Problem 1

If we treat n as the index of the sequence. Then that means the statement

$$\lim_{n \to \infty} a_{2n} = L = \lim_{n \to \infty} a_{2n+1}$$

Shows that a_n converges. since a_{2n} Is all the even indexes of the sequence while a_{2n+1} takes care of all the odd indexes in the sequence. These can be treated as both subsequences of a_n . If all the subsequences of a_n converge, then it should be true that a_n also converges.

Problem 2

Assuming that $\{s_n\}$ is monotonically increasing and that $\{s_{n_k}\}$ and is converges. We want to show that $|s_n - s| \le \epsilon$ for all $n \ge N$. Let us find some k such that $k \ge k - \epsilon$ and $k - \epsilon < s_{n_k} - s < 0$. So for any n we can then say that $s_{n_k} \le s_n \le s$. Then we can say

$$-\epsilon \le s_{n_k} - s \le s_n - s \le 0$$

Which shows that s_n also converges

Problem 3

a) if
$$u_n = \frac{n^3}{e^n}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)^3}{e^{n+1}} \cdot \frac{e^n}{n^3}$$
$$= \lim_{n \to \infty} \frac{1}{e} \cdot \frac{(n+1)^3}{n^3}$$
$$= \frac{1}{e} < 1$$

So by the ratio test, it converges.

b)
$$b_n = n^{-1-\frac{1}{n}} = \frac{1}{\frac{1}{n+\frac{1}{n}}}$$
 and $a_n = \frac{1}{n^2}$

 $a_n < b_n$ and since a_n' diverges we know that b_n will also diverge.

c) I think you can show that this is divergent with the comparison test, but I am unsure what to use as a lower bound

d)
$$a_n = (n \, \overline{n} - 1)^n$$

$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} |(n^{\frac{1}{n}} - 1)^n|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} |n^{\frac{1}{n}} - 1|$$

$$= 0$$

This shows that the sequence is absolutely convergent, which means that it is convergent.

Problem 4

a) If we know that $\sum_{n=1}^{\infty} a_n$ then we can say that

$$\sum_{n=1}^{\infty} a_n^2 = \left(\sum_{n=1}^{\infty} a_n\right)^2$$

Since a_n converges, we can do this, meaning that we can say a_n^2 also converges

b) Assuming a_n converges we can say

$$\frac{a_n}{1+a_n} = \frac{a_n}{1-a_n} = \frac{a_n}{1-\frac{1}{2}} = 2 \cdot a_n$$

Since a_n converges, using the comparison test we can say that $\frac{a_n}{1+a_n}$ also converges.

c) Using the same logic as the last problem we can say that

$$\frac{a_n^2}{1+a_n^2} = \frac{a_n^2}{1-a_n^2} = \frac{a_n^2}{1-\frac{1}{2}} = 2 \cdot a_n^2$$

in part a) we showed that a_n^2 is convergent. So through the comparison test we can once again show that $\frac{a_n^2}{1+a_n^2}$ is also convergent.

Problem 5

Not necessarily. Take the sequence $a_n = \frac{1}{n}$. We know that this sequence will converge towards 0 if we take the limit. However, it is a different story if it is in a series. We know that $\sum_{n=1}^{\infty} \frac{1}{n}$ is the harmonic series, which diverges.