

PROGRAM ACCOMPLISHMENTS

M ANUFACTURING
M ETHODS

&

ECHNOLOGY

PREPARED BY

OCT 81

MANUFACTURING TECHNOLOGY DIVISION
U S ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY
ROCK ISLAND, ILLINOIS 61299

106 900 005

DEPARTMENT OF THE ARMY US ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND. ILLINOIS 61299

2 9 SEP 1981

DRXIB-MT

SUBJECT: MM&T Program Accomplishments

SEE DISTRIBUTION

- 1. Reference AR 700-90, C1, Para 3-8e(2), Logistics, Army Industrial Preparedness Program, dated 10 March 1977.
- 2. This brochure illustrates some of DARCOM's MM&T Program Accomplishments. It presents the achievements by Major Subordinate Commands with emphasis on illustration of the types of projects pursued. Projects that have anticipated benefits and implemented efforts with actual benefits have been placed in separate sections to provide a clear distinction between them. A summary has been provided as the first section of the document to provide an overview.
- 3. Further information on the projects illustrated in this brochure should be obtained from the MM&T representatives, project officers shown, or from Mr. James Carstens, Chief, Manufacturing Technology Division, AV 793-5113.

J. R. GALLAUGHER

Director

Industrial Base Engineering Activity

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
MMT POINTS OF CONTACT	2
MMT PROJECT INDEX	4
SECTION I - SUMMARY OF BENEFITS	J
SECTION II - RECENTLY COMPLETED PROJECTS	15
SECTION III - IMPLEMENTED EFFORTS	68

INTRODUCTION

The Army Manufacturing Methods and Technology (MMT) Program was begun in 1964. The purpose of the program is to develop new manufacturing processes that can be applied to the production of Army items. Over the years hundreds of these projects have been funded and used to develop new technology. This brochure records the results of some of those projects.

Much literature has been written concerning the transfer of technology from the "laboratory" to actual production. It is often difficult to make this transition; however, the full benefits of new technology can be obtained only if this transition has been made. The Army is placing more emphasis on technology transfer to attain greater project benefits. This brochure is widely distributed throughout the Army in order to publicize the results and disseminate knowledge to potential users. Other methods of accomplishing this transfer are through end of project demonstrations; preparation of technical reports, project summary reports, and technical notes; and, through inclusion of technology information in bulletins and journals. All of these techniques, however, serve only to disseminate the information. Real benefits can only accrue once the new technology is implemented.

MMT POINTS OF CONTACT

COMMAND CODE	REPRESENTATIVE	PHONE
1	Mr. Dan Haugan US Army Aviation R&D Command ATTN: DRDAV-EGX 4300 Goodfellow Blvd. St. Louis, MO 63120	AV 698-6476 (314) 268-6476
2 or F	Mr. William Coutros US Army Communications and Electronics Command ATTN: DRSEL-LE-R Fort Monmouth, NJ 07703	AV 995-4017 (201) 544-4017
2 of H	Mr. Joseph Key US Army Electronics R&D Command ATTN: DELET-R Fort Monmouth, NJ 07703	AV 995-4258 (201) 544-4258
3 or R	Mr. Richard Kotler US Army Missile Command ATTN: DRSMI-RST Redstone Arsenal, AL 35898	AV 746-1835 (205) 876-1835
4 or T	Dr. James Chevalier US Army Tank-Automotive Command ATTN: DRSTA-RCKM Warren, MI 48090	AV 273-2065 (313) 573-2065

MMT POINTS OF CONTACT

COMMAND	REPRESENTATIVE	PHONE
5	Mr. Donald Fischer US Army Armament R&D Command ATTN: DRDAR-PML Dover, NJ 07801	AV 880-6714 (201) 328-6714
	Mr. Joseph Tagliarino US Army Munitions Production Base Modernization Agency ATTN: SARPM-PBM-DP Dover, NJ 07801	AV 880-6708 (201) 328-6708
6	Mr. August Zahatko US Armament Material Readiness Command ATTN: DRSAR-IRB Rock Island Arsenal Rock Island, IL 61299	AV 793-4485/3730 (309) 794-4485/3730
7 or E	Mr. R. Goehner US Army Mobility Equipment R&D Command ATTN: DRDME-UE Fort Belvoir, VA 22060	AV 354-5530 (703) 664-5530
0	Mr. Grover Shelton US Army Test & Evaluation Command ATTN: DRSTE-AD-M Aberdeen Proving Ground, MD 21005	AV 283-3677 (301) 278-3677

MMT PROJECT INDEX

PROJECT NO.	PROJECT TITLE	PAGE
MERADCOM		
7 73,74,75 3509	Self-Luminous Light Sources	16
E 78 3587	SLUFAE Rocket Motor	17
AMMRC		
M 76 6350-1831	Hot Forging Wall Variation Measurement	69
M 77 6350-1849	Laser Scan Cannon Tube Inspection System	70
CECOM		
2 76 9758	Metal Nitride Oxide Semiconductors for BORAM	18
ERADCOM		
2 71 9306	Nickel Zinc Batteries	19
2 72 9365	Packages for Microstrip Integrated Circuits	20
2 73 9378	High Burnout Resistant Mixer Diode	21
2 74 9426	Large Area Silicon Avalanche IR Detectors	22
2 72 9498	L Band Microwave Integrated Circuits	23
2 71 9500	Short Intrusion Proximity Fuze Setting Potentiometer	71
н 73 9526	Low Loss High Reliability Integrable PIN Diodes	72
2 73 9614	High Current - Fast Switching Transistors	24
2 73 9615	Plastic Housings	25

	PROJECT NO.	PROJECT TITLE	PAGE
ERAD	COM		
	2 74 9637	Polysulfone Capacitors for Proximity Fuzes	26
	2 7x 9641	Interfaces Between CAD/CAM for Communications and Electronic Packages	73
	2 75 9673	Study of Techniques for Component Assembly Onto C-E P/C Boards	27
	2 76 9783	Production of High Resistivity Silicon Material	28
AVRA	DCOM		
	1 78 7036	Isothermal Roll Forging of Compressor Blades	29
	1 xx 7046	Precision Cast Titanium Compressor Casing	74
	1 74,75 8120	Helicopter Skin by Controlled Solidification and Thermomechanical Treatment	30
MICO	M		
	3 74,75 3070	NDT Techniques for Composite Rocket Motor Components	31
	3 75 3076	Quantity Production of Composite Rocket Motor Components	32
	R 78 3116	Rosette Air Defense Seeker Optics and Detectors	33
	3 75 3119	Production Methods for Laser Guidance Designator	75
	3 75,77 3134	Production of Field Effect Electron Emitters	34
	R 78 3136	Manufacturing Processes for Compliant Bearing Gyros	35
	R 78 3204	Internal Shear Forging for Missile Primary Structures	36
	3 76 3230	High Speed Machining of Aluminum	37

PROJECT NO.	PROJECT TITLE	PAGE
MICOM		
R 78 3268	Automatic Control of Plating (CAM)	38
TACOM		
4 74 4371	Track Elastomeric Compounds - Phase I	39
т 78 4575	Laser Welding Techniques for Military Vehicles - Phase I	40
ARRADCOM/ARRCOM AMMUNITION		
5 75 1250	Evaluate White Phosphorus Leak Detection Prototype	41
5 74 1216	Equipment for Determining Level of White Phosphorus	76
5 73,74,75,76,1264	Suppressive Shielding for Prod/Supply Operations	42
5 7x 1274	White Phosphorus Dry Filling Line	77
5 75 1316	Advanced Technology for Processing Smoke Grenades	43
5 73,74 3048	Oscillator Sensitivity Measuring Technique	44
5 73,7T,77 3127	Miniature Bearing and Shaft Manufacture for the XM734 Fuze	45
5 7x 3139	Manufacture of Interconnections for Fluidic Circuits	78
5 77,78 3947	Thick Film Hybrid Circuits for XM587E2/XM724 Fuzes	46
5 73,75 4012	Final Roll Mill/Pad Makeup Machine for Mortar Increments	47
5 72,73,75 4015	System for Continuous Processing of Benite	48
5 7x 4069	Mortar Body Depalletization and Carton Opening	79
5 70 4109	Non-Metallic Cartridge Case Manufacture	50

PROJECT NO.	PROJECT TITLE	PAGE
ARRADCOM/ARRCOM AMMUNITION		
5 78 4148	Reduced Weight Forging for 8-inch Mortar Body	80
5 78 4163	Controlled Production Loading for 105mm HEAT	51
5 71,72 4173	Auto Material Processing in Detonator Back Line	52
5 73,74 4216	Automated 105mm Cartridge Case Assembly	53
5 71,72 4218	Modernization of Material Handling at LAP Facility	54
5 75 4245	Deluge Extinguishing System for Bulk HE Conveyors	55
5 7T 4285	TNT Equivalency Testing for Safety Engineering	56
5 77 4285	TNT Equivalency Testing for Safety Engineering	57
5 77 4289	Hazard Classification of Propellants and Explosives	58
5 78 4289	Hazard Classification of Propellants and Explosives	59
5 77 4291	Blast Effects in the Munitions Plant Environment	60
5 77 4416	Alternate Mfg Processes for Safe & Arm - GEMSS	81
5 76 4443	Upgrade Assembly Equipment for M67 Propelling Charge	61
5 77 6716	Math Model of Forming Operations for Artillery Design	62
ARRADCOM/ARRCOM WEAPONS		
6 7x 6769	Application of Ceramics to Production of Castings	82
6 71,72 6915	Flow Turn and Peel Shaping Cylindrical Components	63

PROJECT NO	PROJECT TITLE	PAGE
ARRADCOM/ARRCOM WEAPONS		
6 71 7028	Mechanized Benching of Cannon Components	64
6 71 7030	Abrasive Machining of Cannon Components	65
6 71 7061	Evaluating Laser Material Characteristics by X-Ray	66
6 70 7106	152mm-M81El Coupling External Configuration Forming	83
6 7 x 7180	Optical Film Analysis and Coating of IR elements	84
6 76 7241	Improvement of Honing Equipment and Procedures	67
6 73 7242	Gun Tube Manufacture by Automation	85
6 74,76 7402	Improved Rifling Procedures and Equipment	86
6 75 7555	Dynamic Pressure Stand-Slide Block Breech Mechanism	87
6 77 7588	Rotary Forge Integrated Production Technology	88
6 77 7733	Elimination of Exterior Tube Machining Prior to Swage	89

SECTION I

SUMMARY OF BENEFITS

	ANTICIPATED BEN	IEFITS	ACTUAL BENEFITS	
PROJECT NUMBER		OTHER	\$ SAVINGS OTHER	REMARKS
7 73,74&75 3509		SIX CONFIGURATIONS CAN BE PRODUCED		SELECTION OF A COMMERCIAL PRO- DUCER IS IN PROCESS
E 78 3587	\$576,000/YR			IMPLEMENTATION WILL BE AT LONGHORN AAP
2 76 9758	\$4.4 MILLION	FEWER PROCESSING STEPS		DONOMICKET TELL
2 71 9306 2 71 9365				TECHNOLOGY BEING USED BY D.O.E. NO CURRENT REQUIREMENTS
2 73 9378		4000 UNIT/MONTH CAPABILITY		USED IN AN/TPN-18, AN/TPQ-28 & AN/PPS 4, 5, & 6
2 74 9426	\$160/UNIT			USED IN AN/GVS-5 LASER RANGE FINDER
2 72 9498	\$6.8 MILLION/YR	PROCESS YIELD IMPROVEMENTS		USED IN AN/AMQ-23 ATMOSPHERIC PROBE
2 73 9614		90 AMP-200VDC TRAN- SISTOR		USED IN PP-4126 BATTERY CHARGER & PP-6183 ISOLATOR
2 73 9615		LESS EXPENSIVE & LIGHER UNIT		MAINTENANCE PROBLEMS PREVENT IMPLEMENTATION
2 73 9637		IMPROVED PERFORMANCE		NO REQUIREMENTS
2 75 9673 2 76 9783	NOT QUANTIFIED \$20/GRAM			DESIGN GUIDELINES MANUAL FOLLOW-ON PROJECT WILL COMPLETE THE EFFORT
1 78 7036	\$1.3 MILLION/YR	REDUCE PROCESSING STEPS		
1 74&75 8120		IMPROVED PROPERTIES		TECHNICAL REPORT IS AVAILABLE

PROJECT NUMBER	ANTICIPATED BEN \$ SAVINGS	OTHER	ACTUAL BENEFITS \$ SAVINGS OTHER	REMARKS
	\$40,000/YR			NONDESTRUCTIVE TESTING OF CART- RIDGE CASES
3 75 3076	20% REDUCTION	SIMPLER DESIGN		FOLLOW-ON PROJECTS WILL COMPLETE THE EFFORT
R 78 3116	\$13.8 MILLION			SEEKER OPTICS AND DETECTOR (STINGER-POST)
3 75 & 77 3134	-	IMPROVED PERFORMANCE		THERMOIONIC EMITTERS AND OTHER APPLICATIONS
R 78 3136	\$960,000/YR			COPPERHEAD SEEKER HEAD
R 78 3204	\$13.1 MILLION			FOLLOW-ON PROJECTS WILL COMPLETE THE EFFORT
3 76 3230	\$6.1 MILLION			NAVY TOMAHAWK MISSILE
R 78 3268	\$450,000/YR			FOLLOW-ON PROJECT WILL COMPLETE THE EFFORT
4 74 4371		20 to 30% DURABIL- ITY IMPROVEMENT		SPECIFICATION IS BEING CHANGED
T 78 4575	\$140,000/YR			FOLLOW-ON PROJECT WILL COMPLETE THE EFFORT
5 75 1250		IMPROVED TESTING		FOLLOW-ON PROJECTS WILL INSTALL AT PINE BLUFF ARSENAL
5 73,74,75,76, & 7T 1264	\$2.0 MILLION AVOIDANCE			REQUIREMENT CHANGE PREVENTED FULL IMPLEMENTATION
5 75 1316	\$750,00/YR	SAFETY & POLLUTION ABATEMEMT		PLANNED FOR PINE BLUFF ARSENAL
5 73 & 74 3048		100% FUSE SENSITI- VITY TESTING		USED FOR R&D SUPPORT
5 76,7T&77 3127	\$1.50/UNIT	CAPABILITY OF 1 MILLION UNITS/YR		M734 FUSE APPLICATION
	\$14 MILLION/YR \$145,000/YR			LACK OF FUNDS PREVENTED PROJECT
	y = .5,000/ AM	VALUE VILLE		COMPLETION

