在网上找了一会,好像 MPU-6050 没有中文的数据手册,由于本人也处于学习阶段,翻译的可能不太准确,只能表达一下简单的意思,以官方数据手册为准。

引脚说明:

引脚编号	MPU-6000	MPU-6050	引脚名称	描述
1	Υ	Υ	CLKIN	可选的外部时钟输入,如果不用则
		·	OLIVII*	连到 GND
6	Y	Y	AUX_DA	I2C 主串行数据,用于外接传感器
7	Y	Y	AUX_CL	I2C 主串行时钟,用于外接传感器
8	Υ		/CS	SPI 片选(0=SPI mode)
8		Y	VLOGIC	数字 I/O 供电电压
9	Y		AD0/SDO	I2C Slave 地址 LSB (AD0);
9	ı		ADU/SDO	SPI 串行数据输出(SDO)
9		Y	AD0	I2C Slave 地址 LSB(AD0)
10	Y	Υ	REGOUT	校准滤波电容连线
11	Y	Y	FSYNC	帧同步数字输入
12	Y	Y	INT	中断数字输出(推挽或开漏)
13	Y	Y	VDD	电源电压及数字 I/O 供电电压
18	Y	Y	GND	电源地
19, 21, 22	Y	Y	RESV	预留,不接
20	Y	Y	CPOUT	电荷泵电容连线
22	Υ		SCL/SCLV	I2C 串行时钟 (SCL);
23	T		SCL/SCLK	SPI 串行时钟(SCLK)
23		Y	SCL	I2C 串行时钟 (SCL)
24	Υ		ena/eni	I2C 串行数据 (SDA);
24	T		SDA/SDI	SPI 串行数据输入(SDI)
24		Y	SDA	I2C 串行数据(SDA)
2, 3, 4, 5, 14,	Υ	Υ	NC	不接
15, 16, 17		1	NC	小妆

VDD 供电电压为 2.5V ±5%、3.0V ±5%、3.3V ±5%; VDDIO 为 1.8V ±5% 内建振荡器在工作温度范围内仅有 ±1%频率变化。可选外部时钟输入 32.768kHz 或 19.2MHz

找出几个重要的寄存器:

1) Register 25 -Sample Rate Divider (SMPRT_DIV)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
19	25				SMPLRT	_DIV[7:0]			

1) SMPLRT_DIV 8 位无符号值,通过该值将陀螺仪输出分频,得到采样频率

该寄存器指定陀螺仪输出率的分频,用来产生 MPU-60X0 的采样率。 传感器寄存器的输出、 FIFO 输出、 DMP 采样和运动检测的都是基于该采样率。 采样率的计算公式

采样率 = 陀螺仪的输出率 / (1 + SMPLRT_DIV)

当数字低通滤波器没有使能的时候,陀螺仪的输出平路等于 8KHZ,反之等于 1KHZ。

2) Register 26 - Configuration (CONFIG)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1A	26			EXT	SYNC_SET	[2:0]	0	LPF_CFG[2:0]

- 1) EXT_SYNC_SET 3 位无符号值,配置帧同步引脚的采样
- 2) DLPF_CFG 3 位无符号值,配置数字低通滤波器

该寄存器为陀螺仪和加速度计配置外部帧同步(FSYNC)引脚采样和数字低通滤波器 (DLPF)。

通过配置 EXT_SYNC_SET ,可以对连接到 FSYNC 引脚的一个外部信号进行采样。 FSYNC 引脚上的信号变化会被锁存,这样就能捕获到很短的频闪信号。

采样结束后,锁存器将复位到当前的 FSYNC 信号状态。

根据下面的表格定义的值,采集到的数据会替换掉数据寄存器中上次接收到的有效数据

EXT_SYNC_SET	FSYNC Bit Location				
0	Input disabled				
1	TEMP_OUT_L[0]				
2	GYRO_XOUT_L[0]				
3	GYRO_YOUT_L[0]				
4	GYRO_ZOUT_L[0]				
5	ACCEL_XOUT_L[0]				
6	ACCEL_YOUT_L[0]				
7	ACCEL_ZOUT_L[0]				

数字低通滤波器是由 DLPF_CFG 来配置,根据下表中 DLPF_CFG 的值对加速度传感器和陀

螺仪滤波

DLPF_CFG	Acceleror (F _s = 1k		Gyroscope				
	Bandwidth (Hz)	Delay (ms)	Bandwidth (Hz)	Delay (ms)	Fs (kHz)		
0	260	0	256	0.98	8		
1	184	2.0	188	1.9	1		
2	94	3.0	98	2.8	1		
3	44	4.9	42	4.8	1		
4	21	8.5	20	8.3	1		
5	10	13.8	10	13.4	1		
6	5	19.0	5	18.6	1		
7	RESER\	/ED	RESERV	/ED	8		

