

Linear Regression

Data :

X	У
2	3
2 4	7
6	5
6 8	10

We know,
$$b = y - m \pi \quad \text{and}$$

$$m = \frac{\sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x}_i)^2}$$

or we can also write it as

$$\frac{\sum_{i=1}^{n} x_{i}}{n} \Rightarrow \overline{x} = 5$$

$$m = \frac{xy - bx}{n^{2}} \rightarrow 2$$

$$\frac{\sum_{i=1}^{n} y_{i}}{n} \Rightarrow \overline{y} = 625$$
where m is slope & b is intercept

$$m = \frac{\chi y - b \chi}{\pi^2} \rightarrow (2)$$

Calculating all the parameters

$$\frac{\sum_{i=1}^{n}(n_{i}*y_{i})}{n} \Rightarrow \overline{ny} = 36$$
Using values of

$$\frac{\sum_{i=1}^{n} (\pi i^{2}) \Rightarrow \overline{\pi^{2}} = 30}{\pi}$$

n, y, ny and n' to find the values of

sløpe and intereft. • Slope \Rightarrow m = 0.95• Intercept \Rightarrow b = 1.5

Equation of best fit line
$$\Rightarrow$$
 Y = 0.95 X + 1.5

Linear Regression calculator

Data Set X	
2,4,6,8	© ©
Data Set Y	
3,7,5,10	© ©
Reset 每	Calculate →

Step by step solution:

Data:

$$X = 2, 4, 6, 8$$

$$Y = 3, 7, 5, 10$$

Solution

Now we have to find mean of both datasets:

Mean for Dataset X:

$$\overline{X} = \frac{20}{4}$$

$$\overline{\mathbf{x}} = 5$$

Mean for Dataset Y:

$$\overline{Y} = \frac{25}{4}$$

$$\overline{\mathbf{Y}}$$
 = 6.25

x_i	y_i	$x_i.y_i$	_x ²	y^2
2	3	6	4	9
4	7	28	16	49
6	5	30	36	25
8	10	80	64	100
$\sum x_i$ = 20	$\sum y_i$ = 25	$\sum xi.yi$ = 144	$\sum x^2 = 120$	$\sum y^2 =$

The slope m,

$$\mathbf{m} = \frac{(n \times \sum x_i \times y_i) - (\sum x_i \times \sum y_i)}{n \times \sum x^2 - (\sum x)^2}$$

Now putting values in the above equation:

$$m = \frac{(4 \times 144) - (20 \times 25)}{4 \times 120 - 400}$$

$$m=\frac{76}{80}$$

$$m = 0.95$$

The intercept b,

$$b = \frac{(\sum y_i) - (m \times \sum x_i)}{n}$$

$$b = \frac{(25) - (0.95 \times 20)}{4}$$

The equation of Linear Regression,

$$y = mx + b$$

$$y = 0.95x + 1.5$$

full the line