Proof Theory: Logical and Philosophical Aspects

Class 4: Hypersequents for Modal Logics

Greg Restall and Shawn Standefer

NASSLLI · JULY 2018 · CMU

Our Aim

To introduce *proof theory*, with a focus in its applications in philosophy, linguistics and computer science.

Our Aim for Today

Explore the behaviour of hypersequent systems for modal logics, including two dimensional modal logic with more than one modal operator.

Today's Plan

Flat Hypersequents

Two Dimensional Modal Logic

The Modal Logic s5

The modal logic of equivalence relations.

The Modal Logic s5

The modal logic of equivalence relations.

Equivalently, it is the modal logic of *universal* relations.

The Modal Logic s5

The modal logic of equivalence relations.

Equivalently, it is the modal logic of universal relations.

A model is a pair $\langle W, v \rangle$.

$$v_w(\Box A) = 1$$
 iff for every $u, v_u(A) = 1$

$$v_w(\lozenge A) = 1$$
 iff for some u , $v_u(A) = 1$

How can we simplify hypersequents for s5?

$$\frac{\mathcal{H}[X \succ Y \curvearrowright X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \curvearrowright X' \succ Y']} \ ^{[\Box L]}$$

$$\frac{\mathcal{H}[X\succ Y \overset{}{\frown} \succ A]}{\mathcal{H}[X\succ \Box A,Y]}\,_{[\Box R]}$$

$$\frac{\mathcal{H}[X \succ Y \ \ X' \succ A, Y']}{\mathcal{H}[X \succ \lozenge A, Y \ \ X' \succ Y']} \ ^{[\lozenge R]}$$

How can we simplify hypersequents for s5?

$$\frac{\mathcal{H}[X\succ Y \overset{}{\frown} \succ A]}{\mathcal{H}[X\succ \Box A,Y]}\,_{[\Box R]}$$

$$\frac{\mathcal{H}[X \succ Y \overset{\frown}{\longrightarrow} X' \succ A, Y']}{\mathcal{H}[X \succ \lozenge A, Y \overset{\frown}{\longrightarrow} X' \succ Y']} \ {}^{[\lozenge R]}$$

Eliminate the arrows!

flat hypersequents

A flat hypersequent is a non-empty multiset of sequents.

$$X_1 \succ Y_1 \mid X_2 \succ Y_2 \mid \cdots \mid X_n \succ Y_n$$

FLAT HYPERSEQUENTS

$$\frac{\mathcal{H}[X\succ Y \overset{\frown}{\longrightarrow} A]}{\mathcal{H}[X\succ \Box A,Y]} \, {}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \succ Y \overset{\frown}{\longrightarrow} X' \succ A, Y']}{\mathcal{H}[X \succ \lozenge A, Y \overset{\frown}{\longrightarrow} X' \succ Y']} \ {}^{[\lozenge R]}$$

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \mid X' \succ Y']} \stackrel{[\Box L]}{=} \frac{\mathcal{H}[X \succ Y \mid \rightarrow A]}{\mathcal{H}[X \succ \Box A, Y]} \stackrel{[\Box R]}{=} \frac{\mathcal{H}[X \succ Y \mid A \succ]}{\mathcal{H}[X \succ Y \mid X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ \Diamond A, Y \mid X' \succ Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ Y']}{\mathcal{H}[X \succ \Diamond A, Y \mid X' \succ Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ \Diamond A, Y \mid X' \succ Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ X \vdash X]} \stackrel{[X \succ Y \mid X' \succ X]}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ X \vdash X]} \stackrel{[X \succ X \mid X' \succ X]}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ X \vdash X]} \stackrel{[X \succ X \mid X' \succ X]}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ X, Y']}{\mathcal{H}[X \succ X \vdash X, Y \mid X' \succ X, Y']} \stackrel{[X \succ X \mid X' \succ X, Y']}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ X, Y']}{\mathcal{H}[X \succ X \vdash X, Y \mid X' \succ X, Y']} \stackrel{[X \succ X \mid X' \succ X, Y']}{=} \frac{\mathcal{H}[X \succ Y \mid X' \succ X, Y']}{\mathcal{H}[X \succ X \vdash X, Y \mid X' \succ X, Y']} \stackrel{[X \succ X \mid X \vdash X, Y']}{=} \frac{\mathcal{H}[X \succ X \mid X, X \vdash X, Y']}{\mathcal{H}[X \succ X \vdash X, Y \mid X' \succ X, Y']} \stackrel{[X \rightarrow X \mid X, X \vdash X, Y']}{=} \frac{\mathcal{H}[X \succ X \mid X, X \vdash X, Y']}{\mathcal{H}[X \succ X \mid X, X \vdash X, Y']} \stackrel{[X \rightarrow X \mid X, X \vdash X, Y']}{=} \frac{\mathcal{H}[X \succ X \mid X, X \vdash X,$$

There is *subtlety* here—concerning reflexivity.

