Supervised - Introduction

Definitions

dataset: data is provided as pairs of inputs and desired outputs.

model: the algorithm finds a way to produce the desired output given an input.

generalization: the algorithm generate autonomously an output for an input it has never seen before.

Main steps in a ML analysis

- Understand the problem we are trying to solve and if the data can solve the problem
- Formalize the problem
- Collect enough data to solve the problem
- Identify features and algorithms which allow right predictions
- Define metrics for the performances measurement
- Generate the predictive model and integrate the ML solution within a business product

Regression

If feature has continuity in the output (numerical), it's regression.

$$\hat{y} = w[0] * x[0] + w[1] * x[1] + \ldots + w[i] * x[i] + b$$

One-feature regression example:

$$\hat{y} = w * x + b$$

Classification

Classification predicts a category/label (Non numerical encoded).

Classification algorithms: Linear Classifiers, Support Vector Machines, Decision Trees, K-Nearest Neighbor, Random Forest, Neural Networks, Naive Bayes, ...

Overfitting and Underfitting

We expect simple models to generalize better to new data. Therefore, we always want to find the simplest model. Building a model that is too complex for the amount of information we have, is called overfitting.

Usually, collecting **more data points** will yield **more variety**, so larger datasets allow building **more complex** models.