Inhaltsverzeichnis

1.	Reele Zahlen
	1.1 Zahlenmengen
	1.2 Eigenschaften der reellen Zahlen
	1.3 Wichtige Ungleichungen
2.	Folgen
	Folgen 2.1 Konvergenz
	2.2 Monotone Folgen
3.	Reihen
	3.1 Definition
	3.2 Konvergenzkriterien
	3.3 Rechenregeln
	3.4 Exponentialfunktion

1. Reele Zahlen

1.1 Zahlenmengen

- 1. $\sqrt{2}$ ist nicht rational
 - Annahme: $\sqrt{2} = \frac{a}{b}$ mit $a,b \in \mathbb{N}$ und a,b teilerfremd
 - \Longrightarrow $2 = \frac{a^2}{b^2}$ mit $a^2, b^2 \in \mathbb{N}$ und a^2, b^2 teilerfremd Widerspruch
- 2. Definition Abzählbarkeit
 - A ist abzählbar, wenn es eine surjektive Abbildung von \mathbb{N} auf A gibt. $(f:\mathbb{N}\to A)$
 - \iff A kann durchnummeriert werden
 - Beispiele:
 - $-\mathbb{Q}$ ist abzählbar (Alle Brüche können "schlangenartig" durchnummeriert werden, siehe Diagonalargument)
 - ℝ ist nicht abzählbar (Widerspruchsbeweis)
- 3. Anordnung von Körpern
 - Der Körper $\mathbb R$ ist angeordnet da:
 - 1. $\forall a \in \mathbb{R}$ gilt entweder:
 - -a=0 oder
 - -a > 0 oder
 - -a < 0
 - 2. $\forall a, b \in \mathbb{R} \text{ mit } a, b > 0 \text{ gilt:}$
 - -a+b>0 und
 - $-a \cdot b > 0$
 - Der Körper C kann nicht angeordnet werden da:
 - Angenommen: Sei $a \in \mathbb{C}$ und $a \neq 0$ dann muss entweder:
 - * a > 0, und laut definition von Anordnung auch $a \cdot a > 0$ oder
 - * -a > 0, und somit auch $(-a) \cdot (-a) = a^2 > 0$
 - Somit gilt in jedem Fall $a^2 > 0$
 - * Sei a = i dann gilt $a^2 = -1$
 - * Das ist ein Widerspruch

1.2 Eigenschaften der reellen Zahlen

- 1. Beschränktheit
 - Eine Menge $M \subseteq \mathbb{R}$ ist nach oben beschränkt, falls sein $s_0 \in \mathbb{R}$ existiert, sodass $\forall s \in M$
 - Die Zahl s_0 heißt obere Schranke von M
- 2. Supremumsaktiome von \mathbb{R}
 - Jede nichtleere, nach oben beschränkte Menge von \mathbb{R} hat eine kleinste obere Schranke, diese heißt $\sup M \in \mathbb{R}$

1. REELE ZAHLEN 2

- Jede nichtleere, nach unten beschränkte Menge von $\mathbb R$ hat eine größte untere Schranke, diese heißt inf $M\in\mathbb R$
- Falls das Supremum oder das Infimum einer Menge M auch selbst in M liegt, dann wird es auch als Maximum bzw. Minimum von M bezeichnet
- Konventionen:
 - $-\sup M=\infty$ falls Mnicht nach oben beschränkt ist $-\inf M=-\infty$ falls Mnicht nach unten beschränkt ist $-\sup\emptyset=-\infty$
- 3. R ist archimedisch
 - $\forall a \in \mathbb{R}$ existiert $n \in \mathbb{N}$ mit a < n
- 4. Die rationalen Zahlen liegen dicht in \mathbb{R}
 - $\forall a, b \in \mathbb{R}$ mit a < b existiert $r \in \mathbb{N}$ mit a < r < b

1.3 Wichtige Ungleichungen

- 1. Dreiecksungleichung
 - $\forall x, y \in \mathbb{R}$ gilt: - $|x + y| \le |x| + |y|$ - $|x + y| \ge ||x| - |y||$
- 2. Cauchy-Schwarz ungleichung
 - $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
 - "Der Betrag vom Skalarprodukt ist kleiner oder gleich dem Produkt der Beträge der Vektoren"

2. Folgen

- 2.1 Konvergenz
- 2.2 Monotone Folgen

3. Reihen

- 3.1 Definition
- 3.2 Konvergenzkriterien
- 3.3 Rechenregeln
- 3.4 Exponential funktion