AVL Tree

นิยามของ AVL Tree

- ทรีใดๆ ก็ตามจะจัดว่าเป็น AVL Tree ก็ต่อเมื่อทรีนั้นมีคุณสมบัติต่อไปนี้ ครบทั้ง 3 ข้อ
 - ทรีนั้นต้องเป็นไบนารีทรี
 - ทรีนั้นต้องเป็นไบนารีเซริ์ชทรี
 - ทรีนั้นต้องเป็น Blance Tree
- สำหรับคุณสมบัติสองข้อแรกสามารถตรวจสอบได้ง่าย ส่วนคุณสมบัติข้อ ที่สามเป็นคุณสมบัติในเรื่องความสมดุลของทรี หมายถึง ทุกโหนดในทรี จะต้องมีความสู่งของ Left subtree และ Right subtree ต่างกันไม่ เกิน 1 หรือ "AVL Tree คือ ไบนารีเชริ์ชทรีที่ทุก" โหนดในทรีจะต้องมี ค่าความสู่งของ Left subtree และ Right subtree ต่างกันไม่เกิน 1

การตรวจล้อบความล่มดูลของ AVL Tree

- พิจารณาโหนดของทรีที่จะตรวจล่อบทีละโหนดจากล่างปั้นบน ทีละ Level ไปตามล่าดับ
- 2. ในแต่ละโหนดจะมีค่า H_, และ H_D อย่างละเท่าไร
- 3. ถ้า IH, -H, I ได้ค่ามากกว่า 1
 - 3.1 ใช่ แลดงว่าไม่เป็น AVL Tree (ใช้วิธีการปรับให้เป็น AVL Tree)
 - 3.2 ไม่ใช่ ให้ขยับไปพิจารณาโหนดถัดไป วนย้อนไปพิจารณาข้อ 2
- วนท่าเช่นนี้ไปจนกระทั่งตรวจลอบครบทุกโหนด ถ้าค่า |H_L-H_p| น้อยกว่าหรือเท่ากับ 1 ทุกโหนด สามารถสรุปได้ว่าเป็น AVL
 Tree

AVL

Non-AVL

ทรีที่ไม่ล่มดุล(Unblance Tree)

- เกิดจากการแทรกโหนด หรือลบโหนด จากทรีที่สมดุลอาจ กลายเป็นทรีไม่สมดุลได้ ซึ่งรูปร่างของทรีที่ไม่สมดุลเกิดขึ้น ได้ 4 รูปแบบ คือ
 - Left of Left
 - Right of Right
 - Right of Left
 - Left of Right

ทรีที่ไม่สมดุล

• Left of Left: เกิดจากการแทรกโหนดเข้าไปทางด้านซับทรีฝั่งซ้าย ของโหนดลูกด้านซ้าย

ทรีที่ไม่ลมดูล

• Right of Right : เกิดจากการแทรกโหนดเข้าไปทางด้านขับทรีฝั่ง ขวาของโหนดลูกด้านขวา

ทรีที่ไม่ลมดุล

• Right of Left: เกิดจากการแทรกโหนดเข้าไปทางด้านซับทรีฝั่งขวา ของโหนดลูกด้านซ้าย

ทรีที่ไม่สมดุล

 Left of Right : เกิดจากการแทรกโหนดเข้าไปทางด้านชับทรีฝั่ง ข้ายของโหนดลูกด้านขวา

การทำไบนารีเสิร์ชทรีให้กลายเป็น AVL Tree

- การแปลงมีอยู่ 2 แบบ การเลือกใช้แบบใดนั้น ขึ้นอยู่กับ รูปแบบความไม่สมดูลของทรี
 - แบบหมุนครั้งเดียว(Single Rotation): ในกรณี Left of Left และ Right of Right เท่านั้น
 - แบบหมุนล่องครั้ง(Double Rotation): ในกรณี Right of Left และ Left of Right เท่านั้น

Single Rotation: Left of Left

 จากภาพจะเห็นว่า Left Subtree A มีขนาดใหญ่เป็นสาเหตุให้ทรีเอียง หนักมาทางซ้าย จึงต้องแก้ปัญหาโดยการหมุนขวา 1 ครั้ง ผลลัพธ์ที่ได้ คือ จะได้ทรีที่มีความสมดุลเกิดขึ้นมา ในรูปแสดงว่าโหนด N1 มีค่าน้อย กว่า N2 (โหนดที่เป็นรูทจะเปลี่ยนไป แต่ล่วนอื่นที่ไม่มีการหมุนยัง เหมือนเดิม

