國立臺北商業大學

資訊管理系

113 資訊系統專案設計

系統手册

組 別:第113203組

題 目:賽鴿專家辨識系統

指導老師:唐日新老師

組 長:11236006 周冠宇

組 員:11236021 羅家紘 11236029 彭彦愷

中華民國 113 年 10 月 16 日

目錄

第 1	章 前言	1
1-1	背景介紹	1
1-2	動機	2
1-3	系統目的與目標	3
1-4	預期成果	3
第 2	章 營運計畫	4
2-1	可行性分析	4
2-2	商業模式-Business model	5
2-3	市場分析-STP	8
2-4	競爭力分析 SWOT-TOWS1	0
第 3	章 系統規格1	4
3-1	系統架構1	4
3-2	系統軟、硬體需求與技術平台1	6
3-3	使用標準工具1	6
第 4	章 專案時程1	17
4-1	專案時程1	7
4-2	專案組織與分工1	8
第 5	章 需求模型	20

5-1	使用者需求	. 20
5-2	使用個案圖	. 20
5-3	使用個案描述	. 21
5-4	分析類別圖	. 26
第 6	章 設計模型	. 27
6-1	循序圖(Sequential Diagram)	. 27
6-2	設計類別圖(Design Class Diagram)	. 32
第 7	章 實作模型	. 33
7-1	佈署圖(Deployment Diagram)	. 33
7-2	套件圖(Package Diagram)	. 33
7-3	元件圖(Component Diagram)	. 34
7-4	狀態機(State machine)	. 35
第 8	章 資料庫設計	. 39
8-1	資料庫關聯圖	. 39
8-2	表格	. 39
第 9	章 程式規格	. 41
9-1	元件清單及其規格描述	. 41
9-2	其他附屬之各種元件	. 43

第	10	章	測註	模	型.	• • •	• •		• •	• •		• •	• •	• •		• •		• •	• • •	•••		• •	• • •	• • •	. 44
10) –1	測言	試計	畫	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	44
10)–2	測言	試個領	条與	測記	試紅		資	料.	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	••••	••••	45
第	11	章	操作	手	册.					•••				• • •					• • •					•••	. 48
第	12	章	使用	手	册.					•••				• • •											. 49
第	13	章	心得	·						•••				• • •										•••	. 54
第	14	章	參考	資	料.					•••			•••	• • •											. 57
附套	ዼ																								58

圖目錄

圖	3-1-1 系統架構1	4
昌	3-1-2 結果回饋(例)1	լ 5
昌	4-1-1 時程甘特圖-1(辨手)-更改題目前1	17
圖	4-1-2 時程甘特圖-2(賽鴿專家辨識系統)-更改題目後	17
圖	5-2-1 使用個案圖2	20
圖	5-3-1 活動圖-歷史資料查詢2	21
昌	5-3-2 活動圖-分享功能2	22
昌	5-3-3 活動圖-賽鴿辨識2	23
昌	5-3-4 活動圖-好鴿網 2	24
昌	5-3-5 活動圖-查詢相關資訊2	25
昌	5-4-1 分析類別圖 2	26
圖	6-1-1 循序圖-分享功能 2	27
圖	6-1-2 循序圖-查詢歷史紀錄 2	28
圖	6-1-3 循序圖-賽鴿辨識 2	29
圖	6-1-4 循序圖-相關資訊	30
昌	6-1-5 循序圖-賽鴿科普	31
昌	6-2-1 設計類別圖	32
昌	7-1-1 佈署圖	33
昌	7-2-1 套件圖 3	33
圖	7-3-1 元件圖	34

圖	7-4-1 查詢歷史紀錄狀態機35
置	7-4-2 賽鴿狀態狀態機
昌	7-4-3 分享功能狀態機37
昌	7-4-4 賽鴿介紹狀態機37
昌	7-4-5 相關資訊狀態機
昌	8-1-1 資料庫關聯圖
昌	8-2-1 GITHUB 活動紀錄圖
昌	8-2-2 GITHUB README 頁面
昌	10-2-1 連線方式
圖	10-2-2 QR CODE
圖	10-2-1 QR CODE
昌	10-2-2 主頁面49
圖	10-2-3 分析結果頁面50
昌	10-2-4 缺失值頁面50
昌	10-2-5 分析結果頁面51
昌	10-2-6 歷史紀錄頁面51
昌	10-2-7 分享結果頁面52
昌	10-2-8 賽鴿科普按鈕52
昌	10-2-9 賽鴿 WIKI53
昌	10-2-10 賽鴿相關資訊按鈕53
圖	10-2-11 好鴿網

表目錄

表	2-4-1SWOT-TOWS	13
表	3-2-1 系統軟、硬體需求與技術平台	16
表	3-3-1 使用標準工具	16
表	4-2-1 專案組織與分工	18
表	4-2-2 專題成果工作內容與貢獻度表	19
表	5-1-1 功能性需求表	20
表	5-1-2 非功能性需求表	20
表	8-2-1	39
表	9-1-1 元件清單及其規格描述表	41
表	9-1-2 前端元件清單及其規格描述	42
表	9-1-3 前端元件清單及其規格描述(續)	42
表	9-1-4 前端元件清單及其規格描述(續-2)	42
表	9-2-1 外部元件清單	43
表	10-2-1 賽鴿圖片辨識	45
表	10-2-2 歷史紀錄	45
表	10-2-3 賽鴿介紹	46
表	10-2-4 相關資料	46
表	10-2-5 分享功能	46
表	10-2-6 響應速度	47

