

一连架构 成长之路

SACC 第十届中国系统架构师大会

大型企业智能运维的探索和实践

孙 杰

构建新IT运维 管理体系

全景业务 服务管理

日志采集 监控告警

知识库 故障自治

构建新IT运维管理体系

传统运维软件逐渐不适应运维需求

所有的运维软件大多是事后报 警,此时损失已经造成,晚了!

零散

一种软件监控一类设备,无法 提供整体的运维监控解决方案

针对不同的用户提供的是 相同的界面和视图,不能 满足用户不同岗位、不同 业务的运维要求

无用

由于无法发挥实质性的作用, 且运行时间长之后性能影响 显著,最终被弃用。

智能化程度差,以监控和报表为主,不具备大数据关联分析和深度数据挖掘功能

传统运维存在的突出问题

数据分散,不利于故障分析和问题跟踪

- 不同的数据存储在不同的运维系统中,无法关联
- 数据格式、时间戳等各不相同,不利于问题排查

要的功能没有,没用的数据重复采集,影响正常业务

- 每个运维软件都有特长部分,但采集数据多有重复
- 有些甚至相互影响,干扰正常业务运行

投资浪费,增加运维压力

- 采购多种运维软件,在功能上、设备上存在投资浪费
- 没有减轻运维压力,还增加多种软件系统的维护工作

运维技术在持续升级

以设备为中心的维护

升级为

以数据为中心的运营

升级的3个原因: 技术进步

运维事故

运维压力

	ΛI	工具	自动化	智能
现状	目前大量的用户采用 人工运维方式,包括 自行运维、外包运维、 原厂维保等	一些用户开始尝试自 主开发工具、外购工 具或者利用其他软件 的附带工具进行运维	大部分互联网用户 使用自动化运维; 仅少量传统用户尝 试自动化运维	很多客户开始探索使用大数据进行智能运维管理,并获得惊人收获
前景	人艰不拆	"弱智""无用"	实施不易	未来趋势

运维的理想

无论云上云下,保障业务系统稳定运行都是最重要的工作。

- 通过部署智能运维系统,能够显著提升运维效率,大大增强运维团队的能力和价值;
- 通过部署智能运维系统,能够显著增加运维透明度,使管理和运维人员增加主动权和掌控力;
- 通过部署智能运维系统,能够显著降低故障频率,使运维更省心。

维护 ->运营

帮助用户将以设备为中心的维护升级为以数据为中心的运营。

"活着" -> 健康

将运维质量的标准,从保证系统"活着",升级为确保系统始终运行在<mark>最佳状态</mark>。

合规 -> 敏捷

将用户的运维管理,从满足流程要求的合规管理,升级为以事件响应为特点的<mark>敏捷管理。</mark>

AIOps运维阶段发展和演进

AlOps:即Algorithmic IT Operations,是由Gartner定义的新类别,基于算法的IT运维。通俗来说,就是将人工智能数据科学和算法用于传统运维领域,基于已有的运维数据(日志、监控信息、应用信息等),通过机器学习的方式来进一步解决自动化运维所未能解决的问题,提高系统的智能化、稳定性、降低IT成本,并提高企业的竞争力。

驱动的3个力量:

业务驱动 技术驱动 人才驱动

注: 当基础设施固定下来后, 运维模式最终也会固定下来。你所处的发展阶段, 决定了你要做的事。

科学规划、分阶段实现

NHTSA	LO	L1	L2	L3	L	1
	LO	L1	L2	L3	L4	L5
SAE	无自动化	驾驶支持	部分自动化	有条件自动 化	高度自动化	完全自动化
功能	夜视 行人检测 交通标志识别 盲点检测 并线辅助 后排路口交通警报 车道偏离警告	自适应巡航驾驶系统 自动紧急制动 停车辅助系统 前向碰撞预警系统 车身电子稳定系统	车道保持辅助系统	拥 <mark>挤辅助驾</mark> 驶	停车场自动泊车	
特征	传感探测和决策警 报	单一功能(以上之 一)	组合功能 (L1/L2组合)	特定条件 部分任务	特定条件 全部任务	全部条件 全部任务

