Decidability and Complexity of Tree Share Formulas

Xuan Bach Le[†] Aquinas Hobor^{‡,†} Anthony W. Lin[‡]

[†] School of Computing and [‡] Yale-NUS College, National University of Singapore

(5)

Introduction

- A tree share $\tau \in \mathbb{T}$ is inductively defined as a boolean binary tree equipped with the reduction rules R_1 and R_2 (their inverses are E_1 , E_2 resp.):

$$\tau \stackrel{\text{def}}{=} \circ \mid \bullet \mid \widehat{\tau} \qquad R_1 : \widehat{\bullet} \mapsto \bullet \qquad R_2 : \widehat{\circ} \circ \mapsto \circ \qquad (1)$$

- The tree domain $\mathbb T$ contains *canonical trees* which are irreducible with respect to the reduction rules. Here ○ denotes an "empty" leaf while • a "full" leaf. The tree ○ is thus the empty tree, and • the full tree. There are two "half" shares: o and oo, and four "quarter" shares, beginning with oo.
- The domain ${\mathbb T}$ is equipped with the following operators:

 $au_1 \oplus au_2 = au_3 \stackrel{\text{def}}{=} au_1 \sqcup au_2 = au_3 \wedge au_1 \sqcap au_2 = \circ$ 4. The *injection bowtie* function \bowtie generalized from string concatenation:

Applications of tree shares

Tree shares are embedded into separation logic to reason about resource accouting: addr $\overset{\tau_1 \oplus \tau_2}{\mapsto}$ val $\overset{\text{equiv}}{=}$ addr $\overset{\tau_1}{\mapsto}$ val \star addr $\overset{\tau_2}{\mapsto}$ val

1. Share policies to reason about permissions:

$$WRITE(\tau) \stackrel{\text{def}}{=} \tau = \bullet$$

$$READ(\tau) \stackrel{\text{def}}{=} \tau \neq \circ$$

$$WRITE(\bullet)$$

$$WRITE(\bullet)$$

$$T = \bullet$$

$$WRITE(\tau)$$

$$T = \bullet$$

$$READ(\tau)$$

$$READ(\tau)$$

$$T = \bullet$$

$$READ(\tau)$$

$$T = \bullet$$

$$T \neq \bullet$$

$$T = \bullet$$

$$T \neq \bullet$$

$$T = \bullet$$

$$T$$

Figure: Simple policy inference rules for single writer and multiple readers

2. Allow resources to be split and shared in large scale:

$$\operatorname{tree}(\ell, \tau) \stackrel{\text{def}}{=} (\ell = \operatorname{null} \wedge \operatorname{emp}) \vee \exists \ell_I, \ell_r. \ (\ell \stackrel{\tau}{\mapsto} (\ell_I, \ell_r) \star \operatorname{tree}(\ell_I, \tau) \star \operatorname{tree}(\ell_r, \tau))$$

$$\operatorname{tree}(\ell, \tau_1 \oplus \tau_2) \stackrel{\text{\tiny equiv}}{=} \operatorname{tree}(\ell, \tau_1) \star \operatorname{tree}(\ell, \tau_2)$$
(8)

3. Allow resources to be split uniformly:

$$\tau_1 \cdot \operatorname{tree}(\ell, \tau_2) \stackrel{\text{def}}{=} \operatorname{tree}(\ell, \tau_2 \bowtie \tau_1)$$
(9)

$$(\tau_1 \oplus \tau_2) \cdot \operatorname{tree}(\ell, \tau) \stackrel{\text{\tiny equiv}}{=} \tau_1 \cdot \operatorname{tree}(\ell, \tau) \star \tau_2 \cdot \operatorname{tree}(\ell, \tau)$$
 (10)

 $\tau_1 \cdot \mathsf{tree}(\ell, \tau_2 \bowtie \tau_3) \stackrel{\text{\tiny equiv}}{=} (\tau_3 \bowtie \tau_1) \cdot \mathsf{tree}(\ell, \tau_2)$ (11)

4. Allow resources to be locally transformed back to non-share version:

$$\mathsf{tree}(\ell, \boldsymbol{\tau}) \stackrel{\scriptscriptstyle \text{equiv}}{=} \boldsymbol{\tau} \cdot \mathsf{tree}(\ell, \bullet) \stackrel{\scriptscriptstyle \text{equiv}}{=} \boldsymbol{\tau} \cdot \mathsf{tree}(\ell) \tag{12}$$

