1 Math

$$\sigma^s = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \tag{1}$$

$$\frac{\partial}{\partial q_k} soft(q)_i = soft(q)_i (\delta_{i,k} - soft(q)_k)$$

$$KL(p||q) = \int p(x) \log(\frac{p(x)}{q(x)}) dx$$

2 Deep Generative Models

Boltzman dist: $p(x) = \frac{1}{Z} \exp(-E(x))$. Comp. of normal. Const. Z difficult. **Boltzmann machine** $E(x) = -x^T W x - b^T x \times \text{is } 256^2 \text{ big. Instead RBM}$ $E(x) = -x^T W h - b^T x - c^T h \text{ with latent h.}$

2.1 Variational Inference

How est. posterior: MCMC or var. infer.: $\phi^* = \arg\min_{\phi} KL(q(\theta|\phi)||p(\theta|x)), \text{ rev divergence}$ (underestimate var, overest. with forward). **ELBO** $\mathbb{E}_{q_{\phi}(\theta)}[\log p(x|\theta)] - KL(q_{\phi}(\theta)||p(\theta)) =$ $\mathbb{E}_{q_{\phi}(\theta)}[\log p(x|\theta)] + \mathbb{E}_{q_{\phi}(\theta)}[\log p(\theta)] \mathbb{E}_{q_{\phi}(\theta)}[\log q(\theta)] \text{ with that}$ $\log p(x) = ELBO_{\theta,\phi}(x) + KL(q_{\phi}(\theta)||p(\theta|x)).$ ELBO is vari. free Enrgy.

2.2 Normalizing Flows

$$\log p(x) = \log \pi_0(z_0 - \sum_{i}^{K} |\det \frac{df_i}{dz_{i-1}}|)$$

3 Bayesian Deep Learning

Benefits of Bayesian: ensemble makes better accuracies, uncertainty estimates, sparsity makes model compression, active learning, distributed learning. **Epistemnic uncertainty** ignorance which model generated the data. More data reduces this. For safety critical stuff, small datasets. **Aleatoric uncertainty** ignorance about the nature of the data. *Heteroscedastic* uncertainty about specific data $\mathcal{L} = \frac{||y_i - g_i||^2}{s\sigma^2} + \log \sigma_i$,

homoscedastic uncertainty about the task, we might reduce by combining tasks. \mathcal{L} same but without idx. MC Dropout have d. during inference (by Bernoulli as vari. dist.) Then model prec.

$$\tau = \frac{l^2 p}{2N\lambda}$$
.

4 Deep Sequential models

4.1 Autoregressive models

With sequential data we have:

- (3) $x = [x_1, \dots, x_k] \implies p(x) = \prod_{k=1}^{D} p(x_k | x_{j < k}) \text{ thus}$
 - no param sharing and no ∞ chains $\implies p(x)$ is tractable.

NADE: fixed masks, conditionals modeled as MoG. **MADE**: masked conv.

PixelRNN seq. order over rows and channel R,G and B. Conditionals modeled with LSTM. Slow train and gen, but good gen. **PixelCNN** model conds with masked convs. Is worse than RNN cause blind spot. Fix by having convs for left row and everything above cascading. **PixelCNN++** dropout/whole pixels/discr log mix likelihood. **PixelVAE** VAE+PixelCNN as the networks