

PRELIMINARY December 2010

AR9331 Highly-Integrated and Cost Effective IEEE 802.11n 1x1 2.4 GHz SoC for AP and Router Platforms

General Description

The Atheros AR9331 is a highly integrated and cost effective IEEE 802.11n 1x1 2.4 GHz Systemon-a-Chip (SoC) for wireless local area network (WLAN) AP and router platforms.

In a single chip, the AR9331 includes a MIPS 24K processor, five-port IEEE 802.3 Fast Ethernet Switch with MAC/PHY, one USB 2.0 MAC/PHY, and external memory interface for serial Flash, SDRAM, DDR1 or DDR2, I²S/SPDIF-Out audio interface, SLIC VOIP/PCM interface, UART, and GPIOs that can be used for LED controls or other general purpose interface configurations.

The AR9331 integrates two Gbit MACs plus a five-port Fast Ethernet switch with a four-traffic class Quality of Service (QoS) engine.

The AR9331 integrates an 802.11n 1x1 MAC/BB/radio with internal PA and LNA. It supports 802.11n operations up to 72 Mbps for 20 MHz and 150 Mbps for 40 MHz channel respectively, and IEEE 802.11b/g data rates. Additional features include on-chip one-time programmable (OTP) memory.

Features

- Complete IEEE 802.11n 1x1 AP or router in a single chip
- MIPS 24K processor operating at up to 400 MHz
- External 16-bit DDR1, DDR2, or SDRAM memory interface
- SPI NOR Flash memory support
- No external EEPROM needed
- 4 LAN ports and 1 WAN port IEEE 802.3 Fast Ethernet switch with auto-crossover, auto polarity, and auto-negotiation in PHYs
- Four classes of QoS per port
- Fully integrated RF front-end including PA and LNA
- Optional external LNA/PA
- Switched antenna diversity
- High-speed UART for console support
- I²S/SPDIF-out audio interface
- SLIC for VOIP/PCM
- USB 2.0 host/device mode support
- GPIO/LED support
- JTAG-based processor debugging supported
- 25 MHz or 40 MHz reference clock input
- Advanced power management with dynamic clock switching for ultra-low power modes
- 148-pin, 12 mm x 12 mm dual-row LPCC package

System Block Diagram

COMPANY CONFIDENTIAL

Table of Contents

1 Pin Descriptions 13	5 Radio Block51
	5.1 Receiver (Rx) Block 51
2 Functional Description	5.2 Transmitter (Tx) Block 51
	5.3 Synthesizer (SYNTH) Block 52
2.2 Configuration	5.4 Bias/Control (BIAS) Block52
2.3 AR9331 Address MAP23	
2.4 AHB Master Bus23	6 Register Descriptions53
2.5 APB Bridge23	6.1 DDR Registers
2.6 DDR Memory Controller23	6.1.1 DRR DRAM Configuration (DDR_CONFIG)54
2.7 Serial Flash (SPI)24	6.1.2 DDR DRAM Configuration 2
2.8 UART24	(DDR_CONFIG2)55
2.9 GE0 and GE125	6.1.3 DDR Mode Value
2.10 MDC/MDIO Interface25	(DDR_MODE_REGISTER) 55
2.11 Ethernet Switch Controller26	6.1.4 DDR Extended Mode
2.11.1 VLANs For LAN Ports28	(DDR_EXTENDED_MODE_REGIS TER)55
2.11.2 Quality of Service (QoS) for LAN	6.1.5 DDR Control (DDR_CONTROL) 56
Ports29	6.1.6 DDR Refresh Control and
2.12 Rate Limiting29	Configuration (DDR_REFRESH) 56
2.13 Broadcast Storm Control30	6.1.7 DDR Read Data Capture Bit Mask
2.14 Switch Operation30	(DDR_RD_DATA_THIS_CYCLE)
2.15 Port Mirroring30	56
2.16 Port States	6.1.8 DQS Delay Tap Control for Byte 0 (TAP_CONTROL_0)
2.10 1 01t 5tates	6.1.9 DQS Delay Tap Control for Byte 1
3 Medium Access Control (MAC) 31	(TAP_CONTROL_1)57
3.1 Overview31	6.1.10 GE0 Interface Write Buffer Flush
3.2 Descriptor31	(DDR_WB_FLUSH_GE0) 57
3.3 Descriptor Format32	6.1.11 GE1 Interface Write Buffer Flush
3.4 Queue Control Unit (QCU)47	(DDR_WB_FLUSH_GE1) 57
3.5 DCF Control Unit (DCU)47	6.1.12 USB Interface Write Buffer Flush (DDR_WB_FLUSH_USB) 57
3.5.1 DCU State Information	6.1.13 AMBA Interface Write Buffer Flush
3.6 Protocol Control Unit (PCU)48	(DDR_WB_FLUSH_AMBA) 58
,	6.1.14 DDR2 Configuration
4 Digital PHY Block49	(DDR_DDR2_CONFIG)58
4.1 Overview49	6.1.15 DDR EMR2 (DDR_EMR2) 58
4.2 802.11n Mode49	6.1.16 DDR EMR3 (DDR_EMR3) 58
4.2.1 Transmitter (Tx)49	6.1.17 DDR Burst Control (DDR_BURST)
4.2.2 Receiver (Rx)49	59
4.3 802.11b/g Legacy Mode50	6.1.18 AHB Master Timeout Control
4.3.1 Transmitter50	(AHB_MASTER_TIMEOUT_MAX) 59
4.3.2 Receiver50	6.1.19 AHB Timeout Current Count

		(AHB_MASTER_TIMEOUT_CUR NT)59	6.4.13	B Extended GPIO Function Control (GPIO_FUNCTION_2)69
	6.1.20	Timeout Slave Address	6.5 PLL (Control Registers70
		(AHB_MASTER_TIMEOUT_SLV_		CPU Phase Lock Loop
		ADDR)59		Configuration
6.2	UART	Registers60		(CPU_PLL_CONFIG)70
		UART Transmit and Rx FIFO	6.5.2	CPU Phase Lock Loop
		Interface (UART_DATA)60		Configuration Register 2
	6.2.2	UART Configuration and Status		(CPU_PLL_CONFIG2)70
		(UART_CS)61	6.5.3	CPU Clock Control Register
	6.2.3	UART Clock (UART_CLOCK) .62		(CLOCK_CONTROL)71
	6.2.4	UART Interrupt/Control Status	6.5.4	CPU PLL Dither FRAC Register
		(UART_INT)62		(PLL_DITHER_FRAC)71
	6.2.5	UART Interrupt Enable	6.5.5	CPU PLL Dither Register
		(UART_INT_ÊN)63		(PLL_DITHER) 72
6.3	USB R	Registers64	6.5.6	Ethernet Switch Clock Control
		USB Power Control and Status		Register (ETHSW_CLOCK
		(USBPWRCTL)64		CONTROL)
	6.3.2	USB Configuration	6.5.7	Ethernet XMII Control Register
		(USB_CONFIG)64		(ETH_XMII_CONTROL)73
6.4	GPIO	Registers65		Suspend Register (SUSPEND) 73
0.1		General Purpose I/O Output	6.5.9	WLAN Clock Control Register
		Enable (GPIO_OE)65		(WLAN_CLOCK_CONTROL) .74
		General Purpose I/O Input Value	6.6 Reset	Control Registers75
	0.1.2	(GPIO_IN)65	6.6.1	General Purpose Timers
	6.4.3	General Purpose I/O Output Value		(RST_GENERAL_TIMER) 75
		(GPIO_OUT)65	6.6.2	General Purpose Timers Reload
	6.4.4	General Purpose I/O Per Bit Set		(RST_GENERAL_TIMER_RELOA
		(GPIO_SET)66		D)
	6.4.5	General Purpose I/O Per Bit Clear	6.6.3	Watchdog Timer Control Register
		(GPIO_CLEAR)66		(RST_WATCHDOG_TIMER_CON TROL)76
	6.4.6	General Purpose I/O Interrupt	661	Watchdog Timer Register
		Enable (GPIO_INT)66	0.0.4	(RST_WATCHDOG_TIMER) 76
	6.4.7	General Purpose I/O Interrupt	665	Miscellaneous Interrupt Status
		Type (GPIO_INT_TYPE)66	0.0.0	(RST_MISC_INTERRUPT_STATUS
		General Purpose I/O Interrupt)
		Polarity (GPIO_INT_POLARITY)	6.6.6	Miscellaneous Interrupt Mask
		66		(RST_MISC_INTERRUPT_MASK)
		General Purpose I/O Interrupt		78
		Pending (GPIO_INT_PENDING) . 67	6.6.7	Global Interrupt Status
	(1 10			(RST_GLOBAL_INTERRUPT_STA
		General Purpose I/O Interrupt Mask (GPIO_INT_MASK) 67		TUS)79
		General Purpose I/O Function	6.6.8	Reset (RST_RESET)80
	0.7.11	(GPIO_FUNCTION_1)67	6.6.9	Chip Revision ID
	6412	General Purpose I/O Input Value		(RST_REVISION_ID)80
	0.7.12	(GPIO_IN_ETH_SWITCH_LED) 68	6.6.10	Bootstrap Status (BOOT_STRAP)
		/ **		81

	6.6.11	USB PHY Reset Control (USB_PHY_RESET)82	6.9.9 SLIC Mailbox Rx DMA Descriptors Base Address
6.7	GMA	C Register83	(SLIC_MBOX_DMA_RX_DESCRIP
		Ethernet Configuration	TOR_BASE)92
		(ETH_CFG)83	6.9.10 SLIC Mailbox Rx DMA Control
6.8	SLIC	Registers84	(SLIC_MBOX_DMA_RX_CONTRO
0.0		SLIC Slots Register (SLIC_SLOT) 84	L)93
		SLIC Clock Control Register	6.9.11 SLIC Mailbox Tx DMA Descriptors
	0.0.2	(SLIC_CLOCK_CONTROL)84	Base Address
	683	SLIC Control Register	(SLIC_MBOX_DMA_TX_DESCRIP TOR_BASE)93
	0.0.5	(SLIC_CTRL)85	6.9.12 SLIC Mailbox Tx DMA Control
	684	SLIC Tx Slots 1 Register	(SLIC_MBOX_DMA_TX_CONTRC
	0.0.4	(SLIC_TX_SLOTS1)85	L)94
	685	SLIC Tx Slots 2 Register	6.9.13 Mailbox FIFO Status
	0.0.5	(SLIC_TX_SLOTS2)85	(MBOX_FRAME)94
	6.8.6	SLIC Rx Slots 1 Register	6.9.14 SLIC Mailbox FIFO Status
	0.0.0	(SLIC_RX_SLOTS1)85	(SLIC_MBOX_FRAME)94
	687	SLIC Rx Slots 2 Register	6.9.15 FIFO Timeout Period
	0.0.7	(SLIC_RX_SLOTS2)86	(FIFO_TIMEOUT)95
	688	SLIC Timing Control Register	6.9.16 MBOX Related Interrupt Status
	0.0.0	(SLIC_TIMING_CTRL)86	(MBOX_INT_STATUS)95
	6.8.9	SLIC Interrupt Register	6.9.17 SLIC MBOX Related Interrupt
	0.0.7	(SLIC_INTR)86	Status
	6810	SLIC Swap Register (SLIC_SWAP)	(SLIC_MBOX_INT_STATUS) 96
	0.0.10	87	6.9.18 MBOX Related Interrupt Enables
69	MBO.	X Registers88	(MBOX_INT_ENABLE)96
0.7		Non-Destructive FIFO Status Query	6.9.19 SLIC MBOX Related Interrupt
	0.7.1	(MBOX_FIFO_STATUS)88	Enables
	692	Non-Destructive SLIC FIFO Status	(SLIC_MBOX_INT_ENABLE) 97
	0.7.2	Query	6.9.20 Reset and Clear MBOX FIFOs
		(SLIC_MBOX_FIFO_STATUS) .89	(MBOX_FIFO_RESET)97
	6.9.3	Mailbox DMA Engine Policy	6.9.21 SLIC Reset and Clear MBOX FIFOs
	0.,.0	Control (MBOX_DMA_POLICY) 89	(SLIC_MBOX_FIFO_RESET) 97
	6.9.4	SLIC Mailbox DMA Engine Policy	6.10 I ² S Registers
		Control	6.10.1 Configure Stereo Block
		(SLIC_MBOX_DMA_POLICY) . 90	(STEREO0_CONFIG)98
	6.9.5	Mailbox Rx DMA Descriptors Base	6.10.2 Set Stereo Volume
		Address	(STEREO0_VOLUME)100
		(MBOX_DMA_RX_DESCRIPTOR_	6.10.3 Tx Sample Counter
		BASE)90	(STEREO0_TX_SAMPLE_CNT_LS
	6.9.6	Mailbox Rx DMA Control	B)101
		(MBOX_DMA_RX_CONTROL) 91	6.10.4 Tx Sample Counter
	6.9.7	Mailbox Tx DMA Descriptors Base	(STEREO0_TX_SAMPLE_CNT_MS
		Address	B)101
		(MBOX_DMA_TX_DESCRIPTOR_	6.10.5 Rx Sample Counter
		BASE)	(STEREOO_RX_SAMPLE_CNT_LS
	6.9.8	Mailbox Tx DMA Control	B)101
		(MBOX_DMA_TX_CONTROL) 92	6.10.6 Stereo Clock Divider

(STEREO_CLOCK_DIV)101	(RXDP_SIZE)112
6.11 MDIO Slave Registers102	6.12.17 MAC Rx High Priority Queue
6.11.1 MDIO Handshaking Register 0	RXDP Pointer
(MDIO_HS_REG0)102	(RX_QUEUE_HP_RXDP) 112
6.11.2 MDIO Handshaking Register 1	6.12.18 MAC Rx Low Priority Queue RXDP Pointer
(MDIO_HS_REG1)102	(RX_QUEUE_LP_RXDP) 112
6.11.3 MDIO Handshaking Register 2	6.12.19 Primary Interrupt Status (ISR_P)
(MDIO_HS_REG2)103	113
6.11.4 MDIO Handshaking Register 3	6.12.20 Secondary Interrupt Status 0
(MDIO_HS_REG3)103	(ISR_S0)114
6.11.5 MDIO Handshaking Register 4 (MDIO_HS_REG4)103	6.12.21 Secondary Interrupt Status 1
6.11.6 MDIO Handshaking Register 5	(ISR_S1)114
(MDIO_HS_REG5)103	6.12.22 Secondary Interrupt Status 2
6.11.7 MDIO Handshaking Register 6	(ISR_S2)115
(MDIO_HS_REG6)104	6.12.23 Secondary Interrupt Status 3
6.11.8 MDIO Handshaking Register 7	(ISR_S3)116
(MDIO_HS_REG7)104	6.12.24 Secondary Interrupt Status 4
6.11.9 MDIO ISR Register	(ISR_S4)
(MDIO_ISR_REG)104	6.12.25 Secondary Interrupt Status 5 (ISR_S5)116
6.12 General DMA and Rx-Related Registers	6.12.26 Primary Interrupt Mask (IMR_P)
105	117
6.12.1 Command (CR)106	6.12.27 Secondary Interrupt Mask 0
6.12.2 Configuration and Status (CFG)	(IMR_S0)118
107	6.12.28 Secondary Interrupt Mask 1
6.12.3 Rx DMA Data Buffer Pointer Threshold (PVRIJEPTP, THRESH)	(IMR_S1)118
Threshold (RXBUFPTR_THRESH) 108	6.12.29 Secondary Interrupt Mask 2
6.12.4 Tx DMA Descriptor Pointer	(IMR_S2)119
Threshold (TXDPPTR_THRESH) .	6.12.30 Secondary Interrupt Mask 3
108	(IMR_S3)120
6.12.5 Maximum Interrupt Rate Threshold	6.12.31 Secondary Interrupt Mask 4 (IMR_S4)120
(MIRT)108	6.12.32 Secondary Interrupt Mask 5
6.12.6 Interrupt Global Enable (IER) .109	(IMR_S5)121
6.12.7 Tx Interrupt Mitigation Thresholds	6.12.33 Primary Interrupt Status Read and
(TIMT)109	Clear (ISR_P_RAC) 121
6.12.8 Rx Interrupt Mitigation Thresholds	6.12.34 Secondary Interrupt Status 0
(RIMT)	(ISR_S0_S)121
6.12.9 Tx Configuration (TXCFG) 110	6.12.35 Secondary Interrupt Status 1
6.12.10 Rx Configuration (RXCFG)110 6.12.11 MIB Control (MIBC)11	(ISR_S1_S)122
6.12.11 Time Control (WIDC)111 6.12.12 Timeout Prescale (TOPS)111	6.12.36 Secondary Interrupt Status 2
` ,	(ISR_S2_S)
6.12.13 Global Tx Timeout (GTT) 111	6.12.37 Secondary Interrupt Status 3
6.12.14 Global Tx Timeout Mode (GTTM) 111	(ISR_S3_S)
6.12.15 Carrier Sense Timeout (CST) . 112	6.12.38 Secondary Interrupt Status 4 (ISR_S4_S)122
6.12.16 Size of High and Low Priority	6.12.39 Secondary Interrupt Status 5
one of the or the order	o.12.07 occommany michiapi omino o

	(ISR_S5_S)122	Duration (D_GBL_IFS_EIFS) 135
6.13 OCU	Registers125	6.14.9 DCU-Global IFS Settings: Misc.
	Tx Queue Descriptor (Q_TXDP) 125	Parameters (D_GBL_IFS_MISC) 136
6.13.2		6.14.10 DCU Tx Pause Control/Status
0.10.2	QCU_STATUS_RING_START_AD	(D_TXPSE)136
	DRESS Lower 32 bits of Address	6.14.11 DCU Transmission Slot Mask
	(Q_STATUS_RING_START) 126	(D_TXSLOTMASK)137
6.13.3		6.15 Host Interface Registers 138
	QCU_STATUS_RING_END_ADD	6.15.1 Reset the Host Interface
	R Lower 32 Bits of Address (Q_STATUS_RING_END) 126	(HOST_INTF_RESET_CONTROL) 139
6.13.4	QCU_STATUS_RING_CURRENT	6.15.2 Host Timeout
	Address	(HOST_INTF_TIMEOUT) 139
	(Q_STATUS_RING_CURRENT)	6.15.3 EEPROM Control
(10 F	126	(HOST_INTF_EEPROM_CTRL)
	Tx Queue Enable (Q_TXE) 126	139
	Tx Queue Disable (Q_TXD) 127	6.15.4 MAC Silicon Revision ID
6.13.7	CBR Configuration (Q_CBRCFG)	(HOST_INTF_SREV) 139
(10 0	127	6.15.5 Synchronous Interrupt Cause
6.13.8	ReadyTime Configuration (Q_RDYTIMECFG)127	(HOST_INTF_INTR_SYNC_CAUS E)141
6 13 0	OneShotArm Set Control	6.15.6 Synchronous Interrupt Enable
0.13.9	(Q_ONESHOTARM_SC) 128	(HOST_INTF_INTR_SYNC_ENAB
6 13 1	0 OneShotArm Clear Control	LE)141
0.10.1	(Q_ONESHOTARM_CC) 128	6.15.7 Asynchronous Interrupt Mask
6.13.1	1 Misc. QCU Settings (Q_MISC) 129	(HOST_INTF_INTR_ASYNC_MAS
	2 Misc. QCU Status (Q_STS) 131	K)142
	3 ReadyTimeShutdown Status	6.15.8 Synchronous Interrupt Mask
0.20.2	(Q_RDYTIMESHDN)131	(HOST_INTF_INTR_SYNC_MASK
6.13.1	4 Descriptor CRC Check)142
	(MAC_QCU_DESC_CRC_CHK)	6.15.9 Asynchronous Interrupt Cause
	131	(HOST_INTF_INTR_ASYNC_CAU
6.14 DCU	Registers132	SE)
6.14.1	QCU Mask (D_QCUMASK) 132	6.15.10 Asynchronous Interrupt Enable (HOST_INTF_INTR_ASYNC_ENA
6.14.2	DCU-Specific IFS Settings	BLE)142
	(D_LCL_IFS)133	6.15.11 GPIO Output
6.14.3	Retry Limits (D_RETRY_LIMIT)	(HOST_INTF_GPIO_OUT) 143
	133	6.15.12 GPIO Input
6.14.4	ChannelTime Settings	(HOST_INTF_GPIO_IN) 143
	(D_CHNTIME)134	6.15.13 Host GPIO Output Enable Bits
6.14.5	Misc. DCU-Specific Settings	(HOST_INTF_GPIO_OE) 144
	(D_MISC)	6.15.14 Host GPIO Interrupt Polarity
6.14.6	DCU-Global IFS Settings: SIFS	(HOST_INTF_GPIO_INTR_POLAR
(145	Duration (D_GBL_IFS_SIFS) 135)
6.14.7	DCU-Global IFS Settings: Slot Duration (D_GBL_IFS_SLOT) 135	6.15.15 GPIO Input Enable and Value
6 14 8	DCU-Global IFS Settings: EIFS	(HOST_INTF_GPIO_INPUT_VAL UE)145
0.11.0		OD/ 17./

6.15.16 GPIO Input MUX1	6.16.1 PLL Frequency Control Signals
(HOST_INTF_GPIO_INPUT_MUX	Register152
1)146	6.16.1 RTC Reset and Force Sleep and
6.15.17 GPIO Input MUX2	Force Wakeup (RTC_RESET) . 152
(HOST_INTF_GPIO_INPUT_MUX	6.16.2 RTC Sleep Status (RTC_STATUS)
2)146	152
6.15.18 GPIO Output MUX1	6.16.3 RTC Force Derived RTC and Bypass
(HOST_INTF_GPIO_OUTPUT_MU	Derived RTC (RTC_DERIVED) 153
X1)147	6.16.4 RTC Force Wake
6.15.19 GPIO Output MUX2	(RTC_FORCE_WAKE)153
(HOST_INTF_GPIO_OUTPUT_MU	6.16.5 RTC Interrupt Cause
X2)147	(RTC_INT_CAUSE)154
6.15.20 GPIO Output MUX3	6.16.6 RTC Interrupt Cause Clear
(HOST_INTF_GPIO_OUTPUT_MU	(RTC_CAUSE_CLR) 154
X3)147	6.16.7 RTC Interrupt Enable
6.15.21 Input Values	(RTC_INT_ENABLE)155
(HOST_INTF_GPIO_INPUT_STAT	6.16.8 RTC Interrupt Mask
E)148	(RTC_INT_MASK)155
6.15.22 EEPROM Status and Read Data	6.17 MAC PCU Registers 156
(HOST_INTF_EEPROM_STS) 148	6.17.1 STA Address Lower 32 Bits
6.15.23 RFSilent-Related Registers	(MAC_PCU_STA_ADDR_L32) 159
(HOST_INTF_RFSILENT) 148	6.17.2 STA Address Upper 16 Bits
6.15.24 GPIO Pull-Up/Pull-Down	(MAC_PCU_STA_ADDR_U16) 159
(HOST_INTF_GPIO_PDPU)149	6.17.3 BSSID Lower 32 Bits
6.15.25 Synchronous Priority Interrupt	(MAC_PCU_BSSID_L32) 160
Cause	6.17.4 BSSID Upper 16 Bits
(HOST_INTF_INTR_PRIORITY_SY NC_CAUSE)149	(MAC_PCU_BSSID_U16) 160
	6.17.5 Beacon RSSI Average
6.15.26 Synchronous Priority Interrupt Enable	(MAC_PCU_BCN_RSSI_AVE) 160
(HOST_INTF_INTR_PRIORITY_SY	6.17.6 ACK and CTS Timeout
NC_ENABLE)149	(MAC_PCU_ACK_CTS_TIMEOUT
6.15.27 Asynchronous Priority Interrupt)
Mask	6.17.7 Beacon RSSI Control
(HOST_INTF_INTR_PRIORITY_A	(MAC_PCU_BCN_RSSI_CTL) 161
SYNC_MASK)150	6.17.8 Ms Counter and Rx/Tx Latency
6.15.28 Synchronous Priority Interrupt	(MAC_PCU_USEC_LATENCY)
Mask	161
(HOST_INTF_INTR_PRIORITY_SY	6.17.9 Reset TSF
NC_MASK)150	(MAC_PCU_RESET_TSF) 161
6.15.29 Asynchronous Priority Interrupt	6.17.10 Maximum CFP Duration
Cause	(MAC_PCU_MAX_CFP_DUR) 162
(HOST_INTF_INTR_PRIORITY_A	6.17.11 Rx Filter
SYNC_CAUSE)150	(MAC_PCU_RX_FILTER) 162
6.15.30 Asynchronous Priority Interrupt	6.17.12 Multicast Filter Mask Lower 32 Bits
Enable	
(HOST_INTF_INTR_PRIORITY_A	(MAC_PCU_MCAST_FILTER_L32) 163
SYNC_ENABLE)151	6.17.13 Multicast Filter Mask Upper 32 Bits
16 RTC Interface Registers151	(MAC PCU MCAST FILTER U32
	UVIAC ICO MICAJI PILILIK UJZ

) 163	(MAC_PCU_CYCLE_CNT) 168
6.17.14 Diagnostic Switches	6.17.35 Quiet Time 1
(MAC_PCU_DIAG_SW) 163	(MAC_PCU_QUIET_TIME_1) 168
6.17.15 TSF Lower 32 Bits	6.17.36 Quiet Time 2
(MAC_PCU_TSF_L32)164	(MAC_PCU_QUIET_TIME_2) 169
6.17.16 TSF Upper 32 Bits	6.17.37 QoS NoACK
(MAC_PCU_TSF_U32)164	(MAC_PCU_QOS_NO_ACK) 169
6.17.17 AES Mute Mask 0	6.17.38 PHY Error Mask
(MAC_PCU_AES_MUTE_MASK_0	(MAC_PCU_PHY_ERROR_MASK)
)164	
6.17.18 AES Mute Mask 1	6.17.39 Rx Buffer (MAC_PCU_RXBUF) .
(MAC_PCU_AES_MUTE_MASK_1	170
)165	6.17.40 QoS Control
6.17.19 Last Rx Beacon TSF	(MAC_PCU_MIC_QOS_CONTRO
(MAC_PCU_LAST_BEACON_TSF)	L)171
165	6.17.41 Michael QoS Select
6.17.20 Current NAV (MAC_PCU_NAV)	(MAC_PCU_MIC_QOS_SELECT)
165	171
6.17.21 Successful RTS Count	6.17.42 Miscellaneous Mode
(MAC_PCU_RTS_SUCCESS_CNT)	(MAC_PCU_MISC_MODE) 172
165	6.17.43 Filtered OFDM Counter
6.17.22 Failed RTS Count	(MAC_PCU_FILTER_OFDM_CNT)
(MAC_PCU_RTS_FAIL_CNT) 165	
6.17.23 FAIL ACK Count	6.17.44 Filtered CCK Counter
(MAC_PCU_ACK_FAIL_CNT) 166	(MAC_PCU_Filter_CCK_CNT) 173
6.17.24 Failed FCS Count	6.17.45 PHY Error Counter 1
(MAC_PCU_FCS_FAIL_CNT) 166	(MAC_PCU_PHY_ERR_CNT_1) .
6.17.25 Beacon Count	173
(MAC_PCU_BEACON_CNT) 166	6.17.46 PHY Error Counter 1 Mask
6.17.26 Sleep 1 (MAC_PCU_SLP1)166	(MAC_PCU_PHY_ERR_CNT_1_M
6.17.27 Sleep 2 (MAC_PCU_SLP2) 167	ASK)174
6.17.28 Address 1 Mask Lower 32 Bits	6.17.47 PHY Error Counter 2
(MAC_PCU_ADDR1_MASK_L32)	(MAC_PCU_PHY_ERR_CNT_2) .
167	174
6.17.29 Address 1 Mask Upper 16 Bits	6.17.48 PHY Error Counter 2 Mask
(MAC_PCU_ADDR1_MASK_U16)	(MAC_PCU_PHY_ERR_CNT_2_M
167	ASK)174
6.17.30 Tx Power Control	6.17.49 TSF Threshold
(MAC_PCU_TPC)167	(MAC_PCU_TSF_THRESHOLD)
6.17.31 Tx Frame Counter	175
(MAC_PCU_TX_FRAME_CNT)	6.17.50 PHY Error EIFS Mask
168	(MAC_PCU_PHY_ERROR_EIFS_
6.17.32 Rx Frame Counter	MASK) 175
(MAC_PCU_RX_FRAME_CNT)	6.17.51 PHY Error Counter 3
168	(MAC_PCU_PHY_ERR_CNT_3) .
6.17.33 Rx Clear Counter	175
(MAC_PCU_RX_CLEAR_CNT) 168	6.17.52 PHY Error Counter 3 Mask
6.17.34 Cycle Counter	(MAC_PCU_PHY_ERR_CNT_3_M ASK)175
	4 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6.17.53 Bluetooth Mode	(MAC_PCU_SLP32_MODE) 182
(MAC_PCU_BLUETOOTH_MODE	6.17.71 32 KHz Sleep Wake
)176	(MAC_PCU_SLP32_WAKE) 182
6.17.54 Bluetooth WL_LEVEL	6.17.72 32 KHz Sleep Increment
(MAC_PCU_BLUETOOTH_WL_W	(MAC_PCU_SLP32_INC) 183
EIGHTS0)176	6.17.73 Sleep MIB Sleep Count
6.17.55 MAC PCU Bluetooth Mode 2	(MAC_PCU_SLP_MIB1) 183
(MAC_PCU_BLUETOOTH_MODE	6.17.74 Sleep MIB Cycle Count
2)177	(MAC_PCU_SLP_MIB2) 183
6.17.56 MAC PCU Generic Timers 2	6.17.75 Sleep MIB Control Status
(MAC_PCU_GENERIC_TIMERS2)	(MAC_PCU_SLP_MIB3) 183
178	6.17.76 MAC PCU WoW 1
6.17.57 MAC PCU Generic Timers Mode 2	(MAC_PCU_WOW1)184
(MAC_PCU_GENERIC_TIMERS2_	6.17.77 PCU WoW 2
MODE)178	(MAC_PCU_WOW2)184
6.17.58 MAC PCU BT Coexistence WLAN	6.17.78 MAC PCU WoW Beacon Fail
Weights	Enable
(MAC_PCU_BLUETOOTH_WL_W	(MAC_PCU_WOW3_BEACON_FA
EIGHTS1)178	IL)184
6.17.59 MAC PCU BT Coexistence TSF	6.17.79 MAC PCU WoW Beacon Fail
Snapshot for BT_ACTIVE	Timeout
(MAC_PCU_BLUETOOTH_TSF_B	(MAC_PCU_WOW3_BEACON)
T_ACTIVE)178	185
6.17.60 MAC PCU BT Coexistence TSF	6.17.80 MAC PCU WoW Keep Alive
Snapshot for BT_PRIORITY	Timeout
(MAC_PCU_BLUETOOTH_TSF_B	(MAC_PCU_WOW3_KEEP_ALIVE
T_PRIORITY)179)185
6.17.61 SIFS, Tx Latency and ACK Shift	6.17.81 MAC PCU WoW Automatic Keep
(MAC_PCU_TXSIFS)179	Alive Disable
6.17.62 MAC PCU Bluetooth Mode 3	(MAC_PCU_WOW_KA) 185
(MAC_PCU_BLUETOOTH_MODE	6.17.82 Exact Length and Offset
3)179	Requirement Flag for WoW
6.17.63 TXOP for Non-QoS Frames	Patterns (WOW_EXACT) 185
(MAC_PCU_TXOP_X)180	6.17.83 WoW Offset 1 (PCU_WOW4) 186
6.17.64 TXOP for TID 0 to 3	6.17.84 WoW Offset 2 (PCU_WOW5) 186
(MAC_PCU_TXOP_0_3)180	6.17.85 Global Mode
6.17.65 TXOP for TID 4 to 7	(MAC_PCU_20_40_MODE) 186
(MAC_PCU_TXOP_4_7)180	6.17.86 Difference RX_CLEAR Counter
6.17.66 TXOP for TID 8 to 11	(MAC_PCU_RX_CLEAR_DIFF_C
(MAC_PCU_TXOP_8_11) 181	NT)186
6.17.67 TXOP for TID 0 to 3	6.17.87 Control Registers for Block BA
(MAC_PCU_TXOP_12_15) 181	Control Fields
6.17.68 Generic Timers	(MAC_PCU_BA_BAR_CONTROL)
(MAC_PCU_GENERIC_TIMERS[0:	187
15])181	6.17.88 Legacy PLCP Spoof
6.17.69 Generic Timers Mode	(MAC_PCU_LEGACY_PLCP_SPO
(MAC_PCU_GENERIC_TIMERS_	OF)187
MODE)182	6.17.89 PHY Error Mask and EIFS Mask
6.17.70 32 KHz Sleep Mode	(MAC PCU PHY ERROR MASK

_CONT)187	EIGHTS2)192
6.17.90 Tx Timer	6.17.107 MAC PCU BT Coexistence BT
(MAC_PCU_TX_TIMER) 188	Weights 3
6.17.91 MAC PCU WoW 6	(MAC_PCU_BLUETOOTH_BT_W
(MAC_PCU_WOW6)188	EIGHTS3)192
6.17.92 MAC PCU WoW 5	6.17.108 Hardware Beacon Processing 1
(MAC_PCU_WOW5)188	(MAC_PCU_HW_BCN_PROC1) .
6.17.93 Length of Pattern Match for	193
Pattern 0	6.17.109 Hardware Beacon Processing 2
(MAC_PCU_WOW_LENGTH1)	(MAC_PCU_HW_BCN_PROC2) .
188	193
6.17.94 Length of Pattern Match for	6.17.110 Key Cache
Pattern 1	(MAC_PCU_KEY_CACHE[0:1023])
(MAC_PCU_WOW_LENGTH2)	
189	6.18 Ethernet Registers
6.17.95 Enable Control for Pattern Match	6.18.1 MAC Configuration 1 198
Feature of WOW	6.18.2 MAC Configuration 2 199
(WOW_PATTERN_MATCH_LESS	6.18.3 IPG/IFG200
_THAN_256_BYTES)189	6.18.4 Half-Duplex200
6.17.96 PCU WoW 4	6.18.5 Maximum Frame Length 201
(MAC_PCU_WOW4)189	6.18.6 MII Configuration
6.17.97 Exact Length and Offset	6.18.7 MII Command
Requirement Flag for WoW Patterns (WOW2_EXACT) 189	6.18.8 MII Address
	6.18.9 MII Control
6.17.98 WoW Offset 2 (PCU_WOW6) 190	6.18.10 MII Status
6.17.99 WoW Offset 3 (PCU_WOW7) 190	
6.17.100 Length of Pattern Match for	6.18.11 MII Indicators
Pattern 0 (MAC_PCU_WOW_LENGTH3)	6.18.12 Interface Control
190	6.18.13 Interface Status
6.17.101 Length of Pattern Match for	6.18.14 STA Address 1205
Pattern 0	6.18.15 STA Address 2 206
(MAC_PCU_WOW_LENGTH4)	6.18.16 ETH Configuration 0 206
190	6.18.17 ETH Configuration 1206
6.17.102 TID Value Access Category	6.18.18 ETH Configuration 2207
(MAC_PCU_TID_TO_AC) 191	6.18.19 ETH Configuration 3 207
6.17.103 High Priority Queue Control	6.18.20 ETH Configuration 4 208
(MAC_PCU_HP_QUEUE) 191	6.18.21 ETH Configuration 5 209
6.17.104 MAC PCU BT Coexistence BT	6.18.22 Tx/Rx 64 Byte Frame Counter
Weights 0	(TR64)209
(MAC_PCU_BLUETOOTH_BT_W	6.18.23 Tx/Rx 65-127 Byte Frame Counter
EIGHTS0)192	(TR127)209
6.17.105 MAC PCU BT Coexistence BT	6.18.24 Tx/Rx 128-255 Byte Frame
Weights 1	Counter (TR255)209
(MAC_PCU_BLUETOOTH_BT_W	6.18.25 Tx/Rx 256-511 Byte Frame
EIGHTS1)192	Counter (TR511)210
6.17.106 MAC PCU BT Coexistence BT	6.18.26 Tx/Rx 512-1023 Byte Frame
Weights 2	Counter (TR1K)210
IMIAC PCII BILIBICICII HI BI W	

6.18.27 Tx/Rx 1024-1518 Byte Frame	Counter (TEDF)216
Counter (TRMAX)210	6.18.53 Transmit Single Collision Packet
6.18.28 Tx/Rx 1519-1522 Byte VLAN	Counter (TSCL)217
Frame Counter (TRMGV)210	6.18.54 Transmit Multiple Collision Packet
6.18.29 Receive Byte Counter (RYBT) 211	(TMCL)217
6.18.30 Receive Packet Counter (RPKT) .	6.18.55 Transmit Late Collision Packet
211	Counter (TLCL)217
6.18.31 Receive FCS Error Counter (RFCS)	6.18.56 Transmit Excessive Collision
211	Packet Counter (TXCL)217
6.18.32 Receive Multicast Packet Counter	6.18.57 Transmit Total Collision Counter
(RMCA)211	(TNCL)218
6.18.33 Receive Broadcast Packet Counter	6.18.58 Transmit Pause Frames Honored
(RBCA)212	Counter (TPFH)218
6.18.34 Receive Control Frame Packet	6.18.59 Transmit Drop Frame Counter
Counter (RXCF)212	(TDRP)218
6.18.35 Receive Pause Frame Packet	6.18.60 Transmit Jabber Frame Counter
Counter (RXPF)212	(TJBR)218
6.18.36 Receive Unknown OPCode Packet	6.18.61 Transmit FCS Error Counter
Counter (RXUO)212	(TFCS)219
6.18.37 Receive Alignment Error Counter	6.18.62 Transmit Control Frame Counter
(RALN)213	(TXCF)219
6.18.38 Receive Frame Length Error	6.18.63 Transmit Oversize Frame Counter
Counter (RFLR)213	(TOVR)219
6.18.39 Receive Code Error Counter	6.18.64 Transmit Undersize Frame
(RCDE)213	Counter (TUND)219
6.18.40 Receive Carrier Sense Error	6.18.65 Transmit Fragment Counter
Counter (RCSE)213	(TFRG)220
6.18.41 Receive Undersize Packet Counter	6.18.66 Carry Register 1 (CAR1) 220
(RUND)214	6.18.67 Carry Register 2 (CAR2) 221
6.18.42 Receive Oversize Packet Counter	6.18.68 Carry Mask Register 1 (CAM1)
(ROVR)214	222
6.18.43 Receive Fragments Counter	6.18.69 Carry Mask Register 2 (CAM2)
(RFRG)214	223
6.18.44 Receive Jabber Counter (RJBR) 214	6.18.70 DMA Transfer Control for Queue 0
6.18.45 Receive Dropped Packet Counter	(DMATXCNTRL_Q0)223
(RDRP)215	6.18.71 Descriptor Address for Queue 0 Tx
6.18.46 Transmit Byte Counter (TBYT) 215	(DMATXDESCR_Q0)224
6.18.47 Transmit Packet Counter (TPKT)	6.18.72 Transmit Status
215	(DMATXSTATUS)224
6.18.48 Transmit Multicast Packet Counter	6.18.73 Receive Control (DMARXCTRL)
(TMCA)215	224
6.18.49 Transmit Broadcast Packet	6.18.74 Pointer to Receive Descriptor
Counter (TBCA)216	(DMARXDESCR)225
6.18.50 Transmit Pause Control Frame	6.18.75 Receive Status (DMARXSTATUS)
Counter (TXPF)216	225
6.18.51 Transmit Deferral Packet Counter	6.18.76 Interrupt Mask
(TDFR)216	(DMAINTRMASK) 226
6.18.52 Transmit Excessive Deferral Packet	6.18.77 Interrupts (DMAINTERRUPT) 227

