Optimal Portfolio Weights I: Mean-Variance Optimization

```
In [1]:
         # Working with data:
         import numpy as np
                                                                 # For scientific computing
         import pandas as pd
                                                                 # Working with tables.
         # Downloading files:
         import requests, zipfile, io
                                                                       # To access websites
         # Specific data providers:
         from tiingo import TiingoClient
                                                                 # Stock prices.
                                                                 # Economic data, futures p
         import quandl
         # API keys:
         tiingo = TiingoClient({'api_key':'XXXX'})
         quandl.ApiConfig.api_key = 'YYYY'
         # Plotting:
         import matplotlib.pyplot as plt
                                                                 # Basic plot library.
         plt.style.use('ggplot')
                                                                 # Make plots look nice
```

Get data

Get ETF prices and returns (TLT: 20+ year treasuries, IEF: 7-10 year treasuries, SHY: 1-3 year treasuries:

```
In [2]:
# start in 2003 since Treasury ETFs not available earlier
PRICE = tiingo.get_dataframe(['SPY','TLT','IEF','SHY'], '2003-1-1', metric_name=
PRICE.index = pd.to_datetime(PRICE.index).tz_convert(None)

RET = PRICE.pct_change()
RET[:3]
```

```
        Out[2]:
        SPY
        TLT
        IEF
        SHY

        2003-01-02
        NaN
        NaN
        NaN
        NaN

        2003-01-03
        0.003075
        0.002318
        0.001651
        0.000122

        2003-01-06
        0.017625
        -0.002660
        -0.002473
        -0.000610
```

Compare stock and treasury compond returns:

```
In [3]: RET.add(1).cumprod().plot(logy=True)
```

Out[3]: <AxesSubplot:>

Get federal funds rate and treasury yields:

```
In [4]:
    RATES = quandl.get(['FRED/FEDFUNDS','FRED/DGS1','FRED/DGS5','FRED/DGS10','FRED/D
    RATES.columns = ['FedFunds','Treasury_1', 'Treasury_5', 'Treasury_10', 'Treasury_RATES
```

Out[4]:		FedFunds	Treasury_1	Treasury_5	Treasury_10	Treasury_30
	Date					
	1954-07-01	0.0080	NaN	NaN	NaN	NaN
	1954-08-01	0.0122	NaN	NaN	NaN	NaN
	1954-09-01	0.0107	NaN	NaN	NaN	NaN
	1954-10-01	0.0085	NaN	NaN	NaN	NaN
	1954-11-01	0.0083	NaN	NaN	NaN	NaN
	•••					
	2021-03-29	NaN	0.0006	0.0089	0.0173	0.0243
	2021-03-30	NaN	0.0006	0.0090	0.0173	0.0238
	2021-03-31	NaN	0.0007	0.0092	0.0174	0.0241
	2021-04-01	NaN	0.0006	0.0090	0.0169	0.0234
	2021-04-02	NaN	0.0007	0.0097	0.0172	0.0235

15146 rows × 5 columns

Calculate margin rate:

```
In [5]:
    RET = RET.join(RATES.FedFunds.rename('MarginRate'), how='outer')
    RET['MarginRate'] = RET.MarginRate.ffill()/252 + 0.01/252 # Assume mar
    RET = RET.dropna(subset=['SPY'])
    RET
```

Out[5]:		SPY	TLT	IEF	SHY	MarginRate
	2003-01-03	0.003075	0.002318	0.001651	0.000122	0.000089
	2003-01-06	0.017625	-0.002660	-0.002473	-0.000610	0.000089

	SPY	TLT	IEF	SHY	MarginRate
2003-01-07	-0.002474	0.003594	0.003187	0.000732	0.000089
2003-01-08	-0.014451	0.004968	0.002353	0.000853	0.000089
2003-01-09	0.015538	-0.019198	-0.012091	-0.001827	0.000089
•••					
2021-03-29	-0.000505	-0.008488	-0.003434	-0.000232	0.000042
2021-03-30	-0.002653	0.005240	-0.000883	0.000000	0.000042
2021-03-31	0.004053	-0.005580	-0.001415	-0.000348	0.000042
2021-04-01	0.010799	0.016575	0.004425	-0.000008	0.000042
2021-04-05	0.014353	-0.004363	-0.002823	-0.000232	0.000042

