

Estruturas de Dados Aula 1: Introdução e conceitos básicos

20/05/2013

Web site

http://www.inf.ufes.br/~pdcosta/ensino/

• Profa. Patrícia Dockhorn Costa

• Email: pdcosta@inf.ufes.br

Introdução

- O que s\u00e3o estruturas de dados?
- Beneficios?
 - Organização da informação
 - Melhora o desempenho
 - Proporciona o reuso de código
 - Proporciona interoperabilidade
 - Diminui custos

Objetivos gerais

- Familiarizar os alunos com as principais estruturas de dados, e suas correspondentes abstrações.
- Final do curso o aluno poderá projetar e implementar diversas estruturas de dados, conhecendo suas vantagens e desvantagens

Background da turma

Programa da disciplina

- Introdução
- Tipos Abstratos de Dados
 - Definição de estrutura abstrata
 - Pré e pós condições
 - Conceito de software em camadas
- Uso eficiente de memória
 - Alocação estática e alocação dinâminca
 - Estruturas de dados encadeadas
 - Manipulação de ponteiros em C
- Listas
 - Lista com alocação estática e alocação dinâmina
 - Listas duplamente encadeadas
 - Listas circulares e listas duplamente encadeadas circulares

Programa da disciplina (2)

- Pilhas
 - Pilhas com estruturas estática e dinâminca
 - Aplicações
- Filas
 - Filas com estruturas estática e dinâminca
 - Aplicações
- Recursão
- Árvores
 - Árvore binária
 - Algoritmos de travessia
 - Árvore binária de busca
 - Árvore com Número Variável de filhos
 - Árvore genérica
- Introdução a algoritmos de busca e ordenação
- Tabela Hash

Critérios de avaliação

 Duas provas parciais e trabalhos. A média parcial é calculada por: MP = 0,5*P + 0,5*T onde: P é a média aritmética das provas parciais e T é a média aritmética das notas dos trabalhos.

A média final será:

MF = MP, se $MP \ge 7,0$.

MF = (PF + MP)/2, se MP < 7,0. (PF é a nota da prova final)

• Se MF ≥ 5,0 -> Aprovado. Se MF < 5,0 -> Reprovado.

Bibliografia

- Celes, Cerqueira e Rangel. Introdução a Estruturas de Dados, Editora Campus
- ZIVIANI, Nivio Projetos de Algoritmos com implementa cão em Pascal e C , Livraria Pioneira Informática , 1993
- SEDGEWICK, Robert. Algorithms in C, Parts 1-4, Third Edition, Addison- Wesley, 1997
- SZWARCFITER, Jayme e MARKENZON Lilian Estruturas de Dados e seus Algoritmos, 2a Edicao, LTC - Livros Tecnicos e Científicos S.A., 1997
- CORMEN, Thomas H., LEISERSON, Charles E., RIVEST, Ronald L., STEIN, Cliff. Introduction to Algorithms (Second Edition), MIT Press, 2001
- TENENBAUM, LANGSAM, and AUGENSTEIN Estruturas de Dados usando C, Pearson, 2005
- KNUTH, Donald E. The Art of Computer Programming, Volume I, Third Edition, Addison-Wesley, 1997

Modelo de um Computador

Armazenamento de Dados

- Organização da memória:
- Bits
 - Menor unidade
 - Valores 0 ou 1
- Bytes
 - Sequência de 8 bits
- Célula
 - Sequência de bits
 - Menor unidade de endereçamento
- Palavras
 - Sequência de bytes
 - Varia conforme arquitetura

		0	1	2	3	4	5	6	7
1	0	0	1	1	1	0	0	1	0
	1	1	1	0	0	1	1	1	0
	2	0	1	1	1	0	0	1	0
	3	0	0	0	0	0	0	0	0
2	0	1	1	1	0	1	0	1	0
	1	0	0	0	0	0	0	0	0
	2	1	1	1	1	1	1	1	1
	3	0	0	0	0	0	0	0	0

Armazenamento de Dados

- Espaço de memória finito
 - Ex., espaço de 1 byte (8 bits), podemos representar apenas 2^8 (=256) valores distintos
- Podemos representar texto
 - Associando valores aos caracteres
 - Ex., A(65) e B (66)
- Representar um programa na memória
 - Programas são executados em linguagem de máquina
 - Programas executáveis são sequencias de instruções (códigos numéricos)
 - 10110000 01100001 (MOV AL, 61h)

Compilação de Programas

- Compilação: "tradução" de código fonte (Pc) para linguagem de máquina (M).
- Compilador (Cm), escrito em M: lê o programa
 Pc e traduz cada instrução para M, escrevendo o programa objeto (Pm)

Ciclo de Desenvolvimento

- Programas em C geralmente são dividos em vários arquivos
- Cada arquivo pode ser compilado separadamente
- Para gerar um executável, precisamos reunir os os códigos dos arquivos separados (juntamente com as bibliotecas usadas) : Ligador
- Bibliotecas: permitem que funções de interesse geral sejam usadas por vários programas
- O ligador pode ser usado automaticamente pelo compilador (biblioteca padrão), ou deve ser explicitamente acionado

Ciclo de Desenvolvimento (cont.)

Tipos de Dados

- Definição
 - Conjunto de valores (domínio)
 - Possíveis operações
 - Ex. int
 - Domínio (conjunto dos números inteiros)
 - Operações (soma, subtração, multiplicação, etc.)
 - Ex. boolean
 - Domínio (true, false)
 - Operações (and, or, not)

Tipos de Dados (2)

- Tipos estruturados de dados
 - Alguns tipos de dados possuem organização, estrutura interna
 - Ex. fração
 - Sinal (+, -)
 - Numerador
 - Denominador (diferente de zero)
 - Operações (soma, subtração, normalização, etc)
 - Endereço
 - Logradouro (praça, rua, etc)
 - Número
 - Bairro
 - Cidade
 - CEP
 - País

Tipos de Dados (3)

- Podemos também definir o domínio de um tipo de dado usando apenas comportamento
 - Não impõe uma estrutura interna fixa
 - Usa operações para criar valores de um determinado tipo
 - Define o tipo somente em termos de operações

Ex. frações

- CRIA FRACAO (N, D)
- VALOR_FRACAO = CRIA_FRACAO (N, D)

Ex. endereço

- VALOR_ENDERECO = CRIA_ENDERECO ()
- MODIFICA_LOGRADOURO (VALOR_ENDERECO, "Av. Fernando Ferrari")

Exercício

- Defina os seguintes tipos de dados usando as duas abordagens apresentadas anteriormente (estrutura e comportamento)
 - Tipo ponto (coordenadas plano bidimensional)
 - Tipo reta
 - Tipo polinômio (grau 2)