Data Science with R Multivariate Adaptive Regression Splines

Graham.Williams@togaware.com

3rd August 2014

Visit http://HandsOnDataScience.com/ for more Chapters.

MARS, or Multivariate Adaptive Regression Splines, constructs a linear combination of basis functions for logistic regression.

The required packages for this chapter include:

```
library(rattle)  # The weather dataset and normVarNames().
library(randomForest)  # Impute missing values using na.roughfix().
library(dplyr)  # Data munging: tbl_df(), %>%.
library(ROCR)  # Use prediction() to convert to measures.
library(earth)  # An implementation of mars.
```

As we work through this chapter, new R commands will be introduced. Be sure to review the command's documentation and understand what the command does. You can ask for help using the ? command as in:

```
?read.csv
```

We can obtain documentation on a particular package using the *help*= option of library():

```
library(help=rattle)
```

This chapter is intended to be hands on. To learn effectively, you are encouraged to have R running (e.g., RStudio) and to run all the commands as they appear here. Check that you get the same output, and you understand the output. Try some variations. Explore.

Copyright \odot 2013-2014 Graham Williams. You can freely copy, distribute, or adapt this material, as long as the attribution is retained and derivative work is provided under the same license.

1 Data Preparation—Load and Configure

We use the **weather** dataset from rattle (Williams, 2014) to illustrate. Refer to Chapter Data for details.

```
library(rattle)
                        # Provides weather and normVarNames().
library(dplyr)
                        # Provides %>% and tbl_df().
          <- "weather"
          <- get(dsname) %>% tbl_df()
names(ds) <- normVarNames(names(ds))</pre>
          <- names(ds)
target
          <- "rain_tomorrow"
          <- "risk mm"
risk
          <- c("date", "location")
## Source: local data frame [366 x 24]
##
##
           date location min_temp max_temp rainfall evaporation sunshine
## 1 2007-11-01 Canberra
                             8.0
                                      24.3
                                             0.0
                                                            3.4
                                                                     6.3
## 2 2007-11-02 Canberra
                             14.0
                                      26.9
                                                3.6
                                                            4.4
                                                                     9.7
## 3 2007-11-03 Canberra
                             13.7
                                      23.4
                                                3.6
                                                            5.8
                                                                     3.3
## 4 2007-11-04 Canberra
                                                            7.2
                            13.3
                                      15.5
                                               39.8
                                                                     9.1
                              7.6
## 5 2007-11-05 Canberra
                                      16.1
                                                2.8
                                                            5.6
                                                                    10.6
## 6
     2007-11-06 Canberra
                              6.2
                                      16.9
                                                0.0
                                                            5.8
                                                                     8.2
## 7
     2007-11-07 Canberra
                              6.1
                                     18.2
                                                0.2
                                                            4.2
                                                                     8.4
                             8.3
## 8 2007-11-08 Canberra
                                     17.0
                                                0.0
                                                            5.6
                                                                     4.6
## 9 2007-11-09 Canberra
                            8.8
                                     19.5
                                                0.0
                                                            4.0
                                                                     4.1
## 10 2007-11-10 Canberra
                              8.4
                                      22.8
                                               16.2
                                                            5.4
                                                                     7.7
## ..
            . . .
                              . . .
                     . . .
                                       . . .
## Variables not shown: wind_gust_dir (fctr), wind_gust_speed (dbl),
    wind_dir_9am (fctr), wind_dir_3pm (fctr), wind_speed_9am (dbl),
     wind_speed_3pm (dbl), humidity_9am (int), humidity_3pm (int),
##
##
     pressure_9am (dbl), pressure_3pm (dbl), cloud_9am (int), cloud_3pm
##
     (int), temp_9am (dbl), temp_3pm (dbl), rain_today (fctr), risk_mm (dbl),
##
   rain_tomorrow (fctr)
```

2 Data Preparation—Variables to Ignore

Here we identify variables that we probably do not want to play a part in the modelling.

```
# Ignore the IDs and the risk variable.
        <- union(id, if (exists("risk")) risk)</pre>
ignore
# Ignore variables that look like identifiers.
         <- which(sapply(ds, function(x) length(unique(x))) == nrow(ds))
         <- union(ignore, names(ids))</pre>
ignore
# Ignore variables which are completely missing.
mvc <- sapply(ds[vars], function(x) sum(is.na(x))) # Missing value count.</pre>
mvn
          <- names(ds)[(which(mvc == nrow(ds)))]  # Missing var names.</pre>
ignore
         <- union(ignore, mvn)
# Ignore variables that are mostly missing - e.g., 70% or more missing
        \leftarrow names(ds)[(which(mvc >= 0.7*nrow(ds)))]
ignore
         <- union(ignore, mvn)
# Ignore variables with many levels.
factors
          <- which(sapply(ds[vars], is.factor))</pre>
lvls
          <- sapply(factors, function(x) length(levels(ds[[x]])))</pre>
many
         <- names(which(lvls > 20)) # Factors with too many levels.
         <- union(ignore, many)
# Ignore constants.
constants <- names(which(sapply(ds[vars], function(x) all(x == x[1L]))))</pre>
       <- union(ignore, constants)</pre>
# Initialise the variables
vars <- setdiff(vars, ignore)</pre>
vars
## [1] "min_temp"
                                            "rainfall"
                          "max_temp"
## [4] "evaporation"
                          "sunshine"
                                            "wind_gust_dir"
## [7] "wind_gust_speed" "wind_dir_9am"
                                            "wind_dir_3pm"
## [10] "wind_speed_9am" "wind_speed_3pm"
                                           "humidity_9am"
                                            "pressure_3pm"
## [13] "humidity_3pm" "pressure_9am"
## [16] "cloud_9am"
                         "cloud_3pm"
                                            "temp_9am"
## [19] "temp_3pm"
                         "rain_today"
                                            "rain_tomorrow"
ignore
## [1] "date" "location" "risk_mm"
```

