# BoolNet Inference (E-GEOD-18494)

Expression profiling of hypoxic HepG2 hepatoma, U87 glioma, and MDA-MB231 breast cancer cells: time course (E-GEOD-18494)

Analysis of expression changes of cultured HepG2 hepatoma, U87 glioma, and MDA-MB231 breast cancer cells subjected to hypoxia (0.5% O2) for 0, 4, 8, 12 hours . Results provide insight to cell type-specific response to hypoxia. HepG2 hepatoma, U87 glioma, and MDA-MB231 breast cancer cells were collected under normoxic conditions (~19% O2, 0 hours) and after 4, 8 and 12 hours of hypoxia treatment (0.5% O2). For each cell line, three replicates of total RNA at each time point were prepared using Trizol and submitted to the DFCI Microarray Core for labeling, hybridization to Affymetrix HG-U133Plus2 oligonucleotide arrays and image scanning.

https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-18494/

dir create(download dir)

} else {

}

```
packages cran = c("igraph", "BoolNet", "BiocManager", "tidyverse", "fs", "ff", "RSQLite")
# Install and load packages
package.check <- lapply(packages_cran, FUN = function(x) {</pre>
  if (!require(x, character.only = TRUE)) {
    install.packages(x, dependencies = TRUE)
    library(x, character.only = TRUE)
})
# For oligo First install:
\#install.packages('https://cran.r-project.org/src/contrib/Archive/ff/ff\_2.2-14.tar.gz',repos=NULL)
packages_bioconductor = c("Biobase", "GEOquery", "ArrayExpress", "hgu133plus2.db")
# Install and load packages
package.check <- lapply(packages_bioconductor, FUN = function(x) {</pre>
  if (!require(x, character.only = TRUE)) {
    BiocManager::install(x, dependencies = TRUE)
    library(x, character.only = TRUE)
  }
})
rm(package.check, packages_bioconductor, packages_cran)
download_dir <- fs::path(".data_tmp")</pre>
if (!dir_exists(download_dir)) {
```

EGEOD18494 <- ArrayExpress( "E-GEOD-18494", save=TRUE, path=download\_dir)

EGEOD18494 <- ArrayExpress( "E-GEOD-18494", save=TRUE, path=download\_dir)

# Convert the probes to Symbol names

```
anno.EGEOD18494 <- AnnotationDbi::select(hgu133plus2.db, keys=rownames(expr.EGEOD18494), columns=c("ENS.
## 'select()' returned 1:many mapping between keys and columns

colnames(anno.EGEOD18494) <- c("probes", "ensgene", "symbol", "description")</pre>
```

# Selecting the HIF Genes

```
# Selecting genes from HIF Axis
hif.symbols <- c("TP53", "HIF1A", "EP300", "MDM2", "VHL")

hif.probes <- anno.EGEOD18494$probes[anno.EGEOD18494$symbol %in% hif.symbols]

# Select the probes and genes
expr.EGEOD18494.hif <- as.data.frame(expr.EGEOD18494) %>%
    rownames_to_column('probes') %>%
    filter(probes %in% hif.probes) %>%
    merge(anno.EGEOD18494[anno.EGEOD18494$symbol %in% hif.symbols, c("probes","symbol")], by = "probes")
    #distinct(symbol, .keep_all = TRUE) %>% # Take the first one
    dplyr::select(!(probes))
```

# Exemplifying the Binarization

| symbol | no.control.MD | hy.4h.MD  | hy.8h.MD  | hy.12h.MD |
|--------|---------------|-----------|-----------|-----------|
| EP300  | 7.117723      | 7.444650  | 7.564863  | 7.102371  |
| EP300  | 7.413672      | 7.507501  | 7.570583  | 7.374402  |
| HIF1A  | 12.201881     | 11.633014 | 10.456373 | 10.119609 |
| MDM2   | 5.524042      | 5.320023  | 5.350573  | 5.446186  |
| MDM2   | 4.045154      | 3.853332  | 4.078569  | 4.257243  |
| MDM2   | 5.078994      | 4.927372  | 5.029658  | 4.981994  |
| MDM2   | 6.355831      | 6.328876  | 6.389927  | 6.806724  |
| MDM2   | 4.287158      | 4.755383  | 4.670058  | 4.462138  |
| MDM2   | 8.162994      | 8.179121  | 8.219938  | 8.085525  |
| MDM2   | 7.285900      | 7.207761  | 7.123573  | 6.955918  |
| MDM2   | 3.623543      | 3.829355  | 3.753720  | 4.100483  |
| MDM2   | 4.054654      | 4.129631  | 4.067410  | 4.256327  |
| MDM2   | 8.207312      | 7.778604  | 7.656600  | 7.797764  |
|        |               |           |           |           |

