```
In [1]:
import numpy as np,pandas as pd,matplotlib.pyplot as plt,seaborn as sns,warnings
warnings.filterwarnings('ignore')
In [2]:
df=pd.read_csv('cardio.csv',delimiter=';')
In [3]:
df.head()
Out[3]:
   id
                                                                              cardio
        age gender height weight ap_hi ap_lo cholesterol
                                                       gluc smoke
                                                                   alco
                                                                        active
                                                                                  0
   0
      18393
                      168
                            62.0
                                   110
                                         80
                                                                 0
                                                                      0
      20228
                      156
                            85.0
                                   140
                                         90
                                                     3
                                                                 0
                                                                      0
   2 18857
                 1
                      165
                            64.0
                                  130
                                         70
                                                     3
                                                          1
                                                                0
                                                                     0
                                                                            0
                                                                                  1
   3 17623
                      169
                            82.0
                                   150
                                         100
   4 17474
                      156
                            56.0
                                  100
                                         60
                                                                0
                                                                     0
                                                                            0
                                                                                  0
In [4]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 70000 entries, 0 to 69999
Data columns (total 13 columns):
#
     Column
                  Non-Null Count
0
     id
                  70000 non-null
                                   int64
1
     age
                  70000 non-null
                                   int64
     gender
                  70000 non-null
                                   int64
     height
                   70000 non-null
                                   int64
     weight
                  70000 non-null
                                   float64
 5
     ap_hi
                  70000 non-null
                                   int64
     ap_lo
                   70000 non-null
     cholesterol
                  70000 non-null
 8
                   70000 non-null
                                   int64
     gluc
 9
     smoke
                   70000 non-null
    alco
                   70000 non-null
 11
    active
                  70000 non-null
                  70000 non-null
12 cardio
dtypes: float64(1), int64(12)
memory usage: 6.9 MB
In [5]:
df.shape
Out[5]:
(70000, 13)
In [6]:
df.isnull().any().sum()
Out[6]:
```

Data Preprocessing

```
In [7]:
df.drop('id',axis=1,inplace=True)
In [8]:
df['age']=round(df['age']/365)
```

```
In [9]:
```

df.head()

Out[9]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	50.0	2	168	62.0	110	80	1	1	0	0	1	0
1	55.0	1	156	85.0	140	90	3	1	0	0	1	1
2	52.0	1	165	64.0	130	70	3	1	0	0	0	1
3	48.0	2	169	82.0	150	100	1	1	0	0	1	1
4	48.0	1	156	56.0	100	60	1	1	0	0	0	0

In [10]:

```
df['age']=df['age'].astype(int)
```

In [11]:

```
sns.distplot(df['height'])
```

Out[11]:

<AxesSubplot:xlabel='height', ylabel='Density'>

In [12]:

```
sns.distplot(df['age'])
```

Out[12]:

<AxesSubplot:xlabel='age', ylabel='Density'>

In [13]:

