Red Multivaluada Estocástica para Optimización. Aplicación al Problema del MaxCut

Domingo López-Rodríguez¹, Enrique Mérida-Casermeiro¹ & Juan M. Ortiz-de-Lazcano-Lobato²

 1 Departamento de Matemática Aplicada 2 Departamento de Lenguajes y Ciencias de la Computación E.T.S. Ingeniería Informática Universidad de Málaga email: $^1\{{\tt dlopez,merida}\}{\tt @ctima.uma.es}$ $^2{\tt jmortiz@lcc.uma.es}$

MAEB, Febrero 2007

Índice

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

Dado un grafo no dirigido G = (V, E) ponderado en los ejes por $C=(c_{i,i})$ con $c_{i,i}\geq 0$,

El objetivo es obtener una partición de V en dos (K) subconjuntos de forma que se maximice el coste total de los ejes cuyos extremos están en distintos conjuntos de la partición.

Dado un grafo no dirigido G = (V, E) ponderado en los ejes por $C = (c_{i,j})$ con $c_{i,j} \ge 0$,

El objetivo es obtener una partición de V en dos (K) subconjuntos de forma que se maximice el coste total de los ejes cuyos extremos están en distintos conjuntos de la partición.

• En el caso general, NP-completo.

Dado un grafo no dirigido G = (V, E) ponderado en los ejes por $C = (c_{i,j})$ con $c_{i,j} \ge 0$,

El objetivo es obtener una partición de V en dos (K) subconjuntos de forma que se maximice el coste total de los ejes cuyos extremos están en distintos conjuntos de la partición.

- En el caso general, NP-completo.
- En el caso de que el grafo sea plano, el problema pertenece a
 P (se puede hallar una solución en tiempo polinómico).

Dado un grafo no dirigido G = (V, E) ponderado en los ejes por $C = (c_{i,j})$ con $c_{i,j} \ge 0$,

El objetivo es obtener una partición de V en dos (K) subconjuntos de forma que se maximice el coste total de los ejes cuyos extremos están en distintos conjuntos de la partición.

- En el caso general, NP-completo.
- En el caso de que el grafo sea plano, el problema pertenece a P (se puede hallar una solución en tiempo polinómico).

Aplicaciones:

• Clasificación y agrupamiento de datos,

Dado un grafo no dirigido G = (V, E) ponderado en los ejes por $C = (c_{i,j})$ con $c_{i,j} \ge 0$,

El objetivo es obtener una partición de V en dos (K) subconjuntos de forma que se maximice el coste total de los ejes cuyos extremos están en distintos conjuntos de la partición.

- En el caso general, NP-completo.
- En el caso de que el grafo sea plano, el problema pertenece a P (se puede hallar una solución en tiempo polinómico).

Aplicaciones:

- Clasificación y agrupamiento de datos,
- Reconocimiento de patrones,

Dado un grafo no dirigido G = (V, E) ponderado en los ejes por $C = (c_{i,j})$ con $c_{i,j} \ge 0$,

El objetivo es obtener una partición de V en dos (K) subconjuntos de forma que se maximice el coste total de los ejes cuyos extremos están en distintos conjuntos de la partición.

- En el caso general, NP-completo.
- En el caso de que el grafo sea plano, el problema pertenece a P (se puede hallar una solución en tiempo polinómico).

Aplicaciones:

- Clasificación y agrupamiento de datos,
- Reconocimiento de patrones,
- Diseño de redes de comunicaciones...

 En 1997, Alberti et al. presentaron una red tipo Hopfield para MaxCut.

- En 1997, Alberti et al. presentaron una red tipo Hopfield para MaxCut.
- En 1998, Bertoni et al. publicaron otra red con mejores resultados.

- En 1997, Alberti et al. presentaron una red tipo Hopfield para MaxCut.
- En 1998, Bertoni et al. publicaron otra red con mejores resultados.
- Takefuyi y sus colaboradores desarrollaron en 1996 el modelo neuronal maximum que obtenía buenos resultados sobre un amplio conjunto de problemas de optimización combinatorial.

- En 1997, Alberti et al. presentaron una red tipo Hopfield para MaxCut.
- En 1998, Bertoni et al. publicaron otra red con mejores resultados.
- Takefuyi y sus colaboradores desarrollaron en 1996 el modelo neuronal maximum que obtenía buenos resultados sobre un amplio conjunto de problemas de optimización combinatorial.
- En 2001, Galán Marín et al. propusieron el modelo OCHOM, que obtiene soluciones de forma más eficiente que 'maximum'.
 Es muy versátil y converge rápidamente a una solución válida sin necesidad de ajustar ningún parámetro.