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \mid X' \succ Y']} \stackrel{[\Box L]}{=}$$

$$\frac{\mathcal{H}[X\succ Y\ |\ \succ A]}{\mathcal{H}[X\succ \Box A,Y]}\,{}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \succ Y \mid A \succ]}{\mathcal{H}[\lozenge A, X \succ Y]} \, {}_{[\lozenge L]}$$

$$\frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ \lozenge A, Y \mid X' \succ Y']} [\lozenge R]$$

There is *subtlety* here—concerning reflexivity.

In
$$\mathcal{H}[X \succ Y \mid X' \succ Y']$$
 the $X \succ Y$ and $X' \succ Y'$ can be the same.

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \mid X' \succ Y']} \stackrel{[\Box L]}{}$$

$$\frac{\mathcal{H}[X',A\succ Y']}{\mathcal{H}[X',\Box A\succ Y']}\,{}^{[\Box L]}$$

$$\frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ \lozenge A, Y \mid X' \succ Y']} \stackrel{[\lozenge R]}{=}$$

$$\frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ \lozenge A, Y']} \, {}_{[\lozenge R]}$$

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \mid X' \succ Y']} \stackrel{[\Box L]}{=} \frac{\mathcal{H}[X', A \succ Y']}{\mathcal{H}[X', \Box A \succ Y']} \stackrel{[\Box L]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ \Diamond A, Y' \mid X' \succ Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ A, Y']} \stackrel{[\Diamond R]}{=} \frac{\mathcal{H}[X' \succ$$

 $\mathcal{H}[X \succ Y \mid X' \succ Y']$ is a hypersequent in which $X \succ Y$ and $X' \succ Y'$ are components.

Forms of Weakening

$$\frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X, A \succ Y]}^{[iKL]}$$

$$\frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X \succ A, Y]} [\mathit{iKR}]$$

Forms of Weakening

$$\frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X,A \succ Y]} \text{\tiny [iKL]} \qquad \qquad \frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X \succ A,Y]} \text{\tiny [iKR]}$$

$$\frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X \succ Y \ | \ X' \succ Y']} \ [\text{eK}]$$

Forms of Weakening

$$\frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X,A \succ Y]} \text{\tiny [iKL]} \qquad \qquad \frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X \succ A,Y]} \text{\tiny [iKR]}$$

$$\frac{\mathcal{H}[X \succ Y]}{\mathcal{H}[X \succ Y \ | \ X' \succ Y']} \ [\text{eK}]$$

$$\mathcal{H}[X, A \succ A, Y]$$
 [axK]

Forms of Contraction

$$\frac{\mathcal{H}[X,A,A\succ Y]}{\mathcal{H}[X,A\succ Y]}_{[\mathit{iWL}]}$$

$$\frac{\mathcal{H}[X \succ A, A, Y]}{\mathcal{H}[X \succ A, Y]}_{[iWR]}$$

Forms of Contraction

$$\frac{\mathcal{H}[X,A,A\succ Y]}{\mathcal{H}[X,A\succ Y]}_{[iWL]} \qquad \qquad \frac{\mathcal{H}[X\succ A,A,Y]}{\mathcal{H}[X\succ A,Y]}_{[iWR]}$$

$$\frac{\mathcal{H}[X \succ Y \mid X' \succ Y']}{\mathcal{H}[X, X' \succ Y, Y']}_{\text{[eWo]}}$$

