Chapter 13 전도함수, 다변수함수

Partial Derivatives, Multivariate Function

(다변수함수)미분_권윤기

편도함수, 다변수함수

Contents

- 13.1 다변수함수
- 13.2 극한과 연속성
- 13.3 편도함수
- 13.4 접평면과 선형근사
- 13.5 연쇄법칙
- 13.6 방향도함수와 기울기 벡터
- 13.7 최댓값과 최솟값
- 13.8 라그랑주 승수

다변수함수

학습목표

- 이변수함수, 삼변수함수, 다변수함수
- 다변수함수의 정의역, 그래프
- 등위곡선

(다변수함수)미분_권윤기

다변수함수

편도함수, 다변수함수

이변수함수

지구상의 한 지역의 온도 T 원기둥의 부피 V

$$\Rightarrow T = f(x,y)$$

: 경도 x와 위도 y에 의존 : 반지름 r과 높이 h에 의존

$$\Rightarrow V(r,h) = \pi r^2 h$$

Actual temperature (°C)

예제. 체감온도지수 : 실제온도 T와 바람속도 v에 의존 W=f(T,v) Wind speed (km/h)

T^{v}	5	10	15	20	25	30	40	50	60	70	80
5	4	3	2	1	1	0	-1	-1	-2	-2	-3
0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

(다변수함수)미분_권윤기

5

다변수함수

편도함수, 다변수함수

함수 f는 집합 $D(=\Omega)$ 의 실수의 각 순서쌍 (x,y)에 단 하나의 실수를 대응시키는 규칙으로 z=f(x,y)와 같이 나타낸다. 집합 D는 f의 정의역(domain)이고

치역(range)은 f가 취하는 실수값들의 집합이다.

이 때, (x,y) = x를 독립 변수, z를 종속 변수라 한다.

즉, 치역은 f가 취하는 실수값들의 집합

 $\{f(x,y)|(x,y)\in D\}=\{f(x)|x\in D\}$

 $x \in \mathbb{R}$, $y \in \mathbb{R}$, $(x,y) \in \mathbb{R}^2$: 이변수 실함수

예제.
$$z = f(x,y) = \sqrt{1-x^2-y^2}$$

$$D = \left\{ (x,y) | 1-x^2-y^2 \ge 0 \right\}$$

예제.

다변수함수

(a)
$$f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$$

$$D = \{ (x,y) | x+y+1 \ge 0, x \ne 1 \}$$

(b)
$$f(x) = x \ln(y^2 - x)$$

$$D = \{ (x,y) | y^2 - x > 0 \} = \{ (x,y) | y^2 > x \}$$

7

다변수함수

편도함수, 다변수함수

예제. 콥-더글라스 생산함수(Cobb-Douglas production function)

Year	P	L	K
1899	100	100	100
1900	101	105	107
1901	112	110	114
1902	122	117	122
1903	124	122	131
1904	122	121	138
1905	143	125	149
1906	152	134	163
1907	151	140	176
1908	126	123	185
1909	155	143	198
1910	159	147	208
1911	153	148	216
1912	177	155	226
1913	184	156	236
1914	169	152	244
1915	189	156	266
1916	225	183	298
1917	227	198	335
1918	223	201	366
1919	218	196	387
1920	231	194	407
1921	179	146	417
1922	240	161	431

$$P(L,K) = bL^{\alpha}K^{1-\alpha}$$

P : 총 생산량

L: 노동량

K: 투자된 자본금

$$P(L,K) = 1.01L^{0.75}K^{0.25}$$

노동량과 자본금(L, K)은 음수가 아니다. 함수의 정의역

$$D = \{ (L, K) | L \ge 0, K \ge 0 \}$$

그래프

f가 정의역이 D인 이변수함수이면, f의 그래프는 \mathbb{R}^3 에서 $(x,y) \in D$ 이고, z = f(x,y)인 모든 점 (x,y,z)의 집합이다.

