Desenho e Construção de uma Estação Hidrográfica Telemétrica (Autónoma e Remota em Tempo Real)

Autor: Kishan Nareshpal Jadav

Ano: 2018

Supervisor: Eng. Gorka Solana Arteche

Índice

1.	RESUMO.	3
2.	INTRODUÇÃO	4
3.	OBJECTIVOS	6
	3.1. Objectivo Geral.	6
	3.2. Objectivos Específicos.	6
4.	MATERIAS E MÉTODOS A UTILIZAR	6
	4.1. Materiais utilizados.	6
	4.2. Montagem.	7
	4.3. Configuração/Desenvolvimento do Software	8
	4.4. Calibração dos sensores.	8
	4.5. Rede Telemétrica	8
5.	RELEVÂNCIA DO PROJECTO.	8
6.	SUSTENTABILIDADE	9
7.	CRONOGRAMA DE ACTIVIDADES	9
8.	ORÇAMENTO	9
a	REVISÃO BIBLIOGRÁFICA	11

1. RESUMO

Neste trabalho é relatada a experimentação do uso de ferramentas de Arduino, para o desenvolvimento dum projecto de medidor de nível de água dos rios e criar sistemas de monitoramento autónomo com a transmissão da informação colhida a tempo real, com a utilização do painel solar como a fonte de energia pois a instalação será feita em lugares remotos ou de difícil acesso, não obrigando assim enormes investimentos em linhas de transmissão. Para o desenvolvimento deste projeto foi realizado um processo de introdução das linguagens de programação adaptáveis a ferramentas de Arduino.

Foram realizadas actividades de ensaio, que visaram observar a influência do uso do Arduino e sensores acoplados em conceitos e práticas de programação.

A arquitetura do sistema é de baixo custo e de baixa potência. O baixo custo permite a tecnologia a ser amplamente utilizados no controle e aplicações de monitoramento. A baixa utilização de energia permite uma vida mais longa, com baterias menores.

O sistema (baseado no microcontrolador Arduino) apresenta como característica o baixo tempo de resposta, baixo custo e consumo de energia, o que torna ideal para a utilização de sensores, com a possibilidade de integração com um gateway a uma rede externa para o envio dos dados como TCP/IP, GPRS ou outros circuitos, no protótipo utilizado, implementa um sensor ultrassônico controlado por microcontrolador, transmitindo os dados através de um nó remoto

O sistema será composto de um microcontrolador com um módulo GPRS para o envio de dados utilizando a cobertura de telefonia móvel e um servidor para o armazenamento dos dados e visualização dos mesmo mediante uma interface gráfica a qual accede por um navegador qualquer. Um sensor ultrassônico fará a medição da altura do nível d'água. O arduino processará toda a informação e envia a mesma para o servidor. indicará para o usuário.

Este trabalho tem por objectivo apresentar uma aplicação da placa Arduino UNO realizando a tarefa de controle e monitoramento de nível de líquido, através dum sistema de hardware livre denominada (Open-Source Hardware).

Apesar dos problemas, no final da experimentação foi percebido um bom desempenho. Desta forma chega a concluir que utilização do arduino é um elemento motivador e importante.

Palavras-Chave: Open-Source Hardware; Sensores; Arduino; Internet das coisas; GPRS; TCP/IP; Microcontrolador.

2. INTRODUÇÃO

Devido ao grande número de cheias e inundações que ocorrem ao nível das zonas baixas, afectando a vida das populações e as infraestruturas adjacentes surge à necessidade de monitoramento dos rios como medida preventiva e de alerta antecipada contra a mesma, portanto este trabalho tem como proposta a utilização de meios eletrônicos para medição do nível de rios substituindo meios tradicionais de medição, utilizando a integração de rede de sensores dinâmicos com a tecnologia sem fio através da utilização das ferramentas de programação do Arduino.

