Computing for Big Data (BST-262)

Christine Choirat 2017-10-22

Contents

1	Intr	roduction
	1.1	Logistics
	1.2	Prerequisites
	1.3	Rationale
	1.4	Big data bottlenecks
	1.5	Syllabus
	1.6	Evaluation
	1.7	Software tools and packages
	1.8	Datasets
	1.9	Contributing with GitHub
	-	Before we start
		Style
	1.11	Diyic
2	Bas	ic tools
_	2.1	Command line tools
	2.2	Makefiles
	2.3	Git and GitHub
	2.0	
3	Pac	kages 19
	3.1	Why?
	3.2	Package structure
	3.3	Building steps
	3.4	Create an R package
	3.5	R packages on GitHub
	3.6	RStudio projects
	3.7	Package workflow example
	3.8	Unit testing
	3.9	Continuous integration
		Code coverage
		Back to GitHub
	3.12	Vignettes
4	Opt	imization 43
	4.1	Measuring performance
	4.2	Improving performance
	7.2	improving performance
5	Dat	rabases 4'
	5.1	Overview
	5.2	SQL
	5.3	noSQL
	5.4	R interfaces 4'

4 CONTENTS

6	Big data	49
	6.1 Reading big data (that fits in memory)	49
	6.2 Sampling (can be read, not analyzed easily)	49
	6.3 Pure R solutions	49
	6.4 JVM solutions	49
7	Visualization	51
	7.1 Principles of visualization	51
	7.2 Maps and GIS	51

Chapter 1

Introduction

1.1 Logistics

- Fall 2 course
- Tuesday and Wednesday, 11:30am-1pm
- Contact info: cchoirat@iq.harvard.edu. Please use BST232 in the email title.
- TA's: Qian Di (qiandi@mail.harvard.edu) and Ben Sabath (mbsabath@hsph.harvard.edu)
- Office hours: TBD
- Course GitHub repository https://github.com/cchoirat/bigdata17
- Open file in folder _book/index.html

1.2 Prerequisites

For BST262 (Computing for Big Data), we assume familiarity with the material covered in BST260 (Introduction to Data Science).

We will use R to present concepts that are mostly language-agnostic. We could have used Python, as in BST261 (Data Science II).

1.3 Rationale

- 1. Available data grows at a much faster rate than available computing capacity.
- 2. Statistical software programs such as R were not designed to handle datasets of massive size.

1.4 Big data bottlenecks

As described by Lim and Tjhi (2015), there are three bottlenecks:

- CPU
- RAM
- I/O

Exercise 1.1. Can you identify points 1–7 in the following code snippet?

Figure 1.1: Steps to execute an R program, from @Lim2015, Chapter 1.

1.5. SYLLABUS 7

```
data <- read.csv("mydata.csv")
totals <- colSums(data)
write.csv(totals, "totals.csv")</pre>
```

1.5 Syllabus

Part I – Good code still matters (even with lots of computing resources)

Week 1 - Basic tools

- Lecture 1. Unix scripting, make
- Lecture 2. Version control: Git and GitHub (guest lecture: Ista Zhan)

Week 2 - Creating and maintaining R packages

- Lecture 3. Rationale, package structure, available tools
- Lecture 4. Basics of software engineering: unit testing, code coverage, continuous integration

Week 3 - Software optimization

- Lecture 5. Measuring performance: profiling and benchmarking tools
- Lecture 6. Improving performance: an introduction to C/C++, Rcpp

Part II – Scaling up (don't use big data tools for small data)

Week 4 – Databases

- Lecture 7. Overview of SQL (SQLite, PostgreSQL) and noSQL databases (HBase, MongoDB, Cassandra, BigTable, ...)
- Lecture 8. R database interfaces (in particular through dplyr)

Week 5 - Analyzing data that does not fit in memory

- Lecture 9. Pure R solutions (sampling, ff and bigmemory, other interpreters). JVM solutions (h20, Spark)
- Lecture 10. An introduction to parallel computing; clusters and cloud computing. "Divide and Conquer" (MapReduce approaches)

Week 6 - Visualization

- Lecture 11. Principles of visualization (guest lecture: James Honaker)
- Lecture 12. Maps and GIS: principles of GIS, using R as a GIS, PostGIS

Weeks 7 & 8 - Guest lectures (order and precise schedule TBD)

- Software project management (Danny Brooke)
- R and Spark (Ellen Kraffmiller and Robert Treacy)
- Advanced GIS and remote sensing (TBD)
- Cluster architecture (William J. Horka)

1.6 Evaluation

Grades will be based on **two mandatory problem sets**. Each problem set will correspond to 50% (= 50 points) of the final grade. The first problem set will be available by the end of week 3 and the second problem set by the end of week 6.

