Report Progress

Division of Applied Mathematics, Department of Mathematics

Faculty of Science, Silpakorn University

Date: 23 พฤศจิกายน 2561

Advisor: ผู้ช่วยศาสตราจารย์ ดร.นพดล ชุมชอบ

Student : นายภัคพล พงษ์ทวี รหัส 07580028

Project Title: ขั้นตอนวิธีเชิงตัวเลขชนิดใหม่สำหรับการต่อเติมภาพที่ใช้การแปรผันรวมกับการประยุกต์ สำหรับช่อมแชมภาพจิตรกรรมไทยโบราณและการลบบทบรรยายจากอนิเมะ (A new numerical algorithm for TV-based image inpainting with its applications for restoring ancient Thai painting images and removing subtitles from animes)

1 ที่มาและความสำคัญ

ในปัจจุบันการใช้ภาพดิจิตัล (digital images) ในสังคมเครือข่ายได้รับความนิยมอย่างแพร่หลาย เนื่องจากโทรศัพท์เคลื่อนที่มีราคาถูกลงแต่มีความสามารถที่ชาญฉลาด สามารถทำหน้าที่ได้ตั้งแต่การเป็นกล้อ งดิจิตัลคอมแพค (compact digital camera) คุณภาพดีให้ภาพดิจิตัลที่มีความคมชัดสูงจนไปถึงการทำหน้าที่ ดังเช่นเครื่องคอมพิวเตอร์ส่วนบุคคลที่สามารถเชื่อมต่อกับระบบเครือข่ายไร้สายเพื่อรับส่งภาพดิจิตัลในสังคม เครือข่ายด้วยความสะดวกและรวดเร็ว

นอกจากภาพดิจิตัลจะได้รับจากการถ่ายภาพด้วยโทรศัพท์เคลื่อนที่แล้ว ภาพดิจิตัลยังได้รับการถ่าย ภาพด้วยกล้องดีเอสแอลอาร์ หรือ กล้องสะท้อนเลนส์เดี่ยวแบบดิจิตัล (digital single lens reflex camera) กล้องโทรทรรศน์ (หรือ กล้องดูดาว) หรือ เครื่องมือสร้างภาพถ่ายทางการแพทย์ (medical imaging device)

โดยทั่วไปภาพดิจิตัลจะได้รับการประมวลผลภาพก่อนนำไปใช้งานเพื่อให้สามารถใช้ข้อมูลที่ปรากฎบน ภาพได้ตรงวัตถุประสงค์ของการใช้งานมากที่สุด ตัวอย่างเช่น ภาพบุคคล (portrait) อาจจำเป็นต้องได้รับการ กำจัดสัญญาณรบกวนออกจากภาพและ/หรือปรับเพิ่มความละเอียดข้อมูลของความเข้มของสีและความสว่าง ของสีบนบริเวณใบหน้าก่อนนำภาพไปใช้งานเพื่อจัดทำต้นฉบับวารสารหรือหนังสือของสำนักพิมพ์ เป็นต้น

การต่อเติมภาพ (image inpainting) เป็นวิธีการประมวลผลภาพชนิดหนึ่งมีเป้าหมายเพื่อซ่อมแซม ภาพด้วยการต่อเติมข้อมูลของความเข้มของสีบนบริเวณที่กำหนด (ต่อไปจะเรียกบริเวณนี้ว่าโดเมนต่อเติม (inpainting domain)) โดยอาศัยข้อมูลของความเข้มของสีที่ปรากฏในภาพ ตัวอย่างเช่น กำหนดให้รูปที่ 1.1 (a) แสดงภาพที่ต้องการซ่อมแซมระดับความเข้มของสีบนบริเวณแท่งวัตถุรูปร่างสี่เหลี่ยมสีขาว การต่อเติมภาพ ดังกล่าวจะเริ่มด้วยการกำหนดให้บริเวณแท่งวัตถุรูปร่างสี่เหลี่ยมสีขาวเป็นโดเมนการต่อเติมดังรูปที่ 1.1 (b) จากนั้นภาพที่ได้รับการต่อแพมหรือภาพที่ได้รับการต่อเติม (restored or inpainted image) ซึ่งแสดงในรูป ที่ 1.1 (c) ได้มาจากขั้นตอนวิธีการต่อเติมภาพ (inpainting algorithm) ซึ่งได้รับการออกแบบเพื่อนำข้อมูลที่ ปรากฎบนภาพในบริเวณใกล้เคียงกับขอบของโดเมนต่อเติมมาซ่อมแซมภาพ

รูปที่ 1.1: ตัวอย่างการซ่อมแซมภาพ; (a) ภาพที่ต้องการซ่อมแซม; (b) โดเมนต่อเติม; (c) ภาพที่ได้รับการ ช่อมแซม

เท่าที่ผู้วิจัยศึกษาและค้นคว้ามาจนถึงขณะนี้ ผู้วิจัยพบว่าการต่อเติมภาพมักนิยมนำไปใช้งานสำหรับ การปรับแต่งความสวยงามของภาพบุคคลที่ถ่ายจากโทรศัพท์เคลื่อนที่ เช่น การลบร่องรอยของรอยตีนกา การ ลบร่องรอยแผลเป็นที่เกิดจากสิวเสี้ยน การลดร่องรอยของความชรา หรือ การเพิ่มความใสและความเนียนของ สีผิวบนบริเวณใบหน้าผ่านโปรแกรมแอปพลิเคชันแต่งรูปภาพที่มีอยู่ในแอปสโตร์ (App Store) หรือ กูเกิ้ลเพล ย์ (Google Play) เป็นต้น

1.1 การซ่อมแซมภาพจิตรกรรมไทยโบราณ

ภาพจิตรกรรมไทย คือ ภาพเขียนที่มีเอกลักษณ์ความเป็นศิลปะไทยซึ่งโดดเด่นและแตกต่างจากภาพ เขียนของชนชาติอื่น ในอดีต ช่างไทยได้สร้างสรรค์ลวดลายและสีสันบนภาพวาดเพื่อสะท้อนประเพณีและ วัฒนธรรมในสังคมไทยที่เกี่ยวกับศาสนา ประวัติศาสตร์ โบราณคดี ชีวิตความเป็นอยู่ วัฒนธรรมการแต่งกาย ตลอดจนการแสดงการเล่นพื้นเมืองต่าง ๆ ของแต่ละยุคสมัย

อย่างไรก็ตาม ภาพจิตรกรรมไทยจำนวนไม่น้อยที่เสื่อมสลายตามกาลเวลา และรอคอยการซ่อมแซม จากช่างในสมัยปัจจุบันที่ต้องไม่สร้างความเสียหายให้กับภาพเขียนเพิ่มขึ้นมากกว่าเดิม ที่ผ่านมาภาพที่ผ่านการ ซ่อมแซมมาแล้วจำนวนไม่น้อยได้รับความเสียหายหลังจากการซ่อมแซม ถึงแม้สภาพโดยรวมของภาพ จิตรกรรมเดิมยังคงอยู่ แต่รายละเอียดในตัวภาพเขียนได้เปลี่ยนไป ก่อให้เกิดความเสียหายที่ประเมินค่าไม่ได้

การซ่อมแซมภาพจิตรกรรมไทยโบราณโดยใช้การต่อเติมภาพเป็นขั้นตอนของการซ่อมแซมแบบหนึ่งซึ่ง ไม่ก่อให้เกิดความเสียหายใด ๆ กับภาพเดิม เนื่องจากเป็นการซ่อมแซมโดยการใช้ขั้นตอนวิธีเชิงตัวเลขบนภา พดิจิตัลซึ่งเป็นสำเนาของภาพเดิม ด้วยเหตุผลดังกล่าว ผู้วิจัยได้เล็งเห็นว่าการซ่อมแซมภาพจิตรกรรมไทย โบราณมีความจำเป็นเร่งด่วน เนื่องจากภาพที่ได้รับการซ่อมแซมด้วยการต่อเติมภาพสามารถนำไปใช้ประกอบ การตัดสินใจเพื่อวางแผนก่อนการลงมือซ่อมแซมภาพเขียนจริงได้ นอกจากนี้ ขั้นตอนวิธีการต่อเติมภาพ สามารถนำไปใช้สร้างแอปพลิเคชันบนโทรศัพท์เคลื่อนที่เพื่อในไปใช้เป็นข้อมูลในการเข้าชมภาพเขียนเดิมที่ยัง

ไม่ได้รับการซ่อมแซมและภาพเขียนที่ได้รับการซ่อมแซมโดยวิธีการทางคณิตศาสตร์จากแอปพลิเคชันที่พัฒนา ขึ้น

รูปที่ 1.2 แสดงตัวอย่างภาพจิตรกรรมไทย¹ ที่ต้องได้รับการซ่อมแซมบนบริเวณแขนเสื้อของรูปวาด ผู้ชายที่มีส่วนของสีแดงเดิมหลุดหายไป ทั้งนี้ในการซ่อมแซมภาพโดยการต่อเติมภาพ เราจะเริ่มด้วยการสร้าง โดเมนต่อเติมบนบริเวณสีพื้นผิวปูนที่แขนเสื้อ จากนั้นจึงนำขั้นตอนวิธีการต่อเติมภาพเพื่อซ่อมแซมภาพบริเวณ นั้นให้เป็นสีแดง

รูปที่ 1.2: ภาพจิตรกรรมไทยที่วัดภูมินทร์ อำเภอเมือง จังหวัดน่าน

1.2 การลบบทบรรยายบนอนิเมะ

อนิเมะคือวิดีโอภาพวาดการ์ตูนสไตล์ญี่ปุ่นซึ่งเป็นที่นิยมของเยาวชนไทย ในการรับชมอนิเมะ แม้ว่า เยาวชนไทยสามารถรับชมด้วยบทพากย์เสียงภาษาไทย แต่ก็สูญเสียอรรถรสของการรับชมจากบทบรรยาย แบบแข็ง² (hardsub) ที่เป็นภาษาต่างประเทศในบริเวณด้านล่างของจอภาพ ในการซ่อมแซม อนิเมะด้วยการลบบทบรรยายภาษาต่างประเทศจึงเป็นงานที่ยุ่งยากและท้าท้ายมาก เนื่องจาก

