PENGARUH PENAMBAHAN PASIR DAN PROSES PEMERAMAN TERHADAP STABILITAS TANAH EKSPANSIF

Putu Anom Antara¹, I Nyoman Aribudiman², I Gusti Ngurah Wardana²

¹Jurusan Teknik Sipil, Fakultas Teknik Universitas Udayana

²Dosen Jurusan Teknik Sipil, Fakultas Teknik Universitas Udayana

e-mail: antara_anom@yahoo.com

Abstrak: Tanah ekspansif merupakan tanah yang kurang baik digunakan sebagai dasar suatu bangunan. Karena tanah expansif merupakan tanah yang sangat berpotensi mengalami pengembangan dan penyusutan yang sangat besar. Sifat kembang susut yang besar dari lapisan tanah dasar ini dapat menimbulkan kerusakan pada konstruksi yang berada diatasnya. Mengingat sifat tanah lempung ekspansif yang kurang mendukung tersebut, perlu dilakukan perbaikan tanah. Salah satu stabilisasi dalam usaha perbaikan tanah adalah mencampur tanah lempung dengan pasir yang ditambah dengan proses pemeraman. Penelitian ini bertujuan untuk mengetahui karakteristik dari suatu tanah dan mengetahui bagaimana pengaruh penambahan pasir dan proses pemeraman terhadap stabilitas tanah lempung. Penambahan pasir ke dalam tanah lempung, menggunakan variasi campuran dengan persentase: 0%, 10%, 20%, 30% dan proses pemeraman yang dilakukan selama: 0 hari, 2 hari, 4 hari. Data yang diperoleh dari hasil penelitian meliputi nilai w, Gs, analisis ukuran butiran, LL, PL, SL, IP, Wopt, qu, swelling, CBR dan Ak. Setelah dilakukan penelitian dan hasil penelitian diperoleh nilai IP rata-rata = 28,830% dan Ak rata-rata = 0,870 yang menunjukan tanah lempung di daerah padangsambian kaja pada kedalaman 1 m termasuk High Plasticity dan High Swelling Potential. Tanah pada kedalaman 1 m masih merupakan zona aktif ekspansif, di mana karakteristik tanahnya menunjukan tanah lempung tersebut termasuk High Swelling Potential. Nilai Indeks Plastisitas (IP) menurun, dengan nilai IP terendah sebesar 27,456% pada kadar penamabahan 30% pasir; nilai pengembangan, baik free swell maupun swelling mengalami penurunan, dengan nilai free swell terendah 1,957% dan nilai swelling terendah 0,588 pada kadar penambahan 30% pasir dan 4 hari pemeraman; nilai kuat tekan bebas tanah meningkat seiring penambahan pasir dan selama pemeraman. Penambahan pasir dan proses pemeraman memberi pengaruh yang signifikan terhadap kembang susut dan peningkatan kekuatan tanah.

Kata kunci: Tanah ekspansif, pasir dan pemeraman, kembang susut

THE EFFECT OF ADDITIONAL SAND AND CURING PROCESS TOWARD EXPANSIVE SOIL STABILITY

Abstract: Expansive soil is unsuitable for a building's foundation. This is because expansive soil experiencing such a high capacity (shrink-swell soil). A high shrink and swell of the subgrade may cause damage to the construction above it. Given the less supportive of expansive clay soils, it needs to be improved. A stabilization method in soil improvement is to combine between clay and sand added to the curing process. This study aimed to investigate the soil characteristics and to analyze the influence of additional sand curing process on clay stability. The addition of sand to the clay, using a mixture with percentage of 0%, 10%, 20%, 30% and the curing process of 0, 2, and 4 days. The data obtained include the value of w, Gs, grain size, LL, PL, SL, IP, Wopt, qu, swelling, CBR and Ak. The study shows IP mean value is of 28.830% and the average of Ak is of 0.870 indicating that clay soil in Padangsambian Kaja area at 1 m depth is in High Plasticity and High Swelling Potential. Soil at 1 m of depth is still an expansive active zone,

where the clay includes High Swelling Potential. If Plasticity Index values (IP) declined, the lowest IP value is of 27.456% at a level of 30% additional sand; swelling value, both free swell and swelling have decreased, with the lowest value of free swell and swelling are of 1.957% and 0.588 respectively with the addition of 30% sand and 4 days of curing; the compressive strength increases with additional sand during curing process. The addition of sand and curing process gives a significant effect on shrink and swell and the increase of soil strength.

Keywords: Expansive Soil, Sand and Curing, Shrink and Swell

PENDAHULUAN

Latar Belakang

Tanah merupakan material yang berperan penting dalam suatu pekerjaan konstruksi bangunan Sipil. Kebanyakan konstruksi bangunan sipil di bangun di atas tanah. Oleh karena itu, diperlukan penguasaan yang lebih mendalam mengenai masalah perilaku tanah, sehingga dapat diketahui sifat fisik dan mekanis dari suatu jenis tanah yang akan digunakan sebagai pondasi pendukung suatu konstruksi bangunan.

Tanah expansif merupakan tanah yang kurang baik digunakan sebagai dasar suatu bangunan. Karena tanah expansif merupakan tanah yang sangat berpotensi mengalami pengembangan dan penyusutan yang sangat besar.. Tanah exspansif yang akan dipakai sebagai tanah dasar bangunan sipil harus diadakan metode perbaikan tanah. Tindakan yang akan dilakukan dalam penelitian ini adalah mencampur tanah dengan pasir ditambah dengan proses pemeraman.

Hipotesa awal yang dapat disimpulkan dari uraian diatas. Pasir akan mempengaruhi kembang susut dari tanah ekspansif, menurunkan kadar air pada batas cair, meningkatkan berat volume kering tanah dan menurunkan kadar air optimum, menurunkan indeks plastisitas dan meningkatkan kepadatan yang mengakibatkan tingginya daya dukung tanah. Sedangkan proses pemeraman akan mempengaruhi kadar air yang terkandung dalam tanah yang berpengaruh pada karakteristik tanah. Sampel tanah ekspansif akan diambil di daerah sekitar Desa Padangsambian kaja.