df[df['weight']<40]</pre>

Out[13]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
3752	42	1	120	30.00	110	70	1	1	0	0	1	0
5794	48	1	151	37.00	120	80	1	1	0	0	1	0
10447	60	1	162	38.00	100	70	1	1	0	0	1	0
10627	59	1	153	37.00	150	80	3	3	0	0	1	1
11876	48	1	157	39.00	90	70	1	1	0	0	1	0
14722	62	1	143	34.00	100	70	1	1	0	0	1	0
16322	60	1	165	35.00	100	70	1	1	0	0	1	0
16906	47	2	170	31.00	150	90	2	2	0	0	1	1
18559	50	1	160	30.00	120	80	1	1	0	0	1	1
19582	58	1	152	38.00	110	80	1	1	0	0	1	0
22016	42	1	146	32.00	100	70	1	1	0	0	0	0
25198	51	1	149	35.45	110	70	1	1	0	0	1	0
26806	64	1	157	23.00	110	80	1	1	0	0	1	0
29333	60	1	153	37.00	120	80	1	1	0	0	1	1
29488	56	2	177	22.00	120	80	1	1	1	1	1	0
31420	56	1	140	39.00	120	80	1	1	0	0	1	0
32087	43	1	143	36.00	90	60	1	1	0	0	1	0
33478	42	1	152	39.00	110	70	1	2	1	0	1	1
33511	58	1	153	34.00	110	70	3	3	0	0	1	1
33817	59	2	178	11.00	130	90	1	1	0	0	1	1
33820	62	1	145	36.00	120	80	1	1	0	0	1	0
34276	40	2	128	28.00	120	80	1	1	0	0	1	0
34282	56	1	148	36.00	140	80	1	1	0	0	1	1
34328	40	1	152	39.00	90	60	1	1	0	0	1	0
35314	54	1	146	32.00	130	80	1	2	0	0	0	0
38417	60	1	154	32.00	110	60	1	1	0	0	1	0
38743	58	1	152	38.00	150	1000	1	1	0	0	1	1
40612	64	1	154	38.00	90	70	1	2	0	0	1	0
41353	57	1	157	38.00	120	80	1	1	0	0	1	1
41905	58	1	143	30.00	103	61	2	1	0	0	1	0
43759	49	1	135	37.00	150	90	2	3	0	0	1	0
44138	60	1	151	38.00	100	70	1	1	0	0	1	1
44622	50	1	150	39.00	130	90	1	1	0	0	1	0
48080	53	1	143	33.00	100	60	1	1	0	0	1	0
48613	56	1	144	36.00	100	70	1	1	0	0	1	0
51411	58	1	155	37.00	110	70	1	1	0	0	0	1
51544	60	1	151	38.00	120	80	1	1	0	1	0	0
51837	54	2	139	34.00	120	70	1	1	0	0	1	0
53224	56	1	133	36.00	100	60	1	1	0	0	0	0
53945	62	1	156	39.00	90	60	1	1	0	0	1	0
54017	62	1	134	37.00	180	90	1	1	0	0	1	0
54682	56	1	153	39.00	110	70	1	1	0	0	1	0
55339	65	1	147	39.00	120	80	1	1	0	0	1	1
55852	64	1	152	34.00	140	90	1	1	0	0	1	1
56914	52	1	152	37.00	90	50	1	1	0	0	1	0
57858	52	2	165	10.00	180	1100	2	2	0	0	1	1
58200	62	1	169	35.00	140	90	2	1	0	0	1	1
60188	60	1	162	21.00	120	80	2	1	0	0	1	1
60699	52	1	171	29.00	110	70	2	1	0	0	1	1
63113	56	1	158	39.00	90	60	1	1	0	0	0	1
65082	62	1	145	33.00	130	1000	2	1	0	0	1	1
65650	52	1	147	38.00	100	70	3	3	0	0	1	0

```
In [14]:
```

```
df[df['weight']<40].info()</pre>
<class 'pandas.core.frame.DataFrame'>
Int64Index: 52 entries, 3752 to 65650
Data columns (total 12 columns):
                   Non-Null Count
# Column
                                     Dtype
     age
                   52 non-null
                                     int32
     gender
                   52 non-null
                                     int64
                   52 non-null
                                     int64
     height
                   52 non-null
                                     float64
     weight
     ap hi
                   52 non-null
                                     int64
 5
                                     int64
     ap_lo
                   52 non-null
     cholesterol
                   52 non-null
                                     int64
 6
                   52 non-null
                                     int64
     gluc
 8
                   52 non-null
                                     int64
     smoke
                                     int64
 9
     alco
                   52 non-null
 10 active
                   52 non-null
                                     int64
                                     int64
11 cardio
                   52 non-null
dtypes: float64(1), int32(1), int64(10)
memory usage: 5.1 KB
In [15]:
df['ap_lo'].unique()
Out[15]:
          80,
                                100,
                                                               110,
array([
           63,
                  79,
                        1100,
                               1000,
                                        800,
                                                120,
                                                         50,
                                                                30,
                                                                       109,
                1033,
                                                73,
                                                        78,
                                                                75,
                                                                       86,
           84,
                         150,
                                 91,
                                         40,
          87,
                                 95,
                                                 74,
                1001,
                          82,
                                         69,
                                                        97,
                                                                81,
                                                                     1200,
                                  93,
                                        105, 10000,
          83,
                 119,
                           0,
                                                        99,
