과목3. 데이터 분석 기획

■ 분석 기획

- 분석을 수행할 과제 정의하고 의도했던 결과를 도출할 수 있도록 적절하게 관리할 수 있는 방안을 사전에 계획하는 작업
- 어떠한 목표를 달성하기 위하여 어떠한 데이터를 갖고 어떤 방식으로 수행할 지에 대한 일련의 계획 수립 작업

■ 분석 대상과 방법

- 분석 대상과 방법을 모두 알 때 : optimization
- 분석 대상은 알고 방법을 모를 때 : solution
- 분석 대상은 모르고 방법을 알 때 : insight
- 분석 대상과 방법을 모두 모를 때 : discovery

■ 목표 시점 별 분석 기획 방안

- ◆ 과제 중심적인 접근 방식 : 당면한 과제를 빠르게 해결
- 1차 목표 : speed & test
- 과제 유형 : quick & win
- 접근 방식: problem solving
- ◆ 장기적인 마스터 플랜 : 지속적인 분석 내재화
- 1차 목표 : accuracy & deploy
- 과제 유형 : long term view
- 접근 방식: problem definition

- 분석 기획시 고려사항
- i. 이용 가능한 데이터
- 데이터 확보가 우선적. 데이터의 유형에 따라 적용 가능한 솔루션 및 분석 방법이 다르기 때문에 유형에 대한 분석이 먼저 필요함
- transaction data, human generated data, mobile data, machine and sensor data 등
- ii. 적절한 활용방안과 Use Case
- 기존에 잘 구현되어 활용되고 있는 유사 분석 시나리오 및 솔루션을 최대한 활용
- customer analytics, social media analytics, plant and facility management, pipeline management, price optomization 등
- iii. 장애 요소들에 대한 사전계획 수립
- 일회성 분석으로 그치지 않고 조직의 역량으로 내재화하기 위해 충분하고 계속적인 교육 및 활용방안 등의 변화 관리가 고려되어야 함
- cost, simplicity, performance, culture 등
- 데이터 기반 의사결정의 필요성
 - 경험과 감에 따른 의사결정 ⇒ 데이터 기반의 의사결정
 - 기업의 합리적 의사결정을 가로막는 장애요소 : 고정관념, 편향된 생각, 프레이밍 효과 등
- 분석 방법론 생성과정
 - 내재화 : 방법론 ⇨ 암묵지
 - 형식화 : 암묵지 ⇨ 형식지
 - 체계화 : 형식지 ⇒ 방법론

- 방법론 적용 업무의 특성에 따른 모델
- ◆ 폭포수 모델
- 단계를 순차적으로 진행하는 방법
- 이전 단계가 완료되어야 다음 단계로 진행될 수 있으며 문제가 발견될 시 피드백 과정이 수행됨
- 전체 과정의 이해가 쉽지만 고객 요구사항에 대한 상세 반영이 어려움
- ◆ 프로토타입 모델
- 점진적으로 시스템을 개발해 나가는 접근 방식
- 고객의 요구를 완전하게 이해하고 있지 못하거나 완벽한 요구 분석의 어려움을 해결하기 위해 일부분 우선 개발하여 제공함
- 시험 사용 후 사용자의 요구를 분석하거나 요구 정당성을 점검, 성능을 평가하여 그 결과를 통한 개선 작업을 시행하는 모델
- 고객의 요구사항을 충분히 반영할 수 있지만 다음 단계로 이동하였을 때 그 전 단계가 폐기됨
- ◆ 나선형 모델
- 반복을 통해 점증적으로 개발하는 방법
- 처음 시도하는 프로젝트에 적용이 용이함
- 관리 체계를 효과적으로 갖추지 못한 경우 복잡도가 상승하여 프로젝트 진행이 어려울 수 있음
- 위험성이 적어서 큰 프로젝트에 어울리지만 프로젝트 진행 속도가 느리고 관리가 어려움.

■ 방법론 구성

- i . 단계
- 최상위 계층으로서 프로세스 그룹을 통하여 완성된 단계별 산출물 생성
- 각 단계는 기준선으로 설정되어 관리되어야 하며 버전관리 등을 통해 통제됨
- ii. 태스크
- 단계를 구성하는 단위 활동으로써 물리적 또는 논리적 단위로 품질검토의 항목이 됨
- iii. 스탭
- WBS(Work Breakdown Structure)의 워크 패키지에 해당됨
- 입력자료, 처리 및 도구, 출력자료로 구성된 단위 프로세스

■ KDD 분석 방법론

- ◆ 개요
- Knowledge Discovery in Database
- 데이터로부터 통계적 패턴이나 지식을 찾기 위해 활용할 수 있도록 체계적으로 정리한 데이터마이닝 프로세스
- 데이터마이닝, 기계학습, 인공지능, 패턴인식, 데이터 시각화 등에서 응용될 수 있는 구조를 갖고 있음
- ◆ 분석 절차

- 1) 데이터셋 선택 (selection)
- 먼저 분석 대상의 비즈니스 도메인에 대한 이해와 프로젝트 목표 설정 필수
- 데이터베이스 또는 원시 데이터에서 분석에 필요한 데이터를 선택하는 단계
- 데이터마이닝에 필요한 목표 데이터를 구성하여 분석에 활용
- 2) 데이터 전처리 (preprocessing)
- 데이터에 포함되어 있는 잡음과 이상치, 결측치를 식별하고 필요시 제거하거나 의미있는 데이터로 재처리하여 데이터를 정제하는 단계
- 전처리 단계에서 추가로 요구되는 데이터가 필요한 경우 데이터 선택 프로세스를 재실행함
- 3) 데이터 변환 (transformation)
- 정제된 데이터에 분석 목적에 맞게 변수 생성, 변수 선택하고 차원을 축소하여 효율적으로 데이터마이닝을 할 수 있도록 데이터 변경하는 단계
- 데이터마이닝 프로세스를 진행하기 위해 학습용 데이터, 검증용 데이터로 데이터 분리
- 4) 데이터 마이닝 (data mining)
- 학습용 데이터를 이용하여 분석목적에 맞는 데이터마이닝 기법을 선택하고 적절한 알고리즘을 적용하여 데이터마이닝 작업 실행 단계
- 필요에 따라 전처리와 변환 프로세스를 추가로 실행하여 최적의 결과 산출
- 5) 데이터 마이닝 결과 평가 (interpretation/evaluation)
- 결과에 대한 해석과 평가, 그리고 분석 목적과의 일치성 확인
- 발견한 지식을 업무에 활용하기 위한 방안 마련의 단계
- 필요에 따라 데이터 선택 프로세스에서 데이터마이닝 프로세스 반복 수행
- CRISP-DM 분석 방법론
- ◆ 개요
- 주요한 5개 업체들이 주도한 계층적 프로세스 모델로 4개 레벨로 구성됨

