Particle spectrograph

Wave operator and propagator

_	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\!\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1-lpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_1^{\#2}{}_{lpha}$
$\sigma_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$-\frac{\frac{1}{3(\alpha_0-4\beta_1)(\alpha_0+8\beta_3)}+(\alpha_2+\alpha_5)k^2}{16(\beta_1+2\beta_3)}$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{3})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$-\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1+k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$\sigma_{1^+}^{\sharp 2} \dagger^{lphaeta}$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{3})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$\frac{6\alpha_{0} + 8(\beta_{1} + 8\beta_{3} + 3(\alpha_{2} + \alpha_{5})k^{2})}{(1 + k^{2})^{2}(-3(\alpha_{0} - 4\beta_{1})(\alpha_{0} + 8\beta_{3}) + 16(\alpha_{2} + \alpha_{5})(\beta_{1} + 2\beta_{3})k^{2})}$	$\frac{2 i k (3 \alpha_0 + 4 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2))}{(1 + k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1+k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	$-\frac{2ik(3\alpha_{0}+4(\beta_{1}+8\beta_{3}+3(\alpha_{2}+\alpha_{5})k^{2}))}{(1+k^{2})^{2}(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$\frac{2 k^2 (3 \alpha_0 + 4 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2))}{(1 + k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$\sigma_{1}^{\!\#1}\dagger^{lpha}$	0	0	0	$-\frac{\frac{1}{3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)}+(\alpha_4+\alpha_5)k^2}{8(2\beta_1+\beta_2)}$	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	0	$\frac{4 i (3 \alpha_0 - 4 \beta_1 + 4 \beta_2) k}{(1 + 2 k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$\sigma_1^{\!\#_2}\!\dagger^lpha$	0	0	0	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	$\frac{6 \alpha_0 + 8 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2)}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$	0	$\frac{2 i \sqrt{2} k (3 \alpha_0 + 4 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$ au_1^{\#_1} \dagger^{lpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} \uparrow^{\alpha}$	0	0	0	$-\frac{4 i (3 \alpha_{0}-4 \beta_{1}+4 \beta_{2}) k}{(1+2 k^{2}) (-3 (\alpha_{0}-4 \beta_{1}) (\alpha_{0}+2 \beta_{2})+8 (\alpha_{4}+\alpha_{5}) (2 \beta_{1}+\beta_{2}) k^{2})}$	$-\frac{2i\sqrt{2}k(3\alpha_{0}+4(\beta_{1}+2\beta_{2}+3(\alpha_{4}+\alpha_{5})k^{2}))}{(1+2k^{2})^{2}(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+2\beta_{2})+8(\alpha_{4}+\alpha_{5})(2\beta_{1}+\beta_{2})k^{2})}$	0	$\frac{4k^2(3\alpha_0+4(\beta_1+2\beta_2+3(\alpha_4+\alpha_5)k^2))}{(1+2k^2)^2(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$

