ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ							
ПРЕПОДАВАТЕЛЬ							
профессор, д-р.т.н., профессор		В. В. Фомин					
должность, уч. степень, звание	подпись, дата	инициалы, фамилия					
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №3 ДЕРЕВО РЕШЕНИЙ							
Вариант 5							
METOH	I HOLLYCOTT FILLIOF						
по курсу: МЕТОДЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА							

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №	4128		Воробьев В. А.
, ,		подпись, дата	инициалы, фамилия

СОДЕРЖАНИЕ

1	Вве	дение	3
		Цель лабораторной работы	
	1.2	Задание	3
2	Выі	полнение работы	4
	2.1	Набор данных	4
	2.2	Рабочий процесс	4
3	Вын	80Д	9

1 Введение

1.1 Цель лабораторной работы

Изучение основ организация работы с технологической платформой для создания законченных аналитических решений KNIME, с использованием метода деревьев решений.

1.2 Задание

- 1. Для набора данных выполнить классификацию методом дерева решений.
- 2. Выполнить оценку качества классификации.
- 3. Построить дерево решений и выявить набор логических правил.

2 Выполнение работы

2.1 Набор данных

Hабор данных взят c Kaggle (URI - https://www.kaggle.com/datasets/sudhanshu2198/wheat-variety-classification).

Набор данных включает зерна пшеницы, принадлежащие к трем различным сортам пшеницы: **Кама, Роза и Канадская**, по 70 элементов каждый.

Для построения данных были измерены семь геометрических параметров зерен пшеницы:

- 1) Область размер поверхности зерна пшеницы.
- 2) Периметр общая длина внешней границы зерна.
- 3) Компактность насколько форма зерна близка к идеальной круговой.
- 4) Длина ядра измерение самой длинной оси внутренней части зерна пшеницы.
- 5) Ширина ядра поперечное измерение внутренней части зерна.
- 6) Коэффициент асимметрии отклонение формы зерна от симметричной.
- 7) Длина бороздки ядра протяженность центральной линии или углубления в зерне.

Для каждого этого параметра был сопоставлен сорт пшеницы:

- **Кама** сорт пшеницы, известный своей устойчивостью к болезням и приспособленностью к различным климатическим условиям.
- **Роза** сорт пшеницы, который ценится за качество зерна и применяется для муки высшего сорта.
- Канадская сорт пшеницы с высоким содержанием белка, используемый для производства высококачественной муки.

2.2 Рабочий процесс

Целью создания данной системы является проверка гипотезы, что вышеуказанных 7 параметров достаточно для определения сорта пшеницы. Гипотезу будем считать доказанной, если точность составит 95%.

Для создания модели в программе KNIME создаём следующие узлы:

• Excel Reader для считывания файла;

- Number to String для преобразования номера сорта пшеницы в строку.
- String Manipulation для сопоставления номера сорта с его названием.
- Color Manager для цветового разделения на графике;
- Partitioning для разделения данных на обучающие и тестовые(50/50). Дополнительно выбран Linear Sampling, так как набор данных отсортирован по сорту пшеницы;
- Decision Tree Learner для обучения модели
- Decision Tree Predictor для непосредственно прогнозирования;
- Scorer для вычисления статистики;
- Decision Tree View для графического представления дерева.

На рисунке 2.1 представлена схема рабочего процесса.

Рисунок 2.1 - Схема в KNIME

В результате выполнения процесса были получены матрица смежности и метрики для оценки качества метода.

Из полученных метрик можно сделать вывод, что ошибочных предсказаний ~ 3%. Лучше всего предсказывался сорт Канадский. Между оставшимися двумя другими существенных различий нет.

Рисунок 2.2 - Матрица смежности

Рисунок 2.3 - Метрики оценки качества

Далее было получено дерево решений.

Рисунок 2.4 - Дерево решений

На основе дерева решений можно вынести следующие правила:

Сорт Роза:

1) Длина бороздки ядра > 5.60.

Сорт Кама:

- 1) Длина бороздки ядра =< 4.72 и область =< 12.71;
- 2) Длина бороздки ядра =< 5.60 и Область > 12.71 и периметр > 13.49 и коэффициент асимметрии =< 4.43;
- 3) Длина бороздки ядра =< 5.60 и Область > 12.71 и периметр > 13.49 и коэффициент асимметрии > 4.43 и ширина > 3.21;

Сорт Канадский:

- 1) Длина бороздки ядра > 4.72 и область =< 12.71;
- 2) Длина бороздки ядра =< 5.60 и Область > 12.71 и периметр =< 13.49;
- 3) Длина бороздки ядра =< 5.60 и Область > 12.71 и периметр > 13.49 и коэффициент асимметрии > 4.43 и ширина =< 3.21;

3 Вывод

В ходе использования дерева решений была получена точность 97%. Есть ложноположительные определения сорта Камы, но им можно пренебречь ввиду маленького размера данных. Вышесказанное подтверждает поставленную гипотезу, что на основе 7 параметров можно предсказать сорт пшеницы.