Optimization Techniques

Genetic Algorithms

Optimization Techniques

- Mathematical Programming
- Network Analysis
- Branch & Bound
- Genetic Algorithm
- Simulated Annealing
- Tabu Search

Genetic Algorithm

Based on Darwinian Paradigm

Intrinsically a robust search and optimization mechanism

Genetic Algorithm Introduction 1

- Inspired by natural evolution
- Population of individuals
 - Individual is feasible solution to problem
- Each individual is characterized by a Fitness function
 - Higher fitness is better solution
- Based on their fitness, parents are selected to reproduce offspring for a new generation
 - Fitter individuals have more chance to reproduce
 - New generation has same size as old generation; old generation dies
- Offspring has combination of properties of two parents
- If well designed, population will converge to optimal solution

Algorithm

```
BEGIN
  Generate initial population;
  Compute fitness of each individual;
 REPEAT /* New generation /*
    FOR population size / 2 DO
      Select two parents from old generation;
       /* biased to the fitter ones */
      Recombine parents for two offspring;
      Compute fitness of offspring;
      Insert offspring in new generation
    END FOR
  UNTIL population has converged
END
```

Example of convergence

Introduction 2

 Reproduction mechanisms have no knowledge of the problem to be solved

- Link between genetic algorithm and problem:
 - Coding
 - Fitness function

Basic principles 1

- Coding or Representation
 - String with all parameters
- Fitness function
 - Parent selection
- Reproduction
 - Crossover
 - Mutation
- Convergence
 - When to stop

Basic principles 2

- An individual is characterized by a set of parameters: Genes
- The genes are joined into a string: Chromosome
- The chromosome forms the genotype
- The genotype contains all information to construct an organism: the phenotype
- Reproduction is a "dumb" process on the chromosome of the genotype
- Fitness is measured in the real world ('struggle for life') of the phenotype

Coding

- Parameters of the solution (genes) are concatenated to form a string (chromosome)
- All kind of alphabets can be used for a chromosome (numbers, characters), but generally a binary alphabet is used
- Order of genes on chromosome can be important
- Generally many different codings for the parameters of a solution are possible
- Good coding is probably the most important factor for the performance of a GA
- In many cases many possible chromosomes do not code for feasible solutions

Genetic Algorithm

- Encoding
- Fitness Evaluation
- Reproduction
- Survivor Selection

Encoding

- Design alternative → individual (chromosome)
- Single design choice → gene
- Design objectives → fitness

Example

- Problem
 - Schedule n jobs on m processors such that the maximum span is minimized.

Design alternative: job i (i=1,2,...n) is assigned to processor j (j=1,2,...,m)

Individual: A n-vector **x** such that $x_i = 1, ..., or m$

Design objective: minimize the maximal span

Fitness: the maximal span for each processor

$$span_{j \in \{1,2,..m\}} = \sum_{i=1}^{n} C_{i}M_{ij}$$

, where C_j is the job length and M_{ij} = 1 if i_{th} job is allocated to j_{th} processor

Example of coding for TSP

Travelling Salesman Problem

- Binary
 - Cities are binary coded; chromosome is string of bits
 - ☐ Most chromosomes code for illegal tour
 - ☐ Several chromosomes code for the same tour
- Path
 - Cities are numbered; chromosome is string of integers
 - ☐ Most chromosomes code for illegal tour
 - ☐ Several chromosomes code for the same tour
- Ordinal
 - Cities are numbered, but code is complex
 - All possible chromosomes are legal and only one chromosome for each tour
- Several others

Reproduction

- Reproduction operators
 - Crossover
 - Mutation

Reproduction

Crossover

- Two parents produce two offspring
- There is a chance that the chromosomes of the two parents are copied unmodified as offspring
- There is a chance that the chromosomes of the two parents are randomly recombined (crossover) to form offspring
- Generally the chance of crossover is between 0.6 and 1.0

Mutation

- There is a chance that a gene of a child is changed randomly
- Generally the chance of mutation is low (e.g. 0.001)

Reproduction Operators

- Crossover
 - Generating offspring from two selected parents
 - ☐ Single point crossover
 - □ Two point crossover (Multi point crossover)
 - □ Uniform crossover

One-point crossover 1

- Randomly one position in the chromosomes is chosen
- Child 1 is head of chromosome of parent 1 with tail of chromosome of parent 2
- Child 2 is head of 2 with tail of 1

Parents: 1010001110 0011010010
Offspring: 1010010010

Reproduction Operators comparison

Single point crossover

• Two point crossover (Multi point crossover)

One-point crossover - Nature

Two-point crossover

- Randomly two positions in the chromosomes are chosen
- Avoids that genes at the head and genes at the tail of a chromosome are always split when recombined

