## **Socket Programming in Python**

## **Socket Basics:**

A *network socket* is an endpoint of an inter-process communication flow across a computer network. Sockets may communicate within a process, between processes on the same machine, or between processes on different continents. Today, most communication between computers is based on the internet protocol; therefore most network sockets are *internet sockets*. To create a connection between machines, Python programs import the **socket** module, create a socket object, and call the object's methods to establish connections and send and receive data. Sockets are the endpoints of a bidirectional communications channel.



## **Socket in Python:**

Python provides two levels of access to network services. At a *low level*, you can access the basic socket support in the underlying operating system, which allows you to implement clients and servers for both connection-oriented and connectionless protocols. Python also has libraries that provide *higher level* access to specific application level network protocols, such as FTP, HTTP, SMTP, and so on. Sockets may be implemented over a number of different channel types: UNIX domain sockets, TCP, UDP, and so on. The socket library provides specific classes for handling the common transports as well as a generic interface for handling the rest.

# Vocabulary of Sockets

| Term     | Description                                                                            |
|----------|----------------------------------------------------------------------------------------|
| domain   | The family of protocols that will be used as the transport mechanism. These values are |
|          | constants such as AF_INET, PF_INET, PF_UNIX, PF_X25, and so on.                        |
| type     | The type of communications between the two endpoints, typically <b>SOCK_STREAM</b> for |
|          | connection-oriented protocols and SOCK_DGRAM for connectionless protocols.             |
| protocol | Typically zero, this may be used to identify a variant of a protocol within a domain   |
|          | and type.                                                                              |
| hostname | The identifier of a network interface:                                                 |
|          | A string, which can be a host name, a dotted-quad address, or an IPV6 address in       |
|          | colon (and possibly dot) notation                                                      |
|          | • A string "<br>broadcast>", which specifies an INADDR_BROADCAST address.              |
|          | A zero-length string, which specifies INADDR_ANY, or                                   |
|          | An Integer, interpreted as a binary address in host byte order.                        |
| port     | Each server listens for clients calling on one or more ports. A port may be a Fixnum   |
|          | port number, a string containing a port number, or the name of a service.              |

## The socket Module:

To create a socket, you must use the *socket.socket()* **function** available in *socket* module, which has the general syntax:

```
s = socket.socket (socket_family, socket_type, protocol=0)
```

Here is the description of the parameters:

- **socket\_family:** This is either AF\_UNIX or AF\_INET, as explained earlier.
- **socket\_type:** This is either SOCK\_STREAM or SOCK\_DGRAM.
- **protocol:** This is usually left out, defaulting to 0.

Once you have *socket* object, then you can use required functions to create your client or server program.

## Server Socket Methods

| Method     | Description                                                                               |
|------------|-------------------------------------------------------------------------------------------|
| s.bind()   | This method binds address (hostname, port number pair) to socket.                         |
| s.listen() | This method sets up and start TCP listener.                                               |
| s.accept() | This passively accept TCP client connection, waiting until connection arrives (blocking). |

## Client Socket Methods

| Method      | Description                                           |
|-------------|-------------------------------------------------------|
| s.connect() | This method actively initiates TCP server connection. |

## **General Socket Methods**

| Method               | Description                       |
|----------------------|-----------------------------------|
| s.recv()             | This method receives TCP message  |
| s.send()             | This method transmits TCP message |
| s.recvfrom()         | This method receives UDP message  |
| s.sendto()           | This method transmits UDP message |
| s.close()            | This method closes socket         |
| socket.gethostname() | Returns the hostname.             |

# MAJOR SYSTEM CALLS



#### MAJOR SYSTEM CALLS (SUMMARY) Primitive Meaning SOCKET Create a new communication end point BIND Attach a local address to a socket LISTEN Announce willingness to accept connections; give queue size ACCEPT Block the caller until a connection attempt arrives CONNECT Actively attempt to establish a connection SEND Send some data over the connection RECEIVE Receive some data from the connection CLOSE Release the connection



## A Simple Server:

To write Internet servers, we use the **socket** function available in socket module to create a socket object.

