Training and Testing Hazard Parent Nodes: Wind and Rain

```
# Environment: Clear working environment
rm(list = ls())

# load libraries
library(rpart)
library(here)
library(rpart.plot)
library(caret)
library(ggplot2)
```

Reusable functions

```
rmse <- function(actual, predicted) {
   sqrt(mean((actual - predicted)^2))
}</pre>
```

Inputs

```
# inputs
base_train <- read.csv(here("data", "base_train.csv"))
base_validation <- read.csv(here("data", "base_validation.csv"))
base_test <- read.csv(here("data", "base_validation.csv"))

# Combining train and validation datasets to one
# Because we are going to use CV to train the models later
# naming it df_base_train2 to remain consistent with df naming
df_base_train2 <- rbind(base_train, base_validation)

cat("number of rows in combined train data:", nrow(df_base_train2), sep = " ")</pre>
```

number of rows in combined train data: 7184

Wind Model Training & Testing

Decision trees

Optimizing For Best parameters

```
set.seed(123)
# Define training control
control <- trainControl(method = "cv", number = 5)
# Set tuning grid</pre>
```

```
grid <- expand.grid(</pre>
  cp = seq(0.001, 0.05, by = 0.005) # try several cp values
# Train model
dec_base_wind_model_tuned <- train(</pre>
  wind_max ~ track_min_dist + island_groups, data = df_base_train2,
 method = "rpart",
 trControl = control,
  tuneGrid = grid
)
print(dec_base_wind_model_tuned)
## CART
##
## 7184 samples
##
      2 predictor
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 5748, 5746, 5747, 5747, 5748
## Resampling results across tuning parameters:
##
##
           RMSE
                     Rsquared
                                 MAE
     ср
##
    0.001 8.303410 0.7865472 5.728446
##
    0.006 8.735074 0.7637364 6.015736
    0.011 8.906656 0.7543552 6.312006
##
     0.016 8.906656 0.7543552 6.312006
##
    0.021 8.906656 0.7543552 6.312006
##
    0.026 8.906656 0.7543552 6.312006
##
    0.031 8.906656 0.7543552 6.312006
     0.036 9.171699 0.7393462 6.460167
##
##
    0.041 9.514772 0.7200191 6.761375
     0.046 9.681026 0.7097058 6.872794
##
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.001.
plot(dec_base_wind_model_tuned)
```


rmse of tuned decision tree of wind model 21.13228

Linear Regression

rmse of decision tree of wind model 20.9515

Output

We output the caret tuned decision tree model

Rain Model Training & Testing

```
rpart.plot(base_rain_model)
```


rmse of decision tree of rain model 129.4887

Optimizing For Best parameters

```
set.seed(123)
# Define training control
control <- trainControl(method = "cv", number = 5)

# Set tuning grid
grid <- expand.grid(
   cp = seq(0.001, 0.07, by = 0.005) # try several cp values
)

# Train model
dec_base_rain_model_tuned <- train(
   rain_total ~ track_min_dist + island_groups, data = df_base_train2,</pre>
```

```
method = "rpart",
 trControl = control,
 tuneGrid = grid
print(dec_base_rain_model_tuned)
## CART
##
## 7184 samples
##
     2 predictor
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 5748, 5747, 5746, 5747, 5748
## Resampling results across tuning parameters:
##
##
           RMSE
    ср
                      Rsquared
                                 MAE
##
    0.001
          99.72339 0.3194382 67.47874
##
    0.006
           99.95717 0.3147058 67.79174
##
    0.011 100.20194 0.3113975 67.87942
    0.016 100.51143 0.3070774 68.11902
##
##
    0.021 101.07087 0.2992208 68.40240
##
    0.026 102.18927 0.2832561 69.84635
##
    0.031 102.18927 0.2832561 69.84635
##
    0.036 103.27638 0.2684042 71.32285
##
    0.041 103.27638 0.2684042 71.32285
    0.046 103.27638 0.2684042 71.32285
##
##
    0.051 103.27638 0.2684042 71.32285
    0.056 103.27638 0.2684042 71.32285
##
##
    0.061 103.27638 0.2684042 71.32285
##
    0.066 103.27638 0.2684042 71.32285
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was cp = 0.001.
plot(dec_base_rain_model_tuned)
```


rmse of tuned decision tree of rain model 130.3024

Saving Tuned Rain_Total Decision Tree Model