Differential- und Integralrechnung, Wintersemester 2024-2025

11. Vorlesung

TH6 (Das zweite Vergleichskriterium für uneigentliche Integrale über beschränkte Intervalle [a, b))

Seien $a, b \in \mathbb{R}$ mit $a < b, f : [a, b) \to [0, \infty)$ eine stetige Funktion und $p \in \mathbb{R}$ so, dass

$$\exists L := \lim_{\substack{x \to b \\ x < b}} (b - x)^p f(x).$$

Dann gelten:

- 1° Sind p < 1 und $L < \infty$, dann ist f auf [a, b) uneigentlich integrierbar.
- 2° Sind $p \ge 1$ und L > 0, dann ist f auf [a, b) nicht uneigentlich integrierbar.

TH7 (Das zweite Vergleichskriterium für uneigentliche Integrale über beschränkte Intervalle (a, b])

Seien $a, b \in \mathbb{R}$ mit $a < b, f : (a, b] \to [0, \infty)$ eine stetige Funktion und $p \in \mathbb{R}$ so, dass

$$\exists L := \lim_{\substack{x \to a \\ x > a}} (x - a)^p f(x).$$

Dann gelten:

- 1° Sind p < 1 und $L < \infty$, dann ist f auf (a, b] uneigentlich integrierbar.
- 2° Sind $p \ge 1$ und L > 0, dann ist f auf (a, b] nicht uneigentlich integrierbar.

TH8 (Das zweite Vergleichskriterium für uneigentliche Integrale über Intervalle $[a, \infty)$)

Seien $a \in \mathbb{R}$, $f: [a, \infty) \to [0, \infty)$ eine stetige Funktion und $p \in \mathbb{R}$ so, dass

$$\exists L := \lim_{x \to \infty} x^p f(x).$$

Dann gelten:

- 1° Sind p>1 und $L<\infty$, dann ist f auf $[a,\infty)$ uneigentlich integrierbar.
- 2° Sind $p \le 1$ und L > 0, dann ist f auf $[a, \infty)$ nicht uneigentlich integrierbar.

Wir fassen **Th6**-**Th8** in den folgenden Tabellen zusammen:

1. Tabelle (\hookrightarrow Th6)

p	$L = \lim_{\substack{x \to b \\ x < b}} (b - x)^p f(x)$	$f:[a,b) o [0,\infty)$ stetig
<i>p</i> < 1	$L<\infty$	uneigentlich integrierbar
$p \ge 1$	<i>L</i> > 0	nicht uneigentlich integrierbar

2. Tabelle (→ **Th7**)

р	$L := \lim_{\substack{x \to a \\ x > a}} (x - a)^p f(x)$	$f:(a,b] \to [0,\infty)$ stetig
<i>p</i> < 1	$L<\infty$	uneigentlich integrierbar
$p \ge 1$	<i>L</i> > 0	nicht uneigentlich integrierbar

3. Tabelle (\hookrightarrow Th8)

р	$L:=\lim_{x\to\infty}x^pf(x)$	$f:[a,\infty) \to [0,\infty)$ stetig
<i>p</i> > 1	$L<\infty$	uneigentlich integrierbar
$p \le 1$	<i>L</i> > 0	nicht uneigentlich integrierbar

Definition

Die Funktion $\Gamma \colon (0,\infty) \to \mathbb{R}$, definiert durch

$$\Gamma(t) = \int_{0+}^{\infty} x^{t-1} e^{-x} dx, \ \forall \ t \in (0, \infty),$$

nennt man eulersche Gammafunktion.

S9 (Eigenschaften von □)

$$1^{\circ} \Gamma(t+1) = t \cdot \Gamma(t), \ \forall \ t \in (0,\infty).$$

$$2^{\circ} \ \Gamma(n+1) = n!, \ \forall \ n \in \mathbb{N}, \ \text{also ist} \ \int_{0+}^{\infty} x^n \mathrm{e}^{-x} dx = n!, \ \forall \ n \in \mathbb{N}.$$

3°
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
, d.h. $\int_{0+}^{\infty} \frac{e^{-x}}{\sqrt{x}} dx = \sqrt{\pi}$.

TH10 (Das Integralkriterium für Reihen)

Seien $k \in \mathbb{N}$ und $f: [k, \infty) \to [0, \infty)$ eine monoton fallende stetige Funktion. Dann sind äquivalent:

- 1° Die Funktion f ist auf $[k, \infty)$ uneigentlich integrierbar.
- 2° Die Reihe $\sum_{n>k} f(n)$ ist konvergent.