ENGR-E 533 "Deep Learning Systems" Lecture 12: Generative Models

Minje Kim

Department of Intelligent Systems Engineering

Email: minje@indiana.edu
Website: http://minjekim.com

Research Group: http://saige.sice.indiana.edu
Meeting Request: http://doodle.com/minje

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Latent Representation of Data

- A decoder made of deconvolution layers
- Suppose I want to create an image of a cat
 - What should the code vector look like?
 - · Perhaps a one-hot vector?
- O How about a dog?
- Any problem with this?

- We can't really distinguish different cants
- We can't really differentiate cats and lions versus cats and dogs

Latent Representation of Data

- Latent embedding vector
- O How about this?

An even better representation

0	0.81	0	0	0	0.1	0	0	0	0	A cat a little looking like a dog
0	0.78	0	0	0	0.55	0	0	0	0	Another cat looking a lot like a dog

- □ And so on
- Eventually we need a latent representation with real numbers

Autoencoders with A Priori Knowledge

- Regularized autoencoders

- What do we want from the codes?
 - Minimal loss of information
- How do you define "information"?
 - □ The decoder should generate a similar output to the input
 - Originally similar input examples share similar codes
 - As a generative model
 - Should be able to create examples from unseen codes

Autoencoders with A Priori Knowledge

- Regularized autoencoders
- Problems with vanilla AEs
 - No control over the latent variables
 - □ Why do we need the control in the first place?
- A sample in the latent space
 - e.g. Could be something in between the two classes
 - □ Can we be more specific?
- The p.d.f. of the latent variables given the data set
 $p(\mathbf{z}|\mathbf{X})$
 - We want to know it better
 - · This could be a nasty one
 - Furthermore, we want it to be more intuitively distributed
 - e.g. \mathbb{Z}_1 is for thickness; \mathbb{Z}_2 is for rotation; etc.
 - Why?
 - How could you "generate" a new example with a choice of thickness if the p.d.f. is too complicated?

Variational AutoEncoders

- Latent variables are from multivariate Normal distributions

- O Why this weird structure?
 - $_{ extstyle }$ You want an easy distribution for $p(\mathbf{z}_i|oldsymbol{x}_i)$
 - □ But it makes training difficult—needs a special structure

Variational AutoEncoders

- Latent variables are from multivariate Normal distributions

Sampling turns decoding into a stochastic process, enabling it to learn from multiple samples of the LV

Parameterization of the Normal distribution lets encoding result in a distribution over LV

- During training
 - □ Every epoch the reconstructed input (output of the decoder) is from a sampled version of the latent variable
 - □ The training algorithm is exposed to the continuous distribution of the LV, which is not possible with vanilla AE
- During testing
 - □ The decoder itself is deterministic, but produces stochastic predictions due to the sampling process