第1章前言

1-1背景介紹

你知道台灣的養鴿文化嗎?不僅歷史悠久,隨著時間的推移,也逐漸發展成為 具有競技性和文化傳承意義的活動。

在台灣,養鴿活動涵蓋了廣泛的群體,不僅有專業的賽鴿飼養員,還有很多 業餘愛好者,他們透過養鴿,體驗到養育和訓練動物的成就感與樂趣。許多鴿友 成立了養鴿協會和俱樂部,彼此分享經驗和技巧,並舉辦各種規模的賽事。這種 社群文化讓養鴿不再只是個人活動,而是一種群體的文化傳承,增強了養鴿人群 之間的凝聚力與歸屬感。

其中,賽鴿比賽作為養鴿活動中的重要分支,已成為台灣最受矚目的競技項目之一。賽鴿比賽的核心在於測試鴿子的歸巢本能與飛行速度。比賽通常涉及長距離飛行,鴿子在幾十公里甚至上百公里外放飛,目標是迅速且準確地返回原鴿舍。為了達成這一目標,參賽的鴿子大多屬於特定品種,這些鴿子擁有優良的體能、敏銳的方向感和強烈的歸巢意識。這些特徵使得賽鴿競速比賽在體育競技的層面上具有獨特的魅力,也吸引了越來越多的養鴿者和觀眾的目光。

然而,賽鴿這項運動的門檻較高,不止需要具備一定的鴿子常識,更需要對鴿子進行評估。而評估則依賴於飼養者豐富的經驗。這些飼養員往往是通過日復一日的訓練,累積對賽鴿的了解,然後根據其外觀特徵、飛行速度、歸巢時間以及飛行路徑等多個方面來進行綜合評定。但這種傳統的評估方式不可避免地存在一些挑戰。由於評估依賴於人的觀察與判斷,容易受到主觀因素的影響,比如偏見、不一致性以及可能的人為錯誤,這些都對賽事的公平性和評估準確性產生了

不利影響。因此,如何能夠引入一套更加科學且標準化的評估方法,成為當前賽 鴿比賽發展中急需解決的問題。

因此,為了解決傳統評估方法的缺陷,建立一個更加客觀、自動化且高效的賽 鴿評估系統顯得尤為重要。特別是深度學習技術在圖像識別領域取得了顯著突破,這些技術已被成功應用於物體識別、人臉識別和圖像分類等多個領域。深度學習技術能夠通過神經網絡自動提取圖像中的特徵,這一能力非常適合應用於賽鴿的自動化評估。基於此,本研究希望結合深度學習技術和專家系統,構建一個自動辨識和評估賽鴿飛行表現的模型。該模型將基於從賽鴿圖像中提取的特徵來進行判斷,以更加客觀和精確的方式評估賽鴿的表現。此研究不僅有助於提升台灣賽 鴿競速的評估水平,也能促進該運動的進一步發展。

1-2動機

1. 提供客觀且可靠的評估方法

提供一套客觀的系統,減少因主觀評估引起的争議,提升賽鴿競速比賽的公平性與競爭性。

2. 推動深度學習技術應用

透過應用深度學習技術(如 YOLO),引入更多創新與改進,提升賽鴿飛行表現,開啟新的研究可能性。

3. 開發新評估模式

結合 YOLO 及專家系統:應用圖像辨識技術與專家系統,建立自動化系統, 用來替代或輔助飼養員進行賽鴿評估與選擇。 非侵入式圖像採集:通過非侵入式的圖像採集,分析賽鴿的身體特徵,提供 更精準與公正的評分。

- 1-3系統目的與目標
- 1. 降低技術門檻:自動化系統可幫助新手飼養員克服選拔優秀賽鴿的困難。
- 2. 知識傳承: 系統有助於傳承有經驗飼養員的專業知識,減輕新入行者的技術 負擔。
 - 1-4預期成果
 - 1. 廣泛運用:

希望該評估流程能廣泛應用於賽鴿競速領域,提升比賽整體水平與評估一致性。

2.促進公平與專業化:

這一創新方法不僅提供了新工具,還有助於推動賽鴿競速運動的公平性與專業化,滿足鴿友的期望與需求。

第2章營運計畫

- 2-1可行性分析
- 一、 市場可行性

優勢:

- 1. 賽鴿競賽在全球特定區域具有龐大市場需求,尤其在亞洲和歐洲地區。
- 2. 市場競爭較少,早期進入可獲得先發優勢。
- 3. 系統的應用符合賽事公正性與競爭性的趨勢,具有市場吸引力。

劣勢:

- 1. 賽鴿競賽屬於小眾市場,市場規模有限,可能影響系統的廣泛推廣。
- 2. 市場接受新技術的速度可能較慢,尤其是傳統飼養員可能對自動化評估系統持懷疑態度。
 - 二、 技術可行性

優勢:

- 1. 深度學習技術(如 YOLO)已成熟,具備強大的圖像辨識能力。
- 2. 非侵入式圖像收集方式技術穩定,且不影響賽鴿健康。
- 3. 專家系統的結合可提升評估準確度,具備技術創新潛力。

劣勢:

- 1. 針對賽鴿的特殊身體特徵與動作需要定制化模型,可能面臨模型訓練難度。
- 系統在實際應用中需要大量高質量的圖像數據支撐,資料收集可能是一個挑戰。

三、 財務可行性

優勢:

- 1. 初期開發可通過政府補助或賽鴿相關組織資助,減輕財務壓力。
- 2. 商業化潛力大,可向賽事組織者和飼養員收取費用,具備多樣化收入來源。
- 3. 自動化系統運行後維護成本相對較低。

劣勢:

- 1. 初期開發成本較高,尤其是技術開發和資料標註部分。
- 2. 如果市場反應冷淡,財務回報周期較長,可能影響短期內的財務效益。

四、 社會可行性

優勢:

- 1. 系統能提高比賽的公平性,減少主觀評估的爭議,社會接受度高。
- 2. 系統有助於降低新手飼養員的技術門檻,促進該運動的普及。
- 3. 非侵入式技術對賽鴿無害,符合現代科技的環保與人道標準。

劣勢:

- 1. 部分經驗豐富的飼養員可能對技術取代其專業判斷產生抵觸心理。
- 2. 新技術需要教育與推廣,可能面臨初期應用推廣的阻力

賽鴿辨識系統具備市場、技術和社會層面的優勢,能夠推動賽鴿競賽的專業化發展。然而,該系統仍面臨初期開發成本和資料收集等方面的技術和財務挑戰,推廣過程中也需要克服傳統飼養員的保守態度。

2-2商業模式-Business model

結合商業模式與企業社會責任(CSR)策略來考量其可持續性和社會影響。

商業模式分析

客戶細分(Customer Segments)

主要目標群體:賽鴿飼養者、賽事組織者。

次要目標群體:技術愛好者。

價值主張(Value Propositions)

提高效率:通過自動化評估系統,能夠幫助飼養員快速識別優秀賽鴿,縮短選拔時間,提升工作效率。

降低技術門檻:系統降低了新手飼養員選拔賽鴿的技術門檻,為他們提供了專業支持,促進新手入行並擴大賽鴿飼養市場。

專業化與創新:結合深度學習和專家系統,該工具將賽鴿評估提升到專業化和 科技化的新高度,為該運動帶來更多技術創新。

渠道 (Channels)

線上平台與應用:建立一個在線平台或應用程式,方便飼養員上傳賽鴿圖像並 獲得自動化評估結果。該平台可同時提供數據管理和賽鴿培訓資訊。

合作協會與鴿舍:通過與賽鴿協會和大型鴿舍合作,推廣系統的應用,並將其 納入正式賽事評估體系。

賽事現場應用:在賽鴿競速賽事現場部署該系統,作為即時評估工具,為賽事 組織者和觀眾提供即時飛行表現分析。

關鍵合作夥伴 (Key Partners)

技術供應商:與人工智能、深度學習相關的技術公司或科研機構合作,提升系統技術水平,保證其持續更新與改進。

賽鴿協會與賽事組織者:與賽鴿相關的協會和競賽組織方合作,讓系統成為官 方或半官方評估工具,增加系統的可信度與普及性。

企業社會責任 (CSR)

動物福利:系統的非侵入式技術不對賽鴿健康產生影響,符合動物福利標準, 並避免了傳統競賽中可能出現的虐待行為。

技術傳承與支持新手:系統可幫助新手飼養員進入賽鴿行業,提供公平的競爭機會,促進該行業的可持續發展,體現出企業對培養新一代賽鴿愛好者的社會責任。

環保與資源效率:通過自動化和數據化方式,系統能減少人力和物力資源浪費, 提高賽鴿競賽的運行效率,符合現代企業對於資源高效利用和可持續發展的要求。

促進社區公平競爭:系統將技術引入傳統領域,幫助推動賽鴿競賽中的公平競爭,減少人為干預,促進運動的專業化和透明化,對整個社區的信任建立起積極作用。

透過這種方式,可以瞭解到本系統以商業上來說不只是一種創新,同時也是對社 會負責任的表現,並且也符合當代對企業社會責任(CSR)的期望。這種模式不僅有助 於企業的可持續發展,企業也可以通過該系統展示其在技術創新、動物福利和社會責任上的承諾。

2-3市場分析-STP

根據本系統目的、目標進行 STP 分析:

●市場細分 (Segmentation)

依使用者類型:

專業飼養員:有豐富經驗的專業賽鴿飼養員,對賽鴿選拔和競賽有較高的要求,期望提升效率和公平性。

新手飼養員:剛進入賽鴿領域的新人,缺乏經驗,需要技術輔助來選拔賽鴿, 並學習專業知識。

賽事組織者:需要一個客觀且自動化的評估系統來提高比賽的公正性、專業 性以及參賽者的信任度。

依地理區域:

台灣及亞洲市場:亞洲地區特別是台灣,賽鴿競賽傳統悠久,市場需求較高。

歐洲市場:歐洲賽鴿競賽也有悠久歷史,具備國際市場開發潛力。

依技術接受度:

科技導向型飼養員:願意嘗試新技術、追求高效與自動化的飼養員,對科技 接受度高。 傳統保守型飼養員:習慣依靠經驗和手動選拔的飼養員,對技術應用較為保守,但也可能逐漸接受技術輔助。

●目標市場 (Targeting)

根據市場細分的結果,接下來選擇一個或多個具有高潛力的群體作為主要的目標市場:

主要目標市場:

新手飼養員:剛進入賽鴿領域的新人,缺乏經驗,需要技術輔助來選拔賽 鴿,並學習專業知識。

次要目標市場:

專業飼養員:有豐富經驗的專業賽鴿飼養員,對賽鴿選拔和競賽有較高 的要求,期望提升效率和公平性。

賽事組織者:需要一個客觀且自動化的評估系統來提高比賽的公正性、 專業性以及參賽者的信任度。

● 定位 (Positioning)

