Introduction to Coding Theory - Spring 2025 Assignment 2

Submission Deadline: 06 feb

- 1. Let C_1 and C_2 be two binary linear block codes.
 - (a) Under what conditions is $C_1 \cup C_2$ a linear code?
 - (b) Under what conditions is $C_1 \cap C_2$ a linear code?
- 2. Let \mathcal{C} be an [n=1023,k,d] binary linear block code such that the vector $(1,1,1,\ldots,1) \in \mathcal{C}$. Compute

$$\frac{1}{|\mathcal{C}|} \sum_{\mathbf{c} \in \mathcal{C}} \left(w_H(\mathbf{c}) \bmod 2 \right)$$

[Hint: Consider $\mathbf{u}, \mathbf{v} \in \mathbb{F}_2^m$. How is the parity of $w_H(\mathbf{u} + \mathbf{v})$ related of parities of $w_H(\mathbf{u})$ and $w_H(\mathbf{v})$? Can you find a relation between the number of even weight codewords and the number of odd weight codewords?]

- 3. Let \mathcal{C} be an [n, k, d] binary linear block code such that every column of its generator matrix has at least one 1. Let $\mathcal{C}_i = \{\mathbf{c} \in \mathcal{C} : c_i = 0\}$.
 - (a) Prove that C_i is a linear code.
 - (b) Find the dimension of C_i .
 - (c) Comment on the minimum distance of C_i .
- 4. Let $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ be a matrix over \mathbb{F}_3 . Let W denote the space spanned by the columns of \mathbf{A} .
 - (a) Verify if W is a vector space over \mathbb{F}_3 .
 - (b) Find three different bases of W.
 - (c) Define the dimension of a subspace. What is the dimension of W?
 - (d) Define the rank of a matrix. Show by calculation that the row rank of \mathbf{A} and the column rank of \mathbf{A} are the same and, therefore, obtain the rank of \mathbf{A} .
- 5. A code \mathcal{C} is called a self-dual code if $\mathcal{C} = \mathcal{C}^{\perp}$. Prove that if \mathcal{C} is a self-dual code, the code length must be even, and the code must have a rate equal to 1/2. Further, if G is a generator matrix of \mathcal{C} , show that $GG^T = \mathbf{0}$.