V28

Elektronenspinresonanz

Nicole Schulte nicole.schulte@udo.edu Hendrik Bökenkamp hendrik.boekenkamp@udo.edu

Durchführung: 13.12.2017

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Auswertung						
	1.1	Skalierung	3				
	1.2	Berechnung des gyromagnetischen Verhältnisses	4				
2	2 Diskussion						
Literatur							

1 Auswertung

1.1 Skalierung

Die fünf Resonanzkurven wurden bei folgenden Signalfrequenzen ν_e aufgenommen:

$$\begin{split} \nu_{e,1} &= 10{,}623\,\mathrm{MHz} \\ \nu_{e,2} &= 14{,}732\,\mathrm{MHz} \\ \nu_{e,3} &= 20{,}555\,\mathrm{MHz} \\ \nu_{e,4} &= 23{,}887\,\mathrm{MHz} \\ \nu_{e,5} &= 29{,}391\,\mathrm{MHz} \,. \end{split}$$

Zu Beginn muss die Skalierungen pro Diagramm bestimmt werden. Dafür werden die Kalibrierungspunkte, die mit Hilfe des X-Y-Schreibers aufgenommen wurden, ausgemessen und pro Abschnitt angegeben. Die gemessenen Wertepaare sind in Tabelle 1 dargestellt.

$\Delta I[\mathrm{mA}]$	$x_1 [\mathrm{cm}]$	$\Delta I[\text{mA}]$	$x_2 [\mathrm{cm}]$	$\Delta I[\text{mA}]$	x_3 [cm]	$\Delta I[\text{mA}]$	$x_4 [\mathrm{cm}]$	$\Delta I[\text{mA}]$	$x_5 [\mathrm{cm}]$
174	3,45	177	3,55	165	3,35	182	3,70	139	2,75
200	3,05	183	3,60	185	3,65	185	$3,\!65$	162	3,15
184	$3,\!15$	181	$3,\!55$	157	3,10	136	2,65	121	$2,\!35$
168	2,75	185	$3,\!65$	122	2,30	144	2,80	124	2,40
/	/	217	$4,\!30$	120	$2,\!35$	185	$3,\!65$	/	/
/	/	/	/	155	3,15	174	3,50	/	/
/	/	/	/	124	2,40	/	/	/	/

Tabelle 1: Skalierung pro Abschnitt für die einzelnen Messungen

Danach wird pro Diagramm die Stromstärken pro cm, dessen Mittelwerte und die Fehler auf die Mittelwerte berechnet. Diese Werte sind in Tabelle 2 dargestellt.

	$z_1 [\mathrm{mA/cm}]$	$z_2[\mathrm{mA/cm}]$	$z_3[\mathrm{mA/cm}]$	$z_4[\mathrm{mA/cm}]$	$z_{5}[\mathrm{mA/cm}]$
	50,43	49,86	49,25	49,19	50,54
	64,52	50,83	50,68	50,68	51,43
	58,41	50,99	$50,\!65$	$51,\!32$	51,49
	61,09	50,68	53,04	$51,\!43$	50,42
	/	$50,\!47$	51,06	50,68	/
	/	/	49,21	49,71	/
	/	/	51,60	/	/
Mittelwert	58,61	50,57	50,78	50,50	50,97
Fehler	3,00	$0,\!20$	0,50	0,36	0,28

Tabelle 2: Skalierung pro cm für die einzelnen Messungen

1.2 Berechnung des gyromagnetischen Verhältnisses

Zur Bestimmung des gyromagnetischen Verhältnisses müssen zunächst die Maxima der einzelnen Messungen lokalisiert werden. Pro Signalfrequenz sind dabei zwei Maxima zu erkennen, eins parallel und eins antiparallel zum Erdmagnetfeld. Ermittelt wird dabei der Abstand der jeweiligen Maxima zum Nullpunkt, welcher dann mit der zugehören Skalierung aus Tabelle 2 multipliziert wird. Die Abstände mit den zugehörigen Stromstärken sind in Tabelle 3 dargestellt.

$\nu_{e,i}$	$m_a [{ m cm}]$	$I_a[\mathrm{mA}]$	$m_p [{\rm cm}]$	$I_p[\mathrm{mA}]$
$\nu_{e,1}$	4,35	254,61	3,20	184,55
$\nu_{e,2}$	8,00	$404,\!56$	6,80	$343,\!88$
$\nu_{e,3}$	11,00	$558,\!58$	9,70	$492,\!57$
$\nu_{e,4}$	$12,\!25$	$618,\!63$	11,20	$565,\!60$
$ u_{e,5}$	$14,\!90$	$759,\!45$	$13,\!85$	705,93

Tabelle 3: Lokalisierung der Maxima mit den zugehörigen Stromstärken pro Signalfrequenz

Zur Berechnung des gyromagnetischen Verhältnisses wird die Stärken der jeweiligen Magnetfelder benötigt. Diese lassen mit Hilfe von Formel

!!!!!!HIER LABELN!!!!!!!! berechnen. Die dabei verwendeten Konstanten [2] [1] lauten

$$n = 156$$

$$r = 0.1 \,\mathrm{m}$$

$$\nu_0 = 4\pi \cdot 10^{-7} \,\frac{\mathrm{V} \,\mathrm{s}}{\mathrm{A} \,\mathrm{m}} \,.$$

Die parallel und antiparallel zum Erdmagnetfeld ausgerichteten Magnetfeldstärken sind mit ihrer zugehörigen Signalfrequenz in Tabelle 4 dargestellt.

$\nu_{e,i}$	$B_a [\mu T]$	$B_p [\mu T]$	$\bar{B}\left[\mu\mathrm{T}\right]$
$\nu_{e,1}$	357,145	258,871	308,008
$\nu_{e,2}$	$567,\!482$	$482,\!366$	524,924
$\nu_{e,3}$	$783,\!529$	690,935	$737,\!232$
$\nu_{e,4}$	867,762	793,376	$830,\!569$
$\nu_{e,5}$	$1065,\!292$	$990,\!219$	1027,756

Tabelle 4: Zu den Signalfrequenzen zugehörigen berechneten Magnetfelder

2 Diskussion

Literatur

(1) Universal-Lexikon, magnetische Feldkonstante, 2012, http://universal_lexikon.deacademic.com/269136/magnetische_Feldkonstante (besucht am 2017-12-14).

(2) T. Dortmund, Versuch Nr.28: Elektronenspin-Resonanz, http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/FP/SKRIPT/ESR.pdf (besucht am 2017-12-12).