O Arduino é uma pequena placa de circuito impresso, sendo indicado para criação de protótipos de eletrônica, baseada nas filosofias de software e hardware livres (https://www.arduino.cc/en/Guide/Introduction). Ele pode interagir como ambiente recebendo em suas entradas sinais dos mais variados tipos de sensores e pode afetar sua vizinhança por meio de acionamento de luzes, motores e outros actuadores.

Segundo a Open-source Hardware Association (1): "Open Source Hardware (OSHW) é um termo para artefatos tangíveis-máquinas, dispositivos ou outros objetos físicos — cujo projeto foi disponibilizado ao público de modo que qualquer um pode construir, modificar, distribuir e utilizar estes artefatos".

Através de uma rede de sensores espalhados por diversas áreas, acopladas ao Arduino, irão monitorar os níveis da água no rio, informando e alertando sobre eventual mudança de nível.

Actualmente, as estações hidrográficas da ARA Sul não dispõem de sensores de nível ou um sistema automatizado, a leitura realiza se com réguas milimétricas que depende da ação humana o que pode tornar as informações imprecisas e com atrasos na partilha da informação, mas através da montagem do controlador de nível proposto é possível aumentar através da aplicação duma rede de sensores que podem auxiliar no monitoramento os níveis de rio informando também a situação de forma rápida e em tempo real.

A utilização de componentes electrónicos Open-source Hardware na elaboração de equipamento científico é amplamente suportada e documentada pela comunidade científica, mencionando a modo de exemplo pelos D. Fisher and P. Gould (2), Gagan Gupta, Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam et al (3), Pearce, JM (4), Cindy Harnett (5).

No link¹, pode-se apreciar vários projectos de hardware de código aberto, incluindo sistemas e componentes de computadores, câmeras, rádio, telefonia, educação científica, máquinas e ferramentas, robótica, energia renovável, automação residencial, médica e de biotecnologia, automotiva, prototipagem, equipamentos de teste e instrumentos musicais.

Este projecto vai ser desenvolvido em colaboração com o núcleo de pesquisa e extensão Open Source Science Hardware (OSSHW) e com a Repartição das TICs da UP Maxixe e da ARA Sul - Maxixe.

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/List_of_open-source_heal hardware.html - Lista de vários projetos Open-source Harware.

3. OBJECTIVOS

3.1. Objectivo Geral

 Dimensionar um modelo de melhoramento da qualidade de monitoramento e eficiência nas capacidades de gestão e previsão da subida de nível de água, a partir do sistema de hardware e software aberto denominado *Open Source Hardware & Software*.

3.2. Objectivos Específicos

- Analisar os meios e dispositivos electrónicos para o controlo do nível de água
- Recolher dados e implementar as medidas a serem desenvolvidas.
- Preparar e montar os seus componentes relacionados ao sistema em análise.

4. MATERIAS E MÉTODOS A UTILIZAR

4.1. Materiais utilizados

Arduino, é uma plataforma de prototipagem eletrônica open-source baseada em hardware e software flexíveis e fáceis de usar.

Para atender a necessidade do projecto foi utilizado a placa Arduino UNO com microcontrolador baseado no ATmega328P pelos seguintes motivos, dimensões reduzidas, alta performance, possui portas digitais e analógicas de entrada/saída, compatibilidade com vários módulos GSM/GPRS encontrados no mercado, conector USB para conexão com o PC, conector JACK n.º 4 para alimentação externa, bibliotecas para a elaboração do programa e preço baixo.

Tabela 1: Materiais utilizados na montagem do protótipo

DESCRIÇÃO DOS MATERIAIS DC Power Connectors Pwr Plug Sealed IP68 2.5mm 1CKG Black Tip DC Power Connectors Power Jack Seal Cap USB Connectors Epoxy Free IP67 USB ST Type A Single Development Boards & Kits - AVR ARDUINO UNO REV 3 Sensor Ultrassom a distância MAXBOTIX Sensor de Temperatura + Humidade DHT11 Sensor de pressão atmosférica Adafruit FONA 808 Shield - Mini Cellular GSM + GPS Bateria LI 3.7V

Bateria 6V
Caixa estanque IP67
Γubo plastico VD
Painel solar
Cartão SIM
Ferro estanhador
Cola quente
Cabo eléctrico

4.2. Montagem

Os métodos a se utilizar neste projeto abrangem em primeiro lugar, a aquisição de todos os equipamentos necessários, e depois, a montagem dos mesmos.

