

Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Properties of CH

- All edges of CH are extreme and all extreme edges of P are on the CH
- All points of CH are extreme and all extreme points of P are on the CH
- All internal angles are < 180
- Walking counterclockwise—> left turns
- Points on CH are sorted in radial order wrt a point inside

Outline

- Last time:
 - Brute force
 - Gift wrapping
 - Quickhull
 - Graham scan
- Next
 - Andrew's monotone chain algorithm
 - Exercises
 - Lower bound
 - More algorithms
 - Incremental CH
 - Divide-and-conquer CH

- Alternative to Graham's scan
- Idea: Find upper hull and lower hulls separately

- Alternative to Graham's scan
- Idea: Find upper hull and lower hulls separately

Alternative to Graham's scan

Alternative to Graham's scan

Alternative to Graham's scan

• Goal: find the CH of P1

• Goal: find the CH of P1

Idea: Traverse points in (x,y) order (i.e. lexicographically)

and so on..

- Alternative to Graham's scan
- Idea: Traverse points in (x,y) lexicographic order (instead of radial order)
- Runs in sort + scan
- Sorting lexicographically is faster than sorting radially

Convex hull: summary

Naive	O(n³)	
Gift wrapping	O(nh)	1973
Graham scan	O(n lg n)	1972
Andrew monotone	O(n lg n)	1979
Quickhull	O(n²)	1977

Can we do better?

Lower bound

What is a lower bound?

• Given an algorithm A, its worst-case running time is the largest running time on any input of size n

 $T_A(n) = \max_{|P|=n} \{ T(n) \mid T(n) \text{ is the running time of algorithm A on input P} \}$

What is a lower bound?

 Given an algorithm A, its worst-case running time is the largest running time on any input of size n

 $T_A(n) = \max_{|P|=n} \{ T(n) \mid T(n) \text{ is the running time of algorithm A on input P} \}$

 A lower bound for CH: What is the worst-case running time of the best possible CH algorithm?

What is a lower bound?

- Lower bounds depend on the machine model.
- The standard model is the decision tree (comparison) model.
- Example: Sorting lower bound in the comparison model is $\Omega(n \lg n)$

How do we prove lower bounds?

- Prove directly
 - Theorem: Any sorting algorithm that uses only comparisons must take at least $\Omega(n \lg n)$ in the worst case.
 - Proof: We saw this in Algorithms...
- Or via reduction from a problem known to have a lower bound
 - \bullet We'll use this to show that any algorithm for ConvexHull must have worst-case complexity $\Omega(n\lg n)$

Lower bounds by reduction

We know that

sorting
$$>= \Omega(n \lg n)$$

If we could show that ConvexHull is at least as hard as sorting

This would imply that

ConvexHull
$$>= \Omega(n \lg n)$$

How do we show that Convex Hull is at least as hard as sorting?

- We'll show that we can use ConvexHull to Sort
 - for any P, there exists some instance of the CH problem that sorts P, and we can build this instance in O(n) time

sort (array P)

- create a set P' of points from P
- find CH(P')
- use the convex hull to infer sorted order of P

Sorting via CH

- ANALYSIS:
 - run CH(P)
 - O(n) to create P' and infer sorted order of P

sort (array P)

- create a set P' of points from P
- find CH(P')
- use the convex hull to infer sorted order of P
- Therefore this gives us an O(CH(n)) + O(n) algorithm for sorting

- But we know that we cannot sort faster than $\Omega(n \lg n)$ in the worst case
- Therefore we cannot solve CH faster than $\Omega(n \lg n)$ in the worst case

How do we show that Convex Hull is at least as hard as sorting?

We can use ConvexHull to Sort

Sort = O(n) + O(Convex Hull)

Sorting "reduces" in O(n) to Convex Hull

- Assume we are given a set of of numbers x₁, x₂, ...x_n to sort.
- Our goal is to argue that there exists some instance of a convex hull problem that sorts our numbers.

Let P be the set of points x₁, x₂, ...x_n to sort

Assume we are given a set of of numbers x₁, x₂, ...x_n to sort.

 Our goal is to argue that there exists some instance of a convex hull problem that sorts our numbers.

• Let P be the set of points $x_1, x_2, ...x_n$ to sort

• Let P': set of 2D points (x_i, x_i^2) .

 χ^2

- Assume we are given a set of of numbers x₁, x₂, ...x_n to sort.
- Our goal is to argue that there exists some instance of a convex hull problem that sorts our numbers.

