D208 Task 2

July 25, 2021

1 Part I: Research Question

1.1 A1: Question

What customer qualities or factors from the data can be used to predict the churn of customers?

1.2 A2: Objective and Goals

The objective of an analysis of the data is to determine what features, if any, can significantly predict whether or not the customer will continue services with the organization.

2 Part II: Method Justification

2.1 B1: Summary of Assumptions

2.1.1 Assumption #1: Independence of Observations

In logistic regression, the normal distribution of the observational errors is not assumed, however, the independence of the observations themselves are still assumed. In simple terms, the values of each variable must not have an effect on the other values within the same variable. If errors become correlated or there are duplicate observations in our dataset the standard error cannot be relied upon. The independence of the observation is a scientific method issue and not a statistical one, but it should be validated in the dataset.

2.1.2 Assumption #2: Linearity in the Logit for Continuous Independent Variables

Unlike in multiple linear regression, logistic regression does not require the independent variable to be linearly related to the dependent variable. It does, however, assume linearity in the logit for any continuous independent variables. This means that there should be a linear relationship between each independent variable and the log odds of the dependent variable.

2.1.3 Assumption #3: Absence of Muliticollinearity Among Independent Variables

Multicollinearity in the model occurs when two or more independent variables share the same correlation with the target variable. This usually means that the independent variables are related and explain the same variance with the target variable. A logistic regression model with highly correlated independent variables will usually result in large standard errors for the estimated beta coefficients (or slopes) of these variables. (Stoltzfus, 2011)

2.1.4 Assumption #4: No Heavily Influential Outliers

Outliers are any abnormal or unusual data values when compared to other date values within an independent variable. Normally, an outlier can be confirmed if it is three or more standard deviations away from a statistic, but this can be subjective depending on the data. Outliers in the dataset can create inaccuracies within the model and should either be removed, changed, or left untouched with model notation, depending on desired results.

2.2 B2: Benefits of Using Python

By using Python, data can be easily cleaned, explored, and prepared for use in predictive model building. The models themselves can be created using Python. Plots, charts, and graphs can be created to visualize the data and better understand relationships within datasets. This creates opportunities to provide detailed visual information for presentations. Python contains many packages built by data scientists that help with the previously mentioned tasks. Some packages that will be used are Numpy, Pandas, Matplotlib, Seaborn, Statsmodels, and Sklearn.

2.3 B3: Why Logistic Regression?

Since our dependent variable "Churn" is a dichotomous variable, it is appropriate to use the logistic regression model to achieve answering the question. The dataset contains many other continuous and categorical variables that can be used to build the logistic regression model. The difference between the multiple linear regression model and the logistic regression model is that instead of trying to predict the variables' outcome, the linear regression model predicts the *probability* of the outcome of the variable.

3 Part III: Data Preparation

3.1 C1: Data Preparation Goals and Manipulation

The overall goal of data preparation is to ensure that the data that will be used for the logistic regression model is complete, accurate, and efficiently used. If the data used to create and input into the model are garbage, garbage will be returned from the model. Some data manipulation tasks that need to be completed for data preparation to conduct logistic regression are:

- Import the dataset
- Identify and handle missing data
- Identify and handle outliers or strange values
- Transform categorical variables in numerical values and drop a selection for each categorical variable
- Ensure the target variable is categorical

3.2 C2: Summary Statistics

The below statistical factors of the models will be needed to help answer the research question and were derived from the course textbook:

• Coefficients of all predictor variables - the coefficients of each independent variable will need to be determined to build the logistic regression model.

- Log-Likelihood Effective for comparing models of the same data. A model with a log-likelihood closer to zero is a better candidate for fit.
- p-values these indicate the probability of observing the test statistic assuming the null hypothesis that the population coefficient is zero. Normally, p-values less than 0.5 indicate that the null hypothesis can be rejected and the statistic can be used in the model.
- Pseudo R-squared statistic: The Pseudo R-squared statistic is an analogy to linear regressions R-squared but does not measure the proportion of variation in the dependent variable explained by the model. It is instead computed based on the ratio of the maximized log-likelihood function for the null model and the full model. Computed to be between 0 and 1, values closer to 1 indicate a better fitting model.
- Variance inflation factor(VIF) provides an index that measures how much the variance (the square of the estimate's standard deviation) of an estimated regression coefficient is increased because of collinearity.

Independent Variables - Population (Continuous)

- Area (Categorical)
- Children (Continuous)
- Age (Continuous)
- Income (Continuous)
- Marital (Categorical)
- Gender (Categorical)
- State (Categorical)
- Outage sec perweek (Continuous)
- Email (Continuous)
- Contract (Categorical)
- Contacts (Continuous)
- Yearly_equip_failure (Continuous)
- Techie (Categorical)
- Tenure (Continuous)
- Port_modem (Categorical)
- Tablet (Categorical)
- InternetService (Categorical)
- Phone (Categorical)
- Multiple (Categorical)
- OnlineSecurity (Categorical)
- OnlineBackup (Categorical)

- DeviceProtection (Categorical)
- TechSupport (Categorical)
- StreamingTV (Categorical)
- StreamingMovies (Categorical)
- PaperlessBilling (Categorical)
- PaymentMethod (Categorical)
- Tenure (Categorical)
- MonthlyCharge (Continuous)
- Bandwidth_GB_Year (Continuous)
- Item1 (Categorical)
- Item2 (Categorical)
- Item3 (Categorical)
- Item4 (Categorical)
- Item5 (Categorical)
- Item6 (Categorical)
- Item7 (Categorical)
- Item8 (Categorical)

Target Variable

• Churn (Categorical)

3.3 C3: Steps to Prepare the Data for Analysis

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
from sklearn.preprocessing import StandardScaler
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
```

```
%matplotlib inline
```

3.3.1 1) Import the Original Dataset

[204]: 50

3.3.2 2) Drop Unused Variables and Convert Catergorical Variables

3.3.3 3) Identify Missing Data

```
[208]: display(churn_model_data.isnull().any())
```

False State Population False Area False Children False Age False Income False Marital False Gender False Churn False Outage_sec_perweek False Email False Contacts False Yearly_equip_failure False

Techie False Contract False Port_modem False Tablet False InternetService False Phone False Multiple False OnlineSecurity False OnlineBackup False DeviceProtection False TechSupport False StreamingTV False StreamingMovies False PaperlessBilling False PaymentMethod False Tenure False MonthlyCharge False Bandwidth_GB_Year False Item1 False Item2 False Item3 False Item4 False Item5 False Item6 False Item7 False Item8 False

dtype: bool

3.3.4 4) Identify and Handle Outliers

```
[209]: #Dropping categorical variables
      churn_continuous_data = churn_model_data.

¬drop(['Area','Marital','Gender','Churn', 'Techie','Contract', 'Port_modem',
                                              'Tablet', 'InternetService', 'Phone', L
       → 'DeviceProtection', 'TechSupport', 'TechSupport', 'StreamingTV', □
       → 'PaperlessBilling', 'PaymentMethod', 'Item1', 'Item2', 'Item3', 'Item4', 'Item5', 'Item6',
                                              'Item7', 'Item8'], axis=1)
[210]: churn_continuous_data.describe()
[210]:
             Population
                        Children
                                            Income
                                                   Outage_sec_perweek
                                                                        Email
                                     Age
      count
              10000.00
                        10000.00 10000.00
                                          10000.00
                                                             10000.00 10000.00
      mean
               9756.56
                            2.09
                                   53.08
                                          39806.93
                                                               10.00
                                                                        12.02
```

```
std
         14432.70
                        2.15
                                 20.70
                                        28199.92
                                                                  2.98
                                                                            3.03
                        0.00
                                 18.00
                                                                  0.10
                                                                            1.00
min
             0.00
                                          348.67
25%
           738.00
                        0.00
                                 35.00
                                        19224.72
                                                                  8.02
                                                                           10.00
50%
           2910.50
                        1.00
                                 53.00
                                        33170.60
                                                                 10.02
                                                                           12.00
75%
         13168.00
                        3.00
                                 71.00 53246.17
                                                                 11.97
                                                                           14.00
                                 89.00 258900.70
                       10.00
max
        111850.00
                                                                 21.21
                                                                           23.00
       Contacts Yearly_equip_failure
                                          Tenure
                                                   MonthlyCharge \
                                                        10000.00
       10000.00
                               10000.00 10000.00
count
           0.99
                                   0.40
                                            34.53
                                                           172.62
mean
           0.99
                                   0.64
                                            26.44
                                                            42.94
std
min
           0.00
                                   0.00
                                             1.00
                                                           79.98
25%
           0.00
                                   0.00
                                            7.92
                                                           139.98
50%
           1.00
                                   0.00
                                            35.43
                                                          167.48
75%
           2.00
                                   1.00
                                            61.48
                                                          200.73
                                           72.00
max
           7.00
                                   6.00
                                                          290.16
       Bandwidth_GB_Year
                 10000.00
count
                  3392.34
mean
                  2185.29
std
                   155.51
min
25%
                  1236.47
50%
                  3279.54
75%
                  5586.14
max
                  7158.98
```

[212]: len(churn_continuous_data.columns)

[212]: 12

3.3.5 5) Transform Categorical Data

