Yandex Research

Ensembles Distribution Distillation and Uncertainty Estimation in Structured Prediction

Andrey Malinin

10 March 2020

Overview of the Talk

- 1. Motivation: Why do we need Uncertainty Estimation?
- 2. Sources of Uncertainty in Predictions
- 3. Ensemble Approaches
- 4. Ensemble Distribution Distillation
- 5. Uncertainty in Structured Prediction

Overview of the Talk

- 1. Motivation: Why do we need Uncertainty Estimation?
- 2. Sources of Uncertainty in Predictions
- 3. Ensemble Approaches
- 4. Ensemble Distribution Distillation
- 5. Uncertainty in Structured Prediction

Why is Uncertainty important?

- Philosophical \rightarrow "Scio me nihil scire" Socrates
 - Intelligent agents must know that they don't know \rightarrow
 - Agents must understand the limits of their knowledge
- Intelligent behaviour depends on detecting novel situations
 - Animals display fear or curiosity
 - Humans ask questions
- Uncertainty must affect actions of an intelligent agent

Why is Uncertainty important?

- Machine Learning (ML) systems are being deployed to many applications \rightarrow
 - Image Classification / Segmentation
 - Speech Recognition
 - Machine Translation
 - Etc...
- In some applications, the cost of a mistake is high or consequence fatal
 - Medical Applications
 - Financial Applications
 - Self-driving vehicles
- Obtaining measures of uncertainty in predictions helps avoid mistakes!
 - Increases safety and reliability of ML system

Scenario

- Given a deployed model and a test input x^* we wish to:
 - Obtain a prediction
 - Obtain a measure of uncertainty in prediction
- Take action based estimate of uncertainty
 - Reject prediction / stop decoding sentence
 - Modify policy / do exploration
 - Ask for human intervention
 - Use active learning

Overview of the Talk

- 1. Motivation: Why do we need Uncertainty Estimation?
- 2. Sources of Uncertainty in Predictions
- 3. Ensemble Approaches
- 4. Ensemble Distribution Distillation
- 5. Uncertainty in Structured Prediction

Sources of Uncertainty

- Knowledge (epistemic) uncertainty refers to both:
 - Data Sparsity and Knowledge Uncertainty

Data Uncertainty

Reminder - Entropy

(b) High Entropy

$$\mathcal{H}[\mathtt{P_{tr}}(y|\pmb{x}^*)] = -\sum_{c=1}^K \mathtt{P_{tr}}(y = \omega_c|\pmb{x}^*) \ln \mathtt{P_{tr}}(y = \omega_c|\pmb{x}^*)$$

ullet Data Uncertainty is the *entropy* of the *true data distribution* o

$$\mathcal{H}[\mathtt{P_{tr}}(y|oldsymbol{x}^*)] = -\sum_{c=1}^K \mathtt{P_{tr}}(y = \omega_c|oldsymbol{x}^*) \ln \mathtt{P_{tr}}(y = \omega_c|oldsymbol{x}^*)$$

ullet Captured by the entropy of a model's posterior over classes ightarrow

$$\mathcal{H}[P(y|\mathbf{x}^*, \hat{\mathbf{ heta}})] = -\sum_{c=1}^K P(y = \omega_c|\mathbf{x}^*, \hat{\mathbf{ heta}}) \ln P(y = \omega_c|\mathbf{x}^*, \hat{\mathbf{ heta}})$$

• Data Uncertainty is captured as a consequence of Maximum Likelihood Estimation

Distinct Classes

Overlapping Classes

Sources of Uncertainty

- Knowledge (epistemic) uncertainty refers to both:
 - Data Sparsity and Out-of-distribution inputs

Yandex Research T7/63

Unseen classes

Unseen variations of seen classes

Sources of Uncertainty

- Data Uncertainty → Known-Unknown
 - Class overlap (complexity of decision boundaries)
 - Homoscedastic and Heteroscedastic noise
- Knowledge Uncertainty → Unknown-Unknown
 - Test input in out-of-distribution region far from training data
 - Test input in out-of-distribution region of sparse training data
- Appropriate action depends on source of uncertainty
 - Separating sources of uncertainty requires Ensemble approaches

