Design the single-stage CMOS amplifier shown in Fig. 1 with the following specifications:

- ➤ Open-loop DC gain \geq 25 V/V
- \triangleright Output voltage swing $\ge 0.5 \text{ V}_{pp}$
- ightharpoonup CMRR \geq 35 dB
- \triangleright Settling time with 0.5% settling error in unity-gain sample & hold configuration ≤ 2 ns
- \triangleright Load capacitance: $C_L = 1 \text{ pF}$
- > Sample & hold capacitance: $C_{\rm H} = 1 \text{ pF}$
- \triangleright Input common-mode voltage: $V_{\rm cmi} = 0.3 \text{ V}$
- \triangleright Output common-mode voltage: $V_{\rm cmo} = 0.5 \text{ V}$
- \triangleright Ideal DC voltage: $V_{\rm dc} = 0.2 \text{ V}$
- \triangleright Power supply voltage: $V_{DD} = 1.0 \text{ V}$
- ➤ Power dissipation: as low as possible
- > Technology: 90 nm CMOS

Figure 2 shows a switched-capacitor sample & hold circuit which is used to evaluate the transient performance of the amplifier. You are to design the amplifier to settle within 2 ns with a 0.5% settling accuracy for both positive and negative input steps with a height of 0.25 V while driving a 1 pF load capacitance. You can use ideal switches in switched-capacitor S/H circuit to realize the switches controlled by different clock phases, but as a **bonus** you may also use actual MOS devices for the switches.

Document your results in a regular report including all of the simulation results. You are to report both analytical design and simulation results in a Table and compare them together with sufficient explanations.

Fig. 1: A single-stage amplifier.

Fig. 2: Transient simulation circuit.