定位策略將確定如何在目標市場中突出產品的獨特價值:

產品功能定位:

系統主打**自動化、非侵入式圖像辨識技術**,幫助飼養員分析賽鴿的身體特徵, 快速選拔優秀賽鴿,特別為新手飼養員提供專業支援。 同時也為專業飼養員提供高效的輔助工具,提升選鴿效率。

價值訴求:

通過科技輔助,系統在賽鴿競賽中的核心價值為「公平、公正、科技驅動」, 幫助飼養員與賽事組織者擁有更加科學的評估方式,提升賽事專業化水平。

2-4競爭力分析 SWOT-TOWS

SWOT 分析

優勢 (Strengths)

公平性與客觀性:系統能提供客觀的評估標準,增加賽事的公平性,提升比賽 的信任度,降低主觀評估的偏差。

市場先機:競爭者少,系統具有先發優勢,尤其在賽鴿運動中引入科技自動化工具的市場空間廣大。

降低技術門檻:系統特別適合新手飼養員,幫助他們快速掌握選鴿技巧,縮短 入門學習時間。

劣勢 (Weaknesses)

資料來源有限:鴿子多樣性和複雜性,增加了技術實施的難度。

使用者接受度:部分經驗豐富的飼養員可能對系統存在抵觸情緒,認為技術 不能完全取代他們的經驗。

機會 (Opportunities)

市場擴展潛力大:隨著全球賽鴿競賽規模的擴大,尤其在台灣、亞洲和歐洲, 賽鴿系統的需求逐漸增長。

科技進步助力:深度學習和圖像處理技術日益成熟,可以進一步提升系統的準確性和效能,從而鞏固技術優勢。

威脅 (Threats)

市場競爭潛力:一旦自動化評估技術獲得市場認可,可能吸引更多競爭者進入市場,從而增加競爭壓力。

傳統保守阻力:傳統飼養員和賽事組織可能不願接受新技術,對於系統的應用 推廣造成障礙。

技術風險:技術不斷進步,其他新興技術的出現可能導致現有系統被替代,或 系統本身可能面臨技術升級的壓力。

優勢-機會策略 (SO)

利用技術創新:在全球賽鴿競賽市場中,特別是台灣、亞洲和歐洲市場,積極 擴展,將系統作為標準化評估工具推廣。同時借助深度學習技術的進步,持續優化系 統的準確性和效率,保持市場中的技術領先地位。

與協會合作推廣:將該系統整合到官方評估體系中,增強市場影響力。

優勢-威脅策略 (ST)

降低傳統飼養員的抵觸情緒:針對可能的傳統飼養員抵觸,通過市場教育和推廣活動,強調系統作為輔助工具的價值,而非替代他們的經驗,以促進系統的接受度。

劣勢-機會策略 (WO)

增加數據來源與技術優化:為解決資料來源不足的問題,可以通過與大型鴿舍或 賽事合作,獲得大量高質量的圖像數據。同時,利用不斷進步的圖像處理技術進行模 型優化,提升系統對賽鴿圖像的辨識能力。

劣勢-威脅策略 (WT)

專注於特定市場細分:鑑於市場範圍限制的劣勢,可以專注於特定的市場細分。

推動市場教育與傳播:針對傳統保守飼養員對技術的抵觸情緒,可以透過市場教育、案例展示和培訓,強調該系統在提高公平性、效率和專業化方面的優勢,並展示實際應用中的成功案例,逐步推動市場對系統的接受。

表 2-4-1SWOT-TOWS

SWOT-	O機會		T 威脅
TOWS	科技進步		市場競爭
	市場潛力		傳統保守阻力
			技術風險
S優勢	公平與客觀	SO	ST
	市場先機	擴展市場份額,	先發優勢對抗競爭者:利用系
	將低技術門檻	強化技術優勢:利用	統的市場先發優勢,建立技術壁
		系統的技術領先優	壘,快速佔領市場,防止未來可能
		勢,在全球賽鴿競賽	的競爭者進入。此外,持續研發新
		市場中,特別是台灣、	功能來鞏固技術領先地位,並提供
		亞洲和歐洲市場,積	增值服務,形成競爭優勢。
		極擴展,將系統作為	降低傳統飼養員的抵觸情緒:
		標準化評估工具推	針對可能的傳統飼養員抵觸,通過
		廣。同時借助深度學	市場教育和推廣活動,強調系統作
		習技術的進步,持續	為輔助工具的價值,而非替代他們
		優化系統的準確性和	的經驗,以促進系統的接受度
		效率,保持市場中的	
		技術領先地位。	
		與賽事組織者合	
		作:利用系統的公平	
		性與客觀性,與賽鴿	
		協會和賽事組織方合	
		作,將該系統整合到	
		官方評估體系中,增	
		強市場影響力。	
W劣勢		WO	WT
		增加數據來源與	專注於特定市場細分:鑑於市
		技術優化:為解決資	場範圍限制的劣勢,可以專注於特
		料來源不足的問題,	定的市場細分。
		可以通過與大型鴿舍	推動市場教育與傳播:針對傳
	資料來源有限	或賽事合作,獲得大	統保守飼養員對技術的抵觸情緒,
	使用者接受度	量高質量的圖像數	可以透過市場教育、案例展示和培
		據。同時,利用不斷進	訓,強調該系統在提高公平性、效
		步的圖像處理技術進	率和專業化方面的優勢,並展示實
		行模型優化,提升系	際應用中的成功案例,逐步推動市
		統對賽鴿圖像的辨識	場對系統的接受。
		能力。	

