Index	631
Editor s Biography	648

Index

Acme Commodity and Phrase Code, 383	Cartesian product construction for authentication codes,	Rabin's scheme, 394 Rabin-Williams' scheme,
Algebraic normal form transform,	395-96	394-95
79-80 Algorithm:	channel bound (Gilbert– McWilliams–Sloan), 401	redundancy, 397-98 RSA cryptoalgorithm, 393-94
Berlekamp-Massey shift register	channel capacity (Simmons),	taxonomy, 395-96
synthesis, 80, 84	406-7	unconditionally secure schemes,
Coppersmith (discrete	classification, 391-403	397-98, 403-8 Authenticator (appended), 384-86
logarithm), 296-303 DES , 22	codes, 395-96, 398-401 and cryptography, 383	Automated teller machines (ATMs),
elliptic curve (factoring), 309	definition, 180, 382	and smart cards, 409, 444
Euclid's (GCD), 261-62	and DES, 57, 385	Base b pseudoprime, 30
fast data encipherment (FEAL), 529	desensitized, 387 digital signatures, using, 27-29,	Basic security standards, 46
invertible secret key, 590-91	138-39, 155, 166, 187,	Berlekamp-Massey shift register synthesis algorithm,
MD2 and MD4 (hashing), 367	195-99. 369-70	81, 84
number field sieve (factoring),	electronic funds transfer (EFT),	Binary additive stream ciphers, 23
308–310, 520 probabilistic, 238	53, 58, 384-85 essential notions involved, 383	Binary functions: bent, 99
quadratic sieve (factoring), 250,	game theory model, 403–4	distance between, 97
303-4	impersonation attack, 14	generalized bent, 100
semi-invertible secret-key, 590	of information (messages),	perfect nonlinear, 99
Telepass 1, 588 Telepass 2, 590-91	379-419 LAN. 235	Birthday attacks, 202, 214–15 , 257-58, 528, 603-4
twisted double field (TDF), 590	message authentication code	"Black Chamber" (U. S. State
Videopass, 590-91	(MAC), 329, 385, 396,	Department), 5
Snefru (hashing), 368 American Bankers Association	594, 622 model, 404	Blahut's theorem, 77 Block cipher-based hash functions,
(ABA), standards, 5 I	participants (characterization),	357-65
American National Standards Insti-	388-91	bidirectional message authentica-
tute (ANSI), 329 Committee X 12 (Electronic	perfect authentication, 18	tion code, 358–60 cipher block chaining-message au-
Business Data Inter-	practice, 408-16 process, 382-87	thentication code, 357-58
change), 58	relation to coding theory,	Davies-Meyer (DM) scheme,
standards, 5 1–52	397-403	360-61
American Telephone & Telegraph (AT&T):	requirements, 182-83 RSA authentication channel,	insecure schemes, 36 I-63 Merkle's block cipher-based hash
cryptographic device for pro -	393-94	functions, 363-64
tectine common carrier	substitution attack, 15	Block ciphers, 21-22, 67
interoffice signaling (CCIS), 157	theoretical security of authentica- tion, 18	Blum integers, 275-77 Blum-Micali generator, 119–20
Vernam ciphers, 7	threats, 388-9 1	Boolean functions, see Binary
Arbitrated signatures, 333-34,	U. S. military protocol, 383-84	functions
395-97. 413-16	with/without secrecy, 395-96,	Brooks Act (PL89-306), 45 Brute-force attack, 22, 48, 526
Architecture (computer), relation to algorithms, 247-52	407–8, 622-25 See also Information authentica-	Bulk encryption, and public key
Arguments (zero-knowledge proto-	tion	cryptography, 187
cols), definition, 426, 434 Arms Control and Disarmament	Authentication framework, 231-32 DARPA-Internet, 227	Cade cryptosystem, 517 Caesar cipher, 6-7, 21
Agency (ACDA), 618	ISO, 219-24	CBC, see Cipher block
Arthur-Merlin interactive proto- col, 428	Authentication schemes: classification, 391-403	chaining (CBC) Cartesian product construction for
Authentication 14-20. 381-419,	computationally secure schemes,	authentication codes,
(see also Authentication	392. 395	395-396
schemes) appended authenticator, 384-86	encoding rules, 398-99 provably secure schemes, 392,	CCEP, see Commercial COMSEC Endorsement Pro-
authentication function, 16	395, 397	gram (CCEP)
		-

