

STUDENT ID NO

--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

ETN4086 – MOBILE AND SATELLITE COMMUNICATIONS

(TE, MCE)

23 OCTOBER 2017
2.30 p.m. – 4.30 p.m.
(2 Hours)

INSTRUCTION TO STUDENT

1. This examination paper consists of **11 pages** (including the cover page) with **4 questions only**.
2. Each question is worth **25 marks**. Attempt **ALL** questions.
3. Please write all your answers in the Answer Booklet provided. **Show all relevant steps** to obtain maximum marks.
4. There is an **appendix** of useful charts, constants and formulae at the end of this question paper.

Question 1

- (a) Describe the two basic control channels in cellular communications. [4 marks]
- (b) Describe how cell splitting can improve the capacity of a cellular system. [5 marks]
- (c) Table Q1.1 shows the parameters of a cellular system.

Table Q1.1

Cluster size, N	7
Cell Radius, R	0.5km
Area of a cell	$2R^2 \text{ km}^2$
Channels	662
Control channels	32
User density	9000 users/km 2

Long term channel utilization statistics show that each user makes an average of one call every 2 hours and each call lasts 2 minutes during peak hours.

- (i) Calculate the number of voice channels per cell. [2 marks]
- (ii) Calculate the average number of users in one cell. [3 marks]
- (iii) What is the traffic intensity per cell? [3 marks]
- (iv) Based on the number of voice channels found in (c) (i), estimate the blocking probability experienced by users in this system. [2 marks]
- (v) The Quality of Service (QoS) is reviewed and set at a new Grade of Service (GOS) of 2%. Estimate the increase of number of users per cell when compared to a system with GOS of 1%. [4 marks]
- (vi) Discuss the impact of increasing the GOS from 1% to 2 % to the users. [2 marks]

Continued...

Question 2

- (a) A student has conducted a test drive in Kuala Lumpur to find the propagation of a signal between a transmitter and a receiver using a carrier frequency 1400MHz. The effective base station height, h_{te} , is 35m and the effective mobile antenna height, h_{re} , is 1.5m. The transmitter power, P_t , is given as 69.44W. The field measurement revealed that path loss at 10km was measured to be approximately 150dB.
- (i) Estimate the path loss using the Free Space Loss (FSL) model if the received power, P_r , at 10km is 10×10^{-11} W. [2 marks]
- (ii) Using the Hata model, estimate the median path loss, L_{50} , at 10km. [4 marks]
- (iii) Discuss the difference in the path loss estimated values between the FSL model and the Hata model. [3 marks]
- (iv) State one constraint of the Hata model. [1 mark]

Hint: Hata model

$$L_{50} = 69.55 + 26.16 \log f_c - 13.82 \log h_{te} - a(h_{re}) + (44.9 - 6.55 \log h_{te}) \log d$$

Antenna correction factor for large city is given as:

$$a(h_{re}) = 8.29(\log(1.54 h_{re}))^2 - 1.1 \text{ dB}, f_c \leq 300 \text{ MHz}$$

$$a(h_{re}) = 3.2(\log(11.75 h_{re}))^2 - 4.97 \text{ dB}, f_c > 300 \text{ MHz}$$

Continued...

(b)

Figure Q2.1

Figure Q2.1 shows various propagation effects that occur to radio signals. Identify effects A, B and C and describe how they occur.

[6 marks]

- (c) Discuss THREE differences in the features between Third Generation (3G) and Fourth Generation (4G) mobile networks.

[9 marks]

Question 3

- (a) With the aid of sketches, describe the *separate* and *contiguous* types of satellite multibeam patterns.

State also the advantage and application for each of the multibeam patterns.

[8 marks]

- (b) The total kinetic and potential energy of a satellite is $-\frac{m\mu}{2a}$, where μ is the gravitation parameter, m is the satellite mass, and a is the semi-major axis of the orbits. Show that the satellite velocity at a distance r from the orbit focus is given as $u = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a} \right)}$.

[4 marks]

Continued...

- (c) The Malaysian government has recently launched a new satellite called *TiongSat*. The satellite has an orbital period of 9952s and eccentricity of 0.1.
- (i) Calculate the semi major axis of the satellite [2 marks]
- (ii) Estimate the apogee and perigee altitude of the satellite. [4 marks]
- (iii) Calculate the satellite velocity at apogee and perigee. [3 marks]
- (iv) Determine the mean anomaly (in degree), 240s after the passage of perigee for the satellite. [2 marks]
- (v) What is the meaning of *mean anomaly*? [2 marks]

Continued...

