Focused Quantization for Sparse CNNs

Yiren Zhao*1, Xitong Gao*2, Daniel Bates1, Robert Mullins1, Cheng-Zhong Xu3

* Equal contribution ¹ University of Cambridge ² Shenzhen Institutes of Advanced Technology ³ University of Macau

Fine-grained Pruning

...provides the **best compression** by removing connections at the finest granularity, *i.e.* individual weights:

Shift Quantization

...or powers-of-two quantization constraints weight values in a model to powers-of-two or zero:

$$\{0, \pm 1, \pm 2, \pm 4, \pm 8, \ldots\}$$

Efficient hardware: multiplications → bit-shift

Challenges

Shift quantization is however often in conflict with fine-grained pruning:

How can we quantize sparse weights efficiently and effectively?

Efficiency: reduced model size, minimized compute cost Effectiveness: quantization levels are well-utilized: better accuracy.

Focused Quantization

The quantization process for the unpruned weights on block3f/conv1 in sparse ResNet-50:

Step 1: Use maximum-likelihood estimation to find out the approximate Gaussian mixture, assign weights to the Gaussian components by sampling:

Step 2: Normalizes the two Gaussian components:

Wasserstein Separation

If the two components are close together,

i.e.
$$W(c_1,c_2)=\frac{1}{\sigma^2}\left(\left(\mu_1-\mu_2\right)^2+\left(\sigma_1-\sigma_2\right)^2\right)\leq w_{\rm sep}$$
 we instead use shift quantization.

Comparisons to SOTA

ResNet-18	Top-1	Top-5	Size (MB)	CR (×)
TTQ [24]	66.00	87.10	2.92*	16.00*
INQ (2 bits) [23]	66.60	87.20	2.92*	16.00*
INQ (3 bits) [23]	68.08	88.36	4.38*	10.67*
ADMM (2 bits) [14]	67.0	87.5	2.92*	16.00*
ADMM (3 bits) [14]	68.0	88.3	4.38*	10.67*
ABC-Net (5 bases, or 5 bits) [15]	67.30	87.90	7.30*	6.4 *
LQ-Net (preact, 2 bits) [22]	68.00	88.00	2.92*	16.00*
D&Q (large) [19]	73.10	91.17	21.98	2.13*
Coreset [3]	68.00	_	3.11*	15.00
Focused compression (5 bits, sparse)	68.36	88.45	2.86	16.33
Focused compression (5 bits, sparse) ResNet-50	68.36 Top-1	88.45 Top-5	2.86 Size (MB)	16.33 CR (×)
* ' * '				
ResNet-50	Top-1	Top-5	Size (MB)	CR (×)
ResNet-50 INQ (5 bits) [23]	Top-1 74.81	Top-5 92.45	Size (MB) 14.64*	CR (×) 6.40*
ResNet-50 INQ (5 bits) [23] ADMM (3 bits) [14]	Top-1 74.81 74.0	Top-5 92.45 91.6	Size (MB) 14.64* 8.78*	CR (×) 6.40* 10.67*
ResNet-50 INQ (5 bits) [23] ADMM (3 bits) [14] ThiNet [17]	Top-1 74.81 74.0 72.04	Top-5 92.45 91.6	Size (MB) 14.64* 8.78* 16.94	CR (×) 6.40* 10.67* 5.53*
ResNet-50 INQ (5 bits) [23] ADMM (3 bits) [14] ThiNet [17] Clip-Q [21]	Top-1 74.81 74.0 72.04 73.70	Top-5 92.45 91.6	Size (MB) 14.64* 8.78* 16.94 6.70	CR (×) 6.40* 10.67* 5.53* 14.00*

Efficient Hardware Design

Configuration	#Gates	Ratio
ABC-Net (5 bases, or 5 bits)	806.1 M	2.93×
LQ-Net (2 bits)	314.4 M	$1.14 \times$
Shift quantization (3 bits, unsigned)	275.2 M	$1.00 \times$
FQ (5 bits)	275.6 M	$1.00 \times$
FQ (5 bits) + Huffman	276.4 M	$1.00 \times$