Leveraging Inflection Tables for Stemming and Lemmatization

EDMONTON-ALBERTA-CANADA

Garrett Nicolai and Greg Kondrak

Department of Computing Science

University of Alberta

1. Inflectional Simplification

- Many languages contain many surface forms of a single dictionary word.
- This results in very sparse data sets, with a large number of forms only appearing infrequently, even for very large corpora.
- Inflectional simplification aims to reduce this sparsity by simplifying all forms down to a small number of representative forms.
- Stemming and lemmatization are two common methods of reducing morphological complexity.

3. Lemmatization

Reranking

- We make use of an unannotated corpus to rerank an *n*-best list..
- Normalized DirecTL score
- Rank in the *n*-best list
- Presence or absence in the
- Normalized likelihood from a 4gram character language model

- Features include:

2. Stemming

setzen+2SIE

PP+geben+PP

What is Stemming?

- Stemming is the removal of inflectional affixes from a word.
- For example, the stem of *playing* is
- It is one method of morphological simplification: reducing the type-totoken ratio.
- One related group of words may have several stems, and they do not need to be free morphemes.
- For example, fly, flying, flew, flies, etc. Has at least 3 different stems: fly, fli, and *flew.*
- Stems are abstract representations, and thus there is no consensus on how words should be stemmed

Plural Present damos dábamos **Imperfect**

A partial inflection table of the Spanish verb dar.

	Meaning	Tag	Stem
Word Form		J	
geben	"to give"	INF	geb
gibt	"gives"	3SIE	gib
gab	"gave"	1SIA	gab
gegeben	"given"	PP	geb

Unsupervised Stem Extraction

1. Inflection	tables	2. Abstract	Tags	3. Extrac
geben+2SIE	gibst	STEM 2SIE	gibst	STEM 2SIE
setzen+2SIE	setzt	STEM 2SIE	setzt	STEM 2SIE
PP+tun+PP	tust	STEM 2SIE	tust	STEM 2SIE
P+geben+PP	gegeben	PP STEM PP	gegeben	PP STEM PP
P+setzen+PP	gesetzt	PP STEM PP	gesetzt	PP STEM PP
tun+1SIA	getan	PP STEM PP	getan	PP STEM PP

Stems within a table are fairly regular Affixes across tables are fairly regular EM aligner maximizes joint likelihood of Does not require expensive stems and affixes morphological annotation

Transduction via DirecTL+ 1. Align source / target pairs **Target** g|i|b|+t| |g|i|b|+s|t| 2. Extract transduction rules s →+s / gib_t e → +e / g:g e:e b:b ַ 3. Apply transduction rules schreibst —— schreib+st

Example DirecTL+ Input / Output:

Intrinsic Evaluation

- In addition to the data sets we used for stemming, we introduce Spanish, extracted from Wiktionary, and English, German and Spanish test sets from the 2009 CoNLL Shared Task.
- We evaluate against state-of
 - the-art Lemming, and Morfette, We consider a prediction any of the potential surface

correct if it matches a lemma of

Extrinsic Evaluation

- We also perform an extrinsic evaluation using the data from the 2016 SIGMORPHON Shared Task on Morphological Reinflection.
- Task 1 predicts an inflected form from a lemma and morphological tag.
- Task 2 replaces the lemma of task 1 with an already inflected form.

Conclusions

- For lemmatization, none of our composite
- methods are as accurate as our Direct model. Our Direct model is competitive with the stateof-the-art methods, and surpasses them when a corpus is introduced.
- For re-inflection, our lemma-based method out-performs all other methods, which is mirrored by the source-target model for Task 1.
- In the future, we hope to expand our methods to full morphological analysis.

Specifics

- We evaluate our methods on 3 languages: English (EN), Dutch (NL), and German (DE).
- Training sets are extracted from either
- CELEX, or Wiktionary. Testing sets are extracted from CELEX.

Interpretation

- Of the unsupervised methods, our method extracts the stems most consistent with human annotation.
- Our methods produce consistent stems. Our Joint method
- benefits from its access to morphological tags. Even when the training and testing data are from different sources.
- high-quality stems. Our accuracy is similar to a system that require much more information.

our methods produce

ge|geb|en|

Conclusions

- The Joint method achieves almost supervised-level stems The supervised method approaches the state of the art.
- Our method reduces the number of different stems. The Joint method benefits from a type of POS awareness.

