Глава 1 Выбор субоптимальной структуры модели

В данной главе рассматривается задача выбора структуры модели глубокого обучения. Предлагается ввести вероятностные предположения о распределении параметров и распределении структуры модели. Проводится градиентная оптимизация параметров и гиперпараметров модели на основе байесовского вариационного вывода. В качестве оптимизируемой функции для гиперпараметров модели предлагается обобщенная функция обоснованности. Показано, что данная функция оптимизирует несколько критериев выбора структуры модели: метод максимального правдоподобия, последовательное увеличение и снижению сложности модели, полный перебор структуры модели, а также получение максимума вариационной оценки обоснованности модели. Решается двухуровневая задача оптимизации: на первом уровне проводится оптимизация нижней оценки обоснованности модели по вариационным параметрам модели. На втором уровне проводится оптимизация гиперпараметров модели.

1.1. Вероятностная модель

Определим априорные распределения параметров и структуры модели следующим образом. Пусть для каждого ребра $(j,k) \in E$ и каждой базовой функции $\mathbf{g}_l^{j,k}$ параметры модели $\mathbf{w}_l^{j,k}$ распределены нормально с нулевым средним:

$$\mathbf{w}_l^{j,k} \sim \mathcal{N}ig(\mathbf{0}, oldsymbol{\gamma}_l^{j,k} (\mathbf{A}_l^{j,k})^{-1}ig),$$

где $(\mathbf{A}_l^{j,k})^{-1}$ — диагональная матрица. Априорное распределение $p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h})$ параметров $\mathbf{w}_l^{j,k}$ зависит не только от гиперпараметров $\mathbf{A}_k^{j,k}$, но и от структурного параметра $\boldsymbol{\gamma}_l^{j,k}$.

В качестве априорного распределения для структуры Γ предлагается использовать произведение распределений Gumbel-Softmax (\mathcal{GS}) [?]:

$$p(\mathbf{\Gamma}|\mathbf{h},oldsymbol{\lambda}) = \prod_{(j,k) \in E} p(oldsymbol{\gamma}^{j,k}|\mathbf{s}^{j,k},\lambda_{ ext{temp}}),$$

где для каждого структурного параметра γ с количеством базовых функций K вероятность $p(\gamma|\mathbf{s}, \lambda_{\text{temp}})$ определна следующим образом:

$$p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}, \lambda_{\text{temp}}) = (K-1)!\lambda_{\text{temp}}^{K-1} \prod_{l=1}^{K^{j,k}} s_l^{j,k} (\boldsymbol{\gamma}_l^{j,k})^{-\lambda_{\text{temp}}-1} \left(\sum_{l=1}^{K^{j,k}} s_l^{j,k} (\boldsymbol{\gamma}_l^{j,k})^{-\lambda_{\text{temp}}} \right)^{-K^{j,k}},$$

где $\mathbf{s}^{j,k} \in (0,\infty)^K$ — гиперпараметр, отвечающий за смещенность плотности распределения относительно точек симплекса на $K^{j,k}$ вершинах, λ_{temp} — метапараметр температуры, отвечающий за концентрацию плотности вблизи вершин симплекса или в центре симплекса.

Перечислим свойства, которыми обладает распределение Gumbel-Softmax:

1. Реализация $\hat{\gamma}_l$, т.е. l-й компоненты случайной величины $\gamma^{j,k}$ порождается следующим образом:

$$\hat{\gamma}_l = \frac{\exp(\log s_l^{j,k} + \hat{g}_l^{j,k})/\lambda_{\text{temp}}}{\sum_{l'=1}^K \exp(\log s_{l'}^{j,k} + \hat{g}_{l'}^{j,k})/\lambda_{\text{temp}}},$$

где
$$\gamma^{\hat{j},k} \sim -\log(-\log \mathcal{U}(0,1)^K).$$

- 2. Свойство округления: $p(\boldsymbol{\gamma}_{l_1} > \boldsymbol{\gamma}_{l_2}, l_1 \neq l_2 | \mathbf{s}^{j,k}, \lambda_{\text{temp}}) = \frac{s_l^{j,k}}{\sum_{l'} s_{l'}^{j,k}}$.
- 3. При устремлении температуры к нулю реализация $\hat{\gamma}^{j,k}$ случайной величины концентрируется на вершинах симплекса:

$$p(\lim_{\lambda_{\text{temp}}\to 0} \hat{\boldsymbol{\gamma}}_l^{j,k} = 1|\mathbf{s}^{j,k}, \lambda_{\text{temp}}) = \frac{s_l}{\sum_{l'} s_{l'}^{j,k}}.$$

4. При устремлении температуры к бесконечности плотность распределения концентрируется в центре симплекса:

$$\lim_{\lambda_{\text{temp}}\to\infty} p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}^{j,k}, \lambda_{\text{temp}}) = \begin{cases} \infty, \boldsymbol{\gamma}^{j,k} = \frac{1}{K^{j,k}}, l \in \{1, \dots, K^{j,k}\}, \\ 0, \text{ иначе.} \end{cases}$$
(1.1)

Доказательства первых трех утверждений приведены в [?]. Докажем утверждение 4.

Доказательство. Формула плотности записывается следующим образом с точностью до множителя:

$$p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}^{j,k}, \lambda_{\text{temp}}) \propto \frac{(\lambda_{\text{temp}})^{K^{j,k}-1}}{\left(\sum_{l=1}^{K} s_l^{j,k} (\boldsymbol{\gamma}_l^{j,k})^{-\frac{K^{j,k}-1}{K}\lambda_{\text{temp}}} \prod_{l'=1}^{K^{j,k}} [l \neq l'] (\boldsymbol{\gamma}_l^{j,k})^{\frac{1}{K^{j,k}}\lambda_{\text{temp}}}\right)^{K^{j,k}}}.$$
(1.2)

Заметим, что числитель $(\lambda_{\text{temp}})^{K^{j,k}-1}$ имеет меньшую скорость сходимости, чем знаменатель, поэтому для вычисления предела достаточно проанализировать только знаменатель. Знаменатель под степенью $(-K^{j,k})$ представляется суммой слагаемых следующего вида:

$$\left(\frac{\prod_{l'\neq l} \gamma_{l'}^{\frac{1}{K^{j,k}}}}{\gamma_{l}^{\frac{K-1}{K^{j,k}}}}\right)^{\lambda_{\text{temp}}} .$$
(1.3)

Рассмотрим два случая: когда вектор $\gamma^{j,k}$ лежит не в центре симплекса, и когда $\gamma^{j,k}$ лежит в центре симплекса. Пусть хотя бы для одной компоненты l выполнено: $\gamma_l^{j,k} \neq \frac{1}{K^{j,k}}$. Пусть l' соответствует индексу максимальной компоненты вектора $\gamma^{j,k}$:

$$l' = \arg\max l \in \{1, \dots, K^{j,k}\} \gamma_l^{j,k}.$$

Для l=l' предел выражения (1.3) при λ_{temp} стремится к бесконечности. Для $l\neq l'$ предел выражения (1.3) при λ_{temp} стремится к нулю. Возводя сумму пределов в степень $(-K^{j,k})$ получаем предел плотности, равный нулю.

