实验一 发光二极管光电特性研究

介绍:

半导体发光二极管(LED)是一种电致发光器件,具有一般 PN 结二极管的特性。当发光二极管的正向电压超过阈值后就会发光。不同材料制成的发光二极管可发出不同波长(颜色)的光。

分光计是一种精确测量光线偏折角度的光学仪器,常用以测量折射率、光波波长、色散率及观测光谱一些光学参数。光栅是根据多缝衍射原理制成的一种分光元件,可把入射光中不同波长的光区分开来,用于研究谱线结构、波长和强度等。

本实验通过测量红色高亮发光二极管的光电特性,学习正确使用发光二极管,了解发光二极管的工作原理,认识半导体发光二极管的重要应用。了解分光计的构造,熟悉分光计的调节和使用,正确使用分光计和光栅测量波长。

仪器:

红色发光二极管一只(长管脚为正极),数字万用电表二个(限用电压档,准确度 0.5%+3 字),5 号电池两节,带开关的电池盒一个,可调电阻一只,阻值已知的固定电阻一只,接线柱面板,连接线;分光计一台(如下图 1 所示),光栅(L为 1.67 × 10-6 m),反射镜,可调固定支架;

(自备计算器, 普朗克常数 h = 4.13 × 10⁻¹⁵ eV • s, 光速 c = 3.00 × 10⁸ m/s)

要求:

1. (本部分共 14 分) 测量红色发光二极管的正向伏安特性 (正向电流测量范

围为 0-20 mA): (1) 画出测量电路图 (3.5 分)。(2) 记录测量的原始数据,画出完整的伏安特性曲线 (6.5 分)。(3) 由伏安特性曲线获得正向阈值电压 Up (在特性曲线上标示),列出用 Up估算发光波长的公式,并算出发光波长(4.0 分)。

2. (本部分共 16 分) 利用分光计,采用光栅衍射方法测量 20mA 电流下 LED 的峰值发光波长及其光谱范围: (1) 调整分光计和光栅,并写出分光计及 光栅调节的具体要求 (3.0 分)。(2) 记录测量的原始数据 (6.0 分)。(3) 列出计算公式,并算出 LED 峰值发光波长及其光谱范围 (6.0 分)。(4) 定性说明实验结果误差的主要来源 (1.0 分)。

图 1 分光计结构图

1.狭缝装置 2.狭缝装置锁紧螺钉 3.平行光管部分 4.制动架(一) 5.载物台 6.载物台调节螺钉(3只) 7.载物台锁紧螺钉 8.望远镜部件 9.目镜锁紧螺钉 10.阿贝式自准直目镜 11.目镜视度调节手轮 12.望远镜光轴高低调节螺钉 13.望远镜光轴水平调节螺钉 14.支臂 15.望远镜微调螺钉 16.转座与度盘止动螺钉 17.望远镜止动螺钉 18.制动架(二) 19.底座 20.转座 21.度盘 22.游标盘 23.立柱 24.游标盘微调螺钉 25.游标盘止动螺钉 26.平行光管光轴水平调节螺钉 27.平行光管光轴高低调节螺钉 28.狭缝宽度调节手轮

实验一 试题参考解答

1 (1) 测量电路图如下:

1(2) 正向伏安特性曲线 $(R_0 = 50.9 \Omega)$

V _{R0}	V _{LED} (V)	计算 I _R (mA)
1.026 V	2.07	20.2
0.871 V	2.05	17.1
0.728 V	2.03	14.3
0.611 V	2.01	12.0
0.515 V	1.99	10.1
0.401 V	1.97	7.88
0.336 V	1.95	6.60
0.263 V	1.93	5.17
197 mV	1.91	3.88
132 mV	1.88	2.60
80.3 mV	1.84	1.58
36.2 mV	1.80	0.710
13.1 mV	1.75	0.260
6.9 mV	1.69	0.14
2.1 mV	1.64	0.041

1(3) 由伏安特性曲线可得正向阈值电压 Up 约为 1.93V

发光波长估算: λ = hc / ΔE ≈ 1240 / (eU_D) = 642 nm

2.(1) 分光计及光栅调节的具体要求:

a) 分划板叉丝通过目镜成清晰虚像,望远镜聚焦于无穷远。b) 平行光管发射平行光,狭缝宽度较小。c) 平行光管及望远镜的光轴等高、共轴,并与仪器转轴垂直。d) 光栅置于载物台中心,其刻线平行于仪器转轴;平行光束垂直入射光栅平面,衍射条纹与分光计转轴平行。

