Matrice définie positive

En algèbre linéaire, la notion de **matrice définie positive** est analogue à celle de nombre réel strictement positif : une matrice définie positive est une matrice positive inversible.

On introduit tout d'abord les notations suivantes ; si A est une matrice à éléments réels ou complexes :

- A^Tdésigne la matrice transposée de A;
- A^* désigne la matrice transconjuguée de A (conjuguée de la transposée).

On rappelle que:

- désigne le corps des nombres réels ;
- désigne le corps des nombres complexes.

Matrice symétrique réelle définie positive

Soit M une matrice symétrique réelle d'ordre n. Elle est dite **définie positive** si elle vérifie l'une des trois propriétés équivalentes suivantes :

1. Pour toute matrice colonne non nulle \mathbf{X} à n éléments réels, on a

$$\mathbf{x}^{\mathrm{T}}M\mathbf{x} > 0$$

(autrement dit, la forme quadratique définie par M est strictement positive pour $\mathbf{x} \neq 0$)

2. Toutes les valeurs propres de M sont strictement positives, c'est-à-dire :

$$\operatorname{Sp}(M) \subset]0, +\infty[.$$

(où $\mathrm{Sp}(M)$ est le spectre de M , représentant donc l'ensemble des valeurs propres)

3. La forme bilinéaire symétrique définie par la relation

$$\langle \mathbf{x}, \mathbf{y} \rangle_M = \mathbf{x}^{\mathrm{T}} M \mathbf{y}$$

est un produit scalaire sur \square n (identifié ici à l'espace vectoriel des matrices colonnes à n éléments réels).

Une matrice symétrique réelle est dite **définie négative** si son opposée (symétrique elle aussi) est définie positive. La propriété ${\bf 1}$ signifie que ${\bf M}$ définit sur ${\bf 1}$ ${\bf n}$ une forme quadratique définie positive, la propriété ${\bf 2}$ que sur ${\bf 1}$ ${\bf n}$, vu comme espace euclidien avec le produit scalaire $\langle x,y\rangle=\sum_{i=1}^n x_iy_i$, ${\bf M}$ définit un opérateur auto-adjoint positif. L'équivalence entre ${\bf 1}$ et ${\bf 2}$ vient de cette double interprétation, à la lumière de la réduction de Gauss et de

positif. L'équivalence entre 1 et 2 vient de cette double interprétation, à la lumière de la réduction de Gauss et du théorème spectral. Si 1 est vraie, sachant que les valeurs propres d'une matrice symétrique **réelle** sont réelles, on voit en appliquant 1 aux vecteurs propres que les valeurs propres sont strictement positives. Si 2 est vraie, il existe une matrice orthogonale Q telle que QAQ^{-1} soit diagonale (parce que A est symétrique réelle) à coefficients diagonaux strictement positifs (c'est l'hypothèse 2 sur les valeurs propres). Mais comme $Q^{-1} = Q^T$, la matrice A est aussi congrue à la matrice diagonale en question, donc la forme quadratique $\mathbf{x}^T M \mathbf{x}$ est définie positive.

Exemple de base

Pour toute matrice réelle A, les matrices symétriques A^TA et AA^T sont positives ; elles sont définies positives si et seulement si A est inversible. Les matrices de Gram donnent un exemple de cette situation.

Plus précisément, c'est un exemple générique, puisque :

Une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est définie positive si et seulement si on peut trouver une matrice $A \in \mathcal{M}_n(\mathbb{R})$ inversible telle que $M = A^{\mathrm{T}}A$, c'est-à-dire si et seulement si elle est congruente à la matrice identité.

La matrice A n'est pas unique. Elle l'est si on impose qu'elle soit elle-même définie positive.

Si $M = A^{T}A$, alors $\forall x \in \mathbb{R}^{n}, x^{T}Mx = (Ax)^{T}(Ax) = ||Ax||^{2} \ge 0$, et si ce terme est nul, alors Ax = 0, et si l'on suppose A inversible, alors x est nul.

Inversement, si M est définie positive, elle est diagonalisable avec une matrice de passage P orthogonale (puisque symétrique réelle), la matrice $D = P^{\rm T} M P$ ayant des valeurs propres λ_i strictement positives. Il suffit de définir la matrice Δ comme étant la matrice diagonale dont les termes diagonaux sont les racines carrées des λ_i , et de poser $A = \Delta P^{\rm T}$, car alors $A^{\rm T} A = M$. Si l'on veut une matrice définie positive, il suffit de poser plutôt $A = P \Delta P^{\rm T}$.

Exemple: matrice de Hilbert

Article détaillé : Matrice de Hilbert.