- (1) อนิเมะเป็นวิดีโอซึ่งแสดงผลประมาณ 24 เฟรม(ภาพ)ต่อวินาที
- (2) แต่ละเฟรมอาจมีหรืออาจไม่มีบทบรรยายก็ได้
- (3) แต่ละเฟรมอาจมีหรืออาจไม่มีบทบรรยายเดียวกันก็ได้
- (4) แต่ละเฟรมเป็นการแสดงผลภาพสีที่มีระดับความคมชัดสูง (high definition) ขนาดมากถึง 1920×1080 พิกเซล

¹ภาพถ่ายที่วัดภูมินทร์ อำเภอเมือง จังหวัดน่าน; ภาพจาก http://topicstock.pantip.com/camera/topicstock/2009/02/ O7514399/O7514399.html สืบค้นเมื่อวันที่ 23 กันยายน 2561

²บทยรรยายที่ไม่สามารถปิดหรือเปิดได้

ด้วยความท้าทายข้างต้น การพัฒนาขั้นตอนวิธีการต่อเติมภาพที่สามารถกำหนดโดเมนต่อเติมเชิงอัตโนมัติให้ กับแต่ละเฟรมและประมวลผลได้แม่นยำจนการลบบทบรรยายสามารถทำงานได้แบบเรียลไทม์จึงเป็นสิ่ง จำเป็นที่หลีกเลี่ยงไม่ได้

รูปที่ 1.3 แสดงตัวอย่าง 1 เฟรมของอนิเมะที่มีบทบรรยายแบบแข็ง³ ที่ต้องช่อมแซมด้วยการลบบท บรรยายออก ทั้งนี้ในการลบบทบรรยายออกจากเฟรมโดยใช้การต่อเติมภาพ เราจะเริ่มด้วยการสร้างโดเมนต่อ เติมแบบอัตโนมัติในบริเวณบทบรรยาย จากนั้นจึงนำขั้นตอนวิธีการต่อเติมภาพแบบเร็วเพื่อลบบทบรรยาย ออกจากเฟรม

รูปที่ 1.3: 1 เฟรมของอนิเมะที่มีบทบรรยายแบบแข็ง

โครงการวิจัยนี้ ผู้วิจัยมีเป้าหมายสำคัญคือการพัฒนาขั้นตอนวิธีการต่อเติมภาพแบบเร็วและแม่นยำ ชนิดใหม่เพื่อนำไปใช้สำหรับช่อมแซมภาพจิตรกรรมไทยและการลบบทบรรยายออกจากอนิเมะ

2 วรรณกรรมและทฤษฎีบทที่เกี่ยวข้อง

ในการกล่าวถึงขั้นตอนวิธีการต่อเติมภาพ จะเริ่มต้นด้วยการกล่าวทบทวนเกี่ยวกับการต่อเติมภาพเฉด สีเทา (grayscale image) ก่อน ดังนี้

ให้ $\Omega\subset\mathbb{R}^2$ แทนโดเมนภาพ (image domain) $D\subset\mathbb{R}^2$ แทนโดเมนต่อเติม (ดูรูปที่ 2.1) และ $V\subset[0,\infty)$

ให้ $u^{'}\colon\Omega\to V,\;z:\Omega\to V$ แทนภาพที่ได้รับการซ่อมแซมและภาพที่ต้องการซ่อมแซม ตาม ลำดับ

ในที่นี้ $\mathbf{x}=(x,y)\in\Omega$ แทนพิกัดทางกายภาพ (physical position) ของภาพ และ $u(\mathbf{x})\in V$ แทนระดับความเข้มของภาพ (image intensity) ที่ \mathbf{x} และ Ω มีรูปร่างสี่เหลี่ยม

นอกจากนี้เราสามารถสมมติได้โดยไม่เสียหลักการสำคัญว่า $\Omega=[1,n]^2$ และ V=[0,1] เมื่อ n>0 เป็นจำนวนเต็มบวก ทั้งนี้ เราจะเรียกภาพ u,z ที่นิยามข้างต้นว่าภาพเฉดสีเทา

³ภาพจาก https://www.samehadaku.tv/2018/07/grand-blue-episode-1-subtitle-indonesia.html สืบค้นเมื่อวันที่ 23 กันยายน 2561

รูปที่ 2.1: D แทนโดเมนต่อเติม

2.1 ตัวแบบการต่อเติมภาพเฉดสีเทาที่ใช้การแปรผันรวม

ในการต่อเติมภาพเฉดสีเทา Chan และ Shen [1] ได้นำเสนอตัวแบบเชิงการแปรผัน (variational model) ที่ใช้เร็กกิวลาร์ไรซ์เซชันแบบการแปรผันรวม (Total variation based regularization) โดยพัฒนา ต่อจากตัวแบบ ROF สำหรับการกำจัดสัญญาณรบกวน [2] ซึ่งตัวแบบเชิงการแปรผันนี้กำหนดโดย

$$\min_{u} \{ \mathcal{J}(u) = \frac{1}{2} \int_{\Omega} \lambda(u - z)^{2} d\Omega + \int_{\Omega} |\nabla u| d\Omega \}$$
 (2.1)

เมื่อ

$$\lambda = \lambda(\mathbf{x}) = \begin{cases} \lambda_0, & x \in \Omega \backslash D \\ 0, & x \in D \end{cases}$$
 (2.2)

