Zadanie: DRO Drogi rowerowe

XXV OI, etap II, dzień pierwszy. Plik źródłowy dro.* Dostępna pamięć: 64 MB.

14.02.2018

Król Bajtazar postanowił wsłuchać się w głosy mieszkańców Bajtogrodu i przeznaczyć część nadwyżki budżetowej na wybudowanie w mieście dróg rowerowych. Królewski doradca ds. infrastruktury drogowej przygotował już projekt sieci takich dróg, ale po konsultacjach z królem musiał wprowadzić do niego liczne modyfikacje. Sieć składa się z jednokierunkowych odcinków dróg łączących skrzyżowania. Drogą ze skrzyżowania u do innego skrzyżowania v nazwiemy dowolny ciąg różnych skrzyżowań $u=v_0,v_1,\ldots,v_k=v$, z których każde dwa kolejne v_i,v_{i+1} (dla $0 \le i < k$) są połączone odcinkiem drogi z v_i do v_{i+1} .

Król zażądał od swojego doradcy, aby sieć była sprawiedliwa, co oznacza, że musi spełniać następującą własność: jeśli z pewnego skrzyżowania v nie da się w żaden sposób dojechać do skrzyżowania u (czyli nie istnieje droga ze skrzyżowania v do skrzyżowania u), to ze skrzyżowania v może istnieć v0 najwyżej jedna droga do skrzyżowania v1. Król uważa, że dzięki temu ludzie mieszkający przy skrzyżowaniu v2 nie będą z zazdrością patrzeć na ludzi mieszkających przy skrzyżowaniu v3.

Członkowie Obywatelskiego Komitetu Rowerowego weszli w posiadanie projektu sprawiedliwej sieci i nie są nim zachwyceni. Uważają, że proponowana sieć nie umożliwi sensownego poruszania się po mieście. Chcą przedstawić swój raport na ten temat i potrzebują w tym celu twardych danych. Do Ciebie będzie należało zadanie obliczenia stopnia przejezdności sieci, tzn. dla każdego skrzyżowania v masz obliczyć liczbę skrzyżowań, do których istnieje droga ze skrzyżowania v.

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite n i m ($n \geq 2$, $m \geq 1$), oddzielone pojedynczym odstępem, oznaczające liczbę skrzyżowań w Bajtogrodzie i liczbę odcinków dróg w projekcie. Skrzyżowania numerujemy liczbami od 1 do n.

Kolejne m wierszy zawiera opis sieci: każdy z nich zawiera dwie liczby całkowite a i b $(1 \le a, b \le n, a \ne b)$, oddzielone pojedynczym odstępem, oznaczające, że istnieje jednokierunkowy odcinek drogi ze skrzyżowania a do skrzyżowania b. Każda uporządkowana para (a,b) pojawi się na wejściu co najwyżej raz. Gwarantowane jest, że sieć jest sprawiedliwa.

Wyjście

Na standardowe wyjście należy wypisać n wierszy; w i-tym z nich ma znaleźć się jedna liczba całkowita oznaczająca liczbę skrzyżowań, do których istnieje droga ze skrzyżowania i.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:	
7 7	3	
1 4	3	
1 6	1	
4 2	3	
6 2	2	
2 1	3	
5 3	0	
3 7		

Testy "ocen":

10cen: $n=25,\,m=600,\,{\rm z}$ każdego miasta istnieje odcinek drogi do każdego innego;

20cen: n=55, m=54, skrzyżowanie izolowane oraz rozłączne cykle o długościach $2,\ldots,10;$

3
ocen: $n=50\,000,\,m=49\,999,$ wszystkie miasta leżą na ścieżce;

4ocen: $n=m=50\,000$, wszystkie miasta leżą na cyklu.

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Warunki	Liczba punktów
1	$n \le 60$	12
2	$n, m \le 5000$	8
3	$n \leq 50000, m \leq 100000, \mathrm{sie\acute{c}}$ dodatkowo spełnia: jeśli	18
	u>v, to nie istnieje droga ze skrzyżowania u do v	
4	$n \leq 50000, m \leq 100000, \mathrm{sie\acute{c}}$ dodatkowo spełnia: jeśli	18
	ze skrzyżowania u istnieje jakakolwiek droga do skrzy-	
	żowania v , to ze skrzyżowania v nie istnieje żadna droga	
	do skrzyżowania u	
5	$n \le 50000, m \le 100000$	44