

車載向け 45 V 耐圧 150 mA 固定/可変出力

Nano Cap™ LDO レギュレータ

BD9xxN1-C シリーズ

概要

BD9xxN1-C シリーズは Nano Cap[™]技術^(Note 1)を 用いた低暗電流リニアレギュレータで、バッテリ直結用 の車載システムに最適です。

本 IC は 45 V 耐圧、出力電流 150 mA、消費電流 28 μA (Typ) です。出力電圧は精度 ±2.0 %です。

また、出力コンデンサは 100 nF (Typ) から使用可能で、小容量でも圧倒的な過渡応答を実現しています。

出力電圧は固定型 3.3 V、5.0 V と、外部抵抗にて設定する可変型があります。可変型は ADJ 端子に抵抗を付けることにより、1.0 V から 18 V まで設定できます。

出カシャットダウン機能が有り(Note 2)、EN 端子に HIGH 電圧印加時、デバイスの出力が ON し、LOW 電圧印加時、デバイスの出力が OFF します。

また、本ICは出力短絡などによるIC破壊を防止する過電流保護回路、ICを過負荷状態などによる熱破壊から防ぐ過熱保護回路、低入力電圧時にIC誤動作を防ぐ低電圧誤動作防止回路を内蔵しています。

出力の位相補償コンデンサには低 ESR のセラミックコンデンサが使用可能です。

(Note 1) Nano Cap™とは、ローム独自方式により容量 nF オーダーでも 安定制御できる技術です。

(Note 2) 出力電圧 ON/OFF 制御機能を有する機種のみ。

重要特性

■ 広温度範囲 (Tj): -40 °C ~ +150 °C ■ 広動作入力電圧範囲: 3 V ~ 42 V

■ 出力電圧: 3.3 V / 5.0 V / 可変

■ 低消費電流: ^(Note 3) 28 µA (Typ) ■ 出力電流能力: 150 mA

■ 出力電流能力: 150 mA ■ 高出力電圧精度: (Note 4) ±2.0 %

(Note 3) 消費電流に外付け帰還抵抗の電流は含みません。 (Note 4) 出力電圧精度に外付け帰還抵抗の影響は含みません。

特長

- Nano Cap TM 搭載(Note 1)
- QuiCur TM 搭載(Note 5)
- AEC-Q100 準拠(Note 6)
- 車載対応品
- 過電流保護回路 (OCP)
- 過熱保護回路 (TSD)
- 低電圧誤動作防止回路 (UVLO)

(Note 5) QuiCur™とは、ローム株式会社独自方式により電源 IC の 応答性能を極限まで追求可能にする制御技術です。 (Note 6) Grade 1

用途

- 車載機器用電源(パワートレイン、ボディ)
- カーインフォテイメントシステム 等

パッケージ

■ SSOP5

■ HTSOP-J8

W (Typ) x D (Typ) x H (Max)

2.90 mm x 2.80 mm x 1.25 mm 4.9 mm x 6.0 mm x 1.0 mm

SSOP5

HTSOP-J8

Nano Cap[™]、QuiCur ™ はローム株式会社の商標または登録商標です。

基本アプリケーション回路 1 (出力固定型)

外付け部品

コンデンサ: $0.047~\mu F \le C_{IN}~(Min)$ 、 $0.05~\mu F \le C_{OUT}~(Min)$ $^{(Note~1)}$

(Note 1) 電解コンデンサ・タンタルコンデンサ・セラミックコンデンサが使用可能ですが、ESR の大きい(> 500 m Ω) 電解コンデンサ・タンタルコンデンサを使用される場合には VOUT 端子付近に 0.05 μ F 以上のセラミックコンデンサを必ず並列に接続してご使用ください。

基本アプリケーション回路 2 (出力可変型)

外付け部品

コンデンサ: 0.047 μF ≤ C_{IN}(Min)、0.05 μF ≤ C_{OUT} (Min) (Note 2)

抵抗: $5 k\Omega \le R_1 \le 200 k\Omega$ (Note 3)

V_{ADJ} (Typ): 0.65 V

$$R_2 = R_1 \left(\frac{V_{OUT}}{V_{ADJ}} - 1 \right)$$

(Note 2) 電解コンデンサ・タンタルコンデンサ・セラミックコンデンサが使用可能ですが、ESR の大きい($>500 \text{ m}\Omega$) 電解コンデンサ・タンタルコンデンサを使用される場合には VOUT 端子付近に 0.05μ F 以上のセラミックコンデンサを必ず並列に接続してご使用ください。

(Note 3) ADJ-GND 端子間帰還抵抗 R₁はこの範囲でご使用ください。

ADJ-VOUT 端子間帰還抵抗 R_2 は R_1 に合わせて決定してください。

使用する抵抗値と ADJ 端子流入電流により発生する電圧による誤差には注意が必要です。

目 次

概要	1
重要特性	1
特長	1
用途	1
パッケージ	1
基本アプリケーション回路 1 (出力固定型)	2
基本アプリケーション回路 2 (出力可変型)	2
端子配置図	
端子説明	4
ブロック図	
各ブロック動作説明	8
絶対最大定格	9
熱抵抗	10
動作条件	11
電気的特性	12
電気的特性(出力シャットダウン機能付き製品のみ)(Note 7)	13
特性データ (参考データ) 5V 出力時	14
特性データ (参考データ) 3.3V 出力時	22
特性データ測定回路図	28
アプリケーションと実装	30
外付け部品選定方法	30
入力端子コンデンサについて	30
出力端子コンデンサについて	30
基本アプリケーション	31
リニアレギュレータの入力にサージ印加時の保護	32
入力への正サージ印加について	32
入力への負サージ印加について	32
リニアレギュレータの逆電圧保護	32
入出力電圧の条件が逆転する場合について	32
入力の逆電圧保護	
出力にインダクタを接続する場合の逆電圧保護	34
許容損失	
■SSOP5	
■HTSOP-J8	
熱設計	
入出力等価回路図	
使用上の注意	
1. 電源の逆接続について	
2. 電源ラインについて	
3. グラウンド電位について	
4. グラウンド配線パターンについて	
5. 動作条件について	
6. ラッシュカレントについて	
7. 熱設計について	
8. セット基板での検査について	
9. 端子間ショートと誤装着について	
11. 各入力端子について 12. セラミックコンデンサの特性変動について	
12. セフミックコンナンサの特性変動について	
14. 過電流保護回路について	
発注形名情報	
ラインアツノ 標印図	
^{標印図}	
外形り法凶と包装・フォーミング世棟	
LX FI I RE IVE	40

端子配置図

端子説明

(SSOP5) BD9xxN1G-C, BD9xxN1WG-C (xx = 33, 50, 00)

端子番号	端子名	機能	詳細説明
1	(ADJ)	(出力電圧設定端子)	VOUT - ADJ 端子間と ADJ - GND 端子間に外付け抵抗を接続し、出力電圧を設定します。出力固定品は N.C. (チップに未接続) です。(^{Note 1)}
2	GND	グラウンド端子	グラウンド端子です。 最低電位に接続してください。
3	(EN)	(出力電圧 ON / OFF 制御端子)	HIGH (V _{EN} ≥ 2.0 V) 電圧印加時、デバイスの出力を ON します。 LOW (V _{EN} ≤ 0.8 V) 電圧印加時、デバイスの出力を OFF します。 端子オープン時には出力が OFF となりますが、誤動作防止のため低 インピーダンスで GND 電位に接続することを推奨します。 EN 無品は N.C. (チップに未接続) です。(Note 1)
4	VIN	電源電圧入力端子	電源電圧をこの端子に入力します。 VIN - GND 端子間に 0.047 µF (Min) 以上のコンデンサが必要です。詳細については、外付け部品選定方法を参照してください。
5	VOUT	出力電圧端子	設定電圧をこの端子から出力します。 VOUT - GND 端子間に 0.05 µF (Min) 以上のコンデンサが必要です。 詳細については、外付け部品選定方法を参照してください。

(Note 1) N.C.端子はオープンもしくは GND に接続してください。

端子説明 - 続き

(HTSOP-J8) BD9xxN1EFJ-C, BD9xxN1WEFJ-C (xx = 33, 50, 00)

