Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (currently amended) A method of downsampling a two-dimensional block of discrete cosine transform (DCT) coefficients, comprising:

- (a) providing a two-dimensional <u>NxN</u> block of DCT coefficients;
- (b) applying a one-dimensional $\underline{N/2xN}$ de-interlacing inverse discrete cosine transform (IDCT) with respect to a first dimension of said block; and
- (c) applying a one-dimensional de-interlacing inverse discrete cosine transform (IDCT) with respect to a second dimension of the results of step (b).

Claim 2 (currently amended) The method of claim 1, wherein:

- (a) said block is NxN; and
- —(b) de-interlacing IDCT is $\mathbf{x}_e = \mathbf{T}^t(N/2) \, \mathbf{z}_p + \mathbf{Q} \mathbf{T}^t(N/2) \mathbf{K}^t \, \mathbf{z}_r$, where $\underline{\mathbf{x}_e}$ is a vector of four downsample values, \mathbf{z}_p is an N/2 component vector of the even-index components of a column of coefficients in said first dimension of said block, said even-index components in bit-reversed order, \mathbf{z}_r is an N/2 component vector of the odd-index components of said column of coefficients in said first dimension of said block, said odd-index components in bit-reversed order, $\mathbf{T}^t(N/2)$ is the N/2-point IDCT, $\mathbf{K} = \mathbf{RLR}^t$, where \mathbf{R} is a bit-reversal permutation matrix; and \mathbf{L} is a $N/2 \times N/2$ lower-triangular matrix, and \mathbf{Q} is a $N/2 \times N/2$ diagonal matrix: diag[$\cos((4m+1)\pi/2N)$] for $m=0,1,\ldots,N/2-1$.

Claim 3 (original) The method of claim 1, wherein:

(a) said block is 8x8.

Claim 4 (currently amended) A method of downsampling a two-dimensional block of discrete cosine transform (DCT) coefficients, comprising:

- (a) providing a two-dimensional <u>NxN</u> block of DCT coefficients;
- (b) applying a one-dimensional <u>N/2xN</u> de-interlacing inverse discrete cosine transform (IDCT) with respect to a first dimension of said block;
- (c) applying a one-dimensional inverse discrete cosine transform (IDCT) with respect to a second dimension of the results of step (b); and
 - (d) downsample the results of step (c) with respect to said second dimension.

Claim 5 (currently amended) The method of claim 4, wherein:

- (a) said block is NxN; and
- —(b) said de-interlacing IDCT is $\mathbf{x}_e = \mathbf{T}^t(4 \underline{N/2})\,\mathbf{z}_p + \mathbf{Q}\mathbf{T}^t(4 \underline{N/2})\mathbf{K}^t\,\mathbf{z}_r$, where $\underline{\mathbf{x}_e}$ is a vector of four downsample values, $\underline{\mathbf{z}_p}$ is an $\underline{N/2}$ component vector of the even-index components of a column of coefficients in said first dimension of said block, said even-index components in bit-reversed order, $\underline{\mathbf{z}_r}$ is an $\underline{N/2}$ component vector of the odd-index components of said column of coefficients in said first dimension of said block, said odd-index components in bit-reversed order, $\mathbf{T}^t(4 \underline{N/2})$ is the $4 \underline{N/2}$ -point IDCT, $\mathbf{K} = \mathbf{RLR}^t$, where \mathbf{R} is a bit-reversal permutation matrix; and \mathbf{L} is a $\underline{N/2} \times \underline{N/2}$ lower-triangular matrix, and \mathbf{Q} is a $\underline{N/2} \times \underline{N/2}$ diagonal matrix: diag[cos($(4m + 1)\pi/2N$)] for m = 0, 1, ..., N/2 1.

Claim 6 (original) The method of claim 4, wherein:

(a) said block is 8x8.