| symbol | ${\rm no.control.MD}$ | hy.4h.MD | hy.8h.MD | hy.12h.MD |
|--------|-----------------------|----------|----------|-----------|
| TP53   | 8.895355              | 8.773830 | 9.104009 | 9.136858  |
| TP53   | 8.600345              | 8.240599 | 8.641253 | 8.664151  |
| VHL    | 7.698038              | 7.713089 | 7.348580 | 7.098092  |
| VHL    | 3.738962              | 3.749649 | 3.759698 | 3.638137  |

```
binarizeTimeSeries(breast1x[,-1], method="kmeans")$binarizedMeasurements %>%
  data.frame(.) %>%
  add_column(symbol = breast1x$symbol, .before=0) %>%
  knitr::kable(.)
```

| symbol | ${\rm no.control.MD}$ | hy.4h.MD | $\rm hy.8h.MD$ | $\rm hy.12h.MD$ |
|--------|-----------------------|----------|----------------|-----------------|
| EP300  | 0                     | 1        | 1              | 0               |
| EP300  | 0                     | 1        | 1              | 0               |
| HIF1A  | 1                     | 1        | 0              | 0               |
| MDM2   | 1                     | 0        | 0              | 1               |
| MDM2   | 1                     | 0        | 1              | 1               |
| MDM2   | 1                     | 0        | 1              | 0               |
| MDM2   | 0                     | 0        | 0              | 1               |
| MDM2   | 0                     | 1        | 1              | 0               |
| MDM2   | 1                     | 1        | 1              | 0               |
| MDM2   | 1                     | 1        | 1              | 0               |
| MDM2   | 0                     | 0        | 0              | 1               |
| MDM2   | 0                     | 0        | 0              | 1               |
| MDM2   | 1                     | 0        | 0              | 0               |
| TP53   | 0                     | 0        | 1              | 1               |
| TP53   | 1                     | 0        | 1              | 1               |
| VHL    | 1                     | 1        | 0              | 0               |
| VHL    | 1                     | 1        | 1              | 0               |

```
binarizeTimeSeries(breast1x[,-1], method="kmeans")$binarizedMeasurements %>%
  data.frame(.) %>%
  aggregate(., list(symbol = breast1x$symbol), mean) %>%
  mutate_at(vars(-symbol), funs(ifelse(. >= 0.5, 1, 0))) %>%
  rbind(., c("02", 1,0,0,0)) %>%
  knitr::kable(.)
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
##
     # Simple named list:
##
     list(mean = mean, median = median)
##
##
     # Auto named with `tibble::lst()`:
     tibble::lst(mean, median)
##
```

## ##

# Using lambdas

## Call `lifecycle::last\_warnings()` to see where this warning was generated.

list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))

## This warning is displayed once every 8 hours.

| symbol | no.control.MD | hy.4h.MD | hy.8h.MD | hy.12h.MD |
|--------|---------------|----------|----------|-----------|
| EP300  | 0             | 1        | 1        | 0         |
| HIF1A  | 1             | 1        | 0        | 0         |
| MDM2   | 1             | 0        | 1        | 1         |
| TP53   | 1             | 0        | 1        | 1         |
| VHL    | 1             | 1        | 1        | 0         |
| O2     | 1             | 0        | 0        | 0         |
|        |               |          |          |           |

## MDA-MB231 breast cancer

```
cellline.rep1 <- (data.EGEOD18494$cell_line == "MDA-MB231 breast cancer" & data.EGEOD18494$rep == 1)
cellline.rep2 <- (data.EGEOD18494$cell_line == "MDA-MB231 breast cancer" & data.EGEOD18494$rep == 2)
cellline.rep3 <- (data.EGEOD18494$cell_line == "MDA-MB231 breast cancer" & data.EGEOD18494$rep == 3)

breast1x <-
expr.EGEOD18494.hif %>%
    dplyr::select(c("symbol", data.EGEOD18494$codes[cellline.rep1])) %>%
    binNet(.)

breast1x %>%
    knitr::kable(.)
```

|       | no.control.MD.1 | hy.4h.MD.1 | hy.8h.MD.1 | hy.12h.MD.1 |
|-------|-----------------|------------|------------|-------------|
| EP300 | 0               | 1          | 1          | 0           |
| HIF1A | 1               | 1          | 0          | 0           |
| MDM2  | 1               | 0          | 1          | 1           |
| TP53  | 1               | 0          | 1          | 1           |
| VHL   | 1               | 1          | 1          | 0           |
| O2    | 1               | 0          | 0          | 0           |

```
breast2x <-
expr.EGEOD18494.hif %>%
   dplyr::select(c("symbol", data.EGEOD18494$codes[cellline.rep2])) %>%
   binNet(.)

breast2x %>%
   knitr::kable(.)
```