A socket object is then used to call other functions to setup a socket server. Now call **bind(hostname, port)** function to specify a *port* for your service on the given host. Next, call the *accept* method of the returned object. This method waits until a client connects to the port you specified, and then returns a *connection* object that represents the connection to that client.

```
# Echo server program
import socket
host = socket.gethostname()
port = 12345
s = socket.socket()
s.bind((host, port))
s.listen(5)
conn, addr = s.accept()
print('Got connection from ', addr[0], '(', addr[1], ')')
print('Thank you for connecting')
while True:
    data = conn.recv(1024)
    if not data: break
    conn.sendall(data)
conn.close()
```

## **A Simple Client:**

Now we will write a very simple client program which will open a connection to a given port 12345 and given host. This is very simple to create a socket client using Python's *socket* module function.

The **socket.connect(hosname, port)** opens a TCP connection to *hostname* on the *port*. Once you have a socket open, you can read from it like any IO object. When done, remember to close it, as you would close a file.

The following code is a very simple client that connects to a given host and port, reads any available data from the socket, and then exits:

```
# Echo client program
import socket
host = socket.gethostname()
port = 12345
s = socket.socket()
s.connect((host, port))
s.sendall(b'Welcome User!')
data = s.recv(1024)
s.close()
print(repr(data))
```

Note: The repr() function returns a printable representational string of the given object. Now run this *server.py* in background and then run above *client.py* to see the result.

#### Output:

Step 1: Run server.py. It would start a server in background.

Step 2: Run *client.py*. Once server is started run client.



## **Simple Connectionless Server**

import socket

```
sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
                                                               # For UDP
                                                # Host IP
udp_host = socket.gethostname()
                                             # specified port to connect
udp_port = 12345
sock.bind((udp_host, udp_port))
while True:
           print "Waiting for client..."
           data,addr = sock.recvfrom(1024)
                                                #receive data from client
           print "Received Messages:",data.decode()," from",addr
Simple Connectionless Client:
import socket
sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
                                                               # For UDP
udp_host = socket.gethostname()
                                           # Host IP
udp_port = 12345
                                        # specified port to connect
msg = "UDP Program!"
print "UDP target IP:", udp_host
print "UDP target Port:", udp_port
```

## **Practice Programs:**

sock.sendto(msg.encode(),(udp\_host,udp\_port))

1A) Write a program where client can send a message to the server and the server can receive the message and send, or echo, it back to the client.

## **Echo Client:**

```
import socket
HOST = '127.0.0.1' # The server's hostname or IP address
PORT = 2053
                 # The port used by the server
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
  s.connect((HOST, PORT))
  s.sendall(b'Hello, world')
  data = s.recv(1024)
  print('Received Connection')
  print('Server:', data.decode())
Echo Server:
import socket
HOST = '127.0.0.1' # Standard loopback interface address (localhost)
PORT = 2053 # Port to listen on (non-privileged ports are > 1023)
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
  s.bind((HOST, PORT))
  s.listen()
  conn, addr = s.accept()
  with conn:
    print('Connected by', addr)
     while True:
       data = conn.recv(1024)
       if data:
         print("Client: ",data.decode())
```

```
data = input("Enter message to client:");
if not data:
    break;
# sending message as bytes to client.
conn.sendall(bytearray(data, 'utf-8'));
conn.close()
```

## 2A) Write a program to create TCP time server in Python

## **Time Client:**

```
#client.py
import socket

# create a socket object
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

# get local machine name
host = socket.gethostname()
port = 9991
# connection to hostname on the port.
s.connect((host, port))
# Receive no more than 1024 bytes
tm = s.recv(1024)
print(' Current time from Sever :', tm.decode())
s.close()
```

## **Time Server:**

## # server.py

import socket

```
import time
# create a socket object
serversocket = socket.socket(
            socket.AF_INET, socket.SOCK_STREAM)
# get local machine name
host = socket.gethostname()
port = 9991
# bind to the port
serversocket.bind((host, port))
# queue up to 5 requests
serversocket.listen(5)
while True:
  # establish a connection
  clientsocket,addr = serversocket.accept()
  print("Got a connection from %s" % str(addr))
  currentTime = time.ctime(time.time()) + "\r\"
  clientsocket.send(currentTime.encode('ascii'))
  clientsocket.close()
```

