

Water models in classical simulations

Maria Fyta

Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany

<u>Water</u>

- transparent, odorless, tasteless and ubiquitous
- really simple: two H atoms attached to single O atom
- •extraordinary substance:
 - importance as a solvent, a solute, a reactant and a biomolecule, structuring proteins, nucleic acids and cells
 - about 2/3 of human body, 93.3% of blood
- hundred times as many water molecules in our bodies as the sum of all the other molecules put together

life cannot evolve or continue without liquid water (solvation of biomolecules (DNA), ions, proteins)

 but poorly understood: small size but complex with enormous capabilities

Material: http://www.lsbu.ac.uk/water/

Water models in computer simulations, C. Caleman (2007)

Jindřich Soukup, William Pfalzgraft Schola ludus 2010, Nové Hrady

Melting of ice, ice structure

Water droplet at a graphitic surface by M. Sega

History

- √1932 Spectroscopic proofs of the V-shaped water molecule
- √1933 Bernal and Fowler [J.Chem. Phys. 1, 515 (1933)] propose 1st realistic interaction potential for water
- √1953 Metropolis et al [J. Chem. Phys. 21, 1087 (1953)] presents the 1st
 Monte Carlo sampling scheme
- √ 1957 Adler and Wainwright [J.Chem. Phys. 27, 1208 (1957)] performed
 1st MD simulation
- √ 1969 Baker and Watts [J.Chem. Phys. Lett. 3, 144 (1969)] 1st computer simulations of water
- ✓ 1976 Lie et al, [J. Chem. Phys. 64, 2314 (1976)] 1st pair potential from ab initio calculations for water
- √ 1981 Berendsen et al [ntermolecular Forces, Reidel Publ.] construct the
 1st "accurate" and simple pair potential for liquid water
- ✓ 1993 Laasonen et al [J. Chem. Phys. 99, 9080 (1993)] 1st ab initio calculations for liquid water

Water molecule: H₂O

tiny and V-shaped; molecular diameter about 2.75 Å. liquid state, in spite of 80% of the electrons involved in bonding, the three atoms do not stay together as the hydrogen atoms are constantly exchanging between water molecules due to (de)protonation.

Many different classical water models

electron density distribution of H₂O

modelling parameters:

- number of charges
- interactions
- dipole moment

Why is water such a good solvent?

http://www.edinformatics.com/interactive_molecules/water.htm

- Polar substance
 - good for dissolving salts, ions...
 - Large relative dielectric constant (≈80)

Hydrogen bonds

- network former, liquid water has structure
- an atom of hydrogen is attracted by rather strong forces to two atoms instead of only one,
- a high cohesiveness and, thus, surface tension

Hydrogen Bonds

In water, the strength of hydrogen bonds are about 5 kcal/mol ≈ 8.4 k_BT

What do we get, if we calculate the electrostatic energy of an H-O pair?

$$E/k_BT = l_B \frac{q_1 \cdot q_2}{r} = 7.1 \frac{0.8 \cdot 0.4}{1.8}$$

$$\approx 1.25 \text{ k}_{\text{B}}\text{T}$$

Question: Why so low?

Answer: In this model, van der Waals contribution need to be

taken into account! Effective interactions...

Water parameterization

- each model developed to fit well with one particular physical structure or parameter (e.g., the density anomaly, radial distribution function, critical parameters
- •the more fitting parameters that are required by the model (and some require over 50), the better the fit
- •some models show a lack of robustness due to their sensitivity to the precise model parameters, system size or simulation method
- •some are polarizable, others reproduce 'average' structures
- •Note: Water molecules in liquid water are all non-equivalent (differ in molecular orbitals, precise geometry, molecular vibrations) due to hydrogen bonding status (influenced by arrangements of surrounding water molecules

