ICON Namelist Overview

August 1, 2011

Contents

1	ICC	ON Namelists	;
	1.1	Scripts, Namelist files and Programs	
		Namelist parameters	
2	Nan	nelist parameters for grid generation	4
		Namelist parameters defining the atmosphere grid	4
		2.1.1 graph_ini (NAMELIST_GRAPH)	
		2.1.2 grid ini (NAMELIST GRID)	
		2.1.3 grid_options (NAMELIST_GRID)	
		2.1.4 plane_options (NAMELIST_GRID)	
	0.0	2.1.5 gridref_ini (NAMELIST_GRIDREF)	
	2.2	Namelist parameters defining the ocean grid (NAMELIST_OCEAN_GRID)	
		2.2.1 grid_geometry_conditions	
		2.2.2 create_ocean_grid	
	2.3	Namelist parameters defining the torus grid (NAMELIST_TORUS_GRID)	8
		2.3.1 torus_grid_parameters	8
3	Nan	melist parameters defining the ICON model	•
U		master nml	•
			•
		time_nml	
		parallel_nml 1	
	3.4	run nml	

	3.5	grid nml	12
	3.6	gridref nml	14
	3.7	interpol_nml	15
	3.8	dynamics_nml	17
	3.9	ha_dyn_nml	18
	3.10	nonhydrostatic_nml (relevant if run_nml:iequations=3)	19
	3.11	sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)	21
	3.12	diffusion_nml	21
		io_nml	
	3.14	transport_nml (used if run_nml/ltransport=.TRUE.)	24
	3.15	nwp_phy_nml	26
	3.16	radiation_nml	28
	3.17	nwp_lnd_nml	30
	3.18	echam_phy_nml	30
	3.19	echam_conv_nml	31
	3.20	echam_vdiff_nml	32
	3.21	gw_hines_nml (Scope: lgw_hines = .TRUE. in echam_phy_nml)	32
4			33
	4.1	ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in run_nml)	33
	4.2	nh_testcase_nml (Scope: ltestcase=.TRUE. and iequations=3 in run_nml)	36
5	Exte	m ernal~data	38
		ext_par_nml (Scope: itopo=1 in run_nml)	
6	Info	rmation on vertical level distribution	39

1 ICON Namelists

1.1 Scripts, Namelist files and Programs

Run scripts starting the programs for the grid generation and the models are stored in run/. These scripts write namelist files containing the specified Fortran namelists. Programs are stored in <icon home>/build/<architecture>/bin/.

Table 1: Namelist files

Namelist file	Purpose	Made by script	Used by program
NAMELIST_GRAPH	Generate graphs	create_global_grids.run	grid_command
NAMELIST_GRID	Generate grids	$create_global_grids.run$	$\operatorname{grid} \operatorname{_command}$
$NAMELIST_GRIDREF$	Gen. nested domains	create_global_grids.run	grid_command
NAMELIST_OCEAN_GRID	Gen. ocean grid	create_ocean_grid.run	grid_command
NAMELIST TORUS GRID	Gen. torus grid	create torus grid.run	grid command
NAMELIST ICON	Run ICON models	exp. <name>.run</name>	control model

1.2 Namelist parameters

The following subsections tabulate all available Fortran namelist parameters by name, type, default value, unit, description, and scope:

- Type refers to the type of the Fortran variable, in which the value is stored: I=INTEGER, L=LOGICAL, R=REAL, C=character string
- ullet Default is the preset value, if defined, that is assigned to this parameter within the programs.
- *Unit* shows the unit of the control parameter, where applicable.
- \bullet Description explains in a few words the purpose of the parameter.
- Scope explains under which conditions the namelist parameter has any effect, if its scope is restricted to specific settings of other namelist parameters.

Information on the file, where the namelist is defined and used, is given at the end of each table.

2 Namelist parameters for grid generation

2.1 Namelist parameters defining the atmosphere grid

2.1.1 graph_ini (NAMELIST_GRAPH)

Parameter	Type	Default	Unit	Description	Scope
nroot	I	2		root subdivision of initial edges	
grid_levels	I	4		number of edge bisections following the root	
				subdivision	
lplane	L	.FALSE.		switch for generating a double periodic planar grid.	
				The root level consists of 8 triangles.	

Defined and used in: src/grid generator/mo io graph.f90

2.1.2 grid_ini (NAMELIST_GRID)

Parameter	Type	Default	Unit	Description	Scope
nroot	I	2		root subdivision of initial edges	
grid_levels	I	4		number of edge bisections following the root	
				subdivision	
lplane	L	.FALSE.		switch for generating planar grid. The root level	
				consists of 8 triangles.	

Defined and used in: $src/grid_generator/mo_io_grid.f90$

2.1.3 grid_options (NAMELIST_GRID)

Parameter	Type	Default	Unit	Description	Scope
x_rot_angle	R	0.0	deg	Rotation of the icosahedron about the x-axis	
				(connecting the origin and [0°E, 0°N])	

Parameter	Type	Default	Unit	Description	Scope
y_rot_angle	R	0.0	deg	Rotation of the icosahedron about the y-axis	
				(connecting the origin and [90°E, 0°N), done after	
				the rotation about the x-axis.	
z_rot_angle	R	0.0	deg	rotation of the icosahedron about the z-axis	
				(connecting the origin and [0°E, 90°N), done after	
				the rotation about the y-axis.	
itype_optimize	I	4		Grid optimization type	
				0: no optimization	
				1: Heikes Randall	
				2: equal area	
				3: c-grid small circle	
				4: spring dynamics	
l_c_grid	L	.FALSE.		C-grid constraint on last level	
maxlev_optim	I	100		Maximum grid level where the optimization is	$i_{type_optimize} = 1 \text{ or } 4$
				applied	
beta_spring	R	0.90		tuning factor for target grid length	$i_type_optimize = 4$

Defined and used in: src/grid generator/mo io grid.f90

2.1.4 plane options (NAMELIST GRID)

Parameter	Type	Default	Unit	Description	Scope
tria_arc_km	R	10.0	km	length of triangle edge on plane	lplane=.TRUE.

The number of grid points is generated by root level section and further bisections. The double periodic root level consists of 8 triangles. The spatial coordinates are -1 <= x <= 1, and $-\sqrt{3}/2 <= y <= \sqrt{3}/2$. Currently the planar option can only be used as an f-plane. Defined and used in: $src/grid_generator/mo_io_grid.f90$

2.1.5 gridref_ini (NAMELIST_GRIDREF)

Parameter Ty	Гуре	Default	Unit	Description	Scope
--------------	------	---------	------	-------------	-------

Parameter	Type	Default	Unit	Description	Scope
grid_root	I	2		root subdivision of initial edges	
start_lev	I	4		number of edge bisections following the root	
				subdivision	
n_dom	I	2		number of logical model domains, including the	
				global one	
n_phys_dom	I	n_dom		number of physical model domains, may be larger	
				than n_dom (in this case, domain merging is	
				applied)	
parent_id	I(n_phy	rsi_		ID of parent domain (first entry refers to first	
	dom-			nested domain; needs to be specified only in case of	
	1)			more than one nested domain per grid level)	
logical_id	I(n_phy	r si ± 1		logical grid ID of parent domain (first entry refers	
	dom-			to first nested domain; needs to be specified only in	
	1)			case of domain merging, i.e. n_dom <	
				n_phys_dom)	
l_plot	L	.FALSE.		produces GMT plots showing the locations of the	
				nested domains	
l_circ	L	.TRUE.		Create circular (.T.) or rectangular (.F.) refined	
				domains	
l_rotate	L	.FALSE.		Rotates center point into the equator in case of	lcirc=.FALSE.
				$l_circ = .FALSE.$	
write_hierarchy	I	1		0: Output only computational grids	
				1: Output in addition parent grid of global model	
				domain (required for computing physics on a	
				reduced grid)	
				2: Output all grids back to level 0 (required for	
				hierarchical search algorithms)	
bdy_indexing_depth	h I	\max_{rlcell}		Number of cell rows along the lateral boundary of a	
		(=8)		model domain for which the refin_ctrl fields	
				contain the distance from the lateral boundary;	
				needs to be enlarged when lateral boundary	
				nudging is required for one-way nesting	

