#### PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-291267

(43) Date of publication of application: 05.11.1996

(51)Int.Cl.

C09D 11/00

C09D 11/00 B41J 2/01

(21)Application number : 07-173022

(71)Applicant : RICOH CO LTD

(22) Date of filing:

16.06.1995

(72)Inventor: TSUBUSHI KAZUO

KINOSHITA NOBUTAKA

**ASAMI TAKESHI GOTO AKIHIKO** 

**UMEMURA KAZUHIKO** 

**MIZUNO KAZUYO** 

**OGAWARA MAKOTO** 

(30)Priority

Priority number: 06159205

Priority date: 17.06.1994

Priority country: JP

07 58264

23.02.1995

JP

JP

06227274

29.08.1994

06289055

28.10.1994

JP

06333881

16.12.1994

JP

#### (54) INK COMPOSITION AND NEW METHOD FOR RECORDING

#### (57)Abstract:

PURPOSE: To obtain an ink composition containing charged particles comprising a dispersant and a coloring agent as a main component, controlled in the electric resistance of the obtained composition or in the specific charge amount of the charged particles to specific values, respectively, and excellent in image concentration, contrast, resolution and fixation to substrates, and useful for electronic photography, etc.

CONSTITUTION: This ink composition contains charged particles containing a dispersant such as a silicone oil, a fatty acid ester, a fluoro oil or an aliphatic hydrocarbon alcohol and a coloring agent (especially having a resin or oil layer on its surface) (e.g. a polymer toner

Searching PAJ Page 2 of 2

comprising a system containing the coloring agent, a polymerizable monomer and a non-aqueous solvent as main components and having an average particle diameter of  $0.01-10\mu m$  and a melt viscosity of 0.1-10000pa.sec) as a main component, and satisfies that the specific charged amount of the charged particles (Q/M) is  $10-1000\mu c/g$  or that the electric resistance of the obtained composition is  $1010\Omega$ .cm or larger.

#### **LEGAL STATUS**

[Date of request for examination] 16.03.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3531766

[Date of registration] 12.03.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

### (12) 公開特許公報 (A) (11) 特許出願公開番号

特開平8-291267

(43) 公開日 平成8年(1996) 11月5日

| (51) Int. Cl. <sup>6</sup> 識別記号 庁内整理番号 FI I 技術表示 | 暂所 |
|--------------------------------------------------|----|
| C 0 9 D 11/00 P S Z C 0 9 D 11/00 P S Z          |    |
| PTE                                              |    |
| B 4 1 J 2/01 B 4 1 J 3/04 1 0 1 Y                |    |

#### 審査請求 未請求 請求項の数11 F D

(全13頁)

| ,           |                       |          | <u> </u>                    |
|-------------|-----------------------|----------|-----------------------------|
| (21) 出願番号   | 特願平7-173022           | (71) 出願人 | 000006747                   |
| (22) 出願日    | 平成7年(1995)6月16日       |          | 株式会社リコー<br>東京都大田区中馬込1丁目3番6号 |
|             | 1 201 1 (1000) 07,100 | (72)発明者  |                             |
| (31)優先権主張番号 | 特願平6-159205           |          | 東京都大田区中馬込1丁目3番6号 株式会        |
| (32)優先日     | 平6(1994)6月17日         |          | 社リコー内                       |
| (33)優先権主張国  | 日本(JP)                | (72)発明者  | 木下 宣孝                       |
| (31)優先権主張番号 | 特願平7-58264            |          | 東京都大田区中馬込1丁目3番6号 株式会        |
| (32)優先日     | 平7(1995)2月23日         |          | 社リコー内                       |
| (33)優先権主張国  | 日本(JP)                | (72)発明者  | 浅見 剛                        |
| (31)優先権主張番号 | 特願平6-227274           |          | 東京都大田区中馬込1丁目3番6号 株式会        |
| (32)優先日     | 平6(1994)8月29日         |          | 社リコー内                       |
| (33)優先権主張国  | 日本(JP)                | (74)代理人  | 弁理士 武井 秀彦                   |
|             |                       |          | 最終頁に続く                      |
|             |                       |          |                             |

#### (54) 【発明の名称】インク組成物および新規記録方法

#### (57) 【要約】

【目的】 低印加電圧で飛翔して紙、プラスチック、金 属などの基体への定着性にすぐれ、しかも高画像濃度、 高解像度で印字できるインク組成物を提供すること、及 びこのインクを用いた新規な記録方法を提供すること。

【構成】 分散媒、着色剤及び樹脂を少なくとも含む荷 電粒子を主成分とし、かつ、その荷電粒子の比電荷量が 10~1000μc/gインクの比抵抗が10<sup>10</sup>Ωcm 以上、インクの乾燥状態での溶融粘度が0.1~100 0 pa·sであることを特徴とするインク組成物、及び これを用い、インクの吐出部が針状、ノズル状又はライ ン状ヘッドであり、前記インク組成物のインクの荷電粒 子と同極性又は反対極性の印加電圧によりインクを吐出 させることを特徴とする新規な記録方法。

#### 【特許請求の範囲】

分散媒および着色剤を少なくとも含む荷 【請求項1】 電粒子を主成分とし、下記条件AとBの少なくとも一つ を満足することを特徴とするインク組成物。

A:荷電粒子の比電荷量(Q/M)が10~1,000 μc/gである。

B:インク組成物の電気抵抗が 1 0 <sup>10</sup>Ω c m以上であ る。

【請求項2】 前記荷電粒子の平均粒子径が0.01~ 10μmで、溶融粘度が0.1~10,000pa·s e c である請求項1記載のインク組成物。

【請求項3】 前記分散媒がシリコンオイル、脂肪酸エ ステル、フッ素オイル、または脂肪族炭化水素アルコー ルの何れかである請求項1記載のインク組成物。

表面に樹脂またはオイルの層を有する着 【請求項4】 色剤よりなる請求項1記載のインク組成物。

珪素含有重合体、ポリオレフィン、又は オレフィンとの共重合体、ロジン又はその変性樹脂等を 含む、請求項1記載のインク組成物。

【請求項6】 前記荷電粒子は球状、ファイバー状又は 20 不定形の混合した形状である請求項1記載のインク組成 物。

前記荷電粒子が着色剤、重合性モノマー 【請求項7】 及び非水溶媒を主成分とする系から得られた重合トナー であることを特徴とする、請求項1記載のインク組成 物。

【請求項8】 着色剤と40℃以上の非水溶媒に溶解す るか又は軟化する高分子物質とを少なくとも含む系に、 モノマー及び重合開始剤を混合し重号してなることを特 徴とする請求項1記載のインクジェット用及び電子写真 30 用インク組成物。

【請求項9】 原料として顔料及び/又は染料と活性水 素を有する反応性シリコーン化合物とイソシアネート化 合物とを少なくとも含み、これらの原料が非水溶媒中に 分散されている分散液を加熱して反応させて得られる着 色剤を使用することを特徴とする請求項1記載のインク 組成物を製造する方法。

【請求項10】 インクの吐出部がペンプロッターノズ ル方式になっており、請求項1~8のいずれかの荷電さ れたインクを帯電された基体に飛翔させることを特徴と する記録方法。

【請求項11】 インクの吐出部が釘状、ノズル状又は ラインヘッド状であり、請求項1~8のいずれかのイン クの荷電粒子と同極性又は反対極性の印加電圧により該 インクを吐出させることを特徴とする記録方法。

