Catsci erco entia latur

Causal Machine Learning

Week 3

Booth School Of Business University of Chicago

Applications

Causality

The paradigmatic assertion in causal relationships is that manipulation of a cause will result in the manipulation of an effect. . . . Causation implies that by varying one factor I can make another vary.

(Cook & Campbell 1979: 36, emphasis in original)

Causal Constructs

- ▶ What types of outcomes do economists care about?
- ► What types of treatments?
- ► What objects do they wish to estimate?
- ► Why do they wish to estiamte these?

Why estimate causal effects?

- ► Hypotesis testing
- Policy descriptors
- ► Counterfactual Policy evaluation
- ► Policy design

Models and Causality

- ► Q: Do we need models to get causal effects?
- ► Q: What exactly is a model?
- ▶ Q: Do we need a structural model? What's that?

Parameteric Models

- ► Consider the standard difference in means estimator
- ► One can equivalently write this as

$$Y_i^{\text{obs}} \mid \mathbf{W}, \tilde{\theta} \sim \mathcal{N} \left(\mu_{\text{c}} + W_i \cdot \tau, \sigma^2 \right)$$

lacktriangle In this case (as in the difference in means) the ATE is simple au

Parameteric Models: Extended Example

► Now consider the following:

$$\begin{pmatrix} \ln (Y_i(0)) \\ \ln (Y_i(1)) \end{pmatrix} \mid \theta \sim \mathcal{N} \left(\begin{pmatrix} \mu_c \\ \mu_t \end{pmatrix}, \begin{pmatrix} \sigma_c^2 & 0 \\ 0 & \sigma_t^2 \end{pmatrix} \right)$$

► What is the ATE here?

Parameteric Models: Extended Example

► Now consider the following:

$$\begin{pmatrix} \ln (Y_i(0)) \\ \ln (Y_i(1)) \end{pmatrix} \mid \theta \sim \mathcal{N} \left(\begin{pmatrix} \mu_c \\ \mu_t \end{pmatrix}, \begin{pmatrix} \sigma_c^2 & 0 \\ 0 & \sigma_t^2 \end{pmatrix} \right)$$

► The ATE is:

$$au = au(heta) = \exp\left(\mu_{\mathrm{t}} + rac{1}{2} \cdot \sigma_{\mathrm{t}}^2\right) - \exp\left(\mu_{\mathrm{c}} + rac{1}{2} \cdot \sigma_{\mathrm{c}}^2\right)$$

Parameteric Models: Inference

- ▶ Define $\theta = \{\mu_c, \mu_t, \sigma_c, \sigma_t\}$
- ► Set up likelihood $\ell(\mathbb{D}|\theta)$ and obtain $\widehat{\theta}$
- $lackbox{ Compute the Hessian at } \widehat{ heta}: \widehat{\mathbf{H}} = \left\{ rac{\partial^2 \ell}{\partial heta_{jk}}
 ight\}$
- ▶ Use Delta method

$$\operatorname{se}\left(\tau\left(\widehat{\boldsymbol{\theta}}\right)\right) = \left[\frac{\partial \tau\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}}\right]' \widehat{\mathbf{H}}^{-1} \left[\frac{\partial \tau\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}}\right]$$

Discussion Problem I

- ► Imagine a firm that sends customers catalogs
- ▶ They randomize the treatment so that 90% get the catalog and 10% are held out
- A firm wishes to figure out the causal effect of the catalog (x) on buying behavior (y)
- ► What should the model be?
- ► What decisions do we make?

Discussion Problem II

- ► Imagine a firm that charges a price for a product. Consumer buys a single unit or not at all.
- A firm wishes to set optimal prices. To do so they need to figure out the causal effect of prices (x) on purchase decision (y)
- ► What should the model be?
- ► How should the firm set prices?

Discussion Problem III

- ▶ Detailing refers to the act of pharma reps calling on physicians
- ightharpoonup A firm wishes to figure out the causal effect of detailing (x) on prescribing behavior (y)
- ► Currently the avearge number of calls is 10.
- What should the model be?
- ▶ Should the firm increase the number of calls?

Discussion Problem I

- ► Imagine a firm that sends customers catalogs
- ▶ They randomize the treatment so that 90% get the catalog and 10% are held out
- A firm wishes to figure out the causal effect of the catalog (x) on buying behavior (y)
- ► What should the model be?
- ► What decisions do we make?