Rumusan Masalah

Berdasarkan permasalahan yang ada tujuan penelitian ini adalah untuk mengetahui karakteristik tanah sebelum dan sesudah penambahan pasir, Bagaimana pengaruh penambahan presentase pasir terhadap karakteristik tanah, Bagaimanakah karakteristik tanah jika dilakukan pemeraman selama 0 hari, 2 hari dan 4 hari.

Tujuan Penelitian

Adapun tujuan yang ingin dicapai dari penelitian ini adalah untuk mengetahui karakteristik tanah ekspansif sebelum dan sesudah penambahan pasir, untuk mengetahui pengaruh penambahan persentase pasir terhadap karakteristik tanah, untuk mengetahui karakteristik tanah jika dilakukan pemeraman selama 0 hari, 2 hari dan 4 hari.

TINJAUAN PUSTAKA

Pengertian Tanah

Tanah dapat didfinisikan sebagai mineral yang terdiri dari agregat (butiran) mineral-mineral padat yang tidak tersementasi satu ama lain dan dari bahan-bahan organic yang telah melapuk (partikel padat) disertai zat cair dan gas yang mengisi rongga-rongga kosong diantara partikel-partikel padat tersebut (Das, 1998).

Tanah Ekspansif

Tanah ekspansif (Expansive soil) adalah tanah lempung yang lunak dan mudah tertekan sehingga sering menjadi masalah

dalam pelaksanaan konstruksi. Selain itu, tanah ini mempunyai sifat-sifat yang kurang baik, seperti plastisitas yang tinggi sehingga sulit dipadatkan, dan permeabilitas rendah sehingga air susah keluar dari tanah. Sifat-sifat tersebut menyebabkan tanah ekspansif memiliki kembang susut yang besar.

Mineralogi Tanah Eksapansif

Mineralogi tanah dapat dibagi berdasarkan struktur mineralnya. Untuk tanah lempung ada tiga kelompok struktur mineral tanah yaitu:

- Kelompok Kaolinite yang umumnya tidak mempunyai sifat ekspansif.
- Kelompok mica-Ilite, termasuk Ilite dan Fermeculite yang bersifat ekspansif.
- Kelompok Smectite termasuk Montmorillonite yang sangat bersifat ekspansif. Secara umum lempung montmorilonite inilah yang disebut tanah ekspansif.

Sifat Fisik dan Mekanik Tanah Ekspansif

Sifat-Sifat Fisik Tanah Eksapansif

Dalam keadaan asli, tanah mempunyai sifat-sifat dasar dari tanah yang berguna untuk mengetahui jenis tanah. Sifat fisik tanah ekspansif dapat diketahui dengan melihat beberapa keadaan antara lain sebagai berikut:

Ukuran Butiran

Tanah memiliki ukuran partikel yang berbeda tergantung jenis tanah tersebut. Tanah lempung merupakan jenis tanah dengan ukuran butir lebih kecil dari 2 mikron (Ø<0,002 mm).ukuran butir dapat ditentukan dengan menyaring sejumlah tanah melalui seperangkat saringan yang disusun dengan lubang yang paling besar berada paling atas dan makin kebawah makin kecil.

Kadar Air Tanah (Water Content)

Kadar air merupakan perbandingan antara berat air yang tergandung dalam tanah dengan berat kering tanah tersebut yang dinyatakan dalam persen. Kadar air dihitung sebagai berikut:

$$w = \frac{Ww}{Ws} x 100\% \dots (2.1)$$

Dengan:

= kadar air W Ww = berat air

Ws = berat tanah kering

Berat Jenis Tanah (Specific of gravity)

$$Gs = \frac{\gamma s}{\gamma w} = \frac{Ws}{Vw. \gamma w} \dots \dots \dots \dots (2.2)$$

dengan:

Gs = berat jenis tanah (specific

gravity)

= berat volume butiran γs

= berat volume air γw

= volume air Vw

Angka Pori (Void Ratio)

$$e = \frac{Vv}{Vs} \qquad (2.3)$$

dengan:

= angka pori Vv= volume pori

Vs = volume butir padat

Gambar 2.1 (a) Elemen Tanah keadaan asli, (b) Tiga fase elemen.

Porositas (Porocity)

$$Y_p = \frac{Vv}{V} \times 100\%$$
(2.4)

atau;

$$N_p = \frac{e}{1+e}$$
(2.5)

dengan:

$$n_p = porositas$$

V = volume massa tanah

angka pori

Derajat Kejenuhan (Degree of Saturation)

Derajat kejenuhan (S) dari massa tanah didefinisikan sebagai perbandingan antara volume air dengan volume pori. Umunya derajat kejenuhan ini dinyatakan dalam persen. Derajat kejenuhan berkisar antara 0 sampai 1.

