The viewing parameters for a parallel projection are given as VRP(WC)=(3,4,5) $\begin{array}{ccc} VPN(WC)=(8,6,12) \\ VUP(WC)=(1,2,3) & PRP \ (VRC)=(2,5,-5) \\ u_{min} \ (VRC)=-4 & u_{max} \ (VRC)=6 \\ v_{min} \ (VRC)=24 & v_{max} \ (VRC)=26 \\ n_{min} \ (VRC)=10 & n_{max} \ (VRC)=20 \\ \end{array}$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; x=1; y=-1; y=1; z=0; z=1

	Matrix #2	: Rx	
1.000	0.000	0.000	0.000
0.000	0.894	-0.447	0.000
0.000	0.447	0.894	0.000
0.000	0.000	0.000	1.000
	Matrix #4	: Rz	
0.417	0.909	0.000	0.000
-0.909	0.417	0.000	0.000
0.000	0.000	1.000	0.000
0.000	0.000	0.000	1.000
M	latrix #6: T	ranslate	
	Matrix #7:	Scale	

	3.4 · //4	7F 1.4	
4 000		: Translate	0.000
1.000	0.000	0.000	-3.000
0.000	1.000	0.000	-4.000
0.000	0.000	1.000	-5.000
0.000	0.000	0.000	1.000
	Matrix	x #3: Ry	
0.859	0.000	-0.512	0.000
0.000	1.000	0.000	0.000
0.512	0.000	0.859	0.000
0.000	0.000	0.000	1.000
	Matrix #	#5: Shear	

The viewing parameters for a parallel projection are given as

$$\begin{array}{lll} & \text{VRP(WC)=(0,0,0)} & \text{VPN(WC)=(0,0,1)} \\ & \text{VUP(WC)=(0,1,0)} & \text{PRP (VRC)=(4,7,10)} \\ & u_{\min} \text{ (VRC)} = 6 & u_{\max} \text{ (VRC)} = 11 \\ & v_{\min} \text{ (VRC)} = -3 & v_{\max} \text{ (VRC)} = 5 \\ & n_{\min} \text{ (VRC)} = 12 & n_{\max} \text{ (VRC)} = 20 \\ \end{array}$$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; x=1; y=-1; y=1; z=0; z=1

1 0	0				Matrix #1: 7	l'ranslate	
0	0	0	0	1	0	0	(
U	1	0	0	0	1	0	(
0	0	1	0	0	0	1	
0	0	0	1	0	0	0	
	Matrix #4	: Rz			Matrix #	3: Ry	
1	0	0	0	1	0	0	
0	1	0	0	0	1	0	
0	0	1	0	0	0	1	(
0	0	0	1	0	0	0	
]	Matrix #6: S	Shear			Matrix #5	: Shear	
	Matrix #8:	Scale			Matrix #7:	translate	

The viewing parameters for a parallel projection are given as

$$\begin{array}{lll} VRP(WC) = & (3,4,5) & VPN(WC) = & (8,6,12) \\ VUP(WC) = & (1,2,3) & PRP (VRC) = & (2,5,5) \\ u_{min} (VRC) = & -4 & u_{max} (VRC) = & 6 \\ v_{min} (VRC) = & 8 & v_{max} (VRC) = & 12 \\ n_{min} (VRC) = & 3 & n_{max} (VRC) = & 5 \\ \end{array}$$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; x=1; y=-1; y=1; z=0; z=1

011101 01 1			. 10 11 1 1011
	Matrix #2	2: Rx	
1.000	0.000	0.000	0.000
0.000	0.894	-0.447	0.000
0.000	0.447	0.894	0.000
0.000	0.000	0.000	1.000
	Matrix #4	: Rz	
0.417	0.909	0.000	0.000
-0.909	0.417	0.000	0.000
0.000	0.000	1.000	0.000
0.000	0.000	0.000	1.000
	Matrix #6:	Shear	
1	Matrix #8:	Scale	

The viewing parameters for a parallel projection are given as

$$\begin{array}{lll} & \text{VRP(WC)=(3,4,5)} & \text{VPN(WC)=(8,6,12)} \\ & \text{VUP(WC)=(1,2,3)} & \text{PRP (VRC)=(5,2,1)} \\ & u_{\min} \text{ (VRC) = 2} & u_{\max} \text{ (VRC) = 6} \\ & v_{\min} \text{ (VRC) = 16} & v_{\max} \text{ (VRC) = 24} \\ & n_{\min} \text{ (VRC) = 15} & n_{\max} \text{ (VRC) = 20} \\ \end{array}$$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; x=1; y=-1; y=1; z=0; z=1

Hint: The **Direction of Projection (DOP)** is calculated as **DOP=CW-PRP**, where **CW** is the Center of the Window on the View Plane.