Yandex Research 20/63

Overview

- 1. Motivation: Why do we need Uncertainty Estimation?
- 2. Sources of Uncertainty in Predictions
- 3. Ensemble Approaches
- 4. Ensemble Distribution Distillation
- 5. Uncertainty in Structured Prediction

Ensemble Approaches

ullet Uncertainty in $oldsymbol{ heta}$ captured by model posterior $\mathrm{p}(oldsymbol{ heta}|\mathcal{D})
ightarrow$

$$\mathtt{p}(oldsymbol{ heta}|\mathcal{D}) = rac{\mathtt{p}(\mathcal{D}|oldsymbol{ heta})\mathtt{p}(oldsymbol{ heta})}{\mathtt{p}(\mathcal{D})}$$

• Can consider an ensemble of models \rightarrow

$$\{P(y|\mathbf{x}^*, \boldsymbol{\theta}^{(m)})\}_{m=1}^{M}, \ \boldsymbol{\theta}^{(m)} \sim P(\boldsymbol{\theta}|\mathcal{D})$$

• Bayesian inference of P $(y|\mathbf{x}^*, \mathbf{ heta})
ightarrow$

$$P(y|\mathbf{x}^*, \mathcal{D}) = \mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[P(y|\mathbf{x}^*, \boldsymbol{\theta})] \approx \mathcal{H}\left[\frac{1}{M} \sum_{m=1}^{M} P(y|\mathbf{x}^*, \boldsymbol{\theta}^{(m)})\right]$$

Ensemble for certain in-domain input

Ensemble for uncertain in-domain input

Ensemble for Out-of-Domain input

Yandex Research 25/63

Measures of Uncertainty

If the predictions from the models are consistent

$$\underbrace{\mathcal{H}\big[\mathbb{E}_{\mathbf{p}(\boldsymbol{\theta}|\mathcal{D})}[\mathbf{P}(y|\boldsymbol{x}^*,\boldsymbol{\theta})]\big]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{\mathbf{p}(\boldsymbol{\theta}|\mathcal{D})}\big[\mathcal{H}[\mathbf{P}(y|\boldsymbol{x}^*,\boldsymbol{\theta})]\big]}_{\text{Expected Data Uncertainty}} = 0$$

If the predictions from the models are diverse

$$\underbrace{\mathcal{H}\big[\mathbb{E}_{\mathrm{p}(\boldsymbol{\theta}|\mathcal{D})}[\mathrm{P}(y|\boldsymbol{x}^*,\boldsymbol{\theta})]\big]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{\mathrm{p}(\boldsymbol{\theta}|\mathcal{D})}\big[\mathcal{H}[\mathrm{P}(y|\boldsymbol{x}^*,\boldsymbol{\theta})]\big]}_{\text{Expected Data Uncertainty}} > 0$$

Difference of the two is a measure of knowledge uncertainty

$$\underbrace{\mathcal{I}[\boldsymbol{y},\boldsymbol{\theta}|\boldsymbol{x}^*,\mathcal{D}]}_{\text{Knowledge Uncertainty}} = \underbrace{\mathcal{H}\big[\mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[P(\boldsymbol{y}|\boldsymbol{x}^*,\boldsymbol{\theta})]\big]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}\big[\mathcal{H}[P(\boldsymbol{y}|\boldsymbol{x}^*,\boldsymbol{\theta})]\big]}_{\text{Expected Data Uncertainty}}$$

Yandex Research 26/63

Approximate Inference

- Variational Inference:
 - Bayes by Backprop [Blundell et al., 2015]
 - Probabalistic Backpropagation [Hernández-Lobato and Adams, 2015]
- Monte-Carlo Methods:
 - Monte-Carlo Dropout [Gal, 2016, Gal and Ghahramani, 2016]
 - Stochastic Gradient Langevin Dynamics [Welling and Teh, 2011]
 - Fast-Ensembling via Mode Connectivity [Garipov et al., 2018]
 - Stochastic Weight Averaging Gaussian (SWAG) [Maddox et al., 2019]
- Non-Bayesian Ensembles:
 - Bootstrap DQN [Osband et al., 2016]
 - Deep Ensembles [Lakshminarayanan et al., 2017]

