Notes on Baire Category Theorem

Gabrielle Li

April, 2020

Definition (Nowhere dense). Let X be a topological space. A subset A is called nowhere dense in X if the interior of the closure of A is empty, i.e. Int $(\overline{A}) = \emptyset$.

Proposition. Let X be a topological space, then

- 1. Any subset of a nowhere dense set is nowhere dense.
- 2. The union of finitely many nowhere dense sets is nowhere dense.
- 3. A subset is nowhere dense iff its closure is nowhere dense.
- 4. A subset is nowhere dense iff its complement contains a dense set.

Definition (Meagre set/First category). In a topological space X, a subset S is a meagre subset (or of the first category) if it is the union of countably many nowhere dense subsets in X.

Definition (Second category). In a topological space X, a subset S is of the second category if it is not of first category.

Proposition. Let X be a topological space, then

- 1. Any subset of a meager set is meager.
- 2. The union of finitely many meagre sets is nowhere meagre.

Theorem (Baire Category Theorem). Let X be a complete metric space, then

- 1. Let G_1, G_2 ...be a sequence of dense open subsets X. Then $G = \bigcap_{n=1}^{\infty} G_n$ is dense in X.
- 2. If X is the union of countably many closed sets, then at least one of the closed sets has non-empty interior. This means that a complete metric space is of the second category.
- 3. The complement of a meagre subset is dense and of the second category.

Theorem (Principle of uniform boundness (Osgood)). Let U be a set of the second category in a metric space X and let \mathcal{F} be a family of continuous functions $f: X \to \mathbb{R}$ such that $f(u): f \in \mathcal{F}$ is bounded for every $u \in U$. Then the elements of \mathcal{F} are uniformly bounded for in some ball B in X, i.e. |f(x)| is bounded by some n for all $f \in \mathcal{F}$ and all $x \in B$.