(다변수함수)미분_권윤기

다변수함수

편도함수, 다변수함수

예. 함수
$$f(x,y) = x^2 e^{2xy}$$

정의역

: 실수 전체

$$f(2,0) = 2^2 \cdot e^{2 \cdot 2 \cdot 0} = 4$$

정의역

:
$$D = \{ (x,y) | y > -x, y \neq 1-x \}$$

$$f(0,e) = \frac{1}{\ln(0+e)} = 1$$

예제. $h(x,y) = 4x^2 + y^2$

정의역 : $(x,y) \in \mathbb{R}^2$

치 역 : $x^2 \ge 0$, $y^2 \ge 0$ $\Rightarrow h(x,y) \ge 0$

$$z = f(x,y) = x^2 + \frac{y^2}{4}$$

정의역 : $(x,y) \in \mathbb{R}^2$

치 역 : $x^2 \ge 0$, $y^2 \ge 0$ $\Rightarrow f(x,y) \ge 0$

(다변수함수)미분_권윤기

편도함수, 다변수함수

11

다변수함수

이변수함수의 그래프

등위곡선

 $k \in \mathbb{R}(k$ 는 f의 치역 안에 존재)일 때, 방정식 f(x,y) = k를 만족하는 곡선을 이변수함수 f의 등위곡선(level curve)이라 한다.

(다변수함수)미분_권윤기

13

다변수함수

팬도함수, 다변수함수

예.
$$z=x^2+\frac{y^2}{4}$$
 등위곡선

삼변수함수

지구상의 한 지역의 온도 T

경도 x, 위도 y, 고도 $z \Rightarrow T = f(x,y,z)$ 경도 x, 위도 y, 시간 $t \Rightarrow T = f(x,y,t)$

함수 f는 집합 $D(=\Omega)$ 의 실수의 각 순서쌍 (x,y,z)에 단 하나의 실수를 대응시키는 규칙으로 w=f(x,y,z)와 같이 나타낸다. 집합 D는 f의 정의역(domain)이고

치역(range)은 f가 취하는 실수값들의 집합이다.

이 때, (x,y,z) = x를 독립 변수, w를 종속 변수라 한다.

즉, 치역은 f가 취하는 실수값들의 집합

 $\{f(x,y,z)|(x,y,z)\in D\}=\{f(\mathbf{x})|\mathbf{x}\in D\}$

 $x \in \mathbb{R}$, $y \in \mathbb{R}$, $z \in \mathbb{R}$, $(x,y,z) \in \mathbb{R}^3$: 삼변수 실함수

(다변수함수)미분_권윤기

15

다변수함수

편도함수, 다변수함수

예제. $f(x,y,z) = x^2 + y^2 + z^2 = k$

다변수함수

함수 f는 집합 $D(=\Omega)\subset\mathbb{R}^n$ 의 실수의 각 순서쌍 (x_1,x_2,\cdots,x_n)

에 단 하나의 실수를 대응시키는 규칙으로 $w = f(x_1, x_2, \dots, x_n)$

와 같이 나타낸다. 집합 D는 f의 정의역(domain)이고

치역(range)은 f가 취하는 실수값들의 집합이다.

이 때, $(x_1, x_2, \dots, x_n) = \mathbf{x}$ 를 독립 변수, w를 종속 변수라 한다.

즉, 치역은 f가 취하는 실수값들의 집합

$$\{f(x_1, x_2, \dots, x_n) | (x_1, x_2, \dots, x_n) \in D\}$$

$$= \{f(\mathbf{x}) | \mathbf{x} = (x_1, x_2, \dots, x_n) \in D\}$$

 $x_i \in \mathbb{R}$, $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$: n변수 실함수

그래프 $\{(x_1,x_2,\cdots,x_n,w)\in\mathbb{R}^{n+1}\mid w=f(\mathbf{x}),\ \mathbf{x}=(x_1,x_2,\cdots,x_n)\in D\}$

(다변수함수)미분_권윤기

17

극한과 연속

팬도함수, 다변수함수

극한과 연속성

___학습목표

- 다변수 함수의 극한
- 다변수 함수의 연속

● 다변수 함수의 극한

정의 f를 (a,b)에 임의로 가까이 있는 점들을 포함하는 정의역 D상에서 정의된 이변수함수라 하자. 만일 임의의 양수 $\epsilon>0$ 에 대하여, 이에 대응하는 양수 $\delta>0$ 가 존재해서

$$(x,y) \in D$$
, $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$

를 만족하는 (x,y)에 대해

$$|f(x,y) - L| < \epsilon$$

일 때,

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

로 쓰고 (x,y)가 (a,b)에 접근할 때 f(x,y)의 극한값을 L이다.

