# LVM-5863A EFP Monitor



# instruction manual

For professionals
who know the Instruments Corporation difference.

# LVM-5863A TABLE OF CONTENTS EFP/ENG MONITOR

|      |                                                                         | Page |
|------|-------------------------------------------------------------------------|------|
| 1    | GENERAL INFORMATION                                                     |      |
| - 11 | 1.1 Introduction                                                        | 1    |
|      | 1-1 Introduction                                                        |      |
|      | 1-2 Features                                                            | 1    |
|      | 1-3 Specifications                                                      | 1    |
| 2.   | OPERATING INSTRUCTIONS                                                  | 2    |
|      | 2-1 Controls, Connectors and Indicators                                 | 2    |
|      | 2-1-1 Front Panel                                                       | 2    |
|      | 2-1-2 Top Panel                                                         |      |
|      | 2-1-3 Side Panel                                                        | 4    |
|      | 2-1-4 Rear Panel and Battery Holder                                     | 4    |
|      | 2-2 Viewing Hood                                                        | 5    |
|      | 2-3 Power Considerations                                                | 4    |
|      | 2-3-1 Operation from the NP-1 Battery                                   | 5    |
|      | 2-3-2 Low-Battery Warning                                               | - 5  |
|      | 2-3-3 Operation Using the BP-90 Battery                                 | 5    |
|      | 2-3-4 Operation From Vehicular, Battery Belt or Other Sources of 12 Vdc | 6    |
|      | 2-4 Signal Connections                                                  | 6    |
|      | 2-4-1 Basic Video Connection                                            | 6    |
|      | 2-4-2 Video Loop-Through Connections                                    | 6    |
|      | 2-4-3 Audio Connections                                                 | 6    |
|      | 2-5 Basic Operating Procedures                                          | 7    |
|      | 2-5-1 Initial Checkout                                                  | 7    |
|      | 2-5-2 Graticule Markings                                                | 7    |
|      | 2-6 Applications                                                        | 7    |
|      | 2-6-1 Checking Video Camera Signal Components                           | 8    |
|      | 2-6-2 Manual Lens Opening Settings                                      | 9    |
|      | 2-6-3 White and Black Balance Checks                                    | 9    |
|      | 2-6-4 VCR Output and Y/C Ratio                                          | 9    |
|      | 2 0 7 TOR Output and 170 Ratio                                          | 9    |
| 3.   | PICTURE MONITOR MAINTENANCE                                             | 10   |
|      | 3-1 Test Equipment Requirements                                         | 10   |
|      | 3-2 Disassembly                                                         | 10   |
|      | 3-2-1 Hood Removal                                                      | 11   |
|      | 3-2-2 Top Cover Removal                                                 | 11   |
|      | 3-2-3 Circuit Board Access and Bottom Cover Removal                     | 11   |
|      | 3-2-4 CRT Removal                                                       | 12   |
|      | 3-3 Adjustments                                                         |      |
|      | 3-3-1 11 V Supply Adjustment                                            | 12   |
|      | 3-3-2 Beam Landing (Purity) Adjustment                                  |      |
|      | 3-3-3 Static Convergence                                                | 12   |
|      | 3-3-4 Edge (Dynamic) Convergence                                        | 13   |
|      | 3-3-5 Gray Scale Tracking                                               | 13   |
|      | 3-3-6 Color Synchronization                                             |      |
|      | 3-3-7 Subcontrast and Subbrightness                                     | 14   |
|      | 3-3-8 Subtint and Subcolor                                              | 14   |
|      | 3.3.9 V Height and V Centering                                          | 14   |

|    | 3-3-10 H Centering                                 | 15 |
|----|----------------------------------------------------|----|
|    | 3-3-11 H Hold                                      | 15 |
|    | 3-3-12 Focus                                       | 15 |
| 4. | WAVEFORM MONITOR MAINTENANCE                       | 16 |
|    | 4-1 Test Equipment Requirements                    | 16 |
|    | 4-2 Disassembly                                    | 16 |
|    | 4-2-1 Top Cover Removal                            | 16 |
|    | 4-2-2 Bottom Cover Removal                         | 16 |
|    | 4-3 Adjustments                                    |    |
|    | 4-3-1 Power Supply Checks and Adjustments          | 16 |
|    | 4.2.2.1 and Postering Mountains Adjustments        | 16 |
|    | 4-3-2 Low Battery Warning Adjustment               | 18 |
|    | 4-3-3 HV Adjustment                                | 18 |
|    | 4-3-4 Sweep Time Adjustment                        | 18 |
|    | 4-3-5 Focus and Astigmatism                        | 18 |
|    | 4-3-6 Deflection Adjustments                       | 18 |
|    | 4-3-7 IRE Filter Adjustment                        | 18 |
| 5. | PARTS LIST                                         | 20 |
|    | 5-1 Picture Monitor, TMP3, Parts List              | 20 |
|    | 5-2 Waveform Monitor, LBO-5864 Parts List          | 23 |
|    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2            | 23 |
| 6. | SCHEMATICS AND PC BOARD DRAWINGS                   | 27 |
|    | 6-1 Picture Monitor Schematic (see foldour pages). | 27 |
|    | 6-2 Picture Monitor PC Layouts (see foldout pages) | 27 |
|    | 6-3 Frame DC and Video Signal Schematic            | 28 |
|    | 6-4 Waveform Monitor (WFM) Power Board, T3540A     | 29 |
|    | 6-5 WFM High Voltage Board, T3541                  | 30 |
|    | 6-6 WFM Switch and V/H Amp Boards, T3651 and 3542A | 31 |
|    | 6-7 WFM V/H Amp Board, T3542A                      | 31 |
|    |                                                    |    |

# 1. GENERAL INFORMATION

#### 1-1 INTRODUCTION

The LVM-5863A combines a miniaturized color picture/audio monitor with a waveform display to provide full monitoring facilities for electronic field production (EFP) and electronic news gathering (ENG) operations. Powered from its own batteries, or any source of 12 Vdc such as battery belts or vehicular power, the unit adds the confidence of immediate monitoring with minimum weight, bulk and power drain.

# 1-2 FEATURES

- · Small and light, only 8 lbs. without batteries.
- Fixed 2H and 2V waveform display provides the most useful monitoring waveforms with a minimum of operator controls.

- Internal IRE graticule for accurate checks of signal components.
- Full color picture display.
- Built-in speaker for audio monitoring.
- Low battery drain; only 1.2 A for extra battery life.
- Independent power switches permit lower power drain if only picture or waveform monitoring is needed.
- Accepts dc power from a variety of available sources.
- Low battery warning.
- · Rugged carrying case and shoulder strap.
- Companion vectorscope, Model LVS-5854, adds chroma monitoring facilities.

# 1-3. SPECIFICATIONS

WAVEFORM MONITOR (LBO-5864)

Sensitivity (full scale) 1 Vp-p (for 140 IRE units) or

0.25 Vp-p, switchable

Video Bandwidth Flat: 25 Hz to 5 MHz, ±5%

(switchable) IRE: Based on response per IEEE

205-1958 (28 dB down at

3.5 MHz)

Time Base 2H or 2V, switchable DC Restoration Back Porch Clamp

Graticule Internal, calibrated in IRE units

POWER REQUIREMENTS

Supply Voltage 12 Vdc (nominal)

Current Drain, total 1.2 A

Power Consumption,

total 14 W

Batteries Sony NP-1 or equivalent (side

mounted)

(not included) Sony BP-90 or equivalent

(bottom mounted)

GENERAL

Color System NTSC

Screen Size Waveform Monitor. 2.75 inches (measured Picture Monitor. 2.6 inches

diagonally)

Video Input

Impedance 1 Vp-p

75Ω (automatic hi Z for

loop-through operation)

Video Input

Connector BNC

Audio Input 390 mVrms nominal

Audio Input

Impedance 47 kΩ, unbalanced
Audio Connector RCA-type phono jack
1 hr., 20 min. with NP-1

(approximate) 3 hrs. with BP-90

Power Connector Coaxial type, center pin negative

PHYSICAL

Size (W x H x D) 8 x 3½ x 10¼ inches

Weight 8 lbs. (3.5 kg) without batteries or

carrying case

914 lbs. (4.2 kg) with carrying

case and NP-1 battery

131/4 lbs. (6.0 kg) with carrying

case and both batteries

#### SUPPLIED ACCESSORIES

Soft carrying case with hood; Shoulder strap

DC power plug with pigtail leads CH2 input plug with phono plugs OPTIONAL ACCESSORIES

Carrying Case for BP-90 Battery, LC-2220

**OPTIONAL CONFIGURATION** 

Waveform Monitor only. Order Model LBO-5864.

# 2. OPERATING INSTRUCTIONS

This section contains the information needed to operate the LVM-5863A. Included are identification of controls,

2-1 CONTROLS, CONNECTORS AND INDICATORS

Before turning on this instrument, familiarize yourself with the controls, connectors, indicators and other features described in this section. The descriptions that follow are keyed to the items called out in Figures 2-1 to 2-4.

# 2-1-1 Front Panel

Refer to Figure 2-1 for references (1) to (7)

(1) Color CRT Displays full color pictures from NTSC input feeds.

(2) Waveform CRT Displays 2H and 2V video waveforms on an internal graticule graduated in IRE units.

(3) Input Channel Glows to show which input LED's

channel, 1 or 2, has been selected by the INPUT SELECT button (19). One or the other LED also serves as the poweron indicator for the picture monitor section.

(4) PWR LED

Glows to show when the waveform monitor section is on. This LED also serves as the low-battery warning. It flashes when battery voltage falls below 10.5 Vdc.

connectors and indicators, system connections, basic operating routines and selected measurement applications.

(5) FILTER switch Alters video frequency response. For the FLT (flat) setting (button in) frequency response is normal. Press to release (button out) to insert a low-pass filter to remove most subcarrier components. Response in the IRE setting complies with IEEE Standard 205-1958.

(6) DISPLAY switch

Selects the horizontal time base. Two horizontal lines are shown in the 2H setting (button in). Press to release (button out) to display 2 vertical fields in the 2V setting.

7) INPUT switch

Alters vertical deflection sensitivity. The normal IV setting (button in) provides the standard sensitivity wherein a 1V p-p signal occupies 140 IRE units. Press the button to release it (button out) to boost sensitivity by a factor of four. This makes the 7.5 IRE units for setup appear at 30 IRE units.



Figure 2-1. Front panel



Figure 2-2. Top panel

# 2-1-2 Top Panel

Refer to Figure 2-2 for references (8) to (20).

8 POWER OFF-ON switch

Push to switch on the waveform monitor section. Push again to switch off. The red PWR LED (4) glows when power is on.

9 POWER OFF ON switch Push to switch on the picture/ sound monitor section. Push again to switch off. One of the red LED's (3) on the front panel glows when power is on.

(II) VOLUME

Turn clockwise to increase

(I) CONTRast

Turn clockwise to increase picture contrast. The control is detented at the normal setting for correct video levels.

12 BRIGHTness control

Turn clockwise to raise picture brightness. The control is detented for normal brightness setting at average viewing conditions.

(13) COLOR control

Turn clockwise to increase color saturation. The control is detented at the correct setting for signals with the correct Y:C ratio.

(14) TINT control

Adjusts decoder phase for correct hues. The control is detented at mid-range for correct color for normal NTSC input signals.

(5) V-HOLD

6 6-pin CH-2

Phono-type CH-1 jacks

(8) Phono-type output jacks

(D) INPUT SELECTor switch Adjusts vertical scan frequency. Set as needed to prevent vertical rolling of the picture.

Accepts audio and video inputs to CH-2 via a six-pin connector supplied as a standard accessory.

Accepts audio and video inputs to CH-1 via phono-type plugs. Note: The CH-1 video input jack is normally connected to the loop-through cable from the waveform monitor section.

These jacks are for loopthrough connections to other video and audio components. Note: The picture monitor is internally terminated for video

at the VIDEO OUTPUT jack. Insertion of a male phono plug into this jack removes the terminator automatically.

Press in to select the CH-2 input from the 6-pin connector (16), Press again to release (button out) to select the CH-1 input. The latter is the normal setting for use with the waveform monitor.

20 Speaker

# 2-1-3 Side panel (right as viewed from the front).

Refer to Figure 2-3 for references (21) and (22).