Parameter	Type	Default	Unit	Description	Scope
radius	R(n_dc	m 3 0.	deg	radius of nested domain (first entry refers to first	lcirc=.TRUE.
	1)			nested domain; needs to be specified for each nested	
				domain separately)	
hwidth_lon	R(n_dc	m 2 0.	deg	zonal half-width of refined domain (first entry refers	lcirc=.FALSE.
	1)			to first nested domain; needs to be specified for	
				each nested domain separately)	
hwidth_lat	R(n_dc	m20.	deg	meridional half-width of refined domain (first entry	lcirc=.FALSE.
	1)			refers to first nested domain; needs to be specified	
				for each nested domain separately)	
center_lon	R(n_dc	m90.	deg	center longitude of refined domain (first entry refers	
	1)			to first nested domain; needs to be specified for	
				each nested domain separately)	
center_lat	R(n_dc	m30.	deg	center latitude of refined domain (first entry refers	
	1)			to first nested domain; needs to be specified for	
				each nested domain separately)	

Defined and used in: src/grid_generator/mo_gridrefinement.f90

$2.2 \quad \text{Namelist parameters defining the ocean grid (NAMELIST_OCEAN_GRID)}$

The ocean grids are created by the script run/create_ocen_grid.run

${\bf 2.2.1 \quad grid_geometry_conditions}$

Parameter	Type	Default	Unit	Description	Scope
no_of_conditions	Ι	0		Number of geometric conditions	
patch_shape	I(no_of	_@onditions)		1=rectangle; 2=circle	
patch_center_x	R(no_o	$f_0 \cos \theta$ ditions) degrees	longitude of patch center	
patch_center_y	R(no_o	$f_0 \cos \theta$ ditions) degrees	latitude of patch center	
rectangle_xradious	R(no_o	$f_0 \cos \theta$ ditions) degrees	half meridional extension of a rectangular patch	$patch_shape=1$
rectangle_yradious	· —	_	, ,	half zonal extension of a rectangular patch	$patch_shape=1$
circle_radious	R(no_o	$f_0 \cos \theta$) degrees	radius of a circular patch	$patch_shape=2$

Defined in mo_grid_conditions.f90

2.2.2 create_ocean_grid

Parameter	Type	Default	Unit	Description	Scope
only_get_sea_land	rhask	.false.		.true.:returns the whole grid with a sea-land mask;	
				.false.:returns only the ocean grid	
smooth_ocean_bour	ıdary	.true.		.true.:smooths the ocean boundaries so no triabgle	
				has two boundary edges; .false.:no smoothing	
input_file	С			name of the input grid file	
elevation_file	С			name of the file containing cell elevation values for	$no_of_conditions=0$
				the input_file	
elevation_field	С			name of the field containing the cell elevation values	$no_of_conditions=0$
min_sea_depth	R	0.0	m	if cell elevation < min_sea_depth then the cell is	
			(nega-	consider sea	
			tive)		
set_sea_depth	R	0.0	m	if not 0, then sea cells are of set_sea_depth	
			(nega-	elevation	
			tive)		
set_min_sea_depth	R	0.0	m	if not 0, then sea cells have a maximum of	
			(nega-	set_min_sea_depth elevation	
			tive)		
edge_elev_interp_n	$_{ m ethod}$	2		compute edge elevation from cells using: linear	
				interpolation=1; min value = 2	
output_refined_ocea	n <u>C</u> file			name of the output refined ocean grid file	

Defined in mo_create_ocean_grid.f90

${\bf 2.3}\quad {\bf Namelist\ parameters\ defining\ the\ torus\ grid\ (NAMELIST_TORUS_GRID)}$

2.3.1 torus grid parameters

Parameter	Type	Default	Unit	Description	Scope
y_no_of_rows	Ι		4	number of triangle rows of the torus grid	
x_no_of_columns	I		8	number of triangle columns of the torus grid	
edge_length	R	m	1000.0	the triangle edge length	
x_center	R	m	0.0	the x coordinate of the torus center	
y_center	R	m	0.0	the y coordinate of the torus center	
out_file_name	С			the torus grid file name	
unfolded_torus_file	nGme			the unfolded torus grid file name (for plotting)	
ascii_filename	С			the unfolded torus grid ascci file name (for plotting)	

Defined in mo_create_torus_grid.f90. See the run script run/create_torus_grid.run.

3 Namelist parameters defining the ICON model

Namelist parameters for the ICON models are organized in several thematic Fortran namelists controling the experiment, and the properties of dynamics, transport, physics etc.

3.1 master nml

Parameter	Type	Default	Unit	Description	Scope
lrestart	L	.FALSE.		If .TRUE., simulation starts from a model state	
				read from restart file(s).	
atmo_restart_info_	fil © name	'restart.info	,	Name (including full path) of the restart info file for	
				the atm model	
ocean_restart_info_	fi@name	'restart.info	,	Name (including full path) of the restart info file for	
				the ocean model	
atmo_namelist_filer	a 6 ie	'NAMELIS	T_{ICON}	Name (including full path) of the	
				atmosphere-specific namelist file	
ocean_namelist_file	naGhe	'NAMELIS	T_{ICON}	Name (including full path) of the ocean-specific	
				namelist file	

$3.2 \quad time_nml$

Parameter	Type	Default	Unit	Description	Scope
dt_restart	R	86400.*30.	S	Length of restart cycle in seconds.	
calendar	Ι	1		Calendar type:	
				0=Julian/Gregorian	
				1=proleptic Gregorian	
				$2=30 ext{day/month,} 360 ext{day/year}$	
ini_datatime_string	С	'2008-09-		Initial date and time of the simulaiton.	
		01T00:00:0	0 Z '		
end_datatime_string	g C	2008-09-		End date and time of the simulaiton.	
		01T01:40:0	0 Z '		
				Length of the run	
				If "nsteps" in run_nml (see below) is positive, then	
				nsteps*dtime is used to compute the end date and	
				time of the run.	
				Else the initial date and time, the end date and	
				time, dt_restart, as well as the time step are used	
				to compute "nsteps".	

3.3 parallel_nml

Parameter	Type	Default	Unit	Description	Scope
nproma	I	1		chunk length	
n_ghost_rows	I	1		number of halo cell rows	
l_log_checks	L				
l_fast_sum	L				
division_method	I	1		method of domain decomposition	
				0: read in from file	
				1: use built-in geometric subdivision	
				2: use METIS	
p_test_run	L	.FALSE.		.TRUE. means verification run for MPI	
				parallelization (PE 0 processes full domain)	

Parameter	Type	Default	Unit	Description	Scope
l_test_openmp	L	.FALSE.		if .TRUE. is combined with p_test_run=.TRUE.	
				and OpenMP parallelization, the test PE gets only	
				1 thread in order to verify the OpenMP	
				paralllelization	
l_log_checks	L	.FALSE.		if .TRUE. messages are generated during each	
				synchonization step (use for debugging only)	
l_fast_sum	L	.FALSE.		if .TRUE., use fast (not	
				processor-configuration-invariant) global summation	
iorder_sendrecv	I	1		Sequence of send/receive calls: $1 = \text{irecv/send}$; $2 =$	
				isend/recv; $3 = $ isend/irecv	
itype_comm	I	1		1: use local memory for exchange buffers	
				2: use global memory for exchange buffers	
				3: asynchronous halo communication for dynamical	
				core (NH tria only)	
num_io_procs	I	0		Number of I/O processors (running exclusively for	
				doing I/O)	
pio_type	I	1		Type of parallel I/O. Only used if number of I/O	
				processors greater number of domains.	
				Experimental!	

Defined and used in: $src/namelists/mo_parallel_nml.f90$

$3.4 \quad run_nml$

Parameter	Type	Default	Unit	Description	Scope
ldump_states	L	.FALSE.		Dump patch/interpolation/grid refinement state of	
				every patch (after subdivision in case of a parallel	
				run) to a Netcdf file and exit program.	
lrestore_states	L	.FALSE.		Restore patch/interpolation/grid refinement states	
				from NetCDF dump files instead of calculating	
				them.	
nsteps	I	0		number of time steps of this run.	

