

SAR EVALUATION REPORT

IEEE Std 1528-2013

For

Body Worn Camera

FCC ID: X4GAB7610 Model Name: AX1023

Report Number: 12910430-S3V1 Issue Date: 7/15/2019

Prepared for

Axon Enterprise, Inc. 17800 N 85th St Scottsdale, AZ, 85255, USA

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 319-4000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Date	Revisions	Revised By
V1	7/15/2019	Initial Issue	

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	6
4.	SAR Measurement System & Test Equipment	7
4.1		
4.2	2. SAR Scan Procedures	8
4.3	3. Test Equipment	10
5.	Measurement Uncertainty	10
6.	Device Under Test (DUT) Information	11
6.1	1. DUT Description	11
6.2	2. Wireless Technologies	11
6.3	3. General LTE SAR Test and Reporting Considerations	12
7.	RF Exposure Conditions (Test Configurations)	14
8.	Dielectric Property Measurements & System Check	15
8.1	1. Dielectric Property Measurements	15
8.2	2. System Check	17
9.	Conducted Output Power Measurements	18
9.1	1. W-CDMA	18
9.2	2. LTE	23
10.	Measured and Reported (Scaled) SAR Results	34
10.	.1. W-CDMA Band II	35
10.	0.2. W-CDMA Band IV	35
10.	.3. W-CDMA Band V	35
10.	0.4. LTE Band 2 (20MHz Bandwidth)	36
10.	9.5. LTE Band 5 (10MHz Bandwidth)	36
10.	9.6. LTE Band 12 (10MHz Bandwidth)	37
10.	7.7. LTE Band 13 (10MHz Bandwidth)	37
10.	9.8. LTE Band 14 (10MHz Bandwidth)	38
10.	9.9. LTE Band 66 (20MHz Bandwidth)	38
11.	SAR Measurement Variability	39
12.	Simultaneous Transmission Conditions	40
12.	.1. Simultaneous transmission SAR test exclusion considerations	40
1	12.1.1. Sum of SAR	
	Page 3 of 41	

12.2.	Sum of the SAR for Body-worn WWAN & Wi-Fi & BT	40
12.3.	Sum of the SAR for Extremity WWAN & Wi-Fi & BT	40
Appendi	ixes	41
Appen	ndix A: SAR Setup Photos	41
Appen	ndix B: SAR System Check Plots	41
Appen	ndix C: SAR Highest Test Plots	41
Appen	ndix D: SAR Tissue Ingredients	41
Appen	ndix E: SAR Probe Certificates	41
Appen	ndix F: SAR Dipole Certificates	41

1. Attestation of Test Results

Applicant Name	Axon Enterprise, Inc.				
FCC ID	X4GAB7610				
Model Name	AX1023				
Applicable Standards	Published RF exposure KDB procedures IEEE Std 1528-2013				
		SAR Limi	its (W/Kg)		
Exposure Category	Peak spatial-average (1g of tissue)		Extremities (hands, wrists, ankles, etc.) (10g of tissue)		
General population / Uncontrolled exposure	1.6		4		
DE Evacure Conditions	Equipment Class - Highest Reported SAR (W/kg)				
RF Exposure Conditions	PCE	DTS	NII	DSS	
Body-worn	0.765	0.043	0.091	<0.001	
Extremity	2.112	0.248	0.448	0.019	
Simultaneous TX (Body-worn)	0.856 0.808		0.856	0.856	
Simultaneous TX (Extremity)	2.175 2.135		2.175	2.175	
Date Tested	6/26/2019 to 7/10/2019				
Test Results	Pass				

*Note: FCC ID: X4GAB7610 and FCC ID: X4GS01200share the same host device. The data used for Wi-Fi/BT Simultaneous TX has been leveraged from FCC ID: X4GS01200.

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released By:	Prepared By:		
Jan Coop	AT Vacuum		
Devin Chang	AJ Newcomer		
Senior Test Engineer	Laboratory Engineer		
UL Verification Services Inc.	UL Verification Services Inc.		

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- o 941225 D05 SAR for LTE Devices v02r05

In addition to the above, the following information was used:

- o TCB workshop April 2015; RF Exposure Procedures (Overlapping LTE Bands)
- o TCB workshop October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- TCB workshop October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- TCB workshop May 2017; RF Exposure Procedures (Broadband Liquid Above 3 GHz)
- o TCB workshop April 2019; RF Exposure Procedures (Tissue Simulating Liquids (TSL)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	SAR Lab 6
SAR Lab G	SAR Lab 7
SAR Lab H	SAR Lab 8

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	$\Delta x_{Area}, \Delta y_{Area} \label{eq:definition} When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.$	

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

		≤ 3 GHz > 3 GHz		
Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{c} 1^{st} t \\ to p \\ \\ grid \\ \Delta z_z \\ bet \end{array}$	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
		Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz	Z _{Coom} (n-1)
Minimum zoom scan volume	X V 7		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Vector Network Analyzer	Rhode & Schwarz	ZNLE6	101273-va	4/24/2020
Dielectric Probe kit	SPEAG	DAK-3.5	1103	2/12/2020
Shorting Block	SPEAG	DAK-3.5 Short	SM DAK 200 DA	9/11/2019
Thermometer	Keysight	Traceable	170064398	5/21/2020

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Signal Generator	Rhode & Schwarz	SMB100A	1890968-gX	2/14/2020
Power Sensor	Rhode & Schwarz	NRP18A	100995-hs	2/15/2020

Lab Equipment

av Iquipmon					
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date	
E-Field Probe (SAR Lab 1)	SPEAG	EX3DV4	3885	9/18/2019	
Data Acquisition Electronics (SAR Lab 1)	SPEAG	DAE4	1544	3/19/2020	
System Validation Dipole	SPEAG	D750V3	1019	3/21/2020	
System Validation Dipole	SPEAG	D750V3	1071	11/28/2019	
System Validation Dipole	SPEAG	D835V2	4d142	8/23/2019	
System Validation Dipole	SPEAG	D1750V2	1077	10/16/2019	
System Validation Dipole	SPEAG	D1900V2	5d163	10/16/2019	

Other

Name of Equipment	Manufacturer	Type/Model	T Number	Serial No.	Cal. Due Date
Power Meter	Agilent	N1921A	T1270	MY55196015	1/26/2020
Power Sensor	Agilent	N1921A	T309	MY52270022	2/6/2020
Base Station Simulator	R&S	CMW500	T978	135385-Fp	2/15/2020

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Overall (Length x Width): 97 mm x 83 mm Overall Diagonal: 105 mm This is a Body camera that can be used in handheld conditions and be mounted on the body with a metal clip.							
Back Cover	The Back Cover is not ren	novable						
Battery Options	The rechargeable battery	The rechargeable battery is not user accessible.						
	S/N	IMEI	Notes					
Test sample information	X60000213	N/A	WWAN					
Hardware Version	PVT							
Software Version	0.7.57							

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode	Duty Cycle used for SAR testing
W-CDMA	Band II	UMTS Rel. 99 (Voice & Data)	
(UMTS)	Band IV	HSDPA (Rel. 5)	100%
(OWTS)	Band V	HSUPA (Rel. 6)	
	FDD Band 2		
	FDD Band 4		
	FDD Band 5	QPSK	
LTE	FDD Band 12	16QAM	100% (FDD)
- 1 -	FDD Band 13	Rel. 10 Does not support Carrier Aggregation (CA)	100% (100)
	FDD Band 14	Rei. 10 Does not support Camer Aggregation (CA)	
	FDD Band 17		
	FDD Band 66		