#### 【発明の詳細な説明】

#### $[0\ 0\ 0\ 1]$

【産業上の利用分野】本発明は、電子写真、静電印刷、 静電記録あるいは印刷インキ、インクジェット用イン

法並びにその使用プロセスに関するものであり、また、 荷電されたインクを帯電された基体に飛翔させることを 特徴とする記録方法、並びにそのインク組成物に関す る。

2

#### [00002]

【従来の技術】インクジェット記録方式は一般にノズ ル、スリット或いは多孔質フィルム等から液体あるいは 固体インクを吐出し、これを紙、布、フィルム等に付着 させて記録を行うものである。インクジェット記録方式 10 のプリンターは、使用時の音が小さく、また小型で安価 である等の利点から随所で用いられている。また、プリ ンターの更なる検討が精力的に行われ、特に黒色の単色 プリンターとして、レポート用紙、コピー用紙等のいわ ゆる普通紙上に良好な印字品質が得られるプリンターも 市販されるに至っている。

【0003】湿式トナージェット記録方式の例として は、①ラインヘッドの先端にトナー粒子の極性と同極性 の電圧を印加してトナー粒子の凝集体をつくり、この凝 集体を吐出させる印字方式(PCT/AU92-006 65)や②現像ローラと電子写真感光体その間の現像ギ ャップを隔てて近接配備され現像ローラ表面の湿式トナ ーを感光体の潜像電位に飛翔させる手段を有する印字方 式(特開平6-137791号公報、特願平5-301 900号明細書)などが提案されている。米国特許第 3.060.429号明細書には、静電的に現像液を吸 引する静電的なインクジェット印字方式が記載されてい る。この方式は、好適にはインク滴のジェット流を遮断 又は制御するための開閉電極及びインク滴飛翔経路を調 節するための電極対を2対有し、荷電現像滴を発生させ る段階、該ノズルと板状電極との間に高電圧を印加しな がら、現像液を含んだノズルから該現像液滴を板状電極 に向けて加速させる段階、及びインク滴が板状電極に到 達する直前に該板状電極の手前に設けられた紙上にイン ク滴を供給する段階、を含んでいる。

【0004】また、インクジェットプリンタに使用され るインクに関しては、(1)紙上で滲み、かぶりのない 高解像度、高濃度で均一な画像が得られること、(2) ノズル先端でインク乾燥による目詰まりが発生せず、常 に吐出応答性、吐出安定性が良好であること、(3)紙 上においてインクの乾燥性がよいこと、(4)画像の堅 ろう性がよいこと、(5)長期保存安定性がよいこと、 などが要求される。

【0005】これらの要求を満足すべく、従来よりイン クジェット記録用インクについての多くの検討がなさ れ、種々の添加剤の検討、あるいは数々の水溶性有機溶 剤の検討が行われており、そして例えば、界面活性剤を 使用する(特公昭62-11781号公報)こと、及 び、酸化エチレンと酸化プロピレンとのブロック共重合 体を使用する(特開平1-25789号公報)ことが従 キ、塗料等に使用される、インキ組成物及びその製造方 50 来から提案されている。加えて、インクジェット記録方

式で用いる湿式トナーにおいては、分散媒には主として イソパラフィン、着色剤にはカーボンブラック、有機顔 料等が用いられている。

【0006】また、電子写真現像剤は従来より、一般に 着色剤と樹脂、極性制御剤などを混練し、粉砕し5~1 0 μ mの粉体粒子とした乾式電子写真現像剤がつくられ ていた。また、非水溶媒を用いた電子写真液体現像剤に は、一般的に、非水系樹脂分散液と着色剤とを分散混合 し、粒子径 $0.5\sim2\mu$ mにしたものが用いられてい る。そしてこれらの比較では、後者の液体現像剤の使用 の方がより鮮明な画像が得られる。

【0007】ところで、液体現像剤の調整には非水系樹 脂分散液が使用されるが、この非水系樹脂分散液(以 下、NADという)は、顔料等の着色剤を溶媒の中で安 定に分散させるために用いられ、一般的には両親媒性樹 脂が使われる。この両親媒性樹脂はビニル重合体から導 かれており、特にグラフト重合体が主に使用されてい る。しかしながら、グラフト重合体の製造時に、比較的 多量に副生する非水系溶媒に可溶性のグラフト化されて いない重合体や不溶性の重合体が着色剤に対する分散性 20 を悪くするため、長期間の保存中に沈降が起るという問 題があった。

【0008】静電潜像現像用液体現像剤、塗料等に用い られている非水系樹脂分散液及びその製造方法について は、これまでに種々の提案がなされている。例えば、特 公昭62-3859号公報に記載された電子写真用液体 現像剤にはトナー粒子を形成する樹脂として天然樹脂変 性熱硬化性樹脂を長鎖アルキル基含有モノマー中で反応 させた樹脂が提案されている。

【0009】しかしながら、これらの非水系樹脂分散液 は、着色剤の分散安定性の改善には効果があるが、未 だ、充分な分散安定性を有するNADとはいえない。特 公昭56-10619号公報には液体トナーの重合体の 記述がある。このものは、非水溶媒中で0.4~0.8 μmの白色ラテックスを合成し、次いでピクトリアブル 一の如き染料で白色ラテックスを染着した液体トナーで ある。この場合、黒色トナーをつくるのが困難なことと 染料系なので画像濃度が低いことや、光退色などの欠点 がある。

#### [0010]

【発明が解決しようとする課題】要するに、従来提案さ れているインクジェット記録用インクにおいて、前記5 点の要求の全てを満足するものはいまだ得られていな い。一方、フルカラー画像の得られるインクジェット記 録方式のプリンターも幾つか市販されているが、これら は、普通紙上にプリントすると、乾燥性が悪く、プリン ターの高速出力が妨げられるだけでなく、異なった色調 のインクが乱れて混じり合い、忠実な画像再現が得られ ない。したがって、通常は、表面処理を施した特殊専用 紙を使用することが必要であり、そのため、1枚当りの「50」号(WO93/1186号)明細書の実施例に記載され

プリントのコストが高くなり、汎用のプリンターとして の普及は困難になる。また、インクに有機溶剤を使用し た湿式トナージェット方式では湿式トナーを吐出ヘッド または現像ローラ表面から吐出又は飛翔させるには高い 電圧が必要であった。更に、印字したものの紙への定着 性が悪く、画像濃度も低いものであった。また高解像度 が得にくかった。

【0011】本発明の目的は、従来技術における前記欠 点を改善し、低印加電圧で飛翔して紙、プラスチック、 金属などの基体への定着性にすぐれ、しかも高画像濃 度、高コントラスト、高解像度で印字できるインクジェ ット記録用インク組成物を提供することにある。本発明 の他の目的は、前記のインク組成物を用いた新規なイン クジェット記録方法を提供することにある。

【0012】さらに、本発明の目的は、コピーの定着性 に優れ、低温定着、温風等の間接定着も可能な電子写真 現像剤及びこの現像剤を用いた複写法を提供することに ある。本発明のさらに他の目的は、OHPでの色再現性 の高いコピーが得られるカラーコピー用電子写真現像剤 及びこの現像剤を用いた複写法を提供することにある。 本発明のさらに他の目的は、退色、画像濃度が低いとい った不都合のみられない電子写真現像剤を提供すること にある。

#### $[0\ 0\ 1\ 3]$

【課題を解決するための手段】本発明者は、インクジェ ット記録用インク及びそのインクに適したインクジェッ ト記録方法について、いろいろな角度から検討を進めて きた結果、分散液、着色剤を少なくとも含む荷電粒子を 主成分とするインクの比抵抗や電荷量は、インクジエッ ト記録方式又は湿式トナージエット記録方式における飛 翔特性と関係があり、すなわち比電荷量やインクの比抵 抗が大きいほどドット径の小さい印字が得られることを 確かめた。また、紙への定着性に優れることも確かめ た。

