Moses

Machine Translation with Open Source Software

Philipp Koehn and Hieu Hoang 2 September 2013

Outline

09:30-10:00 Introduction

10:00-11:00 Hands-on Session — you will need a laptop

11:00-11:30 Break

11:30-12:30 Advanced Topics

ldea 2 0/NB

Basic Idea

Statistical Machine Translation History

around 1990

Pioneering work at IBM, inspired by success in speech recognition

1990s

Dominance of IBM's word-based models, support technologies

early 2000s

Phrase-based models

late 2000s

Tree-based models

Moses History

- 2002 Pharaoh decoder, precursor to Moses (phrase-based models)
- 2005 Moses started by Hieu Hoang and Philipp Koehn (factored models)
- **2006** JHU workshop extends Moses significantly
- 2006-2012 Funding by EU projects EuroMatrix, EuroMatrixPlus
- **2009** Tree-based models implemented in Moses
- 2012-2015 MosesCore project. Full-time staff to maintain and enhance Moses

Moses in Academia

- Built by academics, for academics
- Reference implementation of state of the art
 - researchers develop new methods on top of Moses
 - developers re-implement published methods
 - used by other researchers as black box
- Baseline to beat
 - researchers compare their method against Moses

Developer Community

- Main development at University of Edinburgh, but also:
 - Fondazione Bruno Kessler (Italy)
 - Charles University (Czech Republic)
 - DFKI (Germany)
 - RWTH Aachen (Germany)
 - others...
- Code shared on github.com
- Main forum: support and developer mailing lists
- Main event: Machine Translation Marathon (next week in Prague)
 - annual open source convention
 - presentation of new open source tools
 - hands-on work on new open source projects
 - summer school for statistical machine translation

Open Source Components

- Moses distribution uses external open source tools
 - word alignment: GIZA++, Berkeley aligner, FastAlign
 - language model: SRILM, IRSTLM, RANDLM, KENLM
 - scoring: BLEU, TER, METEOR
- Other useful tools
 - sentence aligner
 - syntactic parsers
 - part-of-speech taggers
 - morphological analyzers

Other Open Source MT Systems

- Joshua Johns Hopkins University http://joshua.sourceforge.net/
- CDec University of Maryland http://cdec-decoder.org/
- Jane RWTH Aachen http://www-i6.informatik.rwth-aachen.de/jane/
- Phrasal Stanford University
 http://nlp.stanford.edu/phrasal/
- Very similar technology
 - Joshua implemented in Java, others in C++
 - Joshua and Jane support only tree-based models
 - Phrasal supports only phrase-based models
- Open sourcing tools increasing trend in NLP research

Moses in Industry

- Distributed with LGPL free to use
- Competitive with commercial SMT solutions (Language Weaver, Google, ...)
- But:
 - not easy to use
 - requires significant expertise for optimal performance
 - integration into existing workflow not straight-forward

Case Studies

European Commission —

uses Moses in-house to aid human translators

Autodesk —

showed productivity increases in translating manuals when post-editing output from a custom-build Moses system

Systran —

developed statistical post-editing using Moses

Asia Online —

offers translation technology and services based on Moses

Many others ...

World Trade Organisation, Adobe, Symantec, WIPO, Sybase, Safaba, Bloomberg, Pangeanic, KatanMT, Capita, ...

Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Options

Many translation options to choose from

Phrase Translation Options

- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order
- → Search problem solved by heuristic beam search

consult phrase translation table for all input phrases

Decoding: Start with Initial Hypothesis 15

er	geht	ja	nicht	nach	hause
		-			

initial hypothesis: no input words covered, no output produced

Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis

Decoding: Find Best Path

backtrack from highest scoring complete hypothesis

Computational Complexity

- The suggested process creates exponential number of hypothesis
- Reduction of search space: pruning
- ightarrow Decoder may not find the model-best translation

Factored represention of words

	Input	Output	
word			word
lemma		\bigcirc	lemma
part-of-speech	—		part-of-speech
morphology			morphology
word class	\bigcirc		word class

- Goals
 - generalization, e.g. by translating lemmas, not surface forms
 - richer model, e.g. using syntax for reordering, language modeling)

Factored Model

Example:

Decomposing the translation step

Translating lemma and morphological information more robust

Syntax Models

String to String

John misses Mary

⇒ Marie manque à Jean

Tree to String

String to Tree

John misses Mary

Tree to Tree

Advanced Topics

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Hands-On Session

Advanced Topics

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Data

- ullet Parallel corpora o translation model
 - sentence-aligned translated texts
 - translation memories are parallel corpora
 - dictionaries are parallel corpora
- ullet Monolingual corpora o language model
 - text in the target language
 - billions of words easy to handle

