Nature et description des variables I.

Quantitative : Modalités comparables entre elles				
0	Discrète / continue : modalités dénombrable / indénombrables			
 Qualitative 	re			
0	Binaire / Multimodale : deux modalités / plus de 2.			

 Binaire / Multimodale : deux modalités / plus de 2. Ordinale (ou non) : existence d'un ordre 				Qualit. bina	Qualit. mul	Qualit. ordi	luantit. di	Quantit. co	
Définition Formule				O	O	O	O	O	
• Fonction de répartition empirique $\widehat{F_X}$ (cas continu)			$\widehat{F_X}(x) = \widehat{F_i}^c + (\widehat{F_i}^c - \widehat{F_{i-1}}^c) \frac{x - x_{i-1}}{x_i - x_{i-1}}$ $\widehat{F_X}(x_i) = \widehat{F_i}^c = \widehat{F_i} - \frac{1}{2} (\widehat{F_i} - \widehat{F_{i-1}})$						х
• Moyenne \overline{x}	$\min_{\bar{x} \in \mathbb{R}} \sum_{i=1}^{n} (x_i - \bar{x})^2$	· · ·	empirique : $x_i = \sum_{i=1}^n \widehat{f}_i x_i$	Espérance : $\mathbb{E}(X) = \lim_{n \to \infty} \bar{x}$		x	x	х	X
• Médiane M	$\min_{M\in\mathbb{R}}\sum_{i=1}^n x_i-M $	$\widehat{F}_X(N)$	$I(1) = \frac{1}{2}$	$\mathbb{P}(X \le M) = \frac{1}{2}$	х			Х	х
Variance S	$\hat{S}^2 = \frac{1}{n} \sum_{i=n}^{n} (x_i - \bar{x})^2 =$	$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2$	$\hat{S} = \sqrt{\hat{S}^2}$ Ecart type	$\mathbb{P}(X \le M) = \frac{1}{2}$ $S^2 = \mathbb{E}(X - \mathbb{E}^2(X))$		х	х	Х	Х
• Fractile et quartile	$\widehat{F_X}(\widehat{\phi}_p) = p$ $\widehat{Q_1} = \widehat{\phi}_{\frac{1}{4}}$	$\widehat{Q_3} = \widehat{\phi}_{\frac{3}{4}} \mid_{DI}$	$Q = \widehat{Q_3} - \widehat{Q_1} \bigg M$	$MAD = mediane(x_i - \widehat{M})$				Χ	х
Moment et moment centré	<i>i</i> =1	<i>i</i> =1		$c^2 = m\widehat{c}_2$ Variance $\frac{m\widehat{c}_3}{\hat{s}^3}$ Dissymétrie Aplatissement		x	x	Х	Х
• Dép. : (X, Y quant.)	$s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$ $= \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - \overline{x} \overline{y})$ $s_X^2 = s_{XX} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$ $s_Y^2 = s_{YY} = \sum_{i=1}^{n} (y_i - \overline{y})^2$ $s_Y^2 = s_{YY} = \sum_{i=1}^{n} (y_i - \overline{y})^2$ $r = \frac{s_{XY}}{s_X s_Y}$ $corrélation \in [-1;1]$ $r \approx 0 \Rightarrow x \text{ indep } y$ $r \approx 1 \Rightarrow x \nearrow y \nearrow$ $r \approx -1 \Rightarrow x \nearrow y \nearrow$								
• Dép. : (X qual, Y quant) Coef. de détermination	$S_{Y/X}^2 = \frac{\sum_{j \in \Omega_X} n_j \left(\overline{y_j} - \overline{y}\right)^2}{\sum_{i=1}^n \left(y_i - \overline{y}\right)^2}$								

