Теоретические вопросы для подготовки к РК-3 часть 2

1) Дать определение локального экстремума функции многих переменных, стационарных и критических точек. Сформулировать необходимое условие экстремума и схему исследования функций на экстремум.

Пусть скалярная функция $f:\mathbb{R}^n \to \mathbb{R}$ определена в некоторой окрестности точки $a \in \mathbb{R}^n$. Говорят, что функция f имеет в точке a **локальный максимум (минимум)**, если существует такая проколотая окрестность $U_{\varepsilon}(a)$ точки a, что для любой точки $x \in U_{\varepsilon}(a)$ выполнено неравенство $f(x) \leq f(a)$ ($f(x) \geq f(a)$). Понятия локального минимума и локального максимума функции объединяют под общим названием **экстремум функции**.

Точки, в которых градиент функции равен нулю или не определен, называют **критическими точками** функции. Стационарными точками функции называют точки, в которых grad f(x)=0. Укажем эквивалентные условия:

$$grad f(x) = 0 \iff d f(x) = 0 \iff f_{x_i}(x) = 0 \quad i = 1, \dots, n.$$

Теорема 1 (необходимое условие экстремума функции).

Пусть скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ имеет в точке $a \in \mathbb{R}^n$ экстремум и частную производную $f'_{x_i}(a)$, $(1 \le i \le n)$. Тогда эта частная производная равна нулю: $f'_{x_i}(a) = 0$.

Схема исследования функции на экстремум:

- 1. Ищем стационарные точки по необходимому условию экстремума функции (df=0)
- 2. Проверяем, являются ли данные точки точками экстремума, используя достаточное условие экстремума функции (находим d^2f и исследуем квадратичную форму)
- 2) Сформулировать достаточные условия экстремума функции многих переменных в общем случае и в двумерном случае.

Достаточные условия экстремума (общий случай).

Пусть U — окрестность точки $a \in \mathbb{R}^n$, $f \in C^2(U)$ и df(a) = 0. Тогда:

- 1. КФ $d^2 f(a)$ положительно определена $\Rightarrow a$ точка строгого локального минимума функции f;
- 2. КФ $d^2f(a)$ отрицательно определена $\Rightarrow a$ точка строгого локального максимума функции f;
- 3. КФ $d^2 f(a)$ знакопеременная \Rightarrow в точке a функция f не имеет экстремума.

Достаточные условия экстремума (двумерный случай).

Пусть U — окрестность точки $(a,b)\in\mathbb{R}^2,\,f\in C^2(U)$ и df((a,b))=0. Тогда:

- 1. A>0, $AC-B^2>0 \Rightarrow (a,b)$ точка строгого локального минимума функции f;
- 2. $A < 0, AC B^2 > 0 \Rightarrow (a, b)$ точка строгого локального максимума функции f;
- 3. $AC B^2 < 0 \Rightarrow$ в точке (a, b) функция f не имеет экстремума.
- 3) Дать определение условного локального экстремума и функции Лагранжа. Сформулировать необходимые условия в общем случае и схему исследования функций на условный экстремум.

Пусть функции $f:\mathbb{R}^n \to \mathbb{R}$ и $\varphi:\mathbb{R}^n \to \mathbb{R}^m$ определены в некоторой окрестности точки $a\in\mathbb{R}^n$. Говорят, что функция f в точке $a\in\mathbb{R}^n$ достигает **условного локального максимума (минимума)** при условии $\varphi(x)=0$, если $\varphi(a)=0$ и

$$\exists \delta > 0: \quad \forall x \in U_{\delta}(a) \quad (\varphi(x) = 0 \implies f(x) \leq f(a) \quad (f(x) \geq f(a))).$$

Понятия условного локального максимума и минимума объединяют под общим названием условный экстремум функции. Если в определении неравенства строгие, то говорят о строгом условном экстремуме функции.

Введем функцию $L(x,y,\lambda)=f(x,y)+\lambda \varphi(x,y),$ которую называют **функцией Лагранжа**, где λ — множитель Лагранжа.

Теорема 2 (необходимое условие условного экстремума).

