1 Quaternions

For this section, consider the group (\mathcal{Q}_8, \times) , where \mathcal{Q}_8 is the set of quaternion elements. That is, $\mathcal{Q}_8 := \{-1, 1, -i, i, -j, j, -k, k\}$, and multiplication has the following additional rules:

$$i^2 = j^2 = k^2 = -1$$
 $ij = k$

1.1 *ji*

What is ji? Remember, multiplication is not commutative for quaternions, so $ji \neq k!$

1.2 Multiplication table

Draw out the multiplication table for this group:

×	-1	1	-i	i	-j	j	-k	k
-1								
1								
-i								
\overline{i}								
-j								
\overline{j}								
-k								
\overline{k}								

2 Subgroups of $(\mathbb{Z}, +)$

$2.1 \quad 2\mathbb{Z}$

We will say that the subset $2\mathbb{Z} \subset \mathbb{Z}$, where $2\mathbb{Z} := \{\dots, -6, -4, -2, 0, 2, 4, 6, \dots\}$. That is, $2\mathbb{Z}$ is the set of even integers.

We will call $(2\mathbb{Z}, +)$ a subgroup of $(\mathbb{Z}, +)$ is $(2\mathbb{Z}, +)$ is also a group. Is it a group? Show that it either does or doesn't satisfy all four group axioms.

2.2 $\{-4, -2, 0, 2, 4\}$

Is $(\{-4, -2, 0, 2, 4\}, +)$ a subgroup of $(\mathbb{Z}, +)$? Show that it either does or doesn't satisfy all four group axioms.

3 Order of a group

Similar to the cardinality of a set S, the order of a group (G, \cdot) is defined as the number of elements in G. We write this as |G|.

3.1
$$(\mathbb{Z}_{12},+)$$

For the group $(\mathbb{Z}_{12}, +)$, what is $|\mathbb{Z}_{12}|$?

4 Equivalent groups

Fill out the follow multiplication tables.

While they are called multiplication tables, we still use the group's operation, which may or may not be multiplication.

4.1
$$(\mathbb{Z}_{6}^{*}, \times)$$

Remember, $\mathbb{Z}_6^* \coloneqq \{1, 5\}.$

×	1	5
1		
5		

4.2
$$(\mathbb{Z}_2, +)$$

Remember, $\mathbb{Z}_2 := \{0, 1\}.$

+	0	1
0		
1		

4.3
$$(\{a,b\},\cdot)$$

You may have noticed a pattern by now for groups with an order of 2. Without knowing the operation or the elements, fill in the following:

•	a	b
a		
\overline{b}		

Remember that a group must have an identity. Based on how you filled the above tables, is a or b the identity element in this final question?