

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Гуров Евгений Валерьевич

«Гамильтонов формализм для задачи гарантированного синтеза управлений при геометрической неопределенности»

Выпускная квалификационная работа

Научный руководитель: академик, д.ф.-м.н., профессор А. Б. Куржанский

Содержание

1	Задача синтеза управлений при неопределенности	3
2	Альтернированный интеграл Понтрягина	4
3	Гарантированный синтез управлений. Функции цены	7
4	Решение задачи синтеза	11
5	Эллипсоидальные аппроксимации множества разрешимости	13
6	Эллипсоидальный синтез управлений	15
Список литературы		17

1 Задача синтеза управлений при неопределенности

Рассмотрим систему

$$\dot{x} = A(t)x(t) + B(t)u(t) + C(t)v(t) \tag{1}$$

с непрерывными матрицами A(t), B(t), C(t). Где $x \in \mathbb{R}^n$ — вектор состояния системы; $u \in \mathbb{R}^p$ — управление, $v \in \mathbb{R}^q$ — внешнее возмущение, стесненные почти всюду по t некоторыми "геометрическими" ограничениями

$$u(t) \in \mathcal{P}(t), \quad v(t) \in \mathcal{Q}(t),$$

где $\mathcal{P}(t)$ и $\mathcal{Q}(t)$ — заданные многозначные функции с выпуклыми компактными значениями, непрерывно зависящие от времени. Управление может быть выбрано в одном из двух классов:

- в классе U программных управлений $\mathbf{u} = \mathbf{u}(\mathbf{t})$ измеримых по Лебегу функций со значениями в $\mathcal{P}(t)$ почти всюду.
- в классе $U_{\mathcal{P}}$ позиционных управлений, представляющих собой многозначные функции $\mathcal{U}(t,x)\subseteq \mathcal{P}(t)$. При этом выполнены условия существования и продолжаемости решения дифференциального включения

$$\dot{x} \in A(t)x + B(t)\mathcal{U}(t,x) + C(t)v(t), \quad t_0 \le t \le t_1, \tag{2}$$

для любой измеримой по Лебегу функции v(t). ¹ В этой работе речь пойдет именно про этот тип управлений.

Важно отметить, что в задачах с неопределенностью эти два типа управлений существенно не взимозаменямы. Имея позиционное управление, подстановкой его и решением задачи относительно u(t), уже нельзя однозначно найти программный аналог.

Пусть задано "целевое" множество $\mathcal{M} \in \text{comp }\mathbb{R}^n$. Задача о синтезе управления при неопределенности состоит в отыскании множества разрешимости $\mathcal{W}(\tau,t_1,\mathcal{M})=\mathcal{W}[\tau]$ и позиционной стратегией управления $\mathcal{U}(t,x)\in U_{\mathcal{P}}$ таких, что все решения (2), выпущенные из любой начальной позиции $\{\tau,x_{\tau}\},\,x_{\tau}=x(\tau),\,x_{\tau}\in \mathcal{W}(\tau,t_1,\mathcal{M}),\,\tau\in[t_0,t_1)$, достигали бы целевого множества \mathcal{M} в момент времени t_1 при любом внешнем возмущени $v(t)\in\mathcal{Q}(t)$.

Задача имеет смысл в случае $\mathcal{W}(\tau,t_1,\mathcal{M})\neq\varnothing$. Многозначная функция $\mathcal{W}[t]=\mathcal{W}(t,t_1,\mathcal{M})$ называется *трубкой разрешимости* или *мостом Красовского*, и является ключевым элементом в решении задачи. Существенным обстоятельством является возможность вычислить эту функцию при помощи некоторого многозначного инетграла — альтернированного интеграла J. С. Понтрягина.

¹Примером класса $U_{\mathcal{P}}$ может служить класс всех непрерывных по t и полунепрерывных сверху по x многозначных отображений с выпуклыми компактными значениями. В этом случае дифференциальное включение имеет решение на всем отрезке времени для произвольного $x^0 = x(t_0)$, то есть существует абсолютно непрерывная функция x(t), удовлетворяющая дифференциальному включению почти всюду.[ссылка на доказательство леммы филлипова(например)]

2 Альтернированный интеграл Понтрягина

Напомним определение этого интеграла. Для этого приведем вначале систему (1) к более простому виду

$$\dot{x} = u + v \tag{3}$$

с новыми ограничениями

$$u \in \mathcal{P}_0(t), \quad v \in \mathcal{Q}_0(t),$$
 (4)

где $\mathcal{P}_0(t) = G(t_1,t)B(t)\mathcal{P}(t)$, $\mathcal{Q}_0 = G(t_1,t)C(t)\mathcal{Q}(t)$ и $G(t,t_1)$ — фундаментальная матрица однородного уравнения (1). Для этого сделаем невырожденную замену $x(t) = G(t_1,t)x(t)$. Далее вместо (1) будем рассматривать (3) с ограничениями (4), опуская индекс нуль.

Определение 2.1. *Множеством разрешимости максиминного типа назовем множество*

$$W[\tau] = W(\tau, t_1, \mathcal{M}) = \left\{ x : \max_{v} \min_{u} d^2(x(t_1), \mathcal{M}) \le 0 \mid x(\tau) = x \right\},$$
 (5)

 $z \partial e \ d^2(x.\mathcal{M}) = \min_z \{(x-z,x-z) \mid z \in \mathcal{M}\} \ u \ x(t_1) - \kappa$ онец в момент t_1 траектории x(t) системы $\binom{z}{0}$, выпущенной из положения $x(\tau) = x$.