II. L'ACP

$$\text{Problème}: \min_{u,v} J(u,v) = \min_{u,v} \|X - uv^{\mathsf{T}}\|_F^2 = \min_{u,v} -2(Xv)^{\mathsf{T}}u + \|u\|^2 + \|v\|^2 = \min_{u,v} \sum_i^n \sum_j^p \bigl(x_{ij} - u_iv_j\bigr)^2$$

$$\text{Solution}: \begin{cases} \nabla_u J(u) = -2Xv + 2\|v\|^2 u = 0 & \Leftrightarrow & Xv = \|v\|^2 u \\ \nabla_v J(v) = -2X^{\mathsf{T}} u + 2\|u\|^2 v = 0 & \Leftrightarrow & -X^{\mathsf{T}} u = \|u\|^2 v \end{cases} \\ \Leftrightarrow X^{\mathsf{T}} X v = \underbrace{\|u\|^2 \|v\|^2}_{\lambda} v$$

Nombre d'intervalles d'un histogramme : $p \ge 1 + \log n$ règle de Sturges

$$p = \frac{3.5\hat{\sigma}}{\sqrt[3]{n}}$$

$$p = \frac{2 DIQ}{\sqrt[3]{n}}$$

III. La régression linéaire

1. Le modèle

$$\boxed{\underline{\boldsymbol{y}} = \boldsymbol{X}\boldsymbol{\alpha} + \boldsymbol{\varepsilon}} \quad \boldsymbol{x_i} = \begin{pmatrix} \boldsymbol{x_{1i}} \\ \vdots \\ \boldsymbol{x_{ni}} \end{pmatrix} \quad \boldsymbol{y} = \begin{pmatrix} \boldsymbol{y_1} \\ \vdots \\ \boldsymbol{y_n} \end{pmatrix} \quad \boldsymbol{e} = \begin{pmatrix} \boldsymbol{1} \\ \vdots \\ \boldsymbol{1} \end{pmatrix} \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \boldsymbol{\varepsilon_1} \\ \vdots \\ \boldsymbol{\varepsilon_n} \end{pmatrix} \quad \boldsymbol{X} = \begin{pmatrix} \boldsymbol{1} & \boldsymbol{x_{11}} & \dots & \boldsymbol{x_{1p}} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{1} & \boldsymbol{x_{n1}} & \dots & \boldsymbol{x_{np}} \end{pmatrix} \quad \boldsymbol{\alpha} = \begin{pmatrix} \boldsymbol{a_0} \\ \vdots \\ \boldsymbol{a_p} \end{pmatrix}$$

2. Solution

$$\widehat{a} = \frac{cov(x,y)}{V_{\chi}} \qquad \widehat{b} = \overline{x}\widehat{a} + \overline{y} \qquad \underline{X^{\mathrm{T}}\varepsilon} = 0 \Rightarrow X^{\mathrm{T}}(y - X\widehat{\alpha}) = 0 \Rightarrow (X^{\mathrm{T}}X)\widehat{\alpha} = X^{\mathrm{T}}y \Leftrightarrow \widehat{\alpha} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y$$
Régression simple

3. Prévision

$$z = X\alpha = \underbrace{X(X^{\mathsf{T}}X)^{-1} X^{\mathsf{T}}}_{H} y = Hy$$

4. Diagnostic

Résultat	Formule				
R ²	$\sum_{\substack{i=1\\SC\ Total}}^{n}(y_i-\bar{y})^2 = \sum_{\substack{i=1\\SC\ R\acute{e}siduels}}^{n}(y_i-z_i)^2 + \sum_{\substack{i=1\\SC\ Expliqu\acute{e}}}^{n}(z_i-\bar{y})^2$ $R^2 = \frac{SC\ Expliqu\acute{e}}{SC\ Total}$ $0 \le R^2 \le 1$ $R = 1 : mod\grave{e}le\ bon$ $R = 0 : mod\grave{e}le\ mauvais$ $R^2 = r_{XY}^2$ $coefficient\ de\ corr\'{e}lation\ multiple}$ en régression simple				
Matrice d'influence	$z = \underbrace{X(X^{\mathrm{T}}X)^{-1} X^{\mathrm{T}}}_{H} y = Hy$	$z_i = H_{i \cdot y}^T$ $H_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{j=1}^n (x_j - \bar{x})^2}$ Pour la régression simple			
Variances estimées	$s^2 = \frac{1}{n-p} \sum_{i=1}^n \widehat{\varepsilon}_i$	$\left(s^{(-i)}\right)^2 = \frac{1}{n-p-1} \left(\sum_{i=1}^n \widehat{\varepsilon_i} - \frac{\widehat{\varepsilon_i}^2}{1-H_{ii}}\right)$			
Résidus	$\hat{arepsilon} = y - z$ $\hat{arepsilon} = (I - H)y$ Résidus Sans structure / distrib. normal / pas d'aberran	$r_i = rac{\widehat{arepsilon}_l}{s\sqrt{1-H_{ii}}} = rac{\widehat{arepsilon}_l}{\sqrt{V(\widehat{arepsilon}_l)}}$ Résidus standardisés			
Divergence	Résidus de validation croisée Erreur	$\begin{array}{c c} c \\ c$			
Levier et contribution		$c_i = \frac{H_{ii}}{p(1 - H_{ii})} \frac{\widehat{\varepsilon_i}^2}{s^2}$ Suspect si $c_i > \frac{4}{n}$ Contribution			
Cp de Mallows	$Cp = \frac{1}{s^2} \sum_{i=1}^n \left(y_i - z_i^{(-i)} \right)^2 - n + 2p$ Conserver la combinaison de variable avec le plus faible Cp				

