Εισαγωγή στη Θεωρία Πληροφορίας

- Ένα σύστημα επικοινωνιών έχει ως σκοπό τη μεταφορά μιας ακολουθίας μηνυμάτων μεταξύ πομπού και δέκτη.
- Στη πράξη, τα μηνύματα που μεταδίδει ο πομπός και αναγνωρίζει ο δέκτης δεν είναι αυθαίρετα.
 - Αντίθετα, δουλειά του δέκτη είναι να αναγνωρίσει σε κάθε λήψη ποιο μήνυμα έλαβε από ένα προκαθορισμένο σύνολο δυνατών μηνυμάτων που μπορεί να μεταδώσει ο πομπός.
 - Συνεπώς ο δέκτης ουσιαστικά δεν αναγνωρίζει τι ήταν ένα μήνυμα, αλλά ποιο ήταν.
- Η απόφαση αυτή λαμβάνεται με επιλογή από το δέκτη του μηνύματος που εμφανίζει τη μεγαλύτερη συσχέτιση με το μήνυμα που έλαβε,
 - δηλαδή εκείνου που μοιάζει περισσότερο με το ληφθέν μήνυμα.
 - Π.χ: τα δυνατά μηνύματα είναι τα 000, 111 και ελήφθη το 100.
 - Ποιό μήνυμα εστάλη;

Εισαγωγή στη Θεωρία Πληροφορίας

- Κάθε ένα από τα μηνύματα που μεταδίδονται μεταφέρει κάποιο ποσό πληροφορίας.
 - Κάθε μήνυμα δε μεταφέρει πληροφορία ίδιας σημαντικότητας ή αλλιώς την ίδια ποσότητα πληροφορίας.
- Το παραπάνω γίνεται εύκολα κατανοητό θεωρώντας το παράδειγμα της λήψης μετεωρολογικού δελτίου σε κάποια περιοχή στην έρημο όπου έχει να βρέξει αρκετά χρόνια.
 - Διαισθητικά καταλαβαίνουμε ότι σε περίπτωση που το δελτίο αναφέρει «βροχήκαταιγίδα» η ποσότητα πληροφορίας του μηνύματος αυτού είναι πολύ μεγαλύτερη από την αναφορά «ηλιοφάνειας»
 - καθώς η πρώτη αναφορά είναι πολύ πιο απίθανη για τη περιοχή.

Εισαγωγή στη Θεωρία Πληροφορίας

Με τι ασχολείται λοιπόν η ΘΠ;

- 1. Τι εννοούμε με τον όρο «πληροφορία» μηνύματος και πως μπορούμε να την μετρήσουμε.
- 2. Πως μπορούμε να συμπιέσουμε τα μηνύματα που παράγει μια πηγή πληροφορίας
 - Δηλ. να μεταφέρονται με τα ελάχιστα σύμβολα;
 - και ποια είναι η μέγιστη δυνατή συμπίεση;

Ποσότητα πληροφορίας-Εντροπία

 \square Αν X είναι μία διακριτή τυχαία μεταβλητή με πιθανά ενδεχόμενα $\{x_1,x_2,\dots,x_n\}$ και συνάρτηση πυκνότητας πιθανότητας $\rho(x_n)$, τότε η **μέση** ποσότητα πληροφορίας της X, H(X), δίνεται από τη σχέση

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

- $\ \square \$ Η Μέση Πληροφορία ονομάζεται και εντροπία και εναλλακτικά συμβολίζεται με H(p)
- Η εντροπία δεν εξαρτάται από τις τιμές της τ.μ X αλλά από την κατανομή της X!
 - δηλ. τις τιμές που πέρνουν τα ρ;
- \Box Εάν \log_2 : μετράται σε **bits**, εάν \log_{10} : μετράται σε decits \Box Στη συνέχεια θεωρούμε οτι χρησιμοποιούμε \log_2
- □ Ισχύει πάντοτε H(X)≥0