Cellular automata, 167	feedback clock control, 105-6	Coppersmith's attack on Rabin-type
Certificate-based key management	forward clock control, 101–5	functions, 214–15 Correlation attacks, 88-93
protocols, 193-95, 226, 234	CMOS technology, and smart cards, 575-77, 583-84	on combination generators,
central issuing authority, 193-94	Codebreakers (Kahn), 4	88-92
decentralized management,	Cohen-Lenstra primality test, 268	on filter generators, 92-93
194–95 and digital signatures, 202	Collusion, 460 Combination generators, 84, 86-88	Correlation-immune combiners, 46-47
phonebook approach to certifi-	correlation attacks, 88-92	Credentials, see Certificates
cates, 195	Commercial COMSEC Endorse-	Cryptanalysis: A Survey of Recent
Certification paths 221 22	ment Program (CCEP),	Results (Brickell/
certification paths, 221-22 DARPA-Internet, 226-27	59-60 unresolved issues, 60	Odlyzko), 148, 167 Cryptanalysis, 4. 46, 115, 501-40
expiration/revocation, 22,	Commitments and disputes,	Cade cryptosystem, 517
222, 228	340-44	complexity-theoretic
ISO authentication framework. 219–24	Common modulus protocol failure, 546-49	approach, 68 congruential generators, 523-26
issuance/distribution, 234-35	Communication Theory of Secrecy	definition, 46
for key management, 193-95	Systems (Shannon), 7	DES, 526-28
LAN. 229-34 compromised/invalidated cer-	Commutative cryptosystems, 33	birthday attacks, 528
tificates, 235	Complexity-theoretic approach to stream cipher design,	cryptanalytic attacks on weak- ened DES, 526-27
issuance/distribution, 234-35	115–23	DES cycles, 527-28
personnel identification, 41 1-14	generators, 118–23	structural properties, 528
pseudosignature, 589 use, 190	notions/concepts, 1 15–18	discrete exponentialion crypto-
Certified public directory	Complexity theory, as a game, 425-426	system, 52 I fast data encipherment algorithm
(CPD), 26	Comprehensive Test Ban (CTB)	(FEAL), 529
CFB, <i>see</i> Cipher feedback (CFB) mode	Treaty, 6 I8	generalized knapsack cryptosys-
Checker, and program checkabil-	Computational complexity, 254 and cryptocomplexity, 236-39	terns. 510–14 hardware/software support,
ity, 434	Computationally secure authentica-	247-52
Chinese remainder theorem, 262-63	tion schemes, 392, 395	computing modes, 248-49
Chor-Rivest knapsack cryptosys-	Computation, classic theory,	technology, 247-48 information-theoretic
tern, 513–14	252–54 computational complexity, 254	approach, 68
Chosen-ciphertext attack, 4, 31 Chosen-plaintext attack, 4, 31	nondeterministic Turing	knapsack cryptosystems, 505–10
Chosen-text attack, 4, 51	machines, 254	Luccio-Mazzone cryptosys-
Cipher:	Turing machines. 253-54 Computing:	tem. 518 McEliece cryptosystem, 521-22
block, 21	architectures, 25 1-52	Matsumoto-Imai cryptosys-
conventional: DES, 183	quadratic sieve machine pro-	tern. 517
exponentiation, 184	posal, 251–52	multiple-iterated knapsacks, 509–10
Diffie's randomized stream, 124	relation to algorithms, 247-52 systolic arrays, 251	Okamoto-Shiraishi signature
homophonic, 9 Maurer's randomized stream,	wavefront arrays, 25 I	scheme, 516-17
125-26	modes, 248-49	Ong-Schnorr-Shamir signature
Pohlig-Hellman, 184	probabilistic. theory, 255-56 Concurrence schemes:	schemes, 5 14–15 Rao-Nam cryptosystem, 522
practical security, 20–21, 24 product, 21	constructing, 459-69	research in, 503-4
provably secure, 24	definition. 460	RSA cryptosystem, 519–21
randomized stream, 68	Conditional access system, 592-94 Conditional entropy, II-12	system-theoretic approach, 68 Tsujii-Matsumoto-Kurosama-
Rip van Winkle, 24, 124–125 stream, 22, 67-134	Confusion, 20–21	ltoh-Fujioka cryptosys-
substitution, 21	Congruential generators:	tern, 518
synchronous stream, 70	cryptanalysis of, 523-26	Yagisawa cryptosystem, 5 18
transposition, 2 I use of term, 384, 386	definition, 523 linear-truncated congruential	Cryptanalyst, definition of, 181 Cryptanalytic attack:
Vernam, 7	generators:	brute-force, 22
Cipher block chaining (CBC), 23, 54-55, 192, 594	with known oarameters. 524-25'	chosen-ciphertext, 4, 31 chosen-plaintext, 4
Cipher feedback (CFB) mode, 54,	with unknown parameters, 526	chosen text, 4
56, 192	Connection machine, 249	ciphertext-only, 4
and self-synchronous stream ciphers, 7 I	Contact location, smart cards, 567-69	known-plaintext, 4 meet-in-the-middle, 22
Ciphertext, 4, 46, 119, 180 , 213	Continued fractions, relation to	Cryptanalytic principles, 75
Ciphertext message, see Ciphertext	linear complexity profile,	Cryptech (Waterloo University),
Ciphertext-only attack, 4 Circulant matrix, 77	80-81 Conventional cryptosystems, see	161–62 CRYPTO conferences, 36
Clearing House Interbank Payments	Secret key cryptography	Cryptogram, see Ciphertext
System (CHIPS), and	Coppersmith algorithm, 296-303	Cryptographic checksum, 329
DES, 51 Clock-controlled shift registers,	and computation of discrete logarithms, 293-94	Cryptography, 4. 42-322, 564–65 authenticity/integrity require-
101-6	practical analysis, 299-303	ments, 182-83

