

2.5.2 逻辑函数的化简方法卡诺图法

2.5.2逻辑函数的卡诺图化简

按相邻规则排列的最小项方格图, 利用合并相邻项的原则化简逻辑函数

(a)

1. 卡诺图的构成

画n变量K图:首先画出2ⁿ个小方格,并将输入变量按行、列分为两组表示在方格图的左上角,变量的取值按格雷码排列。行、列变量交叉处的小方格就是输入变量取

值所对应的最小项 $_{C}$ $_{AB}$ $_{00}$ $_{01}$ $_{11}$ $_{10}$ $_{0}$ $_{\overline{ABC}}$ $_{\overline{ABC}}$

AB							
C	00	01	11	10			
0	m_0 m_2 m_6 m_4						
1	m_1	m_3	m_7	m_5			
	(b)						

\ AE	}			
$C \setminus$	00	01	11	10
0	0	2	6	4
1	1	3	7	5
	(c)			

A	В	C	最小项
0	0	0	$\overline{A}\overline{B}\overline{C}$
0	0	1	$\overline{A} \overline{B} C$
0	1	0	$\overline{A}B\overline{C}$
0	1	1	$\overline{A}BC$
1	0	0	$A\overline{B}\overline{C}$
1	0	1	$A\overline{B}C$
1	1	0	$AB\overline{C}$
1	1	1	ABC

西安电子科技大学国家级精品课程数字电路与系统设计

00 0 4 12 8 01 1 5 13 9 11 3 7 15 11	CD	00	01	11	10
11 3 7 15 11		0	4	12	8
	01	1	5	13	9
10 2 6 14 10	11	3	7	15	11
	10	2	6	14	10

AB DE	8C 000	001	011	010	110	111	101	100
00	0	4	12	8	24	28	20	16
01	1	5	13	9	25	29	21	17
11	3	7	15	11	27	31	23	19
10	2	6	14	10	26	30	22	18

K图具有如下特点:

- ① n变量的卡诺图有2ⁿ个方格,对应表示2ⁿ个最小项。每当变量数增加一个,卡诺图的方格数就扩大一倍。
- ② 卡诺图中任何几何位置相邻的两个最小项, 在逻辑上都是相邻的。

几何相邻:一是相接,即紧挨着; 二是相对,即任意一行或一列的两头; 三是相重, 即对折起来位置重合。

逻辑相邻: 是指除了一个变量不同外其余变量都相同的两个"与项"。

西安电子科技大学国家级精品课程数字电路与系统设计

西安电子科技大学国家级精品课程数字电路与系统设计

2 逻辑函数的卡诺图表示法

(1) 与或标准逻辑函数式

将构成逻辑函数的最小项在卡诺图上相应的方格中填1,其余的方格填0(或不填),则可以得到该函数的卡诺图。

任何一个逻辑函数都等于其卡诺图上填1的那些最小项之和。

例 用卡诺图表示函数 $F_1 = \sum m(0,1,3,5,9,10,13,14)$

	00	01	11	10
00	1			
01	1	1	1	1
11	1			
10			1	1

(2) 一般与或逻辑函数式

将一般与或式中每个与项在卡诺图上所覆盖的最小项都填1,其余的填0(或不填),就可以得到该函数的卡诺图。

例 用卡诺图表示函数 $F_2 = ABC + ABD + BC + D$

 \overline{ABD} BC $A\overline{BC}$ D

西安电子科技大学国家级精品课程数字电路与系统设计

(3) 逻辑函数为或与标准式

将构成逻辑函数的最大项在卡诺图相应的方格中填0,其余的方格填1(或不填)即可。也就是说,任何一个逻辑函数都等于其卡诺图上填0的那些最大项之与。

例 用卡诺图表示函数 $F_3 = M_0 \cdot M_2 \cdot M_4 \cdot M_7$

Al C ₀	00	01	11	10
V	0	0		0
1			0	

(4) 逻辑函数为一般或与式

将一般或与式中每个或项在卡诺图上所覆盖的最大项处都填0,其余的填1(或不填)例 用卡诺图表示函数 $F_4 = (A + \overline{B})(B + C)$