Investigating the Occurrence of Sudden Stratospheric Warmings with Non-linear Statistical Methods

Christian Blume 1 , Katja Matthes 1,2 , Ulrike Langematz 1 , Lesley Gray 3

¹FU Berlin, ²GFZ Potsdam, ³University of Reading

EGU General Assembly 2010

May 5, 2010

Motivation and Goals

Understanding the **frequency, dynamics and causes** of sudden stratospheric warmings (SSW).

Climate models (Charlton *et al.*, 2007) are able to simulate SSWs in principle, but evaluating contributions of **atmospheric variability factors** remains a difficult task.

Estimating the **non-linear impact** of factors like the QBO, ENSO, the Sun, the NAO, or stratospheric chlorine on wind and temperature data in the stratosphere (Labitzke *et al.*, 2006; Camp & Tung, 2007; Calvo *et al.*, 2009).

Evaluating non-linear contributions of these variability factors to the **probability of occurrence of SSWs**.

Data and SSW Criteria

Three Sets of Daily Data

- **ERA40** Reanalysis Extended from 1958 to 2008 (ERA40 + Operational ECMWF Analyses)
- 2 NCEP/NCAR Reanalysis from 1958 to 2008
- **EMAC** CCMVal REF-B1 model output from 1960 to 2000 (Jöckel *et al.*, 2006; Morgenstern *et al.*, 2010)

The analyses were repeated with every time series starting at 1979 when the quality of data improved.

SSW Criteria at 10hPa (FUB)

$$U_{60\mathrm{N}} < 0$$
 and
$$\Delta T := T_{90\mathrm{N}} - T_{60\mathrm{N}} > 0$$
 and
$$\mathrm{Winter\ Period}$$

→ Consider here: Nov. to Feb.

Idea

- 1. Non-linear regression on the time series $U_{60}(t)$, $T_{90}(t)$ and $T_{60}(t)$ with respect to the atmospheric factors
 - EESC (Equivalent Effective Stratospheric Chlorine, 3 year age)
 - MEI (Multivariate ENSO Index, NOAA)
 - QBO (Equatorial zonal wind at 50hPa, FU Berlin)
 - SFL (Solar Cycle, 10.7cm Radio Flux, NOAA)
 - NAO (North-Atlantic Oscillation, NOAA)
- 2. After regression, change the regressors and evaluate their **impacts** on the different time series
- **3.** Look at the **change** in number of values that hold U < 0 $(\Delta T > 0)$ to estimate the influence of certain regressors on the occurrence of SSWs

Statistical Model

A feed-forward **Artificial Neural Network** (ANN) performs the non-linear regression. (Bishop, 1995; Lu *et al.*, 2009)

In this analysis, the ANN has 5 normalized input neurons (regressors), 150 hidden neurons in one single hidden layer and 1 linear output neuron (response): 5,150,1

⇒ The regression was successfully performed for both periods.

We define the **impact** P of one input neuron i on the ANN as

$$P_i(\gamma) = \frac{\sum_t |f - g_i(\gamma)|}{\sum_t f}$$

where

- ullet γ denotes a **small disturbance** to each of the input neurons such that $x_i^*(\gamma) = x_i \cdot (1+\gamma)$
- f denotes the original fit
- q denotes the disturbed fit

Impact (%) of Input Neurons for $\gamma = 0.1$

What is shown?

- Mean of the three data sets
- Shaded points: full time period (A)
- Hollow points: start at 1979 (B)

What does it mean?

- QBO and MEI make largest impact on ANN during (A)
- EESC, SFL and NAO make small impact during (A)
- During (B), SFL impact became large, QBO still important
- the largest impact makes EESC during (B) → Ozone loss

Change of SSW Occurrence in U_{60}

For reasons of simplicity, only U_{60} is considered in the following.

We define the **change of SSW Occurrence** C depending on the impact of the **phase** of one input neuron i as

$$C_i = \left\langle \frac{\sum_t g_i(\gamma)}{\sum_t f} \right\rangle_{\gamma} \qquad f, g < 0 \quad \text{(Easterlies)}$$

where

- γ denotes a **small disturbance** to each of the phases of the input neurons such that $x_i^*(\gamma) = x_i \cdot (1 + \gamma)$
- average over $\gamma \in]-0.1,0[$ ($\gamma < 0$) and $\gamma \in]0,0.1[$ ($\gamma > 0$)
- \blacksquare f denotes the **original fit**
- \blacksquare q denotes the **disturbed fit**

Notivation and Data Method Results and Interpretation Conclusions References

Change of SSW Occurrence - QBO

Shaded points: full time period (A)

Hollow points: start at 1979 (B)

Increase of QBO East $(A,B) \Rightarrow less SSWs$ Decrease of QBO East $(B) \Rightarrow more SSWs$ Increase of QBO West $(A) \Rightarrow less SSWs$ Decrease of QBO West $(A) \Rightarrow more SSWs$ (Gray et al., 2003) showed very similar results

Reanalyses and EMAC results differ significantly

Change of SSW Occurrence - EESC

Shaded points: full time period (A)

Hollow points: start at 1979 (B)

No big change on the full period.