Conditional average treatment effect (CATE)

► Main object of interest:

$$\tau(x) \equiv \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x]$$

- lacktriangle Causal effect for subpopulation of customers with identical features $X_i=x$
- lacktriangle In our application: Incremental effect on spending when being targeted

Profits

► Profit contribution depending on targeting status

$$\pi_i(W_i) = \begin{cases} mY_i(0) & \text{if } W_i = 0\\ mY_i(1) - c & \text{if } W_i = 1 \end{cases}$$

- ightharpoonup m is the margin percentage
- ightharpoonup c is the targeting cost
- ► Easily generalizable for heterogeneous margins and costs

Targeting policy evaluation

- ightharpoonup Targeting policy $d: \mathbb{X} \to \{0, 1\}$
- \blacktriangleright Goal: Evaluate the expected profit from any targeting policy, d

$$\mathbb{E}[\Pi(d, (X_i))] = \sum_{i=1}^{N} \mathbb{E}\left[1\{d(X_i) = 0\} \cdot \pi_i(0) + 1\{d(X_i) = 1\} \cdot \pi_i(1)|X_i\right]$$
$$= \sum_{i=1}^{N} \mathbb{E}\left[(1 - d(X_i)) \cdot \pi_i(0) + d(X_i) \cdot \pi_i(1)|X_i\right]$$

lacktriangle Conditional on observed customer features, $(X_i)=(X_i)_{i=1}^N$

Optimal targeting policy

- $lackbox{d}^*$ is an optimal policy if it maximizes $\mathbb{E}[\Pi(d,(X_i))]$
- lacktriangle Assume: W_i does not affect the behavior of any other customer $i' \neq i$ (SUTVA)
- ▶ Then d^* is optimal if and only if it maximizes the expected profit from each individual customer with features X_i ,

$$\mathbb{E}\left[\left(1 - d(X_i)\right) \cdot \pi_i(0) + d(X_i) \cdot \pi_i(1)|X_i\right]$$

 \blacktriangleright Optimal policy, d^* : Target a customer if and only if

$$\mathbb{E}\left[\pi_i(1)|X_i\right] > \mathbb{E}\left[\pi_i(0)|X_i\right]$$

► Equivalently:

$$\mathbb{E}\left[\pi_i(1) - \pi_i(0)|X_i\right] > 0 \Leftrightarrow \mathbb{E}\left[\left(mY_i(1) - c\right) - \left(mY_i(0)\right)|X_i\right] > 0$$
$$\Leftrightarrow m\mathbb{E}\left[Y_i(1) - Y_i(0)|X_i\right] - c > 0$$
$$\Leftrightarrow m\tau(x) > c$$

- Lessons
 - ► An optimal targeting policy is based on the incremental effect of targeting
 - ► Predict optimal policy based on estimate of the CATE

Data

► Observed outcome:

$$Y_i = \begin{cases} Y_i(0) & \text{if } W_i = 0 \\ Y_i(1) & \text{if } W_i = 1 \end{cases}$$

- ► Only one of the potential outcomes is observed
- $\blacktriangleright \ \mathsf{Data} \ \mathcal{D} = (Y_i, X_i, W_i)_{i=1}^N$

The fundamental problem of causal inference

- ▶ Because only one of the potential outcomes is observed, the individual treatment effect $Y_i(1) Y_i(0)$ is not observed
- lacktriangle Using the observed outcomes Y_i only the CATE is not generally identified,

$$au(x)
eq \mathbb{E}[Y_i|X_i,W_i=1] - \mathbb{E}[Y_i|X_i,W_i=0]$$
 in general

- Example: Selection on unobservables in online advertising ([Gordon-Zettelmeyer-Bhargava-etal-2017])
- An estimate of $\tau(x)$ cannot even be calculated if targeting policy in data either targets all or no customers with features $X_i = x$

Identification of conditional average treatment effect

- Assumptions
 - 1. Unconfoundedness

$$Y_i(0), Y_i(1)W_i \mid X_i$$

2. Overlap: The propensity score $e(x) \equiv \Pr\{W_i = 1 | X_i = x\}$ satisfies

- 3. Stable unit treatment value assumption (SUTVA)
 - ► Rules out social or equilibrium effects
- ▶ Under these assumptions $\tau(x)$ is identified

$$\tau(x) = \mathbb{E}[Y_i | X_i, W_i = 1] - \mathbb{E}[Y_i | X_i, W_i = 0]$$

- ► In our application
 - ► Unconfoundedness and overlap can be satisfied by (experimental) design
 - SUTVA likely satisfied

