Problem set 1 Mathematical Preliminaries

Excercise 1

Given $\overline{X} = (1, 2, 3)^T$ and $\overline{Y} = (3, 2, 1)^T$ find

- 1. $\overline{X} + \overline{Y}$
- 2. $\overline{X}^T \overline{Y}$
- 3. $\overline{Y}\overline{X}^T$

Excercise 2

Given two matrices $\overline{A}=\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}$ and $\overline{B}=\begin{pmatrix}0&1&0\\1&2&3\\-1&0&1\end{pmatrix}$

- 1. Compute $\overline{A} + \overline{B}$
- 2. Compute $\overline{B} + \overline{A}$. Is it equal to $\overline{A} + \overline{B}$? Is it always the case?
- 3. Compute $\overline{A} \cdot \overline{B}$
- 4. Compute $\overline{B} \cdot \overline{A}$. Is it equal to $\overline{A} \cdot \overline{B}$?

Excercise 3

Compute the inverse of the following matrix $\overline{A} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$, if one exsits. Verify that the matrix product of \overline{A} and its inverse is the 2x2 identity matrix.

Excercise 4

Show that the vectors $\overline{A}=(1,2,-3,4)^T$, $\overline{B}=(1,1,0,2)^T$, and $\overline{C}=(-1,-2,1,1)^T$ are linearly independent.

Excercise 5

Find the ranks of the following matrices $\overline{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and $\overline{B} = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{pmatrix}$.

Excercise 6

Find the eigenvalues and the corresponding eigenvectors of $\overline{A} = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$

Excercise 7

Given $f(x) = \log(x)$ (where log denotes the natural logarithm) and g(x) = 2x + 1, compute

- 1. f'(x)
- 2. g'(x)
- 3. (f(x) + g(x))'
- 4. (f(x)g(x))'
- 5. $\left(\frac{f(x)}{g(x)}\right)'$
- 6. (g(f(x)))'

Excercise 8

Given $f(x,y) = (x+2y^3)^2$ compute

- 1. $\frac{\partial f}{\partial x}$
- $2. \ \frac{\partial f}{\partial y}$
- 3. $\nabla_{(x,y)}f$