Pràctica 3. Introducción al álgebra lineal numérica

Table of Contents

Matrices	′
Ejercicio 1. Álgebra lineal	′
Ejercicio 2. Normas matriciales	2
Ejercicio 3. Norma	
Métodos directos	
Ejercicio 4. Regla de Cramer	
Ejercicio 5. Sistemas triangulares superiores	
Ejercicio 6. Eliminación gaussiana [para la próxima sesión]	
, , , , , , , , , , , , , , , , , , , ,	

Matrices

Ejercicio 1. Álgebra lineal

Calcular el determinante, la transpuesta y la inversa de A. Probar a multiplicar la inversa por A por la izquierda y por la derecha y comparar con el resultado esperable. Calcular también los valores propios, los vectores propios y el radio espectral de la matriz A definida por:

```
A = 3 \times 3
                  1
     1
           7
                  3
    -2
                 10
ans =
   114
ans = 3 \times 3
          -2
     2
                 -1
     1
iA = 3 \times 3
   0.640350877192982 -0.184210526315789 -0.008771929824561
   0.201754385964912
                        0.078947368421053 -0.043859649122807
  -0.043859649122807
                        0.026315789473684
                                             0.096491228070175
AiA = 3 \times 3
                                               0.000000000000000
   1.0000000000000000
                        0.000000000000000
   0.0000000000000000
                         1.0000000000000000
                                               1.0000000000000000
  -0.000000000000000
                        0.000000000000000
iAA = 3 \times 3
   1.0000000000000000
                       -0.000000000000000
                                               0.000000000000000
  -0.000000000000000
                        1.0000000000000000
                                              1.0000000000000000
V = 3 \times 3
  -0.919030257845083
                        0.346326907490038
                                              0.243874364006417
  -0.388880012325729
                        0.920364115899649
                                              0.673449920758499
                                              0.697847045426745
   0.064464883298897
                        0.181624798176474
D = 3 \times 3
```

Ejercicio 2. Normas matriciales

Calcular las normas $||\cdot||_1$, $||\cdot||_2$ y $||\cdot||_{\infty}$ de las siguientes matrices:

a)
$$\binom{a+1}{a} \binom{a}{a-1}$$

 $n1 = \max(|a+1|+|a|,|a-1|+|a|)$
 $n1 = \max(|a+1|+|a|,|a-1|+|a|)$
 $n2 = \sqrt{\max(2|a|\sqrt{|a|^2+1}+2|a|^2+1,|2|a|^2-2|a|\sqrt{|a|^2+1}+1|)}$
 $nf = \sqrt{|a-1|^2+|a+1|^2+2|a|^2}$
b) $\binom{0}{-2} \binom{1}{-2} \binom{1}{0}$
 $A = 2 \times 2$
 $\binom{0}{0} \binom{1}{-2} \binom{1}{0}$
 $n1 = \binom{2}{0}$
 $n2 = \binom{2}{0}$
 $n2 = \binom{2}{0}$
 $n3 = \binom{2}{0}$
 $n4 = \binom{2}{0}$

Ejercicio 3. Norma p

Aproximar la norma p=2 matricial de una matriz 20×20 con números aleatorios uniformes en el intervalo [-2,2]. Para ello usar la definición y generar 1000 y 50000 vectores aleatorios. Comparar con la norma que da MATLAB. ¿Qué se observa?

Métodos directos

Documentación de MATLAB: Sistemas lineales - Systems of linear equations

MATLAB implementa métodos directos a través de los operadores de división de matrices / y \, así como funciones como decomposition, lsqminnorm, and linsolve. Verificar, cuando sea aplicable, que tu solución resuelve el sistema lineal Ax - b mediante la verificación de que $||Ax - b|| \le 10^{-10}$

Ejercicio 4. Regla de Cramer

Escribir una funcion y resolver el siguiente sistema lineal utilizando la regla de Cramer.

Ejercicio 5. Sistemas triangulares superiores

Escribir una función en MATLAB para encontrar la solución de un sistema lineal triangular superior mediante el método de sustitución hacia atrás. Resolver los siguientes sistemas y comparar la solución con la solución que proporciona MATLAB.

Juego de pruebas

 $x = 15 \times 1$ $10^4 x$

-3.592206364964321

```
a) \begin{cases} 3x - 2y + z - t = 8 \\ 4y - z + 2t = -3 \\ 2z + 3t = 11 \\ 5t = 15 \end{cases}
    b = 4 \times 1
           -3
           11
           15
    x = 4 \times 1
            2
           -2
            1
    xMatlab = 4 \times 1
           2
           -2
            1
             3
    norm dif =
           0
    isgood = logical
b) U = (u_{ij})_{15 \times 15} y b = (b_i)_{15 \times 1} con u_{ij} = \begin{cases} \cos(ij) & i \le j, \\ & y \qquad b_i = \tan(i). \end{cases}
```

```
-8.428354043861166
  -3.270368865664464
  -1.610905505542223
  -1.111322341835487
  -4.334472333346712
  -0.993609813652240
  -0.330174342206650
   0.271154729737024
   0.516544848629924
xMatlab = 15 \times 1
10<sup>4</sup> ×
  -3.592206364964331
  -8.428354043861169
  -3.270368865664466
  -1.610905505542224
  -1.111322341835487
  -4.334472333346713
  -0.993609813652239
  -0.330174342206650
   0.271154729737024
   0.516544848629924
norm_dif =
     1.090227729280795e-10
isgood = logical
   1
```

Ejercicio 6. Eliminación gaussiana [para la próxima sesión]

Generar un script en MATLAB para encontrar la solución de un sistema lineal Ax = b utilizando el método de eliminación gaussiana.

Juego de pruebas

$$e) \quad A = \begin{pmatrix} 10 & -7 & 0 & 1 \\ -3 & 2 & 6 & 0 \\ 5 & -1 & 5 & 0 \\ -1 & 0 & 2 & -1 \end{pmatrix} \qquad b = \begin{pmatrix} 7 \\ 4 \\ 6 \\ -3 \end{pmatrix}.$$

$$f) \quad A = \begin{pmatrix} 6 & -2 & 2 & 4 \\ 12 & -4 & 2 & 2 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{pmatrix} \qquad b = \begin{pmatrix} 12 \\ 34 \\ 27 \\ -38 \end{pmatrix}.$$

```
2.8973
          8.6486
          4.2324
        43.5676
    isgood = logical
        1
g) \ A = (a_{ij})_{51 \times 51} \ \mathbf{y} \ b = (b_i)_{51 \times 1} \ \mathsf{con} \ \ a_{ij} = \left\{ \begin{array}{ll} (-1)^i & i = j \ , \\ \\ 2 & 1 \leq |i-j| \leq 2 \ , \end{array} \right. \ \mathbf{y} \quad b_i = i \ .
   x = 51 \times 1
        39.9999
        22.4633
        -1.9634
       -48.2681
       -13.6767
        19.3109
        26.5823
        28.7071
       -17.5501
       -38.6966
    isgood = logical
        1
```

 $x = 4 \times 1$

Documento preparado por Irene Parada, 28 de febrero de 2024