FCC PART 15, SUBPART B and C TEST REPORT

for

RanchSensor

MODEL: RS100

Prepared for

RANCH SYSTEMS, LLC 555 DE HARO STREET, #340 SAN FRANCISCO, CALIFORNIA 94107

Prepared by:_

Justinoto

KYLE FUJIMOTO

Approved by: Jomes Rom

JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: MAY 10, 2006

	REPORT		APPENDICES			TOTAL	
	BODY	A	В	C	D	E	
PAGES	16	2	2	2	12	8	42

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	n / Title	PAGE
GENER	RAL REPORT SUMMARY	4
SUMM.	ARY OF TEST RESULTS	4
1.	PURPOSE	5
2. 2.1	ADMINISTRATIVE DATA Location of Testing	6
2.1	Traceability Statement	6
2.3	Cognizant Personnel	6
2.4	Date Test Sample was Received	6
2.5 2.6	Disposition of the Test Sample Abbreviations and Acronyms	6 6
3.	APPLICABLE DOCUMENTS	7
4.	DESCRIPTION OF TEST CONFIGURATION	8
4.1	Description Of Test Configuration - EMI	8
4.1.1		9
5.	LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 5.2	EUT and Accessory List EMI Test Equipment	10 11
	• •	
6.	TEST SITE DESCRIPTION Test Facility Description	12
6.1 6.2	Test Facility Description EUT Mounting, Bonding and Grounding	12 12
7. 7.1	TEST PROCEDURES Conducted Emissions Test	13 13
7.1	Radiated Emissions (Spurious and Harmonics) Test	14
7.3	Radiated Emissions (Spurious and Harmonics) Test (continued)	15
7.4	Bandwidth of the Fundamental	15
8.	CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Radiated Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: RanchSensor

Model: RS100 S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was not modified in order to meet the specifications.

Manufacturer: Ranch Systems, LLC

555 De Haro Street, #340

San Francisco, California 94107

Test Date: March 29 and 30, 2006

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209 and 15.231

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz	This test was not performed because the EUT is battery powered only and does not connect to the AC public mains.
2	Radiated RF Emissions, 10 kHz - 4400 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

RanchSensor Model: RS100

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the RanchSensor Model: RS100. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Ranch Systems, LLC

Christopher J. Malone Wireless Technician

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer James Ross Test Engineer

2.4 Date Test Sample was Received

The test sample was received on March 29, 2006

2.5 Disposition of the Test Sample

The sample has been returned on April 11, 2006.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Model: RS100

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description Of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

Configuration #1: The RanchSensor Model: RS100 (EUT) was connected to a moisture sensor and temperature sensor. The EUT was continuously transmitting or receiving depending on the test performed.

Configuration #2: The RanchSensor Model: RS100 (EUT) was connected to a moisture sensor and "GEMS" sensor. The EUT was continuously transmitting or receiving depending on the test performed.

The antenna is directly connected to the PCB via a screw.

The EUT shuts off within five seconds after being activated.

The final radiated data was taken in the mode above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

- <u>Cable 1</u>
 This is a 1-meter unshielded cable connecting the EUT to the moisture sensor. The cable has a 3 pin LEMO connector at the EUT end and is hard wired into the moisture sensor. The cable was bundled to a length of 40 centimeters.
- <u>Cable 2</u> (For Configuration #1 Only) This is a 1-meter unshielded cable connecting the EUT to cable #4. The cable has a 3 pin LEMO connector at each end. This cable (along with cable #4) was bundled to a length of 40 centimeters.
- <u>Cable 3</u> (For Configuration #2 Only) This is a 1-meter unshielded cable connecting the EUT to cable #5. The cable has a 3 pin LEMO connector at each end. This cable (along with cable #5) was bundled to a length of 40 centimeters.
- <u>Cable 4</u> (For Configuration #1 Only) This is a 20-centimeter unshielded cable connecting cable #2 to the temperature sensor. The cable has a 3 pin LEMO connector at the cable #2 end and is hard wired into the temperature sensor. This cable (along with cable #2) was bundled to a length of 40 centimeters.
- <u>Cable 5</u> (For Configuration #2 Only) This is a 10-centimeter unshielded cable connecting cable #3 to the "GEMS" sensor. The cable has a 3 pin LEMO connector at the cable #3 end and is hard wired into the "GEMS" sensor. This cable (along with cable #3) was bundled to a length of 40 centimeters.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