(다변수함수)미분_권윤기

19

극한과 연속

편도함수, 다변수함수

만약

 C_1 경로를 따라서 $(x,y) \rightarrow (a,b)$ 일 때 $f(x,y) \rightarrow L_1$

 C_2 경로를 따라서 $(x,y) \rightarrow (a,b)$ 일 때 $f(x,y) \rightarrow L_2$

$$L_1 \neq L_2$$
 \Rightarrow $\lim_{(x,y)\to(a,b)} f(x,y)$ 는 존재하지 않는다.

예제.
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
이 존재하지 않음을 보여라.

x축을 따라 접근할 때

$$\lim_{\substack{x \to 0 \\ y = 0}} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{\substack{x \to 0}} \frac{x^2 - 0^2}{x^2 + 0^2}$$
$$= \lim_{\substack{x \to 0}} \frac{x^2 - 0^2}{x^2 + 0^2}$$

y축을 따라 접근할 때

$$\lim_{\substack{y \to 0 \\ x = 0}} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{\substack{y \to 0}} \frac{0^2 - y^2}{0^2 + y^2}$$
$$= \lim_{\substack{y \to 0}} \frac{-y^2}{y^2} = -1$$

(다변수함수)미분_권윤기

21

극한과 연속

편도함수, 다변수함수

예제.
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
이 존재하는가?

x축을 따라 접근할 때

$$\lim_{\substack{x \to 0 \\ y = 0}} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} \frac{x \cdot 0}{x^2 + 0^2}$$
$$= \lim_{x \to 0} \frac{0}{x^2} = 0$$

y축을 따라 접근할 때

$$\lim_{\substack{y \to 0 \\ x = 0}} \frac{xy}{x^2 + y^2} = \lim_{\substack{y \to 0}} \frac{0 \cdot y}{0^2 + y^2}$$
$$= \lim_{\substack{y \to 0}} \frac{0}{y^2} = 0$$

y = x를 따라 접근할 때

$$\lim_{\substack{x \to 0 \ y = x}} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} \frac{x \cdot x}{x^2 + x^2}$$
$$= \lim_{x \to 0} \frac{x^2}{2x^2} = \frac{1}{2}$$

예제.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
이 존재하는가?

x축을 따라 접근할 때

$$\lim_{\substack{x \to 0 \ y = 0}} \frac{xy^2}{x^2 + y^4} = \lim_{\substack{x \to 0}} \frac{x \cdot 0^2}{x^2 + 0^4}$$
$$= \lim_{\substack{x \to 0 \ x^2 = 0}} \frac{0}{x^2} = 0$$

$$y = x$$
를 따라 접근할 때

$$\lim_{\substack{x \to 0 \\ y = x}} \frac{xy^2}{x^2 + y^4} = \lim_{x \to 0} \frac{x \cdot x^2}{x^2 + x^4} = \lim_{x \to 0} \frac{x^3}{x^3 \left(\frac{1}{x} + x\right)} \qquad \lim_{\substack{y \to 0 \\ x = y^2}} \frac{xy^2}{x^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{x^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ x = y^2}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{y \to 0 \\ y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4} = \lim_{\substack{$$

y축을 따라 접근할 때

$$\lim_{\substack{y \to 0 \\ x = 0}} \frac{xy^2}{x^2 + y^4} = \lim_{\substack{y \to 0}} \frac{0 \cdot y^2}{0^2 + y^4}$$
$$= \lim_{\substack{y \to 0 \\ y \to 0}} \frac{0}{y^4} = 0$$

