Fonctions composées (associées)

Exemples rédigés

Méthode:

- On décompose la fonction en « blocs » simples,
- on applique les règles de composition de droite à gauche.

Exemple n°1 : Soit $f: x \mapsto \sqrt{x-2}$, f définie sur $[2; +\infty[$.

Au brouillon: f, c'est $\sqrt{}$ de x-2.

On pose $g(X) = \sqrt{X}$ et h(x) = x - 2

On a donc $f = g \circ h$

On sait que h est croissante sur $[2; +\infty[$.

On sait que composer par $X \mapsto \sqrt{X}$ ne change pas le sens de variation.

donc $g \circ h$ est croissante sur $[2; +\infty[$

à l'ordre quand on décompose en blocs!

Exemple n°2:

Soit $f: x \mapsto -\frac{2}{3x}$, f définie sur $]-\infty; 0[\cup]0; +\infty[$.

On cherche toujours les variations sur un intervalle, donc un ensemble « sans trou »

Sur $]0; +\infty[$:

Au brouillon : f, c'est $-\frac{2}{3} \times \frac{2}{x}$.

On pose $g(x) = -\frac{2}{3}$ et $h(x) = \frac{1}{x}$.

On a $f = g \times h$.

On sait que \overline{h} est décroissante sur $]0; +\infty[$.

Or, multiplier par une constante négative change le sens de variation.

Donc $g \times h$ est croissante.

On en conclut que f est croissante sur $]0; +\infty[$.

Remarque: Le résultat est le même sur] $-\infty$; 0[.

Exemple n°3 : un peu plus long...

Soit
$$f: x \mapsto -\frac{\sqrt{3}}{\sqrt{x^2+1}+8}$$
, définie sur \mathbb{R} .

Dans un premier temps, on s'intéresse aux variations de f sur $[0, +\infty[$

au brouillon, on a
$$f$$
, c'est $-\sqrt{3} \times \frac{1}{\sqrt{x^2+1}+8}$, donc $\sqrt{3} \times \left(\frac{1}{\dots} \text{ et } \sqrt{x^2+1}+8\right)$ donc $\sqrt{3} \times \left(\frac{1}{\dots} \text{ et } \left(\sqrt{x^2+1} \text{ et } 8\right)\right)$ donc $\sqrt{3} \times \left(\frac{1}{\dots} \text{ et } \left((\sqrt{-1} \text{ et } x^2+1) \text{ et } 8\right)\right)$

On pose
$$\begin{cases} g: x \mapsto \sqrt{3} \\ h: x \mapsto \frac{1}{x} \\ i: x \mapsto \sqrt{x} \end{cases}$$
 et
$$\begin{cases} j: x \mapsto x^2 + 1 \\ k: x \mapsto 8 \end{cases}$$

On a
$$f = g \times (h \circ ((i \circ j) + k))$$

Quand il y a des parenthèses, elles sont prioritaires!

Mais on va toujours de droite à gauche.

On sait que $j: x \mapsto x^2 + 1$.

Or, la composition par $x \mapsto \sqrt{x}$ ne modifie pas le sens de variation. Donc $i \circ j$ est croissante.

Or, ajouter une constante à une fonction ne change pas son sens de variation, donc $(i \circ j) + k$ est croissante.

Or, la composition par $x \mapsto \frac{1}{x}$ inverse le sens de variation, donc $h \circ ((i \circ j) + k)$ est décroissante.

2

Or, la multiplication par une constante négative change le sens de variation.

Donc, $g \times (h \circ ((i \circ j) + k))$ est croissante.

On en conclut que f est croissante.