$$\begin{split} R_5.I_A + R_2(I_A-I_c) + R_1(I_A-I_B) &= 0 \quad \rightarrow I_A \text{ qevres } i \\ -V_1 + R_1(I_B-I_A) + R_3(I_B-I_c) &= 0 \quad \rightarrow I_B \text{ qevres } i \\ R_2(I_c-I_A) + R_4.I_c + R_3(I_c-I_B) &= 0 \quad \rightarrow I_C \text{ qevres } i \end{split}$$

$I_1 = I_A$	$I_A = I_1$
$I_2 = I_G - I_A$	$I_{\mathcal{B}} = I_{n} + I_{n}$
$I_3 = I_c - I_A$	$I_c = I_5$
$I_{\zeta} = I_{\beta} - I_{\zeta}$	- 2 -5
$I_5 = I_c$	

I, (mA)	Iz (mA)	I3(nA)	I4(mA)	Is (mA)
8,45	16,2	1,85	14,4	10,3

R ₁ V _A I ₃ R ₂	VA dogumo ish:
TV1 PR3 TV2	I1+I2+I3=0
	$\frac{V_{A}-V_{1}}{R_{1}}+\frac{V_{A}}{R_{2}}+\frac{V_{A}-V_{2}}{R_{3}}=0$
= N ^{cd} =0	R1 R2 R3

I ₁ (A)	I_(A)	I, (A)
2	1	1