Machine Learning (IT3190E)

Quang Nhat NGUYEN

quang.nguyennhat@hust.edu.vn

Hanoi University of Science and Technology
School of Information and Communication Technology
Academic year 2020-2021

The course's content:

- Introduction
- Performance evaluation of ML system
- Supervised learning
 - Regression problem
 - Linear regression
- Unsupervised learning
- Ensemble learning
- Reinforcement learning

Supervised vs. Unsupervised learning

Supervised learning

- The training set is a set of examples, each associated with a class/output value
- The goal is to learn (approximate) a hypothesis (e.g., a classification function, or a regression function) that fits the given labelled training set
- The learned hypothesis will then be used to classify/predict future (unseen) examples

Unsupervised learning

- The training set is a set of instances with no class/output value
- The goal is to find some intrinsic groups/structures/relations

Regression problem

- Regression problem belongs to supervised learning
- The goal of the regression problem is to predict a vector of continuous (i.e., real) values

f: $X \rightarrow Y$ where Y is a vector of real values

Regression problem: Performance evaluation

- The system's output is a numeric value
- □ Error (i.e., loss) function
 - MAE (mean absolute error): $MAE Error(x) = \frac{\sum_{i=1}^{n} |d(x) o(x)|}{n}$
 - RMSE (root mean squared error): $RMSE Error(x) = \sqrt{\frac{\sum_{i=1}^{n} (d(x) o(x))^{2}}{n}}$
 - The overall error on the entire test set : $Error = \frac{1}{|D_test|} \sum_{x \in D_test} Error(x);$
 - n: The number of outputs
 - o(x): Vector of the outputs predicted by the system for example x
 - d (x): Vector of the true (i.e., desired) outputs for example x
- Accuracy can be defined as an inverse function of the error function

Linear regression – Introduction

- Given an input example, to predict a real-valued output
- A simple-but-effective machine learning method <u>appropriate</u> when the target function (to be learned) is a linear function

$$f(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n = w_0 + \sum_{i=1}^n w_i x_i \qquad (w_i, x_i \in \mathbb{R})$$

To learn (approximately) a target function f

$$f: X \rightarrow Y$$

- X: Input space (n-dimensional vector space Rⁿ)
- Y: Output space (real-valued space ℝ)
- f: The function to be learned (a linear mapping function)
- In fact, to learn a vector of weights: w = (w₀, w₁, w₂, ...,w_n)

Linear regression – Example

Which linear function f(x) is appropriate?

x	f(x)
0.13	-0.91
1.02	-0.17
3.17	1.61
-2.76	-3.31
1.44	0.18
5.28	3.36
-1.74	-2.46
7.93	5.56

For example: f(x) = -1.02 + 0.83x

Training/test examples

- For each training example $x = (x_1, x_2, ..., x_n)$, where $x_i \in \mathbb{R}$
 - Expected output value: c_x (∈R)
 - Real output value (i.e., produced by the system): $y_x = w_0 + \sum_{i=1}^n w_i x_i$
 - \rightarrow w_i is the system's current estimation for the weight of the *i*-th attribute
 - ightarrow The real output value y_x is expected to (approximately) be c_x
- For each test example $z = (z_1, z_2, ..., z_n)$
 - To predict (i.e., compute) its output value
 - By applying the learned target function f

Error function

- The linear regression learning algorithm needs to define an error (i.e., loss) function
 - → To evaluate the degree of error made by the system in the training phase
- Definition of the error function E
 - The system's error for each training example x:

$$E(x) = \frac{1}{2}(c_x - y_x)^2 = \frac{1}{2}\left(c_x - w_0 - \sum_{i=1}^n w_i x_i\right)^2$$

• The system's error for the entire training set D:

$$E = \sum_{x \in D} E(x) = \frac{1}{2} \sum_{x \in D} (c_x - y_x)^2 = \frac{1}{2} \sum_{x \in D} \left(c_x - w_0 - \sum_{i=1}^n w_i x_i \right)^2$$

Linear regression – Algorithm

- The learning of the target function f is equivalent to the learning of the weights vector w to minimize the training error E
 - → This method is called "Least-Square Linear Regression"
- The training phase
 - Initialize the weights vector w
 - Compute the training error E
 - Update the weights vector w according to the delta rule
 - Repeat, until converging to a (locally) small error value E
- The prediction phase

For a new example z, its output value is computed by:

$$f(z) = w^*_0 + \sum_{i=1}^n w^*_i z_i$$
 where $w^* = (w^*_0, w^*_1, ..., w^*_n)$ is the learned weights vector

Delta rule

- To update the weights vector \mathbf{w} towards the direction of decreasing the training error \mathbf{E}
 - η is the learning rate (a positive constant)
 - → Define the degree of changing the weight values at a learning step
 - Instance-to-instance/incremental update: $w_i \leftarrow w_i + \eta (c_x y_x) x_i$
 - Batch update: $w_i \leftarrow w_i + \eta \sum_{x \in D} (c_x y_x) x_i$
- Alternative names of the delta rule:
 - LMS (least mean square) rule
 - Adaline rule
 - Widrow-Hoff rule

Batch vs. incremental update

Batch update

- At each learning step, the weights are updated after <u>all</u> the training examples of the batch are introduced to (learned by) the system
 - The error is computed accumulatively for all the training examples
 - The weights are updated according to the entirely accumulated error
- Instance-to-instance/ incremental update
 - At each learning step, the weights are updated immediately after
 <u>each</u> training example is introduced to (learned by) the system
 - An individual error is computed for the introduced training example
 - The weights are updated immediately according to this error

LSLR_batch(D, η)

return w

for each attribute f; w_i ← a (small) randomly initialized value while not CONVERGENCE for each attribute f; delta $w_i \leftarrow 0$ for each training example $x \in D$ Compute the real output value y_x for each attribute f; delta $w_i \leftarrow delta w_i + \eta (c_x - y_x) x_i$ for each attribute f_i $W_i \leftarrow W_i + delta W_i$ end while

LSLR_incremental(D, η)

for each attribute fi

w_i ← a (small) randomly initialized value

while not CONVERGENCE

for each training example $x \in D$

Compute the real output value y_x

for each attribute f_i

$$W_i \leftarrow W_i + \eta (C_x - Y_x) X_i$$

end while

return w

Stop conditions for the learning process

Stop conditions for the learning process

- In the learning algorithms LSLR_batch and LSLR_incremental, the learning process stops when the conditions defined by CONVERGENCE are satisified
- The learning stop conditions are often defined based on some system performance evaluation criteria
 - Stop, if the error is less than a threshold
 - Stop, if the error at a learning step (iteration) is higher than the error at the previous learning step
 - Stop, if the difference of the errors between two consecutive learning steps is less than a threshold

•