Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Noskov Dmitriy Гр. 320201

Вариант 6

Часть І. Планирование адресного пространства IPv6

Задание 1.1: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:446d:6974:7200:0/103

Задание 1.2: разбить сеть из п.1.1 на 4 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней полсетей

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'{\Gamma}C,}$	$2001: \mathtt{db8:0:4ee9:446d:6974:7200:0/105}$
Префикс $N_{\rm C,PePS}$	2001:db8:0:4ee9:446d:6974:7380:0/105

Часть II. Планирование адресного пространства IP v4

X0 = целая часть (N*16)/256+10 = целая часть (6*16)/256+10 = 10

X1 = остаток от деления (N*16)/256 = остаток от деления (6*16)/256 = 96

Дано: Сеть 10.96.0.0/12

Задание 2.1.1: разбить сеть на 64 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	96	0	0
Адрес сети	00001010	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 2 бит из 2-го октета.

3. Итого, получается, что сеть 10.96.0.0/12 мы разбили на 64 подсети, в каждой из которых по 16382 узлов, указываем первые 5 подсетей:

	10	96	0	0
Адрес сети дв.с	00001010	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11000000	00000000
	255	255	192	0

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.96.0.0/18
Адрес первого узла N_1	10.96.0.1
Адрес последнего узла N_1	10.96.63.254
Широковещательный адрес N_1	10.96.63.255
Адрес сети $N_2/$ Префикс N_2	10.96.64.0/18
Адрес первого узла N_2	10.96.64.1
Адрес последнего узла N_2	10.96.127.254
Широковещательный адрес N_2	10.96.127.255
Адрес сети $N_3/$ Префикс N_3	10.96.128.0/18
Λ дрес первого узла N_3	10.96.128.1
Адрес последнего узла N_3	10.96.191.254
Широковещательный адрес N_3	10.96.191.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	10.96.192.0/18
Λ дрес первого узла N_4	10.96.192.1
Адрес последнего узла N_4	10.96.255.254
Широковещательный адрес N_4	10.96.255.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	10.97.0.0/18
Адрес первого узла N_5	10.97.0.1
Адрес последнего узла N_5	10.97.63.254
Широковещательный адрес N_5	10.97.63.255
	

Дано: Сеть 10.96.0.0/12

Задание 2.1.2: разбить сеть на 25 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(25 \leqslant 2^5 = 32)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 1 бит из 2-го октета (получается, что сеть можно разбить на 32 подсетей: $2^5 = 32$; оставшиеся 15 бит идут под узлы: $2^{15} - 2 = 32766$ в каждой подсети).

	10	96	0	0
Адрес сети дв.с	00001010	01100000	00000000	00000000
Маска дв.с	11111111	11111111	10000000	00000000
	255	255	128	0

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	10.96.0.0/17
Адрес первого узла N_1	10.96.0.1
Адрес последнего узла N_1	10.96.127.254
Широковещательный адрес N_1	10.96.127.255

$oxed{A}$ дрес сети $N_2/$ Префикс N_2	10.108.0.0/17
Адрес первого узла N_2	10.108.0.1
Адрес последнего узла N_2	10.108.127.254
Широковещательный адрес N_2	10.108.127.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 256 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	96	0	0
Адрес сети	00001010	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254$. Т.е. нужно выбрать такую маску, которря выделит ровно 8 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^{12}=16384$ подсетей по 254 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	10.111.251.0/24
Адрес первого узла N_1	10.111.251.1
Адрес последнего узла N_1	10.111.251.254
Широковещательный адрес N_1	10.111.251.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	10.111.252.0/24
Адрес первого узла N_2	10.111.252.1
Адрес последнего узла N_2	10.111.252.254
Широковещательный адрес N_2	10.111.252.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	10.111.253.0/24
Адрес первого узла N_3	10.111.253.1
Адрес последнего узла N_3	10.111.253.254
Широковещательный адрес N_3	10.111.253.255

$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	10.111.254.0/24
Адрес первого узла N_4	10.111.254.1
Адрес последнего узла N_4	10.111.254.254
Широковещательный адрес N_4	10.111.254.255
Адрес сети $N_5/$ Префикс N_5	10.111.255.0/24
Адрес первого узла N_5	10.111.255.1
Адрес последнего узла N_5	10.111.255.254
Широковещательный адрес N_5	10.111.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 50 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	96	0	0
Адрес сети	00001010	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=6, т.к. $2^6-2=62 \geqslant 50$.

	10	96	U	U
Адрес сети дв.с	00001010	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11000000
	255	255	255	192

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.96.0.0/26
Адрес первого узла N_1	10.96.0.1
Адрес последнего узла N_1	10.96.0.62
Широковещательный адрес N_1	10.96.0.63

Адрес сети $N_2/$ Префикс N_2	$\fbox{10.111.255.192/26}$
Адрес первого узла N_2	10.111.255.193
Адрес последнего узла N_2	10.111.255.254
Широковещательный адрес N_2	10.111.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 1 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	96	0	0
Адрес сети	00001010	01100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=2, т.к. $2^2-2=2$.

	10	96	0	0
Адрес сети дв.с	00001010	01100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	11111100
	255	255	255	252

3. Указываем последние 5 подсетей:

$f A$ дрес сети $N_1/$ Префикс N_1	10.111.255.236/30
${ m A}$ дрес первого узла N_1	10.111.255.237
Адрес последнего узла N_1	10.111.255.238
Широковещательный адрес N_1	10.111.255.239
$oxed{A$ дрес сети $N_2/$ Префикс N_2	10.111.255.240/30
${ m A}$ дрес первого узла N_2	10.111.255.241
Адрес последнего узла N_2	10.111.255.242
Широковещательный адрес N_2	10.111.255.243

Адрес сети $N_3/$ Префикс N_3	10.111.255.244/30
Адрес первого узла N_3	10.111.255.245
Адрес последнего узла N_3	10.111.255.246
Широковещательный адрес N_3	10.111.255.247
$oxedsymbol{\Lambda}$ дрес сети $N_4/$ Префикс N_4	10.111.255.248/30
Адрес первого узла N_4	10.111.255.249
Адрес последнего узла N_4	10.111.255.250
Широковещательный адрес N_4	10.111.255.251
$oxedsymbol{\Lambda}$ дрес сети $N_5/$ Префикс N_5	10.111.255.252/30
Адрес первого узла N_5	10.111.255.253
Адрес последнего узла N_5	10.111.255.254
Широковещательный адрес N_5	10.111.255.255