4594 rows × 5 columns

Stocks vs Bonds

Compare annual returns of SPY and TLT:

```
In [6]:  # Compound daily returns within each year:
    RET[['SPY','TLT']].add(1).groupby(RET.index.year).prod().sub(1) # Or use "resam"
```

Out[6]:		SPY	TLT
	2003	0.241793	0.043166
	2004	0.107028	0.087111
	2005	0.048258	0.086066
	2006	0.158482	0.007108
	2007	0.051356	0.102911
	2008	-0.368069	0.339240
	2009	0.263661	-0.218006
	2010	0.150577	0.090460
	2011	0.018879	0.339593
	2012	0.159917	0.026311
	2013	0.323067	-0.133718
	2014	0.134621	0.272975
	2015	0.012523	-0.017872
	2016	0.120013	0.011795
	2017	0.217003	0.091814
	2018	-0.045571	-0.016075
	2019	0.312217	0.141207
	2020	0.183732	0.181521

```
SPY TLT
2021 0.090439 -0.128765
```

Plot this:

```
In [7]: RET[['SPY','TLT']].add(1).groupby(RET.index.year).prod().sub(1).plot.bar()
```

Out[7]: <AxesSubplot:>

Compare daily returns in March 2020:

```
In [9]: RET.loc['2020-3',['SPY','TLT']].plot.bar()
```

Out[9]: <AxesSubplot:>

Daily return February 15 to March 15 2021:

```
In [10]: RET.loc['2021-2-15':'2021-3-15',['SPY','TLT']].plot.bar()
```

Out[10]: <AxesSubplot:>

Scatter plot of daily returns in 2020:

```
In [11]: RET.loc['2020'].plot.scatter('SPY','TLT')
```

Out[11]: <AxesSubplot:xlabel='SPY', ylabel='TLT'>

Same graph for 2021:

```
In [13]: RET.loc['2021'].plot.scatter('SPY','TLT')
```

Out[13]: <AxesSubplot:xlabel='SPY', ylabel='TLT'>

Correlation of returns for entire sample:

In [14]: RET.corr()

Out[14]:		SPY	TLT	IEF	SHY	MarginRate
	SPY	1.000000	-0.402390	-0.390339	-0.331498	-0.012482
	TLT	-0.402390	1.000000	0.911492	0.571435	0.004984
	IEF	-0.390339	0.911492	1.000000	0.744602	0.011905
	SHY	-0.331498	0.571435	0.744602	1.000000	0.069698
	MarginRate	-0.012482	0.004984	0.011905	0.069698	1.000000

Correlation for each year:

In [15]: RET[['SPY','TLT']].groupby(RET.index.year).corr().unstack().SPY.TLT.plot.bar()

Out[15]: <AxesSubplot:>

Mean-variance optimization

Out[16

Annual returns:

```
In [16]:
    r_annual = RET[:'2020'].add(1).resample('A').prod().sub(1)
    r_annual
```

]:		SPY	TLT	IEF	SHY	MarginRate
,	2003-12-31	0.241793	0.043166	0.037300	0.021914	0.021391
	2004-12-31	0.107028	0.087111	0.041268	0.006631	0.023832
	2005-12-31	0.048258	0.086066	0.026422	0.015310	0.043118
	2006-12-31	0.158482	0.007108	0.025180	0.038910	0.061250
	2007-12-31	0.051356	0.102911	0.103745	0.073509	0.061777
	2008-12-31	-0.368069	0.339240	0.179071	0.066157	0.029747
	2009-12-31	0.263661	-0.218006	-0.065888	0.003526	0.011663
	2010-12-31	0.150577	0.090460	0.093724	0.022779	0.011827
	2011-12-31	0.018879	0.339593	0.156441	0.014405	0.011074
	2012-12-31	0.159917	0.026311	0.036634	0.002762	0.011376
	2013-12-31	0.323067	-0.133718	-0.060875	0.002151	0.011133
	2014-12-31	0.134621	0.272975	0.090651	0.004467	0.010954
	2015-12-31	0.012523	-0.017872	0.015097	0.004293	0.011396
	2016-12-31	0.120013	0.011795	0.010058	0.008205	0.014051
	2017-12-31	0.217003	0.091814	0.025545	0.002615	0.020162
	2018-12-31	-0.045571	-0.016075	0.009891	0.014642	0.028623
	2019-12-31	0.312217	0.141207	0.080295	0.033802	0.032078
	2020-12-31	0.183732	0.181521	0.100067	0.030343	0.013801

