QUESTION:(HD0502). I have a problem with determining the properties of the ring $R = Z[(1 + \sqrt{-19})/2]$. I suppose that it is a UFD and it is not a Euclidean domain. Also, I supose that it is a PID. What could you tell me about it?

Answer: The ring $R = Z[(1 + \sqrt{-19})/2]$ is one of the first known examples of a PID that is not a Euclidean domain. Note that the quotient field of $Z[(1 + \sqrt{-19})/2]$ is the field $Q(\sqrt{-19})$ which is an example of a quadratic extension $Q(\sqrt{d})$ where d is a squarefree nonzero integer (different from 1). Here are a few notes to ease the reading of the answer.

- (I) Each element of $Q(\sqrt{d})$ can be expressed as $x + y\sqrt{d}$ to which we can associate a value called *norm* by $N(x + y\sqrt{d}) = (x + y\sqrt{d})(x y\sqrt{d}) = x^2 y^2d$. It is easy to verify that if $u, v \in Q(\sqrt{d})$ then N(uv) = N(u)N(v).
- (II) Note that every $u = x + y\sqrt{d}$ satisfies a quadratic equation: $(u = x + y\sqrt{d} \Rightarrow u x = y\sqrt{d} \Rightarrow (u x)^2 = y^2d \Rightarrow u^2 2ux + x^2 y^2d = 0$. This is why $Q(\sqrt{d})$ is called a quadratic extension of Q.
- (III) If $u = x + y\sqrt{d} \in Q(\sqrt{d})$ is such that 2x and $x^2 y^2d$ are both integers (i.e. if u satisfies a monic quadratic equation with integer coefficients) then u is called an algebraic integer of $Q(\sqrt{d})$.
- (IV) The set of all algebraic integers of $Q(\sqrt{d})$ is an integral domain. The following theorems are well known.
- (1) Let d be a squarefree integer different from 0 and 1. The set of all algebraic integers $IQ(\sqrt{d})$ of $Q(\sqrt{d})$ is $Z[\sqrt{d}]$ if $d \equiv 2 \mod 4$ or $d \equiv 3 \mod 4$ and $IQ(\sqrt{d}) = Z[(1 + \sqrt{d})/2]$ if $d \equiv 1 \mod 4$.
 - (2) $u \in IQ(\sqrt{d})$ is a unit if and only if N(u) = 1 or -1.
- (V) Of interest is the fact that if $x + y\sqrt{d}$ is an algebraic integer in $Q(\sqrt{d})$ then $N(x + y\sqrt{d})$ is an integer and of course if d < 0 as in our case $N(x + y\sqrt{d}) = x^2 y^2d$ is a non-negative integer.
- (VI) Indeed if $N(x + y\sqrt{d})$ is a prime then the integer $x + y\sqrt{d}$ is irreducible, because of the fact that N(uv) = N(u)N(v).

Now a typical $u \in R = Z[(1+\sqrt{-19})/2]$ can be written as $u = x + y(1+\sqrt{-19})/2$, which has the standard form in $Q(\sqrt{-19})$ as $u = (x + \frac{y}{2}) + y\sqrt{-19}/2$. So $N(u) = (x + \frac{y}{2})^2 + 19\frac{y^2}{4} = x^2 + xy + 5y^2$. So, $N(u) = 1 \Leftrightarrow u = \pm 1$.

(VII) You also need to know that if a and b are integers with b>0 then we can choose integers q and r such that a=bq+r such that $|r| \le \frac{b}{2}$. The idea is simple. By the Euclidean algorithm we have unique Q and R such that a=bQ+R, $0 \le R < b$. If $R \le \frac{b}{2}$ we have nothing more to do. If on the other hand $\frac{b}{2} < R < b$ then subtracting b throughout gives $-\frac{b}{2} < R-b < 0$. This gives us $|R-b| < \frac{b}{2}$. Setting q=Q+1 and r=R-b we have the required inequality.

Let us first show that *R* is a principal ideal domain (PID). We shall use Hasse's criterion for PID's for this purpose.