A montagem será feita através de conexões elétricas dos sensores DHT11 (de temperatura e humidade), MAXBOTIX (de ultrassom e de proximidade), OCTOPUS (de pressão atmosférica) com o Arduino. Encaixa-se em seguida o Shield da FONA (de GPS+GPRS) com o cartão SIM inserido, ligado a uma bateria de 6 Volts, para fazer o envio dos dados através da conexão com a rede HTTP. Todas as conexões dos circuitos são protegidas dentro de uma caixa com estanquidade avaliada a IP67 (proteção contra poeira e contra os efeitos de imersão na água à uma profundidade de 15cm e 1m) colada com = de duas caras. Os sensores ficarão do lado de fora com conexões seladas para dentro da caixa. O painel solar (que também ficará do lado de fora da caixa estanque com conexões para dentro seladas) vai ligado ao módulo regulador onde encontram-se duas portas de saída, uma para a alimentação da bateria e outra ao Arduino.

Figura 1: Esquema (Fonte: HARNETT, 2011).

4.3. Configuração/Desenvolvimento do Software:

São feitos testes de verificação com os circuitos dos sensores montados em uma protoboard e o arduino programado com softwares de testes disponibilizados pelas bibliotecas abertas de cada sensor. O código é escrito na linguagem C++ e compilado pelo editor integrado de desenvolvimento (IDE) do arduino para o mesmo.

4.4. Calibração dos sensores:

Uma vez elaborada o protótipo, e antes da sua conexão com o servidor, calibra-se os sensores para garantir a máxima precisão e fiabilidade dos dados enviados por cada sensor. Para o sensor de distância realizaram-se medidas aleatórias com ela e também com uma régua milimetrada do lado, conferindo as duas leituras em simultâneo. Para o sensor de temperatura colocou-se também um termómetro em paralelo e observou-se os resultados.

4.5. Rede Telemétrica:

O Sector das TICs da Universidade Pedagógica da Maxixe configurará um servidor conectado à internet, com um software Open Source instalado no servidor baseado no conceito da Internet das Coisas (ou IoT, *Internet of Things*), que permite:

- Receber os dados enviados desde a estação hidrográfica telemétrica;
- Armazenar os dados colhidos;
- Proporcionar uma Interface Gráfica (GUI) para que os usuários responsáveis no monitoramento do nível do rio possam gerir de melhor forma as informações.

O protótipo vai ser colocado em uma das estações hidrográficas que na actualidade está a ser gerida pela ARA Sul para o monitoramento das bacias hidrográficas dos rios Save, Nhanombe e Mutamba

Um factor para garantir o correcto funcionamento de todo o sistema, é a necessidade de ter uma boa cobertura de telefonia móvel nestes locais; de preferência a rede GPRS, dado que o envio dos dados da estação até ao servidor realiza-se a partir do mesmo.

5. RELEVÂNCIA DO PROJECTO

A implementação deste projecto mostra-se de extrema importância pois irá criar um mecanismo de monitoramento remoto das informações e dados fornecidos na estação telemétrica, também engloba as seguintes intervenções/ áreas

- Implantação de estações hidrométricas convencionais e telemétricas, com recursos a mecanismos de baixo custo e de fácil utilização.
- Desenvolvimento de banco de dados hidrométricos.
- Gestão e envio das informações hidrométricas.
- Gestão de serviços de hidrometria e serviços específicos de hidrometria: medição de vazão; topobatimetria de reservatórios e canais; verificação de curvas de descargas.

