華中科技大學

课程实验报告

课程名称: 计算机组成原理

学 号: <u>I201920024</u>

姓 名: ____ 木林

指导教师:___谭志虎

报告日期: 2021年12月5日

计算机科学与技术学院

目录

实验 CPU 设计要求	1
1 设计要求	
1.1 单总线结构现代时序 CPU	1
1.2 单总线结构现代时序 CPU(带中断操作)	1
1.3 单总线结构三级时序变长指令 CPU	2
2.1 单总线结构现代时序 CPU	4
2.2 单总线结构现代时序 CPU (带中断操作)	9
2.3 单总线结构三级时序变长指令 CPU	14

实验 CPU 设计要求

1设计要求

1.1 单总线结构现代时序 CPU

本实验要做的包括:

- 1. 指令译码器
- 2. 微程序入口查找逻辑
- 3. 微程序条件判别测试逻辑
- 4. 微程序地址转移逻辑
- 5. 微程序指令存储器
- 6. 时序产生器 (硬币线有限状态机)
- 7. 硬布线控制信号产生器

图 1.1 单总线结构现代时序总体结构图

1.2 单总线结构现代时序 CPU (带中断操作)

本实验要做的:

1. 指令译码器 (带 ERET 指令)

- 2. 微程序入口查找逻辑
- 3. 微程序条件判别测试逻辑
- 4. 微程序地址转移逻辑
- 5. 微程序指令存储
- 6. 时序产生器 (硬币线有限状态机)
- 7. 硬布线控制信号产生器

1.3 单总线结构三级时序变长指令 CPU

本实验要做的:

- 1. 指令译码器
- 2. 硬币线时序发生器
- 3. 硬币线时序发生器输出逻辑
- 4. 硬币线控制器组合逻辑单位
- 5. 硬币线控制器

图 1.3a 中国大学 mooc 中的单总线结构三级时序变长指令 CPU 指令期

2.1 单总线结构现代时序 CPU

• 指令译码器

输入: 32 位指令 IR

输出:指令译码器的结果:LW 信号代表指令是否为LW 指令,SW 信号表表指令是否为SW 指令,BEQ 信号代表指令是否为BEQ 指令,ADDI 信号代表指令是否为ADDI 指令,SLT 信号代表指令是否为SLT 指令实现逻辑:将指令IR 的2—6(opcode)和12-14(func3)位提取出来进行比对,用5个比较器来判断该指令的opcode和func3是否与标准指令匹配。

图 1.5 单总线结构现代时序指令译码器总体结构图

图 1.5 单总线结构现代时序指令译码器总体结构

图 1.6 单总线结构现代时序微程序入口查找逻辑总体结构

输入: 5个指令选择信号,代表译码出来的指令类型。

输出: 微程序入口地址(S=[S4S3S2S1S0])

实现逻辑:利用 Excel 表构造组合逻辑,然后在 logism 组合逻辑生成器生成 电路。

	机	器指令	译码信号		微程	皇序》	\ D:	地址			
LW	SW	BEQ	SLT	ADDI	ERET	入口地址 10进制	S4	S3	S2	S1	S0
1						4	0	0	1	0	0
	1					9	0	1	0	0	1
		1				14	0	1	1	1	0
			1			19	1	0	0	1	1
				1		22	1	0	1	1	0

图 1.7 单总线结构现代时序微程序入口查找逻辑组合逻辑设计表

微 程 序 条 件 判 别 逻 辑

实现逻辑: 微程序流程控制信号 P=[P₁P₀]和表示相等关系信号 equal。 微程序地址转移控制信号(S=[S₁S₀]):S=0 代表是下一条地址,S=1 代表取入口地址,S=2 代表是取 BEQ 指令且当前运算是相等的跳转地址。利用 Excel 表构造组合逻辑,然后在 logism 生成电路。

