Learning Theory-Infinite Hypothesis sets

DINA ELREEDY

Generalization bound (M hypotheses)

•Hoeffdeing's Inequality of the selected g hypothesis out of M hypotheses using N training points.

$$\Pr[|Ein(g) - Eout(g)| > \varepsilon] \le 2Me^{-2\varepsilon^2 N}$$

Then, with probability at least 1- δ :

$$Eout(g) \le Ein(g) + \varepsilon$$

$$Eout(g) \le Ein(g) + \sqrt{\frac{1}{2N} \ln(\frac{2M}{\delta})}$$

where
$$\delta = 2Me^{-2\varepsilon^2 N}$$

Generalization bound

- •What if we have an infinite set of hypotheses?
- •Example: the perceptron learning algorithm.

•Can we derive a generalization bound?

Review: Union bound of M hypotheses

Remember that M comes from applying a union bound.

Let the bad events B_i be:

$$Pr[B_i] = P[|Ein(h_i) - Eout(h_i)| > \varepsilon]$$

The union bound for M hypotheses:

$$P[B_1 \ or \ B_2 or \ ... \ or B_M] \le P[B_1] + P[B_2] + \ P[B_M] \le \sum_{i=1}^{M} Pr[B_i]$$

M terms

Since
$$P(|Ein(h_i)-Eout(h_i)|>\epsilon) \le 2e^{-2\epsilon^2N}$$

Then,
$$P(|Ein(g)-Eout(g)|>\epsilon) \le 2Me^{-2\epsilon^2N}$$

Union bound of M hypotheses

- •The good news is that the B events are overlapping!!
- •Since many hypotheses are similar, so their corresponding B events $P[Ein(h_i) Eout(h_i) \mid > \varepsilon]$ are overlapping.
- •Thus, the derived union bound was loose.
- •We shall derive a tighter bound for infinite hypotheses.

Example- linear classifiers

Dichotomies

•For a binary classification problem:

A hypothesis h: $X -> \{+1,-1\}$.

- •Apply a hypothesis h to a finite sample of input points not the whole input space.
- •Assume we have N sample points $\{x_1, x_2, ..., x_N\}$
- •Apply $h \in H$ to the N points, we get a dichotomy which is an N-tuple of $(h(x_1), h(x_2),...h(x_N))$.

Dichotomies (cont.)

•For a hypothesis set H, the dichotomies generated by H are defined as:

$$H(x_1, x_2, x_N) = \{(h(x_1), h(x_2), \dots h(x_N)) | h \in H\}$$

- •A hypothesis h: X -> {+1,-1}.
- •A dichotomy: $\{x_1, x_2, ... x_N\} -> \{+1, -1\}$
- Number of hypotheses |H| can be infinite.
- •Maximum number of dichotomies $|H(x_1, x_2, ...x_N)|$ is 2^N .
- •The greater the number of dichotomies $|H(x_1, x_{2_i} ... x_N)|$ is the more diverse and powerful the hypothesis set H.

Growth Function

- •The growth function $m_H(N)$ for a hypothesis set H is defined as:
 - The largest number of dichotomies that can be generated by H on any N points.

$$m_H(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N \in X} |H(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$$

•Since the maximum number of dichotomies $|H(x_1, x_2, ...x_N)|$ is 2^N , then:

$$m_H(N) \leq 2^N$$

Growth Function (cont.)

•Given H, if H can generate all possible dichotomies on data points (x_1, x_2, x_N) such that $|H(x_1, x_2, x_N)| = 2^N$ then H shatters (x_1, x_2, x_N) .

Growth function-Perceptron

N=3

$$m_{H(3)} = 8$$

Growth function-Perceptron

N=3 (co-linear points)

Growth function-Perceptron

 $m_{H(4)} = 14$

Growth function- Positive rays

•H consists of all hypotheses h of the form: h(x)=sign(x-a)

$${}^{\bullet}m_{H(_{N})}=N+1$$

Growth function-Positive intervals

- •H consists of all hypotheses in one dimension that returns +1 within some interval and -1 otherwise.
- •Each hypothesis is specified by the two end values of the interval (a,b).

$$\bullet m_{H(N)} = {N+1 \choose 2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

Convex sets

A set is convex if the line between any two points in the set entirely lies within the set.

Image source: https://faculty.math.illinois.edu/~mlavrov/docs/484 -spring-2019/ch2lec1.pdf

Growth function- Convex sets

- •H consists of all the hypotheses in two dimensions that are positive inside a convex set and negative elsewhere.
- •Choose N points on the circumference of a circle.
- Connect positive points with a polygon.

$${}^{\bullet}m_{H(N)}=2^{N}$$

•H shatters these N points.

Breakpoint

- •If no data set of size k can be shattered by H, then k is said to be a breakpoint for H.
- •If k is a breakpoint then:

$$m_{H(k)} < 2^k$$

Breakpoint Examples

•For 2D perceptron:

•For the 1D positive rays:

•For the 1D positive interval:

•For the convex sets:

The VC Dimension

•The VC dimension of a hypothesis set H denoted by $d_{vc}(H)$ is the largest value of N for which $m_{H(N)} = 2^{N}$.

$$\cdot d_{vc(H)} = k - 1$$

•If there is no break point for the hypothesis set H, $m_{H(N)} = 2^N \ \forall N$, then $d_{vc}(H) = \infty$.

