WHAT IS CLAIMED IS:

1

2

3

4

5

6

7 10 mg 10 m

1

2 2

3

1

2

	1.	For	use	in	а	chan	nel	decod	ler,	a	hybı	rid	frequen	су-
time	doma	in	equa:	Lize	er	for	imp	roved	sta	ati	.c a	nd	multi-p	ath
perfo	rman	de o	ver a	a de	ci	sion	fee	dback	equ	ali	zer	cor	mprising	:

- a frequency domain equalizer having forward and feedback paths; and
- a decision feedback equalizer decision network within said feedback path of said frequency domain equalizer, said frequency domain equalizer and said decision feedback equalizer decision network both employing a single error vector to update error correction therein.
- 2. The hybrid frequency-time domain equalizer as set forth in Claim 1 wherein said decision feedback equalizer decision network further comprises a decision device within said feedback path for said frequency domain equalizer.
- 3. The hybrid frequency-time domain equalizer as set forth in Claim 2 wherein said decision device employs trellis decisions to minimize decoding error.

- 4. The hybrid frequency-time domain equalizer as set forth in Claim 1 wherein said decision feedback equalizer decision network further comprises a time domain feedback filter within said feedback path for said frequency domain equalizer.
- 5. The hybrid frequency-time domain equalizer as set forth in Claim 1 wherein taps updates for said decision feedback equalizer decision network are separate from tap updates for said frequency domain equalizer.

6. A recei	lver comprising
6. A rece	ver comprising

911

101

11**5**

12

13

14

- an input receiving single carrier digital signals; and
- a channel decoder employing a hybrid frequencytime domain equalizer for improved static and multi-path
 performance over a decision feedback equalizer, said hybrid
 frequency-time domain equalizer comprising:
 - a frequency domain equalizer having forward and feedback paths; and
 - a decision feedback equalizer decision network within said feedback path of said frequency domain equalizer, said frequency domain equalizer and said decision feedback equalizer decision network both employing a single error vector to update error correction therein.
- 7. The receiver as set forth in Claim 6 wherein said decision feedback equalizer decision network further comprises a decision device within said feedback path for said frequency domain equalizer.

2

3

- 1 8. The receiver as set forth in Claim 7 wherein said
 2 decision device employs trellis decisions to minimize
 3 decoding error.
 - 9. The receiver as set forth in Claim 6 wherein said decision feedback equalizer decision network further comprises a time domain feedback filter within said feedback path for said frequency domain equalizer.
 - 10. The receiver as set forth in Claim 6 wherein taps updates for said decision feedback equalizer decision network are separate from tap updates for said frequency domain equalizer.

•	
1	11. For use in a channel decoder, a method of hybrid
2	frequency-time domain equalization for improved static and
3	multi-path performance over a decision feedback equalizer
4	comprising:
5	receiving a single carrier input signal at a
6	frequency domain equalizer having forward and feedback
7	paths; and
8	employing a decision feedback equalizer decision
9 (2)	network within the feedback path of the frequency domain

network within the feedback path of the frequency domain equalizer, the frequency domain equalizer and the decision feedback equalizer decision network both employing a single error vector to update error correction therein.

12. The method as set forth in Claim 11 wherein the step of employing a decision feedback equalizer decision network within the feedback path of the frequency domain equalizer further comprises:

employing a decision device within the feedback path for the frequency domain equalizer.

10 面

11

12

2

3

4

5

1		13.	The	metl	hod	as	set	fo	rth	in	Clai	im	12	whe	rein	the
2	step	of	empl	oying	g a	de	cisi	on	dev	ice	wit	hin	ı t	he	feed	back
3	path	for	the	frequ	ienc	y d	omai	n e	qual	izeı	f fu	rthe	er	comp	prise	s:
4			emp	loyir	ng -	trel	lis	de	cisi	ons.	wit	thin	ı t	he	feed	back
5 .	path	fo	r th	ne f	rea	uend	CV	doma	ain	ea	uali	zer	t	to	mini	mize

6 decoding error.

1

2 🗐

3 📳

Marin Marin

1 5

2

3

4

5

14. The method as set forth in Claim 11 wherein the step of employing a decision feedback equalizer decision network within the feedback path of the frequency domain equalizer further comprises:

utilizing a time domain feedback filter within the feedback path for the frequency domain equalizer.

15. The method as set forth in Claim 11 further comprising:

updating taps for the decision feedback equalizerdecision network separately from tap updates for the
frequency domain equalizer.

1	
2	
3	
4	
5	
6	
7	
8	
9 !]	
n dees was it it deet men it bedt it it gest men O	

3 11

4 [5

5

1

2

- 16. For use in a channel decoder, a hybrid frequencytime domain equalizer for improved static and multi-path performance over a decision feedback equalizer comprising:
- a decision feedback equalizer having forward and feedback paths; and
- a frequency domain equalizer within said forward path of said decision feedback equalizer, said frequency domain equalizer and said decision feedback equalizer decision network both employing a single error vector to update error correction therein.
- 17. The hybrid frequency-time domain equalizer as set forth in Claim 16 wherein said decision feedback equalizer further comprises a decision device within said feedback path, said feedback path forming a portion of a feedback path for said frequency domain equalizer.
- 18. The hybrid frequency-time domain equalizer as set forth in Claim 17 wherein said decision device employs trellis decisions to minimize decoding error.

- 19. The hybrid frequency-time domain equalizer as set forth in Claim 16 wherein said decision feedback equalizer further comprises a time domain feedback filter within said feedback path.
- 20. The hybrid frequency-time domain equalizer as set forth in Claim 16 wherein taps updates for said decision feedback equalizer are separate from tap updates for said frequency domain equalizer.