微指令功能	колец	PCout	DFlout	Zout	Rout	Pi(fout	PESoul	Pillind	OPENA	PCin	ARin	DREIn	DRin	Xin	Rin	IRin	PSWin	rs1/2	Add	Add4	SIt	READ	WHITE	PO	P1	P2	下址DEC	微指令	微指令十六进制
取指令	0	1									1			1													1	000000010010000000000000000000000000000	20120001
取指令	1																			1							2	10000000000000000010000000001	802
取指令	2			1						1		1										1					3	001000001010000000001000000011	8280203
取指令	3		1													1								1			0	1000000000000100000010000000	10008080
LW	4				1									1													5)00100000001000000000000010	4020005
LW	5					1													1								6)0001000000000000100000000110	2001006
LW	6			1							1																7	0010000001000000000000000000111	8100007
LW	7											1										1					8)00000000010000000001000001000	80208
LW	8		1												1												0	100000000000100000000000000000000000000	10010000
SW	9				1									1													10)00100000000100000000000001010	402000A
SW	10						1												1								11	000001000000000001000000001011	100100B
SW	11			1							1																12)0100000010000000000000000110(810000C
SW	12	Г	П		1		П	П	П	Т			1					1									13	000100000001000010000000001101	4042000
SW	13								1														1				0	10000001000000000000010000000	400100
BEQ	14				1									1													15	000100000000100000000000001111	402000F
BEQ	15				1												1	1							1		0)00100000000000110000001000000	4006040
BEQ	16	1												1													17	00000000001000000000001000	2002001
BEQ	17							1											1								18)00000100000000001000000010010	801012
BEQ	18			1						1																	0	101000001000000000000000000000000000000	8200000
SLT	19				1									1													20)0010000000010000000000001010(4020014
SLT	20				1													1			1						21	000100000000000010010000010101	4002415
SLT	21			1											1												0	101000000000010000000000000000000000000	8010000
ADDI	22				1									1													23	000100000000100000000000010111	4020017
ADDI	23					1													1								24)0001000000000000100000001100(2001018
ADDI	24			1											1												0	101000000000010000000000000000000000000	8010000

• 控制寄存器

实现逻辑: 微程序的地址对应硬布线的时序, 我们只需要对照着硬布线的 控制信号输出表填写控制信号, 然后根据 FSM 的关系设置下一条微程序的 地址,设计逻辑如下:

- 1. 在不需要跳转的微程序处,下一条微程序是本指令地址+1
- 2. 在取指令的最后一条微程序标记下一条微程序的地址是微程序入口 生成地址逻辑结果。

图 1.9 单总线结构现代时序微程序控制寄存器内容

- 3. 在每一条指令的最后一条微程序标记下,一条指令是取指令的第一 条指令
- 4. 对于 equal 的判断: 如果在 S15 条微程序的最后设置下一条指令与 equal 信号有关,交由微程序条件判别逻辑来判断,如果是相等的话 (equal=1),跳转到 S16。如果不是,返回取指令的第一条指令。
- 微程序控制器

实现逻辑: 其他功能模块已经在之前说明,这里最重要的就是下一条微程序的地址: 需要根据微程序条件判别逻辑的结果来进行多路选择。如果是下一条地址就对应当前微程序的下地址字段。如果是入口地址就接入入口地址查找逻辑的输出。如果是 beq 分支就跳转到 0x10。

• 硬布线时许产生器

实现逻辑: Excel 生成组合逻辑, 然后在 logism 生成电路

图 1.10 单总线结构现代时序微程序控制器总体结构图

• 硬布线控制器

实现逻辑: 主要的就是状态寄存器右边部分是当前状态, 左边部分是次

态,将当前状态和指令译码器的输出作为 FSM 的输入连线即可。因为硬布线的 状态和微程序的地址是一一对应的,这个时候可以借用之前做的微程序控制存储器来读取控制总线输出。

2.2 单总线结构现代时序 CPU (带中断操作)

- 指令译码器与 2.1 的相同。略
- 微程序入口查找逻辑

1图1.2单总线结构现代时序(带中断)微程序入口 本块逻辑 A 体 性 构 图

输入: 6个指令选择信号,代表译码出来的指令类型。

输出: 微程序入口地址(S=[S4S3S2S1S0])

实现逻辑:用 Excel 构造组合逻辑,然后在 logism 生成电路

• 微程序条件判别逻辑

	机	器指令	译码信号	-		微和	呈序》	לם	地址		
LW	SW	BEQ	SLT	ADDI	RET	入口地址 10进制	S4	S3	S2	S1	S0
1						4	0	0	1	0	0
	1					9	0	1	0	0	1
		1				14	0	1	1	1	0
			1			19	1	0	0	1	1
				1		22	1	0	1	1	0
					1	25	1	1	0	0	1

图 1.13 单总线结构现代时序(带中断)微程序入口查找逻辑组合设计表实现逻辑:用 Excel 表构造组合逻辑,然后在 logism 生成电路。

输2	【填1頭	划0,不填	为无关项	x)			
P0	P1	P2	equal	IntR	S2	S1	S0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	1	0	0	1	0
0	1	1	0	1	0	1	1
0	1	1	0	0	1	0	0
0	0	1	0	1	0	1	1
0	0	1	1	1	0	1	1
0	0	1	0	0	1	0	0
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	0
0	1	0	0	1	1	0	0

图 1.14 单总线结构现代时序(带中断)微程序条件判别逻辑组合逻辑设计表

• 控制寄存器

实现逻辑:微程序的地址对应硬布线的时序,我们只需要对照着硬布线的控制信号输出表填写控制信号,然后根据 FSM 关系设计流程控制信号 P。

1. 当这个是取地址指令的最后一条微程序的时候,这个时候标记 P_0 要找入

口查找逻辑寻找入口地址。

- 2. 当这个是判断 equal 分支的时候,这个时候标记 P_1 有可能要跳转到处理 equal 分支的微程序
- 3. 当这个是每一条指令的最后一条微程序的时候,标记 P2代表结束。