 $\forall \left(\begin{array}{c|c} a & b \end{array}\right) \left(\begin{array}{c} c \\ \hline d \end{array}\right) \exists \left(\begin{array}{c} ac & bc \\ \hline ad & bd \end{array}\right)$

(cross split)

(infinite split)

Properties of tree shares

- $(\Box, \Box, \overline{\Box}, \bullet, \circ)$ forms a Boolean Algebra:

J7. $a \oplus b = z \land c \oplus d = z \Rightarrow \exists ac, ad, bc, bd$.

J8. $\tau \neq \circ \Rightarrow \exists \tau_1, \tau_2. \ \tau_1 \neq \circ \land \tau_2 \neq \circ \land \tau_1 \oplus \tau_2 = \tau$

 $ac \oplus ad = a \wedge bc \oplus bd = b \wedge ac \oplus bc = c \wedge ad \oplus bd = d$

*B*1*b*. $(\tau_1 \sqcup \tau_2) \sqcup \tau_3 = \tau_1 \sqcup (\tau_2 \sqcup \tau_3)$ $B1a. \ (au_1 \sqcap au_2) \sqcap au_3 = au_1 \sqcap (au_2 \sqcap au_3)$ (associativity) *B*2*a*. $\tau_1 \sqcap \tau_2 = \tau_2 \sqcap \tau_1$ *B*2*b*. $\tau_1 \sqcup \tau_2 = \tau_2 \sqcup \tau_1$ (commutativity) $B3a. \ \tau_1 \sqcap (\tau_2 \sqcup \tau_3) = (\tau_1 \sqcap \tau_2) \sqcup (\tau_1 \sqcap \tau_3) \ B3b. \ \tau_1 \sqcup (\tau_2 \sqcap \tau_3) = (\tau_1 \sqcup \tau_2) \sqcap (\tau_1 \sqcup \tau_3) \ \text{(distributivity)}$ *B*4*a*. $\tau_1 \sqcap (\tau_1 \sqcup \tau_2) = \tau_1$ *B*4*b*. $\tau_1 \sqcup (\tau_1 \sqcap \tau_2) = \tau_1$ (absorption) B5a. $\tau \sqcap \bullet = \tau$ *B*5*b*. $\tau \sqcup \circ = \tau$ (identity) (complement) B6a. $\tau \sqcap \bar{\tau} = \circ$ $B6b. \ \tau \sqcup \bar{\tau} = \bullet$

- (⋈, •) forms an Algebraic Monoid with additional properties:

 $M1. (\tau_1 \bowtie \tau_2) \bowtie \tau_3 = \tau_1 \bowtie (\tau_2 \bowtie \tau_3)$ (associativity) *M*2. $\tau \bowtie \bullet = \bullet \bowtie \tau = \tau$ (identity) *M*3. $\tau \bowtie \circ = \circ \bowtie \tau = \circ$ (collapse point) $M4. \ \tau_1 \bowtie (\tau_2 \diamond \tau_3) = (\tau_1 \diamond \tau_2) \bowtie (\tau_1 \diamond \tau_3), \ \diamond \in \{\sqcap, \sqcup, \oplus\}$ (distributivity) *M*5. $\tau \bowtie \tau_1 = \tau \bowtie \tau_2 \Rightarrow \tau \neq \circ \Rightarrow \tau_1 = \tau_2$ (left cancellation) *M*6. $\tau_1 \bowtie \tau = \tau_2 \bowtie \tau \Rightarrow \tau \neq \circ \Rightarrow \tau_1 = \tau_2$ (right cancellation) - Properties of ⊕: J1. $\tau_1 \oplus \tau_2 = \tau_3 \Rightarrow \tau_1 \oplus \tau_2 = \tau_3' \Rightarrow \tau_3 = \tau_3'$ (functionality) $J2. \ \tau_1 \oplus \tau_2 = \tau_2 \oplus \tau_1$ (commutativity) $J3. \ \tau_1 \oplus (\tau_2 \oplus \tau_3) = (\tau_1 \oplus \tau_2) \oplus \tau_3$ (associativity) J4. $\tau_1 \oplus \tau_2 = \tau_3 \Rightarrow \tau_1' \oplus \tau_2 = \tau_3 \Rightarrow \tau_1 = \tau_1'$ (cancellation) *J*5. $\exists u$. $\forall \tau$. $\tau \oplus u = \tau$ (unit) (disjointness) *J*6. $\tau_1 \oplus \tau_1 = \tau_2 \Rightarrow \tau_1 = \tau_2$

