DSC 40B Theoretical Foundations II

Lecture 11 | Part 1

Adjacency Matrices (Recap)

Representations

- How do we store a graph in a computer's memory?
- Three approaches:
 - 1. Adjacency matrices.

 - Adjacency lists.
 "Dictionary of sets"

Adjacency Matrices

- ► Assume nodes are numbered 0, 1, ..., |V| 1
- ► Allocate a |V| × |V| (Numpy) array
- Fill array as follows:
- arr[i,j] = 1 if (i,j) ∈ E arr[i,j] = 0 if (i,j) \notin E

Example

Example

Observations

- ▶ If *G* is undirected, matrix is symmetric.
- ▶ If *G* is directed, matrix may not be symmetric.

Time Complexity

degree(i) np.sum(adj[i,:]) $\Theta(|V|)$

time

 $\Theta(1)$

		•	
operation	codo		
operation	code		

edge query adj[i,j] == 1

Space Requirements

- ▶ Uses $|V|^2$ bits, even if there are very few edges.
- But most real-world graphs are sparse.
 - They contain many fewer edges than possible.

Example: Facebook

Facebook has 2 billion users.

```
(2 \times 10^9)^2 = 4 \times 10^{18} bits
= 500 petabits
\approx 6500 years of video at 1080p
\approx 60 copies of the internet as it was in 2000
```

Adjacency Matrices and Math

- Adjacency matrices are useful mathematically.
- Example: (i, j) entry of A^2 gives number of hops of length 2 between i and j.

DSC 40B Theoretical Foundation II

Lecture 11 | Part 2

Adjacency Lists

What's Wrong with Adjacency Matrices?

- Requires $Θ(|V|^2)$ storage.
- Even if the graph has no edges.
- Idea: only store the edges that exist.

Adjacency Lists

- Create a list adj containing |V| lists.
- adg[i] is list containing the neighbors of node i.

Example

Example

Observations

- ▶ If *G* is undirected, each edge appears twice.
- ▶ If *G* is directed, each edge appears once.

Time Complexity

operation	code	time
edge query degree(i)	j in adj[i] len(adj[i])	, , , , , , , , , , , , , , , , , , , ,

Space Requirements

- ▶ Need $\Theta(|V|)$ space for outer list.
- ▶ Plus $\Theta(|E|)$ space for inner lists.
- ▶ In total: $\Theta(|V| + |E|)$ space.

Example: Facebook

- Facebook has 2 billion users, 400 billion friendships.
- If each edge requires 32 bits:

```
(2 \text{ bits} \times 200 \times (2 \text{ billion})
```

- $= 64 \times 400 \times 10^9$ bits
- = 3.2 terabytes
- = 0.04 years of HD video

DSC 40B Theoretical Foundations II

Lecture 11 | Part 3

Dictionary of Sets

Tradeoffs

- Adjacency matrix: fast edge query, lots of space.
- Adjacency list: slower edge query, space efficient.
- Can we have the best of both?

Idea

Use hash tables.

- Replace inner edge lists by sets.
- Replace outer list with dict.
 - Doesn't speed things up, but allows nodes to have arbitrary labels.

Example

Time Complexity

degree(i) len(adj[i]) $\Theta(1)$ average

operation	code	time
edge query	j in adj[i]	Θ(1) average

Space Requirements

- ightharpoonup Requires only Θ(*E*).
- But there is overhead to using hash tables.

Dict-of-sets implementation

- ► Install with pip install dsc4ograph
- Import with import dsc40graph
- Docs: https://eldridgejm.github.io/dsc40graph/
- Source code: https://github.com/eldridgejm/dsc40graph
- Will be used in HW coding problems.

DSC 40B Theoretical Foundations II

Lecture 11 | Part 4

Graph Search Strategies

How do we:

- determine if there is a path between two nodes?
- check if graph is connected?
- count connected components?

Search Stategies

- A **search strategy** is a procedure for exploring a graph.
- Different strategies are useful in different situations.

Node Statuses

At any point during a search, a node is in exactly one of three states:

- visited
- pending (discovered, but not yet visited)
- undiscovered

Rules

- At every step, next visited node chosen from among pending nodes.
- When a node is marked as visited, all of its neighbors have been marked as pending.

Choosing the next Node

How to choose among pending nodes?

- ► Idea 1: Visit **newest** pending (depth-first search).
- ► Idea 2: Visit **oldest** pending (breadth-first search).

Main Idea

DFS and BFS each discover different properties of the graph.

For example, we'll see that BFS is useful for finding shortest paths (DFS in general is not).

DSC 40B Theoretical Foundations II

Lecture 11 | Part 5

Breadth-First Search

Breadth-First Search

- At every step:
 - 1. Visit oldest pending node.
 - 2. Mark its undiscovered neighbors as pending.
- Convention: in this class, neighbors produced in sorted order¹

¹In general, the order in which a node's neighbors produced is arbitrary.

Example

Before iterating.

After 1st iteration.

After 2nd iteration.