Uniform crossover

- A random mask is generated
- The mask determines which bits are copied from one parent and which from the other parent
- Bit density in mask determines how much material is taken from the other parent (takeover parameter)

Mask: 0110011000 (Randomly generated)

Parents: 1010001110 0011010010

Offspring: 0011001010 1010010110

Reproduction Operators

Uniform crossover

- Is uniform crossover better than single crossover point?
 - Trade off between
 - Exploration: introduction of new combination of features
 - Exploitation: keep the good features in the existing solution

Problems with crossover

- Depending on coding, simple crossovers can have high chance to produce illegal offspring
 - E.g. in TSP with simple binary or path coding, most offspring will be illegal because not all cities will be in the offspring and some cities will be there more than once
- Uniform crossover can often be modified to avoid this problem
 - E.g. in TSP with simple path coding:
 - ☐ Where mask is 1, copy cities from one parent
 - ☐ Where mask is 0, choose the remaining cities in the order of the other parent

Reproduction Operators

- Mutation
 - Generating new offspring from single parent

- Maintaining the diversity of the individuals
 - ☐ Crossover can only explore the combinations of the current gene pool
 - Mutation can "generate" new genes

Reproduction Operators

- Control parameters: population size, crossover/mutation probability
 - Problem specific
 - Increase population size
 - ☐ Increase diversity and computation time for each generation
 - Increase crossover probability
 - □ Increase the opportunity for recombination but also disruption of good combination
 - Increase mutation probability
 - ☐ Closer to randomly search
 - ☐ Help to introduce new gene or reintroduce the lost gene
- Varies the population
 - Usually using crossover operators to recombine the genes to generate the new population, then using mutation operators on the new population

Parent/Survivor Selection

- Strategies
 - Survivor selection

□Always keep the best one

□Elitist: deletion of the K worst

□Probability selection: inverse to their fitness

DEtc.

Parent/Survivor Selection

- Too strong fitness selection bias can lead to suboptimal solution
- Too little fitness bias selection results in unfocused and meandering search

Parent/Survivor Selection

Strategies

- Parent selection
 - □ Uniform randomly selection
 - ☐ Probability selection: proportional to their fitness
 - □ Tournament selection (Multiple Objectives)

Build a small comparison set

Randomly select a pair with the higher rank one beats the lower one

Non-dominated one beat the dominated one

Niche count: the number of points in the population within certain distance, higher the niche count, lower the rank.

Parent selection

Chance to be selected as parent proportional to fitness

Roulette wheel

To avoid problems with fitness function

Tournament

Not a very important parameter

Tournament Selection

- choose k (the tournament size) individuals from the population at random
- choose the best individual from the tournament with probability p
- choose the second best individual with probability p*(1-p)
- choose the third best individual with probability p*((1-p)^2)
- and so on

Tournament

Binary tournament

- Two individuals are randomly chosen; the fitter of the two is selected as a parent
- Probabilistic binary tournament
 - Two individuals are randomly chosen; with a chance p, 0.5<p<1, the fitter of the two is selected as a parent
- Larger tournaments
 - n individuals are randomly chosen; the fittest one is selected as a parent
- By changing n and/or p, the GA can be adjusted dynamically

Roulette wheel

- Sum the fitness of all chromosomes, call it T
- Generate a random number N between 1 and T
- Return chromosome whose fitness added to the running total is equal to or larger than N
- Chance to be selected is exactly proportional to fitness

```
Chromosome: 1 2 3 4 5 6 Fitness: 8 2 17 7 4 11 Running total: 8 10 27 34 38 49 N (1 \le N \le 49): 23 Selected: 3
```

Problems with fitness range

Premature convergence

- ∆Fitness too large
- Relatively superfit individuals dominate population
- Population converges to a local maximum
- Too much exploitation; too few exploration

Slow finishing

- ∆Fitness too small
- No selection pressure
- After many generations, average fitness has converged, but no global maximum is found; not sufficient difference between best and average fitness
- Too few exploitation; too much exploration

Solutions for these problems

- Use tournament selection
 - Implicit fitness remapping
- Adjust fitness function for roulette wheel
 - Explicit fitness remapping
 - ☐ Fitness scaling
 - □ Fitness ranking

Fitness Function

Purpose

- Parent selection
- Measure for convergence
- For Steady state: Selection of individuals to die
- Should reflect the value of the chromosome in some "real" way
- Next to coding the most critical part of a GA

Fitness scaling

- Fitness values are scaled by subtraction and division so that worst value is close to 0 and the best value is close to a certain value, typically 2
 - Chance for the most fit individual is 2 times the average
 - Chance for the least fit individual is close to 0