                                                                77,
                                                                        59,
        8044,
                 140,
                          92,
                               1044,
                                        108,
                                                125,
                                                       115,
                                                                68,
                                                                        61,
         106,
                 102,
                          94,
                                         52,
                                                        76,
                                                               160,
                                 66,
                                                170,
                                                                        62,
          96,
                 130,
                                                        88,
                                                               902,
                         113,
                                 67,
                                       9100,
                                                 10,
                                                                         8,
         112,
                 104,
                         71,
                                 72,
                                       1008,
                                                 98,
                                                      2088,
                                                                20,
                                                                       802,
                1022,
                                                101,
                                                      9011,
        8000.
                         850.
                                708.
                                         57
                                                              1011.
                                                                       64.
                                                                      8099,
        1007,
                1177,
                                        709,
                                               8500,
                        7100,
                                 45,
                                                        58,
                                                              1110,
        1088,
                        1077,
                                          7,
                                               103,
                 126,
                               1120,
                                                      1125,
                                                               180,
                                                                      121,
        8100,
                 710,
                               8079,
                        5700.
                                       1111.
                                               1003.
                                                         6,
                                                              1900.
                                                                      809.
         114
                        1002,
                                 53,
                                                       118,
                                                                56,
                                                                      182,
                 801,
                                        111,
                                                  1
                                       9800.
                                               8200.
                                                               107,
                                                                      820,
          810.
                   9.
                        7099.
                              11000.
                                                      1139.
                                               6800,
          55,
                1400,
                        190,
                                900,
                                        122,
                                                       135,
                                                               700,
                                                                       15,
                                                54.
        1101
                 910,
                        1140,
                               1211,
                                        -70,
                                                      8077,
                                                               901,
                                                                      880,
                          49,
                                602], dtype=int64)
         870,
                 585,
```

