Tema 2. Análisis léxico

- 1. Introducción
- 2. Especificación de un analizador léxico
 - 2.1. Expresiones regulares
 - 2.2. Autómatas finitos
- 3. Implementación de un analizador léxico
 - 3.1. De una E.R. a un AF mínimo
 - 3.2. Problemas prácticos
- 4. Generadores de analizadores léxicos

1. Introducción

Funciones del analizador léxico

- Lee secuencia de caracteres y devuelve secuencia de símbolos:
 - Manejo de fichero de entrada.
 - Salta del código fuente comentarios, espacios en blanco, tabuladores,...
 - Hace corresponder los mensajes de error con la línea de código donde se produce.
 - A veces realiza labores de preprocesador.

No tiene porqué ser una fase individual.

Definiciones

• Token:

grupo o clase de caracteres con un significado colectivo.

Lexema:

Instancia particular de un token: Secuencia de caracteres en el programa fuente que se forman un token y casan con un patrón.

• Patrón:

Regla que describe cómo se forma un token.

¿Cómo se especifican los tokens (patrones)? Mediante expresiones regulares

2. Especificación de un A.L.2.1. Expresiones regulares

Repaso: algunas definiciones

Alfabeto: Conjunto finito de símbolos. *Ej.* $\Sigma = \{a, b, c\}$

Cadena sobre un alfabeto: Secuencia finita y ordenada de símbolos de un alfabeto (también llamada **sentencia** o palabra).

Lenguaje: Conjunto de cadenas sobre un alfabeto.

```
Operaciones sobre lenguajes (conjuntos):
```

Unión de L y M, L \cup M = {s | s está en L o s está en M}

Concatenación de L y M

LM = {st | s está en L y t está en M}

Clausura de Kleene de L, L* = L° \cup L¹ \cup L² \cup

$$L^{\circ} = \{E\}, L^{1} = L, L^{2} = L L, L^{3} = L^{2} L$$

Clausura positiva de L, $L^+ = L^1 \cup L^2 \cup$

Ejemplo:

 $L=\{aa, bb, cc\}, M=\{abc\}$

ε representa la cadena vacía

Expresión regular (ER)

- Dado un alfabeto Σ , una expresión regular (ER) sobre Σ se define como:
 - Ø es una ER que denota al lenguaje Ø.
 - ε es una ER que denota al lenguaje {ε}.
 - $a \in \Sigma$ es una ER que denota al lenguaje $\{a\}$.
 - Si r y s son ER denotando a los lenguajes L_r y L_s entonces:
 - r | s es una ER que denota al lenguaje $L_r \cup L_s$
 - r · s es una ER que denota al lenguaje L_r · L_s
 - r* es una ER que denota al lenguaje L_r*

Definición regular

 Podemos dar nombres a las ER para construir ER más complejas

$$-d_{1} \rightarrow r_{1} \qquad r_{1} \in ER \text{ sobre } \Sigma^{*}$$

$$-d_{2} \rightarrow r_{2} \qquad r_{2} \in ER \text{ sobre } \Sigma^{*} \cup \{d_{1}\}$$

$$-...$$

$$-d_{n} \rightarrow r \qquad r_{n} \in ER \text{ sobre } \Sigma^{*} \cup \{d_{1}, ..., d_{n-1}\}$$

• Ejemplo:

letra -> A | B | C | | Z | a | b | | z digito -> o |
$$1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$
 identificador -> letra (letra | digito) *

Ejemplo de definición regular

```
letra \rightarrow a | ... | z | A | ... | Z
dígito \rightarrow 0 | ... | 9
identificador → letra (letra | dígito)*
constante_numérica → constante_entera | constante_real
constante_entera \rightarrow dígito (dígito)*
constante_real → constante_entera . (dígito)*
símbolo_especial → asignación | operador_relacional
                      | subrango | operador_aritmético
                      separador | palabra_reservada
símbolos → identificador | constante_numérica
               | símbolo_especial
```

2.2. Autómatas finitos

Reconocedores: AFN

- Un *reconocedor* es un programa que toma una cadena x como entrada y responde "si" si es una sentencia del lenguaje, o "no" en otro caso.
- Una ER puede ser convertida en un reconocedor construyendo un autómata finito, que podrá ser determinista o no-determinista.
- Un autómata finito no-determinista (AFN) es un modelo matemático que consiste en:

NFA =
$$(Q, \Sigma, \delta, q_o, F)$$

$$F \subseteq Q$$
; $q_o \in Q$; $\delta: Q \times (\Sigma \cup \{\mathcal{E}\}) \to P(Q)$

- Un conjunto de estados Q
- Un conjunto de símbolos de entrada
- Una función de transición.
- Un estado q_o que se distingue como estado inicial
- Un conjunto de estados F que se distinguen como estados finales.

P(Q) representa "partes de Q": todos los posi subconjuntos formados con elementos de

AFN

- Un AFN es no-determinista si:
 - Un mismo símbolo puede etiquetar dos o más transiciones que salen del mismo estado, o
 - La cadena vacía etiqueta alguna transición.
- Un AFN acepta una cadena de entrada x si y solo si hay algún camino en el grafo de transición etiquetado con los símbolos de la cadena desde el estado inicial a algún estado de aceptación.
- Ejemplo:
 - ¿Qué lenguaje reconoce el AFN?

AFD

- Se puede mejorar la complejidad temporal usando autómatas finitos deterministas en lugar de AFN.
- Un AF es determinista (AFD) si
 - No hay transiciones vacías, y
 - No hay ningún estado con más de un arco de salida etiquetado con el mismo símbolo

$$\mathsf{AFD} = (\mathsf{Q}, \, \Sigma, \, \delta, \, \mathsf{q}_0, \, \mathsf{F})$$

$$\mathsf{F} \subseteq \mathsf{Q}; \quad \mathsf{q}_0 \in \mathsf{Q}; \quad \delta : \, \mathsf{Q} \times \Sigma \longrightarrow \mathsf{Q}$$

Ejemplo

3. Implementación de un A.L. 3.1. De ER a AF mínimo

Equivalencias

E.R. \leftrightarrow AFND con ϵ -trans \leftrightarrow AFND \leftrightarrow AFD

- Construir un AFN para reconocer la unión de todos los patrones
- Convertir el AFN en un AFN sin &-trans
- Convertir el AFN en un AFD.
- Minimizar el AFD.
- Implementar el AFD

3.2. Problemas prácticos

Problemas prácticos

- El analizador sintáctico **llama** al léxico y éste último lo devuelve un token.
- Cuando el analizador léxico encuentra "==" ¿Qué token o tokens reconoce?
 - Reconoce siempre el token más largo
 - Usa varios caracteres de anticipación
- Las palabras clave pueden:
 - Escribirse como expresiones regulares y ser incluidas en el AFD. Esto incrementará el tamaño del AFD
 - Tratarlas como excepciones de los identificadores
 (buscándolas en una tabla de palabras reservadas)

Problemas prácticos

Identación y a. léxico: Python

Un programa Python está dividido en <mark>líneas lógicas</mark> acabadas con el token "NEWLINE"

Cada línea lógica puede estar formada por varias líneas físicas unidas por un barra "\"

Ej.

```
if Parcial_1 >= 5 and Parcial_2 >= 5 \
    and Evaluacion_continua >= 5 : return 1
```

 Se lleva la cuenta de los espacios en blanco (y tabuladores) al principio de una línea lógica para determinar la identación y por lo tanto la agrupación de instrucciones.

Identación y a. léxico: El caso de Python

 El a. léxico se apoya en una pila de enteros. Inicialmente apila el valor cero.

Para cada línea lógica:

- Si número de espacios en blanco a principio de la línea es mayor que el número en la cima de la pila
 - Apilar el número de espacios en blanco
 - General el token IDENT
- Si número de espacios en blanco a principio de la línea es menor que el número en la cima de la pila
 - Mientras la cima de la pila sea mayor que el número de espacios en la línea
 - Desapilar el número
 - General el token DEDENT

Al llegar al final del fichero desapilar todos los números de la pila generando un token DEDENT para cada uno de ellos.

4. Generadores de a. léxicos

Flex

Ver seminario de prácticas