

REGISTRO DE LA PROPIEDAD INDUSTRIAL

ESPAÑA

11 N.º de publicación: ES 2 013 211

21 Número de solicitud: 8902438

(51) Int. Cl.4: C01B 25/225

(12)

(57) Resumen

PATENTE DE INVENCION

A6

- 22 Fecha de presentación: 11.07.89
- 45 Fecha de anuncio de la concesión: 16.04.90
- Fecha de publicación del folleto de patente: 16.04.90
- (3) Titular/es: Ercros S.A. Paseo de Gracia 56 08007 Barcelona, ES
- (1) Inventor/es: Díaz Nogueira, Eduardo y Sobrino Portela, Luis
- 4 Agente: Velasco Cortijo, Gonzalo
- 🖼 Título: Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica por vía húmeda.
- Este procedimiento de obtención de ácido fosfórico a partir de roca fosfórica por vía húmeda, utiliza como agente de ataque intermedio de la roca fosfórica el ácido clorhídrico o mezcia de ácido clorhídrico. Realizándose la reacción preferiblemente a temperatura ambiente y presión atmosférica. El ácido fosfórico obtenido se extrae con un disolvente orgánico selectivo del cual se separa por reextracción con agua en contracorriente a temperatura moderada. La fase acuosa de la extracción con disolvente que contiene fundamentalmente cloruro calcico, ácido fosfórico no extraido y parte del disolvente empleado se trata con ácido sulfurico, precipitando el sulfato calcico, que se separa por filtración, y regenerando el ácido clorhídrico que conjuntamente con el fosfórico no extraido, se recicla a la etapa de reacción. Con ello se consigue recuperar el P2O5 disuelto, parte del disolvente de extracción, eliminar efluentes líquidos y poder emplear roca fosfórica de cualquier procedencia y riqueza, no siendo necesaria una granulometría fina, por lo que no se precisa una molienda convencional.

15

35

40

55

DESCRIPCION

La presente invención objeto de ésta patente se relaciona con la producción del ácido fosfórico a partir de roca fosfórica y ácido sulfúrico, utilizando como agente de ataque intermedio de la roca fosfórica el ácido clorhídrico o mezclas de acido clorhídrico y fósforo contenido en la roca fósforica y se obtiene como subproducto sulfato cálcico dihidratado.

El ataque de la roca fosfórica con un ácido mineral fuerte, transforma el fosfato mineral, flou-

rapatito, en forma soluble. Normalmente los procesos de obtención de H₃PO₄ por via húmeda, utilizan H₂SO₄ para atacar la roca, porduciéndose H₃PO₄ soluble y CaSO₄ (Hemihidrato o dihidrato) insoluble que posteriormente se separa por filtración. Este proceso exige una molienda exhaustiva, con el fin de evitar la precipitación del CaSO₄. 2H₂O en la superficie de las particulas sin atacar lo que dificultan su completo ataque. La utilización del ácido clorhídrico, en lugar

de H₂SO₄, obvia estos inconvenientes, pues el cloruro cálcico formado es soluble en agua y es posible por tanto, atacar minerales sin una limitación granulométrica de partida, lo cual es especialmente ventajoso cuando se trata de atacar

minerales de alto índice de dureza.

La solubilización del P2O5 con ácido clorhidrico se lleva a cabo mediante una de las reacciones siguientes:

 CaF_2 . $3Ca_3$ $(PP_4 + 18 HCL \xrightarrow{(H_2O)} 6H_3Po_4$ + 9 CaCl₂ + CaF₂ (I)

(H₂) CaF2.3Ca3 (PO₄)₂₊ 12 HCL $\stackrel{(H_2O)}{\longrightarrow}$ 3 Ca (H₂PO₄)₂₊₆ CaCl₂ + CaF₂ (II) solubizando en ambos casos el P₂O₅ en forma de árido forfárico (recesión I). de ácido fosfórico (reacción I), o en forma de fosfato monocálcido (reacción II) siendo una u otra función de la cantidad de ácido clorhídrico añadida por unidad de P2O5.

La concentración y la cantidad del ácido clorhídrico empleado, depende fundamentalmente de la concentración deseada en el licor obteniendo después del ataque, y del contenido de P₂O₅ en la roca fosfórica utilizada como materia prima.

El contenido normal de P2O5 en los yacimientos de roca fosfórica típica oscila entre un 30 y un 40%, consumiéndose de 2.3 a 1.7 Tm. de ácido clorhidrico (100%) por Tm. de P2O5 en la roca, para transformar todo el P2O5 en ácido fosfórico y cloruro cálcido.

Existen otros yacimientos de roca fosfórica necesaria para su posterior ataque vía húmeda harían inviable económicamente su aprovecha-

miento.

La mayor ventaja del procedimiento objeto de esta patente, se encuentra en que la reacción se lleva a cabo bien de forma continua, o discontinua a partir de roca fosfórica de cualquier naturaleza, riqueza y tamaño, bastando unicamente una tri-turación primaria de la misma para ser atacada por el ácido clorhídrico, a temperatura ambiente.

Otra característica propia del procedimiento de la presente invención, es la regeneración del ácido clorhídrico de ataque mediante la adición del ácido sulfúrico necesario para convertir en sulfato cálcico hidratado el cloruro cálcido formado en la reacción, una vez retirada del medio acuoso el H₃PO₄ en la etapa de extracción con disolventes, con lo cual las materias primas empleadas en el proceso son la roca fosfórica y el ácido sulfúrico.

Esta regeneración evita la formación de efluentes líquidos y además hace innecesaria la recuperación del reactivo órganico de extracción contenido en la solución de CaCl₂ mediante procesos de "Stripping" y absorción con carbón activo, en-tre otros. Asimismo el P₂O₅ soluble que pudiera quedar remanente en esta disolución se recuperaría al ser reciclado como ácido fosfórico.

En función de las anteriores consideraciones, otra ventaja del procedimiento es la flexibilidad de localización de la planta, pudiendose ésta ubi-

car a pie de explotación minera.

De acuerdo con la presente invención, es pues, factible el total aprovechamiento del P2O5 contenido en rocas fosfóricas pobres con contenidos del 20 al 30% en P₂O₅, y generalmente no aprovechables hasta hoy en día.

De este modo, la invención consiste en un procedimiento para obtener ácido fosfórico, que consta de las etapas que se describen a continuación y que se recogen en los diagramas de flujo

1.- Trituración

2.- Ataque

3.- Separación sólida-líquido

4.- Extracción con disolventes

5.- Precipitación yeso

6.- Filtración y lavado

7.- Lavado disolvente

Reextracción

9.- Concentración

10.- Trituración

11.- Ataque

12.- Precipitación yeso

13.- Filtración y lavado

14.- Extracción con disolventes

15.- Precipitación yeso

16.- Filtración y lavado

17.- Lavado disolvente

18.- Reextracción

19.- Concentración

Como producto del ataque con ácido clorhídrico se obtiene una solución de P2O5 (en forma de ácido fosfórico ó fosfato monacálcico) y cloruro cálcico, y unos sólidos residuales que se separan por métodos convencionales con el fin de obtener una solución clarificada.

Si el ataque se realiza según la reacción I, de la disolución resultante se extrae directamente el H₃PO₄, utilizando técnicas de extracción con disolventes con un disolvente orgánico selectivo.

En caso de que la reacción se lleve a cabo según la reacción II, a la disolución resultante se le añade el H2PO4, necesario para precipitar el calcio del fosfato mono cálcico en forma de sulfato cálcico hidratado, el cual se separa de la suspensión obteniéndose una disolución de ácido fosfórico y cloruro cálcico que se trata por extracción con disolventes, como en el caso anterior.

El extracto orgánico obtenido en la etapa de extracción, contiene la mayor parte del ácido fosfórico y una pequeña cantidad del ácido clorhídrico, en tanto que la mayor parte de las impurezas, quedan en el refinado acuoso junto con el cloruro

cálcico.

Una etapa de lavado de dicho extracto orgánico devuelve a la etapa de extracción el ácido clorhídrico, quedando la fase orgánica cargada solamente con ácido fosfórico que se reextrae con agua, obteniendose así ácido fosfórico diluido (extracto acuoso) y una fase orgánica descargada que se recicla a la etapa de extracción, para iniciar un nuevo ciclo.

Posteriormente, el ácido fosfórico obtenido, se somete a una etapa de concentración por métodos convencionales, hasta la concentración deseada.

Por otro lado, el extracto acuoso procedente de la etapa de extracción, constituido fundamentalmente por una disolución de cloruro cálcico y restos de ácido clorhídrico y de ácido fosfórico, se le adiciona una cantidad de ácido sulfúrico (igual o inferior al estequiométrico) en uno o varios reactores, con objeto de precipitar el CaSO₄ 2H2O se realiza por métodos convencionales, y preferentemente, en un filtro de banda con lavado en contracorriente con agua, recuperándose así la disolución de ácido clorhídrico, que puede ir acompañada de pequeñas cantidades de cloruro cálcido, P₂O₅ y disolvente orgánico, lo que permite asegurar la mínima presencia de sulfatos en la lejía que se reutiliza en un nuevo ciclo de ataque a la roca fosfórica y recuperar el P2O5 disuelto y el disolvente.

Los ejemplos que a continuación se exponen ilustran de alguna forma la presente invención sin ser en modo alguno limitativos.

Ejemplo 1 (Fig. 1)
Una cantidad de 100 kgs. de roca fosfórica con un contenido de 28% en P₂O₅, y con un tamañó de grano comprendido entre 5 y 10 mm, se introduce en un recipiente de ataque, junto con 350 kg. de una disolución de ácido clorhídrico al 20% en peso, y que además contiene un 1% de CaCl₂ y un 3,85% de P₂O₅ soluble, reciclada de la etapa de filtración del sulfato cálcico, manteniéndose en agitación suave la fase acuosa sobrenadante durante 6 horas a temperatura ambiente, con el que se consigue un 98% de solubilización del P2O5 contenido en la roca, en forma de ácido fosfórico. La disolución obtenida tiene una concentración del 13,8% en forma de H₃PO₄ y un 26,5% de CaCl2, en peso, y una vez clarificada para eliminar los sólidos en suspensión y los restos de la roca sin atacar, que se lavan en contracorriente con agua para évitar pérdidas de H₃PO₄ y CaCl₂,

se introduce en un depósito pulmón del cual se alimenta en contínuo a una bateria de mezcladoressedimentadores de extracción del ácido fosfórico, empleando como disolvente orgánico selectivo fosfato de tributilo.

La corriente acuosa aquí obtenida, que posteriormente se tratará, tenía una composición del 29,5% de CaCl₂ y un 3,6% de P_2O_5 . La fase orgánica cargada de H₃PO₄, lleva una pequeña cantidad de iones Cl-, por lo que se somete a una etapa de lavado en contracorriente con una solución del extracto final de ácido fosfórico; incorporando la fase acuosa con los correspondientes Cl- a la etapa de extracción y quedando una fase orgánica cargada de H₃PO₄ y prácticamente exenta de iones cloriro.

Dicha fase orgánica cargada, se somete a una reextracción en contracorriente con agua caliente a 80°C, obteniendose una solución de ácido fosfórico del 10% en P2O5, apta para su posterior concentración, y una fase orgánica regenerada que

se reutiliza en la reextracción.

Por otro lado, la disolución de CaC'2 procedente de la etapa de extracción se alimenta en continuo a una bateria de reactores agitados a las que se añaden 87,5 kg. de H₂SO₄ del 98% en peso por cada 100 kg. de CaCl₂ contenidos en la disolución, obteniendose una pulpa de densidad en sólidos del 35,3%, que se filtra y lava en contracorriente con agua, con lo cual se purgan 165,6 kg de CaSO₄. 2H₂O en forma de torna húmeda por cada 100 Kg. de roca inicialmente tratada, y se regenta la totalidad del Cl- en forma de solución de ácido clorhídrico que se reutiliza en un nuevo ataque de roca fosfórica. Ejemplo 2 (Fig. 2

Se parte de 100 kg. de la misma roca fosfórica del ejemplo anterior, y se introduce con la misma granulometria en el recipiente de ataque, junto con 261 kg de una disolución de ácido clorhídrico al 18% en peso, y que además contiene un 1,2% de CaCl₂ y un 3,6% de P₂O₅ soluble, reciclada de la etapa de recuperación de ácido clorhídrico, manteniendose en las mismas condiciones que se

han expuesto en el ejemplo 1.

La disolución obtenida tiene una concentración del 15,3% en P₂O₅ soluble en forma de fosfato monocálcico y un 19,8% de CaCl₂ en peso, y una vez decantada para eliminar la mayor parte de los insolubles, se lleva a un reactor donde se le añaden 32,2 kg. de H₂SO₄ al 98% de peso, para transformar el fosfato monocálcico obtenido en el ataque de los 100 kg. de roca fosfórica inicial en sulfato cálcico dihidrato que precipita y se separa de las aguas madres, (por filtración en contracorriente), cuya composición resultó ser del 15,7%

en P₂O₅ y del 20,3% en CaCl₂.

Esta disolución se procesa a continuación mediante extracción con disolventes, igual que en el ejemplo 1, obteniéndose finalmente un extracto acuaoso de ácido fosfórico del 15% en peso de P₂O₅ susceptible de posterior concentración por métodos convencionales, y recuperándose, por otro lado, el Cl- en forma de acido clorhídrico por el procedimiento de precipitación del yeso con H₂SO₄ y posterior filtración y lavado en contracorriente, reutilizándose en una nueva etapa de ataque a la roca fosfórica.

6

REIVINDICACIONES

1. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico utilizando como agente de ataque intermedio el ácido clorhídrico, caracterizado porque comprende las siguientes etapas:

Reacción de la roca fosfórica con una solución acuosa reciclada de ácido clorhídrico en la proporción necesaria para solubilizar el P₂O₅.

Eliminación de los insolubles de la lejía procedente de la etapa anterior, dejando ésta totalmente clarificada.

Extracción con disolventes del ácido fosfórico de la lejía procedente de la etapa anterior, mediante varios contactos en contracorriente con un reactivo orgánico selectivo del ácido fosfórico, obteniéndose un refinado conteniendo el cloruro rálcico junto al resto de impurezas y un extracto orgánico cargado en ácido fosfórico.

Lavado del extracto orgánico procedente de la estapa anterior mediante contacto con una fracción del extracto acuoso de ácido fosfórico producido, rom objeto de intercambiar las pequeñas cantidades de ácido clorhídrico contenidos en la fase orgánica por dicho ácido fosfórico, produciéndose así una fase aucosa que se incorpora a la etapa anterior de extracción y un extracto orgánico cargado de ácido fosfórico y exento de ácido clorhídrico y otras impurezas.

Reextracción con agua en contracorriente del acido fosfórico procedente del extracto orgánico lavado en la etapa anterior, obteniéndose así un extracto de ácido fosfórico apto para su posterior concentración, y una fase orgánica descargada de fosfórico que se recicla a la etapa de extracción.

Reacción del refinado conteniendo cloruro cálcico con ácido sulfúrico en la proporción necesaria para precipitar el calcio como sulfato cálcico dihidrato y recuperar el cloruro en forma de ácido clorhídrico, así como el reactivo orgánico y el iP₂O₅ desueltos en esta corriente.

Filtración de la pulpa procedente de la etapa anterior y lavado en contracorriente del yeso producido, que se purga del sistema, recuperándose la práctica totalidad del ácido clorhídrico necesa-

ria para atacar la roca fosfórica.

2. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico utilizando como agente de ataque intermedio el ácido clorhídrico, según la reivindicación 1, caracterizado por el hecho de que la etapa de reacción se realiza mediante lixiviación estática o dinámica, bien en continuo o en operaciones por cargas, a temperatura y presión moderadas, preferentemente a temperatura ambiente y presión atmosférica.

3. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico utilizando como agente de ataque intermedio el ácido clorhídrico, según las reivindicaciones 1 y 2 caracterizado porque la roca fosfórica utilizada puede ser de cualquier procedencia y composición, no siendo necesaria una granulometría fina para llevar a cabo el ataque en un tiempo razonable; por lo que generalmente no se requerirá una molienda convencional, siendo suficiente una trituración primaria a tamaño de partícula entre 5 y 100 mm.

4. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico utilizando como agente de ataque intermedio el ácido clorhídrico, según las reivindicaciones 1 a 3, caracterizado porque la lejía ácida de ataque, tiene una concentración en HCl comprendida entre el 5% y el 25% en peso, y preferentemente, entre el 10% y el 20%, e irá acompañada de una ligera cantidad de cloruro cálcido, cuya concentración estará comprendida entre el 0.1% y el 10%, y preferentemente del 1 al 3%.

5. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico utilizando como agente de ataque intermedio
el ácido clorhídrico, según la reivindicaciones 1
a 4, caracterizado porque el reactivo orgánico
selectivo del ácido fosfórico utilizado en el proceso de extracción con disolventes contiene, al menos, un compuseto seleccionado del grupo consistente en alcoholes alifáticos de 5 a 10 átomos
de carbono, cetonas de 5 a 10 átomos de carbono, ésteres fosfóricos, fosfónicos o fosfínicos u
óxidos de fosfina, amidas, aminas o mezclas de
los mismos, con o sin diluyentes orgánicos, que
no extraigan sustancialmente ácido clorhídrico, y
preferentemente, fosfato de tributilo.

6. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico utilizando como agente de ataque intermedio el ácido clorhídrico, según las reivindicaciones 1 a 5, caracterizado porque en las etapas de extracción y de lavado se trabaja a temperatura baja, preferiblemente a temperatura ambiente, para favorecer la solvatación del ácido fosfórico en la fase orgánica, mientras que en la etapa de reextracción se opera a temperaturas comprendidas entre 20 y 100°C, preferentemente entre 60 y 80°, para favorecer la desolvatación del ácido y obtener una concentración mayor de ácido fosfórico en el extracto acuoso final.

7. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico
utilizando como agente de ataque intermedio el
ácido clorhídrico, según las reivindicaciones 1 a
6, caracterizado porque el refinado acuoso procedente de la etapa de extracción, conteniendo
básicamente cloruro cácico, se hace reaccionar con
una cantidad de ácido sulfúrico ligeramente inferior a la estequiométrica del contenido en cloruro cálcico, preferetemente entre el 90 y el 95%
del estequiométrico, en una serie de tanques agitados, con objeto de precipitar el calcio lixiviado
en forma de sulfato cálcico y restituir la acidez clorhídrica para lixiviación, eliminar efluentes líquidos, y recuperar el reactivo orgánico y el
P₂O₅ disueltos

8. Procedimiento de obtención de ácido fosfórico a partir de roca fosfórica y ácido sulfúrico. según las reivindicaciones 1 a 7, caracterizado porque el agente de ataque intermedio es una mezcla de ácido clorhídrico y ácido fosfórico, y por realizarse la precipitación del sulfato cálcico en una o en dos etapas dependiendo de la relación HCL/P₂O₅ (contenido en roca fosfórica) empleada en ataque.