- En 1997, Alberti et al. presentaron una red tipo Hopfield para MaxCut.
- En 1998, Bertoni et al. publicaron otra red con mejores resultados.
- Takefuyi y sus colaboradores desarrollaron en 1996 el modelo neuronal maximum que obtenía buenos resultados sobre un amplio conjunto de problemas de optimización combinatorial.
- En 2001, Galán Marín et al. propusieron el modelo OCHOM, que obtiene soluciones de forma más eficiente que 'maximum'.
 Es muy versátil y converge rápidamente a una solución válida sin necesidad de ajustar ningún parámetro.
- En 2004, Wang et al. propusieron una variante estocástica de OCHOM.

Objetivo de Este Trabajo

 En 2005, propusimos el modelo neuronal MREM para resolver el problema de MaxCut. Además, permite hacer una K-partición del grafo como generalización natural de MaxCut.

Objetivo de Este Trabajo

- En 2005, propusimos el modelo neuronal **MREM** para resolver el problema de MaxCut. Además, permite hacer una K-partición del grafo como generalización natural de MaxCut.
- En este trabajo presentamos una versión estocástica de MREM (**sMREM**) y su aplicación a MaxCut.

Este modelo clásico se caracteriza por:

• El estado de cada neurona viene caracterizado por su salida, pudiendo ser binaria $(\{0,1\})$ o bipolar $(\{-1,1\})$.

- El estado de cada neurona viene caracterizado por su salida, pudiendo ser binaria $(\{0,1\})$ o bipolar $(\{-1,1\})$.
- El estado de la red está determinado por la salida de sus N neuronas, es decir, $\vec{S}(t) \in \{0,1\}^N$, o $\{-1,1\}^N$).

- El estado de cada neurona viene caracterizado por su salida, pudiendo ser binaria $(\{0,1\})$ o bipolar $(\{-1,1\})$.
- El estado de la red está determinado por la salida de sus N neuronas, es decir, $\vec{S}(t) \in \{0,1\}^N$, o $\{-1,1\}^N$).
- Todas las neuronas están conectadas entre sí. La conexión entre (i, j) entre las neuronas i y j tiene asociado un peso sináptico w_{i,j}.

- El estado de cada neurona viene caracterizado por su salida, pudiendo ser binaria $(\{0,1\})$ o bipolar $(\{-1,1\})$.
- El estado de la red está determinado por la salida de sus N neuronas, es decir, $\vec{S}(t) \in \{0,1\}^N$, o $\{-1,1\}^N$).
- Todas las neuronas están conectadas entre sí. La conexión entre (i, j) entre las neuronas i y j tiene asociado un peso sináptico w_{i,j}.
- Cada neurona tiene un umbral (θ_i) .

- El estado de cada neurona viene caracterizado por su salida, pudiendo ser binaria $(\{0,1\})$ o bipolar $(\{-1,1\})$.
- El estado de la red está determinado por la salida de sus N neuronas, es decir, $\vec{S}(t) \in \{0,1\}^N$, o $\{-1,1\}^N$).
- Todas las neuronas están conectadas entre sí. La conexión entre (i, j) entre las neuronas i y j tiene asociado un peso sináptico w_{i,j}.
- Cada neurona tiene un umbral (θ_i) .
- Existe una función de energía:

$$E(\vec{S}) = -\frac{1}{2} \sum_{j=1}^{j=N} \sum_{i=1}^{i=N} w_{i,j} s_i s_j + \sum_{i=1}^{i=N} \theta_i$$

• La salida de la neurona puede tomar cualquier valor en un conjunto discreto \mathcal{M} .

- La salida de la neurona puede tomar cualquier valor en un conjunto discreto M.
- El estado de la neurona i está determinado por su salida s_i .

- La salida de la neurona puede tomar cualquier valor en un conjunto discreto M.
- El estado de la neurona i está determinado por su salida s_i .
- El estado de la red viene caracterizado por el **vector de** estado $\vec{S} = (s_1, s_2, \dots, s_N) \in \mathcal{M}^N$. (N es el número de neuronas)

- La salida de la neurona puede tomar cualquier valor en un conjunto discreto M.
- El estado de la neurona i está determinado por su salida s_i .
- El estado de la red viene caracterizado por el **vector de** estado $\vec{S} = (s_1, s_2, \dots, s_N) \in \mathcal{M}^N$. (N es el número de neuronas)
- Existe una función de energía $E: \mathcal{M}^N \to \mathbb{R}$

$$E(\vec{S}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j} f(s_i, s_j)$$

- La salida de la neurona puede tomar cualquier valor en un conjunto discreto M.
- El estado de la neurona i está determinado por su salida s_i .
- El estado de la red viene caracterizado por el **vector de** estado $\vec{S} = (s_1, s_2, \dots, s_N) \in \mathcal{M}^N$. (N es el número de neuronas)
- Existe una función de energía $E: \mathcal{M}^N \to \mathbb{R}$

$$E(\vec{S}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j} f(s_i, s_j)$$

• $W = (w_{i,j})$ es la matriz de pesos sinápticos.

