Ovarian Cancer Subtype Classification and Outlier Detection

Jonathan DEGOUVE, Victor CHEVREAU, Eva URANKAR, Kathleen GUILLET

TEAM Kakus

- Jonathan DEGOUVE, project configuration
- Victor CHEVREAU, models testing and tuning
- Eva URANKAR, tiling
- Kathleen GUILLET, project configuration

ABOUT THE PROJECT

- Kaggle competition, Sponsored by: University of British Columbia (UBC), BC Cancer, and Partners
- Ovarian Carcinoma: most lethal female reproductive cancer
 - 5+ subtypes
 - Challenging diagnosis needed for subtype specific treatment
- Data:
 - Most extensive and diverse ovarian cancer dataset
 - 550 GB of high resolution images
- Goal: improve the accuracy of identifying ovarian cancer subtypes from histopathology images
- Why: help to enhance the applicability and accessibility of accurate ovarian cancer diagnoses.

 Training Validation

 Testing

APPROACH

1- Data exploration:

- a. Difference between the dataset of thumbnail images and the one with bigger images.
- b. Dataset unbalanced.
- c. Deciding on the approach: using the thumbnails dataset, applying tiling and ImageDataGenerator for data augmentation.
- 2- Loading the dataset and opening the images.

Training data Distribution

	rissing values.		
	image_id	-	
	label		
	image_width	-	
image_height			
	is_tma	(
	dtype: int64		

Tiling

Class: EC

...Approach

- 3- Training models, testing various pre-trained models (ResNet, EfficientNet) and different hyperparameters.
- 4- Selecting the best model.

Model

- Normalization
- 80% Train, 20% Test
- Image Augmentation
 - horizontal flip
 - o rotation angle (15 degrees)
 - zoom range
 - shift range
- ResNet50v2

https://www.kaggle.com/code/evaurankar/ml-project-randomforest https://www.kaggle.com/code/evaurankar/ml-project-resnet

RESULTS

	precision	recarr	11-score	Support
0	0.36	0.31	0.33	13
1	0.43	0.33	0.38	27
2	0.56	0.76	0.64	46
3	1.00	0.25	0.40	8
4	0.83	0.56	0.67	9

accur	асу			0.53	103
macro	avg	0.64	0.44	0.48	103
weighted	avg	0.56	0.53	0.52	103

LESSONS

- Rightfully choose the project according to yours skills.
- The difficulty of treating images, especially when they are substantials and their characteristics are sparse.
- The computational resources needed to treat images.
- The power of working in team, where the range of skills can be wide.

IMPROVEMENT

- Training on the dataset of the big images.
- Detection of outliers
- Use annotated masks
- Improve the tiling

Thank you for listening

