7 Übung vom 09.06.

21. Aufgabe

Musterlösung online.

22. Aufgabe

$$\begin{pmatrix} 1 & 2 & 1 & 1 & -2 & | & 4 \\ 1 & 1 & -4 & -2 & -3 & | & 2 \\ 1 & 2 & 5 & -4 & 6 & | & 3 \end{pmatrix} \xrightarrow{\text{Gauß}} \begin{pmatrix} 1 & 0 & -13 & 0 & -12 & | & 1 \\ 0 & 1 & \frac{37}{5} & 0 & \frac{29}{5} & | & \frac{7}{5} \\ 0 & 0 & -\frac{4}{5} & 1 & -\frac{8}{5} & | & \frac{1}{5} \end{pmatrix}$$

Also ist x^0 Ecke.

Wir lösen:

$$\tilde{f}(x) = -3x_1 - 5x_2 - 4x_3 - 5x_4 - 6x_5 = \min$$

$$\begin{pmatrix}
1 & 0 & -13 & 0 & -12 \\
0 & 1 & \frac{37}{5} & 0 & \frac{29}{5} \\
0 & 0 & -\frac{4}{5} & 1 & -\frac{8}{5}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{pmatrix} = \begin{pmatrix}
1 \\
\frac{7}{5} \\
\frac{1}{5}
\end{pmatrix}$$

$$x_1, \dots, x_5 \ge 0$$

Also ist $x^1=(\frac{113}{29},0,0,\frac{17}{29},\frac{7}{29})$ Lösung mit $f(x^1)=\frac{466}{29}.$

23. Aufgabe

Phase I: Wir lösen

$$g(x,y) = y_1 + y_2 + y_3 = \min$$

$$-x_1 + 2x_2 + x_3 + x_4 + y_1 = 0$$

$$3x_1 - 2x_2 + 2x_3 + 3x_4 + y_2 = 9$$

$$2x_1 - x_2 + x_3 - x_4 + y_3 = 6$$

$$x_1, x_2, x_3, x_4, y_1, y_2, y_3 \ge 0$$

y_1	y_2	y_3	x_1	x_2	x_3	x_4	
1	0	0	-1	2	1	1	0
0	1	0	3	-2	2	3	9
0	0	1	2	-1	1	-1	6
0	0	0	-4	1	-4	-3	-15
1	0	0	-1	2	1	1	0
-2	1	0	5	-6	0	1	9
-1	0	1	3	-3	0	-2	6
4	0	0	-8	9	0	1	-15
$\frac{3}{5}$	1/5	0	0	$\frac{4}{5}$	1	<u>6</u> 5	9 5
$\frac{3}{5}$ $-\frac{2}{5}$	15 15 5	0	1	$-\frac{4}{5}$ $-\frac{6}{5}$	0	6 54 5	$\frac{9}{5}$
$\frac{1}{5}$	$-\frac{3}{5}$	1	0	$\frac{3}{5}$	0	$-\frac{13}{5}$	3 KI CAI COTIO
$\frac{4}{5}$	$\frac{8}{5}$	0	0	$-\frac{3}{5}$	0	$\frac{13}{5}$	$-\frac{3}{5}$
$\frac{1}{3}$	1	$-\frac{4}{3}$	0	0	1	$\frac{14}{3}$ -5	1
ő	-1	2	1	0	0	-5	3
$\frac{1}{3}$	-1	$\frac{5}{3}$	0	1	0	$-\frac{13}{3}$	1
1	1	1	0	0	0	0	0

 $x^0 = (3, 1, 1, 0)$ ist Ecke.

Phase II:

$$f(x) = 3x_1 + x_2 - 3x_3 - x_4 = \min$$

$$x_3 + \frac{14}{3}x_4 = 1$$

$$x_1 - 5x_4 = 3$$

$$x_2 - \frac{13}{3}x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Damit ist x^0 Lösung.

24. Aufgabe

a) Wie in Aufgabe 20(a) zeigt man: Wenn (x,y) Ecke von M' ist, dann ist x Ecke von M.

Sei
$$b_1 = \max_{i=1,...,n} b_i$$
.

Idee wie bei 2-Phasen-Methode: Wir betrachten

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{11} - a_{21} & \dots & a_{1n} - a_{2n} \\ \vdots & & \vdots \\ a_{11} - a_{m1} & \dots & a_{1n} - a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} - \begin{pmatrix} y_1 \\ \vdots \\ y_1 \end{pmatrix} + \begin{pmatrix} z \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} b_1 \\ b_1 - b_2 \\ \vdots \\ b_1 - b_m \end{pmatrix}$$

$$x_1, \dots, x_n, y_1, \dots, y_m, z \ge 0$$

Dieses LP ist lösbar, da

$$(x_1,\ldots,x_n,y_1,y_2,\ldots,y_m,z)=(0,\ldots,0,0,b_1-b_2,\ldots,b_1-b_m,b_1)$$

im zulässigen Bereich liegt und g auf dem zulässigen Bereich nach unten beschränkt ist.

1. Fall: Das Minimum ist echt größer als Null.

$$\Rightarrow M' = \varnothing \Rightarrow M = \varnothing$$

 \Rightarrow ursprüngliches Problem nicht lösbar

2. Fall: Das Minimum is gleich 0, d.h. es gibt eine Ecke der Form

$$(x_1,\ldots,x_n,y_1,\ldots,y_m,\underbrace{0}_z)$$

Dann ist $(x_1, \ldots, x_n, y_1, \ldots, y_m)$ Ecke von M' und (x_1, \ldots, x_n) Ecke von M.

[Beachte: $b_3 = \max_{i=1,2,3} b_i !$]

i=1,2,3												
	x_1	x_2	x_3	y_1	y_2	y_3	\mathbf{z}					
	1	1	1	1	0	-1	0	2				
	2	0	1	0	1	-1	0	1				
	3	2	$\overline{2}$	0	0	-1	1	6				
	-3	-2	-2	0	0	1	0	-6				
_	-1	1	0	1	-1	0	0	1				
	2	0	1	0	1	-1	0	1				
	-1	2	0	0	-2	1	1	4				
	1	-2	0	0	2	-1	0	-4				
	-1	1	0	1	-1	0	0	1				
	2	0	1	0	1	-1	0	1				
	1	0	0	-2	0	1	1	2				
	-1	0	0	2	0	-1	0	-2				
	-1	1	0	1	-1	0	0	1				
	3	0	1	-2	1	0	1	3				
	1	0	0	-2	0	1	1	2				
_	0	0	0	0	0	0	1	0				

 $\Rightarrow x^0 = (0,1,{\bf 3})$ ist Ecke unseres zuläsigen Bereichs.

Anmerkung: Korrigierte Tableaus! (Tableaus aus der Übung falsch!)