	ANTICIPATED BENEFITS	ACTUAL BENEFITS	
PROJECT NUMBER	\$ SAVINGS OTHER	\$ SAVINGS OTHER	REMARKS
5 72,73&75 4015 5 73&74 4105	CONTINUOUS PROCESS- ING \$3.1 MILLION/YR		REQUIREMENT REDUCTION PREVENTED IMPLEMENTATION FOLLOW-ON PROJECTS WILL COMPLETE THE EFFORT
5 70 4109	PILOT PRODUCTION CAPABILITY		TECHNICAL DATA IS AVAILABLE
5 78 4163	REDUCED REJECT RATE		FOLLOW-ON PROJECTS WILL COMPLETE THE EFFORT
5 71&72 4173	REMOTE PROCESSING		A MORE ECONOMICAL ALTERNATIVE PREVENTED IMPLEMENTATION
5 73&74 4216	FEWER OPERATORS & ENTANGLEMENTS		
5 71&72 4218 5 75 4245	\$1.7 MILLION/YR INCREASED SAFETY & REDUCED LOSSES		2.75 INCH ROCKET BADGER, LONESTAR & LOUISIANA AAP'S
5 7T 4285	INCREASED SAFETY	j	INCORPORATED INTO SPECIFICATIONS
5 77 4285	BLAST RESISTANT FACILITIES		TECHNICAL REPORTS ARE AVAILABLE
5 77 4289	INCREASED SAFETY		FOR INSTALLATION AT RADFORD CASBL & CAMBL LINES
5 78 4289	HAZARD CLASSIFICA- TIONS		
5 77 4291	INCREASED BLAST RESISTANCE		REVISIONS TO SAFETY DOCUMENTS
5 76 4443	PROCESS IMPROVEMENTS		BAG LOADING OPERATIONS

	======================================	======================================	
	ANTICIPATED BENEFITS	ACTUAL BENEFITS	
PROJECT NUMBER	\$ SAVINGS OTHER	\$ SAVINGS OTHER	REMARKS
=======================================	7		
E 77 (71)	COMPUTED DIAGNOCTIO		
5 77 6716	COMPUTER DIAGNOSTIC		
	TOOL		
6 70&71 6771	REDUCED MACHINING		175MM & 8 INCH BREECH BLOCKS
	TIME		
6 71&72 6915	ALTERNATIVE MACHIN-		NO IMPLEMENTATION PLANNED
0 12012 0723	ING METHODS		
	ING METHODS		
			lories tribes a Grand Barrer
6 71 7028	REDUCED TIME		105MM, 155MM & 8 INCH PARTS
6 71 7030	\$413,000/YR		M68 & M113 CANNONS AND TEST
1			SPECIMENS
6 71 7061	INCREASED TEST CAPA-		LASER MATERIALS
0 /1 /001	BILITY		
	PILLII		
6 76 7241	REDUCED HONING TIME		CANNON BARREL BORES

IMPLEMENTATION SUMMARY

	ANTICIPATED BEN	EFITS	ACTUAL BENEFITS		
PROJECT NUMBER	\$ SAVINGS	OTHER	\$ SAVINGS	OTHER	REMARKS
=======================================	=======================================		==========		
M 76 6350-1831	\$180,000/YR	REDUCED SCRAP			105MM-M68 CANNON TUBE
M 77 6350-1849	\$20,000/YR	MIDOGED BORGE			105MM-M68 CANNON TUBE
n // 0330-1049	\$20,000/1K				TOJEM-MOS CANNON TOBE
2 71 9500			61 0 4711 701		DROYTHING BUGBO
	A A WILLIAM		\$1.9 MILLION	4120 000 mmgmmn	PROXIMITY FUSES
Н 73 9526	\$2.9 MILLION			\$130,000 TESTED	PIN DIODES
0 0444				CHIPS/MO.	
2 7X 9641			\$100,000/YR		MICROWAVE DEVICES & MULTILAYER
					CIRCUIT BOARDS
1 XX 7046			\$922/UNIT	MATERIAL SAVINGS	
3 75 3119	\$1.7 MILLION	REDUCED TEST TIME			LASER DESIGNATORS
5 74 1261	\$49,000			SAFETY/HEALTH	WHITE PHOSPHOROUS STORAGE TANKS
				IMPROVEMENTS	
5 7X 1274			\$5.2 MILLION	REDUCED AIR/	WHITE PHOSPHOROUS MUNITIONS
				WATER POLLUTION	
5 76 3139	\$100,000				M60A1 GUN STABILIZATION SYSTEM
5 7x 4069		MANPOWER CONSERVA-			60 AND 81 MM ROUNDS
		TION			00 1215 02 121 11001155
		1100			
5 78 4148			\$733,000		8 INCH MOTOR BODY (M650 RAP)
5 77 4416	ĺ		\$2.4 MILLION		GEMSS SAFE & ARM
5 7X 6769			\$314,000		152MM-M68 AND 60MM-M225
J /X 0/09			\$314,000		132MM-M00 AND OUMM-M223
(70 710(4057 100		15000 W10E1 COVER TWO
6 70 7106			\$257,100		152MM-M18E1 COUPLING
6 7X 7180	\$1.65 MILLION				INFRARED OPTICAL ELEMENTS
1 22 2272					
6 73 7242	\$981,000				CANNON BARREL
6 74&76 7402	\$6500/YR	INCREASED CAPABILITY			105MM-M68 CANNON BARRELS
6 75 7555	\$565,000/YR	SIMPLIFIED TESTING			CANNON BREECH MECHANISMS
6 77 7588	\$600/CANNON	PROCESS IMPROVEMENTS			105MM-M68 CANNON BARRELS
	BARREL				
6 77 7733			\$24,000/YR	REDUCED MACHIN-	8 INCH M201 CANNON BARREL
				ING	

SECTION II

RECENTLY COMPLETED OR ACTIVE PROJECTS

DARCOM MMT ACCOMPLISHMENT SELF-LUMINOUS LIGHTS

BARE TRITIUM LIGHT SOURCES POLY BAGS SEALED POLY BAGS BOTTOM CUSHION SEALED CAN CAN SHIPPING

PACKAGING OF BARE TRITIUM SOURCES

PROJECT NO: 7 73 3509, 7 74 3509 & 7 75 3509

TITLE: PRODUCTION TECHNOLOGY FOR SELF-LUMINOUS LIGHT SOURCES

COST: \$495,000 TOTAL

RESULTS

- OF SIX BASIC GEOMETRICAL SHAPES OF SELF LUMINOUS LIGHTS.
- PROCESSES AND PROCEDURES WERE SUCCESS-FULLY VERIFIED BY A PILOT LINE RUN OF 11,900 INDIVIDUAL SOURCES.
- ●THE PILOT LINE AND PROCEDURES WERE VERIFIED BY A LIMITED PRODUCTION RUN OF 11.900 INDIVIDUAL SOURCES.
- ●THE EQUIPMENT IS IN STORAGE AT LETTERKENNY DEPOT AWAITING SELECTION OF A COMMERCIAL MANUFACTURER.

DARCOM MMT ACCOMPLISHMENT ROCKET PROPELLANT

PROJECT NO: E 78 3587

TITLE: SLUFAE ROCKET MOTOR

COST: \$210,000

RESULTS

THE PRIMARY PURPOSE OF THIS PROJECT WAS TO INCREASE THE USEFUL "POT LIFE" OF THE PROPELLANT TO IMPROVE CASTING EFFICIENCY.

OVER 6 HOURS BY REPLACING 2% OF THE BINDER WITH DIOCTYL ADIPATE PLASTICIZER. A SMALL AMOUNT OF TRIPHENYL BISMUTH WAS ALSO ADDED TO PREVENT INCREASING THE GEL TIME.

THESE IMPROVEMENTS WILL BE IMPLEMENTED AT LONGHORN AAP AND A SAVINGS OF \$30 PER MOTOR ARE ESTIMATED AT A PRODUCTION RATE OF 1600 MOTORS PER MONTH.

EFFECT OF TRIPHENYL BISMUTH PERCENTAGE ON VISCOSITY

DARCOM MMT ACCOMPLISHMENT METAL NITRIDE OXIDE SEMICONDUCTORS

PROJECT NO: 2 76 9758

TITLE: PRODUCTION PROCESSES FOR METAL NITRIDE OXIDE SEMICONDUCTORS FOR

BORAM.

COST: \$724,000

RESULTS

THIS PROJECT PROVIDED THE ABILITY TO PRODUCE AN ALL ELECTRONIC MEMORY SYSTEM AT AN AFFORDABLE PRICE.

● A PILOT LINE CAPABILITY WAS ESTABLISHED THAT INCORPORATED FEWER PROCESSING STEPS AND HIGHER YIELDS.

THE HYBRID IS INCORPORATED IN THE ACCIDENT INFORMATION RETRIEVAL SYSTEM FOR AVRADCOM AND THE F16 RADAR. SEVERAL OTHER APPLICATIONS ARE BEING EVALUATED.

●ESTIMATED SAVINGS AS A RESULT OF IMPLE-MENTING THIS PROJECT ARE \$4.4 MILLION.

BORAM COMPONENT PARTS

DARCOM MMT ACCOMPLISHMENT NICKEL/ZINC BATTERIES

PROJECT NO: 2 71 9306

TITLE MMT MEASURE FOR NICKEL/ZINC BATTERIES

COST: \$200,000

RESULTS

- DEVELOPED A MASS PRODUCTION TECHNIQUE FOR THE FABRICATION OF NICKEL/ZINC BATTERIES.
- THE NEW PROCESS INVOLVED COMBINING
 POWERED ZINC WITH POWDERED TEFLON AND
 THEN SINTERING RESULTED IN A MORE
 PRODUCIBLE PLATE.
- THE BATTERIES DEVELOPED FROM THIS PROGRAM WERE TECHNICALLY SUCCESSFUL HOWEVER THEIR COST AND PERFORMANCE IMPROVEMENTS WERE NOT SUFFICIENT FOR ARMY NEEDS.
- THE KNOWLEDGE GAINED IN THIS PROGRAM IS BEING APPLIED BY DOE IN THE DEVELOPMENT OF NI/ZN BATTERIES FOR ELECTRIC VEHICLE PROPULSION.

OCT 81

TYPICAL NICKEL/ZINC BATTERY CELLS

DARCOM MMT ACCOMPLISHMENT MICROSTRIP CIRCUIT PACKAGES

PROJECT NO: 2 72 9365

TITLE: PACKAGES FOR MICROSTRIP INTEGRATED

CIRCUITS

COST: \$174,000

RESULTS

●PACKAGE STANDARDS FOR SUBSTRATE SIZES OF 1X1, 1X2, 2X2 & 2X4 INCHES WERE DEVELOPED. THE STANDARDS COVERED PACKAGING, WELDING, HERMETIC SEALING AND REPAIRABILITY.

THE BASIC PRODUCTION PROCESSES DEMON-STRATED THAT HIGH QUALITY PACKAGES CAN BE DESIGNED AND FABRICATED AT LOW COST.

● THE STANDARDS WILL BE IMPLEMENTED AS STANDARD MICROWAVE INTEGRATED CIRCUITS ARE DEVELOPED.

HERMETRIC DC CONNECTOR

DARCOM MMT ACCOMPLISHMENT HIGH RELIABILITY MIXER DIODES

PROJECT NO: 2 73 9378

TITLE: HIGH BURN-OUT RESISTANT MIXER DIODE

COST: \$215,000

RESULTS

● A MANUFACTURING CAPABILITY FOR ECONOM-ICALLY PRODUCING LOW NOISE AND HIGH BURN OUT RESISTANT DIODES WAS ESTABLISHED.

● A PILOT RUN OF 435 DIODES WAS MADE TO DEMONSTRATE THE LINE CAPACITY OF 4000 UNITS PER MONTH. THE ELECTRICAL PARAMETERS WERE THEN VERIFIED OVER THE DEVICE FREQUENCY BAND.

●THE DIODES ARE CURRENTLY BEING UTILIZED ON A REPLACEMENT BASIS FOR THE AN/TPN-18, AN/TPQ-28 AND AN/PPS-4, 5 & 6. PRIOR TO THIS EFFORT THE DIODES WERE NOT COMMERCIALLY AVAILABLE.

OCT 81

SCHOTTKY COAXIAL DIODE ASSEMBLY

DARCOM MMT ACCOMPLISHMENT INFRARED DETECTORS

PROJECT NO: 2 74 9426

TITLE: MANUFACTURING METHODS FOR THE FABRICATION OF LARGE AREA SILICON AVALANCHE INFRARED DETECTORS

COST: \$247,000

RESULTS

- PRODUCTION PROCESSES FOR IMPROVING QUALITY AND INCREASING THE YIELD OF LARGE AREA SILICON AVALANCHE DETECTORS WERE DEVELOPED. A PILOT RUN OF 100 UNITS WAS MADE TO VERIFY THE PROCESSES.
- THE DETECTOR IS NOW AVAILABLE AS A PRODUCTION ITEM AND IS CURRENTLY BEING USED IN THE AN/GVS-5 LASER RANGE FINDER MODULE.
- ●AS A RESULT OF THIS PROJECT THE DETECTOR PRICE WAS REDUCED FROM \$335 TO \$175.

