Correction du TD d'entraînement

I | Mesure de l'épaisseur d'une lame de verre

1) En notant (SM) le chemin optique de S à M, la différence de chemin optique en M est donnée par

$$\delta_{2/1}(M) = (ST_2M) - (ST_1M) = (SP_2) + (T_2M) - (SP_1) - (T_1M)$$

La source étant sur l'axe optique et l'indice étant le même sur cette portion, on a $(ST_1) = (ST_2)$. On se retrouve donc à calculer le chemin optique à partir des trous. Or, le chemin de T_2 à M se fait dans l'air, donc $(T_2M) = T_2M$. En notant F_1 et F_2 les points d'entrée et de sortie du rayon lumineux dans la lame de verre tels que $F_1F_2 = e$, on a

$$(T_1M) = (T_1F_1) + (F_1F_2) + (F_2M)$$

$$= T_1F_1 + n_ve + F_2M$$

$$= T_1F_1 + n_ve + F_1F_2 - F_1F_2 + F_2M$$

$$= T_1F_1 + F_1F_2 + F_2M + (n_v - 1)e$$

$$= T_1M + (n_v - 1)e$$

Avec $T_1M = T_1F_1 + F_1F_2 + F_2M$. Autrement dit,

$$\delta_{2/1}(M) = T_2M - T_1M - (n_v - 1)e$$

et avec le résultat usuel de différence de marche des trous d'Young, c'est-à-dire $\Delta L_{2/1}(M) = ax/D$ (attention à la notation de la distance entre les fentes!), on trouve bien

$$\delta_{2/1}(\mathbf{M}) = \frac{ax}{D} - (n_v - 1)e$$

Autrement dit, la différence de chemin optique est celle sans la lame à laquelle s'ajoute le retard pris par l'onde issue de T_1 qui va moins vite/parcourt une plus grande distance (à la célérité c) à cause du verre. On retrouve bien que si $n_v = 1$, la différence de chemin optique est celle attendue sans lame de verre.

2)
$$\delta_{1/2}(\mathbf{M}) = 0 \Leftrightarrow \frac{ax_c}{D} - (n_v - 1)e = 0 \Leftrightarrow \boxed{x_c = \frac{(n_v - 1)eD}{a}}$$

En l'absence de la lame de verre, la frange centrale serait sur l'axe optique, en x=0: dans cette situation, elle s'est donc décalée de x_c .

3) On isole :
$$e = \frac{ax_c}{D(n_v - 1)} \quad \text{avec} \quad \begin{cases} a = 100 \, \mu\text{m} \\ D = 1,00 \times 10^9 \, \mu\text{m} \\ n_v = 1,57 \\ x_c = 28,5 \times 10^7 \, \mu\text{m} \end{cases}$$
 A.N. : $e = 50,0 \, \mu\text{m}$

4) La frange centrale, en première approximation, n'est pas distinguable des autres franges brillantes correspondant également à des interférences constructives : on a donc sa position modulo l'interfrange, soit

$$x_c \equiv x_c \quad \left\lceil \frac{\lambda D}{a} \right\rceil$$

et ainsi

$$e \equiv e \quad \left[\frac{\lambda}{n_v - 1}\right]$$

Autrement dit, la mesure de e n'est possible que modulo $\lambda/(n_v - 1) = 0.9 \,\mu\text{m}$: la mesure de la lame de verre ne serait donc pas réalisable avec cette expérience, puisqu'elle est plus grande que $0.9 \,\mu\text{m}$.

Dans la pratique, la frange brillante principale est distinguable des autres par atténuation de la luminosité sur les bords, donc l'expérience fonctionne.

