电工技术与电子技术

第14章 半导体器件

主讲教师: 张晓春

PN结及其单向导电性

主讲教师: 张晓春

PN结及其单向导电性

主要内容:

PN结的形成;

PN结的单向导电性。

重点难点:

PN结的单向导电性。

1. PN结的形成

空间电荷区也称 PN 结

N 结 内电场越强,漂移 运动越强,而漂移 少子的漂移运过使空间电荷区变薄。

P型半导体

扩散和漂移这一对相反的运动最终达到 动态平衡,空间电荷 区的厚度固定不变。

≇差 → 多子的扩散运动

扩散的结果使空间电荷区变宽。

形成空间电荷区

2. PN结的单向导电性

(1) PN 结加正向电压 (正向偏置)

P接正、N接负

内电场被削弱,多 子的扩散加强,形成 较大的扩散电流。

PN 结加正向电压时,PN结变窄,正向电流较大,正向电阻 较小,PN结处于导通状态。

(2) PN 结加反向电压 (反向偏置)

P接负、N接正

PN 结变宽

内电场被加强, 少子的漂移加强, 由于少子数量很 少,形成很小的 反向电流。

PN 结加反向电压时,PN结变宽,反向电流较小,反向电阻较大,PN结处于截止状态。

温度越高少子的数目越多,反向电流将随温度增加。

小 结

1. PN结的形成

浓度差 → 多子的扩散运动 → 空间电荷区变宽

内电场 > 少子的漂移运动 > 空间电荷区变窄

2. PN结的单向导电性

PN 结加正向电压时,PN结变窄,正向电流较大,正向电阻较小,PN结处于导通状态。

PN 结加反向电压时,PN结变宽,反向电流较小,反向电阻较大,PN结处于截止状态。