MMC-Univ. Minho 2023/2024

Lógica da Programação

Exercícios Folha 1

1 Revisões sobre sintaxe e semântica da lógica clássica

- **1.1** Defina, por recursão, a função VAR : $\mathcal{F}_p \longrightarrow \mathcal{P}(\mathcal{V}_p)$, que a cada fórmula faz corresponder o conjunto das variáveis proposicionais que nela ocorrem.
- **1.2** Sejam v_1 e v_2 valorações. Prove que: para todo $\varphi \in \mathcal{F}_p$, se para todo $p \in VAR(\varphi)$, $v_1(p) = v_2(p)$, então $v_1(\varphi) = v_2(\varphi)$.
- 1.3 Sejam φ, ψ fórmulas proposicionais e p uma variável proposicional. A notação $\varphi[\psi/p]$ representa a fórmula que resulta de, em φ , substituirmos as ocorrências de p por ψ . Defina, por recursão, esta operação de substituição.
- **1.4** No caso da lógica proposicional clássica, o *Teorema da Substituição* estabelece que, dado $p \in \mathcal{V}_p$ e dados $\varphi_1, \varphi_2 \in \mathcal{F}_p$ tais que $\varphi_1 \Leftrightarrow \varphi_2$, para todo $\psi \in \mathcal{F}_p$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$. Prove este resultado.
- 1.5 Neste exercício mostrar-se-á que o fragmento $\mathcal{F}_{\neg,\rightarrow}$ é completo.
 - a) Dê exemplo de $\varphi \in \mathcal{F}_{\neg, \rightarrow}$ tal que $\varphi \Leftrightarrow (p_0 \land (p_1 \lor p_2))$.
 - b) Defina, por recursão, uma função $f: \mathcal{F}_p \longrightarrow \mathcal{F}_{\neg,\rightarrow}$ tal que para todo $\varphi \in \mathcal{F}_p$, $f(\varphi) \Leftrightarrow \varphi$.
 - c) Prove que, efetivamente, a função f definida na alínea anterior tem a propriedade pretendida.
 - d) Conclua que $\mathcal{F}_{\neg,\rightarrow}$ é completo, ou seja, que para todo $\varphi \in \mathcal{F}_p$, existe $\psi \in \mathcal{F}_{\neg,\rightarrow}$ tal que $\psi \Leftrightarrow \varphi$.
- **1.6** Sejam $\varphi, \varphi_1, ..., \varphi_n$ fórmulas proposicionais e sejam Γ, Δ conjuntos de fórmulas proposicionais. Prove que:
 - a) se $\varphi \in \Gamma$, então $\Gamma \models \varphi$;
 - **b)** se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$;
 - c) se $\Gamma \models \varphi_1$ e $\Delta, \varphi_1 \models \varphi_2$, então $\Gamma, \Delta \models \varphi_2$;
 - **d)** $\varphi_1, ..., \varphi_n \models \varphi$ se e só se $\models (\varphi_1 \wedge ... \wedge \varphi_n) \rightarrow \varphi$;
 - e) $\Gamma \models \varphi$ se e só se $\Gamma \cup \{\neg \varphi\}$ inconsistente.
- ${f 1.7}$ Enuncie os princípios de indução e recursão estruturais para o conjunto dos L-termos e defina o conceito de subtermo.