端子番号	端子名	機能	詳細説明
1	VOUT	出力電圧端子	設定電圧をこの端子から出力します。 VOUT - GND 端子間に 0.05 µF (Min) 以上のコンデンサが必要です。 詳細については、外付け部品選定方法を参照してください。
2	(ADJ)	(出力電圧設定端子)	VOUT - ADJ 端子間と ADJ - GND 端子間に外付け抵抗を接続し、出力電圧を設定します。出力固定品は N.C. (チップに未接続) です。 ^(Note 1)
3	N.C.	未接続端子	チップに未接続です。 ^(Note 1)
4	N.C.	未接続端子	チップに未接続です。 ^(Note 1)
5	GND	グラウンド端子	グラウンド端子です。 最低電位に接続してください。
6	N.C.	未接続端子	チップに未接続です。 ^(Note 1)
7	(EN)	(出力電圧 ON / OFF 制御端子)	HIGH ($V_{EN} \ge 2.0 \text{ V}$) 電圧印加時、デバイスの出力を ON します。 LOW ($V_{EN} \le 0.8 \text{ V}$) 電圧印加時、デバイスの出力を OFF します。 端子オープン時には出力が OFF となりますが、誤動作防止のため低インピーダンスで GND 電位に接続することを推奨します。 EN 無品は N.C. (チップに未接続) です。 ($^{Note\ 1)}$
8	VIN	電源電圧入力端子	電源電圧をこの端子に入力します。 VIN - GND 端子間に 0.047 µF (Min) 以上のコンデンサが必要です。詳細については、外付け部品選定方法を参照してください。
-	EXP-PAD	放熱用 PAD	裏面の放熱メタル部分は放熱性をよくするために外部 GND パターンに接続することを推奨します。

(Note 1) N.C.端子はオープンもしくは GND に接続してください。

ブロック図

出力固定型、EN 機能有

·BD9xxN1WG-C、BD9xxN1WEFJ-C (xx = 33, 50)

出力固定型、EN 機能無

·BD9xxN1G-C、BD9xxN1EFJ-C (xx = 33, 50)

ブロック図 - 続き

出力可変型、EN 機能有

·BD900N1WG-C、BD900N1WEFJ-C

出力可変型、EN 機能無

·BD900N1G-C、BD900N1EFJ-C

各ブロック動作説明

BD9xxN1WG-C、BD9xxN1WEFJ-C (xx = 33, 50, 00)

ブロック名	機能	詳細説明
EN	出力電圧 ON / OFF 制御	EN 端子入力電圧が"HIGH" (V _{EN} ≥ 2.0 V) のとき出力を ON し、 "LOW" (V _{EN} ≤ 0.8 V) のとき出力を OFF します。
PREREG	内部定電圧源	内部回路に電源供給します。
TSD	過熱保護	許容損失を超えた状態や、接合部温度が上昇しチップ温度(Tj)が加熱保護設定温度を超えた場合に、過熱異常を検出し出力を OFF することで熱破壊から IC を保護します。(Typ: 175°C)チップ温度が低下すると、加熱保護は解除され出力は自動的に復帰します。
VREF	内部基準電圧	基準電圧を生成します。
AMP	誤差増幅	出力電圧固定品は出力電圧を分圧した電圧と基準電圧を比較、出力電圧可変品はADJ電圧と基準電圧を比較し、DRIVERを介して出力パワートランジスタを制御します。
DRIVER	出力 MOSFET ドライバ	出カパワートランジスタを駆動します。
OCP	過電流保護	出力短絡等の異常時に出力電流が最大出力電流を超えた場合、出力電流を制限し過電流による損傷から IC を保護します。(Typ: 280 mA) 過電流保護動作状態では出力電流が制限されるため、出力電圧が低下する場合があります。異常状態が解除され電流値が正常に戻れば、出力電圧も正常状態に復帰します。
DISCHARGE	出力放電機能	EN 端子に LOW 電圧印加時、及び TSD 動作時に出力端子の電荷を放電します。
UVLO	低電圧誤動作防止	$V_{\text{IN}} < 2.4 \text{ V (Typ)}$ で検出し、AMP を OFF することで低電圧入力時の誤動作を防止します。

BD9xxN1G-C, BD9xxN1EFJ-C (xx = 33, 50, 00)

ブロック名	機能	詳細説明
PREREG	内部定電圧源	内部回路に電源供給します。
TSD	過熱保護	許容損失を超えた状態や、接合部温度が上昇しチップ温度(Tj)が加熱 保護設定温度を超えた場合に、過熱異常を検出し出力を OFF することで熱破壊から IC を保護します。(Typ: 175°C) チップ温度が低下すると、加熱保護は解除され出力は自動的に復帰します。
VREF	内部基準電圧	基準電圧を生成します。
AMP	誤差増幅	出力電圧固定品は出力電圧を分圧した電圧と基準電圧を比較、出力電圧可変品はADJ電圧と基準電圧を比較し、DRIVERを介して出力パワートランジスタを制御します。
DRIVER	出力 MOSFET ドライバ	出カパワートランジスタを駆動します。
OCP	過電流保護	出力短絡等の異常時に出力電流が最大出力電流を超えた場合、出力電流を制限し過電流による損傷から IC を保護します。(Typ: 280 mA) 過電流保護動作状態では出力電流が制限されるため、出力電圧が低下する場合があります。異常状態が解除され電流値が正常に戻れば、出力電圧も正常状態に復帰します。
DISCHARGE	出力放電機能	TSD 動作時に出力端子の電荷を放電します。
UVLO	低電圧誤動作防止	$V_{\text{IN}} < 2.4 \text{ V (Typ)}$ で検出し、AMP を OFF することで低電圧入力時の誤動作を防止します。

絶対最大定格

項目	記号	定格	単位
入力電源電圧 (Note 1)	V _{IN}	-0.3 ~ +45	V
EN 端子電圧 (Note 2)	V _{EN}	-0.3 ~ +45	V
出力端子電圧	Vouт	-0.3 ~ +20 (≤ V _{IN} + 0.3)	V
出力電圧設定端子電圧 (Note 3)	V _{ADJ}	-0.3 ∼ +7	V
接合部温度範囲	Tj	-40 ~ +150	°C
保存温度範囲	Tstg	-55 ∼ +150	°C
最高接合部温度	Tjmax	150	°C
ESD 耐量 (HBM) (Note 4)	V _{ESD_HBM}	±2000	V
ESD 耐量 (CDM) (Note 5)	V _{ESD_CDM}	±750	V

注意 1:印加電圧及び動作温度範囲などの絶対最大定格を超えた場合は、劣化または破壊に至る可能性があります。また、ショートモードもしくはオープンモードなど、破壊状態を想定できません。絶対最大定格を超えるような特殊モードが想定される場合、ヒューズなど物理的な安全対策を施して頂けるようご検討お願いします。

注意2:最高接合部温度を超えるようなご使用をされますと、チップ温度上昇により、IC 本来の性質を悪化させることにつながります。最高接合部温度を超える場合は基板サイズを大きくする、放熱用銅箔面積を大きくする、放熱板を使用するなど、最高接合部温度を超えないよう許容損失及び熱抵抗にご配慮ください。

(Note 1) 最高接合部温度 Tjmax を超えないでください。

(Note 2) BD9xxN1WG-C、BD9xxN1WEFJ-C (xx = 33, 50, 00) に適用。

動作電源電圧範囲内であれば、入力電源電圧 Vinと EN 端子電圧 Ven の立ち上げの順序は、どちらが先でも問題ありません。

(Note 3) BD900N1G-C、BD900N1WG-C、BD900N1EFJ-C、BD900N1WEFJ-Cに適用。

(Note 4) ESD 試験 HBM: Human Body Model; ANSI/ESDA/JEDEC JS001 (1.5 kΩ、100 pF) に準拠します。

(Note 5) ESD 試験 CDM: Charged Device Model; AEC-Q100-011 に準拠します。

熱抵抗

75 D		熱抵抗 (34 / T	
項目	記号	1 層基板 ^(Note 3) 4 層基板 ^(Note 4)		単位
SSOP5				
ジャンクション—周囲温度間熱抵抗	θЈА	271.3	146.7	°C/W
ジャンクション—パッケージ上面中心間熱特性パラメータ(Note 2)	Ψ_{JT}	46	37	°C/W
HTSOP-J8				
ジャンクション―周囲温度間熱抵抗	θЈА	157.2	36.2	°C/W
ジャンクション—パッケージ上面中心間熱特性パラメータ(Note 2)	Ψ_{JT}	32	11	°C/W

