Kapitel 7

(Einfache) Geometrische Algorithmen

Einige Anwendungsbereiche und -probleme

Design integrierter Schaltungen (z.B. Schnittpunkte)

Computer-Graphik (z.B. Entfernung verdeckter Linien)

Geoinformationssysteme (z.B. Suchanfragen)

Schnitte zwischen achsenparallelen Segmenten

• Gegeben:

H =Menge der horizontalen Segmente

V = Menge der vertikalen Segmente

 $S=H\cup V$, n=|S| sei die Gesamtzahl der Segmente In Abschätzungen gehen wir von $|H|,|V|\approx \frac{n}{2}$ aus.

- Gesucht: Alle Paare sich schneidender Segmente.
- Annahme: Es gibt keine überlappenden Segmente.

Schnitte zwischen achsenparallelen Segmenten (Forts.)

Der naive Algorithmus:

```
for each h \in H do
for each v \in V do
if h schneidet v then report(h, v)
```

- Dieser Algorithmus hat eine Laufzeit von $O(|H| \times |V|)$, d. h. $O(n^2)$.
- Aber die Anzahl der Schnitte k könnte $<< n^2$ sein.
- Idealerweise hätten wir gerne einen ausgabe-sensitiven Algorithmus, d.h. einen Algorithmus, dessen Laufzeit hauptsächlich von der Größe der Ausgabe abhängt.
- Zunächst versuchen wir, das Divide-and-Conquer-Paradigma anzuwenden, was bei Beschränkung auf achsenparallele Objekte erfolgreich ist.
- Danach führen ein neues Paradigma, das Plane-Sweep-Paradigma ein, das sich auch für andere geometrische/räumliche Probleme eignet.

7.1 Geometrische Divide-and-Conquer-Algorithmen ¹

Wie könnte man z.B. ein Rechteckschnitt-Problem zerlegen?

- halbiere Objektmengen: problematisch, da keine geometrische Eigenschaft genutzt wird
- verwende teilende (z.B. vertikale) Gerade:
 problematisch, weil die Mengen der linken und rechten
 Objekte nicht disjunkt sind.
- besser: nutze eine *getrennte Repräsentation* der Objekte durch ihre linken und rechten Enden

 $^{^1} basiert \ auf \ G\"uting, R.H./Dieker, S.: \ Datenstrukturen \ und \ Algorithmen, \ 2. Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ B.G. Teubner, \ Stuttgart \ 2003 \ (Kapitel \ 7) \ Auflage. \ Auflage \ 2003 \ (Kapitel \ 7) \ Auflage. \ Auflage \ 2003 \ (Kapitel \ 7) \ Auflage \ 2003 \ (Kap$

zurück zum Segmentschnitt-Problem:

Getrennte Repräsentation bei achsenparallelen Segmenten bedeutet:

Jedes horizontale Segment wird durch seinen linken und seinen rechten Endpunkt repräsentiert.

Verwendet wird deshalb eine Menge *S* von vertikalen Segmenten <u>und</u> von Punkten, die als linke oder rechte Endpunkte identifizierbar sind.

Algorithmusskizze ReportCuts(S):

Divide: Wähle eine x-Koordinate x_m (nicht unbedingt mittig), die S in zwei gleich große Teilmengen S_1 und S_2 zerlegt.

Conquer: ReportCuts(S_1); ReportCuts(S_2);

Merge: ?

Segmentschnitt-Problem (Forts.)

Rekursionsinvariante: ReportCuts(X) liefert alle Schnitte derjenigen Originalobjekte, die in X durch mindestens ein Ende repräsentiert sind.

Der Merge-Schritt muss dafür sorgen, dass diese Eigenschaft von S_1 und S_2 auf S übertragen wird. Er braucht also nur noch Schnitte zu suchen, die es zwischen einem in S_1 repräsentierten Objekt und einem in S_2 repräsentierten Objekt gibt.

Fallanalyse $\longrightarrow \longrightarrow \longrightarrow$

Segmentschnitt-Problem: Merge-Fälle

Wir betrachten ein einzelnes horizontales Segment h, das in S_1 repräsentiert ist (für S_2 symmetrisch). Es gibt folgende Fälle:

1. Beide Endpunkte von h liegen in S_1 .

Offensichtlich schneidet h kein Segment in S_2 .

2. Nur der rechte Endpunkt liegt in S_1 .

Auch in diesem Fall schneidet h kein Segment in S_2 .

