OVERVIEW
PROBLEM STATEMENT
METHODS
RESULTS
CONCLUSIONS

### **SHOCKWAVE**

Max Lê

April 23, 2019

### Overview

- Problem Statement
- Methods
- Results
- Conclusions
- Q&A

#### Motivation



Figure: Shock cloud F15

- Shockwaves are important in aerodynamics
- In aircraft: when approach speed of sound
- In detonation: blast wave causes very dangerous shock
- Across shocks, properties are chaotic → Need good shock capturing schemes

### The Shocktube



Figure: NASA Ames 9m shocktube

- simple mechanical device with low and high properties at both end
- A diaphragm separates the two fluid.
- Once diaphgragm breaks, shockwave propagates to the right, expansion wave propagates to the left

### The Shocktube



Figure: Initial conditions

### The Shocktube



Figure: After diaphragm breaks

### Assumptions

- Ideal gas
- Single phase flow
- Zero gradient boundary conditions at both ends
- No heat transfer, no body force
- Incompressible
- Steady State

### **Equations**

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0, \qquad U = \begin{bmatrix} \rho \\ \rho u \\ E \end{bmatrix}, \quad F(U) = \begin{bmatrix} \rho u \\ p + \rho u^2 \\ (E + p)u \end{bmatrix}$$

 $\rho = \text{density}, \quad u = \text{velocity}, \quad p = \text{pressure}$ 

$$E={\rm total~energy~per~unit~volume}=\rho e+\frac{1}{2}\rho u^2$$

 $\rho e = \text{internal energy per unit volume}$ 

e = internal energy per unit mass

- Conservation of mass,momentum and energy
- Ideal gas equation of state to close the system

## Computational Grid



- Properties at cell's center
- Fluxes on the edge

### Numerical Schemes

$$\frac{\partial U}{\partial t} pprox \frac{U_i^{n+1} - U_i^n}{\Delta t} + \mathcal{O}(\Delta t)$$

$$\frac{\partial F}{\partial x} \approx \frac{F_{i+1}^{n1} - F_i^n}{\Delta x} + \mathcal{O}(\Delta x)$$

- Temporal discretization: first order forward in time
- Spatial discretization: first order in space
- Fluxes are calculated as Van Leer fluxes for subsonic and supersonic case.

### Numerical Schemes

$$U_i^{n+1} = U_i^n - \frac{\Delta t}{\Delta x} \left[ (F^+ + F^-)_{i+1/2} - (F^+ + F^-)_{i-1/2} \right]$$

OVERVIEW
PROBLEM STATEMENT
METHODS
RESULTS
CONCLUSIONS

## Parallelization Strategy



# Optimizations



### Numerical evolutions



### Numerical evolutions



### Numerical evolutions



## Analytical comparison



## Speedup

| CORE | TIME   | EXP         | THEORETICAL |
|------|--------|-------------|-------------|
| 1    | 10.888 | 1           | 1           |
| 2    | 9.953  | 1.093941525 | 2           |
| 4    | 5.425  | 2.007004608 | 4           |
| 8    | 3.207  | 3.395073277 | 8           |
| 10   | 2.78   | 3.916546763 | 10          |



### **Ghost Points**

| CORE | TIME   | EXP         | THEORETICAL |
|------|--------|-------------|-------------|
| 1    | 11.237 | 1           | 1           |
| 2    | 10.198 | 1.101882722 | 2           |
| 4    | 5.962  | 1.884770211 | 4           |
| 8    | 3.941  | 2.851306775 | 8           |
| 10   | 3.526  | 3.186897334 | 10          |



# Scaling

| N     | CORE | TIME  | EXP            | THEORETICAL |
|-------|------|-------|----------------|-------------|
| 1000  | 1    | 0.778 | 1              | 1           |
| 2000  | 2    | 1.053 | 0.738841405508 | 1           |
| 4000  | 4    | 1.664 | 0.467548076923 | 1           |
| 8000  | 8    | 3.113 | 0.249919691616 | 1           |
| 10000 | 10   | 3.695 | 0.210554803789 | 1           |



# Scaling

| N    | CORE | TIME  | EXP            | THEORETICAL |
|------|------|-------|----------------|-------------|
| 1000 | 1    | 0.405 | 1              | 1           |
| 2000 | 2    | 0.481 | 0.841995841996 | 1           |
| 4000 | 4    | 0.655 | 0.618320610687 | 1           |



### Some remarks

- We do see speedup but not great
- Extended ghost layers do not give much speedup
- Improvements: solve cons of mass, momentum, energy individually (instead of grouping everything under 1 U state vector) ⇒ need individual fluxes

#### References

- MTH/CSE 4280 Parallel Process Lecture Notes
- Chimera CFD . Van Leer Flux Splitting Scheme.
- AEE 5350 CFD Lecture Notes

OVERVIEW
PROBLEM STATEMENT
METHODS
RESULTS
CONCLUSIONS

Thank You For Listening! (Remember: Go with with the flow)