**

$II \mid$

Interférences sur la cuve à ondes

1) Par définition,

$$\Delta \varphi_{1/2}(M) = -k\Delta L_{1/2}(M) = -k(d_1 - d_2) = \frac{2\pi}{\lambda}(d_2 - d_1)$$

Et pour avoir des interférences destructives,

$$\Delta \varphi_{1/2}(\mathbf{M}) = (2m+1)\pi \Leftrightarrow \frac{2\pi}{\lambda}(d_2 - d_1) = (2m+1)\pi \Leftrightarrow \boxed{d_2 - d_1 = \left(m + \frac{1}{2}\right)\lambda}$$

2) Avec $S_1S_2 = a$, on observe que tout l'axe x > a/2 correspond à une ligne de vibration minimale, c'est-à-dire un endroit de l'espace où les interactions sont destructives, i.e. $d_2 - d_1 = (m + 1/2)\lambda$. Or, pour x > a/2, on a

$$d_2 - d_1 = S_2M - S_1M = S_2M - S_1S_2 + S_2M \Leftrightarrow d_2 - d_1 = -a$$

On en déduit donc

$$\left| \frac{a}{\lambda} \right| = m + \frac{1}{2}$$

c'est-à-dire que a/λ est un demi-entier (1/2, 3/2, 5/2...). Le résultat est le même en raisonnant sur x<-a/2.

3) Entre S_1 et S_2 , on prend 3 cas extrêmes pour déterminer l'amplitude de $d_2 - d_1$:

$$\diamond$$
 En S₁, $d_2 = -a$ et $d_1 = 0$, donc

$$d_2 - d_1 = -a$$

$$\diamond$$
 En O, $d_2 = -a/2$ et $d_1 = a/2$, donc

$$d_2 - d_1 = 0$$

$$\diamond$$
 En S₂, $d_2 = 0$ et $d_1 = a$, donc

$$d_2 - d_1 = -a$$

Ainsi,

$$-a \leqslant d_2 - d_1 \leqslant a$$

Or, entre S_1S_2 on observe plusieurs vibrations minimales, donnant chacune $d_2 - d_1 = (m + \frac{1}{2})\lambda$. On en compte 8 entre S_1S_2 , correspondant chacune à un ordre d'interférence m. À partir de O et vers les x croissants, on a la première vibration minimale pour m = 0, la deuxième pour m = 1, la troisième pour m = 2 et la dernière pour m = 3; on a de même par symétrie vers les x décroissants. Ainsi,

l'ordre d'interférence obtenu le plus grand est m=3, et on n'a pas l'ordre d'interférence m=4 sinon on aurait une parabole en plus de chaque côté. Ainsi,

$$\left(3 + \frac{1}{2}\right)\lambda < a \leqslant \left(4 + \frac{1}{2}\right)\lambda$$

puisqu'on observe qu'il reste une distance sur S_1S_2 après l'ordre 3 avant d'atteindre S_2 et que si a dépasse $(4+1/2)\lambda$ on verrait la parabole correspondant à l'ordre 4. Comme on a déterminé à la question précédente que $\frac{a}{\lambda} = m + \frac{1}{2}$, avec cette étude on a $3 < m \le 4$ avec $m \in \mathbb{N}$, autrement dit m = 4, soit

$$\boxed{\frac{a}{\lambda} = \frac{9}{2}}$$

4) Le contraste correspond à une grande différence entre les valeurs maximales et minimales. Or, sur (Oy) on a $d_2 = d_1$ donc $d_2 - d_1 = 0$, c'est-à-dire que les ondes sont en phase et les interférences constructives, donc l'amplitude est maximale et le contraste est élevé.

Mesure de la vitesse du son avec des trous d'Young

1) L'interfrange dans une expérience de trous d'Young dont les fentes sont séparées de a est

$$i = \frac{\lambda D}{a}$$

2) On mesure avec une règle graduée au millimètre pour mesurer (conversion d'échelle comprise) $4i = 17.1 \,\mathrm{cm}$. La précision est ici limitée par l'écart entre deux positions de mesure du détecteur. Avec l'échelle de la figure et le facteur $1/\sqrt{3}$, on trouve l'incertitude-type de mesure $u_{4i} = 0.8 \,\mathrm{cm}$. Ainsi,

$$i = (4.3 \pm 0.2) \,\mathrm{cm}$$

3) En utilisant l'expression de l'interfrange et de $\lambda = c/f$, on a

$$c = \lambda f = \frac{fa}{D} \Leftrightarrow c = 3.4 \times 10^2 \,\mathrm{m \cdot s^{-1}}$$

