Métodos Numéricos

1er Cuatrimestre 2024

Práctica 6

Descomposición en Valores Singulares

- 1. Sea $A \in \mathbb{R}^{m \times n}$ una matriz de rango r y $A = U \Sigma V^t$ una descomposición en valores singulares (SVD), con $U \in \mathbb{R}^{m \times m}$, $\Sigma \in \mathbb{R}^{m \times n}$ y $V \in \mathbb{R}^{n \times n}$, siendo $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \ldots, \sigma_r, 0, \ldots, 0\}$ y $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$. Llamamos a σ_i el i-ésimo valor singular. Sean v_1, \ldots, v_n las columnas de V y u_1, \ldots, u_m las columnas de U. Demostrar:
 - a) v_1, \ldots, v_n son autovectores de $A^t A$.
 - b) u_1, \ldots, u_m son autovectores de AA^t .
 - c) $\lambda_i = \sigma_i^2$ son los autovalores de $A^t A$ asociados al autovector v_i .
- 2. Hallar una descomposición en valores singulares de las siguientes matrices.

$$A_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3. Sea $A \in \mathbb{R}^{2\times 2}$. Llamamos $d = \det(A)^2$ y $f = ||A||_F^2$, siendo $||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$ la norma Frobenius de la matriz A. Demostrar que los valores singulares de A son de la forma:

$$\sqrt{\frac{f \pm \sqrt{f^2 - 4d}}{2}}$$

- 4. Sea $A \in \mathbb{R}^{m \times n}$ y $A = U \Sigma V^t$ una descomposición SVD de A.
 - a) Expresar en función de U, Σ y V a las siguientes matrices:
 - i) $A^t A$
 - ii) AA^t
 - iii) $(A^tA)^{-1}A^t$ (asumiendo A con columnas linealmente independientes)
 - b) Hallar una descomposición SVD de las siguientes matrices ($\mathbf{0}_n$ es la matriz de ceros de $n \times n$):
 - i) A^t
 - ii) A^{-1} (suponiendo m = n y A inversible)
 - iii) $\begin{pmatrix} A \\ \mathbf{0}_n \end{pmatrix}$
 - iv) $\begin{pmatrix} A & \mathbf{0}_m \end{pmatrix}$
 - c) Dado $\alpha \in \mathbb{R}_{>0}$, expresar los valores singulares de $(A^tA + \alpha I)^{-1}A^t$ en función de los de A y α .
- 5. Sean dos matrices $A, B \in \mathbb{R}^{n \times n}$. Probar que:
 - a) todos los valores singulares de A son iguales si y solo si A es múltiplo de una matriz ortogonal.
 - b) A y B tienen los mismos valores singulares si y solo si existen P, Q ortogonales tal que A = PBQ.

- c) si $AA^t = BB^t$ entonces existe una matriz ortogonal Q tal que AQ = B.
- 6. Sea $A \in \mathbb{R}^{m \times n}$, demostrar que los valores singulares de la matriz $\begin{pmatrix} I_n \\ A \end{pmatrix}$ son $\sqrt{1 + \sigma_i^2}$, donde I_n es la matriz indentidad de $\mathbb{R}^{n \times n}$ y σ_i es el *i*-ésimo valor singular de A.
- 7. Sea $A \in \mathbb{R}^{n \times n}$, con A una matriz simétrica definida positiva. Demostrar que los autovalores de A coinciden con sus valores singulares.
- 8. Supongamos que $A \in \mathbb{R}^{m \times n}$ tiene columnas ortogonales w_1, w_2, \dots, w_n donde $||w_i||_2 = \alpha_i > 0$. Calcular $A^t A$ y hallar las matrices U, Σ y V de una descomposición en valores singulares de A.
- 9. Sea $A \in \mathbb{R}^{m \times n}$, $m \ge n$, con $A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$ descomposición QR de A (con $R \in \mathbb{R}^{n \times n}$). Hallar una descomposición SVD de A asumiendo que $R = U\Sigma V^t$ es una descomposición SVD de R. la matriz
- 10. Sea $A \in \mathbb{R}^{n \times n}$ y $\sigma > 0$. Probar que σ es valor singular de A si y sólo si $\begin{pmatrix} A & -\sigma I \\ -\sigma I & A^t \end{pmatrix}$ es singular.
- 11. Sea $A \in \mathbb{R}^{m \times n}$ una matriz de rango 1. Llamamos rango de A a la dimensión del espacio generado por la imagen $Im(A) = \{Ax \mid x \in \mathbb{R}^n\}$. Sea u un vector unitario en Im(A).
 - a) Demostrar que todas las columnas de A son múltiplos de u.
 - b) Mostrar que A se puede escribir de la forma $A = \sigma u v^t$, con $v \in \mathbb{R}^n$ unitario y $\sigma > 0$.
 - c) Mostrar que existe una matriz ortogonal $U \in \mathbb{R}^{m \times m}$ cuya primer columna es u y una matriz ortogonal $V \in \mathbb{R}^{n \times n}$ cuya primer columna es v. ¿Cómo podría construir dichas matrices?
 - d) Deducir que toda matriz A de rango 1 tiene descomposición SVD. ¿Quién es Σ ?
- 12. Sea $A \in \mathbb{R}^{m \times n}$ una matriz de rango r y sea $A = U \Sigma V^t$ una descomposición SVD de A, con $U \in \mathbb{R}^{m \times m}$ y $V \in \mathbb{R}^{n \times n}$ ortogonales y $\Sigma \in \mathbb{R}^{m \times n}$ diagonal. Llamamos v_1, \ldots, v_n a las columnas de V y u_1, \ldots, u_m a las columnas de U. Probar que:
 - a) $Nu(A) = \langle v_{r+1}, \dots, v_n \rangle$
 - b) $Im(A) = \langle u_1, \dots, u_r \rangle$

