Здравствуйте!

Лекция №1

Криволинейные и кратные интегралы

Криволинейные интегралы первого рода

Пусть на плоскости XOY заданы 1. Некоторая кривая C с граничными точками A и B; 2. Функция двух переменных f(x,y), определенная, по крайней мере, на

Проделаем следующую процедуру, которая вскоре станет стандартной.

- 1. Разобьем всю кривую C на кусочки точками A_1 , A_2 ,..., A_{n-1} и точку A будем считать точкой A_0 , а точку B точкой A_n . Пусть Δs_i есть ______ C между точками A_i и A_{i+1} и $\lambda = \max_i \Delta s_i$.
- 2. На каждом отрезке кривой C между точками A_i и A_{i+1} выберем произвольным образом некоторую _____ с координатами (ξ_i , η_i) и составим _____

$$\sigma = \sum_{i=0}^{n-1} f(\xi_i, \eta_i) \Delta s_i.$$

3. Сделаем предельный переход $\lambda \to 0$. Если при $\lambda \to 0$ _____ lim σ и он _____ кривой C на кусочки и от способа выбора _____ точки, то он называется криволинейным интегралом первого рода от функции f(x,y) по кривой C и обозначается символом

$$\lim_{\lambda \to 0} \sigma = \int_{(AB)} f(x, y) ds.$$

Заметим, что на месте нижнего предела в скобках пишут начальную и конечную точку кривой C, либо сам символ кривой, то есть (C). Заметим также, что

$$\int_{(AB)} f(x,y)ds = \int_{(BA)} f(x,y)ds.$$

Вычисление криволинейных интегралов первого рода.

Пусть кривая AB задана ______ уравнениями

$$x = x(t), y = y(t), t_0 \le t \le T,$$

так что точка A получается при $t = t_0$, а точка B — при t = T .

Тогда разбиению кривой AB на кусочки соответствует разбиение отрезка $[t_0\,,T\,]$

$$t_0 < t_1 < t_2 < ... < t_n = T$$
.

В этом случае

$$\Delta s_i = \int_{t_i}^{t_{i+1}} \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

По теореме о среднем имеем

$$\Delta s_i = \sqrt{(x'(\tau_i))^2 + (y'(\tau_i))^2} \Delta t_i,$$

где $\Delta t_i = t_{i+1} - t_i$ и $t_i < \tau_i < t_{i+1}$.

Так как среднюю точку можно выбирать _____ то возьмем ее так: $\xi_i = x(\tau_i)$, $\eta_i = y(\tau_i)$. Тогда

$$\sigma = \sum_{i=0}^{n-1} f(x(\tau_i), y(\tau_i)) \sqrt{(x'(\tau_i))^2 + (y'(\tau_i))^2} \Delta t_i.$$

Предельный переход при $\lambda = \max_{i} \Delta t_{i} \rightarrow 0$ дает

$$\lim_{\lambda \to 0} \sigma = \int_{(AB)} f(x, y) ds = \int_{t_0}^T f(x(t), y(t)) \sqrt{(x'(t))^2 + (y'(t))^2} dt,$$

что и дает рабочую формулу для вычисления криволинейного интеграла первого рода.

Частные случаи.

1. _____ задание кривой.

Пусть кривая AB задана _____ уравнением y = y(x), $a \le x \le b$. Тогда, беря в качестве параметра t переменную x, получим

$$\int_{(AB)} f(x,y)ds = \int_{a}^{b} f(x,y(x))\sqrt{1+[y'(x)]^2}dx.$$

2. Кривая в _____ координатах.

Пусть в _____ координатах кривая задана уравнением $r = r(\theta)$, $\alpha \le \theta \le \beta$. Так как $x = r \cos \theta$, $y = r \sin \theta$, то

$$\int_{(AB)} f(x,y) ds = \int_{\alpha}^{\beta} f(r\cos\theta, r\sin\theta) \sqrt{r^2(\theta) + [r'(\theta)]^2} d\theta.$$

3. Пространственная кривая.

Криволинейный интеграл первого рода по пространственной кривой определяется совершенно аналогично криволинейному интегралу по плоской кривой. Если пространственная кривая задана параметрически

$$x = x(t), y = y(t), z = z(t), t_0 \le t \le T,$$

TO

$$\int_{(AB)} f(x, y, z) ds = \int_{t_0}^{T} f(x(t), y(t), z(t)) \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt.$$

Криволинейные интегралы первого рода

Геометрический смысл: криволинейный интеграл первого рода по модулю равен площади цилиндрической поверхности, которая ограничена сверху поверхностью z = f(x, y), ограничена снизу плоскостью z = 0, имеет направляющую кривую L = AB и вертикальную образующую (т.е. поверхность параллельна оси z).

Криволинейный интеграл первого рода

Вычисление криволинейного интеграла первого рода

Линия задана уравнением	Элемент дуги ds	Переход от криволинейного интеграла к определенному
$y = y(x),$ $a \le x \le b$	$ds = \sqrt{1 + (y'(x))^2} dx$	$\int_{(1)} f(x,y) ds = \int_{a}^{b} f(x,y(x)) \sqrt{1 + (y'(x))^{2}} dx$
$x = x(y),$ $c \le y \le d$	$ds = \sqrt{1 + (x'(y))^2} dy$	$\int_{(1)} f(x,y) ds = \int_{c}^{d} f(x(y),y) \sqrt{1 + (x'(y))^{2}} dy$
$\begin{cases} x = x(t), \\ y = y(t), \\ z = z(t). \end{cases}$ $t_1 \le t \le t_2$	$ds = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$	$\int_{(t)} f(x,y,z)ds = \int_{t_1}^{t_2} f(x(t),y(t),z(t))\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}dt$
$r = r(\varphi)$ $\alpha \le \varphi \le \beta$	$ds = \sqrt{r^2(\varphi) + (r'(\varphi))^2} d\varphi$	$\int_{(I)} f(x,y)ds = \int_{\alpha}^{\beta} f(x(r,\varphi),y(r,\varphi))\sqrt{r^2(\varphi) + (r'(\varphi))^2}d\varphi$

Приложения криволинейного интеграла первого рода

1. Длина кривой
$$l$$
: $L = \int_{l}^{\infty} ds$

2. Масса кривой
$$l$$
: $m = \int_{l} \rho(x, y, z) ds$, где $\rho(x, y, z)$ - линейная плотность кривой.

3. Координаты центра масс кривой

$$x_{c} = \frac{1}{m} \int_{l} x \rho(x, y, z) ds, \quad y_{c} = \frac{1}{m} \int_{l} y \rho(x, y, z) ds, \quad z_{c} = \frac{1}{m} \int_{l} z \rho(x, y, z) ds,$$