•
$$\overline{x_i} = 2 * \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

- Problems when the original maximum is very extreme (super-fit) or when the original minimum is very extreme (super-unfit)
 - Can be solved by defining a minimum and/or a maximum value for the fitness

Example of Fitness Scaling

Fitness ranking

- Individuals are numbered in order of increasing fitness
- The rank in this order is the adjusted fitness
- Starting number and increment can be chosen in several ways and influence the results
- No problems with super-fit or super-unfit
- Often superior to scaling and windowing

Fitness Evaluation

- A key component in GA
- Time/quality trade off
- Multi-criterion fitness

Multi-objective/ multi criterion fitness

- Involve more than one objective function that are to be minimized or maximized
- Answer is set of solutions that define the best tradeoff between competing objectives
- General Form:

Mathematically

min/max
$$f_m(\mathbf{x})$$
, $m=1,2,\cdots,M$
subject to $g_j(\mathbf{x}) \ge 0$, $j=1,2,\cdots,J$
 $h_k(\mathbf{x}) = 0$, $k=1,2,\cdots,K$
 $x_i^{(L)} \le x_i \le x_i^{(U)}$, $i=1,2,\cdots,n$

Example

 Buying a car: minimum cost, maximum comfort (Multiobjective)

Goal: Minimize f1(x)

Maximize f2(x)

Now, determine the ranking.

Dominance

- In the single-objective optimization problem, the superiority of a solution over other solutions is easily determined by comparing their objective function values
- Since multi-objective optimization problem deals with multiple objective functions, it is not easy to determine which solution/ set of solutions is best.
 - In multi-objective optimization problem, the goodness of a solution is determined by the dominance.

Test of Dominance

Dominance Test:

Solution x_1 dominates x_2 , if

- Solution x_1 is no worse than x_2 in all objectives.
- Solution x_1 is strictly better than x_2 in at <u>least one objective</u>
- x_1 dominates $x_2 \Leftrightarrow x_2$ is dominated by x_1
- Non-dominated solutions :
 - If two solutions are compared, then the solutions are said to be non-dominated with respect to each other IF neither solution dominates the other

Example Dominance Test

- 1 Vs 2: 1 dominates 2
- 1 Vs 5: 5 dominates 1
- 1 Vs 4: Neither solution dominates

Pareto Optimal Solution

- Non-dominated solution set
 - Given a set of solutions, the non-dominated solution set is a set of all the solutions that are not dominated by any member of the solution set
- The non-dominated set of the entire feasible decision space is called the Pareto-optimal set
- The boundary defined by the set of all point mapped from the Pareto optimal set is called the Pareto-optimal front

Graphical Depiction of Pareto Optimal Solution

Graphical Depiction of Pareto Optimal Solution 2

Note: here the plot shows a maximization problem (aiming for higher objectives). Circles are pareto optimal, triangles are weakly pareto optimal.

Graphical Depiction of Pareto Optimal Solution 3

Hotel	Stars	Distance from Beach	Price
Α	**	0.7	1,175
В	*	1.2	1,237
C	*	0.2	750
D	***	0.2	2,250
Е	***	0.5	2,550
F	**	0.5	980

We prefer hotels that are fancier, closer to the beach, and cheaper. Hotels A, B, E can be eliminated (not pareto optimal). Note that Hotel F is not the best in any objective, yet it is pareto optimal.¹

Goals in MOO

- Find set of solutions as close as possible to Pareto-optimal front
- To find a set of solutions as diverse as possible

How to obtain Pareto-optimal front?

```
Time complexity:
fast-nondominated-sort (P)
                                                                           O(mN^2)
for each p \in P
   for each q \in P
     if (p \prec q) then
                                                  if p dominates q then
         S_p = S_p \cup \{q\}
                                                  include q in S_p
      else if (q \prec p) then
                                                  if p is dominated by q then
         n_p = n_p + 1
                                                  increment n_p
  if n_p = 0 then
                                                  if no solution dominates p then
      \mathcal{F}_1 = \mathcal{F}_1 \cup \{p\}
                                                  p is a member of the first front
i = 1
while \mathcal{F}_i \neq \emptyset
  \mathcal{H} = \emptyset
  for each p \in \mathcal{F}_i
                                                  for each member p in \mathcal{F}_i
                                                  modify each member from the set S_p
      for each q \in S_p
                                                  decrement n_q by one
         n_{a} = n_{a} - 1
         if n_q = 0 then \mathcal{H} = \mathcal{H} \cup \{q\}
                                                  if n_q is zero, q is a member of a list \mathcal{H}
  i = i + 1
   \mathcal{F}_i = \mathcal{H}
                                                  current front is formed with all members of \mathcal{H}
```

Crowding distance

- To get an estimate of the density of solutions surrounding a particular point in the population, we take the average distance of the two points on either side of this point along each of the objectives.
- The quantity $i_{distance}$ serves as an estimate of the size of the largest cuboid enclosing the point i without including any other point in the population (we call this the *crowding distance*).