Question 4

- (a) Discuss THREE characteristics of the antenna subsystem at the *satellite earth station*.

[6 marks]

(b)

Table Q4.1

Transmitting power at satellite antenna, P_T	50 W
Satellite antenna 3 dB beamwidth, θ_{3dB}	2.5°
Downlink losses	
Polarization loss	2.5 dB
Rainfall loss	2.0 dB
Antenna misalignment loss	1.0 dB
Atmospheric absorption loss	0.6 dB
Off contour loss	0.5 dB
Assume no branching and feeder loss	
Antenna efficiency, η	
Earth station antenna	0.75
Satellite antenna	0.70

An earth station in Kuantan, Malaysia, utilizes an 8m parabolic reflector to receive a signal from a geostationary satellite, TURBO-V, at 148.2°E. The uplink frequency, f_U , and downlink frequency, f_D , are in the 14GHz and 12GHz, bands respectively. Given the parameters in Table Q4.1 above, perform a link budget analysis by calculating the following parameters:

- (i) Gain of the satellite station's transmitting antenna (dBi). [3 marks]
- (ii) Gain of the earth station's receiving antenna (dBi). [3 marks]
- (iii) Effective Isotropic Radiated Power (EIRP) (dBW) of the transmitted signal. [3 marks]
- (iv) Power flux density at the earth station. [3 marks]
- (v) Total losses (dB) from the satellite to earth station receiving antenna. [5 marks]
- (vi) Power received (dBW) by the earth station's receiver. [2 marks]

Continued...

Appendix I: Constant values

Gravitation parameter, μ	=	$3.986 \times 10^{14} \text{ m}^3/\text{s}^2$
Mean Earth radius, R_E	=	6378 km
Speed of light, c	=	$3 \times 10^8 \text{ m/s}$
Sidereal day	=	23h 56m 4.09s
Boltzmann constant, k	=	$1.379 \times 10^{-23} \text{ J/K} = -228.6 \text{ dBW/Hz K}$