◆ 4레벨 구조

- 최상위 레벨은 여러 개의 단계로 구성되고 각 단계는 일반화 태스크를 포함
- 일반화 태스크는 데이터마이닝의 단일 프로세스를 완전하게 수행하는 단위
- 일반화 태스크는 다시 구체적인 수행 레벨인 세분화 태스크로 구성됨
- 일반화 태스크 : 데이터 정제 ⇨ 세분화 태스크 : 범주형 데이터, 연속형 데이터 정제
- 마지막 레벨인 프로세스 실행은 데이터마이닝을 위한 구체적인 실행 포함

◆ 프로세스

- 6단계로 구성되며 각 단계는 단방향으로 구성되어 있지 않고 단계 간 피드백을 통해 완성도를 높임
- 1) 업무 이해 Business Understanding
- 비즈니스 관점에서 프로젝트 목적과 요구사항을 이해하기 위한 단계
- 도메인 지식을 데이터 분석을 위한 문제정의로 변경하고 초기 프로젝트 계획 수립 단계
- 업무 목적 파악, 상황 파악, 데이터 마이닝 목표 설정, 프로젝트 계획 수립
- 2) 데이터 이해 Data Understanding
- 분석을 위한 데이터를 수집하고 데이터 속성을 이해하기 위한 단계
- 데이터 품질에 대한 문제점을 식별하고 숨겨져 있는 인사이트 발견 단계
- 초기 데이터 수집, 데이터 기술 분석, 데이터 탐색, 데이터 품질 확인
- 3) 데이터 준비 Data Preparation
- 분석을 위해 수집된 데이터에서 분석기법에 적합한 데이터 편성 단계 (많은 시간 소요)
- 분석용 데이터 선택, 데이터 정제, 분석용 데이터 편성, 데이터 통합, 데이터 포맷팅

4) 모델링 Modeling

- 다양한 모델링 기법과 알고리즘을 선택하고 모델링 과정에서 사용되는 파라미터 최적화
- 모델링 과정에서 데이터가 추가로 필요한 경우 데이터 준비 단계 반복 수행 가능
- 모델링 결과를 테스트용 데이터로 평가하여 모델의 과적합 문제 확인
- 모델링 기법 선택, 모델 테스트 계획 설계, 모델 작성, 모델 평가

5) 평가 Evaluation

- 모델링 결과가 프로젝트 목적에 부합하는지 평가
- 데이터마이닝 결과를 최종적으로 수용할 것인지 판단
- 분석결과 평가, 모델링 과정 평가, 모델 적용성 평가

6) 전개 Deployment

- 모델링과 평가 단계를 통하여 완성된 모델을 실 업무에 적용하기 위한 계획 수립 단계
- 모니터링과 모델의 유지보수 계획 마련
- 마지막 단계, 프로젝트 종료 관련 프로세스를 수행하여 프로젝트 마무리
- 전개 계획 수립, 모니터링과 유지보수 계획 수립, 프로젝트 종료보고서 작성, 프로젝트 리뷰

■ KDD와 CRISP-DM 비교

KDD	KDD CRISP-DM		
분석대상 비즈니스 이해	업무 이해		
데이터 선택	데이터 이해		
데이터 전처리			
데이터 변환	데이터 준비		
데이터 마이닝	모델링		
데이터 마이닝 결과 평가	평가		
데이터 마이닝 활용	전개		

- 빅데이터 분석 방법론
- ◆ 빅데이터 분석의 계층적 프로세스
- * 빅데이터 분석을 위한 방법론은 계층적 프로세스 모델로써 3계층으로 구성 (위의 일반적 분석 방법론과 같음)

- ◆ 빅데이터 분석 방법론 5단계
- 1) 분석 기획 : 비즈니스 도메인과 문제점을 인식하고 분석 계획 및 프로젝트 수행계획을 수립하는 단계
- 2) 데이터 준비 : 비즈니스 요구사항과 데이터 분석에 필요한 원천 데이터를 정의하고 준비하는 단계
- 3) 데이터 분석 : 원천 데이터를 분석용 데이터로 편성하고 다양한 분석 기법과 알고리즘을 이용하여 데이터를 분석하는 단계
 - 분석 단계 수행 중, 추가적인 데이터 확보가 필요한 경우 데이터 준비 단계로 피드백하여 두 단계를 반복하여 진행함
- 4) 시스템 구현 : 분석 기획에 맞는 모델을 도출하고 이를 가동 시스템에 적용하거나 시스템 개발을 위한 검증으로 프로토타입 시스템을 구현함
- 5) 평가 및 전개 : 프로젝트의 성과를 평가하고 정리하거나 모델의 발전 계획을 수립하여 차기 분석 기획으로 전달하고 프로젝트를 종료하는 단계

- ◆ 5단계 세부단계 및 실제 업무
- 1) 분석 기획 (planning)
- A. 비즈니스 이해 및 범위 설정
- a. 비즈니스 이해
- 내부 업무 매뉴얼과 관련자료, 외부의 관련 비즈니스 자료를 조사하고 향후 프로젝트 진행을 위한 방향 설정
- 입력자료 : 업무 매뉴얼, 전문가 지식, 빅데이터 분석 대상 도메인의 관련자료
- 프로세스 및 도구 : 자료 수집 및 비즈니스 이해
- 출력자료 : 비즈니스 이해 및 도메인 문제점
- b. 프로젝트 범위 설정
- 프로젝트 목적에 부합하는 범위를 설정하고 프로젝트 범위 정의서인 SOW를 작성
- 입력자료 : 중장기 계획서, 빅데이터 분석 프로젝트 지시서, 비즈니스 이해 및 도메인 문제점
- 프로세스 및 도구 : 자료 수집 및 비즈니스 이해, 프로젝트 범위 정의서 작성 절차
- 출력자료 : 프로젝트 범위 정의서 (SOW)

