

Winning Space Race with Data Science

<DEEPIKA SINGHANIA> <19/08/2023>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of Methodologies:

- Data Collection:
 - Collected data on Falcon 9 first-stage landings using a RESTful API and web scraping.
 - Converted the collected data into a structured format using Pandas DataFrames.
- > Exploratory Data Analysis (EDA):
 - Conducted EDA on the collected data.
 - Created scatter plots and bar charts using Python and Pandas to visualize the data.
 - Utilized SQL queries with the Pandas SQL library to select and sort data.
 - Extracted meaningful insights and patterns from the data to guide further analysis.
- ➤ Interactive Visuals and Dashboard:
 - ❖ Built an interactive dashboard with Plotly Dash.
 - Incorporated pie charts, scatter plots, and other visualizations to make the dashboard informative and user-friendly.
 - Calculated distances and created interactive maps using the Folium library to analyze the proximity of launch sites.
- > Predictive Analysis with Machine Learning:
 - Split the data into training and testing datasets.
 - Trained different classification models, including Support Vector Machines (SVM), Classification Trees, and Logistic Regression.
 - Optimized model hyperparameters, possibly through grid search or other techniques.
 - Evaluated model performance using the test dataset.
 - Selected the best-performing model for predicting the success of Falcon 9 first-stage landings based on input features.

Executive Summary

Summary of Results:

- > The project aimed to predict the success of Falcon 9 first-stage landings, which has implications for cost savings in rocket launches.
- > Through exploratory data analysis, various insights and patterns were discovered in the data, providing valuable context for the predictive modeling phase.
- An interactive dashboard was created using Plotly Dash, allowing users to explore launch records and understand the data visually.
- Interactive maps generated with the Folium library helped analyze the proximity of launch sites, providing geographical insights.
- > In the predictive analysis phase, several classification models were trained and evaluated.
- ➤ Model hyperparameters were optimized to enhance predictive accuracy.
- > The best-performing model was selected based on its performance on the test dataset.
- The final predictive model can be used to determine the likelihood of a successful Falcon 9 first-stage landing, which in turn can impact the cost-effectiveness of rocket launches.
- This project combined data collection, exploratory analysis, interactive visualization, and machine learning to address a real-world problem related to rocket launch success prediction. The results provide insights into decision-making processes for rocket launches and cost-saving strategies for space exploration endeavors.

Introduction

Project Background and Context:

The project focuses on the analysis of Falcon 9 rocket launches, specifically the success of the first-stage landings. SpaceX, the company behind the Falcon 9, has pioneered the reusability of rocket components, which has the potential to significantly reduce the cost of space exploration. The first-stage landing success is a critical factor in achieving this cost reduction.

SpaceX advertises Falcon 9 launches at a considerably lower cost compared to other providers, largely due to their ability to reuse the first stage. This makes Falcon 9 an attractive option for organizations seeking cost-effective access to space. However, predicting the success of first-stage landings is a complex task that depends on various factors, including technical, environmental, and operational variables.

Introduction

Problems You Want to Find Answers:

- Success Prediction: The primary problem is to predict whether the Falcon 9 first stage will land successfully. This prediction can help determine the overall success of a rocket launch.
- Cost Analysis: By predicting landing success, we can estimate the cost of a Falcon 9 rocket launch accurately. This information is valuable for organizations considering SpaceX as their launch provider and comparing it to other more expensive options.
- ➤ **Bid Competitiveness:** The project addresses the problem of helping alternate rocket launch companies bid competitively against SpaceX. Accurate cost estimations and success predictions can empower other companies to make informed bids in the highly competitive space launch industry.
- ➤ **Data-Driven Decision-Making:** The project aims to provide data-driven insights to guide decisions related to space exploration. These insights can influence launch scheduling, budgeting, and overall mission planning.
- In summary, this project seeks to leverage data analysis, visualization, and machine learning to predict the success of Falcon 9 first-stage landings. By doing so, it addresses cost-efficiency, bid competitiveness, and data-driven decision-making in the field of space exploration.

Methodology

Executive Summary

- Data collection methodology:
 - Describe how data was collected
- Perform data wrangling
 - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection Process:

- Initial Data Sources:
 - ❖ Data collection began with the identification of initial data sources, including SpaceX's public information and third-party sources.
- RESTful API Access:
 - ❖ We accessed SpaceX's RESTful API to retrieve real-time data on Falcon 9 launches. This API provided structured data on launch details, including dates, outcomes, booster versions, and launch sites.
- Web Scraping:
 - For additional information not available through the API, web scraping techniques were employed. This involved programmatically extracting data from web pages related to Falcon 9 launches.
- Data Integration:
 - ❖ Data obtained from both the API and web scraping were integrated into a single dataset. This integration involved matching and merging records with common identifiers.
- Data Cleaning:
 - The integrated dataset underwent thorough data cleaning processes:
 - Missing values were addressed through imputation or removal.
 - ❖ Data types were converted to ensure consistency.