ciassicai, see Cryptography, sin-	specific, 57-58	ware, 373
ale kev Data Encryption Standard (DES),	characteristics, 183	electronic mail security,
21–22, 43-64, 183	cipher-block chaining (CBC)	370-7 I
exponentiation, 184, 216	mode, 23	public key certification,
information-theoretic approach,	cipher feedback (CFB) mode, 56	368-69
24-25	controversy over, 22, 48-49	secure telephone system, 372
protocols, 32-36, 543-548	cryptanalysis, 526-28	and authentication, 196, 369-
public key cryptography, x, 7,	cryptography:	70, 373
25-32, 135-75, 185-87	public perception of, 46-47	and certificate-based
public perception of, 46-47	public's interest in, vii, 3, 54	systems, 202
secrecy requirements, 181-82	cycles, 527-28	commitments, 340-41
secret key, see Cryptography,	development, 45-48	common features, 195
single key	electronic code book (ECB)	compared to handwritten signa-
single key (also Secret key, clas-	mode, 21	tures, 195-96
sical), ix, 8-25, 183	future, 60-62	compared to zero-knowledge
trends, 181	government use, 61	proofs, 166
Cryptology:	key length, 48	disputes, 341–44
assumptions about, 4-5	modes of operation:	resolution, 341–44, 371-72
history, 6-7	cipher-block chaining, 55	witnessed digital signa-
need for, 5	electronic codebook, 55	tures, 344 El Carnal's signature scheme,
nomenclature, vii, 4-5 subdivisions, 4	k-bit cipher feedback, 56 k-bit output feedback, 56	351–52
Cryptosystems, 181, 183	new algorithms, 59-60	Fiat-Shamir signature scheme,
design criteria, 232-33	Commercial COMSEC En-	352-53
numeric criteria, 233	dorsement Program	fundamental concepts, 328-48
patent restrictions/license fees,	(CCEP), 59-60	Goldwasser-Micali-Rivest signa-
233, 608-9	forces for, 59	ture scheme, 353-54
security, 232-33	output feedback mode (OFB), 56	and hash functions, 195-96,
versatility, 233	publication of standard, 49	344-48
export controls, 5, 564-65	reaffirmation, 60-61	initial agreement, 332-33
protocol failures, 541-58	S-boxes, 48-49	legal status, 332-33
analysis, 554-57	security, 183	Merkle's tree signature scheme,
classes of, 554-55	standards, making organizations,	355-56
common modulus, 546-49	50-53	methods for, 333-35
low-entropy, 550-5 1	structural properties, 528	arbitrated signatures, 333-34
notary, 544-46	trapdoors, 48-49	true signatures. 334
single-key protocol failure,	validation and certification, 50,	properties. 330-3 1
552-54	53-54	public key implementation, 196– 99. 336
small exponent RSA, 549-50	Data storage and mail systems, and	
public key, 185–87	DES, 57-58	nonrepudiation issue, 197-98
secret key, (also Single key, one- key, symmetric), 8	Decapitation attacks, 483-85 Deception, and perfect authenticity,	proof of delivery issue, 198-99
services provided, 180	15-16	Rabin's cryptoscheme, 354-55
Cryptowriting, (also Secure writ-	Deception attack, 15	RSA public key scheme, 350–51
ing), 591	Defense Advanced Research	schemes proposed, 196
Cylink CIDEC-HS, 160–61	Projects Agency	signature schemes, 196
cymm cibbe 115, 100 0.	(DARPA)-Internet, see	implementation, 350-55
DARPA-Internet, 224-29	DARPA-Internet	practical use, 344-48
authentication and key exchange,	Denelco HEP, 248	signature scheme settings,
228-29	Department of Treasury authentica-	335-40
authentication framework, 227	tion of EFTs , 53	composition of trapdoor per-
certificates:	DES, see Data Encryption Stan-	mutations, 338-39
obtaining, 227-28	dard (DES)	public key cryptography, 336
revocation of, 228	Desensitized authentication, 387	schemes with implicit verifica-
use of, 226-27	Difference decimation	tion functions, 339
encapsulation/encoding, 225-26	sequence, 103	schemes with probabilistic ver-
key management, 225 services, 225	Diffie-Hellman exponential key	ification, 339-40
Data compression, 13	exchange, 26-27, 142- 44, 188–89, 217-18	secret key cryptography, 337
Datacryptor II, 157–58	Diffie-Hellman one-way function,	signatures by tamper-resistant modules, 338
Data encryption:	27, 31	trapdoor signature schemes,
and authentication, 57	Diffie's randomized stream	336-37
and DES. 54-56	cipher, 125	signing process, 33 1-32
Data Encryption Standard (DES),	Diffusion, 20-2 I	techniques, 348-57
21-22, 43-64, 149-50 ,	product cipher, 21	one-way functions, 348-50
181, 183, 350, 385.	Digital signatures, 27-29, 138-39,	using Rabin's public key crypto-
573-74	155, 166, 187, 195–99 ,	system, 354-55
algorithm, 22, 50	325-78	verifying transformations,
authentication, using, 57	applications, 368-73	331-32
acceptance of, 49-54	authentication and verification,	witnessed, 344
applications, 54-58	369–70, 373	Diophantine approximation
commercial, 61–62 general, 54-57	computer networks, 373 dispute resolution, 371-72	(UGSDA), 507-9 Discrete exponential function, 26
501101a1, 5 1 -57	dispute resolution, 3/1-/2	Discrete exponential function, 20