Рассмотрим второй случай. Пусть $\gamma_l^{j,k} = \frac{1}{K^{j,k}}$ для всех l. Тогда выражение (1.2) с точностью до множителя упрощается до $\lambda_{\text{temp}}^{K^{j,k}-1}$. Предел данного выражения стремится к бесконечности. Таким образом, предел плотности Gumbel-Softmax равен выражению (1.1), что и требовалось доказать.

Первое свойство Gumbel-Softmax распределения позволяет использовать репараметризацию при вычислении градиента в вариационном выводе (англ. reparametrization trick).

Определение 1. Репараметризацией случайной величины ψ , распределенную по распределению q с параметрами $\boldsymbol{\theta}_{\psi}$ назовем представление величины с помощью другой случайной величины, имеющей распределение, не зависящее от параметров $\boldsymbol{\theta}$:

$$\psi \sim q \rightarrow \hat{\psi} \sim g(\boldsymbol{\varepsilon}, \boldsymbol{\theta}_{\psi}),$$

где $\pmb{\varepsilon}$ — случайная величина, чье распределение не зависит от параметров $\pmb{\theta}_{\psi}$, g — некоторая детерминированная функция, $\hat{\psi}$ — реализация случайной величины ψ .

Идею репараметризации поясним на следующем примере.

Пример 1. Пусть структура Γ определена для модели \mathbf{f} однозначно. Рассмотрим математическое ожидание логарифма правдоподобия выборки модели по некоторому непрерывному распределению q:

$$\mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log \ p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) = \int_{\mathbf{w}} \log \ p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) q_{\mathbf{w}}(\mathbf{h} | \boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) d\mathbf{w}.$$

Продифференцируем данное выражение по параметрам $\boldsymbol{\theta}_{\mathbf{w}}$ вариационного распределения $q_{\mathbf{w}}(\mathbf{h}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})$, полагая что $q_{\mathbf{w}}(\mathbf{h}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})$ удовлетворяет необходимым требованиям для переноса оператора дифференцирования под знак интеграла:

$$\nabla_{\boldsymbol{\theta}_{\mathbf{w}}}\mathsf{E}_{q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})}\log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) = \int_{\mathbf{w}}\log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma})\nabla_{\boldsymbol{\theta}_{\mathbf{w}}}q_{\mathbf{w}}(\mathbf{h}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})d\mathbf{w}.$$

Выражение общем виде не имеет аналитического решения. Пусть распределение q для параметров \mathbf{w} подлежит репараметризации:

$$\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \iff \hat{\mathbf{w}} \sim g(\boldsymbol{\varepsilon}, \boldsymbol{\theta}_{\mathbf{w}}).$$

Тогда справедливо следующее выражение:

$$\nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \mathsf{E}_{q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) = \nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \mathsf{E}_{\boldsymbol{\varepsilon}} \log p(\mathbf{y}|g(\boldsymbol{\varepsilon},\boldsymbol{\theta}_{\mathbf{w}}),\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) =$$

$$= \int_{\boldsymbol{\varepsilon}} \nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \log \ p(\mathbf{y}|g(\boldsymbol{\varepsilon},\boldsymbol{\theta}),\mathbf{X},\mathbf{h},\boldsymbol{\lambda}) p(\boldsymbol{\varepsilon}) d\boldsymbol{\varepsilon} = \mathsf{E}_{\boldsymbol{\varepsilon}} \nabla_{\boldsymbol{\theta}} \log p(\mathbf{y}|g(\boldsymbol{\varepsilon},\boldsymbol{\theta}),\mathbf{X},\mathbf{h},\boldsymbol{\lambda}).$$

Рис. 1.1. Пример распределения Gumbel-Softmax при различных значениях параметров: а) $\lambda_{\text{temp}} \to 0$, б) $\lambda_{\text{temp}} = 1$, $\mathbf{s} = [1, 1, 1]$, в) $\lambda_{\text{temp}} = 5$, $\mathbf{s} = [1, 1, 1]$, г) $\lambda_{\text{temp}} = 5$, $\mathbf{s} = [10, 0.1, 0.1]$.

Таким образом, распределение, позволяющее произвести репараметризацию, является более удобным для вычисления оценок интегральных оценок вида $\nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \mathsf{E}_{q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma})$. Кроме того, данный подход позволяет значительно повысить точность вычисления градиента от функций, зависящих от случайных величин [?].

Пример распределения Gumbel-Softmax при различных параметрах представлен на Рис. 1.1. В качестве альтернативы для априорного распределения на структуре выступает распределение Дирихле. В качестве предельного случая, когда все структуры $\Gamma \in \Gamma$ равнозначны, выступает равномерное распределение. Выбор в качестве распределения на структуре произведения Gumbel-Softmax распределения обоснован выбором этого же распределения в качестве вариационного.

Заметим, что предлагаемое априорное распределение неоднозначно: одно и то же распределение можно получить с различными значениями гиперпарамета $\mathbf{A}_l^{j,k}$ и структурного параметра $\gamma_l^{j,k}$. В качестве регуляризатора для матрицы $(\mathbf{A}_l^{j,k})^{-1}$ предлагается использовать обратное гамма-распределение:

$$(\mathbf{A}_l^{j,k})^{-1} \sim \text{inv-gamma}(\lambda_1, \lambda_2),$$

где $\lambda_1, \lambda_2 \in \lambda$ — метапараметры оптимизации. Использование обратного гамма-распределения в качестве распределения гиперпараметров можно найти в [?, ?]. В данной работе обратное распределение выступает как регуляризатор гиперпараметров. Варьируя метапарамы λ_1, λ_2 получается более сильная или более слабая регуляризация [?]. Пример распределений inv-gamma(λ_1, λ_2) для разных значений метапараметров λ_1, λ_2 изображен на Рис. 1.2. Оптимизации без регуляризации соответствует случай предельного распределения $\lim_{\lambda_1, \lambda_2 \to 0}$ inv-gamma(λ_1, λ_2).