6.18.78 Ethernet Tx FIFO Throughput	6.19.14 Host Control Capability
(ETH_TXFIFO_TH)228	Parameters (HCCPARAMS) 238
6.18.79 Current Tx and Rx FIFO Depth (ETH_XFIFO_DEPTH)228	6.19.15 Device Interface Version Number (DCIVERSION)238
6.18.80 Ethernet Rx FIFO Threshold	6.19.16 Device Control Capability
(ETH_RXFIFO_TH)228	Parameters (DCCPARAMS) 239
6.18.81 Ethernet Free Timer229	6.19.17 USB Command (USBCMD) 239
6.18.82 DMA Transfer Control for Queue 1	6.19.18 USB Status (USBSTS)242
(DMATXCNTRL_Q1)229	6.19.19 USB Interrupt Enable (USBINTR)
6.18.83 Descriptor Address for Queue 1 Tx	244
(DMATXDESCR_Q1)229	6.19.20 USB Frame Index (FRINDEX) 246
6.18.84 DMA Transfer Control for Queue 2	6.19.21 Frame List Base Address
(DMATXCNTRL_Q2)229	(PERIODICLISTBASE)247
6.18.85 Descriptor Address for Queue 2 Tx	6.19.22 USB Device Address
(DMATXDESCR_Q2)230	(DEVICEADDR)247
6.18.86 DMA Transfer Control for Queue 3	6.19.23 Next Asynchronous List Address
(DMATXCNTRL_Q3)230	(ASYNCLISTADDR)247
6.18.87 Descriptor Address for Queue 3 Tx	6.19.24 Address at Endpointlist in
(DMATXDESCR_Q3)230	Memory
6.18.88 DMA Transfer Arbitration	(ENEDPOINTLIST_ADDR) 248
Configuration (DMATXARBCFG)	6.19.25 TT Status and Control (TTCTRL)
230	248
6.19 USB Controller Registers231	6.19.26 Programmable Burst Size
6.19.1 Identification (ID)233	(BURSTSIZE)248
6.19.2 General Hardware Parameters	6.19.27 Host Tx Pre-Buffer Packet Tuning
(HWGENERAL)233	(TXFILLTUNING)249
6.19.3 Host Hardware Parameters	6.19.28 Endpoint NAK (ENDPTNAK) 250
(HWHOST)233	6.19.29 Endpoint NAK Enable
6.19.4 Device Hardware Parameters	(ENDPTNAKEN)250
(HWDEVICE)234	6.19.30 Configured Flag (CONFIGFLAG)
6.19.5 Tx Buffer Hardware Parameters	251
(HWTXBUF)234	6.19.31 Port/Status Control (PORTSC0)
6.19.6 Rx Buffer Hardware Parameters	251
(HWRXBUF)234	6.19.32 USB Mode (USBMODE) 255
6.19.7 General Purpose Timer 0 Load	6.19.33 Endpoint Setup Status
(GPTIMEROLD)234	(ENDPTSETUPSTAT)256
6.19.8 General Purpose Timer 0 Control	6.19.34 Endpoint Initialization
(GPTIMEROCTRL)235	(ENDPTPRIME)257
6.19.9 General Purpose Timer 1 Load	6.19.35 Endpoint De-Initialization
(GPTIMER1LD)235	(ENDPTFLUSH)257
6.19.10 General Purpose Timer 1 Control	6.19.36 Endpoint Status
(GPTIMER1CTRL)236	(ENDPTSTATUS)258
6.19.11 Capability Register Length	6.19.37 Endpoint Complete
(CAPLENGTH)236	(ENDPTCOMPLETE)
6.19.12 Host Interface Version Number (HCIVERSION)236	6.19.38 Endpoint Control 0 (ENDPTCTRL0)259
6.19.13 Host Control Structural	
Parameters (HCSPARAMS) 237	6.19.39 Endpoint Control 1 (ENDPTCTRL1)260
1 4141110 (010 (11001 / 111/ 111/ 111/) 40/	\X 1 X 1 _ 1 X 1 X 1 4UU

6.20 Serial Flash Registers261	6.22.14 IP Priority Mapping 0 289
6.20.1 SPI Function Select	6.22.15 IP Priority Mapping 1 290
(SPI_FUNC_SELECT)261	6.22.16 IP Priority Mapping 2 290
6.20.2 SPI Control (SPI_CONTROL) .261	6.22.17 IP Priority Mapping 3 291
6.20.3 SPI I/O Control	6.22.18 Tag Priority Mapping 291
(SPI_IO_CONTROL)261	6.22.19 Service Tag292
6.20.4 SPI Read Data (SPI_READ_DATA)	6.22.20 CPU Port292
261	6.22.21 MIB Function0292
6.21 PHY Control Registers262	6.22.22 MDIO Control293
6.21.1 Control Register263	6.23 Port Control Registers294
6.21.2 Status Register	6.23.1 Port Status294
6.21.3 PHY Identifier266	6.23.2 Port Control295
6.21.4 PHY Identifier 2	6.23.3 Port Base VLAN296
6.21.5 Auto-negotiation Advertisement	6.23.4 Rate Limit297
Register267 6.21.6 Link Partner Ability Register 269	6.23.5 Priority Control298
6.21.7 Auto-negotiation Expansion	6.23.6 Storm Control298
Register270	6.23.7 Queue Control299
6.21.8 Next Page Transmit Register 271	6.23.8 Rate Limit Register 1 300
6.21.9 Link Partner Next Page Register	6.23.9 Rate Limit Register 2301
272	6.23.10 Statistics Counters301
6.21.10 Function Control Register 273	7 Electrical Characteristics305
6.21.11 PHY Specific Status Register .274	7.1 Absolute Maximum Ratings305
6.21.12 Interrupt Enable Register 275	7.2 Recommended Operating Conditions 305
6.21.13 Interrupt Status Register 277	7.3 25/40 MHz Clock Characteristics 306
6.21.14 Smart Speed Register	
6.21.15 Receive Error Counter Register 279	7.4 GPIO Characteristics
6.21.16 Virtual Cable Tester Control	7.5 Power On Sequence
Register279	7.6 SPI Flash Timing308
6.21.17 Virtual Cable Tester Status	7.7 DDR Output Timing309
Register280	7.8 Radio Receiver Characteristics 310
6.22 Global Control Registers282	7.9 Radio Transmitter Characteristics 311
6.22.1 Global Mask Control282	7.10 Synthesizer Characteristics 312
6.22.2 Global Interrupt283	7.11 Power Consumption Parameters 312
6.22.3 Global Interrupt Mask284	, , , , , , , , , , , , , , , , , , ,
6.22.4 Global MAC Address 1284	8 Package Dimensions313
6.22.5 Global MAC Address 2285	
6.22.6 Flood Mask285	9 Ordering Information317
6.22.7 Global Control286	
6.22.8 VLAN Table Function 0 286	
6.22.9 VLAN Table Function 1 287	
6.22.10 Address Table Function 0 287	
6.22.11 Address Table Function 1 288	
6.22.12 Address Table Function 2 288	
6.22.13 Address Table Control289	

1. Pin Descriptions

This section contains both a package pinout (see Table 1-2 through Table 1-2) and tabular listings of the signal descriptions.

The following nomenclature is used for signal names:

- NC No connection should be made to this pin
- At the end of the signal name, _L indicates active low signals
- P At the end of the signal name, indicates the positive side of a differential signal
- N At the end of the signal name indicates the negative side of a differential signal

The following nomenclature is used for signal types:

- IA Analog input signal
- Ι Digital input signal
- ΙH Input signals with weak internal pull-up, to prevent signals from floating when left open
- ILInput signals with weak internal pull-down, to prevent signals from floating when left open
- I/O A digital bidirectional signal
- OA An analog output signal
- O A digital output signal
- P A power or ground signal

Figure 1-1 shows the AR9331 pinout. Refer also to "Package Dimensions" on page 313.

Figure 1-1. Dual-Row LPCC-148 Package Pinout (See-Through Top View)

Table 1-1 shows the AR9331 multiplexed pins.

Table 1-1. Multiplexed Pins

Pin	GPIO Pin	JTAG Pin	LED Pin	SPDIF/I ² S Pin	SPI Pin	UART Pin	Other
A78	GPIO0		LED0				
A77	GPIO1		LED1				
B49	GPIO2				SPI_CS_0		
B51	GPIO3				SPI_CLK		
B50	GPIO4				SPI_MOSI		
A57	GPIO5				SPI_MISO		
B46	GPIO6	JTAG_TDI		I2S_CK			
A54	GPIO7	JTAG_TDO		I2S_WS			
A52	GPIO8	JTAG_TMS		I2S_SD			
B68	GPIO9				SPI_CS_1	UART_SIN	
A79	GPIO10				SPI_CS_2	UART_SOUT	
B48	GPIO11			I2S_MCK		UART_RTS	JS
A56	GPIO12			I2S_MICIN		UART_CTS	RESET_ SWITCH
B66	GPIO13		LED2				
A76	GPIO14		LED3				
B65	GPIO15		LED4				
A75	GPIO16		LED5				
B64	GPIO17		LED6				
A28	GPIO18			I2S_CK	SLIC_CLK		
B23	GPIO19			I2S_WS	SLIC_FS_OUT		
A27	GPIO20			I2S_SD	SLIC_FS_IN		
B25	GPIO21			I2S_MCK	SLIC_DATA_OUT		
B24	GPIO22			I2S_MICIN	SLIC_DATA_IN		
B22	GPIO23			SPDIF_OUT			
A51	GPIO26		LED8				
B44	GPIO27		LED7				
A74	GPIO28						XLNA

Table 1-2 provides the signal-to-pin relationship information for the AR9331.

Table 1-2. Signal to Pin Relationships and Descriptions

Signal Name	Pin	Туре	Description	
General	-	-11		
RESET_L	A72	I	External power on reset	
XTALI	A73	I	40 MHz or 25 MHz crystal	
XTALO	B63	О		
Radio	-	*		
RFIN1P	A65	IA	The first differential RF inputs	
RFIN1N	A64	IA		
RFIN2P	A68	IA	The second differential RF inputs	
RFIN2N	A69	IA		
RFOUTP	A63	OA	Differential RF outputs	
RFOUTN	A62	OA		
Analog Interface		-1		
BIASREF	B59	IA	Bias voltage for internal PA	
XPABIAS	B54	OA	Bias for optional external power amplifier	
External Switch Cor	ntrol	-		
ANTA	B52	О	External RF switch control	
ANTB	A59	0		
ANTC	A60	0	_	
ANTD	B53	O	-	
External Memory Ir				
DDR_A_O	A4	О	12-bit external memory address bus	
DDR_A_1	B2	0		
DDR_A_2	A3	0	_	
DDR_A_3	B76	O	_	
DDR_A_4	A80	O	-	
DDR_A_5	B70	О		
DDR_A_6	A81	О	-	
DDR_A_7	A82	О		
DDR_A_8	B72	О	-	
DDR_A_9	A83	О	1	
DDR_A_10	В3	О		
DDR_A_11	B73	О		
DDR_A_12	B74	О	1	
DDR_BA_0	A6	О	2-bit bank address to indicate which bank chip is accessing	
DDR_BA_1	B4	О]	
DDR_CKE	A85	О	Deactivates the external memory clock when the signal is high	
DDR_CK_P	B75	О	CK_P and CK_N are differential clock inputs. All address and	
DDR_CK_N	A86	О	control signals timing are related to the crossing of the positive edge of CK_P and the negative edge of CK_N.	
DDR_CS_L	B5	О	External memory chip select signal, active low	
DDR_CAS_L	В6	О	When this signal is asserted, it indicates the address is a column address. Active when the signal is low.	

Table 1-2. Signal to Pin Relationships and Descriptions (continued)

Signal Name	Pin	Type	Description	
DDR_RAS_L	A7	О	When this signal is asserted, it indicates the address is a row address. Active when the signal is low.	
DDR_DATA_0	B12	I/O	16-bit external memory data bus	
DDR_DATA_1	A13	I/O		
DDR_DATA_2	B11	I/O		
DDR_DATA_3	B10	I/O		
DDR_DATA_4	A11	I/O		
DDR_DATA_5	В9	I/O		
DDR_DATA_6	A10	I/O		
DDR_DATA_7	B8	I/O		
DDR_DATA_8	B14	I/O		
DDR_DATA_9	A16	I/O		
DDR_DATA_10	B15	I/O		
DDR_DATA_11	A17	I/O		
DDR_DATA_12	B16	I/O	-	
DDR_DATA_13	A18	I/O		
DDR_DATA_14	B17	I/O		
DDR_DATA_15	B18	I/O	-	
DDR_DQM_0	В7	О	DDR data mask for low byte data	
DDR_DQM_1	A14	О	DDR data mask for high byte data	
DDR_DQS_0	A9	I/O	DDR data strobe for low byte data	
DDR_DQS_1	A15	I/O	DDR data strobe for high byte data When this signal is asserted, it indicates that the following transaction is write. Active when the signal is low.	
DDR_WE_L	A8	О		
Ethernet Switch				
TX_P0	A42	OA	Ethernet port 0 transmit pair	
TX_N0	B38	OA		
RX_P0	A41	IA	Ethernet port 0 receive pair	
RX_N0	B37	IA	-	
TX_P1	B34	OA	Ethernet port 1 transmit pair	
TX_N1	A39	OA		
RX_P1	B35	IA	Ethernet port 1 receive pair	
RX_N1	A40	IA		
TX_P2	A37	OA	Ethernet port 2 transmit pair	
TX_N2	B33	OA		
RX_P2	A36	IA	Ethernet port 2 receive pair	
RX_N2	B32	IA		
TX_P3	B29	OA	Ethernet port 3 transmit pair	
TX_N3	A34	OA	_	
RX_P3	B30	IA	Ethernet port 3 receive pair	
RX_N3	A35	IA	-	
TX_P4	A32	OA	Ethernet port 4 transmit pair	
TX_N4	B28	OA	- re	
RX_P4	A31	IA	Ethernet port 4 receive pair	
RX_N4	B27	IA		

Table 1-2. Signal to Pin Relationships and Descriptions (continued)

Signal Name	Pin	Туре	Description
GPI0			
GPIO0 ^[1]	A78	I/O	GPIO multiplexed pin; see Table 1-1
GPIO1 ^[1]	A77	I/O	1
GPIO2 ^[1]	B49	I/O	
GPIO3 ^[1]	B51	I/O	
GPIO4 ^[1]	B50	I/O	
GPIO5 ^[1]	A57	I/O	
GPIO6 ^[1]	B46	I/O	
GPIO7 ^[1]	A54	I/O	
GPIO8 ^[1]	A52	I/O	
GPIO9 ^[1]	B68	I/O	
GPIO10 ^[1]	A79	I/O	
GPIO11 ^[1]	B48	I/O	
GPIO12 ^[1]	A56	I/O	
GPIO13 ^[1]	B66	I/O	
GPIO14 ^[1]	A76	I/O	
GPIO15 ^[1]	B65	I/O	
GPIO16 ^[1]	A75	I/O	
GPIO17 ^[1]	B64	I/O	
GPIO18 ^[1]	A28	I/O	
GPIO19 ^[1]	B23	I/O	
GPIO20 ^[1]	A27	I/O	
GPIO21 ^[1]	B25	I/O	
GPIO22 ^[1]	B24	I/O	
GPIO23 ^[1]	B22	I/O	
GPIO24	A29	I/O	
GPIO26 ^[1]	A51	I/O	
GPIO27 ^[1]	B44	I/O	
GPIO28 ^[1]	A74	I/O	
JTAG			
JTAG_TCK	A53	I	JTAG clock
JTAG_TDI ^[1]	B46	I	JTAG data input
JTAG_TDO ^[1]	A54	0	JTAG data output
JTAG_TMS ^[1]	A52	I	JTAG mode select
LED	T	1	
LED0 ^[1]	A78	OD	WLAN LED1
LED1 ^[1]	A77	OD	WLAN LED2
LED2 ^[1]	B66	OD	Ethernet switch LED1

Table 1-2. Signal to Pin Relationships and Descriptions (continued)

Signal Name	Pin	Туре	Description		
LED3 ^[1]	A76	OD	Ethernet switch LED2		
LED4 ^[1]	B65	OD	Ethernet switch LED3		
LED5 ^[1]	A75	OD	Ethernet switch LED4		
LED6 ^[1]	B64	OD	Ethernet switch LED5		
LED7 ^[1]	B44	OD	LED		
LED8 ^[1]	A51	OD	LED		
I ² S/SPDIF					
I2S_CK ^[1]	A28, B46	О	Stereo clock		
I2S_MCK ^[1]	B25, B48	О	Master clock		
I2S_MICIN ^[1]	A56, B24	I	Data input		
I2S_SD ^[1]	A27, A52	I/O	Serial data input/output		
I2S_WS ^[1]	A54, B23	О	Word select for stereo		
			0 Left		
- Fall	Daa		1 Right		
SPDIF_OUT ^[1]	B22	О	Speaker output		
Serial Interface					
SPI_CLK ^[1]	B51	О	SPI serial interface clock		
SPI_CS_0 ^[1]	B49	О	SPI chip select		
SPI_CS_1 ^[1]	B68	О			
SPI_CS_2 ^[1]	A79	O			
SPI_MISO ^[1]	A57	O	Data transmission from the AR9331 to an external device. On reset, SPI_MOSI (GPIO_4) is input and SPI_MISO (GPIO_5) is output so it can directly interface with a SPI device such as a serial flash. If a serial flash is not used, these pins may be used as GPIO pins.		
SPI_MOSI ^[1]	B50	IL	Data transmission from an external device to the AR9331. On reset, SPI_MOSI (GPIO_4) is input and SPI_MISO (GPIO_5) is output so it can directly interface with a SPI device such as a serial flash. If a serial flash is not used, these pins may be used as GPIO pins.		
SLIC					
SLIC_CLK ^[1]	A28	О	SLIC clock		
SLIC_FS_OUT ^[1]	B23	О	Frame sync out		
SLIC_FS_IN ^[1]	A27	I	Frame sync in		
SLIC_DATA_OUT ^[1]	B25	О	Data transmitted from the AR9331 to the SLIC		
SLIC_DATA_IN ^[1]	B24	I	Data transmitted from the SLIC to the AR9331		
UART					
UART_CTS ^[1]	A56	I	UART clear to send signal		
UART_RTS ^[1]	B48	О	UART ready to send signal (optional UART interface pin)		
UART_SIN ^[1]	B68	I	Serial data in		
UART_SOUT ^[1]	A79	О	Serial data out		

Table 1-2. Signal to Pin Relationships and Descriptions (continued)

Signal Name	Pin	Туре	Description	
USB				
USB_DM	A50	IA/OA	USB D- signal; carries USB data to and from the USB 2.0 PHY	
USB_DP	B43 IA/OA USB D+ signal; carries USB data to and from the USB 2.0 PF		USB D+ signal; carries USB data to and from the USB 2.0 PHY	
Miscellaneous	Miscellaneous			
JS ^[1]	B48	I/O	Multiplexed function for Jumpstart	
RESET_SWITCH ^[1]	A56	I/O	For an external push button switch; resets the firmware to its default configuration when pushed	

[1]This pin is multiplexed. See Table 1-1 on page 15.

Signal Name	Pin	Description
Power		
AVDD20	A48	Regulated 2.0 V power supply; connects to the external PNP collector.
CTRL20	B41	External PNP control. Connects to the Base of an external PNP, Collector to AVDD20, and Emitter to VDD33.
LDO_OUT	A20	External power supply. This pin can be configured to have an output between 1.8 V and 3.0 V, and supply the DDRIO and external memory.
LDO25_OUT	A49	2.62 V power output for digital IO.
RBIAS	A47	Connect to 2.43 K Ω ±1% resistor to ground
SW_REG_OUT	A25	1.2 V switching regulator output
VDD12	A5, B13, A26, B26, B31, B36, B40, B47, A58, B69	1.2 V power supply for digital Ethernet switch
VDD12_BB	A61	Analog 1.2 V power supply
VDD12_PLL	A71	
VDD12_PMU	B21	
VDD12_RF	B56	
VDD12_SYNTH	A70	
VDD12_USB	B45	
VDD25	A30, A33, A38, B39, A55, B67	Power for digital Ethernet switch
VDD33	B19, B20, B42	3.3 V power supply
VDD33_PLL	B61	Analog 3.3 V power supply
VDD33_RF	B55	
VDD33_SYNTH	B60	
VDD33_XTAL	B62	
VDD_DDR	B1, A12, A19, B71, A84	External memory power supply
Ground		
GND	_	Exposed ground pad (see "Package Dimensions" on page 313)

2. Functional Description

Figure 2-1 illustrates the AR9331 functional block diagram.

Figure 2-1. AR9331 Functional Block Diagram

Table 2-1 summarizes the functional blocks that comprise the AR9331.

Table 2-1. Functional Block Descriptions

Block	Description
CPU	This MIPS 24 K processor can run up to 400 MHz. It includes a 4-way set associative instruction cache, 4-way set associative data cache, single cycle multiply-accumulate, and MIPS32 and MIPS16 instruction sets. Non-blocking cache reads are also supported.
Memory Controller	The AR9331 has two external memory interfaces. They consist of a 16-bit DDR1/ DDR2 or SDRAM memory interface supporting up to 400 Mbps/pin, and an SPI NOR type flash. The AR9331 also contains internal RAM.
Fast Ethernet Switch	The AR9331 supports four LAN ports and one WAN port with integrated PHY. LED indication for each port is supported. The four LAN ports connect to the CPU through a GMII interface, and four Tx queue priorities are supported in each LAN port. The WAN port can be configured to connect to the CPU using a dedicated MII interface. The MII interface can support up to four priority queues, with either simple priority or a weighted round robin arbitration mechanism. Switch functions such as QoS and VLAN are supported.
GPIO	28 multiplexed GPIO pins can be used as UART, SPI flash interface, JTAG and I ² S/SPDIF-out audio interface
I ² S/SPDIF	 I²S/SPDIF out audio interface that support up to 48 KHz sampling clock and a serial clock of more than 512 * sampling frequency. It also supports seamless switching of the audio out stream from I²S to SPDIF. I²S MIC is also supported. Can generate serial clock for various sampling frequencies.

Table 2-1. Functional Block Descriptions (continued)

SLIC	A SLIC interface with support for:
	■ Both master and slave modes
	■ Configurable number of active slots
	■ Internal or external frame sync modes
	■ Supports various frame sync widths; half-bit clock width, one-bit clock width, etc.
	■ Delayed/non-delayed data modes
	■ Both internal and external bit clock; the internal clock frequency is programmable
	■ VOIP applications
	■ Both Rx and Tx on different (configurable slots)
SPI	SPI interface that can be used for serial Flash
USB	Universal Serial Bus 2.0 interface supports host/device mode
Wireless MAC/BB/ Radio	Integrated 2.4 GHz 802.11n 1x1 MAC/baseband/radio and RF front end

2.1 MIPS Processor

The AR9331 integrates an embedded MIPS 24Kc processor. For complete information on the 24Kc processor, visit:

http://www.mips.com/products/cores/32bit_cores/MIPS32_24K_Family.php#

Under Processor Cores-24K Family, refer to:

- MIPS32 24Kc Processor Core Datasheet v3.04
- MIPS32 24Kc Processor Core Family Software User's Manual v3.05

Under EJTAG, refer to:

■ EJTAG Specification v2.60

2.2 Configuration

Table 2-2 summarizes the configuration settings used by the AR9331. Upon reset, the CPU puts out an address of 0xBFC00000 which is mapped to the flash address space or internal ROM code, using an external pull up/down register to choose if the AR9331 will boot from the Flash or internal ROM.

The AR9331 processor supports a clock frequency of up to 400 MHz.

Table 2-2. Core Processor Configuration Settings

Setting	Description
Cache Size	The AR9331 implements a 4-way set associative instruction cache and a four-way set associative data cache. It supports single cycle multiply-accumulate, MIPS32 and MIPS16 instruction sets and non-blocking cached reads.
Endian	The AR9331 implements big Endian addressing.
Block Addressing	The AR9331 implements sequential ordering.

2.3 AR9331 Address MAP

The address space for the AR9331 is divided into three regions. The first region maps to the DDR memory. The second region maps to the APB registers and the third region maps to the AHB registers. Figure 2-2 shows the address space allocation.

Figure 2-2. Address Space Allocation

2.4 AHB Master Bus

Some AHB masters are connected to the internal DDR AHB master interface, such as USB, GE0, GE1 WLAN, MAC, etc. The AHB master bus modules each include a DMA to move data, like the descriptors prepared by the CPU, between the AHB masters and the external memory.

2.5 APB Bridge

One 16 MByte window of the AHB address space is devoted to an APB device mapper. The APB space contains the register address spaces of most of the interfaces, including serial flash, GPIO, and UART. This space also provides access to the watchdog timer and four general purpose timers.

2.6 DDR Memory Controller

The AR9331 supports a 16-bit DDR memory interface of up to 64 MBytes of memory in a single device. It supports one dedicated point-to-point interface for the CPU and similarly

dedicated point-to-point interfaces for the CPU, USB, Ethernet. Write transactions are buffered at each interface. It implements separate arbitration for each bank thus allowing efficient pipelined RAS/CAS/precharge scheduling.

The DDR block has five AHB-slave interfaces for: GE0, GE1, USB, WLAN, and CPU. External DDR is powered by the AR9331 using an external power transistor.

Table 2-3 shows the DDR configurations.

Table 2-3. DDR Configurations

Device Type/Total Cap.	Device Count	Device Type
64 Mbits (4 M x 16)	1	DDR1
128 Mbits (8 M x 16)	1	DDR1
256 Mbits (16 M x 16)	1	DDR1
512 Mbits (32 M x 16)	1	DDR1
256 Mbits (16 M x 16)	1	DDR2
512 Mbits (32 M x 16)	1	DDR2

Table 2-4 shows the correspondence of the internal CPU address, the DDR interface address, and the physical memory address.

Table 2-4. Address Mapping

CPU Address Bit	AR9331 DDR Interface Address	Corresponding 16-bit DDR Memory Address ^[1]	
0	DDR_A_0, Unused (x16 DRAM)		
1	DDR_A_1	CAS0	
2	DDR_A_2	CAS1	
3	DDR_A_3	CAS2	
4	DDR_A_4	CAS3	
5	DDR_A_5	CAS4	
6	DDR_A_6	CAS5	
7	DDR_A_7	CAS6	
8	DDR_A_8	CAS7	
9	DDR_A_9	CAS8	
10	DDR_A_0	RAS0	
11	DDR_BA_0	BA0	
12	DDR_BA_1	BA1	
13	DDR_A_1	RAS1	
14	DDR_A_2	RAS2	
15	DDR_A_3	RAS3	
16	DDR_A_4	RAS4	
17	DDR_A_5	RAS5	
18	DDR_A_6	RAS6	
19	DDR_A_7	RAS7	
20	DDR_A_8	RAS8	
21	DDR_A_9	RAS9	
22	DDR_A_10	RAS10	
23	DDR_A_11	RAS11	
24	DDR_A_12	RAS12	
25	DDR_A_11	CAS9	
26	DDR_A_12	CAS11	

[1]CAS10 is a precharge bit, typically 0.

2.7 Serial Flash (SPI)

The single SPI chip select is dedicated to an external flash to boot the chip. Two configurable chip selects are available to bitbang using GPIOs that configure external components. As an AHB slave, the SPI controller only supports word transactions. Because serial flash supports cached reads (but not cached writes) functionality, the CPU must perform uncached write, but a read can be accelerated by performing cached reads. By default, the REMAP_DISABLE bit is zero

which only 4 MBytes are accessible. By setting this bit to 1, up to 16 MBytes of flash space can be accessed.

2.8 *UART*

The AR9331 contains a single 16550 equivalent UART port for debug/console. The UART pins are multiplexed with GPIO pins, therefore the "General Purpose I/O Function (GPIO_FUNCTION_1)" on page 67 denote which register bits control the GPIO pins that are used for UART functions.

2.9 GEO and GE1

The AR9331 integrates two GB Ethernet MACs that are connected to the Ethernet Switch. The GE0 and GE1 support 2 K transmit FIFO and 2 K receive FIFO. The WAN port is a MII interface that connects directly to a PHY inside the Ethernet Switch. Another port connects to the Ethernet Switch using a GMII interface. Through the Ethernet Switch this port connects to the four LAN ports.

The AR9331's WAN Ethernet PHY (PHY0) can connect directly to the switch as another port, or can be directly to the CPU through an MII interface.

The PHY interfaces (PHY0, PHY1, PHY2, PHY3 and PHY4) can connect to the switch in bridge mode. In this case GE0 must be under reset. All five LAN ports are switched together and connect to the CPU through the GMII interface (MAC0), which is controlled by the ETH_CFG register bit SW_ONLY_MODE. If GE0 connects separately to PHY, then MAC5 should be under reset.

The GMII and MII MAC interface to the Ethernet Switch support four Tx queues, each with its own descriptor chain. A priority of DMA_TX_Q0 is higher than DMA_TX_Q1 and so on. The DMA configuration registers are separate for each queue. Two arbitration mechanisms are supported: one is a simple priority and the other is a weighted round robin arbitration.

Similarly for rest of the queues. In case of Round robin arbitration on a long term the number of packets sent per queue is guaranteed to be in the ratio of the weights programmed. Weight of ZERO is prohibited. It should be noted that the weights are on a packet basis and not on the number of bytes transmitted on that queue. Moreover, a 19-bit free running counter (running on AHB_CLK) value is updated on the descriptor field as shown below on both the transmit and receive descriptor. This update is done as part of the descriptor update that the MAC DMA core already does upon completion of transmit or receive. Software can track the latency on per packet basis using these descriptor Timestamp and the free timer register.

2.10 MDC/MDIO Interface

The MDC/MDIO interface, which is internal to the AR9331, allows users to access the internal registers of the Ethernet MAC/PHY. Table 2-5 shows the format required to access the MII registers in the embedded PHY. The PHY-address is 0x00. The OP code 10 indicates the read command and 01 indicates the write command.

Table 2-5. MDC/MDIO Interface Format

start	Op	2′b0	Phy-addr	reg_addr [4:0]	TA	Data
	•		[2.0]	[4:0]	[1:0]	[15:0]

The internal switch registers are 32 bits wide, but MDIO access is only 16 bits wide, so two access cycles are required to access all 32 bits of the internal registers.

Address spacing is more than the MDIO-supported 10 bits, thus upper address bits must be written to the internal registers, similar to the page mode access method. For example, register address bits [18:9] are treated as a page address and written out first as High_addr [9:0] (see Table 2-6). Then the register would be accessed via Table 2-5, where Low_addr [7:1] is the register address bit [8:2] and Low_addr [0] is 0 for Data [15:0] or Low_addr [0] is 1 for Data [31:16].

Table 2-6. Initial Register Address Bits

start	Op	2′b11	8′b0	6′b0	High_addr [9:0]
					[]

2.11 Ethernet Switch Controller

Figure 2-3 shows the Ethernet Switch block diagram.

Notes:

- 1. macO connects to the CPU port and only supports 1000M full duplex mode.
- 2. phy4 connects to the CPU directly and supports 10/100M full and half duplex.
- 3. The MDIO interface connects the Ethernet switch to the configuration register.

Figure 2-3. Ethernet Switch Block Diagram

The Ethernet Switch controller performs the majority of the switch functions of the AR9331. The controller contains five 10/100 Mbps Fast Ethernet ports, each containing four levels of Quality of Service, 802.1Q VLANs, port based VLANs and RMON statistic counters. The AR9331 integrates five 10/100 two speed Ethernet transceivers (PHYs) and one single port 10/100/1000 media access controllers (MAC) as well as a wire-speed, non-blocking shared memory switch fabric.

The included 1 KB entry address lookup table uses two entries per bucket to avoid hash collisions and maintain packet-forwarding performance. The address entry table provides read/write access from the serial and CPU interfaces where each entry can be configured as a static entry. 1024 MAC addresses are supported with automatic learning, aging and static address support. The Ethernet Switch also supports basic switch features including port mirroring, broadcast storm support, flow control in full-duplex, and back pressure in half duplex, 802.3 auto-negotiation, port locking, MIB counters, ingress and egress rate limitation, and automatic speed and duplex communication between PHYs and MACs.

Table 2-7 summarizes the AR9331 Ethernet Switch functions.

Table 2-7. Ethernet Switch

Block	Description
Media Access Controllers (MAC)	The AR9331 integrates six independent fast Ethernet MACs that perform all functions in the IEEE 802.3 and IEEE 802.3u specifications, including frame formatting, frame stripping, CRC checking, CSMA/CD, collision handling, and back-pressure flow control, etc. Each MAC supports 10 Mbps or 100 Mbps operation in either full-duplex or half-duplex mode.
Full-Duplex Flow Control	The AR9331 device supports IEEE 802.3x full-duplex flow control, force-mode full-duplex flow control, and half-duplex back pressure. If the link partner supports auto-negotiation, the 802.3x full-duplex flow control auto-negotiates between the remote node and the AR9331. If full-duplex flow control is enabled, when free buffer space is almost empty, the AR9331 sends out an IEEE 802.3x compliant PAUSE to stop the remote device from sending more frames.
Half-Duplex Flow Control	Half-duplex flow control regulates the remote station to avoid dropping packets during network congestion. A back pressure function is supported for half-duplex operations. When free buffer space is almost empty, the AR9331 device transmits a jam pattern on the port and forces a collision. If the half-duplex flow control mode is not set, the incoming packet is dropped if no buffer space is available.
Inter-Packet Gap (IPG)	The IPG is the idle time between any to successive packets from the same port. The typical IPG is 9.6 μ s for 10 Mbps Ethernet and 960 μ s for 100 Mbps Fast Ethernet.
Port Locking	The AR9331 supports port locking. If one port is set for port locking, only received frames with the unicast source address found in the ARL table and do not have a member violation, can be sent out. Other blocked frames are dropped or redirected to the CPU port by the control register, LOCK_DROP_EN.
Frame Forwarding Prevention	The AR7240 can be configured to prevent the forwarding of unicast or multicast frames that contain an unknown destination address. This can be accomplished on a per-port basis, so that frames with unknown addresses only go out to the port where a server or router is connected. Broadcast frames forwarded to the CPU port can also be prevented.
Illegal Frames	The AR7240 discards all illegal frames such as CRC error, oversized packets (length greater than maximum length), and runt packets (length less than 64 bytes).
VLANs	See "VLANs For LAN Ports" on page 28.
QoS	See "Quality of Service (QoS) for LAN Ports" on page 29.

2.11.1 VLANs For LAN Ports

The switch supports 16 IEEE 802.1Q VLANs and port-based VLAN functionality for all frames, including management frames when 802.1Q is enabled on the ingress port. Untagged frames conform to the port-based VLAN even if the ingress port has 802.1Q mode enabled. See Table 2-8.

Table 2-8. Ethernet Switch VLAN

VLAN	Description
Port-Based	Each ingress port contains a register restricting the output (or egress) ports it can send frames to. This port-based VLAN register has a field called PORT_VID_MEM that contains the port based setting. If bit [0] of PORT_VID_MEM is set to one, the port is allowed to send frames to Port 0, bit [2] for Port 2, and so on. At reset, each port's PORT_VID_MEM is set to a value of all 1s, except for each port's own bit, which clears to zero. Note that the CPU port is port 0.
IEEE 802.1Q VLANs	The AR9331 supports a maximum of 16 entries in the VLAN table. The device supports 4096 VLAN ID range from 0 to 4095. The AR9331 only supports shared VLAN learning (SVL). This means that forwarding decisions are based on the frame's destination MAC address, which should be unique among all VLANs.

Tagging and untagging egress frames is supported using 802.1Q VLANs, or statically using Port Based VLANs. Frames may go out from the switch in three methods:

- Transmit Unmodified Untagged frames egress a port untagged while tagged frames leave tagged.
- Transmit Untagged Untagged frames leave a port unmodified while tagged frames leave untagged.
- Transmit Tagged
 Tagged frames leave a port unmodified while an IEEE tag is added to untagged frames before leaving.

When a tag is added to an untagged frame, the frame inserts directly after the frame's source address and includes four bytes.

- The first byte is always 0x81.
- The second byte is always 0x00.
- PRI bits indicate frame priority determined by the source port's priority setting.
- The CFI bit is always set to 0.

VID bits indicate the VID assigned to the frame as determined in the source port default VID.

A tagged frame leaving a port tagged may have its VID bits modified. If the ingressing frame's VID was 0x000, the ingress port's default VID is assigned to the frame instead.

Double Tagging is a method of isolating one IEEE 802.1Q VLAN from other IEEE 802.1Q VLANs in a hierarchical fashion that is compatible with IEEE 802.1Q ready switches, as long as those switches support a maximum frame size of 1526 bytes or more. In this way, an extra, or double, tag is placed in front of a frame's normal tag thereby increasing the frame's size by four bytes.

Ingress double tagging can be selected on a port-by-port basis. Typically, any port that has ingress double tagging enabled will also have egress double tagging enabled. Ingress double tagging enabled ports expect all ingress frames to contain an extra tag that must be removed from the frame before performing the port's ingress policy on the frame. In this mode, the ingress policy removes the first IEEE 802.3ac tag that appears after the source address in every frame. If the untagged frame is not modified, all data from the removed tags is ignored by the switch.

2.11.2 Quality of Service (QoS) for LAN Ports

The AR9331 recognizes the QoS information of ingress frames and map to different egress priority levels. The AR9331 determines the priority of the frames based on DA, TOS/TC, VLAN, and port. Each has an enable bit that can be applied. When more than one type of priority is selected, the order in which the frame priority should be applied can be determined. Priority enable bits and select order bits are set by port base at 0x110 for port 0, 0x210 for port 1, and so on.

Priority Determined	Description
DA	Set DA_PRI_EN bit [18] to 1 and add the address to the ARL table-set priority_over_en to 1. ARL priority bits [59:58] can be used as DA priority.
ToS/TC	Set IP_PRI_EN bit [16] to 1, and set the IP priority mapping register (0x60–0x6C).
VLAN	Set VLAN_PRI_EN (bit [17]) to 1, and set the TAG priority mapping register (0x70).
Port's Default Authority	Set PORT_PRI_EN to 1, and set port base register ING_PORT_PRIORITY (bits [19:28] in 0x108, 0x208, etc.).

When more than one priority enable bit is set to 1, bits [7:0] in 0x110, 0x210, etc. (DA_PRI_SEL, IP_PRI_SEL, VLAN_PRI_SEL, PORT_PRI_SEL) can determine the order in which the frame priority should be applied. If *_PRI_SEL is set to 00, frame priority is determined by that first. Otherwise, priority is determined by which *_PRI_SEL is set to 01, then 10, 11, etc.

On arrival, packets are directed into one of the four available priority queues based on:

- Priority bits in the header field
- The frame destination address (if in the ARL table with a defined priority with the priority bit is enabled)
- The frame VID (if in the VLAN table and the priority override is enabled)
- The 802.3 tag containing 802.1p priority information (if enabled on the port)
- The port's default priority as defined in the register

Each of the priority classification rules have enables so designers may use any combination; priority can be disabled or the order may be selected separately on a per-port basis. Congestion in the flow of packets for an extended period of time forces frames to drop without flow control. Higher priority flows receive a higher percentage of the open buffers, and this percentage is determined by the scheduling mode. Features such as back pressure and pause-frame control are implemented to supports zero packet loss during traffic congestion. The AR9331 ensures that all uncongested flows traverse the switch without degradation, regardless od congestion situations elsewhere in the switch.

QoS for the AR9331 may follow one of three priority schemes, either fixed, weighted fair, or a mixed mode scheme. In the fixed priority scheme, all egress packets leave the switch starting with the highest priority queue. Once that queue has been emptied, the next highest priority queue begins its packet dispersal until it has been emptied and so on. This method insures that all high priority packets will be sent out from the switch as soon as possible.

For the weighted fair scheme, packets are egressed from the chip in the order of 8, 4, 2, 1 packets for the four priorities queue of the AR9331. (eight packets egress from the highest priority queue, then four from the second highest queue, and so on). This method allows the highest priority to get its packets out first and the other remaining queues are not totally starved from egressing.

The mixed mode scheme mixes both the weighted fair and fixed schemes. The highest priority queue disperses its packets first until the queue has been emptied, and the remaining queues will follow the 4, 2, 1 weighted egress scheme as mentioned previously. This ensures that the highest priority queue will egress its packets as soon as possible, while the remaining queues equally disperse their packets without queue starvation.

