Learning Objectives

Review calculation of standard deviation

• **Define** the *normal curve*

• Interpret z-scores (aka, standard scores)

- **Calculate** *z*-scores:
 - With known population mean and standard deviation
 - From a sample

The Road to s

6 steps for calculating Standard Deviation:

- 1. Calculate sample mean (\overline{X})
- 2. Subtract mean from X_i for **deviation scores**
- 3. <u>Square</u> deviation scores
- 4. <u>Sum</u> squared deviation scores (*SS*)
- 5. Divide by N (or N-1) for variance (s^2)
- 6. Square root for **standard deviation** (s)

Pop Quiz

What is it?

$$\frac{\Sigma X}{N}$$

$$\Sigma (X_{\rm i} - \overline{X})^2$$

$$\sqrt{\frac{SS}{N-1}}$$

$$\sum X^2 - \frac{(\sum X)^2}{N}$$

Pop Quiz

Say it!

 \sum

 \overline{X}

μ

σ

β

α

Normal Curve

The normal curve is like...[the smell of pine trees on

the first warm day of spring]

- Symmetric (not skewed)
- Unimodal
- Perfectly variable
- Asymptotic tails
- Known!

Area Under the Curve

z-scores show how many σ 's an observation is from μ

z-scores

z-scores are a transformation

- $-\bar{X}$ has been subtracted from each obs.
 - \bar{X}/μ is now equal to 0
 - Process known as "centering" the data
- Each obs. divided by standard deviation
 - σ is now equal to 1
 - Known as "standardizing" the data
- Standard scores are comparable to each other
 - They now share the same $ar{X}$ and σ

Calculating z-scores

from a known pop.

•
$$\mu_F = 162$$
cm; $\sigma_F = 7.1$ cm

•
$$\mu_{M} = 175$$
cm; $\sigma_{M} = 7.4$ cm

$$z = \frac{X_i - \mu}{\sigma}$$

Where
$$X_{AR}$$
 = 166cm μ_{M} = 175cm σ_{M} = 7.4cm

$$z = \frac{166 - 175}{7.4} \longrightarrow z = \frac{-9}{7.4} \longrightarrow z = -1.22$$

How much area is under the curve?

What percentile am I? pp. 591-4

Calculating & Comparing z-scores

	Your Mark	Class Mean	Class Standard Dev.
Math	68	60	6
Psychology	70	65	4

$$z = \frac{X_i - \bar{X}}{S}$$

 Did you perform better, relatively speaking, in Math or Psychology?

Converting z-scores to Raw Scores

from a known pop.

• $\mu_F = 162$ cm; $\sigma_F = 7.1$ cm

Where
$$z_1$$
 = 2.12 μ_F = 162cm σ_F = 7.1cm

$$z = \frac{X_i - \mu}{\sigma}$$

$$2.12 = \frac{X - 162}{7.1} \longrightarrow 2.12*7.1 = X - 162 \longrightarrow 15.052 + 162 = X$$

$$X = 177.05$$