Author: Benjamin Smidt Created: September 22, 2022

Last Updated: September 30, 2022

Deep Learning Resources

Contents

1	General	3
2	Data Preprocessing2.1 Weight Initialization2.2 Batch Normalization	
3	Loss Functions	3
4	Architectures	4
5	Hyperparameters5.1 Update Rules5.2 Regularization5.3 Dropout	4
6	Hardware and Software	5

1 General

1. "Training Neural Networks I." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [Modeling a Neuron, Activation Functions, ReLU]

2 Data Preprocessing

1. "Training Neural Networks II." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [Mean Subtraction, Normalization, PCA and Whitening]

2.1 Weight Initialization

- 1. "Training Neural Networks II." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [Pitfalls All Zero, Small Random Numbers, Calibrating Variances, Batch Normalization]
- 2. He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ArXiv 2015 [Original Kaiming Initialization Paper].

2.2 Batch Normalization

1. Sergey Ioffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", ICML 2015. [Batch Normalization Paper]

3 Loss Functions

1. "Training Neural Networks I." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [Problem of Large Number of Classes, Attribute Classification, Regression v. Classification]

4 Architectures

1. "Training Neural Networks I." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [Layer-Wise Organization, Naming Conventions, Ex. Feed-forward, Representational Power, Capacity]

5 Hyperparameters

5.1 Update Rules

- 1. "Training Neural Networks III." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [SGD, Momentum, Nesterov Momentum, Adagrad, RMSprop, Adam]
- 2. Diederik Kingma and Jimmy Ba, "Adam: A Method for Stochastic Optimization", ICLR 2015 [Original Adam Paper]

5.2 Regularization

1. "Training Neural Networks II." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [L2, L1, Max Norm Constraints]

5.3 Dropout

- 1. "Training Neural Networks II." CS231N Convolutional Neural Networks for Visual Recognition, Stanford University, 2022. [Dropout, Inverted Dropout, Code Implementation]
- 2. Srivastava et al. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting." University of Toronto, 2014
- 3. Hinton, Geoffrey E. et al. "Improving neural networks by preventing co-adaptation of feature detectors." ArXiv, 2012. [Dropout]

6 Hardware and Software

1. Chadha, Amani. "CS231N Deep Learning Hardware and Software." Aman's AI Journal, 2020.