• 尝试应用: 开始尝试应用AI能力, 还无较成熟单点应用

二级

单点应用:具备单场景AI运维能力,初步形成供内部使用的学件

二红

• 串联应用:有由多个单场景AI运维模块串联起来的流程化AI运维能力

ग्प श्रेष

•能力完备:主要运维场景均已实现流程化免干预AI运维能力

开纸

终极AIOPS:有中枢AI,可以在成本、质量、效率间从容调整,达到业务不同生命周期对三个方面不同的指标要求,实现多目标下的最优或按需最优

IT业务服务管理—特点

业务视角管理资源的视图

- 自动发现应用依赖关系
- 优先处理关键业务工作负载,然后再处理非生产工作负载
- 以与业务一致的方式管理基础架构

业务视角下全链路分析的必要

- 1、缺乏端到端的应用性能管理,无法快速准确定位故障原因,导致大量人员成本和时间成本的消耗
 - 2、缺乏真实用户体验管理,导致IT部门的核心价值没有充分体现

业务视角的全方位分析

业务应用性能监控---发现瓶颈和故障

- 数据采集:
- 1、客户端:主动式探测和被动式监测 2、服务端:旁路监听和应用探针

几种技术的对比

位置	方式	技术	侵入式	竞品对标	网络问题 定位	全件4	代码级定位	后端服务 监控
主动		基于自动化测试的拨测	1	0	0		-	
客户端	被动	浏览器嵌码	0			0	-	
		App嵌码	0	-	0	0	0	
服务端	被动	旁路监听	,		0	0		0
		应用探针	0			0	0	0

大数据日志采集与监控告警

基于大数据平台的日志采集分析

基于大数据平台,提供日志采集和聚合处理

日志关联分析帮助准确全面定位,提升效能和满意度

智能预测与预警,为精细管理,科学决策提供量化依据

各种日志的采集分析

跨层采集与综合监控

T1 设备层

对机房内的各种设备进行监控,如:交换机、路由器、安全设备、服务器、UPS、精密空调等,实现物理层的实时监控和数据采集。

T2 系统层

以系统作为单位,对数据中心的主机(Linux主机和X86服务器)、操作系统 (LINUX/Winwdos)、数据库(Oracle、Mysql等主流)、中间件、存储系统、应用软件API、HTTP端口、备份系统、容灾系统、数据同步系统,虚拟化系统,云平台进行实时监控、预警分析和故障定位。

T3 业务层

在条件许可的情况下,采集一定的业务数据,如用户数、连接数、业务并发量、日志量等等,通过多维关联和分析,对未来的业务运行进行分析和预测。

数据大集中--PMDB

数据统一分析引擎和智能阈值—提前预警

数据的聚合

聚合的2个层面:

- 1、多维度的聚合(时间、位置、业务线、服务、事件、日志、接口等)
- 2、数据的聚合运算(计数、平均、抽样)

数据降维分析

降维分析的几个方法:

- 1、将告警聚合成关联"事件"(AOI)
- 2、减少误报,告警分类
- 3、数据关联

事件和时序关联分析

事件诊断一直是运维领域一个很重要的工作,事件和时序数据的相关性不仅可以为事件诊断提供很好的启发,而且在帮助进行根因分析等都能提供很好的线索。

主流时序数据库对比

时序数据库	技术栈	优点	缺点
Graphite	Python	提供丰富的函数支持,对Grafana的支持最好,维护简单,支持自动Downsample	Whisper存储引擎IOPS高, Carbon组件CPU使用率高,聚合 分析功能弱
InfluxDB	Go	Metric+Tags,部署简单无依赖,实时数据 Downsample,高效存储	开源版本没有集群功能,存在版本 兼容问题,聚合分析功能弱
OpenTSDB	Java	Metric+Tags,集群方案成熟,写高效	查询函数有限,依赖Hbase,运维复杂,聚合分析功能弱
Prometheus	Go	Metric+Tags,适用于容器监控,具有丰富的查询语言,维护简单,集成监控和报警功能	没有集群解决方案,聚合分析功能弱
Druid	Java	支持嵌套数据的列式存储,具有强大的多维聚合分析能力,实时高性能数据摄取,具有分布式容错架构,支持类SQL查询	一般不能查询原始数据,不适合维度基数特别高的场景,时间窗口限制了数据完整性,运维较复杂
Elasticsearch	Java	具有强大的多维聚合分析能力,支持全文检索,支持查询原始数据,灵活性高,社区活跃,扩展丰富	不支持分析字段的列式存储,对硬件资源要求高,集群维护较复杂
ClickHouse	C++	具有强大的多维聚合分析能力,实时高性能数据读写, 支持类SQL查询,丰富的函数支持,具有分布式容错架 构,支持原始数据查询,适用于基数大的维度存储分析	比较年轻,扩展不够丰富,社区还 不够活跃,不支持数据更新和删除, 不支持事务,集群功能较弱,单存