แทนพารามิเตอร์เร็กกิวลาร์ไรซ์เซชัน (regularization parameter) และ $\lambda_0>0$

โดยแคลคูลัสของการแปรผัน (Calculus of variations) จะได้สมการออยเลอร์ลากรางจ์ที่เกี่ยวข้อง กับ (2.1) เป็น

$$\begin{cases}
-\nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) + \lambda(u - z) = 0, & \mathbf{x} \in (1, n)^2 \\
\frac{\partial u}{\partial \boldsymbol{n}} = 0, & x \in \partial\Omega
\end{cases}$$
(2.3)

เมื่อ $m{n}$ แทนเวกเตอร์หน่วยที่ตั้งฉากกับของของภาพ ต่อไปจะกล่าวทบทวนวิธีการเชิงตัวเลขสำหรับแก้สมการเชิงอนุพันธ์ย่อยใน (2.3)

(1) วิธีการเดินเวลาแบบชัดแจ้ง (explicit time marching method)
คณะวิจัย [2] ได้แนะนำวิธีการเชิงตัวเลขสำหรับการกำจัดสัญญาณรบกวนโดยใช้วิธีการเดินเวลาแบบ ชัดแจ้ง ซึ่งสามารถประยุกต์เป็นวิธีเชิงตัวเลขสำหรับการต่อเติมภาพได้ดังนี้

เริ่มจากการแนะนำตัวแปรเวลาสังเคราะห์ (time artificial variable) จากนั้นหาคำตอบแบบ สภาวะคงตัว (steady-state solution) ในขณะที่ $t \to \infty$ ของสมการเชิงอนุพันธ์ย่อยไม่เป็นเชิงเส้น

ที่ขึ้นอยู่กับเวลา

$$u(\mathbf{x}, t_{k+1}) = u(\mathbf{x}, t_k) + \tau \left(\nabla \cdot \left(\frac{\nabla u(\mathbf{x}, t_k)}{|\nabla u(\mathbf{x}, t_k)|} \right) + \lambda(\mathbf{x}) (u(\mathbf{x}, t_k) - z(\mathbf{x})) \right), \ u(\mathbf{x}, t_0) = z$$
(2.4)

เมื่อ $t_k=t_0+k au\;(au>0)$ แทนขั้นเวลาที่ k และ $t_0=0$ แทนขั้นเวลาเริ่มต้น

(2) วิธีการทำซ้ำแบบจุดตรึง (fixed-point iteration method)

คณะวิจัย [3] ได้แนะนำวิธีการเชิงตัวเลขสำหรับการกำจัดสัญญาณรบกวนโดยใช้วิธีการทำซ้ำแบบจุด ตรึง ซึ่งสามารถประยุกต์เป็นวิธีเชิงตัวเลขสำหรับการต่อเติมภาพได้ดังนี้

เริ่มจากการแนะนำดัชนีการทำซ้ำแบบจุดตรึง $\nu=0,1,2,\cdots$ และนิยามรูปแบบการทำซ้ำ โดย

$$-\nabla \cdot \left(\frac{\nabla u^{[\nu+1]}}{|\nabla u|^{[\nu]}}\right) + \lambda (u^{[\nu+1]} - z) = 0, \ u^{[0]} = z \tag{2.5}$$

เนื่องจาก $\frac{1}{|\nabla u|}=\frac{1}{\sqrt{u_x^2+u_y^2}}\to\infty$ ในบริเวณที่ u มีความเข้มสีเป็นเอกพันธุ์ ($u(\mathbf{x})=$ ค่าคงตัว) เพื่อหลีกเลี่ยงปัญหาเชิงตัวเลขจะเกิดขึ้นใน (2.4) และ (2.5) เราจะใช้

$$|\nabla u| \approx |\nabla u|_{\beta} = \sqrt{u_x^2 + u_y^2 + \beta}, \ 0 < \beta \ll 1$$

จาก (2.4) และ (2.5) เราพบว่ายิ่ง β มีค่าน้อยลงมากขึ้นเท่าไหร่ ความแม่นยำของตัวแบบ (2.1) ยิ่งมี มากขึ้นเท่านั้น นอกจากนี้ เรายังพบอีกว่า การแก้สมการ (2.4) และ (2.5) ยิ่งมีความยุ่งยากมากขึ้นสำหรับ β ที่มีค่าน้อยๆ

เพื่อเอาชนะความยากเชิงตัวเลขนี้ คณะวิจัยโดย [4] ได้แนะนำวิธีการสปริทเบรกแมนซึ่งสามารถกล่าว ถึงพอสังเขป ดังนี้

(3) วิธีการสปริทเบรกแมน (Split Bregman method)

เริ่มจากการแนะนำเวกเตอร์เสริม $m{w}$ พารามิเตอร์เบรกแมน (Bregman parameter) $m{b}$ และพารามิเตอร์เพนัลที (panalty parameter) heta>0 และเขียน (2.1) ใหม่ ดังนี้

$$\min_{u, \mathbf{w}} \{ \mathcal{J}(u, \mathbf{w}) = \frac{1}{2} \int_{\Omega} \lambda (u - z)^2 d\Omega + \int_{\Omega} |\nabla \mathbf{w}| d\Omega + \frac{\theta}{2} \int_{\Omega} (\mathbf{w} - \nabla u + \mathbf{b}) d\Omega \}$$
(2.6)

