UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA IV: Introducción a las Matemáticas Discretas (525412)

Tarea 4

Fecha de entrega: 06 de diciembre de 2004.

1. Sea $A = \{1, \ldots, n\}, \ n \geq 2$ y R una relación en A. Se define el digrafo G_R como sigue:

$$V(G_R) = A,$$
 $(a,b) \in E(G_R) \iff a R b.$

- a) Para cada caso defina por comprensión una relación R en A tal que:
 - i) G_R sea conexo pero no fuertemente conexo.
 - ii) G_R sea Euleriano.
- b) En cada caso determine las propiedades del grafo fundamental de G_R
 - i) Si R es una relación de orden (total o parcial).
 - ii) Si R es un relación de equivalencia.
- 2. Construya un ejemplo de grafo G con n nodos para cada caso:
 - a) $\lambda(G) \geq 4$, G es Hamiltoniano pero no Euleriano.
 - b) n es par, $\delta(G) = 4$ y G es planar.
 - c) $n \ge 6$, G x es regular $\forall x \in V(G)$.
- 3. Invente un juego entre $k \geq 2$ jugadores que use un grafo G dirigido o no con $n \geq 6$ nodos. Entonces:
 - a) Determine el número mínimo y máximo de pasos que puede durar el juego en función de n.
 - b) Determine si existe un grafo donde el jugador que parte siempre gane el juego.

Observación: en cada caso se premiará la originalidad de las soluciones. Justifique todas sus respuestas.