Ποσότητα πληροφορίας- Εντροπία

Παράδειγμα 1

- □ Έστω Χ μία τυχαία μεταβλητή με δύο ενδεχόμενα, πιθανότητας εμφάνισης ρ και (1-ρ) αντίστοιχα.
- $H(p) = -p\log(p) (1-p)\log(1-p)$

 Η μέγιστη τιμή της εντροπίας είναι όταν τα ενδεχόμενα είναι ισοπίθανα

 $X = \begin{cases} b & \mu \varepsilon \pi \imath \theta a v \acute{o} \tau \eta \tau a \ 1/4 \\ c & \mu \varepsilon \pi \imath \theta a v \acute{o} \tau \eta \tau a \ 1/8 \\ d & \mu \varepsilon \pi \imath \theta a v \acute{o} \tau \eta \tau a \ 1/8 \end{cases}$

$$H(X) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{8}\log\frac{1}{8} = \frac{7}{4}bits$$

Εντροπία Πηγής Πληροφορίας

Διακριτή Πηγή Πληροφορίας

- □ Παράγει ακολουθίες συμβόλων s;
- Αλφάβητο πηγής είναι το σύνολο των συμβόλων
 - $S=(s_1,s_2,...,s_n)$, όπου n είναι το πλήθος των συμβόλων
- Παράγει διαδοχικές ακολουθίες συμβόλων που ονομάζονται μηνύματα
 - \blacksquare Το πλήθος των δυνατών μηνυμάτων μήκους l είναι n^l
 - Π.χ σε δυαδική πηγή (0,1) με μηνυματα μήκους 10, το πλήθος των δυνατών μηνυμάτων είναι 1024
- Η Παραγωγή των συμβόλων λαμβάνει χώρα με κάποια κατανομή πιθανότητας ρ
- Η παραγωγή κάθε συμβόλου γίνεται
 - Είτε ανεξάρτητα αυτών που έχουν προηγηθεί οπότε αναφερόμαστε σε διακριτή πηγή χωρίς μνήμη
 - Είτε εξαρτάται στατιστικά αυτών που έχουν προηγηθεί οπότε αναφερόμαστε σε διακριτή πηγή με μνήμη

 Μέση ποσότητα πληροφορίας ή εντροπία των συμβόλων (bits/symbol)

$$\square H(S) = -\sum_{i=1}^{n} p_i \log p_i$$

□ Μέγιστη μέση ποσότητα πληροφορίας (bits/symbol)

$$\Box$$
 Πλεονασμός διακριτής πηγής, [0,1] \Box $red = 1 - \frac{H(S)}{\max H(S)} = 1 - \frac{H(S)}{\log n}$

- □ Μέσος Ρυθμός Πληροφορίας της πηγής (bits/sec)
 - $R = symbol \ rate*H(S)$

Εντροπία Πηγής Πληροφορίας

- \Box Παράδειγμα: $S=\{0,1\}$ με p(0)=3/4 και p(1)=1/4.
 - \blacksquare H(S)=0.815 bits/symbol
 - \blacksquare maxH(S)=log2=1 bit/symbol
 - red=1-0.815/1=0.19
 - Αν η πηγή παράγει σύμβολα με ρυθμό 1000 σύμβολα/sec R=0.815 *1000=815 bps.

- Μέσο πληροφοριακό περιεχόμενο μηνυμάτων της πηγής
 - **□** Εάν γνωρίζουμε ότι η πηγή παράγει μηνύματα μήκους l, με δεδομένο ότι το πλήθος του συνόλου $M=(m_1,m_2,\ldots,m_n)$, των μηνυμάτων είναι n^l , και η πιθανότητα εμφάνισης ενός μηνύματος m_i είναι $p(m_i)$, τότε το μέσο πληροφοριακό περιεχόμενο των μηνυμάτων είναι
 - $\blacksquare H(M) = -\sum p(m_i) \log p(m_i)$
 - Αποδεικνύται ότι H(M)= l*H(S),
 - δηλαδή το μέσο πληροφοριακό περιεχόμενο ενός μηνύματος είναι ίσο με το άθροισμα της μέσης πληροφορίας που μεταφέρουν τα σύμβολα που το αποτελούν.
- □ Παράδειγμα: Τα 4 μηνύματα μήκους 2 που δημιουργούνται από την πηγή των συμβόλων του προηγούμενου παραδείγματος είναι M={00,01,10,11} και οι πιθανότητες να συμβούν είναι ρ =01)= ρ (10)=3/16, ρ (11)=1/16.
 - □ Τότε *H(M)*=1.63 =2*0.815 bits/μήνυμα