You will be required to submit problem set solutions within two weeks. Grades, and feedback when appropriate, will be returned two weeks after submission.

You will submit a markdown document that combines commented code for data analysis and detailed and structured explanations of the algorithms and software tools that you used.

1.7 Software tools and packages

We will mostly use R in this course. Some examples will be run in Python.

In general, we will use free and open-source software programs such as PostgreSQL / PostGIS or Spark.

1.8 Datasets

We have collected datasets to illustrate concepts. They are hosted on a Dropbox folder.

1.8.1 MovieLens

MovieLens by Harper and Konstan (2015, https://grouplens.org/datasets/movielens/) collects datasets from the website https://movielens.org/.

There are datasets of different sizes. We will use:

- 1. Small (1MB): https://grouplens.org/datasets/movielens/latest/
- 2. Benchmark (~190MB zipped): https://grouplens.org/datasets/movielens/20m/

1.8.2 Airlines data

The airlines dataset comes from the U.S. Department of Transportation and were used in the 2009 Data Expo of the American Statistical Association (ASA).

We will use a version curated by h2o: https://github.com/h2oai/h2o-2/wiki/Hacking-Airline-DataSet-with-H2O.

1.8.3 Insurance claims

Claims data contain Protected Health Information (PHI). There are strong privacy restrictions to store, use and share this type of data.

We will use synthetic data (Sample 1) from the Centers for Medicare and Medicaid Services (CMS).

1.8.4 Census

Census data is commonly merged with administrative claims data such as Medicare. We will use data from the Census Bureau.

1.8.5 PM_{2.5} exposure

We will use PM_{2.5} exposure data from the EPA Air Quality System (AQS) to illustrate GIS linkage concepts.

1.8.6 Methylation

If there is enough interest, we might present methylation examples.

1.9 Contributing with GitHub

If you have suggestions, you can open a GitHub issue at https://github.com/cchoirat/bigdata17/issues. If you want to contribute, we welcome pull requests.

1.10 Before we start...

How much R do you know?

Introduction to R: http://tutorials.iq.harvard.edu/R/Rintro/Rintro.html

Regression models in R: http://tutorials.iq.harvard.edu/R/Rstatistics/Rstatistics.html

R graphics: http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html

R programming: http://tutorials.iq.harvard.edu/R/RProgramming/Rprogramming.html

1.11 Style

Reading: http://adv-r.had.co.nz/Style.html

Chapter 2

Basic tools

In this Chapter, we present basic tools that will be important when interacting with big data systems: the command-line interface (CLI) in a Unix shell and several utilities (less, awk, vi and make).

2.1 Command line tools

We assume some familiarity with the Unix shell, for example as in http://swcarpentry.github.io/shell-novice/.

We also assume that you have access to a shell, either because you use Linux or OS X or because you have the right tools on Windows (for example Cygwin or the Bash shell in Windows 10).

2.1.1 Why use the command line?

- Batch processing
- Cluster and cloud computing

2.1.2 Basic Unix tools

2.1.3 Useful tools

2.1.3.1 less

less is a pager that lets you view one page at a time files that can be very large.

File DE1_0_2008_to_2010_Carrier_Claims_Sample_1A.csv in Data17/SyntheticMedicare is 1.2GB. Even if we have enough RAM to process the data, less helps get a very quick sense of the data (variable names, separators, etc.)

2.1.3.2 awk

awk is a text-processing programming language available on most Unix systems. It can be used for data extraction.

2.1.3.3 vi

vi is a screen-based text editor available on almost all Unix systems. Most versions are actually Vim (that stands for "Vi IMproved").

There are many cheat sheets and tutorials available on-line (for example, the interactive http://www.openvim.com/). I invite you to learn basics vi commands.

2.1.4 Example

Let's apply some of the techniques described in Blackwell and Sen (2012) on Fisher's Iris data set saved in tab-delimited format. Of course, it is a small dataset easily processed with R:

```
iris <- read.table("~/Dropbox/Data17/iris/iris.tab")</pre>
head(iris, n = 5)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                           3.5
                                         1.4
                                                      0.2 setosa
## 2
               4.9
                           3.0
                                         1.4
                                                      0.2
                                                           setosa
## 3
               4.7
                           3.2
                                         1.3
                                                      0.2 setosa
## 4
               4.6
                           3.1
                                         1.5
                                                      0.2 setosa
## 5
              5.0
                           3.6
                                         1.4
                                                      0.2 setosa
```

