Activité 0:

On considère les points A(0,2), B(1,-2) et C(1,1) du plan rapporté au repère (0,I,J).

- 1) Placer les points A, B et C.
- **2** Donner les coordonnées des vecteurs : \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- 3) Donner les coordonnées des vecteurs : $\overrightarrow{AB} + \overrightarrow{AC}$ et $2\overrightarrow{BC}$.
- 4) Donner les coordonnées de *I* le milieu du segment [AC].

Application O:

On considère les points A(-2,2), B(3,2) et C(0,1) du plan rapporté au repère $(0,\vec{i},\vec{j})$.

- 1) Donner les coordonnées des vecteurs : \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
 - **2)** Ecrire les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} dans la base $(\vec{\iota}, \vec{j})$.
- **3)** En déduire les coordonnées des vecteurs : $\vec{u} = 3\vec{AB}$ et $\vec{u} = \vec{AC} 2\vec{BC} + 3\vec{AB}$.

Exercice O:

Soit ABCD un parallélogramme de centre O.

Donner les coordonnés des points A, B, C, O et D dans le repère $(A; \overrightarrow{AB}, \overrightarrow{AC})$.

Application Q:

Soient A(4,4), B(2,2) et C(5,-1) des points du plan.

Montrer que le triangle ABC est rectangle en B.

Application 3:

Soit m un paramètre réel.

- 1) On considère les vecteurs :
- $\overrightarrow{u_1} = -\vec{i} + 2\vec{j}; \ \overrightarrow{u_2} = -4\vec{i} + \vec{j}; \ \overrightarrow{u_3} = (2m 3)\vec{i} + 2\vec{j}.$
 - a) Etudier la colinéarité de $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$.
 - **b)** Déterminer la valeur de m pour que $\overrightarrow{u_1}$ et $\overrightarrow{u_3}$ soient colinéaires.
- 2) Etudier l'alignement des points A(2; 5), B(0; 3) et C(-3; 0).

& Exercice O:

Soit *m* un paramètre réel.

On considère les points A(2,3), B(3,5) et

C(m-1,3m-2).

Déterminer la valeur de m pour que C appartient à (AB).

Activité 2:

On considère les points A(1, -3), B(-2,1) du plan et soit M(x, y) un point de (AB).

1) Que peut-on dire sur les vecteurs \overrightarrow{AB} et \overrightarrow{AM} .

- **2)** Sans calcul, déterminer la valeur du $det(\overrightarrow{AB}; \overrightarrow{AM})$.
- **3)** Calculer $det(\overrightarrow{AB}; \overrightarrow{AM})$ en fonction de x et y.

Application 9:

Compléter le tableau suivant :

Vecteur directeur de la droite	L'équation cartésienne de la droite
$\vec{u}(\cdots;\cdots)$	2x + 5y = 4
$\vec{u}(\cdots;\cdots)$	y + 3x - 2 = 0
$\vec{u}(3;5)$	= 6
$\vec{u}(\cdots;\cdots)$	x + 4 = 0

Application 5:

- Donner l'équation cartésienne de la droite $D(A, \vec{u})$ avec A(1,3) et $\vec{u} = -\vec{i} + 2\vec{j}$.
- Donner l'équation cartésienne de la droite (BC) avec B(-2,3) et C(0,-4).

Activité 3:

On considère $(D) = D(A, \vec{u})$ tels que A(2, -1) et $\vec{u}(3, 1)$ et soit M(x, y) un point de (D).

- Montrer l'existence d'un nombre réel t tel que : $\overrightarrow{AM} = t \ \overrightarrow{u}$.
- 2) Ecrire x et yen fonction de t.

Application ©:

- Donner une représentation paramétrique de la droite (MN) avec M(-1,4) et N(5,4).
- 2) Donner l'équation cartésienne de la droite (x = 5 + 2t)

(D):
$$\begin{cases} x = 5 + 2t \\ y = 4 - t \end{cases} / t \in \mathbb{R}.$$

Activité 9:

Soient (D) et (Δ) deux droites telles que :

(D):
$$3x - y + 4 = 0$$
 et (Δ): $-6x + 2y - 1 = 0$.

- 1) Calculer $det(\vec{u}; \vec{v})$ tels que \vec{u} un vecteur directeur de (D) et \vec{v} un vecteur directeur de (Δ) .
- **2)** Déduire la position relative de (D) et (Δ) .

& Application O:

Etudier la position relative de (D) et (Δ) en déterminant leur point d'intersection si sont sécantes dans les cas suivants :

3 Cas **0**: (*D*):
$$x + 2y = 3$$
 et (Δ): $2x + y = 6$.

Cas **2**:(D):
$$x + y = 5$$
 et (Δ): $\begin{cases} x = 1 + t \\ y = -2 + 2t \end{cases} / t \in \mathbb{R}$.