常用一维条形码

1 39 码 (CODE39)

39 码可以包含数字及英文字母。除了超市、零售业的应用中使用 UPC/EAN 码外,几乎在其他饿应用环境中,都是使用 39 码。39 码是目前使用最广泛的条码规格,支持 39 码的软硬件设备也最齐全。

1.1 特征

- ◆ 能表示 44 个字符, A-Z、0-9、SPACE、-、.、\$、/、+、%、*
- ◆ 分散式,条码组之间使用细白条分隔
- ◆ 两种宽度
- ◆ 自我检查
- ◆ 有扩展模式 《Full ASCII Mode》
- ◆ 检查码字符可有可无,视需求而定

1.2 组成

- ◆ 各个字符有9条黑白相间,粗细不同的线条组成,其中6条为黑白细条3条黑白粗条
- ◆ 一串字符必须在头尾加上起始字符和结束字符"*"

1.3 校验方法

CODE39

字符	0	1	2	3	4	5	6	7	8
值	0	1	2	3	4	5	6	7	8
字符	9	A	В	С	D	Е	F	G	Н
值	9	10	11	12	13	14	15	16	17
字符	I	J	K	L	M	N	О	P	Q
值	18	19	20	21	22	23	24	25	26
字符	R	S	T	U	V	W	X	Y	Z
值	27	28	29	30	31	32	33	34	35
字符	-		SPACE	\$	/	+	%		
值	36	37	38	39	40	41	42		

找到输入字符串每个字符对应值,求和,除以43,取余数。

1.4 条码说明

1.5 编码表

字母	黑條	白條	字母	黑條	白條
1	10001	0100	K	10001	0001
2	01001	0100	L	01001	0001
3	11000	0100	M	11000	0001
4	00101	0100	N	00101	0001
5	10100	0100	0	10100	0001
6	01100	0100	P	01100	0001
7	00011	0100	Q	00011	0001
8	10010	0100	R	10010	0001
9	01010	0100	S	01010	0001
0	00110	0100	T	00110	0001
A	10001	0010	U	10001	1000
В	01001	0010	V	01001	1000
С	11000	0010	W	11000	1000
D	00101	0010	X	00101	1000
Е	10100	0010	Y	10100	1000
F	01100	0010	Z	01100	1000
G	00011	0010	-	00011	1000
Н	10010	0010	•	10010	1000
I	01010	0010	SPACE	01010	1000
J	00110	0010	STR/STP	00110	1000
\$	00000	1110	+	00000	1011
/	00000	1101	%	00000	0111

1 = 寬黑條 / 白條 0 = 細黑條 / 白條

P.S.

在程序中可以使用"11"表示宽黑条,"1"表示细黑条,"00"表示宽白条,"0"表示 细白条。那么字符 1 就可以表示为 110100101011。使用此方法建立一个编码表,每个字符 可以长度为12的"01"字符串来表示。

1.6 典型 CODE39 条码

1.7 CODE39 的扩展码

扩展码表同 CODE93。但是扩展方式不同,39 码使用\$,/,+.%与其26 个大写字母组合,表示 ASCII 码表中的其他字符。条空表示方式和校验方式与标准39 码相同。93 码中使用的控制码与26 个大写字母的组合。

2 93 码(CODE93)

2.1 组成

- ◆ 字母: A-Z, 数字: 0-9, 符号: SPACE, -,.,\$,/,+,%, 控制码: \$,/,+,%,起始结束码: □
- ◆ 每个字由 9 个模组成,包括 3 条粗细黑条及 3 条粗细白条。每一黑条或白条有可能为 1.2.3.4 模组成

2.2 特征

- ◆ 用 4 个控制码 \$, %, /, + 组合其他字母或符号,可编程 FULL ASCII 字母,读码器读到上面 4 个控制码的组合时候,送出的字尾所对应的 ASCII。
- ◆ 有 2 个检验码 C 和 K。

2.3 校验方法

◆ 先查出资料所对应值,对应值的表如下

字符	0	1	2	3	4	5	6	7	8
值	0	1	2	3	4	5	6	7	8

字符	9	A	В	С	D	Е	F	G	Н
值	9	10	11	12	13	14	15	16	17
字符	I	J	K	L	M	N	О	P	Q
值	18	19	20	21	22	23	24	25	26
字符	R	S	T	U	V	W	X	Y	Z
值	27	28	29	30	31	32	33	34	35
字符	-		SPACE	\$	/	+	%		
值	36	37	38	39	40	41	42		

- ◆ 检查码 C 由资料的最右边一位用 1-20 顺序排列,若资料超过 20 位,在从 1-20 起算,顺序号作为权值,分别乘以对应值,求和,除以 47,取余数
- ◆ 检查码 K 由 C 位用 1-15 顺序排列,若资料差偶偶 15 位,再从 1-15 起算,顺序号作为权值,分别乘以对应值,求和,除以 47,取余数
- ◆ 举例:

资料CODESP93 "C" "K"

资料对应值 12 24 13 14 38 9 3

C 排列顺序 7654321

K 排列顺序 87654321

$$(1x3) + (2x9) + (3x38) + (4x14) + (5x13) + (6x24) + (7x12) = 484$$

 $C = 484 \div 47 = 10$ ······ 14 (余数)

则 C = 14 = E (对应值)

$$(1x14) + (2x3) + (3x9) + (4x38) + (5x14) + (6x13) + (7x24) + (8x12)$$

= 611

$$K = 611 \div 47 = 13 \cdots 0$$
 (余数)

則 K = 0 = 0 (对应值)

2.4 条码说明

2.5 编码表

Character	Value(for check digit)	Pattern	Encodation
0	0		100010100
1	1		101001000
2	2		101000100
3	3		101000010
4	4		100101000
5	5		100100100
6	6		100100010
7	7		101010000
8	8		100010010
9	9		100001010

Character	Value(for	Pattern	Encodation
CHATACTOT	check digit)		Encodation
A	10		110101000
В	11		110100100
С	12		110100010
D	13		110010100
Е	14		110010010
F	15		110001010
G	16		101101000
Н	17		101100100
I	18		101100010
J	19		100110100
K	20		100011010
L	21		101011000
M	22		101001100
N	23		101000110
0	24		100101100
P	25		100010110
Q	26		110110100
R	27		110110010
S	28		110101100
Т	29		110100110
U	30		110010110
V	31		110011010
W	32		101101100
X	33		101100110
Y	34		100110110
Z	35		100111010
-	36		100101110
•	37		111010100

Space	38	111010010
\$	39	111001010
/	40	101101110
+	41	101110110
\$	42	110101110
\$	43	100100110
%	44	111011010
	45	111010110
(46	 100110010
		101011110

ASCII	CODE 93	ASCII	CODE 93	ASCII	CODE 93	ASCII	CODE 93
NUL	Ø U	SP	Space	@	Ø V	,	∞ ₩
SOH	(\$) A	!	(/) A	A	A	a	(+) A
STX	(\$) B	w.	(/) B	В	В	b	(+) B
ETX	(\$) C	#	(7) C	С	С	С	(+) C
EOT	(\$) D	\$	\$	D	D	d	(+) D
ENQ	(\$) E	%	%	Е	Е	е	(+) E
ACK	(\$) F	&	(/) F	F	F	f	(+) F
BEL	\$ G	•	() G	G	G	g	⊕ G
BS	(\$) H	((<u>/</u>) H	Н	Н	h	⊕ H
HT	\$) I)	() I	I	I	i	(†) I
LF	\$ J	•	() J	J	J	j	⊕ J
VT	(\$) K	+	+	K	K	k	(+) K
FF	(\$) L	•	() L	L	L	1	① L
CR	(\$) M	_		M	M	m	(+) M
SO	(\$) N			N	N	n	⊕ N
SI	\$	/	/	0	0	0	(+) 0
DLE	(\$) P	0	0	Р	P	p	P
DC1	\$ Q	1	1	Q	Q	q	(+) Q
DC2	\$\text{R}	2	2	R	R	r	→ R
DC3	(\$) S	3	3	S	S	S	(+) S
DC4	\$ T	4	4	T	T	t	(+) T
NAK	\$) U	5	5	U	U	u	(+) U
SYN	\$ V	6	6	V	V	v	(+) V
ETB	(\$) W	7	7	W	W	W	(+) W
CAN	\$ X	8	8	X	X	X	(+) X
EM	Y	9	9	Y	Y	У	→ Y
SUB	∑	:	(7) Z	Ζ	Z	Z	(+) Z
ESC		;		[∞ K	{	P
FS		<		\		;	⊘ Q
GS	∞ c	=	⊗ H]	∞ M	}	
RS	∞ D	>		^	N	~	⊗ S
US		?	⊚ J	-	® 0	DEL	◎ T