Domain Adaptation

- The more data, the better
- The more in-domain data, the better (even in-domain monolingual data very valuable)
- Multiple models
 - train a translation model for each domain corpus
 - train a language model for each domain corpus
 - use all, tune weights for each model
 - alternative: interpolate language model and translation model
- Always tune towards target domain

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Speed

• Easy speed-up: multi-threaded decoding

--threads NUM

- Does not currently work for:
 - IRSTLM
 - randLM
- Also parts of the training pipeline multi-threaded (word alignment, phrase table building)

Speed vs. Quality

- Decoder search creates very large number of partial translations ("hypotheses")
- ullet Decoding time \sim number of hypotheses created
- ullet Translation quality \sim number of hypothesis created

Hypothesis Stacks

- Phrase-based: One stack per number of input words covered
- Number of hypothesis created = sentence length \times stack size \times applicable translation options

Pruning Parameters

- Regular beam search
 - --stack NUM max. number of hypotheses contained in each stack
 - --ttable-limit NUM max. num. of translation options per input phrase
 - search time roughly linear with respect to each number
- Cube pruning (fixed number of hypotheses are added to each stack)
 - --search-algorithm 1 turns on cube pruning
 - --cube-pruning-pop-limit NUM number of hypotheses added to each stack
 - search time roughly linear with respect to pop limit
 - note: stack size and translation table limit have little impact in speed

42 ON BUILDING

Syntax Hypothesis Stacks

- One stack per input word span
- $\begin{array}{l} \bullet \ \, \text{Number of hypothesis created} = \\ \text{sentence length}^2 \times \text{number of hypotheses added to each stack} \\ \text{--cube-pruning-pop-limit NUM} \quad \text{number of hypotheses added to each stack} \\ \end{array}$

Trade-Off Speed vs Quality

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Reduce Memory Use

Example

Process size

Typical Europarl file sizes:

- Language model
 - 170 MB (trigram)
 - 412 MB (5-gram)
- Phrase table
 - 11GB
- Lexicalized reordering
 - 9.4GB
- \rightarrow total = 20.8 GB

Speed vs. Memory Use

- Load into memory
 - fast decoding
 - large memory usage
 - large load time
- Load-on-demand
 - store indexed model on disk
 - binary format
 - minimal start-up time, memory usage
 - slower decoding

Create Binary Tables

Phrase Table:

Phrase-based

```
export LC_ALL=C
cat pt.txt | sort | ./processPhraseTable -ttable 0 0 - \
    -nscores 4 -out out.file
```

```
export LC_ALL=C ./CreateOnDiskPt 1 1 4 100 2 pt.txt out.folder
```

Hierarchical / Syntax

```
export LC_ALL=C ./CreateOnDiskPt 1 1 4 100 2 pt.txt out.folder
```

Lexical Reordering Table:

```
export LC_ALL=C
processLexicalTable -in r-t.txt -out out.file
```

Language Models (later)

Change ini file

Phrase Table

[feature] PhraseDictionaryBinary name=TranslationModel0 table-limit=20 \ num-features=4 path=/.../phrase-table

Hierarchical / Syntax

```
[feature]
PhraseDictionaryOnDisk name=TranslationModel0 table-limit=20 \
   num-features=4 path=/.../phrase-table
```

Lexical Reordering Table automatically detected

New: Compact Phrase Table

- Memory-efficient data structure
 - phrase table 6-7 times smaller than on-disk binary table
 - lexical reordering table 12-15 times smaller than on-disk binary table
- Stored in RAM
- May be memory mapped
- Train with processPhraseTableMin
- Specify with PhraseDictionaryCompact

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Language Models

- Probability of the output
- ullet Very important in MT, for all SMT models \to improve fluency
- Huge amount of training data easy to obtain
 - monolingual
 - can scrape from websites etc.
- But:
 - training takes a long time
 - large memory requirement during decoding
 - large load time
- IRSTLM and KenLM especially designed to tackle large data issues

IRSTLM

- Developed by FBK-irst, Trento, Italy
- Create a binary format which can be read from disk as needed
 - reduces memory but slower decoding
- Quantization of probabilities
 - reduces memory but lose accuracy
 - probability stored in 1 byte instead of 4 bytes

