

**Multivariate Analysis and Statistical Learning** 

**Backfitting process in Generalized Additive Model** 

Massimiliano Mancini

October, 14 2022



#### **Generalized Additive Model**

Generalized additive models or simply GAMs extend the standard linear model by allowing non-linear functions of each of the variables, while maintaining additivity.

The GAM is in the form

$$y_i = \beta_0 + \sum_{j=1}^p f_j(x_{ij}) + \varepsilon_i$$

It is called an additive model because we calculate a separate  $f_j$  for each  $X_i$ , and then add together all of their contributions



# **Backfitting**

Standard software such as the **gam()** function in R can be used to fit GAMs using smoothing splines, via an approach known as *backfitting*.

This method fits a model involving multiple predictors by *backfitting* repeatedly updating the fit for each predictor in turn, holding the others fixed.

To understand the backfitting process, we can simulate it on a traditional linear model.



# **Backfitting**

Let's pretend we don't have R functions able to fit more than one parameter.

To estimate parameters we keep fix one estimated (hat) parameter at time e repeat the process until results converge.

For each parameter let's estimate the following formula

$$\underline{Y} - \widehat{\beta_1} X_1 - \widehat{\beta_2} X_2 - \dots - \widehat{\beta_{k-1}} X_{k-1} - \widehat{\beta_{k+1}} X_{k+1} - \dots - \widehat{\beta_p} X_p = \beta_0 + \beta_k X_k + \varepsilon$$

until it converges



#### **Results**

In few steps all five parameters are found even if we start from random values.

In the same way, parameters in GAM are found one by one, using backfitting







### References

G. James, D. Witten, T. Hastie, R. Tibshirani

An Introduction to Statistical Learning with Applications in R

**Second Edition**