B. 프로젝트 정의 및 계획 수립

- a. 데이터 분석 프로젝트 정의
- 프로젝트의 목표 및 KPI, 목표 수준 등을 구체화하여 상세 프로젝트 정의서를 작성
- 프로젝트 목표를 명확히 하기 위해 모델 운영 이미지 및 평가 기준 설정
- 입력자료: 프로젝트 범위 정의서 (SOW), 빅데이터 분석 프로젝트 지시서
- 프로세스 및 도구 : 프로젝트 목표 구체화, 모델 운영 이미지 설계
- 출력자료: 프로젝트 정의서, 모델 운영 이미지 설계서, 모델 평가 기준
- b. 프로젝트 수행 계획 수립
- 프로젝트의 목적 및 배경 기대효과, 수행방법, 일정 및 추진 조직, 프로젝트 관리 방안 작성
- WBS는 프로젝트 산출물 위주로 작성되어 프로젝트의 범위를 명확하게 함
- 입력자료 : 프로젝트 범위 정의서 (SOW), 모델 운영 이미지 설계서, 모델 평가 기준
- 프로세스 및 도구 : 프로젝트 수행 계획 작성, WBS 작성 도구
- 출력자료 : 프로젝트 수행 계획서, WBS

C. 프로젝트 위험계획 수립

- a. 데이터 분석 위험 식별
- 선행 프로젝트 산출물과 정리자료를 참조하고 전문가의 판단을 활용해 프로젝트의 발생 가능 위험을 식별함
- 위험의 영향도와 빈도, 발생가능성에 따라 위험의 우선순위 설정
- 입력자료: 프로젝트 범위 정의서 (SOW), 프로젝트 수행 계획서, 산출물 및 정리자료
- 프로세스 및 도구 : 위험 식별 절차, 위험 영향도 및 발생 가능성 분석, 위험 우선순위 판단
- 출력자료 : 식별된 위험 목록

- b. 위험 대응 계획 수립
- 예상되는 위험에 대해 회피, 전이, 완화, 수용으로 구분하여 위험관리 계획서 작성
- 입력자료 : 식별된 위험 목록, 프로젝트 범위 정의서 (SOW), 프로젝트 수행 계획서
- 프로세스 및 도구 : 위험 정량적 분석, 위험 정성적 분석
- 출력자료 : 위험 관리 계획서
- 2) 데이터 준비 (preparing)
- A. 필요 데이터 정의
- a. 데이터 정의
- 내/외부 원천 데이터 소스로부터 분석에 필요한 데이터 정의
- 입력자료: 프로젝트 수행 계획서, 시스템 설계서, ERD, 메타데이터 정의서, 문서 자료
- 프로세스 및 도구 : 내/외부 데이터 정의, 정형·비정형·반정형 데이터 정의
- 출력자료 : 데이터 정의서
- b. 데이터 획득 방안 수립
- 데이터 소스로부터 데이터 수집을 위한 구체적인 방안 수립
- 내부 데이터 획득에는 부서 간 업무협조와 개인정보보호 및 정보 보안과 관련한 문제점을 사전에 점검
- 외부 데이터 획득에는 다양한 인터페이스 및 법적인 문제점을 고려하여 상세한 데이터 획득 계획 수립
- 입력자료 : 데이터 정의서, 시스템 설계서, ERD, 메타데이터 정의서, 문서 자료, 데이터 구입
- 프로세스 및 도구 : 데이터 획득 방안 수립
- 출력자료 : 데이터 획득 계획서

B. 데이터 스토어 설계

- a. 정형 데이터 스토어 설계
- 구조화된 형식, 일반적으로 관계형 데이터베이스인 RDBMS 사용
- 효율적인 저장과 활용을 위해 데이터 스토어의 논리적, 물리적 설계를 구분하여 설계
- 입력자료 : 데이터 정의서, 데이터 획득 계획서
- 프로세스 및 도구 : 데이터베이스 논리설계, 데이터베이스 물리설계, 데이터 매핑
- 출력자료 : 정형 데이터 스토어 설계서, 데이터 매핑 정의서
- b. 비정형 데이터 스토어 설계
- 하둡, NoSQL 등을 이용하여 비정형·반정형 데이터를 저장하기 위한 논리적, 물리적 데이터 스토어 설계
- 입력자료: 데이터 정의서, 데이터 획득 계획서
- 프로세스 및 도구 : 비정형·반정형 데이터 논리 설계, 비정형·반정형 데이터 물리 설계
- 출력자료 : 비정형 데이터 스토어 설계서, 데이터 매핑 정의서

C. 데이터 수집 및 정합성 점검

- a. 데이터 수집 및 저장
- 크롤링 등 데이터 수집을 위한 도구와 프로그램 등을 이용하여 데이터 수집
- 수집된 데이터를 설계된 데이터 스토어에 저장
- 입력자료: 데이터 정의서, 데이터 획득 계획서, 데이터 스토어 설계서
- 프로세스 및 도구 : 데이터 크롤링 도구, ETL 도구, 데이터 수집 스크립트
- 출력자료 : 수집된 분석용 데이터

- b. 데이터 정합성 점검
- 데이터 스토어의 품질 점검을 통해 데이터 정합성 확보
- 데이터 품질 개선이 필요한 부분에 대해 보완 작업
- 입력자료 : 수집된 분석용 데이터
- 프로세스 및 도구 : 데이터 품질 확인, 정합성 점검 리스트
- 출력자료 : 정합성 점검 보고서
- 3) 데이터 분석 (analyzing)
- A. 분석용 데이터 준비
- a. 비즈니스 룰 확인
- 프로젝트 목표를 정확하게 인식하고 세부적인 비즈니스 룰을 파악하여 분석에 필요한 데이터 범위 확인
- 입력자료: 프로젝트 정의서, 프로젝트 수행 계획서, 데이터 정의서, 데이터 스토어
- 프로세스 및 도구 : 프로젝트 목표 확인, 비즈니스 룰 확인
- 출력자료 : 비즈니스 룰, 분석에 필요한 데이터 범위
- b. 분석용 데이터 셋 준비
- 데이터 스토어로부터 분석에 필요한 정형 비정형 데이터 추출
- 추출된 데이터는 데이터베이스나 구조화된 형태로 구성하고 필요시 분석을 위한 작업 공간과 전사 차원의 데이터 스토어로 분리 가능
- 입력자료: 데이터 정의서, 데이터 스토어
- 프로세스 및 도구: 데이터 선정, 데이터 변환, ETL 도구
- 출력자료 : 분석용 데이터 셋

