安徽大学 2023—2024 学年第一学期

《概率论与数理统计 A》期末模拟题(二)

- 一、选择题(每小题3分,共15分)
- 1. 事件 A, B 为对立事件,则()不成立。

- (A) $P(\overline{AB}) = 0$ (B) $P(B|A) = \phi$ (C) $P(\overline{A}|B) = 1$ (D) P(A+B) = 1
- 2. 设随机变量 X,Y 相互独立,且均服从 N(0,1),则
 - (A) $P(X+Y \ge 0) = \frac{1}{4}$ (B) $P(X-Y \ge 0) = \frac{1}{4}$
 - (C) $P\{\max(X,Y) \ge 0\} = \frac{1}{4}$ (D) $P\{\min(X,Y) \ge 0\} = \frac{1}{4}$
- 3. 设离散型随机变量 (X,Y) 的联合分布律为

$$\frac{(X,Y)\big|(1,1)\ (1,2)\ (1,3)\ (2,1)\ (2,2)\ (2,3)}{P\ \big|1/6\ 1/9\ 1/18\ 1/3\ \alpha\ \beta}$$

且X,Y相互独立,则____。

- (A) $\alpha = 2/9, \beta = 1/9$ (B) $\alpha = 1/9, \beta = 2/9$ (C) $\alpha = 1/6, \beta = 1/6$ (D) $\alpha = 8/15, \beta = 1/18$
- 4. 设二维随机变量(X,Y)服从二维正态分布,则随机变量 $\xi = X + Y 与 \eta = X Y$ 不相关的 充分必要条件为()。

 - (A)E(X) = E(Y); $(B)E(X^2) \lceil E(X) \rceil^2 = E(Y^2) \lceil E(Y) \rceil^2;$

 - $(C)E(X^{2}) = E(Y^{2});$ $(D)E(X^{2}) + [E(X)]^{2} = E(Y^{2}) [E(Y)]^{2}$
- 5. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知,则对于给定的样本,总体均值 μ 的置信区间的长度为 L与置信水平 $1-\alpha$ 的关系时()

- (A)1 $-\alpha$ 变小时,L变长; (B)1 $-\alpha$ 变小时,L变短; (C)1 $-\alpha$ 变小时,L不变; (D)1 $-\alpha$ 变小时,L变长或变短不确定。。
- 二、填空题(每小题3分,共15分)
- 6. 一批产品共有8个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回.

已知第二次抽出的是次品,则第一次取出正品的概率 .

7. 设随机变量X, Y独立同分布, 且X的分布列为

X	0	1
p	1/2	1/2

则随机变量 $Z = \max\{X,Y\}$ 的分布列为_____

- 8. 设 X_1, X_2, \cdots, X_n 是来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, \overline{X} 为样本均值,则统计量
- 9. 设随机变量 X 和 Y 的数学期望分别为 -2 和 2, 方差分别为 1 和 4, 相关系数为 -0.5,则

根据切比雪夫不等式 $P\{|X+Y| \ge 6\} \le$ ______。

10. 设总体 $X \sim P(\lambda)$, X_1, X_2, \cdots, X_n 是来自总体的样本, \overline{X} 和 S^2 表示样本均值和样本方差,若 $\hat{\lambda} = a\overline{X} + (2-3a)S^2$ 是 λ 的无偏估计量,则 $a = \underline{\hspace{1cm}}$ 。

三、计算题(每小题10分,共50分)

11.

设随机变量
$$X$$
 的分布函数为 $F(x) =$
$$\begin{cases} ae^x, & x < 0, \\ b, & 0 \le x < 1, \\ 1 - ae^{-(x-1)}, & x \ge 1. \end{cases}$$

- (1) 求 a,b 值; (2) 求概率密度函数 f(x); (3) 求 $P\left(X > \frac{1}{2}\right)$
- **12.** 某箱装有 100 件产品,其中一、二和三等品分别为 80、10、和 10 件,现在从中随机抽取一件,记 $X_i = \begin{cases} 1, & \text{若抽到i} \\ 0, & \text{其他} \end{cases}$, i = 1, 2, 3,试求:
- (1) 随机变量 X_1 和 X_2 的联合分布; (2) 随机变量 X_1 和 X_2 的相关系数 ρ 。
- 13. 一生产线生产的产品成箱包装,每箱的重量是随机的。假设每箱平均重 50 千克,标准差为 5 千克。若用最大载重量为 5 吨的汽车承运,试利用中心极限定理说明每辆车最多装多少箱,才能保证不超载的概率大于 0.977。($\Phi(2) = 0.977$,其中 $\Phi(x)$ 是标准正态分布函数)
- 14. 设(X,Y)的密度函数为 $f(x,y) = \begin{cases} 4e^{-2y}, & 0 < x < y \\ 0, & 其它 \end{cases}$, 试求:
- (1) X和Y的边缘密度函数,并判断其独立性。
- (2) 求条件密度函数 $f_{X|Y}(x|y)$ 。
- **15.** 设总体 X 的概率密度为 $f(x,\theta) = \begin{cases} \frac{1}{1-\theta}, & \theta \le x \le 1 \\ 0, & \text{其他} \end{cases}$,其中 θ 为未知参数, X_1, X_2, \cdots, X_n

为来自该总体的简单随机样本。(1) 求 θ 的矩估计量: (2) 求 θ 的最大似然估计量.

四、应用题(每小题10分,共10分)

16. 某冶金实验室对锰的熔化点作了四次试验,结果分别为

设数据服从正态分布 $N(\mu, \sigma^2)$, 以 $\alpha = 5$ % 的水平作如下检验:

- (1) 这些结果是否符合于公布的数字 1260°C?
- (2) 测定值的标准差是否不超过 2℃?

五、证明题(每小题10分,共10分)

17. 设 $X_1, X_2, ..., X_9$ 是来自总体 $N(0, \sigma^2)$ 的简单随机样本,

$$Y_1 = \frac{1}{6}(X_1 + \dots + X_6)$$
, $Y_2 = \frac{1}{3}(X_7 + X_8 + X_9)$, $S^2 = \frac{1}{2}\sum_{i=7}^{9}(X_i - Y_2)^2$,

 $Z = \frac{\sqrt{2}(Y_1 - Y_2)}{S}$, 证明统计量 Z 服从自由度为 2 的 t 分布。