Segmentschnitt-Problem: Merge-Fälle (Forts.)

- 3. Nur der linke Endpunkt liegt in S_1 .
 - (a) Der rechte Endpunkt liegt in S_2 .

Alle Schnitte mit Segmenten in S_2 sind bereits ausgegeben, weil h dort repräsentiert war.

(b) Der rechte Endpunkt liegt rechts von S_2 .

einzig relevanter Fall!

Segmentschnitt-Algorithmus mit Divide-and-Conquer

algorithm SegmentIntersectionDaC(H, V):

input:

Menge horizontaler Segmente H, Menge vertikaler Segmente V output:

alle sich schneidenden Paare (h, v) mit $h \in H$ und $v \in V$

Bilde
$$S \leftarrow \{ (x_1, \text{horizleft}, (x_1, x_2, y)) \mid (x_1, x_2, y) \in H \}$$

$$\cup \{ (x_2, \text{horizright}, (x_1, x_2, y)) \mid (x_1, x_2, y) \in H \}$$

$$\cup \{ (x, \text{vertical}, (x, y_1, y_2)) \mid (x, y_1, y_2) \in V \}.$$

Jedes Objekt wird hier notiert durch seine vollständige Beschreibung, z.B. ein horizontales Segment (x_1, x_2, y) durch sein x-Intervall und seine y-Koordinate; eigentlich wären Verweise auf Originalobjekte angebracht. Vorangestellt ist die x-Koordinate für die nötigen Aufteilungen. Deshalb ist jedes horizontale Objekt zweimal, mit linkem bzw. rechtem (x-) Randwert als linker bzw. rechter Endpunkt, aufgenommen.

Sortiere S nach der 1. Komponente, also nach der x-Koordinate.

Rufe ReportCuts(S, L, R, V)² auf.

³Die hinteren drei Argumente sind nur für Hilfsergebnisse bei der Rückkkehr aus der Rekursion nötig; für den Aufruf sind sie irrelevant.

algorithm ReportCuts (S, L, R, V):

input: S — Menge von linken und rechten "Endpunkten" sowie von vertikalen Segmenten, nach x-Koordinaten sortiert

output:

- L enthält die "linken Endpunkte" in S, deren Partner nicht in S liegt ... in der Form (y-Koordinate, horizontales Segment)
- *R* analog für die "rechten Endpunkte"
- *V* enthält die vertikalen Segmente in *S* … in der Form (*y*-Intervall, vertikales Segment)
- Direkt ausgegeben werden alle sich schneidenden Paare (h, v), wobei $h, v \in S$, h ein horizontales, v ein vertikales Segment ist.

Fall I (Einfacher Fall): *S* enthält nur ein Element *s*.

```
-s = (x_1, \text{horizleft}, (x_1, x_2, y)):
L \leftarrow \{(y, (x_1, x_2, y))\}; \quad R \leftarrow \emptyset; \quad V \leftarrow \emptyset;
-s = (x_2, \text{horizright}, (x_1, x_2, y)):
L \leftarrow \emptyset; \quad R \leftarrow \{(y, (x_1, x_2, y))\}; \quad V \leftarrow \emptyset;
-s = (x, \text{vertical}, (x, y_1, y_2)):
L \leftarrow \emptyset; \quad R \leftarrow \emptyset; \quad V \leftarrow \{([y_1, y_2], (x, y_1, y_2))\};
```

Segmentschnitt-Algorithmus, ReportCuts (Forts.)

Fall II (Rekursion): *S* enthält mehr als ein Element.

Divide: Wähle eine x-Koordinate x_m , die S in zwei etwa gleich

große Teilmengen S_1 und S_2 der Objekte links bzw.

rechts von x_m teilt.

Conquer: ReportCuts(S_1, L_1, R_1, V_1); ReportCuts(S_2, L_2, R_2, V_2);

Merge: $LR \leftarrow L_1 \cap R_2$;

diejenigen horizontalen Segmente, deren Endpunkte auf S_1 und S_2 aufgeteilt waren

 $L \leftarrow (L_1 - LR) \cup L_2;$

 $R \leftarrow R_1 \cup (R_2 - LR)$;

 $V \leftarrow V_1 \cup V_2$;

 $\mathsf{report}((L_1 - LR) \otimes V_2);$ der obige Fall 3.(b): Schnitte zwischen horizontalen Segmenten, die nur mit ihrem linken Endpunkt nur in S_1 repräsentiert waren, und vertikalen Segmenten in S_2

report($(R_2 - LR) \otimes V_1$); sein symmetrisches Gegenstück

Segmentschnitt-Algorithmus (Forts.)