 $x=y^2$ 을 따라 접근할 때

$$\lim_{\substack{y \to 0 \\ x = y^2}} \frac{xy^2}{x^2 + y^4} = \lim_{\substack{y \to 0}} \frac{(y^2) \cdot y^2}{(y^2)^2 + y^4}$$
$$= \lim_{\substack{y \to 0}} \frac{y^4}{2y^4} = \frac{1}{2}$$

(다변수함수)미분_권윤기

23

극한과 연속

편도함수, 다변수함수

예제. $\lim_{(x,y)\to(0.0)} \frac{3x^2y}{x^2+y^2}$ 의 극한을 구하여라.

$$0 \le y^{2} \quad \Rightarrow \quad x^{2} \le x^{2} + y^{2}$$

$$\Rightarrow \quad 0 \le \frac{x^{2}}{x^{2} + y^{2}} \le 1$$

$$\Rightarrow \quad 0 \le \frac{3x^{2} |y|}{x^{2} + y^{2}} \le 3|y|$$

$$\left| \frac{3x^2y}{x^2 + y^2} - 0 \right| = \frac{3x^2|y|}{x^2 + y^2}$$

 $\lim_{(x,y)\to(0,0)}0=0=\lim_{(x,y)\to(0,0)}3|y|$ 이므로 조임정리(샌드위치정리)에 의해

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$$

<mark>정리</mark> 점 (a,b)의 근방에서 정의된 두 함수 f와 g에 대해,

 $\lim_{(x,y)\to(0,0)} f(x,y)$ 와 $\lim_{(x,y)\to(0,0)} g(x,y)$ 가 존재하면 다음이 성립한다.

(1)
$$\lim_{(x,y)\to(0,0)} (f\pm g)(x,y) = \lim_{(x,y)\to(0,0)} f(x,y) \pm \lim_{(x,y)\to(0,0)} g(x,y)$$

(2)
$$\lim_{(x,y)\to(0,0)} (f \cdot g)(x,y) = \lim_{(x,y)\to(0,0)} f(x,y) \cdot \lim_{(x,y)\to(0,0)} g(x,y)$$

(3)
$$\lim_{(x,y)\to(0,0)} \left(\frac{f}{g}\right)(x,y) = \frac{\lim_{(x,y)\to(0,0)} f(x,y)}{\lim_{(x,y)\to(0,0)} g(x,y)}, (단, \lim_{(x,y)\to(0,0)} g(x,y) \neq 0)$$

(다변수함수)미분_권윤기

25

극한과 연속

편도함수, 다변수함수

● 이변수 함수의 연속성

정의 이변수함수 f가 (a,b)에서 '연속'이다.

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

만약 정의역 D상의 모든 점 (a,b)에서 연속이면 f는 D상에서 연속이다 라고 한다.

- (1) f(a,b)가 정의되어 있다.
- (2) $\lim_{(x,y)\to(a,b)} f(x,y)$ 가 존재한다.
- (3) 함수의 극한=함수값

예제.
$$\lim_{(x,y)\to(1,2)} (x^2y^3 - x^3y^2 + 3x + 2y)$$

예제.
$$\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2}$$
은 어디에서 연속인가?
$$D=\{\,(x,y)\,|\,(x,y)\neq(0,0)\,\}$$

예제.
$$g(x) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

(다변수함수)미분_권윤기

27

극하과 연속

편도함수, 다변수함수

정리

두 함수 f(x,y)와 g(x,y)가 점 (a,b)에서 연속이면,

(1) 두 함수의 합, 차, 곱, 나눗셈(단, 분모의 함수값이 0이 아닌 경우)도 점 (a,b)에서 연속이다.