• Let P be the set of points $x_1, x_2, ...x_n$ to sort

Let P': set of 2D points (x_i, x_i²).

- Assume we are given a set of of numbers x₁, x₂, ...x_n to sort.
- Our goal is to argue that there exists some instance of a convex hull problem that sorts our numbers.

• Let P be the set of points $x_1, x_2, ...x_n$ to sort

Let P': set of 2D points (x_i, x_i²).

- Assume we are given a set of of numbers x₁, x₂, ...x_n to sort.
- Our goal is to argue that there exists some instance of a convex hull problem that sorts our numbers.

Let P be the set of points x₁, x₂, ...x_n to sort

• Let P': set of 2D points (x_i, x_i^2) .

- Assume we are given a set of of numbers x₁, x₂, ...x_n to sort.
- Our goal is to argue that there exists some instance of a convex hull problem that sorts our numbers.

- Run CH(P') to find their convex hull
- They fall on a parabola, so every point is on the hull

- Let P be the set of points $x_1, x_2, ...x_n$ to sort
- Let P': set of 2D points (x_i, x_i²).

• Find the lowest point on the hull, and walk from in ccw order.

- Find the lowest point on the hull, and walk from in ccw order.
- This is sorted order!

- Input: set of points x₁, x₂, ...x_n
 - Form a set of 2D points (x_i, x_i²).
 - Run the CH algorithm to construct their convex hull.
 - Find the lowest point on the hull, and walk from in ccw order. This is sorted order!

• If we could find the CH faster than n lg n, then we could sort faster than n lg n! Impossible!

- What we actually proved is that
 - Any CH algorithm that produces the boundary in order must take
 Omega (n lg n) in the worst case.
- If we did not want the boundary in order, can the CH be constructed faster?
 - It was an open problem for a while
 - Finally, it was established quite recently that a convex hull algorithm, even if it does not produce the boundary in order, still needs $\Omega(n \lg n)$ in the worst case

- Yes, Graham scan is the ultimate CH algorithm but...
 - not output sensitive
 - does not extend to 3D
- The (re)search continues

An incremental algorithm for CH

Incremental algorithms

- Goal: solve problem P
- Idea: traverse points one at a time and solve the problem for points seen so far
- Incremental Algorithm
 - initialize solution S = initial solution
 - for i=1 to n
 - //S represents solution of p₁.....p_{i-1}
 - update S to represent solution of p₁.....p_{i-1} p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of $p_1...p_{i-1}$
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i

- The basic operation is adding a point to a convex polygon
 - How many cases?
 - How to handle each case?

• Class work: Pick a set of point, Simulate the approach and try to answer these questions.

- CH = {}
- for i=1 to n
 - //CH represents the CH of p₁..p_{i-1}
 - update CH to represent the CH of p₁..p_i
- The basic operation is adding a point to a convex polygon
 - CASE 1: p is in polygon
 - CASE 2: p outside polygon

- Issues to solve
 - What's a good representation for a polygon?
 - We need a point-in-polygon test?
 - How to handle CASE 2?

Representing a polygon

A polygon is represented as a list of vertices in boundary order.

(the convention is counter-clockwise order)


```
typedef struct _polygon{
    int k; //number of vertices
    Point* vertices; //the vertices, ccw in boundary order
} Polygon;

or

Vector<Point> //note: the vertices, ccw in boundary order
```

Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon bool point_in_polygon(point p, polygon H)

What has to be true in order for p to be inside?

Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon bool point_in_polygon(point p, polygon H)

//p is inside if and only if it is on or to the left of all edges, oriented ccw //note: this is NOT true for a non-convex polygon — can you show a //counter-example?

Analysis:

O(k) where k is the size of the polygon

IDEAS?

Hint: Check the orientation of p wrt the edges of the polygon.

Hint: Check the orientation of p wrt the edges of the polygon.

Hint: Check the orientation of p wrt the edges of the polygon.

What do you notice? How can we use this to find the tangent points? Sketch an algorithm. How long does it take?

Finding tangent points

Input: point p outside H

polygon $H = [p_0, p_1, ..., p_{k-1}]$ convex

- for i=0 to k-1 do
 - prev = ((i == 0)? k-1: i-1);
 - next = (i==k-1)? 0; k+1);
 - if XOR (p is left-or-on (p_{prev}, p_i), p is left-or-on(p_i, p_{next}))
 - then p_i is a tangent point

After finding p_i and p_j, how would you update H?