Exercícios Folha 2

- **1.8** Sejam t, t_1, t_2 L-termos e x, y variáveis distintas. A notação $t[t_1/x]$ (resp. $t[t_1/x; t_2/y]$) representa a substituição (resp. substituição simultânea) em t de x (resp. x e y) por t_1 (resp. t_1 e t_2) e a notação VAR(t) representa o conjunto das variáveis que ocorre em t.
 - a) Descreva recursivamente as duas operações de substituição, bem como a operação VAR.
 - **b)** Prove que: se $x \notin VAR(t_2)$ e $y \notin VAR(t_1)$, então $t[t_1/x; t_2/y] = (t[t_1/x])[t_2/y] = (t[t_2/y])[t_1/x]$.
 - c) Mostre que, na alínea anterior, a condição $x \notin VAR(t_2)$ e $y \notin VAR(t_1)$ é necessária.
- 1.9 Apresente uma descrição recursiva do conjunto das variáveis livres de uma L-fórmula.
- **1.10** Sejam t_0 e t_1 L-termos, x uma variável e seja a uma atribuição numa L-estrutura E. Prove que: $t_0[t_1/x][a]_E = t_0[a\left(\begin{array}{c} x \\ t_1[a] \end{array}\right)]_E$.
- 1.11 Repita o exercício 1.7 para o conjunto das L-fórmulas.
- **1.12** Seja E uma L-estrutura. Prove que: para toda a L-fórmula φ a para todas as atribuições a_1 e a_2 atribuições em E, se para todo $x \in LIV(\varphi)$, $a_1(x) = a_2(x)$, então $E \models \varphi[a_1]$ sse $E \models \varphi[a_2]$.
- **1.13** Sejam φ uma L-fórmula, E uma L-estrutura, a uma atribuição em E e x uma variável substituível sem captura de variáveis por um L-termo t em φ . Prove que: $E \models \varphi[t/x][a]$ sse $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}]$.
- **1.14** Sejam x, y variáveis e φ, ψ L-fórmulas. Prove que:
 - a) $\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi \in \neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$;
 - **b)** $\exists x(\varphi \lor \psi) \Leftrightarrow (\exists x\varphi \lor \exists x\psi), \models \exists x(\varphi \land \psi) \to (\exists x\varphi \land \exists x\psi), \text{ mas não necessariamente} \models (\exists x\varphi \land \exists x\psi) \to \exists x(\varphi \land \psi);$
 - c) $QxQy\varphi \Leftrightarrow QyQx\varphi$ (para $Q \in \{\exists, \forall\}$);
 - d) $\models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$, mas não necessariamente $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$;
 - e) $Qx\varphi \Leftrightarrow \varphi \text{ se } x \notin LIV(\varphi) \ (Q \in \{\exists, \forall\});$
 - f) $Qx\varphi \Leftrightarrow Qy\varphi[y/x]$ se $y \notin LIV(\varphi)$ e x é substituível sem captura de variáveis por y em φ (para $Q \in \{\exists, \forall\}$).
- **1.15** Sejam φ, ψ *L*-fórmulas, Γ um conjunto de *L*-fórmulas, x uma variável e t um *L*-termo. Prove que:
 - a) se $\Gamma \models \forall x \varphi$ e x é substituível sem captura de variáveis por t em φ , então $\Gamma \models \varphi[t/x]$;
 - **b)** se $\Gamma \models \varphi$ e $x \notin LIV(\Gamma)$, então $\Gamma \models \forall x \varphi$;
 - c) se $\Gamma \models \varphi[t/x]$ e x é substituível sem captura de variáveis por t em φ , então $\Gamma \models \exists x \varphi$;
 - **d)** se $\Gamma \models \exists x \varphi, \Gamma \cup \{\varphi\} \models \psi, e \ x \notin LIV(\Gamma \cup \{\psi\}), então \Gamma \models \psi.$

Exercícios Folha 3

2 Dedução natural

- **2.1** Sejam φ, ψ e σ fórmulas proposicionais. Com base na interpretação construtiva de provas BHK, justifique que existem provas das fórmulas que se seguem.
 - - b) $\varphi \to (\varphi \vee \psi)$

 - c) $\psi \to (\varphi \to \psi)$ d) $(\varphi \land \psi) \to (\varphi \lor \psi)$
- **2.2** Sejam φ, ψ e σ fórmulas proposicionais. Encontre derivações que mostrem que as seguintes fórmulas são teoremas de DNP_i e de DNP_c . Em cada um dos casos, explicite as subderivações das derivações encontradas.
 - a) $\varphi \to \varphi$