```
68 28561.99
                                                         7.98
      0
          ΑK
                    38
                              0
                                                                 10
                                                         11.70
      1
          ΜT
                  10446
                              1
                                  27 21704.77
                                                                 12
      2
          ΩR.
                   3735
                              4
                                  50 9609.57
                                                         10.75
                                                                  9
      3
          CA
                  13863
                              1
                                  48 18925.23
                                                         14.91
                                                                 15
                                  83 40074.19
      4
          ΤX
                  11352
                              0
                                                         8.15
                                                                 16
        Contacts
                Yearly_equip_failure
                                              PaymentMethod Tenure \
      0
                                     Credit Card (automatic)
                                                             6.80
              0
              0
                                    Bank Transfer(automatic)
      1
                                  1
                                                             1.16
      2
              0
                                  1
                                     Credit Card (automatic)
                                                            15.75
      3
              2
                                  0
                                               Mailed Check
                                                            17.09
                                               Mailed Check
      4
              2
                                  1
                                                             1.67
        MonthlyCharge Bandwidth_GB_Year
      0
              172.46
                               904.54
      1
              242.63
                               800.98
      2
              159.95
                              2054.71
      3
              119.96
                              2164.58
      4
              149.95
                               271.49
[214]: #Transform categorical variables to numeric using dummy variables
      churn model_transdata = pd.get_dummies(churn model_data, columns =__

→['State','Area','Marital','Gender','Churn','PaymentMethod',
                                                                Ш
      →'Techie','Contract','Port_modem', 'Tablet',
       ш
      → 'PaperlessBilling', 'Item1', 'Item2', 'Item3', 'Item4',
                                                                ш
       [215]: #Show current columns
      for col in churn_model_transdata.columns:
         print(col)
     Population
     Children
     Age
     Income
     Outage_sec_perweek
     Email
```

Income

Outage_sec_perweek Email

[213]:

State Population Children Age

Contacts

Yearly_equip_failure

Tenure

MonthlyCharge

 ${\tt Bandwidth_GB_Year}$

State_AK

State_AL

 ${\tt State_AR}$

State_AZ

 ${\tt State_CA}$

State_CO

State_CT

State_DC

State_DE

State_FL

State_GA

State_HI

State_IA

State_ID

State_IL

State_IN

State_KS

 ${\tt State_KY}$

 $State_LA$

 ${\tt State_MA}$

 $State_MD$

State_ME

State_MI

State_MN

State_MO

 ${\tt State_MS}$

State_MT
State_NC

 ${\tt State_ND}$

 ${\tt State_NE}$

 ${\tt State_NH}$

State_NJ

 ${\tt State_NM}$

State_NV

 ${\tt State_NY}$

 ${\tt State_OH}$

 ${\tt State_OK}$

 ${\tt State_OR}$

 ${\tt State_PA}$

 ${\tt State_PR}$

 ${\tt State_RI}$

 ${\tt State_SC}$

 ${\tt State_SD}$

 $State_TN$

State_TX

 $State_UT$

State_VA

State VT

State_WA

State WI

State_WI

State_WV

State_WY

Area_Rural

Area_Suburban

Area_Urban

Marital_Divorced

Marital_Married

Marital_Never Married

Marital_Separated

Marital_Widowed

Gender_Female

Gender_Male

Gender_Nonbinary

Churn_No

Churn Yes

PaymentMethod_Bank Transfer(automatic)

PaymentMethod_Credit Card (automatic)

PaymentMethod_Electronic Check

PaymentMethod_Mailed Check

Techie_No

Techie_Yes

Contract_Month-to-month

Contract_One year

Contract_Two Year

Port_modem_No

Port_modem_Yes

Tablet_No

Tablet_Yes

InternetService_DSL

InternetService_Fiber Optic

InternetService_None

Phone_No

Phone_Yes

Multiple_No

Multiple_Yes

OnlineSecurity_No

OnlineSecurity_Yes

OnlineBackup_No

OnlineBackup_Yes

DeviceProtection_No

DeviceProtection_Yes

TechSupport_No

 ${\tt TechSupport_Yes}$

StreamingTV_No

StreamingTV_Yes

StreamingMovies_No

StreamingMovies_Yes

PaperlessBilling_No

PaperlessBilling_Yes

Item1_1

Item1_2

 $Item1_3$

Item1_4

Item1_5

Item1_6

Item1_7

 $Item2_1$

Item2_2

Item2_3

 $Item2_4$

 $Item2_5$

Item2_6

 $Item2_7$

Item3_1

Item3_2

 $Item3_3$

 $Item3_4$

 $Item3_5$

Item3_6

Item3_7

 ${\tt Item3_8}$

Item4_1

Item4_2

Item4_3

 $Item4_4$

Item4_5

Item4_6

 $Item4_7$

 $Item5_1$ $Item5_2$

 $Item5_3$

 $Item5_4$

Item5_5

Item5_6

Item5_7

Item6_1

Item6_2

Item6_3

Item6_4

```
Item6 5
      Item6_6
      Item6_7
      Item6 8
     Item7 1
      Item7 2
      Item7 3
      Item7 4
     Item7 5
      Item7_6
      Item7_7
      Item8_1
      Item8 2
      Item8 3
      Item8_4
      Item8 5
      Item8_6
      Item8 7
      Item8_8
[216]: #Dropping one column per catergorical variable to meet n-1 requirements
      churn_LRM_data = churn_model_transdata.
       →drop(['State_AK','Area_Rural','Marital_Widowed','Gender_Nonbinary','Techie_No']
                                                 'Contract Two,,
       →Year', 'Port_modem_No', 'Tablet_No', 'InternetService_None',
       → 'Phone_No', 'Multiple_No', 'OnlineSecurity_No', 'DeviceProtection_No', 'TechSupport_No',
                                                 'StreamingTV_No', □

→ 'StreamingMovies_No', 'PaperlessBilling_No', 'Item1_1', 'Item2_1',
       'PaymentMethod_Bank⊔
       →Transfer(automatic)','Churn_No','OnlineBackup_No'], axis = 1)
```

3.4 C4: Univariate and Bivariate Visualizations

```
data = churn_continuous_data,
    ax = axs[1,0])

sns.boxplot(x="MonthlyCharge",
    data = churn_continuous_data,
    ax = axs[1,1]);
```


3.5 C5: Copy of Prepared Dataset

```
[219]: churn_LRM_data.to_csv('C:/Users/holtb/Data/D208/Task 2/churn_LRM_data.csv')
```

4 Part IV: Model Comparison And Analysis

4.1 Initial Model:

```
[220]: X = churn_LRM_data.drop(['Churn_Yes'], axis=1)
    y = churn_LRM_data['Churn_Yes']

[221]: #define the input
    X2 = sm.add_constant(X)

#create an Logistic Regression Model
    initial_model = sm.Logit(y.astype("float64"), X2.astype("float64"))

#fit the data
    initial_est = initial_model.fit()

