CHUONG 3

ĐẠI SỐ QUAN HỆ

Giới thiệu

 Đại số quan hệ là một mô hình toán học dựa trên lý thuyết tập hợp mà đối tượng xử lý là các quan hệ trong cơ sở dữ liệu quan hệ.

• Đại số quan hệ cho phép mô tả các câu truy vấn rút trích dữ liệu từ các quan hệ trong cơ sở dữ liệu.

Các phép toán tập hợp

Phép hội

Phép giao

Phép trừ

Phép tích Descartes

Các phép toán tập hợp (2)

Hai quan hệ R $(A_1, A_2, ..., A_n)$ và S $(B_1, B_2, ..., B_n)$ được gọi là **khả hợp** nếu:

- R và S có cùng số thuộc tính.
- Từng cặp thuộc tính tương ứng phải cùng miền giá trị t.

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

SVB	
MASV	TENSV
2222	KHOA
4444	NGOC

Phép hội (union)

- Điều kiện: R và S khả hợp.
- Hội của hai quan hệ R và S, được kí hiệu là R U S, là một quan hệ chứa tất cả các bộ ở trong R hoặc ở trong S hoặc ở trong cả hai. Các bộ trùng lặp sẽ bị loại bỏ

$$R \cup S = \{ t / t \in R \lor t \in S \}$$

Phép hội (union) (2)

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

SVB	
MASV	TENSV
2222	KHOA
4444	NGOC

SVA ∪ SVB	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN
4444	NGOC

Phép giao (intersec)

- Điều kiện: R và S khả hợp.
- Giao của hai quan hệ R và S, được kí hiệu là R ∩ S, là một quan hệ chứa tất cả các bộ đồng thời có trong cả hai quan hệ R và S.

$$R \cap S = \{ t / t \in R \land t \in S \}$$

SI	/A
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

S۱	/B
MASV	TENSV
2222	KHOA
4444	NGOC

SVA	SVB
MASV	TENSV
2222	KHOA

Phép trừ (difference)

- Điều kiện: R và S khả hợp.
- Phép trừ quan hệ R và S, được kí hiệu là R – S, là một quan hệ chứa tất cả các bộ có trong R nhưng không có trong S.

$$R - S = \{ t / t \in R \land t \notin S \}$$

Phép trừ (difference) (2)

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

SVB	
MASV	TENSV
2222	KHOA
4444	NGOC

SVA - SVB	
MASV	TENSV
1111	MAI
3333	TUAN

Phép hội – Phép giao – Phép trừ

Điều kiện:

SVA và SVB khả hợp.

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

SI	SVB	
MASV	TENSV	
2222	KHOA	
4444	NGOC	

Phép hội

SVA ∪ SVB	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN
4444	NGOC

SVA \(\cap \) SVB	
MASV	TENSV
2222	KHOA

SVA - SVB	
MASV	TENSV
1111	MAI
3333	TUAN

Phép tích Descartes

Tích Descartes của hai quan hệ R và S, kí hiệu R x S, là một quan hệ Q:

- Mỗi dòng của R được ghép đôi với từng dòng của S
- Nếu R có n₁ bộ giá trị và S có n₂ bộ giá trị
 thì Q sẽ có n₁ × n₂ bộ giá trị
- Nếu R có n thuộc tính và S có m thuộc tính thì Q sẽ có n + m thuộc tính

Phép tích Descartes (2)

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

SVB	
MASV	TENSV
2222	KHOA
4444	NGOC

SVA x SVB			
SVA.MASV	SVA.TENSV	SVB.MASV	SVB.TENSV
1111	MAI	2222	KHOA
1111	MAI	4444	NGOC
2222	KHOA	2222	KHOA
2222	KHOA	4444	NGOC
3333	TUAN	2222	KHOA
3333	TUAN	4444	NGOC

- Phép chọn
- Phép chiếu
- Phép kết
 - Kết bằng (Equi join)
 - Kết tự nhiên (Natural join)
 - Kết có điều kiện tổng quát (Theta join)

Phép chọn (selection)

- Kí hiệu $\sigma_P(R)$
- Chọn các dòng từ quan hệ R thỏa điều kiện P
- P là biểu thức gồm các mệnh đề có dạng
 - Thuộc tính so sánh với thuộc tính
 - Thuộc tính so sánh với hằng số
- Các phép so sánh gồm < , > , \le , \ge , \ne , =
- Các mệnh đề được kết lại nhờ các phép
 ∧ (và), ∨ (hoặc), ¬ (phủ định)

Phép chọn (selection) (2)

 Lược đồ của quan hệ kết quả giống lược đồ của quan hệ nhập.

