

Chapter 1: Running With Scissors

Mrs.Shubha Malige
Asst. Professor
Department of CSE (AI&ML), CSE (Cyber Security)
MSRIT, Bangalore

Agenda

- Running with Scissors
- Gauging the Threat
- Security Concepts
- Development Platforms
- Strings
- Character Strings
- Common String Manipulation Errors
- String Vulnerabilities and Exploits

Running with Scissors

- The W32.Blaster.Worm
 - Discovered on August 11, 2003.
- Infected unpatched system connected to the Internet without user involvement.
- At least eight million Windows systems have been infected by this worm [Lemos 04].
- Economic Damage > \$500M\$

The W.32 Blaster Worm

Figure 1.1 Blaster timeline

The W.32 Blaster Worm

Blaster:

- Checks to see if the computer is already infected.
 - Adds "windows auto update" = "msblast.exe" to registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\ CurrentVersion\Run
- Runs when Windows starts.
- Generates a random IP address.
- Attempts to infect the computer with that address.
- Sends data on TCP port 135 to exploit the DCOM RPC vulnerability on either Windows XP or Windows 2000.

Gauging the threat

- The risk of producing insecure software systems can be evaluated by
 - Looking at historic risk.
 - The potential for future attacks.
- Historic risk can be measured by
 - Looking at the type.
 - Cost of perpetrated crimes.
- The potential for future attacks can be partially gauged by:
 - Evaluating emerging threats.
 - The security of existing software systems.

What is the Cost?

- Based on conservative projections, about 100,000 new software vulnerabilities will be identified in 2010 alone.
- The number of security incidents worldwide will swell to about 400,000 a year, or 8,000 per work week [Berinato 04].

Table 1.1 Judgment on Coverage of Cost Categories by Known Estimates*

Type of Cybercrime	Global Estimate (\$ million)	Reference Period
Cost of Genuine Cybercrime	2.5.1	
Online banking fraud	320	2007
Phishing	70	2010
Malware (consumer)	300	2010
Malware (businesses)	1,000	2010
Bank technology countermeasures	97	2008-10
Fake antivirus	22	2010
Copyright-infringing software	150	2011
Copyright-infringing music, etc.	288	2010
Patent-infringing pharmaceutical	10	2011
Stranded traveler scam	200	2011
Fake escrow scam	1,000	2011
Advance-fee fraud		2011
Cost of Transitional Cybercrime		
Online payment card fraud	4,200ª	2010
Offline payment card fraud		
Domestic	2,100°	2010
International	2,940 ^a	2010
Bank/merchant defense costs	2,400	2010

What is the Cost?

Who is the Threat?

- Threat is a person, group, organization, or foreign power that has been the source of past attacks or may be the source of future attacks.
- Threats include:
- Hackers
- Insiders
- Criminals
- Competitive Intelligence Professionals
- Terrorists
- Information Warriors.

Hackers

- •Motivated by curiosity and peer recognition from other hackers.
- Write programs that expose vulnerabilities in computer software.
- The methods used to disclose these vulnerabilities varies from a policy of responsible disclosure to a policy of full disclosure.

Insiders

- The threat comes from a current or former employee or contractor of an organization.
- Has legitimate access to the information that was compromised.
- Do not need to be technically sophisticated to carry out attacks.
- Technically sophisticated insiders can launch attacks with immediate and widespread impact.
- Technical insiders can cover their tracks.

Criminals

- Common crimes include:
- Auction fraud,
- Identity theft.
- Extortion.
- Phishing
- Lure victims to fake website to gather account data.
- Pfarming
- Exploit DNS vulnerabilities to redirect web traffic to malicious site.

Corporate Spies

- Corporate spies:
- Call themselves competitive intelligence professionals.
- Have their own professional association—the Society for Competitive Intelligence Professionals (SCIP).
- May work from inside a target organization, obtaining employment to steal and market trade secrets.
- Conduct other forms of corporate espionage.
- •Cyber-terrorism can be defined as unlawful attacks or threats of attack against computers, networks, and other information systems to intimidate or coerce a government or its people to further a political or social objective [Denning 00].

