

N-Channel Logic Level Enhancement Mode Field Effect Transistor

Product Summary:

BVDSS	30V
RDSON (MAX.)	9m Ω
lo	20A

UIS, Rg 100% Tested
Pb-Free Lead Plating & Halogen Free

ABSOLUTE MAXIMUM RATINGS (T_c = 25 °C Unless Otherwise Noted)

PARAMETERS/TES	ST CONDITIO	NS	SYMBOL	LIMITS	UNIT	
Gate-Source Voltage			V_{GS}	±20	V	
Continuous Drain Current	T _C = 25 °C	l _D	20			
Continuous Drain Carrent		T _C = 100 °C	.u	15	А	
Pulsed Drain Current ¹		I _{DM}	80			
Avalanche Current		I _{AS}	12			
Avalanche Energy	L = 0.1ml	H, ID=12A, RG=25 Ω	E _{AS}	7.2	mJ	
Repetitive Avalanche Energy ²	L = 0.051	mH	E _{AR}	3.6	1113	
Power Dissipation	T _C = 25 °	С	P _D	21	W	
Tower Bissipation	T _C = 100	°C		8.3		
Power Dissipation	T _A = 25 °	С	P _D	2.5	w	
Tower Bissipation	T _A = 100	°C		1	***	
Operating Junction & Storage Tempo	erature Rang	T _j , T _{stg}	-55 to 150	°C		

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNIT		
Junction-to-Case	$R_{\theta JC}$		6	°C/W		
Junction-to-Ambient ³	$R_{ heta JA}$		50	C/W		

¹Pulse width limited by maximum junction temperature.

²Duty cycle $\leq 1\%$

³50°C / W when mounted on a 1 in² pad of 2 oz copper.

ELECTRICAL CHARACTERISTICS (T_c = 25 °C, Unless Otherwise Noted)

PARAMETER	SYMBOL	TEST CONDITIONS		UNIT			
			MIN	TYP	MAX	1	
		STATIC					
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 250 \mu A$	30			٧	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	1.5	3		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0V$, $V_{GS} = \pm 20V$			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 24V$, $V_{GS} = 0V$			1	μΑ	
		$V_{DS} = 20V$, $V_{GS} = 0V$, $T_{J} = 125$ °C			25		
On-State Drain Current ¹	I _{D(ON)}	$V_{DS} = 10V, V_{GS} = 10V$	20			Α	
Drain-Source On-State Resistance ¹	R _{DS(ON)}	$V_{GS} = 10V$, $I_D = 12A$		7.5	9	mΩ	
		$V_{GS} = 4.5V$, $I_{D} = 8A$		10	13.5	11132	
Forward Transconductance ¹	g _{fs}	$V_{DS} = 5V$, $I_{D} = 12A$		20		S	
		DYNAMIC					
Input Capacitance	C_{iss}			828			
Output Capacitance	C _{oss}	$V_{GS} = 0V$, $V_{DS} = 15V$, $f = 1MHz$		196		pF	
Reverse Transfer Capacitance	C _{rss}			174			
Gate Resistance	R_{g}	V _{GS} = 15mV, V _{DS} = 0V, f = 1MHz		1.7		Ω	
Total Gate Charge ^{1,2}	$Q_g(V_{GS}=10V)$			17.6			
	$Q_g(V_{GS}=4.5V)$	$V_{DS} = 15V$, $V_{GS} = 10V$,		12		nC	
Gate-Source Charge ^{1,2}	Q_{gs}	$I_D = 12A$		2.8			
Gate-Drain Charge ^{1,2}	Q_{gd}			7.4			
Turn-On Delay Time ^{1,2}	t _{d(on)}			8			
Rise Time ^{1,2}	t _r	$V_{DS} = 15V$,		15		nS	
Turn-Off Delay Time ^{1,2}	t _{d(off)}	I_D = 1A, V_{GS} = 10V, R_{GS} = 6Ω		20			
Fall Time ^{1,2}	t _f			20			
SOURCE-D	RAIN DIODE RA	TINGS AND CHARACTERISTICS ($T_c = 25$	°C)				
Continuous Current	I _S				3.5	А	
Pulsed Current ³	I _{SM}				14		
Forward Voltage ¹	V_{SD}	$I_F = I_S$, $V_{GS} = 0V$			1.2	٧	
Reverse Recovery Time	t _{rr}			22		nS	
Peak Reverse Recovery Current	I _{RM(REC)}	$I_F = I_S$, $dI_F/dt = 100A / \mu S$		50		Α	
Reverse Recovery Charge	Q_{rr}			12		nC	
	-				-		

 $^{1}\text{Pulse test}: \text{Pulse Width} \leq 300~\mu\text{sec, Duty Cycle} \leq 2\%.$

Ordering & Marking Information:

Device Name: EMB09N03V for EDFN 3 x 3

Outline Drawing

Dimension in mm

Dimension	А	A1	b	С	D	D1	E	E1	E2	E3	е	L	L1	θ1
Min.	0.70	0	0.24	0.10	2.95	2.25	3.15	2.95	1.65			0.30		0°
Тур.	0.80		0.30	0.152	3.00	2.35	3.20	3.00	1.75	0.575	0.65	0.40	0.13	10°
Max.	0.90	0.05	0.37	0.25	3.15	2.45	3.40	3.15	1.96			0.50		12°

Recommended minimum pads

 $^{^{\}rm 2}Independent$ of operating temperature.

³Pulse width limited by maximum junction temperature.

EMB09N03V

杰力科技股份有限公司 Excelliance MOS Corporation

EMB09N03V

杰力科技股份有限公司 Excelliance MOS Corporation

