Group 01:

Group members: Jazlyn Chuah, Zachary Lim, Teo Hwee Leng

Step 1: Identify a data problem to solve

- Used data from UCI Machine Learning Repository (publicly available)
- What interested us: Boston Housing Data Set
- Good dataset to use to learn Data Science
- Objective: Predicting housing prices in Boston

Step 2: Data Acquisition

Used: requests and pandas

print(data.shape)

(506, 14)

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
4	0.06905	0.0	2.10	U	0.456	7.147	54.2	0.0022	3	222.0	10.7	390.90	5.33	3

Step 3 & 4: Data exploration & Pre-processing

- Check for missing values
- Analyse target column: 'MEDV'
- Visualisation plots (histogram and heatmap)

Distribution of 'MEDV'

Heatmap generated to study correlation between features

Step 3 & 4: Data exploration & Pre-processing

- Pair plots / Scatter plots:
 - ∘ ↑ in 'RM' ↑ 'MEDV'
 - ∘ ↑ in 'LSTAT' ↓ 'MEDV'

Pair plots

Step 5: Data Analysis

- Used sklearn: train_test_split function to split dataset
 - Set seed value
- First: Apply Linear Regression
- Next: Apply Feature Selection
 - Stepwise regression
 - Perform forward-backward feature selection based on p-value from statsmodels.api.OLS
 - 8 features -> perform linear regression again
 - Lasso Regression
 - lacktriangle Main hyperparameter: regularization factor lpha
 - Use GridSearchCV to find optimial α (0.001)
 - Remove features with zero coefficient ('AGE')
 - 12 features -> perform linear regression again

Step 6: Analysis of results

r square ≈ 0.733 r square ≈ 0.749 r square ≈ 0.733 adjusted r squared ≈ 0.694 adjusted r squared ≈ 0.727 adjusted r squared ≈ 0.698	Linear Regression (Full model)	Step-Wise Regression	Lasso Regression
RMSE \approx 20.9 RMSE \approx 4.57 RMSE \approx 4.43 RMSE \approx 4.57	adjusted r squared ≈	adjusted r squared ≈	adjusted r squared ≈
	0.694	0.727	0.698
	MSE ≈ 20.9	MSE ≈ 19.7	MSE ≈ 20.9

- Linear >>> Stepwise: Improvement in the performance of our model
- Linear >>> Lasso : Negligible

In conclusion

 The recommended linear regression equation using 8 predictor variables: MEDV = 31.0456389421 + 0.041515Z*N + 3.1089*CHAS - 14.2405*NOX + 3.7219*RM - 1.3826*DIS - 0.8456*PTRATIO + 0.010953*B - 0.6177*LSTAT

Step 7: Report results in Python Notebooks

https://github.com/ZacOPunky/CE9010 2018