- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- AIPO OMPIO

(43) Internationales Veröffentlichungsdatum 19. April 2007 (19.04.2007)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2007/042146\ A1$

- (51) Internationale Patentklassifikation: *A61K 31/5377* (2006.01) *A61P 7/02* (2006.01)
- (21) Internationales Aktenzeichen: PCT/EP2006/009373
- (22) Internationales Anmeldedatum:

27. September 2006 (27.09.2006)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10 2005 048 824.2

10. Oktober 2005 (10.10.2005) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER HEALTHCARE AG [DE/DE]; 51368 Leverkusen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): PERZBORN, Elisabeth [DE/DE]; Am Tescher Busch 13, 42327 Wuppertal (DE). MISSELWITZ, Frank [DE/DE]; Wielandtstr. 15, 69120 Heidelberg (DE).
- (74) Gemeinsamer Vertreter: BAYER HEALTHCARE AG; Law and Patents Patents and Licensing, 51368 Leverkusen (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: MICROANGIOPATHY TREATMENT AND PREVENTION
- (54) Bezeichnung: BEHANDLUNG UND PROPHYLAXE VON MIKROANGIOPATHIEN

- (57) Abstract: The invention relates to the use of Xa-factor selective inhibitors, in particular oxazolidinones of formula (I) for treating and/or preventing microangiopathies and to the use thereof for producing drugs for treating and/or preventing microangiopathies.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft die Verwendung von von selektiven Faktor Xa-Inhibitoren, insbesondere von Oxazolidinonen der Formel (I), zur Behandlung und/oder Prophylaxe von Mikroangiopathien sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Mikroangiopathien.

Behandlung und Prophylaxe von Mikroangiopathien

5

20

25

Die vorliegende Erfindung betrifft die Verwendung von selektiven Faktor Xa-Inhibitoren, insbesondere von Oxazolidinonen der Formel (I), zur Behandlung und/oder Prophylaxe von Mikroangiopathien sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Mikroangiopathien.

Oxazolidinone der Formel (I) sind aus WO 01/047919 bekannt und wirken insbesondere als selektive Inhibitoren des Blutgerinnungsfaktors Xa und als Antikoagulantien.

Oxazolidinone der Formel (I) sind selektive Faktor Xa Inhibitoren und hemmen spezifisch nur FXa. Eine antithrombotische Wirkung von Faktor Xa-Inhibitoren konnte in zahlreichen Tiermodellen nachgewiesen werden (vgl. U. Sinha, P. Ku, J. Malinowski, B. Yan Zhu, RM. 10 Scarborough, C K. Marlowe, PW. Wong, P. Hua Lin, SJ. Hollenbach, Antithrombotic and hemostatic capacity of factor Xa versus thrombin inhibitors in models of venous and arteriovenous thrombosis, European Journal of Pharmacology 2000, 395, 51-59; A. Betz, Recent advances in Factor Xa inhibitors, Expert Opin. Ther. Patents 2001, 11, 1007; K. Tsong Tan, A. Makin, G. YH Lip, Factor X inhibitors, Exp. Opin. Investig. Drugs 2003, 12, 799; J. Ruef, HA. Katus, New 15 antithrombotic drugs on the horizon, Expert Opin. Investig. Drugs 2003, 12, 781; MM. Samama, Synthetic direct and indirect factor Xa inhibitors, Thrombosis Research 2002, 106, V267; ML. Ouan, JM. Smallheer, The race to an orally active Factor Xa inhibitor, Recent advances, J. Current Opinion in Drug Discovery& Development 2004, 7, 460-469) sowie in klinischen Studien an Patienten (The Ephesus Study, Blood 2000, 96, 490a; The Penthifra Study, Blood 2000, 96, 490a; The Pentamaks Study, Blood 2000, 96, 490a-491a; The Pentathlon 2000 Study, Blood 2000, 96, 491a). Faktor Xa-Inhibitoren können deshalb bevorzugt eingesetzt werden in Arzneimitteln zur Prophylaxe und/oder Behandlung von thromboembolischen Erkrankungen. Selektive FXa-Inhibitoren zeigen ein breites therapeutisches Fenster. In zahlreichen tierexperimentellen Untersuchungen konnte gezeigt werden, dass FXa Inhibitoren in Thrombosemodellen eine antithrombotische Wirkung zeigen ohne, oder nur geringfügig, verlängernd auf Blutungszeiten zu wirken (vergl. RJ Leadly, Coagulationfactor Xa inhibition: biological background and rationale, Curr Top Med Chem 2001; 1, 151-159). Eine individuelle Dosierung bei Antikoagulation mit selektiven FXa Inhibitoren ist daher nicht notwendig.

Mikroangiopathien sind ein durch Stenosierung und Thrombosierung kleiner und kleinster Gefäße 30 bedingtes Krankheitsbild. Häufige Ursache von Mikroangiopathien sind embolisierende Mikrothromben aus proximalen Gefäßen, Endothelschädigungen mit überschießender Aktivierung von Thrombozyten und der Gerinnung. So stellen bei der Pathogenese der Mikroangiopathie Endotheldefekte ein entscheidendes pathopysioplogisches Substrat dar. Die normale, intakte Endothelauskleidung der Blutgefäße ist athrombogen. Bei Verletzungen treten thrombogene Eigenschaften des Endothels in den Vordergrund. Entstehende Thromben führen zur mikroangiopathischen Hämolyse, zum Verschluss kleiner Gefäße und zur Organischämie.

Es wurde nun überraschenderweise gefunden, dass selektive Faktor Xa-Inhibitoren, insbesondere Oxazolidinone der Formel (I), auch zur Behandlung und Verhinderung von Mikroangiopathien geeignet sind.

Gegenstand der vorliegenden Erfindung ist die Verwendung von selektiven Faktor Xa-Inhibitoren zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Mikroangiopathien.

Gegenstand der vorliegenden Erfindung ist insbesondere die Verwendung von Verbindungen der Formel (I)

in welcher:

- für gegebenenfalls benzokondensiertes Thiophen (Thienyl) steht, das gegebenenfalls einoder mehrfach substituiert sein kann;
 - R² für einen beliebigen organischen Rest steht;
 - R³, R⁴, R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und für Wasserstoff oder für (C₁-C₆)-Alkyl stehen

sowie ihrer Salze, Solvate und Solvate der Salze zur Herstellung von Arzneimitteln zur 20 Behandlung und/oder Prophylaxe von Mikroangiopathien.

Bevorzugt ist hierbei die Verwendung von Verbindungen der Formel (I),

worin

- 3 -

R¹ für gegebenenfalls benzokondensiertes Thiophen (Thienyl) steht, das gegebenenfalls einoder mehrfach substituiert sein kann durch einen Rest aus der Gruppe von Halogen; Cyano; Nitro; Amino; Aminomethyl; (C₁-C₈)-Alkyl, das gegebenenfalls seinerseits einoder mehrfach durch Halogen substituiert sein kann; (C₃-C₇)-Cycloalkyl; (C₁-C₈)-Alkoxy; Imidazolinyl; -C(=NH)NH₂; Carbamoyl; und Mono- und Di-(C₁-C₄)-alkyl-aminocarbonyl,

R² für eine der folgenden Gruppen steht:

Α-,

5

A-M-,

D-M-A-,

10 B-M-A-,

В-,

B-M-,

B-M-B-,

D-M-B-,

wobei:

20

der Rest "A" für (C_6-C_{14}) -Aryl, vorzugsweise für (C_6-C_{10}) -Aryl, insbesondere für Phenyl oder Naphthyl, ganz besonders bevorzugt für Phenyl, steht;

der Rest "B" für einen 5- oder 6-gliedrigen aromatischen Heterocyclus steht, der bis zu 3 Heteroatome und/oder Hetero-Kettenglieder, insbesondere bis zu 2 Heteroatome und/oder Hetero-Kettenglieder, aus der Reihe S, N, NO (N-Oxid) und O enthält;

der Rest "D" für einen gesättigten oder teilweise ungesättigten, mono- oder bicyclischen, gegebenenfalls benzokondensierten 4- bis 9-gliedrigen Heterocyclus steht, der bis zu drei Heteroatome und/oder Hetero-Kettenglieder aus der Reihe S, SO, SO₂, N, NO (N-Oxid) und O enthält;

der Rest "M" für –NH-, -CH₂-, -CH₂CH₂-, -O-, -NH-CH₂-, -CH₂-NH-, -OCH₂-, -CH₂O-, -CONH-, -NHCO-, -COO-, -OOC-, -S-, -SO₂- oder für eine kovalente Bindung steht;

wobei

WO 2007/042146 PCT/EP2006/009373

-4-

die zuvor definierten Gruppen "A", "B" und "D" jeweils gegebenenfalls ein- oder mehrfach substituiert sein können mit einem Rest aus der Gruppe von Halogen; Trifluormethyl; Oxo; Cyano; Nitro; Carbamoyl; Pyridyl; (C₁-C₆)-Alkanoyl; (C₃-C₇)-Cycloalkanoyl; (C₆-C₁₄)-Arylcarbonyl; (C₅-C₁₀)-Heteroarylcarbonyl; (C₁-C₆)-Alkanoyloxymethyloxy; (C₁-C₄)-Hydroxyalkylcarbonyl; -COOR²⁷; -SO₂R²⁷; -C(NR²⁷R²⁸)=NR²⁹; -CONR²⁸R²⁹; -SO₂NR²⁸R²⁹; -OR³⁰; -NR³⁰R³¹, (C₁-C₆)-Alkyl und (C₃-C₇)-Cycloalkyl,

wobei (C₁-C₆)-Alkyl und (C₃-C₇)-Cycloalkyl ihrerseits gegebenenfalls substituiert sein können durch einen Rest aus der Gruppe von Cyano; -OR²⁷; -NR²⁸R²⁹; -CO(NH)_v(NR²⁷R²⁸) und -C(NR²⁷R²⁸)=NR²⁹,

10 wobei:

5

15

20

25

30

v entweder 0 oder 1 bedeutet und

R²⁷, R²⁸ und R²⁹ gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl, (C₃-C₇)-Cycloalkyl, (C₁-C₄)-Alkanoyl, Carbamoyl, Trifluormethyl, Phenyl oder Pyridyl bedeuten,

und/oder

R²⁷ und R²⁸ bzw. R²⁷ und R²⁹ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder teilweise ungesättigten 5- bis 7-gliedrigen Heterocyclus mit bis zu drei, vorzugsweise bis zu zwei gleichen oder unterschiedlichen Heteroatomen aus der Gruppe von N, O und S bilden, und

R³⁰ und R³¹ gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl, (C₃-C₇)-Cycloalkyl, (C₁-C₄)-Alkylsulfonyl, (C₁-C₄)-Hydroxyalkyl, (C₁-C₄)-Aminoalkyl, Di-(C₁-C₄)-alkylamino-(C₁-C₄)-alkyl, -CH₂C(NR²⁷R²⁸)=NR²⁹ oder -COR³³ bedeuten,

wobei

R³³ (C₁-C₆)-Alkoxy, (C₁-C₄)-Alkoxy-(C₁-C₄)-alkyl, (C₁-C₄)-Alkoxycarbonyl-(C₁-C₄)-alkyl, (C₁-C₄)-Aminoalkyl, (C₁-C₄)-Alkoxycarbonyl, (C₁-C₄)-Alkanoyl-(C₁-C₄)-alkyl, (C₃-C₇)-Cycloalkyl, (C₂-C₆)-Alkenyl, (C₁-C₈)-Alkyl, das gegebenenfalls durch Phenyl oder Acetyl substituiert sein kann, (C₆-C₁₄)-Aryl, (C₅-C₁₀)-Heteroaryl, Trifluormethyl, Tetrahydrofuranyl oder Butyrolacton bedeutet, R³, R⁴, R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und für Wasserstoff oder für (C₁-C₆)-Alkyl stehen

sowie ihrer Salze, Solvate und Solvate der Salze.

Ebenfalls bevorzugt ist hierbei die Verwendung von Verbindungen der allgemeinen Formel (I),

5 worin

10

R¹ für Thiophen (Thienyl), insbesondere 2-Thiophen, steht, das gegebenenfalls ein- oder mehrfach substituiert sein kann durch Halogen, vorzugsweise Chlor oder Brom, Amino, Aminomethyl oder (C₁-C₈)-Alkyl, vorzugsweise Methyl, wobei der (C₁-C₈)-Alkylrest gegebenenfalls seinerseits ein- oder mehrfach durch Halogen, vorzugsweise Fluor, substituiert sein kann,

R² für eine der folgenden Gruppen steht:

Α-,

A-M-,

D-M-A-,

15 B-M-A-,

B-,

B-M-,

B-M-B-,

D-M-B-,

wobei:

25

der Rest "A" für (C₆-C₁₄)-Aryl, vorzugsweise für (C₆-C₁₀)-Aryl, insbesondere für Phenyl oder Naphthyl, ganz besonders bevorzugt für Phenyl, steht;

der Rest "B" für einen 5- oder 6-gliedrigen aromatischen Heterocyclus steht, der bis zu 3 Heteroatome und/oder Hetero-Kettenglieder, insbesondere bis zu 2 Heteroatome und/oder Hetero-Kettenglieder, aus der Reihe S, N, NO (N-Oxid) und O enthält;

10

15

20

der Rest "D" für einen gesättigten oder teilweise ungesättigten 4- bis 7-gliedrigen Heterocyclus steht, der bis zu drei Heteroatome und/oder Hetero-Kettenglieder aus der Reihe S, SO, SO₂, N, NO (N-Oxid) und O enthält;

der Rest "M" für –NH-, -CH₂-, -CH₂CH₂-, -O-, -NH-CH₂-, -CH₂-NH-, -OCH₂-, -CH₂O-, -CONH-, -NHCO-, -COO-, -OOC-, -S- oder für eine kovalente Bindung steht;

wobei

die zuvor definierten Gruppen "A", "B" und "D" jeweils gegebenenfalls ein- oder mehrfach substituiert sein können mit einem Rest aus der Gruppe von Halogen; Trifluormethyl; Oxo; Cyano; Nitro; Carbamoyl; Pyridyl; (C₁-C₆)-Alkanoyl; (C₃-C₇)-Cycloalkanoyl; (C₆-C₁₄)-Arylcarbonyl; (C₅-C₁₀)-Heteroarylcarbonyl; (C₁-C₆)-Alkanoyloxy-methyloxy; -COOR²⁷; -SO₂R²⁷; -C(NR²⁷R²⁸)=NR²⁹; -CONR²⁸R²⁹; -SO₂NR²⁸R²⁹; -OR³⁰; -NR³⁰R³¹, (C₁-C₆)-Alkyl und (C₃-C₇)-Cycloalkyl,

wobei (C₁-C₆)-Alkyl und (C₃-C₇)-Cycloalkyl ihrerseits gegebenenfalls substituiert sein können durch einen Rest aus der Gruppe von Cyano; -OR²⁷; -NR²⁸R²⁹; -CO(NH)_v(NR²⁷R²⁸) und -C(NR²⁷R²⁸)=NR²⁹,

wobei:

v entweder 0 oder 1 bedeutet und

 R^{27} , R^{28} und R^{29} gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C_1-C_4) -Alkyl oder (C_3-C_7) -Cycloalkyl bedeuten,

und/oder

- R²⁷ und R²⁸ bzw. R²⁷ und R²⁹ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder teilweise ungesättigten 5- bis 7-gliedrigen Heterocyclus mit bis zu drei, vorzugsweise bis zu zwei gleichen oder unterschiedlichen Heteroatomen aus der Gruppe von N, O und S bilden, und
- 25 R³⁰ und R³¹ gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl, (C₃-C₇)-Cycloalkyl, (C₁-C₄)-Alkylsulfonyl, (C₁-C₄)-Hydroxyalkyl, (C₁-C₄)-Aminoalkyl, Di-(C₁-C₄)-alkylamino-(C₁-C₄)-alkyl, (C₁-C₄)-Alkanoyl, (C₆-C₁₄)-Arylcarbonyl, (C₅-C₁₀)-Heteroarylcarbonyl, (C₁-C₄)-Alkylaminocarbonyl oder -CH₂C(NR²⁷R²⁸)=NR²⁹ bedeuten,

R³, R⁴, R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und für Wasserstoff oder für (C₁-C₆)-Alkyl stehen

sowie ihrer Salze, Solvate und Solvate der Salze.

Besonders bevorzugt ist hierbei die Verwendung von Verbindungen der allgemeinen Formel (I),

5 worin

R¹ für Thiophen (Thienyl), insbesondere 2-Thiophen, steht, das gegebenenfalls ein- oder mehrfach substituiert sein kann durch Halogen, vorzugsweise Chlor oder Brom, oder (C₁-C₈)-Alkyl, vorzugsweise Methyl, wobei der (C₁-C₈)-Alkylrest gegebenenfalls seinerseits ein- oder mehrfach durch Halogen, vorzugsweise Fluor, substituiert sein kann,

10 R² für eine der folgenden Gruppen steht:

Α-,

A-M-,

D-M-A-,

B-M-A-,

15 B-,

25

B-M-,

B-M-B-,

D-M-B-,

wobei:

der Rest "A" für Phenyl oder Naphthyl, insbesondere für Phenyl, steht;

der Rest "B" für einen 5- oder 6-gliedrigen aromatischen Heterocyclus steht, der bis zu 2 Heteroatome aus der Reihe S, N, NO (N-Oxid) und O enthält;

der Rest "D" für einen gesättigten oder teilweise ungesättigten 5- oder 6-gliedrigen Heterocyclus steht, der bis zu zwei Heteroatome und/oder Hetero-Kettenglieder aus der Reihe S, SO, SO₂, N, NO (N-Oxid) und O enthält;

10

20

25

der Rest "M" für –NH-, -O-, -NH-CH₂-, -CH₂-NH-, -OCH₂-, -CH₂O-, -CONH-, -NHCO-oder für eine kovalente Bindung steht;

wobei

die zuvor definierten Gruppen "A", "B" und "D" jeweils gegebenenfalls ein- oder mehrfach substituiert sein können mit einem Rest aus der Gruppe von Halogen; Trifluormethyl; Oxo; Cyano; Pyridyl; (C₁-C₃)-Alkanoyl; (C₆-C₁₀)-Arylcarbonyl; (C₅-C₆)-Heteroarylcarbonyl; (C₁-C₃)-Alkanoyloxymethyloxy; -C(NR²⁷R²⁸)=NR²⁹; -CONR²⁸R²⁹; -SO₂NR²⁸R²⁹; -OH; -NR³⁰R³¹; (C₁-C₄)-Alkyl; und Cyclopropyl, Cyclopentyl oder Cyclohexyl,

wobei (C₁-C₄)-Alkyl und Cyclopropyl, Cyclopentyl oder Cyclohexyl ihrerseits gegebenenfalls substituiert sein können durch einen Rest aus der Gruppe von Cyano; -OH; -OCH₃; -NR²⁸R²⁹; -CO(NH)_v(NR²⁷R²⁸) und -C(NR²⁷R²⁸)=NR²⁹,

wobei:

v entweder 0 oder 1, vorzugsweise 0, bedeutet und

15 R²⁷, R²⁸ und R²⁹ gleich oder verschieden sind und unabhängig voneinander Wasserstoff,
(C₁-C₄)-Alkyl oder aber Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten
und/oder

R²⁷ und R²⁸ bzw. R²⁷ und R²⁹ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder teilweise ungesättigten 5- bis 7-gliedrigen Heterocyclus mit bis zu zwei gleichen oder unterschiedlichen Heteroatomen aus der Gruppe von N, O und S bilden können, und

 R^{30} und R^{31} gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C_1-C_4) -Alkyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, (C_1-C_4) -Alkylsulfonyl, (C_1-C_4) -Hydroxyalkyl, (C_1-C_4) -Aminoalkyl, Di- (C_1-C_4) -alkylamino- (C_1-C_4) -alkyl, (C_1-C_3) -Alkanoyl oder Phenylcarbonyl bedeuten,

R³, R⁴, R⁵, R⁶, R⁵ und R8 gleich oder verschieden sind und für Wasserstoff oder für (C₁-C₆)-Alkyl stehen

sowie ihrer Salze, Solvate und Solvate der Salze.

Insbesondere bevorzugt ist hierbei die Verwendung von Verbindungen der allgemeinen Formel (I), worin

R¹ für 2-Thiophen, steht, das gegebenenfalls in der 5-Position substituiert sein kann durch einen Rest aus der Gruppe Chlor, Brom, Methyl oder Trifluormethyl,

5 R² für eine der folgenden Gruppen steht:

A-,

A-M-,

D-M-A-,

B-M-A-,

10 B-,

20

B-M-,

B-M-B-,

D-M-B-,

wobei:

der Rest "A" für Phenyl oder Naphthyl, insbesondere für Phenyl, steht;

der Rest "B" für einen 5- oder 6-gliedrigen aromatischen Heterocyclus steht, der bis zu 2 Heteroatome aus der Reihe S, N, NO (N-Oxid) und O enthält;

der Rest "D" für einen gesättigten oder teilweise ungesättigten 5- oder 6-gliedrigen Heterocyclus steht, der ein Stickstoffatom und gegebenenfalls ein weiteres Heteroatom und/oder Hetero-Kettenglied aus der Reihe S, SO, SO₂ und O; oder bis zu zwei Heteroatome und/oder Hetero-Kettenglieder aus der Reihe S, SO, SO₂ und O enthält;

der Rest "M" für –NH-, -O-, -NH-CH₂-, -CH₂-NH-, -OCH₂-, -CH₂O-, -CONH-, -NHCO-oder für eine kovalente Bindung steht;

wobei

die zuvor definierten Gruppen "A", "B" und "D" jeweils gegebenenfalls ein- oder mehrfach substituiert sein können mit einem Rest aus der Gruppe von Halogen; Trifluormethyl; Oxo; Cyano; Pyridyl; (C₁-C₃)-Alkanoyl; (C₆-C₁₀)-Arylcarbonyl; (C₅-C₆)-Heteroarylcarbonyl; (C₁-C₃)-Alkanoyloxymethyloxy; -CONR²⁸R²⁹; -SO₂NR²⁸R²⁹; -OH; -NR³⁰R³¹; (C₁-C₄)-Alkyl; und Cyclopropyl, Cyclopentyl oder Cyclohexyl,

wobei (C₁-C₄)-Alkyl und Cyclopropyl, Cyclopentyl oder Cyclohexyl ihrerseits gegebenenfalls substituiert sein können durch einen Rest aus der Gruppe von Cyano; -OH; -OCH₃; -NR²⁸R²⁹; -CO(NH)_v(NR²⁷R²⁸) und -C(NR²⁷R²⁸)=NR²⁹,

wobei:

5

10

15

20

v entweder 0 oder 1, vorzugsweise 0, bedeutet und

 R^{27} , R^{28} und R^{29} gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl oder aber Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten und/oder

R²⁷ und R²⁸ bzw. R²⁷ und R²⁹ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen gesättigten oder teilweise ungesättigten 5- bis 7-gliedrigen Heterocyclus mit bis zu zwei gleichen oder unterschiedlichen Heteroatomen aus der Gruppe von N, O und S bilden können, und

R³⁰ und R³¹ gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C₁-C₄)-Alkyl, Cyclopropyl, Cyclopentyl, Cyclohexyl, (C₁-C₄)-Alkylsulfonyl, (C₁-C₄)-Hydroxyalkyl, (C₁-C₄)-Aminoalkyl, Di-(C₁-C₄)-alkylamino-(C₁-C₄)-alkyl, (C₁-C₃)-Alkanoyl oder Phenylcarbonyl bedeuten,

R³, R⁴, R⁵, R⁶, R⁵ und R⁸ gleich oder verschieden sind und für Wasserstoff oder für (C₁-C₄)-Alkyl stehen

sowie ihrer Salze, Solvate und Solvate der Salze.

Ganz besonders bevorzugt ist hierbei die Verwendung von Verbindungen der allgemeinen Formel (I),

worin

R¹ für 2-Thiophen, steht, das in der 5-Position substituiert ist durch einen Rest aus der Gruppe Chlor, Brom, Methyl oder Trifluormethyl,

R² für D-A- steht:

wobei:

der Rest "A" für Phenylen steht;

der Rest "D" für einen gesättigten 5- oder 6-gliedrigen Heterocyclus steht,

der über ein Stickstoffatom mit "A" verknüpft ist,

der in direkter Nachbarschaft zum verknüpfenden Stickstoffatom eine Carbonylgruppe besitzt und

in dem ein Ring-Kohlenstoffglied durch ein Heteroatom aus der Reihe S, N und O ersetzt sein kann;

wobei

die zuvor definierten Gruppe "A" in der meta-Position bezüglich der Verknüpfung zum Oxazolidinon gegebenenfalls ein- oder zweifach substituiert sein kann mit einem Rest aus der Gruppe von Fluor, Chlor, Nitro, Amino, Trifluormethyl, Methyl oder Cyano,

R³, R⁴, R⁵, R⁶, R⁷ und R⁸ für Wasserstoff stehen

sowie ihrer Salze, Solvate und Solvate der Salze.

Ebenfalls ganz besonders bevorzugt ist hierbei die Verwendung der Verbindung mit der folgenden Formel

20

15

sowie ihrer Salze, Solvate und Solvate der Salze.

