# The Extended Neyman-Pearson Hypotheses

Testing Framework and its Application to

Spectrum Sensing in Cognitive Wireless

# Communication

An Jiang, Harry Leib,

Department of Electrical Engineering

McGill University

Montreal, Quebec, Canada,

Email: an.jiang@mail.mcgill.ca, harry.leib@mcgill.ca

#### Abstract

sensing, medical detection and many other applications. Traditional NP testing maximizes the probability of detection under a probability of false alarm constraint. This paper consider an extended form of the NP test that is suitable for spectrum sensing when there might be different type of primary signals.

#### **Index Terms**

Neyman Pearson, Hypothesis Testing, Spectrum Sensin, Cognitive Radio

#### I. INTRODUCTION

The increasing radio spectrum demand for wireless communication is driving the development of new approaches for its usage, such as Cognitive Radio (CR)[1]. The concept behind CR networks is the unlicensed use of radio spectrum while ensuring no interference to the licensed users. [2]. To achieve this goal, a CR system must have "cognitive" abilities to identify opportunities for communication[3]. In CR systems, the spectrum sensing component brings in such capabilities [4].

Spectrum sensing has been a subject for extensive studies in the last years[5]. Common techniques for spectrum sensing are based on energy detection, exploitation of cyclostationary properties of the signal being sensed, and also could use preamble sequences that are embedded in the signals [6]. In [7], the authors point out that for OFDM signals when the

variances of the noise and signal are known, the performance of energy based spectrum sensing is very close to optimal. Cooperative spectrum sensing [8], employing multiple sensors that are geographically scattered, are effective against shadowing. Different sensing algorithms and DSP techniques have been introduced for specific situations, such as in [9] where the authors study algorithms for wide band spectrum sensing focusing on sub-Neyquist sampling techniques. In [10] and [11] the authors propose compressed sensing and sub-Nyquist sampling techniques for wide band spectrum sensing.

In order to detect a free frequency channel, a spectrum sensing scheme solves a binary hypotheses testing problem, where the null hypothesis refers to the event that a user is not using the channel and the alternative hypothesis refers to the event that a user is occupying the channel. If the a-prior probabilities of null and alternative hypotheses are known, then such a problem can be solved using a Bayesian framework [12]. The situation when Baysian framework could be used is considered in [13] and the performance of such scheme is analyzed. Even though the Baysian framework can be used in some situations, in more often cases, the a-prior probabilities are not available. In such situation Neyman Pearson testing is employed [12]. When there is a single type of primary user (two hypotheses), NP testing will achieve the largest probability of detecting a vacant channel when no primary user is present under a constraint on the probability that the channel will be declared vacant

when in fact a primary user is present. Traditional NP testing has been extensively used for two hypotheses. In such cases, the performance is characterized by the Receiver Operating Characteristic (ROC) curve, which represents the relationship between probability of detection and probability of false alarm [12].

In spectrum sensing application, there may be more than one type of primary users. For example in IEEE 802.22 [14] the channel can be occupied by Analog-TV Digital-TV and wireless microphone. In such cases, extended NP (ENP) can provide important advantage [15]. A detector based on ENP testing can ensure the largest probability of detection under a constraint of false alarm for each primary user type [16].

However when the detector applying ENP, the achievable scope of false alarm probabilities is limited. To solve this issue, we prove the properties of ENP and based on that we propose Modified Extended Neyman Pearson (MENP) test. By using MENP, we can achieve the largest probability of detection under any probabilities of false alarm constraints. The structure of the paper is given as follows: in the second section, properties of ENP test are given; based on that MENP is proposed; then ROC surface of MENP (M-ROC) is introduced and its properties are given when M=2; an example of applying MENP to energy based spectrum sensing is given in the end.

#### II. EXTENDED NEYMAN PEARSON TEST

# A. Introduction to Extended Neyman Pearson Test

The theories of hypotheses testing have been a subject of continuous studies, and have found applications in various fields such as radar systems, spectrum sensing for cognitive communication systems, and in medical science. One type of hypotheses testing problem can be abstracted as follows: assume M+1 hypotheses  $H_0$ ,  $H_1$ , ...,  $H_M$ , inducing M+1 Probability Density Functions (PDFs) on the observable y.

$$H_0: Y \sim f_0(y)$$

$$H_1: Y \sim f_1(y) \tag{1}$$

$$\dots$$

$$H_M: Y \sim f_M(y)$$

Based on y, a realization of Y, the detector needs to decide whether or not it comes from  $f_0(y)$ . A framework for solving this problem for M=1 was introduced in [17] and it is commonly known as Neyman Pearson (NP) testing. The theory of NP testing was further developed in [18]. In [19], the theory of NP testing was expanded also for M>2. A comprehensive exposition of such generalized NP testing can be found in [16].

The Extended Neyman Pearson (ENP) Lemma: Let  $f_0(x), f_1(x), ..., f_m(x)$  be real Borel measurable functions defined on finite dimensional Euclidean space  $\mathcal{R}$  such that  $\int_R |f_i(x)| dx < \infty (i=0,1,...,M)$ . Suppose that for given constants  $c_1,...,c_M$  there exists a class of subsets  $\mathcal{S}$ , denoted  $\mathcal{C}_{\mathcal{S}}$ , such that for every  $\mathcal{S} \in \mathcal{C}_{\mathcal{S}}$  we have

$$\int_{\mathcal{S}} f_i(x) dx = c_i, \qquad i = 1, ..., M$$
(2)

Then:

(i) Among all members of  $C_S$  there exists one that maximizes

$$\int_{S} f_0(x) dx.$$

(ii) A sufficient condition for a member of  $C_S$  to maximize

$$\int_{S} f_0(x) dx.$$

is the existence of constants  $k_1, ..., k_M$  such that

$$f_0(x) > \sum_{j=1}^{M} k_j f_j(x)$$
 when  $x \in \mathcal{S}$  (3)

$$f_0(x) < \sum_{j=1}^M k_j f_j(x)$$
 when  $x \notin \mathcal{S}$  (4)

(iii) If a member of  $C_S$  satisfies (3) and (4) with  $k_1, ..., k_M \ge 0$ , then it maximizes

$$\int_{S} f_0(x) \mathrm{d}x \tag{5}$$

among all S satisfying

$$\int_{\mathcal{S}} f_i(x) dx \le c_i, \quad i = 1, ..., M.$$
(6)