日志处理的几个问题

- + 日志没有集中处理
 - 登陆每一台服务器,使用脚本命令或程序查看
- + 日志被删除
 - 磁盘满了删日志
 - 黑客删除日志,抹除入侵痕迹
- + 日志只做事后追查
 - 没有实时监控、分析
- + 使用数据库存储日志
 - 无法适应TB级海量日志
 - 数据库的schema无法适应干变万化的日志格式
 - 无法提供全文检索

日志标准化: 1、日志内容可理解 2、格式相对统一 3、能自我标识

离线日志处理的几个问题

重点: 1、离线计算管理 2、离线计算的原子控制 3、离线计算的数据质量

实时在线日志处理的几个问题

优化的几个关键点:

- 1、设置合理的批处理时间 2、增加Job并行度 3、使用Kryo系列化类
- 4、减少数据重复计算 5、设置合理的GC 6、设置合理的CPU数量

知识库与故障自治管理

如何从错综复杂的运维数据中形成知识库

运维工作量统计

故障处理是运维人员耗时最多的第一场景

故障处理的演变

逐步摆脱对专家知识结构化的依赖,降低使用门槛 实现知识的机器自学习,提高智能化

策略知识库的构建

企业内部知识库构建

突破与成果--自动分类

多渠道 数据整 合 知识库 架构创 新

> 互联网数据:对数据信源进行标注, 并爬取文章自带的标签

• 本地上传的文件:在上传过程中可为 该文件进行标签的标注

自动分类模型:针对性的采用基于RBM+LSTM的深度学习的方法,面向海量信息进行机器学习自动分类训练

突破与成果--自动分类

采用受限玻尔兹曼机(RBM)和池化(pooling)的操作对文本的语义特征进行恰当的提取,降低文本的特征的稀疏性和冗余性

突破与成果--自动摘要

突破与成果--自动摘要

技术文章

论文格式文章

针对有提示性词语"摘要、内容、 综述"等,将摘要字段后面的一 段话提取为摘要

非论文格式技术文章

- 没有提示摘要的词语时,有一级标题和二级标题的,选择第一个一级标题前面的内容,加上文章的一级标题和二级标题为摘要
- 没有提示摘要的词语时,有一级标题无二级标题的,选择第一个一级标题前面的内容,加上文章的一级标题和一级标题下每段首句为摘要

突破与成果--自动摘要

技术类或解决 方法类

含有提示性词语的文章

在后台提供属性配置功能,建立 属性规则,可以自主添加关键词 属性,针对涉及关键词属性部分 进行摘要

无提示性词语的文章

- 选择文章段首内容加上文章的一级标题,加尾段, 作为摘要
- 选择文章段首和文章一级标题,以及一级标题下 每段首句内容,再加尾段,作为摘要

问答结构类文章

一般选择问题和问题答案的每段首句 作为摘要,如果问题有多个回答则将 多个回答的每段首句罗列成为摘要

kB类的文章

选择KB标题、现象和解决方案或 方法的每段首句内容作为摘要

AIOps的应用场景分析

效率提升方向

智能变更

智能问答

智能决策

容量预测

质量保障方向

异常检测

故障诊断

故障预测

故障自愈

成本管理方向

成本优化

资源优化

容量规划

性能优化

减少对人的依赖,信任机器,实现自判自断自决

