SZILÁRD TESTEK SŰRŰSÉGÉNEK MÉRÉSE

Mérést végezte : Brindza Mátyás Mérés időpontja : 2020.10.08.

Jegyzőkönyv leadásának időpontja: 2020.10.31.

A mérés célja:

Szilárd testek sűrűségének meghatározása közvetlen úton, illetve a Mohr-Westphal mérleggel.

A közvetlen módszer abból áll, hogy megmérjük a testek tömegét és térfogatát, majd ennek hányadosaként megkapjuk a sűrűségüket.

$$\rho = \frac{m}{V}$$

A Mohr-Westphal mérleg működése a felhajtóerő elvén alapszik. A mérleg segítségével először meghatározzuk a próbatest tömegét, majd a felhajtóerőt kiegyensúlyozó erőket felhasználva meghatározzuk a test térfogatát. Itt megmutatkozik a Mohr-Westphal mérleg előnye, ami az, hogy a test térfogatát nem geometriai paraméterek alapján határozzuk meg - azaz amorf testek térfogata is egyszerűen mérhető. A lovasok G, $0.1 \cdot G$ és $0.01 \cdot G$ súlyt képviselnek, ahol G éppen $10cm^3$, $20^{\circ}C$ -os desztillált víz súlya. A lovasokat különböző vályatokba helyezve a forgatónyomatékok kiejtik egymást. Két vályat közt k távolság van, és a felhajtóerő (F_{fel}) erőkarja $10 \cdot k$ -nak felel meg. Ezekből a forgatónyomatékok egyensúlya:

$$F_{fel} \cdot 10 \cdot k = G \cdot x_1 \cdot k + 0.1 \cdot G \cdot x_{0.1} \cdot k + 0.01 \cdot G \cdot x_{0.01} \cdot k$$

ahol x_n azon lovas poziíciója, melynek súlya n-szerese G-nek. Ebből kifejezhető a felhajtó, mint x-ek függvénye:

$$F_{fel} = \frac{G}{10} \cdot (x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01})$$

Tudjuk, hogy a felhajtóerő egyenlő a kiszorított folyadék súlyával, ami esetünkben a test térfogatának, a víz sűrűségének és a gravitációs térerősségnek a szorzata:

$$F_{fel} = \rho_v \cdot V \cdot q$$

Az előző két egyenletből kifejezgető a test térfogata:

$$V = \frac{G}{10 \cdot q \cdot \rho_v} \cdot (x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01})$$

A test tömegét már ismerve a test sűrűsége az alábbi módon áll elő.

$$\rho = \frac{m}{V} = \frac{10 \cdot g \cdot \rho_v \cdot m}{G} \cdot \frac{1}{x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01}}$$

Mérőeszkzök:

- Tolómérő
- Csavarmikrométer
- Az első méréshez két hasáb és egy henger alakú test
- A második méréshez három henger alakú test

- Mérleg
- Mohr-Westphal mérleg
- Lovasok
- Súlyok

A mérés rövid leírása:

Az első mérés a sűrűség közvetlen módszerrel való megállapítása. Megmérjük a próbatestek tömegét, illetve a szükséges geometriai paramétereket a térfogat kiszámításához. A második mérés a sűrűség Mohr-Westphal mérleggel való megállapítása. A mérleg akkor van egyensúlyban, ha a súlytányéron 20g tömeg van. A próbatestet a súlytányérra helyezve a mérleg nem lesz egyensúlyban, mivel a próbatestek tömege kisebb, mint 20g. Ha asúlytányérra további (ismert) súlyokat helyezünk, ezzel egyensúlyba hozva a mérleget, akkor a próbatest tömege kiszámolható, mint $20g - m_e$, ahol m_e az extra súlyok össztömege. A súlyokat a súlytányéron hagyva áthelyezzük a próbatestet a merülőtányérra, ügyelve arra, hogy a merülőtányér is teljesen a vízfelszín alatt legyen. Így a mérleg újra nem lesz egyensúlyban - ezért a felhajtóerő a felelős. Ennek ellensúlyozására a lovasokat használjuk. A lovasok pozíciója alapján következtethetünk a próbatest térfogatára. Így ezúttal is eljutottunk a próbatest tömegéhez és térfogatához, ami alapján kiszámolható a sűrűség.