2.12 Rate Limiting

The AR9331 supports port-based ingress and egress rate limiting. All frames may be limited but management frames and known multicast frames are the only types that can be selected by the user. The ingress limit rate may be set from zero to 1 Gbps in steps of 32 Kbps. The port base register is used to determine the limited bytes to count. The default setting for rate limiting is to include the frame's bytes from the beginning of the preamble to the end of the RCS with a added minimum IFG.

2.13 Broadcast Storm Control

The AR9331 supports broadcast storm control. Some switch designs may require limiting the reception rate of frames. The types of frames to be limited can be selected separately on a perport basis. The maximum rate desired needs to be selected by the user and then programmed. Eleven different frame rates from $1k\ (2^0K)$ to $2^{10}K$ per second.

The statistics counter block maintains a set of forty MIB counters per port. These counters provide a set of Ethernet statistics for frames received on ingress and transmitted on egress. A register interface allows the CPU to capture, read, or clear the counter values.

The counters support:

- RMON MIB
- Ethernet-like MIB
- MIB II
- Bridge MIB
- RFC2819

The CPU interface supports:

- Autocast MIB counters after half-full
- Autocast MIB counters after time out
- Autocast MIB counters when requested
- Clearing all MIB counters

The MIB counters in the switch are for LAN's and CPU port. For WAN, the MIB counters are in GE1.

2.14 Switch Operation

Two tables embedded in the AR9331 aid in allocation of ingress packets, the ARL table and the VLAN table.

The address database is stored in the embedded SRAM and can store up to 1024 address entries. The default aging time for this table is 300 seconds. One address can be searched in the table and it may be used to get the next read out of the whole table. Entries in the table may be loaded and purged. All entries maybe be flushed, and this may be divided to flush just non-static entries, all entries per port or all non-static entries per port.

The VLAN table supports a single search, and it may be used to get the next read out of the whole table. Entries may be loaded or purged and entries may be flushed, either as a whole or per port.

2.15 Port Mirroring

Ingress, egress and destination address packets can be mirrored by the AR9331. To mirror the DA packets, the mirror enable bit must be set in the ARL table. To mirror a port, simply set the mirror port number.

Port mirroring is only among the LAN ports and not for WAN.

2.16 Port States

Table 2-9 shows the port states supported by the AR9331.

Table 2-9. Port States

State	Description
Disabled	Frames are not allowed to enter or leave a disabled port. Learning does not take place on disabled ports.
Blocking	Only MGMP frames are allowed to enter a blocked port. All other frame types are discarded. Learning is disabled on blocked ports.
Listening	Only management frames may enter or leave a listening port. All other frame types are discarded. Learning is disabled on listening ports.
Learning	Only management frames may enter or leave a learning port. All other frame types are discarded but learning occurs on all good frames, including non-management frames.
Forwarding	Normal operation. All frames may enter or leave a forwarding port. Learning occurs on all good frames.

3. Medium Access Control (MAC)

The MAC consists of the following major functional blocks: 10 queue control units (QCUs), 10 distributed coordination function (DCF) control units (DCUs), a single DMA Rx

unit (DRU), and a single protocol control unit (PCU). See Figure 3-1.

Figure 3-1. MAC Block Diagram

3.1 Overview

The MAC block supports full bus-mastering descriptor-based scatter/gather DMA. Frame transmission begins with the QCUs. QCUs manage the DMA of frame data, and determines when a frame is available for transmission.

Each QCU targets exactly one DCU. Ready frames are passed from a QCU to its targeted DCU. The DCU manages the enhanced distributed coordination function (EDCF) channel access procedure on behalf of the QCUs associated with it.

Functionality of the MAC block includes:

- Tx frame data transfer from the DDR
- Rx frame data transfer to the DDR
- Interrupt generation and reporting
- Sleep-mode sequencing
- Miscellaneous error and status reporting functions

Once the DCU gains access to the channel, it passes the frame to the PCU, which encrypts the frame and sends it to the baseband logic. The PCU handles both processing responses to the transmitted frame, and reporting the transmission attempt results to the DCU.

Frame reception begins in the PCU, which receives the incoming frame bitstream from the digital PHY. The PCU decrypts the frame and passes it to the DRU, which manages Rx descriptors and writes the incoming frame data and status to the host memory.

3.2 Descriptor

The MAC is responsible for transferring frames between the DDR memory and the AR9331. For all normal frame transmit/receive activity, the CPU provides a series of descriptors to the MAC, and the MAC then parses the descriptors and performs the required set of data transfers.

3.3 Descriptor Format

The transmit (Tx) descriptor format contains twenty-three 32-bit words and the receive (Rx) descriptor contains nine 32-bit words.

A descriptor must be aligned on a 32-bit boundary in host memory, although best performance is achieved if the descriptor is aligned on a cache-line boundary. The MAC uses the final ten words of the Tx descriptor and nine words of the Rx descriptor to report status information back to the host.

See these tables for more information:

Table	Words	Description
Table 3-1	0–14	Tx descriptor format
Table 3-4	15–22	Tx descriptor format
Table 3-5	0–8	Tx descriptor status format
Table 3-6	0–11	Rx descriptor format

The Tx descriptor format is described in Table 3-1. With certain exceptions as noted, all Tx descriptor fields must be valid in the first descriptor of a non-aggregate frame. The fields for all following descriptors are ignored. For aggregate frames only the first descriptor of the first frame of the aggregate is valid. The fields for all following descriptors are ignored.

Table 3-1. Tx Descriptor Format: Words 0-14

0 3	31:16		Description
_	31:16	atheros_id	The unique Atheros identifier of 0x168C is used to visually identify the start of the descriptor.
	15	desc_tx_rx	Indicates whether the descriptor is a transmit or receive descriptor. The value should be set to 1 indicating transmit.
	14	desc_ctrl _stat	Indicates whether the descriptor is a control or status descriptor. The value should be set to 1 indicating control descriptor.
1	13:12	RES	Reserved
	11:8	tx_qcu_num	Tx QCU number. Indicates which QCU this descriptor is part of.
	7:0	desc_length	Descriptor length. Indicates the number of Dwords in this descriptor. The value should be set to 0x17 (23 Dwords).
1	31:0	link_ptr	Link pointer address. Contains the 32 bits next descriptor pointer. Must be 32-bit aligned (bits [1:0] must be 0). A NULL value: (LINK_PTR= 0x0) is only allowed at the end of a non-aggregate or non-RIFS packet. If the packet is part of an aggregate or RIFS burst, a null is only allowed on the last descriptor of the last packet. A legal NULL value causes the QCU to stop. Must be valid for all descriptors.
2	31:0	buf_ptr0	Data buffer pointer 0. Contains the 32-bits address of the first data buffer associated with this descriptor. A transmit data buffer may begin at any byte address. Must be not be NULL (BUF_PTR0 = 0x0) for all descriptors.
3 3	31:28	RES	Reserved
2	27:16	buf_len0	Data buffer length associated with data buffer pointer 0. Specifies the length, in bytes, of the data buffer associated with buf_ptr0.buf_len0 must not be 0. Note: This field must be valid for all descriptors. case (header_length, gos packet) { 24, no: pad length = 0; 24, yes: pad_length = 2; 30, no: pad_length = 2; 30, yes: pad_length = 0; } case (encrypt type) { wep: icv_length = 4; tkip nomic: icv length = 4; aes : icv_length = 12; wapi: icv_length = 16; } fcs_length = 4; frame_length = buf_len0 + buf_len1 + buf_len2 + buf_len3 + icv_length + fcs_length - pad_length
	15:0	RES	Reserved

Table 3-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Description
4	31:0	buf_ptr1	Data buffer pointer 1. Contains the 32-bits address of the second data buffer associated with this descriptor. A transmit data buffer may begin at any byte address. Only valid if BUF_PTR0 is not NULL.
5	31:28	RES	Reserved
	27:16	buf_len1	Data buffer length associated with data buffer pointer 1. BUF_LEN1 can only be 0 if and only if BUF_PTR1 is NULL. See BUF_LEN0 for details.
	15:0	RES	Reserved
6	31:0	buf_ptr2	Data buffer pointer 2. Contains the 32-bits address of the third data buffer associated with this descriptor. A transmit data buffer may begin at any byte address. Only valid if BUF_PTR0 and BUF_PTR1 are not NULL.
7	31:28	RES	Reserved
	27:16	buf_len2	Data buffer length associated with data buffer pointer 2. BUF_LEN2 can only be 0 if and only if BUF_PTR2 is NULL. See BUF_LEN0 for details.
	15:0	RES	Reserved
8	31:0	buf_ptr3	Data buffer pointer 3. Contains the 32-bits address of the third data buffer associated with this descriptor. A transmit data buffer may begin at any byte address. Only valid if BUF_PTR0, BUF_PTR1, and BUF_PTR2 are not NULL.
9	31:28	RES	Reserved
	27:16	buf_len3	Data buffer length associated with data buffer pointer 2. BUF_LEN2 can only be 0 if and only if BUF_PTR3 is NULL. See BUF_LEN0 for details.
	15:0	RES	Reserved
10	31:16	tx_desc_id	Tx descriptor sequence number. Software will select a unique sequence number associated with this descriptor. This value is copied to the TX_DESC_ID in the transmit status.
	15:0	ptr_checksum	Memory pointer checksum. Verifies the integrity of the memory pointers/addresses in this descriptor. The equation looks like this:
			<pre>checksum[31:0] = TXC[0]+TXC[1]+TXC[2]+TXC[3]+TXC[4]+ TXC[5]+TXC[6]+TXC[7]+TXC[8]+TXC[9]; ptr_checksum[15:0] = checksum[31:16] + checksum[15:0];</pre>
			The carry bits above the MSB of the checksum or PTR_CHECKSUM will disappear.

Table 3-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Description
11	31	cts_enable	Self-CTS enable. Precedes the frame with CTS flag. If set, the PCU first sends a CTS before sending the frame described by the descriptor; used mainly for 802.11g frames to quiet legacy stations before sending a frame the legacy stations cannot interpret, even at the PHY level. At most only one of the RTS_ENABLE and CTS_ENABLE bits may be set; it is illegal to set both.
	30	dest_index _valid	Destination index valid flag. Specifies whether the contents of the DestIdx field are valid.
	29	int_req	Interrupt request flag. Set to one by the driver to request that the DMA engine generate an interrupt upon completion of the frame to which this descriptor belongs. Note: This field must be valid and identical for all descriptors of the frame. That is, all descriptors for the frame must have this flag set, or all descriptors for the frame must have this flag clear.
	28:25	res	Reserved
	24	clear_dest _mask	Clear destination mask bit flag. If set, instructs the DCU to clear the destination mask bit at the index specified by the dest_index field.
	23	veol	Virtual end-of-list flag. When set, indicates that the QCU should act (mostly) as if this descriptor had a NULL LINK_PTR, even though its LINK_PTR field may be non-NULL. Note: This field must be valid in the final descriptor of a frame and must be clear for all other descriptors of the frame.
	22	rts_enable	RTS enable. If set, the PCU transmits the frame using the RTS/CTS protocol. If clear, the PCU transmits the frame without transmitting a RTS. At most only one of the RTS_ENABLE and CTS_ENABLE bits may be set; it is illegal to set both.
	21:16	tpc_0	TPC for Tx series 0. These bits pass unchanged to the baseband, where they control Tx power for the frame.
	15	clear_retry	Setting this bit disables the retry bit from being set in the Tx header on a frame retry; applies to both aggregate and non-aggregate frames.
	14	low_rx_chain	When set to 1, indicates that switches the Rx chain mask to low power mode after transmitted this frame.
	13	fast_ant _mode	Fast antenna mode. If set to 0, this means that this Tx frame to use the omni antenna mechanism. if set to 1, then the opposite omni antenna should be used.
	12	vmf	Virtual more fragment. If this bit is set, bursting is enabled for this frame. If there is no burst in progress, it will initiate a CTS protected burst if CTS_ENABLE is set. If there is a previous burst in progress, it ignores the CTS_ENABLE bit as assume that this burst is protected.
	11:0	frame_length	Frame length. Specifies the length, in bytes, of the entire MAC frame, including the FCS, IC, and ICV fields.

Table 3-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Descrip	tion				
12	31	more_rifs	last pacl except t	More RIFS burst flag; When set, indicates that the current packet is not the last packet of an aggregate. All descriptors for all packets of a RIFS burst except the descriptors of the last packet must have this bit set. All descriptors of the last packet of a RIFS burst must have this bit clear.				
	30	is_agg		This packet is part of an aggregate flag. All descriptors of the all packets in an aggregate must have this bit set.				
	29	more_agg	last pacl except t	More aggregate flag; When set, indicates that the current packet is not the last packet of an aggregate. All descriptors for all packets of an aggregate except the descriptors of the last packet must have this bit set. All descriptors of the last packet of an aggregate must have this bit clear.				
	28	ext_and_ctl	Extension and control channel enable. Only four combinations are allowed; otherwise DESC_CONFIG_ERROR asserts. When neither EXT_ONLY nor EXT_AND_CTL are set, the RTS/CTS and data frame is sent based on the bandwidth: HT20 when 20_40 is set to 0 and HT40 shared when 20_40 is set to 1 (RTS/CTS frames are sent at in HT40 duplicate mode if 20_40 is set to 1). When EXT_AND_CTL is set the RTS/CTS and data frame is sent at HT40 duplicate. When EXT_ONLY is set the RTS/CTS and data frame is sent out in HT20 extension channel mode.					
				ETX_AND_CTL	20_40	DATA	RTS/CTS	
				0	0	HT20 Control	HT20 Control	
				0	1	HT40 Shared	HT40 Duplicate	
				1	1	HT40 Duplicate	HT40 Duplicate	
	27	RES	Reserved					
	26	corrupt_fcs	Corrupt packet FCS; When set, the FCS of the packet will be inverted to guarantee the transmitted FCS is incorrect.					
	25	RES	Reserved					
	24	no_ack	No ACK flag; When set, indicates to the PCU that it should not expect to receive (and should not wait for) an ACK for the frame. Must be set for any frame that has the 802.11 NoACK bit set in the QoS field. Also must be set for all other frame types (such as beacons and other broadcast/multicast frames) that do not receive ACKs.					
	23:20	frame_type	Frame type indication; indicates what type of frame is being sent:					
			15:5	Reserved				
			4	Probe response				
			3					
			2	PS-Poll				
			1	ATIM				
			0	Frame type, other th	an the types	listed in [15:1]		
	19:13	dest_index	Destination table index. Specifies an index into an on-chip table of perdestination information. The PCU fetches the encryption key from the specified index in this table and uses this key to encrypt the frame. The DMA logic uses the index to maintain per-destination transmit filtering status and other related information.					
	12	more	More descriptors in this frame flag. Set to one by the driver to indicate that there are additional descriptors (that is, DMA fragments) in the current frame. The last descriptor of a packet must have this bit set to 0. Note: This field must be valid for all descriptors.					
	11:9	pa	Pre-dist	ortion chain mask				
	8:0	RES	Reserve	d				

Table 3-1. Tx Descriptor Format: Words 0-14

Word	Bits	Name	Description
13	31:28	tx_tries3	Number of frame data exchange attempts permitted for Tx series 3. A value of zero means skip this transmission series.
	27:24	tx_tries2	Number of frame data exchange attempts permitted for Tx series 2. A value of zero means skip this transmission series.
	23:20	tx_tries1	Number of frame data exchange attempts permitted for Tx series 1. A value of zero means skip this transmission series.
	19:16	tx_tries0	Number of frame data exchange attempts permitted for Tx series 0. A frame data exchange attempt means a transmission attempt in which the actual frame is sent on the air (in contrast to the case in which the frame has RTS enabled and the RTS fails to receive a CTS. In this case, the actual frame is not sent on the air, so this does not count as a frame data exchange attempt. Unlike TX_TRIES13, a value of zero is illegal for TX_TRIES0 field.
	15	dur_update_en	Frame duration update control. If set, the MAC updates (overwrites) the duration field in the frame based on the current transmit rate. If clear, the MAC does not alter the contents of the frame duration field.
	14:0	burst _duration	Burst duration value in usec. If this frame is not part of a burst or the last frame in a burst, this value should be zero. In a burst, this value is the amount of time to be reserved (via NAV) after the completion of the current transmit packet sequence (after the ACK if applicable).
14	31:24	tx_rate3	Tx rate for transmission series 3; see Table 3-2 and Table 3-3
	23:16	tx_rate2	Tx rate for transmission series 2; see Table 3-2 and Table 3-3
	15:8	tx_rate1	Tx rate for transmission series 1; see Table 3-2 and Table 3-3
	7:0	tx_rate0	Tx rate for transmission series 0; see Table 3-2 and Table 3-3

Table 3-2. MAC Rate Encodings

MAC Rate Encoding	Protocol
0x01	Reserved
0x02	
0x03	
0x06	
0x07	
0x8	OFDM_48Mb
0x9	OFDM_24Mb
0xA	OFDM_12Mb
0xB	OFDM_6Mb
0xC	OFDM_54Mb
0xD	OFDM_36Mb
0xE	OFDM_18Mb
0xF	OFDM_9Mb
0x18	CCK_11Mb_L
0x19	CCK_5_5Mb_L
0x1A	CCK_2Mb_L
0x1B	CCK_1Mb_L
0x1C	CCK_11Mb_S
0x1D	CCK_5_5Mb_S
0x1E	CCK_2Mb_S

Table 3-3. Tx Rates^[1]

Rate	Desc	Stream	HT20; GI= 0 Mbps	HT20; GI = 1 Mbps	HT40; GI= 0 Mbps	HT40; GI= 1 Mbps
0x80	MCS 0	1	6.5	7.2	13.5	15
0x81	MCS 1	1	13	14.4	27	30
0x82	MCS 2	1	19.5	21.7	40.5	45
0x83	MCS 3	1	26	28.9	54	60
0x84	MCS 4	1	39	43.3	81	90
0x85	MCS 5	1	52	57.8	108	120
0x86	MCS 6	1	58.5	65.0	121.5	135
0x87	MCS 7	1	65	72.2	135	150

[1]All rates not listed are reserved. Note that for short guard interval (GI=1), HT20 mode is allowed.

The Tx descriptor format for words 15 through 22 is described in Table 3-4.

Table 3-4. DMA Tx Descriptor Format for Words 15–22

Word	Bits	Name	Description		
15	31	rts_cts	Qualifies RTS_ENABLE or CTS_ENABLE in the Tx descriptor for Tx series 1		
		_qual1	1 Default behavior with respect to RTS_ENABLE and CTS_ENABLE		
	30:16	packet _duration1	Packet duration 1 (in µs); Duration of the actual Tx frame associated with TXRate1. This time does not include RTS, CTS, ACK, or any associated SIFS.		
	15	rts_cts	Qualifies RTS_ENABLE or CTS_ENABLE in the Tx descriptor for Tx series 0		
		_qual0	1 Default behavior with respect to RTS_ENABLE and CTS_ENABLE		
	14:0	packet _duration0	Packet duration 0 (in μ s); Duration of the actual Tx frame associated with TXRate0. This time does not include RTS, CTS, ACK, or any associated SIFS.		
16	31	rts_cts	Qualifies RTS_ENABLE or CTS_ENABLE in the Tx descriptor for Tx series 3		
		_qual3	1 Default behavior with respect to RTS_ENABLE and CTS_ENABLE		
	30:16	packet _duration3	Packet duration 3 (in μs); Duration of the actual Tx frame associated with TXRate3. This time does not include RTS, CTS, ACK, or any associated SIFS.		
	15	rts_cts	Qualifies RTS_ENABLE or CTS_ENABLE in the Tx descriptor for Tx series 2		
		_qual2	1 Default behavior with respect to RTS_ENABLE and CTS_ENABLE		
	14:0	packet _duration2	Packet duration 2 (in µs); Duration of the actual Tx frame associated with TXRate2. This time does not include RTS, CTS, ACK, or any associated SIFS.		
17	31:30	RES	Reserved		
	29	dc_ap _sta_sel	Select for remaining the TBTT between TSF and TSF2, where 0 is from TSF and 1 is from TSF2. Should be used only when both AP_STA_ENABLE and TXOP_TBTT_LIMIT_ENABLE are enabled.		
	28:26	encrypt_type	Encryption type; DMA engine must the number of necessary extra Dwords at the end of a packet to account for the encryption ICV which is generated by hardware. The encrypt type fields must be valid for all descriptors.		
			0 None; 0 pad bytes		
			1 WEP or TKIP (no MIC); 4 pad bytes		
			2 AES; 8 pad bytes		
			3 TKIP; 12 pad bytes		
			4 WAPI; 16 pad bytes		
			7:5 Reserved		
	25:18	pad_delim	Pad delimiters; Between each packet of an A-MPDU aggregate the hardware will insert a start delimiter which includes the length of the next frame. Sometimes hardware on the transmitter or receiver requires some extra time between packets which can be satisfied by inserting zero length delimiters. This field indicates the number of extra zero length delimiters to add.		
	17:16	RES	Reserved		
	15:0	agg_length	Aggregate (A-MPDU) length; the aggregate length is the number of bytes of the entire aggregate. This length should be computed as:		
			<pre>delimiters = start_delim + pad_delim; frame pad = (frame_length % 4) ? (4 - (frame_length % 4)) : 0 agg_length = sum_of_all (frame_length + frame_pad + 4 * delImiters)</pre>		
			For the last packet of an aggregate the FRAME_PAD = 0 and delimiter = 0, frame_pad aligns to the next delimiter to be Dword aligned. Each delimiter is 4 bytes long. PAD_DELIM is the number of zero-length delimiters used to introduce an extra time gap between packets. START_DELIM is always 1 and includes the length of the next packet in the aggregate.		

Table 3-4. DMA Tx Descriptor Format for Words 15–22 (continued)

Word	Bits	Name	Description			
18	31:28	RES	Reserved			
	27:20	rts_cts_rate	RTS or self-CTS rate selection. Specifies the rate the RTS sends at if rts_enable is set, or self CTS sends at if cts_enable is set; see Table 3-3.			
	19:17	RES	Reserved			
	16	gi_3	Guard interval control for Tx series 3			
			0 Normal guard interval			
			1 Short guard interval			
	15	20_40_3	20_40 control for Tx series 3			
			0 HT20 Tx packet			
			1 HT40 Tx packet			
	14:12	RES	Reserved			
	11	gi_2	Guard interval control for Tx series 2			
	10	20_40_2	20_40 control for Tx series 2			
	9:7	RES	Reserved			
	6	gi_1	Guard interval control for Tx series 1			
	5	20_40_1	20_40 control for Tx series 1			
	4:2	RES	Reserved			
	1	gi_0	Guard interval control for Tx series 0			
	0	20_40_0	20_40 control for Tx series 0			
19	31:24	RES	Reserved			
	23:0	antenna_0	Antenna switch for Tx series 0			
20	31:30	RES	Reserved			
	29:24	tpc_1	TPC for Tx series 1. These bits pass unchanged to the baseband, where they control Tx power for the frame.			
	23:0	antenna_1	Antenna switch for Tx series 1			
21	31:30	RES	Reserved			
	29:24	tpc_2	TPC for Tx series 2. These bits pass unchanged to the baseband, where they control Tx power for the frame.			
	23:0	antenna_2	Antenna switch for Tx series 2			
22	31:30	RES	Reserved			
	29:24	tpc_3	TPC for Tx series 3. These bits pass unchanged to the baseband, where they control Tx power for the frame.			
	23:0	antenna_3	Antenna switch for Tx series 3			

The Tx descriptor status format for words 0 through 8 is described in Table 3-5.

The words status is only considered valid when the done bit is set.

Table 3-5. Tx Descriptor Status Format: Words 0-8

Word	Bits	Name	Description			
0	31:16	atheros_id	The unique Atheros identifier of 0x168C is used to visually identify the start of the descriptor.			
	15	desc_tx_rx	Indicates whether the descriptor is a transmit or receive descriptor. The value should be set to 1 indicating transmit.			
	14	desc_ctrl _stat	Indicates whether the descriptor is a control or status descriptor. The value should be set to 0 indicating status descriptor.			
	13:12	RES	Reserved			
	11:8	tx_qcu_num	Tx QCU number. Indicates which QCU this descriptor is part of.			
	7:0	desc_length	Descriptor length. Indicates the number of Dwords in this descriptor. The value should be set to 0x9 (9 Dwords).			
1	31:16	tx_desc_id	Tx descriptor sequence number. Software will select a unique sequence number associated with this descriptor. This value is copied to the TX_DESC_ID in the Tx status.			
	15:0	RES	Reserved			
2	31	RES	Reserved			
	30	ba_status	Block ACK status. If set, this bit indicates that the BA_BITMAP values are valid.			
	29:24	RES	Reserved			
	23:16	ack_rssi_ant02	Rx ACK signal strength indicator of control channel chain 2. A value of 0x80 (–128) indicates an invalid number.			
	15:8	ack_rssi_ant01	Rx ACK signal strength indicator of control channel chain 1. A value of 0x80 (–128) indicates an invalid number.			
	7:0	ack_rssi_ant00	Rx ACK signal strength indicator of control channel chain 0. A value of 0x80 (–128) indicates an invalid number.			

Table 3-5. Tx Descriptor Status Format: Words 0-8

Word	Bits	Name	Description
3	31:20	RES	Reserved
	19	tx_timer _expired	Tx timer expired. This bit is set when the Tx frame is taking longer to send to the baseband than is allowed based on the TX_TIMER register. Some regulatory domains require that Tx packets may not exceed a certain amount of transmit time.
	18	RES	Reserved
	17	tx_data_underrun_ err	Tx data underrun error. These error conditions occur on aggregate frames when the underrun condition happens while the MAC is sending the data portion of the frame or delimiters.
	16	tx_delmtr_underru n_err	Tx delimiter underrun error. These error conditions occur on aggregate frames when the underrun conditions happens while the MAC is sending delimiters.
	15:12	virtual_retry_cnt	Virtual collision count. Reports the number of virtual collisions that occurred before transmission of the frame ended. The counter value saturates at 0xF. A virtual collision refers to the case, as described in the 802.11e QoS specification, in which two or more output queues are contending for a TXOP simultaneously. In such cases, all lower-priority output queues experience a virtual collision in which the frame is treated as if it had been sent on the air but failed to receive an ACK.
	11:8	data_fail_cnt	Data failure count. Reports the number of times the actual frame (as opposed to the RTS) was sent but no ACK was received for the final transmission series (see the FINAL_TS_INDEX field).
	7:4	rts_fail_cnt	RTS failure count. Reports the number of times an RTS was sent but no CTS was received for the final transmission series (see the FINAL_TX_INDEX field). For frames that have the RTS_ENABLE bit clear, this count always will be zero. Note that this count is incremented only when the RTS/CTS exchange fails. In particular, this count is not incremented if the RTS/CTS exchange succeeds but the frame itself fails because no ACK was received.
	3	filtered	Frame transmission filter indication. If set, indicates that the frame was not transmitted because the corresponding destination mask bit was set when the frame reached the PCU or if the frame violated TXOP on the first packet of a burst. Valid only if FRM_XMIT_OK is clear.
	2	fifo_underrun	Tx FIFO underrun flag. If set, transmission of the frame failed because the DMA engine was not able to supply the PCU with data as quickly as the baseband was requesting transmit data. Only valid for non-aggregate or non-RIFS underrun conditions unless the underrun occurred on the first packet of the aggregate or RIFS burst. See also the description for TX_DELMTR_UNDERRUN_ERR and TX_DATA_UNDERRUN_ERR. Valid only if FRM_XMIT_OK is clear.
	1	excessive _retries	Excessive tries flag. If set, transmission of the frame failed because the try limit was reached before the frame transmitted. Valid only if FRM_XMIT_OK is clear.
	0	frm_xmit_ok	Frame transmission success flag. If set, the frame was transmitted successfully. If clear, no ACK or BA was received successfully.
4	31:0	send _timestamp	Timestamp at start of transmit. A snapshot of the lower 32 bits of the PCU timestamp (TSF value). This field can be used to aid the software driver in implementing requirements associated with the aMaxTransmitMSDULifetime MAC attribute. The transmit timestamp is sampled on the rising of tx_frame signal which goes from the MAC to the baseband. This value corresponds to the last attempt at packet transmission not the first attempt. For support location mode, this value refers to the fast timestamp value, and is valid when word 8, bit [27] of the Tx Descriptor Status is high.

Table 3-5. Tx Descriptor Status Format: Words 0-8

Word	Bits	Name	Description			
5	31:0	ba_bitmap_0-31	Block ACK bitmap 0 to 31. These bits are the values from the block ACK received after the successful transmission of an aggregate frame. If set, bit [0] represents the successful reception of the packet with the sequence number matching the seq_num value.			
6	31:0	ba_bitmap_32-63	Block ACK bitmap 32 to 63. These bits are the values from the block ACK received after the successful transmission of an aggregate frame. If set, bit [32] represents the successful reception of the packet with the sequence number matching the seq_num value + 32.			
7	31:24	ack_rssi _combined	Rx ACK signal strength indicator of combination of all active chains on the control and extension channels. The value of 0x80 (–128) is used to indicate an invalid number.			
	23:16	ack_rssi_ant12	Rx ACK signal strength indicator of control channel chain 2. A value of 0x80 (–128) indicates an invalid number.			
	15:8	ack_rssi_ant11	Rx ACK signal strength indicator of control channel chain 1. A value of 0x80 (–128) indicates an invalid number.			
	7:0	ack_rssi_ant10	Rx ACK signal strength indicator of control channel chain 0. A value of 0x80 (–128) indicates an invalid number.			
8	31:28	tid	raffic Identifier (TID) of block ACK. Indicates the TID of the response block CK. This field is only valid on the last descriptor of the last packet of an agregate.			
	27	tx_location_mode	The location mode indicator of the Tx Descriptor Status. This field indicates hat the send_timestamp field (word 8, bit [31:0]) is used for the location node, and not as the TSF value for the PCU timestamp.			
	26	RES	Reserved			
	25	pwr_mgmt	Power management state. Indicates the value of the PwrMgt bit in the frame control field of the response ACK frame.			
	24:23	RES	Reserved			
	22:21	final_tx_index	Final transmission attempt series index. Specifies the number of the Tx series that caused frame transmission to terminate.			
	20	RES	Reserved			
8	19:18	RES	Reserved			
(Cont.)	17	txop_exceeded	TXOP has been exceeded. Indicates that this transmit frame had to be filtered because the amount of time to transmit this packet sequence would exceeded the TXOP limit. This should only occur when software programs the TXOP limit improperly.			
	16:13	RES	Reserved			
	12:1	seq_num	The starting sequence number is the value of the Block ACK Starting Sequence Control field in the response Block ACK. Only consulted if the Tx frame was an aggregate.			
	0	done	Descriptor completion flag. Set to one by the DMA engine when it has finished processing the descriptor and has updated the status information. Valid only for the final descriptor of a non-aggregate frame, regardless of the state of the FrTxOK flag. For an aggregate frame it is valid for only the final descriptor of the final packet of an aggregate. The driver is responsible for tracking what descriptors are associated with a frame. When the DMA engine sets the DONE flag in the final descriptor of a frame, the driver must be able to determine what other descriptors belong to the same frame and thus also have been consumed.			

The DMA Rx logic (the DRU block) manages Rx descriptors and transfers the incoming frame data and status to the host through the AHB bus.

Words 0, and 2 are valid for all descriptors. Words 0, 2, and 11 is valid for the last

descriptor of each packets. Words 0-11 are valid for the last descriptor of an aggregate or last descriptor of a stand-alone packet. Additional validity qualifiers are described individually. See Table 3-6.

Table 3-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description			
0	31:16	atheros_id	The unique Atheros identifier of 0x168C is used to visually identify the start of the descriptor.			
	15	desc_tx_rx	Indicates whether the descriptor is a Tx or Rx descriptor. The value should be set to 1 indicating transmit.			
	14	desc_ctrl _stat	Indicates whether the descriptor is a control or status descriptor. The value should be set to 1 indicating status descriptor.			
	13:9	RES	Reserved			
	8	rx_priority	0 Low priority queue 1 High priority queue			
	7:0	desc_length	Descriptor length. Indicates the number of Dwords in this descriptor. The value should be set to 0x9 (9 Dwords).			
1	31:24	rx_rate	Rx rate indication. Indicates the rate at which this frame was transmitted from the source. Encodings match those used for the TX_RATE*' field in word 5 of the Tx descriptor. Valid only if the FRAME_RX_OK flag is set or if the FRAME_RX_OK flag is clear and the PHY_ERROR flag is clear.			
	23:16	rssi_ant02	Received signal strength indicator of control channel chain 2. A value of 0x80 (–128) indicates an invalid number.			
	15:8	rssi_ant01	Received signal strength indicator of control channel chain 1. A value of 0x80 (–128) indicates an invalid number.			
	7:0	rssi_ant00	Received signal strength indicator of control channel chain 0. A value of 0x80 (–128) indicates an invalid number.			
2	31:23	RES	Reserved			
	22	hw_upload _data	Indicates the data carried by current descriptor is that HW upload location. The upload data is valid only when the field HW_UPLOAD_DATA_VALID at RXS 4 bit [7] is set. See RXS 11 bit [26:25] HW_UPLOAD_DATA_TYPE to know which data type is uploaded. Valid for all descriptors.			
	21:14	num_delim	Number of zero length pad delimiters after current packet. This field does not include the start delimiter which is required between each packet in an aggregate. This field is only valid for aggregate packets except for the last packet of an aggregate.			
	13	RES	Reserved			
	12	more	More descriptors in this frame flag. If set, then this is not the final descriptor of the frame. If clear, then this descriptor is the final one of the frame. Valid for all descriptors.			
	11:0	data_len	Received data length. Specifies the length, in bytes, of the data actually received into the data buffer associated with this descriptor. The actual received data length will be between zero and the total size of the data buffer, as specified originally in this field (see the description for the BUF_LEN field). Valid for all descriptors.			

Table 3-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description				
3	31:0	rcv _timestamp	[31:0] of the PCU sniffing. The time	64-bit TSF). Intend	led for packet logg on the rising edge	sed in µs (that is, bits ing and packet of RX_CLEAR, which	
				ion mode, this valu rd 11, bit [27] of the		timestamp value, and rmat is high.	
4	31:8	RES	Reserved				
	7	hw_upload _data_valid	Specifies whether	the contents of the	e hardware upload	l data are valid	
	6:5	ness	Receive packet N	ESS field. Shows th	e number of Rx ex	tension spatial steams.	
	4	not _sounding	PPDU. Rx packet STBC indicator. If this value is set then the baseband has received an STBC frames as indicated in the HT_PLCP.				
	3	stbc					
	2	duplicate					
	1	20_40					
	0	gi	Rx packet guard interval. If this value is clear, then the Rx frame used a long guard interval. If this value is set, the Rx frame used a short guard interval.				
5	31:24	rx_combined		sion channels. The		active chains on the (8) is used to indicate	
	23:16	rssi_ant12	_	trength indicator o -128) indicates an i		el chain 2.	
	15:8	rssi_ant11	_	trength indicator o -128) indicates an i		el chain 1.	
	7:0	rssi_ant10		trength indicator o -128) indicates an i		el chain 0.	
6	31:0	evm0	Rx packet error v	ector magnitude 0			
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic	
			evm0[31:24]	pilot1_str0	pilot1_str0	legacy_plcp_byte_1	
			evm0[23:16]	pilot0_str2	pilot0_str2	legacy_plcp_byte_2	
			evm0[15:8]	pilot0_str1	pilot0_str1	legacy_plcp_byte_3	
			evm0[7:0]	pilot0_str0	pilot0_str0	service_byte_1	
7	31:0	evm1	Rx packet error v	ector magnitude 1			
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic	
			evm1[31:24]	pilot2_str1	pilot2_str1	service_byte_2	
			evm1[23:16]	pilot2_str0	pilot2_str0	ht_plcp_byte_1	
			evm1[15:8]	pilot1_str2 pilot1_str1	pilot1_str2 pilot1_str1	ht_plcp_byte_2	
			evm1[7:0]	ht_plcp_byte_3			

Table 3-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description					
8	31:0	evm2	Rx packet error v	ector magnitude 2				
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic		
			evm2[31:24]	pilot3_str2	pilot3_str2	service_byte_4		
			evm2[23:16]	pilot3_str1	pilot3_str1	ht_plcp_byte_5		
			evm2[15:8]	pilot3_str0	pilot3_str0	ht_plcp_byte_6		
			evm2[7:0]	pilot2_str2	pilot2_str2	0x0		
9	31:0	evm3	Rx packet error v	ector magnitude 3				
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic		
			evm3[31:24]	0x80	pilot5_str0	0x0		
			evm3[23:16]	0x80	pilot4_str2	0x0		
			evm3[15:8]	0x80	pilot4_str1	0x0		
			evm3[7:0]	0x80	pilot4_str0	0x0		
10	31:16	RES	Reserved		1			
	15:0	evm4	Rx packet error v	Rx packet error vector magnitude 4				
			Bits Mode	HT20 Mode	HT40 Mode	Diagnostic		
			evm4[15:8]	0x80	pilot5_str2	0x0		
			evm4[7:0]	0x80	pilot4_str1	0x0		
11	31	key_miss	Key cache miss indication. When set, indicates that the PCU could not locate a valid decryption key for the frame. Valid only if the FRAME_RX_OK flag is clear.					
	30	RES	Reserved					
	29	first_agg		First packet of aggregate If set, indicates that this packet is the first packet of an aggregate.				
	28	hi_rx_chain	If set indicates that	at the Rx chain con	ntrol in high power	mode.		
	27	rx_location_ mode		The location mode indicator of the Rx Descriptor Format. This field indicates that the rcv_timestamp field (word 3, bit [31:0]) is used for the location mode.				
11 (Cont.)	26:25	hw_upload_data_ type			. The upload data i at RXS 4 bit [7] is s	s valid only when the set:		
			01 Upload	is H				
	24:19	RES	Reserved					
	18	post_delim _crc_err			er this current frame in an aggregate is b	e. Only occurs when ad.		
	17	aggregate	Aggregate flag. If	set, indicates that	this packet is part	of an aggregate.		
	16	more_agg	More aggregate flag. Set to 1 in all packets of an aggregate that have anothe packet of the current aggregate to follow. If clear, indicates that this packet is the last one of an aggregate.					
	15:9	key_idx	If the FrRxOK bit is set, then this field contains the decryption key table index. If KEY_IDX_VALID is set, then this field specifies the index at which the PCU located the frame's destination address in its on-chip decryption key table. If KEY_IDX_VALID is clear, the value of this field is undefined. If the FrRxOK bit is clear and the PHYErr bit is set, then this field contains bits [7:1] of the PHY error code.					

Table 3-6. DMA Rx Descriptor Format for Words 0-11

Word	Bits	Name	Description
11 (Cont.)	8	key_idx_valid	If FRAME_RX_OK is set, this field contains the decryption key table index valid flag. If set, indicates that the PCU successfully located the frame's source address in its on-chip key table and that the KEY_IDX field reflects the table index at which the destination address was found. If clear, indicates that PCU failed to locate the destination address in the key table and that the contents of KeyIdx field are undefined. If the FRAME_RX_OK bit is clear and the PHY_ERROR bit is set, then this field contains bit [0] of the PHY error code.
	7	aspd_trig	Received APSD trigger frame The received frame matched the profile of an APSD trigger frame.
	6	pre_delim _crc_err	Delimiter CRC error detected before this current frame. May indicate that an entire packet may have been lost.
	5	mic_error	Michael integrity check error flag. If set, then the frame TKIP Michael integrity check value did not verify correctly. Valid only when all of the following are true: ■ FRAME_RX_OK bit is set ■ The frame was decrypted using TKIP key type
			■ The frame is not a fragment
	4	phy_error	PHY error flag. If set, then reception of the frame failed because the PHY encountered an error. In this case, bits [15:8] of this word indicate the specific type of PHY error; see the baseband specification for details. Valid only if the FRAME_RX_OK flag is clear.
	3	decrypt_crc_err	Decryption CRC failure flag. If set, reception of the frame failed because the frame was marked as encrypted but the PCU was unable to decrypt the frame properly because the CRC check failed after the decryption process completed. Valid only if the FRAME_RX_OK flag is clear.
	2	crc_error	CRC error flag. If set, reception of the frame failed because the PCU detected an incorrect CRC value. Valid only if the FRAME_RX_OK flag is clear.
	1	frame_rx_ok	Frame reception success flag. If set, the frame was received successfully. If clear, an error occurred during frame reception.
	0	done	Descriptor completion flag. Set to one by the DMA engine when it has finished processing the descriptor and has updated the status information. Valid for all descriptors.

