Num of Trains=10 (5 up, 5 down)

 $End_sim_time = 20000,$

getSpottingsNowTime = 10000,

peakThres=5 (500 meters both sides)

PosConf calculated for each point at distance of = 100 meters

Starting time gap between trains=30 min (1800 sec)

 $Halt_time_of_Train = 20 sec$

Speed_of_The_Train = 14 m/sec (50.4 km/h)

0.1 No. of passengers=100

0.1.1 western up route

Table 1: Gr	ound truth value	Table 2: E	stimated Value
Positions	NearestEstDis	Positions	NearestTruthDis
\mathbf{m}	m	m	m
0	16 600.00	16 600.00	366.00
0	16600.00	39000.00	360.00
16234.00	366.00	62500.00	338.00
38640.00	360.00	"AvgPosConf"	0.77"
62162.00	338.00	${\rm ``MaxPosConf'}$	0.96"

0.1.2 western down route

Table 3: Ground truth value	
Positions	NearestEstD is
m	m
44 664.00	264.00
68462.00	22338.00
92824.00	2024.00
123780	32980.00
123780	32980.00

Table 4: Estimated Value	
Positions	NearestTruthDis
m	m
44 400.00	264.00
90800.00	2024.00
"AvgPosConf"	0.50"
${\rm `MaxPosConf}$	1.00"

Num of Trains=10 (5 up, 5 down)

 $End_sim_time = 20000,$

getSpottingsNowTime = 10000,

peakThres=5 (500 meters both sides)

PosConf calculated for each point at distance of= 100 meters

Starting time gap between trains=30 min (1800 sec)

 $Halt_time_of_Train = 20 sec$

Speed_of_The_Train = 14 m/sec (50.4 km/h)

0.2 No. of passengers=100

0.2.1 central up route

Table 5: Ground truth value	
Positions	NearestEstDis
m	m
0	11 100.00
0	11100.00
10760.00	340.00
16516.00	384.00
39202.00	398.00

Table 6: E	Stimated Value
Positions	NearestTruthDis
m	m
11 100.00	340.00
16900.00	384.00
39600.00	398.00
45800.00	6598.00
"AvgPosConf"	0.79"
${\rm ``MaxPosConf'}$	1.00"

0.2.2 central down route

 $59\,600.00$

 $84\,800.00$

 Table 7: Ground truth value

 Positions
 NearestEstDis

 m
 m

 9966.00
 22 034.00

 32 358.00
 258.00

 46 122.00
 322.00

 $13\,800.00$

39 000.00

Table 8: E	stimated Value
Positions	Near est Truth Dis
m	m
32 000.00	358.00
32100.00	258.00
45800.00	322.00
"AvgPosConf"	1.00"
${\rm ``MaxPosConf'}$	1.00"

Num of Trains=10 (5 up, 5 down)
End_sim_time = 20000,
getSpottingsNowTime = 10000,
peakThres=5 (500 meters both sides)
PosConf calculated for each point at distance of= 100 meters
Starting time can between trains=20 min (1800 cos)

Starting time gap between trains=30 min (1800 sec)

 $Halt_time_of_Train = 20 sec$

 $Speed_of_The_Train = 14 \text{ m/sec } (50.4 \text{ km/h})$

0.3 No. of passengers=100

0.3.1 harbour up route

Table 9: Ground truth value	
Positions	NearestEstDis
m	m
0	13 600.00
0	13600.00
14762.00	1162.00
16244.00	2644.00
38914.00	386.00

Table 10:	Estimated Value
Positions	NearestTruthDis
m	m
13 600.00	1162.00
35700.00	3214.00
35800.00	3114.00
39300.00	386.00
"AvgPosConf	0.24"
"MaxPosConf	0.63"

0.3.2 harbour down route

 Table 11: Ground truth value

 Positions
 NearestEstDis

 m
 m

 6246.00
 246.00

 28 924.00
 6876.00

 36 126.00
 326.00

 54 600.00
 18 800.00

 79 800.00
 44 000.00

Table 12: I	Estimated Value
Positions	Near est Truth Dis
m	m
6000.00	246.00
14600.00	8354.00
35800.00	326.00
"AvgPosConf"	0.76"
${\rm ``MaxPosConf'}$	1.00"