WIRE BONDS

PIN CIRCLE

202 DIA

.198

ASSEMBLY OF SCS 467

DARCOM MMT ACCOMPLISHMENT THIN FILM CIRCUITS

TRANSMITTER MODULE BASE PLATE SUBASSEMBLY

RADIOSONDE TRANSMITTER MODULE

PROJECT NO: 2 72 9498

TITLE: L BAND MICROWAVE INTEGRATED

CIRCUITS

COST: \$434,000

RESULTS

- THIS PROJECT RESULTED IN INCREASED PRODUCTION CAPABILITY FOR AN IMPROVED RADIOSONDES FOR HIGH ALTITUDE WEATHER BALLOONS.
- OAN ESTIMATED PRODUCTION RATE OF 4000 UNITS PER MONTH WAS ACHIEVED.
- ●OVERALL PROCESS YIELDS WERE INCREASED FROM 50% TO 80-90% AND THE UNIT PRICE WAS REDUCED FROM \$75 TO AN ESTIMATED \$7.00. THIS WOULD RESULT IN AN ESTIMATED \$6.8 MILLION SAVINGS AT A 100,000/YEAR PRODUCTION RATE.
- INTO THE AN/AMQ-23 ATMOSPHERIC METEORO-LOGICAL PROBE.

DARCOM MMT ACCOMPLISHMENT HI POWER TRANSISTOR

PROJECT NO: 2 73 9614

TITLE: MEASURE FOR HIGH CURRENT, FAST

SWITCHING TRANSISTOR

COST: \$102,610

RESULTS

■ A METHOD WAS DEVELOPED TO PRODUCE A 90 AMP, 200 VDC FAST SWITCHING TRANSISTOR FOR HEAVY SWITCHING SUCH AS OCCURS IN POWER SUPPLIES AND POWER CONVERTERS.

■ A DOUBLE EPITAXIAL PROCESS WAS USED TO OBTAIN THE HIGH VOLTAGE STRUCTURE. AN INCREASE OF APPROXIMATELY 100 VOLTS OVER A SINGLE DIFFUSED PROCESS WAS OBTAINED.

THESE UNITS ARE NOW AVAILABLE COMMERCIAL-LY AND ARE USED BY THE ARMY IN THE PP-4126 BATTERY CHARGER AND THE PP-6183 ISOLATOR.

.550" TRANSISTOR CHIP

DARCOM MMT ACCOMPLISHMENT PLASTIC HOUSINGS

GRA/39 RADIO
WITH PLASTIC HOUSING

PROJECT: 2 73 9615

TITLE: MMT FOR PLASTIC HOUSINGS

COST: \$130,000

RESULTS

- ●AN INJECTION MOLDED LEXAN CASE WAS DEVELOPED AS A RADIO HOUSING.
- THE HANDLES ARE INCORPORATED AS AN INTEGRAL PART OF THE TOP COVER. THIS ELIMINATES SEVERAL SUBASSEMBLIES THAT WERE IN THE INITIAL DESIGN.
- THIS HOUSING IS APPROXIMATELY 6 POUNDS LIGHTER THAN THE METAL ASSEMBLY AND COSTS ONLY HALF AS MUCH.
- THIS PROJECT WAS NOT IMPLEMENTED BECAUSE BREAKAGE OF THE HANDLES WOULD REQUIRE REPLACEMENT OF THE WHOLE FRONT PANEL.

DARCOM MMT ACCOMPLISHMENT

POLYSULFONE CAPACITORS

PROJECT NO: 2 74 9637

TITLE: MANUFACTURING METHODS FOR THE

PRODUCTION OF POLYSULFONE

CAPACITORS FOR SHORT INTRUSION

PROXIMITY FUZE

COST: \$43,000

RESULTS

- POLYSULFONE CAPACITORS EXHIBIT A VERY SMALL CHANGE IN CAPACITANCE WITH TEMPERATURE AND ARE WELL SUITED FOR TIMING APPLICATIONS WHERE LARGE OPERATING TEMPERATURE CHANGES OCCUR.
- A PILOT PRODUCTION CAPABILITY OF 3000 CAPACITORS WAS ESTABLISHED.
- OTHE CAPACITORS SATISFACTORILY PASSED ALL QUALIFICATION TESTS INCLUDING A 25,000 G SHOCK TEST.

SUBMINIATURE CAPACITOR

DARCOM MMT ACCOMPLISHMENT ELECTRONIC COMPONENT ASSEMBLY

PROJECT NO: 2 75 9673

TITLE: STUDY OF TECHNIQUES FOR COMPONENT ASSEMBLY-ELECTRONICS PRINTED CIRCUIT BOARDS

COST: \$100,000

RESULTS

● THIS PROJECT RESULTED IN A "GUIDELINES MANUAL" FOR DETERMINING THE LEAST COST ASSEMBLY METHODS BASED ON PRODUCTION REQUIREMENTS.

THE ASSEMBLY METHODS CONSIDERED WERE MANUAL, SEMIMANUAL, SEMIAUTOMATIC, AUTOMATIC AND COMBINED MANUAL AND AUTOMATIC.

THE BENEFITS ARE DIFFICULT TO QUANTIFY DUE TO THE BROAD APPLICATION, MANY COPIES HAVE BEEN REQUESTED BY ELECTRONICS CONTRACTORS

AUTOMATIC DIP INSERTER

DARCOM MMT ACCOMPLISHMENT HIGH PURITY SILICON

FLOAT ZONE CRYSTAL GROWTH

PROJECT NO: 2 76 9783

TITLE: PRODUCTION OF HIGH RESISTIVITY

SILICON MATERIAL

COST: \$591,800

RESULTS

- PROCEDURES AND EQUIPMENT FOR VACUUM ZONE REFINING OF POLYCRYSTALLINE RODS INTO HIGH PURITY SINGLE CRYSTAL RODS WERE DEVELOPED.
- A DOUBLE SIDED POLISHING PROCEDURE WAS DEVELOPED TO ELIMINATE WAFER TAPER, SURFACE DAMAGE AND EDGE CHIPPING.
- A FOLLOW-ON PROJECT TO AUTOMATE THE ZONE REFINING EQUIPMENT AND PROCEDURES IS EXPECTED TO REDUCE THE COST OF THE WAFERS FROM \$30 PER GRAM TO \$5-\$15 PER GRAM.

DARCOM MMT ACCOMPLISHMENT ISOTHERMAL ROLL FORGING

PROJECT NO: 1 78 7036

TITLE: ISOTHERMAL ROLL FORGING OF TSS

COMPRESSOR BLADES - PHASE II

COST: \$425,000

RESULTS

THE PURPOSE OF THESE PROJECTS WAS TO REDUCE THE COST OF COMPRESSOR BLADES BY REPLACING THE COLD ROLL FORGING WITH HOT ROLL FORGING. THE HOT FORGING METHOD WILL REDUCE THE NUMBER OF FORGING REPETITIONS REQUIRED.

● THIS PROJECT PROVIDED THE TECHNIQUES AND EQUIPMENT AND THE NEXT PHASE WILL PROVIDE BLADE SETS FOR ENGINE RUNNING.

● COMPLETION AND IMPLEMENTATION OF THIS EFFORT WILL RESULT IN ESTIMATED SAVINGS OF \$1.3 MILLION.

BLADE FORGING MACHINE

DARCOM MMT ACCOMPLISHMENT

CONTROLLED SOLIDIFICATION

PROJECT NO: 1 74 8120 & 1 75 8120

TITLE: IMPROVED HELICOPTER SKIN MATERIAL BY CONTROLLED SOLIDIFICATION AND THERMAL-MECHANICAL TREATMENTS

COST: \$275,000 & \$250,000

RESULTS

- A FORGED ALUMINUM ALLOY IN THE 7XXX FAMILY WITH EQUAL OR SUPERIOR STRENGTH AND TOUGHNESS WHEN COMPARED TO COMMERCIALLY AVAILABLE SIMILAR ALLOYS WAS DEVELOPED.
- THE IMPROVED PROPERTIES WERE OBTAINED BY REFORGING AT A LOWER THAN CONVENTIONAL TEMPERATURE FOLLOWED BY A HIGH TEMPERATURE THERMAL TREATMENT RESULTING IN A FINE-GRAINED EQUIAXED STRUCTURE.
- THE TECHNOLOGY IS DESCRIBED IN A TECH-NICAL REPORT AND IS AVAILABLE FOR IMPLEMENTATION.

OCT 81

DRIVE SCISSORS ARM ASSEMBLY LOCATION

DARCOM MMT ACCOMPLISHMENT NON DESTRUCTIVE TESTING

PROJECT NO: 3 74 3070 & 3 75 3070

TITLE: NDT METHOD FOR SMALL COMPOSITE

ROCKET MOTOR COMPONENTS

COST: \$220,000 TOTAL

RESULTS

 COMPARED LASER HOLOGRAPHY, LOW FRE-QUENCY ULTRASONICS AND IMAGE ENHANCE-MENT RADIOGRAPHY FOR NON DESTRUCTIVE TESTING.

- A COMBINATION OF IMAGE ENHANCEMENT RADIOGRAPHY AND LOW FREQUENCY ULTRA-SONICS WAS REQUIRED FOR A RELIABLE IN-SPECTION SYSTEM.
- A PROTOTYPE SYSTEM WAS DEVELOPED THAT HAS THE CAPABILITY OF INSPECTING ONE COMPLETE CARTRIDGE PER MINUTE AND ONE ASSEMBLED UNIT EVERY THIRTY SECONDS.
- SAVINGS FROM IMPLEMENTATION OF THIS EFFORT ARE ESTIMATED AT \$400,000 YEARLY.
 OCT 81

RADIOGRAPHIC NDT SYSTEM

DARCOM MMT ACCOMPLISHMENT COMPOSITE ROCKET MOTOR PARTS

PROJECT NO: 3 75 3076

TITLE: MASS PRODUCTION TECHNIQUES FOR COMPOSITE ROCKET MOTOR COMPONENTS.

COST: \$175,000

CASE-IN-CASE

ONE-PIECE CASE

COMPOSITE MOTOR CASES

RESULTS

- A MANUFACTURING PROCESS FOR THE LIGHT-WEIGHT HIGH PERFORMANCE COMPOSITE ROCKET MOTOR IS BEING DEVELOPED. A PRODUCTION RATE OF 10,000 UNITS PER MONTH AT A 20% REDUCTION IN COST WAS ESTABLISHED AS A GOAL.
- THIS PROJECT DETERMINED THE PROCESSES REQUIRED TO PRODUCE TWO MOTOR DESIGNS.
- THE CASE-IN-CASE DESIGN WAS FOUND TO BE SIGNIFICANTLY LOWER IN COST THAN THE ONE-PIECE DESIGN.
- FOLLOW-ON PROJECTS WILL REFINE THE PROCESS FOR PRODUCING THE MOTORS.

DARCOM MMT ACCOMPLISHMENT SEEKER ASSEMBLY

PROJECT NO: R 78 3116

TITLE: IMPROVED PRODUCTION METHOD FOR THE ROSETTE AIR DEFENSE SEEKER

OPTICS AND DETECTOR

COST: \$536,000

RESULTS

- THIS EFFORT ADDRESSES 14 SEPARATE AREAS CONTRIBUTING TO THE HIGH COST OF SEEKER ASSEMBLIES.
- THIS PORTION OF THE EFFORT ADDRESSED OPTICS, DETECTOR/PREAMPLIFIER AND SEEKER COMPONENTS.
- THE IMPROVED PROCESSES INCLUDED ULTRA-SONIC STAKING, INDUCTION SOLDERING, YAG LASER WELDING AND ADHESIVE BONDING.
- COMPLETION AND IMPLEMENTATION OF THIS EFFORT WILL RESULT IN ESTIMATED COST SAVINGS OF \$13.8 MILLION.

OCT 81

STINGER-POST SEEKER HEAD

DARCOM MMT ACCOMPLISHMENT

FIELD EFFECT EMITTERS

STEP 1. ETCH TO PRODUCE FREE STANDING W PINS.

TITLE: MANUFACTURING METHODS FOR PRO-DUCTION OF FIELD EFFECT ELECTRON

PROJECT NO: 3 75 3134 & R 77 3134

EMITTERS

COST: \$275,000

STEP 2. VAPOR DEPOSIT SIO2 AND MO

STEP 3 AND 4. ULTRASONICALLY VIBRATE TO REMOVE CATHODE CONES AND CLEAN

RESULTS

- MANUFACTURING PROCEDURES WERE DEVEL-OPED FOR FABRICATING MELT-GROWN OXIDE-METAL COMPOSITES FOR FIELD EFFECT ELECTRON EMITTING CATHODE STRUCTURES. THESE PROCEDURES SIGNIFICANTLY REDUCED FABRICATION COSTS.
- NEW METHODS FOR EMITTER FABRICATION USED COMMERCIALLY AVAILABLE EQUIPMENT WHICH CUT COSTS APPRECIABLY.
- THE AREAS OF APPLICATION CAN INCLUDE THERMIONIC EMITTERS, GAS LASER DEVICES, INFRARED DEVICES AND ELECTRON BEAM WELDERS.

OCT 81

LOW VOLTAGE FIELD EMITTER PROCESSING.

DARCOM MMT ACCOMPLISHMENT COMPLIANT BEARINGS GYROS

PROJECT NO: R 78 3136

TITLE: IMPROVED MANUFACTURING PROCESSES

FOR COMPLIANT BEARING GYROS

COST: \$450,000

RESULTS

SEVERAL IMPROVEMENTS WERE INCORPORATED INTO THE GYRO ASSEMBLY TO INCREASE ITS MANUFACTURABILITY.

- TWO STEEL RINGS WERE ADDED TO THE ROTOR TO FACILITATE DYNAMIC BALANCING.
- A 4 CAVITY MOLD WAS DESIGNED THAT PERMITS INTERCHANGEABILITY OF PARTS AND RESULTED IN A LESS EXPENSIVE MOLDED MAGNET.
- CONTINUED REFINEMENT OF THE MANUFAC-TURING PROCESSES IS BEING ACCOMPLISHED THRU A FOLLOW-ON PROJECT.
- ESTIMATED COST SAVINGS UPON IMPLEMENTING THESE PROJECTS ARE \$960,000 PER YEAR.