Decidability and Complexity of Tree Structures

Theorem 1. (Decidability of \bowtie)

Let $S = (\mathbb{T}, \bowtie)$ then:

- 1. The existential theory of S is decidable in PSPACE.
- 2. The existential theory of S is NP-hard.
- 3. The general first-order theory over S is undecidable.

Proof sketch. Reduction to word equation problem. We show each tree τ can be uniquely factorized into 'prime trees' which corresponds to letters in word alphabet. For example,

Theorem 2. (Tree automatic)

Let $\mathcal{M} = (\mathbb{T}, \sqcap, \sqcup, \boxtimes, \bowtie_{\tau})$ where $\bowtie_{\tau} (\tau') = \tau' \bowtie \tau$ then \mathcal{M} is tree-automatic, i.e. the domain and operators of \mathcal{M} are recognized by tree automata. As a result, the first-order theory of $\mathcal M$ is decidable. **Proof sketch**. By explicitly constructing the automata.

Theorem 3. (Finite search)

Let Σ be system of equation constraints $\pi_1 \oplus \pi_2 = \pi_3$ (π_i is either tree or variable) and $S(\Sigma)$ be the solution space of Σ . We define the height of Σ , denoted by $|\Sigma|$, to be the height of the tallest tree in Σ or zero otherwise. In order to check $S(\Sigma) = \emptyset$ (satisfiability) or $S(\Sigma_1) \subseteq S(\Sigma_2)$ (entailment), it is sufficient to consider trees of heights at most the height of the system. **Proof sketch**. Let \mathbb{T}_n be set of trees of heights at most n, we construct an isomorphism $\mathbb{T}_{n+1} \mapsto \mathbb{T}_n \times \mathbb{T}_n$ that preserves the join relation. This shows that 'big solutions' are basically combinations of 'smaller solutions'. As a result, we can reduce the search space to small solutions only.

Share solver

- We develop a solver to handle the satisfiability and entailment problem in Theorem 3. Our tool is actually *more powerful*: it can handle negative constraints $\neg(\pi_1 \oplus \pi_2 = \pi_3)$ and existential variables. The tool is implemented and certified in Coq, a theorem prover. Its main purpose is to verify the share constraints generated from separation logic entailment tools.
- Instances that the tool can verify:
- ▶ $\exists \Phi$ (satisfiability) and $\forall (\exists \Phi_1 \rightarrow \exists \Phi_2)$ (entailment).
- ▶ All properties J1 J8 of join relation \oplus with an exception that J5 is changed to a weaker form $\forall \tau. \exists u. \ \tau \oplus u = \tau.$

Figure: SAT solver and IMPL solver

Components of share solver

- ► PARTITIONER: partition the system into independent subsystems.
- ▶ BOUNDER: use order theory to prune space.
- ► SIMPLIFIER: apply effective generic heuristics for reduction the overall difficulty via computation.
- ▶ DECOMPOSER: decompose share system into subsystems of height zero.
- ► TRANSFORMER: for share system of height zero, the component converts constants and variables from share type to boolean type.
- ▶ INTERPRETER: transform boolean system into equivalent boolean formula.
- ► SMT_SOLVER: check the validity of the boolean formula.
- ► Link to the tool: www.comp.nus.edu.sg/~lxbach/share_prover/

References

- 1. Xuan Bach Le, Aquinas Hobor and Anthony W. Lin. Decidability and Complexity of Tree Share Formulas. In FSTTCS, 2016.
- 2. Xuan Bach Le and Aquinas Hobor. A Certified Decision Procedure for Sophisticated Fractional Permissions. In submission, 2016.
- 3. Xuan Bach Le, C. Gherghina, and Aquinas Hobor. Decision procedures over sophisticated fractional permissions. In APLAS, 2012.