MAST20005/MAST90058: Week 3 Problems

- 1. (a) Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$ where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Assume that σ^2 is known (i.e. it is a fixed, known value). Show the maximum likelihood estimator of μ is $\hat{\mu} = \bar{X}$.
 - (b) A random sample X_1, \ldots, X_n of size n is taken from a Poisson distribution with mean $\lambda > 0$.
 - i. Show the maximum likelihood estimator of λ is $\hat{\lambda} = \bar{X}$.
 - ii. Suppose with n=40 we observe 5 zeros, 7 ones, 12 twos, 9 threes, 5 fours, 1 five, and 1 six. What is the maximum likelihood estimate of λ ?
 - (c) Let X_1, \ldots, X_n be random samples from the following probability density functions. In each case find the maximum likelihood estimator $\hat{\theta}$.

i.
$$f(x \mid \theta) = \frac{1}{\theta^2} x \exp(-x/\theta), \quad 0 < x < \infty, \quad 0 < \theta < \infty$$

ii.
$$f(x \mid \theta) = \frac{1}{2\theta^3} x^2 \exp(-x/\theta), \quad 0 < x < \infty, \quad 0 < \theta < \infty$$

iii.
$$f(x \mid \theta) = \frac{1}{2} \exp(-|x - \theta|), -\infty < x < \infty, -\infty < \theta < \infty$$

Hint: The last part involves minimizing $\sum_{i=1}^{n} |x_i - \theta|$, which is tricky. Try $n = 5$ and the sample $\{6.1, -1.1, 3.2, 0.7, 1.7\}$. Then deduce the MLE in general.

2. Consider a random sample of n observations on X having the following pmf:

$$\begin{array}{c|cccc} x & 0 & 1 & 2 \\ \hline p(x) & 1 - \theta & 3\theta/4 & \theta/4 \end{array}$$

- (a) Find two unbiased estimators for θ : one based on \bar{X} , and one based on $Z = \text{freq}(0) = \sum_{i=1}^{n} I(X_i = 0)$ (i.e. the frequency of x = 0).
- (b) Compare the two estimators above in terms of their variance.
- 3. Let $f(x \mid \theta) = \theta x^{\theta-1}$, 0 < x < 1, $0 < \theta < \infty$ and let X_1, \ldots, X_n denote a random sample from this distribution. Note that,

$$\int_0^1 x\theta \, x^{\theta-1} dx = \frac{\theta}{\theta+1}.$$

- (a) Sketch the pdf of X for $\theta = 1/2$ and $\theta = 2$.
- (b) Show that $\hat{\theta} = -n/(\sum_{i=1}^{n} \ln X_i)$ is the maximum likelihood estimator of θ .
- (c) For each of the following three sets of observations from this distribution, compute the maximum likelihood estimates and the method of moments estimates.

X	Y	Z	
0.0256	0.9960	0.4698	
0.3051	0.3125	0.3675	
0.0278	0.4374	0.5991	
0.8971	0.7464	0.9513	
0.0739	0.8278	0.6049	
0.3191	0.9518	0.9917	
0.7379	0.9924	0.1551	
0.3671	0.7112	0.0710	
0.9763	0.2228	0.2110	
0.0102	0.8609	0.2154	
$\left(\sum_{i=1}^{n} \ln \right)$	$(x_i) = -$	-18.2063,	$\sum_{i=1}^{n} \ln(y_i) = -4.5246, \sum_{i=1}^{n} \ln(z_i) = -10.429$
$\sum_{i=1}^{n} x_i =$	= 3.7401	$\sum_{i=1}^{n} y_i$	$\sum_{i=1}^{n} \ln(y_i) = -4.5246, \sum_{i=1}^{n} \ln(z_i) = -10.429$ = 7.0592, \sum_{i=1}^{n} z_i = 4.6368)

- 4. Let X_1, \ldots, X_n be a random sample from the exponential distribution whose pdf is $f(x \mid \theta) = (1/\theta) \exp(-x/\theta), \ 0 < x < \infty, \ 0 < \theta < \infty.$
 - (a) Show that \bar{X} is an unbiased estimator of θ .
 - (b) Show that the variance of \bar{X} is θ^2/n .
 - (c) Calculate an estimate of θ if a random sample gave the following values:
 - 3.5 8.1 0.9 4.4 0.5
- 5. Let X_1, \ldots, X_n be a random sample from a distribution having finite variance σ^2 . Show that

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

is an unbiased estimator of σ^2 .

Hint: Use a result from question 4(a)(i) from week 2 to derive an alternative expression for S^2 and then compute $E(S^2)$.

- 6. Let X_1, \ldots, X_n be iid observations from $N(0, \theta^2)$. Consider the estimators S^2 and $\hat{\theta}^2 = n^{-1} \sum_{i=1}^n X_i^2$. Show that $\hat{\theta}^2$ is unbiased and $var(\hat{\theta}^2) < var(S^2)$ for any n > 1.
- 7. Let X_1, \ldots, X_n be iid observations from $X \sim \mathrm{N}(\mu, \sigma^2)$. Since X has a symmetric pdf, we might expect that both the sample mean \bar{X} and the sample median $\hat{\pi}_{0.5}$ will be good estimators of the population mean μ .
 - (a) Find the variance of \bar{X} .
 - (b) In general, the sample median will approximately follow a normal distribution, $\hat{\pi}_{0.5} \sim N(\pi_{0.5}, \pi/2 \times \sigma^2/n)$, where $\pi_{0.5}$ is the true median (we will learn more about this later in the semester). How does the variance of the sample median compare with that of the sample mean?
 - (c) Are the estimators biased?
 - (d) Which estimator do you expect to be more accurate?