## **Approximation**

#### What for?

— Dealing with HARD problems

#### Getting around NP-completeness

- $rightharpoonup If N is small, even <math>O(2^N)$  is acceptable
- Solve some important special cases in polynomial time
- Find *near-optimal* solutions in polynomial time
  - approximation algorithm

#### **Approximation Ratio**

**[** Definition **]** An algorithm has an approximation ratio of  $\rho(n)$  if, for any input of size n, the cost C of the solution produced by the algorithm is within a factor of  $\rho(n)$  of the cost  $C^*$  of an optimal solution:

 $\max\left(\frac{C}{C^*}, \frac{C^*}{C}\right) \leq \rho(n)$ 

If an algorithm achieves an approximation ratio of  $\rho$  (n), we call it a  $\rho$  (n)-approximation algorithm.

**Let a be a continuous of a continuous an approximation scheme** for an optimization problem is an approximation algorithm that takes as input not only an instance of the problem, but also a value  $\varepsilon > 0$  such that for any fixed  $\varepsilon$ , the scheme is a  $(1+\varepsilon)$ -approximation algorithm.

We say that an approximation scheme is a *polynomial-time* approximation scheme (*PTAS*) if for any fixed  $\varepsilon > 0$ , the scheme runs in time polynomial in the size n of its input instance.

$$O(n^{2/\varepsilon})$$
  $O((1/\varepsilon)^2 n^3)$ 

fully polynomial-time approximation scheme (FPTAS)

#### **Approximate Bin Packing**

Given N items of sizes  $S_1, S_2, ..., S_N$ , such that  $0 < S_i \le 1$  for all  $1 \le i \le N$ . Pack these items in the fewest number of bins, each of which has unit capacity.

[Example] 
$$N = 7$$
;  $S_i = 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8$ 



**An Optimal Packing** 

Next Fit

```
void NextFit ()
{ read item1;
  while ( read item2 ) {
    if ( item2 can be packed in the same bin as item1 )
        place item2 in the bin;
    else
        create a new bin for item2;
    item1 = item2;
    } /* end-while */
}
```

**Theorem** Let M be the optimal number of bins required to pack a list I of items. Then *next fit* never uses more than 2M-1 bins. There exist sequences such that *next fit* uses 2M-1 bins.

#### A simple proof for Next Fit:

If Next Fit generates 2M (or 2M+1) bins, then the optimal solution must generate at least M+1 bins.

Let  $S(B_i)$  be the size of the *i*th bin. Then we must have:

The optimal solution needs at least \[ \text{total size of all the items / 1} \] bins

First Fit

```
void FirstFit ()
{ while ( read item ) {
    scan for the first bin that is large enough for item;
    if ( found )
        place item in that bin;
    else
        create a new bin for item;
} /* end-while */
}
Can be implemented
in O(N log N)
```

**Theorem** Let M be the optimal number of bins required to pack a list I of items. Then first fit never uses more than 17M / 10 bins. There exist sequences such that first fit uses 17(M-1) / 10 bins.

Best Fit

Place a new item in the tightest spot among all bins.  $T = O(N \log N)$  and bin no.  $\leq 1.7M$ 

[Example] 
$$S_i = 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8$$

Next Fit First Fit

**Best Fit** 

**Discussion 14:** Please show the results.

[Example] 
$$S_i = 1/7 + \varepsilon$$
,  $1/7 + \varepsilon$ ,  $1/3 + \varepsilon$ ,  $1/2 + \varepsilon$ , where  $\varepsilon = 0.001$ .

The optimal solution requires 6 bins.

However, all the three on-line algorithms require 10 bins.

#### On-line Algorithms

Place an item before processing the next one, and can NOT change decision.

[Example] 
$$S_i = 0.4, 0.4, 0.6, 0.6$$



You never know
when the input might end.
No on-line algorithm
can always give
an optimal solution.

**Theorem** There are inputs that force any on-line bin-packing algorithm to use at least 5/3 the optimal number of bins.



#### Off-line Algorithms

View the entire item list before producing an answer.

**Trouble-maker:** The large items

**Solution:** Sort the items into non-increasing sequence of sizes. Then apply first (or best) fit - first (or best) fit decreasing.

