A Network Model for **Dynamic Textual Communications** with Application to Government Email Corpora

Bomin Kim¹ Aaron Schein³ Bruce Desmarais 1 Hanna Wallach^{2,3}

June 11, 2017

Work supported by NSF grants SES-1558661, SES-1619644, SES-1637089. and CISE-1320219)

1 / 11

¹ The Pennsylvania State University

² Microsoft Research NYC

³ University of Massachusetts Amherst

Interaction-Partitioned Topic Model (IPTM)

- Probablistic model for time-stamped textual communications
- Integration of two generative models:
 - Latent Dirichlet allocation (LDA) for topic-based contents
 - Dynamic exponential random graph model (ERGM) for ties

"who communicates with whom about what, and when?"

Content Generating Process: LDA (Blei et al., 2003)

- For each topic k = 1, ..., K:
 - 1. Topic-word distribution $\phi^{(k)} \sim \text{Dirichlet}(\beta, \mathbf{u})$
 - 2. Topic-IP distribution $c_k \sim \mathsf{Uniform}(1,C)$
- For each document d = 1, ..., D:
 - 3-1. Document-topic distribution: $\boldsymbol{\theta}^{(d)} \sim \mathsf{Dirichlet}(\alpha, \boldsymbol{m})$
 - 3-2. For each word in a document n=1 to $N^{(d)}$:
 - (a) Choose a topic $z_n^{(d)} \sim \mathsf{Multinomial}(\boldsymbol{\theta}^{(d)})$
 - (b) Choose a word $w_n^{(d)} \sim \text{Multinomial}(\phi^{(z_n^{(d)})})$

3-3 Calculate the distribution of interaction patterns within a document:

$$p_c^{(d)} = \left(\sum_{k:c_k=c} N^{(k|d)}\right)/N^{(d)},$$

4日 > 4周 > 4 至 > 4 至 >

Dynamic Network Features (Perry and Wolfe, 2012)

• Partition the past 384 hours (=16 days) into 3 sub-intervals

$$[t - 384h, t) = [t - 384h, t - 96h) \cup [t - 96h, t - 24h) \cup [t - 24h, t),$$

then define the interval-based dynamic network statistics

- $ullet x_{\star}^{(c)}(i,j)$ is the network statistics at time t, for interaction pattern c
 - Degree: outdegree and indegree
 - Dyadic: send and receive
 - Triadic: 2-send, 2-receive, sibling and cosibling

```
h 🏅 i
                                       2-send i \rightarrow h \rightarrow j sibling
outdegree i → ∀ i
                  send i → j
                                                             cosibling
indegree i ←∀ i receive i ← i
                                       2-receive i ← h ← j
```

Tie Generating Process: Latent Edges

1. For each sender $i \in \{1,...,A\}$, choose a binary vector $J_i^{(d)}$ of length (A-1), by applying Gibbs measure (Fellows and Handcock, 2017)

$$\mathsf{P}(J_i^{(d)}) = \frac{1}{Z(\delta, \log(\lambda_i^{(d)}))} \exp\Big\{ \log \big(\mathsf{I}(\sum_{j \in \mathcal{A}_{\backslash i}} J_{ij}^{(d)} > 0)\big) + \sum_{j \in \mathcal{A}_{\backslash i}} (\delta + \log(\lambda_{ij}^{(d)})) J_{ij}^{(d)} \Big\},$$

where

$$-\ \lambda_{ij}^{(d)} = \sum_{c=1}^C p_c^{(d)} \cdot \exp\Bigl\{\lambda_0^{(c)} + \boldsymbol{b}^{(c)T}\boldsymbol{x}_{t^{(d-1)}}^{(c)}(i,j)\Bigr\} \quad \text{is a stochastic intensity}$$

- δ is a real-valued intercept controlling the recipient size
- $Z(\delta, \log(\lambda_i^{(d)}))$ is the normalizing constant

