

Introdução

Qualquer sistema que possua um microcontrolador, trabalha internamente apenas com dados digitais. Essas entradas digitais de um microcontrolador são "lidas" e interpretadas por apenas dois níveis lógicos: BAIXO e ALTO.

Como referências são usados os valores 0V e 5V.

Já, os dados lidos em uma entrada analógica podem assumir infinitos valores em uma faixa pré-estabelecida (normalmente entre 0V e 5V).

Variáveis analógicas são fundamentais pois representam medições de grandezas físicas, como tensão, temperatura, vazão, pressão, entre outras.

Introdução

Valores analógicos lidos por um pino devem ser convertidos para um valor digital que o represente.

Este trabalho é feito por meio de um conversor Analógico - Digital (conversor A/D ou ADC).

Este tipo de conversor é encontrado tanto na forma de circuitos integrados quanto já embutidos dentro de microcontroladores, como é o caso do AVR.

Estrutura

Como é realizada a conversão?

Como é realizada a conversão?

saída =entrada (estado track) saída =constante (estado hold)

Como é realizada a conversão?

Como é realizada a conversão?

Funcionamento no Microcontrolador

O ATMEGA328p dispõe de 6 pinos (PC0 – PC5) que podem realizar a leitura de uma tensão máxima de 5V.

Um conversor A/D quantifica o valor analógico conforme a quantidade de bits da sua resolução. A resolução de um conversor A/D é dada pela seguinte equação:

$$Resolução = \frac{V_{ref}}{2^n - 1}$$

 $V_{ref} \rightarrow$ Tensão de Referência do conversor A/D (normalmente 5V)

 $n \rightarrow N$ úmero de bits do conversor

Funcionamento no Microcontrolador

O conversor A/D do AVR possui 10 bits de resolução, a sua tensão de entrada pode variar de 0V até o valor de VCC. Dessa forma, o menor valor que pode ser lido será:

$$Resolução = \frac{5}{2^{10} - 1} = 4,88[mV]$$

Este é o valor que representa o degrau para uma conversão em 10 bits com referência em 5V.

Manipulação de Registradores - ADMUX

Bit	7	6	5	4	3	2	1	0	_
(0x7C)	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

REFS1	REFS0	Voltage Reference Selection					
0	0	REF, Internal V _{ref} turned off					
0	1	V _{CC} with external capacitor at AREF pin					
1	0	Reserved					
1	1	Internal 1.1V Voltage Reference with external capacitor	at AREF pin				

Manipulação de Registradores - ADMUX

ADLAR = 1

Bit	15	14	13	12	11	10	9	8	_
(0x79)	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
(0x78)	ADC1	ADC0	_	_	_	_	_	-	ADCL
	7	6	5	4	3	2	1	0	•

Manipulação de Registradores - ADMUX

MUX30	Single Ended Input			
0000	ADC0			
0001	ADC1			
0010	ADC2			
0011	ADC3			
0100	ADC4			
0101	ADC5			
0110	ADC6			
0111	ADC7			
1000	ADC8 ⁽¹⁾			
1001	(reserved)			
1010	(reserved)			
1011	(reserved)			
1100	(reserved)			
1101	(reserved)			
1110	1.1V (V _{BG})			
1111	0V (GND)			

For Temperature Sensor.

it	7	6	5	4	3	2	1	0	
)x7C)	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
ead/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	,
itial Value	0	0	0	0	0	0	0	0	

Manipulação de Registradores - ADCSRA

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Manipulação de Registradores - ADCSRA

	Λ		E	N
_	\boldsymbol{A}	1)		
	/ \			

- 0 Desliga o conversor
- 1 Liga o conversor
- ADSC
 - 1 Inicia a conversão
 - 0 Indica que a conversão foi finalizada

Bit	7	6	5	4	3	2	1	0	
0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
nitial Value	0	0	0	0	0	0	0	0	

Manipulação de Registradores - ADCSRA

- ADIF
 - Flag de interrupção
- ADIE
 - 0 Interrupção Desabilitada
 - 1 Interrupção Habilitada

Bit	7	6	5	4	3	2	1	0	
0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	ı
nitial Value	0	0	0	0	0	0	0	0	

Manipulação de Registradores - ADCSRA

- ADPS2 a ADPS0

- Prescaler

BIT
(0x7A)
Read/Write
Initial Value

	7	6	5	4	3	2	1	0	
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	0	0	0	0	0	0	0	0	

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Manipulação de Registradores – DIDR0

DIDR0 - Digital Input Disable Register 0								
Bit	7	6	5	4	3	2	1	0
0x7E	_	_	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D

Manipulação de Registradores - ADC

- Armazena o resultado de conversão no formato configurado.
- Podem ser utilizados os registradores ADCH e ADCL separadamente.

Prof. João Magalhães

Horário de Atendimento:

• Segunda-feira: 17h30

• Quinta-feira: 19h30

E-mail: joao.magalhaes@inatel.br

Celular: (35) 99895-4450

Linkedin: https://www.linkedin.com/in/joaomagalhaespaiva/

