Étude et implémentation d'un schéma de chiffrement homomorphe

Milan Gonzalez-Thauvin

Thème: Transport

TIPE session 2019

Plan de l'exposé

- 1 Introduction
 - La Cryptographie
 - La Cryptographie homomorphe
- 2 Le schéma de J.H. CHEON et D. STHELÉ
 - Partie théorique
 - En pratique
- 3 Améliorations
 - Code et Surcouche
 - Paramètres
 - Génération des clefs
- 4 Conclusion

Introduction

 ${\bf La\ Cryptographie}$

Histoire

Introduction

La cryptographie homomorphe

Gros calculs

Alice

Introduction

La cryptographie homomorphe

Définition : Calculer sur des chiffrés

Si m est un mot clair, c = enc(m) son chiffré, et f une fonction, f est compatible pour le schéma si

$$dec(f(c)) = f(m)$$

En pratique

Somme et produit car polynôme

La cryptographie homomorphe

Définition: Cryptographie partiellement homomorphe

On peut effectuer des additions **et/ou** des multiplications en nombre **fini**

Définition: Cryptographie complètement homomorphe

On peut effectuer des additions **et** des multiplications en nombre **infini**

Pourquoi fait on la distinction?

La cryptographie homomorphe se base sur du **bruit**.

La cryptographie homomorphe

État de l'art

Introduction

Avant la Thèse de Craig Gentry

Cryptographie partiellement homomorphe

Thèse de Craig Gentry (2009)

Astuce : bootstrap

Depuis la thèse de Craig Gentry

Beaucoup de schémas **théoriques** Aucune application concrète car **aucun n'est assez performant**

Le schéma de JUNG HEE CHEON et DAMIEN STEHLÉ : Fully Homomophic Encryption over the Integers Revisited 2016

Le schéma de Jung Hee Cheon et Damien Stehlé

Avec $0 < q \ll p$ et $0 < r \ll p$

Chiffrement sur les entiers

Problème du PGCD approché

Le schéma de Jung Hee Cheon et Damien Stehlé

Génération des clefs

clef**privée** : sk = p

clef **publique**: $pk = x_1, \dots, x_\tau / \forall i \in [1, \tau], x_i \leftarrow pq_i + r_i \text{ avec } x_0$

le plus grand et $\frac{x_1}{2}$ impair.

Paramètres principaux

 λ : Paramètre de sécurité

 η : Nombre de bits de p

 γ : Nombre de bits des x_i

 ρ : Nombre de bits du bruit initial

 τ : Nombre d'éléments dans la clef publique

Fonctions de base

Chiffrer

Soit
$$S \subset \{1, 2, \dots, \tau\}$$

$$c = \left[\sum_{i \in S} x_i + \left\lfloor \frac{x_1}{2} \right\rceil m \right]_{x_0}$$

Déchiffrer

$$m = \left[\left\lfloor \frac{2c}{p} \right\rfloor \right]_2$$

Partie théorique

Fonctions de base

Addition

$$c_{add} = [c_1 + c_2]_{x_0}$$

Multiplication

Procédé complexe

Implémentation (PYTHON 3)

État de l'implémentation

- Création des clefs : ✓
- \blacksquare Chiffrement : \checkmark
- Déchiffrement : ✓
- Somme : \checkmark
- Produit : ✓
- Bootstrap : Échec

Paramètres de base

Ceux proposés par l'article

Constatation des performances

Génération des clefs

Constatation des performances

Génération des chiffrés

Constatation des performances

Somme

Constatation des performances

Constatation des performances

Nombre d'opérations

Nombre d'opérations

Dérisoire \rightarrow 4 ou 5 multiplications bit à bit avant erreur

Le bootstrap

Échec

En cause:

- Schéma trop théorique et peu adapté à une implémentation
- Évaluation homomorphique des fonctions de chiffrement et déchiffrement trop gourmande en calculs et donc incompatible avec des paramètres pertinents pour un ordinateur

Code et Surcouche

Code et Surcouche

But

- Simplifier l'utilisation du schéma
- Faciliter son **debugage** et son amélioration
- Permettre à d'autres personnes d'utiliser le schéma

Moyen

Tout un écosystème (notamment opérations bit à bit, Classes Python, fonctions regroupant les opérations de base)

Code et Surcouche

Résultat

Un code clair, concis, et facile d'utilisation

Code

```
lambdaa, nb operations = 50, 1000
2
 alice, bob = genererCS(lambdaa, nb operations)
 a = bob.chiffrentier(5)
b = bob.chiffrentier(4)
6 c = (a*b)
7 print (alice. dechiffrerentier (c))
```

•0

Paramètres

Idée

Trouver les paramètres pour rendre le schéma :

- Plus rapide
- Plus **fiable** (possibilité d'effectuer plus d'opération)

pour un même paramètre de sécurité λ

Moyen

Fonctions permettant de tester et comparer les performances du schéma en faisant varier certains paramètres

000

Paramètres

Paramètres pertinents

$$\begin{split} \rho &= \lambda \\ \eta &= \lfloor \rho + \log_2(\lambda) \rfloor \\ \gamma &= \lfloor 1,05*\eta \rfloor \\ \tau &= \gamma + 2*\lambda + 2 \end{split}$$

Résultat

Sécurité \

•00

Génération des clefs

Génération des clefs

Cause

- Nombre d'opérations faible (même après le changement de paramètres)
- Qualité des clefs aléatoire (dont certaines obsolètes)

Idée

Fonction qui génère de nombreuses paires de clefs jusqu'à en trouver une satisfaisante

Génération des clefs

Code

```
def generer CS (lambdaa, maxi):
      clef invalide = True
2
      while clef invalide:
          alice = Prive(lambdaa)
4
          bob = Publique (alice.publier())
          p, pc, j, prod correct = 1, 1, 0, true
          while prod correct:
              t = random.randint(0,1)
8
              p *= t
              pc *= bob.chiffrerbit(t)
              i += 1
              prod correct = (p=alice.dechiffrerbit(pc))
              if j > maxi : return alice, bob
```

Génération des clefs

Génération des clefs

Résultat

- Temps de génération des clefs \nearrow
- + Fiabilité /
- + Sécurité /

Conclusion

Succès

- Schéma partiellement homomorphe
- Relativement sûr même si loin des normes actuelles
- Fiable dans la limite d'un bruit raisonnable

Échec

- Pas de Bootstrap
- Non utilisable à grande échelle car trop **lent** (plusieurs secondes pour chaque multiplication)

Conclusion

Conclusion

Utilisations possibles

Conditions:

- Peu de multiplications
- Des calculs dont on peut majorer la complexité

Prédilection:

■ Vote électronique

