Smale's Alpha Theory — Verifying Newton's Method

21 January 2016

Chris Swierczewski cswiercz@uw.edu

Department of Applied Mathematics University of Washington Seattle, Washington

Newton's Method

Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial. Define,

$$N(f,x_0) = \begin{cases} x_0 - f(x_0)/f'(x_0) & \text{if } f'(x_0) \neq 0, \\ x_0 & \text{if } f'(x_0) = 0. \end{cases}$$

Newton's Method

Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial. Define,

$$N(f,x_0) = \begin{cases} x_0 - f(x_0)/f'(x_0) & \text{if } f'(x_0) \neq 0, \\ x_0 & \text{if } f'(x_0) = 0. \end{cases}$$

$$N^k(f, x_0) = \underbrace{(N \circ N \circ \cdots \circ N)}_{k \text{ times}} (f, x_0)$$

Newton's Method

Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial. Define,

$$N(f,x_0) = \begin{cases} x_0 - f(x_0)/f'(x_0) & \text{if } f'(x_0) \neq 0, \\ x_0 & \text{if } f'(x_0) = 0. \end{cases}$$

$$N^k(f, x_0) = \underbrace{(N \circ N \circ \cdots \circ N)}_{k \text{ times}} (f, x_0)$$

Convergence

$$\lim_{k\to\infty} N^k(f,x_0) = \xi \text{ a root of } f$$

Example

Roots of a Simple Cubic

$$f(x) = x^3 - 1$$

Actual roots:

$$\xi_k = e^{2\pi i k/3}$$
, for $k = 0, 1, 2$.

Example: Actual Roots

Example: What is a "Good Guess"?

An initial guess "close" to the root should converge to that root:

Example: What is a "Good Guess"?

An initial guess "close" to the root should converge to that root:

Next Slide

- ▶ white region \rightarrow guesses converging to ξ_0 ,
- lacktriangledown grey region ightarrow guesses converging to ξ_1 ,
- ▶ black region \rightarrow guesses converging to ξ_2 ,

(Apply Newton's Method to each guess until we reach a root.)

Example: What is a "Good Guess"?

Example: What is a "Bad Guess"?

What if the initial Newton guess is further away?

Example: What is a "Bad Guess"?

What if the initial Newton guess is further away?

Next Slide

- ▶ white region \rightarrow guesses converging to ξ_0 ,
- lacktriangle grey region ightarrow guesses converging to ξ_1 ,
- ▶ black region \rightarrow guesses converging to ξ_2 ,

Example: What is a "Bad Guess"?

There are many terrible guesses.

There are many terrible guesses.

(Even guesses closer to some roots converge to other roots.)

Example: Roots of $f(x) = x^9 - 1$

Two Questions

Question #1

Can we ensure our guesses are far away from nasty fractal areas?

Two Questions

Question #1

Can we ensure our guesses are far away from nasty fractal areas?

Question #2

Given two guesses can we determine if they will converge to different roots? (Or the same root?)

Two Questions

Question #1

Can we ensure our guesses are far away from nasty fractal areas?

Question #2

Given two guesses can we determine if they will converge to different roots? (Or the same root?)

But...

...can we do these a priori? (w/o knowing location of roots)

Terminology

Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial.

▶ Define: $x \in \mathbb{C}$ is an approximate solution to f with associated solution $\xi \in \mathbb{C}$ if

$$|N^{(k)}(f,x) - \xi| \le (\frac{1}{2})^{2^{k}-1} |x - \xi|$$

Terminology

Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial.

▶ Define: $x \in \mathbb{C}$ is an approximate solution to f with associated solution $\xi \in \mathbb{C}$ if

$$\left| N^{(k)}(f,x) - \xi \right| \le \left(\frac{1}{2}\right)^{2^{k}-1} |x - \xi|$$

 approximate solutions converge quadratically to their associated soltuions

Terminology

Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial.

▶ Define: $x \in \mathbb{C}$ is an approximate solution to f with associated solution $\xi \in \mathbb{C}$ if

$$\left| N^{(k)}(f,x) - \xi \right| \le \left(\frac{1}{2}\right)^{2^{k}-1} |x - \xi|$$

- approximate solutions converge quadratically to their associated soltuions
- "x lies inside the quadratic convergence region of ξ "

Quadratic Convergence Region

Figure: Quadratic convergence region of $\xi = 1$ for $f(x) = x^3 - 1$.