The associated probability of detection,  $P_d$  and false alarms  $P_{f_i}$  for a certain subset  $\mathcal{S}$  are defined as [17],  $P_d = P(H_0|H_0) = \int_{\mathcal{S}} f_0(x) \mathrm{d}x$ ,  $P_{f_i} = P(H_0|H_i) = \int_{\mathcal{S}} f_i(x) \mathrm{d}x$  i = 1, ..., M. Define the step function

$$u(x) = \begin{cases} 0 & x < 0 \\ 0.5 & x = 0 \\ 1 & x > 0 \end{cases}$$
 (7)

Then for a subset S satisfying (3) and (4) we have:

$$P_{d} = \int_{-\infty}^{\infty} u(f_{0}(x) - \sum_{j=1}^{M} k_{j} f_{j}(x)) f_{0}(x) dx,$$

$$P_{f_{i}} = \int_{-\infty}^{\infty} u(f_{0}(x) - \sum_{j=1}^{M} k_{j} f_{j}(x)) f_{i}(x) dx \quad i = 1, 2, ..., M.$$
(8)

The relationship between  $P_d$  and  $P_{f_i}$  can be represented by Receiver Operating Characteristic (ROC) surface [16].

From to (3) (4), the ENP Decision rule  $\delta$  is

$$\delta: \sum_{j=1}^{M} k_j \frac{f_j(x)}{f_0(x)} \stackrel{H_0}{\underset{\bar{H}_0}{\leq}} 1 \tag{9}$$

From the **ENP Lemma**,  $\delta$  achieves the largest  $P_d$  under the constraints  $P_{f_i} = c_i (i = 1, 2, ..., M)$ . When M = 1, it achieves the largest  $P_d$  under the constraint  $P_f \leq c$  [16], which is the well known and commonly used form.

For applications in spectrum sensing,  $H_0$  denotes the hypothesis that the channel is free and  $H_m$  (m=1,...,M) corresponds to the hypothesis that the channel is occupied by the m-th primary signal. Although we have M hypotheses, we intend to determine if the channel is free or not. Hence the problem is to find a binary test of deciding  $H_0$  versus  $\bar{H}_0$  such that  $P_d$  is maximized under the constraints  $P_{f_m} \leq c_m$  m=1,...,M. In context of spectrum sensing,  $1-P_{f_m}$  can be interpreted as the protection level of the m-th primary signal. The larger is

this protection level, the smaller is the probability that when the m-th signal is active, the test will not detect it and will declare the channel free. In context of spectrum sensing the solution of the ENP problem maximizes the probability of detecting a free channel under a constraint on the protection level for each primary signal. The protection levels of primary signals can be different and they are guaranteed.

#### B. Properties of Extended Neyman Pearson Test

We consider now several properties for the ENP test, embodied by three lemmas with proof placed in the appendix.

**Condition 1** Let  $f_i(x)$  i=0,1,...,M be the PDF induced by hypothesis  $H_i$ , and define  $g(x)=f_0(x)-\sum_{j=1}^M k_j f_j(x)$  where  $k_i$  (i=1,2,...,M) are real numbers. Let  $\mathcal{D}\in\mathbb{R}$  be an open set such that  $\int_{\bar{\mathcal{D}}} f_i(x)=0$  i=1,2,...,M. Furthermore, if  $x_0$  is a solution for g(x)=0  $(x\in\mathcal{D})$ , there exists an integer n such that the n order derivative of  $g(x_0)$  is not equal to zero  $(g^{(n)}(x_0)\neq 0)$ .

**Lemma 1** Under Condition 1, let P be a point with coordinate  $(P_d, P_{f_1}, ..., P_{f_M})$  on the ROC surface of the EPN test. If there exists a tangent hyperplane at P, then its normal is parallel to the vector  $\mathbf{n} = (-1, k_1, ..., k_M)$ , where  $k_i$  are the parameters of the ENP test achieving P.

**Lemma 2** Under Condition 1, let P be a point on the ROC surface,  $\frac{\partial P_d}{\partial P_{f_i}}\Big|_{P} = k_i$ , where

 $k_i$  are the parameters of ENP test achieving P.

**Lemma 3** Under **Condition 1**, let **P** be a point on the ROC surface. If **P** cannot be achieved by ENP test with all positive parameters, then there exist another point  $\mathbf{P}'$   $(P'_d, P'_{f_1}, ..., P'_{f_M})$  on the ROC surface satisfying

$$P'_d > P_d$$
 (10) 
$$P'_{f_i} \le P_{f_i} \quad i = 1, 2, ..., M.$$

C. Modified Extended Neyman Pearson Algorithm

In practice (e.g. spectrum sensing in CR communication system), the following problem needs to be solved,

$$P_d$$

$$s.t. P_{f_i} \le c_i i = 1, 2, ..., M$$

$$(11)$$

According to ENP Lemma, this problem can by solved by ENP test only when  $c_i$  (i=1,...,M) satisfy  $c_i=\int_{-\infty}^{\infty}u(f_0-\sum_{j=1}^Mk_jf_j(x))f_i(x)\mathrm{d}x$  (i=1,...,M), where  $k_i$  are nonnegative.

$$\exists k_{i} \geq 0$$
**s.t.**  $c_{i} = \int_{-\infty}^{\infty} u(f_{0} - \sum_{j=1}^{M} k_{j} f_{j}(x)) f_{i}(x) dx \quad i = 1, ..., M$ 

If the given  $c_i$  i = 1, 2, ..., M do not satisfy (12), no previous work solves the problem. In the following, Modified Extended Neyman Pearson Test (MENP) is given considering (11).

Define 
$$\mathbf{c}^T = [c_1, c_2, ..., c_M]$$
,  $\mathbf{a}^T = [a_1, a_2, ..., a_M]$ ,  $\mathbf{k}^T = [k_1, k_2, ..., k_M]$  and  $\mathbf{P}_f^T = [P_{f_1}, P_{f_2}, ..., P_{f_M}]$ .  
Let  $F(\mathbf{a})$  denote the largest  $P_d$  under the constraints  $P_{f_i} = a_i$   $i = 1, ..., M$ . Also define the set  $\mathcal{A}_{\mathbf{c}} = \{\mathbf{P}_f | 0 \leq P_{f_i} \leq c_i \mid i = 1, 2, ..., M\}$ . and set  $\alpha^+ \triangleq \{\mathbf{P}_f | P_{f_i} = \int_{-\infty}^{\infty} u(f_0(x) - \sum_{j=1}^{M} k_j f_j(x)) f_i(x) \mathrm{d}x$ , where  $k_i \geq 0\}$ .