Εντροπία Πηγής Πληροφορίας

Παράδειγμα

- Μια πηγή πληροφορίας παράγει σύμβολα, τα οποία ανήκουν στο αλφάβητο S={τ, υ, φ, χ, ψ, ω}. Οι πιθανότητες των συμβόλων αυτών είναι ¼, ¼, 1/8, 1/8, 1/8 και 1/8, αντίστοιχα.Θεωρώντας την πηγή χωρίς μνήμη, ζητείται να υπολογίσετε:
- α) Το σύμβολο με το μεγαλύτερο και το μικρότερο πληροφορικό περιεχόμενο της πηγής.
- β) Το μέσο πληροφορικό περιεχόμενο των συμβόλων της πηγής,
- γ) Το μέσο πληροφορικό περιεχόμενο των μηνυμάτων της πηγής αποτελούμενων από δύο σύμβολα.
- δ) Τον πλεονασμό της πηγής (log6=2,585) και
- ε) Το μέσο ρυθμό πληροφορίας της πηγής για ρυθμό 500 συμβόλων /sec.

□ *Απάντηση*

- α) Τα σύμβολα με το μεγαλύτερο πληροφοραικό περιεχόμενο είναι αυτά που έχουν την μικρότερη πιθανότητα
 - δηλαδή H(i)=-log(1/8)=3 bits όπου $i=\varphi,\chi,\psi,\omega$.
 - Αντίθετα τα σύμβολα με το μικρότερο πληροφορικό περιεχόμενο είναι αυτά που έχουν την μεγαλύτερη πιθανότητα
 - δηλαδή *H(i)=-log(1/4)=2 bits* όπου *i=τ,υ*.
- β) Το μέσο πληροφορικό περιεχόμενο των συμβόλων της πηγής
 - $H(S) = -\sum_{i=1}^{6} p_i \log p_i = -\frac{1}{4} \log \frac{1}{4} \frac{1}{4} \log \frac{1}{4} \frac{1}{8} \log \frac{1}{8} \frac{1}{8} \log \frac{1}{8} \frac{1}{8} \log \frac{1}{8} \frac{1}{8} \log \frac{1}{8} = (20/8) = 2,5 \text{ bits/symbol.}$

Εντροπία Πηγής Πληροφορίας

Απάντηση (συνέχεια)

- γ) Για τον υπολογισμό του μέσου πληροφορικού περιεχομένου των μηνυμάτων της πηγής αποτελούμενων από 2 σύμβολα, υπολογίζουμε πρώτα τις (συνδυασμένες) πιθανότητες δημιουργίας των μηνυμάτων αυτών.
- Για τον υπολογισμό της πιθανότητας κάθε μηνύματος αρκεί να πολλαπλασιάσουμε τις πιθανότητες παραγωγής των συμβόλων από τα οποία αποτελείται. Συνολικά έχουμε 6^2 =36 μηνύματα.
- Παρατηρούμε ότι από τα 36 μηνύματα, 4 έχουν πιθανότητα παραγωγής ίση με (1/16), 16 μηνύματα έχουν πιθανότητα παραγωγής (1/64) και 16 μηνύματα έχουν πιθανότητα παραγωγής (1/32).
 - p1=p(τ , τ)=1/16, p2=p(τ , υ)=1/16, p3=p(τ , φ)=1/32, p4=p(τ , χ)=1/32, p5=p(τ , ψ)=1/32, p6=p(τ , ω)=1/32,
 - p7=p(u,τ)=1/16, p8=p(u,u)=1/16, p9=p(u, φ)=1/32, p10=p(u, χ)=1/32, p11=p(u, ψ)=1/32, p12=p(u, ω)=1/32,
 - p13=p(φ ,r)=1/32, p14=p(φ ,v)=1/32, p15=p(φ , φ)=1/64, p16=p(φ , χ)=1/64, p17=p(φ , ψ)=1/64, p18=p(φ , ψ)=1/64,
 - p19=p(χ , τ)=1/32, p20=p(χ , υ)=1/32, p21=p(χ , φ)=1/64, p22=p(χ , χ)=1/64, p23=p(χ , ψ)=1/64, p24=p(χ , ω)=1/64,
 - p25=p(ψ , τ)=1/32, p26=p(ψ , υ)=1/32, p27=p(ψ , φ)=1/64, p28=p(ψ , χ)=1/64, p29=p(ψ , ψ)=1/64, p30=p(ψ , ω)=1/64,
 - p31=p(ω , τ)=1/32, p32=p(ω , υ)=1/32, p33=p(ω , φ)=1/64, p34=p(ω , χ)=1/64, p35=p(ω , ψ)=1/64, p36=p(ω , ω)=1/64.

