Variables of Interest	Parameter of Interest	Statistic of Interest	Descriptive Methods	Inferential Methods	Assumptions for Inferential Methods
Two Categorical Variables (in general)	True Conditional Population Proportions $(\pi_{1 G1}, \pi_{1 G2},)$	Sample Proportions $(\hat{p}_{1 G1}, \hat{p}_{1 G2})$	 Report sample proportions Contingency table Stacked/Dodged/Filled Bar Plot 	Chi-square test	Observations are independent EXPECTED counts should be greater than 5
Single Numerical Variable	True Population Mean (μ)	Sample Mean	 Report measures of center and variation Dotplot, boxplot, histogram, etc. Describe shape + outliers 	One-sample t-testCI for population mean	• Either the sample size is fairly large or the data reasonably follow a normal distribution
Comparing Numerical Variable across Two Categories of a Categorical Variable (INDEPENDENT samples)	Difference in True Population Means (μ1 - μ2)	Difference in Sample Means $(\overline{x}_1 - \overline{x}_2)$	 Report x ₁, x ₂, and s ₁, s ₂ Side-by-side boxplots, facet histograms, etc. 	■ Two-sample t-test ■ CI for μ1 - μ2	 Observations are independent Either both sample sizes are fairly large or the data from each group reasonably follow a normal distribution

Comparing Numerical Variable across Two Categories of a Categorical Variable (DEPENDENT samples)	True Mean Difference (µ _d)	Sample Mean Difference (\bar{x}_d)	 Report measures of center and variation for the differences Dotplot, boxplot, histogram, etc. 	paired t-testCI for population mean difference	■ Either the number of pairs is fairly large or the differences reasonably follow a normal distribution
--	--	--	--	---	---