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

$$\sigma_{TENSV='KHOA'}(SVA) = MASV TENSV$$
2222 KHOA

Phép chiếu (projection)

- Trích từ quan hệ R tập các thuộc tính {A1, A2,..., Ak} để tạo thành một quan hệ mới có k thuộc tính và cùng thứ tự thuộc tính. Các bộ giá trị của các cột được trích nếu giống nhau sẽ bị loại bỏ.
- Ký hiệu $\pi_{A1, A2, ..., Ak}(R)$

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN
5555	MAI

Phép gán – Phép đổi tên

Ví dụ: Cho biết họ tên những nhân viên làm việc ở phòng DH

Cách 1 $\pi_{HONV,TENLOT,TENNV}(\sigma_{PHG='DH'}(NHANVIEN))$

Cách 2
$$NV_DH \leftarrow \sigma_{PHG='DH'}(NHANVIEN)$$

$$KQ \leftarrow \pi_{HONV,TENLOT,TENNV}(NV_DH)$$

$$KQ(HO,TENDEM,TEN) \leftarrow \pi_{HONV,TENLOT,TENNV}(NV_DH)$$

$$\rho_{KQ(HO,TENDEM,TEN)}(\pi_{HONV,TENLOT,TENNV}(NV_DH))$$

Phép kết (join)

- Phép kết được dùng để tổ hợp 2 bộ có liên quan từ 2 quan hệ thành 1 bộ. Ký hiệu $R \bowtie S$
- Phép kết 2 quan hệ R(A₁, A₂,...., A_n) và S(B₁, B₂,...., B_m) có thể xem như được thực hiện qua 2 bước:
 - Tích Descartes 2 quan hệ R và S
 - Chọn các bộ giá trị thỏa điều kiện A_i θ B_i

 A_i là thuộc tính của R, B_j là thuộc tính của S, A_i và B_j có cùng miền giá trị, θ là phép so sánh \neq , =, <, >, \leq ,

Phép kết bằng (Equi join)

- Nếu θ là phép so sánh bằng nhau thì ta gọi đó là phép kết bằng
- SVA $\bowtie_{\text{SVA.MASV=DIEM.MASV}}$ DIEM

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

DIE	M
MASV	DIEM
2222	7
3333	8
5555	5

MASV	TENSV	DIEM.MASV	DIEM
2222	KHOA	2222	7
3333	TUAN	2222	8

- Kết quả của phép kết bằng có 2 cột giống nhau
- ⇒ nếu bỏ bớt một cột giống nhau thì thành phép kết tự nhiên. Ký hiệu là R ⋈ S hay R * S
- SVA ⋈ DIEM

SVA	
MASV	TENSV
1111	MAI
2222	KHOA
3333	TUAN

DIE	M
MASV	DIEM
2222	7
3333	8
5555	5

MASV	TENSV	DIEM
2222	KHOA	7
3333	TUAN	8

Phép kết Theta

F	3
Α	В
3	7
1	8
4	5

,	S
С	D
5	10
2	3

•
$$R \bowtie_{A < C} S =$$

Α	В	С	D
3	7	5	10
1	8	5	10
1	8	2	3
4	5	5	10

Hàm kết hợp (Aggregation function)

 Hàm kết hợp nhận vào tập hợp các giá trị và trả về một giá trị đơn

R	Α	В
	3	2
	5	4
	2	3
	2	2

$$SUM(B) = II$$

 $AVG(A) = 3$
 $MIN(A) = 2$
 $MAX(B) = 4$
 $COUNT(A) = 4$

Phép gom nhóm (Grouping)

• G1, G2, ..., Gn $\Theta_{\text{Hàm1 (tt1)}, \text{ Hàm2 (tt2)}, ..., \text{ Hàm n (ttn)}}$ (Q)

Danh sách các Các hàm kết hợp Quan hệ cần nhóm

thuộc tính cần nhóm

Ví dụ: KetQua (<u>MaSV, MaMH</u>, Diem) Tính điểm trung bình của từng sinh viên

$$KQ(MaSV, DiemTB) \leftarrow_{MaSV} \Theta_{AVG(Diem)}(KetQua)$$

Phép kết ngoài (Outer join)

