Diskretka 2

October 19, 2020

1 Definice

Nejprve si zadefingujeme inverzi pro relaci R na množině X. $R^{-1} = \{(y,x) | (x,y) \in R\}$

1.1 Reflexivita

Pro každě x z X dokážeme, že platí $xR^{-1}x$. Kdy platí $xR^{-1}x$? Právě tehdy, když xRx. Protože $\{(x,x)|(x,x)\in R\}$. R je reflexivní $\to(\forall x\in X)(xRx)$. A tedy i $(\forall x\in X)(xR^{-1}x)$. Tím je tvrzení dokázáno.

1.2 Symetrie

Pro každě x,y z X dokážeme, že platí $xR^{-1}y \wedge yR^{-1}x$. Kdy platí $xR^{-1}y$? Právě tehdy, když yRx. Protože $\{(x,y)|(y,x)\in R\}$. Díky symetrii R platí i xRy. A tedy i $yR^{-1}x$. Tím je tvrzení dokázáno.

1.3 Tranzitivita

Pro každě x,y,z z X dokážeme, že platí $(xR^{-1}y \wedge yR^{-1}z) \to xR^{-1}z$. Kdy platí $xR^{-1}y$? Právě tehdy, když yRx. Kdy platí $yR^{-1}z$? Právě tehdy, když zRy. Díky tranzitivitě R platí i zRx. A tedy i $xR^{-1}z$. Tím je tvrzení dokázáno.

1.4 Antisymetrie

Pro každě x,y z X dokážeme, že platí $(xR^{-1}y \wedge yR^{-1}x) \rightarrow x = y$. Kdy platí $xR^{-1}y$? Právě tehdy, když yRx. Kdy platí $yR^{-1}x$? Právě tehdy, když xRy. Díky antireflexivitě R platí x=y. Tím je tvrzení dokázáno.