【0014】本発明のインク(荷電粒子)の比電荷量は  $10 \sim 1000 \mu c/g$ 、好ましくは $100 \sim 800 \mu$ c/gである。インクの比電荷量が10μc/g以下で はインクの飛翔ドット径が大きくなり印字ドット径が大 きく、解像度をあげることが困難になる。更に、定着性 40 が低下する。また 1 0 0 0 μ c / g 以上の比電荷量のイ ンクでは画像濃度が低下する。インクの吐出性は比電荷 量の高いインクのほうが吐出印加電圧は低く、比電荷量 が低いインクは吐出印加電圧が高くなる傾向を示す。

【0015】従来の電子写真用液体現像剤の比電荷量は 10μc/g以下、比抵抗は10<sup>10</sup>Ωcm以下のものが ほとんどである。電子写真方式の場合には、静電潜像の 電位をトナーの電荷で中和させるための比電荷量が10 ~ 1 0 0 0 µ c / g のものでは良好な画像品質を得るこ とが難しい。例えば、PCT/AU-42-00665

ているインクジェット記録用インキは実施例1、2、3 とも0.1~0.5 μ c/g 程度の比電荷量(Q/M) であり、このインクの吐出電圧は500~5000ポル トと高いものであった。

【0016】また、有機顔料又はカーボンブラックのよ うな顔料をイソパラフィン系溶媒に単に分散したもので あり、インク中の顔料が沈降し易く均一なインクの飛翔 や飛翔したインクの定着性が劣るものである。またイン クの飛翔性ドット径が大きく、解像度やシャープ性が低 下するものであった。

【0017】また、電子写真方法の場合は、静電潜像に トナー粒子を泳動させ現像させるための比抵抗が1010 Ω c m以上のものでは良好な画像品質を得ることが難し い。特にシャープネスや解像力が低下する。

【0018】なお、従来のインクジェット記録用インク は分散媒に染料等が溶解しているため着色剤粒子の比電 荷量(Q/M)は得られない。分散タイプのものでもQ /Mは低いものが一般的であり、比抵抗は10°以下で あった。

【0019】湿式カラー画像形成すなわち異なる色の着 20 色料同士の色混合による多色画像形成の場合、従来は、 下層のある色の着色料が上層の他の色の着色料により隠 蔽されてしまい上層の色が優勢となって忠実なカラー再 現ができないという弊害を避けるため、また分散媒と分 散質との比重差により生じる緒弊害をなくするため、着 色料は望ましくは顔料粒子状のものを避けて染料のよう に溶解したものを使用し、かつ、媒体中に低濃度で染料 を含むインクを厚く多量に使用することによって、異な る着色料相互間の色混合をなるべく偏りなく達成しよう とするのが一般的に志向される方向であったから、本発 30 明は、結果的に従来技術が志向する方向とはむしろ異な る方向のものということができる。

【0020】本発明によるそのようなインク組成物を調 整するには、各インク原料について極めて入念にチェッ クレ、望ましくない原料については必要な措置を講じな ければならない。すなわち、分散媒液及び着色料を厳選 し、さらに必要な場合には着色料を精製して比抵抗の上 昇要因となるような不純物を除去するのみならず、分散 質として用いる樹脂成分をさらに入念にチェックするこ と、及び、必要な場合にはその中の比抵抗上昇要因とな 40 る不純物除去のため入念な精製を繰り返すことが必要で あり、この点は、本発明を満足裡に実施するための主要 な眼目点の一つであり、また、従来のインクジェット用 組成物に比較して本発明のインク組成物が特異である理 由の一つとも云うことができる点である。

【0021】インク組成物における比抵抗低下つまり伝 導度の上昇はむろん電気伝導キャリヤの種類、密度及び 易動度に依存する。したがって、液状のこの種のインク に電荷キャリアとしてのイオンを極力含有させないこと が必要であり、そのため、液体分散媒や着色料を厳選

し、または必要ならばイオン除去のための精製を行うこ とが必要である点は論を持たないが、もう一つのキャリ ヤとしてのエレクトロン又はホールについて、高電圧印 加の下でのバント伝導構造の変化及び樹脂成分の液体分 散媒中での分子鎖セグメント回転性増大に伴う易動度増 大によるキャリヤ密度及び移動度上昇を考慮すると、よ り厳密な成分選択が必要であることに留意しなければな らない。樹脂材料についての繰り返し入念な精製は、こ うした点を踏まえた結果である。而してこの入念な精製 10 はイオン除去のみならず、望ましくない低分子夾雑物を も除去する。

【0022】さらに、インクとして乾燥状態で120℃ の溶融粘度が0.1~10,000pa·s(パスカル ・秒)のものを使用すると、インクの吐出が均一になり 印字ドット径の大きさが一定になることを確認した。本 発明はこうした知見に基づいてなされたものである。以 下に本発明を更に詳細に説明する。

【0023】本発明のインク(荷電粒子)はその溶融粘 度が0.1~10.000pa·s(パスカル・秒)、 好ましくは10~5,000pa·s(パスカル・秒) のものである。またインクの比抵抗は $10^{10}\Omega cm$ 以 上、好ましくは10<sup>11</sup>Ωcm以上であることが望まし

【0024】インクの溶融粘度が120℃で10pa・ s(パスカル・秒)以下ではインクの飛翔ドット径が大 きくなり印字ドット径が大きく、解像度をあげることが 困難になる。更に、定着性が低下する。また10、00 0 p a · s (パスカル・秒) 以上のインクではインクの ドット径にバラツキを生じる。インクの吐出性は比抵抗 の高いインクを用いると吐出インクの固形分が高く、比 抵抗が低いインクを用いると吐出インクの固形分が低く なるが、インクの比抵抗が 1 0 10 Ω c mを越えると記録 画像の濃度、解像力、コントラストを適切に改善して高 濃度、高解像力を達成する程度の固形分率になる。

【0025】本発明においては荷電粒子の粒子径は0.  $0.1 \sim 1.0 \, \mu \, \text{m}$ で好ましくは $0.03 \sim 5.0 \, \mu \, \text{m}$ であ る。粒子径が10μm以上では定着性が不良になり、ま た沈降等の問題も発生する。0.01 μ m以下では粒子 の吐出性能が不足し、印加電圧をやや高めなければなら ない等の問題があり、更に、インクのにじみ現象が発生 する。

【0026】本発明における分散媒には水、アルコール 類、脂肪族炭化水素、脂肪酸エステル、フッ素系溶剤、 シリコンオイル等が用いられる。水としては蒸留水、イ オン交換水、水道水などがあげられ、アルコール類とし てはエチルアルコール、イソプロピルアルコール、ブタ ノール、プロパノール、ヘキシルアルコール、ノニルア ルコールなどがあげられ、脂肪族炭化水素としてはヘキ サン、ヘプタン、オクタン、イソドデカン、市販品とし 50 てアイソパーG、アイソパーH、アイソパーL、アイソ

パーM、アイソパーV(以上エクソン社製)、シェルゾルー71(シェル石油化学社製)などがあげられ、脂肪酸エステルとしてはイソプロピルミリステート、イソブチルミリステート、イソプロピルオレエート、イソブチルオクトエート等の高級脂肪酸エステルなどが挙げられ、フッ素系溶剤としては住友スリーエム社のフロリナートFC-40、フロリナートFC-43、フロリナートー70、フロリナートー77などが挙げられ、シリコンオイルとしてはジアルキルシリコンオイル、環状ポリジアルキルシリコンオイル、メチルフェニルシリコンオイル、メチルハイドロジェンシリコンオイル、変性シリコンオイルとして反応性シリコンオイル、非反応性シリコンオイルなどが挙げられる。