# Modified Extended Neyman Pearson test

*If* **Condition 1** *is satisfied, then:* 

(i) If  $\mathbf{c} \in \alpha^+$ . Assume  $\mathbf{k}^0 = [k_1^0, k_2^0, ..., k_M^0]^T$  satisfy

$$P_{f_i}^0 = \int_{-\infty}^{\infty} u(f_0(x) - \sum_{j=1}^{M} k_j^0 f_j(x)) f_i(x) dx = c_i \quad (i = 1, 2, ..., M).$$
(13)

The decision rule  $\delta$  that can satisfy (11) is:

$$\delta: \frac{f_0(x)}{k_1^0 f_1(x) + k_2^0 f_2(x) + \dots + k_M^0 f_M(x)} \stackrel{H_0}{\underset{H_0}{\gtrless}} 1 \quad k_1^0, \dots, k_M^0 \ge 0$$
 (14)

(ii) If  $\mathbf{c} \notin \alpha^+$ , Let  $\mathcal{C} = \mathcal{A}_{\mathbf{c}} \cap \alpha^+$ , and  $\mathbf{a}^0 = [a_1^0, a_2^0, ..., a_M^0]^T \in \mathcal{C}$  be such that

$$\max F(\mathbf{a}) = F(\mathbf{a}^0)$$
 s.t.  $\mathbf{a} \in \mathcal{C}$ 

Since  $\mathbf{a}^0 \in \mathcal{A}_{\mathbf{c}} \cap \alpha^+$ , from (i) we have that there exists a different vector  $\mathbf{k}^0$  such that (14) maximizes  $P_d$  under the constraints  $P_{f_i} = a_i^0$ , i = 1, ..., M. Here since  $a_i^0 \leq c_i^0$ , i = 1, ..., M this decision rule satisfies (11).

In (ii), even though the task of finding  $\mathbf{a}^0$  seems to be complicated, in practice, it is easy. Since the definition of  $F(\mathbf{a})$  can be written as

$$\max \quad P_d = F(\mathbf{a})$$
 (16) 
$$\mathrm{s.t.} \quad P_{f_i} = a_i \quad i = 1,...,M \,,$$

when  $\mathbf{a} \in \alpha^+$ , according to ENP Lemma,  $F(\mathbf{a})$  also satisfies

$$\max \quad P_d = F(\mathbf{a})$$
 (17)   
s.t. 
$$P_{f_i} \le a_i \quad i = 1, ..., M.$$

In equation (17), when one of  $a_i, i=1,...,M$  increases and other  $a_i$  remain the same, the constraints is more relaxed, so  $P_d$  will not decrease. Hence we can conclude  $F(\mathbf{a})$  is a non-decreasing function when  $\mathbf{a} \in \alpha^+$ . Hence we can conclude  $\mathbf{a}^0$  has the largest  $a_i^0$  among

all  $\mathbf{a} \in \mathcal{C}$ .

From (i) and (ii), it can also be concluded that for any given  $(c_1, c_2, ..., c_M)$ , the decision rule has following form:

$$\frac{f_0(x)}{k_1 f_1(x) + k_2 f_2(x) + \dots + k_M f_M(x)} \underset{H_0}{\overset{H_0}{\geq}} 1 \quad k_1, k_2, \dots, k_M \ge 0$$
 (18)

The proof that MENP achieves the optimal decision rule is given in the appendix.

#### III. THE ROC SURFACE OF MENP

The ROC surface of MENP (M-ROC) depicts the relationship between  $P_d$  and  $c_1, c_2, ..., c_M$ . In one hand, it illustrates the largest  $P_d$  can that can be achieved under the constraints  $P_{f_i} \leq c_i (i=1,2,...,M)$ , on the other hand, it provides the range of c for a given  $P_d$ . Points  $(P_d,c_1,c_2,...,c_M)$  on M-ROC surface can be divided into two types: 1. those with  $[c_1,c_2,...,c_M] \in \alpha^+$ , define the set of points as  $M_0$ ; 2. those with  $[c_1,c_2,...,c_M] \notin \alpha^+$ , define the set of points as  $M_1$ . Obviously points in  $M_0$  can be achieved by MENP (i) and points in  $M_1$  can be achieved by MENP (ii). Next we consider a property of M-ROC surface.

# **Property 1**

For a given  $\alpha \in [0,1)$ , M-ROC surface segment with points satisfying  $P_d \geq \alpha$  is convex.

The proof is given in the appendix. Next we consider two examples that illustrate the properties of M-ROC surface for M=2.

# A. Gaussian Hypotheses

Assume three hypotheses given as:

$$H_0: X \sim \mathcal{N}(-1,1)$$

$$H_1: X \sim \mathcal{N}(0,1) \tag{19}$$

$$H_2: X \sim \mathcal{N}(1,10),$$

where  $\mathcal{N}(\mu, \sigma^2)$  denotes a Gaussian PDF with mean  $\mu$  and variance  $\sigma^2$ . To achieve M-ROC surface, we first consider points in region  $M_0$ . The decision rule in region  $M_0$  is given by (9) with  $k_1, k_2 \geq 0$  and M = 2, the expression for  $P_d$ ,  $P_{f_1}$  and  $P_{f_2}$  are given by (8) with M = 2 (according to **Neyman Pearson Lemma**, if  $k_1, k_2 \geq 0$ ,  $P_{f_1} = c_1$  and  $P_{f_2} = c_2$ ).

We use Matlab to achieve the points in region  $M_0$ . The values of  $k_1$  and  $k_2$  range from 0 to 100 with step 0.01. Substitute the value of  $k_1$  and  $k_2$  into (9), then we have the corresponding  $P_d$   $P_{f_1}$  and  $P_{f_2}$ . In Figure 1, points belong to region  $M_0$  are plotted. Figure 2 is the projection of Figure 1 on  $c_1, c_2$  plane. In Figure 2, region  $N_0$  is the projection of region  $M_0$  on  $c_1 - c_2$  plane. Since  $M_0$  is the set of points whose  $[c_1, c_2] \in \alpha^+$ ,  $N_0$  is the region whose points belongs to  $\alpha^+$ . Define curve  $L_1$  is the set of points that satisfy following conditions: (1)  $(c_1, c_2) \in N_0$ ; (2)  $(c_1, c_2 + \epsilon) \notin N_0$ , where  $\epsilon \to 0$ . Define curve  $L_2$  is the set of points that satisfy following conditions: (1)  $(c_1, c_2) \in N_0$ ; (2)  $(c_1 + \epsilon, c_2) \notin N_0$ , where  $\epsilon \to 0$ .  $N_1$  denotes

the region enclosed by line  $c_1 = 0$ ,  $c_2 = 1$  and curve  $L_1$ .  $N_2$  denotes the region enclosed by line  $c_1 = 1$ ,  $c_2 = 0$  and curve  $L_2$ . The region of  $N_0$   $N_1$  and  $N_2$  are shown in Figure 2.

