#### **Valbal Altitude Control**

John Dean

Stanford Student Space Initiative

April 5, 2018

## **System Dynamics**

#### Assumptions

- $-v_t$  is small
- $F_d \propto v$  i.e. drag is linear.
- $F_l F_g = F_d$  i.e. the balloon is always at terminal velocity

#### Equations of motion

- let  $l=F_l-F_g$  be the net lift on the balloon
- -i is commanded by controller
- $-v=k_d\int \dot{l}\,dt$
- $-h = \int v dt$
- $-\mathcal{L}\{\cdot\} = k_d/s^2$



 $F_d$ : Force of drag

 $F_g$ : Gravity

 $F_l$ : Buoyant force

v: vertical velocity of balloon

 $v_t$ : vertical velocity of

surrounding air

#### **Open Loop Block Diagram**



 $\dot{l}_c$ : commanded change in lift (valve and ballast actions)

 $\dot{l}_t$ : atmospheric lift disturbance

 $v_t$ : atmosphereic velocity disturbance

h: altitude

System

### **Spaghetti Controller Motivation**

► Use a simple linear compensator to stabilize altitude with robust stability margins

b

## Spaghetti Block Diagram



K(s): First order lead compensator.

#### Spaghetti Flight



- ▶ 120hr flight from December with spaghetti as controller
  - blue shows ballast events, green shows vent events
  - temperature shows sunset/sunrise, large effect on ballast use
- issues durring flight:
  - valve controller had software bug, instead of changing duty cylce, one threshold met valve was repeatedly opened
  - At end of flight, balloon has low overpressure—opening valve has no effect until balloon rises high enough

## **Oscillations**



#### **Velocity Estimator**

Lowpass filtered velocity estimate that fuses information on actions from the controller.



 $H_1(s)$  is differentiation and 2nd order lowpass filter  $H_2(s)$  is integration with decay (estimate of effect of actions, decays to 0 over time)

#### Lasagna Block Diagram



 $K_1(s)$ : Position loop compensator

 $K_2(s)$ : Velocity loop compensator

 $H_1(s), H_2(s)$ : Velocity estimator

Lasagna 9

# **Lasanga Nonlinearities**

#### Deadband:



Lasagna 10