微指令功能	REFRENC	PCout	DRout	Zout	Rout	Pi)(out	P(S)out	PERON	DPEOM	PCin	ARin	DREin	DRin	Xin	Rin	IRin	PSWin	rs1/2	Add	Add4	SIt	READ	WRITE	EPCout	EPCin	Addroxt	STI	CLI	P0	P1	P2	微指令十六进制
取指令	0	1									1			1																		20120000
取指令	1																			1												800
取指令	2			1						1		1										1										8280200
取指令	3		1													1													1			10008004
LW	4				1									1																		4020000
LW	5					1													1													2001000
LW	6			1							1																					8100000
LW	7											1										1										80200
LW	8		1												1																1	10010001
SW	9				1									1																		4020000
SW	10						1												1													1001000
SW	11			1							1																					8100000
SW	12				1								1					1														4042000
SW	13								1														1								1	400101
BEQ	14				1									1																		4020000
BEQ	15				1												1	1												1	1	4006003
BEQ	16	1												1																		20020000
BEQ	17							1											1													801000
BEQ	18			1						1																					1	8200001
SLT	19				1									1																		4020000
SLT	20	Г			1													1			1											4002400
SLT	21			1											1																1	8010001
ADDI	22	Г			1									1																		4020000
ADDI	23					1													1													2001000
ADDI	24			1											1																1	8010001
ERET	25									1														1			1				1	200091
中断响应	26	1																							1			1				20000048
中断响应:	27									1																1					1	200021
																																正确。

• 微程序控制器

图 1. 16 单总线结构现代时序(带中断)微程序控制器总体结构图 实现逻辑: 其他功能模块已经在之前说明,这里最重要的就是下一条微程序的地址: 需要根据微程序条件判断逻辑的结果来进行多路选择

图 1.15 单总线结构现代时序(带中断)微程序控制寄存器内容

硬币线时序产生器

实现逻辑:用 Excel 构造组合逻辑,然后在 logism 生成电路。

	¥	当前	伏态	(现表	(5)				输入	信号				下-	一状	态 (次态)	
S4	S3	S2	S1	SO	现态 10进制	LW	SW	BEQ	SLT	ADDI	URET	IR	EQUAL	次态 10进制	N4	N3	N2	N1	NO
0	0	0	1	1	3		1							9	0	1	0	0	1
0	0	0	1	1	3			1						14	0	1	1	1	0
0	0	0	1	1	3				1					19	1	0	0	1	1
0	0	0	1	1	3					1				22	1	0	1	1	0
0	0	1	0	0	4									5	0	0	1	0	1
0	0	1	0	1	5									6	0	0	1	1	0
0	0	1	1	0	6									7	0	0	1	1	1
0	0	1	1	1	7									8	0	1	0	0	0
0	1	0	0	0	8							0		0	0	0	0	0	0
0	1	0	0	1	9									10	0	1	0	1	0
0	1	0	1	0	10									11	0	1	0	1	1
0	1	0	1	1	11									12	0	1	1	0	0
0	1	1	0	0	12									13	0	1	1	0	1
0	1	1	0	1	13							0		0	0	0	0	0	0
0	1	1	1	0	14									15	0	1	1	1	1
0	1	1	1	1	15								1	16	1	0	0	0	0
0	1	1	1	1	15							0	0	0	0	0	0	0	0
1	0	0	0	0	16									17	1	0	0	0	1
1	0	0	0	1	17									18	1	0	0	1	0
1	0	0	1	0	18							0	1	0	0	0	0	0	0
1	0	0	1	1	19									20	1	0	1	0	0
1	0	1	0	0	20									21	1	0	1	0	1
1	0	1	0	1	21							0		0	0	0	0	0	0
1	0	1	1	0	22									23	1	0	1	1	1
1	0	1	1	1	23									24	1	1	0	0	0
1	1	0	0	0	24							0		0	0	0	0	0	0
0	0	0	1	1	3						1			25	1	1	0	0	1
1	1	0	0	1	25							0		0	0	0	0	0	0
1	1	0	0	1	25							1		26	1	1	0	1	0
0	1	0	0	0	8							1		26	1	1	0	1	0
0	1	1	0	1	13							1		26	1	1	0	1	0
0	1	1	1	1	15							1	0	26	1	1	0	1	0
1	0	0	1	0	18							1		26	1	1	0	1	0
1	0	1	0	1	21							1		26	1	1	0	1	0
1	1	0	0	0	24							1		26	1	1	0	1	0
1	1	0	0	1	25							1		26	1	1	0	1	0
1	1	0	1	0	26									27	1	1	0	1	1
1	1	0	1	1	27									0	0	0	0	0	0