【0027】ジアルキルシリコンオイルとしては信越化学社製のジメチルポリシロキサン、ジラウリルポリシロキサンなどが挙げられ、具体的には商品名KF96L-1、KF96L-5、KF995、KF994、KF96L-20など、及びKF56、KF58のようなメチルフェニルシリコンオイル等がある。これらの分散媒は粘度が100cp以下、好ましくは10cp以下である。

【0028】本発明に使用できる着色剤としては、プリンテックスV、プリンテックスU、プリンテックスG、スペシャルブラック15、スペシャルブラック4、スペシャルブラック4-B(以上テグサ社製)、三菱#44、三菱#30、三菱MR-11、三菱MA-100(以上三菱化成社製)、ラーベン1035、ラーベン1252、ニュースペクト11(以上コロンビアカーボン社製)、リーガル400、リーガル660、ブラックパール900、ブラックパール1100、ブラックパール301300、モーガルL(以上キャボット社製)などの無\*

\*機顔料およびフタロシアニンブルー、フタロシアニングリーン、スカイブルー、ローダミンレーキ、マラカイトグリーンレーキ、メチルバイオレットレーキ、ピーコックブルーレーキ、ナフトールグリーンB、ナフトールグリーンY、ナフトールイエローS、ナフトールレッド、リソールファーストイエロー2G、パーマネントレッド4R、ブリリアントファーストスカーレット、ハンザイエロー、ペンジジンイエロー、リソールレッド、レーキレッドC、レーキレッドD、ブリリアントカーミン6 B、パーマネントレッドF5R、ピグメントスカーレット3Bインジゴ、チオインジゴオイルピンクおよびボルドー10Bなどの有機顔料が挙げられる。先に記述したように、インクの比抵抗を上げるため着色剤を精製す

【0029】以上の着色剤をオイル、樹脂、ワニス等と 二本ロール、フラッシャーなどで混練、粉砕し、顔料を 処理することができる。樹脂等で表面処理されたこのフラッシュ着色剤は、Q/M及びインクの比抵抗を上げインクの吐出性、インクの吐出固形分含有率を上げる。樹脂処理に供される樹脂としてはロジン変性樹脂、珪素含 有樹脂、アクリル樹脂、ポリオレフィン又はその共重合体などが適している。

【0030】インクの材料として分散性、極性制御、定着性、比電荷量(Q/M)の制御などの向上のために更に添加剤として下記の材料を用いるのが望ましい。ここでの添加剤としては珪素含有共重合体が効果的である。このものには比水溶液中で重合開始剤の存在下に、下記一般式(I)

 $[0 \ 0 \ 3 \ 1]$ 

【化1】

$$R^{1}-S \stackrel{\downarrow}{i} \stackrel{\downarrow}{=} 0-S \stackrel{\downarrow}{i} \stackrel{\downarrow}{=} 0-S \stackrel{\downarrow}{i} \stackrel{\downarrow}{=} 0-C \stackrel{\downarrow}{=} CH_{z}-CH_{z}-CH_{z}$$

$$C \stackrel{\downarrow}{=} 0-C \stackrel{\downarrow}{=} CH_{z}$$

(式中、 $R^1$ 、 $R^2$ 、 $R^3$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、 $R^7$ は $-C_nH_{2n+1}$  ( $n=1\sim10$ の整数)

- -OH, -COOH,  $-NH_2$ ,  $-N(CH_3)_2$ ,  $-N(C_6H_5)_2$ ,  $-(CH_2)_2OH$
- $-(CH_2)_3OH$ ,  $-(CH_2)_3NH_2$ ,  $-(CH_2)_3N(CH_3)_2$ ,
- $-(CH_2)_3N(C_6H_5)_2$ ,  $-(CH_2)_2NH_2$ ,  $-(CH_2)_2N(CH_3)_2$ ,
- $-(CH_2)N(C_2H_5)_2$ ,  $-(CH_2)_2COOH$ ,  $-(CH_2)_3COOH$ ,

より選ばれ、全部が異なっていても一部又は全部が同一であってもよく、

R<sup>8</sup>は-H又は-CH<sub>2</sub>であり、n<sub>1</sub>は1~500の整数、n<sub>2</sub>は1~10の整数を を表わす)

で表わされる重合性珪素化合物と共重合可能なモノマー られる。 とを重合させて得られた非水系珪素含有共重合体があげ 50 【0032】前記の一般式(I)で表わされる化合物と

10

共重合可能なモノマーとしては、非水溶媒に重合後溶媒 和するモノマーとしてラウリルメタクリレート、2-エ チルヘキシルメタクリレート、ステアリルメタアクリレ ート、ラウリルアクリレートなどがあげられ、またメタ クリル酸、フマール酸、イタコン酸、無水マレイン酸、 グリシジルメタクリレート、ヒドロキシエチルメタクリ レート、ジメチルアミノエチルメタクリレート等の極性 基を持ったモノマーを共重合させたものも好適である。

\*【0033】さらに、架橋性モノマーやスチレン、メチ ルメタクリレート、nーブチルメタクリレートなどを共 重合した架橋ポリマーとして使うこともできる。

【0034】ここで一般式(I)で表わされた化合物の 具体例を挙げれば表1のとおりである。

[0035]

【化1】

$$R^{1}-S \stackrel{\downarrow}{i} \stackrel{\downarrow}{=} 0 \stackrel{\downarrow}{=} S \stackrel{\downarrow}{i} \stackrel{\downarrow}{=} CH_{z}-CH_{z}-CH_{z}$$

$$R^{2} \stackrel{\downarrow}{=} 0 \stackrel{\downarrow}{=} S \stackrel{\downarrow}{i} \stackrel{\downarrow}{=} CH_{z}-CH_{z}$$

$$R^{3} \stackrel{\downarrow}{=} 0 \stackrel{\downarrow}{=} CH_{z}$$

$$R^{5} \stackrel{\downarrow}{=} 0 \stackrel{\downarrow}{=} CH_{z}$$

$$R^{5} \stackrel{\downarrow}{=} 0 \stackrel{\downarrow}{=} CH_{z}$$

[0036]

| n a | 1    | -     | 1    | П    | ∺     | * *                                                | 表1】                             | H                       | -       |
|-----|------|-------|------|------|-------|----------------------------------------------------|---------------------------------|-------------------------|---------|
| n I | 1    | 10    | 44   | 131  | н     | Н                                                  | 400                             | 300                     | н       |
| R   | -CH3 | -CH3  | -CH3 | -CH3 | -CH3  | -CH3                                               | -CH;                            | Ħ                       | -CH3    |
| R,  | -CH3 | -CH3  | -CH3 | -CH  | -CH3  | -CH3                                               | -C,H111                         | -C10H21 -C10H21         | -C10H21 |
| R   | -CH3 | -CH3  | -CH3 | -CH3 | -CH3  | -CH <sub>8</sub>                                   | -C,H,11                         | -C10H21                 | -C10H21 |
| В   | -CH3 | -CH3  | -CH3 | -CH3 | -CH3  | -CH3                                               | -C,H,,,                         | -NHz                    | -C10H21 |
| R.  | -CH3 | -CH3  | -CH3 | -CH3 |       | -CH3                                               | -C <sub>6</sub> H <sub>11</sub> | -C10H21 -C10H21 -C10H21 | -C10H31 |
| R   | -CH3 | -CH3  | -CH3 | -CH3 | -CH3  | -CH3                                               | -C,H11                          | -C10H21                 | -C10H21 |
| R.  | -CH3 | -CH3  | -CH3 | -CH3 | -СН,  | -CH3                                               | -C,H,,                          | -C10H21                 | -C10H21 |
| R 1 | -CH3 | -CH3  | -CH3 | -CH3 | -CH;  | 0 CH <sub>3</sub><br>    <br> -0-C-CH <sub>2</sub> | -C,H,,,                         | 0<br>  <br>-0-C-C=CHz   | -C10H21 |
|     | 化合物1 | 化合物 2 | 化合物3 | 化合物4 | 化合物 5 | 化合物6                                               | 化合物 7                           | 化合物9                    | 化合物10   |