Limitations

- Hard to guarantee diverse P($y|\mathbf{x}^*, \mathbf{ heta}^{(m)}$)} $_{m=1}^{M}$
- Diversity of ensemble depends on:
 - Selection of prior
 - Nature of approximations
 - Architecture of network
 - Properties and size of data
- Computationally expensive

Overview

- 1. Motivation: Why do we need Uncertainty Estimation?
- 2. Sources of Uncertainty in Predictions
- 3. Ensemble Approaches
- 4. Ensemble Distribution Distillation
- 5. Uncertainty in Structured Prediction

Yandex Research 29/63

Distributions on a Simplex

• Ensemble $\{P(y|\mathbf{x}^*, \boldsymbol{\theta}^{(m)})\}_{m=1}^{M}$ can be visualized on a simplex

(b) Data Uncertainty

(c) Knowledge Uncertainty

Same as sampling from implicit Distribution over output Distributions

$$\mathtt{P}(y|oldsymbol{x}^*,oldsymbol{ heta}^{(m)})\sim\mathtt{p}(oldsymbol{ heta}|\mathcal{D})\equivoldsymbol{\mu}^{(m)}\sim\mathtt{p}(oldsymbol{\mu}|oldsymbol{x}^*,\mathcal{D})$$

Distributions on a Simplex (cont)

• Expanding out
$$\mu^{(m)} = \begin{bmatrix} P(y = \omega_1) \\ P(y = \omega_2) \\ \vdots \\ P(y = \omega_K) \end{bmatrix}$$
, where each $\mu^{(m)}$ is a point on a simplex.

Distribution over Distributions

(b) $p(\boldsymbol{\mu}|\boldsymbol{x}^*,\mathcal{D})$

Distribution over Distributions

(a) $\{m{\mu}^{(m)}\}_{m=1}^{M}$

(b) $p(\boldsymbol{\mu}|\boldsymbol{x}^*,\mathcal{D})$

Distribution over Distributions

(b) $p(\mu|\mathbf{x}^*, \mathcal{D})$

Prior Networks [Malinin and Gales, 2018]

• Explicitly model $p(\mu|\mathbf{x}^*, \mathcal{D})$ using a Prior Network $p(\mu|\mathbf{x}^*; \hat{\boldsymbol{\theta}})$

$$\mathtt{p}(oldsymbol{\mu}|oldsymbol{x}^*;oldsymbol{\hat{ heta}})pprox\mathtt{p}(oldsymbol{\mu}|oldsymbol{x}^*,\mathcal{D})$$

Predictive posterior distribution is given by expected categorical

$$\mathtt{P}(y|oldsymbol{x}^*;oldsymbol{\hat{ heta}}) = \mathbb{E}_{\mathtt{p}(oldsymbol{\mu}|oldsymbol{x}^*;oldsymbol{\hat{ heta}})}[\mathtt{p}(y|oldsymbol{\mu})] = oldsymbol{\hat{\mu}}$$

Uncertainty Measures for Prior Networks

Ensemble uncertainty decomposition:

$$\underbrace{\mathcal{I}[\boldsymbol{y},\boldsymbol{\theta}|\boldsymbol{x}^*,\mathcal{D}]}_{\text{Knowledge Uncertainty}} = \underbrace{\mathcal{H}[\mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[P(\boldsymbol{y}|\boldsymbol{x}^*,\boldsymbol{\theta})]]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}[\mathcal{H}[P(\boldsymbol{y}|\boldsymbol{x}^*,\boldsymbol{\theta})]]}_{\text{Expected Data Uncertainty}}$$

Prior Network uncertainty decomposition

$$\underbrace{\mathcal{I}[y, \boldsymbol{\mu} | \boldsymbol{x}^*; \boldsymbol{\hat{\theta}}]}_{\text{Knowledge Uncertainty}} = \underbrace{\mathcal{H}\big[\mathbb{E}_{p(\boldsymbol{\mu} | \boldsymbol{x}^*; \boldsymbol{\hat{\theta}})}[P(y | \boldsymbol{\mu})]\big]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{p(\boldsymbol{\mu} | \boldsymbol{x}^*; \boldsymbol{\hat{\theta}})}[\mathcal{H}[P(y | \boldsymbol{\mu})]]}_{\text{Expected Data Uncertainty}}$$