• 硬布线控制器

输入:指令字,EQUAL和时钟

输出:控制总线输出。

实现逻辑:主要就是状态寄存器右边部分是当前状态,左边部分是次态,将当前状态和指令译码器的输出作为 FSM 的输入连线即可。因为硬布线的状态和微程序的地址是一一对应的,这个时候可以借用之前做的微程序控制寄存器来读取控制总线输出。

• 中断控制器件

IE 寄存器: 关中断的时候异步置为 1, 开中断的时候异步置为 0, 输出为寄存器保存内容相反的部分。

mEPC 寄存器:和数据通路的其他锁存器是一种构造,就是在写入问好为0的时候,通过使能端控制寄存器忽略时钟信号,不把输入端内容寄存下来,锁存器输出接三态门,三态门只有在 EPC 输出信号有效的情况下,才能进行输出,不能进行输出的时候三态门阻挡。

中断地址查找:根据中断控制的中断类型输出进行分支判断,分支判断 图1.18 单总线结构现代时序硬布线控制器 (带中断)总体结构 使用多路选择器,对于输出类型为0&3的就不与处理,对于分支1,接上代表1号中断的中断入口地址的常量,对于分支2接上对于2号中断的中断入口地址常量。

对于中断地址的访问,首先查看这个不带中断的程序,发现程序在 00000063 停止,第 42 行是正常程序的最后一条;对于带中断的程序,从主程序在第 42 行结束,从第 43 行开始就是中断程序,接着找到中断程序的第一条指令 00810113,在第 43 行,我们接着往下找,发现在第 61 行也发现了指令 00810113,推测这是第二个中断程序的第一条指令,那么中断入口指令分别是第 41 条指令和第 59 条指令;又已知一条指令占 4 个字节,所以说我们可以知道第一个中断指令的地址就是[41*4]10 和[59*4]10。我们可以使用 Rars 来分析汇编语言中各个标签的地址,也可以得到答案。

图 1.19 总线结构现代时序(带中断)中断逻辑总体结构

2.3 单总线结构三级时序变长指令 CPU

- 指令译码器
- 硬布线时序发生器有限状态机

实现逻辑: 利用 Excel 表构造组合逻辑, 然后在 logism 生成电路

	当前	前状	态(现	见态)			#	介入信号				下一	伏态	(次	态)	
S3	S2	S1	S0	现态 10进制	LW	SW	BEQ	SLT	ADDI	ERET	IntR	次态 10进制	N3	N2	N1	N0
0	0	0	0	0								1	0	0	0	1
0	0	0	1	1								2	0	0	1	0
0	0	1	0	2								3	0	0	1	1
0	0	1	1	3	1							4	0	1	0	0
0	0	1	1	3		1						4	0	1	0	0
0	0	1	1	3			1					4	0	1	0	0
0	1	0	0	4								5	0	1	0	1
0	1	0	1	5								6	0	1	1	0
0	0	1	1	3				1				6	0	1	1	0
0	0	1	1	3					1			6	0	1	1	0
0	1	1	0	6								7	0	1	1	1
0	1	1	1	7								8	1	0	0	0
1	0	0	0	8								0	0	0	0	0
0	0	1	1	3	0	0	0	0	0			6	0	1	1	0

图 1.20 单总线结构三级时序硬布线时序发生器 FSM 组合逻辑设计表

• 硬布线时序发生器组合逻辑输出组件

实现逻辑:用 Excel 表构造组合逻辑,然后在 logism 生成电路

	当前	前状态	态(现	· (态)						输出	H	
S3	S2	S1	S0	现态 10进制	Mif	Mcal	Mex	Mint	T1	T2	Т3	T4
0	0	0	0	0	1				1			
0	0	0	1	1	1					1		
0	0	1	0	2	1						1	
0	0	1	1	3	1							1
0	1	0	0	4		1			1			
0	1	0	1	5		1				1		
0	1	1	0	6			1		1			
0	1	1	1	7			1			1		
1	0	0	0	8			1				1	

• 硬布线组合逻辑输出组件

实现逻辑:用 Excel 表构造组合逻辑,然后在 logism 生成电路。

图 1.21 单总线结构三级时序硬布线时序发生器输出函数逻辑设计表

硬布线控制器

实现逻辑:主要的就是状态寄存器右边部分是当前状态,左边部分是次态,将当前状态和指令译码器的输出作为 FSM 的输入连线即可。根据当前状态序号,可以通过硬布线组合逻辑输出器件输出各种控制信号的输出。

图 1.22 单总线结构三级时序硬布线组合逻辑输出函数逻辑设计表