

Started on	
State	Finished
Completed on	
Time taken	
Marks	
Grade	

Correct

Mark 1.00 out of 1.00

Express the vector \overrightarrow{AB} as a linear combination of **i**, **j** and **k**.

A is the point (-10, -7, -5) and B is the point (-5, -14, -2)

Select one:

$$\bigcirc A. \quad \overrightarrow{AB} = 5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$$

$$\bullet$$
 B. $\overrightarrow{AB} = 5i - 7j + 3k$

$$\bigcirc$$
 C. $\overrightarrow{AB} = 5i - 7j - 3k$

O.
$$\overrightarrow{AB} = 5\mathbf{i} + 7\mathbf{j} - 3\mathbf{k}$$

The correct answer is: $\overrightarrow{AB} = 5\mathbf{i} - 7\mathbf{j} + 3\mathbf{k}$

Correct

Mark 1.00 out of 1.00

Find the parametric equations for the line segment joining the points.

(-3, 0, -3), (0, 3, 0)

Select one:

- A. x = 4t 3, y = -2t, z = 4t 3, $0 \le t \le 1$
- B. x = 4t, y = -2t + 3, z = 4t, $0 \le t \le 1$
- O. x = -3t, y = -3t + 3, z = -3t, $0 \le t \le 1$
- \bigcirc D. x = 3t 3, y = 3t, z = 3t 3, 0 ≤ t ≤ 1

The correct answers are: x = 3t - 3, y = 3t, z = 3t - 3, $0 \le t \le 1$, x = -3t, y = -3t + 3, z = -3t, $0 \le t \le 1$

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

Calculate the requested distance.

The distance from the point S(5, 7, -8) to the plane 4x + 3y = 2

Select one:

- \bigcirc A. $\frac{1}{25}$
- O B. $\frac{3}{5}$
- \bigcirc C. $\frac{39}{5}$
- O. $\frac{39}{25}$

Correct

Mark 1.00 out of 1.00

Find the magnitude.

Let $\mathbf{u} = \langle -1, 3 \rangle$ and $\mathbf{v} = \langle 0, 1 \rangle$. Find the magnitude (length) of the vector: $-4\mathbf{u} - \mathbf{v}$.

Select one:

- A. √155
- B. 155
- C. √185
- O. 185

The correct answer is: $\sqrt{185}$

Question **5**

Incorrect

Mark 0.00 out of 1.00

Find the vector $\mathbf{proj}_{\mathbf{v}}$ u.

$$v = 3i - j + 3k$$
, $u = 2i + 10j + 11k$

Select one:

$$\bigcirc$$
 A. $\frac{87}{19}i - \frac{29}{19}j + \frac{87}{19}k$

B.
$$\frac{58}{225}$$
i + $\frac{58}{45}$ **j** + $\frac{319}{225}$ **k**

O C.
$$\frac{58}{15}i + \frac{58}{3}j + \frac{319}{15}k$$

O.
$$\frac{147}{19}i - \frac{49}{19}j + \frac{147}{19}k$$

The correct answer is: $\frac{87}{19}i - \frac{29}{19}j + \frac{87}{19}k$

Correct

Mark 1.00 out of 1.00

Find the angle between u and v in radians.

$$u = 7j - 2k$$
, $v = 10i - 4j - 7k$

Select one:

- A. 1.64
- B. -0.15
- O. 1.57
- D. 1.72

The correct answer is: 1.72

Question **7**

Incorrect

Mark 0.00 out of 1.00

Find the intersection.

$$x + y + z = -9$$
, $x + y = -16$

Select one:

$$\bigcirc$$
 A. $x = -t, y = -16 + t, z = -7$

$$\bullet$$
 B. $x = t, y = -16 - t, z = 7$

O. x = -1, y = 1 - 16t, z = 7t

O.
$$x = -t$$
, $y = -16 + t$, $z = 7$

The correct answer is: x = -t, y = -16 + t, z = 7

Ouestion C	Question {	3)
------------	-------------------	---	---

Correct

Mark 1.00 out of 1.00

Solve the problem.

Find a vector of magnitude 9 in the direction opposite to the direction of $\mathbf{v} = \frac{1}{4}\mathbf{i} + \frac{1}{4}\mathbf{j} - \frac{1}{4}$ k.