Matrix #2: Rx Matrix #1: Translate

1.000	0.000	0.000	0.000
0.000	0.894	-0.447	0.000
0.000	0.447	0.894	0.000
0.000	0.000	0.000	1.000

Matrix #4: Rz

0.417	0.909	0.000	0.000
-0.909	0.417	0.000	0.000
0.000	0.000	1.000	0.000
0.000	0.000	0.000	1.000

Matrix #6: Translate

Matrix #7: Scale

	1116661121 11 1 6	

1.000	0.000	0.000	-3.000
0.000	1.000	0.000	-4.000
0.000	0.000	1.000	-5.000
0.000	0.000	0.000	1.000

Matrix #3: Ry

0.859	0.000	-0.512	0.000
0.000	1.000	0.000	0.000
0.512	0.000	0.859	0.000
0.000	0.000	0.000	1.000

Matrix #5: Shear

1. The viewing parameters for a parallel projection are given as

VRP(WC)=(1,3,4)	VPN(WC)=(6,0,8)
VUP(WC)=(10,0,0)	PRP (VRC) = (0,4,5)
u_{\min} (VRC) = 13	$u_{max}(VRC) = 17$
$v_{\min}(VRC) = -7$	$v_{max}(VRC) = 3$
n_{\min} (VRC) = 12	$n_{\max}(VRC) = 14$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; y=-1; y=-1; y=-1; z=0; z=1

Hint: The Direction of Projection (DOP) is calculated as DOP=CW-PRP, where CW is the

Matrix #2: Rx		Matrix #1: Translate		
				
Matrix #4: Rz		Matrix #3: Ry		
Matrix #6: Shear		Matrix #	5: Shear	
Matrix #8: Scale		Matrix #7:	Translate	

The viewing parameters for a parallel projection are given as:

$$\begin{array}{lll} \text{VRP(WC)=(0,0,0)} & \text{VPN(WC)=(0,0,1)} \\ \text{VUP(WC)=(0,1,0)} & \text{PRP (VRC)=(10,20,50)} \\ \text{u}_{min} \text{ (VRC) = -6} & \text{u}_{max} \text{ (VRC) = -2} \\ \text{v}_{min} \text{ (VRC) = -2} & \text{v}_{max} \text{ (VRC) = 6} \\ \text{n}_{min} \text{ (VRC) = -4} & \text{n}_{max} \text{ (VRC) = 1} \end{array}$$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; x=1; y=-1; y=1; z=0; z=1

	Matrix #2	: Rx			N	Matrix #1: 7	Franslate	
1	0	0	0		1	0	0	0
0	1	0	0		0	1	0	0
0	0	1	0		0	0	1	0
0	0	0	1		0	0	0	1
	Matrix #4	: Rz		<u></u>		Matrix #	3: Ry	
1	0	0	0		1	0	0	0
0	1	0	0		0	1	0	0
0	0	1	0		0	0	1	0
0	0	0	1		0	0	0	1
N	latrix #6: Ti	ranslate				Matrix #5	: Shear	
		l	l	<u> </u>		Matrix #7	: Scale	
<u> </u>	1	l						

The viewing parameters for a parallel projection are given as

$$\begin{array}{lll} VRP(WC) = (0,0,0) & VPN(WC) = (0,0,1) \\ VUP(WC) = (0,1,0) & PRP (VRC) = (4,5,10) \\ u_{min} (VRC) = 1 & u_{max} (VRC) = 5 \\ v_{min} (VRC) = -6 & v_{max} (VRC) = 2 \\ n_{min} (VRC) = 30 & n_{max} (VRC) = 40 \\ \end{array}$$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; x=1; y=-1; y=1; z=0; z=1

Hint: The **Direction of Projection (DOP)** is calculated as **DOP=CW-PRP**, where **CW** is the Center of the Window on the View Plane.

	Matrix #1: 7	Franslate	1		
1	0	0	0		
0	1	0	0		
0	0	1	0		
0	0	0	1		
	Matrix #	3: Ry			
1	0	0	0		
0	1	0	0		
0	0	1	0		
0	0	0	1		
	Matrix #5:				
	Matrix	x #7			

The viewing parameters for a parallel projection are given as

VRP(WC)=(0,0,0)	VPN(WC)=(0, 2, 0)
VUP(WC)=(0,1,2)	PRP (VRC) = (12,25,60)
u_{\min} (VRC) = -13	$u_{max}(VRC) = -17$
v_{\min} (VRC) = -7	$v_{max}(VRC) = 9$
$n_{\min}(VRC) = 58$	$n_{max}(VRC) = 62$

Find the sequence of transformations that will map this viewing volume into a volume bounded by the planes: x=-1; x=1; y=-1; y=1; z=0; z=1

Hint: The **Direction of Projection (DOP)** is calculated as **DOP=CW-PRP**, where **CW** is the Center of the Window on the View Plane.

Show the matrices for Problem 2

Matrix #2: Rx	Matrix #1: Translate		
Matrix #4: Rz	Matrix #3: Ry		
Matrix #6: Shear	Matrix #5: Shear		
Matrix #8: Scale	Matrix #7: Translate		