【0037】本発明における荷電粒子の形状は、製造条 件その他によって異なったものとなるが、好ましくはフ 50 子の表面にファイバーを有することにより粒子間の凝集

ァイバー状又は球状のものがよい。その理由はインク粒

## THIS PAGE BLANK

11

力が高まり、吐出性や定着性が向上するものと考えられ る。また球状のものの場合は吐出電圧を下げることがで きる。

\*【0038】本発明で用いられる樹脂の製造例を挙げれ ば下記のとおりである。

12

【0039】添加剤樹脂の製造例-1

(特に定着性に配慮した例)

| 重合溶媒(アイソパーH)      | 200g     |
|-------------------|----------|
| ピニルトルエン           | 50 g     |
| ラウリルメタクリレート       | <br>50 g |
| ジメチルアミノエチルメタクリレート | 0.5g     |
| アゾビスイソブチロニトリル     | 5 g      |

からなる組成物を三ツ口フラスコにとり80℃で6時間 10※ンで繰り返し精製した。この種の製造例による樹脂を用 重合した。重合率は93%、粘度30.4cpsの重合 いたインク組成物は定着性に優れている。

物を得た。重合物をメタノールとアイソパーH、トルエ※ 【0040】樹脂の製造例-2

(特にインクの絶縁性・吐出性に配慮した例)

| 重合溶媒(シリコーンオイルKF96L-1.5) | 2 0 0 g |
|-------------------------|---------|
| フミン酸塩                   | 10 g    |
| FM-0711 (反応性シリコーン)      | 30 g    |
| スチレン                    | 10 g    |
| 無水マレイン酸                 | 3 g     |
| ベンゾイルパーオキサイド            | 3 g     |

からなる組成物を三ツ口フラスコにとり90℃で8時間 20★で繰り返し精製した。この種の製造例による樹脂を用い 重合した。重合率は92%、粘度15cpsの重合物を たインクは絶縁性・インク吐出性に優れている。 得た。重合物をメタノール、トルエンとシリコンオイル★ 【0041】樹脂の製造例-3

(特に帯電特性に配慮した例)

| (11,-10,-21,12,-12,-12,-12,-12,-12,-12,-12,-12, |         |
|-------------------------------------------------|---------|
| 重合溶媒(イソプロピルミリステート)                              | 2 0 0 g |
| ビニルトルエン                                         | 1 0 g   |
| ビニルピロリドン                                        | 10 g    |
| アリルメタクリレート                                      | 10g     |
| アゾビスイソブチロニトリル                                   | 3 g     |

からなる組成物を三ツ口フラスコにとり85℃で10時 間反応させた。

【0042】次にこの反応生成物にイソブチルメタクリ レート20g、アクリル酸10g、ベンゾイルパーオキ サイド1gを加え90℃で6時間分散し、重合率89 %、粘度18cpの樹脂分散液をつくった。この分散液 をメタノールとイソプロピルミリステートで精製した。 なお、着色剤をモノマーや分散媒中に混合して重合した 重合体顔料をつくり、本発明のインク組成物とすること☆

☆もできる。この場合も電圧・印加下での比抵抗低下を防 30 ぐため重合体顔料をアルコール等で入念に精製する。ビ ニルピロリドンを用いたこの種の製造例による樹脂を用 いたインクは、その帯電特性を予め配慮したものであ る。

#### [0043]

【実施例】本発明を具体例によってさらに詳細に説明す

【0044】実施例1

カーボン(三菱#44);メタノールとトルエンで精製したもの

10重量部

フミン酸/ポリビニルピロリドン/メタクリル酸共重合体

(50/45/5重量比)

20重量部 3 0 0 重量部

ラウリルアルコール

固形分は9.1%、A方式で吐出されたインクは26. 5%、B方式は30.3%、C方式は25.5%の高固 形分であった。

このインク組成物をアトライターで4時間分散した。こ のものの比抵抗は1.6×10<sup>11</sup>Qcm、120℃にお ける溶融粘度は70pa・sであった。後述のインクジ エットの吐出実験装置(A方式、B方式、C方式)にお いて各吐出部と電極又は印字基体(1)間10mmの距 離よりインクを吐出させたところ、A方式では310ポ ルト、B方式では460ボルト、C方式では510ボル トの印加電圧でインクが吐出された。吐出前のインクの 50 字濃度]×100(%)による)画像濃度は1.28

【0045】一次定着性は11分28秒(ペーパーに吐 出されたインクが定着するまでの時間(sec))と、 二次定着性は62%(クロックメーター方式により測 定)と、(但し、〔消ゴム5往復消去後の濃度/初期印

13

と、印字ドット直径はΑ方式:約76μmと、それぞれ 測定された。

#### 【0046】比較例1

比較のために、市販インク(EPSON社のINK C ARTRIDGE HG ICI)を用い実施例1と同 様にテストした。A方式、B方式、C方式とも5000 ボルトでも全くインクが吐出しなかった。このインクの Q/Mは0で比抵抗は10 $^{8}\Omega$ cm以下であった。

【0047】インクジェット吐出実験装置は図1に示し たもの(A方式)、図2に示したもの(B方式)、図3 に示したもの(C方式)、図4に示したもの(D方式) を用いた。即ち、A方式は注射器(2)にインクを入 れ、(高圧電源)即ちH. V. P (ハイ ボルテージ パワーソース) 直流(DC)(6)より電圧を印加し電 極又は印字基体(1)上に10mmの距離からインクが 吐出する印加電圧を測定した。同様にB方式は釘(3) の先端にインクを塗布したもの、C方式は平面銅電極板 (4)の側面にインクを均一に塗布したものである。D 方式はディスプレイ(5)(ここではNEC9801の ディスプレイの静電気を利用している)上に印字基体 (1)をセットし、注射器(2)又は釘(3)の先端か らインクが吐出される電圧を測定した。なお、本発明の インクは印加電圧の正負どちらでも吐出可能である特徴 がある。

【0048】(比抵抗(R)の測定法)真鍮製電極40 mm×50mm、電極間距離10mm、容量20mlの 電着セルに試料20mlをとり、これに印加電圧DC1 000ボルト(E)にて50秒間印加する。50秒間印 加した時の電流値(I)を測定し次式より求める。

14

 $R = \frac{E}{x}$ 

(流径の測定) 島津製作所社製のSACP-3 粒度分布 10 計にて測定する。

(溶融粘度) レオメトリックス社のダイナミックスペク トロメーターにより120℃において測定する。

(トナーの電顕写真)透過型電子顕微鏡(日立社製H-500H)で観察する。

(比電荷量(Q/M)の測定法) 真鍮製電極 4 0 mm× 50mm、電極間距離10mm、容量20mlの電着セ ルに試料20mlをとり、これに印加電圧DC1000 ボルトにて50秒間印加する。Q/Mは電極板に電着し たインク重量を秤量し、積算電荷量を測定し次式より求 20 める。