Die Mengenoperationen \cup , \cap , – können auf (nach y-Koordinaten) sortierten Mengen analog zur merge-Operation in linearer Zeit ausgeführt werden und geben die Sortierung weiter.

Benötigt wird noch folgende **Verknüpfung** zwischen einer Menge Y von horizontalen Segmenten h mit ihren y-Koordinaten und einer Menge I von vertikalen Segmenten v mit ihren y-Intervallen $[y_1, y_2]$:

$$Y \otimes I := \{ (h, v) \mid (y, h) \in Y, ([y_1, y_2], v) \in I, y \in [y_1, y_2] \}$$

Welche y -Koordinate liegt in welchem y -Intervall?

Man kann zeigen, diese Operation in $O(|Y|+|I|+|Y\otimes I|)$ ausgeführt werden kann, wenn Y nach y-Koordinaten und I nach unteren y-Intervallgrenzen sortiert ist. Die Laufzeit von \otimes ist also additiv-linear abhängig von den Eingabegrößen und der Ergebnisgröße.

Segmentschnitt-Algorithmus: Analyse

- Datenstrukturen:
 - für S ein x-sortiertes Array; erfordert einmaligen Sortieraufwand $O(n \log n)$; erlaubt Divide-Schritt in O(1)
 - für L,R y-sortierte Listen; erlauben lineare Mengenoperationen
 - für V eine nach unteren γ -Grenzen sortierte Liste; \otimes linear
- Die Laufzeit für ReportCuts kann wie bei Divide+Conquer+Merge-Algorithmen üblich rekursiv als $T(n) = O(1) + 2 \cdot T(\frac{n}{2}) + O(n)$ angegeben werden, da der Merge-Schritt nach obigen Argumenten mit linearem Auswand auskommt.
- Also ergibt sich bekanntlich der Gesamtaufwand $T(n) = O(n \log n)$; hinzu kommt die gesamte Ausgabe der \otimes -Operationen: O(k)
- Gesamtlaufzeit: $O(n \log n + k)$
- Dieser Ansatz lässt sich auf weitere Probleme übertragen.

Weitere DaC-lösbare Probleme

Schnitte zwischen achsenparallelen Rechtecken:

Problemreduktion: Betrachte sich schneidende Rechtecke (a, b), (c, d).

- Fall (1): Kanten von *a* schneiden Kanten von *b*
 - → Segmentschnitt-Problem
- Fall (2): Ein Rechteck ist im anderen enthalten, z.B. $c \subseteq d$.
 - \rightarrow Punkteinschluss-Problem: Eine fest gewählte Menge von Repräsentanten-Punkten, für jedes Rechteck c ein Punkt $p_c \in c$, wird darauf geprüft, ob p_c auch in einem anderen Rechteck d liegt. Das deckt alle Fälle (2) und (nochmal) einige Fälle (1) ab. Auch dieses Problem ist mit Divide-and-Conquer und getrennter Repräsentation lösbar.

Weitere DaC-lösbare Probleme: (Forts.)

Maß-Problem: Geg. Menge R von Rechtecken. Bestimme das Gesamtmaß der Rechteckmenge, d.h. ihren Flächeninhalt $area(R) = area(\bigcup_{r \in R} r)$.

analog: Kontur-Problem

7.2 Plane-Sweep-Algorithmen

Idee: Die räumliche Situation (in der Ebene, engl. *plane*) wird durch Überstreichen mit einer **Sweepline** (auch: Scanline) L in x- oder y-Richtung beobachtet. An vorbestimmten Haltepunkten ("Ereignissen") werden die dort liegenden, für das Problem relevanten ("aktiven") Objekte festgehalten und ggf. die nächsten Ausgaben daraus ermittelt.

