CIND 820 Capstone Project

Final Presentation: In-Vehicle

Coupon Recommendation

Sucheta Sikdar (ID: 501074722)

Introduction

Coupons are a great way for customers to save money on their purchases and feel special that they are getting a discount.

Businesses can attract customers with coupons. If businesses can find the right customers who will use their coupons, then it will help businesses survive and grow. Businesses can then retain existing customers and attract new customers. If businesses know beforehand as to which customers to target for their coupons, then it will save them both money and effort in marketing and sending coupons (Ahmed et al., 2024).

There exists a publicly available dataset called In-Vehicle Coupon Recommendation at UCI Machine Learning Repository from 2020 which describes different driving scenarios of multiple clients and whether the coupon is accepted (UCI Machine Learning Repository, 2020).

Objectives

- Find the best predictive classification algorithm for the In-Vehicle Coupon Recommendation dataset (2020) after evaluation of various supervised learning classification algorithms introduced to us in CMTH 642 Data Analytics: Advanced Methods like Random Forest, Decision Tree, Logistic Regression, Naïve Bayes, k Nearest Neighbours (k-NN) on the dataset.
- Using a correlation matrix find out which attributes are highly correlated to the target of the customer accepting or rejecting a coupon. A visual of a correlation matrix will be very effective. Since most of the features are categorical, the discreet values will be converted to corresponding numerical values using encoding.
- Find whether we can attain a dataset with fewer dimensions using these 3 methods: Stepwise Regression, Forward Feature Selection and Backward Feature Elimination methods learnt by us in CMTH 642 Data Analytics: Advanced Methods. This will help eliminate some noise. Dimensionality reduction is the major contribution of this project to this dataset.
- Find the limitations of this dataset.

Using Python to yield information on the data:

RangeIndex: 12684 entries, 0 to 12683 Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype					
0	destination	12684 non-null	object					
1	passanger	12684 non-null	object					
2	weather	12684 non-null	object					
3	temperature	12684 non-null	int64					
4	time	12684 non-null	object					
5	coupon	12684 non-null	object					
6	expiration	12684 non-null	object					
7	gender	12684 non-null	object					
8	age	12684 non-null	object					
9	maritalStatus	12684 non-null	object					
10	has_children	12684 non-null	int64					
11	education	12684 non-null	object					
12	occupation	12684 non-null	object					
13	income	12684 non-null	object					
14	car	108 non-null	object					
15	Bar	12577 non-null	object					
16	CoffeeHouse	12467 non-null	object					
17	CarryAway	12533 non-null	object					
18	RestaurantLessThan20	12554 non-null	object					
19	Restaurant20To50	12495 non-null	object					
20	toCoupon_GEQ5min	12684 non-null	int64					
21	toCoupon_GEQ15min	12684 non-null	int64					
22	toCoupon_GEQ25min	12684 non-null	int64					
23	direction_same	12684 non-null	int64					
24	direction_opp	12684 non-null	int64					
25	Υ	12684 non-null	int64					
dtypes: int64(8), object(18)								

Distribution of target class found using Python:

Accepted coupons: 7210 56.843 % Rejected coupons: 5474 43.157 %

Distribution of Missing values in the dataset found using Python:

Is there any missing	value present o	or not? True
	missing_count	missing_percentage
destination	0	0.000000
passanger	0	0.000000
weather	0	0.000000
temperature	0	0.000000
time	0	0.000000
coupon	0	0.000000
expiration	0	0.000000
gender	0	0.000000
age	0	0.000000
maritalStatus	0	0.000000
has_children	0	0.000000
education	0	0.000000
occupation	0	0.000000
income	0	0.000000
car	12576	99.148534
Bar	107	0.843582
CoffeeHouse	217	1.710817
CarryAway	151	1.190476
RestaurantLessThan20	130	1.024913
Restaurant20To50	189	1.490066
toCoupon_GEQ5min	0	0.000000
toCoupon_GEQ15min	0	0.000000
toCoupon_GEQ25min	0	0.000000
direction_same	0	0.000000
direction_opp	0	0.000000
Y	0	0.000000

• Dropped column Car as it has too many missing values

• Used Python to generate box plots for numerical variables. Dropped column toCoupon_GEQ5min because there is no variability in

its value

• Used Python to observe the distribution of categorical variables. Dropped column occupation because it has too many categories that leads to a lot of noise.

