

Introduction to AutoEncoders (AE)

By: BENATIA M. A.

mbenatia@cesi.fr

Outline

- Course Introduction
- Intro to ML
- Autoencoders (AE)
- Latent Variable Models (LVMs)
- Variational Autoencoders (VAE)
- Motivation for GANs

Course Introduction (Computer Vision and ML)

What is Computer Vision?

- Computer vision is broadly the subset of Al that deals with images
- It is used to clear checks, deliver mail, drive cars, and create art
- And more other stuffs!

Basic computer vision tasks

CESI LINEACT

Large-scale unsupervised learning

Text-Based Image Generation

Types of Machine Learning

Types of Machine Learning

Used Vocab

- Function / Model
 - O These terms are used interchangeably
 - O These refer to the function template we have chosen for our problem
- Parameters / Weights (and Biases)
 - Weights are terms used to denote the parameters in ML models that are learned from data
- Hyperparameter
 - O This is some non-learnable parameter (like model size, model class, details about training procedure, etc) that further specifies our overall learnable function
 - O Again, we choose these ourselves before we start learning the learnable parameters
- Loss Function / Cost Function / Risk Function
 - O We haven't introduced these terms yet, but they will come up later; just note that they are the same (at least for our purposes)
- "Feature"
 - O This can refer to bits of our data (either the inputs themselves or some representation of them)

Universal Function Approximator

Motivation for Neural Networks

- Lots of problems that we can (or want to) solve regression, classification, etc
 - frequently center around creating functions that are <u>super non-linear</u>
- Hard to figure out which class of models works the best for each task / dataset
 - O Is there some model class that can do any one of these tasks almost straight out of the box?

Motivation for Neural Networks

- Our brain is able to do lots of tasks with the same machinery
 - O What if we tried to create a model of the brain?
- Our brain has neurons
 - O Neurons take in signal from surrounding neurons
 - Neurons output a signal based on the amount of signal taken in
 - Output(inputs) = ReLU(weighted sum of inputs)
 - O ReLU(x) = max(0, x) = x if x > 0 else 0
- Fair warning: deep learning isn't the same as cognitive science

Neural Networks (graphical view)

Perceptron

- Rough model of a neuron
- Weight each component of the input by some amount, then "activate" on the sum
 - Note: **b** is just a scalar being added to the weighted sum and is independent of the input

 we call this term a "bias" value
- The function we use for "activating" is a ReLU

 $f(x_1,x_2,\ldots,x_n,w_1,w_2,\ldots,w_n,b)=f(ar{x},ar{w},b)=\mathrm{ReLU}(w_1x_1+w_2x_2+\cdots+w_nx_n+b)$

Perceptron

- Let's simplify the notation a bit
- The sum in the previous slide can be rewritten as a dot product between a weight vector and an input vector plus a bias scalar

$$f(ar{x},ar{w},b) = \mathrm{ReLU}(w_1x_1 + w_2x_2 + \cdots + w_nx_n + b) = \mathrm{ReLU}ig(ar{w}^ op ar{x} + big)$$

Perceptron Layer

- What if we have multiple perceptrons that share the same input?
 - O Neurons in a brain form all kinds of connections
 - O Maybe different perceptrons can be used to extract different kinds of signals out of the same input
- Each perceptron (with its unique weights and biases) can be stacked into a "layer"

Neural Network

- Each node (except for the column of input nodes) is just a perceptron
- Each perceptron layer is also called a neural network layer
 - We can choose to stack arbitrary numbers of perceptrons at each layer or cascade with an arbitrary number of layers
 - O Each layer can have a different number of perceptrons
 - O The middle layers are often called "hidden layers" since they aren't immediately interpretable
- We will still choose to use the ReLU function for each layer for now

Note: We don't activate with ReLU on the output layer

This model is also called a "Multi-Layer Perceptron" or MLP for obvious reasons

What are we trying to learn?

What is a "feature"

- Consider the classical machine learning problem:
 - \circ You have an input **x** and some function $\Phi(x)$ that returns any relevant features from **x**
 - For example, if \mathbf{x} is a house and \mathbf{y} is it's selling price, then $\Phi(\mathbf{x})$ could be a vector with information like the house age, the number of rooms, whether it has a basement or not, etc.
 - \circ You pass the features into some model **fe(** $\Phi(x)$ **)**, parameterized by θ , to predict the label y
 - \circ The machine learning problem is to "learn" θ from a training dataset of (x, y) pairs

Н	ouse	House Age	Number of Bathrooms	Number of Bedrooms	Size (sq. feet)	Floors	Basement?	Garage?	Backyard?	Pool?
1		12 months	4	4	2500	2	Yes	Yes	No	No
2		30 months	2	3	2000	1	No	Yes	Yes	Yes

What is a "feature"

- Consider the classical machine learning problem:
 - \circ You have an input **x** and some function $\Phi(x)$ that returns any relevant features from **x**
 - For example, if \mathbf{x} is a house and \mathbf{y} is it's selling price, then $\mathbf{\Phi}(\mathbf{x})$ could be a vector with information like the house age, the number of rooms, whether it has a basement or not, etc.
 - O You pass the features into some model **fe(** $\Phi(x)$ **)**, parameterized by θ , to predict the label y
 - \circ The machine learning problem is to "learn" θ from a training dataset of (x, y) pairs

- In the early days, feature extractors were programmed by hand, i.e., ML practitioners would manually select what features they would feed into the model of their choice.
 - o If the input is an image, this could include edge and corner information, presence of certain shapes, patterns or colors, etc these are all different *representations* of the same image

Output

Algorithm with Learned Weights

- However, this is a compromise! The model is learning its parameters from data yet we are still hand-programming the feature extractors ourselves. Can we make the entire process learned from end-to-end?
 - O Yes! This is where deep learning comes in!
 - O Learn the feature extractor as well learn EVERYTHING in the entire pipeline!