Bila S = 0 berarti tanah kering, bila S = 1 berarti tanah kenyang air dan bila. O<S<l berarti tanah basah.

$$S = \frac{Vw}{Vv} \times 100\%$$
(2.6)

dengan:

S = derajat keienuhan

Vw = volume air

Berat Volume (Unit-Weight)

Berat volume tanah basah (wet density)

$$\gamma_b = \frac{W}{V} \quad ... \quad (2.7)$$

Berat volume tanah kering (dry density)

$$\gamma_{\rm d} = \frac{\gamma_{\rm b}}{1+w} \quad ... \tag{2.8}$$

Berat volume tanah jenuh air

$$\gamma_{sat} = \frac{Ww + Ws}{V} \dots (2.9)$$

Berat volume tanah terendam air

$$\gamma' = \gamma_{\text{sat}} + \gamma_{\text{w}}$$
(2.10)

Batas-Batas Atterberg

Jika suatu tanah yang berbutir halus (lempung atau lanau) yang telah dicampur air sehingga mencapai keadaan cair dan kemudian menjadi kering sedikit demi sedikit maka tanah ini akan melalui beberapa keadaan tertentu dari keadaan cair sampai keadaan beku. Keadaankeadaan ini dapat digambarkan sebagai berikut:

Keadaan cair (liquid)	Keadaan plastis (plastic)	Keadaan semi beku (semi solid)	Keadaan beku (solid)
		L	7

Batas Cair Batas Plastis Batas pengerutan (liquid) (plastic limit) (shrinkage limit) Gambar 2.5 Keadaan tanah dari cair sampai keadaan beku (Das, 1988)

Beberapa percobaan untuk menentukan batas-batas Atterberg adalah:

1. Batas Cair (Liquid limit)

Pendekatan yang digunakan untuk menentukan batas cair, dapat digunakan data jumlah pukulan dan kadar air yang dihitung dengan persamaan:

LL =
$$Wc \left[\frac{N}{25} \right]^{0.121}$$
 (2.11)

dengan:

LL = batas cair

Wc = kadar air pada saat tanah menutup

N = jumlah pukulan pada kadar air Wc

Gambar **2.2** Contoh kurva perhitungan batas cair

Sumber: Ir.G. Djatmiko Soedarmo dan Ir. S.

J. Edy Purnomo, 1993

Gambar 2.3 Alat Cassandre

Sumber: Ir.G. Djatmoko Soedarmo dan Ir.S.J. Edy Purnomo, 1993.

2. Batas Plastis (Plastic Limit)

Batas plastis (PL) adalah kadar air minimum dimana tanah masih dalam keadaan plastis. Dalam menentukan batas plastis ini dilakukan dengan percobaan menggiling butir tanah menjadi bulat pipih dengan diameter 3 mm sampai menjadi retak-retak dan selanjutnya diselidiki kadar airnya.

$$IP = LL - PL....$$
 (2.12)

Dimana:

IP =indek plastisitas

LL = batas cair

PL = batas plastis

4. Batas Susut (Shrinkage Limit)

$$SL = w - \frac{V_1 - V_2}{W}$$
....(2.13)

dengan:

SL = Batas susut

 $V_1 = \text{volume tanah basah}$

W = berat tanah kering

 $V_2 = Volume tanah kering$

w = kadar air tanah basah

Spesific Surface

Merupakan perbandingan antara luas permukaan suatu bahan terhadap massa bahan yang bersangkutan.

$$(Ss) = Luas Permukaan Massa Benda$$
 (m² / gram) (2.14)

Plastisitas dan Aktivitas Tanah

Harga indeks plastis PI suatu tanah akan bertambah menurut garis lurus sesuai dengan bertambahnya persentase dari fraksi berukuran lempung (%berat butiran yang lebih kecil dari 2µm) yang dikandung oleh tanah. Hubungan antara PI dengan fraksi berukuran lempung untuk tiap tanah berbeda-beda (Skempton, 1953 dalam Das, 1988). Hubungan antara PI dan persentase butiran yang lolos ayakan 2µm didefinisikan sebagai suatu besaran yang disebut aktivitas (activity).

$$Ak = \underbrace{PI}_{\text{(% fraksi berukuran lempung)}} \dots \dots (2.15)$$

Tiga kategori aktivitas (Skempton, 1953 dalam Das, 1998):

Gambar 2.4 Aktifitas mineral lempung Sumber: Taufik Usman, 2008

Tabel 2.1 Aktivitas Mineral Lempung (Skempton, 1953 dalam Das 1988)

Mineral	Aktivitas
Kaolinite	0,33 - 0,46
Illite	0,9
Montmorillonite (Ca)	1,5
Montmorillonite (Na)	7,2

Disamping itu, Seed, W064 and dan Lundgren (1962) dalamDas (1988) mengidentifikasi potensi mengembang dari tanah berdasarkan aktivitas dengan rumus:

S' = 3,6 x
$$10^5$$
. Ak^{2,44}.C^{3,44}.....(2.16) dimana:

S' = persen mengembang (swelling)

Ak = aktivitas

C = persen fraksi lempung dalam tanah

Tabel 2.2 Perkiraan swelling potensial herdasarkan indeks plastisitas

ocidasaikan macks piasusitas.			
IP (%)	Swelling Potensial		
0-15	Lemah		
15-25	Sedang		
25-55	Tinggi		
>55	Sangat tinggi		

Gambar 2.5 Grafik untuk menentukan swelling potensial tanah

Kembang Susut

Tingkat, pengembangan secara umum bergantung pada beberapa faktor, yaitu :

- Tipe, dan jumlah mineral yang ada di dalam tanah.
- · Kadai air.
- Susunan tanah.
- Konsentrasi garam dalam air pori.
- Sementasi.
- Adanya bahan organik, dll.

Sifat Mekanik Tanah

Sifat mekanik tanah adalah sifat-sifat tanah yang mengalami perubahan setelah diberikan gaya-gaya tambahan atau pembebanan dengan tujuan untuk memperbaiki sifat-sifat tanah.

Pemadatan Tanah

Pemadatan merupakan suatu usaha untuk mempertinggi kerapatan tanah dengan pemakaian energi mekanis untuk menghasilkan pemampatan partikel atau suatu proses dimana udara pada pori-pori tanah dikeluarkan dengan cara mekanis.