3.4 Queue Control Unit (QCU)

The queue control unit performs two tasks:

- Managing the Tx descriptor chain processing for frames pushed to the QCU from the host by traversing the linked list of Tx descriptors and transferring frame data from the host to the targeted DCU.
- Managing the queue transmission policy to determine when the frame at the head of the queue should be marked as available for transmission.

The MAC contains ten QCUs. Each QCU contains all the logic and state registers needed to manage a single queue (linked list) of Tx descriptors. A QCU is associated with exactly one DCU. When a QCU prepares a new frame, it signals ready to the DCU. When the DCU accepts the frame, the QCU responds by getting the frame data and passing it to the DCU for eventual transmission to the PCU and on to the air.

The host controls how the QCU performs these tasks by writing to various QCU configuration registers.

3.5 DCF Control Unit (DCU)

Collectively, the ten DCUs implement the EDCF channel access arbitration mechanism defined in the Task Group E (TGe) QoS extension to the 802.11 specification. Each DCU is associated with one of the eight EDCF priority levels and arbitrates with the other DCUs on behalf of all QCUs associated with it. A central DCU arbiter monitors the state of all DCUs and grants one the next access to the PCU (that is, access to the channel).

Because the EDCF standard defines eight priority levels, the first eight DCUs (DCUs 0–7) map directly to the eight EDCF priority levels. The two additional DCUs handle beacons and beacon-gated frames for a total of ten DCUs.

The mapping of physical DCUs to absolute channel access priorities is fixed and cannot be altered by software:

The highest-priority DCU is DCU 9. Typically, this DCU is the one associated with beacons.

The next highest priority DCU is DCU 8. Typically, this DCU is the one associated with beacon-gated frames.

The remaining eight DCUs priority levels are filled with DCUs 7 through 0. Among these 8 DCUs, DCU 7 has highest priority, DCU 6 the next highest priority, and so on through DCU 0, which has the lowest priority. Typically, these DCUs are associated with EDCF priorities seven through zero, respectively.

3.5.1 DCU State Information

Each DCU maintains sufficient state information to implement EDCF channel arbitration. Table 3-7 lists basic DCU state registers. (See "DCF Control Unit (DCU)" on page 47).

Table 3-7. DCU Registers

Register	Size	Page
"QCU Mask (D_QCUMASK)"	32	page 132
"Retry Limits (D_RETRY_LIMIT)"	32	page 133
"ChannelTime Settings (D_CHNTIME)"	32	page 134
"Misc. DCU-Specific Settings (D_MISC)"	32	page 134
"DCU-Global IFS Settings: SIFS Duration (D_GBL_IFS_SIFS)"	32	page 135
"DCU-Global IFS Settings: Slot Duration (D_GBL_IFS_SLOT)"	32	page 135
"DCU-Global IFS Settings: EIFS Duration (D_GBL_IFS_EIFS)"	32	page 135
"DCU-Global IFS Settings: Misc. Parameters (D_GBL_IFS_MISC)"	32	page 136
"DCU Tx Pause Control/Status (D_TXPSE)"	32	page 136
"DCU Transmission Slot Mask (D_TXSLOTMASK)"	32	page 137

3.6 Protocol Control Unit (PCU)

The PCU is responsible for the details of sending a frame to the baseband logic for transmission, for receiving frames from the baseband logic and passing the frame data to the DRU, including:

- Buffering Tx and Rx frames
- Encrypting and decrypting
- Generating ACK, RTS, and CTS frames
- Maintaining the timing synchronization function (TSF)
- Forming aggregate

- Maintaining sequence state and generating Block ACK.
- Inserting and verifying FCS
- Generating virtual clear channel assessment (CCA)
- Updating and parsing beacons
- The PCU is primarily responsible for buffering outgoing and incoming frames and conducting medium access compatible with the IEEE 802.11 DCF protocol.

Figure 3-1 shows the PCU functional block diagram.

Figure 3-2. PCU Functional Block Diagram

4. Digital PHY Block

The digital physical layer (PHY) block is described in 802.11n mode and 802.11b/g legacy mode. Transmit and receive paths are provided and shown as block diagrams for 802.11n mode.

4.1 Overview

The digital PHY block is a half-duplex, OFDM, CCK, DSSS baseband processor compatible with IEEE 802.11n and 802.11b/g. The AR9331 supports PHY data rates up to 150Mbps in the 40 MHz channel mode and all data rates defined by the IEEE 802.11b/g standard (1–54Mbps). Modulation schemes include BPSK, QPSK, 16-QAM, 64-QAM and forward error correction coding with rates of 1/2, 2/3, 3/4, 5/6.

4.2 802.11n Mode

Frames beginning with training symbols are used for signal detection, automatic gain control, frequency offset estimation, symbol timing, and channel estimation. This process uses 56 sub-carriers for 20 MHz HT mode: 52 for data transmission and 4 for pilots. It uses 114 sub-carriers for 40 MHz HT mode: 108 for data transmission and 6 for pilots.

4.2.1 Transmitter (Tx)

Figure 4-1 shows the Tx path digital PHY 802.11n block diagram.

Figure 4-1. Digital PHY 802.11n Tx

The PCU block initiates transmission. The digital PHY powers on the digital to analog converter (DAC) and transmit portions of the AR9331. The training symbols are a fixed waveform and are generated within the digital PHY in parallel with the PCU sending the Tx header (frame length, data rate, etc.). The PCU must send transmitted data quickly enough to prevent buffers in the digital PHY from becoming empty. The PCU is prevented from sending data too quickly by pauses generated within the digital PHY.

Figure 4-1 shows a system with one spatial data stream. Puncturing and padding are added to the encoded data. At this point, it interleaves coded bits across different data subcarriers followed by the modulation, then the stream undergoes IFFT processing to produce time domain signals.

4.2.2 Receiver (Rx)

Figure 4-2 shows the Rx path digital PHY 802.11n block diagram.

Figure 4-2. Digital PHY 802.11n Rx

The receiver inverts the transmitter's steps, performing a fast fourier transform (FFT), extracting bits from received constellations, deinterleaving, accounting for puncturing, decoding, and descrambling. The Rx block shows two spatial streams configuration. Figure 4-2 shows a frequency-domain equalizer handling degradation due to multipath.

4.3 802.11b/g Legacy Mode

4.3.1 Transmitter

The AR9331 digital PHY incorporates an OFDM and DSSS transceiver that supports all data rates defined by IEEE 802.11b/g. Legacy mode is detected on per-frame basis. PLCP frames are detected for legacy network information. The transmitter switches dynamically to generate legacy signals.

4.3.2 Receiver

The receiver is capable of dynamically detecting legacy, HT 20 MHz or 40 MHz frames and will demodulate the frame according to the detected frame type.

5. Radio Block

The AR9331 consists of 2 LNAs, denoted by LNA1 and LNA2 in Figure 5-1. LNA2 is a dedicated Rx chain, while LNA1/Tx shares the Tx and Rx chains using an external LC network. Both LNA1 and LNA2 pass through

an internal diversity combiner before being relayed on to the receiver. Four options exist for the combiner; LNA1, LNA2, LNA1-LNA2 and LNA1+LNA2. A software diversity algorithm determines which is used.

Figure 5-1. Radio Functional Block Diagram

5.1 Receiver (Rx) Block

The receiver converts an RF signal (with 20 MHz or 40 MHz bandwidth) to baseband I and Q outputs. The receiver operates in the 2.4 GHz bands to support CCK and OFDM signals for 802.11b, 802.11g, and 802.11n.

The 2.4 GHz receiver implements a direct conversion architecture.

The receiver consists of low noise amplifiers (LNA1 and LNA2), diversity combiner inphase (I) and quadrature (Q) radio frequency mixers, and a baseband programmable gain amplifier (PGA). The mixer converts the output of the on-chip LNA to baseband I and Q signals. The I and Q signals are low-pass filtered and amplified by a baseband programmable gain filter controlled by digital logic. The baseband signals are sent to the ADC.

The DC offset of the receive chain is reduced using multiple DACs controlled by the MAC/Baseband processor. Additionally, the receive chain can be digitally powered down to conserve power.

5.2 Transmitter (Tx) Block

The transmitter converts baseband I and Q inputs to 2.4 GHz RF outputs as shown in Figure 5-1. The outputs of the DAC are low-pass filtered through an on-chip filter to remove spectral images and out-of-band quantization noise.

The I and Q signals are converted to RF signals using an integrated up-conversion architecture. The baseband I and Q signals are up-converted directly to RF using a pair of quadrature mixers. The internal power amplifier amplifies the signal power and then sends it to the antenna via an internal RF switch.

The transmit chain can be digitally powered down to conserve power. To ensure that the FCC limits are observed and the output power stays close to the maximum allowed, the transmit output power is adjusted by a closed loop, digitally programmed, control loop at the start of each packet. The AR9331 provides a closed loop power control based on an on-chip power detector. Refer to the *AR92xx Atheros Radio Test Reference Guide* for more Information.

5.3 Synthesizer (SYNTH) Block

The radio supports one on-chip synthesizer to generate local oscillator (LO) frequencies for the receiver and transmitter mixers. The synthesizer is a fractional -N synthesizer, and its topology is shown in Figure 5-2.

The AR9331 generates the reference input from a 40 MHz crystal for the synthesizer. An on-chip voltage controlled oscillator (VCO) provides the desired LO signal based on a phase/frequency locked loop.

Upon power up or channel reselection, the synthesizer takes approximately 0.2 ms to settle.

Figure 5-2. Radio Synthesizer Block Diagram

5.4 Bias/Control (BIAS) Block

The bias/control block provides the reference voltages and currents for all other circuit blocks (see Figure 5-3). An on-chip bandgap reference circuit provides the needed voltage and current references based on an internal bias resistor.

Figure 5-3. Bias/Control Block Diagram

6. Register Descriptions

These sections describe the internal registers for the various AR9331 blocks. The AR9331 has two types of registers:

■ Registers directly memory mapped to the CPU address space (see Table 6-1).

Registers indirectly mapped through the MDIO interface of GE0. All the Ethernet Switch related registers fall in this category (see "PHY Control Registers" on page 262).

Table 6-1 summarizes the CPU mapped registers for the AR9331.

Table 6-1. CPU Mapped Registers Summary

Address	Description	Page
0x18000000-0x180000A4	DDR Registers	page 54
0x18020000-0x18020010	UART Registers	page 60
0x18030000-0x18030004	USB Registers	page 64
0x18040000-0x18040030	GPIO Registers	page 65
0x18050000-0x18050044	PLL Control Registers	page 70
0x18060000-0x180600B0	Reset Control Registers	page 75
0×18070000	GMAC Registers	page 83
0x18090000 - 0x18090024	SLIC Registers	page 84
0x180A0000-0x180A005C	MBOX Registers	page 88
0x180B0000-0x180B001C	I ² S Registers	page 98
0x180B8000-0x180B8020	MDIO Slave Registers	page 102
0x18100008-0x181000DC	General DMA and Rx-Related Registers	page 125
0x18100800 + (Q<<2) - 0x18100A44	QCU Registers	page 125
0x18101000 + (D<<2) - 0x181012F0	DCU Registers	page 132
0x18104000-0x181040D4	Host Interface Registers	page 138
0x18107040-0x18107058	RTC Interface Registers	page 151
0x18108000-0x181088F4	MAC PCU Registers	page 156
0x19000000-0x190001D8 0x1A000000-0x1A0001D8	Ethernet Registers	page 19
0x1B000100-0x1B0001D4	USB Controller Registers	page 23
0x1F000000-0x1F00000C	Serial Flash Registers	page 261

Table 6-2. Ethernet Switch and PHY Registers

Address	Description	Page
0x00	PHY Control Registers	page 262
0x00	Ethernet Switch/Global Control Registers	page 282
0x00	Ethernet Switch/Port Control Registers	page 294

6.1 DDR Registers

Table 6-3 summarizes the DDR registers for the AR9331.

Table 6-3. **DDR Registers Summary**

Address	Name	Description	Page
0x18000000	DDR_CONFIG	DDR DRAM Configuration	page 54
0x18000004	DDR_CONFIG2	DDR DRAM Configuration 2	page 55
0x18000008	DDR_MODE_REGISTER	DDR Mode Value	page 55
0x1800000C	DDR_EXTENDED_MODE_REGISTER	DDR Extended Mode Value	page 55
0x18000010	DDR_CONTROL	DDR Control	page 56
0x18000014	DDR_REFRESH	DDR Refresh Control and Configuration	page 56
0x18000018	DDR_RD_DATA_THIS_CYCLE	DDR Read Data Capture Bit Mask	page 56
0x1800001C	TAP_CONTROL_0	DQS Delay Tap Control for Byte 0	page 56
0x18000020	TAP_CONTROL_1	DQS Delay Tap Control for Byte 1	page 57
0x1800007C	DDR_WB_FLUSH_GE0	GE0 Interface Write Buffer Flush	page 57
0x18000080	DDR_WB_FLUSH_GE1	GE1 Interface Write Buffer Flush	page 57
0x18000084	DDR_WB_FLUSH_USB	USB Interface Write Buffer Flush	page 57
0x1800008C	DDR_DDR2_CONFIG	DDR2 Configuration	page 58
0x18000090	DDR_EMR2	DDR Extended Mode 2 Value	page 58
0x18000094	DDR_EMR3	DDR Extended Mode 3 Value	page 58
0x18000098	DDR_BURST	DDR Burst Control	page 59
0x1800009C	AHB_MASTER_TIMEOUT_MAX	AHB Master Timeout Control	page 59
0x180000A0	AHB_MASTER_TIMEOUT_CURNT	AHB Timeout Current Count	page 59
0x180000A4	AHB_MASTER_TIMEOUT_SLAVE_ADDR	Timeout Slave Address	page 59

6.1.1 DRR DRAM Configuration (DDR_CONFIG)

This register is used to configure the DDR Address: 0x18000000 Access: Read/Write DRAM parameters. Reset: See field description

Bit	Bit Name	Reset	Description
31	CAS_LATENCY_MSB	0x0	MSB bit of a 4-bit CAS_LATENCY field
30	OPEN_PAGE	0x1	Controller open page policy. This policy increases bus efficiency if accesses are local to a page but increase random read/write latency.
			0 Page open
			1 Page closed
29:27	CAS_LATENCY	0x6	DRAM CAS latency parameter (first 3 bits) rounded up in memory core clock cycles. Used by the hardware to estimate the internal DDR clock latency of a read. It should be \geq GATE_OPEN_LATENCY as specified in the DDR_CONFIG2 register. The value of this register should be Memory CAS_LATENCY * 2 or CAS_LATENCY * 2+1/2/3.
26:23	TMRD	0xF	DRAM tMRD parameter rounded up in memory core clock cycles
22:17	TRFC	0x1F	DRAM tRFC parameter rounded up in memory core clock cycles
16:13	TRRD	0x4	DRAM tRRD parameter rounded up in memory core clock cycles
12:9	TRP	0x6	DRAM tRP parameter rounded up in memory core clock cycles
8:5	TRCD	0x6	DRAM tRCD parameter rounded up in memory core clock cycles
4:0	TRAS	0x10	DRAM tRAS parameter rounded up in memory core clock cycles

6.1.2 DDR DRAM Configuration 2 (DDR_CONFIG2)

Address: 0x18000004 Access: Read/Write Reset: See field description GATE_OPEN_LATENCY is separated from CAS_LATENCY to separately control the write and read sides of the DQS/DQ memory inputs.

Bit	Bit Name	Reset	Description
31	HALF_WIDTH_LOW	0x1	Controls which part of the 32-bit DDR DQ bus is populated with DRAM in a 16-bit memory system
			0 31:16
			1 15:0
30	RES	_	Reserved
29:26	GATE_OPEN _LATENCY	0x6	Memory CAS_LATENCY * 2
25:21	TWTR	0xE	DRAM tWTR parameter rounded up in memory core clock cycles
20:17	TRTP	0x8	DRAM read to precharge parameter rounded up in memory core clock cycles. The normal value is two clock cycles.
16:12	TRTW	0x10	DRAM tRTW parameter rounded up in memory core clock cycles. The value should be calculated as CAS_LATENCY + BURST_LENGTH + BUS_TURNAROUND_TIME.
11:8	TWR	0x6	DRAM tWR parameter rounded up in memory core clock cycles
7	CKE	0x1	DRAM CKE bit
6	PHASE_SELECT	0x0	Selects the output phase
5	CNTL_OE_EN	0x1	A control bit to allow the memory controller to tri-state the address/control outputs
4	BURST_TYPE	0x0	DRAM burst type
			0 Sequential
			1 Interleaved
3:0	BURST_LENGTH	0x8	DRAM burst length setting. (2, 4, or 8. Only 8 is supported)

6.1.3 DDR Mode Value (DDR_MODE_REGISTER)

Address: 0x18000008 Access: Read/Write Reset: See field description This register is used to set the DDR mode register value

register value.

Bit	Bit Name	Reset	Description
31:13	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	0x133	Mode register value. Reset to CAS 3, BL=8, sequential, DLL reset off.

6.1.4 DDR Extended Mode (DDR_EXTENDED_MODE_REGISTER)

Address: 0x1800000C Access: Read/Write Reset: See field description This register is used to set the extended DDR mode register value.

Bit	Bit Name	Reset	Description
31:13	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	0x2	Extended mode register value. Reset to weak driver, DLL on.

DDR Control (DDR_CONTROL) 6.1.5

Address: 0x18000010 Access: Read/Write

Reset: 0x0

This register is used to force update cycles in

the DDR control.

Bit	Bit Name	Description
31:6	RES	Reserved
5	EMR3	Forces an EMR3S update cycle
4	EMR2	Forces an EMR2S update cycle
3	PREA	Forces a PRECHARGE ALL cycle
2	REF	Forces an AUTO REFRESH cycle
1	EMRS	Forces an EMRS update cycle
0	MRS	Forces an MRS update cycle

6.1.6 DDR Refresh Control and Configuration (DDR_REFRESH)

Address: 0x18000014 This register is used to configure the settings to

Access: Read/Write refresh the DDR,

Reset: See field description

Bit	Bit Name	Reset	Description
31:15	RES	0x0	Reserved
14	ENABLE	0x0	Setting this bit will enable a DDR refresh
13:0	PERIOD	0x12C	Sets the refresh period intervals

6.1.7 DDR Read Data Capture Bit Mask (DDR_RD_DATA_THIS_CYCLE)

This register is used to set the parameters to Address: 0x18000018 Access: Read/Write read the DDR and capture bit masks.

Reset: See field description

Bit	Bit Name	Reset	Description
31:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:0	VEC	0xFF	DDR read and capture bit mask. Each bit represents a cycle of valid data.

DQS Delay Tap Control for Byte 0 (TAP_CONTROL_0) 6.1.8

Address: 0x1800001C This register is used along with DQ Lane 0, Access: Read/Write DQ[7:0], DQS_0.

Reset: See field descriptions

Bit	Bit Name	Reset	Description	
31:17	RES	0x0	Reserved	
16	TAP_H_ BYPASS	0x0	Set to 1 to bypass the higher 32-level delay chain	
15:13	RES	0x0	Reserved	
12:8	TAP_H	0x0	Tap setting for higher 32-level delay chain	
6:5	RES	0x0	Reserved	
4:0	TAP_L	0x5	Tap setting for lower 32-level delay chain	

DQS Delay Tap Control for Byte 1 (TAP_CONTROL_1) 6.1.9

Address: 0x18000020 This register is used along with DQ Lane 1, Access: Read/Write

Reset: See field descriptions

DQ[15:8], DQS_1.

Bit	Bit Name	Reset	Description	
31:17	RES	0x0	Reserved	
16	TAP_H_ BYPASS	0x0	Set to 1 to bypass the higher 32-level delay chain	
15:13	RES	0x0	Reserved	
12:8	TAP_H	0x5	Tap setting for higher 32-level delay chain	
7:5	RES	0x0	Reserved	
4:0	TAP_L	0x5	Tap setting for lower 32-level delay chain	

6.1.10 GEO Interface Write Buffer Flush (DDR_WB_FLUSH_GEO)

Address: 0x1800007C This register is used to flush the write buffer for

Access: Read/Write the GEO interface.

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	Set this bit to 1 to flush the write buffer for the GE0 interface. This bit will reset to 0 when the flush is complete.

6.1.11 GE1 Interface Write Buffer Flush (DDR_WB_FLUSH_GE1)

Address: 0x18000080 This register is used to flush the write buffer for

Access: Read/Write the GE1 interface.

Reset: 0x0

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the GE1 interface. This bit will reset to 0 when the flush is complete.

6.1.12 USB Interface Write Buffer Flush (DDR_WB_FLUSH_USB)

Address: 0x18000084 This register is used to flush the write buffer for

Access: Read/Write the USB interface.

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the USB interface. This bit will reset to 0 when the flush is complete.

6.1.13 AMBA Interface Write Buffer Flush (DDR_WB_FLUSH_AMBA)

Address: 0x18000088 This register is used to flush the write buffer for

Access: Read/Write the AMBA interface.

Reset: 0x0

Bit	Bit Name	Туре	Reset	Description
31:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FLUSH	RW	0x0	Set this bit to 1 to flush the write buffer for the AMBA interface. This bit will reset to 0 when the flush is complete.

6.1.14 DDR2 Configuration (DDR_DDR2_CONFIG)

Address: 0x1800008C Access: Read/Write Reset: 0x0858

Bit	Bit Name	Туре	RW	Description
31:13	RES	RO	0x0	Reserved
12:10	DDR2_TWL	RW	0x0	Delay between WE_1/CAS_L assertion on DQS, DQ assertion for a DDR2 write transaction (in DDR_CLK cycles)
9:8	RES	RO	0x0	Reserved
7:2	DDR2_TFAW	RW	0x16	tFAW parameter in core DDR_CLK cycles
1	RES	RW	0x0	Reserved
0	ENABLE_DDR	RW	0x0	0 DDR1
				1 DDR2

6.1.15 DDR EMR2 (DDR_EMR2)

Address: 0x18000090 Access: Read/Write

Reset: 0x0

This register is used set the extended mode register 2 value.

Bit	Bit Name	Туре	Reset	Description
31:13	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	RW	0x0	Extended mode register 2 value

6.1.16 DDR EMR3 (DDR_EMR3)

Address: 0x18000094 This register is used set the extended mode register 3 value.

Access: Read/Write

Bit	Bit Name	Type	Reset	Description
31:13	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
12:0	VALUE	RW	0x0	Extended mode register 2 value

6.1.17 DDR Burst Control (DDR_BURST)

Address: 0x18000098 Access: Read/Write

Reset: 0x0

This register is used set the burst control for the DDR.

Bit	Bit Name	Туре	Reset	Description
31	CPU_ PRIORITY	RW	0x0	Setting this bit allows the bank arbiters to grant a break in the current burst and then, access to the CPU is granted
30	CPU_PRIORITY_BE	RW	0x1	Setting this bit allows the bank arbiters to grant a break only after the current burst has been completed and then, access to the CPU is granted
29:28	ENABLE_RWP_MASK	RW	0x3	Enables the Read/Write mask, Precharge mask
27:24	MAX_WRITE_BURST	RW	0x4	Maximum write burst size until a read has been masked in the BANK_ARB
23:20	MAX_READ_BURST	RW	0x4	Maximum read burst size until a write has been masked in the BANK_ARB
19:16	CPU_MAX_BL	RW	0x2	USB burst size
15:12	USB_MAX_BL	RW	0x2	USB burst size
11:8	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
7:4	GE1_MAX_BL	RW	0x2	GE1 burst size
3:0	GE0_MAX_BL	RW	0x2	Ethernet burst size

6.1.18 AHB Master Timeout Control (AHB_MASTER_TIMEOUT_MAX)

Address: 0x1800009C Access: Read/Write

Reset: 0x0

This register specifies the maximum timeout value of the AHB master control.

Bit	Bit Name	Type	Reset	Description
31:20	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
19:0	VALUE	RW	0x8000	Maximum time out value

6.1.19 AHB Timeout Current Count (AHB_MASTER_TIMEOUT_CURNT)

Address: 0x180000A0 Access: Read/Write

This register specifies the current AHB timeout value.

Reset: 0x0

Bit	Bit Name	Туре	Reset	Description
31:20	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
19:0	VALUE	RO	0x0	Current time out value

6.1.20 Timeout Slave Address (AHB_MASTER_TIMEOUT_SLV_ADDR)

Address: 0x180000A4 Access: Read/Write

This register specifies the maximum timeout

value of the slave address.

Bit	Bit Name	Туре	Reset	Description
31:0	ADDR	RO	0x0	Maximum time out value

6.2 UART Registers

Table 6-6 summarizes the UART registers for the AR9331.

Table 6-4. UART Registers Summary

Address	Name	Description	Page
0x18020000	UART_DATA	UART Transmit and Rx FIFO	page 60
0x18020004	UART_CS	UART Configuration and Status	page 61
0x18020008	UART_CLOCK	UART Clock	page 62
0x1804000C	UART_INT	UART Interrupt	page 62
0x18040010	UART_INT_EN	UART Interrupt Enable	page 63

6.2.1 UART Transmit and Rx FIFO Interface (UART_DATA)

Address: 0x18020000 Access: Read/Write

Reset: 0x0

This register pushes data on the Tx FIFO and pop data off the Rx FIFO. This interface can be used only if all other interfaces are disabled in the "UART Configuration and Status

(UART_CS)" on page 61.

Bit	Bit Name	Туре	Reset	Description
31:10	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
9	UART_TX_ CSR	RW	0x0	Read returns the status of the Tx FIFO. If set, the Tx FIFO can accept more transmit data. Setting this bit will push UART_TX_RX_DATA on the Tx FIFO. Clearing this bit has no effect.
8	UART_RX_ CSR	RW	0x0	Read returns the status of the Rx FIFO. If set, the receive data in UART_TX_RX_DATA is valid. Setting this bit will pop the Rx FIFO if there is valid data. Clearing this bit has no effect.
7:0	UART_TX_ RX_DATA	RW	0x0	Read returns receive data from the Rx FIFO, but leaves the FIFO unchanged. The receive data is valid only if UART_RX_CSR is also set. Write pushes the transmit data on the Tx FIFO if UART_TX_CSR is also set.

UART Configuration and Status (UART_CS) 6.2.2

Address: 0x18020004 Access: Read/Write

This register configures the UART operation and reports the operating status.

Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:16	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
15	UART_RX_ BUSY	R	_	This bit is set whenever there is receive data or data is being received. It is clear when receive is completely idle.
14	UART_TX_ BUSY	R	_	This bit is set whenever there is data ready to transmit or being transmitted. It is clear when transmit is completely idle.
13	UART_ HOST_INT_EN	RW	0x0	Enables an interrupt on the UART host
12	UART_HOST_ INT	R	_	This bit will be set while the host interrupt is being asserted and will clear when host interrupt is deasserted.
11	UART_TX_ BREAK	RW	0x0	This bit blocks the Tx FIFO and causes a break to be continuously transmitted. The Tx FIFO will resume normal operation when this bit is clear.
10	UART_RX_ BREAK	R	_	This bit will be set while a break is being received. It will clear when the receive break stops.
9	UART_SERIAL_ TX_READY	R	_	This bit will be set while Serial Tx Ready is asserted and is cleared when Serial Tx Ready is deasserted.
8	UART_TX_ READY_ORIDE	RW	0x0	This bit overrides the transmit ready flow control. If clear, transmit ready is controlled by UART_FLOW_CONTROL_MODE. If set, then transmit ready will be true.
7	UART_RX_ READY_ORIDE	RW	0x0	This bit overrides the receive ready flow control. If clear, receive ready is controlled by UART_FLOW_CONTROL_MODE. If set, then receive ready will be true.
6	UART_DMA_EN	RW	0x0	Enable DMA interface mode. If this is set, then transmit and Rx FIFO access through "UART Transmit and Rx FIFO Interface (UART_DATA)" on page 60 is disabled. Instead, these FIFOs are connected to the internal DMA interface, if available.
5:4	UART_FLOW_ CONTROL_ MODE	RW	0x0	Select which hardware flow control to enable 00 No flow control. Disable hardware flow control. Serial Transmit Ready and Serial Receive Ready are controlled by UART_RX_READY_ORIDE and UART_TX_READY_ORIDE. 10 Hardware flow control. Enable standard RTS/CTS flow control
				to control Serial Transmit Ready and Serial Receive Ready. 11 Inverted Flow Control. Enable inverted RTS/CTS flow control
3:2	LIADT	RW	0x0	to control Serial Transmit Ready and Serial Receive Ready
3:2	UART_ INTERFACE_	KVV	UXU	Select which serial port interface to enable 00 No interface. Disable serial port.
	MODE			01 DTE interface. Configure serial port for DTE (Data Terminal Equipment) operation. Transmit on TD, receive on RD, flow control out on RTS, flow control in on CTS.
				10 DCE interface. Configure serial port for DCE (Data Communication Equipment) operation. Transmit on RD, receive on TD, flow control out on CTS, flow control in on RTS.
1:0	UART_PARITY_	RW	0x0	Select the parity mode for transmit and receive data
	MODE			00 No parity. Parity is not transmitted or received
				10 Odd parity. Odd parity is transmitted and checked on receive
				11 Even parity. Even parity is transmitted and checked on receive

UART Clock (UART_CLOCK) 6.2.3

Address: 0x18020008 Access: Read/Write

Reset: 0x0

This register sets the scaling factors use by the serial clock interpolator to create the transmit

bit clock and receive sample clock.

Bit	Bit Name	Туре	Reset	Description
31:24	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:16	UART_CLOCK_ SCALE	RW	0x0	The serial clock divisor used to create a scaled Serial Clock. This is used to bring the serial clock into a range that can be interpolated by UART_CLOCK_STEP. The actual divisor is (1 + UART_CLOCK_SCALE). Use the formula: UART_CLOCK_SCALE = truncate(((1310*serialClockFreq)/(131072*baudClockFreq)))
15:0	UART_ CLOCK_STEP	RW	0x0	The ratio of the scaled serial clock to the baud clock, as expressed by a 17-bit fraction. This value should range between 1310–13107 to maintain a better than $\pm 5\%$ accuracy. Smaller is generally better, because interpolation errors caused by a small value are far less than quantization errors caused by a large value. Use the formula: UART_CLOCK_STEP = round((131072*baudClockFreq)/(serialClockFreq/(UartClockScale+1)))

UART Interrupt/Control Status (UART_INT) 6.2.4

Address: 0x1802000C Access: Read/Write Reset: See field description

This register when read, returns the current interrupt status. Setting a bit will clear the individual attempt. Clearing a bit has no effect.

Bit	Bit Name	Туре	Reset	Description
31:10	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
9	UART_TX_ EMPTY_INT	RW	0x0	This bit will be high while the Tx FIFO is almost empty. Setting this bit will clear this interrupt. Clearing this bit has no effect.
8	UART_RX_FULL_ INT	RW	0x0	This bit will be high while the Rx FIFO is almost full, triggering hardware flow control, if enabled. Setting this bit will clear this interrupt. Clearing this bit has no effect.
7	UART_RX_ BREAK_OFF_INT	RW	0x0	This bit will be high while a break is not received. Setting this bit will clear this interrupt. Clearing this bit has no effect.
6	UART_RX_ BREAK_ON_INT	RW	0x0	This bit will be high while a break is received. Setting this bit will clear this interrupt. Clearing this bit has no effect.
5	UART_RX_ PARITY_ERR_INT	RW	0x0	This bit will be high if receive parity checking is enabled and the receive parity does not match the value configured by UART_PARITY_EVEN. Setting this bit will clear this interrupt. Clearing this bit has no effect.
4	UART_TX_ OFLOW_ERR_INT	RW	0x0	This bit will be high if the Tx FIFO overflowed. Setting this bit will clear this interrupt. Clearing this bit has no effect.
3	UART_RX_ OFLOW_ERR_INT	RW	0x0	This bit will be high if the Rx FIFO overflowed. Setting this bit will clear this interrupt. Clearing this bit has no effect.
2	UART_RX_ FRAMING_ERR_ INT	RW	0x0	This bit will be high if a receive framing error was detected. Setting this bit will clear this interrupt. Clearing this bit has no effect
1	UART_TX_ READY_INT	RW	0x0	This bit will be high while there is room for more data in the Tx FIFO. Setting this bit will clear this interrupt if there is room for more data in the Tx FIFO. Clearing this bit has no effect.
0	UART_RX_VALID _INT	RW	0x0	This bit will be high while there is data in the Rx FIFO. Setting this bit will clear this interrupt if there is no more data in the Rx FIFO. Clearing this bit has no effect.

UART Interrupt Enable (UART_INT_EN) 6.2.5

Address: 0x18020010 Access: Read/Write Reset: See field Description This register enables interrupts in the UART Interrupt register.

Bit	Bit Name	Туре	Reset	Description
31:10	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
9	UART_TX_ EMPTY_INT_EN	RW	0x0	Enables UART_TX_EMPTY_INT in "UART Interrupt/Control Status (UART_INT)" on page 62.
8	UART_RX_FULL_ INT_EN	RW	0x0	Enables UART_RX_FULL_INT in "UART Interrupt/Control Status (UART_INT)" on page 62.
7	UART_RX_BREAK_ OFF_INT_EN	RW	0x0	Enables UART_RX_BREAK_OFF_INT in "UART Interrupt/ Control Status (UART_INT)" on page 62.
6	UART_RX_BREAK_ ON_INT_EN	RW	0x0	Enables UART_RX_BREAK_ON_INT in "UART Interrupt/ Control Status (UART_INT)" on page 62.
5	UART_RX_PARITY _ERR_INT_EN	RW	0x0	Enables UART_PARITY_ERR_INT in "UART Interrupt/Control Status (UART_INT)" on page 62.
4	UARTTX_OFLOW_ ERR_INT_EN	RW	0x0	Enables UART_TX_OFLOW_ERR_INT in "UART Interrupt/ Control Status (UART_INT)" on page 62.
3	UART_RX_OFLOW _ERR_INT_EN	RW	0x0	Enables UART_RX_OFLOW_ERR_INT in "UART Interrupt/ Control Status (UART_INT)" on page 62.
2	UART_RX_ FRAMING_ERR_ INT_EN	RW	0x0	Enables UART_RX_FRAMING_ERR_INT in "UART Interrupt/Control Status (UART_INT)" on page 62.
1	UART_TX_READY_ INT_EN	RW	0x0	Enables UART_TX_READY_INT in "UART Interrupt/Control Status (UART_INT)" on page 62.
0	UART_RX_VALID_ INT_EN	RW	0x0	Enables UART_RX_VALID_INT in "UART Interrupt/Control Status (UART_INT)" on page 62.

6.3 USB Registers

Table 6-5 summarizes the AR9331 USB registers.

Table 6-5. USB Registers Summary

Address	Name	Description	Page
0x18030000	USB_PWRCTL	USB Power Control and Status	page 54
0x18030004	USB_CONFIG	USB Configuration	page 55

6.3.1 USB Power Control and Status (USBPWRCTL)

Address: 0x18030000 This register is used to set USB power and Access: See field description status configurations.

Reset: 0x0

Bit **Bit Name** Description Access 31:7 **RES** RO Reserved. Must be written with zero. Contains zeros when read. WAKEUP_ RO 6 Final wake-up status that wakes the USB core STATUS RW 5 USR_WAKEUP User wakeup signal. Input clears suspend output. Suspend outputs synchronize to a clock and the input does not propagate to suspend outputs until the related clock begins running. This bit must remain asserted until the related suspend output transitions to zero. WAKE RO 4 Wake-up status due to a power fault OVRCURR_EN RO 3 WAKE_ Wake-up status due to a disconnect event DISCNNT_EV 2 WAKE_CNNT_ RO Wake-up status due to a connect event 1 SUSPEND_CLR RO Output to notify the software of a command wake-up. This bit is not synchronized and remains set until the SUSPEND (bit [0]) clears. 0 **SUSPEND** RO Suspend output synchronized to the XCVR_CLK

6.3.2 USB Configuration (USB_CONFIG)

Address: 0x18030004 This register is used to set USB configurations.

Access: See field description Reset: See field description

Bit	Bit Name	Access	Reset	Description
31:9	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.
8	HOST_ONLY	RW	0x1	If this bit is set to 1, the IDPULLUP input to the UTMI PHY is tied to 0 to make sure the ID signal is not sampled by the PHY
7:6	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.
5	AHB_HRDATA_ SWAP	RW	0x1	Swap the read data on the AHB bus
4	AHB_HWDATA_ SWAP	RW	0x1	Swap the hardware data on the AHB bus
3	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.
2	HS_MODE_EN	RO	0x1	Asserted when the HS interface is selected
1	UTMI_PHY_EN	RO	0x0	Asserted when the UTMI interface is selected
0	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.

6.4 GPIO Registers

Table 6-6 summarizes the GPIO registers for the AR9331.

Table 6-6. **GPIO Registers Summary**

Address	Name	Description	Page
0x18040000	GPIO_OE	General Purpose I/O Output Enable	page 65
0x18040004	GPIO_IN	General Purpose I/O Input Value	page 65
0x18040008	GPIO_OUT	General Purpose I/O Output Value	page 65
0x1804000C	GPIO_SET	General Purpose I/O Bit Set	page 66
0x18040010	GPIO_CLEAR	General Purpose I/O Per Bit Clear	page 66
0x18040014	GPIO_INT	General Purpose I/O Interrupt Enable	page 66
0x18040018	GPIO_INT_TYPE	General Purpose I/O Interrupt Type	page 66
0x1804001C	GPIO_INT_POLARITY	General Purpose I/O Interrupt Polarity	page 66
0x18040020	GPIO_INT_PENDING	General Purpose I/O Interrupt Pending	page 67
0x18040024	GPIO_INT_MASK	General Purpose I/O Interrupt Mask	page 67
0x18040028	GPIO_FUNCTION_1	General Purpose I/O Function	page 67
0x1804002C	GPIO_IN_ETH_SWITCH_LED	General Purpose I/O Input Value	page 68
0x18040030	GPIO_FUNCTION_2	Extended GPIO Function Control	page 69

6.4.1 General Purpose I/O Output Enable (GPIO_OE)

Address: 0x18040000 This register is used to enable the per bit output Access: Read/Write or input.

Reset: 0x0

Bit	Bit Name	Description		
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.		
29:0	OE	Per bit output enable. bits [19:18] are available only if the EJTAG_DISABLE bit is set. Bits [17:13] cannot be set as inputs.		
		0 Enables the driver to be used as an input mechanism		
		1 Enables the output driver		

General Purpose I/O Input Value (GPIO_IN)

Address: 0x18040004 This register denotes the current values of each Access: Read-Only of the GPIO pins.

Reset: 0x0

Bit	Bit Name	Description
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.
29:0	IN	Current values of each of the GPIO pins

General Purpose I/O Output Value (GPIO_OUT) 6.4.3

Address: 0x18040008 This register denotes the driver output value. Access: Read/Write

Bit	Bit Name	Description	
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.	
29:0	OUT	Denotes the driver output value. Setting the corresponding bit in the OE register to 1 will drive the value in the corresponding bit of this register.	

General Purpose I/O Per Bit Set (GPIO_SET) 6.4.4

Address: 0x1804000C The bit of this register is set in response to other Access: Write-Only bits being set.

Reset: 0x0

Bit	Bit Name	Description
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.
29:0	SET	When writing, any bit that is set will cause the corresponding GPIO bit to be set. Any bit that is not set will have no effect.