Таким образом, предлагаемая вероятностная модель содержит следующие компоненты:

- 1. Параметры ${\bf w}$ модели, распределенные нормально.
- 2. Структура модели Γ , содержащая все структурные параметры $\{\gamma^{j,k}, (j,k) \in E\}$ распределены по распределению Gumbel-Softmax.

Рис. 1.2. Графики обратных гамма распределений для различных значений метапараметров.

- 3. Гиперпараметры: $\mathbf{h} = [\operatorname{diag}(\mathbf{A}), \mathbf{s}]$, где \mathbf{A} конкатенация матриц $\mathbf{A}^{j,k}, (j,k) \in E$, \mathbf{s} конкатенация параметров Gumbel-Softmax распределений $\mathbf{s}^{j,k}, (j,k) \in E$, где E множество ребер, соответствующих графу рассматриваемого параметрического семейства.
- 4. Метапараметры: $\lambda = [\lambda_1, \lambda_2, \lambda_{\text{temp}}]$. Эти параметры не подлежат оптимизации и задаются экспертно.

График вероятностной модели в формате плоских нотаций представлен на Puc. 1.3.

Рис. 1.3. График предлагаемой вероятностной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Наблюдаемые переменные обозначены серыми кругами.

1.2. Вариационная оценка для обоснованности вероятностной модели

В качестве критерия выбора структуры модели предлагается использовать апостериорную вероятность гиперпараметров:

$$p(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\lambda}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\mathbf{h} \in \mathbb{H}},$$
 (1.4)

где структура модели и параметры модели выбираются на основе полученных значений гиперпараметров:

$$\Gamma^* = \arg \max_{\Gamma \in \Gamma} p(\Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}^*, \lambda),$$

$$\mathbf{w}^* = \operatorname*{arg\,max}_{\mathbf{w} \in \mathbb{W}} p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{\Gamma}^*, \boldsymbol{\gamma}^*),$$

где \mathbf{h}^* — решение задачи оптимизации (1.4).

Для вычисления обоснованности

$$p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \iint_{\mathbf{\Gamma}, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) d\mathbf{\Gamma} d\mathbf{w}$$

из (1.4) предлагается использовать вариационную оценку обоснованности.

Теорема 1. Пусть $q(\mathbf{w}, \Gamma | \boldsymbol{\theta}) = q_{\mathbf{w}}(\mathbf{h} | \Gamma, \boldsymbol{\theta}_{\mathbf{w}}) q_{\Gamma}(\Gamma | \boldsymbol{\theta}_{\Gamma})$ — вариационное распределение с параметрами $\boldsymbol{\theta} = [\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\theta}_{\Gamma}]$, аппроксимирующее апостериорное распределение структуры и параметров:

$$q(\mathbf{w}, \Gamma | \boldsymbol{\theta}) \approx p(\mathbf{w}, \Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}),$$

 $q_{\mathbf{w}}(\mathbf{h} | \Gamma, \boldsymbol{\theta}_{\mathbf{w}}) \approx p(\mathbf{w} | \mathbf{y}, \mathbf{X}, \Gamma, \mathbf{h}, \boldsymbol{\lambda}),$
 $q_{\Gamma}(\Gamma | \boldsymbol{\theta}_{\Gamma}) \approx q_{\Gamma}(\Gamma | \boldsymbol{\theta}_{\Gamma}).$

Тогда справедлива следующая оценка:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \ge \tag{1.5}$$

$$\mathsf{E}_{\mathbf{\Gamma} \sim q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma}) - D_{\mathrm{KL}} (q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})||p(\mathbf{\Gamma}|\mathbf{h},\boldsymbol{\lambda})) - D_{\mathrm{KL}} (q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})||p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})),$$

где $D_{\mathrm{KL}} \big(q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) || p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) \big)$ вычисляется по формуле условной дивергенции [?]:

$$D_{\mathrm{KL}}\big(q_{\mathbf{w}}(\mathbf{h}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})||p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda})\big) = \mathsf{E}_{\boldsymbol{\Gamma} \sim q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{h}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} \log \left(\frac{q_{\mathbf{w}}(\mathbf{h}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}))}{p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda})}\right).$$

Доказательство. Рассмотрим обоснованность:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \log \iint_{\Gamma, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \Gamma) p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) p(\Gamma|\mathbf{h}, \boldsymbol{\lambda}) d\Gamma d\mathbf{w} =$$

$$= \log \iint_{\Gamma, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \Gamma) p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) \frac{q(\mathbf{w}, \Gamma|\boldsymbol{\theta})}{q(\mathbf{w}, \Gamma|\boldsymbol{\theta})} d\Gamma d\mathbf{w} =$$

$$= \log \mathsf{E}_{q(\mathbf{w}, \Gamma|\boldsymbol{\theta})} \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})}{q(\mathbf{w}, \Gamma|\boldsymbol{\theta})}.$$

Используя неравенство Йенсена получим

$$\log \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})}{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \ge$$

$$\ge \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - D_{\mathrm{KL}} (q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Декомпозируем распределение q по свойству условной дивергенции:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) =$$

$$= D_{\mathrm{KL}}(q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})||p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + \mathsf{E}_{\mathbf{\Gamma} \sim q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} \log \left(\frac{q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}))}{p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})}\right). \tag{1.6}$$

В качестве вариационного распределения $q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ предлагается использовать нормальное распределение, не зависящее от структуры модели $\mathbf{\Gamma}$:

$$q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \sim \mathcal{N}(\boldsymbol{\mu}_{q}, \mathbf{A}_{q}),$$

где \mathbf{A}_q — диагональная матрица с диагональю \boldsymbol{lpha}_q .

В качестве вариационного распределения $q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$ предлагается использовать произведение распределений Gumbel-Softmax. Конкатенацию параметров концентрации распределений обозначим \mathbf{s}_q . Его температуру, общую для всех структурных параметров $\gamma \in \Gamma$, обозначим θ_{temp} . Вариационными параметрами распределения $q(\mathbf{w}, \Gamma|\boldsymbol{\theta})$ являются параметры распределений $q_{\mathbf{w}}(\mathbf{h}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}), q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$:

$$\boldsymbol{\theta} = [\boldsymbol{\mu}_q, \boldsymbol{\alpha}_q, \mathbf{s}_q, \theta_{\mathrm{temp}}].$$

График вероятностной вариационной модели в формате плоских нотаций представлен на Рис. 1.4.

Для анализа сложности полученной модели введем понятие *параметрической сложности*.

