AIND PROJECT 3 Heuristic Analysis

1. Optimal plan for problems 1,2, and 3.

Optimal plans in these problems are very easily obtained in just a little bit of thought processes.

■ Problem 1

Init: At(C1, SFO) \land At(C2, JFK) \land At(P1, SFO) \land At(P2, JFK) \land Cargo(C1) \land Cargo(C2) \land Plane(P1) \land Plane(P2) \land Airport(JFK) \land Airport(SFO)

Goal: At(C1, JFK) \land At(C2, SFO))

Optimal plan: Plan length 6

Load(C1, P1, SFO) \rightarrow Load(C2, P2, JFK) \rightarrow Fly(P2, JFK, SFO) \rightarrow Unload(C2, P2, SFO)

→ Fly(P1, SFO, JFK) → Unload(C1, P1, JFK)

■ Problem 2

Init: At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL) \land At(P1, SFO) \land At(P2, JFK) \land At(P3, ATL) \land Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Plane(P1) \land Plane(P2) \land Plane(P3) \land Airport(JFK) \land Airport(SFO) \land Airport(ATL))

Goal: At(C1, JFK) ^ At(C2, SFO) ^ At(C3, SFO)

Optimal plan: Plan length 9

Load(C1, P1, SFO) \rightarrow Load(C2, P2, JFK) \rightarrow Load(C3, P3, ATL) \rightarrow Fly(P2, JFK, SFO) \rightarrow Unload(C2, P2, SFO) \rightarrow Fly(P1, SFO, JFK) \rightarrow Unload(C1, P1, JFK) \rightarrow Fly(P3, ATL, SFO) \rightarrow Unload(C3, P3, SFO) \rightarrow Fly(P1, SFO, JFK) \rightarrow Unload(C1, P1, JFK)

■ Problem 3

Init: At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD) \land At(P1, SFO) \land At(P2, JFK) \land Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Cargo(C4) \land Plane(P1) \land Plane(P2) \land Airport(JFK) \land Airport(SFO) \land Airport(ATL) \land Airport(ORD)

Goal: At(C1, JFK) ∧ At(C3, JFK) ∧ At(C2, SFO) ∧ At(C4, SFO)

Optimal plan: Plan length 12

Load(C1, P1, SFO) \rightarrow Load(C2, P2, JFK) \rightarrow Fly(P2, JFK, ORD) \rightarrow Load(C4, P2, ORD) \rightarrow Fly(P1, SFO, ATL) \rightarrow Load(C3, P1, ATL) \rightarrow Fly(P1, ATL, JFK) \rightarrow Unload(C1, P1, JFK) \rightarrow Unload(C3, P1, JFK) \rightarrow Fly(P2, ORD, SFO) \rightarrow Unload(C2, P2, SFO) \rightarrow Unload(C4, P2, SFO)

2. Search Result

Problem 1	Expansions	Goal Tests	New nodes	Plan Length	Time(sec)
Search method					
Breadth First Search (BFS)	43	56	180	6(optimal)	0.1495976
Breadth First Tree Search	1458	1459	5960	6(optimal)	4.7274216
Depth First Graph Search (DFS)	21	22	84	20	0.0816313
Depth Limited Search	101	271	414	50	0.5334899
Uniform Cost Search (UCS)	55	57	224	6(optimal)	0.1620741
Recursive Best First Search with h_1	4229	4230	17023	6(optimal)	12.349847
Greedy Best First Graph Search with h_1	7	9	28	6(optimal)	0.0448996
A* with h_1	55	57	224	6(optimal)	0.2425559
A* with h_ignore_preconditions	41	43	170	6(optimal)	0.1120591
A* with h_pg_levelsum	11	13	50	6(optimal)	4.9039768

Problem 2	Expansions	Goal Tests	New nodes	Plan Length	Time(sec)
Search method					
Breadth First Search	3343	4609	30509	9(optimal)	39.410010
Breadth First Tree Search					Too Long
Depth First Graph Search	624	625	5602	619	13.316650
Depth Limited Search	Too Long				
Uniform Cost Search	4853	4855	44041	9(optimal)	62.376411
Recursive Best First Search with h_1					Too Long
Greedy Best First Graph Search with h_1	998	1000	8982	21	12.927869
A* with h_1	4853	4855	44041	9(optimal)	62.637451
A* with h_ignore_preconditions	1450	1452	13303	9(optimal)	11.994419
A* with h_pg_levelsum	86	88	841	9(optimal)	815.23672

Problem 3	Expansions	Goal Tests	New nodes	Plan Length	Time(sec)
Search method					
Breadth First Search	14663	18098	129631	12(optimal)	187.65269
Breadth First Tree Search					Too Long
Depth First Graph Search	408	409	3364	392	8.5114794
Depth Limited Search					Too Long
Uniform Cost Search	18223	18225	159618	12(optimal)	238.68158
Recursive Best First Search with h_1					Too long
Greedy Best First Graph Search with h_1	5578	5580	49150	22	67.792445
A* with h_1	18223	18225	159618	12(optimal)	239.03638
A* with h_ignore_preconditions	5040	5042	44944	12(optimal)	59.948589
A* with h_pg_levelsum	316	318	2912	12(optimal)	4244.8619

Other heuristics except A* searches are all uninformed non-heuristic search. Also, h_1 heuristic is not real heuristic that just return 1 for every case(Nevertheless, since it never overestimate the distance, a number of actions to reach the goal state, h_1 is admissible). For problem 1, the simplest problem, all 10 search methods are able to find the goal in relatively short time. However, Breadth First Tree Search, Depth Limited Search, and Recursive Best First Search with h_1 in problem 2 and problem 3 couldn't finish the process in reasonable time. (I waited BFTS in P2 more than 16-hours!)

Among BFS, DFS, and UCS, BFS and UCS guarantee the optimal solution but take a long time. On the contrary, DFS usually gives us some inefficient result, but it is the fastest.

Heuristic searches, A* with the "ignore preconditions" and "level-sum" also guarantee the optimal solution. Ignore preconditions heuristic performs much better than BFS and UCS in terms of time consuming and expanding nodes. The level-sum heuristic shows the least node expansion, but it takes a very long time because the planning graph is redrawn at every step.

3. The best search method?

If each action takes a long time to perform and resources are consumed, A* with h_ignore_preconditions can be evaluated as the best search method since it shows fastest execution speed while ensuring the optimal solution. However, if a problem it to be solved very quickly or if you do not need to consider the time or resource consumption to perform an action, then DFS will find the path in the earliest time, so it can be considered as a priority.