812 Section # 11

TA: Sarah Bouchat

14 November 2014

1 Finishing off our example from class...

2 Method of Moments and Maximum Likelihood Estimation

Exercise 1 For random variables $X_1, X_2, ... X_n \stackrel{\text{iid}}{\sim} Pois(\lambda)$, where $\lambda > 0$:

- a. What is the method-of-moments estimator of λ ($\hat{\lambda}_{MM}$)?
- b. Is the estimator $\widehat{\lambda}_{MM}$ unbiased? If not, find the bias.
- c. Is $\hat{\lambda}_{MM}$ consistent?
- d. What is the likelihood function? The log likelihood?
- e. What is the maximum likelihood estimator of p $(\hat{\lambda}_{MLE})$?
- f. Is $\widehat{\lambda}_{MLE}$ unbiased? If not, find the bias.
- g. Is $\hat{\lambda}_{MLE}$ consistent?

Exercise 2 For random variables $Y_1, Y_2, Y_3 \stackrel{\text{iid}}{\sim} Pois(\lambda)$, consider the following estimators of λ :

$$\hat{\theta}_1 = Y_1$$

$$\widehat{\theta}_2 = \frac{Y_1 + Y_2}{2}$$

$$\widehat{\theta}_3 = \frac{Y_1 + 2Y_2}{3}$$

$$\widehat{\theta}_4 = min(Y_1, Y_2, Y_3)$$

$$\widehat{\theta}_5 = \frac{Y_1 + Y_2 + Y_3}{3}$$

- a. Which of these estimators are unbiased?
- b. Which unbiased estimator has the smallest variance?

Exercise 3 For random variables $X_1, X_2, ... X_n \stackrel{iid}{\sim} Bernoulli(p)$:

- a. What is the method-of-moments estimator of p (\hat{p}_{MM})?
- b. Is the estimator $\hat{\mathfrak{p}}_{MM}$ unbiased? Is it consistent?
- c. Tossing a coin 10 times and allowing Heads = 1 and Tails = 0, we observe the following outcomes:

What is the moment estimate for p (the probability of a "success"—in this case, Heads)?

Exercise 4 For random variables $X_1, X_2, ... X_n \stackrel{iid}{\sim} Gamma(\alpha, \beta)$:

a. What are the method of moments estimators for α and β ?

^{*}Many thanks to Emily Sellars for past years' section materials!*