RÉSEAUX EUCLIDIENS EN CRYPTOGRAPHIE 2023 – TD 2

ALEXANDRE WALLET, QUYEN NGUYEN

Exercice 1. (Réseaux et non-réseaux)

- (1) L'ensemble $\mathbb{Z} + \sqrt{2}\mathbb{Z}$ est-il un réseau de \mathbb{R} ?
- (2) Soit V la droite de \mathbb{R}^2 engendrée par $(1, \sqrt{2})$. Quel est le rang de $\mathbb{Z}^2 \cap V$? Si π désigne la projection orthogonale sur V, l'ensemble $\pi(\mathbb{Z}^2)$ est-il un réseau de \mathbb{R}^2 ?
- (3) Montrer que les sous-groupes de \mathbb{R} sont soit denses, soit des $\alpha \mathbb{Z}$ pour $\alpha \in \mathbb{R}$.

Exercice 2. On veut démontrer constructivement le résultat suivant :

Pour tout réseau \mathcal{L} de rang 2, il existe une base (b_1,b_2) telle que b_1 est un plus court vecteur de \mathcal{L} et $|\langle b_1,b_2\rangle| \leq \frac{1}{2} ||b_1||^2$.

On considère l'algorithme suivant, attribué à Gauss et à Lagrange.

```
input: Une base (b_1,b_2) d'un réseau \mathcal{L}, avec ||b_1|| \le ||b_2|| output: Une base (b,b') satisfaisant les hypothèses de l'énoncé. repeat  \begin{vmatrix} x \leftarrow \lfloor \frac{\langle b_1,b_2 \rangle}{||b_1||^2} \rfloor \\ t \leftarrow b_2 - xb_1 \\ b_2 \leftarrow b_1,b_1 \leftarrow t \\ \text{until } ||b_1|| \ge ||b_2||; \\ \text{return } (b_2,b_1) \end{vmatrix}
```

On commence par la correction de l'algorithme.

- (1) Montrer qu'à chaque itération, l'algorithme ne manipule que des bases de \mathcal{L} .
- (2) Notons (b'_1, b'_2) une base obtenue après une itération de la boucle. Montrer que pour tout $z \in \mathbb{Z}$ on a $||b'_1 + zb'_2|| \ge ||b'_1||$. En déduire que si (b, b') est la sortie de l'algorithme, on a $|\langle b, b' \rangle| \le ||b||^2/2$.
- (3) Montrer que $||b|| = \lambda_1(\mathcal{L})$. Optionnel: montrer aussi que $||b'|| = \lambda_2(\mathcal{L})$.

Il reste à montrer que l'algorithme se termine. L'idée est de montrer que la quantité $(\|b_1\|b_2\|)^2$ est diminué d'un facteur constant à chaque passage dans la boucle.

- (4) Montrer que si x = 0 alors la boucle est terminée.
- (5) Montrer que |x| = 1 n'est possible qu'à la première ou à la dernière itération de l'algorithme (Indice : penser à la question (2)).

On suppose maintenant que (b_1, b_2) donne $|x| \geq 2$. Soit \widetilde{b}_2 la projection de b_2 sur $(\mathbb{R}b_1)^{\perp}$.

- (6) Montrer que $||b_2||^2 \ge ||\widetilde{b}_2||^2 + \frac{9}{4}||b_1||^2$ et que $||t||^2 \le ||\widetilde{b}_2||^2 + \frac{1}{4}||b_1||^2$. En déduire que $||b_2||^2 \ge 3||t||^2$, si l'on n'est pas à la dernière itération.
- (7) Supposons que $(b_1, b_2) \in \mathbb{Z}^m$ est la base en entrée de l'algorithme. Conclure que l'algorithme itère un nombre au plus polynomial de fois en la taille de ses entrées.