Утверждение 2.1. Для W[t] справедливо представление:

$$W(t, t_1, \mathcal{M}) = \left(\mathcal{M} + \int_{t}^{t_1} (-\mathcal{P}(t))dt\right) - \int_{t}^{t_1} \mathcal{Q}(t)dt, \quad \tau \le t \le t_1.$$
 (6)

Здесь символ $\mathcal{P} \dot{-} \mathcal{Q}$ означает геометрическую (по Минковскому) разность двух множеств \mathcal{P} , \mathcal{Q} . А именно, $c \in \mathcal{P} \dot{-} \mathcal{Q}$ тогда и только тогда, когда $c + \mathcal{Q} \subseteq \mathcal{P}$.

$$x(t_1) = x(t) + \int_{t}^{t_1} u(\tau)d\tau + \int_{t}^{t_1} v(\tau)d\tau.$$

В таком случае множество разрешимости очевидно представляется в виде

$$W(t, t_1, \mathcal{M}) = \bigcap_{v \in \mathcal{Q}} \bigcup_{u \in \mathcal{P}} \left\{ x : x = x(t_1) - \int_t^{t_1} u(\tau) d\tau - \int_t^{t_1} v(\tau) d\tau, \ x(t_1) \in \mathcal{M} \right\} =$$

$$= \bigcap_{v \in \mathcal{Q}} \bigcup_{u \in \mathcal{P}} \left\{ \mathcal{M} - \int_t^{t_1} u(\tau) d\tau - \int_t^{t_1} v(\tau) d\tau \right\} =$$

$$= \bigcap_{v \in \mathcal{Q}} \left\{ \mathcal{M} + \int_t^{t_1} (-\mathcal{P}(\tau)) d\tau - \int_t^{t_1} v(\tau) d\tau \right\} =$$

$$\begin{split} &= \left\{ x: x \in \left(\mathcal{M} + \int\limits_t^{t_1} (-\mathcal{P}(\tau)) \right) - \int\limits_t^{t_1} v(\tau) d\tau, \, \forall v(\tau) \in \mathcal{Q}(\tau) \right\} = \\ &= \left\{ x: x + \int\limits_t^{t_1} v(\tau) d\tau \in \mathcal{M} + \int\limits_t^{t_1} (-\mathcal{P}(\tau)) d\tau, \, \forall v(\tau) \in \mathcal{Q}(\tau) \right\}. \end{split}$$

Последнее в силу определения разности по Минковскому совпадает с правой частью формулы (6).

Опишем формальную процедуру построения альтернированного интеграла. Для этого построим множество $\mathcal{W}^*(\tau, t_1, \mathcal{M})$, явялющееся суперпозицей множеств $W(\tau, t_1, \mathcal{M})$, определенных выше. Взяв интервал $\tau \leq t \leq t_1$, рассмотрим разбиение $\Sigma_k = \{\sigma_1, \ldots, \sigma_k\}$,

$$t = t_1 - \sum_{i=1}^{k} \sigma_i, \dots, t_1 - \sigma_1, t_1, \quad \sigma_i > 0.$$

На первом шаге, начав с момента t_1 , найдем множество $W[t_1-\sigma_1]=W(t_1-\sigma_1,t_1,\mathcal{M})$. Вследствие (6) будем иметь

$$W(t_1 - \sigma_1, t_1, \mathcal{M}) = \left(\mathcal{M} + \int_{t_1 - \sigma_1}^{t_1} (-\mathcal{P}(\tau)) d\tau\right) \dot{-} \int_{t_1 - \sigma_1}^{t_1} \mathcal{Q}(\tau) d\tau. \tag{7}$$

Продолжая последовательную процедуру, имеем

$$W(t_{1} - \sigma_{1} - \sigma_{2}, t_{1} - \sigma_{1}, W[t_{1} - \sigma_{1}]) = \left(W[t_{1} - \sigma_{1}] + \int_{t_{1} - \sigma_{1} - \sigma_{2}}^{t_{1} - \sigma_{1}} (-\mathcal{P}(\tau))d\tau\right) \dot{-}$$

$$\dot{-} \int_{t_{1} - \sigma_{1} - \sigma_{2}}^{t_{1} - \sigma_{1}} \mathcal{Q}(\tau)d\tau$$
(8)

и, в итоге, получаем

$$W(t, t + \sigma_k, W(t + \sigma_k, t + \sigma_k + \sigma_{k-1}, \dots, W(t_1 - \sigma_1, t_1, \mathcal{M}))) = \mathcal{I}(t, t_1, \mathcal{M}, \Sigma_k). \tag{9}$$

В приведенной процедуре предполагается, что все возникающие множества $W(\cdot)$ вида (9) непусты.

Предположение 2.1. Существует такая непрерывная функция $\beta(t)>0, t\in[t_0,t_1],$ что все множества

$$W\left(t_{1} - \sum_{i=1}^{j} \sigma_{i}, t_{1} - \sum_{i=1}^{j-1} \sigma_{i}, W\left(t_{1} - \sum_{i=1}^{j-1} \sigma_{1}, t_{1} - \sum_{i=1}^{j-2} \sigma_{i}, \dots, W(t_{1} - \sigma_{1}, t_{1}, \mathcal{M})\right) \dots\right) \dot{-}$$

$$\dot{-} \beta\left(t_{1} - \sum_{i=1}^{j} \sigma_{i}\right) S \neq \emptyset$$

$$(10)$$

 $npu\ j=1,\ldots,k,\$ каким бы ни было разбиение $\Sigma_k.$

Предположение (2.1) обеспечивает условие $W(\tau, t_1, \mathcal{M}) = \mathcal{I}(t, t_1, \mathcal{M}, \Sigma_k) \neq \emptyset$ для любого разбиения Σ_k .

