Force Fields for MD simulations

- Topology/parameter files
- Where do the numbers an MD code uses come from?
- How to make topology files for ligands, cofactors, special amino acids, ...
- How to obtain/develop missing parameters.
- QM and QM/MM force fields/potential energy descriptions used for molecular simulations.

The Potential Energy Function

$$U(\vec{R}) = \underbrace{\sum_{bonds} k_i^{bond} (r_i - r_0)^2 + \sum_{angles} k_i^{angle} (\theta_i - \theta_0)^2 + \sum_{U_{angle}} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)] + \sum_{i \neq i} \sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_{i \neq i} \sum_{j \neq i} \frac{q_i q_j}{\epsilon r_{ij}}$$

$$U_{nonbond}$$

 U_{bond} = oscillations about the equilibrium bond length U_{angle} = oscillations of 3 atoms about an equilibrium bond angle $U_{dihedral}$ = torsional rotation of 4 atoms about a central bond $U_{nonbond}$ = non-bonded energy terms (electrostatics and Lenard-Jones)

Energy Terms Described in the CHARMm Force Field

$$r(t + \delta t) = r(t) + v(t)\delta t$$

$$v(t + \delta t) = v(t) + a(t)\delta t$$

$$a(t) = F(t)/m$$

$$F = -\frac{d}{dr}U(r)$$

Bond definitions, atom types, atom names, parameters,

What is a Force Field?

In molecular dynamics a molecule is described as a series of charged points (atoms) linked by springs (bonds).

To describe the time evolution of bond lengths, bond angles and torsions, also the non-bonding van der Waals and elecrostatic interactions between atoms, one uses a force field.

The force field is a collection of equations and associated constants designed to reproduce molecular geometry and selected properties of tested structures.

Energy Functions

$$U(\vec{R}) = \underbrace{\sum_{bonds} k_i^{bond} (r_i - r_0)^2 + \sum_{angles} k_i^{angle} (\theta_i - \theta_0)^2 + \sum_{U_{angle}} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)] + \sum_{i \neq i} \sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_{i \neq i} \sum_{j \neq i} \frac{q_i q_j}{\epsilon r_{ij}}$$

$$U_{nonbond}$$

 U_{bond} = oscillations about the equilibrium bond length U_{angle} = oscillations of 3 atoms about an equilibrium bond angle $U_{dihedral}$ = torsional rotation of 4 atoms about a central bond $U_{nonbond}$ = non-bonded energy terms (electrostatics and Lenard-Jones)

Parameter optimization of the CHARMM Force Field

Based on the protocol established by

Alexander D. MacKerell, Jr, U. Maryland

See references: www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Especially Sanibel Conference 2003, JCC v21, 86,105 (2000)

Interactions between bonded atoms

$$V_{angle} = K_{\theta} (\theta - \theta_o)^2$$

$$V_{dihedral} = K_{\phi}(1 + \cos(n\phi - \delta))$$

$$V_{bond} = K_b (b - b_o)^2$$

Chemical type	K_{bond}	b _o
C-C	100 kcal/mole/Å ²	1.5 Å
C=C	$200 \text{ kcal/mole/Å}^{-2}$	1.3 Å
C=C	$400 \text{kcal/mole/Å}^{2}$	1.2 Å

Dihedral Potential

$$V_{dihedral} = K_{\phi}(1 + \cos(n\phi - \delta))$$

Nonbonded Parameters

$$\sum_{nonbonded} \frac{q_i q_j}{4\pi D r_{ij}} + \varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min,ij}}{r_{ij}} \right)^6 \right]$$

q_i: partial atomic charge

D: dielectric constant

ε: Lennard-Jones (LJ, vdW) well-depth

 R_{min} : LJ radius ($R_{min}/2$ in CHARMM)

Combining rules (CHARMM, Amber)

$$R_{\min i,j} = R_{\min i} + R_{\min j}$$

$$\epsilon_{i,j} = SQRT(\epsilon_i * \epsilon_j)$$

Note that the effect is long range.

