Coupled Oscillations

Begin by sketching the coupled spring system.

Solving the equations

You are going to solve for the motion of this system as follows.

- 1. Write an equation for the acceleration of mass 1 (x_1'') in terms of the spring constant, k, the coupling constant, k_c , and the positions of the two masses, x_1 and x_2 .
- 2. Repeat this exercise for the accelerations of x_2 .
- 3. Rearrange the equations above to be of the forms $x_1'' + Ax_1 + Bx_2 = 0$ and $x_2'' + Cx_1 + Dx_2$. These are second order differential equations.
- 4. By adding and then subtracting the two equations from step 3 get two equations in terms of only $(x_1 + x_2)$ and $(x_1 x_2)$.
- 5. By using the substitutions $q_1 = x_1 + x_2$ and $q_2 = x_1 x_2$ write the equations in the form:

$$q_1'' + \omega_1^2 q_1 = 0$$

$$q_2'' + \omega_2^2 q_2 = 0$$

- . How would you describe this motion in words?
- 6. Using your knowledge of differential equations you should be agree that the solutions to these two equations are:

$$q_1 = C_1 \cos \omega_1 t + C_2 \sin \omega_1 t$$

$$q_2 = C_3 \cos \omega_2 t + C_4 \sin \omega_2 t$$

- 7. Write your definitions of q_1 and q_2 to get x_1 and x_2 in terms of q_1 and q_2 . Substitute in the equations above to get x_1 and x_2 in terms of sines and cosines.
- 8. By considering the following boundary conditions you should be able to simplify your equations:

$$x_1(0) = A$$

$$x_1'(0) = 0$$

$$x_2(0) = B$$

$$x_2'(0) = 0$$

9. You should now have equations, each with two terms on the right. These are the solutions to the equations - well done!

Exploring the solution

We are going to look at particular boundary conditions as follows.

Symmetric

For the solution both x_1 and x_2 when the initial conditions are $x_1(0) = x_2(0) = A$. Describe the motion by thinking about how the relative positions of x_1 and x_2 change.

Asymmetric

For this solution the initial condition is that B=-A. Again describe the motion.

General for one displaced mass

For this solution, the initial condition is that $x_1(0) = A$ and $x_2(0) = 0$. Substitute these values into your solutions.

Now, use the following relations to re-write your solutions as products rather than sums:

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos \alpha - \beta + \cos \alpha + \beta)$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos \alpha - \beta - \cos \alpha + \beta)$$

Can you describe this motion?