Алгоритмы

Часть А

1. Чему равен порядок роста продолжительности работы следующего участка кода?

```
int sum = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = j+1; k < N; k++)
                sum++;
```

2. Расположите следующие функции в порядке увеличения скорости роста:

(a) $\log n$

(e) $\log \log n$

(i) $n \log n$

(b) 1

(f) $n\sqrt{n}$

(j) n^2

(c) e^n

(g) n!

(d) n

(h) n^n

(k) 2^n

Отметьте все функции, чьё О-большое равно $O(n^2)$

• $1000n^2$

• $n^3 - 100n^2$

 \bullet e^n

• $4n^2 + 10n + 50$

• $n \log n$

• $n^3 + 100n^2$

• $n^3/(1+n)$

3. Заполните таблицу:

Алгоритм	Сложность(в среднем)
Сортировка пузырьком	$O(n^2)$
Сортировка вставками	
Сортировка слиянием	
Быстрая сортировка	
Сортировка выбором	
Простейший алгоритм перемножения матриц nxn	
Простейший алгоритм сложения матриц nxn	

4. Заполните таблицу: Вычислительные сложности(в среднем) операций над структурами данных

	Доступ к элементу	Вставка	Удаление	Поиск
Массив				
Односвязный список(list)				
Двоичное дерево поиска				
Хеш-таблица				

- 5. Класс NP это:
 - Класс задач, которые нельзя решить за полиномиальное время на детерминированной машине Тьюринга.
 - Класс задач, которые можно решить за полиномиальное время на недетерминированной машине Тьюринга.
 - Класс алгоритмов, которые нельзя выполнить за полиномиальное время на детерминированной машине Тьюринга.
 - Класс алгоритмов, которые можно выполнить за полиномиальное время на недетерминированной машине Тьюринга.

Часть В

1. Алиса и Боб любят игры и соревнования. И сейчас они готовы приступить к новой игре. Всего у них есть п плиток шоколада. По правилам игры они могут есть этот шоколад по очереди (первой начинает Алиса). Известно, что Алиса съедает a плиток шоколада за ход, а Боб – b плиток шоколада. Выйгрывает тот, кто съест последнюю плитку.

Входные данные:

Целые положительные n, a и b.

Выходные данные:

"Alice если победит Алиса, или "Воb если победит Боб

Пример:

Вход	Выход
20 5 3	Alice
2 1 1	Bob

2. **[Set1]** Дано п чисел, причём известно, что среди этих чисел есть только одно уникальное. Все остальные числа повторяются парами. Найти это уникальное число.

Входные данные:

Целое положительное нечётное $n \leq 2*10^9$

n целых чисел.

Выходные данные:

Уникальное число

Пример:

Вход	Выход
3 1 8 1	8
11 5 4 7 4 8 78 15 5 78 8 15	7

3. **[Set2]** Дано n чисел и некоторое число A. Среди этих n чисел найти два таких, что их сумма равна A. Вернуть -1, если таких 2-х чисел нет.

Входные данные:

Целое положительное $n \leq 2*10^9$ и целое положительное A п целых чисел.

Выходные данные:

Индексы и значения искомой пары чисел или -1, если такой пары нет. Пример:

Вход	Выход
3 1 8 1	8
11 5 4 7 4 8 78 15 5 78 8 15	7

4. Найти последнюю цифру n-го элемента последовательности Фибоначчи.

Входные данные:

Целое положительное $n \le 2 * 10^9$.

Выходные данные:

Последняя цифра n-го элемента последовательности Фибоначчи $\Pi pumep$:

Вход	Выход
20 5 3	Alice
2 1 1	Bob

5. Задача hexen в контесте NUMBER5.