Elaborado por: Ing. José Miguel Barboza Retana

Respuestas #6. Integración compleja.

- 1) Por el Teorema Integral de Cauchy, la integral da 0 porque f(z) es completamente analítica en dentro y sobre todo el contorno de integración C.
- 2) 0
- 3) $12\pi i$
- 4) $-\frac{44}{3} j\frac{8}{3}$, para todos los casos
- 5) 0, para todos los casos
- 6) a) 0b) 2πj
- 7) a) b)
- 8) a) $\frac{4}{17}(9+j2)\pi$
- 9) a) $-\frac{3}{8}\pi j$ b) 0
- 10) a) $-j\frac{\pi}{2}$ b) $-2\pi j$
- 11) 0
- 12) a) 0 b) $2\pi j$

- 13) a) $-\frac{4}{9}\pi j$ b) $4\pi j$
- 14) $z = j \rightarrow -\frac{3}{10}j$ $z = -j \rightarrow \frac{3}{10}j$ $z = j\sqrt{6} \rightarrow j\frac{2}{15}\sqrt{6}$ $z = -j\sqrt{6} \rightarrow -j\frac{2}{15}\sqrt{6}$ a) 0
 b) $\frac{3}{5}\pi$ c) 0
- 15) a) 0 b) 0
- 16) a) (i) $2\pi j$, (ii) $6\pi j$ b) (i) (ii) c) (i0) 0, (ii) $\frac{19}{108}\pi j$, (iii) $-\frac{19}{108}\pi j$
- 17) a) $\frac{2\pi}{\sqrt{3}}$ b) $\frac{1}{2}\pi$ c) $\frac{5}{288}\pi$ d) $\frac{1}{12}\pi$ e) $\frac{8}{3}\pi$ f) g) π h) $\frac{\pi}{2\sqrt{2}}$ i) $\frac{1}{2}\pi$ j) $\left(1 - \frac{3}{\sqrt{5}}\right)\pi$