สำหรับการหาคำตอบของ (2.6) เราจะใช้วิธีการหาค่าต่ำที่สุดแบบสลับ (alternating minimization method) โดยเริ่มจากการตรึง $m{w}^{ ext{old}}$ และ $m{b}^{ ext{old}}$ จากนั้นแก้ปัญหาย่อย

$$u^{\text{New}} = \underset{u}{\text{arg min}} \{ \mathcal{J}_1(u) = \frac{1}{2} \int_{\Omega} \lambda (u - z)^2 d\Omega + \frac{\theta}{2} \int_{\Omega} (\boldsymbol{w}^{\text{old}} - \nabla u + \boldsymbol{b}^{\text{old}}) d\Omega \}$$
(2.7)

จากนั้นใช้ u^{New} ที่ได้จากการแก้ปัญหาย่อยใน (2.7) เพื่อแก้ปัญหาย่อย

$$\mathbf{w}^{\text{New}} = \underset{\mathbf{w}}{\text{arg min}} \{ \mathcal{J}_2(\mathbf{w}) = \int_{\Omega} |\nabla \mathbf{w}| d\Omega + \frac{\theta}{2} \int_{\Omega} (\mathbf{w} - \nabla u^{\text{New}} + \mathbf{b}^{\text{old}}) d\Omega \}$$
 (2.8)

สุดท้ายจึงปรับปรุงพารามิเตอร์เบรกแมน

$$\boldsymbol{b}^{\text{New}} = \boldsymbol{b}^{\text{old}} + \nabla u^{\text{New}} - \boldsymbol{w}^{\text{New}}$$
 (2.9)

ดำเนินการเช่นนี้จนกระทั่ง $||u^{
m new}-u^{
m old}||<\epsilon_1$ หรือ New $>\epsilon_2$ เมื่อ $\epsilon_1,\epsilon_2>0$

2.2 ตัวแบบการต่อเติมภาพสีที่ใช้การแปรผันรวม

ต่อไปเราจะพิจารณาภาพสีในระบบ RGB นั่นคือ เราสมมติว่า

$$\mathbf{u} = (u_1, u_2, u_3)^{\top}, \ \mathbf{z} = (z_1, z_2, z_3)^{\top} : \Omega \to V^3$$

เมื่อ $u_1,u_2,u_3:\Omega\to V$ และ $z_1,z_2,z_3:\Omega\to V$ แทนภาพในเฉดสีแดง สีเขียว และสีน้ำเงินของ $m{u},m{z}$ ตามลำดับ

ในทำนองเดียวกันกับตัวแบบการต่อเติมภาพเฉดสีเทาที่ใช้การแปรผันรวม ตัวแบบการต่อเติมภาพสีที่ ใช้การแปรผันรวมสามารถเขียนได้ดังนี้

$$\min_{\mathbf{u}} \{ \bar{\mathcal{J}}(\mathbf{u}) = \bar{\mathcal{D}}(\mathbf{u}, \mathbf{z}) + \bar{\mathcal{R}}(\mathbf{u}) \}$$
 (2.10)

เมื่อ

$$\bar{\mathcal{D}}(\boldsymbol{u},\boldsymbol{z}) = \frac{1}{2} \int_{\Omega} \lambda (u_1 - z_1)^2 d\Omega + \frac{1}{2} \int_{\Omega} \lambda (u_2 - z_2)^2 d\Omega + \frac{1}{2} \int_{\Omega} \lambda (u_3 - z_3)^2 d\Omega$$

และ

$$\bar{\mathcal{R}}(\boldsymbol{u}) = \int_{\Omega} |\nabla u_1| d\Omega + \int_{\Omega} |\nabla u_2| d\Omega + \int_{\Omega} |\nabla u_3| d\Omega$$

เพื่อหลีกเลี่ยงปัญหาที่มาจากเทอม $\frac{1}{|\nabla u_l|}$ (l=1,2,3) โครงงานวิจัยนี้จะพัฒนาขั้นตอนวิธีเชิง ตัวเลขสำหรับต่อเติมภาพจากวิธีการสปริทเบรกแมน โดยแก้ปัญหาการหาค่าต่ำที่สุดต่อไปนี้

$$\min_{\boldsymbol{u},\boldsymbol{w}_{1},\boldsymbol{w}_{2},\boldsymbol{w}_{3}} \{ \bar{\mathcal{J}}(\boldsymbol{u},\boldsymbol{w}_{1},\boldsymbol{w}_{2},\boldsymbol{w}_{3}) = \bar{\mathcal{D}}(\boldsymbol{u},\boldsymbol{z}) + \sum_{l=1}^{3} \int_{\Omega} |\boldsymbol{w}_{l}| d\Omega + \frac{\theta_{l}}{2} \sum_{l=1}^{3} \int_{\Omega} (\boldsymbol{w}_{l} - \nabla u_{l} - \boldsymbol{b}_{l})^{2} d\Omega \}, \qquad \theta_{l} > 0$$
(2.11)

ด้วยวิธีการหาต่ำที่สุดแบบสลับดังเช่น (2.6) - (2.9)

3 Preliminary Results

3.1 การซ่อมแซมภาพจิตรกรรมไทยโบราณ

สำหรับการซ่อมแซมจิตรกรรมไทยโบราณ ก่อนอื่นจะทำการปรับปุรงขั้นตอนวิธีเชิงตัวเลขที่มีอยู่แต่ เดิมก่อน โดยระหว่างการปรับปรุงวิธีเชิงตัวเลข จะใช้ภาพที่ได้สร้างขึ้น 5 ภาพ ซึ่งแต่ละภาพมีขนาด 256 x 256 พิกเซล ซึ่งมีดังนี้

