

Introdução COPE Ganhos Detalhes Avaliação Conclusão

XORs in the Air: Practical Wireless Network Coding

Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard e Jon Crowcroft

Apresentação do Artigo

COPE

Ganhos Detalhes Avaliação Conclusão

Introdução

Conteúdo do Artigo

Agenda

COPE
Ganhos
Detalhes
Avaliação
Conclusão

COPE

- Uma "arquitetura" para redes em malha sem fio.
- Além de encaminhados, os pacotes são combinados.
- Network Coding.

Avaliação de Desempenho

- Feita em uma rede real de 20 nós.
- Mostra melhoras consideráveis.
 - De 3 a 4 vezes melhor para UDP.
 - De 5% a 70% para TCP.

Redes em Malha Sem Fio (Mesh)

Agenda

COPE
Ganhos
Detalhes
Avaliação
Conclusão

Características

- Comunicação em múltiplos saltos.
- Variação da qualidade dos enlaces no tempo.
- Auto-configuração e tolerância a falhas.

Network Coding

Agenda

COPE
Ganhos
Detalhes
Avaliação
Conclusão

Definição

- É o ato de nós intermediários combinarem informações de vários canais de entrada em uma única unidade de informação para um canal de saída.
- Objetiva-se aumentar robustez ou capacidade da rede.
- Cada nó da rede pode ser visto como uma matriz de transformação (linear ou não) dos diversos pacotes sendo gerados na rede.
- Para decodificar um pacote, o nó de destino deve aplicar a matriz de transformação inversa.

Introdução COPE

Ganhos Detalhes Avaliação Conclusão

Network Coding (Exemplo)

- Suponha uma transmissão de dois bits de 1 para 6 e 7.
- Solução com Network Coding:
 - Transmitir b_1 por $1 \rightarrow 2$, $2 \rightarrow 4$ e $2 \rightarrow 6$.
 - Transmitir b_2 por $1 \rightarrow 3$, $3 \rightarrow 4$ e $3 \rightarrow 7$.
 - Transmitir $b_1 \oplus b_2$ por $4 \to 5$, $5 \to 6$ e $5 \to 7$

COPE Ganhos Detalhes Avaliação Conclusão

Network Coding (Características)

- Permite atingir o limite teórico de fluxo máximo (teorema do Fluxo Máximo - Corte Mínimo).
- Permite a redução do número total de transmissões
 - Ótimo em redes sem fio de múltiplos saltos.
- Implementação prática não é trivial.
 - Na prática, as topologias não são tão "controladas".
 - Em redes sem fio, as topologias podem mudar dinamicamente.
 - Como escolher um esquema de codificação eficiente neste caso?

Introdução

Ganhos Detalhes Avaliação Conclusão

COPE

Características

Agenda

Introdução

Ganhos Detalhes Avaliação Conclusão

- Esquema genérico de codificação.
- Pode ser aplicado a qualquer topologia.
- Se adapta automaticamente a mudanças.
- Não faz suposições sobre a característica dos fluxos.
- Provê codificação inter-fluxos.
- A codificação/decodificação é feita salto a salto.
 - Foge um pouco ao conceito original de codificação de rede.

Implementação

Agenda

Introdução

Ganhos Detalhes Avaliação Conclusão

- Uma nova camada é adicionada entre o roteamento e o enlace.
- Tenta detectar oportunidades de codificação.
 - Caso existam, os pacotes são combinados via XOR.
 - Caso contrário, eles são enviados normalmente.
- Divide-se em 3 funcionalidades:
 - Codificação oportunista.
 - Escuta oportunista.
 - Aprendizado do estado dos vizinhos.

Codificação Oportunista

Agenda

Introdução

Ganhos Detalhes Avaliação Conclusão

Objetivos

- Maximizar o número de pacotes entregues em cada transmissão.
- Garantir que os receptores sejam capazes de decodificar o pacote.

Escuta Oportunista

Agenda

Introdução

Ganhos Detalhes Avaliação Conclusão

Premissas

- O meio sem fio tem natureza compartilhada (difusão).
- Nós, em geral, são equipados com antenas omni-direcionais.