Determine if x is an **approximate solution**.

Determine if x is an **approximate solution**.

▶ **Problem**: the condition

$$\left| N^{(k)}(f,x) - \xi \right| \le \left(\frac{1}{2}\right)^{2^k - 1} |x - \xi|$$

requires knowing ξ !

Determine if *x* is an **approximate solution**.

▶ **Problem**: the condition

$$\left| N^{(k)}(f,x) - \xi \right| \le \left(\frac{1}{2}\right)^{2^{k}-1} |x - \xi|$$

requires knowing ξ !

► Smale's Alpha Theory: sufficient conditions for x to be in some quadratic convergence region

$$\alpha(f,x) := \beta(f,x)\gamma(f,x)$$

$$\alpha(f,x) := \beta(f,x)\gamma(f,x)$$

$$\beta(f,x) := |x - N(f,x)| = |f(x)/f'(x)|$$

$$\alpha(f,x) := \beta(f,x)\gamma(f,x)$$

$$\beta(f,x) := |x - N(f,x)| = |f(x)/f'(x)|$$

$$\gamma(f,x) := \max_{k \ge 2} \left| \frac{f^{(k)}(x)/f'(x)}{k!} \right|^{\frac{1}{k-1}}$$

Question #1: Converging to a Given Root

Smale Theorem #1

If $f:\mathbb{C} \to \mathbb{C}$ is a polynomial and $x \in \mathbb{C}$ such that

$$\alpha(f,x) \le \frac{13 - 3\sqrt{17}}{4} \approx 0.157671$$

then x is an **approximate solution** to f.

Question #1: Converging to a Given Root

Smale Theorem #1

If $f:\mathbb{C}\to\mathbb{C}$ is a polynomial and $x\in\mathbb{C}$ such that

$$\alpha(f,x) \le \frac{13 - 3\sqrt{17}}{4} \approx 0.157671$$

then x is an **approximate solution** to f.

Additionally,

$$|x - \xi| \le 2\beta(f, x)$$

where ξ is the **associated solution** to x.

Alpha Region

Figure: Region where $\alpha(f, x) < 0.157...$ for $f(x) = x^3 - 1$.

► Pros

- ► Pros
 - quadratic convergence condition without knowing roots,

- ► Pros
 - quadratic convergence condition without knowing roots,
 - ► approximates how far away you are

$$|x-\xi|<2\beta(f,x),$$

- ► Pros
 - quadratic convergence condition without knowing roots,
 - ► approximates how far away you are

$$|x-\xi|<2\beta(f,x),$$

► Cons

Alpha Region: Discussion

- ► Pros
 - quadratic convergence condition without knowing roots,
 - approximates how far away you are

$$|x-\xi|<2\beta(f,x),$$

- ► Cons
 - lackbox doesn't say which root (but eta gives us an idea)

Alpha Region: Discussion

- Pros
 - quadratic convergence condition without knowing roots,
 - approximates how far away you are

$$|x-\xi|<2\beta(f,x),$$

- Cons
 - doesn't say which root (but β gives us an idea)
 - ▶ alpha region much smaller than quad. conv. region

18

Ensure two approximate solutions x_1, x_2 have distinct associated solutions ξ_1, ξ_2 .

Ensure two approximate solutions x_1, x_2 have distinct associated solutions ξ_1, ξ_2 .

Smale Theorem #2

lf

$$|x_1 - x_2| > 2\bigg(\beta(f, x_1) + \beta(f, x_2)\bigg)$$

then

$$\xi_1 \neq \xi_2$$

Ensure two **approximate solutions** x_1, x_2 have distinct **associated solutions** ξ_1, ξ_2 .

Smale Theorem #2

lf

$$|x_1 - x_2| > 2\bigg(\beta(f, x_1) + \beta(f, x_2)\bigg)$$

then

$$\xi_1 \neq \xi_2$$

► Follows from Smale Theorem #1:

$$|x - \xi| \le 2\beta(f, x)$$

Ensure two **approximate solutions** x_1, x_2 have distinct **associated solutions** ξ_1, ξ_2 .

