Suppose we have dataset $\{x_1, ... x_N\}$ consisting of N observations of a random D-dimensional Euclidean variable x. A set of D-dimensional vectors μk , where k = 1,...,K in which μk is a prototype associated with the k^{th} cluster.

$$J = \sum_{n=1}^{N} \sum_{K=1} Kr_{nk} || x_n - \mu_k ||^2$$
 with $\{r_{n,k} \in \{0,1\}, \forall n, ksum_{j=1}Kr_{n,k} = 1 \forall n \}$ Goal: find values for r_{nk} and the $\mu k = 1$ minimize J .

Consider the optimization of the μ_k with the r_{nk} held fixed. The J is a quadratic function of μ_k , and it can be minimized by setting its derivative with respect to μ_k to zero.

$$2\sum_{n=1} Nr_{nk}(x_n - \mu_k) = 0 \ \mu_k = \frac{sum_{n=1}r_{nk}x_n}{\sum_{n=1}r_{nk}}$$

So μ_k equal to the mean of all of the data points x_n assigned to cluter k.