b) $\psi \to (\varphi \to \psi)$

c) $\varphi \to \neg \neg \varphi$

- d) $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$
- e) $((\varphi \to \psi) \land (\psi \to \varphi)) \leftrightarrow (\varphi \leftrightarrow \psi)$ f) $(\neg \varphi \lor \psi) \to (\varphi \to \psi)$
- g) $(\varphi \lor \psi) \to (\psi \lor \varphi)$
- h) $((\varphi \lor \psi) \lor \sigma) \to (\varphi \lor (\psi \lor \sigma))$
- **2.3** Sejam φ, ψ e σ fórmulas proposicionais. Encontre demonstrações em DNP_c de cada uma das seguintes fórmulas. Diga se em algum dos casos a demonstração encontrada permite concluir que a fórmula é um teorema de DNP_i .
 - a) $\neg \neg \varphi \leftrightarrow \varphi$
- b) $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$
- c) $(\neg \psi \land \neg \varphi) \leftrightarrow \neg (\psi \lor \varphi)$ d) $(\varphi \to \psi) \leftrightarrow (\neg \varphi \lor \psi)$
- **2.4** Seja φ uma fórmula proposicional.
 - a) Indique uma derivação que mostre que $\varphi \to (\varphi \to \varphi)$ é um teorema de DNP_i. Explicite as subderivações da derivação encontrada.
 - b) Assumindo o cancelamento por classes de hipóteses, indique derivações distintas que provem que $\varphi \to (\varphi \to \varphi)$ é um teorema de DNP_i. Explicite as subderivações das derivações encontradas.
- **2.5** Considere DNP_c $^{\perp,\rightarrow}$ (o fragmento de DNP_c na linguagem \perp,\rightarrow).
 - a) Defina indutivamente o conjunto das derivações de $\mathsf{DNP}_c{}^{\perp,\rightarrow}.$
 - b) Enuncie o princípio de indução associado às derivações de $DNP_c^{\perp,\rightarrow}$.
 - c) Defina o conceito de subderivação em $\text{DNP}_c^{\perp,\rightarrow}$.
 - d) Defina por recursão a função $H: \mathcal{D}^{\mbox{DNP}_c}^{\perp, \to} \to \mathcal{P}(\mathcal{F}_p^{\perp, \to})$ tal que

$$H(D) = \{ \varphi \in \mathcal{F}_p^{\perp, \to} : \varphi \text{ \'e hip\'otese n\~ao cancelada de } D \}.$$

e) Prove por indução que: se D é uma derivação de φ a partir de Γ e D' é uma derivação $D' \\ [\psi]$ de ψ a partir de Δ , então D é uma derivação de φ a partir de $(\Gamma \setminus \{\psi\}) \cup \Delta$.

Exercícios Folha 4

2.6 Dadas fórmulas φ e ψ numa linguagem L e variáveis x e y, construa derivações que mostrem que as seguintes L-fórmulas são teoremas de DN_c . Diga se em algum dos casos a derivação encontrada permite também concluir que se trata de um teorema de DN_i .

- a) $\forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi)$
- b) $\forall x \varphi \leftrightarrow \varphi \text{ se } x \notin \text{LIV}(\varphi)$
- c) $\exists x \exists y \varphi \rightarrow \exists y \exists x \varphi$
- d) $\exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$
- e) $\forall x \varphi \leftrightarrow \neg \exists x \neg \varphi$
- f) $(\exists x \varphi \to \psi) \leftrightarrow \forall x (\varphi \to \psi)$ se $x \notin LIV(\psi)$
- **2.7** Demonstre as proposições que se seguem relativamente ao sistema DNP $_{\ell}$ (para $\ell=c$ e para $\ell=i$):
 - a) Se $\varphi \in \Gamma$, então $\Gamma \vdash_{\ell} \varphi$.
 - b) Se $\Gamma \vdash_{\ell} \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash_{\ell} \varphi$.
 - c) Se Γ , $\varphi \vdash_{\ell} \psi$ e $\Delta \vdash_{\ell} \varphi$, então Γ , $\Delta \vdash_{\ell} \psi$.
 - d) $\Gamma \vdash_{\ell} \varphi \wedge \psi$ se e só se $\Gamma \vdash_{\ell} \varphi$ e $\Gamma \vdash_{\ell} \psi$.
 - e) $\Gamma \vdash_{\ell} \varphi \to \psi$ se e só se $\Gamma, \varphi \vdash_{\ell} \psi$.
 - f) $\Gamma \vdash_{\ell} \varphi \leftrightarrow \psi$ se e só se $\Gamma, \varphi \vdash_{\ell} \psi$ e $\Gamma, \psi \vdash_{\ell} \varphi$.
 - g) $\Gamma \vdash_{\ell} \neg \varphi$ se e só se $\Gamma, \varphi \vdash_{\ell} \bot$.
 - h) $\Gamma \vdash_{\ell} \varphi \lor \psi$ se $\Gamma \vdash_{\ell} \varphi$ ou $\Gamma \vdash_{\ell} \psi$. (Dê um contra-exemplo para a implicação recíproca.)
 - i) $\Gamma \vdash_{\ell} \bot$ se e só se $\Gamma \vdash_{\ell} \varphi$, para qualquer φ .
- **2.8** Considere de novo $DNP_c^{\perp,\rightarrow}$ (o fragmento de DNP_c na linguagem \perp,\rightarrow).
 - a) Prove por indução que: para todo $D \in \text{DNP}_c^{\perp,\rightarrow}$, se φ é a conclusão de D, então $H(D) \models \varphi$ (onde H é a função definida no exercício 2.5).
 - b) Conclua o Teorema da Correção para este fragmento: se $\Gamma \vdash_c \varphi$ então $\Gamma \models \varphi$.
- 2.9 Mostre que:
 - a) $\models \varphi \lor \neg \varphi \in \vdash_c \varphi \lor \neg \varphi$.
 - b) $p_0 \rightarrow p_1 \not\vdash_c p_0$.
 - c) $\not\vdash_i \neg (p_0 \land p_1) \rightarrow \neg p_0$.
 - d) Se $\Gamma, \varphi \vdash_i \psi$ e $\models \varphi$, então $\Gamma \vdash_c \psi$.