Single rotation หลังจากการ insert

แก้ได้แล้วก็ไม่ต้อง rotate ที่ไหนต่ออีก

13

ตัวอย่าง 1

14

ตัวอย่างการทำ single rotation :Left of Left

Single Rotation: Right of Right

จากภาพจะเห็นว่า Right Subtree C มีขนาดใหญ่ เป็นลำเหตุให้ทรี
 เอียงหนักมาทางขวา จึงต้องแก้ปัญหาโดยการหมุนขวา 1 ครั้ง ผลลัพธ์
 คือ จะได้ทรีที่มีความสมดุล ในรูปแสดงว่าโหนด N1 มีค่าน้อยกว่า N2
 (โหนดที่เป็นรูทจะเปลี่ยนไป แต่ส่วนอื่นที่ไม่มีการหมุนยังเหมือนเดิม

16

ตัวอย่างการทำ single rotation :Right of Right

การทำ Double Rotation: Right of Left

 จากภาพ Subtree มีขนาดเท่ากัน แต่ทรีไม่ลมดุลจะเกิดอยู่บริเวณ โหนดล่วนที่อยู่ด้านบน แก้ปัญหาโดยการหมุนทรี เมื่อหมุนแล้ว N2 จะถูกดึงขึ้นมาเป็นรูทแทนโดย Subtree ที่เหลือก็จะต้องเปลี่ยนไป เชื่อมต่อกันโหนดที่จะให้คงคุณลมบัติของไบนารีเสิร์ชทรีเอาไว้

ตัวอย่างการทำ Double rotation :Right of Left

การเลือกโหนดที่จะหมุน

- ดูว่าเกิดปัญหาความไม่ล่มดุลที่โหนดไหน เอาโหนดนั้นมา เป็นโหนดเริ่มต้นของกลุ่ม
- จากโหนดเริ่มต้นนับลงไปอีก 2 โหนด จะได้กลุ่มโหนด 3
 โหนด โดยทิศทางในการนับลงมา คือ นับลงมาทางด้าน
 Child ที่ทำให้เกิดปัญหาความไม่สมดล

การทำ Double Rotation: Left of Right

• จากภาพ Subtree มีขนาดเท่ากัน แต่ทรีไม่สมดุลจะเกิดอยู่บริเวณ โหนดส่วนที่อยู่ด้านบน แก้ปัญหาโดยการหมุนทรี เมื่อหมุนแล้ว N2 จะถูกดึงขึ้นมาเป็นรูทแทนโดย Subtree ที่เหลือก็จะต้องเปลี่ยนไป เชื่อมต่อกันโหนดที่จะให้คงคุณสมบัติของไบนารีเสิร์ชทรีเอาไว้

ตัวอย่างการทำ Double rotation : Left of Right

22

การลร้าง AVL Tree จากโหนด

- 1. ให้โหนดแรกเป็นฐทของ AVL Tree
- 2. แทรกโหนดตัวถัดไปเข้าไปใน AVL Tree
- 3. ตรวจล่อบว่ายังคงคุณล่มบัติของ AVL Tree อยู่หรือไม่
 - 3.1 ถ้าใช่ ให้แทรกโหนดถัดไปเข้ามาอีกแล้วไปขั้นตอน 3
 - 3.2 ถ้าไม่ใช่ ให้ใช้เทคนิค Single หรือ Double Rotation แก้ให้กลับมา เป็น AVL Tree จากนั้นแทรกโหนดถัดไป แล้วไปขั้นตอนที่ 3
- 4. ให้ท่าเช่นนี้ไปจนล่ามารถแทรกโหนดเข้าไปใน AVL Tree ได้ จนครบทุกโหนด

์ ตัวอย่าง 2 สร้าง AVL Tree จากโหนดต่อไปนี้

3, 2, 1, 4, 5, 6, 7

• เริ่มจากไม่มีอะไร เรา insert 3,2,1

To be continued 24

• ต่อไปเรา insert 7

27

ตัวอย่างเพิ่มเติม

• Insert 16,15 เสียความเป็น AVL ตอน insert 15

· Insert 14

· Insert 12 ก็ท่าให้ต้อง single rotate อีก

• Insert 11 ก็ท่าให้ต้อง single rotate อีก

32

· Insert 10 ก็ท่าให้ต้อง single rotate อีก

22

· Insert 8 ไม่มีอะไรเกิดขึ้น

34

• ให้แลดงวิธีการสร้าง AVL Tree จากโหนดต่อไปนี้

รหัลนักศึกษา+0+วัน+เดือน+ปีเกิด

เช่น รหัส 51152792055+0+10+07+25+30 จะได้ 51,15,27,92,05,50,10,07,25,30

- ระบุ parent node, child node, sibling node, leaf node
- หาผลลัพธ์จากการเยือนโหนดต่างๆ ด้วยวิธี Preorder,
 Inorder และ Postorder