## Math AA HL at KCA - Chapters 6 to 8 Notes

 $\operatorname{Tim\ Bao\ } 2023\text{--}2025$ 

February 25, 2024

## Contents

| 1 | Quadratics                                |   | 3 |
|---|-------------------------------------------|---|---|
| 2 | Sketching Cubics and Higher Degree Graphs |   | 4 |
| 3 | Mappings                                  |   | 5 |
|   | 3.1 Interval Notations                    |   | 5 |
|   | 3.2 Domain and Range                      |   | 6 |
|   | 3.3 Restricting the Domain                |   | 7 |
| 4 | Composite Functions                       |   | 8 |
| 5 | Inverse Functions                         |   | 8 |
| 6 | Even and Odd Functions                    |   | 9 |
| 7 | Function Transformations and Descriptions | , | 9 |
| 8 | Special Functions and Their Graphs        | 1 | 0 |
|   | 8.1 Rational/Reciprocal Functions         | 1 | 0 |
|   | 8.2 Exponential Functions                 | 1 | 1 |
|   | 8.3 Logarithmic Functions                 | 1 | 1 |
|   | 8.4 Modulus Functions                     | 1 | 2 |
|   | 8.5 Graphs of $[f(x)]^2$                  |   |   |
|   | 8.6 Graphs of $\frac{1}{f(x)}$            |   |   |

## 1 Quadratics

A quadratic function can be in any of the following three forms

| $\operatorname{Form}$ | General expression     | Features                                |
|-----------------------|------------------------|-----------------------------------------|
| Standard              | $ax^2 + bx + c$        | c = y-intercept                         |
| Vertex                | $a(x-h)^2 + k$         | (h, k) vertex; $x = h$ line of symmetry |
| Factored              | $a(x-\alpha)(x-\beta)$ | $\alpha, \beta$ roots                   |

The leading coefficient a determines the concavity of the function

- $a > 0 \implies$  the function is convex (tends to  $\infty$ )
- $a < 0 \implies$  the function is concave (tends to  $-\infty$ )

## 2 Sketching Cubics and Higher Degree Graphs

A polynomial of degree n can have at most n distinct roots.

The following features are to be considered when sketching a polynomial f(x) with leading coefficient a



1. Behaviors as  $x \to \pm \infty$ ; for a cubic:

(a) 
$$a > 0 \implies \text{as } x \to \pm \infty, y \to \pm \infty$$

(b) 
$$a < 0 \implies \text{as } x \to \pm \infty, \ y \to \mp \infty$$

- 2. If the roots are  $\alpha, \beta, \gamma$ , then the x-intercepts are  $(\alpha, 0), (\beta, 0), (\gamma, 0)$ .
- 3. The y-intercept, this can be found by f(0)
- 4. The turning point(s), if applicable and necessary.

## 3 Mappings

A **relation** describes how values are mapped from one set onto another.

In the case of functions, values from the **domain** are mapped onto values in the **range**.

There are four types of mapping



Figure 2: Mappings

For a relation to be a function, it has to be either one-to-one or many-to-one. This is because each x value inputted into the function must be associated with a single y value.

#### 3.1 Interval Notations

An opening/closing square bracket represents an inclusive end.

An opening/closing parenthesis represents an exclusive end.

E.g.

- $x \in [a, b) \iff a \le x < b$
- $x \in (-\infty, h] \iff x \le h$

#### 3.2 Domain and Range

The **range** is the set of x values that can go into a function, and the **range** is the set of y values that can come out of a function.

Notations for expressing a domain

- $1. \ x \in [a,b]$
- $2. \ a \le x \le b$
- 3.  $R = \{x \mid a \le x \le b\}$

Notations for expressing a range

- 1.  $y \in [a, b]$
- 2.  $f(x) \in [a, b]$
- $3. \ a \le f(x) \le b$
- 4.  $D = \{y \mid a \le y \le b\}$

#### 3.3 Restricting the Domain



A relation is not a function if it does not pass the **vertical line test**, which states that: If *at any point* in the domain of a relation, a vertical line intersects the graph at two or more points, then it is not a function.

For such a relation to be a function, the domain needs to be restricted such that the new domain passes the vertical line test.

#### 4 Composite Functions

$$(f \circ g)(x) = f(g(x))$$

Properties

- Associativity  $f \circ (g \circ h) = (f \circ g) \circ h$
- $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

### 5 Inverse Functions

The inverse function of a function f(x) is denoted  $f^{-1}(x)$ , it is a reflection in the line y = x.

A self-inverse function is its own inverse, i.e.  $f(x) \equiv f^{-1}(x)$ . E.g.  $y = \frac{1}{x}$  is a self-inverse function.

Implications:

- $(f^{-1} \circ f)(x) = x$  and  $(f \circ f^{-1})(x) = x$
- The domain of f is the range of  $f^{-1}$ , and vice versa
- The intersections of f(x) and  $f^{-1}(x)$  lie on the line y=x and can be found by f(x)=x or  $f^{-1}(x)=x$

To find an expression for the inverse function, exchange the x's and y's, then make the new y the subject.