Рис. 1.4. График предлагаемой вероятностной вариационной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Вариационное распределение обозначено черным кругом. Наблюдаемые переменные обозначены серыми кругами.

Определение 2. Параметрической сложностью $C_p(\theta|U_{\mathbf{h}}, \lambda)$ модели с вариационными параметрами θ на компакте $U_{\mathbf{h}} \subset \mathbb{H}$ назовем минимальную дивергенцию между вариационным и априорным распределением:

$$C_p(\boldsymbol{\theta}|U_{\mathbf{h}}, \boldsymbol{\lambda}) = \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Параметрическая сложность модели соответствует минимальной по $\mathbf{h} \in U_{\mathbf{h}}$ ожидаемой длине описания параметров модели при условии заданного параметрического априорного распределения [?].

Одним из критериев удаления неинформативных параметров в вероятностных моделях является отношение вариационной плотности параметров в моде распределения к вариационной плотности параметра в нуле [?]:

$$\frac{q_{\mathbf{w}}(w = \mu_q | \mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(w = 0 | \mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} = \exp\left(-\frac{2\alpha_q^2}{\mu_q^2}\right),$$

где $q_{\mathbf{w}}(w|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \sim \mathcal{N}(\mu_q, \alpha_q).$

Обобщим понятие относительной вариационной плотности на случай произвольных непрерывных распределений.

Определение 3. Относительной вариационной плотностью параметра $w \in \mathbf{w}$ при условии структуры Γ и гиперпараметров \mathbf{h} назовем отношение вариационной плотности в моде вариационного распределения параметра к вариационной плотности в моде априорного распределению параметра:

$$\rho(w|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \lambda) = \frac{q_{\mathbf{w}}(\text{mode}q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\text{mode}p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}.$$

Относительной вариационной плотностью вектора параметров \mathbf{w} назовем следующее выражение:

$$\rho(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}) = \prod_{w \in \mathbf{w}} \rho(w|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}).$$

Сформулируем и докажеми теорему о связи относительной плотности и параметрической сложности модели:

Теорема 2. Пусть

- 1. заданы компактные множества $U_{\mathbf{h}} \subset \mathbb{H}, U_{\boldsymbol{\theta}_{\mathbf{w}}} \subset \mathbb{O}_{\mathbf{w}}, U_{\boldsymbol{\theta}_{\Gamma}} \subset \mathbb{O}_{\Gamma};$
- 2. Мода априорного распределения $p(\mathbf{w}, \Gamma | \mathbf{h}, \lambda)$ не зависит от гиперпараметров \mathbf{h} на $U_{\mathbf{h}}$ и структуры Γ на $U_{\boldsymbol{\theta_{\Gamma}}}$:

mode
$$p(\mathbf{w}|\mathbf{\Gamma}_1, \mathbf{h}_1, \boldsymbol{\lambda}) = \text{mode } p(\mathbf{w}|\mathbf{\Gamma}_1, \mathbf{h}_2, \boldsymbol{\lambda}) = \mathbf{M} \ \forall \ \mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}, \mathbf{\Gamma}_1, \mathbf{\Gamma}_2 \in U_{\mathbf{\Gamma}};$$

- 3. вариационное распределение $q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ и априорное распределение $p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})$ являются абсолютно непрерывными и унимодальными на $U_{\mathbf{h}}, U_{\boldsymbol{\theta}}$;
- 4. вариационное распределение $q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})$ является липшецевым по \mathbf{w} ;
- 5. значение $q_{\mathbf{w}}(\mathbf{M}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ не равно нулю при $\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}$;
- 6. Решение задачи вида

$$\mathbf{h}^* = \arg\min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}))$$
(1.7)

единственно для любого $\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}$.

7. Параметры модели **w** имеют конечные вторые моменты по распределениям:

$$\int_{\Gamma} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}) d\Gamma, \quad \int_{\Gamma} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda}) d\Gamma;$$

8. мода и матожидание вариационного распределения $q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ и априорного распределения $p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})$ совпадают:

mode
$$p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})}\mathbf{w};$$

mode
$$q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) = \mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w};$$

9. задана бесконечная последовательность векторов вариационных параметров $\theta_1, \theta_2, \dots, \theta_i \in U_{\theta}$, такая что $\lim_{i \to \infty} C_p(\theta_i | U_{\mathbf{h}}, \lambda) = 0$.

Тогда следующее выражение стремится к единице:

$$\mathsf{E}_{q_{\Gamma}(\Gamma|\theta_{\Gamma})} \rho(\mathbf{w}|\Gamma, \theta_{\mathbf{w}}, \mathbf{h}, \lambda) \to 1.$$

Доказательство. Обозначим за \mathbf{h}_i — решение задачи (1.7) для вектора вариационных параметров $\boldsymbol{\theta}_i$. Воспользуемся неравенством Пинскера:

$$||F_q(\boldsymbol{\theta}_i) - F_p(\mathbf{h}_i)||_{\mathrm{TV}} \leq \sqrt{2D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_i)||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_i, \boldsymbol{\lambda}))},$$

где $||\cdot||_{\text{TV}}$ — расстояние по вариации, F_q, F_p — функции распределения $q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_i), p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_i, \boldsymbol{\lambda})$. Т.к. дивергенция (1.6) состоит из двух неотрицательных величин, то обе они стремятся к нулю. Рассмотрим вторую величину:

$$0 = \lim_{i \to \infty} \mathsf{E}_{\mathbf{\Gamma} \sim q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} \log \left(\frac{q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}))}{p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})} \right) =$$

$$\lim_{i \to \infty} |\int_{\mathbf{\Gamma}} \int_{\mathbf{w}} \log \left(\frac{q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}))}{p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})} q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}) q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}) d\mathbf{w} d\mathbf{w} \right) | \geq \lim_{i \to \infty} \geq$$

$$\lim_{i \to \infty} \geq \int_{\mathbf{\Gamma}} ||F_{q}(\boldsymbol{\theta}_{i}) - F_{p}(\mathbf{h}_{i})||_{\mathbf{TV}} q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}) d\mathbf{\Gamma}.$$

Отсюда $\lim_{i\to\infty} ||F_q(\boldsymbol{\theta}) - F_p(\mathbf{h})||_{\mathrm{TV}} = 0$. По теореме Шеффе данное выражение можно переписать как:

$$\lim_{i \to \infty} \frac{1}{2} \iint_{\mathbf{w}, \mathbf{\Gamma}} |p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})| q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}) d\mathbf{\Gamma} d\mathbf{w} = 0.$$

