Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_mate-info*

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBJECTUL I (30 de puncte)

- **5p** 1. Se consideră numerele complexe $z_1 = 2 + 3i$ și $z_2 = 1 3i$. Arătați că numărul $z_1 + z_2$ este real.
- **5p** 2. Calculați $(f \circ g)(1)$, unde $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 1 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 3x.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $4^x 64 = 0$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 7.
- **5p 5.** În reperul cartezian xOy se consideră dreapta d de ecuație y = 4x + 1 și punctul A(2,0). Determinați ecuația paralelei duse prin punctul A la dreapta d.
- **5p** | **6.** Arătați că $\sin(\pi x)\sin x \cos(\pi x)\cos x = 1$, pentru orice număr real x.

SUBIECTUL al II-lea

(30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ și $B(x) = \begin{pmatrix} 0 & x & 0 \\ x & 0 & x \\ 0 & x & 0 \end{pmatrix}$, unde x este număr real.
- **5p** | **a**) Arătați că det A = 0.
- **5p b**) Arătați că $A \cdot B(x) + B(x) \cdot A = 3B(x)$, pentru orice număr real x.
- **5p** c) Determinați numerele reale x pentru care $B(x) \cdot B(x) \cdot B(x) = B(x^2 + x 2)$.
 - **2.** Se consideră polinomul $f = X^3 2X^2 + 2X + m$, unde m este număr real.
- **5p** a) Arătați că f(0) = m.
- **5p b)** Pentru m = -1, demonstrați că $(x_1 + x_2 + x_3)\left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = 4$, unde x_1, x_2 și x_3 sunt rădăcinile polinomului f.
- **5p** $| \mathbf{c} |$ Arătați că polinomul f **nu** are toate rădăcinile reale.

SUBIECTUL al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 x + 1}{x^2 + x + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{2(x-1)(x+1)}{(x^2+x+1)^2}, x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Calculați $\lim_{x \to +\infty} (f(x))^x$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x 2x$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) + 2x) dx = e 1$
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = e 3.
- **5p** c) Arătați că volumul corpului obținut prin rotirea în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, g(x) = f(x), este egal cu $\frac{\pi}{6}(3e^2 19)$.

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE SI DE NOTARE

Varianta 9

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1 + z_2 = (2+3i) + (1-3i) =$	3p
	= 3, care este număr real	2 p
2.	g(1)=3	2p
	$(f \circ g)(1) = f(g(1)) = f(3) = 2$	3 p
3.	$4^x = 4^3$	2p
	x = 3	3 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 13 numere naturale de două cifre care sunt divizibile cu 7, deci sunt 13 cazuri favorabile	2p
	$n = \frac{\text{nr. cazuri favorabile}}{120} = \frac{13}{120}$	
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{90}$	2p
5.	Dreapta paralelă cu dreapta d are panta egală cu 4	2p
	Ecuația paralelei duse prin punctul A la dreapta d este $y = 4x - 8$	3 p
6.	$\sin(\pi - x)\sin x - \cos(\pi - x)\cos x = -\cos(\pi - x + x) =$	3p
	$=-\cos\pi=1$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = $	
	$\det A = \begin{vmatrix} 0 & 1 & 0 \end{vmatrix} =$	2p
	=1+0+0-1-0-0=0	3 p
b)	$\begin{pmatrix} 0 & 2x & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x & 0 \end{pmatrix}$	
	$A \cdot B(x) = \begin{pmatrix} 0 & 2x & 0 \\ x & 0 & x \\ 0 & 2x & 0 \end{pmatrix}, \ B(x) \cdot A = \begin{pmatrix} 0 & x & 0 \\ 2x & 0 & 2x \\ 0 & x & 0 \end{pmatrix}$	2p
	$\begin{pmatrix} 0 & 2x & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x & 0 \end{pmatrix}$	
	(0 3x 0) (0 x 0)	
	$A \cdot B(x) + B(x) \cdot A = \begin{vmatrix} 3x & 0 & 3x \end{vmatrix} = 3 \begin{vmatrix} x & 0 & x \end{vmatrix} = 3B(x)$, pentru orice număr real x	3 p
	$A \cdot B(x) + B(x) \cdot A = \begin{pmatrix} 0 & 3x & 0 \\ 3x & 0 & 3x \\ 0 & 3x & 0 \end{pmatrix} = 3 \begin{pmatrix} 0 & x & 0 \\ x & 0 & x \\ 0 & x & 0 \end{pmatrix} = 3B(x), \text{ pentru orice număr real } x$	
c)	$\begin{pmatrix} 0 & 2x^3 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & x^2 + x - 2 & 0 \end{pmatrix}$	
	$B(x)B(x)B(x) = \begin{pmatrix} 0 & 2x^3 & 0 \\ 2x^3 & 0 & 2x^3 \\ 0 & 2x^3 & 0 \end{pmatrix} $ si $B(x^2 + x - 2) = \begin{pmatrix} 0 & x^2 + x - 2 & 0 \\ x^2 + x - 2 & 0 & x^2 + x - 2 \\ 0 & x^2 + x - 2 & 0 \end{pmatrix}$	3n
	$\begin{bmatrix} B(x)B(x)B(x) \\ 0 & 23 \\ 0 & 24 \end{bmatrix} \xrightarrow{\text{gf } B(x+x-2)} \begin{bmatrix} x+x-2 \\ 0 & 2+x-2 \\ 0 & 2+x-2 \end{bmatrix}$	ЭÞ
	$\begin{pmatrix} 0 & 2x^2 & 0 \end{pmatrix}$	
	$2x^3 = x^2 + x - 2, x \in \mathbb{R} \iff x = -1$	2p
2.a)	$f(0) = 0^3 - 2 \cdot 0^2 + 2 \cdot 0 + m =$	3p
	=0-0+0+m=m	2p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