10

15

20

25

Oxazolidinone wurden ursprünglich im wesentlichen nur als Antibiotika, vereinzelt auch als MAO-Hemmer und Fibrinogen-Antagonisten beschrieben (Übersicht: Riedl, B., Endermann, R., Exp. Opin. Ther. Patents 1999, 9 (5), 625), wobei für die antibakterielle Wirkung eine kleine 5-[Acyl-aminomethyl]-gruppe (bevorzugt 5-[Acetyl-aminomethyl]) essentiell zu sein scheint.

Substituierte Aryl- und Heteroarylphenyloxazolidinone, bei denen an das N-Atom des Oxazolidinonrings ein ein- oder mehrfach substituierte Phenylrest gebunden sein kann und die in der 5-Position des Oxazolidinonrings einen unsubstituierten N-Methyl-2-thiophencarboxamid-Rest aufweisen können, sowie ihre Verwendung als antibakteriell wirkende Substanzen sind bekannt aus den U.S.-Patentschriften US 5 929 248, US 5 801 246, US 5 756 732, US 5 654 435, US 5 654 428 und US 5 565 571.

Darüber hinaus sind benzamidinhaltige Oxazolidinone als synthetische Zwischenstufen bei der Synthese von Faktor Xa-Inhibitoren bzw. Fibrinogenantagonisten bekannt (WO 99/31092, EP 0 623 615).

Erfindungsgemäß verwendbare Verbindungen, nachstehend auch als erfindungsgemäße Verbindungen bezeichnet, sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, die von Formel (I) umfassten Verbindungen der nachfolgend genannten Formeln und deren Salze, Solvate und Solvate der Salze sowie die von Formel (I) umfassten, nachfolgend als Ausführungsbeispiele genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung umfasst deshalb die Verwendung der Enantiomeren oder Diastereomeren und ihrer jeweiligen Mischungen.

Sofern die erfindungsgemäßen Verbindungen in tautomeren Formen vorkommen können, umfasst die vorliegende Erfindung die Verwendung sämtlicher tautomere Formen.

Als <u>Salze</u> sind im Rahmen der vorliegenden Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt. Umfasst sind auch Salze, die für pharmazeutische Anwendungen selbst nicht geeignet sind, jedoch beispielsweise für die Isolierung oder Reinigung der erfindungsgemäßen Verbindungen verwendet werden können.

Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethan-

10

15

20

30

sulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Trifluoressigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.

Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Arginin, Lysin, Ethylendiamin und N-Methylpiperidin.

Als <u>Solvate</u> werden im Rahmen der Erfindung solche Formen der erfindungsgemäßen Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt. Als Solvate sind im Rahmen der vorliegenden Erfindung Hydrate bevorzugt.

Außerdem umfasst die vorliegende Erfindung auch die Verwendung von Prodrugs der erfindungsgemäßen Verbindungen. Der Begriff "Prodrugs" umfasst Verbindungen, welche selbst biologisch aktiv oder inaktiv sein können, jedoch während ihrer Verweilzeit im Körper zu erfindungsgemäßen Verbindungen umgesetzt werden (beispielsweise metabolisch oder hydrolytisch).

Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:

Halogen steht für Fluor, Chlor, Brom und Iod. Bevorzugt sind Chlor oder Fluor.

(C₁-C₈)-Alkyl steht für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 8 Kohlenstoffatomen. Beispielsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl, n-Pentyl und n-Hexyl. Aus dieser Definition leiten sich analog die entsprechenden Alkylgruppen mit weniger Kohlenstoffatomen wie z.B. (C₁-C₆)-Alkyl und (C₁-C₄)-Alkyl ab. Im allgemeinen gilt, dass (C₁-C₄)-Alkyl bevorzugt ist.

Aus dieser Definition leitet sich auch die Bedeutung des entsprechenden Bestandteils anderer komplexerer Substituenten ab wie z.B. bei <u>Alkyl</u>sulfonyl, Hydroxyalkyl, Hydroxyalkyl carbonyl, Alkoxy-alkyl, Alkoxy-al

10

15

20

25

30

(C₃-C₇)-Cycloalkyl steht für einen cyclischen Alkylrest mit 3 bis 7 Kohlenstoffatomen. Beispielsweise seien genannt: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl. Aus dieser Definition leiten sich analog die entsprechenden Cycloalkylgruppen mit weniger Kohlenstoffatomen wie z.B. (C₃-C₅)-Cycloalkyl ab. Bevorzugt sind Cyclopropyl, Cyclopentyl und Cyclohexyl.

Aus dieser Definition leitet sich auch die Bedeutung des entsprechenden Bestandteils anderer komplexerer Substituenten ab wie z.B. Cycloalkanoyl.

(C₂-C₆)-Alkenyl steht für einen geradkettigen oder verzweigten Alkenylrest mit 2 bis 6 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkenylrest mit 2 bis 4 Kohlenstoffatomen. Beispielsweise seien genannt: Vinyl, Allyl, Isopropenyl und n-But-2-en-1-yl.

(C₁-C₈)-Alkoxy steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 8 Kohlenstoffatomen. Beispielsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, tert.-Butoxy, n-Pentoxy, n-Hexoxy, n-Heptoxy und n-Oktoxy. Aus dieser Definition leiten sich analog die entsprechenden Alkoxygruppen mit weniger Kohlenstoffatomen wie z.B. (C₁-C₆)-Alkoxy und (C₁-C₄)-Alkoxy ab. Im allgemeinen gilt, dass (C₁-C₄)-Alkoxy bevorzugt ist.

Aus dieser Definition leitet sich auch die Bedeutung des entsprechenden Bestandteils anderer komplexerer Substituenten ab wie z.B. <u>Alkoxy</u>-alkyl, <u>Alkoxy</u>carbonyl-alkyl und <u>Alkoxy</u>carbonyl.

Mono- oder Di-(C₁-C₄)-Alkylaminocarbonyl steht für eine Amino-Gruppe, die über eine Carbonylgruppe verknüpft ist und die einen geradkettigen oder verzweigten bzw. zwei gleiche oder verschiedene geradkettige oder verzweigte Alkylsubstituenten mit jeweils 1 bis 4 Kohlenstoffatomen aufweist. Beispielsweise seien genannt: Methylamino, Ethylamino, n-Propylamino, Isopropylamino, t-Butylamino, N,N-Dimethylamino, N,N-Diethylamino, N-Ethyl-N-methylamino, N-Methyl-N-n-propylamino, N-Isopropyl-N-n-propylamino und N-t-Butyl-N-methylamino.

 (C_1-C_6) -Alkanoyl steht für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 Kohlenstoffatomen, der in der 1-Position ein doppelt gebundenes Sauerstoffatom trägt und über die 1-Position verknüpft ist. Beispielsweise seien genannt: Formyl, Acetyl, Propionyl, n-Butyryl, i-Butyryl, Pivaloyl, n-Hexanoyl. Aus dieser Definition leiten sich analog die entsprechenden Alkanoylgruppen mit weniger Kohlenstoffatomen wie z.B. (C_1-C_5) -Alkanoyl, (C_1-C_4) -Alkanoyl und (C_1-C_3) -Alkanoyl ab. Im allgemeinen gilt, dass (C_1-C_3) -Alkanoyl bevorzugt ist.

20

25

Aus dieser Definition leitet sich auch die Bedeutung des entsprechenden Bestandteils anderer komplexerer Substituenten ab wie z.B. Cycloalkanoyl und Alkanoylalkyl.

(C₃-C₇)-Cycloalkanoyl steht für einen wie zuvor definierten Cycloalkylrest mit 3 bis 7 Kohlenstoffatomen, der über eine Carbonylgruppe verknüpft ist.

geradkettigen oder verzweigten 5 (C_1-C_6) -Alkanoyloxymethyloxy steht für einen Alkanoyloxymethyloxy-Rest mit 1 bis 6 Kohlenstoffatomen. Beispielsweise seien genannt: n-Butyroxymethyloxy, i-Butyroxymethyloxy, Propionoxymethyloxy, Acetoxymethyloxy, Pivaloyloxymethyloxy, n-Hexanoyloxymethyloxy. Aus dieser Definition leiten sich analog die entsprechenden Alkanoyloxymethyloxy-Gruppen mit weniger Kohlenstoffatomen wie z.B. (C1-C₃)-Alkanoyloxymethyloxy ab. Im allgemeinen gilt, dass (C₁-C₃)-Alkanoyloxymethyloxy 10 bevorzugt ist.

 (C_6-C_{14}) -Aryl steht für einen aromatischen Rest mit 6 bis 14 Kohlenstoffatomen. Beispielsweise seien genannt: Phenyl, Naphthyl, Phenanthrenyl und Anthracenyl. Aus dieser Definition leiten sich analog die entsprechenden Arylgruppen mit weniger Kohlenstoffatomen wie z.B. (C_6-C_{10}) -Aryl ab. Im allgemeinen gilt, dass (C_6-C_{10}) -Aryl bevorzugt ist.

Aus dieser Definition leitet sich auch die Bedeutung des entsprechenden Bestandteils anderer komplexerer Substituenten ab wie z.B. <u>Aryl</u>carbonyl.

(C₅-C₁₀)-Heteroaryl oder ein 5- bis 10-gliedriger aromatischer Heterocyclus mit bis zu 3 Heteroatomen und/oder Heterokettengliedern aus der Reihe S, O, N und/oder NO (N-Oxid) steht für einen mono- oder bicyclischen Heteroaromaten, der über ein Ringkohlenstoffatom des Heteroaromaten, gegebenenfalls auch über ein Ringstickstoffatom des Heteroaromaten, verknüpft ist. Beispielsweise seien genannt: Pyridyl, Pyridyl-N-oxid, Pyrimidyl, Pyridazinyl, Pyrazinyl, Thienyl, Furyl, Pyrrolyl, Pyrazolyl, Imidazolyl, Thiazolyl, Oxazolyl oder Isoxazolyl, Indolizinyl, Indolyl, Benzo[b]thienyl, Benzo[b]furyl, Indazolyl, Chinolyl, Isochinolyl, Naphthyridinyl, Chinazolinyl. Aus dieser Definition leiten sich analog die entsprechenden Heterocyclen mit geringerer Ringgröße wie z.B. 5- oder 6-gliedrige aromatische Heterocyclen ab. Im allgemeinen gilt, dass 5- oder 6-gliedrige aromatische Heterocyclen wie z.B. Pyridyl, Pyridyl-N-oxid, Pyrimidyl, Pyridazinyl, Furyl und Thienyl bevorzugt sind.

Aus dieser Definition leitet sich auch die Bedeutung des entsprechenden Bestandteils anderer komplexerer Substituenten ab wie z.B. (C₅-C₁₀)-Heteroarylcarbonyl.

Ein 3- bis 9-gliedriger gesättigter oder teilweise ungesättigter, mono- oder bicyclischer, gegebenenfalls benzokondensierter Heterocyclus mit bis zu 3 Heteroatomen und/oder

15

Heterokettengliedern aus der Reihe S, SO, SO₂, N, NO (N-Oxid) und/oder O steht für einen Heterocyclus, der eine oder mehrere Doppelbindungen enthalten kann, der mono- oder bicyclisch sein kann, bei dem an zwei benachbarte Ringkohlenstoffatomen ein Benzolring ankondensiert sein kann und der über ein Ringkohlenstoffatom oder ein Ringstickstoffatom verknüpft ist. Beispielsweise seien genannt: Tetrahydrofuryl, Pyrrolidinyl, Pyrrolinyl, Piperidinyl, 1,2-Dihydropyridinyl, 1,4-Dihydropyridinyl, Piperazinyl, Morpholinyl, Morpholinyl-N-oxid, Thiomorpholinyl, Azepinyl, 1,4-Diazepinyl und Cyclohexyl. Bevorzugt sind Piperidinyl, Morpholinyl und Pyrrolidinyl.

Aus dieser Definition leiten sich analog die entsprechenden Cyclen mit geringerer Ringgröße wie z.B. 5- bis 7-gliedrige Cyclen ab.

Die Verbindungen der Formel (I) können hergestellt werden, indem man entweder gemäß einer Verfahrensalternative

[A] Verbindungen der allgemeinen Formel (II)

$$\begin{array}{c|c}
R^{2} & O \\
R^{3} & O \\
R^{4} & R^{5} \\
\hline
 & R^{7} & (II),
\end{array}$$

in welcher

die Reste R², R³, R⁴, R⁵, R⁶, R⁷und R⁸ die oben angegebenen Bedeutungen haben,

mit Carbonsäuren der allgemeinen Formel (III)

in welcher

der Rest R1 die oben angegebene Bedeutung hat,

oder aber mit den entsprechenden Carbonsäurehalogeniden, vorzugsweise Carbonsäurechloriden, oder aber mit den entsprechenden symmetrischen oder gemischten Carbonsäureanhydriden der zuvor definierten Carbonsäuren der allgemeinen Formel (III)

in inerten Lösungsmitteln, gegebenenfalls in Gegenwart eines Aktivierungs- oder Kupplungsreagenzes und/oder einer Base, zu Verbindungen der allgemeinen Formel (I)

$$\begin{array}{c|c}
R^{2} & O & \\
R^{3} & O & R^{5} \\
R^{4} & R^{6} & R^{7} \\
R^{8} & N & R^{1} & (I),
\end{array}$$

in welcher

die Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben, umsetzt,

oder aber gemäß einer Verfahrensalternative

[B] Verbindungen der allgemeinen Formel (IV)

$$R^{4} \xrightarrow{R^{3}} R^{6} R^{7} \xrightarrow{O} R^{1} \qquad (IV),$$

in welcher

die Reste R¹, R³, R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,

mit einem geeigneten selektiven Oxidationsmittel in einem inerten Lösungsmittel in das entsprechenden Epoxid der allgemeinen Formel (V)

$$R^{4} \xrightarrow{R^{3}} R^{6} R^{7} \xrightarrow{O} R^{1} \qquad (V),$$

in welcher

die Reste R¹, R³, R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,

überführt,

und durch Umsetzung in einem inerten Lösungsmittel gegebenenfalls in Gegenwart eines Katalysators mit einem Amin der allgemeinen Formel (VI)

- 18 -

$$R^2 - NH_2$$
 (VI),

5 in welcher

der Rest R2 die oben angegebene Bedeutung hat,

zunächst die Verbindungen der allgemeinen Formel (VII)

$$R^{2} \underset{HO}{\overset{R^{4}}{\underset{R^{5}}{\bigvee}}} R^{3} \underset{R^{6}}{\overset{R^{6}}{\underset{R^{7}}{\bigvee}}} Q \underset{R^{1}}{\overset{O}{\underset{(VII),}}}$$

in welcher

10

15

die Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben,

herstellt und

anschließend in inertem Lösungsmittel in Anwesenheit von Phosgen oder Phosgenäquivalenten wie z.B. Carbonyldiimidazol (CDI) zu den Verbindungen der allgemeinen Formel (I)

in welcher

die Reste R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und R⁸ die oben angegebenen Bedeutungen haben, cyclisiert,

10

15

20

25

wobei sich sowohl für die Verfahrensalternative [A] als auch für die Verfahrensalternative [B] für den Fall, dass R² einen 3- bis 7- gliedrigen gesättigten oder teilweise ungesättigten cyclischen Kohlenwasserstoffrest mit einem oder mehreren gleichen oder verschiedenen Heteroatomen aus der Gruppe von N und S enthält, eine Oxidation mit einem selektiven Oxidationsmittel zum entsprechenden Sulfon, Sulfoxid oder N-Oxid anschließen kann

und/oder

wobei sich sowohl für die Verfahrensalternative [A] als auch für die Verfahrensalternative [B] für den Fall, dass die auf diese Weise hergestellte Verbindung eine Cyanogruppe im Molekül aufweist, eine Amidinierung dieser Cyanogruppe mit den üblichen Methoden anschließen kann

und/oder

wobei sich sowohl für die Verfahrensalternative [A] als auch für die Verfahrensalternative [B] für den Fall, dass die auf diese Weise hergestellte Verbindung eine BOC-Aminoschutzgruppe im Molekül aufweist, eine Abspaltung dieser BOC-Aminoschutzgruppe mit den üblichen Methoden anschließen kann

und/oder

wobei sich sowohl für die Verfahrensalternative [A] als auch für die Verfahrensalternative [B] für den Fall, dass die auf diese Weise hergestellte Verbindung einen Anilin- oder Benzylaminrest im Molekül aufweist, eine Umsetzung dieser Aminogruppe mit verschiedenen Reagenzien wie Carbonsäuren, Carbonsäureanhydriden, Carbonsäurechloriden, Isocyanaten, Sulfonsäurechloriden oder Alkylhalogeniden zu den entsprechenden Derivaten anschließen kann

und/oder

wobei sich sowohl für die Verfahrensalternative [A] als auch für die Verfahrensalternative [B] für den Fall, dass die auf diese Weise hergestellte Verbindung einen Phenylring im Molekül aufweist, eine Reaktion mit Chlorsulfonsäure und anschließende Umsetzung mit Aminen zu den entsprechenden Sulfonamiden anschließen kann.

Die Verfahren können durch folgende Formelschemata beispielhaft erläutert werden:

[A]

5 Der zuvor beschriebene, gegebenenfalls erfolgende Oxidationsschritt kann durch folgende Formelschemata beispielhaft erläutert werden:

- 21 -

Als Lösemittel für die zuvor beschriebenen Verfahren eignen sich hierbei organische Lösemittel, die unter den Reaktionsbedingungen inert sind. Hierzu gehören Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethylen oder Trichlorethylen, Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan oder Cyclohexan, Dimethylformamid, Dimethylsulfoxid, Acetonitril, Pyridin, Hexamethylphosphorsäuretriamid oder Wasser.

Ebenso ist es möglich, Lösemittelgemische der zuvor genannten Lösemittel einzusetzen.

5

15

25

Als Aktivierungs- oder Kupplungsreagenzien für die zuvor beschriebenen Verfahren eignen hierbei die hierfür üblicherweise verwendeten Reagenzien, beispielsweise N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid • HCl, N,N'-Dicyclohexylcarbodiimid, 1-Hydroxy-1H-benzotriazol • H₂O und dergleichen.

Als Basen eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydroxide wie beispielsweise Natrium- oder Kaliumhydroxid oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natrium- oder Kaliummethanolat oder Natrium- oder Kaliumethanolat oder Kalium-tert.-butylat oder Amide wie Natriumamid, Lithium-bis-(trimethylsilyl)amid oder Lithiumdiisopropylamid oder Amine wie Triethylamin, Diisopropylethylamin, Diisopropylamin, 4-N,N-Dimethylaminopyridin oder Pyridin.

Die Base kann hierbei in einer Menge von 1 bis 5 Mol, bevorzugt von 1 bis 2 Mol, bezogen auf 1 Mol der Verbindungen der allgemeinen Formel (II), eingesetzt werden.

Die Reaktionen erfolgen im allgemeinen in einem Temperaturbereich von -78°C bis zur Rückflusstemperatur, bevorzugt im Bereich von 0°C bis Rückflusstemperatur.

Die Umsetzungen können bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Als geeignete selektive Oxidationsmittel sowohl für die Herstellung der Epoxide als auch für die gegebenenfalls durchgeführte Oxidation zum Sulfon, Sulfoxid oder N-Oxid kommen beispielsweise m-Chlorperbenzoesäure (MCPBA), Natriummetaperiodat, N-Methylmorpholin-Noxid (NMO), Monoperoxyphthalsäure oder Osmiumtetroxid in Betracht.

Hinsichtlich der Herstellung der Epoxide werden die hierfür üblichen Herstellungsbedingungen

angewandt.

10

15

20

25

30

Hinsichtlich der näheren Verfahrensbedingungen für die gegebenenfalls durchgeführte Oxidation zum Sulfon, Sulfoxid oder N-Oxid kann verwiesen werden auf die folgende Literatur: M. R.

Barbachyn et al., J. Med. Chem. 1996, 39, 680 sowie WO 97/10223.

Des weiteren wird auf die im experimentellen Teil aufgeführten Beispiele 14 bis 16 verwiesen.

Die gegebenenfalls durchgeführte Amidinierung erfolgt unter üblichen Bedingungen. Für weitere Einzelheiten kann auf die Beispiele 31 bis 35 und 140 bis 147 verwiesen werden.

Die Verbindungen der Formeln (II), (III), (IV) und (VI) sind dem Fachmann an sich bekannt oder nach üblichen Methoden herstellbar. Für Oxazolidinone, insbesondere die benötigten 5-(Aminomethyl)-2-oxooxazolidine, vgl. WO 98/01446; WO 93/23384; WO 97/03072; J. A. Tucker et al., J. Med. Chem. 1998, 41, 3727; S. J. Brickner et al., J. Med. Chem. 1996, 39, 673; W. A. Gregory et al., J. Med. Chem. 1989, 32, 1673.

Eine bevorzugt erfindungsgemäß verwendbare Verbindung der Formel (I) ist 5-Chloro-N-({(5S)-2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid, die Verbindung aus Beispiel 44.

Der Begriff der Mikroangiopathien im Sinne der vorliegenden Erfindung umfasst Verschlusssyndrome, die vor allem an der Haut und anderen Organen entstehen.

Der Begriff der Mikroangiopathien umfasst weiter die primären Formen der thrombotischen Mikroangiopathien (TMA), wie die thrombotisch-thrombozytopenische Purpura (TTP) und das hämolytisch-urämisches Syndrom (HUS). TTP ist charakterisiert durch das Auftreten intravasaler Gerinnung mit Ausbildung von Mikrothromben in kleinsten Gefäßen, die alle Organe befallen kann. Bei HUS handelt es sich um ein akutes Krankheitsbild, bei dem es zur Aggregation von Thrombozyten, Hämolyse, Thrombosierung in der Mikrozirkulation und zu konsekutivem Multiorganversagen kommt. Der Begriff der TMA umfasst auch sekundäre Formen, die insbesondere nach Infektionen, Einnahme von Medikamenten (Ciclosporin, Mitomycin, Metamizol u.a.), Endokarditis, Kollagenosen, Malignomen, Transplantationen und in der Schwangerschaft auftreten.

Darüber hinaus können beispielsweise auch diabetische Mikroangiopathien (diabetische Retinopathie, Glomerulopathie, trophische Störungen, diabetisches Gangrän) sowie venöse

- 23 -

okklusive Erkrankungen der Leber, zerebrale Vaskulitis, und Mikrothrombosen der Plazenta, und damit die daraus resultierenden wiederholten Fehlgeburten, behandelt werden.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung selektiver Faktor Xa-Inhibitoren zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Verschlusssyndromen, insbesondere an der Haut und anderen Organen entstehenden Verschlusssyndromen, von primären Formen der thrombotischen Mikroangiopathien (TMA), insbesondere der thrombotisch-thrombozytopenischen Purpura (TTP) und des hämolytischurämischen Syndroms (HUS), von sekundären Formen der TMA, insbesondere nach Infektionen, Einnahme von Medikamenten, Endokarditis, Kollagenosen, Malignomen, Transplantationen und in Schwangerschaft auftretenden sekundären Formen der TMA, von Mikroangiopathien, insbesondere diabetischer Retinopathie, Glomerulopathie, trophischen Störungen und diabetischem Gangrän, von venösen okklusiven Erkrankungen der Leber, zerebraler Vaskulitis und Mikrothrombosen der Plazenta sowie der daraus resultierenden wiederholten Fehlgeburten.

10

20

25

30

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen 15 Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Verschlusssyndromen, insbesondere an der Haut und anderen Organen entstehenden Verschlusssyndromen, von primären Formen der thrombotischen Mikroangiopathien (TMA), insbesondere der thrombotisch-thrombozytopenischen Purpura (TTP) und des hämolytischurämischen Syndroms (HUS), von sekundären Formen der TMA, insbesondere nach Infektionen, Einnahme von Medikamenten, Endokarditis, Kollagenosen, Malignomen, Transplantationen und in Schwangerschaft auftretenden sekundären Formen der TMA, von diabetischen Mikroangiopathien, insbesondere diabetischer Retinopathie, Glomerulopathie, trophischen Störungen und diabetischem Gangrän, von venösen okklusiven Erkrankungen der Leber, zerebraler Vaskulitis und Mikrothrombosen der Plazenta sowie der daraus resultierenden wiederholten Fehlgeburten.

Bei fortschreitender Schädigung kommt es vor allem in hypoxämischen Arealen wie z.B. bei Retinopathien in der Netzhaut zu Gefäßneubildungen (Angiogenese) und damit zu Glaskörperblutungen und Netzhautablösungen. Die durch Gewebethromboplastin (Tissue Factor; TF) ausgelöste Aktivierung der Blutgerinnung fördert die Angiogenese. An diesem Prozess sind mehrere Proteasen (Faktor VIIa, TF-VIIa-Xa Komplex, Faktor FXa, Thrombin) und deren Rezeptoren, PAR1, PAR2 (Protease aktivierbare Rezeptoren), beteiligt. Durch Inhibition von Faktor Xa wird die Bildung von Thrombin gehemmt und damit die Aktivierung von PAR1, die weitere Generierung von VIIa durch Thrombin und damit wiederum die TF-VIIa mediierte Aktivierung von PAR1 und PAR2, sowie die Aktivierung von PAR2 durch FXa. Daher sind FXa Inhibitoren auch geeignet die bei Mikroangiopathien entstehenden schädlichen Kapillaraussprossungen zu reduzieren oder zu verhindern.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung selektiver Faktor Xa-Inhibitoren zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von bei Mikroangiopathien entstehenden schädlichen Kapillaraussprossungen.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von bei Mikroangiopathien entstehenden schädlichen Kapillaraussprossungen.

- Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Bekämpfung von Mikroangiopahtien in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens eines selektiven Faktor Xa-Inhibitors oder eines Arzneimittels, enthaltend mindestens einen selektiven Faktor Xa-Inhibitor in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
- Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Bekämpfung von Mikroangiopahtien in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer erfindungsgemäßen Verbindung oder eines Arzneimittels, enthaltend mindestens eine erfindungsgemäße Verbindung in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
- Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Bekämpfung von bei Mikroangiopathien entstehenden schädlichen Kapillaraussprossungen in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens eines selektiven Faktor Xa-Inhibitors oder eines Arzneimittels, enthaltend mindestens einen selektiven Faktor Xa-Inhibitor in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
- Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Bekämpfung von bei Mikroangiopathien entstehenden schädlichen Kapillaraussprossungen in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer erfindungsgemäßen Verbindung oder eines Arzneimittels, enthaltend mindestens eine erfindungsgemäße Verbindung in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
- Die entsprechend der erfindungsgemäßen Verwendung herzustellenden oder erfindungsgemäß zu verwendenden Arzneimittel enthalten mindestens eine erfindungsgemäße Verbindung,

üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen.

Die erfindungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival, otisch oder als Implantat bzw. Stent.

Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.

Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende, die erfindungsgemäßen Verbindungen schnell und/oder modifiziert abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/oder amorphisierter und/oder gelöster Form enthalten, wie z.B. Tabletten (nicht-überzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerfallende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.

10

15

20

25

Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z.B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z.B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.

Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen oder -sprays, lingual, sublingual oder buccal zu
applizierende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile
Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (z.B. Pflaster), Milch, Pasten,
Schäume, Streupuder, Implantate oder Stents.

Bevorzugt sind die orale oder parenterale Applikation, insbesondere die orale Applikation.

Die erfindungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe (bei-

10

15

spielsweise mikrokristalline Cellulose, Lactose, Mannitol), Lösungsmittel (z.B. flüssige Polyethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecylsulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispielsweise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und/oder Geruchskorrigentien.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.001 bis 1 mg/kg, vorzugsweise etwa 0.01 bis 0.5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Dosierung etwa 0.01 bis 100 mg/kg, vorzugsweise etwa 0.01 bis 20 mg/kg und ganz besonders bevorzugt 0.1 bis 10 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Die nachfolgenden Ausführungsbeispiele erläutern die Erfindung. Die Erfindung ist nicht auf die 20 Beispiele beschränkt.

Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich, sofern nicht anders angegeben, jeweils auf das Volumen.

Beispiele

5

10

20

25

30

A. Bewertung der physiologischen Wirksamkeit

Die Verbindungen der Formel (I) wirken insbesondere als selektive Inhibitoren des Blutgerinnungsfaktors Xa und hemmen nicht oder erst bei deutlich höheren Konzentrationen auch andere Serinproteasen wie Plasmin oder Trypsin.

Als "selektiv" werden solche Inhibitoren des Blutgerinnungsfaktors Xa bezeichnet, bei denen die IC₅₀-Werte für die Faktor Xa-Inhibierung gegenüber den IC₅₀-Werten für die Inhibierung anderer Serinproteasen, insbesondere Plasmin und Trypsin, um mindestens das 100-fache kleiner sind, wobei bezüglich der Testmethoden für die Selektivität Bezug genommen wird auf die im folgenden beschriebenen Testmethoden der Beispiele A.a.1) und A.a.2).

Vorteilhafte pharmakologische Eigenschaften der erfindungsgemäß verwendbaren Verbindungen können durch folgende Methoden festgestellt werden.

a) Testbeschreibung (in vitro)

a.1) Messung der Faktor Xa-Hemmung

Die enzymatische Aktivität von humanem Faktor Xa (FXa) wird über die Umsetzung eines für den FXa-spezifischen chromogenen Substrats gemessen. Dabei spaltet der Faktor Xa aus dem chromogenen Substrat p-Nitroanilin ab. Die Bestimmungen werden wie folgt in Mikrotiterplatten durchgeführt.

Die Prüfsubstanzen werden in unterschiedlichen Konzentrationen in DMSO gelöst und für 10 Minuten mit humanem FXa (0,5 nmol/l gelöst in 50 mmol/l Tris-Puffer [C,C,C-Tris(hydroxymethyl)-aminomethan], 150 mmol/l NaCl, 0,1 % BSA (bovine serum albumine), pH = 8,3) bei 25°C inkubiert. Als Kontrolle dient reines DMSO. Anschließend wird das chromogene Substrat (150 μmol/l Pefachrome® FXa von der Firma Pentapharm) hinzugefügt. Nach 20 Minuten Inkubationsdauer bei 25°C wird die Extinktion bei 405 nm bestimmt. Die Extinktionen der Testansätze mit Prüfsubstanz werden mit den Kontrollansätzen ohne Prüfsubstanz verglichen und daraus die IC₅₀-Werte berechnet.

a.2) Bestimmung der Selektivität

Zum Nachweis der selektiven FXa-Inhibition werden die Prüfsubstanzen auf ihre Hemmung anderer humaner Serinproteasen wie Trypsin, Plasmin hin untersucht. Zur Bestimmung der enzymatischen Aktivität von Trypsin (500 mU/ml) und Plasmin (3,2 nmol/l) werden diese Enzyme

in Tris-Puffer (100 mmol/l, 20 mmol/l CaCl₂, pH = 8,0) gelöst und für 10 Minuten mit Prüfsubstanz oder Lösungsmittel inkubiert. Anschließend wird durch Zugabe der entsprechenden spezifischen chromogenen Substrate (Chromozym Trypsin[®] und Chromozym Plasmin[®]; Fa. Roche Diagnostics) die enzymatische Reaktion gestartet und die Extinktion nach 20 Minuten bei 405 nm bestimmt. Alle Bestimmungen werden bei 37°C durchgeführt. Die Extinktionen der Testansätze mit Prüfsubstanz werden mit den Kontrollproben ohne Prüfsubstanz verglichen und daraus die IC₅₀-Werte berechnet.

a.3) Bestimmung der antikoagulatorischen Wirkung

5

10

15

20

25

30

Die antikoagulatorische Wirkung der Prüfsubstanzen wird in vitro in Human- und Kaninchenplasma bestimmt. Dazu wird Blut unter Verwendung einer 0,11 molaren Natriumcitrat-Lösung als Vorlage in einem Mischungsverhältnis Natriumcitrat/Blut 1/9 abgenommen. Das Blut wird unmittelbar nach der Abnahme gut gemischt und 10 Minuten bei ca. 2500 g zentrifugiert. Der Überstand wird abpipettiert. Die Prothrombinzeit (PT, Synonyme: Thromboplastinzeit, Quick-Test) wird in Gegenwart variierender Konzentrationen an Prüfsubstanz oder dem entsprechenden Lösungsmittel mit einem handelsüblichen Testkit (Neoplastin® von der Firma Boehringer Mannheim oder Hemoliance® RecombiPlastin, Fa. von der Firma Instrumentation Laboratory) bestimmt. Die Testverbindungen werden 3 Minuten bei 37°C mit dem Plasma inkubiert. Anschließend wird durch Zugabe von Thromboplastin die Gerinnung ausgelöst und der Zeitpunkt des Gerinnungseintritts bestimmt. Es wird die Konzentration an Prüfsubstanz ermittelt, die eine Verdoppelung der Prothrombinzeit bewirkt.

b) Bestimmung der antithrombotischen Wirkung (in vivo)

b.1) Arteriovenöses Shunt-Modell (Ratte)

Nüchterne männliche Ratten (Stamm: HSD CPB:WU) mit einem Gewicht von 200-250 g werden mit einer Rompun/Ketavet Lösung narkotisiert (12 mg/kg/50 mg/kg). Die Thrombusbildung wird in einem arteriovenösen Shunt in Anlehnung an die von Christopher N. Berry et al., Br. J. Pharmacol. (1994), 113, 1209-1214 beschriebene Methode ausgelöst. Dazu werden die linke Vena jugularis und die rechte Arteria carotis freipräpariert. Ein extracorporaler Shunt wird mittels eines 10 cm langen Polyethylenschlauchs (PE 60) zwischen den beiden Gefäßen gelegt. Dieser Polyethylenschlauch war in der Mitte in einen weiteren 3 cm langen Polyethylenschlauch (PE 160), der zur Erzeugung einer thrombogenen Oberfläche einen aufgerauhten und zu einer Schlinge gelegten Nylonfaden enthielt, eingebunden. Der extrakorporale Kreislauf wird 15 Minuten lang aufrechterhalten. Dann wird der Shunt entfernt und der Nylonfaden mit dem Thrombus sofort gewogen. Das Leergewicht des Nylonfadens war vor Versuchsbeginn ermittelt worden. Die

Prüfsubstanzen werden vor Anlegung des extrakorporalen Kreislaufs entweder intravenös über die Schwanzvene oder oral mittels Schlundsonde wachen Tieren verabreicht. Auf diese Weise erhaltene Ergebnisse sind in Tabelle 1 gezeigt:

- 29 -

<u>Tabelle 1: Antithrombotische Wirkung im arteriovenösem Shunt Modell (Ratte) nach oraler oder</u>

5 intravenöser <u>Gabe</u>

Beispiel	ED ₅₀ [mg/kg] p.o.	ED ₅₀ [mg/kg] i.v.
1		10
17		6
44	3	
95		3
114		3
115		3
123	3	
162		3

b.2) Arteriovenöses Shunt-Modell (Kaninchen)

10

15

20

Nüchterne männliche RattenKaninchen (Stamm: HSD CPB:WUEsd: NZW) mit einem Gewicht Rompun/ 200-250 intramuskuläre Gabe mit einer von werden durch Ketavet-Lösung narkotisiert (12 5 mg/kg bzw. 50 40 mg/kg). Die Thrombusbildung wird in einem arteriovenösen Shunt in Anlehnung an die von Christopher C.N. Berry et al., Br. J. Pharmacol[Semin. Thromb. Hemost. (19941996), 11322, 1209-1214 233-241] beschriebene Methode ausgelöst. Dazu werden die linke Vena jugularis und die rechte Arteria carotis freipräpariert. Ein extracorporaler Shunt wird mittels eines 10 cm langen Polyethylenschlauchs (PE 60) Venenkatheders zwischen den beiden Gefäßen gelegt. DieserPolyethylenschlauch Katheder ist in der Mitte in einen weiteren, 3 4 cm langen Polyethylenschlauch (PE 160, Becton Dickenson), der zur Erzeugung einer thrombogenen Oberfläche einen aufgerauhten und zu einer Schlinge gelegten Nylonfaden enthält, eingebunden. Der extrakorporale Kreislauf wird 15 Minuten lang aufrechterhalten. Dann wird der Shunt entfernt und der Nylonfaden mit dem Thrombus sofort gewogen. Das Leergewicht des Nylonfadens ist vor Versuchsbeginn ermittelt worden. Die Prüfsubstanzen werden vor Anlegung des extrakorporalen Kreislaufs entweder intravenös überdie Schwanzvene eine Ohrvene oder oral mittels Schlundsonde den wachen Tieren verabreicht.

B. Ausführungsbeispiele für pharmazeutische Zusammensetzungen

Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:

Tablette:

5 Zusammensetzung:

100 mg der erfindungsgemäßen Verbindung, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.

Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.

10 Herstellung:

15

25

Die Mischung aus erfindungsgemäßer Verbindung, Lactose und Stärke wird mit einer 5%-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat 5 Minuten gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.

Oral applizierbare Suspension:

Zusammensetzung:

1000 mg der erfindungsgemäßen Verbindung, 1000 mg Ethanol (96%), 400 mg Rhodigel[®] (Xanthan gum der Firma FMC, Pennsylvania, USA) und 99 g Wasser.

20 Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.

Herstellung:

Das Rhodigel wird in Ethanol suspendiert, die erfindungsgemäße Verbindung wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluß der Quellung des Rhodigels wird ca. 6 h gerührt.

Oral applizierbare Lösung:

Zusammensetzung:

500 mg der erfindungsgemäßen Verbindung, 2.5 g Polysorbat und 97 g Polyethylenglycol 400. Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 20 g orale Lösung.

5 Herstellung:

Die erfindungsgemäße Verbindung wird in der Mischung aus Polyethylenglycol und Polysorbat unter Rühren suspendiert. Der Rührvorgang wird bis zur vollständigen Auflösung der erfindungsgemäßen Verbindung fortgesetzt.

i.v.-Lösung:

Die erfindungsgemäße Verbindung wird in einer Konzentration unterhalb der Sättigungslöslichkeit in einem physiologisch verträglichen Lösungsmittel (z.B. isotonische Kochsalzlösung, Glucoselösung 5% und/oder PEG 400-Lösung 30%) gelöst. Die Lösung wird steril filtriert und in sterile und pyrogenfreie Injektionsbehältnisse abgefüllt.

10

15

20

25

C. Herstellungbeispiele

Ausgangsverbindungen

Die Darstellung von 3-Morpholinon wird in US 5 349 045 beschrieben.

Die Darstellung von N-(2,3-Epoxypropyl)phthalimid wird in J.-W. Chern et al. Tetrahedron Lett. 1998,39,8483 beschrieben.

Die substituierten Aniline können erhalten werden, indem man z.B. 4-Fluornitrobenzol, 2,4-Difluornitrobenzol oder 4-Chlornitrobenzol mit den entsprechenden Aminen oder Amiden in Gegenwart einer Base umsetzt. Dies kann auch unter Verwendung von Pd-Katalysatoren wie Pd(OAc)₂/DPPF/NaOt-Bu (Tetrahedron Lett. 1999,40,2035) oder Kupfer (Renger, Synthesis 1985,856; Aebischer et al., Heterocycles 1998,48,2225) geschehen. Genauso können Halogenaromaten ohne Nitrogruppe zunächst in die entsprechenden Amide umgewandelt werden, um sie anschließend in 4-Stellung zu nitrieren (US3279880).

I. 4-(4-Morpholin-3-onyl)nitrobenzol

$$NO_2$$
 NO_2
 NMP, NaH
 NO_2
 NO_2

In 21 N-Methylpyrrolidon (NMP) werden 2 mol (202 g) Morpholin-3-on (E. Pfeil, U. Harder, Angew. Chem. 79, 1967, 188) gelöst. Über einen Zeitraum von 2 h erfolgt nun portionsweise die Zugabe von 88 g (2,2 mol) Natriumhydrid (60% in Paraffin). Nach Beendigung der Wasserstoffentwicklung werden unter Kühlung bei Raumtemperatur 282 g (2 mol) 4-Fluornitrobenzol innerhalb von 1 h zugetropft und das Reaktionsgemisch über Nacht nachgerührt. Im Anschluss werden bei 12 mbar und 76°C 1,71 des Flüssigkeitsvolumens abdestilliert, der Rückstand auf 21 Wasser gegossen und dieses Gemisch zweimal mit je 11 Ethylacetat extrahiert. Nach dem Waschen der vereinigten organischen Phasen mit Wasser wird über Natriumsulfat getrocknet und das Lösemittel im Vakuum abdestilliert. Die Reinigung erfolgt durch Chromatographie an Kieselgel mit Hexan/Ethylacetat (1:1) und nachfolgende Kristallisation aus Ethylacetat. Das Produkt fällt mit 78 g als farbloser bis bräunlicher Feststoff in 17,6 % d. Th. an.

¹H-NMR (300 MHz, CDCl₃): 3,86 (m, 2 H, C H_2 CH₂), 4,08 (m, 2 H, CH₂C H_2), 4,49 (s, 2 H, C H_2 CO), 7,61 (d, 2 H, ³J=8,95 Hz, CHCH), 8,28 (d, 2 H, ³J=8,95 Hz, CHCH)

MS (r.I.%) = 222 (74, M^+), 193 (100), 164 (28), 150 (21), 136 (61), 117 (22), 106 (24), 90 (37), 76 (38), 63 (32), 50 (25)

- 5 Analog wurden folgende Verbindungen synthetisiert:
 - 3-Fluor-4-(4-morpholin-3-onyl)nitrobenzol
 - 4-(N-Piperidonyl)nitrobenzol
 - 3-Fluor-4-(N-piperidonyl)nitrobenzol
 - 4-(N-Pyrrolidonyl)nitrobenzol
- 10 3-Fluor-4-(N-pyrrolidonyl)nitrobenzol

II. 4-(4-Morpholin-3-onyl)anilin

15

$$H_2$$
, Pd/C H_2 , Pd/C H_2

In einem Autoklaven werden 63 g (0,275 mol) 4-(4-Morpholin-3-onyl)nitrobenzol in 200 ml Tetrahydrofuran gelöst, mit 3,1 g Pd/C (5 %ig) versetzt und 8 h bei 70°C und einem Wasserstoffdruck von 50 bar hydriert. Nach Filtration des Katalysators wird das Lösemittel im Vakuum abdestilliert und das Produkt durch Kristallisation aus Ethylacetat gereinigt. Das Produkt fällt mit 20 g als farbloser bis bläulicher Feststoff in 37,6 % d. Th. an.

Die Reinigung kann auch durch Chromatographie an Kieselgel mit Hexan/Ethylacetat erfolgen.

¹H-NMR (300 MHz, CDCl₃): 3,67 (m, 2 H, CH₂CH₂), 3,99 (m, 2 H, CH₂CH₂), 4,27 (s, 2 H, CH₂CO), 6,68 (d, 2 H, ³*J*=8,71 Hz, CHCH), 7,03 (d, 2 H, ³*J*=8,71 Hz, CHCH)

MS (r.I.%) = 192 (100, M^+), 163 (48), 133 (26), 119 (76), 106 (49), 92 (38), 67 (27), 65 (45), 52 (22), 28 (22)

Analog wurden folgende Verbindungen synthetisiert:

3-Fluor-4-(4-morpholin-3-onyl)anilin

4-(N-Piperidonyl)anilin

3-Fluor-4-(N-piperidonyl)anilin

4-(N-Pyrrolidonyl)anilin

3-Fluor-4-(N-pyrrolidonyl)anilin

Allgemeine Methode zur Darstellung von 4-substituierten Anilinen durch Umsetzung von 1-Fluor-4-nitrobenzolen und 1-Chlor-4-nitrobenzolen mit primären oder sekundären Aminen und anschließender Reduktion

10

15

5

Äquimolare Mengen des Fluornitrobenzols bzw. Chlornitrobenzols und des Amins werden in Dimethylsulfoxid oder Acetonitril gelöst (0.1 M bis 1 M Lösung) und über Nacht bei 100°C gerührt. Nach Abkühlen auf RT wird das Reaktionsgemisch mit Ether verdünnt und mit Wasser gewaschen. Die organische Phase wird über MgSO₄ getrocknet, filtriert und eingeengt. Fällt im Reaktionsgemisch ein Niederschlag an, so wird dieser abfiltriert und mit Ether oder Acetonitril gewaschen. Ist auch in der Mutterlauge Produkt zu finden, wird diese wie beschrieben mit Ether und Wasser aufgearbeitet. Die Rohprodukte können durch Chromatographie an Kieselgel (Dichlormethan/Cyclohexan- und Dichlormethan/Ethanol-Gemische) gereinigt werden.

20

Zur anschließenden Reduktion wird die Nitroverbindung in Methanol, Ethanol oder Ethanol/Dichlormethan-Gemischen gelöst (0.01 M bis 0.5 M Lösung), mit Palladium auf Kohle (10%) versetzt und über Nacht unter Wasserstoff Normaldruck gerührt. Dann wird filtriert und eingeengt. Das Rohprodukt kann durch Chromatographie an Kieselgel (Dichlormethan/Ethanol-Gemische) oder präparative reversed-phase HPLC (Acetonitril/Wasser-Gemische) gereinigt werden.

Alternativ kann als Reduktionsmittel auch Eisenpulver verwendet werden. Dazu wird die Nitroverbindung in Essigsäure gelöst (0.1 M bis 0.5 M Lösung) und bei 90°C werden sechs Äquivalente Eisenpulver und Wasser (0.3- bis 0.5-faches Volumen der Essigsäure) portionsweise innerhalb von 10-15 min hinzugegeben. Nach weiteren 30 min bei 90°C wird filtriert und das Filtrat wird eingeengt. Der Rückstand wird mit Essigester und 2N Natronlauge extraktiv aufgearbeitet. Die organische Phase wird über Magnesiumsulfat getrocknet, filtriert und eingeengt. Das Rohprodukt kann durch Chromatographie an Kieselgel (Dichlormethan/Ethanol-Gemische) oder präparative reversed-phase HPLC (Acetonitril/Wasser-Gemische) gereinigt werden.

Auf analoge Weise wurden folgende Ausgangsverbindungen hergestellt:

10 III-1. Tert.-butyl-1-(4-aminophenyl)-L-prolinat

MS (ESI): m/z (%) = 304 (M+H+MeCN, 100), 263 (M+H, 20);

HPLC (Methode 4): rt = 2.79 min.

III-2. 1-(4-Aminophenyl)-3-piperidincarboxamid

MS (ESI): m/z (%) = 220 (M+H, 100);

HPLC (Methode 4): rt = 0.59 min.

III-3. 1-(4-Aminophenyl)-4-piperidincarboxamid

MS (ESI): m/z (%) = 220 (M+H, 100);

HPLC (Methode 4): rt = 0.57 min.

III-4. 1-(4-Aminophenyl)-4-piperidinon

20 MS (ESI): m/z (%) = 191 (M+H, 100);

HPLC (Methode 4): rt = 0.64 min.

III-5. 1-(4-Aminophenyl)-L-prolinamid

MS (ESI): m/z (%) = 206 (M+H, 100);

HPLC (Methode 4): rt = 0.72 min.

25 III-6. [1-(4-Aminophenyl)-3-piperidinyl]methanol

MS (ESI): m/z (%) = 207 (M+H, 100);

HPLC (Methode 4): rt = 0.60 min.

III-7. [1-(4-Aminophenyl)-2-piperidinyl]methanol

MS (ESI): m/z (%) = 207 (M+H, 100);

5 HPLC (Methode 4): rt = 0.59 min.

III-8. Ethyl-1-(4-aminophenyl)-2-piperidincarboxylat

MS (ESI): m/z (%) = 249 (M+H, 35), 175 (100);

HPLC (Methode 4): rt = 2.43 min.

III-9. [1-(4-Aminophenyl)-2-pyrrolidinyl|methanol

10 MS (ESI): m/z (%) = 193 (M+H, 45);

HPLC (Methode 4): rt = 0.79 min.

III-10. 4-(2-Methylhexahydro-5H-pyrrolo[3,4-d]isoxazol-5-yl)phenylamin

ausgehend von 2-Methylhexahydro-2H-pyrrolo[3,4-d]isoxazol (Ziegler, Carl B., et al.; J. Heterocycl. Chem.; 25; 2; 1988; 719-723)

15 MS (ESI): m/z (%) = 220 (M+H, 50), 171 (100);

HPLC (Methode 4): rt = 0.54 min.

III-11. 4-(1-Pyrrolidinyl)-3-(trifluoromethyl)anilin

MS (ESI): m/z (%) = 231 (M+H, 100);

HPLC (Methode 7): rt = 3.40 min.

20 III-12. 3-Chloro-4-(1-pyrrolidinyl)anilin

MS (ESI): m/z (%) = 197 (M+H, 100);

HPLC (Methode 4): rt = 0.78 min.

III.-13. 5-Amino-2-(4-morpholinyl)benzamid

MS (ESI): m/z (%) = 222 (M+H, 100);

HPLC (Methode 4): rt = 0.77 min.

III-14. 3-Methoxy-4-(4-morpholinyl)anilin

MS (ESI): m/z (%) = 209 (M+H, 100);

HPLC (Methode 4): rt = 0.67 min.

5

15

20

III-15. 1-[5-Amino-2-(4-morpholinyl)phenyl]ethanon

MS (ESI): m/z (%) = 221 (M+H, 100);

HPLC (Methode 4): rt = 0.77 min.

Allgemeine Methode zur Darstellung von 4-substituierten Anilinen durch Umsetzung von 110 Fluor-4-nitrobenzolen mit Amiden und anschließender Reduktion

Das Amid wird in DMF gelöst und mit 1.5 Äquivalenten Kalium-tert.-butylat versetzt. Das Gemisch wird 1h bei RT gerührt, dann werden 1.2 Äquivalente des 1-Fluor-4-nitrobenzols portionsweise zugegeben. Das Reaktionsgemisch wird über Nacht bei RT gerührt, mit Ether oder Essigester verdünnt und mit ges. wässr. Natriumhydrogencarbonatlösung gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet, filtriert und eingeengt. Das Rohprodukt kann durch Chromatographie an Kieselgel (Dichlormethan/Ethanol-Gemische) gereinigt werden.