COPPERHEAD SEEKER HEAD

DARCOM MMT ACCOMPLISHMENT MISSILE PRIMARY STRUCTURE

PROJECT NO: R 78 3204

TITLE: INTERNAL SHEAR FORGING PROCESSES

FOR MISSILE PRIMARY STRUCTURE

COST: \$314,000

RESULTS

- SAE 2014-0 ALUMINUM ALLOY WAS HOT ROLLED AT VARIOUS TEMPERATURES, SPEEDS AND ROLLING REDUCTIONS TO COMPARE THE MICROSTRUCTURES AND MECHANICAL PROPERTIES TO THE STARTING MATERIAL.
- BACKWARD SHEAR FORGING HAS BEEN SELEC-TED FOR FURTHER DEVELOPMENT IN THIS PROGRAM.
- ESTIMATED SAVINGS AS A RESULT OF COMPLE-TION AND IMPLEMENTATION OF THIS EFFORT ARE \$13.1 MILLION.

INTERNAL SHEAR FORGING PROCESS.

OCT 81

(A) FORWARD SHEAR FORGING. (B) BACKWARD SHEAR FORGING.

DARCOM MMT ACCOMPLISHMENT HIGH SPEED MACHINING

PROJECT NO: 3 76 3230

TITLE: MANUFACTURING METHODS FOR HIGH

SPEED MACHINING OF ALUMINUM

COST: \$242,000

RESULTS

- •MAJOR IMPROVEMENTS IN PRODUCTIVITY AND COST EFFECTIVENESS WERE DEMONSTRATED FOR HIGH SPEED MACHINING PROCESSES.
- TESTING SHOWED NO THERMAL LIMIT TO THE CUTTING SPEED AT WHICH ALUMINUM CAN BE MACHINED.
- HIGH SPEED MACHINING SEEMS TO BE MOST ECONOMICAL FOR 'HOGGING' CUTS.
- ●THIS TECHNOLOGY IS BEING APPLIED TO MACHINE THE BODY SECTION OF THE NAVY'S TOMAHAWK MISSILE. SAVINGS OF \$6.1 MILLION ARE ESTIMATED FOR CURRENT PLANNED PRODUCTION.

ON TEMPERATURE

DARCOM MMT ACCOMPLISHMENT **AUTOMATED PLATING**

PROJECT NO: R 78 3268

TITLE: AUTOMATIC CONTROL OF PLATING (CAM)

COST: \$412,433

RESULTS

DAN AUTOMATIC SENSING AND CONTROL SYSTEM HAS BEEN APPLIED TO THE TASK OF MAIN-TAINING THE CHEMISTRY OF PROCESSING SOLUTIONS IN A PRINTED BOARD PLATING LINE.

● A COMPUTERIZED POLARGRAPHIC ANALYZER IS **USED FOR SIMULTANEOUS DETERMINATION OF 2** OR MORE CONSTITUENTS IN PROCESSING SOLUTIONS.

●THE SYSTEM DESIGN HAS BEEN COMPLETED AND INSTALLATION AND PROVEOUT INITIATED WITH A FOLLOW-ON EFFORT.

COMPLETION AND IMPLEMENTATION OF THIS PROJECT WILL RESULT IN ESTIMATED SAVINGS OF \$450,000 PER YEAR. **OCT 81**

COMPARISON OF DIFFERENTIAL PULSE AND DC POLARGRAMS

DARCOM MMT ACCOMPLISHMENT TRACK PADS

PROJECT NO: 4 74 4371

TITLE: FABRICATION TECHNIQUES FOR TRACK

ELASTOMERIC COMPOUNDS

COST: \$218.800

RESULTS

■ INVESTIGATED MATERIALS FOR EXTENDED LIFE TRACK PADS INCLUDED OIL EXTENDED POLY-MERIZED STYRENE BUTADIENE RUBBER (SBR), OIL EXTENDED EMULSION SBR, NON-OIL EXTENDED EMULSION SBR AND POLYBUTADIENE.

SAMPLE LOTS WERE FABRICATED AND TESTED

 ANALYSIS OF THE TEST RESULTS INDICATED THAT A 20 TO 30% IMPROVEMENT IN DURABILITY MAY BE POSSIBLE.

THE RESULTS OF THIS PROJECT ARE BEING IN-CORPORATED INTO TRACK RUBBER SPECIFICA-TION MIL-T-11891.

OCT 81

CROSS SECTION OF VULCANIZED T142
RUBBER TRACK PAD CONTAINING WIRE CLOTH

DARCOM MMT ACCOMPLISHMENT

LASER WELDING

PROJECT NO: T 78 4575

TITLE: LASER WELDING TECHNIQUES FOR MILITARY VEHICLES-PHASE I

COST: \$175,000

RESULTS

- THIS PROJECT WAS THE FIRST PHASE OF A PROJECT TO DEVELOP LASER WELDING OF HEAVY ARMOR.
- **OINITIAL CONCLUSIONS DEVELOPED WERE:**
 - ONLY ABOUT 30% AS MUCH FILLER MATERIAL DEPOSITION.
 - •NARROW GAP LASER WELDING IS APPROX-IMATELY 6 TIMES FASTER THAN SEMIAUTO-MATIC GAS METAL ARC PROCESSES. THE SPEED IS INFLUENCED BY THE FILLER WIRE DIAMETER.
 - FOLLOW-ON PROJECTS ARE COMPLETING THIS EFFORT. ESTIMATED ANNUAL SAVINGS AS A RESULT OF COMPLETING AND IMPLEMENTING THIS EFFORT ARE \$140,000.

LASER WELDING STATION

DARCOM MMT ACCOMPLISHMENT LEAK TESTING

PROJECT NO: 5 75 1250

TITLE: EVALUATION AND PROVEOUT OF WP

MUNITIONS LEAK DETECTION PROTOTYPE

COST: \$325,000

RESULTS

- A PROTOTYPE IN-LINE LEAK DETECTION SYSTEM FOR WHITE PHOSPHOROUS FILLED MUNITIONS WAS DEVELOPED AND TESTED.
- THE SYSTEM HEATS THE ROUND INDUCTIVELY TO INCREASE ITS INTERNAL PRESSURE. LEAKAGE IS THEN DETERMINED BY A THERMAL/FLAME EMISSION DETECTION SYSTEM.
- THIS EFFORT WILL RESULT IN A LEAK DETECTION METHOD WHICH WILL SHORTEN THE TEST TIME REQUIRED, REDUCE ENERGY COSTS, AND ELIMINATE VISUAL OBSERVATION.

THERMOCOUPLE AND PRESSURE-PORT LOCATION

DARCOM MMT ACCOMPLISHMENT SUPPRESSIVE SHIELDING

81-MM MORTAR LINE SUPPRESSIVE SHIELD

PROJECT NO: 5 73 1264, 5 74 1264, 5 75 1264 5 76 1264 & 5 7T 1264

TITLE: ADVANCED TECHNOLOGY FOR SUP-PRESSIVE SHIELDING OF HAZARDOUS PRODUCTION AND SUPPLY OPERATIONS.

COST: \$524,000; \$1,500,000; \$3,300,000; \$1,450,000 & \$100,000

RESULTS

- THIS PROJECT PROVIDED SUPPRESSIVE SHIELDING DESIGNS FOR THE ARMY MODERNIZATION PLAN.
- FIVE SHIELDS EFFECTIVE AGAINST BLAST AND FRAGMENT EFFECTS HAVE BEEN TESTED AND SAFETY CERTIFIED.
- OTHE PROJECT WAS DEFERRED FROM ITS MAJOR OBJECTIVE OF PROVIDING A SHIELD TO WITH-STAND A 3500 LB EXPLOSIVE CHARGE BECAUSE OF A CHANGE IN MODERNIZATION/EXPANSION PLANS.
- A GROUP SHIELD WAS IMPLEMENTED AT IOWA AAP THAT RESULTED IN A \$2 MILLION COST AVOIDANCE. OCT 81

DARCOM MMT ACCOMPLISHMENT SMOKE GRENADES

PROJECT NO: 5 75 1316

TITLE: ADVANCED TECHNOLOGY FOR PROCESS-

ING SMOKE GRENADES

COST: \$500,000

RESULTS

ODEVELOPED THE ESSENTIAL TECHNOLOGY AND PROCEDURES TO ECONOMICALLY, SAFELY AND RELIABLY FILL AND PRESS HIGH QUALITY GRENADES.

OCOST REDUCTIONS WERE ACHIEVED THROUGH ELIMINATION OF OPERATIONS AND OPERATORS.

OSAFETY AND HYGIENE IMPROVEMENTS

OREDUCED POLLUTION ABATEMENT COSTS
THROUGH CONTROL OF MATERIALS

DIMPLEMENTATION OF THIS PROJECT AT PINE BLUFF ARSENAL WILL RESULT IN ESTIMATED COST SAVINGS OF \$750,000 PER YEAR.

GRENADE TILLING, PRESSING, AND CLEANING STATIONS

DARCOM MMT ACCOMPLISHMENT FUZE SENSITIVITY MEASUREMENT

PROJECT NO: 5 73 3048 & 5 74 3048

TITLE: OSCILLATOR SENSITIVITY MEASUREMENT

TECHNIQUE

COST: \$150,000

RESULTS

THESE PROJECTS ASSEMBLED A PROXIMITY FUZE SENSITIVITY TESTER USING STANDARD LABORATORY EQUIPMENT AND AN ANECHOIC CHAMBER.

THE EFFORT DEMONSTRATED THAT 100%
TESTING OF PROXIMITY FUZE SENSITIVITY CAN
BE PERFORMED IN A PRODUCTION ENVIRONMENT
USING AN OSCILLATOR SENSITIVITY MEASUREMENT TECHNIQUE.

THE SYSTEM IS CURRENTLY BEING USED BY HDL TO SUPPORT PROXIMITY FUZE WORK.

ANECHOIC CHAMBER ANTENNA AND FUZE TEST POSITIONS

DARCOM MMT ACCOMPLISHMENT MINIATURE BEARING & SHAFT ASSEMBLY

MAGNET FEEDER SYSTEM

PROJECT NO: 5 76 3127, 5 7T 3127 & 5 77 3127

TITLE: MINIATURE BEARINGS AND SHAFT MANU-FACTURING ASSEMBLY PROCESSES

COST: \$220,000, \$90,000 & \$215,000 RESPECTIVELY

RESULTS

- •FULL SCALE PRODUCTION MACHINES WERE
 BUILT TO PRODUCE THE ALTERNATOR SHAFT,
 MAGNET, HOUSING, BEARING, AND END PLATES.
- ●THE EQUIPMENT WAS TRANSFERRED TO AN INITIAL PRODUCTION FACILITY AND WILL BE USED TO PRODUCE TURBOALTERNATORS FOR THE M734 FUZE.
- ●A COST SAVINGS OF \$1.50 PER TURBO-ALTERNATOR HAS BEEN ACHIEVED AND A PRODUCTION CAPABILITY OF ONE MILLION UNITS PER YEAR HAS BEEN PROVIDED.

DARCOM MMT ACCOMPLISHMENT THICK FILM HYBRIDS

THICK FILM HYBRID OSCILLATOR CIRCUIT

PROJECT NO: 5 77 3947 & 5 78 3947

TITLE: THICK FILM HYBRID CIRCUITS FOR

XM587E2/XM724 FUZES

COST: \$150,000 & \$556,000

RESULTS

- THIS PROJECT ESTABLISHED LARGE SCALE INEXPENSIVE MANUFACTURING TECHNIQUES FOR THE FUSE OSCILLATOR CIRCUIT AND INTERFACE AND FIRING CIRCUIT.
- **•** A PRODUCTION RATE OF 650 DEVICES PER HOUR WAS DEMONSTRATED FOR BOTH CIRCUITS.
- SIGNIFICANT COST REDUCTIONS FOR LARGE QUANTITIES SEEMS ATTAINABLE.
- THE ANNUAL SAVINGS WOULD EXCEED \$14 MILLION AT THE PLANNED PRODUCTION RATE.

DARCOM MMT ACCOMPLISHMENT PROPELLING CHARGE INCREMENTS

PROJECT NO: 5 73 4012 & 5 75 4012

TITLE: CONTINUOUS FINAL ROLL MILL AND PAD MAKE-UP MACHINE FOR MORTAR INCREMENTS

COST: \$1,300,000 & \$699,000

RESULTS

- THIS PROJECT WAS TO CHANGE THE MANUFACTURING PROCESS FOR PROPELLING CHARGES FROM A BATCH TO A CONTINUOUS OPERATION.
- THE GOAL WAS TO PROVIDE A SAFER LINE THAT REQUIRED 40 FEWER OPERATING PERSONNEL.
- A PRODUCTION LINE WAS DESIGNED AND CON-STRUCTED HOWEVER THE FUNDING WAS DEPLETED BEFORE THE LINE BECAME OPERATIONAL.
- FOLLOW-ON PROJECTS WILL BE INITIATED TO COMPLETE THIS EFFORT. ESTIMATED ANNUAL SAVINGS ARE \$145,000 WHEN THIS PROJECT IS IMPLEMENTED.

INCREMENT PAD ON CHECKWEIGHER CONVEYOR

DARCOM MMT ACCOMPLISHMENT CONTINUOUS PROCESSING

PROJECT NO: 5 72 4015, 5 73 4015 & 5 75 4015

TITLE: ESTABLISHMENT OF A PROTOTYPE
SYSTEM FOR THE CONTINUOUS PROCESSING OF BENITE

COST: \$350,000. \$100,000 & \$190,000 RESULTS

- A PROTOTYPE CONTINUOUS PROCESS FOR PRODUCING BENITE WAS DEVELOPED TO REPLACE THE LABOR INTENSIVE AND POTENTIALLY HAZARDOUS B ATCH PROCESS.
- A COMMERCIAL BLENDING AND SCREW TYPE EXTRUDER PROVIDED A CONTINUOUS EXTRUDING CAPABILITY. A RUBBER BELT CONVEYOR WAS USED TO MOVE THE BENITE BETWEEN THE BLENDER AND THE EXTRUDER. AS THE MATERIAL IS EXTRUDED IT IS CUT INTO STRAIGHT CYLINDERS WITH A HIGH PRESSURE FLUID JET.
- A MARKED REDUCTION IN THE REQUIREMENT FOR BENITE HAS MADE THE AUTOMATED PROCESS UNECONOMICAL.