Discrete exponentiation cryptosys-Exponential key exchange, 142-44 Guillou-Quisquater scheme, smart terns, 521 Exponential systems, mathematics cards, 599, 605 of, 271-72 Discrete Fourier transform, and Handwritten signatures, compared to digital signatures, 195–96 linear complexity, 76-78 Exponentiation, 184, 216, 251 Discrete logarithms, 266-68 discrete exponentiation cryptosystems, 184, 521 in finite fields, 349-50 in fields of characteristic 2, Hardware support, key manage-295-303, 311-13 ment, 19 I-92
Hash functions, 235, 356-68
block cipher-based, 357-65 Dispute resolution, digital signatures, 341-44 Extrinsic identifiers, 410, 411 Factoring, see Integer factorization Dissymmetrization, 591 Fast data encipherment algorithm bidirectional message authentica-Distributed computing, 248-49 tion code, 358-60 (FEÂL). 529 Double-iterated knapsack, 506 cipher block chaining-message Federal Reserve System, 53, 58, Draft international standard, smart authentication code, 357-58 384-85 cards, 567 Feedback clock-controlled shift reg-EEPROM technology, and smart cards, 580–81 Coppersmith's attack on Rabinisters, 105-6 type functions, 2 14-15 Feige-Fiat-Shamir Proof of Iden-Davies-Meyer (DM) scheme, Electronic business data tity, 429-30 interchange, and DES, 58 Electronic codebook (ECB) mode, 360-61 Fermat's theorem, 30, 259-60 and digital signatures, 195-99 examples, 213-16 Fiat-Shamir signature scheme, and DES. 21. 54 352-53 Electronic funds transfer (EFT) and DES, 53, 58, 384-85 Electronic mail security, based on insecure schemes, 361-63 Fiat-Shamir identification keyed hash functions, 347-48 scheme, 599 MD2 and MD4, 267-68 Filter generators, 83-86 Merkle's block cipher-based hash correlation attacks, 92-93 Finite fields (Galois fields), 143, digital signatures, 370-7 I functions, 363-64 El Gamal cryotosystem: compared to RSA cryptosystem, and message digests, 199-202 260-61 minimal requirement, 200 310-16 computations in, 250-5 1 and modification of message, arithmetic systems (choice), exponentiation in, 349-50 detection of, 200 315~16 Finite-state machine theory, 69-70 modular-arithmetic-based hash message expansion, 315 Forward clock control (shift register functions, 365-67 security comparison, 31 1-13 sequence generators), Jueneman's methods, 365 throughput, 3 14-15 101-5 TeleTrust/Open shop infordescription of, 310 in fields of characteristic 2: Future Directions in Cryptography mation system method, 365-67 (Workshop, 1989), 126 basic algorithm, 295-96 compared to RSA, 310, Gallium arsenide (GaAs) technolrelation to one-way functions, ogy, and cryptanalysis, 247-48 200-20 1 313-16 strong hash functions, 201-2 uses, 196, 200 weak hash functions, 201-2 Coppersmith algorithm, Geffe's generator, 107 296-97 General Services Administration faster generation of Coppersmith equations, 297-98 (GSA), standards, 52 Homophonic: ciphers, 9 Generator (bit): practical analysis of Coppersubstitution, 14 smith algorithm, 299-303 smoothness testing of polyno-Blum-Micah. 117, 119-20 How to Insure That Data Acquired quadratic residue, 117, 122-23 RSA, 118, 120-22 to Verify Treaty Complimials, 298-99 ance Are Trustworthy solution of linear system, 299 integer factorization, 303-10 Shamir, 118-1 19 (Simmons), 1.55, 387, Generator (pseudorandom number): 409, 615-30 Luby-Rackoff, 74 Schnorr, 74-75 security, 291-92 signature scheme, 211-12, 351-**IBM (International Business** 52, 397 Shamir, 118-19 Machines Corp.): Generators (keystream): Elliptic curve cryptosystems, recent cryptography program, 22, 47 combination, 86-88 work regarding, 316-18 LÜCIFER, 47 Elliptic curve factoring algofilter, 83-86 Ideal ciphers, 20 rithm, 309 system-theoretic approach, Ideally secure cipher system, 68 106-15 Encryption, 232 Identification Friend or Foe (IFF) **Encryption Algorithm for Computer** Geffe's, 107 systems, 138 Identity-based schemes, 245-46 security, 246 Data Protection. Federal inner product, I IO- I I Register, 47-48 knapsack, 114-15 multiplexer, 108–9 1/p, 112–13 Entitlement: Impersonation attack, 14, 389-91 control message (ECM), 593 Implementation standards, 46 Pless, 107-8 management message (EMM), 592 Implicit verification function summation, 113–14 threshold, 109–10 schemes, and digital sig-Entropy H(X), definition, 11-12natures. 339 Equivocation, see Entropy H(X), Wolfram's cellular automata, Information authentication, definition II1-12 379-419 ETA- IO, 248 Gilbert-McWilliams-Sloan auauthentication channel based on Euclid's algorithm, 261-62 thentication channel RSA cryptoalgorithm, Euler totient function, 28, 259 bound, 401 411-12 EUROCRYPT conferences, 36 Goldwasser-Micali-Rivest extrinsic identifiers, 410, 41 I European Open Shop Information ture scheme, 196, 353-54 identity verification schemes, 410-14 System (OSIS)-TeleTrust project, 365-67 Goodman–McAuley knapsack cryptosystem, 512–13 Goppa codes, 147-48 intrinsic identifiers, 4 10 Exhaustive Čryptanalysis, see issuing authority: Brute-force attack Graham-Shamir knapsack, 275 role of, 413

