CPSC 320 Notes, Clustering Completed

AS BEFORE: We're given a complete, weighted, undirected graph G = (V, E) represented as an adjacency list, where the weights are all between 0 and 1 and represent similarities—the higher the more similar—and a desired number $1 \le k \le |V|$ of categories.

We define the similarity between two categories C_1 and C_2 to be the maximum similarity between any pair of nodes $p_1 \in C_1$ and $p_2 \in C_2$. We must produce the categorization—partition into k (non-empty) sets—that minimizes the maximum similarity between categories.

Now, we'll prove this greedy approach optimal.

- 1. Sort a list of the edges E in decreasing order by similarity.
- 2. Initialize each node as its own category.
- 3. Initialize the category count to $|V| = \mathbf{n}$
- 4. While we have more than k categories:
 - (a) Remove the highest similarity edge (u, v) from the list.

(b) If u and v are not in the same category: Merge u's and v's categories, and reduce the category count by 1.

CPSC 320 Notes, Clustering Completed

AS BEFORE: We're given a complete, weighted, undirected graph G = (V, E) represented as an adjacency list, where the weights are all between 0 and 1 and represent similarities—the higher the more similar—and a desired number $1 \le k \le |V|$ of categories.

We define the similarity between two categories C_1 and C_2 to be the maximum similarity between any pair of nodes $p_1 \in C_1$ and $p_2 \in C_2$. We must produce the categorization—partition into k (non-empty) sets—that minimizes the maximum similarity between categories.

Now, we'll prove this greedy approach optimal.

- 1. Sort a list of the edges E in decreasing order by similarity.
- 2. Initialize each node as its own category.
- 3. Initialize the category count to |V|.
- 4. While we have more than k categories:
 - (a) Remove the highest similarity edge (u, v) from the list.
 - (b) If u and v are not in the same category: Merge u's and v's categories, and reduce the category count by 1.

1 Greedy is at least as good as Optimal

We'll start by noting that any solution to this problem partitions the edges into the "intra-category" edges (those that connect nodes within a category) and the "inter-category" edges (those that cross categories).

1. Getting to know the terminology: Imagine we're looking at a categorization produced by our algorithm in which the inter-category edge with maximum similarity is e.

Can our greedy algorithm's solution have an intra-category edge with lower weight than e? Either draw an example in which this can happen, or sketch a proof that it cannot.

From worksheet question 1.1: Can our greedy algorithm's solution have an intra-category edge with lower weight than

- 3. Let \mathcal{G} be the categorization produced by our greedy algorithm, and let \mathcal{O} be an optimal categorization on that instance. Let E' be the set of edges removed from the list during iterations of the While loop. With respect to the greedy solution \mathcal{G} , are the edges in E' inter-category? Or intra-category? Or could both types of edges be in E'?
 - 1. Sort a list of the edges E in decreasing order by similarity.
 - 2. Initialize each node as its own category.
 - 3. Initialize the category count to |V|.
 - 4. While we have more than k categories:
- e (put edge into E') (a) Remove the highest similarity edge (u, v) from the list.
 - (b) If u and v are not in the same category: Merge u's and v's categories, and reduce the category count by 1.

All edges in E' ove intra-category.

4. Suppose that some edge e = (p, p'(s)) of E' inter-category in the optimal solution \mathcal{O} . What can we say about $Cost(\mathcal{G})$ versus $Cost(\mathcal{O})$? inter-category in

Claim: $Cost(G) \leq Cost(O)$.

Proof: $Cost(G) \leq S \leq Cost(O)$ because Gready Makes

all edges with similarity $\geq S$ from part 2

intm-category, This work is licensed under a Creative Commons Attribution 4.0 International License. © For license purposes, the author is the University of British Columbia.

5. Suppose that all edges of E' are intra-category not only in \mathcal{G} , but also in the optimal solution \mathcal{O} .

Claim: In this case, the clusters created at every iteration of Greedy's while loop are subsets of the clusters in O.

- 1. Sort a list of the edges E in decreasing order by similarity.
- 2. Initialize each node as its own category.
- 3. Initialize the category count to |V|.
- 4. While we have more than k categories:
 - (a) Remove the highest similarity edge (u, v) from the list.
 - (b) If u and v are not in the same category: Merge \underline{u} 's and \underline{v} 's categories, and reduce the category count by 1.

Proof: By induction on # iterations of while bop.

Base case: O iterations.

Ind. Hyp: Suppose that after i iterations,
Greedy's clusters are subsets of 8's clusters

Ind. Step: Show same is true after i+1 iterations.

Let e= (u,v) be edge chosen by greedy at iteration i+1. Let Cu, Cv be the clusters containing u, v, respectively.

· If u, u happen to be in same cluster, nothing changes in iteration it 1, so we're done.

· If u and v are in different clusters: We know (u,v) is intra-category in 0, so Cu, Cv are subsets of the same category of 0, so the merged category Cu V Cv is still a subset of a category of 0, and we're done.

5. Suppose that all edges of E' are intra-category not only in \mathcal{G} , but also in the optimal solution \mathcal{O} . Can there be any edges that are inter-category in \mathcal{G} but intra-category in \mathcal{O} ?

Clicker Question #3

From worksheet question 1.5: Can there be any edges that are inter-category in $\mathcal G$ but intra-category in $\mathcal O$?

A. Yes B. No

Hint: Keep in mind, from the claim that we just proved, that every category of Greedy is contained in a category of D. c=3

Because if the were an interalgory of D. c=3

edge of G inside a cluster of D, then either G has too many clusters, or D has an empty cluster.

5.	Suppose that all edges of E' are intra-category not only in \mathcal{G} , but also in the optimal solution \mathcal{O} . Can there be any edges that are inter-category in \mathcal{G} but intra-category in \mathcal{O} ? (Hint: imagine you have a solution produced by the greedy algorithm. Can you convert any of its inter-category edges to intra-category edges without either making some edges in E' inter-category or making your solution invalid?)				
	Clicker Question #3				
	From worksheet question 1.5: Can there be any edges that are inter-category in ${\cal G}$ but intra-category in ${\cal O}$?				
	A. Yes				
	B. No				
6.	Apply the progress made in parts 3 to 5 to conclude that $\mathcal G$ must be an optimal solution.				