즉,
$$f \pm g$$
, $f \cdot g$, $\frac{f}{g}$ (단, $g(a,b) \neq 0$)

(2) 합성 함수도 점 (a,b)에서 연속이다. 즉, 이변수 함수 z=f(x,y)가 점 (a,b)에서 연속이고, c=f(a,b)라 하자. 이 때, 일변수 함수 w=h(z)가 z=c에서 연속이면, 합성 함수 w=h(f(x,y))는 점 (a,b)에서 연속이다. 예제.

$$f(x) = \frac{3x^2y}{x^2 + y^2}$$

$$D = \{ (x,y) | (x,y) \neq (0,0) \}$$

점 $(0,0)$ 를 제외한 D 에서 연속

$$g(x) = \begin{cases} \frac{3x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$D = \{\,(x,y) \,|\, (x,y) \in R \times R\,\}$$
점 $(0,0)$ 를 포함한 D 에서 연속

$$h(x) = \begin{cases} \frac{3x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$$

$$D = \{(x,y) | (x,y) \in R \times R\}$$

점 $(0,0)$ 를 제외한 D 에서 연속

(다변수함수)미분_권윤기

29

편도함수

편도함수, 다변수함수

편도함수

학습목표

- 편도함수
- 클레로의 정리

정의

x에 관한 f의 편도함수

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

y에 관한 f의 편도함수

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

(다변수함수)미분_권윤기

31

편도함수

편도함수, 다변수함수

$$\begin{split} f_x(2,1) &= \lim_{h \to 0} \frac{f(2+h,1) - f(2,1)}{h} \\ &= \lim_{h \to 0} \frac{\left\{ (2+h)^3 + (2+h)^2 \cdot 1^3 - 2 \cdot 1^2 \right\} - \left\{ 2^3 + 2^2 \cdot 1^3 - 2 \cdot 1^2 \right\}}{h} \\ &= \lim_{h \to 0} \frac{\left\{ 8 + 12h + 6h^2 + h^3 + 4 + 4h + h^2 - 2 \right\} - \left\{ 8 + 4 - 2 \right\}}{h} \\ &= \lim_{h \to 0} \frac{16h + 7h^2 + h^3}{h} \\ &= \lim_{h \to 0} \frac{h \left(16 + 7h + h^2 \right)}{h} \end{split}$$

예제. $f(x,y) = x^3 + x^2y^3 - 2y^2$ 일 때, $f_x(2,1)$ 과 $f_y(2,1)$ 을 구하여라.

 $= \lim_{h \to 0} 16 + 7h + h^2 = 16$

에제.
$$f(x,y) = x^3 + x^2y^3 - 2y^2$$
일 때, $f_x(2,1)$ 과 $f_y(2,1)$ 을 구하여라.
$$f_y(2,1) = \lim_{h \to 0} \frac{f(2,1+h) - f(2,1)}{h}$$

$$= \lim_{h \to 0} \frac{\left\{2^3 + 2^2 \cdot (1+h)^3 - 2 \cdot (1+h)^2\right\} - \left\{2^3 + 2^2 \cdot 1^3 - 2 \cdot 1^2\right\}}{h}$$

$$= \lim_{h \to 0} \frac{\left\{8 + 4 + 12h + 12h^2 + 4h^3 - 2 - 4h - 2h^2\right\} - \left\{8 + 4 - 2\right\}}{h}$$

$$= \lim_{h \to 0} \frac{8h + 10h^2 + 4h^3}{h}$$

$$= \lim_{h \to 0} \frac{h\left(8 + 10h + 4h^2\right)}{h}$$

$$= \lim_{h \to 0} \frac{h\left(8 + 10h + 4h^2\right)}{h}$$

$$= \lim_{h \to 0} \frac{h\left(8 + 10h + 4h^2\right)}{h}$$

(다변수함수)미분_권윤기

33

편도함수

편도함수, 다변수함수

x에 관한 f의 편도함수

 f_r 를 구하기 위해서는

y를 상수로 보고 f(x,y)를 x에 관해 미분한다.

y에 관한 f의 편도함수

 f_y 를 구하기 위해서는

|x를 상수로 보고 f(x,y)를 y에 관해 미분한다.

$$\begin{split} f(x,y) &= x^3 + x^2 y^3 - 2 y^2 \\ f_x(x,y) &= 3 x^2 + 2 x y^3 & \Rightarrow & f_x(2,1) = 3 \cdot 2^2 + 2 \cdot 2 \cdot 1^3 = 12 + 4 = 16 \\ f_y(x,y) &= 3 x^2 y^2 - 4 y & \Rightarrow & f_y(2,1) = 3 \cdot 2^2 \cdot 1^2 - 4 \cdot 1 = 12 - 4 = 8 \end{split}$$

예 함수 $f(x,y) = x^2 + y^2$ 에 대해 $f_x(1,2)$ 과 $f_y(1,2)$ 을 찾아라.