6.3. General LTE SAR Test and Reporting Considerations

Item	Description						
Frequency range, Channel Bandwidth,			Frequency	range: 1850 -	1910 MHz (BV	V = 60 MHz)	
Numbers and Frequencies	Band 2				Bandwidth		
Transcio ana i requencies		20 MHz	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz
		18700	18675/	18650/	18625/	18615/	18607/
	Low	/1860	1857.5	1855	1852.5	1851.5	1850.7
		18900/	18900/	18900/	18900/	18900/	18900/
	Mid	1880	1880	1880	1880	1880	1880
	1111	19100/	19125/	19150/	19175/	19185/	19193/
	High	1900	1902.5	1905	1907.5	1908.5	1909.3
			Frequency	range: 1710 -	1755 MHz (BV	V = 45 MHz)	
	Band 4			Channel I	Bandwidth		
		20 MHz ¹	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz
		20050/	20025/	20000/	19975/	19965/	19957/
	Low	1720	1717.5	1715	1712.5	1711.5	1710.7
	NA: al	20175/	20175/	20175/	20175/	20175/	20175/
	Mid	1732.5	1732.5	1732.5	1732.5	1732.5	1732.5
	Lliab	20300/	20325/	20350/	20375/	20385/	20393/
	High	1745	1747.5	1750	1752.5	1753.5	1754.3
			Frequency	/ range: 824 -	849 MHz (BW	= 25 MHz)	
	Band 5			Channel I	Bandwidth		
		20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MHz	1.4 MHz
				20450/	20425/	20415/	20407/
	Low			829	826.5	825.5	824.7
	NA: al			20525/	20525/	20525/	20525/
	Mid			836.5	836.5	836.5	836.5
	High			20600/	20625/	20635/	20643/
	High			844	846.5	847.5	848.3
			Frequency	range: 699 –	716 MHz (BW	= 17 MHz)	
	Band 12			Channel I	Bandwidth		
		20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MHz	1.4 MHz
	Low			23060/	23035/	23025/	23017/
	LOW			704	701.5	700.5	699.7
	Mid			23095/	23095/	23095/	23095/
	IVIIG			707.5	707.5	707.5	707.5
	High			23130/	23155/	23165/	23173/
	9.1			711	713.5	714.5	715.3
			Frequency	/ range: 777 -		= 10 MHz)	
	Band 13				Bandwidth		
		20 MHz	15 MHz	10 MHz ¹	5 MHz ¹	3 MHz	1.4 MHz
	Low				23205/		
				23230/	779.5 23230/		
	Mid			782	782		
				102	23255/		
	High				784.5		
			Frequency	/ range: 788 -	798 MHz (BW	= 10 MHz)	
	Band 14			Channel I	Bandwidth		
		20 MHz	15 MHz	10 MHz ¹	5 MHz ¹	3 MHz	1.4 MHz
	Levi				23305/		
	Low				790.5		
	N 41 -1			23330/	23330/		
	Mid			793	793		
	High				23355/		
	i iigii				795.5		

Frequency range, Channel Bandwidth,			Frequenc	y range:	704 - 716	MHz (BW	= 12 MHz)	
Numbers and Frequencies	Band 17			Cha	nnel Bar	ndwidth		
		20 MHz	15 MHz	10 MF	Iz 1	5 MHz ¹	3 MHz	1.4 MHz
	Low			2378	30/	23755/		
	LOW			709	9	706.5		
	Mid			2379		23790/		
	IVIIG			710		710		
	High			2380		23825/		
	3		_	711		713.5		
	_		Frequency				V = 70 MHz)	
	Band 66			_	nnel Bar			
		20 MHz	15 MHz	10 M		5 MHz	3 MHz	1.4 MHz
	Low	132072/	132047/	1320	-	131997/	131987/	131979/
		1720	1717.5	171		1712.5	1711.5	1710.7
	Mid	132322/	132322/	1323		132322/	132322/	132322/
		1745	1745	174		1745	1745	1745
	High	132572/ 1770	132597/ 1772.5	1326: 177		132647/ 1777.5	132657/ 1778.5	132665/ 1779.3
		1770	1772.0	177	5	1777.5	1770.5	1773.5
LTE transmitter and antenna implementation	Refer to Appe	ndix A.						
Maximum power reduction (MPR)	Table 6	.2.3-1: Maxi	mum Power	Reduction	n (MPR)	for Power	Class 1, 2 a	and 3
	Modulation					ı (N _{RB})	MPR (dB)	
		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
	16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
	16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
	64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
	64 QAM 256 QAM	> 5	> 4	> 8	> 12 : 1	> 16	> 18	≤ 3 ≤ 5
	230 QAW			-	- 1			
	MPR Built-in b	y design						
	The manufactu	urer MPR va	lues are alwa	ys within	the 3GPF	naximum	MPR allowa	nce but may
	1			-				,
	not follow the	uelauli iviek	values.					
				lurina SA	R testing			
Power reduction	A-MPR (addition			luring SA	R testing			
	A-MPR (addition	onal MPR) w	as disabled o	Ŭ	· ·	the SAP or	nd nower mer	acuramente:
	A-MPR (addition No A properly con	onal MPR) w	vas disabled d	ator was	used for		•	
Power reduction Spectrum plots for RB configurations	A-MPR (addition	onal MPR) w	vas disabled d	ator was	used for		•	

Notes:

- Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports
 overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be
 selected for testing per KDB 941225 D05 SAR for LTE Devices.
- 2. SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless technologies	RF Exposure Conditions	DUT-to-User Separation	Test Position	SAR Required	Note
	Body	0 mm	Rear w/ clip	Yes	
			Rear	Yes	
WWAN			Edge 1 (Top)	Yes	
VVVAIN	Extremity	0 mm	Edge 2 (Right)	Yes	
			Edge 3 (Bottom)	Yes	
			Edge 4 (Left)	Yes	

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	He	ead	Body		
raiget i requericy (Miriz)	$\varepsilon_{ m r}$	σ (S/m)	$\varepsilon_{ m r}$	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

IEC 62209-1

Refer to Table A.3 within the IEC 62209-1

Dielectric Property Measurements Results:

SAR		Band	Tissue	Frequency	Relativ	e Permittiv	ity (єr)	Co	Conductivity (σ)			
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)		
				1900	39.07	40.00	-2.33	1.46	1.40	4.21		
1	6/26/2019	1900	Head	1850	39.11	40.00	-2.23	1.43	1.40	2.36		
				1920	39.00	40.00	-2.50	1.47	1.40	4.93		
				750	41.32	41.96	-1.53	0.88	0.89	-1.16		
1	7/2/2019	750	Head	660	41.48	42.42	-2.22	0.86	0.89	-3.81		
				800	41.23	41.71	-1.15	0.90	0.90	0.42		
				835	40.89	41.50	-1.47	0.89	0.90	-0.89		
1	7/2/2019	835	Head	805	40.87	41.68	-1.94	0.89	0.90	-1.46		
				850	40.82	41.50	-1.64	0.89	0.92	-2.78		
				1750	41.84	40.08	4.39	1.34	1.37	-2.19		
1	7/2/2019	1750	Head	1710	41.87	40.15	4.28	1.32	1.35	-2.44		
				1755	41.85	40.08	4.42	1.34	1.37	-1.97		
				1900	41.63	40.00	4.08	1.40	1.40	0.21		
1	7/2/2019	1900	Head	1850	41.66	40.00	4.15	1.39	1.40	-1.00		
				1920	41.54	40.00	3.85	1.41	1.40	0.64		
				750	40.91	41.96	-2.51	0.92	0.89	2.84		
1	7/8/2019	750	Head	660	41.58	42.42	-1.99	0.88	0.89	-0.32		
				800	41.00	41.71	-1.69	0.94	0.90	4.42		
				1750	38.82	40.08	-3.15	1.39	1.37	1.76		
1	7/8/2019	1750	Head	1710	38.87	40.15	-3.18	1.37	1.35	1.68		
				1755	38.82	40.08	-3.14	1.40	1.37	1.84		

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

SAD	SAR _ Tissue Dipole Type		Dinale Type	Dipole	Mea	Measured Results for 1g SAR				Measured Results for 10g SAR			
Lab	Date	Type	_Serial #	Cal. Due Data	Zoom Scan to 100 mW		Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW		Target (Ref. Value)	Delta ±10 %	Plot No.
1	6/26/2019	Head	D1900V2 SN:5d163	10/16/2019	4.250	42.50	42.19	0.73	2.190	21.90	21.73	0.78	
1	7/2/2019	Head	D750V3 SN:1071	11/28/2019	0.834	8.34	8.32	0.24	0.545	5.45	5.45	0.00	1,2
1	7/2/2019	Head	D835V2 SN:4d142	8/23/2019	0.957	9.57	9.48	0.95	0.622	6.22	6.10	1.97	3,4
1	7/2/2019	Head	D1750V2 SN:1077	10/16/2019	3.650	36.50	38.69	-5.66	1.930	19.30	20.46	-5.67	5,6
1	7/2/2019	Head	D1900V2 SN:5d163	10/16/2019	4.070	40.70	42.19	-3.53	2.100	21.00	21.73	-3.36	7,8
1	7/8/2019	Head	D750V3 SN:1019	3/21/2020	0.832	8.32	8.29	0.36	0.543	5.43	5.44	-0.18	9,10
1	7/8/2019	Head	D1750V2 SN:1077	10/16/2019	3.790	37.90	38.69	-2.04	1.990	19.90	20.46	-2.74	

9. Conducted Output Power Measurements

9.1. W-CDMA

Per KDB 941225 D01 3G SAR Procedures for W-CDMA:

Maximum output power is verified on the high, middle and low channels and using the appropriate 12.2 kbps RMC with TPC (transmit power control) set to all "1's"

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1. A summary of these settings is illustrated below:

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA General Settings	Rel99 RMC	12.2kbps RMC
WCDINA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to procedures in table C.10.1.4 of 3GPP TS 34.121-1 A summary of these settings is illustrated below:

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βε	βd	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, $\Delta_{\rm ACK}$ and $\Delta_{\rm NACK}$ = 30/15 with β_{hz} = 30/15 * β_c , and $\Delta_{\rm CQI}$ = 24/15 with

 $\beta_{hs} = 24/15 * \beta_c$.

Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

HSUPA Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to procedures in table C.11.1.3 of 3GPP TS 34.121-1. A summary of these settings is illustrated below:

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βα	βa	β _d (SF)	βε/βα	βнs (Note1)	βес	βed (Note 4) (Note 5)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67
Note 1	Note 1: For sub-test 1 to 4, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 5/15 with β_{hs} = 5/15 * β_c .												

- Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_0/β_0 ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by
- setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to
- TS25.306 Table 5.1g.
 Note 5: β_{ed} can not be set directly; it is set by Absolute Grant Value.
- Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

Maximum Output Power (Tune-up Limit) for W-CDMA

SAR measurement is not required for the HSDPA and HSUPA. When primary mode and the adjusted SAR is ≤ 1.2 W/kg and secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode

W-CDMA Band II Measured Results

Mo	udo.	UL Ch No.	Freq.	Maximum Ave	erage P	ower (dBm)	
IVIC	lue	OL CITINO.	(MHz)	Measured Pw r	MPR	Tune-up Limit	
	Rel 99	9262	1852.4	24.0			
Release 99	(RMC, 12.2	9400	1880.0	23.9	N/A	24.0	
	kbps)	9538	1907.6	23.9			
		9262	1852.4	23.0			
	Subtest 1	9400	1880.0	22.9	0	24.0	
		9538	1907.6	23.0			
		9262	1852.4	23.0			
	Subtest 2	9400	1880.0	22.9	0	24.0	
LICDDA		9538	1907.6	23.0			
HSDPA		9262	1852.4	22.7			
	Subtest 3	9400	1880.0	22.4	0.5	23.5	
		9538	1907.6	22.5			
		9262	1852.4	22.7			
	Subtest 4	9400	1880.0	22.4	0.5	23.5	
		9538	1907.6	22.5			
		9262	1852.4	22.6			
	Subtest 1	9400	1880.0	22.2	0	24.0	
		9538	1907.6	22.8			
		9262	1852.4	21.8			
	Subtest 2	9400	1880.0	21.7	2	22.0	
		9538	1907.6	21.5			
		9262	1852.4	21.3			
HSUPA	Subtest 3	9400	1880.0	21.8	1	23.0	
		9538	1907.6	21.8			
		9262	1852.4	21.8			
	Subtest 4	9400	1880.0	21.7	2	22.0	
		9538	1907.6	21.5			
		9262	1852.4	23.0			
	Subtest 5	9400	1880.0	22.9	0	24.0	
		9538	1907.6	23.0			

W-CDMA Band IV Measured Results

Mo	udo.	UL Ch No.	Freq.	Maximum Ave	erage P	ower (dBm)	
IVIC	lue	OL CITINO.	(MHz)	Measured Pw r	MPR	Tune-up Limit	
	Rel 99	1312	1712.4	23.8			
Release 99	(RMC, 12.2	1413	1732.6	22.4	N/A	24.0	
	kbps)	1513	1752.6	24.0			
		1312	1712.4	22.8			
	Subtest 1	1413	1732.6	22.0	0	24.0	
		1513	1752.6	23.0			
		1312	1712.4	22.8			
	Subtest 2	1413	1732.6	22.0	0	24.0	
LIODDA		1513	1752.6	23.0			
HSDPA		1312	1712.4	22.3			
	Subtest 3	1413	1732.6	21.6	0.5	23.5	
		1513	1752.6	22.5			
		1312	1712.4	22.3			
	Subtest 4	1413	1732.6	21.6	0.5	23.5	
		1513	1752.6	22.4			
		1312	1712.4	22.4			
	Subtest 1	1413	1732.6	22.0	0	24.0	
		1513	1752.6	22.3			
		1312	1712.4	21.5			
	Subtest 2	1413	1732.6	21.1	2	22.0	
		1513	1752.6	21.6			
		1312	1712.4	21.0			
HSUPA	Subtest 3	1413	1732.6	21.0	1	23.0	
		1513	1752.6	21.5			
		1312	1712.4	22.0			
	Subtest 4	1413	1732.6	21.1	2	22.0	
		1513	1752.6	21.9			
		1312	1712.4	22.8			
	Subtest 5	1413	1732.6	22.0	0	24.0	
		1513	1752.6	23.0			

W-CDMA Band V Measured Results

N/o	ode	UL Ch No.	Freq.	Maximum Average Power (dBm)				
IVIC	ode	OL CHINO.	(MHz)	Measured Pw r	MPR	Tune-up Limit		
	Rel 99	4132	826.4	23.7				
Release 99	(RMC, 12.2	4183	836.6	23.5	N/A	24.0		
	kbps)	4233	846.6	23.7				
		4132	826.4	22.8				
	Subtest 1	4183	836.6	22.7	0	24.0		
		4233	846.6	22.8				
		4132	826.4	22.8				
	Subtest 2	4183	836.6	22.7	0	24.0		
HSDPA		4233	846.6	22.8				
HODPA		4132	826.4	22.2				
	Subtest 3	4183	836.6	22.0	0.5	23.5		
		4233	846.6	22.3				
		4132	826.4	22.2				
	Subtest 4	4183	836.6	22.0	0.5	23.5		
		4233	846.6	22.3				
		4132	826.4	22.9		24.0		
	Subtest 1	4183	836.6	22.4	4 0			
		4233	846.6	22.9				
		4132	826.4	21.5				
	Subtest 2	4183	836.6	21.5	2	22.0		
		4233	846.6	21.3				
		4132	826.4	21.8				
HSUPA	Subtest 3	4183	836.6	21.0	1	23.0		
		4233	846.6	21.5				
		4132	826.4	22.0				
	Subtest 4	4183	836.6	22.0	2	22.0		
		4233	846.6	21.8				
		4132	826.4	22.9				
	Subtest 5	4183	836.6	22.6	0	24.0		
		4233	846.6	22.9				

9.2. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	nnel bandw	idth / Tra	ansmission	bandwidth (N _{RB})	MPR (dB)
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM				≥ 1			≤ 5

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A

Maximum Output Power (Tune-up Limit) for LTE

According to April 2015 TCB workshop, SAR test exclusion can be applied for testing overlapping LTE bands as follows:

- a) The maximum output power, including tolerance, for the smaller band must be ≤ the larger band to qualify for the SAR test exclusion.
- b) The channel bandwidth and other operating parameters for the smaller band must be fully supported by the larger band.
 - LTE Band 4 (1710-1755 MHz) is covered by LTE Band 66 (1710-1780 MHz)
 - LTE Band 17 (704-716 MHz) is covered by LTE Band 12 (699-716 MHz)

Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices.

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

SAR measurement is not required for the 16QAM. When the highest maximum output power for 16QAM is $\leq \frac{1}{2}$ dB higher than the QPSK or when the reported SAR for the QPSK configuration is ≤ 1.45 W/kg.

Please refer to section 6.3, for LTE detail test channels.

