Atomic Physics

Alejandro Campos

April 30, 2025

Contents

1	NLTE Equation of state	1
2	NLTE opacities	1
1	NLTE Equation of state	

2 NLTE opacities

Various photon phenomena are listed below

- Absorption or destruction
 - Bound-bound excitation (stimulated absorption)
 - Bound-free ionization (**photoionization**)
 - Free-free photo-absorption (inverse breemstrahlung)
 - Pair production: Beta-Heitler ($\gamma \to e^- + e^+$), linear Breit-Wheeler ($\gamma + \gamma' \to e^- + e^+$), non-linear Breit-Wheeler ($\gamma + n\gamma' \to e^- + e^+$).
- Emission or creation
 - Bound-bound de-excitation (stimulated emission, spontaneous emission)
 - Free-bound recombination
 - Free-free photo-emission (breemstrahlung from Coulomb collisions)
 - Cyclotron, Synchrotron, and Betatron radiation
 - Pair annihilation
- Scattering
 - Rayleigh scattering: elastic scattering of a photon from an atom or molecule whose size is less than that of the wavelength of the photon.
 - Mie scattering: same as Rayleigh scattering but for cases where the sizes of the atoms or molecules are comparable to the wavelength of the incoming photon.
 - Raman scattering: inelastic scattering of a photon from a molecule. The interaction changes the molecule's vibrational, rotational, or electron energy.
 - Brillouin scattering: inelastic scattering of a photon caused by its interaction with material waves in a medium (i.e. mass oscillation modes, charge displacement modes, magnetic spin oscillation modes).

- Compton scattering: inelastic scattering of a photon from a charged particle.
- Thomson scattering: low-energy limit of Compton scattering. The photon energy and the particle's kinetic energy do not change as a result of the scattering. Can be explained with classical electrodynamics.