MATRICE PRODUCTIVE

- Une matrice M de $\mathcal{M}_n(\mathbb{R})$ ou de $\mathcal{M}_{n,1}(\mathbb{R})$ est dite positive si et seulement si tous ses coefficients sont positifs ou nuls. On notera alors $M \geq 0$. Elle est dite strictement positive si et seulement si tous ses coefficients sont strictement positifs. on notera alors M > 0.
- Si M et N sont deux matrices de $\mathcal{M}_n(\mathbb{R})$ ou de $\mathcal{M}_{n,1}(\mathbb{R})$, la notation $M \geqslant N$ (respectivement M > N) signifie $M N \geqslant 0$ (resp M N > 0).
- Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite productive si, et seulement, si elle vérifie les deux conditions suivantes : M est positive et il existe une matrice positive P de $\mathcal{M}_{n,1}(\mathbb{R})$ telle que P MP > 0.

Partie I: Étude d'exemples et propriétés

- 1. (a) En considérant $U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, Montrer que la matrice $A = \frac{1}{3} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ est productive.
 - (b) Montrer que la matrice $B=\left(\begin{array}{ccc} 1 & 4 & 1 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{array}\right)$ n'est pas productive.
- 2. Soit $M \in \mathcal{M}_n(\mathbb{R})$.
 - (a) Montrer que, si M est positive, alors pour toute matrice positive X de $\mathcal{M}_{n,1}(\mathbb{R})$, le produit MX est positif.
 - (b) Réciproquement, montrer que, si, pour toute matrice positive X de $\mathcal{M}_{n,1}(\mathbb{R})$, le produit MX est positif, alors la matrice M est positive.

Partie II: Caractérisation des matrices productives

- 1. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ une matrice productive, et soit $P = (p_i) \in \mathcal{M}_{n,1}(\mathbb{R})$ une matrice positive telles que P AP > 0.
 - (a) Montrer que P > 0.
 - (b) Soit $X = (x_i) \in \mathcal{M}_{n,1}(\mathbb{R})$ telle que $X \geqslant AX$ et soit $c = \min\left\{\frac{x_j}{p_j}/1 \leqslant j \leqslant n\right\} = \frac{x_k}{p_k}$. Établir que $c\left(p_k - \sum_{i=1}^n a_{k,j}p_j\right) \geqslant 0$. En déduire que $c \geqslant 0$ et que X est positive.
 - (c) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ telle que X = AX.
 - i. En remarquant que $-X \ge A(-X)$, montrer que X est nulle.
 - ii. En déduire que $I_n A$ est inversible.
 - (d) Montrer que, pour toute matrice positive X de $\mathcal{M}_{n,1}(\mathbb{R})$, la matrice $Y = (I_n A)^{-1}X$ est positive. (On pourra utiliser **II 1,b**). En déduire que $(I_n A)^{-1}$ est positive.
- 2. Dans cette question, on considère une matrice positive B de $\mathcal{M}_n(\mathbb{R})$ telle que $I_n B$ soit inversible et telle que $(I_n B)^{-1}$ soit positive. on note $V = (I_n B)^{-1}U$, où U est la matrice de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients sont égaux à 1.
 - Montrer que V BV > 0. Conclure.
- 3. Donner une caractérisation des matrices productives.
- 4. Application : Soit M une matrice positive de $\mathcal{M}_n(\mathbb{R})$ telle que $2M^2 = M$. Vérifier que $(I_n M)(I_n + 2M) = I_n$ et en déduire que M est productive.

MATRICE PRODUCTIVE

Partie I: Étude d'exemples et propriétés

- 1. (a) A étant positive et $U AU = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \geqslant 0$, donc A est productive
 - (b) B étant positive. Si B est productive, alors il existe une matrice $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$ telle que X BX > 0. Or $X BX = \begin{pmatrix} -4y z \\ -2x 3z \end{pmatrix} > 0$, alors on doit avoir 0 > 0. Ce qui est impossible
- 2. Posons $M = (a_{ij})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}$
 - (a) Supposons que M est positive et soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ une matrice colonne positive, ainsi $\forall i \in [\![1,n]\!], \ x_i \geqslant 0$. La matrice $MX \in \mathcal{M}_{n,1}(\mathbb{R})$. Pour tout $i \in [\![1,n]\!]$, le coefficient de la matrice MX de position (i,1) vaut $\sum_{k=1}^n a_{ik} x_k$ qui est positif car il est somme des termes positifs
 - (b) Soit $j \in [1, n]$, on pose la matrice colonne $X_j = (\delta_{ij})_{1 \le i \le n} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j$ -ème position