#Summarize the output
    initial_est.summary()
```

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.212166

Iterations: 35

C:\Users\holtb\anaconda3\lib\site-packages\statsmodels\base\model.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

warnings.warn("Maximum Likelihood optimization failed to "

[221]: <class 'statsmodels.iolib.summary.Summary'>

Logit	Regression	Results

	===========	========		=========	=====
Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	Logit MLE Sun, 25 Jul 2021 15:46:34 False nonrobust	Pseudo R-s Log-Likeli LL-Null: LLR p-valu	als: squ.: ihood: ne:	-2 -5	10000 9859 140 0.6331 2121.7 5782.2 0.000
=======================================					
P> z [0.025	0.975]	coef	std err	Z	
const		-9.9742	1.087	-9.174	
0.000 -12.105 Population	-7.843	1.177e-06	2.98e-06	0.395	
0.693 -4.66e-06 Children 0.882 -0.297	0.255	-0.0209	0.141	-0.149	
Age 0.748 -0.025	0.034	0.0048	0.015	0.321	
Income 0.780 -2.35e-06	3.13e-06	3.907e-07	1.4e-06	0.279	
Outage_sec_perweek 0.824 -0.029	0.023	-0.0030	0.013	-0.223	
Email 0.319 -0.038	0.013	-0.0129	0.013	-0.997	
Contacts 0.130 -0.018	0.139	0.0605	0.040	1.514	
Yearly_equip_failure 0.634 -0.152	0.093	-0.0297	0.062	-0.476	
Tenure 0.553 -0.950	0.509	-0.2208	0.372	-0.593	
MonthlyCharge 0.007 0.010	0.066	0.0381	0.014	2.688	
Bandwidth_GB_Year 0.786 -0.008	0.010	0.0012	0.005	0.271	

State_AL			-0.0831	0.501	-0.166
0.868	-1.065	0.899			
State_AR			-0.4337	0.499	-0.870
0.384	-1.411	0.543	0.0470	0 574	0.004
State_AZ 0.975	-1.106	1.142	0.0178	0.574	0.031
State_CA	-1.100	1.142	-0.1793	0.436	-0.411
0.681	-1.034	0.676	0.1.00	0.100	***
State_CO			-0.0775	0.517	-0.150
0.881	-1.090	0.935			
State_CT	4 050	4 000	-0.0802	0.597	-0.134
0.893 State_DC	-1.250	1.090	1.0902	0.951	1.146
0.252	-0.774	2.955	1.0502	0.501	1.140
State_DE			-0.8449	0.897	-0.942
0.346	-2.603	0.913			
State_FL			-0.4511	0.463	-0.973
0.330	-1.359	0.457	0 1507	0.476	0.224
State_GA 0.739	-0.774	1.091	0.1587	0.476	0.334
State_HI	0.771	1.001	-0.1788	0.754	-0.237
0.813	-1.657	1.300			
State_IA			-0.0230	0.460	-0.050
0.960	-0.924	0.878			
State_ID	1 200	1 063	-0.1234	0.605	-0.204
0.838 State_IL	-1.309	1.063	-0.1329	0.441	-0.301
0.763	-0.998	0.732	0.1020	0.111	0.001
State_IN			0.0528	0.472	0.112
0.911	-0.871	0.977			
State_KS	0.000	4 446	0.1159	0.510	0.227
0.820 State_KY	-0.883	1.115	-0.0112	0.476	-0.024
0.981	-0.943	0.921	0.0112	0.470	0.024
State_LA			-0.0989	0.503	-0.197
0.844	-1.084	0.886			
State_MA			-0.3051	0.498	-0.612
0.540	-1.282	0.672	0 1025	0.523	0 270
State_MD 0.711	-0.831	1.218	0.1935	0.525	0.370
State_ME	0.001	1.210	-0.0387	0.550	-0.070
0.944	-1.117	1.039			
State_MI			0.0366	0.462	0.079
0.937	-0.868	0.942	0.0054	0 407	0.075
State_MN 0.940	-0.880	0.950	0.0351	0.467	0.075
State_MO	0.000	0.950	0.1914	0.447	0.428
			0.1011	J 41	

0.669	-0.685	1.068			
State_MS	0.000	1.000	-0.0580	0.514	-0.113
0.910	-1.066	0.950			
State_MT			0.5291	0.562	0.942
0.346	-0.572	1.630			
State_NC			-0.1329	0.456	-0.292
0.770	-1.026	0.760	0.0405	0 505	0 000
State_ND 0.922	-0.940	1.039	0.0495	0.505	0.098
State_NE	0.540	1.000	0.0365	0.503	0.073
0.942	-0.949	1.022			
State_NH			-0.3308	0.610	-0.542
0.588	-1.527	0.865			
State_NJ			-0.1267	0.492	-0.257
0.797	-1.091	0.838	0.6304	0 517	1 005
State_NM 0.217	-1.652	0.375	-0.6384	0.517	-1.235
State_NV	1.002	0.070	-0.7622	0.801	-0.952
0.341	-2.332	0.807			
State_NY			-0.3376	0.432	-0.782
0.434	-1.183	0.508			
State_OH			-0.2495	0.447	-0.558
0.577	-1.126	0.627	0 0350	0 401	0 490
State_OK 0.625	-1.178	0.708	-0.2352	0.481	-0.489
State_OR	1.110	0.100	0.4048	0.529	0.766
0.444	-0.631	1.441			
State_PA			-0.2220	0.431	-0.515
0.607	-1.067	0.624			
State_PR	4 004	4 000	-0.4585	0.779	-0.589
0.556 State_RI	-1.984	1.068	-4.5167	1.554	-2.906
0.004	-7.563	-1.470	4.0101	1.004	2.500
State_SC			-0.0338	0.560	-0.060
0.952	-1.132	1.064			
State_SD			-0.5758	0.576	-1.001
0.317	-1.704	0.552	0.4004	0 500	0.004
State_TN 0.352	_0 E17	1.454	0.4684	0.503	0.931
State_TX	-0.517	1.454	0.0999	0.429	0.233
0.816	-0.741	0.940	0.000	0.120	0.200
State_UT			0.0832	0.660	0.126
0.900	-1.211	1.378			
State_VA			0.0573	0.466	0.123
0.902	-0.855	0.970	0.0040	0 500	0.000
State_VT 0.543	-0.811	1.539	0.3642	0.599	0.608
0.040	0.011	1.005			

State_WA	0.2176	0.486	0.447
0.655 -0.736 1.171	0 0000	0.460	0.060
State_WI	0.0289	0.469	0.062
State_WV	0.6429	0.469	1.372
0.170 -0.276 1.562			
State_WY	-0.2197	0.771	-0.285
0.776 -1.731 1.292			
Area_Suburban	-0.0406	0.098	-0.415
0.678 -0.232 0.151	0.0500		0.500
Area_Urban	0.0569	0.097	0.586
0.558 -0.133 0.247	_0 2009	0 102	-0 256
Marital_Divorced 0.018 -0.533 -0.049	-0.2908	0.123	-2.356
Marital_Married	-0.1524	0.126	-1.207
0.227 -0.400 0.095	0.1021	0.120	1.201
Marital_Never Married	-0.2520	0.126	-1.998
0.046 -0.499 -0.005			
Marital_Separated	-0.1423	0.125	-1.141
0.254 -0.387 0.102			
Gender_Female	0.1332	0.292	0.456
0.649 -0.440 0.706			
Gender_Male	0.3036	0.478	0.635
0.525 -0.633 1.241	0.0004	0.404	4 040
PaymentMethod_Credit Card (automatic) 0.055 -0.005 0.469	0.2321	0.121	1.919
PaymentMethod_Electronic Check	0.6479	0.109	5.964
0.000 0.435 0.861	0.0419	0.103	0.904
PaymentMethod_Mailed Check	0.2634	0.119	2.210
0.027 0.030 0.497	0.2001	0.110	_,,
Techie_Yes	1.0994	0.105	10.437
0.000 0.893 1.306			
Contract_Month-to-month	3.6052	0.130	27.626
0.000 3.349 3.861			
Contract_One year	0.1173	0.141	0.832
0.406 -0.159 0.394	0 4454	0.070	4 050
Port_modem_Yes	0.1471	0.079	1.856
0.063 -0.008 0.302 Tablet_Yes	-0.0682	0.087	-0.787
0.431 -0.238 0.102	-0.0002	0.007	-0.707
InternetService_DSL			
	0.5525	1.714	0.322
-	0.5525	1.714	0.322
-	0.5525 -1.1013	1.714 0.477	0.322
0.747 -2.807 3.912			
0.747 -2.807 3.912 InternetService_Fiber Optic 0.021 -2.035 -0.167 Phone_Yes			
0.747 -2.807 3.912 InternetService_Fiber Optic 0.021 -2.035 -0.167	-1.1013	0.477	-2.311

0.044	0.011	0.821			
OnlineSecu	ırity_Yes		-0.3412	0.320	-1.067
0.286	-0.968	0.286			
OnlineBack	kup_Yes		-0.1255	0.185	-0.678
0.498	-0.488	0.237			
DeviceProt	tection_Yes		-0.1066	0.240	-0.445
0.656	-0.576	0.363			