Ниже всюду будем случитать предположение (2.1) выполненым. Следует заметить, что данное замечание введено не только для облегчения выкеладок. В его отсутствие некоторые из утверждений, приводимых далее, могут оказаться неверными.

Следуя (7) - (9), приходим к аналитическому выражению

$$\mathcal{I}(\tau, t_1, \mathcal{M}, \Sigma_k) = \left(\dots \left(\left(\mathcal{M} + \int_{t_1 - \sigma_1}^{t_1} (-\mathcal{P}(\tau)) d\tau \right) \dot{-} \int_{t_1 - \sigma_1}^{t_1} \mathcal{Q}(\tau) d\tau \right) + \dots \dot{-} \int_{t}^{t_1 - \sigma_1} \mathcal{Q}(\tau) d\tau \right) \cdot (11)$$

Множества $\mathcal{I}(t,t_1,\mathcal{M},\Sigma_k)$ есть выпуклые компакты для любого разбиения Σ_k . Рассмотрим хаусдорфов предел этих множеств при $\max\{\sigma_i:\ i=1,\ldots,k\}\to 0$.

Напомним, что $xaycdop\phioso$ nonypaccmoshue между компактами \mathcal{Q},\mathcal{M} определяется как

$$h_{+}(\mathcal{Q}, \mathcal{M}) = \max_{x} \min_{z} \{ (x - z, x - z)^{1/2} \mid x \in \mathcal{Q}, z \in \mathcal{M} \},$$

в то время как $xaycdop\phiobo$ расстояние $h(\mathcal{Q},\mathcal{M}) = \max\{h_+(\mathcal{Q},\mathcal{M}), h_+(\mathcal{M},\mathcal{Q})\}.$

Лемма 2.1. Существует хаусдорфов предел $\mathcal{I}(t,t_1,\mathcal{M})$

$$\lim h\left(\mathcal{I}(t,t_1,\mathcal{M},\Sigma_k),\mathcal{I}(t,t_1,\mathcal{M})\right)=0$$

npu

$$\max\{\sigma_i: i=1,\ldots,k\} \to 0, \quad k \to \infty, \quad \sum_{i=1}^k \sigma_i = t_1 - t.$$

Этот предел не зависит от способа разбиения Σ_k .

Множество

$$\mathcal{I}(t, t_1, \mathcal{M}) = \mathcal{W}^*(t, t_1, \mathcal{M}) = \mathcal{W}^*[t]$$
(12)

будем называть *альтернированной областью разрешимости* задачи (1), обозначая его как

$$\mathcal{I}(t, t_1, \mathcal{M}) = \int_{t_1, \mathcal{M}}^{t} \left((-\mathcal{P}(\tau)) d\tau \dot{-} \mathcal{Q}(\tau) d\tau \right).$$

Фактически множество $\mathcal{I}(t,t_1,\mathcal{M})$ есть значение некоторого многозначного интеграла, известного как альтернированный интеграл Понтрягина. Этот интеграл детально описан в статье [1].

Пемма 2.2. Многозначное отображение $W^*(t, t_1, \mathcal{M})$ удовлетворяет полугрупповому свойству:

$$\mathcal{W}^*(t, t_1, \mathcal{M}) = \mathcal{W}^*(\tau, t, \mathcal{W}^*(t, t_1, \mathcal{M})), \quad \tau \le t \le t_1. \tag{13}$$

Доказательство. Доказательство этого факта вытекает из свойства аддитивности альтернированного интеграла $\mathcal{I}(t, t_1, \mathcal{M})$, которое доказывается, например, в [1]. \square

Ключевое свойство альтернированного интеграла содержит следующая

Теорема 2.1. Множество разрешимости $\mathcal{W}[t]$ может быть представлено как

$$W[t] \equiv W^*[t] \equiv \mathcal{I}(t, t_1, \mathcal{M}), \quad t_0 < t < t_1. \tag{14}$$

3 Гарантированный синтез управлений. Функции цены

Сформулированная задача *гарантированного синтеза управлений при неопределенности* не содержит каких-либо криетриев оптимальности. В ней требуется найти лишь некоторое допустимое "гарантированное"решение. Тем не менее будем рассматривать её посредством сведения к процедурам оптимизации, принятых в рамках идей динамического программирования.

Введем функцию цены

$$\mathcal{V} = \min_{\mathcal{U}} \max_{x(\cdot)} \{ \mathcal{I}(t, x) \mid \mathcal{U} \in U_{\mathcal{P}}, \, x(\cdot) \in \mathcal{X}_{\mathcal{U}}(\cdot) \}, \tag{15}$$

где

$$\mathcal{I}(t,x) = d^2(x[t_1], \mathcal{M})$$

и $\mathcal{X}_{\mathcal{U}}(\cdot)$ — множество всех траекторий $x(\cdot)$ включения

$$\dot{x} \in \mathcal{U}(t,x) + \mathcal{Q}(t), \quad x(\tau) = x,$$
 (16)

порожденных заданной стратегией $\mathcal{U} \in U_{\mathcal{P}}$.

В таком случае для функции $\mathcal{V}(t,x)$ можно составить следующее уравнение Гамильтона-Якоби-Беллмана-Айзекса:

$$\frac{\partial \mathcal{V}}{\partial t} + \min_{u} \max_{v} \left(\frac{\partial \mathcal{V}}{\partial x}, u + v \right) = 0, \quad u \in \mathcal{P}(t), \ v \in \mathcal{Q}(t), \tag{17}$$

с граничным условием

$$\mathcal{V}(t_1, x) = d^2(x, \mathcal{M}). \tag{18}$$

В общем случае подобное уравнение может не иметь классического решения и для его рассмотрения следует привлекать понятия обобщенных "вязкостных"или "минимаксных"решений. В данной работе функция цены $\mathcal{V}(t,x)$ оказывается выпуклой или квазивыпуклой по x. Поэтому решения соответствующих уравнений Гамильтона-Якоби-Беллмана-Айзекса, рассматриваемых здесь, не выходят за рамки вязкостных или даже классических решений.

