

CLAIMS

What is claimed is:

1 1. A method of forwarding data packets in a network device having an operating system,
2 the method comprising:

3 initiating a switching microdriver to retrieve a data packet; and
4 forwarding the data packet to or from the switching microdriver without involvement
5 of the operating system.

1 2. The method of claim 1 further comprising performing switching functions by the
2 switching microdriver to forward the data packet.

1 3. The method of claim 2 wherein performing switching functions by the switching
2 microdriver to forward the data packet includes making any one of a layer 2 and a layer 3
3 switching decision in the switching microdriver.

1 4. The method of claim 3 further comprising forwarding the data packet to a network
2 interface microdriver.

1 5. The method of claim 1 wherein no context switching is performed by the operating
2 system in conjunction with forwarding the data packet to or from the switching microdriver.

1 6. The method of claim 4 further comprising forwarding the data packet to a network
2 interface microdriver.

1 7. The method of claim 1 wherein no context switching is performed by the operating
2 system in conjunction with forwarding the data packet to or from the switching microdriver,
3 the method further comprising performing switching functions by the switching microdriver
4 to forward the data packet.

1 8. The method of claim 1 wherein forwarding the data packet to or from the switching
2 microdriver includes receiving the data packet from a network interface microdriver.

1 9. The method of claim 1 wherein the switching microdriver may perform the functions
2 of a network interface driver for the operating system and may perform the functions of a
3 network interface microdriver without involvement of the operating system.

1 10. A method of forwarding data packets in a network device having an operating system,
2 the method comprising:

3 indicating that a data packet has been received by a component of the network device
4 from a network interface port;

5 initiating a first network interface microdriver to process the data packet;

6 receiving the data packet at the first network interface microdriver from the
7 component of the network device; and

8 sending the data packet from the first network interface microdriver to a switching
9 microdriver without involvement of the operating system.

1 11. The method of claim 10 further comprising forwarding the data packet from the
2 switching microdriver to a selected location without involvement of the operating system.

1 12. The method of claim 11 wherein involvement of the operating system comprises the
2 operating system performing a context switch.

1 13. The method of claim 11 wherein involvement of the operating system comprises the
2 operating system initiating an interprocess communication facility.

1 14. The method of claim 11 wherein the selected location is a second network interface
2 microdriver.

1 15. The method of claim 11 wherein forwarding the data packet from the switching
2 microdriver to a selected location without involvement of the operating system includes
3 making any one of a layer 2 and a layer 3 switching decision in the switching microdriver.

1 16. The method of claim 11 wherein the switching microdriver may perform the functions
2 of a network interface driver for the operating system and may perform the functions of a
3 network interface microdriver without involvement of the operating system.

1 17. A method of forwarding data packets in a network device having an operating system,
2 the method comprising:

3 forwarding a data packet at the device driver layer in the network device, without the
4 operating system performing context switching in conjunction with forwarding the data
5 packet.

1 18. The method of claim 17 further comprising:
2 indicating that the data packet has been received by a component of the network
3 device from a network interface port;
4 initiating a first network interface microdriver to process the data packet;
5 receiving the data packet at the first network interface microdriver from the
6 component of the network device; and
7 sending the data packet from the first network interface microdriver to a switching
8 microdriver.

1 19. The method of claim 18 further comprising forwarding the data packet from the
2 switching microdriver to a selected location.

1 20. The method of claim 19 wherein the selected location is a second network interface
2 microdriver.

1 21. The method of claim 19 wherein forwarding the data packet from the switching
2 microdriver to a selected location includes making any one of a layer 2 and a layer 3
3 switching decision in the switching microdriver.

1 22. A machine-readable medium that provides instructions, which when executed by a
2 processor, cause said processor to perform operations comprising:
3 initiating a switching microdriver to retrieve a data packet; and
4 forwarding the data packet to or from the switching microdriver without involvement
5 of the operating system.

1 23. The machine-readable medium of claim 22 wherein said instructions cause said
2 processor to perform operations further comprising switching functions by the switching
3 microdriver to forward the data packet.

1 24. The machine-readable medium of claim 23 wherein performing switching functions
2 by the switching microdriver to forward the data packet includes making any one of a layer 2
3 and a layer 3 switching decision in the switching microdriver.

1 25. The machine-readable medium of claim 24 wherein said instructions cause said
2 processor to perform operations further comprising forwarding the data packet to a network
3 interface microdriver.

1 26. The machine-readable medium of claim 22 wherein no context switching is performed
2 by the operating system in conjunction with forwarding the data packet to or from the
3 switching microdriver.

1 27. The machine-readable medium of claim 25 wherein said instructions cause said
2 processor to perform operations further comprising forwarding the data packet to a network
3 interface microdriver.

1 28. The machine-readable medium of claim 22 wherein no context switching is performed
2 by the operating system in conjunction with forwarding the data packet to or from the
3 switching microdriver, said processor further performs switching functions by the switching
4 microdriver to forward the data packet.

1 29. The machine-readable medium of claim 22 wherein forwarding the data packet to or
2 from the switching microdriver includes receiving the data packet from a network interface
3 microdriver.

1 30. The machine-readable medium of claim 22 wherein the switching microdriver in a
2 first instance performs the functions of a network interface driver for the operating system and
3 in a second instance performs the functions of a network interface microdriver without
4 involvement of the operating system.

1 31. A system comprising:
2 an interprocess communication facility comprising an operating system aware portion
3 and a non-operating system aware portion;

4 a switching microdriver coupled to said interprocess communication facility to
5 perform switching decisions without using an operating system aware portion of said
6 interprocess communication facility;

7 a network microdriver coupled to said switching microdriver; and

8 a physical port coupled to said network microdriver.

1 32. The system of claim 31 wherein said switching microdriver retrieves a data packet and
2 forwards said data packet to or from said switching microdriver without involvement of said
3 operating system.

1 33. The system of claim 32 wherein said switching microdriver performs switching
2 functions to forward the data packet.

1 34. The system of claim 33 wherein said switching microdriver performs switching
2 functions to forward said data packet including making any one of a layer 2 and a layer 3
3 switching decision in said switching microdriver.

1 35. The system of claim 32 wherein no context switching is performed by said operating
2 system in conjunction with forwarding said data packet to or from said switching microdriver.

1 36. The system of claim 32 wherein no context switching is performed by said operating
2 system in conjunction with forwarding said data packet to or from said switching microdriver
3 and said switching microdriver performs switching functions to forward the data packet.

1 37. The system of claim 34 wherein said switching microdriver forwards said data packet
2 to said network interface microdriver.

1 38. The system of claim 35 wherein said switching microdriver forwards the data packet
2 to said network interface microdriver

1 39. The system of claim 32 wherein forwarding the data packet to or from the switching
2 microdriver includes receiving the data packet from a network interface microdriver.

1 40. The system of claim 32 wherein said switching microdriver in a first instance performs
2 the functions of a network interface driver for the operating system and in a second instance
3 performs the functions of a network interface microdriver without involvement of the
4 operating system.