TechSuppor			-0.1956	0.178	-1.101
0.271	-0.544	0.153			
Streaming			1.0952	0.523	2.094
0.036	0.070	2.120	4 0000		0.500
Streaming		0.000	1.3079	0.373	3.509
0.000	0.577	2.038	0 1100	0.000	4 050
_	Billing_Yes	0 007	0.1490	0.080	1.852
0.064	-0.009	0.307	0.0100	0 205	0 025
Item1_2	0.000	0 507	-0.0108	0.305	-0.035
0.972	-0.609	0.587	0.2005	0 207	0 650
Item1_3 0.514	-0.803	0.402	-0.2005	0.307	-0.652
0.514 Item1_4	-0.603	0.402	-0.1747	0.319	-0.547
0.584	-0.801	0.451	-0.1747	0.319	-0.547
Item1_5	0.001	0.401	-0.1424	0.341	-0.418
0.676	-0.811	0.526	0.1424	0.541	0.410
Item1_6	0.011	0.020	-0.0601	0.441	-0.136
0.891	-0.924	0.804	0.0001	0.111	0.100
Item1_7			0.1279	1.117	0.114
0.909	-2.061	2.316			
Item2_2			0.2879	0.315	0.913
0.361	-0.330	0.906			
Item2_3			0.1875	0.316	0.593
0.553	-0.432	0.807			
Item2_4			0.2701	0.324	0.832
0.405	-0.366	0.906			
Item2_5			0.1517	0.344	0.441
0.659	-0.522	0.826			
Item2_6			0.1974	0.436	0.452
0.651	-0.658	1.053			
Item2_7			2.7383	1.560	1.755
0.079	-0.319	5.796			
Item3_2			-0.1426	0.309	-0.462
0.644	-0.748	0.463	0.0700	0.000	0.000
Item3_3	0.670	0 500	-0.0702	0.306	-0.229
0.819	-0.670	0.529	0.4500	0.014	O E11
Item3_4	_0 760	O 1E1	-0.1589	0.311	-0.511
0.609 Ttom3 5	-0.769	0.451	_0 0055	0.300	_0 017
Item3_5	-0 651	0 640	-0.0055	0.329	-0.017
0.987	-0.651	0.640			

Item3_6			0.3683	0.424	0.869
0.385	-0.462	1.199			
Item3_7		4 000	-1.3696	1.251	-1.094
0.274 Item3_8	-3.822	1.083	-21.3967	1.5e+04	-0.001
_	-2.95e+04	2.94e+04	-21.3907	1.56+04	-0.001
0.333 Item4_2		2.346.04	0.0762	0.280	0.272
0.785	-0.473	0.625			
Item4_3			-0.1900	0.271	-0.702
0.483	-0.721	0.341			
Item4_4		0.400	-0.1034	0.274	-0.377
0.706 Item4_5	-0.640	0.433	-0.1464	0.291	-0.503
0.615	-0.717	0.424	-0.1404	0.291	-0.505
Item4_6		0.121	0.1519	0.380	0.399
0.690	-0.594	0.898			
Item4_7			-1.6345	1.209	-1.352
0.177	-4.005	0.736			
Item5_2		0.615	0.0230	0.302	0.076
0.939 Item5_3	-0.569	0.615	-0.1331	0.296	-0.450
0.653	-0.713	0.447	0.1001	0.230	0.400
Item5_4			-0.1490	0.300	-0.496
0.620	-0.738	0.440			
Item5_5			-0.0754	0.319	-0.236
0.813	-0.701	0.550			
Item5_6		0.701	-0.0108	0.409	-0.026
0.979 Item5_7	-0.813	0.791	-2.3750	1.192	-1.992
0.046	-4.712	-0.039	2.0700	1.102	1.002
Item6_2			0.6039	0.327	1.849
0.064	-0.036	1.244			
Item6_3			0.5050	0.322	1.566
0.117	-0.127	1.137	0 5660	0.200	1.723
Item6_4 0.085	-0.078	1.210	0.5662	0.329	1.725
Item6_5		1.210	0.4069	0.344	1.183
0.237	-0.267	1.081			
Item6_6			0.2536	0.423	0.599
0.549	-0.576	1.083			
Item6_7		2 700	1.0309	1.407	0.733
0.464 Item6_8	-1.727	3.789	-18.7552	1.5e+04	-0.001
_	-2.94e+04	2.93e+04	10.1002	1.00.01	0.001
Item7_2			0.2036	0.295	0.690
0.490	-0.374	0.782			
Item7_3			0.2963	0.284	1.043

0.297	-0.260	0.853				
Item7_4			0.0773	0.287	0.269	
0.788	-0.486	0.640				
Item7_5			0.3124	0.305	1.025	
0.305	-0.285	0.910				
Item7_6			0.4443	0.397	1.120	
0.263	-0.333	1.222				
Item7_7			-1.6012	1.373	-1.167	
0.243	-4.291	1.089				
Item8_2			-0.1517	0.278	-0.545	
0.586	-0.697	0.394				
Item8_3			-0.0777	0.266	-0.292	
0.770	-0.600	0.444				
Item8_4			-0.1910	0.269	-0.710	
0.478	-0.718	0.336				
Item8_5		0.440	-0.1390	0.284	-0.489	
0.625	-0.696	0.418	0.0440	0.070	0.007	
Item8_6		0.745	0.0140	0.373	0.037	
0.970	-0.717	0.745	0.0007	0.050	0.700	
Item8_7		1 100	-0.6697	0.953	-0.703	
0.482	-2.537	1.198	10 1010	1 F-104	0.001	
Item8_8		0.00-104	-19.1840	1.5e+04	-0.001	
0.999	-2.94e+04	2.93e+04				

Possibly complete quasi-separation: A fraction 0.11 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

4.1.1 Multicollinearity

The initial model had significant issues due to the multicollinearity between independent variables within the model. By calculating the variance inflation factors(VIF), variables with multicollinearity can be identified. Any variables calculated above 10 were removed one at a time and the VIFs were recalculated until all VIFs were below 10.

Data Before Removing Target and Redundant Variables

const	729.59
Population	1.16
Children	58.03
Age	61.10
Income	1.01
Outage_sec_perweek	1.01
Email	1.01
Contacts	1.01
Yearly_equip_failure	1.01
Tenure	61324.70
MonthlyCharge	224.51
Bandwidth_GB_Year	62386.64
State_AL	3.32
State_AR	3.25
State_AZ	2.45
State_CA	7.56
State_CO	2.99
State_CT	1.92
State_DC	1.19
State_DE	1.28
State_FL	5.14
State_GA	4.03
State_HI	1.46
State_IA	4.53
State_ID	2.05
State_IL	6.16
State_IN	4.06
State_KS	3.49
State_KY	4.02
State_LA	2.81
State_MA	3.21

State_MD	2.60
State_ME	2.44
State_MI	4.53
State_MN	4.35
State_MO	4.90
State_MS	2.63
State_MT	2.24
State_NC	4.55
State_ND	2.52
State_NE	3.32
State_NH	2.12
State_NJ	3.44
State_NM	2.47
State_NV	1.63
State_NY	7.85
State_OH	5.50
State_OK	3.59
State_OR	2.48
State_PA	7.75
State_PR	1.54
State_RI	1.25
State_SC	2.60
State_SD	2.30
State_TN	3.37
State_TX	8.39
State_UT	1.86
State_VA	4.60
State_VT	2.09
State_WA	3.25
State_WI	3.90
State_WV	4.13
State_WY	1.57
Area_Suburban	1.35
Area_Urban	1.35
Marital_Divorced	1.63
Marital_Married	1.59
Marital_Never Married	1.60
Marital_Separated	1.61
Gender_Female	12.96
Gender_Male	35.79
PaymentMethod_Credit Card (automatic)	1.55
PaymentMethod_Electronic Check	1.69
PaymentMethod_Mailed Check	1.59
Techie_Yes	1.01
Contract_Month-to-month	1.49
Contract_One year	1.49
Port_modem_Yes	1.01
Tablet_Yes	1.01

Internet Convice DCI	400 44
InternetService_DSL InternetService_Fiber Optic	422.44 33.96
Phone_Yes	1.02
Multiple_Yes	6.05
OnlineSecurity_Yes	14.95
OnlineBackup_Yes	5.40
DeviceProtection_Yes	9.22
TechSupport_Yes	4.54
StreamingTV_Yes	43.81
StreamingMovies_Yes	21.44
PaperlessBilling_Yes	1.01
Item1_2	6.81
Item1_3	13.17
Item1_4	14.13
Item1_5	8.57
Item1_6	2.52
Item1_7	1.30
Item2_2	6.82
Item2_3	13.13
Item2_4	13.96
Item2_5	8.29
Item2_6	2.53
Item2_7	1.25
Item3_2	7.14
Item3_3	12.87
Item3_4	13.39
Item3_5	7.66
Item3_6	2.32
Item3_7	1.16
Item3_8	1.16
Item4_2	6.28
Item4_3	11.39
Item4 4	11.72
Item4_5	6.69
Item4_6	2.04
Item4_7	1.06
Item5_2	6.81
Item5_3	12.35
Item5_4	12.63
Item5_5	7.24
Item5_6	2.16
Item5_7	1.09
Item6_2	7.54
Item6_3	13.49
Item6_4	13.81
Item6_5	8.23
Item6_6	2.35
Item6_7	1.15
-	

