

12.2: Polar Coordinates

Defining Polar Coordinates When using polar coordinates, the origin of the coordinate system is called the **pole**, and the positive x-axis is called the **polar axis**. The polar coordinates for a point P are of the form (r, θ) .

The radial coordinate r describes the signed (directed) distance from the origin to P. The angular coordinate θ describes an angle whose initial side is the positive x-axis and whose terminal side lies on the ray passing through the origin and P.

Example (LC 33.4). Graph the following polar coordinates

Procedure: Converting Coordinates

A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where

$$x = r \cos \theta$$
 and $y = \underline{r} \sin \theta$.

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ) , where

$$rac{x^2 + y^2}{x^2 + y^2}$$
 and $tan \theta = \frac{y}{x}$.

Example (LC 33.5). Consider the Cartesian coordinate $(4\sqrt{3}, -4)$. Rewrite this point Note: There are infinitely many polar representations in polar coordinates.

$$\Gamma = \sqrt{\chi^2 + y^2}$$

$$= \sqrt{48 + 16}$$

$$= \sqrt{64}$$

$$= 8$$

$$r = \sqrt{\chi^2 + y^2} \qquad cos \theta = \frac{\chi}{r} = \frac{453}{8} = \frac{3}{2} \Rightarrow \theta = \frac{11}{6}$$

Example (LC 33.6). Rewrite y = 3 in terms of polar coordinates.

Example (LC 33.7). Graph $\underline{r=4}$ and $\theta = \frac{2\pi}{3}$

$$\chi = r \cos \theta$$

$$Y = r \sin \theta$$

Summary: Circles in Polar Coordinates

The equation r = a describes a circle of radius |a| centered at (0,0).

The equation $r = 2a\cos\theta + 2b\sin\theta$ describes a circle of radius $\sqrt{a^2 + b^2}$ centered at (a,b).

Example. Rewrite the following in either polar coordinates or Cartesian coordinates

12.2: Polar Coordinates 230 Math 1080 Class notes Fall 2021

Procedure: Cartesian-to-Polar Method for Graphing $r = f(\theta)$

- 1. Graph $r = f(\theta)$ as if r and θ were Caresian coordinates with θ on the horizontal axis and r on the vertical axis. Be sure to choose an interval for θ on which the entire polar curve is produced.
- 2. Use the Cartesian graph that you created in Step 1 as a guide to sketch the points (r, θ) on the final *polar* curve.

Summary: Symmetry in Polar Equations

Symmetry about the x-axis occurs if the point (r, θ) is on the graph whenever $(r, -\theta)$ is on the graph.

Symmetry about the y-axis occurs if the point (r, θ) is on the graph whenever $r, \pi - \theta) = (-r, -\theta)$ is on the graph.

Symmetry about the origin occurs if the point (r, θ) is on the graph whenever $(-r, \theta) = (r, \theta + \pi)$ is on the graph.

1 = 2a cos 0 + 26 smo

Example (LC 33.8-33.9). Consider the polar curve $r = 2\sin(\theta) - 1$

Complete the table below

$$\frac{\theta}{r = 2\sin(\theta) - 1} \begin{array}{c|ccccc} 0 & \pi/6 & \pi/4 & \pi/2 & \pi & 3\pi/2 \\ \hline \end{array}$$

$$2 \sin \left(\frac{\pi_3}{3} \right) - 1 = \sqrt{3} - 1$$

 $(\sqrt{3}, \sqrt{3} - 1)$

Graph the polar curve $r = 2\sin(\theta) - 1$