Перейдем к другой интерпретации функции цены $\mathcal{V}(t,x)$. Рассмотрим интервал $\tau \leq t \leq t_1$ и построим разбиение $\Sigma_k = \{\sigma_1, \dots, \sigma_k\}$, подобное рассмотренному в разделе 1. Для данного разбиения рассмотрим рекуррентные соотношения

$$V_k^+(t_1 - \sigma_1, x) = \left\{ \max_v \min_u d^2(x(t_1), \mathcal{M}) \mid t_1 - \sigma_1 \le t \le t_1, \ x(t_1 - \sigma_1) = x \right\},\,$$

$$V_k^+(t_1 - \sigma_1 - \sigma_2, x) = \left\{ \max_v \min_u V_k^+(t_1 - \sigma_1, x(t_1 - \sigma_1)) \mid t_1 - \sigma_1 - \sigma_2 \le t \le t_1 - \sigma_1, x(t_1 - \sigma_1) \le t_1 - \sigma_1,$$

и так далее. Наконец в точке $au = t_1 - \sum_{i=1}^k \sigma_i$:

$$V_k^+(\tau, x) = \left\{ \max_v \min_u V_k^+(\tau + \sigma_k, x(\tau + \sigma_k)) \mid \tau \le t \le \tau + \sigma_k, \ x(\tau) = x \right\},$$

где $v(t) \in \mathcal{Q}(t), u(t) \in \mathcal{P}(t)$ почти всюду на соответствующих интервалах. Всюду предполагаем, что "максимины" существуют.

Π емма 3.1. Πpu

$$\max_{i=1,\dots,k} \{\sigma_i\}, \quad k \to \infty, \quad \sum_{i=1}^k \sigma_i = t_1 - \tau,$$

существует поточечный предел

$$V^{+}(\tau, x) = \lim_{k \to \infty} V_k^{+}(\tau, x),$$

не зависит от выбора разбиения Σ_k .

Будем называть $V^+(\tau, x)$ последовательным максимином. Обозначим

$$V^{+}(\tau, x) = V^{+}(\tau, x \mid V^{+}(t_{1}, \cdot)), \quad V^{+}(t_{1}, x) \equiv d^{2}(x, \mathcal{M}).$$
(19)

Нетрудно заметить, что имеет место следующая

Лемма 3.2. Функция $V^+(\tau, x)$ удовлетворяет полурупповому свойству

$$V^+(\tau, x \mid V^+(t_1, \cdot)) = V^+(\tau, x \mid V^+(t, \cdot \mid V^+(t_1, \cdot))).$$

При этом справедливо неравенство

$$V^{+}(t,x) \ge \left\{ \max_{v} \min_{u} V^{+}(t+\sigma, x(t+\sigma)) \mid x(t) = x \right\}, \quad \sigma > 0.$$

Отметим связь функции с альтернированным интегралом.

Лемма 3.3. Справедливо равенство

$$V^{+}(\tau, x) = d^{2}(x, \mathcal{W}^{*}(\tau, t_{1}, \mathcal{M})),$$

где $\mathcal{W}^*[\tau] = \mathcal{W}^*(\tau, t_1, \mathcal{M}) = \mathcal{I}(\tau, t_1, \mathcal{M})$ — значение альтернированного интеграла

Отюсда прямо следует

Пемма 3.4. Альтернированный инетграл $\mathcal{I}(\tau, t_1, \mathcal{M})$ совпадает с множеством уровня последовательного максимина $V^+(\tau, x)$:

$$\mathcal{I}(\tau, t_1, \mathcal{M}) = \{x : V^+(\tau, x) \le 0\}.$$

Теперь рассмотрим задачу аналогичную предыдущей. Для произвольного Σ_k , построим рекуррентные соотношения

$$V_k^-(t_1 - \sigma_1, x) = \left\{ \min_{u} \max_{v} d^2(x(t_1), \mathcal{M}) \mid t_1 - \sigma_1 \le t \le t_1, \ x(t_1 - \sigma_1) = x \right\},$$

$$V_k^-(t_1 - \sigma_1 - \sigma_2, x) = \left\{ \min_u \max_v V_k^-(t_1 - \sigma_1, x(t_1 - \sigma_1)) \mid t_1 - \sigma_1 - \sigma_2 \le t \le t_1 - \sigma_1, x(t_1 - \sigma_1) \right\}$$
$$x(t_1 - \sigma_1 - \sigma_2) = x \right\},$$

и так далее. Наконец в точке $au = t_1 - \sum\limits_{i=1}^k \sigma_i$:

$$V_k^-(\tau, x) = \left\{ \min_{n} \max_{n} V_k^-(\tau + \sigma_k, x(\tau + \sigma_k)) \mid \tau \le t \le \tau + \sigma_k, \ x(\tau) = x \right\}.$$

Для определенных таким образом функций имеют место аналогичные утверждения

Лемма 3.5. 1. При

$$\max_{i=1,\dots,k} \{\sigma_i\}, \quad k \to \infty, \quad \sum_{i=1}^k \sigma_i = t_1 - \tau,$$

существует поточечный предел

$$V^{-}(\tau, x) = \lim_{k \to \infty} V_k^{-}(\tau, x),$$

не зависит от выбора разбиения Σ_k .