	2 qualitatives : test du χ^2	1 qualitative, 1 quantitative : test de Student	2 quantitatives : test de Student		
Données	X b_1 b_J marge a_1 n_{11} n_{1J} $n_{1\bullet}$ a_l n_{l1} n_{lJ} $n_{l\bullet}$ marge $n_{\bullet l}$ $n_{\bullet J}$ $n_{\bullet \bullet} = n$	$ \begin{array}{c cccc} \mathbf{Y} & \mathbf{X} & & & & \\ a & x_{a_1} & & & \\ \vdots & \vdots & & & \\ a & x_{a_{n_a}} & & & \\ b & = x_{b_1} & & \\ \vdots & \vdots & & & \\ b & x_{b_{n_b}} & & & \\ \end{array} $	$ \begin{array}{c cc} Y & X \\ y_1 & x_1 \\ \vdots & \vdots \\ y_n & x_n \end{array} $ $ y_i = ax_i + b + \varepsilon_i $		
Hypothèses	$\{\mathcal{H}_0: ext{référence} \iff ext{indépendance} \ \{\mathcal{H}_1: ext{alternative} \iff ext{dépendance} \ $	$\begin{cases} \mathcal{H}_0: \ \mu_a = \mu_b & \textit{X} \text{ et } \textit{Y} \text{ indépendants} \\ \mathcal{H}_{1_1}: \ \mu_a < \mu_b & \\ \mathcal{H}_{1_2}: \ \mu_a > \mu_b & \textit{X} \text{ et } \textit{Y} \text{ dépendants} \\ \mathcal{H}_{1_3}: \ \mu_a \neq \mu_b & \end{cases}$	$ \begin{cases} \mathcal{H}_0: \text{indépendance} & \Leftrightarrow a=0 \\ \mathcal{H}_1: \text{dépendance} & \Leftrightarrow a \neq 0 \end{cases} $		
Modèle	$\mathbb{P}\left((X = x_i) \cap (Y = y_j)\right)$ = $\mathbb{P}(X = x_i)\mathbb{P}(Y = y_j)$	$\overline{X_a} \sim \mathcal{N}\left(\mu_a, \frac{\sigma^2}{n_a}\right) \qquad \overline{X_b} \sim \mathcal{N}\left(\mu_b, \frac{\sigma^2}{n_b}\right) \qquad \begin{array}{c} \sigma = \sigma_a = \sigma_b \\ \text{même variance} \end{array}$	$ \varepsilon_i \sim \mathcal{N}(0, \sigma^2) \Rightarrow \frac{1}{\sigma^2} \sum_{i=1}^n \widehat{\varepsilon_i}^2 \sim \chi_{n-2}^2 $		
Statistique	$D_{\chi^2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{ij} - \frac{n_{i\bullet}n_{\bullet j}}{n}\right)^2}{\frac{n_{i\bullet}n_{\bullet j}}{n}} \sim \chi^2_{(I-1)(J-1)}$ $D_{\chi^2} = n \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(\widehat{\widehat{\mathbb{P}}_{ij}} - \widehat{\widehat{\mathbb{P}}_{i}}\widehat{\mathbb{P}}_{j})^2}{\widehat{\mathbb{P}}_{i}\widehat{\mathbb{P}}_{j}}$	$\boxed{ U = \frac{\overline{X_a} - \overline{X_b}}{\sqrt{\sigma^2 \left(\frac{1}{n_a} + \frac{1}{n_b}\right)}} \sim \mathcal{N}(0,1) }_{\text{Variance connue } \sigma^2} \qquad \boxed{ T = \frac{\overline{X_a} - \overline{X_b}}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{n_a} + \frac{1}{n_b}\right)}} \sim \mathcal{T}_{n_a + n_b - 2} }_{\text{Variance inconnue estimée } \hat{\sigma}^2} $ $ \hat{\sigma}^2 = \frac{\sum_{i=1}^{n_a} \left(x_{a_i} - \overline{x_a}\right)^2 + \sum_{i=1}^{n_b} \left(x_{b_i} - \overline{x_b}\right)^2}{n_a + n_b - 2} $	$U = \frac{\hat{a} - a}{\sqrt{\frac{\sigma^2}{s_X^2}}} \sim \mathcal{N}(0,1)$ $Variance connue \sigma^2 \hat{\sigma}^2 = \frac{\sum_{i=1}^n \hat{\varepsilon}_i^2}{n-2} = \frac{\sum_{i=1}^n \left(y_i - (\hat{a}x_i + \hat{b})\right)^2}{n-2}$		
Valeur	Calcul de $D_{\chi^2_{obs}}$, u , ou t ; valeur de D_{χ^2} , U , ou T à partir des données.				
p-valeur	$p\text{-}val = \mathbb{P}\left(D_{\chi_n^2} \ge D_{\chi_{obs}^2}\right)$	$p-val = \begin{cases} \mathbb{P}(U \le u) & \text{si } \mathcal{H}_1 = \mathcal{H}_{1_1} \\ \mathbb{P}(U \ge u) & \text{si } \mathcal{H}_1 = \mathcal{H}_{1_2} \\ \mathbb{P}(U \le - u) + \mathbb{P}(U \ge u) & \text{si } \mathcal{H}_1 = \mathcal{H}_{1_3} \end{cases}$	$p\text{-}val = \mathbb{P}(U \ge u) = \mathbb{P}(U \le - u) + \mathbb{P}(U \ge u)$		
Décision	p-valeur: probabilité d'obtenir un tableau encore plus « rare » au hasard. Se lit généralement dans la table de la loi utilisée. • p -val $< 5\%$: on garde \mathcal{H}_1 (« peu de tableaux sont plus rares, ce n'est pas du hasard ») • p -val $\geq 5\%$: on garde \mathcal{H}_0 (« le tableau n'est pas si rare, ça peut être le hasard »)				

