

Pontifícia Universidade Católica de Minas Gerais

Programa de Pós-graduação em Informática (Mestrado/Doutorado)

Disciplina: Fundamentos Teóricos da Computação

Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

Exercícios Extra (1ª AVALIAÇÃO - 25 pontos)

Nome:

1) Considere a seguinte linguagem:

 $\mathbf{L}_1 = \{ w \in \{ 0, 1 \}^* | \mathbf{00} \text{ \'e subpalavra de } w \in \mathbf{11} \text{ não \'e subpalavra de } w \}.$

Pede-se:

a) Uma **GR** que gere a linguagem L_1 ;

- (03 pontos)
- b) O diagrama de estados de um AFD que reconheça as sentenças da linguagem L₁;
- (03 pontos)

c) Uma **ER** que represente L_1 .

- (03 pontos)
- 2) Forneça uma GR e o diagrama de estados de um AFD equivalentes ao seguinte autômato: (08 pontos)

- 3) Considerando o alfabeto $\Sigma = \{ a, b, c \}$ e as linguagens $L = \{ a^n b^n c^n \mid n \ge 0 \}$ que <u>não é uma linguagem regular</u> e L_R que representa uma <u>linguagem regular qualquer</u> sobre Σ . Prove se as seguintes linguagens são ou não regulares:
 - a) $L_2 = \{ w \in \Sigma^* \mid \text{ou } w \in L_R \text{ ou } w \text{ contém pelo menos um } \mathbf{a} \text{ (mas não ambos)} \};$ (04 pontos)
 - b) $L_3 = \{ w \in \Sigma^* \mid \text{o número de as, bs e cs em } w \text{ é o mesmo } \}.$ (04 pontos)

4) Questão Extra

Apresente o diagrama de estados de um **AFD** sobre o alfabeto $\Sigma = \{0, 1\}$ que reconheça "o conjunto das palavras em que o símbolo na posição i é diferente do símbolo na posição i + 2, para $i \ge 1$ ". Considere que o símbolo na posição 1 de uma palavra é seu primeiro símbolo, o símbolo na posição 2 é o segundo, e assim por diante.

OBS: Apenas soluções completamente corretas serão consideradas nesta questão! (04 pontos)

1) Considere a seguinte linguagem:

 $\mathbf{L}_1 = \{ w \in \{ \mathbf{0}, \mathbf{1} \}^* | \mathbf{00} \text{ \'e subpalavra de } w \text{ e } \mathbf{11} \text{ não \'e subpalavra de } w \}.$

Pede-se:

- a) Uma \mathbf{GR} que gere a linguagem \mathbf{L}_1 ;
- b) O diagrama de estados de um AFD que reconheça as sentenças da linguagem L_1 ;
- c) Uma $\mathbf{E}\mathbf{R}$ que represente \mathbf{L}_1 .

δ	0	1	δ	0	1		8	O	/
А	В	A	D	I	E		As	BD	AE
В	C	A	E	I	F		AE	BD	AF
C	С	С	F	F	F		A.F	BF	AF
0 - 0 0							Br	()	ΛE
(εA)	r 6	Bi	$\overline{}$	\ <u>\</u>			<i>BE</i>	()	AF
7)	5000					<u>R</u> F	(f	AF
)'	//	ERRO	0				CD	(9	<u> </u>
<i>U</i> /	//			\ ▼				-9	

- Considerando o alfabeto $\Sigma = \{ a, b, c \}$ e as linguagens $L = \{ a^n b^n c^n \mid n \geq 0 \}$ que <u>não é uma linguagem regular</u> e L_R que representa uma <u>linguagem regular qualquer</u> sobre Σ . Prove se as seguintes linguagens são ou não regulares: $\binom{n \leq n}{n} = \frac{1}{n} \frac{1}{n$
 - a) $\mathbf{L}_2 = \{ w \in \Sigma^* \mid \text{ou } w \in \mathbf{L}_R \text{ ou } w \text{ contem pelo menos um } \mathbf{a} \text{ (mas não ambos)} \};$ (04 pontos)
 - b) $L_3 = \{ w \in \Sigma^* \mid \text{o número de } \mathbf{a}s, \mathbf{b}s \in \mathbf{c}s \text{ em } w \text{ \'e o mesmo } \}.$ (04 pontos)

b) Superido que l_3 seja viva linguigem regular, outste un AF com X>0 estados que aceta l_3 .

Toda sentenço $w \in l_1$, $|w| \ge K$ pode rev escrita da forma w = vvx, tal que:

- ·/vv/ < K
- · |V| >1
- · VYX EL, Y1 = 0,1,2,...