第3章系統規格

3-1系統架構

圖 3-1-1 系統架構

使用者:

使用者通過網頁或其他介面上傳賽鴿翅膀圖片和眼睛圖片,這些資料將 會傳送到伺服器進行處理和分析。

網頁 WEB:

在 Web 端和 Flask 框架之間, Flask 負責處理使用者上傳的圖片並將其傳送到伺服器。伺服器分析完後, Flask 接收分析結果後回傳給 Web, 這樣使用者就能看到辨識結果。

伺服器:

處理圖片的接收和回傳,負責與機器學習模型進行溝通。伺服器通過Flask和網頁 WEB 連接,並透過 ngrok 將伺服器公開到網路上,使得網頁可以在網路上被外界訪問。

機器學習模型:

在伺服器內部,我們使用 YOLOv4-tiny 模型對輸入的賽鴿影像進行辨識,該模型已經在 Google Colab 進行過訓練。使用大量賽鴿影像資料進行模型的優化和學習,識別和分類賽鴿的各種特徵。

總體架構介紹:

這個系統的目標是進行賽鴿的評分,藉由賽鴿的圖片來判斷這隻鴿子是不是好賽鴿,使用 YOLOv4-tiny 模型來進行辨識,並透過網頁應用程式讓使用者可以提交賽鴿

結果回饋:

最終的辨識結果會由伺服器返回給 Web,然後傳送回給使用者,使用者可以在網站上查看賽鴿的辨識結果,包括賽鴿的總體評分和各項指標的值,另外還有能顯示結果畫面。

圖 3-1-2 結果回饋(例)

3-2系統軟、硬體需求與技術平台

表 3-2-1 系統軟、硬體需求與技術平台

系統開發環境	
作業系統	Windows 10 \ Windows 11
程式撰寫工具	Colab
程式開發工具	
前端	Html \ css
後端	Python
框架	yolov4-tiny
文件	
紙本文件	Microsoft Word
圖表	PlantUML \ Draw.io
簡報	Canva

3-3使用標準工具

表 3-3-1 使用標準工具

專案管理及版本控制工具	
應用程式	Fork
版本控制	GitHub

第 4 章 專案時程

4-1專案時程

	Пион	FRAA (*) #0	#≠□=						20)24					
	任務名稱	開始日期	結束日期	1	2	3	4	5	6	7	8	9	10	11	12
1	題目構想	02/02	04/22												
2	資料蒐集	02/03	04/30												
3	功能分析	02/10	04/18												
4	學習相關資料	02/03	04/28												
5	系統需求分析	03/20	04/02												
6	模型訓練	04/03	06/29												
7	模型測試	04/04	06/29												
8	拍攝囊材	04/03	04/28												
9	手機平台製作	04/15	10/03												
10	網頁平台製作	06/01	10/12												
11	系統整合	07/01	10/20												
12	系統測試	07/03	10/30												
13	文件製作	04/10	11/02												
14	簡報製作	05/18	05/26												

圖 4-1-1 時程甘特圖-1(辨手)-更改題目前

圖 4-1-2 時程甘特圖-2(賽鴿專家辨識系統)-更改題目後

4-2專案組織與分工

表 4-2-1 專案組織與分工

●主要負責人 ○次要負責人 (每一項只能有1位主要負責人,次要負責人最多2位)

	項目/組員	11236006/	11236021/	11236029/
	垻日/組貝	周冠宇	羅家紘	彭彥愷
	資料庫建置	•	\circ	
	伺服器架設	•	\circ	
後端開發	辨識系統	•	0	\circ
	分享功能		•	
	意外輸入(缺失值)	0	•	
	主要介面	•	0	\circ
	結果介面	0	•	\circ
前端開發	分享介面	0	•	
	歷史紀錄介面	0	•	
	缺失值介面	•	0	
	UI/ UX	0	•	0
	Web/APP 介面設計		•	0
美術設計	色彩設計		0	•
六的成司	Logo 設計	0	•	0
	素材設計	•	0	0
	影片剪輯	0	0	•
	統整	0	0	•
	第1章 前言	0	0	•
	第2章 營運計畫			•
	第3章 系統規格	0	0	•
	第 4 章 專題時程	•	\circ	\circ
	與組織分工			
	第5章 需求模型	0	•	0
文件撰寫	第6章 設計模型	•	0	
	第7章 實作模型	0	•	0
	第8章 資料庫設	•	\circ	
	計			
	第9章 程式	0	•	0
	第10章 測試模型	0	0	•
	第11章 操作手册		0	•
	第12章 使用手册		0	•
報告	簡報製作	•	0	\circ

表 4-2-2 專題成果工作內容與貢獻度表

序號	姓名	工作內容<各限 100 字以內>	貢獻度
1	組長 周冠宇	後端+文件	34 %
2	組員 羅家紘	前端+後端	33%
3	組員 彭彦愷	前端+文件	33%
			總計:100%

第 5 章 需求模型

5-1使用者需求

表 5-1-1 功能性需求表

需求項目	功能描述	邏輯及限制
賽鴿辨識	使用者必須先上傳賽鴿圖片才能正常使用	判斷是否為賽鴿
	辨識功能	
歷史資料查詢	上傳賽鴿圖片後,會自動將分析結果記錄	判斷檔案是否有缺失值,如
	在歷史紀錄裡	果有採取手動輸入
好鴿網	使用者必須同意跳轉到其他頁面	判斷是否允許取用跳轉
查詢相關資料	使用者點選按鈕會跳轉到其他頁面	判斷使否點擊此按鈕
分享功能	使用者點選按鈕會將歷史紀錄分享出去	判斷使否點擊此按鈕

