

Overview

- 1-n MSCs:
 - lacktriangle Relation between causally ordered and 1-n MSCs
 - Relation between 1 n MSCs and mailbox, $1 n \subset mailbox$
- Existentially and universally k-bounded MSCs... are they really MSO-definable? (week 5 fail)
- n-n MSCs:
 - Definition
 - Relation between 1-n and n-n MSCs (conjecture)

1-n MSC - definition

Moving on to the 1-n semantics, we say that M is a 1-n MSC if there is a 1-n system that can exhibit the behaviour described by M.

Definition 3.5 (1-n MSC). A p2p MSC $M = (\mathcal{E}, \rightarrow, \triangleleft, \lambda)$ is a 1-n MSC if it has a linearization \rightsquigarrow where, for any two send events s and s', such that $\lambda(s) = Send(p, _, _)$, $\lambda(s') = Send(p, _, _)$, and $s \rightarrow^+ s'$ (which implies $s \rightsquigarrow s'$), we have either:

- $s, s' \in Matched(M)$ and $r \leadsto r'$, where r and r' are two receive events such that $s \triangleleft r$ and $s' \triangleleft r'$.
- $s' \in Unm(M)$.

Such a linearization will be referred to as a 1-n linearization. Note that the definition is very similar to the mailbox case, but here s and s' are two send events executed by the same process. Let MSC_{1-n} denote the set of all the 1-n MSCs over two given sets $\mathbb P$ and $\mathbb M$. By definition, every 1-n MSC is a p2p MSC. Conversely, Example ?? shows a p2p MSC which is not a 1-n MSC. It follows that $\mathsf{MSC}_{\mathsf{mb}} \subset \mathsf{MSC}_{\mathsf{p2p}}$. We show here that each 1-n MSC is also a causally ordered MSC, which is not as intuitive as the mailbox case.

1-n MSC - alternative definition

Definition 3.6 (1-n alternative). For a p2p MSC $M = (\mathcal{E}, \to, \lhd, \lambda)$, we define an additional binary relation that represents a constraint under the 1-n semantics, which ensures that messages sent from the same process are received in the same order. Let $\blacktriangleleft_M \subseteq \mathcal{E} \times \mathcal{E}$ be defined as $e_1 \blacktriangleleft_M e_2$ if there are two events e_1 and e_2 , and $p \in \mathbb{P}$ such that either:

- $\lambda(e_1) \in Send(p, _, _), \ \lambda(e_2) \in Send(p, _, _), \ e_1 \in Matched(M), \ and \ e_2 \in Unm(M), \ or$
- $\lambda(e_1) \in Rec(p, _, _)$, $\lambda(e_2) \in Rec(p, _, _)$, $s_1 \triangleleft e_1$ and $s_2 \triangleleft e_2$ for some $s_1, s_2 \in \mathcal{E}_p$, and $s_1 \to^+ s_2$.

We let $\lessdot_M = (\to \cup \lhd \cup \blacktriangleleft_M)^*$. Note that $\leq_M \subseteq \lessdot_M$. We call $M \in \mathsf{MSC}_{\mathsf{p2p}}$ a 1-n MSC if \lessdot_M is a partial order.

Hierarchy of executions

Relation between mailbox and 1-n MSCs

- Can we find an MSC that is 1 n, but not mailbox?
- $1 n \subset mailbox$?
- If we do not consider unmatched messages, do we have 1 n = mailbox?

mailbox, but not 1 - n

Proposition 3.2. Every 1-n MSC is a causally ordered MSC.

Proof. By contradiction. Suppose that M is a 1-n MSC, but not a causally ordered MSC. Since M is not causally ordered, there must be two send events s and s' such that $\lambda(s) = Send(_, q, _)$, $\lambda(s') = Send(_, q, _)$, $s \leq_M s'$, and we have either:

- 1. $s, s' \in Matched(M)$ and $r' \to^* r$, where r and r' are two receive events such that $s \triangleleft r$ and $s' \triangleleft r'$.
- 2. $s \in Unm(M)$ and $s' \in Matched(M)$.

