DM 4. Enoncé

Exercice 1:

Une caractérisation des fonctions exponentielle et logarithme.

- 1°) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante telle que f(1) = 1 et telle que, pour tout $x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y).
- a) Montrer que, pour tout $x \in \mathbb{R}$ et $\alpha \in \mathbb{Q}$, $f(\alpha x) = \alpha f(x)$.
- **b)** Montrer que, pour tout $x \in \mathbb{R}$, f(x) = x.

Indication : On admettra qu'entre deux réels distincts, il existe toujours au moins un rationnel.

- 2°) Soit f une application de \mathbb{R} dans \mathbb{R} vérifiant
 - $-\forall x \in \mathbb{R}, \ f(x) > 0,$
 - -f est croissante,
 - Pour tout $x, y \in \mathbb{R}$, f(x+y) = f(x)f(y),
 - f(1) = e.

Montrer que f est l'application exponentielle.

- **3**°) Soit g une application de \mathbb{R}_+^* dans \mathbb{R} vérifiant :
 - g est une bijection croissante de \mathbb{R}_+^* dans \mathbb{R} ,
 - Pour tout $x, y \in \mathbb{R}_+^*$, g(xy) = g(x) + g(y),
 - --g(e)=1.

Montrer que g est le logarithme néperien.

Exercice 2:

Pour tout $n \in \mathbb{N}$, on pose $\alpha_n = \int_0^1 (1-t)^n e^t dt$.

- 1°) a) Montrer que $\alpha_n \xrightarrow[n \to +\infty]{} 0$.
- b) Trouver une relation de récurrence liant α_n et α_{n-1} .
- c) Déterminer un équivalent simple de α_n , c'est-à-dire une suite u_n aussi simple que possible et telle que $\frac{\alpha_n}{u_n} \underset{n \to +\infty}{\longrightarrow} 1$.

1

- **2**°) **a)** Montrer que, pour tout $n \in \mathbb{N}$, $e = \sum_{k=0}^{n} \frac{1}{k!} + \frac{\alpha_n}{n!}$.
- **b)** En déduire un équivalent simple de $u_n = \sin(\pi e n!)$.

Problème

Partie I : Généralités.

Pour tout $n \in \mathbb{N}$, on note

$$I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt.$$

 I_n est appelée l'intégrale de Wallis d'ordre n.

- 1°) Montrer que, pour tout $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.
- 2°) Calculer I_0 et I_1 .
- **3°)** Pour tout entier n, exprimer I_{n+2} en fonction de I_n et de n.
- 4°) Montrer que, pour tout $n \in \mathbb{N}$,

$$I_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$$
 et $I_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}$.

- 5°) a) Montrer que $(I_n)_{n\in\mathbb{N}}$ est une suite décroissante.
- **b)** Montrer que $I_{n+1} \xrightarrow[n \to +\infty]{} 1$.

Partie II : Calcul de $\zeta(2) = \sum_{1}^{+\infty} \frac{1}{n^2}$.

Pour tout $n \in \mathbb{N}$, on pose $J_n = \int_0^{\frac{\kappa}{2}} t^2 \cos^{2n}(t) dt$.

- **6°)** a) Pour tout $t \in]0, \frac{\pi}{2}]$ démontrer l'inégalité $t \leq \frac{\pi}{2}\sin(t)$.
- **b)** Montrer que pour tout $n \in \mathbb{N}$, $0 \le J_n \le \frac{\pi^2}{4}(I_{2n} I_{2n+2})$.
- c) Montrer que $\frac{J_n}{I_{2n}}$ tend vers 0 lorsque n tend vers $+\infty$.
- **7°) a)** Montrer que, pour tout $n \in \mathbb{N}^*$, $I_{2n} = n(2n-1)J_{n-1} 2n^2J_n$. **b)** Montrer que, pour tout $n \in \mathbb{N}^*$, $\frac{J_{n-1}}{I_{2n-2}} \frac{J_n}{I_{2n}} = \frac{1}{2n^2}$.
- c) En déduire la valeur de $\lim_{N\to+\infty} \sum_{r=1}^{N} \frac{1}{n^2}$.