Smale Theorem #2

lf

$$|x_1 - x_2| > 2\bigg(\beta(f, x_1) + \beta(f, x_2)\bigg)$$

then

$$\xi_1 \neq \xi_2$$

► Follows from Smale Theorem #1:

$$|x - \xi| \le 2\beta(f, x)$$

► Homework: prove this

Let
$$f(x, y) = y^3 - x$$
.

Let
$$f(x, y) = y^3 - x$$
.

► function of y with x as a parameter,

Let
$$f(x, y) = y^3 - x$$
.

- ► function of y with x as a parameter,
- given an x we can find roots y_1, y_2, y_3 to f(x, y) = 0,

Let
$$f(x, y) = y^3 - x$$
.

- ▶ function of y with x as a parameter,
- given an x we can find roots y_1, y_2, y_3 to f(x, y) = 0,
- fact: polynomial roots vary continuously as function of coefficients

Let
$$f(x, y) = y^3 - x$$
.

- ▶ function of y with x as a parameter,
- ▶ given an x we can find roots y_1, y_2, y_3 to f(x, y) = 0,
- fact: polynomial roots vary continuously as function of coefficients

roots "above"
$$x$$
: $y_1(x), y_2(x), y_3(x)$

Example: $f(x, y) = y^3 - x$

Let x_i range from $x_0 = 1$ to $x_N = 8$:

$$y_1(1) = 1$$

 $y_2(1) = e^{2\pi i/3}$
 $y_3(1) = e^{4\pi i/3}$
 \vdots
 $y_1(8) = 2$

$$y_2(8) = 2e^{2\pi i/3}$$

$$y_3(8) = 2e^{4\pi i/3}$$

Example: $f(x, y) = y^3 - x$

Let x_i range along the complex circle

$$x(t) = e^{2\pi it} - 2$$
$$t \in [0, 1]$$

Let $y_1^{(i)}, y_2^{(i)}, y_3^{(i)}$ be the y-roots computed above x_i :

$$f(x_i,y)=0.$$

Let $y_1^{(i)}, y_2^{(i)}, y_3^{(i)}$ be the y-roots computed above x_i :

$$f(x_i,y)=0.$$

Goal: compute corresponding *y*-roots

$$y_1^{(i+1)}, y_2^{(i+1)}, y_3^{(i+1)}$$

above x_{i+1} : solution to $f(x_{i+1}, y) = 0$.

Let $y_1^{(i)}, y_2^{(i)}, y_3^{(i)}$ be the y-roots computed above x_i :

$$f(x_i,y)=0.$$

Goal: compute corresponding *y*-roots

$$y_1^{(i+1)}, y_2^{(i+1)}, y_3^{(i+1)}$$

above x_{i+1} : solution to $f(x_{i+1}, y) = 0$.

▶ Idea: use $y_1^{(i)}$ as Newton iteration guess in

$$g(y) := f(x_{i+1}, y) = 0$$

to get
$$y_1^{(i+1)}$$

Let $y_1^{(i)}, y_2^{(i)}, y_3^{(i)}$ be the y-roots computed above x_i :

$$f(x_i, y) = 0.$$

Goal: compute corresponding *y*-roots

$$y_1^{(i+1)}, y_2^{(i+1)}, y_3^{(i+1)}$$

above x_{i+1} : solution to $f(x_{i+1}, y) = 0$.

▶ **Idea:** use $y_1^{(i)}$ as Newton iteration guess in

$$g(y) := f(x_{i+1}, y) = 0$$

to get
$$y_1^{(i+1)}$$

► Important: must satisfy

$$y_1(x_i) = y_1^{(i)}$$
 and $y_1(x_{i+1}) = y_1^{(i+1)}$

Example: $f(x, y) = y^3 - 2x^3y + x^7$

Let x_i range along the complex circle

$$x(t) = e^{2\pi it} - 2$$
$$t \in [0, 1]$$

64 different x-values

small Δx means $y^{(i)}$ are good guesses for $y^{(i+1)}$

Example: $f(x, y) = y^3 - 2x^3y + x^7$

Let x_i range along the complex circle

$$x(t) = e^{2\pi it} - 2$$
$$t \in [0, 1]$$

16 different x-values

Something wrong happened. (Too large Δx .)

"Just take the Δx steps to be really small."

► What does "small" mean?

- ▶ What does "small" mean?
- Heuristics in programming should be avoided. (Understatement of the year.)

- ▶ What does "small" mean?
- Heuristics in programming should be avoided. (Understatement of the year.)
- lacktriangleright Too small ightarrow computationally inefficient.

