Facultad de Economía, UPC

Taller de modelos macroeconómicos en Matlab

Clase 3

Mg. Carlos Rojas Quiroz www.carlos-rojas-quiroz.weebly.com pcefcroj@upc.edu.pe

10 de agosto de 2018

- Construir una curva OA que tenga pendiente positiva para que los choques de demanda (principalmente monetarios) tengan efectos reales.
- Esquema de fijación de precios (competencia monopolística). Fricciones nominales en el mercado de bienes.

Rigideces de precios

Evidencia frecuencia de cambios de precios

		frecuencia (%)		duración ^a (meses)	
Estudio	País	promedio	mediana	promedio	mediana
Auchermanne y Dhyne (2004)	Bélgica	16.9	13.3	5.4	7.0
Nunes (2006)	Brasil	40.3		1.9	
Dhyne et al (2006)	Europa	15.1		6.1	
Baudry et al (2004)	Francia	18.9	14.9	4.8	6.2
Baharad y Eden (2004)	Israel	24.0	21.0	3.6	4.2
Bils y Klenow (2004)	EE.UU.	26.1	20.9	3.3	4.3
Klenow y Kryvstov (2004)	EE.UU.	29.3		2.9	
Nakamura y Steinsson (2006)	EE.UU.	21.1	8.7	4.2	11.0
Gagnon (2005)	México	30.4 - 36.6		2.2 - 2.8	
Medina et al (2007)	Chile	46.1	33.3	1.6	2.5

(

- The Science of Monetary Policy: A New Keynesian Perspective
 - 1.1 Demanda Agregada

- 1.2 Oferta Agregada
- 1.3 Regla de Taylor óptima
- Política monetaria óptima er Dynare
- 3 Modelos semiestructurales

The Science of Monetary Policy

Se hacen importantes inferencias sobre política monetaria utilizando un modelo pequeño (3 ecuaciones):

$$X_{t} = \mathbb{E}_{t}(X_{t+1}) - \Psi(i_{t} - \mathbb{E}_{t}\pi_{t+1}) + g_{t}$$
 (1)

$$\pi_t = \beta \mathbb{E}_t(\pi_{t+1}) + \lambda x_t + u_t \tag{2}$$

$$i_t = \gamma_\pi \mathbb{E}_t(\pi_{t+1}) + \frac{1}{\Psi} g_t \tag{3}$$

El modelo se completa con los procesos AR(1) para los choques de demanda y de oferta:

$$g_t = \mu g_{t-1} + \hat{g}_t \tag{4}$$

$$u_t = \rho u_{t-1} + \hat{u}_t \tag{5}$$

Donde $\hat{g}_t \sim N(0, \sigma_q^2)$ y $\hat{u}_t \sim N(0, \sigma_u^2)$.

The Science of Monetary Policy

- La ecuación 1 es la demanda agregada, donde x_t es la brecha de producto, i_t la tasa de interés nominal y π_t la inflación. Además g_t es un choque de demanda con un proceso AR(1).
- La ecuación 2 es la ecuación de Oferta Agregada o Curva de Phillips. Note que ahora hay una relación positiva entre precios y nivel de actividad (OA con pendiente positiva).
- La ecuación 3 es la regla de Taylor obtenida mediante discreción. Donde $\gamma_\pi=1+\frac{(1-\rho)\lambda}{\rho\Psi\alpha}$ (se cumple el principio de Taylor).

La restricción presupuestaria es:

$$W_t + A_t(1 + i_{t-1}) = P_t C_t + A_{t+1}$$
 (6)

El individuo recibe un salario nominal W_t cada período que lo usa para consumir o acumular activos A_t . A inicios del período t, el individuo posee A_t en activos nominales que pagan una tasa de interés i_{t-1} (que fue pactado a finales del período t - 1).

Demanda Agregada Derivación de la DA mediante microfundamentos

Lagrangiano en valor presente:

$$\ell = \sum_{s=t}^{\infty} \beta^{s-t} [U(C_s) + \lambda_s (W_s + A_s(1 + i_{s-1}) - P_s C_s - A_{s+1})]$$
 (7)

CPO's:

$$[C_t]: U'(C_t) - \lambda_t P_t = 0$$
(8)

$$[A_{t+1}]: -\lambda_t + \beta \lambda_{t+1} (1+i_t) = 0$$
 (9)

Reordenando las CPO's, llegamos a la ecuación de Euler:

$$\frac{U'(C_t)}{P_t} = \frac{1}{1+\rho} \frac{U'(C_{t+1})}{P_{t+1}} (1+i_t)$$
 (10)