- La salida de la neurona puede tomar cualquier valor en un conjunto discreto M.
- El estado de la neurona i está determinado por su salida s_i .
- El estado de la red viene caracterizado por el **vector de** estado $\vec{S} = (s_1, s_2, \dots, s_N) \in \mathcal{M}^N$. (N es el número de neuronas)
- Existe una **función de energía** $E: \mathcal{M}^N \to \mathbb{R}$

$$E(\vec{S}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j} f(s_i, s_j)$$

• f es una función de similitud.

MREM

Dinámica: La red evoluciona de forma que decrezca el valor de la función de energía. Son posibles diversas dinámicas. Se elegirá la más adecuada al problema que se esté estudiando.

Table of contents

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

Implementación del Problema K-MaxCut con MREM.

Si identificamos la función de coste de K-MaxCut:

$$\sum_{v_i \in A_m, v_j \in A_n, i > j, m \neq n} c_{i,j}$$

con la función de energía de MREM:

$$E(\vec{S}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} w_{i,j} f(s_i, s_j)$$

obtenemos $w_{i,j} = c_{i,j}$ y $f(x,y) = \delta_{x,y}$ (delta de Kronecker) {Maximizar el coste de los ejes cortados por la partición} \equiv {Minimizar el coste de los ejes cuyos extremos están en el mismo conjunto de la partición}

Table of contents

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

1 El estado inicial se elige aleatoriamente.

- 1 El estado inicial se elige aleatoriamente.
- Repetir hasta que no haya cambios en el vector de estado:

- 1 El estado inicial se elige aleatoriamente.
- Repetir hasta que no haya cambios en el vector de estado:
 - El scheduling (controlador) selecciona un valor $d \in \{1, \dots, \lfloor \frac{N}{2} \rfloor \}$.

- 1 El estado inicial se elige aleatoriamente.
- 2 Repetir hasta que no haya cambios en el vector de estado:
 - El scheduling (controlador) selecciona un valor $d \in \{1, \dots, \lfloor \frac{N}{2} \rfloor \}$.
 - En paralelo, cada neurona p estudia todas las posibilidades de actualizarse ella misma junto con la neurona q = (p + d) mod (N), con $0 < q \le N$.

- 1 El estado inicial se elige aleatoriamente.
- Repetir hasta que no haya cambios en el vector de estado:
 - El scheduling (controlador) selecciona un valor $d \in \{1, \dots, \lfloor \frac{N}{2} \rfloor \}$.
 - En paralelo, cada neurona p estudia todas las posibilidades de actualizarse ella misma junto con la neurona q = (p + d) mod (N), con $0 < q \le N$.
 - De esta forma, p calcula la matriz de potencial U_p con $K \times K$ componentes.

- 1 El estado inicial se elige aleatoriamente.
- 2 Repetir hasta que no haya cambios en el vector de estado:
 - El scheduling (controlador) selecciona un valor $d \in \{1, \dots, \lfloor \frac{N}{2} \rfloor \}$.
 - En paralelo, cada neurona p estudia todas las posibilidades de actualizarse ella misma junto con la neurona q = (p + d) mod (N), con $0 < q \le N$.
 - De esta forma, p calcula la matriz de potencial U_p con $K \times K$ componentes.
 - $(U_p)_{(i,j)}$ se asocia al decremento de energía correspondiente a la actualización $s_p = i$, $s_q = j$.

Dinámica Best-2 (cont.)

• Usaremos la siguiente expresión:

$$U_p = -\Delta E = \sum_{i=1}^{N} (\Delta_{i,p} + \Delta_{i,q}) - \Delta_{p,q} \text{ donde}$$

 $\Delta_{i,j} = w_{i,j} (f(s_i, s_j) - f(s_i', s_j')), s_i(t) = s_i, s_i(t+1) = s_i'.$

Dinámica Best-2 (cont.)

• Usaremos la siguiente expresión:

$$U_p = -\Delta E = \sum_{i=1}^{N} (\Delta_{i,p} + \Delta_{i,q}) - \Delta_{p,q} \text{ donde}$$

 $\Delta_{i,j} = w_{i,j} (f(s_i, s_j) - f(s_i', s_j')), s_i(t) = s_i, s_i(t+1) = s_i'.$

• La neurona p calcula $\alpha(p)=\max_{i,j}U_p$, el máximo potencial, asociado a $\widetilde{\widetilde{S}}_{p=i;q=j}\equiv \widetilde{S}_p$.