OCT 81

PROPOSED FACILITY

DARCOM MMT ACCOMPLISHMENT AUTOMATED LOAD & ASSEMBLY

PRASING ! SUCCESTED LOGISTICS (IN POWDER AISLE) PROPELLAR THUCK TO LDES UNILOAD ING DOC FILLED BAG TORTTER ASSESSED V PORCER ATRIA DEUN CHALLE FILLED MAD WITH HANDS PLASS ASSESSED CHARGE THUCK TO MATTER IDS OADTHS DOCK ASSESSED CHARG I LONTED DAG PRINT ACED JACKETED CHARGE BUFFER (DEPETION) PACKAGING PACKOUT CANISTER S PRITER TALE TRICK TO INDICADING DOC CAR STAL S F 13 1 E S CHARGE CONVEYOR CARLSTERS LOADING DOCK

PROJECT NO: 5 73 4105 & 5 74 4105

TITLE: AUTOMATED INCREMENT LOADING AND ASSEMBLY OF PROPELLING CHARGES WITH CENTRAL CORE IGNITERS.

COST: \$105,000 & \$477,000

RESULTS

- THIS PHASE FURNISHED THE SYSTEM CONCEPT FOR MODERNIZING THE LOAD, ASSEMBLE AND PACK OF THE PROPELLING CHARGE.
- THE CONCEPT PROPOSES A SEMI-AUTOMATED SYSTEM SINCE FULL AUTOMATION WOULD BE TOO COMPLEX.
- THIS EFFORT IS CONTINUING UNDER LATER FISCAL YEAR PROJECTS.
- COMPLETION AND IMPLEMENTATION OF THESE PROJECTS WILL RESULT IN ESTIMATED SAVINGS OF \$3.1 MILLION ANNUALLY.

DARCOM MMT ACCOMPLISHMENT COMBUSTIBLE CASE PROCESSING

PROJECT NO: 5 70 4109

TITLE: IMPROVED PROCESS FOR THE MANUFAC-

TURE OF NON-METALLIC CARTRIDGE

CASE

COST: \$399,000

M205 COMBUSTIBLE CARTRIDGE CASE

RESULTS

- AN IN HOUSE CAPABILITY FOR PILOT PRO-DUCTION OF NON-METALLIC CARTRIDGE CASES WAS ESTABLISHED.
- WET FELTS WERE FORMED AND WERE FOUND TO BE SATISFACTORY FOR WASHOUT AND UNEVEN WALL THICKNESS.
- THE PROJECT DEVELOPED THE TECHNICAL DATA FOR PRODUCTION CONTRACTS.

DARCOM MMT ACCOMPLISHMENT PROJECTILE EXPLOSIVE LOADING

PROJECT NO: 5 78 4163

TITLE: CONTROLLED PRODUCTION LOADING

SYSTEM FOR 105MM HEAT-T M456A1

COST: \$187,480

RESULTS

- THE PURPOSE OF THIS PROJECT WAS TO INCREASE THE YIELD OF THE 105MM HEAT-T, M456A1 PROJECTILE CASTING PROCESS. REJECT RATES OF 30 TO 50% WERE BEING EXPERIENCED.
- PART OF THE PROBLEM WAS FOUND TO BE A TOO RAPID COOLING RATE RESULTING IN CRACKS IN THE EXPLOSIVE. THE PROCESS WAS MODIFIED AND THE REJECT RATE WAS REDUCED TO 25%.
- A FOLLOW-ON PROJECT IS EXPECTED TO FURTHER REDUCE THE REJECT RATE TO 5%.

PROJECTILE CARRIER

DARCOM MMT ACCOMPLISHMENT AUTOMATED PROCESSING

TURBULATOR SYSTEM

PROJECT NO: 5 71 4173 & 5 72 4173

TITLE: AUTOMATED MATERIAL PROCESSING IN A

DETONATOR BACKLINE

COST: \$400,000 & \$150,000

RESULTS

- THESE PROJECTS RESULTED IN A SYSTEM TO REMOTELY WASH, DRY, SCREEN AND DISPENSE EXPLOSIVE IN ONE-OUNCE INCREMENTS WITHIN 2 HOURS.
- THE SYSTEM HAS SATISFACTORILY PROCESSED LEAD AZIDE, LEAD STYPHNATE AND TETRACENE.
- THE RESULTS WERE EVALUATED DURING THE DESIGN OF P AND Q BACKLINES AT LONE STAR ARMY AMMUNITION PLANT BUT AN ALTERNATIVE TECHNOLOGY WAS FOUND TO BE MORE ECONOMICAL.

DARCOM MMT ACCOMPLISHMENT AUTOMATED ASSEMBLY

PROJECT NO: 5 73 4216 & 5 74 4216

TITLE: AUTOMATED 105MM CARTRIDGE CASE ASSEMBLY

COST: \$70.000 & \$390.000 RESPECTIVELY

RESULTS

- A STANDARD BAGGING MACHINE WAS PURCHASED AND MODIFIED TO ACCEPT THE PROPELLING CHARGES. THE CHARGES ARE INDIVIDUALLY PACKAGED INTO "BAGGIES" AND PLACED IN SHIPPING CONTAINERS AT A RATE OF 45 CHARGES PER MINUTE.
- THE SECOND PHASE OF THE PROGRAM DEVELOPED AN AUTOMATED CARTRIDGE CASE LOADER.
- ●THIS MACHINE TAKES THE PREPACKAGED
 CHARGES AND LOADS THE 105MM CASES AT A
 RATE OF 25 PER HOUR.
- ●IMPLEMENTATION OF THIS PROJECT WOULD RESULT IN FEWER OPERATORS AND FEWER ENTANGLEMENT PROBLEMS.

OCT 81

CARTRIDGE CASE LOADER

DARCOM MMT ACCOMPLISHMENT MODERNIZED MATERIAL HANDLING

PROJECT NO: 5 71 4218 & 5 72 4218

TITLE: MODERNIZATION OF MATERIALS

HANDLING AT LAP FACILITIES

COST: \$200,000 & \$992,000

RESULTS

- A PACKAGING CHANGE FOR THE 2.75 ROCKET WITH A POTENTIAL \$210,000 YEARLY SAVINGS.
- ●INCREASED USE OF PALLETIZATION WITH A POTENTIAL \$1,444,000 YEARLY SAVINGS.

MATERIALS FLOW THRU A LAP PLANT

DARCOM MMT ACCOMPLISHMENT DELUGE FIRE EXTINGUISHING SYSTEM

PROJECT NO: 5 75 4245

TITLE: DEVELOPMENT OF A DELUGE SYSTEM TO EXTINGUISH FIRES FOLLOWING AN ACCIDENTAL DETONATION ON CONVEYORS HANDLING BULK HIGH EXPLOSIVE

COST: \$175,000

RESULTS

- A SYSTEM UTILIZING COMMERCIALLY AVAILABLE COMPONENTS WAS DESIGNED AND TESTED.
- THE SYSTEM IS ACTIVATED BY A ULTRAVIOLET DETECTOR AND ASSOCIATED LOGIC. WATER SUPPLY LINES ARE BURIED ADJACENT TO THE CONVEYOR FOR BLAST PROTECTION.
- •INCREASES SAFETY AND REDUCES POTENTIAL LOSS.
- ●APPLICATIONS USING THE BASIC DESIGN HAVE BEEN INSTALLED AT BADGER, LONESTAR, INDIANA AND LOUISIANA ARMY AMMUNITION PLANTS.

BLAST RESISTANT WATER SUPPLY LINE ASSEMBLY

PROOF TEST
VALVE

PROOF TEST
VALVE

CONTROL
CIRCUIT

MAIN WATER SUPPLY

MAIN WATER SUPPLY

NOZZLE LOCATIONS

PROOF TEST SUB SYSTEM

UV

DETECTOR

PROTOTYPE WATER DELUGE SYSTEM

PROJECT NO: 5 7T 4285

TITLE: TNT EQUIVALENCY TESTING IN SUPPORT OF SAFETY ENGINEERING FOR AMMUNITION PLANTS

COST: \$81.000

RESULTS

- DETERMINED THE EXPLOSIVE AIR BLAST FOR SEVEN CHEMICAL MIXTURES OF IN-PROCESS MATERIALS THAT ARE PRESENT ON A TNT LINE.
- THE RESULTS WERE CONVERTED TO THE EQUIVA-LENCY FOR USE WITH AMCR 385-100 AND TM5-1300.
- ●BOTH SMALL SCALE TESTS AND LIMITED LARGE SCALE TESTS WERE PERFORMED TO VERIFY THE RESULTS.

OCT 81

TNT NITRATION &
PURIFICATION SYSTEM

PROJECT NO: 5 77 4285

TITLE: TNT EQUIVALENCY TESTING IN SUPPORT

OF SAFETY ENGINEERING FOR AMMUNITION

PLANTS

COST: \$377.600

RESULTS

THE PURPOSE OF THESE TESTS WAS TO DETERMINE THE TNT EQUIVALENCY OF BENITE, TRACER COMPOSITION, IGNITER MIX, AND SUBIGNITER MIX.

THIS DATA COMBINED WITH AMCR 385-100 AND TM5-1300 DATA WILL ENABLE THE DESIGN OF PROTECTIVE FACILITIES THAT WILL RESIST THE BLAST EFFECTS OF AN ACCIDENTAL DETONATION.

THE RESULTS WERE PUBLISHED IN TECHNICAL REPORTS.

TEST ARRAY AND CHARGE PLACEMENT

PROJECT NO: 5 77 4289

TITLE: HAZARD CLASSIFICATION STUDIES OF

EXPLOSIVES AND PROPELLANTS

COST: \$306,000

RESULTS

THIS PROJECT PROVIDED DESIGN DATA TO INCREASE THE SAFETY OF THE CONTINUOUS AUTOMATED SINGLE-BASE LINE (CASBL) AT RADFORD AAP.

●A HOPPER DESIGN INCORPORATING PRESSURE RELIEF VENTING WAS PROPOSED TO PREVENT DESTRUCTIVE PRESSURE BUILDUP.

●THE PROPOSED DESIGN CHANGES WERE INCOR-PORATED INTO THE CONSTRUCTION OF THE CASBL AND CAMBL FACILITIES AT RADFORD AAP.

PROPOSED HOPPER DESIGN

PROJECT NO: 5 78 4289

TITLE: HAZARD CLASSIFICATION STUDIES OF

PROPELLANTS AND EXPLOSIVES

COST: \$214,000

RESULTS

- ●THE SENSITIVITY EVALUATION CAN BE COMPLETED DURING THE LABORATORY SCALE PHASE OF PROCESS DEVELOPMENT.
- A SYSTEMATIC MEANS OF DETERMINING THE HAZARD CLASSIFICATION OF MATERIALS WAS DEVELOPED FOR USE IN CONSTRUCTING SAFER MUNITIONS MANUFACTURING FACILITIES.
- A STEP BY STEP PROCEDURE WAS ESTABLISHED THAT RESULTS IN PLACING THE MATERIAL IN CATEGORIES RANGING FROM VERY INSENSITIVE TO MASS EXPLOSION HAZARD. THIS CLASSIFICATION IS THEN USED TO DETERMINE APPROPRIATE FACILITY AND EQUIPMENT DESIGNS.

HARTMANN DUST EXPLOSIBILITY
TEST APPARATUS

PROJECT NO: 5 77 4291

TITLE: BLAST EFFECTS IN THE MUNITION PLANT

ENVIRONMENT

COST: \$338,193

RESULTS

METHODS FOR REDUCING THE BLAST EFFECTS ON PRE-ENGINEERED BUILDINGS WERE DEVELOPED.

●THE CURRENT STRUCTURES WILL WITHSTAND OVER-PRESSURES OF 0.5 PSI.

●BY INCREASING THE BUILDING COST BY APPROX-IMATELY 20% THE BLAST RESISTANCE CAN BE INCREASED 4 TIMES TO 2 PSI.

● TECHNICAL REPORTS RESULTING FROM THIS PROJECT ARE BEING INCORPORATED INTO THE SAFETY DOCUMENT TM5-1300.

OCT 81

PRE-ENGINEERED BUILDING UNDER CONSTRUCTION

DARCOM MMT ACCOMPLISHMENT PROPELLANT BAG LOADING

PROJECT NO: 5 76 4443

TITLE: UPGRADE PERFORMANCE OF BAG BUFFER, MANDREL-CLAMSHELL INTER-FACE AND INSPECTION SENSOR EQUIP-MENT FOR 105MM, M67 PROPELLING

CHARGE

COST: \$150,000

RESULTS

• IMPROVEMENTS WERE MADE TO THE 105MM-M67 LOADING BOOTH AT INDIANA ARMY AMMO PLANT.

THE PICKUP AND INSERTION OF BAGS INTO THE CAROUSEL WAS IMPROVED BY THE INSTALLATION OF NEW SENSORS. OVERALL ECONOMY AND CAROUSEL PERFORMANCE WILL BE BETTER AND DOWN TIME WILL BE REDUCED DUE TO THE IMPROVEMENTS.

MODIFICATIONS RESULTING FROM THIS PROJECT WERE INCLUDED IN THE TECHNICAL DATA PACKAGE FOR THE BAG LOADING OPERATIONS.