Zur anschließenden Reduktion wird die Nitroverbindung in Ethanol gelöst (0.01 M bis 0.5 M Lösung), mit Palladium auf Kohle (10%) versetzt und über Nacht unter Wasserstoff Normaldruck gerührt. Dann wird filtriert und eingeengt. Das Rohprodukt kann durch Chromatographie an Kieselgel (Dichlormethan/Ethanol-Gemische) oder präparative reversed-phase HPLC (Acetonitril/Wasser-Gemische) gereinigt werden.

Alternativ kann als Reduktionsmittel auch Eisenpulver verwendet werden. Dazu wird die Nitroverbindung in Essigsäure gelöst (0.1 M bis 0.5 M Lösung) und bei 90°C werden sechs Äquivalente Eisenpulver und Wasser (0.3- bis 0.5-faches Volumen der Essigsäure) portionsweise innerhalb von 10-15 min hinzugegeben. Nach weiteren 30 min bei 90°C wird filtriert und das Filtrat wird eingeengt. Der Rückstand wird mit Essigester und 2N Natronlauge extraktiv aufgearbeitet. Die organische Phase wird über Magnesiumsulfat getrocknet, filtriert und eingeengt. Das Rohprodukt kann durch Chromatographie an Kieselgel (Dichlormethan/Ethanol-Gemische) oder präparative reversed-phase HPLC (Acetonitril/Wasser-Gemische) gereinigt werden.

Auf analoge Weise wurden folgende Ausgangsverbindungen hergestellt:

10 IV-1. 1-[4-Amino-2-(trifluoromethyl)phenyl]-2-pyrrolidinon

MS (ESI): m/z (%) = 245 (M+H, 100);

HPLC (Methode 4): rt = 2.98 min

IV-2. 4-[4-Amino-2-(trifluoromethyl)phenyl]-3-morpholinon

MS (ESI): m/z (%) = 261 (M+H, 100);

15 HPLC (Methode 4): rt = 2.54 min.

IV-3. 4-(4-Amino-2-chlorophenyl)-3-morpholinon

MS (ESI): m/z (%) = 227 (M+H, 100);

HPLC (Methode 4): rt = 1.96 min.

IV-4. 4-(4-Amino-2-methylphenyl)-3-morpholinon

20 MS (ESI): m/z (%) = 207 (M+H, 100);

HPLC (Methode 4): rt = 0.71 min.

IV-5. 5-Amino-2-(3-oxo-4-morpholinyl)benzonitril

MS (ESI): m/z (%) = 218 (M+H, 100);

HPLC (Methode 4): rt = 1.85 min.

25 IV-6. 1-(4-Amino-2-chlorophenyl)-2-pyrrolidinon

MS (ESI): m/z (%) = 211 (M+H, 100);

HPLC (Methode 4): rt = 2.27 min.

IV-7. 4-(4-Amino-2,6-dimethylphenyl)-3-morpholinon

ausgehend von 2-Fluoro-1,3-dimethyl-5-nitrobenzol (Bartoli et al., J. Org. Chem. 1975, 40, 872):

5 MS (ESI): m/z (%) = 221 (M+H, 100);

HPLC (Methode 4): rt = 0.77 min.

IV-8. 4-(2,4-Diaminophenyl)-3-morpholinon

ausgehend von 1-Fluoro-2,4-dinitrobenzol:

MS (ESI): m/z (%) = 208 (M+H, 100);

10 HPLC (Methode 4): rt = 0.60 min.

IV-9. 4-(4-Amino-2-chlorophenyl)-2-methyl-3-morpholinon

ausgehend von 2-Methyl-3-morpholinon (Pfeil, E.; Harder, U.; Angew. Chem. 1967, 79, 188):

MS (ESI): m/z (%) = 241 (M+H, 100);

HPLC (Methode 4): rt = 2.27 min.

15 IV-10. 4-(4-Amino-2-chlorophenyl)-6-methyl-3-morpholinon

ausgehend von 6-Methyl-3-morpholinon (EP 0 350 002):

MS (ESI): m/z (%) = 241 (M+H, 100);

HPLC (Methode 4): rt = 2.43 min.

Synthesebeispiele

Die folgenden Beispiele 1 bis 13, 17 bis 19 und 36 bis 57 beziehen sich auf die Verfahrensvariante [A].

Beispiel 1

10

15

Herstellung von 5-Chloro-N-{[(5S)-3-(3-fluoro-4-morpholinophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid

(5S)-5-(Aminomethyl)-3-(3-fluoro-4-morpholinophenyl)-1,3-oxazolidin-2-on (Herstellung siehe S. J. Brickner et al., J. Med. Chem. 1996, 39, 673) (0.45 g, 1.52 mmol), 5-Chlorthiophen-2-carbonsäure (0.25 g, 1.52 mmol) und 1-Hydroxy-1H-benzotriazol Hydrat (HOBT) (0.3 g, 1.3 Äquivalente) werden in 9.9 ml DMF gelöst. Man gibt 0.31 g (1.98 mmol, 1.3 Äquivalente) N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid (EDCI) hinzu und tropft bei Raumtemperatur 0.39 g (0.53 ml, 3.05 mmol, 2 Äquivalente) Diisopropylethylamin (DIEA) hinzu. Man rührt über Nacht bei Raumtemperatur. Man gibt 2 g Kieselgel hinzu und dampft den Ansatz im Vakuum bis zur Trockene ein. Der Rückstand wird auf Kieselgel mit einem Toluol-Essigester-Gradienten chromatographiert. Man erhält 0.412 g (61.5 % d. Th.) der Zielverbindung mit einem Schmelzpunkt (Smp.) von 197°C.

 $R_f(SiO_2, Toluol/Essigester 1:1) = 0.29 (Edukt = 0.0);$

MS (DCI) 440.2 (M+H), Cl-Muster;

¹H-NMR (d₆-DMSO, 300 MHz) 2.95 (m, 4H), 3.6 (t, 2H), 3.72 (m, 4H), 3.8 (dd, 1H), 4.12 (t, 1H), 4.75-4.85 (m, 1H), 7.05 (t, 1H), 7.15-7.2 (m, 3H), 7.45 (dd, 1H), 7.68 (d, 1H), 8.95 (t, 1H).

Beispiel 2

 $\label{lem:condition} 5- Chloro-N-\{[(5S)-3-(4-morpholinophenyl)-2-oxo-1,3-oxazolidin-5-yl] methyl\}-2-thiophencarboxamid$

wird analog aus Benzyl-4-morpholinophenylcarbamat über die Stufe des (5S)-5-(Aminomethyl)-3-(3-fluoro-4-morpholinophenyl)-1,3-oxazolidin-2-ons (siehe Beispiel 1) erhalten.

Smp.: 198°C;

5 IC_{50} -Wert = 43 nM;

 $R_f(SiO_2, Toluol/Essigester 1:1) = 0.24.$

Beispiel 3

 $5-Chloro-N-(\{(5S)-3-[3-fluoro-4-(1,4-thiazinan-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

10

wird analog aus (5S)-5-(Aminomethyl)-3-[3-fluoro-4-(1,4-thiazinan-4-yl)phenyl]-1,3-oxazolidin-2-on (Herstellung siehe M. R. Barbachyn et al., J. Med. Chem. 1996, 39, 680) erhalten.

Smp.: 193°C;

Ausbeute: 82 %;

15 $R_f(SiO_2, Toluol/Essigester 1:1) = 0.47 (Edukt = 0.0).$

 $5-Brom-N-(\{(5S)-3-[3-fluoro-4-(1,4-thiazinan-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

5 wird analog aus 5-Bromthiophen-2-carbonsäure erhalten.

Smp.: 200°C.

Beispiel 5

 $N-(\{(5S)-3-[3-Fluoro-4-(1,4-thiazinan-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl\} methyl)-5-methyl-2-thiophencarboxamid$

10

wird analog aus 5-Methylthiophen-2-carbonsäure erhalten.

Smp.: 167°C.

 $\label{lem:condition} 5- Chloro-N-\{[(5S)-3-(6-methylthieno[2,3-b]pyridin-2-yl)-2-oxo-1,3-oxazolidin-5-yl] methyl\}-2-thiophencarboxamid$

wird analog aus (5S)-5-(Aminomethyl)-3-(6-methylthieno[2,3-b]pyridin-2-yl)-1,3-oxazolidin-2-on (Herstellung siehe EP 0 785 200) erhalten.

Smp.: 247°C.

Beispiel 7

10

5-Chloro-N-{[(5S)-3-(3-methyl-2-oxo-2,3-dihydro-1,3-benzothiazol-6-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid

wird analog aus 6-[(5S)-5-(Aminomethyl)-2-oxo-1,3-oxazolidin-3-yl]-3-methyl-1,3-benzothiazol-2(3H)-on (Herstellung siehe EP 0 738 726) erhalten.

Smp.: 217°C.

 $5-Chloro-N-[((5S)-3-\{3-fluoro-4-[4-(4-pyridinyl)piperazino]phenyl\}-2-oxo-1,3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid$

wird analog aus (5S)-5-(Aminomethyl)-3-{3-fluoro-4-[4-(4-pyridinyl)piperazino] phenyl}-1,3-oxazolidin-2-on (Herstellung analog J. A. Tucker et al., J. Med. Chem. 1998, 41, 3727) erhalten.

MS (ESI) 516 (M+H),Cl-Muster.

Beispiel 9

wird analog aus (5S)-5-(Aminomethyl)-3-[3-fluoro-4-(4-methylpiperazino)phenyl]-1,3-oxazolidin-2-on erhalten.

 $5-Chloro-N-(\{(5S)-3-[3-fluoro-4-(4-tert-but oxycarbonyl piperazin-1-yl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

wird analog aus (5S)-5-(Aminomethyl)-3-[3-fluoro-4-(4-tert-butoxycarbonylpiperazin-1-yl)phenyl]-1,3-oxazolidin-2-on (Herstellung siehe bereits zitierte WO 93/23384) erhalten.

Smp.: 184°C;

 $R_f(SiO_2, Toluol/Essigester 1:1) = 0.42.$

Beispiel 11

 $5- Chloro-N-(\{(5S)-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid \\$

wird durch Umsetzung von Beispiel 12 mit Trifluoressigsäure in Methylenchlorid erhalten.

 IC_{50} -Wert = 140 nM;

¹H-NMR [d₆-DMSO]: 3.01-3.25 (m, 8H), 3.5-3.65 (m, 2H), 3.7-3.9 (m, 1H), 4.05-4.2 (m, 1H), 4.75-4.9 (m, 1H), 7.05-7.25 (m, 3H), 7.5 (dd, 1H), 7.7 (d, 1H), 8.4 (broad s, 1H), 9.0 (t, 1H).

Beispiel 12

5-Chloro-N-[((5S)-3-(2,4`-bipyridinyl-5-yl)-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-oxo-1,3-oxazolidin-5-yl]-2-oxazolidin-5-yl]-2-

5 thiophencarboxamid

wird analog aus (5S)-5-Aminomethyl-3-(2,4'-bipyridinyl-5-yl)-2-oxo-1,3-oxazolidin-2-on (Herstellung siehe EP 0 789 026) erhalten.

 R_f (SiO₂, Essigester/Ethanol 1:2) = 0.6;

10 MS (ESI) 515 (M+H), Cl-Muster.

Beispiel 13

 $\label{lem:condition} 5- Chloro-N-\{[(5S)-2-oxo-3-(4-piperidinophenyl)-1, 3-oxazolidin-5-yl] methyl\}-2-thiophencarboxamid$

wird aus 5-(Hydroxymethyl)-3-(4-piperidinophenyl)-1,3-oxazolidin-2-on (Herstellung siehe DE 2708236) nach Mesylierung, Umsetzung mit Phthalimidkalium, Hydrazinolyse und Reaktion mit 5-Chlorthiophen-2-carbonsäure erhalten.

 $R_f(SiO_2, Essigester/Toluol 1:1) = 0.31;$

5 Smp. 205°C.

Beispiel 17

 $5-Chloro-N-(\{(5S)-2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

Aus 1-(4-Aminophenyl)pyrrolidin-2-on (Herstellung siehe Reppe et al., Justus Liebigs Ann. Chem.; 596; 1955; 209) erhält man in Analogie zu dem bekannten Syntheseschema (siehe S.J. Brickner et al., J. Med. Chem. 1996, 39, 673) nach Umsetzung mit Benzyloxycarbonylchlorid, anschließender Reaktion mit R-Glycidylbutyrat, Mesylierung, Umsetzung mit Phthalimidkalium, Hydrazinolyse in Methanol und Reaktion mit 5-Chlorthiophen-2-carbonsäure schließlich das 5-Chloro-N-({(5S)-2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid. Das auf diese Weise erhaltene 5-Chloro-N-({(5S)-2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid weist einen Wert IC₅₀= 4 nM auf (Testmethode für den IC₅₀-Wert gemäß zuvor beschriebenem Beispiel A-1. a.1) "Messung der Faktor Xa-Hemmung").

20 Smp.: 229°C;

 R_f -Wert (SiO₂, Toluol/Essigester 1:1) = 0.05 (Edukt: = 0.0);

MS (ESI): 442.0 (21%, M+Na, Cl-Muster), 420.0 (72%, M+H, Cl-Muster), 302.3 (12%), 215(52%), 145 (100%);

¹H-NMR (d₆-DMSO, 300 MHz): 2.05 (m,2H), 2.45 (m,2H), 3.6 (t,2H), 3.77-3.85 (m,3H), 4.15(t,1H), 4.75-4.85 (m,1H), 7.2 (d,1H), 7.5 (d,2H), 7.65 (d,2H), 7.69 (d,1H), 8.96 (t,1H).

10

15

20

25

- 48 -

Die einzelnen Stufen der zuvor beschriebenen Synthese von Beispiel 17 mit den jeweiligen Vorstufen sind wie folgt:

4 g (22.7 mmol) 1-(4-Aminophenyl)pyrrolidin-2-on und 3.6 ml (28.4 mmol) N,N-Dimethylanilin werden in 107 ml Tetrahydrofuran bei -20°C langsam mit 4.27 g (25.03 mmol) Chlorameisensäurebenzylester versetzt. Man rührt 30 Minuten bei -20°C und lässt das Ganze anschließend auf Raumtemperatur kommen. Man gibt 0.5 l Essigester hinzu und wäscht die organische Phase mit 0.5 l gesättigter NaCl-Lösung. Man trocknet die abgetrennte organische Phase mit MgSO₄ und verdampft das Lösungsmittel im Vakuum. Der Rückstand wird mit Diethylether verrieben und abgesaugt. Man erhält 5.2 g (73.8 % d.Th.) Benzyl-4-(2-oxo-1-pyrrolidinyl)phenylcarbamat als helle beige Kristalle mit einem Schmelzpunkt von 174°C.

Man versetzt 1.47 g (16.66 mmol) Isoamylalkohol in 200 ml Tetrahydrofuran unter Argon bei – 10°C tropfenweise mit 7.27 ml einer 2.5 M Lösung von n-Butyllithium (BuLi) in Hexan, wobei weitere 8 ml der BuLi-Lösung bis zum Umschlag des hinzugesetzten Indikators N-Benzylidenbenzylamin notwendig waren. Man rührt 10 Minuten bei -10°C, kühlt auf -78°C ab und gibt langsam eine Lösung von 4.7 g (15.14 mmol) Benzyl-4-(2-oxo-1-pyrrolidinyl)phenylcarbamat hinzu. Anschließend gibt man nochmals bis zum Farbumschlag des Indikators nach rosa 4 ml n-BuLi-Lösung hinzu. Man rührt 10 Minuten bei -78°C und gibt 2.62 g (18.17 mmol) *R*-Glycidylbutyrat hinzu und rührt 30 Minuten bei -78°C nach.

Man lässt das Ganze über Nacht auf Raumtemperatur kommen, gibt zu dem Ansatz 200 ml Wasser und verdampft den THF-Anteil im Vakuum. Der wässrige Rückstand wird mit Essigester extrahiert, die organische Phase mit MgSO₄ getrocknet und im Vakuum eingedampft. Man verreibt den Rückstand mit 500 ml Diethylether und saugt die ausgefallenen Kristalle im Vakuum ab.

Man erhält 3.76 g (90 % d.Th.) (5R)-5-(Hydroxymethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on mit einem Schmelzpunkt von 148°C und einem R_f -Wert (SiO₂, Toluol/Essigester 1:1) = 0.04 (Edukt = 0.3).

3.6 g (13.03 mmol) (5R)-5-(Hydroxymethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on und 2.9 g (28.67 mmol) Triethylamin werden in 160 ml Dichlormethan bei 0°C unter Rühren vorgelegt. Man gibt 1.79 g (15.64 mmol) Methansulfonsäurechlorid unter Rühren hinzu und rührt 1.5 Stunden bei 0°C sowie 3 h bei Raumtemperatur.

Das Reaktionsgemisch wird mit Wasser gewaschen und die wässrige Phase nochmals mit Methylenchlorid extrahiert. Die vereinigten organischen Extrakte werden mit MgSO₄ getrocknet und eingedampft. Anschließend wird der Rückstand (1.67 g) in 70 ml Acetonitril gelöst, mit 2.62 g

(14.16 mmol) Phthalimidkalium versetzt und in einem geschlossenen Gefäß in einem Mikrowellenofen 45 Minuten lang bei 180°C gerührt.

Der Ansatz wird von unlöslichem Rückstand abfiltriert, das Filtrat im Vakuum eingedampft, der Rückstand (1.9 g) in Methanol gelöst und mit 0.47 g (9.37 mmol) Hydrazinhydrat versetzt. Man kocht 2 Stunden, kühlt ab, versetzt mit gesättigter Natriumbicarbonatlösung und extrahiert sechsmal mit insgesamt 2 l Methylenchlorid. Die vereinigten organischen Extrakte des rohen (5S)-5-(Aminomethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on werden mit MgSO₄ getrocknet und im Vakuum eingedampft.

Die Endstufe, das 5-Chloro-N-({(5S)-2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid, wird hergestellt, indem 0.32 g (1.16 mmol) des oben dargestellten (5S)-5-(Aminomethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-ons, 5-Chlorthiophen-2-carbonsäure (0.19 g; 1.16 mmol) und 1-Hydroxy-1H-benzotriazol-Hydrat (HOBT) (0.23 g, 1.51 mmol) in 7.6 ml DMF gelöst werden. Man gibt 0.29 g (1.51 mmol) N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid (EDCI) hinzu und tropft bei Raumtemperatur 0.3 g (0.4 ml; 2.32 mmol, 2 Äquivalente) Diisopropylethylamin (DIEA) hinzu. Man rührt über Nacht bei Raumtemperatur.

Man dampft den Ansatz im Vakuum zur Trockene ein, löst den Rückstand in 3 ml DMSO und chromatographiert auf einer RP-MPLC mit Acetonitril/Wasser/0.5 % TFA-Gradienten. Aus den passenden Fraktionen dampft man den Acetonitrilanteil ab und saugt die ausgefallene Verbindung ab. Man erhält 0.19 g (39 % d. Th.) der Zielverbindung.

Auf analoge Weise wurden hergestellt:

Beispiel 18

20

 $5-Chloro-N-(\{(5S)-2-oxo-3-[4-(1-pyrrolidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

Analog zu Beispiel 17 erhält man aus 4-Pyrrolidin-1-yl-anilin (Reppe et al., Justus Liebigs Ann. Chem.; 596; 1955; 151) die Verbindung 5-Chloro-N-({(5S)-2-oxo-3-[4-(1-pyrrolidinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid.

 $IC_{50}=40 \text{ nM};$

Smp.: 216°C;

30 R_cWert (SiO₂, Toluol/Essigester 1:1) = 0.31 [Edukt: = 0.0].

 $5-Chloro-N-(\{(5S)-2-oxo-3-[4-(diethylamino)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid\\$

Analog erhält man aus N,N-Diethylphenyl-1,4-diamin (US 2 811 555; **1955**) die Verbindung 5-Chloro-N-({(5S)-2-oxo-3-[4-(diethylamino)phenyl]-1,3-oxazolidin-5-yl}methyl)-2thiophencarboxamid.

 $IC_{50}=270 \text{ nM};$

Smp.: 181°C;

 R_{Γ} Wert (SiO₂, Toluol/Essigester 1:1) = 0.25 [Edukt: = 0.0].

10 Beispiel 36

 $5-Chloro-N-(\{(5S)-3-[2-methyl-4-(4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

ausgehend von 2-Methyl-4-(4-morpholinyl)anilin (J.E.LuValle et al. J.Am.Chem.Soc. 1948, 70, 2223):

15 MS (ESI): m/z (%) = 436 ([M+H]⁺, 100), Cl-Muster;

HPLC (Methode 1): rt (%) = 3.77 (98).

IC₅₀: 1.26 μM

Beispiel 37

20

5-Chloro-*N*-{[(5*S*)-3-(3-chloro-4-morpholinophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid

ausgehend von 3-Chloro-4-(4-morpholinyl)anilin (H.R.Snyder et al. J.Pharm.Sci. 1977, 66, 1204):

MS (ESI): m/z (%) = 456 ([M+H]⁺, 100), Cl_2 -Muster;

HPLC (Methode 2): rt (%) = 4.31 (100).

IC₅₀: 33 nM

 $5-Chloro-N-(\{(5S)-3-[4-(4-morpholinylsulfonyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

ausgehend von 4-(4-Morpholinylsulfonyl)anilin (Adams et al. J.Am. Chem. Soc. 1939, 61, 2342):

5 MS (ESI): m/z (%) = 486 ([M+H]⁺, 100), Cl-Muster;

HPLC (Methode 3): rt (%) = 4.07 (100).

IC₅₀: 2 μM

Beispiel 39

10

5-Chloro-N-({(5S)-3-[4-(1-azetidinylsulfonyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

ausgehend von 4-(1-Azetidinylsulfonyl)anilin:

MS (DCI, NH₃): m/z (%) = 473 ([M+NH₄]⁺, 100), Cl-Muster;

HPLC (Methode 3): rt (%) = 4.10 (100).

IC₅₀: 0.84 μM

15 **Beispiel 40**

 $5- Chloro-N-[((5S)-3-\{4-[(dimethylamino)sulfonyl]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid \\$

ausgehend von 4-Amino-N,N-dimethylbenzolsulfonamid (I.K.Khanna et al. J.Med.Chem. 1997, 40, 1619):

20 MS (ESI): m/z (%) = 444 ([M+H]⁺, 100), Cl-Muster;

HPLC (Methode 3): rt (%) = 4.22 (100).

IC50: 90 nM

Allgemeine Methode zur Acylierung von 5-(Aminomethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on mit Carbonsäurechloriden.

Zu dem entsprechendem Säurechlorid (2.5 eq.) wird unter Argon bei Raumtemperatur eine ca. 0.1 molare Lösung von 5-(Aminomethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on (aus Beispiel 45) (1.0 eq.) und absolutem Pyridin (ca. 6 eq) in absolutem Dichlormethan getropft. Die Mischung wird ca. 4 h bei Raumtemperatur gerührt, bevor ca. 5.5 eq PS-Trisamine (Argonaut Technologies) zugesetzt werden. Die Suspension wird 2 h leicht gerührt, nach Verdünnen mit Dichlormethan/DMF (3:1) filtriert (das Harz wird mit Dichlormethan/DMF gewaschen) und das Filtrat eingeengt. Das erhaltene Produkt wird gegebenenfalls durch präparative RP-HPLC gereinigt.

Auf analoge Weise wurde hergestellt:

Beispiel 41

5

10

15

N-({2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophen-carboxamid

LC-MS (Methode 6): m/z (%) = 386 (M+H, 100);

LC-MS: rt (%) = 3.04 (100).

IC₅₀: 1.3 μM

Allgemeine Methode zur Darstellung von Acylderivaten ausgehend von 5-(Aminomethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on und Carbonsäuren

Zu 2.9 eq. harzgebundenem Carbodiimid (PS-Carbodiimid, Argonaut Technologies) werden entsprechende Carbonsäure (ca. 2 eq) und eine Mischung aus absolutem Dichlormethan/DMF (ca. 9:1) gegeben. Nach ca. 15 min leichtem Schütteln bei Raumtemperatur wird 5-(Aminomethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on (aus Beispiel 45) (1.0 eq.) hinzugesetzt und die Mischung über Nacht geschüttelt, bevor vom Harz abfiltriert (nachgewaschen mit Dichlormethan) und das Filtrat eingeengt wird. Das erhaltene Produkt wird gegebenenfalls durch präparative RP-HPLC gereinigt.

Auf analoge Weise wurden hergestellt:

Beispiel 42

5

10

 $5-Methyl-N-(\{2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

15 LC-MS: m/z (%) = 400 (M+H, 100);

LC-MS (Methode 6): rt (%) = 3.23 (100).

