

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

End-Spring Semester 2016-17

Date of Examination: 24/04/2017(AN) Duration 3hours Marks: 50

Subject No.: MA60056 (Regression and Time Series Models)

Department: Mathematics

Students: PGDBA core + BTech/MSc elective (92)

Questions:

- 1. State whether the following statements are true or false. In each case, justify your answer. [10 marks]
 - 1.1. Let $\{Z_t\}$ be a sequence of independent normal random variables with mean 0 and variance σ^2 . Then for any real constants a and b, the time series defined by $X_t = a + bZ_t$ is a stationary series.
 - 1.2. Let $\{X_t\}$ be a time series where all the random variables X_t are identically distributed. Then the series $\{X_t\}$ is strictly stationary.
 - 1.3. Every iid sequence of random variables is a stationary series but not necessarily strictly stationary.
 - 1.4. Let $\{X_t\}$ and $\{Y_t\}$ are uncorrelated stationary processes, that is, X_r is uncorrelated with Y_s for every r and s. Then the process $\{X_t + Y_t\}$ is also stationary.
 - 1.5. Consider a standard regression problem $y_i = \alpha_0 + \alpha_1 x + \epsilon_i$ where i = 1, 2, ..., n and $\epsilon_i \sim N(0, \sigma^2)$ are iid for i = 1, 2, ..., n. The maximum likelihood estimators for the parameters α_0 and α_1 are same as those of the least squares estimators.
- 2. Let $Y = X\beta + \epsilon$ be a multiple linear regression model where $Y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^p$ and $\epsilon \sim N(0, \sigma^2 I_n)$. Derive the principal component regression estimator of β . Is this estimator an unbiased estimator of β ? Show that the variance of this PCA estimator is smaller than that of the least squares estimator. [8 marks]

- 3. Compute the auto covariance function of the time series $X_t = Z_t + 0.3Z_{t-1} 0.4Z_{t-2}$ where $\{Z_t\}$ is a white noise process with mean zero and variance 1. [4 marks]
- 4. Let $\{Z_t\}$ be an iid N(0,1) process.

Define
$$X_t = \begin{cases} Z_t & for \ t \ even \\ (Z_t^2 - 1)/\sqrt{2} & for \ t \ odd \end{cases}$$

Then show that $\{X_t\}$ is a white noise process with mean 0 and variance 1. [4 marks]

- 5. Let X_1, X_2, X_4, X_5 be observations from the time series model $X_t = Z_t + \theta Z_{t-1}$ where Z_t is a white noise process with mean 0 and variance σ^2 and θ is a real constant.
 - 5.1. Compute the best linear estimate of the missing value X_3 from X_1 and X_2 . [2 marks]
 - 5.2. Compute the best linear estimate of the missing value X_3 from X_4 and X_5 . [2 marks]
 - 5.3. In each of the above cases, compute the mean squared errors of the estimates. [4 marks]
- 6. Consider $y_i = x_i^T \beta + \epsilon_i$ for i = 1, 2, ..., n be a regression model where $x_i \in \mathbb{R}^p$ are the observed values of regressors, $\beta \in \mathbb{R}^p$ is the parameter vector to be estimated and noise $\epsilon_i \sim N(0, \sigma_i^2)$ are independent. In such a setting, pose the weighted regression problem stating the need for doing so. Derive the expression for the estimator of β in the weighted regression case. Discuss whether this estimator is unbiased. Further, compute the variance of this estimator. [8 marks]
- 7. Tests for checking if a given time series data $x_1, x_2, ..., x_n$ is a realization of an iid sequence of length n.
 - 7.1. The turning point test: A turning point at time i is defined as a point if $x_{i-1} < x_i$ and $x_i > x_{i+1}$ or $x_{i-1} > x_i$ and $x_i < x_{i+1}$. Let T denotes the number of turning points in the given time series data. What is the distribution of this random variable T in case of an iid data of length n. Using this construct a test to check if the given time series data is a realization of an iid sequence of length n. [4 marks]
 - 7.2. The difference-sign test: Let S denote the number of time instances i such that $x_i x_{i-1}$ is positive. Construct a test using this random variable S to check if the given time series data is a realization of an iid sequence of length n. [4 marks]