Loi du χ^2	Thm de Pearson	Loi de Student		
$\boxed{Z_n = \sum_{i=1}^n Y_i^2 = \sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2}} \begin{array}{c} Z_n \sim \chi_n^2 \\ Y_i \sim \mathcal{N}(0,1) \\ X_i \sim \mathcal{N}(\mu, \sigma^2) \end{array} \mathbb{E}(Z_n) = n V(Z_n) = 2n \frac{Z_n - n}{\sqrt{2n}} \to \mathcal{N}(0,1)$	$X_{i} = \frac{N_{i} - n\widehat{p}_{i}}{\sqrt{n\widehat{p}_{i}}} \qquad \sum_{i=1}^{I} X_{i}^{2} \to \chi_{I-1}^{2}$ $X_{ij} = \frac{N_{ij} - n\widehat{p}_{ij}}{\sqrt{n\widehat{p}_{ij}}} \qquad \sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}^{2} \to \chi_{(I-1)(J-1)}^{2}$	$T_n = \frac{N}{\sqrt{\frac{X_n}{n}}} \qquad T_n \sim T_n \\ N \sim \mathcal{N}(0,1) \qquad T_n \to \mathcal{N}(0,1)$ $X_n \sim \chi_n^2$		

```
vl = linspace(a, b, n) % génère n points entre a et b
ma = ones(n,p) % matrice n \times p de 1
n = length(x) % plus grande dimension de x
[n p] = size(x) \% hauteur et largeur de x
vc = x(:, p)
                % pième colonne de la matrice
              % nième ligne de la matrice
vl = x(n, :)
ma = x(3:4, 2:5) \% sous-matrice (2 \times 3)
vc = x(1:2:end, 1); % matrice contenant un élément sur 2 de la 1ère
colonne de x
vc = diag(x) % matrice des éléments sur la diagonale de x
vc = find(x > a \& x \le b) % indices des éléments de x correspondants
%%% calculs courants %%%
n = mean(x) % moyenne de x
n = median(x) \% mediana de x
n = mode(x) % mode de x
n = var(x,1) % variance de x
n = std(x,1) % écart type de x
n = min(x) % minimum de x
n = max(x)
            % maximum de x
vc = sum(x) % somme de x
VC = cumsum(x)
                    % somme cumulée de x
f = x/sum(x)
F = cumsum(f)
Fc = F - \frac{1}{2}(F - [0]F(1:n-1)];% fct. de répartition empirique (cas
continu)
%% matrice centrée réduite
xcr = (x-ones(n,1)*mean(x))./(ones(n,1)*std(x,1))
%% discretiser x en nbin intervales
d=linspace(min(x),max(x),nbin+1);
for i=1:nbin
      H(i)=length(find(x>d(i)&x<=d(i+1)));
end
%% nombre d'observations a partir d'un échantillon
n = length(a);
va=∏; % valeurs
na=[]; % nb occurences
for i=min(x):max(x)
    p=length(find(x==i));
   if p > 0
       va=[va i];
        na=[na p];
    end
end
```

