Liquid - Liquid Extraction

Processos de Separação

LEQB

2023/2024

A: Water (diluent)

C: Acetone (solute)

B: *n*-**Hexane** (solvent)

Solvents A and B are partially miscible

A: Water (diluent)

C: Acetone (solute)

B: *n***-Hexane** (solvent)

What if the solvents were "totally" immiscible?

A – Water (diluent)

C – **Nicotine** (solute)

B - Kerosene (solvent)

Water / kerosene: immiscible

The generic term "kerosene" is used to describe the fraction of crude oil that boils approximately in the range of 302 to 554 °F (150 to 290°C) and consists of hydrocarbons approximately in the range of C9-C16

A – Water (diluent)

Water / kerosene: immiscible

C – **Nicotine** (solute)

B - Kerosene (solvent)

A – Water (diluent)

C – Nicotine (solute)

B – **Kerosene** (solvent)

Solute-free compositions

$$x', y' = \frac{m_C}{(m_A + m_B)}$$

Solute-free flowrates

A – Water (diluent)

C – Nicotine (solute)

B – **Kerosene** (solvent)

Solute-free compositions

$$x' = \frac{m_C}{(m_A + m_B)} \bigg|_{raffinate} \qquad y' = \frac{m_C}{(m_A + m_B)} \bigg|_{extract}$$

Solute-free flowrates

A – Water (diluent)

C – **Nicotine** (solute)

B – **Kerosene** (solvent)

Solute-free compositions

$$x' = \frac{m_C}{m_A}\Big|_{raffinate}$$
 $y' = \frac{m_C}{m_B}\Big|_{extract}$

Solute-free flowrates

A: solute-free raffinate phase flowrates (kg_A/h)

 B_n : solute-free extract phase flowrates (kg_B/h)

$$x' = \frac{m_C}{m_A} \qquad y' = \frac{m_C}{m_B}$$

$$x' = \frac{m_C}{m_A}$$

$$y' = \frac{m_C}{m_B}$$

Material balance to solute (stage 1)

Solute-free compositions:

$$Ax_F' + B_1y_S' = Ax_1' + B_1y_1'$$

Operating line

Raffinate composition x', kg C/kg A

Material balance to solute (stage 1)

Solute-free compositions:

$$Ax_F' + B_1y_S' = Ax_1' + B_1y_1'$$

 m_{A}

$$x' = \frac{m_C}{m_A}$$

$$y' = \frac{m_C}{m_R}$$

Material balance to solute (stage 1)

Solute-free compositions:

$$Ax_F' + B_1y_S' = Ax_1' + B_1y_1'$$

$$\Rightarrow \left(-\frac{A}{B_1} = \frac{y_S' - y_1'}{x_F' - x_1'}\right)$$

Operating line

PROBLEM 3

Solvents partially miscible

A: solute-free raffinate phase flowrates (kg_A/h)

B_n: solute-free extract phase flowrates (kg_B/h)

Solute-free compositions

Solvents "totally" immiscible

Overall material balance to solute

Solute-free compositions:

$$A\dot{x_F} + B\dot{y_S} = A\dot{x_N} + B\dot{y_1}$$

=> Operating line

$$\frac{A}{B} = \frac{\dot{y_1} - \dot{y_S}}{\dot{x_F} - \dot{x_N}}$$

Overall material balance to solute

Solute-free compositions:

$$A \dot{x_F} + B \dot{y_S} = A \dot{x_N} + B \dot{y_1}$$

=> Operating line

Overall material balance to solute

Solute-free compositions:

$$A\dot{x_F} + B\dot{y_S} = A\dot{x_N} + B\dot{y_1}$$

=> Operating line

$$\frac{A}{B} = \frac{y_1' - y_S'}{x_F' - x_N'}$$

Gas absorption - Stripping

Operating line

$$\left(\frac{L_{s}}{G_{S}} = \frac{Y_{A1} - Y_{A2}}{X_{A1} - X_{A2}}\right)$$

Countercurrent extraction

Operating line

$$\left(\frac{\mathbf{A}}{\mathbf{B}} = \frac{\mathbf{y}_{1}^{'} - \mathbf{y}_{S}^{'}}{\mathbf{x}_{F}^{'} - \mathbf{x}_{N}^{'}}\right)$$

PROBLEM 4

Absorção - Caudal mínimo

Fluxo em cocorrente

Absorção Gasosa

Fluxo em contracorrente

