TMT 4185 - Øving 3

- **4.2** Calculate the number of vacancies per cubic meter in gold at 900°C. The energy for vacancy formation is 0.98 eV/atom. Furthermore, the density and atomic weight for Au are 18.63 g/cm³ (at 900°C) and 196.9 g/mol, respectively.
- **4.4** Below, atomic radius, crystal structure, electronegativity, and the most common valence are tabulated, for several elements; for those that are nonmetals, only atomic radii are indicated.

	Atomic							
	Radius	Crystal	Electro-					
Element	(nm)	Structure	negativity	Valence				
Ni	0.1246	FCC	1.8	+2				
С	0.071							
Н	0.046							
0	0.060							
Ag	0.1445	FCC	1.9	+1				
Al	0.1431	FCC	1.5	+3				
Co	0.1253	HCP	1.8	+2				
Cr	0.1249	BCC	1.6	+3				
Fe	0.1241	BCC	1.8	+2				
Pt	0.1387	FCC	2.2	+2				
Zn	0.1332	HCP	1.6	+2				

Which of these elements would you expect to form the following with nickel:

- **(a)** A substitutional solid solution having complete solubility
- **(b)** A substitutional solid solution of incomplete solubility
- (c) An interstitial solid solution
- **4.9** Calculate the composition, in weight percent, of an alloy that contains 105 kg of iron, 0.2 kg of carbon, and 1.0 kg of chromium.
- **4.10** What is the composition, in atom percent, of an alloy that contains 33 g copper and 47 g zinc?
- **4.27** For an FCC single crystal, would you expect the surface energy for a (100) plane to be greater or less than that for a (111) plane? Why? (*Note:* You may want to consult the solution to Problem 3.53 at the end of Chapter 3.)

4.29

- (a) For a given material, would you expect the surface energy to be greater than, the same as, or less than the grain boundary energy? Why?
- (b) The grain boundary energy of a small angle grain boundary is less than for a high angle one. Why is this so?

- **4.D1** Aluminum–lithium alloys have been developed by the aircraft industry to reduce the weight and improve the performance of its aircraft. A commercial aircraft skin material having a density of 2.47 g/cm³ is desired. Compute the concentration of Li (in wt%) that is required.
- **5.7** A sheet of steel 2.5 mm thick has nitrogen atmospheres on both sides at 900°C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is $1.2 \times 10^{-10} \, \text{m}^2/\text{s}$, and the diffusion flux is found to be $1.0 \times 10^{-7} \, \text{kg/m}^2 \text{s}$. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is $2 \, \text{kg/m}^3$. How far into the sheet from this highpressure side will the concentration be $0.5 \, \text{kg/m}^3$? Assume a linear concentration profile.
- **5.11** Determine the carburizing time necessary to achieve a carbon concentration of 0.30 wt% at a position 4 mm into an iron–carbon alloy that initially contains 0.10 wt% C.The surface concentration is to be maintained at 0.90 wt% C, and the treatment is to be conducted at 1000°C. Use the diffusion data for y-Fe in Table 5.2.

Table 5.2 A Tabulation of Diffusion Data

Diffusing Species	Host	$D_0(m^2/s)$	Activation Energy Q_d		Calculated Values	
	Metal		kJ/mol	eV/atom	$T(^{\circ}C)$	$D(m^2/s)$
Fe	α-Fe (BCC)	2.8×10^{-4}	251	2.60	500 900	3.0×10^{-21} 1.8×10^{-15}
Fe	γ-Fe (FCC)	5.0×10^{-5}	284	2.94	900 1100	$1.1 \times 10^{-17} \\ 7.8 \times 10^{-16}$
C	α-Fe	6.2×10^{-7}	80	0.83	500 900	$2.4 \times 10^{-12} \\ 1.7 \times 10^{-10}$
С	γ-Fe	2.3×10^{-5}	148	1.53	900 1100	5.9×10^{-12} 5.3×10^{-11}
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-19}
Zn	Cu	2.4×10^{-5}	189	1.96	500	4.0×10^{-18}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Al	6.5×10^{-5}	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-13}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3×10^{-22}

Source: E. A. Brandes and G. B. Brook (Editors), *Smithells Metals Reference Book*, 7th edition, Butterworth-Heinemann, Oxford, 1992.

5.27

- (a) Calculate the diffusion coefficient for magnesium in aluminum at 450°C.
- **(b)** What time will be required at 550°C to produce the same diffusion result (in terms of concentration at a specific point) as for 15 h at 450C?

Eksamensoppgave:

Oppgave 1

(English version below)

a١

Diffusjon i fast fase er en viktig prosess. Beskriv de to viktigste mekanismene man ser for seg for diffusjon i fast fase.

b)
En titanstav inneholder i utgangspunktet 0,0001 vekt% (= 0,0045 kg/m³) nitrogen. Den ene enden av denne kvadratiske staven, med tverrsnittsareal på 100 cm², eksponeres til en nitrogenatmosfære ved 900°C. Dette resulterer i at det dannes et TiN belegg, der veksten av dette sjiktet er diffusjonsavhengig.
Overfatekonsentrasjonen av nitrogen ved disse betingelser tilsvarer 0,1 vekt%. Man har oppnådd et tilstrekkelig tykt belegg når konsentrasjonen ved I = 0,1 mm under overflaten er 0,01 vekt%.

Diffusjonskoeffisienten for nitrogen i titan er oppgitt til å være 10^{-12} m²/s ved denne temperaturen. Hvor lang tid må prøvestykket holdes ved disse betingelsene for å oppnå ønsket TiN sjikt?

Exercise 1

a)

Diffusion is an important process. Describe the two most important mechanisms for diffusions in solids.

b) A titanium rod has a bulk composition of 0.0001 wt% (= 0.0045 kg/m³) nitrogen. One end of this quadratic rod, with a cross-section area of 100 cm², is exposed to a nitrogen atmosphere at 900°C. As a result a thin TiN layer is formed, and the growth of this layer is controlled by diffusion. Under these conditions the surface concentration of nitrogen amounts to 0.1 wt%. The thickness of the layer is sufficient when the concentration of nitrogen at I = 0.1 mm from the surface is 0.01 wt%.

The diffusion coefficient of nitrogen in titanium at this temperature is 10–12 m²/s. What is the required exposure time in order to reach the desired TiN layer?