```
In [2]: # import packages
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [3]: # read the data
        df=pd.read_csv(r'F:\FSDS\Data Files\winequality_red.csv')
In [4]: df.head()
Out[4]:
                                                      free
                                                             total
            fixed volatile citric residual
                                                    sulfur
                                                            sulfur density pH sulphates a
                                         chlorides
           acidity acidity
                           acid
                                   sugar
                                                   dioxide dioxide
        0
              7.4
                     0.70
                           0.00
                                     1.9
                                            0.076
                                                      11.0
                                                              34.0
                                                                    0.9978 3.51
                                                                                     0.56
        1
              7.8
                     0.88
                           0.00
                                     2.6
                                            0.098
                                                      25.0
                                                              67.0
                                                                    0.9968
                                                                           3.20
                                                                                     0.68
        2
              7.8
                     0.76
                           0.04
                                     2.3
                                            0.092
                                                      15.0
                                                              54.0
                                                                    0.9970
                                                                           3.26
                                                                                     0.65
        3
             11.2
                     0.28
                           0.56
                                     1.9
                                            0.075
                                                      17.0
                                                              60.0
                                                                    0.9980
                                                                           3.16
                                                                                     0.58
        4
              7.4
                     0.70
                                            0.076
                                                                                     0.56
                           0.00
                                     1.9
                                                      11.0
                                                              34.0
                                                                    0.9978 3.51
In [5]: # divide the data into two parts x and y
        X=df.drop('quality',axis=1)
        y=df['quality']
        X.values
Out[5]: array([[ 7.4 , 0.7 , 0. , ..., 3.51 , 0.56 , 9.4 ],
               [7.8, 0.88, 0., ..., 3.2,
                                                      0.68 , 9.8
                                                      0.65 , 9.8 ],
               [7.8, 0.76, 0.04, ..., 3.26,
               ...,
               [6.3, 0.51, 0.13, ..., 3.42, 0.75, 11.
                                                                   ],
               [5.9, 0.645, 0.12, ..., 3.57, 0.71, 10.2],
               [6., 0.31, 0.47, ..., 3.39, 0.66, 11.
                                                                   ]])
In [6]: corr=df.corr()
        corr
```

()	161	
Ou L	101	۰

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	deı
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.66
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.02
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.36
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.35
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.20
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.02
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.07
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.00
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.34
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.14
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.49
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.17
4								>

In [7]: sns.heatmap(corr, annot=True)

Out[7]: <Axes: >


```
In [8]: from statsmodels.stats.outliers_influence import variance_inflation_factor
In [9]: # Apply VIF

vif=[variance_inflation_factor(X.values,i) for i in range(len(X.columns))]

vif_data=pd.DataFrame(vif, index=X.columns, columns=['VIF'])

vif_data.sort_values(by= 'VIF', ascending=False )
```

```
Out[9]:
                                     VIF
                     density 1479.287209
                             1070.967685
                     alcohol
                              124.394866
                fixed acidity
                               74.452265
                   sulphates
                               21.590621
              volatile acidity
                                17.060026
                   citric acid
                                 9.183495
                   chlorides
                                 6.554877
          total sulfur dioxide
                                 6.519699
           free sulfur dioxide
                                 6.442682
               residual sugar
                                 4.662992
In [10]:
         ## select VIF less than 15 columns
          cols1=vif_data[vif_data['VIF']<15].index</pre>
          cols1=cols1.to_list()
          vif_data[vif_data['VIF']>15].index
          cols2=['density','sulphates', 'alcohol']
          final_cols=cols1+cols2
In [11]: final_cols
Out[11]: ['citric acid',
           'residual sugar',
            'chlorides',
            'free sulfur dioxide',
            'total sulfur dioxide',
            'density',
            'sulphates',
            'alcohol']
In [12]: import warnings
          warnings.filterwarnings('ignore')
          final_df=X[final_cols]
          final_df['quality']=y
          final_df
```

Out[12]:

	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	sulphates	alcohol	quality
0	0.00	1.9	0.076	11.0	34.0	0.99780	0.56	9.4	5
1	0.00	2.6	0.098	25.0	67.0	0.99680	0.68	9.8	5
2	0.04	2.3	0.092	15.0	54.0	0.99700	0.65	9.8	5
3	0.56	1.9	0.075	17.0	60.0	0.99800	0.58	9.8	6
4	0.00	1.9	0.076	11.0	34.0	0.99780	0.56	9.4	5
•••								•••	
1594	0.08	2.0	0.090	32.0	44.0	0.99490	0.58	10.5	5
1595	0.10	2.2	0.062	39.0	51.0	0.99512	0.76	11.2	6
1596	0.13	2.3	0.076	29.0	40.0	0.99574	0.75	11.0	6
1597	0.12	2.0	0.075	32.0	44.0	0.99547	0.71	10.2	5
1598	0.47	3.6	0.067	18.0	42.0	0.99549	0.66	11.0	6

1599 rows × 9 columns

Scaling

```
In [13]: from sklearn.preprocessing import StandardScaler
    ss=StandardScaler()
    X.scaled=ss.fit_transform(X)
    X_scaled_df=pd.DataFrame(X.scaled, columns=X.columns)
    X_scaled_df
```

$\cap \cup + \mid$	[12]	۰
Ou L	1 1 2 1	

		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	tree sulfur dioxide	total sulfur dioxide	density
	0	-0.528360	0.961877	-1.391472	-0.453218	-0.243707	-0.466193	-0.379133	0.558274
	1	-0.298547	1.967442	-1.391472	0.043416	0.223875	0.872638	0.624363	0.028261
	2	-0.298547	1.297065	-1.186070	-0.169427	0.096353	-0.083669	0.229047	0.134264
	3	1.654856	-1.384443	1.484154	-0.453218	-0.264960	0.107592	0.411500	0.664277
	4	-0.528360	0.961877	-1.391472	-0.453218	-0.243707	-0.466193	-0.379133	0.558274
	•••								
	1594	-1.217796	0.403229	-0.980669	-0.382271	0.053845	1.542054	-0.075043	-0.978765
	1595	-1.390155	0.123905	-0.877968	-0.240375	-0.541259	2.211469	0.137820	-0.862162
	1596	-1.160343	-0.099554	-0.723916	-0.169427	-0.243707	1.255161	-0.196679	-0.533554
	1597	-1.390155	0.654620	-0.775267	-0.382271	-0.264960	1.542054	-0.075043	-0.676657
	1598	-1.332702	-1.216849	1.021999	0.752894	-0.434990	0.203223	-0.135861	-0.666057

1599 rows × 11 columns

Train-Test-Split

Develop the model

prediction

```
Out[23]: array([5.18402693, 5.35222632, 5.59491103, 5.52091961, 6.34175415,
                 5.39173054, 5.4386121 , 5.95987316, 5.47004148, 6.91005691,
                 4.98509136, 5.23277066, 5.69063919, 5.52790309, 5.51816101,
                 5.25774342, 4.97138685, 5.12531479, 6.16831487, 5.17480772,
                 5.11570282, 5.84314362, 5.18881658, 5.47252159, 5.7234016 ,
                 6.30684795, 5.29979062, 5.56538456, 6.00395044, 5.51753047,
                 4.75589372, 6.22649885, 5.24955921, 5.61323762, 5.54866083,
                 5.4907831 , 6.35361446, 5.23982145, 5.561088 , 5.81104267,
                 5.21412309, 6.08767487, 5.71655198, 5.34443848, 5.65810399,
                 5.02362366, 4.94708499, 5.80532814, 6.37676041, 5.54270371,
                 4.92835023, 5.73605681, 6.61798021, 6.15855747, 5.3704761 ,
                 5.11932029, 6.22074911, 5.2262822 , 6.44385318, 5.26198348,
                 5.28301604, 5.12118822, 5.12443471, 5.59218111, 5.02408579,
                 6.1394565 , 5.71787898 , 6.31942795 , 5.27013911 , 6.0846879 ,
                 5.72948584, 5.53327202, 5.25038298, 6.17460327, 5.56538456,
                 5.32083864, 6.0150401 , 6.43530813, 4.88814887, 5.04913954,
                 5.68729866, 5.57896455, 5.7290186 , 5.97612524, 5.36898168,
                 5.02880372, 6.12712446, 5.31278196, 5.98479919, 6.13194433,
                 6.51189266, 5.41283432, 6.05002097, 5.0137043, 5.46517764,
                 5.90374559, 5.30178062, 6.6341725 , 6.55082539, 6.0150401 ,
                 5.39782793, 5.49065123, 5.00327726, 5.55240601, 5.56966691,
                 5.31776897, 5.8785315, 5.16223316, 5.42433364, 5.50048598,
                 6.36084316, 5.56366246, 6.20650152, 5.33506802, 5.55268727,
                 5.65470064, 5.38775256, 5.88472934, 6.79479485, 5.22782945,
                 5.95305554, 6.00736039, 5.60945827, 6.32139675, 6.04958854,
                 5.08971314, 5.24655894, 6.46316326, 6.26310018, 6.20577219,
                 5.30871293, 5.06889943, 5.87371277, 5.04742047, 5.29421699,
                 6.33394821, 5.86535105, 5.44319332, 5.41377041, 5.55953192,
                 5.92200919, 4.90131241, 5.42674997, 5.17617378, 5.75249678,
                 5.73817797, 5.20373637, 6.21836803, 6.14855266, 5.38058809,
                 5.47800612, 5.76410437, 6.55219996, 6.67759536, 6.01314068,
                 5.82095648, 5.7008064, 5.6372558, 6.53315447, 5.58878886,
                 6.39210152, 5.79143598, 6.00258743, 5.36003016, 5.78468889,
                 6.11196626, 5.35037059, 4.26057299, 5.76791222, 5.93493452,
                 4.91915794, 5.72793247, 4.98863426, 5.73442024, 6.54892053,
                 5.99519265, 5.32064824, 5.5417675 , 5.75760708, 4.99679769,
                 6.00322766, 5.22622448, 5.81451724, 6.55850657, 5.26574422,
                 5.14661707, 6.47572385, 6.66312736, 5.82315529, 6.20626549,
                 6.01180722, 5.5084863 , 4.76066998, 6.41669333, 5.33756863,
                 4.80308078, 5.37155263, 6.9354863 , 5.31029439, 5.0480916 ,
                 5.85891607, 5.89886295, 5.74584066, 5.01770049, 6.60247899,
                 5.57766701, 5.8545049 , 5.11620488, 5.05950153, 4.8547598 ,
                 5.67796929, 5.02413353, 5.61492682, 5.08946876, 5.90855691,
                 6.66104943, 5.34975935, 5.36444569, 5.34261961, 5.61719826,
                 5.58848586, 5.89060018, 4.91678293, 5.39826875, 5.78675148,
                 4.98881432, 5.50889257, 6.13549554, 5.58819852, 5.99411749,
                 6.31666165, 5.50318331, 5.71787898, 5.0510233 , 5.44834178,
                 5.30067944, 6.40801641, 5.76406936, 5.79597235, 6.33739864,
                 5.26793641, 5.09437997, 6.34545057, 5.26134981, 5.23889138,
                 4.96522989, 4.94576152, 5.76101187, 6.44246558, 6.2376922 ,
                 5.64193325, 5.72848848, 6.19479981, 5.02413353, 5.84825118,
                 5.48096597, 5.32537219, 5.19429238, 5.80581404, 5.40012258,
                 5.40404058, 5.04857237, 6.12756557, 6.3227982, 5.90458709,
                 6.06247903, 6.05103932, 5.90143817, 5.35740672, 5.3704761,
                 5.08845724, 5.28767367, 5.42170404, 5.37003359, 5.6390435 ,
                 5.7296821 , 6.07227189, 4.96325159, 5.56339633, 5.33250366,
```

```
6.12791952, 5.76158439, 5.86698002, 5.39748052, 5.28465633, 5.75837267, 5.8149593, 5.04968, 5.32844916, 5.75393581, 6.40127499, 5.9373478, 4.96300949, 5.84909362, 5.70593835, 5.61992295, 5.18050416, 5.35265055, 4.98881432, 5.3791698, 5.94624924, 6.53523473, 5.91201571, 5.12493362, 6.52934475, 6.3308775, 5.73186785, 4.97265088, 5.64601463, 5.15505816, 5.39108249, 5.11050691, 5.73657613, 5.55826824, 6.03342611, 5.22024243, 5.14645374, 6.27657951, 5.77733102, 5.12131274])

In [24]: len(y_pred)

Out[24]: 320
```

Coefficient

Out	[28]

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density
688	-0.356000	0.738418	-1.186070	-0.666062	-1.030094	-1.135608	-1.139357	-0.289747
961	-0.700719	0.179770	-0.672566	-0.666062	-0.201199	-0.848716	-0.865676	-0.438151
726	-0.126188	1.073606	-0.929318	0.185312	-0.073677	0.203223	0.077002	1.406296
537	-0.126188	1.660186	-0.159061	-0.311323	-0.073677	-1.039977	-1.017721	0.240266
1544	0.046171	-0.881661	0.816598	-0.169427	-0.520005	-0.370562	-0.835267	-0.660757
•••								
351	0.448342	1.492592	-1.391472	0.043416	0.181368	-0.466193	-0.622404	1.406296
415	0.161077	1.101539	-0.159061	2.881328	0.627696	1.446423	2.661764	2.466324
564	2.689011	-0.323013	1.124700	1.249529	-0.052423	-0.944346	0.016184	2.837333
1124	-1.045437	0.291499	-1.391472	-0.240375	0.181368	-1.231239	-1.017721	-0.623656
147	-0.413454	-0.211283	-0.056360	-0.666062	3.156889	-0.561823	1.262952	0.028261

320 rows × 11 columns

In [29]: from sklearn.metrics import mean_squared_error
 mean_squared_error(y_pred, y_test)

Out[29]: 0.37988847343818904

In [30]: from sklearn.metrics import mean_squared_error, r2_score
 mse=mean_squared_error(y_test, y_pred)
 R_Square=r2_score(y_test, y_pred)
 rmse=np.sqrt(mse)
 print('Mse:', mse)
 print('rmse:', rmse)
 print('r2_score:', R_Square)

Mse: 0.37988847343818904 rmse: 0.6163509336718725 r2_score: 0.36758336427516125

save the model

```
In [36]: import pickle
  path=open('F:\FSDS\Data Files\linear_regression_wine.pkl','wb')
  pickle.dump(lr,path)
```

load the model