b)	$x_1 + x_2 + x_3 = 2$, $x_1x_2 + x_1x_3 + x_2x_3 = 2$, $x_1x_2x_3 = 1$	3 p
	$\left(x_1 + x_2 + x_3\right) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}\right) = \frac{\left(x_1 + x_2 + x_3\right)\left(x_2 x_3 + x_1 x_3 + x_1 x_2\right)}{x_1 x_2 x_3} = \frac{2 \cdot 2}{1} = 4$	2 p
c)	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 2^2 - 2 \cdot 2 = 0$	2 p
	Dacă polinomul f ar avea toate rădăcinile reale, am obține $x_1=x_2=x_3=0$, contradicție cu $x_1+x_2+x_3=2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{(2x-1)(x^2+x+1)-(2x+1)(x^2-x+1)}{(x^2+x+1)^2} =$	3p
	$= \frac{2x^2 - 2}{\left(x^2 + x + 1\right)^2} = \frac{2(x - 1)(x + 1)}{\left(x^2 + x + 1\right)^2}, \ x \in \mathbb{R}$	2 p
b)	f(0)=1, f'(0)=-2	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0) \Rightarrow y = -2x+1$	3 p
c)	$\lim_{x \to +\infty} (f(x))^x = \lim_{x \to +\infty} \left(\frac{x^2 - x + 1}{x^2 + x + 1} \right)^x = \lim_{x \to +\infty} \left(1 - \frac{2x}{x^2 + x + 1} \right)^x =$	2p
	$= e^{\lim_{x \to +\infty} \frac{-2x^2}{x^2 + x + 1}} = e^{-2}$	3р
2.a)	$\int_{0}^{1} (f(x) + 2x) dx = \int_{0}^{1} e^{x} dx =$	2p
	$=e^{x}\begin{vmatrix}1\\0=e-1\end{vmatrix}$	3 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = e^x - x^2 + c$, unde $c \in \mathbb{R}$	2p
	$F(1) = e - 3 \Rightarrow c = -2$, deci $F(x) = e^x - x^2 - 2$	3 p
c)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} (e^{x} - 2x)^{2} dx = \pi \int_{0}^{1} (e^{2x} - 4xe^{x} + 4x^{2}) dx =$	2p
	$= \pi \left(\frac{1}{2} e^{2x} - 4(x-1)e^x + 4\frac{x^3}{3} \right) \Big _0^1 = \frac{\pi \left(3e^2 - 19 \right)}{6}$	3p

Proba E. c) Matematică *M_st-nat*

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Calculați rația progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_3=6$ și $a_4=8$.
- **5p** 2. Determinați valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 9$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 3} = x + 1$.
- **5p 4.** Determinați numărul submulțimilor cu două elemente ale mulțimii $\{1, 2, 3, 4, 5, 6, 7\}$.
- **5p** | **5.** În reperul cartezian xOy se consideră punctele A(2,1) și B(0,3). Determinați ecuația dreptei AB.
- **5p 6.** Calculați lungimea razei cercului circumscris triunghiului *ABC* în care AB = 8 și $C = \frac{\pi}{6}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ și $B(x) = \begin{pmatrix} x & 2 \\ 3 & 6 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = -2.
- **5p b)** Rezolvați în mulțimea numerelor reale ecuația $\det(B(x) + I_2) = 8$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Determinați numărul real x pentru care $A \cdot B(x) = B(x) \cdot A$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = xy 7x 7y + 56.
- **5p a**) Arătați că (-7)*7=7.
- **5p b)** Arătați că x * y = (x-7)(y-7)+7, pentru orice numere reale x și y.
- **5p c**) Calculați $1*2*3*\cdots*2015$.

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=e^x-\ln x+x$.
- **5p** a) Arătați că $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = e$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Arătați că funcția f este convexă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x+1}$.
- **5p** a) Arătați că $\int_{0}^{1} \frac{1}{f(x)} dx = \frac{3}{2}.$
- **5p b)** Arătați că $\int_{0}^{1} x^{2} f(x) dx = -\frac{1}{2} + \ln 2$.
- **5p c**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, g(x) = f(x).

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_4 - a_3 = 8 - 6 =$	3 p
	= 2	2 p
2.	Valoarea minimă a funcției este $-\frac{\Delta}{4a}$ =	2 p
	$=-\frac{36}{4}=-9$	3 p
3.	$x^2 + 3 = (x+1)^2 \Leftrightarrow 3 = 2x+1$	3 p
	x=1, care verifică ecuația	2 p
4.	$C_7^2 = \frac{7!}{2! \cdot 5!} =$	3p
	= 21	2 p
5.	$\frac{y-1}{3-1} = \frac{x-2}{0-2}$	3 p
		2 p
6.	$\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{8}{2 \cdot \frac{1}{2}} =$	3 p
	=8	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$	3p
	=4-6=-2	2p
b)	$B(x) + I_2 = $ $\begin{pmatrix} x+1 & 2 \\ 3 & 7 \end{pmatrix} \Rightarrow \det(B(x) + I_2) = 7x + 1$	3р
	$7x+1=8 \Leftrightarrow x=1$	2 p
c)	$A \cdot B(x) = \begin{pmatrix} x+6 & 14 \\ 3x+12 & 30 \end{pmatrix}$	2p
	$B(x) \cdot A = \begin{pmatrix} x+6 & 2x+8 \\ 21 & 30 \end{pmatrix}$	2p
	$\begin{pmatrix} x+6 & 14 \\ 3x+12 & 30 \end{pmatrix} = \begin{pmatrix} x+6 & 2x+8 \\ 21 & 30 \end{pmatrix} \Leftrightarrow x=3$	1p
2.a)	$(-7)*7 = (-7)\cdot 7 - 7\cdot (-7) - 7\cdot 7 + 56 =$	3 p
	=-49+49-49+56=7	2p
b)	x * y = xy - 7x - 7y + 49 + 7 =	2p
	= x(y-7)-7(y-7)+7=(x-7)(y-7)+7, pentru orice numere reale x şi y	3 p

Probă scrisă la matematică *M_șt-nat*

Barem de evaluare și de notare

C	e) $x*7=7$ şi $7*y=7$, pentru x şi y numere reale	2p
	$1*2*3*\cdots*2015 = (1*2*\cdots*6)*7*(8*9*\cdots*2015) = 7*(8*9*\cdots*2015) = 7$	3р

(30 de puncte) **SUBIECTUL al III-lea**

	` · ·	,
1.a)	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$	2p
	$f'(x) = e^x - \frac{1}{x} + 1$ şi $f'(1) = e \Rightarrow \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = e$ f(1) = e + 1, $f'(1) = e$	3 p
b)	f(1) = e + 1, f'(1) = e	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = ex + 1$	3 p
c)	$f''(x) = e^x + \frac{1}{x^2}, \ x \in (0, +\infty)$	2p
	$f''(x) > 0$, pentru orice $x \in (0, +\infty)$, deci f este convexă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} \frac{1}{f(x)} dx = \int_{0}^{1} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{0}^{1} =$	3р
	$=\frac{1}{2}+1=\frac{3}{2}$	2p
b)	$\int_{0}^{1} x^{2} f(x) dx = \int_{0}^{1} \frac{x^{2}}{x+1} dx = \int_{0}^{1} \left(x - 1 + \frac{1}{x+1} \right) dx = \left(\frac{x^{2}}{2} - x + \ln(x+1) \right) \Big _{0}^{1} =$	3р
	$= \frac{1}{2} - 1 + \ln 2 = -\frac{1}{2} + \ln 2$	2p
c)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} \frac{1}{(x+1)^{2}} dx = \pi \cdot \frac{-1}{x+1} \Big _{0}^{1} =$	3р
	$=\pi\left(-\frac{1}{2}+1\right)=\frac{\pi}{2}$	2p

