High Quality Depth Map Upsampling for 3D-TOF Cameras

Jaesik Park¹, Hyeongwoo Kim^{1*}, Yu-Wing Tai¹, Michael S. Brown², In So Kweon¹ Korea Advanced Institute of Science and Technology (KAIST)¹, National University of Singapore (NUS)²

*The first and the second authors provided equal contributions to this work.

Problem Definition

Are 'filter based upsampling methods' good enough?

Limitations on Filtering based methods

- May suffer over-smoothing
- Harder to regularize outlier sample explicitly

Overview of Our Approach

- Accurate alignment of two sensors
 - Calibration using 'hole' pattern
 - Outlier detection

Our Result

- Prevents depth bleeding (guided depth map)
- Recovers fine structure (non-local means term)
- Allows simple user markup.

System Setup and Preprocessing

Range Sensor (176x144) + CCD camera (1280x960) Sensor Calibration using a 'hole' pattern

Projection 3D samples from ToF cameras into high resolution image coordinate

$$s\mathbf{x}_c = \mathsf{K_c} \left[\begin{array}{c|ccc} \mathsf{R} & \mathsf{I} & \mathsf{t} \end{array} \right] \mathsf{K_t}^{-1} [\mathbf{x}_t \ d_t \ 1]^T$$

We use Zhang's method to get extrinsic parameters.

Outlier Rejection

Removing blurred depth boundaries using MRF regularization

$$E(\mathbf{l}) = \sum_{p} \left(\mathbf{O}_p(\mathbf{l}) + \lambda_{pq} \sum_{q \in N(p)} \mathbf{O}_{pq}(\mathbf{l}) \right) \begin{array}{l} \textit{I} \text{ is a map of binary label} \\ \mathbf{O}_p(\mathbf{l}) : \text{Local variance} \\ \mathbf{O}_{pq}(\mathbf{l}) : \text{Hamming distance} \end{array} \right)$$

Optimization Framework

 $E_{
m d}({f D})$: Data term to follow mapped depth value

: Desired discontinuity of upsampled depth map

$$E_{s}(\mathbf{D}) = \sum_{p} \sum_{q \in \mathcal{N}(p)} w_{pq} \left(\mathbf{D}(p) - \mathbf{D}(q) \right)^{2}$$

Saliency Edge [1] Color affinity

Segmentation [2]

Guided depth map

$$w_d = \begin{cases} 1 & \text{if } \mathbf{S}_{co}(p) = \mathbf{S}_{co}(q) \\ t_{se} & \text{otherwise} \end{cases}$$
 $w_d = \exp{-(\frac{(\mathbf{D}_g(p) - \mathbf{D}_g(q))}{2\sigma_g^2}}$

Upsampled Scale

 $E_{
m NLM}({f D})$: Oriented non-local means term for fine structure

$$\kappa_{pq} = \frac{1}{2} \left(\exp(-(p-q)^T \Sigma_p^{-1}(p-q)) + \exp(-(p-q)^T \Sigma_q^{-1}(p-q)) \right)$$

$$\Sigma_p = \frac{1}{|\mathcal{A}|} \sum_{p' \in \mathcal{A}(p)} \nabla I(p') \nabla I(p')^T.$$

Experimental Results (Synthetic)

	All				DOOKS				Mobius			
	$2\times$	$4\times$	$8 \times$	$16 \times$	$2\times$	$4\times$	$8 \times$	$16 \times$	$2\times$	$4\times$	8×	$16 \times$
Bilinear	0.56	1.09	2.10	4.03	0.19	0.35	0.65	1.24	0.20	0.37	0.70	1.32
MRFs [3]	0.62	1.01	1.97	3.94	0.22	0.33	0.62	1.21	0.25	0.37	0.67	1.29
Bilateral [4]	0.57	0.70	1.50	3.69	0.30	0.45	0.64	1.45	0.39	0.48	0.69	1.14
Guided [5]	0.66	1.06	1.77	3.63	0.22	0.36	0.60	1.16	0.24	0.38	0.61	1.20
Ours	<u>0.43</u>	<u>0.67</u>	<u>1.08</u>	<u>2.21</u>	<u>0.17</u>	0.31	<u>0.57</u>	<u>1.05</u>	<u>0.18</u>	<u>0.30</u>	<u>0.52</u>	<u>0.90</u>

Experimental Results (Real world)

Color Image Ours Rendered view

References

- [1] P. Bhat, C. L. Zitnick, M. F. Cohen, and B. Curless. Gradientshop: A gradientdomain optimization framework for image and video filtering. In SIGGRAPH, 2010.
- [2] A. Vedaldi and B. Fulkerson. VLFeat, http://www.vlfeat.org/, 2008.
- [3] J. Diebel and S. Thrun. An application of markov random fields to range sensing. In NIPS, 2005.
- [4] Q. Yang, R. Yang, J. Davis, and D. Nist´er. Spatial-depth super resolution for range images. In CVPR, 2007.
- [5] K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV, 2010.