IC₅₀: 0.16 μM

 $5-Bromo-N-(\{2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid\\$

LC-MS: m/z (%) = 466 (M+H, 100);

5 LC-MS (Methode 5): rt (%) = 3.48 (78).

IC₅₀: 0.014 μM

Beispiel 44

10

 $5-Chloro-N-(\{(5S)-2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

10

20

25

a) $2-((2R)-2-Hydroxy-3-\{[4-(3-oxo-4-morpholinyl)phenyl]amino\}propyl)-1H-isoindol-1,3(2H)-dion:$

Eine Suspension von 2-[(2S)-2-Oxiranylmethyl]-1H-isoindol-1,3(2H)-dion (A. Gutcait et al. Tetrahedron Asym. 1996, 7, 1641) (5.68 g, 27.9 mmol) und 4-(4-Aminophenyl)-3-morpholinon (5.37 g, 27.9 mmol) in Ethanol-Wasser (9:1, 140 ml) wird für 14 h refluxiert (der Niederschlag geht in Lösung, nach einiger Zeit erneute Bildung eines Niederschlages). Der Niederschlag (gewünschtes Produkt) wird abfiltriert, dreimal mit Diethylether gewaschen und getrocknet. Die vereinigten Mutterlaugen werden im Vakuum eingeengt und nach Zugabe einer zweiten Portion 2-[(2S)-2-Oxiranylmethyl]-1H-isoindol-1,3(2H)-dion (2.84 g, 14.0 mmol) in Ethanol-Wasser (9:1, 70 ml) suspendiert und für 13 h refluxiert (der Niederschlag geht in Lösung, nach einiger Zeit erneute Bildung eines Niederschlages). Der Niederschlag (gewünschtes Produkt) wird abfiltriert, dreimal mit Diethylether gewaschen und getrocknet. Gesamtausbeute: 10.14 g, 92 % der Theorie.

MS (ESI): m/z (%) = 418 ([M+Na]⁺, 84), 396 ([M+H]⁺, 93); HPLC (Methode 3): rt (%) = 3.34 (100).

b) $2-(\{(5S)-2-Oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1,3-oxazolidin-5-yl\}methyl)-1H-isoindol-1,3(2H)-dion:$

Zu einer Suspension des Aminoalkohols (3.58 g, 9.05 mmol) in Tetrahydrofuran (90 ml) wird unter Argon bei Raumtemperatur N,N'-Carbonyldiimidazol (2.94 g, 18.1 mmol) und Dimethylaminopyridin (katalytische Menge) gegeben. Die Reaktionssuspension wird bei 60°C für 12 h gerührt (der Niederschlag geht in Lösung, nach einiger Zeit erneute Bildung eines Niederschlages), mit einer zweiten Portion N,N'-Carbonyldiimidazol (2.94 g, 18.1 mmol) versetzt und weitere 12 h bei 60°C gerührt. Der Niederschlag (gewünschtes Produkt) wird abfiltriert, mit Tetrahydrofuran gewaschen und getrocknet. Das Filtrat wird im Vakuum eingeengt und weiteres Produkt mittels Flash-Chromatographie (Dichlormethan-Methanol-Gemische) gereinigt. Gesamtausbeute: 3.32 g, 87 % der Theorie.

MS (ESI): m/z (%) = 422 ([M+H]⁺, 100);

HPLC (Methode 4): rt (%) = 3.37 (100).

5

10

c) 5-Chloro-N-($\{(5S)$ -2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl $\}$ -1,3-oxazolidin-5-yl $\}$ methyl)-2-thiophencarboxamid:

Zu einer Suspension des Oxazolidinons (4.45 g, 10.6 mmol) in Ethanol (102 ml) wird bei Raumtemperatur tropfenweise Methylamin (40%ig in Wasser, 10.2 ml, 0.142 mol) gegeben. Die Reaktionsmischung wird für 1 h refluxiert und im Vakuum eingeengt. Das Rohprodukt wird ohne weitere Reinigung in die nächste Reaktion eingesetzt.

Zu einer Lösung des Amins in Pyridin (90 ml) wird unter Argon bei 0°C 5-Chlorthiophen-2-carbonsäurechlorid (2.29 g, 12.7 mmol) getropft. Die Eiskühlung wird entfernt und das Reaktionsgemisch 1 h bei Raumtemperatur gerührt und mit Wasser versetzt. Nach Zugabe von Dichlormethan und Phasentrennung wird die wässrige Phase mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden getrocknet (Natriumsulfat), filtriert und im Vakuum eingeengt. Das gewünschte Produkt wird mittels Flash-Chromatographie (Dichlormethan-Methanol-Gemische) gereinigt. Gesamtausbeute: 3.92 g, 86 % der Theorie.

Smp: 232-233°C;

¹H NMR (DMSO-d⁶, 200 MHz): 9.05-8.90 (t, J = 5.8 Hz, 1H), 7.70 (d, J = 4.1 Hz, 1H), 7.56 (d, J = 9.0 Hz, 2H), 7.41 (d, J = 9.0 Hz, 2H), 7.20 (d, J = 4.1 Hz, 1H), 4.93-4.75 (m, 1H), 4.27-4.12 (m, 3H), 4.02-3.91 (m, 2H), 3.91-3.79 (dd, J = 6.1 Hz, 9.2 Hz, 1H), 3.76-3.66 (m, 2H), 3.66-3.54 (m, 2H);

MS (ESI): m/z (%) = 436 ([M+H]⁺, 100, Cl-Muster);

20 HPLC (Methode 2): rt (%) = 3.60 (100);

 $[\alpha]^{21}_{D} = -38^{\circ}$ (c 0.2985, DMSO); ee: 99 %.

IC₅₀: 0.7 nM

Auf analoge Weise wurden hergestellt:

Beispiel 45

5-Methyl-N-({(5S)-2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

MS (ESI): m/z (%) = 831 ([2M+H]⁺, 100), 416 ([M+H]⁺, 66);

HPLC (Methode 3): rt (%) = 3.65 (100).

IC₅₀: 4.2 nM

Beispiel 46

 $\label{eq:constraint} 5-Bromo-N-(\{(5S)-2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1,3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

5 MS (ESI): m/z (%) = 480 ([M+H]⁺, 100, Br-Muster);

HPLC (Methode 3): rt (%) = 3.87 (100).

IC50: 0.3 nM

Beispiel 47

10

15

5-Chloro-N-{[(5S)-3-(3-isopropyl-2-oxo-2,3-dihydro-1,3-benzoxazol-6-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid

200 mg (0.61 mmol) 6-[(5S)-5-(Aminomethyl)-2-oxo-1,3-oxazolidin-3-yl]-3-isopropyl-1,3-benzoxazol-2(3H)-on Hydrochlorid (EP 0 738 726) werden in 5 ml Tetrahydrofuran suspendiert und mit 0.26 ml (1.83 mmol) Triethylamin und 132 mg (0.73 mmol) 5-Chlorthiophen-2-carbonsäurechlorid versetzt. Das Reaktionsgemisch wird über Nacht bei Raumtemperatur gerührt und anschließend eingeengt. Das Produkt wird durch Säulenchromatographie (Kieselgel, Methylenchlorid/Ethanol = 50/1 bis 20/1) isoliert. Es werden 115 mg (43% d. Th.) der gewünschten Verbindung erhalten.

MS (ESI): m/z (%) = 436 (M+H, 100);

20 HPLC (Methode 4): rt = 3.78 min.

In analoger Weise wurden die folgenden Verbindungen hergestellt:

Beispiel-Nr.	Struktur	Smp. [°C]	IC ₅₀ [μM]
48	O S C Chiral	210	0,12
49	N Chiral	234	0,074
50	Chiral Chiral	195	1,15
51	Chiral Chiral	212	1,19
52	N CN- DN C N S CO F S	160	0,19
53	Chiral N S CI	MS (ESI): m/z (%) = 431 ([M+H] ⁺ , 100), Cl- Muster	0,74

Beispiel-Nr.	Struktur	Smp. [°C]	IC ₅₀ [μM]
54	Chiral Chiral N S CI	221	0,13
	aus 5-Amino-2-pyrrolidino-		
	benzonitril (Grell, W.,Hurnaus, R.;		
	Griss, G., Sauter, R.; Rupprecht, E. et		
	al.; J.Med.Chem.1998, 41; 5219)		
55		256	0,04
	Chiral Chiral		
	aus 3-(4-Amino-phenyl)-oxazolidin-		
	2-on (Artico,M. et al.; Farmaco		
	Ed.Sci. 1969, 24; 179)		
56	Chiral Chiral	218	0,004
57	Chiral Chiral	226	0,58
255	0 N-co-(s)-co	228-230	

Die folgenden Beispiele 20 bis 30 und 58 bis 139 beziehen sich auf die Verfahrensvariante [B], wobei die Beispiele 20 und 21 die Darstellung von Vorstufen beschreiben.

Beispiel 20

Darstellung von N-Allyl-5-chloro-2-thiophencarboxamid

Zu einer eisgekühlten Lösung von 2.63 ml (35 mmol) Allylamin in 14.2 ml absolutem Pyridin und 14.2 ml absolutem THF wird 5-Chlor-thiophen-2-carbonsäurechlorid (7.61 g , 42 mmol) getropft. Die Eiskühlung wird entfernt und die Mischung 3 h bei Raumtemperatur gerührt, bevor im Vakuum eingeengt wird. Der Rückstand wird mit Wasser versetzt und der Feststoff abfiltriert. Das Rohprodukt wird durch Flashchromatographie an Silicagel (Dichlormethan) gereinigt.

Ausbeute: 7.20 g (99 % der Theorie);

MS (DCI, NH₄): m/z (%) = 219 (M+NH₄, 100), 202 (M+H, 32);

HPLC (Methode 1): rt (%) = 3.96 min (98.9).

Beispiel 21

10

15

Darstellung von 5-Chloro-N-(2-oxiranylmethyl)-2-thiophencarboxamid

Eine eisgekühlte Lösung von 2.0 g (9.92 mmol) N-Allyl-5-chloro-2-thiophencarboxamid in 10 ml Dichlormethan wird mit meta-Chlorperbenzoesäure (3.83 g, ca. 60 %ig) versetzt. Die Mischung wird über Nacht gerührt, dabei Erwärmung auf Raumtemperatur, und anschließend mit 10% Natriumhydrogensulfat-Lösung gewaschen (dreimal). Die organische Phase wird mit gesättigter Natriumhydrogencarbonat-Lösung (zweimal) und mit gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Das Produkt wird mittels Chromatographie an Silicagel (Cyclohexan/Essigester 1:1) gereinigt.

Ausbeute: 837 mg (39 % der Theorie);

20 MS (DCI, NH₄): m/z (%) =253 (M+NH₄, 100), 218 (M+H, 80);

HPLC (Methode 1): rt (%) = 3.69 min (ca. 80).

Allgemeine Methode zu Darstellung von substituierten N-(3-Amino-2-hydroxypropyl)-5-chloro-2-thiophencarboxamid-Derivaten ausgehend von 5-Chloro-N-(2-oxiranylmethyl)-2-thiophencarboxamid

Zu einer Lösung von primärem Amin- oder Anilin-Derivat (1.5 bis 2.5 eq.) in 1,4-Dioxan, 1,4-Dioxan-Wasser Gemischen oder Ethanol, Ethanol-Wasser Gemischen (ca. 0.3 bis 1.0 mol/l) wird bei Raumtemperatur oder bei Temperaturen bis zu 80°C portionsweise 5-Chloro-N-(2-oxiranylmethyl)-2-thiophencarboxamid (1.0 eq.) gegeben. Die Mischung wird 2 bis 6 Stunden gerührt, bevor eingeengt wird. Aus dem Reaktionsgemisch kann das Produkt durch Chromatographie an Silicagel (Cyclohexan-Essigester-Gemische, Dichlormethan-Methanol-Gemische oder Dichlormethan-Methanol-Triethylamin-Gemische) isoliert werden.

Auf analoge Weise wurden hergestellt:

Beispiel 22

10 N-[3-(Benzylamino)-2-hydroxypropyl]-5-chloro-2-thiophencarboxamid

MS (ESI): m/z (%) = 325 (M+H, 100);

HPLC (Methode 1): rt (%) = 3.87 min (97.9).

Beispiel 23

5-Chloro-N-[3-(3-cyanoanilino)-2-hydroxypropyl]-2-thiophencarboxamid

15 MS (ESI): m/z (%) = 336 (M+H, 100);

HPLC (Methode 2): rt (%) = 4.04 min (100).

Beispiel 24

5-Chloro-N-[3-(4-cyanoanilino)-2-hydroxypropyl]-2-thiophencarboxamid

MS (ESI): m/z (%) = 336 (M+H, 100);

20 HPLC (Methode 1): rt (%) = 4.12 min (100).

Beispiel 25

5-Chloro-N-{3-[4-(cyanomethyl)anilino]-2-hydroxypropyl}-2-thiophencarboxamid

MS (ESI): m/z (%) = 350 (M+H, 100);

HPLC (Methode 4): rt (%) = 3.60 min (95.4).

5-Chloro-N-{3-[3-(cyanomethyl)anilino]-2-hydroxypropyl}-2-thiophencarboxamid

MS (ESI):
$$m/z$$
 (%) = 350 (M+H, 100);

HPLC (Methode 4): rt (%) = $3.76 \min (94.2)$.

5 Beispiel 58

 $\it tert-Butyl-4-[(3-\{[(5-chloro-2-thienyl)carbonyl]amino\}-2-hydroxypropyl)amino]-benzylcarbamat$

Ausgehend von tert-Butyl-4-aminobenzylcarbamat (Bioorg. Med. Chem. Lett.; 1997; 1921-1926):

MS (ES-pos):
$$m/z$$
 (%) = 440 (M+H, 100), (ES-neg): m/z (%) = 438 (M-H, 100);

10 HPLC (Methode 1): rt (%) = 4.08 (100).

Beispiel 59

 $\it tert-Butyl-4-[(3-\{[(5-chloro-2-thienyl)carbonyl]amino\}-2-hydroxypropyl)amino] phenyl-carbamat$

Ausgehend von N-tert.-Butyloxycarbonyl-1,4-phenylendiamin:

15 MS (ESI):
$$m/z$$
 (%) = 426 (M+H, 45), 370 (100);

HPLC (Methode 1): rt (%) = 4.06 (100).

Beispiel 60

tert-Butyl-2-hydroxy-3-{[4-(2-oxo-1-pyrrolidinyl)phenyl]amino}propyl-carbamat

Ausgehend von 1-(4-Aminophenyl)-2-pyrrolidinon (Justus Liebigs Ann. Chem.; 1955; 596; 204):

20 MS (DCI, NH₃): m/z (%) = 350 (M+H, 100);

HPLC (Methode 1): rt (%) = 3.57 (97).

5-Chloro-N-(3-{[3-fluoro-4-(3-oxo-4-morpholinyl)phenyl]amino}-2-hydroxypropyl)-2-thiophencarboxamid

800 mg (3.8 mmol) 4-(4-amino-2-fluorophenyl)-3-morpholinon und 700 mg (3.22 mmol) 5-chloro-5 N-(2-oxiranylmethyl)-2-thiophencarboxamid werden in 15 ml Ethanol und 1 ml Wasser 6 Stunden lang unter Rückfluss erhitzt. Man dampft im Vakuum ein, saugt von ausgefallenen Kristallen nach Behandeln mit Essigester ab und erhält durch Chromatographie der Mutterlauge 276 mg (17 % d. Th.) der Zielverbindung.

R_f (Essigester): 0.25.

10 Beispiel 62

(N-(3-Anilino-2-hydroxypropyl)-5-chloro-2-thiophencarboxamid

ausgehend von Anilin:

MS (DCI, NH₃): m/z (%) = 311 ([M+H]⁺, 100), Cl-Muster;

HPLC (Methode 3): rt (%) = 3.79 (100).

15 Beispiel 63

 $5-Chloro-N-(2-hydroxy-3-\{[4-(3-oxo-4-morpholinyl)phenyl]amino\} propyl)-2-thiophencarboxamid\\$

ausgehend von 4-(4-Aminophenyl)-3-morpholinon:

MS (ESI): m/z (%) = 410 ([M+H]⁺, 50), Cl-Muster;

20 HPLC (Methode 3): rt (%) = 3.58 (100).

 $\label{lem:no-2-hydroxypropyl} $$N-[3-(\{4-[Acetyl(cyclopropyl)amino]phenyl\}amino)-2-hydroxypropyl]-5-chloro-2-thiophencarboxamid$

ausgehend von N-(4-Aminophenyl)-N-cyclopropylacetamid:

5 MS (ESI): m/z (%) = 408 ([M+H]⁺, 100), Cl-Muster;

HPLC (Methode 3): rt (%) = 3.77 (100).

Beispiel 65

 $N-[3-(\{4-[Acetyl(methyl)amino]phenyl\}amino)-2-hydroxypropyl]-5-chloro-2-thiophencarboxamid\\$

ausgehend von N-(4-Aminophenyl)-N-methylacetamid:

MS (ESI): m/z (%) = 382 (M+H, 100);

HPLC (Methode 4): rt = 3.31 min.

Beispiel 66

5-Chloro-N-(2-hydroxy-3-{[4-(1H-1,2,3-triazol-1-yl)phenyl]amino}propyl)-2-

15 thiophencarboxamid

ausgehend von 4-(1H-1,2,3-Triazol-1-yl)anilin (Bouchet et al.; J.Chem.Soc.Perkin Trans.2; 1974; 449):

MS (ESI): m/z (%) = 378 (M+H, 100);

HPLC (Methode 4): rt = 3.55 min.

20 **Beispiel 67**

Tert.-butyl 1-{4-[(3-{[(5-chloro-2-thienyl)carbonyl]amino}-2-hydroxypropyl)amino]phenyl}-L-prolinat

MS (ESI): m/z (%) = 480 (M+H, 100);

HPLC (Methode 4): rt = 3.40 min.

 $1-\{4-[(3-\{[(5-Chloro-2-thienyl)carbonyl]amino\}-2-hydroxypropyl)amino]phenyl\}-4-piperidincarboxamid\\$

MS (ESI): m/z (%) = 437 (M+H, 100);

5 HPLC (Methode 4): rt = 2.39 min.

Beispiel 69

 $1-\{4-[(3-\{[(5-Chloro-2-thienyl)carbonyl]amino\}-2-hydroxypropyl)-amino]phenyl\}-3-piperidincarboxamid$

MS (ESI): m/z (%) = 437 (M+H, 100);

HPLC (Methode 4): rt = 2.43 min.

Beispiel 70

 $5-Chloro-N-(2-hydroxy-3-\{[4-(4-oxo-1-piperidinyl)phenyl]amino\} propyl)-2-thio-phencarboxamid\\$

MS (ESI): m/z (%) = 408 (M+H, 100);

15 HPLC (Methode 4): rt = 2.43 min.

Beispiel 71

 $1-\{4-[(3-\{[(5-Chloro-2-thienyl)carbonyl]amino\}-2-hydroxypropyl)amino]phenyl\}-L-prolinamid\\$

MS (ESI): m/z (%) = 423 (M+H, 100);

20 HPLC (Methode 4): rt = 2.51 min.

Beispiel 72

 $\label{lem:condition} 5- Chloro-N-[2-hydroxy-3-(\{4-[3-(hydroxymethyl)-1-piperidinyl]phenyl\}amino) propyl]-2-thiophencarboxamid$

MS (ESI): m/z (%) = 424 (M+H, 100);

HPLC (Methode 4): rt = 2.43 min.

Beispiel 73

 $\label{lem:condition} 5- Chloro-N-[2-hydroxy-3-(\{4-[2-(hydroxymethyl)-1-piperidinyl]phenyl\}amino) propyl]-2-thiophencarboxamid$

5 MS (ESI): m/z (%) = 424 (M+H, 100);

HPLC (Methode 4): rt = 2.49 min.

Beispiel 74

 $Ethyl-1-\{4-[(3-\{[(5-chloro-2-thienyl)carbonyl]amino\}-2-hydroxypropyl)amino]phenyl\}-2-piperidin carboxylat$

10 MS (ESI): m/z (%) = 466 (M+H, 100);

HPLC (Methode 4): rt = 3.02 min.

Beispiel 75

 $\label{lem:condition} 5- Chloro-N-[2-hydroxy-3-(\{4-[2-(hydroxymethyl)-1-pyrrolidinyl]phenyl\}amino) propyl]-2-thiophencarboxamid$

15 MS (ESI): m/z (%) = 410 (M+H, 100);

HPLC (Methode 4): rt = 2.48 min.

Beispiel 76

 $5-Chloro-N-(2-hydroxy-3-\{[4-(2-methylhexahydro-5H-pyrrolo[3,4-d]isoxazol-5-yl)-phenyl] amino\} propyl)-2-thiophencarboxamid$

20 MS (ESI): m/z (%) = 437 (M+H, 100).

HPLC (Methode 5): rt = 1.74 min.

5-Chloro-N-(2-hydroxy-3-{[4-(1-pyrrolidinyl)-3-(trifluoromethyl)phenyl]amino}propyl)-2-thiophencarboxamid

MS (ESI): m/z (%) = 448 (M+H, 100);

5 HPLC (Methode 4): rt = 3.30 min.

Beispiel 78

5-Chloro-N-(2-hydroxy-3-{[4-(2-oxo-1-pyrrolidinyl)-3-(trifluoromethyl)phenyl]-amino}propyl)-2-thiophencarboxamid

MS (ESI): m/z (%) = 462 (M+H, 100);

HPLC (Methode 4): rt = 3.50 min.

Beispiel 79

 $5-Chloro-N-(3-\{[3-chloro-4-(3-oxo-4-morpholinyl)phenyl]amino\}-2-hydroxypropyl)-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 444 (M+H, 100);

15 HPLC (Methode 4): rt = 3.26 min.

Beispiel 80

 $5-Chloro-N-(2-hydroxy-3-\{[4-(3-oxo-4-morpholinyl)-3-(trifluoromethyl)phenyl]-amino\} propyl)-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 478 (M+H, 100);

20 HPLC (Methode 4): rt = 3.37 min.

Beispiel 81

 $\label{lem:condition} 5- Chloro-N-(2-hydroxy-3-\{[3-methyl-4-(3-oxo-4-morpholinyl)phenyl]amino\} propyl)-2-thiophencarboxamid$

MS (ESI): m/z (%) = 424 (M+H, 100);

HPLC (Methode 4): rt = 2.86 min.

Beispiel 82

 $\label{lem:condition} 5- Chloro-N-(3-\{[3-cyano-4-(3-oxo-4-morpholinyl)phenyl]amino\}-2-hydroxypropyl)-2-thiophencarboxamid$

5 MS (ESI): m/z (%) = 435 (M+H, 100);

HPLC (Methode 4): rt = 3.10 min.

Beispiel 83

 $5-Chloro-N-(3-\{[3-chloro-4-(1-pyrrolidinyl)phenyl]amino\}-2-hydroxypropyl)-2-thio-phencarboxamid$

10 MS (ESI): m/z (%) = 414 (M+H, 100);

HPLC (Methode 4): rt = 2.49 min.

Beispiel 84

 $5- Chloro-N-(3-\{[3-chloro-4-(2-oxo-1-pyrrolidinyl)phenyl]amino\}-2-hydroxypropyl)-2-thiophencarboxamid \\$

15 MS (ESI): m/z (%) = 428 (M+H, 100);

HPLC (Methode 4): rt = 3.39 min.

Beispiel 85

 $5-Chloro-N-(3-\{[3,5-dimethyl-4-(3-oxo-4-morpholinyl)phenyl] a mino\}-2-hydroxypropyl)-2-thiophencarboxamid\\$

20 MS (ESI): m/z (%) = 438 (M+H, 100);

HPLC (Methode 4): rt = 2.84 min.

 $N-(3-\{[3-(Aminocarbonyl)-4-(4-morpholinyl)phenyl]amino\}-2-hydroxypropyl)-5-chloro-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 439 (M+H, 100);

5 HPLC (Methode 4): rt = 2.32 min.

Beispiel 87

 $5-Chloro-N-(2-hydroxy-3-\{[3-methoxy-4-(4-morpholinyl)phenyl]amino\} propyl)-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 426 (M+H, 100);

10 HPLC (Methode 4): rt = 2.32 min.

Beispiel 88

 $N-(3-\{[3-Acetyl-4-(4-morpholinyl)phenyl]amino\}-2-hydroxypropyl)-5-chloro-2-thio-phencarboxamid\\$

MS (ESI): m/z (%) = 438 (M+H, 100);

15 HPLC (Methode 4): rt = 2.46 min.

Beispiel 89

 $N-(3-\{[3-Amino-4-(3-oxo-4-morpholinyl)phenyl]amino\}-2-hydroxypropyl)-5-chloro-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 425 (M+H, 100);

20 HPLC (Methode 4): rt = 2.45 min.

Beispiel 90

 $5-Chloro-N-(3-\{[3-chloro-4-(2-methyl-3-oxo-4-morpholinyl)phenyl]amino\}-2-hydroxypropyl)-2-thiophencarboxamid$

MS (ESI): m/z (%) = 458 (M+H, 100);

HPLC (Methode 4): rt = 3.44 min.

Beispiel 91

 $5-Chloro-N-(3-\{[3-chloro-4-(2-methyl-5-oxo-4-morpholinyl)phenyl]amino\}-2-hydroxypropyl)-2-thiophencarboxamid$

5 MS (ESI): m/z (%) = 458 (M+H, 100);

HPLC (Methode 4): rt = 3.48 min.

Beispiel 91a

20

 $5-Chloro-N-[2-hydroxy-3-(\{4-[(3-oxo-4-morpholinyl)methyl]phenyl\}amino)propyl]-2-thiophencarboxamid\\$

Ausgehend von 4-(4-Amino-benzyl)-3-morpholinon (Surrey et al.; J. Amer. Chem. Soc.; 77; 1955; 633):

MS (ESI): m/z (%) = 424 (M+H, 100);

HPLC (Methode 4): rt = 2.66 min.

