# In [1]:

```
import numpy as np
import pandas as pd

import os
print(os.listdir("./data/input"))

from keras import models

os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="1"
```

['sample\_submission.csv', 'train.csv', 'test\_images', 'test.csv', 'train\_images']

Using TensorFlow backend.

# Load train data:

## In [2]:

```
train_df = pd.read_csv('./data/input/train.csv')
test_df = pd.read_csv('./data/input/test.csv')
```

# In [3]:

```
print(train_df.shape)
print(test_df.shape)
train_df.head(5)
```

(3662, 2)
(1928, 1)

## Out[3]:

|   | id_code      | diagnosis |
|---|--------------|-----------|
| 0 | 000c1434d8d7 | 2         |
| 1 | 001639a390f0 | 4         |
| 2 | 0024cdab0c1e | 1         |
| 3 | 002c21358ce6 | 0         |
| 4 | 005b95c28852 | 0         |

### In [6]:

```
train_df['diagnosis'].value_counts()
train_df['diagnosis'].hist()
```

## Out[6]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f56ce0dbbe0>



# In [7]:

```
train_df['diagnosis'] = train_df['diagnosis'].astype('str')
train_df['id_code'] = train_df['id_code'].astype(str)+'.png'
```

## In [8]:

```
train_df['id_code'][0]
```

## Out[8]:

'000c1434d8d7.png'

### In [9]:

```
import imageio as im
```

# In [13]:

```
img = im.imread('./data/input/train_images/ff8a0b45c789.png')
print(img.shape)
```

(1226, 1844, 3)

## In [14]:

```
train_df['diagnosis'][0]
```

# Out[14]:

121

# In [15]:

```
from IPython.display import Image
```

# In [12]:

```
idx = 77
print(train_df['diagnosis'][idx])
Image('data/input/train_images/{}'.format(train_df['id_code'][idx]))
```

0

# Out[12]:



# In [13]:

```
import matplotlib.pyplot as plt
%matplotlib inline
import matplotlib.image as mpimg
import seaborn as sns
from keras.preprocessing import image
```

## In [14]:

```
idx = 2
print(train_df['diagnosis'][idx])
img_path = 'data/input/train_images/{}'.format(train_df['id_code'][idx])
img = image.load_img(img_path, target_size=(96, 96))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
img_tensor /= 255.
plt.imshow(img_tensor[0])
plt.axis("off")
plt.show()
print(img_tensor.shape)
```

1



(1, 96, 96, 3)

## In [15]:

```
import glob
images = []
for idx in range (1,21,1):
    print(idx, '-->', train_df['diagnosis'][idx])
    for img_path in glob.glob('data/input/train_images/{}'.format(train_df['id_code'][idx])):
        images.append(mpimg.imread(img_path))
plt.figure(figsize=(20,10))
columns = 5
idxx = 0
for i, image in enumerate(images):
    plt.subplot(len(images) / columns + 1, columns, i + 1)
    plt.imshow(image)
    #idxx += 1
    #plt.title('[{}]->{}'.format(i+1, train_df['diagnosis'][idxx]))
    #plt.show()
1 --> 4
```

```
2 --> 1

3 --> 0

4 --> 0

5 --> 4

6 --> 0

7 --> 2

8 --> 2

9 --> 1

10 --> 0

11 --> 2

12 --> 0

13 --> 3

14 --> 1
```











# **Function**

- to get image from respective directory(train images, test images)
- · to resize the large image

### In [16]:

```
from keras.preprocessing.image import ImageDataGenerator
datagen=ImageDataGenerator(
    rescale=1./255,
    validation_split=0.2)
batch\_size = 32
train_gen=datagen.flow_from_dataframe(
    dataframe=train_df,
    directory="./data/input/train_images",
    x_col="id_code",
   y_col="diagnosis",
   batch_size=batch_size,
    shuffle=True,
    class_mode="categorical",
    target_size=(96,96),
    subset='training')
test_gen=datagen.flow_from_dataframe(
    dataframe=train_df,
    directory="./data/input/train_images",
   x_col="id_code",
    y_col="diagnosis",
   batch_size=batch_size,
    shuffle=True,
    class_mode="categorical",
    target_size=(96,96),
    subset='validation')
```

Found 2930 validated image filenames belonging to 5 classes. Found 732 validated image filenames belonging to 5 classes.