Dinámica Best-2 (cont.)

• Usaremos la siguiente expresión:

$$U_p = -\Delta E = \sum_{i=1}^{N} (\Delta_{i,p} + \Delta_{i,q}) - \Delta_{p,q} \text{ donde}$$

 $\Delta_{i,j} = w_{i,j} (f(s_i, s_j) - f(s_i', s_j')), s_i(t) = s_i, s_i(t+1) = s_i'.$

- La neurona p calcula $\alpha(p)=\max_{i,j}U_p$, el máximo potencial, asociado a $\widetilde{\widetilde{S}}_{p=i;q=j}\equiv \widetilde{S}_p$.
- El controlador selecciona el siguiente estado de la red:

$$ec{S}(t+1) = ec{\widetilde{S}}_p$$
 para el cual $p = \operatorname{arg\,máx}_{ec{lpha}}.$

Tiene la misma arquitectura que MREM y está basada en la misma función de energía. Pero ahora el siguiente estado de la red dependerá de una sucesión decreciente $\{T_n\}$, de igual forma que el Enfriamiento Estadístico (Simulated Annealing). Su dinámica consiste en:

• Se genera aleatoriamente el estado inicial $S_1^{(1)}$.

Tiene la misma arquitectura que MREM y está basada en la misma función de energía. Pero ahora el siguiente estado de la red dependerá de una sucesión decreciente $\{T_n\}$, de igual forma que el Enfriamiento Estadístico (Simulated Annealing).

- Se genera aleatoriamente el estado inicial $S_1^{(1)}$.
- Dado un estado \vec{S} , se elige otro estado $\vec{S'}$ dentro de un entorno $\mathcal{N}_{\vec{S}}$ de \vec{S} .

Tiene la misma arquitectura que MREM y está basada en la misma función de energía. Pero ahora el siguiente estado de la red dependerá de una sucesión decreciente $\{T_n\}$, de igual forma que el Enfriamiento Estadístico (Simulated Annealing).

- Se genera aleatoriamente el estado inicial $S_1^{(1)}$.
- Dado un estado \vec{S} , se elige otro estado $\vec{S'}$ dentro de un entorno $\mathcal{N}_{\vec{S}}$ de \vec{S} .
- Se calcula el incremento de energía $\Delta E = E(\vec{S'}) E(\vec{S})$.

Tiene la misma arquitectura que MREM y está basada en la misma función de energía. Pero ahora el siguiente estado de la red dependerá de una sucesión decreciente $\{T_n\}$, de igual forma que el Enfriamiento Estadístico (Simulated Annealing).

- Se genera aleatoriamente el estado inicial $S_1^{(1)}$.
- Dado un estado \vec{S} , se elige otro estado $\vec{S'}$ dentro de un entorno $\mathcal{N}_{\vec{S}}$ de \vec{S} .
- Se calcula el incremento de energía $\Delta E = E(\vec{S'}) E(\vec{S})$.
- La red aceptará el nuevo estado $\vec{S'}$ con probabilidad $\mathbb{P}(\Delta E)$, dependiente de \mathcal{T}_n .

Tiene la misma arquitectura que MREM y está basada en la misma función de energía. Pero ahora el siguiente estado de la red dependerá de una sucesión decreciente $\{T_n\}$, de igual forma que el Enfriamiento Estadístico (Simulated Annealing).

- Se genera aleatoriamente el estado inicial $S_1^{(1)}$.
- Dado un estado \vec{S} , se elige otro estado $\vec{S'}$ dentro de un entorno $\mathcal{N}_{\vec{S}}$ de \vec{S} .
- Se calcula el incremento de energía $\Delta E = E(\vec{S'}) E(\vec{S})$.
- La red aceptará el nuevo estado $\vec{S'}$ con probabilidad $\mathbb{P}(\Delta E)$, dependiente de T_n .
- Este proceso se repite M veces por cada valor de T_n .

Table of contents

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- 4 Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- **5** Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

Estas dos condiciones garantizan la convergencia a estados de mínima energía:

$$\mathbb{P}\left(\mathsf{E}(\vec{S}_{\mathsf{m}+1}^{(\mathsf{n})}) > \mathsf{E}(\vec{S}_{\mathsf{m}}^{(\mathsf{n})})\right) = 0, \forall \mathsf{m} \in \{1, 2, \dots, \mathsf{M}-1\}$$

Estas dos condiciones garantizan la convergencia a estados de mínima energía:

1

$$\mathbb{P}\left(\mathsf{E}(\vec{S}_{\mathsf{m}+1}^{(n)}) > \mathsf{E}(\vec{S}_{\mathsf{m}}^{(n)})\right) = 0, \forall \mathsf{m} \in \{1, 2, \dots, \mathsf{M}-1\}$$

