Classical Mechanics by John R. Taylor Problems

Chris Doble

August 2023

Contents

1	New	to	n	's	Ι	a	w	\mathbf{s}	O	f]	M	[o	ti	O	n															1
	1.1																													-
	1.5																													4
	1.11																													4
	1.23																													4
	1.25																													2
	1.35																													;
	1.37																													4
	1.39																													;
	1.41																													(
	1.47																													(
_	_								_						_															_
2	Pro	jeo	ct	il€	es	a	n	d	C	h	aı	rg	\mathbf{e}	d	Р	a	rt	ic	le	$\mathbf{e}\mathbf{s}$										7
	2.1																													-
	2.3																													,

1 Newton's Laws of Motion

1.1

$$\mathbf{b} + \mathbf{c} = 2\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}}$$

$$5\mathbf{b} + 2\mathbf{x} = 7\hat{\mathbf{x}} + 5\hat{\mathbf{y}} + 2\hat{\mathbf{z}}$$

$$\mathbf{b} \cdot \mathbf{c} = 1$$

$$\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix}$$

$$= \hat{\mathbf{x}} - \hat{\mathbf{y}} - \hat{\mathbf{z}}$$

$$\mathbf{v}_{\text{body}} = \hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}}$$

$$\mathbf{v}_{\text{face}} = \hat{\mathbf{x}} + \hat{\mathbf{z}}$$

$$\mathbf{v}_{\text{body}} \cdot \mathbf{v}_{\text{face}} = v_{\text{body}} v_{\text{face}} \cos \theta$$

$$2 = \sqrt{6} \cos \theta$$

$$\cos \theta = \frac{2}{\sqrt{6}}$$

$$\theta = \arccos \frac{2}{\sqrt{6}}$$

$$= 35.26^{\circ}$$

1.11

The particle moves counterclockwise in an ellipse of width 2b and height 2c. The angular speed is ω .

1.23

$$\mathbf{v} = v \cos \theta \frac{\mathbf{b}}{b} - v \sin \theta \frac{\mathbf{b} \times \mathbf{c}}{bc}$$
$$= \frac{\lambda}{b} \frac{\mathbf{b}}{b} - \frac{c}{b} \frac{\mathbf{b} \times \mathbf{c}}{bc}$$
$$= \frac{\lambda \mathbf{b} - \mathbf{b} \times \mathbf{c}}{b^2}$$

1.25

$$\frac{df}{dt} = -3f$$

$$\frac{1}{f}\frac{df}{dt} = -3$$

$$\ln f = -3t + c$$

$$f = ce^{-3t}$$

One constant.

$$F_x = 0$$

$$ma_x = 0$$

$$a_x = 0$$

$$v_x = c_1$$

$$= v_o \cos \theta$$

$$r_x = v_o \cos(\theta)t + c_2$$

$$= v_o \cos(\theta)t$$

$$F_y = 0$$

$$ma_y = 0$$

$$a_y = 0$$

$$v_y = c_3$$

$$v_y = 0$$

$$r_y = c_4$$

$$r_y = 0$$

$$F_z = -mg$$

$$ma_z = -mg$$

$$a_z = -g$$

$$v_z = -gt + c_5$$

$$= v_o \sin \theta - gt$$

$$r_z = v_o \sin(\theta)t - \frac{1}{2}gt^2 + c_6$$

$$= v_o \sin(\theta)t - \frac{1}{2}gt^2$$

$$0 = v_o \sin(\theta)t - \frac{1}{2}gt^2$$

$$t = \frac{2\sin(\theta)v_o}{g}$$

$$r_x = v_o \cos(\theta)t$$

$$= \frac{2\cos(\theta)\sin(\theta)v_o^2}{g}$$

$$= \frac{\sin(2\theta)v_o^2}{g}$$

$$= \frac{\sin(2\theta)v_o^2}{g}$$

(a)

$$F = -mg \sin \theta$$

$$ma = -mg \sin \theta$$

$$a = -g \sin \theta$$

$$v = c_1 - gt \sin \theta$$

$$= v_o - gt \sin \theta$$

$$x = v_o t - \frac{1}{2}gt^2 \sin \theta$$

(b)

$$t = \frac{2v_o}{g\sin\theta}$$

$$F_x = -mg\sin\phi$$

$$ma_x = -mg\sin\phi$$

$$a_x = -g\sin\phi$$

$$v_x = c_1 - gt\sin\phi$$

$$= v_o\cos\theta - gt\sin\phi$$

$$r_x = v_ot\cos\theta - \frac{1}{2}gt^2\sin\phi + c_2$$

$$= v_ot\cos\theta - \frac{1}{2}gt^2\sin\phi$$

$$F_y = -mg\cos\phi$$

$$ma_y = -mg\cos\phi$$

$$a_y = -g\cos\phi$$

$$v_y = c_3 - gt\cos\phi$$

$$= v_o\sin\theta - gt\cos\phi$$

$$r_y = v_ot\sin\theta - \frac{1}{2}gt^2\cos\phi + c_4$$

$$= v_ot\sin\theta - \frac{1}{2}gt^2\cos\phi$$

$$0 = v_o\sin\theta - \frac{1}{2}gt^2\cos\phi$$

$$t = \frac{2v_o\sin\theta}{g\cos\phi}$$

$$r_x = \frac{2v_o^2\cos\theta\sec\phi\sin\theta}{g\cos\phi} - \frac{2v_o^2\sec\phi\sin^2\theta\tan\phi}{g}$$

