Nuclear Physics Assignment # 1

Use $m_p = 938.28 MeV$, $m_n = 939.57 MeV$, $a_v = 15.56 MeV$, $a_s = 17.23 MeV$, $a_c = 0.72 MeV$, $a_a = 23.28 MeV$, $\delta_p = 12 MeV$, $\hbar = 1.055 \times 10^{-34} J - s$, $e = 1.6 \times 10^{-19} C$, $B_\alpha = 28.32 MeV$, $\hbar c = 197 MeV \ fm$, $e^2/(4\pi\epsilon_0) = 1.44 \ MeV \ fm$, $1 \ a.m.u. = 931.5 MeV$, $g_s^p = 5.586 \mu_N$, $g_s^n = -3.826 \mu_N$

The standard masses of the nuclei can be found at the end of the book by Krane.

- 1. Evaluate the density of nuclear matter, nucleon concentration, and volume density of electric charge in a nucleus.
- 2. Assuming constant density of nucleus, show that mean-square charged radius of a uniformly charged sphere is $\frac{3}{5}R^2$.
- 3. Using nuclear density formula, calculate skin thickness of a nucleus. If the diffuseness parameter 'a' is 0.52 fm, calculate its value.
- 4. Using single particle model, predict ground state spin and parity of the following nuclei (i) 7 Li (ii) $^{11}_{5}$ B (iii) $^{15}_{c}$ C, (iv) $^{23}_{12}$ Mg (v) $^{17}_{9}$ F (vi) $^{14}_{6}$ C
- 5. The low-lying levels of 13 C are ground state, $\frac{1}{2}^-$; 3.09 MeV, $\frac{1}{2}^+$; 3.68 MeV, $\frac{3}{2}^-$; 3.85 MeV, $\frac{5}{2}^+$. The next states are about 7 MeV and above. Interpret these four states according to the shell model.
- 6. The maximal kinetic energy of positron being emitted in the β^+ decay of ¹³N amounts to 1.24 MeV. After the beta decay, no γ ray is emitted. Calculate nuclear radius of atomic nucleus with mass A=13. Compare the so derived with the radius calculated as root mean square for a nucleus of A=13.
- 7. Compute the values of the magnetic dipole moments expected from the shell model, and compare with the experimental values. You may consult books for single particle levels.

Nuclide	J^{π}	$\mu(\exp)(\mu_N)$
$^{75}{ m Ge}$	$\frac{1}{2}^{-}$	+ 0.510
$^{87}\mathrm{Sr}$	$\frac{5}{2}$ +	-1.093
$^{91}{ m Zr}$	$\frac{\frac{1}{2}}{\frac{9}{2}} + \frac{\frac{1}{2}}{\frac{5}{2}} + \frac{\frac{1}{2}}{\frac{1}{2}}$	-1.304
$^{47}\mathrm{Sc}$	$\frac{2}{7}$	+ 5.34
$^{147}\mathrm{Eu}$	$\frac{11}{2}^{-}$	+ 6.06

- 8. Given that the quadrupole moment of the nucleus $^{127}_{53}$ I in the $J^{\pi}=5^+$ state is -0.705 eb. Assuming an ellipsoidal charge distribution, calculate its axes ratio.
- 9. Compute the expected shell-model quadrupole moment of 209 Bi $(\frac{9}{2}^{-})$ and compare with the experimental value, 0.37 b.

- 10. Calculate the total binding energy and the binding energy per nucleon for 7 Li, 20 Ne, 56 Fe and 235 U. Compare the values.
- 11. For each of the following nuclei, use the semiempirical mass formula to compute the total binding energy and the Coulomb energy: (a) ²¹Ne; (b) ⁵⁷Fe;(c) ²⁰⁹Bi; (d) ²⁵⁶Fm.
- 12. Compute the mass defects of (a) ^{32}S ;(b) ^{20}F ; (c) ^{238}U .
- 13. Given the following mass defects, find the corresponding atomic mass: (a) 24 Na: 8.418 MeV; (b) 144 Sm: 81.964 MeV; (c) 240 Pu :+ 50.123 MeV.
- 14. Calculate the binding energy of a neutron in a ¹⁴N nucleus, if the binding energies of ¹⁴N and ¹³N nuclei are known to be equal to 104.66 and 94.10 MeV.
- 15. Find the energy required to split an $^{16}{\rm O}$ nucleus into an α -particle and $^{12}{\rm C}$ nucleus, if the binding energies of $^{16}{\rm O}$, $^{12}{\rm C}$, and $^{4}{\rm He}$ nuclei are known to be equal to 127.62, 92.16, and 28.30 MeV.
- 16. Find the energy liberated on the formation of two alpha particles as a result of fusion of ${}^{2}H$ and ${}^{6}Li$ nuclei, if B/A in ${}^{2}H$, ${}^{4}He$ and ${}^{6}Li$ are known to be equal to 1.11, 7.08 and 5.33 MeV, respectively.
- 17. Evaluate (a) the neutron separation energies of ^7Li , ^{91}Zr and ^{236}U ; (b) the proton separation energies of ^{20}Ne , ^{55}Mn and ^{197}Au . What variation do you see with mass number?
- 18. Use the Bethe-Weizsäcker mass formula to find neutron dripline location for the nucleus Sn (Z=50). What will be the mass number of Sn on proton drip line? [on neutron(proton) dripline $S_n(S_p)$ is zero]
- 19. Determine separation energy of alpha particles from $^{21}_{10}$ Ne nucleus.
- 20. Compute the energy release (Q value) of:
 - (a) ${}^{235}\text{U} + \rightarrow {}^{90}\text{Kr} + {}^{144}\text{Ba} + ?;$
 - (b) $^{252}\text{Cf} \rightarrow ^{106}\text{Nb} + ?+ 4\text{n}$
- 21. In the fission of 236 U into two fragments A_1 and $A_2 = 236$ A_1 , plot the Coulomb repulsion energy of the two fragments if they are formed just touching at their surfaces. Consider all values of A_1 from 50 to 150, and assume each fragment has the same Z / A ratio as 236 U. You can use excel sheet or write a program to calculate.