Appendix II: Table of Complementary Error Function

$$\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_z^\infty e^{-t^2} dt \text{ for } 0 \leq z \leq 3.99 \text{ in steps of 0.01}$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	1.000E+00	9.887E-01	9.774E-01	9.662E-01	9.549E-01	9.436E-01	9.324E-01	9.211E-01	9.099E-01	8.987E-01
0.1	8.875E-01	8.764E-01	8.652E-01	8.541E-01	8.431E-01	8.320E-01	8.210E-01	8.100E-01	7.991E-01	7.882E-01
0.2	7.773E-01	7.665E-01	7.557E-01	7.450E-01	7.343E-01	7.237E-01	7.131E-01	7.026E-01	6.921E-01	6.817E-01
0.3	6.714E-01	6.611E-01	6.509E-01	6.407E-01	6.306E-01	6.206E-01	6.107E-01	6.008E-01	5.910E-01	5.813E-01
0.4	5.716E-01	5.620E-01	5.525E-01	5.431E-01	5.338E-01	5.245E-01	5.153E-01	5.063E-01	4.973E-01	4.883E-01
0.5	4.795E-01	4.708E-01	4.621E-01	4.535E-01	4.451E-01	4.367E-01	4.284E-01	4.202E-01	4.121E-01	4.041E-01
0.6	3.961E-01	3.883E-01	3.806E-01	3.730E-01	3.654E-01	3.580E-01	3.506E-01	3.434E-01	3.362E-01	3.292E-01
0.7	3.222E-01	3.153E-01	3.086E-01	3.019E-01	2.953E-01	2.888E-01	2.825E-01	2.762E-01	2.700E-01	2.639E-01
0.8	2.579E-01	2.520E-01	2.462E-01	2.403E-01	2.349E-01	2.293E-01	2.239E-01	2.180E-01	2.133E-01	2.082E-01
0.9	2.031E-01	1.981E-01	1.932E-01	1.884E-01	1.837E-01	1.791E-01	1.746E-01	1.701E-01	1.658E-01	1.615E-01
1.0	1.573E-01	1.532E-01	1.492E-01	1.452E-01	1.414E-01	1.376E-01	1.339E-01	1.302E-01	1.267E-01	1.232E-01
1.1	1.198E-01	1.165E-01	1.132E-01	1.100E-01	1.069E-01	1.039E-01	1.009E-01	9.800E-02	9.516E-02	9.239E-02
1.2	8.969E-02	8.704E-02	8.447E-02	8.195E-02	7.949E-02	7.710E-02	7.476E-02	7.249E-02	7.027E-02	6.810E-02
1.3	6.599E-02	6.394E-02	6.193E-02	5.998E-02	5.809E-02	5.624E-02	5.444E-02	5.269E-02	5.098E-02	4.933E-02
1.4	4.771E-02	4.615E-02	4.462E-02	4.314E-02	4.170E-02	4.030E-02	3.895E-02	3.763E-02	3.635E-02	3.510E-02
1.5	3.389E-02	3.272E-02	3.159E-02	3.048E-02	2.941E-02	2.838E-02	2.737E-02	2.640E-02	2.545E-02	2.454E-02
1.6	2.365E-02	2.279E-02	2.196E-02	2.116E-02	2.038E-02	1.962E-02	1.890E-02	1.819E-02	1.751E-02	1.685E-02
1.7	1.621E-02	1.559E-02	1.500E-02	1.442E-02	1.387E-02	1.333E-02	1.281E-02	1.231E-02	1.183E-02	1.136E-02
1.8	1.091E-02	1.048E-02	1.006E-02	9.653E-03	9.264E-03	8.889E-03	8.528E-03	8.179E-03	7.844E-03	7.521E-03