21 ROTATION control

Provides screwdriver adjustment of horizontal trace alignment with regard to the CRT graticule lines.

② V. POSITION control

Provides screwdriver adjustment of vertical position of the waveform display. Set to align video blanking with the 0 IRE line on the graticule.



Figure 2-3. Side view, waveform monitor side





Figure 2-4. Rear panel

# 2-1-4 Rear Panel and Battery Holder

Refer to Figure 2-4 for references (23) to (27)

23 Battery compartment

Houses the Sony type NP-1 battery.

② DC INPUT jack

Coaxial-type jack accepts 12 Vdc power from the extra BP-90 battery or any source of 12 Vdc power. Note: The NP-1 in the battery compartment is disconnected automatically when a battery or other source of 12 Vdc is connected to the DC INPUT jack (24).

Video INPUT

ODC INPUT

Fuse compartment

This BNC jack accepts video signal inputs at standard levels. The video signal is looped through the waveform monitor section and terminated in the picture monitor.

Coaxial type jack accepts a male plug from the main frame to provide dc power to the waveform monitor.

2A time lag fuse inside. Remove cover by removing the single Phillips head screw.

# 2-2 VIEWING HOOD

To position the viewing hood, unsnap the lower snap fasteners at each side of the unit and the three snap fasteners at the lower edge. Swing the front cover upwards and open the stiffeners on either side of the display outwards. Reset the two snap fasteners at the lower sides to hold the hood in the viewing position.

# 2-3 POWER CONSIDERATIONS

The LVM-5863A is designed to operate from the Sony NP-1 battery installed in the battery compartment. This battery may be augmented with the addition of a larger BP-90 that is housed in a compartment that affixes to the bottom of the unit. In addition, any available source of 12 Vdc (11 to 13.8 V) can be used to power the LVM-5863. Note: The NP-1 battery is disconnected automatically when any source of 12 Vdc is plugged into the DC INPUT jack (24).

# 2-3-1 Operation From the NP-1 Battery

- Make sure that the NP-1 battery is fully charged before it is installed in the battery compartment. Refer to material supplied with the battery charger. Recommended battery charger: Sony Model BC-1WA or equivalent.
- 2. If the carrying case is in use, open the flap on the forward edge of the battery compartment.
- Hold the NP-1 as shown in Figure 2-5 and slide it into the battery compartment as far as it will go. Close the flap on the carrying case.

- Press the waveform monitor POWER ON-OFF button (8). Confirm that the red PWR LED (4) is on. After a few seconds a single horizontal trace should appear on the waveform monitor screen.
- Switch off POWER if the monitor is not to be used at this time.

# 2-3-2 Low Battery Warning

The red PWR LED (4) glows steadily when battery voltage is within the range required for normal operation. It begins to flash when battery voltage falls below 10.5 V.

To maintain long battery life, do not continue operation with a depleted battery. Recharge the battery as directed by the literature supplied with the battery charger.

# 2-3-3 Operation Using the BP-90 Battery

- 1. Insert the BP-90 into the LC-2220 carrying case so that the power plug can be passed through the hole in the cover flap.
- 2. Press the cover flap in place using the fastener tape.
- The soft carrying case for the LVM-5863A should be in place. Stand the LVM-5863A on the four feet at the rear of the unit (CRT screens facing upwards).
- 4. Remove the clips for the shoulder strap.
- Slip the buckles of the BP-90 carrying case over the metal feet to which the shoulder strap is normally clipped.
- Press the BP-90 carrying case against the main unit carrying case to engage the fastener strips. See Figure 2-6.



Figure 2-5. Installing the NP-1 battery



Figure 2-6. BP-90 installation

# 2-3-4 Operation From Vehicular, Battery Belt or Other Sources of 12 Vdc

 Connect the source of nominal 12 Vdc to the Power jack (24). Note: The plug required for this connection is of the type used on the Sony BP-90 battery. A mating plug with leads is supplied as a standard accessory. The coaxial type power plug is wired with the outer shell positive and the inner conductor negative. Refer to Figure 2-7.

#### CAUTION

Double check voltage polarity at the plug before connecting any source of dc voltage to the LVM-5863A. The center conductor must be negative with respect to the outer shell. Reversed connections could damage the LVM-5863 and/or the source of power.

- Confirm that the power source supplies between 11 and 13.8 Vdc. The power source must be capable of delivering 1.2 amperes continuously.
- Switch on the waveform monitor at the POWER ON-OFF switch (8) and confirm that the PWR LED (4) on the front panel comes on.

# 2-4 SIGNAL CONNECTIONS

#### 2-4-1 Basic Video Connection

The basic operating mode makes use of the LVM-5863A as a camera and/or VCR monitor. Connect the source of video to the input BNC VIDEO INPUT jack (25) on the rear panel. In this mode the signal is looped through the waveform monitor section and terminated in 75 ohms in the picture monitor section. Select CH-1 on the picture monitor with the INPUT SELECT switch (19).

#### 2-4-2 Video Loop-Through Connections

Video signal may be looped through the LVM-5863A to drive another video load, such as the line input of a VCR, as shown in Figure 2-8. Connect the outgoing cable to the OUTPUT VIDEO jack as shown using a cable or cable adapter equipped with a male phono plug. Insertion of this plug automatically disconnects the internal terminator and the feed should be terminated in the connected load.

#### 2-4-3- Audio Connections

Connect the source of audio to the INPUT AUDIO jack (17) on the top panel of the picture monitor. Select CH-1 with the INPUT SELECT switch (19).

Audio input is normally high impedance (47 k $\Omega$ ). The signal level should be approximately -6 dB.

Bridged audio output is available at the OUTPUT AUDIO jack (18).

#### 2-4-4 Use of the 6-Pin CH-2 Jack

Video and audio signals may be fed into the picture monitor section only by means of the 6-pin CH-2 input connector. A six pin plug with cables using RCA phono type plugs is supplied as a standard accessory. Figure 2-9 shows the wiring and feed connections for this unit. Select CH-2 with the INPUT SELECT switch (19).



Figure 2-7. DC plug wiring



Figure 2-8. Video loop-through from the picture monitor



Figure 2-9. Wiring of the 6-pin CH-2 input accessory

# 2-5 BASIC OPERATING PROCEDURES

# 2-5-1 Initial Checkout

Equipment required:

Color Bar Generator Leader LCG-400S/M or equivalent Audio Generator Leader LAG-120B or equivalent

- Connect the LVM-5863A to a source of 12 Vdc power or insert a fully-charged NP-1 battery. Refer to Section 2-2.
- With no input signal connected, switch on power for the waveform monitor section (8).
- Wait a few moments and a green trace will appear on the monitor screen.
- 4. Check for parallelism between the trace and the horizontal lines on the graticule.
- Using a miniature Phillips screwdriver, adjust the ROTATION control (21) on the right side panel, if necessary, to make the trace parallel with the graticule lines.
- 6. Preset operating controls as follows:

INPUT SELECT (19): mid range TINT (14): at detented setting COLOR (13): at detented setting at detented setting BRIGHT (12): CONTR (11): at detented setting VOLUME (10): fully CCW FILTER switch (5) in (FLT) DISPLAY switch (6) in (2H) INPUT switch (7) in (IV)

- Connect the color bar generator output signal to the VIDEO INPUT jack (25) on the rear panel. Set the generator to produce EIA color bars at standard IV p-p level.
- Switch on power at the picture monitor and waveform monitors (8) and (9). Refer to Figure 2-10 for identification of waveform graticule markings.
- Allow a few moments for warm-up and check to confirm that the color bar display appears normal on the picture monitor.
- Observe the waveform monitor and using a miniature Phillips screwdriver, adjust the V-POSITION control (22) on the right side panel to place the blanking part of the signal on the O IRE graticule line. Refer to Figure 2-11(a).
- 11. Check that the 100% peak-white bar and the positive tips of subcarrier are at the 100 IRE graticule line. Refer to Figure 2-11(a). Check sync level, burst level and setup as shown in the figure.
- 12. Depress the DISPLAY switch (6) to release it (button out) to obtain the 2V waveform. Confirm that the waveform appears as shown in Figure 2-11(b). Press again (button in) to restore the 2H display.
- 13. Depress the FILTER switch (5) to release it (button out). This inserts the IRE filter to remove most of the



Figure 2-10. Graticule markings

- 3.58 MHz chrominance signal. Confirm that the waveform appears as shown in Figure 2-11(c). Press again (button in) to restore normal frequency response.
- 14. Depress the INPUT switch (7) to release it (button out). This boosts vertical gain by 4X, and makes the 7.5 IRE unit setup level appear at 30 IRE units. Confirm that setup appears at +30 IRE as shown in Figure 2-11(d). Press again (button in) to restore normal sensitivity.
- Connect the audio generator to the CH-1 audio input jack (17). Set frequency to 1000 Hz, output to -6 dB (0.4 Vrms).
- Advance the VOLUME control and check for adequate sound level.
- 17. Switch off power on both units (8) and (9).

# 2-5-1 Graticule Markings

Refer to Figure 2-10 for identification of the internal graticule marks on the waveform monitor. The solid line at zero IRE is the blanking level and V POSITION should be adjusted, if necessary, to place the blanking level of the observed signal at this zero level.

The dashed line just above blanking is at 7.5 IRE, the setup level used in common practice in the U.S. Shorter lines identify 25 and 50 IRE. The next higher dashed line marks 75 IRE units or the level of the 75% white bar in the color bar signal in the absence of setup. The solid line just above the dashed 75 IRE line identifies 77 IRE, the level for the 75% white bar in the color bar signal when 7.5% setup is in use.

Solid lines at 100 and 120 identify standard peak white and saturation (white clip) levels respectively. A dashed line at 115 IRE identifies the saturation level when setup is zero or 2-3 IRE units.

# 2-6 APPLICATIONS

This section shows some of the ways in which the LVM-5863A can be used to verify camera/VCR performance.



Figure 2-11. Checkout waveforms

# 2-6-1 Checking Video Camera Signal Components

- Connect the video output of the camera to the VIDEO INPUT jack on the rear panel of the LVM-5863A.
- 2 Switch on power to the camera and both units of the LVM-5863A. Leave the camera lens cap in place or set the camera filter wheel to the "blind" setting
- 3. Set up AUTO BLACK for the camera, if it is so equipped.
- Check the waveform as shown in Figure 2-12 for correct sync amplitude, burst amplitude and setup. Reset master pedestal on the camera if necessary for the correct 7.5 IRE setup level.

Note. For a more accurate indication of setup level, depress the INPUT switch (7) to release it (button out) to produce the 0.25 V setting. This boosts deflection sensitivity by a factor of 4 so that the normal 7.5 IRE setup level appears at 30 IRE units. The first

- horizontal graticule line above the dashed line for normal setup is at 25 IRE.
- Remove the lens cap and set the camera filter wheel for the appropriate illuminant (3200 K for studio lighting, 6400 K with neutral density filter for outdoor shots).
- Frame the camera on a flat white card, such as the registration chart, or a neutral gray-scale chart. Execute the auto-white balance for cameras so equipped.
- 7. Using automatic iris, confirm that the peak-white part of the test chart comes to 100 IRE. See Figure 2-13.
- 8. Note: For a better indication of peak white levels, depress the FILTER switch to release it (button out). This removes most of the subcarrier from the waveform so that the peak level of the luminance signal can be judged more easily.



Figure 2-12. Lens capped waveform



Figure 2-13. Setting peak white at 100 IRE using the white camera registration chart



Figure 2-14. Use of the IRE filter on a color scene to set peak white level

# 2-6-2 Manual Lens-Opening Settings

Automatic iris control is avoided in many shoots to prevent the changes in background brightness that accompanies the appearance of lighter or highly reflective items in the picture frame. To set the iris manually for a given lighting condition, set the camera for manual iris control and aim at a white or nearly white object in the center of the frame. A white card, performer's shirt or any convenient object can be used for this purpose.

- 1. Locate the white object on the waveform display. See Figure 2 14.
- 2. Set iris opening so that the peak white signal identified in Step 1 reaches 100 IRE. Note: For a clearer indication of peak luminance signal levels, depress the FILTER switch (5) to release it (button out). This inserts the IRE FILTER, and removes most of the subcarrier signal to make luminance values easier to see.