(Note 1) JESD51-2A(Still-Air) に準拠。BD950N1G-C、BD950N1EFJ-C チップを使用しています。

(Note 2) ジャンクションからパッケージ(モールド部分)上面中心までの熱特性パラメータ。

(Note 3) JESD51-3 に準拠した基板を使用。 (Note 4) JESD51-5、7 に準拠した基板を使用

(<u>Note 4)</u> JESD51-5、7 に準拠した基材	及を使用。			•		
測定基板	基板材	基板寸法				
1層	FR-4	114.3 mm x 76.2 mm x 1	.57 mmt			
1層目(表面)銅箔						
銅箔パターン	銅箔厚					
実装ランドパターン +電極引出し用配線	70 µm					
測定基板	基板材	基板寸法		サーマル b ピッチ		⁵⁾ [径
4層	FR-4	114.3 mm x 76.2 mm x	1.6 mmt	1.20 mm	Ф0.3	30 mm
1層目(表面)銅箔		2層目、3層目(内層)	銅箔	4層目(裏	面)銅	箔
銅箔パターン	銅箔厚	銅箔パターン	銅箔厚	銅箔パター:	ン	銅箔厚
実装ランドパターン +電極引出し用配線	70 µm	74.2 mm口(正方形)	35 µm	74.2 mm□(正2	方形)	70 µm
(Note 5) 貫通ビア、124 屋の銅箔と	垶続すス i	和署けランドパターンに従う				

(Note 5) 貫通ビア。1,2,4 層の銅箔と接続する。配置はランドパターンに従う。

動作条件 (-40 °C ≤ Tj ≤ +150 °C)

項目	記号	最小	最大	単位
入力電源電圧 (Note 1) (Note 2)	V	4.5	42.0	V
人力电源电压 (1000 7) (1000 2)	Vin	V _{OUT} (Max) + ΔV _D (Max)	42.0	V
起動電圧	V _{IN} Start-Up	3.0	-	V
出力電圧設定範囲(可変) (Note 3)	Vout	1.0	18.0	V
ADJ-GND 端子間帰還抵抗 ^(Note 3)	R ₁	5	200	kΩ
EN 端子電圧 (Note 4)	V _{EN}	0	42	V
出力電流	Іоит	0	150	mA
入力端子コンデンサ (Note 5) (Note 6)	CIN	0.047	-	μF
出力端子コンデンサ (Note 6)	C _{OUT}	0.05	470	μF
出力端子コンデンサ ESR ^(Note 7)	ESR (C _{OUT})	-	500	mΩ
動作範囲の周囲温度	Та	-40	+125	°C

⁽Note 1) 出力電圧につきましては出力電流に応じた電圧降下(最小入出力電圧差 ΔVd)をご考慮ください。

(Note 7) 出力の位相補償コンデンサには低 ESR のセラミックコンデンサが使用可能です。ESR の大きい電解コンデンサ・タンタルコンデンサを使用される場合には必ず VOUT 端子付近に 0.05 µF 以上のセラミックコンデンサを並列に接続してご使用ください。

⁽Note 2) 4.5V または Vout (Max)+ΔVd (Max)のどちらか高い方を適用します。

⁽Note 3) BD900N1G-C、BD900N1WG-C、BD900N1EFJ-C、BD900N1WEFJ-C に適用

⁽Note 4) BD9xxN1WG-C、BD9xxN1WEFJ-C (xx = 33, 50, 00) に適用。

⁽Note 5) 電源ラインのインダクタンス成分の影響が大きい場合、入力コンデンサ容量値を調整してください。

また、電源ラインの電圧低下に伴う誤動作を防止するため、電源ラインのインピーダンス成分は極力小さくなるようにご考慮ください。

⁽Note 6) コンデンサの容量は温度特性、DC バイアス特性などを考慮して、最小値を下回らないように設定してください。 また出力電圧が 1.5 V 以下のアプリケーションでは、出力コンデンサによる電荷の保持量が少なく、過渡応答時の電位変動量が大きくなるため、出力コンデンサに 0.22 μF 以上を使用されることを推奨します。

電気的特性

特に指定のない限り、Tj = -40 °C ~ +150 °C、 V_{IN} = 13.5 V、 I_{OUT} = 0 mA、 C_{OUT} = 0.1 μ F 出力可変型 V_{OUT} setting = 5 V、 R_1 = 10 $k\Omega$ 、 R_2 = 67 $k\Omega$ 標準値は Tj = 25 °C、 V_{IN} = 13.5 V 時

項目	記号	規格値			単位	条件	
	配布	最小	標準	最大	甲亚	朱竹	
回路電流 (Note 1)	Icc	-	28	48	μΑ	I _{ОUТ} = 0 mA、Tj ≤ 125 °C	
	icc	-	28	60	μA	I _{OUT} = 0 mA、Tj ≤ 150 °C	
出力電圧 (Note 2)	Vоит	4.900	5.000	5.100	V	6.0 V ≤ V_{IN} ≤ 42 V, T_{J} = -40~+150 °C, 0 mA ≤ I_{OUT} ≤ 100 mA または、 6.5 V ≤ V_{IN} ≤ 42 V, T_{J} = -40~+150 °C 0 mA ≤ I_{OUT} ≤ 150 mA	
出力電圧 (Note 3)	Vоит	3.234	3.300	3.366	V	$4.5 \text{ V} \le \text{V}_{\text{IN}} \le 42 \text{ V}, \text{ Tj} = -40 \sim +150 ^{\circ}\text{C},$ $0 \text{ mA} \le 100 \text{ mA}$ $\exists t$: t : t . $4.9 \text{ V} \le \text{V}_{\text{IN}} \le 42 \text{ V}, \text{ Tj} = -40 \sim +150 ^{\circ}\text{C}$ $0 \text{ mA} \le 1000 \text{ mA}$	
基準電圧 (Note 4)	V _{ADJ}	0.637	0.650	0.663	V	4.5 V ≤ V _{IN} ≤ 42 V, Tj = -40~+150 °C, 0 mA ≤ I _{OUT} ≤ 150 mA	
	ΔV _{D1}	-	420	1000	mV	$V_{IN} = 4.75 \text{ V } (V_{OUT} \ge 5 \text{ V})$ $I_{OUT} = 100 \text{ mA}$	
最小入出力電圧差	ΔV_{D2}	-	500	1200	mV	$V_{IN} = 3.135 \text{ V (V}_{OUT} \ge 3.3 \text{ V)}$ $I_{OUT} = 100 \text{ mA}$	
政小八山万屯江左	ΔV _{D3}	-	650	1500	mV	$V_{IN} = 4.75 \text{ V } (V_{OUT} \ge 5 \text{ V})$ $I_{OUT} = 150 \text{ mA}$	
	ΔV _{D4}	-	780	1800	mV	$V_{IN} = 3.135 \text{ V } (V_{OUT} \ge 3.3 \text{ V})$ $I_{OUT} = 150 \text{ mA}$	
リップルリジェクション ^(Note 5)	R.R.	-	70	-	dB	f = 1 kHz, V _{Ripple} = 1 Vrms I _{OUT} = 10 mA	
ラインレギュレーション	Reg.I1	-	0.05	0.20	%	$V_{OUT} + 1.5V \le V_{IN} \le 42 \text{ V}$ ($V_{OUT} \ge 3.0 \text{ V}$)	
)1	Reg.I2	-	2	6	mV	$4.5 \text{ V} \le \text{V}_{\text{IN}} \le 42 \text{ V}$ (Vout < 3.0 V)	
ロードレギュレーション	Reg.L1	-	0.1	0.3	%	0 mA ≤ I _{OUT} ≤ 150 mA (V _{OUT} ≥ 3.0 V)	
u-ru+1v-v1v	Reg.L2	-	3	9	mV	0 mA ≤ I _{OUT} ≤ 150 mA (V _{OUT} < 3.0 V)	
ADJ 端子流入電流 (Note 4)(Note 5)	ladj	-	0	15	nA	V _{ADJ} = 1 V	

(Note 1) 出力電圧可変品に関して、帰還抵抗 R_1 と R_2 に流れている電流は含まれていません。

⁽Note 2) BD950N1G-C、BD950N1WG-C、BD950N1EFJ-C、BD950N1WEFJ-Cに適用

⁽Note 3) BD933N1G-C、BD933N1WG-C、BD933N1EFJ-C、BD933N1WEFJ-C に適用

⁽Note 4) BD900N1G-C、BD900N1WG-C、BD900N1EFJ-C、BD900N1WEFJ-C に適用

⁽Note 5) 全数出荷検査はしておりません。

電気的特性 — 続き

特に指定のない限り、Tj = -40 °C ~ +150 °C、 V_{IN} = 13.5 V、 I_{OUT} = 0 mA、 C_{OUT} = 0.1 μ F 出力可変型 V_{OUT} setting = 5 V、 R_1 = 10 $k\Omega$ 、 R_2 = 67 $k\Omega$ 標準値は Tj = 25 °C、 V_{IN} = 13.5 V 時