- · Extract target column from training data
- · Convert target column to categorical

# In [17]:

```
y_train = train_df['diagnosis']
print(y_train)
from keras.utils import np_utils
y_train = np_utils.to_categorical(y_train)
print(y_train)
num_classes = y_train.shape[1]
print(num_classes)
```

```
Name: diagnosis, Length: 3662, dtype: object
[[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1.]
[0. 1. 0. 0. 0.]
...
[0. 0. 1. 0. 0.]
[1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]]
5
```

## **Traditional CNN:**

### In [18]:

```
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout, GaussianNoise, GaussianDropout
from keras.layers import Flatten, BatchNormalization
from keras.layers.convolutional import Conv2D, SeparableConv2D
from keras.constraints import maxnorm
from keras.layers.convolutional import MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
from keras import regularizers, optimizers
```

### In [19]:

```
def build model():
    # create model
    model = Sequential()
    #model.add(Reshape((x_train.shape[0],),))
    #model.add(GaussianDropout(0.3, input_shape=[96,96,3]))
    model.add(Conv2D(15, (3, 3), input_shape=[96,96,3], padding = 'Same', activation='relu'))
   model.add(GaussianDropout(0.3))
   model.add(Conv2D(30, (5, 5), activation='relu', padding = 'Same', kernel_constraint=maxnorm(
3)))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(30, (3, 3), activation='relu', padding = 'Same'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(60, (5, 5), activation='relu', padding = 'Same'))
   model.add(Conv2D(60, (7, 7), activation='relu', padding = 'Same'))
   model.add(Dropout(0.2))
   model.add(Flatten())
   model.add(Dense(256, activation='relu', kernel_regularizer=regularizers.12(0.01)))
   model.add(Dense(128, activation='relu'))
   model.add(Dense(128, activation='relu'))
    model.add(Dense(50, activation='relu'))
   model.add(Dense(num_classes, activation='softmax', kernel_regularizer=regularizers.12(0.0001
)
                   ,activity_regularizer=regularizers.l1(0.01)))
    # Compile model
   model.compile(loss='categorical_crossentropy', optimizer=optimizers.adam(lr=0.0001, amsgrad=
True), metrics=['accuracy'])
    return model
```

### In [20]:

model = build\_model()

WARNING: Logging before flag parsing goes to stderr.

W0718 11:45:57.468614 140216183326528 deprecation\_wrapper.py:119] From /home/hyejo o/.venv/py36tf/lib/python3.6/site-packages/keras/backend/tensorflow\_backend.py:74: The name tf.get\_default\_graph is deprecated. Please use tf.compat.v1.get\_default\_g raph instead.

W0718 11:45:57.482578 140216183326528 deprecation\_wrapper.py:119] From /home/hyejo o/.venv/py36tf/lib/python3.6/site-packages/keras/backend/tensorflow\_backend.py:51 7: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.

W0718 11:45:57.483909 140216183326528 deprecation\_wrapper.py:119] From /home/hyejo o/.venv/py36tf/lib/python3.6/site-packages/keras/backend/tensorflow\_backend.py:413 8: The name tf.random\_uniform is deprecated. Please use tf.random.uniform instead.

W0718 11:45:57.492040 140216183326528 deprecation\_wrapper.py:119] From /home/hyejo o/.venv/py36tf/lib/python3.6/site-packages/keras/backend/tensorflow\_backend.py:13 3: The name tf.placeholder\_with\_default is deprecated. Please use tf.compat.v1.pla ceholder\_with\_default instead.

