

MAT1161 – Cálculo de Uma Variável P1 – 28 de setembro de 2016

Nome Legível	:	
Assinatura	:	
Matrícula	:	Turma :

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
3^a	2,0		
Total	5,0		

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara, rigorosa e de preferência sucinta. Respostas sem justificativas não serão consideradas.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Não é permitido o uso de calculadora ou qualquer dispositivo eletrônico.
- Esta prova possui 3 questões. Confira.

Questão 1

Considere a região $\mathcal{R} = \{(x,y) \in \mathbb{R}^2 \mid y \le -(x+1)(x-5), \ y \ge 2x-8, \ y \ge -2x-2, \ x \le 4\}.$

(a) Esboce abaixo a região \mathcal{R} . Marque em seu desenho as abscissas e ordenadas de pelo menos três pontos que pertençam à fronteira da região \mathcal{R} .

Solução:

Observe que:

- \bullet A parábola y=-(x+1)(x-5)tem raízes -1e 5 e concavidade para baixo
- A reta decrescente y = -2x 2 corta o eixo x em x = -1, uma das raízes da parábola
- A reta crescente y=2x-8 corta o eixo x em x=4
- As retas y = -2x 2 e y = 2x 8 interceptam-se em $x = \frac{3}{2}$
- A reta x = 4 é vertical

Com essas informações, esboçamos a região abaixo:

(b) Calcule a área da região \mathcal{R} .

Solução:

$$A(\mathcal{R}) = \int_{-1}^{\frac{3}{2}} (-(x+1)(x-5)) - (-2x-2) dx + \int_{\frac{3}{2}}^{4} (-(x+1)(x-5)) - (2x-8) dx$$

$$= \int_{-1}^{\frac{3}{2}} -x^2 + 6x + 7 dx + \int_{\frac{3}{2}}^{4} -x^2 + 2x + 13 dx$$

$$= \left(-\frac{x^3}{3} + 3x^2 + 7x \right) \Big|_{x=-1}^{\frac{3}{2}} + \left(-\frac{x^3}{3} + x^2 + 13x \right) \Big|_{x=\frac{3}{2}}^{4}$$

$$= \left(\frac{129}{8} + \frac{11}{3} \right) + \left(\frac{140}{3} - \frac{165}{8} \right)$$

$$= \frac{275}{6}.$$

Questão 2

Considere as funções

$$f(x) = \operatorname{sen}(2x)$$
 e $g(x) = \cos\left(\frac{\pi x}{2}\right)$.

(a) Sejam T_f o período da função f e T_g o período da função g. Determine T_f e T_g . Solução:

Sabe-se que o período das funções sen(x) e cos(x) é 2π .

• Para determinar T_f : a multiplicação de x por 2 indica uma contração horizontal por um fator de 2. Logo,

$$T_f = \frac{2\pi}{2} = \pi .$$

• Para determinar T_g : a multiplicação de x por $\frac{\pi}{2}$ indica uma contração horizontal por um fator de $\frac{\pi}{2}$. Logo,

$$T_g = \frac{2\pi}{\frac{\pi}{2}} = 4.$$

(b) Faça um esboço do gráfico de f no intervalo $[-T_f, T_f]$.

(c) Faça um esboço do gráfico de g no intervalo $[-T_g,T_g].$

(d) Determine os valores de x no intervalo [0,4] que satisfazem a seguinte inequação:

$$\frac{\operatorname{sen}(2x)}{\cos\left(\frac{\pi x}{2}\right)} \ge 0$$

Solução:

Utilizando-se os itens anteriores, podemos fazer um estudo de sinal da função $h(x) = \frac{\sin(2x)}{\cos(\frac{\pi x}{2})}$:

	0 < x < 1	$1 < x < \frac{\pi}{2}$	$\frac{\pi}{2} < x < 3$	$3 < x < \pi$	$\pi < x < 4$
f(x)	+	+	_	_	+
g(x)	+	_	_	+	+
h(x)	+	_	+	_	+

Assim,

$$h(x) = \frac{\sin(2x)}{\cos(\frac{\pi x}{2})} \ge 0, \ x \in [0,4] \iff x \in [0,1) \cup \left[\frac{\pi}{2},3\right) \cup [\pi,4].$$

Questão 3

Considere as funções $f:\left[-\frac{3}{2},2\right]\to\mathbb{R}\ \ \mathrm{e}\ \ g:\left[-\frac{3}{2},2\right]\to\mathbb{R}$ definidas por

$$f(x) = -2x^3 - 10$$
 e $g(x) = -\frac{x^4}{2} - x^3 + x^2 + 8$,

cujos gráficos estão esboçados abaixo.

Para cada $x \in \left[-\frac{3}{2},2\right]$, considere o segmento de reta vertical que possui extremos nos pontos A=(x,f(x)) e B=(x,g(x)).

(a) Determine o domínio e a expressão da função P que fornece o comprimento do segmento \overline{AB} em termos de x.

Solução:

Observe que f(0) = -10 < 8 = g(0):

Logo,

$$P(x) = g(x) - f(x) = \left(-\frac{x^4}{2} - x^3 + x^2 + 8\right) - \left(-2x^3 - 10\right) = -\frac{x^4}{2} + x^3 + x^2 + 18,$$
e Dom $(P) = \left[-\frac{3}{2}, 2\right].$

(b) Determine o valor de x que maximiza o comprimento do segmento \overline{AB} . Justifique sua resposta. Solução:

Os candidatos a extremo local da função P são os extremos do domínio, $x=-\frac{3}{2}$ e x=2, e os valores de x tais que P'(x)=0:

$$P'(x) = -2x^3 + 3x^2 + 2x = x(-2x^2 + 3x + 2) = 0 \Leftrightarrow x = -\frac{1}{2}, 0, 2.$$

Para classificar os candidatos devemos determinar os intervalos de crescimento e decrescimento da função P:

$$\begin{vmatrix} -\frac{3}{2} < x < -\frac{1}{2} & -\frac{1}{2} < x < 0 & 0 < x < 2 \\ x & - & - & + \\ -2x^2 + 3x + 2 & - & + & + \\ P'(x) & + & - & + \end{vmatrix}$$

Logo, os intervalos de crescimento da função P são $\left[-\frac{3}{2},-\frac{1}{2}\right]$ e [0,2], e o intervalo de decrescimento é $\left[-\frac{1}{2},0\right]$. Conclui-se então que $x=-\frac{1}{2}$ e x=2 são máximos locais, enquanto $x=-\frac{3}{2}$ e x=0 são mínimos locais da função P.

Para determinar o valor de x que maximiza P(x), basta então verificar que

$$P\left(-\frac{1}{2}\right) = \frac{579}{32} < 22 = P(2) \implies x_{\text{max}} = 2.$$

(c) Determine o valor de x que minimiza o comprimento do segmento \overline{AB} . Justifique sua resposta. Solução:

Utilizando o item (b), para determinar o valor de x que minimiza P(x) basta verificar que

$$P\left(-\frac{3}{2}\right) = \frac{459}{32} < 18 = P(0) \implies x_{\min} = -\frac{3}{2}.$$