Package 'SpatPCA'

November 13, 2023

Title Regularized Principal Component Analysis for Spatial Data

Version 1.3.5

```
Description Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigen-functions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <DOI:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.
```

License GPL-3

ByteCompile true

```
BugReports https://github.com/egpivo/SpatPCA/issues
```

Depends R (>= 3.4.0)

Imports Rcpp (>= 1.0.10), RcppParallel (>= 5.1.7), ggplot2

LinkingTo Rcpp, RcppArmadillo, RcppParallel

Suggests knitr, rmarkdown, testthat (>= 2.1.0), dplyr (>= 1.0.3), gifski, tidyr, fields, scico, plot3D, pracma, RColorBrewer, maps, covr, styler, V8

SystemRequirements GNU make

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/egpivo/SpatPCA

Config/testthat/edition 3

NeedsCompilation yes

Author Wen-Ting Wang [aut, cre] (https://orcid.org/0000-0003-3051-7302), Hsin-Cheng Huang [aut] (https://orcid.org/0000-0002-5613-349X)

Maintainer Wen-Ting Wang <egpivo@gmail.com>

Repository CRAN

Date/Publication 2023-11-13 09:33:19 UTC

2 plot.spatpca

R topics documented:

Snat	PCA-package	D	guli	ari	700	1 E) wit	noi	na	17	7,0	100 1	201	20:	nt	1	na	1.,	c i e	. £	or	C,	20	ti.	.1	ח	ato			
Index																														9
	thinPlateSplineMat	rix .																												8
	spatpca																													
	predictEigenfunction																													
	predict																													
	SpatPCA-package plot.spatpca																													

Description

A new regularization approach to estimate the leading spatial patterns via smoothness and sparseness penalties, and spatial predictions for spatial data that may be irregularly located in space (including 1D, 2D and 3D), and obtain the spatial prediction at the designated locations.

Details

Package: SpatPCA
Type: Package
Version: 1.3.3.4
Date: 2021-02-11
License: GPL version 3

Author(s)

Wen-Ting Wang <egpivo@gmail.com> and Hsin-Cheng Huang <hchuang@stat.sinica.edu.tw>

plot.spatpca Display the cross-validation results

Description

Display the M-fold cross-validation results

Usage

```
## S3 method for class 'spatpca' plot(x, ...)
```

predict 3

Arguments

x An spatpca class object for plot method

... Not used directly

Value

NULL.

See Also

spatpca

Examples

```
x_1D <- as.matrix(seq(-5, 5, length = 10))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %*% t(Phi_1D) + matrix(rnorm(n = 100 * 10), 100, 10)
cv_1D <- spatpca(x = x_1D, Y = Y_1D, num_cores = 2)
plot(cv_1D)</pre>
```

predict

Spatial predictions on new locations

Description

Predict the response on new locations with the estimated spatial structures.

Usage

```
predict(spatpca_object, x_new, eigen_patterns_on_new_site = NULL)
```

Arguments

Value

A prediction matrix of Y at the new locations, x_new.

See Also

spatpca

4 predictEigenfunction

Examples

```
# 1D: artificial irregular locations
x_1D <- as.matrix(seq(-5, 5, length = 10))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %*% t(Phi_1D) + matrix(rnorm(n = 100 * 10), 100, 10)
removed_location <- sample(1:10, 3)
removed_x_1D <- x_1D[-removed_location]
removed_Y_1D <- Y_1D[, -removed_location]
new_x_1D <- as.matrix(seq(-5, 5, length = 20))
cv_1D <- spatpca(x = removed_x_1D, Y = removed_Y_1D, tau2 = 1:100, num_cores = 2)
predictions <- predict(cv_1D, x_new = new_x_1D)</pre>
```

predictEigenfunction Spatial dominant patterns on new locations

Description

Estimate K eigenfunctions on new locations

Usage

```
predictEigenfunction(spatpca_object, x_new)
```

Arguments

```
\begin{array}{ll} spatpca\_object & An \; spatpca\; class\; object \\ x\_new & New \; location\; matrix. \end{array}
```

Value

A matrix with K Eigenfunction values on new locations.

See Also

spatpca

Examples

```
# 1D: artificial irregular locations
x_1D <- as.matrix(seq(-5, 5, length = 10))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %*% t(Phi_1D) + matrix(rnorm(n = 100 * 10), 100, 10)
rm_loc <- sample(1:10, 2)
x_1Drm <- x_1D[-rm_loc]
Y_1Drm <- Y_1D[, -rm_loc]
x_1Dnew <- as.matrix(seq(-5, 5, length = 20))</pre>
```

spatpca 5

```
cv_1D \leftarrow spatpca(x = x_1Drm, Y = Y_1Drm, tau2 = 1:100, num\_cores = 2)
dominant_patterns \leftarrow predictEigenfunction(cv_1D, x_new = x_1Dnew)
```

spatpca

Regularized PCA for spatial data

Description

Produce spatial dominant patterns and spatial predictions at the designated locations according to the specified tuning parameters or the selected tuning parameters by the M-fold cross-validation.

Usage

```
spatpca(
    x,
    Y,
    M = 5,
    K = NULL,
    is_K_selected = ifelse(is.null(K), TRUE, FALSE),
    tau1 = NULL,
    tau2 = NULL,
    gamma = NULL,
    is_Y_detrended = FALSE,
    maxit = 100,
    thr = 1e-04,
    num_cores = NULL
)
```

Arguments

х	Location matrix $(p \times d)$. Each row is a location. d is the dimension of locations
Υ	Data matrix $(n \times p)$ stores the values at p locations with sample size n .
М	Optional number of folds for cross validation; default is 5.
K	Optional user-supplied number of eigenfunctions; default is NULL. If K is NULL or is_K_selected is TRUE, K is selected automatically.
is_K_selected	If TRUE, K is selected automatically; otherwise, is $_{\rm K}$ _selected is set to be user-supplied K. Default depends on user-supplied K.
tau1	Optional user-supplied numeric vector of a non-negative smoothness parameter sequence. If NULL, 10 tau1 values in a range are used.
tau2	Optional user-supplied numeric vector of a non-negative sparseness parameter sequence. If NULL, none of tau2 is used.
gamma	Optional user-supplied numeric vector of a non-negative tuning parameter sequence. If NULL, 10 values in a range are used.
is_Y_detrended	If TRUE, center the columns of Y. Default is FALSE.

6 spatpca

maxit Maximum number of iterations. Default value is 100. thr Threshold for convergence. Default value is 10^{-4} .

num_cores Number of cores used to parallel computing. Default value is NULL (See

RcppParallel::defaultNumThreads())

Details

An ADMM form of the proposed objective function is written as

$$\min_{\mathbf{\Phi}} \|\mathbf{Y} - \mathbf{Y}\mathbf{\Phi}\mathbf{\Phi}'\|_F^2 + \tau_1 \text{tr}(\mathbf{\Phi}^T \mathbf{\Omega}\mathbf{\Phi}) + \tau_2 \sum_{k=1}^K \sum_{j=1}^p |\phi_{jk}|,$$

subject to $\Phi^T \Phi = \mathbf{I}_K$, where \mathbf{Y} is a data matrix, Ω is a smoothness matrix, and $\Phi = \{\phi_{jk}\}$.

Value

A list of objects including

eigenfn Estimated eigenfunctions at the new locations, x_new.

selected_K Selected K based on CV. Execute the algorithm when is_K_selected is TRUE.

selected_tau1 Selected tau1.
selected_tau2 Selected tau2.
selected_gamma Selected gamma.
cv_score_tau1 cv scores for tau1.
cv_score_tau2 cv scores for tau2.

cv_score_gamma cv scores for gamma.

tau1 Sequence of tau1-values used in the process.
tau2 Sequence of tau2-values used in the process.
gamma Sequence of gamma-values used in the process.

detrended_Y If is_Y_detrended is TRUE, detrended_Y means Y is detrended; else, detrended_Y

is equal to Y.

scaled_x Input location matrix. Only scale when it is one-dimensional

Author(s)

Wen-Ting Wang and Hsin-Cheng Huang

References

Wang, W.-T. and Huang, H.-C. (2017). Regularized principal component analysis for spatial data. *Journal of Computational and Graphical Statistics* **26** 14-25.

See Also

predict

spatpca 7

Examples

```
# The following examples only use two threads for parallel computing.
## 1D: regular locations
x_1D \leftarrow as.matrix(seq(-5, 5, length = 50))
Phi_1D \leftarrow exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D \leftarrow rnorm(n = 100, sd = 3) \% \% t(Phi_1D) + matrix(rnorm(n = 100 * 50), 100, 50)
cv_1D \leftarrow spatpca(x = x_1D, Y = Y_1D, num\_cores = 2)
plot(x_1D, cv_1D$eigenfn[, 1], type = "1", main = "1st eigenfunction")
lines(x_1D, svd(Y_1D)$v[, 1], col = "red")
legend("topleft", c("SpatPCA", "PCA"), lty = 1:1, col = 1:2)
## 2D: Daily 8-hour ozone averages for sites in the Midwest (USA)
library(fields)
library(pracma)
library(maps)
data(ozone2)
x <- ozone2\$lon.lat
Y <- ozone2$y
date <- as.Date(ozone2$date, format = "%y%m%d")</pre>
rmna <- !colSums(is.na(Y))</pre>
YY <- matrix(Y[, rmna], nrow = nrow(Y))
YY <- detrend(YY, "linear")</pre>
xx <- x[rmna, ]</pre>
cv \leftarrow spatpca(x = xx, Y = YY)
quilt.plot(xx, cv$eigenfn[, 1])
map("state", xlim = range(xx[, 1]), ylim = range(xx[, 2]), add = TRUE)
map.text("state", xlim = range(xx[, 1]), ylim = range(xx[, 2]), cex = 2, add = TRUE)
plot(date, YY %*% cv$eigenfn[, 1], type = "1", ylab = "1st Principal Component")
### new loactions
new_p <- 200
x_{\text{lon}} \leftarrow \text{seq(min(}xx[, 1]), max(}xx[, 1]), length = new_p)
x_{a} = x_{a
xx_new \leftarrow as.matrix(expand.grid(x = x_lon, y = x_lat))
eof <- spatpca(x = xx,
                                Y = YY
                                K = cv$selected_K,
                                tau1 = cv$selected_tau1,
                                tau2 = cv$selected_tau2)
predicted_eof <- predictEigenfunction(eof, xx_new)</pre>
quilt.plot(xx_new,
                        predicted_eof[,1],
                        nx = new_p,
                        ny = new_p,
                        xlab = "lon."
                        ylab = "lat.")
map("state", xlim = range(x_lon), ylim = range(x_lat), add = TRUE)
map.text("state", xlim = range(x_lon), ylim = range(x_lat), cex = 2, add = TRUE)
## 3D: regular locations
p <- 10
x \leftarrow y \leftarrow z \leftarrow as.matrix(seq(-5, 5, length = p))
```

thinPlateSplineMatrix

thinPlateSplineMatrix Thin-plane spline matrix

Description

Produce a thin-plane spline matrix based on a given location matrix

Usage

```
thinPlateSplineMatrix(location)
```

Arguments

location A location matrix

Value

A thin-plane spline matrix

Examples

```
pesudo_sequence <- seq(-5, 5, length = 5)
two_dim_location <- as.matrix(expand.grid(x = pesudo_sequence, y = pesudo_sequence))
thin_plate_matrix <- thinPlateSplineMatrix(two_dim_location)</pre>
```

Index

```
plot.spatpca, 2
predict, 3, 6
predictEigenfunction, 4

spatpca, 3, 4, 5
SpatPCA-package, 2

thinPlateSplineMatrix, 8
```