Contents *⊋* **⇔**

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차: O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데 0 1개만 O - Q19.1

Q20. 보스톤 주택

빅데이터 기반 AI 응용 솔루션 개발자 전문과정

교과목명: 분석라이브러리 활용

평가일: 22.7.8성명: 박혜린점수: 36.5

2개만 O - Q1. 표준정규분포 기반의 2행 3열 배열을 랜덤하게 을 출력하세요.

```
을 출력하세요.
In [1]:
import pandas as pd
import numpy as np
In [466]:
a = np.random.randn(2,3)
print(a)
# size , shape
# 크기
[[ 0.04796212 -0.23041315
                           1.28843401]
 [ 0.43848518 -0.4196695
                           1.14855368]]
In [448]:
# 자료형
a.dtype
Out[448]:
dtype('float64')
In [451]:
# 차워
a.ndim
Out[451]:
```

O Q2. arange(), reshape() 이용 1차원 2차원 3차원 배열을 아

[0 1 2 3 4 5 6 7 8 9]

[[0 1 2 3 4] [5 6 7 8 9]]

3

[[[0 1 2 3 4] [5 6 7 8 9]]]


```
▼ 빅데이터 기반 AI :
     교과목명 : 분선
   2개만 O - Q1. 표
   O Q2. arange(),
   Q3. 1~100 까지
   O Q4. 아래 3차를
   O Q5. array2d어
   O Q6. zeros like
   Q7. 10~20 사C
   Q8. df = sns.loa
   O Q9. df = sns.l-
   O Q10. Q9의 df
   아래 tdf 데이터크
   Q11. age를 7개
   Q12. tdf1의 sex
   2.5 O - Q13. joir
   Q14. 배열 a에 [
   Q15. 'mpg'를 'kr
   Q16. './dataset/s
   Q17. titanic 데 0
   Q18. titanic 데이
   1개만 O - Q19. 1
```

Q20. 보스톤 주택

```
In [164]:
```

```
a = np.arange(10).reshape(10)
print(a)
b = a.reshape(2,5)
print(b)
c = np.arange(10).reshape(1,2,5)
print(c)

[0 1 2 3 4 5 6 7 8 9]
[[0 1 2 3 4]
  [5 6 7 8 9]]
[[[0 1 2 3 4]
  [5 6 7 8 9]]]
```

Q3. 1~100 까지 배열에서 3과 7의 공배수인 것만을 출력하세

```
In [453]:
```

O Q4. 아래 3차원 배열을 생성하여 출력한 후 1차원으로 변환[:] 사용)

```
[[[ 0 1 2 3 4]
[ 5 6 7 8 9]]
[[10 11 12 13 14]
[15 16 17 18 19]]
[[20 21 22 23 24]
[25 26 27 28 29]]]
```

Contents *⊋* **‡**

```
▼ 빅데이터 기반 AI :
     교과목명 : 분선
   2개만 O - Q1. 표
   O Q2. arange(),
   Q3. 1~100 까지
   O Q4. 아래 3차+
   O Q5. array2d어
   O Q6. zeros like
   Q7. 10~20 사C
   Q8. df = sns.loa
   O Q9. df = sns.l-
   O Q10. Q9의 df
   아래 tdf 데이터크
   Q11. age를 7개
   Q12. tdf1의 sex
   2.5 O - Q13. joir
   Q14. 배열 a에 [
   Q15. 'mpg'를 'kr
   Q16. './dataset/s
   Q17. titanic 데 0
   Q18. titanic 데이
   1개만 O - Q19.1
```

Q20. 보스톤 주택

```
In [63]:
```

```
a = np.arange(0,30).reshape(3,2,5)
print(a)
print(a.ndim)
b = a.reshape(30)
print(b)
b.ndim
[[[ 0 1
          2
             3
                4]
  Γ 5
         7
             8
                911
      6
 [[10 11 12 13 14]
  [15 16 17 18 19]]
 [[20 21 22 23 24]
  [25 26 27 28 29]]]
3
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
24 25 26 27 28 29]
Out[63]:
1
```

O Q5. array2d에서 인덱스를 이용해서 값을 선택하고 리스트.요.

```
arr2d = np.arange(1,10).reshape(3,3)
```

[3, 6]

[[1, 2],

[4, 5]]

[[1, 2, 3]

[4, 5, 6]]

