1. (10 points)

$$0 = \gamma_1(1) + \gamma_2(1-t) + \gamma_3(2-4t+t^2) + \gamma_4(6-18t+9t^2+t^3)$$
$$0 = (-\gamma_4)t^3 + (9\gamma_4 + \gamma_3)t^2 + (-18\gamma_4 - 4\gamma_3 - \gamma_2)t + (\gamma_4 - 2\gamma_3 + \gamma_2 + \gamma_1)$$

Since we know $b \neq 0$ then we must show that $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = 0$. When we solve the system composed of the above coefficients set to 0 we can clearly see below that the matrix has 4 pivoting columns so the system must only have one solution, the trivial solution.

$$\begin{bmatrix} 1 & 1 & 2 & 6 \\ 0 & -1 & -4 & -18 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Since we have shown that $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = 0$ we conclude that the set is also a basis. The change of basis matrix from \mathbb{C} to \mathbb{B} is:

$$\begin{bmatrix} 1 & 1 & 2 & 6 \\ 0 & -1 & -4 & -18 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$[u]_{\mathbb{B}} = \begin{bmatrix} 1 & 1 & 2 & 6 \\ 0 & -1 & -4 & -18 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 9 \\ -1 \end{bmatrix} = \begin{bmatrix} 10 \\ -15 \\ 0 \\ 1 \end{bmatrix}$$

2. (5 points)

rank A = 5

Basis Col
$$A = \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\-1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\-13\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1 \end{bmatrix} \right\}$$

Basis for row space = $\{(1, 1, -2, 0, 1, 0), (0, 1, -1, 0, -3, 0), (0, 0, 1, 1, -13, 0)(0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1)\}$

- **3.** To find the characteristic polynomial we simply set the determinant of $\begin{bmatrix} 4-\lambda & 4\\ 1 & 4-\lambda \end{bmatrix}$ equal to 0 and solve. We find that it is $(4-\lambda)^2-4=(\lambda-2)(\lambda-6)=0$. We plug each of the solutions into the matrix $A-\lambda I$ and solve for 0 to get $Span\left\{\begin{bmatrix} -2\\ 1\end{bmatrix}\right\}$ when $\lambda=2$ and $Span\left\{\begin{bmatrix} 2\\ 1\end{bmatrix}\right\}$ when $\lambda=6$. So two linearly independent eigenvectors are $\begin{bmatrix} -2\\ 1\end{bmatrix}$ and $\begin{bmatrix} 2\\ 1\end{bmatrix}$.
- **4.** $A \lambda I = \begin{bmatrix} 1 \lambda & 2 & 0 \\ 0 & 1 \lambda & 3 \\ 0 & 0 & 1 \lambda \end{bmatrix}$ so $det A = (1 \lambda)^3$, and the matrix is singular when $\lambda = 1$.

We substitute this eigenvalue back into $A - \lambda I$ to get $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$. We set this matrix to 0 and get

the solution $Span \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$ and this is the only eigenvector.

5. Since this is a triangular matrix we can immediately see that the determinant is the product is the product of the diagonal entries. So the characteristic polynomial is $(4 - \lambda)(3 - \lambda)(2 - \lambda) = 0$.

When we substitute each of these into the matrix $A - \lambda I$ we get the solutions $Span \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$,

 $Span \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}, \text{ and } Span \left\{ \begin{bmatrix} 1 \\ -8 \\ 2 \end{bmatrix} \right\} \text{ so three linearly independent eigenvectors are } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},$ and $\begin{bmatrix} 1 \\ -8 \\ 2 \end{bmatrix}.$

6. $A - 4I_4 = \begin{bmatrix} 0 & 2 & 3 & 3 \\ 0 & -2 & h & 3 \\ 0 & 0 & 0 & 14 \\ 0 & 0 & 0 & -2 \end{bmatrix}$. After row reduction, we have $\begin{bmatrix} 0 & 0 & h+3 & 0 \\ 0 & 1 & h & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ and we see

7. We know that $(A+B)^T = A^T + B^T$ and det $A = \det A^T$. So $\det(A-\lambda I) = \det(A-\lambda I)^T = \det(A^T - (\lambda I)^T) = \det(A^T - \lambda I)$.