IRSTLM in Moses

- Compile the decoder with IRSTLM library
 - ./configure --with-irstlm=[root dir of the IRSTLM toolkit]
- Change ini file to use IRSTLM implementation

```
[feature]
IRSTLM name=LMO factor=0 path=/.../lm order=5
```

IRSTLM: Training

- Specialized training for large corpora
 - parallelization
 - reduce memory usage
- Training:

- -n 3 = n-gram order
- -k 10 = split training procedure into 10 steps

IRSTLM: Binary Format

• Create binary format:

compile-lm language-model.srilm language-model.blm

• Load-on-demand:

rename file .mm

KENLM

- Developed by Kenneth Heafield (CMU / Edinburgh / Stanford)
- Fastest and smallest language model implementation
- Compile from LM trained with SRILM

build_binary model.lm model.binlm

• Specify in decoder

KENLM name=LMO factor=0 path=/.../model.binlm order=5

KENLM: Training

 Can train very large language models with limited RAM (on disk streaming)

- -o order = n-gram order
- S memory = How much memory to use.
 - NUM% = percentage of physical memory
 - NUM[b/K/M/G/T] = specified amount in bytes, kilo bytes, etc.

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

• Translation tables for numbers?

f	e	p(f e)
2003	2003	0.7432
2003	2000	0.0421
2003	year	0.0212
2003	the	0.0175
2003	•••	•••

• Instruct the decoder with XML instruction

the revenue for <num translation="2003"> 2003 </num> is higher than ...

Deal with different number formats

er erzielte <num translation="17.55"> 17.55 </num> Punkte .

Specifying Translations with XML

```
./moses -xml-input [exclusive | inclusive | constraint ]
the revenue for <num translation="2003"> 2003 </num> is higher than ...
```

Three types of XML input:

- Exclusive
 Only possible translation is given in XML
- Inclusive Translation is given in XML is in addition to phrase-table
- Constraint
 Only use translations from phrase-table if it match XML specification

Constraint XML

- Specifically for translating terminology
 - consistently translate particular phrase in a document
 - may have learned larger phrase pairs that contain terminology term
- Example:

```
Microsoft <option translation="Windows"> Windows </option> 8 ...
```

• Allows use of phrase pair only if maps Windows to Windows

Placeholders

- Translate:
 - You owe me 100 dollars!
 - You owe me 200 dollars!
 - You owe me 9.56 dollars!
- Problem: need translations for
 - **-** 100
 - 200
 - 9.56
- Some things are better off being handled by simple rules:
 - Numbers
 - Dates
 - Named entities

Placeholders

- You owe me 100 dollars!
- Replace numbers with @num@

```
You owe me @num@ dollars!
```

• Specification

```
You owe me <ne translation="@num@" entity="100">@num@</ne> dollars!
```

Walls and Zones

- Specification of reordering constraints
- Zone
 sequence to be translated without reordering with outside material
- Wall
 hard reordering constraint, no words may be reordered across
- Local wall wall within a zone, not valid outside zone

Walls and Zones: Examples

• Requiring the translation of quoted material as a block

Hard reordering constraint

```
Number 1 : <wall/> the beginning .
```

Local hard reordering constraint within zone

```
A new plan <zone> ( <wall/> maybe not new <wall/> ) </zone> emerged .
```

Nesting

```
The \langle zone \rangle " new \langle zone \rangle ( old ) \langle zone \rangle " \langle zone \rangle proposal .
```

Preserving Markup

How do you translate this:

```
<h1>My Home Page</h1>
I really like to <b>eat</b> chicken!
```

• Solution 1: XML translations, walls and zones

```
<x translation="<h1>"/> <wall/> My Home Page <wall/>
<x translation="</h1>"/>

I really like to <zone><x translation="<b>"/> <wall/> eat <wall/>
<x translation="</b>"/> </zone> chicken!
```

(note: special XML characters like < and > need to be escaped)

Preserving Markup

- Solution 2: Handle markup externally
 - track word positions and their markup

Ι	really	like	to	<b $>eat$	chicken	!
1	2	3	4	5	6	7
_	-	-	_		-	_

translate without markup

I really like to eat chicken!

- keep word alignment to source

re-insert markup

Ich esse wirklich gerne Hühnchen!

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Example: Misspelt Words

• Misspelt sentence:

The room was *exellent but the hallway was *filty .

- Strategies for dealing with spelling errors:
 - Create correct sentence with correction
 - × problem: if not corrected properly, adds more errors
 - Create many sentences with different corrections
 - × problem: have to decode each sentence, slow

Confusion Network

The room was *exellent but the hallway was *filty .