Exercícios Folha 5

2.10 Seja DNP_c o sistema obtido de DNP_c substituindo a regra de redução ao absurdo pela regra da dupla negação

 $\frac{\neg \neg \varphi}{\varphi} \neg \neg$.

- a) Prove que $\varphi \leftrightarrow \neg \neg \varphi$ e $\neg (\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$ são teoremas de DNP_c¬¬.
- b) Prove que φ é derivável a partir de Γ em DNP_c sse o mesmo acontece em DNP_c¬¬. (Faça a prova apenas para o fragmento \rightarrow , \perp , \neg .)
- c) Conclua que ${\rm DNP}_c$ é um sistema correto e completo para a lógica proposicional clássica.
- **2.11** A tradução da dupla negação de Gödel (da lógica clássica na lógica intuicionista), para o fragmento \rightarrow , \bot , \neg , é definida recursivamente como se segue (onde φ^* denota a fórmula que resulta da aplicação da tradução à fórmula φ): $\bot^*=\bot$; $p^*=\neg\neg p$ (para toda a variável proposicional p); $(\neg\varphi)^*=\neg\varphi^*$; $(\varphi\rightarrow\psi)^*=\varphi^*\rightarrow\psi^*$.
 - a) Determine $(\neg \neg p_0 \rightarrow p_0)^*$.
 - b) Prove que $(\neg \neg p_0 \to p_0)^*$ é um teorema de DNP_i.
 - c) Prove por indução em φ que $\neg\neg\varphi^* \to \varphi^*$ é um teorema de DNP_i.
 - d) Prove que se $\Gamma \vdash_c \varphi$, então $\Gamma^* \vdash_i \varphi^*$ (onde $\Gamma^* = \{\psi^* : \psi \in \Gamma\}$).
- **2.12** Para cada fórmula φ_0 do exercício 2.6, mostre que o sequente $\Rightarrow \varphi_0$ é derivável em DN_c^{\Rightarrow} .
- **2.13** Para o fragmento da lógica proposicional na linguagem \bot, \neg, \land , prove que $\Gamma \vdash_c \varphi$ sse $\vdash_c \Gamma \Rightarrow \varphi$.
- **2.14** Mostre que, nos sistemas DNP $_{\ell}^{\Rightarrow_w}$ ($\ell \in \{c,i\}$), qualquer das seguintes versões da regra de introdução para a conjunção

$$\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \psi}{\Gamma, \Delta \Rightarrow \varphi \land \psi} \land I \qquad \frac{\Gamma \Rightarrow \varphi \quad \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \land \psi} \land I'$$

produz o mesmo conjunto de sequentes deriváveis.

2.15 Nos sistemas DNP $_{\ell}^{\Rightarrow_w}$ ($\ell \in \{c,i\}$), qualquer das seguintes versões da regra de introdução para a implicação

$$\frac{\Gamma \Rightarrow \psi}{\Gamma \backslash \{\varphi\} \Rightarrow \varphi \rightarrow \psi} \rightarrow I \qquad \frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \rightarrow \psi} \rightarrow I' \; (\varphi \notin \Gamma)$$

produz o mesmo conjunto de sequentes deriváveis. Prove o resultado para o fragmento implicacional.