1.9	7.210E-03	6.910E-03	6.622E-03	6.344E-03	6.077E-03	5.821E-03	5.574E-03	5.336E-03	5.108E-03	4.889E-03
2.0	4.678E-03	4.475E-03	4.281E-03	4.094E-03	3.914E-03	3.742E-03	3.577E-03	3.418E-03	3.266E-03	3.120E-03
2.1	2.979E-03	2.845E-03	2.716E-03	2.593E-03	2.475E-03	2.361E-03	2.253E-03	2.149E-03	2.049E-03	1.954E-03
2.2	1.863E-03	1.776E-03	1.692E-03	1.612E-03	1.536E-03	1.463E-03	1.393E-03	1.326E-03	1.262E-03	1.201E-03
2.3	1.143E-03	1.088E-03	1.034E-03	9.838E-04	9.354E-04	8.893E-04	8.452E-04	8.032E-04	7.631E-04	7.249E-04
2.4	6.885E-04	6.538E-04	6.207E-04	5.892E-04	5.592E-04	5.306E-04	5.034E-04	4.774E-04	4.528E-04	4.293E-04
2.5	4.070E-04	3.857E-04	3.655E-04	3.463E-04	3.280E-04	3.107E-04	2.942E-04	2.785E-04	2.636E-04	2.495E-04
2.6	2.360E-04	2.233E-04	2.112E-04	1.997E-04	1.888E-04	1.785E-04	1.687E-04	1.594E-04	1.506E-04	1.422E-04
2.7	1.343E-04	1.268E-04	1.197E-04	1.130E-04	1.066E-04	1.006E-04	9.492E-05	8.952E-05	8.441E-05	7.958E-05
2.8	7.501E-05	7.069E-05	6.661E-05	6.275E-05	5.910E-05	5.566E-05	5.240E-05	4.933E-05	4.642E-05	4.368E-05
2.9	4.110E-05	3.866E-05	3.635E-05	3.418E-05	3.213E-05	3.020E-05	2.838E-05	2.667E-05	2.505E-05	2.353E-05
3.0	2.209E-05	2.074E-05	1.947E-05	1.827E-05	1.714E-05	1.608E-05	1.508E-05	1.414E-05	1.326E-05	1.243E-05
3.1	1.165E-05	1.092E-05	1.023E-05	9.578E-06	8.970E-06	8.398E-06	7.862E-06	7.358E-06	6.885E-06	6.442E-06
3.2	6.026E-06	5.635E-06	5.269E-06	4.926E-06	4.604E-06	4.303E-06	4.020E-06	3.755E-06	3.507E-06	3.275E-06
3.3	3.058E-06	2.854E-06	2.664E-06	2.485E-06	2.319E-06	2.162E-06	2.017E-06	1.880E-06	1.753E-06	1.633E-06
3.4	1.522E-06	1.418E-06	1.321E-06	1.230E-06	1.145E-06	1.066E-06	9.922E-07	9.233E-07	8.590E-07	7.990E-07
3.5	7.431E-07	6.910E-07	6.423E-07	5.970E-07	5.548E-07	5.155E-07	4.788E-07	4.447E-07	4.130E-07	3.834E-07
3.6	3.559E-07	3.303E-07	3.064E-07	2.843E-07	2.636E-07	2.445E-07	2.267E-07	2.101E-07	1.947E-07	1.804E-07
3.7	1.672E-07	1.548E-07	1.434E-07	1.327E-07	1.229E-07	1.137E-07	1.052E-07	9.736E-08	9.005E-08	8.328E-08
3.8	7.700E-08	7.119E-08	6.579E-08	6.080E-08	5.617E-08	5.189E-08	4.792E-08	4.425E-08	4.085E-08	3.770E-08
3.9	3.479E-08	3.210E-08	2.961E-08	2.731E-08	2.518E-08	2.322E-08	2.140E-08	1.972E-08	1.817E-08	1.674E-08

