Lemma (Flexibility) (et $(£ \times R_{+}, P_{i} + f dt)$ etct infds with $B_{i} \in \Omega^{1} E_{i}$, $f \in C^{\infty} E$ 5. t. $B_{0} = B_{1}$ near Γ and B_{1}, B_{0} are exact deformation equivalent (dBt $t \in (0,1)$ symplectic). Then there is 1-parameter family of differs $\phi_s : \mathcal{E} \times \mathbb{R} \to \mathcal{E} \times \mathbb{R}$ s.t. (1) \$\phi_0 = id (2) $T\phi_1(\ker(\int dt + \beta_1)) = \ker(\int dt + \beta_1)$ or equivalently $\phi_1^*(\int dt + \beta_1) = (\int dt + \beta_2)$ for nonzero $g \in C^{\infty} \mathcal{E} \times \mathcal{R}$. (3) $\phi_5(\mathcal{E} \times \mathcal{E} \times \mathcal{E}) \wedge to \partial_t$ (4) \$ = id near \$\mathbb{T}_x/R. Proof Let Xs be time dependent VF with flow ϕ_s . Then we want $\phi_s^*(\alpha_s) = g_s \alpha_0 \quad \forall s$ where $\alpha_s = fdt + f_s$ are contact forms $\phi_s^*(\mathcal{A}_{\chi_s}(\lambda_s) + \lambda_s) = j_s \alpha_0 = \phi_s^*(u_s \lambda_s)$ dix, ds + ix dds + is = us ds. Let Xs = kerds vs and us = is (Rus) Then solve for ix das = us ds - 2s (1),(2) are satisfied by construction. Near I we have $\dot{a}_s = 0$, $\mu_s = 0 \Rightarrow \chi_s = 0$. =7 (4) as well. The Xs is t-invariant since everything else is Hence Lox = 0. It remains to show \$55 AD. If $\partial_t \in \mathcal{T}$ & then $\phi_s^* \partial_t \in \mathcal{T} \mathcal{E}$. But $\phi_o^* \partial_t = \partial_t \notin \mathcal{T} \mathcal{E}$. So $\phi_s^* \partial_t$ not constant,

=> L, D+ +0 => L, x, +0 h