```
Item7_2
                                               6.18
     Item7_3
                                               11.53
     Item7 4
                                               11.86
                                               6.81
     Item7 5
     Item7 6
                                               2.17
     Item7 7
                                               1.08
     Item8 2
                                               6.74
     Item8 3
                                               11.97
                                               12.08
     Item8_4
                                               6.90
     Item8_5
     Item8_6
                                               2.06
                                               1.10
     Item8_7
     Item8_8
                                               1.04
     dtype: float64
[223]: # creating the data frames before and after removing variables that are
       → creating multicollinearity
      churn data after = churn LRM data.
       →drop(['Churn_Yes', 'Bandwidth_GB_Year', 'Gender_Female', 'Item1_3', 'Item2_4', 'Item5_4',
       # adding a constant to the data frames as required for the VIF calculation
      A2 = sm.tools.add_constant(churn_data_after)
      # create the series
      series_after = pd.Series([variance_inflation_factor(A2.values, i) for i in_
       →range(A2.shape[1])], index=A2.columns)
      # display the series
      print('-'*100)
      print('Data After Removing Target and Redundant Variables')
      print('-'*100)
      pd.options.display.max_rows = 145
      pd.set_option('display.float_format', '{:.2f}'.format)
      display(series_after)
     Data After Removing Target and Redundant Variables
     const
                                            220.79
                                             1.16
     Population
     Children
                                             1.01
                                             1.01
     Age
```

1.02

Item6 8

Income	1.01
Outage_sec_perweek	1.01
Email	1.01
Contacts	1.01
Yearly_equip_failure	1.01
Tenure	1.01
State_AL	3.32
State_AR	3.25
State_AZ	2.45
State_CA	7.56
State_CO	2.99
State_CT	1.92
State_DC	1.19
State_DE	1.28
State_FL	5.14
State_GA	4.03
State_HI	1.46
State_IA	4.53
State_ID	2.05
State_IL	6.15
State_IN	4.06
State_KS	3.49
State_KY	4.02
State_LA	2.81
State_MA	3.21
State_MD	2.59
State_ME	2.44
State_MI	4.53
State_MN	4.34
State_MO	4.90
State_MS	2.63
State_MT	2.24
State_NC	4.54
State_ND	2.52
State_NE	3.31
State_NH	2.12
State_NJ	3.44
State_NM	2.47
State_NV	1.63
State_NY	7.84
State_OH	5.50
State_OK	3.58
State_OR	2.48
State_PA	7.75
State_PR	1.54
State_RI	1.25
State_SC	2.60
State_SD	2.30

State_TN	3.37
State_TX	8.39
State_UT	1.86
State_VA	4.60
State_VT	2.09
State_WA	3.25
State_WI	3.90
State_WV	4.13
State_WY	1.57
Area_Suburban	1.35
Area Urban	1.35
-	1.63
Marital_Divorced	
Marital_Married	1.59
Marital_Never Married	1.60
Marital_Separated	1.61
Gender_Male	1.01
PaymentMethod_Credit Card (automatic)	1.55
PaymentMethod_Electronic Check	1.69
PaymentMethod_Mailed Check	1.58
Techie_Yes	1.01
Contract_Month-to-month	1.49
Contract_One year	1.49
Port_modem_Yes	1.01
Tablet_Yes	1.01
InternetService_DSL	1.74
<pre>InternetService_Fiber Optic</pre>	1.75
Phone_Yes	1.02
Multiple_Yes	1.01
OnlineSecurity_Yes	1.01
OnlineBackup_Yes	1.01
DeviceProtection_Yes	1.01
TechSupport_Yes	1.01
StreamingTV_Yes	1.01
StreamingMovies_Yes	1.01
PaperlessBilling_Yes	1.01
Item1_2	1.31
Item1_4	1.60
Item1_5	1.84
Item1_6	1.40
Item1_7	1.19
Item2_2	1.54
Item2_3	1.46
_	
Item2_5	1.37
Item2_6	1.27
Item2_7	1.17
Item3_2	1.26
Item3_4	1.46
Item3_5	1.52

