ICS 2020 Problem Sheet #6

Problem 6.1:

Prove that the two elementary boolean functions \rightarrow (implication) and \neg (negation) are universal:

we know that for implication:

Х	у	$x \rightarrow y$
0	0	1
0	1	1
1	0	0
1	1	1

for negation:

Х	¬х
0	1
1	0

х	у	٦X	¬у	$(\neg x \rightarrow y)$	(x→¬y)	¬(x→¬y)
0	0	1	1	0	1	0
0	1	1	0	1	1	0
1	0	0	1	1	1	0
1	1	0	0	1	0	1

we conclude that $(\neg x \to y)$ is equivalent to $(x \lor y)$ and that $\neg(x \to \neg y)$ is equivalent to $(x \land y)$

we can find 'and' and 'or' using the boolean functions implication and negation; we can therefore find (using implication and negation) other boolean functions. We conclude that implication and negation are universal.

```
Problem 6.2:
a) \phi(A, B) = (\neg A \lor \neg B) \land (\neg A \lor B) \land (A \lor \neg B)
\phi(A, B) = (\neg A \lor \neg B) \land (\neg A \lor B) \land (A \lor \neg B)
\phi(A, B) = \neg A \lor (\neg B \land B) \land (A \lor \neg B) (distributivity)
\phi(A, B) = \neg A \lor (0) \land (A \lor \neg B) (identity)
\phi(A, B) = \neg A \wedge (A \vee \neg B) (distributivity)
\phi(A, B) = (\neg A \land A) \lor (\neg A \land \neg B)
\phi(A, B) = 0 \ \lor (\neg A \land \neg B) \text{ (identity)}
\phi(A, B) = (\neg A \land \neg B)(\text{de Morgan's laws})
\Phi(A, B) = \neg(A \land B)
b)
\phi(A, B, C) = (A \land \neg B) \lor (A \land \neg B \land C)
\phi(A, B, C) = (A \land \neg B) \lor (A \land \neg B \land C)
\phi(A, B, C) = (A \land \neg B) \lor ((A \land \neg B) \land C) (associativity)
\Phi(A, B, C) = (A \land \neg B) (absorption laws)
c) \phi(A, B, C, D) = (A \lor \neg(B \land A)) \land (C \lor (D \lor C))
\phi(A, B, C, D) = (A \lor \neg(B \land A)) \land (C \lor (D \lor C))
\phi(A, B, C, D) = (A \lor (\neg B \land \neg A)) \land (C \lor (D \lor C))(de Morgan's laws)
\phi(A, B, C, D) = ((A \lor \neg B) \land (A \lor \neg A)) \land (C \lor (D \lor C))(distributivity)
\phi(A, B, C, D) = ((A \lor \neg B) \land 1) \land (C \lor (D \lor C))
\phi(A, B, C, D) = (A \lor \neg B) \land (C \lor (D \lor C))(identity)
\phi(A, B, C, D) = (A \lor \neg B) \land (D \lor (C \lor C))(associativity)
\phi(A, B, C, D) = (A \lor \neg B) \land (D \lor C) (idempotency)
d)
\phi(A, B, C) = (\neg(A \land B) \lor \neg C) \land (\neg A \lor B \lor \neg C) \phi(A, B, C)
= (\neg(A \land B) \lor \neg C) \land (\neg A \lor B \lor \neg C) \varphi(A, B, C)
= \neg((A \land B) \lor C) \land (\neg A \lor B \lor \neg C) (de Morgan's laws)
\phi(A, B, C) = (\neg((A \land B) \lor C) \land \neg(A \lor \neg B \lor C))(double negation)
\phi(A, B, C) = \neg(((A \land B) \lor C) \land (A \lor B \lor C))(de Morgan's laws)
\phi(A, B, C) = \neg(((A \land B) \lor C) \land (A \lor B)) \lor ((A \land B) \lor C) \land C)) (distributivity)
\phi(A, B, C) = \neg(((A \land B) \lor C) \lor ((A \land B) \lor C))(idempotency)
\phi(A, B, C) = \neg((A \land B) \lor C) (idempotency)
e)
\phi(A, B) = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B)
\phi(A, B) = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B) \phi(A, B)
= (A \lor B) \land (\neg A \lor \neg B) \land (\neg A \lor B) \land (A \lor \neg B) (commutativity)
\phi(A, B) = (A \lor B) \land \neg(A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)(de Morgan's laws)
\phi(A, B) = (A \lor B) \land \neg(A \lor B) \land (\neg A \lor B) \land \neg(\neg A \lor B) (double negation)
```

 $\phi(A, B) = 0 \land 0 \phi(A, B) = 0$

Problem 6.3:

a)The truth table:

Р	Q	R	S	(¬P ∨ Q)	(¬Q V R)	(¬R V S)	(¬S V P)	ф
0	0	0	0	1	1	1	1	1
0	0	0	1	1	1	1	0	0
0	0	1	0	1	1	0	1	0
0	0	1	1	1	1	1	0	0
0	1	0	0	1	0	1	1	0
0	1	0	1	1	0	1	0	0
0	1	1	0	1	1	0	1	0
0	1	1	1	1	1	1	0	0
1	0	0	0	0	1	1	1	0
1	0	0	1	0	1	1	1	0
1	0	1	0	0	1	0	1	0
1	0	1	1	0	1	1	1	0
1	1	0	0	1	0	1	1	0
1	1	0	1	1	0	1	1	0
1	1	1	0	1	1	0	1	0
1	1	1	1	1	1	1	1	1

 φ is satisfied for 2 interpretations. b)the conditions that satisfy φ are :

Р	Q	R	S
1	1	1	1

and

P Q	R	S
-----	---	---

0	0	0	0

we can therefore conclude by DNF that : $\phi = (P \land Q \land R \land S) \lor (\neg P \land \neg Q \land \neg R \land \neg S)$