DEVOIR DE VACANCES FIN D'ANNEE - MATHEMATIQUES A RENDRE LE 07 JANVIER 2021

EXERCICE 1

On considère le polynôme $P(X) = X^3 - 5X^2 + 3X + 1$.

On note α , β et γ ses trois racines (elles existent !).

- 1) Ecrire en fonction de α , β et γ la forme totalement factorisée de P(X).
- 2) Montrer que $\alpha + \beta + \gamma = 5$; $\alpha\beta + \beta\gamma + \alpha\gamma = 3$ et $\alpha\beta\gamma = -1$.
- 3) Sachant que $\alpha = 2 \sqrt{5}$ et $\beta = 1$, calculer simplement la troisième racine γ .

EXERCICE 2

Résoudre par la méthode du pivot de gauss les systèmes suivants :

4) a)
$$\begin{cases} 9a+3b+c=3\\ 4a+2b+c=2 ;\\ 4a+b=1 \end{cases}$$
 b)
$$\begin{cases} x+2y+5z=4\\ x+y+2z=6\\ 2x+3y+7z=10 \end{cases}$$

EXERCICE 3

Déterminer l'ensemble de définition de chaque fonction définie ci-après par :

1°)
$$f(x) = \sqrt{x - 1} - \sqrt{x^2 - x}$$
; 2°) $f(x) = \sqrt{\frac{x+2}{x^2 - 3x}}$
3°)
$$\begin{cases} f(x) = \sqrt{3x^2 - 14x - 5} & \text{si } x \le 1 \\ f(x) = f(x) = \frac{x+1}{x^2 - 2x} & \text{si } x > 1 \end{cases}$$
 $f(x) = \frac{x+1}{x^2 + 3x}$ $f(x) = \frac{x+1}{x^2 + 3x}$ $f(x) = \frac{x+1}{x^2 - 3x + 2}$ $f(x) = \frac{x+1}{x^2 - 2x}$ $f(x) = \frac{x+1}{x^2 - 2x}$ $f(x) = \frac{x+1}{x^2 - 3x + 2}$ $f($

EXERCICE 4

1)- Soit f et g définies sur ir par : $f(x) = \sqrt{-3x^3 + 4x^2 - x}$ et $g(x) = \frac{\sqrt{x^2 - 3}}{2/x/-1}$. Déterminer les domaines de définition. D_i et D_g des fonctions f et g.

2) Soit f: x
$$\rightarrow$$
 f(x) = $\frac{2}{x^2 - 4}$ et g: x \rightarrow g(x) = $\frac{-x + 3}{\sqrt{-2x + 6}}$ des fonctions numériques

Déterminer fog et gof après avoir déterminé leur domaine de définition.

Passez de bonnes vacances studieuses!