Nearest Neighbour Algorithms

Christos Dimitrakakis

September 20, 2024

Outline

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

Supervised learning

- ▶ Given labelled training examples $(x_1, y_1), ..., (x_T, y_T)$ where
- $\triangleright x_t \in X$, the input variables (or features)
- $\triangleright y_t \in Y$, the output variables (or labels)

Feature space \mathcal{X}

- ightharpoonup Usually $\mathcal{X}=\mathbb{R}^n$: the n-dimensional Euclidean space
- How do we use your class data?

Classification

 $Y = \{1, ..., m\}$ are discrete labels

Regression

 $Y = \mathbb{R}^m$ are continuous values

The kNN algorithm idea

- Assume an unknown example is similar to its neighbours
- ► Smoothness allows us to make predictions

Discriminatory analysis-nonparametric discrimination: consistency properties, Evelyn Fix and Joseph L. Hodges Jr, 1951.

Figure: Evelyn Fix

Figure: Joseph Hodges

Performance of KNN on image classification

- Really simple!
- Can outperform really complex models!

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

The Nearest Neighbour algorithm

Pseudocode

- ▶ Input: Data $(x_t, y_t)_{t=1}^T$, test point x, distance d
- $ightharpoonup t^* = \arg\min_t d(x_t, x) / \text{How do we implement this?}$
- ightharpoonup Return $\hat{y}_t = y_{t^*}$

Classification

$$\hat{y}_t \in [m] \equiv \{1, \dots, m\}$$

Regression

$$\hat{y}_t \in \mathbb{R}^m$$

8/17

The k-Nearest Neighbour algorithm

Pseudocode

- ▶ Input: Data $(x_t, y_t)_{t=1}^T$, test point x, distance d, neighbours k
- ▶ Calculate $h_t = d(x_t, x)$ for all t.
- ▶ Get sorted indices $s = \operatorname{argsort}(h)$ so that $d(x_{s_i}, x) \leq d(x_{s_{i+1}}, x)$ for all i. (How?)
- ightharpoonup Return $\sum_{i=1}^{k} y_{s_i}/k$.

Classification

- lt is not convenient to work with discrete labels.
- \blacktriangleright We use a one-hot encoding $(0,\ldots,0,1,0,\ldots,0)$.
- ▶ $y_t \in \{0,1\}^m$ with $||y_t||_1 = 1$, so that the class of the t-th example is j iff $y_{t,j} = 1$.

Regression

 $ightharpoonup y_t \in \mathbb{R}^m$, so we need do nothing

Making a decision

kNN: A model of the conditional distribution P(y|x)

- \triangleright Given features x, we get a vector

The optimal decision rule π derived from kNN

- ▶ Classification decision $a_t \sim \pi(a|x_t)$
- $ightharpoonup a_t \in \mathsf{but}
 eq \mathcal{Y}$, e.g. can include "Do not Know", or "Alert" etc.
- \triangleright Actual label y_t
- lacksquare $U(a_t, y_t)$: utility function depending on the application.

Decision rule maximising accuracy

 $ightharpoonup a_t = \arg\max_i \hat{\mathbb{P}}(y = i|x).$

The number of neighbours

k = 1

- How does it perform on the training data?
- ► How might it perform on unseen data?

k = T

- ▶ How does it perform on the training data?
- How might it perform on unseen data?

Distance function

For data in \mathbb{R}^n , p-norm

$$d(x,y) = \|x - y\|_p$$

Scaled norms

When features having varying scales:

$$d(x,y) = \|Sx - Sy\|_p$$

Or pre-scale the data

Complex data

- Manifold distances
- Graph distance

A distance $d(\cdot, \cdot)$:

- ldentity d(x,x) = 0.
- ▶ Positivity d(x, y) > 0 if $x \neq y$.
- ► Symmetry d(y,x) = d(x,y).
- ▶ Triangle inequality $d(x, y) \le d(x, z) + d(z, y)$.

For data in \mathbb{R}^n , p-norm

$$d(x,y) = \|x - y\|_{p}$$

Norms;

A norm $\|\cdot\|$

- ightharpoonup Zero element ||0|| = 0.
- ► Homogeneity ||cx|| = c||x|| for any scalar a.
- ► Triangle inequality $||x + y|| \le ||x|| + ||y||$.

\$p\$-norm

$$||z||_p = \left(\sum_i z_i^p\right)^{1/p}$$

Neighbourhood calculation

If we have T datapoints

Sort and top K.

 \triangleright Requires $O(T \ln T)$ time

Use the Cover-Tree or KD-Tree algorithm

- \triangleright Requires $O(cK \ln T)$ time.
- c depends on the data distribution.

Introduction

The hidden secret of machine learning

The algorithm

k Nearest NeighboursExtensions and parameters

KNN activity

- Implement nearest neighbours
- ► Introduction to scikitlearn nearest neighbours
- ► Introduction to generalisation errors