Allgemeine Methode zu Darstellung von 3-substituierten 5-Chloro-N-[(2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid-Derivaten ausgehend von substituierten N-(3-Amino-2-hydroxypropyl)-5-chloro-2-thiophencarboxamid-Derivaten

Zu einer Lösung von substituiertem N-(3-Amino-2-hydroxypropyl)-5-chloro-2-thiophen-carboxamid-Derivat (1.0 eq.) in absolutem THF (ca. 0.1 mol/l) wird bei Raumtemperatur Carbodiimidazol (1.2 bis 1.8 eq.) oder ein vergleichbares Phosgenequivalent gegeben. Die Mischung wird bei Raumtemperatur oder gegebenenfalls bei erhöhter Temperatur (bis zu 70°C) für 2 bis 18 h gerührt, bevor im Vakuum eingeengt wird. Das Produkt kann durch Chromatographie an Silicagel (Dichlormethan-Methanol-Gemische oder Cyclohexan-Essigester-Gemische) gereinigt werden.

WO 2007/042146 PCT/EP2006/009373

-71-

Auf analoge Weise wurden hergestellt:

Beispiel 27

N-[(3-Benzyl-2-oxo-1,3-oxazolidin-5-yl)methyl]-5-chloro-2-thiophencarboxamid

MS (DCI, NH₄): m/z (%) = 372 (M+Na, 100), 351 (M+H, 45);

5 HPLC (Methode 1): rt (%) = 4.33 min (100).

Beispiel 28

5-Chloro-N-{[3-(3-cyanophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid

MS (DCI, NH₄): m/z (%) = 362 (M+H, 42), 145 (100);

HPLC (Methode 2): rt (%) = 4.13 min (100).

10 **Beispiel 29**

5-Chloro-N-({3-[4-(cyanomethyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2thiophencarboxamid

MS (ESI): m/z (%) = 376 (M+H, 100);

HPLC (Methode 4): rt = 4.12 min

Beispiel 30 15

5-Chloro-N-({3-[3-(cyanomethyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

MS (ESI): m/z (%) = 376 (M+H, 100);

HPLC (Methode 4): rt = 4.17 min

20 Beispiel 92

 $tert\hbox{-}Butyl\hbox{-}4\hbox{-}[5\hbox{-}(\{[(5\hbox{-}chloro\hbox{-}2\hbox{-}thienyl)\hbox{carbonyl}]amino}\} methyl)\hbox{-}2\hbox{-}oxo\hbox{-}1,3\hbox{-}oxazolidin-3\hbox{-}1,3\hbox{-}oxazolidin-3\hbox{-}2,0]$ yllbenzylcarbamat

ausgehend von Beispiel 58:

MS (ESI): m/z (%) = 488 (M+Na, 23), 349 (100);

HPLC (Methode 1): rt (%) = 4.51 (98.5).

Beispiel 93

tert-Butyl 4-[5-({[(5-chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenylcarbamat

5 ausgehend von Beispiel 59:

MS (ESI):
$$m/z$$
 (%) = 493 (M+Na, 70), 452 (M+H, 10), 395 (100);

HPLC (Methode 1): rt (%) = 4.41 (100).

Beispiel 94

tert-Butyl-2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-5-yl}methylcarbamat

10 ausgehend von Beispiel 60:

MS (DCI, NH₃):
$$m/z$$
 (%) = 393 (M+NH₄, 100);

HPLC (Methode 3): rt (%) = 3.97 (100).

Beispiel 95

15

20

 $5-Chloro-N-(\{3-[3-fluoro-4-(3-oxo-4-morpholinyl)phenyl\}-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

260 mg (0.608 mmol) 5-Chloro-N-(3-{[3-fluoro-4-(3-oxo-4-morpholinyl)phenyl]amino}-2-hydroxypropyl)-2-thiophencarboxamid (aus Beispiel 61), 197 mg (1.22 mmol) Carbonylimidazol und 7 mg Dimethylaminopyridin werden in 20 ml Dioxan 5 Stunden lang unter Rückfluss gekocht. Anschließend gibt man 20 ml Acetonitril hinzu und rührt in einem Mikrowellenofen in einem geschlossenen Behälter 30 Minuten lang bei 180°C. Die Lösung wird einrotiert und auf einer RP-HPLC Säule chromatographiert. Man erhält 53 mg (19% d.Th.) der Zielverbindung.

NMR (300 MHz, d_6 -DMSO): δ = 3.6-3.7 (m,4H), 3.85 (dd,1H), 3.95 (m,2H), 4.2 (m,1H), 4.21 (s,2H), 4.85 (m,1H), 4.18 (s,2H), 7.19(d,1H,thiophen), 7.35 (dd,1H), 7.45 (t,1H), 7.55 (dd,1H), 7.67 (d,1H,thiophen), 8.95(t,1H,CONH).

Beispiel 96

5 5-Chloro-N-[(2-oxo-3-phenyl-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid

ausgehend von Beispiel 62:

MS (ESI): m/z (%) = 359 ([M+Na]⁺, 71), 337 ([M+H]⁺, 100), Cl-Muster;

HPLC (Methode 3): rt (%) = 4.39 (100).

IC₅₀: 2 μM

10 Beispiel 97

 $5-Chloro-N-(\{2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

ausgehend von Beispiel 63:

MS (ESI): m/z (%) = 458 ([M+Na]⁺, 66), 436 ([M+H]⁺, 100), Cl-Muster;

15 HPLC (Methode 3): rt (%) = 3.89 (100).

IC₅₀: 1.4 nM

Beispiel 98

 $N-[(3-\{4-[Acetyl(cyclopropyl)amino]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-5-chloro-2-thiophencarboxamid$

ausgehend von Beispiel 64:

MS (ESI): m/z (%) = 456 ([M+Na]⁺, 55), 434 ([M+H]⁺, 100), Cl-Muster;

HPLC (Methode 3): rt (%) = 4.05 (100).

IC₅₀: 50 nM

 $N-[(3-\{4-[Acetyl(methyl)amino]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-5-chloro-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 408 (M+H, 30), 449 (M+H+MeCN, 100);

5 HPLC (Methode 4): rt = 3.66 min.

Beispiel 100

 $5-Chloro-N-(\{2-oxo-3-[4-(1H-1,2,3-triazol-1-yl)phenyl]-1,3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

MS (ESI): m/z (%) = 404 (M+H, 45), 445 (M+H+MeCN, 100);

HPLC (Methode 4): rt = 3.77 min.

Beispiel 101

Tert.-butyl-1-{4-[5-({[(5-chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-L-prolinat

MS (ESI): m/z (%) = 450 (M+H-56, 25), 506 (M+H, 100);

15 HPLC (Methode 4): rt = 5.13 min.

Beispiel 102

 $1-\{4-[5-(\{[(5-Chloro-2-thienyl)carbonyl]amino\}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl\}-4-piperidincarboxamid$

MS (ESI): m/z (%) = 463 (M+H, 100);

20 HPLC (Methode 4): rt = 2.51 min.

Beispiel 103

 $1-\{4-[5-(\{[(5-Chloro-2-thienyl)carbonyl]amino\}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl\}-3-piperidin carboxamid$

MS (ESI): m/z (%) = 463 (M+H, 100);

HPLC (Methode 4): rt = 2.67 min.

Beispiel 104

 $5- Chloro-N-(\{2-oxo-3-[4-(4-oxo-1-piperidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid \\$

5 MS (ESI): m/z (%) = 434 (M+H, 40), 452 (M+H+H₂O, 100), 475 (M+H+MeCN, 60);

HPLC (Methode 4): rt = 3.44 min.

Beispiel 105

 $1-\{4-[5-(\{[(5-Chloro-2-thienyl)carbonyl]amino\}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl\}-L-prolinamid$

10 MS (ESI): m/z (%) = 449 (M+H, 100);

HPLC (Methode 4): rt = 3.54 min.

Beispiel 106

 $5- Chloro-N-[(3-\{4-[3-(hydroxymethyl)-1-piperidinyl]phenyl\}-2-oxo-1, 3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid \\$

15 MS (ESI): m/z (%) = 450 (M+H, 100);

HPLC (Methode 5): rt = 2.53 min.

Beispiel 107

 $5-Chloro-N-[(3-\{4-[2-(hydroxymethyl)-1-piperidinyl\}phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

20 MS (ESI): m/z (%) = 450 (M+H, 100);

HPLC (Methode 5): rt = 2.32 min.

Ethyl 1-{4-[5-({[(5-chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-2-piperidincarboxylat

MS (ESI):
$$m/z$$
 (%) = 492 (M+H, 100);

5 HPLC (Methode 5): rt = 4.35 min.

Beispiel 109

 $5-Chloro-N-[(3-\{4-[2-(hydroxymethyl)-1-pyrrolidinyl]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

MS (ESI):
$$m/z$$
 (%) = 436 (M+H, 100);

10 HPLC (Methode 4): rt = 2.98 min.

Beispiel 110

5-Chloro-N-({2-oxo-3-[4-(1-pyrrolidinyl)-3-(trifluoromethyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

MS (ESI):
$$m/z$$
 (%) = 474 (M+H, 100);

15 HPLC (Methode 4): rt = 4.63 min.

Beispiel 111

5-Chloro-N-({3-[4-(2-methylhexahydro-5H-pyrrolo[3,4-d]isoxazol-5-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

MS (ESI):
$$m/z$$
 (%) = 463 (M+H, 100);

20 HPLC (Methode 4): rt = 2.56 min.

Beispiel 112

 $5-Chloro-N-(\{2-oxo-3-[4-(2-oxo-1-pyrrolidinyl)-3-(trifluoromethyl)phenyl\}-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

MS (ESI):
$$m/z$$
 (%) = 488 (M+H, 100);

HPLC (Methode 4): rt = 3.64 min.

Beispiel 113

5-Chloro-N-({3-[3-chloro-4-(3-oxo-4-morpholinyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

5 MS (ESI): m/z (%) = 470 (M+H, 100);

HPLC (Methode 4): rt = 3.41 min.

Beispiel 114

 $5-Chloro-N-(\{2-oxo-3-[4-(3-oxo-4-morpholinyl)-3-(trifluoromethyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

10 MS (ESI): m/z (%) = 504 (M+H, 100);

HPLC (Methode 4): rt = 3.55 min.

Beispiel 115

 $\label{lem:condition} 5- Chloro-N-(\{3-[3-methyl-4-(3-oxo-4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

15 MS (ESI): m/z (%) = 450 (M+H, 100);

HPLC (Methode 4): rt = 3.23 min.

Beispiel 116

 $\label{lem:condition} 5- Chloro-N-(\{3-[3-cyano-4-(3-oxo-4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

20 MS (ESI): m/z (%) = 461 (M+H, 100);

HPLC (Methode 4): rt = 3.27 min.

 $5-Chloro-N-(\{3-[3-chloro-4-(1-pyrrolidinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

MS (ESI): m/z (%) = 440 (M+H, 100);

5 HPLC (Methode 4): rt = 3.72 min.

Beispiel 118

5-Chloro-N-({3-[3-chloro-4-(2-oxo-1-pyrrolidinyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

MS (ESI): m/z (%) = 454 (M+H, 100);

10 HPLC (Methode 4): rt = 3.49 min.

Beispiel 119

 $5-Chloro-N-(\{3-[3,5-dimethyl-4-(3-oxo-4-morpholinyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

MS (ESI): m/z (%) = 464 (M+H, 100);

15 HPLC (Methode 4): rt = 3.39 min.

Beispiel 120

 $N-(\{3-[3-(Aminocarbonyl)-4-(4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-5-chloro-2-thiophencarboxamid$

MS (ESI): m/z (%) = 465 (M+H, 100);

20 HPLC (Methode 4): rt = 3.07 min.

Beispiel 121

 $5-Chloro-N-(\{3-[3-methoxy-4-(4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

MS (ESI): m/z (%) = 452 (M+H, 100);

HPLC (Methode 4): rt = 2.86 min.

Beispiel 122

 $N-(\{3-[3-Acetyl-4-(4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-5-chloro-2-thiophencarboxamid\\$

5 MS (ESI): m/z (%) = 464 (M+H, 100);

HPLC (Methode 4): rt = 3.52 min.

Beispiel 123

 $N-(\{3-[3-Amino-4-(3-oxo-4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-5-chloro-2-thiophencarboxamid\\$

10 MS (ESI): m/z (%) = 451 (M+H, 100);

HPLC (Methode 6): rt = 3.16 min.

Beispiel 124

 $5-Chloro-N-(\{3-[3-chloro-4-(2-methyl-3-oxo-4-morpholinyl)phenyl\}-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

15 MS (ESI): m/z (%) = 484 (M+H, 100);

HPLC (Methode 4): rt = 3.59 min.

Beispiel 125

 $5-Chloro-N-(\{3-[3-chloro-4-(2-methyl-5-oxo-4-morpholinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

20 MS (ESI): m/z (%) = 484 (M+H, 100);

HPLC (Methode 4): rt = 3.63 min.

Beispiel 125a

$5-Chloro-N-[(2-oxo-3-\{4-[(3-oxo-4-morpholinyl)methyl]phenyl\}-1, 3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

MS (ESI): m/z (%) = 450 (M+H, 100);

5 HPLC (Methode 4): rt = 3.25 min.

Über den Weg der Epoxidöffnung mit einem Amin und anschließende Cyclisierung zum entsprechenden Oxazolidinon wurden darüber hinaus die folgenden Verbindungen hergestellt:

Beispiel-Nr.	Struktur	Smp. [°C]	IC ₅₀ [μM]
126	N N N N S CI	229Z	0,013
127	ON Br	159	0,0007
128	F O H S Br	198	0,002
129	N-N-N-N-N-S-Br	196	0,001
130	F O H S CI	206	0,0033
130a	N S CI	194	
131	N S CI,	195	0,85
132	CN S CI	206	0,12

Beispiel-Nr.	Struktur	Smp. [°C]	IC ₅₀ [μM]
133	ON NO N	217	0,062
134	aus 1-(4-Amino-phenyl)-piperidin-3-ol (Tong,L.K.J. et al.; J.Amer.Chem.Soc 1960; 82,1988).	207	0,48
135	F N N N S CI	202	1,1
136	NX N N S a	239	1,2
137	N N N S CI	219	0,044
138	N-C N S CI	95	0,42
139	N-CN-N-S-CI	217	1,7

Die folgenden Beispiele 14 bis 16 sind Ausführungsbeispiele für den fakultativen, d.h. gegebenenfalls stattfindenden Oxidationsverfahrensschritt.

Beispiel 14

5-Chloro-N-({(5S)-3-[3-fluoro-4-(1-oxo-1{lambda}]^4,4-thiazinan-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

5-Chloro-N-({(5S)-3-[3-fluoro-4-(1,4-thiazinan-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid (0.1 g, 0.22 mmol) aus Beispiel 3 in Methanol (0.77 ml) wird bei 0°C zu einer Lösung von Natriumperiodat (0.05 g, 0.23 mmol) in Wasser (0.54 ml) gegeben und 3 h bei 0°C gerührt. Anschließend gibt man 1 ml DMF hinzu und rührt 8 h bei RT. Nach Zugabe von weiteren 50 mg Natriumperiodat wird nochmals über Nacht bei RT gerührt. Man versetzt anschließend den Ansatz mit 50 ml Wasser und saugt das unlösliche Produkt ab. Man erhält nach Waschen mit Wasser und Trocknen 60 mg (58 % d. Th.) Kristalle.

Smp.: 257°C;

10

15 R_f (Kieselgel, Toluol/Essigester 1:1) = 0.54 (Edukt = 0.46);

 IC_{50} -Wert = 1.1 μ M;

MS (DCI) 489 (M+NH₄), Cl-Muster.

Darstellung von 5-Chloro-N-({(5S)-3-[4-(1,1-dioxo-1[lambda]⁶,4-thiazinan-4-yl)-3-fluorophenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

Man versetzt 5-Chloro-N-({(5S)-3-[3-fluoro-4-(1,4-thiazinan-4-yl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid aus Beispiel 3 (0.1 g, 0.22 mmol) in 3.32 ml einer Mischung von 1 Teil Wasser und 3 Teilen Aceton mit 80 mg (0.66 mmol) N-Methylmorpholin-N-oxid (NMO) und 0.1 ml einer 2.5 %igen Lösung von Osmiumtetroxid in 2-Methyl-2-propanol. Man rührt über Nacht bei Raumtemperatur und gibt nochmals 40 mg NMO hinzu. Nachdem eine weitere Nacht gerührt wurde, gibt man den Ansatz in 50 ml Wasser und extrahiert dreimal mit Essigester. Aus der organischen Phase erhält man nach Trocknen und Eindampfen 23 mg und aus der wässrigen Phase nach Absaugen des unlöslichen Feststoffs 19 mg (insges. 39% d. Th.) der Zielverbindung.

Smp.: 238°C;

15 R_f (Toluol/Essignster 1:1) = 0.14 (Edukt = 0.46);

 IC_{50} -Wert = 210 nM;

MS (DCI): 505 (M+NH₄), Cl-Muster.

5

15

25

5-Chloro-N-{[(5S)-3-(3-fluoro-4-morpholinophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid N-oxid

wird durch Behandeln von 5-Chloro-N-{[(5S)-3-(3-fluoro-4-morpholinophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid aus Beispiel 1 mit Monoperoxyphthalsäure-Magnesiumsalz erhalten.

MS (ESI): 456 (M+H, 21%, Cl-Muster), 439 (100%).

Die folgenden Beispiele 31 bis 35 und 140 bis 147 beziehen sich auf den fakultativen, d.h. gegebenenfalls stattfindenden Amidinierungsverfahrensschritt.

Allgemeine Methode zur Darstellung von Amidinen und Amidinderivaten ausgehend von cyanomethylphenylsubstituierten 5-Chloro-N-[(2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid Derivaten

Das jeweilige cyanomethylphenylsubstituierte 5-Chloro-N-[(2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid-Derivat (1.0 eq.) wird zusammen mit Triethylamin (8.0 eq.) für ein bis zwei Tage bei RT in einer gesättigten Lösung von Schwefelwasserstoff in Pyridin gerührt (ca. 0.05 – 0.1 mol/l). Das Reaktionsgemisch wird mit Ethylacetat (EtOAc) verdünnt und mit 2 N Salzsäure gewaschen. Die organische Phase wird mit MgSO₄ getrocknet, filtriert und im Vakuum eingedampft.

Das Rohprodukt wird in Aceton gelöst (0.01-0.1 mol/l) und mit Methyliodid (40 eq.) versetzt. Das 20 Reaktionsgemisch wird 2 bis 5 h bei Raumtemperatur (RT) gerührt und dann im Vakuum eingeengt.

Der Rückstand wird in Methanol gelöst (0.01-0.1 mol/l) und zur Darstellung der unsubstituierten Amidine mit Ammoniumacetat (3 eq.) und Ammoniumchlorid (2 eq.) versetzt. Zur Darstellung der substituierten Amidinderivate werden primäre oder sekundäre Amine (1.5 eq.) und Essigsäure (2 eq.) zu der methanolischen Lösung gegeben. Nach 5-30 h wird das Lösungsmittel im Vakuum entfernt und der Rückstand durch Chromatographie an einer RP8-Kieselgel-Säule gereinigt (Wasser/Acetonitril 9/1-1/1 + 0.1% Trifluoressigsäure).

Auf analoge Weise wurden hergestellt:

Beispiel 31:

 $N-(\{3-[4-(2-Amino-2-iminoethyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-5-chloro-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 393 (M+H, 100);

5 HPLC (Methode 4): rt = 2.63 min

Beispiel 32:

 $5-Chloro-N-(\{3-[3-(4,5-dihydro-1H-imidazol-2-ylmethyl)phenyl\}-2-oxo-1,3-oxazolidin-5-yl\}methyl)-2-thiophencarboxamid$

MS (ESI): m/z (%) = 419 (M+H, 100);

HPLC (Methode 4): rt = 2.61 min

Beispiel 33:

 $5-Chloro-N-\{(3-\{3-[2-imino-2-(4-morpholinyl)ethyl]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

MS (ESI): m/z (%) = 463 (M+H, 100);

15 HPLC (Methode 4): rt = 2.70 min

Beispiel 34:

 $5-Chloro-N-[(3-\{3-\{2-imino-2-(1-pyrrolidinyl)ethyl\}phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

MS (ESI): m/z (%) = 447 (M+H, 100);

20 HPLC (Methode 4): rt = 2.82 min

Beispiel 35:

 $N-(\{3-[3-(2-Amino-2-iminoethyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-5-chloro-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 393 (M+H, 100);

HPLC (Methode 4): rt = 2.60 min

Beispiel 140

 $5- Chloro-N-(\{3-[4-(4,5-dihydro-1H-imidazol-2-ylmethyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid \\$

5 MS (ESI): m/z (%) = 419 (M+H, 100);

HPLC (Methode 4): rt = 2.65 min

Beispiel 141

 $5-Chloro-N-[(3-\{4-[2-imino-2-(4-morpholinyl)ethyl]phenyl\}-2-oxo-1, 3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid$

10 MS (ESI): m/z (%) = 463 (M+H, 100);

HPLC (Methode 4): rt = 2.65 min

Beispiel 142

 $\label{lem:condition} 5- Chloro-N-[(3-\{4-[2-imino-2-(1-piperidinyl)ethyl]phenyl\}-2-oxo-1, 3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid$

15 MS (ESI): m/z (%) = 461 (M+H, 100);

HPLC (Methode 4): rt = 2.83 min

Beispiel 143

 $\label{lem:condition} 5- Chloro-N-[(3-\{4-[2-imino-2-(1-pyrrolidinyl)ethyl]phenyl\}-2-oxo-1, 3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid$

20 MS (ESI): m/z (%) = 447 (M+H, 100);

HPLC (Methode 4): rt = 2.76 min

Beispiel 144

 $\label{lem:condition} 5- Chloro-N-[(3-\{4-[2-(cyclopentylamino)-2-iminoethyl]phenyl\}-2-oxo-1,3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid$

- 87 -

PCT/EP2006/009373

MS (ESI):
$$m/z$$
 (%) = 461 (M+H, 100);

HPLC (Methode 4):
$$rt = 2.89 min$$

Beispiel 145

 $5-Chloro-N-\{[3-(4-\{2-imino-2-[(2,2,2-trifluoroethyl)amino]ethyl\}phenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl\}-2-thiophencarboxamid$

MS (ESI):
$$m/z$$
 (%) = 475 (M+H, 100);

HPLC (Methode 4):
$$rt = 2.79 min$$

Beispiel 146

10

15

N-({3-[4-(2-Anilino-2-iminoethyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-5-chloro-2-thiophencarboxamid

MS (ESI):
$$m/z$$
 (%) = 469 (M+H, 100);

HPLC (Methode 4):
$$rt = 2.83 \text{ min}$$

Beispiel 147

5-Chloro-N-[(3-{4-[2-imino-2-(2-pyridinylamino)ethyl]phenyl}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid

MS (ESI):
$$m/z$$
 (%) = 470 (M+H, 100);

HPLC (Methode 4):
$$rt = 2.84 min$$

Die folgenden Beispiele 148 bis 151 beziehen sich auf die Abspaltung von BOC-Aminoschutzgruppen:

20 Allgemeine Methode zur Abspaltung von Boc-Schutzgruppen (tert-Butyloxycarbonyl):

Zu einer eisgekühlten Lösung einer *tert*.-Butyloxycarbonyl- (Boc) geschützten Verbindung in Chloroform oder Dichlormethan (ca.0.1 bis 0.3 mol/l) wird wässrige Trifluoressigsäure (TFA, ca. 90 %) getropft. Nach ca. 15 min wird die Eiskühlung entfernt und die Mischung ca. 2-3 h bei

Raumtemperatur gerührt, bevor die Lösung eingeengt und am Hochvakuum getrocknet wird. Der Rückstand wird in Dichlormethan oder Dichlormethan/Methanol aufgenommen und mit gesättigter Natriumhydrogencarbonat- oder 1N Natriumhydroxid-Lösung gewaschen. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen, über wenig Magnesiumsulfat getrocknet und konzentriert. Gegebenenfalls erfolgt eine Reinigung durch Kristallisation aus Ether oder Ether/Dichlormethan-Gemischen.

Auf analoge Weise wurden aus den entsprechen Boc-geschützten Vorläufern hergestellt:

Beispiel 148

10

 $N-({3-[4-(Aminomethyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-5-chloro-2-thiophen-carboxamid$

ausgehend von Beispiel 92:

MS (ESI): m/z (%) = 349 (M-NH₂, 25), 305 (100);

HPLC (Methode 1): rt (%) = 3.68 (98).

IC₅₀: 2.2 μM

15 **Beispiel 149**

N-{[3-(4-Aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-5-chloro-2-thiophencarboxamid

ausgehend von Beispiel 93:

MS (ESI): m/z (%) = 352 (M+H, 25);

HPLC (Methode 1): rt (%) = 3.50 (100).