Ensemble Distillation (EnD) [Hinton et al., 2015, Korattikara et al., 2015]

- Ensembles are computationally expensive
 - Distill an ensemble into a single model

$$\left\{ \mathtt{P}(y|\boldsymbol{x},\boldsymbol{\theta}^{(m)}) \right\}_{m=1}^{M} o \mathtt{P}(y|\boldsymbol{x},\boldsymbol{\hat{\theta}})$$

• Minimize KL-divergence to mean of ensemble:

$$\mathcal{L}(\hat{\boldsymbol{\theta}}, \mathcal{D}) = \mathbb{E}_{\mathbf{P}(\boldsymbol{x})} \Big[\text{KL} \big[\mathbb{E}_{\tilde{\mathbf{p}}(\boldsymbol{\theta}|\mathcal{D})} [\mathbf{P}(y|\boldsymbol{x}, \boldsymbol{\theta})] || \mathbf{P}(y|\boldsymbol{x}, \hat{\boldsymbol{\theta}}) \big] \Big]$$

- Computational Performance gain
- Robustness to Adversarial Attack (Defensive Distillation)

Yandex Research

Ensemble Distillation (EnD)

- EnD \rightarrow model captures only *mean* of ensemble
- ullet Diversity of ensemble is lost o
 - Cannot separate measures of uncertainty
- ullet Solution o Ensemble Distribution Distillation

Yandex Research

Ensemble Distribution Distillation (End²) [Malinin et al., 2019]

• Distill an ensemble into a single Prior Network

$$\left\{ \mathtt{P}(y|\mathbf{x}, \boldsymbol{ heta}^{(m)})
ight\}_{m=1}^{M} \quad o \quad \mathtt{p}(\boldsymbol{\mu}|\mathbf{x}; \boldsymbol{\hat{ heta}})$$

ullet Goal o Maximum information extraction from ensemble.

Ensemble Distribution Distillation (End²)

Parameterize a Dirichlet distribution using Neural Network:

$$p(\mu|\mathbf{x};\boldsymbol{\theta}) = Dir(\mu;\alpha), \quad \alpha = f(\mathbf{x};\boldsymbol{\theta}), \quad \alpha_c > 0$$

Training data are ensemble predictions for every input:

$$\mathcal{D} = \left\{ \left\{ p(y|\mathbf{x}^{(i)}; \boldsymbol{\theta}^{(j)}), \mathbf{x}^{(i)} \right\}_{j=1}^{N} \right\}_{i=1}^{M} \sim \hat{p}(\boldsymbol{\mu}, \mathbf{x})$$

Train via Maximum Likelihood:

$$\mathcal{L}(m{ heta}, \mathcal{D}) = - \mathbb{E}_{\hat{\mathbf{p}}(m{x})} \Big[\mathbb{E}_{\hat{\mathbf{p}}(m{\mu}|m{x})} [\ln \mathbf{p}(m{\mu}|m{x}; m{ heta})] \Big]$$

Ensemble Distribution Distillation: Image Classification

Dataset	Individual	Ensemble	EnD	EnD^2
CIFAR-10	8.0	6.2	6.7	6.9
CIFAR-100	30.4	26.3	28.2	28.0
TinyImageNet	41.8	36.6	38.5	37.3

Table: Classification Performance (% Error).

Ensemble Distribution Distillation: Misclassification Detection

Dataset	Individual	Ensemble	EnD	EnD^2
CIFAR-10	84.6	86.8	85.1	85.7
CIFAR-100	72.5	75.0	74.0	74.0
TinyImageNet	70.8	73.8	72.6	72.7

Table: Misclassification detection performance (% PRR).

Ensemble Distribution Distillation: OOD Detection

Test OOD	Model	CIFAR-10		CIFAR-100		
Dataset	_		Knowledge Unc.	Total Unc.	Knowledge Unc.	
	Individual	91.3	-	75.6	-	
	EnD	89.0	-	76.5	-	
LSUN	EnD^2	94.4	95.3	83.5	86.9	
LSUN	Ensemble	94.5	94.4	82.4	88.4	
	Individual	88.9	-	70.5	-	
	EnD	86.9	-	70.0	-	
T11.4	EnD^2	91.3	91.8	76.4	79.3	
TIM	Ensemble	91.8	91.4	76.6	81.7	

Table: OOD detection performance (% AUC-ROC) for CIFAR-10 and CIFAR-100 models.