Proba E. c) Matematică *M_tehnologic*

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2 \frac{1}{2}\right)$: $\frac{3}{10} = 5$.
- **5p** 2. Calculați f(-2) + f(2), unde $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{2x-1} = 3$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, acesta să fie multiplu de 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), M(0,4) și N(4,0). Arătați că triunghiul MON este isoscel.
- **5p 6.** Calculați aria triunghiului *ABC* dreptunghic în *A*, știind că AB = 10 și AC = 12.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & -2 \\ 5 & -3 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 1.
- **5p b)** Arătați că $A \cdot A + I_2 = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** c) Demonstrați că $\det(A aI_2) \ge 1$, pentru orice număr real a.
 - **2.** Se consideră polinomul $f = X^3 + 5X^2 + X + 5$.
- **5p a**) Arătați că f(-5) = 0.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul $X^2 + 6X + 5$.
- **5p** c) Demonstrați că $\frac{x_3}{x_1x_2} + \frac{x_2}{x_1x_3} + \frac{x_1}{x_2x_3} = -\frac{23}{5}$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 2x^2 + 1$.
- **5p a**) Arătați că $f'(x) = 4x(x-1)(x+1), x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $0 \le f(x) \le 1$, pentru orice $x \in [-1,1]$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^2 + \sqrt{x}$.
- **5p** a) Arătați că $\int_{1}^{3} (f(x) \sqrt{x}) dx = \frac{26}{3}$.
- **5p b**) Demonstrați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{x^3}{3} + \frac{2x\sqrt{x}}{3} + 2015$ este o primitivă a funcției f.
- **5p** c) Arătați că suprafața delimitată de graficul funcției $g:(0,+\infty) \to \mathbb{R}$, $g(x) = (f(x) \sqrt{x})e^x$, axa Ox și dreptele de ecuații x = 1 și x = 2, are aria egală cu e(2e-1).

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 - \frac{1}{2} = \frac{3}{2}$	3p
	$\frac{3}{2} \cdot \frac{10}{3} = 5$	2 p
2.	f(-2)=0, f(2)=0	2p
	f(-2) = 0, f(2) = 0 f(-2) + f(2) = 0	3 p
3.	2x-1=9	3 p
	x = 5, care verifică ecuația	2p
4.	Mulţimea A are 10 elemente, deci sunt 10 cazuri posibile	1p
	În mulțimea A sunt 2 multipli de 5, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{10} = \frac{1}{5}$	2p
5.	MO = 4	2 p
	$ON = 4 \Rightarrow \Delta MON$ este isoscel	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{10 \cdot 12}{2} =$	3 p
	= 60	2p

1.a)	$\det A = \begin{vmatrix} 3 & -2 \\ 5 & -3 \end{vmatrix} = 3 \cdot (-3) - (-2) \cdot 5 =$	3p
	=-9+10=1	2 p
b)	$A \cdot A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	3 p
	$A \cdot A + I_2 = \begin{pmatrix} -1+1 & 0 \\ 0 & -1+1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$A - aI_2 = \begin{pmatrix} 3 - a & -2 \\ 5 & -3 - a \end{pmatrix} \Rightarrow \det(A - aI_2) = \begin{vmatrix} 3 - a & -2 \\ 5 & -3 - a \end{vmatrix} = -9 + a^2 + 10 =$	3 p
	$=a^2+1\geq 1$, pentru orice număr real a	2p
2.a)	$f(-5) = (-5)^3 + 5 \cdot (-5)^2 + (-5) + 5 =$	3p
	=-125+125-5+5=0	2 p
b)	Câtul este $X-1$	3 p
	Restul este $2X + 10$	2p

c)
$$x_1 + x_2 + x_3 = -5$$
, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = -5$
 $\frac{x_3}{x_1x_2} + \frac{x_2}{x_1x_3} + \frac{x_1}{x_2x_3} = \frac{(x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)}{x_1x_2x_3} = \frac{(-5)^2 - 2 \cdot 1}{-5} = -\frac{23}{5}$
2p

1.a)	$f'(x) = 4x^3 - 4x =$	3p
	$=4x(x^{2}-1)=4x(x-1)(x+1), x \in \mathbb{R}$	2p
b)	f(1) = 0, f'(1) = 0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = 0$	3 p
c)	$f'(-1) = f'(0) = f'(1) = 0$, $f'(x) \ge 0$, pentru $x \in [-1,0]$ şi $f'(x) \le 0$, pentru $x \in [0,1]$	2p
	$f(-1) = f(1) = 0$ și $f(0) = 1 \Rightarrow 0 \le f(x) \le 1$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{1}^{3} \left(f(x) - \sqrt{x} \right) dx = \int_{1}^{3} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{3} =$	3p
	$=\frac{3^3}{3}-\frac{1^3}{3}=\frac{26}{3}$	2p
b)	$F'(x) = \frac{3x^2}{3} + \frac{2}{3} \left(\sqrt{x} + x \cdot \frac{1}{2\sqrt{x}} \right) =$	3 p
	$= x^2 + \sqrt{x} = f(x)$, pentru orice $x \in (0, +\infty)$, deci F este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{1}^{2} x^{2} e^{x} dx = x^{2} e^{x} \Big _{1}^{2} - \int_{1}^{2} 2x e^{x} dx = 4e^{2} - e - 2\left(xe^{x} \Big _{1}^{2} - \int_{1}^{2} e^{x} dx\right) =$	3 p
	$=4e^{2}-e-2(2e^{2}-e)+2e^{x}\Big _{1}^{2}=2e^{2}-e=e(2e-1)$	2p

Proba E. c) Matematică *M_st-nat*

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați (2-3i)(2+3i), unde $i^2=-1$.
- **5p 2.** Calculați f(f(3)), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 + 17) = \log_3 81$.
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,a), B(3,2) și C(2,1). Determinați numărul real a pentru care punctele A, B și C sunt coliniare.
- **5p** 6. Se consideră $E(x) = \sin \frac{x}{3} + \cos \frac{x}{2}$, unde x este număr real. Arătați că $E\left(\frac{\pi}{2}\right) = \frac{1+\sqrt{2}}{2}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 1 & 2a \\ 2a & 4 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că A(1) + A(-1) = 2A(0).
- **5p b**) Determinați numerele reale a pentru care $\det(A(a)) = 0$.
- **5p** c) Rezolvați în mulțimea $\mathcal{M}_2(\mathbb{R})$ ecuația $A(2) \cdot X = A(8)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = 2xy 6x 6y + 21$.
- **5p a**) Arătați că $(-3) \circ 3 = 3$.
- **5p b)** Arătați că $x \circ y = 2(x-3)(y-3) + 3$, pentru orice numere reale x și y.
- **5p** c) Calculați $1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{2015}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3e^x + x^2$.
- **5p** a) Arătați că $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 3$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** $| \mathbf{c} |$ Arătați ca funcția f este convexă pe \mathbb{R} .
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x + \frac{1}{x}$.
- **5p** a) Arătați că $\int_{1}^{3} \left(f(x) \frac{1}{x} \right) dx = 4$.
- **5p b)** Arătați că $\int_{1}^{2} \left(f(x) \frac{1}{x} \right) e^{x} dx = e^{2}$.
- **5p** c) Determinați numărul real a, a > 1, știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = a, are aria egală cu $4 + \ln a$.