Suponiendo una forma funcional específica para la utilidad:

 $U(C_s) = \frac{C_s^{1-\sigma}}{1-\sigma}$, entonces la ecuación 10 se convierte en:

$$C_{t}^{-\sigma} = \frac{(1+i_{t})}{1+\rho} \mathbb{E}_{t} \left\{ C_{t+1}^{-\sigma} \frac{P_{t}}{P_{t+1}} \right\}$$
 (11)

Demanda Agregada Derivación de la DA mediante microfundamentos

Aplicando logaritmos a la ecuación 11:

$$c_t = \mathbb{E}_t c_{t+1} - \frac{1}{\sigma} (i_t - \mathbb{E}_t \pi_{t+1} - \rho)$$
 (12)

SI $Y_t = C_t + R_t$, donde R_t es el resto del gasto agregado de la economía, suponemos que $R_t = \chi_t Y_t$. Por tanto:

$$c_t = \log(1 - \chi_t) + y_t \tag{13}$$

Definimos $z_t = -log(1 - \chi_t)$, entonces $y_t = c_t + z_t$, siendo z_t es un choque de demanda AR(1):

$$z_t = \psi z_{t-1} + \varpi_t \tag{14}$$

Donde $\varpi_t \sim N(0, \sigma_z^2)$. Por tanto, $\mathbb{E}_t z_{t+1} = \psi z_t$, entonces:

$$y_{t} = \mathbb{E}_{t} y_{t+1} + (1 - \psi) z_{t} - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} \pi_{t+1} - \rho)$$
 (15)

Demanda Agregada Derivación de la DA mediante microfundamentos

Para pasar de la ecuación 15 a una ecuación de DA en términos de la brecha de producto, podemos incluir el PBI tendencial, \bar{y}_t en ambos miembros:

$$y_{t} - \bar{y}_{t} = \mathbb{E}_{t} y_{t+1} - \mathbb{E}_{t} \bar{y}_{t+1} + (1 - \psi) z_{t} - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} \pi_{t+1} - \rho) + \mathbb{E}_{t} \bar{y}_{t+1} - \bar{y}_{t}$$

$$x_{t} = \mathbb{E}_{t} x_{t+1} - \underbrace{\frac{1}{\sigma} (i_{t} - \mathbb{E}_{t} \pi_{t+1})}_{\Psi} + \underbrace{(1 - \psi) z_{t} + \frac{\rho}{\sigma} + \mathbb{E}_{t} \Delta \bar{y}_{t+1}}_{g_{t}}$$

$$x_{t} = \mathbb{E}_{t} x_{t+1} - \Psi (i_{t} - \mathbb{E}_{t} \pi_{t+1}) + g_{t}$$

$$(18)$$

(

- Estándar en modelos teóricos con rigideces de precios, pues resuelve problemas de agregación y permite ser incorporado en modelos de equilibrio general.
- Las empresas fijan sus precios y ellos permanecen fijos hasta que reciben una señal para cambiarlos.
- El proceso de llegada de esta señal es Poisson, con una probabilidad ψ .
- En cada período t habrá algunas firmas cambiando sus precios, ψ, y otra fracción que sigue con ellos fijos, 1 – ψ.
- Los precios, por lo tanto, serán "traslapados", es decir, las empresas cambian sus precios en períodos distintos.

- El problema de la firma i-ésima a la que le corresponde cambiar de precio en t es escoger el precio p_{it} . Este precio puede cambiar el siguiente período con probabilidad ψ .
- En el modelo de Calvo, esta probabilidad es exógena.
- En el período t el precio óptimo para la firma es p_t^* , igual que para todas las firmas.
- Asumiendo una función de pérdida cuadrática, el problema de la firma es:

$$\min_{oldsymbol{
ho}_{i,t}} C_t = \mathbb{E}_t \left(\sum_{ au=t}^\infty [(1-\psi)eta]^{ au-t} (oldsymbol{
ho}_{i,t} - oldsymbol{
ho}_{ au}^*)^2
ight)$$

• $p_{i,t}$ es el precio que fija la firma i en el período t, p_{τ}^* es el nivel de precios óptimo agregado en el período τ .

$$\frac{\partial C_t}{\rho_{i,t}} = 2(\rho_{i,t} - \rho_t^*) + 2(1 - \psi)\beta \mathbb{E}_t(\rho_{i,t} - \rho_{t+1}^*) + 2(1 - \psi)^2 \beta^2 \mathbb{E}_t(\rho_{i,t} - \rho_{t+2}^*) + \dots = 0$$

$$p_{i,t} \sum_{j=0}^{\infty} [\beta(1-\psi)]^j - \sum_{j=0}^{\infty} [\beta(1-\psi)]^j \mathbb{E}_t(p_{t+j}^*) = 0$$