項目	= ⊐ ₽		規格値		単位	タ ル
	記号	最小	標準	最大	半世	条件
UVLO 立ち下げスレッショルド	Vuvlof	1.8	2.4	2.8	V	V _{IN} falling
UVLO 立ち上げスレッショルド	Vuvlor	2.0	2.6	3.0	V	V _{IN} rising
UVLO ヒステリシス	Vuvlohys	-	0.2	-	V	
過電流保護	Іоср	151	280	400	mA	V _{OUT} = 0 V
過熱保護動作温度	T _{TSD}	151	175	-	°C	-
過熱保護動作ヒステリシス	T _{TSDHYS}	1	15	-	°C	-

電気的特性(出力シャットダウン機能付き製品のみ)(Note 6)

特に指定のない限り、Tj = -40 °C ~ +150 °C、 V_{IN} = 13.5 V、 I_{OUT} = 0 mA、 C_{OUT} = 0.1 μ F、 V_{EN} = 5 V 可変機種 V_{OUT} setting = 5 V、 R_1 = 10 $k\Omega$ 、 R_2 = 67 $k\Omega$ 標準値は Tj = 25 °C、 V_{IN} = 13.5 V 時

項目	記号		規格値		単位	夕 / 山
模口 	配石	最小	標準	最大	中世	条件
シャットダウン時回路電流	Іѕнит	-	1.0	4.8	μΑ	V _{EN} = 0 V Tj ≤ 125 °C
EN ON スレッショルド電圧	VENTH	1.05	1.45	2.00	V	V _{EN} rising
EN OFF スレッショルド電圧	VENTL	0.80	1.27	1.70	V	V _{EN} falling
EN ヒステリシス電圧	VENHYS	-	0.18	-	V	-
EN バイアス電流	I _{EN}	-	4	8	μΑ	V _{EN} = 5 V
出力ディスチャージ抵抗	Rosc	2.6	6.5	11.0	kΩ	V _{EN} = 0 V

(Note 6) BD9xxN1WG-C、BD9xxN1WEFJ-C (xx = 33, 50, 00) に適用

特性データ(参考データ) 5 V 出力時

Figure 1. Circuit Current vs Input Voltage (5 V output)

Figure 2. Circuit Current vs Input Voltage *magnification of Figure 1 at narrow range circuit current (5 V output)

Figure 3. Ground Current vs Output Current (5 V output)

Figure 4. Ground Current vs Output Current *magnification of Figure 3 at low output current (5 V output)

Figure 5. Circuit Current vs Junction Temperature (5 V output)

Figure 6. Output Voltage vs Junction Temperature (5 V output)

Figure 7. Dropout Voltage vs Output Current (5 V output, V_{IN} = 4.75 V)

Figure 8. Ripple Rejection vs Frequency (5 V output, $V_{Ripple} = 1 \text{ Vrms}$, $I_{OUT} = 10 \text{ mA}$)

Figure 9. Output Voltage vs Input Voltage (5 V output)

Figure 10. Output Voltage vs Input Voltage *magnification of Figure 9 at narrow range output voltage (5 V output)

Figure 11. Output Voltage vs Input Voltage *magnification of Figure 9 at low input voltage (5 V output)

Figure 12. Output Voltage vs Output Current (5 V output, Load Regulation)

Figure 13. Output Voltage vs Output Current (5 V output, Over Current Protection)

Figure 14. Output Voltage vs Junction Temperature (5 V output)

Figure 15. Adjustment Voltage vs Junction Temperature

Figure 16. Shutdown Current vs Input Voltage $(V_{EN} = 0 V)$

Figure 17. EN Bias Current vs EN Input Voltage

Figure 18. Output Voltage vs EN Input Voltage (5 V output)

Figure 19. Load Transient 1 mA to 150 mA (5 V output, $Tr = 1 \mu s$)

Figure 20. Load Transient 150 mA to 1 mA (5 V output, Tf = 1 μ s)

Figure 21. Line Transient 8 V to 16 V (5 V output, I_{OUT} = 0 mA)

Figure 22. Line Transient 16 V to 8 V (5 V output, Iout = 0 mA)

Figure 23. Line Transient 8 V to 16 V (5 V output, IOUT = 150 mA)

Figure 24. Line Transient 16 V to 8 V (5 V output, I_{OUT} = 150 mA)

Figure 25. VIN Startup Waveform VIN: 0 V to 16 V (5 V output, I_{OUT} = 0 mA)

Figure 26. VIN Startup Waveform VIN: 0 V to 16 V (5 V output, I_{OUT} = 150 mA)

Figure 27. EN Startup Waveform (5 V output, I_{OUT} = 1 mA)

Figure 28. EN Shutdown Waveform (5 V output, I_{OUT} = 1 mA)

特性データ(参考データ) 3.3 V 出力時

Figure 29. Circuit Current vs Input Voltage (3.3 V output)

Figure 30. Circuit Current vs Input Voltage
*magnification of Figure 29 at narrow range circuit current
(3.3 V output)

Figure 31. Ground Current vs Output Current (3.3 V output)

Figure 32. Ground Current vs Output Current *magnification of Figure 31 at low output current (3.3 V output)

Figure 33. Circuit Current vs Junction Temperature (3.3 V output)

Figure 34. Output Voltage vs Junction Temperature (3.3 V output)

Figure 35. Dropout Voltage vs Output Current (3.3 V output, V_{IN} = 3.135 V)

Figure 36. Ripple Rejection vs Frequency (3.3 V output, V_{Ripple} = 1 Vrms, I_{OUT} = 10 mA)

特に指定のない限り、Tj = -40°C ~ +150°C、VIN = 13.5 V、Iout = 0 mA、VEN = 5 V、Cout = 0.1 μF

Figure 37. Output Voltage vs Input Voltage (3.3 V output)

Figure 38. Output Voltage vs Input Voltage
*magnification of Figure 37 at narrow range output voltage
(3.3 V output)

Figure 39. Output Current vs Output Voltage (3.3 V output, Load Regulation)

Figure 40. Output Current vs Output Voltage (3.3 V output, Over Current Protection)

Figure 41. Load Transient 1 mA to 150 mA (3.3 V output, Tr = 1 µs)

Figure 42. Load Transient 150 mA to 1 mA (3.3 V output, Tf = 1 µs)

Figure 43. Line Transient 8 V to 16 V (3.3 V output, I_{OUT} = 0 mA)

Figure 44. Line Transient 16 V to 8 V (3.3 V output, I_{OUT} = 0 mA)

Figure 45. Line Transient 8 V to 16 V (3.3 V output, I_{OUT} = 150 mA)

Figure 46. Line Transient 16 V to 8 V (3.3 V output, I_{OUT} = 150 mA)

Figure 47. VIN Startup Waveform VIN: 0 V to 16 V (3.3 V output, I_{OUT} = 0 mA)

Figure 48. VIN Startup Waveform VIN: 0 V to 16 V (3.3 V output, I_{OUT} = 150 mA)

Figure 49. EN Startup Waveform (3.3 V output, I_{OUT} = 1 mA)

Figure 50. EN Shutdown Waveform (3.3 V output, I_{OUT} = 1 mA)

特性データ測定回路図

Measurement Setup for Figure 1 to 5, 16, 29 to 33

Measurement Setup for Figure 6, 9 to 12, 14, 34, 37 to 39

Measurement Setup for Figure 7, 35

Measurement Setup for Figure 8, 36

Measurement Setup for Figure 13, 40

Measurement Setup for Figure 17 to 18

Measurement Setup for Figure 27 to 28, 49 to 50

Measurement Setup for Figure 19 to 26, 41 to 48

特性データ測定回路図 ― 続き

Measurement Setup for Figure 15

アプリケーションと実装

注意: 以下の情報はアプリケーション及び実装時の参考情報として提供しています。ご使用の特定機能や精度、もしくはアプリケーションの外付け部品などに対し、その動作を保証するものではありません。ご使用につきましては、コンデンサの特性などを十分に確認したうえ、実機アプリケーション評価にて適切かつ必要な検証を行い、十分なマージンを持って設計してください。

外付け部品選定方法

入力端子コンデンサについて

本 IC の性能を十分に発揮させるために、入力側のコンデンサは実装インピーダンスなどの影響を受けないよう出来る限り入力端子と GND 端子間の近くに配置すること、及び同一実装面にレイアウトすることを推奨します。その際の容量値設定は 0.047 μF (Min) 以上のコンデンサを推奨します。

入力電源から本 IC を含めた周辺部品のレイアウトの配置により、バッテリからの距離が離れている場合や入力側のインピーダンスが高い場合は、例えば IC の負荷応答による電流供給に耐え切れず、入力電圧が変動する事で、出力電圧が不安定になる可能性があります。その場合には、大容量のコンデンサを使用し、ライン電圧の低下を防ぐ必要があります。電源平滑回路と入力端子間のラインインピーダンス、及びアプリケーションによって要求される負荷応答に応じ、入力端子コンデンサの容量を選定してください。

