Our Hungarian Method

Use "Our Hungarian Method" to find a maximum matching in the bipartite graph below:

Run #1

VERTICES NOT SATURATED

$$X_0 = \{4, 6\}$$

 $Y_0 = \{d, g\}$

HUNGARIAN FOREST

FLIP AUGMENTING PATH

Run #2

VERTICES NOT SATURATED

$$X_0 = \{4\}$$

 $Y_0 = \{d\}$

Hungarian Forest

END ALGORITHM Since our Hungarian Forest has no M-augmenting path, the following matching is a maximum matching in the graph.

3.3.1

Determine whether the following graph has a 1-factor.

By letting S be the following set of vertices, we find that the graph does not satisfy Tutte's Condition, meaning there is no 1-factor in the graph:

3.3.2

Exhibit a maximum matching in the graph below, and use a result in this section to give a short proof that it has no larger matching.