Απάντηση (συνέχεια)

Επομένως

$$H(M) = -\sum_{i=1}^{36} p_i \log p_i = -4\frac{1}{16} \log \frac{1}{16} - 16\frac{1}{64} \log \frac{1}{64} - 16\frac{1}{32} \log \frac{1}{32} = (320/64) = 5 \text{ bits/message}.$$

- □ Παρατηρούμε ότι επιβεβαιώνεται πως *H(M)=2 H(S)*
 - Αυτό συμβαίνει λόγω του ότι η πηγή είναι χωρίς μνήμη
- \bullet δ) red=1-H(S)/max(H(S))=1-H(S)/log6=1-(2,5/2,585)=1-0,967=0,0328.
- \blacksquare ϵ) R=rH(S)=500*(2,5)=1250 bits/sec.

Συμπίεση Πληροφορίας (Κωδικοποίηση Πηγής)

- Κωδικοποίηση/συμπίεση της πηγής
 - Είναι η διαδικασία αντιστοίχισης του αλφάβητου των συμβόλων σε ένα άλλο αλφάβητο.
 - Το καινούριο αυτό αλφάβητο ονομάζεται κωδικό αλφάβητο και τα μέλη ονομάζονται κωδικά σύμβολα.
 - Οι ακολουθίες των κωδικών συμβόλων που αντιστοιχούν σε σύμβολα της πηγής λέγονται κωδικές λέξεις

- Απαιτήσεις για χρησιμότητα κωδικών
 - Κάθε ακολουθία κωδικών λέξεων πρέπει να μπορεί να αποκωδικοποιηθεί με μοναδικό τρόπο
 - Η αποκωδικοποίηση πρέπει να γίνεται εύκολα και άμεσα
 - Ο κώδικας πρέπει να πετυχαίνει τη βέλτιστη δυνατή συμπίεση

Συμπίεση Πληροφορίας (Κωδικοποίηση Πηγής)

- Μη ιδιάζων κώδικας
 - Όταν όλες οι κωδικές λέξεις είναι διαφορετικές
- Μοναδικά αποκωδικοποιήσιμος
 - Όταν και οι ακολουθίες των κωδικών λέξεων είναι διαφορετικές
- Άμεσος ή Προθεματικός κώδικας
 - Κάθε μοναδικά αποκωδικοποίησιμος κώδικας που επιτρέπει την άμεση αποκωδικοποίηση της κωδικής λέξης χωρίς να χρειάζεται να λάβει υπόψη του τις επόμενες κωδικές λέξεις.
 - Ο άμεσος κώδικας αποτελείται από κωδικές λέξεις οι οποίες δεν αποτελούν μέρος (προθέματα άλλων)

Παράδειγμα

- Μη ιδιάζων, Ι,ΙΙ,ΙΙΙ,Ι
- Μοναδικά αποκωδικοποιήσιμος,
 ΙΙ,ΙΙΙ,ΙΥ. Ο Ι δεν είναι αφού ΦΦ,Ψέχουν κωδική λέξη την ίδια, 00
- Άμεσοι κώδικες, ΙΙ και ΙΙΙ
- Ο κώδικας IV δεν είναι άμεσος αφού χρειάζεται να δούμε ψηφίο που ανήκει στην επόμενη κωδική λέξη για να καθοριστεί η τρέχουσα, π.χ. 011011100

	-	II	III	IV
Ф	0	00	0	0
X	11	01	10	01
Ψ	00	10	110	011
Ω	01	11	1110	0111

Σημαντικές ερωτήσεις...