General Purpose I/O Per Bit Clear (GPIO CLEAR) 6.4.5

Address: 0x18040010 The bit of this register is set in response to other

Access: Write-Only bits being cleared.

Reset: 0x0

Bit	Bit Name	Description	
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.	
29:0	CLEAR	When writing, any bit that is set will cause the corresponding GPIO bit to be cleared. Any bit that is not set will have no effect. Bits [19:18] must be set to 0x3 initially to cause these output values to be 0.	

6.4.6 General Purpose I/O Interrupt Enable (GPIO_INT)

Address: 0x18040014 The register sets the bit for interrupts into

Access: Read/Write GPIO lines.

Reset: 0x0

Bit	Bit Name	Description
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.
29:0	INT	Each bit set will be considered an interrupt ORd into the GPIO interrupt line

General Purpose I/O Interrupt Type (GPIO_INT_TYPE) 6.4.7

Address: 0x18040018 This register is used to set the interrupt type for

Access: Read/Write GPIOs.

Reset: 0x0

Bit	Bit Name	Description		
31:30	RES	Reser	Reserved. Must be written with zero. Contains zeros when read.	
29:0	TYPE	Used to set the type of interrupt		
		0	This bit is a level-sensitive interrupt	
		1	This bit is an edge-sensitive interrupt	

General Purpose I/O Interrupt Polarity (GPIO INT POLARITY) 6.4.8

Address: 0x1804001C This register is used to indicate the level and

Access: Read/Write edge status of the GPIO interrupt.

Bit	Bit Name	Description	
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.	
29:0	POLARITY	Each bit controls the corresponding GPIO interrupt polarity	
		0 Indicates that the interrupt is active low (level) or falling edge (edge)	
		1 Indicates that the interrupt is active high (level) or rising edge (edge)	

6.4.9 General Purpose I/O Interrupt Pending (GPIO_INT_PENDING)

Address: 0x18040020 This register is used to indicate current pending interrupts.

Reset: 0x0

Bit	Bit Name	Description
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.
29:0	PENDING	Indicates that an interrupt is currently pending for a GPIO bit. For edge sensitive interrupts, this register is read-with-clear.

6.4.10 General Purpose I/O Interrupt Mask (GPIO_INT_MASK)

Address: 0x18040024 This register is used to send interrupt messages

Access: Read/Write to the central controller.

Reset: 0x0

Bit	Bit Name	Description
31:30	RES	Reserved. Must be written with zero. Contains zeros when read.
29:0	MASK	When set, the corresponding control in the "General Purpose I/O Interrupt Pending (GPIO_INT_PENDING)" register is passed on to the centra1 interrupt controller.

6.4.11 General Purpose I/O Function (GPIO_FUNCTION_1)

Address: 0x18040028 This register is used to enable and disable the Access: Read/Write functionality of certain multiplexed GPIO pins.

Bit	Bit Name	Description
31	SPDIF2TCK	Enables SPDIF_OUT on the pin TCK
30	SPDIF_EN	Enables GPIO_23 or TCK as the SPDIF serial output
29	I2SO_22_18_EN	Enables GPIO bits [22:18] as I2S interface pins
		Bit [18] BITCLK (Input/Output)
		Bit [19] WS (Input/Output)
		Bit [20] SD (Output)
		Bit [21] MCK (Input/Output)
		Bit [22] MICIN (Input)
28	RES	Reserved. Must be written with zero. Contains zeros when read.
27	I2S_ MCKEN	Enables the master audio CLK_MCK to be output through GPIO_21. Works only if I2SO_22_18_EN (bit [29]) is also set.
26	I2SO_EN	Enables I2S functions on GPIO pins.
25	ETH_SWITCH_LED_ DUPL	Link signal to select whether Link, Activity or both must be indicated in the LED
		Select the LED_DUPLEXN_O signal to go out as LED signals. If inactive, LED_LINK100N_O and LED_LINK10N_O is the default signal going out.

24	ETH_SWITCH_LED_ COLL	Link signal to select whether Link, Activity or both must be indicated in the LED
		Select the LED_COLN_O signal to go out as LED signals. If inactive, LED_LINK100N_O and LED_LINK10N_O is the default signal going out.
23	ETH_SWITCH_LED_ ACTV	Link signal to select whether Link, Activity or both must be indicated in the LED
		Select the LED_ACTIN_O signal to go out as LED signals. If inactive, LED_LINK100N_O and LED_LINK10N_O is the default signal going out.
22:19	RES	Reserved. Must be written with zero. Contains zeros when read.
18	SPI_EN	Enables SPI SPA Interface signals in GPIO_2, GPIO_3, GPIO_4 and GPIO_5
17:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15	RES	Reserved. This pin must be written with 1.
14	SPI_CS_EN2	Enables an additional SPI chip select on GPIO_10
13	SPI_CS_EN1	Enables an additional SPI chip select on GPIO_9
12:8	RES	Reserved. Must be written with zero. Contains zeros when read.
7	ETH_SWITCH_ LED4_EN	Enables the Ethernet Switch LED data on GPIO_17
6	ETH_SWITCH_ LED3_EN	Enables the Ethernet Switch LED data on GPIO_16
5	ETH_SWITCH_ LED2_EN	Enables the Ethernet Switch LED data on GPIO_15
4	ETH_SWITCH_ LED1_EN	Enables the Ethernet Switch LED data on GPIO_14
3	ETH_SWITCH_ LED0_EN	Enables the Ethernet Switch LED data on GPIO_13
2	UART_RTS_CTS_EN	Enables UART RTS/CTS I/O on GPIO_11 (RTS) and GPIO_12 (CTS)
1	UART_EN	Enables UART I/O on GPIO_9 (SIN) and GPIO_10 (SOUT)
0	EJTAG_DISABLE	Disables EJTAG port functionality to enable GPIO functionality.
0	EJTAG_DISABLE	Disables EJTAG port functionality to enable GPIO functionality.

6.4.12 General Purpose I/O Input Value (GPIO_IN_ETH_SWITCH_LED)

Address: 0x1804002C This register is used to indicate current pending interrupts. Access: Read/Write

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19:15	LINK	Current value of LED_LINK100N_O and LED_LINK10N_O
14:10	DUPL	Current value of LED DUPLEXN_O
9:5	COLL	Current value of LED_COLN_O
4:0	ACTV	Current value of LED_ACTIN_O

6.4.13 Extended GPIO Function Control (GPIO_FUNCTION_2)

Address: 0x18040030 Access: Read/Write

Reset: 0x0

This register is used to indicate current pending interrupts.

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
18:16	MDIO_SLV_PHY_ADR	Sets the PHY address for MDIO slave functions
15:13	RES	Reserved. Must be written with zero. Contains zeros when read.
12	XLNA_EN	Enables control to the external LNA on GPIO28
11	WLAN_LED2_ EN	Enables the second WLAN LED function on GPIO1
10	WLAN_LED1_ EN	Enables the first WLAN LED function on GPIO0
9	JUMPSTART_DISABLE	Disables Jumpstart input function on GPIO11
8	WPS_DISABLE	Disables the WPS input function on GPIO12
7:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	I2SD_ON_12	Enables I2S_SD output signal on GPIO_12
4	EN_I2SWS_ON_0	Enables I2S_WS on GPIO_0
3	EN_I2SCK_ON_1	Enables I2S_CK Out on GPIO_1
2	SPDIF_ON23	Enables the SPDIF output on GPIO23
1	I2S_ON_LED	Brings out I ² S related signals on pins GPIO_14, GPIO_15 and GPIO_16
0	DIS_MIC	Disables MIC

6.5 PLL Control Registers

Table 6-7 summarizes the AR9331 PLL control registers.

Table 6-7. PLL Control Registers Summary

Address	Name	Description	Page
0x18050000	CPU_PLL_CONFIG	CPU Phase Lock Loop Configuration	page 70
0x18050004	CPU_PLL_CONFIG2	CPU Phase Lock Loop Configuration 2	page 70
0x18050008	CPU_CLOCK_CONTROL	CPU Clock Control	page 71
0x18050010	PLL_DITHER_FRAC	CPU PLL Dither FRAC	page 71
0x18050014	PLL_DITHER	CPU PLL Dither	page 72
0x18050024	ETHSW_CLOCK_CONTROL	Ethernet Switch Clock Control	page 72
0x1805002C	ETH_XMII_CONTROL	Ethernet XMII Control	page 73
0x18050040	SUSPEND	USB Suspend	page 73
0x18050044	WLAN_CLOCK_CONTROL	WLAN Clock Control	page 74

6.5.1 CPU Phase Lock Loop Configuration (CPU_PLL_CONFIG)

Address: 0x18050000 Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31	UPDATING	R	0x0	This bit is set during the PLL update process. After the software configures CPU PLL, it takes about 32 µsec for the update to be finished. Software may poll this bit to see if the update has completed.	
				0 PLL update is complete	
				1 PLL update is pending	
30	CPU_PLLPWD	RW	0x1	Power down control for CPU PLL	
29:26	SPARE	RW	0x0	Spare registers	
25:23	OUTDIV	RW	0x1	T T	
				$VCOOUT * (1/2^{(OUTDIV)}) = PLLOUT$	
22	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.	
21	RANGE	RW	0x0	Determines the VCO frequency range of the CPU PLL	
20:16	REFDIV	RW	0x1	Reference clock divider	
15:10	DIV_INT	RW	0x14	The integer part of the DIV to CPU PLL	
9:0	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.	

6.5.2 CPU Phase Lock Loop Configuration Register 2 (CPU_PLL_CONFIG2)

Address: 0x18050004 Access: Read / Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:12	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
11:0	SETTLE_TIME	RW		CPU PLL selling time after power up. The default number is based on the 40 MHz reference clock cycle. 25 ns * 0x550 = 34000 (ns)

CPU Clock Control Register (CLOCK_CONTROL) 6.5.3

Address: 0x18050008 Sets and resets the clock switch.

Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31:20	SPARE	RW	0x0	Spare registers	
19:17	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.	
16:15	AHB_POST	RW	0x0	Division ratio for PLL output clock/AHB clock	
	_DIV			00 Ratio is 1	
				01 Ratio is 2	
				10 Ratio is 3	
				11 Ratio is 4	
14:12	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.	
11:10	DDR_POST	RW	0x0	Division ratio for PLL output clock/DDR clock	
	_DIV			00 Ratio is 1	
				01 Ratio is 2	
				10 Ratio is 3	
				11 Ratio is 4	
9:7	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.	
6:5	CPU_POST	RW	0x0	Division ratio for PLL output clock/CPU clock	
	_DIV			00 Ratio is 1	
				01 Ratio is 2	
				10 Ratio is 3	
				11 Ratio is 4	
4:3	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.	
2	BYPASS	RW	0x1	Bypass PLL. This defaults to 1 for test purposes. Software must enable the CPU PLL for normal operation and then set this bit to 0.	
1:0	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.	

CPU PLL Dither FRAC Register (PLL_DITHER_FRAC) 6.5.4

Address: 0x18050010 Access: See field description Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:30	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.
29:20	NFRAC_STEP	RW	0x1	Step value increased if the DITHER_EN in the CPU PLL DITHER Register is set to 1.
13:10	NFRAC_MIN	RW	0x19	NFRAC minimum value. If the DITHER_EN in the CPU PLL DITHER Register is set to 0, the minimum value is used.
9:0	NFRAC_MAX	RW	0x3E8	NFRAC maximum value

6.5.5 CPU PLL Dither Register (PLL_DITHER)

Address: 0x18050014 Sets the Dither settings of the NFRAC.

Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31	DITHER_EN	RW	0x0	Enables the CPU PLL DITHER function. The Step Value (NFRAC_STEP in the "CPU PLL Dither FRAC Register (PLL_DITHER_FRAC)") is used to increment every refresh period.
30:14	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.
13:0	UPDATE_CNT	RW	0x3C	The number of CPU clocks between two updates in the NFRAC

6.5.6 Ethernet Switch Clock Control Register (ETHSW_CLOCK CONTROL)

Address: 0x18050024 Sets the Ethernet Switch core.

Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description
31:5	SPARE	RW	0x0	Spare registers
4	ENABLE_ETHSW_ CORE_BIAS	RW	0x1	Enables the control register for the Ethernet Switch core bias. The default is enabled.
3	ETHSW_CORE_PLL_ PWD	RW	0x1	Power down control register for the Ethernet Switch core internal PLL. The default is power down.
2:0	RES	R	0x0	Reserved. Must be written with zero. Contains zeros when read.

Ethernet XMII Control Register (ETH_XMII_CONTROL) 6.5.7

Address: 0x1805002C Sets and resets the clock switch.

Access: Read/Write Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31	TX_INVERT	RW	0x0	Decides to select the inversion of the XMII TX clock or not	
30	GIGE_QUAD	RW	0x0	Clock speed selection for the external XMII TX clock	
				0 25 MHz	
				1 125 MHz	
29:28	RX_DELAY	RW	0x0	Used to select the different delay values for the external XMII RX clock	
27:26	TX_DELAY	RW	0x0	Used to select the different delay values for the external XMII TX clock	
25	XMII_GIGE	RW	0x0	Speed selection for PHY mode	
				0 10/100 Mbps PHY mode	
				1 1 Gbps PHY mode	
24	OFFSET_PHASE	RW	0x0	Used to select the Phase count to generate the XMII clock	
				0 Select PHASE0_CNT for generating the XMII clock	
				1 Select PHASE1_CNT for generating the XMII clock	
23:16	OFFSET_CNT	RW	0x0	The offset to start the count for generating the XMII clock	
15:8	PHASE1_CNT	RW	0x1	The second selection of the divisor for generating the XMII clock	
7:0	PHASE0_CNT	RW	0x1	The first selection of the divisor for generating the XMII clock	

6.5.8 Suspend Register (SUSPEND)

Address: 0x18050040 Access: Read/Write Reset See field description This register is used to set the USB suspends for the reference clock.

Bit	Bit Name	Туре	Reset	Description
31:28	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
27.8	RESTART_TIME	RW	0x550	Number for REFCLK cycles to hold off REFCLK output to the digital clock module after crystal has been powered on after a USB Suspend.
7:1	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	ENABLE	RW	0x0	Setting this bit will turn off the REFCLK and assert the power down signal to crystal during USB suspend. This bit should be cleared during USB resume.

6.5.9 WLAN Clock Control Register (WLAN_CLOCK_CONTROL)

Address: 0x18050044 This register is used to indicate the parts of the Access: Read/Write divider.

Reset: See field description

Bit	Bit Name	Туре	Reset	Description	
31:13	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
12	UART_CLK88	RW	0x0	Software-controlled UART clock	
				0 Reference Clock	
				1 88 MHz	
11	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
10	RADIO_	RW	0x0	Software-controlled cold reset to radio module	
	COLD_RST_ CTL			0 Controlled by the USB Suspend mechanism	
	012			1 Assert reset	
9	CLKGEN_	RW	0x0	Software-controlled cold reset to clock generation module	
	COLD_RST_ CTL			0 Controlled by the USB suspend mechanism	
	012			1 Assert reset	
8	WLANRST_	RW	0x0	Reset control mask for the clock generation module and radio	
	CTL_MASK			0 Controlled by CLK_GEN_COLD_RST_CTL and RADIO_COLD_RST_CTL	
				1 Reset controlled by WLAN RTC	
7:5	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
4	GLBL_CLK_ EN	RW	0x0	If the CLK_CTL_MASK is set to 0, this bit is used to control the WLAN main clocks from the radio	
				0 Enables the WLAN main clocks from the radio module	
				1 Allow the WLAN RTC to control the WLAN main clocks from the radio module	
3	WLAN_PLL_P WD_CTL	RW	0x1	If the CLK_CTL_MASK is set to 0, this bit is used to control the power-down of the WLAN_PLL	
				0 Allow the USB Suspend mechanism to control the power-down of the WLAN PLL	
				1 Allow the WLAN RTC or USB Suspend mechanism to control the power-down of the WLAN PLL	
2	CLKIN_CTL	RW	0x0	If the CLK_CTL_MASK is set to 0, this bit is used to control the power-down of the global reference clock	
				0 Allow the USB Suspend mechanism to control the gating for the REFCLK	
				1 Allow the WLAN RTC or USB Suspend mechanism to control the gating of the REFCLK	
1	PWDN_CTL	RW	0x0	If the CLK_CTL_MASK is set to 0, this bit is used to control the power-down of the crystal pad	
				0 Crystal pad is enabled	
				1 Allow the USB Suspend mechanism to control the power down of the crystal pad	
0	CLK_CTL_ MASK	RW	0x0	The control mask for the crystal pad, reference clock, WLAN PLL and WLAN main clocks, from the radio	
				0 Controlled by the PWDN_CTL, CLKIN_CTL, WLAN_PLL_PWD_CTL and GLBL_CLK_EN, individually	
				1 Controlled only by the WLAN RTC	

6.6 Reset Control Registers

Table 6-8 summarizes the AR9331 reset control registers.

Table 6-8. Reset Control Registers Summary

Address	Name	Description	Page
0x18060000	RST_GENERAL_TIMER0	General Purpose Timer 0	page 75
0x18060004	RST_GENERAL_TIMER0_RELOAD	General Purpose Timer 0 Reload	page 75
0x18060008	RST_WATCHDOG_TIMER_CONTROL	Watchdog Timer Control	page 76
0x1806000C	RST_WATCHDOG_TIMER	Watchdog Timer	page 76
0x18060010	RST_MISC_INTERRUPT_STATUS	Miscellaneous Interrupt Status	page 77
0x18060014	RST_MISC_INTERRUPT_MASK	Miscellaneous Interrupt Mask	page 78
0x18060018	RST_GLOBAL_INTERRUPT_STATUS	Global Interrupt Status	page 79
0x1806001C	RST_RESET	Reset	page 80
0x18060090	RST_REVISION_ID	Chip Revision ID	page 80
0x18060094	RST_GENERAL_TIMER1	General Purpose Timer 1	page 75
0x18060098	RST_GENERAL_TIMER1_RELOAD	General Purpose Timer 1 Reload	page 75
0x1806009C	RST_GENERAL_TIMER2	General Purpose Timer 2	page 75
0x180600A0	RST_GENERAL_TIMER2_RELOAD	General Purpose Timer 2 Reload	page 75
0x180600A4	RST_GENERAL_TIMER3	General Purpose Timer 3	page 75
0x180600A8	RST_GENERAL_TIMER3_RELOAD	General Purpose Timer 3 Reload	page 75
0x180600AC	RST_BOOT_STRAP	Boot Strap Status	page 81
0x180600B0	RST_USB_RST_CONTROL	USB PHY Reset Control	page 82

General Purpose Timers (RST_GENERAL_TIMER) 6.6.1

Timer0 Address: 0x18060000 This timer counts down to zero, sets, Timer1 Address: 0x18060094 interrupts, and then reloads from the "General Timer2 Address: 0x1806009C Purpose Timers Reload Timer3 Address: 0x180600A4 (RST_GENERAL_TIMER_RELOAD)" register. Access: Read/Write This definition holds true for timer0, timer1,

Reset: 0x0 timer2, and timer3.

Bit	Bit Name	Туре	Reset	Description
31:0	TIMER	RW	0x0	Timer value

6.6.2 General Purpose Timers Reload (RST_GENERAL_TIMER_RELOAD)

Timer0 Reload Address: 0x18060004 This register contains the value that will be loaded into the "General Purpose Timers Timer1 Reload Address: 0x18060098 Timer2 Reload Address: 0x180600A0 (RST_GENERAL_TIMER)" register when it Timer3 Reload Address: 0x180600A8 decrements to zero. This definition holds true Access: Read/Write for timer 0, timer 1, timer 2, and timer 3.

Bit	Bit Name	Description
31:0	RELOAD_VALUE	Timer reload value

6.6.3 Watchdog Timer Control Register (RST_WATCHDOG_TIMER_CONTROL)

Address: 0x18060008 Access: See field description

Reset: 0x0

Sets the action to take when the watchdog timer reaches zero. The options are reset, non-maskable interrupt and general purpose interrupt after reaching zero.

Bit	Bit Name	Туре	Description	
31	LAST	RO	Indicates	s if the last reset was due to a watchdog timeout
30:2	RES	RO	Reserved	d. Must be written with zero. Contains zeros when read.
1:0	ACTION	RW	The action to be taken after the timer reaches zero	
			00 N	No action
			01 (General purpose interrupt
			10 N	Non-maskable interrupt
			11 F	Full chip reset

6.6.4 Watchdog Timer Register (RST_WATCHDOG_TIMER)

Address: 0x1806000C Specifies the action for the watchdog timer control to take when this watchdog timer

Reset: 0x0 reaches zero.

Bit	Bit Name	Description
31:0	TIMER	Counts down to zero and stays at zero until the software sets this timer to another value. These bits should be set to a non-zero value before updating the "Watchdog Timer Control Register (RST_WATCHDOG_TIMER_CONTROL)" register to a non-zero number.

Miscellaneous Interrupt Status (RST_MISC_INTERRUPT_STATUS) 6.6.5

Address: 0x18060010 Access: Read-Write to Clear

Reset: 0x0

Sets the current state of the interrupt lines that are combined to form the MiscInterupt to the processor. All bits of this register need a write to clear.

Bit	Bit Name	Description
31:17	RES	Reserved. Must be written with zero. Contains zeros when read.
16	DDR_ACTIVITY_ IN_SF	The interrupt generated when there is access activity to the DDR during self-refreshing mode from any AMBA host
15	DDR_SF_EXIT	The interrupt generated when the DDR leaves self-refreshing mode
14	DDR_SF_ENTRY	The interrupt generated when the DDR enters self-refreshing mode
13	MDIO_SLAVE_ INT	The interrupt generated by the MDIO slave control
12	ETHSW_MAC_INT	The interrupt generated by the Ethernet Switch
11	RES	Reserved. Must be written with zero. Contains zeros when read.
10	TIMER3_INT	The interrupt corresponding to General Purpose Timer3. This bit is cleared after being read. The timer has been immediately reloaded from the "General Purpose Timers Reload (RST_GENERAL_TIMER_RELOAD)" register.
9	TIMER2_INT	The interrupt corresponding to General Purpose Timer2. This bit has been cleared after being read. The timer will be immediately reloaded from the "General Purpose Timers Reload (RST_GENERAL_TIMER_RELOAD)" register.
8	TIMER1_INT	The interrupt corresponding to General Purpose Timer1. This bit has been cleared after being read. The timer will be immediately reloaded from the "General Purpose Timers Reload (RST_GENERAL_TIMER_RELOAD)" register.
7:5	RES	Reserved. Must be written with zero. Contains zeros when read.
4	WATCHDOG_INT	The Watchdog Timer interrupt. This interrupt is generated when the Watchdog Timer reaches zero and the Watchdog Configuration register is configured to generate a general-purpose interrupt.
3	UART_INT	The UART interrupt. UART interrupt registers must be read before this interrupt can be cleared.
2	GPIO_INT	The GPIO interrupt. Individual lines must be masked before this interrupt can be cleared.
1	ERROR_INT	An interrupt caused by an error on the internal PIO bus. Error logic registers must be read and cleared before this interrupt can be cleared.
0	TIMER_INT	Interrupt occurring in correspondence to the general purpose timer0. This bit is cleared after being read. The timer has already been reloaded from the "General Purpose Timers Reload (RST_GENERAL_TIMER_RELOAD)" register.

Miscellaneous Interrupt Mask (RST_MISC_INTERRUPT_MASK) 6.6.6

Enables or disables a propagation of interrupts in the "Miscellaneous Interrupt Status (RST_MISC_INTERRUPT_STATUS)" register. Address: 0x18060014 Access: Read/Write

Bit	Bit Name	Description	
31:17	RES	Reserved. Must be written with zero. Contains zeros when read.	
16	DDR_ACTIVITY_IN_SF_ MASK	When set, an interrupt is enabled when an AMBA host is attempting to access the DDR while the DDR is in self-refreshing mode	
15	DDR_SF_EXIT_MASK	When set, enables an interrupt when the DDR leaves self-refreshing mode	
14	DDR_SF_ENTRY_MASK	When set, enables an interrupt when the DDR enters self-refreshing mode	
13	MDIO_SLAVE_INT_MASK	When set, enables an interrupt from MDIO Slave Control	
12	ETHSW_MAC_INT_MASK	Enables the interrupt generated by the Ethernet Switch.	
11	RES	Reserved. Must be written with zero. Contains zeros when read.	
10	TIMER3_MASK	Used to enable and disable the TIMER3 interrupt	
		0 TIMER3 interrupt disabled	
		1 TIMER3 interrupt enabled	
9	TIMER2_MASK	Used to enable and disable the TIMER2 interrupt	
		0 TIMER2 interrupt disabled	
		1 TIMER2 interrupt enabled	
8	TIMER1_MASK	Used to enable and disable the TIMER1 interrupt	
		0 TIMER1 interrupt disabled	
		1 TIMER1 interrupt enabled	
7	MBOX_MASK	Used to enable or disable MBOX interrupt	
		0 MBOX interrupt disabled	
		1 MBOX interrupt enabled	
6	RES	Reserved. Must be written with zero. Contains zeros when read.	
5	PC_MASK	Used to enable or disable CPU performance counter interrupt	
		0 CPU counter interrupt disabled	
		1 CPU counter interrupt enabled	
4	WATCHDOG_MASK	Used to enable or disable the Watchdog interrupt	
		0 Watchdog interrupt disabled	
		1 Watchdog interrupt enabled	
3	UART_MASK	Used to enable and disable the UART interrupt	
		0 UART interrupt disabled	
		1 UART interrupt enabled	
2	GPIO_MASK	Used to enable or disable the GPIO interrupt	
		0 GPIO interrupt disabled	
		1 GPIO interrupt enabled	
1	RES	Reserved. Must be written with zero. Contains zeros when read.	
0	TIMER_MASK	Used to enable or disable the TIMER interrupt	
		0 Timer interrupt disabled	
		1 Timer interrupt enabled	

This register reflects the CPU 6-bit interrupt

Global Interrupt Status (RST_GLOBAL_INTERRUPT_STATUS) 6.6.7

Address: 0x18060018 Access: Read-Only

Reset: 0x0

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
6	AMBA_INT	WLAN MAC interrupt
5	TIMER_INT	Internal count/compare timer interrupt; cleared after read.
4	MISC_INT	Miscellaneous interrupt. This bit is cleared after being read. Source of the interrupt is available on the "Miscellaneous Interrupt Status (RST_MISC_INTERRUPT_STATUS)" register.
3	GE1_INT	Ethernet1 interrupt. This bit is cleared after read. Information available in the Ethernet1 register space.
2	GE0_INT	Ethernet 0 interrupt. This bit is cleared after read. Information available in the Ethernet0 register space.
1	USB_INT	USB interrupt. This bit is cleared after read.
0	RES	Reserved. Must be written with zero. Contains zeros when read.

input.

6.6.8 Reset (RST_RESET)

Address: 0x1806001C Access: Read/Write Reset: See field description This register individually controls the reset to each of the chip's submodules.

Bit	Bit Name	Reset	Description
31:29	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
28	EXTERNAL_RESET	0x0	Commands an external reset (SYS_RST_L pin); inverted before being sent to the pin.
27:25	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
24	FULL_CHIP_RESET	0x0	Used to command a full chip reset. This is the software equivalent of pulling the reset pin. The system will reboot with PLL disabled. Always zero when read.
23	GE1_MDIO_RESET	0x0	Used to reset the GE1 MDIO
22	GE0_MDIO_RESET	0x0	Used to reset the GE0 MDIO
21	CPU_NMI	0x0	Used to send an NMI to the CPU. The watchdog timer can also be used to generate and NMI/full chip reset. Always zero when read.
20	CPU_COLD_RESET	0x0	Used to cold reset the entire CPU. This bit will be cleared immediately after reset. Always zero when read.
19:17	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
16	DDR_RESET	0x0	Used to reset the DDR controller
15	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
14	SWITCH_ANALOG_R ESET	0x0	Used to reset the Ethernet Switch analog part
13	GE1_MAC_RESET	0x1	Used to reset the GE1 MAC
12	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
11	WLAN_RESET	0x0	Used to reset the WLAN
10	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
9	GE0_MAC_RESET	0x1	Asserts the GE0 MAC reset
8	ETH_SWITCH_RESET	0x1	Resets the Ethernet Switch
7:6	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
5	USB_HOST_RESET	0x1	Used to reset the USB Host Controller
4	USB_PHY_RESET	0x0	Used to reset the USB PHY
3	USB_SUSPEND_ OVERRIDE	0x0	Used to override the suspend control from the USB controller. When set to 0, USB PHY is forced into suspend mode. When set to 1, the USB controller takes over the suspend control.
2	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
1	MBOX_RESET	0x0	Used to reset MBOX
0	I2S_RESET	0x0	Used to reset the I ² S

6.6.9 Chip Revision ID (RST_REVISION_ID)

Address: 0x18060090 Access: Read-Only Reset: See field description This register is the revision ID for the chip.

Bit	Bit Name	Reset	Description
31:4	MAJOR	0x11C	Major revision ID
3:0	MINOR	0x0	Minor revision ID

6.6.10 Bootstrap Status (BOOT_STRAP)

Address: 0x180600AC Access: Read/Write Reset: See field description This register denotes the bootstrap status and detection.

Bit	Bit Name	Reset	Description
31:19	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
18	MDIO_GPIO_EN	0x0	Enables the MDC and MDIO function on GPIO26 and GPIO28
17	MDIO_SLAVE_	0x0	MDC, MDIO role selection
	EN		0 AR9331 is the master
			1 AR9331 is the slave
16	JTAG_APB_SEL	0x0	Selection of the JTAG or AHB interface for the MAC register. For normal operation mode, SW should select the APB interface before register access.
			0 APB
			1 JTAG
15:14	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
13:12	MEM_TYPR	0x0	Indicates external memory type; power on detection (GPIO12 and GPIO28)
			00 SDRAM
			01 DDR1 RAM
			10 DDR2 RAM
11:9	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
8	FW_DOWNLOAD	0x0	Indicates which interface will be used to download firmware. Power on detection on GPIO16.
			0 Read from USB interface
			1 Read from MDIO interface
7:5	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
4	EEPBUSY	0x0	MAC, EEPROM or OTP busy indication
3	USB_MODE	0x0	Indicates if the interface is in host mode or device mode. Power on detection is on GPIO13.
			0 Device
			1 Host
2	JTAG_FOR_ICE	0x0	Indicates if the ICE interface is for General JTAG functions or for CPU ICE. Power on detection is on GPIO11
			0 General JTAG
			1 CPU ICE
1	BOOT_FROM_SPI	0x0	Indicates if the boot sequence is from the SPI or the internal ROM. Power detection is on GPIO1
			0 ROM
			1 SPI Flash
0	SEL_25M_40M	0x0	Indicates the frequency of the external clock. Power detection on GPIO0.
			0 25M
			1 40M

6.6.11 USB PHY Reset Control (USB_PHY_RESET)

Address: 0x180600B0 This register is the revision ID for the chip.

Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description
31:4	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
3	USB_PHY_EXT_ PWR_SEQ	0x0	Power control selection. If set to 1, use bits [2:0] to control the USB PHY. Otherwise, use the controls from the USB controller or suspend hardware.
2	USB_PHY_PLL_ PWD_EXT	0x0	Used to power down the PLL inside the USB PHY if bit [3] is set to 1
1	USB_PHY_ DRESET_N	0x0	Used to reset the digital part of the USB PHY if bit [3] is set to 1
0	USB_PHY_ ARESET_N	0x0	Used to reset the analog part of the USB PHY if bit [3] is set to 1

6.7 GMAC Register

Table 6.7 summarizes the GMAC register for the AR9331.

Table 6-9. GMAC Register Summary

Address	Name	Description	Page
0x18070000	ETH_CFG	Ethernet Configuration	page 83

6.7.1 Ethernet Configuration (ETH_CFG)

Address: 0x18070000 Access: Read/Write

Bit	Bit Name	Туре	Description	
31:11	RES	RO	Reserved. Must be written with zero. Contains zeros when read.	
10	CFG_RMII_GE0_	RW	Selects the RMII speed for GMAC0	
	SPEED		0 10 Mb	
			1 100 Mb	
9	CFG_RMII_GE0	RW	Selects the RMII mode for GMAC0	
8	CFG_SW_PHY_ ADDR_SWAP	RW	Exchanges the address of PHY port 0 with that of PHY port 4 in the Ethernet switch	
7	CFG_SW_PHY_ SWAP	RW	Used to switch the wires connection of PHY port 0 with that of port 4 in the Ethernet switch. MAC1 and PHY4 are paired while MAC5 and PHY0 are paired	
6	RES	RO	Reserved. Must be written with zero. Contains zeros when read.	
5	CFG_GE0_ERR_ EN	RW	Enables GMAC0's RX_ERR function in GMII or MII mode	
4	CFG_MII_GE0_ SLAVE	RW	Set this bit to let GMAC0 be the Tx clock receiver in MII mode	
3	CFG_MII_GE0_ MASTER	RW	Set this bit to let GMAC0 be the Rx clock provider in MII mode	
2	CFG_GMII_GE0	RW	GMII mode selection for GMAC0	
1	CFG_MII_GE0	RW	MII mode selection for GMAC0	
0	CFG_RGMII_GE0	RW	RGMII mode selection for GMAC0	

6.8 SLIC Registers

Table 6-10 summarizes the SLIC registers for the AR9331.

Table 6-10. SLIC Registers Summary

Address	Name	Description	Page
0x18090000	SLIC_SLOT	SLIC Slots Register	page 84
0x18090004	SLICK_CLOCK_CONTROL	SLIC Clock Control	page 84
0x18090008	SLIC_CTRL	SLIC Control	page 85
0x1809000C	SLIC_TX_SLOTS1	SLIC Tx Slots Register	page 85
0x18090010	SLIC_TX_SLOTS2	SLIC Tx Slots 2 Register	page 85
0x18090014	SLIC_RX_SLOTS1	SLIC Rx Slots Register	page 85
0x18090018	SLIC_RX_SLOTS2	SLIC Rx Slots 2 Register	page 86
0x1809001C	SLIC_TIMING_CTRL	SLIC Timing Control Register	page 86
0x18090020	SLIC_INTR	SLIC Interrupts Register	page 86
0x18090024	SLIC_SWAP	SLIC Swap Registers	page 87

6.8.1 SLIC Slots Register (SLIC_SLOT)

Address: 0x18090000 Access: Read/Write Reset: See field description This register indicates the number of slots supported by the connected SLIC device. Current implementation supports 1 to 64 slots, 8 bits each.

Bit	Bit Name	Reset	Description
31:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:0	SEL	0x20	The number of SLIC slots

6.8.2 SLIC Clock Control Register (SLIC_CLOCK_CONTROL)

Address: 0x18090004 Access: Read/Write Reset: 0x0

This register defines the divider value of AUDIO_PLL_CLK. This value depends on the SLIC_SLOT_SEL value.

Bit	Bit Name	Description
31:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5:0	DIV	Defines the divider value of AUDIO_PLL_CLK.

SLIC Control Register (SLIC_CTRL) 6.8.3

Address: 0x18090008 Access: Read/Write Reset: See field description This register defines the various control signals of the SLIC controller.

Bit	Bit Name	Reset	Description			
31:4	RES	0x0	Reserve	Reserved. Must be written with zero. Contains zeros when read.		
3	CLK_EN	0x0	Acts as a	Acts as a clock gate enable. It gates the AUDIO_PLL/external clock.		
2	MASTER_SLAVE	0x1	Used to select the mode for SLIC control functionality			
			0	Slave mode		
			1	Master mode		
1	SLIC_EN	0x0	Enables the total SLIC controller functionality either in master or slave mode			
0	SLIC_INTR	0x0	SLIC int	errupt		

6.8.4 SLIC Tx Slots 1 Register (SLIC_TX_SLOTS1)

Address: 0x1809000C Access: Read/Write

Reset: 0x0

This register defines the LSB 32 Tx slots, one of which is hot encoded.

Bit	Bit Name	Description
31:0	ONEHOT	The hot encoded LSB 32 Tx slot

SLIC Tx Slots 2 Register (SLIC_TX_SLOTS2) 6.8.5

Address: 0x18090010 Access: Read/Write

Reset: 0x0

This register defines the MSB 32 Tx slots, one of which is hot encoded.

Bit	Bit Name	Description
31:0	ONEHOT	The hot encoded MSB 32 Tx slot

6.8.6 SLIC Rx Slots 1 Register (SLIC_RX_SLOTS1)

Address: 0x18090014 Access: Read/Write

This register defines the LSB 32 Rx slots, one of

which is hot encoded.

Bit	Bit Name	Description
31:0	ONEHOT	The hot encoded LSB 32 Rx slot

SLIC Rx Slots 2 Register (SLIC_RX_SLOTS2) 6.8.7

Address: 0x18090018

Bit Name

ONEHOT

Access: Read/Write Reset: 0x0

Bit

31:0

This register defines the MSB 32 Rx slots, one of which is hot encoded.

Description The hot encoded MSB 32 Rx slot

SLIC Timing Control Register (SLIC_TIMING_CTRL) 6.8.8

Address: 0x1809001C Access: Read/Write

This register sets the timing control related bits

for FRAME_SYNC and data.

Reset: See field description

Bit	Bit Name	Туре	Reset	Description		
31:9	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.		
8:7	RXDATA_ SAMPLE_	RW	0x0	A 0 or 1 denotes the Rx data will be sampled at the first negative edge after a frame sync positive edge.		
	POS			A 2 means the Rx data will be sampled at the first positive edge after a frame sync positive edge.		
				A 3 denotes the Rx data will be sampled at the second negative edge after a frame sync positive edge.		
6:5	TXDATA_FS_ SYNC	RW	0x1	A 1 or 0 denotes that the Tx data will be sent along with a frame sync positive edge.		
				A 2 means the Tx data will be sent in the next positive edge of the BLT_CLK after a frame sync positive edge. A 3 denotes that the Tx data will be sent along in the next negative edge of the BLT_CLK after a frame sync positive edge		
4:2	LONG_ FSCLKS	RW	0x0	This field depends on the LONG_FS. If the LONG_FS = 1, then this field specifies then number of BLT_CLKs for which FS is high. 0 means 1 BLT_CLK, and 7 means 8 BLT_CLKs		
1	FS_POS	RW	0x1	0 Send FS at the negative edge of the BLT_CLK		
				1 Send FS at the positive edge of the BLT_CLK		
0	LONG_FS	RW	0x1	0 FS is high for a half bit clock		
				1 FS is high for more than 1 BLT_CLK duration		

SLIC Interrupt Register (SLIC_INTR) 6.8.9

Address: 0x18090020 Access: Read/Write Reset: See field description This register is used for the SLIC interrupt and

status registers.

Bit	Bit Name	Type	Reset	Description		
31:10	RES	RW	0x0	Reserved. Must be written with zero. Contains zeros when read.		
9:5	STATUS	RW	0x0	0 No interrupts		
				1 At a particular bit location means a particular interrupt is asserted		
				Bit [0] 1 unexpected frame sync received bit		
4:0	MASK	RW	0x1f	1f enables all interrupts.		
				Bit [0] 0 intr0 masked		
				Bit [1] 0 intr1 masked		
				Bit [2] 0 intr2 masked		
				Bit [3] 0 intr3 masked		
				Bit [4] 0 intr4 masked		

6.8.10 SLIC Swap Register (SLIC_SWAP)

Address: 0x1809001C Access: Read/Write

Reset: 0x0

This register denotes the bit level swap registers at byte boundary for both Tx and Rx data.

Bit	Bit Name	Descrip	Description	
31:2	RES	Reserve	Reserved. Must be written with zero. Contains zeros when read.	
1	RX_DATA	0	Do not swap the Rx byte	
		1	Swap the Rx byte	
0	TX_DATA	0	Do not swap the Tx byte	
		1	Swap the Tx byte	

6.9 MBOX Registers

Table 6-11 summarizes the AR9331 MBOX registers.