Crowding distance

 In following figure, the crowding distance of the i th solution in its front (marked with solid circles) is the average sidelength of the cuboid (shown with a dashed box).

Crowding distance Algorithm

```
\begin{array}{ll} \text{crowding-distance-assignment} \ (\mathcal{I}) \\ l = |\mathcal{I}| & \text{number of solutions in } \mathcal{I} \\ \text{for each } i, \text{ set } \mathcal{I}[i]_{distance} = 0 & \text{initialize distance} \\ \text{for each objective } m \\ \mathcal{I} = \text{sort}(\mathcal{I}, m) & \text{sort using each objective value} \\ \mathcal{I}[1]_{distance} = \mathcal{I}[l]_{distance} = \infty & \text{so that boundary points are always selected} \\ \text{for } i = 2 \text{ to } (l-1) & \text{for all other points} \\ \mathcal{I}[i]_{distance} = \mathcal{I}[i]_{distance} + (\mathcal{I}[i+1].m - \mathcal{I}[i-1].m) \end{array}
```

Here $\mathcal{I}[i].m$ refers to the m-th objective function value of the i-th individual in the set \mathcal{I} . The complexity of this procedure is governed by the sorting algorithm. In the worst case (when all solutions are in one front), the sorting requires $O(mN\log N)$ computations.

Description of the Crowding distance Algorithm

- The crowding-distance computation requires sorting the population according to each objective function value in ascending order of magnitude.
- Thereafter, for each objective function, the boundary solutions (solutions with smallest and largest function values) are assigned an infinite distance value.
- All other intermediate solutions are assigned a distance value equal to the absolute normalized difference in the function values of two adjacent solutions.
- This calculation is continued with other objective functions.
- The overall crowding-distance value is calculated as the sum of individual distance values corresponding to each objective.
- Each objective function is normalized before calculating the crowding distance.

Crowded Comparison Operator

- The crowded comparison operator \geq_n guides the selection process at the various stages of the algorithm towards a uniformly spread out Pareto-optimal front.
- Let us assume that every individual *i* in the population has two attributes.
 - Non-domination rank (i_{rank})
 - Local crowding distance $(i_{distance})$
- We now define a partial order \geq_n as
- $i \ge_n j$ if $(i_{rank} < j_{rank})$ or $((i_{rank} = j_{rank}))$ and $(i_{distance} > j_{distance})$
- Between two solutions with differing non-domination ranks we prefer the point with the lower rank. Otherwise, if both the points belong to the same front then we prefer the point which is located in a region with lesser number of points (the size of the cuboid inclosing it is larger)

NSGA II

- Non-dominated Sorting Genetic Algorithm (NSGA)-II performs better than other constrained multi-objective optimizers* (PAEA, SPEA)
 - Better and faster convergence to true optimal front
 - Better spread on Pareto optimal front
- NSGA-II ranks designs based on non-domination
- For example : min-max problem

 Design 3 is dominated by both design A and B (and thus undesirable), but design A and B are non-dominated with respect to one another (and thus Pareto optimal).

Design	Cost	Comfort
Α	25K	65%
В	45K	80%
3	55K	50%

NSGA II: Details

- Ranks designs based on non-domination
 - The Pareto front is all rank 1 designs
 - If the rank 1 designs are removed, the next Pareto front will be all rank 2 designs, etc.

NSGA II: Selection and Fitness

- More fit designs have higher chance of passing their genes to the next generation
- Fitness is based on rank, low rank designs have higher fitness
- Selection :
 - Using rank based roulette wheel
 - Create roulette wheel with ns segments
 - Create random number between 0 and 1
 - Find segment on roulette wheel that contains the random number
 - Segment number corresponds to design number
 - Build parent database

NSGA II: Child Population Creation

- Select two parents for each reproduction –randomly from parent database
- Crossover:
 - Probability close to 1
 - One point crossover –randomly select crossover point
 - Child = [parent1(1:cross_pt),parent2(cross_pt+1:N_var)]
- Mutation :
 - Exploration parameter
 - Probability of mutation is typically small (e.g. 0.2)
 - Randomly select gene to mutate
 - Randomly modify gene

NSGA II: Elitism

- Keeps best individuals
 - Combine the child and parent population
 - Select best individuals from the combined population

Reference

 Deb K, Pratap A, Agarwal S, Meyarivan TA. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation. 2002 Aug 7;6(2):182-97.