What is claimed is:

A process for preparing compounds of the formula (II),

where the substituents R^1 to R^5 are each independently H, CH_3 , straight-chain or branched C_1 - C_8 -alkyl, $CH(OC_1$ - C_5 -alkyl)₂, $CH(C_1$ - C_5 -alkyl)(OC_1 - C_5 -alkyl), $CH_2(OC_1$ - C_5 -alkyl), $CH(CH_3)(OC_1$ - C_5 -alkyl), C_1 - C_8 -alkoxy, $N(C_1$ - C_5 -alkyl)₂, phenyl, substituted phenyl, aryl, heteroaryl, $S(C_1$ - C_5 -alkyl) or a radical $C_{aryl,alkyl}$, and

the symbols X^{1} to 5 are each carbon or a maximum of two neighboring X^{1-5} are nitrogen or $X^{1}R^{1}$ and $X^{2}R^{2}$ together are O, NH, N(C₁-C₅-alkyl), N(C=O-C₁-C₅-alkyl), N(SiR₃)₂ or S,

or where neighboring radicals R¹ to R⁵ form the following structural unit,

where X⁶ to X⁹ and R⁶ to R⁹ have the same meaning as X¹ to X⁵ and R¹ to R⁵

and

the radical $C_{aryl, alkyl}$ is straight-chain or branched, substituted or unsubstituted C_1 - C_8 -alkyl, 1-hydroxyalkyl having from 1 to 8 carbon atoms, CN, 2-hydroxyalkyl having from 2 to 5 carbon atoms, 3-hydroxyalkyl having from 3 to 5 carbon atoms, 1-NHR-alkyl having from 1 to 5 carbon atoms, CH(OC₁-C₅-alkyl)₂, C(C₁-C₅-alkyl)(OC₁-C₅-alkyl), CH₂(OC₁-C₅-alkyl), CH(CH₃)(OC₁-C₅-alkyl), C₁-C₅-alkyl), C₁-C₅-alkyl)₂, phenyl, substituted phenyl, aryl, heteroaryl, CO₂H, CO₂alkyl, (C=O)_{0.5}, substituted 1-vinylalkyls, CH₃-C(=O), R-C(=O) or CHO, which comprises reacting chloro- or fluoroaromatics of the formula (I) with

carbon electrophiles and lithium metal.

The process as claimed in claim 1, wherein the carbon electrophile is 2. selected from the group consisting of: aryl or alkyl cyanates (Caryl,alkyl = CN) oxirane, substituted oxiranes (C_{aryl,alkyl} = CH₂CH₂OH, substituted CR₂CR₂OH) azomethines ($C_{aryl,alkyl} = CR_{2}^{1}-NR'H$) nitroenolates (Caryl,alkyl = oximes) immonium salts (Caryl,alkyl = amines) haloaromatics, aryl triflates, other arylsulfonates (Caryl, alkyl = aryl, heteroaryl) carbon dioxide (Caryl,alkyl = COOH) carbon monoxide (Caryl,alkyl = (-CO-)_{0.5}) aldehydes, ketones (Caryl,alkyl = CHR1-OH, CR12-OH) α,β -unsaturated aldehydes/ketones ($C_{aryl,alkyl} = CH(OH)$ -vinyl, $CR^1(OH)$ -vinyl) ketenes ($C_{aryl,alkyl} = C(=0)CH_3$ in ketene, C(=0)-R in substituted ketenes) alkali metal and alkaline earth metal salts of carboxylic acids (Caryl,alkyl = CHO in formates, COCH₃ in acetates, R¹CO in R¹COOMet) aliphatic nitriles (C_{aryl,alkyl} = COCH₃ in acetonitrile, R¹CO in R¹CN) aromatic nitriles (Caryl,alkyl = COAr') amides ($C_{aryl,alkyl} = CHO in HCONR¹₂, C(=0)R¹ in R¹CONR'₂)$

esters $(C_{aryl,alkyl} = [C(OH)R^1]_{0.5})$ or alkylating agents $(C_{aryl,alkyl} = alkyl)$.

- 3. The process as claimed in claim 1, wherein the reaction is performed at a temperature in the range from –100 to +80°C.
- 4. The process as claimed in claim 1, wherein lithium is used in the form of a dispersion, powder, turnings, sand, granules, pieces or in the form of bars.
- 5. The process as claimed in claim 1, wherein the solvent used is an aliphatic or aromatic ether, a hydrocarbon or an amine which does not carry a hydrogen on the nitrogen atom, preferably triethylamine, diethyl ether, tetrahydrofuran, toluene, toluene-THF mixtures, anisole and diisopropyl ether, more preferably toluene, THF or diisopropyl ether.
- 6. The process as claimed in claim 1, wherein the process is performed as a one-pot process.
- 7. The process as claimed in claim 1, wherein the organolithium compound is first generated and then reacted with the carbon electrophile at the same or a slightly different temperature.
- 8. The process as claimed in claim 1, where the straight-chain or branched C_1 - C_8 -alkyl is a C_1 - C_y -alkyl and the C_1 - C_8 -alkoxy is a C_1 - C_y -alkoxy.
- 9. The process as claimed in claim 2, wherein the reaction is performed at a temperature in the range from –100 to +80°C.

- 10. The process as claimed in claim 2, wherein lithium is used in the form of a dispersion, powder, turnings, sand, granules, pieces or in the form of bars.
- 11. The process as claimed in claim 2, wherein the solvent used is an aliphatic or aromatic ether, a hydrocarbon or an amine which does not carry a hydrogen on the nitrogen atom, preferably triethylamine, diethyl ether, tetrahydrofuran, toluene, toluene-THF mixtures, anisole and diisopropyl ether, more preferably toluene, THF or diisopropyl ether.
- 12. The process as claimed in claim 2, wherein the process is performed as a one-pot process.
- 13. The process as claimed in claim 2, wherein the organolithium compound is first generated and then reacted with the carbon electrophile at the same or a slightly different temperature.
- 14. The process as claimed in claim 3, wherein lithium is used in the form of a dispersion, powder, turnings, sand, granules, pieces or in the form of bars.
- 15. The process as claimed in claim 3, wherein the solvent used is an aliphatic or aromatic ether, a hydrocarbon or an amine which does not carry a hydrogen on the nitrogen atom, preferably triethylamine, diethyl ether, tetrahydrofuran, toluene, toluene-THF mixtures, anisole and diisopropyl ether, more preferably toluene, THF or diisopropyl ether.
- 16. The process as claimed in claim 3, wherein the process is performed as a one-pot process.

- 17. The process as claimed in claim 3, wherein the organolithium compound is first generated and then reacted with the carbon electrophile at the same or a slightly different temperature.
- 18. The process as claimed in claim 4, wherein the solvent used is an aliphatic or aromatic ether, a hydrocarbon or an amine which does not carry a hydrogen on the nitrogen atom, preferably triethylamine, diethyl ether, tetrahydrofuran, toluene, toluene-THF mixtures, anisole and diisopropyl ether, more preferably toluene, THF or diisopropyl ether.
- 19. The process as claimed in claim 4, wherein the process is performed as a one-pot process.
- 20. The process as claimed in claim 4, wherein the organolithium compound is first generated and then reacted with the carbon electrophile at the same or a slightly different temperature.