Algorithmusschema Plane-Sweep:

```
// liefert zu einer Menge geometrischer Objekte (zunächst nur // achsenparallele Objekte) problemabhängige Ausgaben
Q ← objektmengen- und problemabhängiger "Schedule" von Haltepunkten ("Ereignissen"), i.w. sortierte x- oder y-Koordinaten;
Status_L ← Ø;
// Status_L enthält immer den aktuellen Status der Sweepline,
// eine (passend strukturierte) Menge der jeweils "aktiven" Objekte
while Q nicht leer do
wähle nächstes Ereignis event aus Q und entferne es aus Q;
Aktion: aktualisiere Status_L und/oder
berechne nächste Teilausgabe aufgrund Status_L und event.
```

Segmentschnitt-Problem:

- Simuliere eine horizontale Sweep Line *L*, die sich von unten nach oben bewegt. *Status_L* beinhaltet zu jedem Zeitpunkt die Menge aller vertikalen Segmente, die von *L* geschnitten werden, sortiert von links nach rechts.
- Sobald *L* den unteren Endpunkt eines vertikalen Segments erreicht, wird dieses in *Status_L* eingefügt. Das zugehörige "Ereignis" ist die *y*-Koordinate des Endpunkts mit Angabe des Segments und der Kennzeichnung 'unterer Endpunkt'.
- Sobald *L* den oberen Endpunkt eines vertikalen Segments erreicht, wird dieses aus *Status_L* gelöscht.

Plane-Sweep, Segment-Schnitt: Verlauf des Status an einem Beispiel

Plane-Sweep, Segment-Schnitt: Kern der Schnittbildung

Wenn L ein horizontales Segment h (weiteres Ereignis an einer y-Koordinate!) überstreicht, müssen die schneidenden vertikalen Segmente durch eine Bereichs-Suche ($range\ search$) in $Status_L$ gefunden werden.

Plane-Sweep, Segment-Schnitt: Bereichs-Suche

• Gegeben sei eine Menge von x-Koordinaten vertikaler Segmente im $Status_L$. Wir wollen Anfragen der folgenden Art bearbeiten:

Gib alle *x*-Werte aus, so dass $x_1 \le x \le x_2$ gilt.

- \bullet Wir möchten auch x-Werte einfügen und löschen.
- Darum brauchen wir für *Status_L* eine dynamische Struktur, die folgende Methoden unterstützt:

insertItem(x,...), removeItem(x), range_search(x_1, x_2)

- \bullet x-Werte dienen als Schlüssel; Nutzdaten sind die vertikalen Segmente
- Die Laufzeit sollte optimal sein.
- Deshalb nehmen wir *ausgeglichene Suchbäume*, z.B. AVL-Bäume.

Plane-Sweep, Segment-Schnitt: Bereichs-Suche (Forts.)

- Seien die *x*-Koordinaten in einem AVL-Baum gespeichert.
- range_search(x_1, x_2): Inorder-Durchlauf, der Teilbäume ignoriert, die *nur* Schlüssel $< x_1$ oder $> x_2$ enthalten.

Die Bereichs-Suche gibt hier die Knoten zurück, die rot markiert sind. Die Suche überprüft auch die violetten Knoten, die aber nicht zurückgegeben werden.

Plane-Sweep, Segment-Schnitt: Bereichs-Suche (Forts.)

• Laufzeit:

- Sei *k* die Anzahl der Punkte, die im Suchbereich liegen. Alle *k* zugehörigen Knoten werden besucht.
- Zusätzlich werden höchstens ca. $2 \log n$ Knoten (Außenpfade) plus k+1 (externe) Knoten besucht, zu denen nichts zurückgegeben wird.
- also insgesamt: $O(\log n + k)$

Plane-Sweep, Segment-Schnitt: Steuerung des Plane-Sweeps (Forts.)

Der Status der Sweepline L wird in diskreten Schritten, quasi angestossen durch bestimmte "Ereignisse", aktualisiert oder ausgewertet — das ist der Kern des Plane-Sweep-Algorithmusschemas. Es müssen nur noch die Ereignisse und Aktionen festgelegt werden:

- Ereignis: L trifft auf den unteren Endpunkt eines vertikalen Segments v mit x-Koordinate x:
 - Aktion: $Status_L$.insertItem(x, v)
- Ereignis: L trifft auf den oberen Endpunkt eines vertikalen Segments v mit x-Koordinate x:
 - Aktion: $Status_L$.removeltem(x)
- Ereignis: L trifft auf ein horiz. Segment h mit x-Grenzen x_1, x_2 :
 - Aktion: $Status_L$.range_search (x_1, x_2)

Plane-Sweep, Segment-Schnitt: Datenstrukturen (Forts.)

