Упражнение 2

Цель упражнения:

Знакомство с базовыми возможностями схемного ввода в пакете Quartus II и возможностями редактора начального содержимого модуля памяти.

В рабочей папке упражнения 2 – папке lab2, уже созданы:

- exel файл таблицей преобразования двоичного кода в 7-сегментный bin_7seg.xls
- файл с настройками выводов СБИС для платы miniDiLab-CIV файл lab2.qsf

Алгоритм работы проекта:

Схема проекта

Алгоритм работы:

- входная частота clk_25Mhz ($25 \text{ M}\Gamma\text{ц}$) делится на 28-разрядном счетчике делителе (cnt 28bits)
- 4 старших разряда счетчика поступают на преобразователь двоичного кода в 7сегментный (bin_7seg), реализованный на модуле памяти ROM, а с его выхода на выход (на 4разрядный 7-сегментный индикатор).
- переключатели sw5, sw4 позволяют выбрать разряд 4-разрядного 7-сегментного индикатора, на котором будут отображаться данные с выхода преобразователя двоичного кода в 7-сегментный

Задачи:

<u>Часть 1</u> – Создание проекта

<u> Часть 2</u> – Создание mif файла и экземпляра модуля памяти ROM

<u>Часть 3</u> — Создание 28 разрядного экземпляра счетчика

Часть 4 − Создание экземпляра декодера 2=>4

Часть 5 — Схемный ввод проекта

Часть 6 – Компиляция проекта

<u>Часть 7</u> – Программирование СБИС и проверка работы проекта на плате.

Часть 1 - Создание проекта

- 1. Запустите пакет QuarusII
- 2. В окне File менеджера пакета, выберите Open New Project Wizard....

- 3. На экране появится окно введения **Introduction** (если оно небыло отключено). Нажмите кнопку **next**.
- 4. В появившемся окне введите следующие данные:

Раздел	Что ввести
What is the working directory for this project?	\ lab2
Рабочая папка (с помощью браузера найдите рабочую папку	
проекта)	
What is the name of this project?	lab2
Имя проекта	
What is the name of the top-level design entity for this project?	lab2
Имя модуля верхнего уровня в иерархии проекта.	

- 5. Нажмите кнопку **Next**.
- 6. В следующем окне нажмите **Next** еще раз.
- 7. В окне **Family & Device Setting[page3 of 5]**:
 - в разделе Family выберите CycloneIVE.
 - в разделе Available devices выберите СБИС EP4C6E22C8.
- 8. Нажмите кнопку **Next.**
- 9. В окне **EDA Tool Setting [page 4 of 5]** оставьте все без изменения и нажмите кнопку **Next.**
- 10. Появится окно Summary [page 5 of 5], в котором указаны установки, заданные Вами для создаваемого проекта. Проверьте их. Если все правильно, то нажмите кнопку Finish. В противном случае, вернитесь назад, нажав (возможно несколько раз) кнопку Back.

Проект создан.

Часть 2 – создание mif файла и экземпляра модуля памяти ROM

- 1. Создайте новый mif файл:
 - Команда File=>New

• Задайте количество слов -16- модуля памяти и разрядность -8

- Установите систему счисления данных Binary; отобразите массив памяти в виде 1 колонки (1 Cell per Row).
- Откройте bin_7seg.xls файл и скопируйте содержимое колонки «7сегментный код» в созданный mif файл

	7сегмент	
	ный	
адрес	код	символ
0	0111111	0
1	0000110	1
2	1011011	2
3	1001111	3
4	1100110	4
5	1101101	5
6	1111101	6
7	0000111	7
8	1111111	8
9	1101111	9
10	1110111	Α
11	1111100	В
12	0111001	С
13	1011110	D
14	1111001	E
15	1110001	F

Addr	+0	ASCII
0	00111111	?
1	00000110	
2	01011011	[
3	01001111	0
4	01100110	f
5	01101101	m
6	011111101	}
7	00000111	-
8	01111111	-
9	01101111	0
10	01110111	W
11	011111100	I
12	00111001	9
13	01011110	٨
14	01111001	У
15	01110001	q

• Сохраните файл под именем bin_7seg.mif.

2. В окне IP Catalog выберите мегафункцию ROM:1-PORT и нажмите кнопку ADD.

