

Témakör	Főbb tartalmak	
ALU (Aritmetikai Logikai Egység)	Az ALU-hoz szükséges logikai kapuk ismertetése, Az alkalmazott logikai kapuk igazságtáblázata, Félösszeadó, Teljes összeadó, Kivonó, Programozható összeadó/kivonó, Egy gyári ALU (74181) ismertetése, Olvasható memóriás megvalósítás.	

ALU

- ALU (Arithmetic Lohgic Unit) azaz aritmetikai-logigai egység. Feladata a számítások elvégzése. Az ALU nem más, mint egy kombinációs hálózat amely a bemenetére adott bitkombinációkra egyértelmű kimenetet ad. Ennek megfelelően felírható az ALU igazságtáblázata, ami alapján megfelelő tervezési módszerekkel logikai kapukból megalkotható.
- Az ALU egy olyan kombinációs hálózat, amelynek van:
 - két adat bemenete (operandusok),
 - egy működést befolyásoló vezérlő bemenete (ez határozza meg az ALU átviteli függvényét, például összead, AND, OR, XOR és egyéb kapcsolatokat valósít meg a két operandus között),
 - Egy túlcsordulás bemenet az előző számítást végző egység felől,
 - Egy eredmény kimenete (ezen jelenik meg az operandusokon elvégzett művelet eredménye),
 - Egy vagy több állapot kimenete (például az eredmény nulla, vagy a művelet során alul- illetve túlcsordulás keletkezett).
- Az ALU megvalósítható logikai kapuk segítségével de létrehozható egy, az igazságtáblázatot tartalmazó memóriával (ROM, PROM, EPROM) is.

ALU (logikai kapuk)

• OR (VAGY) kapu:

• AND (ÉS) kapu:

NOT (Inverter) kapu:

Bem	enet	Kimenet			
Α	В	A XOR B			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

Bem	enet	Kimenet			
Α	В	A OR B			
0	0	0			
0	1	1			
1	0	1			
1	1	1			
					

Bemenet		Kimenet		
Α	В	A AND B		
0	0	0		
0	1	0		
1	0	0		
1	1	1		
	AOO1	A BO OO 11 O		

Bemenet	Kimenet			
Α	NOT A			
0	1			
1	0			
->-				
	> <u>~</u>			

ALU (1 bites félösszeadó)

A STATE OF THE PARTY.					
Bem	enet	Kimenet			
Α	В	A plus B (S)	Cout		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

- **S** = **A** XOR **B**
- **Cout** = **A** AND **B**

- Ez az egység két egy bites bemenet összegét és a keletkező túlcsordulást állítja elő, de nem képes kezelni a bejövő túlcsordulást (Carry input, azaz Cin).
- Két félösszeadóból és egy további VAGY kapuból létre lehet hozni egy teljes összeadó áramkört.

ALU (1 bites teljes összeadó)

- **S** = (**A** XOR **B**) XOR **Cin**
- Cout = (A AND B) OR (Cin AND (A XOR B))

E	3eme	net	Kimene	et
Α	В	Cin	A plus B (S)	Cout
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

ALU (4 bites teljes összeadó)

- A teljes összeadók sorba kapcsolásával elvileg tetszőleges bitszélességű összeadó áramkör létrehozható.
- Mivel a túlcsordulás sorosan tejed végig az összeadókon, minél több bites összeadót készétünk, annál lassabb a rendszer működése.

ALU (4 bites teljes összeadó)

 A Carry Look Ahead áramkör segítségével gyorsítható a túlcsordulás terjedése. Ennek alapja, hogy az adott egységeknél keletkező túlcsordulás az adott egységek bemenetétől függ, azaz egymástól függetlenül, párhuzamosan is meghatározhatók.

ALU (1 bites kivonás)

• R =	$(A \times C)$)R B)	XOR	Cin
-------	----------------	---------------	-----	-----

- Cout = ((NOT A) AND B) OR (Cin AND (NOT(A XOR B)))
- Két inverter segítségével az összeadó áramkör kivonó áramkörré alakítható.

	3eme	net	Kimenet		
Α	В	Cin	A minus B (R)	Bout	
0	0	0	0	0	
0	1	0	1	1	
1	0	0	1	0	
1	1	0	0	0	
0	0	1	1	1	
0	1	1	0	1	
1	0	1	0	0	
1	1	1	1	1	

 Kivonás esetében áthozat (Borrow, azaz B) bitet alkalmazunk.

ALU (1 bites összeadó/kivonó)

- A "Mode" bemenet függvényében az áramkör összead (Mode=0) vagy kivon (Mode=1)
- A XOR kapukat mint programozható invertereket alkalmazunk.
- Mode = 0 esetén az A és az A XOR B jelek változatlanul kapcsolódnak a további kapukhoz, a Mode = 1 esetén pedig azok negáltjai haladnak tovább.

Bemenet			et		Kime	enet	
Α	В	Cin	Mode	A plus B (S)	Cout	A mius B (R)	Bout
0	0	0	0	O	0	-	-
1	0	1	0	1	0	-	-
0	0	0	0	1	0	-	-
1	0	1	0	o	1	-	-
0	1	0	0	1	0	-	-
1	1	1	0	O	1	-	-
0	1	0	0	o	1	-	-
1	1	1	0	1	1	-	-
o	0	0	1	-	-	O	0
0	1	0	1	-	-	1	1
1	0	0	1	-	-	1	0
1	1	0	1	-	-	0	0
0	0	1	1	-	-	1	1
o	1	1	1	-	-	0	1
1	0	1	1	-	-	0	0
1	1	1	1		·	1	1

ALU (1 bites összeadó/kivonó)

• Az összeadó/kivonó áramkör elhagyva a logikai kapuk jelölését a fentiek szerint is ábrázolható.

			Bemen	et	Kimenet			
	Α	В	Cin	Mode	A plus B (S)	Cout	A mius B (R)	Bout
,	0	0	0	0	0	0	-	-
	1	0	1	0	1	0	-	-
	0	0	0	0	1	0	-	-
	1	0	1	0	0	1	-	-
	0	1	0	0	1	0	-	-
	1	1	1	0	o	1	-	-
	0	1	0	0	o	1	-	-
	1	1	1	0	1	1	-	-
	0	0	0	1	-	-	0	o
	0	1	0	1	-	-	1	1
	1	0	0	1	-	-	1	0
	1	1	0	1	-	-	0	0
	0	0	1	1	-	-	1	1
	0	1	1	1	-	-	0	1
	1	0	1	1	-	-	0	0
(1	1	1	1		-	1	1

ALU (74181)

- A Texas Instruments cég által gyártott SN74181 egy egyetlen integrált áramkörben megvalósított 4 bites ALU.
- A Bo-B3 és Ao-A3 bemenetek az operandusok.
- Az So-S3 és M bemenetek a műveleteket meghatározó vezérlő jelek (részletes magyarázat a következő dián).
- Cn a bemenő Carry.
- Fo-F3 az eredmény kimenetek.
- Cn+4 a túlcsordulás kimenet.
- G és P kimenetek a gyorsabb átvitelképzéshez használatos átvitel jelzők (Carry Look Ahead áramkör számára).

ALU (74181)

• Az ALU által megvalósított átviteli függvények:

SELECTION					ACTIVE-HIGH DATA				
SELECTION				M = H	M = L; ARITHM	ETIC OPERATIONS			
S3	S2	S1	SO	LOGIC FUNCTIONS	C _n = H (no carry)	C _n = L (with carry)			
L	L	L	L	F = A	F=A	F = A PLUS 1			
L	L	L	н	F = A + B	F = A + B	F = (A + B) PLUS 1			
L	L	н	L	F = AB	F = A + B	F = (A + B) PLUS 1			
L	L	н	н	F=0	F = MINUS 1 (2's COMPL)	F = ZERO			
L	н	L	L	F = AB	F = A PLUS AB	F = A PLUS AB PLUS 1			
L	н	L	н	F=B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS			
L	н	н	L	F = A ⊕ B	F = A MINUS B MINUS 1	F = A MINUS B			
L	н	н	н	F = AB	F = AB MINUS 1	F = AB			
н	L	L	L	F = A + B	F = A PLUS AB	F = A PLUS AB PLUS 1			
н	L	L	н	F = A ⊕ B	F = A PLUS B	F = A PLUS B PLUS 1			
н	L	н	L	F = B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS			
н	L	н	н	F = AB	F = AB MINUS 1	F = AB			
н	н	L	L	F = 1	F = A PLUS A	F = A PLUS A PLUS 1			
н	н	L	н	F = A + B	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1			
н	н	н	L	F = A + B	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1			
н	н	н	н	F=A	F = A MINUS 1	F=A			

ALU (megvalósítás EPROM-mal)

- Az EPROM vagy ROM címvezetékei jelentik az ALU bemeneteit.
- Az EPROM vagy ROM adat kimenetei jelentik az ALU kimenetét.
- Minden címkombinációhoz tartozik egy adatkombináció.

Például:

(S2=0;S1=0;S0=0 a két operandus összeadását (A plusz B) jelöli)

Cím: Adat:

 $0011\ 0001\ 000 \rightarrow x\ 0100\ 000$

(S2=0;S1=0;S0=0 a két operandus összeadását (A plusz B) jelöli)

Cím: Adat:

1111 0001 000 \rightarrow x 0000 100

(S2=0;S1=0;S0=1 a két operandus kivonását (A mínusz B) jelöli)

Cím: Adat:

 $0011\ 0001\ 000 \rightarrow x\ 0010\ 000$

(S2=0;S1=0;S0=1 a két operandus kivonását (A mínusz B) jelöli)

Cím: Adat:

 $0011\ 0011\ 000 \rightarrow X\ 0000\ 001$