2. Функция $V^{-}(\tau, x)$ удовлетворяет полугрупповому свойству.

$$V^{-}(\tau, x \mid V^{-}(t_1, \cdot)) = V^{-}(\tau, x \mid V^{-}(t, \cdot \mid V^{-}(t_1, \cdot))). \tag{20}$$

3. Справедливо неравенство

$$V^{-}(t,x) \le \min_{u} \max_{v} \{ V^{-}(t+\sigma, x(t+\sigma)) \mid x(t) = x \}, \quad \sigma > 0.$$
 (21)

Подобно тому как альтернированный интеграл $I(\tau, t_1, \mathcal{M})$ является множеством уровня последовательного максимина, множество уровня последовательного минимакса также представляет собой некоторый многозначный интеграл. Определим его, для чего введем следующее

Определение 3.1. Множество разрешимости $W^{-}[\tau]$ минимаксоного типа называется следующая совокупность векторов

$$W_{-}[\tau] = W_{-}(\tau, t_1, \mathcal{M}) = \{x : \min_{u} \max_{v} d^2(x(t_1), \mathcal{M}) \le 0 \mid x(\tau) = x\}.$$

Для введенного множества справедливо представление аналогичное представлению

Утверждение 3.1. Для $W_{-}[\tau]$ справедливо представление

$$W_{-}(\tau, t_1, \mathcal{M}) = \left(\mathcal{M} \dot{-} \int_{\tau}^{t_1} \mathcal{Q}(t)dt\right) + \int_{\tau}^{t_1} (-\mathcal{P}(t))dt, \quad t_0 \le s \le t_1.$$
 (22)

Доказательство этого утверждения проводится аналогично доказательству соответствующего утверждения для множества максиминного типа.

Теперь, аналогично построению альтернированного интеграла Понтрягина $\mathcal{I}(\tau, t_1, \mathcal{M})$, рассмотрим суперпозицию множеств $W_-(t, t_1, \mathcal{M})$ для произвольного разбиения $\Sigma_k = \{\sigma_1, \dots, \sigma_k\}$ отрезка $\tau \leq t \leq t_1$.

$$W_{-}(t_1 - \sigma_1, t_1, \mathcal{M}) = \left(\mathcal{M} - \int_{t_1 - \sigma_1}^{t_1} \mathcal{Q}(s) ds\right) + \int_{t_1 - \sigma_1}^{t_1} (-\mathcal{P}(s)) ds.$$

И далее приходим к выражению

$$\mathcal{I}_{-}(\tau, t_{1}, \mathcal{M}, \Sigma_{k}) = \left(\dots \left(\left(\mathcal{M} - \int_{t_{1} - \sigma_{1}}^{t_{1}} \mathcal{Q}(t) dt \right) + \int_{t_{1} - \sigma_{1}}^{t_{1}} (-\mathcal{P}(t)) dt \right) - \dots + \int_{\tau}^{\tau + \sigma_{k}} (-\mathcal{P}(t)) dt \right).$$
(23)

Формальная процедура, описанная выше, предполгает что все множества $\mathcal{I}_{-}[\cdot]$ не пусты. Для этого необходимо принять

Предположение 3.1. Существует непрерывная функция $g(t):[t_0,t_1]\to \mathbb{R}^n$ и число r такие, что для любого разбиения Σ_k справедливо включение

$$g\left(t_1 - \sum_{i=1}^{j} \sigma_i\right) + rB \subseteq \mathcal{I}_{-}\left[t_1 - \sum_{i=1}^{j} \sigma_i\right], \quad j = 1, \dots, m.$$

Пемма 3.6. Существует замкнутое множество — хаусдорфов предел $\mathcal{I}_{-}(\tau, t_1, \mathcal{M})$

$$\lim h\left(\mathcal{I}_{-}(\tau, t_{1}, \mathcal{M}, \Sigma_{k}), \mathcal{I}_{-}(\tau, t_{1}, \mathcal{M})\right) = 0$$

npu

$$\max\{\sigma_i : i = 1, \dots, k\} \to 0, \quad k \to \infty, \quad \sum_{i=1}^k \sigma_i = t_1 - \tau,$$

и этот предел не зависит от выбора разбиений Σ_k

Будем называть

$$\mathcal{I}_{-}(\tau, t_1, \mathcal{M}) = \mathcal{W}_{-}(t, t_1, \mathcal{M}) = \mathcal{W}_{-}[t]$$

альтернированным интегралом Л.С. Понтрягина второго рода.

Лемма 3.7. Справедливы соотношения:

$$V^{-}(\tau, x) = d^{2}(x, \mathcal{W}_{-}(\tau, t_{1}, \mathcal{M})), \mathcal{I}(\tau, t_{1}, \mathcal{M}) = \{x : V^{-}(\tau, x) \le 0\}$$

Пемма 3.8. Многозначное отображение $W^-(t, t_1, \mathcal{M})$ удовлетворяет полугрупповому свойству, а именно

$$\mathcal{W}_{-}(\tau, t_1, \mathcal{M}) = \mathcal{W}_{-}(\tau, t, \mathcal{W}_{-}(t, t_1, \mathcal{M})), \quad \tau \leq t \leq t_1.$$

Отметим, что алтернированные интегралы соответствуют пределам разных информационных схем. Так, альтернированный интеграл Понтрягина предполагает появление текущей информации о помехах с опережением, в то время как интеграл второго рода — с запаздываанием. Тем не менее, в пределе эти схемы дают один и тот же результат, а именно, справедливо утверждение.

Теорема 3.1. Альтернированный интеграл Понтрягина совпадает с альтернированным интегралом второго рода:

$$\mathcal{W}(t,t_1,\mathcal{M})=\mathcal{W}_-(t,t_1,\mathcal{M}).$$

4 Решение задачи синтеза

Суммируем основыне утверждения в виде следуещей теоремы.