② La probabilidad de aceptación de $\vec{S'}$ como $\vec{S}_{m+1}^{(n)}$ es de la forma:

$$\mathbb{P}(\Delta \mathsf{E}) = \left\{ \begin{array}{ll} 1, & \text{si } \Delta \mathsf{E} < 0 \\ g_{\mathsf{n}}(\Delta \mathsf{E}) < 1, & \text{si } \Delta \mathsf{E} \geq 0 \end{array} \right.$$

Estas dos condiciones garantizan la convergencia a estados de mínima energía:

1

$$\mathbb{P}\left(\mathsf{E}(\vec{S}_{\mathsf{m}+1}^{(n)}) > \mathsf{E}(\vec{S}_{\mathsf{m}}^{(n)})\right) = 0, \forall \mathsf{m} \in \{1, 2, \dots, \mathsf{M}-1\}$$

② La probabilidad de aceptación de $\vec{S'}$ como $\vec{S}_{m+1}^{(n)}$ es de la forma:

$$\mathbb{P}(\Delta \mathsf{E}) = \left\{ \begin{array}{ll} 1, & \text{si } \Delta \mathsf{E} < 0 \\ \mathsf{g}_\mathsf{n}(\Delta \mathsf{E}) < 1, & \text{si } \Delta \mathsf{E} \geq 0 \end{array} \right.$$

donde $g_n(x) > 0 \,\forall x$ y depende de T_n .

Estas dos condiciones garantizan la convergencia a estados de mínima energía:

1

$$\mathbb{P}\left(\mathsf{E}(\vec{S}_{\mathsf{m}+1}^{(\mathsf{n})}) > \mathsf{E}(\vec{S}_{\mathsf{m}}^{(\mathsf{n})})\right) = 0, \forall \mathsf{m} \in \{1, 2, \dots, \mathsf{M}-1\}$$

② La probabilidad de aceptación de \vec{S}' como $\vec{S}_{m+1}^{(n)}$ es de la forma:

$$\mathbb{P}(\Delta \mathsf{E}) = \left\{ \begin{array}{ll} 1, & \text{si } \Delta \mathsf{E} < 0 \\ \mathsf{g}_\mathsf{n}(\Delta \mathsf{E}) < 1, & \text{si } \Delta \mathsf{E} \geq 0 \end{array} \right.$$

donde $g_n(x) > 0 \,\forall x$ y depende de T_n .

Se puede probar que si $\{g_n\}$ converge uniformemente a 0, entonces la segunda condición implica la primera.

Notas sobre Convergencia

Varios teoremas demuestran la convergencia del modelo MREM Estocástico, con el esquema de muestreo-aceptación aquí propuesto, a un mínimo local de la función de energía *E*.

Esta convergencia no depende de la tasa de convergencia de la sucesión $\{T_n\}$ y sólo depende de la convergencia de $\{||\mathbf{g}_n||\}$ a 0.

ma

Table of contents

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

Para probar este método, se han generado 280 grafos aleatorios basados en los siguientes parámetros:

• El número de vértices en el grafo $N \in \{20, 50, 100, 150, 200\}$.

Para probar este método, se han generado 280 grafos aleatorios basados en los siguientes parámetros:

- El número de vértices en el grafo $N \in \{20, 50, 100, 150, 200\}$.
- La densidad de ejes en el grafo $\rho \in \{0.05; 0.15; 0.25; 0.5; 0.75; 0.9\}.$

Para probar este método, se han generado 280 grafos aleatorios basados en los siguientes parámetros:

- El número de vértices en el grafo $N \in \{20, 50, 100, 150, 200\}.$
- La densidad de ejes en el grafo $\rho \in \{0.05; 0.15; 0.25; 0.5; 0.75; 0.9\}.$
- Los costes para los ejes se eligieron aleatoriamente en $\{1,\ldots,10\}$. $(\{1,\ldots,5\}$ para los grafos de la Tabla 1)

Para probar este método, se han generado 280 grafos aleatorios basados en los siguientes parámetros:

- El número de vértices en el grafo $N \in \{20, 50, 100, 150, 200\}$.
- La densidad de ejes en el grafo $\rho \in \{0.05; 0.15; 0.25; 0.5; 0.75; 0.9\}.$
- Los costes para los ejes se eligieron aleatoriamente en $\{1,\ldots,10\}$. $(\{1,\ldots,5\}$ para los grafos de la Tabla 1)

Para cada grafo se realizaron 10 ejecuciones independientes. Consideramos K=2 (bipartición), K=3 y K=4.