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(2-3i)(2+3i) = 4-9i^2 =$	3 p
	=13	2p
2.	f(3) = 5	2p
	f(f(3)) = f(5) = 9	3 p
3.	$x^2 + 17 = 81 \Leftrightarrow x^2 = 64$	2p
	$x_1 = -8$ și $x_2 = 8$, care verifică ecuația	3 p
4.	Sunt 90 numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 18 numere naturale de două cifre, divizibile cu 5, deci sunt 18 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{18}{90} = \frac{1}{5}$	25
	nr. cazuri posibile 90 5	2 p
5.	$m_{AB} = \frac{2-a}{2} \text{si} m_{BC} = 1$	2p
	$m_{AB} = m_{BC} \Leftrightarrow a = 0$	3 p
6.	$E\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{6} + \cos\frac{\pi}{4} =$	2p
	$= \frac{1}{2} + \frac{\sqrt{2}}{2} = \frac{1 + \sqrt{2}}{2}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \ A(-1) = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}, \ A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$	3 p
	$A(1) + A(-1) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} = 2A(0)$	2 p
b)	$\det(A(a)) = \begin{vmatrix} 1 & 2a \\ 2a & 4 \end{vmatrix} = 4 - 4a^2$	3 p
	$4 - 4a^2 = 0 \Leftrightarrow a_1 = -1 \text{ si } a_2 = 1$	2 p
c)	$A(2) = \begin{pmatrix} 1 & 4 \\ 4 & 4 \end{pmatrix}, \det(A(2)) = -12 \neq 0 \Rightarrow (A(2))^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{12} \end{pmatrix}$	3 p
	$X = (A(2))^{-1} \cdot A(8) \Rightarrow X = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{12} \end{pmatrix} \begin{pmatrix} 1 & 16 \\ 16 & 4 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 5 & -4 \\ -1 & 5 \end{pmatrix}$	2 p

Probă scrisă la matematică M_st-nat

Barem de evaluare și de notare

2.a)	$(-3) \circ 3 = 2 \cdot (-3) \cdot 3 - 6 \cdot (-3) - 6 \cdot 3 + 21 =$	3 p
	=-18+18-18+21=3	2p
b)	$x \circ y = 2xy - 6x - 6y + 18 + 3 =$	2p
	=2x(y-3)-6(y-3)+3=2(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
c)	$x \circ 3 = 3$ şi $3 \circ y = 3$, pentru x şi y numere reale	2p
	$1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{2015} = \left(1 \circ \sqrt{2} \circ \sqrt{3} \circ \dots \circ \sqrt{8}\right) \circ 3 \circ \left(\sqrt{10} \circ \sqrt{11} \circ \dots \circ \sqrt{2015}\right) =$ $= 3 \circ \left(\sqrt{10} \circ \sqrt{11} \circ \dots \circ \sqrt{2015}\right) = 3$	3р

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = 3e^x + 2x$ și $f'(0) = 3 \Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 3$	3р
b)	f(0)=3, f'(0)=3	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0) \Rightarrow y = 3x + 3$	3 p
c)	$f''(x) = 3e^x + 2, \ x \in \mathbb{R}$	2p
	$f''(x) > 0$, pentru orice număr real x , deci f este convexă pe \mathbb{R}	3 p
2.a)	$\int_{1}^{3} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{3} x dx = \frac{1}{2} x^{2} \Big _{1}^{3} =$	3p
	$=\frac{1}{2}(9-1)=4$	2p
b)	$\int_{1}^{2} \left(f(x) - \frac{1}{x} \right) e^{x} dx = \int_{1}^{2} x e^{x} dx = x e^{x} \Big _{1}^{2} - \int_{1}^{2} e^{x} dx =$	3p
	$=2e^2-e-e^x\begin{vmatrix} 2\\1 = e^2 \end{vmatrix}$	2p
c)	$\mathcal{A} = \int_{1}^{a} f(x) dx = \int_{1}^{a} \left(x + \frac{1}{x} \right) dx = \left(\frac{x^{2}}{2} + \ln x \right) \Big _{1}^{a} = \frac{a^{2} - 1}{2} + \ln a$	3 p
	$\frac{a^2 - 1}{2} + \ln a = 4 + \ln a \Leftrightarrow a^2 = 9 \text{ si cum } a > 1, \text{ obținem } a = 3$	2p

Proba E. c) Matematică *M_tehnologic*

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\frac{2}{\sqrt{3}-1} \sqrt{3} = 1$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficului funcției f cu axa Oy, unde $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 2x^2 + x + 2015$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+2} = 2$.
- **5p** | **4.** După o reducere cu 10% un obiect costă 99 de lei. Calculați prețul obiectului înainte de reducere.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(2,1) și N(4,1). Determinați lungimea segmentului MN.
- **5p 6.** Arătați că $\sin x = \frac{4}{5}$, știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{3}{5}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = 0.
- **5p b**) Determinați numărul real x pentru care $A \cdot A = xA$.
- **5p** c) Arătați că $\det(A+I_2)+\det(A-I_2)=2$, unde $I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 2X^2 2X + 1$.
- **5p a**) Arătați că f(1) = -2.
- **5p b**) Arătați că polinomul f este divizibil cu polinomul X + 1.
- **5p** c) Determinați numărul real a pentru care $\frac{1}{x_1x_2} + \frac{1}{x_2x_3} + \frac{1}{x_3x_1} = a(x_1x_2 + x_2x_3 + x_3x_1)$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x \frac{1}{x}$.
- **5p** a) Arătați că $f'(x) = 1 + \frac{1}{x^2}, x \in (0, +\infty).$
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că funcția f este concavă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x)-2)dx = \frac{1}{3}$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(3) = 5.
- **5p** c) Arătați că suprafața delimitată de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = e^x \cdot f(x)$, axa Ox și dreptele de ecuații x = 0 și x = 1, are aria egală cu 3e 4.

Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 5

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{\sqrt{3}-1} = \sqrt{3} + 1$ $\sqrt{3} + 1 - \sqrt{3} = 1$	3p
	$\sqrt{3} + 1 - \sqrt{3} = 1$	2 p
2.	f(0) = 2015	3p
	Coordonatele punctului de intersecție cu axa Oy sunt $x = 0$ și $y = 2015$	2 p
3.	x+2=4	2p
	x = 2, care verifică ecuația	3 p
4.	$p-10\% \cdot p = 99$, unde p este prețul obiectului înainte de reducere	3 p
	p = 110 lei	2 p
5.	$MN = \sqrt{(4-2)^2 + (1-1)^2} =$	3 p
	=2	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$	3p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{4}{5}$	2p

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} =$	2p
	$ \begin{vmatrix} 2 & 1 \\ = 2 \cdot 1 - 2 \cdot 1 = 0 \end{vmatrix} $	3p
b)	$A \cdot A = \begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix}, \ xA = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix}$	3p
	$\begin{pmatrix} 6 & 3 \\ 6 & 3 \end{pmatrix} = \begin{pmatrix} 2x & x \\ 2x & x \end{pmatrix} \Leftrightarrow x = 3$	2p
c)	$\det(A+I_2) = \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} = 4$, $\det(A-I_2) = \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = -2$	3p
	$\det(A + I_2) + \det(A - I_2) = 4 + (-2) = 2$	2p
2.a)	$f(1)=1^3-2\cdot 1^2-2\cdot 1+1=$	3 p
	=1-2-2+1=-2	2p
b)	$f(-1) = (-1)^3 - 2 \cdot (-1)^2 - 2 \cdot (-1) + 1 =$	3 p
	=-1-2+2+1=0, deci polinomul f este divizibil cu polinomul $X+1$	2p

c)
$$x_1 + x_2 + x_3 = 2$$
, $x_1x_2 + x_1x_3 + x_2x_3 = -2$, $x_1x_2x_3 = -1$
 $\frac{x_1 + x_2 + x_3}{x_1x_2x_3} = a(x_1x_2 + x_2x_3 + x_3x_1) \Leftrightarrow \frac{2}{-1} = a \cdot (-2) \Leftrightarrow a = 1$
2p

	· · · · · · · · · · · · · · · · · · ·	
1.a)	$f'(x) = x' - \left(\frac{1}{x}\right)' =$	2p
	$=1-\left(-\frac{1}{x^2}\right)=1+\frac{1}{x^2}, \ x\in(0,+\infty)$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 - 1}{x^2} = 1$	2 p
	$\lim_{x \to +\infty} \left(f(x) - x \right) = \lim_{x \to +\infty} \left(-\frac{1}{x} \right) = 0$, deci dreapta de ecuație $y = x$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3 p
c)	$f''(x) = -\frac{2}{x^3}, x \in (0, +\infty)$	2p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty)$, deci funcția f este concavă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{0}^{1} (f(x) - 2) dx = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big _{0}^{1} =$	3p
	$=\frac{1}{3}-0=\frac{1}{3}$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{x^3}{3} + 2x + c$, unde $c \in \mathbb{R}$	2 p
	$F(3) = 5 \Rightarrow c = -10$, deci $F(x) = \frac{x^3}{3} + 2x - 10$	3 p
c)	$\mathcal{A} = \int_{0}^{1} e^{x} \left(x^{2} + 2 \right) dx = e^{x} \left(x^{2} + 2 \right) \Big _{0}^{1} - \int_{0}^{1} 2x e^{x} dx = 3e - 2 - \left(2x e^{x} \Big _{0}^{1} - \int_{0}^{1} 2e^{x} dx \right) =$	3 p
	$=3e-2-2e+2e^{x}\begin{vmatrix}1\\0\\=3e-4\end{vmatrix}$	2 p

Examenul de bacalaureat național 2015 Proba E. c) Matematică *M mate-info*

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{5}+1)^2 + (\sqrt{5}-1)^2 = 12$.
- **5p** 2. Calculați produsul f(1) f(2) f(3) f(4), unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 3.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_2(x^2 4x + 4) = 0$.
- **5p 4.** Determinați câte numere naturale impare, de trei cifre distincte, se pot forma cu cifrele 2, 3 și 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,2) și B(2,3). Determinați ecuația dreptei d care trece prin punctul A și este perpendiculară pe dreapta AB.
- **5p 6.** Arătați că $\sin(\pi x) + \sin(\pi + x) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $B(x) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 3x & 0 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(B(0))=1$.
- **5p b)** Arătați că $B(x) + B(y) = 2B\left(\frac{x+y}{2}\right)$, pentru orice numere reale x și y.
- **5p** c) Determinați numerele reale x pentru care $B(x^2+1)B(x) = B(x^2+x+1)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x \circ y = \frac{1}{2}(x-3)(y-3)+3$.
- **5p a)** Arătați că $(-3) \circ 3 = 3$.
- **5p b**) Determinați numerele naturale n pentru care $n \circ n = 11$.
- **5p** c) Calculati $1 \circ 2 \circ 3 \circ \dots \circ 2015$.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+2}{x-1}$
- **5p** a) Arătați că $f'(x) = -\frac{3}{(x-1)^2}, x \in (1,+\infty).$
- **5p b**) Arătați că funcția f este convexă pe intervalul $(1,+\infty)$.
- **5p** c) Determinați coordonatele punctului situat pe graficul funcției f, în care tangenta la graficul funcției f este paralelă cu dreapta de ecuație y = -3x.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p a)** Arătați că $\int_{1}^{2} \frac{1}{x} f(x) dx = e(e-1)$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = 0.
- **5p** c) Pentru fiecare număr natural nenul n se consideră numărul $I_n = \int_0^1 x^n f(x) dx$. Arătați că $I_n + (n+1)I_{n-1} = e$, pentru orice număr natural n, $n \ge 2$.

