# CS 312: Artificial Intelligence Laboratory Lab 1 Report

Deepak H R - 170010026 S V Praveen - 170010025 January 13, 2020

#### 1 Introduction

The objective of this task is to simulate breadth-first search, depth-first search, and DFID in the state space. The state-space consists of an m x n grid. The start state is (0,0). The goal state is the position of (\*) in the grid. The Pacman is allowed to move UP, DOWN, LEFT and RIGHT (except for boundary). A comparison of the path length and the number of states explored between the different search methods and, also between the orders in which neighbours are added, are performed.

#### 2 Pseudo Code

#### 2.1 MoveGen(state)

The function takes a state as input and returns a set of states that are reachable from the input state in one step.

#### Algorithm 1 moveGen(state)

#### 2.2 GoalTest(state)

Returns true if the input state is goal and false otherwise.

#### Algorithm 2 goalTest(state)

1: **procedure** GOALTEST(state)
2: **if** state.value == '\*' **then**3: **return** true
4: **return** false ▷ state is not goal

## 3 Results, Statistics and Plots

### 3.1 Order: Down, Up, Right, Left

| Algorithm | Statistics (cell width=3,cell height=2) |                    |                     |             |  |
|-----------|-----------------------------------------|--------------------|---------------------|-------------|--|
|           | No. horizontal cells                    | No. vertical cells | No. states explored | Path length |  |
| BFS       | 2                                       | 2                  | 15                  | 10          |  |
| DFS       | 2                                       | 2                  | 14                  | 10          |  |
| DFID      | 2                                       | 2                  | 80                  | 10          |  |
| BFS       | 3                                       | 3                  | 35                  | 23          |  |
| DFS       | 3                                       | 3                  | 23                  | 23          |  |
| DFID      | 3                                       | 3                  | 627                 | 23          |  |
| BFS       | 4                                       | 4                  | 42                  | 24          |  |
| DFS       | 4                                       | 4                  | 24                  | 24          |  |
| DFID      | 4                                       | 4                  | 621                 | 24          |  |
| BFS       | 5                                       | 5                  | 59                  | 33          |  |
| DFS       | 5                                       | 5                  | 41                  | 33          |  |
| DFID      | 5                                       | 5                  | 1358                | 33          |  |
| BFS       | 6                                       | 6                  | 127                 | 50          |  |
| DFS       | 6                                       | 6                  | 77                  | 50          |  |
| DFID      | 6                                       | 6                  | 10846               | 50          |  |

### 3.2 Order: Left, Right, Up, Down

| Algorithm | Statistics (cell width=3, cell height=2) |                    |                     |             |
|-----------|------------------------------------------|--------------------|---------------------|-------------|
|           | No. horizontal cells                     | No. vertical cells | No. states explored | Path length |
| BFS       | 2                                        | 2                  | 13                  | 10          |
| DFS       | 2                                        | 2                  | 11                  | 10          |
| DFID      | 2                                        | 2                  | 81                  | 10          |
| BFS       | 3                                        | 3                  | 35                  | 23          |
| DFS       | 3                                        | 3                  | 29                  | 29          |
| DFID      | 3                                        | 3                  | 832                 | 23          |
| BFS       | 4                                        | 4                  | 42                  | 24          |
| DFS       | 4                                        | 4                  | 46                  | 26          |
| DFID      | 4                                        | 4                  | 862                 | 24          |
| BFS       | 5                                        | 5                  | 59                  | 33          |
| DFS       | 5                                        | 5                  | 82                  | 37          |
| DFID      | 5                                        | 5                  | 2172                | 33          |
| BFS       | 6                                        | 6                  | 127                 | 50          |
| DFS       | 6                                        | 6                  | 92                  | 62          |
| DFID      | 6                                        | 6                  | 11274               | 50          |





### 4 Conclusion

The results of the dependence of the path length and number of states explored, as seen in the previous section, are summarized in the table below. For small inputs in DFID, we observe that the increase in the number of explored states is due to the small branching factor and high constant attached with the time complexity.

| Algorithm | Dependence on order of neighbours added |             |  |
|-----------|-----------------------------------------|-------------|--|
|           | No. States Explored                     | Path Length |  |
| BFS       | True                                    | False       |  |
| DFS       | True                                    | True        |  |
| DFID      | True                                    | False       |  |