B. 텍스트 분석

- a. 텍스트 데이터 확인 및 추출
- 데이터 스토어에서 필요한 텍스트 데이터 추출
- 입력자료 : 비정형 데이터 스토어
- 프로세스 및 도구 : 분석용 텍스트 데이터 확인, 텍스트 데이터 추출
- 출력자료 : 분석용 텍스트 데이터
- b. 텍스트 데이터 분석
- 추출된 텍스트 데이터를 분석 도구로 적재하여 다양한 기법을 분석하고 모델을 구축함
- 텍스트 분석을 위해 용어사전을 사전에 확보하고 업무 도메인에 맞도록 작성
- 구축된 모델은 시각화 도구를 이용하여 모델의 의미전달을 명확하게함
- 입력자료 : 분석용 텍스트 데이터 용어사전 (유의어, 불용어 등)
- 프로세스 및 도구 : 분류체계 설계, 형태소 분석, 키워드 도출, 토픽분석, 감성분석, 의견분석, 네트워크분석
- 출력자료 : 텍스트 분석 보고서

C. 탐색적 분석

- a. 탐색적 데이터 분석
- 다양한 관점 별로 기초 통계량 산출
- 데이터의 분포와 변수간의 관계 등 데이터 자체의 특성 및 데이터의 통계적 특성을 이해하고 모델링을 위한 기초자료로 활용
- 입력자료 : 분석용 데이터 셋
- 프로세스 및 도구 : EDA 도구, 통계분석, 연관성 분석, 데이터 분포 확인
- 출력자료 : 데이터 탐색 보고서

- b. 데이터 시각화
- 탐색적 데이터 분석을 위한 도구로 활용
- 수행된 데이터 시각화는 모델링 또는 향후 시스템 구현을 위한 사용자 인터페이스 또는 프로토타입으로 활용될 수 있음
- 입력자료 : 분석용 데이터 셋
- 프로세스 및 도구 : 시각화 도구, 시각화 패키지, 인포그래픽, 시각화 방법론
- 출력자료 : 데이터 시각화 보고서

D. 모델링

- a. 데이터 분할
- 모델의 과적합과 일반화를 위해 분석용 데이터셋을 훈련용과 테스트용으로 분할
- 모델에 적용하는 기법에 따라 데이터 분할 또는 검증 횟수, 생성 모델 개수 등 설정
- 입력자료 : 분석용 데이터 셋
- 프로세스 및 도구 : 데이터 분할 패키지
- 출력자료 : 훈련용 데이터, 테스트용 데이터
- b. 데이터 모델링
- 훈련용 데이터를 활용하여 분류, 예측, 군집 등의 모델을 만들어 가동중인 운영 시스템에 적용
- 필요시 비정형 데이터 분석 결과를 통합적으로 활용하여 프로젝트 목적에 맞는 통합 모델 수행
- 입력자료 : 분석용 데이터 셋
- 프로세스 및 도구 : 통계 모델링 기법, 기계학습, 모델 테스트
- 출력자료 : 모델링 결과 보고서
- c. 모델 적용 및 운영 방안
- 모델에 대한 상세한 알고리즘 설명서 작성 (시스템 구현 단계에서 중요한 입력자료로 활용됨)

- 모델의 안정적 운영을 모니터링하는 방안 수립
- 입력자료 : 모델링 결과 보고서
- 프로세스 및 도구 : 모니터링 방안 수립, 알고리즘 설명서 작성
- 출력자료: 알고리즘 설명서, 모니터링 방안

E. 모델 평가 및 검증

- a. 모델 평가
- 프로젝트 정의서의 모델 평가 기준에 따라 객관적으로 평가하고 품질관리 차원에서 평가 프로세스 진행
- 모델 평가를 위해 모델 결과 보고서 내의 알고리즘을 파악하고 테스트용 데이터나 필요시 모델 검증을 위한 별도의 데이터 활용
- 입력자료 : 모델링 결과 보고서, 평가용 데이터
- 프로세스 및 도구 : 모델 평가, 모델 품질관리, 모델 개선작업
- 출력자료 : 모델 평가 보고서
- b. 모델 검증
- 모델의 실적용성을 검증하기 위해 검증용 데이터를 이용해 모델 검증 작업 실시하고 모델링 검증 보고서 작성
- 검증용 데이터는 모델 개발 및 평가에 활용된 훈련용이나 테스트용 데이터가 아닌 실 운영용 데이터를 확보하여 모델의 품질 최종 검증
- 입력자료 : 모델링 결과 보고서, 모델 평가 보고서, 검증용 데이터
- 프로세스 및 도구 : 모델 검증
- 출력자료 : 모델 검증 보고서

4) 시스템 구현 (developing)

A. 설계 및 구현

- a. 시스템 분석 및 설계
- 가동중인 시스템을 분석하고 알고리즘 설명서에 근거하여 응용시스템 구축 설계 프로세스 진행
- 시스템 분석과 설계는 사용 중인 정보시스템 개발 방법론을 커스터마이징하여 적용할 수 있음
- 입력자료: 알고리즘 설명서, 운영중인 시스템 설계서
- 프로세스 및 도구 : 정보시스템 개발 방법론
- 출력자료 : 시스템 분석 및 설계서
- b. 시스템 구현
- 시스템 분석 및 설계서에 따라 BI 패키지를 활용하거나 새롭게 시스템을 구축하거나 가동중인 운영 시스템의 커스터마이징으로 모델 구현
- 입력자료 : 시스템 분석 및 설계서, 알고리즘 설명서
- 프로세스 및 도구 : 시스템 통합 개발 도구 (IDE), 프로그램 언어, 패키지
- 출력자료 : 구현 시스템

B. 시스템 테스트 및 운영

- a. 시스템 테스트
- 구축된 시스템의 검증을 위하여 단위 테스트, 통합 테스트, 시스템 테스트 등 실시
- 시스템 테스트는 품질 관리 차원에서 진행함으로써 적용된 시스템의 객관성과 완전성 확보
- 입력자료 : 구현 시스템, 시스템 테스트 계획서
- 프로세스 및 도구 : 품질관리 활동
- 출력자료 : 시스템 테스트 결과보고서

b. 시스템 운영 계획

- 구현된 시스템을 지속적으로 활용하기 위해 시스템 운영자, 사용자를 대상으로 필요한 교육을 실시하고 시스템 운영계획을 수립
- 입력자료 : 시스템 분석 및 설계서, 구현 시스템
- 프로세스 및 도구 : 운영계획 수립, 운영자 및 사용자 교육
- 출력자료 : 운영자 매뉴얼, 사용자 매뉴얼, 시스템 운영 계획서