#### 2-6-3 White and Black Balance Checks

For accurate color rendition the camera must be balanced using the lighting conditions that are used for shooting. When the camera is properly balanced the red, green and blue signals input to the NTSC encoder are equal when the camera is framed on a white or neutral gray subject. Under these conditions, the R-Y-/B-Y or I and Q signals go to zero. Subcarrier output from the encoder then goes to zero as well. Thus the indication that the camera is properly balanced is the disappearance of the subcarrier from the waveform.

Figure 2-15 shows typical waveforms for a camera framed on a white gray scale card. The left waveform shows the unbalanced condition. The right shows optimum balance. A correctly balanced camera will show little or no subcarrier on all the steps produced by the gray scale chart. At this time the picture monitor will display a neutral gray scale. Imbalance, which causes subcarrier to appear on the steps of the waveform, causes a definite hue to appear on the corresponding chips of the picture display.

While it is easy to check camera balance, and check auto balance operation, manual adjustments to effect camera balance should be made under controlled (bench) conditions.

#### 2-6-4 VCR Output Level and Y/C Ratio

VCR's that make use of the color-under technique, such as Beta, VHS and U-Format, separate and process the luminance (Y) and chrominance signal separately. To check to see that the VCR has re-established correct Y/C ratios proceed as follows:

- 1. Make a trial recording using the color bar signal from the camera
- Connect the video input jack of the VCR to the VIDEO INPUT jack on the rear panel of the LVM-5863A
- 3. Play back the color-bar segment of the cassette.







(B) BALANCED

Figure 2-15. Checking camera balance with a neutral gray scale chart

# 4. Check for correct:

Luminance level: For the 75% white bar in full field bars the correct level is 77 IRE. See Figure 2-16. For EIA type bars (100% white chip below yellow and cyan in the lower quarter of the picture display) the correct level is 100%.

Chrominance level: Correct chrominance level is indicated for 75% color bars when the positive peaks of subcarrier on the yellow and cyan bars are at the 100 IRE level. See Figure 2-16.



Figure 2-16. VCR playback

#### 3. PICTURE MONITOR MAINTENANCE

# 3-1 TEST EQUIPMENT REQUIREMENTS

Color Bar Generator: EIA color bars, dot-crosshatch

pattern

Leader LCG-400S/M or

equivalent

DVM

# 3-2 DISASSEMBLY

- 1. Remove power from all units.
- 2 Remove the 1/4-20 hex-head cap screw marked A in

Figure 3-1. Use a 3/16" hex key

- 3. Lift the picture monitor slightly from the front edge.
- 4. Lift to clear locating holes in the base plate and put the picture monitor aside.
- Remove the battery holder from the side of the picture monitor as follows.
- 6. Press the PUSH POWER UNIT EJECT button.
- 7 Slide the battery holder toward the rear of the monitor to align the arrows.
- 8 Gently pull the battery holder from the monitor



Figure 3-1. Remove 3/16" hex head screw to separate the picture monitor from the mounting plate.



Figure 3-2. Hood removal

#### 3-2-1 Hood Removal

- 1. Slide the hood forward as far as it will go.
- Remove the two screws shown in Figure 3-2. Be careful not to lose the two plastic stoppers into which these screws thread. Slide out the plastic stoppers and put them and the screws in a suitable container.
- 3. Pull the hood out as far as it will go. The hood is now stopped by a plastic latch that engages a stop in the groove that's visible in the top left of the cabinet (as viewed from the front). To free this latch, reach into the upper left corner of the hood with the forefinger and press the hood outwards (towards the battery holder) while gently pulling the hood forward. Pull the hood off carefully.

# 3-2-2 Top Cover Removal

- Remove the four screws labelled A in Figure 3-3. These screws are also identified by arrow symbols embossed in the plastic.
- 2. Using a small screwdriver, push to release the plastic

latches (B) behind the slots on the battery side of the case. Squeeze the lower case gently with one hand to keep these latches disengaged. Grasp the top case with the other hand at mid section and raise to free the rear of the case first. Lift the top cover clear



Figure 3-3. Top cover removal



Figure 3-4. Bottom cover removal and PC board access.

# 3-2-3 Circuit Board Access and Bottom Cover Removal

- Remove the two screws from the bottom cover that are labelled A in Figure 3-4.
- Place the unit right side up on the work surface and pry out two plastic canoe clips from each of the sidemounted PC boards. Open the side-mounted boards for service as shown in Figure 3-5.
- Step 2 also releases the bottom cover which can be worked off carefully if it is necessary to gain access to the bottom of the bottom PC board (Chroma, H and V board)

Note: Remove wire clamps and ties only as needed, and be sure all wire routes and ties are reset to their original locations.



Figure 3-5. Picture monitor disassembled for service



Figure 3-6. Remove screws to free CRT mount

#### 3-2-4 CRT Removal

- 1. Remove the two screws labelled A in Figure 3-6, and take off the plastic clamp housing
- 2. Carefully pull off the CRT socket
- 3. Loosen the clamps on the magnet and yoke assemblies. Carefully remove the magnet and yoke assemblies. It may be necessary to pry the assemblies from the cloth tape on the CRT neck to free them. Cut any sealant that secures the deflection yoke to the CRT bell

# **3-3 ADJUSTMENTS**

#### 3-3-1 11 V Supply Adjustment

- 1. Connect a source of 12 Vdc to the battery terminals on the side of the unit as shown in Figure 3-7. Use insulated alligator clips and observe polarity.
- 2. With no input signal, turn BRIGHT fully CCW. Check to make sure that the CRT is cut off. If necessary, adjust Sub-bright, R221, to ensure cutoff.
- 3. Measure the voltage at TP-91 to ground of the AUDIO and POW REG PWB. Refer to Figure 3-8 Adjust R905 for a reading of 11 V. Ground is the metal back plate.

#### 3-3-2 Beam Landing (Purity)

- 1. Feed a blank raster signal into the CH-1 INPUT VIDEO jack.
- 2. Switch off red and blue at the generator to produce a flat green raster.

Note: If primary colors cannot be turned off with the pattern generator in use, obtain a green raster by



Figure 3-7. Power connections for service of the picture monitor

- turning Green Cutoff, R706, fully CW and Red and Blue Cutoff, R705 and R704, fully CCW. Refer to Figure 3-13.
- 3. Adjust the SCREEN control for a visible green raster Refer to Figure 3-14
- 4. Loosen the clamp screws on the magnet and voke assembly. Refer to Figure 3-9. Carefully slide the magnet/yoke assembly back towards the CRT socket as far as it will go. This should produce a green cloud
- 5. Align the two tabs of the purity ring on the magnet assembly. Then spread the tabs and rotate the ring assembly to place the green cloud at center screen.
- 6. Reposition the magnet/yoke assembly so that the green cloud spreads out to produce a uniform green raster at all points on the screen.
- 7. Check the red and blue rasters and reset yoke position if necessary.
- 8. Tighten the magnet/yoke assembly clamp screws.



Figure 3-8, 11V adjustment



Figure 3-9, Magnet and deflection yoke assemblies



# 3-3-3 Static Convergence

- Supply a crosshatch pattern from the generator. Turn Green Cutoff, R706 fully CCW and Red and Blue Cutoff, R705 and R706 fully CW
- 2. Adjust BRIGHT for a somewhat dim, but visible pattern.
- Adjust the tabs on the four-pole magnet rings so that the red and blue patterns overlap to form a registered magenta pattern at center screen. Refer to Figure 3 10.
- 4. Turn Green Cutoff, R706 fully CW.
- Adjust the tabs of the six-pole magnet rings so that the green pattern overlaps the magenta pattern to form a registered white pattern at center screen. Refer to Figure 3-11.

Note: In some cases it may be necessary to adjust edge convergence roughly before Steps 3-5 give satisfactory results. See the following section.

# 3-3-4 Edge (Dynamic) Convergence

- Remove the rubber wedge that supports the front edge of the deflection yoke.
- 2. Tilt the yoke up or down to effect best overall convergence at the screen edges. Refer to Figure 3-12 which shows the direction of convergence error where the yoke is tilted upwards. Tilting the yoke downwards moves red and blue in directions opposite to that shown.
- 3. Install the wedge to support the yoke in the position of best convergence. Apply model cement to hold the wedge and yoke in place.
- 4. Tighten all clamp screws.

# 3-3-5 Gray Scale Tracking

- 1. Supply a blank white raster signal at 75%.
- Set the service switch, SW202 to the SERVICE setting to produce a horizontal line at mid-screen. See Figure 3-15.
- 3. Turn Red, Blue and Green Cutoff controls fully CCW. Refer to Figure 3-13.
- Set the SCREEN control fully CCW. Refer to Figure 3-14.
- Turn the SCREEN control slowly clockwise until a barely visible line appears on the screen. Note the color of that line.
- 6. Adjust the cutoff controls for the primaries missing in Step 5 to produce a neutral gray line
- 7. Set the service switch to NORMAL
- 8. Adjust BRIGHT for a dim raster and the cutoff controls, if needed, to produce a neutral gray raster.
- Set CONTR to mid-range and adjust BRIGHT for a bright raster.
- 10. Adjust the Red and Green Drive controls for a neutral white raster.
- 11. Repeat Steps 9 and 10

Note: If the display jitters with the Service switch in the SERVICE setting, jump pin 1 of the deflection yoke to ground with a clip lead. Remove this jumper before resetting the switch to NORMAL.



Figure 3-12. Directions of convergence error when the front of the deflection yoke is tilted upwards



- 1. Display a color bar signal, full-field preferably
- Turn off burst at the generator. If this is not possible with the generator in use, jump TP-46 on bottom PCB to ground (TP-E) with a short clip lead
- Use a non-metalic alignment tool and turn trimmer capacitor C312 (See Figure 3-13) so that bands of color in the color bars are minimized and color is continuous from top to bottom and changes slowly.
- 4 Turn on burst, or remove the jumper and confirm color lock
- Interrupt the input signal by depressing the INPUT SELECT switch twice and confirm that color locks.

# 3-3-7 Subcontrast and Subbrightness

- Display a window or stairstep signal (chroma off for the stairstep).
- Set the top panel BRIGHT and CONTR controls to their detented settings.
- Adjust sub-brightness, R220, so that the black border
  of the window signal, or the black step of the stairstep
  is just extinguished. Adjust sub-contrast, R212 for
  optimum picture contrast with no loss of focus or
  blooming

# 3-3-8 Sub-tint and Sub-color

- 1. Display the full-field color bar pattern.
- 2. Turn off red and green at the generator.
- Refer to Figure 3-15. Adjust Sub-tint, R316, and Subcolor, R312, so that the blue bars (white, cyan, magenta, blue) are equally bright and the bars that contain no blue (yellow, green, red, black) are equally black
- Switch on all primaries at the generator and confirm a normal color bar display.



Figure 3-13. Gray-scale tracking and color synchronization controls



Figure 3-14. Screen, focus and H-hold controls



Figure 3-15. Sub controls for front panel controls

# 3-3-9 V Height and V Centering

- Display the alignment pattern (crosshatch if the generator does not provide an alignment pattern).
- Refer to Figure 3-16. Adjust V-Height, R407, to fill the screen vertically and for best circularity of the circle on the alignment pattern
- 3. Adjust V Center, R410, to center the pattern vertically. Reset R407 if necessary.

# 3-3-10 H Centering

- 1. Pattern as per Step 1 of 3 3 9.
- 2. Refer to Figure 3-16 Set the H Center switch for best horizontal centering.

#### 3-3-11 H Hold

- If the picture falls out of sync horizontally, adjust H
  Hold for a single, upright display Refer to Figure 3-14.
   Set to the middle of the range where the picture
  remains in sync
- 2. Interrupt the signal by depressing the INPUT SELECT switch twice. Confirm that the picture locks solidly

#### 3-3-12 Focus

- 1. Supply the alignment or crosshatch pattern.
- 2. Set brightness for a slightly dim picture.
- 3. Refer to Figure 3-14. Adjust FOCUS for best overall focus. Set the control at the clockwise end of the range that produces best overall focus.



