2) Encuentre el plano tangente y la línea normal a la superficie (2-x2+y2+25-a2 en el punto (0,0,4) Vector normal → V 4 = 34 17>+ 34 17>+ 34 12> = 2x17>+2417>+2+12> = 2(0)17>+2(0)17>+2(0)12> +(0,0,0) Plano

rangente (vectores 1 al gradiente): 74 · (1x, 4, 2) · (x0, 40, 20) = 0 (017+017)+2a1k2)-(x17>+4177+(2-a)1k2)=0 = 0177+0177+201R> Linea normal → Pasa por (0,0,a) y hene la dirección de TY(0,0,a): {x=0 y=0 }==4+2at → teR 5) Una partícula se mueve siguiendo el radio vector radio vector de constantes. Demuestre que la fuerza que actúa sobre la partícula es una fuerza central \$\frac{1}{2} = \tilde{\alpha} \cos (wt) + \tilde{\beta} \cos (wt) = \frac{1}{4} = -w\tilde{\alpha} \cos (wt) + w\tilde{\beta} \cos (wt) = \frac{1}{4} = -w\tilde{\alpha} \cos (wt) - w\tilde{\alpha} \cos (wt) = -w\tilde{\alpha} \cos (wt) + \tilde{\beta} \cos (wt) = -w\tilde{\alpha} \cos (wt) = -w\tilde{\al Fitt = ma(t) = -mw2 f(t) -> Esta es una fuerta central pues para todo t, f(t) será colineal con el radio vector f(t) pues f(t) es múltiplo escalar de 71+). Otra forma de demostrario es calculando el torque respecto al origen: T(+)=T(+) x F(+)= T(+) x (-mw2T(+)) = -mw2(TxT)=0 + T=0, I (momento angular) = T(+) x mV(+) = cte. + Fuerza central! 10) La ecuación de equilibrio hidrostático en simetría esférica es \(\frac{\frac{1}{2}(r) \rightarrow \frac{1}{2}(r) \rightarrow 0}{2}\) donde P(r) es la presión, p(r) la densidad y (r) el potencial gravitacional. Muestre que las normales a las superficies isóbaras y las normales a las superficies equipotenciales, son paralelas Se hene que, si f(x,y,2)=cte es una superficie de nivel, entonces $\nabla f(x,y,2)$ es normal a cada punto sobre esa superficie. Así, ∇P será la normal a una superfice isóbara (Piri=cte) y TY será la normal a una superfice equipotencial (Y(r)=cte). PP(1)+p(1) PY=0 → PP(1)=-p(1) PY(1) → Ya gue p(1) es un escalar en cada punto, PP(1) será un múltiplo escalar de PP(1), por lo tanto PP(1) y PP(1) son colineales y PP(1) | PP(1) Otra forma de demostrarlo usando coordenadas esféricas: Supongamos una función escalar ±(r) con r= √x²+y²+2²: V+(r)= di ar + di ar di ar di ar di ar di ar di ar donde Vr= V((x+y+2))= 1/2 (2x17>+2417>+216>)= 1/2 (x17>+413)+216>= 0, vector unitario radial Entonces, V+(r)= f'(r) Ûr. Ahora revisemos PP(r) y PV(r): PP(r)=P'(r)Ûr y VV(r)=Y'(r)Ûr → Ya que VP(r) y VV(r) están alineados con Ur, VP(1) y P(11) son paralelos 16) Considere dos sistemas de coordenadas, uno con y otro sin primas 👸 🗝 👸 Se tiene que de ej = 301 = Tike; Si ahora consideramos un nuevo sistema de coordenadas qu' con vectores base ej = 391 em = 10 m. Primero, hallamos $\frac{\partial e_{i}}{\partial q^{\kappa}} = \frac{\partial x_{i}^{m}}{\partial