Dari setiap pekerjaan pemadatan yang telah dilakukan, dihitung :

- a. Kadar air
- b. Berat volume tanah basah (γb) , dengan persamaan:

$$(\gamma b) = \frac{W}{V} \dots (2.17)$$

dimana:

W = Berat tanah yang dipadatkan pada cetakan

V = volume cetakan

c. Berat volume kering tanah (γd), dengan persamaan:

$$(\gamma d) = \frac{\gamma b}{1+w} \dots (2.18)$$

dimana:

w = kadar air

 γb = berat volume basah

Berdasarkan data yang diperoleh maka dapat digambarkan grafik hubungan antara berat volume kering dengan kadar air. Dari grafik ini dapat ditentukan juga kadar air optimum (Wopt) dan berat volume kering maksimum (γ_{dmax}).

Gambar 2.6 Grafik hubungan kadar air dengan berat volume kering

Sumber: Das, 1998

Percobaan Kuat Tekan Bebas (Unconfined Compression Test)

UCT merupakan suatu cara, pemeriksaan untuk mendapatkan daya dukung tanah. Dari hasil tes ini akan dibuatkan table kuat tekan bebas dengan beberapa perhitungan sebagi berikut:

a. Regangan dari setiap pernbebanan dihitung dengan rumus:

$$\varepsilon = \frac{\Delta L}{Lo}$$

dengan:

 ΔL = Pemendekan tinggi benda uji (cm)

Lo = tinggi benda uji mula-mula

 ε = regangan aksial

 b. Luas rata-rata penampang benda uji dengan koreksi akibat pemendekan: dengan:

$$A = \frac{A_0}{1 - \varepsilon} \dots (2.22)$$

A = Luas rata-rata penampang benda uji (cm²)

A₀ =Luas penampang benda uji mulamula (cm²)

 c. Tekanan aksial yang bekeja pada benda uji pads setiap pembebanan:

$$\sigma = \frac{P}{A} \dots (2.23)$$

dengan:

P = Gaya beban yang bekerja dihitung dari pembacaan arloji ukur cincin beban (kg).

 σ = Tekanan aksial

d. Besarnya kuat tekan bebas (qu) diperoleh dari nilai terbesar pehitungan pada persamaan 2.23 dikalikan dengan factor kalibrasi dari alai yang diguna-

kan.

e. Nilai sudut gesek tanah diperoleh dari perhitungan:

$$\varphi = (a - 45^{\circ}) \times 2 \dots (2.24)$$

f. Besarnya nilai kohesi diperoleh dari perhitungan:

$$c = \frac{q_u}{2}$$
(2.25)

METODE PENELITIAN

Pemilihan Lokasi

Pada penelitian ini pengambilan sample tanah dilakukan di daerah Padangsambian kaja. Kecamatan Denpasar barat. Lokasi ini dipilih karena lokasinya yang berdekatan dengan Desa kerobokan, sehingga kemungkinan mempunyai prilaku yang sama dengan tanah yang ada di Desa Kerobokan.

Metode Pengambilan Sampel

Pada penelitian ini pengambilan sample tanah dilakukan di daerah Padangsambian kaja. Kecamatan Denpasar barat. Lokasi ini dipilih karena lokasinya yang berdekatan dengan Desa kerobokan, sehingga kemungkinan mempunyai prilaku yang sama dengan tanah yang ada di Desa Kerobokan. Tanah di Kerobokan mempunyai perilaku kembang susut yang tinggi dan daya dukung tanah yang kurang baik. Maka untuk pembangunan gedung, pada tempat ini kurang memenuhi persyaratan karena menyebabkan gedung menjadi retak – retak bahkan dapat menimbulkan keruntuhan.

Metode Penelitian di Laboratorium

Percobaan-percobaan dilakukan di Laboratorium Mekanika Tanah Fakultas Teknik Universitas Udayana.

Kerangka Analisis

Untuk memberikan arahan dan struktur kerja yang jelas dan sistematis, maka dibuat sebuah struktur penelitian. Diagram alir dapat dilihat pada Gambar 3.1.

Gambar **3.1** Kerangka Pelaksanaan Penelitian

HASIL DAN PEMBAHASAN

Umum

Dalam penelitian ini akan digunakan sampel tanah yang diambil dari Dusun Umaklungkung, Batukandik, Pagutan, Desa Padangsambiam Kaja, Kecamatan Denpasar Barat, Kota Denpasar. Hasil penelitian ini akan memperoleh pengaruh penambahan pasir yang ditambah proses pemeraman terhadap karakteristik tanah ekspansif yang terdapat di daerah tersebut.

Kadar Air Tabel 4.1 Nilai Kadar Air Tanah Asli

Sampel	Nilai Kadar Air Tanah asli (%)		
Padangsambian I	48,4%		

Padangsambian II	37,6%
Padangsambian III	42,2%

Jadi kadar air tanah ekspansif Padangsambian berada pada rentang 37,6 % sampai 48,4% dengan kadar air rata – rata 42,72%.

Berat Volume Basah

Tabel 4.2 Nilai Berat Volume Tanah

Basah (yb)

Sampel	Nilai Berat Volume Basah (Kg/cm³)
Padangsambian I	1,664
Padangsambian II	1,705
Padangsambian III	1,650

Dari hasil pengujian tersebut, maka dapat diketahui berat volume basah (γb) tanah ekspansif Padangsambian pada kedalaman 1 meter berada pada rentang 1,650 gr/cm³ sampai 1,705 gr/cm³, dengan berat volume basah rata- rata 1,673 gr/cm³.

Berat Volume Tanah Kering

Tabel 4.3 Nilai Berat Volume Tanah

Kering (γd)

Sampel	Nilai Berat Volume Kering (Kg/cm³)
Padangsambian I	1,122
Padangsambian II	1,239
Padangsambian III	1,161

Dari data tersebut, maka dapat diketahui berat volume kering (γd) tanah lempung Padangsambian, pada kedalaman 1 meter berada pada rentang 1,161 gr/cm3 sampai 1,239 gr/cm3, dengan berat volume kering rata – rata 1,173 gr/cm3.