[Example] 
$$S_i = 0.8, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1$$



**Theorem** Let M be the optimal number of bins required to pack a list I of items. Then first fit decreasing never uses more than 11M/9 + 6/9 bins. There exist sequences such that first fit decreasing uses 11M/9 + 6/9 bins.

Simple greedy heuristics can give good results.

#### The Knapsack Problem — fractional version

A knapsack with a capacity M is to be packed. Given N items. Each item i has a weight  $w_i$  and a profit  $p_i$ . If  $x_i$  is the percentage of the item i being packed, then the packed profit will be  $p_i x_i$ .

An optimal packing is a feasible one with maximum profit. That is, we are supposed to find the values of  $x_i$  such that  $\sum_{i=1}^{n} p_i x_i$  obtains its maximum under the constrains

$$\sum_{i=1}^{n} w_i x_i \le M \quad \text{and} \quad x_i \in [0,1] \quad \text{for} \quad 1 \le i \le n$$

- Q: What must we do in each stage?
- A: Pack one item into the knapsack.
- Q: On which criterion shall we be greedy?
- 1 maximum profit 2 minimum weight
- **3** maximum profit density  $p_i / w_i$

## n = 3, M = 20, (p1, p2, p3) = (25, 24, 15) (w1, w2, w3) = (18, 15, 10)Solution is...?

(0, 1, 1/2)

 $\mathbf{P} = \mathbf{31.5}$ 

## The Knapsack Problem — 0-1 version

NP-hard r 0

```
Example:

n = 5, M = 11,

(p_1, p_2, p_3, p_4, p_5) = (1, 6, 18, 22, 28)

(w_1, w_2, w_3, w_4, w_5) = (1, 2, 5, 6, 7) The greedy solution is

Solution is...? (0, 0, 1, 1, 0)

P = 40 (1, 1, 0, 0, 1)

P = 35
```

What if we are greedy on taking the maximum profit *or* profit density?

The approximation ratio is 2.

**Proof:** 
$$p_{max} \le P_{opt} \le P_{frac}$$
 
$$p_{max} \le P_{greedy} \longrightarrow P_{opt} / P_{greedy} \le 1 + p_{max} / P_{greedy} \le 2$$
 
$$P_{opt} \le P_{greedy} + p_{max}$$

#### **A Dynamic Programming Solution**

 $W_{i,p}$  = the minimum weight of a collection from  $\{1, ..., i\}$  with total profit being exactly p

① take 
$$i: W_{i,p} = w_i + W_{i-1,p-p_i}$$

② skip 
$$i: W_{i,p} = W_{i-1,p}$$

③ impossible to get  $p: W_{i,p} = \infty$ 

$$W_{i,p} = \begin{cases} \infty & i = 0 \\ W_{i-1,p} & p_i > p \\ \min\{W_{i-1,p}, w_i + W_{i-1,p-p_i}\} & otherwise \end{cases}$$

$$i = 1, ..., n; p = 1, ..., n p_{max} \longrightarrow O(n^2 p_{max})$$

## $^{\circ}$ What if $p_{max}$ is LARGE?

| Item | Profit     | Weight | Item | Profit | Weight |
|------|------------|--------|------|--------|--------|
| 1    | 134,221    | 1      | 1    | 2      | 1      |
| 2    | 656,342    | 2      | 2    | 7      | 2      |
| 3    | 1,810,013  | 5      | 3    | 19     | 5      |
| 4    | 22,217,800 | 6      | 4    | 223    | 6      |
| 5    | 28,343,199 | 7      | 5    | 284    | 7      |
|      | M = 11     |        |      | M = 11 |        |

d Round all profit values up to lie in smaller range!

$$(1+\varepsilon) P_{alg} \le P$$
 for any feasible solution P

precision parameter

#### The K-center Problem



Input: Set of n sites  $s_1, ..., s_n$ 

Center selection problem: Select K centers C so that the maximum distance from a site to the nearest center is minimized.

