Show that A_{NFA} is NL-complete.

Step-by-step solution

Step 1 of 1

Consider

 $A_{NFA} = \{\langle M, w \rangle | M \text{ is } NFA \text{ and } M \text{ accepts } w\} \text{ and}$ PATH= $\{\langle G, s, t \rangle | G \text{ is any directed graph also } G \text{ has path from } s \text{ to } t\}$

Firstly it is required to show $^{A_{\mathit{NFA}}}$ is $^{\mathit{NL}}$.

Use a verifier /certificate definition of NL, similar to verifier /certificate of NP. A_{NFA} is in NL if there is some deterministic type Turing machine V such that V uses $O(\log n)_{\text{space}}$ and $\langle M, w \rangle_{\text{in}}$ A_{NFA} iff there is any certificate c such that V accepts $\langle M, w \rangle_{c}$. The certificate will be a path in the underlying graph of NFA M, and the verifier operates as given below:

- The states in the path denoted by $(p_0,....,p_n)$
- Check that the $p_0 = q_0$.
- For each $i \in \{1,...,n\}$, check that $\delta(p_{i-1},w_i) = p_i$
- Check that P_n is accepting state.
- If any checks fail, then reject. Otherwise accept.

This algorithm checks every condition which is required by the definition of "M accept w", if it has M accept w iff V accept $\langle \langle M, w \rangle, (p_0, ..., p_n) \rangle$ for any path $(p_0, ..., p_n)$. Therefore it is concluded that A_{NFA} is in NL.

Now it is required to prove that $PATH \leq_M^L A_{NEA}$. Since Path is NL-complete, this shows that A_{NEA} is NL-complete.

The reduction of mapping $\langle G, s, t \rangle \rightarrow \langle M, \varepsilon \rangle$, where M is NFA whose graph is G with \in labels on each edge, where s is initial state, and t is its accept state. If G has path from s to t, then there is few sequence of the vertices $(v_1, v_2, v_3,, v_k)$ so that

- $v_1 = s$
- $(v_i, v_{i+1}) \in E(G)$ for each $i \in \{1, 2, 3, ..., k-1\}$
- $v_{\cdot} = t$

Thus, $(v_1, v_2, v_3, ..., v_k)$ is sequence of the state in M such that

- v_1 is initial state,
- $\delta(v_i \in) = v_{i+1}$ for each $i \in \{1, 2, 3, ..., k-1\}$
- v_k is the terminal state,

Three conditions which are necessary to conclude that M accepts \mathcal{E} . Conversely, if G has not any path from point s to point t, then the path will violate one of three given conditions for having the path, so any state sequence will violate any one of three conditions to accept. Therefore $PATH \leq_M^L A_{NEA}$ (and thus A_{NEA} is NL-complete).

Comment