Parameter	Type	Default	Unit	Description	Scope
dtime	R	600.0	S	time step	
ltestcase	L	.TRUE.		Idealized testcase runs	
ldynamics	L	.TRUE.		Compute adiabatic dynamic tendencies	
iforcing	I	0		Forcing of dynamics and transport by	
				parameterized processes. Use positive indices for	
				the atmosphere and negative indices for the ocean.	
				0: no forcing	
				1: Held-Suarez forcing	
				2: ECHAM forcing	
				3: NWP forcing	
				4: local diabatic forcing without physics	
				5: local diabatic forcing with physics	
				-1: MPIOM forcing (to be done)	
ltransport	L	.FALSE.		Compute large-scale tracer transport	
ntracer	I	0		Number of advected tracers handled by the	
				large-scale transport scheme	
lvert_nest	L	.FALSE.		If set to .true. vertical nesting is switched on (i.e.	
				variable number of vertical levels)	
nlev	I	31		Number of vertical layers	$lvert_nest=.FALSE.$
num_nlev	I(max_	d 3 min)		Number of full levels (atm.) for each domain	lvert_nest=.TRUE.
nshift	I(max_	d o m)		vertical half level of parent domain which coincides	lvert_nest=.TRUE.
				with upper boundary of the current domain	
ltimer	L	.TRUE.		TRUE: Timer for monitoring thr runtime of specific	
				routines is on $(FALSE = off)$	
timers_level	I	1			
msg_level	I	10		controls how much printout is written during	
				runtime.	
				For values less than 5, only the time step is written.	

Defined and used in: $src/namelists/mo_run_nml.f90$

$3.5 \quad \mathbf{grid_nml}$

Parameter	Type	Default	Unit	Description	Scope
cell_type	I	3		Cell type	
				3: triangular cells	
				4: quadrilateral cells (to be done)	
				6: pentagonal/hexagonal cells	
lplane	L	.FALSE.		planar option	
corio_lat	R	0.0	deg	Center of the f-plane is located at this geographical latitude	lplane=.TRUE.
n_dom	I	1		number of model domains, $1 = \text{global domain only}$	
l_limited_area	L	.FALSE.			
parent_id	I(n_do	m-i		ID of parent domain (first entry refers to first	n_dom>1
	1)			nested domain; needs to be specified only in case of	
				more than one nested domain per grid level)	
				MUST be the same as in gridref_ini	
lfeedback	L(n_do	m)TRUE.		Specifies if feedback to parent grid is performed.	n_dom>1
				Setting lfeedback (1) =.false. turns off feedback for	
				all nested domains; to turn off feedback for selected	
				nested domains, set $lfeedback(1) = .true$. and set	
				".false." for the desired model domains	
patch_weight	R(n_de	om().		If patch_weight is set to a value > 0 for any of the	n_dom>1
				first level child patches, processor splitting will be	
				performed, i.e. every of the first level child patches	
				gets a subset of the total number or processors	
				corresponding to its patch_weight. A value of 0.	
				corresponds to exactly 1 processor for this patch,	
				regardless of the total number of processors. For the	
				root patch and higher level childs, patch_weight is	
				not used. However, patch_weight must be set to 0	
				for these patches to avoid confusion.	
lpatch0	L	.FALSE.		If set to .true. an additional patch one level below	
				the root patch is allocated and read so that physics	
				calculations on a coarser grid are possible	
lredgrid_phys	L	.FALSE.		If set to .true. is calculated on a reduced grid (=	
				one grid level higher); requires lpatch0=.TRUE.	

Parameter	Type	Default	Unit	Description	Scope
dynamics_grid_	С			Array of the grid filenames to be used by the	
filename				dycore.	
dynamics_parent_	I			Array of the indexes of the parent grid filenames, as	
grid_id				described by the dynamics_grid_filename array.	
				Indexes start at 1, an index of 0 indicates no parent.	
radiation_grid_	С			Array of the grid filenames to be used for the	
filename				radiation model. Filled only if the radiation grid is	
				different from the dycore grid.	
dynamics_radiation	Ι			Array of the indexes linking the dycore grids, as	
_grid_link				described by the dynamics_grid_filename array,	
				and the radiation_grid_filename array. It provides	
				the link index of the radiation_grid_filename, for	
				each entry of the dynamics_grid_filename array.	
				Indexes start at 1, an index of 0 indicates that the	
				radiation grid is the same as the dycore grid. Only	
				needs to be filled when the	
				radiation_grid_filename is defined.	

Defined and used in: src/namelists/mo_grid_nml.f90

$3.6 \quad \text{gridref_nml}$

Parameter	Type	Default	Unit	Description	Scope
$grf_intmethod_c$	I	2		Interpolation method for grid refinement (cell-based	n_dom>1
				dynamical variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
$grf_intmethod_ct$	I	2		Interpolation method for grid refinement (cell-based	n_dom>1
				tracer variables):	
				1: parent-to-child copying	
				2: gradient-based interpolation	
grf_intmethod_e	Ι	4		Interpolation method for grid refinement	n_dom>1
				(edge-based variables):	

Parameter	Type	Default	Unit	Description	Scope
				1: inverse-distance weighting (IDW)	
				2: RBF interpolation	
				3: combination gradient-based / IDW	
				4: combination gradient-based / RBF	
grf_velfbk	I	1		Method of velocity feedback:	n_dom>1
				1: average of child edges 1 and 2	
				2: 2nd-order method using RBF interpolation	
grf_scalfbk	Ι	2		Feedback method for dynamical scalar variables	n_dom>1
				(T, p_{sfc}) :	
				1: area-weighted averaging	
				2: bilinear interpolation	
grf_tracfbk	I	2		Feedback method for tracer variables:	n_dom>1
				1: area-weighted averaging	
				2: bilinear interpolation	
grf_idw_exp_e12	R	1.2		exponent of generalized IDW function for child	n_dom>1
				edges $1/2$	
$grf_idw_exp_e34$	R	1.7		exponent of generalized IDW function for child	$n_{dom}>1$
				edges $3/4$	
rbf_vec_kern_grf_e	I	1		RBF kernel for grid refinement (edges):	$n_{dom}>1$
				1: Gaussian	
				$2: 1/(1+r^2)$	
				3: inverse multiquadric	
rbf_scale_grf_e	R	0.5		RBF scale factor for grid refinement (edges)	n_dom>1
denom_diffu_t	R	135		Deniminator for lateral boundary diffusion of	n_dom>1
				temperature	
denom_diffu_v	R	200		Deniminator for lateral boundary diffusion of	n_dom>1
				velocity	

Defined and used in: $src/namelists/mo_gridref_nml.f90$

$3.7 \quad interpol_nml$

Parameter	Type	Default	Unit	Description	Scope
llsq_high_consv	L	.TRUE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for high order transport	
lsq_high_ord	Ι	3		polynomial order for high order reconstruction	
				2: quadratic	
				30: cubic (no 3^{rd} order cross deriv.)	
				3: cubic	
rbf_vec_kern_c	Ι	1		Kernel type for reconstruction at cell centres:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_e	Ι	3		Kernel type for reconstruction at edges:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_v	Ι	1		Kernel type for reconstruction at vertices:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_scale_c	R(n_do	mesolution-		Scale factor for RBF reconstruction at cell centres	
		dependent			
rbf_vec_scale_e	R(n_do	mresolution-		Scale factor for RBF reconstruction at edges	
		dependent			
rbf_vec_scale_v	R(n_do	mesolution-		Scale factor for RBF reconstruction at vertices	
		dependent			
nudge_max_coeff	R	0.02		Maximum relaxation coefficient for lateral	
				boundary nudging	
nudge_efold_width	R	2.5		e-folding width (in units of cell rows) for lateral	
				boundary nudging coefficient	
nudge_zone_width	Ι	8		Total width (in units of cell rows) for lateral	
				boundary nudging zone	
i_cori_method	Ι	3		Selector for tangential wind reconstruction method	currently only for
					cell_type=6
				1: Almut's method for tangential wind, but PV	
				usage as in TRSK	
				2: method of Thuburn, Ringler, Skamarock and	
				Klemp (TRSK)	

Parameter	Type	Default	Unit	Description	Scope
				3: Almut's method for tangential wind and PV	
				usage	
l_corner_vort	L	.TRUE.		switch whether the rhombus averaged corner vorticity is averaged to the hexagon (.TRUE.) or the rhombi are directly averaged to the hexagon (.FALSE.)	i_cori_method=3

Defined and used in: src/namelists/mo_interpol_nml.f90

3.8 dynamics_nml

This namelist is relevant if run_nml:ldynamics=.TRUE.

