In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import preprocessing
from scipy.stats import norm
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler, normalize
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
df = pd.read_csv("Breast Cancer Data.csv")
print(df.shape)
df.head()
```

(569, 33)

Out[2]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_ı
0	842302	М	17.99	10.38	122.80	1001.0	0.′
1	842517	М	20.57	17.77	132.90	1326.0	0.0
2	84300903	М	19.69	21.25	130.00	1203.0	0.1
3	84348301	М	11.42	20.38	77.58	386.1	0.1
4	84358402	М	20.29	14.34	135.10	1297.0	0.1

5 rows × 33 columns

In [3]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):
     Column
                              Non-Null Count Dtype
_ _ _
     -----
                               -----
                                               ----
0
     id
                              569 non-null
                                               int64
 1
     diagnosis
                              569 non-null
                                               object
 2
     radius mean
                              569 non-null
                                               float64
 3
                                               float64
     texture mean
                              569 non-null
 4
     perimeter_mean
                              569 non-null
                                               float64
 5
     area mean
                              569 non-null
                                               float64
 6
     smoothness mean
                              569 non-null
                                               float64
 7
     compactness_mean
                              569 non-null
                                               float64
 8
     concavity_mean
                              569 non-null
                                               float64
 9
     concave points mean
                              569 non-null
                                               float64
 10
    symmetry mean
                              569 non-null
                                               float64
    fractal_dimension_mean
 11
                              569 non-null
                                               float64
                              569 non-null
                                               float64
 12
    radius se
 13
    texture_se
                              569 non-null
                                               float64
 14
    perimeter_se
                              569 non-null
                                               float64
                                               float64
 15
    area se
                              569 non-null
 16
     smoothness_se
                              569 non-null
                                               float64
                                               float64
 17
    compactness_se
                              569 non-null
                              569 non-null
                                               float64
 18
    concavity_se
 19
     concave points_se
                              569 non-null
                                               float64
                                               float64
 20
    symmetry_se
                              569 non-null
 21
    fractal dimension se
                              569 non-null
                                               float64
 22
    radius_worst
                              569 non-null
                                               float64
                                               float64
 23
    texture_worst
                              569 non-null
                                               float64
 24
    perimeter_worst
                              569 non-null
 25
    area_worst
                              569 non-null
                                               float64
                                               float64
 26
    smoothness_worst
                              569 non-null
 27
     compactness_worst
                              569 non-null
                                               float64
                                               float64
 28
    concavity_worst
                              569 non-null
    concave points_worst
                                               float64
 29
                              569 non-null
    symmetry_worst
 30
                              569 non-null
                                               float64
 31
    fractal_dimension_worst
                              569 non-null
                                               float64
    Unnamed: 32
                                               float64
                              0 non-null
dtypes: float64(31), int64(1), object(1)
```

memory usage: 146.8+ KB

In [4]:

```
df.isnull().sum() #check Missing Value
```

Out[4]:

id	0
diagnosis	0
radius_mean	0
texture_mean	0
perimeter_mean	0
area_mean	0
smoothness_mean	0
compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
<pre>fractal_dimension_se</pre>	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0
compactness_worst	0
concavity_worst	0
concave points_worst	0
symmetry_worst	0
fractal_dimension_worst	0
Unnamed: 32	569
dtype: int64	

From the above observation Unnamed: 32 column contains all the Null values, So it would be better to drop the column

In [5]:

```
df.drop('Unnamed: 32',axis = 1,inplace = True) # Drop the Column Containing Missing Value
df.isnull().sum() # Recheck the Missing Value is present or not
```

