The Structured Coalescent

Ian Roberts

07/06/2021

Homochronous Leaves

Homochronous.Sim simulates the ordinary Kingman *n*-coalescent, and outputs a phylo object which can potentially be plotted using ape::plot.phylo

Figure 1: Homochronous *n*-coalescent simulation using Homochronous.Sim where Effective population \times generation length = 25

Heterochronous Leaves

- Heterochronous.sim again simulates the Kingman n-coalescent, outputting a phylo object. Key difference is the option for heterochronous leaves (in continuous years) and optional argument for plotting the phylo object automatically
- Effectively reduces to Homochronous.sim if all leaves have the same age
- Example dataset: first column giving sample id and second column giving year of observation

ID	Year
1	2021
2	2020
3	2021
4	2018
5	2019

Figure 2: Heterochronous n-coalescent simulation using Homochronous.Sim where Effective population \times generation length = 25

Verification

- Verified the accuracy of Heterochronous.sim via likelihood computation. Likelihood calculated recursively as the simulation is run, then compare obtained value with explicit calculation from the final phylo object (using phylo.likelihood).
- Likelihood of a heterochronous coalescent process (Drummond et al. 2002) is given by

$$L = \frac{1}{\theta^{n-1}} \prod_{i=2}^{2n-1} \exp \left\{ -\frac{k_i(k_i-1)}{2\theta_i} (t_i - t_{i-1}) \right\}$$

where

- t_i denotes the time of the ith event (either a coalescence or adding a newly sampled lineage)
- k_i denotes the number of current lineages at t_i
- \bullet $\,\theta$ denotes the product of effective population and generation length.

Structured Coalescent

- Structured.sim generates a realisation of the structured coalescent process where at each event time, either:
 - Two lineages in the same deme coalesce
 - One lineage migrates between two demes
- Allows for heterochronous leaves so effectively reduces to Heterochronous.sim when there is only one deme
- \bullet Example dataset: Augments the previous dataset with a third column giving initial deme of the lineages. Assume 2 demes and an example migration matrix Λ

ID	Year	Deme		
1	2021	1		
2	2020	1	آ م	آدم م
3	2021	2	$\Lambda = \begin{bmatrix} 0 \\ 0.05 \end{bmatrix}$	0.02
4	2018	2	[0.03	ر ه
5	2019	2		

Figure 3: Structured heterochronous *n*-coalescent realisation using Structured.sim with Effective population \times generation length = 25 and migration rates 0.02 (1 \rightarrow 2) and 0.05 (2 \rightarrow 1)

Verification (IN PROGRESS)

 Again, verify by constructing likelihood recursively and compare to the exact form (Ewing, Nicholls, and Rodrigo 2004)

$$L = \prod_{i=1}^{d} \prod_{\substack{j=1 \\ i \neq i}}^{d} \prod_{r=2}^{2n+M-1} \frac{1}{\theta_{i}^{c_{i}}} \lambda_{ij}^{m_{ij}} \exp \left\{ -\left(\frac{k_{ir}(k_{ir}-1)}{2\theta_{i}} + k_{ir}\lambda_{ij}\right)(t_{r} - t_{r-1}) \right\}$$

- where
 - *n* denotes the number of leaves
 - d denotes the number of demes
 - m gives a $d \times d$ matrix with entries m_{ij} giving the number of migrations $(i \to j)$ and $M = \sum_{i,j=1}^{d} m_{ij}$ gives the total number of migration events
 - *c* gives a *d*-dimensional vector with entries *c_i* giving the number of coalescence events occuring in deme *i*
 - k_{ir} denotes the number of lineages in deme i at time t_r

Problem

Currently likelihood calculated recursively does not agree with the exact form from Ewing, Nicholls, and Rodrigo (2004). Recursive likelihood is calculated by adding a contribution from each of the three possible events:

- New leaf is added
- Coalescence occurs in deme i
- Migration occurs $i \rightarrow j$

Likelihood contributions

Total coalescence rate $C = \sum_{i=1}^{d} {k_i \choose 2}$, Total migration rate $\mathcal{M} = \sum_{i=1}^{d} \sum_{i \neq i} k_i \lambda_{ij}$ and Total event rate: $\mathcal{E} = C + \mathcal{M}$.

- New leaf added:
 - $L \leftarrow L + \log (1 \mathcal{E} \exp\{-\mathcal{E}\delta\})$ where δ is the time to next new leaf being added
- Coalescence or migration event:
 - ullet Event time T is simulated as truncated exponential with rate ${\mathcal E}$ and cutoff δ via inverse transform sampling
 - With probability $\frac{\mathcal{C}}{\mathcal{M}}$, event is a coalescence. Select a coalescence deme from all demes containing at least 2 lineages weighted by number of lineages in the deme so deme i is selected with probability $\frac{k_i}{\sum_{i:k_i>0}k_j}$.

References

Drummond, Alexei J, Geoff K Nicholls, Allen G Rodrigo, and Wiremu Solomon. 2002. "Estimating Mutation Parameters, Population History and Genealogy Simultaneously from Temporally Spaced Sequence Data." *Genetics* 161 (3): 1307–20.

Ewing, Greg, Geoff Nicholls, and Allen Rodrigo. 2004. "Using Temporally Spaced Sequences to Simultaneously Estimate Migration Rates, Mutation Rate and Population Sizes in Measurably Evolving Populations." *Genetics* 168 (4): 2407–20.