Hasse's Criterion: An integral domain D is a PID if and only if there exists a function $f: D\setminus\{0\} \to N \cup \{0\}$ such that $(H_1) x \mid y$ implies $f(x) \leq f(y)$ with equality if $y \mid x$ also, and (H_2) if $x \not\mid y$ and $y \not\mid x$ then there exist $z, w, d \in D$ such that d = zx - wy with $f(d) < \min(f(x), f(y))$.

Proposition 1. $R = Z[(1 + \sqrt{-19})/2]$ is a PID.

Proof. Note that the norm N satisfies H_1 obviously. This leaves us with the verification of H_2 . For this, choose y so that $N(y) \leq N(x)$. (If $N(x) \leq N(y)$ we can write -d = wy - zx and switch x and y.) Note that 0 < N(zx - wy) < N(y) if and only if $0 < N(z(\frac{x}{y}) - w) < 1$. Here $\frac{x}{y} \in Q(\sqrt{-19})$ and so we can write $\frac{x}{y} = \frac{a+b\sqrt{-19}}{c}$ where a,b,c are integers and we can assume that (a,b,c)=1. Since $y \not\mid x$ we must have $c \neq 1$ and as we can take c > 0 we can say that c > 1. The idea of the proof is that for each value (≥ 2) of c we can find $c \neq 1$ and $c \neq 1$. To do this we first deal with the case when $c \geq 5$.

Since (a,b,c)=1 we can find d,e,f so that ae+bd+cf=1. Let ad-19be=cq+r where $|r|\leq \frac{c}{2}$. We show that by choosing $z=d+e\sqrt{-19}$ and $w=q-f\sqrt{-19}$ we have the required result for $c\geq 5$. Substituting these values we have $z(\frac{x}{y})-w=\frac{(d+e\sqrt{-19})(a+b\sqrt{-19})}{c}-(q-f\sqrt{-19})=\frac{(ad-19be)+(ae+bd)\sqrt{-19}-cq+cf\sqrt{-19}}{c}=\frac{r+(ae+bd+cf)\sqrt{-19}}{c}=\frac{r+\sqrt{-19}}{c}\neq 0, \text{ and } N(\frac{r+\sqrt{-19}}{c})=\frac{r^2+19}{c^2}.$ For c=5, recall that $|r|\leq \frac{c}{2}$, so $r\leq 2$ and $\frac{r^2+19}{c^2}\leq \frac{4+19}{25}<1$. For the case of $c\geq 6$ using $|r|\leq \frac{c}{2}$ directly we have $N(\frac{r+\sqrt{-19}}{c})=\frac{r^2+19}{c^2}\leq \frac{1}{4}+\frac{19}{36}<1$. This leaves us with c=2,3,4. We deal with each separately.

- (i) c=2. In this case a and b must have different parity and a must be odd. Because a and b being both even contradicts (a,b,c)=1 and a and b being both odd gives $\frac{x}{y}=\frac{a+b\sqrt{-19}}{2}=\frac{a-b+b(1+\sqrt{-19})}{2}\in R, \text{ contradicting } y\not\mid x. \text{ Also, } a \text{ being even puts}$ $\frac{x}{y}=\frac{a+b\sqrt{-19}}{2}\in R, \text{ again contradicting } y\not\mid x. \text{ Now let } z=1 \text{ and } w=\frac{a-1+b\sqrt{-19}}{2} \text{ which are elements of } R. \text{ Then } z(\frac{x}{y})-w=\frac{a+b\sqrt{-19}}{2}-\frac{a-1+b\sqrt{-19}}{2}=\frac{1}{2} \text{ and } N(\frac{1}{2})<1.$
- (ii) c=3. If c=3, (a,b,c)=1 implies that $a^2+19b^2\equiv a^2+b^2\equiv r \mod(3)$ where r=1,2. Set $z=a-b\sqrt{-19}$ and w=q where q comes from $a^2+19b^2=3q+r$ with r=1,2. Then, in this case, $z(\frac{x}{y})-w=(a-b\sqrt{-19})(\frac{a+b\sqrt{-19}}{3})-q=\frac{a^2+19b^2-3q}{3}=\frac{3q+r-3q}{3}=\frac{r}{3}$ which is nonzero with norm less than 1.
- (iii) c=4. In this case a and b are not both even because (a,b,4)=1. If a and b are of opposite parity then since $a^2+19b^2\equiv (a^2-b^2)\operatorname{mod}(4)$ we have $a^2+19b^2=4q+r$ where 0< r<4. Set $z=a-b\sqrt{-19}$ and w=q we have $z(\frac{x}{y})-w=\frac{a^2+19b^2}{4}-q=\frac{r}{4}$ which is nonzero with norm less than 1. If on the other hand a and b are both odd then $a^2+19b^2\equiv (a^2+3b^2)\operatorname{mod}(8)$ and $(a^2+3b^2)\neq 0\operatorname{mod}(8)$.