Note: $1.000E-01 = 1.000 \times 10^{-1}$

$$\text{For } z > 4, \quad \operatorname{erfc}(z) \approx \frac{1}{\sqrt{\pi}} \left(\frac{e^{-z^2}}{z} \right)$$

Continued...

Appendix III: Erlang B and Erlang C Chart

Erlang B Traffic Table

N/B	Maximum Offered Load Versus B and N B is in %											
	0.01	0.05	0.1	0.5	1.0	2	5	10	15	20	30	40
1	.0001	.0005	.0010	.0050	.0101	.0204	.0526	.1111	.1765	.2500	.4286	.6667
2	.0142	.0321	.0458	.1054	.1526	.2235	.3813	.5954	.7962	1.000	1.449	2.000
3	.0868	.1517	.1938	.3490	.4555	.6022	.8994	1.271	1.603	1.930	2.633	3.480
4	.2347	.3624	.4393	.7012	.8694	1.092	1.525	2.045	2.501	2.945	3.891	5.021
5	.4520	.6486	.7621	1.132	1.361	1.657	2.219	2.881	3.454	4.010	5.189	6.596
6	.7282	.9957	1.146	1.622	1.909	2.276	2.960	3.758	4.445	5.109	6.514	8.191
7	1.054	1.392	1.579	2.158	2.501	2.935	3.738	4.666	5.461	6.230	7.856	9.800
8	1.422	1.830	2.051	2.730	3.128	3.627	4.543	5.597	6.498	7.369	9.213	11.42
9	1.826	2.302	2.558	3.333	3.783	4.345	5.370	6.546	7.551	8.522	10.58	13.05
10	2.260	2.803	3.092	3.961	4.461	5.084	6.216	7.511	8.616	9.685	11.95	14.68
11	2.722	3.329	3.651	4.610	5.160	5.842	7.076	8.487	9.691	10.86	13.33	16.31
12	3.207	3.878	4.231	5.279	5.876	6.615	7.950	9.474	10.78	12.04	14.72	17.95
13	3.713	4.447	4.831	5.964	6.607	7.402	8.835	10.47	11.87	13.22	16.11	19.60
14	4.239	5.032	5.446	6.663	7.352	8.200	9.730	11.47	12.97	14.41	17.50	21.24
15	4.781	5.634	6.077	7.376	8.108	9.010	10.63	12.48	14.07	15.61	18.90	22.89
16	5.339	6.250	6.722	8.100	8.875	9.828	11.54	13.50	15.18	16.81	20.30	24.54
17	5.911	6.878	7.378	8.834	9.652	10.66	12.46	14.52	16.29	18.01	21.70	26.19
18	6.496	7.519	8.046	9.578	10.44	11.49	13.39	15.55	17.41	19.22	23.10	27.84
19	7.093	8.170	8.724	10.33	11.23	12.33	14.32	16.58	18.53	20.42	24.51	29.50
20	7.701	8.831	9.412	11.09	12.03	13.18	15.25	17.61	19.65	21.64	25.92	31.15
21	8.319	9.501	10.11	11.86	12.84	14.04	16.19	18.65	20.77	22.85	27.33	32.81
22	8.946	10.18	10.81	12.64	13.65	14.90	17.13	19.69	21.90	24.06	28.74	34.46
23	9.583	10.87	11.52	13.42	14.47	15.76	18.08	20.74	23.03	25.28	30.15	36.12
24	10.23	11.56	12.24	14.20	15.30	16.63	19.03	21.78	24.16	26.50	31.56	37.78
25	10.88	12.26	12.97	15.00	16.13	17.51	19.99	22.83	25.30	27.72	32.97	39.44
26	11.54	12.97	13.70	15.80	16.96	18.38	20.94	23.89	26.43	28.94	34.39	41.10
27	12.21	13.69	14.44	16.60	17.80	19.27	21.90	24.94	27.57	30.16	35.80	42.76
28	12.88	14.41	15.18	17.41	18.64	20.15	22.87	26.00	28.71	31.39	37.21	44.41
29	13.56	15.13	15.93	18.22	19.49	21.04	23.83	27.05	29.85	32.61	38.63	46.07
30	14.25	15.86	16.68	19.03	20.34	21.93	24.80	28.11	31.00	33.84	40.05	47.74
31	14.94	16.60	17.44	19.85	21.19	22.83	25.77	29.17	32.14	35.07	41.46	49.40
32	15.63	17.34	18.21	20.68	22.05	23.73	26.75	30.24	33.28	36.30	42.88	51.06
33	16.34	18.09	18.97	21.51	22.91	24.63	27.72	31.30	34.43	37.52	44.30	52.72
34	17.04	18.84	19.74	22.34	23.77	25.53	28.70	32.37	35.58	38.75	45.72	54.38
35	17.75	19.59	20.52	23.17	24.64	26.44	29.68	33.43	36.72	39.99	47.14	56.04
36	18.47	20.35	21.30	24.01	25.51	27.34	30.66	34.50	37.87	41.22	48.56	57.70
37	19.19	21.11	22.08	24.85	26.38	28.25	31.64	35.57	39.02	42.45	49.98	59.37
38	19.91	21.87	22.86	25.69	27.25	29.17	32.62	36.64	40.17	43.68	51.40	61.03
39	20.64	22.64	23.65	26.53	28.13	30.08	33.61	37.72	41.32	44.91	52.82	62.69
40	21.37	23.41	24.44	27.38	29.01	31.00	34.60	38.79	42.48	46.15	54.24	64.35
41	22.11	24.19	25.24	28.23	29.89	31.92	35.58	39.86	43.63	47.38	55.66	66.02
42	22.85	24.97	26.04	29.09	30.77	32.84	36.57	40.94	44.78	48.62	57.08	67.68
43	23.59	25.75	26.84	29.94	31.66	33.76	37.57	42.01	45.94	49.85	58.50	69.34
44	24.33	26.53	27.64	30.80	32.54	34.68	38.56	43.09	47.09	51.09	59.92	71.01
45	25.08	27.32	28.45	31.66	33.43	35.61	39.55	44.17	48.25	52.32	61.35	72.67

Continue on the following page.

Continued...