Exercise: what will the picture look like after the next two iterations?

After 3rd iteration.

After 4th iteration.

After 5th iteration.

After 6th iteration.

Implementation

- ► To store pending nodes, use a FIFO queue.
- While queue is not empty:
 - Pop a node, u.
 - Add undiscovered neighbors to queue.

Queues in Python

- \triangleright Want $\Theta(1)$ time pops/appends on either side.
- ▶ from collections import deque ("deck").

 - popleft() and .pop()list doesn't have right time complexity!
 - import queue isn't what you wan't!

Keep track of node status attribute using dictionary.

```
from collections import deque

def bfs(graph, source):
    """Start a BFS at `source`."""
    status = {node: 'undiscovered' for node in graph.nodes}

    status[source] = 'pending'
    pending = deque([source])

# while there are still pending nodes
while pending:
    # EXERCISE: fill this in...
```

BFS

```
from collections import deque
def bfs(graph, source):
    """Start a BFS at `source`."""
    status = {node: 'undiscovered' for node in graph.nodes}
    status[source] = 'pending'
    pending = deque([source])
    # while there are still pending nodes
    while pending:
        u = pending.popleft()
        for v in graph.neighbors(u):
            # explore edge (u.v)
            if status[v] == 'undiscovered':
                status[v] = 'pending'
                # append to right
                pending.append(v)
        status[u] = 'visited'
```

Note

► What does this code actually return?

Note

- What does this code actually return?
- Nothing, yet. It is a foundation.

Note

▶ BFS works just as well for directed graphs.

DSC 40B Theoretical Foundations II

Lecture 11 | Part 6

Analysis of BFS

What will bfs do when run on a disconnected graph?

Claim

bfs with source u will visit all nodes reachable from u (and only those nodes).

- Useful!
 - ► Is there a path between *u* and *v*?
 - Is graph connected?

Exploring with BFS

- BFS will visit all nodes reachable from source.
- ▶ If **disconnected**, BFS will not visit all nodes.

- We can do so with a full BFS.
 - ► Idea: "re-start" BFS on undiscovered node.
 - Must pass statuses between calls.

Making Full BFS

Modify bfs to accept statuses:

```
def bfs(graph, source, status=None):
    """Start a BFS at `source`."""
    if status is None:
        status = {node: 'undiscovered' for node in graph.nodes}
# ...
```

Making Full BFS

Call bfs multiple times:

```
def full_bfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
        if status[node] == 'undiscovered'
            bfs(graph, node, status)
```


Observation

If there are *k* connected components, bfs in line 5 is called exactly *k* times.

```
def full_bfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
        if status[node] == 'undiscovered'
        bfs(graph, node, status)
```

How many times is each node added to the queue in a BFS of the graph below?

How many times is each edge "explored" in a BFS of the graph below?

How many times is each edge "explored" in a BFS of the *directed* graph below?

Key Properties of full_bfs

- Each node added to queue exactly once.
- Each edge is explored exactly:
 - **once** if graph is **directed**.
 - **twice** if graph is **undirected**.

Time Complexity of full_bfs

- Analyzing full_bfs is easier than analyzing bfs.
 - full_bfs visits all nodes, no matter the graph.
- Result will be upper bound on time complexity of bfs.

We'll use an aggregate analysis.

BFS

```
def bfs(graph, source, status=None):
    """Start a BFS at `source`."""
    if status is None:
        status = {node: 'undiscovered' for node in graph.nodes}
    status[source] = 'pending'
    pending = deque([source])
    # while there are still pending nodes
    while pending:
        u = pending.popleft()
        for v in graph.neighbors(u):
             # explore edge (u,v)
             if status[v] == 'undiscovered':
    status[v] = 'pending'
                 # append to right
        pending.append(v)
status[u] = 'visited'
```

Time Complexity

```
def full bfs(graph):
    status = {node: 'undiscovered' for node in graph.nodes}
    for node in graph.nodes:
        if status[node] == 'undiscovered'
            bfs(graph, node, status)
def bfs(graph, source, status=None):
    """Start a BFS at `source`."""
    if status is None:
        status = {node: 'undiscovered' for node in graph.nodes}
    status[source] = 'pending'
    pending = deque([source])
    # while there are still pending nodes
   while pending:
        u = pending.popleft()
        for v in graph.neighbors(u):
            # explore edge (u,v)
            if status[v] == 'undiscovered':
                status[v] = 'pending'
                # append to right
                pending append(v)
        status[u] = 'visited'
```

Time Complexity of Full BFS

- \triangleright $\Theta(V + E)$
- ▶ If |V| > |E|: $\Theta(V)$
- ▶ If |V| < |E|: $\Theta(E)$
- Namely, if graph is **complete**: $\Theta(V^2)$.
- \triangleright Namely, if graph is very sparse: $\Theta(V)$.

Notational Note

- ▶ We'll often write $\Theta(V + E)$ instead of $\Theta(|V| + |E|)$.
- You can use whichever.

Next Time

Finding **shortest paths** using BFS.