6. SUSTENTABILIDADE

Todos os equipamentos, componentes eletrônicos e softwares utilizados estão baseados no conceito de Open Source, ou seja, utilizam *standards* ou protocolos abertos, fáceis de fazer a manutenção pelo que a qualquer momento pode haver uma troca dos componentes por um outro sem a interferência no sucesso do projecto. A montagem, a realização da manutenção e a configuração do software é desenvolvida pela própria equipe.

Foram apontadas como possíveis alternativas para a concretização dos objectivos o uso dos painéis solares ou acumuladores compatíveis capazes de armazenar a eletricidade suficiente para o funcionamento do Arduino e outros componentes que servirão para a realimentação das baterias ou acumuladores. E ainda fazer o uso dos dispositivos eletrónicos para o comando e controlo de toda a dinâmica dos sistemas e subsistemas nele existente para lhe proporcionar uma maior eficiência e eficácia com um baixo consumo de energia durante o seu funcionamento.

7. CRONOGRAMA DE ACTIVIDADES

Actividade	Actividade 2018																					
	Mês 1			Mês 2				Mês 3				Mês 4			Mês 5							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Revisão																						
literária																						
Aquisição																						
Montagem do protótipo																						
Programação																						
Calibração																						
Conf. Servidor																						
Provas																						
preliminares																						
Implementaçã																						
0																						
Monitorament																						
0																						

8. ORÇAMENTO

Tabela 2: Orçamento dos Componentes Electrónicos

DESCRIÇÃO DOS COMPONENTES	QUANT.	TOTAL DE CADA ITEM (USD)
DC Power Connectors Pwr Plug Sealed IP68 2.5mm 1CKG Black Tip	1	8.03
DC Power Connectors Power Jack Seal Cap	1	1.94
USB Connectors Epoxy Free IP67 USB ST Type A Single	1	9.68
Development Boards & Kits - AVR ARDUINO UNO REV 3	1	22.55
Sensor Ultrassom a distância MAXBOTIX	1	113.20

Sensor de Temperatura + Humidade DHT11	1	5.13
Sensor de pressão atmosférica	1	6.16
Adafruit FONA 808 Shield - Mini Cellular GSM + GPS	1	51.20
Bateria LI 3.7V	1	14.25
Bateria 6V	1	13.27
Caixa estanque IP67	1	5.00
Tubo plastico VD	1	6.00
Painel solar	1	96.00
Cartão SIM	1	0.10
Ferro estanhador	1	38.98
Cola quente	1	16.00
Cabo eléctrico	1	3.33
VALOR TOTAL (USD)	-	410.82
+ TAXAS EXTRAS (carregamento, alfândegas & comunicações) (USD)	-	153.00
VALOR TOTAL + TAXAS (USD)	-	563.82

O valor total do orçamento necessário para a construção do protótipo é de USD \$563.82 (Quinhentos e sessenta e três dólares americanos) o que equivale a aproximadamente 34.956,84 MT (Trinta e quatro mil, novecentos e cinquenta e seis centenas e 84 centavos em Meticais).

9. REVISÃO BIBLIOGRÁFICA

- I. HARNETT C.. *Open-source hardware for instrumentation and measurement*, IEEE Instrumentation and Measurement Magazine, 2011.
- II. FISHER D. e GOULD P.. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research Modern Instrumentation. Vol. 1, 2012.
- III. GUPTA G. et al.. Open-source Hardware: Opportunities and Challenges. [online] Disponível na internet via WWW. URL: https://pdfs.semanticscholar.org/60a1/6cc6768b1d730af63cd2a2abb3c7eb098661. pdf. Arquivo consultado em 06 de Abril de 2018.
- IV. Open-source Hardware Association. Open-Source Hardware FAQ. [online] Disponível na internet via WWW. URL: https://www.oshwa.org/definition/portuguese/. Arquivo consultado em 06 de Abril de 2018.
- V. PEARCE, J. M.. Emerging Business Models for Open-source Hardware Journal of Open Hardware, 2017.