Como tirar proveito?

- Nós são colocados em modo promiscuo.
- Todos os quadros transmitidos por vizinhos são recebidos (idealmente).
- Todos os quadros são armazenados por um pequeno período de tempo (0,5s).
 - Eles podem ser úteis para codificações posteriores.

Aprendizado do Estado dos Vizinhos

Agenda

Introdução

Ganhos Detalhes Avaliação Conclusão

Objetivo

• Descobrir quais pacotes cada vizinho tem.

Solução

- Envio de anúncios periódicos por cada nó.
- Utilização de informação da camada de roteamento.
 - O protocolo de roteamento calcula a probabilidade de recepção de cada nó.
- Utiliza esta informação para estimar se um vizinho tem ou não um dado pacote.
- Por ser probabilística, a estratégia pode falhar.

Introdução COPE

Detalhes Avaliação Conclusão

Ganhos Teóricos

Tipos de Ganho

Agenda

Introdução COPE

Detalhes Avaliação Conclusão

Ganho de Codificação

- Razão entre o número de transmissões necessárias sem o COPE pelo número com o COPE.
- Sempre maior ou igual a 1.
- Sem a escuta oportunista, o limite teórico é 2.

Ganho de Codificação + MAC

 Razão da taxa na qual pacotes saem da fila do nó de gargalo com e sem o COPE.

Exemplo: Topologia em Linha

Agenda

Introdução COPE

- Ganho de Codificação: 2.
- Ganho de Codificação + MAC: 2.

Exemplo: Topologia em X

Agenda

Introdução COPE

- Ganho de Codificação: 1,33.
- Ganho de Codificação + MAC: 2.

Exemplo: Topologia em Cruz

Agenda

Introdução COPE

- Ganho de Codificação: 1, 6.
- Ganho de Codificação + MAC: 4.

Exemplo: Topologia em Roda

Agenda

Introdução COPE

- Ganho de Codificação: 2.
- Ganho de Codificação + MAC: ∞ (não limitado).

Introdução COPE Ganhos

Avaliação Conclusão

Detalhes de Implementação

Algoritmo de Codificação

Agenda

Introdução COPE Ganhos

Avaliação Conclusão

Características

- Pacotes não são atrasados.
 - Se não há oportunidade de codificação, os pacotes são enviados normalmente.
- Dá preferencia à codificação de pacotes de tamanho semelhante.
 - No entanto, isso não é regra.
- São criadas duas classes: pacotes grandes e pequenos (menos de 100 bytes).
- Nunca serão codificados juntos:
 - Pacotes destinados ao mesmo próximo salto.
 - Pacotes gerados no próprio nó.

Algoritmo de Codificação (Cont.)

Agenda

Introdução COPE Ganhos

Avaliação Conclusão

Busca por Pacotes

- São mantidas filas virtuais por vizinho.
 - Duas para cada.
- O primeiro pacote da fila real é escolhido.
- As filas virtuais são percorridas, buscando oportunidades de codificação.
 - Primeiro às de tamanho semelhante, depois de tamanho diferente.

Probabilidade de Decodificação

• Para *n* pacotes codificados:

$$P_D = P_1 \times P_2 \times \cdots \times P_{n-1}$$

Algoritmo de Codificação

Agenda

Introdução COPE Ganhos

Avaliação Conclusão

```
1 Coding Procedure
  Pick packet p at the head of the output queue.
  Natives = \{p\}
  Nexthops = \{nexthop(p)\}
  if size(p) > 100 bytes then
     which_queue = 1
  else
     which_queue = 0
  end if
  for Neighbor i = 1 to M do
     Pick packet p_i, the head of virtual queue O(i, which\_aueue)
     if \forall n \in \text{Nexthops } \cup \{i\}, \Pr[n \text{ can decode } p \oplus p_i] > G then
        p = p \oplus p_i
        Natives = Natives \cup \{p_i\}
        Nexthops = Nexthops \cup \{i\}
     end if
  end for
  which_queue = !which_queue
  for Neighbor i = 1 to M do
     Pick packet p_i, the head of virtual queue Q(i, which\_queue)
     if \forall n \in \text{Nexthops } \cup \{i\}, \Pr[n \text{ can decode } p \oplus p_i] > G \text{ then }
        p = p \oplus p_i
        Natives = Natives \cup \{p_i\}
        Nexthops = Nexthops \cup \{i\}
     end if
  end for
  return p
```


Introdução COPE Ganhos

Avaliação Conclusão

Pseudo-Broadcast

Motivação

- Pacotes precisam ser transmitidos para vários vizinhos.
- Nós precisam confirmar o recebimento.

