Review Quiz - Addressing Modes of the AVR Architecture

Due No due date Points 12 Questions 12 Time Limit None
Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	77 minutes	8 out of 12

Submitted Dec 7 at 20:41

Question 1 1 / 1 pts

Deduce Data Value

Consider the following data definition in an AVR assembly program:

data: .byte 1, 2, 0x??, 4

Assume that register \underline{Y} has the address of label data. The following instructions are executed:

LD R12, Y

LDD R13, Y + 2

ADD R12, R13

ADD R12, R12

The final value of R12 is 12. What was the definition of the third byte in the data area?

Correct!

5

6

11

It cannot be determined with the given information.

Yes .. BECAUSE: LD R12, Y -> R12 = 1 LDD R13, Y -> R13 = X ADD R12, R13 -> R12 = 1 + X ADD R12, R12 -> R12 = 2 + 2x = 12 => x = 5

Question 2 1 / 1 pts

Effect of Addressing Mode

Consider the following data definition in an AVR assembly program:

Suppose that register x has been pre-loaded with the address of the label data and the following instructions are executed:

LD R12, X+

LD R13, X+

LD R14, -X

LD R15, -X

What are the values stored in R12 to R15 respectively?

1, 2, 3, 2

Correct!

1, 2, 2, 1

0 1, 1, 1, 1

Yes, BECAUSE: The first two instructions access 1, 2, and the third 2 again, and then 1.

Question 3 0 / 1 pts

Effect of Addressing Mode

Consider the following data definition in an AVR assembly program:

```
data: .byte 1, 2, 3, 4 copy: .space 4, 0
```

Suppose that register z and y have been pre-loaded with the address of the labels \mathtt{data} and \mathtt{copy} respectively. The following instructions are executed:

```
LDD R12, Z + 2
STD Y + 1, R12
LDD R12, Z + 3
STD Y + 3, R12
LDD R12, Z + 1
STD Y + 2, R12
LD R12, Z
ST Y, R12
```

What values end up stored in the positions in address copy?

ou Answered

0 3, 4, 2, 1

1, 3, 4, 2

)	rre	ct	Δι	nsi	wer

1, 3, 2, 4

None of the above

Question 4

0 / 1 pts

Effect of Addressing Mode

Consider the following data definition in an AVR assembly program:

data: .space 4, 0

Suppose that register x has been pre-loaded with the address of the label $_{\mathtt{data}}$ and registers $_{\mathtt{R12}}$ through $_{\mathtt{R15}}$ have values 1, 2, 3, and 4 respectively. The following instructions are executed:

STD Y + 2, R12

STD Y + 1, R13

ST Y+, R14

ST Y+, R15

What values end up stored in the positions in address data?

orrect Answer

0 3, 4, 1, 0

2, 1, 0, 0

0, 0, 3, 4

ou Answered

The instructions are incorrect

Question 5

0 / 1 pts

Equivalent Operand Access

Consider the following data definition in an AVR assembly program:

```
data: .byte 1, 2, 3, 4
data2: .byte 5
```

Assume that registers y and x have the address of labels data and data2 respectively. What would be an equivalent instruction to

LDD R12, Y + 4

orrect Answer

- LDS R12, data2
- DS R12, data + 4

ou Answered

- DDD R12, X
- LDS R12, data

Question 6

1 / 1 pts

Value of Address Register

Assume that register \underline{y} has initially the address 0×0020 . The following instructions are executed:

LDD R12, Y + 3

LDD R13, Y + 2

ADD R12, R13

LD R13, Y+

ADD R12, R13

What is the value of register y after the execution?

7/12/2020	Review Quiz - Addressing Modes of the AVR Architecture: ELEC1601/ELEC9601 Introd
	Ox0020
Correct!	① 0x0021
	Ox0025
	Ox0026

Yes.. BECAUSE: The only instruction modifying the register is the next to last that increases its value by 1.

	Question 7	/ 1 pts
	Which addressing mode	
	What addressing mode is used to obtain the second operand of following instructions?	the
	LDI R16, lo8(label) LDI R17, hi8(label)	
	Register Direct	
Correct!	Immediate	
	Register Indirect	
	None of the above	
	Yes BECAUSE: the second operands are constants (extracted from the program).	

Correct!

1 / 1 pts **Question 8** Address Manipulation Consider the following data definition in an AVR assembly program: data: .space 2, 0 Assume that the address of label data is 0xABCD. What is the content of the previous space after executing the following instructions: LDI R26, lo8(data) LDI R27, hi8(data) ST X+, R26 ST X, R27 OxAB, OxCD 0xCD, 0xAB The sequence of instructions is incorrect. Impossible to tell with the given information.

Yes. BECAUSE: Register X has 0xABCD, but we store first the

least significant part 0xCD and then the most significant 0xAB.

Question 9

Data Manipulation

Consider the following data definition in an AVR assembly program:

data: .byte 1, 2, 3, 4, 5

Assume that the address of label data is loaded in register Z. What are the values in the previous locations after executing the following instructions:

LDD R12, Z + 1

STD Z + 2, R12

LDD R12, Z + 3

STD Z + 1, R12

LDD R12, Z + 2

STD Z + 3, R12

- 1, 2, 3, 4, 5
- 1, 4, 2, 4, 5
- 1, 2, 2, 2, 5

Correct!

0 1, 4, 2, 2, 5

Yes.

BECAUSE: Z + 2 <- Z + 1 (2)

Z + 1 < -Z + 3(4)

Z + 3 < -Z + 2(2)

Question 10

1 / 1 pts

Handling Addresses

Assume that register Y has initially the address 0x03FE. What is the final value of R28 after executing the following instructions?

LDD R12, Y + 2

LDD R13, Y + 3 LD R14, Y+ LD R15, Y+

Correct!

0x00

0x0400

0x05

0x0405

Yes. BECAUSE: Only two last instructions modify Y and increase by 2. Question asks about R26 only, not the whole register

Question 11

0 / 1 pts

Handling Addresses

Assume that register x has initially the address 0×00020 to access some data structure. You now want to access a data structure with fields at displacement 2, 56 and 60 from address 0×0020 . What would you do?

ou Answered

Access the data with the instruction ${\tt LDD}$ and displacements 2, 56 and 60.

orrect Answer

Move the address to register ${\tt Y}$ or ${\tt Z}$ and use displacements with the new register.

Add the numbers 2, 56 and 60 to register R26

Correct!

Add the numbers 2, 56 and 60 to register R27

Question 12	1 / 1 pts
Register Changes	
Consider the following data definition:	
data .byte 0, 1, 0, 3	
Assume that register Y has initially the address of label da 0x003F). The rest of the registers in the register file **hav zero**.	•
How many registers in the register file **have changed the after executing the following instructions?	neir value**
LDD R12, Y + 2	
LDD R13, Y + 3	
LD R14, Y+	
LD R15, Y+	
○ Two	
Three	
○ Four	
○ Five	
Yes. BECAUSE: Only second, third and fourth instr ch registers: R12, R14 and Y.	ange