Теорема 4.1. 1. Последовательные максимин $V^+(\tau, x)$ и минимакс V^- равны и совпадают с функцией цены $\mathcal{V}(\tau, x)$:

$$V^+(\tau, x) \equiv V^-(\tau, x) \equiv \mathcal{V}(\tau, x),$$

2. Множество разрешимости задачи допускает следющие эквивалентные представления:

$$\mathcal{I}(\tau, t_1, \mathcal{M}) = \mathcal{W}^*[\tau] = \{x : \mathcal{V}(\tau \le 0)\}, \quad t_0 \le \tau \le t_1.$$

То есть, алтернированный интеграл Понтрягина $\mathcal{I}(\tau, t_1, \mathcal{M})$, сечение моста Красовского $\mathcal{W}[\tau]$ и множество уровня определенной нами функции $\mathcal{V}(\tau, x)$ суть одно и то же множество.

Кроме того, функция цены $V(\tau, x)$ обладает следующими свойствами.

Теорема 4.2. 1. Справедлив принцип оптимальности

$$\mathcal{V}(\tau, x \mid \mathcal{V}(t_1, \cdot)) = \mathcal{V}(\tau, x \mid \mathcal{V}(t, \cdot \mid \mathcal{V}(t_1, \cdot))), \quad \mathcal{V}(t_1, x) \equiv d^2(x, \mathcal{M}), \quad \tau \leq t \leq t_1.$$

2. Если существует непрерывная частная производная $\partial \rho(l \mid \mathcal{W}[t])/\partial t, \forall l \in \mathbb{R}^n$, то фукнция $\mathcal{V}(t,x)$ является классическим решением уравнения Гамильтона-Якоби-Беллмана-Айзекса.

$$\frac{\partial \mathcal{V}}{\partial t} + \min_{u} \max_{v} \left(\frac{\partial \mathcal{V}}{\partial x}, u + v \right) = 0$$

с краевым условием $V(t_1, x) = h_+^2(x, \mathcal{M})$.

Если решение (17), (18) удается найти, то гарантирующая стратегия управления находится следубщим образом:

$$\mathcal{U}_*(t,x) = \operatorname{argmin} \left\{ \left(\frac{\partial \mathcal{V}}{\partial x}, u \right) : u \in \mathcal{P}(t) \right\},$$
 (24)

если градиент $\partial \mathcal{V}/\partial x$ существует в точке (t,x). Или в общем случае

$$\mathcal{U}_*(t,x) = \left\{ u : \max_v \{ dh_+^2(x, \mathcal{W}[t]) / dt : v \in \mathcal{Q}(t) \} \le 0 \right\}.$$
 (25)

Теорема 4.3. Все решения дифференциального включения

$$\dot{x} \in \mathcal{U}_*(t, x) + v(t), \quad x_\tau = x(\tau) \in \mathcal{W}[t],$$

удовлетворяют включению $x(t) \in \mathcal{W}[t], \tau \leq t \leq t_1$, и, следовательно, достигают целевого множества $\mathcal{M}: x(t_1) \in \mathcal{M}$ при любом возмущении v(t).

Таким образом синтезирующая стратегия $\mathcal{U}_*(t,x)$ разрешает задачу целевого синтеза управлений при неопределенности. Среди допустимых стратегий $\mathcal{U}(t,x)$, удовлетворяющих включению $\mathcal{U}(t,x) \subseteq \mathcal{U}_*(t,x)$, то есть обеспечивающих выполнение теоремы (4.3), находится стратегия "экстремального прицеливания задаваемая условиями

$$\mathcal{U}_e(t, x) = \partial_l k(t, -l) = \operatorname{argmin}\{(l^0, u) \mid u \in \mathcal{P}(t)\}.$$
(26)

Здесь $\partial_l k$ — субдифференциал функции k(t,l) по переменной $l,\ k(t,l)=\rho(l\mid\mathcal{P}(t)), l^0=l^0(t,x)\neq 0$ — максимизатор задачи

$$h_{+}(x, \mathcal{W}[\tau]) = \max\{(l, x) - \rho(l \mid \mathcal{W}[\tau]) \mid (l, l) \le 1\},$$
 (27)

причем $l^0(t,x) = 0$, если $h_+(x, \mathcal{W}[\tau)) = 0$.

Как видно для поиска гарантирующей стратегии достаточно знать лишь сечения $\mathcal{W}[t]$ функции цены $\mathcal{V}(t,x)$. Поскольку интегрирование уравнения Гамильтона-Якоби, как правило, очень нетривиально, будем использовать аппроксимации сечения функции цены вместо самой функции. Таким образом сведем задачу к задаче поиска аппроксимаций альтернированного интеграла Понтрягина.

5 Эллипсоидальные аппроксимации множества разрешимости

Будем рассматривать систему

$$\dot{x} = u + v$$

с эллипсоидальными ограничениями

$$u \in \mathcal{E}(p(t), P(t)), \quad v \in \mathcal{E}(q(t), Q(t)), \quad \mathcal{M} = \mathcal{E}(m, M).$$

Здесь функции p(t), q(t), P(t), Q(t) предполагаются заданными и непрерывными. Вектор m и матрица M фиксированы. Эллипосоиды задаются своим центром и матрицей следующим образом:

$$\mathcal{E}(a,Q) = \left\{ x : (x - a, Q^{-1}(x - a)) \le 1 \right\}, \quad x \in \mathbb{R}^n, \tag{28}$$

где Q > 0.

Приведем для начала основные утверждения эллипсоидального исчисления, необходимые в дальнейшем. Все эти результаты подробно описаны в [2].

