

# Schwungrad Pendel: Modellbildung/Simulation (M2)

Name: Matrikelnummer:

Milan Larsen 581929
Sebastian Richter 572906
Cyrill Schmiedehausen XXXXXX
Aaron Zielstorff 567183

**Fachbereich:** FB1

**Studiengang:** M. Elektrotechnik

Fachsemester: 2. FS

**Fach:** M2 Modellbildung/Simulation **Dozent:** Prof. Dr.-Ing. Steffen Borchers

**Abgabe am:** 23. September 2022

Inhaltsverzeichnis htm.

# Inhaltsverzeichnis

| 1   | Einf               | ührung und Versuchsaufbau                                                                                                                                                                                                                                                                                                                                                    | 4                                    |  |  |  |  |
|-----|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| 2   | <b>Moe</b> 2.1 2.2 | Iellierung des Schwungrad-Pendels         Modellierung des Gleichstrommotors          Modellierung des Schwungrad-Pendels          2.2.1 Lagrange Ansatz          2.2.2 Freiheitsgrade und Zwangsbedingungen          2.2.3 Generalisierte Koordinaten          2.2.4 Berechnung der kinetischen und potentiellen Energie          2.2.5 Herleitung der Bewegungsgleichungen | 6<br>6<br>7<br>7<br>8<br>8<br>8<br>9 |  |  |  |  |
| 3   | 3.1                | andsraumdarstellung Nichtlineares Zustandsraummodell                                                                                                                                                                                                                                                                                                                         | 10<br>10<br>11                       |  |  |  |  |
| 4   | Verg               | gleich lineares/nichtlineares System                                                                                                                                                                                                                                                                                                                                         | 14                                   |  |  |  |  |
| 5   |                    | Parameter                                                                                                                                                                                                                                                                                                                                                                    |                                      |  |  |  |  |
| Lit | teratı             | ırverzeichnis                                                                                                                                                                                                                                                                                                                                                                | 18                                   |  |  |  |  |

| A 1                    |      | •   |        |        | •    |
|------------------------|------|-----|--------|--------|------|
| Δh                     | hil  | dun | gsver  | 701Ch  | ทเร  |
| $\mathbf{A}\mathbf{D}$ | DII. | aui | BUVLIA | LCICII | 1113 |

|      | _                                                       |
|------|---------------------------------------------------------|
| 1.1  | Modellskizze des Versuchs                               |
| 2.1  | Ersatzschaltbild Gleichstrommotor                       |
| 4.1  | Übersicht der Simulationsstruktur                       |
| 4.2  | Nichtlineare Strecke                                    |
| 4.3  | Lineare Strecke                                         |
| 4.4  | Vergleich der Pendelwinkel $\theta$ - kleine Auslenkung |
| 4.5  | Vergleich der Pendelwinkel $\theta$ - große Auslenkung  |
| Tabe | llenverzeichnis                                         |
| 1.1  | Modellparameter des Schwungrad-Pendels                  |

## 1 Einführung und Versuchsaufbau

Inhalt dieser Belegarbeit ist die Modellierung eines inversen Pendels, welches über ein Schwungrad regelungstechnisch in der aufrechten Position stabil gehalten werden soll.

Diese Arbeit geht dabei im ersten Abschnitt auf den **Versuchsaufbau** und die **Modellierung** des Pendels ein. Es schließt sich eine

**Sensitivitäts- und Parameteranalyse** an, über welche der Einfluss bestimmter Modellgrößen auf das Verhalten des Systems untersucht wird.

Nachdem das Modell aufgestellt und auf seine Eigenschaften analysiert wurde, folgt die Implementierung als Simulation in Matlab/Simulink. Dafür soll zunächst das **Aufschwingen des Pendels**. umgesetzt werden. Kann das Pendel bis in einen bestimmten Bereich um die obere Ruhelage bewegt werden, übernimmt ein **einfacher Zustandsregler**, welcher ebenfalls in dieser Arbeit entworfen wird.

