Math 129 Problem Set 1

Lev Kruglyak

February 3, 2022

Problem 1.7. Show that $\mathbb{Z}[i]$ is a principal ideal domain.

Let $I \subset \mathbb{Z}[i]$ be an ideal. Suppose $\alpha \in I - \{0\}$ is some nonzero element with minimal norm, i.e. every other element in the ideal has norm greater than or equal to α . Now consider the \mathbb{Z} -lattice generated by α in $\mathbb{Z}[i]$, i.e. $\alpha \mathbb{Z}[i] = (\alpha)$. We claim that this lattice is the entire ideal itself, i.e. $I = (\alpha)$. Suppose there is some Gaussian integer $\omega \notin (\alpha)$ outside the lattice. Since the lattice covers the whole space, it must fall into one of the lattice squares. Pick the nearest lattice neighbor to ω , say it is $\nu \alpha$ for some $\nu \in \mathbb{Z}[i]$.

Figure 1: Lattice generated by α

Then $0 < \mathcal{N}(\omega - \nu \alpha) < \mathcal{N}(\alpha)$, since ω is always contained in a radius $\mathcal{N}(\alpha)$ circle centered at the closest Gaussian integer. This is a contradiction to the norm minimality of α , hence $\omega \in (\alpha)$ and so the ideal is principal.

Problem 1.15. Here is a proof of Fermat's conjecture for n=4:

If $x^4 + y^3 = z^4$ has a solution in positive integers, then so does $x^4 + y^4 = w^2$. Let x, y, w be a solution with smallest possible w. Then x^2, y^2, w is a primitive Pythagorean triple. Assuming (without loss of generality) that x is odd, we can write

$$x^2 = m^2 - n^2$$
, $y^2 = 2mn$, $w = m^2 + n^2$

with n and m relative prime positive integers, not both odd.

(a) Show that

$$x = r^2 - s^2$$
, $n = 2rs$, $m = r^2 + s^2$

with r and s relative prime positive integers, not both odd.

- (b) Show that r, s, and m are pairwise relative prime. Using $y^2 = 4rsm$, conclude that r, s, and m are all squares, say a^2, b^2 , and c^2 .
- (c) Show that $a^4 + b^4 = c^2$, and that this contradicts minimality of w.
- (a) Note that since $x^2 + n^2 = m^2$, there must exist integers r, s such that

$$x = r^2 - s^2$$
, $n = 2rs$, $m = r^2 + s^2$.

These integers are relatively prime because if a prime p|r, s then p|x, m, n, a contradiction since m, n are coprime. One of them must be even since x is odd.

(b) We've established that (r, s) = 1. Now suppose p|r, m. Them p|s since $m = r^2 + s^2$ so p|x, m, n which is impossible since they are coprime. Next we claim that r, s, m are all squares. Indeed, note that $y^2 = 4rsm$, and suppose that p|r. Then $p|y^2$ so $p^2|4rsm$. Since r, s, m are all coprime, it thus follows that $p^2|r$.

Note that we can ignore the case when p=2 because both 4 can only add an even number of two's, hence preserving the square property. Since every prime factor appears twice, it follows that r is a square. The same follows for s, m.

(c) Since $a^2 = r$, $b^2 = s$, and $c^2 = m$, if follows from $m = r^2 + s^2$ that $a^4 + b^4 = c^2$. But $w = c^4 + n^2$ so c < w, a contradiction. Thus there can be no solution.

Problem 1.16. Show that

$$(1-\omega)(1-\omega^2)\cdots(1-\omega^{p-1})=p.$$

We know that

$$t^{p} - 1 = (t - 1)(t - \omega)(t - \omega^{2}) \cdots (t - \omega^{p-1}).$$

Factoring t-1 out from both sides of an equation yields

$$t^{p-1} + t^{p-2} + \dots + t + 1 = (t - \omega)(t - \omega^2) \cdots (t - \omega^{p-1})$$

and substituting t=1 yields the desired equation.

Problem 1.17. Suppose $\mathbb{Z}[\omega]$ is a UFD and that $\pi \mid x + y\omega$. Show that π does not divide any of the factors $x + y\omega^i$ for $1 < i \le p$. (Note that $x + y = x + y\omega^p$.)

Recall that

$$(x+y)(x+y\omega)(x+y\omega^2)\cdots(x+y\omega^{p-1})=z^p.$$

Let $\pi \mid x + y\omega$ be some non unit factor, then we have $\pi \mid z^p$. Next, suppose for the sake of contradiction that $\pi \mid x + y\omega^i$. Then $\pi \mid (x + y\omega) - (x + y\omega^i)$ so $\pi \mid y\omega(1 - \omega^{i-1})$. By Problem 3,

$$\pi \mid y\omega(1-\omega)(1-\omega^2)\cdots(1-\omega^{p-1}) = y\omega p,$$

however since ω is a unit it follows that $\pi \mid yp$. So π divides both yp and z^p , which are relatively prime by assumption, and since $p \nmid z$. Thus by Bezout's identity there exist $n, m \in \mathbb{Z}$ such that $ypn + z^pm = 1$. However this implies that $\pi \mid 1$, a contradiction since π isn't a unit. Hence, the two terms share no common factors.

Problem 1.18. Use Problem 1.17 to show that if $\mathbb{Z}[\omega]$ is a UFD then $x + y\omega = u\alpha^p$ for some $\alpha \in \mathbb{Z}[\omega]$, where u is a unit in $\mathbb{Z}[\omega]$.

Again, since $\mathbb{Z}[\omega]$ is a UFD, it suffices to show that for any prime $\pi \mid x+y\omega$, we have $\pi^p \mid x+y\omega$. Let $\pi \in \mathbb{Z}[\omega]$ be a prime dividing $x+y\omega$. Then $\pi \mid z^p$ so by primality $\pi \mid z$ and hence

$$pi^p \mid (x+y)(x+y\omega)(x+y\omega^2)\cdots(x+y\omega^{p-1}).$$

However by Problem 1.17, none of the other factors are divisible by π , so $\pi^p \mid x + y\omega$. By unique factorization, we thus have $x + y\omega = u\alpha^p$ for some unit $u \in \mathbb{Z}[\omega]$.

Problem 1.19. Dropping the assumption that $\mathbb{Z}[\omega]$ is a UFD but using the fact that ideals factor uniquely (up to order) into prime ideals, show that the principal ideal $(x + y\omega)$ has no prime ideal factor in common with any other principal ideals on the left side of the equation

$$(x+y)(x+y\omega)\cdots(x+y\omega^{p-1})=(z)^p$$

in which all factors are interpreted as principal ideals.

Suppose $\mathfrak{p} \supset (x+y\omega)$ is a prime factor. Then $\mathfrak{p} \supset (z)^p$, so by the definition of a prime ideal $\mathfrak{p} \supset (z)$. Now suppose for the sake of contradiction that $\mathfrak{p} \supset (x+y\omega^i)$. Since $\mathfrak{p} \supset (x+y\omega)$ and $\mathfrak{p} \supset (x+y\omega^i)$, it follows that

$$\mathfrak{p} \supset (x + y\omega, x + y\omega^{i}) \supset (y\omega(1 - \omega^{i-1}))$$

$$= y(1 - \omega^{i-1}) \supset y(1 - \omega)(1 - \omega^{2}) \cdots (1 - \omega^{p-1})$$

$$= (yp).$$

Since $\mathfrak{p} \supset (yp)$ and $\mathfrak{p} \supset (z)$, $\mathfrak{p} \supset (z,yp) = \mathbb{Z}[\omega]$ by Bezout's identity. This is a contradiction since \mathfrak{p} is proper.

Problem 1.20. Use Problem 1.19 to show that $(x + y\omega) = I^p$ for some ideal I.

Since $\mathbb{Z}[\omega]$ has unique factorization of ideals, it suffices to show that for any prime ideal $\mathfrak{p} \supset (x+y\omega)$, $\mathfrak{p}^p \supset (x+y\omega)$. Note that if $\mathfrak{p} \supset (x+y\omega)$, then $\mathfrak{p} \supset (z)^p$ so $\mathfrak{p} \supset (z)$ by the definition of a prime ideal. Then

$$\mathfrak{p}^p \supset (x+y)(x+y\omega)(x+y\omega^2)\cdots(x+y\omega^{p-1}),$$

however $\mathfrak{p} \not\supset (x+y\omega^i)$ for $i \neq 1$ by Problem 1.19, so $\mathfrak{p}^p \supset (x+y\omega)$. This concludes the proof.