Теорема 5.1. Пусть $\mathcal{E}_1(a_1, Q_1), \mathcal{E}_2(a_2, Q_2)$ — пара невырожденных эллисоидов. Рассмотрим семейства матрии:

• Q(p) — параметрическое семейство матриц

$$Q(p) = (1 + p^{-1})Q_1 + (1 + p)Q_2,$$
$$p \in \Pi^+ = \left[\lambda_{\min}^{1/2}, \lambda_{\max}^{1/2}\right]$$

где $\lambda_{\min} > 0, \lambda_{\max} < \infty$ — относительные собственные значения пары матриц $Q_1, Q_2, \ unu, \ unave, \ корни уравнения$

$$\det(Q_1 - \lambda Q_2) = 0.$$

Обозначим также

$$\Pi^- = \Pi^+ \cap (1, \lambda_{\min})$$

• $Q_{+}[S], Q_{-}[S]$ — параметрические семейства матриц:

$$Q_{+}[S] = S^{-1}[(SQ_{1}S^{T})^{1/2} + (SQ_{2}S^{T})^{1/2}]^{2}S^{T^{-1}},$$

$$Q_{+}[S] = S^{-1}[(SQ_{1}S^{T})^{1/2} - (SQ_{2}S^{T})^{1/2}]^{2}S^{T^{-1}},$$

 $e \partial e$

$$S \in \Sigma = S \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) : S^T = S, |S| \neq 0.$$

Для этих семейств справедливы следующие включения:

$$\mathcal{E}_1 + \mathcal{E}_2 \subseteq \mathcal{E}(a_1 + a_2, Q(p)), \quad \forall p \in \Pi^+$$
 (29)

$$\mathcal{E}_1 + \mathcal{E}_2 \supseteq \mathcal{E}(a_1 + a_2, Q_+[S]), \quad \forall S \in \Sigma$$
 (30)

$$\mathcal{E}_1 \dot{-} \mathcal{E}_2 \subseteq \mathcal{E}(a_1 - a_2, Q_-[S]), \quad \forall S \in \Sigma$$
 (31)

$$\mathcal{E}_1 \dot{-} \mathcal{E}_2 \supseteq \mathcal{E}(a_1 - a_2, Q(-p)), \quad \forall p \in \Pi^-$$
 (32)

При этом имеют место следующие точные представления:

$$\mathcal{E}_1 + \mathcal{E}_2 = \bigcap \left\{ \mathcal{E}(a_1 + a_2, Q(p)), \forall p \in \Pi^+ \right\}$$
(33)

$$\mathcal{E}_1 + \mathcal{E}_2 = \bigcup \{ \mathcal{E}(a_1 + a_2, Q_+[S]), \forall S \in \Sigma \}$$
(34)

$$\mathcal{E}_1 \dot{-} \mathcal{E}_2 = \bigcap \left\{ \mathcal{E}(a_1 - a_2, Q_-[S]), \forall S \in \Sigma \right\}$$
 (35)

$$\mathcal{E}_1 \dot{-} \mathcal{E}_2 = \overline{\bigcup \left\{ \mathcal{E}(a_1 - a_2, Q(-p)), \forall p \in \Pi^- \right\}}$$
 (36)

Более того представляется возможным доказать следующее утверждение (См. [2]), позволяющее строить наиболее "точные" внутренние и внешние оценки для суммы и разности двух эллипсоидов.

Теорема 5.2. • Пусть $\mathcal{E}_1 + \mathcal{E}_2 \subseteq \mathcal{E}$, тогда существует значение параметра $p \in \Pi^+$ такое, что

$$\mathcal{E}_1 + \mathcal{E}_2 \subseteq \mathcal{E}(a_1 + a_2, Q(p)) \subseteq \mathcal{E}. \tag{37}$$

• Пусть $\mathcal{E}_1 + \mathcal{E}_2 \supseteq \mathcal{E}$, тогда существует матрица $S \in \Sigma$ такая, что

$$\mathcal{E}_1 + \mathcal{E}_2 \supseteq \mathcal{E}(a_1 + a_2, Q_+[S]) \supseteq \mathcal{E}. \tag{38}$$

• Пусть $int(\mathcal{E}_1\dot{-}\mathcal{E}_2) \neq \varnothing$ и $\mathcal{E}_1\dot{-}\mathcal{E}_2 \supseteq \mathcal{E}$, тогда существует значение параметра $p \in \Pi^-$ такое, что

$$\mathcal{E}_1 \dot{-} \mathcal{E}_2 \supseteq \mathcal{E}(a_1 - a_2, Q(-p)) \supseteq \mathcal{E}.$$
 (39)

• $\Pi ycmb \operatorname{int}(\mathcal{E}_1\dot{-}\mathcal{E}_2) \neq \varnothing \ u \ \mathcal{E}_1\dot{-}\mathcal{E}_2 \subseteq \mathcal{E}, \ morda\ cyweembyem\ матрица\ S \in \Sigma \ makas,$ что

$$\mathcal{E}_1 \dot{-} \mathcal{E}_2 \subseteq \mathcal{E}(a_1 - a_2, Q_-[S]) \subseteq \mathcal{E}. \tag{40}$$

Отправной точкой для построения оценок множества разрешимости является тот факт, что функция $\mathcal{W}[t]$ в условиях невырожденности предположения (2.1) является решением эволюционного уравнения.