Yandex Research

Overview

- 1. Motivation: Why do we need Uncertainty Estimation?
- 2. Sources of Uncertainty in Predictions
- 3. Ensemble Approaches
- 4. Ensemble Distribution Distillation
- 5. Uncertainty in Structured Prediction

Yandex Research 44/63

Auto-regressive structured prediction models

• Consider auto-regressive model mapping $\mathbf{X} = \{\mathbf{x}_1, \cdots, \mathbf{x}_T\} \rightarrow \mathbf{y} = \{y_1, \cdots, y_L\}$:

$$P(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta}) = \prod_{l=1}^{L} P(y_l|\boldsymbol{y}_{< l},\boldsymbol{X};\boldsymbol{\theta})$$

- Suchs models are commonly applied for
 - Neural Machine Translation (NMT)
 - End-to-End Automatic Speech Recognition (ASR)
- Can ensemble methods to be applied to obtain uncertainty estimates?
- Can we consider uncertainties are multiple levels?
 - Token-level uncertainties
 - Sequence-level uncertainties

Ensemble combination for auto-regressive models

· Consider an ensemble of auto-regressive models

$$\left\{ \mathbb{P}(y_l | \boldsymbol{y}_{< l}, \boldsymbol{X}, \boldsymbol{\theta}^{(m)}) \right\}_{m=1}^{M}, \quad \boldsymbol{\theta}^{(m)} \sim \mathbb{P}(\boldsymbol{\theta} | \mathcal{D})$$

• We can combine the predictive posterior as an expectation-of-products (ExPr)...

$$\mathbb{P}(m{y}|m{X},\mathcal{D}) = \mathbb{E}_{\mathbb{P}(m{ heta}|\mathcal{D})}ig[\mathbb{P}(m{y}|m{X},m{ heta})ig] = \ \mathbb{E}_{\mathbb{P}(m{ heta}|\mathcal{D})}ig[\prod_{l=1}^L \mathbb{P}(y_l|m{y}_{< l},m{X},m{ heta})ig]$$

• ...or as a *product-of-expectations* (PrEx):

$$P(\boldsymbol{y}|\boldsymbol{X},\mathcal{D}) = \prod_{l=1}^{L} P(y_{l}|\boldsymbol{y}_{< l},\boldsymbol{X},\mathcal{D}) = \prod_{l=1}^{L} \mathbb{E}_{P(\boldsymbol{\theta}|\mathcal{D})} \Big[P(y_{l}|\boldsymbol{y}_{< l},\boldsymbol{X},\boldsymbol{\theta}) \Big]$$

Both are valid ways of combining an ensemble of models.

Ensemble combination for auto-regressive models

Model	NMT	BLEU	ASR	WER
Model	EN-DE	EN-FR	Libr-TC	Libr-TO
Single	28.8 ±0.2	$45.4 \pm \scriptscriptstyle 0.4$	5.6 ±0.2	14.7 ±0.5
PrEx	30.0	46.3	4.3	11.3
ExPr	29.6	46.2	4.5	12.5

Table: Beam-Search decoding BLEU/WER on newstest14/LibriSpeech.

Ensemble combination for auto-regressive models

Madal	NN	ΛT		SR
Model	EN-DE	EN-FR	Libr-TC	Libr-TO
PrEx	1.352	1.043	0.209	0.501
ExPr	1.381	1.052	0.236	0.606

Table: Teacher-forcing NLL on newstest14 and LibriSpeech.

