	Utech
Name:	
Roll No. :	A Spring Of Exercising 2nd Confirms
Invigilator's Signature :	

CS/B.Tech/SEM-2/M-201/2010 2010

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) If
$$A = \begin{pmatrix} 1 & 1 \\ & & \\ 1 & 1 \end{pmatrix}$$
, then A^{100} is

a)
$$2^{99}\begin{pmatrix} 1 & 1 \\ & & \\ 1 & 1 \end{pmatrix}$$

b)
$$2^{101}\begin{pmatrix} 1 & 1 \\ & & \\ 1 & 1 \end{pmatrix}$$

c)
$$2^{100}\begin{pmatrix} 1 & 1 \\ & & \\ 1 & 1 \end{pmatrix}$$

d) none of these.

ii) If λ is a eigenvalue of A, then λ^4 is an eigenvalue of

2051 [Turn over

CS/B.Tech/SEM-2/M-201/2010

Which of the following sets is linearly independent?

a)
$$\{(1,2),(2,4)\}$$

b)
$$\{(1, 2, 3), (2, 4, 6), (1, 1, 1)\}$$

c)
$$\{(2,0,0),(0,3,0),0,0,4)\}$$

d) none of these.

v) $L\{e^{-2t}\cos t\}$ is equal to

a)
$$\frac{p}{p^2 + 4p + 5}$$

b)
$$\frac{p-1}{p^2+4p+5}$$

c)
$$\frac{p+1}{p^2+4p+5}$$

d)
$$\frac{p+2}{p^2+4p+5}$$
.

Which of the following is not true? vi)

a)
$$\Delta \int E - 1$$

b)
$$\Delta \square \int \Delta - \square$$

c)
$$\Delta \frac{1}{\Box} \int \Delta + \Box$$
 d) $\Delta \int 1 - E^{-1}$.

d)
$$\Delta \int 1 - E^{-1}$$

2051

vii) If the true and approximate value of a quantity are \boldsymbol{x}_t and \boldsymbol{x}_a respectively, then the relative error is given by

a)
$$\left| \frac{x_t - x_a}{x_t} \right|$$

b)
$$\left| \frac{x_a - x_t}{x_a} \right|$$

c)
$$\left| \frac{x_a - x_t}{x_t - x_a} \right|$$

d)
$$|x_t - x_a|$$
.

viii) The sum of the eigenvalues of

$$A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{array} \right]$$
 is

d) none of these.

x) The value of
$$\lambda$$
 for which the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 1 \\ 3 & -2 & \lambda \end{bmatrix}$ is

singular, is

xi)
$$\frac{1}{D-1} x^2$$
 is equal to

- a) $x^2 + 2x + 2$
- b) $-(x^2+2x+2)$
- c) $2x x^2$
- d) $-(2x-x^2)$.
- xii) The norm of the vector α = (1, 2, 3) in \mathbb{R}^3 with standard inner product is
 - a) $\sqrt{12}$

b) $\sqrt{14}$

c) $\sqrt{3}$

- d) $\sqrt{2}$.
- xiii) The degree and order of the differential equation $\left(\frac{d^2y}{dx^2} + 2\right)^{3/2} = x \frac{dy}{dx}$ are respectively
 - a) $\frac{3}{2}$, 2

b) 2, 3

c) 3, 2

d) 1, 4.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Solve the following system of equations with the help of Gauss' Elimination method :

$$x_1 + x_2 + 4x_3 = 6$$

$$3x_{1} + 2x_{2} - 2x_{3} = 9$$

$$5x_1 + x_2 + 2x_3 = 13.$$

2051

Prove that $\Delta \int e^{hD} - 1$. 3.

(The notations have their usual meanings).

4. Expand by Laplace's method to prove that

$$\begin{vmatrix} o & a & b & c \\ -a & o & d & e \\ -b & -d & o & f \\ -c & -e & -f & o \end{vmatrix} = (af - be + cd)^{2}.$$

- 5. Solve $\frac{dy}{dx} + y = y^3 (\cos x \sin x)$.
- Evaluate $\int_{0}^{\pi/6} \sqrt{1 + \sin x} \, dx$ using Simpson's one-third rule by 6.

taking five ordinates.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

$$3 \times 15 = 45$$

- Show that (3, 1, -2), (2, 1, 4) and (1, -1, 2) form a 7. basis of R^3 .
 - Find the eigenvalues and eigenvectors of the matrix

$$\begin{bmatrix}
1 & -1 & 2 \\
2 & -2 & 4 \\
3 & -3 & 6
\end{bmatrix}$$

Solve by Cramer's rule:

$$x + y + z = 6$$

 $x + 2y + 3z = 14$
 $x - y + z = 2$.

CS/B.Tech/SEM-2/M-201/2010

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 2\frac{\mathrm{d}y}{\mathrm{d}t} - 3y = t \cos t$$

$$y(0) = 0, y'(0) = 0.$$

b) Solve by the method of variation of parameters :

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + a^2 y = \sec ax.$$

c) Find the particular integral of

$$(D^2 + 4) y = x \sin^2 x$$
.

9. a) Estimate the missing term from the table :

x	2	4	6	8	10
y	5	13	*	53	85

b) The values of a function f(x) are given for certain values of x as follows:

x:	4	5	6	8
f(x):	3.11	2.96	2.85	2.7

Obtain the value of f (5.5) using Lagrange's interpolation formula.

c) Compute $\int_{0}^{2} \frac{\sin x}{\sqrt{x}} dx \text{ using Simpson's one-third rule}$ taking $h = \frac{1}{6}$.

- 10. a) Prove that for two invertible matrices A and B of the same order $(AB)^{-1} = B^{-1} A^{-1}$.
 - b) Reduce the following matrix to a row-reduced echelon form and hence find its rank :

$$\left[\begin{array}{ccccc} 1 & 2 & 1 & 0 \\ 2 & 4 & 8 & 6 \\ 0 & 0 & 5 & 8 \\ 3 & 6 & 6 & 3 \end{array}\right]$$

c) Solve $(D^2 - 5D + 6) y = x^2 e^{3x}$, $D \int \frac{d}{dx}$.