Charge Fitting Strategy

CHARMM- Mulliken* AMBER(ESP/RESP)

Partial atomic charges

*Modifications based on interactions with TIP3 water

van der Waals interaction

$$\varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min,ij}}{r_{ij}} \right)^{6} \right]$$

Short range

From MacKerell

CHARMM Potential Function

File Format/Structure

- The structure of a pdb file
- The structure of a psf file
- The topology file
- The parameter file
- Connection to potential energy terms

Structure of a PDB file

index	re	sna	me			resid	V	v 7		Seni	name
	name	\		chai	n			y /		3eg.	
		`						*			
ATOM	22	N	ALA	В	3	-4.073	-7.587	-2.708	1.00	0.00	ВН
ATOM	23	HN	ALA	. В	3	-3.813	-6.675	-3.125	1.00	0.00	BH
ATOM	24	CA	ALA	В	3	-4.615	-7.557	-1.309	1.00	0.00	ВН
ATOM	25	НА	ALA	В	3	-4.323	-8.453	-0.704	1.00	0.00	BH
ATOM	26	CB	ALA	В	3	-4.137	-6.277	-0.676	1.00	0.00	ВН
ATOM	27	HB1	ALA	В	3	-3.128	-5.950	-0.907	1.00	0.00	ВН
ATOM	28	HB2	ALA	. В	3	-4.724	-5.439	-1.015	1.00	0.00	ВН
ATOM	29	нв3	ALA	В	3	-4.360	-6.338	0.393	1.00	0.00	ВН
ATOM	30	C	ALA	В	3	-6.187	-7.538	-1.357	1.00	0.00	ВН
ATOM	31	0	ALA	В	3	-6.854	-6.553	-1.264	1.00	0.00	ВН
ATOM	32	N	ALA	В	4	-6.697	-8.715	-1.643	1.00	0.00	ВН
ATOM	33	HN	ALA	В	4	-6.023	-9.463	-1.751	1.00	0.00	ВН
ATOM	34	CA	ALA	В	4	-8.105	-9.096	-1.934	1.00	0.00	ВН
MOTA	35	НА	ALA	. В	4	-8.287	-8.878	-3.003	1.00	0.00	ВН
ATOM	36	CB	ALA	В	4	-8.214	-10.604	-1.704	1.00	0.00	ВН
ATOM	37	HB1	ALA	В	4	-7.493	-11.205	-2.379	1.00	0.00	ВН
ATOM	38	HB2	ALA	В	4	-8.016	-10.861	-0.665	1.00	0.00	BH
ATOM	39	нвз	ALA	В	4	-9.245	-10.914	-1.986	1.00	0.00	ВН
ATOM	40	С	ALA	В	4	-9.226	-8.438	-1.091	1.00	0.00	BH
ATOM	41	0	ALA	В	4	-10.207	-7.958	-1.667	1.00	0.00	ВН
00000	000000	0000	0000	00000	000	000000000000000000000000000000000000000	00000000	0000000	000000	000000	000000
	10		20			30	40	50		60	70

VMD Atom Selection Commands

(name CA CB) and (resid 1 to 4) and (segname BH) protein and resname LYS ARG GLU ASP water and within 5 of (protein and resid 62 and name CA) water and within 3 of (protein and name 0 and z < 10)

Checking file structures

PDB file

Topology file

PSF file

Parameter file

Parameter Optimization Strategies

Check if it has been parameterized by somebody else

Literature

Google

Minimal optimization

By analogy (i.e. direct transfer of known parameters) Quick, starting point - dihedrals??

Maximal optimization

Time-consuming

Requires appropriate experimental and target data

Choice based on goal of the calculations

Minimal

database screening

NMR/X-ray structure determination

Maximal

free energy calculations, mechanistic studies, subtle environmental effects

Getting Started

- Identify previously parameterized compounds
- Access topology information assign atom types, connectivity, and charges – annotate changes