PROPELLANT DISPENSER

DARCOM MMT ACCOMPLISHMENT MATH MODELLING

PROJECT NO: 5 77 6716

TITLE: DEVELOPMENT OF MATH MODELS OF FORMING OPERATIONS FOR CURRENT/FUTURE ARTILLERY METAL PARTS DESIGNS (CAD/CAM)

COST: \$295,000

RESULTS

- A COMPUTER DIAGNOSTIC TOOL WAS DEVEL-OPED TO REDUCE THE ENGINEERING TIME CONSUMED IN TECHNICAL DATA PACKAGE PREPARATION FOR TOOLING, EQUIPMENT AND SETUP.
- PICTORIAL REPRESENTATIVES OF THE PUNCH AND BILLET DISPLACEMENTS, THE TOTAL RAM LOAD AND WALL STRESS ARE DISPLAYED ON A CRT.
- ●THE COMPUTER PROGRAM, "DRAWING",IS OPERATIONAL ON THE ARRADCOM COMPUTER SYSTEM.
- THE FORECAST REDUCTION IN TOP PREPARATION TIME WILL ALSO IMPROVE READINESS.

TOTAL RAM
LOAD
X 1.0E+05 LB

20.0

16.6

12.8

3.8

4.6

0.0

7.0 14.0 21.0 28.0 35.0

DISPLACEMENT X 1.0E+00 INCHES

RAM FORCE VS STROKE

DARCOM MMT ACCOMPLISHMENT FLOW TURNING AND PEELING

PROJECT NO: 6 71 6915 & 6 72 6915

TITLE: APPLICATION OF FLOW TURNING AND PEELING TO THE SHAPING OF CYLINDRICAL

WEAPON COMPONENTS

COST: \$75,000 & \$80,000

RESULTS

- THIS PROJECT EVALUATED OPPOSED MULTIPLE-TOOL FLOW-TURNING, ROTARY-SHEAR PEELING, MILLING AND ABRASIVE MACHINING FOR USE ON SMALL ARMS BARRELS AND RECOIL CYLINDERS.
- FLOW TURNING WAS ABLE TO DEMONSTRATE AD-VANTAGES AND EFFICIENCIES HOWEVER, FOR EFFECTIVE APPLICATION MORE RIGID MACHINE TOOLS WOULD BE REQUIRED.
- NO IMPLEMENTATION IS PLANNED.

3 DISCS POSITION - FLO-TURNING

DARCOM MMT ACCOMPLISHMENT IMPROVED BENCHING OPERATIONS

PROJECT NO: 6 71 7028

TITLE: MECHANIZED BENCHING OF CANNON

COMPONENTS

COST: \$70,800

RESULTS

OPERATIONS WAS PERFORMED TO REDUCE COSTS AND INCREASE CONSISTENCY OF THE OPERATIONS.

●A HARPERIZER WAS SELECTED FOR DEBURRING AND EDGE CHAMFERING LARGE HEAVY COMPONENTS SUCH AS THE BREECH RING FOR THE 105MM, M137.

●A HELD EDGE GRINDER IS USED FOR OTHER PARTS SUCH AS THE 8 INCH AND 175MM RAIL.

TIME SAVINGS OF 1.7 HOURS PER COMPONENT FOR THE BREECH RING AND 0.25 HOURS FOR THE RAILS HAVE BEEN REALIZED.

OCT 81

HELD EDGE GRINDER

DARCOM MMT ACCOMPLISHMENT ABRASIVE MACHINING

ABRASIVE GRINDING EQUIPMENT

PROJECT NO: 6 71 7030

TITLE: ABRASIVE MACHINING OF MINOR ITEMS

FOR CANNON MANUFACTURING

COST: \$239,000

RESULTS

- THE OBJECTIVE OF THIS PROJECT WAS TO DEMONSTRATE A COST REDUCTION AND PART QUALITY IMPROVEMENT POSSIBLE WITH ABRASIVE MACHINING. THE ABRASIVE TECHNIQUE WAS HIGHLY COMPETITIVE AND ALLOWED MACHINING OF HARDENED STEELS.
- ●IMPLEMENTATION OF THIS METHOD FOR THE BREECH COMPONENTS OF THE M68 AND M113 CANNONS SHOULD RESULT IN A \$65,000 YEARLY SAVINGS. SAVINGS FOR TEST SPECIMEN GRINDING IS ESTIMATED AT \$348,000 YEARLY.

DARCOM MMT ACCOMPLISHMENT LASER MATERIAL EVALUATION

PROJECT NO: 6 71 7061

TITLE: MATERIAL EVALUATION TECHNIQUES FOR LASER CHARACTERISTICS BY THE X-RAY

COST: \$75,000

RESULTS

FOUR METHODS OF LASER MATERIAL EVALUATION WERE STUDIED AS FOLLOWS:

PLAUE PHOTOGRAPHY

OCHEMICAL ETCHING AND ETCH PITS

PRECISION ALIGNMENT USING CHARACTERISTIC X-RADIATION

•KOSSEL PATTERNS

THE KOSSEL METHOD WAS FOUND TO PROVIDE A SENSITIVE AND RAPID METHOD OF ASSESSING BOULE QUALITY.

OCT 81

KOSSEL PATTERN SHOWING
EXPECTED EFFECT
OF 1% HYDROSTATIC STRAIN

DARCOM MMT ACCOMPLISHMENT CANNON BORE HONING

PROJECT NO: 6 76 7241

TITLE: IMPROVEMENT OF HONING EQUIPMENT

AND PROCEDURES

COST: \$178,000

RESULTS

● USING SWAGE AUTOFRETTAGE FOR BARRELS REQUIRED AN UPGRADING OF THE HONING THE PROJECT DEVELOPED A:

- •NEW FEED SYSTEM AND HONE HEAD FOR INCREASING THE METAL REMOVAL RATES.
- FASTER INDUCTION GAGING SYSTEM TO REPLACE THE STAR GAGES.
- **•IMPROVED CUTTING FLUID CONTROL SYSTEM.**
- HONING TIME PER BARREL WILL BE REDUCED BY 1.3 HOURS WHEN THIS PROJECT IS IMPLEMENTED.

HONE HEAD AND SUPPORT
TRAY ASSEMBLY

SECTION III

IMPLEMENTED EFFORTS

DARCOM MMT IMPLEMENTATION CANNON TUBE WALL THICKNESS MEASUREMENT

PROJECT NO: M 76 6350 SUBTASK 1831

TITLE: HOT FORGING WALL VARIATION MEASUREMENTS

COST: \$80,000

BENEFITS

- DEVELOPED AN ULTRASONIC BASED SYSTEM THAT MEASURES THE WALL THICKNESS OF HOT PRODUCTION FORGINGS.
- THIS METHOD PRECLUDES CONTINUED PRODUCTION OF OUT OF SPECIFICATION PARTS THAT COULD OCCUR IF INSPECTION IS DELAYED UNTIL THE FORGINGS HAVE COOLED.
- THE SYSTEM IS CURRENTLY BEING USED FOR IN-SPECTING 105MM (M68) TUBES. SAVINGS ARE ESTIMATED TO BE \$180,000 PER YEAR.

WALL THICKNESS MEASUREMENT SYSTEM

LASER INSPECTION

PROJECT NO: M 77 6350 - 1849

TITLE: LASER SCAN INSPECTION SYSTEM

COST: \$80,000

BENEFITS

 DEVELOPED A RAPID AUTOMATED METHOD OF INSPECTING THE BORES OF CANNON TUBES FOR CRACKS. INCLUSIONS AND DISCONTINUITIES.

• INCLUDES A MAGNETIC PARTICLE BASED SYSTEM THAT USES LASER LIGHT REFLECTED FROM THE INNER BORE ONTO A PHOTODETECTOR.

A FLAW IN THE BORE IS INDICATED BY A CHANGE IN THE PHOTODETECTOR OUTPUT. THE FLAW LOCATION IS AUTOMATICALLY RECORDED FOR SUBSEQUENT VISUAL INSPECTION.

THE SYSTEM IS CURRENTLY BEING USED TO INSPECT 105MM, M68 CANNON TUBES WITH ESTIMATED SAVINGS OF \$20,000 YEARLY.

OCT 81

LASER SCAN INSPECTION SYSTEM

DARCOM MMT IMPLEMENTATION CONDUCTIVE PLASTIC RATIOMETER

RATIOMETER
RESISTOR & CONDUCTOR
PATTERN

EFFORT NO: 2 71 9500

TITLE: TIME SETTING POTENTIOMETER FOR

SHORT INTRUSION PROXIMITY FUZE

COST: \$158,000

BENEFITS

- ●TECHNIQUES WERE ESTABLISHED FOR THE MANUFACTURE AND QUALITY CONTROL OF A TIME SETTING POTENTIOMETER
- A LIQUID ADHESIVE SYSTEM WAS PROPOSED THAT WOULD REPLACE THE LABOR INTENSIVE ADHESIVE PREFORM METHOD FOR CEMENTING THE SUBSTRATE TO THE DETONATOR BLOCK.
- A MULTI-TINED MOVABLE CONTRACT WAS PROPOSED TO INCREASE DEVICE RELIABILITY.
- ●AS A RESULT OF IMPLEMENTING THESE TECHNIQUES A \$1.9 MILLION SAVINGS WAS REALIZED.

PIN DIODES

EFFORT NO: H 73 9526

TITLE: LOW LOSS HI RELIABILITY INTEGRATABLE

PIN DIODES

COST: \$350,000

BENEFITS

A CAPACITY FOR ECONOMICALLY PRODUCING GLASS PASSIVATED UNPACKAGED PIN DIODE CHIPS WAS DEVELOPED.

■ THE DIODES ARE RUGGED AND REPRODUCIBLE AND THE CONFIGURATION MAKES THEM IDEALLY SUITED FOR AUTOMATED CIRCUIT FABRICATION.

● A MAXIMUM OUTPUT OF 130,000 FULLY TESTED CHIPS CAN EASILY MEET THE GOAL OF 30,000 UNITS PER MONTH.

ESTIMATED 10 YEAR SAVINGS AS A RESULT OF IMPLEMENTING THIS PROJECT IS \$2.9 MILLION.
AUG 81

GLASS PASSIVATED WAFER

DARCOM MMT IMPLEMENTATION INTEGRATION OF CAD/CAM

EFFORT NO: 2 7X 9641

TITLE: DEVELOPMENT OF CAD/CAM INTERFACE
FOR COMMUNICATIONS AND ELEC—
TRONICS PACKAGES.

COST: \$200,000

BENEFITS

●INTERFACE COMPUTER PROGRAMS WERE WRITTEN AND A PAPER TAPE CONNECTION WAS MADE TO LINK AN AUTOMATIC DRAFTING DIGITIZING SYSTEM TO AN INTERACTIVE GRAPHICS SYSTEM.

■ THE INTEGRATED SYSTEM RESULTED IN A REDUCTION OF COST FOR THE DESIGN AND FABRICATION OF DISTRIBUTED PARAMETER MICROWAVE DEVICES AND MULTILAYER PRINTED CIRCUIT BOARDS.

ARTWORK MASTER LAYER 1

PRECISION CASTING

EFFORT NO: 1 7X 7046

TITLE: PRECISION CAST TITANIUM COMPRESSOR

CASING

COST: \$502,000

BENEFITS

- A PROCESS TO PRECISION CAST ONE-PIECE TITANIUM COMPRESSOR CASINGS WAS DEVELOPED. THIS WAS PREVIOUSLY PRODUCED FROM A FORGING WHICH HAD TWO CASING HALVES ARRANGED END TO END.
- THE NEAR NET SHAPE CASTING RESULTED IN A 35LB MATERIAL SAVINGS AND A 30 HOUR LABOR SAVINGS.
- THE PROCESS WAS IMPLEMENTED ON T-700 ENGINE PRODUCTION AND RESULTED IN A \$922/UNIT SAVINGS, OR \$5.4 MILLION OVER A 10 YEAR PERIOD.

T700 COMPRESSOR CASTING VS FORGING

DARCOM MMT IMPLEMENTATION LASER DESIGNATORS

DEFINE ONSTRAINING LU CUMPONENT TEST EQUIP & TEST METHODS TEST PARAMETERS PROCEDURES SKILL · EQUIPMENT SPECS · SPEED CRITICAL PARAMETERS TO LASER CRITICAL PERFORMANCE PARAMETERS PROCESS NON-CRITICAL REVIEW PRODUCTION METHODS OPEN SPECS REDUCE COMP & TEST COST IMPROVED TEST METHODS

FLOW DIAGRAM FOR PROCESS REVIEW OF PRODUCTION TEST METHODS

EFFORT NO: 3 7X 3119

TITLE: PRODUCTION METHODS FOR LASER GUIDANCE DESIGNATORS.

COST: \$350,000

BENEFITS

- THIS PROJECT ESTABLISHED COST EFFECTIVE PRODUCTION AND TESTING METHODS FOR ELECTRO-OPTICAL COMPONENTS USED IN LASER DESIGNATORS.
- TWENTY TWO COMPONENTS WERE CATEGORIZED AS TO INDIVIDUAL TEST PARAMETERS, SPECIFI-CATIONS AND TOLERANCE.
- SIX IMPROVED TEST METHODS THAT SUBSTITUTED DYNAMIC TESTS FOR STATIC TESTS REDUCED TEST TIME BY APPROXIMATELY 50%.
- IMPLEMENTATION OF THESE METHODS WILL RESULT IN COST SAVINGS OF \$1.7 MILLION OVER A 5 YEAR PRODUCTION SPAN.

LEVEL MEASURING

LEVEL GAUGING SYSTEM FOR UNDERGROUND STORAGE TANKS

EFFORT NO: 5 75 1261

TITLE: PROVISION OF PROTOTYPE EQUIPMENT FOR DETERMINATION OF LEVEL IN WHITE PHOSPHORUS STORAGE TANKS.

