Microwave Experiment

Chen En, Ho

September 27, 2024

Abstract

This is the abstract where you provide a brief summary of the document.

1 Introduction

In this section, you will introduce the topic and provide the background or motivation for your study.

2 Methodology

Here, describe the methods and approaches you used in your research or study.

3 Experimental Apparatus

This section includes the description of the experimental setup and apparatus you used in your work.

4 Results & Discussions

The table below presents the data for $V_{\text{peak-low}}$ and $\frac{1}{4}\lambda$, along with the calculated mean and uncertainties for λ^1 .

¹In this article, the uncertainties consist of both Type A and Type B uncertainties. The total uncertainty is calculated using error propagation.

$V_{\text{peak-low}}$	$V_{\text{peak-low}}$	$\frac{1}{4}\lambda$ (mm)
157	147.5	9.5
147.5	137	10.5
137	124	13
124	113.5	10.5
113.5	101.5	12
101.5	91.5	10
91.5	79.9	11.6

Table 1: Values of $V_{\text{peak-low}}$ and corresponding $\frac{1}{4}\lambda$.

Therefore, the wavelength λ with its total uncertainty is:

$$\lambda = 0.04406 \,\mathrm{m} \pm 0.00186 \,\mathrm{m} \quad (4.23\%)$$

Then, a relationship between the intensity I and the distance from a node d is measured.

I (νΑ)	I (A)	d (mm)	d (m)
-0.0025	-2.7E-09	136.9	1E-04
-0.0027	1.2E-08	137	0.0011
0.012	3.75E-08	138	0.0021
0.0375	8.58E-08	139	0.0031
0.0858	1.216E-07	140	0.0041
0.1216	1.698E-07	141	0.0051
0.1698	2.264E-07	142	0.0061
0.2264	2.792E-07	143	0.0071
0.2792	3.178E-07	144	0.0081
0.3178	3.54E-07	145	0.0091
0.354	3.636E-07	146	0.01081
0.3636		147.71	

Table 2: Values of $I(\nu A)$, I(A), d(mm), and $\bar{d}(m)$.

If we plot I versus $sin(2\pi d/\lambda_g)$, we found that the result is close to a exponential graph (except the last data).

Figure 1: $I(\mathbf{A})\text{-}sin(2\pi d/\lambda_g)$ characteristics from the experiment.

Hence, we can guess $I=C\cdot sin(\frac{2\pi d}{\lambda_g})^n$. A linear regression analysis was conducted.

Figure 2: Linear regression analysis of $\log \bar{I}$ vs $n \log \sin{(2\pi d/\lambda)} + \log C.$

we get:

$$n = 1.931 \pm 0.024 \quad (1.24\%)$$

5 Textbook Questions

Here, include any questions from textbooks or exercises that are relevant to your topic.

6 Conclusion

Summarize the main findings and key points from the study.