Diffusion-Based Garment Synthesis via Knowledge Graph-Driven Structural Cross-Modal Semantic Alignment

Miao-Yin Chen, Shu-Han Chuang Department of Data Science, Soochow University, Taipei, Taiwan

OVERVIEW

AI-driven garment synthesis transforms fashion design.

Challenges

• Semantic drift

• Attribute confusion

• Regional inconsistencies

Our solution

• Knowledge graph-driven diffusion model for enhanced control and alignment.

Objective

• Improve semantic fidelity and structural precision in garment synthesis.

Problems

Challenges in Garment Synthesis

• Semantic drift

Misalignment between text prompts and visual outputs.

• Attribute confusion

Incorrect assignment of colors, patterns, or styles.

• Regional inconsistencies

Unintended modifications to garment **regions**.

Limitations of Existing Models

Generative Adversarial
 Networks

Unstable training, model collapse, limited structural control.

Proposed Approach

We propose a knowledge graph-driven diffusion model to enhance control and alignment in garment synthesis

Text2Graph Module

Converts natural language into semantic triples
Use LLM to encode triples into text embedding

"a navy blue jacket with a red straight-point collar and a blue belted waist."

(jacket, has-color, navy blue), (jacket, has-feature, collar), (collar, has-style, straight-point), (collar, has-color, red), (jacket, has-feature, waist), (waist, has-color, blue)

02.

Stable Diffusion

Fine-tuned with LoRA for fashion-specific tasks.

03.

ControlNet

Incorporates structural inputs (pose, sketches) to ensure the generated images maintain **spatial** association.

Diffusion-Based Garment Synthesis

• Forward phase:

Adds Gaussian noise to images.

• Reverse phase:

U-Net iteratively removes noise to reconstruct images.

• VAE:

Compresses images into latent space for efficiency.

High-fidelity garment images with accurate textures, shapes, and colors.

Experiments

01. Datasets

H&M Personalized Fashion Recommendations dataset from Kaggle competition (approx. 105,000 images) **O2.**Parameters Setting

- Fine-tuned Stable Diffusion
 v1.4 with LoRA
- AdamW optimizer, learning rate of 1×10^{-6} , over 200,000 iterations
- Conducted on a single NVIDIA A6000 GPU
- Images resized to 512×512

CLIP Score Text-image semantic alignment.

Fréchet Inception Distance (FID) Visual realism

Inception Score (IS) Image quality and diversity.

Model	CLIP Score	FID Score	Inception Score
Stable diffusion	31.54	290.15	1.76
Fine-tuned Stable diffusion	28.56	275.35	1.89
KG-driven Stable diffusion	29.28	255.90	1.86

Higher CLIP Score = Better Text-Image Alignment

Lower FID = Better Visual Realism

Higher IS = Better Quality & Diversity

CLIP Score

- ✓ Our approach shows a modest improvement over the fine-tuned model, but lower than base model.
- ✓ Knowledge graph-driven text triple prompt are structurally concise but semantically sparse.
- → The original pretrained CLIP model was not trained on structured triples, it fails to fully understand input triples, even if the image is semantically correct.

Model	CLIP Score	FID Score	Inception Score
Stable diffusion	31.54	290.15	1.76
Fine-tuned Stable diffusion	28.56	275.35	1.89
KG-driven Stable diffusion	29.28	255.90	1.86

Higher CLIP Score = Better Text-Image Alignment

Lower FID = Better Visual Realism

Higher IS = Better Quality & Diversity

FID Score

Our approach achieves a notably lower FID, indicating a closer alignment with the distribution of real images and reflecting superior visual realism.

Model	CLIP Score	FID Score	Inception Score
Stable diffusion	31.54	290.15	1.76
Fine-tuned Stable diffusion	28.56	275.35	1.89
KG-driven Stable diffusion	29.28	255.90	1.86

Higher CLIP Score = Better Text-Image Alignment

Lower FID = Better Visual Realism

Higher IS = Better Quality & Diversity

Inception Score

Our approach attains a higher Inception Score, demonstrating improved image quality and greater intra-class diversity.

Both fine-tuned model and our approach achieve better IS than the original Stable Diffusion v1.4 baseline \rightarrow Fine-tuning process may lead to better results.

Input prompt:

"A navy blue jacket with red straight-point collar and blue belted waist"

Stable diffusion

Navy blue jacket Red straight-point collar Blue belted waist

Fine-tuned Stable diffusion

Navy blue jacket Red straight-point collar Blue belted waist

KG-driven Stable diffusion

Navy blue jacket

Red straight-point collar

Blue belted waist

Input prompt: "a blue shirt with brown collar"

Input prompt:

"Black cotton shirt with chest patch pocket, round neck, and featuring logo patch at the chest,"

Stable diffusion

Black cotton

Chest patch Round neck Logo patch

Fine-tuned Stable diffusion

Black cotton shirt

Chest patch pocket

Logo patch 🗸

KG-driven Stable diffusion

Black cotton

Chest patch

Logo patch

Pose-controlled garment synthesis

Our approach combines *OpenPose* with knowledge graphs for precise pose and attribute alignment.

By using *OpenPose*, it can accurately replicate the exact body pose of the input image.

Conclusion

Key Achievements

Knowledge graph-driven framework enhances semantic fidelity and controllability.

Superior performance in visual realism and text-image alignment.

Limitations

Sensitivity to noisy text inputs.

Challenges with long, ambiguous prompts.

Thank you