Forms of Cut

$$\frac{X \succ A, Y \ | \ \mathcal{H} \qquad X, A \succ Y \ | \ \mathcal{H}}{X \succ Y \ | \ \mathcal{H}} \ [\textit{aCut}]$$

$$\frac{X \succ A, Y \mid \mathcal{H} \quad X', A \succ Y' \mid \mathcal{H}'}{X, X' \succ Y, Y' \mid \mathcal{H} \mid \mathcal{H}'} \text{ [mCut]}$$

Example Derivation

$$\frac{A \succ A}{\Box A \succ | \succ A} \stackrel{[\Box L]}{\Box B} \qquad \frac{B \succ B}{\Box B \succ | \succ B} \stackrel{[\Box L]}{\Box A}$$

$$\frac{\Box A, \Box B \succ | \succ A \land B}{\Box A, \Box B \succ | \succ A \land B} \stackrel{[\Box R]}{\Box A, \Box B \succ \Box (A \land B)} \stackrel{[\Box R]}{\Box A}$$

$$\frac{\Box A, \Box B \succ \Box (A \land B)}{\Box A, \Box B \succ \Box (A \land B)} \stackrel{[\land R]}{}$$

More Example Derivations

$$\frac{A \succ A}{\Box A \succ | \succ A}_{[\Box L]}$$

$$\frac{\Box A \succ | \succ \Box A}{\Box A \succ \Box \Box A}_{[\Box R]}$$

$$\frac{A \succ A}{\neg A, A \succ} {}_{[\neg L]}$$

$$\frac{\Box \neg A \succ | A \succ}{\Box \neg A \vdash A \succ} {}_{[\neg R]}$$

$$\frac{}{A \succ \Box \neg \Box \neg A} {}_{[\Box R]}$$

Modifying the Hypersequent Rules for \$5

$$\frac{\mathcal{H}[X, \Box A \succ Y \mid X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \mid X' \succ Y']} \ _{[\Box L]}$$

$$\frac{\mathcal{H}[X \succ Y \mid A \succ]}{\mathcal{H}[X, \Diamond A \succ Y]} [\Diamond L]$$

$$\frac{\mathcal{H}[X \succ \Box A, Y \mid \succ A]}{\mathcal{H}[X \succ \Box A, Y]} \stackrel{[\Box R]}{=}$$

$$\frac{\mathcal{H}[X \succ \Diamond A, Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ \Diamond A, Y \mid X' \succ Y']} {}_{[\lozenge R]}$$

Height Preserving Admissibility

With these modified rules, internal and external weakening, and internal and external contraction, are height-preserving admissible.

Height Preserving Admissibility

With these modified rules, internal and external weakening, and internal and external contraction, are height-preserving admissible.

The von Plato-Negri cut elimination argument works straightforwardly for this system. (See Poggiolesi 2008.)

(*m*)*Cut* Elimination: the \square Case

$$\frac{\frac{\delta_{l}}{X \succ Y \mid \; \succ A \mid \; \mathcal{H}}}{\frac{X \succ Q \mid \; \mathcal{H}}{X \succ \Box A, Y \mid \; \mathcal{H}}} \xrightarrow{[\Box R]} \frac{\frac{\delta_{l}}{X' \succ Y' \mid \; X'', A \succ Y'' \mid \; \mathcal{H}'}}{\frac{X', \Box A \succ Y' \mid \; X'' \succ Y'' \mid \; \mathcal{H}'}{H'}} \xrightarrow{[mCut]}$$

(*m*)*Cut* Elimination: the \square Case

$$\frac{\frac{\delta_{l}}{X \succ Y \mid \; \succ A \mid \; \mathcal{H}}}{\frac{X \succ Q \mid \; \mathcal{H}}{X \succ Q \mid \; \mathcal{H}}} \xrightarrow{[\Box R]} \frac{\frac{\delta_{l}}{X' \succ Y' \mid \; X'', \; A \succ Y'' \mid \; \mathcal{H}'}}{\frac{X', \; \Box A \succ Y' \mid \; X'' \succ Y'' \mid \; \mathcal{H}'}{X, \; X' \succ Y, \; Y' \mid \; X'' \succ Y'' \mid \; \mathcal{H} \mid \; \mathcal{H}'}} \xrightarrow{[mCut]}$$

simplifies to

$$\frac{\frac{\delta_{l}}{X \succ Y \mid \succ A \mid \mathcal{H}} \frac{\delta_{r}}{X' \succ Y' \mid X'', A \succ Y'' \mid \mathcal{H}'}}{\frac{X \succ Y \mid X' \succ Y' \mid X'' \succ Y'' \mid \mathcal{H} \mid \mathcal{H}'}{X, X' \succ Y, Y' \mid X'' \succ Y'' \mid \mathcal{H} \mid \mathcal{H}'}}_{[eW]}} [mCut]$$

Hypersequent Validity

$$X_1 \succ Y_1 \mid \cdots \mid X_n \succ Y_n$$

holds in \mathfrak{M} iff there are no worlds w_i where each element of X_i is true at w_i and each element of Y_i is false at w_i .