Solução Proposta

- O quadro é enviado para um dos vizinhos em unicast.
- Os demais nós recebem o pacote de forma promiscua.
- A lista completa de receptores é colocada no cabecalho do quadro.
- Pseudo-broadcast é mais confiável que broadcast.

Hop-By-Hop Acks

Agenda

Introdução COPE Ganhos

Avaliação Conclusão

Motivação

- Pacotes codificados podem não ser recebidos por todos os nós.
- Mesmo quando recebidos, os nós podem não ser capazes de decodificá-los.

Solução Proposta

- Incorporar Acks nos pacotes periódicos de anúncio de pacotes disponíveis.
- O overhead de enviar um ack individualmente é muito alto.

Evitando Reordenação

Agenda

Introdução COPE Ganhos

Avaliação Conclusão

Motivação

- Acks assíncronos podem causar reordenação de segmentos TCP.
- O TCP pode interpretar segmentos fora de ordem como congestionamento.
- Reduz o desempenho.

Solução Proposta

- Para os pacotes TCP destinados ao nó atual, o COPE verifica a ordem.
- Pacotes só são entregues para a camada superior se não houver "buracos".
 - Ou até um timer expirar.

Formato do Pacote

Agenda

Introdução COPE Ganhos

Avaliação Conclusão

Introdução COPE Ganhos Detalhes

Avaliaçã

Conclusão

Avaliação

Ambiente de Testes

Agenda

Introdução COPE Ganhos Detalhes Avaliação

Conclusão

Características

- 20 nós em dois andares de um prédio.
- Número de saltos varia de 1 a 6.
- Taxa de perda entre 0% e 30%.
- 802.11a.
- 6Mb/s.

Software

- Click.
- Fila de 100 pacotes.
- Srcr com métrica ETT.
- Libpcap.

Ambiente de Testes (Cont.)

Agenda

Introdução COPE Ganhos Detalhes

Conclusão

Hardware

- PCs.
- Duas interfaces de rede.
 - Só uma é usada.
- RTS/CTS desabilitado.

Modelo de Tráfego

- Fluxos UDP (udpgen).
- Fluxos TCP (ttcp).
 - Longos ou curtos.

TCP: Topologias Simples

Agenda

Introdução COPE Ganhos Detalhes Avaliação

Conclusão

UDP: Topologias Simples

Agenda

Introdução COPE Ganhos Detalhes Avaliação

Conclusão

Introdução COPE Ganhos Detalhes

Conclusão

Efeitos das Colisões

TCP sem Terminais Escondidos

Agenda

Introdução COPE Ganhos Detalhes

Conclusão

UDP no Cenário em Larga Escala

Agenda

Introdução COPE Ganhos Detalhes

Avallação Conclusão

Introdução COPE Ganhos Detalhes

Conclusão

Resultados Sobre a Codificação

TCP em Rede de Acesso

Agenda

Introdução COPE Ganhos Detalhes

Conclusão

Introdução COPE Ganhos Detalhes

Conclusão

7 de Outubro 2009

Justiça

Introdução COPE Ganhos Detalhes Avaliação

Conclusão

Considerações

Agenda

Introdução COPE Ganhos Detalhes Avaliação Conclusão

Aplicabilidade

- Dispositivos sem restrições de recursos.
- Grande capacidade de memória.
- Antenas omni-direcionais.
- Sem restrições de energia.

Outros Tipos de Rede

- Outros protocolos de camada de enlace.
 - WiMax
 - TDMA.
- Redes de sensores.
 - Menos transmissões, menor gasto energético.
- Celular.
 - Menores custos.