# **Conclusion 1**

- (1) For points belong to region  $N_1$  or curve  $L_1$ , if they have the same  $c_1$  value, they have the same decision rule and same  $P_d$ .
- (2) For points belong to region  $N_2$  or curve  $L_2$ , if they have the same  $c_2$  value, they have the same decision rule and same  $P_d$ . The proof is given in the appendix.

Since we have already know  $P_d$  for points in region  $N_0$  and curve  $L_1$  and curve  $L_2$  belongs to  $N_0$  by Matlab, we can get the  $P_d$  for points lie in  $N_1$  and  $N_2$ . M-ROC surface for this example is given in Figure 3 and the contour of M-ROC surface is given in Figure 4.

# B. Chi-Square Situation

Assume three hypotheses given as:

$$H_0: \frac{X}{\sigma_0^2} \sim \mathcal{X}^2(2N)$$

$$H_1: \frac{X}{\sigma_1^2} \sim \mathcal{X}^2(2N)$$

$$H_2: \frac{X}{\sigma_2^2} \sim \mathcal{X}^2(2N),$$
(20)

where  $\mathcal{X}^2(2N)$  is the Chi-square distribution with 2N degree freedom(N is an integer,  $\sigma_0^2 < \sigma_1^2, \sigma_2^2$ ). By random variable transformation[20], we can get the PDFs for different hypotheses:

$$H_0:$$
  $f_0(x) = \frac{1}{\sigma_0^2 2^N \Gamma(N)} \left(\frac{x}{\sigma_0^2}\right)^{N-1} \exp\left(-\frac{x}{2\sigma_0^2}\right)$ 

$$H_1: f_1(x) = \frac{1}{\sigma_1^2 2^N \Gamma(N)} \left(\frac{x}{\sigma_1^2}\right)^{N-1} \exp\left(-\frac{x}{2\sigma_1^2}\right)$$
 (21)

$$H_2:$$
  $f_2(x) = \frac{1}{\sigma_2^2 2^N \Gamma(N)} \left(\frac{x}{\sigma_2^2}\right)^{N-1} \exp\left(-\frac{x}{2\sigma_2^2}\right)$ 

To achieve M-ROC surface, we first consider points in region  $M_0$ . The decision rule in region  $M_0$  is given by (9) with  $k_1, k_2 \ge 0$  and M = 2, the expression for  $P_d$ ,  $P_{f_1}$  and  $P_{f_2}$  are given by (8) with M = 2 (according to **Neyman Pearson Lemma**, if  $k_1, k_2 \ge 0$ ,  $P_{f_1} = c_1$  and  $P_{f_2} = c_2$ ).

In the following, we will prove: in this example, the region achieved by ENP test with  $k_1 \ge 0$  and  $k_2 \ge 0$  is a curve.

The decision rule for ENP test with  $k_1, k_2 \ge 0$  can be written as following:

$$\frac{k_1 f_1(x) + k_2 f_2(x)}{f_0(x)} \underset{H_0}{\stackrel{\bar{H_0}}{\geq}} 1 \tag{22}$$

Substitute the  $f_0(x), f_1(x)$  and  $f_2(x)$  into (22), we get:

$$k_1' \exp\left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right) x + k_2' \exp\left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_2^2}\right) x \underset{H_0}{\overset{\bar{H_0}}{\geq}} 1 \tag{23}$$

where  $k_1' = k_1 \left(\frac{\sigma_0}{\sigma_1}\right)^{2N}$  and  $k_2' = k_2 \left(\frac{\sigma_0}{\sigma_2}\right)^{2N}$ . Define  $p_1 = \frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}$  and  $p_2 = \frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_2^2}$ . Let  $g(x) = k_1' \exp p_1 x + k_2' \exp p_2 x$ .

From the condition that  $\sigma_0^2 \leq \sigma_1^2$  and  $\sigma_0^2 \leq \sigma_2^2$ , we can conclude  $k_1', k_2', p_1, p_2$  are positive. Hence g(x) is a monotonically increasing function with x and  $g^{-1}$  exists. Assume  $x_0 = g^{-1}(1)$ , then the decision rule is

Under decision rule (24), the expression of  $P_d$ ,  $P_{f_1}$  and  $P_{f_2}$  can be written as

$$P_{d} = \Pr(X \le x_{0}|H_{0}) = F_{0}(x_{0})$$

$$P_{f_{1}} = \Pr(X \le x_{0}|H_{1}) = F_{1}(x_{0})$$

$$P_{f_{2}} = \Pr(X \le x_{0}|H_{2}) = F_{2}(x_{0})$$
(25)

where  $F_0$ ,  $F_1$  and  $F_2$  are the CDFs of X under  $H_0$ ,  $H_1$  and  $H_2$ . If the ROC with  $k_1, k_2 \ge 0$  is a surface, there would exist at least two points satisfy following condition: the two points have the same  $P_{f_1}$  but different  $P_{f_2}$ . From (25), if we know the value of  $P_{f_1}$ , we can derive

the value of  $x_0$  and  $P_{f_2}$ . Hence for a given  $P_{f_1}$ , there is only one  $P_{f_2}$  corresponds with it. We can conclude that the ENP ROC with  $k_1, k_2 \ge 0$  is a curve.

By using **Conclusion 1**, we can derive the  $P_d$  for  $(c_1, c_2) \notin \alpha^+$ . The M-ROC surface is plotted in Figure 5.

#### IV. ENERGY BASED SPECTRUM SENSING FOR TWO PRIMARY USERS

In this section, an example for applying MSA to energy based spectrum sensing for two primary users is illustrated.

# A. System Model

Consider a cognitive radio system where the frequency can be occupied by one of the two distinct primary signals  $\{s_1, s_2\}$  or it could be vacant. Let  $H_0$  denote the channel is vacant, and  $H_i$ , i = 1, 2, denote the channel is occupied by primary user signal  $s_i$ , i = 1, 2. We tend to testing  $H_0$  against  $\overline{H}_0$  using NP testing. The problem can be abstracted into following optimization problem:

$$P_d \,, \eqno(26)$$
 s.t. 
$$P_{f_i} \leq c_i \quad (i=1,2) \,.$$

Our object is to achieve the figure for  $P_d$  vs.  $c_1, c_2$  (MS-ROC).

