} is a free variable, if bounded then write " $\mathcal{U}_{\mathcal{U}}$ ".

For $\varphi \in \mathcal{L}_{\epsilon}$ and the ultraproduct \mathfrak{U} define $B_{\mathfrak{U}}(\varphi) := \{i \in \mathbb{N} : \mathfrak{A}_i \models \varphi\}$, note that this definition is independent from the ultrafilter \mathcal{U} .

Lemma (0). For $\varphi \in \mathcal{L}_{\epsilon}$, $(\mathfrak{U} \models \varphi) \Rightarrow (|B_{\mathfrak{U}}(\varphi)| \geq \aleph_0)$

Proof. Let $\varphi \in \mathcal{L}_{\epsilon}$ and assume $\mathfrak{U} \models \varphi$, by Los Theorem derive that $\mathfrak{U} \models \varphi \Rightarrow \{i \in \mathbb{N} : \mathfrak{A}_i \models \varphi\} \subset \mathcal{U}$ and since \mathcal{U} is non-principal derive $X \in \mathcal{U} \to |X| \geq \aleph_0$, hence $|\{i \in \mathbb{N} : \mathfrak{A}_i \models \varphi\}| \geq \aleph_0$.

Lemma (0'). For $\varphi \in \mathcal{L}_{\epsilon}$, $|B_{\mathfrak{U}}(\varphi)| \geq \aleph_0 \Rightarrow \exists_{\mathcal{U}}(\mathfrak{U}_{\mathcal{U}} \models \varphi)$

Proof. Let $\varphi \in \mathcal{L}_{\epsilon}$ and assume $|B_{\mathfrak{U}}(\varphi)| \geq \aleph_0$ then one can generate a non-principal ultrafilter on \mathbb{N} from $B_{\mathfrak{U}}(\varphi)$, its existence proves the claim.

Theorem (I). $\mathfrak{U} \models \exists_{i \in \mathbb{N}} (f(\emptyset) = i)$

Proof. Note $B_{\mathfrak{U}}(\exists_{i\in\mathbb{N}}(f(\emptyset)=i))=\{j\in\mathbb{N}:\mathfrak{A}_j\models\exists_{i\in\mathbb{N}}(f(\emptyset)=i)\}=\mathbb{N}$, the last step follows from (iii) and construction of \mathfrak{A}_i . Since \mathcal{U} is an ultrafilter on \mathbb{N} then $\mathbb{N}\in\mathcal{U}$ hence, by Los Theorem, the claim follows.

Theorem (II). $\forall_{i \in \mathbb{N}} (\mathfrak{U} \models f(\emptyset) \neq i)$

Proof. Let $i \in \mathbb{N}$, then note by (ii) and (iii), $B_{\mathfrak{U}}(f(\emptyset) = i) = \{j \in \mathbb{N} : \mathfrak{A}_j \models f(\emptyset) = i\} = \{j \in \mathbb{N} : i = j\} = \{i\}$ since $\mathfrak{A}_i \models f(\emptyset) = j \Leftrightarrow i = j$ by (iii), also $|\{i\}| < \aleph_0$ therefore, by 0, $\mathfrak{U} \not\models f(\emptyset) = i$ and by completeness of models derive the claim.

Lemma. For $\alpha^{\mathfrak{U}} \in \mathbb{N}^{\mathfrak{U}}$, $\mathfrak{U} \models f(\emptyset) = \alpha \Rightarrow \alpha > \omega$.

Proof. From (I) define $\alpha^{\mathfrak{U}}$ s.t. $\mathfrak{U} \models f(\emptyset) = \alpha$. Assume $\exists_{i \in \mathbb{N}} \mathfrak{U} \models i = \alpha$ and derive contradiction by (II), hence the claim.

Theorem. $|\mathbb{N}^{\mathfrak{U}}| > \aleph_0$

Proof. Working on it. See theorem 3.12 of Models and Ultraproducts by Bell and Slomson.