E29 - Distinct powers

Consider all integer combinations of a^b for $2 \le a \le 5$ and $2 \le b \le 5$:

$$2^{2} = 4$$
 , $2^{3} = 8$, $2^{4} = 16$, $2^{5} = 32$
 $3^{2} = 9$, $3^{3} = 27$, $3^{4} = 81$, $3^{5} = 243$
 $4^{2} = 16$, $4^{3} = 64$, $4^{4} = 256$, $4^{5} = 1024$
 $5^{2} = 25$, $5^{3} = 125$, $5^{4} = 625$, $5^{5} = 3125$

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

How many distinct terms are in the sequence generated by a^b for $2 \le a \le 30$ and $2 \le b \le 5$?

Guides (you will need to submit these for full credit):

- 1. If we are considering a^b for $2 \le a \le 8$ and $2 \le b \le 5$:
 - a. Which values of 'a' are candidates to create duplicates when raised to the power of 'b'?
 - b. What are the duplicates, and how many distinct terms there are in the overall sequence?
- 2. If we are considering a^b for $2 \le a \le 9$ and $2 \le b \le 5$:
 - a. Which values of 'a' are candidates to create duplicates when raised to the power of 'b'?
 - b. What are the duplicates, and how many distinct terms there are in the overall sequence?

Now, generalize your result to the case given.

- → Keep in mind: You need to show a detailed explanation of your solution.
- * About the name: This problem is based on Euler Project problem number 29.

=== End ====