Parameter	Type	Default	Unit	Description	Scope
iequations	I	1		Equations and prognostic variables. Use positive	
				indices for the atmosphere and negative indices for	
				the ocean.	
				0: shallow water model	
				1: hydrostatic atmosphere, T	
				2: hydrostatic atm., θ -dp	
				3: non-hydrostatic atmosphere	
				-1: hydrostatic ocean	
idiv_method	I	1		Method for divergence computation:	grid_nml:cell_type=3
				1: Standard Gaussian integral. Hydrostatic	
				atm. model: for unaveraged normal components,	
				Non-hydrostatic atm. model: for averaged normal	
				components	
				2: bilinear averaging of divergence	
divavg_cntrwgt	R	0.5		Weight of central cell for divergence averaging	$idiv_method=2$
sw_ref_height	R	0.9*2.94e4	gm	Reference height of shallow water model used for	
				linearization in the semi-implicit time stepping	
				scheme	
lcoriolis	L	.TRUE.		Coriolis force	

Defined and used in: $src/namelists/mo_dynamics_nml.f90$

 $3.9 \quad ha_dyn_nml$

 $This \ namelist \ is \ relevant \ if \ run_nml: ldynamics=. TRUE. \ and \ dynamics_nml: iequations=IHS_ATM_TEMP \ or \ IHS_ATM_THETA.$

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	I	4		Time integration scheme:	
_				11: pure advection (no dynamics)	
				12: 2 time level semi implicit (not yet implemented)	
				13: 3 time level explicit	
				14: 3 time level with semi implicit correction	
				15: standard 4th-order Runge-Kutta method	
				(4-stage)	
				16: $SSPRK(5,4)$ scheme (5-stage)	
ileapfrog_startup	I	1		How to integrate the first time step when the	itime_scheme= 13 or 14
				leapfrog scheme is chosen. $1 = \text{Euler forward}$; $2 = a$	
				series of sub-steps.	
asselin_coeff	R	0.1		Asselin filter coefficient	itime_scheme= 13 or 14
si_2tls	R	0.6		weight of time step $n+1$. Valid range: $[0,1]$	itime_scheme=12
si_expl_scheme	I	2		scheme for the explicit part used in the 2 time level	itime_scheme=12
				semi-implicit time stepping scheme. $1 = \text{Euler}$	
				forward; $2 = Adams$ -Bashforth 2nd order	
si_cmin	R	30.0	m/s	semi implicit correction is done for eigenmodes with	itime_scheme=14 and
				speeds larger than si_cmin	lsi_3d=.FALSE.
si_coeff	R	1.0		weight of the semi implicit correction	itime_scheme=14
si_offctr	R	0.7			itime_scheme=14
si_rtol	R	1.0e-3		relative tolerance for GMRES solver	itime_scheme=14
lsi_3d	L	.FALSE.		3D GMRES solver or decomposistion into 2D	lshallow_water=.FALSE.
				problems	and itime_scheme=14
ldry_dycore	L	.TRUE.		Assume dry atmosphere	iequations $\in \{1,2\}$
lref_temp	L	.FALSE.		Set a background temperature profile as base state	iequations $\in \{1,2\}$
				when computing the pressure graident force	

3.10 nonhydrostatic_nml (relevant if run_nml:iequations=3)

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	Ι	4		Time integration scheme:	
				3: same as default, but computation of velocity	iequations=3 and
				tendencies in corrector step only	cell_type=3
				4: Matsuno scheme	iequations=3 and
					cell_type=3
				6: same as default, but usage of velocity tendencies	iequations=3 and
				at $(nnow+nnew)/2$	cell_type=3
rayleigh_coeff	R(n_do	m0).05		Rayleigh damping coefficient (Klemp, Dudhia,	cell_type=3
				Hassiotis: MWR136, pp.3987-4004)	
damp_height	R(n_do	m3)0000	m	Height at which Rayleigh damping of vertical wind	
				starts	
damp_height_u	R	100000	m	Height at which Rayleigh damping of zonal wind	active only for inwp_gwd
				starts	> 0
damp_timescale_u	R	259200	s	Shortest damping time scale (reached at model top)	
htop_moist_proc	R	200000.0	m	Height above which moist physics and advection of	
				cloud and precipitation variables are turned off	
k2_updamp_coeff	R	2.0e6		enhanced 2nd order diffusion coefficient in upper	cell_type=6,
				damping layer	hdiff_order=3
					(Smagorinski)
vwind_offctr	R	0.05		Off-centering in vertical wind solver	cell_type=3
ivctype	I	1		Type of vertical coordinate:	
				1: Gal-Chen hybrid	
				2: SLEVE (uses sleve_nml)	
iadv_rcf	I	1		reduced calling frequency (rcf) for transport	
				1: no rcf (every dynamics-step)	
				2: transport every 2. step	
				4:	
l_nest_rcf	L	.TRUE.		Synchronize interpolation/feedback calls with	cell_type=3
				advection (transport) time steps. l_nest_rcf is	
				automatically reset to .FALSE. if iadv_rcf=1	

Parameter	Type	Default	Unit	Description	Scope
l_masscorr_nest	L	.FALSE.		Apply mass conservation correction also in nested domain	cell_type=3
iadv_rhotheta	I	2		Advection method for rho and rhotheta: 1: centred differences horiz. + vert. 2: 2nd order Miura horizontal 3: 3rd order Miura horizontal (not recommended)	cell_type=3
igradp_method	I	1		Discretization of horizontal pressure gradient: 1: conventional discretization with metric correction term 2: Taylor-expansion-based reconstruction of pressure (advantageous at very high resolution) 3: Similar discretization as option 2, but uses hydrostatic approximation for downward extrapolation over steep slopes	cell_type=3
l_zdiffu_t	L	.FALSE.		.TRUE.: Compute Smagorinsky temperature diffusion truly horizontally over steep slopes	cell_type=3 .AND. hdiff_order=5 .AND. lhdiff_temp = .true.
thslp_zdiffu	R	0.025		Slope threshold above which truly horizontal temperature diffusion is activated	cell_type=3 .AND. hdiff_order=5 .AND. lhdiff_temp=.trueAND. l_zdiffu_t=.true.
thhgtd_zdiffu	R	200	m	Threshold of height difference between neighboring grid points above which truly horizontal temperature diffusion is activated (alternative criterion to thslp_zdiffu)	cell_type=3 .AND. hdiff_order=5 .AND. lhdiff_temp=.trueAND. l_zdiffu_t=.true.
exner_expol	R	0.5		Temporal extrapolation (fraction of dt) of Exner function for computation of horizontal pressure gradient	cell_type=3
l_open_ubc	L	.FALSE.		.TRUE.: Use open upper boundary condition (rather than w=0) to better conserve sea-level pressure in the presence of diabatic heating	cell_type=3
ltheta_up_hori	L	.FALSE.		upstream biased horizontal advection for theta (see also upstr_beta)	cell_type=6

Parameter	Type	Default	Unit	Description	Scope
upstr_beta	R	1.0		Selection of order for horiz. theta advection: 3rd	cell_type=6
				order=1.0, 4th order=0.0	
gmres_rtol_nh	R	1.0e-6		relative tolerance for convergence in gmres solver	cell_type=6

Defined and used in: src/namelists/mo_nonhydrostatic_nml.f90

$3.11 \quad sleve_nml \ (relevant \ if \ nonhydrostatic_nml:ivctype=2)$

Parameter	Type	Default	Unit	Description	Scope
min_lay_thckn	R	50	m	Layer thickness of lowermost layer	
top_height	R	23500.0	m	Height of model top	
stretch_fac	R	1.0		Stretching factor to vary distribution of model	
				levels; values <1 increase the layer thickness near	
				the model top	
decay_scale_1	R	4000	m	Decay scale of large-scale topography component	
decay_scale_2	R	2500	m	Decay scale of small-scale topography component	
decay_exp	R	1.2		Exponent of decay function	
flat_height	R	16000	m	Height above which the coordinate surfaces are flat	

Defined and used in: $src/namelists/mo_sleve_nml.f90$

$3.12 \quad diffusion_nml$

Parameter	Type	Default	Unit	Description	Scope
lhdiff_temp	L	.TRUE.		Diffusion on the temperature field	
lhdiff_vn	L	.TRUE.		Diffusion on the horizontal wind field	
hdiff_order	Ι	4		Order of ∇ operator for diffusion:	
				-1: no diffusion	
				2: ∇^2 diffusion	

Parameter	Type	Default	Unit	Description	Scope
T the time oct	Турс	Belauti	Cine	3: Smagorinsky ∇² diffusion for the hexagonal model (includes frictional heating if lhdiff_temp=.TRUE.) 4: ∇⁴ diffusion 5: Smagorinsky ∇² diffusion combined with ∇⁴ background diffusion as specified via hdiff_efdt_ratio	Беоре
				defaults: 2 for hexagonal model, 4 for triangular model 24 or 42: ∇2 diffusion from model top to a certain level (cf. k2_pres_max and k2_klev_max below); ∇ ⁴ for the lower levels.	24 and 42 currently allowed only in the hydrostatic atm model (run_nml:iequation = 1 or 2).
k2_pres_max	R	-99.	Pa	Pressure level above which ∇^2 diffusion is applied.	hdiff_order = 24 or 42, and run_nml:iequation = 1 or 2.
k2_klev_max	I	0		Index of the vertical level till which (from the model top) ∇^2 diffusion is applied. If a positive value is specified for k2_pres_max, k2_klev_max is reset accordingly during the initialization of a model run.	hdiff_order = 24 or 42, and run_nml:iequation = 1 or 2.
hdiff_efdt_ratio	R	1.0		ratio of e-folding time to time step (or 2* time step when using a 3 time level time stepping scheme) (only for triangles currently)	
hdiff_min_efdt_rat	tioR	1.0		minimum value of hdiff_efdt_ratio near model top	iequations=3 .AND. cell_type=3
hdiff_tv_ratio	R	1.0		Ratio of diffusion coefficients for temperature and normal wind: $T: v_n$	
hdiff_multfac	R	1.0		Multiplication factor of normalized diffusion coefficient for nested domains	n_dom>1

Parameter	Type	Default	Unit	Description	Scope
hdiff_smag_fac	R	0.15		Scaling factor for Smagorinsky diffusion	for triangles only with
					iequations=3, for
					hexagons with
					hdiff_order=3

Defined and used in: $src/namelists/mo_diffusion_nml.f90$

3.13 io_nml

Parameter	Type	Default	Unit	Description	Scope
out_expname	С	'IIIEEEET	TTT'	Outfile basename	
out_filetype	I	2		Type of output format:	
				1: GRIB1 (not yet implemented)	
				2: netCDF	
lkeep_in_sync	L	.FALSE.		Sync output stream with file on disk after each	
				timestep	
dt_data	R	21600.0	s	Output time interval	
dt_diag	R	86400.		diagnostic integral output interval	
dt_file	R	2592000	s	Time interval of triggering new output file	
dt_checkpoint	R	2592000	s	Time interval for writing restart files	
lwrite_vorticity	L	.TRUE.		write out averaged vorticity at vertices	
lwrite_divergence	L	.TRUE.		write out divergence at cells	
lwrite_omega	L	.TRUE.		write out vertical velocity in pressure coords.	Always .FALSE. for
					nonhydrostatic and
					shallow water models
lwrite_pres	L	.TRUE.		write out full level pressure	lshallow_water=.FALSE.
lwrite_z3	L	.TRUE.		write out geopotential on full levels	lshallow_water=.FALSE.
lwrite_tracer	L(ntrac	er)TRUE.		write out tracer at cells	
lwrite_tend_phy	L	.TRUE.		Physics induced tendencies.	.TRUE. if
		.FALSE.			iforcing=iecham
		(Scope)			.FALSE. else

Parameter	Type	Default	Unit	Description	Scope
lwrite_radiation	L	.FALSE.		Radiation related fields.	Always .FALSE. if
					iforcing=inoforcing,
					iheldsuarez, ildf_dry
lwrite_precip	L	.FALSE.		Precipitation	Always .FALSE. if
					iforcing=inoforcing,
					iheldsuarez, ildf_dry
lwrite_cloud	L	.FALSE.		Cloud variables	Always .FALSE. if
					iforcing=inoforcing,
					iheldsuarez, ildf_dry
lwrite_tke	L	.TRUE.		TKE	.FALSE.
					Always .FALSE. if
					iforcing=inoforcing,
					iheldsuarez, ildf_dry
lwrite_surface	L	.FALSE.		surface variables	Always .FALSE. if
					iforcing=inoforcing,
					iheldsuarez, ildf_dry
lwrite_extra	L	.FALSE.		debug fields	.TRUE. if inextra_2d
					$/_3d > 0$
					.FALSE. else
inextra_2d	I	0		Number of 2D Fields for diagnostic/debugging	iequations = 3 (to be
				output.	done for $1, 2$
inextra_3d	I	0		Number of 3D Fields for diagnostic/debugging	iequations = 3 (to be
				output.	done for $1, 2$

Defined and used in: $src/namelists/mo_io_nml.f90$

${\bf 3.14 \quad transport_nml \ (used \ if \ run_nml/ltransport=.TRUE.)}$

Parameter	Type	Default	Unit	Description	Scope
ihadv_tracer	I(ntrace	r)2		Horiz. transport scheme:	
		4		0: no horiz. transport	
				1: upwind (1st order)	

Parameter	Type	Default	Unit	Description	Scope
				2: miura (2nd order, lin. reconstr.)	if cell_type=3
				3: miura3 (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$
				4: up3 (3rd or 4th order upstream)	if cell_type=6
ivadv_tracer	I(ntrace	er)3		Vert. transport scheme:	
				0: no vert. transport	
				1: upwind (1st order)	
				2: $muscl_cfl$ (2nd order, handles $CFL > 1$)	
				20: muscl (2nd order)	
				3: ppm_cfl (3^{rd} order, handles CFL > 1)	
				30: ppm (3rd order)	
lvadv_tracer	L	.TRUE.		calculate vertical tracer advection	
lstrang	L	.FALSE.		splitting into fractional steps	
				- second order Strang splitting (.TRUE.)	
				- first order Godunov splitting (.FALSE.)	
ctracer_list	С	"		list of tracer names	
itype_hlimit	I(ntrace	er)3		Type of limiter for horizontal transport:	
		4		0: no limiter	
				1: semi-monotonous slope limiter	ihadv_tracer='miura
				2: monotonous slope limiter	ihadv_tracer='miura
				3: monotonous flux limiter	ihadv_tracer='miura
				4: positive definite flux limiter	ihadv_tracer='miura
					'iup3[4]'
itype_vlimit	I(ntrace	er)1		Type of limiter for vertical transport:	
				0: no limiter	
				1: semi-monotone slope limiter	
				2: monotonous slope limiter	
				4: positive definite flux limiter	
iord_backtraj	I	1		order of backward trajectory calculation:	
				1: first order	
				2: second order (iterative; currently 1 iteration	ihadv_tracer='miura
				hardcoded)	
igrad_c_miura	I	1		Method for gradient reconstruction at cell center	
				for 2nd order miura	

Parameter	Type	Default	Unit	Description	Scope
				1: Least-squares (linear, non-consv)	ihadv_tracer=2
				2: Green-Gauss	
				3: gradient reconstruction (RBF) at cell center on	
				the basis of normal gradients at edges	
lclip_tracer	L	.FALSE.		Clipping negative values	
upstr_beta_adv	R	1.0		parameter to select 3rd order (=1) or 4th order	ihadv_tracer=iup3
				(=0) advection, or something inbetween (01)	
ivcfl_max	I	5		determines stability range of vertical PPM-scheme	ivadv_tracer=3
				in terms of the maximum allowable CFL-number	
llsq_svd	L	.FALSE.		use QR decomposition (FALSE) or SV	
				decomposition (TRUE) for least squares design	
				matrix A	

Defined and used in: $src/namelists/mo_advection_nml.f90$

$3.15 \quad nwp_phy_nml$

Parameter	Type	Default	Unit	Description	Scope
inwp_gscp	I	0		cloud microphysics and precipitation	$run_nml/iforcing = inwp$
				0: none	
				1: hydci (COSMO-EU microphysics)	
inwp_convection	I	0		convection	$run_nml/iforcing = inwp$
				0: none	
				1: Tiedtke/Bechtold convection	
inwp_cldcover	I	1		cloud cover scheme for radiation	$run_nml/iforcing = inwp$
				0: no clouds (only QV)	
				1: grid-scale clouds and QV	
				2: clouds from COSMO turbulence scheme	
				3: clouds from COSMO SGS cloud scheme	
inwp_radiation	I	0		radiation	$run_nml/iforcing = inwp$
				0: none	
				1: RRTM radiation	

Parameter	Type	Default	Unit	Description	Scope
				2: Ritter-Geleyn radiation	
inwp_satad	I	1		saturation adjustment	$run_nml/iforcing = inwp$
				0: none	
				1:	
inwp_turb	I	0		vertical diffusion and transfer	$run_nml/iforcing = inwp$
				0: none	
				1: COSMO diffusion and transfer	
				2: ECHAM diffusion	
inwp_sso	I	0		subgrid scale orographic drag	$run_nml/iforcing = inwp$
				0: none	
				1:	
inwp_surface	I	0		surface scheme	$run_nml/iforcing = inwp$
				0: none	
				1:	
dt_conv	R	600.	seconds	time interval of convection call	$run_nml/iforcing = inwp$
	(max_c	dom)		currently each subdomain has	
				the same value	
dt_rad	R	1800.	seconds	time interval of radiation call	$run_nml/iforcing = inwp$
	(max_c	dom)		currently each subdomain has	
				the same value	
dt_sso	R	3600.	seconds	time interval of sso call	$run_nml/iforcing = inwp$
	(max_c	dom)		currently each subdomain has	
				the same value	
dt ccov	R	dt conv	seconds	time interval of cloud cover call	run nml/iforcing = inwp
	(max_c	dom)		currently each subdomain has	currently is not used
				the same value	
dt_gscp	R	iadv rcf	seconds	time interval of gscp call	$run_nml/iforcing = inwp$
		* dtime			
	(max_c	dom)		each subdomain	not recomended to change
	' _	,		it is halved	
dt satad	R	iadv_rcf	seconds	time interval of satad call	run nml/iforcing = inwp
_		* dtime			_ , ,
	(max_c	dom)		each subdomain	not recomended to change

Parameter	Type	Default	Unit	Description	Scope
				it is halved	
dt_turb	R	dt_gscp	seconds	time interval of turb call	$run_nml/iforcing = inwp$
	(max_d	(max dom)		each subdomain	not recomended to change
				it is halved	
dt_radheat	R	dt_satad	seconds	time interval of radheat call	$run_nml/iforcing = inwp$
	(max_d	om)		each subdomain	not recomended to change
				it is halved	

Defined and used in: $src/namelists/mo_atm_phy_nwp_nml.f90$

3.16 radiation_nml

Parameter	Type	Default	Unit	Description	Scope
ldiur	L	.TRUE.		switch for solar irradiation:	
				.TRUE.:diurnal cycle,	
				.FALSE.:zonally averaged irradiation	
nmonth	I	0		0: Earth circles on orbit	
				1-12: Earth orbit position fixed for specified month	
yr_perp	L	-99999		$year used for lyr_perp = .TRUE.$	
lyr_perp	L	.FALSE.		.FALSE.: transient Earth orbit following VSOP87	
				.TRUE.: Earth orbit of year yr_perp of the	
				VSOP87 orbit is perpertuated	
dt_rad	R	7200.	second	time interval of full radiation computation	$run_nml/iforcing =$
					iecham

Parameter	Type	Default	Unit	Description	Scope
izenith	I	3		Choice of zenith angle formula for the radiative	
		4 (for		transfer computation.	
		iforcing		0: Sun in zenith everywhere	
		= inwp)		1: Zenith angle depends only on latitude	
				2: Zenith angle depends only on latitude. Local	
				time of day fixed at 07:14:15 for radiative transfer	
				computation ($\sin(\text{time of day}) = 1/\text{pi}$	
				3: Zenith angle changing with latitude and time of	
				day	
				4: Zenith angle and irradiance changing with	
				season, latitude, and time of day (iforcing=inwp	
				only)	
irad_h2o	I	1		Switches for the concentration of radiative agents	Note: until further notice,
irad_co2		2		0: 0.	please use
irad_ch4		3		1: prognostic variable	$irad_h2o = 1$
irad_n2o		3		2: global constant	$\mathrm{irad_co2} = 2$
irad_o3		3		3: externally specified	and 0 for all the other
irad_o2		2		$irad_aero = 5$: aerosol climatology for	agents for
irad_cfc11		2		$run_nml/iforcing = 3 (NWP) when$	${ m run_nml/iforcing} = 2$
irad_cfc12		2		$inwp_radiation = 2$	(ECHAM).
irad_aero		2		$irad_o3 = 6$: ozone climatology with T5	
				geographical distribution and Fourier series for	
				seasonal cycle for run_nml/iforcing = 3 (NWP)	
vmr_co2	R	353.9e-6		Volume mixing ratio of the radiative agents	
vmr_ch4		1693.6e-9			
vmr_n2o		309.5e-9			
vmr_o2		0.20946			
vmr_cfc11		252.8e-12			
vmr_cfc12		466.2e-12			

Defined and used in: $src/namelists/mo_radiation_nml.f90$

$3.17 \quad nwp_lnd_nml$

Parameter	Type	Default	Unit	Description	Scope
nlev_snow	I	1		number of snow layers	
				for lmulti_snow=.true.	
nsfc_subs	I	1		number of tiles	
nztlev	I	2		used time integration scheme	
lmulti_snow	L	.FALSE.		.TRUE. for use of multi-layer snow model	
lseaice	L	.FALSE.		.TRUE. for use of sea-ice model	
llake	L	.FALSE.		.TRUE. for use of lake model	

Defined and used in: src/namelists/mo_nwp_lnd_nml.f90

$3.18 \quad echam_phy_nml$

Parameter	Type	Default	Unit	Description	Scope
lrad	L	.TRUE.		Switch on radiation.	iforcing = 2
lvdiff	L	.TRUE.		Switch on turbulent mixing (i.e. vertical diffusion).	iforcing = 2
lconv	L	.TRUE.		Switch on cumulus convection.	iforcing = 2
lcond	L	.TRUE.		Switch on large scale condensation.	iforcing = 2
lcover	L	.FALSE.		.TRUE. for prognostic cloud cover scheme, .FALSE.	iforcing = 2
				for diagnostic scheme.	Note: $lcover = .TRUE$.
					runs, but has not been
					evaluated (yet) in ICON.
llandsurf	L	.FALSE.		.TRUE. for surface exchanges	iforcing = 2
					Not implemeted yet
lssodrag	L	.FALSE.		.TRUE. for subgrid scale orographic drag	iforcing = 2
					Not implemeted yet
lgw_hines	L	.FALSE.		.TRUE. for atmospheric gravity wave drag by the	iforcing = 2
				Hines scheme	
lice	L	.FALSE.		.TRUE. for sea-ice temperature calculation	iforcing = 2
					Not implemeted yet

Parameter	Type	Default	Unit	Description	Scope
lmeltpond	L	.FALSE.		.TRUE. for calculation of meltponds	iforcing = 2
					Not implemeted yet
lmlo	L	.FALSE.		.TRUE. for mixed layer ocean	iforcing = 2
					Not implemeted yet
lhd	L	.FALSE.		.TRUE. for hydrologic discharge model	iforcing = 2
					Not implemeted yet

Defined and used in: src/namelists/mo_echam_phy_nml.f90

$3.19 \quad echam_conv_nml$

Parameter	Type	Default	Unit	Description	Scope
iconv	I	1		Choice of cumulus convection scheme.	iforcing = 2 .AND. $lconv$
				1: Nordeng scheme	= .TRUE.
				2: Tiedtke scheme	
				3: hybrid scheme	
ncvmicro	I	0		Choice of convective microphysics scheme.	
				iforcing = 2 .AND. $lconv = .TRUE$.	
lmfpen	L	.TRUE.		Switch on penetrative convection.	iforcing = 2 .AND. $lconv$
					= .TRUE.
lmfmid	L	.TRUE.		Switch on midlevel convection.	iforcing = 2 .AND. $lconv$
					= .TRUE.
lmfdd	L	.TRUE.		Switch on cumulus downdraft.	iforcing = 2 .AND. $lconv$
					= .TRUE.
lmfdudv	L	.TRUE.		Switch on cumulus friction.	iforcing = 2 .AND. lconv
					= .TRUE.
cmftau	R	10800.		Characteristic convective adjustment time scale.	iforcing = 2 .AND. lconv
					= .TRUE.
cmfctop	R	0.3		Fractional convective mass flux (valid range [0,1])	iforcing = 2 .AND. $lconv$
				across the top of cloud	= .TRUE.
cprcon	R	1.0e-4		Coefficient for determining conversion from cloud	iforcing = 2 .AND. $lconv$
				water to rain.	= .TRUE.

Parameter	Type	Default	Unit	Description	Scope
cminbuoy	R	0.025		Minimum excess buoyancy.	iforcing = 2 .AND. $lconv$
					= .TRUE.
entrpen	R	1.0e-4		Entrainment rate for penetrative convection.	iforcing = 2 .AND. $lconv$
					= .TRUE.
dlev	R	3.e4	Pa	Critical thickness necessary for the onset of	iforcing = 2 .AND. $lconv$
				convective precipitation.	= .TRUE.

Defined and used in: $src/namelists/mo_echam_conv_nml.f90$

$3.20 \quad echam_vdiff_nml$

Parameter	Type	Default	Unit	Description	Scope
lsfc_mon_flux	L	.TRUE.		Switch on surface momentum flux.	lvdiff = .TRUE.
lsfc_heat_flux	L	.TRUE.		Switch on surface sensible and latent heat flux.	lvdiff = .TRUE.

Defined and used in: src/namelists/mo_vdiff_nml.f90

$3.21 \quad gw_hines_nml \; (Scope: \; lgw_hines = .TRUE. \; in \; echam_phy_nml)$

Parameter	Type	Default	Unit	Description	Scope
lheatcal	L	.FALSE.		.TRUE.: compute drag, heating rate and diffusion	
				coefficient from the dissipation of gravity waves	
				.FALSE.: compute drag only	
emiss_lev	I	10		Index of model level, counted from the surface,	
				from which the gravity wave spectra are emitted	
rmscon	R	1.0	m/s	Root mean square gravity wave wind at the	
				emission level	
kstar	R	5.0e-5	1/m	Typical gravity wave horizontal wavenumber	
m_min	R	0.0	1/m	Minimum bound in vertical wavenumber	
lrmscon_lat	L	.FALSE.		.TRUE.: use latitude dependent rms wind	
				$ $ - $ $ latitude $ $ >= lat_rmscon: use rmscon	

Parameter	Type	Default	Unit	Description	Scope
				- latitude <= lat_rmscon_eq: use rmscon_eq	
				- lat rmscon eq < latitude < lat rmscon: use	
				linear interpolation between rmscon_eq and rmscon	
				.FALSE.: use globally constant rms wind rmscon	
lat_rmscon_eq	R	5.0	deg N	rmscon_eq is used equatorward of this latitude	$lrmscon_lat = .TRUE.$
lat_rmscon	R	10.0	deg N	rmscon is used polward of this latitude	$lrmscon_lat = .TRUE.$
rmscon_eq	R	1.2	m/s	is used equatorward of latitude lat_rmscon_eq	$lrmscon_lat = .TRUE.$

Defined and used in: src/namelists/mo gw hines nml.f90

4 Namelist parameters for testcases (NAMELIST_ICON)

The ICON model code includes several experiments, so-called test cases, for the shallow water model as well as the 3-dimensional atmosphere. Depending on the specified experiment, initial conditions and boundary conditions are computed internally.

4.1 ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in run_nml)

Parameter	Type	Default	Unit	Description	Scope
ctest_name	С	'JWw'		Name of test case:	
				'SW_GW': gravity wave	$lshallow_water=.TRUE.$
				'USBR': unsteady solid body rotation	$lshallow_water=.TRUE.$
				'Will_2': Williamson test 2	$lshallow_water=.TRUE.$
				'Will_3': Williamson test 3	$lshallow_water=.TRUE.$
				'Will_5': Williamson test 5	$lshallow_water=.TRUE.$
				'Will_6': Williamson test 6	$lshallow_water=.TRUE.$
				'GW': gravity wave (nlev=20 only!)	$lshallow_water=.FALSE.$
				'LDF': local diabatic forcing test without physics	$lshallow_water=.FALSE.$
					and iforcing=4
				'LDF-Moist': local diabatic forcing test with	lshallow_water=.FALSE.,
				physics initalised with zonal wind field	and iforcing=5
				'HS': Held-Suarez test	lshallow_water=.FALSE.

Parameter	Type	Default	Unit	Description	Scope
				'JWs': Jablonowski-Will. steady state	lshallow_water=.FALSE.
				'JWw': Jablonowski-Will. wave test	lshallow_water=.FALSE.
				'JWw-Moist': Jablonowski-Will. wave test	lshallow_water=.FALSE.
				including moisture	
				'APE': aqua planet experiment	lshallow_water=.FALSE.
				'MRW': mountain induced Rossby wave	$lshallow_water=.FALSE.$
				'MRW2': modified mountain induced Rossby wave	$lshallow_water=.FALSE.$
				'PA': pure advection	$lshallow_water=.FALSE.$
				'SV': stationary vortex	lshallow_water=.FALSE.,
					ntracer = 2
				'DF1': deformational flow test 1	
				'DF2': deformational flow test 2	
				'DF3': deformational flow test 3	
				'DF4': deformational flow test 4	
				'RH': Rossby-Haurwitz wave test	lshallow_water=.FALSE.
rotate_axis_deg	R	0.0	\deg	Earth's rotation axis pitch angle	ctest_name= 'Will_2',
					'Will_3', 'JWs', 'JWw',
1	D	0.01	1 /_	Dt V-:1- f	'PA', 'DF1234'
gw_brunt_vais	R		1/s	Brunt Vaisala frequency	ctest_name= 'GW'
gw_u0	R	0.0	m/s	zonal wind parameter	ctest_name= 'GW'
gw_lon_deg	R	180.0	deg	longitude of initial perturbation	ctest_name= 'GW'
gw_lat_deg	R	0.0	deg	latitude of initial perturbation	ctest_name= 'GW'
jw_uptb	R	1.0	$\frac{\text{m/s}}{(?)}$	amplitude of the wave pertubation	ctest_name= 'JWw'
mountctr lon deg	R	90.0	deg	longitude of mountain peak	ctest name= 'MRW(2)'
mountctr lat deg	R	30.0	deg	latitude of mountain peak	ctest name = 'MRW(2)'
mountctr height	R	2000.0	m	mountain height	ctest name = 'MRW(2)'
mountctr half widt		1500000.0	m	mountain half width	ctest name = 'MRW(2)'
mount u0	R	20.0	m/s	wind speed for MRW cases	ctest name = 'MRW(2)'
rh wavenum	I	4		wave number	ctest name= 'RH'
rh init shift deg	R	0.0	deg	pattern shift	ctest_name= 'RH'

Parameter	Type	Default	Unit	Description	Scope
ihs_init_type	I	1		Choice of initial condition for the Held-Suarez test.	ctest_name= 'HS'
				1: the zonal state defined in the JWs test case;	
				other integers: isothermal state (T=300 K,	
				ps=1000 hPa, u=v=0.)	
lhs_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in the	ctest_name= 'HS'
				Held-Suarez test.	
hs_vn_ptb_scale	R	1.	m/s	Magnitude of the random noise added to the initial	ctest_name= 'HS'
				wind field in the Held-Suarez test.	
lrh_linear_pres	L	.FALSE.		Initialize the relative humidity using a linear	ctest_name=
				function of pressure.	'JWw-Moist','APE',
					'LDF-Moist'
rh_at_1000hpa	R	0.75		relative humidity	$ctest_name =$
				0,1	'JWw-Moist','APE',
				at 1000 hPa	'LDF-Moist'
linit_tracer_fv	L	.TRUE.		Finite volume initialization for tracer fields	ctest_name='PA'
ape_sst_case	С	'sst1'		SST distribution selection	ctest_name='APE'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp.	
ildf_init_type	I	0		Choice of initial condition for the Local diabatic	ctest_name= 'LDF'
				forcing test. 1: the zonal state defined in the JWs	
				test case; other: isothermal state (T=300 K,	
				ps=1000 hPa, u=v=0.)	
ldf_symm	L	.TRUE.		Shape of local diabatic forcing:	$ctest_name =$
				.TRUE.: local diabatic forcing symmetric about the	'LDF','LDF-Moist'
				equator (at 0 N)	
				.FALSE.: local diabatic forcing asym. about the	
				equator (at 30 N)	

Defined and used in: $src/testcases/mo_ha_testcases.f90$

$4.2 \quad nh_testcase_nml \; (Scope: \; ltestcase=.TRUE. \; and \; iequations=3 \; in \; run_nml)$

Parameter	Type	Default	Unit	Description	Scope
nh_test_name	С	'jabw'		testcase selection	
				'zero': no orography	
				'bell': bell shaped mountain at 0E,0N	
				'schaer': hilly mountain at 0E,0N	
				'jabw': Initializes the full Jablonowski Williamson	
				test case.	
				'jabw_s': Initializes the Jablonowski Williamson	
				steady state test case.	
				'jabw_m': Initializes the Jablonowski Williamson	
				test case with a mountain instead of the wind	
				perturbation (specify mount_height).	
				'mrw_nh': Initializes the full Mountain-induced	
				Rossby wave test case.	
				'mrw2_nh': Initializes the modified	
				mountain-induced Rossby wave test case.	
				'mwbr_const': Initializes the mountain wave with	
				two layers test case. The lower layer is isothermal	
				and the upper layer has constant brunt vaisala	
				frequency. The interface has constant pressure.	
				'PA': Initializes the pure advection test case.	
				'HS_nh': Initializes the Held-Suarez test case. At	
				the moment with an isothermal atmosphere at rest	
				(T=300K, ps=1000hPa, u=v=0, topography=0.0).	
				'HS_jw': Initializes the Held-Suarez test case with	
				Jablonowski Williamson initial conditions and zero	
				topography.	
				'APE_nh': Initializes the APE experiments. At the	
				moment with T=300K, ps=1013.25hPa,	
				u=v=w=0).	
jw_up	R	1.0	m/s	amplitude of the u-perturbation in jabw test case	nh_test_name='jabw'

Parameter	Type	Default	Unit	Description	Scope
u0_mrw	R	20.0	m/s	wind speed for mrw case	$nh_test_name =$
					$'mrw(2)_nh'$
mount_height_mrw	R	2000.0	m	maximum mount height in $mrw(2)$ and	$nh_test_name =$
				$mwbr_const$	$'mrw(2)_nh'$ and
					$'$ mwbr_const $'$
mount_half_width	R	1500000.0	m	half width of mountain in mrw(2), mwbr_const	$nh_test_name =$
				and bell	'mrw(2)_nh',
					'mwbr_const' and 'bell'
mount_lonctr_mrw	_deg	90.	degrees	lon of mountain center in mrw(2) and mwbr_const	$nh_test_name =$
					$'mrw(2)$ _nh' and
					'mwbr_const'
mount_latctr_mrw_	dReg	30.	degrees	lat of mountain center in mrw(2) and mwbr_const	$nh_test_name =$
					$'mrw(2)_nh'$ and
					'mwbr_const'
u0_mwbr_const	R	20.0	m/s	wind speed for mwbr_const case	$nh_test_name =$
					'mwbr_const'
temp_i_mwbr_cons	t R	288.0	K	temp at isothermal lower layer for mwbr_const case	$nh_test_name =$
					$'mwbr_const'$
p_int_mwbr_const	R	70000.	Pa	pres at the interface of the two layers for	$nh_test_name =$
				mwbr_const case	$'mwbr_const'$
bruntvais_u_mwbr_	cBnst	0.025	1/s	constant brunt vaissala frequency at upper layer for	$nh_test_name =$
				mwbr_const case	$'mwbr_const'$
mount_height	R	100.0	m	peak height of mountain	nh_test_name= 'bell'
layer_thickness	R	-999.0	m	thickness of vertical layers	${\rm If \ layer_thickness} < 0,$
					the vertical level
					distribution is read in
					from externally given
					HYB_PARAMS_XX.
n_flat_level	Ι	2		level number for which the layer is still flat and not	$layer_thickness > 0$
				terrain-following	
nh_u0	R	0.0	m/s	initial constant zonal wind speed	$nh_test_name = 'bell'$
nh_t0	R	300.0	K	initial temperature at lowest level	$nh_test_name = 'bell'$
nh_brunt_vais	R	0.01	1/s	initial Brunt-Vaisala frequency	$nh_test_name = 'bell'$

Parameter	Type	Default	Unit	Description	Scope
torus_domain_lengt	hR	100000.0	m	length of slice domain	$nh_test_name = 'bell',$
					lplane=.TRUE.
rotate_axis_deg	R	0.0	deg	Earth's rotation axis pitch angle	nh_test_name= 'PA'
lhs_nh_vn_ptb	L	.TRUE.		Add random noise to the initial wind field in the	$nh_test_name =$
				Held-Suarez test.	'HS_nh'
lhs_fric_heat	L	.FALSE.		add frictional heating from Rayleigh friction in the	$nh_test_name =$
				Held-Suarez test.	'HS_nh'
hs_nh_vn_ptb_sca	leR	1.	m/s	Magnitude of the random noise added to the initial	$nh_test_name =$
				wind field in the Held-Suarez test.	'HS_nh'
rh_at_1000hpa	R	0.7	1	relative humidity at 1000 hPa	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
qv_max	R	20.e-3	kg/kg	specific humidity in the tropics	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
ape_sst_case	C	'sst1'		SST distribution selection	nh_test_name='APE_nh'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp.	
linit_tracer_fv	L	.TRUE.		Finite volume initialization for tracer fields	ctest_name='PA'

Defined and used in: $src/testcases/mo_nh_testcases.f90$

5 External data

$5.1 \quad ext_par_nml \ (Scope: itopo=1 \ in \ run_nml)$

Parameter	Type	Default	Unit	Description	Scope
itopo	I	0		0: analytical topography/ext. data	
				1: topography/ext. data read from file	
n_iter_smooth_top	oo I	2		iterations of topography smoother	itopo = 1

Parameter Ty	ype De	efault	Unit	Description	Scope
fac_smooth_topo R	0.0	015625		pre-factor of topography smoother	$n_{iter_smooth_topo} > 0$

Defined and used in: src/namelists/mo_extpar_nml.f90

6 Information on vertical level distribution

The hydrostatic and nonhydrostatic models need hybrid vertical level information to generate the terrain following coordinates. The hybrid level specification is stored in <icon home>/hyb_params/HYB_PARAMS_<nlev>. The hydrostatic model assumes to get pressure based coordinates, the nonhydrostatic model expects height based coordinates. For further information see <icon home>/hyb params/README.