Meier-Staffelbach framework Cohen-Lenstra, 268 Lehman's test, 270 Message authentication codes (cont.) for. 97-99 smart cards, 566 Message digest. 154. 199. 234 and memory. 96 Miller-Rabin test, 270 discovery, 154 and hash functions. 199-202 perfect nonlinear (bent) func-Solovay-Strassen test, 269 tions, 100-101 strong pseudoprime, 163 Message source, 8, 386 Nonrepudiation of origination, 180, Primitive element, 26 Method for Obtaining Digital Sig-197-98 Primitive roots, 266-68 natures and Public-Key Nonvolatile programmable memory (NVM), in smart cards. 577–80 Private randomization, 8-9 Cryptosystems, A (Rivest-Probabilistic algorithms, 238 Shamir-Adlernan). 27 Probabilistic computing, theory of, Military authentication protocol, Notary protocol failure, 544-46 255-56 NP-hard problem, 32 86, 383-84 Probabilistic encryption, 244-45 NSA. see National Security Miller-Rabin primality test, 270 Probabilistic verification schemes, Minimal polynomial, 81-82 Agency (NSA) and digital signatures, Nuclear Regulatory Commission Minitel, 597 339-40 MITRENET. MEMO system, (NRC), 618 Probability of successful: Number field sieve, 308-10, 520 217 - 18deception, 15 MIT RSA board. 157 impersonation, 14-15 Okamoto-Shiraishi signature Modes of operation (DES): substitution, 15 **scheme, 516-17** 1/p generator, 112–13 cipher-block chaining (CBC), 55 Processor/memory pairs, connectelectronic codebook (ECB), 55 k-bit cipher feedback (CFB), 56 ing, 249 One-key cryptosystems, see Secret key cryptography One-person interactive protocol, Product cipher, 21 k-bit output feedback (OFB), 56 Program checkability, 426, 434 Modular arithmetic, 256-60 Programmable active memory 426-27 Euler-Fermat theorem, 259-60 One-time pad, IO, 34, 73 (PAM), 314 One-way functions, 25-28, 31-32, 138-39, 201, 348-50, 439 Euler totient function, 259 Proofs of identity, 4 14-16, 429-3 1 Modular-arithmetic-based hash Protocol: Arthur-Merlin, 428-429 cryptographic, 32-36, 543-544 definition, 3, 543-44 interactive priof systems/zerofunctions, 365-67 DES. 350 Multioracle version, instance-hiding exponential modulo n = pa. 349 schemes. 434 exponentiation in finite field, Multiple-iterated knapsacks. 509 349-50 Multiplexer generator, 108–9 Multiprover interactive protocols, knapsack function, 350 knowledge, 423-40 multiplication of two large key distribution, 33 428-29 primes. 348-49 Ingemarsson-Simmons, 479-483 mental poker, 35 notary, 544–546 Shamir's three-pass, 33-35 Multisignature schemes. smart cards, 605-7 relation to hash functions, 200-201 squaring modulo n, 350 **National Bureau of Standards** Ong-Schnorr-Shamir (OSS) signashared secret/shared control (NBS), also National ture scheme, 514-15 schemes, 44 I-97 **Institute of Standards** quadratic, cryptanalysis of, 515 and Technology (NIST), 22, **45–50**, **52–53**, 373, **574** strict avalanche criterion, 100-1 Open cryptologic research, 5-6 Oracle, instance-hiding, 434 Output feedback (OFB) mode, U. S. Military authentication, 383-84 Protocol failures, 543-58 Data Encryption Standard. 53 54, 56 analysis, 554-57 DES validations, 50 classes of, 554-55 Institute for Computer Sciences Parallel computing, 248-49 common modulus (RSA), and Technology Parameterized hash functions, 546-49 (ICST), 45 347-48 low-entropy, 550-5 I standard for computer data au-Parity check code, 328-29 notary, 54446 thentication, 57 Percentage redundancy, 13 single key. 552-54 standard for password usage, 57 Perfect authenticity, 15–16, 18 Perfect keystream generator, 68, I15 small exponent (RSA), 549-50 National Communications System (NCS), standards, 52 Provably secure authentication Perfectly secure cipher system, 68 National institute of Standards and schemes, 392 Perfect secrecy. IO- 12 Provably secure cryptographic Technology (NIST), see key requirements for, I I- 12 National Bureau of Stanwith probability I, 25 schemes, 24, 392, 395 Periodic sequences, 81-83 based on public key dards (NBS) National Security Agency (NSA), 6. 22. 49, 53. 59, 149, 383, 574 functions of, 83-88 cryptographic algoproducts of, 82-83 rithms, 397 PERM function, 430-431 Pseudorandom number generator, Secure Telephone Unit (STU-II Personal identification number see Generator (pseudoand STU-III). 158-60 (PIN), smart cards, 191, random number) NBS, see National Bureau of Stan-410, 444, 566, 587, 589 Public components distribution Personnel identity verification.

154–57, 409-13

PIN, see Personal identificadards (NBS) scheme (public key), New Directions in Cryptography 189-92 (Diffie-Hellman), 7, 25, certificates, use of, 190 142. 146, 330 component pairs, generation/ storage of, 191 tion number Niederreiter cryptosystem, 51 1-12 Pieprzyk knapsack **crypto**-system, 5 13 Nomenclature, cryptology, 4-5 Nondeterministic (NP) completeness. 31–32, 425 hardware support for key management, 191–92 Plaintext, 4, 46, 180, 213 Pless generator, 107-8 Public key cryptography and cryptosystems, 7. 25-32, 135-75, 185-87, 203-12, 291-318, 336 Nondeterministic Turing Point of sale records, 413-16 machines, 254 Practical security, 10, 24 Nonlinearity criteria of Boolean Prescientific cryptology, era of, 6 functions. 93-101 Primality testing, 163, 268-70 algorithms/architectures, 247-52

