- c) En utilisant cet ajustement, estimer la consommation aux 100 km (arrondie au dixième) de la voiture, pour une vitesse de 130 km/h.

 4. Des deux valeurs obtenues dans les questions 2. d)
- et **3. c)**, pour la consommation à une vitesse de 130 km/h, laquelle vous semble la plus proche de la consommation réelle ? Expliquer votre choix.
- 24 On a relevé mois après mois, le coût d'amortissement d'une pompe hydraulique.

 Mois x 1 2 3 4 5 6

Mois x	1	2	3	4	5	6
Coût C (en €)	400	300	270	220	180	150

en prenant des valeurs décimales arrondies à 10^{-3} près. b) Calculer le coefficient de corrélation linéaire de

a) Dresser le tableau de la série statistique (x; y)

conduit à poser $y = \ln C$.

- cette série. (On en donnera une valeur décimale arrondie à 10^{-3} près.)
- c) Justifier la pertinence d'un ajustement affine.

2. Déterminer une équation de la forme :

$$y = ax + b$$
,
où a et b désignent des nombres réels, de la droite
de régression de y en x .

- (On prendra pour valeurs de a et b leurs valeurs décimales arrondies à 10^{-3} près.)
- **3.** À partir du résultat de la question **2.**, déterminer l'expression de C, en fonction de x sous la forme $C = \alpha \beta^x$, où α et β sont des réels dont on donnera des valeurs approchées à 10^{-2} près.
- **4.** Utiliser l'expression précédente pour évaluer le coût d'amortissement de la pompe au mois numéro 7, à 10^{-2} (\in) près.