20 IC₅₀: 2 μM

Eine enantiomerenreine Alternativsynthese dieser Verbindung ist im folgenden Schema dargestellt (vgl. auch Delalande S.A., DE 2836305,1979; Chem.Abstr. 90, 186926):

- 1.) Phthalimid, DEAD/PPh₃
- 2.) NH₂NH₂.H₂O in Ethanol
- 3.) 5-Chlor-2-thiophencarbonsäure, EDC/HOBT

 $\label{lem:condition} 5- Chloro-N-(\{3-[4-(glycylamino)phenyl]-2-oxo-1,3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

5 ausgehend von Beispiel 152:

MS (ES-pos): m/z (%) = 408 (100);

HPLC (Methode 3): rt (%) = 3.56 (97).

IC₅₀: 2 μM

Beispiel 151

5-(Aminomethyl)-3-[4-(2-oxo-1-pyrrolidinyl)phenyl]-1,3-oxazolidin-2-on

ausgehend von Beispiel 60:

MS (ESI): m/z (%) = 276 (M+H, 100);

HPLC (Methode 3): rt (%) = 2.99 (100).

IC₅₀: 2 μM

Die folgenden Beispiele 152 bis 166 beziehen sich auf die Aminogruppenderivatisierung von Anilin- oder Benzylamin-substituierten Oxazolidinonen mit verschiedenen Reagenzien:

Beispiel 152

5

10

5-Chloro-N-({3-[4-(N-tert.-butyloxycarbonyl-glycylamino)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

Zu einer Lösung von 751 mg (4.3 mmol) Boc-Glycin, 870 mg (6.4 mmol) HOBT (1-Hydroxy-1H-benzotriazol x H₂O), 1790 mg (4.7 mmol) HBTU [O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumhexafluorophosphat] und 1.41 ml (12.9 mmol) N-Methylmorpholin in 15 ml DMF/CH₂Cl₂ (1:1) werden bei 0°C 754 mg (2.1 mmol) N-{[3-(4-Aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-5-chloro-2-thiophencarboxamid (aus Beispiel 149) gegeben. Die Mischung wird über Nacht bei Raumtemperatur gerührt, bevor mit Wasser verdünnt wird. Der ausgefallene Feststoff wird abfiltriert und getrocknet. Ausbeute: 894 mg (79.7 % der Theorie);

MS (DCI, NH₃): m/z (%) = 526 (M+NH₄, 100);

15 HPLC (Methode 3): rt (%) = 4.17 (97).

Beispiel 153

 $N-[(3-\{4-[(Acetylamino)methyl]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-5-chloro-2-thiophencarboxamid$

Eine Mischung von 30 mg (0.082 mmol) *N*-({3-[4-(Aminomethyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-5-chloro-2-thiophen-carboxamid (aus Beispiel 148) in 1.5 ml absolutem THF und 1.0 ml absolutem Dichlormethan, 0.02 ml absolutem Pyridin wird bei 0°C mit Acetanhydrid (0.015 ml,

0.164 mmol) versetzt. Die Mischung wird über Nacht bei Raumtemperatur gerührt. Nach Zusetzen von Ether und Kristallisation wird das Produkt gewonnen. Ausbeute: 30 mg (87 % der Theorie),

MS (ESI):
$$m/z$$
 (%) = 408 (M+H, 18), 305 (85);

HPLC (Methode 1): rt (%) = 3.78 (97).

5 IC₅₀: 0.6 μM

Beispiel 154

 $N-\{[3-(4-\{[(Aminocarbonyl)amino]methyl\}phenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl\}-5-chloro-2-thiophencarboxamid$

Zu einer Mischung von 30 mg (0.082 mmol) N-({3-[4-(Aminomethyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-5-chloro-2-thiophen-carboxamid (aus Beispiel 148) in 1.0 ml Dichlormethan werden bei Raumtemperatur 0.19 ml (0.82 mmol) Trimethylsilylisocyanat getropft. Es wird über Nacht gerührt, bevor nach Zusatz von Ether das Produkt durch Filtration gewonnen wird. Ausbeute: 21.1 mg (52 % der Theorie),

15 MS (ESI): m/z (%) = 409 (M+H, 5), 305 (72);

HPLC (Methode 1): rt (%) = 3.67 (83).

IC₅₀: 1.3 μM

Allgemeine Methode zur Acylierung von $N-\{[3-(4-Aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl\}-5-chloro-2-thiophencarboxamid mit Carbonsäurechloriden:$

Unter Argon wird zu entsprechendem Säurechlorid (2.5 eq.) eine ca. 0.1 molare Lösung von N-{[3-(4-Aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-5-chloro-2-thiophencarboxamid (aus Beispiel 149) (1.0 eq.) in absolutem Dichlormethan/Pyridin (19:1) getropft. Die Mischung wird über Nacht gerührt, bevor mit ca. 5 eq PS-Trisamine (Argonaut Technologies) und 2 ml absolutem Dichlormethan versetzt wird. Nach 1 h leichtem Rühren, wird abfiltriert und das Filtrat konzentriert. Gegebenenfalls erfolgt eine Reinigung der Produkte durch präparative RP-HPLC.

10 Auf analoge Weise wurden hergestellt:

Beispiel 155

5

 $N-(\{3-[4-(Acetylamino)phenyl]-2-oxo-1,3-oxazolidin-5-yl\}methyl)-5-chloro-2-thiophen-carboxamid$

LC-MS: m/z (%) = 394 (M+H, 100);

15 LC-MS (Methode 6): rt (%) = 3.25 (100).

IC₅₀: 1.2 μM

Beispiel 156

 $5-Chloro-N-[(2-oxo-3-\{4-[(2-thienylcarbonyl)amino]phenyl\}-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

20 LC-MS: m/z (%) = 462 (M+H, 100);

LC-MS (Methode 6): rt (%) = 3.87 (100).

IC₅₀: 1.3 μM

Beispiel 157

 $5-Chloro-N-[(3-\{4-[(methoxyacetyl)amino]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

5 LC-MS: m/z (%) = 424 (M+H, 100);

LC-MS (Methode 6): rt (%) = 3.39 (100).

IC₅₀: 0.73 μM

Beispiel 158

10

20

N-{4-[5-({[(5-Chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-3,5-dimethyl-4-isoxazolcarboxamid

LC-MS: m/z (%) = 475 (M+H, 100).

IC₅₀: 0.46 μM

Beispiel 159

5-Chloro-N-{[3-(4-{[(3-chloropropyl)sulfonyl]amino}phenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophencarboxamid

Zu einer eisgekühlten Lösung von 26.4 mg (0.15 mmol) 3-Chloro-1-propansulfonsäurechlorid und 0.03 ml (0.2 mmol) Triethylamin in 3.5 ml absolutem Dichlormethan werden 35 mg (0.1 mmol) *N*-{[3-(4-Aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]-methyl}-5-chloro-2-thiophen-carboxamid (aus Beispiel 149) gegeben. Nach 30 min wird die Eiskühlung entfernt und die Mischung über Nacht bei Raumtemperatur gerührt, bevor 150 mg (ca. 5.5 eq) PS-Trisamine (Argonaut Technologies) und 0.5 ml Dichlormethan zugesetzt werden. Die Suspension wird 2 h leicht gerührt, filtriert (das Harz wird mit Dichlormethan/Methanol nachgewaschen) und das Filtrat eingeengt. Das Produkt wird durch präparative RP-HPLC gereinigt. Ausbeute: 19.6 mg (40 % der Theorie),

LC-MS: m/z (%) = 492 (M+H, 100);

LC-MS (Methode 5): rt (%) = 3.82 (91).

IC₅₀: 1.7 μM

Beispiel 160

5-Chloro-N-({3-[4-(1,1-dioxido-2-isothiazolidinyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid

Eine Mischung aus 13.5 mg (0.027 mmol) 5-Chloro-N-{[3-(4-{[(3-chloropropyl)sulfonyl]amino}phenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-2-thiophen-carboxamid (aus Beispiel 159) und 7.6 mg (0.055 mmol) Kaliumcarbonat in 0.2 ml DMF wird 2 h auf 100°C erhitzt. Nach Abkühlen wird mit Dichlormethan verdünnt und mit Wasser gewaschen. Die organische Phase wird getrocknet und eingeengt. Der Rückstand wird durch präparative Dünnschichtchromatographie (Silicagel, Dichlormethan/Methanol, 95:5) gereinigt. Ausbeute: 1.8 mg (14.4 % der Theorie),

15 MS (ESI): m/z (%) = 456 (M+H, 15), 412 (100);

LC-MS (Methode 4): rt (%) = 3.81 (90).

IC₅₀: 0.14 μM

.10

20

Beispiel 161

 $5-Chloro-N-[((5S)-3-\{4-[(5-chloropentanoyl)amino]phenyl\}-2-oxo-1,3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid \\$

0.5 g (1.29 mmol) N-{[(5S)-3-(4-Aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-5-chloro-2-thiophencarboxamid (aus Beispiel 149) werden in 27 ml Tetrahydrofuran gelöst und mit 0.2 g (1,29 mmol) 5-Chlorvaleriansäurechlorid sowie 0.395 ml (2.83 mmol) Triethylamin versetzt. Man dampft den Ansatz im Vakuum ein und chromatographiert auf Kieselgel mit einem Toluol/Essigester=1:1 -> Essigester-Gradienten. Man erhält 315 mg (52% d.Th.) eines Feststoffs.

Smp.: 211°C.

Beispiel 162

$5-Chloro-N-(\{(5S)-2-oxo-3-[4-(2-oxo-1-piperidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

10

15

20

5

Man gibt unter inerten Bedingungen zu 5 ml DMSO 30 mg 60-proz. NaH in Paraffinöl und erwärmt 30 min lang auf 75°C bis zur Beendigung der Gasentwicklung. Anschließend tropft man eine Lösung von 290 mg (0.617 mmol) 5-Chloro-N-[((5S)-3-{4-[(5-chloropentanoyl)amino]phenyl}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid (aus Beispiel 161) in 5 ml Methylenchlorid hinzu und rührt über Nacht bei Raumtemperatur. Die Reaktion wird abgebrochen und das Gemisch in 100 ml Wasser gegeben und mit Essigester extrahiert. Die eingedampste organische Phase wird auf einer RP-8 Säule chromatographiert und mit Acetonitril/Wasser eluiert. Man erhält 20 mg (7.5% d.Th.) der Zielverbindung.

Smp.: 205°C;

NMR (300 MHz, d_6 -DMSO): $\delta = 1.85$ (m,4H), 2.35 (m,2H), 3.58 (m,4H), 3.85 (m,1H), 4.2 (t,1H), 4.82 (m,1H), 7.18 (d,1H,thiophen), 7.26 (d,2H), 7.5 (d,2H), 2.68 (d,1H,thiophen), 9.0 (t,1H,CONH).

IC₅₀: 2.8 nM

5-Chloro-N-[((5S)-3-{4-[(3-bromopropionyl)amino]phenyl}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid

5 wird in analoger Weise aus Beispiel 149 erhalten.

Beispiel 164

 $5-Chloro-N-(\{(5S)-2-oxo-3-[4-(2-oxo-1-azetidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid$

wird in analoger Weise durch Cyclisierung der offenkettigen Bromopropionylverbindung aus Beispiel 163 mittels NaH/DMSO erhalten.

MS (ESI): m/z (%) = 406 ([M+H]⁺, 100), Cl-Muster.

IC50: 380 nM

Beispiel 165

15 tert-Butyl 4-{4-[5-({[(5-chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-3,5-dioxo-1-piperazincarboxylat

5

Zu einer Lösung von 199 mg (0.85 mmol) Boc-Iminodiessigsäure, 300 mg (2.2 mmol) HOBT, 0.66 ml (6 mmol) N-Methylmorpholin und 647 mg (1.7 mmol) HBTU werden 300 mg (0.85 mmol) N-{[3-(4-Aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]-methyl}-5-chloro-2-thiophen-carboxamid in 6 ml einer Mischung aus DMF und Dichlormethan (1:1) gegeben. Die Mischung wird über Nacht gerührt, bevor nach Verdünnen mit Dichlormethan mit Wasser, gesättigter Ammoniumchlorid-Lösung, gesättigter Natriumhydrogencarbonat-Lösung, Wasser und gesättigter Natriumchlorid-Lösung gewaschen wird. Die organische Phase wird über Magnesiumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch Chromatographie an Silicagel (Dichlormethan/Methanol 98:2) gereinigt. Ausbeute: 134 mg (29 % der Theorie);

10 MS (ESI): m/z (%) = 571 (M+Na, 82), 493 (100);

HPLC (Methode 3): rt (%) = 4.39 (90).

IC₅₀: 2 μM

Beispiel 166

N-[((5S)-3-{4-[(3R)-3-Amino-2-oxo-1-pyrrolidinyl]phenyl}-2-oxo-1,3-oxazolidin-5-yl)methyl]5-chloro-2-thiophencarboxamid Trifluoracetat

5

10

N2-(tert-Butoxycarbonyl)-N1-{4-[(5S)-5-({[(5-chloro-2-thienyl)carbonyl]amino} methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-D-methioninamid

429 mg (1.72 mmol) N-BOC-D-Methionin, 605 mg (1.72 mmol) N-{[(5S)-3-(4-aminophenyl)-2-oxo-1,3-oxazolidin-5-yl]methyl}-5-chloro-2-thiophencarboxamid, und 527 mg (3.44 mmol) HOBT-Hydrat werden in 35 ml DMF gelöst, mit 660 mg (3.441 mmol) EDCI Hydrochlorid und anschließend tropfenweise mit 689 mg (5.334 mmol) N-Ethyl-diisopropylamin versetzt. Man rührt bei Raumtemperatur zwei Tage lang. Die erhaltene Suspension wird abgesaugt und der Rückstand mit DMF gewaschen. Die vereinigten Filtrate werden mit etwas Kieselgel versetzt, im Vakuum eingedampft und auf Kieselgel mit einem Toluol -> T10EE7 – Gradienten chromatographiert. Man erhält 170 mg (17% d.Th.) der Zielverbindung mit einem Schmelzpunkt von 183°C.

R_f (SiO₂, Toluol/Essigester=1:1):0.2.

¹H-NMR (300 MHz, d₆-DMSO): δ=1.4 (s,1H,BOC), 1.88-1.95 (m,2H), 2.08 (s,3H,SMe), 2.4-2.5 (m,2H, teilweise verdeckt durch DMSO), 3.6 (m,2H), 3.8 (m,1H), 4.15 (m,2H), 4.8 (m,1H), 7.2 (1H, thiophen), 7.42 (d, Teil eines AB-Systems, 2H), 7.6 (d, Teil eines AB-Systems, 2H), 7.7 (d, 1H, thiophen), 8.95 (t,1H, CH₂NHCO), 9.93 (bs,1H,NH).

tert-Butyl (3R)-1-{4-[(5S)-5-({[(5-chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-2-oxo-3-pyrrolidinylcarbamat

170 mg (0.292 mmol) N2-(tert-butoxycarbonyl)-N1-{4-[(5S)-5-({[(5-chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-D-methioninamid werden in 2 ml DMSO gelöst und mit 178.5 mg (0.875 mmol) Trimethylsulfoniumiodid sowie 60.4 mg (0.437 mmol) Kaliumcarbonat versetzt und 3.5 Stunden bei 80°C gerührt. Anschließend wird im Hochvakuum eingedampft und der Rückstand mit Ethanol gewaschen. Es verbleiben 99 mg der Zielverbindung.

 $^{\prime}$ H-NMR (300 MHz, d_{6} -DMSO): δ =1.4 (s,1H,BOC), 1.88-2.05 (m,1H), 2.3-2.4 (m,1H), 3.7-3.8 (m,3H), 3.8-3.9 (m,1H), 4.1-4.25 (m,1H), 4.25-4.45 (m,1H), 4.75-4.95 (m,1H), 7.15 (1H, thiophen), 7.25 (d,1H), 7.52 (d, Teil eines AB-Systems, 2H), 7.65 (d, 1H, thiophen), 9.0 (breites s,1H).

N-[((5S)-3-{4-[(3R)-3-Amino-2-oxo-1-pyrrolidinyl]phenyl}-2-oxo-1,3-oxazolidin-5-yl)methyl]-5-chloro-2-thiophencarboxamid Trifluoracetat

15 Man suspendiert 97 mg (0.181 mmol) tert-butyl (3R)-1-{4-[(5S)-5-({[(5-Chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}-2-oxo-3-pyrrolidinylcarbamat in 4 ml Methylenchlorid, gibt 1.5 ml Trifluoressigsäure hinzu und rührt 1 Stunde bei Raumtemperatur. Anschließend wird im Vakuum eingedampft und auf einer RP-HPLC gereinigt (Acetonitril/Wasser/0.1%TFA-Gradient). Man erhält nach Eindampfen der betreffenden Fraktion 29 mg (37% d.Th.) der Zielverbindung mit einem Schmelzpunkt von 241°C (Zers.).

 R_f (SiO₂,EtOH/TEA=17:1) 0.19.

25

 $^{\prime}$ H-NMR (300 MHz, d_{δ} -DMSO): δ =1.92-2.2 (m,1H), 2.4-2.55 (m,1H, teilweise verdeckt durch DMSO-peak), 3.55-3.65 (m,2H), 3.75-3.95 (m,3H), 4.1-4.3 (m,2H), 4.75-4.9 (m,1H), 7.2 (1H, thiophen), 7.58 (d, Teil eines AB-Systems, 2H), 7.7 (d, Teil eines AB-Systems, 2H), 7.68 (d, 1H, thiophen), 8.4 (breites s,3H, NH3), 8.9 (t,1H,NHCO).

Die folgenden Beispiele 167 bis 170 beziehen sich auf die Einführung von Sulfonamidgruppen in Phenyl-substituierten Oxazolidinonen:

Allgemeine Methode zur Darstellung von substituierten Sulfonamiden ausgehend von 5-Chloro-N-[(2-0x0-3-phenyl-1,3-0xazolidin-5-yl)methyl]-2-thiophencarboxamid

Zu Chlorsulfonsäure (12 eq.) wird unter Argon bei 5°C 5-Chloro-N-[(2-oxo-3-phenyl-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid (aus Beispiel 96) gegeben. Das Reaktionsgemisch wird bei Raumtemperatur für 2 h gerührt und anschließend auf Eiswasser gegeben. Der ausfallende Niederschlag wird filtriert, mit Wasser gewaschen und getrocknet.

Anschließend wird unter Argon bei Raumtemperatur in Tetrahydrofuran (0.1 mol/l) gelöst und mit dem entsprechenden Amin (3 eq.), Triethylamin (1.1 eq.) und Dimethylaminopyridin (0.1 eq.) versetzt. Das Reaktionsgemisch wird 1-2 h gerührt und anschließend im Vakuum eingeengt. Das gewünschte Produkt wird mittels Flash-Chromatographie (Dichlormethan-Methanol-Gemische) gereinigt.

Auf analoge Weise wurden hergestellt:

Beispiel 167

5

10

 $5- Chloro-N-(\{2-oxo-3-[4-(1-pyrrolidinylsulfonyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid \\$

15 MS (ESI): m/z (%) = 492 ([M+Na]⁺, 100), 470 ([M+H]⁺, 68), Cl-Muster;

HPLC (Methode 3): rt (%) = 4.34 (100).

IC₅₀: 0.5 μM

 $5-Chloro-N-[(3-\{4-[(4-methyl-1-piperazinyl)sulfonyl]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-2-thiophencarboxamid$

MS (ESI): m/z (%) = 499 ([M+H]⁺, 100), Cl-Muster;

5 HPLC (Methode 2): rt (%) = 3.3 (100).

Beispiel 169

 $5-Chloro-N-(\{2-oxo-3-[4-(1-piperidinylsulfonyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid\\$

MS (ESI): m/z (%) = 484 ([M+H]⁺, 100), Cl-Muster;

10 HPLC (Methode 2): rt (%) = 4.4 (100).

Beispiel 170

 $5- Chloro-N-[(3-\{4-[(4-hydroxy-1-piperidinyl)sulfonyl]phenyl\}-2-oxo-1, 3-oxazolidin-5-yl) methyl]-2-thiophencarboxamid \\$

MS (ESI): m/z (%) = 500 ([M+H]⁺, 100), Cl-Muster;

15 HPLC (Methode 3): rt (%) = 3.9 (100).

Beispiel 171

 $5-Chloro-N-(\{2-oxo-3-[4-(1-pyrrolidinyl)phenyl]-1, 3-oxazolidin-5-yl\} methyl)-2-thiophencarboxamid\\$

780 mg (1.54 mmol) tert.-Butyl-1-{4-[5-({[(5-chloro-2-thienyl)carbonyl]amino}methyl)-2-oxo-1,3-oxazolidin-3-yl]phenyl}prolinat werden in 6 ml Dichlormethan und 9 ml Trifluoressigsäure gelöst und das Gemisch wird zwei Tage lang bei 40°C gerührt. Dann wird das Reaktionsgemisch eingeengt und mit Ether und 2 N Natronlauge verrührt. Die wässrige Phase wird eingeengt und mit Ether und 2 N Salzsäure verrührt. Die organische Phase dieser Extraktion wird über MgSO₄ getrocknet, filtriert und eingeengt. Das Rohprodukt wird an Kieselgel chromatographiert (CH₂Cl₂/EtOH/konz. wässr. NH₃-Lsg. = 100/1/0.1 bis 20/1/0.1).

Es werden 280 mg (40 % d. Th.) des Produkts erhalten.

MS (ESI): m/z (%) = 406 (M+H, 100);

10 HPLC (Methode 4): rt = 3.81 min.

HPLC-parameter und LC-MS Parameter der in den vorrangegangenen Beispielen angegebenen HPLC- und LC-MS-Daten (die Einheit der Retentionszeit (rt) ist Minuten):

- [1] Säule: Kromasil C18, L-R Temperatur: 30° C, Fluss = 0.75 mlmin⁻¹, Eluent: A = 0.01 M HClO₄, B = CH₃CN, Gradient: -> 0.5 min 98%A -> 4.5 min 10%A -> 6.5 min 10%A
- 15 [2] Säule: Kromasil C18 60*2, L-R Temperatur: 30°C, Fluss = 0.75 mlmin⁻¹, Eluent: A = 0.01 M H₃PO₄, B = CH₃CN, Gradient: -> 0.5 min 90%A -> 4.5 min 10%A -> 6.5 min 10%A
 - [3] Säule: Kromasil C18 60*2, L-R Temperatur: 30°C, Fluss = 0.75 mlmin⁻¹, Eluent: A = 0.005 M HClO₄, B = CH₃CN, Gradient: -> 0.5 min 98%A -> 4.5 min 10%A -> 6.5 min 10%A
- [4] Säule: Symmetry C18 2.1x150 mm, Säulenofen: 50°C, Fluss = 0.6 mlmin⁻¹, Eluent: A = 0.6 g 30%ige HCl/l Wasser, B = CH₃CN, Gradient: 0.0 min 90%A -> 4.0 min 10%A -> 9 min 10%A
 - [5] MHZ-2Q, Instrument Micromass Quattro LCZ

Säule Symmetry C18, 50 mm x 2.1 mm, 3.5 μ m, Temperatur: 40°C, Fluss = 0.5 ml min⁻¹, Eluent A = CH₃CN + 0.1% Ameisensäure, Eluent B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 10% A -> 4 min 90% A -> 6 min 90% A

25 [6] MHZ-2P, Instrument Micromass Platform LCZ

Säule Symmetry C18, 50 mm x 2.1 mm, 3.5 μm, Temperatur: 40°C, Fluss = 0.5 mlmin⁻¹, Eluent A = CH₃CN + 0.1% Ameisensäure, Eluent B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 10% A -> 4 min 90% A -> 6 min 90% A

[7] MHZ-7Q, Instrument Micromass Quattro LCZ

10

15

20

25

30

Säule Symmetry C18, 50 mm x 2.1 mm, 3.5 μ m, Temperatur: 40°C, Fluss = 0.5 mlmin⁻¹, Eluent A = CH₃CN + 0.1% Ameisensäure, Eluent B = Wasser + 0.1% Ameisensäure, Gradient: 0.0 min 5% A -> 1 min 5% A -> 5 min 90% A -> 6 min 90% A

5 Allgemeine Methode zu Darstellung von Oxazolidinonen der allgemeinen Formel B durch festphasenunterstützte Synthese

Umsetzungen mit unterschiedlichen harzgebundenen Produkten fanden in einem Satz von getrennten Reaktionsgefäßen statt.