- Status_L:
 - wie oben begründet:
 AVL-Baum für vertik. Segmente mit x-Koordinaten als Schlüssel
- Ereignis-Schedule *Q*:
 - soll horiz. Segmente und Endpunkte vertik. Segmente speichern
 - soll von unten nach oben gelesen werden
 - ⇒ sortierte Sequenz mit solchen Objekten (versehen mit passenden Schlüsseln, s.u.) als Items
 - Bei gleichen *y*-Koordinaten muss die folgende Sortierreihenfolge der Ereignisse beachtet werden (*warum*?):
 - 1. "unterer Endpunkt" (→ insertItem),
 - 2. "horizontales Segment" (→ range_search),
 - 3. "oberer Endpunkt" (→ deleteltem).
 - \Rightarrow Schlüssel = Kombination (y-Koordinate, Kennung bot|hseg|top)
 - *Q* muss anfangs sortiert werden

Plane-Sweep, Segment-Schnitt: Laufzeit (Forts.)

- anfangs Sortierung von $2|V| + |H| \approx \frac{3}{2}n$ Ereignissen: $O(n \log n)$
- dann Abarbeitung dieser Ereignisse:
 - untere Endpunkte:
 - * Anzahl der Vorkommen: $|V| \approx \frac{1}{2}n$
 - * Aktion: insertItem
 - * Laufzeit für jedes insertlitem, da im AVL-Baum: $O(\log n)$
 - obere Endpunkte:
 - * analoge Analyse mit removeltem
 - horizontale Segmente *h*:
 - * Anzahl der Vorkommen: $|H| \approx \frac{1}{2}n$
 - * Aktion: range_search
 - * Laufzeit dafür: $O(\log n + k_h)$ mit k_h = # vertikale Segmente, die h schneiden.
- Gesamt-Laufzeit: $O(n \log n + \sum_h k_h) = O(n \log n + k)$ [wie mit Div.and Conq.!]

Fazit (für Algorithmen auf Mengen achsenparalleler Objekten)

- Plane-Sweep reduziert ein zweidimensionales Mengenproblem auf ein eindimensionales dynamisches Suchproblem.
 - Die Reduktion ist relativ einfach, aber u. U. sind die Datenstrukturen komplex; z.B. erfordern Punkteinschluss-/Maß-Probleme spezielle Suchbäume für Intervallmengen.
- Divide-and-Conquer reduziert ein zweidimensionales Mengenproblem auf eindimensionale Mengenprobleme.
 - Die Reduktion ist komplexer, aber die Datenstrukturen sind oft einfache Listen, die auch Umsetzungen auf externe Speicher erlauben.
- Gleiche Laufzeitklassen, aber nur Plane-Sweep nutzbar für nichtachsenparallele Objekte.

7.3 Ein Plane-Sweep-Algorithmus auf beliebig-orientierten Objekten

Als Beispiel sehen wir uns das Problem an, alle Schnittpunkte in einer Menge von beliebig-orientierten Segmenten⁴ zu ermitteln.

Wir verfolgen eine Sweepline *L* von links nach rechts.

In *Status_L* beobachtet werden die Segmente, die aktuell die Sweepline schneiden, sortiert nach ihrer Lage übereinander; im Bild:

B unter C unter A

⁴Wieder seien keine überlappenden, nur disjunkte oder sich schneidende Segmente zugelassen. Auch vertikale Segmente würden eine Sonderbehandlung erfordern.

7.27

Allgemeines Segmentschnitt-Problem (Forts.)

Die Statusmenge kann sich an linken und rechten Endpunkten von Segmenten als Ereignissen ändern, die Anordnung der Segmente ausgerechnet an den zu berechnenden Schnittpunkten!

Allgemeines Segmentschnitt-Problem (Forts.)

Der **Ereignis-Schedule** *Q* muss also *dynamisch* um die nächsten Schnittpunkte rechts von der Sweepline ergänzt werden. Diese können nur von vorher benachbarten Segmenten produziert werden!

Wann immer sich

- durch das Einfügen eines Segments an seinem linken Endpunkt,
- durch das Löschen eines Segments an seinem rechten Endpunkt
- oder durch das Vertauschen zweier Segmente an deren Schnittpunkt

Nachbarschaften in *Status_L* ändern, sind für die neu benachbarten Segmente deren Schnittpunkte zu berechnen (falls sie sich schneiden) und in *Q* einzuordnen.

