# Funções trigonométricas



# Gráficos das funções trigonométricas





$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$



Cálculo (LEI)

4. Funções especiais

2012/2013

## Funções trigonométricas

## **Tangente**

$$\operatorname{tg}: \mathbb{R} \setminus \left\{ \tfrac{\pi}{2} + k\pi: \ k \in \mathbb{Z} \right\} \longrightarrow \mathbb{R} \quad \text{ tal que } \operatorname{tg} x = \frac{\operatorname{sen} x}{\cos x}$$

## Cotangente

$$\operatorname{cotg}: \mathbb{R} \setminus \{k\pi: \ k \in \mathbb{Z}\} \longrightarrow \mathbb{R} \quad \text{ tal que } \operatorname{cotg} x = \frac{\cos x}{\sin x}$$

#### Secante

$$\sec: \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi: \ k \in \mathbb{Z} \right\} \longrightarrow \mathbb{R} \quad \text{ tal que } \sec x = \frac{1}{\cos x}$$

#### Cossecante

$$\operatorname{cosec}: \mathbb{R} \setminus \{k\pi: \ k \in \mathbb{Z}\} \longrightarrow \mathbb{R} \quad \text{ tal que } \operatorname{cosec} x = \frac{1}{\operatorname{sen} x}$$

## Gráficos das funções trigonométricas



# Algumas propriedades das funções trigonométricas

- 1.  $\forall a \in \mathbb{R}$   $\operatorname{sen}^2 a + \cos^2 a = 1$ ;
- **2.**  $\forall a \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$   $1 + \operatorname{tg}^2 a = \sec^2 a$ ;
- **3.**  $\forall a \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$   $1 + \operatorname{cotg}^2 a = \operatorname{cosec}^2 a$ ;
- **4.**  $\forall a \in \mathbb{R}$   $\operatorname{sen}(-a) = -\operatorname{sen} a$  (sen é ímpar);
- **5.**  $\forall a \in \mathbb{R} \quad \cos(-a) = \cos a \quad (\cos \text{ é par});$
- **6.**  $\forall a \in \mathbb{R}$   $\cos(\frac{\pi}{2} a) = \sin a$  e  $\sin(\frac{\pi}{2} a) = \cos a$ ;
- **7.**  $\forall a \in \mathbb{R}$   $\operatorname{sen}(a+2\pi) = \operatorname{sen} a$  (seno tem período  $2\pi$ );
- **8.**  $\forall a \in \mathbb{R} \quad \cos(a+2\pi) = \cos a \quad \text{(cosseno tem periodo } 2\pi\text{)};$
- **9.**  $\forall a, b \in \mathbb{R}$   $\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \operatorname{sen} b \cos a;$
- **10.**  $\forall a, b \in \mathbb{R}$   $\cos(a+b) = \cos a \cos b \sin b \sin a;$
- **11.**  $\forall a, b \in \mathbb{R}$   $\cos a \cos b = -2 \sin \frac{a-b}{2} \sin \frac{a+b}{2}$ ;
- **12.**  $\forall a, b \in \mathbb{R}$   $\operatorname{sen} a \operatorname{sen} b = 2 \operatorname{sen} \frac{a-b}{2} \cos \frac{a+b}{2}$ .

## Funções exponenciais



# Funções exponenciais



## Funções logaritmos



## Funções logaritmos



## Seno hiperbólico

$$\begin{array}{cccc} \mathsf{sh}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \dfrac{e^x - e^{-x}}{2} \end{array}$$

#### Tangente hiperbólica

th: 
$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{\sinh x}{\cosh x}$$

## Secante hiperbólica

sech: 
$$\mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto \frac{1}{\operatorname{ch} x}$ 

## Cosseno hiperbólico

ch: 
$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{e^x + e^{-x}}{2}$$

#### Cotangente hiperbólica

$$\begin{array}{cccc}
\operatorname{coth}: & \mathbb{R} \setminus \{0\} & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & \frac{1}{\operatorname{th} x}
\end{array}$$

### Cossecante hiperbólica

$$\begin{array}{cccc} \operatorname{cosech}: & \mathbb{R} \setminus \{0\} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{1}{\operatorname{sh} x} \end{array}$$







