引例

头像识别技术有着重要应用,其原理是什么呢? 为了制定中国成年人(男性) 头型系列标准,在15个省市 取样,每个人的头部共测了 42项指标。 现选部分指标进行分析。

地区	X1(头长)	X2(头宽)	X5(面宽)	X8(鼻高)	X11(两眼 外角宽)
黑龙江	184.8	157	144. 7	57. 2	93. 2
吉林	183. 91	157. 09	145. 28	59. 32	92. 51
北京	187. 16	157. 51	146. 28	58. 87	95. 86
陕西	192. 7	152. 2	146. 2	58. 4	93. 1
江苏	186. 94	155. 93	146. 38	59. 97	92. 55
山东	186. 2	156	147. 1	57. 7	92. 2
河北	188. 1	153. 2	143. 2	59. 3	96. 4
湖南	187. 93	153. 36	143. 24	55. 89	91. 09
湖北	187. 59	157. 67	146. 37	56. 09	92. 04
广东	187. 97	152. 42	142. 06	57. 73	91. 12
广西	187. 5	150. 3	142. 3	54. 4	91.7
福建	187. 9	152. 7	144	57. 4	93. 4
四川	188. 85	154. 43	143. 99	58. 55	91. 27
贵州	191. 1	151.5	143. 7	57. 4	91.3
云南	190. 22	153. 16	143. 66	59. 54	92. 39

中国成年男性头型部分指标

给出你的猜想

如何描述变量间关系?

通过观察可以发现: 有些变量间没有明显关 系,例如头长与鼻高, 其图像没有明显规律。

有些变量间存在关系: 如头长与头宽,有反向增长关系; 而头宽与面宽,有同向增长关系。

考虑变量的乘积?离差的乘积?

1) $|\rho| \le 1$

证明:
$$0 \le D(X^* \pm Y^*) = D(X^*) + D(Y^*) \pm 2 \operatorname{cov}(X^*, Y^*)$$

$$= 2 \pm 2 \rho_{XY} = 2(1 \pm 1 \rho_{XY})$$

$$1\pm 1\rho_{XY} \geq 0$$

$$|\rho_{XY}| \leq 1$$

$|\rho|=1$ 的充要条件

2) $|\rho| = 1 \iff X = Y$ 依概率为1线性相关,即

$$\exists \alpha, \beta (\alpha \neq 0) \quad s.t$$

 $P\{Y = \alpha X + \beta\} = 1$

证明: "⇒"必要性

$$\rho = -1$$
时

$$D(X^* + Y^*) = D(X^*) + D(Y^*) + 2\operatorname{cov}(X^*, Y^*)$$

$$= 2 + 2\rho_{X^*Y^*} = 0$$

$$E(X^* + Y^*) = 0$$

 $|\rho|=1$ 的充要条件

2) $|\rho| = 1 \iff X = Y$ 依概率为1线性相关,即

$$\exists \alpha, \beta (\alpha \neq 0) \quad s.t$$

 $P\{Y = \alpha X + \beta\} = 1$

证明: "⇒"必要性

由方差的性质4)得

$$P\{X^* + Y^* = E(X^* + Y^*)\} = 1$$
 即 $P\{X^* + Y^* = 0\} = 1$

$$P\left\{Y = -\frac{\sqrt{D(Y)}}{\sqrt{D(X)}}X + \frac{\sqrt{D(Y)}}{\sqrt{D(X)}}E(X) + E(Y)\right\} = 1$$

对 $\rho=1$ 同理可得。

"⇐"充分性

$$P\{Y = \alpha X + \beta\} = 1$$

$$E(Y) = \alpha E(X) + \beta$$

$$D(Y) = \alpha^2 D(X)$$

$$cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$$

$$= E\{[X - E(X)][\alpha X + \beta - E(\alpha X + \beta)]\}$$

$$= \alpha D(X)$$

$$\rho_{XY} = \frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{\alpha}{\sqrt{\alpha^2}} = \pm 1$$

线性变换对相关系数的影响

3) 若
$$\xi = a_1 X + b_1$$
 , $\eta = a_2 Y + b_2$ 则
$$\rho_{\xi\eta} = \frac{a_1 a_2}{|a_1 a_2|} \rho_{XY}$$
证明: $D(\xi) = a_1^2 D(X) D(\eta) = a_2^2 D(Y)$

$$\cot(\xi, \eta) = E\{ [\xi - E(\xi)] [\eta - E(\eta)] \}$$

$$= E\{ [a_1 X - a_1 E(X)] [a_2 Y - a_2 E(Y)] \}$$

$$= a_1 a_2 E\{ [X - E(X)] [Y - E(Y)] \}$$

$$= a_1 a_2 \cot(X, Y)$$

$$\rho_{\xi\eta} = \frac{\cot(\xi, \eta)}{\sqrt{D(\xi)} \sqrt{D(\eta)}} = \frac{a_1 a_2}{\sqrt{(a_1 a_2)^2}} \rho_{XY} = \frac{a_1 a_2}{|a_1 a_2|} \rho_{XY}$$

不相关但也不独立的例子

例: (X,Y)在以原点为圆心的单位圆内服从均匀

分布。

$$f(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1 \\ 0 &$$
其它

$$f_{X}(x) = \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} dy = \frac{2\sqrt{1-x^{2}}}{\pi} - 1 \le x \le 1$$

$$f_{Y}(y) = \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \frac{1}{\pi} dx = \frac{2\sqrt{1-y^{2}}}{\pi} - 1 \le y \le 1$$

$$E(X) = \int_{-\infty}^{+\infty} x f_{X}(x) dx = \int_{-1}^{1} \frac{2x\sqrt{1-x^{2}}}{\pi} dx = 0$$
同理: $E(Y) = 0$

