RNA-seq演習

高橋 弘喜

2019-03-25

RNA-seq 演習

テストデータを用いて、RNA-seq 解析を実際にやってみる。テストデータとして、 $Saccharomyces\ cerevisiae\$ を対象に取得されたデータを使用する 1 .

リードのマッピング(HISAT 2^2 , 3),遺伝子発現量算出(StringTie 3)までを遺伝研のスパコン上で行う.その後の解析は,ローカル環境で統計言語 R^4 (ballgown 5)を利用することで,各種統計量の可視化,ヒートマップなどの作成,有意差のあった遺伝子群の抽出などが可能である.

なお、今回の演習で紹介する方法以外にも、各遺伝子のリード数に基づいた解析も数多くなされている。ソフトウエアとしては、 $\mathrm{HTSeq^6}$, $\mathrm{DESeq^7}$, $\mathrm{DESeq^2}$, $\mathrm{edgeR^9}$ などが挙げられる。

データ準備@スパコン

通常は、取得したデータを遺伝研スパコン上で解析するために、スパコン上へデータ転送を行う.今回は、スパコン上でデータをダウンロードし、解凍して作業を進める.

ファイル転送

遺伝研スパコンにデータを転送する.

- 1. FileZilla, WinScp などのファイル転送ソフトによって、データ転送を行う.
- 2. scp コマンドによるファイル転送

遺伝研スパコンヘログイン

Windows の場合は, TeraTerm などを用いる. Mac, Linux の場合は, 端末を起動して実行する.

```
$ ssh user@gw.ddbj.nig.ac.jp
$ qlogin
サーバーログイン後
#作業場所の確認
$ pwd
/home/hi-takah
#データのダウンロード
curl -0 http://bioinfo.pf.chiba-u.jp/rna-seq-nig/rna-seq_20190325.zip
#ファイルリストの確認
$ ls
#配布データの解凍
$ unzip rna-seq_20190325.zip
#作業場所へ移動
$ cd rna-seq_20190325
#場所の確認
$ pwd
/home/hi-takah/rna-seq_20190325
#ファイルの確認
$ 1s
annotation fastq r64_tran
```

fastq の中身確認

@SRR453566.4926005 HWI-ST167:7:2107:20424:50062 length=101 CGCCATTCTCTTGAAGTACTTGACACAAGTAGAGAGTGTTTTCTTCATCGGTTTCTTCAGACAAATCCAACATGTGGGAGGAGAAT

データの取得

用意したデータには下記のファイルが含まれている.

ファイル名	condition	# of reads
SRR453566_1.fq	batch 1	100,000
SRR453566_2.fq		100,000
SRR453567_1.fq	batch 2	100,000
SRR453567_2.fq		100,000
SRR453569_1.fq	chemo 1	100,000
SRR453569_2.fq		100,000
SRR453570_1.fq	chemo 2	100,000
SRR453570_2.fq		100,000

マッピング

今回はHISAT2を用いて、RNA-seqリードをリファレンスゲノムにマッピングする.マッピングにおいて参照ゲノムと遺伝子情報ファイル(gtfファイル)が必要となる.

用意すべきファイル	ファイル名	備考
fastq ファイル	***.fastq, ***.fq, ***.fastq.gz,	paired, single いずれかの RNA-seq データ
gtf ファイル	***.fq.gz genes.gtf (Saccharomyces cerevisiae (Yeast)	アノテーションファイル(今回は ${ m iGenomes}^{10}$ より取得)
リファレンスゲノム のインデックスファ イル	Ensembl R64-1-1)	ない場合は hisat2-build で作成する

主要なモデル生物に関しては、インデックスファイルが用意されている 11.

種名	バージョン
H. sapiens	GRCh38
	UCSC hg38
	UCSC hg38 and Refseq gene
M. musculus	GRCm38
R. norvegicus	UCSC rn6
D. melanogaster	BDGP6
C. elegans	WBcel235
S. cerevisiae	UCSC sacCer3

マッピング (HISAT2)

RNA-seq のマッピングに関しては、多くのソフトウエアが開発されている. いずれも真核生物を対象に実装されている.

- $TopHat^{12}$
- TopHat2¹³
- STAR¹⁴

原核生物の場合は、ゲノムシーケンス同様 bowtie 2^{15} などを用いる.

コマンドの確認

スパコンにインストール済みのソフトウエア一覧 16 を参照すると,HISAT2 $2.0.0\sim2.1.0$ までのバージョンが使用可能である.

