Reduccion de la Planificacion Conformante a SAT mediante Compilacion a d-DNNF

Héctor Palacios

Héctor Geffner

UPF

ICREA/UPF

Planning

- Agent performs actions to achieve a goal
- Many flavors: uncertainty, time, resources, etc
- Last decade: shift from theoretical to empirical based. significant improvement

Planning

- Agent performs actions to achieve a goal
- Many flavors: uncertainty, time, resources, etc
- Last decade: shift from theoretical to empirical based. significant improvement
- Classical Planning: simplest flavor

From a initial state, reach a goal by doing a plan (sequence of actions)

Example: Robot navigation: starts from a position, has a map

Planning

- Agent performs actions to achieve a goal
- Many flavors: uncertainty, time, resources, etc
- Last decade: shift from theoretical to empirical based. significant improvement
- Classical Planning: simplest flavor
 - From **a** initial state, reach a goal by doing a plan (**sequence** of actions)
 - Example: Robot navigation: starts from a position, has a map
- Conformant Planning: slight uncertainty
 - Many possible initial states: one plan working for every initial state
 - Example: a blind Robot has a map, but doesn't know its initial position

Motivation

- Classical Planning as SAT
 - Obtain a formula from a problem, call a **solver**
 - Very successful!

Motivation

- Classical Planning as SAT
 - Obtain a formula from a problem, call a solver
 - Very successful!
- Conformant Planning is NP-hard: can't be mapped to one SAT
 - We want a **formula** to feed a SAT solver
 - Obtaining can be expensive

Motivation

- Classical Planning as SAT
 - Obtain a formula from a problem, call a solver
 - Very successful!
- Conformant Planning is NP-hard: can't be mapped to one SAT
 - We want a **formula** to feed a SAT solver
 - Obtaining can be expensive
- We present a optimal conformant planner: obtain a formula, SAT
- The planner just need two off-the-shelf components:
 - a knowledge compiler and a SAT solver

No specific search algorithm!

Outline

- Classical Planning as SAT
- Conformant Planning as SAT
- A propositional formula for solving Conformant Planning as SAT
- Knowledge Compilation to generate the formula
- Algorithm
- Experiments
- Discussion
- Summary

Classical Planning

- States: set of fluents variables describing the situation
- Discrete time
- One initial state, goal states
- Apply action a
 - requires **precondition**(a) \bigwedge
 - guarantee **effect**(a) in the next time step

Classical Planning

- States: set of fluents variables describing the situation
- Discrete time
- One initial state, goal states
- Apply action *a*
 - requires **precondition**(a) \bigwedge
 - guarantee **effect**(a) in the next time step

Example: Robot Navigation

- State consist of fluents: horizontal position, vertical position
- Actions: move-up, move-left

Classical Planning: Complexity and Solution

• NP-complete (as SAT, exponential) assuming fixed horizon

Classical Planning: Complexity and Solution

- NP-complete (as SAT, exponential) assuming fixed horizon
- SAT solvers do well in many cases.

Classical Planning: Complexity and Solution

NP-complete (as SAT, exponential) assuming fixed horizon

SAT solvers do well in many cases.

- ullet To map the *decision problem* of classical planning, horizon k to SAT
 - For k, generate a propositional theory Φ encoding the problem
 - If Φ is SAT, report a solution

Classical Planning as SAT

- ullet A propositional theory Φ **encoding** the problem, for horizon k
 - A variable for **every** action and fluent at **every** time step: a_i , f_i
 - Describe **relation** between actions and fluents in time
 Example: MOVE-LEFT₁ ∧ POS-HORIZ₁=3 ⊃ POS-HORIZ₂=2
 - Ensure that **models** of Φ are *all* the *sound* **executions**
- ullet Call a SAT solver over Φ

Classical Planning as SAT

- ullet A propositional theory Φ **encoding** the problem, for horizon k
 - A variable for **every** action and fluent at **every** time step: a_i , f_i
 - Describe **relation** between actions and fluents in time Example: MOVE-LEFT $_1 \land POS$ -HORIZ $_1$ =3 $\supset POS$ -HORIZ $_2$ =2
 - Ensure that **models** of Φ are *all* the *sound* **executions**
- ullet Call a SAT solver over Φ

Example:

- ullet Problem with fluents $\{p,q\}$ and actions $\{a\}$
- Vars of Φ (k = 2): $\{p_0, q_0, a_0, p_1, q_1, a_1, p_2, q_2\}$

Conformant Planning SAT

- Classical planning + many possible initial states
- ullet Logical theory Φ :

same + logical description of initial states

Conformant Planning SAT

- Classical planning + many possible initial states
- ullet Logical theory Φ :
 - same + logical description of initial states
 - Models: plans for one initial state (optimistic)
 - We want one plan for all initial states (pessimistic)

Conformant Planning SAT

- Classical planning + many possible initial states
- Logical theory Φ : same + logical description of initial states
 - Models: plans for one initial state (optimistic)
 - We want one plan for all initial states (pessimistic)
- Naive solution
 - Start from horizon k=0, until find a solution
 - * For k, generate a propositional theory Φ encoding the problem
 - * Generate candidate (SAT) and Test it (SAT)

• For a **specific** s_0 , the plans are the models of

$$T + s_0$$

 $T + s_0$ as in classical planning

• For a **specific** s_0 , the plans are the models of

$$T + s_0$$
 as in classical planning

• Plans conformant for **all** s_0 , are the models of?

$$\bigwedge_{s_0 \in \mathit{Init}} T + s_0$$

• For a **specific** s_0 , the plans are the models of

$$T + s_0$$
 as in classical planning

• Plans conformant for **all** s_0 , are the models of?

$$\bigwedge_{s_0 \in \mathit{Init}} T + s_0$$

No: same plan, different executions

• For a **specific** s_0 , the plans are the models of

$$T + s_0$$
 as in classical planning

• Plans conformant for **all** s_0 , are the models of?

$$\bigwedge_{s_0 \in \mathit{Init}} T + s_0$$

No: same plan, different executions

ullet Project over actions: models of T but only over actions

$$\mathsf{project}(a \land b, \{a\}) = a, \quad \mathsf{project}((a \land b) \lor c, \{a, c\}) = a \lor c$$

• For a **specific** s_0 , the plans are the models of

$$T + s_0$$
 as in classical planning

• Plans conformant for **all** s_0 , are the models of?

$$\bigwedge_{s_0 \in \mathit{Init}} T + s_0$$

No: same plan, different executions

 \bullet $\mbox{\bf Project}$ over actions: models of T but $\mbox{\bf only}$ over actions

$$\mathsf{project}(a \land b, \{a\}) = a, \quad \mathsf{project}((a \land b) \lor c, \{a, c\}) = a \lor c$$

• Theorem: The conformant plans are the Models of

$$\bigwedge_{s_0 \in \mathit{Init}} \mathsf{project}[\, T \, + \, s_0 \, ; \, \mathit{Actions} \,]$$

Conformant Planning(horizon k)

- 1. Generate theory T for horizon k
- 2. Construct the formula $T_{\rm cf}$ where

$$T_{\text{cf}} = \bigwedge_{s_0 \in \textit{Init}} \mathsf{project}[T + s_0; \textit{Actions}]$$

3. Obtain a **Plan** by calling *once* a **SAT** solver over $T_{\rm cf}$

Conformant Planning(horizon k)

- 1. Generate theory T for horizon k
- 2. Construct the formula $T_{\rm cf}$ where

$$T_{\text{cf}} = \bigwedge_{s_0 \in \textit{Init}} \mathsf{project}[T + s_0; \textit{Actions}]$$

3. Obtain a **Plan** by calling *once* a **SAT** solver over $T_{\rm cf}$

if we can do projection and conditioning $(T + s_0)$

Answer: Knowledge compilation

Transform a theory to a target language, expensive (exponential),
 then make cheap operations

Answer: Knowledge compilation

- Transform a theory to a target language, expensive (exponential),
 then make cheap operations
- We use deterministic Decomposable Negation Normal Form,
 d-DNNF, a form akin to OBDDs
- Supports poly-time conditioning and projection

Answer: Knowledge compilation

- Transform a theory to a target language, expensive (exponential),
 then make cheap operations
- We use deterministic Decomposable Negation Normal Form,
 d-DNNF, a form akin to OBDDs
- Supports poly-time conditioning and projection