In [76]:

```
arr2d = np.arange(1,10).reshape(3,3)
print(arr2d)
```

```
[[1 2 3]
[4 5 6]
[7 8 9]]
```

localhost:8888/notebooks/m2_분석라이브러리활용/Pandas/M2_분석라이브러리활용_평가_문제.ipynb

```
▼ 빅데이터 기반 AI :
     교과목명 : 분선
   2개만 O - Q1. 표
   O Q2. arange(),
   Q3. 1~100 까지
   O Q4. 아래 3차:
   O Q5. array2d어
   O Q6. zeros like
   Q7. 10~20 사C
   Q8. df = sns.loa
   O Q9. df = sns.l-
   O Q10. Q9의 df
   아래 tdf 데이터크
   Q11. age를 7개
   Q12. tdf1의 sex
   2.5 O - Q13. joir
   Q14. 배열 a에 [
   Q15. 'mpg'를 'kr
   Q16. './dataset/s
   Q17. titanic 데 0
   Q18. titanic 데 0
   1개만 O - Q19.1
```

Q20. 보스톤 주택

```
In [85]:
```

```
print(arr2d[:2,2],'\n')
print(arr2d[:2,:2],'\n')
print(arr2d[:2,:])

[3 6]

[[1 2]
  [4 5]]

[[1 2 3]
  [4 5 6]]
```

O Q6. zeros_like, ones_like, full_like 함수 사용 예를 작성하

In [110]:

```
a = np.random.randint(1,11,(5,5))
print(a,'\n')
b = np.zeros_like((a))
print(b,'\n')
c = np.ones_like((a))
print(c,'\n')
d = np.full_like((a),5)
print(d)
[[ 3 5
            2
               61
         8
 [ 7 10
         7
               2]
            8
```

```
[ 8
        5
           4
                 6
                     1]
 [ 2
        7 10
                 4
                     2]
 [ 9
        5
            9
                 5
                     8]]
[[0 \ 0 \ 0 \ 0]]
 [0 \ 0 \ 0 \ 0 \ 0]
 [0 \ 0 \ 0 \ 0]
 [0 \ 0 \ 0 \ 0]
 [0 \ 0 \ 0 \ 0 \ 0]]
```

```
[[1 1 1 1 1]

[1 1 1 1 1]

[1 1 1 1 1]

[1 1 1 1 1]

[1 1 1 1 1]]
```

[5 5 5 5 5] [5 5 5 5 5] [5 5 5 5 5] [5 5 5 5 5]

localhost:8888/notebooks/m2_분석라이브러리활용/Pandas/M2_분석라이브러리활용_평가_문제.ipynb

Q7. 10 ~ 20 사이의 정수 난수로 10행 5열 2차원 배열을 생성[‡] 출력하세요.

▼ 빅데이터 기반 AI ∜ 교과목명 : 분~ 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차 : O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데이 1개만 O - Q19. □

Q20. 보스톤 주택

In [293]:

```
random_array = np.random.randint(10,20,(2,10,5))
random_array
```

Out[293]:

```
array([[[19, 17, 10, 18, 16],
        [19, 12, 16, 15, 16],
        [15, 18, 16, 17, 13],
        [13, 11, 16, 11, 13],
        [15, 10, 19, 18, 11],
        [10, 19, 14, 19, 19],
        [14, 14, 15, 14, 13],
        [13, 16, 19, 18, 19],
        [18, 12, 16, 15, 11],
        [15, 16, 15, 11, 18]]
       [[12, 11, 15, 16, 13],
        [14, 15, 13, 18, 14],
        [15, 18, 11, 10, 16],
        [16, 10, 14, 15, 13],
        [13, 18, 13, 12, 11],
        [11, 17, 16, 18, 17],
        [16, 16, 17, 19, 15],
        [14, 17, 13, 16, 16],
        [15, 19, 10, 17, 12],
        [15, 16, 19, 18, 13]])
```

In [455]:

```
random_array = pd.save_csv('dataset/random_array.csv')
                                          Traceback (most
AttributeError
t)
Input In [455], in <cell line: 1>()
---> 1 random_array = pd.save_csv('dataset/random_array.c
File ~\anaconda3\envs\cakd7\lib\site-packages\pandas\__i
n __getattr__(name)
    257
            from pandas.core.arrays.sparse import SparseA
Array
    259
            return _SparseArray
--> 261 raise AttributeError(f"module 'pandas' has no att
AttributeError: module 'pandas' has no attribute 'save_cs\
In [ ]:
```

Q8. df = sns.load_dataset('titanic')로 불러와서 다음 작업을

- 전체 칼럼중 'survived'외에 모든 칼럼을 포함한 df_x를 산출한 후 dataset/df
- df_x.pkl을 데이터프레임 df_x 이름으로 불러온 후 앞 5개 행을 출력한다.