5-(Brommethyl)-3-(4-fluor-3-nitrophenyl)-1,3-oxazolidin-2-on (dargestellt \mathbf{A} aus Epibromhydrin und 4-Fluor-3-nitrophenylisocyanat mit LiBr/Bu₃PO in Xylol analog US 4128654, Bsp.2) (1,20 g, 3,75 mmol) und Ethyldiisoproylamin (DIEA, 1,91 ml, 4,13 mmol) wurden in DMSO (70 ml) gelöst, mit einem sekundären Amin (1,1 eq, Aminkomponente 1) versetzt und 5 h bei 55°C umgesetzt. Zu dieser Lösung wurde TentaGel SAM Harz (5,00 g, 0,25 mmol/g) gegeben und 48 h bei 75°C reagiert. Das Harz wurde filtriert und wiederholt mit Methanol (MeOH), Dimethylformamid (DMF), MeOH, Dichlormethan (DCM) und Diethylether gewaschen und getrocknet. Das Harz (5,00 g) wurde in Dichlormethan (80 ml) suspendiert, mit DIEA (10 eq) und 5-Chlorthiophen-2carbonsäurechlorid [hergestellt durch Reaktion von 5-Chlorthiophen-2-carbonsäure (5 eq) 1-Chlor-1-Dimethylamino-2-methylpropen in DCM (20 ml)bei (5 eq)und Raumtemperatur für 15 Minuten] versetzt und 5 h bei Raumtemperatur reagiert. Das erhaltene Harz wurde filtriert und wiederholt mit MeOH, DCM und Diethylether gewaschen und getrocknet. Anschließend wurde das Harz in DMF/Wasser (v/v 9:2, 80 ml) suspendiert, mit SnCl₂*2H₂O (5 eq) versetzt und 18 h bei Raumtemperatur umgesetzt. Das Harz wurde wiederum wiederholt mit MeOH, DMF, Wasser, MeOH, DCM und Diethylether gewaschen und getrocknet. Dieses Harz wurde in DCM suspendiert, mit DIEA (10 eq) und bei 0°C mit einem Säurechlorid (5 eq Säurederivat 1) versetzt und bei Raumtemperatur über Nacht reagiert. Carbonsäuren wurden vor der Umsetzung durch Reaktion mit 1-Dimethylamino-1-chlor-2-methylpropen (1 eq, bezogen auf Carbonsäure) in DCM bei Raumtemperatur für 15 min in die korrespondierenden Säurechloride überführt. Das Harz wurde wiederholt mit DMF, Wasser, DMF, MeOH, DCM und Diethylether gewaschen und getrocknet. Im Falle der Verwendung von Fmoc5

10

geschützten Aminosäuren als Säurederivat 1 wurde die Fmoc-Schutzgruppe im letzten Reaktionsschritt durch Umsetzung mit Piperidin/DMF (v/v, 1/4) bei Raumtemperatur für 15 Minuten abgespalten und das Harz mit DMF, MeOH, DCM und Diethylether gewaschen und getrocknet. Die Produkte wurden anschließend mit Trifluoressigsäure (TFA)/DCM (v/v, 1/1) von der festen Phase gespalten, das Harz wurde abfiltriert und die Reaktionslösungen wurden eingedampft. Die Rohprodukte wurden über Kieselgel filtriert (DCM/MeOH, 9:1) und eingedampft um einen Satz von Produkten **B** zu erhalten.

Durch festphasenunterstützte Synthese hergestellte Verbindungen:

Beispiel 172

10

N-({3-[3-Amino-4-(1-pyrrolidinyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-5-chlor-2-thiophencarboxamid

Analog der allgemeinen Arbeitsvorschrift zur Herstellung der Derivate B wurden 5 g (1,25 mmol) TentaGel SAM Harz mit Pyrrolidin als Aminderivat 1 umgesetzt. Das nach der Reduktion mit SnCl₂*2H₂O erhaltene Anilin wurde ohne weiteren Acylierungsschritt von der festen Phase abgespalten und eingedampft. Das Rohprodukt wurde zwischen Ethylacetat und NaHCO₃-Lösung verteilt, die organische Phase wurde mit NaCl ausgesalzen, dekantiert und zur Trockene eingedampft. Dieses Rohprodukt wurde durch Vakuum-Flashchromatographie an Kieselgel (Dichlormethan/Ethylacetat, 3:1 – 1:2) gereinigt.

¹H-NMR (300 MHz, CDCl₃): 1.95 – 2.08, br, 4 H; 3.15-3.30, br, 4 H; 3.65-3.81, m, 2 H; 3.89, ddd, 1H; 4.05, dd, 1 H; 4.81, dddd, 1 H; 6.46, dd, 1 H; 6.72, dd, 1 H; 6.90, dd, 1 H; 6.99, dd, 1 H; 7.03, dd, 1 H; 7.29, d, 1 H.

 $N-[(3-\{3-(B-Alanylamino)-4-[(3-hydroxypropyl)amino]phenyl\}-2-oxo-1,3-oxazolidin-5-yl)methyl]-5-chlor-2-thiophencarboxamid$

Analog der allgemeinen Arbeitsvorschrift zur Herstellung der Derivate B wurden 5 g (1,25 mmol)
TentaGel SAM Harz mit Azetidin als Aminderivat 1 und Fmoc-\(\textit{B}\)-Alanin als S\(\textit{a}\) umgesetzt. Das nach der Abspaltung erhaltene Rohprodukt wurde 48 h in Methanol bei Raumtemperatur ger\(\text{u}\)hrt t und zur Trockene eingedampft. Dieses Rohprodukt wurde durch Reversed Phase HPLC mit einem Wasser/TFA/Acetonitril-Gradienten gereinigt.

¹H-NMR (400 MHz, CD₃OD): 2.31, tt, 2 H; 3.36, t, 2 H; 3.54, t, 2 H; 3.62, t, 2 H; 3.72, dd, 1 H; 3.79, dd, 1 H; 4.01, dd, 1 H; 4.29, dd, 2 H; 4.43, t, 2 H; 4.85–4.95, m, 1 H; 7.01, d, 1 H; 4.48 – 7.55, m, 2 H; 7.61, d, 1 H; 7.84, d, 1 H.

Beispiel 174

20

N-({3-[4-(3-Amino-1-pyrrolidinyl)-3-nitrophenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-5-chlor-2-thiophencarboxamid

Analog der allgemeinen Arbeitsvorschrift zur Herstellung der Derivate **B** wurden 130 mg (32,5 µmol) TentaGel SAM Harz mit *tert-*Butyl 3-pyrrolidinylcarbamate als Aminderivat 1 umgesetzt. Das nach der Acylierung mit 5-Chlorthiophencarbonsäure erhaltene Nitrobenzolderivat wurde von der festen Phase abgespalten und eingedampft. Dieses Rohprodukt wurde durch Reversed Phase HPLC mit einem Wasser/TFA/Acetonitril-Gradienten gereinigt.

¹H-NMR (400 MHz, CD₃OH): 2.07-2.17, m, 1 H; 2.39-2.49, m, 1 H; 3.21-3.40, m, 2 H; 3.45, dd, 1 H; 3.50-3.60, m, 1 H; 3.67, dd, 1 H; 3.76, dd, 1 H; 3.88-4.00, m, 2 H; 4.14 - 4.21, t, 1 H; 4.85 - 4.95, m, 1 H; 7.01, d, 1 H; 7.11, d, 1 H; 7.52, d, 1 H; 7.66, dd, 1 H; 7.93, d, 1 H.

Beispiel 175

N-({3-[3-amino-4-(1-piperidinyl)phenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)-5-chloro-2-thiophencarboxamid

$$\begin{array}{c|c}
H_2N & O \\
N & N
\end{array}$$

Analog der allgemeinen Arbeitsvorschrift zur Herstellung der Derivate B wurden 130 mg (32,5 µmol) TentaGel SAM Harz mit Piperidin als Aminderivat 1 umgesetzt. Das nach der Reduktion erhaltene Anilin wurde ohne weiteren Acylierungsschritt von der festen Phase abgespalten und eingedampft. Dieses Rohprodukt wurde durch Reversed Phase HPLC mit einem Wasser/TFA/Acetonitril-Gradienten gereinigt.

¹H-NMR (400 MHz, CD₃OH): 1.65–1.75, m, 2 H; 1.84-1.95, m, 4 H; 3.20-3.28, m, 4 H; 3.68, dd, 1 H; 3.73, dd, 1H; 3.90, dd, 1 H; 4.17, dd, 1 H; 4.80-4.90, m, 1 H; 7.00, d, 1 H; 7.05, dd, 1 H; 7.30-7.38, m, 2H; 7.50, d, 1 H.

Beispiel 176

10

15

 $N-(\{3-[3-(Acetylamino)-4-(1-pyrrolidinyl)phenyl]-2-oxo-1, 3-oxazolidin-5-yl\} methyl)-5-chlor-2-thiophencarboxamid$

Analog der allgemeinen Arbeitsvorschrift zur Herstellung der Derivate **B** wurden 130 mg (32.5 μmol) TentaGel SAM Harz mit Pyrrolidin als Aminderivat 1 und Acetylchlorid als Säurederivat 1 umgesetzt. Das Rohprodukt wurde zwischen Ethylacetat und NaHCO₃-Lösung verteilt, die organische Phase wurde mit NaCl ausgesalzen, dekantiert und zur Trockene

5

eingedampft. Dieses Rohprodukt wurde durch Vakuum-Flashchromatographie an Kieselgel (Dichlormethan/Ethylacetat, 1:1-0:1) gereinigt.

¹H-NMR (400 MHz, CD₃OH): 1.93 – 2.03, br, 4 H; 2.16, s, 3 H; 3.20-3.30, br, 4 H; 3.70, d, 2 H; 3.86, dd, 1H; 4.10, dd, 1 H; 4.14, dd, 1 H; 4.80-4.90, m, 1 H; 7.00, d, 1 H; 7.07, d, 1 H; 7.31, dd, 1 H; 7.51, d, 1 H; 7.60, d, 1 H.

Analog zu der allgemeinen Arbeitsvorschrift wurden die folgenden Verbindungen hergestellt.

Beispiel	Struktur	RetZeit	HPLC
			[%]
177		2,62	79,7
178		2,49	33,7
179	CI-STN CN ON	4,63	46,7
180	CI-STN COTO OF ON	3,37	44,8

Beispiel	Struktur	RetZeit	HPLC
			[%]
181	$\begin{array}{c c} & & & \\ & & & &$	2,16	83
182		2,31	93,3
183	N O O O O O O O O O O O O O O O O O O O	2,7	100
184	0 N N S CI	3,91	51
185		2,72	75,2
186		3,17	46

Beispiel	Struktur	RetZeit	HPLC
			[%]
187	CI-SIN ON	4,61	50,2
188		3,89	56,6
189	CI-VN	3,37	52,9
190		3,6	63,9
191		2,52	70,1
192	CI-STN OFO OFO	3,52	46,6

Beispiel	Struktur	RetZeit	HPLC
			[%]
193		2,87	50,1
194		3,25	71,1
195		2,66	67
196		2,4	52,1
197	CI-SIN ON	3,13	48,9

Beispiel	Struktur	RetZeit	HPLC
			[%]
198		2,67	75,5
199		2,72	65,7
200		2,71	57,3
201		2,22	100
202	CI S N N N N N N N N N N N N N N N N N N	3,89	75,7
203	CI S N O O O O O O O O O O O O O O O O O O	3,19	49,6

Beispiel	Struktur	RetZeit	HPLC
			[%]
204	CI N N	2,55	88,2
205	1	2,44	68,6
206	1	2,86	71,8
	CI-STN N		
207	0 0 +	2,8	63,6
	CI N N		
	N		
208		2,41	77

Beispiel	Struktur	RetZeit	HPLC
			[%]
209		2,56	67,9
210		3,67	78,4
211		2,54	69,8
212		3,84	59,2
213		2,41	67,8
214		2,41	75,4

WO 2007/042146 PCT/EP2006/009373 - 115 -

Beispiel	Struktur	RetZeit	HPLC
ļ			[%]
215	CI-STN NN	4,01	81,3
216	CI N N N	3,46	49,5
217	N O O O O O O O O O O O O O O O O O O O	4,4	60,2
218		3,79	70,9
219	ON ON N	4,57	51,5

Beispiel	Struktur	RetZeit	HPLC
			[%]
220		2,68	100
221	CI S N N N N N N N N N N N N N N N N N N	4,53	63,5
222		2,66	89,2
223	CI S N N N N N N N N N N N N N N N N N N	4,76	69,3
224		3,45	77,4
225		3,97	63,2

Beispiel	Struktur	RetZeit	HPLC
			[%]
226		3,94	61,4
227	CI S N N N N N N N N N N N N N N N N N N	4,15	66,3
228		4,41	55,1
229		2,83	41,1
230		2,7	83
231	CI N N N N N N N N N N N N N N N N N N N	4,39	64,2

Beispiel	Struktur	RetZeit	HPLC
			[%]
232		4,85	74,9
233	CI-STN N	4,17	41
234		4,21	61,8
235		2,75	100
236	CI-STN ON	3,94	50
237	CI S N N N N N N N N N N N N N N N N N N	4,65	75,8

Beispiel	Struktur	RetZei	t HPLC
			[%]
238	CI S N N N N N N N N N N N N N N N N N N	4,4	75,3
239	F F N S CI	4,24	62,2
240	CI-V-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	4,76	75,1
241	CI NO ON	4,17	72,5
242	CI NO ON	4,6	74,8
243		4,12	51,6

Beispiel	Struktur	RetZeit	HPLC
,			[%]
244	CI-S-N N N	4,71	66,2
245	N O O O O O O O O O O O O O O O O O O O	4,86	62
246	CI-SIN ON	5,23	58,3
247	CI ST N N N N N N N N N N N N N N N N N N	4,17	72,4
248		3,35	59,6

Beispiel	Struktur	RetZeit	HPLC
			[%]
249		2,41	60,3
250		3,31	65,2
251	CI—S N N N N N N N N N N N N N N N N N N N	2,86	36,5
252	CI-S-N N N	2,69	89,8
253		2,81	67,4

Beispiel	Struktur	RetZeit	HPLC
			[%]
254		2,19	75,4

Alle Produkte der festphasenunterstützten Synthese wurden mittels LC-MS charakterisiert. Dazu wurde standardmäßig folgendes Trennsystem verwendet: HP 1100 mit UV-Detektor (208 – 400 nm), 40°C Ofentemperatur, Waters-Symmetry C18 Säule (50 mm x 2.1 mm, 3,5 μm), Laufmittel A: 99.9 % Acetonitril/0.1 % Ameisensäure, Laufmittel B: 99.9 % Wasser/0,1 % Ameisensäure; Gradient:

Zeit	A:%	B:%	Fluss
0, 00	10, 0	90, 0	0, 50
4, 00	90, 0	10, 0	0, 50
6, 00	90, 0	10, 0	0, 50
6, 10	10, 0	90, 0	1, 00
7, 50	10, 0	90, 0	0, 50

Der Nachweis der Substanzen erfolgte mittels eines Micromass Quattro LCZ MS, Ionisierung: ESI positiv/negativ.

Bei den oben aufgeführten Strukturen, die den oder die Reste N , N oder -O beinhalten,

Patentansprüche

1. Verwendung einer Verbindung der Formel (I)

$$\begin{array}{c|c}
R^{2} & & & \\
R^{3} & & & & \\
R^{4} & & & & \\
R^{6} & & & & \\
R^{7} & & & & \\
R^{1} & & & & \\
\end{array}$$
(I),

in welcher

10

15

20

5 R¹ für 2-Thiophen, steht, das in der 5-Position substituiert ist durch einen Rest aus der Gruppe Chlor, Brom, Methyl oder Trifluormethyl,

R² für D-A- steht:

wobei:

der Rest "A" für Phenylen steht;

der Rest "D" für einen gesättigten 5- oder 6-gliedrigen Heterocyclus steht,

der über ein Stickstoffatom mit "A" verknüpft ist,

der in direkter Nachbarschaft zum verknüpfenden Stickstoffatom eine Carbonylgruppe besitzt und

in dem ein Ring-Kohlenstoffglied durch ein Heteroatom aus der Reihe S, N und O ersetzt sein kann;

wobei

die zuvor definierten Gruppe "A" in der meta-Position bezüglich der Verknüpfung zum Oxazolidinon gegebenenfalls ein- oder zweifach substituiert sein kann mit einem Rest aus der Gruppe von Fluor, Chlor, Nitro, Amino, Trifluormethyl, Methyl oder Cyano,

R³, R⁴, R⁵, R⁶, R⁷ und R⁸ für Wasserstoff stehen,

5

25

oder eines ihrer Salze, Solvate und Solvate der Salze

zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Mikroangiopathien.

2. Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verbindung der Formel (I) 5-Chloro-N-({(5S)-2-oxo-3-[4-(3-oxo-4-morpholinyl)phenyl]-1,3-oxazolidin-5-yl}methyl)-2-thiophencarboxamid der Formel

oder eines ihrer Salze, Solvate und Solvate der Salze ist.

- Verwendung einer Verbindung der Formel (I), wie in Anspruch 1 oder 2 definiert, oder 3. eines ihrer Salze, Solvate und Solvate der Salze zur Herstellung eines Arzneimittels zur 10 Behandlung und/oder Prophylaxe von Verschlusssyndromen, insbesondere an der Haut und anderen Organen entstehenden Verschlusssyndromen, von primären Formen der thrombotischen Mikroangiopathien (TMA), insbesondere der thrombotisch-thrombozytopenischen Purpura (TTP) und des hämolytisch-urämischen Syndroms (HUS), von sekundären Formen der TMA, insbesondere nach Infektionen, Einnahme von 15 Medikamenten, Endokarditis, Kollagenosen, Malignomen, Transplantationen und in der Schwangerschaft auftretenden sekundären Formen der TMA, von diabetischen Mikroangiopathien, insbesondere diabetischer Retinopathie, Glomerulopathie, trophischen Störungen und diabetischem Gangrän, von venösen okklusiven Erkrankungen der Leber, zerebraler Vaskulitis und Mikrothrombosen der Plazenta sowie der daraus resultierenden 20 wiederholten Fehlgeburten.
 - 4. Verwendung einer Verbindung der Formel (I), wie in Anspruch 1 oder 2 definiert, oder eines ihrer Salze, Solvate und Solvate der Salze zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von bei Mikroangiopathien entstehenden schädlichen Kapillaraussprossungen.

WO 2007/042146 PCT/EP2006/009373

5

10

5. Verfahren zur Bekämpfung von Mikroangiopahtien in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer Verbindung, wie in Anspruch 1 oder 2 definiert, oder eines Arzneimittels, enthaltend mindestens eine Verbindung, wie in Anspruch 1 oder 2 definiert, in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.

- 125 -

6. Verfahren zur Bekämpfung von bei Mikroangiopathien entstehenden schädlichen Kapillaraussprossungen in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer Verbindung, wie in Anspruch 1 oder 2 definiert, oder eines Arzneimittels, enthaltend mindestens eine Verbindung, wie in Anspruch 1 oder 2 definiert, in Kombination mit einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.

WO 2007/042146 PCT/EP2006/009373

$$\begin{array}{c|c}
R^{2} & O & R^{5} \\
R^{3} & R^{6} & R^{7} \\
R^{8} & N & R^{1}
\end{array}$$
(I),

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2006/009373

			PC1/EP2006/0093/3		
A. CLASSI INV.	IFICATION OF SUBJECT MATTER A61K31/5377 A61P7/02				
According to	According to International Patent Classification (IPC) or to both national classification and IPC				
	SEARCHED				
A61K	ocumentation searched (classification system followed by classificat $A61P$				
	tion searched other than minimum documentation to the extent that s ata base consulted during the international search (name of data ba				
	ternal, BIOSIS, WPI Data, PAJ, EMBAS		search terms used)		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.		
Y	PERZBORN E ET AL: "IN VITRO AND STUDIES OF THE NOVEL ANTITHROMBOT BAY 59-7939-AN ORAL, DIRECT FACTO INHIBITOR" JOURNAL OF THROMBOSIS AND HAEMOST BLACKWELL PUBLISHING, OXFORD, GB, vol. 3, no. 3, March 2005 (2005-0514-521, XP009050814 ISSN: 1538-7933 figures 5,6 page 517, column 2, paragraph 2-518, column 1, paragraph 2	FIC AGENT DR XA FASIS, 03), pages	1-6		
X Furth	er documents are listed in the continuation of Box C.	See patent famil	y annex.		
"A" documer consider filing de "L" documer which is citation documer other m documer later the	nt defining the general state of the art which is not cred to be of particular relevance occument but published on or after the international ate nt which may throw doubts on priority claim(s) or scited to establish the publication date of another or other special reason (as specified) intreferring to an oral disclosure, use, exhibition or neans nt published prior to the international filing date but an the priority date claimed	or priority date and r cited to understand invention "X" document of particula cannot be considere involve an inventive "Y" document of particula cannot be considere document is combin	hed after the international filing date tot in conflict with the application but the principle or theory underlying the ar relevance; the claimed invention d novel or cannot be considered to step when the document is taken alone ar relevance; the claimed invention d to involve an inventive step when the ed with one or more other such docuation being obvious to a person skilled		
	actual completion of the international search	Date of mailing of the	international search report		
	3 December 2006	10/01/20	07		
Name and m	ealling address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Loher, F	lorian		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP2006/009373

Box No.	II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Although claims 5 and 6 relate to a method for treatment of the human or animal body, the search was carried out and was based on the stated effects of the composition. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No.	III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2006/009373

C(Continua	PC1/EP2006/0093/3 Ontinuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*		
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(ESPINOSA G ET AL: "Thrombotic microangiopathic haemolytic anaemia and antiphospholipid antibodies" ANNALS OF THE RHEUMATIC DISEASES, vol. 63, no. 6, June 2004 (2004-06), pages 730-736, XP002411952 ISSN: 0003-4967 table 5	1-6
	BONOMINI V ET AL: "A new antithrombotic agent in the treatment of acute renal failure due to hemolytic-uremic syndrome and thrombotic thrombocytopenic purpura." NEPHRON. 1984, vol. 37, no. 2, 1984, page 144, XP009076311 ISSN: 0028-2766 the whole document	1-6

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/FP2006/009373

			1 C 1 / E F Z U U C	0/0093/3	
A. KLASS INV.	FIZIERUNG DES ANMELDUNGSGEGENSTANDES A61K31/5377 A61P7/02				
Nach der In	Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC				
B. RECHE	RCHIERTE GEBIETE				
A61K		,			
	rte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen,				
	er internationalen Recherche konsultierte elektronische Datenbank (ternal, BIOSIS, WPI Data, PAJ, EMBA		i evtl. verwendete S	uchbegriffe)	
	SENTLICH ANGESEHENE UNTERLAGEN				
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	oe der in Betracht kommer	nden Teile	Betr. Anspruch Nr.	
Y	PERZBORN E ET AL: "IN VITRO AND STUDIES OF THE NOVEL ANTITHROMBO BAY 59-7939-AN ORAL, DIRECT FACTO INHIBITOR"	TIC AGENT		1-6	
	JOURNAL OF THROMBOSIS AND HAEMOS BLACKWELL PUBLISHING, OXFORD, GB Bd. 3, Nr. 3, März 2005 (2005-03 514-521, XP009050814 ISSN: 1538-7933				
	Abbildungen 5,6 Seite 517, Spalte 2, Absatz 2 - 9 Spalte 1, Absatz 2	Seite 518,	į		
,	-	-/			
X Weite	ere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehm	en Siehe Anhang Pa	atentfamilie		
"A" Veröffen aber nie	illichung, die den allgemeinen Stand der Technik definiert, cht als besonders bedeutsam anzusehen ist	Anmeldung nicht kolli	atum veröttentlicht w idiert, sondern nur z	nternationalen Anmeldedatum vorden ist und mit der rum Verständnis des der	
"L" Veröffen	monary, de geeighet ist, einen i nontatsanspruch zweiteinalt ef-	Theorie angegeben is "X" Veröffentlichung von b	st oesonderer Bedeutu	der der ihr zugrundeliegenden ung; die beanspruchte Erfindung	
scheine anderei soll ode ausgefü	scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet			ntet werden ing; die beanspruchte Erfindung t beruhend betrachtet	
eine Be "P" Veröffen	itlichung, die sich auf eine mündliche Offenbarung, inutzung, eine Ausstellung oder andere Maßnahmen bezieht tlichung, die vor dem internationalen Anmeldedatum, aber nach anspruchten Prioritätsdatum veröffentlicht worden ist	werden, wenn die Vei Veröffentlichungen die diese Verbindung für "&" Veröffentlichung, die N	eser Kategorie in V einen Fachmann na		
	bschlusses der internationalen Recherche	Absendedatum des in			
18	3. Dezember 2006	10/01/20			
Name und Po	estanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevollmächtigter Bed	iensteter		
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Loher, F	lorian	20	

INTERNATIONALER RECHERCHENBERICHT

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (April 2005)

Internationales Aktenzeichen PCT/EP2006/009373

C /Fortact	PC1/EP2006/0093/3		
	zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.	
Υ	ESPINOSA G ET AL: "Thrombotic microangiopathic haemolytic anaemia and antiphospholipid antibodies" ANNALS OF THE RHEUMATIC DISEASES, Bd. 63, Nr. 6, Juni 2004 (2004-06), Seiten 730-736, XP002411952 ISSN: 0003-4967 Tabelle 5	1-6	
Υ	BONOMINI V ET AL: "A new antithrombotic agent in the treatment of acute renal failure due to hemolytic-uremic syndrome and thrombotic thrombocytopenic purpura." NEPHRON. 1984, Bd. 37, Nr. 2, 1984, Seite 144, XP009076311 ISSN: 0028-2766 das ganze Dokument	1-6	
		C	
,			
	•		
*			
10		,	

Internationales Aktenzeichen PCT/EP2006/009373

INTERNATIONALER RECHERCHENBERICHT

Feld II Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr. – weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl die Ansprüche 5 und 6 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Zusammensetzung.
2. Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.