Berat Jenis (*Specific Gravity*) **Tabel 4.4** Nilai Berat Jenis Tanah (Gs)

Sampel	Nilai Berat Jenis Persentase Penambahan Pasir				
Samper	0%	10%	30%		
I	2,518	2,617	2,621	2,647	
II	2,583	2,63	2,631	2,678	
III	2,622	2,644	2,659	2,717	
Jumlah	7,88	7,891	7,911	8,042	
Rata-rata	2,627	2,630	2,637	2,681	

Berdasarkan rangkuman hasil penelitian berat jenis tersebut didapat bahwa nilai berat jenis rata- rata tanah lempung Padangsambian pada kedalaman 1 meter berkisar antara 2,518 sampai 2,622, dengan berat jenis rata – rata sebesar 2,627.

Gradasi Butiran (Analisa Ukuran Butiran)

Tabel 4.5 Hasil Analisa Saringan

Keterangan -	Padangsambian (%)			
Reterangun	I	II	III	
Presentase lolos ayakan No. 10				
(2mm)	100,0	100,0	100,0	
Presentase lolos ayakan No. 20				
(0,85mm)	100,0	100,0	100,0	
Presentase lolos ayakan No. 40				
(0,425mm)	95,8	95,3	96,1	
Presentase lolos ayakan No. 60				
(0,250mm)	89,8	89,4	89,4	
Presentase lolos ayakan No.				
100 (0,150mm)	79,5	79,3	80,1	
Presentase lolos ayakan No.				
200 (0,075mm)	65,5	65,5	69,3	
Diameter butir yang lolos				
saringan sampai				
dengan 0,002 mm yang				
termasuk lanau	12,75	13,47	12,92	
Diameter butir yang lebih kecil				
dari 0,002 mm				
sampai 0,001 mm yangb				
termasuk lempung	52,75	52,07	56,33	
Rata-rata	<u> </u>	53,72		

Dari tabel di atas dapat dilihat persentase rata – rata masing – masing bagian penyusun tanah tersebut :

- Lempung (*Clay*) = 53,72% (53,72 berat diamternya < 0,002 mm)
- Lanau (Silt) = 13,05% (13,05% berat diameter butirnya terletak antara 0,002 0,006 mm)
- Pasir (Sand) = 33,24% (33,24% berat diameternya tertahan saringan no. 200)

Jadi tanah Padangsambian rata – rata memiliki kandungan lempung 53,72%, lanau 13,05%, pasir 33,24%. Tanah Padangsambian merupakan tanah lempung kepasiran.

Batas – Batas Atterberg

67,294

Batas Cair (*Liquid Limit*) Tabel 4.6 Nilai Batas Cair (*Liquit Limit*)

Campal	Nilai Batas CairPersentase Penambahan Pasir			
Sampel	0%	10%	20%	30%

56,929

56,624

54,825

II	64,803	64,313	60,580	55,231
III	65,490	63,386	59,332	57,460
Jumlah	197,587	184,628	176,536	167,516
Rata-rata	65,862	61,543	58,845	55,839

Berdasarkan Tabel diatas menunjukkan bahwa nilai batas cair tanah lempung Padangsambian pada kedalaman 1 meter berada pada rentang 64,803% sampai 67.294% dan nilai rata-rata batas cair adalah 65,862%. Berdasarkan Tabel 2.2 dapat dikatakan bahwa batas cair tanah lempung termasuk dalam kategori high liquid limit (50 -70%).

Batas Plastis (*Plastic Limit*) Tabel 4.7 Nilai Batas Plastis (Plastic Limit)

	Nilai Batas Plastis Pada					
Sampel	Persentase Penambahan Pasir					
	0%	10%	20%	30%		
I	40,497	36,222	34,656	30,208		
II	33,974	31,345	29,499	26,599		
III	36,627	33,047	31,000	28,342		
Jumlah	111,098	100,614	95,155	85,149		
Rata-rata	37,033	33,538	31,718	28,383		

Berdasarkan Tabel 4.7 menunjukkan bahwa nilai batas plastis tanah lempung Padangsambian pada kedalaman 1 meter berada pada rentang 33,974% sampai 40,497% dengan nilai rata – rata 37,033%. Nilai kadar air tanah pada masing - masing titik berada diantara batas plastis dan batas cair (PL < w < LL), maka tanah tersebut dapat dikatakan sebagai tanah plastis.

Indeks Plastisitas (*Plasticity Index*) **Tabel 4.8** Nilai Indeks Plastisitas (Plasticity Inde)

(1 iusiici	iy mac j					
Sampel	Nilai IP Pada Persentase Penambahan Pasir					
Sumper	0%	10%	20%	30%		
I	26,797	20,707	21,968	24,617		
II	30,829	32,968	31,081	28,632		
III	28,863	30,339	28,332	29,118		
Jumlah	86,489	84,014	83,831	82,367		
Rata-						
rata	28,830	28,005	27,944	27,456		

Berdasarkan Tabel 4.8 menunjukkan bahwa nilai indeks plastisitas tanah lempung Padangsambian pada kedalaman 1 meter berada pada rentang 26,797% sampai 30,829% dengan nilai rata - rata 28,830%. Berdasarkan Tabel 2.3 dan Tabel 2.5, maka tanah lempung Padangsambian termasuk high plasticity atau tanah lempung dengan plastisitas tinggi (IP > 17) dan high swelling potential (25 < IP < 55).

Batas Susut (Shringkage Limit) Tabel 4.9 Nilai Batas Susut (Shringkage Limit)

Sampel	Nilai Batas Susut Pada Persentase Penambahan Pasir				
	0%	10%	20%	30%	
I	22,344	24,810	26,236	30,718	
II	26,509	28,143	30,107	32,613	
III	27,495	29,696	31,053	31,361	
Jumlah	76,348	82,649	87,396	94,692	
Rata-rata	25,449	27,550	29,132	31,564	

Berdasarkan Tabel 4.9 menunjukkan bahwa nilai batas susut tanah lempung Padangsambian pada kedalaman 1 meter berada pada rentang 22,344% sampai 27,495% dengan nilai rata – rata 25,449%.