In Fig. 6, a block diagram of system is illustrated. The system consists of a measuring device followed by a testing device. The role of the measuring device is to output a suitable testing statistics. The role of the testing device is to decide whether the channel is free according to the output of the measuring device. The input of the measuring device is

$$x[n] = \begin{cases} \omega[n] & \text{when no primary user is occupying the channel} \\ \omega[n] + s_i[n] & \text{when primary user } i \text{ is occupying the channel} . \end{cases}$$
 (27)

Here n=1,2,...,N, and m=1,2. We also assume that  $s_i[n]$  and  $\omega[n]$  are i.i.d. circular symmetric complex Gaussian(CSCG) random variables with variance  $2\sigma_{s_i}^2$  and  $2\sigma_{\omega}^2$ , in other words,  $s[n] \sim \mathcal{CN}(0,2\sigma_{s_i}^2)$  and  $\omega[n] \sim \mathcal{CN}(0,2\sigma_{\omega}^2)$ . Since the noise and the signal are independent,  $s_i[n] + \omega[n] \sim \mathcal{CN}(0,2(\sigma_{\omega}^2 + \sigma_{s_i}^2))$ .

Since the testing device is a energy detector. Hence the output of the testing device is

$$X = \sum_{n=1}^{N} |x[n]|^2 = \sum_{n=1}^{N} (x_r[n]^2 + x_i[n]^2),$$
 (28)

 $x_r$  and  $x_i$  are respectively the real and imaginary part of signal x. Substitute (27) into (28) and define  $\sigma_i^2 = \sigma_\omega^2 + \sigma_{s_i}^2$ ,

$$\begin{cases} \frac{X}{\sigma_{\omega}^{2}} \sim \mathcal{X}_{2N} & \text{when } H_{0} \text{ is true}, \\ \\ \frac{X}{\sigma_{1}^{2}} \sim \mathcal{X}_{2N} & \text{when } H_{1} \text{ is true}, \\ \\ \frac{X}{\sigma_{2}^{2}} \sim \mathcal{X}_{2N} & \text{when } H_{2} \text{ is true}. \end{cases}$$

$$(29)$$

Since  $\sigma_{\omega}^2 < \sigma_1^2, \sigma_2^2$ , this problem has the same form as that of Chi-Square example given in last section. Using the conclusions given in Chi-Square example, the decision rule is

$$\delta: \qquad x \underset{\bar{H}_0}{\overset{H_0}{\leq}} \lambda \,, \tag{30}$$

where  $\lambda \in [0, \infty)$  and the corresponding  $P_d$  is given in (??). By using this decision rule, MS-ROC will be achieved.

# B. Simulaiton result

Assume  $\sigma_{\omega}^2 = 1$ ,  $\sigma_{s_1}^2 = 0.1$  and  $\sigma_{s_2}^2 = 0.15$ , N=120. By simulation, the MS-ROC is given in Figure 8. The bold black line in the middle of the figure achieved by (??). For other points, the value of  $P_d$  is dereived by decision rule (30) under the constraint  $P_{f_1} \leq c_1$  and  $P_{f_2} \leq c_2$ .

# V. CONCLUSIONS

The authors give an algorithm to solve problems like spectrum sensing for multiple primary users. This algorithm gives optimal solution to the problem that maximize  $P_d$  under the

constraint that  $P_{f_i} \leq c_i$ , where  $c_i \in [0,1]$ , when PDFs satisfy certain conditions. Two examples were given to illustrate how to use the algorithm when there are three hypotheses, their respectively characters are demonstrated. This paper shows that concerning energy based spectrum sensing for two primary users, the decision rule is simple.

#### **APPENDIX**

# A. Proof for Lemma 1

Define  $\mathbf{k} = [k_1, k_2, ..., k_M]^T$  and  $\mathbf{P}_f = [P_{f_1}, P_{f_2}, ..., P_{f_M}]^T$ . Since both  $P_d$  and  $\mathbf{P}_f$  are functions of  $\mathbf{k}$ ,  $\mathbf{P}_f(\mathbf{k}_0)$  denotes the value of  $\mathbf{P}_f$  when  $\mathbf{k} = \mathbf{k}_0$  and  $P_d(\mathbf{k}_0)$  denotes the value of  $P_d$  when  $\mathbf{k} = \mathbf{k}_0$ . Using Taylor's expansion for  $\mathbf{P}_f$  and  $P_d$ ,

$$P_d = P_d(\mathbf{k}_0) + \frac{\mathrm{d}P_d}{\mathrm{d}\mathbf{k}^T} \Big|_{\mathbf{k} = \mathbf{k}_0} (\mathbf{k} - \mathbf{k}_0) + o(\mathbf{k} - \mathbf{k}_0)$$
(31)

$$\mathbf{P}_f = \mathbf{P}_f(\mathbf{k}_0) + \frac{\mathrm{d}\mathbf{P}_f}{\mathrm{d}\mathbf{k}^T} \bigg|_{\mathbf{k} = \mathbf{k}_0} (\mathbf{k} - \mathbf{k}_0) + o(\mathbf{k} - \mathbf{k}_0)$$
(32)

here  $\mathbf{k} \to \mathbf{k}_0$ .

Consider the hyperplane y as a function of x defined by

$$\mathbf{x} = \mathbf{P}_f(\mathbf{k}_0) + \frac{\mathrm{d}\mathbf{P}_f}{\mathrm{d}\mathbf{k}^T} \bigg|_{\mathbf{k} = \mathbf{k}_0} (\mathbf{z} - \mathbf{k}_0)$$
 (33)

$$y = P_d(\mathbf{k}_0) + \frac{\mathrm{d}P_d}{\mathrm{d}\mathbf{k}^T} \Big|_{\mathbf{k} = \mathbf{k}_0} (\mathbf{z} - \mathbf{k}_0)$$
(34)

The above equations construct a tangent hyperplane for the ROC surface at point  $(P_d(\mathbf{k}_0), \mathbf{P}_f^T(\mathbf{k}_0))$ .