- Frequent value / mode imputation for missing values in data. Atiq et al. (2022) demonstrated pretty good accuracy when using
 frequent value imputation for missing values in the dataset along with the algorithms: Random Forest, Decision Tree, Logistic
 Regression, Gradient Boosted Tree, Naïve Bayes and Deep Learning. Therefore, this project used frequent value imputation too for
 the remaining missing values.
- Did a covariance matrix using Python. Since direction_same has same covariance values as direction_opp. It makes sense to just have one on them and reduce the noise.

direction_same	-0.024310 -0.1	03995 0.004609	0.030548	0.184128	-0.040432	0.006848	-0.000923	-0.007565	0.005645	 -0.000763	0.011396	0.003997
direction_opp	0.024310 0.1	03995 -0.004609	-0.030548	-0.184128	0.040432	-0.006848	0.000923	0.007565	-0.005645	 0.000763	-0.011396	-0.003997

• Used a Heat map on correlation matrix to visually catch high correlation.

There seems to be a correlation between time and destination, between temperature and weather, between marital status and has children, between passenger and time, between to coupon GEQ 15 min and same direction.

Dimensionality Reduction

Stepwise Regression

I choose alpha to be 0.05. Coefficients having a p-value of 0.05 or less will be statistically significant.

Iteration 1: Bar has 0.779 for p-value. Bar will be dropped. It is the least statistically significant.

Iteration 2: CarryAway is least statistically significant because it has highest p-value of 0.713 which is greater than alpha of 0.05. CarryAway should be dropped.

Iteration 3: Restaurant20To50 is least statistically significant because it has highest p-value of 0.576 which is greater than alpha of 0.05. Restaurant20To50 should be dropped.

Iteration 4: Income is least statistically significant because it has highest p-value of 0.405 which is greater than alpha of 0.05. income should be dropped.

Iteration 5: Age is least statistically significant because it has highest p-value of 0.166 which is greater than alpha of 0.05. age should be dropped.

Dimensionality Reduction contd.

After 5 iterations, all coefficients are statistically significant. Therefore, age, income, Restaurant20To50, CarryAway and Bar

features are dropped to create a dataset that is dimensionally reduced due to stepwise regression. This leads to a dataset with 16

OLS Regression Results

features.

Dep. Variable: Y				R-squared (uncentered):				
Model:	OLS			R-squared (0.587 0.586		
Method:	Least Sau	Least Squares F-statistic:					1124.	
Date:	Mon, 11 Nov			0.00				
Time:	05:4	9:28		(F-statisti Likelihood:	,		-8810.4	
No. Observations:	1	2684	AIC:				1.765e+04	
Df Residuals:	1	2668	BIC:				1.777e+04	
Df Model:		16						
Covariance Type:	nonro	nonrobust						
	coef	std	err	t	P> t	[0.025	0.975	
destination	0.0573	0.	007	8.395	0.000	0.044	0.07	
passanger	0.0476	0.	005	9.511	0.000	0.038	0.05	
weather	0.1179	0.	007	16.677	0.000	0.104	0.13	
temperature	0.0266	0.	006	4.178	0.000	0.014	0.039	
time	-0.0094	0.	004	-2.393	0.017	-0.017	-0.00	
coupon	0.0545	0.	003	16.551	0.000	0.048	0.063	
expiration	-0.1405	0.	009	-15.755	0.000	-0.158	-0.12	
gender	0.0869	0.	009	10.147	0.000	0.070	0.10	
maritalStatus	0.0644	0.	005	12.772	0.000	0.054	0.07	
has_children	0.0496	0.	009	5.403	0.000	0.032	0.06	
education	0.0205	0.	002	9.148	0.000	0.016	0.02	
CoffeeHouse	-0.0362	0.	003	-12.978	0.000	-0.042	-0.033	
RestaurantLessThan20	0.0153	0.	004	4.082	0.000	0.008	0.02	
toCoupon_GEQ15min	0.0248	0.	009	2.636	0.008	0.006	0.04	
toCoupon_GEQ25min	-0.0313	0.	016	-1.995	0.046	-0.062	-0.003	
direction_same	0.1040	0.	013	8.269	0.000	0.079	0.129	
========= Omnibus:	 78704	.924	Durb	in-Watson:		1.68	2	
Prob(Omnibus):	0.000		Jarque-Bera (JB):			1288.50	0	
Skew:	-0	.228	Prob(JB):			1.61e-280		
Curtosis: 1.507			Cond. No.			22.	4	