Для произвольного $\boldsymbol{\theta}$ рассмотрим выражение:

$$\left| \int_{\Gamma} \frac{q_{\mathbf{w}}(\operatorname{mode}q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\operatorname{mode}p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} - \frac{q_{\mathbf{w}}(\mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{[q_{\mathbf{w}}(\mathbf{M}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\Gamma \right| =$$

$$\left| \int_{\Gamma} \frac{q_{\mathbf{w}}(\mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\mathbf{M}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} - \frac{q_{\mathbf{w}}(\mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{[q_{\mathbf{w}}(\mathbf{M}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\Gamma \right| \leq$$

$$\int_{\Gamma} \left| \frac{q_{\mathbf{w}}(\mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w})|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\mathbf{M}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} - \frac{q_{\mathbf{w}}(\mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{[q_{\mathbf{w}}(\mathbf{M}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\Gamma \right| \leq$$

$$\frac{C_{l}}{\min_{\boldsymbol{\theta}_{\mathbf{w}}\in U_{\boldsymbol{\theta}}}q_{\mathbf{w}}(\mathbf{M}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} \int_{\Gamma} |\mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w} - \mathsf{E}_{p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})}\mathbf{w}|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\Gamma \leq$$

$$\leq \frac{C_{l}}{\min_{\boldsymbol{\theta}_{\mathbf{w}}\in U_{\boldsymbol{\theta}}}q_{\mathbf{w}}(\mathbf{M}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} \int_{\Gamma,\mathbf{w}} |\mathbf{w}||q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\mathbf{w}d\Gamma,$$

где C_l — максимальная константа Липшица для $q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ на $U_{\boldsymbol{\theta}}$. Определим случайную величину $\boldsymbol{\nu}(t), t \geq 0$ следующим образом:

$$\boldsymbol{\nu}(t) = \max(-t \cdot \mathbf{1}, \min(t \cdot \mathbf{1}, \mathbf{w})).$$

Данная величина совпадает с \mathbf{w} при $|\mathbf{w}| < t$ и принимает значение t или -t при $|\mathbf{w}| \ge t$, Тогда для любого t > 0 справедливо:

$$\iint_{\Gamma,\mathbf{w}} |\mathbf{w}| |q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda}) |q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\mathbf{w} d\Gamma \le$$

$$\leq \iint_{\Gamma,\mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| |q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})| q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\mathbf{w} d\Gamma +
+ \iint_{\Gamma,\mathbf{w}} |\boldsymbol{\nu}(t)| |p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})| d\mathbf{w} \leq
\leq \iint_{\Gamma,\mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})| d\mathbf{w} d\Gamma +
+ \iint_{\Gamma,\mathbf{w}} |\boldsymbol{\nu}(t)| |q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})| q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\mathbf{w} d\Gamma. \tag{1.8}$$

ассмотрим первое слагаемое суммы (1.8). Т.к. вторые $\mathsf{E}_{q_{\Gamma}(\Gamma|\theta_{\Gamma})}\mathsf{E}_{q_{\mathbf{w}}(\mathbf{h}|\Gamma,\theta_{\mathbf{w}})}\mathbf{w}^2, \mathsf{E}_{q_{\Gamma}(\Gamma|\theta_{\Gamma})}p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})\mathbf{w}^2$ конечны, то случайная величина \mathbf{w} равномерно интегрируема как при маргинальном распределе- $\int_{f \Gamma} q_{f \Gamma}(f \Gamma|m{ heta}_{f \Gamma})q_{f w}({f h}|f \Gamma,m{ heta}_{f w})df \Gamma,$ так и при маргинальном распределении $\int_{\Gamma} q_{\Gamma}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\Gamma})p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})d\mathbf{\Gamma}$. По определению равномерной интегрируемости для ${\bf w}$ для любого числа ${\varepsilon}$ существует число t_0 , такое что для любого $t \geq t_0$ справедливо выражение:

$$\mathsf{E}|\mathbf{w} - \boldsymbol{\nu}(t)| d\mathbf{w} d\Gamma \leq \varepsilon.$$

берется матожидание распределениям $\int_{\Gamma}q_{\Gamma}(\Gamma|\boldsymbol{ heta}_{\Gamma})q_{\mathbf{w}}(\mathbf{h}|\Gamma,\boldsymbol{ heta}_{\mathbf{w}})d\Gamma, \int_{\Gamma}q_{\Gamma}(\Gamma|\boldsymbol{ heta}_{\Gamma})p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})d\Gamma$. Тогда

$$\iint_{\Gamma, \mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{h}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) |d\mathbf{w}d\Gamma \leq$$

$$\iint_{\Gamma, \mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) + \iint_{\Gamma, \mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| q_{\mathbf{w}}(\mathbf{h}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) d\Gamma d\mathbf{w}$$

для любого t. Устремляя t к бесконечности, получим

$$\lim_{i\to\infty} \iint_{\Gamma,\mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{h}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) |d\mathbf{w}d\Gamma = 0.$$

Рассмотрим второе слагаемое. Т.к. $|\boldsymbol{\nu}(t)|$ — ограничена, то

$$\iint_{\Gamma,\mathbf{w}} |\boldsymbol{\nu}(t)| |q_{\mathbf{w}}(\mathbf{h}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda}) |q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) d\mathbf{w} d\boldsymbol{\Gamma} \leq$$

$$\leq t \iint_{\Gamma, \mathbf{w}} |q_{\mathbf{w}}(\mathbf{h}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\mathbf{w} d\Gamma.$$

Данное выражение стремится к нулю при $i \to \infty$. Таким образом выражение $\left| \int_{\Gamma} \frac{q_{\mathbf{w}}(\mathrm{mode}q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\mathrm{mode}p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} q_{\Gamma}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\Gamma}) d\mathbf{\Gamma} \right|$ стремится к единице, что и требовалось доказать.

Теорема утверждает, что при устремлении параметрической сложности модели к нулю, все параметры модели подлежат удалению в среднем по всем возможным значениям структуры Γ модели. Заметим, что теорема применима для случая, когда последовательность вариационных распределений q не имеет предела. Так, в случае, если структура Γ определена однозначно, последовательность θ_i может являться последовательностью нормальных распределений, чье матожидание стремится к нулю:

$$oldsymbol{ heta}_i \sim \mathcal{N}((oldsymbol{\mu}_q)_i, (\mathbf{A}_q^{-1})_i), (oldsymbol{\mu}_q)_i
ightarrow \mathbf{0}.$$

Априорным распределением $p(\mathbf{w}, \Gamma | \mathbf{h}, \lambda) = p(\mathbf{w} | \Gamma, \mathbf{h}, \lambda)$ при этом может являться семейство нормальных распределений с нулевым средним:

$$p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) = \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}).$$

При этом сама последовательность распределений $\boldsymbol{\theta}_i$ не обязана иметь предел.

