Project 3

Steps:

<u>Step 1:</u> In the terminal write the command docker-compose up postgres which will pull the postgres

<u>Step 2:</u> Then write the command docker exec -it postgres psql -U myuser mydb to go to the database

<u>Step 3:</u> Then create a table named sales_data using the SQL command create table sales_data (id int, product_name varchar(255), category varchar(50), sales_amount numeric(10,2), sales_date date);

Step 4: Insert the values using the SQL command **insert into** sales_data(id, product_name, category, sales_amount, sales_date) values (1,'Product A', 'Electronics', 1000.50, 2024-03-01), (2,'Product B', 'Clothing', 750.25, 2024-03-02), (3,'Product C', 'Home Goods', 1200.75, 2024-03-03), (4,'Product D', 'Electronics', 900.00, 2024-03-04), (5,'Product E', 'Clothing', 600.50, 2024-03-05);

<u>Step 5:</u> Pull the other images docker-compose up spark nessie minio dremio

Step 6: Create a bucket in minio:

- a. Go to the browser and type localhost:9001 to open it
- b. Username: admin
- c. Password: password
- d. Click on create bucket in the object store and name it warehouse

Step 7: Open the Spark notebook

- a. Type localhost:8888 on the browser
- b. Create a new Python notebook and write the Python code mentioned below and change the IP address of the minio to the address of the local computer. (NOTE: To get the IP address use docker inspect minio)
- c. Run the Python code

Step 8: Open the dremio for connection.

- a. localhost:9047
- b. Create username and password and do not include any special characters in the password.
- c. Click on Add Source => Select nessie as the source

Step 9: Pull the superset using the command docker-compose up superset

<u>Step 10:</u> Then execute the docker image by the command docker exec -it superset superset init

Step 11: Open Superset

- a. localhost:8088
- b. Password: admin
- c. Click on '+' => Connect => Add database
 - i. In the display name select Other
 - ii. In the SQL ALCHEMY URI type dremio+flight://username:password@dremio:32010/?UseEncryp tion=false (NOTE: username and password of dremio)
 - iii. Click on Connect

NOTE:

To generate random data in postgreSQL use the command:

INSERT INTO sales_data (product_name, category, sales_amount, sales_date)
SELECT 'Product_' || floor(random() * 1000)::int, (ARRAY['Electronics', 'Clothing',
'Home & Kitchen', 'Books', 'Toys'])[floor(random() * 5) + 1], round((random() * 990 +
10)::numeric, 2), now() - (random() * interval '365 days') FROM generate_series(1,
10000);

About the technologies and their impact

1. Nessie (Catalog Server)

What it does?

Nessie is like a **version control system (like Git) for data**. It helps in tracking changes made to datasets over time. This means you can roll back to a previous version of your data if needed.

Impact if missing?

Without Nessie, **data versioning** will be difficult. If someone makes a mistake in the data, there will be no easy way to revert it, leading to data corruption or inconsistencies.

2. MinIO (Storage Server)

What it does?

MinIO is a **cloud storage service**, similar to Amazon S3, but you can run it on your own servers. It stores large amounts of structured and unstructured data.

Impact if missing?

Without MinIO, there will be **no centralized storage** for the data. Other services (like Spark and Dremio) that need to process or analyze data will not have a place to fetch it from.

3. Dremio (Query Engine)

What it does?

Dremio is a **high-performance SQL engine** that allows users to query data from different sources (like MinIO, PostgreSQL, or Spark) without moving the data.

Impact if missing?

Without Dremio, **SQL** queries on distributed data will be slow and difficult to manage. You would need separate tools for each data source, leading to inefficiency.

4. Apache Spark (Big Data Processing)

What it does?

Spark is a powerful **data processing framework** that can handle large-scale data analysis, transformations, and machine learning tasks.

Impact if missing?

Without Spark, **processing big data would be very slow**. Tasks like data cleaning, ETL (Extract, Transform, Load), and running ML models will take longer and require more resources.

5. PostgreSQL (Database)

What it does?

PostgreSQL (or Postgres) is a **relational database** used to store structured data in tables with relationships.

Impact if missing?

Without Postgres, **storing structured data would be difficult**. You would have to rely only on file-based storage (MinIO), which is less efficient for structured queries.

6. Superset (Data Visualization)

What it does?

Superset is a **business intelligence (BI) tool** that helps create dashboards and visualizations based on data from different sources.

Impact if missing?

Without Superset, data insights would be harder to obtain. Users would need to manually run SQL queries and analyze raw data instead of seeing easy-to-understand charts and dashboards.

Overall Impact if Any Service is Missing

- **Data inconsistency** (without Nessie)
- No storage for big data (without MinIO)
- Slow and inefficient queries (without Dremio)
- **Difficult data processing** (without Spark)
- No structured data storage (without PostgreSQL)
- No easy way to visualize data (without Superset)

Together, these technologies form a **complete data engineering ecosystem**, ensuring efficient storage, processing, and analysis of data.