1 Equivalence de référentiel

1.1 Hypothèses

Soient n alternatives $a_i (i=1,...,n)$, q critères $f_k (k=1,...,q)$ et $f_k (a_i)$ l'évaluation de l'alternative a_i selon le critère f_k . On considère un ensemble de référence R constitué de m profils type $r_h (h=1,...,m)$. Le flux net d'une action a_i sur base de cet ensemble est $\phi_R (a_i) = \sum_{k=1}^q w_k.\phi_{k_R} (a_i)$ où w_k est le poids associé au critère k et $\phi_{k_R} (a_i)$ est le flux unicritère de l'alternative a_i pour le critère k.

1.2 Thèse

 $\forall R, \exists R'$ de même taille : $\phi_R(a_i) = \phi_{R'}(a_i)$ et $f_{k_{R'}}(r_h) > f_{k_{R'}}(r_{h+1}) \ \forall h \forall k$ ABORDER LE CAS $F_K = F_{KPRIME}$

1.3 Démonstration

On a $\phi_R(a_i) = \sum_{k=1}^q w_k.\phi_{k_R}(a_i)$. Or on somme sur les flux unicritères et le flux unicritère d'un critère ne varie pas en fonction de l'ensemble de référence, ce qui s'exprime $\phi_{k_R}(a_i) = \phi_{k_{R'}}(a_i)$. De plus, comme les poids w_k sont aussi indépendants de l'ensemble de référence, le flux net d'une action a_i est lui aussi invariant si on passe de R à R'. Dès lors, quel que soit l'ensemble de référence R de départ, il existe un R' classé (i.e. où les profils type ne se chevauchent pas) dans lequel les flux net restent identiques.