3) Register 27 - Gyroscope Configuration (GYRO_CONFIG)

Type: Read/Write

Regist (Hex	er Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1B	27	XG_ST	YG_ST	ZG_ST	FS_S	EL[1:0]	9	*	-

- 1) XG_ST 设置此位, X 轴陀螺仪进行自我测试。
- 2) YG_ST 设置此位, Y 轴陀螺仪进行自我测试。
- 3) ZG_ST 设置此位, Z 轴陀螺仪进行自我测试。
- 4) FS_SEL 2 位无符号值。选择陀螺仪的量程。

这个寄存器是用来触发陀螺仪自检和配置陀螺仪的满量程范围。

陀螺仪自检允许用户测试陀螺仪的机械和电气部分,通过设置该寄存器的

XG_ST、

YG_ST 和 ZG_ST bits 可以激活陀螺仪对应轴的自检。 每个轴的检测可以独立进行或同时进行。

自检的响应 = 打开自检功能时的传感器输出 - 未启用自检功能时传感器的输出 在 MPU-6000/MPU-6050 数据手册的电气特性表中已经给出了每个轴的限制范围。 当自检的响应值在规定的范围内,就能够通过自检;反之,就不能通过自检。

根据下表 , FS_SEL 选择陀螺仪输出的量程:

	FS_SEL	Full Scale Range
1	0	± 250 °/s
	1	± 500 °/s
	2	± 1000 °/s
	3	± 2000 °/s

- 4) Register 28 Accelerometer Configuration (ACCEL_CONFIG)
- 1) XA_ST 设置为 1时, X 轴加速度感应器进行自检。
- 2) YA_ST 设置为 1 时, Y 轴加速度感应器进行自检。
- 3) ZA_ST 设置为 1 时, Z 轴加速度感应器进行自检。
- 4) AFS_SEL 2 位无符号值。选择加速度计的量程。

具体细节和上面陀螺仪的相似。

根据下表, AFS_SEL 选择加速度传感器输出的量程。

N	AFS_SEL	Full Scale Range
٦	0	± 2g
	1	± 4g
١	2	± 8g
И	3	± 16g

5) Registers 59 to 64 —Accelerometer Measurements (ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L)

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
3B	59		ACCEL_XOUT[15:8]									
3C	60		ACCEL_XOUT[7:0]									
3D	61			AC	CEL_YOUT[15:8]						
3E	62			AC	CEL_YOUT[7:0]						
3F	63		ACCEL_ZOUT[15:8]									
40	64		ACCEL ZOUT[7:0]									

- 1) ACCEL_XOUT 16 位 2 ['] 补码值。 存储最近的 X 轴加速度感应器的测量值。
- 2) ACCEL_YOUT 16 位 2 * 补码值。 存储最近的 Y 轴加速度感应器的测量值。
- 3) ACCEL_ZOUT 16 位 2 ^{*} 补码值。 存储最近的 Z 轴加速度感应器的测量值。

这些寄存器存储加速感应器最近的测量值。

加速度传感器寄存器,连同温度传感器寄存器、陀螺仪传感器寄存器和外部感应数据寄存器,都由两部分寄存器组成(类似于 STM32F10X 系列中的影子寄存器) :一个内部寄存器,用户不可见。另一个用户可读的寄存器。 内部寄存器中数据在采样的时候及时的到更新,仅在串行通信接口不忙碌时, 才将内部寄存器中的值复制到用户可读的寄存器中去, 避免了直接对感应测量值的突发访问。

在寄存器 28 中定义了每个 16 位的加速度测量值的最大范围 , 对于设置的每个最大范围 , 都对应一个加速度的灵敏度 ACCEL_xOUT , 如下面的表中所示:

AFS_SEL	Full Scale Range	LSB Sensitivity
0	±2g	16384 LSB/g
1	±4g	8192 LSB/g
2	±8g	4096 LSB/g
3	±16g	2048 LSB/g

6) Registers 65 and 66 - Temperature Measurement (TEMP_OUT_H and TEMP_OUT_L)

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
41	65		TEMP_OUT[15:8]							
42	66				TEMP_OUT	[7:0]				

1) TEMP_OUT 16 位有符号值。 存储的最近温度传感器的测量值。

7) Registers 67 to 72 - Gyroscope Measurements (GYRO_XOUT_H, GYRO_XOUT_L, GYRO_YOUT_H, GYRO_YOUT_L, GYRO_ZOUT_H, and GYRO_ZOUT_L)

