Исследование фазового портрета брюсселятора

А.С. Пономарев, А.О. Ремизов Московский физико-технический институт

Брюсселятором называется автономная система двух дифференциальных уравнений вида

$$\begin{cases} \dot{x} = f(x,y) = a - (b+1)x + x^2y \\ \dot{y} = g(x,y) = bx - x^2y \end{cases}$$
 (1)

Здесь $a, b \in \mathbb{R}_+$ – параметры. Модель возникла в задачах химии, в частности, используется для описания циклических химических реакций [1].

Известно, что при определенных значениях параметров фазовый портрет системы (1) содержит устойчивый предельный цикл, притом только один. Целью работы было доказать единственность предельного цикла несложным способом, предположительно, используя критерий Дюлака [2].

Основная сложность при использовании критерия Дюлака состоит в подборе строго положительной непрерывно дифференцируемой функциимножителя $\mu(x,y)$. По известной $\mu(x,y)$ получается дивергенция

$$D^{(\mu)} = \frac{\partial(\mu(x,y) \cdot f(x,y))}{\partial x} + \frac{\partial(\mu(x,y) \cdot g(x,y))}{\partial y}$$
(2)

Критерий Дюлака требует знакопостоянства $D^{(\mu)}(x,y)$ на некоторой области, содержащей предельный цикл; при соблюдении этого условия предельный цикл в области единственный.

В качестве первого шага на пути к доказательству в общем виде, для произвольных значений параметров a и b, был избран подбор $\mu(x,y)$ для типичного частного случая $a=1,\ b=3$ (рис. 1). Для проведения подбора была разработана компьютерная программа, чертящая фазовый портрет задаваемой пользователем автономной системы дифференциальных уравнений на участке плоскости (рис. 2). В программу добавлен дополнительный функционал для удобной работы с дивергенцией векторного поля, определенного системой и функцией-множителем, в том числе символьное дифференцирование.

Подбор не дал положительных результатов. Были найдены функциимножители, дающие, судя по графикам программы, знакопостоянную

 $D^{(\mu)}$ почти на всей окрестности предельного цикла. Трудность непосредственно подбора здесь не единственная: даже при положительном результате работы программы необходимо будет доказать его математическими оценками; форма предельного цикла далека от окружности, область знакопостоянства $D^{(\mu)}$ на графиках имеет сложную форму, поэтому неясно, как отделить $D^{(\mu)}$ от нуля строгой математической оценкой.

В заключение хочется отметить возникшую в процессе работы идею с заменой $\mu(x,y)=e^{\xi(x,y)}.$ Если ее проделать, задача сводится к отысканию непрерывно дифференцируемой $\xi(x,y)$ без ограничений на знак, такой что

$$f \cdot \frac{\partial \xi}{\partial x} + g \cdot \frac{\partial \xi}{\partial y} + \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) = \left(\nabla \xi, \begin{pmatrix} f \\ g \end{pmatrix}\right) + \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}\right) < 0 \quad (3)$$

В такой формулировке появляется нечто похожее на скалярное произведение в евклидовом пространстве (обозначено выше соответствующим образом). Быть может, это ключ к дальнейшему исследованию задачи с применением подходов из функционального анализа.

Рис. 1: брюсселятор $a=1,\;b=3$

Рис. 2: интерфейс программы

Список литературы

- [1] Matthew P. McDowell. Mathematical modeling of the brusselator. 2008.
- [2] Леонтович Е.А. Баутин Н.Н. *Методы и приемы качественного исследования динамических систем на плоскости*. издательское объединение «Наука», 1990.