Lecture 19 Minimum Spanning Trees

EECS 281: Data Structures & Algorithms

The Minimum Spanning Tree Problem

Given: edge-weighted, *undirected* graph G = (V, E)

Find: subgraph $T = (V, E), E' \subseteq E$ such that

- All vertices are pair-wise connected
- The sum of all edge weights in T is minimal
- See a cycle in T? Get rid of an edge
 - Therefore, *T* must be a tree (no cycles)

Planar MST: vertices are planar points

- All pair-wise edges are present
- Weights are distances

Example

CLRS

MST Quiz

- 1. Prove that a unique shortest edge must be included in every MST
- 2. Same for second shortest edge
- 3. What about third shortest edge?
- 4. Show a graph with > 1 MST
- 5. Show a graph and its MST which avoids some shortest edge
- Show a graph where every longest edge must be in every MST

Prim's & Kruskal's Algorithms

- Algorithms for finding MSTs on edgeweighted, connected, undirected graphs
- Greedily select edges one by one and add to a growing sub-graph
 - Prim grows a real tree
 - Kruskal grows a <u>forest</u> of trees that eventually merges into a single tree

Prim's Algorithm

- Given graph G = (V, E)
- Start with 2 sets of vertices: 'innies' & 'outies'
 - 'innies' are visited nodes (initially empty)
 - 'outies' are not yet visited (initially V)
- Select first innie arbitrarily (root of MST)
- Iteratively (until no more outies)
 - Choose outie (v') with smallest distance from <u>any</u> innie
 - Move v' from outies to innies
- Implementation issue: use linear search or pq?

Prim: Data structures

- Three arrays
- For each vertex v, record:
 - $-k_v$: has v been visited? (initially false for all $v \in V$)
 - $-d_v$: What is the minimal edge weight to v? (initially ∞ for all $v \in V$, except $v_r = 0$)
 - $-p_{v}$: What vertex precedes (is parent of) v? (initially unknown for all $v \in V$)

Prim's Algorithm

Set starting point distance to 0Repeat until every k_v is true:

- 1.From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v
- 2.Set k, to true
- 3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

v	k_v	d_v	p_v
a	$oldsymbol{F}$	0	-
b	$oldsymbol{F}$	8	
С	\boldsymbol{F}	8	
d	\boldsymbol{F}	8	
e	$oldsymbol{F}$	8	
f	$oldsymbol{F}$	8	

v	k_v	d_v	p_v
а	T	0	-
b	$oldsymbol{F}$	13	a
C	F	8	а
d	$oldsymbol{F}$	1	а
e	$oldsymbol{F}$	8	
f	$oldsymbol{F}$	8	

ν	k_v	d_v	p_v
а	T	0	-
b	F	13	а
С	F	5	d
d	T	1	а
e	F	4	d
f	F	5	d

V	k_v	d_v	p_{v}
a	T	0	-
b	$oldsymbol{F}$	13	а
С	$oldsymbol{F}$	3	e
d	T	1	а
e	T	4	d
f	F	2	e

V	k_v	d_v	p_v
a	T	0	-
b	F	13	а
C	$oldsymbol{F}$	3	e
d	T	1	а
e	T	4	d
f	T	2	e

V	k_v	d_v	p_{v}
a	T	0	-
b	F	13	а
С	T	ത	e
d	T	–	а
e	T	4	d
f	T	2	e

v	k_v	d_v	p_{v}
a	T	0	
b	T	13	а
С	T	3	e
d	T	1	а
e	T	4	d
f	T	2	e

MST this!

Using Prim's; start at node A

Algorithm – Linear Search

Repeat until every k, is true:

- 1. From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v
- 2. Set k_v to true
- 3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Complexity – Linear Search

|V| times

Repeat until every k_v is true:

- 1. From the set of vertices for which $k_{\rm v}$ is false, select the vertex v having the smallest tentative distance $d_{\rm v}$
- 2. Set k_v to true (1)
- 3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Most at this vertex: O(|V|). Cost of each: O(1).

Algorithm – Heaps

Repeat until every k, is true:

- 1. From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v
- 2. Set k_v to true
- 3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Complexity - Heaps

|V| times

Repeat until every k_v is true:

- 1. From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v
- 2. Set k_v to true (1)

 $O(\log |V|)$

3. For each vertex w adjacent to v for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Most at this vertex: O(|V|). Cost of each: $O(\log(|V|))$. Note: Visits every edge once (over all iterations) = O(|E|).