Input to decoder:

Let the decoder decide

• Correct sentence

Trung Quốc cảnh báo Mỹ về luật tiền tệ

Something a non-native person might type

Trung Quoc canh bao My ve luat tien te

Confusion network

Confusion Network Specification

Argument on command line

 $./{\tt moses}$ -inputtype 1

Input to moses

```
the 1.0
room 1.0
was 1.0
excel 0.33 excellent 0.33 excellence 0.33
but 1.0
the 1.0
hallway 1.0
was 1.0
guilty 0.5 filthy 0.5
```

Lattice

Example: Chinese Word Segmentation

• Unsegmented sentence

硬质合金号称"工业牙齿"

• Incorrect segmention

硬质 合 金 号称 "工 业牙 齿 "

• Correct segmention

硬质合金号称"工业牙齿"

Lattice

Input to decoder:

Let the decoder decide

Example: Compound Splitting

• Input sentence

einen wettbewerbsbedingten preissturz

• Different compound splits

• Let the decoder decide

Lattice Specification

Command line argument

./moses -inputtype 1

Input to Moses (PLF format - Python Lattice Format)

```
(
 ('einen', 1.0, 1),
 ('wettbewerbsbedingten', 0.5, 2),
 ('wettbewerbs', 0.25, 1),
 ('wettbewerb', 0.25, 1),
 ('bedingten', 1.0, 1),
 ('preissturz', 0.5, 2),
 ('preis', 0.5, 1),
 ('sturz', 1.0, 1),
),
```

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

N-Best List

Input

es gibt verschiedene andere meinungen .

Best Translation

there are various different opinions.

Next nine best translations

there are various other opinions .
there are different different opinions .
there are other different opinions .
we are various different opinions .
there are various other opinions of .
it is various different opinions .
there are different other opinions .
it is various other opinions .
it is a different opinions .

Uses of N-Best Lists

- Let the translator choose from possible translations
- Reranker
 - add more knowledge sources
 - can take global view
 - coherency of whole sentence
 - coherency of document
- Used to tune component weights

N-Best Lists in Moses

Argument to command line

./moses -n-bestlist n-best.file.txt [distinct] 100

Output

```
0 ||| there are various different opinions . ||| d: 0 lm: -21.6664 w: -6 ... ||| -113.734
0 ||| there are various other opinions . ||| d: 0 lm: -25.3276 w: -6 ... ||| -114.004
0 ||| there are different different opinions . ||| d: 0 lm: -27.8429 w: -6 ... ||| -117.738
0 ||| there are other different opinions . ||| d: -4 lm: -25.1666 w: -6 ... ||| -118.007
0 ||| we are various different opinions . ||| d: 0 lm: -28.1533 w: -6 ... ||| -118.142
0 ||| there are various other opinions of . ||| d: 0 lm: -33.7616 w: -7 ... ||| -118.153
0 ||| it is various different opinions . ||| d: 0 lm: -29.8191 w: -6 ... ||| -118.222
0 ||| there are different other opinions . ||| d: 0 lm: -30.426 w: -6 ... ||| -118.395
0 ||| it is various other opinions . ||| d: 0 lm: -32.6824 w: -6 ... ||| -118.434
```

Search Graph

Input

er geht ja nicht nach hause

• Return internal structure from the decoder

ullet Encode millions of other possible translations (every path through the graph = 1 translation)

Uses of Search Graphs

- Let the translator choose
 - Individual words or phrases
 - 'Suggest' next phrase
- Reranker
- Used to tune component weights
 - More difficult than with nbest list

[1] New probe into US attorney affair >>

Neuer Vorstoß in den USA Anwalt neue Affäre sonde (9 edits)

der

zu amerikanische

der

nach die

Sache

haben

Geschichte

das

Search Graphs in Moses

Argument to command line

./moses -output-search-graph search-graph.file.txt

Argument to command line

```
0 hyp=0 stack=0 forward=36 fscore=-113.734
0 hyp=75 stack=1 back=0 score=-104.943 ... covered=5-5 out=.
0 hyp=72 stack=1 back=0 score=-8.846 ... covered=4-4 out=opinions
0 hyp=73 stack=1 back=0 score=-10.661 ... covered=4-4 out=opinions of
```

- hyp hypothesis id
- stack how many words have been translated
- score total weighted score
- covered which words were translated by this hypothesis
- out target phrase