Figure 3-16. H and V deflection controls

# 4. WAVEFORM MONITOR MAINTENANCE

# **4-1 TEST EQUIPMENT REQUIREMENTS**

Color Bar Generator EIA Color Bars

Leader LCG-400S/M or

equivalent

DVM

DC Power Supply
12 Vdc @ 1.0 A
Audio Generator
75Ω BNC Terminator
12 Vdc @ 1.0 A
50 kHz - 5 MHz
Leader LFG-1310 or

75Ω 12 dB Attenuator equivalent

# 4-2 DISASSEMBLY

# Remove all power from units.

- Stand the LVM-5863A on its rear surface (CRT screens facing upwards).
- 2. Remove the 1/4-20 hex head cap screw labelled A in Figure 4-1. Use a 3/16" hex key.
- Place the unit flat on the work surface and unplug the BNC video INPUT plug and the coaxial DC INPUT plug (both connect to base plate plugs)
- 4. Lift the waveform monitor off the base plate by lifting one of the BNC plugs on rear panel. When the plastic feet of the waveform monitor clear the locating holes in the baseplate, lift the monitor off and set it on the work surface.

# 4-2-1 Top Cover Removal

- Remove five Phillips head screws, one at the top rear, two on each side.
- 2. Lift off the top cover

# 4-2-2 Bottom Cover Removal

- 1. Place the unit upside down on the work surface.
- 2. Remove five Phillips head screws, one at the bottom rear, two on each side.
- 3 Lift off the bottom cover

# 4-3 ADJUSTMENTS

# 4-3-1 Power Supply Checks and Adjustments

- 1. Apply power from a bench-type power supply to the DC INPUT connector on the rear panel. Set the input voltage to  $12 \pm 0.6$  Vdc.
- 2. Press the POWER switch ON.
- 3. Check supply voltages as follows:

| Test Point | Nominal V | Tolerance      |
|------------|-----------|----------------|
| 1          | 10 V      | 9.41 - 10.1 V  |
| 2          | 5 V       | 4.75 - 5.25 V  |
| 3          | -8 V      | -7.68 - 8 32 V |
| 4          | 100 V     | 92 - 108 V     |
| 5          | 150 V     | 138 - 162 V    |

Refer to Figure 4-2 for test point locations.



Figure 4-1. Remove screw to release the WFM from the mounting plate



Figure 4-2. HV PC board, T-3541



Figure 4-3. Power PC board, T-3540



Figure 4-4. V/H amplifier PC board T3542

 Out-of-specification measurements at the 10 V supply can be corrected by shunting R10 as follows:

| Reading at TP1 | Correction            |  |
|----------------|-----------------------|--|
| 9.4 - 9.9      | No Correction         |  |
| 9.4 - 10.3     | Shunt R10 with 1 MΩ   |  |
| 9.4 - 10.7     | Shunt R10 with 430 kΩ |  |

# 4-3-2 Low Battery Warning Adjustment

- 1. Reduce dc input voltage to 10.5 ± 0.2 V.
- Adjust VR1, Low Battery Warning so that the POWER LED on the front panel flashes Refer to Figure 4-3.
- Raise input voltage to 12 V. Then reset to 10.5 V and confirm that the POWER LED starts flashing when input voltage drops to 10.5 V Reset VRI as needed
- 4. Reset input voltage to 12 ± 0.6 Vdc.

# 4-3-3 HV Adjustment

- Monitor TP-6 on the HV power board with a DVM equipped with a high voltage probe. See Figure 4-2.
- Adjust VR2, -1400 V adjust, for a reading of -1395 to -1405 V.

# 4-3-4 Sweep Time Adjustment

- 1. Supply an EIA color bar signal at 1 V p-p to the BNC INPUT jack on the rear panel. Use a  $75\Omega$  through terminator or terminate the LOOP THROUGH BNC jack with a  $75\Omega$  terminator.
- 2. Set the front panel DISPLAY switch to 2H (button in).
- Refer to Figure 4-4. Turn VR6, SWEEP, fully CCW.
   Then turn VR6 clockwise slowly and note the setting at which the displayed trace becomes stable. Continue turning VR6 CW until an unstable trace resumes Reset VR6 midway between the points where trace stability is noted.
- Depress the DISPLAY switch to release it (button out). Confirm that the 2 V trace is stable Reset VR6 if necessary.
- Depress the display switch again to resume 2H operation.

#### 4-3-5 Focus and Astigmatism

 Adjust VR1, Focus, on the HV power supply board and VRB, ASTIG., on the power board for best overall focus. Refer to Figures 4-2 and 4-3 for control locations.

#### 4-3-6 Deflection Adjustments

- Adjust VR5, ROTATION, so that the waveform is parallel to the horizontal graticule lines. See Figure 4-2.
- 2. Adjust VR6, V POSITION, to place the blanking level of the signal on the zero IRE graticule line.
- Adjust VR8, H POS, to center the middle horizontal sync pulse at the horizontal center of the display area.
   See Figure 4-4.

- Adjust VR7, H GAIN, so that the end of burst and the leading edge of the sync pulse at the right of the waveform appear as shown in Figure 4-5.
- Adjust VR1, V GAIN, so that the 100% peak white part of the signal is at 100 IRE and sync tip is at -40 IRE. Refer to Figure 4-5. Reset VR6, V POS, on the HV power supply board to correct vertical centering if necessary
- 6. Install a  $75\Omega$  12 dB pad in series with the signal source and the video INPUT jack. Press to release the INPUT switch (button out).
- 7. Select the WINDOW signal on the video generator
- Adjust VC1 on the switch board for the fastest rise time at the leading edge of the windows signal with minimum overshoot. Refer to Figures 4-6 and 4-7.

# 4-3-7 IRE Filter Adjustment

- Connect a Function Generator to the video INPUT connector. Set the generator for sine wave operation at 50 kHz. Set the output level for a vertical deflection of 140 IRE units (reset V POS as needed).
- 2. Check vertical deflection at the following frequencies.

| Frequency | Deflection                         |  |  |
|-----------|------------------------------------|--|--|
| 350 kHz   | 131.6 - 136.5 [RE (28.4 - 29.5 mm) |  |  |
| 1 MHz     | 98.0 - 112.0 IRE (21.2 - 24.2 mm)  |  |  |
| 2 MHz     | 43.7 - 59 5 IRE ( 9.4 - 12.8 mm)   |  |  |
| 3.6 MHz   | 7.8 - 19.6 IRE( 1.7 - 4.2 mm)      |  |  |

If deflection is outside the tolerances shown, reset the generator to 2 MHz and adjust L3 for a deflection of 51.6 IRE (11.1 mm). Check at 1 MHz and adjust VR-1 to produce a deflection of 105 IRE (22.7 mm).



Figure 4-5. H and V gain adjustment



Figure 4-6. Switch PC board, T3651



Figure 4-7. Adjustment of VC1

# 5. PARTS LIST

# 5-1 PICTURE MONITOR, TMP3, PARTS LIST

# 5-1-1 Safety & Abbreviations

#### SAFETY PRECAUTION

Parts identified by the \(\triangle \) symbol are critical for safety.

Replace only with part numbers specified.

Abbreviations in this list are as follows:

# RESISTORS — All resistance values are in ohms (Ω).

k : 1 000
M : 1 000 000
CR : Carbon Resistor
Comp. R : Composition Resistor
WR : Wire Wound Resistor
OMR : Oxide Metal Film Resistor
VR : Variable Resistor (Potentiometer)
MFR : Metal Film Resistor

CAPACITORS — All capacitance values are in μF, unless otherwise indicated.

: Fusible Resistor

P : μμF

FR

C Cap : Ceramic Capacitor
E Cap : Electrolytic Capacitor
FM Cap : Film Mica Capacitor
MM Cap : Metalized Mylar Capacitor
MP Cap : Metalized Paper Capacitor
MY Cap : Mylar Capacitor
NP Cap : Non-polar Capacitor

MY Cap : Mylar Capacitor

NP Cap : Non-polar Capacitor

PC Cap : Polycarbonate Capacitor

PP Cap : Poly Pro Capacitor

PS Cap : Polystyrol Capacitor

T Cap : Tantalum Capacitor

TR Cap : Trimmer Capacitor

Chip R. : Chip Resistor

Chip C Capacitor

# Tolerances of resistors or capacitors are as follows:

M : ±20%
K : ±10%
J : ±5%
G : ±2%
F : ±1%

# MAIN PCB ASS'Y TRC-1060A CHROMA, HOR & VERT P.W.B. ASS'Y

| Symbol<br>No.                                                                                                   | Des                                                                                                         | craption                                                                                                 |                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| IC301<br>IC401                                                                                                  | Integrated Circuit Integrated Circuit                                                                       | HA112<br>AN576                                                                                           | 2                                                                                                                                |
| IC501  Δ 0501 0502 0503                                                                                         | Integrated Circuit  Transistor  Transistor  Transistor                                                      | 2SD12'<br>2SD63'<br>2SB641                                                                               | 71A                                                                                                                              |
| D401  △ D501  D502  D503  D504  △ D505  D506  D507                                                              | Diode Diode Diode Diode Diode Diode Diode Zener Diode Zener Diode                                           | de V06C<br>V19E<br>de 182473<br>de Y09E<br>de V09E<br>er Diode HZ7B2LV                                   |                                                                                                                                  |
| R301<br>R302<br>R303<br>R304<br>R305<br>R306<br>R307<br>R308<br>R309<br>R310                                    | Chip R    | 1 8k 1 k 10 k 1.5 k 1 k 680 6.8 k 4.7 k 4 7 k 1 8 k                                                      | 1/4 W, J<br>1/4 W, J             |
| R401<br>R402<br>R403<br>R404<br>R405<br>R406<br>R407<br>R408<br>R409<br>R410<br>R411<br>R412<br>A FR413<br>R414 | Chip R Chip R CR CR Chip R VR (HEIGHT) Chip R. Chip R, VR (V. CENTER) Chip R. CR FR Chip R. Chip R. Chip R. | 18 k<br>12 k<br>6.8<br>4.7<br>10 k<br>100 k<br>68 k<br>680<br>4.7 k<br>680<br>15<br>18<br>4.7 k<br>3 3 k | 1/4 W, J<br>1/4 W, J<br>1/4 W, J<br>1/4 W, J<br>1/4 W, J<br>1/4 W, J<br>1/4 W, J<br>1/6 W, J<br>1/4 W, J<br>1/4 W, J<br>1/4 W, J |
| R501<br>R502<br>R503<br>R504<br>R505<br>R506<br>R507<br>FR508<br>R509<br>R510<br>R511                           | Chip R. Chip R. Chip R. Chip R. Chip R. Chip R. VR (H HOLD) Chip R. FR Chip R. Chip R. Chip R.              | 100<br>47 k<br>39 k<br>27 k<br>27 k<br>470<br>680<br>22<br>15 k<br>68                                    | 1/4 W, J<br>1/4 W, J                         |
| R513<br>FR514                                                                                                   | Chip R.<br>FR                                                                                               | 27 k<br>8.2                                                                                              | 1/4 W, J<br>1/4 W                                                                                                                |

