Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №6 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «ИСТОЧНИКИ ТОКА»

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

Содержание

1	Цел	ь работы	2
2	Исследование токового зеркала с компенсацией теплового дрейфа		2
	2.1	Расчет схемы	2
	2.2	Схема токового зеркала с компенсацией теплового дрейфа	3
	2.3	Зависимость тока через нагрузку от напряжения на нагрузке	3
	2.4	Зависимость тока через нагрузку и тока на токозадающем устройстве	
		от напряжения питания	3
	2.5	Ток через нагрузку при различных сопротивлениях нагрузки	4
3	Исс	ледование токового зеркала Уилсона	5
	3.1	Расчет схемы	5
	3.2	Схема токового зеркала Уилсона	6
	3.3	Зависимость тока через нагрузку от напряжения на нагрузке	6
	3.4	Зависимость тока через нагрузку и тока на токозадающем устройстве	
		от напряжения питания	7
	3.5	Ток через нагрузку при различных сопротивлениях нагрузки	7

Цель работы

Цель работы – исследование работы источников тока.

Исследование токового зеркала с компенсацией теплового дрейфа

Расчет схемы

Рассчитаем схему токового зеркала с компенсацией теплового дрейфа. Дан ток нагрузки

$$I_{\rm H} = 250 \; {\rm mA}$$

и следующие формулы

$$I_{k1} \approx \frac{E_{\Pi} - 0.7}{R_1 + R_{21}}, \ I_{H} \approx \frac{R_{21} (E_{\Pi} - 0.7)}{R_1 R_{22} + R_{21} R_{22}};$$

Зададим напряжение питания

$$E_{\rm II} = 12 \; {\rm B}$$

Кремниевые транзисторы обычно имеют напряжение между базой и и эмиттером

$$U_{\rm B9} = 0.7 \; {\rm B}$$

Так как токовое зеркало «копирует» ток через первый транзистор, то ток через нагрузку должен быть равен току на первом транзисторе

$$I_{k1} \approx I_{\rm H} = 250 \text{ mA}$$

Найдем сумму сопротивлений $R_1 + R_{91}$ через формулу для I_{k1}

$$250 \cdot 10^{-3} = \frac{12 - 0.7}{R_1 + R_{91}} \Rightarrow R_1 + R_{91} = \frac{11.3}{0.25} = 45.2 \text{ Om}$$

Для уменьшения потерь мощности выберем первый эмиттерный резистор с небольшим номиналом в 10 Ом. Рассчитаем R_1

$$R_{\rm al} = 10 \text{ Om} \Rightarrow R_{\rm 1} = 45.2 - 10 = 35.2 \text{ Om}$$

Ближайший стандартный номинал $R_1 \approx 35~{\rm Om}$. Рассчитаем сопротивление второго эмиттерного резистора $R_{\rm 92}$ через формулу для $I_{\rm H}$

$$250 \cdot 10^{-3} = \frac{10(12 - 0.7)}{35R_{e^2} + 10R_{e^2}} \Rightarrow R_{e^2} = \frac{113}{0.25 \cdot 45} \approx 10.04 \text{ Om}$$

Возьмем ближайший стандартный номинал $R_{92} \approx 10$ Ом. Выберем в качестве Т1 Т2 транзисторов 2N2222 из библиотеки LTspice. Напряжение между коллектором и эмиттером этого транзистора, когда он находится в режиме насыщения, составляет

$$U_{\text{K} \ni \text{(Hac)}} \approx 0.2 \text{ B}$$

Тогда, определим сопротивление нагрузочного резистора по формуле

$$R_{\rm H} = \frac{E_{\rm \Pi} - U_{
m K9~(Hac)}}{I_{
m H}} = \frac{12 - 0.2}{250 \cdot 10^{-3}} = \frac{11.8}{0.25} = 47.2 \,\, {
m Om}$$

Ближайший стандартный номинал $R_{\rm H} \approx 47~{\rm Om}$.

Схема токового зеркала с компенсацией теплового дрейфа

Построим в LTspice одноименную схему

Рис. 1: Схема токового зеркала с компенсацией теплового дрейфа

Зависимость тока через нагрузку от напряжения на нагрузке

Построим график зависимости тока через нагрузку от напряжения на нагрузке. Зададим в источник питания DC 0, поставим на схему .dc Vin 0 14.7 0.01. С помощью net обозначим Vh

Рис. 2: Зависимость $I_{\rm H}$ от $U_{\rm H}$

Биполярный транзистор начинает проводить только когда между базой и эмиттером набирается напряжение примерно в 0.6–0.7 В. До этого момента оба транзистора в зеркале закрыты – ток не течет.

Зависимость тока через нагрузку и тока на токозадающем устройстве от напряжения питания

Построим график зависимости тока через нагрузку и тока на токозадающем устройстве от напряжения питания. С помощью net обозначим Vпит. Синяя траектория – зависимость тока через нагрузку от напряжения питания, красный – зависимость тока на токозадающем устройстве от напряжения питания

Рис. 3: Зависимости $I_{\rm H}\left(U_{\rm пит}\right),\ I_{\rm пит}\left(U_{\rm пит}\right)$

Токи равны нулю до напряжения в 0.7 В. Ток питания больше, так как он включает в себя ток через нагрузку, ток через токозадающее плечо Q1 и базовые токи обоих транзисторов.