application/implementation, 154 –62, 186-87, 217-29	Quadratic congruential hash functions, 215-16	timings, 246
AT&T link encryptors, 157	Quadratic OSS signature scheme,	variations, 52 I RSA cryptosystem, see Rivest -
Cryptech (Waterloo Univ.),	cryptanalysis of, 5 15	Shamir-Adleman (RSA)
161-62	Quadratic residue generator,	public key cryptosystem
Cylink CIDEC-HS, 160-61	122-23	Running-key generator (RKG),
DARPA-Internet, 224-29	Quadratic residues modulo a prime,	23-24
Integrated Services Digital	264-65	Sandia National Laboratories,
Network (ISDN), 218–19 ISO authentication framework,	Quadratic residuosity modulo a	154-56, 412-13, 617-30
2 19-24	composite, 245, 272-77 Jacobi symbol, 273-74	authentication channel, availabil-
LAN implementation, proposal	quadratic residues, characteriz-	ity of, 623
for, 229-35	ing, 272-73	authentication with arbitration,
MITRENET, 217–18	quadratic residuosity and Blum	562-69 first application of public key
MIT RSA board, 156-57	integers, 275-77	cryptography, 154–55,
Racal-Milgo Datacryptor II, 157–58	Quadratic residuosity modulo a	412–13
Sandia 336-bit RSA board,	prime, 266 Quadratic sieve factoring	message authentication without
154-56	algorithm, 207, 250	secrecv. 622
Secure Telephone Unit (STU-	outline, 303-4	personnel identity verification,
II, STU-III), 158–60	practical analysis. 304-8	154–55, 412-13
benefits, 387 categories, 203	Quadratic sieve machine, proposal	public key devices: low-speed chip, 156
certificate-based key manage-	for, 25 1-52	technology development for,
ment protocols, 193-95	Quantitative criteria for cryptosys-	154-56
digital signatures. 27-29., 138-	tems. 233 Querier, and instance-hiding. 434	336-bit RSA board, 154-56
39, 155, 166, 187, 195 –		unmanned seismic monitoring
99. 336	Rabin's public key cryptosystem,	system, 619-22
early responses to, 149–54 key management, 151–54	digital signatures using, 354–55	S-boxes, 48-49 Scramblers, 71-72
El Gamal signature scheme,	Rabin-type functions.	Secrecy:
211–12	Coppersmith's attack on,	definition, 180
exponential key exchange,	214–15	and infeasibility of message de-
142-44	Rabin-Williams' variant of the	cryption, 182
first application, 154–55, 412–13	RSA system, 31, 394-95	requirements, 181–82
future, 166-68 initial discoveries, 137-42	Racal–Milgo Datacryptor II, 157–58	Secret cryptologic research, 5-6 Secret key cryptography, 8-25,
Merkle's puzzles, 140–42, 143	"Random cipher," 12–13	337-38
key distribution, 137	Randomization, cryptographic, 9	authenticity and deception, 14-20
key distribution center (KDC),	Randomized stream ciphers, 24,	commutative property, system
138, 151-52	68-69, 123-36 Diffie's randomized stream	with, 33-34
key management, 187–95 hardware support, 191–92	cipher, 125	Data Encryption Standard (DES), 21–22, 183
public component distributions	Maurer's randomized stream	diffusion/confusion, 20-21
scheme, 189-92	cipher, 125-26	and digital signatures, 337-38
public distribution of secret	Rao-Nam cryptosystem, 522	imperfect cipher, breaking, 12–14
keys, 188-89	Random sequences, 80-8 1	model/notation, 8-9
secret key management, 188 knapsacks, fall of, 148-49	Receipts, verifiable, 414–16 RECOVER, 618	perfect secrecy, IO-12 practical security, 20
knapsack systems, 209-I I	Redundancy, and authentication	secure channel, 8
limitations, 187	schemes, 397-98	security, 9–10
McEliece coding scheme, 147-	Replay attack, 230	stream ciphers, 22-24
48, 166	Repudiation, 23 I	subdivisions, 67
mathematical/computational as-	Rip van Winkle cipher, 124–25 Resolution of Disputes, 341-44	Secret key distribution:
pects, 235-39 modifications of Diffie-Hellman	Rivest-Shamir-Adleman (RSA)	key exchange protocol, 192-93 Secret key generation, LAN, 234
model, 243-46	public key cryptosystem,	Secret keys, 4, 139, 181 , 192
identity-based systems,	27-31, 49, 115, 145-47 ,	Secret sharing, see Shared
245-56	204-9, 519–21 . 393-94	secret schemes
probabilistic encryption,	compared to El Carnal cryptosys-	Secure telephone system, and digi-
244–45 one-way function, 25-26,	tern, 291-322 factoring as the basis of security,	tal signatures, 372 Secure Telephone Unit (STU-II and
138-39	207-8	STU-III), 158–60, 371–72
primality testing, 163, 268-70	implementation, 205-6, 2 16-17	Secure writing, see Cryptowriting
proof of security, 504	low-exponent versions, 208-9	Security, 232-33
research directions, 164-66 Rivest-Shamir-Adleman public	mathematics, 27 1-72 RSA chips:	future, 62 identity-based systems, 246
key cryptosystem, 27-3 1,	design considerations, 2 16–17	mechanisms, 231-32
145–47, 204-9	proposed design, 217	perfect, 68, 72
secrecy and authenticity, 185-86	RSA generators, 120-22	practical, IO
secret key distribution, 192-93	RSA public key scheme, 204-9,	theoretical, 9
trapdoor knapsacks, 144–45	350-5 1 RSA trapdoor one-way function,	threats. 230-3 1
trapdoor one-way function, 25– 26, 28, 139	28–31	Security standards development, 45-46
Public randomizer, 8	security, 206-8. 291-92, 625	NBS-NSA-IBM roles, 47-48
	•	

