2-8 Probabilistic Analysis

"No Expectation, No Disappointment."

Hengfeng Wei

hfwei@nju.edu.cn

May 16, 2018

Searching an Unsorted Array (CLRS Problem 5-2 (f))

- 1: procedure Deterministic-Search($A[1\cdots n],x$) 2: $i\leftarrow 1$ 3: while $i\leq n$ do
- 4: if A[i] = x then
- 5: **return** *true*
- 6: $i \leftarrow i+1$
- 7: **return** false

Searching an Unsorted Array (CLRS Problem 5-2 (f))

- 1: **procedure** Deterministic-Search($A[1 \cdots n], x$)
- 2: $i \leftarrow 1$
- 3: while $i \leq n$ do
- 4: if A[i] = x then
- 5: **return** *true*
- 6: $i \leftarrow i+1$
- 7: **return** false

$$\exists ! \ i : A[i] = x$$

$$\exists !_k \ i : A[i] = x$$

$$\exists !\; i: A[i] = x$$

$$\exists ! \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} i \Pr{\{Y = i\}}$$

$$\exists !\; i: A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} i \Pr \{Y = i\}$$
$$= \sum_{i=1}^{n} i \Pr \{A[i] = x\}$$

$$\exists ! \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} i \Pr \{Y = i\}$$

$$= \sum_{i=1}^{n} i \Pr \{A[i] = x\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} i$$

$$\exists ! \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} i \Pr \{Y = i\}$$

$$= \sum_{i=1}^{n} i \Pr \{A[i] = x\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} i$$

$$= \frac{n+1}{2}$$

$$\exists !_k \ i : A[i] = x$$

$$\exists !_k \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\}$$

$$\exists !_k \ i : A[i] = x$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\} \\ &= \sum_{i=1}^{n-k+1} i \Pr\left\{i \text{ is the first index among } k \text{ indices } \textit{s.t. } A[i] = x\right\} \end{split}$$

$$\exists !_k \ i : A[i] = x$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} i \Pr\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\}$$

$$= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}}$$

$$\exists !_k \ i : A[i] = x$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\} \\ &= \sum_{i=1}^{n-k+1} i \Pr\left\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\right\} \\ &= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} \end{split}$$

$$\exists !_k \ i : A[i] = x$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\} \\ &= \sum_{i=1}^{n-k+1} i \Pr\left\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\right\} \\ &= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} \\ &= \frac{1}{\binom{n}{k}} \binom{n+1}{k+1} = \frac{n+1}{k+1} \end{split}$$

$$\exists !_k \ i : A[i] = x$$

$$\begin{split} \mathbb{E}[Y] &= \sum_{i=1}^{n-k+1} i \Pr\left\{Y = i\right\} \\ &= \sum_{i=1}^{n-k+1} i \Pr\left\{i \text{ is the first index among } k \text{ indices } s.t. \ A[i] = x\right\} \\ &= \sum_{i=1}^{n-k+1} i \frac{\binom{n-i}{k-1}}{\binom{n}{k}} = \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} \\ &= \frac{1}{\binom{n}{k}} \binom{n+1}{k+1} = \frac{n+1}{k+1} \\ k &= 1 \implies \mathbb{E}[Y] = \frac{n+1}{2}, \qquad k = n \implies \mathbb{E}[Y] = 1 \end{split}$$

◆ロト ◆個ト ◆ 差ト ◆ 差ト を 多くで

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

Summation by parts (Abel transformation; wiki)

After-class Exercise:

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

After-class Exercise:

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

Chapter 5: Binomial Coefficients

After-class Exercise:

$$\sum_{i=1}^{n-k+1} i \binom{n-i}{k-1} = \binom{n+1}{k+1}$$

$$r\binom{r-1}{k-1} = k\binom{r}{k}$$

$$\sum_{0 \le k \le n} \binom{k}{m} = \binom{n+1}{m+1}$$

Chapter 5: Binomial Coefficients

Y:# of comparisons

Y: # of comparisons

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{i=1}^{n} I_i\right] = \sum_{i=1}^{n} \mathbb{E}[I_i] = \sum_{i=1}^{n} \Pr\left\{I_i = 1\right\}$$

Y:# of comparisons

$$\begin{split} \mathbb{E}[Y] &= \mathbb{E}\left[\sum_{i=1}^n I_i\right] = \sum_{i=1}^n \mathbb{E}[I_i] = \sum_{i=1}^n \Pr\left\{I_i = 1\right\} \\ &\Pr\left\{I_i = 1\right\} = \left\{\begin{array}{l} \frac{1}{k}, & \text{if } A[i] = x \\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{array}\right. \end{split}$$

Y:# of comparisons

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{i=1}^{n} I_{i}\right] = \sum_{i=1}^{n} \mathbb{E}[I_{i}] = \sum_{i=1}^{n} \Pr\left\{I_{i} = 1\right\}$$

$$\Pr\left\{I_{i} = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n} \Pr\left\{I_{i} = 1\right\} = k \cdot \frac{1}{k} + (n-k) \cdot \frac{1}{k+1} = \frac{n+1}{k+1}$$

$$\Pr\left\{I_i = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$\Pr\left\{I_i = 1\right\} = \left\{ \begin{array}{ll} \frac{1}{k}, & \text{if } A[i] = x \\ \\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{array} \right.$$

$$\Pr\left\{I_i = 1\right\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$i = 1 \implies \Pr\{I_1 = 1\} = 1$$

 $i = n \implies \Pr\{I_n = 1\} = 0$

$$\Pr\{I_i = 1\} = \begin{cases} \frac{1}{k}, & \text{if } A[i] = x\\ \frac{1}{k+1}, & \text{if } A[i] \neq x \end{cases}$$

$$i=1 \implies \Pr\{I_1=1\}=1$$

$$i = n \implies \Pr\{I_n = 1\} = 0$$

NOT IID

(Independent and Identically Distributed)

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \operatorname{Pr} \{Y = i\}$$
$$= \sum_{i=1}^{n-k+1} \operatorname{Pr} \{Y \ge i\}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} \Pr\{Y \ge i\}$$

$$= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} \Pr\{Y \ge i\}$$

$$= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}}$$

$$= \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} \binom{n-i+1}{k}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} \Pr\{Y \ge i\}$$

$$= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}}$$

$$= \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} \binom{n-i+1}{k}$$

$$= \frac{1}{\binom{n}{k}} \sum_{r=k}^{n} \binom{r}{k}$$

$$\mathbb{E}[Y] = \sum_{i=1}^{n-k+1} i \Pr\{Y = i\}$$

$$= \sum_{i=1}^{n-k+1} \Pr\{Y \ge i\}$$

$$= \sum_{i=1}^{n-k+1} \frac{\binom{n-i+1}{k}}{\binom{n}{k}}$$

$$= \frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} \binom{n-i+1}{k}$$

$$= \frac{1}{\binom{n}{k}} \sum_{r=k}^{n} \binom{r}{k}$$

$$= \frac{1}{\binom{n}{k}} \binom{n+1}{k+1} = \frac{n+1}{k+1}$$

There are n bins labelled with the numbers $1, 2, \dots, n$. Balls are placed in these bins one after the other, with the bin into which a ball is placed being independent random variables that assume the value k with probability p_k . Let X be the number of balls placed so that there is at least one ball in every bin.

- (a) Assume that $p_k = \frac{1}{n}$. What is the expectation of X?
- (b) Assume that $p_k = \frac{1}{n}$. What is the probability distribution of X?
- (c) Prove that $\Pr(X > n \ln n + cn) \le e^{-c}$, $\Pr(X < n \ln n cn) \le e^{-c}$.
- (d) Redo (a) and (b) without the assumption $p_k = \frac{1}{n}$.
- (e) Given a deck of n cards, each time you take the top card from the deck, and insert it into the deck at one of the n distinct possible places, each of them with probability $\frac{1}{n}$. What is the expected times for you to perform the procedure above until the bottom card rises to the top?

The Coupon Collector's Problem

Shuffling Cards

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn