## Отчёт по лабораторной работе №7. Эффективность рекламы.

Предмет: математическое моделирование

Александр Сергеевич Баклашов

## Содержание

| 1 | Целі                           | ь работ | ы                                | 4  |  |  |  |  |  |
|---|--------------------------------|---------|----------------------------------|----|--|--|--|--|--|
| 2 | Задание                        |         |                                  |    |  |  |  |  |  |
| 3 | Теор                           | етичес  | кое введение                     | 6  |  |  |  |  |  |
| 4 | Выполнение лабораторной работы |         |                                  |    |  |  |  |  |  |
|   | 4.1                            | Задач   | а (Вариант 38)                   | 8  |  |  |  |  |  |
|   | 4.2                            | Решен   | ние                              | 8  |  |  |  |  |  |
|   |                                | 4.2.1   | Код                              | 8  |  |  |  |  |  |
|   |                                | 4.2.2   | Параметры симуляции для 1 случая | 9  |  |  |  |  |  |
|   |                                | 4.2.3   | График для 1 случая              | 10 |  |  |  |  |  |
|   |                                | 4.2.4   | Параметры симуляции для 2 случая | 11 |  |  |  |  |  |
|   |                                | 4.2.5   | График для 2 случая              | 12 |  |  |  |  |  |
|   |                                | 4.2.6   | Параметры симуляции для 3 случая | 14 |  |  |  |  |  |
|   |                                | 4.2.7   | График для 3 случая              | 14 |  |  |  |  |  |
| 5 | Выв                            | оды     |                                  | 16 |  |  |  |  |  |
| 6 | Библ                           | пиограф | рия                              | 17 |  |  |  |  |  |

# **List of Figures**

| 4.1 | Код                                         |  |  |  |  | 9  |
|-----|---------------------------------------------|--|--|--|--|----|
| 4.2 | Параметры симуляции для 1 случая            |  |  |  |  | 10 |
| 4.3 | График распространения рекламы для 1 случая |  |  |  |  | 11 |
| 4.4 | Параметры симуляции для 2 случая            |  |  |  |  | 12 |
| 4.5 | График распространения рекламы для 2 случая |  |  |  |  | 13 |
| 4.6 | Максимальное значение                       |  |  |  |  | 13 |
| 4.7 | Параметры симуляции для 3 случая            |  |  |  |  | 14 |
| 4.8 | График распространения рекламы для 3 случая |  |  |  |  | 15 |

## 1 Цель работы

Рассмотреть математическую модель распространения рекламы. С помощью рассмотренной модели и теоретических данных научиться строить модели такого типа.

### 2 Задание

В городе открылся новый салон красоты. Полагаем, что на момент открытия о салоне знали  $N_0$  потенциальных клиентов. По маркетинговым исследованиям известно, что в районе проживают N потенциальных клиентов салона. Поэтому после открытия салона руководитель запускает активную рекламную кампанию. После этого скорость изменения числа знающих о салоне пропорциональна как числу знающих о нем, так и числу не знающих о нем.

Построить график распространения рекламы, математическая модель которой описывается данным уравнением (3 случая). [3]

### 3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что  $\frac{dn}{dt}$  - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:  $\alpha_1(t)(N-n(t))$ , где N - общее число потенциальных платежеспособных покупателей,  $\alpha_1(t)>0$  - характеризует интенсивность рекламной

кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной  $\alpha_2(t)(N-n(t))$ , эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\tfrac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t)).$$

При  $\alpha_1(t)\gg \alpha_2(t)$  получается модель типа модели Мальтуса.

В обратном случае, при  $\alpha_1(t) \ll \alpha_2(t)$  получаем уравнение логистической кривой. [2]

### 4 Выполнение лабораторной работы

#### 4.1 Задача (Вариант 38)

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением: 1.  $\frac{dn}{dt}$ =(0.25+0.000075n(t))(N-n(t))

2. 
$$\frac{dn}{dt}$$
= $(0.000075 + 0.25n(t))(N - n(t))$ 

3. 
$$\frac{dn}{dt}$$
= $(0.25sin(t) + 0.75*t*n(t))(N - n(t))$ 

При этом объем аудитории N=1130, в начальный момент о товаре знает 11 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение. [3]

#### 4.2 Решение

#### 4.2.1 Код

Напишем код в OpenModelica [1] (рис. 4.1)



Figure 4.1: Код

#### 4.2.2 Параметры симуляции для 1 случая

Зададим параметры симуляции для 1 случая (рис. 4.2)



Figure 4.2: Параметры симуляции для 1 случая

#### 4.2.3 График для 1 случая

Построим график распространения рекламы для 1 случая. (рис. 4.3)



Figure 4.3: График распространения рекламы для 1 случая

В данном случае  $\alpha_1(t) \gg \alpha_2(t)$ , следовательно, получаем модель типа модели Мальтуса.

### 4.2.4 Параметры симуляции для 2 случая

Зададим параметры симуляции для 2 случая (рис. 4.4)



Figure 4.4: Параметры симуляции для 2 случая

#### 4.2.5 График для 2 случая

Построим график распространения рекламы для 2 случая. (рис. 4.5)



Figure 4.5: График распространения рекламы для 2 случая

В данном случае  $\alpha_1(t) \ll \alpha_2(t)$ , следовательно, получаем уравнение логистической кривой.

Определим в какой момент времени скорость распространения рекламы будет иметь максимальное значение. (рис. 4.6)



Figure 4.6: Максимальное значение

#### 4.2.6 Параметры симуляции для 3 случая

Зададим параметры симуляции для 3 случая (рис. 4.7)



Figure 4.7: Параметры симуляции для 3 случая

#### 4.2.7 График для 3 случая

Построим график распространения рекламы для 3 случая. (рис. 4.8)



Figure 4.8: График распространения рекламы для 3 случая

## 5 Выводы

В ходе данной лабораторной работы я рассмотрел математическую модель распространения рекламы. С помощью рассмотренной модели и теоретических данных научился строить модели такого типа.

## 6 Библиография

- 1. Modelica: Language Specification. 308 с. [Электронный ресурс]. М. URL: Language Specification (Дата обращения: 25.03.2021).
- 2. Лабораторная работа №7. Эффективность рекламы. 5 с. [Электронный ресурс]. М. URL: Лабораторная работа №7. Эффективность рекламы. (Дата обращения: 25.03.2021).
- 3. Лабораторная работа №7. Варианты. [Электронный ресурс]. М. URL: Варианты (Дата обращения: 25.03.2021).