Contents *₽* **‡**

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차 : O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데 0 1개만 O - Q19.1

Q20. 보스톤 주택

In [458]:

import seaborn as sns

df = sns.load_dataset('titanic')
df.head()

Out[458]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	
0	0	3	male	22.0	1	0	7.2500	S	Third	
1	1	1	female	38.0	1	0	71.2833	С	First	W
2	1	3	female	26.0	0	0	7.9250	S	Third	W
3	1	1	female	35.0	1	0	53.1000	S	First	W۱
4	0	3	male	35.0	0	0	8.0500	S	Third	

In [457]:

df_x = df.drop(columns=['survived'])
df_x.head()

Out[457]:

	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adu
0	3	male	22.0	1	0	7.2500	S	Third	man	
1	1	female	38.0	1	0	71.2833	С	First	woman	
2	3	female	26.0	0	0	7.9250	S	Third	woman	
3	1	female	35.0	1	0	53.1000	S	First	woman	
4	3	ma l e	35.0	0	0	8.0500	S	Third	man	

In []:

 $df_x = pd$

In []:

O Q9. df = sns.load_dataset('titanic')로 불러와서 deck 열에요.

In [116]:

df['deck'].isnull().sum()

Out[116]:

688

O Q10. Q9의 df에서 각 칼럼별 null 개수와 df 전체의 null 개=

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차: O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데이 1개만 O - Q19.1

Q20. 보스톤 주택

In [120]:

df.isnull().sum()

Out[120]:

survived	0
pclass	0
sex	0
age	177
sibsp	0
parch	0
fare	0
embarked	2
class	0
who	0
adult <u></u> male	0
deck	688
embark_town	2
alive	0
alone	0
dtype: int64	

In [121]:

```
df.isnull().sum().sum()
```

Out[121]:

869

아래 tdf 데이터프레임에서 Q11 ~ Q12 작업을 수행하세요.

In [379]:

```
import seaborn as sns
df = sns.load_dataset('titanic')
tdf = df[['survived','sex','age','class']]
tdf.head()
```

Out[379]:

	survived	sex	age	class
0	0	ma l e	22.0	Third
1	1	female	38.0	First
2	1	female	26.0	Third
3	1	female	35.0	First
4	0	male	35.0	Third

Q11. age를 7개 카테고리로 구분하는 새로운 칼럼 'cat age'를 카테고리 구분을 수행하는 사용자 함수를 만들고 그 함주를 aç tdf1에 저장하고 출력하세요.

Contents 2 *

```
▼ 빅데이터 기반 AI :
      교과목명 : 분선
    2개만 O - Q1. 표
    O Q2. arange(),
    Q3. 1~100 까지
    O Q4. 아래 3차를
    O Q5. array2d어
    O Q6. zeros like
    Q7. 10~20 사<sup>C</sup>
    Q8. df = sns.loa
    O Q9. df = sns.l-
    O Q10. Q9의 df
    아래 tdf 데이터크
    Q11. age를 7개
    Q12. tdf1의 sex
    2.5 O - Q13. joir
    Q14. 배열 a에 [
    Q15. 'mpg'를 'kr
    Q16. './dataset/s
    Q17. titanic 데 0
   Q18. titanic 데 0
    1개만 O - Q19.1
```

Q20. 보스톤 주택

```
[카테고리]
age <= 5: cat = 'Baby'
age <= 12: cat = 'Child'
age <= 18: cat = 'Teenager'
age <= 25: cat = 'Student'
age <= 60: cat = 'Adult'
age > 60: cat = 'Elderly'
```

In [336]:

tdf['age'].info()

memory usage: 7.1 KB

In [380]:

```
def catage(x):
    cat=''
    if x <= 5:
        return 'Baby'
    elif x \le 12:
        return 'Child'
    elif x \le 18:
        return 'Teenager'
    elif x \le 25:
        return 'Student'
    elif x \le 60:
        return 'Adult'
    elif x > 60:
        return 'Elderly'
    else:
        pass
```

