

Silicon N-Channel Power MOSFET

Description

IRF3205, the silicon N-channel Enhanced MOSFETS, is obtained by advanced MOSFET technology which reduce the conduction loss, improve switching performance and enhance the avalanche energy. The transistor is suitable device for Synchronous Rectification, inverter systems ,high speed switching and general purpose applications.

KEY CHARACTERISTICS

- 1 V_{DS} =55V,ID=110A $R_{DS(ON)}$ <9m Ω @ V_{GS} =10V
- ② Fast Switching
- (3) Low Crss
- 4 100% avalanche tested
- (5) Improved dv/dt capability
- 6 RoHS product

APPLICATIONS

- 1 Power management for 12V inverter systems
- 2 Synchronous Rectification

1. Gate of the state of the sta

ORDERING INFORMATION

Ordering Codes	Package	Product Code	Packing
IRF3205	TO-220	IRF3205	Tube

ABSOLUTE RATINGS at TC = 25°C, unless otherwise specified

Symbol	Parameter	Rating	Units
V _{DSS}	Drain-to-Source Voltage	55	V
lp.	Continuous Drain Current	110	Α
טו	Continuous Drain Current TC = 100 °C	80	Α
IDM	Pulsed Drain Current(Note1)	440	А
VGS	Gate-to-Source Voltage	±20	V
Eas	Single Pulse Avalanche Energy(Note2)	1500	mJ
IAR	Avalanche Current	25	Α
EAR	Repetitive Avalanche Current	20	mJ
dv/dt	Peak Diode Recovery dv/dt(Note3)	5.0	V/ns
PD	Power Dissipation TO-220	210	W
	Derating Factor above 25°C	1.25	w/°C
TJ, Tstg	Operating Junction and Storage Temperature Range	175, -55 to 175	$^{\circ}$
TL	Maximum Temperature for Soldering	300	$^{\circ}$

Thermal characteristics (No FullPAK) TO-220

Symbol	Parameter	Parameter RATINGS			
Rөлс	Junction-to-Case	0.75	°C/W		
Reja	Junction-to-Ambient	62.5	°C/W		

Electrical Characteristics at TC = 25°C, unless otherwise specified

OFF Characteristics						
Symbol	Parameter	Test Conditions	Values			Linita
Symbol		rest Conditions	Min.	Тур.	Max.	Units
VDSS	Drain to Source Breakdown Voltage	VGS=0V, ID=250μA	55			V
ΔBV _{DSS} /Δ TJ	Bvdss Temperature Coefficient	ID=250uA, Reference25℃		0.055		v/°C
IDSS	IDSS Drain to Source Leakage Current	VDS =55V, VGS= 0V, Tj = 25 °C			1	μА
-200		VDS =44V, VGS= 0V, Tj = 125 ℃			10	μΑ
IGSS(F)	Gate to Source Forward Leakage	VGS =+20V			100	nA

IRF3205

IGSS(R)	Gate to Source Reverse Leakage	V _{GS} =-20V			100	nA
---------	--------------------------------	-----------------------	--	--	-----	----

ON Characteristics							
Cymphol	Davamatar	Test Conditions	Values			I I mit m	
Symbol	Parameter	rest Conditions	Min.	Тур.	Max.	Units	
R _{DS(ON)}	Drain-to-Source On- Resistance	V _{GS} =10V, I _D =40A		7.2	9	mΩ	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = VGS$, $I_D = 250\mu A$	2		4	V	
gfs	Forward Transconductance	V _{DS} =20V, I _D =40A(Note4)		65		S	

Dynamic (Dynamic Characteristics							
Cumphal		Test Conditions	Values					
Symbol	Parameter		Min.	Тур.	Max.	Units		
Rg	Gate resistance	f = 1.0MHz		1.7		Ω		
Ciss	Input Capacitance	$V_{GS} = 0V V_{DS} = 25V$ f = 1.0MHz		3247				
Coss	Output Capacitance			781				
Crss	Reverse Transfer Capacitance			211		PF		

Switching Characteristics							
Comple al	8	Took Conditions	Va	Values			
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units	
td(ON)	Turn-on Delay Time	I _D =62A		14			
tr	Rise Time	V _{DD} =28V		101		ns	
td(OFF)	Turn-Off Delay Time	V _{GS} = 10V		50			
tf	Fall Time	$R_G = 4.5\Omega$		65			
Qg	Total Gate Charge	I _D =62A		146			
Qgs	Gate to Source Charge	V _{DD} =44V		10		nC	
Qgd	Gate to Drain ("Miller")Charge	V _{GS} = 10V		17.5			

Source-Drain Diode Characteristics						
Symbol	Doromotor	Test Conditions	Values			
	Parameter		Min.	Тур.	Max.	Units
Is	Continuous Source Current (Body Diode)	T _C =25 °C			110	А
Ism	Maximum Pulsed Current (Body Diode)				440	Α
VSD	Diode Forward Voltage	I _S =62A, V _{GS} =0V		0.9	1.3	V

www.mns-kx.com

IRF3205

Trr	Reverse Recovery Time	I _S =62A, T _i = 25°C	 69	 ns
Qrr	Reverse Recovery Charge	$d_{IF}/d_t=100A/us$, $V_{GS}=0V$	 143	 nC

Note1:Pulse width limited by maximum junction temperature

Note2: L=1mH, V_{Ds} =44V, Start T_J =25 $^{\circ}$ C

Note3: $I_{SD} \le 110A$, $d_i/d_t \le 300A/us$, $V_{DD} \le BVDS$, Start $T_J = 25$ °C

Note4:Pulse width tp≤300μs,δ≤2%

Characteristics Curves

IRF3205

Test Circuit and Waveform

Package Description

TO-220 Package

NOTE:

- 1. Exceeding the maximum ratings of the device in performance may cause damage to the device, even the permanent failure, which may affect the dependability of the machine. Please do not exceed the absolute maximum ratings of the device when circuit designing.
- 2. When installing the heat sink, please pay attention to the torsional moment and the smoothness of the heat sink.
- 3. MOSFETs is the device which is sensitive to the static electricity, it is necessary to protect the device from being damaged by the static electricity when using it.
- **4.** Shenzhen Minos reserves the right to make changes in this specification sheet and is subject to change without prior notice.

CONTACT:

深圳市迈诺斯科技有限公司(总部)

地址:深圳市福田区华富街道田面社区深南中路4026号田面城市大厦22B-22C

邮编:518025

电话: 0755-83273777