기계학습 기초 및 응용

기계학습 기초

소프트웨어융합대학 소프트웨어학부

본 자료는 해당 수업의 교육 목적으로만 활용될 수 있음. 일부 내용은 다른 교재와 논문으로부터 인용되었으며, 모든 저작권은 원 교재와 논문에 있음.

수업 목적

- main objectives:
 - understand fundamentals of machine learning
 - have hands-on experience
 - motivate to learn recent breakthroughs in machine learning

평가

- 3 hands-on experience (45%)
- midterm (30%)
- class contribution (15%)
- class attendance (10%)

수업 계획

Week	Contents	
1	수업 소개	
2	인공지능, 기계학습 개념 ।	
3	인공지능, 기계학습 개념 ॥	
4	인공 신경망 I	
5	인공 신경망 II	
6	PYTHON 및 PYTORCH 실습	
7	심층 학습	
8	심층 학습 II	
9	중간 시험	
10	NVIDIA DLI 실습	
11	Cloud Platform 활용 I	
12	Cloud Platform 활용 II	
13	Cloud Platform 활용 III	
14	Kaggle 실습	
15	초청 강연	

인공지능

- 인공지능Artificial intelligence (AI) 정의
 - 인간의 지능을 기기에 인공적으로 구현한 것
 - 인공지능의 요소
 - 학습learning
 - 추론inference
 - 지식knowledge
 - O o understanding language
 - → 기기가 사람처럼 행동하고 생각하도록 하는 모든 요소들 포함 A machine that thinks or acts like a human
 - 인공지능 사례
 - 음성 인식
 - 추천 시스템
 - 기계 번역
 - 자율 주행

인공지능 접근 방법

- 인공지능 주요 접근 방법
 - 인공 두뇌Cybernetics
 - 기호Symbolic
 - 통계^{Statistical}
 - 통합Integrative
- 인공지능 도구
 - 탐색 및 최적화 Search and optimization
 - 논리 및 선형대수 Logic and linear algebra
 - 확률 및 정보 이론 Probabilistic method and information theory
 - 통계 Statistical method
 - 인공 신경망과 심층 학습 Artificial neural networks and deep learning

인공지능의 변천사

인공지능과 기계학습

■ 인공지능 분류

learning

기계학습

- 기계학습Machine learning 정의
 - 인공지능의 파생 방법
 - 기기를 인간처럼 학습시켜 스스로 규칙을 형성
 - 명시적인 프로그래밍 없이 데이터를 학습
 - 학습: 특정 작업task의 성능performance을 점진적으로 개선

- A computer program
 - improve their performance P (accuracy, error rate,...)
 - at some task T (classification, regression, detection,...)
 - with experience E (data)
 - → well-defined learning task: <P, T, E>

"using a set of observations to uncover an underlaying process"

기계학습 예

Example: predicting how a viewer will rate a movie

- good recommender systems are important
 - ▶ 20% sales are from recommendation (Amazon.com)
 - ▶ 10% improvement = 1 million dollar prize (Netflix)

추천 시스템

Simple viewpoint

Movie	0.00	O O		66	
The Lion King	3			7	
Lethal Weapon		9	3	4	
The Sound of Music		4			7
Amadeus	3	P		9	
When Harry Met Sally	9	3		7	9

추천 시스템

Another viewpoint

추천 시스템

기계학습 예

Which of the following problems are best suited for the learning approach?

- (i) Classifying numbers into primes and non-primes.
- (ii) Detecting potential fraud in credit card charges.
- (iii) Determining the time it would take a falling object to hit the ground.
- (iv) Determining the optimal cycle for traffic lights in a busy intersection.

Answer:	(ii)
---------	------

명시적인 프로그래밍의 한계

■ 명시적인 프로그래밍과 기계학습 비교

Traditional programming

Machine learning

기계학습 필수 요소

■ 규칙 존재

• 수학적으로 명시적인 규칙 확인 불가

■ 데이터 존재

기계학습 문제

- 기계학습 문제 분류
 - 교사 학습 Supervised learning: 정답 answer (label) 있는 학습
 - 비교사 학습 Unsupervised learning: 정답 answer 없는 학습

CLASSICAL MACHINE LEARNING

- 강화 학습 Reinforcement learning: 환경과 상호작용 interaction 있는 학습
- 기타: 준교사 학습 Semi-supervised learning, 지속 학습 Continual learning

기계학습 문제

■ 기계학습 문제 분류 비교

교사 학습

given (x, y) x is data, y is its label

> Goal: learn a function to map x → y

Examples:
Classification
Regression
Object detection
Segmentation
Image captioning

준교사 학습

비교사 학습

given (x) just data, no label

Goal: learn some underlying hidden structure of the data

Examples:
Clustering
Dimensionality reduction
Feature learning
Density estimation

강화 학습

given
Problems involving an agent
interacting with an environment which
provides numeric reward signals

Goal:

Learn how to take actions in order to maximize reward

Examples: Robotics Self-driving

Supervised learning

Example from vending machines – coin recognition

© Aff Creator: Yaser Abu-Mostafa

Supervised learning

- the most studied and most utilized type of learning
 - our main focus for a while
- supervised learning setting
 - training data contains explicit examples of what the correct outputs should be for given inputs
- learning is 'supervised' in that
 - some 'supervisor' has taken the trouble to look at each input and determine the correct output
 - the correct 'label' is available for each training sample
- most well-known approaches: <u>classification</u> & regression

Unsupervised learning

Instead of (input,correct output), we get (input,?)