表 5-1-2 非功能性需求表

需求項目	功能描述
響應速度	系統界面應該能夠快速響應使用者操作,確保流暢的使用者體驗。
易用性	系統應該具有直觀的使用者界面,便於不同年齡和技能水平的使用者使用。

5-2使用個案圖

圖 5-2-1 使用個案圖

5-3使用個案描述

活動圖-歷史

圖 5-3-1 活動圖-歷史資料查詢

活動圖-分享

圖 5-3-2 活動圖-分享功能

圖 5-3-3 活動圖-賽鴿辨識

圖 5-3-4 活動圖-好鴿網

圖 5-3-5 活動圖-查詢相關資訊

5-4分析類別圖

圖 5-4-1 分析類別圖

第6章設計模型

6-1循序圖(Sequential Diagram)

圖 6-1-1 循序圖-分享功能

圖 6-1-2 循序圖-查詢歷史紀錄

圖 6-1-3 循序圖-賽鴿辨識

圖 6-1-4 循序圖-相關資訊

圖 6-1-5 循序圖-賽鴿資訊

6-2設計類別圖(Design Class Diagram)

圖 6-2-1 設計類別圖

第7章實作模型

7-1佈署圖(Deployment Diagram)

圖 7-1-1 佈署圖

7-2套件圖(Package Diagram)

圖 7-2-1 套件圖

7-3元件圖(Component Diagram)

圖 7-3-1 元件圖

7-4狀態機(State machine)

圖 7-4-1 查詢歷史紀錄狀態機

圖 7-4-2 賽鴿狀態狀態機

圖 7-4-3 分享功能狀態機

圖 7-4-4 賽鴿科普狀態機

圖 7-4-5 相關資訊狀態機

第8章資料庫設計

8-1資料庫關聯圖

圖 8-1-1 資料庫關聯圖

8-2表格

表 8-2-1

T1 history 歷史紀錄			
欄位名稱	資料型態	限制	描述
id	INT	pk	賽鴿編號
image_base64	TEXT	NOT NULL	圖片編碼
result_text	TEXT	NOT NULL	檢測結果
pigeon_quality	TEXT	NOT NULL	賽鴿品質
pigeon_wing	REAL		賽鴿翅膀比值
pigeon_eye	REAL		賽鴿眼睛類型
pigeon_eye_serrated	REAL		賽鴿眼睛鋸齒
race_pigeon_score	REAL		賽鴿評分
timestamp	DATETIME		檢測的時間

圖 8-2-1 github 活動紀錄圖

圖 8-2-2 github README 頁面

第 9 章 程式規格

9-1元件清單及其規格描述

表 9-1-1 元件清單及其規格描述表

資料夾名稱	程式名稱	功能說明
	init_db	初始化 SQLite 資料庫
	Flask	Flask 應用設置
	Yolo	YOLO 模型配置
	os.makedirs	創建上傳、結果和臨時資 料夾
	ALLOWED_EXTENSIONS	允許的文件類型
	image_to_base64	將圖片轉換為 base64 格
	log_recognition	記錄 YOLO 檢測結果到資 料庫
	pigeon_wing_var	定義模糊變數和隸屬函數
py	detect_objects	OLO 進行物體檢測並返回
		檢測到的特徵值
	serve_result_image	路由來服務結果圖片
	upload_file_route	處理圖片上傳並進行物體 檢測
	avg_pigeon_wing	如果所有特徵都檢測到, 進行分析
	input_missing	新增路由來處理缺失特徵 的輸入
	view history	顯示歷史紀錄
	share result	分享結果的頁面
	Pyngork1	設置 ngork
	main	啟動應用

表 9-1-2 前端元件清單及其規格描述

資料夾名稱	程式名稱	功能說明
	Index.html	主頁面
	Missing_output.html	數據缺失頁面
html	result.html	結果頁面
	History.html	歷史紀錄頁面
	Share.html	分享頁面

表 9-1-3 前端元件清單及其規格描述(續)

資料夾名稱	程式名稱	功能說明
	semantic.ui.min.css	右側欄位樣式
	icons.css	Icon 樣式
CSS	sidebar.css	右側欄位排版
	index.css	網頁整體排板

表 9-1-4 前端元件清單及其規格描述(續-2)

資料夾名稱	程式名稱	功能說明
	jquery.min.js	控制右側欄位圖標
		上下調節
js	sidebar.js	控制右側欄位縮排
	sidebar.css	右側欄位排版
	index.css	網頁整體排板

9-2其他附屬之各種元件

表 9-2-1 外部元件清單

資料夾名稱	程式名稱	功能說明
js	YOLO	YOLO 模型配置
	Ngork	伺服器設定
	flask	Flask 應用設置

第 10 章 測試模型

10-1測試計畫

根據回巢率的計算方式:

回巢率 = (返回的賽鴿數量/放飛的賽鴿總數)*100%

然而本專題沿用學長的模糊專家系統,並結合以下公式進行計算:

回巢率 = f(賽鴿翅膀特徵,賽鴿眼睛特徵)