なお、外付けコンデンサの部品ばらつきによるレギュレータ特性への影響を避けるため、上記すべての入力端子コンデンサは、DC バイアス特性、温度特性が良く (約 \pm 15% 例えば、X7R、X8R)、優れた EIA 規格高耐圧品のコンデンサを選定することを推奨します。

出力端子コンデンサについて

レギュレータを安定に動作させるため、出力端子と GND 端子間に容量値 $0.05~\mu F$ (Min) 以上、ESR $500~m\Omega$ (Max) 以下の発振止めのコンデンサを必ず挿入してください。また出力電圧が 1.5~V 以下のアプリケーションでは、出力コンデンサによる電荷の保持量が少なく、過渡応答時の電位変動量が大きくなるため、出力コンデンサに $0.22~\mu F$ 以上を使用されることを推奨します。

適切な出力端子コンデンサの容量値と ESR の選定は、レギュレータの過渡応答特性とその制御ループの安定性を改善させます。出力コンデンサの容量値と ESR の関係を次頁グラフ (出力端子コンデンサ容量値、ESR 安定動作領域) で示します。このグラフに基づき、本製品は MLCC シリーズのようなセラミックコンデンサの容量値 $0.05~\mu F$ から $470~\mu F$ 、ESR 約 $0~\Omega$ から $500~m\Omega$ (周波数帯域が約 10~kHz から 100~kHz 範囲内) において、安定的なレギュレータ動作を実現するように設計されています。

ただし、このグラフの安定領域は、弊社基板における IC 単品及び抵抗負荷による測定結果に基づいています。実際には、基板の配線インピーダンス、入力電源のインピーダンス、負荷のインピーダンスの影響を受けるため、必ず実使用環境での十分なご確認をお願いします。

レギュレータの制御ループの応答性を超えるような周波数帯域における入力電圧変動、負荷変動に対し、一般的にその応答性は出力端子コンデンサの容量値に依存します。そのため、基本的に出力端子コンデンサ容量値、ESR 安定動作領域テーブルに記載されているように、出力端子コンデンサの容量値が $0.05~\mu F$ (Min) 以上の選定を推奨します。より大きな容量値のコンデンサ挿入により、上記の高周波帯域での応答性の改善がさらに期待できます。この大容量出力端子コンデンサには、電解コンデンサ、導電性高分子コンデンサ、タンタルコンデンサなどあらゆる種類のコンデンサが使用可能です。ただし、コンデンサ種類によって、ESR ($\leq 500~m\Omega$) 絶対値の大小、低温時の ESR 増加、容量値の減少にご注意ください。ESR の大きい($<500~m\Omega$)コンデンサを使用される場合には、ESR の小さいセラミックコンデンサ $0.05~\mu F$ (Min) 以上を並列に使用されることで安定動作が可能になります。その際に合計容量が $470~\mu F$ 以下となる様ご注意ください。

なお、入力端子コンデンサと同様に外付けコンデンサの部品ばらつきによるレギュレータ特性への影響を避けるため、上記すべての出力端子コンデンサ、及び実装レイアウト位置につきましては、DC バイアス特性、温度特性が良く (約±15% 例えば、X7R、X8R)、優れた EIA 規格高耐圧品のコンデンサを選定し、実装インピーダンスなどの影響を受けないようにできる限り入力端子の近くに配置すること、及び同一実装面にレイアウトすることを推奨します。

アプリケーションと実装 ― 続き

Figure 51. 出力端子コンデンサ容量値、ESR 安定動作領域 (-40 °C ≤ Tj ≤ +150 °C、4.5 V ≤ V_{IN} ≤ 42 V、V_{EN} = 5 V、I_{OUT} = 0 mA ~ 150 mA)

基本アプリケーション

項目	記号	アプリケーション回路の参考値
出力電流範囲	Іоит	I _{OUT} ≤ 150 mA
出力端子コンデンサ	C _{OUT}	0.1 μF
入力電圧	V_{IN}	13.5 V
入力端子コンデンサ ^(Note 1)	Cin	0.1 µF

(Note 1) 電源ラインのインピーダンス成分、インダクタンス成分の影響が大きい場合、入力コンデンサ容量値を調整してください。また、電源ラインの電圧低下に伴う誤動作を防止するため、電源ラインのインピーダンス成分は極力小さくなるようにご考慮ください。

アプリケーションと実装 ― 続き

リニアレギュレータの入力にサージ印加時の保護

以下では入力に絶対最大定格を超えるサージが印加される可能性がある場合のICの保護方法について説明します。

入力への正サージ印加について

入力に本 IC の絶対最大定格 45 V を超える正サージが印加される可能性がある場合は、下記 Figure 52 のように VIN と GND 間にパワーツェナーの挿入をお願いいたします。

Figure 52. 入力に 45 V を超えるサージが印加される場合

入力への負サージ印加について

入力に本 IC の絶対最大定格-0.3 V を超える負サージが印加される可能性がある場合は、下記 Figure 53 のように VIN と GND 間にショットキーダイオードの挿入をお願いいたします。

Figure 53. 入力に-0.3 V を超える負サージが印加される場合

リニアレギュレータの逆電圧保護

リニアレギュレータ IC は通常、入力電圧が出力電圧よりも高い状態で使用します。しかし、実際のアプリケーションでは、出力電圧が入力電圧よりも高くなるような状況が発生する可能性はあります。また、入力、出力端子においても、逆接続やインダクタ成分等により、電圧、電流条件が逆転する場合が考えられます。これらの状況が発生する可能性がある場合、IC に対して、対策を施していなければ、IC の損傷、破壊につながる可能性があります。以下では電圧、電流条件が逆転する場合の IC の保護方法について説明します。

入出力電圧の条件が逆転する場合について

MOS 型リニアレギュレータでは、出力 MOSFET のドレイン - ソース間に寄生素子としてボディダイオードが存在します。出力電圧が入力電圧よりも高くなり、その電圧差がボディダイオードの V_F を超えると、ボディダイオードを通じて電流が出力から入力へ流れます。このボディダイオードは寄生素子のため保護回路で制限することができず、過電流が流れた場合、素子の劣化や破壊につながる可能性があります (Figure 54 を参照)。

Figure 54. MOS 型の逆電流経路

入出力電圧の条件が逆転する場合について ― 続き

対策として、逆電流が IC 内部を通らないようにするため、Figure 55 のように IC 外部にバイパスダイオードを接続します。特に出力電圧設定が高く、かつ大容量の出力コンデンサが接続されるアプリケーションにおいては、逆電流の値が大きくなるので、必ず対策を検討してください。バイパスダイオードは IC 内部のボディダイオードよりも先にオンする必要があるため、順方向電圧 V_F の低い製品が必要になります。ダイオードの逆方向定格電圧は、IC の入力定格電圧よりも大きいものを選択します。また、ダイオードの順方向定格電流は、想定される逆流電流値よりも大きいものを選択します。

Figure 55. 逆電流バイパスダイオード

ショットキーバリアダイオードは順方向電圧 V_Fが低く、バイパスダイオードとして使用可能ですが、逆バイアスリーク電流 I_Rが大きくなる傾向があります。ダイオードの逆バイアスリーク電流が大きい場合、消費電流の増加や軽負荷時の出力電圧の持ち上がりにつながる可能性があるので、注意が必要です。また逆バイアスリーク電流の温度特性は高温で増加しますので、各メーカーのデータシートで詳細を確認し、実アプリケーションで動作を確認してください。

入出力電圧の条件が逆転する場合でも、下記 Figure 56 のように VIN がオープンになる場合や、インピーダンスが高い状態になる場合は、電流量が小さいため寄生素子の劣化や破壊は起こらず、逆電流バイパスダイオードは不要です。

Figure 56. 入力をオープンにした場合

入力の逆電圧保護

入力に電源を接続する時、不注意によりプラスとマイナスを逆接続した場合、もしくは入力が GND 端子より低い 電圧になる可能性がある場合は、IC 内部の VIN -GND 間の静電破壊防止ダイオードに大電流が流れるため IC が破 壊する場合があります (Figure 57 を参照)。

逆接続対策として最も簡単な方法は Figure 58 のようにショットキーバリアダイオードか整流ダイオードを電源と直列に接続します。ただし、ダイオードの順方向電圧 V_F により、通常時の入力電圧に電圧降下が発生します。通常、整流ダイオードよりもショットキーバリアダイオードの方が V_F が低いため、電圧降下は小さくなります。負荷がある場合、ダイオードは発熱しますので許容損失にマージンがあるものを選択してください。逆接続時はダイオードの逆方向電流が流れますがこれは僅かな値です。

