Q.1. The simplest augmentation of the context-free grammar is the Probabilistic Context PCFG Free Grammar (PCFG), also known as the Stochastic Context-Free Grammar SCFG (SCFG), first proposed by Booth (1969).

Grammar		Lexicon	
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$	
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book[.10] \mid flight[.30]$	
$S \rightarrow VP$	[.05]	meal [.15] money [.05]	
$NP \rightarrow Pronoun$	[.35]	flights [.40] dinner [.10]	
NP → Proper-Noun	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$	
$NP \rightarrow Det Nominal$	[.20]	prefer; [.40]	
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$	
Nominal → Noun	[.75]	me [.15] you [.40]	
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$	
$Nominal \rightarrow Nominal PP$	[.05]	NWA [.40]	
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$	
$VP \rightarrow Verb NP$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$	
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]	
$VP \rightarrow Verb PP$	[.15]	through [.05]	
$VP \rightarrow Verb NP NP$	[.05]		
$VP \rightarrow VP PP$	[.15]		
PP → Preposition NP	[1.0]		

Draw the possible parse trees for deriving a sentence "Book the dinner flight". Explain how PCFG is used for disambiguation.

Q.2.

$$S \rightarrow NP \ VP$$
 $V \rightarrow swam \ | \ ran \ | \ flew$ $VP \rightarrow V \ NP$ $VP \rightarrow swam \ | \ ran \ | \ flew$ $VP \rightarrow VP \ PP$ $D \rightarrow the \ | \ a \ | \ an$ $NP \rightarrow D \ N$ $N \rightarrow pilot \ | \ plane$ $NP \rightarrow NP \ PP$ $NP \rightarrow Edinburgh \ | \ Glasgow$ $PP \rightarrow P \ NP$ $P \rightarrow to$

CYK algorithm uses bottom-up parsing technique. Apply the CYK algorithm on the sentence "The pilot flew the plane to Glasgow" using the grammar G and state whether the sentence is recognized or not.

Q.3 Find minimum edit distance between "STALL" and "TABLE".

Q.4. Classify give test statement using Naïve Bayes algorithm.

	docID	words in document	in c = China?
Training set 1 2 3 4	1	Chinese Beijing Chinese	yes
	Chinese Chinese Shanghai	yes	
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
Test set	5	Chinese Chinese Tokyo Japan	?

Q.5 Find out pos tagging using Viterbi's algorithm.

Book a car.
Park the car.
The book is in the car.
The car is in a park.