名称	バージョン	PATH
HISAT2	2.1.0	/usr/local/biotools/h/hisat2:2.1.0-py36pl5.22.0_0
	2.0.5	/usr/local/biotools/h/hisat2:2.0.5-py36pl5.22.0_2
	2.0.4	/usr/local/biotools/h/hisat2:2.0.4-py35_0
	2.0.3beta	/usr/local/biotools/h/hisat2:2.0.3beta-py35_0
	2.0.2beta	/usr/local/biotools/h/hisat2:2.0.2beta-py35_0
	2.0.1beta	$/usr/local/biotools/h/hisat2:2.0.1beta-py35_0$
	2.0.0beta	$/usr/local/biotools/h/hisat2:2.0.0beta-py35_0$
StringTie	1.3.3	$/usr/local/biotools/s/stringtie: 1.3.3-py 36_2.1$
	1.3.0	/usr/local/biotools/s/stringtie:1.3.0-0
	1.2.4	/usr/local/biotools/s/stringtie:1.2.4-0
SAMtools	1.6	/usr/local/biotools/s/samtools:1.6-0.1
	1.5	/usr/local/biotools/s/samtools:1.5-2
	1.4.1	/usr/local/biotools/s/samtools: 1.4.1-0

コマンドを確認してみる.

```
$ module load singularity
```

 $\$ singularity exec /usr/local/biotools/h/hisat2\:2.1.0--py36pl5.22.0_0.1 hisat2 - h

HISAT2 version 2.1.0 by Daehwan Kim (infphilo@gmail.com, www.ccb.jhu.edu/people/infph

Usage:
hisat2 [options]* -x <ht2-idx> {-1 <m1> -2 <m2> | -U <r> | -sra-

hisat2 [options]* -x <ht2-idx> {-1 <m1> -2 <m2> | -U <r> | --sraacc <SRA accession number>} [-S <sam>]

<ht2-idx> Index filename prefix (minus trailing .X.ht2).

<m1> Files with #1 mates, paired with files in <m2>.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).

<m2> Files with #2 mates, paired with files in <m1>.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).

<r> Files with unpaired reads.

Could be gzip'ed (extension: .gz) or bzip2'ed (extension: .bz2).

<sam> File for SAM output (default: stdout)

<m1>, <m2>, <r> can be comma-separated lists (no whitespace) and can be specified many times. E.g. '-U file1.fq,file2.fq -U file3.fq'.

ライブラリーについて

strand specific のサンプル調整キットを使用している場合は, "-rna-strandness" オプションを用いることで, リードの向きを考慮したマッピングが可能となる. 次の String Tie においては, "-rf", "-fr" オプションを指定すればよい.

hisat2 1.sh

```
SRR453566 データを HISAT2 でマッピングを行う.
```

```
#!/bin/bash
#$ -S /bin/bash
#$ -N hisat2
#$ -pe def_slot 4
#$ -cwd
```

module load singularity

```
f="SRR453566"
```

```
singularity exec /usr/local/biotools/h/hisat2\:2.1.0--py36pl5.22.0_0.1 hisat2 \ -p 4 -x r64_tran/genome_tran --dta \ -1 fastq/f_1.fq \ -2 fastq/f_2.fq \ -S f_3.sam
```

実行

```
$ qsub -l epyc -l s_vmem=1G -l mem_req=1G hisat2_1.sh
$ qstat
```

計算が終わると、SRR453566.sam が作成される.

samtools_1.sh

SRR453566.sam を bam ファイルへ変換する.

```
#!/bin/bash
#$ -S /bin/bash
#$ -N samtools
#$ -pe def_slot 4
```

```
module load singularity
f="SRR453566"
singularity exec /usr/local/biotools/s/samtools\:1.6--0.1 samtools sort \
-@ 4 -o $\{f\}.sort.bam $\{f\}.sam
実行
$ qsub -l epyc -l s_vmem=1G -l mem_req=1G samtools_1.sh
$ qstat
hisat2.sh
残りの3つのデータについても HISAT2, samtools を実行する. 複数サンプルの処理に
は、for ループを使用することができる.
#!/bin/bash
#$ -S /bin/bash
#$ -N hisat2
#$ -pe def_slot 4
#$ -cwd
module load singularity
files=("SRR453567" "SRR453569" "SRR453570")
for f in ${files[0]}
do
## HISAT2
  singularity exec /usr/local/biotools/h/hisat2\:2.1.0--py36pl5.22.0 0.1 hisat2 \
    -p 4 -x r64_tran/genome_tran --dta \
    -1 fastq/${f} 1.fq \
   -2 fastq/${f} 2.fq \
   -S ${f}.sam
## samtools
  singularity exec /usr/local/biotools/s/samtools\:1.6--0.1 samtools sort \
    -@ 4 -o ${f}.sort.bam ${f}.sam
```

#\$ -cwd

done

実行

```
$ qsub -l epyc -l s_vmem=1G -l mem_req=1G hisat2.sh
$ qstat
```

StringTie

HISAT2 で得られたマッピング結果に基づいて、各遺伝子の発現量算出を行う.