Hypersequent Validity

$$X_1 \succ Y_1 \ | \ \cdots \ | \ X_n \succ Y_n$$

holds in \mathfrak{M} iff there are no worlds w_i where each element of X_i is true at w_i and each element of Y_i is false at w_i .

Equivalent formula:

$$\neg(\lozenge(\bigwedge X_1 \wedge \neg \bigvee Y_1) \wedge \dots \wedge \lozenge(\bigwedge X_n \wedge \neg \bigvee Y_n))$$

Hypersequent Validity

$$X_1 \succ Y_1 \mid \cdots \mid X_n \succ Y_n$$

holds in \mathfrak{M} iff there are no worlds w_i where each element of X_i is true at w_i and each element of Y_i is false at w_i .

Equivalent formula:

$$\neg(\Diamond(\bigwedge X_1 \wedge \neg \bigvee Y_1) \wedge \dots \wedge \Diamond(\bigwedge X_n \wedge \neg \bigvee Y_n))$$

$$\square(\bigwedge X_1\supset\bigvee Y_1)\vee\dots\vee\square(\bigwedge X_n\supset\bigvee Y_n)$$

Features of this Proof System

Soundness and Completeness
Separation
Decision Procedure
Easy Extension

TWO DIMENSIONAL MODAL LOGIC

The Modal Logic s5@

The modal logic of *universal* relations with a distinguished world w_{ω} .

The Modal Logic s5@

The modal logic of *universal* relations with a distinguished world $w_{@}$.

A model is a pair $\langle W, v, w_{@} \rangle$.

$$u_w(\Box A) = 1 \text{ iff for every } u, v_u(A) = 1$$

$$v_w(\Diamond A) = 1 \text{ iff for some } u, v_u(A) = 1$$

$$v_w(@A) = 1 \text{ iff } v_{w_@}(A) = 1$$

Hypersequents with @

$$X_1 \succ Y_1 \mid \cdots \mid X_n \succ Y_n$$

$$X_1 \succ_{@} Y_1 \mid \cdots \mid X_n \succ Y_n$$

Multisets of sequents where one (at most) is tagged with the label '@'.

Hypersequents with @

$$X_1 \succ Y_1 \mid \cdots \mid X_n \succ Y_n$$

$$X_1 \succ_{@} Y_1 \mid \cdots \mid X_n \succ Y_n$$

Multisets of sequents where one (at most) is tagged with the label '@'.

When you take the union of two hypersequents with @, the @-sequents in the parent hypersequents are merged.

Rules for the @ operator

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ_{@} Y']}{\mathcal{H}[X, @A \succ Y \mid X' \succ_{@} Y']} \ ^{[@L]}$$

$$\frac{\mathcal{H}[X \succ Y \mid X' \succ_{@} A, Y']}{\mathcal{H}[X \succ_{@} A, Y \mid X' \succ_{@} Y']} \ ^{[@R]}$$

@-Hypersequent Notation

 $\mathcal{H}[X \succ Y \mid X' \succ Y']$ — a hypersequent with components $X \succ Y$ and $X' \succ Y'$, which may or may not be identical.

 $\mathcal{H}[X \succ Y]$ — a hypersequent with a component $X \succ Y$, which may or may not be tagged with '@'.

 $\mathcal{H}[X \succ_! Y]$ — a hypersequent with a component $X \succ Y$, which is *not* tagged with '@.'

 $\mathcal{H}[X \succ_{@} Y]$ — a hypersequent with a component $X \succ_{@} Y$, if X or Y are non-empty.