2.16 Escreva as regras de inferência para dedução natural com sequentes e classes de hipóteses. Para cada fórmula φ_0 do exercício 2.2, encontre uma derivação do sequente $\Rightarrow \varphi_0$.

Exercícios Folha 6

3 λ -calculus: sintaxe e tipos simples

3.1 Indique quais das seguintes palavras são λ -termos.

```
(i) (x_1x_2).
```

(ii) x_1x_2 .

(iii)
$$((x_1)(x_2))$$
.

(iv) $(\lambda x_2.x_1x_2)$.

(v)
$$(\lambda x_0(x_1x_2))$$
.

(vi) $(\lambda x_0 \lambda x_2(x_1 x_2))$.

(vii)
$$(\lambda x_0((\lambda x_1 x_1) x_2))$$
. (viii) $(\lambda x_0((\lambda x_0 x_0) x_2))$.

(ix)
$$(\lambda x_0 x_2 (\lambda x_0 x_0 x_2))$$
. (x) $(\lambda x_0 x_2 ((\lambda x_0 x_0) x_2))$.

3.2 Considere a expressão $x_0 \lambda x_0.x_0(x_1x_2)$. Indique qual dos seguintes termos é abreviado por esta expressão, e escreva abreviadamente os restantes.

```
(i) ((x_0(\lambda x_0 x_0))(x_1 x_2)).
```

(ii)
$$(x_0((\lambda x_0 x_0)(x_1 x_2)))$$
.

(iii)
$$(x_0(\lambda x_0(x_0(x_1x_2))))$$
.

- 3.3 Enuncie os princípios de indução e recursão estruturais associados a A.
- **3.4** Defina recursivamente uma função que calcule o conjunto LIV(M), para cada λ -termo M.
- **3.5** Defina recursivamente uma função que, para cada λ -termo M, calcule o conjunto LIG(M) das variáveis com ocorrências ligadas em M.
- **3.6** Considere o predicado SSCV(x, M, N) ("x substituível sem captura de variáveis por M em N"). Dê exemplos de x, M e N, tais que:
 - a) o predicado SSCV(x, M, N) seja verdadeiro;
 - b) o predicado SSCV(x, M, N) seja falso.
- **3.7** Dê uma definição indutiva do predicado SSCV(x, M, N).
- **3.8** Sejam $M = \lambda x_0.x_0x_1(\lambda x_1.x_0x_1)$ e $N \in \Lambda$.
 - a) Indique λ -termos M' tais que $M =_{\alpha} M'$.
 - b) Indique um λ-termo M' tal que $M =_{\alpha} M'$ e LIV $(M') \cap \text{LIG}(M') = \emptyset$.
 - c) Para cada $y \in \{x_0, x_1\}$, mostre que existe M' tal que $M =_{\alpha} M'$ e SSCV(y, N, M').
- **3.9** Mostre que:
 - a) Se LIV $(M) = \emptyset$ então M[N/x] = M.
 - b) Se $x \notin LIV(N)$ então $x \notin LIV(M[N/x])$.

Exercícios Folha 7

3.10 Identifique as afirmações verdadeiras (considerando que x e y são variáveis distintas e que τ e σ são tipos distintos):

- $(\mathrm{i}) \qquad x: \sigma \vdash \lambda y^\tau. x: \tau \to \sigma. \qquad \qquad (\mathrm{ii}) \qquad x: \sigma \vdash \lambda y^\tau. x: \sigma \to \sigma.$
- (iii) $\vdash \lambda x^{\sigma} y^{\tau}.x : \sigma \to \tau \to \sigma.$ (iv) $\vdash \lambda x^{\sigma \to \sigma}.xx : (\sigma \to \sigma) \to \sigma.$
- (v) $\vdash \lambda x^{\tau \to \sigma} y^{\tau} . xy : (\tau \to \sigma) \to \tau \to \sigma.$ (vi) $\vdash \lambda x^{\tau \to \sigma} y^{\tau} . xy : (\sigma \to \sigma) \to \sigma \to \sigma.$
- **3.11** Repita o exercício anterior, apagando as anotações de tipos nas abstrações e considerando tipificação à la Curry.
- **3.12** Mostre que os seguintes termos são tipificáveis (considerando que x, y, z são variáveis distintas e que τ, σ, ρ são tipos distintos):
 - ${\rm (i)} \qquad \lambda x^{\sigma \to \sigma \to \sigma} \lambda y^{\sigma}.xy. \quad {\rm (ii)} \qquad \lambda xyz.xyz.$
 - (iii) $\lambda xyz.x(yz)$. (iv) $\lambda x^{\sigma \to \tau \to \rho} y^{\sigma \to \tau} z^{\sigma}.xz(yz)$.
- **3.13** Um tipo σ diz-se habitado num contexto Γ se existir um termo M tal que $\Gamma \vdash M : \sigma$, chamando-se a um tal M um habitante de σ no contexto Γ . No caso particular em que Γ é vazio, diz-se simplesmente que σ é habitado e que um tal M é um habitante de σ .

