FONCTIONS TRIGONOMÉTRIQUES

Résumé

Nous étudions une nouvelle classe de fonctions : les fonctions trigonométriques. Elles disposent, entre autres, de nouvelles propriétés de périodicité et de parité qui nous permettront de restreindre les domaines d'étude.

1 Propriétés générales

1.1 Parité

Soit f une fonction définie sur I, un ensemble symétrique de \mathbf{R} (par exemple, [-a;a] avec a > 0 ou $]-\infty;0[\cup]0;+\infty[)$, de courbe représentative \mathscr{C}_f .

Définition 1 | Fonction paire

f est **paire** si:

$$\forall x \in I$$
, $f(-x) = f(x)$.

Dans ce cas, \mathcal{C}_f admet une symétrie axiale par rapport à l'axe des ordonnées dans un repère orthogonal.

Exemples 2 Nous connaissons déjà de nombreuses fonctions paires : les fonctions $x \mapsto x^2$, $x \mapsto x^4$ ou encore $x \mapsto \frac{1}{x^2}$.

Définition 3 | Fonction impaire

f est **impaire** si:

$$\forall x \in I$$
, $f(-x) = -f(x)$.

Dans ce cas, \mathscr{C}_f admet une symétrie centrale par rapport à l'origine dans un repère orthogonal.

Exemples 4 Notons les fonctions impaires $x \mapsto x$, $x \mapsto x^3$ ou encore $x \mapsto \frac{1}{x}$.

Remarques 5 ▶ Une fonction peut n'être ni paire ni impaire. C'est le cas de la fonction exponentielle dont la courbe n'admet aucun axe de symétrie ou centre de symétrie.

▶ Une fonction à la fois paire et impaire est nécessairement la fonction nulle :

$$\forall x \in I$$
, $f(-x) = f(x) = -f(x) \Longrightarrow 2f(x) = 0$.

Propriétés 6

- ► Si f et g sont paires sur I alors toute combinaison linéaire $\lambda f + \mu g$ de f et g est paire sur I.
- ► Si f et g sont impaires sur I alors toute combinaison linéaire $\lambda f + \mu g$ de f et g est impaire sur I.

Exemples 7 La fonction $x \mapsto 4x^2 - 27x^4$ est paire sur **R** tout comme la fonction $x \mapsto \frac{3}{x} - x$ est impaire sur **R***.

Exercice 8

Étudier la parité des fonctions suivantes. Donner aussi leur ensemble de définition.

1.
$$x \mapsto 4x^6$$

4.
$$x \mapsto \sqrt{x}$$

2.
$$x \mapsto 2 + x^4$$

$$5. \ x \mapsto |x|$$

3.
$$x \mapsto x - x^3 + x^5$$

6.
$$x \mapsto \frac{7}{x^3}$$

1.2 Périodicité

Soit f une fonction définie sur un intervalle I de courbe représentative \mathscr{C}_f .

Définition 9 | *T*-périodicité

Soit T > 0. f est dite T-périodique si :

$$\forall x \in I, \qquad f(x+T) = f(x).$$

Dans ce cas, \mathscr{C}_f est invariante par la translation de vecteur $\overrightarrow{v} \begin{pmatrix} T \\ 0 \end{pmatrix}$ dans un repère orthogonal.

Exemples 10 On trouve, ci-contre, les courbes de fonctions périodiques.

Exercice 11

- 1. Quelle est la périodicité d'une fonction constante?
- 2. Quelle est la périodicité d'une fonction croissante?

2 Trigonométrie

2.1 Fonctions cos et sin

Définitions 12

- ▶ La fonction **cosinus**, notée cos, est définie sur **R** par $x \mapsto \cos(x)$.
- ▶ La fonction **sinus**, notée sin, est définie sur **R** par $x \mapsto \sin(x)$.

Propriétés 13

- ► La fonction cos est **paire** sur **R**.
- ► La fonction sin est **impaire** sur **R**.
- ightharpoonup cos et sin sont **périodiques** de période 2π .

Démonstration. Clair par construction du sinus et du cosinus via l'enroulement de la droite des réels sur le cercle unité. □

Remarque 14 Par parité et périodicité, connaître les valeurs de $\cos(x)$ et $\sin(x)$ sur $[0;\pi]$ permet de connaître toutes leurs valeurs sur \mathbf{R} et de construire leurs courbes représentatives. C'est ce qu'on appelle restreindre l'étude à l'intervalle $[0;\pi]$.

Théorème 15 | Fonctions dérivées

► La fonction cos est dérivable sur **R** et sa dérivée est – sin.

$$\cos' = -\sin$$

► La fonction sin est dérivable sur **R** et sa dérivée est cos.

$$\sin' = \cos$$

Corollaire 16 | Continuité

Les fonctions cos et sin sont continues sur R.

Démonstration. Une fonction dérivable est continue.

2.2 Fonction tan

Définition 17 | Tangente

On peut définir sur $]-\frac{\pi}{2};\frac{\pi}{2}[$ (et ses intervalles translatés de $k\pi$ pour $k\in \mathbf{Z}$) la fonction **tangente** par :

$$\tan: x \mapsto \frac{\sin(x)}{\cos(x)}$$
.

Remarques 18 tan n'est pas définie en x tel que cos(x) = 0 ce qui arrive en $k\pi$ avec $k \in \mathbb{Z}$.

On peut noter que le nombre tan(x) n'est pas défini si $x \equiv 0 \pmod{\pi}$.

Propriétés 19

▶ tan est dérivable sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ et :

$$tan' = 1 + tan^2$$

 \blacktriangleright tan est π -périodique.

Démonstration. ▶ tan est dérivable comme quotient de deux fonctions dérivables et :

$$\tan' = \frac{\sin' \cos - \cos' \sin}{\cos^2} = \frac{\cos^2 + \sin^2}{\cos^2} = \frac{1}{\cos^2} = 1 + \tan^2.$$

► Soit $x \in \mathbf{R}$ tel que $\cos(x) \neq 0$.

$$\tan(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)}$$

$$= \frac{-\sin(x)}{-\cos(x)}$$

$$= \frac{\sin(x)}{\cos(x)}$$

$$= \tan(x)$$