We need to show that both of these scenarios lead to a contradiction. (1) Suppose s and s' are executed by the same process. Since M is a 1-n MSC, there must be a linearization \rightsquigarrow such that $r \rightsquigarrow r'$, but this is clearly impossible since we have $r' \rightarrow^* r$. Suppose now that s and s' are executed by two different processes p and q. We know by hypothesis that $s \leq_M s'$, i.e. there is a causal path of events $P = s \sim a \sim \cdots \sim s' \sim r'$ from s to r', where \sim is either \rightarrow or \triangleleft . Refer to the first example in Figure 6 for a visual representation (P is drawn in purple). To have a causal path P, there must be a send event s'' that is executed by p after s and that is part of P, along with its receipt r'' (i.e. $P = s \leq_M s'' \triangleleft r'' \leq_M s' \triangleleft r'$). We clearly have $r'' \leadsto r'$ for any linearization of M, because $r'' \leq_M r'$ (they are both in the causal path P and r'' happens before r). Since M is a 1-nMSC, there has to be a linearization \rightsquigarrow where $r \rightsquigarrow r''$, because s and s'' are send events executed by the same process. It follows that M should have a linearization were $r \rightsquigarrow r'' \rightsquigarrow r'$, but this is not possible because of the hypothesis that $r' \to^* r$. This is a contradiction. (2) Suppose s and s' are executed by the same process. It is trivial to see, by definition, that M cannot be a 1-nMSC. Suppose now that s and s' are executed by two different processes p and q, and consider the same send event s'' as before (executed by p). Refer to the second example in Figure 6 for a visual representation. Since s'' is matched, we have two events s and s'', sent by the same process p, that are unmatched and matched, respectively. Clearly, M cannot be a 1-n MSC.

1 - n vs mailbox

Proposition 3.3. Every 1-n MSC without unmatched messages is a mailbox MSC.

Proposition 3.4. Every 1-n MSC is a mailbox MSC.

Proofs can be found in the report...

MSO-definability of 1-n MSCs

1-n MSCs Given an MSC M, it is a 1-n MSC if it satisfies the MSO formula

$$\varphi_{1-n} = \neg \exists x. \exists y. (\neg (x = y) \land x \lessdot_M y \land y \lessdot_M x)$$

Here, $x \leq_M y$ is the MSO-definable transitive closure of the union of the MSO-definable relations \to , \lhd , and \blacktriangleleft_M . In particular, we can define $x \blacktriangleleft_M y$ as

$$x \blacktriangleleft_{M} y = \begin{pmatrix} \bigvee_{\substack{p \in \mathbb{P} \\ a,b \in Send(p,_,_)}} (\lambda(x) = a \land \lambda(y) = b) \land matched(x) \land \neg matched(y) \end{pmatrix} \lor \begin{pmatrix} \bigvee_{\substack{p \in \mathbb{P} \\ a,b \in Rec(p,_,_)}} (\lambda(x) = a \land \lambda(y) = b) \land \exists x'. \exists y'. (x' \lhd x \land y' \lhd y \land x' \rightarrow^{+} y') \end{pmatrix}$$

The MSO formula for $x \triangleleft_M y$ closely follows Definition 3.6. The set MSC_{1-n} of mailbox MSCs is therefore MSO-definable as $\mathsf{MSC}_{1-n} = L(\varphi_{1-n})$.

MSO-definability

MSO definability	Raw	Weakly sync	Weakly k-sync	$\exists k$ bounded	$\forall k$ bounded
Asynchronous	Υ	Υ	Υ	?	?
FIFO 1-1 (p2p)	Υ	Υ	Υ	Υ	Υ
Causally ordered	Υ	Υ	Υ	Υ	Υ
FIFO n-1 (mailbox)	Υ	Υ	Y	Υ	Υ
FIFO 1-n	Υ				
FIFO n-n					
RSC					

n-n MSC - definition

Definition 3.7 (n-n MSC). An MSC $M = (\mathcal{E}, \rightarrow, \triangleleft, \lambda)$ is a n-n MSC if it has a linearization \rightsquigarrow where, for any two send events s and s', we have either:

- $s, s' \in Matched(M)$ and $r \leadsto r'$, where r and r' are two receive events such that $s \triangleleft r$ and $s' \triangleleft r'$.
- $s' \in Unm(M)$.

Intuitively, with an n-n MSC we are always able to shedule events in such a way that messages are received in the same order as they were sent.

Relation between n-n and 1-n MSCs

Conjecture: $MSC_{1-n} = MSC_{n-n}$