Water models: mainly 4 structures, 3-5 interaction points

a, b, c:planar d:tetrahedral

q₂: mid-point in c lone-pairs in d

Water models - parameters

Model	Type	σÅ ⁶	εkJ mol ^{-1 6}	l ₁ Å	l ₂ Å	q ₁ (e)	q ₂ (e)	6°	φ°
SSD [511]	_8	3.016	15.319	-	-	-	-	109.47	109.47
SPC [94]	a	3.166	0.650	1.0000	-	+0.410	-0.8200	109.47	-
SPC/E [3]	a	3.166	0.650	1.0000	-	+0.4238	-0.8476	109.47	-
SPC/HW (D ₂ O) [220]	а	3.166	0.650	1.0000	-	+0.4350	-0.8700	109.47	-
SPC/Fw ² [994]	a	3.166	0.650	1.0120	-	+0.410	-0.8200	113.24	-
TIP3P [180]	a	3.15061	0.6364	0.9572	-	+0.4170	-0.8340	104.52	-
TIP3P/Fw ² [994]	а	3.1506	0.6368	0.9600	-	+0.4170	-0.8340	104.5	-
PPC 1, 2 [3]	b	3.23400	0.6000	0.9430	0.06	+0.5170	-1.0340	106.00	127.00
TIP4P [180]	С	3.15365	0.6480	0.9572	0.15	+0.5200	-1.0400	104.52	52.26
TIP4P-Ew [649]	С	3.16435	0.680946	0.9572	0.125	+0.52422	-1.04844	104.52	52.26
TIP4P-FQ [197]	С	3.15365	0.6480	0.9572	0.15	+0.63 ¹	-1.26 ¹	104.52	52.26
TIP4P/Ice [838]	С	3.1668	0.8822	0.9572	0.1577	+0.5897	-1.1794	104.52	52.26
TIP4P/2005 [984]	С	3.1589	0.7749	0.9572	0.1546	+0.5564	-1.1128	104.52	52.26
TIP4P/2005f [1765]	С	3.1644	0.7749	0.9664	0.15555	+0.5564	-1.1128	104.75	52.375
SWFLEX-AI ² [201]	С	four to	erms used	0.968 ¹	0.14 ^{1,3}	+0.6213	-1.2459	102.7 ¹	51.35 ¹
COS/G3 [704] 9	С	3.17459	0.9445	1.0000	0.15	+0.450672	-0.901344	109.47	-
COS/D [1617] 9 16	С	3.4365	0.5119	0.9572	0.257	+0.5863	-1.1726	104.52	-
GCPM ² [859] 10	С	3.69 ^{4,11}	0.9146 ⁴	0.9572	0.27	+0.6113	-1.2226	104.52	52.26
SWM4-NDP ² 13 [933]	С	3.18395	0.88257	0.9572	0.24034	0.55733	-1.11466	104.52	52.26
ST2 [872] 12	d	3.10000	0.31694	1.0000	0.80	+0.24357	-0.24357	109.47	109.47
TIP5P [180]	d	3.12000	0.6694	0.9572	0.70	+0.2410	-0.2410	104.52	109.47
TIP5P-Ew [619]	d	3.097	0.7448	0.9572	0.70	+0.2410	-0.2410	104.52	109.47
TTM2-F [1027] 14	С	five para	meters used	0.9572	0.70	+0.574	-1.148	104.52	52.26
POL5/TZ ^{2 [256]}	d	2.9837 ⁴	4	0.9572	0.5	varies ⁵	-0.42188	104.52	109.47
Six-site [491]	c/d ⁷	3.115 _{OO} 0.673 _{HH}	0.715 _{OO} 0.115 _{HH}	0.980	0.8892 _L 0.230 _M	+0.477	-0.044 _L -0.866 _M	108.00	111.00
QCT [1251]	a ¹⁵	3.140	0.753	0.9614	-	+0.6064	-1.2128	104.067	-

Water model types

Rigid models:

- fixed atom positions (match known geometry of water)
- only non-bonded interactions

•Flexible models:

- Atoms on "springs"
- include bond stretching and angle bending
- Reproduce vibration spectra

•Polarizable models:

- include explicit polarization term (enhances ability to reproduce water in different phases and interaction between them)
- first attempt (Barnes et al, Nature (1979)
- examples: SPC/FQ, Tip4p/FQ (computationally only 1.1 times the corresponding rigid model.