LTE Band 2 Measured Results

LIL Bui		asarca			Maximum Ave	rage Power (di	Bm)		
BW	Mode	RB	RB	18700	18900	19100		Tune-up	
(MHz)		Allocation	offset	1860 MHz	1880 MHz	1900 MHz	MPR	Limit	
		1	0	23.1	23.3	22.9	0	24	
		1	49	23.8	23.8	24.0	0	24	
		1	99	23.9	23.0	22.8	0	24	
	QPSK	50	0	22.5	22.6	22.7	1	23	
	Q. O	50	24	22.6	22.6	22.8	1	23	
		50	50	22.6	22.6	22.7	1	23	
		100	0	22.6	22.6	22.7	1	23	
20 MHz		1	0	22.3	22.6	22.5	1	23	
		1	49	22.2	22.8	22.8	1	23	
		1	99	22.3	22.3	22.1	1	23	
	16QAM	50	0	21.5	21.6	21.7	2	22	
		50	24	21.3	21.7	21.7	2	22	
		50	50	21.5	21.6	21.8	2	22	
		100	0	21.5	21.7	21.7	2	22	
		100	U	21.5		rage Power (di		22	
BW	Mode	RB	RB	18675	18900	19125	JIII)	Tuna un	
(MHz)	Hz)	Wode	Allocation	offset	1857.5 MHz	1880 MHz	1902.5 MHz	MPR	Tune-up Limit
		1	0	23.3	23.5	23.6	0	24	
		1	37	23.5	23.8	23.8	0	24	
		1	74	23.4	23.3	22.8		24	
	QPSK	36	0	22.5	23.3	22.7	0	23	
	QPSK	36	20	22.5	22.5	22.7	1	23	
		36	39	22.6	22.6	22.7	1	23	
15 MHz		75 1	0	22.5 22.6	22.6	22.7	1	23	
		1	37	22.6	22.7 22.9	22.8	1	23	
		1	74	22.9	22.5	23.0	1	23	
	400414								
	16QAM	36	0	21.5	21.6	21.9	2	22	
		36	20	21.5	21.6	21.8	2	22	
		36	39	21.5	21.6	21.8	2	22	
		75	0	21.5	21.6	21.8	2	22	
BW		RB	RB	10050		rage Power (di	Bm)		
(MHz)	Mode	Allocation	offset	18650	18900	19150	MPR	Tune-up Limit	
		4	0	1855 MHz	1880 MHz	1905 MHz	0		
		1	0	23.5	23.2	23.9	0	24	
		1	25	23.7	23.7	23.8	0	24	
	OFFIC	1	49	23.2	23.5	23.1	0	24	
	QPSK	25	0	22.6	22.6	22.7	1	23	
		25	12	22.6	22.7	22.9	1	23	
		25	25	22.5	22.7	22.7	1	23	
10 MHz		50	0	22.6	22.8	22.8	1	23	
		1	0	22.5	22.5	22.7	1	23	
		1	25	22.7	23.0	22.8	1	23	
		1	49	22.5	22.4	22.6	1	23	
	16QAM	25	0	21.7	21.7	21.8	2	22	
		25	12	21.8	21.8	21.8	2	22	
		25	25	21.6	21.7	21.8	2	22	
		50	0	21.5	21.8	21.7	2	22	

LTE Band 2 Measured Results (continued)

LIE Bar	nd 2 Mea	asured	Results	(continue				
BW		RB	RB		Maximum Ave	rage Power (d	Bm)	
(MHz)	Mode	Allocation	offset	18625	18900	19175	MPR	Tune-up
, ,				1852.5 MHz	1880 MHz	1907.5 MHz		Limit
		1	0	23.4	23.5	23.6	0	24
		1	12	23.7	23.7	24.0	0	24
		1	24	23.6	23.6	23.6	0	24
	QPSK	12	0	22.4	22.7	22.7	1	23
		12	7	22.4	22.6	22.7	1	23
		12	13	22.6	22.7	22.7	1	23
5 MHz		25	0	22.5	22.7	22.8	1	23
O IVII IL		1	0	21.9	22.3	22.7	1	23
		1	12	22.1	22.3	22.4	1	23
	16QAM	1	24	22.0	22.2	22.5	1	23
		12	0	21.4	21.7	21.7	2	22
		12	7	21.5	21.7	21.7	2	22
		12	13	21.4	21.7	21.7	2	22
		25	0	21.5	21.8	21.8	2	22
BW		RB	RB Maximum Average Power (dB		Bm)			
(MHz)	Mode	Allocation	offset	18615	18900	19185	MPR	Tune-up
(1411 12)		rtiloodtion	Olloct	1851.5 MHz	1880 MHz	1908.5 MHz	IVIFIX	Limit
		1	0	23.4	23.6	23.7	0	24
		1	8	23.3	23.4	23.8	0	24
		1	14	23.4	23.4	23.7	0	24
	QPSK	8	0	22.4	22.6	22.7	1	23
		8	4	22.4	22.6	22.8	1	23
		8	7	22.5	22.6	22.8	1	23
0.141.1-		15	0	22.5	22.7	22.8	1	23
3 MHz		1	0	22.4	22.5	22.7	1	23
		1	8	22.5	22.5	22.8	1	23
		1	14	22.5	22.3	22.6	1	23
	16QAM	8	0	21.5	21.9	21.5	2	22
		8	4	21.5	21.8	21.6	2	22
		8	7	21.5	21.7	21.6	2	22
		15	0	21.4	21.7	21.9	2	22
DW		DD	DD		Maximum Ave	rage Power (d	Bm)	
BW (MHz)	Mode	RB Allocation	RB offset	18607	18900	19193	MPR	Tune-up
(,)		Janon		1850.7 MHz	1880 MHz	1909.3 MHz	IVICTX	Limit
		1	0	23.4	23.7	23.4	0	24
		1	3	23.7	23.7	23.7	0	24
		1	5	23.8	23.8	23.7	0	24
	QPSK	3	0	23.6	23.7	23.6	0	24
		3	1	23.5	23.7	23.7	0	24
		3	3	23.6	23.6	23.6	0	24
1.4 MHz		6	0	22.5	22.7	22.7	1	23
I.→ IVI⊓Z		1	0	22.4	23.0	22.7	1	23
		1	3	22.7	23.0	22.6	1	23
		1	5	22.4	22.6	22.6	1	23
	16QAM	3	0	23.0	22.8	22.4	1	23
		3	1	23.0	22.8	22.5	1	23
		3	3	23.0	22.9	22.5	1	23
		6	0	21.4	21.9	21.8	2	22

LTE Band 5 Measured Results

LIE Bar	IU J WIE	aoui EU	vesuits			D	D	
BW		RB	RB			rage Power (dl	sm)	
(MHz)	Mode	Allocation	offset		20525 836.5 MHz		MPR	Tune-up Limit
		1	0		23.0		0	24
		1	25				0	24
					23.1			
	ODCK	1	49		23.1		0	24
	QPSK	25 25	0 12		22.1		1	23
		25	25		22.1 22.0		1	23 23
		50	0		22.0		1	23
10 MHz		1	0		22.0		1	23
		1	25		22.1		1	23
		1	49		21.8		1	23
	16QAM	25	0		21.1		2	22
	10QAW	25	12		21.2		2	22
		25	25		21.0		2	22
		50	0		21.0		2	22
		30	0			rage Power (dl		22
BW	Mode	RB	RB	20425	20525	20625		Tune-up
(MHz)		Allocation	offset	826.5 MHz	836.5 MHz	846.5 MHz	MPR	Limit
		1	0	23.0	22.9	22.9	0	24
		1	12	23.4	23.2	23.3	0	24
		1	24	23.2	22.9	23.1	0	24
	QPSK	12	0	22.2	22.0	22.0	1	23
		12	7	22.4	22.0	22.0	1	23
		12	13	22.4	22.0	22.1	1	23
		25	0	22.3	22.0	21.9	1	23
5 MHz		1	0	21.9	21.4	22.1	1	23
		1	12	22.3	21.5	22.2	1	23
		1	24	22.0	21.6	21.8	1	23
	16QAM	12	0	21.2	20.9	20.9	2	22
		12	7	21.2	20.9	21.0	2	22
		12	13	21.3	20.9	21.0	2	22
		25	0	21.2	21.0	21.0	2	22
BW		RB	RB		Maximum Ave	rage Power (dl	Bm)	
(MHz)	Mode	Allocation	offset	20415	20525	20635	MPR	Tune-up
, ,				825.5 MHz	836.5 MHz	847.5 MHz		Limit
		1	0	23.0	23.0	22.9	0	24
		1	8	23.3	22.9	23.0	0	24
		1	14	23.3	23.1	23.0	0	24
	QPSK	8	0	22.3	22.0	21.9	1	23
		8	4	22.2	22.0	22.1	1	23
		8	7	22.3	22.0	22.1	1	23
3 MHz		15	0	22.3	22.0	22.0	1	23
		1	0	22.2	22.2	21.9	1	23
		1	8	22.4	22.0	22.3	1	23
		1	14	22.2	21.9	21.8	1	23
	16QAM	8	0	21.3	20.8	20.7	2	22
		8	4	21.4	20.9	20.7	2	22
		8	7	21.7	20.9	20.6	2	22
1		15	0	21.4	21.0	21.2	2	22

LTE Band 5 Measured Results (continued)

DW		DD	RB	Maximum Average Power (dBm)						
BW (MHz)	Mode	RB Allocation		20407	20525	20643	MPR	Tune-up		
(1711 12)		Allocation	Oliset	824.7 MHz	836.5 MHz	848.3 MHz	IVIPR	Limit		
		1	0	23.1	23.1	22.7	0	24		
		1	3	23.3	23.3	22.8	0	24		
		1	5	23.2	23.0	23.0	0	24		
	QPSK	3	0	23.1	23.0	23.0	0	24		
		3	1	23.3	23.0	23.0	0	24		
		3	3	23.2	23.0	23.0	0	24		
1.4 MHz		6	0	22.2	21.9	22.1	1	23		
1.4 IVIDZ		1	0	22.2	22.2	21.9	1	23		
		1	3	22.4	22.2	22.0	1	23		
		1	5	22.3	22.2	22.0	1	23		
	16QAM	3	0	22.4	22.2	22.0	1	23		
		3	1	22.3	22.2	21.9	1	23		
		3	3	22.3	22.2	22.0	1	23		
		6	0	21.4	20.8	21.0	2	22		