La matrice X_j est positive, ce qui entraı̂ne $MX\geqslant 0$ et comme $MX=\begin{pmatrix} a_{1j}\\ \vdots\\ a_{nj} \end{pmatrix}$, alors $\forall i\in \llbracket 1,n\rrbracket$, $a_{ij}\geqslant 0$. Ainsi on vient de démontrer que $\forall j\in \llbracket 1,n\rrbracket$ et $\forall i\in \llbracket 1,n\rrbracket$ $a_{ij}\geqslant 0$. Donc M est positive

Partie II: Caractérisation des matrices productives

- 1. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ une matrice productive, et soit $P = (p_i)_{1 \leq i \leq n} \in \mathcal{M}_{n,1}(\mathbb{R})$ une matrice positive telles que P AP > 0.
 - (a) Soit $i \in [1, n]$. Le réel $p_i \sum_{k=1}^n a_{ik} p_k$ est le coefficient de la matrice P PA de position (i, 1). Or P PA est strictement positive, donc $p_i \sum_{k=1}^n a_{ik} p_k > 0$, ce qui assure $p_i > \sum_{k=1}^n a_{ik} p_k \geqslant 0$, alors par transitivité $p_i > 0$
 - (b) Par définition de c, on a $\forall j \in [1, n], \ x_j \geqslant \frac{p_j}{p_k} x_k$ (*) et

$$c\left(p_k - \sum_{j=1}^n a_{k,j} p_j\right) = x_k - \sum_{j=1}^n a_{k,j} \frac{p_j}{p_k} x_k$$

$$\stackrel{(*)}{\geqslant} x_k - \sum_{j=1}^n a_{k,j} x_j$$

$$\geqslant 0$$

car le réel $x_k - \sum_{j=1}^n a_{kj} x_j$ est le coefficient de la matrice X - AX de position (k, 1) et par hypothèse $X \geqslant AX$.

MATRICE PRODUCTIVE

- o On sait que $p_k \sum_{j=1}^n a_{k,j} p_j > 0$ et on vient d'avoir $c\left(p_k \sum_{j=1}^n a_{k,j} p_j\right) \geqslant 0$, alors $c \geqslant 0$
- o Soit $j \in [1, n]$. Par définition de c on a $\frac{x_j}{p_j} \geqslant c$ ceci entraine $x_j \geqslant cp_j \geqslant 0$, donc X est positive
- (c) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ telle que X = AX.
 - i. On a $(-X) \ge A(-X)$ et $X \ge AX$, d'après la question précédente, X et -X sont positives par conséquent les coefficients de X sont à la fois tous positifs et tous négatifs. D'où X = 0
 - ii. L'équation $(I_n A)X = 0$ admet une seul solution X = 0, donc $I_n A$ est inversible
- (d) Soit X une matrice colonne positive et posons $Y = (I_n A)^{-1}X$. Alors

$$X = (I_n - A)(I_n - A)^{-1}X$$
$$= (I_n - A)Y$$
$$= Y - AY$$

Comme X est positive, alors $Y - AY \ge 0$, d'après la question II 1,b la matrice Y est positive

- o On vient de montrer que pour toute matrice positive X la matrice $(I_n A)^{-1}X$ est positive, d'après la question II.2 la matrice $(I_n A)^{-1}$ est positive
- 2. Par définition de $V = (I_n B)^{-1}U$, on a $V BV = (I_n B)V = U > 0$
- o Par hypothèse $(I_n B)^{-1}$ et U sont positives, donc d'après la question II.1, V est positive. On conclut alors l'existence d'une matrice positive V telle que V BV > 0
- 3. de II.1 et de II.2. on déduit qu'une matrice positive A est productive si, et seulement si, $I_n A$ est inversible d'inverse positif
- 4. La matrice M étant positive vérifiant $2M^2 = M$ (**). On a

$$(I_n - M)(I_n + 2M) = I_n + M - 2M^2$$

$$\stackrel{(**)}{=} I_n$$

Donc $I_n - M$ est inversible d'inverse $I_n + 2M$ qui est une matrice positive (somme de deux matrice positives!) donc M est productive