

IN2010 - Gruppe 4

Uke 4: Prioritetskøer - Binære Heaps - Huffman-koding

Bli med:)

Dagens Plan

- Oblig 1 Update
- > Pensumgjennnomgang
- Gruppeoppgaver

Hvordan ligger derre ann med Oblig 1?

Spørsmål angående Obligen?

Noe som er uklart?

Pensumgjennomgang

Hvor godt forsto du ukens pensum?

Prioritetskøer

- > En kø/samling med elememter som er sortert etter prioritet
- → Eks: Størrelse, alder, høyde, osv.
- En prioritetskø må støtte følgende operasjoner:
- Insert(e)/push(e) legger til et nytt element e
- removeMin()/pop() Fjerner elemente med høyest prioritet

Binære Heaps

- Hver node v er mindre enn barnenodene
- 2. Treet må være komplett
- Det betyr at treet fylles opp fra venstre til høyre

Quiz

Er dette en Max Heap?

Er dette en Max Heap?

Hva er indexen til foreldernoden til "6"

Hilke egenskaper er sann for en min heap?

Hva er den største verdien en node på siste rad kan ha?

Binære heaps: Operasjoner

Ideen: Tar alltid utgangspunkt i neste "ledige" plass(innsetting)

Eller så tar vi utgangspunkt i det siste elementet(sletting)

Binære Heap-Demonstrasjon

http://btv.melezinek.cz/binary-heap.html

Huffman-koding

Characters	Code	Frequency	Total Bits
е	000	15	45
а	001	11	33
i	010	2	6
0	011	8	24
u	100	10	30
space	101	13	39
new line	110	5	15
Total		64	192

Huffman-koding

- → Formål: Komprimere data
- Huffman-koding representerer frekvenser av symboler
- Med frekvesnene så kan vi representere setninger med bitstrenger

Huffman trær

- Huffman trær er treet som viser frekvensene av symboler
- Start med å lage en frekvenstabell
- Lag en prioritetskø som prioriterer basert på frekvens
- Velg de to minste elementene fra køen
- > Lag en ny node, som har de to nodene som bar
- Legg den nye noden tilbake i køen

Huffman trær - demo

https://cmps-people.ok.ubc.ca/ylucet/DS/Huffman.html

Bestemme huffman kode

- Se på linjene(stien) fra rotnoden til den gjeldende noden
- → Hver høyre: 1
- → Hver venstre: 0

Quiz

Hva er huffman koden til 'i'

Hva er den lengste bitstrengen gitt av dette treet

Pause

Gruppeoppgaver

Binære heaps

Du skal ta utgangspunkt i følgende binære heap H_1 , hvor både tre-representasjonen og array-representasjonen er gitt:

Du skal fylle inn tabellene som svarer til hver deloppgave i Inspera. Hver tabell svarer til array-representasjonen av H_1 etter de oppgitte operasjonene. Deloppgavene er uavhengig av hverandre, altså refererer H_1 til heapen som er gitt ovenfor, og endringer vi gjør i en deloppgave følger ikke med til neste deloppgave.

- (a) Hvordan ser heapen ut etter ett kall på H_1 . RemoveMin()?
- (b) Hvordan ser heapen ut etter ett kall H_1 .Insert(7)?

I en annen binær min-heap H_2 får du kun gitt verdiene på dybde 3:

(c) Hva er den minste verdien som kan ligge på dybde 4 av H_2 ?

Bygge huffman trær

A file contains only spaces and digits in the following frequency: space (9), a (5), b (1), d (3), e (7), f (3), h (1), i (1), k (1), n (4), o (1), r (5), s (1), t (2), u (1), v (1).

Construct the Huffman tree.

Ekstra: Hva er huffman-koden til strengen "hei du der borte"

Bygge huffmantrær 2

A file contains only colons, spaces, newlines, commas, and digits in the following frequency: colon (100), space (605), newline (100), comma(705), 0 (431), 1 (242), 2 (176), 3 (59), 4 (185), 5 (250), 6 (174), 7 (199), 8 (205), 9 (217).

Construct the Huffman tree

Ekstra: Hva er huffman-koden til telefonnummeret ditt?

Huffmantrær

En tekststreng vi vil komprimere består av 5 ulike tegn a,b,c,d og e. De relative frekvensene er gitt av følgende frekvenstabell:

- (a) Hva er den lengste kodelengden for et symbol i det tilhørende huffmantreet?
- (b) Hvor mange bits blir koden for tegnet e?
- (c) Hvor mange bits brukes for å kode strengen aaabbcdee?

Nå skal vi ikke jobbe med noe konkret huffmantre for et en gitt frekvenstabell, men heller tenke på generelle huffmantrær.

- (d) Hvis en frekvenstabell består av 8 forskjellige tegn, hvor mange noder har det tilhørende huffmantreet?
- (e) I et huffmantre som har 8 løvnoder, hva er den lengste kodelengden et symbol kan ha?

Eksamensoppgave

Spørsmål

9 questions 0 upvotes