UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT1100 — Kalkulus-prøveeksamen

Eksamensdag: 27. november 2010.

Tid for eksamen: 10:00-13:00.

Oppgavesettet er på 5 sider.

Vedlegg: Formelsamling.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Første del av eksamen innholder 7 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Hvis du svarer galt, eller lar være å svare, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen inneholder tradisjonelle oppgaver. I denne delen teller hver av de 5 delspørsmålene 10 poeng. I andre del av eksamen må du begrunnne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet, får 0 poeng selv om de er riktige. Lykke til!

Del 1

Oppgave 1. (3 poeng). Den partiellderiverte $\frac{\partial f}{\partial x}$ til funksjonen

$$f(x,y) = \ln(x^3y^2)$$
 er:

- **A** $3x^2y^2$
- $\sqrt{\mathbf{B}} \ 3/x$
 - **C** $3x^2/y^2$
 - $\mathbf{D} \ 3xy^2$
 - $\mathbf{E} \ 3y^2/x$

Oppgave 2. (3 poeng). Funksjonen

$$f(x, y, z) = xyz + x^2,$$

vokser i punktet (1,1,-1) raskest i retningen

- **A** (1,1,1)
- **B** (-1,1,-1)
- $\sqrt{\mathbf{C}}$ (1, -1, 1)
 - \mathbf{D} (0,0,2)
 - **E** f vokser ikke i (1, 1, -1)

Oppgave 3. (3 poeng). Arealet av trekanten med hjørner (-2, 2), (1, 1) og (-1, 2) er

- **A** 3/2
- \mathbf{B} 1
- $\sqrt{\mathbf{C}}$ 1/2
 - $\mathbf{D} = 0$
 - $\mathbf{E} -1/2$

Oppgave 4. (3 poeng). Den inverse til matrisen

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ er: }$$

$$\mathbf{A} \quad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{B} \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

A
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

B $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$
 \checkmark C $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

D $\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$

E $\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$

Oppgave 5. (3 po

$$\mathbf{D} \quad \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

$$\mathbf{E} \quad \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

Oppgave 5. (3 poeng). Volumet til rotasjonslegemet som framkommer ved å rotere området $0 < x < 1, 0 < y < \sqrt{x}$ om y-aksen er

$$\mathbf{A}$$
 π

$$\sqrt{\mathbf{B}} 4\pi/5$$

C
$$3\pi/5$$

D
$$2\pi/5$$

$$\mathbf{E} \ \pi/5$$

Oppgave 6. (3 poeng). Funksjonen

$$f(x) = x - \ln(|x|)$$

 \mathbf{A} er konveks på \mathbb{R}

 \mathbf{B} er større enn x for alle x

 \mathbf{C} er mindre enn x for alle x

 $\sqrt{\mathbf{D}}$ er konveks på $(-\infty,0)$ og på $(0,\infty)$

E har asymptote y = x + 1 når $x \to \infty$

Oppgave 7. (3 poeng). Følgen gitt ved $a_0 = \pi$,

$$a_{n+1} = \frac{4+a_n}{1+a_n}$$
 for $n > 0$, er konvergent.

Da blir grensen $\lim_{n\to\infty} a_n$ lik

$$\mathbf{A}$$
 e

$$\mathbf{B}$$
 π

$$\sqrt{\mathbf{C}}$$
 2

$$\mathbf{D}$$
 1

$$\mathbf{E} = 0$$

Del 2

Oppgave 8. (10 poeng). Finn alle røttene i polynomet

$$F(z) = z^3 - 3z^2 + 5z - 3,$$

og skriv F(z) som et produkt av to reelle polynomer P(z) og Q(z), der P(z) er et førstegradspolynom, og Q(z) et andregradspolynom.

Løsningsforslag: Siden dette er en eksamensoppgave, så prøver vi om z=1 er en rot... og det er det! Altså er P(z)=z-1. Da får vi at $F(z):(z-1)=z^2-2z+3=(z-1)^2+2=Q(z)$. Vi ser at Q har røtter $1\pm i\sqrt{2}$, så da har vi alle røttene $\{1,1-i\sqrt{2},1+i\sqrt{2}\}$.

Oppgave 9. (10 poeng). Hvilke punkter i det komplekse planet har $|z| \leq \text{Re}(z) + \text{Im}(z)$?

Løsningsforslag: For det første er $0 \le |z|$, slik at dersom z = x + iy, så må $y \ge -x$. Vi har at $\sqrt{x^2 + y^2} \le x + y$ eller $2xy \ge 0$. Tilsammen har vi at $y \ge -x$ og $xy \ge 0$, dette er tilfredsstilt dersom (x,y) ligger i første kvadrant, mao. $x \ge 0$ og $y \ge 0$.

Oppgave 10. (10 poeng). Regn ut integralet

$$\int_0^1 \frac{x+1}{\sqrt{1-x^2}} \, dx$$

Løsningsforslag: Vi får at

$$\int_0^1 \frac{x+1}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + \arcsin(x) \Big|_0^1 = \frac{\pi}{2} - \frac{1}{3}.$$

Oppgave 11. (10 poeng). La A være en $n \times n$ matrise slik at $A^2 = \mathbf{0}$ (null matrisen). Vis at da er $(I_n - A)^{-1} = (I_n + A)$.

Vis videre at

$$A = \begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix}$$

tilfredstiller $A^2 = \mathbf{0}$ og regn ut

$$\begin{pmatrix} -5 & 9 \\ -4 & 7 \end{pmatrix}^{-1}$$
.

Løsningsforslag: Vi bruker at $A^2 = \mathbf{0}$ og skriver

$$I = I - A^2 = (I + A)(I - A),$$

dermed må $(I-A)^{-1}=(I+A)$. For 2×2 matrisen får vi

$$A^2 = \begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix} \begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Tilslutt ser vi at matrisen vi skal regne ut inversen til er I-A, slik at inversen blir

$$I + A = \begin{pmatrix} 7 & -9 \\ 4 & -5 \end{pmatrix}.$$

Oppgave 12. (10 poeng, men vanskelig). La f være en kontinuerlig deriverbar funksjon som tilfredstiller:

- i) f(y) = y for et tall y,
- ii) f'(x) > 0 for alle x, og
- iii) f(x) < x for alle x > y.

La $a_0 > y$ og definér en følge $\{a_n\}_{n \geq 0}$ ved at $a_n = f(a_{n-1})$ for $n \geq 1$. Vis at $\lim_{n \to \infty} a_n = y$.

Løsningsforslag: Vi må vise at følgen er konvergent, og at grensen blir y. For å vise konvergens, kan vi prøve å vise at a_n er nedtil begrenset av y, og avtagende. I så fall vil følgen konvergere, sett $a = \lim a_n$, og a vil tilfredstille a = f(a), som impliserer at $a \le y$, altså må a = y.

Vi har at $a_0 > y$, jeg ønsker å bruke induksjon til å si at $a_n > y$. Anta $a_{n-1} > y$, da har vi

$$a_n - y = f(a_{n-1}) - f(y) = f'(c)(a_{n-1} - y),$$

ved Rolles teorem, og $c \in (y, a_{n-1})$. Derfor blir høyresiden positiv, og $a_n > y$ for alle n. Videre har vi at $a_n = f(a_{n-1}) < a_{n-1}$ pga. iii) over. Altså konvergerer følgen mot y.

SLUTT