A 卷

一、选择题(共45分,每小题3分)

1、设
$$f(x) = \frac{\tan x}{|x|} \arctan \frac{1}{x}$$
,则(C)

- (A) x=0 是振荡间断点.
- (B) x=0 是无穷间断点.
- (C) x=0 是可去间断点.
- (D) x = 0 是跳跃间断点.

2.
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{e^x - 1} \right) = ($$
 A)

- (A) $\frac{1}{2}$. (B) $-\frac{1}{2}$. (C) 0. (D) ∞ .

3、设 $\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 2} - ax - b) = 0$,则常数(A)

- (A) a=1, b=1.
- **(B)** a = 1, b = -1.
- (C) a = -1, b = 1.
- **(D)** a = -1, b = -1.

4、设函数 y = y(x) 由参数方程 $\begin{cases} x = t - \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,则 $\frac{d^2y}{dx^2} = ($ **B**)

- (A) 6t + 5.
- **(B)** $\frac{(6t+5)(1+t)}{t}$.
- (C) $(6t+2)(1+t)^2$.
- **(D)** $-(6t+2)(1+t)^2$.

5、设函数 y = y(x) 由方程 $x^3 - ax^2y^2 + by^3 = 0$ 所确定, y(1) = 1, x = 1 是 y = y(x) 的 驻点,则常数(C)

- (A) a=3, b=2. (B) $a=\frac{5}{2}$, $b=\frac{3}{2}$.
- (C) $a = \frac{3}{2}$, $b = \frac{1}{2}$. (D) a = -2, b = -3.

6、设 $f(x) = \begin{cases} x^2, & x$ 为有理数,则(C) 0. x为无理数,则(C)

- (A) f(x) 在点 x = 0 处不连续.
- (B) f(x) 在点 x = 0 处连续,但不可导.
- (C) f(x) 仅在点x=0 处可导.
- **(D)** f(x) **处处可导,**且 $f'(x) = \begin{cases} 2x, & x \to \pi \\ 0, & x \to \pi \end{cases}$

7、设 $f(x)$ 在点 x_0 的某邻域内有三阶连续导数,且 $f'(x_0)=0$, $f''(x_0)=0$,			
$f'''(x_0) > 0$,则(D)			
(A) $f(x_0)$ 是 $f(x)$ 的一个极大值.			
(B) $f(x_0)$ 是 $f(x)$ 的一个极小值.			
(C) $f'(x_0)$ 是 $f'(x)$ 的一个极大值.			
(D) $(x_0, f(x_0))$ 是曲线 $y = f(x)$ 的一个拐点.			
8、设 $f(x) = \cos^4 x + \sin^4 x$,则 $f^{(2020)}(0) = ($ B)			
(A) 4^{2018} .	(B) 4^{2019} .	(C) 4^{2020} .	(D) 4^{2021} .
9、定积分 $\int_0^1 \frac{1-x}{(1+x)(1+x^2)} dx = (\mathbf{D})$			
(A) $\ln 2 + \frac{\pi}{4}$.	(B) $\ln 2 - \frac{\pi}{4}$.	(C) 0.	(D) $\frac{1}{2} \ln 2$.
$10、定积分\int_0^{\frac{\pi}{4}} \frac{1}{\cos^4 x} \mathrm{d}x = (\mathbf{D})$			
(A) $\frac{1}{3}$.	(B) $\frac{\pi}{3}$.	(C) $\frac{2\sqrt{2}}{3}$.	(D) $\frac{4}{3}$.
11、定积分 $\int_0^1 \arcsin x \mathrm{d}x = (\mathbf{D})$			
(A) $\frac{\pi}{3} - 1$.	(B) $1-\frac{\pi}{4}$.	(C) $\frac{\pi}{2} - \frac{1}{2}$.	(D) $\frac{\pi}{2} - 1$.
12、定积分 $\int_0^{6\pi} (\sin x + \sin^2 x) \cos^4 x \mathrm{d}x = (\mathbf{D})$			
(A) $\frac{3}{2}$.	(B) $\frac{3\pi}{4}$.	(C) $\frac{3}{4}$.	(D) $\frac{3\pi}{8}$.
13、设 D 是由抛物线 $y = x(1-x)$ $(0 \le x \le 1)$ 与 x 轴围成的平面图形,则 D 绕 y 轴			
	戏的旋转体的体积 -		_
(A) $\frac{\pi}{6}$.	(B) $\frac{\pi}{4}$.	(C) $\frac{\pi}{3}$.	(D) $\frac{\pi}{2}$.
14、设曲线 $y = y(x)$ 在其上任一点 (x, y) 处的切线斜率是 $-\frac{2x}{y}$ ($y \neq 0$ 时),则			
此曲线是(((で)	44 th tre (A)
(A) 摆线.	(B) 抛物线.	(C) 椭圆.	(D) 双曲线.

- 15、(工数)以下命题中错误的是(B)
 - (A) 若 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上一致连续.
 - (B) 若 f(x) 在 (a,b) 内连续且有界,则 f(x) 在 (a,b) 内一致连续.
 - (C) 若 f(x) 在 (a,b) 内连续,且 $\lim_{x \to a^+} f(x)$ 和 $\lim_{x \to b^-} f(x)$ 都存在,则 f(x) 在 (a,b) 内 一致连续.
 - (D) 若 f(x) 在 (a,b) 内可导,且 f'(x) 有界,则 f(x) 在 (a,b) 内一致连续.

15、(高数、微积分)

设 f(x) 连续、单调增加, f(0) = 0 , $F(x) = \int_0^x x f(x-t) dt$, 则(**B**)

- (A) F(x)在[0,+ ∞) 上单调减少.
- (B) F(x)在 $[0,+\infty)$ 上单调增加.

(C) $F'(x) \equiv 0$.

(D) F'(x) 在 $[0,+\infty)$ 上变号.

二、(高数、微积分)(15分)

求二阶常系数非齐次线性微分方程 $y'' + y' - 2y = 3e^x$ 的通解.

解 特征方程 $r^2 + r - 2 = 0$, 特征根 $r_1 = 1, r_2 = -2$.

对应的齐次方程的通解 $y = c_1 e^x + c_2 e^{-2x}$.

设原方程特解 $y^* = Axe^x$,则 $y^{*'} = A(x+1)e^x$, $y^{*''} = A(x+2)e^x$,

代入原方程,得 $A(x+2)e^x + A(x+1)e^x - 2Axe^x = 3e^x$,解得 A=1,所以 $y^* = xe^x$.

原方程的通解为 $y = c_1 e^x + c_2 e^{-2x} + x e^x$.

二、(工数) (15 分) 求伯努利方程 $y' = \frac{y^2 + x^3}{2xy}$ (x > 0) 的通解.

解
$$y' - \frac{1}{2x}y = \frac{x^2}{2}y^{-1}$$
,变形 $yy' - \frac{1}{2x}y^2 = \frac{x^2}{2}$.

$$\Rightarrow z = y^2$$
, $\text{MI} \frac{1}{2}z' - \frac{1}{2x}z = \frac{x^2}{2}$, $\text{EP } z' - \frac{1}{x}z = x^2$.

$$z = e^{\int_{x}^{1} dx} \left(\int x^{2} e^{-\int_{x}^{1} dx} dx + c \right) = x \left(\int x^{2} \frac{1}{x} dx + c \right) = \frac{x^{3}}{2} + cx.$$

原方程的通解为 $y^2 = \frac{x^3}{2} + cx$.

三、(15分) 求
$$\lim_{x\to 0} \left(\frac{1+x}{1+\sin x}\right)^{\frac{1}{x^2\ln(1+2x)}}$$
.

$$\lim_{x \to 0} \frac{1}{x^2 \ln(1+2x)} \ln\left(\frac{1+x}{1+\sin x}\right) = \lim_{x \to 0} \frac{1}{2x^3} \ln\left(1 + \frac{x-\sin x}{1+\sin x}\right)$$

$$= \lim_{x \to 0} \left(\frac{1}{2x^3} \cdot \frac{x-\sin x}{1+\sin x}\right) = \lim_{x \to 0} \left(\frac{x-\sin x}{2x^3}\right)$$

$$= \lim_{x \to 0} \frac{1-\cos x}{6x^2} = \lim_{x \to 0} \frac{\frac{x^2}{2}}{6x^2} = \frac{1}{12},$$

原极限 = $e^{\frac{1}{12}}$.

四、(15 分)设 f(x)在 [a,b] 上连续,证明 $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$,并由此

计算
$$\int_0^{\pi} \frac{x}{2+\sin x} dx$$
.

解 换元,令x = a + b - t,则

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(a+b-t) dt = \int_{a}^{b} f(a+b-t) dt = \int_{a}^{b} f(a+b-t) dt$$

所以
$$\int_0^\pi \frac{x}{2+\sin x} dx = \int_0^\pi \frac{(\pi-x)}{2+\sin(\pi-x)} dx = \int_0^\pi \frac{\pi-x}{2+\sin x} dx = \frac{\pi}{2} \int_0^\pi \frac{1}{2+\sin x} dx$$
.

再令
$$u = \tan \frac{x}{2}$$
,则 $\sin x = \frac{2u}{1+u^2}$, $dx = \frac{2}{1+u^2}du$,

$$\frac{\pi}{2} \int_0^{\pi} \frac{1}{2 + \sin x} dx = \frac{\pi}{2} \int_0^{+\infty} \frac{1}{2 + \frac{2u}{1 + u^2}} \cdot \frac{2}{1 + u^2} du = \frac{\pi}{2} \int_0^{+\infty} \frac{1}{1 + u^2 + u} du$$

$$= \frac{\pi}{2} \int_0^{+\infty} \frac{1}{\left(u + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} du = \frac{\pi}{\sqrt{3}} \arctan \frac{u + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \bigg|_0^{+\infty} = \frac{\pi}{\sqrt{3}} \left(\frac{\pi}{2} - \frac{\pi}{6}\right) = \frac{\pi^2}{3\sqrt{3}}.$$

五、(10 分) 设函数 f(x) 在[0,1] 上连续,在(0,1) 内二阶可导,且 $\lim_{x\to 0^+} \frac{f(x)}{x} = 1$, $\lim_{x\to 1} \frac{f(x)}{x-1} = 2$. 证明:

- (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = 0$.
- (2) 存在 $\xi_1, \xi_2 \in (0,1)$, $\xi_1 \neq \xi_2$, 使得 $f'(\xi_1) f(\xi_1) = f'(\xi_2) f(\xi_2) = 0$.

(3) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) - 3f'(\eta) + 2f(\eta) = 0$.

证 由 $\lim_{x\to 0^+} \frac{f(x)}{x} = 1$,知 f(0) = 0, f'(0) = 1;由 $\lim_{x\to 1^-} \frac{f(x)}{x-1} = 2$,知 f(1) = 0, f'(1) = 2.

(1) $\lim_{x\to 0^+} \frac{f(x)}{x} > 0$,由极限的局部保号性,知存在 $a \in (0, \frac{1}{2})$,使得f(a) > 0;

同理,由 $\lim_{x\to 1^-} \frac{f(x)}{x-1} > 0$,知存在 $b \in (\frac{1}{2},1)$,使得 f(b) < 0.

由连续函数的零点定理,存在 $\xi \in (a,b) \subset (0,1)$,使得 $f(\xi) = 0$.

- (2) 令 $g(x) = e^{-x} f(x)$ ($x \in [0,1]$),则 g(x) 在[0,1] 上连续,在(0,1) 内可导,且 $g(0) = g(\xi) = g(1) = 0$,所以由 Rolle 定理,存在 $\xi_1 \in (0,\xi)$, $\xi_2 \in (\xi,1)$,使得 $g'(\xi_1) = g'(\xi_2) = 0$, $f'(\xi_1) f(\xi_1) = f'(\xi_2) f(\xi_2) = 0$.
- (3) 令 $h(x) = e^{-2x} (f'(x) f(x)) (x \in [\xi_1, \xi_2])$,则 h(x) 在 $[\xi_1, \xi_2]$ 上可导,且 $h(\xi_1) = h(\xi_2) = 0$,所以由 Rolle 定理,存在 $\eta \in (\xi_1, \xi_2) \subset (0,1)$,使得 $h'(\eta) = 0$, $f''(\eta) 3f'(\eta) + 2f(\eta) = 0$.

B卷

—, 1A; 2A; 3C; 4C; 5C; 6B; 7B; 8D; 9D; 10D; 11D; 12D; 13B; 14A; 15C.

- 二、同A三
- 三、同A四
- 四、同A二
- 五、同A五