²⁰⁸Pb(³⁶S,³⁵Pγ) **2008Wi09,2015Ch56,2019Gr08**

- 2008Wi09,2010WiZZ: A 230-MeV ³⁶S beam was produced by the Argonne Tandem Linac Accelerator System (ATLAS) with an intensity of 1.5 pnA on a 0.5 mg/cm² ²⁰⁸Pb target and an intensity of 0.3 pnA on a 44 mg/cm² ²⁰⁸Pb target. In the thin-target run, binary transfer products were detected using a heavy-ion parallel-plate avalanche counter (PPAC) array (CHICO) (Time resolution ≈0.7ns). The polar angle covered was 12° to 85° with respect to the beam. γ rays were detected by Gammasphere consisting of 101 HPGe detectors with FWHM=2-10 keV at Eγ=1 MeV. Event-by-event Doppler shift correction was applied. In the thick-target run, binary transfer products were stopped in the target. γ rays were detected by Gammasphere consisting of 95 HPGe detectors with FWHM=2-3 keV at Eγ=1 MeV. Measured Eγ, Iγ, γγ-coin. Deduced levels. Comparisons with shell-model calculations. Branching-ratio limits were reported for predicted transitions to the 2ħω bandheads in ³⁵P and ³⁴Si. An e-mail reply from Mathis Wiedeking in April, 2010 (2010WiZZ) provides relative γ-ray intensities, supplementing 2008Wi09.
- 2015Ch56: A 215-MeV 36 S beam was produced using the combination of XTU tandem Van de Graaff accelerator and ALPI superconducting linear accelerator at the INFN Legnaro National Laboratory. The target was $300-\mu g/cm^2$ 99.7% enriched 208 Pb on a $20~\mu g/cm^2$ carbon backing. Projectile-like fragments produced in multinucleon binary grazing reactions were separated and identified by the PRISMA spectrometer. γ rays were detected using the CLARA array of 22 EUROBALL escape-suppressed HPGe clover detectors. Doppler corrections of γ -ray energies were performed event by event. Measured E γ , I γ , (35 P) γ -coin, and $\gamma\gamma$ -coin. 2015Ch56 also revisited the $\gamma\gamma\gamma$ -coin of 36 S+ 176 Yb deep-inelastic data by J. Ollier Ph.D. thesis, University of Paisley (2004) to strengthen the evidence for γ -ray placements (see Ref. [39] in 2015Ch56). Deduced levels, J, π . Comparisons with shell-model calculations.
- 2019Gr08: A 225-MeV 36 S beam was provided by Tandem-ALPI accelerator complex at the INFN Legnaro National Laboratory. The target was 1 mg/cm² 99.7% enriched 208 Pb with 1 mg/cm² Nb backing and mounted onto the Cologne differential plunger. Projectile-like fragments produced in binary grazing reactions were separated and identified by the PRISMA spectrometer. γ rays were detected using the AGATA demonstrator array of five triple cluster modules of 36-fold segmented Ge crystals covering backward angles from 135° to 175°. Doppler corrections of γ -ray energies were performed event by event. Measured E γ , (35 P) γ -coin, and level lifetimes using the differential recoil-distance method (DRDM). Comparison with shell-model calculations.

