

トップエスイー ソフトウェア開発実践演習

不確実性を有するセンサフュージョンシステムの

性能評価・検証手法

株式会社日立製作所キャノン株式会社

鈴木 真太郎 渡邊 権人

開発における問題点

デジタルツインやCPS(Cyber-Physical System) の実現には、多くのセンサで取得した情報を統合し活用するセンサフュージョンシステムが不可欠であるが、計測精度や安定性はセンサの設置環境によって変化する。このような計測の不確実性を考慮したシステム設計・運用方法が課題であった。

手法・ツールの適用による解決

環境によらず安定した計測品質・パフォーマンス (計測頻度、遅延、消費電力)を提供するため、 自己適応的なセンサシステムアーキテクチャを考案 し、計測の不確実性を考慮したモデル化・検証手 法を提案、PRISMモデルを構築し、ケーススタディ により手法の妥当性を確認した。

自己適応的なセンサシステムアーキテクチャの提案

- システムを構成するオブジェクト をツリー構造で表現
- 各オブジェクトに適応エンジンを 付与して自己適応を行う

- •各オブジェクト毎に 要求達成度合いを計測
- ・小規模な適応は下層の 変更のみで局所的に解決
- ・下層で適応できない場合は 上位のオブジェクトに適応を 移譲することで大域的に解決

本演習のスコープ

各オブジェクトが自己適応を行う

MAPEル

Analysis

Measure

Plan

Execute

システムをモデル化し 要求を満たせるかどうか 見積もる手法を提案

計測品質のモデル化・検証

モデル化において考慮した特性

- 場所による計測品質の違い
- センサごとの性能特性の違い
- 環境条件による計測品質変化
- センサフュージョンによる計測品質向上

▲グリッド分割されたエリアごとにモデル化

要求品質達成確率の評価

パフォーマンスのモデル化・検証

定常的な値を求めるため、CTMC(連続時間マルコフ連鎖)を用いて 状態遷移からパフォーマンス(取得頻度、消費電力、遅延)を計算

各層のモデル

- ・各層は入力、処理、出力の状態遷移
- ・センサ特性によって**リトライ動作**が発生
- •遷移条件、遷移レート、状態内トークン数からパフォーマンスを計算

提案計算手法

- ツリー同期部分で分割(赤枠)
- 下層の結果を上層に使用
- ・トークン数大でも計算時間小

機能	要求仕様	位置検出		人数検出	
パターン	-	3	4	3	4
取得頻度	3Hz以上	0.72Hz	3.69Hz	0.72Hz	3.69Hz
消費電力	500W以下	694W	333W	718W	357W
遅延	1sec以下	638msec	729msec	638msec	729msec