Pemadatan Standar **Tabel 4.10** Nilai Kadar Air Optimum

ubci		ui i kuu	ui / iii	Optilli	MIII
]	Kadar Air	Optimur	n
C1	Waktu				
Sampel	Pemeraman	Persent	tase Penar	nbahan P	asir (%)
		0%	10%	20%	30%
1		36,4	35,5	27,4	27,1
2	0 Hari	35,9	35,3	27,9	27,5
3	•	36,6	36,2	28,2	27,2
	Jumlah	108,9	107,0	83,5	81,8
	Rata - rata	36,3	35,7	27,8	27,3
1		35,2	34,7	26,3	26,1
2	2 Hari	34,8	34,3	26,8	26,6
3	•	35,8	35,2	27,0	26,7
	Jumlah	105,8	104,2	80,1	79,4
	Rata - rata	35,3	34,7	26,7	26,5
1		33,6	33,2	25,9	24,2
2	4 Hari	32,2	32,0	24,9	24,4
3		35,2	34,3	26,3	25,8
	Jumlah	101,0	99,5	77,1	74,4
	Rata - rata	33,7	33,2	25,7	24,8

Tabel 4.11 Nilai Berat Volume Kering Maksimum

		Berat Volume Kering				
	Waktu		(gr/cn	n3)		
Sampel	Peme- raman	Persentase Penambahan Pasir (%)				
	_	0%	10%	20%	30%	
1		1,212	1,247	1,319	1,361	
2	0 Hari	1,242	1,238	1,321	1,339	
3	· ·	1,220	1,241	1,291	1,359	
	Jumlah	3,674	3,726	3,931		
	Juillian				4,059	
	Rata -	1,225	1,242	1,310		

	rata				1,353
1		1,237	1,258	1,349	1,381
2	2 Hari	1,258	1,243	1,339	1,371
3		1,240	1,259	1,331	1,377
	Jumlah	3,735	3,760	4,019	4,129
	Rata - rata	1,245	1,253	1,340	1,376
1		1,251	1,267	1,363	1,398
2	4 Hari	1,261	1,279	1,361	1,388
3		1,242	1,289	1,340	1,381
	Jumlah	3,754	3,835	4,064	4,167
	Rata - rata	1,251	1,278	1,355	1,389

Berdasarkan Tabel 4.10 dan 4.11 menunjukkan bahwa kepadatan kering maksimum tanah lempung Padangsambian pada kedalaman 1 meter berada pada rentang 1,212 gr/cm³ sampai 1,242 gr/cm³ dengan nilai rata – rata 1,225 gr/cm³. Dan kadar air optimum tanah Padangsambian berada pada rentang 36,40% sampai 36,60% dengan nilai rata- rata 36,30%.

Kuat Tekanan Bebas (UCT)

Tabel 4.12 Hasil Penelitian UCT Tanah Asli (*Undisturbed*)

Asii (Onaisi	urbeu j		
		Sudut	
	Kuat Tekan Bebas	Geser	Kohesi
Sampel	Tanah Asli	Tanah	Tanah
	(qu)	()	©
	(Kg/cm2)		(kg/cm2)
Padangsambian I	0,94	6'	0,47
Padangsambian II	0,96	8'	0,48
Padangsambian III	0,98	6'	0,49

Tabel 4.13 Nilai Kuat Tekan Bebas (UCT)

			Kuat Tekar	n Bebas	
Sampel	Waktu		(Kg/c	m)	
~F **	Pemeraman	Persent	ase Penamb	aĥan Pasi	r (%)
		0%	10%	20%	30%
1		0,780	0,795	0,845	0,971
2	0 Hari	0,817	0,886	0,912	0,938
3		0,824	0,902	0,922	0,967
	Jumlah	2,421	2,583	2,679	2,876
	Rata - rata	0,807	0,861	0,893	0,959
1		0,863	0,892	0,928	0,976
2	2 Hari	0,919	0,945	0,986	1,102
3		0,901	0,959	1,003	1,128
	Jumlah	2,683	2,796	2,917	3,206
	Rata - rata	0,894	0,932	0,972	1,069
1		1,050	1,123	1,171	1,269
2	4 Hari	1,038	1,168	1,182	1,227
3		1,023	1,146	1,162	1,208
	Jumlah	3,111	3,437	3,515	3,704
	Rata - rata	1,037	1,146	1,172	1,235

Tabel 4.14 Nilai Sudut Geser Tanah

		Nilai Sudut Geser				
Sam-	Waktu					
pel	Peme- raman	Persen	tase Penan	nbahan Pas	sir (%)	
		0%	10%	20%	30%	
1		10,450	12,250	13,750	16,750	
2	0 Hari	9,950	12,100	14,950	15,350	
3		10,250	12,550	13,250	15,850	
	Jumlah	30,650	36,900	41,950	47,950	
	Rata - rata	10,217	12,300	13,983	15,983	
1		12,350	13,850	15,650	17,950	
2	2 Hari	12,050	14,350	15,750	18,450	
3		11,950	13,250	15,150	17,050	
	Jumlah	36,350	41,450	46,550	53,450	
	Rata - rata	12,117	13,817	15,517	17,817	
1		13,850	16,050	18,450	19,650	
2	4 Hari	12,550	15,750	18,150	19,950	
3		13,750	16,650	18,750	20,150	
	Jumlah	40,150	48,450	55,350	59,750	
	Rata - rata	13,383	16,150	18,450	19,917	