- ▶ What does "small" mean?
- Heuristics in programming should be avoided. (Understatement of the year.)
- lacktriangleright Too small ightarrow computationally inefficient.
- ▶ Smale: determine when Δx is small enough such that

- ▶ What does "small" mean?
- Heuristics in programming should be avoided. (Understatement of the year.)
- lacktriangleright Too small ightarrow computationally inefficient.
- ▶ Smale: determine when Δx is small enough such that
 - ▶ each y_j⁽ⁱ⁾ will converge under Newton
 (Use Smale Theorem #1)

- ▶ What does "small" mean?
- Heuristics in programming should be avoided. (Understatement of the year.)
- lacktriangleright Too small ightarrow computationally inefficient.
- ▶ Smale: determine when Δx is small enough such that
 - ▶ each y_j⁽ⁱ⁾ will converge under Newton
 (Use Smale Theorem #1)
 - each $y_j^{(i)}$ will converge to distinct $y_j^{(i+1)}$ (Use Smale Theorem #2)

Algorithm: analytic $(f, x_i, x_{i+1}, y^{(i)})$

Algorithm: analytic($f, x_i, x_{i+1}, y^{(i)}$) **Input:**

- ▶ polynomial f = f(x, y),
- ightharpoonup x-points x_i and x_{i+1} ,
- ordered y-roots $y^{(i)} = (y_1^{(i)}, \dots, y_d^{(i)})$ above x_i .

Algorithm: analytic(f, x_i , x_{i+1} , $y^{(i)}$) **Input:**

- ▶ polynomial f = f(x, y),
- ightharpoonup x-points x_i and x_{i+1} ,
- ▶ ordered y-roots $y^{(i)} = (y_1^{(i)}, \dots, y_d^{(i)})$ above x_i .

Output: ordered y-roots $y^{i+1} = (y_1^{(i+1)}, \dots, y_d^{(i+1)})$ above x_{i+1} .

▶ such that $y_j^{(i)} \rightarrow y_j^{(i+1)}$ (same position j)

Algorithm: analytic $(f, x_i, x_{i+1}, y^{(i)})$

1. Check that each $y_i^{(i)}$ is an approximate solution to

$$g(y) := f(x_{i+1}, y) = 0$$

using $\alpha(g, y_j^{(i)}) < 0.157...$ If any are not, **refine step**:

Algorithm: analytic $(f, x_i, x_{i+1}, y^{(i)})$

1. Check that each $y_j^{(i)}$ is an approximate solution to

$$g(y) := f(x_{i+1}, y) = 0$$

using $\alpha(g, y_j^{(i)}) < 0.157...$ If any are not, **refine step**:

►
$$x_{i+1/2} \leftarrow (x_i + x_{i+1})/2$$

Algorithm: analytic $(f, x_i, x_{i+1}, y^{(i)})$

1. Check that each $y_j^{(i)}$ is an approximate solution to

$$g(y) := f(x_{i+1}, y) = 0$$

using $\alpha(g, y_i^{(i)}) < 0.157...$ If any are not, **refine step**:

- $> x_{i+1/2} \leftarrow (x_i + x_{i+1})/2$
- $y^{(i+1/2)} \leftarrow \text{analytic}(f, x_i, x_{i+1/2}, y^{(i)})$

Algorithm: analytic $(f, x_i, x_{i+1}, y^{(i)})$

1. Check that each $y_j^{(i)}$ is an **approximate solution** to

$$g(y) := f(x_{i+1}, y) = 0$$

using $\alpha(g, y_i^{(i)}) < 0.157...$ If any are not, **refine step**:

- $> x_{i+1/2} \leftarrow (x_i + x_{i+1})/2$
- $y^{(i+1/2)} \leftarrow \text{analytic}(f, x_i, x_{i+1/2}, y^{(i)})$
- ▶ $y^{(i+1)} \leftarrow \text{analytic}(f, x_{i+1/2}, x_{i+1}, y^{(i+1/2)})$

Algorithm: analytic $(f, x_i, x_{i+1}, y^{(i)})$

1. Check that each $y_i^{(i)}$ is an approximate solution to

$$g(y) := f(x_{i+1}, y) = 0$$

using $\alpha(g, y_i^{(i)}) < 0.157...$ If any are not, **refine step**:

- $> x_{i+1/2} \leftarrow (x_i + x_{i+1})/2$
- $y^{(i+1/2)} \leftarrow \text{analytic}(f, x_i, x_{i+1/2}, y^{(i)})$
- ▶ $y^{(i+1)} \leftarrow \text{analytic}(f, x_{i+1/2}, x_{i+1}, y^{(i+1/2)})$
- 2. Determine if all approximate solutions $y_j^{(i)}$ will converge to distinct associated solutions $y_j^{(i+1)}$:

$$|y_j^{(i)} - y_k^{(i)}| > 2(\beta(f, y_j^{(i)}) + \beta(f, y_k^{(i)})), \quad \forall j, k = 1, \dots, d.$$

If any are not, refine step.

Algorithm: analytic $(f, x_i, x_{i+1}, y^{(i)})$

1. Check that each $y_i^{(i)}$ is an **approximate solution** to

$$g(y) := f(x_{i+1}, y) = 0$$

using $\alpha(g, y_i^{(i)}) < 0.157...$ If any are not, **refine step**:

- $> x_{i+1/2} \leftarrow (x_i + x_{i+1})/2$
- $\mathbf{y}^{(i+1/2)} \leftarrow \text{analytic}(f, x_i, x_{i+1/2}, y^{(i)})$
- ▶ $y^{(i+1)} \leftarrow \text{analytic}(f, x_{i+1/2}, x_{i+1}, y^{(i+1/2)})$
- 2. Determine if all approximate solutions $y_j^{(i)}$ will converge to distinct associated solutions $y_j^{(i+1)}$:

$$|y_i^{(i)} - y_k^{(i)}| > 2(\beta(f, y_i^{(i)}) + \beta(f, y_k^{(i)})), \quad \forall j, k = 1, \dots, d.$$

If any are not, refine step.

3. Finally, Newton iterate each $y_i^{(i)}$ to $y_i^{(i+1)}$ and return.

Example: $f(x, y) = y^3 - 2x^3y + x^7$

Let x_i range along the complex circle

$$x(t) = e^{2\pi it} - 2$$
$$t \in [0, 1]$$

16 different x-values

Smale guarantees we converge to the correct roots.

Example: $f(x, y) = y^3 - 2x^3y + x^7$

Let x_i range along the complex circle

$$x(t) = \frac{1}{2}e^{2\pi it} + \beta$$
$$t \in [0, 1]$$

where

$$\beta \approx -0.8369 - 0.6081j$$
.

(Branch point of curve.)

▶ Works for square systems of polynomials $f : \mathbb{C}^n \to \mathbb{C}^n$.

- ▶ Works for square systems of polynomials $f: \mathbb{C}^n \to \mathbb{C}^n$.
 - ▶ Derivative $f' \rightarrow Jacobian Df$.

- ▶ Works for square systems of polynomials $f: \mathbb{C}^n \to \mathbb{C}^n$.
 - ▶ Derivative $f' \rightarrow Jacobian Df$.
- ▶ Even works for smooth functions $f : \mathbb{C}^n \to \mathbb{C}^n$.

- ▶ Works for square systems of polynomials $f: \mathbb{C}^n \to \mathbb{C}^n$.
 - ▶ Derivative $f' \rightarrow Jacobian Df$.
- ▶ Even works for smooth functions $f : \mathbb{C}^n \to \mathbb{C}^n$.
 - ▶ Definition of $\gamma(f,x)$: "max \rightarrow sup".

- ▶ Works for square systems of polynomials $f: \mathbb{C}^n \to \mathbb{C}^n$.
 - ▶ Derivative $f' \rightarrow Jacobian Df$.
- ▶ Even works for smooth functions $f : \mathbb{C}^n \to \mathbb{C}^n$.
 - ▶ Definition of $\gamma(f,x)$: "max \rightarrow sup".
 - Some simpler bounds on γ : results in much smaller α -region.

Thank you

Talk and code available at www.cswiercz.info. GitHub repo at github.com/cswiercz/smale.

References

- S. Smale, "Newton's method estimates from data at one point", Springer New York, 1986.
- J. D. Hauenstein, F. Sottile, "AlphaCertified: certifying solutions to polynomial systems", ACM Trans. Math. Softw., vol. 38, no. 4, pp. 1-20, 2012.