CHARMM topology (parameter files)

```
top_all22_model.inp (par_all22_prot.inp)
top_all22_prot.inp (par_all22_prot.inp)
top_all22_sugar.inp (par_all22_sugar.inp)
top_all27_lipid.rtf (par_all27_lipid.prm)
top_all27_na.rtf (par_all27_na.prm)
top_all27_na_lipid.rtf (par_all27_na_lipid.prm)
top_all27_prot_lipid.rtf (par_all27_prot_lipid.prm)
top_all27_prot_na.rtf (par_all27_prot_na.prm)
top_all27_prot_na.rtf (par_all27_prot_na.prm)
toph19.inp (param19.inp)
```

NA and lipid force fields have new LJ parameters for the alkanes, representing increased optimization of the protein alkane parameters. Tests have shown that these are compatible (e.g. in protein-nucleic acid simulations). For new systems is suggested that the new LJ parameters be used. Note that only the LJ parameters were changed; the internal parameters are identical

Break Desired Compound into 3 Smaller Ones

When creating a covalent link between model compounds move the charge on the deleted H into the carbon to maintain integer charge (i.e. methyl (q_C =-0.27, q_H =0.09) to methylene (q_C =-0.18, q_H =0.09)

From top_all22_model.inp

RESI PHEN		0.00	! phe	nol, adm	jr.
GROUP					
ATOM CG	CA	-0.115	!		
ATOM HG	HP	0.115	!	HD1	HE1
GROUP			!	1	1
ATOM CD1	CA	-0.115	!	CD1	CE1
ATOM HD1	HP	0.115	!	//	\\
GROUP			!	HGCG	CZ-
ATOM CD2	CA	-0.115	!	\	/
ATOM HD2	HP	0.115	!	CD2	==CE2
GROUP			!	1	1
ATOM CE1	CA	-0.115	!	HD2	HE2
ATOM HE1	HP	0.115			
GROUP					
ATOM CE2	CA	-0.115			
ATOM HE2	HP	0.115			
GROUP					
ATOM CZ	CA	0.110			
ATOM OH	OH1	-0.540			
ATOM HH	H	0.430			
BOND CD2	CG CE1	CD1 CZ	CE2 CG	HG CD1	HD1
BOND CD2	HD2 CE	1 HE1 CE	2 HE2	CZ OH OH	HH
DOUBLE CD1 CG CE2 CD2 CZ CE1					

Top_all22_model.inp contains all protein model compounds. Lipid, nucleic acid and carbohydate model compounds are in the full topology files.

-OH

HH

HG will ultimately be deleted. Therefore, move HG (hydrogen) charge into CG, such that the CG charge becomes 0.00 in the final compound.

Use remaining charges/atom types without any changes.

Do the same with indole

From MacKerell

Comparison of atom names (upper) and atom types (lower)

Creation of topology for central model compound

RESI Mod1 ! Model compound 1
Group
ATOM C1 CT3 -0.27
ATOM H11 HA3 0.09
ATOM H12 HA3 0.09
ATOM H13 HA3 0.09 NH
GROUP
ATOM C2 C 0.51
ATOM 02 0 -0.51
GROUP
ATOM N3 NH1 -0.47
ATOM H3 H 0.31
ATOM N4 NR1 0.16 !new atom
ATOM C5 CEL1 -0.15
ATOM H51 HEL1 0.15
ATOM C6 CT3 -0.27
ATOM H61 HA 0.09
ATOM H62 HA 0.09
ATOM H63 HA 0.09
BOND C1 H11 C1 H12 C1 H13 C1 C2 C2 O2 C2 N3 N3
н3
BOND N3 N4 C5 H51 C5 C6 C6 H61 C6 H62 C6 H63
DOUBLE N4 C5 (DOUBLE only required for MMFF)

Start with alanine dipeptide. Note use of new aliphatic LJ parameters and, importantly, atom types.

NR1 from histidine unprotonated ring nitrogen. Charge (very bad) initially set to yield unit charge for the group.

Note use of large group to allow flexibility in charge optimization.

Partial Atomic Charge Determination Method Dependent Choices

- 1. RESP: HF/6-31G overestimates dipole moments (AMBER)
- 2. Interaction based optimization (CHARMM)

For a particular force field do NOT change the QM level of theory. This is necessary to maintain consistency with the remainder of the force field.