Table of contents

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- 4 Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

		MREM	MREM(best-2)		OCHOM		Wang	
N	ρ	Opt	Med	Opt	Med	Opt	Med	
20	0.05	42.9	42.79	42.9	42.11	42.9	31.51	
	0.25	49	48.71	48.7	47.95	49	35.06	
	0.50	54.8	54.42	54.8	53.26	53.9	37.77	
	0.75	60.7	60.02	60.7	59.06	60.7	40.88	
	0.90	64.4	63.93	63.9	62.84	64.2	46.45	
	0.05	51.1	50.85	51.1	50.1	51	38.95	
	0.25	86.8	85.63	86.1	83.59	86.7	51.98	
50	0.50	120.3	119.26	120.3	117.94	120.1	92.67	
	0.75	154.3	152.73	153.5	150.78	154.3	109.52	
	0.90	173.7	171.62	173.4	171.11	171.9	82.24	
	0.05	80.4	79.34	79	77	78.8	57.72	
	0.25	207.1	203.79	207.4	201.52	202.5	143.26	
100	0.50	345.7	342.92	345	340.5	345	182.03	
	0.75	475	471.45	475	468.29	473.6	333.03	
	0.90	534	532.03	535.6	529.86	531.2	323.28	
150	0.05	127.9	126.16	124.5	121.95	125.2	101.6	
	0.25	386.5	382.89	384.3	377.76	380.2	267.08	
	0.50	690.6	685.03	688.6	683.1	686.8	416.94	
	0.75	990.1	985.56	990	985.92	990.1	599.64	
	0.90	1157.1	1153.15	1154.3	1150.67	1148.8	694.86	
200	0.05	194.7	192.32	192.9	187.15	192.6	163.5	
	0.25	6075	6009	6020	5966.7	6052	2413.2	
	0.50	11260	11194.7	11269	11206.7	11113	6667.8	
	0.75	16650	16579.5	16599	16529.1	16498	13198.4	
	0.90	19625	19520.8	19555	19439.5	19430	9715	

Resultados comparativos para 2-MaxCut

• sMREM usa
$$0 \le n \le n_a = 5$$
 y $T_n = 1 - \frac{n}{n_a}$.

- sMREM usa $0 \le n \le n_a = 5$ y $T_n = 1 \frac{n}{n_a}$.
- Tomamos M = 20.

- sMREM usa $0 \le n \le n_a = 5$ y $T_n = 1 \frac{n}{n_a}$.
- Tomamos M = 20.
- d se selecciona de forma decreciente desde $\lfloor \frac{N}{2} \rfloor$ a 1.

- sMREM usa $0 \le n \le n_a = 5$ y $T_n = 1 \frac{n}{n_a}$.
- Tomamos M = 20.
- d se selecciona de forma decreciente desde $\lfloor \frac{N}{2} \rfloor$ a 1.
- La neurona p que se actualiza se selecciona al azar y $q = p + d \mod (N)$.

- sMREM usa $0 \le n \le n_a = 5$ y $T_n = 1 \frac{n}{n_a}$.
- Tomamos M = 20.
- d se selecciona de forma decreciente desde $\lfloor \frac{N}{2} \rfloor$ a 1.
- La neurona p que se actualiza se selecciona al azar y $q = p + d \mod (N)$.
- Se selecciona un estado $\tilde{\vec{S}}_p$ con probabilidad proporcional a $\exp((U_p)_{i,j})$ (U_p es la matriz con todos los posibles decrementos de energía si se actualizan p y q).

- sMREM usa $0 \le n \le n_a = 5$ y $T_n = 1 \frac{n}{n_a}$.
- Tomamos M = 20.
- d se selecciona de forma decreciente desde $\lfloor \frac{N}{2} \rfloor$ a 1.
- La neurona p que se actualiza se selecciona al azar y $q = p + d \mod (N)$.
- Se selecciona un estado $\vec{\widetilde{S}}_p$ con probabilidad proporcional a $\exp((U_p)_{i,j})$ (U_p es la matriz con todos los posibles decrementos de energía si se actualizan p y q).
- Si $\Delta E < 0$, se acepta el estado \widetilde{S}_p , de otra forma, ese estado se acepta con probabilidad