5) 평가 및 전개 (deploying)

A. 모델 발전 계획 수립

- a. 모델 발전 계획
- 개발된 모델의 지속적인 운영과 기능 향상을 위한 발전계획을 상세하게 수립하여 모델의 계속성 확보
- 입력자료 : 구현 시스템, 프로젝트 산출물
- 프로세스 및 도구 : 모델 발전 계획 수립
- 출력자료 : 모델 발전 계획서

B. 프로젝트 평가 및 보고

- a. 프로젝트 성과평가
- 프로젝트의 정량적 성과와 정성적 성과로 나누어 성과 평가서 작성
- 입력자료 : 프로젝트 산출물, 품질관리 산출물, 프로젝트 정의서, 프로젝트 수행 계획서
- 프로세스 및 도구 : 프로젝트 평가기준, 프로젝트 정량적 평가, 프로젝트 정성적 평가
- 출력자료 : 프로젝트 성과 평가서

b. 프로젝트 종료

- 프로젝트 진행과정의 모든 산출물 및 프로세스를 지식 자산화하고 최종 보고서 작성하여 의사소통 절차에 따라 보고하고 종료
- 입력자료 : 프로젝트 산출물, 품질관리 산출물, 프로젝트 정의서, 프로젝트 수행 계획서, 프로젝트 성과 평가서
- 프로세스 및 도구 : 프로젝트 지식자산화 작업, 프로젝트 종료
- 출력자료 : 프로젝트 최종 보고서

■ 분석과제 발굴 방법론 개요

- 분석 과제는 풀어야 할 문제를 데이터 분석 문제로 변환한 후 관계자들이 이해하고 프로젝트로 수행할 수 있는 과제 정의서 형태로 도출됨
- 분석 과제를 도출하기 위한 방식으로는 크게 하향식 접근 방법과 상향식 접근 방법이 있음
- 하향식 접근 방식 : 문제가 제시되어 있는 상태에서 해법을 찾기위한 과정 수행
- 상향식 접근 방식 : 문제 정의 자체가 어려운 경우, 데이터를 기반으로 해결방안을 탐색하고 지속적으로 개선함
- 하향식, 상향식 접근 방법이 혼용되어 사용되며, 분석 가치를 높일 수 있는 최적의 의사결정은 두 방식이 상호보완관계에 있을 때 가능
- * 디자인 사고 : 상향식 방식의 발산 단계와 하향식 방식의 수렴 단계를 반복적으로 수행하는 최적의 의사결정 방식

분석의 대상(What)

- 분석과제 발굴 방법론 하향식 접근법
 - 현황 분석을 통해 기회나 문제를 탐색하고 해당 문제를 정의하며 해결방안을 탐색함
 - 데이터 분석의 타당성 평가를 거쳐 분석 과제를 도출하는 과정으로 구성됨

1) 문제 탐색

- 무엇을 어떤 목적으로 수행해야 하는지
- 전체적인 관점의 기준 모델을 활용하여 빠짐없이 문제를 도출하고 식별하는 것이 중요
- 전체적인 관점의 기준 모델로는 기업 내·외부 환경을 포괄하는 비즈니스 모델과 외부 참조 모델 존재
- 문제를 해결함으로써 발생하는 가치에 중점을 두는 것이 중요함

A. 비즈니스 모델 기반 문제 탐색

- 업무, 제품, 고객 단위로 문제 발굴
- 규제와 검사, 자원 인프라 영역 도출

B. 분석 기회 발굴의 범위 확장

- 거시적 관점의 메가트렌드: 사회, 기술, 경제, 환경, 정치 => STEEP

- 경쟁자 확대 관점 : 대체제, 경쟁자, 신규 진입자
- 시장의 니즈 탐색 관점 : 고객, 채널, 영향자들
- 역량의 재해석 관점 : 내부 역량, 파트너 네트워크
- C. 외부참조 모델 기반 문제 탐색
- 유사, 동종의 환경에서 기존에 수행한 분석 과제를 살펴보는 것 (벤치마킹)
- D. 분석 유즈케이스
- 탐색을 통해 도출한 분석 기회들을 구체적인 과제로 만들기에 앞서 유즈케이스로 표기
- 상세한 설명 및 해당 문제를 해결했을 때 발생하는 효과를 명시함으로써 향후 분석 문제로의 전환 및 적합성 평가에 활용

2) 문제 정의

- 비즈니스 문제를 데이터의 문제로 변환하여 정의하는 단계
- 필요한 데이터 및 기법을 정의하기 위한 데이터 분석 문제로의 변환 수행
- 분석 수행 당사자와 최종 사용자의 관점 모두를 고려해야함
- 정확하게 분석의 관점으로 문제 재정의

3) 해결방안 탐색

- 기존 정보시스템의 단순한 보완으로 분석이 가능한지 고려
- 엑셀 등의 간단한 도구로 분석이 가능한지 고려
- 하둡 등 분산병렬처리를 활용한 빅데이터 분석 도구를 통해 보다 체계적이고 심도있는 방안 고려

분석 역량(Who) 확보 미화보 교육 및 채용을 기존 시스템 기존 통한 시스템 분석 기법 개선 활용 역량 확보 및 시스템 시스템 전문 업체 (How) 신규 도입 고도화 Sourcing

4) 타당성 검토

- A. 경제적 타당성
- 비용대비 편익 분석 관점의 접근
- B. 데이터 및 기술적 타당성
- 데이터 존재 여부, 분석시스템 환경 그리고 분석 역량 필요