Dimensionality Reduction contd.

- Forward Feature Selection
- Backward Feature Elimination

I wanted to keep the same number of features as the dataset reduced by stepwise regression, so I picked 16 features for generating dataset generated by forward feature selection and dataset generated by backward feature elimination. I wanted consistency.

It was observed that the results of Forward Feature Selection and Backward Feature Elimination are the same and give the same reduced dataset.

Thus, there are 2 dimensionally reduced datasets:. the one reduced using stepwise regression and the other reduced using backward feature elimination/forward feature selection.

Classification Algorithms and Cross Validation

- The performance of 5 classification algorithms was evaluated over each of the 2 dimensionally reduced datasets:
- Random Forest
- 2. Logistic Regression
- 3. k Nearest Neighbours (k-NN)
- 4. Naïve Bayes
- 5. Decision Tree
- Cross Validation was used and the dataset was split into test and training sets. 20% of dataset was set for testing each time for consistency.

Accuracy and AUC on Dimensionally reduced data using different classification algorithms

Classification Algorithm	Dimensionality Reduction Method	Accuracy	AUC
Random Forest	Stepwise regression	0.6862	0.7351
	forward feature selection/backward feature elimination	0.7335	0.7943
Logistic Regression	Stepwise regression	0.6244	0.6600
	forward feature selection/backward feature elimination	0.6267	0.6606
k Nearest Neighbours (k-NN)	Stepwise regression	0.6847	0.7027
	forward feature selection/backward feature elimination	0.6460	0.6774
Naïve Bayes	Stepwise regression	0.5881	0.6340
	forward feature selection/backward feature elimination	0.5905	0.6393
Decision Tree	Stepwise regression	0.6602	0.6612
	forward feature selection/backward feature elimination	0.6618	0.6584

Interpretability and Insights

Random forest on dataset reduced using forward feature selection/backward feature elimination had the highest accuracy and AUC value closest to 1. The Area Under Curve (AUC) close to 1, shows the high predictive power.

Generated by Python for Random Forest on the dataset reduced by forward feature selection/backward feature elimination:

Accuracy: 0.7335435553803705

Classification Report:

CIUSSITIC	acton	precision	recall	f1-score	support
	0.0	0.70	0.65	0.68	1087
	1.0	0.75	0.79	0.77	1450
accur	асу			0.73	2537
macro weighted	_	0.73 0.73	0.72 0.73	0.73 0.73	2537 2537

AUC: 0.7942876629762395

Methodology

Limitations / Challenges / Continuity

- Most of the Car feature had missing values and hence the feature could not be used. This is in-vehicle coupon recommendation, hence maybe Car feature was critical in determining whether the coupon would be accepted or not.
- This dataset is partially balanced. The results of supervised learning algorithms used to make predictions would skew slightly towards the class with the class with higher percentage of records. The percentage of accepted coupons: 56.843%. The percentage of rejected coupons: 43.157%. In the future, Synthetic Minority Over-sampling Technique (SMOTE) can be used to generate a more balanced dataset.
- The dataset was more focused on a particular type of population. The dataset should have been created by sampling all types of population. For example, Depari et al. (2022) found that the data contained mostly married females who like to travel alone on a sunny day around 6 PM. Most of them have attended college, yet didn't graduate (Depari et al., 2022). For those who have an occupation, it states that most of them earn an income of around \$25000 \$37499 (Depari et al., 2022). It was also mentioned that the destination is mostly the No Urgent Place such as Coffee House, which provides a coupon that expires in one day (Depari et al., 2022).
- Patil et al. (2019) also observed that customers tend to purchase the same coupon Page 13 over and over again. The dataset for invehicle coupon response deficient in data over a periodic basis to help uncover such patterns. This is a limitation.