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Incremental Training

Incremental Training

- Incremental word alignment
 - requires modified version of GIZA++ (available at http://code.google.com/p/inc-giza-pp/)
 - only works for HMM alignment (not the common IBM Model 4)
- Translation model is defined by parallel corpus

```
PhraseDictionaryDynSuffixArray \
   source=/.../corpus.f target=/.../corpus.e \
   alignment=/.../model/aligned
```


- Uses original word alignment models (with additional model files stored after training)
- Incremental GIZA++ loads model
- New sentence pairs is aligned on the fly
- Typically, GIZA++ processes are run in both directions, symmetrized

- Translation table is stored as word-aligned parallel corpus
- Update = add word aligned sentence pair
- Updating a running Moses instance via XML RPC

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Phrase-Based Model

- Advantages
 - fast: under half a second per sentence for fast configuration
 - low-memory requirement
 - * 200-300MB for lowest configuration
 - * suitable for netbooks and mobile devices
 - outperform more complicated models for many language pairs
 - * especially for related languages pairs
- Command line

./moses -f moses.ini -i in.txt > out.txt

Output

there are various different opinions .

Hierarchical Models

Advantages

- able to model non-contiguous phrases
 - ne..pas \rightarrow not
- low-memory requirement
 - 200-300MB for lowest configuration
 - suitable for netbooks and mobile devices
- outperform phrase-based models when translating between widely different languages
 - Chinese-English consistently better with hierarchical model
 - better at medium range re-ordering
- Linguistically motivated

Disadvantages

- slower
 - 0.5 2 sec for fastest configuration
- more memory requirement
 - 1-2GB ram
- more disk usage
 - translation model $\times 10$ larger than phrase-based

Command line

./moses-chart -f moses.ini -i in.txt > out.txt

Syntax Models

- Hierarchical model + use of syntactic information (constituency parser, chunkers)
- Advantage
 - Can use outside linguistic information
 - promises to solve important problems in SMT, eg. long-range reordering
- Disadvantages
 - difficult to get right
 - for many language pairs still worse than phrase-based and hierarchical models
 - need syntactic parse information
 - * unreliable
 - * available only for some languages
 - * not designed for machine translation


```
NP PUNC
NE ADJA NN ?
Musharrafs letzter Akt
```

```
- <tree label="TOP">
    - <tree label="NP">
        <tree label="NE"> Musharrafs </tree>
        <tree label="ADJA"> letzter </tree>
        <tree label="NN"> Akt </tree>
        </tree>
        <tree label="PUNC"> ? </tree>
        </tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree></tree>
```

Phrase-Based Model Training

Command line

Model

```
Bndnisse ||| alliances ||| 1 1 1 1 2.718 ||| ||| 1 1
General Musharraf betrat am ||| general Musharraf appeared on ||| 1 1 1 1 2.718 ||| ||| 1 1
```

Hierarchical Model Training

Command line

Example rule from model

Bündnisse [X][X] Kräften [X] ||| alliances [X][X] forces [X] ||| 1 1 1 1 2.718 ||| 1-1 ||| 0.0526316 0.0526316

Visualization of rule

Tree-to-String Model Training

Command line

- Example r...'a from modal Bündnisse [PP][X] [NP] ||| alliances [PP][X] [X] ||| 1 1 1 1 2.718 ||| 1-1 ||| 1 1
- Visualization of rule

String to Tree Model Training

Command line

- Example rule from model von [X][NPB] und [X][NPB] [X] ||| with [X][NPB] and [X][NPB] [PP] ||| ...
- Visualization of rule

Tree-to-Tree Model Training

Command line

train-model.perl ... -source-syntax -target-syntax

- Example rule from model seine Stellung und Manahmen [CNP] ||| his position and actions [NPB] ||| ...
- Visualization of rule

Syntax Models Decoding in Moses

• String-to-string (hierarchical) or string-to-tree

```
./moses-chart -f moses.ini -i in.txt > out.txt
```

• Tree-to-string or tree-to-tree

```
./moses-chart -f moses.ini -i in.txt -inputtype 3 > out.txt
```

Advanced Features

- Data and domain adaptation
- Speed vs. quality
- Speed vs. memory use
- Language models
- Instructions to decoder
- Input formats
- Output formats
- Incremental updating
- Translation models
- Experiment management system

Running Experiments

Execute a lot of scripts

```
tokenize < corpus.en > corpus.en.tok
lowercase < corpus.en.tok > corpus.en.lc
...
mert.perl ....
moses ...
mteval-v13.pl ...
```