In [386]:

```
tdf1 = tdf.copy()
tdf1['cat_age'] = tdf1['age']
tdf1.head()
```

Out[386]:

	survived	sex	age	class	cat_age
0	0	male	22.0	Third	22.0
1	1	female	38.0	First	38.0
2	1	female	26.0	Third	26.0
3	1	female	35.0	First	35.0
4	0	male	35.0	Third	35.0

Contents 2 ☆

▼ 빅데이터 기반 AI : 교과목명 : 분~ 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차: O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데 0

> 1개만 O - Q19.1 Q20. 보스톤 주^투

In [387]:

```
tdf1 = tdf1.cat_age.apply(catage)
tdf1
```

Out[387]:

```
0
       Student
1
         Adult
2
         Adult
3
         Adult
4
         Adult
886
         Adult
887
       Student
888
           None
         Adult
889
890
         Adult
Name: cat_age, Length: 891, dtype: object
```

Q12. tdf1의 sex, class 칼럼을 '_'으로 연결한 'sc'칼럼을 추가요.

```
In [ ]:
In [ ]:
```

2.5 O - Q13. join() 메소드는 두 데이터프레임의 행 인덱스를 기식데이터를 가져와서 join() 메소드로 아래와 같이 결합한 후 다요.

- df1과 df2의 교집합만 출력되도록 결합하여 df3에 저장하고 출력
- df3에서 중복된 칼럼을 삭제한 후 블린 인덱싱을 이용하여 eps가 3000 보다 터를 선택하여 데이터프레임을 생성하고 df4 이름으로 저장 및 출력하세요.

In [390]:

```
df1 = pd.read_excel('./dataset/stock price.xlsx', index_co
df2 = pd.read_excel('./dataset/stock valuation.xlsx', inde
```

In [393]:

df3 = df1.join(df2, how='inner')
df3

Out[393]:

	stock_name	value	price	name	eps	bps
id						
130960	CJ E&M	58540.666667	98900	CJ E&M	6301.333333	54068
139480	이마트	239230.833333	254500	이마트	18268.166667	295780
145990	삼양사	82750.000000	82000	삼양사	5741.000000	108090
185750	종근당	40293.666667	100500	종근당	3990.333333	40684
204210	모두투어리 ᄎ	3093.333333	3475	모두투어 리츠	85.166667	5335

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차+ O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데 0 1개만 O - Q19.1

Q20. 보스톤 주택

In [417]:

df4 = df3.drop(columns =['name'])
df4.head()

Out[417]:

	stock_name	value	price	eps	bps	per	
id							
130960	CJ E&M	58540.666667	98900	6301.333333	54068	15.695091	
139480	이마트	239230.833333	254500	18268.166667	295780	13.931338	
145990	삼양사	82750.000000	82000	5741.000000	108090	14.283226	
185750	종근당	40293.666667	100500	3990.333333	40684	25.185866	
204210	모두투어리츠	3093.333333	3475	85.166667	5335	40.802348	

In []:

df3에서 중복된 칼럼을 삭제한 후 블린 인덱싱을 이용하여 eps가 3000데이터프레임을 생성하고 df4 이름으로 저장 및 출력하세요.(단, '<' 외

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차: O Q5. array2d^O O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데이 1개만 O - Q19.1 Q20. 보스톤 주택

```
In [468]:
```

```
df4 = df4(['eps'] < 3000) | (['stock_name']== '이마트')

----

TypeError

Traceback (most t)

Input In [468], in <cell line: 1>()
----> 1 df4 = df4(['eps'] < 3000) | (['stock_name']== '이미

TypeError: '<' not supported between instances of 'list' a
```

Q14. 배열 a에 대하여 3차원 자리에 2차원을 2차원 자리에 1치 넣어서 변환하여 출력하세요

In [161]:

```
a = np.arange(6).reshape(1,2,3)
print(a,a.shape,'\n')

print(a.ndim)
b = a.reshape(2,3)
print(b,b.shape,'\n')
print(b.ndim)
c = b.reshape(6)
print(c,c.shape,'\n')
print(c.ndim)
d = c.reshape(1,2,3)
print(d,d.shape)
print(d.ndim)

[[[0 1 2]
```

```
[3 4 5]]] (1, 2, 3)

3

[[0 1 2]

[3 4 5]] (2, 3)

2

[0 1 2 3 4 5] (6,)

1

[[[0 1 2]

[3 4 5]]] (1, 2, 3)

3
```

Q15. 'mpg'를 'kpl' 로 환산하여 새로운 열을 생성하고 반올림[₹] 지 처음 5개행을 출력하세요.

