EE341 Fall 2019 HW 6

Lewis Collum

Updated: November 11, 2019

7.30

7.30 For the NMOS amplifier in Fig. P7.30, replace the transistor with its T equivalent circuit, assuming $\lambda = 0$. Derive expressions for the voltage gains v_s/v_i and v_d/v_i .

Fig. P7.30

$$i_{D} = g_{m} V_{gS}$$

$$Y_{i} = i_{D} \left(g_{m}^{\dagger} + R_{S} \right)$$

$$Y_{S} = i_{D} R_{S}$$

$$V_{D} = -i_{D} R_{D}$$

$$\vdots$$

$$R_{D} = i_{D}$$

$$\frac{V_S}{V_i} = \frac{i_D R_S}{i_D \left(\frac{1}{9m} + R_S \right)} = \frac{R_S}{\frac{1}{9m} + R_S} = \frac{1}{\frac{1}{9m} R_S + 1}$$

$$V_D = -i_D R_D = \frac{1}{9m} R_S = \frac{1}{1}$$

$$\frac{V_D}{V_i} = \frac{-i_D R_D}{i_D \left(\frac{1}{2m} + R_S\right)} = -\frac{R_D}{R_S} \frac{1}{\frac{1}{2mR_S} + 1}$$

7.33

*7.33 Figure P7.33 shows a discrete-circuit amplifier. The input signal $v_{\rm sig}$ is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite). All capacitors behave as short circuits for signals and as open circuits for dc.

- (a) If the transistor has $V_t = 1 \text{ V}$, and $k_n = 4 \text{ mA/V}^2$, verify that the bias circuit establishes $V_{GS} = 1.5 \text{ V}$, $I_D = 0.5 \text{ mA}$, and $V_D = +7.0 \text{ V}$. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.
- (b) Find g_m and r_o if $V_A = 100 \text{ V}$.
- (c) Draw a complete small-signal equivalent circuit for the amplifier, assuming all capacitors behave as short circuits at signal frequencies.
- (d) Find R_{in} , v_{gs}/v_{sig} , v_o/v_{gs} , and v_o/v_{sig} .

Vor = V_{Gs} - V₊ = 1.5 - 1.0 = 0.5 V
Since V_{DS} > V_{OV}, the NMOS is saturated.

$$T_D = \frac{1}{2} K_D V_{OV}^2 \rightarrow 0.5 = \frac{1}{2} \cdot 4.0.5^2 = 0.5.$$
VERIFIED

200k G D 200k G D VS:9 ZR9 G MY95 Zro Z 16x (16)

(d) $R_{in} = R_{G} = 3.33M \cdot 2$ $V_{gi} = V_{sig} \frac{R_{gi}}{R_{gi} + R_{sig}} \Rightarrow \frac{V_{gi}}{V_{sig}} = \frac{R_{gi}}{R_{gi} + R_{sig}} = 0.94$

7.121

D *7.121 The MOSFET in the circuit of Fig. P7.121 has $V_t = 0.8 \text{ V}, k_n = 5 \text{ mA/V}^2$, and $V_A = 40 \text{ V}.$

- (a) Find the values of R_s , R_D , and R_G so that $I_D = 0.4$ mA, the largest possible value for R_D is used while a maximum signal swing at the drain of ± 0.8 V is possible, and the input resistance at the gate is $10 \text{ M}\Omega$. Neglect the Early effect.
- (b) Find the values of g_m and r_o at the bias point.
- (c) If terminal Z is grounded, terminal X is connected to a signal source having a resistance of 1 MΩ, and terminal Y is connected to a load resistance of 10 kΩ, find the voltage gain from signal source to load.
- (d) If terminal Y is grounded, find the voltage gain from X to Z with Z open-circuited. What is the output resistance of the source follower?