Se ha demostrado lo siguiente:

Si
$$a_{11}a_{22} - a_{12}a_{21} \neq 0$$
, entonces el sistema (1.1.1) tiene una **solución única**.

¿Cómo se relaciona esta afirmación con lo que se analizó anteriormente? En el sistema (1.1.1) se puede ver que la pendiente de la primera recta es $-\frac{a_{11}}{a_{12}}$ y que la pendiente de la segunda es $-\frac{a_{21}}{a_{22}}$. En los problemas 41, 42 y 43 se pide al lector que demuestre que $a_{11}a_{22} - a_{12}a_{21} = 0$ si y sólo si las rectas son paralelas (es decir, tienen la misma pendiente). De esta manera se sabe que si $a_{11}a_{22} - a_{12}a_{21} \neq 0$, las rectas no son paralelas y el sistema tiene una solución única.

Lo que se acaba de analizar puede formularse en un teorema. En secciones posteriores de este capítulo y los siguientes se harán generalizaciones de este teorema, y se hará referencia a él como el "teorema de resumen" conforme se avance en el tema. Una vez que se hayan demostrado todas sus partes se podrá estudiar una relación asombrosa entre varios conceptos importantes del álgebra lineal.

Teorema 1.1.1 Teorema de resumen (punto de vista 1)

El sistema

$$a_{11}x + a_{12}y = b_1$$
$$a_{21}x + a_{22}y = b_2$$

de dos ecuaciones con dos incógnitas *x* y *y* no tiene solución, tiene una solución única o tiene un número infinito de soluciones. Esto es:

- i) Tiene una solución única si y sólo si $a_{11}a_{22} a_{12}a_{21} \neq 0$.
- ii) No tiene solución o tiene un número infinito de soluciones, si y sólo si

$$a_{11}a_{22} - a_{12}a_{21} = 0.$$

Los sistemas de m ecuaciones con n incógnitas se estudian en la sección 1.2 y se verá que siempre ocurre lo mismo con respecto a su solución, es decir, que no tienen solución, o que tienen una solución única o un número infinito de soluciones.

AUTOEVALUACIÓN 1.1

- I) De las siguientes afirmaciones con respecto a la solución de un sistema de dos ecuaciones con dos incógnitas, ¿cuál de ellas no es verdadera?
 - a) Es un par ordenado que satisface ambas ecuaciones.
 - b) Su gráfica consiste en el (los) punto(s) de intersección de las gráficas de las ecuaciones
 - c) Su gráfica es la abscisa de las gráficas de las ecuaciones.
 - d) Si el sistema es inconsistente, no existe una solución.
- II) ¿Cuál de las siguientes afirmaciones es cierta para un sistema inconsistente de dos ecuaciones lineales?
 - a) No existe una solución.
 - b) La gráfica del sistema está sobre el eje y.
 - c) La gráfica de la solución es una recta.
 - d) La gráfica de la solución es el punto de intersección de dos líneas.