

CZ3005 Artificial Intelligence

Week 8b - Logical Agent

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

Recap

Intelligent agents need ...

Knowledge about the world to make good decisions.

Knowledge can be ...

- Defined using a knowledge representation language.
- Stored in a knowledge base in the form of sentences.
- Inferred, using an inference mechanism and rules.

Recap

```
function KB-Agent (percept) returns action
static KB, // a knowledge base
t // a time counter, initially 0

Tell (KB, Make-Percept-Sentence (percept, t))
action ← Ask (KB, Make-Action-Query (percept, t))
Tell (KB, Make-Action-Sentence (action, t))
t ← t + 1
return action
```

- -> 3 steps: interpretation, inference, execution
- > KB: background knowledge (observed)+ acquired information (deduced)

Knowledge Representations

Knowledge representation (KR)

- KB: set of sentences –> need to
- Express knowledge in a (computer-) tractable form

Knowledge representation language

- Syntax implementation level
 - Possible configurations that constitute sentences

Logic

- Semantics knowledge level
 - Facts of the world the sentences refer to
 - e.g. language of arithmetics: x, y numbers
 sentence: "x ≥ y", semantics: "greater or equal"

Reasoning and Logic

Logic

- Representation + Inference = Logic
 - Where representation = syntax + semantics

Reasoning

- Construction of new sentences from existing ones
- Entailment as logical inference
 - the relationship between sentences whereby one sentence will be true if all the others are also true

Deduction and Induction

Mechanical reasoning

- Example
 - If a chord sequence is tonal, then it can be generated by a context-sensitive grammar.
 - The twelve-bar blues has a chord sequence that is tonal.
 - The twelve-bar blues has a chord sequence that can be generated by a context-sensitive grammar.

Deductive inference

– KB: Monday ⇒ Work, Monday |- Work sound

Inductive inference

- KB: Monday ⇒ Work, Work |- Monday unsound!
- Generalization e.g., "all swans are white ..."

Deduction and Induction

Entailment and Inference

Entailment

- Generate sentences that are necessarily true,
 given that the existing sentences are true
- Notation: KB \mid = α

Inference

- The act or process of deriving logical conclusions from premises known or assumed to be true.
- **Tell**, given KB: (KB \mid = α)!
- Ask, given KB and α : (KB |= α)?

Properties of Inference

– Can be described by the sentences it derives, KB |= $lpha_I$

Soundness

- Generate only entailed sentences
- Proof: sequence of operations of a sound inference
 - Record of operations that generate a specific entailed sentence

```
e.g. "Smoke \Rightarrow Fire" and "Smoke" |= "Fire" "Fire \Rightarrow Call_911" and "Fire" |= "Call_911"
```

Completeness

A proof can be found for any entailed sentence

An Example of Sound Inference

– Sentence: x

Semantics: an expression; can be a single symbol or number,

the concatenation of 2 expressions, etc.

– Sentence: x y

• Semantics: an expression which refers to a quantity that is the

product of the quantities referred to by each of the

expressions

- Sentence: x = y

• Semantics: the 2 expressions on each side of "=" refer to the

same quantity

- A sound inference: from $E = mc^2$

$$T_1 \ge T_2$$
 |= E $T_1 \ge mc^2 T_2$

Is this a Sound Inference?

– Sentence: x

Semantics: an expression; can be a single symbol or number,

the concatenation of 2 expressions, etc.

– Sentence: x y

• Semantics: an expression which refers to a quantity that is the

product of the quantities referred to by each of the

expressions

- Sentence: x = y

• Semantics: the 2 expressions on each side of "=" refer to the

same quantity

- A sound inference? from $E = mc^2$

$$T_1 > T_2$$
 \models E $T_1 \ge mc^2 T_2$

Knowledge Representation Languages

Formal (programming) languages

- Good at describing algorithms and data structures
 - e.g. the Wumpus world as a 4x4 array, World[2,2] ← Pit
- Poor at representing incomplete / uncertain information
 - e.g. "there is a pit in [2,2] or [3,1]", or "...a wumpus somewhere"
- > not <u>expressive</u> enough

Natural languages

- Very expressive (too much, thus very complex)
- More appropriate for communication than representation
- Suffer from ambiguity

- e.g. "It's hot!"
- e.g. "small cats and dogs" compared to "- x + y".