賽鴿翅膀特徵:翅膀內外長度比較

賽鴿眼睛特徵:眼睛是顯性或隱性特徵,且是否具有鋸齒狀特徵,結合模糊專家系統來預測其回巢機率。

而最終計算分數的方法則是,輸入變數包括:翅膀比例(pigeon wing),眼睛類型(pigeon eye),以及眼睛齒狀結構的有無(pigeon eye serrated),輸出變數為上面描述的回巢率(race pigeon)。計算出模糊控制輸出值(COG):

$$COG = \frac{\int_{a}^{b} \mu race \ pigeon(x) \cdot x dx}{\int_{a}^{b} \mu race \ pigeon(x) \cdot dx}$$

本測試的主要目標是驗證賽鴿自動評估系統的準確性和穩定性,特別是其對賽鴿關鍵特徵的辨識效果以及評估分數的一致性。而評分公式則根據上述來進行。具體目標包括:

- 驗證模型在不同光線、姿態、背景下的賽鴿特徵辨識能力。
- 確保系統在實際環境中的穩定性和可靠性。
- 以及遺失數據之後,如何進行意外處理

10-2測試個案與測試結果資料

表 10-2-1 賽鴿圖片辨識

功能名稱	賽鴿圖片辨識
測試目的	確認使用者在上傳賽鴿圖片後,系統能正確進行辨識,並檢查圖
	片是否為賽鴿且評分
測試流程	使用者上傳一張賽鴿圖片>系統對圖片進行辨識>檢查系統是否辨
	別圖片為賽鴿>在圖片上出現顯示框,並根據公式 f(賽鴿翅膀特
	徵,賽鴿眼睛特徵)來進行評分>如不是賽鴿就不會有顯示框
預期結果	系統辨識成功,判斷圖片為賽鴿,且無錯誤訊息
測試結果	通過

表 10-2-2 歷史紀錄

功能名稱	歷史紀錄
測試目的	確認系統在上傳圖片並分析結果後,會自動將結果記錄於歷史紀
	錄中,且無缺失資料
測試流程	使用者上傳一張賽鴿圖片並進行分析>系統自動將分析結果記錄
	於歷史紀錄>檢查紀錄中是否有缺失資料
預期結果	系統成功記錄分析結果至歷史紀錄,資料無缺失
測試結果	通過

表 10-2-3 賽鴿介紹

功能名稱	賽鴿介紹
測試目的	確認使用者可正常跳轉至賽鴿介紹頁面
測試流程	使用者點擊介面上的賽鴿介紹選項>系統跳轉至賽鴿介紹頁面。
預期結果	系統成功跳轉至賽鴿介紹頁面。
測試結果	通過

表 10-2-4 相關資料

功能名稱	相關資料
測試目的	確認使用者在按下相關資料按鈕時能跳轉至該頁面
測試流程	使用者點擊介面上的相關資料選項>系統跳轉至相關資料頁面
預期結果	系統成功跳轉至相關資料頁面
測試結果	通過

表 10-2-5 分享功能

功能名稱	分享功能
測試目的	確認使用者可透過分享按鈕將歷史紀錄分享出去
測試流程	使用者在歷史紀錄頁面上點擊分享按鈕>系統顯示分享選項並允
	許使用者選擇分享方式
預期結果	系統顯示分享選項,並成功分享歷史紀錄
測試結果	通過

表 10-2-6 響應速度

功能名稱	響應速度
測試目的	確認系統介面在使用者操作時能快速響應
測試流程	使用者在系統中隨機點擊各項功能>測試系統的反應時間
預期結果	系統快速響應,無明顯延遲
測試結果	通過

第 11 章 操作手册

開啟瀏覽器連線至專案網址: https://bird.ngrok.app/。

圖 10-2-1 連線方式

掃描 QR Code

圖 10-2-2 QR Code

第 12 章 使用手册

連結頁面:

開啟瀏覽器連線至專案網址: https://bird.ngrok.app/。

圖 10-2-1 QR Code

主頁面:

進入主畫面>按下選擇檔案按鈕>選擇想要辨識的賽鴿圖片(檔案須為 JPG/JPEG、

PNG)

圖 10-2-2 主頁面

分析結果(無缺失):

通過內外翅比例及隱性顯性眼來分析>顯示分析結果>返回首頁

圖 10-2-3 分析結果頁面

數值缺失:

檔案的特徵值缺失>手動輸入範圍內的特徵值

圖 10-2-4 缺失值頁面

分析結果:

顯示分析結果

圖 10-2-5 分析結果頁面

歷史紀錄:

點擊歷史紀錄>顯示上傳過的檔案及分析結果與詳細資料>返回首頁

圖 10-2-6 歷史紀錄頁面

分享結果:

分享檢測的結果

圖 10-2-7 分享結果頁面

賽鴿科普:

點擊選單>賽鴿科普>賽鴿 WiKi

圖 10-2-8 賽鴿科普按鈕

圖 10-2-9 賽鴿 Wiki

賽鴿相關資訊:

點擊選單>賽鴿賽鴿相關資訊>好鴿網

圖 10-2-10 賽鴿相關資訊按鈕

圖 10-2-11 好鴿網

第 13 章 心得

11236029 彭彥愷:

在這次的專題中,我們團隊面臨了許多挑戰,從技術困難到成員變動,讓這個專題的進展充滿變數。起初,我們的分工相當清晰,後端負責訓練模型、數據處理;前端設計專注於頁面設計、跳轉功能;而我負責視覺設計和整體的用戶體驗。然而,有同學決定休學。這讓我們每個人都承擔了更多的工作,也在無形中激發了我的責任感,讓我重新審視自己在團隊中的定位。更多肩負了商業模式、團隊合作等課題。在這個過程中,我更深刻地感受到合作的重要。同時也認知到自己在前端設計的不足。

