Aprendizaje Profundo

Facultad de Ingeniería Universidad de Buenos Aires

Profesores:

Marcos Maillot Antonio Zarauz Gerardo Vilcamiza

TRANSFER LEARNING GENERATIVE ADVERSARIAL NETWORKS

- . Transfer learning
 - Ventajas
 - Estrategias
 - Ejemplo en colab

- . Generative adversarial networks
 - Introducción
- Usos
- Ejemplo en colab

Transfer Learning

- No se suele diseñar y entrenar un modelo desde CERO
- Se emplean modelos existentes y probados con sus parámetros ya entrenados.
- Normalmente, los modelos que se toma de "base" cumplen una tarea genérica.
- Al modelo "base" se le hacen los ajuste necesarios para la nueva tarea específica que deben cumplir.

Transfer Learning

Ventajas:

- pocos datos
- pre-trained models
- pre-trained embeddings
- Simulations
- Cambio de dominio

Transfer Learning

Adaptación de modelo base para cumplir la tarea específica

Se reentrena la nueva arquitectura con el dataset específico bajo la tarea específica a cumplir

Transfer Learning - ¿Qué estrategia usar?

Transfer Learning - ¿Qué estrategia usar?

Transfer Learning - ¿Qué estrategia usar?

Transfer Learning - ejemplo colab

Transfer Learning - ejemplo colab

Ver Colab

Feature extractor

Fine tuning

¡Un merecido descanso!

Configuración de DL que busca aprender la distribución de prob de los datos de entrenamiento para poder generar nuevos datos a partir de esa distribución.

Se logra entrenando 2 modelos compitiendo:

G→ generador que busca generar datos "falsos"

D→ discriminador que busca identificar datos "verdaderos" o "falsos"

Cuando el sistema "converge" el **D** no es capaz de distinguir datos reales de falsos (50% de real y 50% de falso)

Ese punto de convergencia es teórico y aún no se ha podido alcanzar.

2 redes neuronales enfrentadas: Generador - Discriminador

2 redes neuronales enfrentadas:

Generador - Discriminador

G → se entrena para que **D** falle

D → se entrena para no fallar

G → se entrena de forma indirecta ("supervisada"... pero de distinta forma)

D → determina si una muestra es real1 o falsa 0

Generative Adversarial Network (GAN) – Función de costo

z – vector aleatorio

$$\chi - \text{vector muestra (real)} \min_{G} \max_{D} L(D,G) = \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

$$pz$$
 – func prob z

$$= \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{x \sim p_q(x)}[\log(1 - D(x))]$$

pg – func prob x generated

pr – func prob x real

G – generator (NN)

D(x)=1 si x es real

D – discriminator (NN)

D(x)=0 si x es falsa

$$L(G, D) = \int_x \left(p_r(x) \log(D(x)) + p_g(x) \log(1 - D(x)) \right) dx$$

https://neptune.ai/blog/gan-loss-functions

Entrena GANs es actualmente una especie de "trabajo de artesano"

Algunos trucos son:

- TanH como output del generador.
- Poner etiquetas reales a muestras falsas para entrenar generador.
- Usar batch normalization y minibatch
- Evitar Maxpool, ReLu (usar average pool, LeakyReLu)
- Usar Adam como optimizador

Conditionals GANs

Se le pasa un 'label' para que genere algo bajo ese 'label'

https://machinelearningmastery.com/impressive-applications-of-generative-adversarial-networks/

Super resolution GANs

https://www.researchgate.net/publication/361868139_SWCGAN_Generative_Adversarial_Network_Combining_Swin_T ransformer_and_CNN_for_Remote_Sensing_Image_Super-Resolution

Remote Sensing Image to Map Translation GANs

https://www.mdpi.com/2072-4292/13/10/1936

GANs

- ver colab

https://github.com/Yangyangii/GAN-Tutorial

How to train GANs:

https://neptune.ai/blog/gan-loss-functions

https://arxiv.org/abs/1606.03498

https://github.com/soumith/ganhacks

Mas sobre GANs:

https://docs.pytorch.org/tutorials/beginner/dcg an_faces_tutorial.html

https://github.com/hindupuravinash/the-gan-zoo

https://github.com/nashory/gans-awesome-applications