Operation Count for gaussian elimination)
Consider an nxn matrix and an element (x) in the ith
vow and column o
NXN jth column
The total number of operations
ith required for gaussian elimination from element x is o
1 (n-i) multiplications of row i by
(n-i) elements under 7.
2 (n-i) additions of multiplied row i members to rows underneath it.
$total = (n-i)^2$ operations
Total number of operations for every element along
diagonal is o
$T = \sum_{k=1}^{N-1} (n-i)^2$ - same
excall summation identity $\sum_{k=1}^{n} k^2 = \prod_{k=1}^{n} (2n+1)(n+1)$
$\frac{1}{2}$
The order of the gaussian elimination algo is
$\mathcal{O}(N_3)$.
Operation count For forward and backward substitutions
CHEVATION COUNCIL FOR ASTRONAL AND CALCEDATA SECSTICATIONS
Now we see why solving IUX = B is Exchar then
Now we see why solving LUX = B is faster than solving AX = B using gaussian elimination.
consider -
EDUSTRET -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$O \alpha_{22} \alpha_{23} \alpha_{2n} $
i i i i i i i i i i i i i i i i i i i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$x_i = \frac{1}{2} \left(b_i - \sum_{j=i+1}^{\infty} (a_{ij} x_j) \right) $
Qii J=i+1
. Hof operations for backward operation per row
= n-i+1 multiplications + additions for equ
of rows -> n, : we do all these multiplications
and additions for each of the n rows. The operation
counts for each row keep summing up?
<u>n</u>
Operations count = $\frac{\sum (n-i+1)}{n}$ same form as
$\frac{1}{2}i = n(n+1)$
$\therefore \text{ Order } : O(n^2)$
: LU decomposition then solution
of LUX=B is faster than gaussian
alia inchina Fox salvina DX - B

 \Im