Modal Rules

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \mid X' \succ Y']} \ ^{[\Box L]}$$

$$\frac{\mathcal{H}[X \succ Y \mid \succ_! A]}{\mathcal{H}[X \succ \Box A, Y]} \, {}_{[\Box R]}$$

$$\frac{\mathcal{H}[X \succ Y \mid A \succ_{!}]}{\mathcal{H}[\lozenge A, X \succ Y]} \ {}_{[\lozenge L]}$$

$$\frac{\mathcal{H}[X \succ Y \mid X' \succ A, Y']}{\mathcal{H}[X \succ \lozenge A, Y \mid X' \succ Y']} \ {}^{[\lozenge R]}$$

Here, can't tag the A \succ component of $[\lozenge L]$ and the \succ A component of $[\square R]$ with @.

(If we tag it, the premise is not general enough.) We have $\succ_{@} p \supset @p$, but not $\succ_{@} \Box (p \supset @p)$.

The proviso on $X \succ_{\varnothing} Y$...

... means that the inference step

$$\frac{A \succ_{\emptyset}}{\emptyset A \succ} [\emptyset L]$$

is indeed an instance of [@L] as it is specified.

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ_{@} Y']}{\mathcal{H}[X, @A \succ Y \mid X' \succ_{@} Y']} \text{ [@L]}$$

Example Derivations

$$\frac{p \succ_{@} p \mid \succ}{p \succ_{@} \mid \succ_{@} p} [@R]$$

$$\frac{p \succ_{@} \mid \succ_{@} p}{p \succ_{@} \square@p} [\square R]$$

$$\succ_{@} p \supset \square@p$$

Example Derivations

$$\frac{p \succ_{@} p \mid \succ}{p \succ_{@} \mid \succ_{@} p} [\square R]$$

$$\frac{p \succ_{@} \square @p}{p \succ_{@} \square @p} [\square R]$$

$$\frac{p \succ_{@} \square @p}{p \supset \square @p} [\square R]$$

$$\frac{\frac{\mathsf{p} \succ_{@} \mathsf{p} \mid \succ}{\mathsf{p} \succ_{@} \mid \succ_{@\mathsf{p}}}{[@R]}}{\frac{\mathsf{p} \succ_{@} \mid \bigcirc_{@\mathsf{p}}}{\mathsf{p} \succ_{@} \square@\mathsf{p}}} \xrightarrow{[\square R]}}{\overset{[\square R]}{\succ_{@} \mathsf{p}} \supset \square@\mathsf{p}} \xrightarrow{[@R]}} \xrightarrow{[@R]}$$

$$\frac{\mathsf{p} \succ_{@} \mathsf{p} \supset \square@\mathsf{p}}{\succ_{@} (\mathsf{p} \supset \square@\mathsf{p})} \xrightarrow{[\square R]}$$

(m)Cut Elimination is unscathed

$$\frac{\frac{\delta_{l}}{X \succ Y \ | \ X' \succ_{@} A, Y' \ | \ \mathcal{H}}}{\frac{X \succ_{@} A, Y' \ | \ \mathcal{H}}{X \succ_{@} A, Y' \ | \ \mathcal{H}}} \underbrace{\frac{\delta_{r}}{X'' \succ_{Y''} \ | \ X''', A \succ_{@} Y''' \ | \ \mathcal{H}'}}{X'', @A \succ_{W''} \ | \ X''' \succ_{@} Y''' \ | \ \mathcal{H}'}}_{[@L]}_{[mCut]}$$

(m)Cut Elimination is unscathed

$$\frac{\frac{\delta_{l}}{X \succ Y \ | \ X' \succ_{@} A, Y' \ | \ \mathcal{H}}}{\frac{X \succ QA, Y \ | \ X' \succ_{@} Y'' \ | \ \mathcal{H}}{X'' \succ_{@} Y' \ | \ \mathcal{H}}} \underbrace{\frac{\delta_{r}}{X'' \succ Y'' \ | \ X''', A \succ_{@} Y''' \ | \ \mathcal{H}'}}{X'', @A \succ Y'' \ | \ X''' \succ_{@} Y''' \ | \ \mathcal{H}'}}_{[@L]}_{[mCut]}$$

simplifies to

$$\frac{\delta_{l}}{X \succ Y \mid X' \succ_{@} A, Y' \mid \mathcal{H}} \frac{\delta_{r}}{X'' \succ Y'' \mid X''', A \succ_{@} Y''' \mid \mathcal{H}'} \frac{X \succ Y \mid X'' \succ_{W} Y', Y''' \mid \mathcal{H}' \mid \mathcal{H}'}{X \succ_{W} Y', Y'' \mid X', X''' \succ_{W} Y', Y''' \mid \mathcal{H} \mid \mathcal{H}'} [eW]} [mCut]$$

