$\sigma_{1}^{\#1}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1^-lpha}^{\#1}$	$\sigma_{1^-}^{\#2}{}_{\alpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	${\mathfrak l}_1^{\#2}$
$\frac{1}{k^2 (2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\int_{1}^{\#2} + \alpha \beta \left[-\frac{\sqrt{2}}{k^2 (1+k^2)(2r_3+r_5)} \right]$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
	0	0	0	0	0	0
	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6 k^2 (r_3 + 2 r_5) + 8 t_3}{(1 + 2 k^2)^2 (r_3 + 2 r_5) t_3}$

	#	1	1	3	٣	3	2	2	21
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_1^{\#2}{}^{\alpha} + 2 i k \sigma_1^{\#2}{}^{\alpha} == 0$	0 !!	$\tau_{1}^{\#1}{}^{\alpha\beta} + ik \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$\sigma_{2}^{*1}\alpha\beta\chi==0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

					kt3		
$f_{1^{-}}^{\#2}$	0	0	0	$-\frac{2}{3}\bar{l}kt_3$	$\frac{1}{3}\bar{l}\sqrt{2}ki$	0	$\frac{2 k^2 t_3}{3}$
$f_{1^{ ext{-}}lpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ <u>3</u>	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	2 ع	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_1^{\#1}{}_{+\alpha\beta}$	2 (2	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ I $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_{1}^{#2} + \alpha^{\beta}$	$f_{1+}^{\#1} + ^{\alpha\beta}$	$\omega_{1^{-}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{t_2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2^- \alpha\beta\chi}^{\#1}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{#1}$ † $^{\alpha\beta\chi}$	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	t_2

Lagrangian density

 $\frac{2}{3}t_3 \ \omega_{\kappa}^{\alpha l} \ \omega_{\kappa\alpha}^{\kappa} + \frac{2}{3}t_2 \ \omega_{\kappa}^{\kappa\lambda} \ \omega_{\kappa\lambda}^{l} + \frac{1}{3}t_2 \ \omega_{\kappa\lambda}^{l} \ \omega_{\kappa\lambda}^{l} + f^{\alpha\beta} \ \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi}^{l} - \frac{1}{2}r_3 \partial_{l}\omega^{\kappa\lambda}_{\kappa} \partial^{l}\omega_{\lambda}^{\alpha}_{\alpha} - r_5 \partial_{l}\omega^{\kappa\lambda}_{\kappa} \partial^{l}\omega_{\lambda}^{\alpha}_{\alpha} + \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\theta\kappa\lambda} - r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\theta\kappa\lambda} - \frac{1}{2}r_3 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\kappa\lambda\theta} - r_5 \partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta} \partial_{\kappa}\omega^{\kappa\lambda\theta} + r_3 \partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta} + 2r_5 \partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta} + \frac{1}{6}t_2 \partial^{\alpha}f_{\theta\kappa} \partial^{\kappa}f_{\alpha}^{l} - \frac{1}{6}t_2 \partial^{\alpha}f_{\kappa\theta} \partial^{\kappa}f_{\alpha}^{l} + \frac{1}{6}t_2 \partial^{\alpha}f_{\kappa}^{\lambda} \partial^{\kappa}f_{\alpha\lambda}^{l} - \frac{2}{3}t_3 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa}f_{\alpha}^{l} - \frac{1}{3}t_2 \omega_{\theta}\omega_{\lambda}^{\alpha} \partial_{\kappa}f_{\alpha}^{l} + \frac{2}{3}t_3 \partial_{\kappa}f_{\lambda}^{\lambda} \partial^{\kappa}f_{\alpha}^{l} + \frac{1}{3}t_2 \omega_{\theta}\omega_{\lambda}^{\alpha} \partial^{\kappa}f_{\alpha}^{l} - \frac{2}{3}t_3 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa}f_{\alpha}^{l} + \frac{2}{3}t_3 \omega_{\kappa\alpha}^{\kappa} \partial^{\kappa}f_{\alpha}^{l} + \frac{2}{3}t_3 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa}f_{\alpha}^{l} + \frac{2}{3}t_3 \omega$

Quadratic pole	2
Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$
Polarisations:	2

(No massive particles)