コマンドの確認

```
$ singularity exec /usr/local/biotools/s/stringtie\:1.3.3--py36_2.1 stringtie -h
StringTie v1.3.3 usage:
    stringtie <input.bam ..> [-G <guide_gff>] [-l <label>] [-o <out_gtf>] [-p <cpus>]
        [-v] [-a <min_anchor_len>] [-m <min_tlen>] [-j <min_anchor_cov>] [-f <min_iso>]
        [-C <coverage_file_name>] [-c <min_bundle_cov>] [-g <bdist>] [-u]
        [-e] [-x <seqid,...>] [-A <gene_abund.out>] [-h] {-B | -b <dir_path>}
Assemble RNA-Seq alignments into potential transcripts.
Options:
    --version : print just the version at stdout and exit
    -G reference annotation to use for guiding the assembly process (GTF/GFF3)
```

stringtie.sh

マッピング結果を用いて、StringTie による遺伝子発現量算出を行う.

```
#!/bin/bash
#$ -S /bin/bash
#$ -N stringtie
#$ -pe def_slot 4
#$ -cwd
```

module load singularity

```
for f in ${files[0]}
do
 singularity exec /usr/local/biotools/s/stringtie\:1.3.3--py36_2.1 stringtie -e -B \
   -p 4 -G annotation/genes.gtf \setminus
   -o ballgown/f/f}.gtf f.sort.bam
done
実行
$ qsub -l epyc -l s_vmem=1G -l mem_req=1G stringtie.sh
$ qstat
結果
下記の結果ファイルが出力される.
ballgown/
   — SRR453566
     SRR453566.gtf
     e2t.ctab
    e_data.ctab
    |---- i2t.ctab
|---- i_data.ctab
     \sqsubseteq t_data.ctab
    - SRR453567
     SRR453567.gtf
     e2t.ctab
     e_data.ctab
     i2t.ctab
     i_data.ctab
     ____ t_data.ctab
    - SRR453569
     SRR453569.gtf
     e2t.ctab
     - e_data.ctab
     i2t.ctab
        - i_data.ctab
      --- t_data.ctab
```

files=("SRR453566" "SRR453567" "SRR453569" "SRR453570")

結果ファイルの確認.

```
$ less ballgown/SRR453566/SRR453566.gtf
```

```
# stringtie -e -B -p 4 -G annotation/genes.gtf -o ballgown/SRR453566/SRR453566.gtf SR
# StringTie version 1.3.3
I StringTie transcript 12046 12426 1000 + . gene_
```

B"; transcript_id "YAL064W-B"; ref_gene_name "YAL064W-B"; cov "0.061680"; FPKM "3.689

I StringTie exon 12046 12426 1000 + . gene_id "YALO

B"; transcript_id "YAL064W-B"; exon_number "1"; ref_gene_name "YAL064W-

B"; cov "0.061680";

次のステップとしては、R (ballgown) を用いることで可視化などが実現できる. ballgown ディレクトリそのものを ballgown の入力として使用する.

その他

講習会のデータ作成に用いたツール.

- 1. $\operatorname{seqtk}^{17}$: リードのサンプリング
- 2. SRA Toolkit¹⁸: SRA から sra データの取得, fastq への変換

参考文献

- 1. Nookaew, I. et al. A comprehensive comparison of rna-seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: A case study in saccharomyces cerevisiae. Nucleic Acids Res 40, 10084–10097
- 2. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. *Nat Methods* **12**, 357–360
- 3. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc* **11**, 1650–1667 (2016).

- 4. R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).
- 5. Fu, J., Frazee, A. C., Collado-Torres, L., Jaffe, A. E. & Leek, J. T. *Ballgown: Flexible, isoform-level differential expression analysis.* (2019).
- 6. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a python framework to work with high-throughput sequencing data. *Bioinformatics* **31**, 166–169
- 7. Anders, S. & Huber, W. Differential expression analysis for sequence count data. *Genome Biol* 11, R106 (2010).
- 8. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. *Genome Biol* **15**, 550 (2014).
- 9. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–140
- 10. iGenomes. Available at: http://jp.support.illumina.com/sequencing/sequencing_software/igenome.html.
- 11. HISAT2. Available at: https://ccb.jhu.edu/software/hisat2/index.shtml.
- 12. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: Discovering splice junctions with rna-seq. *Bioinformatics* **25**, 1105–1111
- 13. Kim, D. et al. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36
- 14. Dobin, A. et al. STAR: Ultrafast universal rna-seq aligner. Bioinformatics 29, 15–21
- 15. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. $Nat Methods \ \mathbf{9},\ 357-359$
- 16. 利用可能オープンソースソフトウェア. Available at: https://sc2.ddbj.nig.ac.jp/index.php/available-biotools.
- 17. Seqtk. Available at: https://github.com/lh3/seqtk.
- 18. SRA toolkit. Available at: https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/.