In a shell, we can use: head -n 6 ~/Dropbox/Data17/iris/iris.tab

```
## "Sepal.Length"
                    "Sepal.Width"
                                     "Petal.Length"
                                                     "Petal.Width"
                                                                      "Species"
## "1"
       5.1 3.5 1.4 0.2 "setosa"
## "2"
        4.9 3
              1.4 0.2 "setosa"
## "3"
        4.7 3.2 1.3 0.2 "setosa"
## "4"
        4.6 3.1 1.5 0.2 "setosa"
            3.6 1.4 0.2 "setosa"
## "5"
```

Suppose we only need to select two variables in our model, Sepal.Length and Species. In R, we can use:

```
iris_subset <- iris[, c("Sepal.Length", "Species")]</pre>
```

or

```
iris_subset <- iris[, c(1, 5)]
head(iris_subset)</pre>
```

```
## Sepal.Length Species
## 1 5.1 setosa
## 2 4.9 setosa
## 3 4.7 setosa
## 4 4.6 setosa
## 5 5.0 setosa
## 6 5.4 setosa
```

With the tidyverse, we can use *pipes*. The %>% operator allows for performing chained operations.

```
suppressMessages(library(dplyr))
iris %>%
  select(1, 5) %>%
  head()
```

2.2. MAKEFILES 13

```
Sepal.Length Species
##
## 1
              5.1 setosa
## 2
              4.9
                   setosa
## 3
              4.7
                   setosa
## 4
              4.6
                   setosa
## 5
              5.0
                   setosa
## 6
              5.4
                   setosa
```

In a shell, the pipe operator to combine shell commands is | and we can use:

```
cut -f 1,5 ~/Dropbox/Data17/iris/iris.tab | head -n 7
```

```
## "Sepal.Length" "Species"

## "1" 0.2

## "2" 0.2

## "3" 0.2

## "4" 0.2

## "5" 0.2

## "6" 0.4
```

To keep observations with "Sepal.Length" greater than 5:

```
iris %>%
  filter(Sepal.Length > 5) %>%
  head()
```

```
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
                                                       0.2 setosa
               5.1
                            3.5
                                          1.4
## 2
                            3.9
               5.4
                                          1.7
                                                       0.4
                                                            setosa
## 3
               5.4
                            3.7
                                                       0.2
                                          1.5
                                                            setosa
               5.8
                            4.0
                                                       0.2
## 4
                                          1.2
                                                            setosa
                                                       0.4
## 5
               5.7
                            4.4
                                          1.5
                                                            setosa
## 6
               5.4
                            3.9
                                          1.3
                                                       0.4
                                                           setosa
```

In the shell, we can use the AWK programming language. We start from row NR 2 (we could start from row 1, it contains variable names) and select rows such that the second variable (Sepal.Length) is greater than 5.

```
awk 'NR == 2 || $2 > 5' ~/Dropbox/Data17/iris/iris.tab | head
```

```
## "1" 5.1 3.5 1.4 0.2 "setosa" ## "6" 5.4 3.9 1.7 0.4 "setosa" ## "11" 5.4 3.7 1.5 0.2 "setosa" ## "15" 5.8 4 1.2 0.2 "setosa" ## "16" 5.7 4.4 1.5 0.4 "setosa" ## "17" 5.4 3.9 1.3 0.4 "setosa" ## "18" 5.1 3.5 1.4 0.3 "setosa" ## "19" 5.7 3.8 1.7 0.3 "setosa" ## "20" 5.1 3.8 1.5 0.3 "setosa" ## "21" 5.4 3.4 1.7 0.2 "setosa"
```

Exercise 2.1. The iris dataset is also saved in .csv format at ~/Dropbox/Data17/iris/iris.csv. Use AWK and tail to select the last 5 observations where Sepal.Width is larger than 3.5 and Petal.Length is smaller than 1.5.

2.2 Makefiles

make is a tool that helps put all the (interdependent) pieces of an analytic workflow together:

- data retrieving
- data cleaning
- analysis
- graphs
- reports
- ...

2.2.1 Simulate data in R

```
File simulate_data.R
```

```
head(data.frame(Y = Y, X1 = X1, X2 = X2))
```

```
## Y X1 X2

## 1 88.74430 46 11

## 2 125.77081 58 11

## 3 70.76396 38 10

## 4 110.32157 50 10

## 5 145.79546 62 11

## 6 109.45403 53 11
```

2.2.2 Create a plot in Python

```
File create_graph.py
import pandas as pd
import matplotlib.pyplot as plt

sim_data = pd.read_csv("sample_data.csv")

plt.figure()
sim_data.plot()
plt.savefig("plot.pdf", format = "pdf")
```

2.2. MAKEFILES 15

2.2.3 Run statistical model in R

We can estimate the model with R:

```
sim_data <- read.csv("sample_data.csv")</pre>
summary(lm(Y ~ X1 + X2, data = sim_data))
##
## Call:
## lm(formula = Y ~ X1 + X2, data = sim_data)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -8.3988 -1.9452 -0.0261 2.0216 9.1066
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.09087
                           2.54667
                                      3.57 0.000374 ***
## X1
               3.00531
                           0.01326
                                    226.68 < 2e-16 ***
## X2
               -4.94658
                           0.22876
                                   -21.62
                                           < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 2.936 on 997 degrees of freedom
## Multiple R-squared: 0.9811, Adjusted R-squared: 0.981
## F-statistic: 2.585e+04 on 2 and 997 DF, p-value: < 2.2e-16</pre>
```

2.2.4 Run statistical model in R

To save the output, we use the sink function.