Figure 57. 入力を逆接続したときの電流経路

Figure 58. 逆接続対策 1

入力の逆電圧保護 ― 続き

Figure 59 は Pch MOSFET を電源に対して直列に接続する方法です。MOSFET のドレイン-ソース間にあるダイオードは、ボディダイオード (寄生素子) です。正しい接続では Pch MOSFET が ON するため、ここでの電圧降下は MOSFET の ON 抵抗と出力電流 lo から求められ、ダイオードによる電圧降下 (Figure 59 を参照) より小さいため、電力損失が小さくなります。逆接続時は Figure 59 の MOSFET は ON しないため電流は流れません。

MOSFET のゲート-ソース間 (ディレーティングを考慮した) 定格電圧を超える場合は、Figure 60 のようにゲート-ソース間を抵抗分割してゲート-ソース間電圧を下げてください。

出力にインダクタを接続する場合の逆電圧保護

出力負荷が誘導性負荷の場合は、出力電圧が OFF になった瞬間に誘導性負荷に蓄積されたエネルギーがグラウンドへ放出されます。IC の出力ピンと GND ピン間には静電破壊防止ダイオードがあり、このダイオードに大電流が流れるため IC が破壊する場合があります。これを防止するため、静電破壊防止ダイオードに並列にショットキーバリアダイオードを接続してください (Figure 61 を参照)。

また、ICの出力ピンと負荷が長いワイヤーで接続されている場合は、ワイヤーが誘導負荷になっている可能性がありますのでオシロスコープで波形を観測し、出力停止時に VOUT 端子に負電圧が発生していないか確認してください。その他にも、負荷がモータの場合は、モータの逆起電力により同様の電流が流れますのでダイオードが必要です。

Figure 61. 誘導性負荷の電流経路 (出力 OFF 時)

許容損失

Figure 62. 熱低減曲線グラフ (SSOP5)

- (1): 1 層基板(裏面銅箔: 0 mm × 0 mm) FR-4(ガラエポ)基板 114.3 mm × 76.2 mm × 1.57 mmt 表面銅箔:実装ランドパターン
- + 電極引出し用配線、銅箔厚 70 µm
- (2): 4 層基板(2、3 層銅箔、裏面銅箔 74.2 mm × 74.2 mm) FR-4(ガラエポ)基板 114.3 mm × 76.2 mm × 1.6 mmt 表面銅箔:実装ランドパターン
- + 電極引出し用配線、銅箔厚 70 μm 2/3 層銅箔: 74.2 mm×74.2 mm、銅箔厚 35 μm 裏面銅箔:74.2 mm×74.2 mm、銅箔厚 70 μm

条件 (1): θ_{JA} = 271.3 °C/W、Ψ_{JT} (上面中心) = 46 °C/W 条件 (2): θ_{JA} = 146.7 °C/W、Ψ_{JT} (上面中心) = 37 °C/W

Figure 63. 熱低減曲線グラフ (HTSOP-J8)

- (1): 1 層基板(裏面銅箔: 0 mm × 0 mm) FR-4(ガラエポ)基板 114.3 mm × 76.2 mm × 1.57 mmt 表面銅箔:実装ランドパターン
- + 電極引出し用配線、銅箔厚 70 µm
- (2): 4 層基板(2、3 層銅箔、裏面銅箔 74.2 mm × 74.2 mm) FR-4(ガラエポ)基板 114.3 mm × 76.2 mm × 1.6 mmt 表面銅箔:実装ランドパターン
- + 電極引出し用配線、銅箔厚 70 μm 2/3 層銅箔: 74.2 mm×74.2 mm、銅箔厚 35 μm 裏面銅箔:74.2 mm×74.2 mm、銅箔厚 70 μm
- 条件 (1): θ_{JA} = 157.2 °C/W、Ψ_{JT} (上面中心) = 32 °C/W 条件 (2): θ_{JA} = 36.2 °C/W、Ψ_{JT} (上面中心) = 11 °C/W

熱設計

本製品はパッケージの裏面にフレームを露出させており、この部分に放熱処理を施し放熱効率をあげて使用することを想定しております。本製品は使用される入出力電圧差と負荷電流量、回路電流で消費電力が決定されます。周囲温度 Ta = $25\,^\circ$ C 以上でご使用になる場合は Figure 62、63 の熱低減曲線グラフを参考にしてください。また周囲温度 Ta = $25\,^\circ$ C でも、入力電圧と負荷電流の値によっては、チップ(接合部)温度 Tj がかなり高温になっていることがありますので動作温度範囲内すべてにおいて Tj \leq Tjmax = $150\,^\circ$ Cとなるように設計してください。

万一、Tjmax = 150 ℃を超えるようなご使用をされますと、チップ温度上昇により、IC 本来の性質を悪化させることにつながります。本仕様書に記載されております熱抵抗値は、JEDEC で推奨されている基板条件、環境での測定になるため、実使用環境とは異なる可能性があり注意が必要です。以下式にて Tj を算出していただき、十分にマージンを持った形で放熱性能を確保してください。Tj は以下の 2 通りで考えることができます。

1. 周囲温度 Ta から Tj を求める場合

$$Tj = Ta + P_C \times \theta_{IA}$$
 [°C]

Tj: : チップ (接合部)温度

 $egin{array}{ll} T_{A} & : 周囲温度 \ P_{C} & : 消費電力 \ heta_{UA} & : 熱抵抗 \end{array}$

(ジャンクション - 周囲温度間)

2. パッケージ上面中心温度 T_T から Tj を求める場合

$$Tj = T_T + P_C \times \Psi_{IT}$$
 [°C]

Tj: チップ (接合部)温度

TT : パッケージ(モールド部分)上面中心温度

PC : 消費電力

Ψ//7 : 熱特性パラメータ

(ジャンクション - パッケージ上面中心間)

消費電力 Pc は入出力の電圧差と負荷電流、回路電流より求めることができます。

$$Pc = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{CC}$$
 [W]

 Pc
 : 消費電力

 V_{IN}
 : 入力電圧

 Vout
 : 出力電圧

 Iout
 : 出力電流

 Icc
 : 回路電流

· 計算例 (SSOP5)

V_{IN} = 13.5 V、V_{OUT} = 5.0 V、I_{OUT} = 40 mA、I_{CC} = 28 μA のとき消費電力 P_C は、

$$P_C = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{CC}$$

= $(13.5 V - 5.0 V) \times 40 mA + 13.5 V \times 28 \mu A$
= $0.34 W$

となります。

この時、最大周囲温度 Tamax = 85°C、θ_{JA} = 146.7°C/W (4 層基板実装時)とすると、

$$Tj = Tamax + P_C \times \theta_{JA}$$

= 85 °C + 0.34 W × 146.7 °C/W
= 134.9 °C

となります。

次に、実動作時のパッケージ(モールド部分)上面中心温度 $T_T = 100^{\circ}$ C、 $\Psi_{JT} = 46^{\circ}$ C / W (1 層基板実装時)とすると、

$$Tj = T_T + P_C \times \Psi_{JT}$$

= 100 °C + 0.34 W × 46 °C/W
= 115.6 °C

となります。

上記計算にてマージンを確保できない場合は、基板の銅箔面積を広げる、基板層数を増やす、サーマル Via の本数を増やすなど、放熱性能を向上させることができます。

- 計算例 (HTSOP-J8)

V_{IN} = 13.5 V、V_{OUT} = 5.0 V、I_{OUT} = 40 mA、I_{CC} = 28 μA のとき消費電力 P_C は、

$$P_C = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{CC}$$

= $(13.5 V - 5.0 V) \times 40 \ mA + 13.5 V \times 28 \ \mu A$
= $0.34 \ W$

となります。

この時、最大周囲温度 Tamax = 85 °C、θ_{JA} = 36.2 °C / W (4 層基板実装時)とすると、

$$Tj = Tamax + P_C \times \theta_{JA}$$

= 85 °C + 0.34 W × 36.2 °C/W
= 97.3 °C

となります。

次に、実動作時のパッケージ(モールド部分)上面中心温度 T_T = 100°C、Ψ_{JT} = 32 °C / W (1 層基板実装時)とすると、

$$Tj = T_T + P_C \times \Psi_{JT}$$

= 100 °C + 0.34 W × 32 °C/W
= 110.9 °C

となります。

上記計算にてマージンを確保できない場合は、基板の銅箔面積を広げる、基板層数を増やす、サーマル Via の本数を増やすなど、放熱性能を向上させることができます。

入出力等価回路図

(Note 1) BD9xxN1G-C、 BD9xxN1WG-C、 BD9xxN1EFJ-C、 BD9xxN1WEFJ-C に適用 (Note 2) BD900N1G-C、 BD900N1WG-C、 BD900N1EFJ-C、 BD900N1WEFJ-C に適用