```
Item3_7
                                                     1.09
                                                     1.16
      Item3_8
      Item4_2
                                                     1.23
      Item4 4
                                                    1.36
      Item4_5
                                                     1.31
                                                    1.09
      Item4 6
                                                     1.01
      Item4_7
      Item5_2
                                                    1.34
      Item5_3
                                                    1.33
      Item5_5
                                                     1.26
      Item5_6
                                                    1.08
      Item5_7
                                                     1.02
      Item6_2
                                                    1.26
                                                     1.40
      Item6_4
      Item6_5
                                                     1.42
      Item6_6
                                                     1.15
      Item6_7
                                                    1.07
      Item6_8
                                                    1.01
                                                    1.22
      Item7 2
                                                    1.36
      Item7_4
      Item7 5
                                                    1.35
                                                    1.12
      Item7_6
      Item7_7
                                                    1.03
      Item8_2
                                                    1.27
      Item8_3
                                                    1.33
                                                    1.24
      Item8_5
      Item8_6
                                                    1.07
                                                     1.03
      Item8_7
      Item8_8
                                                     1.03
      dtype: float64
[224]: #Dropped target variable and indpendent variables causing multicollinarity_
        \hookrightarrow issues
       X_next = churn_LRM_data.

¬drop(['Churn_Yes', 'Bandwidth_GB_Year', 'Gender_Female', 'Item1_3', 'Item2_4', 'Item5_4', 'Item8_
        {}_{\hookrightarrow} \text{'Item6\_3','Item3\_3','Item4\_3','Item7\_3','MonthlyCharge'], axis=1)}
       y = churn_LRM_data['Churn_Yes']
[225]: #define the input
       X_next = sm.add_constant(X_next)
       #create an Logistic Regression Model
       next_model = sm.Logit(y.astype("float64"), X_next.astype("float64"))
```

1.25

 $Item3_6$

#fit the data
next_est = next_model.fit()

#Summarize the output
next_est.summary()

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.216141

Iterations: 35

C:\Users\holtb\anaconda3\lib\site-packages\statsmodels\base\model.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals

warnings.warn("Maximum Likelihood optimization failed to "

[225]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

	Logit Regression Results						
Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:		Logi MI Sun, 25 Jul 202 15:48:0 Fals	Df Residua E Df Model: Pseudo R-s D9 Log-Likel: E LL-Null: E LLR p-valua	Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value:		10000 9870 129 0.6262 -2161.4 -5782.2 0.000	
				std err			
P> z	[0.025	0.975]		stu eli	۷		
const	-7.864	 -5.682	-6.7728	0.557	-12.169		
Population 0.592 -4			1.572e-06	2.93e-06	0.536		
Children	-0.017	0.055	0.0188	0.018	1.017		
Age	-0.002	0.005	0.0013	0.002	0.686		
Income 0.671 -2		3.32e-06	5.912e-07	1.39e-06	0.425		
O.071 -2 Outage_sec_ 0.711	_perweek		-0.0049	0.013	-0.370		
Email		0.021	-0.0120	0.013	-0.928		
Contacts	-0.037 -0.018	0.013	0.0591	0.040	1.494		
0.100	0.010	0.101					

Yearly_equ	uip_failure	9	-0.0432	0.062	-0.698
0.485	-0.164	0.078			
Tenure			-0.1137	0.003	-39.631
0.000	-0.119	-0.108	0.0400	0.400	0 400
State_AL	4 400	0.767	-0.2108	0.499	-0.423
0.673	-1.188	0.767	0 4005	0.405	0.054
State_AR 0.393	-1.392	0.547	-0.4225	0.495	-0.854
State_AZ	1.092	0.041	-0.0173	0.567	-0.031
0.976	-1.128	1.094	0.0170	0.001	0.001
State_CA			-0.1948	0.433	-0.450
0.653	-1.044	0.654			
State_CO			-0.0680	0.513	-0.133
0.895	-1.073	0.937			
${\tt State_CT}$			-0.0725	0.591	-0.123
0.902	-1.231	1.086			
State_DC	0.000	0.704	0.9275	0.917	1.012
0.312	-0.869	2.724	0.0204	0.869	1 070
State_DE 0.285	-2.635	0.774	-0.9304	0.869	-1.070
State_FL	-2.000	0.774	-0.4432	0.459	-0.966
0.334	-1.342	0.456	0.1102	0.100	0.000
State_GA		0.1200	0.1220	0.472	0.258
0.796	-0.804	1.048			
${ t State}_{ t HI}$			-0.1164	0.747	-0.156
0.876	-1.580	1.347			
${\tt State_IA}$			-0.0688	0.456	-0.151
0.880	-0.963	0.826			
State_ID	4 074	4 054	-0.1106	0.594	-0.186
0.852	-1.276	1.054	0 1707	0 429	0 200
State_IL 0.697	-1.030	0.689	-0.1707	0.438	-0.389
State_IN	1.000	0.009	0.0477	0.468	0.102
0.919	-0.869	0.965	0.02	0.100	0.101
State_KS			0.1143	0.505	0.226
0.821	-0.876	1.104			
${\tt State_KY}$			-0.0817	0.473	-0.173
0.863	-1.008	0.845			
State_LA			-0.1769	0.501	-0.353
0.724	-1.158	0.805	0.0470	0.400	0.010
State_MA	1 200	0 655	-0.3176	0.496	-0.640
0.522 State_MD	-1.290	0.655	0.0900	0.516	0.174
0.862	-0.922	1.102	0.0300	0.010	0.114
State_ME	<u>.</u>		-0.0381	0.543	-0.070
0.944	-1.103	1.027			
State_MI			0.0344	0.459	0.075

0.040	0.064	0 000			
0.940 State_MN	-0.864	0.933	0.0388	0.463	0.084
0.933	-0.868	0.946	0.0300	0.403	0.004
State_MO	0.000	0.010	0.1471	0.443	0.332
0.740	-0.722	1.016			
State_MS			-0.1339	0.510	-0.263
0.793	-1.133	0.866			
${\tt State_MT}$			0.5013	0.561	0.893
0.372	-0.599	1.601			
State_NC			-0.1538	0.452	-0.340
0.734	-1.040	0.733	0.0070	0 504	0.014
State_ND 0.989	-0.981	0.995	0.0070	0.504	0.014
State_NE	-0.901	0.993	0.0600	0.499	0.120
0.904	-0.919	1.039	0.0000	0.400	0.120
State_NH			-0.3289	0.609	-0.540
0.589	-1.523	0.865			
${\tt State_NJ}$			-0.1427	0.489	-0.292
0.770	-1.101	0.816			
State_NM			-0.6876	0.510	-1.348
0.178	-1.688	0.312	0.5504	0.000	0 007
State_NV	0 1/12	1 020	-0.5564	0.809	-0.687
0.492 State_NY	-2.143	1.030	-0.3996	0.428	-0.933
0.351	-1.239	0.439	0.0000	0.420	0.555
State_OH			-0.2863	0.444	-0.645
0.519	-1.156	0.584			
State_OK			-0.2107	0.478	-0.440
0.660	-1.148	0.727			
State_OR			0.3056	0.524	0.583
0.560	-0.722	1.333	0.0000	0 400	0 470
State_PA 0.634	_1 0/12	0 636	-0.2038	0.428	-0.476
State_PR	-1.043	0.636	-0.4058	0.765	-0.531
0.596	-1.904	1.093	0.1000	0.700	0.001
State_RI			-4.2002	1.488	-2.823
0.005	-7.116	-1.285			
State_SC			-0.0280	0.554	-0.050
0.960	-1.113	1.057			
State_SD			-0.5685	0.574	-0.990
0.322	-1.694	0.557	0.4004	0 500	0.000
State_TN 0.335	-0.499	1.463	0.4821	0.500	0.963
State_TX	∪. ≒ JJ	1.400	0.0654	0.426	0.154
0.878	-0.769	0.899	3.0001	V. 120	0.101
State_UT		2.200	-0.0219	0.652	-0.034
0.973	-1.300	1.256			

State_VA			-0.0051	0.461	-0.011
0.991	-0.909	0.898			
State_VT 0.572	-0.828	1.499	0.3359	0.594	0.566
State_WA	-0.020	1.499	0.2517	0.482	0.522
0.601	-0.693	1.196			
State_WI			0.0259	0.464	0.056
0.955	-0.883	0.935		0 101	4 470
State_WV 0.139	-0.223	1.595	0.6860	0.464	1.479
State_WY	-0.223	1.595	-0.3832	0.756	-0.507
0.612	-1.865	1.099	0.0002	01100	0.001
Area_Subur	ban		-0.0424	0.097	-0.437
0.662	-0.232	0.148			
Area_Urban		0.040	0.0573	0.096	0.595
0.552	-0.131	0.246	-0.2774	0.122	-2.268
Marital_Di	-0.517	-0.038	-0.2774	0.122	-2.200
Marital_Ma		0.000	-0.1323	0.125	-1.057
0.290	-0.378	0.113			
Marital_Ne	ver Married		-0.2172	0.125	-1.737
0.082	-0.462	0.028			
Marital_Se	-	0.400	-0.1101	0.124	-0.890
0.374 Gender_Mal	-0.353	0.133	0.2561	0.079	3.250
0.001	0.102	0.411	0.2501	0.079	3.200
		Card (automatic)	0.2018	0.120	1.682
0.093	-0.033	0.437			
•	${ t hod_Electror}$	nic Check	0.6103	0.108	5.668
0.000	0.399	0.821			
PaymentMet.	hod_Mailed(0.012	Check 0.476	0.2439	0.119	2.058
Techie_Yes	0.012	0.470	1.1126	0.105	10.628
0.000	0.907	1.318	1.1120	0.100	10.020
Contract_M	onth-to-mont		3.5286	0.126	27.961
0.000	3.281	3.776			
Contract_O	•		0.1177	0.135	0.873
0.383	-0.147	0.382	0 1200	0.070	1 600
Port_modem 0.093	_res -0.022	0.286	0.1320	0.079	1.682
Tablet_Yes		0.200	-0.0627	0.086	-0.728
0.467	-0.231	0.106			
InternetSe	rvice_DSL		1.5433	0.114	13.571
0.000	1.320	1.766			
	rvice_Fiber	-	0.1368	0.107	1.282
0.200 Phone Ves	-0.072	0.346	-0.3436	0.134	-0 555
Phone_Yes			-0.3430	0.134	-2.555

0.011	-0.607	-0.080			
Multiple_	Yes		1.7309	0.086	20.079
0.000	1.562	1.900			
OnlineSec	urity_Yes		-0.1492	0.082	-1.820
0.069	-0.310	0.012			
OnlineBac	kup_Yes		0.8334	0.081	10.313
0.000	0.675	0.992			
DevicePro	tection_Yes		0.4704	0.080	5.910
0.000	0.314	0.626			
TechSuppo	rt_Yes		0.2938	0.081	3.630
0.000	0.135	0.452			
Streaming'	TV_Yes		3.0297	0.100	30.326
0.000	2.834	3.225			
Streaming	Movies_Yes		3.5904	0.107	33.532
0.000	3.381	3.800			
Paperless	Billing_Yes		0.1460	0.080	1.831
0.067	-0.010	0.302			
Item1_2			0.1665	0.130	1.281
0.200	-0.088	0.421			
Item1_4			0.0185	0.104	0.177
0.859	-0.186	0.223			
Item1_5			0.0400	0.152	0.263
0.793	-0.258	0.338			
Item1_6			0.1790	0.314	0.570
0.569	-0.437	0.795			
Item1_7			0.3143	1.036	0.303
0.762	-1.717	2.346			
Item2_2			-0.0002	0.142	-0.002
0.999	-0.278	0.277			
Item2_3			-0.1088	0.099	-1.096
0.273	-0.303	0.086			
Item2_5			-0.1083	0.134	-0.805
0.421	-0.372	0.155	2 222		0.045
Item2_6	0 070	0 400	-0.0936	0.297	-0.315
0.753	-0.676	0.488	0.0075	4 477	4 647
Item2_7	0 507	F 000	2.3875	1.477	1.617
0.106	-0.507	5.282	0.0756	0.405	0.000
Item3_2	0.200	0 160	-0.0756	0.125	-0.606
0.544	-0.320	0.169	0 0046	0 000	0.051
Item3_4 0.395	0.070	0 110	-0.0846	0.099	-0.851
0.393 Item3_5	-0.279	0.110	0.0662	0.142	0.467
0.641	-0.212	0.344	0.0002	0.142	0.407
0.041 Item3_6	0.212	0.544	0.4552	0.298	1.530
0.126	-0.128	1.039	0.4002	0.290	1.000
0.120 Item3_7	0.120	1.009	-0.9344	1.201	-0.778
0.437	-3.289	1.420	0.3344	1.201	0.110
0.101	0.200	1.120			

Item3_8			-21.0947	1.5e+04	-0.001
0.999 -2. Item4_2	.95e+04	2.94e+04	0.2423	0.127	1.904
0.057	-0.007	0.492			
Item4_4 0.407	0 100	0.067	0.0793	0.096	0.829
0.407 Item4_5	-0.108	0.267	0.0594	0.132	0.448
0.654	-0.200	0.319	2 2252	0.000	
Item4_6 0.143	-0.134	0.925	0.3956	0.270	1.464
Item4_7			-1.4749	1.179	-1.251
0.211 Item5_2	-3.786	0.836	0.1434	0.130	1.103
0.270	-0.111	0.398	0.1404	0.150	1.100
Item5_3	0.400	0.470	-0.0074	0.094	-0.079
0.937 Item5_5	-0.193	0.178	0.0456	0.133	0.343
0.731	-0.215	0.306			
Item5_6 0.667	-0.430	0.671	0.1207	0.281	0.430
Item5_7	0.100	0.071	-2.4299	1.156	-2.102
0.036	-4.696	-0.164	0 1470	0 104	1 101
Item6_2 0.234	-0.095	0.391	0.1478	0.124	1.191
Item6_4			0.0842	0.098	0.857
0.392 Item6_5	-0.108	0.277	-0.0955	0.135	-0.707
0.479	-0.360	0.169		0.120	
Item6_6 0.371	-0.789	0 205	-0.2471	0.276	-0.894
0.371 Item6_7	-0.769	0.295	0.4625	1.324	0.349
0.727	-2.133	3.058	40.4400	4.5.04	0.004
Item6_8 0.999 -2	.94e+04	2.94e+04	-19.4492	1.5e+04	-0.001
Item7_2			-0.0964	0.129	-0.748
0.454 Item7_4	-0.349	0.156	-0.1945	0.095	-2.046
0.041	-0.381	-0.008	0.1310	0.030	2.010
Item7_5	0.000	0 000	0.0384	0.133	0.288
0.773 Item7_6	-0.222	0.299	0.1699	0.284	0.599
0.549	-0.386	0.726			
Item7_7 0.153	-4.216	0.661	-1.7772	1.244	-1.428
Item8_2		3.001	0.0324	0.130	0.250
0.803	-0.222	0.287	0 0017	0 005	0.064
Item8_3			0.0917	0.095	0.964

0.335	-0.095	0.278				
Item8_5	,		0.0812	0.127	0.642	
0.521	-0.167	0.329				
Item8_6	•		0.2253	0.269	0.838	
0.402	-0.302	0.752				
Item8_7			-0.4964	0.916	-0.542	
0.588	-2.292	1.300				
Item8_8	1		-19.2036	1.5e+04	-0.001	
0.999	-2.94e+04	2.93e+04				

-----:

4.1.2 P-Values > .05

Next, all variables with non-significant p-values were removed from the model. Starting with the highest p-value and using a p-value of .05 as the alpha, each variable was removed one at a time (backwards stepwise) and the model reran until all p-values were of significant value.