Q/M=積算電荷量(μc)/電着物重量(g) 【0049】実施例2

ピグメントNo. 25 (森村バーデッシュ社製)

ラウリルメタクリレート/グリシジルメタクリレート/

5重量部

10重量部

ビニルピリジン(80/15/5 モル比)共重合体

5 重量部

フミン酸塩

このインク組成物をアトライターで3時間分散した。平

抵抗は1.5×10<sup>12</sup>Qcmであり、120℃における

溶融粘度は16.5p·sであった。A方式、B方式、

C方式の吐出実験装置において、各吐出部と電極又は印

字基体(1)間10mmの距離よりインクを吐出させた

ところ、A方式では260ボルト、B方式では240ボ

ルト、C方式では460ボルトの印加電圧でインクが吐

出された。吐出前のインクの固形分は6.2%、吐出し

たインクにおいてはA方式25.4%、B方式29.1 %、C方式30.5%であった。いずれもインクの固形

均粒子径は約0.1μm、Q/Mは155μc/g、比

3 0 0 重量部

アイソパーH

\*印字ドット径 A:約50μm

【0050】比較例2

市販インク(IBM INK Cartridge)を 用いた以外は実施例2と同様にしてテストを行なった が、A方式、B方式、C方式とも印加電圧5000ボル トでもインクの吐出は認められなかった。比電荷量(Q /M)は0であり、比抵抗は10°Ωm以下であった。 また、前記の添加剤のラウリルメタクリレート/グリシ ジルメタクリレート/ビニルピリジン(80/15/1 5 モル比) 共重合体、フミン酸を除いたインクはA方式 で620ボルト、B方式で1200ボルト、C方式で1 40 000ボルトの電圧でインキが吐出できたが、実施例2 よりはインクの吐出に高電圧を要した。比電荷量(Q/ M)  $t65 \mu c/g$   $\sigma book.$ 

分が上昇した。 一次定着 4 8 秒 二次定着 71% 画像濃度 1.40

> フラッシュドピグメントNo. 5 (森村バーデッシュ社製) シリコーンオイル (KF96L-1.5)

【0051】実施例3

10重量部 3 0 0 重量部

このインク組成物をペイントシェカーで6時間分散し た。粒子径は約0.3μm、比電荷量(Q/M)は32 0μc/g、比抵抗は1.6×10<sup>14</sup>Ωm、120℃に おける溶融粘度は160p・sであった。インクジェッ

各吐出部と電極又は印字基体(1)間10mmの距離よ りインクを吐出させたところ、A方式では210ポル ト、B方式では245ポルト、C方式では105ポルト の印加電圧でインクが吐出された。またD方式のディス トの吐出実験装置(A方式、B方式、C方式)において 50 プレイ(5)を用いた装置では注射器(2)からは10

\*二次定着性

画像濃度

印字ドット径

【0052】実施例4

15

0 mm、釘(3) の先端からは80 mmの距離からイン クが吐出された。インクの固形分は3.2%、A方式か ら吐出されたインクは29.4%、Bは32.6%、C は28.2%であった。

一次定着性

30秒

フラッシュドピグメントNo. 1 (森村バーデッシュ社製)

(メタノールで精製)

10重量部

16

70%

1.40

 $42 \mu m$ 

製造例-2の樹脂(メタノール、トルエンで入念に精製)

20重量部

シリコーンオイル(KF995)

300重量部

子径は約0.1 μm、比電荷量(Q/M)は660 μc /g、比抵抗3.8×10<sup>13</sup>Ωm、120℃における溶 融粘度は460p·sであった。実施例3と同様に吐出 実験を行ったところ、A方式では280ポルト、B方式 では300ボルト、C方式では300ボルトの印加電圧 でインクが吐出された。またD方式のディスプレイ

- (5) を用いると注射器 (2) からは 1 30 mm、釘
- (3) の先端からは95mmの距離よりインクが吐出さ れた。

【0053】なお、図5に示される試験装置を用いた試 20 験では150ボルトの印加電圧でインクを吐出できた。 また、吐出部口径25μmのこの装置を用い、初期溜出※

重合トナー(粒径0.3μの球形)

シリコンオイル(KF994)

このインク組成物をアトライターで3時間分散した。粒 子径は約0.3  $\mu$  m、比抵抗3.5×10<sup>12</sup>  $\Omega$  m、12 0℃の溶融粘度は6,300p·sであった。インクは 負極性であった。実施例3と同様に吐出テストを行った ところ、A方式では200ボルト、B方式では210ボ ルト、C方式では300ボルトでインクが吐出された。 またD方式のディスプレイ(5)では注射器(2)で1 60mm、釘(3)からは135mmの距離よりインク が吐出された。

> カーボンブラック(三菱化成社製)#44 エチレン/酢ビ共重合体(85/15重量比) シリコーンオイル (KF96L-1.0)

このインク組成物を50℃で1時間分散し、急冷した。 粒子径は約1.8μm、比電荷量(Q/M)は40μc /g、比抵抗は4. 4×10 <sup>14</sup>Ωm、溶融粘度 1 2 0 ℃ で800p・sであった。また電顕写真による粒子の形 40 状は、ファイバー状であった。実施例3と同様に吐出テ ストを行ったところ、A方式では260ポルト、B方式 では260ボルト、C方式では360ボルトであった。

一次定着性

5.8秒

二次定着性

8 9 %

画像濃度

1. 51

印字ドット径

約24 µ m

荷電されたインク粒子がファイバー状のため、吐出印加 電圧により、インクの強い凝集体をゆっくり吐出させる

このインク組成物をアトライターで3時間分散した。粒 10※点が159℃のインパラフィン系液体中に有機顔料を分 散したインク組成を用いてこれを90mmの距離よりイ ンクを吐出させた場合の印加電圧1000ボルトと比較 するとより低い電圧で吐出できた。

一次定着性

40秒

二次定着性

75%

画像濃度

1. 38

印字ドット径

約40 µ m

D方式のディスプレイ(5)上の紙上に注射器(2)か ら100mmはなれたところからインクを吐出させなが ら手動できれいな文字を書くことができた。

【0054】実施例5

20重量部

300重量部

★一次定着性 二次定着性 18秒

76%

画像濃度

1.46

印字ドット径

 $30 \mu m$ 

また熱ローラー定着も可能であった。負の印加電圧で同 30 様に吐出させたところ、A方式では(-) 2 1 0 ボル ト、B方式では(-) 120ボルト、C方式では(-) 180ボルトでインクが吐出された。

【0055】実施例6

20重量部

10重量部

300重量部

得られるものと推定される。このインクをキャノン社製 のバブルジェット方式のプリンターで印字させたところ 高濃度で定着性の良好なプリントが得られた。

#### 【0056】実施例7

実施例2のインク処方においてラウリルメタクリレート **/グリンジルメタクリレート/ビニルビリジン(80/** 15/15モル比) 共重合体を20重量部、フミン酸を 15重量部加えてアトライターで3時間分散した。平均 粒径が0.04μm、Q/Mが980μc/g、120 ℃における溶融粘度が2800pa・secであった。 インクの吐出性はA方式で280ポルト、B方式で30 0 ボルト、C 方式では 3 0 5 ボルトの印加電圧でインキ は吐出された。一次定着性は62秒、二次定着性は74 ためと考えられる。そのため上記のような良好な結果が 50 %、画像濃度 1.36印字ドット径は 48μmと小さい

