Método de Regula Falsi

Programación Numérica

Alumnos:

Aquino Sandoval Jean Carlos Incacutipa Muñuico Ronald Wilder Mamani Apaza Jhon Gilmer Ticona Miramira Roberto Ángel

Universidad Nacional del Altiplano Facultad de Ing. Estadística e Informática

Descripción general

El **método de regula falsi** (o *falsa posición*) es un método numérico para encontrar raíces de una ecuación no lineal:

$$f(x) = 0$$

- Es un **método cerrado**, trabaja dentro de un intervalo [a, b].
- Requiere que $f(a) \cdot f(b) < 0$ (teorema del valor intermedio).
- Usa interpolación lineal en lugar del punto medio (como en bisección).

Fórmula de interpolación

$$c_n = b_n - f(b_n) \cdot \frac{b_n - a_n}{f(b_n) - f(a_n)}$$

También puede escribirse como:

$$c_n = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

Algoritmo

- **1** Calcular c_n con la fórmula.
- ② Si $f(a_n) \cdot f(c_n) < 0 \Rightarrow [a_{n+1}, b_{n+1}] = [a_n, c_n].$
- **3** Si $f(c_n) \cdot f(b_n) < 0 \Rightarrow [a_{n+1}, b_{n+1}] = [c_n, b_n].$
- Repetir hasta cumplir tolerancia de error o máximo de iteraciones.

Características

- Más rápido que el método de bisección.
- Puede estancarse si un extremo no cambia.
- Es precursor del método de la secante (que no requiere intervalo inicial).

Ejemplo 1:
$$f(x) = x^2 - 4$$

Intervalo inicial: [1, 3]

$$f(1) = -3, \quad f(3) = 5$$

Raíz aproximada

Después de 5 iteraciones, se obtiene:

$$x \approx 1.99935$$
 (raíz exacta = 2)

Tabla de iteraciones

Iteración	a _n	b _n	f(a _n)	f(b _n)	Cn	$f(c_n)$
0	1.00000	3.00000	-3.00000	5.00000	_	1
1	1.00000	3.00000	-3.00000	5.00000	1.75000	-0.93750
2	1.75000	3.00000	-0.93750	5.00000	1.94737	-0.20690
3	1.94737	3.00000	-0.20690	5.00000	1.98851	-0.04586
4	1.98851	3.00000	-0.04586	5.00000	1.99746	-0.01017
5	1.99746	3.00000	-0.01017	5.00000	1.99935	-0.00226

Grafica de iteraciones

Ejemplo 2: $f(x) = x^3 - 2x - 5$

Intervalo inicial: [2, 3]

$$f(2) = -1, \quad f(3) = 16$$

Raíz aproximada

Después de 5 iteraciones, se obtiene:

$$x \approx 2.09621$$

Tabla de iteraciones

Iteración	a _n	b _n	f(a _n)	$f(b_n)$	Cn	$f(c_n)$
0	2.00000	3.00000	-1.00000	16.00000	-	-
1	2.00000	3.00000	-1.00000	16.00000	2.05882	-0.39054
2	2.05882	3.00000	-0.39054	16.00000	2.08285	-0.14407
3	2.08285	3.00000	-0.14407	16.00000	2.09171	-0.05333
4	2.09171	3.00000	-0.05333	16.00000	2.09499	-0.01973
5	2.09499	3.00000	-0.01973	16.00000	2.09621	-0.00730

Grafica de iteraciones

Conclusión

- La Regula Falsi es más eficiente que la bisección.
- Mantiene la seguridad de trabajar con un intervalo cerrado.
- Muy útil como método introductorio para la búsqueda de raíces.