Call a nonzero nonunit d a universal side divisor (usd) of a domain D if for each $x \in D$ there is a $z \in U(D) \cup \{0\}$ such that $d \mid x-z$. (Here U(D) denotes the set of units of D.) Recall also that an integral domain D is a Euclidean domain if there is a function $\varphi: D\setminus\{0\} \to N \cup \{0\}$, let us call φ a norm, such that for all $y \in D\setminus\{0\}$ (i) $\varphi(x) \leq \varphi(xy)$, for all $x \in D\setminus\{0\}$ and (ii) for each pair $x,y \in D\setminus\{0\}$ there are z,w such that x=yz+w where w=0 or $\varphi(w) < \varphi(y)$.

Observation 2. If D is a Euclidean domain that is not a field then D contains a usd for each norm φ , $R = Z[(1 + \sqrt{-19})/2]$ does not have a usd and hence is not a Euclidean domain under any norm.

Proof. Let φ be a norm for which D is Euclidean. Then, as D is not a field, D has a

non-zero nonunit u with a minimal norm. Now let y be an element of D and write y = qu + r where r = 0 or $\varphi(r) < \varphi(u)$. But as $\varphi(u)$ is minimal we cannot have $\varphi(r) < \varphi(u)$ unless r = 0 or a unit and in either case u divides y - r. Now we show that $R = Z[(1 + \sqrt{-19})/2]$ cannot have a usd and hence is is not Euclidean.

Note that -1 and 1 are the only units of $R=Z[(1+\sqrt{-19})/2]$. So the set of zeros and units combined is $\{0,-1,1\}$. If u is a usd for R then u must divide at least one of $2\pm0,2\pm1$, i.e., at least one of 2,1,3. Of these 1 is out because u is not a unit. So, the set from where the universal side divisors can come is $S=\{2,-2,3,-3\}$. Note that as 2 and 3 are irreducible in the PID R they are primes. Now consider $x=\frac{1+\sqrt{-19}}{2}$. If there is a usd then it must also divide at least one of $T=\{\frac{1+\sqrt{-19}}{2},\frac{1+\sqrt{-19}}{2}\pm1\}=\{\frac{1+\sqrt{-19}}{2},\frac{3+\sqrt{-19}}{2},\frac{3+\sqrt{-19}}{2},\frac{-1+\sqrt{-19}}{2}\}$, but these are all primes because $N(\frac{1+\sqrt{-19}}{2})=\frac{1+19}{4}=5$, $N(\frac{3+\sqrt{-19}}{2})=\frac{9+19}{4}=7$ and $N(\frac{-1+\sqrt{-19}}{2})=5$. So, no member of S divides any member T and hence there is no usd. Since R is a PID and since S and T consist of primes the above argument is norm independent.

Comment: Jim Coykendall provided a rough sketch of the proof of *R* being non-Euclidean PID. I used the following paper to complete the picture: Jack C. Wilson, "A principal ideal ring that is not a Euclidean ring" Math. Mag. 46 (1973), 34–38. Muhammad Zafrullah