Numpy and Pandas Cheat Sheet

$Common\ Imports$

import numpy as np
import pandas ps pd
import matplotlib.pyplot as plt

import matprotrib.pyprot as pro

import seaborn as sns

Vectorized Operations

xs +	ys	. Element-wise addition
xs +	z	Adding a scalar
xs &	ys	. Bitwise (boolean) and
xs	ys	bitwise (boolean) or
xs		. Bitwise (boolean) not
xs <	ys	Less than

Subtraction (-), multiplication (*), division (/), exponentiation (**), and other comparison operators (<=, >, >=, ==, !=) work similarly.

$matplotlib\ plotting$

plt.hist(xs)	\dots Histogram
plt.scatter(xs, ys)	Scatterplot
plt.plot(xs, ys)	Line plot

Array / Series functions Maximum max() Minumum min() Mean (average) median() Median sum() Sum (total)
Accessing Data in a Series s.iloc[i]
Plotting for Series s.hist() Histogram s.plot() Line plot
Apply Functions s.apply(value -> value) returns a Series df.applymap(value -> value) . returns a DataFrame df.apply(series -> value) returns a Series df.apply(series -> series) returns a DataFrame

Accessing Data in a DataFrame df['col'].....Get column by name df.iloc[i] Get row by position df.loc[x].....Get row by index df.iloc[i, j].....Get element by position df.loc[x, y].....Get element by index df.values......Get 2D NumPy array DataFrame Summarization df.describe().....Stats about each column df.head(n).....First n rows df.tail(n).....Last n rows df.columns.....List of column names Axis Argument df.mean(axis=0) mean of each column df.mean(axis=1)....mean of each row df.mean(axis='index') mean of each column df.mean(axis='columns'.....) mean of each row $Plotting\ for\ DataFrames$

df.plot()......Line plot with one line per column