Calculate annual excess returns (subtract 1-year treasury rates):

```
In [17]:
          r_annual_Tbill = RATES.Treasury_1.resample('A').first() # Yield at the beginnin
          r_annual_Tbill
Out[17]: Date
         1954-12-31
                          NaN
         1955-12-31
                          NaN
         1956-12-31
                          NaN
         1957-12-31
                          NaN
         1958-12-31
                          NaN
         2017-12-31
                       0.0089
         2018-12-31
                       0.0183
         2019-12-31
                       0.0260
         2020-12-31
                       0.0156
         2021-12-31
                       0.0010
         Freq: A-DEC, Name: Treasury 1, Length: 68, dtype: float64
In [18]:
          rx annual = r annual.sub(r annual Tbill, 'rows').dropna() # Subtract a series fr
```

rx_annual

Out[18]:		SPY	TLT	IEF	SHY	MarginRate
	2003-12-31	0.227593	0.028966	0.023100	0.007714	0.007191
	2004-12-31	0.093928	0.074011	0.028168	-0.006469	0.010732
	2005-12-31	0.020358	0.058166	-0.001478	-0.012590	0.015218
	2006-12-31	0.114682	-0.036692	-0.018620	-0.004890	0.017450
	2007-12-31	0.001356	0.052911	0.053745	0.023509	0.011777
	2008-12-31	-0.399769	0.307540	0.147371	0.034457	-0.001953
	2009-12-31	0.259661	-0.222006	-0.069888	-0.000474	0.007663
	2010-12-31	0.146077	0.085960	0.089224	0.018279	0.007327
	2011-12-31	0.015979	0.336693	0.153541	0.011505	0.008174
	2012-12-31	0.158717	0.025111	0.035434	0.001562	0.010176
	2013-12-31	0.321567	-0.135218	-0.062375	0.000651	0.009633
	2014-12-31	0.133321	0.271675	0.089351	0.003167	0.009654
	2015-12-31	0.010023	-0.020372	0.012597	0.001793	0.008896
	2016-12-31	0.113913	0.005695	0.003958	0.002105	0.007951
	2017-12-31	0.208103	0.082914	0.016645	-0.006285	0.011262
	2018-12-31	-0.063871	-0.034375	-0.008409	-0.003658	0.010323
	2019-12-31	0.286217	0.115207	0.054295	0.007802	0.006078
	2020-12-31	0.168132	0.165921	0.084467	0.014743	-0.001799

Let's calculate the risk premium and volatility of a portfolio of SPY and TLT.

Risk premiums for these assets:

Calculate portfolio risk premium:

```
In [19]:
          meanx = rx_annual[['SPY','TLT']].mean()
          meanx
Out[19]: SPY
                 0.100888
          TLT
                 0.064561
         dtype: float64
         Example weights:
In [20]:
          w = pd.Series({'SPY':0.7, 'TLT':0.3})
Out[20]: SPY
                 0.7
                 0.3
         TLT
         dtype: float64
```

portfolio risk premium
$$= \mathbf{w} \cdot E[\mathbf{r}^x] = \underbrace{\begin{bmatrix} 0.7 & 0.3 \end{bmatrix} \times \begin{bmatrix} 0.100888 \\ 0.064561 \end{bmatrix}}_{\text{"dot product"}} = \underbrace{0.7 \times 0.10}_{\text{"dot product"}}$$

Implement this calculation:

```
In [21]: (w * meanx).sum() # weighted average of individual risk premiums

Out[21]: 0.08999016538623958

Or use "dot" method:
```

```
In [22]: w.dot(meanx)
```