|       | ${\rm no.control.MD.2}$ | hy.4h.MD.2 | hy.8h.MD.2 | hy.12h.MD.2 |
|-------|-------------------------|------------|------------|-------------|
| EP300 | 1                       | 0          | 1          | 1           |
| HIF1A | 1                       | 1          | 0          | 0           |
| MDM2  | 1                       | 0          | 1          | 0           |
| TP53  | 0                       | 1          | 1          | 1           |
| VHL   | 1                       | 1          | 1          | 0           |
| O2    | 1                       | 0          | 0          | 0           |

```
breast3x <-
expr.EGEOD18494.hif %>%
   dplyr::select(c("symbol", data.EGEOD18494$codes[cellline.rep3])) %>%
   binNet(.)

breast3x %>%
   knitr::kable(.)
```

|       | no.control.MD.3 | hy.4h.MD.3 | hy.8h.MD.3 | hy.12h.MD.3 |
|-------|-----------------|------------|------------|-------------|
| EP300 | 0               | 1          | 1          | 1           |
| HIF1A | 1               | 1          | 0          | 0           |
| MDM2  | 1               | 1          | 0          | 1           |
| TP53  | 0               | 1          | 1          | 1           |
| VHL   | 1               | 1          | 0          | 1           |
| O2    | 1               | 0          | 0          | 0           |

## # All breast cancer nets merged:

net <- reconstructNetwork(list(breast1x, breast2x, breast3x), method="bestfit",returnPBN=TRUE,readableF
plotNetworkWiring(net)</pre>



```
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL O2
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (!02) | (!EP300) ( probability: 1, error: 1)
## Alternative transition functions for gene HIF1A:
## HIF1A = (02) ( probability: 1, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!MDM2 & TP53) | (!EP300 & MDM2 & !TP53) | (EP300 & !MDM2) ( probability: 0.5, error: 1)
## MDM2 = (!MDM2) | (!EP300 & !TP53) ( probability: 0.5, error: 1)
## Alternative transition functions for gene TP53:
## TP53 = (!02) | (!TP53) ( probability: 1, error: 0)
## Alternative transition functions for gene VHL:
## VHL = (!MDM2 & !02) | (MDM2 & 02) ( probability: 0.5, error: 0)
## VHL = (!MDM2) | (02) ( probability: 0.5, error: 0)
## Alternative transition functions for gene 02:
## 02 = 0 (probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## 02 = 0
# Individual nets of each replica:
net <- reconstructNetwork(breast1x, method="bestfit", returnPBN=TRUE, readableFunctions=TRUE)</pre>
plotNetworkWiring(net)
```



```
## Probabilistic Boolean network with 6 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = (HIF1A) ( probability: 1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = (02) ( probability: 0.5, error: 0)
## HIF1A = (!EP300) ( probability: 0.5, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!02) ( probability: 0.5, error: 0)
## MDM2 = (EP300) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (!02) ( probability: 0.5, error: 0)
## TP53 = (EP300) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene VHL:
```

```
## VHL = (HIF1A) ( probability: 1, error: 0)
##
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
##
## Knocked-out and over-expressed genes:
## 02 = 0

net <- reconstructNetwork(breast2x, method="bestfit", returnPBN=TRUE, readableFunctions=TRUE)
plotNetworkWiring(net)</pre>
```



```
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = (!02) ( probability: 0.5, error: 0)
## EP300 = (TP53) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene HIF1A:
```

```
## HIF1A = (02) ( probability: 0.5, error: 0)
## HIF1A = (!TP53) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene MDM2:
## MDM2 = (!MDM2) ( probability: 0.5, error: 0)
## MDM2 = (!EP300) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = 1 ( probability: 1, error: 0)
##
## Alternative transition functions for gene VHL:
## VHL = (HIF1A) ( probability: 1, error: 0)
##
## Alternative transition functions for gene O2:
## 02 = 0 ( probability: 1, error: 0)
##
## Knocked-out and over-expressed genes:
## TP53 = 1
## 02 = 0
```

net <- reconstructNetwork(breast3x, method="bestfit", returnPBN=TRUE, readableFunctions=TRUE)
plotNetworkWiring(net)</pre>



```
print(net)
```