$$g_n(\Delta E) = exp\left(-\frac{\Delta E}{T_n}\right)$$

		MREM			sMREM			
N	ρ	Opt	Med.	t	Opt	Med.	t	
50	0.05	276.8	256.28	0.05	276.8	256.8	1.31	
50	0.15	672.8	631.56	0.06	687.2	637.2	1.37	
50	0.25	1013.2	970.84	0.06	1020.4	971.24	1.32	
50	0.5	1778.8	1724.08	0.06	1774.4	1729.26	1.29	
50	0.75	2663.6	2475.48	0.05	2646.4	2476.92	1.34	
50	0.9	2941.8	2876.18	0.06	2949.2	2883.94	1.33	
100	0.05	990.2	917.72	0.15	971.2	920.68	5.58	
100	0.15	2384.4	2323.9	0.16	2408.6	2340.46	5.54	
100	0.25	3719.2	3620.9	0.14	3720.8	3646.9	5.28	
100	0.5	6711.6	6637.08	0.13	6745.6	6683.9	5.41	
100	0.75	9816.2	9524.1	0.14	9813.4	9581.22	5.21	
100	0.9	11348.8	11215.06	0.14	11434.4	11254.66	5.29	
150	0.05	2009.8	1933.6	0.26	2020.2	1939.86	14.48	
150	0.15	5136	5014.62	0.26	5120.4	5066.62	13.85	
150	0.25	7990	7807.16	0.26	8068.2	7868.72	12.84	
150	0.5	14701.4	14531.06	0.24	14818	14661.4	12.61	
150	0.75	21126.2	20899.94	0.22	21308.6	21018.06	12.58	
150	0.9	24926	24589.62	0.22	25056	24729.68	12.05	
200	0.05	3411.4	3321.84	0.38	3443.8	3340.26	27.58	
200	0.15	8765.4	8653.52	0.42	8873.6	8726.9	25.51	
200	0.25	13741	13533.9	0.35	13959.4	13707.9	24.24	
200	0.5	25750.8	25500.18	0.34	25967.2	25740.64	22.41	
200	0.75	37038.6	36789.2	0.32	37217.8	37063.42	22.04	
200	0.9	43584.8	43296.26	0.33	43854.8	43527.38	23.17	

Resultados comparativos para 2-MaxCut

		MREM			sMREM			
N	ρ	Opt	Med.	t	Opt	Med.	t	
50	0.05	303	276.4	0.1	302.6	276.4	2.13	
50	0.15	828	791.88	0.15	833.8	793.04	2.43	
50	0.25	1295.4	1228.38	0.14	1303	1228.1	2.44	
50	0.5	2371.4	2270.16	0.15	2366.6	2271.5	2.44	
50	0.75	3351.8	3245.92	0.14	3350.2	3249.74	2.5	
50	0.9	3907	3738.98	0.15	3913.4	3749.02	2.45	
100	0.05	1181.2	1084.34	0.32	1183	1085.46	10.6	
100	0.15	3130.8	2989.16	0.36	3149.8	2992.54	10.71	
100	0.25	4698.8	4645.64	0.36	4705.8	4651.4	10.45	
100	0.5	8833.2	8684.56	0.32	8872.4	8719.46	9.36	
100	0.75	12758.2	12491.74	0.34	12792.4	12508.1	9.63	
100	0.9	14921.4	14695.6	0.33	14948.8	14729.94	9.76	
150	0.05	2472	2390.54	0.63	2484.2	2388.3	27.51	
150	0.15	6564.6	6434.82	0.66	6574.6	6453.42	29.81	
150	0.25	10463.4	10176.84	0.57	10494.6	10203.08	26.53	
150	0.5	19274.8	19057.42	0.53	19363.6	19153.9	23.67	
150	0.75	27829.4	27599.96	0.55	27974.2	27741.5	22.26	
150	0.9	32846.8	32498.44	0.63	32925.6	32611.28	22.96	
200	0.05	4360	4212	0.97	4375.8	4216.9	52.46	
200	0.15	11353	11146.58	1.01	11429.8	11165.36	53.82	
200	0.25	17967.8	17716.1	0.94	18102.4	17808.84	46.85	
200	0.5	33712.8	33479.64	0.93	33883.2	33675.92	43.66	
200	0.75	49103	48584.72	0.95	49334.6	48808.88	44.27	
200	0.9	57865.8	57533.02	0.89	58249.6	57743.24	44.85	