Table 6-11. MBOX Local Registers Summary

Address	Name	Description	Page
0x180A0008	MBOX_FIFO_STATUS	Non-Destructive FIFO Status Query	page 88
0x180A000C	SLIC_MBOX_FIFO_STATUS	SLIC Non-Destructive FIFO Status Query	page 89
0x180A0010	MBOX_DMA_POLICY	Mailbox DMA Engine Policy Control	page 89
0x180A0014	SLIC_MBOX_DMA_POLICY	SLIC Mailbox DMA Engine Policy Control	page 90
0x180A0018	MBOX_DMA_RX_ DESCRIPTOR_BASE	Mailbox Rx DMA Descriptors Base Address	page 90
0x180A001C	MBOX_DMA_RX_CONTROL	Mailbox Rx DMA Control	page 91
0x180A0020	MBOX_DMA_TX_DESCRIPTOR_ BASE	Mailbox Tx DMA Descriptors Base Address	page 91
0x180A0024	MBOX_DMA_TX_CONTROL	Mailbox Tx DMA Control	page 92
0x180A0028	SLIC_MBOX_DMA_RX_ DESCRIPTOR_BASE	SLIC Mailbox Rx DMA Descriptors Base Address	page 92
0x180A002C	SLIC_MBOX_DMA_RX_CONTROL	SLIC Mailbox Rx DMA Control	page 93
0x180A0030	SLIC_MBOX_DMA_TX_ DESCRIPTOR_ BASE	SLIC Mailbox Tx DMA Descriptors Base Address	page 93
0x180A0034	SLIC_MBOX_DMA_TX_CONTROL	SLIC Mailbox Tx DMA Control	page 94
0x180A0038	MBOX_FRAME	Mailbox FIFO Status	page 94
0x180A003C	SLIC_MBOX_FRAME	SLIC Mailbox FIFO Status	page 94
0x180A0040	FIFO_TIMEOUT	FIFO Timeout Period	page 95
0x180A0044	MBOX_INT_STATUS	MBOX Related Interrupt Status	page 95
0x180A0048	SLIC_MBOX_INT_STATUS	SLIC MBOX Related Interrupt Status	page 96
0x180A004C	MBOX_INT_ENABLE	MBOX Related Interrupt Enables	page 96
0x180A0050	SLIC_MBOX_INT_ENABLE	SLIC MBOX Related Interrupt Enables	page 97
0x180A0058	MBOX_FIFO_RESET	MBOX Reset and Clear	page 97
0x180A005C	SLIC_MBOX_FIFO_RESET	SLIC MBOX Reset and Clear	page 97

6.9.1 Non-Destructive FIFO Status Query (MBOX_FIFO_STATUS)

Address: 0x180A0008 Access: Read-Only Reset: 0x0

This register returns the status of the mailbox FIFOs. This register may be read at any time without changing the mailbox state.

Bit	Bit Name	Reset	Description
31:3	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
2	EMPTY	0x1	On a read: returns an empty status for the Tx mailbox
1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	FULL	0x0	On a read: returns a full status for the Rx mailbox

Non-Destructive SLIC FIFO Status Query (SLIC_MBOX_FIFO_STATUS) 6.9.2

Address: 0x180A000C Access: Read-Only

Reset: 0x0

This register returns the status of the SLIC mailbox FIFOs. This register may be read at any time without changing the mailbox state.

Bit	Bit Name	Reset	Description
31:2	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
1	EMPTY	0x1	On a read: returns an empty status for the Tx mailbox
0	FULL	0x0	On a read: returns a full status for the Rx mailbox

6.9.3 Mailbox DMA Engine Policy Control (MBOX_DMA_POLICY)

Address: 0x180A0010 Access: Read/Write Reset: See field description

Controls the queue service policy of the mailbox DMA engines. The Rx and Tx engines can be programmed independently to service

their queues in round robin or strict priority order. The engines can also be programmed to make a new queue choice at the end of messages or individual descriptors. The default mode is round robin decisions being made at the end of each message.

Bit	Bit Name	Reset	Description	
31:8	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
7:4	TX_FIFO_THRESH	0x4	Threshold for MBOX TX FIF0 in units of word (a value of 0 maps to 0 bytes, a value of 1 maps to 4 bytes, etc.). Only if this threshold is reached, the MBOX DMA engine will take Tx Chain into consideration while making queue service choices.	
3	TX_QUANTUM	0x0	O Programming this field to 0 forces the Tx mailbox DMA engine to make queue service choices only at the end of messages (i.e., upon completing descriptors with the EOM bit set)	
			1 Programming this field to 1 allows it to make choices upon the completion of every descriptor	
2	TX_ORDER	0x0	0 Programming this field to 0 chooses round robin service ordering of mailbox Tx queues	
			Programming this field to 1 chooses strict priority (queue 0 is the highest priority) service ordering of mailbox Tx queues	
1	RX_QUANTUM	0x0	0 Programming this field to 0 forces the Rx mailbox DMA engine to make queue service choices only at the end of messages (i.e., upon completing descriptors with the EOM bit set)	
			1 Programming this field to 1 allows it to make choices upon the completion of every descriptor	
0	RX_ORDER	0x0	0 Programming this field to 0 chooses round robin service ordering of mailbox Rx queues	
			1 Programming this field to 1 chooses strict priority (queue 0 is the highest priority) service ordering of mailbox Rx queues	

6.9.4 SLIC Mailbox DMA Engine Policy Control (SLIC_MBOX_DMA_POLICY)

Address: 0x180A0014 Access: Read/Write Reset: See field description

Controls the queue service policy of the SLIC mailbox DMA engines. The Rx and Tx engines can be programmed independently to service

their queues in round robin or strict priority order. The engines can also be programmed to make a new queue choice at the end of messages or individual descriptors. The default mode is round robin decisions being made at the end of each message.

Bit	Bit Name	Reset	Description	
31:8	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
7:4	SLIC_TX_FIFO_ THRESH	0x4	Threshold for SLIC MBOX TX FIF0 in units of word (a value of 0 maps to 0 bytes, a value of 1 maps to 4 bytes, etc.). Only if this threshold is reached, the SLIC MBOX DMA engine will take Tx Chain into consideration while making queue service choices	
3	TX_QUANTUM	0x0	Programming this field to 0 forces the Tx SLIC mailbox DMA engine to make queue service choices only at the end of messages (i.e., upon completing descriptors with the EOM bit set)	
			Programming this field to 1 allows it to make choices upon the completion of every descriptor	
2	TX_ORDER	0x0	0 Programming this field to 0 chooses round-robin service ordering of SLIC mailbox Tx queues	
			Programming this field to 1 chooses strict priority (queue 0 is the highest priority) service ordering of mailbox Tx queues	
1	RX_QUANTUM	0x0	Programming this field to 0 forces the Rx SLIC mailbox DMA engine to make queue service choices only at the end of messages (i.e., upon completing descriptors with the EOM bit set)	
			1 Programming this field to 1 allows it to make choices upon the completion of every descriptor	
0	RX_ORDER	0x0	0 Programming this field to 0 chooses round robin service ordering of SLIC mailbox Rx queues	
			Programming this field to 1 chooses strict priority (queue 0 is the highest priority) service ordering of SLIC mailbox Rx queues	

6.9.5 Mailbox Rx DMA Descriptors Base Address (MBOX DMA RX DESCRIPTOR BASE)

Address: 0x180A0018 Access: Read/Write

Reset: 0x0

Holds the starting address of the descriptor chain for the mailbox's Rx direction transfers. The DMA engine starts by fetching a descriptor from this address when the START bit in the MBOX_DMA_RX_CONTROL register is set. All DMA descriptors must be 4-byte aligned, so the register's bottom two bits of the

contents, as well as the bottom two bits of the next descriptor field of the individual descriptors are ignored and assumed to be zeros by the DMA engine. For the purposes of the DMA engine, RX direction is defined to be transfers from the chip to the host interface (nominally, data received from the antenna) and the Tx direction is defined to be transfers from the host interface to the chip (nominally, data to be transmitted to the antenna).

Bit	Bit Name	Description	
31:28	RES	Reserved. Must be written with zero. Contains zeros when read.	
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain	
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.	

6.9.6 Mailbox Rx DMA Control (MBOX_DMA_RX_CONTROL)

Address: 0x180A001C Access: Read/Write

Reset: 0x0

Controls the operational state of the DMA engine for the mailbox's Rx direction transfers. The register should always be written in a one shot manner (only one of the operations should be specified) and can be polled to see if the desired operation has taken effect (indicated by the clearing of the corresponding bit). The DMA engine starts out stopped and must be kicked off for the first time with a START operation. The START operation causes the DMA engine to start fetching a descriptor at the address specified by the "Mailbox Rx DMA **Descriptors Base Address**

(MBOX_DMA_RX_DESCRIPTOR_BASE)" register. Once this first descriptor has been fetched, if the DMA engine ever catches up with a CPU-owned descriptor, it can be requested to re-fetch the descriptor that it stalled on by programming the RESUME operation. Software can stop the operation of the DMA engine by programming the STOP operation. When the STOP operation is programmed, the DMA engine stops transfers immediately if it was already idle or at the end of the transfer of the current descriptor it is working on if it was busy. Note that this may leave incomplete messages in the mailbox FIFOs if the message in progress is scattered or gathered across multiple descriptors.

Bit	Bit Name	Description
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.
2	RESUME	Programming a 1 to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by refetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to add descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race-free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.
1	START	Programming a one to this field causes the DMA engine to start transferring data by fetching the descriptor pointed to by the "Mailbox Rx DMA Descriptors Base Address (MBOX_DMA_RX_DESCRIPTOR_BASE)" register. The START operation should usually be used only when the DMA engine is known to be stopped (after power on or SOC reset) or after an explicit STOP operation.
0	STOP	Programming a 1 to this field causes the DMA engine to stop transferring more data from this descriptor chain (after the current descriptor is completed, if a transfer is already in progress).

6.9.7 Mailbox Tx DMA Descriptors Base Address (MBOX DMA TX DESCRIPTOR BASE)

Address: 0x180A0020 See the description for the register "Mailbox Rx Access: Read/Write DMA Descriptors Base Address

Reset: 0x0 (MBOX_DMA_RX_DESCRIPTOR_BASE)", as

applied to the mailbox's Tx direction transfers.

Bit	Bit Name	Description
31:28	RES	Reserved. Must be written with zero. Contains zeros when read.
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.9.8 Mailbox Tx DMA Control (MBOX_DMA_TX_CONTROL)

Address: 0x180A0024 See "Mailbox Rx DMA Control (MBOX_DMA_RX_CONTROL)" for

Reset: 0x0 description.

Bit	Bit Name	Description	
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.	
2	RESUME	Programming a one to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by refetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to keep adding descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.	
1	START	Programming a one to this field causes the DMA engine to start transferring data by fetching the descriptor pointed to by the "Mailbox Tx DMA Descriptors Base Address (MBOX_DMA_TX_DESCRIPTOR_BASE)" register. The START operation should usually be used only when the DMA engine is known to be stopped (after power on or SOC reset) or after an explicit STOP operation.	
0	STOP	Programming a one to this field causes the DMA engine to stop transferring any more data from this descriptor chain (after the current descriptor is completed, if a transfer is already in progress).	

6.9.9 SLIC Mailbox Rx DMA Descriptors Base Address (SLIC_MBOX_DMA_RX_DESCRIPTOR_BASE)

Address: 0x180A0028 Access: Read/Write

Reset: 0x0

Holds the starting address of the descriptor chain for the SLIC mailbox's Rx direction transfers. The DMA engine starts by fetching a descriptor from this address when the START bit in the "SLIC Mailbox Rx DMA Control (SLIC_MBOX_DMA_RX_CONTROL)" register is set. All DMA descriptors must be 4-byte aligned, so the register's bottom two bits of the

contents, as well as the bottom two bits of the next descriptor field of the individual descriptors are ignored and assumed to be zeros by the DMA engine. For the purposes of the DMA engine, RX direction is defined to be transfers from the chip to the host interface (nominally, data received from the antenna) and the Tx direction is defined to be transfers from the host interface to the chip (nominally, data to be transmitted to the antenna).

Bit	Bit Name	Description	
31:28	RES	Reserved. Must be written with zero. Contains zeros when read.	
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain	
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.	

6.9.10 SLIC Mailbox Rx DMA Control (SLIC_MBOX_DMA_RX_CONTROL)

Address: 0x180A002C Access: Read/Write

Reset: 0x0

Controls the operational state of the DMA engine for the SLIC mailbox's Rx direction transfers. The register should always be written in a one shot manner (only one of the operations should be specified) and can be polled to see if the desired operation has taken effect (indicated by the clearing of the corresponding bit). The DMA engine starts out stopped and must be kicked off for the first time with a START operation. The START operation causes the DMA engine to start fetching a descriptor at the address specified by the "SLIC Mailbox Rx DMA Descriptors Base

(SLIC_MBOX_DMA_RX_DESCRIPTOR_BASE " register. Once this first descriptor has been fetched, if the DMA engine ever catches up with a CPU-owned descriptor, it can be requested to re-fetch the descriptor that it stalled on by programming the RESUME operation. Software can stop the operation of the DMA engine by programming the STOP operation. When the STOP operation is programmed, the DMA engine stops transfers immediately if it was already idle or at the end of the transfer of the current descriptor it is working on if it was busy. Note that this may leave incomplete messages in the mailbox FIFOs if the message in progress is scattered or gathered across multiple descriptors.

Bit	Bit Name	Description	
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.	
2	RESUME	Programming a 1 to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by refetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to add descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race-free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.	
1	START	Programming a one to this field causes the DMA engine to start transferring data by fetching the descriptor pointed to by the "SLIC Mailbox Rx DMA Descriptors Base Address (SLIC_MBOX_DMA_RX_DESCRIPTOR_BASE)" register. The START operation should usually be used only when the DMA engine is known to be stopped (after power on or SOC reset) or after an explicit STOP operation.	
0	STOP	Programming a one to this field causes the DMA engine to stop transferring any more data from this descriptor chain (after the current descriptor is completed, if a transfer is already in progress).	

6.9.11 SLIC Mailbox Tx DMA Descriptors Base Address (SLIC_MBOX_DMA_TX_DESCRIPTOR_BASE)

Address: 0x180A0030 Access: Read/Write

Reset: 0x0

See the description for the register "SLIC Mailbox Rx DMA Descriptors Base Address (SLIC_MBOX_DMA_RX_DESCRIPTOR_BASE ", as applied to the mailbox's Tx direction transfers.

Bit	Bit Name	Description
31:28	RES	Reserved. Must be written with zero. Contains zeros when read.
27:2	ADDRESS	Most significant 26 bits of the 4-byte-aligned address of the first descriptor in the DMA chain
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

SLIC Mailbox Tx DMA Control (SLIC_MBOX_DMA_TX_CONTROL) 6.9.12

Address: 0x180A0034 See the description for the register "SLIC

Mailbox Rx DMA Control Access: Read/Write

Reset: 0x0 (SLIC_MBOX_DMA_RX_CONTROL)".

Bit	Bit Name	Description	
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.	
2	RESUME	Programming a one to this field causes a potentially stalled (due to having caught up with CPU-owned descriptors) DMA engine to resume its transfers by re-fetching the last descriptor it had fetched and found to be CPU-owned. Software can use RESUME operations to keep adding descriptors to the end of the descriptor chain (only modifying CPU-owned descriptors) in a race free atomic manner. If the RESUME operation is programmed and the DMA engine is not stalled, it has no effect and is automatically cleared.	
1	START	Programming a one to this field causes the DMA engine to start transferring data by fetching the descriptor pointed to by the "SLIC Mailbox Tx DMA Descriptors Base Address (SLIC_MBOX_DMA_TX_DESCRIPTOR_BASE)" register. The START operation should usually be used only when the DMA engine is known to be stopped (after power on or SOC reset) or after an explicit STOP operation.	
0	STOP	Programming a one to this field causes the DMA engine to stop transferring any more data from this descriptor chain (after the current descriptor is completed, if a transfer is already in progress).	

6.9.13 Mailbox FIFO Status (MBOX_FRAME)

Address: 0x180A0038 Access: Read-Only Reset: See field description

Bit	Bit Name	Reset	Description
31:3	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
2	RX_EOM	0x0	Rx FIFO contains a data byte with the EOM end of message marker set in the corresponding mailbox
1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
0	RX_SOM	0x1	Rx FIFO contains a data byte with the SOM start of message marker set in the corresponding mailbox; a SOM byte always follows an EOM byte from the previous message

SLIC Mailbox FIFO Status (SLIC_MBOX_FRAME) 6.9.14

Address: 0x180A003C Access: Read-Only Reset: See field description

Bit	Bit Name	Reset	Description
31:2	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
1	RX_EOM	0x0	Rx FIFO contains a data byte with the EOM end of message marker set in the corresponding SLIC mailbox
0	RX_SOM	0x1	Rx FIFO contains a data byte with the SOM start of message marker set in the corresponding SLIC mailbox; a SOM byte always follows an EOM byte from the previous message

6.9.15 FIFO Timeout Period (FIFO_TIMEOUT)

Address: 0x180A0040 Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Descrip	tion
31:9	RES	0x0	Reserve	d. Must be written with zero. Contains zeros when read.
8	ENABLE	0x1	0	FIFO timeouts are disabled
			1	FIFO timeouts are enabled
7:0	VALUE	0xFF	Timeout value (in ms) when CORE_CLK = 40 MHz, or in 0.5 ms when CORE_CLK=80 MHz; should never be set to 0	

6.9.16 MBOX Related Interrupt Status (MBOX_INT_STATUS)

Address: 0x180A0044

Access: Read/Write-1-to-Clear

Bit	Bit Name	Description
31:11	RES	Reserved. Must be written with zero. Contains zeros when read.
10	RX_DMA_COMPLETE	MBOX Rx DMA completion (one descriptor completed) interrupts
9	RES	Reserved. Must be written with zero. Contains zeros when read.
8	TX_DMA_EOM_COMPLETE	MBOX Tx DMA completion of EOM (descriptor with EOM flag completed) interrupts
7	RES	Reserved. Must be written with zero. Contains zeros when read.
6	TX_DMA_COMPLETE	MBOX Tx DMA completion (one descriptor completed) interrupts
5	TX_OVERFLOW	MBOX Tx overflow error; the overflow condition is the same as the host interface overflow error
4	RX_UNDERFLOW	MBOX Rx underflow error; the underflow condition is the same as the host interface underflow error
3	RES	Reserved. Must be written with zero. Contains zeros when read.
2	TX_NOT_EMPTY	TX_NOT_EMPTY pending interrupt for Tx mailboxes; bit sets when the MBOX FIFO has no room
1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	RX_NOT_FULL	RX_NOT_FULL pending interrupt for Rx mailboxes; bit sets when one or more exist

6.9.17 SLIC MBOX Related Interrupt Status (SLIC_MBOX_INT_STATUS)

Address: 0x180A0048

Access: Read/Write-1-to-Clear

Reset: 0x0

Bit	Bit Name	Description
31:7	RES	Reserved. Must be written with zero. Contains zeros when read.
6	RX_DMA_COMPLETE	SLIC mailbox Rx DMA completion (one descriptor completed) interrupts
5	TX_DMA_EOM_COMPLETE	SLIC mailbox Tx DMA completion of EOM (descriptor with EOM flag completed) interrupts
4	TX_DMA_COMPLETE	SLIC mailbox Tx DMA completion (one descriptor completed) interrupts
3	TX_OVERFLOW	SLIC MBOX Tx overflow error; the overflow condition is the same as the host interface overflow error
2	RX_UNDERFLOW	SLIC MBOX Rx underflow error; the underflow condition is the same as the host interface underflow error
1	TX_NOT_EMPTY	TX_NOT_EMPTY pending interrupt for SLIC Tx mailboxes; bit sets when the MBOX FIFO has no room
0	RX_NOT_FULL	RX_NOT_FULL pending interrupt for SLIC Rx mailboxes; bit sets when one or more exist

6.9.18 MBOX Related Interrupt Enables (MBOX_INT_ENABLE)

Address: 0x180A004C This register is used to mask/enable interrupts to the CPU. Access: Read/Write

Bit	Bit Name	Description
31:11	RES	Reserved. Must be written with zero. Contains zeros when read.
10	RX_DMA_COMPLETE	Enable mailbox Rx DMA completion interrupts
9	RES	Reserved. Must be written with zero. Contains zeros when read.
8	TX_DMA_EOM_COMPLETE	Enable mailbox Tx DMA completion of end of message interrupts
7	RES	Reserved. Must be written with zero. Contains zeros when read.
6	TX_DMA_COMPLETE	Enable mailbox Tx DMA completion interrupts
5	TX_OVERFLOW	Enable MBOX Tx overflow error
4	RX_UNDERFLOW	Enable MBOX Rx overflow error
3	RES	Reserved. Must be written with zero. Contains zeros when read.
2	TX_NOT_EMPTY	Enable TX_NOT_EMPTY interrupts from MBOX Tx FIFOs
1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	RX_NOT_FULL	Enable RX_NOT_EMPTY interrupts from MBOX RX FIFOs

SLIC MBOX Related Interrupt Enables (SLIC_MBOX_INT_ENABLE)

Address: 0x180A0050 This register is used to mask/enable interrupts Access: Read/Write to the CPU.

Reset: 0x0

Bit	Bit Name	Description
31:7	RES	Reserved. Must be written with zero. Contains zeros when read.
6	RX_DMA_COMPLETE	SLIC mailbox Rx DMA completion interrupts
5	TX_DMA_EOM_COMPLETE	Enable SLIC mailbox Tx DMA completion of end of message interrupts
4	TX_DMA_COMPLETE	Enable SLIC mailbox Tx DMA completion interrupts
3	TX_OVERFLOW	Enable SLIC MBOX Tx overflow error
2	RX_UNDERFLOW	Enable SLIC MBOX Rx overflow error
1	TX_NOT_EMPTY	Enable TX_NOT_EMPTY interrupts from SLIC MBOX Tx FIFOs
0	RX_NOT_FULL	Enable RX_NOT_EMPTY interrupts from SLIC MBOX RX FIFOs

6.9.20 Reset and Clear MBOX FIFOs (MBOX_FIFO_RESET)

Description

Address: 0x180A0058 Access: Read/Write

Reset: 0x0

Bit

31:3

2

1

0

Resets and clears data from MBOX FIFOs. This register should only be written to when no DMAs are in progress. For stereo applications,

Bit Name

RES

RX_INIT

RES

TX_INIT

it is recommended that MBOX FIFOs be reset at the beginning of each new audio stream (new VoIP call, new song, etc.) The stereo block should also be reset when the FIFOs are reset, to maintain byte alignment.

Reserved. Must be written with zero. Contains zeros when read. Writing a 1 causes a Rx FIFO reset. The register is automatically reset to 0, and will Reserved. Must be written with zero. Contains zeros when read.

SLIC Reset and Clear MBOX FIFOs (SLIC_MBOX_FIFO_RESET) 6.9.21

always return 0 on a read.

will always return 0 on a read.

Address: 0x180A005C Resets and clears data from SLIC MBOX FIFOs. Access: Read/Write This register should only be written to when no Reset: 0x0 DMAs are in progress.

Writing a 1 will cause a TX FIFO reset. The register is automatically reset to 0, and

Bit	Bit Name	Description
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.
1	RX_INIT	Writing a 1 causes a Rx FIFO reset. The register is automatically reset to 0, and will always return 0 on a read.
0	TX_INIT	Writing a 1 will cause a Tx FIFO reset. The register is automatically reset to 0, and will always return 0 on a read.

6.10 I²S Registers

Table 6-12 summarizes the I²S registers for the AR9331.

Table 6-12. I²S Registers Summary

Address	Name	Description	Page
0x180B0000	STEREO0_CONFIG	Configure Stereo Block	page 98
0x180B0004	STEREO0_VOLUME	Set Stereo Volume	page 100
0x180B000C	STEREO0_TX_SAMPLE_CNT_LSB	Tx Sample Counter	page 101
0x180B0010	STEREO0_TX_SAMPLE_CNT_MSB	Tx Sample Counter	page 101
0x180B0014	STEREO0_RX_SAMPLE_CNT_LSB	Rx Sample Counter	page 101
0x180B0018	STEREO0_RX_SAMPLE_CNT_MSB	Rx Sample Counter	page 101
0x180B00IC	STEREO_CLK_DIV	Stereo Clock Divider	page 101

6.10.1 Configure Stereo Block (STEREOO_CONFIG)

Address: 0x180B0000 Access: Read/Write

Reset: See field description

This register controls the basic configuration of the stereo block.

Bit	Bit Name	Reset	Description	
31:26	RES	Reserve	ed. Must be written with zero. Contains zeros when read.	
25	DIV_BYPASS	0x0	Bypass the divided audio clock and use the source clock defined by AUDIO_CLK_SEL for stereo module	
24	AUDIO_CLOCK _SEL	0x0	Selects the source of the audio clock. Division ratio of the audio clock is defined by the register "Stereo Clock Divider (STEREO_CLOCK_DIV)".	
			0 Current CPU clock	
			1 176 MHz clock	
23	SPDIF_ENABLE	0x0	Enables the SPDIF stereo block for operation	
22	REFCLK_SEL	0x0	Enables the stereo to choose between an external ref. clock through GPIO and crystal input clock; used as the STEREO_CLK input to the stereo module:	
			0 Crystal input	
			1 Ref clock provided by the external source through GPIO	
21	ENABLE	0x0	Enables operation of the I ² S stereo block	
20	MIC_RESET	0x0	Resets the MIC buffers	
19	RESET	0x0	Resets the stereo buffers and I ² S state; Should be written to 1 when any of the data word sizes change, or if data synchronization is lost. Hardware will automatically clear to 0.	
18	I2S_DELAY	0x1	Delay the Word Select (I2S_WS) output in master mode by one clock of I2S bit clock (I2S_CK)	
			0 No delay	
			1 One I2S_CK delay	
17	PCM_SWAP	0x0	This bit is used for swapping byte order of PCM samples	

16	MIC_WORD_SIZE	0x0	Causes configures microphone word size:
10	10 WIE_WORD_SIZE	0.00	0 16-bit PCM words
			1 32-bit PCM words
15:14	STEREO_MONO	0x0	
13.14	31EREO_WONO	UXU	Causes configures stereo or mono 0x0 Stereo
			0x1 Mono from channel 0
			0x2 Mono from channel 1
			0x3 Reserved
13:12	DATA_WORD_SI ZE	0x0	Controls the word size loaded into the PCM register from the MBOX FIFO. Data word size:
			0x0 8 bits/word
			0x1 16 bits/word
			0x2 24 bits/word
			0x3 32 bits/word
11	I2S_WORD_SIZE	0x0	Controls the word size sent to the external I^2S DAC. When set to 32 bit words, the PCM data will be left justified in the I^2S word. I^2S word size:
			0 16 bits per I ² S word
			1 32 bits per I ² S word
10	MCK_SEL	0x0	When a DAC master clock is required, this field selects the raw clock source between divided audio clock and input master clk (MCLK_IN)
			0 Raw master clock is divided audio PLL clock
			1 Raw master clock is MCLK_IN
9	9 SAMPLE_CNT		Indicates the strategy used to clear the sample counter Tx and Rx registers
	_CLEAR_TYPE		0 Write an explicit zero data through software to the Tx and Rx sample counter registers
			1 A software read of the Tx and Rx sample counter registers clears the counter registers
8	MASTER	0x1	This field controls the I2S_CK and I2S_WS master
			0 External DAC is the master and drives I2S_CK and I2S_WS
			1 The AR9331 is the master and drives I2S_CK and I2S_WS
7:0	POSEDGE	0x2	Counts in units of MCLK and can be calculated as follows:
			 ■ Identify the relationship between MCLK and I²S bit clock (I2S_SCK): I2S_SCK = MCLK / DIV Where DIV = MCLK/(SAMPLE_RATE * I2S_WORD_SIZE * 2 channels); a common example, a 44.1 KSps sample rate with 32 bits/ word and a 11.2896 MHz MCLK would yield: DIV = 11.2896MHz/(44.1 KSps * 32 bits/word * 2) = 4 ■ Identify the relationship between I2S_SCK and SPDIF_SCK: If I2S_WORD_SIZE=16, then I2S_SCK = SPDIF_SCK / 4 If I2S_WORD_SIZE=32, then I2S_SCK = SPDIF_SCK / 2 Note that SPDIF is always 32 bits per word. ■ Determine the value of this register (POSEDGE): SPDIF_SCK = MCLK/POSEDGE

6.10.2 Set Stereo Volume (STEREOO_VOLUME)

Address: 0x180B0004 Access: Read/Write

Reset: 0x0

This register digitally attenuates or increases the volume level of the stereo output. Volume is adjusted in 3-db steps. If the gain is set too high, the PCM values saturate and waveform clipping occurs.

Bit	Bit Name	Description			
31:13	RES	Reserved. Must	be written with zero. Contains zeros when read.		
12:8	CHANNEL1	Channel 1 gain/ A 5 bit number;	Channel 1 gain/attenuation. Setting the gain above +7 is not supported. A 5 bit number; the MSB is a sign bit, the others are magnitude:		
		Binary (Decimal)	Result		
		11111 (-16)	Maximum attenuation		
		11110 (-14)	-84 dB		
		•••			
		10001 (-1)	-6 dB		
		10000 (0)	0 dB		
		00000 (0)	0 dB		
		00001 (+1)	+6 dB		
		00111 (+7)	+42 dB (maximum gain)		
		01000 (+8)	Reserved		
		01111 (+15)	Reserved		
7:5	RES	Reserved. Must	be written with zero. Contains zeros when read.		
4:0	CHANNEL0	Channel 0 gain/ A 5 bit number;	attenuation. Setting the gain above +7 is not supported. the MSB is a sign bit, the others are magnitude:		
		Binary (Decimal)	Result		
		11111 (-16)	Maximum attenuation		
		11110 –14)	-84 dB		
		•••			
		10001 (-1)	-6 dB		
		10000 (0)	0 dB		
		00000 (0)	0 dB		
		00001 (+1)	+6 dB		
		•••			
		00111 (+7)	+42 dB (maximum gain)		
		01000 (+8)	Reserved		
		01111 (+15)	Reserved		

6.10.3 Tx Sample Counter (STEREOO_TX_SAMPLE_CNT_LSB)

Address: 0x180B000C Access: Read/Write

Reset: 0x0

This register counts the number of Tx samples transmitted by stereo. This register holds the 16 LSBs of the sample counter.

Bit	Bit Name	Description
31:16	CH1	Holds the 16 LSBs of Tx CH1 sample counter
15:0	CH0	Holds the 16 LSBs of Tx CH0 sample counter; also, these are the 16 LSBs of the sample counter

6.10.4 Tx Sample Counter (STEREOO_TX_SAMPLE_CNT_MSB)

Address: 0x180B0010 Access: Read/Write

Reset: 0x0

This register counts the number of Tx samples transmitted by stereo. This register holds only the 16 MSBs of the sample counter.

Bit	Bit Name	Description
31:16	CH1	Holds the 16 MSBs of Tx CH1 sample counter
15:0	СН0	Holds the 16 MSBs of Tx CH0 sample counter; also, these are the 16 LSBs of the sample counter

6.10.5 Rx Sample Counter (STEREOO_RX_SAMPLE_CNT_LSB)

Address: 0x180B0014 Access: Read/Write

Reset: 0x0

This register counts the number of Rx samples transmitted by stereo. This register holds only the 16 LSBs of the sample counter.

Bit	Bit Name	Description
31:16	CH1	Holds the 16 LSBs of Rx CH1 sample counter
15:0	CH0	Holds the 16 LSBs of Rx CH0 sample counter

6.10.6 Stereo Clock Divider (STEREO_CLOCK_DIV)

Address: 0x180B001C Access: Read/Write

Reset: 0x0

This register defines the integral and fractional parts of the division ratio between the source

clock and the divided audio clock. For example, to generate a divided-by-5 audio clock, a division ratio of 2.5 (in decimal) should

be written as $DIV_INT = 0x0002$ and

 $DIV_FRAC = 0x8000.$

Bit	Bit Name	Description
31:16	DIV_INT	Integral part of the division ratio
15:0	DIV_FRAC	Fractional Part of the division ratio

6.11 MDIO Slave Registers

Table 6-13 summarizes the MDIO Slave registers for the AR9331.

Table 6-13. MDIO Slave Registers Summary

Address	Name	Description	Page
0x180B8000	MDIO_HS_REG0	MDIO Handshaking Register 0	page 102
0x180B8004	MDIO_HS_REG1	MDIO Handshaking Register 1	page 102
0x180B8008	MDIO_HS_REG2	MDIO Handshaking Register 2	page 103
0x180B800C	MDIO_HS_REG3	MDIO Handshaking Register 3	page 103
0x180B8010	MDIO_HS_REG4	MDIO Handshaking Register 4	page 103
0x180B8014	MDIO_HS_REG5	MDIO Handshaking Register 5	page 103
0x180B8018	MDIO_HS_REG6	MDIO Handshaking Register 6	page 104
0x180B801C	MDIO_HS_REG7	MDIO Handshaking Register 7	page 104
0x180B8020	MDIO_ISR_REG	MDIO ISR Register	page 104

6.11.1 MDIO Handshaking Register 0 (MDIO_HS_REGO)

Address: 0x180B8000 Access: Read/Write

Reset: 0x0

This register is used to initiate the handshaking between the MDIO master and the AR9331, which is acting as the slave.

Bit	Bit Name	Description
31:16	MDIO_REG_0	When the AR9331 acts as an MDIO slave, this is used as the first handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.2 MDIO Handshaking Register 1 (MDIO_HS_REG1)

Address: 0x180B8004 Access: Read/Write Reset: 0x0

This register is the second handshaking register of the AR9331 (when it is acting as the MDIO slave) to communicate with the MDIO Master.

Bit	Bit Name	Description
31:16	MDIO_REG_1	When the AR9331 acts as an MDIO slave, this is used as the second handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.3 MDIO Handshaking Register 2 (MDIO_HS_REG2)

Address: 0x180B8008 Access: Read/Write

Reset: 0x0

This register is the third handshaking register of the AR9331 (when it is acting as the MDIO slave) to communicate with the MDIO Master.

Bit	Bit Name	Description
31:16	MDIO_REG_2	When the AR9331 acts as an MDIO slave, this is used as the third handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.4 MDIO Handshaking Register 3 (MDIO_HS_REG3)

Address: 0x180B800C Access: Read/Write

Reset: 0x0

This register is the fourth handshaking register of the AR9331 (when it is acting as the MDIO slave) to communicate with the MDIO Master.

Bit	Bit Name	Description
31:16	MDIO_REG_3	When the AR9331 acts as an MDIO slave, this is used as the fourth handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.5 MDIO Handshaking Register 4 (MDIO_HS_REG4)

Address: 0x180B8010 Access: Read/Write

Reset: 0x0

This register is the fifth handshaking register of the AR9331 (when it is acting as the MDIO slave) to communicate with the MDIO Master.

Bit	Bit Name	Description
31:16	MDIO_REG_4	When the AR9331 acts as an MDIO slave, this is used as the fifth handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.6 MDIO Handshaking Register 5 (MDIO_HS_REG5)

Address: 0x180B8014 Access: Read/Write Reset: 0x0 This register is the sixth handshaking register of the AR9331 (when it is acting as the MDIO slave) to communicate with the MDIO Master.

Bit	Bit Name	Description
31:16	MDIO_REG_5	When the AR9331 acts as an MDIO slave, this is used as the sixth handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.7 MDIO Handshaking Register 6 (MDIO_HS_REG6)

Address: 0x180B8018 Access: Read/Write

Reset: 0x0

This register is the seventh handshaking register of the AR9331 (when it is acting as the MDIO slave) to communicate with the MDIO

Master.

Bit	Bit Name	Description
31:16	MDIO_REG_6	When the AR9331 acts as an MDIO slave, this is used as the seventh handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.8 MDIO Handshaking Register 7 (MDIO_HS_REG7)

Address: 0x180B001C Access: Read/Write

Reset: 0x0

This register is the eighth handshaking register of the AR9331 (when it is acting as the MDIO slave) to communicate with the MDIO Master.

Bit	Bit Name	Description
31:16	MDIO_REG_7	When the AR9331 acts as an MDIO slave, this is used as the eighth handshaking register to communicate with the MDIO Master. Both the AR9331 and the master have access to this register.
15:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.11.9 MDIO ISR Register (MDIO_ISR_REG)

Address: 0x180B8020 Access: Read Only

Reset: 0x0

This register is used to notify that one of the previous MDIO Handshaking registers has been written by the MDIO master.

Bit	Bit Name	Description
31:8	RES	Reserved. Must be written with zero. Contains zeros when read.
7	MASTER_ACC_IND0	Indicates MDIO Handshaking Register 0 has been written by the MDIO master.
6	MASTER_ACC_IND1	Indicates MDIO Handshaking Register 1 has been written by the MDIO master.
5	MASTER_ACC_IND2	Indicates MDIO Handshaking Register 2 has been written by the MDIO master.
4	MASTER_ACC_IND3	Indicates MDIO Handshaking Register 3 has been written by the MDIO master.
3	MASTER_ACC_IND4	Indicates MDIO Handshaking Register 4 has been written by the MDIO master.
2	MASTER_ACC_IND5	Indicates MDIO Handshaking Register 5 has been written by the MDIO master.
1	MASTER_ACC_IND6	Indicates MDIO Handshaking Register 6 has been written by the MDIO master.
0	MASTER_ACC_IND7	Indicates MDIO Handshaking Register 7 has been written by the MDIO master.

6.12 General DMA and Rx-Related Registers

Table 6-14 shows the mapping of the general DMA and Rx-related (MAC interface) registers.

