Computational Linear Algebra - Assignment 4

(points: 40)

Problem 1 (points: 2 + 5 + 3 = 10)

Let \mathbb{V} and \mathbb{W} be finite-dimensional vector spaces and suppose $\ell \in \mathcal{L}(\mathbb{V}, \mathbb{W})$.

- 1. Suppose $v_1, \ldots, v_n \in \mathbb{V}$ are such that $\ell(v_1), \ldots, \ell(v_n) \in \mathbb{W}$ are linear independent. Show that v_1, \ldots, v_n must necessarily be linear independent.
- 2. Is the converse of (1) true? If no, can you suggest a condition on ℓ for which the converse is true?
- 3. Using (1), prove that if there exists a bijection $\ell \in \mathcal{L}(\mathbb{V}, \mathbb{W})$, then $\dim(\mathbb{V}) = \dim(\mathbb{W})$.

Problem 2 (points: 6)

Let $\mathbb V$ and $\mathbb W$ be finite-dimensional vector spaces. Suppose $\ell \in \mathcal L(\mathbb V,\mathbb W)$ and that $\dim(\mathbb V) = \dim(\mathbb W)$. Prove that the following are equivalent¹:

- 1. ℓ is one-to-one (injective).
- 2. ℓ is onto (surjective).
- 3. ℓ is bijective (both injective and surjective).

Problem 3 (points: 6)

Let \mathbb{V} be an abstract vector space over a field \mathbb{F} , and $\dim(\mathbb{V}) = n$. Prove that \mathbb{V} is isomorphic to \mathbb{F}^n , i.e., one can construct a linear bijection from \mathbb{V} to \mathbb{F}^n .

Problem 4 (points: 1+3+4+3 = 11)

Let \mathbb{U}, \mathbb{V} and \mathbb{W} be finite-dimensional vector spaces. Suppose $f \in \mathcal{L}(\mathbb{U}, \mathbb{V})$ and $g \in \mathcal{L}(\mathbb{V}, \mathbb{W})$, and \mathbf{A}_f and \mathbf{A}_g be their matrix representations (for fixed choice of bases of \mathbb{U}, \mathbb{V} and \mathbb{W}). Recall that the composition $g \circ f : \mathbb{U} \to \mathbb{W}$ is defined as $g \circ f(x) = g(f(x))$ for all $x \in \mathbb{U}$. Prove the following:

- 1. $g \circ f \in \mathcal{L}(\mathbb{U}, \mathbb{W})$.
- 2. The matrix representation of $g \circ f$ is the matrix product $\mathbf{A}_g \mathbf{A}_f$.
- 3. If f is a bijection, then the matrix representation of its inverse is \mathbf{A}_f^{-1} .
- 4. If f and g are both bijections, then the matrix representation of $(g \circ f)^{-1}$ is $\mathbf{A}_f^{-1}\mathbf{A}_g^{-1}$.

¹work from first principles only and do not use matrices or their inverses.

Problem 5 (points: 4+3 = 7)

Suppose $\mathbb V$ is a finite-dimensional vector space and $\mathbb U$ a proper subspace of $\mathbb V$ (i.e., $\mathbb U\neq \mathbb V$). Let $\ell\in\mathcal L(\mathbb U,\mathbb W)$ for some vector space $\mathbb W$. Show that we can extended the domain of ℓ from $\mathbb U$ to $\mathbb V$ without changing its action on $\mathbb U$, i.e., there exists $\ell'\in\mathcal L(V,W)$ such that $\ell'(\boldsymbol x)=\ell(\boldsymbol x)$ for all $\boldsymbol x\in\mathbb U$. We call ℓ' the extension of ℓ .

Suppose ℓ is not the zero map, i.e. $\ell(\boldsymbol{x})$ is non-zero for some $\boldsymbol{x} \in \mathbb{U}$. Let $\ell' : \mathbb{V} \to \mathbb{W}$ be defined as $\ell'(\boldsymbol{x}) = \ell(\boldsymbol{x})$ if $\boldsymbol{x} \in \mathbb{U}$; and $\ell'(\boldsymbol{x}) = 0$ if $\boldsymbol{x} \in \mathbb{V} \setminus \mathbb{U}$. Show that ℓ' is not a linear extension of ℓ .