Dado um tipo σ , seja $\tau = \sigma \to ((\sigma \to \sigma) \to \sigma)$.

- a) Mostre que τ é habitado.
- b) Mostre que τ tem uma infinidade de habitantes.
- **3.14** Considerando tipificação à la Curry, mostre que se M é tipificável, então todos os seus subtermos próprios também o são. (Observe que a implicação recíproca é falsa.)
- **3.15** Mostre que: se $\Gamma \vdash M : \sigma$, então:
 - a) se $\Gamma \subseteq \Delta$, então $\Delta \vdash M : \sigma$;
 - b) LIV $(M) \subseteq dom(\Gamma)$.
- **3.16** Mostre que: se $\Gamma \vdash N : \tau \in \Gamma, x : \tau \vdash M : \sigma$, então $\Gamma \vdash M[N/x] : \sigma$.
- **3.17** Seja $\Lambda_{\mathbb{T}}$ o conjunto dos λ -termos à la Church, com anotações de tipos simples nas abstrações, e seja $M \in \Lambda_{\mathbb{T}}$. Notemos por |M| o λ -termo sem tipos que resulta de M apagando as anotações de tipos nas abstrações.
 - a) Defina por recursão a função $|\cdot|: \Lambda_{\mathbb{T}} \to \Lambda$.
 - b) Prove que: para todo $P \in \Lambda_{\mathbb{T}}$, se $\Gamma \vdash P : \sigma$ à la Church então $\Gamma \vdash |P| : \sigma$ à la Curry.
 - c) Prove que: para todo $M \in \Lambda$, se $\Gamma \vdash M : \sigma$ à la Curry então existe $P \in \Lambda_{\mathbb{T}}$ tal que |P| = M e $\Gamma \vdash P : \sigma$ à la Church.
 - d) Conclua que: para todo $M \in \Lambda$, M é tipificável à la Curry sse existe $P \in \Lambda_{\mathbb{T}}$ tipificável à la Church tal que |P| = M.

Exercícios Folha 8

4 Correspondência Curry-Howard (I)

- **4.1** Para cada uma das tipificações $\Gamma \vdash M : \sigma$ do exercício 3.10 que correspondem a afirmações verdadeiras, determine $d(\Gamma \vdash M : \sigma)$.
- **4.2** Para cada um dos termos M do exercício 3.12, encontre um conjunto de classes de hipóteses Γ , uma fórmula φ e uma derivação D de $\Gamma \Rightarrow \varphi$ em $\mathrm{DNP}_i^{\Rightarrow_w}$ (com classes de hipóteses) tais que t(D) é tipificação de $t(\Gamma) \vdash M : t(\varphi)$. (No caso dos λ -termos sem anotações nas abstrações, encontre previamente uma anotação apropriada para as abstrações.)
- **4.3** Para cada uma das derivações D construídas para provar as alíneas a) a c) do exercício 2.2, explicite uma derivação D' da mesma fórmula em $\mathrm{DNP}_i^{\Rightarrow_w}$ com classes de hipóteses e determine t(D') (vendo $\neg \varphi$ como uma abreviatura para $\varphi \to \bot$ e assumindo que \bot é um tipo atómico simples e que $t(\bot) = \bot$).
- **4.4** Repita o exercício anterior para o teorema de DNP_i em 2.11 b).
- **4.5** Mostre que, para todo Γ, M, σ tais que $\Gamma \vdash M : \sigma, t(d(\Gamma \vdash M : \sigma)) = M$.
- 4.6 a) Defina uma função t_0 que a cada derivação D em DNP_i^{\to} com classes de hipóteses, com conclusão φ e conjunto de hipóteses não canceladas Γ , faça corresponder um terno $(M_0, \sigma_0, \Gamma_0)$, de tal modo que $\sigma_0 = t(\varphi)$, $\Gamma_0 = t(\Gamma)$ e que $\Gamma_0 \vdash M_0 : \sigma_0$ (usando tipificação à la Church).
 - b) Prove que, de facto, a função t_0 tem a propriedade requerida.
- **4.7** Mostre que se σ é um tipo simples habitado, então $d(\sigma)$ é uma fórmula válida do fragmento implicacional da lógica clássica.
- 4.8 Mostre que:
 - a) $(a_1 \rightarrow a_0) \rightarrow a_0$ não é habitado
 - b) $(a_0 \rightarrow a_0) \rightarrow a_0$ não é habitado
 - c) a_0 não é habitado no contexto $\{x: a_1 \to a_0, y: a_2 \to a_1\}$.