Select one:

- A. $12\sqrt{3}\left(-\frac{1}{4}i \frac{1}{4}j + \frac{1}{4}k\right)$
- O B. $9\left(\frac{1}{4}\mathbf{i} + \frac{1}{4}\mathbf{j} \frac{1}{4}\mathbf{k}\right)$ O C. $12\sqrt{3}\left(\frac{1}{4}\mathbf{i} + \frac{1}{4}\mathbf{j} \frac{1}{4}\mathbf{k}\right)$
- O. $12\left[-\frac{1}{4}i \frac{1}{4}j + \frac{1}{4}k\right]$

The correct answer is: $12\sqrt{3}\left(-\frac{1}{4}\mathbf{i} - \frac{1}{4}\mathbf{j} + \frac{1}{4}\mathbf{k}\right)$

Ouestion **9**

Correct

Mark 1.00 out of 1.00

Find v · u.

$$v = -5i + 4j$$
 and $u = 7i + 3j$

Select one:

O.
$$2i + 7j$$

Correct

Mark 1.00 out of 1.00

Find the intersection.

$$x = 10 + 5t$$
, $y = 4 + 2t$, $z = 1 + 4t$; $-8x + 5y + 10z = -6$

Select one:

- A. (5, 2, -3)
- O B. $\left(-12, -\frac{99}{5}, -\frac{83}{5}\right)$
- O. (15, 6, 5)
- O. $\left[32, \frac{64}{5}, \frac{93}{5}\right]$

The correct answer is: $\left(32, \frac{64}{5}, \frac{93}{5}\right)$

Ouestion 11

Correct

Mark 1.00 out of 1.00

Find parametric equations for the line described below.

Passes through the point P(4, 4, -5) parallel to the vector -2i + 5j - 6k

Select one:

$$\bigcirc$$
 A. $x = 2t + 4$, $y = 5t + 4$, $z = -6t - 5$

O B.
$$x = 2t - 4$$
, $y = 5t - 4$, $z = -6t + 5$

$$\bigcirc$$
 C. $x = -2t + 4$, $y = 5t + 4$, $z = -6t - 5$

O.
$$x = -2t - 4$$
, $y = 5t - 4$, $z = -6t + 5$

The correct answer is: x = -2t + 4, y = 5t + 4, z = -6t - 5

Correct

Mark 1.00 out of 1.00

Write the equation for the plane.

Passes through the point P(-4, -5, -7) and normal to $\mathbf{n} = -2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$.

Select one:

- \bullet A. 4x + 5y 7z = 19
- O B. -4x 5y + 7z = 19
- \bigcirc C. -2x 2y + 3z = -3
- O. 2x + 2y 3z = 19

The correct answer is: -2x - 2y + 3z = -3

Question 13

Correct

Mark 1.00 out of 1.00

Solve the problem.

Find the area of the triangle determined by the points P(-3, 6, -4), Q(-10, -8, -3), and R(2, 3, -4).

Select one:

- A. $\frac{\sqrt{2435}}{2}$
- B. √2435
- \bigcirc C. $\frac{\sqrt{8315}}{2}$
- D. √8315

Correct

Mark 1.00 out of 1.00

Find the component form of the specified vector.

The vector \overrightarrow{PQ} , where P = (9, 8) and Q = (8, -9)

Select one:

- B. ⟨17, -9⟩
- C. ⟨-1,-17⟩
- O. (1,17)

The correct answer is: (-1, -17)

Question **15**

Incorrect

Mark 0.00 out of 1.00

Find parametric equations for the line described below.

Passes through the point P(-7, 0, -4) and parallel to the line x = 4t - 4, y = 2t + 6, z = 3t + 5

Select one:

$$\bigcirc$$
 A. $x = 2t - 7$, $y = -4t$, $z = -4$

$$\bullet$$
 B. $x = 4 + 7$, $y = 2t$, $z = 3t + 4$

O. x = 4t - 7, y = 2t, z = 3t - 4

O.
$$x = -7$$
, $y = 3t$, $z = -2t - 4$

The correct answer is: x = 4t - 7, y = 2t, z = 3t - 4

Correct

Mark 1.00 out of 1.00

Write the equation for the plane.

Passes through the points P(5, -2, 0), Q(-3, 8, -26) and R(-1, 5, -17).

Select one:

$$\bigcirc$$
 A. $5x + y + 3z = 5$

O B.
$$5x + y + 3z = -5$$

$$\bigcirc$$
 C. $3x + 5y + z = 5$

O.
$$3x + 5y + z = -5$$

The correct answer is: 3x + 5y + z = 5