RanchSensor Model: RS100

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
RanchSensor (EUT)	RANCH SYSTEMS, LLC	RS100	N/A	TZXRS100
MOISTURE SENSOR	DECAGON DEVICES	ECH ₂ O EC-5	N/A	N/A
TEMPERATURE SENSOR	N/A	HM1500	52033-37	N/A
"GEMS" SENSOR	N/A	173932	N/A	N/A

Model: RS100

FCC Part 15 Subpart B and FCC Section 15.231 Test Report
RanchSensor

EMI Test Equipment

5.2

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE	
	GENERAL TEST EQUIPMENT USED FOR ALL RF EMISSIONS TESTS					
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08768	June 21, 2005	June 21, 2006	
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22262	June 21, 2005	June 21, 2006	
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	June 17, 2005	June 17, 2006	
Computer	Hewlett Packard	4530	US91912319	N/A	N/A	
EMI Receiver	Rohde & Schwarz	ESIB40	100172	October 28, 2004	October 28, 2006	
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A	
	RF RA	DIATED EMIS	SIONS TEST EQ	UIPMENT		
Radiated Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A	
Preamplifier	Com Power	PA-102	1017	January 19, 2006	Jan. 19, 2007	
Biconical Antenna	Com Power	AB-900	15227	March 9, 2006	March 9, 2007	
Log Periodic Antenna	Com Power	AL-100	16060	August 22, 2005	Aug. 22, 2006	
Loop Antenna	Com Power	AL-130	17089	September 21, 2005	Sept. 21, 2006	
Horn Antenna	Com Power	AH-118	10067	July 27, 2004	July 27, 2006	
Microwave Preamplifier	Com Power	PA-122	181917	January 20, 2006	Jan. 20, 2007	
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A	

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

Ranch Sensor

Model: RS100

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

RanchSensor Model: RS100

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 2001. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

This test was not performed because the EUT is battery powered only and does not connect to the AC public mains.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

RanchSensor Model: RS100

7.2 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com-Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier Model: PA-122 was used for frequencies from 1 GHz to 4.4 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The fundamental and harmonic readings were averaged by using a "duty cycle correction factor", derived from 20 log (total on time / 100 ms).

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 4.4 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data. The final qualification data sheets are located in Appendix E.

FCC Part 15 Subpart B and FCC Section 15.231 Test Report
RanchSensor

Model: RS100

7.3 Radiated Emissions (Spurious and Harmonics) Test (continued)

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.231.

7.4 Bandwidth of the Fundamental

The -20 dB bandwidth was checked to see that it was within 0.25% of the fundamental frequency for the EUT. Data sheets of the -20 dB bandwidth are located in Appendix E.

Test Results:

The EUT complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.231 [c].

FCC Part 15 Subpart B and FCC Section 15.231 Test Report

RanchSensor Model: RS100

8. CONCLUSIONS

The RanchSensor Model: RS100 meets all of the **Class B** specification limits defined in CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.231.

APPENDIX A

LABORATORY RECOGNITIONS

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.231 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

RanchSensor Model: RS100 S/N: N/A

There were no additional models covered under this report.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

= GROUND RODS = GROUND SCREEN X

= WOOD COVER = TEST DISTANCE (meters) D

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15227

CALIBRATION DATE: MARCH 9, 2006

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	11.12	120	13.50
35	10.17	125	12.63
40	9.75	140	12.20
45	12.22	150	11.85
50	13.28	160	13.25
60	11.36	175	15.74
70	7.95	180	16.23
80	5.95	200	16.79
90	7.62	250	16.47
100	10.89	300	17.49

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16060

CALIBRATION DATE: AUGUST 22, 2005

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
300	12.73	700	19.72
400	13.38	800	20.49
500	15.12	900	21.31
600	16.27	1000	24.25

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 19, 2006

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	38.3	300	38.4
40	38.4	350	38.4
50	38.3	400	38.0
60	38.4	450	38.1
70	38.5	500	37.5
80	38.4	550	38.0
90	38.4	600	38.0
100	38.4	650	37.7
125	38.1	700	37.7
150	38.5	750	37.7
175	38.4	800	37.0
200	38.3	850	37.2
225	38.3	900	36.6
250	38.1	950	36.3
275	38.3	1000	36.3

COM-POWER PA-122

PREAMPLIFIER

S/N: 181917

CALIBRATION DATE: JANUARY 20, 2006

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	34.697	10.0	36.558
1.5	33.817	10.5	35.048
2.0	33.587	11.0	33.258
2.5	33.804	11.5	32.960
3.0	33.850	12.0	33.312
3.5	33.943	12.5	33.836
4.0	34.399	13.0	34.178
4.5	34.847	13.5	34.197
5.0	35.172	14.0	33.769
5.5	35.383	14.5	33.392
6.0	35.539	15.0	33.387
6.5	34.802	15.5	34.038
7.0	33.793	16.0	34.884
7.5	33.511	16.5	35.740
8.0	33.910	17.0	35.341
8.5	34.907	17.5	34.729
9.0	36.036	18.0	33.760
9.5	36.661		