Partie III : Calcul de l'intégrale de Gauss $\int_0^{+\infty} e^{-u^2} du$ et de $\Gamma(n+\frac{1}{2})$.

- 8°) a) Montrer que, pour tout $a \in]-1, +\infty[$, $\ln(1+a) \le a$.
- **b)** Soit $n \in \mathbb{N}^*$. Montrer que, pour tout $u \in [0, \sqrt{n}]$,

$$\left(1 - \frac{u^2}{n}\right)^n \le e^{-u^2} \le \left(1 + \frac{u^2}{n}\right)^{-n}.$$

- **9**°) Soit $n \in \mathbb{N}^*$. Montrer que $I_{2n+1} = \frac{1}{\sqrt{n}} \int_0^{\sqrt{n}} \left(1 \frac{u^2}{n}\right)^n du$.
- ${f 10}^{\circ}$) Effectuer le changement de variable $u=\sqrt{n}\tan t$ dans l'intégrale

$$\int_0^{\sqrt{n}} \left(1 + \frac{u^2}{n}\right)^{-n} du.$$

- 11°) a) Soit $n \in \mathbb{N}^*$. Montrer que $nI_nI_{n-1} = \frac{\pi}{2}$.
- **b)** En déduire que $\sqrt{n}I_n \underset{n \to +\infty}{\longrightarrow} \sqrt{\frac{\pi}{2}}$.
- 12°) On admet le théorème de la limite monotone : Soit $a \in \mathbb{R}$. Soit g est une application croissante de $[a, +\infty[$ dans \mathbb{R} . Alors il existe $L \in \mathbb{R} \cup \{+\infty\}$ tel que $g(x) \underset{x \to +\infty}{\longrightarrow} L$.

Montrer que
$$\lim_{x \to +\infty} \int_0^x e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$
.

13°) Pour $x \in \mathbb{R}$, lorsque c'est défini, on pose

$$\Gamma(x) = \lim_{A \to +\infty} \left[\lim_{\varepsilon \to 0^+} \int_{\varepsilon}^A e^{-t} t^{x-1} dt \right].$$

- a) Montrer que $\Gamma(\frac{1}{2})$ est défini et que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
- **b)** Soit $n \in \mathbb{N}$. Montrer que $\Gamma(n + \frac{1}{2})$ est défini et que $\Gamma(n + \frac{1}{2}) = \frac{(2n)!\sqrt{\pi}}{2^{2n}n!}$.

Partie IV : Formule de Stirling

14°) Montrer la formule de Wallis :

$$\frac{\sqrt{n}}{2^{2n}} \frac{(2n)!}{(n!)^2} \underset{n \to +\infty}{\longrightarrow} \frac{1}{\sqrt{\pi}}.$$

- **15°)** Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \ln\left(\frac{n^{n+\frac{1}{2}}}{n!e^n}\right)$.
- a) Montrer que, pour tout $n \in \mathbb{N}^*$, $u_{n+1} u_n = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x^2}{(n + \frac{1}{2})^2 x^2} dx$.
- **b)** En déduire que, pour tout $n \in \mathbb{N}^*$, $0 \le u_{n+1} u_n \le \frac{1}{12} \left(\frac{1}{n} \frac{1}{n+1} \right)$.

- **16°)** Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers une limite $\lambda\in\mathbb{R}$.

17°) On pose $\mu=e^{-\lambda}$. A l'aide de la formule de Wallis (question 14), montrer que $\mu=\sqrt{2\pi}$. En déduire la formule de Stirling:

$$n! \underset{n \to +\infty}{\sim} \sqrt{2\pi n} \ n^n e^{-n}.$$