ドット径であった。

#### 【0057】実施例8

実施例 7 において共重合体を 1 重量部フミン酸を 0. 1 重量部加えて同様にインクを作成した。インクの平均粒径は 0. 9  $\mu$ m、Q/Mは 1 2  $\mu$  c /g、1 2 0  $^{\circ}$  における溶融粘度 1 0. 8 p a · s e c  $^{\circ}$  であった。インクの吐出性はA方式で 4 6 0 ボルト、B方式で 4 9 5 ボルト、C方式で 6 0 0 ボルト、一次定着性 6 9 秒、二次定着性 6 0 %、画像濃度 1. 2 1、印字ドット性 8 6  $\mu$  mであった。

#### 【0058】実施例9

(荷電粒子のQ/Mが大きく、インク組成物の電気抵抗が高いインク組成物の場合の例) 実施例 6 において、カーボンブラックをトルエンとエタノールで精製したものを用いて同様にインクを作成した。平均粒子径は2.5  $\mu$  m比抵抗は $1.5 \times 10^{16}$  Q·cm、120 Cにおける溶融粘度は980 pa·sec、Q/Mは580  $\mu$  c/gであった。A方式では245 ボルト、B方式では250 ボルト、C方式では340 ボルトであった。また

一次定着性

5.6秒

二次定着性

8 9 %

画像濃度

18 1. 5 3

印字ドット径 約22 $\mu$ m、であった。小さいドット径で高画像濃度、高定着性のインクが得られた。

【0059】(荷電粒子のQ/Mが小さく、インク組成物の電気抵抗が低いインク組成物の場合の例)

実施例10

実施例1のインク処方に、ナフテン酸マンガン0.02 g r を加え同様にインク組成物を得た。このものの比抵抗は1.5×10<sup>10</sup>Ω c m、Q/Mは48μc/g r、10 平均粒子径は0.8μm120℃における溶融粘度は65pa・secであった。A方式では460ボルト、B方式で500ボルト、C方式は620ボルトの印加電圧でインクが吐出された。吐出前のインクの固形分は、9.1%A方式で吐出されたインクは20.6%、B方式は24.1%、C方式は23.1%の固形分が得られた。一次定着性は13分5秒、二次定着性は60%、画像濃度は1.21、印字ドット径約83μmが得られた。これらの結果を次の表2に纏めて示す。

[0060]

20 【表 2】

|      | 比抵   | Q/   | 平均   | 容融    | イン   | ノク吐り  | 出の   |      | インク   | 閻形分        |       | 1次    | 2次  |        | 印字ド  | 2      |
|------|------|------|------|-------|------|-------|------|------|-------|------------|-------|-------|-----|--------|------|--------|
|      | 抗    | М    | 粒径   | 粘度    | F    | 可加强   | £    |      | (9    | <b>6</b> ) |       | 定着    | 定着  | 画像     | トの直  | 径儀     |
|      | Ω)   | (10/ | (uu) | (pa·  |      | (V)   |      | 吐出   |       | 吐出後        | -     | 性(    | 性   | 濃 度    | (A.方 | 式考     |
|      | ·ca) | g)   |      | sec)  | A方式  | B方式   | C方式  | 戫    | A方式   | B方式        | C方式   | Sec)  | (%) | Į      | . um | ן נ.   |
| 実施例  | 1.6× | 30   | 0.31 | 70    | 810  | 460   | 510  | 9. 1 | 26.5  | 30.3       | 25.5  | 682   | 6:  | 1. 28  | 76   |        |
| 1    | 1011 |      |      |       |      |       | •    |      | ,     |            |       |       |     | 1      |      |        |
| 比較例  | 10°  | 0    | -    | -     | 500  | 0 V T | インク  |      | L     |            |       |       |     |        |      | $\top$ |
| 1    | 以下   |      |      |       | を吐出  | せず    |      |      | 不     | 吐出のた       | め測定不  | 能     |     |        |      | 2      |
| 実施例  | 1.5X | 166  | 0. 1 | 16. 5 | 260  | 240   | 460  | 6, 2 | 24.5  | 29.1       | 30.5  | 4.8   | 7:  | 1.40   | 50   | 十      |
| 2    | 1032 | 1    |      |       |      |       |      |      |       |            |       |       |     |        |      |        |
| 比較例  | 10°  | 65   | -    | -     | 500  | 0 V で | インク  |      | ·     |            | _     |       |     |        |      | $\top$ |
| 2    | 以下   |      |      |       | を吐出  | せず    |      |      | 不     | 吐出のた       | め測定不  | 能     |     |        |      | 3      |
| 実施例  | 1.6X | 140  | 0.3  | 160   | 210  | 245   | 1 05 | 3. 2 | 29.4  | 32.6       | 28. 2 | 3.0   | 70  | 1.40   | 42   |        |
| 3    | 10°  |      |      |       |      |       |      |      |       | . :        |       |       | ŀ   |        |      | -      |
| 実施例  | 3.8x | 660  | 0. 1 | 460   | 280  | 300   | 300  | D方式; | 注射器(  | 2) から      | 130m  | 4 0   | 78  | 1.88   | 40   | $\top$ |
| 4    | 1013 |      |      |       |      |       |      | m、釘( | 4) から | 95 m m     | で吐出可  |       |     |        |      |        |
| 実施例  | 3.5X | 180  | 0.3  | 6300  | 200  | 210   | 300  | ←実施例 | 3と同様  | に吐出の       | 場合    | 18    | 76  | 1.46   | 30   |        |
| 5    | 1012 |      |      |       | -210 | -120  | -180 | ←負の印 | 加電圧の  | 場合         |       |       |     |        |      | 4      |
| 実施例  | 4.4X | 40   | 1, 8 | 800   | 260  | 260   | 360  | インク粒 | 子は、フ  | ァイパー       | 状     | 5, 8  | 88  | 1.51   | 24   |        |
| 6    | 101  |      |      |       |      |       |      |      |       |            |       |       |     |        |      |        |
| 実施例  | 6.4X | 980  | 0.04 | 2800  | 280  | 800   | 8 05 | 10.0 | 18.0  | 22.5       | 23.8  | 62    | 74  | 1.86   | 48   | $\top$ |
| 7    | 1013 |      |      |       |      |       |      |      |       |            |       |       |     |        |      |        |
| 実施例  | 2.5x | 12   | 0.9  | 10.8  | 460  | 495   | 600  | 3, 5 | 18.9  | 25. 1      | 24.8  | 69    | 6 ( | 1.21   | 86   |        |
| 8    | 1014 |      |      |       |      |       |      |      |       |            |       |       |     |        |      |        |
| 実施 例 | 1.5x | 680  | 2. 5 | 980   | 245  | 250   | 340  | 9, 0 | 29.8  | 38.2       | 36.5  | 6, 6  | 88  | 1.58   | 22   |        |
| 9    | 1035 |      |      |       |      |       |      |      |       |            |       |       |     |        |      |        |
| 実施 例 | 1.5x | 48   | 0.8  | 65    | 460  | 500   | 620  | 9.1  | 20.6  | 24.1       | 23.1  | 13, 5 | 6(  | 1. 2 I | 83   |        |
| 10   | 1020 |      |      |       |      |       |      |      |       |            |       |       |     |        |      |        |

備考 1:D方式の場合、実施例4のインクの方が低電圧で吐出できる

2:INK CARTRIGE HG IHI (エプソン社)

3:IBM INK CARTRIGE (IBM社)

