*교재 양 옆의 용어들 메모

CH01_컴퓨터시스템 개요 CH02_CPU의 구조와 기능

CH01_컴퓨터시스템 개요

CH01_컴퓨터시스템 개요

<u>Aa</u> 용어	= 설명	:≡ 태 그
<u>소프트웨어</u> (software)	정보처리의 종류와 수행시간을 지정해주는 명령(command)들의 집합	
<u>중앙처리장치</u> (<u>CPU)</u>	프로그램 실행과 데이터 처리를 담당하는 핵심 요소로서, 프로세서 (processor)라고도 부름	
<u>기억장치</u> (<u>memory)</u>	프로그램 코드와 데이터를 저장하는 장치	
<u>주기억장치(main</u> <u>memory)</u>	액세스 속도가 높지만, 프로그램 실행 중에만 사용될 수 있는 일시적 기억 장치	
<u>보조저장장치</u>	속도는 느리지만, 영구저장 능력을 가진 보조적 기억 장치	
<u>입출력장치(I/O</u> <u>Device)</u>	사용자와 컴퓨터간의 상호작용(interaction)을 위한 장치	
<u>Untitled</u>		
<u>컴파일러</u> (<u>compiler)</u>	고급언어 프로그램을 기계어로 변환해주는 소프트웨어	
<u>기계어(machine</u> language).	컴퓨터 하드웨어가 이해할 수 있는 언어	
<u>어셈블리 프로그램</u> (assembly program)	고급 언어와 기계어 사이의 중간 언어인 어셈블리 언어로 작성된 프로그 램	
<u>명령어</u> (instruction)	어셈블리 명령어(assembly instruction)의 약칭	

<u>Aa</u> 용어	= 설명	:= 태 그
<u>니모닉스</u> (mnemonics)	명령어가 지정하는 동작을 나타내는 간략화된 기호	
<u>어셈블러</u> (assembler)	어셈블리 프로그램을 기계어로 번역해주는 소프트웨어	
명령어 형식 (instrcution format)	명령어의 비트 수와 용도 및 필드 구성 방법을 지정해주는 형식	
<u>단어(word)</u>	CPU에 의해 한 번에 처리 될 수 있는 비트들의 그룹	
<u>Untitled</u>		
시스템 버스 (system bus)	CPU와 다른 요소들 간의 정보교환 통로	
<u>주소 버스</u> (address bus)	주소 정보를 전송하기 위한 신호선들의 집합	
데이터 버스(data bus)	데이터를 전송하기 위한 신호선들의 집합	
제어 버스(control bus)	시스템 요소들의 동작을 제어하기 위한 신호선들의 집합	
<u>액세스(access)</u>	기억장치에 데이터를 쓰거나, 저장된 내용을 읽는 동작	
기억장치 쓰기 시 간(memory wirte time)	CPU가 기억장치로 주소와 데이터를 보낸 순간부터 저장이 완료될 때까지의 시간	
기억장치 읽기 시 간(memory read time)	CPU가 기억장치로 주소를 보낸 순간부터 읽기 동작이 완료될 때까지의 시간	
<u>데이터 레지스터</u> (data register)	CPU와 I/O 장치간의 임시 데이터 기억 장치	
<u>상태 레지스터</u> (status register)	I/O 장치의 상태를 나타내는 비트들을 저장하는 레지스터	
데이터 버퍼(data buffer)	CPU와 I/O 장치간의 데이터 임시 기억장치인 데이터 레지스터의 다른 명 칭	
<u>Untitled</u>		
<u>Difference</u> <u>Engine</u>	산술연산(덧셈, 뺄셈) 및 프린트 기능을 가진 최초의 계산기계	
Analytic Engine	네 가지 산술연산 기능과 입력 및 출력장치를 모두 갖춘 최초의 일반목적 용 계산기계	