## Funções hiperbólicas - propriedades

- **1.**  $\forall a \in \mathbb{R}$   $ch^2 a sh^2 a = 1;$
- **2.**  $\forall a \in \mathbb{R}$   $\operatorname{th}^2 a + \operatorname{sech}^2 a = 1$ ;
- **3.**  $\forall a \in \mathbb{R} \setminus \{0\}$   $\coth^2 a \operatorname{cosech}^2 a = 1;$
- **4.**  $\forall a \in \mathbb{R}$   $\operatorname{sh}(-a) = -\operatorname{sh} a$  (a função seno hiperbólico é ímpar);
- **5.**  $\forall a \in \mathbb{R}$   $\operatorname{ch}(-a) = \operatorname{ch} a$  (a função cosseno hiperbólico é par);
- **6.**  $\forall a, b \in \mathbb{R}$   $\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a$ ;
- **7.**  $\forall a, b \in \mathbb{R}$   $\operatorname{ch}(a+b) = \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} b \operatorname{sh} a;$
- **8.**  $\forall n \in \mathbb{N} \quad \forall a \in \mathbb{R}$   $(\operatorname{ch} a + \operatorname{sh} a)^n = \operatorname{ch}(na) + \operatorname{sh}(na).$

## Funções trigonométricas inversas

#### Arco-seno

$$\operatorname{arcsen}: [-1,1] \longrightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$$

$$x \longmapsto \left(\operatorname{sen}_{|[-\frac{\pi}{2}, \frac{\pi}{2}]}\right) (x)$$

#### Arco-cosseno





Cálculo (LEI)

4. Funções especiais

#### **Arco-tangente**

$$\begin{array}{ccc} \operatorname{arctg}: & \mathbb{R} & \longrightarrow & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[ \\ & x & \longmapsto & \left( \operatorname{tg}_{\left| \right] -\frac{\pi}{2}, \frac{\pi}{2}} \right] & \\ \end{array}$$

### **Arco-cotangente**

$$\begin{array}{cccc} \operatorname{arcotg}: & \mathbb{R} & \longrightarrow & ]0,\pi[ \\ & x & \longmapsto & \left(\operatorname{cotg}_{|_{]0,\pi[}}\right) \hspace{-0.5cm} \stackrel{-1}{(x)} \end{array}$$





#### **Arco-secante**

$$\begin{array}{cccc} \operatorname{arcsec}: & [1,+\infty[ & \longrightarrow & [\,0,\frac{\pi}{2}[ \\ & x & \longmapsto & \left(\sec_{|_{[0,\frac{\pi}{2}[}}\right) \hspace{-3pt} \stackrel{-1}{(x)} \right) \end{array}$$

#### **Arco-cossecante**

$$\begin{array}{cccc} \operatorname{arcosec}: & [1,+\infty[ & \longrightarrow & ]0,\frac{\pi}{2}] \\ & x & \longmapsto & \left(\operatorname{cosec}_{|_{]0,\frac{\pi}{2}}]} \right) \hspace{-0.5cm} \stackrel{-1}{(x)} \end{array}$$





## Funções hiperbólicas inversas

### Argumento do seno hiperbólico

$$\begin{array}{ccc} \mathsf{argsh}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & (\mathsf{sh})^{-1}(x) \end{array}$$

### Argumento do cosseno hiperbólico

$$\begin{array}{cccc} \operatorname{argch}: & [1,+\infty[ & \longrightarrow & \mathbb{R}_0^+ \\ & x & \longmapsto & \left( \left. \operatorname{ch}_{\right|_{\mathbb{R}_0^+}} \right)^{-1} (x) \end{array}$$



Cálculo (LEI)

4. Funções especiais

### Argumento da tangente hiperbólica

$$\begin{array}{cccc} \operatorname{argth}: & ]-1,1[ & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{th}^{-1}(x) \end{array}$$

## Argumento da cotangente hiperbólica

$$\begin{array}{cccc} \operatorname{argcoth}: & \mathbb{R} \setminus [-1,1] & \longrightarrow & \mathbb{R} \setminus \{0\} \\ & x & \longmapsto & \operatorname{coth}^{-1}(x) \end{array}$$

Argumento da tangente hiperbólica

Argumento da cotangente hiperbólica



### Argumento da secante hiperbólica

$$\begin{array}{cccc} \operatorname{argsech}: & ]0,1] & \longrightarrow & \mathbb{R}_0^+ \\ & x & \longmapsto & \left(\operatorname{sec}_{|_{\mathbb{R}_0^+}}\right)^{-1}(x) \end{array}$$

## Argumento da cossecante hiperbólica

$$\begin{array}{cccc} \operatorname{argcosech}: & \mathbb{R}\setminus\{0\} & \longrightarrow & \mathbb{R}\setminus\{0\} \\ & x & \longmapsto & \operatorname{cosech}^{-1}(x) \end{array}$$

Argumento da secante hiperbólica



Argumento da cossecante hiperbólica