File estimate_model.R

```
sink("estimation_summary.txt")
summary(lm(Y ~ X1 + X2, data = sim_data))
sink()
```

2.2.5 Makefile syntax

- make is a command that runs on a text file often named Makefile.
- A Makefile contains one or several blocks with the following structure:

```
targetfile: sourcefile(s)
[tab] command
```

2.2.6 Naive version

```
File: Makefile

sample_data.csv: simulate_data.R

R CMD BATCH simulate_data.R

plot.pdf: create_graph.py

python create_graph.py

estimation_summary.txt: estimate_model.R

R CMD BATCH estimate_model.R
```

A simple call to make only builds the first target (sample_data.csv). To build the other targets, we have to use: make plot.pdf and make estimation_summary.txt.

2.2.7 Making all targets

```
File: Makefile
all: analysis
analysis: sample_data.csv plot.pdf estimation_summary.txt
sample_data.csv: simulate_data.R
R CMD BATCH simulate_data.R

plot.pdf: create_graph.py
    python create_graph.py
estimation_summary.txt: estimate_model.R
```

2.3. GIT AND GITHUB

```
R CMD BATCH estimate_model.R
```

New data is simulated and saved in sample_data.csv. But plot.pdf and estimation_summary.txt are not updated.

2.2.8 Dealing with dependencies

• Problem plot.pdf and estimation_summary.txt depend on sample_data.csv.

• Solution: explicit dependencies.

```
File: Makefile

all: analysis

analysis: sample_data.csv plot.pdf estimation_summary.txt

sample_data.csv: simulate_data.R

R CMD BATCH simulate_data.R

plot.pdf: sample_data.csv create_graph.py

python create_graph.py

estimation_summary.txt: sample_data.csv estimate_model.R

R CMD BATCH estimate_model.R
```

2.3 Git and GitHub

Guest lecture by Ista Zahn.

Chapter 3

Packages

We strongly recommand Wickham (2015).

We assume the following packages are installed:

```
install.packages(c("devtools", "roxygen2", "testthat", "knitr"))
```

3.1 Why?

- Organize your code
- Distribute your code
- Keep versions of your code

3.2 Package structure

- Folder hierarchy
 - NAMESPACE: package import / export
 - DESCRIPTION: metadata
 - R/: R code
 - man/: object documentation (with short examples)
 - tests/
 - data/
 - src/: compiled code
 - vignettes/: manual-like documentation
 - inst/: installed files
 - demo/: longer examples
 - exec, po, tools

3.3 Building steps

- R CMD build
- R CMD INSTALL
- R CMD check

3.3.1 R CMD build

```
R CMD build --help
```

Build R packages from package sources in the directories specified by 'pkgdirs'

3.3.2 R CMD INSTALL

```
R CMD INSTALL --help
```

Install the add-on packages specified by pkgs. The elements of pkgs can be relative or absolute paths to directories with the package sources, or to gzipped package 'tar' archives. The library tree to install to can be specified via '-library'. By default, packages are installed in the library tree rooted at the first directory in .libPaths() for an R session run in the current environment.

3.3.3 R CMD check

```
R CMD check --help
```

http://r-pkgs.had.co.nz/check.html

Check R packages from package sources, which can be directories or package 'tar' archives with extension 'tar.gz', 'tar.bz2', 'tar.xz' or 'tgz'.

A variety of diagnostic checks on directory structure, index and control files are performed. The package is installed into the log directory and production of the package PDF manual is tested. All examples and tests provided by the package are tested to see if they run successfully. By default code in the vignettes is tested, as is re-building the vignette PDFs.

3.3.4 Building steps with devtools

• devtools::build

• devtools::install

• devtools::check

• and many others: load_all, document, test, run_examples, ...