Mérési adatok

Jelmagyarázat:

- \bullet d a henger átmérője
- \bullet h a henger magassága
- \bullet a, b, c a hasáb magassága, hossza és szélessége
- m a hengerek és a hasábok tömege
- \bullet Δm a hengerek és a hasábok tömegének mérésekor jelentkező hiba
- \bullet Δx a hengerek és a hasábok paramétereinek méréskor jelentkező hiba

	d [mm]	h [mm]	m [g]
Henger	18.83	16.25	12.28

Δx [mm]	Δm [g]
0.005	0.0250

	a [mm]	b [mm]	c [mm]	m [g]
1. Hasáb	32.04	15.78	121.89	50.75
2. Hasáb	28.82	16.11	15.5	63.55

Δx [mm]	Δm [g]
0.0025	0.025

Minták					Töme	gek [g	3]			
Williak	10	5	2	1	0.5	0.2	0.1	0.05	0.01	Δm
1. Henger	1	1	0	0	0	0	0	0	0	
2. Henger	0	1	0	1	0	0	1	0	0	
3. Henger	0	1	1	1	1	0	1	0	1	

Minták	Lo	vasok pozíd	iói
Williak	Nagy	Köz.	Kicsi
1. Henger	1	8	1
2. Henger	1	5	8
3. Henger	1	4	8

g	9.81	m/s²
Víz-sűrűség	998.23	kg/m³

Hibaforrások

- 1. A mérőműszerek (hossz és tömeg) pontatlansága
- 2. Leolvasási hiba, illetve nem tudjuk teljesen pontosan megállapítani, mikor van egyensúlyban a mérleg
- 3. A víz nem tökéletesen desztillált, nem 20°C-os, és buborékok tapadhatnak a bemerített testre

Kiértékelés

Először a közvetlen mérési módszerrel gyűjtött adatokat dolgozzuk fel. Az itt vizsgált henger térfogata

$$V_H = \left(\frac{d}{2}\right)^2 \cdot \pi \cdot h = 4288.1323 \cdot 10^{-9} m^3 = 4.2881323 \cdot 10^{-6} m^3$$

és tömege

$$m_H = 12.28 \cdot 10^{-3} kg$$

A henger sűrűsége így : $\rho_H=m_H/V_h=2863.7176\frac{kg}{m^3}$ Számítsuk ki az első és a második hasáb sűrűségét is, azaz ρ_{h1} -et és ρ_{h2} -t.

$$\rho_{h1} = \frac{m_{h1}}{a_{h1} \cdot b_{h1} \cdot c_{h1}} = 823.5092 \frac{kg}{m^3}$$

$$\rho_{h2} = \frac{m_{h2}}{a_{h2} \cdot b_{h2} \cdot c_{h2}} = 8830.6839 \frac{kg}{m^3}$$

Térjünk rá a Mohr-Westphal mérleggel gyűjtött adatokra. Első lépésként vegyőük észre, hogy egyszerűsíthetünk a fenti kifejezésen.

$$\rho = \frac{m}{V} = \frac{10 \cdot g \cdot \rho_v}{G} \cdot \frac{1}{x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01}}$$

ahol

$$g = 9.81 \frac{m}{s^2}$$

$$\rho_v = 998.26 \frac{kg}{m^3}$$
$$G = 20 \cdot 10^{-6} m^3 \cdot \rho_v \cdot g$$

Így

$$\rho = \frac{10 \cdot g \cdot \rho_v \cdot m_H}{G} \cdot \frac{1}{x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01}} = \frac{10 \cdot g \cdot \rho_v \cdot m_H}{20 \cdot 10^{-6} m^3 \cdot \rho_v \cdot g} \cdot \frac{1}{x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01}}$$

$$\rho = 5 \cdot 10^5 \cdot m_H \frac{1}{m^3} \cdot \frac{1}{x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01}}$$

Számoljuk ki a hengerek tömegét és a $K = x_1 + 0.1 \cdot x_{0.1} + 0.01 \cdot x_{0.01}$ mennyiségeket, majd ezek segítségével a hengerek sűrűségét. A sűrűségre vonatkozó képlet kompaktabb alakja:

 $\rho_i = 5 \cdot 10^5 \cdot m_{Hi} \frac{1}{m^3} \cdot \frac{1}{K_i}$

Minták		Tömegek [g]					m [a]	m [a]			
Wiintak	10	5	2	1	0.5	0.2	0.1	0.05	0.01	m [8]	m _н [g]
1. Henger	1	1	0	0	0	0	0	0	0	15	5
2. Henger	0	1	0	1	0	0	1	0	0	6.1	13.9
3. Henger	0	1	1	1	1	0	1	0	1	8.61	11.39

$$m_{H1} = 0.005kg$$

 $m_{H2} = 0.0139kg$
 $m_{H3} = 0.01139kg$

Minták	Lo	vasok pozíd	V	
Williak	Nagy	Köz.	Kicsi	Ι,
1. Henger	1	8	1	1.81
2. Henger	1	5	8	1.58
3. Henger	1	4	8	1.48

$$K_1 = 1.81$$

 $K_1 = 1.58$
 $K_1 = 1.48$

Minták	m _H [g]	K	ρ [kg/m³]
1. Henger	5	1.81	1381.22
2. Henger	13.9	1.58	4398.73
3. Henger	11.39	1.48	3847.97

$$\rho_1 = 1381.22 \frac{kg}{m^3}$$

$$\rho_2 = 4398.73 \frac{kg}{m^3}$$

$$\rho_3 = 3847.97 \frac{kg}{m^3}$$

Hibaszámítás

A hibaszámítást a közvetlen mérésnél minden test esetén a hibaterjedés módszerével számoljuk ki.

A sűrűségnél mindig igaz, hogy

$$\left| \frac{\Delta \rho}{\rho} \right| = \left| \frac{\Delta V}{V} \right| + \left| \frac{\Delta m}{m} \right|$$

Általánosan egy henger térfogatára:

$$\left| \frac{\Delta V}{V} \right| = 2 \cdot \left| \frac{\Delta d}{d} \right| + \left| \frac{\Delta h}{h} \right|$$

Általánosan egy hasáb térfogatára:

$$\left| \frac{\Delta V}{V} \right| = \left| \frac{\Delta a}{a} \right| + \left| \frac{\Delta b}{b} \right| + \left| \frac{\Delta c}{c} \right|$$

A henger esetén:

$$\Delta \rho_H = \left(2 \cdot \left| \frac{\Delta x}{d} \right| + \left| \frac{\Delta x}{h} \right| + \left| \frac{\Delta m}{m} \right| \right) \cdot \rho_H = 8.2734 \frac{kg}{m^3}$$

Ez nagyjából 0.3%-os hibának felel meg.

Az első hasáb esetén:

$$\Delta \rho_{h1} = \left(\left| \frac{\Delta a}{a} \right| + \left| \frac{\Delta b}{b} \right| + \left| \frac{\Delta c}{c} \right| + \left| \frac{\Delta m}{m} \right| \right) \cdot \rho_{h1} = 2.5218 \frac{kg}{m^3}$$

Ez is nagyjából 0.3%-os hibának felel meg.

A második hasáb esetén:

$$\Delta \rho_{h2} = \left(\left| \frac{\Delta a}{a} \right| + \left| \frac{\Delta b}{b} \right| + \left| \frac{\Delta c}{c} \right| + \left| \frac{\Delta m}{m} \right| \right) \cdot \rho_{h2} = 39.0809 \frac{kg}{m^3}$$

Ez nagyjából 0.44%-os hibának felel meg.

Eredmények

A közvetlen mérés eredménye :

	Sűrűség $\left[\frac{kg}{m^3}\right]$
Henger	2863.7176 ± 8.2734
1. Hasáb	823.5092 ± 2.5218
2. Hasáb	8830.6839 ± 39.0809

A Mohr-Westphal mérleg segítségével mért sűrűségek:

	Sűrűség $\left[\frac{kg}{m^3}\right]$
1. Henger	1381.22
2. Henger	4398.73
3. Henger	3847.97

Diszkusszió

A mérési hibák relatív mértéke arról tanúskodik, hogy nagy pontossággal tudtuk meghatározni a sűrűséget.

A közvetlen mérésnél használt henger anyaga feltehetőleg alumínium, az első hasábé feltehetőleg fa, a második hasábé pedig réz.

A Mohr-Westphal mérleg segítségével vizsgált első henger anyaga feltehetőleg kőszén, a második hengeré bauxit, a harmadiké pedig üveg.