(Sugestão: recorra ao exercício anterior.)

- **4.9** Considere as fórmulas $\varphi_1 = ((p_0 \to p_1) \to p_0)$ e $\varphi_2 = ((p_0 \to p_1) \to p_1)$.
 - a) Indique uma derivação D do sequente $\Rightarrow \varphi_1 \to \varphi_2$, em $\text{DNP}_i^{\Rightarrow_w}$ com classes de hipóteses, e determine o λ -termo à la Church t(D) associado a D.
 - b) Diga se o tipo $t(\varphi_1 \to \varphi_2)$ é habitado.
 - c) Mostre que $\varphi_2 \to \varphi_1$ não é teorema de DNP_c e diga se o tipo $t(\varphi_2 \to \varphi_1)$ é habitado.

Exercícios Folha 9

λ -calculus: redução e expressividade

5.1 Considere os combinadores

- a) Verifique que $\Delta \mathbf{I} \rightarrow_{\beta} \mathbf{II}$.
- b) Indique n tal que $\mathbf{SKK} \to_{\beta}^{n} \mathbf{I}$.
- c) Determine $\{M \in \Lambda : \mathbf{W}\Omega \mathbf{I} \to_{\beta}^{2} M\}$.
- d) Calcule todas as sequências de β -reduções a partir dos seguintes termos:
 - (i) $\mathbf{I}(\mathbf{II})$. (ii) $\mathbf{SK}x$. (iii) Ω . (iv) $\mathbf{KI}\Omega$.
- **5.2** Mostre que:
 - (i) $I =_{\beta} \mathbf{SKK}$.
 - (ii) $\mathbf{I}M =_{\beta} \mathbf{I}\mathbf{I}M$, para todo o M.
 - (iii) $\Delta \mathbf{I} =_{\beta} \mathbf{W} \Omega \mathbf{I}$.
- **5.3** Suponhamos que $M_1 \to_{\beta} M_2 \leftarrow_{\beta} M_3 \to_{\beta} M_4$ e $(M_4, N) \in \beta$. Diga quais das seguintes afirmações são verdadeiras, onde a notação $M \to_{\beta}^+ N$ significa $M \to_{\beta}^n N$ para algum $n \ge 1$:
 - $\begin{array}{llll} \text{(i)} & M_1 \to_{\beta}^* M_2. & \text{(ii)} & M_1 \to_{\beta}^+ M_2. & \text{(iii)} & M_1 =_{\beta} M_2. \\ \text{(iv)} & M_1 \to_{\beta}^+ M_3. & \text{(v)} & M_1 =_{\beta} M_3. & \text{(vi)} & M_3 =_{\beta} M_1. \\ \text{(vii)} & M_2 \to_{\beta}^+ M_4. & \text{(viii)} & M_2 =_{\beta} M_4. & \text{(ix)} & M_4 =_{\beta} M_1. \\ \text{(x)} & M_4 \to_{\beta} N. & \text{(xi)} & N =_{\beta} M_4. & \text{(xii)} & M_1 =_{\beta} N. \end{array}$
- **5.4** Indique, caso exista, uma forma β -normal para os seguintes termos:
 - (i) $(\lambda x.xy)\mathbf{I}$. (ii) $xy\mathbf{K}$. (iii) $\Omega\Omega$.
- a) Sejam $P = \mathbf{K}\mathbf{K}x \in Q$ a sua forma β -normal. Calcule LIV(Q). 5.5
 - b) Mostre que: se $M \to_{\beta} N$ então $LIV(M) \supseteq LIV(N)$.
- **5.6** Mostre que: se $M =_{\beta} N$, então existe P tal que $M \to_{\beta}^* P$ e $N \to_{\beta}^* P$.
- 5.7 Mostre que as seguintes afirmações não são verdadeiras.
 - (i) $\mathbf{I} =_{\beta} K$.
 - (ii) $\Delta =_{\beta} \Omega$.
 - (iii) $\lambda x.Mx =_{\beta} M$, para todo o M.
- 5.8 Mostre que: se M é tipificável, então não existem sequências de β -reduções infinitas a partir de subtermos de M.
- ${f 5.9}$ Justifique que as seguintes relações entre termos tipificáveis M e N são decidíveis:
 - (i) $(M, N) \in (\beta)$. (ii) $M \to_{\beta} N$. (iii) $M \to_{\beta}^* N$.