<u>Aa</u> 용어	■ 설명	:= 태 그
IAS 컴퓨터	폰노이만의 설계개념을 적용하여 프로그램 저장과 변경이 가능하도록 구 현된 최초의 디지털 컴퓨터	
<u>폰노이만 아키텍쳐</u> (von Neumann <u>Arcithecture)</u>	폰노이만이 제안한 컴퓨터구조 설계 개념으로서, 기억 장치에 저장된 프로그램을 프로그램 카운터(program counter)가 지정하는 순서댈 실행 시킴	
<u> 집적회로(IC)</u>	실리콘 반도체 칩에 다수의 트랜지스터들을 넣어(집적시켜) 제조한 전자 부품	
<u>실리콘 웨이퍼</u> <u>(silicon wafer)</u>	반도체 칩의 재료인 실리콘을 수평 방향으로 절단하여 만든 원형판	
<u>인쇄회로기판</u> <u>(PCB)</u>	전자회로들 간의 연결을 위한 회로 선들을 미리 부착시켜놓은 가판	
<u>마이크로프로세서</u> (microprocessor)	CPU 내부 회로 전체를 하나의 반도체 칩에 넣어 제조한 IC로서, 컴퓨터의 크기 감소 및 가격 하락에 지대한 영향을 미친 혁신적 전자부품	
개인용 컴퓨터 (personal computer)	개인이 소유할 수 있는 수준의 크기와 가격대의 컴퓨터에 대한 통칭	
임베디드 컴퓨터 (embeded computer)	각종 기계장치 혹은 전자 장치의 내부에 설치되어 그 장치들의 동작을 제어(control)하는 기능을 수행하는 소형 컴퓨터	
<u>워크스테이션</u> <u>(workstation)</u>	고속 그래픽처리 및 시뮬레이션 등에 상요되는 64비트급 고성능 컴퓨터	
<u>슈퍼미니컴퓨터</u> (super- minicomputer)	미니컴퓨터의 수십 배 성능을 가지는 서버급 컴퓨터 시스템	
<u>다운사이징</u> <u>(downsizing)</u>	대형컴퓨터를 이용한 중앙집중식 처리 방식에서 여러 대의 중형급 시스템들을 이용한 응용별 처리 방식으로 바뀌어가는 현상	
<u>슈퍼컴퓨터</u> (<u>supercomputer)</u>	현존하는 컴퓨터들 중에서 처리 속도와 저장 용량이 상대적으로 월등한 컴퓨터들로서 주로 대규모 과학계산(scientific computation) 응용들을 처리하며 수천 개 이상의 CPU 들을 이용한 병렬처리(parallel processisng)를 수행함으로써 성능이 계속 높아지고 있음	
<u>파이프라인 슈퍼컴</u> 퓨터	고도로 파이프라이닝 된 구조를 가진 소수의 CPU들을 이용하여 구성되는 슈퍼컴퓨터	
<u>대규모 병렬처리시</u> <u>스템(MPP)</u>	매우 많은 수의 프로세서들을 이용하여 병렬처리를 수행하도록 설계되는 슈퍼컴퓨터의 구성 방식	
<u>병렬처리(parallel</u> processing).	많은 수의 프로세서들이 하나의 큰 작업을 분할하여 동시에 처리하는 기 술	

CH02_CPU의 구조와 기능

<u>Aa</u> 용어	■ 설명	:= 태 그
<u>산술논리연산장치(ALU)</u>	산술 및 논리 연산들을 수행하는 회로들로 이루어진 하드웨어 모듈	
레지스터(register)	CPU내부 기억장치로서 액세스 속도가 기억장치들 중에서 가장 빠름	
<u>제어 유니트(control</u> <u>unit)</u>	인출된 명령어를 해독하고 그 실행을 위한 제어 신호들을 순차적으로 발생하는 하드웨어 모듈	
CPU 내부 버스	CPU 내부 기억장치로서 액세스 속도가 기억장치들 중에서 가장 빠름	
<u>제어 유니트(control</u> <u>unit)</u>	인출된 명령어를 해독하고 그 실행을 위한 제어 신호들을 순차적으로 발생하는 하드웨어 모듈	
<u>CPU 내부 버스</u>	CPU 내부 구성요소들 간의 정보 전송 통로	
<u>Untitled</u>		
명령어 사이클 (instruction cycle)	한 명령어를 실행하는데 필요한 전체 과정으로서, 명령어 인출 단계 와 명령어 실행 단계로 나누어짐	
<u>인출 사이클(fetch</u> cycle)	CPU가 기억장치의 지정된 위치로부터 명령어를 읽어 오는 과정	
<u>마이크로-연산(micro</u> <u>operation</u>	CPU 클록의 각 주기 동안 수행되는 기본적인 동작	
실행 사이클(execute cycle)	CPU가 명령어를 해독하고, 그 결과에 따라 필요한 연산들을 수행하는 과정	
<u>인터럽트(interrupt)</u>	CPU로 하여금 현재 진행중인 프로그램을 처리하도록 요구하는 매 커니즘으로서 CPU와 외부장치들 간의 상호작용을 위하여 필요한 기능	
<u>인터럽트 서비스 루틴</u> (ISR)	인터럽트 요구를 처리해주기 위해 수행하는 프로그램 루틴	
<u>인터럽트 사이클</u> <u>(interrupt cycle)</u>	인터럽트 요구가 들어왔는지 검사하고, 그 처리에 필요한 동작들을 수행하는 과정	
<u>스택 포인터(stack</u> pointer)	스택의 최상위 주소를 저장하고 있는 레지스터	
<u>다중 인터럽트(multiple</u> <u>interrupt)</u>	인터럽트 서비스 루틴을 수행하고 있는 동안에 다른 장치로부터 인 터럽트가 들어오는 경우	

