```
# Import necessary libraries
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]:
         # Load the dataset
         df = pd.read_csv('bikes_sales_dataset.csv')
         df.head()
In [3]:
Out[3]:
                                                                                                                         Age Purchas
                                                                                            Commute
                   Martial
                                                                               Home
                            Gender Income Children Education Occupation
                                                                                                       Region Age
                                                                                      Cars
                                                                              Owner
                                                                                             Distance
                                                                                                                     Brackets
                                                                                                                                    В
                    Status
                                                                       Skilled
                                                                                                                      Middle
                            Female $40,000
                                                                                             0-1 Miles Europe
         0 12496 Married
                                                        Bachelors
                                                                                                                42
                                                                                 Yes
                                                                      Manual
                                                                                                                         Age
                                                           Partial
                                                                                                                       Middle
         1 24107 Married
                                                    3
                                                                      Clerical
                                                                                             0-1 Miles Europe
                                                                                                                43
                              Male $30,000
                                                                                 Yes
                                                         College
                                                                                                                         Age
                                                           Partial
                                                    5
                                                                  Professional
                                                                                             2-5 Miles
                                                                                                                         Old
         2 14177 Married
                              Male $80,000
                                                                                  No
                                                                                                       Europe
                                                                                                                 60
                                                          College
                                                                                                                       Middle
                                                                                                 5-10
         3 24381
                     Single
                              Male $70,000
                                                        Bachelors Professional
                                                                                 Yes
                                                                                                        Pacific
                                                                                                                41
                                                                                                Miles
                                                                                                                         Age
                                                                                                                      Middle
         4 25597
                     Single
                              Male $30,000
                                                       Bachelors
                                                                      Clerical
                                                                                             0-1 Miles Europe
                                                                                                                36
                                                                                  No
                                                                                                                         Age
         df.info()
In [4]:
```

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1000 entries, 0 to 999
       Data columns (total 14 columns):
            Column
                              Non-Null Count Dtype
           -----
                              -----
        0
            TD
                              1000 non-null
                                             int64
           Martial Status
                              1000 non-null
                                             object
        2
            Gender
                              1000 non-null
                                             object
                                             object
            Income
                              1000 non-null
            Children
                              1000 non-null
                                             int64
                                             object
            Education
                             1000 non-null
           Occupation
                                             object
                             1000 non-null
           Home Owner
                                             object
                             1000 non-null
                                             int64
            Cars
                              1000 non-null
        9
            Commute Distance 1000 non-null
                                             object
           Region
                                             object
        10
                              1000 non-null
           Age
        11
                             1000 non-null
                                             int64
        12 Age Brackets
                             1000 non-null
                                             object
        13 Purchased Bike
                                             object
                             1000 non-null
       dtypes: int64(4), object(10)
       memory usage: 109.5+ KB
In [5]: # Convert Income to numeric
        df['Income'] = df['Income'].replace('[\$,]', '', regex=True).astype(float)
        df.info()
In [6]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype			
0	ID	1000 non-null	int64			
1	Martial Status	1000 non-null	object			
2	Gender	1000 non-null	object			
3	Income	1000 non-null	float64			
4	Children	1000 non-null	int64			
5	Education	1000 non-null	object			
6	Occupation	1000 non-null	object			
7	Home Owner	1000 non-null	object			
8	Cars	1000 non-null	int64			
9	Commute Distance	1000 non-null	object			
10	Region	1000 non-null	object			
11	Age	1000 non-null	int64			
12	Age Brackets	1000 non-null	object			
13	Purchased Bike	1000 non-null	object			
dtynes float64(1) int64(4) object(9)						

dtypes: float64(1), int64(4), object(9)

memory usage: 109.5+ KB

In [7]: df.describe()

Out[7]:

	ID	Income	Children	Cars	Age
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000
mean	19965.992000	56360.000000	1.898000	1.442000	44.163000
std	5347.333948	31085.635215	1.628572	1.125123	11.364488
min	11000.000000	10000.000000	0.000000	0.000000	25.000000
25%	15290.750000	30000.000000	0.000000	1.000000	35.000000
50%	19744.000000	60000.000000	2.000000	1.000000	43.000000
75%	24470.750000	70000.000000	3.000000	2.000000	52.000000
max	29447.000000	170000.000000	5.000000	4.000000	89.000000

```
sns.pairplot(df[['Age', 'Income', 'Children', 'Cars', 'Purchased Bike']], diag_kind='kde')
 # Display the plot
 plt.suptitle('Pair Plot of Selected Features', y=1.02) # Add a title to the pair plot
 plt.show()
C:\ProgramData\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use inf as na option is deprecate
d and will be removed in a future version. Convert inf values to NaN before operating instead.
  with pd.option context('mode.use inf as na', True):
C:\ProgramData\anaconda3\Lib\site-packages\seaborn\_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecate
d and will be removed in a future version. Convert inf values to NaN before operating instead.
  with pd.option context('mode.use inf as na', True):
C:\ProgramData\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use inf as na option is deprecate
d and will be removed in a future version. Convert inf values to NaN before operating instead.
  with pd.option context('mode.use inf as na', True):
C:\ProgramData\anaconda3\Lib\site-packages\seaborn\ oldcore.py:1119: FutureWarning: use inf as na option is deprecate
d and will be removed in a future version. Convert inf values to NaN before operating instead.
  with pd.option context('mode.use inf as na', True):
```