Small exponent protocol failure, Snefru algorithm, 368 Security threats: interception of data, 230 549-50 Solovay-Strassen primality test, manipulation, 230-3 I masquerade, 230 30, 269 Smart Card: A Standardized Secu-Source encoding, 386 rity Device Dedicated to Public Cryptology (Guillou-Quisquater-Square roots modulo a prime, replay, 230 265-66 repudiation, 23 I Self-programmable one-chip micro-computer (SPOM), and Ugon), 409 Squaring modulo n, 350 Standardization, smart cards, Smart cards, 234, 561-613 566-75 smart cards, 582-85 card authentication, 597-608 Self-synchronous stream ciphers: multisignature schemes, 605-7 Standards, functional classificaand cipher feedback mode, 71 new signatures, 603-5 tion. 46 and scramblers, 7 I-72 public key algorithms, 598-99 Strategic Arms Limitation Treaty Semi-invertible secret key algozero-knowledge techniques, (SALT), 619 rithm, smart cards, 590 599-603 Statistical zero-knowledge, 428 Sequences, 80-83 definition, 563, 565 Stop-and-go generator, 102-3 periodic sequences, 8 1-83 future evolution, 607-8 Stream ciphers, 22-24, 67-134 Shamir's pseudorandom number general devices, initialization of binary additive stream generator, 118-19 automatic processes ciphers, 23 Shamir's three-pass protocol, in, 572 compared to block ciphers, 33-35 history of, 563-65 23-24 MCU in, 565 Shannon's secrecy bound, 12 complexity-theoretic Shared secret schemes, 165, message authentication codes approach, 68 (MACs), 566, 594 441-97 generators, 118-23 operations of, 565-66 autocratic schemes, 479 notions/concepts, 115- 18 personal identification numbers Blakley's scheme, 445, 447definition, 67 53, 464 (PINs), 566, 587, 589 design approaches, 67-69 concurrence schemes: physical/logical security, 565 goal, 67 pseudosignature, 589 characterization of classes of, information-theoretic approach, secret key algorithms, 590-91 461-63 68, 72-75 security, 585-97 cardholder identification, 587constructing, 459-69 local randomization, 73-75 definition, 460 randomized stream ciphers, 68multilevel and multipart 88, 599-603 69, 123-26 schemes, 464-66, chip security features/card life cycle, 585-87 system-theoretic approach, 68, 483-88 75-1 **15** unanimous consent schemes, conditional access to audioclock-controlled shift registers, 460-66 visual services, 592-94 101-6decapitation attacks, 483-85 by control of algorithm execucorrelation attacks, 88-93 democratic schemes, 479-83 tion in mask KC2, 594 generators, 106-15 and encryption/decryption. cryptowriting/dissymmetrizanonlinearity criteria, 93-101 443-44 tion, 591 period and linear complexity general models, 450-59 dynamic authentication by seof sequences, 80-83 geometry of, 469-77 curity modules, 588-89 period sequence functions, ideal (definition), 447 invertible secret key algorithms, 590-91 83-88 indicators/domains, 456 transform techniques, 76-80 key distribution via, 483-88 logical architecture, 97 terminology/modes of operations, monotone schemes, 460 mechanisms/techniques, 566 69-72 mutually distrustful participants, secret key one-way funcself-synchronous stream ciphers general protocol for, tion, 588 and scramblers, 71-72 479-80 synchronous stream ciphers and semi-invertible secret key alperfect (definition), 446 pseudorandom generators, gorithm, 590 setting up, 478-83 standardization, 566-75 70 - 71shares (also shadows) defini-String, classic theory of computaof contact location, 567-69 tion, 445 tion, 252 at European level, 573 Shamir's scheme, 445-47, Strong hash functions, 201-2 of file architecture/related 450-5 I Strong pseudoprime tests, 163 STU-II and STU-III, 158-60 security, 572 Simmons' scheme, 455-59 in ISO outside WG4, 572-73 threshold schemes, 445-50 of physical characteristics, 567 Substitution attack, 15, 389-91 Shift registers: of security techniques in ISO, Substitution cipher, definition, 21 alternating step generator, 103-4 cascade, 104-6 573-75 Summation generator, 113-14 of signals/protocols, 570-7 1 Super increasing sequences, clock controlled, 101-6 144-45 of smart card interpretive lanforward clock control, 101-3 guage (SCIL), 572 Symmetric cryptosystems, see Signature, 232 Secret key cryptography technology, 575-85 Signatures using tamper-resistant integrated circuit card family, modules (TRMs), 238 Synchronous stream ciphers: error propagation, 7 1 Simmons' authentication channel 581-82 keystream generation, 70 nonvolatile programmable memory (NVM), 577-80 capacity, 406-7 and pseudorandom generators, Simmons' model for shared secret schemes, 455-59 Simmons' theory of authentication, 70-7 I self-programmable one-chip self-synchronizing feature, 72 microcomputer (SPOM), System-theoretic approach to **14–20**, 381-419 582-85 transaction process, 564, 570 and VLSI chip technology, stream cipher design, 68, Single-chip microcomputer, in 75-1 **15** smart cards, 565 Single key protocol failure, 552-54 563-64 Systolic arrays, 25 1

