10-Regression

 $ENSY\ SILVER^1$

Thursday $10^{\rm th}$ September, 2020

¹Thanks to my family, my friend and freedom.

1 Introduction

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables.

2 The method of least squares

Theorem 2.1. Given n points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, the straight line y = a + bx minimizing

$$L = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

has slope

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n (\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2}$$

and y-intercept

$$a = \frac{\sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i}{n} = \overline{y} - b\overline{x}$$

3 Residuals

The difference between an observed y_i and the value of the least squares line when $x=x_i$ is called the ith residual. Its magnitude reflects the failure of the least squares.

Theorem 3.1. Let a and b be the least squares coefficients associated with the sample $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. For any value of x, the quantity $\hat{y} = a + bx$ is known as the predicted value of y. For any given i, $i = 1, 2, \dots, n$, the difference $y_i - \hat{y}i = y_i - (a + bx_i)$ is called the i^{th} residual. A graph of $y_i - \hat{y}i$ versus x_i , for all i, is called a residual plot.

4 Nonliner models

Not all dependent variables have linear relations.

- 1. If $y = ae^{bx}$, then $\ln y$ is linear with x.
- 2. If $y = ax^b$, then $\log y$ is linear with $\log x$.
- 3. If $y = L/(1 + e^{a+bx})$, then $\ln\left(\frac{L-y}{y}\right)$ is linear with x.
- 4. If y = 1/(a + bx), then 1/y is linear with x.
- 5. If y = x/(a + bx), then 1/y is linear with 1/x.

5 The linear model

Theorem 5.1. Let $f_{Y|x}(y)$ denote the pdf of the random variable Y for a given value x, and let E(Y|x) denote the expected value associated with $f_{Y|x}(y)$. The function

$$y = E(Y|z)$$

is called the regression curve of Y on x.

5.1 Simple linear model

A pdf $f_{Y|x}(y)$ and a regression curve E(Y|x) form a simple linear model if it satisfies the following assumptions.

- 1. $f_{Y|x}(y)$ is a normal pdf for all x.
- 2. The standard deviation, σ , associated with $f_{Y|x}(y)$ is the same for all x.
- 3. The means of all the conditional Y distributions are collinear—that is,

$$y = E(Y|x) = \beta_0 + \beta_1 x$$

4. All of the conditional distributions represent independent random variables.

Theorem 5.2. Let $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n)$ be a set of points satisfying the simple linear model, $E(Y|x) = \beta_0 + \beta_1 x$. The maximum likelihood estimators for β_0, β_1 , and σ^2 are given by

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} Y_{i})}{n (\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$\hat{\beta}_{0} = \overline{Y} - \hat{\beta}_{1} \overline{x}$$

and

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.

Theorem 5.3. Let $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n)$ be a set of points satisfying the simple linear model, $E(Y|x) = \beta_0 + \beta_1 x$. Let $\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}^2$ be the maximum likelihood estimators for $\beta_0, \beta_1, \sigma^2$, respectively. Then

- 1. $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed.
- 2. $\hat{\beta}_0$ and $\hat{\beta}_1$ are both unbiased: $E(\hat{\beta}_0) = \beta_0$ and $E(\hat{\beta}_1) = \beta_1$.
- 3. $\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i \overline{x})^2}$.
- 4. $\operatorname{Var}(\hat{\beta}_0) = \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i \overline{x})^2}$.

Corollary 5.3.1. Let $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n)$ satisfy the assumptions of the simple linear model. Then

- 1. $\hat{\beta}_1$, \overline{Y} and $\hat{\sigma}^2$ are mutually independent.
- 2. $\frac{n\hat{\sigma}^2}{\sigma^2}$ has a χ^2 distribution with n-2 degrees of freedom.

Corollary 5.3.2. Let $\hat{\sigma}^2$ be the maximum likelihood estimator for σ^2 in a simple linear model. Then $\frac{n}{n-2}\hat{\sigma}^2$ is an unbiased estimator for σ^2 .

Corollary 5.3.3. The random variables \hat{Y} and σ^2 are independent.

Corollary 5.3.4. The unbiased estimator for σ^2 based on σ^2 is denoted S^2 , where

 $S^2 = \frac{n}{n-2}\hat{\sigma}^2$

Applying corollary 5.3.4, we have the distribution about $\hat{\beta}_1$.

Theorem 5.4. Let $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n)$ be a set of points satisfying the simple linear model, $E(Y|x) = \beta_0 + \beta_1 x$. Let $S^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$. Then

$$T_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{S/\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

has a Student t distribution with n-2 degrees of freedom.

Applying theorem 5.4, we could draw inference about β_1 . Similarly, inferences about β_0 and σ^2 can be deduced from χ^2 distribution.

5.2 Drawing inferences about E(Y|x)

Intuition tells us that a reasonable point estimator for E(Y|x) is the height of the regression line at x—that is, $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$. By theorem 5.3, the \hat{Y} is unbiased, and the variance is

$$\operatorname{Var}(\hat{Y}) = \sigma^2 \left[\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$

Now, we construct a Student t random variable based on \hat{Y} . Specifically,

$$T_{n-2} = \frac{\hat{Y} - (\beta_0 + \beta_1 x)}{S\sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}}$$
(1)

Then we can build confidence interval for $E(Y|x) = \beta_0 + \beta_1 x$ from 1.

5.3 Drawing inferences about future observations

Consider the difference $\hat{Y} - Y$. Clearly,

$$E(\hat{Y} - Y) = 0$$

and

$$Var(\hat{Y} - Y) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
 (2)

Then we can build confidence interval for Y from 2.

5.4 Testing the equality of two samples

Theorem 5.5. Let $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n)$ and $(x_1^*, Y_1^*), (x_2^*, Y_2^*), \dots, (x_n^*, Y_m^*)$ be two independent sets of points, each satisfying the assumptions of the simple linear model—that is, $E(Y|x) = \beta_0 + \beta_1 x$ and $E(Y^*|x^*) = \beta_0^* + \beta_1^* x^*$.

$$T = \frac{\hat{\beta}_1 - \hat{\beta}_1^* - (\beta_1 - \beta_1^*)}{S\sqrt{\frac{1}{\sum_{i=1}^n (x_i - \overline{x})^2} + \frac{1}{\sum_{i=1}^n (x_i^* - \overline{x^*})^2}}}$$

and

$$S = \sqrt{\frac{\sum_{i=1}^{n} [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)]^2 + \sum_{i=1}^{m} [Y_i - (\hat{\beta}_0^* + \hat{\beta}_1^* x_i^*)]^2}{n + m - 4}}$$