Output

Algorithm with Learned Weights

- However, this is a compromise! The model is learning its parameters from data yet we are still hand-programming the feature extractors ourselves. Can we make the entire process learned from end-to-end?
 - O Yes! This is where deep learning comes in!
 - O Learn the feature extractor as well learn EVERYTHING in the entire pipeline!

- However, this is a compromise! The model is learning its parameters from data yet we are still hand-programming the feature extractors ourselves. Can we make the entire process learned from end-to-end?
 - O Yes! This is where deep learning comes in!
 - O Learn the feature extractor as well learn EVERYTHING in the entire pipeline!

Deep learning is Representation learning

- Deep learning allows a model to learn "good" representations directly from data!
 - The main idea is to **relinquish all control to the model** and let it learn whatever **it** feels is important to solve the task at hand
 - O Features are synonymous with representations in ML
- The output of each layer in a neural network is a *learned representation* so deep learning can be viewed as the process of learning stacked representations
 - We call these representations *hierarchical*, i.e., later representations depend on, and are more abstract than earlier ones **depth refines representations**

Deep learning is Representation learning

Autoencoders

Let's talk about JPEG

 $https://www.lifewire.com/the-effect-of-compression-on-photographs-49\,372\,6$

Why compress data?

- saves space
- send things over a network
- doesn't have to be perfect! (lossy)

But why does JPEG work?

- nearby pixels are related
- very fine features are usually not important
- Fourier transforms!

What if we had a compression algorithm only for cats?

Eigenfaces (1987) (https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184)

Autoencoders

Autoencoders (Recap)

- layer sizes shrink towards a bottleneck
 - bottleneck size should be small compared to # sample pts, # dimensions, etc.
 - enforces that it learns a small representation
- train using reconstruction loss
- variants:
 - sparse autoencoders
 - denoising autoencoders

What do we want from a code?

Some desirable properties...

- interpretable codewords
 - should be able to interpolate between codes
- ability to generate new images

Variational Autoencoders (VAE)

VAEs

- combine autoencoders with latent variable models
- you allow different data points to be associated with different priors over latent space (in a principled way)

CESI LINEACT

loss =
$$||\mathbf{x} - \mathbf{x}||^2 + \text{KL}[N(\mu_{\nu}, \sigma_{\nu}), N(0, I)] = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 + \text{KL}[N(\mu_{\nu}, \sigma_{\nu}), N(0, I)]$$

VAE Recap

- instead of outputting a single latent codeword from our encoder, we output a Gaussian
- train with a reconstruction loss and a regularizing term forcing the Gaussian to be close to standard

Structured Latents

- for regular AE, only the outputs of the encoder can be decoded
 - O decoding a random latent might give garbage
- using probabilistic encoding enforces structured latents

Messy Autoencoder Latent Space

Well Distributed VAE Latent Space

https://mlberkeley.substack.com/p/vq-vae

How do we generate images with a VAE?

- need to choose a latent z and decode
- regularization term in loss makes z ~ N(O, I) a pretty good choice
- advantage: is that latents are interpretable
 - future lectures will focus on modeling the data distribution directly

Motivating GANs

Fundamental Problem

- How can we generate realistic-looking data?

Given:

Generate:

Fundamental Problem

- More formally: How can we sample from a very complex distribution, when our only source of noise comes from "simple" distributions?
 - ie Gaussian, uniform, bernoulli, etc

Latent Variables

- Sample data distribution is complex. How does our guess for pixel (0, 20) change if we know (31, 4)? What about if we know (0, 21)?
- We can't just sample each pixel independently leads to complete noise
- **Idea:** Hypothesize the existence of latent variables, and learn a mapping from latents to observation space

Interpolating over learned latents in MNIST

Latent Variables Review

- A latent (aka a "code") space is a vector space that we sample a random vector from that is then passed into a generative model to generate some output
- Latent variable models are trying to learn a way to encode and decode data to and from this latent space
 - O The latent vector can be uninterpretable (as in the case of a vanilla autoencoder)
 - We can encourage latents to have structure (ex. distributed like a Gaussian, as in the case of VAEs)
- We can also generate new data by passing unseen latents through a decoder

What we really want from our autoencoders

- We want an output that appears as if it was sampled from our data distribution
- In layman's terms, this means that it should look like it could belong to our dataset
- How do we judge this directly?

What we really want from our autoencoders

- When our data is something high dimensional like a sentence or an image, this can be really hard... how does one design a loss function that judges how similar a generated output is to the training dataset?
 - We often don't have enough data to estimate the actual data distribution
 - We often don't have enough compute to check if a sample belongs to a high-dim distribution

Solution

What if we just have another neural network try to judge how realistic our outputs are for us?