Домашнее задание 4

Юрасов Никита Андреевич

Обновлено 22 ноября 2019 г.

1 Проверка гипотез о виде распределения

1.1 Критерий согласия Колмогорова-Смирнова

Введем статистику, которая представляет собой максимальной отклонение эмпирической функции распределения $\hat{F}(x)$, построенной по выборке X, от гипотетической функции распределения F(x):

$$D_n = D_n(X) = \sup_{-\infty < x < \infty} |\hat{F}(x) - F(x)|$$

Пусть существует $X=(X_1,...,X_n)$ – выборка из $\mathcal{L}(\xi)$ с неизвестной функцией распределения $F_{\xi}(x)$, и пусть выдвинута гипотеза $H_0:F_{\xi}(x)=F(x)$, где функция F(x) полностью задана.

Для принятия или отвержения гипотезы H_0 необходимо по критерию Колмогорова сравнить $\sqrt{n}D_n$ с λ_α , которая определяется следующим равенством:

$$K(\lambda_{\alpha}) = 1 - \alpha,$$

где K(x) – распределение Колмогорова.

На практике статистику D_n удобнее вычислять в следующем виде $D_n = max(D_n^+, D_n^-)$, где

$$D_n^+ = \max_{1 \le k \le n} \left(\frac{k}{n} - F(X_{(k)}) \right), \quad D_n^- = \max_{1 \le k \le n} \left(F(X_{(k)}) - \frac{k-1}{n} \right)$$

Ответ на вопрос о виде распределения дает следующее сравнение:

- Если $\sqrt{n}D_n\geqslant \lambda_{\alpha},$ то гипотеза H_0 отвергается;
- Если $\sqrt{n}D_n\leqslant \lambda_{\alpha},$ то гипотеза H_0 принимается.

В неравенстве можно воспользоваться поправкой Большева о статистике $S(D_n)$, которая быстрее сходится к распределению Колмогорова:

$$S = \frac{6nD_n + 1}{6\sqrt{n}}$$

Преимущества

Критерий согласия Колмогорова начинает эффективно работать при выборке объемом $n \geqslant 20$, что допускает использование его при достаточно малых выборках данных.

Недостатки

Критерий Колмогорова-Смирнова применяется только для непрерывных распределениях. Также вычисление статистики D_n предполагает достаточно большие аналитические вычисления, что затрудняет проверку.