46	25.83	28.11	29.26	32.52	34.32	36.53	40.55	45.24	49.40	53.56	62.77	74.33
47	26.59	28.90	30.07	33.38	35.22	37.46	41.54	46.32	50.56	54.80	64.19	76.00
48	27.34	29.70	30.88	34.25	36.11	38.39	42.54	47.40	51.71	56.03	65.61	77.66
49	28.10	30.49	31.69	35.11	37.00	39.32	43.53	48.48	52.87	57.27	67.04	79.32
50	28.87	31.29	32.51	35.98	37.90	40.26	44.53	49.56	54.03	58.51	68.46	80.99
51	29.63	32.09	33.33	36.85	38.80	41.19	45.53	50.64	55.19	59.75	69.88	82.65
52	30.40	32.90	34.15	37.72	39.70	42.12	46.53	51.73	56.35	60.99	71.31	84.32
53	31.17	33.70	34.98	38.60	40.60	43.06	47.53	52.81	57.50	62.22	72.73	85.98
54	31.94	34.51	35.80	39.47	41.51	44.00	48.54	53.89	58.66	63.46	74.15	87.65
55	32.72	35.32	36.63	40.35	42.41	44.94	49.54	54.98	59.82	64.70	75.58	89.31
56	33.49	36.13	37.46	41.23	43.32	45.88	50.54	56.06	60.98	65.94	77.00	90.97
57	34.27	36.95	38.29	42.11	44.22	48.82	51.55	57.14	62.14	67.18	78.43	92.64
58	35.05	37.76	39.12	42.99	45.13	47.76	52.55	58.23	63.31	68.42	79.85	94.30
59	35.84	38.58	39.96	43.87	46.04	48.70	53.56	59.32	64.47	69.66	81.27	95.97
60	36.62	39.40	40.80	44.76	46.95	49.64	54.57	60.40	65.63	70.90	82.70	97.63
61	37.41	40.22	41.63	45.64	47.86	50.59	55.57	61.49	66.79	72.14	84.12	99.30
62	38.20	41.05	42.47	46.53	48.77	51.53	56.58	62.58	67.95	73.38	85.55	101.0
63	38.99	41.87	43.31	47.42	49.69	52.48	57.59	63.66	69.11	74.63	86.97	102.6
64	39.78	42.70	44.16	48.31	50.60	53.43	58.60	64.75	70.28	75.87	88.40	104.3
65	40.58	43.52	45.00	49.20	51.52	54.38	59.61	65.84	71.44	77.11	89.82	106.0
66	41.38	44.35	45.85	50.09	52.44	55.33	60.62	66.93	72.60	78.35	91.25	107.6
67	42.17	45.18	46.69	50.98	53.35	56.28	61.63	68.02	73.77	79.59	92.67	109.3
68	42.97	46.02	47.54	51.87	54.27	57.23	62.64	69.11	74.93	80.83	94.10	111.0
69	43.77	46.85	48.39	52.77	55.19	58.18	63.65	70.20	76.09	82.08	95.52	112.6
70	44.58	47.68	49.24	53.66	56.11	59.13	64.67	71.29	77.26	83.32	96.95	114.3
71	45.38	48.52	50.09	54.56	57.03	60.08	65.68	72.38	78.42	84.56	98.37	116.0
72	46.19	49.36	50.94	55.46	57.96	61.04	66.69	73.47	79.59	85.80	99.80	117.6
73	47.00	50.20	51.80	56.35	58.88	61.99	67.71	74.56	80.75	87.05	101.2	119.3
74	47.81	51.04	52.65	57.25	59.80	62.95	68.72	75.65	81.92	88.29	102.7	120.9
75	48.62	51.88	53.51	58.15	60.73	63.90	69.74	76.74	83.08	89.53	104.1	122.6
76	49.43	52.72	54.37	59.05	61.65	64.86	70.75	77.83	84.25	90.78	105.5	124.3
77	50.24	53.56	55.23	59.96	62.58	65.81	71.77	78.93	85.41	92.02	106.9	125.9
78	51.05	54.41	56.09	60.86	63.51	66.77	72.79	80.02	86.58	93.26	108.4	127.6
79	51.87	55.25	56.95	61.76	64.43	67.73	73.80	81.11	87.74	94.51	109.8	129.3
80	52.69	56.10	57.81	62.67	65.36	68.69	74.82	82.20	88.91	95.75	111.2	130.9
81	53.51	56.95	58.67	63.57	66.29	69.65	75.84	83.30	90.08	96.99	112.6	132.6
82	54.33	57.80	59.54	64.48	67.22	70.61	76.86	84.39	91.24	98.24	114.1	134.3
83	55.15	58.65	60.40	65.39	68.15	71.57	77.87	85.48	92.41	99.48	115.5	135.9
84	55.97	59.50	61.27	66.29	69.08	72.53	78.89	86.58	93.58	100.7	116.9	137.6
85	56.79	60.35	62.14	67.20	70.02	73.49	79.91	87.67	94.74	102.0	118.3	139.3
86	57.62	61.21	63.00	68.11	70.95	74.45	80.93	88.77	95.91	103.2	119.8	140.9
87	58.44	62.06	63.87	69.02	71.88	75.42	81.95	89.86	97.08	104.5	121.2	142.6
88	59.27	62.92	64.74	69.93	72.82	76.38	82.97	90.96	98.25	105.7	122.6	144.3
89	60.10	63.77	65.61	70.84	73.75	77.34	83.99	92.05	99.41	107.0	124.0	145.9
90	60.92	64.63	66.48	71.76	74.68	78.31	85.01	93.15	100.6	108.2	125.5	147.6
91	61.75	65.49	67.36	72.67	75.62	79.27	86.04	94.24	101.8	109.4	126.9	149.3
92	62.58	66.35	68.23	73.58	76.56	80.24	87.06	95.34	102.9	110.7	128.3	150.9
93	63.42	67.21	69.10	74.50	77.49	81.20	88.08	96.43	104.1	111.9	129.8	152.6
94	64.25	68.07	69.98	75.41	78.43	82.17	89.10	97.53	105.3	113.2	131.2	154.3
95	65.08	68.93	70.85	76.33	79.37	83.13	90.12	98.63	106.4	114.4	132.6	155.9
96	65.92	69.79	71.73	77.24	80.31	84.10	91.15	99.72	107.6	115.7	134.0	157.6
97	66.75	70.65	72.61	78.16	81.25	85.07	92.17	100.8	108.8	116.9	135.5	159.3
98	67.59	71.52	73.48	79.07	82.18	86.04	93.19	101.9	109.9	118.2	136.9	160.9
99	68.43	72.38	74.36	79.99	83.12	87.00	94.22	103.0	111.1	119.4	138.3	162.6
100	69.27	72.25	75.24	80.91	84.06	87.97	95.24	104.1	112.3	120.6	139.7	164.3