Final charges (methyl, vary q_C to maintain integer charge, $q_H = 0.09$) interactions with water (HF/6-31G*, monohydrates!)

From MacKerell

Comparison of analogy and optimized charges

Name	Type	Analogy	Optimized
C 1	CT3	-0.27	-0.27
H11	HA3	0.09	0.09
H12	HA3	0.09	0.09
H13	HA3	0.09	0.09
C2	\mathbf{C}	0.51	0.58
O2	O	-0.51	-0.50
N3	NH1	-0.47	-0.32
H3	Н	0.31	0.33
N4	NR1	0.16	-0.31
C5	CEL1	-0.15	-0.25
H51	HEL1	0.15	0.29
C6	CT3	-0.27	-0.09
H61	HA	0.09	0.09
H62	HA	0.09	0.09
H63	HA	0.09	0.09

Dihedral optimization based on QM potential energy surfaces (HF/6-31G* or MP2/6-31G*).

From MacKerell

Potential energy surfaces on compounds with multiple rotatable bonds

- 1) Full geometry optimization
- 2) Constrain n-1 dihedrals to minimum energy values or trans conformation
- 3) Sample selected dihedral surface
- 4) Repeat for all rotatable bonds dihedrals
- 5) Repeat 2-5 using alternate minima if deemed appropriate

QM development of force field parameters for retinal

Used for rhodopsin and bacteriorhodopsin simulations

Retinal Proteins -- Rhodopsins

- · Covalently linked to a lysine
- Usually protonated Schiff base
- · all-trans and 11-cis isomers

Unconventional chemistry

Isomerization Barriers in retinal

TABLE 2 The parameter set B used for the torsional potentials of the main polyene chain of the retinal Schiff base

$\phi_{ m i}$	k_i (kcal/mol)*	$n_{\rm i}$	δ_i (deg)
$C_5 = C_6 - C_7 = C_8$	11,24	2.0	180.00
$C_6 - C_7 = C_8 - C_9$	39.98	2.0	180.00
$C_7 = C_8 - C_9 = C_{10}$	17.03	2.0	180.00
$C_8 - C_9 = C_{10} - C_{11}$	37.28	2.0	180.00
$C_9 = C_{10} - C_{11} = C_{12}$	22.50	2.0	180.00
$C_{10}-C_{11}=C_{12}-C_{13}$	35.08	2.0	180.00
$C_{11} = C_{12} - C_{13} = C_{14}$	28.30	2.0	180.00
$C_{12}-C_{13}=C_{14}-C_{15}$	29.46	2.0	180.00
$C_{13} = C_{14} - C_{15} = N_{16}$	30.43	2.0	180.00
$C_{14}-C_{15}=N_{16}-C_{\epsilon}$	28.76	2.0	180.00

Tajkhorshid et al., 1999.

^{*} $E_i^{\text{dihedral}} = (1/2)k_i[1 + \cos(n_i\varphi_i - \delta_i)].$

Coupling of electronic excitation and conformational change in bR

Inducing isomerization

500 nm ~50 kcal/mole

Retinal Charge Distribution

QM/MM derived partial atomic charges

Classical Retinal Isomerization in Rhodopsin

Twist Propagation

QM/MM calculations

$$\begin{split} \hat{H} &= \sum_{i} \frac{1}{2} \, p_{i}^{2} + \sum_{i} \sum_{A} \frac{Z_{A}}{r_{iA}} + \sum_{i>j} \frac{1}{r_{ij}} + \sum_{A>B} \frac{Z_{A}Z_{B}}{r_{AB}} \\ &+ \sum_{i} \sum_{p} \frac{q_{p}}{r_{ip}} + \sum_{A} \sum_{p} \frac{Z_{A}q_{p}}{r_{Ap}} \\ &+ V_{QM-MM}^{MM} + V_{MM}^{MM} \end{split}$$

Asp85, 212

Ab Initio QM/MM Excited State MD Simulation

Quantum mechanical (QM) treatment of the chromophore, and force field (MM) treatment of the embedding protein

QM/MM calculation of ATP hydrolysis

ATP hydrolysis in β_{TP}

Coarse grain modeling of lipids

