We define super digit of an integer \boldsymbol{x} using the following rules:

Given an integer, we need to find the *super digit* of the integer.

- If \boldsymbol{x} has only $\boldsymbol{1}$ digit, then its super digit is \boldsymbol{x} .
- Otherwise, the super digit of \boldsymbol{x} is equal to the super digit of the sum of the digits of \boldsymbol{x} .

For example, the super digit of **9875** will be calculated as:

You are given two numbers n and k. The number p is created by concatenating the string n k times. Continuing the above example where n = 9875, assume your value k = 4. Your initial p = 9875 9875 9875 (spaces added for clarity).

All of the digits of p sum to 116. The digits of 116 sum to 8. 8 is only one digit, so it's the super digit.

Function Description

Complete the function super Digit in the editor below. It must return the calculated super digit as an integer.

superDigit has the following parameter(s):

- *n*: a string representation of an integer
- k: an integer, the times to concatenate \boldsymbol{n} to make \boldsymbol{p}

Input Format

The first line contains two space separated integers, n and k.

Constraints

- $1 \le n < 10^{100000}$
- $1 \le k \le 10^5$

Output Format

Return the super digit of p, where p is created as described above.

Sample Input 0

148 3

Sample Output 0

3

Explanation 0

```
Here n = 148 and k = 3, so P = 148148148.
```

```
= 3.

Sample Input 1

9875 4

Sample Output 1

8

Sample Input 2

123 3

Sample Output 2

9

Explanation 2

Here n = 123 and k = 3, so P = 123123123.

super_digit(P) = super_digit(123123123)
= super_digit(P) = super_digit(1+2+3+1+2+3)
= super_digit(1+8)
= super_digit(1+8)
= super_digit(19)
= 9
```