2(2) 数据记录与处理

记录分光计零级条纹位置的读数:左游标 27℃ 右游标 207℃

) +1 级条纹 (左)

量	光谱		峰值波长		光谱	
次	外边界		位置		内边界	
数	左游标	右游标	左游标	右游标	左游标	右游标
1	49°34' 229°33'		49°11'	229°11'	48°26'	228°25'
2	49º31'	229°33'	49°8'	229°12'	48°26'	228°28'
3	49°31' 229°31'		49°9'	229°10'	48°24'	228°26'

测	-1 级条纹(右)							
量	光	谱	峰值波长		光谱			
次	外边界		位置		内边界			
数	左游标	右游标	左游标	右游标	左游标	右游标		
1	4º12'	184°11'	4°30'	184°33'	5°20'	185°20'		
2	4º13'	184°13'	4°34'	184°33'	5°23'	185°23'		
3	4°14' 184°13'		4°33'	184°32'	5°22'	185°21'		

2 (3)

由上述数据可得:

±1 级条纹内边界夹角平均值: 43°4′20″, 平均衍射角: 21°32′10″(或 21°32′)

峰值发光波长对应的 ±1 级条纹夹角平均值: 44°37'40",

平均衍射角: 22°18′50"(或 22°19′)

±1 级条纹外边界夹角平均值:45°19'30",平均衍射角: 22°39'45"(或 22°40')

根据光栅衍射原理, 衍射条纹满足如下公式:

 $L \cdot \sin \theta = k\lambda$ ($k=0, \pm 1, \pm 2...$)

本实验 k 为 1, L 为 1.67 x 10-6 m

所以,条纹内边界对应的波长 613 nm (或 6.13×10^{-7} m)

峰值发光波长 634 nm (或 6.34 x 10⁻⁷ m)

条纹外边界对应的的波长 643 nm (或 6.43 x 10⁻⁷ m)

因此, 峰值发光波长为 634 nm, LED 光谱范围为 613 - 643 nm。

2(4) 定性说明实验结果误差的主要来源:

系统误差:

与分光计和光栅调节要求有偏差,包括:

- a) 入射光束不是理想的平行光。
- b) 入射光束没有与光栅平面垂直。

.

偶然误差:

a) 每次条纹左右边界线界定有偏差。

.

电感等效电阻的测量研究(本大题 30 分)

RLC 串联电路的基本知识:

如图 1 所示, RLC 串联电路由电阻器 R_0 、电感器 L 和电容器 C 与交流信号源 u 串联而 成, U_m 代表电压的幅值,信号源的频率为 f ,其角频率为 ω , $\omega = 2\pi f$, $u = U_m \sin \omega t$ 。 图中 r_L 为电感器 L 的等效电阻,电容器 C 的等效耗损电阻可以忽略,电路总电阻为 $R = R_0 + r_L$ 。回路中电感的感抗为 ωL ,电容的容抗为 $\frac{1}{\omega C}$,当 $R \times L \times C$ 串联时,电路回 路中电压有效值U与电流有效值I的关系式为:

图 1 RLC 串联电路连线图

实验仪器:

0.1 级 ZX21 型可调直流电阻箱二个, 0.1 级 ZX38A/11 交直流可调电阻箱一个, GX9/3 型可调电感箱一个,最小步级 0.0001 µF 步进式可调电容箱一个,DF1636 功率函数信号发 生器一台(见附件), UT56 数字式万用表 2 台(见附件,限用交流电压挡,准确度为 0.5%+10 字), 导线若干。

实验要求:

- 1. 观察 RLC 串联电路出现的谐振现象(15分)
 - (1) 按图 1 连接电路,测量谐振曲线。

图 1 中, $C=0.0500\mu$ F,L=0.100 H, r_L 为电感的等效电阻, R_0 采用 ZX38A/11 电阻箱取值 100.0Ω ,电路的输入端功率函数信号发生器的两端和电路的输出端 R_0 两端分别接有 UT56 交流数字式电压表各一个。

固定输入正弦信号的幅度为 $0.90\,\mathrm{V}$,频率f 的改变范围为 $1.70\,\mathrm{kHz}\sim2.80\,\mathrm{kHz}$,测量 R_0 上的电压,计算电路电流I ,将数据填入表一。 $(5\,\mathrm{f})$

- (2) 在所提供的座标纸上作出电流I与频率f的关系曲线。(4分)
- (3) 从 I-f 关系曲线图确定谐振频率 f_0 ,并与利用式(2-1)计算出的谐振频率结果进行比较。(3分)
- (4) 利用谐振点数据估算电感的等效电阻 r_L 。(3分)

提示: 为使不同频率的输入信号都保持信号幅度都为 0.90V, 可先调整信号频率再调整信号幅度为 0.90V (指交流数字电压表 1 的显示值)。

- 2. 应用惠斯登直流电桥的基本知识,将惠斯登直流电桥作少许改造:将电感器 L (含 r_L) 和电容器 C 串联起来作为惠斯登电桥的一个桥臂,以功率正弦函数信号发生器代替直流电源,以交流数字电压表代替检流计作平衡指示器。改装后的电桥只有在 RLC 谐振时才能平衡,故称为谐振电桥。(15 分)
 - (1) 画出实验电路图,并列出各元件的初始值(在估算各桥臂数值时,可参考上一题中测出的 r_L 值)。(3分)
 - (2) 写出谐振电桥谐振频率与电路电感和电容的关系式。(1分)
 - (3) 写出求 r_r 的基本公式。(1分)

电路连完后须先举手报告,由老师设定功率函数信号发生器的输出频率在 880Hz~ 1120Hz 范围内、输出电压为 $V_{p-p}=4.0$ V 的正弦输入信号,并将用封条封住,考生不得撕开封条,否则视为作弊。

(4) 用谐振电桥测出该未知频率(由于交流电表受环境电磁干扰的影响,在调电桥平衡时要多次反复调节,且平衡指示往往调不到 0,但有个极小值)。(4 分)

- (5) 写出电桥平衡时测得的平衡指示器读数。(3分)
- (6) 测量并计算出 L = 0.100 H 电感的等效电阻 r_L 。(2分)
- (7) 最后标明你所确定的各元件数值。(1分) 提示: L取0.100H,不必调。

附件:

图 2 DF1636A 功率函数信号发生器示意图

图 3 4 位半数字式万用表示意图

实验二答题部分

第1部份

(1) 按图一连接线路,测量谐振曲线(以 29 号机为例)

表一 测量 $I \sim f$ 谐振曲线数据表

数值 项目	$L = 0.100 \mathrm{F}$	$C = 0.0500 \mu \mathrm{F}$
	输入0.90 V	$R_0 = 100.0\Omega$
$f(\times 10^3) \mathrm{Hz}$	U_{R_0} (mV)	$I = \frac{U_{R_0}}{R_0} \text{ (mA)}$
1.70	108	1.08
1.80	137	1. 37
1.90	181	1.81
2.00	259	2.59
2.05	312	3. 12
2. 10	398	3. 98
2. 15	514	5. 14
2. 20	661	6.61
2. 25	727	7. 27
2.30	617	5. 17
2.35	493	4.93
2.40	378	3. 38
2. 45	318	3. 18
2.50	264	2.64
2.60	199	1.99
2.70	157	1.57
2.80	138	1.38

(2) 作谐振曲线图

图 2 RLC 串联电路幅频特性曲线

(3) 回答计算

由公式(2-1)和实验得出的电流 I 与频率 f 的关系曲线。当电路出现极值时(谐振)时,电路的谐振点频率 f_0 为(2.25kHz),电路的谐振频率 f_0 与 电路电感器 L 和电容器 C 的关系式($f_0=\frac{1}{2\pi\sqrt{LC}}$)。

(4) 估算

利用谐振点的数据列式估算电感的内阻 r_L :

$$r_L = (\frac{U}{I_m} - R_0) = \frac{0.900}{0.00727} - 100.0 = 23.8 \text{ (}\Omega\text{)}$$

第2部份

(1) 设计电路图

应用惠斯登电桥的基本知识,将直流电桥作少许改造, 以功率函数信号发生器代替直流电源,以交流电压表代替 检流计作平衡指示器,用 *RLC* 串联谐振电路作为一个桥 臂,图 3 为谐振电桥实验电路设计图。

图 3 应用谐振电桥测电源频率和电感直流电阻的电路设计图

(2) 当电桥平衡(谐振)时,
$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

(3) 当电桥平衡(谐振)时,存在关系式:
$$r_{L} = \frac{R_{1}}{R_{2}}R_{x}$$

(4) 0.100H 的电感不动,调整电容C 和电阻 R_x ,使电桥平衡指示器读数为最小,记下此时的电感量和电容量,代入式 $f_0=\frac{1}{2\pi\sqrt{LC}}$ 中,即可求出未知谐振频率。

如下一组数据:

老师输入信号源频率 $f = 1080 \, \mathrm{Hz}$

考生从实验测得的数据可计算出未知谐振频率和直接得出 0.100 H 电感的直流内阻。

电感 <i>L</i> (H)	电容 C (μF)	$f_0 = \frac{1}{2\pi\sqrt{LC}} (Hz)$
0.100	0. 2165	1082

频率的相对误差
$$E = \frac{1082 - 1080}{1080} \times 100\% = 0.2\%$$

因不知标准值,考生不必求频率的相对误差。

- (5) 平衡指示器交流电压表的最小值读数是 (≤3 mV) 左右。(参考值)
- (6) 0.100H 电 感 的 直 流 电 阻

$$r_L = \frac{R_1}{R_2} R_X = \frac{300.0}{300.0} \times 22.1 = 22.1 \,\Omega$$

不同规格的电感箱电阻可能不一样,大 致在几十欧范围内。新购入的一批大部份在 20Ω至22Ω左右,旧的一批有的十几欧或二十 几欧的。(按编号每台有实测参考数据)

注意:交流平衡电桥电路必须谐振,谐振时的电桥是一个全电阻的电桥,作为平衡指示器的交流电压表读数应是一个最小值,求最小值的过程其实就是求极值的过程。实验时,电感 $L=0.100\,\mathrm{H}$ 不能变动,

图 4 总覧图

因不同的电感量其等效电阻是不一样的,只可调整可调电容器C和可调电阻器 R_x ,

使平衡指示器电压读数最小,最小值是在比较中获得的。

(7) 列出最后电路各元件的数值

f_0	V_{p-p}	R_1	R_2	С	L	$r_{\scriptscriptstyle L}$	$R_{_X}$
1082 Hz	4.0 V	300.0Ω	300.0Ω	$0.2165 \mu \mathrm{F}$	0.100 H	22.1Ω	22.1Ω

各电感箱等效电阻实测参考数据

设定
$$f = 1080 \,\mathrm{Hz}, \ V_{P-P} = 4.0 \,\mathrm{V}, \ L = 0.100 \,\mathrm{H}$$

序号	C (μF)	r_L (Ω)	平衡时 <mv< th=""><th>序号</th><th>C (μF)</th><th>r_{L} (Ω)</th><th>平衡时 <mv< th=""></mv<></th></mv<>	序号	C (μF)	r_{L} (Ω)	平衡时 <mv< th=""></mv<>
1	0.2151	22.2	1	20	0.2160	21.0	3
2	0.2165	22.1	1	21	0.2170	21.0	3
3	0.2156	23.1	1	22	0.2160	21.0	1
4	0.2171	21.0	1	23	0.2161	21.0	3
5	0.2171	21.9	1	24	0.2167	22.0	3
6	0.2161	21.6	1	25	0.2165	21.3	0
7	0.2177	21.1	1	26	0.2175	18.1	0
8	0.2161	21.5	1	27	0.2168	19.0	4
9	0.2166	21.2	1	28	0.2168	19.1	2
10	0.2165	21.2	2	29	0.2166	19.7	2
11	0.2172	21.8	1	30	0.2168	19.5	3
12	0.2162	21.5	1	31	0.2170	19.3	5
13	0.2170	21.9	2	32	0.2164	19.2	6
14	0.2160	21.8	1	33	0.2170	18.0	4
15	0.2170	21.3	2	34	0.2161	20.0	4
16	0.2161	21.3	1	35	0.2174	17.7	3
17	0.2167	22.2	3	36	0.2175	19.1	1
18	0.2174	21.4	1	37	0.2179	22.0	0
19	0.2166	22.0	2				