รูปที่ 3.2: ภาพที่จะทำการซ่อมแซม

3.1.1 การเปรียบเทียบประสิทธิภาพขั้นตอนวิธีเชิงตัวเลขที่มีอยู่สำหรับตัวแบบต่อเติมภาพสีที่ใช้การ แปรผันรวม

โดยจะทำการเปรียบเทียบความเร็วของวิธีการแก้การแปรผันรวมที่มีอยู่เดิม ดังที่ได้กล่าวไว้ในหัวข้อ 2.1 และหัวข้อ 2.2 ซึ่งได้ผลลัพธ์เฉลี่ยของรูปภาพที่ใช้ทดสอบดังนี้

วิธีการ	เวลาประมวล (วินาที)	PSNR (dB)	SSIM
การเดินเวลา	146.2108	16.19756	0.9954786
การทำซ้ำจุดตรึง	72.32298	40.12234	0.999905
การสปริทเบิร์กแมน	11.438246	39.39536	0.999894

ตารางที่ 1: แสดงผลลัพธ์เฉลี่ยของวิธีการเชิงตัวเลขสำหรับการต่อเติมภาพ

จะเห็นว่าจากตาราง พบว่าแม้วิธีการทำซ้ำจุดตรึง และวิธีการสปริทเบรกแมน จะมีคุณภาพใกล้เคียง กัน แต่ว่าวิธีการสปริทเบรกแมน ใช้เวลาในการประมวลผลน้อยกว่ามาก ผู้วิจัย จึงนำวิธีการสปริทเบรกเมนไป ใช้พัฒนาวิธีการต่อเติมภาพชนิดใหม่ลำดับถัดไป

3.1.2 ขั้นตอนวิธีการสำหรับต่อเติมภาพชนิดใหม่

จากวิธีการสปริทเบรกแมนนั้นจะใช้วิธีการหาคำตอบโดยวิธีการทำซ้ำจนกระทั่งลู่เข้า ทางผู้ศึกษาจึง สนใจที่หาคำตอบเริ่มต้นสำหรับการทำซ้ำที่ดีขึ้น เพื่อทำให้การทำซ้ำลู่เข้าสู่คำตอบได้เร็วขึ้น โดยการทำงานกับ รูปภาพที่เล็กกว่า จากนั้นจึงทำการขยายลัพธ์ที่ได้ขึ้นมาทำกับภาพใหญ่ ซึ่งวิธีนี้เรียกว่าวิธีพีระมิดรูปภาพ (pyramid methods) [5] โดยผู้วิจัยจะทำการย่อขนาดรูปลงครึ่งนึงโดยใช้วิธี Bilinear Interpolation ทั้งสิ้น 4 ครั้ง จากนั้นเริ่มทำการต่อเติมภาพขนาดเล็ก จากนั้นนำผลลัพธ์ที่ได้จากภาพขนาดเล็ก ทำการขยายภาพขึ้น สองเท่า ก่อนจะนำเฉพาะส่วนที่อยู่ในโดเมนต่อเติมของภาพที่ถูกขยายมาทำการต่อเติมเพื่อให้ส่วนที่ถูกขยาย ขึ้นมาเป็นคำตอบเริ่มต้นสำหรับการต่อเติมภาพในขั้นที่สูงขึ้น

โดยจะทำการเปรียบเทียบจำนวนครั้งในชั้นที่รูป[์]ภาพมีขนาดเล็ก จนไปถึงชั้นที่มีขนาดใหญ่ เป็นดัง ตารางนี้

รูปแบบการทำซ้ำ	I I		SSIM
ไม่ใช้พีระมิดรูปภาพ	13.690378	30.72924	0.9997676
10/1/1/10000	8.719006	30.5632	0.9997186
10/3/3/10000	5.8064316	30.62492	0.9997298
10/10/10/10000	2.6100824	30.64522	0.9997388
100/1/1/10000	5.839534	30.68802	0.9997514
100/3/3/10000	4.4923898	30.68914	0.9997498
100/10/10/10000	2.4151272	30.67366	0.9997476

ตารางที่ 2: แสดงผลลัพธ์เฉลี่ยของการใช้พีระมิดภาพในการต่อเติมในชั้นที่ต่างกัน

จากตารางจะสังเกตว่า ยิ่งจำนวนการทำซ้ำในชั้นที่รูปภาพมีขนาดเล็กจำนวนมาก ยิ่งประมวลผลได้เร็วขึ้น นอกจากนี้แล้ว ผู้วิจัยยังได้สังเกตอีกว่า การทำซ้ำนั้น จะลู่เข้าเร็วในช่วงแรก จากนั้นความเร็วในการลู่เข้าจะลด ลง ซึ่งทำให้การทำซ้ำเพียงไม่กี่ครั้งในรูปภาพขนาดใหญ่สุด มีผลลัพธ์ใกล้เคียงกับภาพต้นฉบับได้ โดยผู้วิจัยจึง กำหนดให้การทำซ้ำในรูปภาพขนาดใหญ่สุดมีการทำซ้ำเพียง 10 ครั้ง และพบว่าได้ผลลัพธ์ดังนี้

