SUBMISSIONS CONTESTS

STATUS

Kool matrices (Easy)

(The difference between easy and hard versions of the problem is that, in the harder version **K** is **not fixed**)

You are given an array A with N elements, A_1 , A_2 , ..., A_N .

Using this array, let us construct a N x N matrix M in the following way: $M_{i,j} = A_i + A_j$.

A Kool matrix is a submatrix of M with dimensions K x K such that $1 \le K \le N$.

The strength of a matrix is defined as the sum of values of all the elements present in that matrix.

You are given two integers K and X. You have to find the number of Kool matrices of size K having strength equal to X.

Input

First line contains two integers N (1 \leq N \leq 10⁵) and K (1 \leq K \leq N), denoting the length of the array and the side length of the Kool matrix respectively.

Next line will contain N spaced integers denoting the elements of the array (1 \leq A_i \leq 100).

Next line will contain an integer X ($1 \le X \le 10^{11}$).

Output

A single integer denoting the number of Kool matrices having equal to X.

Example

Input

5 3 1 2 3 4 6 57

Output

2

Explanation

Constructing the matrix M from the array:

There will be 9 Kool matrices of M, with strength:

36 45 57 45 54 66 57 66 78

 $2 \text{ Kool matrices: } K_{11} = \{M_{13}, M_{14}, M_{15}, M_{23}, M_{24}, M_{25}, M_{33}, M_{34}, M_{35}\} \text{ and } K_{22} = \{M_{31}, M_{32}, M_{33}, M_{41}, M_{42}, M_{43}, M_{51}, M_{52}, M_{52}, M_{53}, M_{54}, M$ M_{53} }, have strength equal to X = 57.

Request clarification

Submit solution

All submissions Best submissions

✓ Points: 30 **② Time limit:** 1.0s **Memory limit:** 256M

Authors: dhruv_sharma, dixitgarg

→ Allowed languages