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차: O Q5. array2d어 O Q6. zeros like Q7. 10~20 사^C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데이 1개만 O - Q19.1

Q20. 보스톤 주택

In [167]:

mpg	cylinders	displacement	horsepower	weight	accel
year \ 0 18.0 70	8	307.0	130	3504	
1 15.0	8	350.0	165	3693	
70 2 18.0 70	8	318.0	150	3436	

	origin	name
0	1	chevrolet chevelle malibu
1	1	buick skylark 320
2	1	plymouth satellite

In [432]:

```
auto_df['kpl'] = auto_df['mpg']/2.352
auto_df.head()
```

Out[432]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	OI
0	18.0	8	307.0	130	3504	12.0	70	
1	15.0	8	350.0	165	3693	11.5	70	
2	18.0	8	318.0	150	3436	11.0	70	
3	16.0	8	304.0	150	3433	12.0	70	
4	17.0	8	302.0	140	3449	10.5	70	

In []:

Q16. './dataset/stock-data.csv'를 데이터프레임으로 불러와/ 환한 후에 년, 월, 일로 분리하고 year를 인덱스로 셋팅하여 출

Contents *⊋* **♦**

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차: O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데이 1개만 O - Q19.1 Q20. 보스톤 주택

In [180]:

```
df_time = pd.read_csv('./dataset/stock-data.csv')
df_time.head()
```

Out[180]:

	Date	Close	Start	High	Low	Volume
0	2018-07-02	10100	10850	10900	10000	137977
1	2018-06-29	10700	10550	10900	9990	170253
2	2018-06-28	10400	10900	10950	10150	155769
3	2018-06-27	10900	10800	11050	10500	133548
4	2018-06-26	10800	10900	11000	10700	63039

In [440]:

```
from datetime import datetime
df_time['Date'].dtype
```

Out[440]:

dtype('0')

In []:

Q17. titanic 데이터셋(titanic = sns.load_dataset('titanic'))⁰ 열을 기준으로 그룹화를 수행한 후 아래와 같이 출력하였다. ^C

5개 열: ['age','sex', 'class', 'fare', 'survived']

- 그룹별 평균 출력
- 그룹별 최대값 출력

In [218]:

```
titanic = sns.load_dataset('titanic')
df3 = titanic.groupby(['class'])
df3
```

Out[218]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x
0>

In []:

In []:

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차: O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데 0 1개만 O - Q19.1

Q20. 보스톤 주택

Q18. titanic 데이터셋에서 'Third'그룹만을 선택해서 group3 표를 출력하세요.

In [24]:

import seaborn as sns
df = sns.load_dataset('titanic')
df.head()

Out[24]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	
0	0	3	male	22.0	1	0	7.2500	S	Third	
1	1	1	female	38.0	1	0	71.2833	С	First	W
2	1	3	female	26.0	0	0	7.9250	S	Third	W
3	1	1	female	35.0	1	0	53.1000	S	First	W
4	0	3	male	35.0	0	0	8.0500	S	Third	
4										

1개만 O - Q19. titanic 데이터셋에서 다음 전처리를 수행하세.

- 1. df에서 중복 칼럼으로 고려할 수 있는 컬럼들(6개 내외)을 삭제한 후 나머지 df1 이름으로 저장 후 출력하세요.
- 2. df1에서 null값이 50% 이상인 칼럼을 삭제 후 df2 이름으로 저장하고 출력히
- 3. df2에서 결측값이 있는 age 칼럼에 대해서 평균값으로 대체 처리를 수행하시
- 4. df2에서 결측값이 있는 embarked 칼럼에 대해서 앞행의 값으로 대체 처리를
- 5. df2 문자로 되어있는 칼럼들을 레이블 인코딩 수행하여 숫자로 변환 후 df2.

