2012 级《电路分析基础 A》期末试题 A 卷及答案

班级______ 学号_____ 姓名_____ 成绩_____

题号	 	\equiv	四	五	六	七	八	九
得分								

- 一、本题包含2个小题(每小题6分,共12分)
- 1. 求图 1.1 所示电路中的电流 I。

2. 电路如图 1.2 所示,求 R_L 为何值时, R_L 可获得最大功率,并求此最大功率。

- 二、本题包含2个小题(每小题6分,共12分)
- 1. 图 2.1 所示电路中 t=0 时开关打开,打开前电路处于稳态,求 iL(t),t≥0。

- 三、本题包含2个小题(每小题6分,共12分)
- 在图 3.1 所示正弦稳态电路中: (1) 若各交流电流表的示数分别为 Ω:5A, Ω: 20A, **3**: 25A, 求电流表 **A**的示数; (2) 若 **D**的示数保持 5A 不变, 而将电源 us 的频率提高一倍,再求电流表 (A)的示数。

2. 无源二端网络 No (见图 3.2)端口电压和电流分别为:

 $u = 141\sin(\omega t - 90^\circ) + 84.6\sin 2\omega t + 56.4\sin(3\omega t + 90^\circ) \text{ V}$, $i = 10 + 5.64\sin(\omega t - 30^{\circ}) + 3\sin(3\omega t + 60^{\circ})$ A。 试求:

- (1) 电压有效值 U、电流有效值 I;
- (2) 二端网络 N_0 的平均功率 P。

图 3.2

四、本题包含2个小题(每小题6分,共12分)

1. 由理想运算放大器构成的电路如图 4.1 所示,已知正弦电源 $u_{S1}(t) = 4\cos 6t \text{ mV}$, 直流电源 $U_{S2} = 6 \,\mathrm{mV}$, $R_1 = 10 \,\mathrm{k}\Omega$, $R_2 = 20 \,\mathrm{k}\Omega$, $R_3 = 16 \,\mathrm{k}\Omega$, $R_4 = 8 \,\mathrm{k}\Omega$, 试求 $u_0(t)$.

2. 正弦稳态电路如图 4.2 所示,已知: $u_S = 18\sqrt{2}\cos 314t$ V, $R_0 = 200$ Ω,负载 $R_L = 10$ Ω。求: (1)负载 R_L 折合到一次侧的等效电阻 R_i ; (2) $i_1(t)$ 和 $i_2(t)$; (3) $u_1(t)$ 和 $u_2(t)$; (4)负载 R 消耗的平均功率 P。

五、本题包含2个小题(每小题6分,共12分)

1. 正弦稳态电路如图 5.1 所示,已知: $i_{\rm S}(t) = 4\sqrt{2}\cos 10^4 t$ A, $R_1 = 60$ Ω ,R = 40 Ω ,L = 1mH,电路处于谐振状态。试求: (1) 电容 C; (2) 电容电压 $u_{\rm C}(t)$; (3) RLC 并联电路的品质因数 Q 和通频带 BW。

2. 电路如图 5.2 所示, $R_1 = 6\Omega$, $R_2 = 2\Omega$, 负载电阻 $R_L = 8\Omega$ 。已知当 $U_S = 0$ 时, U = 16V; 当 $U_S = 60V$ 时, U = 40V。求当 $U_S = 30V$ 时, 负载电阻 R_L 上的电压 U。

六、 $(10 \, f)$ 电路如图 $(10 \, f)$ 所示。 $(10 \, f)$ 水电流 $(10 \, f)$ 电路如图 $(10 \, f)$ 水电流 $(10 \, f)$ 水电流

七、(10分) 电路如图 7 所示。当 t=0 时将开关 S 闭合,开关闭合前电路已处于稳态。 试求: (1) $t \ge 0$ 时的 uc(t); (2) t>0 时的 u(t)。

 \triangleright

八、(10 分)二阶电路如图 8 所示,已知 L=1 H,C=1/64 F,开关 S 在位置 1 时电路已处于稳态。t=0 时,将开关 S 由位置 1 打到位置 2, $u_{\rm C}(0)=0$ 。

(1) 求 $t \ge 0$ 后电路的特征根,说明响应为哪种情况(欠阻尼、过阻尼、临界阻尼);

(2) 求uc(t)和i(t), $t \ge 0$ 。

九、(本题 10 分)正弦稳态电路如图 9 所示,已知 $u_{S1}=4\cos 2t$ V, $u_{S2}=48\cos 2t$ V, $L_1=1$ H, $L_2=2$ H,M=1 H,C=0.125 F,L=1 H, $R_1=2\Omega$, $R_2=4\Omega$, $R_3=12\Omega$ 。 试求:电流 $i_1(t)$ 和 $i_2(t)$ 。