COM POWER AH-118

HORN ANTENNA

S/N: 10067

CALIBRATION DATE: JULY 27, 2004

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	25.0	10.0	37.8
1.5	27.9	10.5	39.4
2.0	31.5	11.0	39.4
2.5	31.1	11.5	40.6
3.0	30.6	12.0	40.8
3.5	30.5	12.5	40.5
4.0	30.6	13.0	41.2
4.5	31.4	13.5	42.0
5.0	33.7	14.0	43.1
5.5	33.8	14.5	43.4
6.0	34.7	15.0	39.2
6.5	35.0	15.5	38.8
7.0	35.9	16.0	40.1
7.5	38.1	16.5	40.2
8.0	38.2	17.0	43.4
8.5	37.7	17.5	46.6
9.0	37.7	18.0	45.8
9.5	38.4		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: SEPTEMBER 21, 2005

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-42.84	8.66
0.01	-41.93	9.57
0.02	-41.29	10.21
0.05	-42.37	9.13
0.07	-41.8	9.7
0.1	-41.83	9.67
0.2	-44.13	7.37
0.3	-41.73	9.77
0.5	-41.8	9.7
0.7	-41.53	9.97
1	-41.46	10.04
2	-41.14	10.36
3	-41.26	10.24
4	-41.46	10.04
5	-41.10	10.40
10	-40.83	10.67
15	-41.47	10.03
20	-35.44	16.06
25	-42.37	9.13
30	-42.94	8.56

FRONT VIEW

RANCH SYSTEMS, LLC RanchSensor MODEL: RS100

FCC SUBPART B AND FCC SUBPART C - RADIATED EMISSIONS - LAB B

REAR VIEW

RANCH SYSTEMS, LLC RanchSensor MODEL: RS100

FCC SUBPART B AND FCC SUBPART C - RADIATED EMISSIONS - LAB B

FRONT VIEW

RANCH SYSTEMS, LLC
RanchSensor
MODEL: RS100

FCC SUBPART B AND FCC SUBPART C - RADIATED EMISSIONS - LAB D

REAR VIEW

RANCH SYSTEMS, LLC
RanchSensor
MODEL: RS100
FCC SUBPART B AND FCC SUBPART C – RADIATED EMISSIONS – LAB D

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

FCC 15.231

Ranch Systems, LLC RanchSensor

Model: RS100

Duty Cycle: 16.61323%

Date: 03-30-06 Labs: B and D

Tested By: Kyle Fujimoto

Freq. (MHz)	Level	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
433.92	96.22	V ,	100.8	-4.58	Peak	1.25	45	
433.92	80.63	V	80.8	-0.17	Avg	1.25	45	
		-						
867.84	56.97	V	80.8	-23.83	Peak	1	45	
867.84	41.38	V	60.8	-19.42	Avg	1	45	
1301.76	55.8	V	74	-18.2	Peak	1.44	135	
1301.76	40.21	V	54	-13.79	Avg	1.44	135	
1735.7	44.88	V	80.8	-35.92	Peak	2.16	135	
1735.7	29.29	V	60.8	-31.51	Avg	2.16	135	
2169.6	55.02	V	80.8	-25.78	Peak	2.49	135	
2169.6	39.43	V	60.8	-21.37	Avg	2.49	135	
2603.52	54.81	V	80.8	-25.99	Peak	2.4	225	
2603.52	39.22	V	60.8	-21.58	Avg	2.4	225	
3037.44	58.12	V	80.8	-22.68	Peak	1.28	225	
3037.44	42.53	V	60.8	-18.27	Avg	1.28	225	
3471.36	46.86	V	80.8	-33.94	Peak	1.93	135	
3471.36	31.27	V	60.8	-29.53	Avg	1.93	135	
3905.28	42.14	V	74	-31.86	Peak	1.46	135	
3905.28	26.55	V	54	-27.45	Avg	1.46	135	
4339.2	54.38	V	74	-19.62	Peak	1.46	135	
4339.2	38.79	V	54	-15.21	Avg	1.46	135	