References:

Ahmed, N., & Umair, M. (2024). Churn prediction using machine learning: A coupon optimization technique. In World Journal of Advanced Engineering

Technology and Sciences (Vols. 12–12, Issue 02, pp. 332–354) [Journal-article]. https://wjaets.com/sites/default/files/WJAETS-2024-0310.pdf

Atiq, R., Fariha, F., Mahmud, M., Yeamin, S. S., Rushee, K. I., & Rahim, S. (2022, October 8). A comparison of missing value imputation techniques on coupon acceptance prediction. MECS PRess. https://www.mecs-press.org/ijitcs/ijitcs-v14-n5/IJITCS-V14-N5-2.pdf

Babaoglu C. (n.d.). CMTH 642 – Data Analytics: Advanced Methods course [PowerPoint slide printouts]

Babaoglu C. (2018, January 6). How to conduct data analysis process Systematically [Video]. YouTube.

https://www.youtube.com/watch?v=NMffLbFql5k

 $Inyama\ C.\ (2023).\ In-Vehicle-Coupon-Recommendations/coupon_Project\ (2). ipynb\ at\ main\ \cdot\ chrisinyama/In-Vehicle-Coupon-Recommendations.$

GitHub. https://github.com/chrisinyama/In Vehicle-Coupon-Recommendations/blob/main/coupon_Project%20(2).ipynb

Depari, G. S., Shu, E., Fachriza, C. A., Chow, J., Wijaya, J., & Winata, R. (2022). Customer's responses towards in-vehicle coupon recommendation an

implementation of business analytics concept. Jurnal Ekonomi (Vol. 11, Issue 02) [Journal-article]

https://download.garuda.kemdikbud.go.id/article.php?article=2994923&val=22616&title=CUST OMER%27S%20RESPONSES%20TOWARDS%20IN

Page 43 VEHICLE% 20 COUPON% 20 RECOMMENDATION% 20 AN% 20 IMPLEMENTATION% 20 OF

%20BUSINESS%20ANALYTICS%20CONCEPT

References contd.

Niralidedaniya. (2023, January 19). In Vehicle Coupon Recommendation — a Machine learning classification case study. Medium. https://medium.com/@niralidedaniya/in-vehicle-coupon recommendation-a-machine-learning-classification-case-study-df67e7835703

Patil, Y., Pawar, O., & Ingle, D. R. (2019). Coupon Purchase Prediction using Machine Learning. In IJSRD - International Journal for Scientific Research & Development (Vol. 7, Issue 02) [Journal-article]. https://ijsrd.com/articles/IJSRDV7I21146.pdf

 $Supervised\ learning.\ (n.d.).\ Scikit-learn.\ https://scikit-learn.org/stable/supervised_learning.html$

UCI Machine Learning Repository. (2020). https://archive.ics.uci.edu/dataset/603/in+vehicle+coupon+recommendation

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., & MacNeille, P. (2017). A Bayesian framework for learning rule sets for interpretable classification. In Maya Gupta (Ed.), Journal of Machine Learning Research (Vols. 1–37) [Journal-article].

https://jmlr.csail.mit.edu/papers/volume 18/16-003/16-003.pdf

How to run Machine Learning algorithms in GPU. (n.d.). Stack Overflow. https://stackoverflow.com/questions/72985935/how-to-run-machine-learning-algorithms-in-gpu

Thank you. Questions are welcome