Out[22]: 0.08999016538623958

Note: to use the "dot" method, you need to have the same indexes in "w" and in "meanx" (here: SPY, TLT). If the indexes are not the same, you get a "matrixes not aligned" error. For example:

```
ValueError
                                           Traceback (most recent call last)
<ipython-input-23-8c0012b420a0> in <module>
      1 m = rx annual[['SPY', 'TLT', 'IEF']].mean()
      2
---> 3 w.dot(m)
~/opt/anaconda3/lib/python3.7/site-packages/pandas/core/series.py in dot(self, o
ther)
   2539
                    common = self.index.union(other.index)
   2540
                    if len(common) > len(self.index) or len(common) > len(other.
index):
-> 2541
                        raise ValueError("matrices are not aligned")
   2542
   2543
                    left = self.reindex(index=common, copy=False)
```

ValueError: matrices are not aligned

The portfolio variance is the dot product between the portfolio weights and the covariance matrix:

portfolio variance = weights \times covariance matrix \times weights

Implement this:

```
SPY TLT TLT -0.010649 0.019343
```

Portfolio volatility:

```
In [25]: w.dot(cov).dot(w) ** 0.5 # here we use the annualized cov (otherwise we ne
```

Out[25]: 0.12252024425183612

Repeat this calculation for multiple weights:

Out[26]:		SPY	TLT	Risk_premium	Volatility	Sharpe
	0	0.0	1.0	0.064561	0.139079	0.464207
	1	0.1	0.9	0.068194	0.118798	0.574033
	2	0.2	8.0	0.071827	0.102079	0.703640
	3	0.3	0.7	0.075459	0.090908	0.830066
	4	0.4	0.6	0.079092	0.087438	0.904551
	5	0.5	0.5	0.082725	0.092540	0.893937
	6	0.6	0.4	0.086357	0.104971	0.822680
	7	0.7	0.3	0.089990	0.122520	0.734492
	8	8.0	0.2	0.093623	0.143320	0.653244
	9	0.9	0.1	0.097256	0.166153	0.585336
	10	1.0	0.0	0.100888	0.190290	0.530181

Plot risk vs return:

```
In [27]: t.plot.scatter('Volatility','Risk_premium')
```

Out[27]: <AxesSubplot:xlabel='Volatility', ylabel='Risk_premium'>

The Sharpe ratio is the slope of a line that goes from through the point of the specific SPY/TLT combination:

Out[28]: <AxesSubplot:xlabel='Volatility', ylabel='Risk_premium'>

Maximum Sharpe ratio weights:

$$\mathbf{w} = rac{\mathbf{\Sigma}^{-1} E[\mathbf{r}^x]}{\mathrm{Sum} ig(\mathbf{\Sigma}^{-1} E[\mathbf{r}^x]ig)}$$

($\Sigma = \text{covariance matrix}$).

Calculate the inverse of the covariance matrix:

Make this easier to read:

```
cov_inv = pd.DataFrame(np.linalg.inv(cov), columns=cov.columns, index=cov.index)
cov_inv
```

```
Out[30]: SPY TLT
SPY 32.951873 18.141900
TLT 18.141900 61.686631
```

Maximum Sharpe ratio weights:

```
In [31]: w_maxSharpe = cov_inv.dot(meanx) / cov_inv.dot(meanx).sum()
w_maxSharpe

Out[31]: SPY    0.436114
```

Out[31]: SPY 0.436114 TLT 0.563886 dtype: float64

Minimum volatility portfolio weights:

$$\mathbf{w_{minvol}} = \frac{\boldsymbol{\Sigma}^{-1} \mathbf{1}}{\mathrm{Sum}(\boldsymbol{\Sigma}^{-1} \mathbf{1})}$$

where ${\bf 1}$ is a vector of ones and ${\bf \Sigma}^{-1}{\bf 1}$ is row or column sum of the inverse covariance matrix.

Implement this:

Out[32]: SPY 0.39026 TLT 0.60974 dtype: float64

Compound returns of optimal portfolios

Out[33]: <AxesSubplot:>