Resultados comparativos para 3-MaxCut

		MREM			sMREM			
N	ρ	Opt	Med.	t	Opt	Med.	t	
50	0.05	306	281	0.17	306	281	3.25	
50	0.15	877.8	817.3	0.24	879	817.18	3.83	
50	0.25	1372.8	1314.26	0.29	1372.2	1315.62	4.49	
50	0.5	2611.4	2500.92	0.27	2606.6	2501.84	4.01	
50	0.75	3691.8	3609.52	0.27	3685	3609.36	4.07	
50	0.9	4313.4	4184.84	0.27	4314.6	4184.96	4.12	
100	0.05	1190.8	1121.12	0.43	1191.4	1121.38	13.82	
100	0.15	3236	3158.6	0.72	3240	3161.56	18.08	
100	0.25	5250.2	5127.06	0.7	5259	5136.6	19.82	
100	0.5	9803.6	9621.48	0.69	9817.8	9637.76	16.14	
100	0.75	14083.4	13886.32	0.61	14082	13907.98	17.68	
100	0.9	16640.2	16426.72	0.69	16651	16441.38	17.74	
150	0.05	2590.2	2511.96	1	2596.6	2512.4	40.81	
150	0.15	7126	6993.94	1.28	7097.8	6985.3	46.8	
150	0.25	11466	11141.7	1.25	11499.8	11143.42	46.76	
150	0.5	21439.4	21203.94	1.11	21513.4	21230.16	42.37	
150	0.75	31254.8	30843.96	1.17	31291.6	30896.64	37.86	
150	0.9	36698	36473.34	1.12	36749.2	36533.94	39.46	
200	0.05	4503.4	4407.62	1.8	4517.8	4407.98	87.3	
200	0.15	12469.6	12289.82	1.92	12495.4	12304.4	89.73	
200	0.25	19997.2	19566.3	1.85	19990.4	19586.06	79.62	
200	0.5	37621.4	37157.58	1.69	37764	37261.42	74.45	
200	0.75	54646	54277.62	1.61	54855.2	54438.5	68.9	
200	0.9	64819.6	64298.8	1.8	64950.2	64441.94	71.52	

Resultados comparativos para 4-MaxCut

 Galán, G. & Muñoz, J. propusieron el modelo OCHOM. (IEEE. Trans. Neural Network,2001)

- Galán, G. & Muñoz, J. propusieron el modelo OCHOM. (IEEE. Trans. Neural Network,2001)
- Wang et al. desarrollaron una versión estocástica de OCHOM que la superaba, pero presenta peores resultados que MREM de media. (Neurocomputing, 2004)

- Galán, G. & Muñoz, J. propusieron el modelo OCHOM. (IEEE. Trans. Neural Network,2001)
- Wang et al. desarrollaron una versión estocástica de OCHOM que la superaba, pero presenta peores resultados que MREM de media. (Neurocomputing, 2004)
- MREM con la dinámica best-2 es un modelo muy potente. (LSCS, 2004), (LNCS, 2005) & ESANN'06.

- Galán, G. & Muñoz, J. propusieron el modelo OCHOM. (IEEE. Trans. Neural Network,2001)
- Wang et al. desarrollaron una versión estocástica de OCHOM que la superaba, pero presenta peores resultados que MREM de media. (Neurocomputing, 2004)
- MREM con la dinámica best-2 es un modelo muy potente. (LSCS, 2004), (LNCS, 2005) & ESANN'06.
- OCHOM y el modelo de Wang son también buenos algoritmos.

Table of contents

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- 5 Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

• En este trabajo se ha mostrado el modelo MREM con la dinámica best-2.

- En este trabajo se ha mostrado el modelo MREM con la dinámica best-2.
- Se ha desarrollado una versión estocástica de MREM con la intención de ayudar a MREM a evitar ciertos mínimos locales de la función de energía.

- En este trabajo se ha mostrado el modelo MREM con la dinámica best-2.
- Se ha desarrollado una versión estocástica de MREM con la intención de ayudar a MREM a evitar ciertos mínimos locales de la función de energía.
- Se han probado las bases teóricas de sMREM para demostrar su convergencia a mínimos de la función objetivo.

- En este trabajo se ha mostrado el modelo MREM con la dinámica best-2.
- Se ha desarrollado una versión estocástica de MREM con la intención de ayudar a MREM a evitar ciertos mínimos locales de la función de energía.
- Se han probado las bases teóricas de sMREM para demostrar su convergencia a mínimos de la función objetivo.
- El modelo sMREM ha sido probado conjuntamente con MREM con el conocido problema MaxCut. Estos experimentos demuestran que en la mayoría de los casos, sMREM supera a MREM en resultados, usando más tiempo de cálculo.

Table of contents

- Introducción
- 2 El Modelo MREM Discreto
 - Implementación del Problema K-MaxCut.
 - Dinámica Best-2
- 3 El Modelo MREM Estocástico
 - Convergencia
- Resultados Experimentales
 - Ejemplos de Ejecución
 - Resultados de las Ejecuciones
- Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

Trabajo Futuro

• Debemos probar sMREM con otros problemas.

Trabajo Futuro

- Debemos probar sMREM con otros problemas.
- Se pueden elegir otras funciones de probabilidad de aceptación que deben ser estudiadas.

Trabajo Futuro

- Debemos probar sMREM con otros problemas.
- Se pueden elegir otras funciones de probabilidad de aceptación que deben ser estudiadas.
- Otras dinámicas (con otro esquema de entornos) para MREM y sMREM pueden obtener mejores resultados para este problema.