## Probabilistic Boolean network with 6 genes

```
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL O2
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = 1 ( probability: 1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = (02) ( probability: 0.3333333, error: 0)
## HIF1A = (!TP53) ( probability: 0.3333333, error: 0)
## HIF1A = (!EP300) ( probability: 0.3333333, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!VHL & !O2) | (VHL & O2) ( probability: 0.05555556, error: 0)
## MDM2 = (!VHL) | (02) ( probability: 0.05555556, error: 0)
## MDM2 = (!TP53 & VHL) | (TP53 & !VHL) ( probability: 0.05555556, error: 0)
## MDM2 = (!VHL) | (!TP53) ( probability: 0.05555556, error: 0)
## MDM2 = (!MDM2 & !O2) | (MDM2 & O2) ( probability: 0.05555556, error: 0)
## MDM2 = (!MDM2) | (02) ( probability: 0.05555556, error: 0)
## MDM2 = (!MDM2 & TP53) | (MDM2 & !TP53) ( probability: 0.05555556, error: 0)
## MDM2 = (!TP53) | (!MDM2) ( probability: 0.05555556, error: 0)
## MDM2 = (!HIF1A & !O2) | (HIF1A & O2) ( probability: 0.05555556, error: 0)
## MDM2 = (!HIF1A) | (02) ( probability: 0.05555556, error: 0)
## MDM2 = (!HIF1A & TP53) | (HIF1A & !TP53) ( probability: 0.05555556, error: 0)
## MDM2 = (!TP53) | (!HIF1A) ( probability: 0.05555556, error: 0)
## MDM2 = (!EP300 & VHL) | (EP300 & !VHL) ( probability: 0.05555556, error: 0)
## MDM2 = (!VHL) | (!EP300) ( probability: 0.05555556, error: 0)
## MDM2 = (!EP300 & MDM2) | (EP300 & !MDM2) ( probability: 0.05555556, error: 0)
## MDM2 = (!MDM2) | (!EP300) ( probability: 0.05555556, error: 0)
## MDM2 = (!EP300 & HIF1A) | (EP300 & !HIF1A) ( probability: 0.05555556, error: 0)
## MDM2 = (!HIF1A) | (!EP300) ( probability: 0.05555556, error: 0)
## Alternative transition functions for gene TP53:
## TP53 = 1 ( probability: 1, error: 0)
## Alternative transition functions for gene VHL:
## VHL = (!VHL & !O2) | (VHL & O2) ( probability: 0.05555556, error: 0)
## VHL = (!VHL) | (02) ( probability: 0.05555556, error: 0)
## VHL = (!TP53 & VHL) | (TP53 & !VHL) ( probability: 0.05555556, error: 0)
## VHL = (!VHL) | (!TP53) ( probability: 0.05555556, error: 0)
## VHL = (!MDM2 & !O2) | (MDM2 & O2) ( probability: 0.05555556, error: 0)
## VHL = (!MDM2) | (02) ( probability: 0.05555556, error: 0)
## VHL = (!MDM2 & TP53) | (MDM2 & !TP53) ( probability: 0.05555556, error: 0)
## VHL = (!TP53) | (!MDM2) ( probability: 0.05555556, error: 0)
## VHL = (!HIF1A & !O2) | (HIF1A & O2) ( probability: 0.05555556, error: 0)
## VHL = (!HIF1A) | (02) ( probability: 0.05555556, error: 0)
## VHL = (!HIF1A & TP53) | (HIF1A & !TP53) ( probability: 0.05555556, error: 0)
## VHL = (!TP53) | (!HIF1A) ( probability: 0.05555556, error: 0)
## VHL = (!EP300 & VHL) | (EP300 & !VHL) ( probability: 0.05555556, error: 0)
## VHL = (!VHL) | (!EP300) ( probability: 0.05555556, error: 0)
## VHL = (!EP300 & MDM2) | (EP300 & !MDM2) ( probability: 0.05555556, error: 0)
## VHL = (!MDM2) | (!EP300) ( probability: 0.05555556, error: 0)
```

```
## VHL = (!EP300 & HIF1A) | (EP300 & !HIF1A) ( probability: 0.05555556, error: 0)
## VHL = (!HIF1A) | (!EP300) ( probability: 0.05555556, error: 0)
##
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
##
## Knocked-out and over-expressed genes:
## EP300 = 1
## TP53 = 1
## 02 = 0
```