N is the number of servers. The numerical column headings indicate blocking probability B in %. Table generated by Dan Dexter

Continued...

The Erlang C chart showing the probability of a call being delayed as a function of the number of channels and traffic intensity in Erlangs.

Continued...

Antenna

Effective isotropic radiated power, $EIRP = P_t G_t$

$$\text{Power flux density, } \phi = \frac{EIRP}{4\pi R^2}$$

$$\text{Received power, } P_r = \phi A_{eff}$$

Antenna gain of a circular aperture or reflector of diameter D :

$$G_{max} = \left(\frac{4\pi}{\lambda^2} \right) A_{eff} = \eta \left(\frac{\pi D}{\lambda} \right)^2 = \eta \left(\frac{70\pi}{\theta_{3dB}} \right)^2, \text{ where } \theta_{3dB} = 70 \left(\frac{\lambda}{D} \right)$$

Link Analysis

$$\text{Received power, } [P_r] = [EIRP] + [G_r] - [L_{Total}]$$

Free space loss,

$$P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2 L}$$

$$PL(\text{dB}) = 10 \log \left(\frac{P_t}{P_r} \right) = -10 \log \left(\frac{\lambda^2}{(4\pi)^2 d^2} \right)$$

$$P_r(d) \text{ dBm} = 10 \log \left[\frac{P_r(d_0)}{0.001 \text{ W}} \right] + 20 \log \left(\frac{d_0}{d} \right) \quad d \geq d_0 \geq d_f$$

Log-Distance Path Loss

$$\overline{PL}(\text{dB}) = \overline{PL}(d_0) + 10n \log \left(\frac{d}{d_0} \right)$$

Doppler shift,

$$f_d = \frac{v}{\lambda} \cos \theta$$

Noise power spectral density, $N_o = kT$

$$\text{Noise factor, } F = 1 + \frac{T_e}{T_o}$$

System noise temperature with reference to the antenna output,

$$T_S = T_{ant} + T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1 G_2} + \dots + \frac{T_{en}}{G_1 G_2 \dots G_{n-1}}$$

FDM-FM-FDMA Satellite System

Signal bandwidth, $B = 2(gl\Delta f_{rms} + f_{max})$

$$\text{where } \log_{10} l = \begin{cases} (-1 + 4 \log_{10} n) / 20, & n \leq 240 \\ (-15 + 10 \log_{10} n) / 20, & n > 240 \end{cases}$$

Relationship between C/N and S/N is given by:

$$\frac{C}{N} = \left(\frac{S}{N} \right) \left(\frac{b}{B} \right) \left(\frac{f_{max}}{\Delta f_{rms}} \right)^2 \frac{1}{pw}$$

End of Paper