Für *Q* sollte deshalb eine Priority-Queue verwendet werden:

- Objekte: Segmente und Schnittpunkte (mit den zugeh. Segmenten)
- Schlüssel: x- und y-Koordinate des End- oder Schnittpunkts, deshalb mit Kennung left|right|cut,
- sortiert nach x-, dann nach y-Koordinate, dann right < cut < left.


```
— nur zur Vertiefung der Vorlesung —
```

Allgemeines Segmentschnitt-Problem: Pseudocode-Algorithmus

```
algorithm GeneralSegmentIntersection_By_PlaneSweep(S):
  // liefert zu einer Menge S=\{s_1,...,s_n\} von Liniensegmenten
  // in der Ebene alle verschiedenen Paare (s_i, s_j), die sich schneiden<sup>5</sup>
  Q \leftarrow Priority-Queue von Haltepunkten p, initialisiert mit den linken
        und rechten Endpunkten von Segmenten in S;
  Status_L ← \emptyset; // Menge der jeweils aktiven Segmente
  while not Q.isEmpty() do
    Punkt p \leftarrow Q.removeMin();
    if p ist linker Endpunkt eines Segments s then
         Status\_L.insertItem(..., s);
         Segment s' \leftarrow oberer Nachbar von s in Status\_L;
         Segment s'' \leftarrow unterer Nachbar von s in Status_L;
         if s \cap s' \neq \emptyset then Q.insertItem(s \cap s');
         if s \cap s'' \neq \emptyset then Q.insertItem(s \cap s'');
```

⁵Kurznotation: $s \cap s' \neq \emptyset$ bedeutet: Segment s schneidet Segment s'; $s \cap s'$ bezeichnet den Schnittpunkt von s,s'.

— nur zur Vertiefung der Vorlesung —

Allgemeines Segmentschnitt-Problem: Pseudocode-Algorithmus (Forts.)

```
else if p ist rechter Endpunkt eines Segments s then
     Segment s' \leftarrow oberer Nachbar von s in Status\_L;
     Segment s'' \leftarrow unterer Nachbar von s in Status_L;
     if s \cap s' \neq \emptyset then Q.insertItem(s \cap s');
     if s \cap s'' \neq \emptyset then Q.insertItem(s \cap s'');
     Status_L.remove(s);
else // p ist Schnittpunkt von s' und s'', d.h. p = s' \cap s'',
     // und es sei s' oberhalb von s" in Status_L.
     gib das Paar (s',s") mit Schnittpunkt p aus;
     vertausche s' und s" in Status_L;
     Segment t' \leftarrow unterer Nachbar von s' in Status_L;
     Segment t'' \leftarrow oberer Nachbar von s'' in Status_L;
     if s' \cap t' \neq \emptyset then Q.insertItem(s' \cap t');
     if s'' \cap t'' \neq \emptyset then Q.insertItem(s'' \cap t'').
```


vorher	nachher
$Q = \langle t_l, s_r, u_r, t_r \rangle$ $Status_L = \langle s, u \rangle$	$Q = \langle s_r, (t \cap u), u_r, t_r \rangle$ $Status_L = \langle s, t, u \rangle$

vorher	nachher
$Q = \langle t_r, u_r, s_r \rangle$	$Q = \langle (s \cap u), u_r, s_r \rangle$
$Status_L = \langle s, t, u \rangle$	$Status_L = \langle s, u \rangle$

Allgemeines Segmentschnitt-Problem: Laufzeit

- Sei n = # Segmente, k = # Schnittpunkte.
- Die Priority-Queue Q enthält max. 2n+k Items (End-/Schnittpunkte).
- Jede Operation darauf läuft mit: $O(\log(2n + k)) = O(\log n)$ da $\log(2n + k) \le \log(2n + n^2) = O(\log n^2) = O(\log n)$
- Für *Status_L* verwende AVL-Baum mit Bestimmung von Nachbarn und Vertauschung; max. *n* Items (Segmente in 'unter'-Ordnung).
- Jede Operation darauf ist mit $O(\log n)$ implementierbar.
- 2n + k Schleifendurchläufe
- \Rightarrow Gesamtlaufzeit: $O((n + k) \log n)$
- besser als naives Verfahren für nicht zu große k, sogar noch verbesserbar zu $O(n \log n + k)$