W0718 11:45:57.495911 140216183326528 deprecation\_wrapper.py:119] From /home/hyejo o/.venv/py36tf/lib/python3.6/site-packages/keras/backend/tensorflow\_backend.py:411 5: The name tf.random\_normal is deprecated. Please use tf.random.normal instead.

W0718 11:45:57.507862 140216183326528 deprecation\_wrapper.py:119] From /home/hyejo o/.venv/py36tf/lib/python3.6/site-packages/keras/backend/tensorflow\_backend.py:397 6: The name tf.nn.max\_pool is deprecated. Please use tf.nn.max\_pool2d instead.

W0718 11:45:57.534038 140216183326528 deprecation.py:506] From /home/hyejoo/.venv/py36tf/lib/python3.6/site-packages/keras/backend/tensorflow\_backend.py:3445: calling dropout (from tensorflow.python.ops.nn\_ops) with keep\_prob is deprecated and will be removed in a future version.

Instructions for updating:

Please use `rate` instead of `keep\_prob`. Rate should be set to `rate = 1 - keep\_p rob`.

W0718 11:45:57.595854 140216183326528 deprecation\_wrapper.py:119] From /home/hyejo o/.venv/py36tf/lib/python3.6/site-packages/keras/optimizers.py:790: The name tf.tr ain.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.

# In [21]:

model.summary()

| Layer (type)                 | Output Shape       | Param # |
|------------------------------|--------------------|---------|
| conv2d_1 (Conv2D)            | (None, 96, 96, 15) | 420     |
| gaussian_dropout_1 (Gaussian | (None, 96, 96, 15) | 0       |
| conv2d_2 (Conv2D)            | (None, 96, 96, 30) | 11280   |
| max_pooling2d_1 (MaxPooling2 | (None, 48, 48, 30) | 0       |
| conv2d_3 (Conv2D)            | (None, 48, 48, 30) | 8130    |
| max_pooling2d_2 (MaxPooling2 | (None, 24, 24, 30) | 0       |
| conv2d_4 (Conv2D)            | (None, 24, 24, 60) | 45060   |
| conv2d_5 (Conv2D)            | (None, 24, 24, 60) | 176460  |
| dropout_1 (Dropout)          | (None, 24, 24, 60) | 0       |
| flatten_1 (Flatten)          | (None, 34560)      | 0       |
| dense_1 (Dense)              | (None, 256)        | 8847616 |
| dense_2 (Dense)              | (None, 128)        | 32896   |
| dense_3 (Dense)              | (None, 128)        | 16512   |
| dense_4 (Dense)              | (None, 50)         | 6450    |
| dense_5 (Dense)              | (None, 5)          | 255     |
|                              |                    |         |

Total params: 9,145,079 Trainable params: 9,145,079 Non-trainable params: 0

# In [22]:

3\*3\*3\*15+15

# Out[22]:

420

# In [23]:

5\*5\*15\*30+30

# Out[23]:

11280

| In [24]:     |  |
|--------------|--|
| 3*3*30*30+30 |  |
| Out[24]:     |  |
| 8130         |  |
| In [25]:     |  |
| 5*5*30*50+50 |  |
| Out[25]:     |  |
| 37550        |  |
| In [26]:     |  |
| 7*7*50*50+50 |  |
| Out[26]:     |  |
| 122550       |  |
| In [27]:     |  |
| 6050*256+256 |  |
| Out [27]:    |  |
| 1549056      |  |
| In [28]:     |  |
| 256*128+128  |  |
| Out [28]:    |  |
| 32896        |  |
| In [29]:     |  |
| 128*50+50    |  |
| Out[29]:     |  |
| 6450         |  |
| In [30]:     |  |
| 50*5+5       |  |
| Out[30]:     |  |
| 255          |  |

# To prevent overfitting,

- monitoring the loss on validation/test set for minimum value
- run epochs for 20 times when there is no decrease in val\_loss
- save the best model that has low validation loss

# In [31]:

```
from keras.utils import plot_model

plot_model(model, to_file='./model.png', show_shapes=True)
plot_model(model, to_file='./model.svg', show_shapes=True)
from lPython.display import Image
Image('./model.png')
```