On détermine d'abord l'incertitude sur $\lambda = \frac{\lambda D}{a}$ avec la formule de propagation, puis $u(c) = f \cdot u(\lambda)$:

$$\frac{u(\lambda)}{\lambda} = \sqrt{\left(\frac{u(i)}{i}\right)^2 + \left(\frac{u(a)}{a}\right)^2 + \left(\frac{u(D)}{D}\right)^2} \quad \text{avec} \quad \begin{cases} \lambda = 8,4 \text{ mm} \\ i = 4,3 \text{ cm} \\ u(i) = 0,2 \text{ cm} \\ a = 10,0 \text{ cm} \\ u(a) = \frac{1 \text{ mm}}{\sqrt{3}} = 0,6 \text{ mm} \\ D = 50,0 \text{ cm} \\ u(D) = \frac{1 \text{ mm}}{\sqrt{3}} = 0,6 \text{ mm} \end{cases}$$

$$A.N. : \quad c = (3,4 \pm 0,1) \times 10^2 \text{ m·s}^{-1}$$

4) La diminution de l'amplitude des interférences lorsque x augmente est due au phénomène de diffraction par un trou d'YOUNG. Sur la figure 2, on peut voir que l'amplitude des interférences s'annule pour $x_a \approx 15 \,\mathrm{cm}$. Or, d'après la figure 1, $\tan(\theta) = x_a/D$; ainsi, en combinant avec $\sin(\theta) \approx \lambda/2r$ et avec l'approximation des petits angles $(\tan(\theta) \approx \theta)$ et $\sin(\theta) \approx \theta$, on a

$$\frac{x_a}{D} \approx \frac{\lambda}{2r} \Leftrightarrow \boxed{r \approx \frac{\lambda D}{2x_a} \approx 1.4 \,\mathrm{cm}}$$

4

$\bigstar \left[\mathrm{IV} \right]$

Interférences ultrasonores sur un cercle

1) a - On a

- b E_1H est la différence $E_1M E_2M = r_1 r_2 = \Delta L_{1/2}(M)$ avec les notations du cours ; autrement dit, c'est la différence de marche entre les deux ondes.
- c En raisonnant dans le triangle E_1E_2H , considéré rectangle, on a $E_1H=a\sin\theta$. D'où le déphasage :

$$\Delta \varphi_{2/1}(\mathbf{M}) = \frac{2\pi a \sin \theta}{\lambda}$$

d – L'amplitude est maximale pour des interférences constructives, soit pour $\Delta \varphi_{2/1}(M) = 2p\pi$ avec $p \in \mathbb{Z}$; sur θ ça donne donc

$$\boxed{\sin \theta = p \frac{\lambda}{a}} \Leftrightarrow \theta = \sin \left(p \frac{\lambda}{a} \right)$$

On regarde donc quels sont les ordres d'interférences p tels que $\theta \in [-30 ; 30]^{\circ}$:

- $\Rightarrow p = 0 \Rightarrow \theta = 0^{\circ}$, soit un maximum pour tout l'axe x: c'était attendu étant donné les symétries du problème;
- $\Leftrightarrow p = \pm 1 \Rightarrow \theta = \pm 12^{\circ}$, donnant deux points symétriques par rapport à (Ox);
- $\Leftrightarrow p = \pm 2 \Rightarrow \theta = \pm 25^{\circ}$, pratiquement le double des valeurs précédentes.
- p>2 donne des valeurs en-dehors de l'intervalle.
- 2) a On a interférences destructives si $\Delta \varphi_{2/1}(M) = (2p+1)\pi$, soit

$$\boxed{\sin \theta = \left(p + \frac{1}{2}\right) \frac{\lambda}{a}} \Leftrightarrow \theta = \operatorname{asin}\left(\left(p + \frac{1}{2}\right) \frac{\lambda}{a}\right)$$

- $\Rightarrow p = 0 \Rightarrow \theta = \pm 6^{\circ};$
- $\Diamond p = 1 \Rightarrow \theta = \pm 19^{\circ}.$
- b Pour des ondes reçues avec la même amplitude, l'opposition de phase conduit à une annulation totale de l'amplitude somme.