Potentials:

ab initio determined from calculations of dimers, trimers or higher order clusters empirical (e.g. Lennard-Jones) developed to reproduce experimental data in gas or liquid phase

Most common water models

- •SPC (Berendsen et al, Interaction Models for Water in Relation to Protein Hydration, in Intermolecular Forces, edt. B. Pullman, p. 331, D. Reidel Publishing Company, Dordrecht, 1981)
- •SPC/E (Berendsen et al, J. Phys. Chem. 91, 6269 (1987))
- TIP3P (Jorgensen et al, J. Am. Chem. Soc. 105, 1407 (1983))
- TIP4P (Jorgensen *et* al, J. Am. Chem. Soc. **105**, 1407 (1983))
- •TIP5P (Mahoney & Jorgensen, J. Chem. Phys. 112, 8910 (2000))

Force fields: some water models developes in a specific force field and often adopted to other force field

e.g. SPC, SPC/E – GROMOS

Tip3p – AMBER (modified Tip3p for CHARMM)

Tip4p, Tip5p – OPLS

Simple water models

Rigid molecule interacting via non-bonded interactions with other molecules:

$$E_{ab} = \sum \frac{k_c q_i q_j}{r_{ij}} + A \frac{1}{r_{00}^{12}} - B \frac{1}{r_{00}^6}$$
 K_c is electrostatic constant 332.1 Å kcal/mol \approx 1/4 π ε₀ Coulomb

One varies the location and size of partial charges:

differ in physical properties like diffusion constant, dielectric constant, density, heat of vaporization, ...

3-site: Each atom gets a point charge assigned and Oxygen atom also has ist own Lennard-Jones parameters. Popular in MD(simple & efficient)

4-site: The negative charge sits on a dummy atom M instead of on the position of the O. This improves the electrostatic distribution around the water molecule.

5-site: The negative charges are split and sit on the L-L (lone pairs) of oxygen with a tetrahedral-like geometry. a **lone pair** is a valence electron pair without bonding or sharing with other atoms

6-site: combines all sites of 4-site and 5-site

Water computational cost

Number of interatomic distances

```
T_{CPU} \sim N
3-site: 3 \times 3 = 9 distances for each pair of water molecules
4-site: 3 \times 3 charge – charge
+ 1 \times LJ (O-O) = 10 distances
5-site: 4 \times 4 charge – charge
+ 1 \times LJ (O-O) = 17 distances
6-site: 5 \times 5 charge – charge
+ 1 \times LJ (O-O) = 26 distances
```

In MD simulations most molecules are rigid → need constraint algorithms

→ can use larger time steps

Some models also exist in flexible variants:

- flex.SPC
- TIP4PF

• ...

Different models reproduce different properties correct, but never all: Diffusion, dielectric const., density, phase behavior, etc....

Common 3-site modells

Model	TIPS	SPC	TIP3P	SPC/E
r (OH) [Å]	0.9572	1.0	0.9572	1.0
α (ΗΟΗ)	104.52	109.47	104.52	109.47 (tetrahedral)
Ax10 ⁻³ [kcal Å ¹² / mol]	580.0	629.4	582.0	629.4
B [kcal Å ⁶ / mol]	525.0	625.5	595.0	625.5
q (O) [e]	-0.80	-0.82	-0.834	-0.8476
q (H) [e]	+0.40	+0.41	+0.417	+0.4238

- model known geometry of water molecule
- SPC uses ideal tetraeder shape of 109.47° (Simple Point Charge)
- TIP3P uses slightly modified CHARMM force field (tranferable intermolecular potential functions, see W.L. Jorgensen, *JACS* **103**, 33 (1981)

Water models - efficiency

Model	Type	$\mu_{\sf gas}$ (D)	μ_{liq} (D)	ε	E_{conf} (kJ/mol)
SPC	R	2.27	2.27	65	-41
SPC/E	R	2.35	2.35	71	-41.5
TIP3P	R	2.35	2.35	82	-41.1
TIP4P	R	2.18	2.18	53	-41.8
TIP5P	R	2.29	2.29	81.5	-41.3
SPC/FQ	Р	1.85	2.83	115	
TIP4P/FQ	Р	1.85	2.62	79	-41.4
Exp.		1.855	2.95 (25°C)	78.4	-41.5

μ: dipole moment

ε: dielectric constant

E_{conf}: average configurational energy

SPC/E water model

add average polarization energy:

 α is the isotropic polarizability const. \approx 1.608x10⁻⁴⁰ F m.

$$E_{pol} = \frac{1}{2} \frac{\sum (\mu - \mu_0)^2}{\alpha_i}$$

 μ = 2.35 D effective dipole moment of polarized water in the SPC/E model

 μ_0 = 1.85 D dipole moment of isolated water (1.85 D from exp.) Since the charges are constant this results in a constant correction of 1.25 kcal/mol in total interaction energy

$$E_{ab} = E_{Coulomb} + E_{LJ} + E_{pol}$$

better density and diffusion constant than the SPC model

Water models - efficiency

	% of experimental value				
Model	Specific heat, C _P	Shear viscosity	Thermal conductivity		
SPC	102	31	144		
SPC/E	108	37	153		
TIP3P	107	36	146		
TIP4P	118	47	135		
TIP4P-Ew	115	64	147		
TIP4P/2005	120	65	149		
TIP5P	120	88	111		
TIP5P-Ew	141	91	102		

In reality: water flexible and polarizable \rightarrow models without these are not expected to have high predictability

Predictability becomes worse as temperature is lowered

http://www.lsbu.ac.uk/water/models.html

Phase diagram of water

Figure 1. Phase diagram of water as obtained from experiment (centre), for the SPC/E model (right) and for the TIP4P and TIP4P/ice models (left). Left side, solid lines (TIP4P), dashed lines (TIP4P/ice). Right side, lines: coexistence line of SPC/E; symbols: stability limit of the ice phases (note the shift of 0.1 GPa in p for this model).

C. Vega et al, J. Phys.: Condens. Matter 17, S3284 (2005).

Solid phase: water exhibits one of the most complex phase diagrams with 13 different (known) solid structures; from the simple water models (SPC, SPC/E, TIP3P, TIP4P and TIP5P) only TIP4P provides a qualitatively correct phase diagram on water.

Physical properties of water: complexities

Density

Many potentials are fitted to reproduce the experimental liquid density, which is the case for most of the models that show good agreement. When the density is not used as a fitting parameter, as in the case with ab initio potentials (for example MCY, MCYL and NEMO) the results are rather poor.

Diffusion coefficient

Water mobility is an indicator of the influence of the hydrogen bonds on the molecular motion.

Diffusivity is overestimated by many of the common water rigid models.

Comparison of physical properties

top panel: rigid models middle panel: flexible models lower panel: polarizable models

Water models in computer simulations, C. Caleman (2007)

Beyond the most common water models

F3C - Levitt et al . A water model calibrated for simulation of molecular dynamics of proteins and nucleic acids in solution..

DEC - Guillot & Guissani [J. Chem. Phys. 114, 6720 (2001)]. A water model that employs diffuse charges, in addition to the usual point charges, on the oxygen and hydrogen atoms, to account for charge penetration effects.

TIP4P/FLEX - Lawrence & Skinner [Chem. Phys. Lett. **369**, 472 (2003)]. Model that well describes the absorption spectra for liquid water.

MB model – Silverstein, Haymet & Dill [JACS 120, 3166 (1998)] (resembles Mercedes-Benz logo). Reproduces features of water in 2-D systems (better for educational purposes than for real simulations.

Coarse-grained models: one- and two-site models, where each site represents a number of water molecules [e.g. Izvekov & Voth. *J. Chem. Phys.* 123, 134105 (2005)].

Aquaporin Channel http://www.mpibpc.mpg.de/groups/de_groot/gallery.html

Aquaporin Channel

Simplified view:

- excess water left out,
- lipids not shown
- channel shown as ribbon

Notes:

oNo water model available is able to reproduce all the water properties with good accuracy. All empirical models are parameterized and the *ab* initio models do also not behave well

oBut, it is possible to describe the force field of water using simple empirical models, and make predictions

olt is worth considering which models to use when performing any simulation including water. Computional cost vs. accuracy.

References

A.Wallqvist and R. D. Mountain, *Molecular models of water: Derivation and description*, Reviews in Computational Chemistry **13** 183 (1999).

B.Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water, J. Mol. Liq. **101** 219 (2002).

Implicit water models

- represent the solvent and counterions as a continuous medium
- simulations with implicit water can usually be run more quickly than explicit simulations
- •usually not interested in the distribution of individual water molecules in the solvent-solute interface.

Common implicit water model:

- -- Solvent accessible surface area models
- -- Poisson-Boltzmann equation
- -- Generalized Born models