- Μπορούμε να βρούμε ένα κώδικα (άμεσο και αποκωδικοποιήσιμο) του οποίου οι κωδικές λέξεις να έχουν το βέλτιστο δυνατό μήκος; Να έχουν δηλαδή τη κατά μέσο όρο τη μικρότερη τιμή μήκους κωδικής λέξης;
 - \blacksquare min $\sum_{i} p_{i} l_{i}$
- Υπάρχει σχέση μήκους λέξης και πιθανότητας εμφάνισης συμβόλου πηγής;
- Αν αντιστοιχίσουμε κωδικές λέξεις μικρού μήκους σε σύμβολα με μεγάλη πιθανότητα εμφάνισης, θα μειωθεί το μέσο μήκος της κωδικής λέξης;
- □ Ποια είναι η βέλτιστη συμπίεση που είναι δυνατόν να επιτευχθεί;

Θεώρημα Κωδικοποίησης Πηγής

- Έστω μια πηγή παράγει $S=\{s_1,s_2,...,s_n\}$ σύμβολα με πιθανότητα εμφάνισης κάθε συμβόλου $\{p_1,p_2,...,p_n\}$.
- **Τ**α σύμβολα αυτά κωδικοποιούνται από ένα κωδικό αλφάβητο q συμβόλων και αντιστοιχίζονται σε άμεσο και αποκωδικοποιήσιμο κώδικα n κωδικών λέξεων μήκους \mathbf{l}_i η κάθε μία, i=1,2,...,n.
- Αν H(C) είναι το μέσο πληροφοριακό περιεχόμενο των συμβόλων της πηγής τότε ισχύει

$$\frac{H(C)}{\log_2 q} \le \sum_{i=1}^n p_i l_i$$

- Για q=2, το βέλτιστο (ελάχιστο) μέσο μήκος κωδικής λέξης είναι ίσο με την εντροπία της πηγής των συμβόλων και δεν μπορεί να είναι μικρότερο από αυτή.
- Ελάχιστο του μήκους των κωδικών λέξεων
 - Η ισότητα ισχύει όταν για κάθε κωδική λέξη i,

$$l_i = \log_q \left(\frac{1}{p_i}\right)$$

Συμπίεση Πληροφορίας (Κωδικοποίηση Πηγής)

- Άρα δεν μπορούμε λοιπόν να καταλήξουμε σε κώδικα με μέσο μήκος λέξεων μικρότερο από την εντροπία της πηγής.
- Όμως πόσο κοντά σε αυτή την τιμή μπορούμε να φτάσουμε;
 - Για κάθε τ.μ Χ υπάρχει ένας άμεσος και μοναδικά αποκωδικοποιήσιμος κώδικας C του οποίου η μέση τιμή μήκους, L(C,X), ικανοποιεί τη σχέση
 - \blacksquare $H(X) \le L(C,X) < H(X)+1$
 - Ο κώδικας αυτός έχει κωδικές λέξεις μήκους

$$l_i^* = \lceil \log_2(1/p_i) \rceil$$

όπου [χ] είναι ο μικρότερος ακέραιος που είναι μεγαλύτερος του χ.