3.4 Create an R package

3.4.1 utils::package.skeleton

```
package.skeleton() # "in "clean" session ("anRpackage")
package.skeleton("pkgname") # in "clean" session

set.seed(02138)
f <- function(x, y) x+y
g <- function(x, y) x-y
d <- data.frame(a = 1, b = 2)</pre>
```


Figure 3.1: Submitting to CRAN. It's not that bad...

```
e <- rnorm(1000)
package.skeleton(list = c("f", "g", "d", "e"), name = "pkgname")</pre>
```

3.4.2 devtools::create

```
devtools::create("path/to/package/pkgname")
```

3.4.3 Submit to CRAN

Reading: http://r-pkgs.had.co.nz/release.html

3.5 R packages on GitHub

Reading: http://r-pkgs.had.co.nz/git.html

- Version control
- Website, wiki, project management
- Easy install: install_github from devtools
- Collaboration
- Issue tracking

3.5.0.1 RStudio and GitHub integration

Command line

```
# git init # already run when creating package with RStudio
git add *
git commit -m "First commit"
git remote add origin https://github.com/cchoirat/Linreg
git push -u origin master
```

3.5.1 .gitignore

RStudio default

Create a new repository

A repository contains all the files for your project, including the revision history.

Figure 3.2: Create a new Linreg repository on GitHub

Figure 3.3: Create a new project in RStudio

Figure 3.4: Select R package

Figure 3.5: Create the Linreg R package as a Git repository

Figure 3.6: Automatically created files

Figure 3.7: Build tab in RStudio

Figure 3.8: Github webpage

Figure 3.9: Open a terminal

Figure 3.10: Github webpage is updated

```
.Rproj.user
.Rhistory
.RData

GitHub default

# History files
.Rhistory
.Rapp.history

# Example code in package build process
*-Ex.R

# RStudio files
.Rproj.user/

# produced vignettes
vignettes/*.html
vignettes/*.pdf
```

3.6 RStudio projects

- .Rproj file extension, in our example pkgtemplate.Rproj
- A project has its own:

- R session
- Rprofile (e.g., to customize startup environment)
- .Rhistory
- Default working directory is project directory
- Keeps track of project-specific recent files

3.6.1 Project options

```
Version: 1.0

RestoreWorkspace: Default
SaveWorkspace: Default
AlwaysSaveHistory: Default

EnableCodeIndexing: Yes
UseSpacesForTab: Yes
NumSpacesForTab: 2
Encoding: UTF-8

RnwWeave: knitr
LaTeX: pdfLaTeX

AutoAppendNewline: Yes
StripTrailingWhitespace: Yes

BuildType: Package
PackageUseDevtools: Yes
PackageInstallArgs: --no-multiarch --with-keep.source
```

3.6.2 Package documentation

- Functions and methods
- Vignettes
 - PDF
 - knitr (or Sweave)

3.7 Package workflow example

Creating R Packages: A Tutorial (Friedrich Leisch, 2009)

• https://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf

3.7.1 Add linreg.R to R/ directory

```
linmodEst <- function(x, y) {
   ## compute QR-decomposition of x
   qx <- qr(x)</pre>
```

```
## compute (x'x)^(-1) x'y
coef <- solve.qr(qx, y)
## degrees of freedom and standard deviation of residuals
df <- nrow(x) - ncol(x)
sigma2 <- sum((y - x %*% coef) ^ 2) / df
## compute sigma^2 * (x'x)^-1
vcov <- sigma2 * chol2inv(qx$qr)
colnames(vcov) <- rownames(vcov) <- colnames(x)
list(
   coefficients = coef,
   vcov = vcov,
   sigma = sqrt(sigma2),
   df = df
)</pre>
```

3.7.2 Run our function

```
data(cats, package = "MASS")
linmodEst(cbind(1, cats$Bwt), cats$Hwt)
## $coefficients
## [1] -0.3566624 4.0340627
##
## $vcov
##
                           [,2]
              [,1]
## [1,] 0.4792475 -0.17058197
## [2,] -0.1705820 0.06263081
## $sigma
## [1] 1.452373
##
## $df
## [1] 142
We can compare the output with 1m.
lm1 <- lm(Hwt ~ Bwt, data = cats)</pre>
lm1
##
## lm(formula = Hwt ~ Bwt, data = cats)
## Coefficients:
## (Intercept)
                        Bwt
       -0.3567
                     4.0341
coef(lm1)
## (Intercept)
                       Bwt
## -0.3566624 4.0340627
vcov(lm1)
```

```
## (Intercept) Bwt
## (Intercept) 0.4792475 -0.17058197
## Bwt -0.1705820 0.06263081

summary(lm1)$sigma

## [1] 1.452373
```

