

Дисциплина:

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

Моделирование

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ» (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

Студент	<u>ИУ7-72Б</u> (Группа)	(Подпись, дата)	В.А. Иванов (И.О. Фамилия)
Преподаватель	(x p)a)		И.В. Рудаков
		(Подпись, дата)	(И.О. Фамилия)

1. Задание

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 ± 5 ; 40 ± 10 ; 40 ± 20 . Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй – запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин.

Промоделировать процесс обработки 300 запросов на языке моделирования GPSS.

Рис. 1.1 — Визуальное описание задания

2. Результаты

2.1. Описание модели

Визуально данная модель представленна на рисунке 2.1.

Рис. 2.1 — Структурная схема модели

Согласно условию время обработки заявки оператором подчиняется закону равномерного распределения, а время компьютер выполняет каждую обработку фиксированное время. В терминах СМО данную модель можно описать следующим образом:

- K1, K2, K3 AO, симулирующие работу операторов. Они является одноканальными системами с потерями и обозначаются как G/G/1/1.
- K4, K5 AO, симулирующие работу компьютеров. Они является одноканальными системами с ожиданием и обозначаются как $G/\mathbb{Z}/1/1$.
- Всю систему можно описать как многоканальную СМО с потерями G/G/3/1.

Эндогенными переменными системами являются время обработки заявки для операторов и компьютеров. Экзогенными являются число клиентов, которые были обслужены и число получивших отказ.

2.2. Работа программы

Результаты моделирования приведены на рисунке 2.2. Полученные значения соответствуют полученным при моделировании в 5-й лабораторной работе.

FACILITY	ENTRIE	S UT	IL.	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
OP 1	120	0.	.795	20.142	2 1	303	0	0	0	0
OP_2	64	0.	.795	37.727	7 1	304	0	0	0	0
OP 3	58	0.730		38.252	2 1	301	0	0	0	0
C_I C_2	182	0.893		14.918	3 1	299	0	0	0	0
C_2	57	0.	.563	30.000) 1	0	0	0	0	0
QUEUE	MAX	CONT.	ENTRY	ENTRY(0)	AVE.COL	NT. AVE	TIME.	AVI	E. (-0)	RETRY
Q_1	2	1	182	58	0.322	2	5.371	L	7.884	0
DEN	62	62	62	0	30.268	148	33.614	148	83.614	0
Q_2	1	0	57	54	0.00	5	0.304	ł	5.780	0
SAVEVALUE		RETRY	Y	VALUE						
DENIED N		0		62.000						
SERVED N		0		238.000						
PERCENT_DENIED		0		0.261						

Рис. $2.2 - \Pi$ ример работы программы

3. Текст программы

В листинге 3.1 представлен код программы на языке GPSS.

Листинг 3.1 — Реализация модели

```
1 GENERATE 10,2,0
 2; Оператор генерации заявок.
 |3|; Время интервал выработки заявок 10+-2, задержка первой 0
 4
 5; Блок первого оператора
 6 OPER 1 GATE NU OP 1, OPER 2
 7 ; Проверка на неиспользование устройства ОР 1
8; В случае свободности — переход к следующему оператору
9; Иначе переход на метку OPER 2 те (... ко второму оператору)
10 | \mathsf{SEIZE} \mathsf{OP} \; 1 \; ; Занятие устройства \mathsf{OP} \; 1 \; заявкой
11|\mathsf{ADVANCE}\ 20,5 ; Задержка в 20+-5 минут
12 RELEASE OP 1 ; Особождение устройства ОР 1
13 TRANSFER , COMP 1, ; Переход к метке COMP 1 первого копьютера
14
|15|; Следующие операторы — аналогично первому. Порядок их следования в
      коде
|16|; определяет их приоритет. В случае, если все устройства заняты, то
|17|; заявка переходит к метке DENIED
18
19; Блок второго оператора
20 OPER_2 GATE NU OP 2, OPER 3
21 SEIZE OP 2
22 ADVANCE 40,10
23 RELEASE OP 2
24 TRANSFER , COMP 1, ; Переход к метке COMP 1
25
26; Блок третьего оператора
27 OPER 3 GATE NU OP 3, DENIED
28 SEIZE OP 3
29 ADVANCE 40,20
30 RELEASE OP 3
31 TRANSFER , COMP 2, ; Переход к метке COMP 2
```

```
32
33 ; Блок для отказа в обслуживания заявки. Осуществляет переход к метке
     TERM
34 DENIED QUEUE
                    DEN
35 ; Для сбора статистики отклонённые заявки помещаются
36; в очередь DEN
37 TRANSFER , TERM,
38
39; Блок первого компьютера
40 COMP 1 QUEUE Q 1
|41|; Заявка попадает в очередь Q 1
42 | SEIZE C 1
43 ; Заявка ожидает в ( порядке очереди ) освобождения устройства С 1
|44|; для обслуживания им
45 DEPART Q 1
46; После завешения ожидания заявка покидает очередь
47 ADVANCE 15,0
48; Задержка в 15 минут
49 RELEASE C 1
|50|; Освобождение устройства С_1
51 TRANSFER , TERM,
|52|; Переход к метке TERM
53
|54|; Блок второго компьютера аналогично ( первому)
55 COMP_2 QUEUE Q 2
56 SEIZE C 2
57 DEPART Q 2
58 ADVANCE 30,0
59 RELEASE C 2
60 TRANSFER , TERM,
61
62; Блок завершения обработки заявки
63 TERM SAVEVALUE DENIED N,Q$DEN
64 SAVEVALUE SERVED N, (300 - Q$DEN)
```

```
SAVEVALUE PERCENT_DENIED, (Q$DEN / (300 — Q$DEN))

; Сохранение количества отклонённых и обсуженных заявок,

; процента отклонённых заявок

ТЕRMINATE 1

; Оператор выхода заявок из СМО

70

START 300 ; Обслуживается 300 заявок
```