© AM Creator: Yaser Abu-Mostafa

Unsupervised learning

- the training data do not contain any output information at all
 - instead of (input, correct output), we get (input,?)
 - **ightharpoonup** that is, we are just given input examples $\mathbf{x}_1, \dots, \mathbf{x}_N$
- how could we possibly learn anything from mere inputs?
- approaches to unsupervised learning
 - ightharpoonup clustering (e.g., k-means, mixture models, hierarchical)
 - hidden Markov models (HMMs)
 - feature extraction (e.g., PCA, ICA, SVD)
- variant: semi-supervised learning

Example: coin clustering problem

Figure : the decision regions in unsupervised learning may be identical to those in supervised learning, but without the labels

Unsupervised learning can be viewed as

- spontaneously finding the inherent structure in input data
 - ex) categorize a set of books into topics
- a precursor to supervised learning
 - ex) learning Spanish without knowing the meaning first and then taking Spanish lessons will be easier to follow
- a way to create a dimensionality reduction of the data
 - ex) automated feature extraction

강화 학습

Reinforcement learning

Instead of (input,correct output), we get (input,some output,grade for this output)

The world champion was a neural network!

© A Creator: Yaser Abu-Mostafa

강화 학습

Reinforcement learning

- when training data contain no correct output for each input
 - no longer in a supervised learning setting
- ex) a toddler learning not to touch a hot cup of tea
 - training examples do not say what to do
 - nevertheless, she uses the examples to reinforce better actions
 - eventually she learns what she should do in similar situations

강화 학습

- this characterizes reinforcement learning
 - the training example does not contain the target output
 - but instead contains some possible output together with a measure of how good that output is
- compare how a training example looks:
 - supervised learning: (input, correct output)
 - reinforcement learning: (input, some output, grade for this output)

기계학습 분류 세분화

표현학습과 심층학습

- 표현학습 Representation learning
 - 기계학습의 파생 방법
 - 표현 문제 Representation matter
 - 표현의 차이 비교

- 심층학습 deep learning: 표현학습 representation learning의 주요 방법
 - : 표현에서 출력으로의 사상mapping뿐만 아니라 표현 자체를 학습하여 보다 좋은 성능을 가짐
 - 데이터에서 주어진 작업에 필요한 표현representation을 자동 추출
 - 데이터 중심 특징 data-driven feature의 계층적 학습

선형대수

■ 데이터와 특징공간

표현학습과 심층학습

■ 심층학습

■ 선형과 비선형 연산을 갖춘 깊은 인공신경망 deep artificial neural network

Machine Learning

심층학습

■ 심층학습의 성공 이유

■ |data|와 성능 비교

■ 기계학습 문제화

■ 사례: 신용 승인 credit approval

• given: 신청자 정보

feature	value
age	23 years
gender	female
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000

• task: 승인? 혹은 거절?

■ 표기 정리

component	symbol	credit approval metaphor
input output target function data hypothesis	$egin{array}{c} \mathbf{x} \ y \ f: \mathcal{X} ightarrow \mathcal{Y} \ (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N) \ g: \mathcal{X} ightarrow \mathcal{Y} \end{array}$	customer application approve or deny ideal credit approval formula historical records formula to be used

- ► f: unknown target function
- \triangleright \mathcal{X} : input space (set of all possible inputs x)
- y: output space (set of all possible outputs)
- \triangleright N: the number of input-output examples (i.e. training examples)
- $\triangleright \mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}: \text{ data set where } y_n = f(\mathbf{x}_n)$

■ 문제 해결

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$
 where x_1 : age and x_2 : annual salary in USD

$$N=11$$
, $d=2$, $\mathcal{X}=\mathbb{R}^2$, and $\mathcal{Y}=\{\mathsf{approve}, \mathsf{deny}\}$

data set \mathcal{D} :

n	x_1	x_2	y
1	29	56k	approve
2	64	89k	approve
3	33	17k	deny
4	45	94k	approve
5	24	26k	deny
6	55	24k	deny
7	35	52k	approve
8	57	65k	approve
9	45	32k	deny
10	52	75k	approve
11	62	31k	deny

■ 기계학습 개요

■ 기계학습 절차: 훈련training 과 추론inference

■ 기계학습 도구

■ 심층학습 도구

참고

Google Colab

- 심층학습 또는 기계학습 모델을 실행할 수 있는 Google의 무료 클라우드 서비스
- https://colab.research.google.com/

import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
 raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))

Found GPU at: /device:GPU:0

기계학습과 통계

Statistics

- shares the basic premise of learning from data
 - use of observations to uncover an underlying process
 - the process: a probability distribution
 - the observations: sampled from that distribution
- emphasis is given to situations where
 - most questions can be answered within rigorous proofs

기계학습과 통계

comparison:

- statistics
 - focuses on idealized models and analyzes them in great detail
- machine learning
 - makes less restrictive assumptions
 - deals with more general models than in statistics
 - ends up with weaker results that are broadly applicable

기계학습과 데이터 마이닝

Data mining

- a practical field that focuses on
 - finding patterns, correlations, or anomalies
 - often in large relational databases
- examples
 - look at medical records to detect a long-term drug effect
 - look at credit card spending patterns to detect potential fraud
 - recommender systems

기계학습과 데이터 마이닝

comparison:

- data mining vs machine learning
 - ▶ technically, the same
 - ▶ DM: more emphasis on data analysis than on prediction
 - ightharpoonup DBs are usually huge \Rightarrow computational issues critical in DM

기계학습과 데이터 마이닝

Machine learning versus data mining (Wikipedia)

- two terms are commonly confused
 - often employ the same methods and overlap significantly
- they can be roughly defined as follows:
 - ML focuses on prediction, based on known properties learned from the training data
 - DM focuses on the discovery of (previously) unknown properties in the data; the analysis step of Knowledge Discovery in Databases (KDD)