Properties of Representations

 KR languages should combine the advantages of both programming and natural languages.

Desired properties

- Expressive
 - Can represent everything we need to.
- Concise
- Unambiguous
 - Sentences have a unique interpretation.
- Context independent
 - Interpretation of sentences depends on semantics only.
- Effective
 - An inference procedure allows to create new sentences.

Properties of Semantics

Interpretation (meaning)

- Correspondence between sentences and facts
- Arbitrary meaning, fixed by the writer of the sentence
- Systematic relationship: compositional languages
 - The meaning of a sentence is a function of the meaning of its parts.
- Truth value
 - A sentence make a claim about the world —> TRUE or FALSE
 - Depends on the interpretation and the state of the world
 - e.g. Wumpus world: S(1,2) true if means "Stench at [1,2]" and the world has a wumpus at either [1,3] or [2,2].

one un

uno yi

ichi

Properties of Inference

Definition

- Inference (reasoning) is the process by which conclusions are reached
- Logical inference (deduction) is the process that implements entailment between sentences

Useful properties

- Valid sentence (tautology)
 - iff TRUE under all possible interpretations in all possible worlds.
 - e.g. "S or S" is valid, "S(2,1) or S(2,1)", etc.
- Satisfiable sentence
 - iff there is some interpretation in some world for which it is TRUE
 - e.g. "S and ¬S" is unsatisfiable

Inference and Agent Programs

Inference in computers

- Does not know the interpretation the agent is using for the sentences in the KB
- Does not know about the world (actual facts)
- Knows only what appears in the KB (sentences)
 - e.g. Wumpus world: doesn't know the meaning of "OK", what a
 wumpus or a pit is, etc. can only see: KB |= "[2,2] is OK"
- > Cannot reason informally
 - does not matter, however, if KB |= "[2,2] is OK" is a valid sentence

Formal inference

Can handle arbitrarily complex sentences, KB |= P

Different Logics

Formal logic

- Syntax
 - A set of rules for writing sentences
- Semantics
 - A set of rules (constraints) for relating sentences to facts
- Proof theory / inference procedure
 - A set of rules for deducing entailments of sentences

Propositional logic

- Symbols, representing propositions (facts)
- Boolean <u>connectives</u>, combining symbols
 - e.g. "Hot" or "Hot and Humid"

Different Logics

First-order logic

- Objects and <u>predicates</u>, representing properties of and relations between objects
- Variables, Boolean connectives and quantifiers
 - e.g. "Hot(x)", "Hot(Air)" or "Hot(Air) and Humid(Air)"

Temporal logic

World ordered by a set of <u>time</u> points (intervals)

Probabilistic and fuzzy logic

- Degrees of <u>belief</u> and <u>truth</u> in sentences
 - e.g. "Washington is a state" with belief degree 0.4, "a city" 0.6,

"Washington is a large city" with truth degree 0.6

Different Degrees of Truth

- Q: Is there a tuna sandwich in the refrigerator?
- -A:0.5!

Probabilities

There is or there isn't (50% chance either way).

Measures

There is half a tuna sandwich there.

Fuzzy answer

 There is something there, but it isn't really a tuna sandwich. Perhaps it is some other kind of sandwich, or a tuna salad with no bread...

The Commitments of Logics

Formal (KR) Language	Ontological commitment (what exists in the world)	Epistemological commit- ment (what an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability logic Fuzzy logic	facts facts, objects, relations facts, objects, rel., times facts degrees of truth 01	true / false / unknown true / false / unknown true / false / unknown degree of belief 01 degree of belief 01

Summary

A representation language is defined by ...

- A syntax, which specify the structure of sentences, and
- A semantics, which specifies how the sentences relate to facts in the world.

Inference is ...

- The process of deducing new sentences from old ones.
- Sound if it derives true conclusions from true premises.
- Complete if it can derive all possible true conclusions.

Logics ...

 Make different commitments about what the world is made of and what kind of beliefs we can have about facts.

Thank you!

