CQF 2009 Module 4.2

Live Lecture: April 1, 2009 Lecturer: Paul Wilmott

Stochastic Interest Rate Modeling

In this lecture:

- Stochastic models for interest rates
- How to derive the pricing equation for many fixed-income products
- The structure of many popular one-factor interest rate models
- The theoretical framework for multi-factor interest rate modeling
- Popular two-factor models

By the end of this lecture, you will:

- Be able to derive the pricing equation for fixed-income instruments with one and two random factors
- Appreciate the meaning of the market price of interest rate risk
- Know the names of many popular interest rate models

Introduction	3
One-factor interest rate modeling	
The spot interest rate	6
Stochastic interest rates	7
The pricing equation for the general model	9
Hedging one bond with another	
Both sides must be equal to a universal constant	17
The fixed-income pricing equation	20
The market price of risk	23
Interpreting the market price of risk and risk neutrality	25
Risk-neutral spot rate	27
Risk-adjusted drift rate	28
The relationship between prices and expectations	30
Rule of Thumb	32
Tractable models and solutions of the pricing equation	33
Named models	36
Vasicek	37
Cox, Ingersoll & Ross	47
Ho & Lee	50
Yield curve fitting	51
Hull & White	
A more general model	54
Positive interest rates	57
Mean reversion	58
Solution for constant parameters	65
Multi-factor interest rate modeling	71

Theoretical framework	73
Popular models.	
Brennan and Schwartz (1982)	
Fong and Vasicek (1991)	
Longstaff and Schwartz (1992)	
General affine model.	

Summary

- Interest rates can be modeled as stochastic variables
- Whenever a modeled quantity is not traded the pricing equation contains a market price of risk term
- The pricing equation is another partial differential equation, similar in form to the Black-Scholes equation