Problem 1:

- a) False
- b) True
- C) False (need H or K to be normal)
- d) True (Cauchy's Theorem)
- e) False (ex. $\{(2,0,0),(0,2,0),(0,0,2)\}$)

Problem 2:

- a) If $K \triangleleft G$, $H \triangleleft G$ and $K \triangleleft H$. $(G/K)/(H/K) \cong G/H$.
- b) If P, and Pz are two Sylows p-subgroups them there exists $g \in G$ with $g'P_1g = P_2$.
- c) The center of Sn is get for n>2.

Problem 3: Let np = # Sylono p-subgroups

 $n_3 = 1, 3, 5, 17, 3.5, 3.17, 5.17, 3.5.17$ must be = 1 mod 3.

Thus $n_3 = 1$ or $n_3 = 85$

- b) $n_5 = 1, 3, 5, 17, 3.5, 3.17, 5, 17, 3.8.17$ must be = 1 mod 5 Thus $n_5 = 1$ or $n_5 = 51$
- C) $n_{17} = 1.3.5, 174, 3.5, 3.17, 5.17, 3.5.17$ must be = 1 mod 17

 Thus $n_{17} = 1$.

Problem 4:

a) Note
$$H = \langle (6,9), (2,2) \rangle = \langle (0,3), (2,2) \rangle$$

Thus
$$(a,b)+H=(a-2j,b-2j)+H$$

$$=(a-2j,b-2j-3k)+H \text{ for any }j,k$$
Thus we see that the only cosets are

b) Were looking for an abelian group w/ (e elements 80 the only possibility is 7/46.

Alternatively, use can determine an explicit isomorphism.

The homomorphism
$$9: \% \times \% \rightarrow \%_6$$
 $(m,n) \mapsto m+2n$
is surjective and has kernel H so by the first zomorphism theorem $G/H \cong \%_6$.

Problem 5:

Proof: Let
$$x \in G$$
 and consider the element $g = x H$ of the quotient group G/H .

By Lagrange's theorem, $|\langle g \rangle|$ obvious $|G| = n$ and consequently g is equal to the identity eH in G/H . Thus $eH = g^n = (xH)^n = x^nH$.

This means $x^n \in H$.

Problem 6:

Rroof: Consider the action of G on the set X=G defined by g.y = gyg-1 for geg, yeX.

Now for fixed xeG, the orbit is

orb(x) = 2 g.x | ge63 = 2 gxg | ge63 = K

and the stabilizer 13

G_x = {geG|g·x=x} = {geG|gxg'=x} = H

By the orbit-stabilizer theorem

| K | = | or b(x) | = [G:Gx] = [G:H].

Thus $|G| = [G:H] \cdot |H| = |K| \cdot |H|$.

and since $p \mid |G|$ we must have $p \mid |K|$ or $p \mid |H|$

Problem 7:

Now use the usual counting trick: $|X| = |X_G| + \sum_{\text{orb}(x) \in X/G} |G:G_x|$ $|X| = |X_G| + \sum_{\text{orb}(x) \in X/G} |G:G_x|$

Now since Z(G) G a subgroup, we know |Z(G)| is L, P, P^2 , or P^3 . When $|\operatorname{orb}(x)| > 1$, $G_{\times} \neq G$ so $[G:G_{\times}] \neq 1$ and must be divisible by P. Thus $|X_{G}| = 0$ mod P by our counting trick so $|Z(G)| \neq 1$,

We just need to show $12(G_1) \mid \neq p^2$.

If $|2(G_1)| = p^2$ thun $G_1/2(G_1)$ is a group of order p, hence it is abelian (or fact, cyclic).

It follows that G_1 is abelian, so that $2(G_1) = G_1$ meaning $|2(G_1)| = p^3 \implies G_2$ Thus $2(G_1) = p$ or $2(G_1) = p^2$.

Remark: De could also have Just used the fact proved in class that if Eq is a pregroup, then 2(G) × 7e3 to do the first part, instead of the group action