WHAT IS CLAIMED IS:

5

1

2

1

2

1

2

A nucleic acid which comprises a polynucleotide that encodes a fusion polypeptide, wherein the fusion polypeptide comprises:

- a) a catalytic domain of a glycosyltransferase; and
- b) a catalytic domain of an accessory enzyme which catalyzes a step in the formation of a nucleotide sugar which is a saccharide donor for the glycosyltransferase.
- 1 2. The nucleic acid of claim 1, wherein the glycosyltransferase is a 2 eukaryotic glycosyltransferase.
 - 3. The nucleic acid of claim 1, wherein the accessory enzyme is a eukaryotic accessory enzyme.
- 1 4. The method of claim 2, wherein the catalytic domain of the 2 glycosyltransferase substantially lacks one or more of a cytoplasmic domain, a signal-anchor 3 domain, and a stem region of the glycosyltransferase.
 - 5. The nucleic acid of claim 1, wherein the glycosyltransferase is a prokaryotic glycosyltransferase.
 - 6. The nucleic acid of claim 1, wherein the accessory enzyme is a prokaryotic accessory enzyme.
- 7. The nucleic acid of claim 1, wherein the fusion polypeptide further comprises a catalytic domain of a second accessory enzyme.
- 1 8. The nucleic acid of claim 1, wherein the glycosyltransferase is selected 2 from the group consisting of sialyltransferases, N-acetylglucosaminyltransferases, N-acetylgalactosaminyltransferases, fucosyltransferases, galactosyltransferases, 3 glucosyltransferases, glucuronosyltransferases, xylosyltransferases, and
- 5 mannosyltransferases.

	1	The nucleic acid of claim 1, wherein the accessory enzyme is selected
	2	from the group consisting of:
	3	a GDP-mannose dehydratase, a GDP-mannose 3,5-epimerase, and a
Sul OZ	4	GDP-mannose 4-reductase;
	/5	a UDP-glucose 4' epimerase;
	\mathcal{V}_6	a UDP-GaWAc 4' epimerase;
V	7	a CMP-sialic acid synthetase;
	8	a neuraminic acid aldolase;
	9	an N-acetylglucosamine 2' epimerase;
	10	a phosphate kinase selected from the group consisting of a pyruvate
	11	kinase, a myokinase, a creatine phosphate kinase, an acetyl phosphate kinase, and a
	12	polyphosphate kinase; and
	13	a pyrophosphorylase selected from the group consisting of a UDP-Glc
	14	pyrophosphorylase, a UDP-Gal pyrophosphorylase, a UDP-GalNAc pyrophosphorylase, a
	15	GDP-mannose pyrophosphorylase, a GDP-fucose pyrophosphorylase, and a UDP-GlcNAc
	16	pyrophosphorylase.
	1	10. The nucleic acid of claim 1, wherein the nucleotide sugar is selected
	2	from the group consisting of GDP-Man, UDP-Glc, UDP-Gal, UDP-GlcNAc, UDP-GalNAc,
	3	CMP-sialic acid, GDP-Fuc, and UDP-xylose.
2		
	1	11. The nucleic acid of claim 1, wherein the glycosyltransferase is a
	2	sialyltransferase and the nucleotide sugar is CMP-sialic acid.
	1	12. The mucleic said of claim 11, wherein the accessory engyme is a CMP
	1	12. The nucleic acid of claim 11, wherein the accessory enzyme is a CMP-
	2	sialic acid synthetase.
	1	13. The nucleic acid of claim 11, wherein the accessory enzyme is a
	2	neuraminic acid aldolase or an N-acetylglucosamine 2' epimerase.
	_	

1	14. The nucleic acid of claim 1, wherein the glycosyltransferase is a
2	galactosyltransferase and the nucleotide sugar is UDP-galactose.
_	
1	15. The nucleic acid of claim 14, wherein the accessory enzyme is a UDP-
2	glucose 4' epimerase.
1	16. The nucleic acid of claim 1, wherein the glycosyltransferase is a
2	fucosyltransferase and the nucleotide sugar is GDP-fucose.
_	Tubesy in tables and the macrostrate sugar 12 GP 2 300000
1	17. The nucleic acid of claim 16, wherein the accessory enzyme is selected
2	from the group consisting of a GDP-mannose dehydratase, a GDP-mannose 3,5-epimerase,
3	GDP-fucose pyrophosphorylase, and a GDP-mannose 4-reductase.
	·
1	18. The nucleic acid of claim 1, wherein the glycosyltransferase is an N-
2	acetylgalactosaminyltransferase and the nucleotide sugar is UDP-GalNAc.
1	19. The nucleic acid of claim 18, wherein the accessory enzyme is a UDP-
2	GalNAc 4' epimerase.
1	20. The nucleic acid of claim 1 , wherein the glycosyltransferase is an N -
2	acetylglucosaminyltransferase and the nucleotide sugar is UDP-GlcNAc.
1	21. The models and of claim 20 wherein the accompany anguma is a LIDB
1	21. The nucleic acid of claim 20 , wherein the accessory enzyme is a UDP-
2	GalNAc 4' epimerase.
1	22. The nucleic acid of claim 1, wherein the glycosyltransferase is a
2	mannosyltransferase and the nucleotide sugar is GDP-Man.
1	23. The nucleic acid of claim 1, wherein the fusion polypeptide further
2	comprises a linker peptide between the glycosyltransferase catalytic domain and the
3	accessory enzyme catalytic domain.

1 24. The nucleic acid of claim 1, wherein the nucleic acid further comprises a polynucleotide that encodes a signal sequence which is linked to the fusion polypeptide. 2 The nucleic acid of claim T, wherein the nucleic acid further comprises 1 a polynucleotide that encodes a molecular tag which is linked to the fusion polypeptide. 2 An expression vector which comprises a nucleic acid of claim 1. A host cell which comprises a nucleic acid of claim 1. 27. A fusion polypeptide encoded by a nucleic acid of claim 1. 1 28. fusion polypeptide that comprises: 1 a catalytic domain of a glycosyltransferase; and 2 a catalytic domain of an accessory enzyme which catalyzes a step in 3 the formation of a nucleotide sugar which is a donor for the glycosyltransferase. 4 The fusion polypeptide of claim 29, wherein the catalytic domain of the 1 glycosyltransferase is joined to the carboxy terminus of the accessory enzyme catalytic 2 3 domain. The fusion polypeptide of claim 29, wherein the glycosyltransferase is a 1 galactosyltransferase and the accessory enzyme is a UDP-glucose 4' epimerase. 2 The fusion polypeptide of claim 29, wherein the glycosyltransferase is a 1 sialyltransferase and the accessory enzyme is a CMP-sialic acid synthetase. 2 A method of producing a fusion polypeptide that comprises: 1 a) a catalytic domain of a glycosyltransferase; and a catalytic domain of an accessory enzyme which catalyzes a step in

the formation of a nucleotide sugar which is a donor for the glycosyltransferase;

8 P 1

2

1 2 wherein the method comprises introducing a nucleic acid that encodes the fusion polypeptide into a host cell to produce a transformed host cell; and culturing the transformed host cell under conditions appropriate for expressing the fusion polypeptide.

- 34. The method of claim 33, wherein the fusion polypeptide is purified following its expression.
- 35. The method of claim 33, wherein the host cell is permeabilized following expression of the fusion polypeptide.

ado

add Di

alla