On appelle **matrice de Hilbert** la matrice (symétrique d'ordre n) $H = (h_{i,j})$, telle que $h_{i,j} = \frac{1}{i+j-1}$. Elle est définie positive.

En effet, soit une matrice colonne quelconque \mathbf{x} à n éléments réels x_1, \ldots, x_n .

On remarque que
$$\forall i, \ \forall j, \ h_{i,j} = \int_0^1 t^{i+j-2} \,\mathrm{d}t$$
. Alors, par linéarité de l'intégrale :
$$\mathbf{x}^\mathrm{T} H \mathbf{x} = \sum_{i=1}^n \sum_{j=1}^n h_{i,j} \, x_i \, x_j = \int_0^1 \sum_{i=1}^n \sum_{j=1}^n t^{i+j-2} \, x_i \, x_j \, \mathrm{d}t = \int_0^1 \sum_{i=1}^n \sum_{j=1}^n \left(t^{i-1} \, x_i \right) \, \left(t^{j-1} \, x_j \right) \, \mathrm{d}t = \int_0^1 \left(\sum_{i=1}^n t^{i-1} \, x_i \right) \, \left(\sum_{j=1}^n t^{j-1} \, x_j \right) \, \mathrm{d}t \, ,$$
 d'où enfin : $\mathbf{x}^\mathrm{T} H \mathbf{x} = \int_0^1 \left(\sum_{i=1}^n x_i \, t^{i-1} \right)^2 \, \mathrm{d}t \, .$

Dans cette dernière intégrale, l'intégrande est continu et à valeurs positives. Par conséquent :

•
$$\mathbf{x}^{\mathrm{T}}H\mathbf{x} \geqslant 0$$
;

• si
$$\mathbf{x}^{\mathrm{T}}H\mathbf{x}=0$$
, alors pour tout $t\in[0,1]$, $\left(\sum_{i=1}^{n}x_{i}\,t^{i-1}\right)^{2}=0$.

Donc pour tout
$$t\in [0, 1], \sum_{i=1}^n x_i t^{i-1} = 0.$$

Il en résulte que les x_i , coefficients d'un polynôme admettant une infinité de racines, sont tous nuls, c'est-à-dire $\mathbf{x}=0$.

Ceci prouve que $\mathbf{x}^T H \mathbf{x} > 0$ pour toute matrice colonne non nulle \mathbf{x} à n éléments réels.

Nota : ceci est un cas particulier d'une propriété des matrices de Gram. La matrice de Gram d'une famille de n vecteurs d'un espace préhilbertien (réel ou complexe) est définie positive si et seulement si la famille est libre.

Intérêt des matrices définies positives

- Les problèmes de résolution de systèmes linéaires les plus faciles à traiter numériquement sont ceux dont les matrices sont symétriques définies positives^[1].
- Toute matrice symétrique réelle positive est limite d'une suite de matrices symétriques réelles définies positives, ce qui est à la base de nombreux raisonnements par densité^[2].

Matrice hermitienne définie positive

On étend les propriétés et définitions précédentes aux matrices complexes hermitiennes.

Soit M une matrice hermitienne d'ordre n. Elle est dite **définie positive** si elle vérifie l'une des trois propriétés équivalentes suivantes :

1. Pour toute matrice colonne non nulle \mathbf{z} à n éléments complexes, on a

$$\mathbf{z}^*M\mathbf{z} > 0$$
.

2. Toutes les valeurs propres de M sont strictement positives, c'est-à-dire :

$$\operatorname{Sp}(M) \subset]0, +\infty[.$$

3. La forme hermitienne définie par la relation

$$\langle \mathbf{x}, \mathbf{y} \rangle_M = \mathbf{x}^* M \mathbf{y}$$

est un produit scalaire sur \square n (identifié ici à l'espace vectoriel des matrices colonnes à n éléments complexes).

Une matrice hermitienne est dite **définie négative** si son opposée (hermitienne elle aussi) est définie positive.

Propriétés

Les propriétés suivantes sont communes aux matrices symétriques réelles et aux matrices complexes hermitiennes.

- 1. Toute matrice définie positive est inversible (à déterminant réel strictement positif), et son inverse est elle aussi définie positive.
- 2. Si M est définie positive et r est un nombre réel strictement positif, alors rM est définie positive.
- 3. Si M et N sont définies positives, alors M + N est définie positive.
- 4. Si M et N sont définies positives, et si MN = NM (on dit qu'elles commutent), alors MN est définie positive.
- 5. Une matrice M est définie positive si et seulement s'il existe une matrice définie positive A telle que $A^2 = M$; dans ce cas, la matrice définie positive A est unique, et on peut la noter $A = M^{1/2}$ (voir l'article racine carrée d'une matrice).