```
[226]: X_next2 = churn_LRM_data.
       →drop(['Churn_Yes','Bandwidth_GB_Year','Gender_Female','Item1_3','Item2_4','Item5_4','Item8_
       \hookrightarrow 'Item6_8',
       - 'Item3 8', 'Item7 5', 'Item8 2', 'Item2 2', 'State AZ', 'State ME', 'State ND', 'State UT', 'State

→ 'State_HI', 'State_CT', 'Item5_3', 'Item1_4', 'Item1_5', 'Item1_7', 'Item7_6', 'Item4_5', 'Item2_6'
       →'Item5_6','Item5_5','Population','Outage_sec_perweek','Income','State_ID','State_KY','State
       → 'State_LA', 'State_MD', 'State_PR', 'Item1_6', 'Item8_7', 'Item6_7', 'Item3_5', 'Item2_5', 'State_A

→ 'State_MI', 'State_MS', 'State_NJ', 'State_IA', 'State_MN', 'State_KS', 'State_NC', '$tate_SC',
       →'State_WI', 'State_NE', 'State_WY', 'State_GA', 'Item4_4', 'Item8_5', 'Item6_5', 'Item3_7', 'Item8_
       -'Item8 3','Item8 3','Item2 7','Item6 6','Item7 2','Item3 2','Tablet Yes','Contract One
       →'State_MO','State_OK','State_OH','State_TX','Marital_Separated','State_PA','State_NV',
       →'Area_Urban','State_NV','State_DE','State_WA','State_PA','State_DC','Children','Email','Con

→ 'State_VT', 'State_AR', 'State_FL', 'State_MT', 'Marital_Married',
```

```
'PaymentMethod_Credit Card⊔

→ (automatic)', 'InternetService_Fiber Optic', 'Item7_7', 'Item5_2',
       \hookrightarrow 'OnlineSecurity_Yes','Port_modem_Yes','PaymentMethod_Mailed\sqcup

→Check', 'Marital_Never Married',
       → 'Marital_Divorced', 'State_OR', 'State_SD', 'State_NM', 'State_NY', 'PaperlessBilling_Yes',
       →'Item3_6','State_TN','State_RI','State_WV','Phone_Yes','Item5_7'], axis=1)
      y = churn LRM data['Churn Yes']
      #define the input
      X_next2 = sm.add_constant(X_next2)
      # Split X and y into X
      X_train, X_test, Y_train, Y_test = train_test_split(X_next2, y, test_size=0.33,_
       →random_state=1)
[227]: #create an Logistic Regression Model
      next2_model = sm.Logit(Y_train.astype("float64"), X_train.astype("float64"))
      #fit the data
      next2_est = next2_model.fit()
      #Summarize the output
      next2_est.summary()
     Optimization terminated successfully.
             Current function value: 0.219219
             Iterations 9
[227]: <class 'statsmodels.iolib.summary.Summary'>
      11 11 11
                              Logit Regression Results
      Dep. Variable:
                               Churn_Yes No. Observations:
                                                                         6700
                                   Logit Df Residuals:
      Model:
                                                                         6686
                                     MLE Df Model:
      Method:
                                                                           13
      Date:
                         Sun, 25 Jul 2021 Pseudo R-squ.:
                                                                       0.6172
      Time:
                                15:48:37 Log-Likelihood:
                                                                      -1468.8
      converged:
                                    True LL-Null:
                                                                      -3837.4
                               nonrobust LLR p-value:
                                                                        0.000
      Covariance Type:
      _____
      ______
```

36

[0.025	0.975]	coef	std err	Z	P> z
const		-6.7039	0.238	-28.132	0.000
-7.171	-6.237				
Tenure		-0.1118	0.003	-32.852	0.000
-0.118	-0.105				
Gender_Mal	е	0.2758	0.094	2.920	0.003
0.091	0.461				
•	hod_Electronic Check	0.4425	0.099	4.472	0.000
0.249	0.636				
Techie_Yes		1.0323	0.126	8.211	0.000
0.786	1.279				
_	onth-to-month	3.3991	0.129	26.394	0.000
3.147	3.652				
InternetSe	_	1.3765	0.104	13.245	0.000
1.173	1.580		0.400	4.0 500	
Multiple_Ye		1.6914	0.102	16.530	0.000
1.491	1.892	0.0040		0.044	
OnlineBack	• =	0.9048	0.097	9.311	0.000
0.714	1.095	0 4000		5 4 4 5	
DeviceProt	_	0.4886	0.095	5.147	0.000
0.303	0.675	0.4000	0 007	0.040	0.044
TechSuppor	-	0.1980	0.097	2.042	0.041
0.008	0.388	0 0505	0 110	04 006	0.000
StreamingT' 2.725	v_res 3.191	2.9585	0.119	24.886	0.000
		2 5125	0 100	07 502	0.000
StreamingMo	3.764	3.5135	0.128	27.523	0.000
3.263 Item7_4	J.104	-0.1711	0.099	-1.733	0.083
-0.365	0.022				

11 11 11

4.1.3 Reduced Model

With mulitcollinearity issues and insignificant variables removed the final model is created:

```
[228]: X_final = X_next2
y = churn_LRM_data['Churn_Yes']

#define the input
X_final = sm.add_constant(X_next2)

# Split X and y into X_
```

[229]: #create an Logistic Regression Model final_model = sm.Logit(Y_train.astype("float64"), X_train.astype("float64")) #fit the data final_est = final_model.fit() #Summarize the output final_est.summary()

Optimization terminated successfully.

Current function value: 0.219219

Iterations 9

[229]: <class 'statsmodels.iolib.summary.Summary'>

Logit Regression Results

	=======					
Dep. Variable: Churn_Yes No. Observations:	6700					
Model: Logit Df Residuals:	6686					
Method: MLE Df Model:	13					
Date: Sun, 25 Jul 2021 Pseudo R-squ.:	0.6172					
Time: 15:48:53 Log-Likelihood:	-1468.8					
converged: True LL-Null:	-3837.4					
Covariance Type: nonrobust LLR p-value:	0.000					
coef std err z	P> z					
[0.025 0.975]						
const -6.7039 0.238 -28.132	0.000					
-7.171 -6.237	0.000					
Tenure -0.1118 0.003 -32.852	0.000					
-0.118 -0.105						
Gender_Male 0.2758 0.094 2.920	0.003					
0.091 0.461						
PaymentMethod_Electronic Check 0.4425 0.099 4.472	0.000					
0.249 0.636						
Techie_Yes 1.0323 0.126 8.211	0.000					
0.786 1.279						
Contract_Month-to-month 3.3991 0.129 26.394	0.000					
3.147 3.652						
InternetService_DSL 1.3765 0.104 13.245	0.000					
1.173 1.580						
Multiple_Yes 1.6914 0.102 16.530	0.000					

1.491	1.892				
OnlineBacku	p_Yes	0.9048	0.097	9.311	0.000
0.714	1.095				
DeviceProte	ction_Yes	0.4886	0.095	5.147	0.000
0.303	0.675				
TechSupport	_Yes	0.1980	0.097	2.042	0.041
0.008	0.388				
StreamingTV	_Yes	2.9585	0.119	24.886	0.000
2.725	3.191				
StreamingMo	vies_Yes	3.5135	0.128	27.523	0.000
3.263	3.764				
Item7_4		-0.1711	0.099	-1.733	0.083
-0.365	0.022				

11 11 11

4.1.4 Part E: Analyze the Dataset Using the Reduced Logistic Regression Model

E1: The logic of the variable selection technique was explained in part IV as the variables were removed. The backwards stepwise method was used. Although not the best method to use according to Stoltzfus, it was chosen because of the requirement to have an intial model with all variables listed in part C2. In general, variables were removed to meet logistic model assumptions and ensure the variables were not overfitted by using only significant variables in the model.

E2: The following model evaluation metrics are used to compare the initial and reduced model:

- Converged: The initial model did not converge where as the reduced model did. This suggest that the reduced model is superior.
- Log-Likelihood: While still significantly well away from 0 in the reduced model, the log-likelihood is much closer to zero than in the initial model, indicating a better fit.
- Psuedo R-squared: The psuedo R-squared of the reduced model is slightly lower than the initial model, however, when combined with the other comparing factors above, the reducted value is insignificant.
- Model Accuracy Score: Both model's accuracy scores were similar, with a only slightly higher score of the initial model.
- Precision and Recall: Precision is the ability of a model not to label an instance positive that is actually negative, whereas Recall is the ability of a model to find all positive instances. Again, both models precision and recall scores were very similar.
- F1 Score: The F1 score is a weighted harmonic mean of precision and recall with 1.0 being the best and 0.0 being the worst. As a rule of thumb, the weighted average of F1 should be used to compare classifier models, not global accuracy. (Muthukrishnan, 2018) The inital model's F1 score is slightly high than the reduced model. However, other important previously mentioned factors need to be accounted for as well.
- Confusion Matrix: Both model's confusion matrixs were again relatively the same showing a high degree of prediction accuracy.