1.3. Обобщающая задача

В данном разделе проводится анализ основных критериев выбора моделей, а также предлагается их обобщение на случай моделей, испольюзующих вариационное распределение $q(\mathbf{w}, \Gamma | \boldsymbol{\theta})$ для аппроксимации неизвестного апостериорного распределения параметров $p(\mathbf{w}, \Gamma | \mathbf{h}, \boldsymbol{\lambda})$.

Рассмотрим основные статистические критерии выбора вероятностных моделей.

1. Критерий максимального правдоподобия:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) \to \max_{\mathbf{w} \in U_{\mathbf{w}}, \mathbf{\Gamma} \in U_{\mathbf{\Gamma}}}.$$

Для использования данного критерия в качестве задачи выбора модели предлагается следующее обобщение:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}).$$
 (1.9)

Данное обобщение (1.9) эквивалентно критерию правдоподобия при выборе в качестве $q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})$ эмпирического распределения парамтетров и структуры. Метод не предполагает оптимизации гиперпараметров \mathbf{h} . Для формального соответствия данной задачи задаче выбора модели (??), т.е. двухуровневой задачи оптимизации, положим $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) \rightarrow \max_{\boldsymbol{\theta}},$$

$$Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) \to \max_{\mathbf{h}},$$

2. Метод максимальной апостериорной вероятности.

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \to \max_{\mathbf{w} \in U_{\mathbf{w}}, \mathbf{\Gamma} \in U_{\mathbf{\Gamma}}}.$$

Аналогично предыдущему методу сформулируем вариационное обобщение данной задачи:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} (\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) + \log p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}))$$
(1.10)

Т.к. в рамках данной задачи (1.10) не предполагается оптимизации гиперпараметров \mathbf{h} , положим параметры распределения $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})$ фиксированными:

$$\lambda = [\lambda_1, \lambda_2, \lambda_{\text{temp}}, \mathbf{s}, \text{diag}(\mathbf{A})].$$

3. Перебор структуры:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) [q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) = p']$$
(1.11)

где p' — некоторое распределение на структуре Γ , выступающее в качестве метапараметра.

4. Критерий Акаике:

$$AIC = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma})|\mathbf{W}|.$$

Т.к. все рассматриваемые модели принадлежат одному параметрическому семейству моделей \mathfrak{F} , то количество параметров у всех рассматриваемых моделей совпадает. Тогда критерий Акаике совпадает с критерием максимального правдоподобия. Для использования критерия Акаике для сравнения моделей, принадлежащих одному параметрическому семейству \mathfrak{F} предлагается следующая переформулировка:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - |\{w : D_{\mathrm{KL}}(\boldsymbol{\theta}||\mathbf{h}) < \lambda_{\mathrm{prune}}\}$$
(1.12)

где

$$\mathbf{h} = \underset{\mathbf{h}' \in U_{\mathbf{h}}}{\operatorname{arg\,min}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})), \tag{1.13}$$

 λ_{prune} — метапараметр алгоритма, $U_{\mathbf{h}} \subset \mathbb{H}$ — область определения задачи по гиперпараметрам. Предложенное обобщение (1.12) применимо только в случае, если выражение (1.13) определено однозначно, т.е. существует единственный вектор гиперпараметров на $U_{\mathbf{h}}$, доставляющий минимум дивергенции $D_{\text{KL}}(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}), p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) ||.)$

5. Информационный критерий Шварца:

BIC =
$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - 0.5 \log(m)|\mathbf{W}|$$
.

Переформулируем данный критерий аналогично критерию AIC:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = BIC_{\lambda} = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \log m |\{w : D_{\mathrm{KL}}(q)\}|$$
(1.14)

метапараметр λ_{prune} определен аналогично (1.13).

6. Метод вариационной оценки обоснованности:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}), p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})||+) p(\mathbf{h})$$

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}), p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})||+) p(\mathbf{h})$$

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}), p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})||+) p(\mathbf{h})$$

В рамках данной задачи функции $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ и $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$ совпадают, все гиперпараметры \mathbf{h} подлежат оптимизации.

7. Валидация на отложенной выборке:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) + p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \to \boldsymbol{\theta}, \quad (1.16)$$
$$Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) \to \max_{h},$$

где $(\mathbf{X}_{train}, \mathbf{y}_{train}), (\mathbf{X}_{test}, \mathbf{y}_{test})$ — разбиение выборки на обучающую и контрольную подвыборку. В рамках данной задачи, все гиперпараметры \mathbf{h} подлежат оптимизации.

Каждый из рассмотренных критерии удовлетворяет хотя бы одному из перечисленных свойств:

- 1) модель, оптимизируемая согласно критерию, доставляет максимум правдоподобия выборки;
- 2) модель, оптимизируемая согласно критерию, доставляет максимум оценки обоснованности;
- 3) для моделей, доставляющих сопоставимые значения правдоподобия выборки, выбирается модель с меньшим количеством информативных параметров.
- 4) критерий позволяет производить перебор структур для отбора наилучших модели.

Формализуем рассмотренные критерии. Оптимизационную задачу, которая удовлетворяет всем перечисленным свойствам при некоторых значинях метапараметров, будет называть обобщающей.

Определение 4. Двухуровневую задачу оптимизации будем называть *обобщающей* на компакте $U = U_{\theta} \times U_{\mathbf{h}} \times U_{\mathbf{h}} \times U_{\lambda} \subset \mathbb{O} \times \mathbb{H} \times \lambda$, если она удовлетворяет следующим критериям.

1. Область определения каждого параметра $w \in \mathbf{w}$, гиперпараметра $h \in \mathbf{h}$ и метапараметра $\lambda \in \boldsymbol{\lambda}$ не является пустым множеством и не является точкой.

2. Для каждого значения гиперпараметров ${\bf h}$ оптимальное решение нижней (\ref{h}) задачи оптимизации

$$\boldsymbol{\theta}^*(\mathbf{h}) = \argmax_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$$

определено однозначно при любых значениях метапараметров $\lambda \in U_{\lambda}$.