雪上加霜的是,在初評中,由於我們專業知識不足,以及技術上的限制,評審老師提出了更改題目的建議。於是,我們當即尋求專題老師的協助。老師就提出了可以將學長的研究更加完善的機會。我們也當即決定把握這個機會,將學長的賽鴿辨識模型完善,並加以開發成網站。經歷了這次專題,我學會了如何在變動中保持冷靜,並從中找到成長的機會。在完成這個系統後,我認識到了自己的不足。同時,我期待著我們的賽鴿評估系統能夠被更多人接受和應用,這不僅是一個作業,而是一個真正的商品。

最後,這次專題不僅僅是技術的學習,更是一次深刻的人生體驗。謝謝其他組員 們的支持及學長的協助,也謝謝老師的督促。這段經驗讓我學會了如何在逆境中堅持。

11236021 羅家紘:

隨著專題報告的結束,也是時後來寫一篇製作這份專題的心得了,從一開始的四 人做唇語的專題,到現在剩下三人且題目的大變動,都讓我們在在感到心累,我們這 組是班上剩下的人所組成的,本來四個人要做中文的唇語辨識,大概到六月時,製作 遇到瓶頸,且那時我們的其中一名組員已休學,才非常臨時改做手語辨識,但沒想到 初評之後,讓我們更加擔心手語辨識的可行性,在掙扎了一段時間後,依然無法找到 能實現手語辨識的相關資料,此時我們決定詢問老師意見,透過老師的幫忙,我們得 以找到學長,將他正在開發的模型實用化。 經歷了這次專題,我能肯定地說我確實 從中學習到非常多,不管是手語辨識的 android studio 或者是網頁的製作,尤其是 android studio 之前甚至都沒碰過,我認為自己能將手機 app 及模型結合再一起, 到現在都覺得不可思議,期望未來也能將從中所學應用到工作上。 這次的專題要特 別感謝我們的指導老師唐日新老師,他真的為了我們操碎了心,我感受的到老師不想 給我們太多壓力,又常常我們建議及協助,真的非常的感謝您。

11236006 周冠宇:

在這次專題裡,我們遭遇到許多困難,先是其中一個組員休學,讓我們每個人的工作量都變得更多,我們本來是打算做中文唇語辨識,但遭遇到技術上的困難,不得已只能改成手語辨識,經過期中的初評後,我們聽從評審的建議,試者研究LSTM模型,但我們的技術能力似乎沒法實作出來,並且考慮到手語的種類太多,可行性似乎不高,這時我們與老師討論,老師就請我們找學長,並且讓我們完善學長的程式,製作一個網頁,讓它能夠給外部使用者訪問。當然一開始也是遇到很多困難,例如製作一個網頁能使用Google Colab上的模型分析上傳的圖片,將模糊專家評估系統套用在網頁上,還有資料庫設計與管理,最難的地方肯定就是將各個組件的有效整合。讓我們花了許多時間。但也不是沒有收獲,從這次專題中我學到如何使用 mediapipe 訓

練模型,訓練的素材怎麼拍攝,使用Flask和ngrok快速開發網頁,模型訓練完如何使用,我藉由這次專題學到以前的我難以達成的事情,還學會了如何在壓力下有效管理時間和資源。最後我要衷心感謝學長和老師,提供我們相當多的幫助,在製作專題的時候給了我們很多建議與指導,讓我們能完成這次專題。

第 14 章 參考資料

賽鴿維基:

https://zh.wikipedia.org/zh-tw/%E8%B3%BD%E9%B4%BF

好鴿網:

https://www.nicepigeon.com/

Python Flask 框架初探 — 程式小白也能上手的 API 實作:

https://medium.com/@kenAaa/python-flask-

%E6%A1%86%E6%9E%B6%E5%88%9D%E6%8E%A2-

%E7%A8%8B%E5%BC%8F%E5%B0%8F%E7%99%BD%E4%B9%9F%E8%83%BD%E4%B8%8A%E6%89

%8B%E7%9A%84api%E5%AF%A6%E4%BD%9C-bafd8aa2edfe

ngork 官網:

https://ngrok.com/

YOLOv4 產業應用心得整理 - 張家銘:

https://aiacademy.tw/yolo-v4-intro/

Navicat Blog- SQLite 入門:

https://www.navicat.com/en/company/aboutus/blog/2398-sqlite-

<u>%E5%85%A5%E9%96%80</u>

HTML:超文本標記語言:

https://developer.mozilla.org/zh-TW/docs/Web/HTML

附錄

評審建議事項	修正情形
- I 田 / C M (寸	12 - 13 /V
-前端技術的部份,XML 是格式	可行性問題:專題要重新訓練模型的技
-影片辨識手語也是辨識1個字	術或資源需求過高,手語的範圍過廣,
-有提到動作辨識用什麼技術和框架?	可行性不高,難以在有限的時間範圍內
訓練資料長怎樣?很棒	完成時
-辨識畫面中有手、匹配程度參數 0.5	
如何定義?	
-具體會用什麼開發 APP 或 WEB?建議	
React Native 框架,可以完全用和開發	
網站相同的語法和邏輯,甚至是整體的	
組件架構,直接套用到 App 開發中	
-CNN · LSTM	
-只辨識 1.2…9 離手語詞還很遠	
-手語需結合臉部	
-手語應使用一段影片來辨識,而不是	
圖片	
-比手語時,動作快慢、寬窄都應考慮	