| Sumbol       |                          |         |              |
|--------------|--------------------------|---------|--------------|
| Symbol No.   | Descrap                  | ntion   |              |
| R515         | Chip R.                  | 18 k    | 1/4 W, J     |
| R516         | Chip R.                  | 10 k    | 1/4 W, J     |
| R517         | Chip R.                  | 4.7 k   | 1/4 W, J     |
| ] ♠ R518     | R Block                  | CJ39520 | 0-00B        |
| △ FR519      | FR                       | 8.1     | 1/4 W, J     |
| R520         | Ch.p R                   | 3.3 k   | 1/4 W, J     |
|              | CR                       | 3.3 k   | 1/6 W, J     |
| C206         | Chip C Cap               | 270     | 50 V         |
| C301         | E Cap                    | 330     | 16 V         |
| C302         | Chip C Cap               | 001     | 50 V         |
| C303         | Chip C Cap               | 100 P   | 50 V         |
| C304         | Chip C Cap               | 0.047   | 50 V         |
| C305         | E Cap                    | 33      | 16 V         |
| C306         | Chip C Cap               | 120 P   | 50 V         |
| C307         | E Cap                    | 0.47    | 50 V         |
| C308         | Chip C Cap               | 0.0022  | 50 V         |
| C309<br>C310 | Chip C Cap<br>Chip C Cap | 180 P   | 50 V         |
| C311         |                          | 22 P    | 50 V         |
| C312         | Chip C Cap<br>TR Cap     | 33 P    | 50 V         |
| C312         | Chip C Cap               | 47 P    | 50 V         |
| C314         | Chip C Cap               | 150 P   | 50 V         |
| C315         | Chip C Cap               | 150 P   | 50 V         |
| C316         | Chip C Cap               | 150 P   | 50 V         |
| C317         | Chip C Cap               | 0.033   | 50 V         |
| C318         | Ł Cap                    | 4.7     | 50 V         |
| C401         | Chip C Cap               | 0.022   | 50 V         |
| C402         | Chip C Cap               | 0.022   | 50 V         |
| C403         | Chip C Cap               | 0.01    | 50 V         |
| C404         | T Cap                    | 0.47    | 35-V         |
| C405         | ТСар                     | 4.7     | 16 V         |
| C406         | T Cap                    | 47      | 16 V         |
| C407<br>C408 | E Cap<br>E Cap           | 3.3     | 25 V         |
| C409         | E Cap                    | 100     | 16 V<br>16 V |
| C410         | E Cap                    | 220     | 10 V         |
| C411         | MY Cap                   | 0.022   | 50 V         |
| C412         | E Cap                    | 330     | 16 V         |
| C413         | E Cap                    | 10      | 16 V         |
| C501         | Chip C Cap               | 0.01    | 50 V         |
| C502         | Chip C Cap               | 100 P   | 50 V         |
| C503         | Chip C Cap               | 0.015   | 50 V         |
| C504         | Chip C Cap               | 0.018   | 50 V         |
| C505         | Chip C Cap               | 0.027   | 50 V         |
| C506         | ЕСяр                     | 4.7     | 25 V         |
| C507         | E Cap                    | 330     | 16 V         |
| C508         | PP Cap                   | 0.0039  | 50 V         |
| C509         | M Cap                    | 0.001   | 50 V         |
| C510<br>C511 | Chip C Cap               | 0.0047  | 50 V         |
| C512         | E Cap                    | 330     | 16 V         |
| C513         | Deap                     | 330     | 10.4         |
| C514         | РР Сар                   | 0.01    | 400 V        |
| C515         | PP Cap                   | 0.018   | 400 V        |
| C516         | C Cap                    | 0.047   | 50 V         |
| C517         | E Cap                    | 0 47    | 50 V         |
| C518         | E Cap                    | 100     | 16 V         |
| C519         | E Cap                    | 4.7     | 100 V        |
| C520         | E Cap                    | .0      | 16 V         |
| C521         | E Cap                    | 100     | 10 ∨         |

| Symbol<br>No.                  | Desci                                       | ription   |      |
|--------------------------------|---------------------------------------------|-----------|------|
| C522<br>C523<br>C524<br>A C525 | С Сар                                       | 1000      | 3 kV |
| L.301                          | Peaking Coil                                |           |      |
| K501<br>A L502<br>A L503       | Core<br>Linearity Coil<br>Width Coil        |           |      |
| T30.<br>T501<br><u>A</u> T502  | BP Trans Ass'y<br>H Drive Trans<br>FB Trans |           |      |
| X30.                           | CRYSTAL                                     |           |      |
| 550                            | Slide Switch                                |           |      |
| A                              | Focus Pack                                  |           |      |
|                                | Test Point                                  | TP-33, 46 |      |
|                                | Connector Base                              | 4P        |      |

# VIDEO & CHROMA OUT P.W.B. ASS'Y

| Symbol<br>No. | Description        |          |          |
|---------------|--------------------|----------|----------|
| 10501         | Integrated Circuit | HA11401  |          |
| Q201          | Transistor         | 2SD637   |          |
| Q202          | Transistor         | 2SB641   |          |
| Q203          | Transistor         | 2SB641   |          |
| Q701          | Transistor         | 2SD662   |          |
| Q702          | Transistor         | 2SD662   |          |
| Q703          | Transistor         | 2SD662   |          |
| D904          | Drode              | 1S247H-Y | f        |
| D905          | Diode              | V06C     |          |
| R201          | CR                 | Lk       | 1/4 W. J |
| R202          | CR                 | 47 k     | 1/4 W. J |
| R203          | CR                 | 47 k     | 1/4 W, J |
| R204          | CR                 | 2.7 k    | 1/4 W, J |
| R205          | CR                 | 4.7 k    | 1/4 W, J |
| R206          | CR                 | 680      | 1/4 W, J |
| R207          | CR                 | 220      | 1/4 W, J |
| R208          | CR                 | 560      | 1/4 W, J |
| R209          | CR                 | 56 k     | 1/4 W, J |
| R210          | CR                 | 15 k     | 1/4 W, J |
| R211          | Chip R.            | 560      | 1/4 W, J |
| R212          | VR (SUB CONTR)     | 2.2 k    |          |
| R213          | Chip R.            | 2.2 k    | .74 W, J |
| R214          | Chip R             | 39 k     | .74 W, J |
| R215          | Chip R             | 18 k     | 1/4 W, J |
| R216          | Chup R             | 330      | 1/4 W, J |
| R217          | Chip R             | 470      | 1/4 W, J |
| R218          | Chip R             | 22 k     | 1/4 W, J |
| R219          | Chip R             | 470      | 1/4 W, J |

| Symbol       |                            |       |                      |
|--------------|----------------------------|-------|----------------------|
| No.          | Descrip                    | tion  |                      |
| R220         | VR (SUB BRIGHT)            | Lk    |                      |
| R221         | VR (BRIGHT)                | 300   |                      |
| R222         | Chip R.                    | 47 k  | 1/4 W. J             |
| R223         | Chip R.                    | 8.2 k | 1/4 W, J             |
| R224         | VR (CONTR)                 | 10 k  | 1/4 W, J             |
| R225         | Chip R.                    | l 8 k | 1/4 W, J             |
| R226         | al p                       |       | 4 4 4 75 7 7         |
| R227<br>R228 | Chip R.                    | 1 k   | 1/4 W, J             |
| K228         | Chip R.                    | 100   | 1/4 W, J             |
| R311         | Chip R                     | 1 k   | 1/4 W, J             |
| R312         | VR (SUB COLOR)             | 10 k  |                      |
| R313         | VR (COLOR)                 | 10 k  |                      |
| R314         | Chip R.                    | 100   | 1/4 W, J             |
| R315<br>R316 | Chip R. VR (SUB TINT)      | 6 8 k | 1/4 W, J             |
| R317         | VR (TINT)                  | 5 k   |                      |
| R318         | Chip R.                    | 56 k  | 1/4 W. J             |
|              |                            |       |                      |
| R420         | Chip R.                    | 39 k  | 1/4 W, J             |
| R421         | VR (V HOLD)                | 50 k  |                      |
| R604         | Chip R.                    | 39 k  | 1/4 W. J             |
| R605         | VR (VOLUME)                | 20 k  |                      |
|              |                            |       |                      |
| R701         | Chip R.                    | l k   | 1/4 W, J             |
| R702         | Chip R.                    | 1 k   | 1/4 W, J<br>1/4 W, J |
| R703<br>R704 | Chip R.<br>VR (B. CUT OFF) | 47 k  | 1/4 W, J             |
| R705         | VR (R. CUT OFF)            | 47k   |                      |
| R706         | VR (G. CUT OFF)            | 47k   |                      |
| R707         | Chip R.                    | 560   | 1/4 W, J             |
| R708         | VR (R. DRIVE)              | l k   |                      |
| R709         | VR (G DRIVE)               | l k   |                      |
| R710<br>R711 | CR<br>CR                   | 18 k  | 1/2 W, J<br>1/2 W, J |
| R712         | CR                         | 18 k  | 1/2 W, J             |
| R713         | CR                         | 10 k  | 1/4 W. J             |
| R714         | CR                         | 56 k  | 1/4 W, J             |
| R715         | CR                         | 10 k  | 1/4 W, J             |
| R912         | Chip R.                    | 22 k  | 1/4 W. J             |
| R913         | Chip R.                    | 15 k  | 1/4 W. J             |
|              |                            |       |                      |
| C201         | E Cap                      | 10    | 25 V                 |
| C202         | E Cap                      | 10    | 25 V                 |
| C203         | Chup C Cap                 | 15    | 50 V                 |
| C204<br>C205 | E Cap<br>T Cap             | 0.47  | 50 V<br>35 V         |
| C206         | -                          | -     | J.J. 1               |
| C207         | Chip C Cap                 | 0.01  | 50 V                 |
| C208         | E Cap                      | 330   | 16 V                 |
| C209         | E Cap                      | 3 3   | 50 V                 |
| C210<br>C211 | Chin C Con                 | 330 P | 50 V                 |
| 1 0211       | Chip C Cap                 | 7,01  | JU ¥                 |
| C701         | Chip C Cap                 | 390   | 50 V                 |
| C702         | Chip C Cap                 | 390   | 50 V                 |
| C703         | Chip C Cap                 | 390   | 50 V                 |
| DL201        | Delay Line                 |       |                      |
| S202         | Slide Switch               |       |                      |
| \$901        | Push Switch                |       |                      |
| 0,01         |                            |       |                      |

| Symbol<br>No. | Descript   | ion        |
|---------------|------------|------------|
| J701          | Din Socket | A/V in out |
|               | Test Point | TP-47B     |

# **AUDIO & POWER REG. P.W.B. ASS'Y**

| Symbol<br>No.                                                       | Desci                                                           | ription                                                     |                                                                               |
|---------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|
| IC601                                                               | Integrated Circuit                                              | M511821                                                     | ,                                                                             |
| ↑ Q902<br>↑ Q903<br>↑ Q904                                          | Transistor<br>Transistor<br>Transistor                          | 2SB641<br>2SB637<br>2SD1251                                 |                                                                               |
| D901<br>D902<br>A D903                                              | Diode<br>Diode<br>Zener Diode                                   | IS2473 H<br>IS2473 H<br>RD5 6E                              |                                                                               |
| R231<br>R232<br>R233<br>R234                                        | Chip R.<br>Chip R.<br>Chip R.<br>Chip R.                        | 150<br>150<br>150<br>150                                    | 1/4 W, J<br>1/4 W, J<br>1/4 W, J<br>1/4 W, J                                  |
| R601<br>R602<br>R603                                                | Chip R.<br>Chip R.<br>CR                                        | 56 k<br>270<br>10                                           | 1/4 W, J<br>1/4 W, J<br>1/2 W, J                                              |
| R901<br>R902<br>R903<br>A R904<br>A R905<br>A R906<br>R907<br>FR908 | Chip R Chip R. Chip R. MFR VR MFR Chip R.                       | 68 k<br>1.5 k<br>18 k<br>2.7 k<br>1 k<br>383 k<br>220       | 1/4 W, J<br>1/4 W, J<br>1/4 W, J<br>1/4 W, F<br>1/4 W, F<br>1/4 W, J<br>1/4 W |
| C601<br>C602<br>C603<br>C604<br>C605<br>C606<br>C607<br>C608        | E Cap Chip C Cap E Cap TF Cap Chip C Cap E Cap E Cap Chip C Cap | 0.1<br>0.01<br>33<br>0.47<br>0.0015<br>330<br>100<br>0.0022 | 50 V<br>50 V<br>16 V<br>50 V<br>50 V<br>16 V<br>10 V<br>50 V                  |
| C901                                                                | Chip C Cap                                                      | 0 001                                                       | 50 V                                                                          |
| C902                                                                | Chip C Çap                                                      | 0.001                                                       | 50 V                                                                          |
| A F901                                                              | Push Switch<br>Fuse                                             | 0.8 A                                                       | 125 V                                                                         |
| J201<br>J202                                                        | Jack<br>Jack                                                    |                                                             |                                                                               |
| J601<br>J602                                                        | Jack<br>Jack<br>TEST POINT                                      | TP-91                                                       |                                                                               |
|                                                                     | Connector Base                                                  | 4P                                                          |                                                                               |

| Symbol<br>No. | Description                   |          |  |
|---------------|-------------------------------|----------|--|
| J662          | Connector Base Connector Base | 4P<br>3P |  |

