CSIT 504 Midterm 2

- 1. (15 pts) Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n=a_{n-1}-2$, for n=1,2,3,..., and suppose that $a_0=2$.
 - a) What are a_1 , a_2 , a_3 ?
 - b) Please solve its recurrence relation and initial condition to generate a closed formula for the sequence.
- 2. (15 pts) Find $a \operatorname{div} m$ and $a \operatorname{mod} m$ when
 - a) a = 18, m = 3
 - b) a = -88, m = 13
- 3. (15 pts) Determine
 - a) whether 75 is congruent to 11 modulo 8? Please explain the reason.
 - b) whether 24 is congruent to 14 modulo 7? Please explain the reason.
- 4. (10 pts) Find the prime factorizations of 200 and 67.
- 5. (15 pts) What are <u>the Greatest Common Divisor</u> and <u>the Least Common Multiple</u> of these pairs of integers?
 - a) 19, 3
 - b) $4^3 \times 7^2$, $2^3 \times 4^2 \times 7^5$
- 6. (15 pts) Encode the message "stop at noon" using the function f(x) = (x + 5) mod 26.
- 7. (15 pts) Use the Principle of Mathematical Induction to prove that for $n \ge 0$

$$1 + 3 + 9 + 27 + \dots + 3^{n} = \frac{3^{n+1} - 1}{2}$$