Linear model

► Assumption: Conditional expectation function well approximated using a linear function of the features and interactions of the features with the treatment

$$\mathbb{E}[Y_i|X_i = x, W_i = w] = \beta_0 + \sum_{k=1}^p \beta_k x_{ik} + \delta_0 w + \sum_{k=1}^p \delta_k x_{ik} w_i$$

▶ It follows that the CATE is a linear function of the features

$$\tau(x) = \mathbb{E}[Y_i|X_i = x, 1] - \mathbb{E}[Y_i|X_i = x, 0]$$
$$= \delta_0 + \sum_{k=1}^p \delta_k x_{ik}$$

- Estimation using OLS
- ► Equivalent to estimating two separate linear models for the treated and untreated units

Aside: Transformed outcome

Defined as

$$Y_i^* = W_i \cdot \frac{Y_i(1)}{e(X_i)} - (1 - W_i) \cdot \frac{Y_i(0)}{1 - e(X_i)}$$
$$= \frac{W_i - e(X_i)}{e(X_i)(1 - e(X_i))} Y_i$$

- $ightharpoonup Y_i^*$ is observed if the propensity score is known
- ► If unconfoundedness holds, then

 $\mathbb{E}[Y_i^*|X_i=x]=\tau(x)$

 $Y_i^* = \tau(X_i) + \nu_i$

▶ Hence Y_i^* is a proxy for the CATE:

reflect
$$T_i$$
 is a proxy for the erric.

lacktriangleright $\mathbb{E}[
u_i|X_i]=0$ and u_i is orthogonal to any function of X_i

Targeting policy evaluation

lacktriangle Back to the ultimate goal: Evaluate the expected profit from a targeting policy, d

$$\mathbb{E}[\Pi(d,(X_i))] = \sum_{i=1}^{N} \mathbb{E}\left[1\{d(X_i) = 0\} \cdot \pi_i(0) + 1\{d(X_i) = 1\} \cdot \pi_i(1)|X_i\right]$$

 We will mostly compare optimal targeting policies predicted based on the CATE estimates,

$$d(x) = \begin{cases} 0 & \text{if } m\hat{\tau}(x) - c \le 0\\ 1 & \text{if } m\hat{\tau}(x) - c > 0 \end{cases}$$

Comparison straightforward field experiments that implement each policy

Targeting policy evaluation in a randomized sample

- ► Problem:
 - ► The intended targeting status is not generally equal to the randomized treatment assignment
 - ightharpoonup However, for some customers i, the intended and realized treatment assignment will agree,

$$d(X_i) = W_i$$

► Proposed profit estimator:

$$\hat{\Pi}(d,(X_i)) = \sum_{i=1}^{N} \left(\frac{1 - W_i}{1 - e(X_i)} (1 - d(X_i)) \cdot \pi_i(0) + \frac{W_i}{e(X_i)} d(X_i) \cdot \pi_i(1) \right)$$

Inverse probability-weighted targeting profit estimator

$$\hat{\Pi}(d,(X_i)) = \sum_{i=1}^{N} \left(\frac{1 - W_i}{1 - e(X_i)} (1 - d(X_i)) \cdot \pi_i(0) + \frac{W_i}{e(X_i)} d(X_i) \cdot \pi_i(1) \right)$$

- ► The estimator sums all profits when the intended and realized treatment assignment agree
- ▶ Why the inverse probability weights? Consider all customers who should be targeted, $d(X_i) = 1$. If the targeting probability in the randomized sample is $e(X_i) = \frac{2}{3}$, there is a $\frac{2}{3}$ chance that these customers were actually targeted. However, $\frac{1}{3}$ of all observations are "missing," i.e. were not actually targeted. Weighting by the inverse of $\frac{2}{3}$ restores the correct scale of profits.