FIJACIÓN DE PRECIOS

$$\rho_{i,t} = (1 - \beta(1 - \psi)) \sum_{i=0}^{\infty} [\beta(1 - \psi)]^{j} \mathbb{E}_{t}(\rho_{t+j}^{*})$$

Si $\psi=$ 1 hay plena flexibilidad de precios. Si $\psi=$ 0 hay precios completamente rígidos. A mayor probabilidad, menor ponderación de los períodos futuros.

Descomponiendo el lado derecho de la ecuación:

$$ho_{i,t} = (1 - eta(1 - \psi))(
ho_t^* + \sum_{i=1}^{\infty} [eta(1 - \psi)]^j \mathbb{E}_t(
ho_{t+j}^*))$$

Tomando el segundo componente del lado derecho:

$$= (1 - \beta(1 - \psi))(\sum_{j=1}^{\infty} [\beta(1 - \psi)]^{j} \mathbb{E}_{t}(p_{t+j}^{*})) \frac{\beta(1 - \psi)}{\beta(1 - \psi)}$$

$$= (1 - \beta(1 - \psi))(\sum_{j=1}^{\infty} [\beta(1 - \psi)]^{j-1} \mathbb{E}_{t}(p_{t+j}^{*}))\beta(1 - \psi)$$

$$= (1 - \beta(1 - \psi))(\sum_{j=0}^{\infty} [\beta(1 - \psi)]^{j} \mathbb{E}_{t}(p_{t+j+1}^{*}))\beta(1 - \psi)$$

Para terminar de resolver el segundo componente del lado derecho, llevamos un período adelante la definición de $p_{i,t}$:

$$\mathbb{E}_{t}(p_{i,t+1}) = (1 - \beta(1 - \psi)) \sum_{j=0}^{\infty} [\beta(1 - \psi)]^{j} \mathbb{E}_{t}(p_{t+j+1}^{*})$$

Reemplazando en lo obtenido hasta el momento:

$$=\underbrace{(1-\beta(1-\psi))(\sum_{j=0}^{\infty}[\beta(1-\psi)]^{j}\mathbb{E}_{t}(p_{t+j+1}^{*}))(\beta(1-\psi))}_{\mathbb{E}_{t}(p_{i,t+1})}$$

Por lo que llegamos a la expresión:

$$(1 - \beta(1 - \psi)) \sum_{i=1}^{\infty} [\beta(1 - \psi)]^{j} \mathbb{E}_{t}(p_{t+j}^{*}) = \beta(1 - \psi) \mathbb{E}_{t}(p_{i,t+1})$$

15/37

Considerando toda la ecuación del precio individual:

$$p_{i,t} = (1 - \beta(1 - \psi))p_t^* + \beta(1 - \psi)\mathbb{E}_t(p_{i,t+1})$$

- Siendo $\mathbb{E}_t(p_{i,t+1})$ el valor esperado de precios futuros corregidos por probabilidad de cambio.
- La ley de movimiento del nivel de precios agregado pt corresponde a un promedio ponderado entre los precios que fijan las empresas que pudieron cambiar sus precios en t y los precios que traen del período anterior las empresas que no pudieron cambiarlos:

$$p_{t} = \psi p_{i,t} + (1 - \psi)p_{t-1}$$

$$p_{t} = \psi((1 - \beta(1 - \psi))p_{t}^{*} + \beta(1 - \psi)\mathbb{E}_{t}(p_{i,t+1})) + (1 - \psi)p_{t-1}$$

 Falta determinar el precio óptimo p^{*}_t y la expectativa de precios futuros $\mathbb{E}_t(p_{i,t+1})$. Para este ejemplo se asume:

$$p_t^* = p_t + \phi(y_t - \bar{y}_t) + \vartheta_t$$

• $\vartheta_t \sim N(0, \sigma_{\vartheta}^2)$. Luego, para $\mathbb{E}_t(p_{i,t+1})$:

$$egin{align} egin{align} egin{align} eta_t &= \psi oldsymbol{
ho}_{i,t} + (1-\psi) oldsymbol{
ho}_{t-1} \ egin{align} eta_{i,t} &= rac{1}{\psi} oldsymbol{
ho}_t - rac{(1-\psi)}{\psi} oldsymbol{
ho}_{t-1} \ \mathbb{E}_t(oldsymbol{
ho}_{i,t+1}) &= rac{1}{\psi} \mathbb{E}_t(oldsymbol{
ho}_{t+1}) - rac{(1-\psi)}{\psi} oldsymbol{
ho}_t \ \end{pmatrix} \end{split}$$

$$p_t = \psi((1-\beta(1-\psi))(p_t + \phi(y_t - \bar{y}_t) + \vartheta_t) + \beta(1-\psi)(\mathbb{E}_t(\pi_{t+1}) + \psi p_t) + (1-\psi)p_{t-1}$$