But, on the short period: Increase of EESC (t>1980) \Rightarrow less SSWs Decrease of EESC (t>1980) \Rightarrow more SSWs Reanalyses and EMAC results differ again

Conclusions

- Non-linear regression successfully applied to wind and temperature data
- Stable learning algorithm, small spread in multiple realizations
- QBO and ENSO make largest impact during the full period
- EESC followed by SFL and QBO make largest impact during the period starting at 1979
- Reanalyses and model results for the change of SSW occurrence differ significantly, reason still unclear but the QBO influence towards higher latitudes might be underestimated in EMAC
- Increasing (decreasing) QBO East/West ⇒ less (more) SSWs; in agreement with (Gray et al., 2003)
- Increasing (decreasing) Chlorine fraction ⇒ less (more) SSWs

Were less Warmings in the 90s caused by a strong loss of Ozone?

References I

Bishop, C. 1995.

Neural networks for pattern recognition.

Oxford: University Press.

Calvo, N., et al. 2009.

Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations.

Journal of Geophysical Research, 114(D13109).

Camp, C., & Tung, K. 2007.

The Influence of the Solar Cycle and QBO on the Late-Winter Stratospheric Polar Vortex.

Journal of the Atmospheric Sciences, 64(4), 1267.

References II

Charlton, A., et al. 2007.

A New Look at Stratospheric Sudden Warmings. Part II: Evaluation of Numerical Model Simulations.

Journal of Climate. **20**. 470–488.

Gray, L., et al. 2003.

Flow regimes in the winter stratosphere of the northern hemisphere.

Q. J. R. Meteorol. Soc., 129, 925–945.

Jöckel, P., et al. 2006.

The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere.

Atmospheric Chemistry and Physics, 6, 5067–5104.

References III

Labitzke, K., et al. 2006.

Sunspots, the QBO, and the Stratosphere in the North Polar Region - 20 Years later.

Meteorologische Zeitschrift, 15(3), 355–363.

Lu, B., et al. 2009.

Nonlinear Representation of the Quasi-Biennial Oscillation.

Journal of the Atmospheric Sciences, **66**(1), 1886–1904.

Morgenstern, O., et al. 2010.

Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings.

Journal of Geophysical Research, in press.

Supplement

ANN Details

- feed-forward network
- 5 normalized input neurons
- 150 hidden neurons in one single hidden layer
- the hidden neurons are Sigmoids
- 1 linear output neuron
- the BFGS algorithm is used to train the network
- 20 realizations per time series
- 1000 training epochs per realization
- ROOT Analysis Framework, Class: TMultiLayerPerceptron

Regression Results (%)

Black: full time period Gray: starting at 1979

Data		R(Data,Fit)	$\hat{\sigma}(\mathrm{Res})$	t-Test	KS-Test
ERA40	$U_{60} = T_{90}$	99.8 99.9 99.9 99.9	5.5 3.7 2.8 2.1	97.7 99.9 95.7 95.0	99.9 99.6 93.0 99.7
	T_{60}	99.9 99.9	1.1 0.9	97.0 96.3	100 100
NCEP	U_{60}	99.7 99.8	6.6 4.6	97.8 97.3	99.4 100
	T_{90}	97.6 99.8	1.4 0.7	96.3 95.0	55.0 97.8
	T_{60}	99.8 99.9	0.4 0.2	97.2 96.3	99.7 100
EMAC	U_{60}	99.9 99.9	4.9 3.5	97.7 97.3	100 100
	T_{90}	99.6 99.8	0.7 0.5	99.9 94.7	90.0 100
	T_{60}	99.8 99.9	0.2 0.2	93.8 95.8	100 100

 $[\]Rightarrow$ non-linear regression successful

Response Change for ERA40

Change of SSW Occurrence - SFL

Shaded points: full time period (A)

Hollow points: start at 1979 (B)

Increase of Solar Max (A) \Rightarrow less SSWs (?) Decrease of Solar Max (A) \Rightarrow more SSWs (?) Decrease of Solar Min (A) \Rightarrow less SSWs (?)

Reanalyses and EMAC results differ significantly

Also, ERA40 and NCEP results vary quite a lot here

Fourier Spectrum for U at 10hPa, 60N

Normalized Input Neurons