Back to an incremental algorithm for CH

- H = [p1, p2, p3]
- *for i=4 to n do*
 - //add p_i to H
 - if point_in_polygon(p, H)
 - //do nothing
 - else
 - find p_i the tangent point where orientation changes from L to R
 - find p_j the tangent point where orientation changes from R to L
 //note: p_i not necessarily before p_j in the vertex array of H
 - cut out the part from p_i to p_j in H (note: view H as wrapping around)
 and replace it with vertex p

- H = [p1, p2, p3]
- for i=4 to n do
 - //add p_i to H
 - if point_in_polygon(p, H)
 - //do nothing
 - else
 - find p_i the tangent point where orientation changes from L to R
 - find p_j the tangent point where orientation changes from R to L //note: p_i not necessarily before p_j in the vertex array of H
 - cut out the part from p_i to p_j in H (note: view H as wrapping around)
 and replace it with vertex p

Simulate the algorithm on a couple of examples. Think how p_i could come before p_j in H or the other way around.

- H = [p1, p2, p3]
- for i=4 to n do
 - //add p_i to H
 - if point_in_polygon(p, H)
 - //do nothing
 - else
 - find p_i the tangent point where orientation changes from L to R
 - find p_j the tangent point where orientation changes from R to L //note: p_i not necessarily before p_j in the vertex array of H
 - cut out the part from p_i to p_j in H (note: view H as wrapping around)
 and replace it with vertex p

Analysis:

```
H = [p1, p2, p3]
for i=4 to n do
  //add p_i to H
   if point_in_polygon(p, H)

    //do nothing

   else
      find pi the tangent point where orientation changes from L to R
      find pi the tangent point where orientation changes from R to L
      //note: p_i not necessarily before p_i in the vertex array of H
       cut out the part from p_i to p_j in H (note: view H as wrapping around)
       and replace it with vertex p
```

Analysis: $SUM_i O(i) = O(n^2)$

- The "straightforward" incremental algorithm is O(n²)
- Improvement:
 - pre-sort the points by their x-coordinates and add them in this order
 What does this give us?

- It was shown that O(n lg n) incremental algorithm is possible.
 - avoid re-computing all orientations every time
 - replace the search for tangent points with some sort of binary search

A divide-and-conquer algorithm for CH

Divide-and-conquer

```
DC(input P)
 if P is small, solve and return
 else
   //divide
   divide input P into two halves, P1 and P2
   //recurse
   result1 = DC(P1)
   result2 = DC(P2)
   //merge
   do_something_to_figure_out_result_for_P
   return result
```

• if merge phase is O(n): T(n) = 2T(n/2) + O(n) => O(n | g| n)

Analysis: T(n) = 2T(n/2) + O(merge phase)

• find vertical line that splits P in half

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find CH(P1)

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find CH(P1)

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find CH(P1)

Merging two hulls..in linear time

Need to find the two tangents

Merging two hulls..in linear time

Here it looks like the upper tangent is between the top points in P₁ and P₂

Is that always true?

Not necessarily...

The top-most point overall is on the CH, but not necessarily on the upper tangent

Merging two hulls..in linear time

• Naive algorithm: try all segments (a,b) with a in H_1 and b in H_2 Too slow. => $O(n^2)$ merge, $O(n^2 \lg n)$ CH algorithm

Claim: All points in H1 and H2 are to the left of ab

Claim: Points a,b are on the lower hulls of H1 and H2, respectively.

• Idea:

- start with a = rightmost point in H1, b = leftmost point in H2
- lower a until all H1 is left of ab

• Idea:

• start with a = rightmost point in H1, b = leftmost point in H2

• Idea:

• start with a = rightmost point in H1, b = leftmost point in H2

• Idea:

- start with a = rightmost point in H1, b = leftmost point in H2
- lower a until all H1 is left of ab

• Idea:

- start with a = rightmost point in H1, b = leftmost point in H2
- lower a until all H1 is left of ab

Idea:

- start with a = rightmost point in H1, b = leftmost point in H2
- lower a until all H1 is left of ab
- lower b until all H2 is left of ab

(why) does this work?

Claim: At any point during the algorithm, segment ab cannot intersect the interior of the polygons

==> a cannot move into the upper hull of P1, b cannot move into the upper hull of P2

- Yet another illustration of divide-and-conquer paradigm
- Runs in O(n lg n)
- Extends to O(n lg h)
- Extends nicely to 3D