De aquí se obtiene la curva de Phillips neokeynesiana:

$$p_t = p_{t-1} + \lambda(y_t - \bar{y}_t) + \beta \mathbb{E}_t(p_{t+1} - p_t) + u_t$$
$$\pi_t = \lambda x_t + \beta \mathbb{E}_t(\pi_{t+1}) + u_t$$

Donde:

$$\lambda = \frac{\phi \psi (1 - (1 - \psi)\beta)}{(1 - \psi)}$$
$$u_t = \frac{\psi (1 - (1 - \psi)\beta)\vartheta_t}{(1 - \psi)}$$

Mientras $\psi \to 1$, más vertical es la Curva de Phillips.

Debilidades:

- El modelo no presenta inercia inflacionaria. Se puede introducir componente inercial pero, obviamente, es más compleja la solución.
- La optimización no está en la fuente de la rigidez.

Regla de Taylor óptima

Proviene de un proceso de optimización de la función de pérdida del banco central:

$$\max -\frac{1}{2}[x_t^2 + \pi_t^2] - \underbrace{\frac{1}{2}\mathbb{E}_t\left\{\sum_{i=1}^{\infty} \beta^i [\alpha x_{t+i}^2 + \pi_{t+i}^2]\right\}}_{F_t}$$
 (19)

Sujeto a:

$$\pi_t = \lambda x_t + \underbrace{\beta \mathbb{E}_t \pi_{t+1} + u_t}_{f_t} \tag{20}$$

Donde α "mide" las preferencias del banco central por la estabilización de la brecha de producto respecto a la estabilización de precios.

Regla de Taylor óptima

La CPO obtenida es:

$$x_t = -\frac{\lambda}{\alpha} \pi_t \tag{21}$$

"the central bank pursue a "lean against the wind" policy"

Mientras que la "solución" de la brecha de producto y de la inflación es:

$$x_t = -\lambda q u_t \tag{22}$$

$$\pi_t = \alpha q u_t \tag{23}$$

Donde $q=\frac{1}{\lambda^2+\alpha(1-\beta\rho)}$. La ecuación 21 se introduce en la DA y se despeja para la tasa de interés nominal con el fin de obtener la Regla de Taylor óptima.

$$i_t = \gamma_\pi \mathbb{E}_t \pi_{t+1} + \frac{1}{\Psi} g_t$$
 (24)

Regla de Taylor óptima Choque de oferta

Regla de Taylor óptima Choque de demanda

Regla de Taylor óptima

La ecuación 24 es obtenida mediante discreción. En el paper de referencia también podemos llegar a obtener resultados mediante compromiso.

- Compromiso con regla simple (restringida).
- Compromiso sin restricción.

El Dynare puede calcular reglas óptimas bajo discreción y bajo compromiso (sin restricción) e inclusive añadir reglas simples óptimas.

- 1 The Science of Monetary Policy: A New Keynesian Perspective
 - 1.1 Demanda Agregada

- 1.2 Oferta Agregada
- 1.3 Regla de Taylor óptima
- Política monetaria óptima en Dynare
- 3 Modelos semiestructurales

Regla de Taylor bajo discreción (manual)

```
var ygap inom pic g u;
varexo ghat uhat;
parameters phi sigma psi beta lambda gamma pic Psi rho mu;
phi
             =0.60:
alpha
            =0.50:
sigma
            =1.00:
psi
            =0.75:
beta
            =0.99:
rho
            =0.75:
mu
           =0.75:
lambda
            = phi * psi * (1 - (1 - psi) * beta) / (1 - psi) :
Psi
            =1/sigma;
            =1+(1-rho)*lambda/(rho*Psi*alpha);
gamma pic
             =1/(lambda^2+alpha*(1-beta*rho)):
q
model(linear):
vgap
        =vgap(+1)-Psi*(inom-pic(+1))+g:
pic
        =beta*pic(+1)+lambda*ygap+u;
inom
        =gamma pic*pic(+1)+1/Psi*g;
        =mu*q(-1)+qhat:
        = rho * u(-1) + uhat;
П
end:
shocks:
var ghat; stderr 0.01;
var uhat: stderr 0.01:
end:
stoch simul(order = 1, nograph, irf=40);
```