# HepG2 hepatoma

|       | no.control.He.1 | hy.4h.He.1 | hy.8h.He.1 | hy.12h.He.1 |
|-------|-----------------|------------|------------|-------------|
| EP300 | 1               | 1          | 0          | 0           |
| HIF1A | 0               | 0          | 1          | 0           |
| MDM2  | 1               | 1          | 0          | 1           |
| TP53  | 1               | 1          | 0          | 1           |
| VHL   | 1               | 0          | 1          | 0           |
| O2    | 1               | 0          | 0          | 0           |

|       | no.control.He.2 | hy.4h.He.2 | hy.8h.He.2 | hy.12h.He.2 |
|-------|-----------------|------------|------------|-------------|
| EP300 | 0               | 1          | 1          | 1           |
| HIF1A | 0               | 0          | 1          | 0           |
| MDM2  | 0               | 1          | 1          | 1           |
| TP53  | 0               | 1          | 1          | 0           |
| VHL   | 1               | 0          | 1          | 1           |
| O2    | 1               | 0          | 0          | 0           |

```
hepatoma3x <-
expr.EGEOD18494.hif %>%
  dplyr::select(c("symbol", data.EGEOD18494$codes[cellline.rep3])) %>%
  binNet(.)
hepatoma3x %>%
  knitr::kable(.)
```

|       | no.control.He.3 | hy.4h.He.3 | hy.8h.He.3 | hy.12h.He.3 |
|-------|-----------------|------------|------------|-------------|
| EP300 | 1               | 1          | 0          | 1           |
| HIF1A | 0               | 1          | 1          | 0           |
| MDM2  | 0               | 1          | 0          | 1           |
| TP53  | 1               | 1          | 1          | 1           |
| VHL   | 1               | 1          | 0          | 0           |
| O2    | 1               | 0          | 0          | 0           |

