2018 级高等数学第二学期期末试卷 (A 类)

一、单项选择题(每小题3分,共15分)

1. 二次积分 $\int_{1}^{e} dx \int_{0}^{\ln x} f(x,y) dy$ 的积分次序交换后的结果为

(A)
$$\int_{1}^{e} dy \int_{0}^{\ln x} f(x, y) dx;$$
 (B)
$$\int_{1}^{e} dy \int_{0}^{e^{y}} f(x, y) dx;$$

(C)
$$\int_0^1 dy \int_0^{e^y} f(x, y) dx$$
; (D) $\int_0^1 dy \int_{e^y}^e f(x, y) dx$.

2. 锥面 $z = \sqrt{x^2 + y^2}$ 上满足 $1 \le z \le 2$ 的部分曲面的面积为:

(A)
$$2\sqrt{2}\pi$$
; (B) $3\sqrt{2}\pi$; (C) 2π ; (D) 3π .

(C)
$$2\pi$$
:

3. $f(x,y) = xy^3$ 在约束条件 $x^2 + y^2 = 4$ 下的最大值为:

(A)
$$3\sqrt{3}$$
; (B) $\sqrt{3}$; (C) $2\sqrt{2}$; (D) $\sqrt{2}$.

(C)
$$2\sqrt{2}$$
:

4. 下列级数中,发散的级数是

(A)
$$\sum_{n=1}^{\infty} n \tan \frac{\pi}{2^{n+1}};$$

(B) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1-\sqrt{n}}}{\sqrt{n^2+n}}$;

(C)
$$\sum_{n=1}^{\infty} \ln \frac{n+3}{n+2};$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n} \circ$$

5. 下列命题中,正确命题的个数为

)

① 若数列 $\{a_n\}$ 单调增加,且收敛于 0,则级数 $\sum_{i=1}^{\infty} (-1)^{n-1} a_n$ 收敛;

② 若级数 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 发散,则级数 $\sum_{n=1}^{\infty} a_n$ 也发散;

③ 级数
$$\sum_{n=1}^{\infty} \frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n+1}}{n(n+1)}$$
 收敛。

(A)0;

(B)1;

(C) 2;

(D)3 °

二、填空题(每小题3分,共15分)

6. 函数 $f(x, y, z) = 2z + \arctan \frac{y}{z}$ 在点 (1, 2, -1) 处的梯度 $\nabla f|_{(1, 2, -1)} = \underline{\hspace{1cm}}$

7.
$$\lim_{r \to 0^+} \left(\frac{1}{r^3} \cdot \iiint_{x^2 + y^2 + z^2 \le r^2} 2\cos\sqrt{x^2 + y^2 + z^2} \, dV \right) = \underline{\qquad} \circ$$

8. 设平面曲线 C 是圆周 $x^2 + y^2 = 1$ 的逆时针方向,则曲线积分

$$\oint_C x e^{2x^2 - 3y^2} dx + y e^{2x^2 - 3y^2} dy = \underline{\qquad}_{\circ}$$

9. 微分方程 ydx + (y-x)dy = 0 的通解为: ______

10. 设函数
$$f(x) = \frac{x}{\ln \frac{1}{1-x}}$$
 在区间 $(0,\frac{1}{2})$ 上能展开成幂级数 $\sum_{n=0}^{\infty} c_n x^n$,则 $c_0 = \underline{\hspace{1cm}}$ 。

三、计算题 (本题 8 分)

- 11. 求曲线 $\begin{cases} x^2 y^2 z = 0 \\ x^2 + 2y^2 + 3z^2 = 3 \end{cases}$ 在点 (1,-1,0) 处的切线方程, 并将其表示为标准型方程。
- 四、应用题 (本大题共 18分, 其中第 12 题 8分, 第 13 题 10分)
- 12. 若物质曲线 $L: y = \frac{e^x + e^{-x}}{2}$ ($0 \le x \le 1$) 的线密度函数 $\rho(x, y) = 3x$,求物质曲线 L 的质量。
- 13. 设有平面力场 $\overrightarrow{F} = (2xy^3 y^2\cos x)\overrightarrow{i} + (1 2y\sin x + 3x^2y^2)\overrightarrow{j}$,求一质点沿曲线 $C: 2x = \pi y^2$,从点 O(0,0) 运动到点 $A(\frac{\pi}{2},1)$ 时,场力 \overrightarrow{F} 所做的功。
- 五、计算曲面积分 (本大题共 18 分, 其中第 14 题 8 分, 第 15 题 10 分)
- 14. Σ 是球面 $x^2 + y^2 + z^2 = a^2 (a > 0)$ 上满足 $z \ge \frac{a}{2}$ 的那部分球面块,计算曲面积分: $\iint_{\Sigma} (x y + 5z^3) dS$ 。
- 15. 计算曲面积分 $\iint_S y^2 dy dz + (z^2 + 1) dx dy$, 其中 S 是抛物面 $z = x^2 + y^2$ 上介于 z = 1 和 z = 2 之间的部分曲面的下侧。
- 六、级数题 (本大题共 18分, 其中第 16 题 8分, 第 17 题 10分)
- 16. 求函数项级数 $\sum_{n=1}^{\infty} [4^n + (2 + \frac{1}{n})^n](2x-1)^n$ 的收敛域。
- 17. 求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)\cdot 9^n}$ 的和。
- 七、证明题 (本题 8 分)
- 18. 已知级数 $\sum_{n=1}^{\infty} a_n$ 发散, 其中 $a_n > 0$, n = 1, 2, 3, ...。证明:
 - (1) 若数列 $\{a_n\}$ 有界,则幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 1;
 - (2) 若 $\lim_{n\to\infty} \frac{a_n}{a_1 + a_2 + ... + a_n} = 0$,则幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 1。