Handout 10

Myhill-Nerode

1 Rappel: Relations d'équivalence et congruences droites

Une relation \sim sur un ensemble U est une relation d'équivalence si

- 1. \sim est réflexive: pour tout $x \in U$: $x \sim x$;
- 2. \sim est symétrique: pour tous $x, y \in U$: si $x \sim y$ alors $y \sim x$;
- 3. \sim est transitive: pour tous $x, y, z \in U$: si $x \sim y$ et $y \sim z$ alors $x \sim z$.

Quand \sim est une relation d'équivalence sur U et $x \in U$ alors la classe d'équivalence de x est $[x]_{\sim} = \{y \in U \mid x \sim y\}$. Deux classes d'équivalence $[x]_{\sim}$ et $[y]_{\sim}$ sont soit égales (quand $x \sim y$), soit disjointes (quand $x \not\sim y$). Il s'ensuit que U est partionné en classes d'équivalence par rapport à \sim , c'est-à-dire la famille de toutes les classes d'équivalence de \sim est une partition de U.

Une famille C de parties de U est une partition de U quand

- 1. tous les éléments de C sont des parties non vides de U: $\emptyset \notin C$;
- 2. tous les éléments de C sont disjoints: pour tous $P_1, P_2 \in C$: $P_1 \neq P_2 \Rightarrow P_1 \cap P_2 = \emptyset$;
- 3. les éléments de C couvrent tout $U: \bigcup_{P \in C} P = U$.

Si C est une partition de U alors la relation \sim_C sur U définie par $x \sim_C y$ si et seulement s'il existe un $P \in C$ tel que $x, y \in P$, est une relation d'équivalence.

L'indice d'une relation d'équivalence \sim est le nombre de ses classes d'équivalence, ce nombre peut être fini ou infini.

Une relation d'équivalence $\sim \text{sur } \Sigma^*$ est une congruence droite si:

$$\forall x, y, z \in \Sigma^* : x \sim y \Rightarrow xz \sim yz$$

2 Équivalence induite par un langage

Soit $L \subseteq \Sigma^*$ un langage. La relation \sim_L sur Σ^* est définie par

$$x \sim_L y \text{ ssi } \forall w \in \Sigma^* : xw \in L \Leftrightarrow yw \in L$$

Propriétés de cette relation:

- 1. \sim_L est une relation d'équivalence.
- 2. \sim_L est une congruence droite.
- 3. $x \sim_L y$ si et seulement si $x^{-1}L = y^{-1}L$.
- 4. toute classe d'équivalence $[x]_{\sim_L}$ est soit incluse dans L, soit disjointe de L.

3 Équivalence induite par un automate

Soit $A = (\Sigma, Q, q_0, F, \delta)$ un automate déterministe complet. La relation \sim_A sur Σ^* est définie par

$$x \sim_A y \text{ ssi } \delta^*(q_0, x) = \delta^*(q_0, y)$$

Propriétés de cette relation:

- \sim_A est une relation d'équivalence
- \sim_A est une congruence droite
- si L est le langage reconnu par A, alors \sim_A est un raffinement de \sim_L , c'est-à-dire:

$$\forall x, y \in \Sigma^* : \text{si } x \sim_A y \text{ alors } x \sim_L y$$

et on a donc que $indice(\sim_A) \geq indice(\sim_L)$.

• $|Q| \ge indice(\sim_A)$, donc \sim_A est d'indice fini.

4 L'automate induit par une congruence droite \sim d'indice fini

Soit L un langage tel que \sim_L est une congruence droite d'indice fini. Alors l'automate induit $par \sim \text{est } A_{\sim} = (\Sigma, Q, q_0, F, \delta)$ défini par:

- $\bullet \ \ Q = \{[w]_{\sim} \mid w \in \Sigma^*\}$
- $q_0 = [\epsilon]_{\sim}$
- $F = \{ [w]_{\sim} \mid w \in L \}$
- $\delta([w]_{\sim}, a) = [wa]_{\sim}$

Cet automate est bien défini car \sim est d'indice fini et une congruence droite. On a pour cet automate que $\delta^*(q_0, w) = [w]_{\sim}$.

5 Le théorème de Myhill-Nerode

Soit $L \subseteq \Sigma^*$ un langage.

- 1. L est rationnel si et seulement si \sim_L est d'indice fini.
- 2. Si L est rationnel alors l'indice de \sim_L est égal au nombre d'états du plus petit automate déterministe complet qui reconnaît L.