Curved Yang-Mills-Higgs theories

Simon-Raphael Fischer, based on joint works with Camille Laurent-Gengoux, and with Mehran Jalali Farahani, Hyungrok Kim (金炯錄), Christian Sämann

Curved Yang-Mills-Higgs theory

Motivation (sort of historical)

We will mainly focus on Yang-Mills theories:

	Classical	Curved
Infinitesimal	Lie algebra g	LAB ¹ g
Integrated	Lie group <i>G</i>	LGB ² 𝒯

Remarks (Why curved?)

For gauge invariance and closure of gauge transformations:

- lacktriangle Generalize Maurer-Cartan form o Multiplicative Yang-Mills connection.
- Generalize Field Strength.

3

 $^{^{1}}$ LAB = Lie algebra bundle

 $^{^{2}}LGB = Lie group bundle$

Motivation (sort of historical)

We will mainly focus on Yang-Mills theories:

	Classical	Curved
Infinitesimal	Lie algebra g	LAB¹ 𝑔
Integrated	Lie group <i>G</i>	LGB ² 𝒞

Remarks (Why curved?)

For gauge invariance and closure of gauge transformations:

- $\blacksquare \ \ \mbox{Generalize Maurer-Cartan form} \ \rightarrow \ \mbox{Multiplicative Yang-Mills connection}.$
- Generalize Field Strength.

 $^{^{1}}LAB = Lie algebra bundle$

 $^{^{2}}$ LGB = Lie group bundle

Singular Foliations

Example of a singular foliation

Foliations are widespread

Singular Foliations:

- Gauge Theory
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
- ..

Unique transverse structure

How to classify singular foliations?

Remarks ([C. L.-G., S.-R. F.])

There is a connection on the normal bundle of a leaf L preserving the foliation!

- \blacksquare Transverse structure is unique: Classify singular foliation ${\mathscr F}$ like a bundle!
- Connection is a multiplicative Yang-Mills connection: Use curved gauge theory!

Source of the existence of connection on normal bundle: Camille Laurent-Gengoux and Leonid Ryvkin, The holonomy of a singular leaf, Selecta Mathematica 28, no. 2, 45, 2022.

Thank you!

Classification of singular foliations

Theorem ([C. L.-G., S.-R. F.])

Formal singular foliations with leaf L and transverse model (\mathbb{R}^d, τ_I) are equivalent to:

- A Galois cover L' over L with structural group K
- A short exact sequence of groups

$$\mathsf{Inner}(\tau_I) \hookrightarrow H \longrightarrow K$$

■ A principal *H*-bundle *P* over *L*