Math 55b: Honors Real and Complex Analysis

Homework Assignment #10 (1 April 2011): Integration in \mathbf{R}^k , and special functions

Similarly, *adv*.: At least one line of the proof of this case is the same as before.¹

Another foretaste of complex analysis:

1. Find all complex numbers s such that $\sum_{n=1}^{\infty} \mu(n) n^{-s}$ converges. Here μ is the Möbius function: if n is the product of $e \geq 0$ distinct primes then $\mu(n) = (-1)^e$; else $\mu(n) = 0$. Thus $\mu(n) = 1, -1, -1, 0, -1, 1, -1, 0, 0, 1$ for $n = 1, 2, 3, \ldots, 10$. (Hint: what is $1 / \sum_{n=1}^{\infty} \mu(n) n^{-s}$ for Re(s) > 1?)

Some Rudin problems:

- 2.–3. Solve Problems 1 and 2 on page 288. Apropos #2, construct a bounded function $f:[0,1]\times[0,1]\to\mathbf{R}$ such that: for each x, the function $y\mapsto f(x,y)$ is Riemann integrable with $\int_0^1 f(x,y)\,dy=0$ (from which it follows that $\int_0^1 \left(\int_0^1 f(x,y)\,dy\right)dx=0$); but there exist y such that the function $y\mapsto f(x,y)$ is not Riemann integrable (whence $\int_0^1 \left(\int_0^1 f(x,y)\,dx\right)dy$ doesn't even make sense).
- 4.-8. Solve Problems 9 through 13 on pages 290–291. Generalize #13 to the integral of $\prod_{i=1}^k x_i^{r_i}$ over the set of (x_1,\ldots,x_k) with each $x_i\geq 0$ and $\sum_{i=1}^k x_i^{s_i}=1$. The r_i,s_i can be any real numbers with $r_i>-1$ and $s_i>0$. (The resulting formula is due to Dirichlet.) In particular, determine the volume of the unit ball in \mathbf{R}^k as a function of k; check that your answer agrees with the known cases k=1,2,3. Note what happens to this volume as $k\to\infty$!
- 9. Let $Q: \mathbf{R}^n \to \mathbf{R}$ be a positive-definite form. Show that the integral of $e^{-Q(x)}$ over $x \in \mathbf{R}^n$ converges, and evaluate this integral. For $y \in \mathbf{R}^n$ determine the integral of $\exp(-Q(x) + i\langle x, y \rangle)$ over $x \in \mathbf{R}^n$, where $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ is the usual inner product.
- 10. Let n be a positive integer, V the vector space of symmetric $n \times n$ matrices, and $E \subset V$ the open set of positive-definite matrices. Prove that the function $A \mapsto 1/\det(A)$ on E is logarithmically convex.

Problems 2–10 will be due Friday, April 8, at the beginning of class.

 $^{^1}Definitions$ of Terms Commonly Used in Higher Math, R. Glover et al. Note that this does not define an equivalence relation.