3. Критерий максимизации правдоподобия выборки: существует $\lambda \in U_{\lambda}$ и

$$K_1 > 0, \quad K_1 < \max_{\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}} Q(\mathbf{h}_1 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}),$$

такие что для любых векторов гиперпараметров, удовлетворяющих неравенству

$$\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}, Q(\mathbf{h}_1|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}) > K_1,$$

выполняется неравенство

$$\mathsf{E}_{q(\mathbf{w},\mathbf{\Gamma}|\boldsymbol{\theta}^*(\mathbf{h}_1))}p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma}) > \mathsf{E}_{q(\mathbf{w},\mathbf{\Gamma}|\boldsymbol{\theta}^*(\mathbf{h}_2))}p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma})$$

4. Критерий минимизации параметрической сложности: существует $\lambda \in U_{\lambda}$ и

$$K_2 > 0, \quad K_2 < \max_{\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}} Q(\mathbf{h}_1 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}),$$

такие что для любых векторов гиперпараметров $\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}$, удовлетворяющих неравенству

$$Q(\mathbf{h}_1|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}) > K_2,$$

параметрическая сложность первой модели меньше, чем второй:

$$C_p(\boldsymbol{\theta}^*(\mathbf{h}_1)|U_{\mathbf{h}},\boldsymbol{\lambda}) < C_p(\boldsymbol{\theta}^*(h_2)|U_{\mathbf{h}},\boldsymbol{\lambda}).$$

5. Критерий приближения оценки обоснованности: существует значение гиперпараметров λ , такое что значение функций потерь $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\lambda)$ и валидации $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\lambda)$ пропорционален вариационной оценки обоснованности модели:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \propto Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) \propto$$

 $\propto \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \big) + \log p(\mathbf{h}|\boldsymbol{\lambda})$ для всех $\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}, \mathbf{h} \in U_{\mathbf{h}}$.

6. Критерий перебора оптимальных структур: существует набор метапараметров λ и константа

$$K_3 > 0, \quad K_3 < \max_{\mathbf{h}_1, \mathbf{h}_2} D_{\mathrm{KL}} \big(p(\mathbf{\Gamma} | \mathbf{h}_1, \boldsymbol{\lambda}) || p(\mathbf{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}) \big), D_{\mathrm{KL}} \big(p(\mathbf{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}) || p(\mathbf{\Gamma} | \mathbf{h}_1, \boldsymbol{\lambda}) \big),$$

такие что для локальных оптимумов задачи оптимизации $\mathbf{h}_1, \mathbf{h}_2$, полученных при метапараметрах $\boldsymbol{\lambda}$ и удовлетворяющих неравенствам

$$D_{\mathrm{KL}}(p(\Gamma|\mathbf{h}_{1},\boldsymbol{\lambda})||p(\Gamma|\mathbf{h}_{2},\boldsymbol{\lambda})) > K_{3}, D_{\mathrm{KL}}(p(\Gamma|\mathbf{h}_{2},\boldsymbol{\lambda})||p(\Gamma|\mathbf{h}_{1},\boldsymbol{\lambda})) > K_{3},$$

существует значение метапараметров λ' , такие что

- (а) Соответствие между вариационными параметрами $\boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\theta}^*(\mathbf{h}_2)$ сохраняется при $\boldsymbol{\lambda}'$.
- (b) $Q(\mathbf{h}_1|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) < Q(\mathbf{h}_2|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ при $\boldsymbol{\lambda}'$.
- 7. Критерий нерперывности: функции $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ и $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ непрерывны по метапараметрам $\boldsymbol{\lambda} \in U_{\boldsymbol{\lambda}}$.

Первый критерий является техническим и используется для исключения из рассмотрения вырожденных задач оптимизации. Второй критерий говорит о том, что решение первого и второго уровня должны быть согласованы и определены однозначно. Критерии 3-5 определяют возможные критерии оптимизации, которые должны приближаться обобщающей задачей. Критерий 6 говорит о возможности перехода между различными структурами модели. Данный критерий говорит о том, что мы можем перейти от одного набора гиперпараметров ${\bf h}_1$ к другим ${\bf h}_2$, если они соответствуют локальным оптимумам задачи оптимизации, и дивергенция соответствующих априорных распределений на структурах $p(\Gamma | \mathbf{h}, \boldsymbol{\lambda})$ значимо высока. При этом соответствующие вариационные распределения $q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$ могут оказаться достаточно близки. Возможным дополнением этого критерия был бы критерий, позволяющий переходить от структуры к структуре, если соответствующие распределения $q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$ различаются значимо. Последний критерий говорит о том, что обобщающая задача должна позволять производить переход между различными методами выбора параметров и структуры модели непрерывно.

Теорема 3. Рассмотренные задачи (1.9),(1.10),(1.11),(1.12),(1.14),(1.16) не являются обобщающими.

 \mathcal{A} оказательство. Задачи (1.9),(1.10),(1.11),(1.12),(1.14) не имеют гиперпараметров \mathbf{h} , подлежащих оптимизации, поэтому не могут оптимизировать вариационную оценку.

При использовании валидации на отложенной выборки (1.16) в функцию валидации $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ не входит ни один метапараметр, поэтому критерий перебора структур 6 для нее также не выполняется.

Теорема 4. Пусть q_{Γ} — абсолютно непрерывное распределение с дифференцируемой плотностью, такой что:

- 1. градиент плотности $\nabla_{\boldsymbol{\theta_{\Gamma}}}q(\Gamma|\boldsymbol{\theta_{\Gamma}})$ является нулевым не более чем счетное количество раз.
- 2. выражение $\nabla_{\boldsymbol{\theta}_{\Gamma}}q(\Gamma|\boldsymbol{\theta}_{\Gamma})\mathrm{log}p(\Gamma|\mathbf{h},\boldsymbol{\lambda})$ ограничено на $U_{\boldsymbol{\theta}}$ некоторой случайной величиной с конечным первым моментом.

Тогда задача (1.15) не является обобщающей.