รูปแบบการทำซ้ำ	เวลาประมวล (วินาที)	PSNR (dB)	SSIM
ไม่ใช้พีระมิดรูปภาพ	0.394235	25.22906	0.9989972
10/1/1/10000	0.3839476	31.31306	0.9997732
10/3/3/10000	0.3672704	30.95474	0.9997682
10/10/10/10000	0.4077878	30.78114	0.9997406
100/1/1/10000	0.3789076	31.25708	0.9997518
100/3/3/10000	0.3939378	30.8896	0.999746
100/10/10/10000	0.4507862	30.81302	0.9997504

ตารางที่ 3: แสดงผลลัพธ์เฉลี่ยของการใช้พีระมิดภาพในการต่อเติมโดยกำหนดให้ชั้นรูปภาพขนาดใหญ่สุดทำ ซ้ำเพียง 10 ครั้ง

จากตารางจะเห็นว่า การทำซ้ำในชั้นที่รูปภาพมีขนาดเล็กมากจำนวนมาก ไม่ช่วยให้การประมวลผลได้เร็วขึ้น ผู้ วิจัยจึงเลือกใช้การทำซ้ำแบบ 10/3/3/10 ในการต่อเติมภาพ

3.1.3 การทดสอบประสิทธิภาพในการซ่อมแซมภาพจิตรกรรมไทยโบราณ

ชึ่งภาพจิตรกรรมที่ใช้ทดสอบ มีทั้งสิ้น 5 ภาพได้แก่ ภาพที่ 1 และภาพที่ 2 คือ จิตรกรรมฝาผนังวัดแก้ว ไพฑูรย์ ภาพที่ 3 คือ จิตรกรรมฝาผนังวัดพระยืนพุทธบาทยุคล ภาพที่ 4 คือ จิตรกรรมฝาผนังวัดคงคาราม และภาพที่ 5 คือ จิตรกรรมฝาผนังวัดท่าถนน โดยจะทำให้ข้อมูลข้องทั้ง 5 ภาพเกิดความเสียหาย โดยใช้รอย ความเสียหายจากภาพพระเจ้าสร้างอดัม จากนั้นทำการทดสอบการต่อเติมภาพทั้ง 5 โดยใช้วิธีการสปริทเบรก แมนพร้อมทั้งการใช้พีระมิดรูปภาพที่มีการทำซ้ำแต่ละชั้นเป็น 10/3/3/10 ได้ผลลัพธ์ออกเป็นดังตารางนี้

วิธีการ	เวลาประมวล (วินาที)	PSNR (dB)	SSIM		
วิธีการที่พัฒนาขึ้น	0.2826256	36.79616	0.999988		
OpenCV - Fast Marching Method	0.0198226	35.56518	0.9968536		

ตารางที่ 4: แสดงผลลัพธ์เฉลี่ยของการซ่อมแซมภาพศิลปะไทย

3.2 การลบบทบรรยายบนอนิเมะ

สำหรับการลบบทบรรยายอนิเมะ จะใช้วิดีโอ Anime Festival Asia Special Video - feat. Inori Aizawa ซึ่งผลิตโดย Collateral Damage Studios โดยจะตัดวิดีโอ 1 นาทีแรกสำหรับการทดลอง โดยวิดีโอ ดังกล่าวขนาด 1280 x 720 พิกเซล แต่เนื่องจากโดยปกติแล้ว อนิเมะมักมีบรรทัดเพียง 1 ถึง 2 บรรทัด จึง ทำการแบ่งวิดีโอออกอีกเป็น 5 ส่วนได้ขนาดเป็น 1280 x 144 พิกเซลก่อนนำไปทดสอบในลำดับถัดไป และสำหรับบทบรรยายที่จะใช้ทดสอบนั้น เนื่องจากวิดีโอ Anime Festival Asia Special Video - feat. Inori Aizawa ไม่มีคำพูดใดๆ จึงใช้บทความ lorem ipsum เป็นบทบรรยาย โดยจะทำการแสดงบทบรรยาย 1 บรรทัด ความยาว 3 วินาที ทุก 2 วินาที นั่นคือในวิดีโอดังกล่าวจะมีบทบรรยายทั้งสิ้น 20 บรรทัด

3.2.1 การหาบทบรรยายบนอนิเมะ

ก่อนจะลบบทบรรยายนั้น จะเป็นต้องหาบทบรรยายในภาพให้ได้เสียก่อน โดยบทบรรยายของอนิเมะ นั้น มักจะขึ้นบริเวณด้านล่างของหน้าจอ และนอกจากนี้ บทบรรยายอนิเมะมักจะใช้ขอบของตัวอักษรเป็นสีดำ อีกด้วย ด้วยสมบัตินี้เองทำให้เราสามารถหาบริเวณบนเฟรมที่เป็นบทบรรยายได้โดยจะมีวิธีหาพื้นที่ซึ่งเป็นบท บรรยายดังนี้

\ */ 大*藥學 , 、

(b) ภาพหลังทำการตัดส่วนล่างและ threshold-

(a) ภาพเฟรมอนิเมะที่มีบทบรรยาย

ing

ตัดเฟรมมาเฉพาะส่วนล่างของเฟรมที่น่าจะมีบทบรรยายปรากฏอยู่ จากนั้นทำการ thresholding เพื่อหา บริเวณที่เป็นสีดำเนื่องจากบทบรรยายจะถูกล้อมรอบด้วยสีดำเสมอ

//噂,

e e e e e

(a) ภาพหลังทำการสลับสี

(b) ภาพหลังทำการเปลี่ยนพื้นที่สีขาว

ทำการสลับสีระหว่างสีดำกับสีขาวของภาพที่ทำการ thresholding หลังจากนั้นทำการเปลี่ยนพื้นที่สีขาวซึ่งติด กับขอบของเฟรมทั้งหมดให้เป็นสีดำ เพราะว่า บทบรรยายไม่อยู่ติดกับหน้าจอ เราจะถือว่าสิ่งที่อยู่ติดกับหน้า จอไม่ใช่บทบรรยาย

(a) ภาพหลังการ erode และ opening (b) ภาพหลังการ dilate

จากนั้นนำวัตถุที่มีขนาดเล็กเกินไป หรือใหญ่เกินไปออกจากภาพด้วยวิธีการ erode และ opening จะได้ว่า ส่วนที่เหลือเป็นสีขาวในภาพคือบทบรรยาย แต่ว่าขอบของบทบรรยายก็ต้องถูกลบออกไปด้วย จึงทำการ dilate เพื่อขยายขอบของบทบรรยายให้เท่ากับบทบรรยายที่อยู่ในเฟรมวิดีโอ และสิ่งที่เหลืออยู่คือโดเมนต่อ เติมที่จะนำไปใช้ในการซ่อมแซมภาพต่อไป

ชึ่งวิธีการหาบทบรรยายที่กล่าวไปข้างต้น มีความสามารถในการหาโดเมนต่อเติมใบบทบรรยายภาษาต่างๆ เฉลี่ยดังนี้

ภาษา	จำนวนพิกเซลในโดเมน	จำนวนพิกเซลที่ตรวจพบ	จำนวนพิกเซลที่ผิดพลาด	ร้อยละการผิดพลาด
ไทย	23222219.8	24083124.8	2141201	9.220398882
อังกฤษ	27278744.8	28598424.2	3714320.8	13.61613769
ญี่ปุ่น	28544173	30103466.2	3740970.6	13.10584872

ตารางที่ 5: แสดงความคาดเคลื่อนเฉลี่ยของการหาโดเมนต่อเติม ในบทบรรยายภาษาต่างๆ

3.2.2 การลบคำบรรยายจากบทอนิเมะ

วิธีการ	เวลาประมวล (วินาที)	PSNR (dB)	SSIM
ไม่ใช้	141.2850811	31.6037548	0.952397
ยืมเฟรม	132.7787761	32.6481538	0.9658446
ข้ามเฟรม	89.29141836	29.2396524	0.942108
ไม่ใช้	75.75894242	29.4711168	0.947267

ตารางที่ 6: แสดงผลลัพธ์เฉลี่ยของการยืมเฟรมและข้ามเฟรม

วิธีการ	เวลาประมวล (วินาที)	PSNR (dB)	SSIM
ที่คิดค้นขึ้น	75.75894242	29.4711168	0.947267
OpenCV - Fast Marching Method	48.64641114	33.0566406	0.9621476

ตารางที่ 7: แสดงผลลัพธ์เฉลี่ยของการซ่อมแซมภาพศิลปะไทย

4 Planning

แผนการดำเนินงานตลอดทั้งโครงการสามารถสรุปได้โดยย่อจากตารางต่อไปนี้

		เดือนที่										
แผนการดำเนินงาน	1	2	3	4	5	6	7	8	9	10	11	12
ศึกษาตัวแบบและขั้นตอนวิธีการต่อเติมภาพที่ใช้การแปรผันรวมในเชิงลึก	х	х										
พัฒนาขั้นตอนวิธีสำหรับการต่อเติมภาพที่ใช้การแปรผันรวมชนิดใหม่			×	×	×	×						
ทดสอบขั้นตอนวิธีการต่อเติมภาพที่พัฒนาขึ้นโดยโปรแกรม-				×	×	×						
คอมพิวเตอร์บนภาพสังเคราะห์และภาพจริง												
อภิปรายผลที่ได้จากการทดลองเชิงตัวเลข						X	×	X				
สรุปผลการดำเนินงานวิจัยและจัดทำรูปเล่มฉบับสมบูรณ์									Х	×	x	×

5 บรรณานุกรม

- [1] T.F. Chan and J. Shen, "Mathematical models of local non-texture inpaintings", SIAM Journal on Applied Mathematics, vol. 62, no. 3, pp. 1019–1043, 2001.
- [2] L. I. Rudin, S. Osher, E. Fatemi, "Nonlinear total variation based noise removal algorithms", Physica D: Nonlinear Phenomena, vol 60, issues 1–4, pp. 259-268, 1992.
- [3] C.R. Vogel and M.E. Oman, "Iterative methods for total variation denoising", SIAM Journal on Scientific Computing. vol. 17, pp. 227-238, 1996.
- [4] T. Goldstein and S. Osher, "The Split Bregman Method for L1-Regularized Problems", SIAM Journal on Imaging Sciences. vol. 2, issue 2, pp. 323-343, 2009.
- [5] E.H. Andelson and C.H. Anderson and J.R. Bergen and P.J. Burt and J.M. Ogden. "Pyramid methods in image processing". 1984