Change a part of the process, execute everything again

```
tokenize < corpus.en > corpus.en.tok
lowercase < corpus.en.tok > corpus.en.lc
...
mert.perl ....
moses ...
mteval-v13.pl ...
```


- One configuration file for all settings: record of all experimental details
- Scheduler of individual steps in pipeline
 - automatically keeps track of dependencies
 - on single machine, multi-core machines, GridEngine clusters
 - parallel execution
 - crash detection
 - automatic re-use of prior results
- Fast to use
 - set up a new experiments in minutes
 - set up a variation of an experiment in seconds

CORPUS:nc

Workflow automatically generated by experiment.perl

How does it work?

- Write a configuration file (typically by adapting an existing file)
- Execute:

experiment.perl -config config

Web Interface

All Experimental Setups

ID	User	Task	Directory
<u>97</u>	pkoehn	Acquis Truecased	/group/project/statmt2/pkoehn/acquis-truecase
<u>96</u>	pkoehn	Chinese-English AGILE 2008	/group/project/statmt2/pkoehn/agile08-chinese
<u>95</u>	miles	Randlm testing	/group/project/statmt7/miles/experiments /ep-enfr/work
<u>94</u>	joseph	Proj2008 Impl.Adapted experiment(fr- en)for News Comm.	/group/project/statmt2/joseph/experimentJo/task6
<u>93</u>	joseph	Proj2008 Impl.Baseline experiment(fr- en)for News Comm.	/group/project/statmt2/joseph/experimentJo/task5
<u>92</u>	jschroe1	FR-EN System Combination Components	/group/project/statmt9/josh/experiments /fr-syscomb/work

List of experiments

List of Runs

Task: WMT10 German-English (pkoehn)

Wiki Notes | Overview of experiments | /fs/bragi2/pkoehn-experiment/wmt10-de-en

compare	ID	start	start end avg		newstest2009		newstest2010	
⊟ cfglparlimg	[1042-16] 11+analysis	16 May	16 May	BLEU-c: 21.74 BLEU: 22.91	21.03 (1.002) 22.30 (1.002)	<u>A</u>	22.45 (1.041) 23.51 (1.041)	<u>A</u>
□ cfglparlimg	[1042-15] 11+Internal emplus test set	21 Apr	crashed	-	-		-	
□ cfglparlimg	[1042-14] 9+interpolated-tm.lm- weighted	21 Feb	21 Feb 9: 0.239258 -> 0.239296	-	20.81 (1.003) 22.06 (1.003)	<u>A</u>	-	
⊟ <u>cfglparlimg</u>	[1042-13] 9+only-ep	21 Feb	21 Feb 13: 0.235046 -> 0.235053	-	20.42 (1.002) 21.69 (1.002)	<u>A</u>	-	
efalparlima	[1042-12] 9+only-nc	21 Feb	21 Feb 7: 0.222237 ->	-	18.96 (1.002) 20.16	<u>A</u>	-	

Analysis: Basic Statistics

Coverage				Phrase Segmentation						
	mo	del	corpus		1	2	3	4+		
	0 2	047 (3.1%)	1708 (2.6%)	1 to	26897 (40.7%)	2145 (3.2%)	278 (0.4%)	90 (0.1%)		
	1	738 (1.1%)	518 (0.8%)	2 to	4144 (6.3%)	14414 (21.8%)	2518 (3.8%)	432 (0.7%)		
	2-5 1	483 (2.2%)	818 (1.2%)	3 to	639 (1.0%)	3522 (5.3%)	4821 (7.3%)	1272 (1.9%)		
	6+ 61745 (93.5%) 62969 (95.4%)				158 (0.2%)	855 (1.3%)	1693 (2.6%)	2135 (3.2%)		
	by token / by type /				by word / by phrase					
		<u>detail</u>	<u>s</u>							

• Basic statistics

- n-gram precision
- evaluation metrics
- coverage of the input in corpus and translation model
- phrase segmentations used