<u>Aa</u> 용어	■ 설명	: = 태
<u>간접 사이클(indirect</u> cycle)	실행 사이클에서 사용디ㅗㄹ 데이터의 실제 주소를 기억장치로부 터 읽어오는 과정	그
<u>Untitled</u>		
명령어 파이프라이닝 (instruction pipelining)	명령어 실행에 사용되는 하드웨어를 여러 단계로 분할함으로써 처 리 속도를 높여주는 기술	
명령어 선인출 (instructuion prefetch)	다음에 실행될 명령어를 미리 인출하는 동작	
<u>기억장치 충돌(memory</u> <u>conflict)</u>	두 개 이상의 하드웨어 모듈들이 동시에 기억장치 액세스를 시도하 는 상황	
조건 분기 명령어	지정된 조건이 만족하는 경우에는 프로그램 처리 순서를 변경하는 명령어	
<u>슈퍼파이프라이닝</u> (superpiplining)	명령어 파이프라인의 단계들을 더욱 작게 분할하여 처리 속도를 높 여주는 기술	
<u>상태 레지스터(status</u> register)	연사너리 결과(부호, 올림수 등) 및 시스템 상태를 가리키는 비트들을 저장하는 레지스터	
<u>슈퍼스칼라</u> (<u>superscalar)</u>	CPU 내에 여러 개의 명령어 파이프라인들을 두어, 동시에 그 수만 큼의 명령어들을 실행할 수 있게 한 구조	
<u>데이터 의존성(data</u> <u>dependency)</u>	한 명령어를 실행한 다음에, 그 결과값을 보내주어야 다음 명령어의 실행이 가능한 관계	
<u>CPU 코어(core)</u>	CPU 칩의 내부회로 중에서 명령어 실행에 반드시 필요한 핵심 부분들로 이루어진 하드웨어 모듈	
<u>멀티-코어 프로세서</u> (multi-core processor)	여러 개의 CPU 코어들을 포함하고 있는 프로세서 칩	
<u>멀티-태스킹</u>	여러 CPU 코어들을 이용하여 독립적인 태스크(혹은 스레드) 프로 그램을 동시에 처리하는 기술로서, 멀티-스레딩이라고도 함	
<u>멀티-스레딩</u>	하나의 CPU 코어가 다수의 스레드들을 동시에 실행하는 기법	
<u>스레드(thread)</u>	독립적으로 실행될 수 있는 최소 크기의 프로그램 단위	
<u>명령어 형식(instruction</u> format)	명령어를 구성하는 필드의 종류와 개수, 배치 방식 및 필드 당 비트 수를 정의한 형식	
<u>주소지정 방식</u> (<u>addressing mode)</u>	주소 비트들을 이용하여 오퍼랜드의 유효 주소(effective address)를 결정하는 방법	
<u>직접 주소지정 방식</u>	명령어 내 오퍼랜드 필드으 ㅣ 값을 유효 주소로 사용하여 연산에 필 요한 데이터를 인출하는 방식	

<u>Aa</u> 용어	= 설명	:= 태 그
<u>간접 주소지정 방식</u>	오퍼랜드가 가리키는 기억 장치의 내용을 유효 주소로 사용하여 연산에 필요한 데이터를 인출하는 방식으로서, 두 번의 기억장치 액세스가 필요함	
묵시적 주소지정 방식 (implied addressing mode)	명령어 실행에 사용될 데이터가 묵시적으로 지정되어 있는 방식	
즉시 주소지정 방식 (immediate addressing mode)	명령어 내에 포함되어 있는 데이터를 연산에 직접 사용하는 방식	
레지스터 주소지정 방식	명령어의 오퍼랜드가 가리키는 레지스터에 저장되어 있는 데이터 를 연산에 사용하는 방식	
<u>레지스터 간접 주소지정</u> <u>방식</u>	지정된 레지스터의 내용을 유효 주소로 사용하여, 그 주소가 가리키는 기억장치로부터 읽어온 데이터를 연산에 사용하는 방식	
변위 주소지정 방식 (displacement addressing mode)	지정된 레지스터의 내용과 명령어 내 오퍼랜드(변위)를 더하여 유 효 주소를 결정하는 주소지정 방식	
<u>상대 주소지정 방식</u> (<u>relative addressing</u> <u>mode</u>)	프로그램 카운터(PC)의 내용과 명령어 내 오퍼랜드(변위)를 더하여 유효 주소를 결정하는 주소지정 방식	
인덱스 주소지정 방식 (indexed addressing mode)	인덱스 레지스터의 사용과 명령어 내 오퍼랜드(뼌위)를 더하여 유 효 주소를 결정하는 주소지정 방식	
<u>자동 인덱싱(guto-indexing)</u>	인덱스 주소지정이 완료된 후에 자동적으로 인덱스 레지스터 내용을 증가 혹은 감소하는 방식	
<u>베이스-레지스터 주소지</u> 정 방식	베이스 레지스터(base register)의 내용과 명령어 내 오펄내드(변위)를 더하여 유효 주소를 지정하는 주소지정 방식	

Copy of Untitled

<u>Aa</u> 용어	■ 설명	∷를 태그
<u>Untitled</u>		
<u>Untitled</u>		
<u>Untitled</u>		