COST: \$40,000

BENEFITS

- PROTOTYPE SYSTEMS WERE DEVELOPED TO PROVIDE THE CAPABILITY OF ACCURATELY MONITORING THE AMOUNT OF WHITE PHOSPHOROUS IN STORAGE TANKS.
- THE PROTOTYPE UNIT WAS INSTALLED AT PINE BLUFF ARSENAL AND HAS OPERATED FOR 3 YEARS WITHOUT MAINTENANCE. GAUGES WERE INSTALLED ON THE REMAINING TANKS AND THE 10 YEAR LABOR SAVINGS FROM EASIER MEASURING ARE ESTIMATED TO BE \$49,000.
- THE PRIMARY PURPOSE OF THIS PROJECT WAS TO ALLEVIATE A SAFETY/HEALTH PROBLEM.

 AUG. 81

WHITE PHOSPHORUS FILLING

WP DRY FILL STATION

EFFORT NO: 5 7X 1274

TITLE: WHITE PHOSPHORUS DRY FILL LINE

COST: \$1,796,000

BENEFITS

- A PROTOTYPE PRODUCTION FACILITY WAS DESIGNED AND BUILT TO LOAD WP MUNITIONS UTILIZING A "DRY FILL" CONCEPT.
- THIS REPLACED THE WET PROCESS WHICH INVOLVED DIPPING THE ENTIRE MUNITION INTO THE WP.
- THIS WORK RESULTED IN REDUCTION OF 15 OPERATORS, A 10 YEAR COST SAVINGS OF \$5.2 MILLION, AND A 97% REDUCTION OF THE AIR/WATER POLLUTION OVER THE OLD DIP FILL METHOD.

DARCOM MMT IMPLEMENTATION FLUIDIC CIRCUITS

EFFORT NO: 5 7X 3139

TITLE: MANUFACTURE OF INTERCONNECTIONS FOR FLUIDIC CIRCUITS

COST: \$145,000

BENEFITS

- FORM FLUXLESS BONDING PROCESSES WERE IN-VESTIGATED TO DEVELOP AN ALTERNATIVE TO STRAIGHT INTERATOMIC DIFFUSION BONDING IN THE ASSEMBLY OF ALUMINUM FLUIDIC DEVICES.
- THE MOST SUCCESSFUL WAS AN ALUMINUM SEMI-SOLID-STATE BONDING USING A BRAZE-CLAD SHEET SANDWICHED BETWEEN INTER-CONNECTION PLATES.
- RESULTS WERE ADOPTED BY PRIVATE INDUSTRY IN THE PRODUCTION OF 3 STAGE GAIN BLOCKS FOR THE M60A1 GUN STABILIZATION. AN ESTIMATED \$100K SAVINGS RESULTED.

PLOT OF TRANSDUCER OUTPUTS SHOWING THE EFFECTS OF BRAZING.

DARCOM MMT IMPLEMENTATION CARTON DEPALLETIZATION & OPENING

EFFORT NO: 5 7X 4069

TITLE: MODERNIZATION OF MORTAR BODY
DEPALLETIZATION AND CARTON OPENING

COST: \$454,000

BENEFITS

- A SYSTEM THAT ACCEPTS PALLETIZED 60MM & 81MM ROUNDS AND PLACES THEM ON THE MELT POUR CONVEYOR WAS DEVELOPED.
- OPERATIONS PERFORMED INCLUDE; DEPAL-LETIZING, CARTON SEPARATING AND UNSCRAM-BLING, CARTON OPENING AND PLACING PROJECTILES ON THE CONVEYOR.
- THE PRIMARY PURPOSE OF THIS EFFORT WAS TO CONSERVE MANPOWER DURING MOBILIZATION. THEREFORE NO SAVINGS HAVE ACCRUED.

AUTOMATED DEPALLETIZER,
CARTON OPENER AND PROJECTILE UNLOADER

DARCOM MMT IMPLEMENTATION 8" PROJ. FORGING

EFFORT NO: 5 7X 4148

TITLE: REDUCED WEIGHT FORGING FOR THE 8"

MOTOR BODY.

COST: \$79,000

BENEFITS

- A LIGHTWEIGHT FORGING WEIGHING APPROX-IMATELY 20 LBS LESS THAN THE PREVIOUS FORGING WAS DEVELOPED FOR THE 8" M650 RAP ROUND.
- A 5 YEAR COST SAVING OF \$733,000 IS NOW BEING REALIZED. SAVINGS RESULT FROM REDUCTIONS IN 1) AMOUNT OF STEEL REQUIRED, 2) MACHINING TIME. AND 3) SHIPPING COSTS.
- THE PROCESS HAS BEEN IMPLEMENTED AND CONTRACTED WITH FERRULMATIC, INC.

8 INCH RAP, M650

DARCOM MMT IMPLEMENTATION DIE CASTING

EFFORT NO: 5 7X 4416

TITLE: DEVELOP & PROVEOUT ALTERNATE MFG

PROCESSES FOR GEMSS SAFE AND

ARMING DEVICE

COST: \$120,000

BENEFITS

- A NEW DESIGN SPLIT ZINC DIE CAST HOUSING FOR THE GEMSS SAFE AND ARMING DEVICE WAS FABRICATED AND TESTED.
- THE DIE CAST PART IS LESS EXPENSIVE THAN THE BAR STOCK FABRICATED PART AND HAS BEEN INCLUDED IN THE XM74/75 TDP.
- A MANUFACTURING COST SAVING OF \$2.4 MILLION IS BEING REALIZED OVER 6 YEARS OF GEMSS PRODUCTION. THE GATOR AND MOPMS SYSTEMS ARE ADDITIONAL APPLICATIONS FOR THIS HOUSING.

TWO-PIECE GEMSS S&A DIE-CAST HOUSING

DARCOM MMT IMPLEMENTATION IMPROVED INVESTMENT CASTING

EFFORT NO: 6 7X 6769

TITLE: APPLICATION OF CERAMIC SHELL INVEST-

MENT CASTING PROCESS TO THE PRO-

DUCTION OF CASTINGS.

COST: \$122,000

BENEFITS

- AN IMPROVED CASTING PROCESS UTILIZING A CERAMIC SHELL MOLD IN PLACE OF THE SOLID MOLD WAS APPLIED TO SEVERAL COMPONENTS.
- ADVANTAGES INCLUDED: IMPROVED SURFACE FINISH AND DIMENSIONAL CONTROL FOR REDUCED MACHINING, REDUCED LEAD TIME AND LESS DECARB.
- APPLICATION OF THIS METHOD RESULTED IN TOTAL COST SAVINGS OF \$314,000 FOR 105MM-M68 AND 60MM-M225 COMPONENTS.

AUG 81

BRACKET & WAX MOLD

DARCOM MMT IMPLEMENTATION PRECISION FORMING

155MM COUPLING

EFFORT NO: 6 70 7106

TITLE: PRECISION FORMING THE EXTERNAL CONFIGURATION OF THE 152MM M81E1 COUPLING

COST: \$29,000

BENEFITS

- THIS PROJECT CHANGED THE MANUFACTURING METHOD FOR THIS ITEM AND SIGNIFICANTLY REDUCED THE REQUIRED MACHINING TIME.
- THE PRIMARY CHANGE WAS FROM A STANDARD FORGING TO A PRECISION FORGING. WHILE THE PRECISION FORGING WAS SLIGHTLY MORE EXPENSIVE (5%), THE REDUCTION IN SUBSEQUENT MACHINING COST WAS 21%.
- TOTAL SAVINGS FOR THE THREE YEARS IN WHICH THESE ITEMS WERE PURCHASED WAS \$257,100.

DARCOM MMT IMPLEMENTATION OPTICAL COATINGS

EFFORT NO: 6 7X 7180

TITLE: OPTICAL FILM ANALYSIS PROGRAM AND

COATING OF IR OPTICAL ELEMENTS.

COST: \$160,000

BENEFITS

- DA COMPUTER PROGRAM WAS DEVELOPED TO PREDICT THE PERFORMANCE PARAMETERS OF FILM THICKNESS TOLERANCES.
- ●THE PROGRAM IS USED TO DETERMINE THE MOST COST EFFECTIVE TOLERANCES BASED ON A RANDOMLY PERTURBATED SIMULATION OF THE FILMS PHYSICAL CHARACTERISTICS.
- THE RESULTS OF THIS PROJECT WERE IMPLE-MENTED BY 2 VENDORS (BENTON - CHERRY HILL, NJ AND OLCI - SANTA BARBARA, CA) AND AN ESTIMATE OF THE 10 YEAR SAVINGS IS \$1.65 MILLION.

WAVELENGTH (MICROMETERS)

TRANSMISSION

18

EXPERIMENTAL

THEORETICAL

DARCOM MMT IMPLEMENTATION FLOW-PROCESS ANALYSIS

N/C MACHINING OF BREECH FACE DETAIL

EFFORT NO: 6 73 7242

TITLE: GUN TUBE MANUFACTURE BY AUTOMATION

COST: \$195,000

BENEFITS

- THIS STUDY RESULTED IN SEVERAL IMPROVE-MENTS TO THE CANNON MANUFACTURING LINES.
- THE M68 & M198 PROCESSING WAS CONSOLI-DATED UNDER ONE ROOF.
- A 3 AXIS N/C MACHINE WAS INCORPORATED FOR THE BREECH FACE EXTRACTOR DETAIL.
- A TUBE LOADING ASSEMBLY WAS DESIGNED TO FACILITATE THIS OPERATION.
- TEN YEAR SAVINGS OF \$981,300 ARE ESTIMATED AS A RESULT OF IMPLEMENTING THESE RECOMMENDATIONS.

DARCOM MMT IMPLEMENTATION IMPROVED RIFLING

DUPLEX RIFLING MACHINE

PROJECT NO: 6 74 7402 & 6 76 7402

TITLE: DEVELOPMENT OF IMPROVED RIFLING PROCEDURES AND EQUIPMENT

COST: \$120,000 & \$46,000

BENEFITS

- THIS PROJECT PROVIDED THE CAPABILITY OF RIFLING TWO CANNON TUBES AT ONE TIME FROM A SINGLE MACHINE.
- THE NILES RIFLER HAD SUFFICIENT POWER FOR THE DUAL OPERATION AND WAS MODIFIED WITH DUAL TOOLING.
- THIS EQUIPMENT IS CURRENTLY BEING USED TO RIFLE 105MM, M68 TUBES. ANNUAL SAVINGS ARE ESTIMATED TO BE \$65,000.

OCT 81

PROOF TEST SIMULATIONS

PROJECT NO: 6 75 7555

TITLE: DYNAMIC PRESSURIZATION ACCEPTANCE

TESTING OF SLIDE BLOCK BREECH

MECHANISMS

COST: \$98,000

BENEFITS

THE ARMY NOW HAS THE CAPABILITY TO SIMULATE THE SLIDE BLOCK BREECH MECHANISM PRODUCTION ACCEPTANCE TESTING.

● THIS SIMULATION REPLACES THE MUCH MORE COSTLY LIVE FIRING AND REDUCES THE TIME REQUIRED TO INVESTIGATE MALFUNCTIONS SINCE THE SIMULATIONS ARE PERFORMED ON-SITE.

● LIVE FIRING REQUIREMENTS HAVE BEEN REDUCED BY 75%

AN ESTIMATED 10 YEAR SAVINGS OF \$565,000 WILL RESULT FROM THE IMPLEMENTATION OF THIS PROJECT.

DARCOM MMT IMPLEMENTATION ROTARY FORGING

PROJECT NO: 6 77 7588

TITLE: ROTATY FORGE INTEGRATED

PRODUCTION TECHNOLOGY

COST: \$260,000

BENEFITS

●AFTER INSTALLATION OF THE ROTARY FORGE CANNON LINE SEVERAL PROBLEMS WERE ENCOUNTERED. THIS PROJECT WAS INITIATED TO SOLVE THE QUENCH CRACKING, MELTING DURING INDUCTION HEATING AND MATERIAL PROBLEMS.

● AS RESULT OF THIS PROJECT THE EXPECTED SAVINGS OF \$600 PER M68 TUBE CAN BE ACHIEVED.

OCT 81

ROTARY FORGE

DARCOM MMT IMPLEMENTATION 8" M201 MACHINING

PREVIOUS MACHINING 8" M201 (BEFORE MM&T)

MACHINING OF 8" M201 (AFTER IMPLEMENTATION)

EFFORT NO: 6 7X 7733

TITLE: ELIMINATION OF EXTERIOR TUBE MACHIN-

ING PRIOR TO SWAGE AUTOFRETTAGE.

COST: \$47,000

BENEFITS

- A MEANS OF REDUCING THE AMOUNT OF FACILI-TATING MACHINING ON THE 8 INCH M201 TUBE WAS DEVELOPED. THIS MACHINING IS ONLY PERFORMED TO HOLD THE TUBE DURING THE SWAGING OPERATION. IT PERFORMS NO USEFUL PURPOSE ON A FINSHED TUBE.
- THE PROCESS WAS SELF IMPLEMENTING ON THE 8 INCH GUN TUBE. AT A PRODUCTION RATE OF 600 BARRELS PER YEAR THIS PROCESS IS RESULTING IN A \$24,000 YEARLY SAVINGS.

