Informed search algorithms

Chapter 3 Section 3.5 & 3.6

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics

Best-first search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - → Expand most desirable unexpanded node
- <u>Implementation</u>:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A* search

Romania with step costs in km

Straight-line distance		
366		
0		
160		
242		
161		
176		
77		
151		
226		
244		
241		
234		
380		
10		
193		
253		
329		
80		
199		
374		

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal
- e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of greedy best-first search

- Complete? No can get stuck in loops, e.g., lasi → Neamt →
 lasi → Neamt →
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? $O(b^m)$ -- keeps all nodes in memory
- Optimal? No

A* search

Idea: avoid expanding paths that are already expensive

• Evaluation function f(n) = g(n) + h(n)

- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal

Admissible heuristics

- A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Optimality of A* (proof by contradiction)

• Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

Since $f(G_2) \ge f(n)$, A* will NEVER select G_2 for expansion.

Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \leq c(n,a,n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n,a,n') + h(n')$
 $\geq g(n) + h(n)$
= $f(n)$

i.e., f(n) is non-decreasing along any path.

Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

• $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Goal State

•
$$h_1(S) = ?$$

•
$$h_2(S) = ?$$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n)$ = number of misplaced tiles

• $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

7	2	4
5		6
8	3	1

Start State

Goal State

•
$$h_1(S) = ?8$$

•
$$h_2(S) = ? 3+1+2+2+3+3+2 = 18$$