LTE Band 12 Measured Results

Node RB	LIE Bar	IG IZ IVIC	-asureu	Nesun	. <u>3</u>		D (d)	D \				
All	BW		RB	RB			rage Power (di	BM)				
A	(MHz)	Mode	Allocation	offset				MPR				
1			4	0				0				
OPSK 1												
OPSK 25												
10 MHz 10 MHz 25		00014										
10 MHz 16QAM		QPSK										
10 MHz												
16QAM 16												
BV Mode RB Allocation First RD Allocation First RD Allocation	10 MHz											
Table Tabl												
BW (M-tz) Mode RB Allocation Allocat												
BW (M-tz) Mode RB RB RB RB RB RB RB R												
BW (NHz) Mode RB RB Allocation September Power (dBm) Mode (NHz) RB RB Allocation Power (dBm) Power (dB		16QAM										
BW (MHz) Mode RB Allocation RB Allocat												
Mode Mode RB Allocation Offset 23035 23095 23155 MPR Tune-up Limit												
Mode Mode Allocation Offset 23035 23095 23155 MPR Tune-up Limit			50	0					22			
Mode Allocation Offset 23035 23095 23155 MPR Tune-up Limit	BW		RB	RB				Bm)				
TOTAL MINES TOTAL		Mode						MPR				
OPSK 12 0.0 22.4 23.3 23.2 22.9 0 24 1 24 23.3 23.2 22.9 0 24 12 0 22.4 22.2 22.2 1 23 12 7 22.3 22.2 22.1 1 23 12 13 22.2 22.1 22.2 1 23 25 0 22.3 22.2 22.1 1 23 1 0 21.9 21.8 22.2 1 23 1 1 24 22.2 21.6 22.1 1 23 1 1 24 22.4 21.7 22.5 1 23 1 1 2 0 21.4 21.1 21.1 2 12 13 21.2 21.4 21.1 21.1 2 12 13 21.2 21.1 21.1 23 12 12 13 21.2 21.2 21.2 2 25 0 21.3 21.1 21.1 22 25 0 21.4 21.1 21.1 21.1 2 22 22 25 0 21.3 21.2 21.2 2 22 25 0 21.3 21.2 21.2 2 22 25 0 21.3 21.2 21.2 2 22 25 0 21.3 21.2 21.2 2 22 25 0 21.3 21.2 21.2 2 22 25 0 21.3 21.2 21.2 2 22 26 BW (NHz) Mode RB Allocation First 700.5 MHz 707.5 MHz 714.5 MHz Limit Limit 14 23.4 23.0 23.3 0 24 1 1 14 23.4 23.4 23.0 23.2 0 24 1 1 14 23.4 23.4 23.0 23.2 0 24 1 1 14 23.4 23.1 23.3 0 24 24 22.4 22.1 22.2 1 23 25 15 0 22.3 22.1 22.2 1 23 28 8 7 22.3 22.1 22.2 1 23 29 20 24 20 21.6 22.2 1 23 21 22 22 22 23 23 22.1 22.2 1 23 23 23.3 22.1 22.2 1 23 23 23.3 22.1 22.2 1 23 24 23.3 22.1 22.2 1 23 25 1 3 3 21.2 21.1 22.2 1 23 25 2 22 25 22.3 22.1 22.2 1 23 25 2 22 26 27 27 27 28 28 8 7 22.3 22.1 22.2 1 23 28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												
Apply Appl												
APSK 12 0 22.4 22.2 22.2 1 23 1 23 12 12 13 22.2 22.1 1 23 12 13 22.2 22.1 1 23 14 23 15 15 0 22.3 22.2 22.1 1 23 14 23 15 0 21.5 22.1 1 23 16 24 22.2 2 21.6 22.1 1 23 12 22 22 22 22 22 21 1 23 23 24 22.1 1 23 24 22.2 21.6 22.1 1 23 24 22.2 21.6 22.1 1 23 24 22.2 21.6 22.1 1 23 24 22.2 21.6 22.1 1 23 24 22.2 21.6 22.1 1 23 24 22.2 21.6 22.1 1 23 24 22.2 22 24 25 0 21.4 21.1 21.1 2 1.3 2 22 22 22 25 0 21.3 21.2 21.2 2 22 22 22 24 25 0 21.3 21.2 21.2 2 22 22 24 25 0 21.3 21.2 21.2 2 2 22 24 25 0 21.3 21.2 21.2 2 2 22 24 25 0 21.3 21.2 21.2 2 2 22 24 25 0 21.3 21.2 21.2 2 2 22 24 25 0 21.3 21.2 21.2 2 2 22 24 25 0 21.3 21.2 21.2 2 2 22 24 25 0 21.3 21.2 21.2 2 2 22 25 0 21.3 21.2 21.2 2 2 22 25 0 21.3 21.2 21.2 2 2 22 25 0 21.3 21.2 21.2 2 2 22 25 0 21.3 21.2 21.2 2 2 22 25 0 21.3 21.2 21.2 2 2 22 25 0 21.3 21.3 21.2 21.2 2 2 22 25 0 21.3 21.3 21.2 21.2 2 2 22 25 0 21.3 21.3 21.2 21.2 2 2 22 25 0 21.3 21.3 21.3 21.2 21.2 2 2 22 25 0 21.3 21.3 21.2 21.2 2 2 22 25 0 21.3 21.2 21.2 2 2 22 25 22.3 21.3 21.3 21.3 21.2 21.2 21.2 21.2												
12			1	24	23.3	23.2	22.9	0	24			
12		QPSK	12	0	22.4	22.2	22.2	1	23			
SMHz			12	7	22.3	22.2	22.3	1	23			
Tune-up			12	13	22.2	22.1	22.2	1	23			
1	5 MHz		25	0	22.3	22.2	22.1	1	23			
1	J IVII IZ		1	0	21.9	21.8	22.2	1	23			
16QAM			1	12	22.4	21.7	22.5	1	23			
12			1	24	22.2	21.6	22.1	1	23			
12		16QAM	12	0	21.4	21.1	21.1	2	22			
BW (M-Iz) Mode RB Allocation RB AB Allocation RB AB AB C 23.05			12	7	21.3	21.1	21.3	2	22			
Mode Mode RB RB Allocation Maximum Average Power (dBm) Tune-up Limit			12	13	21.2	21.2	21.2	2	22			
Mode Mode RB RB Allocation Mode Allocation Mode			25	0	21.3	21.2	21.2	2	22			
Mode Allocation Offset 23025 23095 23165 MPR Tune-up Limit	DW		DD	DD		Maximum Ave	rage Power (di	1 23 1 23 2 22 23 24 23 24 23 24 24				
3 MHz 1		Mode			23025	23095	23165	MDD	Tune-up			
A MHz 1 8 23.5 23.1 23.3 0 24 1 14 23.4 23.0 23.2 0 24 8 0 22.5 22.2 22.3 1 23 8 4 22.4 22.1 22.2 1 23 15 0 22.3 22.1 22.1 1 23 15 0 22.3 22.1 22.2 1 23 1 0 22.0 21.6 22.2 1 23 1 8 22.5 22.3 22.8 1 23 1 14 22.4 22.4 22.4 22.0 1 23 1 14 22.4 22.4 22.0 1 23 1 14 22.4 22.4 22.0 1 23 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22	(/			0.1.001	700.5 MHz	707.5 MHz	714.5 MHz	IVII IX	Limit			
A MHz 1 14 23.4 23.0 23.2 0 24 8 0 22.5 22.2 22.3 1 23 8 4 22.4 22.1 22.2 1 23 8 7 22.3 22.1 22.1 1 23 15 0 22.3 22.1 22.2 1 23 1 0 22.0 21.6 22.2 1 23 1 8 22.5 22.3 22.8 1 23 1 14 22.4 22.4 22.4 22.0 1 23 1 14 22.4 22.4 22.4 22.0 1 23 1 14 22.4 22.4 22.4 22.0 1 23 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22			1	0	23.6	23.3	23.3	0	24			
A MHz Repset 8 0 22.5 22.2 22.3 1 23 8 4 22.4 22.1 22.2 1 23 1 23 8 7 22.3 22.1 22.1 1 23 15 0 22.3 22.1 22.1 1 23 15 0 22.3 22.1 22.2 1 23 15 0 22.3 22.1 22.2 1 23 1 23 15 0 22.0 21.6 22.2 1 23 1 23 1 8 22.5 22.3 22.8 1 23 1 1 14 22.4 22.4 22.4 22.0 1 23 1 14 22.4 22.4 22.0 1 23 1 23 1 14 22.4 22.4 22.0 1 23 1 23 1 14 22.4 22.4 22.0 1 23 1 23 1 14 22.4 22.4 22.0 1 23 1 23 1 14 22.4 22.4 22.0 1 23 1 23 1 14 22.4 22.4 22.0 1 23 1 23 1 14 22.4 22.4 22.0 1 23 1 23 1 14 23 1 14 22.4 22.4 22.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			1	8	23.5	23.1	23.3	0	24			
3 MHz 8			1	14	23.4	23.0	23.2	0	24			
3 MHz 8 7 22.3 22.1 22.1 1 23 15 0 22.3 22.1 22.2 1 23 1 0 22.0 21.6 22.2 1 23 1 8 22.5 22.3 22.8 1 23 1 14 22.4 22.4 22.0 1 23 1 14 22.4 22.4 22.0 1 23 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22		QPSK	8	0	22.5	22.2	22.3	1	23			
3 MHz 15 0 22.3 22.1 22.2 1 23 1 0 22.0 21.6 22.2 1 23 1 8 22.5 22.3 22.8 1 23 1 14 22.4 22.4 22.0 1 23 1 14 22.4 22.4 22.0 1 23 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22			8	4	22.4	22.1	22.2	1	23			
1 0 22.0 21.6 22.2 1 23 1 8 22.5 22.3 22.8 1 23 1 14 22.4 22.4 22.0 1 23 1 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22			8	7	22.3	22.1	22.1	1	23			
1 0 22.0 21.6 22.2 1 23 1 8 22.5 22.3 22.8 1 23 1 14 22.4 22.4 22.0 1 23 1 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22	3 V/III		15	0	22.3	22.1	22.2	1	23			
1 14 22.4 22.4 22.0 1 23 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22	J IVITIZ		1	0	22.0	21.6	22.2	1	23			
16QAM 8 0 21.5 21.2 21.2 2 22 8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22			1	8	22.5	22.3	22.8	1	23			
8 4 21.5 21.2 21.0 2 22 8 7 21.4 21.5 21.0 2 22			1	14	22.4	22.4	22.0	1	23			
8 7 21.4 21.5 21.0 2 22		16QAM	8	0	21.5	21.2	21.2	2	22			
			8	4	21.5	21.2	21.0	2	22			
15 0 21.1 21.2 21.2 2 22			8	7	21.4	21.5	21.0	2	22			
			15	0	21.1	21.2	21.2	2	22			