## # All nets hepatoma merged:

net <- reconstructNetwork(list(hepatoma1x, hepatoma2x, hepatoma3x), method="bestfit",returnPBN=TRUE,rea
plotNetworkWiring(net)</pre>



```
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL O2
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (!VHL & !O2) | (VHL & O2) ( probability: 0.1666667, error: 2)
## EP300 = (!VHL) | (02) ( probability: 0.1666667, error: 2)
## EP300 = (02) | (TP53) ( probability: 0.1666667, error: 2)
## EP300 = (!HIF1A & VHL) | (HIF1A & !VHL) ( probability: 0.1666667, error: 2)
## EP300 = (!VHL) | (!HIF1A) ( probability: 0.1666667, error: 2)
## EP300 = (!HIF1A) | (TP53) ( probability: 0.1666667, error: 2)
## Alternative transition functions for gene HIF1A:
## HIF1A = (!MDM2 & TP53 & 02) | (MDM2 & TP53 & !O2) ( probability: 0.03571429, error: 1)
## HIF1A = (!MDM2 & TP53 & 02) | (MDM2 & !TP53 & 02) | (MDM2 & TP53 & !O2) ( probability: 0.03571429, e
## HIF1A = (!MDM2 & TP53 & 02) | (MDM2 & !02) ( probability: 0.03571429, error: 1)
## HIF1A = (!MDM2 & TP53 & 02) | (MDM2 & !02) | (MDM2 & !TP53) ( probability: 0.03571429, error: 1)
## HIF1A = (!MDM2 & TP53 & VHL) | (MDM2 & TP53 & !VHL) ( probability: 0.03571429, error: 1)
## HIF1A = (!MDM2 & TP53 & VHL) | (MDM2 & !TP53 & VHL) | (MDM2 & TP53 & !VHL) ( probability: 0.03571429
## HIF1A = (!MDM2 & TP53 & VHL) | (MDM2 & !VHL) ( probability: 0.03571429, error: 1)
## HIF1A = (!MDM2 & TP53 & VHL) | (MDM2 & !VHL) | (MDM2 & !TP53) ( probability: 0.03571429, error: 1)
## HIF1A = (!MDM2 & !TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & TP53 & !VHL) ( probability: 0.035714
## HIF1A = (!MDM2 & !TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & !TP53 & VHL) | (MDM2 & TP53 & !VHL)
## HIF1A = (!TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & !VHL) ( probability: 0.03571429, error: 1)
## HIF1A = (!TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & !TP53) | (MDM2 & !VHL) ( probability: 0.0357
## HIF1A = (EP300 & !MDM2 & O2) | (EP300 & MDM2 & !O2) ( probability: 0.03571429, error: 1)
## HIF1A = (EP300 & !O2) | (EP300 & !MDM2) (probability: 0.03571429, error: 1)
## HIF1A = (!EP300 & MDM2 & 02) | (EP300 & !MDM2 & 02) | (EP300 & MDM2 & !02) ( probability: 0.03571429
## HIF1A = (!EP300 & MDM2 & O2) | (EP300 & !O2) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## HIF1A = (MDM2 & !O2) | (EP300 & !MDM2 & O2) ( probability: 0.03571429, error: 1)
## HIF1A = (MDM2 & !02) | (EP300 & !02) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## HIF1A = (MDM2 & !O2) | (!EP300 & MDM2) | (EP300 & !MDM2 & O2) ( probability: 0.03571429, error: 1)
## HIF1A = (MDM2 & !O2) | (!EP300 & MDM2) | (EP300 & !O2) | (EP300 & !MDM2) ( probability: 0.03571429,
## HIF1A = (EP300 & !MDM2 & VHL) | (EP300 & MDM2 & !VHL) ( probability: 0.03571429, error: 1)
## HIF1A = (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## HIF1A = (!EP300 & MDM2 & VHL) | (EP300 & !MDM2 & VHL) | (EP300 & MDM2 & !VHL) ( probability: 0.03571
## HIF1A = (!EP300 & MDM2 & VHL) | (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1
## HIF1A = (MDM2 & !VHL) | (EP300 & !MDM2 & VHL) ( probability: 0.03571429, error: 1)
## HIF1A = (MDM2 & !VHL) | (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## HIF1A = (MDM2 & !VHL) | (!EP300 & MDM2) | (EP300 & !MDM2 & VHL) ( probability: 0.03571429, error: 1)
## HIF1A = (MDM2 & !VHL) | (!EP300 & MDM2) | (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429
## Alternative transition functions for gene MDM2:
## MDM2 = 1 ( probability: 1, error: 2)
## Alternative transition functions for gene TP53:
## TP53 = 1 ( probability: 1, error: 2)
##
## Alternative transition functions for gene VHL:
## VHL = (!MDM2 & TP53 & 02) | (MDM2 & TP53 & !O2) ( probability: 0.03571429, error: 1)
## VHL = (!MDM2 & TP53 & 02) | (MDM2 & !TP53 & 02) | (MDM2 & TP53 & !O2) ( probability: 0.03571429, err
```

```
## VHL = (!MDM2 & TP53 & 02) | (MDM2 & !02) ( probability: 0.03571429, error: 1)
## VHL = (!MDM2 & TP53 & O2) | (MDM2 & !O2) | (MDM2 & !TP53) ( probability: 0.03571429, error: 1)
## VHL = (!MDM2 & TP53 & VHL) | (MDM2 & TP53 & !VHL) ( probability: 0.03571429, error: 1)
## VHL = (!MDM2 & TP53 & VHL) | (MDM2 & !TP53 & VHL) | (MDM2 & TP53 & !VHL) ( probability: 0.03571429,
## VHL = (!MDM2 & TP53 & VHL) | (MDM2 & !VHL) ( probability: 0.03571429, error: 1)
## VHL = (!MDM2 & TP53 & VHL) | (MDM2 & !VHL) | (MDM2 & !TP53) ( probability: 0.03571429, error: 1)
## VHL = (!MDM2 & !TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & TP53 & !VHL) ( probability: 0.03571429
## VHL = (!MDM2 & !TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & !TP53 & VHL) | (MDM2 & !TP53 & !VHL) ( '
## VHL = (!TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & !VHL) ( probability: 0.03571429, error: 1)
## VHL = (!TP53 & !VHL) | (!MDM2 & TP53 & VHL) | (MDM2 & !TP53) | (MDM2 & !VHL) ( probability: 0.035714
## VHL = (EP300 & !MDM2 & O2) | (EP300 & MDM2 & !O2) ( probability: 0.03571429, error: 1)
## VHL = (EP300 & !02) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## VHL = (!EP300 & MDM2 & 02) | (EP300 & !MDM2 & 02) | (EP300 & MDM2 & !02) ( probability: 0.03571429,
## VHL = (!EP300 & MDM2 & O2) | (EP300 & !O2) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !02) | (EP300 & !MDM2 & 02) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !02) | (EP300 & !02) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !02) | (!EP300 & MDM2) | (EP300 & !MDM2 & 02) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !02) | (!EP300 & MDM2) | (EP300 & !02) | (EP300 & !MDM2) ( probability: 0.03571429, er
## VHL = (EP300 & !MDM2 & VHL) | (EP300 & MDM2 & !VHL) ( probability: 0.03571429, error: 1)
## VHL = (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## VHL = (!EP300 & MDM2 & VHL) | (EP300 & !MDM2 & VHL) | (EP300 & MDM2 & !VHL) ( probability: 0.0357142
## VHL = (!EP300 & MDM2 & VHL) | (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !VHL) | (EP300 & !MDM2 & VHL) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !VHL) | (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !VHL) | (!EP300 & MDM2) | (EP300 & !MDM2 & VHL) ( probability: 0.03571429, error: 1)
## VHL = (MDM2 & !VHL) | (!EP300 & MDM2) | (EP300 & !VHL) | (EP300 & !MDM2) ( probability: 0.03571429,
## Alternative transition functions for gene 02:
## 02 = 0 (probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## MDM2 = 1
## TP53 = 1
## 02 = 0
# Individual nets of each replica:
```