Analysis: Unknown Words

grouped by frequency in test set

unknown words

18 E	Eatonville		-	2: Abfertigungen,	1: -Ach, -Minister, -Pakets, -weiss, .docx, .pptx, .xlsx, 1,45,
16 F	Hurston				1.106,55, 1.983,73, 10.365,45, 10.579, 10.809,25, 106,85,
	Barrick		BSA, Bayón,		11,9, 11.743,61, 12.595.75, 14,2, 14,7, 145.29, 16,8, 17.9,
		Garver,	Biztos, Bt.,		18,6, 18.286,90, 1802, 1834, 1880ern, 1920ern, 1925,
12 F	Iema	Harmadik,		Bani, Baugesellschaften,	19252008, 199,61, 2,178, 2,37, 2.400, 26,3, 270.000, 29,2,
12 S	Stewards	Hurstons,	Dal, Embraer,	Bedienkomfort, Bento,	3,30, 3,632, 3,827, 3.0.0, 4,161, 4,357, 42,2, 43,4, 499,
11 (Gebrselassie		FT, Faymann,	Bentos, Bingleys, Bojen,	49sten, 5.839, 506,43, 6,98, 684,81, 729,700, 75,5, 777,68,
	Flamenco	Jos, Jövőért,	Fiatal, Gregg,	Bowens, Bowery, Boyd,	8,25, 8,81, 9,14, 99.80, AAC, ADQ, ART, Aareal,
		Kovalev,	Gélineau, HSV,	Bringley, Browser,	Abbremsens, Abhöraktion, Absenzen, Abwesenheiten,
10 N	Mango	Krever,	Hanzelka,	Bělohlávek, CBGB,	Abwiegen, Abwärtssog, Achronot, Actor, AdSense,
9 (Glitter	Lados,	Illhäusern, Iván,	Carci, Cera, Charts,	AdWords, Aday, Adobe, Adressverzeichnisses, Adwards,
9 T	́ОНЅ	Mercandelli,	Jansen, Jančura,	Chemical, Chigi,	Adélard, Agazio, Akku, Akron, Aktuálně.cz, Alameda,
	ČTÚ	Stehplätze,	Joanne,	Cineast, Comics,	Alatriste, Alcolock, Aleš, Alhambra, Alleinregierer,
		Tauro,	Kemrová, Kid,	Commerzbank, Coppola,	Amazonengebiet, Amil, Aminei, Amministrazione, Amway,
8 (Coles	Tórtola,	Llamazares,	Corker, Cowon, DF,	Andalusierin, Andik, Android, Anděl, Angeklagtem, Ansa,
8 I	Deka	Zenobia,	Loafs, Mangas,	Dinkins, Download,	Anthologie, Antiasthmatika, Apnoe, Aquel, Arabija,
8 (Garci	fon,	Medikamentes,	Drehbewegung,	Arbeiternehmers, Arcandor, Arriaga, Asiana, Askale,
8 I		Évezredért,	Mobil.cz,	Drzewiecki, Drápal,	Astronomen, Aufeislegen, Augäpfel, Ausdrückstärke,
	. I V	Ózd	Mutual,	Düsseldorfer, Ella,	Ausführungs-, Ausgeruhter, Ausscheidungsspiele,

Analysis: Output Annotation

[0.2152] This time was the reason for the collapse on Wall Street .

[ref] This time the fall in stocks on Wall Street is responsible for the drop .

Color highlighting to indicate n-gram overlap with reference translation darker bleu = word is part of larger n-gram match

Analysis: Input Annotation

100 occurrences in corpus, 52 distinct translations, translation entropy: 3.08447

[#4]

- For each word and phrase, color coding and stats on
 - number of occurrences in training corpus
 - number of distinct translations in translation model
 - entropy of conditional translation probability distribution $\phi(e|f)$ (normalized)

Analysis: Bilingual Concordancer

entre autres(560/1554)

```
...d and made recommendations, "inter alia", with respect to the follow...
...on (EC) No 1995 / 2000 imposing, inter alia, a definitive anti @-@ dumping dut...
...ervices. this increase, arising, inter alia, as a result of economic growth, ...
...of paragraph 1 the Commission may, inter alia, bring forward:
... of stocks of obsolete pesticides, inter alia, by supporting projects aimed at s...
...wn rules of procedure which shall, inter alia, contain provisions for convening...
...uch specific agreements may cover, inter alia, financing provisions, assignment...
...he internal market and concerning, inter alia, health and environmental protecti...
...e product concerned) originating, inter alia, in Belarus and Russia (the count...
...e product concerned) originating, inter alia, in India.
```

```
... des recommandations concernant , entre autres , les questions spécifiques suiva...
...995 / 2000 du Conseil instituant , entre autres , un droit antidumping définitif ...
....nsports . cette augmentation , due entre autres facteurs à la croissance économi...
...aragraphe 1 , la Commission peut , entre autres , présenter :
...r les stocks de vieux pesticides , entre autres en soutenant des projets à cet ef...
...lement intérieur , qui contient , entre autres dispositions , les modalités de c...
...ords spécifiques peuvent porter , entre autres , sur les mécanismes financiers s...
...hé intérieur et qui concernent , entre autres , la santé et la protection de l&...
...it concerné " ) originaire , entre autres , du Belarus et de Russie ( ci @-@...
...t concerné " ) originaires , entre autres , de l ' Inde .
```