# **POWER REG P.W.B. ASS'Y**

| Symbol<br>No. | Description |        |
|---------------|-------------|--------|
| <b>∆</b> Q90  | Transistor  | 2SB945 |

# INPUT SELECT IND. P.W.B. ASS'Y

| Symbol<br>No. | Description |               |  |  |
|---------------|-------------|---------------|--|--|
| D910          | LED         | LN222RP       |  |  |
| D911          | T F D       | I N222RP      |  |  |
| R9            | CnpR        | 10 k 1/4 W, J |  |  |

# 5-2 WAVEFORM MONITOR, LBO-5864, PARTS LIST

# LBO-5864 WAVEFORM MONITOR MAIN FRAME

| Symbol No. | Description  |                          |  |  |
|------------|--------------|--------------------------|--|--|
|            | DI           | ODF                      |  |  |
| D1         | LED          | TLS164 "PWR"             |  |  |
|            |              | RT                       |  |  |
|            | CRI          | 85YB31Y (T9-15)          |  |  |
|            |              | ·01I                     |  |  |
| L3         | Beam Rotator | L-757                    |  |  |
|            | SW           | TICH                     |  |  |
| S1         | PUSH         | PH AISKISI "PWR"         |  |  |
|            | MISCEL       | J ANEOUS                 |  |  |
| J2 I       | Connector    | BNC-BR-241 "Input"       |  |  |
| J22        | Connector    | BNC-BR-241 "Input"       |  |  |
| J23        | Jack         | J-23 X-G 4005 "DC input" |  |  |

# **POWER SUPPLY BOARD T-3540**

| Symbol<br>No. |             | Description | ort      |      |
|---------------|-------------|-------------|----------|------|
|               |             | RE SIST     | ORS      |      |
| RI            | Carbon film | 1/6W        | 1.5k ohm | 5 C/ |
| R2            | Carbon film | 1/6W        | 2.2k ohm | 5%   |
| R3            | Carbon film | 1/6W        | 22k ohm  | 5%   |
| R4            | Carbon film | 1/6W        | 47k ohm  | 5%   |
| R5            | Carbon film | 1/6W        | 47k ohm  | 5%   |

| Symbol<br>No. |                           | Descript     | ion                 |            |
|---------------|---------------------------|--------------|---------------------|------------|
|               |                           | RESIST       | ΓORS                |            |
| R6            | Carbon film               | 1/6W         | 27k ohm             | 5%         |
| R7            | Carbon film               | 1/6W         | 3 9k ohm            | 5%         |
| R8            | Carbon film               | 1/6W         | 180 ohm             | 5%         |
| R9            | Carbon film               | 1/6W         | 560 ohm             | 5%         |
| R10           | Metal film                | 1/6W         | 30k ohm             | 1%         |
| R11           | Metal film                | 1/6W         | 4 3k ohm            | 1%         |
| R12           | Metal film                | 1/6W         | 16k ohm             | 1%         |
| RI3           | Metal film                | 1/6W         | 12k ohm             | 1%         |
| RI4           | Carbon film               | 1/6W         | 22 ohm              | 5%         |
| R15           | Carbon film               | 1/6W         | 22 ohm              | 5%         |
| R16           | Carbon film               | 1/6W         | 1k ohm              | 5%         |
| R17           | Carbon film               | 1/6W         | 220k ohm            | 5%         |
| R18           | Carbon film               | 1/6W         | 100 ohm             | 5%         |
| R19           | Metal film                | 1/6W         | 120k ohm            | 1%         |
| R20           | Carbon film               | 1/6W         | 180 ohm             | 5%         |
| R21           | Carbon film               | 1/6W         | 100 ohm             | 5%         |
| R23           | Carbon film               | 1/6W         | 470 ohm             | 5%         |
| R24           | Metal film                | 1/6W         | L3k ohm             | 1%         |
| R25           | Metal film                | 1/6W         | 910 ohm             | 1%         |
| R26           | Carbon film               | 1/6W         | 560 ohm             | 5%         |
| R27           | Carbon film               | 1/6W         | 220k ohm            | 5%         |
| R28           | Metal film                | 1/6W         | 10k ohm             | 1%<br>1%   |
| R29           | Metal film                | 1/6W         | 10k ohm             | 1%         |
| R30           | Metal film                | 1/6W         | 180k ohm<br>47k ohm | 1%         |
| R31           | Metal film                | 1/6W         |                     | 1%         |
| R33           | Metal film                | 1/6W         | 30k ohm             | 1%         |
| R34           | Metal film<br>Carbon film | 1/6W<br>1/6W | 18k ohm             | 5%         |
| R35           | Carbon film               | 1/6W         | 6.8k ohm            | 5%         |
| R36<br>R37    | Carbon film               | 1/6W         | 82k ohm             | 5%         |
| R38           | Metal film                | 1/6W         | 27k ohm             | 1%         |
| R39           | Metal film                | 1/6W         | 33k ohm             | 1%         |
| R40           | Metal film                | 1/6W         | 300k ohm            | 1%         |
|               |                           | VARIABLE I   | RESISTORS           |            |
| VRI           | Cermet                    | 1/3W         | 1k ohm              | 20%        |
| VR3           | Cermet                    | 1/3W         | 1M ohm              | 20%        |
|               |                           | CAPAC        |                     | 000        |
| C1            | Electrolytic              | 25V          | 10UF                | 20%        |
| C2            | Ceramic                   | 25V          | 1,5UF               | 200        |
| C3            | Electrolytic              | 25V          | 47UF                | 20%<br>20% |
| C4            | Electrolytic              | 35V<br>16V   | 3.3UF<br>10UF       | 20%        |
| C5            | Electrolytic              | 500V         | 0.75PF              | 10%        |
| C6            | Composition               | 50V          | 0.75FF              | 1070       |
| C7<br>C8      | Ceramic                   | 250V         | 0.01UF              |            |
| C9            | Ceramic                   | 250V         | 0.01UF              |            |
|               |                           | 16V          | 100UF               | 20%        |
| CI0<br>CII    | Electrolytic Electrolytic | 25V          | it.F                | 20%        |
| CI2           | Mica                      | 500V         | 12PF                | 10%        |
| C13           | Electrolytic              | 25V          | IOUF                | 20%        |
| C14           | Electrolytic              | 16V          | 100UF               | 20%        |
|               |                           | TRANS        | ISTORS              |            |
| Q1            | PNP                       |              | 2SB435-Y            |            |
| Q2            | NPN                       |              | 2SC1815-GF          | 3          |
| Q3            | NPN                       |              | 2SC2911-S           |            |
| Q4            | NPN                       |              | 2SC2911 S           |            |
| Q5            | NPN                       |              | 2SC1279S-E          |            |
| Q6            | NPN                       |              | 2SC752(G)T          |            |
| Q7            | NPN                       |              | 2SC752(G)T          | M 0        |
| Q8            | NPN                       |              | 2SC2562-Y           |            |

| Symbol<br>No. |                     | Description  |      |  |  |
|---------------|---------------------|--------------|------|--|--|
|               | 1                   | TRANSISTORS  |      |  |  |
| Q9            | NPN                 | 2SC2562-Y    |      |  |  |
| Q10           | NPN                 | ZSC2551-0    |      |  |  |
| Q11           | PNP                 | 2SA1207      |      |  |  |
| Q12           | PNP                 | 2SA1207      |      |  |  |
| Q13           | PNP                 | 2SA1207      |      |  |  |
|               |                     | DIODES       |      |  |  |
| D1            | Zener               | RD6, 2EB     | 6.2V |  |  |
| D2            | Detector            | 1SS83        |      |  |  |
| D3            | Zener               | RD5, 1EB     | 5.EV |  |  |
|               | INTEGRATED CIRCUITS |              |      |  |  |
| ICI           | OP Amp              | TL082        |      |  |  |
| IC2           | Regulator           | M5236L       |      |  |  |
| IC3           | Regulator           | NJM78L05A    | +5V, |  |  |
| IC4           | OP Amp              | TL081CP      |      |  |  |
|               |                     | COILS        |      |  |  |
| Ll            | Coil                | 4.7UH        | 10%  |  |  |
| L2            | Col.                | 30UH         |      |  |  |
|               |                     | FUSE         |      |  |  |
| FI            | Time Lag            | ST4          | 1.6A |  |  |
|               | М                   | ISCELLANEOUS |      |  |  |
|               | Fuse Clip           | H-0017-1     |      |  |  |
|               | Fuse Clip           | H-0017-1     |      |  |  |

# **HIGH VOLTAGE BOARD T-3541**

| Symbol<br>No. |             | Descript   | ion      |           |
|---------------|-------------|------------|----------|-----------|
|               |             | RESIST     | rors     |           |
| R1            | Carbon film | 1/6W       | 68k ohm  | 5%        |
| R2            | Metal film  | 1/6W       | 20k ohm  | 1%        |
| R3            | Carbon film | 1/6W       | 2.2 ohm  | 5%        |
| R4            | Carbon film | 1/2W       | 47k ohm  | 5%        |
| R5            | Thick film  | 1/4W       | 2.2M ohm | 596       |
| R6            | Thick film  | 1/2W       | 2.7M ohm | 5%        |
| R7            | Thick film  | 1/2W       | 2.7M ohm | 5%        |
| R8            | Metal film  | 1/6W       | 62k ohm  | 196       |
| R9            | Carbon film | 1/6W       | 47k ohm  | 5%        |
| R10           | Carbon film | 1/6W       | 220k ohm | 5%        |
| RH            | Carbon film | 1/6W       | 1k ohm   | 5%        |
| R12           | Carbon film | 1/6W       | 22k ohm  | 5%        |
| R13           | Thick film  | 1/2W       | 10M ohm  | 5%        |
| R14           | Thick film  | 1/4W       | 22M ohm  | 5%        |
| R16           | Metal film  | 1/6W       | 100k ohm | 196       |
| R17           | Carbon film | 1/6W       | 470k ohm | 5%        |
| R18           | Carbon film | 1/6W       | 120 ohm  | 5%        |
| R19           | Carbon film | 1/6W       | 180 ohm  | 5%        |
| R20           |             |            | 0 ohm    |           |
| R21           | Metal film  | 1/6W       | 68k ohm  | 1%        |
|               |             | VARIABLE B | PSISTORS |           |
| VRI           | Metal film  |            | hm 25%   |           |
| VR2           | Cermet      |            | hm 20%   |           |
| VR5           | Cermet      | 1/2W 20k p |          | tation"   |
| VR6           | Cermet      |            |          | Position" |

|                                 |                                        |           |                                                                             | _   |
|---------------------------------|----------------------------------------|-----------|-----------------------------------------------------------------------------|-----|
| Symbol<br>No.                   |                                        | Descript  | ion                                                                         |     |
|                                 | 1                                      |           |                                                                             |     |
| -                               |                                        | CAPACI    |                                                                             |     |
| CI                              | Mica                                   | 50V       | 56PF                                                                        | 10% |
| C2                              | Plastic film                           | 50V       | 1000PF                                                                      | 5%  |
| C3                              | Electrolytic                           | 10V       | 10UF                                                                        | 20% |
| C4                              | Electrolytic                           | 10V       | LOUF                                                                        | 20% |
| C5                              | Electrolytic                           | 10V       | 10UF                                                                        | 20% |
| C6                              | Plastic Film                           | 630V      | 0.022UF                                                                     | 10% |
| C7                              | Ceramic                                | 2KV       | 0.01UF                                                                      |     |
| C8                              | Ceramic                                | 2KV       | 0.01UF                                                                      |     |
| C9                              | Ceramic                                | 2KV       | 0.01UF                                                                      |     |
| C11                             | Ceramic                                | 2KV       | 220PF                                                                       | 10% |
| C12                             | Ceramic                                | 50V       | 1000PF                                                                      |     |
| C13                             | Electrolytic                           | 10V       | 10UF                                                                        | 20% |
| C14                             | Plastic film                           | 63V       | 0.047UF                                                                     | 10% |
| C15                             | Ceramic                                | 2KV       | 0.01UF                                                                      |     |
| C16                             | Ceramic                                | 2KV       | 001UF                                                                       |     |
| C17                             | Ceramic                                | 2KV       | 0.01UF                                                                      |     |
| CI8                             | Ceramic                                | 250V      | 0.01UF                                                                      |     |
| C19                             | Electrolytic                           | 200V      | 2 2UF                                                                       | 20% |
| C20                             | Electrolytic                           | 250V      | 2.2UF                                                                       | 20% |
| C21                             | Electrolytic                           | 200V      | 2.2UF                                                                       | 20% |
| C22                             | Electrolytic                           | 200V      | 2.2UF                                                                       | 20% |
| C23                             | Electrolytic                           | 16V       | 220UF                                                                       | 20% |
| C24                             | Electrolytic                           | 25V       | IUF                                                                         | 20% |
| C25                             | Electrolytic                           | 250V      | 12.2UF                                                                      | 20% |
|                                 |                                        |           |                                                                             |     |
|                                 |                                        | TRANSI    |                                                                             |     |
| Q1                              | NPN                                    | i         | 2SC3149                                                                     |     |
|                                 |                                        | DIOD      | ES                                                                          |     |
| DI                              | Detector                               |           | 1 <b>S</b> S83                                                              |     |
| D2                              | Detector                               |           | 1 <b>SS</b> 83                                                              |     |
| D3                              | Detector                               |           | 1 <b>SS</b> 83                                                              |     |
| D4                              | Detector                               |           | 1 <b>SS</b> 83                                                              |     |
| D6                              | Rectifier HV                           | 1 6KV     | ES01F                                                                       |     |
| D7                              | Rectifier HV                           | 1.6KV     | ES01F                                                                       |     |
| D8                              | Rectifier HV                           | 1.6KV     | ES01F                                                                       |     |
| D9                              | Detector                               | -10-2-    | 151588                                                                      |     |
| D10                             | Detector                               |           | 1SS83                                                                       |     |
| DII                             | Detector                               |           | 1SS83                                                                       |     |
| D12                             | Detector                               |           | 1 <b>S</b> S83                                                              |     |
| D13                             | Detector                               |           | 1SS83                                                                       |     |
| D14                             | Detector                               |           | 1SS83                                                                       |     |
| D15                             | Detector                               |           | 1SS83                                                                       |     |
| D16                             |                                        |           |                                                                             |     |
| D10                             | Detector                               |           | 1SS83<br>1SS83                                                              |     |
|                                 | Detector                               |           |                                                                             |     |
| D18                             | Detector                               |           | 1SS83                                                                       |     |
| D19                             | Detector                               |           | 1SS83                                                                       |     |
| D20                             | Detector                               |           | 1SS83<br>1SS83                                                              |     |
|                                 | Th                                     |           |                                                                             |     |
| D21 .                           | Detector                               |           |                                                                             |     |
| D22                             | Detector                               |           | 1SS83                                                                       |     |
|                                 |                                        |           |                                                                             |     |
| D22                             | Detector<br>Detector                   | NTEGRATEI | 18S83<br>1S1588                                                             |     |
| D22                             | Detector<br>Detector                   | NTEGRATEI | 18S83<br>1S1588                                                             |     |
| D22<br>D23                      | Detector<br>Detector                   | NTEGRATEI | 18583<br>181588<br>CIRCUITS                                                 |     |
| D22<br>D23                      | Detector<br>Detector                   | NTEGRATEI | 1SS83<br>1S1588<br>CIRCUITS<br>TC74HC04P                                    | +8V |
| D22<br>D23                      | Detector Detector CMOS CMOS            |           | ISS83<br>IS1588<br>CIRCUITS<br>TC74HC04P<br>TC4011BP<br>HA17808P            | +8V |
| D22<br>D23<br>IC1<br>IC2<br>IC3 | Detector Detector  CMOS CMOS Regulator | TRANSFO   | ISS83<br>IS1588<br>CIRCUITS<br>TC74HC04P<br>TC4011BP<br>HA17808P            |     |
| D22<br>D23                      | Detector Detector CMOS CMOS            | TRANSFO   | ISS83<br>IS1588<br>CIRCUITS<br>TC74HC04P<br>TC4011BP<br>HA17808P            |     |
| D22<br>D23<br>IC1<br>IC2<br>IC3 | Detector Detector  CMOS CMOS Regulator | TRANSFO   | ISS83<br>IS1588<br>D CIRCUITS<br>TC74HC04P<br>TC4011BP<br>HA17808P<br>DRMER |     |
| D22<br>D23<br>IC1<br>IC2<br>IC3 | Detector Detector  CMOS CMOS Regulator | TRANSFO   | ISS83<br>IS1588<br>D CIRCUITS<br>TC74HC04P<br>TC4011BP<br>HA17808P<br>DRMER |     |

| Symbol<br>No |            | Description |
|--------------|------------|-------------|
|              | МІ         | SCELLANEOUS |
| VI           | Neon Bu b  | NE-38B      |
| 1/2          | Nenn Bulb  | NE 38B      |
| 13           | Neon Built | NE 38B      |

# V, H AMP BOARD T-3542

| Symbol<br>No. |                          | Descript | ion                 |            |
|---------------|--------------------------|----------|---------------------|------------|
|               |                          | RESIS'   | LORS                |            |
| R8            | Meta, film               | 1.6%     | 270 ohm             | 1%         |
| R9            | Carbon film              | 1.6W     | 47 ohm              | 577        |
| R10           | Meta film                | 1 nW     | 620 ohm             | 10         |
| RH            | Carbon film              | 1.6%     | Lk ohm              | 5.3        |
| R12           | Carbon ism               | 1.6%     | Lk ohm              | 5%         |
| RB            | Metal film               | 1.68     | 620 ohm             | 1.05       |
| RIG           | Carbon film              | LCW      | 3.3k ohm            | 5.4        |
| R.7           | Carbon in                | L 6W     | 100 ohm             | 577        |
| R10           | Carbon from              | 1.6%     | 47 ohm              | 577        |
| R21           | Carbon tom               | 1.68     | 47 ohm              | 817        |
| R22           | Metal fon                | 1.4%     | 2k ohm              | 1.4        |
| R23           | Metal free               | 1.4W     | 2k ohm              | 15         |
| R24           | Meta ovide               | 2W       | 682 ohm             | 5%         |
| R25           | Metallox de              | 2 W      | 682 ohm             | 5%         |
| R16           | Metal from               | 1.68     | 47k ohm             | 1 "        |
| R27           | Carbon him               | 1.68     | LM ohm              | 500        |
| R30           | Carbon from              | 1.68     | 10k ohm             | 800        |
| R4L           | Carbor film              | 1.6%     | 8 2k ohm            | 904        |
| R32           | Carbin his               | 1.68     | 4.7k ohm            | 54         |
| R33           | Carbon has               | 1.68     | 10k ohm             | 50         |
| R31           | Thick file               | 1.4/4    | 98M-ohm             | 1%         |
| R 35          | Carbon ti m              | 1.68     | 470k ohm            | 51%        |
| R36           | Carbon from              | LPA      | 47k ohm             | 5%         |
| R37           | Carbon film              | 1.68     | LM ohm              | Ste        |
| R38           | Carbor thi               | 1.6%     | 470k ohm            | 50         |
| R 39          | Cabron til n             | LibW     | 470k ohm            | 44         |
| K40           | Carbon / Im              | 1.64     | 180k ohm            | 57         |
| R41           | Curbon film              | 1.6%     | 150 ohm             | 5'4        |
| R42           | Carbor 3d i              | 1.68     | 1 Lk ohm            | Sta        |
| R43           | Carbor Ha                | 1.6W     | 10k ohm             | 517        |
| R 4 4         | Carbon (1)               | 1.6W     | 39k ohm             | 5%         |
| R 15          | Carbon f I n             | 1.6W     | 39k ohm             | 50%        |
| R46           | Meta f In                | 1.6%     | 9 tk ohm            | 17         |
| R4 '          | Meta 1 lm                | 1.6W     | 18k ohm             | 177        |
| R48           | Meta 11 r                | 1.6%     | 36k ohm             | 17         |
| R49           | Carbor III               | 6W       | 10k ohm             | 5%         |
| R50           | Cubor fla                |          | 6 8k ohm            |            |
| R51<br>R52    | Curbon f In              | 1.6%     | 2.7k ohm            | 577        |
|               | Carbon Clin              | 1.6W     | 2.7k ohm            | 714<br>514 |
| R53<br>R54    | Carbon LLn<br>Matal Elm  | 1.0%     | 10k ohm<br>4 7k ohm |            |
| R55           | Metal film<br>Metal film | 1 9 M    | 3k ohm              | 154        |
| R56           | Metal film               | I ow     | 12k ohm             | 17         |
| R57           | Metal film               | 1.6W     | 1k ohm              | 17         |
| R58           | Carbon f Im              | Low      | 100 ohm             | 574        |
| R59           | Metal f I n              | 1.6W     | 2 7k ohm            | 1%         |
| R60           | Metal f Im               | 1.0M     | 2 7k ohm            | 1 4        |
| R61           | Carbon f.I.n             | 1.6W     | 100 ohm             | 50         |
| R67           | Carbon f Im              | , 6W     | 10k ohm             | 59         |
| R63           | Metal film               | 1 6W     | 3 9k ohm            | 17         |
| R64           | Metal film               | 1.6W     | I 3k ohm            | 17         |

| Symbol<br>No |              | Descript | ion         |        |
|--------------|--------------|----------|-------------|--------|
|              |              | RESIS    | ORS         |        |
| R65          | Metal film   | 1.6W     | 5 lk ohm    | \$ 6%- |
| R66          | Metal oxide  | 1W       | 39k ohm     | 50%    |
| R67          | Metal oxide  | IW       | 39k ohm     | 50     |
| R68          | Carbon film  | 1/6W     | 10k ohm     | 50%    |
| R69          | Carbon film  | L6W      | L0k ohm     | 50     |
| R70          | Carbon film  | L6W      | 10k ohm     | 5%     |
| R71          | Carbon him   | L6W      | 10k ohm     | 31/4   |
| R72          | Carbor : Im  | 1/6W     | 47k ohm     | 54     |
| R73          | Carbor † Im  | 1/6W     | 4.7k ohm    | 50,    |
| R74          | Meral t Im   | 1/6W     | 560 ohm     | 16     |
| R76          | Metal film   | 1/6W     | 5 6k ohm    | 1%     |
| R77          | Metal film   | 1/6W     | 5 Lk ohm    | 19/    |
| R78          | Metal film   | 1/6W     | 10k ohm     | 19     |
| R 79         | Metal film   | 1,6W     | 10k ohm     | 14     |
| R80          | Carbon film  | 176W     | 100k ohm    | 50     |
| R81          | Metal film   | 1/6W     | 12k ohm     | 1%     |
| R82          | Metal film   | 1/6W     | 4.7k ohm    | 1%     |
| R83          | Carbon film  | 1.6W     | 12k ohm     | 50%    |
| R83          | Metal film   | 1.6W     | 27k ohm     | 194    |
| R84          | Metal film   | 1/6W     | 68k ohm     | 1%     |
| R87          | Carbon film  | 1,6W     | 47 ohn      | 51.11  |
| RXX          | Carbon film  | 1.6W     | 18k ohm     | 54     |
| R90          | Carbon film  | 1/6W     | 68k ohm     | 504    |
| R91          | Carbon film  | L 6W     | 8 2k ohm    | 5%     |
| R92          | Carbon film  | 1.6W     | IM ohm      | 50,    |
| R93          | Carbon film  | L6W      | 33k ohm     | 56     |
| R94          | Metal film   | 1/6W     | 220k ohm    | 1640   |
| R95          | Metal film   | 1/6W     | IM ohm      | 150    |
| R96          | Metal film   | 1/6W     | 330k ohm    | 1%     |
| R97          | Carbon film  | 1,6W     | 100k ohm    | 504    |
| Rux          | Carbon film  | 1.6W     | 560 ohm     | 507    |
| Rad          | Metal film   | 1,6W     | 5 6k ohm    | 1%     |
| R100         | Metal film   | L6W      | 2k ohm      | 107    |
| R10          | Metal film   | I 6W     | 330 ohm     | 1 %    |
|              |              |          | resistors . |        |
| VRI          | Cermet       | 1/3W     | 200 ohm     | 200    |
| VR2          | Cermat       | 1.3W     | 2k ohm      | 200    |
| VR6          | Cernet       | 1/3W     | 5k ohm      | 204    |
| VR 7         | Cem et       | 1/3W     | 10k ohm     | 20%    |
| VRS          | Cermet       | 15.3 W   | 5k ohm      | 20%    |
|              |              | CAPAC    | 4           |        |
| C6           | Ceram c      | 25V      | 1.5LF       |        |
| C7           | Caram c      | 50V      | 0.01UF      | have   |
| C8           | Electrolytic | 16V      | 10LF        | 20%    |
| C9           | Mci          | 50V      | 120PF       | 4 Df y |
| C 10         | Plastic Edm  | 50V      | 390PF       | 10%    |
| CH           | Mica         | 500V     | 22PF        | 10%    |
| C12          | Mica         | 50V      | 82PF        | 10%    |
| CIR          | Erectrosytic | 25V      | 10UF        | 20%    |
| C14          | Flectrotytic | 16V      | IOUF        | 20%    |
| C16          | F ectralytic | 16V      | IOUF        | 70%    |
| (19          | F ectralytic | 16V :    | 10UF        | 20%    |
| C21          | Plastic film | 50V      | 180PF       | 105    |
| C22          | Ceram c      | 250V     | 0.01UF      |        |
| C23          | Plastic film | 50V      | 220PF       | 10%    |
| C24          | Ceram c      | 50V      | 820PF       | 10%    |
| C25          | Mica         | 500V     | 12PF        | 10%    |
| C 26         | Plastic film | 63V      | 0.1UF       | 10%    |
| C27          | Electrolytic | 25V      | 10UF        | 20%    |
| €30          | Ceram c      | 50V      | 270PF       | 10%    |
| C31          | Electrolytic | 16V      | 10UF        | 20%    |