Доказательство. Пусть выполнены условия критерия 6 о переборе структур, и $\mathbf{h}_1, \mathbf{h}_2$ — локальные оптимумы функции $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ при метапараметрах $\boldsymbol{\lambda}$. По условию критерия соответствтие $\boldsymbol{\theta}^*(\mathbf{h}_1)$ и $\boldsymbol{\theta}^*(\mathbf{h}_2)$ должны сохраняться, т.е. для некоторого $\boldsymbol{\lambda}'$ решение нижней задачи оптимизации $\boldsymbol{\theta}^*(\mathbf{h}_1)$ должно совпадать с решением $\boldsymbol{\theta}^*(\mathbf{h}_1)$ при метапараметрах $\boldsymbol{\lambda}$. Тогда

$$\nabla_{\boldsymbol{\theta}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \nabla_{\boldsymbol{\theta}} \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_1, \boldsymbol{\lambda})) =$$

$$= \nabla_{\boldsymbol{\theta}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \nabla_{\boldsymbol{\theta}} \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_1, \boldsymbol{\lambda}')).$$

Сокращая равные слагаемые в равенстве получим:

$$\nabla_{\boldsymbol{\theta}} D_{KL}(q(\boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\boldsymbol{\Gamma}|\boldsymbol{\lambda})) = \nabla_{\boldsymbol{\theta}} D_{KL}(q(\boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\boldsymbol{\Gamma}|\boldsymbol{\lambda}')),$$

Из второго условия теоремы следует, что по теореме Лебега о мажорируемой сходимости осуществим переход дифференцирования под знак интеграла:

$$\int_{\Gamma \in \Gamma} \nabla_{\boldsymbol{\theta}_{\Gamma}} q(\Gamma | \boldsymbol{\theta}_{2}) (\log p(\Gamma | \boldsymbol{\lambda}) - \log p(\Gamma | \boldsymbol{\lambda}')) d\Gamma = 0.$$

Т.к. выражение $\nabla_{\boldsymbol{\theta}_{\Gamma}}q(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})$ принимает нулевое значение в счетном количестве точек, то выражение $\log\ p(\boldsymbol{\Gamma}|\boldsymbol{\lambda}) - \log\ p(\boldsymbol{\Gamma}|\boldsymbol{\lambda}')$ равно нулю почти всюду, что означает что метапараметр температуры λ_{temp} равен при разных значениях метапараметров:

$$\lambda_{ ext{temp}} = \lambda'_{ ext{temp}}, \quad \lambda_{ ext{temp}} \in oldsymbol{\lambda}, \lambda'_{ ext{temp}} \in oldsymbol{\lambda}'.$$

Таким образом, метапараметры λ, λ' отличаются лишь на метапараметры λ_1, λ_2 регуляризации ковариационной матрицы \mathbf{A}^{-1} . Возьмем в качестве векторов гиперпараметров $\mathbf{h}_1, \mathbf{h}_2$ гиперпараметры, отличающиеся только параметрами распределения структуры:

$$\mathbf{h}_1 = [\mathbf{s}_1, \operatorname{diag}(\mathbf{A}_1)], \mathbf{h}_2 = [\mathbf{s}_2, \operatorname{diag}(\mathbf{A}_2)], \quad \mathbf{s}_1 \neq \mathbf{s}_2, \mathbf{A}_1 = \mathbf{A}_2.$$

Метапараметры λ_1, λ_2 не влияют на значение функции $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ при гиперпараметрах, отличающихся только параметрами распределения структуры, поэтому значение функции Q для них будет неизменно при любых значениях λ_1, λ_2 . Приходим к противоречию: значение $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ не меняется при изменении метапараметров $\boldsymbol{\lambda}$.

Список основных обозначений

 \mathbf{x}_i — вектор признакового описания i-го объекта

 y_i — метка i-го объекта

 \mathfrak{D} — выборка

Х — матрица, содержащая признаковое описание объектов выборки

y — вектор меток объектов выборки

m — количество объектов в выборке

n — количество признаков в признаковом описании объекта

 \mathbb{X} — признаковое пространство объектов

R — множество классов в задаче классификации

(V,E) — граф со множеством вершин V и множеством ребер E

 $\mathbf{g}^{j,k}$ — вектор базовых функций для ребра (j,k)

 $K^{j,k}$ — мощность вектора базовых функций для ребра (j,k)

 \mathbf{agg}_v — функция аггрегации для вершины $v.~\boldsymbol{\gamma}^{j,k}$ — структурный параметр для ребра (j,k)

 Δ^K — симплекс на K вершинах

 $ar{\Delta}^K$ — множество вершин симплекса на K вершинах

 \mathfrak{F} — параметрическое семейство моделей

U — область определения оптимизационной задачи

 \mathbf{w} — параметры модели

 $\mathbb{W}-$ пространство параметров модели

 $U_{\mathbf{w}}$ — область определения параметров модели

 Γ — структура модели

 Γ — множество значений структуры модели

 U_{Γ} — область определения параметров модели

 \mathbf{h} — гиперпараметры модели

 \mathbb{H} — пространство гиперпараметров модели

 $U_{\mathbf{h}}$ — область определения гиперпараметров

 $oldsymbol{ heta}$ — вариационные параметры модели

 Θ — пространство вариационных параметров модели

 $U_{m{ heta}}$ — область определения вариационных параметров модели

 $oldsymbol{ heta_{w}}$ — вариационные параметры модели, аппроксимирующие параметры модели

 $\mathbb{O}_{\mathbf{w}}$ — пространство вариационных параметров модели, аппроксимирующих параметры модели

 $U_{\theta_{\mathbf{w}}}$ — область определения вариационных параметров модели, аппроксимирующих параметры модели

 $oldsymbol{ heta}_{\Gamma}$ — вариационные параметры модели, аппроксимирующие структуру модели

 Θ_{Γ} — пространство вариационных параметров модели, аппроксимирующих структуру модели

 $U_{\theta_{\Gamma}}$ — область определения вариационных параметров модели, аппроксимирующих структуру модели

- λ вектор метапараметров
- λ пространство метапараметров
- U_{λ} область определения метапараметров
- $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})$ априорное распределение параметров и структуры модели
- $p(\mathbf{h}|\boldsymbol{\lambda})$ распределение гиперпараметров модели
- $p(\Gamma | \mathbf{h}, \boldsymbol{\lambda})$ априорное распределение структуры модели
- $p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})$ априорное распределение параметров модели
- $p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ апостериорное распределение параметров и структуры модели
- $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})$ апостериорное распределение структуры модели
- $p(\Gamma|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ апостериорное распределение структуры модели
- $p(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\lambda})$ апостериорное распределение гиперпараметров
- $p(y, \mathbf{w}, \mathbf{\Gamma} | \mathbf{x}, \mathbf{h})$ вероятностная модель глубокого обучения
- $p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma})$ правдоподобие выборки
- $p(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ обоснованность модели
- $q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta})$ вариационное распределение параметров и структуры модели
- $q_{\mathbf{w}}(\mathbf{h}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ вариационное распределение структуры модели
- $q_{\Gamma}(\Gamma|oldsymbol{ heta}_{\Gamma})$ вариационное распределение параметров модели
- $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ функция потерь
- $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{ heta},\boldsymbol{\lambda})$ валидационная функция
- $T(\boldsymbol{\theta}|L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda}))$ оператор оптимизации
- \mathfrak{Q} семейство вариационные распределений
- S энтропия распределения
- M множество моделей без общей параметризации