RESOLUCIÓN DEL SEGUNDO PARCIAL

Ejercicio 1. Calcular las componentes conexas y arcoconexas de

$$\{(x,y)\in\mathbb{R}^2:y=mx, \text{ para algún } m\in\mathbb{Z}\}\cup\{(0,1)\}.$$

Solución. Comencemos haciendo un dibujo para m entre -10 y 10.

Definimos $A_m = \{(x, y) \in \mathbb{R}^2 : y = mx\}, A = \bigcup_{m \in \mathbb{Z}} A_m \text{ y } B = A \cup \{(0, 1)\}.$ Queremos estudiar las componentes conexas y arcoconexas de B. Los A_m son arcoconexos por ser rectas y A es arcoconexo pues es la unión de conjuntos arcoconexos que todos comparten un punto, el (0, 0).

El (0,1) pertenece a la clausura de A pues los puntos $(\frac{1}{n},1)$ están en A y tienden a el (0,1). Entonces como A es conexo y B satisface $A \subset B \subset \bar{A}$ concluimos que B es conexo. Es decir hay una única componente conexa.

Veamos que las componentes arcoconexas son dos: A y $\{(0,1)\}$. Para ver esto solo nos falta probar que no podemos conectar el (0,1) con un punto de A por una curva continua.

Supongamos que tenemos $\gamma:[0,1]\to B$ tal que $\gamma(0)\in A$ y $\gamma(1)=(0,1)$. Tomemos $t_0=\inf\{t\in[0,1]:\gamma(t)=(0,1)\}=\inf\gamma^{-1}((0,1))$. Como γ es continua $\gamma^{-1}((0,1))$ es cerrado y por lo tanto el ínfimo es mínimo, por lo que $\gamma(t_0)=(0,1)$. Como γ es continua en t_0 existe $\delta>0$ tal que $\gamma([t_0-\delta,t_0+\delta])\subset B_{1/2}((0,1))$. Tenemos que $\gamma(t_0)=(0,1), \gamma(t_0-\delta)\in A$ (por la minimalidad de t_0) y $\gamma([t_0-\delta,t_0])\subset B_{1/2}((0,1))$. Como $\gamma(t_0-\delta)$ está en A, es de la forma (x,mx) para algún $m\in\mathbb{Z}$, supongamos que este punto está en el primer cuadrante.

Consideramos $U=\{(x,y)\in\mathbb{R}^2:y>(m+\frac{1}{2})x\}$ y $V=\{(x,y)\in\mathbb{R}^2:y<(m+\frac{1}{2})x\}$, los abiertos separados por la línea punteada de la figura, estos desconectan $\gamma([t_0-\delta,t_0])$ pues $\gamma(t_0)\in U,\,\gamma(t_0-\delta)\in V,\,U\cap V=\emptyset$ y $\gamma([t_0-\delta,t_0])\subset U\cup V$ ya que $U\cup V$ cubre B salvo por el (0,0) que no pertenece a $\gamma([t_0-\delta,t_0])$ pues $\gamma([t_0-\delta,t_0])\subset B_{1/2}((0,1)).$ Lo cual es un absurdo pues $\gamma([t_0-\delta,t_0])$ es conexo. Cuando $\gamma(t_0-\delta)$ está en el cuarto cuadrante los mismos U y V funcionan, cuando está en el segundo o tercero podemos hacer lo mismo tomando U y V separados por la recta $y=(m-\frac{1}{2})x.$

Con lo cual concluimos que no podemos conectar el (0,1) con un punto de A por una curva continua como queriamos.

Ejercicio 2. Consideramos en C[0,1] la norma 1, esto es

$$||f||_1 = \int_0^1 |f(s)| \, ds.$$

Sea $T: (C[0,1], ||\cdot||_1) \to \mathbb{R}$ el operador dado por

$$Tf = \int_0^1 (1-s)^2 f(s) \, ds$$

Calcular ||T||.

Solución. Como $0 \le (1-s)^2 \le 1$ para $s \in [0,1]$, tenemos que

$$|Tf| = \left| \int_0^1 (1-s)^2 f(s) \, ds \right| \le \int_0^1 |(1-s)^2| |f(s)| \, ds \le \int_0^1 |f(s)| \, ds = ||f||_1$$

por lo que $||T|| \le 1$. Veamos que ||T|| = 1, para esto querríamos una f tal que valga la igualdad en la cuenta de arriba, no existe tal f, sin embargo podemos construir funciones para las cuales las cuales nos acercamos a la igualdad. Necesitamos que la f este "concentrada" en el 0, donde (1-s) es grande. Tomemos $f_n(x) = (1-x)^n$, tenemos

$$||T|| \ge \frac{|Tf_n|}{||f_n||_1} = \frac{\int_0^1 (1-s)^{n+2} ds}{\int_0^1 (1-s)^n ds} = \frac{\frac{-(1-s)^{n+3}}{n+3} \Big|_0^1}{\frac{-(1-s)^{n+1}}{n+1} \Big|_0^1} = \frac{\frac{1}{n+3}}{\frac{1}{n+1}} = \frac{n+1}{n+3}$$

Entonces como $\frac{n+1}{n+3} \to 1$ concluimos que ||T|| = 1.

Observación: También podemos tomar

$$f_n(x) = \begin{cases} 2n^2(1/n - x) & x \le 1/n \\ 0 & x \ge 1/n \end{cases}$$

Ejercicio 3.

- a) Analizar la convergencia puntual y uniforme de $f_n(x) = x^n x^{2n}$ en [0,1].
- b) Probar que la serie $\sum_{n=1}^{\infty} \frac{x^{n+1}}{1+x^{2n}}$ converge uniformemente en $[a,\infty)$ para todo a>1. ¿Es uniforme la convergencia en $(1,\infty)$?

Solución. a) Comencemos viendo la convergencia puntual. Para x=1, $f_n(1)=1^n-1^{2n}=0$. Si $0 \le x < 1$, $f_n(x)=x^n-x^{2n} \to 0$. Es decir f_n converge puntualmente a la función constantemente 0.

Estudiemos la convergencia uniforme, si convergen uniformemente debe ser a la función 0. $f_n(x) \ge 0$ pues $x^n \ge x^{2n}$ para $x \in [0,1]$. Queremos ver si las f_n se acercan a 0 uniformemente o no, para esto veamos cuanto vale su máximo. Si este se acerca a 0 concluiremos que la convergencia es uniforme y que no lo es en caso contrario. Tenemos que $f'_n(x) = nx^{n-1} - 2nx^{2n-1}$, veamos donde se anula la derivada (además de en 0 donde es claro que tenemos un mínimo)

$$nx^{n-1} - 2nx^{2n-1} = 0$$

$$nx^{n-1} = 2nx^{2n-1}$$

$$n = 2nx^{n}$$

$$\frac{1}{2} = x^{n}$$

$$\frac{1}{\sqrt[n]{2}} = x$$

Este valor pertenece al [0,1], evaluemos f_n en este punto,

$$f_n\left(\frac{1}{\sqrt[n]{2}}\right) = \left(\frac{1}{\sqrt[n]{2}}\right)^n - \left(\frac{1}{\sqrt[n]{2}}\right)^{2n} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

Por lo tanto las f_n no convergen uniformemente.

b) Dado a > 1, tenemos

$$0 \le \frac{x^{n+1}}{1+x^{2n}} \le \frac{x^{n+1}}{x^{2n}} = \frac{1}{x^{n-1}} \le \frac{1}{a^{n-1}}$$

para $x \in [a, \infty)$. Como $\sum_{n=1}^{\infty} \frac{1}{a^{n-1}} < \infty$ por ser a > 1, por Weierstrass concluimos que la serie converge uniformemente.

Veamos que la convergencia no es uniforme en $(1, \infty)$. Si lo fuera, el termino general de la serie debería converger uniformemente a 0. Pero si evaluamos $\frac{x^{n+1}}{1+x^{2n}}$ en $x = \sqrt[n+1]{2} > 1$ obtenemos

$$\frac{\sqrt[n+1]{2}^{n+1}}{1+\sqrt[n+1]{2}^{2n}} = \frac{2}{1+2^{\frac{2n}{n+1}}} > \frac{2}{1+4}.$$

con lo cual tenemos una sucesión de puntos que muestran que el termino general esta uniformemente lejos del 0, la convergencia no es uniforme.

Ejercicio 4. Sea $K \in C([0,1] \times [0,1])$, definimos $T: C[0,1] \to C[0,1]$ dada por

$$Tf(x) := \int_0^1 K(x, y) f(y) \, dy.$$

Demostrar que si $\{f_n\}_{n\in\mathbb{N}}\subset (C[0,1],||\cdot||_{\infty})$ es acotado, entonces $\{Tf_n\}_{n\in\mathbb{N}}$ tiene una subsucesión uniformemente convergente.