net <- reconstructNetwork(hepatoma1x, method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)</pre>

plotNetworkWiring(net)





```
## Probabilistic Boolean network with 6 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = (02) ( probability: 1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = (!VHL) ( probability: 1, error: 0)
##
## Alternative transition functions for gene MDM2:
## MDM2 = (VHL) ( probability: 1, error: 0)
## Alternative transition functions for gene TP53:
## TP53 = (VHL) ( probability: 1, error: 0)
## Alternative transition functions for gene VHL:
## VHL = (!VHL) ( probability: 1, error: 0)
##
## Alternative transition functions for gene 02:
```

```
## 02 = 0 ( probability: 1, error: 0)
##
## Knocked-out and over-expressed genes:
## 02 = 0

net <- reconstructNetwork(hepatoma2x, method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
plotNetworkWiring(net)</pre>
```



```
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = 1 ( probability: 1, error: 0)
##
## Alternative transition functions for gene HIF1A:
## HIF1A = (!VHL) ( probability: 1, error: 0)
##
## Alternative transition functions for gene MDM2:
## MDM2 = 1 ( probability: 1, error: 0)
```

```
##
## Alternative transition functions for gene TP53:
## TP53 = (!HIF1A) ( probability: 1, error: 0)
##
## Alternative transition functions for gene VHL:
## VHL = (!02) ( probability: 0.25, error: 0)
## VHL = (TP53) ( probability: 0.25, error: 0)
## VHL = (MDM2) ( probability: 0.25, error: 0)
## VHL = (EP300) ( probability: 0.25, error: 0)
##
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## EP300 = 1
## MDM2 = 1
## 02 = 0
```

net <- reconstructNetwork(hepatoma3x, method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
plotNetworkWiring(net)</pre>



```
print(net)
```

```
## Probabilistic Boolean network with 6 genes
##
```

```
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL O2
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (!MDM2) ( probability: 1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = (VHL) ( probability: 0.5, error: 0)
## HIF1A = (EP300) ( probability: 0.5, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!MDM2) ( probability: 1, error: 0)
## Alternative transition functions for gene TP53:
## TP53 = 1 ( probability: 1, error: 0)
##
## Alternative transition functions for gene VHL:
## VHL = (02) ( probability: 0.5, error: 0)
## VHL = (!HIF1A) ( probability: 0.5, error: 0)
## Alternative transition functions for gene 02:
## 02 = 0 (probability: 1, error: 0)
##
## Knocked-out and over-expressed genes:
## TP53 = 1
## 02 = 0
```

# U87 glioma

```
cellline.rep1 <- (data.EGEOD18494$cell_line == "U87 glioma" & data.EGEOD18494$rep == 1)
cellline.rep2 <- (data.EGEOD18494$cell_line == "U87 glioma" & data.EGEOD18494$rep == 2)
cellline.rep3 <- (data.EGEOD18494$cell_line == "U87 glioma" & data.EGEOD18494$rep == 3)

glioma1x <-
expr.EGEOD18494.hif %>%
    dplyr::select(c("symbol", data.EGEOD18494$codes[cellline.rep1])) %>%
    binNet(.)

glioma1x %>%
    knitr::kable(.)
```

|       | ${\rm no.control. U8.1}$ | hy.4h.U8.1 | $\rm hy.8h.U8.1$ | hy.12h.U8.1 |
|-------|--------------------------|------------|------------------|-------------|
| EP300 | 1                        | 0          | 0                | 1           |
| HIF1A | 1                        | 0          | 0                | 0           |
| MDM2  | 1                        | 0          | 0                | 0           |
| TP53  | 1                        | 0          | 1                | 1           |
| VHL   | 1                        | 1          | 0                | 1           |
| O2    | 1                        | 0          | 0                | 0           |

```
glioma2x <-
expr.EGEOD18494.hif %>%
  dplyr::select(c("symbol", data.EGEOD18494$codes[cellline.rep1])) %>%
  binNet(.)

glioma2x %>%
  knitr::kable(.)
```

|       | ${\rm no.control. U8.1}$ | $\rm hy.4h.U8.1$ | $\rm hy.8h.U8.1$ | hy.12h.U8.1 |
|-------|--------------------------|------------------|------------------|-------------|
| EP300 | 1                        | 0                | 0                | 1           |
| HIF1A | 1                        | 0                | 0                | 0           |
| MDM2  | 1                        | 0                | 0                | 0           |
| TP53  | 1                        | 0                | 1                | 1           |
| VHL   | 1                        | 1                | 0                | 1           |
| O2    | 1                        | 0                | 0                | 0           |
|       |                          |                  |                  |             |

```
glioma3x <-
expr.EGEOD18494.hif %>%
    dplyr::select(c("symbol", data.EGEOD18494$codes[cellline.rep1])) %>%
    binNet(.)

glioma3x %>%
    knitr::kable(.)
```