P.S.程序编码中,结束符号模块比起始符号多一个"1";

使用控制符组合字母所表示的字符,编码时需要分解成控制符和大写字母两个模块。比如字符 NUL 可分解成控制符%和 U,条空为"111011010 和 110010110

2.6 典型 CODE93 条码

12345ABCDE

3 128 码(CODE128)

3.1 特征

- ◆ 能表示 106 种字元
- ◆ 3个字符集
- ◆ 连续式
- ◆ 四种宽度
- ◆ 三种字符集可串联使用
- ◆ 使用检查码

3.2 组成

- ◆ 提供 128 个 ASCII 的所有字符
- ◆ 有 A、B、C 三种不同模组
- ◆ C组数字专用模组,可从00-99编码,缩短编码长度
- ◆ A、B、C 三种模组依资料结构,可混合编码
- ◆ 每个字由3条粗细黑条及3条粗细白条组成,但每个模组都是12各个单元宽度
- ◆ 三组模组起始码不同,但结束码相同。

3.3 校验方法

- ◆ 首先为字符串标志条码(码字)
- ◆ 从起始符开始,自左向右为每个条码字符编号
- ◆ 为每一个字符分配权数,起始符和第一个字符的权数位 1,以后依次增加
- ◆ 每个字符的权数与码值相乘
- ◆ 所有乘积求和
- ◆ 第5步的结果除以103求余数
- ◆ 码值等于余数的字符即为校验符:

位数 字符	1	2	3	4	5	6	7	8		
	Start B	A	I	M	1	2	3	160		
码值	104	33	41	45	17	18	19			
权数 乘积	1	2	3	4	5	6	7			
乘积	104	66	123	180	85	108	133			
乘积的和			AT-00-00-00-00	799						
MOD 103		799/103=7······78								
		码化	直为78的字	符是n,n即	为校验符					

3.4 编码表

CODE A	CODE B	CODE C	VALUE	3		OODE A	CODE B	CODE C	VALUE	3
Space	Space	00	0			=	=	29	29	
!	t	01	1	_		>	>	30	30	
•	•	02	2	_	•	?	?	31	31	
\$	\$	03	3			@	9	32	32	
#	#	04	4	• •		A	A	33	33	
%	%	05	5			В	В	34	34	
&	å	06	6			С	С	35	35	
•		07	7			D	D	36	36	
((08	8			E	E	37	37	
))	09	9	_		F	F	38	38	
#	#	10	10	_		G	G	39	39	
+	+	11	11			H	H	40	40	
•		12	12			I	I	4 1	4 1	
-	_	13	13	-		J	J	42	42	
•	•	14	14	-	•	K	K	43	43	
/	/	15	15			L	L	44	44	
0	0	16	16			M	M	45	45	
1	1	17	17		•	N	N	46	46	
2	2	18	18	_	•	0	0	47	47	
3	3	19	19	_		P	P	48	48	
4	4	20	20	_	•	Q	Q	49	49	
5	5	21	21			R	R	50	50	
6	6	22	22	_		S	S	51	51	
7	7	23	23		•	T	T	52	52	
8	8	24	24			U	U	53	53	
9	9	25	25			V	V	54	54	
:	:	26	26		•	¥	W	55	55	
;	:	27	27			X	X	56	56	
<	<	28	28			Y	Y	57	57	

OODE A	CODE B	CODE C	VALUE		COD	ΕА	CODE B	CODE C	VALUE			
z	Z	58	58		■ DX	3	S	83	83			
ι	[59	59	_	■ DX	4	T	84	84		•	
١	١	60	60		■ NA	K	U	85	85			
]	1	61	61		■ Si	N	v	86	86			
		62	62		■ EI	В	¥	87	87	• •	•	
_	_	63	63		C	N	X	88	88	• •		
NUL		64	64		E	M	Y	89	89			
SOH	•	65	65		St	В	Z	90	90			
STX	b	66	66		ES ES	C	{	91	91			
ETX	С	67	67		F	S	I	92	92			
BOT	D	68	68		■ G	S	}	93	93	 •		
ENO	E	69	69		R	S	~	94	94	•		
ACK	F	70	70	-	ı u	S	DET	95	95			
BEL	G	71	71		FN		FNC3	96	96			
BS	Н	72	72		■ FN	C2	PNT2	97	97			
HT	I	73	73		I Shi	ft	Shift	98	98			
LF	1	74	74		_		Code C	99	99			
VT	K	75	75		_		Code 4		100			
FF	L	76	76				CODE A		101			
CR	M	77	77		■ FN		PNCI		102			
SO	N	78	78		STA		(Code		103		•	
SI	0	79	79	_	■ STA		(Code	-	104		.	
DLE	P	80	80		STA		(Code		105			
DC1	Q	81	81		ST	OP	STOP	STOP				
DC2	R	82	82									

P.S.程序中可用"1"表示一个单元宽度的黑条,"0"表示一个单元宽度的白条。则上图中的 Value=0 的条空可表示为 110110011000。

终止符有 13 个模块宽度。条空表示为 1100011101011, 末尾多两个 "11";

3.5 典型 CODE128 码

3.6 条码说明

◆ 例如,某 128 码的值为 ROC12345,则其逻辑和条码如下

模块	数值	逻辑型数
B式	Start	11010010000
B式	R	11000101110
B式	0	10001110110
B式	С	10001000110
B式	Ι	10011100110
B琠	C式	10111011110
C 式	23	11101101110
C 式	45	10111011000
C式	Stop	1100011101011

◆ 某一个 128 码的值为 5418781,则其逻辑及条码如下

模块	数值	逻辑型态
С	Start	11010011100

С	54	11101011000
С	18	11001110010
С	78	11000010100
С	14	11000100010
С	Stop	1100011101011

4 EAN-128

EAN-128 码,现称 GS1-128 码,是专用于 GS1 系统中的条码,可以标注商品的附加信息,在山品信息的标志、茶品的跟踪与追溯中有广泛的用途。EAN-128 码来自于 CODE-128 码,在字符集、条空规则上与 CODE-128 完全一致。

4.1 组成

- ◆ EAN-128 码组成同 CODE-128
- ◆ 应用标识符使用分隔符码字 FNC1 表示

4.2 特征

同 CODE-128;

4.3 条码说明

- ◆ 如果字符串起始的字符是超过 4 个的数字字符时,应该采用 START C。数据中间如果 有 4 个或 4 个以上连续的数字也要变换为字符集 C。
- ◆ 如果数据中的应用标识符使用的是预定义程度的 AI,则可以省去数据后的分隔符。

◆ 例子

例 1(01)16903128100250(13)091020(15)100420 用条码可以表示为 |START C|FNC1|01|16|90|31|28|10|02|50|13|09|10|20|15|10|04|20|校验码|STOP|

例 2 (02) 16903128100250 (37) 100 (10) 091000S

|START C|FNC1|02|16|90|31|28|10|02|50|37|10|CODE B| 0 |CODE C|FNC1|10|09|10|00|CODE B|S|校验符|STOP|

5标准 2 of 5 (INDUSTRY 2 OF 5 STANDARD)