notamment(447/1554)

```
... the EU budget by addressing " inter alia " the problems of accountabili...

...ates , the Commission has adopted , inter alia , Decision 2003 / 526 / EC ( 3 ) wh...

...d equitable development involving , inter alia , access to productive resources , ...

...ertain products which could be used inter alia , as equipment on board ships but w...

...nexes , taking into consideration , inter alia , available scientific , technical ...

...w that it is absolutely necessary , inter alia , because of enlargement , to find ...

...paragraphs 1 and 2 as appropriate , inter alia , by conducting studies and compili...

...liability and efficiency , caused , inter alia , by insufficient technical and adm...

...in the Programme shall be pursued , inter alia , by the following means:
```

...get de l' Union , ce qui passe notamment par la résolution du problème de r...

...es États membres , la Commission a notamment arrêté la décision 2003 / 526 / C...

... durable et équitable , impliquant notamment l' accès aux ressources produc...

...usceptibles d' être utilisés notamment comme équipements mis à bord , mai...

...ion et à ses annexes , compte tenu notamment des informations scientifiques , tec...

...os; il est absolument nécessaire , notamment en raison de l' élargissement ...

...ragraphes 1 et 2 le cas échéant , notamment en menant des études et en compilan...

... et d' efficacité en raison , notamment , d' une interopérabilité tec...

...nis dans le programme , il convient notamment de mettre en oeuvre les moyens ci @-...

translation of input phrase in training data context

Analysis: Alignment

Phrase alignment of the decoding process

(red border, interactive)

Analysis: Tree Alignment

Uses nested boxes to indicate tree structure (red border, yellow shaded spans in focus, interactive) for syntax model, non-terminals are also shown

Analysis: Comparison of 2 Runs

annotated sentences

sorted by order order worse display fullscreen showing 5 more all

identical same better worse

2348 51 57 69

93% 2% 2% 3%

[2143:0.2974] In Austria, Haider and Co. are ready to govern to prevent a red and black coalition.
[2143:0.1754] In Austria, Haider and Co. are prepared to rule to prevent a red and black coalition.

[ref] Haider and his party are ready to govern Austria in order to avoid red @-@ black coalition .

[2165:0.3174] The SPÖ wants to show that the cooperation of both parties is possible - in some countries and in the social partnership that is already the case.

[2165:0.2061] The SPÖ wants to show that a cooperation of both parties is possible - in some countries and in the social partnership that is already the case.

[ref] SPÖ would like to show that the cooperation of the two parties is possible - it does exist in some of the provinces as well as in social partnership.

Different words are highlighted

sortable by most improvement, deterioration

Acknowledgements

Moses Developers

Abhishek Arun Amittai Axelrod Barry Haddow Christian Hardmeier Edmund Huber Frederic Blain Hieu Hoang Jean-Baptiste Fouet Abby Levenberg Mauro Cettolo Mark Fishel Nicola Bertoldi Phil Williams Joao Lus Rosas Sara Stymne Yizhao Ni Suzy Howlett Alexander Fraser

Adam Lopez Ankit Srivastava Ondrej Bojar Christian Federmann Evan Herbst Brooke Cowan H. Leal Fontes Joern Wuebker Alexandra Birch Marcello Federico Gabriele Antonio Musillo Oliver Wilson Bruno Pouliquen Rico Sennrich Steven B. Parks David Kolovratnak Wade Shen Richard Zens

Ales Tamchyna Anthony Rousseau Chris Callison-Burch Lane Schwartz Andreas Eisele Grace M. Ngai Holger Schwenk Jorge Civera Bo Fu Michael Auli Miles Osborne Pascual Martinez Raphael Payen Herve Saint-Amand Steven Buraje Poggel Sergio Penkale Yang Gao

Alex Benjamin Gottesman Christine Corbett David Talbot Eva Hasler Kenneth Heafield Josh Schroeder Konrad Rawlik M.J.Bellino-Machado John Joseph Morgan Nadi Tomeh Philipp Koehn Chris Dyer Felipe Sanchez Martinez Andre Lynum Stephan Tsuyoshi Okita