### Out[31]:





### In [32]:

```
#from tensorflow.keras.callbacks import Callback
from keras.callbacks import Callback
from keras import backend as K
vloss = []
vacc = []
class NBatchLogger(Callback):
    def __init__(self, display):
       #self.step = 0
       self.display = display
       #self.metric_cache = {}
    #epoch 마다 learning rate 값 출력
    def on_epoch_end(self, epoch, logs=None):
        if self.display==1:
           print('aaaaa')
       global vloss
       global vacc
       vloss.append(logs['loss'])
       vacc.append(logs['acc'])
```

## In [33]:

```
nbatch_logging = NBatchLogger(display=1)
```

## In [34]:

```
from keras.callbacks import EarlyStopping, ModelCheckpoint
es= EarlyStopping(monitor='val_loss', mode ='min', verbose = 0, patience = 20)
mc = ModelCheckpoint('model.h5', monitor='val_loss', save_best_only = True, mode ='min', verbose = 0)
```

### In [35]:

W0718 11:45:58.113449 140216183326528 deprecation.py:323] From /home/hyejoo/.venv/py36tf/lib/python3.6/site-packages/tensorflow/python/ops/math\_grad.py:1250: add\_dispatch\_support.<locals>.wrapper (from tensorflow.python.ops.array\_ops) is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

### In [36]:

```
print("-- Evaluate --")
scores = model.evaluate_generator(train_gen, steps=5)
print("%s: %.2f%%" %(model.metrics_names[1], scores[1]*100))
-- Evaluate --
acc: 70.00%
```

### In [37]:

```
print("-- Evaluate --")
scores = model.evaluate_generator(test_gen, steps=5)
print("%s: %.2f%%" %(model.metrics_names[1], scores[1]*100))
```

```
-- Evaluate -- acc: 72.50%
```

#### In [38]:

```
from keras.models import load_model
model = load_model('model.h5')
```

# In [39]:

model.summary()

| Layer (type)                 | Output | Shape       | Param # |
|------------------------------|--------|-------------|---------|
| conv2d_1 (Conv2D)            | (None, | 96, 96, 15) | 420     |
| gaussian_dropout_1 (Gaussian | (None, | 96, 96, 15) | 0       |
| conv2d_2 (Conv2D)            | (None, | 96, 96, 30) | 11280   |
| max_pooling2d_1 (MaxPooling2 | (None, | 48, 48, 30) | 0       |
| conv2d_3 (Conv2D)            | (None, | 48, 48, 30) | 8130    |
| max_pooling2d_2 (MaxPooling2 | (None, | 24, 24, 30) | 0       |
| conv2d_4 (Conv2D)            | (None, | 24, 24, 60) | 45060   |
| conv2d_5 (Conv2D)            | (None, | 24, 24, 60) | 176460  |
| dropout_1 (Dropout)          | (None, | 24, 24, 60) | 0       |
| flatten_1 (Flatten)          | (None, | 34560)      | 0       |
| dense_1 (Dense)              | (None, | 256)        | 8847616 |
| dense_2 (Dense)              | (None, | 128)        | 32896   |
| dense_3 (Dense)              | (None, | 128)        | 16512   |
| dense_4 (Dense)              | (None, | 50)         | 6450    |
| dense_5 (Dense)              | (None, | 5)          | 255     |

Total params: 9,145,079 Trainable params: 9,145,079 Non-trainable params: 0

# In [40]:

```
plt.plot(vloss)
plt.title('Loss')
```

# Out[40]:

Text(0.5, 1.0, 'Loss')