Deleting ap_hi with less than 80

```
In [16]:
```

```
df[df['ap_hi']<80]
```

Out[16]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
567	58	1	168	78.0	14	90	2	1	0	0	1	1
636	56	2	169	68.0	70	110	1	1	0	0	1	0
927	60	2	175	70.0	14	90	3	1	0	0	1	1
979	50	1	172	65.0	11	80	1	3	0	0	1	0
1600	53	1	165	66.0	12	80	1	1	0	0	1	0
68630	58	1	160	59.0	12	80	1	1	0	0	1	0
68742	51	1	158	74.0	14	90	1	1	0	0	1	1
68998	52	1	154	77.0	14	90	1	1	0	0	1	0
69137	42	2	176	65.0	12	80	1	1	0	0	1	0
69549	58	1	155	69.0	13	90	1	3	0	0	1	1

207 rows × 12 columns

```
In [17]:
```

```
df=df[df['ap_hi']>80]
```

Deleting ap_hi with more than 250

In [18]:

df[df['ap_hi']>250]

Out[18]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
1876	41	1	160	60.0	902	60	1	1	0	0	1	0
2014	62	2	167	59.0	906	0	1	1	0	0	1	0
4817	40	1	168	63.0	909	60	2	1	0	0	1	0
7763	58	1	175	80.0	11500	90	1	1	0	0	1	1
8915	52	1	164	75.0	1420	80	2	1	0	0	1	1
9557	62	1	155	87.0	701	110	1	1	0	0	1	1
13895	44	1	168	72.0	1500	80	1	1	0	0	1	1
17713	61	2	163	50.0	907	70	3	3	0	0	1	1
23867	44	1	161	92.0	906	0	2	1	0	0	1	1
25464	43	2	169	75.0	14020	80	2	1	0	0	1	1
25519	59	1	169	71.0	14020	80	3	3	0	0	1	1
25780	50	1	157	83.0	1400	80	1	1	0	0	1	1
28147	54	2	175	87.0	1620	80	2	1	0	0	1	1
29665	48	1	154	65.0	907	70	1	1	0	0	1	0
31783	44	1	170	64.0	907	0	1	1	0	0	1	0
36894	56	2	175	78.0	1130	90	1	1	0	0	1	1
40330	56	1	162	50.0	309	0	1	1	0	0	1	0
40831	54	1	162	67.0	401	80	1	3	0	0	1	1
40852	48	1	169	70.0	16020	80	1	1	0	0	0	1
41095	58	1	160	60.0	1202	80	1	1	0	0	1	1
41505	57	1	154	41.0	806	0	1	1	0	0	1	0
42397	49	2	176	69.0	906	0	1	1	0	0	1	0
42658	56	2	182	80.0	906	60	1	1	0	0	1	1
43133	57	2	170	78.0	1400	90	2	1	0	0	1	0
43208	64	1	165	67.0	1420	80	2	1	0	0	1	1
43504	54	1	158	62.0	1300	80	3	1	0	1	1	1
46912	46	2	180	78.0	14020	90	1	1	0	0	1	1
47253	54	1	160	65.0	14020	90	1	1	0	0	1	0
48795	60	1	156	76.0	1400	90	1	1	0	0	1	1
50836	46	2	164	66.0	1409	90	1	1	0	0	1	1
51438	51	2	168	65.0	11020	80	1	1	0	0	1	1
53982	51	1	164	54.0	960	60	1	1	0	0	1	0
55459	50	1	152	76.0	13010	80	2	2	0	0	1	1
55847	64	1	161	105.0	13010	80	1	1	0	0	0	0
57291	60	2	166	73.0	1300	90	1	1	0	1	1	0
57918	64	1	153	63.0	1110	80	1	1	0	0	0	1
63996	46	1	168	69.0	1205	90	1	1	0	0	0	1
64911	46	1	157	78.0	906	60	2	1	0	0	1	0
68663	50	1	156	41.0	906	0	1	1	0	0	1	0
69370	40	1	170	74.0	2000	100	2	1	0	0	1	1

In [19]:

df=df[df['ap_hi']<250]

Deleting ap_lo with less than 60

```
In [20]:
```

df[df['ap_lo']<60]

Out[20]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
418	46	1	157	72.0	150	30	1	1	0	0	1	1
481	54	1	158	86.0	160	50	2	3	0	0	1	1
507	46	1	165	64.0	140	40	1	1	0	0	1	1
1960	48	1	155	50.0	90	50	1	1	0	0	1	0
2183	62	2	174	65.0	110	50	1	1	1	0	1	1
68135	42	1	163	63.0	162	52	1	1	0	0	1	1
68223	52	2	173	100.0	130	20	1	1	0	0	1	1
68343	60	1	151	80.0	130	50	2	2	0	0	1	0
68370	52	2	159	68.0	100	50	2	1	1	0	1	0
68568	42	1	163	71.0	110	6	1	1	0	0	1	0

147 rows × 12 columns

In [21]:

df=df[df['ap_lo']>60]

Deleting ap_lo with more than 150

In [22]:

df[df['ap_lo']>150]

Out[22]:

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
228	48	2	183	98.0	160	1100	1	2	1	0	1	1
241	60	2	157	60.0	160	1000	2	1	0	0	0	1
260	50	1	150	83.0	140	800	1	1	0	0	1	1
329	64	1	176	63.0	160	1000	2	2	0	0	0	1
345	51	1	154	81.0	140	1000	2	1	0	0	1	1

69771	64	1	167	81.0	160	1000	1	1	0	0	1	1
69872	60	1	152	56.0	160	1000	1	1	0	0	1	1
69878	58	2	168	95.0	160	1000	1	1	0	0	1	1
69885	61	2	166	78.0	170	1000	1	1	0	0	0	0
69967	59	2	168	63.0	140	1000	1	1	0	0	1	1

968 rows × 12 columns

In [23]:

```
df=df[df['ap_lo']<150]
```

In [24]:

df.shape

Out[24]:

(65858, 12)

In [25]:

```
sns.countplot(df['cardio'])
```

Out[25]:

<AxesSubplot:xlabel='cardio', ylabel='count'>

- By seeing above chart we can say that dataset is balanced
- Possibility of death chances is more than its vice versa

In [26]:

```
sns.distplot(df['weight'])
```

Out[26]:

<AxesSubplot:xlabel='weight', ylabel='Density'>

In [27]:

```
sns.countplot(df['gender'],hue=df['cardio'])
```

Out[27]:

<AxesSubplot:xlabel='gender', ylabel='count'>

The rate of cardio is nearly equal in both genders

In [28]:

```
sns.countplot(df['cholesterol'], hue=df['cardio'])
```

Out[28]:

<AxesSubplot:xlabel='cholesterol', ylabel='count'>

The people who are above normal have high rate of cardiac arrest as compared to others

In [29]:

```
sns.countplot(df['gluc'],hue=df['cardio'])
```

Out[29]:

<AxesSubplot:xlabel='gluc', ylabel='count'>

In [30]:

```
sns.countplot(df['smoke'],hue=df['cardio'])
```

Out[30]:

<AxesSubplot:xlabel='smoke', ylabel='count'>

People who desn't smoke has high amount or rate of cardio

In [31]:

```
sns.countplot(df['alco'],hue=df['cardio'])
```

Out[31]:

<AxesSubplot:xlabel='alco', ylabel='count'>

In [32]:

```
sns.catplot(x='gender',y='age',hue='smoke',col='cholesterol',kind='box',data=df)
```

Out[32]:

<seaborn.axisgrid.FacetGrid at 0x10f877b62c0>

In [33]:

```
sns.catplot(x='gender',y='age',hue='alco',col='gluc',kind='box',data=df)
```

Out[33]:

<seaborn.axisgrid.FacetGrid at 0x10f87919540>

In [34]:

```
sns.catplot(x='gender',y='age',hue='active',col='cardio',kind='bar',data=df,ci=False)
```

Out[34]:

<seaborn.axisgrid.FacetGrid at 0x10f8e610f70>

In [35]:

```
plt.figure(figsize=(15,7))
sns.barplot(df['age'],df['active'],hue=df['cardio'],ci=False)
```

Out[35]:

<AxesSubplot:xlabel='age', ylabel='active'>


```
In [36]:
```

```
col=['gluc','alco','smoke','cholesterol','active']
data=pd.melt(df,id_vars='cardio',value_vars=df[col])
data
```

Out[36]:

	cardio	variable	value
0	0	gluc	1
1	1	gluc	1
2	1	gluc	1
3	1	gluc	1
4	0	gluc	2
329285	0	active	1
329286	1	active	1
329287	1	active	0
329288	1	active	0
329289	0	active	1

329290 rows × 3 columns

In [37]:

```
sns.catplot(x='variable',hue='value',col='cardio',kind='count',data=data)
```

Out[37]:

<seaborn.axisgrid.FacetGrid at 0x10f8eaa9060>

In [38]:

```
df.isnull().any()
```

Out[38]:

False age gender False False height weight False False ap_hi ap_lo False cholesterol False gluc False smoke False alco False False active cardio False dtype: bool

Splitting data into train and test data

In [39]:

```
x=df.iloc[:,:-1]
y=df.iloc[:,-1]
```

```
In [40]:
from sklearn.model_selection import train_test_split
In [41]:
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.20, random\_state=1)
In [42]:
x_train.shape
Out[42]:
(52686, 11)
In [43]:
x_test.shape
Out[43]:
(13172, 11)
In [44]:
y_train.shape
Out[44]:
(52686,)
In [45]:
y_test.shape
Out[45]:
(13172,)
Feature Scaling
In [46]:
from sklearn.preprocessing import StandardScaler
In [47]:
sc=StandardScaler()
In [48]:
x_train=sc.fit_transform(x_train)
In [49]:
x_test=sc.transform(x_test)
Model Building
In [50]:
from sklearn.linear_model import LogisticRegression
In [51]:
reg=LogisticRegression()
In [52]:
```

localhost:8889/notebooks/ML/cardio_train logistic regression.ipynb

reg.fit(x_train,y_train)

v LogisticRegression LogisticRegression()

