I	Имя, ф 	амилия	и номе	р групг	іы:							
1.	а	b	С	d	e	f	18a	b	С	d	e	f
2.	a	b	c	d	e		19. a	b	\Box c		e	
3.	a	b	c	d	e	f	20. a	b	c	d	e	
4.	a	b	c	d	e		21. a	b	\Box c	d	e	
5.	a	b	c	d	e		22. a	b	\Box c	d	e	
6.	a	b	С	d	e	f	23. a	b	\Box c	d	e	\Box f
7.	a	b	С	d	e	f	24. a	b	\Box c	d	e	f
8.	a	b	С	d	e	∐ f	25. a	b	\Box c	d	e	
9.	∐ a	b	С	d	e	∐ f	26. a	b	\Box c	d	e	\Box f
10.	a	b	С	∐ d	e	∐ f	27. a	b	С	d	e	f
11.	a	b	c	d	e	∐ f	28. a	b	С	d	e	f
12.	a	b	c	d	e	f	29. a	b		d	e	f
13.	a	b	c	d	e	f □_f	30. a	b	\Box c	d	e	
14.15.	☐ a	Ъ	c		e e	r	31. a	b	\Box c	d	e	
16.		b	С		е	f	32. a	b	С	d	е	f
17.	a	b	С	d	e	f	33. a	b	С	d	е	

Удачи!

1. Известно истинное значение параметра, $\theta = 1$, и информация Фишера о параметре θ , заключенная в одном наблюдении, $I_1(\theta) = 8$.

Найдите примерное распределение оценки максимального правдоподобия $\hat{\theta}$ параметра θ , найденной по ста наблюдениям случайной выборки.

a) $\mathcal{N}(1, 1/8)$

c) $\mathcal{N}(1, 1/800)$

e) $\mathcal{N}(1, 1/\sqrt{800})$

b) $\mathcal{N}(1, 8)$

- d) нет верного ответа
- f) $\mathcal{N}(1, 1/\sqrt{8})$
- 2. По выборке из одного наблюдения x=1 с помощью критерия Колмогорова Айк тестирует гипотезу о том, что выборка была получена из стандартного нормального распределения.

Укажите, чему равняется значение тестовой статистики с точностью до двух знаков после запятой.

a) 0.15

c) 0.36

e) 0.76

- b) нет верного ответа
- d) 0.84

- f) 0.16
- 3. По выборке из пяти наблюдений 1, 0, -2, 0, 1 рассчитайте отношение неисправленной выборочной оценки дисперсии к несмещенной (исправленной) оценке дисперсии.
 - a) 1.25

c) 0.75

e) 1

b) 0.8

d) 1.2

- f) нет верного ответа
- 4. При проверке гипотезы $H_0: \mu=4$ по 4 наблюдениям $X_1,\dots,X_4 \sim \mathcal{N}(\mu,16)$ против двусторонней альтернативной гипотезы оказалось, что $\bar{X} = 7$.

При каком наименьшем уровне значимости нулевая гипотеза будет отвергнута?

a) 0.32

c) 0.13

e) 0.24

b) 0.05

- d) нет верного ответа
- f) 0.45
- 5. Выберите верное определение эффективности оценки $\hat{\theta}_n$ параметра θ в некотором классе оценок \mathcal{K} .
 - a) $Var(\hat{\theta}_n) \to 0$

d) Для любой оценки T из

$$\mathbb{E}((T-\theta)^2)$$

- b) $\mathbb{E}(\hat{\theta}_n) = \theta$
- с) нет верного ответа
- класса $\mathcal K$ и любого θ выполнено $\mathbb E((\hat{\theta}_n-\theta)^2)\le$ е) $\mathrm{Var}(\hat{\theta}_n)=\frac{\sigma^2}{n}$
 - f) $\hat{\theta}_n \stackrel{P}{\to} \theta$
- 6. По случайной выборке размером 400 студентов из всех студентов Вышки доля любителей кричать «Халява приди» равна 0.4.

Найдите правую границу 95%-й асимптотического доверительного интервала для вероятности того, что случайно выбираемый студент Вышки любит кричать «Халява приди».

a) 0.448

- с) нет верного ответа
- e) 0.472

b) 0.497

d) 0.521

f) 0.546

f) 27

7.	По выборке X_1, \dots, X_n из	нормального распреде	еления с неизвестным мат	ематическим ожида-		
		за о дисперсии H_0 : σ	$\sigma^2 \; = \; 30 \;$ против $H_a \; : \; \sigma^2 \; : \;$	$\neq 30$. Известно, что		
	$\sum_{i=1}^{n} (X_i - \bar{X})^2 = 270.$					
Чему может быть равна тестовая статистика?						
	a) 6	c) 9	e) 3			

8. Величины $Z_1, Z_2, ..., Z_n$ независимы и нормальны $\mathcal{N}(0,1)$.

Какое распределение имеет случайная величина $\frac{Z_1\sqrt{n-3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$?

a) $F_{1,n-2}$ c) χ^2_{n-4} e) $\mathcal{N}(0,1)$ b) нет верного ответа d) t_{n-3} f) t_{n-1}

d) 15

9. Дана реализация выборки: -1, 1, 0, 2.

b) нет верного ответа

Найдите выборочный начальный момент второго порядка.

 a) нет верного ответа
 c) 1.2
 e) 0

 b) 0.5
 d) 1.5
 f) 1

10. При каком условии последовательность оценок \hat{a}_n параметра a является состоятельной?

a) $\mathbb{E}((\mathbb{E}(\hat{a}_n) - a)^2) \stackrel{\mathbb{P}}{\to} \hat{a}_n$ c) $\mathbb{E}((\hat{a}_n - a)^2) \stackrel{\mathbb{P}}{\to} 0$ e) $\mathbb{E}((\hat{a}_n - a)^2) \stackrel{\mathbb{P}}{\to} a$ b) нет верного ответа d) $\hat{a}_n \stackrel{\mathbb{P}}{\to} a$ f) $\mathbb{E}((\hat{a}_n - a)^2) \stackrel{\mathbb{P}}{\to} \hat{a}_n$

11. По выборке X_1, \dots, X_n из нормального распределения с неизвестным математическим ожиданием, проверяется гипотеза о дисперсии $H_0: \sigma^2 = 30$ против $H_a: \sigma^2 \neq 30$.

Какое распределение будет иметь тестовая статистика?

a) t_n c) $\mathcal{N}(0,1)$ e) t_{n-1} b) нет верного ответа d) χ^2_n f) χ^2_{n-1}

12. Выборочные доли, вычисленные по двум независимым выборкам из распределений Бернулли с неизвестными вероятностями успеха, оказались равны 0.75. Каждая выборка содержит 100 наблюдений.

Найдите длину 95%-го доверительного интервала для разницы вероятностей успеха.

a) 0.06c) 0.94e) 0.19b) 0.61d) нет верного ответаf) 0.24

13. Ковариационная матрица вектора $X=(X_1,X_2)$ имеет вид

$$\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$$
.

Найдите дисперсию разности элементов вектора, $Var(X_1 - X_2)$.

c) 2

d) нет верного ответа

14. Винни-Пух строит доверительный интервал для разности математических ожиданий по двум неза-

висимым нормальным выборкам размера m и n при неизвестных равных дисперсиях.

a) 6

b) 15

e) 18

f) 12

Какое распределение ему можно	Какое распределение ему можно использовать?						
a) $t_{m-1,n-1}$	c) $\mathcal{N}(0; m+n-2)$	e) t_{m+n}					
b) t_{m+n-2}	d) χ^2_{m+n-2}	f) нет верного ответа					
5. Случайные величины X и Y распределены нормально с неизвестным математическим ожиданием и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбирается 20 наблюдений случайной величины X и 30 наблюдений случайной величины Y .							
Какое распределение может иметь статистика, используемая в данном случае?							
a) $F_{20,30}$	c) χ^2_{49}	е) нет верного ответа					
b) χ^2_{48}	d) $F_{29,19}$	f) t_{48}					
16. Найдите дисперсию выборочного среднего, построенного по случайной выборке размера n из экспоненциального распределения с $\lambda=4$.							
a) $\frac{n}{16}$	с) нет верного ответа	e) $\frac{1}{4n^2}$					
b) $\frac{1}{4n}$	d) $\frac{1}{16n}$	f) 4n					
17. Величина X имеет t -распределе	ние с 8 степенями свободы.						
Какое распределение имеет вели	ичина $Y = X^2$?						
a) $F_{8,8}$	c) $F_{1,8}$	e) t ₆₄					
b) $F_{8,1}$	d) нет верного ответа	f) χ_8^2					
18. Величины $Z_1, Z_2,, Z_n$ независимы и нормальны $\mathcal{N}(0,1)$.							
Какое распределение имеет случайная величина $\frac{2Z_1^2}{Z_2^2+Z_7^2}$?							
a) $F_{1,7}$	c) $F_{7,2}$	e) $F_{2,7}$					
b) t ₂	d) $F_{1,2}$	f) нет верного ответа					
19. Для случайной выборки 1, 2, 3, 4, 5 из нормального распределения найдите границы 95%-го доверительного интервала для математического ожидания.							
a) [3.08, 5.92]	c) [1.54, 5.46]	е) нет верного ответа					
b) [-4.02, 1, 02]	d) [1.04, 4.96]	f) [0.86, 5.14]					
20. Пусть X, Y, Z — независимые ст Какое распределение имеет случ		ые величины.					

	a) χ_1^2	c) χ_2	е) нет верного ответа
	b) χ_2^2	d) t_3	f) χ_3^2
21	. Имеются две случайных выбор что $\sum_{i=1}^{31} (X_i - \bar{X})^2 = 120$ и $\sum_i^3 \bar{X}_i$	оки $X_1,,X_{31}$ и $Y_1,,Y_{41}$ из норма $\sum_{i=1}^{41}(Y_i-ar{Y})^2=400.$	льных распределений. Известно
	Найдите возможное значение распределений.	статистики, проверяющей гипотез	у о равенстве дисперсий данных
	a) 2	с) нет верного ответа	e) 2.5
	b) 3.33	d) 2.52	f) 0.3
22	. Случайные величины $X_1,,X_n$	X_n независимы и имеют функцию X_n	плостности
		$f(x; heta)=egin{cases} rac{1}{ heta}xe^{-x/\sqrt{ heta}} & ext{при } x>0, \ 0 & ext{при } x\leq 0. \end{cases}$,
	где $\theta > 0$.		
	·	параметра θ методом максимальн	ого правдоподобия.
	a) $\sqrt{\sum_{i=1}^{n} X_i/n}$ b) $\sqrt{\sum_{i=1}^{n} X_i/2n}$	c) $\sum_{i=1}^{n} \sqrt{X_i}/n$ d) $(\sum_{i=1}^{n} X_i/2n)^2$	e) $\sum_{i=1}^{n} X_i/n$
23	. Пусть X_1,X_2 — случайная вы ским ожиданием μ и неизвест	борка из нормального распределе ной дисперсией σ^2 .	ения с неизвестным математиче-
	Найдите значение константы с тивной.	$\hat{\mu}$, при котором оценка $\hat{\mu} = c X_1 + (1 - \epsilon X_1)$	$-c)X_2$ является наиболее эффек-
	a) 1/2	c) 1/4	e) 2/5
	b) 1/3	d) нет верного ответа	f) 1/5

24. Пусть $X \sim \chi_2^2$ и $Y \sim \chi_3^2$ — независимые случайные величины.

Какое распределение имееет случайная величина X+Y?

a)
$$\chi_1^2$$
 c) χ_6^2 e) нет верного ответа
b) $\mathcal{N}(0;2)$ d) χ_5^2 f) χ_5

25. Есть два неизвестных параметра, θ и γ . Вася проверяет гипотезу H_0 : $\theta=1$ и $\gamma=2$ против альтернативной гипотезы о том, что хотя бы одно из равенств нарушено.

Выберите верное утверждение об асимптотическом распределении статистики отношения правдоподобия, LR.

а) Если верна H_0 , то $LR\sim\chi_2^2$ с) Если верна H_0 , то $LR\sim\chi_1^2$ е) нет верного ответа b) Если верна H_a , то $LR\sim\chi_2^2$ d) И при H_0 , и при H_a , $LR\sim$ f) И при H_0 , и при H_a , $LR\sim\chi_1^2$

26. Величины X и Y одинаково распределены с нулевым математическим ожиданием и дисперсией 2. Вектор (X,Y) имеет многомерное нормальное распределение с корреляцией 0.6.