Table 6-14. General DMA and Rx-Related Registers

Offset	Name	Description	Page
0x18100008	CR	Command	page 106
0x18100014	CFG	Configuration and Status	page 107
0x18100018	RXBUFPTR_THRESH	Rx DMA Data Buffer Pointer Threshold	page 108
0x1810001C	TXDPPTR_THRESH	Tx DMA Descriptor Pointer Threshold	page 108
0x18100020	MIRT	Maximum Interrupt Rate Threshold	page 108
0x18100024	IER	Interrupt Global Enable	page 109
0x18100028	TIMT	Tx Interrupt Mitigation Thresholds	page 109
0x1810002C	RIMT	Rx Interrupt Mitigation Thresholds	page 109
0x18100030	TXCFG	Transmit Configuration	page 110
0x18100034	RXCFG	Receive Configuration	page 110
0x18100040	MIBC	MIB Control	page 111
0x18100044	TOPS	Timeout Prescale	page 111
0x18100064	GTT	Global Transmit Timeout	page 111
0x18100068	GTTM	Global Transmit Timeout Mode	page 111
0x1810006C	CST	Carrier Sense Timeout	page 112
0x18100070	RXDP_SIZE	Size of High and Low Priority	page 112
0x18100074	RX_QUEUE_HP_RXDP	Lower 32 bits of MAC Rx High Priority Queue RXDP Pointer	page 112
0x18100078	RX_QUEUE_LP_RXDP	Lower 32 bits of MAC Rx Low Priority Queue RXDP Pointer	page 112
0x18100080	ISR_P	Primary Interrupt Status	page 113
0x18100084	ISR_S0	Secondary Interrupt Status 0	page 114
0x18100088	ISR_S1	Secondary Interrupt Status 1	page 114
0x1810008C	ISR_S2	Secondary Interrupt Status 2	page 115
0x18100090	ISR_S3	Secondary Interrupt Status 3	page 116
0x18100094	ISR_S4	Secondary Interrupt Status 4	page 116
0x18100098	ISR_S5	Secondary Interrupt Status 5	page 116
0x181000A0	IMR_P	Primary Interrupt Mask	page 117
0x181000A4	IMR_S0	Secondary Interrupt Mask 0	page 118
0x181000A8	IMR_S1	Secondary Interrupt Mask 1	page 118
0x181000AC	IMR_S2	Secondary Interrupt Mask 2	page 119
0x181000B0	IMR_S3	Secondary Interrupt Mask 3	page 120
0x181000B4	IMR_S4	Secondary Interrupt Mask 4	page 120

Table 6-14. General DMA and Rx-Related Registers (continued)

Offset	Name	Description	Page
0x181000B8	IMR_S5	Secondary Interrupt Mask 5	page 121
0x181000C0	ISR_P_RAC	Primary Interrupt Status Read-and-Clear	page 121
0x181000C4	ISR_S0_S	Secondary Interrupt Status 0 (Shadow Copy)	page 121
0x181000C8	ISR_S1_S	Secondary Interrupt Status 1 (Shadow Copy)	page 122
0x181000D0	ISR_S2_S	Secondary Interrupt Status 2 (Shadow Copy)	page 122
0x181000D4	ISR_S3_S	Secondary Interrupt Status 3 (Shadow Copy)	page 122
0x181000D8	ISR_S4_S	Secondary Interrupt Status 4 (Shadow Copy)	page 122
0x181000DC	ISR_S5_S	Secondary Interrupt Status 5 (Shadow Copy)	page 122

6.12.1 Command (CR)

Offset: 0x18100008 Access: Read/Write

Bit	Name	Description
31:7	RES	Reserved
6	SWI	Software interrupt; this bit is one-shot/auto-cleared, so it always reads as 0
5	RXD	Rx disabled
4	RES	Reserved
3	RXE_HP	Receive enabled; this read-only bit indicates RxDMA status for HP frames. Set when software writes to the RxBP register and cleared when RxDMA runs out of RxBP or when RxD is asserted.
2	RXE_LP	Receive enabled; this read-only bit indicates RxDMA status for LP frames. Set when software writes to RXBUFPTR_THRESH register and cleared when RxDMA runs out of RXBUFPTR_THRESH or when RxD is asserted.
1:0	RES	Reserved

6.12.2 Configuration and Status (CFG)

Offset: 0x18100014 Access: Read/Write

Reset: See Field Description

Bit	Name	Reset	Description	
31:13	RES	0x0	Reserved	
12	CFG_HALT_ACK	0x0	DMA halt status	
			0 DMA has not yet halted	
			1 DMA has halted	
11	CFG_HALT_REQ	0x0	DMA halt in preparation for reset request	
			0 DMA logic operates normally	
			Request DMA logic to stop so software can reset the MAC Bit [12] of this register indicates when the halt has taken effect; the DMA halt IS NOT recoverable; once software sets bit [11] to request a DMA halt, software must wait for bit [12] to be set and reset the MAC.	
10	CFG_CLKGATE_DIS	0x0	Clock gating disable	
			0 Allow clock gating in all DMA blocks to operate normally	
			1 Disable clock gating in all DMA blocks (for debug use)	
9	RES	0x0	Reserved	
8	RES	0x1	Reserved	
7:6	RES	0x0	Reserved	
5	REG_CFG_ADHOC	0x0	AP/ad hoc indication	
			0 AP mode MAC is operating either as an access point (AP) or as a station (STA) in a BSS	
			1 Ad hoc mode MAC is operating as a STA in an independent basic service set (IBSS)	
4	MODE_MMR	0x0	Byteswap register access (MMR) data words	
3	MODE_RCV_DATA	0x0	Byteswap Rx data buffer words	
2	MODE_RCV_DESC	0x0	Byteswap Rx descriptor words	
1	MODE_XMIT_DATA	0x0	Byteswap Tx data buffer words	
0	MODE_XMIT_DESC	0x0	Byteswap Tx descriptor words	

6.12.3 Rx DMA Data Buffer Pointer Threshold (RXBUFPTR_THRESH)

Offset: 0x18100018 Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:15	RES	Reserved
14:8	LP_DATA	Indicates the Rx DMA data buffer pointer threshold. An interrupt will be asserted (if enabled) if the number of available data buffer pointers is less than this threshold. There is a separate threshold for high and low priority buffers.
7:4	RES	Reserved
3:0	HP_DATA	Indicates the Rx DMA data buffer pointer threshold. An interrupt will be asserted (if enabled) if the number of available data buffer pointers is less than this threshold. The high and low priority buffers have separate thresholds.

6.12.4 Tx DMA Descriptor Pointer Threshold (TXDPPTR_THRESH)

Offset: 0x1810001C Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:4	RES	Reserved
3:0	DATA	Indicates the Tx DMA descriptor pointer threshold. An interrupt will be asserted (if enabled) if the number of available descriptor pointers for any of the 10 queues is less than this threshold.

6.12.5 Maximum Interrupt Rate Threshold (MIRT)

Offset: 0x18100020 Access: Read/Write

Bit	Name	Description
31:16	RES	Reserved
15:0	INTR_RATE_THRESH	Maximum interrupt rate threshold This register is described in µs up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The maximum interrupt rate timer is started when either the TXINTM or RXIMTM status bits are set. TXMINTR or RXMINTR are asserted at this time. No future TXINTM or RXINTM events can cause the TXMINTR or TXMINTR to be asserted until this timer has expired. If both the TXINTM and RXINTM status bits are set while the timer is expired then the TXMINTR and RXMINTR will round robin between the two.

6.12.6 Interrupt Global Enable (IER)

Offset: 0x18100024 Access: Read/Write

Reset: 0x0

Bit	Name	Description	
31:1	RES	Reserved	
0	REG_IER	Enable hardware signalling of interrupts	

Tx Interrupt Mitigation Thresholds (TIMT) 6.12.7

Offset: 0x18100028 Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:16	TX_FIRST_PKT _THRESH	Tx first packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Tx first packet timer starts counting after any Tx completion. If the timer is still counting when the next Tx completion occurs, it resets and starts over. The first Tx packet timer expires when either the last Tx packet threshold equals the last Tx packet timer count or the first Tx packet threshold equals the first Tx packet timer count.
15:0	TX_LAST_PKT_ THRESH	Tx last packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Tx last packet timer starts counting after any Tx completion. If the timer is still counting when the next Tx completion occurs, it resets and starts over. The last Tx packet timer expires when either the last Tx packet threshold equals the last Tx packet timer count or the first Tx packet threshold equals the first Tx packet timer count.

6.12.8 Rx Interrupt Mitigation Thresholds (RIMT)

Offset: 0x1810002C Access: Read/Write Reset: Undefined

Bit	Name	Description
31:16	RX_FIRST_PKT _THRESH	Receive first packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is 0x0, the interrupt mitigation mechanism is disabled. The Rx first packet timer starts counting after any receive completion. If the timer is still counting when the next receive completion occurs, it resets and starts over. The first receive packet timer expires when either the last receive packet threshold equals the last receive packet timer count or the first receive packet threshold equals the first receive packet timer count.
15:0	RX_LAST_PKT_ THRESH	Receive last packet threshold This register is in μ s up to a maximum of 65.535 ms. If this register is $0x0$, the interrupt mitigation mechanism is disabled. The Rx last packet timer starts counting after any receive completion. If the timer is still counting when the next receive completion occurs, it resets and starts over. The last receive packet timer expires when either the last receive packet threshold equals the last receive packet timer count or the first receive packet threshold equals the first receive packet timer count.

December 2010

6.12.9 Tx Configuration (TXCFG)

Offset: 0x18100030 Access: Read/Write

Reset: See Field Descriptions

Bit	Name	Reset	Descrip	Description		
31:18	RES	0x0	Reserved			
17	DIS_RETRY	0x1	Disable	retry of underrun packets		
	_UNDERRUN		0	Underrun packets will retry indefinitely		
			1	Underrun packets will quit after first underrun attempt and write status indicating underrun		
16:10	RES	0x0	Reserve	od .		
9:4	TXCFG_TRIGLVL	0x1	Frame trigger level Specifies the minimum number of bytes, in units of 64 bytes, which must be DMAed into the PCU TXFIFO before the PCU initiates sending the frame on the air. Resets to 0x1 (meaning 64 Bytes or a full frame, whichever occurs first).			
3	RES	0x0	Reserved			
2:0	TXCFG_DMA_SIZE	0x5	Maximu	um DMA request size for master reads		
			0	4 B		
			1	8 B		
			2	16 B		
			3	32 B		
			4	64 B		
			5	128 B		
			6	256 B		
			7	Reserved		

6.12.10 Rx Configuration (RXCFG)

Offset: 0x18100034 Access: Read/Write

Reset: See Field Descriptions

Bit	Name	Reset	Description	
31:5	RES	0x0	Reserved	
4:3	ZERO_LEN_DMA_EN	0x0	ero-length frame DMA er	nable
			DMA logic suppre of zero-length fram	all zero-length frames. In this mode, the esses all zero-length frames. Reception mes is invisible to the host (they neither emory nor consume a Rx descriptor).
			1 Reserved	
			zero-length frame	ll zero-length frames. In this mode, all es (chirps, double-chirps, and noned into host memory just like normal frames.
			3 Reserved	
2:0	DMA_SIZE	0x4		naster writes; (See the encodings for the on (TXCFG)" on page 110)

6.12.11 MIB Control (MIBC)

Offset: 0x18100040 Access: Read/Write

Reset: See Field Descriptions

Bit	Name	Reset	Description	
31:4	RES	0x0	Reserved	
3	STROBE	0x0	MIB count	ter strobe. This bit is a one-shot and always reads as zero. For writes:
			0 N	No effect
			1 C	Causes every MIB counter to increment by one
2	CLEAR	0x1	Clear all counters	
1	FREEZE	0x1	Freeze all counters	
0	RES	0x0	Reserved	

6.12.12 Timeout Prescale (TOPS)

Offset: 0x18100044 Access: Read/Write Reset: 0x0000

Bit	Name	Description	
31:16	RES	Reserved	
15:0	TOPS	Timeout prescale count	

6.12.13 Global Tx Timeout (GTT)

Offset: 0x18100064 Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:16	LIMIT	Timeout limit (in TU: 1024 μs); on reset, this value is set to 25 TU.
15:0	COUNT	Timeout counter (in TU: $1024~\mu s$) The current value of the timeout counter that is reset on every transmit. If no Tx frame is queued up and ready to transmit, the timeout counter stays at 0 or else the counter increments every $1024~\mu s$. If the timeout counter is equal to or greater than the timeout limit, the global transmit timeout interrupt is set in the ISR. This mechanism can be used to detect whether a Tx frame is ready and is unable to be transmitted.

6.12.14 Global Tx Timeout Mode (GTTM)

Offset: 0x18100068 Access: Read/Write

Bit	Name	Description
31:4	RES	Reserved
3	CST_USEC_STROBE	CST μ s strobe; if this bit is set, then the CST timer will not use the TU based strobe but rather use the μ s strobe to increment the timeout counter.
2	RESET_ON_CHAN_IDLE	Reset count on chan idle low. Reset count every time channel idle is low.
1	IGNORE_CHAN_IDLE	Ignore channel idle; if this bit is set then the GTT timer does not increment if the channel idle indicates the air is busy or NAV is still counting down.
0	USEC_STROBE	μs strobe; if this bit is set then the GTT timer will not use the TU based strobe but rather use a μs strobe to increment the timeout counter.

6.12.15 Carrier Sense Timeout (CST)

Offset: 0x1810006C Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:16	LIMIT	Timeout limit (in TU: 1024 μs). On reset, this value is set to 0 TU.
15:0	COUNT	Timeout counter (in TU: $1024~\mu s$) The current value of the timeout counter that is reset on every transmit. If no Tx frame is queued up and ready to transmit, the timeout counter stays at 0 or the counter increments every $1024~\mu s$. If the timeout counter is equal to or greater than the timeout limit then carrier sense timeout (CST) interrupt is set in the ISR. This counter starts counting if any queues are ready for Tx. It continues counting when RX_CLEAR is low, which is useful to determine whether the transmit is stuck because RX_CLEAR is low for a long time.

6.12.16 Size of High and Low Priority (RXDP_SIZE)

Offset: 0x18100070 Access: Read-Only

Reset: 0x0

Bit	Name	Description
31:13	RES	Reserved
12:8	HP	Indicates the size of high priority RXDP FIFO
7:0	LP	Indicates the size of low priority RXDP FIFO

6.12.17 MAC Rx High Priority Queue RXDP Pointer (RX_QUEUE_HP_RXDP)

Offset: 0x18100074 Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:0	ADDR	MAC Rx high priority queue RXDP pointer

6.12.18 MAC Rx Low Priority Queue RXDP Pointer (RX_QUEUE_LP_RXDP)

Offset: 0x18100078 Access: Read/Write

Bit	Name	Description
31:0	ADDR	MAC Rx low priority queue RXDP pointer

6.12.19 Primary Interrupt Status (ISR_P)

Offset: 0x18100080

Access: Read/Write-One-to-Clear

Reset: 0x0

NOTE:

- The bits that are logical ORs of bits in the secondary ISRs are generated by logically ORing the secondary ISR bits after the secondary ISR bits have been masked with the appropriate bits from the corresponding secondary interrupt mask register.
- A write of one to a bit that is a logical OR of bits in a secondary ISR clears the secondary ISR bits from which the primary ISR bit is generated. E.g.: A write of a one to the TXOK bit (bit [6]) in ISR_P clears all 10 TXOK bits in ISR_S0 (bits [9:0] of "Secondary Interrupt Status 0 (ISR_S0)").
- Only the bits in this register (ISR_P) and the primary interrupt mask register ("Primary Interrupt Mask (IMR_P)") control whether the MAC's interrupt output is asserted. The bits in the several secondary interrupt status/mask registers control what bits are set in the primary interrupt status register; however, the IMR_S* registers do not determine whether an interrupt is asserted. That is, an interrupt is asserted only when the logical AND of ISR_P and IMR_P is non-zero. The secondary interrupt mask/ status registers affect which bits are set in ISR_P, but do not directly affect whether an interrupt is asserted.

Bit	Name	Description
31	RXINTM	Rx completion interrupt after mitigation; either the first Rx packet or last Rx packet interrupt mitigation count has reached its threshold (see the register "Rx Interrupt Mitigation Thresholds (RIMT)" on page 109)
30	TXINTM	Tx completion interrupt after mitigation; either the first Tx packet or last Tx packet interrupt mitigation count has reached its threshold (see the register "Tx Interrupt Mitigation Thresholds (TIMT)" on page 109)
29	RES	Reserved
28	GENTMR	Logical OR of all GENERIC TIMER bits in the secondary ISR 5 which include the GENERIC_TIMER_TRIGGER[7:0], GENERIC_TIMER_THRESH[7:0], GENERIC_TIMER_OVERFLOW
27	QTRIG	Logical OR of all QTRIG bits in secondary ISR 4; indicates that at least one QCU's frame scheduling trigger event has occurred
26	QCBRURN	Logical OR of all QCBRURN bits in secondary ISR 3; indicates that at least one QCU's frame scheduling trigger event occurred when no frames were present on the queue
25	QCBROVF	Logical OR of all QCBROVF bits in secondary ISR 3; indicates that at least one QCU's CBR expired counter has reached the value of the QCU's CBR_OVR_THRESH parameter (see "CBR Configuration (Q_CBRCFG)" register bits [31:24])
24	RXMINTR	RXMINTR maximum receive interrupt rate; same as RXINTM with the added requirement that maximum interrupt rate count has reached its threshold; this interrupt alternates with TXMINTR.
23	BCNMISC	Miscellaneous beacon-related interrupts This bit is the Logical OR of the CST, GTT, TIM, CABEND, DTIMSYNC, BCNTO, CABTO, TSFOOR, DTIM, and TBTT_TIME bits in secondary ISR 2.
22:21	RES	Reserved
20	BNR	Beacon not ready Indicates that the QCU marked as being used for beacons received a DMA beacon alert when the queue contained no frames.
19	TXMINTR	TXMINTR maximum Tx interrupt rate
18	BMISS	The PCU indicates that is has not received a beacon during the previous N (N is programmable) beacon periods
17	BRSSI	The PCU indicates that the RSSI of a beacon it has received has fallen below a programmable threshold
16	SWBA	The PCU has signalled a software beacon alert
15	RXKCM	Key cache miss; a frame was received with a set key cache miss Rx status bit
14	RXPHY	The PHY signalled an error on a received frame

Bit	Name	Description
13	SWI	Software interrupt signalled; see the register "Command (CR)" on page 106
12	MIB	One of the MIB regs has reached its threshold
11	TXURN	Logical OR of all TXURN bits in secondary ISR 2. Indicates that the PCU reported a txfifo underrun for at least one QCU's frame
10	TXEOL	Logical OR of all TXEOL bits in secondary ISR 1; indicates that at least one Tx desc fetch state machine has no more Tx descs available
9	RES	Reserved
8	TXERR	Logical OR of all TXERR bits in secondary ISR 1; indicates that at least one frame was completed with an error, regardless of whether the InterReq bit was set
7	RES	Reserved
6	TXOK	Logical OR of all TXOK bits in secondary ISR 0; indicates that at least one frame was completed with no errors and at the requested rate, regardless of whether the InterReq bit was set.
5	RXORN	RxFIFO overrrun
4	RXEOL	Rx descriptor fetch logic has no more Rx descs available
3	RXNOFR	No frame was received for RXNOFR timeout clocks
2	RXERR	The frame was received with errors
1	RXOK_LP	Low priority frame was received with no errors
0	RXOK_HP	High priority frame was received with no errors

6.12.20 Secondary Interrupt Status 0 (ISR_S0)

Offset: 0x18100084

Access: Read/Write-One-to-Clear

Reset: 0x0

Bit	Description
31:10	Reserved
9	TXOK for QCU 9
1	TXOK for QCU 1
0	TXOK for QCU 0

6.12.21 Secondary Interrupt Status 1 (ISR_S1)

Offset: 0x18100088

Access: Read/Write-One-to-Clear

Bit	Description
31:26	Reserved
25	TXEOL for QCU 9
17	TXEOL for QCU 1
16	TXEOL for QCU 0
15:10	Reserved
9	TXERR for QCU 9
1	TXERR for QCU 1
0	TXERR for QCU 0

6.12.22 Secondary Interrupt Status 2 (ISR_S2)

Offset: 0x1810008C

Access: Read/Write-One-to-Clear

Bit	Name	Description
31	TBTT_TIME	TBTT-referenced timer interrupt; indicates the PCU's TBTT-referenced timer has elapsed.
30	TSFOOR	TSF out of range; indicates that the corrected TSF received from a beacon differs from the PCU's internal TSF by more than a (programmable) threshold
29	DTIM	A beacon was received with the DTIM bit set and a DTIM count value of zero. Beacons with a set DTIM bit but a non-zero DTIM count do not generate it.
28	CABTO	CAB timeout; a beacon was received that indicated that the STA should expect to receive CAB traffic. However, the PCU's CAB timeout expired either because the STA received no CAB traffic, or because the STA received some CAB traffic but never received a CAB frame with the more data bit clear in the frame control field (which would indicate the final CAB frame).
27	BCNTO	Beacon timeout; a TBTT occurred and the STA began waiting to receive a beacon, but no beacon was received before the PCU's beacon timeout expired
26	DTIMSYNC	DTIM synchronization lost; a beacon was received that was expected to be a DTIM but was not, or a beacon was received that was not expected to be a DTIM but was
25	CABEND	End of CAB traffic; a CAB frame was received with the more data bit clear in the frame control field
24	TIM	A beacon was received with the local STA's bit set in the TIM element
23	GTT	Global Tx timeout; indicates the GTT count ≥ than the GTT limit
22	CST	Carrier sense timeout; indicates the CST count ≥ than the CST limit
21	BT_PRIORITY_ FALLING	Asserted by the end event of BT high priority traffic
20	BT_PRIORITY_ RISING	Asserted by the start event of BT high priority traffic. In non-packet traffic arbitration (PTA) mode, the start event is 0->1 of BT_PRIORITY and the end event is 1->0 of BT_PRIORITY. In PTA mode, start event occurs if BT_PRIORITY is high when sampled at pre-determined point and that BT traffic is considered as high priority traffic. Then end event occurs at 1->0 of BT_ACTIVE only for high priority traffic.
19	BT_ACTIVE _FALLING	Asserted by 1->0 of BT_ACTIVE
18	BT_ACTIVE _RISING	Asserted by 0->1 of BT_ACTIVE
17	BT_STOMPED	Indicates BT traffic is stomped by WLAN. This is valid only for PTA mode.
16	RES	Reserved
15	BT_LOW_PRIO RITY_FALLING	Asserted by end event of BT low-priority traffic; valid only for traditional 3-wire and PTA 3-wire
14	BT_LOW_PRIO RITY_RISING	Asserted by start event of BT low-priority traffic; valid only for traditional 3-wire and PTA 3-wire
13:10	RES	Reserved
9	TXURN for QCU	9
•••		
1	TXURN for QCU	1
0	TXURN for QCU	0

6.12.23 Secondary Interrupt Status 3 (ISR_S3)

Offset: 0x18100090

Access: Read/Write-One-to-Clear

Reset: 0x0

Bit	Description
31:26	Reserved
25	QCBRURN for QCU 9
17	QCBRURN for QCU 1
16	QCBRURN for QCU 0
15:10	Reserved
9	QCBROVF for QCU 9
1	QCBROVF for QCU 1
•••	
0	QCBROVF for QCU 0

6.12.24 Secondary Interrupt Status 4 (ISR_S4)

Offset: 0x18100094

Access: Read/Write-One-to-Clear

Reset: 0x0

Bit	Description
31:10	Reserved
9	QTRIG for QCU 9
	
1	QTRIG for QCU 1
0	QTRIG for QCU 0

6.12.25 Secondary Interrupt Status 5 (ISR_S5)

Offset: 0x18100098

Access: Read/Write-One-to-Clear

Reset: 0x0

NOTE: The trigger indicates that the TSF matched or exceeded the timer. The threshold is set when

the TSF exceeds the timer by the

GENERIC_TIMER_THRESH value. The GENERIC_TIMER overflow occurs when the TSF exceeds the timer by such a large amount that TSF ≥ Timer + Period, indicating incorrect software programming. The GENERIC_TIMER 0 threshold was removed because timer 0 is special and does not generate threshold event

Bit	Description
31	GENERIC_TIMER 15 threshold
17	GENERIC_TIMER 1 threshold
16	GENERIC_TIMER overflow
15	GENERIC_TIMER 15 trigger
•••	
1	GENERIC_TIMER 1 trigger
0	GENERIC_TIMER 0 trigger

6.12.26 Primary Interrupt Mask (IMR_P)

Offset: 0x181000A0 Access: Read/Write

Reset: 0x0

NOTE: Only the bits in this register control whether the MAC's interrupt outputs are asserted. The bits in the secondary interrupt mask registers control what bits are set in the "Primary Interrupt Mask (IMR_P)" register; however, the IMR_S* registers do not determine whether an interrupt is asserted.

Bit	Description
31	RXINTM interrupt enable
30	TXINTM interrupt enable
29	Reserved
28	GENTMR interrupt enable
27	QTRIG interrupt enable
26	QCBRURN interrupt enable
25	QCBROVF interrupt enable
24	RXMINTR interrupt enable
23	BCNMISC interrupt enable
22:21	Reserved
20	BNR interrupt enable
19	TXMINTR interrupt enable
18	BMISS interrupt enable
17	BRSSI interrupt enable
16	SWBA interrupt enable
15	RXKCM interrupt enable
14	RXPHY interrupt enable
13	SWI interrupt enable
12	MIB interrupt enable
11	TXURN interrupt enable
10	TXEOL interrupt enable
9	TXNOFR interrupt enable
8	TXERR interrupt enable
7	Reserved
6	TXOK interrupt enable
5	RXORN interrupt enable
4	RXEOL interrupt enable
3	RXNOFR interrupt enable
2	RXERR interrupt enable
1	RXOK_LP interrupt enable
0	RXOK_HP interrupt enable

6.12.27 Secondary Interrupt Mask 0 (IMR_S0)

Offset: 0x181000A4 Access: Read/Write

Reset: 0x0

Bit	Description
31:10	Reserved
9	TXOK for QCU 9 interrupt enable
1	TXOK for QCU 1 interrupt enable
0	TXOK for QCU 0 interrupt enable

6.12.28 Secondary Interrupt Mask 1 (IMR_S1)

Offset: 0x181000A8 Access: Read/Write

Bit	Description
31:26	Reserved
25	TXEOL for QCU 9 interrupt enable
17	TXEOL for QCU 1 interrupt enable
16	TXEOL for QCU 0 interrupt enable
15:10	Reserved
9	TXERR for QCU 9 interrupt enable
1	TXERR for QCU 1 interrupt enable
0	TXERR for QCU 0 interrupt enable

6.12.29 Secondary Interrupt Mask 2 (IMR_S2)

Offset: 0x181000AC Access: Read/Write

Bit	Description	
31	TBTT_TIME interrupt enable	
30	TSFOOR interrupt enable	
29	DTIM interrupt enable	
28	CABTO interrupt enable	
27	BCNTO interrupt enable	
26	DTIMSYNC interrupt enable	
25	CABEND interrupt enable	
24	TIM interrupt enable	
23	GTT interrupt enable	
22	CST interrupt enable	
21	BT_PRIORITY_FALLING interrupt enable	
20	BT_PRIORITY_RISING interrupt enable	
19	BT_ACTIVE_FALLING interrupt enable	
18	BT_ACTIVE_RISING interrupt enable	
17	BT_STOMPED interrupt enable	
16	Reserved	
15	BT_LOW_PRIORITY_FALLING interrupt enable	
14	BT_LOW_PRIORITY_RISING interrupt enable	
13:10	Reserved	
9	TXURN for QCU 9 interrupt enable	
		
1	TXURN for QCU 1 interrupt enable	
0	TXURN for QCU 0 interrupt enable	

6.12.30 Secondary Interrupt Mask 3 (IMR_S3)

Offset: 0x181000B0 Access: Read/Write

Reset: 0x0

Bit	Description
31:26	Reserved
25	QCBRURN for QCU 9 interrupt enable
17	QCBRURN for QCU 1 interrupt enable
16	QCBRURN for QCU 0 interrupt enable
15:10	Reserved
9	QCBROVF for QCU 9 interrupt enable
1	QCBROVF for QCU 1 interrupt enable
0	QCBROVF for QCU 0 interrupt enable

6.12.31 Secondary Interrupt Mask 4 (IMR_S4)

Offset: 0x181000B4 Access: Read/Write

Bit	Description
31:10	Reserved
9	QTRIG for QCU 9 interrupt enable
1	QTRIG for QCU 1 interrupt enable
0	QTRIG for QCU 0 interrupt enable

6.12.32 Secondary Interrupt Mask 5 (IMR_S5)

Offset: 0x181000B8

Access: Read/Write-One-to-Clear

Reset: 0x0

NOTE: The trigger indicates the TSF matched or exceeded the timer; threshold is set when the TSF exceeds the timer by the GENERIC_TIMER_THRESH value. The GENERIC_TIMER overflow occurs when the TSF exceeds the timer by such a large amount that TSF ≥ Timer + Period, indicating incorrect software programming. The threshold GENERIC_TIMER 0 was removed because timer 0 is special and does not generate a threshold event.

Bit	Description
31	GENERIC_TIMER_THRESHOLD 15
30	GENERIC_TIMER_THRESHOLD 14
18	GENERIC_TIMER_THRESHOLD 2
17	GENERIC_TIMER_THRESHOLD 1
16	GENERIC_TIMER overflow enable
15	GENERIC_TIMER 15 trigger enable
1	GENERIC_TIMER 1 trigger enable
0	GENERIC_TIMER 0 trigger enable

6.12.33 Primary Interrupt Status Read and Clear (ISR_P_RAC)

Offset: 0x181000C0

Access: Read-and-Clear (No Write Access)

Reset: 0x0

NOTE: A read from this location atomically:

- Copies all secondary ISRs into the corresponding secondary ISR shadow registers (ISR_SO is copied to ISR_SO_S, etc.)
- Clears all bits of the primary ISR (ISR_P) and all bits of all secondary ISRs (ISR_S0-ISR_S4)
- Returns the contents of the primary ISR (ISR_P)

Bit	Name	Description
31:0	ISR_P	Same format as "Primary Interrupt Status (ISR_P)"

6.12.34 Secondary Interrupt Status 0 (ISR_SO_S)

Offset: 0x181000C4 Access: Read-Only

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 0 (ISR_S0)"

6.12.35 Secondary Interrupt Status 1 (ISR_S1_S)

Offset: 0x181000C8 Access: Read-Only

Reset: 0x0

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 1 (ISR_S1)"

6.12.36 Secondary Interrupt Status 2 (ISR_S2_S)

Offset: 0x181000D0 Access: Read-Only

Reset: 0x0

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 2 (ISR_S2)"

6.12.37 Secondary Interrupt Status 3 (ISR_S3_S)

Offset: 0x181000D4 Access: Read-Only

Reset: 0x0

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 3 (ISR_S3)"

6.12.38 Secondary Interrupt Status 4 (ISR_S4_S)

Offset: 0x181000D8 Access: Read-Only

Reset: 0x0

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 4 (ISR_S4)"

6.12.39 Secondary Interrupt Status 5 (ISR_S5_S)

Offset: 0x181000DC Access: Read-Only

Bit	Name	Description
31:0	ISR_S0	Same format as "Secondary Interrupt Status 5 (ISR_S5)"

Beacon Handling

Table 6-4. AP in a BSS: Sending Beacon and CAB

QCU	Description		
QCU 9	QCU 9 is used only for beacons QCU 9 feeds into DCU 9, and is the only QCU to feed into DCU 9		
	For QCU 9	For DCU 9	
	1. Set FSP to DBA-gated (see bits [3:0] of "Misc. QCU Settings (Q_MISC)").	1. Set the bit so DCU sends beacons (bit [16] of "Misc. DCU-Specific Settings (D_MISC)").	
	2. Set the bit so the QCU sends beacons (Q_MISC bit [7]).	2. Set the bit to enable global lockout (set D_MISC bits [18:17] to 0x2).	
	3. Set the bit to disable CBRExpired counter increment if the local queue has no frames (Q_MISC bit [5]).	3. Set both CW_MIN and CW_MAX to zero (see "DCU-Specific IFS Settings (D_LCL_IFS)").	
QCU 8	QCU 8 is used only for CAB (for a BSS, CAB is BCAST and MCAST frames) QCU 8 feeds into DCU 8, and is the only QCU to feed into DCU 8		
	For QCU 8	For DCU 8	
	1. Set FSP to DBA-gate	1. Set the bit to enable global lockout.	
	2. Set the ReadyTimeEn bit and set the ReadyTimeDuration (RTD) to:	2. Software tasks at SBA (all of these must occur before DBA):	
	RTD = BeaconInterval - (SBA - DBA)	■ Build beacon and pass it to QCU 9.	
	■ BeaconInterval is the interval between TBTTs■ SBA is the amount of time before TBTT that	■ Build CAB and pass it to QCU 8.	
	SBA is generated	■ Clear all Tx filter bits for DCUs 9 and 8.	
	■ <i>DBA</i> is the amount of time before TBTT that DBA is generated		
	3. Set the bit to disable the CBRExpired counter increment if the beacon queue has no frames (bit [6] of "Misc. QCU Settings (Q_MISC)").		
	4. Set the bit to disable the CBRExpired counter increment if the local queue has no frames (Q_MISC bit [5]).		

Table 6-5. STA in an IBSS: Sending Beacon and CAB

QCU	Description			
QCU 9	QCU 9 is used only for beacons; QCU 9 feeds into I	OCU 9, and is the only QCU to feed into DCU 9		
	For QCU 9	For DCU 9		
	 Set FSP to DBA-gated (Q_MISC bits [3:0]). Set the bit so the QCU sends beacons (Q_MISC bit [7]). 	 Set DCU to send beacons (D_MISC bit [16]). Set the bit to enable global lockout (set D_MISC bits [18:17] to 0x2). Set both CW_MIN and CW_MAX to twice the usual CW_MIN value (refer to the 802.11 specifications). 		
QCU 8	QCU 8 is used only for CAB (for an IBSS, CAB is ATIMs followed by data frames requiring preceding ATIM reception); QCU 8 feeds into DCU 8, and is the only QCU to feed into DCU 8			
	For QCU 8	For DCU 8		
	1. Set FSP to DBA-gate	1. Set the bit to enable global lockout.		
	 Set the ReadyTimeEn bit and set the ReadyTimeDuration (RTD) to: RTD = BeaconInterval – (SBA – DBA) Set the bit to disable the CBRExpired counter increment if the beacon queue has no frames (bit [6] of "Misc. QCU Settings (Q_MISC)"). 	 2. Software tasks at SBA (all of these must occur before DBA): ■ Build beacon and pass it to QCU 9. ■ Build CAB and pass it to QCU 8. ■ Clear all Tx filter bits for DCUs 9 and 8. 		
	4. Set the bit to disable the CBRExpired counter increment if the beacon queue has no frames (Q_MISC bit [6]).			
	5. Set the bit to disable the CBRExpired counter increment if the local queue has no frames (Q_MISC bit [5]).			
	6. Set the bit to clear TXE if ReadyTime expires (Q_MISC bit [9]).			

6.13 QCU Registers

The QCU registers occupy the offset range 0x18100800- 0x18100A40 in the AR9331 address space. The AR9331 has ten QCUs, numbered from 0 to 9.

Table 6-7. **QCU Registers**

Offset	Name	Description	Page
$0x18100800 + (Q << 2)^{[1]}$	Q_TXDP	Tx Queue Descriptor Pointer	page 125
0x18100830	Q_STATUS_RING_START	QCU_STATUS_RING_START_ ADDRESS Lower 32 bits of Address	page 126
0x18100834	Q_STATUS_RING_END	QCU_STATUS_RING_END_ADDR Lower 32 Bits of Address	page 126
0x18100838	Q_STATUS_RING_CURRENT	QCU_STATUS_RING_CURRENT Address	page 126
0x18100840	Q_TXE	Tx Queue Enable	page 126
0x18100880	Q_TXD	Tx Queue Disable	page 127
$0x181008C0 + (Q << 2)^{[1]}$	Q_CBRCFG	CBR Configuration	page 127
$0x18100900 + (Q << 2)^{[1]}$	Q_RDYTIMECFG	ReadyTime Configuration	page 127
0x18100940	Q_ONESHOTARM_SC	OneShotArm Set Control	page 128
0x18100980	Q_ONESHOTARM_CC	OneShotArm Clear Control	page 128
$0x181009C0 + (Q << 2)^{[1]}$	Q_MISC	Miscellaneous QCU Settings	page 129
$0x18100A00 + (Q << 2)^{[1]}$	Q_STS	Miscellaneous QCU Status	page 131
0x18100A40	Q_RDYTIMESHDN	ReadyTimeShutdown Status	page 131
0x18100A44	Q_MAC_QCU_DESC_CRC_CHK	Descriptor CRC Check	page 131

^[1] The variable Q in the register addresses refers to the QCU number.

6.13.1 Tx Queue Descriptor (Q_TXDP)

Offset: 0x18100800 + (Q < 2)Access: Read/Write Cold Reset: Undefined Warm Reset: Unaffected

Bit	Name	Description
31:2	TXDP	Tx descriptor pointer
1:0	RES	Reserved

6.13.2 QCU_STATUS_RING_START_ADDRESS Lower 32 bits of Address (Q_STATUS_RING_START)

Offset: 0x18100830 Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:0	ADDR	Lower 32 bits of QCU_STATUS_RING_START_ADDR

6.13.3 QCU_STATUS_RING_END_ADDR Lower 32 Bits of Address (Q_STATUS_RING_END)

Offset: 0x18100834 Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:0	ADDR	Lower 32 bits of QCU_STATUS_RING_END_ADDR

6.13.4 QCU_STATUS_RING_CURRENT Address (Q_STATUS_RING_CURRENT)

Offset: 0x18100838 Access: Read/Write

Reset: 0x0

Bit	Name	Description
31:0	ADDR	MAC_QCU_STATUS_RING_CURRENT_ADDRESS

6.13.5 Tx Queue Enable (Q_TXE)

Offset: 0x18100840 Access: Read/Write

Reset: 0x0

NOTE: Writing a 1 in bit position *N* sets the TXE bit for QCU N. Writing a 0 in bit position N has no effect; in particular, it does not clear the TXE bit for the OCU.

Bit	Description
31:10	Reserved
9	Enable QCU 9
1	Enable QCU 1
0	Enable QCU 0

6.13.6 Tx Queue Disable (Q_TXD)

Offset: 0x18100880 Access: Read/Write

Reset: 0x0

NOTE:

To stop transmission for QCU Q:

- 1. Write a 1 to QCU Q's TXD bit
- 2. Poll the "Tx Queue Enable (Q_TXE)" register until QCU Q's TXE bit is clear
- 3. Poll QCU Q's "Misc. QCU Status (Q_STS)" register until its pending frame count (Q_STS bits [1:0]) is zero
- 4. Write a 0 to QCU Q's TXD bit

At this point, QCU Q has shut down and has no frames pending in its associated DCU.

Software must not write a 1 to a QCU's TXE bit when that QCU's TXD bit is set; an undefined operation will result. Software must ensure that it sets a QCU's TXE bit only when the QCU's TXD bit is clear. It is fine to write a 0 to TXE when TXD is set, but this has no effect on the QCU.

Bit	Description
31:10	Reserved
9	Enable QCU 9
1	Enable QCU 1
0	Enable QCU 0

6.13.7 CBR Configuration (Q_CBRCFG)

Offset: 0x181008C0 + (Q < 2)

Access: Read/Write

Reset: 0x0

Bit	Name	Description	
31:24	CBR_OVF_THRESH	H CBR overflow threshold	
23:0	CBR_INTV	CBR interval in µs	

6.13.8 ReadyTime Configuration (Q_RDYTIMECFG)

Offset: 0x18100900 + (Q < 2)

Access: Read/Write

Bit	Name	Description		
31:25	RES	Reserved		
24	RDYTIME_EN	ReadyTime enable		
		0 Disable ReadyTime use		
		1 Enable ReadyTime use		
23:0	RDYTIME_DUR	ReadyTime duration in µs		

OneShotArm Set Control (Q_ONESHOTARM_SC) 6.13.9

Offset: 0x18100940 **NOTE:** A read to this register returns the current

Access: Read/Write state of all OneShotArm bits (QCU Q's

Reset: 0x0 OneShotArm bit is returned in bit position Q).

Bit	Descri	Description					
31:10	Reserve	Reserved					
9	0	No effect					
	1	Set OneShot arm bit for QCU 9					
1	0	No effect					
	1	Set OneShot arm bit for QCU 1					
0	0	No effect					
	1	Set OneShot arm bit for QCU 0					

6.13.10 OneShotArm Clear Control (Q_ONESHOTARM_CC)

Offset: 0x18100980 **NOTE:** A read to this register returns the current

Access: Read/Write state of all OneShotArm bits (QCU Q's

Reset: 0x0 OneShotArm bit is returned in bit position Q).