3 Data Preparation—Clean and Finalise

The dataset has missing values and the implementation of the algorithm does not support missing values so we impute the missing values here.

```
ds[vars] <- na.roughfix(ds[vars])</pre>
```

Now we finalise the meta-data.

```
# Variable roles.
inputc <- setdiff(vars, target)</pre>
         <- sapply(inputc, function(x) which(x == names(ds)), USE.NAMES=FALSE)</pre>
inputi
          <- intersect(inputi, which(sapply(ds, is.numeric)))</pre>
numi
numc
           <- names(numi)
          <- intersect(inputi, which(sapply(ds, is.factor)))</pre>
cati
           <- names(cati)
catc
# Remove all observations with a missing target.
          <- ds[!is.na(ds[target]),]</pre>
# Normalise factors.
factors <- which(sapply(ds[vars], is.factor))</pre>
for (f in factors) levels(ds[[f]]) <- normVarNames(levels(ds[[f]]))</pre>
# Ensure the target is categoric.
ds[target] <- as.factor(ds[[target]])</pre>
# Number of observations.
nobs <- nrow(ds)
```

4 Build Model

We use earth (Milborrow, 2014).

```
# Model builder
library(earth)
# Formula for modelling.
form <- formula(paste(target, "~ ."))</pre>
# Training and test datasets.
seed <- sample(1:1000000, 1)
set.seed(seed)
train <- sample(nobs, 0.7*nobs)</pre>
test <- setdiff(seq_len(nobs), train)
actual <- ds[test, target]
risks <- ds[test, risk]</pre>
# Build model.
m.earth <- earth(form, data=ds[train, vars])</pre>
          <- "earth"
mtype
model
          <- m.earth
model
## Selected 21 of 94 terms, and 11 of 62 predictors
## Importance: wind_gust_speed, humidity_3pm, min_temp, max_temp, ...
## Number of terms at each degree of interaction: 1 20 (additive model)
## GCV 0.08528 RSS 15.4 GRSq 0.4259 RSq 0.5919
```

5 Evaluate Model with Error Matrix

```
# prediction()
library(ROCR)
classes <- predict(model, ds[test, vars], type="class")</pre>
acc
          <- sum(classes == actual, na.rm=TRUE)/length(actual)
          <- sum(classes != actual, na.rm=TRUE)/length(actual)
predicted <- predict(model, ds[test, vars], type="response")</pre>
predicted <- rescale(predicted, 0:1) # TRY THIS THEN READ DOCS</pre>
           <- prediction(predicted, ds[test, target])</pre>
pred
           <- attr(performance(pred, "auc"), "y.values")[[1]]
ate
round(table(actual, classes, dnn=c("Actual", "Predicted"))/length(actual), 2)
        Predicted
## Actual No Yes
## No 0.78 0.04
## Yes 0.12 0.06
```

6 Evaluate Model with Riskchart

library(rattle) # riskchart()

riskchart(predicted, actual, risks)

Data Science with R Hands-On Regression Splines

7 Further Reading and Acknowledgements

The Rattle Book, published by Springer, provides a comprehensive introduction to data mining and analytics using Rattle and R. It is available from Amazon. Other documentation on a broader selection of R topics of relevance to the data scientist is freely available from http://datamining.togaware.com, including the Datamining Desktop Survival Guide.

This chapter is one of many chapters available from http://HandsOnDataScience.com. In particular follow the links on the website with a * which indicates the generally more developed chapters.

Other resources include:

• http://www.milbo.org/doc/earth-notes.pdf

Data Science with R Hands-On Regression Splines

8 References

Milborrow S (2014). earth: Multivariate Adaptive Regression Spline Models. R package version 3.2-7, URL http://CRAN.R-project.org/package=earth.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Williams GJ (2009). "Rattle: A Data Mining GUI for R." *The R Journal*, **1**(2), 45–55. URL http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Williams.pdf.

Williams GJ (2011). Data Mining with Rattle and R: The art of excavating data for knowledge discovery. Use R! Springer, New York. URL http://www.amazon.com/gp/product/1441998896/ref=as_li_qf_sp_asin_tl?ie=UTF8&tag=togaware-20&linkCode=as2&camp=217145&creative=399373&creativeASIN=1441998896.

Williams GJ (2014). rattle: Graphical user interface for data mining in R. R package version 3.1.4, URL http://rattle.togaware.com/.

This document, sourced from MarsO.Rnw revision 470, was processed by KnitR version 1.6 of 2014-05-24 and took 2.9 seconds to process. It was generated by gjw on nyx running Ubuntu 14.04.1 LTS with Intel(R) Xeon(R) CPU W3520 @ 2.67GHz having 4 cores and 12.3GB of RAM. It completed the processing 2014-08-03 17:34:24.