TD2 – Mélanges de gaz parfaits

1 Mélange idéal de deux gaz

Soit une masse $m=80\,\mathrm{g}$ d'un mélange gazeux de diazote N_2 et de méthane CH_4 , formé de 30 % en masse de diazote. Ce mélange occupe un volume $V=9.95\,\mathrm{L}$ à $T=150\,\mathrm{^{\circ}C}$. Il est considéré comme un mélange idéal de gaz parfaits.

- 1. Calculer la pression totale du mélange gazeux.
- 2. Calculer les pressions partielles de chacun des gaz.

Données:

• Masse molaire du diazote : $M_{\rm N_2}=28\,{\rm g\,mol}^{-1}$; • Masse molaire du méthode : $M_{\rm CH_4}=16\,{\rm g\,mol}^{-1}$.

2 Cuve à eau

Figure 1: Cuve à eau

On recueille dans une cuve à eau (fig. 1) un mélange de dihydrogène (H_2) et de vapeur d'eau (H_2O) qui occupe un volume $V=150\,\mathrm{cm}^3$. La pression atmosphérique vaut 1 bar et la température 20 °C. La dénivellation d'eau est $h=5\,\mathrm{cm}$. Évaluer la masse d'hydrogène.

Données : la pression de vapeur saturante de l'eau vaut $P_{\rm H_2O}\left(20\,^{\circ}{\rm C}\right) = 0.023 \times 10^5\,{\rm Pa}$.

3 Dissociation du dibrome

On néglige dans un premier temps la dissociation du dibrome (Br + Br \leftrightarrows Br2).

1. Quel est le volume V_0 occupé par $m_0 = 1$ g de dibrome (Br₂) à $T_0 = 900$ K sous la pression normale?

2. Que deviendrait ce volume (noté V_1) à $T_1=1800\,\mathrm{K},$ toujours sous la pression normale ?

L'expérience montre que ce volume est en fait $V_1'=1.2\,\mathrm{L}.$

- 3. Montrer que ce résultat peut s'expliquer en admettant qu'une partie des molécules Br_2 s'est dissociée en atomes de brome $\mathrm{Br}.$
- 4. Calculer le cœfficient de dissociation (c'est-à-dire la proportion des molécules dissociées).

Données : la masse molaire du brome vaut $M_{\rm Br} = 80\,{\rm g\,mol}^{-1}.$