Местная система координат линейного объекта

Обсудить в форуме Комментариев — 0

Эта страница опубликована в основном списке статей сайта по адресу http://gis-lab.info/qa/local-cs-linear-object.html

Конструирование проекции для представления системы координат линейного объекта в ГИС

Содержание

- 1 Введение
- 2 Постановка задачи
- 3 О проекции
- 4 Определение параметров
 - о <u>4.1 Решение обратной</u> <u>геодезической задачи</u>
 - о 4.2 Построение проекции
- 5 Вторая проекция
- 6 Тестирование
- 7 Заключение
- 8 Ссылки

Введение

Система координат линейного объекта строится для эксплуатации протяжённого инженерного сооружения. Принципы построения проекции сходны с классическим подходом, изложенным в статье <u>«Добавление местной координатной системы в GIS»</u>. Однако постановка задачи отличается.

Постановка задачи

На оси сооружения задана линия положением двух его конечных точек в глобальной системе координат (ГСК).

Пусть в местной системе (МСК) начало координат совмещено с первой точкой, расстояние между точками задано величиной L, а ось OX направлена вдоль оси сооружения наружу. В такой системе координаты второй точки будут равны X = -L, Y = 0.

Требуется подобрать проекцию, подходящую для представления такой МСК в ГИС.

О проекции

Выбор проекции однозначен. Это косая проекция Меркатора с такими значениями параметров, чтобы так называемая начальная линия (линия наименьшего масштаба) проходила через конечные точки, а расстояние между этими точками равнялось L.

Для косой проекции Меркатора задаются следующие параметры:

- широта и долгота центра проекции φ_0, λ_0
- азимут начальной линии α
- разворот координатных осей у
- масштаб на начальной линии k_0
- прямоугольные координаты в центре проекции x_0, y_0

Азимут начальной линии должен находиться в диапазоне $-90^{\circ} < \alpha < +90^{\circ}$. Таким образом, если разворот γ не задан, ось *OY* будет направлена вдоль начальной линии в северную полуплоскость, *OX* в восточную.

Азимут α не может равняться 0°. Если ось направлена вдоль меридиана, выбирайте проекцию Гаусса-Крюгера. Также α не может принимать значения ± 90 °. Это тоже не проблема, поскольку в окрестности таких значений азимут вдоль геодезической линии меняется довольно быстро, и можно выбрать центр проекции на некотором удалении от первоначально выбранной точки.

Разворот у первоначально вводился для компенсации начального разворота осей, чтобы вернуть оси *OY* направление строго на север. Для нас это великолепная возможность управлять ориентацией осей МСК произвольно.

Определение параметров

Приведём данные тестового примера. Осевая линия задана положением конечных точек на эллипсоиде WGS 84: φ_1 = 51° с.ш., λ_1 = 22° в.д., φ_2 = 50° с.ш., λ_2 = 20° в.д. Расстояние вдоль оси задано длиной L = 180300 м.

Рассмотрим последовательность решения задачи с использованием **PROJ.4**. Вид строки параметров таков:

```
+proj=omerc +lat_0=\phi_0 +lonc=\lambda_0 +alpha=\alpha +gamma=\gamma +k_0=k_0 +x_0=x_0 +y_0=y_0
```

Простой подход состоит в том, чтобы поместить центр проекции в первую точку. В соответствии с постановкой задачи определяются следующие параметры:

```
+lat 0=51 +lonc=22 +x 0=0 +y 0=0
```

Для определения параметра *alpha* нужно решить обратную геодезическую задачу и найти азимут в первой точке на вторую α_{12} . Здесь возможны два случая:

- вторая точка севернее первой, $-90^{\circ} < \alpha_{12} < +90^{\circ}$; alpha = α_{12}
- вторая точка южнее первой, $90^{\circ} < \alpha_{12} < 270^{\circ}$; alpha = $\alpha_{12} 180^{\circ}$

Поскольку поставлена задача на ось OX вдоль начальной линии в противоположную сторону от второй точки, параметру gamma присвоим значение -90° в первом случае и $+90^{\circ}$ во втором.

Значение параметра k_0 также можно оценить по результатам решения обратной геодезической задачи: $k_0 = L/S$, где L — заданная длина линии, S — длина геодезической из решения ОГЗ.

Решение обратной геодезической задачи

Итак, из решения ОГЗ мы хотим получить азимут α_{12} и расстояние S, нужные для определения параметров alpha и k O соответственно.

Пикантность ситуации придаёт тот факт, что на эллипсоиде через две точки проходит геодезическая линия, которая в блестящей математике косой проекции сэра Мартина Хотайна отображается в кривую на апосфере, не совпадающую с дугой большого круга. Расчёты показывают, что вследствие этого точность соответствия $alpha = \alpha_{12}$ и $k_0 = L/S$ при расстояниях в несколько десятков километров перестаёт удовлетворять требованиям геодезии.

Впрочем, многие объекты имеют скромные размеры «всего» в несколько километров, и для них этот неприятный момент имеет исключительно теоретическое значение.

Однако есть ещё одно обстоятельство. Утилита **geod** из пакета **PROJ.4** версии 4.9.0 будет решать геодезические задачи на эллипсоиде, используя библиотеку **GeographicLib**. Но сегодня в ходу **PROJ.4** версии 4.8.0, и **geod** умеет считать только для сферы.

Так или иначе, надо научиться обходиться подручными средствами.

Подготовим файл данных с координатами конечных пунктов inv.dat:

и решим ОГЗ:

```
$ geod -I -f "%.10f" -F "%f" +ellps=WGS84 +units=m inv.dat
```

Возможно, в следующей версии **PROJ.4** результатом этой команды будет решение на эллипсоиде. Сегодня же из решения на сфере радиусом, равным экваториальному радиусу эллипсоида WGS 84, получилась такая строка значений α_{12} , α_{21} , S:

```
-127.3948484062 51.0617802663 180119.673397
```

Построение проекции

По результатам решения ОГЗ построим черновую проекцию. Поскольку $\varphi_2 < \varphi_1$, имеет место второй вариант; примем $alpha = \alpha_{12} + 180^\circ = 52.6051515938^\circ$, $gamma = +90^\circ$. Масштабный коэффициент пока приравняем единице: $k_0 = 1$. Получен предварительный набор параметров:

```
+proj=omerc +lat_0=51 +lonc=22 +alpha=52.6051515938 +gamma=90 +k_0=1 +x_0=0 +y_0=0
```

Подготовим файл с координатами конечных точек **p12.dat**:

```
22 5120 50
```

Выполним команду:

```
proj -f \ "%f" + proj = omerc + lat_0 = 51 + lonc = 22 + alpha = 52.6051515938 + gamma = 90 + k_0 = 1 + x 0 = 0 + y 0 = 0 + ellps = WGS84 p12.dat
```

Программа выдаёт координаты первой и второй точек x_1 , y_1 и x_2 , y_2 в МСК:

```
-0.000000 0.000000
-180292.238188 238.386305
```

Координаты первой точки равны нулю, как и должно быть. Координаты второй точки отличаются от ожидаемых значений -L и 0. Ненулевая величина y_2 говорит о том, что начальная линия проходит мимо второй точки. Значит, нужно подобрать параметр alpha, чтобы ис промах.

Численные методы отлично справляются с поиском корня уравнения $x_2(alpha) = 0$. Добавим немного геометрии в задачу и будем улучшать значение параметра по формуле $alpha' = alpha - \arctan(y_2 - y_1) / (x_2 - x_1)$. Может, это не очень эффективно, но через пять итераций при alpha = 52.6809193468 получаем такие координаты:

```
-0.000000 0.000000
-180292.395746 0.000000
```

Вычисляем параметр k_0 по формуле $k_0 = -L/(x_2 - x_1) = 180300/180292.238188 = 1.0000421773.$

Запуск ргој с окончательным набором параметров:

```
proj -f "%f" +proj=omerc +lat_0=51 +lonc=22 +alpha=52.6809193468 +gamma=90
```

```
+k 0=1.0000421773 +x 0=0 +y 0=0 +ellps=WGS84 p12.dat
```

Результаты:

```
-0.000 0.000
-180300.000 0.000
```

Проекция построена.

Вторая проекция

Нередко требуется вторая проекция, являющаяся зеркальным отражением первой: начало координат МСК-2 во второй точке, ось OX направлена вдоль оси в сторону, противоположную направлению на первую точку. Таким образом МСК-2 развёрнута по отношению к МСК-1 на 180° и смещена вдоль оси OX на длину L.

Последнее предложение имеет особый смысл для выбора способа построения МСК-2. Если выбрать способ, изложенный для МСК-1, только с центром проекции во второй точке и опорой на азимут α_{21} , выяснится, что апосфера во втором случае будет не та, что в первом, и большие круги, проходящие через две точки, не совпадают. Правда, разница незаметна, пока расстояние не достигает величин в несколько десятков километров.

Таким образом, если нужна пара взаимоувязанных МСК, вторая система строится на параметрах первой. Параметр gamma изменяем на 180°, параметру x_0 присваиваем значение -L, всего-то и делов.

Тестирование

Создадим файл с координатами двух точек **pt34.dat** на эллипсоиде:

```
21 51
21 50
```

Вычислим координаты в МСК-1:

Вычислим координаты в МСК-2:

Калькулятор подтверждает, что:

- суммы координат x соответствующих точек равны -L
- суммы координат у соответствующих точек равны нулю

Заключение

Рассмотренный способ построения проекции прост, поскольку позволяет заменить знание математической картографии обращением к **PROJ.4**, который используется как чёрный ящик.

В косой проекции Меркатора масштаб отображения вдоль начальной линии не является постоянным, поскольку при изменении широты меняется кривизна сечения эллипсоида. Это несущественно для объектов длиной в несколько километров, но становится заметным при очень больших длинах. Чтобы уменьшить эффект, центр проекции располагают в середине линии.

В этом случае задача построения проекции по двум точкам усложняется: центр проекции нужно поместить на дугу большого круга, проходящего через конечные точки. Пожалуй, всё же проще использовать для решения таких задач сферическую тригонометрию на апосфере.

Ссылки

- Map Projections A Working Manual, Snyder J. P., USGS Professional Paper 1395, 1987
- Coordinate Conversions and Transformations including Formulas, EPSG Guidance Note 7, 2002
- Hotine Oblique Mercator
- man proj PROJ.4
- man_geod PROJ.4
- GeographicLib
- Добавление местной координатной системы в GIS

Обсудить в форуме Комментариев — 0

Последнее обновление: 2014-12-03 17:58

Дата создания: 20.11.2014

Автор(ы): <u>ErnieBoyd</u>