$$= \frac{2v_o^2\sin\theta(\cos\theta\cos\phi - \sin\theta\sin\phi)}{g\cos^2\phi}$$

$$= \frac{2v_o^2\sin\theta\cos(\theta + \phi)}{g\cos^2\phi}$$

$$\begin{split} \frac{dr_x}{d\theta} &= \frac{2v_o^2}{g\cos^2\phi}[\cos\theta\cos(\theta+\phi) - \sin\theta\sin(\theta+\phi)] \\ &= \frac{2v_o^2\cos(2\theta+\phi)}{g\cos^2\phi} \\ 0 &= \frac{2v_o^2\cos(2\theta+\phi)}{g\cos^2\phi} \\ &= \cos(2\theta+\phi) \\ 2\theta + \phi &= \frac{\pi}{2} \\ \theta &= \frac{\pi}{4} - \frac{\phi}{2} \\ r_{x,\max} &= \frac{2v_o^2\sin\left(\frac{\pi}{4} - \frac{\phi}{2}\right)\cos\left(\frac{\pi}{4} - \frac{\phi}{2} + \phi\right)}{g\cos^2\phi} \\ &= \frac{v_o^2(1-\sin\phi)}{g\cos^2\phi} \\ &= \frac{v_o^2}{g(1+\sin\phi)} \end{split}$$

$$F = ma$$

$$T = m\frac{v^2}{R}$$

$$= m\frac{(\omega R)^2}{R}$$

$$= m\omega^2 R$$

1.47

(a)

$$\rho = \sqrt{x^2 + y^2}$$

$$\phi = \arctan \frac{y}{x}$$

$$z = z$$

 ρ is the distance of P from the z-axis.

The use of r may be unfortunate because it suggests it's the distance of P from the origin.

(b) $\hat{\boldsymbol{\rho}}$ points away from the z-axis, $\hat{\boldsymbol{\phi}}$ points counter-clockwise around the z-axis, and $\hat{\mathbf{z}}$ points in the positive z direction.

$$\mathbf{r} = \rho \hat{\boldsymbol{\rho}} + z\hat{\mathbf{z}} + \sqrt{x^2 + y^2}\hat{\boldsymbol{\rho}} + z\hat{\mathbf{z}}$$

(c)

$$\mathbf{v} = \frac{d\mathbf{r}}{dt}$$

$$= \dot{\rho}\hat{\boldsymbol{\rho}} + \rho \frac{d\hat{\boldsymbol{\rho}}}{dt} + \dot{z}\hat{\mathbf{z}} + z \frac{d\hat{\mathbf{z}}}{dt}$$

$$= \dot{\rho}\hat{\boldsymbol{\rho}} + \rho \dot{\phi}\hat{\boldsymbol{\phi}} + \dot{z}\hat{\mathbf{z}}$$

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

$$= \ddot{\rho}\hat{\boldsymbol{\rho}} + \dot{\rho}\frac{d\hat{\boldsymbol{\rho}}}{dt} + \dot{\rho}\dot{\phi}\hat{\boldsymbol{\phi}} + \rho \ddot{\phi}\hat{\boldsymbol{\phi}} + \rho \dot{\phi}\frac{d\hat{\boldsymbol{\phi}}}{dt} + \ddot{z}\hat{\mathbf{z}}$$

$$= \ddot{\rho}\hat{\boldsymbol{\rho}} + \dot{\rho}\dot{\phi}\hat{\boldsymbol{\phi}} + \dot{\rho}\dot{\phi}\hat{\boldsymbol{\phi}} + \rho \ddot{\phi}\hat{\boldsymbol{\phi}} - \rho \dot{\phi}^2\hat{\boldsymbol{\rho}} + \ddot{z}\hat{\mathbf{z}}$$

$$= (\ddot{\rho} - \rho\dot{\phi}^2)\hat{\boldsymbol{\rho}} + (2\dot{\rho}\dot{\boldsymbol{\phi}} + \rho\ddot{\boldsymbol{\phi}})\hat{\boldsymbol{\phi}} + \ddot{z}\hat{\mathbf{z}}$$

2 Projectiles and Charged Particles

2.1

$$1 = (1.6 \times 10^{3})Dv$$
$$v = \frac{1}{(1.6 \times 10^{3})D}$$
$$= 8.9 \,\text{mm/s}$$

When $v \gg 1\,\mathrm{cm/s}$ the drag force can be treated as purely quadratic. For a beach ball this becomes $v \gg 1\,\mathrm{mm/s}$.

2.3

(a)

$$\begin{split} \frac{f_{\text{quad}}}{f_{\text{lin}}} &= \frac{(1/4)\rho A v^2}{3\pi \eta D v} \\ &= \frac{\rho \pi \left(\frac{D}{2}\right)^2 v}{12\pi \eta D} \\ &= \frac{\rho D v}{48\eta} \\ &= \frac{R}{48} \end{split}$$

(b)
$$R = \frac{Dv\rho}{\eta} \approx 0.01$$