Пусть функции $f:\mathbb{R}^n \to \mathbb{R}$ и $\varphi:\mathbb{R}^n \to \mathbb{R}^m$ определены и непрерывно дифференцируемы в окрестности точки $a\in\mathbb{R}^n$, причем rang $\varphi'(a)=m$, в точке a функция f(x) имеет условный локальный экстремум при условии $\varphi(x)=0$. Тогда

$$\begin{cases}
\frac{\partial L(a,\lambda_a)}{\partial x_1} = 0, \\
\dots \\
\vdots \\
\frac{\partial L(a,\lambda_a)}{\partial x_n} = 0, \\
\frac{\partial L(a,\lambda_a)}{\partial \lambda_1} = 0, \\
\vdots \\
\frac{\partial L(a,\lambda_a)}{\partial \lambda_1} = 0, \\
\vdots \\
\frac{\partial L(a,\lambda_a)}{\partial \lambda_m} = 0.
\end{cases}$$
(8)

Схема исследования функций на условный экстремум:

- 1. Составляем функцию Лагранжа
- 2. Находим стационарные точки функции Лагранжа, применяя к ней необходимое условие экстремума функции (приравниваем частные производные к нулю)
- 3. Чтобы найти точки экстремума, применяем к стационарным точкам достаточное условие экстремума (находим d^2L и исследуем квадратичную форму)

4) Дать определение условного локального экстремума и функции Лагранжа. Сформулировать необходимые условия в двумерном случае и их геометрическую интерпретацию.

Теорема 1 (необходимое условие условного экстремума при n=2, m=1).

Пусть $f:\mathbb{R}^2 \to \mathbb{R}$ и $\varphi:\mathbb{R}^2 \to \mathbb{R}$ — функции двух переменных, определенные и непрерывно дифференцируемые в окрестности точки P(a,b), функция f(x,y) имеет в точке P условный экстремум при условии $\varphi(x,y)=0$, причем grad $\varphi(a,b)\neq 0$. Тогда существует такое число λ , которое вместе с координатами a и b точки P удовлетворяет системе уравнений

$$f_x'(a,b) + \lambda \varphi_x'(a,b) = 0, \qquad f_y'(a,b) + \lambda \varphi_y'(a,b) = 0, \qquad \varphi(a,b) = 0.$$
 (5)

Геометрическая интерпретация условного экстремума.

Так как градиент ортогонален линии уровня, получаем следующую геометрическую интерпретацию необходимых условий условного экстремума: линия уровня целевой функции касается кривой, заданной уравнением связи.

5) Сформулировать достаточные условия условного экстремума в общем случае.

Теорема 3 (достаточные условия условного экстремума).

Пусть функции $f:\mathbb{R}^n \to \mathbb{R}$ и $\varphi:\mathbb{R}^n \to \mathbb{R}^m$ дважды непрерывно дифференцируемы в окрестности точки $a\in\mathbb{R}^n,\, \varphi(a)=0,\, \mathrm{rang}\,\, \varphi'(a)=m$ и координаты точки a вместе с некоторым вектором λ_a удовлетворяют системе уравнений (8). Тогда:

- 1. КФ $d^2L(a)_H$ положительно определена $\Rightarrow a$ точка строгого условного локального минимума функции f;
- 2. КФ $d^2L(a)_H$ отрицательно определена $\Rightarrow a$ точка строгого условного локального максимума функции f;
- 3. КФ $d^2L(a)_H$ знакопеременная \Rightarrow в точке a функция f не имеет условного экстремума.

$$H=\{\Delta x: darphi(a)=0\} \qquad d^2L_H(a)=d^2L(a)_{|darphi(x)=0}$$

6) Сформулировать теорему об обратной функции.

Теорема 1 (об обратной функции).

Пусть функция $G:\mathbb{R}^n o\mathbb{R}^n$ в окрестности V точки $a\in\mathbb{R}^n$ удовлетворяет условиям:

- 1. $G \in C^1(V, \mathbb{R}^n)$;
- 2. $\det G'(a) \neq 0$.

Тогда $\exists U$ (окрестность точки b=G(a)), $\exists G^{-1}:U o V:$

- a) $\forall y \in U \quad G(G^{-1}(y)) = y \quad \text{if} \quad \forall x \in G^{-1}(U) \quad G^{-1}(G(x)) = x;$
- б) $G^{-1} \in C^1(U,\mathbb{R}^n)$ и

$$(G^{-1})'(y) = (G'(x))^{-1} {}_{x=G^{-1}(y)}.$$