VC dimension-examples

•The VC dimension for 2D perceptron is $d_{vc}(H) = 3$.

•The VC dimension for d-dimension perceptron is $d_{vc}(H) = d+1$.

VC dimension-examples (cont.)

•The VC dimension for positive rays $d_{vc(H)} = 1$.

$$h(x) = -1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots \quad h(x) = +1$$

$$x_N$$

•The VC dimension for positive intervals $d_{vc(H)}=2$.

$$h(x) = -1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

$$h(x) = +1$$

$$h(x) = -1$$

$$x_1 \quad x_2 \quad x_3 \quad \dots$$

•VC dimension can be interpreted as the effective number of parameters (degrees of freedom).

Theorem

•If H has a break point, then $m_{H(N)}$ is bounded by a polynomial in N.

$$m_{H(N)} \le \sum_{i=0}^{k-1} \binom{N}{i}$$

$$m_{H(N)} \leq \sum_{i=0}^{d_{vc}(H)} {N \choose i}$$

VC-Generalization bound for Infinite hypothesis set

The VC inequality using the growth function instead of M:

$$\Pr[|Ein(g) - Eout(g)| > \varepsilon] \le 4m_{H(2N)}e^{-\frac{1}{8}\varepsilon^2 N}$$

VC Generalization bound

•The VC inequality:

$$\Pr[|Ein(g) - Eout(g)| > \varepsilon] \le 4m_{H(2N)}e^{-\frac{1}{8}\varepsilon^2N}$$

•Thus, with probability at least 1- δ where $\delta = 4m_{H(2N)}e^{-\frac{1}{8}\varepsilon^2N}$:

$$Eout(g) \le Ein(g) + \varepsilon$$

Accordingly, the VC generalization bound:

$$Eout(g) \le Ein(g) + \sqrt{\frac{8}{N} ln(\frac{4m_{H(2N)}}{\delta})}$$

•If VC dimension is finite, then the growth function $m_{H(2N)}$ is polynomial, and the generalization error converges to zero as N increases.

Sample Complexity

- •The sample complexity means the number of training examples N needed to achieve a certain
- •generalization performance.
- •The generalization performance is characterized by two parameters:
- ε: Error tolerance defines the allowed generalization error
- δ : Defines how often the error tolerance ε is violated.

Sample Complexity (cont.)

•To get a generalization error $\leq \varepsilon$:

$$\sqrt{\frac{8}{N}\ln(\frac{4m_{H(2N)}}{\delta})} \le \varepsilon$$

•Then, the sample complexity N to achieve that generalization error would be:

$$N \ge \frac{8}{\varepsilon^2} \ln \left(\frac{4m_{H(2N)}}{\delta} \right)$$

which if function of N, solve it using numerical iterative methods.

As a rule of thumb $N \ge 10 d_{vc}(H)$

Model Complexity

•With probability at least $1-\delta$:

$$Eout(g) \le Ein(g) + \sqrt{\frac{8}{N} \ln(\frac{4m_{H(2N)}}{\delta})}$$

•With fixed N (number of training samples), the term $\sqrt{\frac{8}{N}} \ln(\frac{4m_{H(2N)}}{\delta})$ can be regarded as model complexity:

$$\Omega(N,H,\delta) = \sqrt{\frac{8}{N} \ln(\frac{4m_{H(2N)}}{\delta})}$$

Thus, with probability at least $1-\delta$:

$$Eout(g) \leq Ein(g) + \Omega(N,H,\delta)$$

Model complexity vs. generalization error Trade-off

Increases as dvc increases (complex models)

Decreases as dvc increases (complex models)

- •The more complex H, the higher $m_{H(2N)}$ and the generalization error would be larger (worse).
- •However, the more complex H, the less the in-sample error.

Generalization Error

- ullet A very simple model with low d_{vc} , will not fit the training data well and will have a high in-sample error.
- •A more complex learning model with higher d_{vc} would fit the training data better, resulting in a lower in-sample error, but the generalization will be worse.
- •Some intermediate $d^*_{\ \ vc}$ represents a trade-off between the two errors.

Ein vs. Eout

- •Ein is the error on the training data. (in-sample error)
- Eout is the error over the entire input space X. (out of sample error)

•To estimate Eout, we should use new test points that are never used for training.

Estimating Eout in practice

•The VC bound is loose, we need a more accurate estimate of **Eout** for real-world applications.

Evaluate a sample estimate for Eout as follows:

- Use a fresh new test set of size K not involved in the training process.
- Test the final hypothesis g on the test set and report Etest.
- •However, what about the generalization error between Etest and Eout?

We can apply Hoeffding's Inequality as g is not affected by test data.

$$P(|Etest(g) - Eout(g)| > \varepsilon) \le 2e^{-2\varepsilon^2 K}$$

where K is the test set size.

Summary

- Dichotomies
- Growth function
- Breakpoint
- VC dimension
- •VC generalization bound for infinite hypotheses
- Sample complexity
- Model Complexity and trade-off between in-sample and generalization error
- Estimate Eout in practice