

DRAWINGS

Graphical representation of the distinction between using a vent to equalize pressure and my vent system which prevents a specific pressure difference from occurring (arbitrary values and units used)

Fig 1a

Use of vents to equalize pressure

Fig1b

Use of vents to limit the pressure difference across a roof

Fig 2

Fig 3

Forces Diagram

The weight of the walls and concrete pad can add to the effective roof weight depending upon the tensile strength of the connections (e.g. nails, screws, brackets, hurricane clips, roof beams)

Fig 4a

1) Vent design (A)

Fig 4b

Cross-sectional view

Plug in closed position

Fig 4c

Fig 4d

Details of plug shaft and brace mechanism

Fig 4e

View from above

Fig 4f

Fig 5

Fig 6a

Fig 6b

Fig 7

Demonstration Graph (straight line example) of Exterior and Interior Pressure Changes

(exterior pressure is from worst case scenario data)

Fig 8

Fig 9

Fig 10a

Fig10b

Roof venting must be calculated to evacuate the volume of the entire building

Fig 10c

Ceiling venting surface area must be calculated to evacuate the volume beneath it.

Fig 10d

Fig 11

Fig 12

Fig 13