LTE Band 12 Measured Results (continued)

DW		DD	DD	Maximum Average Power (dBm)					
BW (MHz)	Mode	RB Allocation	RB offset	23017	23095	23173	MPR	Tune-up	
(1411 12)		Allocation	Oliset	699.7 MHz	707.5 MHz	715.3 MHz	IVIPK	Limit	
		1	0	23.2	23.0	23.2	0	24	
		1	3	23.3	23.0	23.0	0	24	
		1	5	23.4	23.2	23.2	0	24	
	QPSK	3	0	23.2	23.1	23.1	0	24	
		3	1	23.3	23.2	23.1	0	24	
		3	3	23.3	23.1	23.1	0	24	
1.4 MHz		6	0	22.7	22.2	22.1	1	23	
1.4 1/11/12		1	0	22.3	22.3	22.2	1	23	
		1	3	22.4	22.4	22.1	1	23	
		1	5	22.4	22.0	22.0	1	23	
	16QAM	3	0	22.2	22.1	22.3	1	23	
		3	1	22.3	22.2	22.1	1	23	
		3	3	22.3	22.2	22.2	1	23	
		6	0	21.4	21.1	21.0	2	22	

LTE Band 13 Measured Results

LIE Dai	10 10 1110					
BW		RB	RB		erage Power (dBm)	
(MHz)	Mode	Allocation	offset	23230 782 MHz	MPR	Tune-up Limit
		1	0	23.0	0	24
		1	25	23.6	0	24
		1	49	23.0	0	24
	QPSK	25	0	22.2	1	23
		25	12	22.2	1	23
		25	25	22.2	1	23
10 MHz		50	0	22.0	1	23
10 IVIHZ		1	0	22.1	1	23
		1	25	22.4	1	23
		1	49	22.1	1	23
	16QAM	25	0	21.1	2	22
		25	12	21.3	2	22
		25	25	21.1	2	22
		50	0	21.0	2	22
BW		RB	RB	Maximum Av	erage Power (dBm)	
(MHz)	Mode	Allocation	offset	23230	MPR	Tune-up
` ′				782 MHz	· · · · · · · · · · · · · · · · · · ·	Limit
		1	0	23.1	0	24
		1	12	23.8	0	24
	QPSK Hz 16QAM QPSK	1	24	23.0	0	24
		12	0	22.1	1	23
		12	7	22.2	1	23
		12 12	7	22.2	1	23 23
5 MHz		12 12 25	7 13 0	22.2 22.1	1	23 23 23
5 MHz		12 12 25 1	7 13 0 0	22.2 22.1 21.9	1 1	23 23 23 23
5 MHz		12 12 25 1	7 13 0 0 12	22.2 22.1 21.9 22.1	1 1 1	23 23 23 23 23 23
5 MHz		12 12 25 1 1	7 13 0 0 12 24	22.2 22.1 21.9 22.1 21.8	1 1 1 1	23 23 23 23 23 23 23
5 MHz	16QAM	12 12 25 1 1 1 1	7 13 0 0 12 24	22.2 22.1 21.9 22.1 21.8 20.9	1 1 1 1 1 2	23 23 23 23 23 23 23 23 22
5 MHz	16QAM	12 12 25 1 1 1 1 12	7 13 0 0 12 24 0	22.2 22.1 21.9 22.1 21.8 20.9	1 1 1 1 1 2 2	23 23 23 23 23 23 23 22 22 22
5 MHz	16QAM	12 12 25 1 1 1 1	7 13 0 0 12 24	22.2 22.1 21.9 22.1 21.8 20.9	1 1 1 1 1 2	23 23 23 23 23 23 23 23 22

LTE Band 14 Measured Results

				Maximum Ave	erage Power (dBm)	
BW	Mode	RB	RB	23330		Tune-up
(MHz)		Allocation	offset	793 MHz	MPR	Limit
		1	0	23.1	0	24
		1	25	23.5	0	24
		1	49	23.0	0	24
	QPSK	25	0	22.2	1	23
		25	12	22.2	1	23
		25	25	22.2	1	23
10 MHz		50	0	22.1	1	23
10 IVIDZ		1	0	22.1	1	23
		1	25	22.0	1	23
		1	49	21.5	1	23
	16QAM	25	0	21.3	2	22
		25	12	21.2	2	22
	-	25	25	21.1	2	22
		50	0	21.0	2	22
BW		RB	RB	Maximum Ave	erage Power (dBm)	
(MHz)	Mode	Allocation	offset	23330	MPR	Tune-up
` ′				793 MHz		Limit
		1	0	23.0	0	24
		1	12	23.3	0	24
		1	24	23.0	0	24
	QPSK	12	0	22.3	1	23
		12	7	22.2	1	23
		12	13	22.2	1	23
5 MHz		25	0	22.1	1	23
J		1	0	22.0	1	23
		1	12	21.6	1	23
		1	24	21.5	1	23
	16QAM	12	0	21.0	2	22
		12	7	21.1	2	22
		12	13	21.0	2	22
		25	0	21.0	2	22

LTE Band 66 Measured Results

LIE Dai					Maximum Ave	rage Power (di	Bm)	
BW	Mode	RB	RB	132072				Tune-up
(MHz)		Allocation	offset	1720 MHz			MPR	Limit
		1	0	22.6	22.3	22.4	0	24
		1	49	22.8			0	24
		1	99	22.6	1745 1770 MHz 22.3 22.4 0 2 22.1 22.6 0 2 22.3 22.3 0 2 2 2 2 2 2 2 2 2			
	QPSK	50	0	21.4				
		50	24	21.5				
		50	50	21.5	21.4	21.5	1	23
		100	0	21.5	21.4		1	23
20 MHz		1	0	21.0				23
		1	49	21.0	21.1	21.3	1	23
		1	99	21.2	21.0	21.0	1	23
	16QAM	50	0	20.2			2	22
		50	24	20.2	20.4	20.3	2	22
		50	50	20.4	20.3	20.4	2	22
		100	0	20.5	20.5	20.2	MPR	22
	Mode				l		Bm)	
BW	Mode	RB	RB	132047	132322	132597		Tune-up
(MHz)		Allocation	offset	1717.5 MHz	1745 MHz	1772.5 MHz	MPR	Limit
		1	0	22.8	22.7	22.5	0	24
		1	37	22.6	23.0	22.3	0	24
		1	74	22.6	22.5	22.3	0	24
	QPSK	36	0	21.6	21.6	21.4	1	23
		36	20	21.5	21.5	21.5	1	23
		36	39	21.6	21.4	21.4	1	23
15 MHz		75	0	21.6	21.5	21.4	1	23
13 IVITZ		1	0	22.3	21.7	21.3	1	23
		1	37	21.8	21.9	21.6	1	23
		1	74	22.2	21.3	21.0	1	23
	16QAM	36	0	20.5	20.6	20.4	2	22
		36	20	20.4	20.5	20.5	2	22
		36	39	20.5	20.5	20.4	2	22
		75	0	20.6	20.4	20.4	2	22
BW		RB	RB		Maximum Ave	rage Power (d	Bm)	
(MHz)	Mode	Allocation	offset	132022			MPR	Tune-up
		·	-	1715 MHz			_	
		1	0	22.7				
		1	25	22.6				
	0501	1	49	22.4				
	QPSK	25	0	21.7				
		25	12	21.5				
		25	25	21.4				
10 MHz		50	0	21.6				
		1	0	21.6				
		1	25	21.4				
	160014	1	49	21.0				
	16QAM	25	0	21.0				
		25	12	20.5				
		25	25	20.6				
I		50	0	20.6	∠0.5	∠0.5	2	22

LTE Band 66 Measured Results (continued)

LIE Bar	nd 66 Me	easured	Resul	ts (continu				
BW		RB	RB		Maximum Ave	rage Power (d	Bm)	
(MHz)	Mode	Allocation	offset	131997	132322	132647	MPR	Tune-up
, ,				1712.5 MHz	1745 MHz	1777.5 MHz		Limit
		1	0	22.4	22.5	22.6	0	24
		1	12	22.4	22.5	22.6	0	24
		1	24	22.2	22.7	22.5	0	24
	QPSK	12	0	21.6	21.6	21.6	1	23
		12	7	21.5	21.6	21.5	1	23
		12	13	21.6	21.6	21.6	1	23
5 MHz		25	0	21.7	21.5	21.5	1	23
0 1011 12		1	0	21.6	21.3	21.3	1	23
		1	12	21.8	21.6	21.5	1	23
		1	24	21.5	21.3	21.0	1	23
	16QAM	12	0	20.6	20.4	20.8	2	22
		12	7	20.7	20.6	20.8	2	22
		12	13	20.7	20.7	20.4	2	22
	Mode QPSK	25	0	20.8	20.5	20.6	2	22
BW		RB	RB		Maximum Ave	rage Power (d	Bm)	
(MHz)	Mode	Allocation	offset	131987	132322	132657	MPR	Tune-up
(/				1711.5 MHz	1745 MHz	1778.5 MHz	IVII IX	Limit
		1	0	22.8	22.9	22.8	0	24
		1	8	23.0	23.1	22.8	0	24
		1	14	22.9	22.9	22.6	0	24
	QPSK	8	0	21.8	21.5	21.6	1	23
		8	4	21.8	21.6	21.5	1	23
		8	7	21.9	21.6	21.6	1	23
3 MHz		15	0	21.8	21.5	21.6	1	23
J IVII IZ		1	0	21.6	21.6	21.5	1	23
		1	8	21.5	21.6	21.7	1	23
		1	14	21.5	21.4	21.3	1	23
	16QAM	8	0	20.4	20.5	20.6	2	22
	2	8	4	20.5	20.8	20.9	2	22
		8	7	20.7	20.7	20.9	2	22
		15	0	20.7	20.7	20.7	2	22
BW		RB	RB		Maximum Ave	rage Power (d	Bm)	
(MHz)	Mode	Allocation	offset	131979	132322	132665	MPR	Tune-up
, ,				1710.7 MHz	1745 MHz	1779.3 MHz		Limit
		1	0	22.7	22.7	22.7	0	24
		1	3	23.1	22.9	23.0	0	24
		1	5	23.1	22.9	22.7	0	24
	QPSK	3	0	22.9	22.7	22.7	0	24
		3	1	23.0	22.7	22.8	0	24
		3	3	23.0	22.7	22.8	0	24
1.4 MHz		6	0	22.0	21.7	21.5	1	23
7 IVII IZ		1	0	21.9	21.5	21.4	1	23
		1	3	21.7	21.6	21.4	1	23
		1	5	21.8	21.6	21.4	1	23
	16QAM	3	0	21.9	21.4	21.2	1	23
		3	1	21.7	21.5	21.2	1	23
		3	3	21.7	21.6	21.6	1	23
I		6	0	21.0	20.8	20.4	2	22

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN and Bluetooth = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset
 and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle
 and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low,
 Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available
 non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth
 configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the
 requirement for H, M and L channels may not fully apply.

10.1. W-CDMA Band II

RF Exposure		With	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Clip	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-w orn	Rel 99 RMC	Yes	0	Rear	9400	1880.0	24.0	23.9	0.311	0.322	1
RF Exposure		With	Dist.	Test		Freq.	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions Mode	Mode	Clip	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Rear	9400	1880.0	24.0	23.9	0.751	0.777	
				Edge 1	9400	1880.0	24.0	23.9	0.088	0.091	
				Edge 2	9400	1880.0	24.0	23.9	0.672	0.696	
Extremity	Rel 99 RMC	No	0		9262	1852.4	24.0	24.0	1.160	1.160	
				Edge 3	9400	1880.0	24.0	23.9	2.040	2.112	2
					9538	1907.6	24.0	23.9	1.170	1.186	
				Edge 4	9400	1880.0	24.0	23.9	0.135	0.140	

10.2. W-CDMA Band IV

RF Exposure		With	Dist.	Test		Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot	
Conditions	Mode	Clip	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.	
Body-w orn	Rel 99 RMC	Yes	0	Rear	1513	1752.6	24.0	24.0	0.529	0.529	3	
RF Exposure		With	Dist.	Test		Freq.	Pow er	(dBm)	10-g SA	R (W/kg)	Plot	
RF Exposure Conditions Mode	Clip	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.		
				Rear	1513	1752.6	24.0	24.0	1.350	1.350		
Extremity 1	Rel 99 RMC 12.2 kbps	el 99		Edge 1	1513	1752.6	24.0	24.0	0.040	0.040		
		RMC No	No	0	Edge 2	1513	1752.6	24.0	24.0	0.680	0.680	
					Edge 3	1513	1752.6	24.0	24.0	1.700	1.700	4
				Edge 4	1513	1752.6	24.0	24.0	0.111	0.111		

10.3. W-CDMA Band V

RF Exposure			Dist.	Test		Freq.	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot	
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.	
Body-w orn	Rel 99 RMC	Yes	0	Rear	4183	836.6	24.0	23.5	0.321	0.360	5	
RF Exposure			Dist.	Test		Freq.	Pow er	(dBm)	10-g SA	R (W/kg)	Plot	
RF Exposure Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.	
				Rear	4183	836.6	24.0	23.5	0.582	0.653		
	Rel 99			Edge 1	4183	836.6	24.0	23.5	0.057	0.064		
Extremity	Rel 99 RMC 12.2 kbps	RMC No	No	0	Edge 2	4183	836.6	24.0	23.5	0.431	0.484	
		2.2 kbps		Edge 3	4183	836.6	24.0	23.5	0.974	1.093	6	
				Edge 4	4183	836.6	24.0	23.5	0.409	0.459		

10.4. LTE Band 2 (20MHz Bandwidth)

RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
Dody worn	QPSK	Yes	0	Rear	18900	1880.0	1	49	24.0	23.8	0.678	0.710	7
· Body-worn	QPSK	res	U	Real	16900	1000.0	50	0	23.0	22.6	0.464	0.509	
RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				D	40000	4000.0	1	49	24.0	23.8	1.500	1.571	
				Rear	18900	1880.0	50	0	23.0	22.6	1.170	1.283	
				Edge 1	18900	1880.0	1	49	24.0	23.8	0.066	0.069	
				Luge	10900	1000.0	50	0	23.0	22.6	0.054	0.059	
Extremity	QPSK	No	0	Edge 2	18900	1880.0	1	49	24.0	23.8	1.040	1.089	
Extremity	QF3N	NO	0	Euge 2	16900	1660.0	50	0	23.0	22.6	0.788	0.864	
				Edge 3	18900	1880.0	1	49	24.0	23.8	1.590	1.665	8
				Euge 3	16900	1660.0	50	0	23.0	22.6	1.260	1.382	
				Edge 4	18900	1880.0	1	49	24.0	23.8	0.090	0.094	
				Luge 4	10900	1000.0	50	0	23.0	22.6	0.072	0.079	

10.5. LTE Band 5 (10MHz Bandwidth)

RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-w orn	QPSK	Yes	0	Rear	20525	836.5	1	25	24.0	23.1	0.420	0.517	9
Body-worn	QPSK	res	U	Real	20525	636.5	25	0	23.0	22.1	0.335	0.412	
RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Rear	20525	836.5	1	25	24.0	23.1	0.568	0.699	
				Real	20525	636.5	25	0	23.0	22.1	0.446	0.549	
				Edge 1	20525	836.5	1	25	24.0	23.1	0.076	0.094	
				Luge	20323	030.3	25	0	23.0	22.1	0.061	0.075	
Extremity	QPSK	No	0	Edge 2	20525	836.5	1	25	24.0	23.1	0.378	0.465	
Littlemity	QFSR	NO		Luge 2	20323	030.3	25	0	23.0	22.1	0.312	0.384	
				Edge 3	20525	836.5	1	25	24.0	23.1	0.926	1.139	10
				Euge 3	20525	636.5	25	0	23.0	22.1	0.725	0.892	
				Edge 4	20525	836.5	1	25	24.0	23.1	0.331	0.407	
				Edge 4	20325	030.5	25	0	23.0	22.1	0.266	0.327	

10.6. LTE Band 12 (10MHz Bandwidth)

RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-w orn	QPSK	Yes	0	Rear	23095	707.5	1	25	24.0	23.2	0.474	0.570	11
Body-worn	QPSK	res	U	Real	23095	707.5	25	0	23.0	22.2	0.360	0.433	
RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				D	00005	707.5	1	25	24.0	23.2	0.862	1.036	
				Rear	23095	707.5	25	0	23.0	22.2	0.709	0.852	
				Edge 1	23095	707.5	1	25	24.0	23.2	0.151	0.182	
				Edge 1	23095	707.5	25	0	23.0	22.2	0.111	0.133	
Extremity	QPSK	No	0	Edge 2	23095	707.5	1	25	24.0	23.2	0.291	0.350	
Extremity	QPSN	INO	U	Eage 2	23095	707.5	25	0	23.0	22.2	0.238	0.286	
				Edge 2	22005	707.5	1	25	24.0	23.2	0.661	0.795	
				Edge 3	23095	707.5	25	0	23.0	22.2	0.488	0.587	
				Edgo 4	23095	707.5	1	25	24.0	23.2	0.898	1.080	12
				Edge 4	23095	707.5	25	0	23.0	22.2	0.680	0.818	

10.7. LTE Band 13 (10MHz Bandwidth)

RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-w orn	QPSK	Yes	0	Rear	23230	782.0	1	25	24.0	23.6	0.555	0.609	13
Body-worn	QFSK	162	0	Real	23230	762.0	25	0	23.0	22.2	0.408	0.491	
RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Rear	23230	782.0	1	25	24.0	23.6	0.445	0.488	
				Real	23230	762.0	25	0	23.0	22.2	0.684	0.822	
				Edge 1	23230	782.0	1	25	24.0	23.6	0.119	0.130	
				Luge	23230	702.0	25	0	23.0	22.2	0.097	0.117	
Extremity	QPSK	No	0	Edge 2	23230	782.0	1	25	24.0	23.6	0.434	0.476	
Latiterity	QFSR	NO		Luge 2	23230	702.0	25	0	23.0	22.2	0.336	0.404	
				Edge 3	23230	782.0	1	25	24.0	23.6	1.080	1.184	14
				Euge 3	23230	762.0	25	0	23.0	22.2	0.887	1.066	
				Edge 4	23230	782.0	1	25	24.0	23.6	0.445	0.488	
				Luge 4	23230	702.0	25	0	23.0	22.2	0.351	0.422	

10.8. LTE Band 14 (10MHz Bandwidth)

RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-w orn	QPSK	Yes	0	Rear	23330	793.0	1	25	24.0	23.5	0.512	0.574	15
Body-worn	QFSK	162	0	Real	23330	793.0	25	0	23.0	22.2	0.383	0.460	
RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Rear	23330	793.0	1	25	24.0	23.5	0.797	0.894	
				Real	23330	793.0	25	0	23.0	22.2	0.608	0.731	
				Edge 1	23330	793.0	1	25	24.0	23.5	0.148	0.166	
				Euge i	23330	793.0	25	0	23.0	22.2	0.115	0.138	
Extremity	QPSK	No	0	Edge 2	23330	793.0	1	25	24.0	23.5	0.510	0.572	
Extremity	QF3N	INO	0	Euge 2	23330	793.0	25	0	23.0	22.2	0.371	0.446	
				Edge 3	23330	793.0	1	25	24.0	23.5	1.040	1.167	16
				Eage 3	23330	793.0	25	0	23.0	22.2	0.867	1.042	
				Edge 4	23330	793.0	1	25	24.0	23.5	0.590	0.662	
				Luge 4	23330	7 93.0	25	0	23.0	22.2	0.446	0.536	

10.9. LTE Band 66 (20MHz Bandwidth)

RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
Body-worn	QPSK	Yes	0	Rear	132322	1745.0	1	0	24.0	22.3	0.517	0.765	17
Body-worn	QFSK	165	U	Real	132322	1745.0	50	0	23.0	21.6	0.336	0.464	
RF Exposure			Dist.	Test		Freq.	RB	RB	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
Conditions	Mode	With Clip	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Rear	132322	1745.0	1	0	24.0	22.3	1.340	1.982	
				Real	132322	1745.0	50	0	23.0	21.6	1.080	1.491	
				Edge 1	132322	1745.0	1	0	24.0	22.3	0.039	0.058	
				Edge 1	132322	1745.0	50	0	23.0	21.6	0.024	0.033	
				Edge 2	132322	1745.0	1	0	24.0	22.3	0.614	0.908	
Futus mitu	QPSK	No	0	Edge 2	132322	1745.0	50	0	23.0	21.6	0.446	0.616	
Extremity	QPSN	INO	0		132072	1720.0	1	49	24.0	22.8	1.310	1.727	
				Edge 2	132322	1745.0	1	0	24.0	22.3	1.360	2.012	18
				Edge 3	132322	1745.0	50	0	23.0	21.6	1.020	1.408	
					132572	1770.0	1	49	24.0	22.6	1.310	1.808	
				Edge 4	132322	1745.0	1	0	24.0	22.3	0.124	0.183	
			Edge 4	132322	1745.0	50	0	23.0	21.6	0.091	0.126		

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	First Repeated		Second Repeated		Third Repeated
						Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)	Largest to Smallest SAR Ratio	Measured SAR (W/kg)
1900	W-CDMA Band II	Extremity	Edge 3	Yes	2.040	1.750	1.17	N/A	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is < 1.20.

12. Simultaneous Transmission Conditions

RF Exposure Condition	Item	Capable Transmit Configurations						
	1	WWAN +	Wi-Fi DTS					
Dady war 9	2	WWAN +	Wi-Fi U-NII					
Body-w orn & Extremity	3	WWAN +	BT					
Latternity	4	WWAN +	Wi-Fi DTS	+	BT			
	5	WWAN +	Wi-Fi U-NII	+	BT			

12.1. Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

12.1.1. Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

12.2. Sum of the SAR for Body-worn WWAN & Wi-Fi & BT

RF Exposure conditions	Test Position		Standalone	∑ 1-g SAR (W/kg)			
		1	2	3	4	1+2+4	1+3+4
		WWAN	Wi-Fi DTS	Wi-Fi U-NII	BT		
Body-worn	Rear	0.765	0.043	0.091	0.000	0.808	0.856

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is ≤ 0.04 for all circumstances that require SPLSR calculation.

12.3. Sum of the SAR for Extremity WWAN & Wi-Fi & BT

RF Exposure conditions	Test Position		Standalone	∑ 10-g SAR (W/kg)			
		1	2	3	4	1+2+4	1+3+4
		WWAN	Wi-Fi DTS	Wi-Fi U-NII	BT		
	Rear	1.982	0.105	0.050	0.004	2.091	2.036
	Edge 1	0.182	0.077	0.016	0.004	0.263	0.202
Extremity	Edge 2	1.089	0.248	0.448	0.019	1.356	1.556
	Edge 3	2.112	0.023	0.063	0.000	2.135	2.175
	Edge 4	1.080	0.086	0.010	0.008	1.174	1.098

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 10-g SAR is < 4.0 W/kg or the SPLSR is ≤ 0.10 for all circumstances that require SPLSR calculation.

Appendixes

Refer to separated files for the following appendixes.

Appendix A: SAR Setup Photos

Appendix B: SAR System Check Plots

Appendix C: SAR Highest Test Plots

Appendix D: SAR Tissue Ingredients

Appendix E: SAR Probe Certificates

Appendix F: SAR Dipole Certificates

END OF REPORT