协方差.相关系数与矩

例: (X,Y) 在以原点为圆心的单位圆内服从均匀分布。

$$f(x,y) = \begin{cases} \frac{1}{\pi} & x^2 + y^2 \le 1 \\ 0 &$$
其它

$$E\{[X-E(X)][Y-E(Y)]\} = \iint_{x^2+y^2 \le 1} \frac{xy}{\pi} dxdy$$

$$= \frac{1}{\pi} \int_0^1 \int_0^{2\pi} r^3 \sin\theta \cos\theta \ d\theta dr = 0$$

可以验证
$$D(X) > 0, D(Y) > 0$$

从而
$$\rho_{xy} = 0$$

但
$$f(x,y) \neq f_X(x)f_Y(y)$$

不相关 不一定 相互独立

例4.3.2

假二维随机变量(X,Y)在矩形

$$G = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$$
上服从均匀布.

$$U = \begin{cases} 0 & X \le Y \\ 1 & X > Y \end{cases} \qquad V = \begin{cases} 0 & X \le 2Y \\ 1 & X > 2Y \end{cases}$$

$$V = \begin{cases} 0 & X \le 2Y \\ 1 & X > 2Y \end{cases}$$

求 ρ_{UV}

分析:
$$\rho_{UV} = \frac{cov(U,V)}{\sqrt{D(U)}\sqrt{D(V)}} = \frac{E(UV) - E(U)E(V)}{\sqrt{D(U)}\sqrt{D(V)}}$$

关键是求E(UV)

→ 求出UV分布律

例4.3.2

假二维随机变量(X,Y)在矩形

$$G = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$$
上服从均匀布.

记
$$oldsymbol{U}$$
:

$$U = \begin{cases} 0 & X \le Y \\ 1 & X > Y \end{cases} \qquad V = \begin{cases} 0 & X \le 2Y \\ 1 & X > 2Y \end{cases}$$

求
$$\rho_{UV}$$

$$ilde{x}
ho_{UV}$$

解:由已知可得 $f(x,y)=\begin{cases} 1/2 & (x,y) \in G \\ 0 &$ 其它 $E(U)=0 \times P\{X \le Y\}+1 \times P\{X > Y\} \end{cases}$

$$E(U) = 0 \times P\{X \le Y\} + 1 \times P\{X > Y\}$$

$$= \int_0^1 \left[\int_y^2 f(x, y) dx \right] dy = 3/4$$

$$D(U) = E(U^2) - [E(U)]^2 = 3/16$$

同理
$$E(V)=1/2$$
 $D(V)=1/4$

UV 的分布律为:

$$UV = \begin{cases} 0 & X \le 2Y \\ 1 & X > 2Y \end{cases} = V$$

故 $E(UV) = E(V) = 1/2$

从而
$$\rho_{UV} = \frac{\operatorname{cov}(U,V)}{\sqrt{D(U)}\sqrt{D(V)}} = \frac{E(UV) - E(U)E(V)}{\sqrt{D(U)}\sqrt{D(V)}}$$

$$= \frac{\frac{1}{2} - \frac{3}{4} \times \frac{1}{2}}{\sqrt{\frac{3}{16} \times \frac{1}{4}}} = \frac{\sqrt{3}}{3}$$

某集装箱中放有100件产品,其中一、二、三等 品分别为80、10、10件。现从中任取一件,记

$$egin{align*} oldsymbol{X}_i = egin{cases} 1 & ext{抽到}i \ \extbf{5} & ext{} & i = 1,2,3 & ext{求} \rho_{X_1X_2} \end{cases} \end{split}$$

分析:
$$\rho_{X_1X_2} = \frac{cov(X_1, X_2)}{\sqrt{D(X_1)}\sqrt{D(X_2)}} = \frac{E(X_1X_2) - E(X_1)E(X_2)}{\sqrt{D(X_1)}\sqrt{D(X_2)}}$$

关键是求 $E(X_1X_2)$ 一 求出 X_1X_2 分布律

协方差.相关系数与矩

某集装箱中放有100件产品,其中一、二、三等 品分别为80、10、10件。现从中任取一件,记 $X_i = \begin{cases} 1 & \text{抽到}i$ 等品 $i = 1,2,3 & 求 \rho_{X_1X_2} \end{cases}$

解:由己知可得

$$E(X_1) = 0 \times P\{$$
抽到非一等品 $\} + 1 \times P\{$ 抽到一等品 $\} = 0.8$ $D(X_1) = 0.8(1 - 0.8) = 0.16$ 同理 $E(X_2) = 0.1$ $D(X_2) = 0.09$

 X_1X_2 的取值为:

$$X_1X_2 =$$
 $\begin{cases} 1 & \text{抽到的为一等品且为二等品} \\ 0 & \text{其它} \end{cases}$

协方差.相关系数与矩

$$P\{X_1X_2 = 1\} = P\{\phi\} = 0$$

$$E(X_1X_2) = 1 \cdot P\{X_1X_2 = 1\} + 0 \cdot P\{X_1X_2 = 0\}$$

$$= 0$$

从而

$$\rho_{X_1X_2} = \frac{cov(X_1, X_2)}{\sqrt{D(X_1)}\sqrt{D(X_2)}} = \frac{E(X_1X_2) - E(X_1)E(X_2)}{\sqrt{D(X_1)}\sqrt{D(X_2)}}$$
$$= -\frac{2}{3}$$