Combining both equations we get

$$y = P_d(\mathbf{k}_0) + \frac{\mathrm{d}P_d}{\mathrm{d}\mathbf{k}^T} \bigg|_{\mathbf{k} = \mathbf{k}_0} \left( \frac{\mathrm{d}\mathbf{P}_f}{\mathrm{d}\mathbf{k}^T} \bigg|_{\mathbf{k} = \mathbf{k}_0} \right)^{-1} (\mathbf{x} - \mathbf{P}_f(\mathbf{k}_0))$$
(35)

Hence the normal for point  $(P_d(\mathbf{k}_0), \mathbf{P}_f^T(\mathbf{k}_0))$  on ROC surface can be written as

$$[-1, \frac{\mathrm{d}P_d}{\mathrm{d}\mathbf{k}^T} \bigg|_{\mathbf{k}=\mathbf{k_0}} (\frac{\mathrm{d}\mathbf{P}_f}{\mathrm{d}\mathbf{k}^T} \bigg|_{\mathbf{k}=\mathbf{k_0}})^{-1}]. \tag{36}$$

In the following, we will prove  $\frac{dP_d}{d\mathbf{k}^T}(\frac{d\mathbf{P}_f}{d\mathbf{k}^T})^{-1} = \mathbf{k}^T$ , which can be written as

$$\frac{\mathrm{d}P_d}{\mathrm{d}\mathbf{k}^T} = \mathbf{k}^T \frac{\mathrm{d}\mathbf{P}_f}{\mathrm{d}\mathbf{k}^T} \tag{37}$$

Previous equation can be written in component form as

$$\frac{\partial P_d}{\partial k_i} - \sum_{n=1}^M k_n \frac{\partial P_{f_n}}{\partial k_i} = 0 \quad (i = 1, 2, ..., M).$$
(38)

Calculating the partial derivatives results in

$$\frac{\partial P_{f_n}}{\partial k_i} = -\int_{\mathcal{D}} \delta(f_0(x) - \sum_{j=1}^M k_j f_j(x)) f_i(x) f_n(x) dx, \qquad (39)$$

$$\frac{\partial P_d}{\partial k_i} = -\int_{\mathcal{D}} \delta(f_0(x) - \sum_{j=1}^M k_j f_j(x)) f_i(x) f_0(x) dx, \qquad (40)$$

where  $\delta(\bullet)$  is Dirac's delta function defined as following,

$$\delta(x) = \lim_{\epsilon \to 0} \begin{cases} \frac{1}{\epsilon} & \text{when } x \in (-\frac{\epsilon}{2}, \frac{\epsilon}{2}) \\ 0 & \text{otherwise} \end{cases}$$
 (41)

Defining  $g(x) = f_0(x) - \sum_{j=1}^M k_j f_j(x)$ , (38) can be written as  $\int_{\mathcal{D}} \delta(g(x)) g(x) f_n(x) dx = 0, n = 0, 1, ..., M$ .

When  $g(x) \neq 0$ , we have  $\delta(g(x)) = 0$  and  $\delta(g(x))g(x)f_i(x) = 0$ . When g(x) = 0, we can solve the equation according to the definition of  $\delta(\bullet)$  and consider

$$\int_{\{x|g(x)\in(-\frac{\epsilon}{2},\frac{\epsilon}{2})\}} \frac{1}{\epsilon} g(x) f_n(x) dx \quad n = 0, 1, ..., M$$

$$\tag{42}$$

Since when  $g(x) \in (-\frac{\epsilon}{2}, \frac{\epsilon}{2}), |g(x)| < \frac{\epsilon}{2}$ ,

$$\left| \int_{\{x|g(x)\in(-\frac{\epsilon}{2},\frac{\epsilon}{2})\}} \frac{1}{\epsilon} g(x) f_i(x) dx \right| < \int_{\{x|g(x)\in(-\frac{\epsilon}{2},\frac{\epsilon}{2})\}} \frac{1}{2} f_i(x) dx \tag{43}$$

Assume  $x_s$  is one of the zero point of g(x), also assume  $g'(x_s)$ ,  $g^{(2)}(x_s)$ , ...,  $g^{(n-1)}(x_s)$ 

are zero but  $g^{(n)}(x_s) \neq 0$  (here n=1,2,...). Use Taylor expansion near point  $x_s$ ,

$$g(x) = \frac{g^{(n)}(x_s)}{n!} (x - x_s)^n + o((x - x_s)^n).$$
(44)

From equation (44), it can be seen when  $g(x) \in (-\frac{\epsilon}{2}, \frac{\epsilon}{2}), x \in \left(x_s - \left(\frac{n!\varepsilon}{2|g^{(n)}(x_s)|}\right)^{\frac{1}{n}}, x_s + \left(\frac{n!\varepsilon}{2|g^{(n)}(x_s)|}\right)^{\frac{1}{n}}\right)$ . Define  $\triangle x = \left(\frac{n!\varepsilon}{2|g^{(n)}(x_s)|}\right)^{\frac{1}{n}}$ , when  $\epsilon \to 0$ ,  $\triangle x \to 0$  and

$$g(x) \in \left(-\frac{\epsilon}{2}, \frac{\epsilon}{2}\right) \Leftrightarrow x \in (x_s - \Delta x, x_s + \Delta x)$$
 (45)

Hence when  $\epsilon \to 0$  we have

$$\int_{\{x|g(x)\in(-\frac{\epsilon}{2},\frac{\epsilon}{2})\}} \frac{1}{2} f_i(x) dx \to f_i(x_s) \triangle x \to 0$$
(46)

Using the above two conclusions for g(x) = 0 and  $g(x) \neq 0$ , we get

$$\int_{\mathcal{D}} \delta(g(x))g(x)f_i(x)dx = 0$$
(47)

In this way, we prove the normal for the point **P** on the ROC is  $(-1, k_1, k_2, ..., k_M)$ .

# B. Proof for Lemma 2

The expression of tangent hyper surface for point  $(P_d^0, P_{f_1}^0, ..., P_{f_M}^0)$  on the ROC hyper surface can be written as

$$P_d = P_d^0 + \sum_{i=1}^M \frac{\partial P_d}{\partial P_{f_i}} \Big|_{P_{f_i} = P_{f_i}^0} (P_{f_i} - P_{f_i}^0). \tag{48}$$

Hence the normal at this point is

 $\mathbf{n} = [-1, \frac{\partial P_d}{\partial P_{f_1}}, \frac{\partial P_d}{\partial P_{f_2}}, ..., \frac{\partial P_d}{\partial P_{f_M}}].$  Since we have proved that the normal for this point is  $\mathbf{n} = [-1, k_1, k_2, ..., k_M],$  we must have

$$\left. \frac{\partial P_d}{\partial P_{f_i}} \right|_P = k_i \tag{49}$$

# C. Proof for Lemma 3

Assume  $P(P_d, P_{f_1}, ..., P_{f_M})$  is a point on the ROC and it cannot be achieved by ENP test with all non-negative parameters. Assume it can be achieved by ENP test with parameter  $\mathbf{k} = [k_1, k_2, ..., k_M]^T$  and  $k_l$  is negative.