3.7.3 Add ROxygen2 documentation

```
#' Linear regression
#'
#' Runs an OLS regression not unlike \code{\link{lm}}}
#' @param y response vector (1 x n)
#' @param X covariate matrix (p x n) with no intercept
#' Oreturn A list with 4 elements: coefficients, vcov, sigma, df
#'
#' @examples
#' data(mtcars)
#' X <- as.matrix(mtcars[, c("cyl", "disp", "hp")])
#' y <- mtcars[, "mpg"]
\#' linreg(y, X)
#'
#' @export
linmodEst <- function(x, y) {</pre>
  ## compute QR-decomposition of x
  qx \leftarrow qr(x)
  ## compute (x'x)^{(-1)} x'y
  coef <- solve.qr(qx, y)</pre>
  ## degrees of freedom and standard deviation of residuals
  df \leftarrow nrow(x) - ncol(x)
  sigma2 \leftarrow sum((y - x %*% coef)^2) / df
  ## compute sigma^2 * (x'x)^{-1}
  vcov <- sigma2 * chol2inv(qx$qr)</pre>
  colnames(vcov) <- rownames(vcov) <- colnames(x)</pre>
  list(
    coefficients = coef,
    vcov = vcov,
    sigma = sqrt(sigma2),
    df = df
  )
}
```

3.7.4 Configure Build Tools

3.7.5 man page

File 'man/linmodEst.Rd contains:

Figure 3.11: Roxygen options

```
\% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/linreg.R
\name{linmodEst}
\alias{linmodEst}
\title{Linear regression}
\usage{
linmodEst(x, y)
\arguments{
\item{y}{response vector (1 x n)}
\item{X}{covariate matrix (p x n) with no intercept}
}
\value{
A list with 4 elements: coefficients, vcov, sigma, df
}
\description{
Runs an OLS regression not unlike \code{\link{lm}}
}
\examples{
data(mtcars)
X <- as.matrix(mtcars[, c("cyl", "disp", "hp")])</pre>
y <- mtcars[, "mpg"]
linreg(y, X)
```

3.7.6 Formatted output

3.7.7 DESCRIPTION

```
Package: Linreg
Type: Package
Title: What the Package Does (Title Case)
Version: 0.1.0
Author: Who wrote it
Maintainer: The package maintainer <yourself@somewhere.net>
Description: More about what it does (maybe more than one line)
Use four spaces when indenting paragraphs within the Description.
License: What license is it under?
Encoding: UTF-8
LazyData: true
RoxygenNote: 6.0.1
```

3.7.8 NAMESPACE

export's automatically generated when parsing ROxygen2 snippets

```
export(linmodEst)
```

3.7.9 S3 basics

```
Reading: http://adv-r.had.co.nz/S3.html
```

```
hello <- function() {
    s <- "Hello World!"
    class(s) <- "hi"
    return(s)
}
hello()

## [1] "Hello World!"
## attr(,"class")
## [1] "hi"
print.hi <- function(...) {
    print("Surprise!")
}
hello()</pre>
## [1] "Surprise!"
```

3.7.10 S3 and S4 generics

```
Reading: http://adv-r.had.co.nz/S4.html
```

```
linmod <- function(x, ...)
UseMethod("linmod")</pre>
```

linmodEst {Linreg}

Linear regression

Description

Runs an OLS regression not unlike 1m

Usage

```
linmodEst(x, y)
```

Arguments

- y response vector (1 x n)
- x covariate matrix (p x n) with no intercept

Value

A list with 4 elements: coefficients, vcov, sigma, df

Examples

```
data(mtcars)
X <- as.matrix(mtcars[, c("cyl", "disp", "hp")])
y <- mtcars[, "mpg"]
linreg(y, X)</pre>
```

```
linmod.default <- function(x, y, ...) {
  x <- as.matrix(x)
  y <- as.numeric(y)
  est <- linmodEst(x, y)
  est$fitted.values <- as.vector(x %*% est$coefficients)
  est$residuals <- y - est$fitted.values
  est$call <- match.call()
  class(est) <- "linmod"
  return(est)
}</pre>
```

3.7.11 print

```
print.linmod <- function(x, ...) {</pre>
  cat("Call:\n")
  print(x$call)
  cat("\nCoefficients:\n")
  print(x$coefficients)
x <- cbind(Const = 1, Bwt = cats$Bwt)
y <- cats$Hw
mod1 <- linmod(x, y)</pre>
mod1
## Call:
## linmod.default(x = x, y = y)
##
## Coefficients:
##
        Const
## -0.3566624 4.0340627
```

3.7.12 Other methods

- summary.linmod
- print.summary.linmod
- predict.linmod
- plot.linmod
- coef.linmod, vcov.linmod, ...

