C4

Callum O'Brien

September 18, 2015

Contents

1 Parametric Equations															2									
	1.1	Integr	ation																					2
		1.1.1	Exam	ple																				2
2	Imp	olicit I	Differe	ntiatio	on																			2

1 Parametric Equations

A parametric equation is one in the form;

$$x = f(t), y = g(t)$$

To convert them to cartesian form (y = h(x)), one can rearrange to the form;

$$t = f^{-1}(x), y = g(t) \Rightarrow y = g(f^{-1}(x))$$

If that doesn't work, try squaring both functions and approach the problem that way.

1.1 Integration

$$x = f(t), y = g(t)$$

$$\int_{x=a}^{b} y \, \mathrm{d}x = \int_{t=f^{-1}(a)}^{f^{-1}(b)} y \, \frac{\mathrm{d}x}{\mathrm{d}t} \, \mathrm{d}t$$

1.1.1 Example

Given $x = t^2$ and y = 2t(3 - t), evalulate:

$$\int_{x=0}^{9} y \, \mathrm{d}x$$

$$\int_{x=0}^{9} y \, \mathrm{d}x = \int_{t=0}^{3} y \, \frac{\mathrm{d}x}{\mathrm{d}t} \, \mathrm{d}t \tag{1}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}t^2 = 2t\tag{2}$$

Hence

$$\int_{t=0}^{9} y \, \mathrm{d}x = \int_{t=0}^{3} 4t^2 (3-t) \, \mathrm{d}t = t^3 (4-t)|_{t=0}^{3} = 108 - 81 = 27 \tag{3}$$

TL;DR Multiply by $\frac{dx}{dt}$ then integrate with respect to t

2 Implicit Differentiation

$$\frac{\mathrm{d}}{\mathrm{d}x}xy = \frac{\mathrm{d}y}{\mathrm{d}x}x + y$$

$$\frac{\mathrm{d}}{\mathrm{d}x}y^n = \frac{\mathrm{d}y}{\mathrm{d}x}ny^{n-1}$$