Επίδοση του κώδικα

Η επίδοση, α, ενός κώδικα ορίζεται ως ο λόγος του μέσου πληροφορικού περιεχομένου των συμβόλων της πηγής (ή των κωδικών λέξεων) προς το γινόμενο του μέσου μήκους των κωδικών λέξεων με το λογάριθμο του πλήθους των κωδικών συμβόλων:

$$a = \frac{H(C)}{\left(\sum_{i=1}^{n} p_i l_i\right) \log q}.$$
 (2.9)

Συμπίεση Πληροφορίας (Κωδικοποίηση Πηγής)

- □ Αλγόριθμοι κωδικοποίησης πηγής
 - **□** FANO
 - **□** SHANNON
 - **■** HUFFMAN
 - Βέλτιστος κώδικας: Παράγει το σύνολο κωδικών λέξεων με το ελάχιστο μέσο μήκος
- JPEG και MPEG χρησιμοποιούν μεταξύ άλλων και τον αλγόριθμο Huffman

Αλγόριθμος Κωδικοποίησης FANO

- <u>Βήμα 1°</u>: Τα σύμβολα (ή τα μηνύματα) ταξινομούνται έτσι ώστε οι πιθανότητές τους είναι σε φθίνουσα ακολουθία.
- <u>Βήμα 2°</u>: Στη συνέχεια τα σύμβολα χωρίζονται σε ομάδες ο αριθμός των οποίων είναι ίσος με τον αριθμό των κωδικών συμβόλων (στην περίπτωση δυαδικού κώδικα οι ομάδες χωρισμού συμβόλων είναι δύο).
 - Το κριτήριο σχηματισμού της κάθε ομάδας είναι τέτοιο ώστε αφενός να διατηρείται η σειρά των συμβόλων όπως αυτή έχει καθοριστεί από το βήμα 1
 - Αφετέρου δε να ελαχιστοποιείται η διαφορά στο άθροισμα πιθανοτήτων εμφάνισης συμβόλων μεταξύ των ομάδων
- <u>Βήμα 3°</u>: Για κάθε μία ομάδα συμβόλων που δημιουργήσαμε αντιστοιχίζουμε ένα από τα κωδικά σύμβολα ως το πρώτο τον κωδικών λεξεων που θα προκύψουν
- <u>Βήμα 4º</u>: Επαναλαμβάνουμε τα βήματα 2 & 3 για κάθε μία από τις ομάδες προσθέτοντας κάθε φορά και από ένα κωδικό σύμβολο στην κωδική λέξη μέχρι να δημιουργήσουμε ομάδες με ένα μόνο σύμβολο

Αλγόριθμος κωδικοποίησης SHANNON

- Βήμα 1°: Τα σύμβολα (ή τα μηνύματα) ταξινομούνται έτσι ώστε οι πιθανότητές τους είναι σε φθίνουσα ακολουθία, όπως ακριβώς και του FANO.
- Βήμα 2° : Για κάθε σύμβολο s_i του οποίου η πιθανότητα εμφάνισης είναι ρ (s_i) υπολογίζεται η αθροιστική πιθανότητα P_i ως εξής:

$$P_i = \sum_{j=1}^{i-1} p(s_j), \quad P_1 = 0, \quad i = 2,...,n$$

$$l_i = \lceil \log_2(1/p(s_i)) \rceil$$

Αλγόριθμος κωδικοποίησης SHANNON

(Για το δυαδικό ανάπτυγμα ενός κλάσματος ισχύει το εξής:

$$\frac{a_1}{2} + \frac{a_2^2}{2^2} + ... + \frac{a_k^k}{2^k} = .a_1 a_2 ... a_k \text{ όπου } a_j \text{ είναι 0 ή 1.})$$

Π.χ Το $P_2 = 1/4$ γράφεται

 $(0/2^1) + (1/2^2) + (0/2^3) + (0/2^4) + (0/2^5)$ και το δυαδικό του ανάπτυγμα είναι οι αριθμητές των κλασμάτων, δηλαδή .01000 και επομένως η κωδική λέξη του συμβόλου S_2 μήκους 2 bits είναι «01».