Data Collection Process:

- Structured Data Format:
 - The final dataset was structured into a common format, typically a Pandas DataFrame, for ease of analysis.
- > Data Quality Assurance:
 - ❖ Data quality checks were performed to ensure accuracy and reliability. This included validating data against known references and conducting consistency checks.
- Data Validation:
 - The collected dataset was validated by comparing it to external sources to confirm the accuracy of key data points.
- Data Storage:
 - The cleaned and validated dataset was stored in a secure and accessible location for further analysis.
- This comprehensive data collection process ensured that our dataset was accurate, reliable, and well-prepared for subsequent analysis and modeling tasks.

Data Collection Process:

- Structured Data Format:
 - The final dataset was structured into a common format, typically a Pandas DataFrame, for ease of analysis.
- > Data Quality Assurance:
 - ❖ Data quality checks were performed to ensure accuracy and reliability. This included validating data against known references and conducting consistency checks.
- Data Validation:
 - The collected dataset was validated by comparing it to external sources to confirm the accuracy of key data points.
- Data Storage:
 - The cleaned and validated dataset was stored in a secure and accessible location for further analysis.
- This comprehensive data collection process ensured that our dataset was accurate, reliable, and well-prepared for subsequent analysis and modeling tasks.

Data was collected using various methods

- > Data collection was done using get request to the SpaceX API.
- Next, we decoded the response content as a Json using .json() function call and turn it into a pandas dataframe using .json_normalize().
- ➤ We then cleaned the data, checked for missing values and fill in missing values where necessary.
- ➤ In addition, we performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
- The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

Data Collection – SpaceX API

- We used the get request to the SpaceX API to collect data, clean the requested data and did some basic data wrangling and formatting.
- The link to the notebook is::
 https://github.com/Deepika O406/IBM-Data-Science-Capstone SpaceX/blob/main/Data%20Collect
 ion%20API.ipynb

```
1. Get request for rocket launch data using API
          spacex url="https://api.spacexdata.com/v4/launches/past"
          response = requests.get(spacex url)
   2. Use json normalize method to convert json result to dataframe
In [12]:
           # Use json normalize method to convert the json result into a dataframe
           # decode response content as json
           static json df = res.json()
           # apply json normalize
           data = pd.json_normalize(static_json_df)
   3. We then performed data cleaning and filling in the missing values
In [30]:
           rows = data falcon9['PayloadMass'].values.tolist()[0]
           df rows = pd.DataFrame(rows)
           df rows = df rows.replace(np.nan, PayloadMass)
           data falcon9['PayloadMass'][0] = df rows.values
           data falcon9
```

Data Collection - Scraping

- We applied web scrapping to webscrap Falcon 9 launch records with BeautifulSoup
- We parsed the table and converted it into a pandas dataframe.
- The link to the notebook is https://github.com/Deepika-O406/IBM-Data-Science-Capstone-SpaceX/blob/main/Data%20Collect ion%20with%20Web%20Scraping .ipynb

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
        static url = "https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922"
In [5]: # use requests.get() method with the provided static_url
          # assign the response to a object
          html data = requests.get(static url)
          html_data.status_code
Out[5]: 200
    2. Create a BeautifulSoup object from the HTML response
           # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
           soup = BeautifulSoup(html_data.text, 'html.parser')
          Print the page title to verify if the BeautifulSoup object was created properly
           # Use soup.title attribute
           soup.title
          <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
        Extract all column names from the HTML table header
          column_names = []
          # Apply find all() function with "th" element on first launch table
          # Iterate each th element and apply the provided extract column from header() to get a column name
          # Append the Non-empty column name ('if name is not None and Len(name) > \theta') into a list called column names
          element = soup.find all('th')
          for row in range(len(element)):
                 name = extract_column_from_header(element[row])
                 if (name is not None and len(name) > 0);
                     column names.append(name)
    4. Create a dataframe by parsing the launch HTML tables
    Export data to csv
```

Data Wrangling

- We performed exploratory data analysis and determined the training labels.
- We calculated the number of launches at each site, and the number and occurrence of each orbits
- We created landing outcome label from outcome column and exported the results to csv.
- The link to the notebook is https://github.com/Deepika-0406/IBM-Data-Science-Capstone-SpaceX/blob/main/Data%20Wrangling.ip

EDA with Data Visualization

 We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

The link to the notebook is
 https://github.com/Deepika-0406/IBM-Data-Science-Capstone-SpaceX/blob/main/EDA%20with%20Data%20Visualization.ipynb

EDA with SQL

- We loaded the SpaceX dataset into a PostgreSQL database without leaving the jupyter notebook.
- We applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.
- The link to the notebook is https://github.com/Deepika-0406/IBM-Data-Science-Capstone-SpaceX/blob/main/EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

- We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some question for instance:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Build a Dashboard with Plotly Dash

- We built an interactive dashboard with Plotly dash
- We plotted pie charts showing the total launches by a certain sites
- We plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.
- The link to the notebook is https://github.com/Deepika-0406/IBM-Data-Science-Capstone-SpaceX/blob/main/app.py

Predictive Analysis (Classification)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is https://github.com/Deepika-0406/IBM-Data-Science-Capstone-SpaceX/blob/main/Machine%20Learning%20Prediction.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Payload vs. Launch Site

The greater the payload mass for launch site CCAFS SLC 40 the higher the success rate for the rocket.

Success Rate vs. Orbit Type

 From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

• The plot below shows the Flight Number vs. Orbit type. We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

Payload vs. Orbit Type

• We can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

Launch Success Yearly Trend

• From the plot, we can observe that success rate since 2013 kept on increasing till 2020.

All Launch Site Names

We used the key word
 DISTINCT to show only unique launch sites from the SpaceX data.

Display the names of the unique launch sites in the space mission

Out[10]:		launchsite
	0	KSC LC-39A
	1	CCAFS LC-40
	2	CCAFS SLC-40
	3	VAFB SLC-4E

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'											
In [11]:	<pre>task_2 = ''' SELECT * FROM SpaceX WHERE LaunchSite LIKE 'CCA%' LIMIT 5 ''' create_pandas_df(task_2, database=conn)</pre>										
Out[11]:		date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
	0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	4	2013-01- 03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

 We used the query above to display 5 records where launch sites begin with `CCA`

Total Payload Mass

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]:

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

"""

create_pandas_df(task_3, database=conn)

Out[12]:

total_payloadmass

0 45596
```