예 함수 f(x,y) = |2x-y|는 점 (0,0)에서 x에 관한 편미분 가능한가? $f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0)-f(0,0)}{h} \qquad \qquad \qquad \Rightarrow x$ 에 관한 편미분 가능하지 않으므로 x에 관한 편미분 가능하지 않다. $= \lim_{h \to 0} \frac{f(h,0)-f(0,0)}{h} \qquad \qquad \Leftrightarrow \Leftrightarrow \Leftrightarrow \Rightarrow \Rightarrow x$ 이 라한 편미분 가능하지 않다. $= \lim_{h \to 0} \frac{|2 \cdot h - 0| - |2 \cdot 0 - 0|}{h}$ $= \lim_{h \to 0} \frac{2|h|}{h}$

(다변수함수)미분_권윤기

35

편도함수

편도함수, 다변수함수

예제. 함수 $z = xy + e^x \cos y$ 에 대해 $\frac{\partial z}{\partial x}$ 와 $\frac{\partial z}{\partial y}$ 를 찾아라.

예제. 함수
$$z=x^2y^3+x^3y^4-e^{xy^2}$$
에 대해
$$\frac{\partial z}{\partial x}$$
와 $\frac{\partial z}{\partial y}$ 를 찾아라.

예제. 함수 $f(x,y) = -\frac{x^2}{2} - y^2 + \frac{25}{8}$ 의 그래프에 있는 점 $(\frac{1}{2},1,2)$ 에서 x 축과 y축에 평행인 방향으로의 접선의 기울기를 찾아라.

정의

고계 편도함수

$$\begin{split} & \left(f_{x}\right)_{x} = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right) = \frac{\partial^{2} f}{\partial x^{2}} = \frac{\partial^{2} z}{\partial x^{2}} \\ & \left(f_{x}\right)_{y} = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) = \frac{\partial^{2} f}{\partial y \partial x} = \frac{\partial^{2} z}{\partial y \partial x} \\ & \left(f_{y}\right)_{x} = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) = \frac{\partial^{2} f}{\partial x \partial y} = \frac{\partial^{2} z}{\partial x \partial y} \\ & \left(f_{y}\right)_{y} = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) = \frac{\partial^{2} f}{\partial y^{2}} = \frac{\partial^{2} z}{\partial y^{2}} \end{split}$$

(다변수함수)미분_권윤기

37

편도함수

편도함수, 다변수함수

예제. 평면 전체에서 정의된 다음 함수 f(x,y)에 대해, $f_x(0,0)$, $f_y(0,0)$, $f_{xy}(0,0)$ 과 $f_{yx}(0,0)$ 을 찾아라.

$$f(x) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\begin{split} f_x(0,0) &= \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} \qquad f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} \\ &= \lim_{h \to 0} \frac{\frac{h^2 - 0^2}{h^2 + 0^2} - 0}{h} \\ &= \lim_{h \to 0} \frac{h^2}{h} = \infty \\ &= \lim_{h \to 0} \frac{h^2}{h^3} = \infty \end{split}$$

$$\begin{split} f_x(x,y) = \begin{cases} \frac{2x \cdot (x^2 + y^2) - (x^2 - y^2) \cdot 2x}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ & = \frac{4xy^2}{(x^2 + y^2)^2} \\ & \stackrel{\text{\tiny{\mathcal{Z}}}}{=} \mathbb{X} \times, & (x,y) = (0,0) \end{cases} \end{split}$$

$$f_y(x,y) = \begin{cases} \frac{-2y \cdot (x^2 + y^2) - (x^2 - y^2) \cdot 2y}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ = \frac{-4x^2y}{(x^2 + y^2)^2} & (x,y) = (0,0) \end{cases}$$