Solución. Veamos que $\{Tf_n\}_{n\in\mathbb{N}}$ esta uniformemente acotado y es equicontinuo. Sabemos que $\{f_n\}_{n\in\mathbb{N}}$ es acotado, digamos que $||f_n||_{\infty} \leq M$. Y además como K es continua y está definida sobre un compacto está acotada y es uniformemente continua.

Veamos que $\{Tf_n\}_{n\in\mathbb{N}}$ esta uniformemente acotado:

$$|Tf_n(x)| = \left| \int_0^1 K(x, y) f_n(y) \, dy \right| \le \int_0^1 |K(x, y)| |f_n(y)| \, dy \le \int_0^1 ||K||_{\infty} M \, dy \le ||K||_{\infty} M$$

Y ahora que es equicontinuo, tomemos $\varepsilon > 0$.

$$|Tf_n(x) - Tf_n(y)| = \left| \int_0^1 K(x, z) f_n(z) - K(y, z) f_n(z) dz \right| \le$$

$$\int_0^1 |K(x,z) - K(y,z)| |f_n(z)| \, dy \le M \int_0^1 |K(x,z) - K(y,z)| \, dy$$

Si tomamos $\varepsilon' = \varepsilon/M$, sabemos que existe $\delta > 0$ tal que $|K(x,y) - K(z,w)| < \varepsilon'$ si $||(x,y) - (z,w)|| < \delta$. Entonces si $|x-y| < \delta$ tenemos que $|K(x,z) - K(y,z)| < \varepsilon/M$. Concluimos que

$$|Tf_n(x) - Tf_n(y)| \le M \int_0^1 |K(x, z) - K(y, z)| dy \le \varepsilon$$

si $|x-y| < \delta$, como queríamos. Entonces por el teorema de Arzelá-Ascoli concluimos que $\{Tf_n\}_{n\in\mathbb{N}}$ es precompacto. Por lo que $\{Tf_n\}_{n\in\mathbb{N}}$ es una sucesión en el compacto $\overline{\{Tf_n\}_{n\in\mathbb{N}}}$, concluimos que tiene una subsucesión convergente con la norma infinito, es uniformemente convergente.

Ejercicio 5. Sea $A = (a_{ij})_{1 \leq i,j \leq n} \in \mathbb{R}^{n \times n}$ una matriz con al menos un autovalor real simple. Probar que existe $\delta > 0$ tal que si $B = (b_{ij})_{1 \leq i,j \leq n} \in \mathbb{R}^{n \times n}$ satisface $|a_{ij} - b_{ij}| < \delta$ entonces tiene al menos un autovalor real.

Solución. Recordemos que λ es autovalor de A si es raíz de su polinomio característico, P(x) = det(A-xId). Y que el autovalor sea simple quiere decir que es raiz simple del polinomio. Queremos ver que si modificamos un poco los coeficientes de A el polinomio característico de la matriz resultante sigue teniendo una raíz real. Vamos a hacer esto utilizado el teorema de la función implícita, vamos a ver que podemos encontrar un autovalor como función de los coeficientes.

Consideremos $f: \mathbb{R}^{n \times n} \times \mathbb{R} \to \mathbb{R}$ dada por

$$f(B,x) = det(B - xId)$$

Si λ es el autovalor simple de A, tenemos que $f(A,\lambda)=0$. Y además que sea simple nos dice que $\frac{df}{dx}(A,\lambda)\neq 0$. Observemos que f(B,x) es un polinomio en los coeficientes de la matriz B y la variable real x y por lo tanto es una función C^{∞} . Estamos en las hipótesis del teorema de la función implícita. Existe $W\subset \mathbb{R}^{n\times n}\times \mathbb{R}$ entorno de $(A,\lambda),\ V\subset \mathbb{R}^{n\times n}$ entorno de A y una función $x:V\to \mathbb{R}$ que satisface

$$W \cap \{(B, y) \in \mathbb{R}^{n \times n} \times \mathbb{R} : f(B, y) = 0\} = graf(x)$$

Aquí graf(x) es el gráfico de la función x, es decir $\{(B, x(B)) \in \mathbb{R}^{n \times n} \times \mathbb{R} : B \in V\}$. Consideramos en $\mathbb{R}^{n \times n}$ la distancia infinito, sabemos que V es abierto con respecto esta. Podemos tomar $\delta > 0$ tal que $B_{\delta}(A) \subset V$. Tenemos que toda matriz $B \in B_{\delta}(A)$ va a tener un autovalor dado por x(B). Hemos probado que toda matriz B cuyos coeficientes satisfacen que $|b_{ij} - a_{ij}| < \delta$ para todo $1 \le i, j \le n$ tiene un autovalor real.