Yandex Research

Token-level measures of uncertainty

• Token-level measures of uncertainty are a direct application of ensemble methods:

$$\underbrace{\mathcal{I}\big[y_{l},\boldsymbol{\theta}|\boldsymbol{y}_{< l},\boldsymbol{X},\mathcal{D}\big]}_{\text{Knowledge Uncertainty}} = \underbrace{\mathcal{H}\big[P(y_{l}|\boldsymbol{y}_{< l},\boldsymbol{X},\mathcal{D})\big]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{p(\boldsymbol{\theta}|\mathcal{D})}\big[\mathcal{H}\big[P(y_{l}|\boldsymbol{y}_{< l},\boldsymbol{X},\boldsymbol{\theta})\big]\big]}_{\text{Expected Data Uncertainty}}$$

• Uncertainty in prediction given an input $m{X}$ and context $m{y}_{< l}$

Sequence-level measures of uncertainty

• Sequence-level uncertainty estimates are more challenging to obtain:

$$\underbrace{\mathcal{I}[\mathbf{y}, \boldsymbol{\theta} | \mathbf{X}, \mathcal{D}]}_{\text{Know. Uncertainty}} = \underbrace{\mathcal{H}[P(\mathbf{y} | \mathbf{X}, \mathcal{D})]}_{\text{Total Uncertainty}} - \underbrace{\mathbb{E}_{p(\boldsymbol{\theta} | \mathcal{D})}[\mathcal{H}[P(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta})]]}_{\text{Expected Data Uncertainty}}$$

Consider the expression for entropy:

$$\begin{aligned} \mathcal{H}[P(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta})] &= -\sum_{\boldsymbol{y}} P(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta}) \ln P(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta}) \\ &= -\sum_{y_1} \cdots \sum_{y_L} P(y_1,\cdots,y_L|\boldsymbol{X},\boldsymbol{\theta}) \ln P(y_1,\cdots,y_L|\boldsymbol{X},\boldsymbol{\theta}) \end{aligned}$$

Intractable to compute!

Sequence-level measures of uncertainty

Yandex Research 51/68

Sequence-level measures of uncertainty

However, we can approximate sequence-level uncertainty as follows:

$$egin{aligned} \mathcal{H}[\mathtt{P}(oldsymbol{y}|oldsymbol{X},\mathcal{D})] &pprox \sum_{l=1}^{L}\mathcal{H}ig[\mathbb{E}_{\mathtt{q}(oldsymbol{ heta})}[\mathtt{P}(y_{l}|oldsymbol{y}_{< l},oldsymbol{X},oldsymbol{ heta})]ig] \ &\mathbb{E}_{\mathtt{q}(oldsymbol{ heta})}ig[\mathcal{H}[\mathtt{P}(y_{l}|oldsymbol{y}_{< l},oldsymbol{X},oldsymbol{ heta})]ig] \ &\mathcal{I}ig[oldsymbol{y},oldsymbol{ heta}|oldsymbol{X},\mathcal{D}] &pprox \sum_{l=1}^{L}\mathcal{I}ig[y_{l},oldsymbol{ heta}|oldsymbol{y}_{< l},oldsymbol{X},\mathcal{D}] \end{aligned}$$

- Approximation are accurate if:
 - We combine ensemble as a Product-of-Expectations
 - Distributions are independent of context

Sequence-level Error Detection

Task	Test set	Total TU	Uncertainty SCR-PE	Data Uncertainty	Knowle MI	edge Uncertainty EPKL
ASR	Libr-TC	67.0	66.6	66.6	64.2	62.3
	Libr-TO	73.3	72.3	71.7	70.9	67.4
NMT EN-DE	newstest14	37.5	45.7	36.4	30.1	28.5
NMT EN-FR		32.6	37.9	37.8	32.8	31.9

Table: Sequence-level Error Detection % PRR in Beam-Search decoding regime.

Yandex Research 53/63

Token-level Error Detection

Task	Test Data		Uncertainty SCR-PE	Data Uncertainty	Knowle MI	dge Uncertainty EPKL	% Error
ASR	Libr-TC Libr-TO	36.8 44.1	37.2 43.5	35.1 42.6	33.9 41.9	29.6 37.8	3.9 10.3

Table: Token-level Error Detection %AUPR for LibriSpeech in Beam-Search Decoding regime.

Yandex Research 54/63

OOD Detection for Speech Recognition

ID	OOD	Total	Data	Knowl	edge Unc.
Data	Data	Uncertainty	Uncertainty	MI	EPKL
Libr-TC	Libr-TO	77.4	76.4	76.7	77.1
Libr-TC	AMI-EVL	97.1	97.2	95.7	95.4
Libr-TO	AMI-EVL	90.9	91.0	88.0	86.7
Libr-TC	LNG-FR	100.0	100.0	99.9	99.9
	LNG-RU	100.0	100.0	99.9	99.9

Table: OOD Detection % ROC-AUC in Beam-Search decoding regime for ASR.

