实验名称 光的等厚干涉现象与应用

一、 预习

预习指导书,设牛顿环的第m级暗环半径为 r_m ,该处对应的空气隙厚度为d,凸透镜的凸面曲率半径为R,空气隙折射率取m=1,推导出牛顿环的第m级暗环半径 r_m ,的表达式

$$r_{m} = \sqrt{m\lambda \left(R - \frac{m\lambda}{4}\right)}$$

二、原始数据记录

1.

牛顿环测透镜曲率半径数据记录

环的序数	т	31	30	29	28	27	26	25	24	23	22	21
环的位置读数	左	29.018	28:930	28·X6V	28-801	28.733	28-164	28.595	28.526	28.441	28-36	28-285
/mm	右	20.941	১৭৩।১	21.080	21.190	21.44	21.291	21319	21.1910	21491	21.560	21.633

环的序数	n	20	19	18	17	16	15	14	13	12	11	10
环的位置读数	左	28-199	128.124	28.0KO	27.918	27.845	19/4	27.65}	ZUESS	小科	यी-१४)	27.230
/mm	右	યગૃષ	21802	21.87):	21.950	22.04	22(128	22.219	22/32/	22/402	22J2Y	22,799
		•	•	•								$\neg \neg \uparrow$

2.

劈尖干涉测磁带厚度数据记录(选做)

测量次数	第 <i>i</i> 条干涉条纹位置 <i>x</i> ₁ (mm)	第 (i+10) 条干涉条纹位置 x ₂ (mm)
1		
2		
3		
4		
5		

教师	姓名
签字	结络

三、数据处理

用逐差法求 D_m^2 - D_n^2 的平均值;计算曲率半径 R 的平均值及不确定度;计算磁带的厚度(选做),要有完整的计算过程。

m	31	30	29	28	27	26	25	24	23	22	21
D_m^2	65.24	62.69	60.56	58.69	56.54	54.36	52.50	50.64	48.44	46.25	44.25
n	20	19	18	17	16	15	14	13	12	11	10
D_n^2	42.09	39.96	38.06	35.86	33.69	31.73	29.53	27.39	25.53	23.20	21.82
$D_m^2 - D_n^2$	23.15	22.73	22.5	22.83	22.85	22.63	22.97	23.25	22.91	23.05	22.43
$ \frac{[(D_m^2 - D_n^2) - (D_m^2 - D_n^2)]^2}{(D_m^2 - D_n^2)} $	0.0961	0.0121	0.1156	0.0001	0.0001	0.0441	0.0169	0.1681	0.0049	0.0041	0.1681

由逐差法得
$$\overline{(D_m^2 - D_n^2)} = \frac{1}{11} \sum_{i=1}^{11} (D_m^2 - D_n^2) = 22.84mm^2$$

故平凸透镜的曲率半径
$$\overline{R} = \frac{\overline{(D_m^2 - D_n^2)}}{4m\lambda} = \frac{22.84mm^2}{44 \times 589.3nm} = 880.9nm$$

不确定度
$$U_{\overline{(D_m^2-D_n^2)}} \approx S_{\overline{(D_m^2-D_n^2)}} = \sqrt{\frac{1}{11\times 10}\sum_{i=1}^{11}\left[(D_m^2-D_n^2)-\overline{(D_m^2-D_n^2)}\right]^2} = 0.07806mm^2$$

则不确定度
$$U_{\overline{R}} = \frac{U_{\overline{(D_m^2 - D_n^2)}}}{4(m-n)\lambda} = \frac{0.07806mm^2}{44 \times 589.3nm} = 3.010mm$$

相对误差
$$E = \frac{U_{\overline{R}}}{\overline{R}} \times 100\% = \frac{3.010 \text{mm}}{880.9 \text{nm}} \times 100\% = 0.3417\%$$

四、实验结论及现象分析

逐差法得
$$\overline{(D_m^2 - D_n^2)} = 22.84mm^2$$

曲率半径 $\overline{R}=880.9$ nm,不确定度 $U_{\overline{R}}=3.010mm$,相对误差 E=0.3417%

故
$$R = (880.9 \pm 3.1)$$
mm

五、讨论题

1. 理论上牛顿环中心是个暗点,实际上看到的往往是个忽明忽暗的班,其原因是什么?对透镜曲率半径R测量有无影响?

因为平凸透镜和底板玻璃接触时,由于接触压力引起形变,使接触处并非一个点而是一圆面;且装置也不可能完全密封,可能有微尘进入,引入附加光程差。所以牛顿环中心的光程差不一定对应 $\frac{\lambda}{2}$,可能略大或略小,当它恰好等于半波长偶数倍的时候,此处就出现亮条纹了。对透镜的曲率半径测量无影响。因为在数据处理中,已经去除了附加厚度的影响。推导如下:假定该实验装置圆心处附加厚度为a,则图中第k级条纹对应空气层的厚度为d_k + a。形成暗纹的条件为 $\Delta = 2(d_k + a) + \frac{\lambda}{2} = (2k + 1) \frac{\lambda}{2}$,得d_k + a = $\frac{1}{2}$ k λ 。

由勾股定理仍然有 $R^2=(R-d_k)^2+r_k^2$,故仍有 $2Rd_k-d_k^2=r_k^2$,忽略 d_k^2 可得 $r_k^2=2Rd_k=2R(\frac{1}{2}k\lambda-a)=Rk\lambda-2Ra$ 。

此时取k=m,k=n代入得 $r_m^2-r_n^2=(m-n)R\lambda$,则 $R=\frac{r_m^2-r_n^2}{(m-n)^{\,\lambda}}$,由此可知R的表达式不含a,所以对曲率半径测量无影响。

2. 实验中,若平板玻璃上有微小的凸起,则凸起处的干涉条纹会发生如何变化? 凸起处的干涉条纹会向外背离劈尖方向弯曲。