Electrical Characteristics (Continued)

Digital Levels and DC Specifications: ADC0816CJ $-4.5V \le V_{CC} \le 5.5V$, $-55^{\circ}C \le T_{A} \le +125^{\circ}C$ unless otherwise noted. ADC0816CCJ, ADC0816CCN, ADC0817CCN $-4.75V \le V_{CC} \le 5.25V$, $-40^{\circ}C \le T_{A} \le +85^{\circ}C$ unless otherwise noted.

Parameter		Conditions	Min	Тур	Max	Units				
DATA OUTPUTS AND EOC (INTERRUPT)										
V _{OUT(1)}	Logical "1" Output Voltage	$I_O = -360 \mu A, T_A = 85^{\circ}C$ $I_O = -300 \mu A, T_A = 125^{\circ}C$	V _{CC} -0.4			V				
V _{OUT(0)}	Logical "0" Output Voltage	$I_0 = 1.6 \text{ mA}$	LIME AZARGE		0.45	V				
V _{OUT(0)}	Logical "0" Output Voltage EOC	$I_0 = 1.2 \text{ mA}$	4 4 100	Tall hall	0.45	V				
lout	TRI-STATE® Output Current	$V_O = V_{CC}$ $V_O = 0$	- 3.0		3.0	μA μA				

Electrical Characteristics

Timing Specifications: $V_{CC} = V_{REF(+)} = 5V$, $V_{REF(-)} = GND$, $t_r = t_f = 20$ ns and $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{WS}	Minimum Start Pulse Width	(Figure 5) (Note 7)		100	200	ns
twale	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
ts	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
t _H	Minimum Address Hold Time	(Figure 5)		25	50	ns
t _D	Analog MUX Delay Time from ALE	$R_S = 0\Omega$ (Figure 5)		1	2.5	μS
t _{H1} , t _{H0}	OE Control to Q Logic State	$C_L = 50 \text{ pF}, R_L = 10 \text{k} \text{ (Figure 8)}$	1 44	125	250	ns
t _{1H} , t _{0H}	OE Control to Hi-Z	C _L = 10 pF, R _L = 10k (Figure 8)	Las Tax	125	250	ns
tc	Conversion Time	f _c = 640 kHz, (Figure 5) (Note 8)	90	100	116	μS
fc	Clock Frequency	agneri	10	640	1280	kHz
t _{EOC}	EOC Delay Time	(Figure 5)	0	Historica :	8 + 2 μs	Clock Period
C _{IN}	Input Capacitance	At Control Inputs		10	15	pF
C _{OUT}	TRI-STATE Output Capacitance	At TRI-STATE Outputs (Note 8)	S) by all	10	15	pF

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

Note 2: All voltages are measured with respect to GND, unless otherwise specified.

Note 3: A zener diode exists, internally, from VCC to GND and has a typical breakdown voltage of 7 VDC.

Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 100 mV, the output code will be correct. To achieve an absolute 0 V_{DC} to 5 V_{DC} input voltage range will therefore require a minimum supply voltage of 4.900 V_{DC} over temperature variations, initial tolerance and loading.

Note 5: Total unadjusted error includes offset, full-scale, and linearity errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0V, or if a narrow full-scale span exists (for example: 0.5V to 4.5V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.

Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.

Note 7: If start pulse is asynchronous with converter clock the minimum start pulse width is 8 clock periods plus 2 µs.

Note 8: The outputs of the data register are updated one clock cycle before the rising edge of EOC.