4: D方式の場合、注射器 (2) から160mm、釘 (4) から135mmで吐出可

#### 【0061】実施例11

アイソパーH100部と、フタロシアニンブルー15部 と、メタクリル変性シリコン化合物(信越化学社製:X -22-5002) 30部と、2,4-トリレンジイソ シアネート5部と、BPO (ベンゾイルパーオキサイ ト) 3部とアクリル酸2部とフラスコに仕込み、よく撹 拌しながら90℃で12時間反応させてシアン色樹脂粒 子を含むシアン色分散液(C)を製造した。

H 1リットルに分散して電子写真液体現像剤とし、こ の現像剤とリコー製湿式複写機 CT-5085とを使っ て実施例1の場合と同じ複写用紙に複写する実験を行 い、画像濃度1.29、解像度6.3本/mm、階調性 7. 0段の高品質複写画像を得た。また、画像定着率は 68%であり、この実験に使用したシアン色分散液Cを 希釈して製造される液体現像剤は定着性、分散性とも良 好なことが認められた。

#### 【0063】実施例12

実施例11で使用したメタクリル変性シリコン化合物の 50

代わりに下記に示した反応性シリコン化合物No. 4を 使用し、それ以外は実施例11と全く同様にしてシアン 色分散液Dを作成した。この分散液を実施例11の場合 と全く同様に希釈して液体現像剤とし、この現像剤を使 って実施例11の場合と全く同じ評価実験を行ったとこ ろ、画像濃度1.44、解像度7.2本/mm、階調性 7.0段の高品質複写画像が得られた。また、この実施 例で作成したシアン色分散液Dは撥水撥油性の複写画像 【0062】前記シアン色分散液С50gをアイソパー 40 を与える着色剤であり、熱ローラによって定着すること ができる着色剤であった。そして、画像定着率は81% と極めて高かった。

> 【0064】本実施例で得られたシアン色分散液 Dは、 ピン電極を使用するスリットジェット方式、ピエゾジェ ット方式、バブルジェット方式等のインクジェット用イ ンキとしても利点が多く、このインクジェット用インキ は吐出性及び画像品質の両者とも良好であった。

[0065]

【化2】

## THIS PAGE BLANK DISPTO

$$\begin{array}{c|c}
CH_3 & CH_3 \\
 & CH_3 \\
 & CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3 \\
 & CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 & CH_3
\end{array}$$

#### 【0066】実施例13

フラスコにアイソパーH(エクソン化学社製) 300g をとり90 に加熱した。この中にカヤセットイエロー A-G50g、シリコンオリゴマーX-22-176B (信越化学社製) 100g をとり90 で 3 時間混合した。この混合液にメチルメタクリレート50g、グリシジルメタクリレート3g、イソホロンジイソシアネート30g、BPO(過酸化ペンゾイル)0.5g を加え、90 で 6 時間分散し、電子写真液体現像剤を調整した。ここでは、水酸基をもつシリコンオリゴマーX-22-176B がイソホロンジイソシアネートと反応しウレタン結合をつくるため、顔料を内包した重合体トナー粒子が作成できるものと考えられる。

【0067】この現像剤をリコー社製のリコピー400 iで100℃の温風定着を行ったところ、定着率80% 20 であり、OPH色再現性も良好であった。

定着率= (クロックメーター 10階後の ID/ID) × 100%

#### 【0068】実施例14

ニーダー混練機にエチレンー無水マレイン酸共重合体 5 0 0 g、2, 2, 4ートリメチルプロバントリイソホロンジイソシアネート 1 5 g、カーミン 6 B 2 0 0 gをとり、100℃で1時間混練した。次にラウリルメタクリレート 1 5 0 g、グリシジルメタクリレート 3 0 g、BPO 2 gを混合し、90℃で6時間重合させた。次にドデシルアミン 0.1 gを加え、エステル化反応を80℃で20時間行った。更に、アイソパーH 1 2 0 0 gを加えて電子写真液体現像剤を調整した。この現像剤はリコピー 4 0 0 i で 8 0 ℃の温風で定着可能であった。定着率は88%、OHPの色再現性も良好であった。

【0069】リコピー400iで1200の裏面定着方式でコピーしたところ、定着率は74%、OHPの色再現性は温風定着方式よりやや劣ったが、ほぼ良好であった。なお、この実施例 14 で得られた電子写真液体現像剤は、実施例 13 で得られた現像液と同様、インクジェ 40 ット記録用インクとしても使用できる。

#### [0070]

【発明の効果】上記結果から明らかなように、本発明によれば、多くの優れた効果を奏するが、これは、既に記述したようにインクの荷電粒子が受ける影響及び飛翔モードが本発明においては或る意味で独特なためと考えられる。図6は、そのような本発明のインクと従来のインクジェット用インクとの概念上の飛翔差をモデル的に説明するためのものであり、ここで、6 a は飛翔インクの固形分が増大した本発明のインクの飛翔態様をモデル的50

22

に示し、6 b は従来のインクジェット用インクの飛翔態様をモデル的に示す。但し、上記提案の飛翔モデルは、本発明の理解を助けるためのものであって、我々はこのモデルに頑固に拘泥するつもりはなく、また、本発明をこれにより制限するつもりもない。本発明の本質及び効果は、上記具体的な諸例とその結果によって当事者が充分理解される筈である。

【0071】また、本発明に係わる、電子写真液体現像 剤、インクジェット用インキ、印刷インキ、塗料等に使 用される着色剤の新規な製造方法によれば、画像濃度が 高く、解像度、コントラスト及び階調性も優れた画像を 提供することができる着色剤が得られ、また、この製造 方法によれば画像形成後の定着性が高く撥水撥油性塗膜 を持つ画像を形成する着色剤が得られるという効果を奏 する。

【0072】斯くして本発明によれば、適度のインクの 飛翔ドット径が得られ、良質画像が得られる。また、荷 電粒子の沈降を生じることなく、インクのにじみ現象は 見られず、画像のにじみがない点での良質の画像が得ら れ、良質のインクが調整でき、比抵抗が上がりインクの 吐出性が向上し、インクの分散性、極性制御、定着性、 比抵抗の制御が向上する。更に、これらインクを用いる 前記インクジエット方式により、インク粒子間の凝集力 を変化でき、吐出性や定着性が向上する点でも、一層画 像が向上する。

#### 【図面の簡単な説明】

【図1】インクジェット吐出実験装置の概略を示した説明図である。

【図2】インクジェット吐出実験装置の概略を示した説 30 明図である。

【図3】インクジェット吐出実験装置の概略を示した説 明図である。

【図4】インクジェット吐出実験装置の概略を示した説明図である。

【図 5】実施例 4 のインク組成物の試験に用いた装置の 概略を示す説明図である。

【図6】本発明と従来技術とのインク飛翔における差異を概念的に示した説明図である。

#### 【符号の説明】

- 1 電極又は印字基体
- 2 注射器
- 3 釘
- 4 銅電極板
- 5 ディスプレイ
- 6 高圧直流電源
- 7 電導体
- 8 インク供給管
- 9 吐出点
- 10 インク供給系
- 50 11 回収インク流れ方向

14 電圧源

#### 12 インク回収路

#### 13 外への抽出系





[図1]

【図3】



【図5】





【図2】

【図4】



[図6]



#### フロントページの続き

(31) 優先権主張番号 特願平6-289055

(32) 優先日

平 6 (1994) 10月28日

(33) 優先権主張国

日本(JP)

(31) 優先権主張番号 特願平6-333881

(32) 優先日

平 6 (1994) 12月16日

(33)優先権主張国

日本(JP)

(72) 発明者 後藤 明彦

東京都大田区中馬込1丁目3番6号 株式 会社リコー内

(72)発明者 梅村 和彦

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72)発明者 水野 和代

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(72) 発明者 大河原 信

東京都目黒区大岡山 2-8-1-211