Homework 9 MATH2534 CRN:15708

Jacob Abel

April 12, 2018

- 1. Prove by set identities (or by element method) or disprove the following:
 - (a) If $B \subseteq C$, then $(A B) \subseteq (A C)$

$$A = \{1, 2, 3, 4\}, B = \{2, 3\}, C = \{2, 3, 4\}$$

$$A - B = \{1, 4\}$$

$$A - C = \{1\}$$

$$\{1,4\} \not\subseteq \{1\}$$

(b) $(A \cup B) - B = A$

$$A = \{1, 2, 3, 4\}, B = \{4, 5, 6\}$$

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

$$(A \cup B) - B = \{1, 2, 3\}$$

$$(A \cup B) - B \neq A$$

(c) $A \cup (B - C) = (A \cup B) - (A \cup C)$

$$A = \{1, 2, 3\}, B = \{2, 3, 4\}, C = \{2, 3\}$$

$$B - C = \{4\}$$

$$A \cup (B - C) = \{1, 2, 3, 4\}$$

$$A \cup B = \{1, 2, 3, 4\}$$

$$A \cup C = \{1, 2, 3\}$$

$$(A \cup B) - (A \cup C) = \{4\}$$

$$A \cup (B - C) \neq (A \cup B) - (A \cup C)$$

2. Simplify $(A \cap (B \cup C)) \cap (A - B) \cap (B \cup C^{\mathcal{C}})$

$$(A \cap (B \cup C)) \cap (A - B) \cap (B \cup C^{\mathcal{C}}) = A \cap (B \cup C) \cap A \cap B^{\mathcal{C}} \cap (B \cup C^{\mathcal{C}})$$

By set difference definition and associative laws

$$A \cap (B \cup C) \cap A \cap B^{\mathcal{C}} \cap (B \cup C^{\mathcal{C}}) = (B \cup C) \cap A \cap B^{\mathcal{C}} \cap (B \cup C^{\mathcal{C}})$$

By idempotent laws

$$(B \cup C) \cap A \cap B^{\mathcal{C}} \cap (B \cup C^{\mathcal{C}}) = A \cap B^{\mathcal{C}} \cap (B \cup (C \cap C^{\mathcal{C}}))$$

by distributive laws

$$A \cap B^{\mathcal{C}} \cap (B \cup (C \cap C^{\mathcal{C}})) = A \cap B^{\mathcal{C}} \cap B$$

by complement laws and universal bounds laws

$$A \cap B^{\mathcal{C}} \cap B = A \cap \emptyset$$

by complement laws

$$A \cap \emptyset = \emptyset$$

by universal bounds laws

$$(A \cap (B \cup C)) \cap (A - B) \cap (B \cup C^{\mathcal{C}}) = \emptyset$$

- 3. Prove that for all sets A and B, $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
 - Suppose that $\forall x \text{ if } x \in \mathcal{P}(A \cap B)$, then $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$
 - $x \subseteq A \cap B$ by definition of a power set
 - $x \subseteq A, x \subseteq B$ by definition of an intersection
 - $x \in \mathcal{P}(A), x \in \mathcal{P}(B)$ by definition of a power set
 - $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$ by definition of an interesection
 - Suppose that $\forall x \text{ if } \mathcal{P}(A) \cap \mathcal{P}(B), \text{ then } x \in \mathcal{P}(A \cap B)$
 - $x \in \mathcal{P}(A), x \in \mathcal{P}(B)$ by definition of an intersection
 - $x \subseteq A, x \subseteq B$ by definition of a power set
 - $x \subseteq A \cap B$ by definition of an intersection
 - $x \in \mathcal{P}(A \cap B)$ by definition of a power set
 - Therefore as $x \in \mathcal{P}(A \cap B)$ and $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$, $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.
- 4. Let A, B, and C be sets. Prove that (A B) (B C) = A B with double set inclusion.
 - Let $\exists x \in U$
 - Suppose that $\forall x \text{ if } x \in (A-B)-(B-C), \text{ then } x \in A-B.$
 - $x \in A, x \notin B, x \not ln(B-C)$ by set difference definition
 - $x \in A, x \notin B$ by absorption rule
 - $x \in (A B)$ by set difference definition
 - Suppose that $\forall x \text{ if } x \in A B$, then $x \in (A B) (B C)$.
 - $x \in A, x \notin B$ by set difference definition
 - $x \in A, x \notin B, x \notin (B C)$ by absorption rule
 - $x \in (A B), x \notin (B C)$ by set difference definition
 - $x \in (A B) (B C)$ by set difference definition
 - Therefore as $x \in (A B)$ and $x \in (A B) (B C)$, (A B) (B C) = A B.