Out[5]:

```
In [6]:
df.describe()
Out[6]:
                 id radius_mean texture_mean perimeter_mean
                                                                area_mean smoothness_me
 count 5.690000e+02
                      569.000000
                                    569.000000
                                                    569.000000
                                                                569.000000
                                                                                  569.000
       3.037183e+07
                        14.127292
                                     19.289649
                                                     91.969033
                                                                654.889104
                                                                                    0.096
 mean
       1.250206e+08
                        3.524049
                                      4.301036
                                                     24.298981
                                                                351.914129
                                                                                    0.014
  min
       8.670000e+03
                        6.981000
                                      9.710000
                                                     43.790000
                                                                143.500000
                                                                                    0.052
  25%
       8.692180e+05
                        11.700000
                                     16.170000
                                                     75.170000
                                                                420.300000
                                                                                    0.086
  50% 9.060240e+05
                        13.370000
                                     18.840000
                                                     86.240000
                                                                551.100000
                                                                                    0.095
  75% 8.813129e+06
                        15.780000
                                     21.800000
                                                    104.100000
                                                                782.700000
                                                                                    0.105
  max 9.113205e+08
                        28.110000
                                     39.280000
                                                    188.500000
                                                               2501.000000
                                                                                    0.163
8 rows × 31 columns
In [7]:
df.diagnosis.unique() # Check The types of values of Diagnosis Present In dataset
Out[7]:
array(['M', 'B'], dtype=object)
In [8]:
df['diagnosis'].value_counts() # Count number of Malignant (M) or Benign (B) Cells
Out[8]:
В
     357
     212
Name: diagnosis, dtype: int64
Feature elemination
```

```
In [9]:
```

```
# feature is not for our use as it consist of id of the patient
df.drop('id',axis=1,inplace= True)
df.isnull().sum().sum()
```

```
Out[9]:
```

0

Feature encoding

```
In [10]:
```

```
le = preprocessing.LabelEncoder()
df['diagnosis']=le.fit_transform(df['diagnosis'])
df['diagnosis'].unique()
```

Out[10]:

array([1, 0])

Spliting Dataset

In [11]:

```
data_std = df.copy()
print(data_std.shape,data_std.isnull().sum().sum())
data_std.head()
```

(569, 31) 0

Out[11]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	1	17.99	10.38	122.80	1001.0	0.11840	
1	1	20.57	17.77	132.90	1326.0	0.08474	
2	1	19.69	21.25	130.00	1203.0	0.10960	
3	1	11.42	20.38	77.58	386.1	0.14250	
4	1	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

```
→
```

In [12]:

```
X =data_std.drop(['diagnosis'],axis = 1)
y = data_std['diagnosis']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
X_train.shape , X_test.shape, y_train.shape, y_test.shape
```

Out[12]:

```
((398, 30), (171, 30), (398,), (171,))
```

In [13]:

```
sc = StandardScaler()
X_train_std = sc.fit_transform(X_train) #Standardize the training Dataset
X_test_std = sc.transform(X_test) # Standardize the testing Dataset
X_train_std = pd.DataFrame(X_train_std,columns=df.columns[:-1]) # COnvert to dataframe
X_train_std.head()
```

Out[13]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	-0.803669	0.142307	-0.742539	-0.732525	-1.118956	0.264933	
1	0.118791	-1.250132	0.212063	-0.037601	0.529713	1.488118	
2	1.022425	-0.744849	1.068478	0.890467	0.774494	2.067029	
3	1.673256	0.307630	1.633447	1.667615	-0.301101	0.511437	
4	1.006288	0.305302	0.974966	0.852538	0.565710	0.494630	

5 rows × 30 columns

→

In [14]:

X_train_normalize = normalize(X_train) # normalize training Dataset
X_test_normalize = normalize(X_test) # Normalize Testing Dataset
X_train_normalize = pd.DataFrame(X_train_normalize,columns=df.columns[:-1]) # Convert it in
X_train_normalize.head()

Out[14]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	0.018747	0.033232	0.122739	0.656151	0.000134	0.000197	
1	0.013934	0.013261	0.093166	0.622342	0.000098	0.000174	
2	0.009434	0.008441	0.062823	0.525789	0.000056	0.000112	
3	0.009707	0.009802	0.063876	0.615999	0.000043	0.000062	
4	0.010674	0.012258	0.069895	0.588409	0.000061	0.000077	

5 rows × 30 columns

In [15]:

```
minMax = MinMaxScaler()
X_train_mm = minMax.fit_transform(X_train) #Apply min-max scaler on the training Dataset
X_test_mm = minMax.transform(X_test) #Apply min-max scaler on the testing Dataset
X_train_mm = pd.DataFrame(X_train_mm,columns=df.columns[:-1]) # convert to dataframe
X_train_mm.head()
```

Out[15]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	0.202518	0.346635	0.206827	0.106299	0.248894	0.302804	
1	0.364854	0.144403	0.376132	0.217434	0.455629	0.503711	
2	0.523877	0.217788	0.528022	0.365854	0.486323	0.598798	
3	0.638412	0.370646	0.628222	0.490138	0.351449	0.343292	
4	0.521037	0.370308	0.511437	0.359788	0.460143	0.340531	

5 rows × 30 columns

4