Exercises 7.3.4 — Problem 7

Problem. If $|f_n(x)| \leq a_n$ for all x and $\sum_{n=1}^{\infty} a_n$ converges, prove that $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.

Proof. First define $F_k(x) = \sum_{n=1}^k f_n(x)$. Then the series $\sum_{n=1}^\infty f_n(x)$ converges uniformly if and only if the sequence $F_1(x), F_2(x), \ldots$ has a uniform limit F(x). By Theorem 7.3.1, the sequence (F_k) has a uniform limit if and only if (F_k) satisfies the Cauchy criterion: for every 1/m there exists some $N \in \mathbb{N}$ such that for all $k, j \geq N$ we have $|f_k(x) - f_j(x)| \leq 1/m$ for all x in the common domain.

Let's now show this. We define $A_k = \sum_{n=1}^k a_n$. Since the series $\sum_{n=1}^\infty a_n$ converes, we know the sequence A_1, A_2, \ldots satisfies the Cauchy criterion for sequences of real numbers. Then for any 1/m choose N such that for all $k, j \geq N$ we have $|A_k - A_j| \leq 1/m$. Without loss of generality, select $k \geq j$. Then we have

$$1/m \ge |A_k - A_j| = |(a_1 + a_2 + \dots + a_j + \dots + a_k) - (a_1 + a_2 + \dots + a_k)|$$

$$= |a_{j+1} + \dots + a_k|$$

$$\ge ||f_{j+1}(x)| + \dots + |f_k(x)||$$

$$\ge |f_{j+1}(x) + \dots + f_k(x)|$$

$$= |(f_1(x) + \dots + f_j(x) + \dots + f_k(x)) - (f_1(x) + \dots + f_j(x))|$$

$$= |F_k(x) - F_j(x)|$$

This is exactly the Cauchy criterion for sequences of functions. So we have shown that $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.