|       | no.control.U8.1 | hy.4h.U8.1 | hy.8h.U8.1 | hy.12h.U8.1 |
|-------|-----------------|------------|------------|-------------|
| EP300 | 1               | 0          | 0          | 1           |
| HIF1A | 1               | 0          | 0          | 0           |
| MDM2  | 1               | 0          | 0          | 0           |
| TP53  | 1               | 0          | 1          | 1           |
| VHL   | 1               | 1          | 0          | 1           |
| O2    | 1               | 0          | 0          | 0           |

plotNetworkWiring(net)

```
# All glioma nets merged:
net <- reconstructNetwork(list(glioma1x, glioma2x, glioma3x), method="bestfit",returnPBN=TRUE,readableF</pre>
```



```
## Probabilistic Boolean network with 6 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = (!VHL) ( probability: 1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = 0 ( probability: 1, error: 0)
##
## Alternative transition functions for gene MDM2:
## MDM2 = 0 ( probability: 1, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (!02) ( probability: 0.25, error: 0)
## TP53 = (!MDM2) ( probability: 0.25, error: 0)
## TP53 = (!HIF1A) ( probability: 0.25, error: 0)
## TP53 = (!EP300) ( probability: 0.25, error: 0)
##
## Alternative transition functions for gene VHL:
```

```
## VHL = (TP53) ( probability: 1, error: 0)
##
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
##
## Knocked-out and over-expressed genes:
## HIF1A = 0
## MDM2 = 0
## 02 = 0
## Individual nets of each replica:
net <- reconstructNetwork(glioma1x, method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
plotNetworkWiring(net)</pre>
```



```
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
```

```
## EP300 = (!VHL) ( probability: 1, error: 0)
##
## Alternative transition functions for gene HIF1A:
## HIF1A = 0 ( probability: 1, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = 0 ( probability: 1, error: 0)
## Alternative transition functions for gene TP53:
## TP53 = (!02) ( probability: 0.25, error: 0)
## TP53 = (!MDM2) ( probability: 0.25, error: 0)
## TP53 = (!HIF1A) ( probability: 0.25, error: 0)
## TP53 = (!EP300) ( probability: 0.25, error: 0)
## Alternative transition functions for gene VHL:
## VHL = (TP53) ( probability: 1, error: 0)
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## HIF1A = 0
## MDM2 = 0
## 02 = 0
```

net <- reconstructNetwork(glioma2x, method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
plotNetworkWiring(net)</pre>



```
## Probabilistic Boolean network with 6 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = (!VHL) ( probability: 1, error: 0)
## Alternative transition functions for gene HIF1A:
## HIF1A = 0 ( probability: 1, error: 0)
##
## Alternative transition functions for gene MDM2:
## MDM2 = 0 ( probability: 1, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (!02) ( probability: 0.25, error: 0)
## TP53 = (!MDM2) ( probability: 0.25, error: 0)
## TP53 = (!HIF1A) ( probability: 0.25, error: 0)
## TP53 = (!EP300) ( probability: 0.25, error: 0)
##
## Alternative transition functions for gene VHL:
```

```
## VHL = (TP53) ( probability: 1, error: 0)
##
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
##
## Knocked-out and over-expressed genes:
## HIF1A = 0
## MDM2 = 0
## 02 = 0
```

net <- reconstructNetwork(glioma3x, method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
plotNetworkWiring(net)</pre>



```
## Probabilistic Boolean network with 6 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL 02
##
## Transition functions:
##
## Alternative transition functions for gene EP300:
## EP300 = (!VHL) ( probability: 1, error: 0)
##
```

```
## Alternative transition functions for gene HIF1A:
## HIF1A = 0 ( probability: 1, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = 0 ( probability: 1, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (!02) ( probability: 0.25, error: 0)
## TP53 = (!MDM2) ( probability: 0.25, error: 0)
## TP53 = (!HIF1A) ( probability: 0.25, error: 0)
## TP53 = (!EP300) ( probability: 0.25, error: 0)
## Alternative transition functions for gene VHL:
## VHL = (TP53) ( probability: 1, error: 0)
## Alternative transition functions for gene 02:
## 02 = 0 ( probability: 1, error: 0)
## Knocked-out and over-expressed genes:
## HIF1A = 0
## MDM2 = 0
## 02 = 0
```