Harmonic Analysis

Alex Rutar* University of Waterloo

Winter 2020[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: January 9, 2020

Contents

Chaptei	r I Harmonic Analysis	
1	Locally Compact Groups	1
	1.1 Homogenous Spaces	2
2	Abelian Locally Compact Groups	3
3	Compact Groups	3
4	Introduction to Amenability Theory	3

I. Harmonic Analysis

1 Locally Compact Groups

Definition. Let G be a group. A topology τ on G is a **group topology** provided that

- $x \mapsto x^{-1} : G \to G$ is continuous, and
- $(x,y) \mapsto xy : G \times G \to G$ is continuous.

We call (G, τ) a **topological group** where we omit τ when it is clear from context.

Equivalently, we may assert that $(x,y)\mapsto xy^{-1}$ is $\tau\times\tau-\tau$ -continuous. Write $L_g(x)=gx$ and $R_g(x)=xg$ to denote the left and right multiplication maps; then it is easy to see that L_g and R_g are homeomorphisms. Similarly, $x\mapsto x^{-1}$ is a homeomorphism.

Definition. We say that a subset $A \subset G$ is symmetric if $A^{-1} = A$.

We have the following basic properties:

- **1.1 Proposition.** Let (G, τ) be a topological group.
 - (i) If $\emptyset \neq A \subseteq G$ and U is open, then $AU = \{ay : a \in A, y \in U\}$ and likewise UA are open.
 - (ii) Given $U \in \tau$ and $x \in U$, then there is a symmetric $V \in \tau$ with $e \in V$ such that $VxV \subseteq U$. In particular, if $e \in U$, then we can find symmetric V so that $V^2 \subseteq U$.
- (iii) If H is a subgroup of G, then \overline{H} is also a subgroup.
- (iv) An open subgroup is automatically closed.
- (v) If $K, L \subseteq G$ are compact, then KL is compact.
- (vi) If K is compact and C is closed in G, then KC is closed.

In $(\mathbb{R}, +)$, then $\mathbb{Z} + \sqrt{2} \mathbb{Z}$ is not closed, so it is necessary to assume compactness in (vi).

PROOF (i) $AU = \bigcup_{a \in A} L_a(U)$ is a union of open sets.

- (ii) Consider the continuous map $(y,z) \mapsto yxz$. Since $exe = x \in U$, there is a $\tau \times \tau$ -neighbourhood of (e,e) which maps into U have a basic neighbourhood $V_1 \times V_2$. Let $V = V_1 \cap V_2$. Moreover, we may replace V by $V^{-1} \cap V$. to attain symmetry.
- (iii) Let $x, y \in \overline{H}$, $U \in \tau$ with $xy \in U$. Then (ii) provides V with $VxyV \subseteq U$. But $Vx \cap H \neq \emptyset$ and $\neq yV \cap H$ so there are $1 \in Vx \cap H$, $h_2 \in yV \cap H$, and $h_1h_2 \in VxyV \subseteq U$. Thus $U \cap H \neq \emptyset$. Thus $xy \in \overline{H}$.

To use nets for inverses, if $x \in \overline{H}$, then $x = \lim_{\alpha} x_{\alpha}$ where $(x_{\alpha})_{\alpha \in A} \subset H$ is a net. Then $x^{-1} = \lim_{\alpha} x_{\alpha}^{-1} \in \overline{H}$ as each $x_{\alpha}^{-1} \in H$.

- (iv) If *H* is an open subgroup, then $H = G \setminus \bigcup_{x \in G \setminus H} xH$ is closed.
- (v) $K \times L$ is compact, and hence so is its image under multiplication.
- (vi) If $x \in KC$, then $x = \lim_{\alpha} k_{\alpha} x_{\alpha}$ where $k_{\alpha} \in H$ and $x_{\alpha} \in C$. Since K is compact, we may assume (passing to a subnet if necessary) $k = \lim_{\alpha} k_{\alpha}$ exists in K. Then

$$k^{-1}x = \lim_{\alpha} k_{\alpha}^{-1} \cdot \lim_{\alpha} k_{\alpha}x_{\alpha} = \lim_{\alpha} k_{\alpha}^{-1}k_{\alpha}x_{\alpha} = \lim_{\alpha} x_{\alpha} \in C$$

so $x = kk^{-1}x \in KC$.

1.1 Homogenous Spaces

Let (G, τ) be a topological group, H a subgroup of G, and $G/H = \{xH; x \in G\}$. Let $\pi : G \to G/H$ be given by $\pi(x) = xH$ be the projection map. The **quotient topology** on G/H is $\tau_{G/H} = \{W \in G/H : \pi^{-1}(W) \in \tau\}$. Notice that if $U \in \tau \setminus \{\emptyset\}$, then $UH = \pi^{-1}(\pi(U))$ is open, so $\pi : G \to G/H$ is an open map.

