

Dietary Fiber Confers Protection against Flu by Shaping Ly6c⁻ Patrolling Monocyte Hematopoiesis and CD8⁺ T Cell Metabolism

Aurélien Trompette,^{1,5} Eva S. Gollwitzer,^{1,3,5} Céline Pattaroni,^{1,4} Isabel C. Lopez-Mejia,² Erika Riva,¹ Julie Pernot,¹ Niki Ubags,¹ Lluis Fajas,² Laurent P. Nicod,¹ and Benjamin J. Marsland^{1,4,6,*}

Background: Dietary fiber improves intestinal health and protects against chronic inflammatory diseases by dampening immune responses through SCFAs.

Motivation: To address whether fermentable dietary fiber influences antiviral immunity, where the anti-inflammatory property of SCFAs in principle could prevent protective immunity.

Experiments: High-dose influenza A infection feed with control (cellulose) versus high-fiber diet (inulin), and assessed influenza-induced immunopathology, gut microbiome composition, bone marrow hematopoeisis, CD8+ T cells metabolism.

Results:

- a) Dietary fiber protects against influenza induced pathology by altering gut microbial composition and SCFA levels.
- b) Dietary fiber alters bone marrow hematopoiesis and boosts Ly6c⁻ patrolling monocytes, leading to blunted chemokine CXCL1 production in airways and reduced neutrophil-mediated tissue damage.
- c) Dietary fiber increases antiviral immunity through activating CD8+ T cells and altering their metabolism.

Fig. 4 Dietary fiber enhances bone marrow hematopoeisis of Ly6c⁻⁻ patrolling monocytes

Ly6c+ inflammatory monocytes: no change Ly6c- cells increased (in bone marrow and lung)

100

μM Butyrate

Ex vivo differentiation from bone marrow cells to macrophages

Summary