Tamper-resistant modules. and digital signature & 338

Télétel, 397

Test Ban Treaty Verification, 155–56

Theoretical security, 9–10, 18 Threshold generator, 109–10 Threshold shared secret schemes, 445-50

Timestamps, 198, 235

Totient (function), see Euler totient function

Transform techniques, 76-80 algebraic normal form transform, 79-80

Blahut's theorem, 77

discrete Fourier transform and linear complexity, 76-78 Walsh transform and Boolean

functions, 78-79
Transposition cipher, definition, 2 I
Transpoor-knapsack, public key **cryn**

Trapdoor-knapsack public key **cryp**-tosystem, 5, 32, **144–45**, 209-10

Trapdoor one-way function, 25-26, 28. **139**

Trapdoor permutations, composition of, 338-39 Trapdoors, 48-49

Trapdoor signature schemes, 236-37

Treaty verification, 617-630 in the presence of deceit, 627-629

with arbitration, 625-627 without secrecy, 622-625 True signatures, 195-96, 334 Trust as a parameter, 443-445 Trusted key distribution center (TKDC), 33

Tsujii-Matsumoto-Kurosama-Itoh-Fujioka cryptosystem, 518 Turing machines, 253-54, 255

nondeterministic, 253-54, 2

Uncertainty:

definition, I I Unconditionally secure authentication schemes, 397-98,

403-8 Unconditionally secure **crypto**systems, 73

Unicity distance, 12, 20, 73 U. S. digital standard (DSS), proposed (1991), 373

U. S. export/import controls, cryptographic devices, 5

U. S. National Bureau of Standards (NBS), see National Bureau of Standards (NBS)

Unusually good simultaneous diophantine approximation (UGSDA), 507-9

Vernam's cipher, 7

Vernam's system, modulo *L*, IO Von Neumann model, computing, 248

Walsh transform, 78-79

Wavefront arrays, 25 I
Weakened DES-like cryptosystems,
cryptanalytic-attacks on,
526-27

Weak hash functions, 201–2 Witnessed digital signatures, 344 Wolfram's cellular automata generator, I I 1-12

Work characteristic of ciphers, 20

X.509 hash function, 347

Yagisawa cryptosystem, 518

Zero j-invariant, 317

Zero-knowledge, definition of, 425 Zero-knowledge proofs, 166, 239-43, 423-40 arguments, 426, 434

Arthur-Merlin protocol, 428 complexity classes, 438-39 definition, 239, 426-29

examples, 429-3 I proofs for the PERM function,

430-3 I proofs of identity, 429-30 instance-hiding schemes, 426, 234-35

interactive proof systems, 426-29

language-recognition power, 431-33

multiprover interactive protocols, 428-29

one-prover interactive proof system, 427-28 open problems, 435-36 program checkability, 426, 434

simulator, 428

Zero knowledge techniques applied to smart cards, 599–603

Zero Power Plutonium, Peactor

Zero Power Plutonium Reactor, identity verification scheme, 412–14

Editor's Biography

Gustavus J. Simmons received the Ph.D. degree in mathematics from the University of New Mexico, Albuquerque. He is Senior Fellow for National Security Studies at the Sandia National Laboratories, Albuquerque, NM. Earlier he was Manager of the Applied Mathematics Department and Supervisor of one of two divisions at Sandia devoted to the command and control of nuclear weapons. In all these positions he has been primarily concerned with questions of information integrity arising in national security: command and control of nuclear weapons, verification of compliance with various arms control treaties, individual

identity verification at sensitive facilities, etc. His research has been primarily in combinatorics and graph theory and in the applied topics of information theory and cryptography, especially as applied to message authentication and systems design to achieve this function. His current research is aimed at devising information dependent protocols whose function can be trusted even though no specific inputs or participants can be. The need for such protocols arises frequently in questions of national security ranging from simple two-man control schemes for nuclear weapons to arbitrarily complex concurrence schemes for the initiation of various treaty controlled actions. Within the defense community he has pioneered in applying these techniques to the command and control of nuclear weapons.

Dr. Simmons was the recipient of the U.S. Government's E. 0. Lawrence Award in 1986. The accompanying citation reads in part: "In the political climate that has emerged in the nuclear era, increasing importance in the design of nuclear weapons must be placed on control features including verification, authentication, and positive use control. This is the first time that achievements in this field, of vital importance to national security, have been recognized by a Lawrence Award. . . . "In that same year, he also received the Department of Energy Weapons Recognition of Excellence Award for "Contributions to the Command and Control of Nuclear Weapons."

Dr. Simmons was awarded an honorary Doctorate of Technology in May 1991 by the University of Lund (Sweden) in recognition of his contributions to communications science and to the field of information integrity. The diploma cites him as "The Father of Authentication Theory."

Dr. Simmons has published more than 120 papers and books, many of which are devoted to the analysis and application of asymmetric encryption techniques or to message authentication, and has been granted several patents for inventions in this area. At the invitation of the editors, he wrote the section on cryptology that appears in the 16th edition of the Encyclopaedia Britannica. He is an editor for Journal of Cryptology, *Ars Combinatoria*, and *Codes, Designs and Cryptography*.