Fixed Effects Regression

Prof. Tzu-Ting Yang 楊子霆

Institute of Economics, Academia Sinica 中央研究院經濟研究所

September 24, 2024

Observables and Unobservables Confounding Factors

- The main problem we face in estimating causal effect is that:
 - Each individual, firm, state, or country can select treatment
 - This choice could be correlated with factors that affect the outcomes of interest, which results in selection bias
- So far the key strategy to obtain causal effect was to control for observed confounding factors
- Yet, what if important confounding factors are unobserved?

Fixed Effects Regression: Main Idea

Fixed Effects Regression

- If unobserved confounding factors are time-invariant
 - If we have multiple time periods panel data or cross-sectional data
 - We can still obtain causal effect by estimating a regression that include many fixed effects in the model

- Suppose we are interested in the question whether joining union increase workers' earnings
- We might want to estimate the following regression:

$$Y_{it} = \delta + \alpha D_{it} + A'_{i}\gamma + X'_{it}\beta + \varepsilon_{it}$$

- Y_{it} is outcome variable: earnings
- D_{it} is treatment variable: union status
- \bullet X_{it} are observed time-varying covariates: experience, education
- A_i is unobserved but fixed confounder (time-invariant): ability or personality
- Assume $E[\varepsilon_{it}|A_i,X_{it}]=0$

 This regression equation implies the following potential outcomes:

$$Y_{it}^{0} = \delta + A_{i}'\gamma + X_{it}'\beta + \varepsilon_{it}$$
$$Y_{it}^{1} = Y_{it}^{0} + \alpha$$

• Because A_i is unobservable, we are not able to directly include it in the regression

$$Y_{it} = \delta + \alpha D_{it} + X'_{it}\beta + \underbrace{A'_{i}\gamma + \varepsilon_{it}}_{u_{ir}}$$

- If A_i is correlated with union status D_{it}
 - There is a correlation of D_{it} with the error term u_{it}
 - This will lead to omitted variable bias

- Address this problem by including λ_i in the regression
 - $\lambda_i = \delta + A_i' \gamma$
 - That is, we can consider λ_i as individual-specific constant term
- We estimate the following regression with individual fixed effects

$$Y_{it} = \lambda_i + \alpha D_{it} + X'_{it}\beta + \varepsilon_{it}$$
 (1)

- Therefore, D_{it} and the error term ε_{it} would be uncorrelated
- ullet Then, OLS estimate of α is unbiased

Fixed Effects Regression

Estimation

- In practice, there are two ways of estimating this fixed effects model:
 - 1. Demeaning approach (sometimes called "within estimator")
 - 2. Regression with 'N-1 dummy variables"

Demeaning Approach

1 Calculate individual averages of the outcome variable and all covariates (over time)

$$\bar{Y}_i = \bar{\lambda}_i + \alpha \bar{D}_i + \bar{X}_i' \beta + \bar{\varepsilon}_i$$

2 Subtract these averages from regression equation (1):

$$Y_{it} - \bar{Y}_i = \alpha (D_{it} - \bar{D}_i) + (X_{it} - \bar{X}_i)'\beta + (\varepsilon_{it} - \bar{\varepsilon}_i)$$

- Note that λ_i drops out since it is time-invariant
- Therefore the error ε_{it} and the treatment D_{it} would no longer be correlated.

$$Y_{it} = \delta + \sum_{i=2}^{N} \rho_i B_i + \alpha D_{it} + X'_{it} \beta + \varepsilon_{it}$$

- B_i is a dummy indicating individual i
- We only include N-1 individual dummies to avoid collinearity
- We show that this representation is actually the same as a regression with fixed effects λ_i

$$Y_{it} = \lambda_i + \alpha D_{it} + X'_{it}\beta + \varepsilon_{it}$$

 Suppose we have three individuals in the sample so that we estimate the following regression:

$$Y_{it} = \delta + \beta_2 B_2 + \beta_3 B_3 + \alpha D_{it} + \varepsilon_{it},$$

- $B_2 = 1$ indicates this sample is individual 2, $B_2 = 0$ otherwise
- $B_3 = 1$ indicates this sample is individual 3, $B_3 = 0$ otherwise
- Dit is a continuous treatment variable (e.g. schooling years)

• For individual 2, the regression can be:

$$Y_{2t} = \delta + \beta_2 B_2 + \alpha D_{2t} + \varepsilon_{2t}$$

= $(\delta + \beta_2 B_2) + \alpha D_{2t} + \varepsilon_{2t}$

or

$$Y_{2t} = \lambda_2 + \alpha D_{2t} + \varepsilon_{2t}$$

• where $\lambda_2 = \delta + \beta_2 B_2$

• For individual 3, the regression can be:

$$Y_{3t} = \delta + \beta_3 B_3 + \alpha D_{3t} + \varepsilon_{3t}$$
$$= (\delta + \beta_3 B_3) + \alpha D_{3t} + \varepsilon_{3t}$$

or

$$Y_{3t} = \lambda_3 + \alpha D_{3t} + \varepsilon_{3t}$$

• where $\lambda_3 = \delta + \beta_3 B_3$

Graphical Representation

- Since regression with 'N-1 dummy variables" and regression with fixed effects are the same
- Thus, when there are not many groups (e.g. state, year, county), we usually control these fixed effects by simply including many dummy variables

Fixed Effects Regression

General Form

 We can include many types of fixed effects to control for all possible time-invariant confounding factors or common time factors

$$Y_{ist} = \lambda_i + \theta_t + \kappa_s + \alpha D_{ist} + X'_{ist}\beta + \varepsilon_{ist}$$

- λ_i is called a "individual fixed effect" or "individual effect"
 - It is the constant (fixed) effect of being in individual i
 - Example: ability or preference
- κ_s is called a "state fixed effect" or "state effect"
 - It is the constant (fixed) effect of being in state s
 - Example: culture or geographical features
- θ_t is called a "year fixed effect" or "year effect"
 - It is the constant (fixed) effect of being in year t
 - Example: business cycle or general time trend

Fixed Effects Regression: STATA Example

Fixed Effects Regression: STATA Example

- See fixed_effects.do
- Use cps_2014_16.dta

STATA Command: reg

Example:

```
reg incwage college i.statefip i.year, vce(robust)
```

 You can simply use reg by including several sets of dummy variables to get fixed effects estimation

STATA Command: areg

Syntax:

```
areg depvar [indepvars] [if] [in] [weight], absorb(
    varname) [options]
```

Example:

```
areg incwage college i.year, absorb(statefip) vce( robust)
```

- areg: Implement regressions with one level of fixed effects
- absorb(varname): Specifies the categorical variable, which is to be included in the regression as if it were specified by dummy variables
- Note that areg can only include one fixed effect using absorb(varname)
- For other types of fixed effects, you need to include dummy variables by yourself

STATA Command: reghdfe

 To include many levels of fixed effects, we can use this new command reghdfe

```
ssc install reghdfe
```

 For more details, please visit this website: http://scorreia.com/software/reghdfe/index.html

STATA Command: reghdfe

Syntax:

```
reghdfe depvar [indepvars] [if] [in] [weight] ,
absorb(absvars) [options]
```

Example:

```
reghdfe incwage college, absorb(statefip year) vce( robust)
```

- reghdfe: Implement regressions with many levels of fixed effects
- absorb(varname): Specifies the categorical variable, which is to be included in the regression as if it were specified by dummy variables
- Note that reghdfe can include many level of fixed effects using absorb(varname)