Cette propriété est utilisée pour la décomposition polaire.

Critère de Sylvester

Pour qu'une matrice $A=\left(a_{ij}\right)_{1\leqslant i,j\leqslant n}$, réelle symétrique ou complexe hermitienne, soit définie positive, il faut et suffit que les n matrices $A_p=\left(a_{ij}\right)_{1\leqslant i,j\leqslant p}$ pour p de 1 à n, aient leur déterminant strictement positif, autrement dit que les n mineurs principaux dominants soient strictement positifs.

Remarque 1. Pour $n \equiv 2$, le critère de Sylvester est essentiellement le critère de positivité du trinôme du second degré.

Remarque 2. Plus généralement, l'indice d'une matrice symétrique réelle est égal au nombre de changements de signes dans la suite de ses n+1 mineurs principaux (en incluant $\det(A_0)=1$), sous réserve que tous soient non nuls.

Remarque 3. En fait sur un corps (commutatif) quelconque, cette condition de non-nullité des mineurs principaux est une condition nécessaire et suffisante pour qu'il existe une matrice Q triangulaire supérieure telle que $Q^{\mathrm{T}}AQ$ soit diagonale et de rang maximum (il suffit d'adapter la démonstration qui suit).

Preuve. Notons
$$q$$
 la forme quadratique associée à A , définie par $q(\mathbf{x}) = \sum_{1 \leq i,j, \leq n} a_{ij} x_i x_j$.

La condition est nécessaire. On remarque d'abord que si q est définie positive, alors $\det A > 0$. En effet, par rapport à une base orthogonale pour cette forme quadratique (il en existe, d'après la réduction de Gauss), la matrice de q s'écrit $\operatorname{diag}(c_1,...,c_n)$ les c_i étant tous strictement positifs. Alors $c_1...c_n = (\det A)(\det Q)^2(Q$ étant la matrice de passage), donc $\det A > 0$. Le résultat s'ensuit, en appliquant le même raisonnement à la restriction de q aux sous-espaces $\mathbb{R}^k \times \{0\}^{n-k}$, pour $1 \leq k \leq n-1$.

Montrons maintenant que la condition est suffisante. On procède par récurrence sur la dimension. Pour n=0 c'est évident puisqu'en dimension 0 l'ensemble des vecteurs non nuls est vide. Supposons la propriété vraie pour n=1 et notons $E=\mathbb{R}^{n-1}\times\{0\}$. Par hypothèse de récurrence, $q_{|E}$ est définie positive. De plus, q est non dégénérée (parce que le déterminant de A est non nul) donc

$$\mathbb{R}^n = E \oplus E^{\perp}$$
 avec $\dim E^{\perp} = 1$

Soient e un vecteur non nul de E^{\perp} et a=q(e). Alors $\det A$ et $a \det A_{n-1}$ ont même signe d'après le même argument que dans la première partie (qui met implicitement en jeu le discriminant), or par hypothèse $\det A$ et $\det A_{n-1}$ sont strictement positifs. Donc a>0, si bien que la restriction de q à E^{\perp} est, elle aussi, définie positive, ce qui montre que q est définie positive.

Dans le cas complexe, la preuve est analogue, en considérant la forme hermitienne définie par la matrice.

Notes et références

- [1] Philippe G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, éd. Dunod, Paris, 1998, p.26
- [2] Jean Voedts, Cours de mathématiques, MP-MP* éd. Ellipses, Paris, 2002, p.634
- → Portail de l'algèbre

Sources et contributeurs de l'article

Matrice définie positive Source: http://fr.wikipedia.org/w/index.php?oldid=104146258 Contributeurs: Ambigraphe, Anne Bauval, Asram, Caylane, Cebichot, Dalnord, Ektoplastor, Flyingsquirrel, GLec, HB, Happy-marmotte, Jaclaf, Jean-Luc W, Kelam, Kilom691, Koko90, Madiot, Nodulation, Peps, Pierrelm, SGC.Alex, Seb-esperanto, Sebleouf, Touriste, Valvino, Vivarés, Voxpower, Wikini, Yves1953, Zandr4, Іванко1, 24 modifications anonymes

Source des images, licences et contributeurs

Fichier: Arithmetic symbols.svg Source: http://fr.wikipedia.org/w/index.php?title=Fichier: Arithmetic_symbols.svg Licence: Public Domain Contributeurs: Darapti, Elembis, Rocket000, SaMi, Sarang

Licence

Creative Commons Attribution-Share Alike 3.0 //creativecommons.org/licenses/by-sa/3.0/