Contents

[1]

Definition 0.0.1. For a subset T of the polynomial ring $A = k[X_1, \ldots, X_n]$, we define the zero set of T to be the common zeros of all the elements of T, i.e.

$$Z(T) = \{ P \in \mathbb{A}^n \mid f(P) = 0 \text{ for all } f \in T \}.$$

Definition 0.0.2. A subset Y of \mathbb{A}^n is an algebraic set if there exists a subset $T \subset A = k[X_1, \dots, X_n]$ such that Y = Z(T).

Definition 0.0.3. If $Y \subset \mathbb{A}^n$ is an affine algebraic set, we define the affine coordinate ring A(Y) of Y, to be A/I(Y).

Exercise 0.0.1. Let Y be the plane curve $y = x^2$ (i.e., Y is the zero set of the polynomial $f = y - x^2$). Show that A(Y) is isomorphic to a polynomial ring in one variable over k.

Solution. By definition 0.0.3, we simply have $A(Y) = k[X,Y]/(Y-X^2)$. The isomorphism follows from the isomorphism theorem and the map $f: k[X,Y] \to k[X]$ where we set $f(Y) = X^2$.

Exercise 0.0.2. Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring in one variable over k.

Solution.

4 CONTENTS

Bibliography

[Har77] Robin Hartshorne. Algebraic Geometry. New York: Springer, 1977.