Exercícios Folha 10

- **5.10** Mostre que σ é habitado num contexto Γ se e só se σ é habitado no contexto Γ por uma forma β -normal.
- **5.11** Dado um tipo simples σ , seja Nat_{σ} o tipo $(\sigma \to \sigma) \to \sigma \to \sigma$. Usando tipificação à la Curry, prove que:
 - a) para todo $n \in \mathbb{N}_0$, $f: \sigma \to \sigma, x: \sigma \vdash f^n(x): \sigma$;
 - b) conclua que todo o numeral de Church é tipificável com tipo Nat_{σ} .
- **5.12** a) Mostre que se N e N' são formas β -normais de M e M', respetivamente, então ou N=N' ou $M\neq_{\beta} M'$.
 - b) Conclua que, para todo $m, n \in \mathbb{N}_0$, se $m \neq n$, então $\mathbf{c}_m \neq_{\beta} \mathbf{c}_n$.
- **5.13** Sejam $F, M, N \in \Lambda$, x uma variável e $n \in \mathbb{N}_0$. Mostre que:
 - a) $F^n(M)[N/x] = (F[N/x])^n(M[N/x]).$
 - b) $\mathbf{c}_n FM =_{\beta} F^n(M)$.
- **5.14** Considere o combinador **ZERO** = $\lambda x.x(\lambda y.$ **false**)**true**.
 - a) Mostre que **ZERO** $\mathbf{c}_n =_{\beta} \mathbf{true}$ se n = 0 e que **ZERO** $\mathbf{c}_n =_{\beta} \mathbf{false}$ se n > 0.
 - b) Assuma definido um combinador predecessor **PRED** tal que, para todo $n \in \mathbb{N}_0$, **PRED** $\mathbf{c}_{n+1} =_{\beta} \mathbf{c}_n$. Mostre que a função numérica predecessor dada por f(0) = 0; f(n+1) = n é λ -definível.
 - c) Mostre que é λ -definível a seguinte função de subtração: f(m,n) = m-n, se $m \geq n$; f(m,n) = 0, se m < n.
- **5.15** Considere o combinador de ponto fixo de Turing $\mathbf{\Theta} = \mathbf{A}\mathbf{A}$, onde $\mathbf{A} = \lambda xy.y(xxy)$. Verifique que, para todo o λ -termo F, $\mathbf{\Theta}F \to_{\beta}^* F(\mathbf{\Theta}F)$ e que, de facto, $\mathbf{\Theta}$ é um combinador de ponto fixo.
- **5.16** Sejam f, g, h funções numéricas de tipo adequado, de tal modo que h é obtida de f e g por recursão primitiva do seguinte modo:
 - 1. h(0,x) = f(x)
 - 2. h(n+1,x) = g(h(n,x), n, x).

Considere que f e g são λ -definíveis por combinadores F e G, respetivamente. Mostre que h é λ -definível pelo combinador

$$H = \Theta(\lambda h \, n \, x. \, \text{IF ZERO} \, n \, \text{THEN} \, F \, x \, \text{ELSE} \, G(h(\text{PRED} \, n) \, x) \, n \, x).$$

- **5.17** Mostre que as seguintes funções numéricas são λ -definíveis:
 - a) f(n) = 1, se n = 0; f(n) = 0, caso contrário.
 - b) f(n) = n + 1.
 - c) f(n) = n!.
 - d) $f(n,m) = m^n$.