# In [41]:

```
plt.plot(vacc)
plt.title('Accuracy (training)')
```

# Out[41]:

Text(0.5, 1.0, 'Accuracy (training)')



```
In [2]:
```

```
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(0, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
NameError
                                           Traceback (most recent call last)
<ipython-input-2-01f2839ea65d> in <module>
  ---> 1 acc = history.history['acc']
      2 val_acc = history.history['val_acc']
      3 loss = history.history['loss']
      4 val_loss = history.history['val_loss']
      5 \text{ epochs} = \text{range}(0, \text{len(acc)} + 1)
NameError: name 'history' is not defined
In [43]:
from sklearn.metrics import classification_report, confusion_matrix
#Confution Matrix and Classification Report
Y_pred = model.predict_generator(test_gen, 23)#//num_of_test_samples // batch_size+1
y_pred = np.argmax(Y_pred, axis=1)
In [44]:
print('Confusion Matrix')
A = confusion_matrix(test_gen.classes, v_pred)
print(A)
Confusion Matrix
[[166 60 111
                    0]
      13 30
 [ 34
                    01
                0
 [111
      38 72
                0
                    0]
 [ 20
       8 10
                0
                    0]
 [ 23
      14 22
                    011
In [45]:
print(y_pred.shape)
print(np.shape(test_gen.classes))
(732.)
```

(732.)

## In [46]:

print(y\_pred)

```
print(len(y_pred))
print(np.array(test_gen.classes))
2 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2 \ 1 \ 2 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 2 \ 1 \ 1 \ 0 \ 0 \ 0 \ 2 \ 0 \ 2 \ 0 \ 2 \ 0 \ 2 \ 0 \ 2 \ 0
0\; 2\; 2\; 2\; 1\; 0\; 1\; 0\; 0\; 0\; 1\; 0\; 2\; 0\; 1\; 0\; 1\; 0\; 2\; 0\; 0\; 0\; 0\; 1\; 0\; 1\; 0\; 2\; 1\; 2\; 1\; 1\; 1\; 0\; 0\; 2\; 2\; 2\; 2
2\; 2\; 2\; 2\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 2\; 0\; 2\; 1\; 1\; 0\; 0\; 0\; 0\; 2\; 0\; 2\; 2\; 1\; 2\; 1\; 0\; 2\; 0\; 1\; 2\; 2
  0\; 2\; 0\; 0\; 1\; 2\; 0\; 2\; 0\; 1\; 0\; 2\; 2\; 1\; 2\; 0\; 2\; 0\; 2\; 2\; 2\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 2\; 1\; 2\; 0\; 2\; 0
2\; 2\; 0\; 1\; 2\; 2\; 2\; 0\; 1\; 0\; 2\; 0\; 2\; 0\; 1\; 1\; 2\; 0\; 2\; 1\; 1\; 2\; 0\; 0\; 0\; 2\; 1\; 2\; 0\; 0\; 0\; 2\; 2\; 2\; 2\; 2\; 2\; 0\; 2
0\; 2\; 0\; 0\; 0\; 1\; 1\; 0\; 0\; 0\; 1\; 0\; 0\; 0\; 2\; 2\; 1\; 0\; 0\; 0\; 2\; 0\; 2\; 0\; 0\; 0\; 0\; 2\; 0\; 2\; 0\; 0\; 0\; 0\; 0\; 0\; 2\; 1
2\ 2\ 2\ 0\ 2\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 2\ 0\ 2\ 0\ 1\ 2\ 2\ 0\ 0\ 0\ 1\ 1\ 2\ 1\ 1\ 2\ 2\ 0\ 0\ 0\ 2\ 0
1\ 2\ 2\ 1\ 2\ 1\ 1\ 2\ 0\ 0\ 0\ 0\ 2\ 2\ 0\ 0\ 1\ 0\ 0\ 1\ 2\ 2\ 0\ 0\ 2\ 0\ 2\ 0\ 0\ 0\ 0\ 1\ 2\ 0\ 2\ 1
[2\ 4\ 1\ 0\ 0\ 4\ 0\ 2\ 2\ 1\ 0\ 2\ 0\ 3\ 1\ 0\ 2\ 0\ 0\ 2\ 2\ 0\ 1\ 2\ 0\ 2\ 0\ 0\ 0\ 0\ 0\ 0\ 4\ 2\ 4\ 2\ 0
0 4 0 4 2 2 4 2 1 2 4 0 3 1 2 2 2 2 0 3 0 2 1 0 2 0 0 0 0 2 2 0 0 0 1 1 0
3 0 2 0 2 0 1 3 1 0 2 0 0 3 4 2 2 0 0 0 0 1 0 3 1 0 2 2 0 0 0 4 4 0 0 1 2
4\;0\;0\;2\;0\;0\;0\;0\;0\;3\;0\;2\;2\;0\;0\;4\;0\;0\;1\;0\;2\;0\;2\;2\;2\;1\;0\;0\;1\;0\;0\;0\;2\;0\;2\;1\;4
0\; 2\; 0\; 2\; 0\; 0\; 0\; 0\; 0\; 0\; 4\; 2\; 0\; 0\; 2\; 2\; 2\; 3\; 2\; 0\; 3\; 0\; 0\; 0\; 0\; 4\; 0\; 2\; 0\; 1\; 0\; 0\; 0\; 2\; 0\; 0\; 0
```