Average Payload Mass by F9 v1.1

 We calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

Display average payload mass carried by booster version F9 v1.1

Out[13]: avg_payloadmass

0 2928.4

First Successful Ground Landing Date

 We observed that the dates of the first successful landing outcome on ground pad was 22nd December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

Out[15]: boosterversion

0 F9 FT B1022

1 F9 FT B1026

2 F9 FT B1021.2

3 F9 FT B1031.2

 We used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000

Total Number of Successful and Failure Mission Outcomes

List the total number of successful and failure mission outcomes

```
In [16]:
          task 7a = '''
                  SELECT COUNT(MissionOutcome) AS SuccessOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Success%'
          task 7b = '''
                  SELECT COUNT(MissionOutcome) AS FailureOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Failure%'
          print('The total number of successful mission outcome is:')
          display(create pandas df(task 7a, database=conn))
          print()
          print('The total number of failed mission outcome is:')
          create pandas df(task 7b, database=conn)
         The total number of successful mission outcome is:
            successoutcome
                      100
         The total number of failed mission outcome is:
Out[16]:
            failureoutcome
```

• We used wildcard like '%' to filter for **WHERE** MissionOutcome was a success or a failure.

Boosters Carried Maximum Payload

 We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function. List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

out[17]:		boosterversion	payloadmasskg
	0	F9 B5 B1048.4	15600
	1	F9 B5 B1048.5	15600
	2	F9 B5 B1049.4	15600
	3	F9 B5 B1049.5	15600
	4	F9 B5 B1049.7	15600
	5	F9 B5 B1051.3	15600
	6	F9 B5 B1051.4	15600
	7	F9 B5 B1051.6	15600
	8	F9 B5 B1056.4	15600
	9	F9 B5 B1058.3	15600
	10	F9 B5 B1060.2	15600
	11	F9 B5 B1060.3	15600

2015 Launch Records

• We used a combinations of the WHERE clause, LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))

```
In [19]:
    task_10 = '''
        SELECT LandingOutcome, COUNT(LandingOutcome)
        FROM SpaceX
        WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
        GROUP BY LandingOutcome
        ORDER BY COUNT(LandingOutcome) DESC
        '''
    create_pandas_df(task_10, database=conn)
```

Out[19]:		landingoutcome	count
	0	No attempt	10
	1	Success (drone ship)	6
	2	Failure (drone ship)	5
	3	Success (ground pad)	5
	4	Controlled (ocean)	3
	5	Uncontrolled (ocean)	2
	6	Precluded (drone ship)	1
	7	Failure (parachute)	1

- We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

All launch sites global map markers

Markers showing launch sites with color labels

Launch Site distance to landmarks

Pie chart showing the success percentage achieved by each launch site

Pie chart showing the Launch site with the highest launch success ratio

KSC LC-39A achieved a 76.9% success rate while getting a 23.1% failure rate

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

We can see the success rates for low weighted payloads is higher than the heavy weighted payloads

Classification Accuracy

 The decision tree classifier is the model with the highest classification accuracy

```
models = {'KNeighbors':knn cv.best score ,
              'DecisionTree':tree cv.best score ,
              'LogisticRegression':logreg cv.best score ,
               'SupportVector': svm_cv.best_score_}
bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
if bestalgorithm == 'DecisionTree':
    print('Best params is :', tree cv.best params )
if bestalgorithm == 'KNeighbors':
    print('Best params is :', knn cv.best params )
if bestalgorithm == 'LogisticRegression':
    print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
    print('Best params is :', svm cv.best params )
Best model is DecisionTree with a score of 0.8732142857142856
Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

Confusion Matrix

 The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes.
 The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier.

Conclusions

We can conclude that:

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.

