Fonction racine n-ième

Théorème 1 (et définition). $n \in \mathbb{N}^*$

La fonction $x \mapsto x^n$ est continue et strictement croissante sur \mathbb{R}_+ donc elle est bijective de \mathbb{R}_+ vers \mathbb{R}_+ et admet une bijection réciproque appelée *fonction racine n-ième* et notée $x \mapsto x^{\frac{1}{n}}$ ou $x \mapsto \sqrt[n]{x}$.

Exemple 2. $-\sqrt[1]{x} = x$,

- $\sqrt[2]{x} = \sqrt{x} = x^{\frac{1}{2}}$ (racine carrée),
- $\sqrt[3]{x} = x^{\frac{1}{3}}$ appelée la racine cubique de x.

Notation 3.

$$\sqrt[n]{x^p} = (x^p)^{\frac{1}{n}} = x^{\frac{p}{n}}$$

Résolution de l'équation $x^n = a$

- si *n* est pair et $a \ge 0$ alors $x = \sqrt[n]{a}$ ou $x = -\sqrt[n]{a}$
- si *n* est impair et $a \ge 0$ alors $x = \sqrt[n]{a}$
- si n est pair et a < 0 alors pas de solution.
- si *n* est impair et $a \le 0$ alors $x = -\sqrt[n]{-a}$

Exemple 4. 1. $x^3 = 8 \iff x = \sqrt[3]{8} = 8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2$

2.
$$x^3 + 1 = 0 \iff x^3 = -1 \iff x = -\sqrt[3]{1} = -1$$

3.
$$x^4 = 3 \iff x = \sqrt[4]{3}$$
 ou $x = -\sqrt[4]{3}$

Fonction puissance d'exposant rationnel

Définition 5. r étant un nombre rationnel non nul, on appelle *fonction puissance d'exposant r*, la fonction :

$$\begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ x & \longmapsto & x^r \end{array}$$

Propriété 6. 1. r et r' étant des nombres rationnels non nuls, x et y des réels strictement positifs.

/

$$- xr \times yr = (xy)r$$

- (x^r)^{r'} = x^{rr'}

$$--\frac{x^r}{y^r} = (\frac{x}{y})^r$$

 $--x^r \times x^{r'} = x^{r+r'}$

- La fonction $x \mapsto x^r$ est dérivable sur \mathbb{R}_+^* et $(x^r)' = rx^{r-1}$.
- La fonction u^r est définie ssi $u \ge 0$.
- Si u est dérivable et strictement positive sur I alors la fonction u^r est dérivable sur I et $(u^r)' = ru'u^{r-1}$.

Exemple 7.
$$f(x) = \sqrt[3]{2x+1}$$

$$f(x) \text{ existe } \Leftrightarrow 2x + 1 \Leftrightarrow x \ge -\frac{1}{2} \text{ donc } f \text{ est dérivable sur } \left] -\frac{1}{2}, +\infty \right[$$

$$f(x) = \sqrt[3]{2x+1} = (2x+1)^{\frac{1}{3}} \Longrightarrow f'(x) = \frac{2}{3}(2x+1)^{-\frac{2}{3}} = \frac{2}{3\sqrt[3]{(2x+1)^2}}$$