## 3A) Write a TCP chat server in python using socket programming.

#### **Client Chat:**

```
import socket
HOST = '127.0.0.1' # Standard loopback interface address (localhost)
PORT = 31621 # Port to listen on (non-privileged ports are > 1023)
s = socket.socket()
name = input(str("\nEnter your name: "))
print("\nTrying to connect to ", HOST, "(", PORT, ")\n")
s.connect((HOST, PORT))
print("Connected...\n")
s.send(name.encode())
s_name = s.recv(1024)
s_name = s_name.decode()
print(s_name, "has joined the chat room\nEnter [e] to exit chat room\n")
while True:
  message = s.recv(1024)
  message = message.decode()
  print(s_name, ":", message)
  message = input(str("Me : "))
  if message == "[e]":
    message = "Left chat room!"
    s.send(message.encode())
    print("\n")
    break
  s.send(message.encode())
```

## **Server Chat:**

```
# server.py
import socket
HOST = '127.0.0.1' # Standard loopback interface address (localhost)
PORT = 31621 # Port to listen on (non-privileged ports are > 1023)
s = socket.socket()
s.bind((HOST, PORT))
s.listen()
print("\nWaiting for incoming connections...\n")
conn, addr = s.accept()
print("Received connection from ", addr[0], "(", addr[1], ")\n")
s_name = conn.recv(1024)
s_name = s_name.decode()
print(s_name, "has connected to the chat room\nEnter [e] to exit chat room\n")
name = input(str("Enter your name: "))
conn.send(name.encode())
while True:
  message = input(str("Me : "))
  if message == "[e]":
    message = "Left chat room!"
    conn.send(message.encode())
    print("\n")
    break
  conn.send(message.encode())
  message = conn.recv(1024)
  message = message.decode()
  print(s_name, ":", message)
```



## **4A.** Forking/ Threading (Concurrent Server)

```
import socket

ClientSocket = socket.socket()
host = '127.0.0.1'
port = 11596

print('Waiting for connection')
try:
    ClientSocket.connect((host, port))
except socket.error as e:
    print(str(e))

Response = ClientSocket.recv(1024)
while True:
    Input = input('Client Say Something: ')
    ClientSocket.send(str.encode(Input))
```

```
Response = ClientSocket.recv(1024)
  print('From Server : ' + Response.decode())
ClientSocket.close()
4B. Server Program
import socket
import os
from _thread import *
ServerSocket = socket.socket()
host = '127.0.0.1'
port = 11596
ThreadCount = 0
try:
  ServerSocket.bind((host, port))
except socket.error as e:
  print(str(e))
print('Waitiing for a Connection..')
ServerSocket.listen(5)
def threaded_client(connection):
  connection.send(str.encode('Welcome to the Server'))
  while True:
     data = connection.recv(2048)
     print('Received from client :' + str(ThreadCount) +data.decode())
     Inputs = input('Server Says: ')
     if not data:
       break
     connection.sendall(Inputs.encode())
  connection.close()
```

```
while True:
```

```
Client, address = ServerSocket.accept()

print('Connected to: ' + address[0] + ':' + str(address[1]))

start_new_thread(threaded_client, (Client, ))

ThreadCount += 1

print('Thread Number: ' + str(ThreadCount))

ServerSocket.close()
```

## Lab Exercise:

- 1. Write a UDP time server to display the current time and day.
- 2. Write a UDP simple chat program for message send and receive.

## **Sample Output:**

#### **Client Side**

```
Do Ctrl+c to exit the program !!

Type some text to send =>Hi

Client Sent : Hi

Client received : Hello
```

#### **Server Side:**

```
Do Ctrl+c to exit the program !!
####### Server is listening #######
```

2. Server received: Hi

Type some text to send => Hello

1. Server sent: Hello

###### Server is listening ######

3. Write a TCP/UDP peer to peer chat system between two different machines.