3. В появившемся окне задайте имя создаваемого экземпляра мегафункции (ROM) и укажите язык для описания настроек экземпляра мегафункции (VHDL).

- 4. Нажмите кнопку ОК, запустится помощник MegaWizard Plug-in Manager.
- 5. В окне настроек модуля ROM установите указанные ниже параметры

- 6. Нажмите кнопку Next
- 7. В появившемся окне оставьте все без изменений

- 8. Нажмите кнопку Next
- 9. В появившемся окне с помощью браузера найдите и укажите файл bin_7seg.mif

- 10. Нажмите кнопку Next
- 11. Нажмите кнопку Next
- 12. На появившейся странице выберите создаваемые файлы:

13. Нажмите кнопку Finish.

Экземпляр модуля ROM создан и с ним связан файл начального содержимого.

Часть 3 - создание 28 разрядного экземпляра счетчика

1. В окне IP Catalog выберите мегафункцию LPM_COUNTER и нажмите кнопку ADD.

2. В появившемся окне задайте имя создаваемого экземпляра мегафункции (cnt_28bits) и укажите язык для описания настроек экземпляра мегафункции (VHDL).

- 3. Нажмите кнопку OK, запустится помощник MegaWizard Plug-in Manager.
- 4. Установите разрядность счетчика 28 бит. Нажмите кнопку Next.

- 5. В следующем окне нажмите кнопку **Next.**
- 6. В следующем окне нажмите кнопку **Next.**
- 7. Появится окно **Simulation Libraries.** Нажмите кнопку **Next**.
- 8. В появившемся окне укажите файлы, которые **MegaWizard** должен создать:

Нажмите кнопку Finish.

Экземпляр счетчика создан.

Часть 4 - создание экземпляра декодера 2=>4

1. В окне IP Catalog выберите мегафункцию LPM_COUNTER и нажмите кнопку ADD.

2. В появившемся окне задайте имя создаваемого экземпляра мегафункции (decoder2_4) и укажите язык для описания настроек экземпляра мегафункции (VHDL).

- 3. Нажмите кнопку ОК, запустится помощник MegaWizard Plug-in Manager.
- 4. Установите разрядность входа 2 бит. Нажмите кнопку **Add all**. Нажмите кнопку **Next**.

5. В следующем окне оставьте значения по умолчанию. Нажмите кнопку **Next.**

- 6. Появится окно **Simulation Libraries.** Нажмите кнопку **Next**.
- 7. В появившемся окне укажите файлы, которые **MegaWizard** должен создать:

Нажмите кнопку Finish.

Экземпляр декодера создан.

Часть 5 - Создание схемы

1. Запустите задачу Create New Design File в окне задач

2. Укажите тип создаваемого файла **Block Diagram/Schematic File.** Нажмите ОК.

- 3. Выполните команду: меню File->Save As и сохраните файл как lab2.bdf
- 4. Схема, которая должна быть создана, изображена ниже.

5. Сохраните схему под именем lab2.bdf.

Схема создана.

Часть 6 - Компиляция проекта

- 1. Назначение опций компилятора (практически все опции имеют значения по умолчанию) и номеров выводов СБИС для платы miniDiLaB-CIV выполнены для Вас и хранятся в файле lab2.qsf. Откройте этот файл в любом текстовом редакторе.
- 2. Раздел Pin & Location Assignments файла, содержащий привязку выводов проекта к выводам микросхемы EP4C6E22C8, приведен ниже (сравните с открытым файлом):

```
# Pin & Location Assignments
# ==============
set location assignment PIN 64 -to pba
set_location_assignment PIN_58 -to pbb
set location assignment PIN 88 -to sw7
set_location_assignment PIN_89 -to sw6
set location assignment PIN 90 -to sw5
set location assignment PIN 91 -to sw4
set_location_assignment PIN_87 -to d_ss[0]
set_location_assignment PIN_133 -to d_ss[1]
set location assignment PIN 86 -to d ss[2]
set location_assignment PIN_77 -to d_ss[3]
set location assignment PIN 85 -to d ss[4]
set location assignment PIN 76 -to d ss[5]
set_location_assignment PIN_84 -to d_ss[6]
set location assignment PIN 75 -to d ss[7]
set_location_assignment PIN 83 -to dig0
set location assignment PIN 74 -to dig1
set_location_assignment PIN_80 -to dig2
set_location_assignment PIN_73 -to dig3
set location assignment PIN 23 -to clk 25Mhz
```