q^{\kappa}} e_{m} + \alpha_{i}^{m} \alpha_{i}^{\kappa} \frac{\partial e_{m}}{\partial q^{n}}$ $= \kappa_{i}^{\kappa}, \frac{\partial x_{i}^{m}}{\partial q^{n}} e_{m} + \alpha_{i}^{m} \alpha_{i}^{\kappa}, \frac{\partial e_{m}}{\partial q^{n}}$ $= \kappa_{i}^{\kappa}, \frac{\partial x_{i}^{m}}{\partial q^{n}} e_{m} + \alpha_{i}^{m} \alpha_{i}^{\kappa}, \frac{\partial e_{m}}{\partial q^{n}}$ $= \kappa_{i}^{\kappa}, \frac{\partial x_{i}^{m}}{\partial q^{n}} e_{m} + \alpha_{i}^{m} \alpha_{i}^{\kappa}, \frac{\partial e_{m}}{\partial q^{n}}$ $= \kappa_{i}^{\kappa}, \frac{\partial x_{i}^{m}}{\partial q^{n}} e_{m} + \alpha_{i}^{m} \alpha_{i}^{\kappa}, \frac{\partial e_{m}}{\partial q^{n}}$ $= \kappa_{i}^{\kappa}, \frac{\partial x_{i}^{m}}{\partial q^{n}} e_{m} + \alpha_{i}^{m} \alpha_{i}^{\kappa}, \frac{\partial e_{m}}{\partial q^{n}} + \alpha_{i}^{m} \alpha_{i}^{\kappa}, \frac{\partial e_{m}}{\partial q^{n}} e_{m} + \alpha_{i}^{m} \alpha_{i}^{\kappa},$ Lo cual es equivalente a Para un vector contravaniante ai, su derivada covaniante es ai; = \frac{2ai}{2ai} \cdot \Gamma_{ij} = \frac{2ai}{2ai} \cdot \Gamma_{ij} = \frac{2ai}{2ai} \cdot \Gamma_{ij} = \frac{2ai}{2ai} \cdot \Gamma_{ij} \cdot \frac{2ai}{2ai} \cdot \Gamma_{ij} \cdot \Gamma_{ij a" = \frac{3q'}{3q'} a! = \alpha'_1 a!. Entonces se trene: \frac{a'_{jj}}{3q'} = \frac{3a'_{m'j}}{3q'} + \frac{1}{m'_{j'}} am' = \left(\frac{3a'_{m'}}{3q'} a! + \alpha'_{k'} \frac{3al}{3a'_{k'}} \right) + \frac{1}{1}''_{m'j'} \alpha'' \frac{1}{1} \alpha'' \frac{1}{1} \ = \(\alpha_{\text{i}} \frac{3a_{\text{m}}}{3a_{\text{i}}} a_{\text{i}} + \(\alpha_{\text{i}} \alpha_{\text{m}}^{\text{i}} \(\alpha_{\text{i}}^{\text{i}} \alpha_{\text{m}}^{\text{m}} \(\alpha_{\text{i}}^{\text{i}} \alpha_{\text{m}}^{\text{i}} \(\alpha_{\text{i}}^{\text{i}} \alpha_{\text{m}}^{\text{i}} \) \(\alpha_{\text{i}}^{\text{i}} \) \(\alpha_{\text{i}}^ = \(\alpha_{1}^{\text{in}} \frac{\dark a ' \alpha_{1} \alpha_{1} \alpha_{2}^{\text{in}} \a

Ya gue o	(m'αn' = δη -	$\frac{9d_2}{9(\kappa_{m_1}^{b}\kappa_{u_2}^{m_2})}=0$	- 3Kp Km = - Km -	<u>δαςς.</u> . Αςί: α;; = -α	m α 1' <u>δαρ</u> 0	κζα [‡] αϳ' ας <u>δα</u>	- a i' at. Fir	α ^ρ + α ¹ ας , 3α	som, pol
						κ, α τ α ξ, α ω <u>9 α</u>			
					7.1	α, α, α, α, <u>9</u>			
						i'at Tir ap		1	
				= 0,5	a ", (3ª +	(mpar)= xi'a	m at aim		
			que apprentie						
				rute es aiii = 90;			el sistema pri	mado <mark>a:;;*=</mark> 3a;	;- ";"; am' con
01:= 30:0	1-01-al. En	tonces se tien	6: 01:12 = 30!, - L.	1, 0 m, = 301, 01+ 0	, 301 - Lu,	am'ap		- m' -	P _ c P
						- (Kr, K; K; L,	"+ + Km' K1, 341,	amap am'a	W, = 9 !
					-	1 - (K; K; F)			
				= K.!. 3au al	+ K. W. 93	w - Winkir Libra	16- W. 30 m at	→1+2=0	
				= Wi Wi 30	- K 1 K 1 [stap- sol, tom			
						= Ki, Ki, a 1!w			