Prim: Asymptotic Complexity

- $O(V^2)$ for the simplest two-loop implementation; summary of complexity analysis: $V * (V + 1 + V) = 2 * V^2 + V$
- O(E log V) with heaps; summary of analysis: V * log V + E * log V E log V
- Same trade-offs for sparsity
- Optimizations for the two-loop implementation

- Greedy MST algorithm for edge-weighted, connected, undirected graph
 - Presort all edges: O(E log E) O(E log V) time
 - Try inserting in order of increasing weight
 - Some edges will be discarded so as not to create cycles
- Initial two edges may be disjoint
 - We are growing a <u>forest</u> (union of disjoint trees)

Kruskal: Complexity Analysis

- Sorting takes E log V
 - Happens to be the bottleneck of entire algorithm
- Remaining work: a loop over *E* edges
 - Discarding an edge is trivial O(1)
 - Adding an edge is easy O(1)
 - Most time spent testing for cycles O(?)
 - Good news: takes less than log E log V
- Key idea: if vertices v_i and v_j are connected, then a new edge would create a cycle
 - Only need to maintain disjoint sets

Maintaining Disjoint Sets

- N locations with no connecting roads
- Roads are added one by one
 - Distances are unimportant (for now)
 - Connectivity is important
- Want to connect cities ASAP
 - Redundant roads would slow us down
- For two cities k and j, would road (k, j) be redundant?

Union-Find Data Structure

- Idea 1: every disjoint set should have its <u>unique representative</u> (selected element)
 - Every set element k must know its representative j
- **Idea 2**: to tell if *k* and *m* are in the same set, compare their representatives
 - Redundancy check becomes fast
- Two main operations: Union() and Find()
- Lifecycle of a union-find data structure
 - Starts with N entirely disjoint elements
 - Ends up with all of them in one set

Union-Find Example

Everything is stored in an array

A[j] is the representative of j

1 2 3 4 5 6 7 8 9 10

1. Connect 2 and 6

2. Connect 8 and 6

3. Connect 9 and 4

Making Union-Find Faster

- Idea 3: When performing union of two sets, update the smaller set (less work)
- Measure complexity of all unions throughout the lifecycle (together)
 - We call union <u>exactly</u> N-1 times
 - If we connect to a disjoint element every time,
 it will take N time total (best case)
 - But merging large sets, say N/2 and N/2 elements,
 will take O(N) time for one union() too slow!

Smarter Union-Find

- Idea 4: No need to store actual representative for each element, as long as can find it quickly
 - Each element knows someone who knows the representative (may need more steps)
 - Union() becomes very fast: one of representatives will need to know the other
 - Find() becomes slower
 - Union() cannot be faster than Find()

Another Optimization: Path Compression

- So far, Find() was read-only
 - For element j, finds the representative k
 - Traverses other elements on the way (for which k is also the representative)

Idea 5:

We can tell *j* that it's representative is *k*

- Same for other elements on path from $j \rightarrow k$
- Doubles runtime of Find(), but same O()

Asymptotic Complexity?

- Must use amortized analysis over the life cycle of union-find
- Result is surprising
 - $O(N\alpha(N))$, where $\alpha()$ grows very slowly
 - $-\alpha$ () is the reverse-Ackerman function
 - In practice, almost-linear-time performance
- Details taught in more advanced courses

MST this! (Kruskal's)

MST Summary

- MST is lowest-cost sub-graph that
 - Includes all nodes in a graph
 - Keeps all nodes connected
- Two algorithms to find MST
 - Prim: iteratively adds closest node to current tree very similar to Dijkstra, $O(V^2)$ or $O(E \log V)$
 - Kruskal: iteratively builds forest by adding minimal edges, O(E log V)
- For dense G, use the two-loop Prim variant
- For sparse *G*, Kruskal is faster
 - Relies on the efficiency of sorting algorithms
 - Relies on the efficiency of union-find

Take-home MST Quiz

- Prove that Kruskal always finds an MST
- Prove that Prim always finds an MST
- Prove that Prim can start at any vertex
- Hint: revisit in-class MST quiz