

1. A compound of the formula:

Suh

1.7

IJ

Total House

H H WIN H H H H H H H

15

20

- wherein R¹ is a phosphono group or a group convertible to a phosphono group; R² is a hydrogen atom or a group having a linkage through a carbon atom; each of Q and X is a nitrogen atom or CH; Y is S, O or CH₂; n is O or 1; one of R³ and R⁴ is a pyridinium group which may be substituted and the other is a hydrogen atom or a hydrocarbon group which may be substituted, or R³ and R⁴ taken together may form a quaternalized nitrogen-containing heterocyclic ring which may be substituted, salt or ester thereof.
 - 2. A compound as claimed in claim 1, wherein R¹ is a phosphono group which may be protected.
 - 3. A compound as claimed in claim 1, wherein R¹ is phosphono, dialkoxy-phosphoryl, O-alkyl-phosphono, diaminophosphoryl, (amino)(hydroxy)phosphoryl, (alkoxy)(morpholino)phosphoryl or dihalophosphoryl.
 - 4. A compound as claimed in claim 1, wherein R¹ is a phosphono group.
 - 5. A compound as claimed in claim 1, wherein Y is S.
 - 6. A compound as claimed in claim 1, wherein R^2 is a C_{1-6} alkyl group which may be substituted or a C_{3-6} cycloalkyl group.
- 8/. A compound as claimed in claim 1, wherein R^3 is a pyridinium group which may be substituted and R^4 is a hydrogen atom.
 - 8. A compound as claimed in claim 1, wherein the group of the formula:

wherein R⁵ is a hydrocarbon group which max be substituted.

- A compound as claimed in claim 1, wherein Q is a nitrogen atom.
- A compound as claimed in claim 1, wherein X is a nitrogen atom. as claimed in claim 1
- above (1), wherein n is 0. A compound a 11.
- as claimed in claim which is 7β -A compound acc 12.
- [2(Z)-ethoxyimino-2-(5-phosphonoamino-1,2,4-thiadiazole-3-
- yl)acetamido]-3-[4-(1-methyl-4 pyridinio)-2-thiazolylthio]-3-
- cephem-4-carboxylate, its ester

10

15

:[] IJ H

IJ

Harte dies

5

 \rightarrow , which is 7β -[2(Z)-fluoromethoxyimino-2-(5-phosphonoamino-1,2,4thiadiazole-3-yl\acetamido]-3-[4-(1-methyl-4-pyridinio)-2thiazolylthio]-3-cephem-4-carboxylate, its ester or its salt.

A method for producing a compound as claimed in claim 1, which comprises reacting a compound of the formula:

wherein each symbol has the meaning given above, its ester or its salt, with a compound of the formula

10

15

20

wherein each symbol has the meaning given above, its salt or its reactive derivative if necessary, followed by converting R¹ to a phosphono group.

15. A method for producing a compound as claimed in claim 1, which comprises subjecting a compound of the formula:

$$R^{1}-NH$$
 S
 C
 $CO-NH$
 N
 OR^{2}
 OR^{2}

wherein one of R³ and R⁴ is a pyridyl group which may be substituted, and the other is a hydrogen atom or a hydrocarbon group which may be substituted, or R³ and R⁴, taken together, represent a nitrogen-containing heterocyclic ring which may be substituted, and the other symbols have the meanings given above, its ester or its salt to the reaction in which quaternalized-ammonium is formed, if necessary, followed by converting R¹ to a phosphono group.

- 16. A pharmaceutical composition containing the compound as claimed in claim 1.
- 17. A pharmaceutical composition containing the compound shown in claim 1 and at least one of pharmaceutically acceptable carriers, diluents and bulking agents.
- 18. A pharmaceutical composition as claimed in claim 16, which is an anti-bacterial composition.
- 19. A pharmaceutical composition as claimed in claim 16 which is an anti-MRSA agent.
- 25 20. A pharmaceutical composition as claimed in claim 16, which is an injectable composition.
 - 21. Use of the compound as claimed in claim 1 for producing a pharmaceutical composition.

15

- A method of using 22. Use as claimed in claim 21, wherein the pharmaceutical composition is an antibacterial agent.

 A method of using 23. Use as claimed in glaim 21, wherein the pharmaceutical
- 23. Use as claimed in claim 21, wherein the pharmaceutical composition is an anti-MRSA agent.
- 5 24. Wherein the pharmaceutical composition is an injectable composition.
 - administering an effective amount of a compound as claimed in claim 1 to a patient suffering from the bacterial infection.
- 10 6. A method for treating a bacterial infection which comprises administering an effective amount of a compound as claimed in claim 1 together with at least one of pharmaceutically acceptable carriers, diluents and excipients to a patient suffering from the bacterial infection.
 - A method as claimed in claim 25, wherein the bacterial infection is a MRSA infection.

A method as claimed in claim 25, wherein the compound is administered by injection.