■ 분석과제 발굴 방법론 - 상향식 접근법

- 기업에서 보유하고 있는 다양한 원천 데이터로부터의 분석을 통해 통찰력과 지식을 얻는 방법
- 다양한 원천 데이터를 대상으로 분석을 수행하여 가치있는 모든 문제 도출하는 과정
- 하향식 접근법인 why 관점은 알고 있다고 가정한 것으로부터 솔루션을 찾는 방법
- 디자인 사고 접근법은 답을 미리 내는 것이 아니라 사물을 있는 그대로 인식하는 what 관점 (감정이입이 중요함)
- 객관적으로 존재하는 데이터 그 자체를 관찰하고 실제적으로 행동에 옮김으로써 대상을 좀 더 잘 이해하는 방식으로의 접근 수행
- 일반적으로 상향식 접근 방식의 데이터 분석은 비지도학습 방법에 의해 수행됨
- 비지도 학습은 데이터 자체의 결합, 연관성, 유사성 등을 중심으로 데이터 상태를 표현하는 것
- 비지도학습의 기법 예시 : 장바구니 분석, 군집 분석, 기술 통계 및 프로 파일링 등
- 지도 학습은 명확한 목적 하에 데이터 분석을 실시하는 것으로 분류, 추측, 예측, 최적화를 통해 지식을 도출하는 것
- 빅데이터 환경에서 논리적인 인과관계 분석뿐 아니라 상관관계/연관분석을 통해서 다양한 문제해결에 도움을 받을 수 있음
- 다량의 데이터 분석을 통해 '왜' 그런 일이 발생했는지 역으로 추적하면서 문제도출&재정의하는 접근 방법

- ◆ 시행착오를 통한 문제해결 프로토 타이핑 접근법
- 요구사항이나 데이터를 정확히 규정하기 어렵고 데이터 소스도 명확히 파악하기 어려운 상황에서 반복적으로 개선해나가는 방법
- 완전하지 못해도 신속하게 해결책이나 모형을 제시함으로써 문제를 명확하게 인식하고 필요한 데이터를 식별하여 구체화할 수 있는 방식
- 문제 정의가 불명확하거나 새로운 문제일 경우 프로토타입을 이용하여 문제를 이해하고 구체화하는데 도움을 받을 수 있음
- 필요한 데이터 집합이 모두 존재하지 않을 경우 사용자와 분석가간의 반복적이고 순환적인 협의 과정이 필요함
- 기존의 데이터 정의를 재검토하여 데이터 사용 목적과 범위를 확대할 수 있음
- 프로세스 : 가설 생성 디자인에 대한 실험 실제 환경에서 테스트 결과에서 통찰 도출 및 가설 확인

■ 분석과제 발굴 방법론 - 분석과제 정의

- 분석과제 정의서는 프로젝트 수행 계획의 입력물로 사용되기 때문에 프로젝트 방향을 설정하고 성공여부를 판별할 수 있는 주요 자료
- 필요한 소스 데이터, 분석방법, 데이터 입수 및 분석 난이도, 분석 수행주기, 분석결과에 대한 검증 오너십, 상세 분석 과정 등을 정의함

■ 분석과제 관리 주요영역

- Data Size : 데이터 양을 고려한 관리 방안 수립 필요
- Data Complexity : 정형/비정형 데이터 통합 분석 모델 선정
- Speed : 활용하는 시나리오 측면에서 분석 모델 성능 및 속도 고려
- Analytic Complexity : 분석 모델의 정확도와 복잡도는 trade off 관계 -> 해석이 가능하면서 정확도를 올릴 수 있는 최적모델 모색
- Accuracy & Precision : trade off 관계 존재

accuracy는 정확도를 의미하며 분석 활용 측면에서 중요함

precision은 편차없이 동일한 결과를 제시하는 것을 의미하며 안정성 측면에서 중요함

■ 분석 프로젝트 특성

- 분석가는 분석 정확도를 높이는 것이 목표
- 분석가는 데이터의 원천을 다루는 데이터 영역과 결과를 활용할 비즈니스 영역의 중간에서 분석 모델을 통한 조율을 수행하는 조정자 역할
- 개별적인 분석 업무 수행뿐만 아니라 전반적인 프로젝트 관리 또한 중요함
- 분석 프로젝트는 도출된 결과의 재해석을 통해 지속적인 반복 및 정교화가 수행되는 경우가 대부분
- 반복 및 개선을 통해 의도한 결과에 가까워지는 형태

■ 분석 프로젝트 관리방안

◆ 범위

- 프로젝트 범위가 분석을 진행하면서 데이터의 형태와 양 또는 적용되는 모델의 알고리즘에 따라 범위가 빈번하게 변경됨
- 분석의 최종 결과물이 분석 보고서 형태인지 시스템인지에 따라서 투입되는 자원 및 범위가 크게 변경됨

◆ 시간

- 초기에 의도했던 결과가 나오기 쉽지 않기 때문에 지속, 반복되어 많은 시간이 소요될 수 있음
- 분석 결과에 대한 품질이 보장된다는 전제로 Time Boxing 기법으로 일정관리 진행이 필요함

◆ 원가

- 외부 데이터를 활용한 분석인 경우 고가의 비용이 소요될 수 있으므로 사전에 충분한 조사가 필요함
- 오픈 소스 도구 외에 프로젝트 수행 시 의도했던 결과를 달성하기 위하여 상용 버전의 도구가 필요할 수 있음

◆ 품질

- 분석 프로젝트를 수행한 결과에 대한 품질 목표를 사전에 수립하여 확정함
- 프로젝트 품질은 품질 통제와 보증으로 나누어 수행됨

◆ 통합

- 프로젝트 관리 프로세스들이 통합적으로 운영될 수 있도록 관리함

◆ 조달

- 프로젝트 목적성에 맞는 외부 소싱을 적절하게 운영할 필요 있음
- Proof of Concept 형태의 프로젝트는 인프라 구매가 아닌 클라우드 등의 다양한 방안을 검토할 필요 있음

◆ 자원

- 고급 분석 및 빅데이터 아키텍쳐링을 수행할 수 있는 인력의 공급이 부족하므로 프로젝트 수행 전 전문가 확보에 대한 검토가 필요함

◆ 리스크

- 분석에 필요한 데이터 미확보로 분석 프로젝트 진행이 어려울 수 있으므로 관련 위험을 식별하고 대응방안을 사전에 수립해야함
- 데이터 및 분석 알고리즘의 한계로 품질 목표를 달성하기 어려울 수 있어 그에 따른 대응방안을 수립할 필요 있음

◆ 의사소통

- 전문성이 요구되는 데이터 분석 결과를 모든 프로젝트 이해관계자가 공유할 수 있도록 해야함
- 프로젝트의 원활한 진행을 위한 다양한 의사소통 체계 마련이 필요함