Information Warriors

- Eight nations have developed cyberwarfare capabilities comparable to that of the United States.
- More than 100 countries are trying to develop them.
- Twenty-three nations have targeted U.S. systems.

Security Concepts

• Computer security is preventing attackers from achieving objectives through unauthorized access or unauthorized use of computers and networks [Howard 97].

A programmer is concerned with properties of source code such as correctness, performance,

and security.

A system integrator is responsible for integrating new and existing software components to create programs or systems that satisfy a particular set of customer requirements.

System administrators are responsible for managing and securing one or more systems including installing and removing software, installing patches, and managing system privileges.

Security Concepts

- •Network administrators are responsible for managing the secure operations of networks.
- •A security analyst is concerned with properties of security flaws and how to identify them.
- A vulnerability analyst is concerned with analyzing vulnerabilities in existing and deployed programs.

Security Concepts

A security researcher develops mitigation strategies and solutions and who may be employed in industry, academia, or government.

The attacker:

- Is a malicious actor who exploits vulnerabilities to achieve an objective.
- These objectives vary depending on the threat.
- The attacker can also be referred to as the adversary, malicious user, hacker, or other alias.

Security Policy

A Security Policy is a set of rules and practices that specify or regulate how a system or organization provides security services to protect sensitive and critical system resources

Security Flaws

Software Defects:

 A software defect is the encoding of a human error into the software, including omissions.

Security Flaw:

- A security flaw is a software defect that poses a potential security risk.
- Eliminating software defects eliminate security flaws.

Vulnerabilities

- Vulnerability
- set of conditions that allows an attacker to violate an explicit or implicit security policy.
- Not all security flaws lead to vulnerabilities.
- Security flaw
- can cause a program to be vulnerable to attack.
- Vulnerabilities can also exist without a security flaw.

Exploits

Exploit:

- Proof-of-concept exploits are developed to prove the existence of a vulnerability.
- Proof-of-concept exploits are beneficial when properly managed.
- Proof-of-concept exploit in the wrong hands can be quickly transformed into a worm or virus or used in an attack.

Mitigation

Mitigation:

- Mitigations are methods, techniques, processes, tools, or runtime libraries that can prevent or limit exploits against vulnerabilities.
- At the source code level, a mitigation might be replacing an unbounded string copy operation with a bounded one.
- At a system or network level, a mitigation might involve turning off a port or filtering traffic to prevent an attacker from accessing a vulnerability.

C and C++

- •C and C++:
- Popular programming languages.
- The vast majority of vulnerabilities that have been reported to the CERT/CC have occurred in programs written in one of these two languages.

What is the problem with C?

Short term solutions:

- Educating developers in how to program securely by recognizing common security flaws and applying appropriate mitigations.
- Long term solutions:
- Language standard, compilers, and tools evolve.

Legacy Code

- A significant amount of legacy C code was created (and passed on) before the standardization of the language.
- Legacy C code is at higher risk for security flaws because of the looser compiler standards and is harder to secure because of the resulting coding style.

Operating Systems

Microsoft Windows:- Microsoft Windows family of operating system products, including Windows 7, Windows Vista, Windows XP, Windows Server 2003, Windows 2000.

Linux: Linux is free Unix Derivative created by Linus Torvalds with the assistance of developers around the world.

Other Languages

- Many security professionals recommend using other languages, such as Java.
- Adopting Java is often not a viable option because of:
 - Existing investment in C source code,
 - Programming expertise,
 - Development environments.
- Another alternative to using C is to use a C dialect, such as Cyclone [Jim 02].
- Cyclone is currently supported on x86
 Linux, and on Windows using Cygwin.

Compilers

- Microsoft's Visual C++ is the predominant C
 and C++ compiler on Windows platforms.
- Visual C++ includes
- Visual C++ 6.0
- Visual C++ .NET 2002
- Visual C++ .NET 2003
- Visual C++ 2005 Beta1 and Beta2
- The GCC compilers are the predominant C
 and C++ compilers for Linux platforms.