```
Initial Model Evaluation
[230]: pipe = make_pipeline(StandardScaler(), LogisticRegression())
[231]: pipe.fit(X2, y)
[231]: Pipeline(steps=[('standardscaler', StandardScaler()),
                       ('logisticregression', LogisticRegression())])
[232]: initial_predictions = pipe.predict(X2)
[233]:
      pipe.score(X2, y)
[233]: 0.9074
      print(classification_report(y, initial_predictions))
                    precision
                                  recall f1-score
                                                     support
                 0
                         0.93
                                    0.94
                                              0.94
                                                         7350
                          0.84
                 1
                                    0.81
                                              0.82
                                                         2650
                                              0.91
                                                        10000
          accuracy
         macro avg
                          0.88
                                    0.88
                                              0.88
                                                        10000
                                                        10000
      weighted avg
                          0.91
                                    0.91
                                              0.91
[235]: print(confusion_matrix(y, initial_predictions))
      [[6927 423]
       [ 503 2147]]
[236]: plt.matshow(confusion_matrix(y, initial_predictions))
       plt.title('Confusion matrix')
       plt.colorbar()
       plt.ylabel('True label')
       plt.xlabel('Predicted label')
       plt.show()
```


Reduced Model Evaluation [237]: pipe.fit(X_train, Y_train) pipe.score(X_train, Y_train) [237]: 0.9046268656716417 [238]: pipe.fit(X_test, Y_test) pipe.score(X_test, Y_test) [238]: 0.89666666666666 [239]: predictions = pipe.predict(X_test) [240]: print(classification_report(Y_test, predictions)) precision recall f1-score support 0 0.92 0.93 0.93 2390 1 0.82 0.80 0.81 910 0.90 3300 accuracy 3300 macro avg 0.87 0.87 0.87 weighted avg 0.90 0.90 0.90 3300

[241]: print(confusion_matrix(Y_test, predictions))

```
[[2232 158]
[ 183 727]]
```

```
[242]: plt.matshow(confusion_matrix(Y_test, predictions))
    plt.title('Confusion matrix')
    plt.colorbar()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()
```


5 Part V: Data Summary and Implications

5.0.1 F1: Results of the Data Analysis

Logistic Regression equation:

```
p = \frac{e^{-0.1118x_1 + 0.2758x_2 + 0.4425x_3 + 1.0323x_4 + 3.3991x_5 + 1.3765x_6 + 1.6914x_7 + 0.9048x_8 + 0.4886x_9 + 0.1980x_{10} + 2.9585x_{11} + 3.5135x_{12} - 0.1711x_{13} - 6.7039}{1 + e^{-0.1118x_1 + 0.2758x_2 + 0.4425x_3 + 1.0323x_4 + 3.3991x_5 + 1.3765x_6 + 1.6914x_7 + 0.9048x_8 + 0.4886x_9 + 0.1980x_{10} + 2.9585x_{11} + 3.5135x_{12} - 0.1711x_{13} - 6.7039}} where
```

Interpretation of coefficients that were statistically significant:

 x_1 = Tenure - As the only continuous variable in the model, this coefficient reduces the log(odds) that the customer will churn by -0.1118 for each month the customer remains a customer. For example, a customer with a tenure of 12 months will have a reduced log(odds) of churning -0.1118 * 12 = -1.3416 whereas a customer with 24 months tenure will have a reduced log(odds) of churning by -2.6832. This suggests that the longer a customer stays a customer, the probability of that customer churning decreases.

 $x_2 = \text{Gender_Male}$ - Male customers log(odds) of churning are increased by 0.2758.

 x_3 = PaymentMethod_Electronic Check - Customers who use electronic check as a payment method log(odds) of churning are increased by 0.4425.

 $x_4 = \text{Techie}$ Yes - Customer's who consider themselves "Techies" increase the log(odds) of churning by 1.0323.

 $x_5 = \text{Contract_Month-to-month}$ - Customers who are on month-to-month service contracts have an increased log(odds) of churning by 3.3991.

 $x_6 = \text{InternetService_DSL}$ - Customers with DSL service have an increased log(odds) of churning of 1.3765.

 $x_7 = \text{Multiple_Yes}$ - Customers with multiple phone lines have an increased log(odds) of churning of 1.6914.

 x_8 = OnlineBackup_Yes - Customers with OnlineBackup service add-on have an increased $\log(\text{odds})$ of churning of 0.9048.

 x_9 = DeviceProtection_Yes - Customers with DeviceProtection service add-on have an increased $\log(\text{odds})$ of churning of 0.4886

 $x_{10} = \text{TechSupport}$ Yes - Customers with TechSupport service add-on have an increased log(odds) of churning of 0.1980

 $x_{11} = \text{StreamingTV_Yes}$ - Customers with StreamingTV service add-on have an increased log(odds) of churning of 2.9585.

 $x_{12} = \text{StreamingMovies_Yes}$ - Customers with StreamingMovies service add-on have an increased log(odds) of churning of 3.5135.

 $x_{13} = \text{Item } 7_4$ - Customers answering 4 on item 7 in the eight-question survey have a log(odds) increase of churning of .1711. (Not very useful)

Constant - The line of the log(odds) linear model crosses y at - 6.7039.

The statistical and practical significance of the model:

By reviewing the classification report it can be determined the model is statistically significant. The model is overall highly accurate with an approximate 90% accuracy rating and an F1 score of approximately 90%. As this is a model evaluating customers of a business, I believe an inaccuracy of 10% is acceptable.

This model is useful in a practical significance as well. The business can look at the variables that significantly increase or reduce the log(odds) of a customer churning. For example, the longer the tenure of a customer the lower the probability that the customer will churn. The organization can develop a model that predicts the customers' tenure to determine factors that increase or decrease the tenure of a customer. Another example is to look at the streaming services of the organization. The model suggests that customers with these services significantly increases the probability of churn. The business can look into the effectiveness of these services, attempt to determine why customers with these services have an increased likelihood of churn or evaluate whether or not the business should continue offering these services.

Limitations of the data analysis:

Due to the way the model was built (backward stepwise) the model may be missing crucial variables (such as MonthlyCharge). Because the model included all the variables at once, it is difficult to determine which variables were causing multicollinearity issues. Creating the model with one variable at first, then adding more as it was created, may be a better way of determining which variables cause multicollinearity issues. Building the model this way could also allow variables that were initially shown to have significant relationships to remain in the model.

5.0.2 F1: Recommended Course of Action

As stated above, the business can look at the variables that significantly increase or reduce the log(odds) of a customer churning. For example, the longer the tenure of a customer the lower the probability that the customer will churn. The organization can develop a model that predicts the customers' tenure to determine factors that increase or decrease the tenure of a customer. Another example is to look at the streaming services of the organization. The model suggests that customers with these services significantly increases the probability of churn. The business can look into the effectiveness of these services, attempt to determine why customers with these services have an increased likelihood of churn or evaluate whether or not the business should continue offering these services.

6 Part VI: Demonstration

6.1 G. Video

Link included as attachment to submission.

6.2 H. Code Sources

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy. Nature 585, 357–362 (2020). DOI: 0.1038/s41586-020-2649-2. (Publisher link).

J. D. Hunter, "Matplotlib: A 2D Graphics Environment", Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, 2007.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Python Software Foundation. Python Language Reference, version 3.7. Available at http://www.python.org

Seabold, S., & Perktold, J. (2010). statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference.

W. McKinney, AQR Capital Management, pandas: a python data analysis library, http://pandas.sourceforge.net

6.3 I. References

Massaron, L., & Boschetti, A. (2016). Regression analysis with Python. Packt Publishing. ISBN: 9781785286315

Muthukrishnan. (2018, July 07). Understanding the Classification report through sklearn. Retrieved July 25, 2021, from https://muthu.co/understanding-the-classification-report-in-sklearn/

Stoltzfus, J. C. (2011). Logistic Regression: A Brief Primer. Academic Emergency Medicine, 18(10), 1099-1104. doi:10.1111/j.1553-2712.2011.01185.x