◆ 이해관계자

- 데이터 분석 프로젝트는 데이터, 비즈니스, 분석, 시스템 등 다양한 분야의 각 전문가가 참여하므로 이해관계자의 식별과 관리가 필요함

- 분석 마스터 플랜 수립 개요
- 우선순위 고려 요소 : 전략적 중요도, 비즈니스 성과 및 ROI, 분석 과제의 실행 용이성
- 적용범위/방식 고려 요소 : 업무 내재화 적용 수준, 분석 데이터 적용 수준, 기술 적용 수준
- 기업 및 공공기관에서는 시스템의 중장기 로드맵을 정의하기 위해 ISP를 수행함
- 분석 마스터 플랜은 일반적 ISP 방법론을 활용하며 기업에서 필요한 데이터 분석 과제를 도출한 후 과제의 우선순위를 결정하고 계획을 수립함
- 분석 마스터 플랜 수립 수행 과제 도출 및 우선순위 평가
- ◆ 우선순위 평가 방법 및 절차
- 우선순위 평가 : 정의된 데이터 과제에 대한 실행 순서를 정하는 것
- 업무별 도출된 분석 과제를 우선순위 평가 기준에 따라 평가한 뒤, 과제 수행의 선·후행 관계를 고려하여 적용순위를 조정해 최종 확정함
- ◆ 일반적인 IT 프로젝트의 우선순위 평가 예시
- 전략적 중요도, 실행 용이성 등 기업의 중요 가치 기준에 따라 우선순위 기준을 수립하여 평가함

- ◆ ROI 관점에서 빅데이터의 핵심 특징
 - * ROI: return on investment 투자자본수익률

- ◆ 데이터 분석 과제 추진시 고려해야 하는 우선순위 평가 기준
- 가) 시급성
- 시급성의 판단 기준은 전략적 중요도가 핵심
- 현재의 관점에서 또는 미래의 중장기적 관점에서 전략적 가치를 둘 것인지 고려함
- 분석 과제의 목표가치를 함께 고려하여 판단

나) 난이도

- 데이터 생성, 저장, 가공, 분석하는 비용과 현재 기업의 분석 수준을 고려한 기준
- 현 시점에서 과제를 추진하는 것이 적용 비용 측면과 범위 측면에서 바로 적용하기 쉬운 것인지 또는 어려운 것인지에 대한 판단기준

- ◆ 포트폴리오 사분면 분석을 통한 과제 우선순위 선정
- 가장 우선적인 분석 과제 적용이 필요한 영역은 3사분면 (난이도 easy, 시급성 현재)
- 시급성 중점 우선순위 기준 : 3 4 2
- 난이도 중점 우선순위 기준 : 3 1 2
- 우선순위 조정 : 데이터 양, 특성, 범위를 조율함 (1사분면 ⇨ 3사분면)

- 분석 마스터 플랜 수립 이행계획 수립
- ◆ 로드맵 수립
- 분석 과제에 대한 포트폴리오 사분면 분석을 통해 과제의 1차적 우선순위 결정
- 분석 과제별 적용범위 및 방식을 고려하여 최종적인 실행 우선순위를 결정한 후 단계적 구현 로드맵 수립
- 단계별로 추진하고자 하는 목표 정의
- 과제별 선·후행 관계를 고려하여 단계별 추진 내용 정렬

- ◆ 세부 이행계획 수립
- 데이터 분석 체계는 반복적인 정련과정을 통해 완성도를 높이는 방식 사용
- 데이터 수집 및 확보와 분석 데이터 준비 단계를 순차적으로 진행하고 모델링 단계는 반복적으로 수행하는 혼합형을 많이 적용함
- 이러한 특성을 고려하여 세부적인 일정계획을 수립해야함

Refine Analytics Model

■ 거버넌스 체계

- 좋은 품질의 데이터를 위한 체계
- 기업에서는 어떤 목적으로 어떤 데이터를 어떻게 분석에 활용할 것인가가 더욱 중요하기 때문에 체계적인 관리가 중요함
- 구성요소 : 분석 기획 및 관리를 수행하는 조직, 과제 기획 및 운영 프로세스, 분석 관련 시스템, 데이터, 분석 관련 교육 및 마인드 육성 체계

■ 데이터 분석 수준 진단

- 분석의 유형 및 방향성을 결정하기 위해 기업은 명확히 분석 수준을 점검할 필요가 있음
- 궁극적인 목표는 각 기업이 수행하는 현재의 분석 수준을 명확히 이해하고 결과를 토대로 미래의 목표 수준을 정의하는 것
- 현 수준은 어떠한지, 필요한 부문은 어디인지, 명확한 방향을 수립하기 위해 평가
- 분석 수준 진단은 6개 영역에서 분석 준비도 평가와 3개 영역에서 분석 성숙도 평가로 이루어짐

◆ 분석 준비도

- 기업의 데이터 분석 도입의 수준을 파악하기 위한 진단 방법

분석 업무 파악	인력 및 조직	분석 기법	
 발생한 사실 분석 업무 예측.시뮬레이션 분석 업무 최적화 분석 업무 분석 업무 정기적 개선 	 분석 전문가 직무 존재 분석 전문가 교육 훈련 프로그램 관리자들의 기본적 분석 능력 전사 분석업무 총괄 조직 존재 경영진의 분석 업무 이해 능력 	- 업무별 적합한 분석 기법 사용 - 분석 업무 도입 방법론 - 분석 기법 라이브러리 - 분석 기법 효과성 평가 - 분석 기법 정기적 개선	
분석 데이터	분석 문화	IT 인프라	
- 분석 업무를 위한 데이터 충분성 - 분석 업무를 위한 데이터 신뢰성 - 분석 업무를 위한 데이터 적시성 - 비구조적 데이터 관리 - 외부 데이터 활용 체계 - 기준 데이터 관리 (MDM)	 사실에 근거한 의사 결정 관리자의 데이터 중시 정도 회의 등에서 데이터 활용 상황 경영진의 직관 vs 데이터 기반 의사결정 데이터 공유 및 협업 문화 	 운영 시스템 데이터 통합 EAI, ETL 등 데이터 유통체계 분석 적용 서버 및 스토리지 빅데이터 분석 환경 통계 분석 환경 비쥬얼 분석 환경 	

