Question number	Scheme	Marks
4 (a)	$a\left(\sin x^{\circ}\cos 30^{\circ} - \sin 30^{\circ}\cos x^{\circ}\right) = b\left(\sin x^{\circ}\cos 30^{\circ} + \sin 30^{\circ}\cos x^{\circ}\right)$	M1
	$\Rightarrow a \left(\frac{\sqrt{3}}{2} \sin x^{\circ} - \frac{1}{2} \cos x^{\circ} \right) = b \left(\frac{\sqrt{3}}{2} \sin x^{\circ} + \frac{1}{2} \cos x^{\circ} \right)$	M1
	$\Rightarrow \sqrt{3}(a-b)\sin x^{\circ} = (a+b)\cos x^{\circ}$	dM1
	$\Rightarrow \sqrt{3} (a-b)\sin x^{\circ} = (a+b)\cos x^{\circ}$ $\Rightarrow \tan x^{\circ} = \frac{(a+b)}{\sqrt{3} (a-b)}$	ddM1A1 (5)
(b)	$\frac{\sin(x-30)}{6} = \frac{\sin(x+30)}{14}$ $\tan x^{\circ} = \frac{14+6}{\sqrt{3}(14-6)} \Rightarrow x = 55.2849^{\circ} \approx 55.3^{\circ}$	M1 M1A1
	Angles are; $\angle BAC = 85.284^{\circ}$, $\angle ABC = 25.284^{\circ}$ and $\angle ACB = 180 - 110.56^{\circ} = 69.4^{\circ}$	B1 (4)
(c)	Area = $\frac{1}{2} \times 6 \times 14 \times \sin 69.43 = 39.3 \text{ (cm}^2\text{)}$	M1A1 (2)

Addit	Additional Notes			
Part	Mark	Guidance		
(a)	M1	Uses the given trig expansion to expand $\sin(x-30^{\circ})$ and $\sin(x+30^{\circ})$		
		These expansions must be correct for this mark.		
		Accept $a \left[\sin x \cos \left(-30^{\circ} \right) + \cos x \sin \left(-30^{\circ} \right) \right]$ for this mark		
		Condone poor/missing brackets and a or b even missing for this mark		
	M1	Uses the exact values of $\cos 30^{\circ}$ $\left(\frac{\sqrt{3}}{2}\right)$ and $\sin 30^{\circ}$ $\left(\frac{1}{2}\right)$ to leave an		
		equation in $\sin x$, and $\cos x$ as a minimum		
		Condone poor/missing brackets and a or b even missing for this mark		
	dM1	Simplifies their equation to give a minimally acceptable		
		$k(a-b)\sin x^{\circ} = (a+b)\cos x^{\circ}$ where k is a constant.		
		This mark is dependent on the first M mark		
	ddM1	Uses the given identity for tan A to form a minimally acceptable		
		$\tan x^{\circ} = \frac{(a+b)}{k(a-b)} \text{using their } k$		
		This mark is dependent on the first M mark and the previous M mark.		
	A1	For the final correct given identity.		
		Note: This is a show question. There must be no errors for the award of this final A mark		
(b)	M1	Uses a correct sine rule (either way around) to form the equation		
	1,11			
		$\frac{\sin(x-30)}{6} = \frac{\sin(x+30)}{14}$		
		This must be correct for this mark.		
	M1	Uses the given identity for $\tan x^{\circ}$ to form an equation.		
		Also accept $\tan x^{\circ} = \frac{6+14}{\sqrt{3}(6-14)} \Rightarrow x = \dots$		
	A1	For $x = 55.3^{\circ}$ or better		
		Allow recovery from $x = -55.3^{\circ}$ if they clearly state $x = 55.3^{\circ}$ as final answer		
	B1	$\angle ACB = 69.4^{\circ}$ cao		
(c)	M1	Uses the correct formula for the area of a triangle with the correct given		
		values of 6 cm and 14 cm with their $\angle ACB$ or as given in ALT if they find		
		length AB .		
		Note: $\angle ACB = 180^{\circ} - ('55.3' - 30)^{\circ} - ('55.3' + 30)^{\circ}$		
		ALT		
		$A = \frac{1}{2} \times 6 \times 13.14 \times \sin 85.3 = (39.3)$ or $A = \frac{1}{2} \times 14 \times 13.14 \times \sin 25.3 = (39.3)$		
	A1	$A = 39.3 \text{ (cm}^2)$		
ALT ·	ALT – finds the perpendicular height and then uses half base × height.			