Out[52]:

```
1/16/23, 9:48 PM
                                                           cardio train logistic regression - Jupyter Notebook
  In [53]:
 y_pred_train=reg.predict(x_train)
  In [54]:
 y_pred_test=reg.predict(x_test)
  Evaluation of model
  In [55]:
  from sklearn.metrics import accuracy_score
  In [56]:
  print('Train Data')
  print(accuracy_score(y_train,y_pred_train))
  0.7256386895949588
  In [57]:
  print('Test Data')
  print(accuracy_score(y_test,y_pred_test))
  Test Data
  0.7230488915882174
  In [58]:
 from sklearn.metrics import confusion_matrix
  In [59]:
 print('Train Data')
  print(confusion_matrix(y_train,y_pred_train))
  print('Test Data')
  print(confusion_matrix(y_test,y_pred_test))
  Train Data
  [[20377 5682]
```

```
[ 8773 17854]]
Test Data
[[5049 1460]
 [2188 4475]]
```

```
In [60]:
{\bf from} \ {\bf sklearn.model\_selection} \ {\bf import} \ {\bf cross\_val\_score}
```

```
In [61]:
reg_score=cross_val_score(reg,x,y,scoring='accuracy',cv=5)
```

```
In [62]:
reg_score
Out[62]:
array([0.70930762, 0.71796234, 0.71219253, 0.71870017, 0.70586895])
In [63]:
```

```
mean_reg_score=np.mean(reg_score)
In [64]:
```

```
mean_reg_score
Out[64]:
0.7128063250702877
```

```
In [65]:
from \ sklearn. metrics \ import \ classification\_report, recall\_score, precision\_score, f1\_score\_nuc\_score
```

```
In [66]:
```

```
print('Train data')
print(classification_report(y_train,y_pred_train))
Train data
              precision
                           recall f1-score
                                               support
           0
                   0.70
                             0.78
                                        0.74
                                                 26059
           1
                   0.76
                             0.67
                                        0.71
                                                 26627
                                        0.73
                                                 52686
    accuracy
                   0.73
                             0.73
                                                 52686
   macro avg
                                        0.73
weighted avg
                   0.73
                             0.73
                                        0.72
                                                 52686
In [67]:
print('Test data')
print(classification_report(y_test,y_pred_test))
Test data
              precision
                           recall f1-score
                                               support
           0
                   0.70
                             0.78
                                        0.73
                                                  6509
                   0.75
                             0.67
                                        0.71
                                                  6663
                                        0.72
                                                 13172
    accuracy
   macro avg
                   0.73
                             0.72
                                        0.72
                                                 13172
                   0.73
                             0.72
                                        0.72
                                                 13172
weighted avg
In [68]:
print('Train data')
print(recall_score(y_train,y_pred_train))
print('Test data')
print(recall_score(y_test,y_pred_test))
Train data
0.6705224020730837
Test data
0.6716193906648656
In [69]:
print('Train data')
print(precision_score(y_train,y_pred_train))
print('Test data')
print(precision_score(y_test,y_pred_test))
Train data
0.7585825968728755
Test data
0.7540016849199663
In [70]:
print('Train data')
print(f1_score(y_train,y_pred_train))
print('Test data')
print(f1_score(y_test,y_pred_test))
Train data
0.7118394035444451
Test data
0.7104302270201619
In [71]:
y_train_proba=reg.predict_proba(x_train)[:,1]
y_test_proba=reg.predict_proba(x_test)[:,1]
In [72]:
from sklearn.metrics import precision_recall_curve
In [73]:
```

p,r,th=precision_recall_curve(y_train,y_train_proba)

```
In [74]:
```

PR CURVE

In [75]:

```
def metrics(y_actual,y_proba,th):
    y_pred_temp=[1 if p>th else 0 for p in y_proba]
    accuracy=accuracy_score(y_actual,y_pred_temp)
    recall=recall_score(y_actual,y_pred_temp)
    precision=precision_score(y_actual,y_pred_temp)
    f1=f1_score(y_actual,y_pred_temp)
    roc_auc=roc_auc_score(y_actual,y_pred_temp)
    return {'Accuracy':accuracy,'Recall':recall,'Precision':precision,'F1':f1,'ROC_AUC':roc_auc}
```

In [76]:

```
metrics(y_train,y_train_proba,0.455)
```

Out[76]:

```
{'Accuracy': 0.7268913942982955,
 'Recall': 0.7275322041536786,
 'Precision': 0.7308533916849015,
 'F1': 0.72918901624226,
 'ROC_AUC': 0.7268844105307324}
```

In [77]:

```
metrics(y_test,y_test_proba,0.455)
```

Out[77]:

```
{'Accuracy': 0.7260856361979957,
'Recall': 0.7306018310070539,
'Precision': 0.7286334381080677,
'F1': 0.7296163069544365,
'ROC_AUC': 0.7260322106333473}
```

```
#ROC-AUC curve
from sklearn.metrics import roc_curve
fpr,tpr,th=roc_curve(y_train,y_train_proba)
sns.lineplot(fpr,tpr)
sns.lineplot([0.0,1.0],[0.0,1.0],color='r',linestyle='--')
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.title('ROC-AUC Curve')
```

In [78]:

```
from sklearn.neighbors import KNeighborsClassifier
```

```
for i in range(1,16):
```

```
knn=KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train,y_train)
y_pred_train=knn.predict(x_train)
y_pred_test=knn.predict(x_test)
print('When neighbors is',i)
print('Train Data')
print(accuracy_score(y_train,y_pred_train))
print('Test Data')
print(accuracy_score(y_test,y_pred_test))
print(accuracy_score(y_test,y_pred_test))
```

In []:

```
knn=KNeighborsClassifier(n_neighbors=13)
knn.fit(x_train,y_train)
y_pred_train=knn.predict(x_train)
y_pred_test=knn.predict(x_test)
print('Train Data')
print(accuracy_score(y_train,y_pred_train))
print('Test Data')
print(accuracy_score(y_test,y_pred_test))
```

```
p_g={'n_neighbors':np.arange(1,15),
    'metric':['minkowski','manhattan','euclidean'],
    'weights':['uniform','distance']}
```

 $from \ sklearn.model_selection \ import \ GridSearchCV$

```
model=GridSearchCV(knn,p_g,cv=5,scoring='accuracy',n_jobs=-1)
```

```
model.fit(x_train,y_train)
```

```
model.best_params_
```

```
y_pred_modeltr=model.predict(x_train)
y_pred_modelte=model.predict(x_test)
```

```
print('Train Data')
print(accuracy_score(y_train,y_pred_modeltr))
print('Test Data')
print(accuracy_score(y_test,y_pred_modelte))
```

In [79]:

```
from sklearn.ensemble import AdaBoostClassifier
ad=AdaBoostClassifier()
```

In [80]:

```
ad.fit(x_train,y_train)
```

Out[80]:

```
▼ AdaBoostClassifier
AdaBoostClassifier()
```

In [81]:

```
y_pred_train_modelad=ad.predict(x_train)
y_pred_test_modelad=ad.predict(x_test)
```

In [82]:

```
print('Train Data')
print(accuracy_score(y_train,y_pred_train_modelad))
print('Test Data')
print(accuracy_score(y_test,y_pred_test_modelad))
```

Train Data 0.7286186083589569 Test Data 0.7234284846644398

```
In [83]:
```

```
from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier()
```

In [84]:

```
rf.fit(x_train,y_train)
```

Out[84]:

```
RandomForestClassifier
RandomForestClassifier()
```

In [85]:

```
y_pred_train=rf.predict(x_train)
y_pred_test=rf.predict(x_test)
```

In [86]:

```
print('Train Data')
print(accuracy_score(y_train,y_pred_train))
print('Test Data')
print(accuracy_score(y_test,y_pred_test))
```

Train Data 0.9747750825646282 Test Data 0.7033100516246583

In [87]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import BernoulliNB,MultinomialNB
from sklearn.ensemble import AdaBoostClassifier
reg=LogisticRegression()
knn=KNeighborsClassifier()
dt=DecisionTreeClassifier()
fr=RandomForestClassifier()
b=BernoulliNB()
m=MultinomialNB()
ad=AdaBoostClassifier()
```

In [88]:

```
from sklearn.metrics import classification_report
def my_model(model):
    model.fit(x_train,y_train)
    y_pred_train=model.predict(x_train)
    y_pred_test=model.predict(x_test)
    print('Train Data')
    print(classification_report(y_train,y_pred_train))
    print('Test Data')
    print(classification_report(y_test,y_pred_test))
    return model
```

In [89]:

```
for i in [reg,knn,dt,rf,b,ad]:
    print('when my model is:',i)
    my_model(i)
    print('*'*90)
```

710/20, 0.4011	v.				odraio_train logicus regression
when my model Train Data	l is: Logisti	cRegressi	ion()		
II aili Data	precision	recall	f1-score	support	
0	0.70	0.78	0.74	26059	
1	0.76	0.67	0.71	26627	
accuracy			0.73	52686	
macro avg	0.73	0.73	0.73	52686	
weighted avg	0.73	0.73	0.72	52686	
Test Data					
rese baca	precision	recall	f1-score	support	
				4500	
0 1	0.70 0.75	0.78 0.67	0.73 0.71	6509 6663	
-	0.75	0.07	0.71	0003	
accuracy			0.72	13172	
macro avg weighted avg	0.73 0.73	0.72 0.72	0.72 0.72	13172 13172	
				*******	***********
when my model Train Data	i is. Kneight)OI-SC14551	inter()		
	precision	recall	f1-score	support	
0	0.78	0.79	0.78	26059	
1	0.78	0.78	0.78	26627	
accuracy macro avg	0.78	0.78	0.78 0.78	52686 52686	
weighted avg	0.78 0.78	0.78	0.78 0.78	52686	
Test Data	precision	recall	f1-score	support	
	p. cc131011	, ccail	12 30016	Suppor C	
0	0.69	0.69	0.69	6509	
1	0.70	0.70	0.70	6663	
accuracy			0.69	13172	
macro avg	0.69	0.69	0.69	13172	
weighted avg	0.69	0.69	0.69	13172	
********	*********	*******	*******	*******	*********
when my model Train Data	l is: Decisio	nTreeClas	ssifier()		
II aill Dald	precision	recall	f1-score	support	
^	9.00	0.00	0.00	26050	
0 1	0.96 0.99	0.99 0.96	0.98 0.97	26059 26627	
accuracy macro avg	0.98	0.97	0.97 0.97	52686 52686	
weighted avg	0.98	0.97	0.97	52686	
Task Dal					
Test Data	precision	recall	f1-score	support	
0	0.63	0.64	0.64	6509	
1	0.64	0.63	0.64	6663	
accuracy			0.64	13172	
macro avg	0.64	0.64	0.64	13172	
weighted avg	0.64	0.64	0.64	13172	
				*******	**********
when my model Train Data	l is: RandomF	orestClas	ssifier()		
ii aiii Ddld	precision	recall	f1-score	support	
	·				
0 1	0.97 0.98	0.98 0.97	0.97 0.97	26059 26627	
1	٥٤.0	0.9/	0.9/	2002/	
accuracy			0.97	52686	
macro avg weighted avg	0.97 0.97	0.97 0.97	0.97 0.97	52686 52686	
werenten avg	0.3/	0.5/	0.3/	32000	
Test Data			Ca.		
	precision	recall	f1-score	support	
0	0.70	0.69	0.70	6509	
1	0.70	0.71	0.71	6663	
accurac:			0.70	12172	
accuracy macro avg	0.70	0.70	0.70	13172 13172	
weighted avg	0.70	0.70	0.70	13172	
********	******	*******	*******	******	***********
when my model					
Train Data			Ca		
	precision	recall	f1-score	support	

 $local host: 8889/notebooks/ML/cardio_train\ logistic\ regression.ipynb$

0	0.69	0.76	0.72	26059
1	0.74	0.66	0.70	26627
accuracy			0.71	52686
macro avg	0.72	0.71	0.71	52686
weighted avg	0.72	0.71	0.71	52686
Test Data				
	precision	recall	f1-score	support
•	0.60	0.76	0.70	6500
0	0.68	0.76	0.72	6509
1	0.74	0.66	0.69	6663
2001102-011			0.71	12172
accuracy	0.74	0.74	0.71	13172
macro avg	0.71	0.71	0.71	13172
weighted avg	0.71	0.71	0.71	13172
********	********	******	******	******
when my model	l is: AdaBoos	tClassifi	er()	
Train Data	131 /1445005		()	
	precision	recall	f1-score	support
	•			• •
0	0.70	0.80	0.74	26059
1	0.77	0.66	0.71	26627
accuracy			0.73	52686
macro avg	0.73	0.73		52686
weighted avg	0.73	0.73	0.73	52686
Test Data				
	precision	recall	f1-score	support
_				
0	0.69	0.79	0.74	6509
1	0.76	0.66	0.71	6663
266110261			0.72	13172
accuracy	0.73	0.72	0.72 0.72	13172
macro avg	0.73	0.72	0.72	13172
weighted avg	0.73	0.72	0.72	131/2
*******	******	******	******	******

In []: