运筹学第十四次作业参考答案(20230608)

1. 求如下优化问题的最优解和最优值:

$$\begin{cases} \min 10x_1 + 6x_2 + 7x_3 + 12x_4 + 16x_5 + 10x_6 + 5x_7 + 9x_8 + 5x_9 + 4x_{10} + 10x_{11} + 10x_{12} \\ \text{s.t.} \ x_1 + x_2 + x_3 + x_4 = 4, x_5 + x_6 + x_7 + x_8 = 9, x_9 + x_{10} + x_{11} + x_{12} = 4 \\ x_1 + x_5 + x_9 = 5, x_2 + x_6 + x_{10} = 2, x_3 + x_7 + x_{11} = 4, x_4 + x_8 + x_{12} = 6 \\ x_i \ge 0 \ \text{且为整数}(i = 1, ..., 12) \end{cases}$$

解:

转化为运输问题:

使用最小元素法产生基本可行解

х	1-1	1-2	1-3	1-4	2-1	2-2	2-3	2-4	3-1	3-2	3-3	3-4
单位成本	10	6	7	12	16	10	5	9	5	4	10	10
可行解	3	0	0	1	0	0	4	5	2	2	0	0

计算对偶变量(位势法),并计算检验数

 $\sigma_{12} < 0$, $\sigma_{13} < 0$ 在两个回路中分别改进基本可行解

Х	1-1	1-2	1-3	1-4	2-1	2-2	2-3	2-4	3-1	3-2	3-3	3-4
左	3	0	1	0	0	0	3	6	2	2	0	0
右	1	2	1	0	0	0	3	6	4	0	0	0

所有检验数不小于 0,已达到最优解。 最优解为 $X = (1,2,1,0,0,0,3,6,4,0,0,0)^T$,最优值为 118。

2. 有一份中文说明书,需译成 5 种语言。分别记作 A、B、C、D、E。现有甲、乙、丙、丁、戊 5 人。他们将中文说明书翻译成不同语种的说明书所需时间如下表所示。问应指派何人去完成何工作,使所需总时间最少?

任务	Α	В	С	D	Е
人员					
甲	12	7	9	7	9
乙	8	9	6	6	6
丙	7	17	12	14	9
丁	15	14	6	6	10
戊	4	10	7	10	9

解:

$$\begin{pmatrix} 5 & \mathbf{0} & 2 & \mathbf{X} & 2 \\ 2 & 3 & \mathbf{X} & \mathbf{X} & \mathbf{0} \\ \mathbf{0} & 10 & 5 & 7 & 2 \\ 9 & 8 & \mathbf{0} & \mathbf{X} & 4 \\ \mathbf{X} & 6 & 3 & 6 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 5 & \mathbf{0} & 2 & \mathbf{X} & 2 \\ 2 & 3 & \mathbf{X} & \mathbf{X} & \mathbf{0} \\ \mathbf{0} & 10 & 5 & 7 & 2 \\ 9 & 8 & \mathbf{0} & \mathbf{X} & 4 \\ \mathbf{X} & 6 & 3 & 6 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 7 & \mathbf{0} & 2 & \mathbf{X} & 2 \\ 4 & 3 & \mathbf{X} & \mathbf{X} & \mathbf{0} \\ \mathbf{0} & 8 & 3 & 5 & 0 \\ 11 & 8 & \mathbf{0} & \mathbf{X} & 4 \\ \mathbf{X} & 4 & 1 & 4 & 3 \end{pmatrix}$$

此时可以得到2种5个独立零元素组合,分别为

$$x_{12} = x_{24} = x_{35} = x_{43} = x_{51} = 1$$

 $x_{12} = x_{23} = x_{35} = x_{44} = x_{51} = 1$

备注:本次作业不计分,可以不提交。答案于6月13日(周二)上传。