35P Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0	1/2+		
2386.7 7	3/2 ⁺	<0.69 ps	$T_{1/2}$: estimated mean lifetime τ <1 ps (2019Gr08).
3860.8 <i>7</i>	5/2 ⁺	<0.69 ps	$T_{1/2}$: estimated mean lifetime $\tau < 1$ ps (2019Gr08).
4102.1 7	$(7/2^{-})$	>69 ps	J^{π} : 7/2 ⁻ proposed by 2019Gr08 based on comparisons with shell-model calculations.
			$T_{1/2}$: estimated mean lifetime τ >100 ps (2019Gr08).
4381.9 <i>10</i>	$(5/2^{-})$		1/2
4494.2 8	$(7/2^{-})$	2.29 ps <i>49</i>	J^{π} : 7/2 ⁻ proposed by 2019Gr08 based on comparisons with shell-model calculations.
			$T_{1/2}$: measured mean lifetime τ =3.3 ps 7 (2019Gr08).
4767.1 <i>10</i>	(9/2-)		J^{π} : 9/2 ⁻ proposed by 2019Gr08 based on comparisons with shell-model calculations.
4869.0 8	$(5/2^-,7/2^-)$		
4962.1 12	(9/2 ⁻)		J^{π} : 9/2 ⁻ proposed by 2019Gr08 based on comparisons with shell-model calculations.
5089.8 11	$(11/2^-)$		J^{π} : 11/2 ⁻ proposed by 2019Gr08 based on comparisons with shell-model calculations.
5488.2 10			
5560.1 12	$(5/2^{-})$		
6222.4 11	$(7/2^-, 9/2, 11/2^-)$		

 $^{^{\}dagger}$ From a least-squares fit to γ -ray energies.

[‡] From the Adopted Levels.

[#] From differential recoil-distance method (DRDM) (2019Gr08).

208 Pb(36 S, 35 P γ) **2008Wi09,2015Ch56,2019Gr08** (continued)

γ (35P)

E_{γ}	I_{γ}	$E_i(level)$	J_i^π	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
128 <i>I</i>	10 5	5089.8	$\frac{1}{(11/2^{-})}$	4962.1			E_{γ} : weighted average of 128 <i>I</i> (2008Wi09) and
							127 I (2015Ch56). I _{γ} : unweighted average of 14 2 (2008Wi09) and
241 7	(1.4	4100.1	(7.10-)	2060.0	5 /Q+	FF-11	5.2 6 (2015Ch56).
241 <i>I</i>	61 4	4102.1	$(7/2^{-})$	3860.8	5/21	[E1]	E _γ : From 2008Wi09 and 2015Ch56. I _γ : From 2008Wi09. Other: 32.6 9 (2015Ch56).
273 1	12.8 8	4767.1	(9/2 ⁻)	4494.2	(7/2 ⁻)		\dot{E}_{γ} : From 2008Wi09 and 2015Ch56. I_{γ} : weighted average of 12 2 (2008Wi09) and 12.9 8 (2015Ch56).
322 1	20 7	5089.8	$(11/2^-)$	4767.1	(9/2-)		E_{γ} : weighted average of 321 <i>I</i> (2008Wi09) and
							323 <i>I</i> (2015Ch56). I _γ : unweighted average of 27 <i>3</i> (2008Wi09) and 12.9 8 (2015Ch56).
374 [†] 1	3 [†] 1	4869.0	$(5/2^-,7/2^-)$	4494.2			F
392 <i>1</i>	30 5	4494.2	(7/2 ⁻)	4102.1	(1/2)		E_{γ} : weighted average of 391 <i>I</i> (2008Wi09) and 392 <i>I</i> (2015Ch56).
							I_{γ} : unweighted average of 35 <i>3</i> (2008Wi09) and 24.9 <i>11</i> (2015Ch56).
468 2	16.2 <i>12</i>	4962.1	(9/2 ⁻)	4494.2	$(7/2^{-})$		E_{γ} : unweighted average of 466 <i>I</i> (2008Wi09) and 469 <i>I</i> (2015Ch56).
							I_{γ} : weighted average of 14 2 (2008Wi09) and 16.8 11 (2015Ch56).
487 [†] <i>1</i> 633 <i>1</i>	<2 [†] 8.2 22	4869.0 4494.2	$(5/2^-,7/2^-)$ $(7/2^-)$	4381.9 3860.8			I_{γ} : 1 <i>I</i> from 2008Wi09. E_{γ} : weighted average of 632 <i>I</i> (2008Wi09) and
033 1	0.2 22	4474.2	(1/2)	3000.0	3/2		633 <i>I</i> (2015Ch56).
							I_{γ} : unweighted average of 6 <i>I</i> (2008Wi09) and 10.4 9 (2015Ch56).
664 <i>1</i>	32 15	4767.1	(9/2-)	4102.1	$(7/2^{-})$		E_{γ} : weighted average of 663 <i>I</i> (2008Wi09) and 665 <i>I</i> (2015Ch56).
							I_{γ} : unweighted average of 47 4 (2008Wi09) and 17.8 10 (2015Ch56).
767 [†] 1 859 <i>3</i>	5 [†] 1 10.7 14	4869.0 4962.1	$(5/2^-, 7/2^-)$ $(9/2^-)$	4102.1 4102.1			E_{γ} : unweighted average of 856 <i>I</i> (2008Wi09)
639 3	10.7 14	4702.1	(9/2)	4102.1	(1/2)		and 861 1 (2015Ch56).
							I_{γ} : weighted average of 13 2 (2008Wi09) and 9.8 12 (2015Ch56).
993 [†] 1	5 [†] 1	5488.2		4494.2			
1009 [†] <i>I</i> 1132 [†] <i>I</i>	<1 [†]	4869.0	$(5/2^-,7/2^-)$	3860.8	-		
1132	<1 [†] 4 [†] <i>I</i>	6222.4 6222.4	$(7/2^-, 9/2, 11/2^-)$		$(11/2^{-})$		
x1353 1	9.2 11	0222.4	$(7/2^-, 9/2, 11/2^-)$	4962.1	(9/2)		E_{γ} , I_{γ} : From 2015Ch56.
1387 [†] <i>1</i>	3 [†] 1	5488.2		4102.1	$(7/2^{-})$		
1458 [†] <i>1</i>	7 [†] 2	5560.1	$(5/2^{-})$	4102.1			
1474 <i>I</i>	15.9 <i>14</i>	3860.8	5/2+	2386.7	3/2+	[M1,E2]	E_{γ} : weighted average of 1473 <i>I</i> (2008Wi09) and 1474 <i>I</i> (2015Ch56).
							I_{γ} : weighted average of 15 2 (2008Wi09) and 16.4 14 (2015Ch56).
^x 1592 <i>I</i>	7.7 10						E_{γ},I_{γ} : From 2015Ch56.
1715 [†] 1	4 [†] 1	4102.1	(7/2-)	2386.7	3/2+	[M2,E3]	
1729 [†] <i>1</i>	4 [†] 1	6222.4	$(7/2^-, 9/2, 11/2^-)$	4494.2			E . weighted evenf 1005 1 (2000W/00)
1995 <i>I</i>	8 6	4381.9	(5/2 ⁻)	2386.7	3/2		E_{γ} : weighted average of 1995 <i>I</i> (2008Wi09) and 1994 <i>I</i> (2015Ch56).