5.1 组成:

- ◆ 由5条黑条组成,其中有3条细黑条,2条宽黑条
- ◆ 黑条与黑条之间及字与字之间偶用一白条分隔, 所以白细条不表示资料
- ◆ 起始及结束码不同
- ◆ 数字 0~9

5.2 特征

- ◆ 一串资料可以改变程度,但只有数字可编
- ◆ 粗细比例 1:3,允许误差±25%
- ◆ 分散式
- ◆ 无验证码

5.3 编码表

字母	S1	S2	S3	S4	S5
1	1	0	0	0	1
2	0	1	0	0	1
3	1	1	0	0	0
4	0	0	1	0	1
5	1	0	1	0	0
6	0	1	1	0	0
7	0	0	0	1	1
8	1	0	0	1	0
9	0	1	0	1	0
0	0	0	1	1	0
START	1	1	0		
STOP	1	0	1		

S1 - S5 = 黑條 1-5 1=寬條, 0=細條

P.S. 程序中: "1"表示 1 个黑条宽度单元, 因为粗细比是 1:3, 显然粗黑条表示为"111", 又因为每两个黑条使用细白条分隔, 所以上表中数字 1 可以表示为: "11101010101111"

6 交错式 25 码(INTERLEAVED25)

6.1 组成

- ◆ 由5条粗细黑条组成,其中3条细黑条,2条宽黑条
- ◆ 由5条粗细白条组成,其中3条西白条,2条宽白条
- ◆ 黑条置于奇数位,白条置于偶数位,故又称交错式 2OF5
- ◆ 起始码和结束码不同
- ◆ 只能表示 0~9
- ◆ 必须偶数位配对

6.2 特性

- ◆ 资料程度一定是偶数
- ◆ 只能表示数字 0~9
- ◆ 连续式
- ◆ 不一定使用检验码

- ◆ 粗细比 1:2 或 1:3, 误差 10%
- ◆ 粗细印刷比例若误差太大,可能解错码

6.3 校验方法

交叉 25 码的校验位计算方法依然是 Mod 10:

- 1. 字符个数为偶数时为:10 的倍数-[(奇数位的数字之和<从左至右)+(偶数位数字之和)*3 个位数]
- 2. 字符个数为奇数时为: 10 的倍数-[(偶数位的数字之和<从左至右)+(奇数位数字之和)*3个位数]

如:

514362 的校验位为 10*X-[(5+4+6)+3*(1+3+2)]=7(因加校验位后个数为奇数,故前面加 0 后为 05143627。

76534 的校验位为 10*X-[(6+3)+3*(7+5+4)]=3

6.4 条码说明

6.5 编码表

字母	S1	S2	S3	S4	S5
1	1	0	0	0	1
2	0	1	0	0	1
3	1	1	0	0	0
4	0	0	1	0	1
5	1	0	1	0	0
6	0	1	1	0	0
7	0	0	0	1	1
8	1	0	0	1	0
9	0	1	0	1	0
0	0	0	1	1	0
START	0(BAR)	0	(BAR)0		
STOP	1	0	(BAR)0		

S1 - S5 = BARS/SPACES 1-5

1 = WIDE BAR/ SPACE

0 = NARROW BAR/SPACE

P.S.程序中,可以'N'表示窄条,'W'表示宽条,因为黑条白条的相对位置固定,所以上表其实是一个 pattern 表。比如字母 1 表示为 W N N N W。虽然粗细比允许 1:3,考虑到解错码的可能性,建议粗条使用 2 个单位宽度。

因为交错式 25 码必须是成对的数字,所以可以把相邻两个数字作为一个模块。比如条码 1234,可以分组为 12 | 34; 取"12"为例,1 在奇数位置,为黑条,对应 pattern 为 WNNNW,2 在偶数位置,为白条,对应 pattern 为 NWNNW,那么 12 合起来作为一个模块,混合 pattern 为 WNNWNNNNWW,这个 pattern 里,奇数位的 W 表示粗黑条,奇数位的 N 表示细黑条,偶数位的 W 表示粗白条,偶数位的 N 表示细白条,因此 12 的条空表示为: 11010010101100

6.6 典型交错式 25 码

PR 4977 M54 1970

31518001736721

7 CODABAR 码

7.1 组成

- ◆ 由7条黑白相间、粗细不同的黑白条组成,其中包括4条黑条,3条白条
- ◆ 字与字之间为一细白条
- ◆ 4个起始和结束码,可互相配对,但一般都用相同。
- ◆ 数字: 0~9, 特别符号: -、\$、=、/、.、+, 起始/结束码: A、B、C、D

7.2 特征

- ◆ 四种不同的起始/结束码
- ◆ 分散式
- ◆ 18 种宽度
- ◆ 不使用检查码
- ◆ 起始/结束码可以用来传递信息

7.3 校验方法

对应值之和,MOD16

步骤一.假设条形码数据码为 A37859B

步骤二.将各别字元相对值加总 16+3+7+8+5+9+17=65

步骤三.用为基数来除以相对值加总 65/16=4....1

步骤四.再以减掉余数,以求出相对值 16-1=15

7.4 编码表

字母	S1	L1	S2	L2	S3	L3	S4
1	0	0	0	0	1	1	0
2	0	0	0	1	0	0	1
3	1	1	0	0	0	0	0
4	0	0	1	0	0	1	0
5	1	0	0	0	0	1	0
6	0	1	0	0	0	0	1
7	0	1	0	0	1	0	0
8	0	1	1	0	0	0	0
9	1	0	0	1	0	0	0
0	0	0	0	0	0	1	1
_	0	0	0	1	1	0	0
s	0	0	1	1	0	0	0
=	1	0	0	0	1	0	0
/	1	0	1	0	0	0	1
•	1	0	1	0	1	0	0
+	0	0	1	0	1	0	1
a	0	0	1	1	0	1	0
ь	0	1	0	1	0	0	1
С	0	0	0	1	0	1	1
d	0	0	0	1	1	1	0
t	0	0	1	1	0	1	0
n	0	1	0	1	0	0	1
*	0	0	0	1	0	1	1
е	0	0	1	1	1	1	0

S1-S4:黑条 L1-L3:白条 0:窄, 1:宽

7.5 典型 CODABAR 码

UNVIERSITY LIBARY

3 9349 00376 0473

8 UPC-A(和 EAN-8)

UPC-A与EAN-8的编码方式相同,资料长度不同

8.1 特性

- ◆ 资料长度固定-12位
- ◆ 只能用来表示数字 0~9
- ◆ 固定使用一位 检查码
- ◆ 连续式
- ◆ 使用四种宽度

8.2 组成

- ◆ 每一个字由 7 个 ELEMENTS 组成
- ◆ 有4中粗细黑白条混合编码
- ◆ 左护线 101, 中心弧线吗 01010, 右护线码 101

8.3 校验方法

- X. 3+Y=Z,10-Z=检查号码
- X 为奇数位之和,Y 为偶数位之总和
- Z 为奇数 + 偶数之总和的个位数

8.4 条码说明

8.5 编码表

DECIMAL	LEFT (A) □互	補□ RIGHT (C)
	(ODD PARITY –0)	(EVEN PARITY)
0	0001101	1110010
1	0011001	1100110
2	0010011	1101100
3	0111101	1000010
4	0100011	1011100
5	0110001	1001110
6	0101111	1010000
7	0111011	1000100
8	0110111	1001000
9	0001011	1110100

8.6 典型 UPC-A 和 EAN-8 码

9 EAN-13

9.1 特性

- ◆ 资料长度固定, 13 为
- ◆ 只能用来表示数字资源
- ◆ 固定使用一位 检查码
- ◆ 连续式
- ◆ 使用四种宽度

◆ 左护线码 101, 中心护线码 01010, 右护线码 101

9.2 校验方法

X+Y•3=Z10-Z=檢查號碼 X 为奇数位之和,Y 为偶数位之总和 Z 为奇数 + 偶数之总和的个位数

9.3 编码表

◆ EAN-13 的右半部编码如下表

DECIMAL	RIGHT
	(C)
0	1110010
1	1100110
2	1101100
3	1000010
4	1011100
5	1001110
6	1010000
7	1000100
8	1001000
9	1110100

- ◆ EAN-13 的左半部编码步骤如下:
 - 1. 先查出 EAN13 最前面的国码数字
 - 2. 根据国码数字查下表,O代表 ODD PARITY, E代表 EVEN PARITY

PARITY PATTERN

1	00E0EE
2	00EE0E
3	00EEE0
4	0E00EE
5	0EE00E
6	0EEE00
7	0E0E0E
8	0E0EE0
9	0EE0E0

- 3. 上表的PARITY PATTERN 也代表EAN 左半部 6 为数中每位 PARITY PATTERN
- 4. 依照 PARITY PATTERN 对照下表壳得出左边的编码

ODD	EVEN
PARITY (0)	PARITY (E)
0001101	0100111
0011001	0110011
0010011	0011011
0111101	0100001
0100011	0011101
0110001	0111001
0101111	0000101
0111011	0010001
0110111	0001001
0001011	0010111
	PARITY (0) 0001101 0011001 0010011 0111101 0100011 011011

10 UPC-E

10.1 特性

- ◆ 资料长度固定,6位
- ◆ 只能用来表示数字
- ◆ 使用一位检查码
- ◆ 连续式
- ◆ 使用四种宽度
- ◆ 每个 UPC-E 码都有一个相对应的 UPC-A 吗存在
- ◆ 左护线码为 101, 有护线码为 010101

10.2 编码步骤

•

1 依下表把断码先变成原来的长码(UPC-A)

				長	砚	Ę	(U.	PC-A)						短	和	馬	(U.	PC-E)	
國 F1	碼 F2		廠	商號	碼			商	品员	光碼		С							С
0	0	M1	M2	M3	M4	M5	A1	A2	A3	A4	A5	С	Z1	Z2	Z3	Z4	Z5	Z6	С
0	0	M1	M2	0	0	0	0	0	A3	A4	A5	С	M1	M2	A3	A4	A5	0	С
0	0	М1	M2	1	0	0	0	0	0	A4	A5	С	M1	M2	A3	A4	A5	1	С
0	0	M1	M2	2	0	0	0	0	0	A4	A5	С	M1	M2	A3	A4	A5	2	С
0	0	М1	M2	M3	0	0	0	0	0	A4	A5	С	M1	M2	М3	A4	A5	3	С
0	0	M1	M2	М3	M4	0	0	0	0	0	A5	С	M1	M2	М3	M4	A5	4	С
0	0	М1	M2	М3	M4	M5	0	0	0	0	A5(5- 9)	С	M1	M2	М3	M4	M5	A5(5-9)	С

- 2 由 UPC-A 算出检查码之值
- 3 依检查码之值对照下表取得 PATTERN

(檢核碼)		UPCE 資料之數字組					
0	В	В	В	Α	Α	Α	
1	В	В	A	В	A	Α	
2	В	В	A	A	В	Α	
3	В	В	Α	Α	Α	В	
4	В	Α	В	В	A	Α	
5	В	Α	Α	В	В	Α	
6	В	Α	Α	Α	В	В	
7	В	Α	В	Α	В	Α	
8	В	Α	В	Α	A	В	
9	В	Α	Α	В	Α	В	

4 依据上表的数字再对照下表即可得 UPC-E 的编码

Character Value	(A)	(B)
0	0001101	0100111
1	0011001	0110011
2	0010011	0011011
3	0111101	0100001
4	0100011	0011101
5	0110001	0111001
6	0101111	0000101
7	0111011	0010001
8	0110111	0001001
9	0001011	0010111