Tabel 4.15 Nilai Kohesi Tanah

		Nilai Kohesi Tanah				
Sam-	Waktu		(Kg/cı	m2)		
pel	Pemeraman	Persent	tase Penamb	oahan Pasii	(%)	
	_	0%	10%	20%	30%	
1		0,390	0,435	0,423	0,486	
2	0 Hari	0,409	0,443	0,456	0,469	
3	_	0,412	0,451	0,461	0,484	
	Jumlah	1,211	1,329	1,340	1,439	
	Rata - rata	0,404	0,443	0,447	0,480	
1		0,432	0,446	0,464	0,580	
2	2 Hari	0,460	0,473	0,493	0,551	
3		0,451	0,480	0,502	0,564	
	Jumlah	1,343	1,399	1,459	1,695	
	Rata - rata	0,448	0,466	0,486	0,565	
1		0,525	0,562	0,586	0,635	
2	4 Hari	0,519	0,584	0,591	0,614	
3	- 	0,512	0,573	0,581	0,604	
	Jumlah	1,556	1,719	1,758	1,853	
	Rata - rata	0,519	0,573	0,586	0,618	

Berdasarkan Tabel 4.12 sampai Tabel 4.15 menunjukkan bahwa kuat tekan bebas tanah lempung Padangsambian (*undisturbed sample*) berada pada rentan 0,940 kg/cm² sampai 0,980 kg/cm² dengan nilai rata – rata 0,960 kg/cm². Nilai Sudut Geser Tanah berkisar antara 6° sampai 8°, dan nilai kohesi tanah berada pada rentang 0,470 kg/cm² sampai 0,540 kg/cm² dengan rata – rata 0,497 kg/cm². Sedangkan untuk tanah lempung Padangsambian (*disturbed sample*) yang dipadatkan memiliki nilai kuat tekan bebas

pada rentang 0,780 kg/cm² sampai 0,824 kg/cm² dengan rata – rata 0,807 kg/cm². Nilai sudut geser tanah 9,50° sampai 10,45° dengan rata – rata 10,12° dan kohesi tanah berada pada rentang 0,310 kg/cm² sampai 0,412 kg/cm² dengan rata $- \text{ rata } 0.404 \text{ kg/cm}^2.$

Penelitian Pengembangan Tanah (Swelling)

Tabel 4.16 Rekapan Niai Swelling dan Free Swelling Tanah Lem-pung (Undisturbed)

Sampel	Free Sweel	Swelling
•	(%)	(%)
Padangsambian I	6,500	1,983
Padangsambian II	6,773	1,813
Padangsambian III	6,445	1,749

Tabel 4.17 Nilai Free Swelling (%)

Sam- pel	Waktu _	Nilai Free Swelling (%)			
1	Pemeram an	Persen	tase Pena	ımbahan F	Pasir (%)
	u .	0%	10%	20%	30%
1		4,148	3,846	3,314	3,000
2	0 Hari	4,026	3,838	3,438	3,095
3		4,211	3,992	3,400	3,143
	Jumlah	12,385	11,676	10,152	9,238
-	Rata -)	,	-, -	.,
	rata	4,128	3,892	3,384	3,079
1		3,710	3,216	2,880	2,239
2	2 Hari	3,371	3,073	2,730	2,469
3	-	3,499	3,084	2,845	2,623
1	Jumlah	10,580	9,373	8,455	7,331
	Rata -				
	rata	3,527	3,124	2,818	2,444
1		3,015	2,894	2,159	1,957
2	4 Hari	3,175	2,771	2,264	1,852
3	-	3,045	2,670	2,392	1,923
	Jumlah	9,235	8,335	6,815	5,732
	Rata -		•	•	
	rata	3,078	2,778	2,272	1,911

Tabel 4.18 Nilai Swelling Tanah (%

Sam-	Waktu	Nilai Swelling (%)			
pel	Pemeraman	Persen	tase Penam	bahan Pasi	ir (%)
	_	0%	10%	20%	30%
1		1,415	1,163	1,027	0,810
2	0 Hari	1,527	1,521	1,172	0,881
3	_	1,362	1,246	1,053	0,629
	Jumlah	4,304	3,930	3,252	2,320
	Rata - rata	1,435	1,310	1,084	0,773
1		1,256	0,813	0,713	0,660
2	2 Hari	1,379	0,851	0,758	0,708
3	_	1,176	0,778	0,669	0,568
	Jumlah	3,811	2,442	2,140	1,936

	Rata - rata	1,270	0,814	0,713	0,645
1	_	1,170	0,806	0,697	0,588
2	4 Hari	1,205	0,831	0,723	0,697
3		1,108	0,701	0,680	0,439
	Jumlah	3,483	2,338	2,100	1,724
	Rata - rata	1,161	0,779	0,700	0,575

Berdasrakan Tabel 4.16 sampai Tabel 4.18 menunjukkan bahwa free swell tanah lempung Padangsambian (undisturbed sample) berada pada rentang 20,833% sampai 24,600% dengan nilai rata-rata 23,086% dan nilai swelling berada pada rentang 4,956% sampai 5,666% dengan nilai rata-rata 5,353%. Sedangkan, untuk tanah lempung Padangsambian (disturbed sample) yang dipadatkan memiliki nilai free swell pada rentang 4,026% sampai 4,211% dengan rata - rata 4,128% dan nilai swelling pada rentang 1,362% sampai 1,527% dengan rata- rata 1,435%.

Tabel 4.19 Nilai Aktivitas Tanah dan Swelling Potential

Campal	Nilai	
Sampel	Aktivitas Tanah	Swelling Potential
Padangsambian I	0,777	High Swelling Potential
Padangsambian		
II	0,894	High Swelling Potential
Padangsambian		
III	0,940	High Swelling Potential

Dari Tabel 4.19 dapat dilihat bahwa tanah lempung Padangsambian merupakan tanah lempung yang termasuk kategori high swelling potential. Jadi, tanah lempung Kerobokan dapat dikatakan sebagai tanah lempung yang memiliki sifat kembang susut yang tinggi.

