

LECTURE - 02 CHEMICAL KINETICS

Today's Goal

Calculation of order of complex reaction

First order reaction

CALCULATION OF ORDER OF THE COMPLEX REACTION

Q. For the following reaction

 $2AB + B_2 \rightarrow 2AB_2$

The mechanism is

Step 1: $AB + B_2 \rightleftharpoons AB_3$ (Fast)

Step 2: $AB_3 + AB \rightarrow 2AB_2$ (Slow)

Find Order:

CALCULATION OF ORDER OF THE COMPLEX REACTION

Q. For the following reaction

 $A_2 + B_2 \rightarrow 2AB$

The mechanism is

Step 1: $A_2 \rightleftharpoons A + A$ (Fast)

Step 2: A + $B_2 \rightarrow AB + B$ (Slow)

Step 3: $A + B \rightarrow AB$ (Fast)

The overall Order of the reaction is:

$$(x + y)$$

$$(M + n)$$

$$(c + d)$$

Which one of the following statement for the order of a reaction is incorrect?

Order can be determined only experimentally

Order is not influenced by stoichiometric coefficient of the reaction

Order of a reaction is sum of power to the concentration terms of reactants to express the rate of reaction

Order of reaction is always whole number

Q

The rate of the reaction $2N_2O_5 \longrightarrow 4NO_2 + O_2$ can be written in three ways:

$$\frac{-d[N_2O_5]}{dt} = K[N_2O_5]; \qquad \frac{d[NO_2]}{dt} = K'[N_2O_5]; \qquad \frac{d[O_2]}{dt} = K''[N_2O_5]$$

The relationship between K and K' and between K and K" are:

$$K' = 2K$$
; $K'' = K$

$$K' = 2K; K'' = K/2$$

$$K' = 2K; K'' = 2K$$

$$K' = K; K'' = K$$

For a reaction the initial rate Is given as: $R_0 = K[A]^2_0[B]_0$, by what factor, the initial rate of reaction will increase if initial concentration of A is taken 1.5 times and of B is tripled?

2.25

None of these

Reaction A \rightarrow B follows second order kinetics. Doubling the concentration of A will increase the rate of formation of B by a factor of

1/4

2

4

1/2

Integrated rate Expression in terms of Concentration

Integrated rate Expression in terms of moles

Half Life or t_{50%} or t_{1/2}

First Order Reaction t_{75%}

First Order Reaction Graphs

THANK YOU!!

Homework

ALL DPPs OF LAST CHAPTER
REVISE FORMULA OF LAST CHAPTER
DPP Of this Lecture