# **Visualization**

### In [47]:

```
layer_outputs = [layer.output for layer in model.layers[:12]]
# Extracts the outputs of the top 12 layers
activation_model = models.Model(inputs=model.input, outputs=layer_outputs) # Creates a model tha
t will return these outputs, given the model input
```

0 0 0 2 0 0 1 0 2 0 0 0 3 0 1 0 0 0 0 2 1 2 2 0 3 0 1 2 0

### In [48]:

# 그냥 레이어 몇개인지 출력해봄

for i in range (0,15,1):

```
print(model.layers[i])
<keras.layers.convolutional.Conv2D object at 0x7f8597c89358>
<keras.layers.noise.GaussianDropout object at 0x7f8597c898d0>
<keras.layers.convolutional.Conv2D object at 0x7f8597c89940>
<keras.layers.pooling.MaxPooling2D object at 0x7f8597c89630>
<keras.layers.convolutional.Conv2D object at 0x7f8597c7ef60>
<keras.layers.pooling.MaxPooling2D object at 0x7f859974db70>
<keras.layers.convolutional.Conv2D object at 0x7f859974d710>
<keras.layers.convolutional.Conv2D object at 0x7f860c17f3c8>
<keras.layers.core.Dropout object at 0x7f8597c41ac8>
<keras.layers.core.Flatten object at 0x7f8597c41ba8>
<keras.layers.core.Dense object at 0x7f860e482fd0>
<keras.layers.core.Dense object at 0x7f860b07b198>
<keras.layers.core.Dense object at 0x7f8597c98da0>
<keras.layers.core.Dense object at 0x7f860bff09e8>
<keras.layers.core.Dense object at 0x7f85996fa518>
```

## In [49]:

```
activations = activation_model.predict(img_tensor)
# Returns a list of five Numpy arrays: one array per layer activation
```

## In [50]:

```
first_layer_activation = activations[0]
print(first_layer_activation.shape)
```

(1, 96, 96, 15)

### In [51]:

```
plt.matshow(first_layer_activation[0, :, :, 4], cmap='viridis')
```

### Out [51]:

<matplotlib.image.AxesImage at 0x7f85a5b10400>



### In [52]:

```
print(np.shape(model.layers))
model.layers[:12]
```

(15,)

### Out [52]:

```
[<keras.layers.convolutional.Conv2D at 0x7f8597c89358>, <keras.layers.noise.GaussianDropout at 0x7f8597c898d0>, <keras.layers.convolutional.Conv2D at 0x7f8597c89940>, <keras.layers.pooling.MaxPooling2D at 0x7f8597c89630>, <keras.layers.convolutional.Conv2D at 0x7f8597c7ef60>, <keras.layers.pooling.MaxPooling2D at 0x7f859974db70>, <keras.layers.convolutional.Conv2D at 0x7f859974db70>, <keras.layers.convolutional.Conv2D at 0x7f859974d710>, <keras.layers.convolutional.Conv2D at 0x7f860c17f3c8>, <keras.layers.core.Dropout at 0x7f8597c41ac8>, <keras.layers.core.Flatten at 0x7f8597c41ba8>, <keras.layers.core.Dense at 0x7f860e482fd0>, <keras.layers.core.Dense at 0x7f860b07b198>]
```