İ		2			····· A
1	0	1 0	0	1	1
2	1	0	0	0	0
			• •	• • • •	•
Α	0	0	1	0	0

Tie Generating Process: Observed

2. For each sender $i \in \mathcal{A}$, generate the time increments

$$\Delta T_{iJ_i} \sim \mathsf{Exp}(\lambda_{iJ_i}^{(d)}),$$

where
$$\lambda_{iJ_i}^{(d)} = \sum\limits_{c=1}^{C} p_c^{(d)} \cdot \exp\Bigl\{\lambda_0^{(c)} + \frac{1}{|J_i|} \sum\limits_{j \in J_i} {m b}^{(c)T} {m x}_{t^{(d-1)}}^{(c)}(i,j)\Bigr\}.$$

3. Set timestamp, sender, and receivers simultaneously:

$$\begin{split} t^{(d)} &= t^{(d-1)} + \min(\Delta T_{iJ_i}) \\ i^{(d)} &= i_{\min(\Delta T_{iJ_i})} \\ J^{(d)} &= J_{i^{(d)}} \end{split}$$

i	1 2 3 4 ····· A			1	
1 2 	0 1 0 1 ····· 1 1 0 1 0 ····· 0 	→	t ₁ (t ₂)	→	send: 2 receive: 1, 3 time: t ^{d-1} + t ₂

Inference - Pseudocode

Bayesian Inference using Markov Chain Monte Carlo (MCMC)

Algorithm 1 MCMC

Set initial values $\mathcal{Z}^{(0)}, \mathcal{C}^{(0)}$, and $(\mathcal{B}^{(0)}, \delta^{(0)})$

for o=1 to O do

Sample the latent edge $J_{ii}^{(d)}$ via Gibbs sampling

Sample the topic assignments Z via Gibbs sampling

Sample the interaction pattern assignments C via Gibbs sampling

Sample the interaction pattern parameters \mathcal{B} via Metropolis-Hastings

Sample the receiver size parameter δ via Metropolis-Hastings end

Data: North Carolina Dare county email data

• D=1456 emails between A=27 county government managers, covering 2 month periods (October 1 - November 30) in 2013

Hurricane Sandy passed by NC: October 26 - October 30

Effect of Hurricane Sandy on Email Exchange

IPTM Result

$\hat{m{b}}_p^{(c)}$	IP = 1	IP = 2
intercept	-3.264	-7.217
outdegree[t-1d,t)	0.025	1.520
outdegree[t-3d, t-1d)	0.538	-4.776
outdegree $[t-16d, t-3d)$	-0.167	0.255
indegree[t-1d,t)	-1.435	-4.743
indegree[t-3d, t-1d)	0.952	-1.529
indegree[t-16d, t-3d]	-0.276	0.279
send[t-1d,t)	1.639	-0.001
send[t-3d, t-1d)	0.054	-4.223
send[t - 16d, t - 3d]	0.972	3.765
receive[t-1d,t)	-0.380	-4.940
receive[t-3d, t-1d)	-1.625	-1.076
receive[t-16d, t-3d)	-0.389	-2.490
2-send $[t-1d,t)$	2.185	0.477
2-send $[t - 3d, t - 1d]$	0.919	2.364
2-send $[t - 16d, t - 3d)$	-0.071	0.154
2-receive $[t-1d,t)$	1.020	1.189
2-receive $[t-3d, t-1d)$	-0.168	3.971
2-receive $[t-16d, t-3d)$	0.029	0.098
sibling[t-1d,t)	-1.443	-0.608
sibling[t-3d, t-1d)	-1.289	-1.405
sibling[t-16d, t-3d]	-0.239	0.019
cosibling[t-1d,t)	0.390	4.586
cosibling[t-3d, t-1d)	0.792	-2.063
cosibling[t-16d,t-3d)	-0.103	-0.693

Topic	IP = 1	IP = 2
	will	-7.217
	director	1.520
	manteo	-4.776
	-0.167	0.255
	-1.435	-4.743
	0.952	-1.529
	-0.276	0.279
	1.639	-0.001
	-0.071	0.154
	1.020	1.189
	-0.168	3.971

Table: Effect of dynamic statistics on email exchange

Table: Effect of dynamic statistics on email exchange

Conclusion

- Joint modeling of ties (sender, receiver, time) and contents
- Allowance of multicast multiple senders and/or receivers
- Possible application to various political science data e.g. cosponsorship of bills and international sanctions