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE SI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(\sqrt{5}+1\right)^2 = 6+2\sqrt{5}$	2p
	$\left(\sqrt{5} - 1\right)^2 = 6 - 2\sqrt{5} \Rightarrow \left(6 + 2\sqrt{5}\right) + \left(6 - 2\sqrt{5}\right) = 12$	3 p
2.	f(3) = 0	3p
	f(1) f(2) f(3) f(4) = 0	2p
3.	$x^2 - 4x + 4 = 1 \Leftrightarrow x^2 - 4x + 3 = 0$	2p
	$x_1 = 1$ și $x_2 = 3$, care verifică ecuația dată	3 p
4.	Cifra unităților este 3	2p
	Numerele sunt 243 și 423, deci se pot forma două astfel de numere	3 p
5.	$m_{AB} = 1$ și $m_d \cdot m_{AB} = -1 \Rightarrow m_d = -1$	3 p
	Ecuația dreptei d este $y = -x + 3$	2p
6.	$\sin(\pi - x) = \sin x$	2p
	$\sin(\pi + x) = -\sin x \Rightarrow \sin(\pi - x) + \sin(\pi + x) = \sin x - \sin x = 0$, pentru orice număr real x	3 p

1.a)	$B(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(B(0)) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	2 p
	=1+0+0-0-0-0=1	3р
b)	$B(x)+B(y) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 3x & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & 0 \\ 3y & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & x+y \\ 0 & 2 & 0 \\ 3x+3y & 0 & 2 \end{pmatrix} =$	3p
		2 p
	$B(x^{2}+1)B(x) = \begin{pmatrix} 3x^{3}+3x+1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 3x^{3}+3x+1 \end{pmatrix}, B(x^{2}+x+1) = \begin{pmatrix} 1 & 0 & x^{2}+x+1 \\ 0 & 1 & 0 \\ 3(x^{2}+x+1) & 0 & 1 \end{pmatrix}$	3р
	$3x^3 + 3x + 1 = 1 \Leftrightarrow x = 0$	2p

2.a)	$(-3) \circ 3 = \frac{1}{2}(-3-3)(3-3) + 3 =$	3 p
	=0+3=3	2 p
b)	$n \circ n = \frac{1}{2}(n-3)^2 + 3$	2p
	$(n-3)^2 = 16 \Leftrightarrow n_1 = -1$, care nu convine, și $n_2 = 7$, care convine	3 p
c)	$x \circ 3 = 3$ și $3 \circ y = 3$, pentru x și y numere reale	2p
	$1 \circ 2 \circ 3 \circ \dots \circ 2015 = (1 \circ 2) \circ 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3 \circ (4 \circ 5 \circ \dots \circ 2015) = 3$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{1 \cdot (x-1) - (x+2) \cdot 1}{(x-1)^2} =$	3p
	$=\frac{x-1-x-2}{(x-1)^2} = -\frac{3}{(x-1)^2}, \ x \in (1,+\infty)$	2p
b)	$f''(x) = \frac{6}{(x-1)^3}, \ x \in (1,+\infty)$	3p
	$f''(x) > 0$, pentru orice $x \in (1, +\infty)$, deci funcția f este convexă pe intervalul $(1, +\infty)$	2p
c)	$f'(x) = -3 \Leftrightarrow (x-1)^2 = 1$	3p
	Cum $x \in (1, +\infty)$, coordonatele punctului sunt $x = 2$ și $y = 4$	2p
2.a)	$\int_{1}^{2} \frac{1}{x} f(x) dx = \int_{1}^{2} e^{x} dx = e^{x} \Big _{1}^{2} =$	3p
	$=e^2-e=e(e-1)$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x-1)e^x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 0 \Rightarrow c = 0$, deci $F(x) = (x-1)e^x$	2p
c)	$I_n = \int_0^1 x^{n+1} e^x dx = \left(x^{n+1} e^x\right) \Big _0^1 - (n+1) \int_0^1 x^n e^x dx =$	3p
	$=e-(n+1)I_{n-1}$, deci $I_n+(n+1)I_{n-1}=e$, pentru orice număr natural $n, n \ge 2$	2p

Proba E. c) Matematică *M_st-nat*

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Se consideră numărul complex z = 1 + i. Arătați că $z^2 2i = 0$.
- **5p** 2. Calculați $(g \circ f)(3)$, unde $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 3 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = x + 2015.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{x^2-5x} = 5^{3-3x}$.
- **5p 4.** Determinați numărul submulțimilor cu patru elemente ale mulțimii {1, 2, 3, 4, 5}.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(0,4). Determinați ecuația dreptei d care trece prin punctul A și este paralelă cu dreapta de ecuație y = 2x + 7.
- **5p** | **6.** Determinați aria triunghiului MNP, știind că MN = 12, MP = 3 și $m(\not \sim M) = 30^\circ$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 1 & -a \\ -a & 1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(0))=1$.
- **5p b**) Determinați numerele reale a, pentru care $\det(A(a)) = 0$.
- **5p** c) Arătați că $A(a)A(b) = A(a+b) + abI_2$, pentru orice numere reale a și b, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 mX + 2$, unde m este număr real.
- **5p a)** Arătați că f(0) = 2.
- **5p b)** Determinați numărul real m, știind că restul împărțirii lui f la polinomul $g = X^2 + X 2$ este egal cu 0.
- **5p** c) Demonstrați că $x_1^3 + x_2^3 + x_3^3 = -6$, pentru orice număr real m, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x x 1$.
- **5p** a) Arătați că $\lim_{x\to 0} \frac{f(x)-f(0)}{x} = 0$.
- **5p b**) Arătați că funcția f este descrescătoare pe intervalul $(-\infty,0]$.
- **5p** c) Demonstrați că $e^x \ge x+1$, pentru orice număr real x.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + 5$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x) + 2x 5) dx = \frac{1}{3}$.
- **5p b)** Calculați $\int_{0}^{2} \frac{f'(x)}{f(x)} dx$.
- **5p** c) Arătați că $\int_{2014}^{2015} \frac{1}{f(x)} dx \le \frac{1}{4}$.

Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1+i)^2 = 1 + 2i + i^2 = 2i$	3 p
	$z^2 - 2i = 2i - 2i = 0$	2 p
2.	f(3) = 0	2p
	$(g \circ f)(3) = g(f(3)) = g(0) = 2015$	3 p
3.	$x^2 - 5x = 3 - 3x \Leftrightarrow x^2 - 2x - 3 = 0$	3 p
	$x_1 = -1$ și $x_2 = 3$	2p
4.	$C_5^4 = \frac{5!}{4! \cdot 1!} =$	3 p
	=5	2 p
5.	Panta dreptei d este egală cu 2	2p
	Ecuația dreptei d este $y = 2x + 4$	3p
6.	$\mathcal{A}_{\Delta MNP} = \frac{12 \cdot 3 \cdot \sin 30^{\circ}}{2} = \frac{6 \cdot 3}{2} =$	3p
	= 9	2p

1.a)	$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} =$	2p
	$=1\cdot 1-0\cdot 0=1$	3р
b)	$\det(A(a)) = \begin{vmatrix} 1 & -a \\ -a & 1 \end{vmatrix} = 1 - a^2$	3 p
	$1 - a^2 = 0 \Leftrightarrow a_1 = -1 \text{ si } a_2 = 1$	2p
c)	$A(a)A(b) = \begin{pmatrix} 1+ab & -b-a \\ -a-b & ab+1 \end{pmatrix}, \ A(a+b) = \begin{pmatrix} 1 & -a-b \\ -a-b & 1 \end{pmatrix}, \ abI_2 = \begin{pmatrix} ab & 0 \\ 0 & ab \end{pmatrix}$	3p
	$A(a+b)+abI_2 = \begin{pmatrix} 1+ab & -a-b \\ -a-b & 1+ab \end{pmatrix} = A(a)A(b)$, pentru orice numere reale a și b	2 p
2.a)	$f(0) = 0^3 - m \cdot 0 + 2 =$	3 p
	=0-0+2=2	2 p
b)	Restul este $(3-m)X$	3 p
	$3 - m = 0 \Leftrightarrow m = 3$	2p
c)	$x_1 + x_2 + x_3 = 0$	2p
	$x_1^3 + x_2^3 + x_3^3 = m(x_1 + x_2 + x_3) - 6 = m \cdot 0 - 6 = -6$	3 p

1.a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = e^x - 1$ şi $f'(0) = 0 \Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 0$	3p
b)	$e^x \le 1 \Leftrightarrow x \le 0$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe intervalul $(-\infty, 0]$	3 p
c)	$f'(0) = 0$ și $f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe intervalul $[0, +\infty)$	2p
	Cum f este descrescătoare pe intervalul $(-\infty,0]$, obținem $f(x) \ge f(0) \Rightarrow e^x \ge x+1$, pentru orice număr real x	3 p
2.a)	$\int_{0}^{1} (f(x) + 2x - 5) dx = \int_{0}^{1} (x^{2} - 2x + 5 + 2x - 5) dx = \int_{0}^{1} x^{2} dx =$	2p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	3p
b)	$\int_{0}^{2} \frac{f'(x)}{f(x)} dx = \ln\left(x^{2} - 2x + 5\right) \Big _{0}^{2} =$	3p
	$= \ln 5 - \ln 5 = 0$	2p
c)	$f(x) = (x-1)^2 + 4 \ge 4$, pentru orice număr real x	2p
	$\int_{2014}^{2015} \frac{1}{f(x)} dx \le \int_{2014}^{2015} \frac{1}{4} dx = \frac{1}{4} x \left \frac{2015}{2014} \right = \frac{1}{4}$	3 p

Proba E. c) Matematică *M_tehnologic*

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(\frac{1}{2} + \frac{1}{5}\right) \cdot \frac{20}{7} = 2$.
- **5p** 2. Determinați numărul real a, știind că punctul A(a, 0) aparține graficului funcției $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 2.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+3} = 4$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $M = \{10, 20, 30, 40, 50, 60, 70, 80, 90\}$, acesta să fie multiplu de 15.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,2) și B(4,6). Determinați coordonatele mijlocului segmentului AB.
- **5p 6.** Arătați că $\sin x = \frac{12}{13}$, știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos x = \frac{5}{13}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$ și $C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = -2.
- **5p b**) Arătați că A + B = 5C.
- **5p** c) Demonstrați că $AB + BA + 4I_2 = 25C$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 4x + 4y + 12$.
- **5p** | **a**) Arătați că $5 \circ (-4) = -4$.
- **5p b)** Arătați că $x \circ y = (x+4)(y+4)-4$, pentru orice numere reale x și y.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația $x \circ x = x$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 + 3x^2 + 5$.
- **5p** a) Arătați că $f'(x) = 6x(x+1), x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f'(x)}{f(x) 2x^3}$.
- **5p** $| \mathbf{c} |$ Determinați intervalele de monotonie a funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 + 3x^2$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) 3x^{2}) dx = 15$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = 2015.
- **5p** c) Determinați numărul natural n, n > 1, știind că $\int_{1}^{n} \frac{f(x)}{x^2} dx = 9$.

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{1}{2} + \frac{1}{5} = \frac{7}{10}$	3р
	$\frac{7}{10} \cdot \frac{20}{7} = 2$	2p
2.	$f(a) = 0 \Leftrightarrow a - 2 = 0$	3 p
	a=2	2 p
3.	x+3=16	3 p
	x=13, care verifică ecuația	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	1p
	În mulțimea <i>M</i> sunt 3 multipli de 15, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	2p
5.	$x_M = 4$	2p
	$y_M = 4$, unde punctul M este mijlocul segmentului AB	3 p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$	3 p
	Cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $\sin x = \frac{12}{13}$	2p

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 2 \cdot 3 =$	3p
	=4-6=-2	2 p
b)	$A+B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix} =$	3 p
	$=5\begin{pmatrix}1&1\\1&1\end{pmatrix}=5C$	2 p
c)	$AB = \begin{pmatrix} 8 & 5 \\ 20 & 13 \end{pmatrix}, BA = \begin{pmatrix} 13 & 20 \\ 5 & 8 \end{pmatrix}, 4I_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$AB + BA + 4I_2 = \begin{pmatrix} 25 & 25 \\ 25 & 25 \end{pmatrix} = 25 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = 25C$	2 p
2.a)	$5 \circ (-4) = 5 \cdot (-4) + 4 \cdot 5 + 4 \cdot (-4) + 12 =$	3p
	=-20+20-16+12=-4	2p

b)	$x \circ y = xy + 4x + 4y + 16 - 4 =$	2p
	= x(y+4)+4(y+4)-4=(x+4)(y+4)-4, pentru orice numere reale x şi y	3 p
c)	$x \circ x = \left(x+4\right)^2 - 4$	2p
	$(x+4)^2 - 4 = x \Leftrightarrow (x+4)(x+3) = 0 \Leftrightarrow x_1 = -4 \text{ și } x_2 = -3$	3 p

1.a)	$f'(x) = (2x^3)' + (3x^2)' + 5' =$	2p
	$=6x^2 + 6x = 6x(x+1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f'(x)}{f(x) - 2x^3} = \lim_{x \to +\infty} \frac{6x(x+1)}{3x^2 + 5} =$	2p
	= 2	3 p
c)	$f'(x) = 0 \Leftrightarrow x_1 = -1 \text{ si } x_2 = 0$	2p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -1]$, deci f este crescătoare pe $(-\infty, -1]$	1p
	$f'(x) \le 0$, pentru orice $x \in [-1,0]$, deci f este descrescătoare pe $[-1,0]$	1p
	$f'(x) \ge 0$, pentru orice $x \in [0, +\infty)$, deci f este crescătoare pe $[0, +\infty)$	1p
2.a)	$\int_{1}^{2} (f(x) - 3x^{2}) dx = \int_{1}^{2} 4x^{3} dx = x^{4} \Big _{1}^{2} =$	3p
	=16-1=15	2 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^4 + x^3 + c$, unde $c \in \mathbb{R}$	2p
	$F(1) = 2015 \Rightarrow c = 2013$, deci $F(x) = x^4 + x^3 + 2013$	3р
c)	$\int_{1}^{n} \frac{f(x)}{x^{2}} dx = \int_{1}^{n} (4x+3) dx = 2x^{2} \left \frac{1}{1} + 3x \right _{1}^{n} = 2n^{2} + 3n - 5$	3р
	$2n^2 + 3n - 5 = 9$ şi cum n este număr natural, $n > 1$, obținem $n = 2$	2p

