Potencia de un laser en función del grado de polarización

Josué Villasante

30 de septiembre de 2022

1. Procedimiento

El haz de luz producido por el laser era polarizado, y tuvo una potencia de 100mW y una longitud de onda de 405nm. Este fue reflejado 90 grados primero en un cubreobjetos y luego 90 grados en un espejo. El cubreobjetos permitió reducir la potencia del haz de luz a una aceptable por el medidor, pero produjo dos haces debido a que ambas superficies reflejan. Para eliminar uno de los haces de luz más adelante se utilizó un iris. Luego se colocó el polarizador y finalmente el medidor de potencia. El polarizador utilizado fue de tipo "wire grid".

Figura 1: Esquemática del experimento

Antes de iniciar las mediciones se colocó el angulo del polarizador en -90 grados y moviendo el directamente el polarizador (sin mover el angulo) fue colocado en una posición donde se observó la menor potencia. A partir de ahí se empezó a medir la potencia cada 5 grados hasta llegar a 90 grados.

2. Resultados

La máxima medición fue 2382.0 μ W, la menor 33.3 μ W, la desviación estándar 857.20 μ W y el promedio 1183.35 μ W. Tomando todos los puntos y su ángulo se obtuvo la siguiente gráfica.

Figura 2: Potencia según ángulo de polarización

3. Discusión

3.1. Clásica

Una fuente de luz polarizada esta dada por

$$\vec{E_p} = (\vec{E} \cdot \hat{u})\hat{u} = E_0 \cos(\theta)\hat{u}$$

donde θ es el angulo entre el campo eléctrico y el polarizador, y E_0 es la amplitud. Con esto podemos calcular la intensidad, la cual es proporcional a la potencia.

$$I = |\vec{E}_p|^2 = E_0^2 \cos^2(\theta)$$

Entonces las mediciones anteriores deberían se proporcionales a $\cos^2(\theta)$. Por lo tanto, comparamos los resultados con $2382\cos^2(\theta)$ y observamos que efectivamente la potencia realiza una figura muy cercana a $\cos^2(\theta)$.

img/plot_compare.pdf

Figura 3: Potencia según ángulo de polarización comparado con lo esperado

3.2. Cuántica

Para este caso tomamos en cuenta que inicialmente el estado del haz es

$$|H\rangle$$

y que luego de ser polarizado en función de θ es

$$|\psi\rangle = \cos(\theta)|H\rangle + \sin(\theta)|V\rangle$$

Entonces, la probabilidad de obtener un estado $|\psi\rangle$ luego de $|H\rangle$ debería proporcionar el mismo patrón que vimos anteriormente. La probabilidad está dada por

$$|\langle \psi | H \rangle|^2 = |\cos(\theta)\langle H | H \rangle + \sin(\theta)\langle V | H \rangle|^2$$
$$|\langle \psi | H \rangle|^2 = \cos^2(\theta)$$

de manera que igualmente concuerda con los resultados obtenidos.