3.7.13 Formulas and model frames

```
linmod.formula <- function(formula, data = list(), ...) {
  mf <- model.frame(formula = formula, data = data)
  x <- model.matrix(attr(mf, "terms"), data = mf)
  y <- model.response(mf)
  est <- linmod.default(x, y, ...)
  est$call <- match.call()</pre>
```

```
est$formula <- formula
  return(est)
}
linmod(Hwt ~ - 1 + Bwt * Sex, data = cats)

Call:
linmod.formula(formula = Hwt ~ -1 + Bwt * Sex, data = cats)

Coefficients:
    Bwt    SexF    SexM    Bwt:SexM
2.636414    2.981312 -1.184088    1.676265</pre>
```

3.8 Unit testing

3.8.1 Unit tests and testthat

Reading: http://r-pkgs.had.co.nz/tests.html

In package directory:

```
devtools::use_testthat()
```

pre-populates test/testthat/

Test files should start with test to be processed.

3.8.2 test_coef.R

3.9 Continuous integration

Reading: http://r-pkgs.had.co.nz/check.html#travis

Website: https://travis-ci.org/

First step is to create a Travis account and link it to you GitHub account.

Travis will list all your public GitHub repositories for you to select the ones you want to test.

We're only showing your public repositories. You can find your private projects on travis-ci.com.

cchoirat/Linreg

Calling

cache: packages

devtools::use_coverage(pkg = ".", type = c("codecov")) creates the .travis.yml file: # R for travis: see documentation at https://docs.travis-ci.com/user/languages/r language: R sudo: false

and pushing Linreg code to GitHub will automatically triggers a Travis build... which fails!

No repositories covered yet.

Add a repository

To be continued...

3.10 Code coverage

 $Reading:\ https://walczak.org/2017/06/how-to-add-code-coverage-codecov-to-your-r-package/linea$

Website: https://codecov.io/

Like Travis, codecov has to be linked to a GitHub account:

```
devtools::use_coverage(pkg = ".", type = c("codecov"))
```

creates the codecov.yml file:

comment: false

A call to

```
covr::codecov(token = "YOUR_TOKEN")
```

will give you code coverage information:

3.11. BACK TO GITHUB

3.11 Back to GitHub

Badges can be added to README.md:

```
<!--- Badges ---->
[![Travis (LINUX) Build Status](https://travis-ci.org/cchoirat/Linreg.svg?branch=master)](https://travi
[![codecov](https://codecov.io/gh/cchoirat/Linreg/branch/master/graph/badge.svg)](https://codecov.io/gh
## `Linreg` package template

Based on "Creating R Packages: A Tutorial" (Friedrich Leisch, 2009)

- https://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf
```

are are automatically displayed on GitHub:

3.12 Vignettes

Reading: http://r-pkgs.had.co.nz/vignettes.html

Reading: http://kbroman.org/pkg_primer/pages/vignettes.html

Even if all the functions and datasets of your package are documented, it is still useful to have a more detailed illustration on how to use your package. A *vignette* is the right place to explain a worflow and a statistical method.

Running:

```
devtools::use_vignette("my-linear-regression")
```

creates a vignettes folder and provide a template in RMarkdown format my-linear-regression.Rmd:

https://github.com/cchoirat/Linreg/blob/master/vignettes/my-linear-regression.Rmd

It also indicates in DESCRIPTION that vignettes should be built with knitr.

VignetteBuilder: knitr

The vignette is built into a HTML document with

```
devtools::build_vignettes()

Building Linreg vignettes
Moving my-linear-regression.html, my-linear-regression.R to inst/doc/
Copying my-linear-regression.Rmd to inst/doc/
```

The vignette is accessible with

```
vignette("my-linear-regression")
vignette("my-linear-regression", package = "Linreg")
```

3.12. VIGNETTES 41

Vignette Title

Vignette Author

2017-10-21

Vignettes are long form documentation commonly included in packages. Because they are part of the distribution of the package, they need to be as compact as possible. The html_vignette output type provides a custom style sheet (and tweaks some options) to ensure that the resulting html is as small as possible. The html_vignette format:

- · Never uses retina figures
- · Has a smaller default figure size
- Uses a custom CSS stylesheet instead of the default Twitter Bootstrap style

Vignette Info

Note the various macros within the vignette section of the metadata block above. These are required in order to instruct R how to build the vignette. Note that you should change the title field and the \VignetteIndexEntry to match the title of your vignette.

Styles

The html_vignette template includes a basic CSS theme. To override this theme you can specify your own CSS in the document metadata as follows:

output:

rmarkdown::html_vignette:
 css: mystyles.css

Optimization

In this Chapter, we will see how to measure and improve code performance.

4.1 Measuring performance

4.1.1 Benchmarking

Reading: http://adv-r.had.co.nz/Performance.html#microbenchmarking

There are several ways to benchmark code (see http://www.alexejgossmann.com/benchmarking_r/) from system.time to dedicated packages such as rbenchmark (Kusnierczyk (2012)) or microbenchmark (Mersmann (2015)).