Penelitian CBR (California Bearing Ratio)

Tabel 4.20 Nilai CBR (0,1 Inchi)

Sam-	Waktu	Nilai CBR 0,1 Inchi (%)				
pel	Pemeram an	Persentase Penambahan Pasir (%				
	_	0%	10%	20%	30%	
1		7,034	7,924	8,849	9,326	
2	0 Hari	6,381	7,584	8,158	9,424	
3	-	6,213	7,532	8,106	9,039	
	Jumlah	19,628	23,040	25,113	27,789	
	Rata -					
	rata	6,543	7,680	8,371	9,263	
1	- 2 Hari	7,313	8,372	8,993	9,932	
2		6,883	8,190	8,790	9,835	

3		6,713	8,145	8,738	9,671
	Jumlah	20,909	24,707	26,521	29,438
	Rata -				
	rata	6,970	8,236	8,840	9,813
1		7,646	9,005	9,600	10,536
2	4 Hari	7,391	8,836	9,430	10,450
3	<u>-</u>	7,221	8,751	9,345	10,280
	Jumlah	22,258	26,592	28,375	31,266
	Rata -				
	rata	7,419	8,864	9,458	10,422

Tabel 4.21 Nilai CBR (0,2 Inchi)

Sam-	Waktu Pemeram an	Nilai CBR 0,2 Inchi (%)			
pel		Persentase Penambahan Pasir (%)			
	a 11	0%	10%	20%	30%
1		5,086	5,908	7,302	8,198
2	0 Hari	4,820	5,736	7,195	8,087
3		4,765	5,645	7,160	7,895
	Jumlah	14,671	17,289	21,657	24,180
	Rata -				
	rata	4,890	5,763	7,219	8,060
1		5,272	6,204	7,635	8,603
2	2 Hari	5,155	6,140	7,615	8,482
3	-	5,099	6,053	7,581	8,317
	Jumlah	15,526	18,397	22,831	25,402
	Rata -				
	rata	5,175	6,132	7,610	8,467
1		5,494	6,627	8,043	9,005
2	4 Hari	5,538	6,570	8,065	8,892
3	=	5,437	6,457	7,986	8,722
	Jumlah	16,469	19,654	24,094	26,619
-	Rata -			·	
	rata	5,490	6,551	8,031	8,873

Berdasarkan Tabel 4.20 sampai Tabel 4.21 menunjukkan bahwa nilai CBR 0,1 inchi tanah lempung Padangsambian (disturbed sampel) berada pada rentang 6,213% sampai 7,034% dengan nilai ratarata 6,543% dan nilai CBR 0,2 inchi berada pada rentang 4,765% sampai 5,086% dengan nilai rata - rata 4,890%. Berdasarkan data di atas, terlihat bahwa penambahan pasir pada tanah lempung mengakibatkan nilai CBR meningkat. Pasir adalah jenis tanah yang sukar mengalami perubahan berat volume tanah, sehingga pada campuran akan sedikit mengalami perubahan volume dibandingkan dengan tanah aslinya.Pemeraman yang dilakukan pada penelitian CBR juga meningkatkan nilai CBR, karena pada saat pemeraman air yang terkandung dalam tanah mengalir lebih merata sehingga tanah menjadi lebih padat.

KESIMPULAN DAN SARAN

Simpulan

Berdasarkan hasil penelitian dan analisis yang dilakukan terhadap data hasil penelitian laboratorium, maka dapat disimpulkan: dari test fisik dan mekanik yang dilakukan terhadap tanah ekspansif yang berada di daerah padangsambian menunjukan bahwa pasir menyebabkan karakteristik tanah menjadi meningkat, ditinjau dari batas-batas atterberg, terlihat bahwa penambahan pasir menyebabkan penurunan nilai batas cair, batas plastis. indeks plastisitas dan peningkatan nilai batas susut. Nilai indeks plastisitas tanah lempung tanpa perlakuan adalah 28,830% dan nilai indeks plastisitas mencapai paling rendah yaitu 27,456% pada penambahan pasir 30%, ditinjau dari pengembangan, terlihat bahwa penambahan pasir dan proses pemeraman cenderung menyebabkan penurunan persentase pengembangan tanah. Nilai Free Swelling dan Swelling tanah rata-rata terendah vaitu 1,911% dan 0,575% pada penambahan 30% pasir dan dalam 4 hari pemeraman.

Saran

Perlu dilakukan penelitian dengan penambahan pasir dan waktu pemeraman dengan variasi berbeda, perlu dilakukan penelitian lebih lanjut mengenai stabilisasi tanah dengan penambahan aditif-aditif yang lebih inovatif dan kreatif baik dari segi teknis maupun ekonomis.

DAFTAR PUSTAKA

Craig, R, F. 1994. *Mekanika Tanah*, Erlangga, Jakarta.

Das, B. M, Endah, N dan Indra Surya, B. M. 1998. *Mekanika Tanah (Prinsipprinsip Rekayasa Geoteknis), Jilid* I, Erlangga, Jakarta.

Mitchell James, K. 1976. Fundamentals of soil Behavior, University of California, Berkeley

- Samara, D. M. 2008. Perencanaan Pondasi Jalan Raya di Atas Tanah Ekspansif Dengan Kombinasi Geotekstil, Tugas Akhir, Jurusan Teknik Sipil Fakultas Teknik Universitas Udayana, Denpasar.
- Shirley, L. H. 2000. Penentun Praktis Geoteknik dan Mekanika Tanah (Penyelidikan Lapangan dan Laboratorium), Nova, Bandung.
- Soedarmo, Djatmiko, Ir. Dan Purnomo, Edy, Ir. 1997. Mekanika Tanah I, Cetakan I, Penerbit Kanisius, Yogyakar-