A function has an inverse if and only if it is **injective** over its domain, i.e. it is a one-to-one mapping over its domain. This can be examined using the horizontal line test.

Sometimes to restrict the domain such that there is an inverse, the turning point is used.

### 6 Even and Odd Functions

- 1. Even functions: f(-x) = f(x); symmetrical about the y-axis
  - (a) f(x) has only even powers of x
- 2. Odd functions: f(-x) = -f(x); rotational symmetry of 180° about the origin
  - (a) f(x) has only odd powers of x

## 7 Function Transformations and Descriptions

| -f(x)    | Reflection in the x-axis                        |  |
|----------|-------------------------------------------------|--|
| f(-x)    | Reflection in the $y$ -axis                     |  |
| f(x+a)   | f(x+a) Translation to the left by $a$ units     |  |
| f(x-a)   | f(x-a) Translation to the right by $a$ units    |  |
| f(kx)    | Horizontal stretch by a factor of $\frac{1}{k}$ |  |
| f(x) + b | Upward translation by $b$ units                 |  |
| f(x) - b | Downward translation by $b$ units               |  |
| kf(x)    | Vertical stretch by a factor of $k$             |  |

### 8 Special Functions and Their Graphs

Sketching these functions involves looking at

- 1. x and y intercepts
- 2. horizontal and vertical asymptotes
- 3. where f(x) tends to as  $x \to \pm \infty$
- 4. sometimes the turning points too

#### 8.1 Rational/Reciprocal Functions

They take the general form of

$$f(x) = \frac{ax+b}{cx+d}$$

and have the following properties

- x-intercept =  $(-\frac{b}{a}, 0)$ ; when y = 0 and  $a \neq 0$
- y-intercept =  $(0, \frac{b}{d})$ ; when x = 0 and  $d \neq 0$
- vertical asymptote  $x = -\frac{d}{c}$ ; when the denominator is 0
- horizontal asymptote  $y = \frac{a}{c}$ ; cancel out the b, d, and x's, as the limit is obtained for very large values of x.

#### 8.2 Exponential Functions

They can take the form of

$$f(x) = ka^{bx} + c, \ a > 0$$

and have the properties

- 1. y-intercept (k+c,0)
- 2. Horizontal asymptote y = c
- 3. No vertical asymptote
- 4.  $b > 0 \implies \lim_{x \to \infty} f(x) = \infty$ ; growth
- 5.  $b < 0 \implies \lim_{x \to -\infty} f(x) = \infty$ ; decay

#### 8.3 Logarithmic Functions

They are the reflections of exponential functions in y=x. They have vertical asymptotes but not horizontal asymptotes.

#### 8.4 Modulus Functions

Arithmetic rules

- 1. |-x| = |x|
- 2.  $|x|^2 = x^2$
- 3. |xy| = |x||y|
- $4. \ \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

These functions are formally defined as

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

The graph is obtained by reflecting all parts below the y-axis through the y-axis so that they are all above it now.

In general, there are three ways of solving modulus equations/inequalities; solving manually will require the results to be substituted back into the equation to validate the answers and discard any invalid ones

- 1. Split into cases. e.g. for |a| = 3, solve when a = 3 and also a = -3, then validate the results
- 2. If both sides are in absolute value, or only one side is and the other is a constant (e.g. |a| = |b| or |a| = 3), then square both sides and solve from there
- 3. Sketch graphs and find intersections
- 4. Use the G.D.C

The transformation of absolute value functions can be *done step by step* and it is normally easier to visualize this way.

## **8.5** Graphs of $[f(x)]^2$

| Feature of $f(x)$                      | Feature of $[f(x)]^2$                    |
|----------------------------------------|------------------------------------------|
| Parts where $y < 0$                    | y > 0                                    |
| this i the p $(a,0)$ is an x-intercept | (a,0) local minimum                      |
| (0,b) is a y-intercept                 | $(0,b^2)$ y-intercept                    |
| x = a is a vertical asymptote          | unchanged                                |
| y = b is a horizontal asymptote        | $y = b^2$ becomes a horizontal asymptote |
| $y \to \pm \infty$                     | $y \to \infty$                           |

# 8.6 Graphs of $\frac{1}{f(x)}$

| Feature of $f(x)$                    | Feature of $\frac{1}{f(x)}$                 |
|--------------------------------------|---------------------------------------------|
| x = a is an x-intercept              | x = a is a vertical asymptote               |
| $(0,b),b\neq 0$ is a y-intercept     | $(0,\frac{1}{b})$ becomes the y-intercept   |
| x = a is a vertical asymptote        | x-intercept at $(a,0)$                      |
| y = b is a horizontal asymptote      | $y = \frac{1}{b}$ is a horizontal asymptote |
| y = 0 is a horizontal asymptote      | $y \to \pm \infty$                          |
| $y \to \pm \infty$                   | y = 0 is a horizontal asymptote             |
| $(a,b), b \neq 0$ is a turning point | $(a, \frac{1}{b})$ is a turning point       |