Information & System Security

Mathematics Related to **Public Key** Cryptography

9-2 PRIMALITY TESTING

Finding an algorithm to correctly and efficiently test a very large integer and output a prime or a composite has always been a challenge in number theory, and consequently in cryptography. However, recent developments look very promising.

Topics discussed in this section:

- 9.2.1 Deterministic Algorithms
- **9.2.2** Probabilistic Algorithms
- **9.2.3** Recommended Primality Test

9.2.2 Probabilistic Algorithms

Fermat Test

If *n* is a prime, then
$$a^{n-1} \equiv 1 \mod n$$
.

If n is a composite, it is possible that $a^{n-1} \equiv 1 \mod n$.

Example

Does the number 561 pass the Fermat test? Solution

Use base a=2.

$$2^{561-1} = 1 \bmod 561$$

The number passes the Fermat test, but it is not a prime, because $561 = 33 \times 17$.

Square Root Test

If *n* is a prime, $\sqrt{1} \mod n = \pm 1$.

If *n* is a composite, $\sqrt{1} \mod n = \pm 1$ and possibly other values.

Example

What are the square roots of 1 mod n if n is 7 (a prime)?

Solution

We can see that the only square roots are 1 and -1.

$$1^2 = 1 \mod 7$$
 $(-1)^2 = 1 \mod 7$

$$2^2 = 4 \mod 7$$
 $(-2)^2 = 4 \mod 7$

$$3^2 = 2 \mod 7$$
 $(-3)^2 = 2 \mod 7$

Note: we don't have to test 4, 5 and 6 because

$$4 = -3 \mod 7$$
, $5 = -2 \mod 7$ and $6 = -1 \mod 7$.

9.2.2 Continued Example

What are the square roots of $1 \mod n$ if n is 8 (a composite)?

Solution

There are four solutions: 1, 3, 5, and 7 (which is -1). We can see that

$$1^2 = 1 \mod 8$$
 $(-1)^2 = 1 \mod 8$
 $3^2 = 1 \mod 8$ $5^2 = 1 \mod 8$

Example

What are the square roots of $1 \mod n$ if n is 17 (a prime)?

Solution

There are only two solutions: 1 and -1

$$1^2 = 1 \mod 17$$
 $(-1)^2 = 1 \mod 17$
 $2^2 = 4 \mod 17$ $(-2)^2 = 4 \mod 17$
 $3^2 = 9 \mod 17$ $(-3)^2 = 9 \mod 17$
 $4^2 = 16 \mod 17$ $(-4)^2 = 16 \mod 17$
 $5^2 = 8 \mod 17$ $(-6)^2 = 8 \mod 17$
 $6^2 = 2 \mod 17$ $(-6)^2 = 2 \mod 17$
 $(7)^2 = 15 \mod 17$ $(-7)^2 = 15 \mod 17$
 $(8)^2 = 13 \mod 17$ $(-8)^2 = 13 \mod 17$

Example

What are the square roots of $1 \mod n$ if n is 22 (a composite)?

Solution

Surprisingly, there are only two solutions, +1 and -1, although 22 is a composite.

$$1^2 = 1 \mod 22$$

 $(-1)^2 = 1 \mod 22$

Miller-Rabin Test

$$n-1=m\times 2^k$$

Idea behind Fermat primality test

$$a^{m-1} = a^{m \times 2^k} = [a^m]^{2^k} = [a^m]^{2^{2^k}}$$
 with

Note

The Miller-Rabin test needs from step 0 to step k-1.

Miller-Rabin Test

```
Miller_Rabin_Test (n, a) // n is the number; a is the base.
 Find m and k such that n-1=m\times 2^k
 T = a^m \mod n
 if (T = \pm 1 \mod n) return "a prime" // May be
 for (i = 1 \text{ to } k)
  T \leftarrow T^2 \mod n
   if (T = +1) return "a composite"
  if (T = -1) return "a prime" // May be
 return "a composite" Time Complexity O(k(\log n)^3)
```

Example

Does the number 561 pass the Miller-Rabin test?

Solution

Using base 2, let $561 - 1 = 35 \times 2^4$, which means m = 35, k = 4, and a = 2.

```
Initialization: T = 2^{35} \mod 561 = 263 \mod 561
```

$$k = 1$$
: $T = 263^2 \mod 561 = 166 \mod 561$

$$k = 2$$
: $T = 166^2 \mod 561 = 67 \mod 561$

$$k = 3$$
: $T = 67^2 \mod 561 = +1 \mod 561 \rightarrow a \text{ composite}$

Example

We already know that 14 is not a prime. Let us apply the Miller-Rabin test.

Solution

With base 2, let $14 - 1 = 13 \times 2^0$, which means that m = 13, k = 0, and a = 2.

- In this case, because k = 0, we should do only the initialization step: $T = 2^{13} \mod 14 = 2 \mod 14$.
- However, because the algorithm never enters the loop, it returns a composite.

9.2.2 Continued Example

We know that 61 is a prime, let us see if it passes the Miller-Rabin test.

Solution

We use base 2.

$$61 - 1 = 15 \times 2^2 \rightarrow m = 15$$
 $k = 2$ $a = 2$
Initialization: $T = 2^{15} \mod 61 = 11 \mod 61$
 $k = 1$ $T = 11^2 \mod 61 = -1 \mod 61 \rightarrow a$ **prime**

9.2.3 Recommended Primality Test

Today, one of the most popular primality test is a combination of both

- the Miller-Rabin test
- the divisibility test

Example

The number 4033 is a composite (37×109) . Does it pass the recommended primality test?

Solution

1. Perform the Miller-Rabin test with a base of 2, $4033 - 1 = 63 \times 2^6$, which means m is 63 and k is 6.

```
Initialization: T \equiv 2^{63} \pmod{4033} \equiv 3521 \pmod{4033}

k = 1 T \equiv T^2 \equiv 3521^2 \pmod{4033} \equiv -1 \pmod{4033} \to \mathbf{Passes}
```

2. But we are not satisfied. We continue the Miller-Rabin test with another base, 3.

Example

```
Initialization: T \equiv 3^{63} \pmod{4033} \equiv 3551 \pmod{4033}

k = 1 T \equiv T^2 \equiv 3551^2 \pmod{4033} \equiv 2443 \pmod{4033}

k = 2 T \equiv T^2 \equiv 2443^2 \pmod{4033} \equiv 3442 \pmod{4033}

k = 3 T \equiv T^2 \equiv 3442^2 \pmod{4033} \equiv 2443 \pmod{4033}

k = 4 T \equiv T^2 \equiv 2443^2 \pmod{4033} \equiv 3442 \pmod{4033}

k = 5 T \equiv T^2 \equiv 3442^2 \pmod{4033} \equiv 2443 \pmod{4033} \to \mathbf{Failed}

(composite)
```

3. Perform the divisibility tests first with the numbers 2, 3, 5, 7, ..., 61. We found that 37 is divisible by 4033.

Conclusion:

4033 is a composite number.

References

Chapter 9 - Behrouz A Forouzan, Debdeep Mukhopadhyay, Cryptography and Network Security, Mc Graw Hill, 3rd Edition, 2015.

Chapter 8 - William Stallings, Cryptography and Network Security Principles and Practices, 7th Edition, Pearson Education, 2017.