Grundlagen

Klassifizierung von Diensten

Verbindungsorientierter Dienst

- Absprache über den bevorstehenden Datenaustausch
- Verbindungsauf- und abbau
- End- und Zwischenknoten speichern Zustandsinformationen der Verbindung
- Reihenfolge der gesendeten Daten wird eingehalten

Beispiele: Telefonverbindung, TCP

Verbindungsloser Dienst

- Kein Verbindungsauf- und abbau
- Daten tragen die Adresse des Empfängers und werden unabhängig voneinander Transportiert
- Keine Zustandsinformationen
- Reihenfolge der gesendeten Daten ist nicht gesichert.

Beispiele: Internet Protocol (IP), Briefpost

Zuverlässiger Dienst

- Es gehen grundsätzlich keine Daten verloren
- Gesichert: Fehlererkennung, Fehlerkorrektur, Quittierung

Beispiel: Filetransfer

Unzuverlässiger Dienst

• Daten können verloren gehen

Beispiel: Sprach- und Videoübertragung

7 Schichten OSI-Modell

	Layer Name	Schichtnamen	Beispiel	
7	Application Layer	Verarbeitungsschicht	HTTP	
6	Presentation Layer	Darstellungsschicht		${ m Anwendungs}$ schichten
5	Session Layer	Kommunikationschicht		
4	Transport Layer	Transportschicht	TCP	
3	Network Layer	Vermittlungsschicht	IP	Transportschichten
2	Data Link Layer	Sicherungsschicht		11ansportsementen
1	Physical Layer	Bitübertragungsschicht		

Physical Layer

Sorgt für ungesicherte Übertragung und definiert:

- Elektrische Eigenschaften (Signalform, Amplituden, Frequenzen etc.)
- Codierung (Abbildung auf Signale)
- Mechanische Eigenschaften (Stecker, Pinbelegung etc.)

Realisierung:

- Verkehrsbeziehung
 - Simplex (einseitige Kommunikation)
 - Halb-Duplex (beidseitige Kommunikation, jedoch nur einer aufs Mal)
 - Voll-Duplex (Beidseitige Kommunikation)
- Koppelung
 - Punkt-zu-Punkt
 - Shared Medium
- Übertragungsmedium
 - Koaxialkabel
 - Twisted Pair
 - Glasfaser
 - Luft (Wireless)
- Übertragungsverfahren
 - Synchron (Sender Taktet)
 - Asynchron (jeder Taktet für sich)

Übertragungsmedien

Glasfaser Vorteile

- Unempfindlich gegen elektromagnetische Störungen
- Kleine Signaldämpfung (grosse Übertragungsdistanzen)
- Grosse Bandbreiten (grosse Übertragungsraten)

Mögliche Probleme

- Modendispersion = Überlappung des Signals. Passiert wenn eine Lichtwelle die andere aufgrund eines kürzeren Weges (Spiegelung) die andere "einholt".
- Chromatische Dispersion = Teilung einer Lichtwelle in mehrere Lichtwellen (Farben).

Data Link Layer

Setzt auf dem Physical Layer auf, bietet eine gesicherte (fehlerfreie Datenübertragung) und hat folgende Aufgaben:

- Framing (Rahmenbildung/-erkennung)
- Flow Controll (Flusssteuerung: anpassen der Sendegeschwindigkeit)
- Adressierung
- Media Access (Medium Zugriff: Koordination des Zugriffs auf gemeinsames Medium)

Network Layer

Muss Wege durch ein Netz mit mehreren Knoten finden und die Daten entlang dieses Weges übertragen.

- Routing
- Verbindet einzelne Systeme oder Teilnetze zu einem grossen Netz

Transport Layer

Hat die Aufgabe, unabhängig vom Netz, eine bestimmte Qualität für die Ende-zu-Ende Übertragung zu definieren und diese einzuhalten.

- Ist nur in Endsystemen vorhanden (nicht in Switches/Router)
- Bietet den oberliegenden Schichten einen zuverlässigen Dienst über einen unzuverlässigen Network Layer (TCP über IP).

Session Layer

- Auf- und Abbau einer Session
- Verbindungsunterbruch: er kann eine neue Verbindung aufbauen ohne das höhere Schichten etwas merken

Presentation Layer

- Umwandlung der Darstellung von Daten
- Konvertierung von ASCII, ISO und Unicode
- Konvertierung zwischen verschiedenen Arten der Zahlendarstellung

Application Layer

• Bindeglied zu eigentlichen Anwendung, bestimmt die Protokolle der verschiedenen Anwendungen

z.B: Terminal Emulation, File Transfer, E-Mail etc.

Übertragungsverfahren

Signaldämpfung

- Wichtiges Kriterium für Übertragungsstrecke
- Teilweise in Abhängigkeit der Frequenz (Multimode und Monomode Lichtleiter)
- Angabe in dB/km (3dB = halbierung der Leistung)

Berechnung

Dämpfung von P in dB
$$(A_{dB}) = 10 \cdot \log_{10} \cdot \frac{P}{P_0}$$

 $P_0 = \text{Bezugsleistung (z.B. Leistung beim Sender oder Kabelanfang)}$

Beispiel

$$\begin{split} P_0 &= 100mW, \ P = 50mW \\ A_{dB} &= 10 \cdot \log_{10}(\frac{50mW}{100mW}) = 10 \cdot \log_{10}(\frac{1}{2}) \backsimeq -3dB \end{split}$$