If there exists a tangent hyper plane at point P, according to Lemma 2,  $\frac{\partial P_d}{\partial P_{f_l}} = k_l < 0$ . Consider another point  $\mathbf{P}'(P'_d, P'_{f_1}, ..., P'_{f_M})$ , here  $P_{f_i} = P'_{f_i} (i \neq l)$  and  $P'_{f_l} = P_{f_l} - \epsilon$  ( $\epsilon \rightarrow$  0and $\epsilon > 0$ ). The partial derivative can be written in following form:

$$\left. \frac{\partial P_d}{\partial P_{f_l}} \right|_{\mathbf{P}} = \frac{P_d - P_d'}{P_{f_l} - P_{f_l}'} = k_l \,. \tag{50}$$

Hence

$$P_d - P_d' = \epsilon k_l \tag{51}$$

The expression of  $P_d'$  can be written as

$$P_d' = P_d - \epsilon k_l \,. \tag{52}$$

Since  $k_l < 0$ ,  $P'_d > P_d$ . By comparing P' with P, we can conclude

$$P'_d > P^0_d$$
 (53) 
$$P'_{f_i} \le P^0_{f_i} \qquad \text{for} \qquad i = 1, 2, ..., M.$$

If there is no tangent hyper plane at point  $\mathbf{P}$ , we use another point to approximate  $\mathbf{P}$ . Assume  $\mathbf{P}'(P'_d, P'_{f_1}, ..., P'_{f_M})$  is a point achieved by ENP parameters  $\mathbf{k} = [k'_1, k'_2, ..., k'_M]^T$ , where  $k'_i = k_i$   $(i \neq l)$  and  $k'_l = k_l + \delta$  and there exists a tangent hyper plane at point  $\mathbf{P}'$ . From (39) and (A), the expression inside the integration are all non-negative, hence we have  $\frac{\partial P_{f_n}}{\partial k_i} \leq 0$  and  $\frac{\partial P_d}{\partial k_i} \leq 0$ . Since  $k'_i = k_i (i \neq l)$  and  $k'_l = k_l + \delta$ , we have  $P'_d \leq P_d$  and  $P'_{f_i} \leq P_{f_i}$ .

Define  $\alpha = P_d - P_d'$  and the expression of  $P_d$  and  $P_d'$  can be written as

$$P_d = \int_{\mathcal{S}} f_0(x) \mathrm{d}x \tag{54}$$

and

$$P_d' = \int_{S'} f_0(x) \mathrm{d}x \tag{55}$$

where S is defined as

$$x \in \mathcal{S}ifff_0(x) \ge \sum_{j=1}^M k_j f_j(x) \tag{56}$$

S' is defined as

$$x \in \mathcal{S}ifff_0(x) \ge \sum_{j=1}^M k_j' f_j(x). \tag{57}$$

Since  $k'_i = k_i (i \neq l)$  and  $k'_l \to k_l$ , we know  $\mathcal{S}' \to \mathcal{S}$  and  $P'_d \to P_d$ . We can conclude  $\alpha \to 0$ .

In previous, we have proved for point  $\mathbf{P}'$ , there exists a point  $\mathbf{P}''(P''_d, P''_{f_1}, ..., P''_{f_M})$ , where  $P''_d = P'_d - \epsilon k'_l$  and  $P''_{f_i} \le P'_{f_i}$ . We let  $\epsilon > \frac{\alpha}{|k'_l|}$  and  $P''_d > P_d$ . Hence for point  $\mathbf{P}''$ , we have

$$P_d'' > P_d$$

$$P_{f_i}'' \le P_{f_i}$$

$$(58)$$

# D. Proof for Leib-Jiang Algorithm

Leib-Jiang Algorithm (i) is given in **Neyman Pearson Lemma**. Here only the situation  $\mathbf{c} \notin \alpha^+$  needs to be proved. Define m dimension vector  $\mathbf{b}^T = [b_1, b_2, ..., b_m]$ , and set  $\mathcal{B} = \{\mathbf{b}|b_i \in [0,c_i]\}$ ,  $c_i$  is given in (11). For  $P_{f_i} = b_i (i=1,2,...,m)$  (if this there is decision rule to achieve this condition), denote the largest  $P_d$  can be given by NP testing by  $G(\mathbf{b})$ . The problem given in (11) can be transform into

$$\max \qquad G(\mathbf{b})$$
 s.t. 
$$\mathbf{b} \in \mathcal{B}.$$

All b can be divided into three types: (1) There exist decision rule for  $P_{f_i} = b_i (i = 1, ..., M)$ , but at least one  $k_i$  is negative; (2) No decision rule can achieve  $P_{f_i} = b_i (i = 1, ..., m)$ ; (3)  $\mathbf{b} \in \alpha^+$ ;

In situation (1), according to **Lemma 3** or **Lemma 4**, points in this region cannot satisfy (59) or can be replaced by a point in  $\alpha^+$ ; in the second situation, there doesn't exist  $P_d$ , hence it cannot satisfy (59). Hence if b satisfy (59),  $\mathbf{b} \in \alpha^+$ . Problem given by (11) can be transform into

max 
$$G(\mathbf{b})$$
 (60)  
s.t.  $\mathbf{b} \in \mathcal{B} \cap \alpha^+$ .

Leib-Jiang algorithm (ii) is proved.

# E. Proof for Property 1

Define set  $\mathcal{C}_{\alpha} = \{(P_d, c_1, c_2, ..., c_M) | \text{ there exists a decision rule } \delta \text{ that can satisfy } P_{f_i}(\delta) \leq c_i \text{ and } P_d(\delta) \geq \alpha \}$ . Assume that point  $A(P_{dA}, c_{1A}, c_{2A}, ..., c_{MA}) \in \mathcal{C}_{\alpha}$  and point  $B(P_{dB}, c_{1B}, c_{2B}, ..., c_{MB}) \in \mathcal{C}_{\alpha}$ . Decision rule  $\delta_A$  is one of the decision rules that can achieve point A; decision rule  $\delta_B$  is one of the decision rules that can achieve point B. The probability of detection and probability of false alarm for decision rule  $\delta_A$  is  $(P_{dA}, P_{f_1A}, P_{f_2A}, ..., P_{f_MA})$ ; The probability of detection and probability of false alarm for decision rule  $\delta_B$  is  $(P_{dB}, P_{f_1B}, P_{f_2B}, ..., P_{f_MB})$ .