- Some OBDDs are exponentially larger than their equivalent d—DNNFs
- Public libraries for compilation from CNF to OBDDs or d-DNNFs

Palacios & Geffner CAEPIA - 2005 Algorithm

Conformant Planning as SAT

Start from horizon k=0 increasing until find a solution

- 1. Generate theory T for horizon k
- 2. T is **compiled** (once) into a d–DNNF theory $T_{
 m c}$
- 3. From $T_{\rm c}$, the transformed theory

$$T_{\mathrm{cf}} = \bigwedge_{s_0 \in \mathit{Init}} \mathrm{project}[T_{\mathrm{c}} + s_0; \mathit{Actions}]$$

is obtained by linear operations in $T_{
m c}$

4. A **SAT solver** is called (once) over $T_{\rm cf}$

Require: a compiler and a sat solver: no specific search algorithm

Palacios & Geffner CAEPIA - 2005 Algorithm

For each horizon k

Compile & SAT approach

Palacios & Geffner CAEPIA - 2005 Algorithm

For each horizon k

Palacios & Geffner CAEPIA - 2005 Results

Problems

Ring n rooms arranged in a circle. A robot can move one step a time. The room features **windows** that can be **closed** and **locked**. Initially, the position of the robot and the status of the windows is not known

Square Center A robot without sensors can move in a **grid** north, south, east, and west, and its goal is to **get to the middle** of the room. The size of the grid is $2^n \times 2^n$

Sorting networks Build a circuit made of compare-and-swap gates that maps an input vector of n boolean variables into the corresponding sorted vector

Palacios & Geffner CAEPIA - 2005 Experiments

Compile time

		CNF(T)		d–DNNF T_c			$CNF(T_{cf})$	
problem	N^*	vars	clauses	nodes	edges	time	vars	clauses
ring-r7	20	1081	3683	1008806	2179064	192.2	976203	3105362
ring-r8	23	1404	4814	3887058	8340295	1177.1	3779477	11957085
sq-center-e3	20	976	3642	11566	22081	1.1	9664	27956
sq-center-e4	44	4256	16586	90042	174781	47.1	81404	238940
sort-s7	16	1484	6679	115258	283278	12.4	112756	390997
sort-s8	19	2316	12364	363080	895247	77.2	359065	1246236

- Exponential increasing because compilation
- Linear translation from d-DNNF to CNF
- Big theories do not imply hard problems
- Compilation is **not** the bottleneck

d-DNNF compiler by Adnan Darwiche

Palacios & Geffner CAEPIA - 2005 Experiments

Search time

				sat call with horiz N^st			sc with horizon N^st-1	
]] 	problem	N^*	$\#S_0$	time	decisions	#act	time	decisions
	ring-r7	20	15309	° 2.1	2	20	° 0.8	0
	ring-r8	23	52488	> 1.8Gb			° 2.4	0
Seria	sq-center-e3	20	64	18.8	52037	20	207.4	207497
S	sq-center-e4	44	256	5184.4	1096858	44	> 2h	
	sort-s6	12	64	40.0	34451	12	> 2h	
	sort-s7	16	128	3035.6	525256	16	> 2h	
	sort-s8	19	256	> 2h			> 2h	
Parallel	sq-center-e4	22	256	423.1	244085	44	1181.5	439532
	sort-s7	6	128	46.1	18932	18	355.4	48264
	sort-s8	6	256	° 4256.6	533822	23	>2h	

SAT solver: (SIEGE_V4 or *zChaff*). Time in seconds.

Blue: our model-counting based planner couldn't solve it (ICAPS'05)

Palacios & Geffner CAEPIA - 2005 Discussion

Comparison with other works

- No many optimal conformant planners, but many suboptimal
- In general, better on very difficult problems: sort, cube
- Worst in problems close to classical planning (less uncertainty)
 or many objects. Ex: bomb in the toilet with 100 bombs

Palacios & Geffner CAEPIA - 2005 Discussion

Discussion

- Our theories are easy to compile following their **stratified structure**: fluents f_i are related with other fluents f_i and actions a_i and a_{i-1}
- Without this, compiling using the stratification vs. an automatic strategy of the compiler.
 - sort-7-ser: 12s vs 40s. Automatic: double size of the graph
 - sq-center-4: 43.9s vs > 2 hours

Discussion

- Our theories are easy to compile following their **stratified structure**: fluents f_i are related with other fluents f_i and actions a_i and a_{i-1}
- Without this, compiling using the stratification vs. an automatic strategy of the compiler.
 - sort-7-ser: 12s vs 40s. Automatic: double size of the graph
 - sq-center-4: 43.9s vs > 2 hours
- Compilation too expensive for problems with many objects, but they are solved easily by others
- Other ways to project? renaming

Summary

 Conformant Planning: slight variation of classical planning, relevant for insight in other flavors with uncertainty

- Main contribution: propositional formula for conforman planning
- ullet To solve a problem, **one** compiler call and **one** SAT call until k optimal
 - Simple and powerful scheme
- Encouraging results
- Compilation is not the bottleneck
- Some instance haven't been solved before (sort, cube...)
- Lot of improvement on problems close to classical planning

Acknowledgement

- Blai Bonet: code for parsing the PDDL problem specification and generation of CNF and previous join work
- Adnan Darwiche: compiler from CNF to d–DNNF and previous joint work
- Reviewers

thank you!

Conformant Planning Theory

Slight variation of encoding in SATPLAN

- 1. **Init**: a clause C_0 for each init clause $C \in I$.
- 2. **Goal:** a clause C_N for each goal clause $C \in G$.
- 3. Actions: For $i=0,1,\ldots,N-1$ and $a\in O$:

$$a_i$$
 \supset $\operatorname{pre}(a)_i$ (precondition $\operatorname{cond}^k(a)_i \wedge a_i$ \supset $\operatorname{effect}^k(a)_{i+1}, \quad k=1,\ldots,k_a$ (effects)

4. Frame: for $i = 0, 1, \dots, N-1$, each fluent literal

$$l_i \wedge \bigwedge_{\operatorname{cond}^k(a)} \neg [\operatorname{cond}^k(a)_i \wedge a_i] \supset l_{i+1}$$

where the conjunction ranges over the conditions $\operatorname{cond}^k(a)$ associated with effects $\operatorname{effect}^k(a)$ that support the complement of l.

5. Exclusion: $\neg a_i \lor \neg a_i'$ for $i = 0, \dots, N-1$

Conformant Planning Theory: Example

Problem:

- Fluents: p, q, r
- Init: $p \vee q, \neg r$. Goal: r
- Actions
 - a_q : if p effect is q
 - a_r : if q effect is r

Theory Φ for horizon k=2

- Init: $p_0 \vee q_0$, $\neg r_0$
- Goal: *r*₂
- exclusion: $a_q 0 \otimes a_r 0$

Conformant Planning Theory: Example

Problem:

- Fluents: p, q, r
- Init: $p \lor q, \neg r$. Goal: r
- Actions
 - a_q : if p effect is q
 - a_r : if q effect is r

Theory Φ for horizon k=2

- Init: $p_0 \vee q_0$, $\neg r_0$
- Goal: r_2
- exclusion: $a_q 0 \otimes a_r 0$

• effects:

$$a_q 0 \land p_0 \supset q_1$$
$$a_r 0 \land q_0 \supset r_1$$

• frame, for each literal

$$\begin{array}{c|c} p & p_0 \supset p_1 \\ \\ \neg p & \neg p_0 \supset \neg p_1 \\ \\ q & \neg q_0 \supset \neg q_1 \\ \\ \neg q & \neg (a_q 0 \land p_0) \land \neg q_0 \supset \neg q_1 \\ \\ r & \neg r_0 \supset \neg r_1 \\ \\ \neg r & \neg (a_r 0 \land r_0) \land \neg r_0 \supset \neg r_1 \end{array}$$

etc.

deterministic - Decomposable Negation Normal Form (d-DNNF)

- Normal form: NNF satisfying determinism and decomposability (see paper for details)
 - Deterministic: for each AND node, no variable appears in more than one conjunct
 - Decomposable: for each OR node, disjuncts are pairwise logically inconsistent
- Compiling to d–DNNF: a naive algorithm proceed doing exhaustive DPLL (all SAT)
- d-DNNF compilations are, typically, exponentially bigger
- Projection and conditioning are lineal in the size of the d-DNNF

d-DNNF: Example

Theory

 $a \vee \neg a$

 $c \vee d$

 $\neg c \lor b$

• Decomposable?