Proba E. c)

Matematică M_pedagogic

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{32} \sqrt{18} \sqrt{2} = 0$.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f : \mathbb{R} \to \mathbb{R}$, f(x) = x + 1 și $g : \mathbb{R} \to \mathbb{R}$, g(x) = 4 2x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{5-3x} = 25$.
- **5p 4.** Determinați câte numere naturale pare de două cifre se pot forma cu cifrele 1, 2, 3, 4 și 5.
- **5p** | **5**. În reperul cartezian xOy se consideră punctele A(2,3), B(5,3) și C(5,6). Arătați că AB = BC.
- **5p 6.** Arătați că $\sin 30^{\circ} + \sin 45^{\circ} \cdot \cos 45^{\circ} = 1$.

SUBIECTUL al II-lea (30 de puncte)

Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + x + y$.

- **5p 1.** Arătați că $2015 \circ (-1) = -1$.
- **5p 2.** Demonstrați că legea de compoziție "°" este asociativă.
- **5p 3.** Verificați dacă e = 0 este element neutru al legii de compoziție " \circ ".
- **5p 4.** Arătați că $x \circ x = (x+1)^2 1$, pentru orice număr real x.
- **5p 5.** Rezolvați în mulțimea numerelor reale ecuația $x \circ x \circ x \circ x = 0$.
- **5p 6.** Arătați că $x \circ (x+1) \ge x$, pentru orice număr real x.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a & 2 \\ 1 & a+1 \end{pmatrix}$, unde a este număr real.

- **5p 1.** Arătați că $\det(A(0)) = -2$.
- **5p** 2. Determinați numerele reale a pentru care $\det(A(a)) = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale inecuația $\det(A(a)-I_2)<0$.
- **5p 4.** Arătați că $(2a+1)A(a)-A(a)\cdot A(a)=(a^2+a-2)I_2$, pentru orice număr real a.
- **5p 5.** Determinați inversa matricei A(2).
- **5p 6.** Determinați numerele naturale m pentru care $\det(A(m)) \le 1$.

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 8

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{32} = 4\sqrt{2}$, $\sqrt{18} = 3\sqrt{2}$	2p
	$4\sqrt{2} - 3\sqrt{2} - \sqrt{2} = 0$	3 p
2.	$f(x) = g(x) \Leftrightarrow x+1 = 4-2x \Leftrightarrow 3x = 3$	3 p
	Coordonatele punctului de intersecție sunt $x=1$ și $y=2$	2p
3.	$5^{5-3x} = 5^2 \Leftrightarrow 5 - 3x = 2$	3 p
	x=1	2 p
4.	Cifra unităților poate fi aleasă în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 5 moduri, deci se pot forma $2.5 = 10$ numere	3 p
5.	AB=3	2p
	$BC = 3 \Rightarrow AB = BC$	3 p
6.	$\sin 30^{\circ} = \frac{1}{2}$, $\sin 45^{\circ} = \frac{\sqrt{2}}{2}$, $\cos 45^{\circ} = \frac{\sqrt{2}}{2}$	3 p
	$\frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2} + \frac{1}{2} = 1$	2p

1.	$2015 \circ (-1) = 2015 \cdot (-1) + 2015 + (-1) =$	3p
	=-2015+2015-1=-1	2p
2.	$(x \circ y) \circ z = (xy + x + y) \circ z = xyz + xz + yz + xy + x + y + z$	2p
	$x \circ (y \circ z) = x \circ (yz + y + z) = xyz + xy + xz + x + yz + y + z = (x \circ y) \circ z$, pentru orice numere reale x , y și z	3p
3.	$x \circ 0 = x \cdot 0 + x + 0 = x$	2p
	$0 \circ x = 0 \cdot x + 0 + x = x = x \circ 0$, pentru orice număr real x , deci $e = 0$ este element neutru al legii de compoziție " \circ "	3р
4.	$x \circ x = x \cdot x + x + x = x^2 + 2x =$	2p
	$=x^2+2x+1-1=(x+1)^2-1$, pentru orice număr real x	3 p
5.	$x \circ x \circ x \circ x = (x+1)^4 - 1$	2p
	$(x+1)^4 = 1 \Leftrightarrow x_1 = -2 \text{ si } x_2 = 0$	3 p
6.	$x \circ (x+1) - x = x(x+1) + x + x + 1 - x = x^2 + 2x + 1 =$	2p
	$=(x+1)^2 \ge 0$, deci $x \circ (x+1) \ge x$, pentru orice număr real x	3 p

		1
1.	$A(0) = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 2 \\ 1 & 1 \end{vmatrix} = 0 \cdot 1 - 1 \cdot 2 =$	3р
	=0-2=-2	2p
2.	$\det(A(a)) = \begin{vmatrix} a & 2 \\ 1 & a+1 \end{vmatrix} = a^2 + a - 2$	3p
	$a^2 + a - 2 = 0 \Leftrightarrow a_1 = -2 \text{ si } a_2 = 1$	2p
3.	$A(a) - I_2 = \begin{pmatrix} a - 1 & 2 \\ 1 & a \end{pmatrix} \Rightarrow \det(A(a) - I_2) = a^2 - a - 2$	2p
	$a^2 - a - 2 < 0 \Leftrightarrow a \in (-1, 2)$	3p
4.	$(2a+1)A(a) = \begin{pmatrix} 2a^2 + a & 4a+2\\ 2a+1 & 2a^2 + 3a+1 \end{pmatrix}$	1p
	$A(a) \cdot A(a) = \begin{pmatrix} a^2 + 2 & 4a + 2 \\ 2a + 1 & a^2 + 2a + 3 \end{pmatrix}$	2p
	$(2a+1)A(a)-A(a)\cdot A(a) = \begin{pmatrix} a^2+a-2 & 0 \\ 0 & a^2+a-2 \end{pmatrix} = (a^2+a-2)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (a^2+a-2)I_2,$	2p
	pentru orice număr real a	
5.	$A(2) = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}, \det(A(2)) = 4 \neq 0$	2p
	$(A(2))^{-1} = \begin{pmatrix} \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} \end{pmatrix}$	3р
6.	$\det(A(m)) \le 1 \Leftrightarrow m^2 + m - 3 \le 0$	2p
	Cum m este număr natural obținem $m = 0$ și $m = 1$	3p