Let's start with an example from Wickham (2014).

```
library(microbenchmark)
m <- microbenchmark(
  times = 1000, # default is 100

"[32, 11]" = mtcars[32, 11],

"$carb[32]" = mtcars$carb[32],

"[[c(11, 32)]]" = mtcars[[c(11, 32)]],

"[[11]][32]" = mtcars[[11]][32],

".subset2" = .subset2(mtcars, 11)[32]
)</pre>
```

```
## Unit: nanoseconds
##
             expr min
                           lq
                                   mean median
                                                     uq
                                                           max neval
##
         [32, 11] 8238 9784.0 11252.749 10239.5 10938.0
                                                         96676
                                                                1000
##
        $carb[32] 4503 5912.5 7032.588
                                         6359.5
                                                 6918.0 141933
    [[c(11, 32)]] 3811 4738.0
##
                               5627.458
                                         5051.0
                                                 5531.0
                                                         53596
                                                                1000
       [[11]][32] 3485 4432.5 5115.681
                                         4780.5
                                                 5181.0
                                                         49515
                                                                1000
         .subset2 208 276.0
                                399.835
                                          319.0
                                                  383.5 10175
                                                                1000
ggplot2::autoplot(m)
```


4.1.2 Profiling and optimization

Reading: http://adv-r.had.co.nz/Profiling.html#measure-perf

Let's compare three ways of estimating a linear regression: with built-in 1m and with two functions we defined in package Linreg in Chapter 3.

```
data(cats, package = "MASS")
fit1 <- lm(Hwt ~ Bwt, data = cats)
fit2 <- linmod(Hwt ~ Bwt, data = cats)
fit3 <- linmodEst(cbind(1, cats$Bwt), cats$Hwt)
all.equal(round(coef(fit1), 5), round(coef(fit2), 5))

## [1] TRUE
all.equal(round(coef(fit1), 5), round(fit3$coefficients, 5), check.names = FALSE)

## [1] TRUE

m <- microbenchmark(
    fit1 <- lm(Hwt ~ Bwt, data = cats),
    fit2 <- linmod(Hwt ~ Bwt, data = cats),
    fit3 <- linmodEst(cbind(1, cats$Bwt), cats$Hwt)
    # custom checks can be performed with the 'check' argument
)
m</pre>
```

Unit: microseconds

```
##
                                                        min
                                                                   lq
                                               expr
##
                 fit1 <- lm(Hwt \sim Bwt, data = cats) 653.759 697.4730 797.0769
             fit2 <- linmod(Hwt ~ Bwt, data = cats) 553.394 581.7415 634.2640
##
   fit3 <- linmodEst(cbind(1, cats$Bwt), cats$Hwt) 95.733 114.3665 133.1447
##
                  uq
##
      median
                          max neval
   731.7785 804.206 2322.667
##
   605.9475 665.020 1051.374
                                100
  124.8455 145.184 320.370
                                100
```

ggplot2::autoplot(m)

4.2 Improving performance

- Use different tools (as in Chapter 6)
- Vectorize
- Parallelize
- Use a faster language (C/C++, Fortran,)

4.2.1 Introduction to C/C++

Reading:

4.2.2 Rcpp

Reading: http://adv-r.had.co.nz/Rcpp.html

Databases

- 5.1 Overview
- 5.2 SQL
- 5.3 noSQL
- 5.4 R interfaces

Big data

In this Chapter, we are going to review different approaches to handle and perform analyses on data that does not fit in memory.

- 6.1 Reading big data (that fits in memory)
- 6.1.1 R package comparison
- 6.1.2 Python
- 6.2 Sampling (can be read, not analyzed easily)
- 6.3 Pure R solutions
- 6.4 JVM solutions
- 6.4.1 h20
- **6.4.2** Spark

Visualization

- 7.1 Principles of visualization
- 7.2 Maps and GIS

Bibliography

Blackwell, M. and Sen, M. (2012). Large datasets and you: A field guide. *The Political Methodologist*, 20(1):2–5.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context. *ACM Trans. Interact. Intell. Syst.*, 5(4):19:1–19:19.

Kusnierczyk, W. (2012). rbenchmark: Benchmarking routine for R. R package version 1.0.0.

Lim, A. and Tjhi, W. (2015). R High Performance Programming. Community experience distilled. Packt Publishing.

Mersmann, O. (2015). microbenchmark: Accurate Timing Functions. R package version 1.4-2.1.

Wickham, H. (2014). Advanced R. Chapman & Hall/CRC The R Series. Taylor & Francis.

Wickham, H. (2015). R Packages. O'Reilly Media, Inc., 1st edition.