Distribution of Age

```
In [9]: plt.figure(figsize=(10, 6))
    sns.histplot(df['Age'], bins=20, kde=True)
    plt.title('Distribution of Age')
    plt.xlabel('Age')
    plt.ylabel('Frequency')
    plt.show()
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecate
d and will be removed in a future version. Convert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):

- The age distribution appears to be roughly normal, with a majority of customers falling within a certain age range.
- The dataset includes a diverse range of ages, which may help in understanding the buying patterns across different age groups.

Gender Distribution

```
In [10]: plt.figure(figsize=(8, 6))
    sns.countplot(data=df, x='Gender')
    plt.title('Gender Distribution')
    plt.xlabel('Gender')
    plt.ylabel('Count')
    plt.show()
```


Observation:

- The dataset includes a roughly balanced number of male and female customers.
- This balance can help in analyzing if there are significant differences in purchasing behaviors between genders.

Income Distribution

```
In [11]: plt.figure(figsize=(10, 6))
    sns.histplot(df['Income'], bins=20, kde=True)
    plt.title('Distribution of Income')
    plt.xlabel('Income')
    plt.ylabel('Frequency')
    plt.show()
```

C:\ProgramData\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecate
d and will be removed in a future version. Convert inf values to NaN before operating instead.
 with pd.option_context('mode.use_inf_as_na', True):

- The income distribution shows a wide range, indicating that the dataset includes customers from various economic backgrounds.
- The presence of high-income customers might influence the purchasing behavior towards bikes.

Number of Bikes Purchased by Gender

```
In [12]: plt.figure(figsize=(10, 8))
    sns.countplot(data=df, x='Purchased Bike', hue='Gender')
    plt.title('Number of Bikes Purchased by Gender')
    plt.xlabel('Purchased Bike')
    plt.ylabel('Count')
    plt.show()
```


Observation:

- The visualization indicates whether there are significant differences in bike purchases between male and female customers.
- This can be useful in targeting marketing efforts towards the more likely gender group to purchase bikes.

Average Income by Occupation

```
In [13]: # Number of Bikes Purchased by Gender
plt.figure(figsize=(8, 6))
sns.countplot(data=df, x='Purchased Bike', hue='Gender')
plt.title('Number of Bikes Purchased by Gender')
plt.xlabel('Purchased Bike')
plt.ylabel('Count')
plt.show()
```


Observation:

- Different occupations have varying average incomes.
- Higher-income occupations might be more likely to purchase bikes, especially higher-end models.

Income Distribution by Bike Purchase

```
In [14]: plt.figure(figsize=(10, 6))
    sns.boxplot(data=df, x='Purchased Bike', y='Income')
    plt.title('Income Distribution by Bike Purchase')
    plt.xlabel('Purchased Bike')
    plt.ylabel('Income')
    plt.show()
```

Income Distribution by Bike Purchase

- Customers who purchased bikes might show different income patterns compared to those who did not.
- This can help in understanding if income is a significant factor in the decision to purchase a bike.

Age Brackets Distribution

```
In [15]: plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='Age Brackets')
    plt.title('Distribution of Age Brackets')
    plt.xlabel('Age Brackets')
    plt.ylabel('Count')
    plt.show()
```


Observation:

- The dataset includes various age brackets, showing the age diversity of the customer base.
- Analyzing purchasing behaviors across different age brackets can help in segmenting the market effectively.

Marital Status vs Purchased Bike

```
In [16]: plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='Martial Status', hue='Purchased Bike')
    plt.title('Marital Status vs Purchased Bike')
    plt.xlabel('Martial Status')
    plt.ylabel('Count')
    plt.show()
```

Marital Status vs Purchased Bike

- There might be observable differences in bike purchasing behavior based on marital status.
- Understanding this can help in tailoring marketing campaigns to target specific marital status groups more effectively.

Home Owner vs Purchased Bike

```
In [17]: plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='Home Owner', hue='Purchased Bike')
    plt.title('Home Owner vs Purchased Bike')
    plt.xlabel('Home Owner')
    plt.ylabel('Count')
    plt.show()
```


Observation:

- Homeownership might be an indicator of financial stability, which could influence bike purchasing decisions.
- Customers who own homes might have a higher likelihood of purchasing bikes.

Commute Distance vs Purchased Bike

```
In [18]: plt.figure(figsize=(10, 6))
    sns.countplot(data=df, x='Commute Distance', hue='Purchased Bike')
    plt.title('Commute Distance vs Purchased Bike')
    plt.xlabel('Commute Distance')
    plt.ylabel('Count')
    plt.show()
```

Commute Distance vs Purchased Bike

- The distance customers commute could influence their decision to purchase a bike.
- Customers with shorter commute distances might be more inclined to buy bikes for convenience.

Contact Information

For any queries or further information, please feel free to reach out to me through the following platforms:

• LinkedIn: Vinay Kumar Panika

• **GitHub**: Vinaypanika