$\sigma_{2}^{*1} + \alpha \beta \chi$	$\tau_{2+}^{#1} \dagger^{\alpha\beta}$	$\sigma_{2^{+}}^{*1} \dagger^{\alpha\beta}$		$\omega_{0^{-}}^{*1} +$	$f_{0+}^{#2}$ †	f ₀ ^{#1} †	$\omega_{0^{+}}^{*1}$ †	ī	$\omega_{2}^{*1} + \alpha \beta \chi$	$f_{2^{+}}^{#1}\dagger^{\alpha\beta}$	$\omega_{2^{+}}^{#1} \dagger^{\alpha\beta}$	
	$\frac{2i\sqrt{2}(\alpha_{0}-4\beta_{1})}{\alpha_{0}(\alpha_{0}-4\beta_{1})k-16(\alpha_{1}+\alpha_{4})\beta_{1}k^{3}}$	$\frac{16 \beta_1}{-\alpha_0^2 + 4 \alpha_0 \beta_1 + 16 (\alpha_1 + \alpha_4) \beta_1 k^2}$	$\sigma_{2^{+}lphaeta}^{*1}$	0	0	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$\frac{\alpha_0}{2}+\beta_2+(\alpha_4+\alpha_6)k^2$	$\omega_{0^+}^{\#1}$	0	$\frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}$	$\left -\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_4)k^2\right $	$\omega_{2^{+}lphaeta}^{\#1}$
				0	0	$2 \beta_2 k^2$	$-\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$f_{0}^{#1}$	0	$2 \beta_1 k^2$	$) k^2 \left \frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}} \right $	$f_{2}^{\#1}_{lpha eta}$
0	$\frac{2 \left(\alpha _{0} -4 \left(\beta _{1} +\left(\alpha _{1} +\alpha _{4} \right) k^{2} \right)\right)}{k^{2} \left(\alpha _{0} ^{2} -4 \alpha _{0} \beta _{1} -16 \left(\alpha _{1} +\alpha _{4} \right) \beta _{1} k^{2} \right)}$	$\frac{2i\sqrt{2}(\alpha_{0}-4\beta_{1})}{\alpha_{0}(\alpha_{0}-4\beta_{1})k-16(\alpha_{1}+\alpha_{4})\beta_{1}k^{3}}$	$t_2^{\#1}_2$	$0 \frac{\alpha_0}{2} + 4 \beta_3 + (\alpha_2 + \alpha_3) k^2$	0 0	0 0	0 0	$f_{0^+}^{#2} \qquad \omega_{0^-}^{#1}$	$-\frac{\alpha_0}{4} + \beta_1 + (\alpha_1 + \alpha_2) k^2$	0	0	$\omega_{2^- \ \alpha\beta\chi}^{\#1}$
$\frac{1}{-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k^2}$	0	0	$\sigma_{2^{-}}^{\#1} lphaeta\chi$	α_3) k^2					$) k^2$			

	$\omega_{1^{+}lphaeta}^{\sharp 1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_1^{\#1}{}_{lpha}$	$\omega_1^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}{}_{\alpha}$
$\omega_{1}^{\sharp 1} \dagger^{lpha eta}$	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 8 \beta_3) + (\alpha_2 + \alpha_5) k^2$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{2}{3}\left(\beta_1+2\beta_3\right)$	$\frac{2}{3}i(\beta_1+2\beta_3)k$	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	$-\frac{2}{3}\bar{i}\left(\beta_1+2\beta_3\right)k$	$\frac{2}{3}(\beta_1 + 2\beta_3)k^2$	0	0	0	0
$\omega_1^{\!\scriptscriptstyle\#1}\! +^lpha$	0	0	0	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 2 \beta_2) + (\alpha_4 + \alpha_5) k^2$	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	0	$-\frac{1}{6}\bar{i}(3\alpha_0-4\beta_1+4\beta_2)k$
$\omega_1^{ extstyle extstyle + lpha}$	0	0	0	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	$\frac{1}{3}\left(2\beta_1+\beta_2\right)$	0	$\frac{1}{3} i \sqrt{2} (2 \beta_1 + \beta_2) k$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{6}$ i (3 α_0 - 4 β_1 + 4 β_2) k	$-\frac{1}{3}i\sqrt{2}(2\beta_1+\beta_2)k$	0	$\frac{2}{3} (2 \beta_1 + \beta_2) k^2$

Source constra	Source constraints				
SO(3) irreps	Fundamental field	s Multiplicities			
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1			
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2}$	$\partial_{\alpha} = 0 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau^{\beta \chi} = \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau^{\alpha}$	$3 \qquad \qquad 3$			
$\tau_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau$	βα 3			
$\tau_{1}^{\#1\alpha\beta} + i k \sigma_{1}^{\#2}$	$\alpha^{\beta} = 0 \left[\partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \right]$	$\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta}$ + 3			
	$2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta}+$	$2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha\beta\chi} ==$			
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi}$	+			
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\gamma}$	$_{\epsilon}\partial^{eta}\sigma^{lpha\chi\delta}$			
Total constraints/gauge generators: 10					

