- Probleme decidabile in clasa limbajelor regulate
- 2. Probleme decidabile in clasa limbajelor independente de context
- 3. Problema opririi

\mathcal{L}_3 :

- un AFD oarecare accepta sau nu o secventa oarecare?
- limbajul acceptat de un AFD este vid?
- doua AFD oarecare sunt echivalente?

PROBLEMA ACCEPTABILITATII pentru **AFD** este:

"se poate decide <u>algoritmic</u> dacă un **AFD** oarecare acceptă o secvenţă oarecare sau nu" =>

 $ACC_{AFD} = \{ \langle A, w \rangle | A \text{ este un } AFD \text{ care acceptă secvența } w \}.$

AFD A acceptă w ? \Leftrightarrow <A,w> \in ACC_{AFD}?

⇒ a demonstra că o problemă de calculabilitate este rezolvabilă algoritmic ⇔ a demonstra că un limbaj (asociat) este decidabil.

Teorema 1

Limbajul ACC_{AFD}={ <A,w>|A este un AFD care acceptă secvenţa w} este decidabil.

Teorema 2

Limbajul $ACC_{AFN} = \{ < A, w > | A \text{ este un AFN care acceptă secvenţa w } \text{ este decidabil.}$

Teorema 3

Limbajul $ACC_{REX} = \{ \langle R, w \rangle \mid R \text{ este o expresie regulata care genereaza secvenţa w }$ este decidabil.

<u>Observatie</u>

T1, T2, T3 →

AFD ⇔ AFN ⇔ REX din punct de vedere al decidabilitatii limbajului recunoscut/generat

Teorema 4

Limbajul $VID_{AFD} = \{ \langle A \rangle \mid A \text{ este un } AFD \text{ şi } L(A) = \emptyset \} \text{ este decidabil.}$

Teorema 5

Limbajul $EQV_{AFD} = \{ \langle A,B \rangle | A \text{ şi B sunt } AFD \text{ şi L}(A) = L(B) \}$ este decidabil.

- Probleme decidabile in clasa limbajelor regulate
- 2. Probleme decidabile in clasa limbajelor independente de context
- 3. Problema opririi

Teorema 6

Limbajul $ACC_{G/C} = \{ \langle G, w \rangle \mid G \text{ este o gramatică independentă de context care generează w } \text{ este decidabil.}$

Lema 1

Fie G∈GIC în forma normală Chomsky şi w∈L(G): |w|=n, n∈N;

=> orice derivare a lui w în G are 2n-1 paşi.

<u>Observatie</u>

Teoremă anterioară: ∀ GIC, APD: L(GIC)=L(APD).

⇒ toate rezultatele demonstrate pentru gramaticile independente de context au loc şi pentru automatele pushdown.

Teorema 7

Limbajul $VID_{GIC} = \{ \langle G \rangle \mid G \in GIC \text{ şi } L(G) = \emptyset \} \text{ este decidabil.}$

<u>Observatie</u>

Limbajul $EQV_{G/C} = \{ \langle G, H \rangle | G, H \in G.I.C. \text{ şi } L(G) = L(H) \}$:

Cf. Teoremei 5, problema egalitatii limbajelor generate de gramatici REGULATE este decidabila

 $EQV_{G/C} = \{ \langle G,H \rangle \mid G \text{ si H sunt gramatici independente de context si L(G) = L(H) } NU este decidabil.$

Teorema 8

Orice limbaj independent de context este decidabil.

- Probleme decidabile in clasa limbajelor regulate
- 2. Probleme decidabile in clasa limbajelor independente de context
- 3. Problema opririi