Теорема 5.3. Многозначная функция W[t] удовлетворяет при всех $t \in [t_0, t_1]$ эволюционному уравнению

$$\lim_{\sigma \to 0} \sigma^{-1} h_{+} \left(\mathcal{W}[t - \sigma], (\mathcal{W}[t] - \sigma \mathcal{E}(p(t), P(t))) \dot{-} \sigma \mathcal{E}(q(t), Q(t)) \right) = 0, \quad \mathcal{W}[t_{1}] = \mathcal{M}.$$
(41)

и это решение максимально по включению относительно всех других решений это-го уравнения.

При этом мы будем заинтересованы именно во внутренних аппроксимациях множества разрешимости, так как построение управления по схеме описанной в следующем разделе, "удерживающее" траекторию внутри такой аппроксимации будет гарантировать попадание в целевое множество. Поэтому будем искать максимальное по включению эллипсоидальное решение (41). В связи с этим справедлива следующая

Теорема 5.4. Эллипсоидозначная функция $\mathcal{E}_{-}[t] = \mathcal{E}(x^*, X_{-}(t))$, определяемая дифференциальными уравнениями:

$$\dot{x^*} = p(t) + q(t),\tag{42}$$

а также

$$\dot{X}_{-} = \pi(t)X_{-} + \pi^{-1}(t)Q(t) - \\
-H^{-1}(t)[(H(t)P(t)H^{T}(t))^{1/2}(H(t)X_{-}(t)H^{T}(t))^{1/2} + \\
+(H(t)X_{-}(t)H^{T}(t))^{1/2}(H(t)P(t)H^{T}(t))^{1/2}]H^{T-1}(t),$$
(43)

с краевыми условиями соответственно

$$x(t_1) = m, \quad X_-(t_1) = M.$$

является решением (41). Здесь функции $\pi(t) > 0$ и $H(t) = H^T(t) > 0$ выступают в качестве параметров.

При этом для любого вектора $l \in \mathbb{R}^n$ сущетсвуют функции $\pi(t), H(t)$ такие, что

$$\rho(l \mid \mathcal{W}[t]) = \rho(l \mid \mathcal{E}(x^*, X_{-}(t \mid \pi(\cdot), H(\cdot))))$$
(44)

что означает, что построенный эллипсоид \mathcal{E} является максимальным по включению решением (41).

6 Эллипсоидальный синтез управлений

Следуя предыдущим разделам, для вычисления стратегии управления требуется найти множество разрешимости $\mathcal{W}[\cdot]$, определить значение функции цены $\mathcal{V}(t,x)=d^2(x(t),\mathcal{W}(t))$ и её градиент, решить задачу (27). Для множеств произвольной формы все эти задачи, вообще говоря, представляют большую сложность. Поэтому основная идея эллипсоидального синтеза состоит в замене $\mathcal{W}[t]$ некоторой его внутренней эллипсоидальной аппроксимацией, и применении вышеописанной схемы к ней. Это даёт:

$$\mathcal{U}_{-}(t,x) = \begin{cases} \mathcal{E}(p(t), P(t)), & \text{если} x \in \mathcal{E}_{-}[t], \\ p(t) - P(t)l^{0}(l^{0}, P(t)l^{0})^{-1/2}, & \text{если} x \notin \mathcal{E}_{-}[t], \end{cases}$$
(45)

где $l^0 = l^0(t,x)$ — единичный вектор, максимизатор задачи

$$h_{+}(x, \mathcal{E}_{-}[t]) = (l^{0}, x) - \rho(l^{0} \mid \mathcal{E}_{-}[t]) = \max\{(l, x) - \rho(l \mid \mathcal{E}_{-}[t]) \mid ||l|| \le 1\}.$$
 (46)

Последняя задача теперь может быть решена однозначно. Если

$$s^{0} = \operatorname{argmin}\{\|x - s\| : s \in \mathcal{E}_{-}[t], x = x(t)\},\tag{47}$$

то можно положить $l^0 = k(x(t) - s^0), k > 0$, так что вектор l^0 будет градиентом функции $h_+(x, \mathcal{E}_-[t])$ при фиксированном t.

Пемма 6.1. Рассмотрим невырожденный эллипсоид $\mathcal{E} = \mathcal{E}(x^*, X)$ и вектор $x \notin \mathcal{E}(x^*, Q)$. Тогда градиент

$$l^0 = \partial h_+(x, \mathcal{E}(x^*, X))/\partial x$$

может быть выражен как

$$l^{0} = \frac{x - s^{0}}{\|x - s^{0}\|}, \quad s^{0} = (I + \lambda X^{-1})^{-1}(x - x^{*}) + x^{*}.$$
(48)

3десь множитель лагранжа $\lambda > 0$ — единственный корень уравнения $f(\lambda) = 0$, где

$$f(\lambda) = ((I + \lambda X^{-1})^{-1}(x - x^*), X^{-1}(I + \lambda X^{-1})^{-1}(x - x^*))^{-1} - 1.$$

При этом понятно, что при известных x^*, X параметр λ может быть представлен единственным образом как $\lambda = \lambda(x)$.

Выражение для управления (45) является следствием следующего факта:

Лемма 6.2. Пусть задан эллипсоид $\mathcal{E}(p,P)$. Тогда минимизатор u^* задачи

$$\min\{(l^0, u) \mid u \in \mathcal{E}(p, P))\} = (l, u^*), \quad l \neq 0,$$

есть вектор $u^* = p - Pl(l, Pl)^{-1/2}$.

Список литературы

- [1] Понтрягин Л. С. Линейные дифференциальные игры преследования, Матем. сб., 1980, том 112(154), номер 3(7), 307-330
- [2] Kurzhanki A.B., Vâlyi I. Ellipsoidal calculus for estimation and control, Boston: Birkhäuser, 1996
- [3] Kurzhanski A. B., Varaiya P. Dynamics and Control of Trajectory Tubes. Theory and Computation Springer, 2014