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
43	67				GYRO_XOU	T[15:8]			(0)		
44	68		GYRO_XOUT[7:0]								
45	69				GYRO_YOU	Γ[15:8]					
46	70				GYRO_YOU	Γ[7:0]					
47	71		GYRO_ZOUT[15:8]								
48	72		GYRO_ZOUT[7:0]								

这个和加速度感应器的寄存器相似

对应的灵敏度:

FS_SEL	Full Scale Range	LSB Sensitivity		
0	± 250 °/s	131 LSB/°/s		
1	± 500 °/s	65.5 LSB/°/s		
2	± 1000 °/s	32.8 LSB/°/s		
3	± 2000 °/s	16.4 LSB/°/s		

8) Register 107 - Power Management 1 (PWR_MGMT_1)

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
6B	107	DEVICE _RESET	SLEEP	CYCLE	50	TEMP_DIS	CLKSEL[2:0]		

该寄存器允许用户配置电源模式和时钟源。 它还提供了一个复位整个器件的位, 和一个关闭 温度传感器的位

- 1) DEVICE_RESET 置 1 后所有的寄存器复位,随后 DEVICE_RESET 自动置 0.
- 2) SLEEP 置 1后进入睡眠模式
- 3) CYCLE 当 CYCLE 被设置为 1,且 SLEEP 没有设置, MPU-60X0 进入循环模 式,为了从速度传感器中获得采样值, 在睡眠模式和正常数据采集模式之间切换, 每次获得 一个采样数据。在 LP_WAKE_CTRL (108)寄存器中,可以设置唤醒后的采样率和被唤醒 的频率。
- 4) TEMP_DIS 置 1 后关闭温度传感器
- 5) CLKSEL 指定设备的时钟源

时钟源的选择:

9) Register 117 – Who Am I (WHO_AM_I)

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75	117	- 4	WHO_AM_I[6:1]				-		

WHO_AM_I 中的内容是 MPU-60X0 的 6 位 I2C 地址

上电复位的第 6位到第 1位值为: 110100

为了让两个 MPU-6050 能够连接在一个 I2C 总线上,当 AD0 引脚逻辑低电平时,设备的地 址是 b1101000 , 当 AD0 引脚逻辑高电平时,设备的地址是 b1101001

(2013.01.24)

淘宝买的货终于到了,学习用所以没买好的,这个模块只要 18 块钱。

MPU-6000 可以使用 SPI 和 I2C 接口,而 MPU-6050 只能使用 I2C,其中 I2C 的地址由 ADO 引脚决定;寄存器共 117个,挺多的,下面的是精简常用的,根据具体的要求,适当的添加。

```
//采样率分频,典型值:
#define SMPLRT_DIV
                  0x19
                                             0x07(125Hz) */
#define CONFIG
                         // 低通滤波频率,典型值:
                                               0x06(5Hz) */
               0x1A
#define GYRO_CONFIG
                     0x1B
                            // 陀螺仪自检及测量范围,典型值:
                                                           0x18(不自检,
2000deg/s) */
                                                           典型值: 0x01(不
#define ACCEL_CONFIG 0x1C
                         // 加速计自检、 测量范围及高通滤波频率 ,
自检, 2G, 5Hz) */
#define ACCEL_XOUT_H 0x3B
                          // 存储最近的 X 轴、Y 轴、Z 轴加速度感应器的测量值
                                                                      */
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H
                         // 存储的最近温度传感器的测量值
                                                      */
                   0x41
#define TEMP_OUT_L
                   0x42
                                                                     */
#define GYRO_XOUT_H
                     0x43 // 存储最近的 X 轴、 Y 轴、 Z 轴陀螺仪感应器的测量值
#define GYRO_XOUT_L
                    0x44
#define GYRO_YOUT_H
                     0x45
#define GYRO_YOUT_L
                    0x46
```

#define PWR_MGMT_1 0x6B // 电源管理,典型值: 0x00(正常启用)*/

0x47

0x48

#define GYRO_ZOUT_H

#define GYRO_ZOUT_L

编程时用到的关于 I2C 协议规范:

信号	描述
S	开始标志: SCL 为高时 SDA 的下降沿
AD	从设备地址(Slave 地址)
W	写数据位 (0)
R	读数据位 (1)
ACK	应答信号: 在第 9 个时钟周期 SCL 为高时, SDA 为低
NACK	拒绝应答: 在第9个时钟周期, SDA一直为高
RA	MPU-60X0 内部寄存器地址
DATA	发送或接受的数据
Р	停止标志: SCL 为高时 SDA 的上升沿