%%% Manipulation d'objets %%%

```
plot(x, y, 'o') % affichage d'une courbe (x, y, paramètres)
                 % histogramme discret (x valeurs, y effectifs)
bar(x, y)
                 % histogramme continu de x en n espaces
hist(x, n)
                 % boite a moustache de x
boxplot(x)
                 % variation des résidus x
ster(x)
hold on/off
                 % continuer à dessiner par-dessus la figure
                 % affichage dans la figure n (évite de réécrire dessus)
figure(n)
subplot(n, p, num) % met le prochain affichage dans la case num du
subplot nxp
x/ylabel(text); % titre des axes x et y
axis([minx maxx miny maxy]);
                                   % change les axes
                % titre de la figure
title(text);
%%% ACP %%%
Xr = (X - e*mean(X)) % matrice centrée
Xn = Xr./(e*std(X,1))
                          % matrice centrée réduite
cov = \frac{1}{n^*(Xr)^{*}(Xr)} \% matrice de covariance
cor = 1/n*(Xn)'*(Xn) % matrice de corrélation
\lceil v,d \rceil = eia(Xn'*Xn)\% \mid ACP
u = Xn*v
                   % projections sur les axes de l'ACP
Vn = v*((d/n).^{(1/2)})
                            % role des variables
%% Régression linéaire %%%
                            % vecteur unitaire
e = ones(n,1)
a = (X'*X) \setminus (X'*y)
                            % coefs de la régression
z = X*a
                            % prévision
r = v-z
                            % résidus
SCM = sum((z-mean(y)).^2)
SCT = sum((y-mean(y)).^2)
R2 = SCM/SCT
                            % R<sup>2</sup>
H = X*(X'*X)^{(-1)}*X'
                            % matrice des contributions
h = diag(H)
                            % contributions des observations
s2_r = (1/(n-p))*r'*r
                            % variance estimée
r_s = r./((s2_r*(e-h)).^{(1/2)})
                                   % résidus standardisés
c = h./(p*(e-h).^2).*r.^2/s2_r
                                   % contributions
err VC = sum((r.^2)./((e-h).^2)) % erreur de validation croisée
%%% Tests %%%
pval = cdf("norm", u, m, s2) % loi normale : P(N(m, s2) < u)
pval = cdf('chi2',t,n)) % loi du chi2 : P(D_n < t)
pval = cdf('T',t,n))
                          % loi de student : P(T_n < t)
```

%%% Affichage %%%