- 5. Consider the set A of all divisors of 70, $A = \{1, 2, 5, 7, 10, 14, 35, 70\}$, with the operations defined as follows: a + b = GCD(a, b), $a \cdot b = \text{LCM}(a, b)$ and the complement is defined to be a = 70/a. Assume that A is a Boolean algebra with operations + and \cdot .
 - (a) Evaluate $14 \cdot 35$, $5 + \overline{5}$, and $14 \cdot \overline{14}$ $14 \cdot 35 = LCM(14, 35) = 70$ $5 + \overline{5} = 5 + 70/5 = 5 + 14 = GCD(5, 14) = 1$ $14 \cdot \overline{14} = 14 \cdot 70/14 = 14 \cdot 5 = LCM(14, 5) = 70$
 - (b) Show $2 + (7 \cdot 14) = (2 + 7) \cdot (2 + 14)$ $2 + (7 \cdot 14) = 2 + LCM(7, 14) = 2 + 14 = GCD(2, 14) = 2$ $(2 + 7) \cdot (2 + 14) = GCD(2, 7) \cdot GCD(2, 14) = LCM(1, 2) = 2$ 2 = 2 $2 + (7 \cdot 14) = (2 + 7) \cdot (2 + 14)$
 - (c) Show $\overline{10+35} = \overline{10} \cdot \overline{35}$ $\overline{10+35} = 70/\text{GCD}(10,35) = 70/5 = 14$ $\overline{10} \cdot \overline{35} = 70/10 \cdot 70/35 = 7 \cdot 2 = \text{LCM}(7,2) = 14$ $\overline{14=14}$ $\overline{10+35} = \overline{10} \cdot \overline{35}$
 - (d) Find the identities 0 and 1 for operations + and \cdot , respectively. Justify your answer.
 - $a + 0 = GCD(a, 0) = a \ 0$ is divisible by all integers $a + 1 = GCD(a, 1) = 1 \ 1$ is only divisible by 1 $a \cdot 0 = LCM(a, 0) = 0 \ 0$ multiplied by anything is 0 $a \cdot 1 = LCM(a, 1) = a$ The GCD of any number, a and one is a.
 - (e) Verify $a + \overline{a} = 1$ and $a \cdot \overline{a} = 0$ for all a in A. $a + \overline{a} = a + 70/a = GCD(a, 70/a) = 1 70/a$ will never be divisible by a and either a or \overline{a} will be prime. $a \cdot \overline{a} = LCM(a, 70/a) = 70$ The LCM of a and 70/a will always be 70 as the $\frac{1}{a}$ must always be canceled out first.
- 6. Assume that B is a Boolean algebra with operations + and \cdot . For all a and b in B, prove the absorption law $(a+b)\cdot a=a$.

$$(a+b)\cdot a=(a+T)\cdot (a+b)$$
 by identity law $(a+T)\cdot (a+b)=a\cdot (1+b)$ by distributive law $a\cdot (1+b)=a\cdot 1$ by universal bounds law $a\cdot 1=a$ by identity law $(a+b)\cdot a=a$