Trabajo Práctico 12 - Productos tensoriales

Santiago

1. Sean \mathbb{K} un cuerpo y $\mathcal{B}: \mathbb{K}^3 \times \mathbb{K}^4 \to \mathbb{K}^{3 \times 4}$ el operador bilineal dado por

$$(\mathcal{B}(x,y))_{ij} = x_i y_j$$
 para $x \in \mathbb{K}^3; y \in \mathbb{K}^4; i = 1, \dots, 3; j = 1, \dots, 4.$

Probar que $(\mathbb{K}^{3\times 4,\mathcal{B}})$ es un producto tensorial.

2. Probar que todo elemento $z \in V \otimes W$ se puede escribir como

$$z = \sum_{k=1}^{r} v_k \otimes w_k,$$

para $v_1, \dots, v_r \in V$ y $w_1, \dots, w_r \in W$ vectores linealmente independientes de V y W, respectivamente.

3. Sean V y W dos \mathbb{K} -EV de dimensión finita y sea $z=x\otimes y\in V\otimes W$ un vector descomponible. Probar que para todo $\lambda\in\mathbb{K}$ (no nulo) $z=v\otimes w$, con

$$v = \lambda x$$
 y $w = \lambda^{-1} y$

- 4. Dar un ejemplo de un vector no descomponible.
- 5. Sean V y W dos \mathbb{K} -EV tales que dim(V) = n y dim(W) = m. Consideremos las bases $B_V = \{v_1, \dots, v_n\}$ y $B_W = \{w_1, \dots, w_m\}$ de V y W, respectivamente. Si $A = [T]_{B_V}$ para $T \in L(V)$ y $C = [S]_{B_W}$ para $S \in L(W)$.
 - (a) Probar que

$$[T \otimes S]_{B_V \otimes B_W} = \begin{pmatrix} a_{11}C & a_{12}C & \dots & a_{1n}C \\ a_{21}C & a_{22}C & \dots & a_{2n}C \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}C & a_{n2}C & \dots & a_{nn}C \end{pmatrix} \in \mathbb{K}^{nm \times nm}.$$

- (b) Probar que $tr(T \otimes S) = tr(A)tr(C)$ y $det(T \otimes S) = det(A)^m det(C)^n$.
- (c) Si $\lambda_1, \ldots, \lambda_n$ son los autovalores de T y μ_1, \ldots, μ_m son los autovalores de S (contando multiplicidades), entonces los nm autovalores de $T \otimes S$ son de la forma

$$\eta_{ij} = \lambda_i \mu_i$$
 para $i = 1, ..., n; j = 1, ..., m$.

Deducir el ítem b a partir de esto.

6. Probar que si V y W son dos \mathbb{K} -EV de dimensión finita, entonces $L(V \otimes W)$ es el producto tensorial de L(V) y L(W).

	Par ejemplos de tensores en \mathbb{R}^4 que sean:
	(a) 2 veces covariantes.
	(b) 4 veces covariantes.
	(c) n veces covariantes.
8.	Dar ejemplos de tensores de tipo $(0,0),(0,1),(0,2),(2,2)$. En cada caso aclarar el espacio vectorial considerado y limensión.
9.	Probar que al contraer p veces un tensor de tipo (p,p) , se obtiene como resultado un escalar.
10.	Probar que la contracción de un operador lineal es su traza.
11.	Probar que el producto escalar canónico es un tensor métrico cuyas componentes en la base usual están dadas por lelta de Kronecker.
12.	Consideremos un tensor de tipo $(2,1), a_k^{ij}$.
	(a) ¿Qué tipo de tensor se obtiene al contraerlo con un ternsor métrico g_{pj} ?
	(b) ¿Qué tipo de tensor se obtiene al contraerlo con un ternsor métrico g^{qk} ?