Regla de Taylor bajo discreción

OJO: note que en el bloque del modelo no incluimos a nuestro instrumento.

```
model(linear);
ygap = ygap(+1) - Psi*(inom-pic(+1))+g;
pic = beta*pic(+1)+lambda*ygap+u;
 = mu * q(-1) + qhat;
g
 =rho*u(-1)+uhat;
u
end:
shocks:
var ghat; stderr 0.01;
var uhat: stderr 0.01:
end:
planner objective pic^2 + alpha*ygap^2;
discretionary policy (planner discount = 0.99, instruments = (
   inom), nograph, irf = 40);
```


Regla de Taylor bajo compromiso

OJO: similar que con *discretionary_policy*.

```
model(linear);
ygap = ygap(+1)-Psi*(inom-pic(+1))+g;
pic = beta * pic (+1) + lambda * ygap+u;
 = mu * q(-1) + qhat;
g
u = rho * u(-1) + uhat;
end:
shocks:
var ghat; stderr 0.01;
var uhat; stderr 0.01;
end:
planner_objective pic^2 + alpha*ygap^2;
ramsey policy(planner discount=0.99,instruments=(inom),
   nograph, irf = 40);
```


Discreción vs Compromiso Choque de oferta

Reglas simples óptimas

OJO: en el bloque del modelo se incluye la tasa de interés.

```
model(linear);
        =ygap(+1)-Psi*(inom-pic(+1))+g;
ygap
pic
     =beta*pic(+1)+lambda*vgap+u:
     =gamma osr*pic(+1)+1/Psi*g;
inom
        =mu*g(-1)+ghat;
g
        = rho * u(-1) + uhat :
end:
shocks;
var ghat; stderr 0.01;
var uhat; stderr 0.01;
end:
optim weights:
pic 1;
vgap alpha:
end:
osr params gamma osr;
gamma osr=1.5:
osr(nograph, irf=40);
```


Frontera de Política

Mide el grado de disyuntiva que enfrenta la autoridad monetaria: $\uparrow \sigma_{\pi}^2 \rightarrow \psi \sigma_{\chi}^2$. Se puede implementar en el Dynare con un *loop* simple en el mismo archivo:

```
nn = [0.0:0.01:1.0];
for j=1:length(nn),
alpha=nn(1,i);
planner objective pic^2 + alpha*ygap^2;
discretionary policy (planner discount = 0.99, instruments = (
   inom), nograph, irf = 40;
var_ygap(j,1) = oo_.var(1,1);
var pic(j,1) = oo .var(3,3);
end:
varianzas =[var pic*10000 var ygap*10000];
scatter(varianzas(:,1), varianzas(:,2))
xlabel ('Varianza, Inflacion', 'Fontsize', 12)
vlabel ('Varianza, Brecha, PBI', 'Fontsize', 12)
```


Frontera de Política

Facultad de Economía, UPC

Índice

- 1 The Science of Monetary Policy: A New Keynesian Perspective
 - 1.1 Demanda Agregada

- 1.2 Oferta Agregada
- 1.3 Regla de Taylor óptima
- Política monetaria óptima er Dynare
- Modelos semiestructurales

Modelos semiestructurales

No es necesario incluir microfundamentos, sino formular ecuaciones que sean empíricamente significativas, aunque con lógica económica detrás. Podemos reformular nuestro sistema de tres ecuaciones:

$$x_{t} = \gamma_{x} x_{t-1} + (1 - \gamma_{x}) \mathbb{E}_{t} x_{t+1} - \Psi(i_{t} - \mathbb{E}_{t} \pi_{t+1}) + g_{t}$$
 (25)

$$\pi_t = \alpha_{\pi} \pi_{t-1} + (1 - \alpha_{\pi}) \mathbb{E}_t \pi_{t+1} + \lambda x_t + u_t$$
 (26)

$$i_t = \rho_i i_{t-1} + (1 - \rho_i)(\phi_X x_t + \phi_\pi \pi_t) + z_t$$
 (27)

Observe que incluímos componentes forward y backward looking en el modelo. Además, note que la regla de Taylor contiene un componente inercial y que depende del valor actual de la brecha de producto y de la inflación. Además, z_t es una "sorpresa monetaria".

Modelos semiestructurales Choque de demanda

Modelos semiestructurales Choque de oferta

Modelos semiestructurales Choque monetario