FCC 15.231 Ranch Systems, LLC RanchSensor Model: RS100

Duty Cycle: 16.61323%

Date: 03-30-06

Labs: B and D
Tested By: Kyle Fujimoto

Eroa	Level				Peak / QP /	Ant. Height	Table Angle	
Freq. (MHz)		Pol (v/h)	Limit	Margin	Avg	meight (m)	(deg)	Comments
433.92	96.02	Н	100.8	-4.78	Peak	1	180	
433.92	80.43	H	80.8	-4.76	Avg	1	180	
700.02	00.73	'''	00.0	-0.51	Avg	'	100	
867.84	55.17	Н	80.8	-25.63	Peak	1	45	
867.84	39.58	Н	60.8	-21.22	Avg	1	45	
					,			
1301.76	49.13	Н	74	-24.87	Peak	2.48	180	
1301.76	33.54	Н	54	-20.46	Avg	2.48	180	
					Ţ.			
1735.7	43.17	Н	80.8	-37.63	Peak	2.64	135	
1735.7	27.58	Н	60.8	-33.22	Avg	2.64	135	
2169.6	48.84	Н	80.8	-31.96	Peak	1.76	135	
2169.6	33.25	Н	60.8	-27.55	Avg	1.76	135	
					Ţ.			
2603.52	55.57	Н	80.8	-25.23	Peak	2.88	225	
2603.52	39.98	Н	60.8	-20.82	Avg	2.88	225	
					Ţ.			
3037.44	55.16	Н	80.8	-25.64	Peak	1.85	225	
3037.44	39.57	Н	60.8	-21.23	Avg	1.85	225	
					Ţ.			
3471.36	48.65	Н	80.8	-32.15	Peak	1.41	135	
3471.36	33.06	Н	60.8	-27.74	Avg	1.41	135	
					J			
3905.28	42.09	Н	74	-31.91	Peak	1.96	225	
3905.28	26.5	Н	54	-27.5	Avg	1.96	225	
					- J			
4339.2	44.67	Н	74	-29.33	Peak	2.89	135	
4339.2	29.08	Н	54	-24.92	Avg	2.89	135	

FCC Class B and FCC 15.231

Ranch Systems, LLC Date: 03-30-06
RanchSensor Labs: B and D
Model: RS100 Tested By: Kyle Fujimoto

Duty Cycle: 16.61323%

Vertical and Horizontal Polarization Spurious Emissions from the EUT -- 1000 MHz to 4400 MHz

Freq. (MHz)	Level (dBuV)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Spurious Emissions
								Found Between 1 GHz
								and 4400 MHz

Test Location : Compatible Electronics Page : 1/1

Customer: Ranch Systems, LLCDate: 3/29/2006Manufacturer: Ranch Systems, LLCTime: 14:31:41

Eut name : RanchSensor Lab : D

Model : RS100 Test Distance : 3.0 Meters

Serial # : N/A

Specification : FCC Class B

Distance correction factor (20 * log(test/spec)) : 0.00

Test Mode : Spurious Emissions - 10 kHz to 1000 MHz
Vertical and Horizontal Polarizations

Temperature 59 Degrees F., Relative Humidity 65%

Tested By: Kyle Fujimoto

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Limit = L dBuV/m	Delta R-L dB
1V	50.488	55.80	0.70	13.18	38.31	31.37	40.00	-8.63
2V	72.888	51.40	0.86	7.34	38.47	21.14	40.00	-18.86
3V	75.594	60.20	0.92	6.80	38.44	29.47	40.00	-10.53
4H	132.086	37.40	1.23	12.42	38.22	12.83	43.50	-30.67
5V	145.823	46.80	1.28	11.99	38.44	21.64	43.50	-21.86
6H	148.886	49.70	1.30	11.89	38.48	24.40	43.50	-19.10
7H	210.626	41.30	1.79	16.72	38.30	21.50	43.50	-22.00
8H	372.641	56.80	2.35	13.22	38.21	34.15	46.00	-11.85
9H	383.845	44.00	2.37	13.29	38.12	21.53	46.00	-24.47
10V	450.011	47.40	2.70	14.30	38.10	26.30	46.00	-19.70
11H	495.592	46.90	2.88	15.05	37.55	27.28	46.00	-18.72
12H	511.592	52.70	2.92	15.26	37.62	33.27	46.00	-12.73
13V	673.333	50.20	3.40	18.85	37.70	34.76	46.00	-11.24
14V	710.133	47.90	3.38	19.80	37.70	33.39	46.00	-12.61

-20 dB BANDWIDTH

DATA SHEET

Date: 29.MAR.2006 17:51:57

-20 dB Bandwidth of the Fundamental