## In [53]:

```
layer_names = []
for layer in model.layers[:12]:
    layer_names.append(layer.name) # Names of the layers, so you can have them as part of your p
/ot
images_per_row = 15#6
```

## In [54]:

```
i = 0
for layer_name, layer_activation in zip(layer_names, activations): # Displays the feature maps
   n_features = layer_activation.shape[-1] # Number of features in the feature map
   size = layer_activation.shape[1] #The feature map has shape (1, size, size, n_features).
    n_cols = n_features // images_per_row # Tiles the activation channels in this matrix
    display_grid = np.zeros((size * n_cols, images_per_row * size))
    for col in range(n_cols): # Tiles each filter into a big horizontal grid
        for row in range(images_per_row):
            channel_image = layer_activation[0,
                                             :, :,
                                             col * images_per_row + row]
            channel_image -= channel_image.mean() # Post-processes the feature to make it visual
ly palatable
            channel_image /= channel_image.std()
            channel_image *= 64
            channel_image += 128
            channel_image = np.clip(channel_image, 0, 255).astype('uint8')
            display_grid[col * size : (col + 1) * size, # Displays the grid
                         row * size : (row + 1) * size] = channel_image
    scale = 1. / size
    figsize=(scale * display_grid.shape[1], scale * display_grid.shape[0])
    title ='#{} {} {} {} {} {} {} {} figSz{}'.format(i, layer_name, layer_name, size, display_grid
.shape, size, scale, figsize)
   print(title)
   plt.figure(figsize=figsize)
   plt.title(title)
   plt.grid(False)
   plt.imshow(display_grid, aspect='auto', cmap='viridis')
    #if i>3:
    # break
    i=i+1
```

#0 conv2d\_1 conv2d\_1 96 (96, 1440) 96 0.01041666666666666 FigSz(15.0, 1.0)

#1 gaussian\_dropout\_1 gaussian\_dropout\_1 96 (96, 1440) 96 0.0104166666666666666 Fig Sz(15.0, 1.0)

#2 conv2d\_2 conv2d\_2 96 (192, 1440) 96 0.0104166666666666 FigSz(15.0, 2.0)

#4 conv2d\_3 conv2d\_3 48 (96, 720) 48 0.0208333333333333 FigSz(15.0, 2.0)

#5 max\_pooling2d\_2 max\_pooling2d\_2 24 (48, 360) 24 0.04166666666666666666 FigSz(15. 0, 2.0)

#6 conv2d\_4 conv2d\_4 24 (96, 360) 24 0.04166666666666666 FigSz(15.0, 4.0)

#7 conv2d\_5 conv2d\_5 24 (96, 360) 24 0.0416666666666666 FigSz(15.0, 4.0)

#8 dropout\_1 dropout\_1 24 (96, 360) 24 0.0416666666666666 FigSz(15.0, 4.0)

/home/hyejoo/.venv/py36tf/lib/python3.6/site-packages/ipykernel\_launcher.py:13: Ru ntimeWarning: invalid value encountered in true\_divide del sys.path[0]

MemoryError Traceback (most recent call last)

<ipython-input-54-5a48849983e1> in <module>

4 size = layer\_activation.shape[1] #The feature map has shape (1, size, size, n\_features).

----> 6 display\_grid = np.zeros((size \* n\_cols, images\_per\_row \* size))

7 for col in range(n\_cols): # Tiles each filter into a big horizontal gr

for row in range(images\_per\_row):

### MemoryError:

id





In [ ]:

| In [ ]: |  |  |  |
|---------|--|--|--|
|         |  |  |  |