Có ba phép kết ngoài:

- Kết ngoài trái (left outer join)
- Kết ngoài phải (right outer join)
- Kết ngoài đầy đủ (full outer join)

Phép kết ngoài trái giữ lại mọi bộ trong quan hệ bên trái R trong phép kết. Nếu không có bộ liên kết nào được tìm thấy trong S thì các thuộc tính của S trong kết quả phép kết được "làm đầy" bằng các giá trị null. Tương tự như vậy đối với các phép kết ngoài phải và các phép kết ngoài đầy đủ

Phép kết ngoài (Outer join) (2)

 $SV \supset \bowtie_{SV,MAKHOA=KHOA,MAKHOA} KHOA$

SV	
MASV	MAKHOA
111	TH
222	HH
333	VL
444	CNSH

MASV	MAKHOA	MAKHOA	TENKHOA
111	TH	TH	TINHOC
222	НН	НН	НОАНОС
333	VL	VL	VATLY
444	CNSH	NULL	NULL

 $SV \bowtie \sqsubset_{SV.MAKHOA=KHOA.MAKHOA} KHOA$

KHOA	
MAKHOA	TENKHOA
TH	TINHOC
HH	HOAHOC
VL	VATLY
TR	TRIET

 $SV \supset \bowtie \sqsubset_{SV,MAKHOA=KHOA,MAKHOA} KHOA$

MASV	MAKHOA	MAKHOA	TENKHOA
111	TH	TH	TINHOC
222	HH	НН	HOAHOC
333	VL	VL	VATLY
NULL	NULL	TR	TRIET

MASV	MAKHOA	MAKHOA	TENKHOA
111	TH	TH	TINHOC
222	HH	НН	HOAHOC
333	VL	VL	VATLY
444	CNSH	NULL	NULL
NULL	NULL	TR	TRIET

Các thao tác cập nhật trên quan hệ

Thêm (insertion)

$$R_{new} \leftarrow R_{old} \cup E$$

Xóa (deletion)

$$R_{new} \leftarrow R_{old} - E$$

Sửa (updating)

$$R_{new} \leftarrow \pi_{FI, F2, ..., Fn} (R_{old})$$

Các thao tác cập nhật trên quan hệ (2)

SinhVien (MaSV, TenSV, Phai, MaKhoa)

Khoa (MaKhoa, TenKhoa)

MonHoc (MaMH, TenMH)

KetQua (MaSV, MaMH, Diem)

Ví dụ

• Thêm sinh viên mã số 555, tên Ngọc, là nữ, học khoa ĐC SinhVien ← SinhVien ∪ ('555',' Ngoc',' Nu',' ĐC')

Xóa các thông tin của sinh viên 222

 $SinhVien \leftarrow SinhVien - \sigma_{MaSV='222'}(SinhVien)$

• Cộng 2 điểm cho tất cả sinh viên

 $KetQua \leftarrow \pi_{MaSV,MaMH,Diem+2}(KetQua)$

Phép chia

- Phép chia được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với tất cả các bộ trong quan hệ S
- Ký hiệu R ÷ S
- R(Z) và S(X), $X \subseteq Z$, kết quả của phép chia là một quan hệ T(Y), với Y=Z-X
- Không là toán tử cơ bản, nhưng hữu ích để biểu diễn truy vấn có dạng: Tìm các nhân viên có tham gia **tất cả** các đề án.

Phép chia (2)

MANV	MADA
001	TH001
001	TH002
002	TH001
002	TH002
002	DT001
003	TH001
	1

MADA	
TH001	
R1	•

$$A \div B1$$
 $A \div B2$ $A \div B3$

MADA	
TH001	
TH002	10

MANV
001
002

$$A \div B$$
2

$$A \div B3$$

Phép chia (3)

SinhVien (MaSV, TenSV, NSinh, Phai, MaKhoa)

Khoa (MaKhoa, TenKhoa)

MonHoc (MaMH, TenMH)

KetQua (MaSV, MaMH, Diem)

Tìm thông tin của sinh viên đã thi đậu tất cả các môn học

$$R_1 \leftarrow \sigma_{Diem \geq 5}(KetQua)$$

$$R_2 \leftarrow \pi_{MaMH}(MonHoc)$$

$$R_3 \leftarrow R_1 \div R_2$$

$$KQ \leftarrow R_3 \bowtie_{R_3.MaSV=SinhVien.MaSV} SinhVien$$