- **1.2 Proposition.** Let (G, τ) , H be as above.
 - (i) The map $(x,yH) \mapsto xyH : G \times G/H \to G/H$ is $\tau \times \tau_{G/H} \tau_{G/H}$ continuous and open.
 - (ii) If H is normal, then $(G/H, \tau_{G/H})$ is a topological group.
- (iii) If H is closed, then $\tau_{G/H}$ is Hausdorff.
- PROOF (i) Let $x, y \in G$, $W \in \tau_{G/H}$ satisfy $xyH = \pi(xy) \in W$. Then $xy \in \pi^{-1}(W)$ and by Proposition 1.1 we have $V \in \tau$ with $e \in V$ such that $VxyV \subseteq \pi^{-1}(W)$. But then $(x, \pi(y)) \in Vx \times \pi(yV) \in \tau \times \tau_{G/H}$ and the latter set maps into $\pi(VxyV) \subseteq W$. Also, if $U \in \tau \times \tau_{G/H}$, then $U = \bigcup_{(x,yH) \in U} V_x \times W_{yH}$ and

$$\pi(U) = \bigcup_{(x,yH)\in U} \pi(V_x \pi^{-1}(W_{yH}))$$

since π is open.

- (ii) Recall that (xH)(yH) = xyH is our multiplication operation on G/H and π is a group homomorphism. Then the following diagram commutes: We have that $\pi \times id$ is open and $(x, yH) \mapsto xyH$ is open from (i), so the multiplication from $G/H \times G/H \to G/H$ must be open and continuous.
- (iii) If $x,y \in G$ with $\pi(x) \neq \pi(y)$, then $e \notin xHy^{-1}$. Now $xHy^{-1} = L_x(R_{y^{-1}}(H))$ so xHy^{-1} is closed. Hence by the last proposition, there is a symmetric open V with $e \in V$ so $V^2 \subseteq G \setminus (xHy^{-1})$. But then $e \notin (VxH)(VyH)^{-1} = VxHy^{-1}V$: if we had $e = vxhy^{-1}u$ with $v,u \in V$ and $h \in H$, then $v^{-1}u^{-1} = xhy^{-1} \in V^2 \cap (xHy^{-1}) = \emptyset$, a contradiction. Hence $VxH \cap VyH = \emptyset$ so $\pi(Vx)$, $\pi(Vy)$ is a pair of separating neighbourhoods of $\pi(x)$, $\pi(y)$.
 - **1.3 Corollary.** G is Hausdorff if and only if there exists $x \in G$ so that $\{x\}$ is closed.

PROOF In a Hausdorff space, points are closed. Conversely, if $\{x\}$ is closed, $\{e\} = L_{x^{-1}}(\{x\})$ is closed and a normal subgroup. Then $G \cong G/\{e\}$ is Hausdorff.

If (G, τ) is not Hausdorff, then $\{e\} \subsetneq \overline{\{e\}}$ is the smallest closed subgrup in G. Thus $\overline{\{e\}} \subseteq \bigcap_{x \in G} x\overline{\{e\}}x^{-1} \subseteq \overline{\{x\}}$ so $\overline{\{e\}}$ is normal. In particular, $G/\overline{\{e\}}$ is Hausdorff.

Definition. A **locally compact group** is a Hausdorff topological group (G, τ) which is locally compact.

(i) If there is any $U \in \tau \setminus \{\emptyset\}$ such that \overline{U} is compact, then for any $x \in U$, we have $e \in x^{-1}U \subseteq L_{x^{-1}}(\overline{U})$ so $x^{-1}U$ is compact. If $V \in \tau$ with $e \in V$ and \overline{V} compact, then for any $x \in H$, $x \in xV$ and $\overline{xV} \subseteq L_x(\overline{V})$ and \overline{xV} is compact. In particular, (G, τ) is locally compact if and only if there is some $U \in \tau \setminus \{\emptyset\}$ with \overline{U} compact.

- (ii) If (G, τ) is locally cmpact and N is a closed normal subgroup, then $(G/N, \tau_{G/N})$ is locally compact. Indeed, $U \in \tau \setminus \{e\}$ with \overline{U} compact, then $\overline{\pi(U)} \subseteq \pi(\overline{U})$ is compact.
- *Example.* (i) If G is any group and τ is the discrete topology, then (G, τ_d) is locally compact.
 - (ii) If $((\mathbb{R}, +), \tau_{\|\cdot\|})$ is locally compact.
- (iii) If $\{G_i\}_{i\in I}$ is a family of locally compact groups, then $\prod_{i\in I} G_i$ is a locally compact group if and only if all but finitely many (G_i, τ_i) are compact.
- (iv) $((\mathbb{R}^n, +), \tau_{\|\cdot\|})$ is a locally compact group
- (v) Suppose $\{F_i\}_{i\in I}$ is an infinite family of finite groups (with discrete topologies). then $G = \prod_{i\in I} F_i$ is a compact group.

2 ABELIAN LOCALLY COMPACT GROUPS

3 Compact Groups

4 Introduction to Amenability Theory