入出力等価回路図 — 続き

(Note 3) BD9xxN1WG-C、 BD9xxN1WEFJ-C (xx = 33, 50, 00) に適用

使用上の注意

1. 電源の逆接続について

電源コネクタの逆接続により LSI が破壊する恐れがあります。逆接続破壊保護用として外部に電源と LSI の電源端子間にダイオードを入れるなどの対策を施してください。

2. 電源ラインについて

基板パターンの設計においては、電源ラインの配線は、低インピーダンスになるようにしてください。グラウンドラインについても、同様のパターン設計を考慮してください。また、LSIのすべての電源端子について電源ーグラウンド端子間にコンデンサを挿入するとともに、電解コンデンサ使用の際は、低温で容量低下が起こることなど使用するコンデンサの諸特性に問題ないことを十分ご確認のうえ、定数を決定してください。

3. グラウンド電位について

グラウンド端子の電位はいかなる動作状態においても、最低電位になるようにしてください。また実際に過渡現象を含め、グラウンド端子以外のすべての端子がグラウンド以下の電圧にならないようにしてください。

4. グラウンド配線パターンについて

小信号グラウンドと大電流グラウンドがある場合、大電流グラウンドパターンと小信号グラウンドパターンは分離し、パターン配線の抵抗分と大電流による電圧変化が小信号グラウンドの電圧を変化させないように、セットの基準点で 1 点アースすることを推奨します。外付け部品のグラウンドの配線パターンも変動しないよう注意してください。グラウンドラインの配線は、低インピーダンスになるようにしてください。

5. 動作条件について

動作条件で規定される範囲で IC の機能・動作を保証します。また、特性値は電気的特性で規定される各項目の条件下においてのみ保証されます。

6. ラッシュカレントについて

IC 内部論理回路は、電源投入時に論理不定状態で、瞬間的にラッシュカレントが流れる場合がありますので、電源カップリング容量や電源、グラウンドパターン配線の幅、引き回しに注意してください。

7. 熱設計について

実際の使用状態での許容損失 (Pd) を考え、十分マージンを持った熱設計を行ってください。本製品はパッケージの 裏側にフレームを露出させておりますが、この部分には放熱処理を施し放熱効率を上げて使用することを想定してお ります。本製品は使用されます入出力電圧差と負荷の量、回路電流で発生する熱量が決定されます。そのため実際に 使用した時の発生する熱量が Pd を超えないように注意してください。

万一、Tjmax = 150°C を超えるようなご使用をされますと、チップ温度上昇により、IC 本来の性質を悪化させることにつながります。本仕様書に記載されております熱抵抗値は、JEDEC で推奨されている基板条件、環境での測定になるため、実使用環境とは異なる可能性があり注意が必要です。

8. セット基板での検査について

セット基板での検査時に、インピーダンスの低い端子にコンデンサを接続する場合は、IC にストレスがかかる恐れがあるので、1 工程ごとに必ず放電を行ってください。静電気対策として、組立工程にはアースを施し、運搬や保存の際には十分ご注意ください。また、検査工程での治具への接続をする際には必ず電源を OFF にしてから接続し、電源を OFF にしてから取り外してください。

9. 端子間ショートと誤装着について

プリント基板に取り付ける際、IC の向きや位置ずれに十分注意してください。誤って取り付けた場合、IC が破壊する恐れがあります。また、出力と電源及びグラウンド間、出力間に異物が入るなどしてショートした場合についても破壊の恐れがあります。

10. 未使用の入力端子の処理について

CMOS トランジスタの入力は非常にインピーダンスが高く、入力端子をオープンにすることで論理不定の状態になります。これにより内部の論理ゲートの p チャネル、n チャネルトランジスタが導通状態となり、不要な電源電流が流れます。また 論理不定により、想定外の動作をすることがあります。よって、未使用の端子は特に仕様書上でうたわれていない限り、適切な電源、もしくはグラウンドに接続するようにしてください。

使用上の注意 ― 続き

11. 各入力端子について

本 IC はモノリシック IC であり、各素子間に素子分離のための P+アイソレーションと、P 基板を有しています。 この P 層と各素子の N 層とで P-N 接合が形成され、各種の寄生素子が構成されます。

例えば、下図のように、抵抗とトランジスタが端子と接続されている場合、

〇抵抗では、GND > (端子 A) の時、トランジスタ (NPN) では GND > (端子 B) の時、P-N 接合が寄生ダイオードとして動作します。

〇また、トランジスタ (NPN) では、GND > (端子 B) の時、前述の寄生ダイオードと近接する他の素子の N 層によって寄生の NPN トランジスタが動作します。

IC の構造上、寄生素子は電位関係によって必然的にできます。寄生素子が動作することにより、回路動作の干渉を引き起こし、誤動作、ひいては破壊の原因ともなり得ます。したがって、入出力端子に GND (P 基板) より低い電圧を印加するなど、寄生素子が動作するような使い方をしないよう十分に注意してください。アプリケーションにおいて電源端子と各端子電圧が逆になった場合、内部回路または素子を損傷する可能性があります。例えば、外付けコンデンサに電荷がチャージされた状態で、電源端子が GND にショートされた場合などです。また、電源端子直列に逆流防止のダイオードもしくは各端子と電源端子間にバイパスのダイオードを挿入することを推奨します。

12. セラミックコンデンサの特性変動について

外付けコンデンサに、セラミックコンデンサを使用する場合、直流バイアスによる公称容量の低下、及び温度などによる容量の変化を考慮のうえ定数を決定してください。

13. 過熱保護回路について

IC を熱破壊から防ぐための過熱保護回路を内蔵しております。最高接合部温度内でご使用いただきますが、万が一最高接合部温度を超えた状態が継続すると、過熱保護回路が動作し出力パワー素子が OFF します。その後チップ温度 Tj が低下すると回路は自動で復帰します。なお、過熱保護回路は絶対最大定格を超えた状態での動作となりますので、過熱保護回路を使用したセット設計などは、絶対に避けてください。

14. 過電流保護回路について

出力には電流能力に応じた過電流保護回路が内部に内蔵されているため、負荷ショート時にはIC 破壊を防止しますが、この保護回路は突発的な事故による破壊防止に有効なもので、連続的な保護回路動作、過渡時でのご使用に対応するものではありません。

発注形名情報

ラインアップ

出力電流能力	出力電圧	EN 有無	パッケージ	発注形名
150 mA	3.3 V	EN 無	SSOP5	BD933N1G-CTR
			HTSOP-J8	BD933N1EFJ-CE2
		EN 有	SSOP5	BD933N1WG-CTR
			HTSOP-J8	BD933N1WEFJ-CE2
	5.0 V	EN 無	SSOP5	BD950N1G-CTR
			HTSOP-J8	BD950N1EFJ-CE2
		EN 有	SSOP5	BD950N1WG-CTR
			HTSOP-J8	BD950N1WEFJ-CE2
	BN 無 出力可変 EN 有	EN 無	SSOP5	BD900N1G-CTR
			HTSOP-J8	BD900N1EFJ-CE2
		EN ±	SSOP5	BD900N1WG-CTR
			HTSOP-J8	BD900N1WEFJ-CE2

標印図

Part Number	Part Number Marking	Output Voltage [V]	Enable Input ^(Note 1)
BD950N1G-C	dd	5.0	-
BD933N1G-C	de	3.3	-
BD900N1G-C	df	Adjustable	-
BD950N1WG-C	dk	5.0	0
BD933N1WG-C	dm	3.3	0
BD900N1WG-C	dn	Adjustable	0

Part Number	Part Number Marking	Output Voltage [V]	Enable Input ^(Note 1)
BD950N1EFJ-C	950N1	5.0	-
BD933N1EFJ-C	933N1	3.3	-
BD900N1EFJ-C	900N1	Adjustable	-
BD950N1WEFJ-C	950N1W	5.0	0
BD933N1WEFJ-C	933N1W	3.3	0
BD900N1WEFJ-C	900N1W	Adjustable	0

(Note 1) O: With Enable Input

— : Without Enable Input

外形寸法図と包装・フォーミング仕様

外形寸法図と包装・フォーミング仕様 ― 続き

改訂履歴

日付	改訂	変更内容
2022.05.12	001	新規作成

ご注意

ローム製品取扱い上の注意事項

1. 極めて高度な信頼性が要求され、その故障や誤動作が人の生命、身体への危険もしくは損害、又はその他の重大な損害 の発生に関わるような機器又は装置 (医療機器(Note 1)、航空宇宙機器、原子力制御装置等)(以下「特定用途」という) への本製品のご使用を検討される際は事前にローム営業窓口までご相談くださいますようお願い致します。ロームの文 書による事前の承諾を得ることなく、特定用途に本製品を使用したことによりお客様又は第三者に生じた損害等に関し、ロームは一切その責任を負いません。