Αλγόριθμος κωδικοποίησης SHANNON

	Σύμβολα Πηγής	Πιθανότητες Συμβόλων	P_{i}	Μήκος l_i	Ανάπτυγμα του P_i	Κωδικές Λέζεις
	S_1	1/4	$P_1 = 0$	l ₁ = 2	.00000	00
	S_2	1/4	$P_2 = 1/4$	$l_2 = 2$.01000	01
	S_3	1/8	$P_3 = 1/2$	$l_3 = 3$.10000	100
,	S_4	1/8	$P_4 = 5/8$	$l_4 = 3$.10100	101
	S_5	1/16	$P_5 = 3/4$	$l_5 = 4$.110 0 0	1100
	S_6	1/16	$P_6 = 13/16$	$l_6 = 4$.11010	1101
	S_7	1/32	$P_7 = 7/8$	$l_7 = 5$.11100	11100
	S_8	1/32	$P_8 = 29/32$	$l_8 = 5$.11101	11101
	S_9	1/32	$P_9 = 15/16$	$l_9 = 5$.11110	11110
	S_{10}	1/32	$P_{10} = 31/32$	$l_{10} = 5$.11111	11111

Αλγόριθμος κωδικοποίησης HUFFMAN

- Αλγόριθμος κωδικοποίησης HUFFMAN
 - Ο αλγόριθμος Huffman κατασκευάζει το δυαδικό δέντρο αρχίζοντας από τα φύλλα του και προχωράει προς τη ρίζα του.
 - <u>Βήμα 1º</u>: Τα σύμβολα (ή τα μηνύματα) ταξινομούνται έτσι ώστε οι πιθανότητές τους είναι σε φθίνουσα ακολουθία.
 - Βήμα 2°: Στη συνέχεια παίρνουμε τα δύο σύμβολα με τις μικρότερες πιθανότητες. Γι΄ αυτά μέσα από την διαδικασία του αλγορίθμου θα αναθέσουμε, τις μακρύτερες δυνατές κωδικές λέξεις έτσι ώστε αυτές να έχουν το ίδιο μήκος και να διαφέρουν στο τελευταίο τους ψηφίο.
 - Το βήμα αυτό θα δημιουργήσει το τελευταίο από τα ψηφία της κωδικής λέξης
 - Βήμα 3°: Συνδυάζοντας τα δύο σύμβολα που επιλέξαμε στο βήμα 2 σε ένα και αναθέτοντας στο συνδυασμένο σύμβολο το άθροισμα των πιθανοτήτων των επιμέρους συμβόλων
 - επαναλαμβάνουμε τη διαδικασία από το βήμα 1 μεταξύ των συμβόλων που απομένουν και του συμβόλου που δημιουργήσαμε μέχρις ότου καταλήξουμε σε ένα σύμβολο με πιθανότητα 1.
 - Βήμα 4º: Οι κωδικές λέξεις που αντιστοιχούν στο κάθε σύμβολο αποτελούνται από τις ακολουθίες 0 και 1 που δημιουργούνται αν διατρέξουμε το δένδρο που δημιουργήθηκε από τον κόμβο με το μοναδικό σύμβολο προς τα σύμβολα από τα οποία ξεκινήσαμε

Αλγόριθμος κωδικοποίησης HUFFMAN

- □ Παρατηρήσεις σχετικά με τον αλγόριθμο Huffman
 - Αποδεικνύεται ότι κανένας άλλος αλγόριθμος δεν μπορεί να οδηγήσει στην κατασκευή κώδικα με μικρότερο μέσο μήκος κωδικών λέξεων για ένα δεδομένο αλφάβητο πηγής.
 - Η κατασκευή του δένδρου γίνεται από τα φύλλα προς τη ρίζα του δένδρου,
 - Σε αντίθεση με τον αλγόριθμο FANO όπου δημιουργεί το δένδρο από τη ρίζα του προς τα φύλλα διαιρώντας κάθε φορά το σύνολο συμβόλων σε δύο σύνολα.
 - Ένας τέτοιος αλγόριθμος είναι πάντα λιγότερο βέλτιστος.