Yandex Research 55/63

OOD Detection for Translation

ID	OOD	Total	Data	Knowledge Unc.		
Data	Data	Uncertainty	Uncertainty	MI	EPKL	
	MED	52.2	50.8	64.9	65.2	
	$Libr ext{-}TC$	74.4	72.9	77.1	76.5	
newstst14	Libr-TO	72.0	70.6	76.2	75.9	
	PERM	83.9	80.3	97.0	97.3	
	LNG-DE	33.5	29.7	73.2	78.2	
	LNG-FR	20.4	19.1	57.7	64.7	

Table: OOD Detection % ROC-AUC in Beam-Search decoding regime for NMT.

Take away points

- Uncertainty is important →
 - · Philosophically and practically necessary
- ullet Sources of Uncertainty o
 - Data Uncertainty and Knowledge Uncertainty
- ullet Uncertainty Estimation via Ensembles ightarrow
 - Theoretically motivated separation of uncertainty sources
 - Can reduce complexity via Ensemble Distribution Distillation
- ullet Uncertainty for Structured Prediction o
 - Can use ensembles of auto-regressive models
 - Successfully applied for ASR/NMT error detection and OOD detection
 - Cool new effects!

Yandex Research 57/63

Thank You!

Any questions?

Yandex Research 58/63

References I

Learning.

```
[Blundell et al., 2015] Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015).
Weight uncertainty in neural networks.

arXiv preprint arXiv:1505.05424.

[Gal, 2016] Gal, Y. (2016).

Uncertainty in Deep Learning.
PhD thesis, University of Cambridge.

[Gal and Ghahramani, 2016] Gal, Y. and Ghahramani, Z. (2016).
```

Yandex Research 59/63

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep

In Proc. 33rd International Conference on Machine Learning (ICML-16).

References II

- [Garipov et al., 2018] Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. (2018).
 - Loss surfaces, mode connectivity, and fast ensembling of dnns.
 - In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, *Advances in Neural Information Processing Systems 31*, pages 8789–8798. Curran Associates, Inc.
- [Hernández-Lobato and Adams, 2015] Hernández-Lobato, J. M. and Adams, R. (2015).
 - Probabilistic backpropagation for scalable learning of bayesian neural networks.
 - In International Conference on Machine Learning, pages 1861–1869.

Yandex Research 60/63

References III

[Hinton et al., 2015] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network.

In NIPS Deep Learning and Representation Learning Workshop.

[Korattikara et al., 2015] Korattikara, A., Rathod, V., Murphy, K. P., and Welling, M. (2015).

Bayesian dark knowledge.

In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, *Advances in Neural Information Processing Systems 28*, pages 3438–3446. Curran Associates, Inc.

Yandex Research 61/63

References IV

```
[Lakshminarayanan et al., 2017] Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles.
```

In Proc. Conference on Neural Information Processing Systems (NIPS).

[Maddox et al., 2019] Maddox, W., Garipov, T., Izmailov, P., Vetrov, D. P., and Wilson, A. G. (2019).

A simple baseline for bayesian uncertainty in deep learning. *CoRR*, abs/1902.02476.

[Malinin and Gales, 2018] Malinin, A. and Gales, M. (2018).Predictive uncertainty estimation via prior networks.In Advances in Neural Information Processing Systems, pages 7047–7058.

Yandex Research 62/63

References V

[Malinin et al., 2019] Malinin, A., Mlodozeniec, B., and Gales, M. (2019). Ensemble distribution distillation. arXiv preprint arXiv:1905.00076.

[Osband et al., 2016] Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration via bootstrapped dqn.

In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, *Advances in Neural Information Processing Systems 29*, pages 4026–4034. Curran Associates, Inc.

[Welling and Teh, 2011] Welling, M. and Teh, Y. W. (2011).

Bayesian Learning via Stochastic Gradient Langevin Dynamics.

In *Proc. International Conference on Machine Learning (ICML)*.

Yandex Research 63/63