#### What is a distance?

- $\checkmark$  dist(x, x) = 0 (identity)
- $\checkmark$  dist(x, y) = dist(y, x) (symmetry)
- $\checkmark$  dist $(x, y) \le$  dist(x, z) + dist(z, y) (triangle inequality)

$$dist(s_i, C) = min_{c \in C} dist(s_i, c)$$
  
= distance from  $s_i$  to the closest center

 $r(C) = \max_{i} \operatorname{dist}(s_{i}, C) = \operatorname{smallest} \operatorname{covering} \operatorname{radius}$ 



Find a set of centers C that minimizes r(C), subject to |C| = K.

Number of candidate centers = 00

## A Greedy Solution

Put the first center at the *best possible* location for a single center, and then keep adding centers so as to *reduce the covering radius* each time by as much as possible.



TA Greedy Solution — try again ...

What if we know that  $r(C^*) \le r$  where  $C^*$  is the optimal solution set?



## **Discussion 15:**

Take s to be the center, how can we select r so that s can cover all the sites that are covered by  $c^*$ ?

```
Centers Greedy-2r ( Sites S[ ], int n, int K, double r )
{ Sites S'[ ] = S[ ]; /* S' is the set of the remaining sites */
    Centers C[ ] = Ø;
    while ( S'[ ] != Ø ) {
        Select any s from S' and add it to C;
        Delete all s' from S' that are at dist(s', s) ≤ 2r;
    } /* end-while */
    if ( |C| ≤ K ) return C;
    else ERROR(No set of K centers with covering radius at most r);
}
```

**Theorem 1** Suppose the algorithm selects more than K centers. Then for any set  $C^*$  of size at most K, the covering radius is  $r(C^*) > r$ .

## Do we really know $r(C^*)$ ?



Binary search for r



$$0 < r \le r_{max}$$

$$0 < r \le r_{max}$$
 Guess:  $r = (0 + r_{max}) / 2$ 

Yes: 
$$K$$
 centers found with  $2r$ 

or

No:  $r$  is too small

$$r_0 < r \le r_1$$
  $r = (r_0 + r_1) / 2$ 



Solution radius =  $2r_1$  — 2-approximation



#### A smarter solution — be far away

```
Centers Greedy-Kcenter ( Sites S[ ], int n, int K )
{ Centers C[ ] = ∅;
   Select any s from S and add it to C;
   while ( |C| < K ) {
        Select s from S with maximum dist(s, C);
        Add s it to C;
        } /* end-while */
        return C;
}
```

**Theorem 1** The algorithm returns a set C of K centers such that  $r(C) \le 2r(C^*)$  where  $C^*$  is an optimal set of K centers.

—— 2-approximation

**☞** Is there a hope of a 3/2-approximation? Or 4/3?

**Theorem 1** Unless P = NP, there is **no**  $\rho$ -approximation for center-selection problem for any  $\rho < 2$ .

Sketch of the proof: By contradiction.

If we can obtain a  $(2-\varepsilon)$ -approximation in polynomial time, then we can solve DOMINATING-SET (which is NP-complete) in polynomial time.

Dominating set problem has a solution of size K iff there exists K centers  $C^*$  with  $r(C^*) = 1$ .

Then a  $(2-\varepsilon)$ -approximation must give the optimal solution since all the distances involved are integers.

#### Three aspects to be considered:

A: Optimality -- quality of a solution

**B:** Efficiency -- cost of computations

C: All instances

#### Researchers are working on

A+C: Exact algorithms for all instances

A+B: Exact and fast algorithms for special cases

**B+C:** Approximation algorithms

Even if P=NP, still we cannot guarantee A+B+C.



# **Research Project 5 Texture Packing (26)**

Texture Packing is to pack multiple rectangle shaped textures into one large texture. The resulting texture must have a given width and a minimum height.

You are to design and analyze an approximation algorithm that runs in polynomial time.

Detailed requirements can be downloaded from <a href="https://pintia.cn/">https://pintia.cn/</a>

#### Reference:

Data Structure and Algorithm Analysis in C (2<sup>nd</sup> Edition): Ch.10, p.359-366; M.A.Weiss 著、陈越改编,人民邮件 出版社, 2005

Introduction to Algorithms, 3rd Edition: Ch.35, p.1106 - 1140; Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. The MIT Press. 2009