DRXIB-MT
DISTRIBUTION:

Defense Technical Information Center:

Document Processing Division, Attn: DDC+DDA+2, Mr. Richard Matthews (12 cys)

Department of Defense:

DIRSO, Attn: Mr. B. Bartsch (3 cys)

OUSDRE (R&AT), The Pentagon, Attn: Dr. Lloyd L. Lehn (2 cys)

Department of the Army:

HQDA, OASARDA, The Pentagon, Attn: Mr. William Takakoshi

HQDA, ODCSRDA, The Pentagon, Attn: DAMA*PPM*P, Mr. Rod Vawter

DCSRDA, Attn: DAMA +WSA, LTC Jay B. Bisbey

DCSRDA, Attn: DAMA + WSM + A, Mr. John Doyle

DCSRDA, Attn: DAMA+WSW, MAJ Gordon Winder

DCSRDA, Attn: DAMA+CSC+BU, COL Higgins

DCSRDA, Attn: DAMA+CSS+P, LTC L. R. Hawkins, LTC P. K. Linscott

DCSRDA, Attn: DAMA + CSM + P, Mr. John Mytryshyn

DCSRDA, Attn: DAMA+CSM+DA, COL Jack King

HQ DARCOM:

Cdr, DARCOM, Attn: DRCCG

Cdr, DARCOM, Attn: DRCDMD

Cdr, DARCOM, Attn: DRCDMR

Cdr, DARCOM, Attn: DRCPP

Cdr, DARCOM, Attn: DRCPP#I (3 cys)

Cdr, DARCOM, Attn: DRCDE

Cdr, DARCOM, Attn: DRCMT (20 cys)

Cdr, DARCOM, West Coast + TILO, Attn: Mr. C. Green

Technical Library, Attn: DRXAM*L

AVRADCOM:

PM, Advanced Attack Helicopter, Attn: DRCPM+AAH

PM, Blackhawk, Attn: DRCPM=BH

PM, CH*47 Mod. Program, Attn: DRCPM*CH47M

Cdr, Attn: DRDAV

Cdr, Attn: DRDAV+FGX, Mr. Dan Haugan

Technical Library, St. Louis, MO

Cdr, AMRDL, Attn: SAVDL+EU+TAS, Mr. L. Thomas Mazza

ARRADCOM:

PM, Cannon Artillery Weapons Systems, Attn: DRCPM*CAWS

PM, Division Air Defense (DIVAD) Gun, Attn: DRCPM+ADG

PM, Nuclear Munitions, Attn: DRCPM NUC

PM, Selected Ammunition, Attn: DRCPM=SA

Cdr, Attn: DRDAR

Cdr, Attn: DRDAR*PML, Mr. Donald J. Fischer (7 cys)

Cdr, Benet Wpns Lab, Attn: DRDAR*LCB*S, Dr. F. Heiser

Chemical Systems Lab, Technical Library, Attn: DRDAR#CLY#T

DRXIB-MT
DISTRIBUTION (Cont'd):

Aberdeen Proving Ground:

PM, Chemical Demilitarization & Restoration, Attn: DRCPM-DR PM, Smoke/Obscurants (SMOKE), Attn: DRCPM-SMK

Cdr, Attn: STEAP+MT-M, Mr. J. L. Sanders

ARRCOM:

PM, M110E2 Weapon System, Attn: DRSAR-HA

Cdr, Attn: DRSAR-CG

Cdr, Attn: DRSAR=IRB, Mr. August Zahatko (5 cys)

Cdr, Attn: DRSAR+IRW, Mr. Arne Madsen

Cdr, Attn: DRSAR-LEP, Mr. R. F. Tumasonis (6 cys)

Cdr, Attn: DRSAR-CPA-F, Mr. James Bailey Technical Library, Attn: DRSAR-LEP-L

AMMRC:

Dir, Attn: DRXMR-PT, Mr. Raymond Farrow Dir, Attn: DRXMR-EO, Dr. Morton Kliman Dir, Attn: DRXMR, DRXMR-M (3 cys ea) Technical Library, Watertown, MA

CECOM:

PM, Signal Intelligence/Electronic Warfare (SIGINT/EW), Attn: DRCPM-SIEW

Cdr, Attn: DRSEL

Cdr, Attn: DRSEL=LE=R, Mr. Martin Ides

PM, Army Tactical Communications Systems (ATACS), Attn: DRCPM-ATC

PM, Automatic Test Support Systems, Attn: DRCPM-ATSS

Cdr, Attn: DRSEL-POD+P+G, Messrs. Feddeler, Esposito, Resnic (1 cy ea)

RD&E Technical Documents Ctr, Ft. Monmouth, NJ

DESCOM:

Cdr, Attn: DRSDS

Cdr, Attn: DRSDS-PE, Mr. Jim Shindle

ERADCOM:

PM, FIREFINDER/REMBASS, Attn: DRCPM+FFR

PM, Stand-off Target Acquisition System, Attn: DRCPM-STA

Cdr, Attn: DRDEL

Cdr, Attn: DELET-R, Messrs. Key, Reich (1 cy ea)

Cdr, Attn: DRDEL-ED, Mr. Harold Garson

MERADCOM:

PM, Mobile Electric Power, Attn: DRCPM-MEP, Springfield, VA

Cdr, Attn: DRDME

Cdr, Attn: DRDME-UE, Mr. R. Goehner Technical Library, Ft. Belvoir, VA

DRXIB-MT DISTRIBUTION (Cont'd):

MTCOM

PM, General Support Rocket System, Attn: DRCOM-RS

PM, Ground Laser Designators, Attn: DRCOM-LD

PM, HAWK, Attn: DRCPM=HA

PM, Heliborne Laser Fire and Forget (HELLFIRE) Missile System, Attn: DRCPM+HE

PM, High Energy Laser System, Attn: DRCPM-HEL

PM, PATRIOT, Attn: DRCPM-MD

PM, 2.75 Rocket System, Attn: DRCPM+RK

PM, STINGER, Attn: DRCPM-MP

PM, TOW+DRAGON, Attn: DRCPM+DT PM, US ROLAND, Attn: DRCPM+ROL

PM, VIPER, Attn: DRCPM+VI

Cdr, Attn: DRSMI

Cdr, Attn: DRCMI-RST, Mr. Bob Austin, Mr. Richard Kotler

Magazine Room, Attn: RSIC

NLABS:

Cdr, Attn: DRDNA

Cdr, Attn: DRDNA-EZM, Mr. Frank Civilikas

Technical Library, Attn: DRXTM+TRL

TACOM:

PM, Armored Combat Vehicle Technology (ACVT), Attn: DRCPM=CVT

PM, Fighting Vehicle Armament, Attn: DRCPM-FVA

PM, Fighting Vehicle Systems, Attn: DRCPM-FVS-PP

PM, Heavy Equipment Transporter (HET), Attn: DRCPM-HT

PM, Improved TOW Vehicle, Attn: DRCPM#ITV

PM, XM+1 Tank System, Attn: DRCPM+GCM

Cdr, Attn: DRSTA

Cdr, Attn: DRSTA+EB, Ms. Vivian Buarkhalter

Cdr, Attn: DRSTA-RCKM, Mr. J. Chevalier

Technical Library, Warren. MI

TECOM:

Cdr, Attn: DRSTE

Cdr, Attn: DRSTE-AD-M, Mr. Grover Shelton

TSARCOM:

PM, COBRA, Attn: DRCPM+CO

Cdr, Attn: DRSTS

Cdr, Attn: DRSTS#PLE, Mr. Don G. Doll

DRXIB #MT DISTRIBUTION (Cont'd):

Arsenals:

- Cdr, Pine Bluff Arsenal (PBA), Attn: SARPB+CO
- Cdr, Rocky Mountain Arsenal (RMA), Attn: SARRM*IS
- Cdr, Rock Island Arsenal (RIA), Attn: SARRI#CO
- Cdr, RIA, Attn: SARRI#ENM, Mr. Joseph DiBenedetto
- Cdr, Watervliet Arsenal (WVA), Attn: SARWV *CO
- Cdr, WVA, Attn: SARWV PPI, Mr. G. Spencer
- Cdr, Benet Wpns Lab, Attn: DRDAR#LCB#TL, Tech Library

Munitions Production Base Modernization Agency:

Cdr, MPBMA, Attn: SARPM#PBM#DP, Mr. Joseph Taglairino

Army Ammunition Plants:

- Cdr, Crane AAA, Attn: SARCN
- Cdr, Hawthorne AAP, Attn: SARHW#CO
- Cdr, Holston AAP, Attn: SARHO4CO
- Cdr, Indiana AAP, Attn: SARIN*CO
- Cdr, Iowa AAP, Attn: SARIO CO
- Cdr, Kansas AAP, SARKA+CO
- Cdr, Lake City AAP, Attn: SARLC-CO
- Cdr, Lone Star AAP, Attn: SARLS#CO
- Cdr, Longhorn AAP, Attn: SARLO#CO
- Cdr, Louisiana AAP, Attn: SARLA CO
- Cdr, McAlester AAP, Attn: SARMC+FD
- Cdr, Milan AAP, Attn: SARMI+CO
- Cdr, Mississippi AAP, Attn: SARMS
- Cdr, Radford AAP, Attn: SARRA+CO
- Cdr, Riverbank AAP, Attn: SARRB=CO
- Cdr, Scranton AAP, Attn: SARSC=CO
- Cdr, Army Weapons Support Center, Crane, IN

Depots:

- Cdr, Anniston Army Depot, Attn: SDSAN=MD
- Cdr, Corpus Christi Army Depot, Attn: SDSCC#MPI
- Cdr, Letterkenny Army Depot, Attn: SDSLE+MM
- Cdr, New Cumberland Army Depot, Attn: SDSNC7ME
- Cdr, Red River Army Depot, Attn: SDSRR#MO
- Cdr, Sacramento Army Depot, Attn: SDSSA*MPE
- Cdr, Seneca Army Depot, Attn: SDSSE+OP
- Cdr, Sharpe Army Depot, Attn: SDSSH#R
- Cdr, Sierra Army Depot, Attn: SDSSI#EM
- Cdr, Tobyhanna Army Depot, Attn: SDSTO#M
- Cdr, Tooele Army Depot, Attn: SDSTE MAN

Army Organizations:

- Cdr, Army Logistics Management Ctr (ALMC), Attn: DRXMD
- Cdr, Army Research Office (ARO), Attn: DRXRO-AO
- Cdr, Army Ballistic Research Labs (BRL), Attn: DRDAR-BL
- Cdr, HDL, Attn: DELHD-PO, Mr. Julius Hoke
- Cdr, Ballistic Research Lab, Attn: DRXBR-TSB-S
- Cdr, Foreign Science and Technology Ctr (FSTC), Attn: DRXST-MT1,
 - Mr. James Wamsley
- Dir, Installations and Services Activity (I&SA), Attn: DRCIS-RI
- Dir, Army Management Engineering Training Activity (AMETA), Attn: DRXOM+SE,
 - Dr. Shallman (3 cys)
- Cdr, Night Vision Labs (NVL), Attn: DRSEL-NV-PA/AO
- Plastics Technical Evaluation Ctr., Attn: Mr. Harry Pebly
- Metcut Research Associates, Inc., Attn: Mr. John F. Kahles
- Dir, DARCOM Intern Training Center, Attn: DRXMC+ITC-E, Mr. Carter

Navy Organizations:

- Cdr, NAVMAT, Attn: Mr. J. W. McInnis, Code 064
- Cdr, NAVSEA, Attn: T. E. Draschil, Code SEA-05R23
- Cdr, NAVAIR, Attn: Mr. R. A. Retta, Code AIR5162C
- Cdr, NAVELEX, Attn: C. A. Rigdon, Code ELEX-504512
- Cdr, Naval Surface Wpns Ctr/White Oak Lab, Attn: Code E345, Mr. Chas. Mcfann
- Cdr, Naval Surface Wpns Ctr/Dahlgren Lab, Attn: Code CM#51
- Cdr, Naval Weapons Ctr, Attn: Code 36404
- Cdr, Naval Avionics Ctr, Attn: Mr. Larry Halbig, Code 216
- Cdr, Naval Weapons Ctr, Attn: Mr. C. Johnson, Code 3624
- Dir, NMCIRD, Bldg. 75-2, Naval Base

Air Force:

- Cdr, HQ, USAF/RDXI, The Pentagon, Attn: MAJ D. Mackintosh
- Cdr, AFSC/DLF, Andrew AFB
- Cdr, AFSC/PPD, Andrew AFB
- Cdr, AFSC, Attn: Mr. Joe Anderson, Andrew AFB
- Cdr, AFML/LT, WPAFB
- Cdr, AFML/LTE, /LTM, /LTN, WPAFB (1 cy ea)
- Cdr, AFWAL/MLSS, WPAFB
- Cdr, San Antonio Air Logistics Ctr, Kelly AFB, Attn: B. Boisvert, MMEI

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	AD-A107 170	NONE
I. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
MANUFACTURING METHODS AND TECHNOLOGY PROGRAM ACCOMPLISHMENTS		PERIODIC
		6. PERFORMING ORG. REPORT NUMBER
		NONE
7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(*)
Hal E. Weidner		N/A
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Industrial Base Engineering Activity		
ATTN: DRXIB-MT Rock Island, IL 61299		N/A
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
US Army Industrial Base Engineering Activity		July 1900 Oct. 1981
ATTN: DRXIB-MT		13. NUMBER OF PAGES
Rock Island, IL 61299	- 1 francisco -	N. CECURITY CLASS CAN
14. MONITORING AGENCY NAME & AODRESS(II different from Controlling Office) US Army Materiel Development & Readiness Command		15. SECURITY CLASS. (of this report)
ATTN: DRCMT, Office of Manufacturing Technology Alexandria, VA 22333		Non-classified
		15. DECLASSIFICATION/DOWNGRADING
		N/A
6. DISTRIBUTION STATEMENT (of this Report)		
	DISTRIBUTION S'	TATEMENT A
DISTRIBUTION UNLIMITED	Approved for pa	ablic release:
	Distribution	Unlimited
7. DISTRIBUTION STATEMENT (of the ebetract entered	in Block 20, it different tro	m Report)
	DISTRIBUTION S	STATEMENT A
DISTRIBUTION UNLIMITED Approved for publishment Distribution		applic release.
		· ·
8. SUPPLEMENTARY NOTES		
N/A		
9. KEY WORDS (Continue on reverse side if necessary a	nd identity by Prock number)	
Manufacturing Methods	Technology	Utilization
Manufacturing Technology MM&T Accomplishments		
Manufacturing Methods and Technolog		-
O. ABSTRACT (Continue on reverse side if necessary an		
This document contains pictorial illustrations and word descriptions of MM&T		
project accomplishments. Each page lists a project title, funding, results obtained, and illustrates the process, equipment, or end item supported.		
optained, and illustrates the prod	cess, equipment,	or end item supported.
· ·		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED