Subset Sum problem

The: ann = 3 34, 4, 12, 5, 25

Sum = 9

Ob: True (4+3+2)

The: con(7= 1 4,3)2)

Sum = 5

oh: false True

Jalse (10)

The: world = 15

Sum = 7

Old: False

The: avn() = (4,3,2)

Sum = 0,

Sum = 0

Sum = 0

Subset sum Problem $am[] = {3, 34, 4, 12, 5, 2}$ (4+3+2)

Sum = 0

Last lecture, we have seen that, of knapsack problem,
there is some similarties in both problem

Ib: $an() = {3, 34, 4, 12, 5, 2}$

old: (True)

(4+3+2)

Sula

Pm = 3

=> Wight of items

=> Capacity of bags

Remaire Th: ans [] = { 3, 34, 4, 12, 5, 2} All quellons have almost Same type of approach (4+3+2) 50m = 9 is given value is smaller than sum

Konselve bool subset sum (vewor (int) own, int n, int sum) , 20174,0U 11 Base Condition (own [n-1] <= Sum) σ eho ∩ Subselsum (and, n-1, sum - an(n-1))

Subselsum (and, n-1, sum); return Subselsum (au, n-1, sum);

```
bool subset sum ( vector (int) arm, int n, int sum)
Base if (n==0) return false condition [1 (sum ==0) return frue;
          if ( own[n-1] <= sum)
              & elvon
                  Subsetsum ( and, n-1, sum - an(n-1))
                 Subselsum ( own, n-1, sum);
          Usc
               ruturn Subsidsum ( own, n-1, sum);
```


Vector < vector (Int) > (dp (n+1, vector (Int) (sum+1,-1));

	•	V _O	\	2	3	ч ,	5	٤ ,	7
>	0	7	F	F	F	F	F	F	F
	•	T							
1	2	T							
	3	て							
1	4	T							
(; ')	_1	·		1		·	•	-1

$$\begin{array}{c}
\text{if } (n = \infty) \rightarrow F \\
\text{if } (\text{sun} = \infty) \rightarrow T
\end{array}$$

Code

```
bool subset sum ( vewor (int) own, (int n) int sum)
 ! (qp(n)(sum) i= -1) rourn ab(u)(snm);
    if ( own[n-1] <= sum)
    & return [dp(n](sum) =
           Subsetsum ( avv, n-1, sum - avv[n-1])
           Subselsum ( own, n-1, sum);
        ruturn [dp[n][sum] = SubsidSum ( own, n-1, sum);
     else
```