Segmentez des clients d'un site de e-commerce

Objectif: Segmentation et Clustering des clients

Sommaire

- Problématique
- Analyser les données
- Description des données
- Analyse exploratoire des données
- Segmentation
- Clustering
- PEP8
- Conclusion et Suite du Projet

Objectif:

- Comprendre les différents types d'utilisateurs (Comportements, données personnelles)
- Fournir une description actionnable de la segmentation pour une optimisation optimale
- Proposer un contrat de maintenance basé sur une analyse de la stabilité des segments au cours du temps

Problématique: Mission

A partir des données récoltées :

Fournir aux équipes marketing de l'entreprise Olist une **Segmentation** des clients utilisables dans leurs campagnes de communication.

- Réaliser une courte analyse exploratoire.
- Utiliser des méthodes non supervisés pour regrouper des clients de profils similaires. Ces catégories pourront être utilisées par l'équipe marketing pour mieux communiquer.
- Différencier les bons et moins clients en termes de commandes et de satisfaction.
- Mettre en place une recommandation de fréquence à laquelle la segmentation doit être mise à jour pour rester pertinente, afin de pouvoir effectuer un devis de contrat de maintenance.
- Respecter la convention PEP8 pour le code.

Descriptions des données

- OLIST : plateforme vitrine de e-commerce au Brésil (2016).
- Met en lien acheteurs et vendeurs . Commande, paiement, suivi de livraison. Notation, avis sur la commande....
- Les données sont disponibles à l'adresse suivante : Olist Data

Démarche

MÉTIER

- → 9 Jeux de données
- → Plusieurs lignes par client

ANALYSE NETTOYAGE

- → 1 jeu de données assemblé
- → Indicateurs clients : fréquence, montant et recense

Fusion et nouvelles variables. Standardisation. Encodage.

Trans Log

SEGMENTATION

INTERPRÉTATION

- Connaissance client amélioré.
- Segmentation intelligente.
- → Analyse descriptive des profils.

Localisation des clients

Top 20 des villes ayant le plus de client

Les commandes

Les produits

Algorithmes d'apprentissages non supervisé

10 Variables

Modélisation : Segmentation

3 Variables

La proximité du demier achat

Ex : durée depuis le dernier achat

Fréquence

Récurrence des achats sur une période

Ex : nombre d'achats sur la dernière année

Montan

eleur client sur une période

: Somme de tous s montants d'achat r la dernière année

X clusters à interpréter

Algorithmes d'apprentissages non supervisé

Modélisation: RFM Scores et Segments

Modélisation: Clustering

Modélisation: Performance 10000 Clients

Algos	Nb_clusters	coef_silh	davies_bouldin	calinski_harabasz	Durée			Comparaison	des performa	nces de clust	ering - Davie	s-Bouldin					Con	mparaison d	les performa	ances de clus	stering - Cali	nski-Harabas	z	
K-Means-3	3	0.530003	1.082155	1719.694839	0.176034	1.6									1750									
K-Means-4	4	0.203589	1.517886	1881.768306	0.126486	1.2									1250									
K-Means-5	5	0.221475	1.443680	1821.472522	0.220118	0.6									750									
K-Means-6	6	0.159848	1.573967	1539.842027	2.106762	0.4									250									
CAH-3	3	0.861788	0.189780	144.356888	1.072437	sans-3	ians-4	sans-5	ans-6	САН-3	CAH-4	CAH-5	rcan-1	Dbscan-2	₀ L	K-Means-3	K-Means-4	K-Means-5	K-Means-6	CAH-3	CAH-4	CAH-5	Dbscan-1	Dbscan-2
CAH-4	4	0.849060	0.283107	125.487199	1.509727	K-Me	K-Me	₩ ½ Compar	aison des per	Algos			Dps	Dps	_			Comparai	son des ne	Algos rformances d	le clusterina	- Durée		
CAH-5	5	0.847810	0.044044	440.0440.00														Comparai	aon dea per	normanoes u	ie ciustering	- Duree		
		0.047010	0.244944	116.614999	1.397811	0.8									3.5									
Dbscan-1	4	0.487460	1.317367	116.614999 587.788719		0.8									3.0									
Dbscan-1 Dbscan-2	4 5				3.787756	0.8																		
		0.487460	1.317367	587.788719	3.787756	06 85 90 04									3.0									
Dbscan-2	5	0.487460 0.473371	1.317367 1.153617	587.788719	3.787756 3.529167	0.6									3.0 2.5 2.5 2.0 8									

Modélisation: Clustering K-Means K= 6 Olist rfm_montant rfm frequence 250 2.00 1.75 1.25 150 0.75 100 0.50 50 50 0.25 nbr_commandes panier_moyen nbr_articles_mean nbr_commandes note_avis_mean 2.00 200 1.75 1.50 panier_moyen 1.25 1.00 50 0.50 0.25 0.00 3

Modélisation: Stabilité au cours du temps

Proposition d'un contrat de maintenance avec mise à jour trimestrielle

PEP8

- La PEP 8 est la convention de codage officielle de Python.
- Elle définit les règles de base pour la syntaxe, la mise en forme et le style de code en Python.
- La PEP8 couvre des sujets tels que la mise en forme du code
- la longueur maximale des lignes
- l'utilisation des espaces et des tabulations
- la nomenclature des variables et des fonctions
- la documentation du code.
- En savoir plus sur PEP8

Conclusion et suite du projet

Modèle final:

Kmeans avec 6 clusters est une bonne piste de départ pour démarrer la segmentation de clientèle en partant d'un contrat de maintenance avec mise à jour trimestrielle.

Jeu de données

- Nécessite plus de données :
- démographiques (âge, profession, sexe, nombre d'enfants..)
- psychographiques (avis sur le produit, centre d'intérêt...)
- Biaisés :
- 96% des clients ne commandent qu'une seule fois.
- Notes toutes très positives.

Segmentation

- Collaborer avec l'équipe Marketing métier :
- Définir la finesse du nombre de segments souhaités par OLIST.
- Valider le choix des variables ajoutées lors du feature engineering.
- Valider les premiers résultats (modifier le paramétrage/modèle si besoin).