◆ 분석 성숙도

	도입 단계	활용 단계	확산 단계	최적화 단계
설명	분석을 시작하여 환경과 시스템 구축	분석 결과를 실제 업무에 적용	전사 차원에서 분석을 관리하고 공유	분석을 진화시켜서 혁신 및 성과 향상에 기여
비즈니스 부문	실적 분석 및 통계정기보고 수행운영 데이터 기반	- 미래 결과 예측 - 시뮬레이션 - 운영 데이터 기반	- 전사 성과 실시간 분석 - 프로세스 혁신 3.0 - 분석 규칙 관리 - 이벤트 관리	외부 환경 분석 활용최적화 업무 적용실시간 분석비즈니스 모델 진화
조직 역량 부문	- 일부 부서에서 수행 - 담당자 역량에 의존	- 전문 담당 부서에서 수행 - 분석 기법 도입 - 관리자가 분석 수행	- 전사 모든 부서 수행 - 분석 COE 조직 운영 - 데이터 사이언티스트 확보	- 데이터 사이언스 그룹 - 경영진 분석 활용 - 전략 연계
IT 부문	- 데이터 웨어하우스 - 데이터 마트 - ETL / EAI - OLAP	- 실시간 대시보드 - 통계 분석 환경	- 빅데이터 관리 환경- 시뮬레이션 · 최적화- 비주얼 분석- 분석 적용 서버	분석 협업 환경분석 Sandbox프로세스 내재화빅데이터 분석

◆ 분석 수준 진단 결과

- 분석 경쟁력 확보 및 강화를 위한 목표 수준 설정 가능

- 준비형 : 낮은 준비도, 낮은 성숙도 ⇨ 사전 준비 필요

- 정착형 : 낮은 준비도, 높은 성숙도 ⇨ 분석의 정착 필요

- 도입형 : 높은 준비도, 낮은 성숙도 ⇨ 데이터 분석 바로 도입 가능

- 확산형 : 높은 준비도, 높은 성숙도 ⇨ 지속적 확산 가능

■ 분석지원 인프라 방안 수립

- 분석 과제 단위별로 별도의 분석 시스템을 구축하는 경우, 관리의 복잡도 및 비용의 증대라는 부작용이 나타날 수 있음
- 기획 단계부터 장기적으로 안정적으로 활용할 수 있는 확장성을 고려한 플랫폼 구조 도입
- 플랫폼은 분석 서비스를 위한 응용 프로그램이 실행될 수 있는 기초를 이루는 컴퓨터 시스템
- 플랫폼이 구성되어 있는 경우, 새로운 데이터 분석 니즈가 존재할 경우 서비스를 추가로 제공하는 방식으로 확장성을 높일 수 있음

■ 데이터 거버넌스 체계 수립

- 모든 데이터에 대하여 표준화된 관리체계를 수립하고 운영을 위한 프레임워크 및 저장소 구축
- 중요 관리 대상 : 마스터 데이터 데이터, 메타 데이터, 데이터 사전은 데이터 거버넌스의 중요한 관리 대상
- 기업은 데이터 거버넌스 체계를 구축함으로써 데이터의 가용성, 유용성, 통합성, 보안성, 안정성 확보 가능

- ◆ 데이터 거버넌스 구성요소
- 원칙 : 데이터 유지 관리 위한 지침 가이드 + 보안, 품질 기준, 변경관리
- 조직 : 데이터를 관리할 조직의 역할과 책임 + 데이터 관리자, 데이터베이스 관리자, 데이터 아키텍트
- 프로세스 : 데이터 관리를 위한 활동과 체계 + 작업 절차, 모니터링 활동, 측정 활동
- ◆ 데이터 거버넌스 체계
- 1) 데이터 표준화
- 표준 용어 설정, 명명 규칙 수립, 메타 데이터 구축, 데이터 사전 구축
- 데이터 구조 체계나 메타 엔티티 관계 다이어그램 제공
- 2) 데이터 관리체계
- 데이터 정합성 및 활용의 효율성을 위해 표준데이터를 포함한 메타데이터와 데이터사전 관리 원칙 수립
- 빅데이터의 경우 데이터 생명 주기 관리방안 수립
- 3) 데이터 저장소 관리
- 메타데이터 및 표준데이터를 관리하기 위한 전사차원의 저장소
- 워크플로우, 관리용 응용 소프트웨어를 지원하고 관리 대상 시스템과의 인터페이스를 통한 통제 필요
- 데이터 구조 변경에 따른 사전 영향 평가 수행
- 4) 표준화 활동
- 표준 준수 여부를 주기적으로 점검, 모니터링 실시
- 안정적 장착을 위한 계속적인 변화 관리 및 주기적인 교육 진행

■ 데이터 조직 및 인력방안 수립

- 데이터를 효과적으로 분석/활용하기 위해 기획, 운영 및 관리를 전달할 수 있는 전문 분석 조직의 필요
- 목표 : 기업의 경쟁력 확보를 위해 비즈니스 질문과 이에 부합하는 가치를 찾고 비즈니스 최적화하는 것
- 역할 : 분석 업무를 발굴하고 기업 내에 존재하는 빅데이터 속에서 insight를 찾아 전파하고 action화 하는 것
- 구성 : 기초통계학 및 분석 방법에 대한 지식과 분석 경험을 가지고 있는 인력으로 구성하여 운영
- ◆ 분석을 위한 3가지 조직 구조

- 집중구조 : 독립적인 분석 전담조직 구성

- 기능구조 : 각 해당 업무 부서에서 직접 분석

- 분산구조 : 분석 조직 인력을 현업 부서에 배치

집중구조

- •전사 분석업무를 별도의 분석전 당 조직에서 당당
- 전략적 중요도에 따라 분석조직
 이 우선순위를 정해서 진행 가능
- 현업 업무부서의 분석업무와 이중화/이원화 가능성 높음

기능구조

- •일반적인 분석 수행 구조
- •별도 분석조직이 없고 해당 업무부서에서 분석 수행
- 전사적 핵심분석이 어려우며, 부서 현황 및 실적 통계 등 과거 실적에 국한된 분석 수행 가능성 높음

.....

분산구조

- 분석조직 인력들을 현업부서로 직접 배치하여 분석업무 수행
- •전사차원의 우선순위 수행
- •분석결과에 따른 신속한 Action 가능
- •베스트프랙티스 공유 가능
- •부서 분석업무와 역할 분담 명확히 해야함

■ DSCoE: Data Science Center of Excellence

◆ 분석 조직의 인력 구성

■ 분석 과제 관리 프로세스 수립

- 과제 발굴 : 분석 아이디어 발굴 -> 과제화 -> 분석 과제 pool로 관리 -> 분석 프로젝트 선정

- 과제 수행 : 팀 구성 -> 지속적인 모니터링 -> 과제 결과 공유, 개선