Найдите $\mathbb{E}(Y\mid X=2)$.

a) 0.64

c) 0

е) нет верного ответа

b) 1.2

d) 0.6

f) 1.28

27. Величина X имеет F-распределение с 9 и 16 степенями свободы.

Какое распределение имеет величина $Y = X^{-1}$?

a) χ^{2}_{25}

c) $F_{9.16}$

e) $F_{1/9,1/16}$

b) $F_{16.9}$

d) нет верного ответа

f) $F_{1/16,1/9}$

28. По 100 наблюдениям за нормально распределенной случайной величиной с известной дисперсией, Вася проверял гипотезу $H_0: \mu = 10$ при альтернативной гипотезе $H_1: \mu > 10$.

Оказалось, что выборочное среднее $\bar{X}=12$. Вася рассчитал тестовую статистику и P-значение. После этого Вася решил попробовать изменить альтернативную гипотезу на $H_1: \mu \neq 10$.

Как при этом изменилось Р-значение?

а) Выросло вдвое

с) Не изменилось

е) Упало вдвое

b) Упало, насколько - неизвестно

d) Выросло, насколько - неизвестно

f) нет верного ответа

29. Пусть X_1, \ldots, X_7 — выборка из распределения Бернулли с параметром θ .

Найдите информацию Фишера о параметре θ , содержащуюся в выборке.

a) $\frac{1}{\theta^2 - \theta}$

c) $7\theta(1-\theta)$

е) нет верного ответа

b) $\frac{7}{\theta - \theta^2}$

d) 7θ

f) $\frac{1}{\theta - \theta^2}$

30. Пусть X_1, \ldots, X_n — случайная выборка из распределения с плотностью распределения

$$f(x; \theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0; \theta], \\ 0 & \text{при } x \notin [0; \theta], \end{cases}$$

где $\theta > 0$.

Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

а) нет верного ответа

c) $\sqrt{\frac{2}{n}\sum_{i=1}^{n}X_i^2}$

e) $\sqrt{\frac{n}{2} \sum_{i=1}^{n} X_i^2}$

b) $\sqrt{\sum_{i=1}^{n} X_{i}^{2}}$

d) $\frac{3}{2}\bar{X}$

f) $\frac{2}{3}\bar{X}$

31. Величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$.

Какое примерное распределение имеет $\hat{\theta}^2$ согласно дельта-методу?

a)
$$\mathcal{N}(4; 8 \cdot 0.01^2)$$

c)
$$\mathcal{N}(4; 4 \cdot 0.01^2)$$

e)
$$\mathcal{N}(4; 2 \cdot 0.01^2)$$

b)
$$\mathcal{N}(2; 4 \cdot 0.01^2)$$

f)
$$\mathcal{N}(4; 16 \cdot 0.01^2)$$

32. Отличница Машенька получает только 8, 9 или 10. За все годы обучения Маша получила 40 восьмёрок, 70 девяток и 40 десяток.

Найдите значение статистики Пирсона для проверки гипотезы о том, все отличные оценки имеют равную вероятность.

33. Пусть X_1, \ldots, X_n — выборка из распределения Бернулли с параметром θ .

Выберите верное утверждение об эффективности оценки $\hat{\theta}=\bar{X}$, дисперсии и информации Фишеpa.

а) оценка неэффективна,
$$\mathrm{Var}(\hat{\theta}) = \frac{p(1-p)}{n}$$
 и $I(\theta) = np(1-p)$

c) оценка неэффективна,
$$\operatorname*{Var}(\hat{\theta}) = \frac{n}{p(1-p)} \text{ и } I(\theta) = \frac{p(1-p)}{n}$$
 $\operatorname*{Var}(\hat{\theta}) = \frac{n}{p(1-p)} \text{ и } I(\theta) = \frac{p(1-p)}{n}$

$$\operatorname{Var}(\hat{\theta}) = \frac{n}{p(1-p)}$$
 и $I(\theta) = \frac{p(1-p)}{n}$

b) оценка эффективна,
$$\operatorname{Var}(\hat{\theta}) = \frac{p(1-p)}{n}$$
 и $I(\theta) = \frac{n}{p(1-p)}$

f) оценка неэффективна,
$$\operatorname{Var}(\hat{\theta}) = \frac{n}{p(1-p)}$$
 и $I(\theta) = \frac{p(1-p)}{n}$