Relação entre a Transformada de Fourier (TF) e a Transformada de Fourier de Tempo Discreto (TFTD)

Seja x(n) uma sequência de tempo discreto resultante da amostragem de um sinal de tempo contínuo $x_c(t)$. Em outras palavras,

$$x(n) = x_c(nT), (1)$$

em que $T=1/f_a$ é o intervalo de tempo entre as amostras e f_a corresponde à frequência de amostragem. Deseja-se relacionar a $TF\{x_c(t)\}$ com a $TFTD\{x(n)\}$. Com esse objetivo resumimos a seguir algumas definições e observações relevantes.

• A Transformada de Fourier (TF) de $x_c(t)$ é definida como

$$X_c(j\Omega) = \text{TF}\{x_c(t)\} \triangleq \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$$
 (2)

em que $\Omega = 2\pi f_c$ e a frequência angular e f_c é alguma frequência cíclica de x(t).

• A Transformada de Fourier (TF) inversa é definida como

$$x_c(t) = \text{TF}^{-1}\{X_c(j\Omega)\} \triangleq \frac{1}{2\pi} \int_{-\infty}^{+\infty} X_c(j\Omega)e^{j\Omega t} d\Omega.$$
 (3)

• A Transformada de Fourier de Tempo Discreto (TFTD) é definida como

$$X(e^{j\omega}) = \text{TFTD}\{x(n)\} \triangleq \sum_{-\infty}^{+\infty} x(n)e^{-j\omega n}$$
 (4)

em que $\omega = 2\pi f_c/f_a$ é a frequência angular normalizada.

• A TFTD inversa é deefinida como

$$x(n) = \mathrm{TF}^{-1}\{X(e^{j\omega})\} \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega.$$
 (5)

- Note que:
 - 1. $\Omega = 2\pi f_c$ pode assumir qualquer valor real, ou seja, $\Omega \in (-\infty, \infty)$. Logo, $f_c \in (-\infty, \infty)$.
 - 2. $\omega = 2\pi f_c/f_a = \Omega/f_a = \Omega T$.
 - 3. $X(e^{j\omega})$ é uma função periódica, cujo período é 2π .
 - 4. O ω correspondente ao k-ésimo período de $X(e^{j\omega})$ pode ser expresso como $\omega = \omega_o + k2\pi$, sendo $\omega_o \in [-\pi, \pi)$ e k inteiro.
 - 5. O par transformado da TFTD é dito consistente pois, dado x(n), calcula-se $X(e^{j\omega})$, e dado $X(e^{j\omega})$, calcula-se o x(n) original. A relação entre a sequência x(n) e a sua TFTD $X(e^{j\omega})$ é biunívoca. Em linguagem matemática, pode ser dito que a TFTD é um operador bijetor.
 - 6. A TF é um operador bijetor.

Comparação entre $TF\{x(t)\}$ e $TFTD\{x(n)\}$

Considerando a amostragem do sinal de tempo contínuo $x(n) = x_c(nT)$, com a expressão da TF inversa em (3) nota-se que uma amostra de índice n de $x_c(t)$ pode ser recuperada a partir de $X_c(j\Omega)$, ou seja,

$$x(n) = x_c(nT) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X_c(j\Omega) e^{j\Omega nT} d\Omega.$$

Usando a igualdade $\omega = \Omega T$, a expressão de x(n) pode ser reescrita como

$$x(n) = \frac{1}{2\pi T} \int_{-\infty}^{+\infty} X_c(j\omega/T) e^{j\omega n} d\omega.$$

Cabe notar que $e^{j\omega n}$ é periódico de período 2π e que $\omega = \omega_o + k2\pi$ para todo k inteiro. Portanto, é possível reescrever a integral em ω de $(-\infty, \infty)$ com um somatório de trechos de comprimento 2π , ou seja,

$$x(n) = \frac{1}{2\pi T} \sum_{k=-\infty}^{+\infty} \int_{-\pi}^{\pi} X_c(j(\omega_o + k2\pi)/T) e^{j(\omega_o + k2\pi)n} d(\omega_o + k2\pi)$$

Tem-se que $e^{j(\omega_o+k2\pi)n}=e^{j\omega_on}e^{jk2\pi n}=e^{j\omega_on}$ e $d(\omega_o+k2\pi)=d\omega_o$, sendo $\omega_o\in[-\pi,\pi)$. Então, x(n) pode ser expresso como

$$x(n) = \frac{1}{2\pi T} \sum_{k=-\infty}^{+\infty} \int_{-\pi}^{\pi} X_c(j(\omega_o + k2\pi)/T) e^{j\omega_o n} d\omega_o,$$

ou ainda,

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(j(\omega_o + k2\pi)/T) \right) e^{j\omega_o n} d\omega_o.$$
 (6)

A Equação (6) pode ser escrita, alternativamente, como

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(j(\omega + k2\pi)/T) \right) e^{j\omega n} d\omega.$$
 (7)

Comparando (5) com (7), e levando em conta que o par transformado da TFTD é consistente, resulta a seguinte igualdade para qualquer valor de ω :

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(j(\omega + k2\pi)/T) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X_c(j(\Omega + k\Omega_a)).$$
 (8)

Portanto, $X(e^{j\omega})$ é a sobreposição periódica do espectro $X_c(j\Omega)$ a intervalos $\Omega_a=2\pi/T$ e ponderado por um fator 1/T. Além disso, $X(e^{j\omega})$ é exatamente o espectro do sinal de tempo contínuo amostrado denotado no início do curso como $X_p(j\Omega)$ porém no caso de $X(e^{j\omega})$ o eixo das abcissas é em termos da frequência angular normalizada. Na Figura 1 é ilustrada a relação entre a TF e a TFTD.

Figura 1: Relação entre a TF e a TFTD.