- 3. Часть раздела Fitter Assignments, в которой задаются:
 - режим работы не использованных выводов СБИС: как входы с pull-up резистором
 - стандарт сигнала для каждого входа/выхода
 - приведена ниже (сравните с открытым файлом):

```
# Fitter Assignments
set global assignment -name DEVICE EP4CE6E22C8
set_global_assignment -name ERROR_CHECK_FREQUENCY_DIVISOR 1
set_global_assignment -name RESERVE_ALL_UNUSED_PINS_WEAK_PULLUP "AS INPUT TRI-STATED"
set_instance_assignment -name IO_STANDARD "2.5 V" -to pba set_instance_assignment -name IO_STANDARD "2.5 V" -to pbb
set instance assignment -name IO STANDARD "3.3-V LVCMOS" -to sw7
{\tt set\_instance\_assignment-name\ IO\_STANDARD\ "3.3-V\ LVCMOS"\ -to\ sw6}
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to sw5
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to sw4
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to dig3
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to dig2
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to dig1
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to dig0 set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to d_ss[7]
set instance assignment -name IO STANDARD "3.3-V LVCMOS" -to d ss[6]
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to d_ss[5]
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to d_ss[4]
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to d_ss[3]
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to d_ss[2]
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to d_ss[1]
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to d_ss[0]
set_instance_assignment -name IO_STANDARD "3.3-V LVCMOS" -to clk_25Mhz
\tt set\_global\_assignment - name \ STRATIX\_DEVICE\_IO\_STANDARD \ "2.5 \ V"
```

4. В окне задач (Tasks) выберите процедуру Full Design и двойным щелчком левой клавиши мыши по команде Compile Design запустите полную компиляцию проекта.

5. Окно задач (Tasks) будет отображать ход выполнения процедуры компиляции.

В процессе полной компиляции проекта осуществляется:

- ✓ проверка синтаксиса,
- ✓ синтез с оптимизацией занимаемой площади и быстродействия проекта,
- ✓ трассировка и СБИС с оптимизацией занимаемой площади и быстродействия проекта,
- ✓ получение файла для конфигурирования *CБИС* pof(sof) файл,
- ✓ получение модели с временными параметрами реализованной СБИС,
- ✓ временной анализ,
- ✓ Формирования файла с детальным отчетом о всех этапах компиляции проекта.

Часть 7 – Конфигурирование СБИС и проверка проекта на плате

- 1. На плате miniDiLaB-CIV установите джамперы следующим образом:
 - а. Соедините выводы разъема "ТҮРЕ"
 - b. Соедините выводы 1-2 разъема "MODE"

- 2. Подсоедините входящий в комплект поставки USB кабель A-miniB к USB 2.0 порту компьютера (должен обеспечивать ток до 500мA), а затем к плате miniDiLaB-CIV.
- 3. Подсоедините к плате (разъем PR_A) модуль 7-сегментного индикатора
- 4. Включите плату miniDiLaB-CIV : переключатель Power
- 5. В окне задач (Tasks) выберите процедуру Full Design и двойным щелчком левой клавиши мыши по команде Program Device запустите приложение, управляющее конфигурированием СБИС.

- 6. Откроется окно управления конфигурированием СБИС.
- 7. Для установки интегрированного на плату miniDiLaB-CIV средства конфигурирования СБИС нажмите кнопку **Hardware Setup,** откроется окно настроек.___

8. В разделе **Available hardware items** выберите (двойным щелчком левой клавиши мыши) USB-Blaster. Нажмите кнопку **Close**.

9. Включите опцию **Program/Configure** и нажмите кнопку **Start.** В окне Progress будет отображаться статус процедуры конфирурирования СБИС.

10. Когда СБИС будет запрограммирована на плате miniDiLaB-CIV загорится зеленый светодиод – "Done".

- 11. Проверьте работу проекта:
 - а. Переключатели sw5, sw4 установите в положение 00: на первый (самый правый) разряд 7-сегментного индикатора должны последовательно выводиться 0,1,2,3,...9, a,b,c,d,e,f,0...
 - b. Повторите для всех возможных комбинаций переключателей sw5, sw4: 00 активный первый разряд; 01 активный второй разряд; 10 активный третий разряд; 11 активный четвертый разряд.

Лабораторная работа завершена.