(다변수함수)미분_권윤기

39

편도함수

편도함수, 다변수함수

$$\begin{split} f_{xy}(0,0) &= \lim_{h \to 0} \frac{f_x(0,0+h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} \\ &= \lim_{h \to 0} \frac{\frac{4 \cdot 0 \cdot h^2}{(h^2 + 0^2)^2} - \Box}{h} \end{split}$$

$$\begin{split} f_{yx}(0,0) &= \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h} \\ &= \lim_{h \to 0} \frac{\frac{-4 \cdot h^2 \cdot 0}{(0^2 + h^2)^2} - \Box}{h} \end{split}$$

존재×

예제. 평면 전체에서 정의된 다음 함수 f(x,y)에 대해, $f_x(0,0)$, $f_y(0,0)$, $f_{xy}(0,0)$ 과 $f_{yx}(0,0)$ 을 찾아라.

$$f(x) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\begin{split} f_x(0,0) &= \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} & f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} \\ &= \lim_{h \to 0} \frac{\frac{h^3 \cdot 0 - h \cdot 0^2}{h^2 + 0^2} - 0}{h} = \lim_{h \to 0} \frac{\frac{0}{h^2 + 0^2} - 0}{h} & = \lim_{h \to 0} \frac{\frac{0^3 \cdot h - 0 \cdot h^3}{h} - 0}{h} = \lim_{h \to 0} \frac{\frac{0}{0^2 + h^2} - 0}{h} \\ &= \lim_{h \to 0} \frac{0}{h} = 0 & = \lim_{h \to 0} \frac{0}{h} = 0 \end{split}$$

(다변수함수)미분_권윤기

41

편도함수

편도함수, 다변수함수

$$f_x(x,y) = \begin{cases} \frac{(3x^2y - y^3) \cdot (x^2 + y^2) - (x^3y - xy^3) \cdot 2x}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2} & (x,y) = (0,0) \end{cases}$$

$$f_y(x,y) = \begin{cases} \frac{(x^3 - 3xy^2) \cdot (x^2 + y^2) - (x^3y - xy^3) \cdot 2y}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ = \frac{x^5 - 4x^3y^2 - xy^4}{(x^2 + y^2)^2} & (x,y) = (0,0) \end{cases}$$

$$\begin{split} f_{xy}(0,0) &= \lim_{h \to 0} \frac{f_x(0,0+h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} \\ &= \lim_{h \to 0} \frac{\frac{0^4 \cdot h + 4 \cdot 0^2 \cdot h^3 - h^5}{(h^2 + 0^2)^2}}{h} = \lim_{h \to 0} \frac{\frac{-h^5}{h^4} - 0}{h} \\ &= \lim_{h \to 0} -\frac{\frac{h^5}{h^5}}{h^5} = -1 \\ f_{yx}(0,0) &= \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h} \\ &= \lim_{h \to 0} \frac{\frac{h^5 - 4h^3 \cdot 0^2 - h \cdot 0^4}{(0^2 + h^2)^2} - 0}{h} = \lim_{h \to 0} \frac{\frac{h^5}{h^4} - 0}{h} \end{split}$$

(다변수함수)미분_권윤기

 $=\lim_{h\to 0}\frac{h^{5}}{h^{5}}=1$

43

편도함수

편도함수, 다변수함수

예제 다음 함수 f에 대해, $f_x(0,0)$, $f_y(0,0)$, $f_{xy}(0,0)$ $f_{yx}(0,0)$ 을 찾아라.

$$f(x) = \begin{cases} \frac{x^3 y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

정리 3.3-1 클레로 정리(Clairaut's Theorem)

함수 f(x,y)와 그 편도함수 f_x, f_y, f_{xy} 가 점 (a,b)의 근방에서 연속이면, $f_{yx}(a,b)$ 가 존재하고, $f_{xy}(a,b)=f_{yx}(a,b)$ 이다.

f를 점 (a,b)를 포함하는 원판 D에서 정의된 함수라 하자. 만약함수 f_{xy} 와 f_{yx} 가 D에서 연속이면

$$f_{xy}(a,b) = f_{yx}(a,b)$$

(다변수함수)미분_권윤기

45

편도함수

편도함수, 다변수함수