Two Dimensional Modal Logic: Relativising the Actual

A 2D model is a pair $\langle W, \nu \rangle$.

$$v_{w,w'}(\Box A) = 1$$
 iff for every $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(\Diamond A) = 1$$
 iff for some $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(@A) = 1$$
 iff $v_{w',w'}(A) = 1$

Two Dimensional Modal Logic: Relativising the Actual

A 2D model is a pair $\langle W, \nu \rangle$.

$$v_{w,w'}(\Box A) = 1$$
 iff for every $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(\Diamond A) = 1$$
 iff for some $u; v_{u,w'}(A) = 1$

$$v_{w,w'}(@A) = 1$$
 iff $v_{w',w'}(A) = 1$

$$v_{w,w'}(FA) = 1$$
 iff for every $u, v_{w,u}(A) = 1$

	w_1	$ w_2 $	w_3	• • •	w_n	
$\overline{w_1}$						
241-						
$\begin{bmatrix} w_2 \\ w_3 \end{bmatrix}$						
w ₃						
:						
$w_{\mathfrak{n}}$						
:						

	w_1	w_2	w_3	• • •	w_n	
w_1	$\Box A$					
w_2 w_3						
w_3						
:						
$w_{\rm n}$						
:						

	w_1	w_2	w_3	• • •	w_n	• • •
w_1	$\Box A$					
		A	A		Α	
w_2						
$\begin{bmatrix} w_2 \\ w_3 \end{bmatrix}$						
:						
$w_{\rm n}$						
:						

	w_1	$ w_2 $	w_3	• • •	w_n	• • •
w_1	$\Box A$					
	A	A	Α		A	
w_2						
w_3						
:						
w_n						
:						

	$ w_1 $	w_2	w_3	 $ w_n $	
w_1	$\Box A$				
	A	Α	Α	 A	
	F@B				
w_2					
w_3					
:					
$w_{\rm n}$					
:					

	$ w_1 $	w_2	w_3	 $ w_n $	
w_1	$\Box A$				
	A	Α	Α	 A	
	F@B				
w_2	@B				
w_3	@B				
:	:				
w_n	@B				
:	:				

	$ w_1 $	w_2	w_3	 $ w_n $	
w_1	$\Box A$				
	A	Α	A	 A	
	F@B				
	@B				
w_2	@B				
w_3	@B				
÷	:				
w_n	@B				
:	:				

	w_1	$ w_2 $	w_3	• • •	w_n	• • •
$\overline{w_1}$	$\Box A$					
	A	A	A		A	
	F@B					
	@B, B					
$\overline{w_2}$	@B					
w_3	@B					
:	:					
$w_{\rm n}$	@B					
\vdots	:					

	w_1	$ w_2 $	w_3		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		A	
	F@B					
	@B, B					
w_2	@B	В				
w_3	@B		В			
:	:			٠.		
w_n	@B				В	
:	:					٠.

	w_1	$ w_2 $	w_3		w_n	•••
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_3			В			
:				٠.		
w_{n}					В	
÷						٠.

	w_1	$ w_2 $	$ w_3 $		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_3			В			
:				٠.		
w_{n}					В	
÷						··.

	w_1	$ w_2 $	$ w_3 $		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		A	
	[K]B					
	В					
w_2		В				
w_3			В			
\vdots				·		
$w_{\rm n}$					В	
:						٠.

	w_1	$ w_2 $	$ w_3 $		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_3			В			
:				٠.		
$w_{\rm n}$					В	
:						٠.

	w_1	$ w_2 $	$ w_3 $		w_n	
$\overline{w_1}$	$\Box A$					
	A	A	A		Α	
	[K]B					
	В					
w_2		В				
w_3			В			
:				٠.		
w_{n}					В	
:						٠.

Different Alternatives

$$\Box p \succ \mid \ \succ p$$

$$[K]p\succ \parallel \succ_{@}p$$

An example derivation...