Ток через нагрузку при различных сопротивлениях нагрузки

Построим графики зависимости тока от напряжения питания при различных сопротивлениях нагрузки. Проверим $R_{\rm H}=10,10^2,10^3,10^4$ Ом. Красный график – подаваемое напряжение питания, синий – ток нагрузки

Рис. 4: $I_{\rm H} \, (U_{\rm пит})$ при $R_{\rm H} = 10 \, \, {\rm Om}$

Рис. 5: $I_{\rm H} \, (U_{\rm пит})$ при $R_{\rm H} = 100 \; {\rm Om}$

Рис. 6: $I_{\rm H} \, (U_{\rm пит})$ при $R_{\rm H} = 1000$ Ом

Рис. 7: $I_{\rm H} \left(U_{\rm пит} \right)$ при $R_{\rm H} = 10000~{
m Om}$

При увеличении сопротивления нагрузки ток нагрузки уменьшается – токовое зеркало не может создать нужный ток, не хватает напряжения питания.

Исследование токового зеркала Уилсона

Расчет схемы

Рассчитаем схему токового зеркала Уилсона. Дан ток нагрузки

$$I_{\rm H} = 250 \; {\rm mA}$$

и следующие формулы

$$I_{k1} pprox rac{E_{\Pi} - 1.4}{R_1 + R_{21}}, \ I_{H} pprox rac{R_{21} (E_{\Pi} - 0.7)}{R_1 R_{22} + R_{21} R_{22}};$$

Зададим напряжение питания

$$E_{\Pi} = 12 \; \text{B}$$

Эмиттерное напряжение для кремниевого транзистора

$$U_{\rm B9} = 0.7 \; {\rm B}$$

Ток через нагрузку $I_{\rm H}$ должен быть равен I_{k1} , так как токовое зеркало копирует ток через первый транзистор ${\bf Q1}$

$$I_{k1} \approx I_{\mathrm{H}} = 250 \; \mathrm{мA}$$

Найдем сумму $R_1+R_{
m s1}$ из формулы для I_{k1}

$$250 \cdot 10^{-3} = \frac{12 - 1.4}{R_1 + R_{21}} \Rightarrow R_1 + R_{21} = \frac{10.6}{0.25} = 42.4 \text{ Om}$$

Пусть $R_{\rm s1} = 10$ Ом, тогда

$$R_1 = 42.4 - 10 = 32.4$$

Возьмем ближайший стандартный номинал $R_1 \approx 33$ Ом. Используя формулу для $I_{\rm H}$, определим $R_{\rm s2}$

$$250 \cdot 10^{-3} = \frac{10(12 - 0.7)}{33R_{92} + 10R_{92}} \Rightarrow R_{92} = \frac{113}{0.25 \cdot 43} \approx 10.51 \text{ Om}$$

Возьмем ближайший стандартный номинал $R_{92}\approx 10$ Ом. В качестве транзисторов Т1 Т2 Т3 выберем 2N2222 из библиотеки LTspice. Аналогично имеем

$$U_{\rm KS~(Hac)} \approx 0.2~{\rm B}$$

Тогда, сопротивление на нагрузке

$$R_{\rm H} = \frac{E_{\Pi} - U_{
m K9~(Hac)}}{I_{
m H}} = \frac{12 - 0.2}{250 \cdot 10^{-3}} = 47.2 \,\, {
m Om}$$

Ближайший стандартный номинал $R_{\rm H} \approx 47~{\rm Om}$.

Схема токового зеркала Уилсона

Построим в LTspice одноименную схему

Рис. 8: Схема токового зеркала Уилсона

Зависимость тока через нагрузку от напряжения на нагрузке

Построим график зависимости тока через нагрузку от напряжения на нагрузке. Зададим в источник питания DC 0, поставим на схему .dc Vin $0\ 15.7\ 0.01$. С помощью net обозначим VH

Рис. 9: Зависимость $I_{\rm H}$ от $U_{\rm H}$

Имеем два последовательных перехода база-эмиттер, что дает в сумме падение напряжения на 1.4 В. На графике видим, что транзисторы открываются в районе 1.4 В, до этого момента ток нулевой.

Зависимость тока через нагрузку и тока на токозадающем устройстве от напряжения питания

Построим график зависимости тока через нагрузку и тока на токозадающем устройстве от напряжения питания. С помощью net обозначим Vпит. Синяя траектория – зависимость тока через нагрузку от напряжения питания, красный – зависимость тока на токозадающем устройстве от напряжения питания

Рис. 10: Зависимости $I_{\rm H}\left(U_{\rm пит}\right),\ I_{\rm пит}\left(U_{\rm пит}\right)$

До напряжения в 1.4 В транзисторы закрыты, ток нулевой. После они входят в активный режим, ток растет линейно. Максимумы $I_{\rm H}\approx 251$ мA, $I_{\rm пит}\approx 574$ мA. Ток на токозадающем устройстве больше, так как включает в себя оба токовых плеча и базовые токи транзисторов. Для достижения $I_{\rm H}=250$ мА потребовалось подать напряжение на 1 В больше, чем в случае с токовым зеркалом с компенсацией теплового дрейфа.

Ток через нагрузку при различных сопротивлениях нагрузки

Построим графики зависимости тока от напряжения питания при различных сопротивлениях нагрузки. Проверим $R_{\rm H}=10,10^2,10^3,10^4$ Ом. Красный график – подаваемое напряжение питания, синий – ток нагрузки

При увеличении сопротивления нагрузки ток нагрузки уменьшается. В сравнении с токовым зеркалом с компенсацией теплового дрейфа падение тока более заметно. Транзистор быстрее уходит в насыщение и не может поддерживать заданный ток – не хватает напряжения.