CNF (Conjunctive Normal Form)

A formula which is equivalent to a given formula and which consists of a product of elementary sums is called a conjunctive normal form of given formula.

$$(P \sim \lor Q) \land (Q \lor R) \land (\sim P \lor Q \lor \sim R)$$

Steps to convert formula into CNF

• eliminate all the occurrences of \oplus (XOR operator), \rightarrow (conditional), and \leftrightarrow (biconditional)

$$\circ \ A \oplus B \equiv (A \vee B) \wedge \neg (A \wedge B)$$

$$\circ A \rightarrow B \equiv \neg A \lor B$$

$$\circ \ A \leftrightarrow B \equiv (\neg A \lor B) \land (A \lor \neg B)$$

$$\circ \ A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B)$$

• move all the negations inwards(De Morgan's law)

Steps to convert formula into CNF

Some common equivalences that we use for the conversion are:

- \circ Commutativity for disjunction: $A \lor B \equiv B \lor A$
- \circ Commutativity for conjunction: $A \wedge B \equiv B \wedge A$
- Associativity for disjunction: $(A \lor B) \lor C \equiv A \lor (B \lor C)$
- Associativity for conjunction: $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$
- Distribution over disjunction: $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$
- Distribution over conjunction: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$

Laws of Logical Equivalence

Identity Laws

1.
$$p \wedge T \equiv p$$

2.
$$p \lor F \equiv p$$

Domination Laws

3.
$$p \lor T \equiv T$$

4.
$$p \wedge F \equiv F$$

Idempotent Laws

5.
$$p \wedge p \equiv p$$

6.
$$p \lor p \equiv p$$

Double Negation Law 7. $\neg(\neg p) \equiv p$

Negation Laws

8.
$$p \lor \neg p \equiv T$$

9.
$$p \land \neg p \equiv F$$

Commutative Laws

10.
$$p \wedge q \equiv q \wedge p$$

11.
$$p \lor q \equiv q \lor p$$

Associative Laws

12.
$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

13.
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Distributive Laws

14.
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

15.
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

De Morgan's Laws

16.
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

17. $\neg (p \lor q) \equiv \neg p \land \neg q$

18.
$$p \rightarrow q \equiv \neg p \lor q$$

19.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

20.
$$p \oplus q \equiv (p \lor q) \land \neg (p \land q)$$

Example 1

$$\neg((\neg A \rightarrow \neg B) \land \neg C)$$

$$\equiv \neg((\neg \neg A \lor \neg B) \land \neg C)$$

$$\equiv \neg((A \lor \neg B) \land \neg C)$$

$$\equiv \neg(A \lor \neg B) \lor \neg \neg C$$

$$\equiv \neg(A \lor \neg B) \lor C$$

$$\equiv (\neg A \land \neg \neg B) \lor C$$

$$\equiv (\neg A \land B) \lor C$$

 $\equiv (\neg A \lor C) \land (B \lor C)$

Example 2

$$P \rightarrow \neg (R \vee \neg Q).$$

Step 1 produces: $\neg P \lor \neg (R \lor \neg Q)$.

Step 2 produces: $\neg P \lor (\neg R \land Q)$.

Step 3 produces: $(\neg P \lor \neg R) \land (\neg P \lor Q)$.

Examples

- 1. $(P \land Q) \rightarrow (P \rightarrow Q)$
- 2. $(P \land Q) \leftrightarrow (P \rightarrow Q)$
- 3. $(\neg P \lor Q) \to (P \to \neg Q)$
- 4. $(((P \rightarrow Q) \rightarrow P) \rightarrow Q)$
- 5. $(P \rightarrow (Q \rightarrow (P \rightarrow Q)))$
- 6. $((P \land \neg Q) \to \neg R) \leftrightarrow ((P \land R) \to Q)$
- 7. $(((P \lor Q) \lor R) \lor S) \leftrightarrow (P \lor (Q \lor (R \lor S)))$
- 8. $(((P \rightarrow Q) \rightarrow R) \rightarrow S) \leftrightarrow (P \rightarrow (Q \rightarrow (R \rightarrow S)))$
- 9. $(P \rightarrow (\neg R \rightarrow \neg S)) \lor ((S \rightarrow (P \lor \neg T)) \lor (\neg Q \rightarrow R))$