In fact, we will have the following sort of derivation:

$$\frac{p \succ_{\textcircled{@}} p}{\overline{[K]p \succ \| \succ_{\textcircled{@}} p}} \\ \overline{\frac{[K]p \succ | \succ_{\textcircled{@}} p}{[K]p \succ \Box [K]p}} \\ \overline{\frac{[K]p \succ \Box [K]p}{\succ_{\textcircled{[CR]}}}} \\ \overline{\searrow_{[K]p \supset \Box [K]p}}$$

2D Hypersequents

2D Hypersequent Notation

$$\mathcal{H}[X \succ Y \mid X' \succ Y']$$

$$\mathcal{H}[X \succ Y \parallel X' \succ Y']$$

2D Hypersequent Rules

$$\frac{\mathcal{H}[X \succ Y \parallel X', A \succ_{@} Y']}{\mathcal{H}[X, [K]A \succ Y \parallel X' \succ_{@} Y']} [APK L]$$

$$\frac{\mathcal{H}[\succ_{@} A \parallel X \succ Y]}{\mathcal{H}[X \succ [K]A, Y]} [APK R]$$

Example Derivation

$$\frac{\frac{p \succ_{@} p}{p \succ_{@} @p}_{[@R]}}{\frac{}{\succ_{@} p \supset @p}_{[K]R]}}$$

$$\frac{}{\succ_{[K]} (p \supset @p)}_{[K]R]}$$

$$\frac{}{\succ_{\square} [K] (p \supset @p)}_{[\square R]}$$

Cut Elimination is standard

$$\frac{\frac{\delta_{1}}{\mathcal{H}[\!\!\mid\! \succ_{@}\!\!A \parallel X \succ Y \parallel X' \succ_{@}\!\!Y']}}{\frac{\mathcal{H}[\!\!\mid\! X \succ [\!\!\mid\! K]\!\!\mid\! X' \succ_{@}\!\!Y']}{\mathcal{H}[\!\!\mid\! X \succ [\!\!\mid\! K]\!\!\mid\! X' \succ_{@}\!\!Y']}} \underbrace{\frac{\delta_{2}}{\mathcal{H}[\!\!\mid\! X \succ Y \parallel X', A \succ_{@}\!\!Y']}}_{\mathcal{H}[\!\!\mid\! X \succ [\!\!\mid\! K]\!\!\mid\! A \succ Y \parallel X' \succ_{@}\!\!Y']} \underbrace{\frac{\delta_{2}}{\mathcal{H}[\!\!\mid\! X \succ Y \parallel X' \succ_{@}\!\!Y']}}_{[\mathit{aCut}]}}_{[\mathit{aCut}]}$$

$$\frac{\frac{\delta_{1}}{\mathcal{H}[\succ_{@}A \parallel X\succ Y \parallel X'\succ_{@}Y']} \frac{\delta_{2}}{\mathcal{H}[X\succ Y \parallel X', A\succ_{@}Y']}}{\frac{\mathcal{H}[X\succ Y \parallel X'\succ_{@}Y' \parallel X'\succ_{@}Y']}{\mathcal{H}[X\succ Y \parallel X'\succ_{@}Y']}}_{[eW]}}_{[aCut]}$$

Proof Search for invalid sequents generates models

$$\not \succ_{@} \square([K]\mathfrak{p} \supset \mathfrak{p})$$

Proof Search for invalid sequents generates models

$$\not \succ_{@} \square([K]\mathfrak{p} \supset \mathfrak{p})$$

$$[\,:\,\Box([K]\mathfrak{p}\supset\mathfrak{p})\,]_{\text{@}}$$

$$\not \succ_{@} \Box ([K]p \supset p)$$

$$[: \Box ([K]p \supset p)]_{@}$$

$$[:]_{@} \mid [: [K]p \supset p]$$

$$\not\models_{@} \square([K]p \supset p)$$

$$[: \square([K]p \supset p)]_{@}$$

$$[:]_{@} \mid [: [K]p \supset p]$$

$$[:]_{@} \mid [[K]p : p]$$

$$\swarrow_{@} \Box ([K]p \supset p)
[: \Box ([K]p \supset p)]_{@}
[:]_{@} | [: [K]p \supset p]
[:]_{@} | [[K]p : p]
[p:]_{@} | [[K]p : p]$$

$$\swarrow_{@} \Box([K]p \supset p)
[: \Box([K]p \supset p)]_{@}
[:]_{@} | [: [K]p \supset p]
[:]_{@} | [[K]p : p]
[p:]_{@} | [[K]p : p]$$

(For more details on this construction, see tomorrow.)