(Sugerencia: en cada caso, considerar sólamente una inclusión y luego evaluar dimensiones, recordando que $dim(\mathbb{R}^n) = dim(Nu(A)) + dim(Im(A))$.)

- 13. Se
a $A \in \mathbb{R}^{m \times n}$ y $A = U \Sigma V^t$ una descomposición SVD. Demostrar:
 - a) $||Ax||_2/||x||_2$ se maximiza para $x=v_1$, con v_1 la primer columna de V.
 - b) $||A||_2 = \sigma_1$. Deducir que $||A||_2 = \sqrt{\rho(A^t A)^{\ddagger\ddagger}}$.
 - c) $||A||_F = \sqrt{\sum_{i=1}^n \sigma_i^2}$.
 - d) Si m = n y A es inversible, entonces $\kappa_2(A) = \sigma_1/\sigma_n$.
 - e) $\max_i |a_{ii}| \leq \sigma_1$.
- 14. Sea $z \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, m \geqslant n$, y sea la matriz $B = \binom{A}{z^t}$. Llamamos $\sigma_1(C)$ al primer valor singular de cualquier matriz C. Demostrar: $\sigma_1(A) \leqslant \sigma_1(B) \leqslant \sqrt{\sigma_1(A)^2 + \|z\|_2^2}$.

 $^{^{\}ddagger\ddagger} \text{Dada una matriz } B \in \mathbb{R}^{n \times n} \text{ se define el } radio \ espectral \ \text{de } B \text{ como } \rho(B) = \text{m\'ax}\{|\lambda| : \lambda \text{ autovalor de } B\}.$

Resolver en computadora

i) Sea $A \in \mathbb{R}^{5 \times 3}$ dada por

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \\ 5 & 6 & 7 \end{pmatrix}$$

Si $A = U\Sigma V^t$ es su descomposición en valores singulares con U y V ortogonales, Σ diagonal con elementos en la diagonal en orden decreciente, u_i las columnas de U, v_i las columnas de V y σ_i los valores singulares, verificar que:

- $\bullet \ \|Av_1\|_2 = \sigma_1$
- $\bullet \ \|A\|_2 = \sigma_1$
- $\bullet \|A\|_2 = \sqrt{\rho(A^t A)}$
- Si rg(A) = r, entonces $A = \sum_{i=1}^r \sigma_i u_i v_i^t$

Funciones útiles

Tanto $Matlab^1$ como $Numpy^2$ proveen funciones para calcular la descomposición SVD de una matriz.

En Matlab: En Python, usando Numpy: $A = \begin{bmatrix} 8 & 2; & 2 & 4; & 5 & 3 \end{bmatrix}$ from numpy import * $\begin{bmatrix} U, S, V \end{bmatrix} = \mathbf{svd}(A)$ from numpy. lin alg import *

 $\begin{array}{lll} A = \; matrix \, (\,[\,[\,8 \;, 2\,] \;, [\,2 \;, 4\,] \;, [\,5 \;, 3\,]\,] \;, & \textbf{float} \,) \\ U, \; \; s \;, \; \; V = \; svd \, (A) \end{array}$

En los dos casos, un segundo parámetro permite generar la descomposición en su forma 'corta'.

Referencias

- [1] J. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), 1997.
- [2] G.H. Golub and C.F. Van Loan. *Matrix Computations*. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2012.
- [3] C. Meyer. *Matrix Analysis and Applied Linear Algebra*. Society for Industrial and Applied Mathematics, 2000.
- [4] D.S. Watkins. Fundamentals of Matrix Computations. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2010.

¹http://www.mathworks.com/help/matlab/ref/svd.html

²http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html