Massive and massless spectra

Massive partic	le
Pole residue:	$(3 (\alpha_0^2 (3 \alpha_2 + 3 \alpha_5 + 2 \beta_1 + 4 \beta_3) - 8 \alpha_0 (\beta_1^2 + \alpha_2 (\beta_1 - 4 \beta_3) + \alpha_5 (\beta_1 - 4 \beta_3) - 4 \beta_3^2) + 16 (-4 \beta_1 \beta_3 (\beta_1 + 2 \beta_3) + \alpha_2 (\beta_1^2 + 8 \beta_3^2) + \alpha_5 (\beta_1^2 + 8 \beta_3^2))))/(2 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) (3 \alpha_0^2 - 12 \alpha_0 (\beta_1 - 2 \beta_3) + 16 (\alpha_5 \beta_1 + 2 \alpha_5 \beta_3 - 6 \beta_1 \beta_3 + \alpha_2 (\beta_1 + 2 \beta_3)))) > 0$
Polarisations:	3
Square mass:	$\frac{\frac{3(\alpha_0-4\beta_1)(\alpha_0+8\beta_3)}{16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)}}{16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)} > 0$
Spin:	1
Parity:	Even

Massive particle				
Pole residue:	$-((3(\alpha_0^2(3\alpha_4 + 3\alpha_5 + 4\beta_1 + 2\beta_2) + \alpha_0(-2\alpha_4\beta_1 - 2\alpha_5\beta_1 - 4\beta_1^2 + 2\alpha_4\beta_2 + 2\alpha_5\beta_2 + \beta_2^2) + \alpha_1(-2\beta_1\beta_2(2\beta_1 + \beta_2) + \alpha_1(2\beta_1^2 + \beta_2^2) + \alpha_2(2\beta_1^2 + \beta_2^2))))/(2(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)(3\alpha_0^2 + 6\alpha_0(-2\beta_1 + \beta_2) + \alpha_2(2\beta_1^2 + \beta_2^2))))) > 0$			
Polarisations:	3			
Square mass:	$\frac{\frac{3(\alpha_0 - 4\beta_1)(\alpha_0 + 2\beta_2)}{8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)}}{ 8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)} > 0$			
Spin:	1			
Parity:	Odd			

S.	。 つ	ס ו	7	ן ס	S	ا (
Square mass:	Polarisations:	Pole residue:	Massive particle	Parity:	Spin:	
$\frac{\alpha_0 (\alpha_0 - 4\beta_1)}{16 (\alpha_1 + \alpha_4) \beta_1} > 0$	5	$-\frac{2}{\alpha_0} + \frac{\alpha_1 + \alpha_4 + 2\beta_1}{2\alpha_1\beta_1 + 2\alpha_4\beta_1}$	е	Even	0	$4(\alpha_4+\alpha_6)\beta_2$

.~	
$\bigcup_{i \neq j} P = ($? $J^P = 0^-$
+	$\frac{1}{k^{\mu}}$
<u> </u> >	?

Parity	Spin:	Square mass:	Polarisations:	Pole residue:	Massive particle
Lven	0	$\frac{\alpha_0 (\alpha_0 + 2\beta_2)}{4 (\alpha_4 + \alpha_6) \beta_2} > 0$	1	$\frac{1}{\alpha_0} + \frac{\alpha_4 + \alpha_6 + 2\beta_2}{2\alpha_4\beta_2 + 2\alpha_6\beta_2}$	e

	Massive particle			
?	Pole residue:	$-\frac{1}{\alpha_2 + \alpha_3} > 0$		
$P = 0^-$	Polarisations:	1		
k^{μ}	Square mass:	$-\frac{\alpha_0+8\beta_3}{2(\alpha_2+\alpha_3)}>$		
?	Spin:	0		
	Parity:	Odd		

 $au_{0^+}^{#2} + \ \sigma_{0^-}^{#1} + \$

0

0

 $\tau_{0^{+}}^{\#1} +$

 $\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{\alpha_0(\alpha_0+2\beta_2)k-4(\alpha_4+\alpha_6)\beta_2k^3}$

 $\frac{\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2}{\frac{1}{2} \alpha_0 (\alpha_0 + 2 \beta_2) k^2 + 2 (\alpha_4 + \alpha_6) \beta_2 k^4}$

0

0

0

0

0

0

0

0

	Massive particl	le
•	Pole residue:	$-\frac{1}{\alpha_1 + \alpha_2} > 0$
0	Polarisations:	5
—- ?	Square mass:	$\left \frac{\alpha_0 - 4\beta_1}{4(\alpha_1 + \alpha_2)} > \right $
,	Spin:	2
	Parity:	Odd

?	.?	?
?	/	
	Po	<u> ا</u> ک

Quadratic pole

Pole residue: $\frac{1}{\alpha_0}$ > Polarisations: 2

Unitarity conditions