▶ In the propositional language, the sequent calculus is sound and complete for the \neg , \land , \Box , @, [K] fragment of Davies and Humberstone's logic.

- ▶ In the propositional language, the sequent calculus is sound and complete for the \neg , \land , \Box , @, [K] fragment of Davies and Humberstone's logic.
- ▶ But the models are different—they are *ragged*, not square.

- ▶ In the propositional language, the sequent calculus is sound and complete for the \neg , \land , \Box , @, [K] fragment of Davies and Humberstone's logic.
- ▶ But the models are different—they are *ragged*, not square.
- ► (A simple model construction shows that anything in the propositional language refutable in a ragged model is refutable in a square model too.)

- ► In the propositional language, the sequent calculus is sound and complete for the ¬, ∧, □, @, [K] fragment of Davies and Humberstone's logic.
- ▶ But the models are different—they are *ragged*, not square.
- ► (A simple model construction shows that anything in the propositional language refutable in a ragged model is refutable in a square model too.)
- ► In the natural extension to propositional (or second order) quantification, D&H logic validates this principle:

$$\succ (\mathfrak{f} \to [K]\mathfrak{f}) \land (\neg \mathfrak{f} \to [K] \neg \mathfrak{f})$$

(where f is the modal fatalist claim: $(\forall p)(p \leftrightarrow \Box p)$), while the sequent system does *not* validate this.

- ▶ In the propositional language, the sequent calculus is sound and complete for the \neg , \land , \Box , @, [K] fragment of Davies and Humberstone's logic.
- ▶ But the models are different—they are *ragged*, not square.
- ► (A simple model construction shows that anything in the propositional language refutable in a ragged model is refutable in a square model too.)
- ► In the natural extension to propositional (or second order) quantification, D&H logic validates this principle:

$$\succ (\mathfrak{f} \to [K]\mathfrak{f}) \land (\neg \mathfrak{f} \to [K] \neg \mathfrak{f})$$

(where f is the modal fatalist claim: $(\forall p)(p \leftrightarrow \Box p)$), while the sequent system does *not* validate this.

► Is this a *virtue* or a *vice*?

What we've done

We've seen how the hypersequent calculus is not only a general technique for giving a sequent style proof theory for a range of propositional modal logics, but it can also be *tailored* to give simple proof systems for specific modal logics, with separable rules, and structural features neatly matched to the frame conditions for those logics.

Tomorrow

Semantics and beyond

Tomorrow

Semantics and beyond

Speech Acts and Norms

Proofs and Models

Where to go from here

Hypersequents for Modal Logic

FRANCESCA POGGIOLESI

"A Cut-Free Simple Sequent Calculus for Modal Logic S5." Bulletin of Symbolic Logic 1:1, 3–15, 2008.

FRANCESCA POGGIOLESI

Gentzen Calculi for Modal Propositional Logic Springer, 2011.

Hypersequents for Modal Logic

"Proofnets for s5: sequents and circuits for modal logic."

Logic Colloquium 2005, ed. C. Dimitracopoulos, L. Newelski, D. Normann and J. R. Steel, Cambridge University Press, 2008.

http://consequently.org/writing/s5nets

"Hypersequent Calculi for S5: the methods of cut elimination." *Logic and Logical Philosophy*, 24 277–311, 2015.

GREG RESTALL

"A Cut-Free Sequent System for Two Dimensional Modal Logic, and why it matters."

Annals of Pure and Applied Logic, 163:11, 1611-1623, 2012. http://consequently.org/writing/cfss2dml

Two-Dimensional Modal Logic

"Reference, Contingency, and the Two-Dimensional Framework." *Philosophical Studies*, 118(1):83–131, 2004.

"Two Notions of Necessity."

Philosophical Studies, 38(1):1-30, 1980.

LLOYD HUMBERSTONE

"Two-Dimensional Adventures."

Philosohical Studies, 118(1):257-277, 2004.

THANK YOU!

https://consequently.org/class/2016/PTPLA-NASSLLI/

@consequently / @standefer on Twitter