Κώδικες Ακολουθιών Συμβόλων

- □ Μειονέκτημα αλγορίθμου Huffman
 - □ Γνωρίζουμε ότι ο αλγόριθμος Huffman παράγει βέλτιστο κώδικα και άρα βάσει του θεωρήματος ισχύει ότι
 - $H(X) \le L(C,X) < H(X)+1$
 - Άρα κατά μέσο όρο και ανά σύμβολο έχουμε πλεονάζοντα bits μεταξύ 0 και 1.
 - Αν η εντροπία H(X) της πηγής είναι μεγάλη τότε το πλεονάζον αυτό bit, L(C,X)-H(X), θα ήταν αμελητέο στην παραγωγή μηνυμάτων. Αν όμως η εντροπία είναι μικρότερη από 1 bit τότε το πλεονάζον bit θα ήταν καθοριστικό στην παραγωγή μηνυμάτων.

Κώδικες Ακολουθιών Συμβόλων

Παράδειγμα

- \blacksquare Έστω μία πηγή με αλφάβητο A= $\{\alpha_1,\alpha_2,\alpha_3\}$ και P= $\{0.8,0.02,0.18\}$.
- H(A)=0,816 bits/symbol
- Εφαρμόζοντας τον αλγόριθμο του Huffman παίρνουμε τις εξής κωδικές λέξεις και μήκη
- Παρατηρούμε ότι το μέσο μήκος κωδικής λέξης είναι 1.2 bits/symbol το οποίο απέχει κατά 47% από την εντροπία δηλαδή υπάρχει πλεονασμός κατά 0.384 bits/symbol.
- Σε επίπεδο μηνυμάτων (ακολουθίες συμβόλων) αυτός ο πλεονασμός παίζει καθοριστικό ρόλο
 - Π.χ. Για ακολουθίες μηνυμάτων που αποτελούνται από N=1000 σύμβολα τότε σύμφωνα με την κωδικοποίηση κατά Huffman θα παράγαμε κατά μέσο όρο 384 bits περισσότερα από τα 816 που είναι τα αναγκαία
- Τι πρέπει να γίνει;

α_{i}	$\mathbf{p}_{\mathbf{i}}$	Н	l_{i}	C(ai)
α ₁	0.8	0.322	1	0
α_2	0. 02	5.644	2	11
α_3	0.18	2.474	2	10

0,816 1,2 H(A)L(C,A)

Κώδικες Ακολουθιών Συμβόλων

Παράδειγμα (συνέχεια)

- Να εφαρμόσουμε τον αλγόριθμο όχι σε επίπεδο συμβόλων αλλά σε επίπεδο μηνυμάτων.
- Έτσι για μηνύματα δύο συμβόλων έχουμε
 - Το μέσο μήκος κάθε κωδικής λέξης που αντιστοιχεί σε μήνυμα 2 συμβόλων είναι 1.7228 bits το οποίο συγκρινόμενο με την εντροπία H(A²)=1,632 είναι μόλις κατά 5.5% αυξημένο
- Το πρόβλημα που παρουσιάζει αυτή η μέθοδος στην πράξη είναι ότι χρειάζεται να υπολογίσουμε όλες τις πιθανότητες των πιθανών μηνυμάτων.
 - Για ένα αλφάβητο με n σύμβολα και μηνύματα μήκους m τότε το σύνολο όλων των μηνυμάτων είναι n^m
 - δηλαδή για ένα αλφάβητο 2 συμβόλων και μηνύματα μήκους 20 θα χρειαστεί να υπολογίσουμε περίπου 1 εκ. Πιθανότητες για τα διαφορετικά μηνύματα

α_{i}	\mathbf{p}_{i}	Н	l_{i}	$C(\alpha_i)$
$\alpha_1\alpha_1$	0.64	0.644	1	0
$\alpha_1\alpha_2$	0. 016	5.966	5	10101
$\alpha_1 \alpha_3$	0.144	2.796	2	11
$\alpha_2 \alpha_1$	0.016	5.966	6	101000
$\alpha_2\alpha_2$	0. 0004	11.288	8	10100101
$\alpha_2 \alpha_3$	0.0036	8.118	7	1010011
$\alpha_3\alpha_1$	0. 144	2.796	3	100
$\alpha_3 \alpha_2$	0.0036	8.118	8	10100100
$\alpha_3\alpha_3$	0.0324	4.948	4	1011

1,632 1,7228 H(A²) L(C,A²)