 $\Pi(d,(X_i))$ is an unbiased estimator for the expected profit $\mathbb{E}[\Pi(d,(X_i))]$:

 $\mathbb{E}[\hat{\Pi}(d,(X_i))] = \sum_{i=1}^{N} \mathbb{E}\left[\frac{1 - W_i}{1 - e(X_i)}(1 - d(X_i)) \cdot \pi_i(0) + \frac{W_i}{e(X_i)}d(X_i) \cdot \pi_i(1)|X_i\right]$

 $= \sum_{i=1}^{N} ((1 - d(X_i)) \cdot \mathbb{E}[\pi_i(0)|X_i] + d(X_i) \cdot \mathbb{E}[\pi_i(1)|X_i])$

 $= \sum_{i=1}^{N} \mathbb{E} \left[(1 - d(X_i)) \cdot \pi_i(0) + d(X_i) \cdot \pi_i(1) | X_i \right]$

 $= \mathbb{E}[\Pi(d,(X_i))]$

 $= \sum_{i=1}^{N} \left(\frac{1 - e(X_i)}{1 - e(X_i)} (1 - d(X_i)) \cdot \mathbb{E}[\pi_i(0)|X_i] + \frac{e(X_i)}{e(X_i)} d(X_i) \cdot \mathbb{E}[\pi_i(1)|X_i] \right)$

Comparison to "classical" CRM approach

- ► Classical CRM is based on a scoring method, where customers are scored according to their predicted spending or profit *level*
- Firm that we collaborate with predicts $\mathbb{E}[Y_i|X_i=x,W_i=1]$ using a logit/OLS model
- ► Naive targeting approach: Target customer if

$$m \cdot \mathbb{E}[Y_i | X_i = x, W_i = 1] > c$$

Empirical application

- ▶ Data stems from collaboration with a U.S. company that sells durable consumer products
- ► Multi-channel retailer
 - ▶ Direct channel: Phone, mail, website
 - ► Brick-and-mortar stores in some U.S. regions
- ► Sophisticated data science team, plans targeting efforts including
 - ► Mail/catalog
 - ► Display ads, Facebook
 - ► E-mails
- ► Evaluation of targeting efforts using randomized samples

Data

- ► Catalogs mailed in spring of 2015 and 2016
 - ► Instances of the same campaign that is repeated annually at the same time within the calendar year
- ► Two randomized samples
 - ► 2015: 293 thousand observations
 - ► 2016: 148 thousand observations
 - ► Targeting probability is $\frac{2}{3}$

Observed spending

- ► Phone/mail orders and website transactions using product codes in catalog during three-month period after catalog was received
- Web purchases not using the product codes in thirty-day period after catalog was received
- According to company most product code transactions occur in the month after receipt of the catalog
 - ▶ ⇒ spending measure allow us to estimate *short-run* causal effect of a targeting effort
 - ► May under or overestimate long-run effect

Customer attributes — features

- ▶ 472 features
 - ► Information on customer a few weeks before catalog mailing
- ► Demographics
- ► RFM (recency, frequency, and monetary value) variables
 - ► For different time periods, e.g. last six months, last 7-12 months, etc.
 - ► For different product types
 - ► For different sales channels
 - ► Most granular level: Transactions at time period/product type/channel level
 - E.g. number of purchases placed online during the last twelve months for products in a specific category
- ► Website browsing behavior
 - ► Page views, clicks on product pages
- ► Promotional e-mails
 - ► Number e-mails received, viewed, and resulting click-throughs

Summary statistics

	Mean	SD	N	Percentiles				
2015				1%	5%	50%	95%	99%
Spending	7.311	43.549	292657	0.000	0.000	0.000	39.950	182.990
Spending if purchased	117.725	132.445	18174	17.950	27.950	79.900	322.753	605.727
Purchase	0.062	0.241	292657	0.000	0.000	0.000	1.000	1.000
Treatment	0.669	0.471	292657	0.000	0.000	1.000	1.000	1.000
2016								
Spending	6.461	39.565	148200	0.000	0.000	0.000	36.981	168.000
Spending if purchased	115.066	124.021	8322	19.950	27.950	79.900	309.748	585.282
Purchase	0.056	0.230	148200	0.000	0.000	0.000	1.000	1.000
Treatment	0.663	0.473	148200	0.000	0.000	1.000	1.000	1.000

Average treatment effect and differences among treated and untreated customers

Mean SE

2015		
ATE spending	2.561	0.166
ATE purchase	0.022	0.001
$E[Y_i Y_i > 0, W_i = 1] - E[Y_i Y_i > 0, W_i = 0]$	-0.798	2.456
$E[I_i I_i>0,W_i=1]$ $E[I_i I_i>0,W_i=0]$		
2016	2.377	0.210
2016 ATE spending		0.210
	2.377	0

- lacktriangle Based on margin and cost data customer should be targeted if ATE > 2.003
- ► Hence, if the treatment effects were homogenous, company should use a blanket targeting strategy