In [238]:

df.head()

Out[238]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	
0	0	3	male	22.0	1	0	7.2500	S	Third	
1	1	1	female	38.0	1	0	71.2833	С	First	W
2	1	3	female	26.0	0	0	7.9250	S	Third	W
3	1	1	female	35.0	1	0	53.1000	S	First	W
4	0	3	male	35.0	0	0	8.0500	S	Third	

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차 : O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데이 1개만 O - Q19.1

Q20. 보스톤 주택

In [232]:

df1 = df.drop(columns = ['class','who','adult_male','embar
df1.head()

Out[232]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	deck	alı
0	0	3	ma l e	22.0	1	0	7.2500	S	NaN	Fŧ
1	1	1	female	38.0	1	0	71.2833	С	С	Fŧ
2	1	3	female	26.0	0	0	7.9250	S	NaN	Т
3	1	1	female	35.0	1	0	53.1000	S	С	Fŧ
4	0	3	male	35.0	0	0	8.0500	S	NaN	Т

In [234]:

df1.isnull().sum()

Out[234]:

survived	0
pclass	0
sex	0
age	177
sibsp	0
parch	0
fare	0
embarked	2
deck	688
alone	0
dtype: int64	

In [236]:

df2 = df1.drop(columns = ['deck'])
df2.head()

Out[236]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	alone
0	0	3	male	22.0	1	0	7.2500	S	False
1	1	1	female	38.0	1	0	71.2833	С	False
2	1	3	female	26.0	0	0	7.9250	S	True
3	1	1	female	35.0	1	0	53.1000	S	False
4	0	3	male	35.0	0	0	8.0500	S	True

In []:

df2에서 결측값이 있는 age 칼럼에 대해서 평균값으로 대체 처리를 수행 df2에서 결측값이 있는 embarked 칼럼에 대해서 앞행의 값으로 대체 처 df2 문자로 되어있는 칼럼들을 레이블 인코딩 수행하여 숫자로 변환 후 (

Contents *⊋* ❖

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차 : O Q5. array2d어 O Q6. zeros like Q7. 10~20 사C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데 0 1개만 O - Q19. 1

Q20. 보스톤 주택

```
In [244]:
df2['age'] mean()
Out[244]:
29.69911764705882
In [251]:
df2.age = fillna(df2['age'].mean())
NameError
                                           Traceback (most
t)
Input In [251], in <cell line: 1>()
---> 1 df2.age = fillna(df2['age'].mean())
NameError: name 'fillna' is not defined
In [ ]:
In [ ]:
In [ ]:
```

Q20. 보스톤 주택가격 데이터를 탐색한 후 가장 중요한 독립변 시각화하여 설명하세요.

▼ 빅데이터 기반 AI : 교과목명 : 분선 2개만 O - Q1. 표 O Q2. arange(), Q3. 1~100 까지 O Q4. 아래 3차를 O Q5. array2d어 O Q6. zeros like Q7. 10~20 사^C Q8. df = sns.loaO Q9. df = sns.l-O Q10. Q9의 df 아래 tdf 데이터크 Q11. age를 7개 Q12. tdf1의 sex 2.5 O - Q13. joir Q14. 배열 a에 [Q15. 'mpg'를 'kr Q16. './dataset/s Q17. titanic 데 0 Q18. titanic 데 0 1개만 O - Q19.1 Q20. 보스톤 주택

In [254]:

import warnings
warnings.filterwarnings('ignore')

from sklearn.datasets import load_boston
boston 데이타셋 로드
boston = load_boston()

boston 데이타셋 DataFrame 변환
bostonDF = pd.DataFrame(boston.data , columns = boston.fea

boston dataset의 target array는 주택 가격임. 이를 PRICE 컬럼
bostonDF['PRICE'] = boston.target
print('Boston 데이타셋 크기 :',bostonDF.shape)
bostonDF.head()

Boston 데이타셋 크기: (506, 14)

Out[254]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTF
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	

In [465]:

import matplotlib.pyplot as plt

bostonDF.plot(kind='box')

Out[465]:

<AxesSubplot:>

Contents *₽* ❖

▼ 빅데이터 기반 AI ; 교과목명 : 분

2개만 O **-** Q1. 표

O Q2. arange(),

Q3. 1 ~ 100 까지

O Q4. 아래 3차+

O Q5. array2d어

O Q6. zeros_like

Q7. 10 ~ 20 사C

Q8. df = sns.loa

O Q9. df = sns.l

O Q10. Q9의 df

아래 tdf 데이터크

Q11. age를 7개

Q12. tdf1의 sex

2.5 O - Q13. joir

Q14. 배열 a에 [

Q15. 'mpg'를 'kr

Q16. './dataset/s

Q17. titanic 데이

Q18. titanic 데이

1개만 O - Q19. †

Q20. 보스톤 주⁵