Consider a random decision rule  $\delta_C$ , which use  $\delta_A$  with probability  $\theta$  ( $\theta \in (0,1)$ ), and use  $\delta_B$  with probability  $1-\theta$ . Hence the probability of detection and probability of false alarm for for decision rule  $\delta_C$  will be  $(\theta P_{dA} + (1-\theta)P_{dB}, \theta P_{f_1A} + (1-\theta)P_{f_1B}, \theta P_{f_2A} + (1-\theta)P_{f_2B}, ..., \theta P_{f_MA} + (1-\theta)P_{f_MB})$ .

Since  $P_{f_iA} \leq c_{iA}$  and  $P_{f_iB} \leq c_{iB}$ , we can have  $\theta P_{f_iA} + (1-\theta)P_{f_iB} \leq \theta c_{iA} + (1-\theta)c_{iB}$ . In the same way, we know  $P_{dC} \leq \alpha$ . Hence, point  $C \in \mathcal{C}$  and we can conclude that  $\mathcal{C}$  is a convex set.

According to the definition of Leib-Jiang Algorithm, points on  $\alpha$ -MS-ROC achieve the maximum of  $P_d$  for the given  $c_1, c_2, ..., c_M$ . Hence points on  $\alpha$ -MS-ROC are boundary points of a convex set.

# F. Proof for Conclusion 1

Consider points in region  $N_1$ . Since  $(c_1, c_2) \notin N_0$ , we use MENP (ii) to achieve  $P_d$ . As it is shown in Figure 2, A is a point in  $N_1$  with coordinate (x, y). According to MENP (ii),  $\mathcal{C}$  is the set of points lie in region enclosed by curve  $L_1$   $L_2$  and line  $c_1 = x$ . For all points belongs to  $\mathcal{C}$ , point B has the largest  $c_1$  and  $c_2$  value. As we proved function  $F(c_1, c_2)$  is non-decreasing, point B has the largest  $P_d$  among all points belong to region  $\mathcal{C}$ . Hence we proved point A and point B have the same decision rule and same  $P_d$ . Since point in region  $N_1$  with  $c_1 = x$  has the same decision rule and  $P_d$  with point B, we can conclude: for points belong to region  $N_1$  or curve  $L_1$ , if they have the same  $c_1$  value, they have the same decision rule and same  $P_d$ .

In the same way, we can prove: For points belong to region  $N_2$  or curve  $L_2$ , if they have the same  $c_2$  value, they have the same decision rule and same  $P_d$ .

#### REFERENCES

- [1] S. Haykin, "Cognitive radio: brain-empowered wireless communications," *Selected Areas in Communications, IEEE Journal on*, vol. 23, pp. 201 220, feb. 2005.
- [2] A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, "Breaking spectrum gridlock with cognitive radios: An information theoretic perspective," *Proceedings of the IEEE*, vol. 97, no. 5, pp. 894–914, 2009.
- [3] M. M. Buddhikot, "Understanding dynamic spectrum access: Models, taxonomy and challenges," in New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, pp. 649–663, IEEE, 2007.
- [4] R. Tandra, S. M. Mishra, and A. Sahai, "What is a spectrum hole and what does it take to recognize one?," *Proceedings of the IEEE*, vol. 97, no. 5, pp. 824–848, 2009.
- [5] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, "Spectrum sensing for cognitive radio: State-of-the-art and recent advances," *Signal Processing Magazine, IEEE*, vol. 29, no. 3, pp. 101–116, 2012.
- [6] D. Cabric, S. M. Mishra, and R. W. Brodersen, "Implementation issues in spectrum sensing for cognitive radios," in Signals, systems and computers, 2004. Conference record of the thirty-eighth Asilomar conference on, vol. 1, pp. 772–776, IEEE, 2004.
- [7] E. Axell and E. G. Larsson, "Optimal and sub-optimal spectrum sensing of ofdm signals in known and unknown noise variance," *Selected Areas in Communications, IEEE Journal on*, vol. 29, no. 2, pp. 290–304, 2011.
- [8] G. Ganesan and Y. Li, "Cooperative spectrum sensing in cognitive radio networks," in New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, pp. 137–143, IEEE, 2005.
- [9] Z. Tian and G. B. Giannakis, "Compressed sensing for wideband cognitive radios," in *Acoustics, Speech and Signal Processing*, 2007. ICASSP 2007. IEEE International Conference on, vol. 4, pp. IV–1357, IEEE, 2007.
- [10] H. Sun, A. Nallanathan, C.-X. Wang, and Y. Chen, "Wideband spectrum sensing for cognitive radio networks: a survey," *Wireless Communications, IEEE*, vol. 20, no. 2, pp. 74–81, 2013.

- [11] H. Sun, W.-Y. Chiu, J. Jiang, A. Nallanathan, and H. V. Poor, "Wideband spectrum sensing with sub-nyquist sampling in cognitive radios," *arXiv preprint arXiv:1302.1847*, 2013.
- [12] H. V. Poor, An introduction to signal detection and estimation. Springer, 1994.
- [13] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, "A review on spectrum sensing for cognitive radio: challenges and solutions," *EURASIP Journal on Advances in Signal Processing*, vol. 2010, p. 2, 2010.
- [14] S. J. Shellhammer et al., "Spectrum sensing in ieee 802.22," IAPR Wksp. Cognitive Info. Processing, pp. 9-10, 2008.
- [15] Q. Zhang, P. K. Varshney, and Y. Zhu, "Design of extended neyman-pearson hypothesis tests," in *AeroSense'99*, pp. 378–389, International Society for Optics and Photonics, 1999.
- [16] E. L. Lehmann, Testing statistical hypotheses. Wiley, 1959.
- [17] J. Neyman and E. Pearson, "On the problem of the most efficient tests of statistical hypotheses," *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, vol. 231, pp. 289–337, 1933.
- [18] A. Wald, "Contributions to the theory of statistical estimation and testing hypotheses," *The Annals of Mathematical Statistics*, pp. 299–326, 1939.
- [19] G. Dantzig and A. Wald, "On the fundamental lemma of neyman and pearson," *The Annals of Mathematical Statistics*, vol. 22, no. 1, pp. 87–93, 1951.
- [20] B. L. Mark and W. Turin, Probability, Random Processes, and Statistical Analysis. Cambridge University Press Textbooks, 2011.





Fig. 2. Region that can be achieved by Neyman Pearson testing with  $k_i \geq 0$ .









Fig. 6. The Block Diagram for Energy Based Spectrum Sensing.

# Energy Detector X[n]Testing Device