Abschließend wird ein **Beobachter** umgesetzt, über welchen die nicht messbaren Zustände des Systems rekonstruiert werden können, um den Regler am realen Versuch in Betrieb zu nehmen.

Nachfolgend findet sich die Darstellung der Modellparameter/Konstanten zur Modellierung des Schwungrad-Pendels (siehe Tabelle 1.1).

| Symbol      | Parameter                                      | Wert/Einheit                                                       |
|-------------|------------------------------------------------|--------------------------------------------------------------------|
| $\theta$    | Winkel des Pendels                             | rad                                                                |
| $\varphi$   | Winkel des Schwungrades                        | rad                                                                |
| $J_1$       | Trägheitsmoment des Pendels (+ Motorstator)    | $0.01186\mathrm{kg\cdot m}^2$                                      |
| $J_2$       | Trägheitsmoment des Rads $(+ Motorrotor)$      | $0.0005711\mathrm{kg\cdot m}^2$                                    |
| $c_1$       | Reibungsfaktor des Pendels                     | $0.04  \frac{\text{N} \cdot \text{m} \cdot \text{s}}{\text{rad}}$  |
| $c_2$       | Reibungsfaktor des Rads                        | $0.0001 \frac{\text{N} \cdot \text{m} \cdot \text{s}}{\text{rad}}$ |
| $m_1$       | Masse des Pendels und Stators                  | $0.826\mathrm{kg}$                                                 |
| $m_2$       | Masse des Rads und Rotors                      | $0.583\mathrm{kg}$                                                 |
| $l_1$       | Länge vom Ursprung bis Schwerpunkt des Pendels | $0.1053\mathrm{m}$                                                 |
| $l_2$       | Länge vom Ursprung bis Schwerpunkt des Rads    | $0.14\mathrm{m}$                                                   |
| $K_{ m b}$  | Back-End-Konstante                             | $0.0987 \frac{V}{rad}$                                             |
| $K_{ m t}$  | Motor-Drehmoment-Konstante                     | $0.0987 \frac{\stackrel{\$}{N} \cdot m}{A}$                        |
| $R_{\rm a}$ | Widerstand der Ankerwicklung                   | $1.5562\Omega$                                                     |

Tab. 1.1: Modellparameter des Schwungrad-Pendels

Ziel der Arbeit soll es sein, anhand von Beispielparametern eine effektive Regelung umzusetzen, welche später bei der Übernahme auf einen realen Versuchsaufbau einfach adaptiert

werden kann. Dazu ist es wichtig ein gutes Modell umzusetzen und den Einfluss der verschiedenen Modell- und Regelparameter auf das Verhalten des Systems zu kennen.

Abbildung 1.1 zeigt den modellhaften Versuchsaufbau. Das System besteht aus einem Pendel und einem Schwungrad. Das Pendel kann frei rotieren um die 0z-Achse, die senkrecht zur 0xy-Ebene steht. Das Schwungrad wird durch einen Gleichstrommotor angetrieben und dreht sich um eine Achse parallel zur 0z-Achse. Das Pendel kann durch die Reaktionskraft ausbalanciert werden, die durch das Schwungrad erzeugt wird.



Abb. 1.1: Modellskizze des Schwungrad-Pendel-Versuchs inklusive relevanter Modellparameter

Weiterhin gelten folgende Voraussetzungen für das System:

- Das Pendel ist frei gelagert.
- Der Motor (Gleichstrommaschine) ist spannungsgeregelt (bei  $V_{
  m m,Max}=20\,{
  m V}$ ).
- Der Winkel  $(\theta)$  des Pendels und der Winkel  $(\varphi)$  des Schwungrades werden gemessen.

Es sind folgende Einschränkungen ermittelt/festgelegt worden:

- Das Aufschwingen soll über eine schnelle Steuerung umgesetzt werden.
- Es soll ein Zustandsregler mit vier Zuständen  $(x_1 \text{ bis } x_4)$  verwendet werden für die Regelung um die Ruhelage.
- Für die Ermittlung der Winkelgeschwindigkeiten  $(\dot{\theta} \text{ und } \dot{\varphi})$  ist die Rekonstruktion über einen Beobachter notwendig.

## 2 Modellierung des Schwungrad-Pendels

Der folgende Abschnitt beschäftigt sich mit der Modellierung des Schwungrad-Pendels inklusive des treibenden Gleichstrommotors.

## 2.1 Modellierung des Gleichstrommotors



Abb. 2.1: Ersatzschaltbild des Gleichstrommotors am Schwungrad-Pendel

Abbildung 2.1 zeigt das Ersatzschaltbild des Gleichstrommotors am Schwungrad-Pendel. Das zweite Kirchhoff'sche Gesetzt ergibt folgende Gleichung:

$$V_{\rm m} = i_{\rm a}R_{\rm a} + L_{\rm a}\frac{di_{\rm a}}{dt} + E_{\rm b} \tag{2.1}$$

Die gegenelektromotorische Kraft (EMK) hängt von der Winkelgeschwindigkeit  $\dot{\varphi}$  und der Gegen-EMK-Konstante  $K_{\rm b}$  wie folgt ab:

$$E_{\rm b} = K_{\rm b}\dot{\varphi} \tag{2.2}$$

Angenommen die Wirkung der Induktivität ist sehr klein ( $L_{\rm a}\ll R_{\rm a}$ ), Gleichung 2.1 ergibt sich zu

$$i_{\rm a} = \frac{V_{\rm m} - K_{\rm b}\dot{\varphi}}{R_{\rm a}}.\tag{2.3}$$

Das Motordremoment au ist mit dem Ankerstrom  $i_{\rm a}$  durch eine Motordrehmomentkonstante  $K_{\rm t}$  verbunden. Die Modellgleichung des Gleichstrommotors ergibt sich somit zu:

$$\tau = K_{\rm t} i_{\rm a} = K_{\rm t} \frac{V_{\rm m} - K_{\rm b} \dot{\varphi}}{R_{\rm a}}$$
 (2.4)

## 2.2 Modellierung des Schwungrad-Pendels

Zur Modellierung des Pendels wurde der Langrange-Ansatz gewählt, um die Bewegungsgleichungen des Pendels herzuleiten.

#### 2.2.1 Lagrange Ansatz

Die nachfolgende Gleichung zeigt den Lagrange Ansatz unter Berücksichtigung der dissipativen Funktion. Diese besagt in Erweiterung zu der Lagrange-Formulierung, dass Energie in einem Vorgang in Wärme umgewandelt wird. Mit Hilfe der dissipativen Funktion können Reibungsverluste bei der Energiemethode nach Lagrange berücksichtigt werden.

$$\left| \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_{i}} \right) - \frac{\partial L}{\partial q_{i}} + \frac{\partial D}{\partial \dot{q}_{i}} = 0 \right|$$
 (2.5)

## 2.2.2 Freiheitsgrade und Zwangsbedingungen

In Abbildung 1.1 sind zwei Teilchen bzw. Massepunkte im  $\mathbb{R}^2$  zu erkennen. Zum Einen die des Pendels und zum Anderen die des Schwungrades. Somit gilt grundsätzlich:

2 Punkte: 4 Freiheitsgrade (FHG)

Das Schwungrad-Pendel besitzt jedoch auch zwei Zwangsbedingungen, die wie folgt formuliert werden können:

- Das Pendel kann nur um die 0z-Achse rotieren:
   z = 0
- Die Masse  $m_2$  ist über des Pendel mit dem Aufhängepunkt 0 gekoppelt:  $(y_{\rm m_1}-y_{\rm m_2})^2+(x_{\rm m_1}-x_{\rm m_2})^2=l_2^2$

Beide Zwangsbedingungen sind holonom-skleronom, da sie als Gleichungen zwischen zwei Koordinaten angegeben werden können und nicht von der Zeit abhängig sind. Somit bleiben am Ende noch zwei Freiheitsgrade (FHG) übrig.

## 2.2.3 Generalisierte Koordinaten

Aus den verbliebenen Freiheitsgraden werden die generalisierten Koordinaten abgeleitet. Dabei gilt grundsätzlich folgender Zusammenhang im  $\mathbb{R}^2$ :

$$S = 2n - k \tag{2.6}$$

mit S als Anzahl der Freiheitsgrade und somit auch der Anzahl der generalisierten Koordinaten, n der Anzahl der Teilchen und k der Anzahl der holonomen Zwangsbedingungen. Die beiden Generalisierten Koordinaten sind somit:

- $q_1 = \theta$
- $q_2 = \varphi$

## 2.2.4 Berechnung der kinetischen und potentiellen Energie

Für die Lagrange-Formulierung werden die kinetische und die potentielle Energie des Systems benötigt. Die kinetische Energie setzt sich zusammen aus der translatorischen kinetischen Energie  $E_{\rm kin,trans}$  und der rotatorischen kinetischen Energie  $E_{\rm kin,rot}$ . Die Gleichungen sind nachfolgend aufgestellt.

$$E_{\text{kin,trans}} = \frac{1}{2} m_1 (l_1 \dot{\theta})^2 + \frac{1}{2} m_2 (l_2 \dot{\theta})^2$$

$$E_{\text{kin,rot}} = \frac{1}{2} J_1 (\dot{\theta})^2 + \frac{1}{2} J_2 (\dot{\theta} + \dot{\varphi})^2$$
(2.7)

Die gesamte kinetische Energie des Systems ist somit:

$$E_{\text{kin}} = E_{\text{kin,trans}} + E_{\text{kin,rot}}$$

$$E_{\text{kin}} = \frac{1}{2} \left( m_1 l_1^2 + m_2 l_2^2 + J_1 + J_2 \right) \dot{\theta}^2 + J_2 \dot{\theta} \dot{\varphi} + \frac{1}{2} J_2 \dot{\varphi}^2$$
(2.8)

Der Ursprung der potentiellen Energie liegt bei Null. Somit ergibt sich die **potentielle Energie des Systems** zu:

$$E_{\text{pot}} = (m_1 l_1 + m_2 l_2) g \cos(\theta)$$
(2.9)

htm

#### 2.2.5 Herleitung der Bewegungsgleichungen

Die **Lagrange-Funktion** L wird aus der Differenz der kinetischen Energie aus Gleichung 2.8 und der potentiellen Energie aus Gleichung 2.9 berechnet.

$$L = E_{\text{kin}} - E_{\text{pot}}$$

$$L = \frac{1}{2} \left( m_1 l_1^2 + m_2 l_2^2 + J_1 + J_2 \right) \dot{\theta}^2 + J_2 \dot{\theta} \dot{\varphi} + \frac{1}{2} J_2 \dot{\varphi}^2 - \left( m_1 l_1 + m_2 l_2 \right) g \cos(\theta)$$
(2.10)

Die dissipative Energie D ist:

$$D = \frac{1}{2}c_1\dot{\theta}^2 + \frac{1}{2}c_2\dot{\varphi}^2$$
(2.11)

Zieht man nun den Ansatz aus Gleichung 2.5 heran und wendet diesen für die generalisierte Koordinate  $\theta$  an, so erhält man die **Bewegungsgleichung des Schwungrades**:

$$\left[ \left( m_1 l_1^2 + m_2 l_2^2 + J_1 + J_2 \right) \ddot{\theta} + J_2 \ddot{\varphi} + c_1 \dot{\theta} - \left( m_1 l_1 + m_2 l_2 \right) g \sin(\theta) = 0 \right]$$
 (2.12)

Ebenfalls der Gleiche Ansatz wird nun für die generalisierte Koordinate  $\varphi$  angewendet:

$$J_2\left(\ddot{\theta} + \ddot{\varphi}\right) + c_2\dot{\varphi} = \tau \tag{2.13}$$

Setzt man nun Gleichung 2.4 in Gleichung 2.13 ein erhält man die **Bewegungsgleichung** des Pendels:

$$J_2\left(\ddot{\theta} + \ddot{\varphi}\right) + c_2\dot{\varphi} = K_t i_a = K_t \frac{V_m - K_b\dot{\varphi}}{R_a}$$
(2.14)

## 3 Zustandsraumdarstellung

Um das Verhalten mittels mathematischer Beziehungen zu veranschaulichen, wird die **Zustandsraumdarstellung** verwendet. Der **Systemeingang** wird festgelegt mit

$$\underline{u} = V_{\rm m},\tag{3.1}$$

wobei  $V_{\rm m}$  die Eingangsspannung des Gleichstrommotors aus Gleichung 2.1 ist. Die **Systemzustände** des Schwungrad-Pendels sind:

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \varphi \\ \dot{\varphi} \\ \theta \\ \dot{\theta} \end{bmatrix}$$
 (3.2)

Nach zeitlicher Ableitung des Zustandsvektors ergibt sich der **Vektor der Zustandsände- rung** zu:

$$\underline{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} \dot{\varphi} \\ \ddot{\varphi} \\ \dot{\theta} \\ \ddot{\theta} \end{bmatrix}$$
 (3.3)

Die Ausgänge des Systems gleichen den den vier Zuständen und ergeben sich somit zu

$$\underline{y} = \begin{bmatrix} \varphi \\ \dot{\varphi} \\ \theta \\ \dot{\theta} \end{bmatrix} . \tag{3.4}$$

#### 3.1 Nichtlineares Zustandsraummodell

Zum Aufstellen des nichtlinearen Zustandsraummodells werden die Gleichung 2.12 und Gleichung 2.14 nach den höchsten Ableitungen von  $\ddot{\varphi}$  und  $\ddot{\theta}$  umgestellt.

$$\ddot{\varphi} = \frac{K_{\rm t} \frac{V_{\rm m} - K_{\rm b} \dot{\varphi}}{R_{\rm a}} - c_2 \dot{\varphi} - J_2 \cdot \ddot{\theta}}{J_2}$$

$$\ddot{\theta} = \frac{-J_2 \ddot{\varphi} - c_1 \dot{\theta} + (m_1 l_1 + m_2 l_2) g \sin(\theta)}{m_1 l_1^2 + m_2 l_2^2 + J_1 + J_2}$$
(3.5)

Beide Gleichungen sind über die die Winkelbeschleunigung des Schwungrades  $\ddot{\varphi}$  und die des Pendels  $\ddot{\theta}$  miteinander verkoppelt. Durch das gegenseitige ineinander Einsetzen werden die Abhängigkeiten eliminiert.

$$\ddot{\varphi} = \frac{K_{t} \frac{V_{m} - K_{b} \dot{\varphi}}{R_{a}} - c_{2} \dot{\varphi} - J_{2} \cdot \left(\frac{-J_{2} \ddot{\varphi} - c_{1} \dot{\theta} + (m_{1} l_{1} + m_{2} l_{2}) g \sin(\theta)}{m_{1} l_{1}^{2} + m_{2} l_{2}^{2} + J_{1} + J_{2}}\right)}{J_{2}}$$

$$\ddot{\theta} = \frac{-J_{2} \left(\frac{K_{t} \frac{V_{m} - K_{b} \dot{\varphi}}{R_{a}} - c_{2} \dot{\varphi} - J_{2} \cdot \ddot{\theta}}{J_{2}}\right) - c_{1} \dot{\theta} + (m_{1} l_{1} + m_{2} l_{2}) g \sin(\theta)}{m_{1} l_{1}^{2} + m_{2} l_{2}^{2} + J_{1} + J_{2}}$$
(3.6)

Mit Hilfe der Gleichungen 3.1, 3.2 und 3.3, durch das einsetzen in Gleichung 3.6 und dem Zusammenfassen und Umstellen nach  $\ddot{\varphi}$  bzw.  $\ddot{\theta}$  folgt das **nichtlineare Zustandsraummodell**.

$$\frac{\dot{x}}{\frac{x_{1}}{R_{a}}} = \begin{bmatrix}
\frac{x_{2}}{\frac{K_{t} \cdot \frac{V_{m} - K_{b} \cdot x_{4}}{R_{a}} - c_{2} \cdot x_{4} - (m_{1}l_{1} + m_{2}l_{2})g \sin(x_{1}) + c_{1} \cdot x_{2}}{\frac{J_{2}}{1 - \frac{m_{1}l_{1}^{2} + m_{2}l_{2}^{2} + J_{1} + J_{2}}{J_{2}}}} \\
\frac{x_{4}}{\frac{(m_{1}l_{1} + m_{2}l_{2})g \sin(x_{1}) - c_{1} \cdot x_{2} - (m_{1}l_{1}^{2} + m_{2}l_{2}^{2} + J_{1} + J_{2}) \cdot \frac{K_{t} \cdot \frac{V_{m} - K_{b} \cdot x_{4}}{R_{a}}}{\frac{J_{2}}{J_{2}}}} \\
\frac{J_{2}}{1 - \frac{m_{1}l_{1}^{2} + m_{2}l_{2}^{2} + J_{1} + J_{2}}{J_{2}}}}
\end{bmatrix}$$
(3.7)

## 3.2 Lineares Zustandsraummodell

Das Verhalten des nichtlinearen Systems ist für große Änderungen des Eingangssignals nicht vorhersehbar. Um dennoch Aussagen über das Systemverhalten treffen zu können, wird das nichtlineare Zustandsraummodell mithilfe der Taylorreihenentwicklung um eine Ruhelage  $(\underline{x}^*)$  linearisiert. Die nichtlinearen Restglieder  $\underline{R}(\Delta\underline{x}^2,\Delta\underline{u}^2)$  werden zu Null angenommen. Durch die Linearisierung wird das Systemverhalten für kleine Änderungen um die Ruhelage kontrollierbar. Nachfolgend ist die Taylorreihenentwicklung für Linearisierung aufgeführt:

$$\underline{\dot{x}}^* + \Delta \underline{\dot{x}} = \underline{f}(\underline{x}^* + \Delta \underline{x}, \underline{u}^* + \Delta \underline{u}) 
= \underline{f}(\underline{x}^*, \underline{u}^*) + \left[\frac{\partial f_{i}}{\partial x_{j}}\right]_{(\underline{x}^*, \underline{u}^*)} \cdot \Delta \underline{x} + \left[\frac{\partial f_{i}}{\partial u_{j}}\right]_{(\underline{x}^*, \underline{u}^*)} \cdot \Delta \underline{u} + \underline{R}(\Delta \underline{x}^2, \Delta \underline{u}^2)$$
(3.8)

Durch die Annahme über das Verhalten der nichtlinearen Restglieder folgt die Struktur des linearen Zustandsraummodells dargestellt in Gleichung 3.9.

$$\Delta \underline{\dot{x}} = \left[ \frac{\partial f_{i}}{\partial x_{j}} \right]_{(\underline{x}^{*}, \underline{u}^{*})} \cdot \Delta \underline{x} + \left[ \frac{\partial f_{i}}{\partial u_{j}} \right]_{(\underline{x}^{*}, \underline{u}^{*})} \cdot \Delta \underline{u}$$

$$\Delta \underline{y} = \left[ \frac{\partial h_{i}}{\partial x_{j}} \right]_{(\underline{x}^{*}, \underline{u}^{*})} \cdot \Delta \underline{x} + \left[ \frac{\partial h_{i}}{\partial u_{j}} \right]_{(\underline{x}^{*}, \underline{u}^{*})} \cdot \Delta \underline{u}$$
(3.9)

Um das linearisierte Zustandsraummodell zu erhalten, werden die einzelnen Gleichungen des nichtlinearen Zustandsraummodells aus Gleichung 3.7 nach den Zuständen  $x_1$  bis  $x_4$ , sowie dem Eingang  $V_{\rm m}$  partiell abgeleitet und die Ruhelage  $\underline{x}^*$  eingesetzt. Dabei werden sowohl die Ruhelage des hängenden Pendels (untere Ruhelage) und die des stehenden Pendels (obere Ruhelage) betrachtet. In Gleichung 3.10 dargestellt ist die untere Ruhelage, mit Hilfe derer das lineare Zustandsraummodell für das hängende Pendel bestimmt werden kann. Anhand dessen kann das lineare Zustandsraummodell in Simulink mit dem nichtlinearen Zustandsraummodell im nachfolgenden Abschnitt (Abschnitt 4) verglichen werden.

$$\underline{x}_{1}^{*} = \begin{bmatrix} x_{1}^{*} \\ x_{2}^{*} \\ x_{3}^{*} \\ x_{4}^{*} \end{bmatrix} = \begin{bmatrix} \pi \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (3.10)

Die Regelung, welche in **??** entworfen wird soll dafür sorgen, dass das Pendel in der oberen Ruhelage verweilt. Diese wird beschrieben durch:

$$\underline{x}_{2}^{*} = \begin{bmatrix} x_{1}^{*} \\ x_{2}^{*} \\ x_{3}^{*} \\ x_{4}^{*} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.11)

Die allgemeine Form des linearen Zustandsraummodells lautet:

$$\frac{\dot{x} = \underline{A} \cdot \underline{x} + \underline{B} \cdot \underline{u}}{\underline{y} = \underline{C} \cdot \underline{x} + \underline{D} \cdot \underline{u}}$$
(3.12)

Wendet man nun die Linearisierungsvorschrift aus Gleichung 3.9 unter Nutzung der Ruhelagen an, so erhält man das konkrete linearisierte Zustandsraummodell für das System. In Gleichung 3.13 ist das linearisierte Zustandsraummodell für die obere Ruhelage und in Gleichung 3.14 das für die untere Ruhelage dargestellt.

$$\Delta \underline{\dot{x}} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
-50.9760 & -1.2328 & 0 & 0.1960 \\
0 & 0 & 0 & 1 \\
50.9760 & 1.2328 & 0 & -11.3323
\end{bmatrix} \cdot \Delta \underline{x} + \begin{bmatrix}
0 \\
-1.9548 \\
0 \\
113.0101
\end{bmatrix} \cdot V_{\rm m}$$

$$\Delta \underline{y} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \cdot \Delta \underline{x} + \underline{0} \cdot V_{\rm m}$$
(3.13)

$$\Delta \underline{\dot{x}} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
50.9760 & -1.2328 & 0 & 0.1960 \\
0 & 0 & 0 & 1 \\
-50.9760 & 1.2328 & 0 & -11.3323
\end{bmatrix} \cdot \Delta \underline{x} + \begin{bmatrix}
0 \\
-1.9548 \\
0 \\
113.0101
\end{bmatrix} \cdot V_{\rm m}$$

$$\Delta \underline{y} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \cdot \Delta \underline{x} + \underline{0} \cdot V_{\rm m}$$
(3.14)

# 4 Vergleich lineares/nichtlineares System

In Abbildung 4.1 ist die Übersicht der notwendigen Simulationsstruktur dargestellt. Aus der Übersicht geht hervor, dass beide Systeme unterschiedliche Eingänge besitzen und somit ein direkter Vergleich ohne entsprechende Berücksichtigung der Linearisierungsvorschriften unmöglich ist. Das linearisierte Modell verwendet als Eingang im Gegensatz zum nichtlinearen Modell eine Differenz  $\Delta u$ . Die Strukturen des nichtlinearen und des linearen Modells sind zur Information in Abbildung 4.2 und Abbildung 4.3 visualisiert.



Abb. 4.1: Übersicht der Simulationsstruktur



Abb. 4.2: Nichtlineare Strecke



Abb. 4.3: Lineare Strecke

Um das lineare mit dem nichtlinearen Modell zu vergleichen, werden gemäß Abschnitt 3 zu den Zuständen  $\Delta\underline{x}$  die Ruhelagen  $\underline{x}^*$  aus Gleichung 3.10 addiert. Aus der Abbildung 4.4 und Abbildung 4.5 geht hervor, dass die implementierten Systeme für kleine Abweichungen von der Ruhelagen mit steigender Zeit "t" selbiges Verhalten aufweisen.



Abb. 4.4: Vergleich der Pendelwinkel  $\theta$  bei -10 $^{\circ}$  Anfangsauslenkung zur Ruhelage



Abb. 4.5: Vergleich der Pendelwinkel  $\theta$  bei -60° Anfangsauslenkung zur Ruhelage

## 5 Sensitivitätsanalyse der Modellparameter

In diesem Abschnitt wird eine Parameter- und Sensivitätsanalysise durchgeführt. Es wird dabei die Auswirkung von der Varianz von bestimmten Modellparametern auf die Varianz der Ausgangsparameter untersucht.

Ziel der Sensitivitätsanalyse ist es, wichtige Parameter zu identifizieren und daraus eine Optimierung der Parameter zu ermitteln.

Das Ergebniss der Sensitivitätsanalyse dient zum weiterne Verständnis des mathematischen Modelles bzw. dem zugrundeliegenden Simulationsmodell.

## 5.1 Lokale und globlale Sensitivitätsanalyse

Die verschiedenen Verfahren zur Sensitivitätsanalyse lassen sich in drei Kategorien einteilen: Lokale, globale Sensitivitätsanalyse und der sogenannenten Screening Methode.

Bei der lokalen Sensitivitätsanalyse wird für bestimmte Werte der Ausgnagsgrößen der Einfluss der Eingangsgrößen untersucht. Dabei wird immer ein Parameter variiert und die restlichen konstant gehalten (One-At-a-Time-Methode, OAT). Die Sensitivitätsanalyse wird so für jeden Parameter einzeln durchgeführt und abschließend kann die spezifische Sensivität der einzelnen Parameter ermittelt werden. Mathematisch entspricht dies den partiellen Ableitungen der Parameter bezüglich der Ausgangsgrößen

One-factor-at-a-time ( $\pm 20\%, \pm 1\sigma$ )

$$sensitivity = \frac{\Delta Y}{\Delta X_i}$$
 Für jeden Parameter  $X_i, i = 1, \dots, n$  (5.1)

- Nur lokale Variatizion um Arbeitspunk
- Keine Korrelation zwischen Parametern
- Standartabweichung benötigt Annahme zur Distribution und überspannt nicht den gesammten Wertebereich

#### Ausdruck als Partial-Ableitung

$$sensitivity = \frac{\partial Y}{\partial X_i} \tag{5.2}$$

#### 5.2 Parameter

Aus den gesammten Modellparametern des Schwungradpendels (1.1) werden folgende Parameter untersucht:

- C1, C2
- J1, J2
- *m*1, *m*2
- *l*1, *l*2
- $V_m$

Es wird dabei die Auswirkung der Varrianz gennanter Parameter auf folgende Modellgrößen unterscuht:

- Schwungrad Geschwindigkeit: φ
- Pendel Winkel: Θ
- Pendel Geschwindikeit: Ġ
- Pendel Beschleunigung: Θ
- Motor Moment: *τ*

## 5.3 Modellantwort auf Eingangssprung

Um ein bessere Verständnis des Modelles zu erlangen, wird die Antwort wichtiger Parameter auf einen Sprung der Motorspannung  $V_{\rm m}$  betratchtet. Zugrundeliegenden ist das in 3.1 entwicklete Simulink-Modell.

Literaturverzeichnis

## Literaturverzeichnis

[1] HTW-Logo auf dem Deckblatt

 $https://de.wikipedia.org/wiki/Datei:Logo\_HTW\_Berlin.svg$ 

Stand: 17.08.2018 um 14:49 Uhr

[2] HTW-Logo in der Kopfzeile

http://tonkollektiv-htw.de/

Stand: 17.08.2018 um 14:53 Uhr