For each OR node, disjuncts are pairwise logically inconsistent

• Deterministic?

For each AND node, no variable appears in more than one conjunct

Calculating the CNF efficiently

- We can ask the compiler to give the d–DNNF
 - Projected over actions and vars (s_0) (no fluents i > 0)
 - Make cases analysis **first** over vars(s_0)
- Then project $[T + s_0; Actions]$ can be extracted as a subgraph

Then, we can construct $\bigwedge_{s_0 \in \mathit{Init}} \mathsf{project}[T + s_0; \mathit{Actions}]$ by making a **new graph** with the extracted subgraphs. Easy to CNF!

- Fluents: p, q, r
- Init: $p \lor q, \neg r$. Goal: r
- Actions:
 - a_q : if p effect is q
 - a_r : if q effect is r
- Solution: a_q , a_r

Compiling for $k=2\dots$

- Fluents: p, q, r
- Init: $p \vee q, \neg r$. Goal: r
- Actions:
 - a_q : if p effect is q
 - a_r : if q effect is r
- Solution: a_q , a_r

Compiling for k=2...

Asking the compiler to:

- Make cases analysis **first** over init vars: p_0 , q_0 , r_0
- Project while compiling over init + action vars

- Fluents: p, q, r
- Init: $p \vee q, \neg r$. Goal: r
- Actions:
 - a_q : if p effect is q
 - a_r : if q effect is r
- Solution: a_q , a_r

Compiling for k=2...

Asking the compiler to:

- Make cases analysis **first** over init vars: p_0 , q_0 , r_0
- Project while compiling over init + action vars

Projection, a logical operation

Don't want to care about some variables

Projection, a logical operation

- Don't want to care about some variables
- Example: want to forget f_1 from $\phi = (a_1 \land f_1) \lor a_2$

Projection, a logical operation

- Don't want to care about some variables
- Example: want to forget f_1 from $\phi = (a_1 \land f_1) \lor a_2$

$$\begin{array}{lll} \mathsf{project}[\,\phi;\,\{a_1,a_2\}\,] &=& \exists f_1\,\phi \\ \\ &=& (\phi\,|\,f_1=\mathsf{true})\,\vee\,(\phi\,|\,f_1=\mathsf{false}) \\ \\ &=& ((a_1\wedge\mathsf{true})\vee a_2)\,\vee \\ \\ &=& (a_1\wedge false)\vee a_2) \\ \\ &=& (a_1\vee a_2) \end{array}$$

Models of $\phi=(a_1\wedge f_1)\vee a_2$, if we **don't care** about f_1 , are the models of $a_1\vee a_2$

Projection, a logical operation

- Don't want to care about some variables
- ullet Example: want to *forget* f_1 from $\phi = (a_1 \land f_1) \lor a_2$

$$\begin{array}{lll} \mathsf{project}[\,\phi;\,\{a_1,a_2\}\,] &=& \exists f_1\,\phi \\ \\ &=& (\phi\,|\,f_1=\mathsf{true})\,\vee\,(\phi\,|\,f_1=\mathsf{false}) \\ \\ &=& ((a_1\wedge\mathsf{true})\vee a_2)\,\vee \\ \\ &=& (a_1\wedge\mathsf{false})\vee a_2) \\ \\ &=& (a_1\vee a_2) \end{array}$$

Models of $\phi=(a_1\wedge f_1)\vee a_2$, if we **don't care** about f_1 , are the models of $a_1\vee a_2$

 The projection of a formula over a subset of its variables is the strongest formula over those variables

Discussion (2)

ullet Conformant Planning can be solved as a QBF of the form solve $\exists Plan \ \forall s_0 \ \exists execution \ T$

Our method is **simple and generic**. Can be used to solve QBFs?

- Our CNFs theories are probably the biggest compiled to d-DNNF. Can we detect stratified structure in other CNFs?
- Relation with other problems that can't be map to SAT: all solutions to CNFs, unsat of CNFs, weighted CNF, maxSAT, MPE (Bay Nets).
- Further work: new theoretical notions for understanding the gap between theory and practice in SAT and CSP and beyond them: hypertree decomposition (chen & dalmau), semantic width (dechter), strong backdoors (gomes, selman).