| Symbol<br>No. |                     | Description     |                     |     |  |  |  |
|---------------|---------------------|-----------------|---------------------|-----|--|--|--|
|               | CAPACITORS          |                 |                     |     |  |  |  |
| C32           | Plastic film        | 63V             | 0.1UF               | 10% |  |  |  |
| C35           | Electrolytic        | 25V             | 10UF                | 20% |  |  |  |
| C36           | Plastic film        | 50V             | 8200PF              | 5%  |  |  |  |
| C37           | Plastic film        | 50V             | 220PF               | 10% |  |  |  |
| C38           | Electrolytic        | 25V             | 10UF                | 20% |  |  |  |
| C39           | Electrolytic        | 25 V            | 10UF                | 20% |  |  |  |
| C40           | Plastic film        | 100V            | 0.01UF              | 1%  |  |  |  |
| C41           | Electrolytic        | 25V             | 10UF                | 20% |  |  |  |
| C42           | Electrolytic        | 16V             | IOUF                | 20% |  |  |  |
| C43           | Plastic film        | 50V             | 0 OTUF              | 5%  |  |  |  |
| C44           | Electrolytic        | 16V             | 10UF                | 20% |  |  |  |
| C45           | Ceramic             | 50V             | 330PF               | 10% |  |  |  |
| C46           | Ceramic             | 50V             | 0.01UF              |     |  |  |  |
| C47           | Ceramic             | 250V            | 0.01UF              |     |  |  |  |
| C48           | Ceramic             | 50V             | 470PF               | 10% |  |  |  |
| C49           | Mica                | 500V            | LOPF                | 10% |  |  |  |
| C50           | Mica                | 500V            | 22PF                | 10% |  |  |  |
| C51           | Plastic film        | 50V             | 0.018UF             | 5%  |  |  |  |
| C52           | Plastic film        | 63V             | 0.047UF             | 10% |  |  |  |
| C54           | Electrolytic        | 25V             | LOUF                | 20% |  |  |  |
| C56           | Electrolytic        | 16V             | 22UF                | 20% |  |  |  |
| C57           | Electrolytic        | 16V             | 22UF                | 20% |  |  |  |
| C60           | Electrolytic        | 25V             | LOUF                | 20% |  |  |  |
| C61           | Electrolytic        | 25V             | LOUF                | 20% |  |  |  |
|               | TRANSISTORS         |                 |                     |     |  |  |  |
| Q3            | NPN                 | ERRITOR         | 2SC1815-GR          |     |  |  |  |
| 04            | NPN                 |                 | 2SC1815-GR          |     |  |  |  |
| 07            | NPN                 |                 | 2SC2912-S           |     |  |  |  |
| Q8            | NPN                 |                 | 2SC2912-S           |     |  |  |  |
| Q9            | PNP                 |                 | 2SA1015-C           |     |  |  |  |
| Q10           | NPN                 |                 | 2SC2912-S           |     |  |  |  |
| 011           | NPN                 |                 | 2SC2912-S           |     |  |  |  |
| 012           | NPN                 |                 | 2SC1815-C           |     |  |  |  |
| 013           | NPN                 |                 | 2SC1815-GR          |     |  |  |  |
| Q14           | NPN                 |                 | 2SC752(G)TM 0       |     |  |  |  |
| Q15           | NPN                 |                 | 2SC1815-C           |     |  |  |  |
|               |                     |                 |                     |     |  |  |  |
| DI            | Detector Dual MC921 |                 |                     |     |  |  |  |
| D2            | Detector            |                 | IS1588              |     |  |  |  |
| D3            | Detector            |                 | 1S1588              |     |  |  |  |
| D4            | Zener               | 6.2V            | RD6, 2EB            |     |  |  |  |
| D6            | Detector            | 0121            | IS1588              |     |  |  |  |
| D7            | Detector            |                 | 1S1588              |     |  |  |  |
| D8            | Detector            |                 | IS1588              |     |  |  |  |
| D9            | Zener               | 47V             | RD4, 7EB            |     |  |  |  |
|               |                     |                 |                     |     |  |  |  |
| ICI           | OP AMP              | INTEGRATED CIRC |                     |     |  |  |  |
| IC2           | CMOS                |                 | CA-3080<br>TC4528BP |     |  |  |  |
| IC3           | OP AMP              |                 | CA3240E             |     |  |  |  |
| 104           | Comparator          |                 | CA3290E             |     |  |  |  |
| IC5           | Comparator          |                 | LM393N              |     |  |  |  |
| IC6           | CMOS                |                 | TC4528BP            |     |  |  |  |
| IC7           | OP AMP              |                 | TL082               |     |  |  |  |
| IC8           | OP AMP              |                 | TL080CP             |     |  |  |  |
| 1C9           | OP AMP              |                 | TL082               |     |  |  |  |
| IC10          | CMOS                |                 | TC4011BP            |     |  |  |  |
| ICH           | CMOS                |                 | TC4066BP            |     |  |  |  |
|               |                     |                 |                     |     |  |  |  |
| Li            | Corl                | COIL            |                     |     |  |  |  |
| LI            | [Coil               |                 | 330UH               | 10% |  |  |  |

# **SWITCH BOARD T-3651**

| Symbol<br>No. |                            | Daceri | ntion           |       |  |  |
|---------------|----------------------------|--------|-----------------|-------|--|--|
|               | Description                |        |                 |       |  |  |
|               | RESISTORS                  |        |                 |       |  |  |
| RI            | Metal film                 | 1/6W   | 15k ohm         | 1%    |  |  |
| R2            | Carbon film                | 1/6W   | 2, 2M ohm       | 5%    |  |  |
| R3            | Carbon film                | 1/6W   | 47 ohm          | 5%    |  |  |
| R5            | Carbon film                | 1/6W   | 150 ohm         | 5%    |  |  |
| R6            | Carbon film                | 1/6W   | 10k ohm         | 5%    |  |  |
| R7            | Carbon film                | 1/6W   | 2.7k ohm        | 5%    |  |  |
| R8            | Metal film                 | 1/6W   | 330 ohm         | 1%    |  |  |
| R9            | Metal film                 | 1/6W   | 18k ohm         | 1%    |  |  |
| R10           | Metal film                 | 1/6W   | 27k ohm         | 1%    |  |  |
| RII           | Carbon film                | 1/6W   | 47 chm          | 5%    |  |  |
| R12           | Carbon film                | 1/6W   | 8.2k ohm        | 5%    |  |  |
| R13           | Carbon film                | 1/6W   | 47 ohm          | 5%    |  |  |
| R14           | Carbon film                | 1/6W   | 3.3k ohm        | 5%    |  |  |
|               |                            |        | RESISTOR        |       |  |  |
| VR1           | Cermet                     | 1/3W   | 100 ohm         | 20%   |  |  |
|               | CAPACITORS                 |        |                 |       |  |  |
| C1            | Mica                       | 500V   | 27PF            | 10%   |  |  |
| C2            | Ceramic                    | 50V    | 0.01UF          |       |  |  |
| C3            | Electrolytic               | 16V    | 10UF            | 20%   |  |  |
| C4            | Electrolytic BP            | 10V    | 100UF           | 20%   |  |  |
| C5            | Ceramic                    | 50V 1  | 0.01UF          |       |  |  |
| C6            | Electrolytic               | 25V    | 10UF            | 20%   |  |  |
| C7            | Plastic film               | 100V   | 470PF           | 2%    |  |  |
| C8            | Mica                       | 500V   | 22PF            | 10%   |  |  |
| C9            | Mica                       | 50V    | 100PF           | 10%   |  |  |
| C10           | Ceramic                    | 50V    | 1000PF          |       |  |  |
| CH            | Mica                       | 500V   | 27PF            | 10%   |  |  |
|               | VARIABLE CAPACITOR         |        |                 |       |  |  |
| VCI           | Ceramic 250V 2-12PF        |        |                 |       |  |  |
|               | TRANSISTORS                |        |                 |       |  |  |
| Q1            | PNP                        |        | 2SA872E         |       |  |  |
| Q2            | NPN                        |        | 2SC1815-GR      |       |  |  |
| Q3            | NPN                        |        | 2SC1815-GR      |       |  |  |
| Q4            | PNP                        |        | 2SA1015 GR      |       |  |  |
|               | DIODE                      |        |                 |       |  |  |
| Dt            | Detector 1S1588            |        |                 |       |  |  |
|               |                            | CO     | ILS             |       |  |  |
| L1            | Coil                       |        | 0.12UH          | 10%   |  |  |
| L2            | Coil                       |        | 0.12UH          | 10%   |  |  |
| L3            | Coul                       |        | L-779           |       |  |  |
|               |                            | SWIT   | CHES            |       |  |  |
| <b>S</b> 1    | Push                       | 22     | SPPJ6 2-2, S "E | nout" |  |  |
| S2            | Push SPPJ6 2-2, S "Filter" |        |                 |       |  |  |
| S3            | Push                       |        | SPPJ6 2 2, S "E |       |  |  |









6-6 WFM Switch and V/H Amp Boards, T3651 and 3542A



6-7 WFM V/H Amp Board, T3542A

# WARNING

THE SERVICING INSTRUCTIONS CONTAINED IN THIS MANUAL ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID ELECTRIC SHOCK, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN THE OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

# LEADEN INSTRUMENTS CORFI

Leader Instruments Corporation warrants its products to be free from defects in materials and workmanship for a

period of two years from the date of purchase its obligation under this warranty is limited to repairing or replacing, at its own sole option, any such defective products. Products must be returned to a Leader Service Center with transportation charges prepaid and must be accom-

TWO YEAR WARRANTY POLICY panied by a brief description of the problem encountered and date and place of purchase. This warranty

does not apply to equipment which has been damaged by accident, negligence, or mis-application or has been altered or modified in any way. This warranty applies only to the original purchaser who must have properly registered the product within 10 days of purchase.

LEADER INSTRUMENTS CORP.







VD 1 AND

B : THERMINAL DEVIATION ± 10%

ARE IN AF.

DICATED.

PP : PPOLYPROPHENE CAPACITION ± 10%

AND ANUAR CAPACITION ± 10%

TA : TANTAL ELECT: CAPACITION ± 5%

B) SELECTION SW GYOSTHOMS

B) SELECTION SW GYOSTHOMS

B) SELECTION SW GYOSTHOMS

8) SELECTOR TW POSITIONS

\$201 : MPPUT SELECT BW

\$202 : SERVICE SW

\$501 : M. CENTER SW

\*OLTAGE \$301 ; POWER SW (OFF)