(Note 1) 特定用途となる医療機器分類

Ī	日本	USA	EU	中国
ſ	CLASSⅢ	CLASSⅢ	CLASS II b	Ⅲ類
	CLASSIV	CLASSIII	CLASSⅢ	

- 2. 半導体製品は一定の確率で誤動作や故障が生じる場合があります。万が一、誤動作や故障が生じた場合であっても、本製品の不具合により、人の生命、身体、財産への危険又は損害が生じないように、お客様の責任において次の例に示すようなフェールセーフ設計など安全対策をお願い致します。
 - ①保護回路及び保護装置を設けてシステムとしての安全性を確保する。
 - ②冗長回路等を設けて単一故障では危険が生じないようにシステムとしての安全を確保する。
- 3. 本製品は、下記に例示するような特殊環境での使用を配慮した設計はなされておりません。したがいまして、下記のような特殊環境での本製品のご使用に関し、ロームは一切その責任を負いません。本製品を下記のような特殊環境でご使用される際は、お客様におかれまして十分に性能、信頼性等をご確認ください。
 - ①水・油・薬液・有機溶剤等の液体中でのご使用
 - ②直射日光・屋外暴露、塵埃中でのご使用
 - ③潮風、Cl₂、H₂S、NH₃、SO₂、NO₂ 等の腐食性ガスの多い場所でのご使用
 - ④静電気や電磁波の強い環境でのご使用
 - ⑤発熱部品に近接した取付け及び当製品に近接してビニール配線等、可燃物を配置する場合
 - ⑥本製品を樹脂等で封止、コーティングしてのご使用
 - ⑦はんだ付けの後に洗浄を行わない場合(無洗浄タイプのフラックスを使用される場合は除く。ただし、残渣については十分に確認をお願いします。)又は、はんだ付け後のフラックス洗浄に水又は水溶性洗浄剤をご使用の場合 ⑧結露するような場所でのご使用
- 4. 本製品は耐放射線設計はなされておりません。
- 5. 本製品単体品の評価では予測できない症状・事態を確認するためにも、本製品のご使用にあたってはお客様製品に実装された状態での評価及び確認をお願い致します。
- 6. パルス等の過渡的な負荷(短時間での大きな負荷)が加わる場合は、お客様製品に本製品を実装した状態で必ず その評価及び確認の実施をお願い致します。また、定常時での負荷条件において定格電力以上の負荷を印加されますと、 本製品の性能又は信頼性が損なわれるおそれがあるため必ず定格電力以下でご使用ください。
- 7. 電力損失は周囲温度に合わせてディレーティングしてください。また、密閉された環境下でご使用の場合は、必ず温度 測定を行い、最高接合部温度を超えていない範囲であることをご確認ください。
- 8. 使用温度は納入仕様書に記載の温度範囲内であることをご確認ください。
- 9. 本資料の記載内容を逸脱して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いません。

実装及び基板設計上の注意事項

- 1. ハロゲン系(塩素系、臭素系等)の活性度の高いフラックスを使用する場合、フラックスの残渣により本製品の性能 又は信頼性への影響が考えられますので、事前にお客様にてご確認ください。
- 2. はんだ付けは、表面実装製品の場合リフロー方式、挿入実装製品の場合フロー方式を原則とさせて頂きます。なお、表面実装製品をフロー方式での使用をご検討の際は別途ロームまでお問い合わせください。その他、詳細な実装条件及び手はんだによる実装、基板設計上の注意事項につきましては別途、ロームの実装仕様書をご確認ください。

Notice-PAA-J Rev.004

応用回路、外付け回路等に関する注意事項

- 1. 本製品の外付け回路定数を変更してご使用になる際は静特性のみならず、過渡特性も含め外付け部品及び本製品のバラッキ等を考慮して十分なマージンをみて決定してください。
- 2. 本資料に記載された応用回路例やその定数などの情報は、本製品の標準的な動作や使い方を説明するためのもので、 実際に使用する機器での動作を保証するものではありません。したがいまして、お客様の機器の設計において、回路や その定数及びこれらに関連する情報を使用する場合には、外部諸条件を考慮し、お客様の判断と責任において行って ください。これらの使用に起因しお客様又は第三者に生じた損害に関し、ロームは一切その責任を負いません。

静電気に対する注意事項

本製品は静電気に対して敏感な製品であり、静電放電等により破壊することがあります。取り扱い時や工程での実装時、保管時において静電気対策を実施のうえ、絶対最大定格以上の過電圧等が印加されないようにご使用ください。特に乾燥環境下では静電気が発生しやすくなるため、十分な静電対策を実施ください。(人体及び設備のアース、帯電物からの隔離、イオナイザの設置、摩擦防止、温湿度管理、はんだごてのこて先のアース等)

保管・運搬上の注意事項

- 1. 本製品を下記の環境又は条件で保管されますと性能劣化やはんだ付け性等の性能に影響を与えるおそれがあります のでこのような環境及び条件での保管は避けてください。
 - ① 潮風、Cl₂、H₂S、NH₃、SO₂、NO₂等の腐食性ガスの多い場所での保管
 - ② 推奨温度、湿度以外での保管
 - ③ 直射日光や結露する場所での保管
 - ④ 強い静電気が発生している場所での保管
- 2. ロームの推奨保管条件下におきましても、推奨保管期限を経過した製品は、はんだ付け性に影響を与える可能性があります。推奨保管期限を経過した製品は、はんだ付け性を確認したうえでご使用頂くことを推奨します。
- 3. 本製品の運搬、保管の際は梱包箱を正しい向き(梱包箱に表示されている天面方向)で取り扱いください。天面方向が 遵守されずに梱包箱を落下させた場合、製品端子に過度なストレスが印加され、端子曲がり等の不具合が発生する 危険があります。
- 4. 防湿梱包を開封した後は、規定時間内にご使用ください。規定時間を経過した場合はベーク処置を行ったうえでご使用ください。

製品ラベルに関する注意事項

本製品に貼付されている製品ラベルに2次元バーコードが印字されていますが、2次元バーコードはロームの社内管理のみを目的としたものです。

製品廃棄上の注意事項

本製品を廃棄する際は、専門の産業廃棄物処理業者にて、適切な処置をしてください。

外国為替及び外国貿易法に関する注意事項

本製品は、外国為替及び外国貿易法に定めるリスト規制貨物等に該当するおそれがありますので、輸出する場合には、ロームへお問い合わせください。

知的財産権に関する注意事項

- 1. 本資料に記載された本製品に関する応用回路例、情報及び諸データは、あくまでも一例を示すものであり、これらに関する第三者の知的財産権及びその他の権利について権利侵害がないことを保証するものではありません。
- 2. ロームは、本製品とその他の外部素子、外部回路あるいは外部装置等(ソフトウェア含む)との組み合わせに起因して生じた紛争に関して、何ら義務を負うものではありません。
- 3. ロームは、本製品又は本資料に記載された情報について、ロームもしくは第三者が所有又は管理している知的財産権 そ の他の権利の実施又は利用を、明示的にも黙示的にも、お客様に許諾するものではありません。 ただし、本製品を通 常の用法にて使用される限りにおいて、ロームが所有又は管理する知的財産権を利用されることを妨げません。

その他の注意事項

- 1. 本資料の全部又は一部をロームの文書による事前の承諾を得ることなく転載又は複製することを固くお断り致します。
- 2. 本製品をロームの文書による事前の承諾を得ることなく、分解、改造、改変、複製等しないでください。
- 3. 本製品又は本資料に記載された技術情報を、大量破壊兵器の開発等の目的、軍事利用、あるいはその他軍事用途目的で使用しないでください。
- 4. 本資料に記載されている社名及び製品名等の固有名詞は、ローム、ローム関係会社もしくは第三者の商標又は登録商標です。

Notice-PAA-J Rev.004

一般的な注意事項

- 1. 本製品をご使用になる前に、本資料をよく読み、その内容を十分に理解されるようお願い致します。本資料に記載される注意事項に反して本製品をご使用されたことによって生じた不具合、故障及び事故に関し、ロームは一切その責任を負いませんのでご注意願います。
- 2. 本資料に記載の内容は、本資料発行時点のものであり、予告なく変更することがあります。本製品のご購入及びご使用に際しては、事前にローム営業窓口で最新の情報をご確認ください。
- 3. ロームは本資料に記載されている情報は誤りがないことを保証するものではありません。万が一、本資料に記載された情報の誤りによりお客様又は第三者に損害が生じた場合においても、ロームは一切その責任を負いません。

Notice – WE Rev.001