208 **Pb**(36 **S**, 35 **P** γ) 2008Wi09,2015Ch56,2019Gr08 (continued)

γ (35P) (continued)

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	J_f^π	Mult.‡	Comments
2386 1	30 4	2386.7	3/2+	0	1/2+	[M1,E2]	I _γ : unweighted average of 2 <i>I</i> (2008Wi09) and 14.2 <i>II</i> (2015Ch56). E _γ : From 2008Wi09 and 2015Ch56. I _γ : From 2008Wi09. Other: 99.2 28 (2015Ch56). Shell-model calculations indidate a small occupancy of the proton 1d _{3/2}
3861 <i>1</i>	100.0 32	3860.8	5/2+	0	1/2+	[E2]	orbit in the ground state of ³⁶ S. E _γ : weighted average of 3861 <i>I</i> (2008Wi09) and 3860 <i>I</i> (2015Ch56). I _γ : From 2015Ch56. Other: 100 (2008Wi09).
4102 [†] <i>I</i>	33 [†] 5	4102.1	$(7/2^{-})$	0	1/2+	[E3]	E_{γ} : other: 4101 (2015Ch56).

 $^{^{\}dagger}$ From 2008Wi09. ‡ From 2019Gr08-shell model calculations. x γ ray not placed in level scheme.

²⁰⁸Pb(³⁶S, ³⁵Pγ) 2008Wi09,2015Ch56,2019Gr08