Bit	Descrip	Description				
31:10	Reserve	ed .				
9	0	No effect				
	1	Clear OneShot arm bit for QCU 9				
1	0	No effect				
	1	Clear OneShot arm bit for QCU 1				
0	0	No effect				
	1	Clear OneShot arm bit for QCU 0				

6.13.11 Misc. QCU Settings (Q_MISC)

Offset: 0x181009C0 + (Q < 2)Access: Read/Write

Reset: See Field Descriptions

Bit	Name	Reset	Descrip	tion	
31:12	RES	0x0	Reserved		
11	QCU_FR	0x1	DCU frame early termination request control		
	_ABORT _REQ_EN		0	Never request early frame termination. Once a frame enters the DCU, it will remain active until its normal retry count has been reached or the frame succeeds.	
			1	Allow this QCU to request early frame termination. When requested, the DCU attempts to complete processing the frame more quickly than it normally would.	
10	CBR_EXP_CNT _CLR_EN	0x0	CBR expired counter force-clear control. Write-only (always reads as zero). Write of:		
			0	No effect	
			1	Resets the CBR expired counter to zero	
9	TXE_CLR_ON_	0x0	ReadyTi	me expiration and VEOL handling policy	
	CBR_END		0	On expiration of ReadyTime or on VEOL, the TXE bit is not cleared. Only reaching the physical end-of-queue (that is, a NULL LinkPtr) will clear TXE	
			1	The TXE bit is cleared on expiration of ReadyTime, on VEOL, and on reaching the physical end-of-queue	
8	CBR_EXP_INC_	0x0	CBR expired counter limit enable		
	LIMIT		0	The maximum CBR expired counter value is 255, but a CBROVF interrupt is generated when the counter reaches the value set in the CBR overflow threshold field of the "CBR Configuration (Q_CBRCFG)" register.	
			1	The maximum CBR expired counter is limited to the value of the CBR overflow threshold field of the "CBR Configuration (Q_CBRCFG)" register. Note that in addition to limiting the maximum CBR expired counter to this value, a CBROVF interrupt is also generated when the CBR expired counter reaches the CBR overflow threshold.	
7	QCU_IS_BCN	0x0	Beacon u	ise indication. Indicates whether the QCU is being used for beacons	
			0	QCU is being used for non-beacon frames only	
			1	QCU is being used for beacon frames (and possibly for non-beacon frames)	
6	CBR_EXP_INC_ DIS_NOBCNFR		occurs an	the CBR expired counter increment if the frame scheduling trigger and the QCU marked as being used for beacon transmission (i.e., the at has bit [7] set in its "Misc. QCU Settings (Q_MISC)" register) no frames	
				0	Increment the CBR expired counter each time the frame scheduling trigger occurs, regardless of whether the beacon queue contains frames
			1	Increment the CBR expired counter only when both the frame scheduling trigger occurs and the beacon queue is valid (the beacon queue is valid whenever its TXE is asserted)	

Bit	Name	Reset	Descrip	tion																		
5	CBR_EXP_INC _DIS_NOFR	0x0		the CBR expired counter increment if the frame scheduling trigger nd the queue contains no frames																		
			0	Increment the CBR expired counter each time the frame scheduling trigger occurs, regardless of whether the queue contains frames																		
			1	Increment the CBR expired counter only when both the frame scheduling trigger occurs and the queue is valid (the queue is valid whenever TXE is asserted)																		
4	ONESHOT_EN	0x0	OneSho	t enable																		
			0	Disable OneShot function																		
			1	Enable OneShot function Note that OneShot must not be enabled when the QCU is set to an ASAP frame scheduling policy.																		
3:0	FSP	0x0	Frame s	cheduling policy setting																		
			0	ASAP The QCU is enabled continuously.																		
			1	CBR The QCU is enabled under control of the settings in the "CBR Configuration (Q_CBRCFG)" register.																		
											2	DBA-gated The QCU will be enabled at each occurrence of a DMA beacon alert.										
									3	TIM-gated The QCU will be enabled whenever: ■ In STA mode, the PCU indicates that a beacon frame has been received with the local STA's bit set in the TIM element ■ In IBSS mode, the PCU indicates that an ATIM frame has been received												
			5	Beacon-received-gated The QCU will be enabled when the PCU indicates that it has received a beacon.																		
			6	HCF Poll gated The QCU will be enabled whenever the Rx HCF poll event occurs; the signals come from the PCU when a directed HCF poll frame type is received with valid FCS.																		
			15:7	Reserved																		

6.13.12 Misc. QCU Status (Q_STS)

Offset: 0x18100A00 + (Q < 2)

Access: Read-Only

Reset: 0x0

Bit	Description
31:16	Reserved
15:8	Current value of the CBR expired counter
7:2	Reserved
1:0	Pending frame count Indicates the number of frames this QCU presently has pending in its associated DCU.

6.13.13 ReadyTimeShutdown Status (Q_RDYTIMESHDN)

Offset: 0x18100A40 Access: Read/Write

Reset: 0x0

Bit	Description		
31:10	Reserve	ed	
9	ReadyT	imeShutdown status for QCU 9	
1	ReadyTimeShutdown status for QCU 1		
0	ReadyTimeShutdown status for QCU 0 On read, returns ReadyTimeShutdown indication. Write of:		
	0	No effect	
	1	Set OneShot arm bit for QCU 0	

6.13.14 Descriptor CRC Check (MAC_QCU_DESC_CRC_CHK)

Offset: 0x18100A44 Access: Read/Write

Bit	Name	Description			
31:1	RES	Reserve	Reserved		
0	EN	QCU frame descriptor CRC check			
		0 Disable CRC check on the descriptor fetched from HOST 1 Enable CRC check on the descriptor fetched from HOST			

6.14 DCU Registers

The DCU registers occupy the offset range 0x18101000-0x181012F0 in the AR9331 address space. The AR9331 has ten DCUs, numbered from 0 to 9.

Table 6-8. QCU Registers

Offset	Name	Description	Page
$0x18101000 + (D << 2)^{[1]}$	D_QCUMASK	QCU Mask	page 132
$0x18101040 + (D << 2)^{[1]}$	D_LCL_IFS	DCU-Specific IFS Settings	page 133
$0x18101080 + (D << 2)^{[1]}$	D_RETRY_LIMIT	Retry Limits	page 133
$0x181010C0 + (D << 2)^{[1]}$	D_CHNTIME	ChannelTime Settings	page 134
$0x18101100 + (D << 2)^{[1]}$	D_MISC	Miscellaneous DCU-Specific Settings	page 134
0x18101030	D_GBL_IFS_SIFS	DCU-Global IFS Settings: SIFS Duration	page 135
0x18101070	D_GBL_IFS_SLOT	DCU-Global IFS Settings: Slot Duration	page 135
0x181010B0	D_GBL_IFS_EIFS	DCU-Global IFS Settings: EIFS Duration	page 135
0x181010F0	D_GBL_IFS_MISC	DCU-Global IFS Settings: Misc. Parameters	page 136
0x18101270	D_TXPSE	DCU Transmit Pause Control/Status	page 136
0x181012F0	D_TXSLOTMASK	DCU Transmission Slot Mask	page 137

^[1] The variable D in the register addresses refers to the DCU number.

6.14.1 QCU Mask (D_QCUMASK)

Offset: 0x18101000 + (D < 2)

Access: Read/Write Cold Reset: 0x0

Warm Reset: Unaffected

NOTE: To achieve lowest power consumption, software should set this register to 0x0 for all DCUs that are not in use. The hardware detects that the QCU mask is set to zero and shuts down certain logic in response, helping to save power.

Bit	Name	Description
31:10	RES	Reserved
9:0	~ -	QCU mask Setting bit <i>Q</i> means that QCU <i>Q</i> is associated with (i.e., feeds into) this DCU. These register have reset values which corresponding to a 1 to 1 mapping between QCUs and DCUs. A register offset of 0x1000 maps to 0x1, 0x1004 maps to 0x2, 0x1008 maps to 0x4, etc.

6.14.2 DCU-Specific IFS Settings (D_LCL_IFS)

Offset: 0x18101040 + (D < 2)

Access: Read/Write

Cold Reset: See Field Descriptions

Warm Reset: Unaffected

Bit	Name	Reset	Description				
When L	When Long AIFS is 0:						
31:28	RES	0x0	Reserved				
27:20	DATA_AIFS_D[7:0]	0x2	AIFS value, in slots beyond SIFS				
			For example, a setting of 2 (the reset value) means AIFS is equal to DIFS.				
			NOTE: Although this field is 17 bits wide (including the 9 MSBs accessed using the long AIFS field), the maximum supported AIFS value is 0x1FFFC. Setting the AIFS value to 0x1FFFD, 0x1FFFE, or 0x1FFFF does not work correctly and causes the DCU to hang.				
19:10	DATA_CW_MAX	0x3FF	CW_MAX value; must be equal to a power of 2, minus 1				
9:0	DATA_CW_MIN	0xF	CW_MIN value; must be equal to a power of 2, minus 1				
When L	When Long AIFS is 1:						
31:29	RES	0x0	Reserved				
28	LONG_AIFS [DCU_IDX_D]	0x0	Long AIFS bit; used to read or write to the nine MSBs of the AIFS value				
27:9	RES	0x0	Reserved				
8:0	DATA_AIFS_D[16:8]	0x2	Upper nine bits of the AIFS value (see bits [27:20] listed in this register)				

6.14.3 Retry Limits (D_RETRY_LIMIT)

Offset: 0x18101080 + (D < 2)

Access: Read/Write

Cold Reset: See Field Descriptions

Warm Reset: Unaffected

Bit	Name	Reset	Description
31:20	RES	0x20	Reserved
19:14	SDFL	0x20	STA data failure limit Specifies the number of times a frame's data exchange may fail before CW is reset to CW_MIN. Note: A value of 0x0 is unsupported.
13:8	SRFL	0x20	STA RTS failure limit Specifies the number of times a frame's RTS exchange may fail before the CW is reset to CW_MIN. Note: A value of 0x0 is unsupported.
7:4	RES	0x0	Reserved
3:0	FRFL	0x4	Frame RTS failure limit Specifies the number of times a frame's RTS exchange may fail before the current transmission series is terminated. A frame's RTS exchange fails if RTS is enabled for the frame, but when the MAC sends the RTS on the air, no CTS is received. Note: A value of 0x0 is unsupported.

6.14.4 ChannelTime Settings (D_CHNTIME)

Offset: 0x181010C0 + (D < 2)

Access: Read/Write Cold Reset: 0x0 Warm Reset: Unaffected

Bit	Name	Description	
31:21	RES	Reserved	
20	CHANNEL_TIME	hannelTime enable	
	_EN	0 Disable ChannelTime function	
		1 Enable ChannelTime function	
19:0	DATA_CT_MMR	ChannelTime duration in µs	

6.14.5 Misc. DCU-Specific Settings (D_MISC)

Offset: 0x18101100 + (D < 2)Access: Read/Write

Cold Reset: See Field Descriptions

Warm Reset: Unaffected

Bit	Name	Reset	Descrip	tion
31:19	RES	0x0	Reserved	
18:17	DCU_ARB	0x0	DCU ar	biter lockout control
	_LOCKOUT_IF_EN		0	No lockout. Allows lower-priority DCUs to arbitrate for access to the PCU concurrently with this DCU.
			1	Intra-frame lockout only. Forces all lower-priority DCUs to defer arbitrating for access to the PCU while the current DCU is either arbitrating for access to the PCU or performing an intra-frame backoff.
			2	Global lockout. Forces all lower-priority DCUs to defer arbitrating for access to the PCU whenever: At least one of the QCUs that feed into the current DCU has
				a frame ready
				■ The current DCU is actively processing a frame (i.e., is not idle). This includes arbitrating for access to the PCU, performing an intra-frame or post-frame backoff, DMA'ing frame data to the PCU, or waiting for the PCU to complete the frame.
			3	Reserved
16	DCU_IS_BRN	0x0		use indication es whether the DCU is being used for beacons.
			0	DCU is being used for non-beacon frames only
			1	DCU is being used for beacon frames only
15:6	RES	0x0	Reserved	
5:0	DATA _BKOFF_THRESH	0x2	Backoff threshold setting Determines the backoff count at which the DCU will initiate arbitration for access to the PCU and commit to sending the frame.	

6.14.6 DCU-Global IFS Settings: SIFS Duration (D_GBL_IFS_SIFS)

Offset: 0x18101030 Access: Read/Write

Cold Reset: 640 (16 µs at 40 MHz)

Warm Reset: Unaffected

Bit	Name	Description	
31:16	RES	Reserved	
15:0	SIFS_DUR	SIFS duration in core clocks (40 MHz for legacy or HT20 mode, 80 MHz for HT40 mode)	

6.14.7 DCU-Global IFS Settings: Slot Duration (D_GBL_IFS_SLOT)

Offset: 0x18101070 Access: Read/Write

Cold Reset: 360 (9 µs at 40 MHz)

Warm Reset: Unaffected

Bit	Name	Description
31:16	RES	Reserved
15:0	SLOT_DUR	Slot duration in core clocks (40 MHz for legacy or HT20 mode, 80 MHz for HT40 mode)

DCU-Global IFS Settings: EIFS Duration (D_GBL_IFS_EIFS) 6.14.8

Offset: 0x181010B0 Access: Read/Write

Cold Reset: 3480 (87 µs at 40 MHz)

Warm Reset: Unaffected

Bit	Name	Description	
31:16	RES	Reserved	
15:0	EIFS_DUR	EIFS duration in core clocks (40 MHz for legacy or HT20 mode, 80 MHz for HT40 mode)	

6.14.9 DCU-Global IFS Settings: Misc. Parameters (D_GBL_IFS_MISC)

Offset: 0x181010F0 Access: Read/Write

Cold Reset: See Field Descriptions

Warm Reset: Unaffected

Bit	Name	Reset	Description	
31:29	RES	0x0	Reserved	
26:25	CHAN_SLOT _WIN_DUR	0x0	Slot transmission window length Specifies the number of core clocks after a slot boundary during which the MAC is permitted to send a frame. Specified in units of 8 core clocks, with the value 0x0 being special. If set to a value of 0x0 (the reset value), the MAC is permitted to send at any point in the slot.	
28	IGNORE _BACKOFF	0x0	Ignore back off Allows the DCU to ignore backoff as well as EIFS; it should be set during fast channel change to guarantee low latency and flush the Tx pipe.	
27	CHAN_SLOT _ALWAYS	0x0	Force transmission always on slot boundaries When bits [26:25] of this register are non-zero, the MAC transmits on slot boundaries as required by the 802.11 spec. When bits [26:25] are not 0x0 and this bit is non-zero, the MAC always transmits on slot boundaries.	
24	LFSR_SLICE	0x0	Random LFSR slice selection disable	
	_RANDOM_DIS		O Allow the IFS logic to randomly generate the LFSR slice select value (see bits [2:0] of this register).	
			Disable random LFSR slice selection and use the value of the LFSR slice select field (bits [2:0] of this register) instead	
23			AIFS counter reset policy (debug use only)	
	_UNCOND		0 Reset the AIFS counter only when PCU_RST_AIFS is asserted and the counter already has reached AIFS	
			1 Reset the AIFS counter unconditionally whenever PCU_RST_AIFS is asserted	
22	SIFS_RST	0x0	SIFS counter reset policy (debug use only)	
	_UNCOND		0 Reset the SIFS counter only when PCU_RST_SIFS is asserted and the counter already has reached SIFS	
			1 Reset the SIFS counter unconditionally whenever PCU_RST_SIFS is asserted	
21:3	RES	0x0	Reserved	
2:0	LFSR_SLICE_SEL	0x0	LFSR slice select Determines which slice of the internal LFSR will generate the random sequence used to determine backoff counts in the PCU's DCUs and scrambler seeds. This allows different STAs to contain different LFSR slice values (e.g., by using bits from the MAC address) to minimize random sequence correlations among STAs in the same BSS/IBSS. NOTE: This field affects the MAC only when the random LFSR slice selection disable bit (bit [24] of this register) is set. When random LFSR slice selection is enabled (the default), this field is ignored.	

6.14.10 DCU Tx Pause Control/Status (D_TXPSE)

Offset: 0x18101270 Cold Reset: See Field Descriptions

Warm Reset: Unaffected Access: Read/Write

Bit	Name	Reset	Description	
31:17	RES	0x0	Reserved	
16	TX_PAUSED	0x1	Tx pause status	
			Tx pause request has not yet taken effect, so some DCUs for which a transmission pause request has been issued using bits [9:0] of this register are still transmitting and have not paused.	
			All DCUs for which a transmission pause request has been issued via bits [9:0] of this register, if any, have paused their transmissions. Note that if no transmission pause request is pending (i.e., bits [9:0] of this register are all set to 0), then this Tx pause status bit will be set to one.	
15:10	RES	0x0	Reserved	
9:0	DCU_REG_TXPSE	0x0	Request that some subset of the DCUs pause transmission. For bit D of this field $(9 \ge D \ge 0)$:	
			0 Allow DCU <i>D</i> to continue to transmit normally	
			1 Request that DCU <i>D</i> pause transmission as soon as it is able	

6.14.11 DCU Transmission Slot Mask (D_TXSLOTMASK)

Offset: 0x181012F0 Access: Read/Write Cold Reset: 0x0

Warm Reset: Unaffected

NOTE: When bits [26:25] of the "DCU-Global" IFS Settings: Misc. Parameters (D_GBL_IFS_MISC)" register are non-zero, D_TXSLOTMASK controls the slots DCUs can start frame transmission on. The slot occurring coincident with SIFS elapsing is slot 0. Slot numbers increase thereafter, whether the channel was idle or busy during the slot. If bits [26:25] of D_GBL_IFS_MISC are zero, this register has no effect.

Bit	Descrip	Description					
31:16	Reserve	d					
15	Specifie	s whether transmission may start on slot numbers that are congruent to 15 (mod 16)					
	0	Transmission may start on such slots					
	1	Transmission may not start on such slots					
1	Specifie	s whether transmission may start on slot numbers that are congruent to 1 (mod 16)					
	0	Transmission may start on such slots					
	1	Transmission may not start on such slots					
0	Specifie	Specifies whether transmission may start on slot numbers that are congruent to 0 (mod 16)					
	0 Transmission may start on such slots						
	1	Transmission may not start on such slots					

6.15 Host Interface Registers

Table 6-9 summarizes the AR9331 Host Interface registers.

Table 6-9. Host Interface Registers

Offset	Name	Description	Page
0x181004000	HOST_INTF_RESET_CONTROL	Reset the Host Interface	page 139
0x18104018	HOST_INTF_TIMEOUT	Host Timeout	page 139
0x1810401C	HOST_INTF_EEPROM_CTRL	EEPROM Control	page 139
0x18104020	HOST_INTF_SREV	MAC Silicon Revision ID	page 139
0x18104028	HOST_INTF_INTR_SYNC_CAUSE	Synchronous Interrupt Cause	page 141
0x1810402C	HOST_INTF_INTR_SYNC_ENABLE	Synchronous Interrupt Enable	page 141
0x18104030	HOST_INTF_INTR_ASYNC_MASK	Asynchronous Interrupt Mask	page 142
0x18104034	HOST_INTF_INTR_SYNC_MASK	Synchronous Interrupt Mask	page 142
0x18104038	HOST_INTF_INTR_ASYNC_CAUSE	Asynchronous Interrupt Cause	page 142
0x1810403C	HOST_INTF_INTR_ASYNC_ENABLE	Asynchronous Interrupt Enable	page 142
0x18104048	HOST_INTF_GPIO_OUT	GPIO Output	page 143
0x1810404C	HOST_INTF_GPIO_IN	GPIO Input	page 143
0x18104050	HOST_INTF_GPIO_OE	GPIO Output Enable Bits	page 144
0x18104058	HOST_INTF_GPIO_INTR_POLAR	GPIO Interrupt Polarity	page 144
0x1810405C	HOST_INTF_GPIO_INPUT_VALUE	GPIO Input Enable and Value	page 145
0x18104060	HOST_INTF_GPIO_INPUT_MUX1	GPIO Input MUX1	page 146
0x18104064	HOST_INTF_GPIO_INPUT_MUX2	GPIO Input MUX2	page 146
0x18104068	HOST_INTF_GPIO_OUTPUT_MUX1	GPIO Output MUX1	page 147
0x1810406C	HOST_INTF_GPIO_OUTPUT_MUX2	GPIO Output MUX2	page 147
0x18104074	HOST_INTF_GPIO_INPUT_STATE	Input Values	page 148
0x18104084	HOST_INTF_EEPROM_STS	EEPROM Status	page 148
0x1810408C	HOST_INTF_RFSILENT	Host RF Silent	page 148
0x18104090	HOST_INTF_GPIO_PDPU	GPIO Pull-Up/Pull-Down	page 149
0x181040C0	HOST_INTF_INTR_PRIORITY_SYNC_CAUSE	Synchronous Priority Interrupt Cause	page 149
0x181040C4	HOST_INTF_INTR_PRIORITY_SYNC_ENABLE	Synchronous Priority Interrupt Enable	page 149
0x181040C8	HOST_INTF_INTR_PRIORITY_ASYNC_MASK	Asynchronous Priority Interrupt Mask	page 150
0x181040CC	HOST_INTF_INTR_PRIORITY_SYNC_MASK	Synchronous Priority Interrupt Mask	page 150
0x181040D0	HOST_INTF_INTR_PRIORITY _ASYNC_CAUSE	Asynchronous Priority Interrupt Cause	page 150
0x181040D4	HOST_INTF_INTR_PRIORITY _ASYNC_ENABLE	Asynchronous Priority Interrupt Enable	page 151

6.15.1 Reset the Host Interface (HOST_INTF_RESET_CONTROL)

Offset: 0x18104000 Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:9	RES	Reserved	
8	LOCAL_RESET	0	Normal host master interface
		1	Reserved
7:0	RES	Reserve	d

6.15.2 Host Timeout (HOST_INTF_TIMEOUT)

Offset: 0x18104018 Access: Read/Write Reset Value: 1000_1000

Bit	Name	Description	
31:16	AXI_TIMEOUT_VAL	AXI bus timeout counter for DMA access	
15:0	APB_TIMEOUT_VAL	APB bus timeout counter for register access	

EEPROM Control (HOST_INTF_EEPROM_CTRL)

Offset: 0x1810401C Access: Read/Write Reset Value: 0000_00FC

Bit	Name	Descrip	tion
31:26	RES	Reserve	d
25:10	PROTECT	EEPRON	M protect mask
9	IS_CORRUPT	EEPRO	M is corrupt
8	NOT_PRESENT	EEPRON	M not present
7:2	CLKDIV_RST_VAL	CLKDIV	Value for the APB EEPROM module
1	FORCE_RESET	0	Normal operation of the APB EEPROM module
		1	Hold the APB EEPROM module in reset
0	FAST_FLASH_MODE	0	Normal operation of the APB EEPROM module
		1	Reserved

6.15.4 MAC Silicon Revision ID (HOST_INTF_SREV)

Offset: 0x18104020 Access: Read-Only Reset Value: 0008_50FF

Bit	Name	Description
31:0	MAC_ID	MAC silicon revision ID

Table 6-13 describes signals capable of generating a system interrupt and lists their corresponding bits. The bits are the same for synchronous and asynchronous interrupts.

Table 6-13. System Interrupt Registers: Bit Descriptions

Bit	Name	Description
31:18	RES	Reserved
17	MAC_SLEEP_ACCESS	Software is trying to access a register within the MAC while it is asleep
16	MAC_ASLEEP	The MAC has gone to sleep
15	MAC_AWAKE	The MAC has become awake
14	PM_ACCESS	The AHB master is requesting a DMA transfer to the core while it is asleep
13	LOCAL_TIMEOUT	A local bus timeout has occurred
12:7	RES	Reserved
6	INVALID_ADDRESS _ACCESS	Invalid register access
5	MAC_TXC_CORRUPTION _FLAG_SYNC	Tx descriptor integrity flag
4	RES	Reserved
3	APB_TIMEOUT	No response from one of the AR9331 modules within the programmed timeout period during a register access
2	EEPROM_ILLEGAL _ACCESS	Software attempted to either access a protected area within the EEPROM, or access the EEPROM while it is busy or absent
1	MAC_IRQ	The MAC has requested an interrupt
0	RTC_IRQ	The RTC is in shutdown state

Synchronous Interrupt Cause (HOST_INTF_INTR_SYNC_CAUSE) 6.15.5

Offset: 0x18104028

Access: Read/Write-One-to-Clear

Reset Value: 0000_0000

Bit	Name	Description
31:0	DATA	Any bit set in this register indicates that the corresponding interrupt has been triggered in synchronous mode; for any bit to be to set in this register, the corresponding bit in the "Synchronous Interrupt Enable (HOST_INTF_INTR_SYNC_ENABLE)" register must also be set. See Table 6-13 for bit descriptions.

Synchronous Interrupt Enable (HOST_INTF_INTR_SYNC_ENABLE) 6.15.6

Offset: 0x1810402C Access: Read/Write Reset Value: 0000_0000

Bit	Name	Description
31:0	DATA	Setting any bit in this register allows the corresponding interrupt signal to set its corresponding bit in the "Synchronous Interrupt Cause (HOST_INTF_INTR_SYNC_CAUSE)" register. See Table 6-13 for bit descriptions.

6.15.7 Asynchronous Interrupt Mask (HOST_INTF_INTR_ASYNC_MASK)

Offset: 0x18104030 Access: Read/Write Reset Value: 0000_0000

Bit	Name	Description
31:0	DATA	Setting any bit in this register allows the corresponding interrupt signal to trigger a interrupt provided that the corresponding "Asynchronous Interrupt Cause (HOST_INTF_INTR_ASYNC_CAUSE)" register bit is set. Note that for this register bit to be set, the corresponding "Asynchronous Interrupt Enable (HOST_INTF_INTR_ASYNC_ENABLE)" register bit must also be set by software. See Table 6-13 for bit descriptions.

Synchronous Interrupt Mask (HOST_INTF_INTR_SYNC_MASK) 6.15.8

Offset: 0x18104034 Access: Read/Write Reset Value: 0000_0000

Bit	Name	Description
31:0	DATA	Setting any bit in this register allows the corresponding interrupt signal to trigger a interrupt provided that the corresponding "Synchronous Interrupt Cause (HOST_INTF_INTR_SYNC_CAUSE)" register bit is set. Note that for this register bit to be set, the corresponding "Synchronous Interrupt Enable (HOST_INTF_INTR_SYNC_ENABLE)" register bit must also be set by software. See Table 6-13 for bit descriptions.

Asynchronous Interrupt Cause (HOST_INTF_INTR_ASYNC_CAUSE) 6.15.9

Offset: 0x18104038 Access: Read-Only Reset Value: 0000_0000

Bit	Name	Description
31:0	DATA	Any bit set in this register indicates that the corresponding interrupt has been triggered in asynchronous mode. For any bit to be to set in this register, the corresponding bit in the "Asynchronous Interrupt Enable (HOST_INTF_INTR_ASYNC_ENABLE)" register must also be set. See Table 6-13 for bit descriptions.

6.15.10 Asynchronous Interrupt Enable (HOST_INTF_INTR_ASYNC_ENABLE)

Offset: 0x1810403C Access: Read/Write Reset Value: 0000_0002

Bit	Name	Description
31:0	DATA	Setting any bit in this register indicates that the corresponding interrupt has been triggered in asynchronous mode. For any bit to be to set in this register, the corresponding bit in the "Asynchronous Interrupt Enable (HOST_INTF_INTR_ASYNC_ENABLE)" register must also be set. See Table 6-13 for bit descriptions.

6.15.11 GPIO Output (HOST_INTF_GPIO_OUT)

Offset: 0x18104048 Access: Read/Write Reset Value: 0000_0000

Bit	Name	Description	
31:16	RES	Reserved	
15:12	OUT	Output value of GPIO12 to GPIO15, where bit 12 corresponds to GPIO12, used when the corresponding GPIO enable bits and GPIO output MUX registers are set correctly	
11	RES	Reserved	
10	OUT	Output value of GPIO10, used when the corresponding GPIO enable bits and GPIO output MUX registers are set correctly	
9:8	RES	Reserved	
7:0	OUT	Output value of GPIO0 to GPIO7, where bit [0] corresponds to GPIO0, used when the corresponding GPIO enable bits and GPIO output MUX registers are set correctly	

6.15.12 GPIO Input (HOST_INTF_GPIO_IN)

Offset: 0x1810404C Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:16	RES	Reserved	
15:12	IN	Input value of GPIO12 to GPIO15, where bit 12 corresponds to GPIO12, used when the corresponding GPIO enable bits and GPIO output MUX registers are set correctly	
11	RES	Reserved	
10:9	IN	Input value of GPI9 and GPIO10, where bit 9 corresponds to GPI9, used when the corresponding GPIO enable bits and GPIO output MUX registers are set correctly	
8	RES	Reserved	
7:0	IN	Input value of GPIO0 to GPIO7, where bit 0 corresponds to GPIO0, used when the corresponding GPIO enable bits and GPIO output MUX registers are set correctly	

6.15.13 Host GPIO Output Enable Bits (HOST_INTF_GPIO_OE)

Offset: 0x18104050 Access: Read/Write Reset Value: 0x0 **NOTE:** Each 2-bit field controls the drive mechanism for each GPIO (bits [1:0] correspond to GPIO0, bits [3:2] correspond to GPIO1, etc.) The mapping for this 2-bit field is:

0 = Never drive output
1 = Drive if output is low
2 = Drive if output is high
3 = Always drive output

Bit	NAME	Description	
31:24	DATA	Host GPIO output enable bits for GPIO12 to GPIO15	
23:22	RES	leserved	
21:20	DATA	Host GPIO output enable bits for GPIO10	
19:16	RES	Reserved	
15:0	DATA	Host GPIO output enable bits for GPIO0 to GPIO7, every two bits corresponds to each GPIO, bits[1:0] for GPIO0, bits[3:2] for GPIO1, etc.	

6.15.14 Host GPIO Interrupt Polarity (HOST_INTF_GPIO_INTR_POLAR)

Offset: 0x18104058 Access: Read/Write Reset Value: 0x0

Bit	NAME	Description		
31:16	RES	Reserve	rd	
15:12	DATA	Host GPIO interrupt polarity for GPIO12 to GPIO15, bit 12 corresponds to GPIO12		
		0	Active low	
		1	Active high	
11	RES	Reserved		
10:9	DATA	Host GPIO interrupt polarity for GPI9 and GPIO10, bit 9 corresponds to GPI9		
		0	Active low	
		1	Active high	
8	RES	Reserved		
DATA	DATA	Host GPIO interrupt polarity for GPIO0 to GPIO7, bit 0 corresponds to GPIO0		
		0	Active low	
		1	Active high	

6.15.15 GPIO Input Enable and Value (HOST_INTF_GPIO_INPUT_VALUE)

Offset: 0x1810405C Access: Read/Write Reset Value: 0x0

Bit	Name	Description			
31:22	RES	Reserved			
21	BT_PRIORITY_3_ENABLE	Default value of BT_PRIORITY_3 input			
20	BT_PRIORITY_3_VAL	0	Set BT_PRIORITY_2 to default value		
		1	Connect BT_PRIORITY_2 to GPIO input		
19	BT_PRIORITY_2_ENABLE	Default v	value of BT_PRIORITY_2 input		
18	BT_PRIORITY_2_VAL	0	JTAG is enabled; GPIO[4:0] is controlled by JTAG controller		
		1	JTAG is disabled; software must set this bit before using GPIO[4:0]		
17	DS_JTAG_DISABLE	0	JTAG enabled; GPIO[4:0] is controlled by JTAG controller		
		1	JTAG disabled; software must set this bit before using GPIO[4:0]		
16	RTC_RESET_OVRD	0	RTC reset controlled entirely by software		
	_ENABLE	1	RTC reset controllable through a GPIO pin and software		
15	RFSILENT_BB_L_ENABLE	0	Set RFSILENT_BB_L to default		
		1	Connect RFSILENT_BB_L to a GPIO input		
14:13	RES	Reserved			
12	BT_ACTIVE_ASYNC	0	Set BT_ACTIVE_ASYNC to default		
	_ENABLE	1	Connect BT_ACTIVE_ASYNC to a GPIO input		
11	BT_FREQUENCY_ASYNC	0	Set BT_FREQUENCY_ASYNC to default		
	_ENABLE	1	Connect BT_FREQUENCY_ASYNC to a GPIO input		
10	BT_PRIORITY_ASYNC	0	Set BT_PRIORTIY_ASYNC to default		
	_ENABLE	1	Connect BT_PRIORITY_ASYNC to a GPIO input		
9:8	RES	Reserved	i		
7	RFSILENT_BB_L_VAL	Default v	Default value of RFSILENT_BB_L input to the baseband		
6:5	RES	Reserved			
4	BT_ACTIVE_ASYNC_VAL	Default value of BT_ACTIVE_ASYNC input			
3	BT_FREQUENCY_ASYNC _VAL	Default value of BT_FREQUENCY_ASYNC input			
2	BT_PRIORITY_ASYNC _VAL	Default value of BT_PRIORITY_ASYNC input			
1:0	RES	Reserved	d		

6.15.16 GPIO Input MUX1 (HOST_INTF_GPIO_INPUT_MUX1)

Offset: 0x18104060 Access: Read/Write Reset Value: 0x0

NOTE: Functionality described in each 4-bit register field can be mapped to GPI010, GPI9, and GPIO [7:0].

For example, to select GPI9 to be used as BT_ACTIVE input, write 0x9 to bits [19:16], the SEL 4 bit field.

Bit	Name	Description
31:20	RES	Reserved
19:16	SEL_4	GPIO[sel_4] will connect to BT_ACTIVE input, if BT_ACTIVE_ENABLE is set
15:12	SEL_3	GPIO[sel_3] will connect to BT_FREQUENCY input, if BT_FREQUENCY_ENABLE is set
11:8	SEL_2	GPIO[sel_2] will connect to BT_PRIORITY input, if BT_PRIORITY_ENABLE is set
7:4	RES	Reserved
3:0	RST_TSF	GPIO[sel_0] will connect to RST_TSF input, if GPIO_RST_TSF_ENABLE is set. For example, if 5 is set to this SEL_0, GPIO[5] will be connected to RST_TSF input if GPIO_RST_TSF_ENABLE is set

6.15.17 GPIO Input MUX2 (HOST_INTF_GPIO_INPUT_MUX2)

Offset: 0x18104064 Access: Read/Write Reset Value: 0x0

NOTE: Functionality described in each 4-bit register field can be mapped to GPI010, GPI9, and GPIO [7:0].

For example, to select GPIOO to be used as BT_PRIORITY_2 input, write 0x0 to bits [15:12], the SEL_9 bit field.

Bit	Name	Description	
31:20	RES	Reserved	
19:16	SEL_10	GPIO[sel_10] will connect to BT_PRIORITY_3 input, if BT_PRIORITY_3_ENABLE is set.	
15:12	SEL_9	GPIO[sel_9] will connect to BT_PRIORITY_2 input, if BT_PRIORITY_2_ENABLE is set	
11:8	RES	Reserved	
7:4	SEL_7	GPIO[sel_7] will connect to RFSILENT_BB_L input, if RFSILENT_BB_L_ENABLE is set	
3:0	RES	Reserved	

Table 6-14 describes the output MUX setting for each GPIO. This table applies to HOST_INTF_GPIO_OUTPUT_MUX1, HOST_INTF_GPIO_OUTPUT_MUX2, and HOST_INTF_GPIO_OUTPUT_MUX3.

NOTE: Each of the GPIO pins controlled by these registers has 5 bits associated with it. Each GPIO can be configured to drive 1 of 32 output functions. See Table 6-14.

Table 6-14. Output MUX Values for Each GPIO; Set GPIO to:

Bit	Description	Bit	Description	Bit	Description
31	External LNA control	25:8	Reserved	3	MAC TX_FRAME
30:29	Reserved	7	Reserved	2	Reserved
28	RX_CLEAR_EXTENSION	6	MAC power LED	1	Reserved
27	BT_ANT	5	MAC network LED	0	The value set in the GPIO
26	MAC_WOW signal	4	WL_ACTIVE		output register

6.15.18 GPIO Output MUX1 (HOST_INTF_GPIO_OUTPUT_MUX1)

Offset: 0x18104068 Access: Read/Write Reset Value: 0x0 **NOTE:** See Table 6-14. For example, to select GPIO2 to be used as WL_ACTIVE output, write 0x4 to bits [14:10], the SEL_2 bit field.

Bit	Name	Description
31:30	RES	Reserved
29:25	SEL_5	GPIO_OUTPUT_MUX[5] for GPIO5
24:20	SEL_4	GPIO_OUTPUT_MUX[4] for GPIO4
19:15	SEL_3	GPIO_OUTPUT_MUX[3] for GPIO3
14:10	SEL_2	GPIO_OUTPUT_MUX[2] for GPIO2
9:5	SEL_1	GPIO_OUTPUT_MUX[1] for GPIO1
4:0	SEL_0	GPIO_OUTPUT_MUX[0] for GPIO0

6.15.19 GPIO Output MUX2 (HOST_INTF_GPIO_OUTPUT_MUX2)

Offset: 0x1810406C Access: Read/Write Reset Value: 0x0 **NOTE:** See Table 6-14. For example, to select GPIO7 to be used as External LNA control output, write 0x1F to bits [9:5], the SEL_7 bit field.

Bit	Name	Description
31:26	RES	Reserved
24:20	SEL_10	GPIO_OUTPUT_MUX[10] for GPIO10
19:10	RES	Reserved
9:5	SEL_7	GPIO_OUTPUT_MUX[7] for GPIO7
4:0	SEL_6	GPIO_OUTPUT_MUX[6] for GPIO6

6.15.20 GPIO Output MUX3 (HOST_INTF_GPIO_OUTPUT_MUX3)

Offset: 0x18104070 Access: Read/Write Reset Value: 0x0 See Table 6-14. For example, to select GPI013 to be used as MAC network LED output, write 0x5 to bits [9:5], the SEL_13 bit field.

Bit	Name	Description
31:20	RES	Reserved
19:15	SEL_15	GPIO_OUTPUT_MUX[15] for GPIO15
14:10	SEL_14	GPIO_OUTPUT_MUX[14] for GPIO14
9:5	SEL_13	GPIO_OUTPUT_MUX[13] for GPIO13
4:0	SEL_12	GPIO_OUTPUT_MUX[12] for GPIO12

6.15.21 Input Values (HOST_INTF_GPIO_INPUT_STATE)

Offset: 0x18104074 Access: Read-Only Reset Value: 0x0

Bit	Name	Description
31:8	RES	Reserved
7	BB_RADIO_XLNAON	Status of the external LNA control from the MAC
6	TX_FRAME	Status of the TX_FRAME from the MAC
5	RX_CLEAR_EXTERNAL	Status of the RX_CLEAR_EXTERNAL from the MAC
4	LED_POWER_EN	Status of the power LED from the MAC
3	LED_NETWORK_EN	Status of the network LED from the MAC
2:0	RES	Reserved

6.15.22 EEPROM Status and Read Data (HOST_INTF_EEPROM_STS)

Offset: 0x18104084 Access: Read-Only Reset Value: Undefined

Bit	Name	Description	
31:19	RES	Reserved	
18	MASK_ACCESS	Indicates the last software access to the EEPROM occurred to a protect area within the EEPROM and was therefore not forwarded to the EEPl	
17	BUSY_ACCESS	Indicates the last software access to the EEPROM occurred when it was busy and was therefore not forwarded to the EEPROM	
16	BUSY	0 EEPROM is idle	
		1 EEPROM is busy	
15:0	RD_DATA	Results of the last EEPROM read transfer	

6.15.23 RFSilent-Related Registers (HOST_INTF_RFSILENT)

Offset: 0x1810408C Access: Read/Write Reset Value: 0000_0000

Bit	Name	Description
31:3	RES	Reserved
2	RTC_RESET_INVERT	RTC reset invert This bit is only relevant if RTC reset override (bit [16]) in the "GPIO Input Enable and Value (HOST_INTF_GPIO_INPUT_VALUE)" register is set. If the RTC reset override bit is cleared, then the RTC reset is entirely controlled by software (bit [0] of the register at 0x7040). 0 A low in the corresponding GPIO input holds the RTC in reset;
		a high allows the RTC reset to be controlled by software A high in the corresponding GPIO input holds the RTC in reset; a low allows the RTC Reset to be controlled by software
1	INVERT	RFSilent polarity 0 Do not invert the RFSILENT_BB_L signal to the baseband 1 Invert the RFSILENT_BB_L signal to the baseband
0	FORCE	RFSILENT_FORCE signal

6.15.24 GPIO Pull-Up/Pull-Down (HOST_INTF_GPIO_PDPU)

Offset: 0x18104090 Access: Read/Write Reset Value: 0000_0001

NOTE: Each 2-bit field controls the drive mechanism for each GPIO (bits [1:0] correspond to GPI00, bits [3:2] correspond to GPI01, etc.) The mapping for this 2-bit field is:

■ 0 = No pull-up or pull-down

■ 1 = Pull-down ■ 2 = Pull-up ■ 3 = Reserved

Bit	Name	Description
31:24	INT	GPIO12 to GPIO15 pull-up or pull-down, bits [25:24] correspond to GPIO12
23:22	RES	Reserved
21:18	INT	GPI9 and GPIO10 pull-up or pull-down, bits [19:18] correspond to GPI9
17:16	RES	Reserved
15:0	INT	GPIO0 to GPIO 7 pull-up or pull-down

6.15.25 Synchronous Priority Interrupt Cause (HOST_INTF_INTR_PRIORITY_SYNC_CAUSE)

Offset: 0x181040C0 Access: Read/Write Reset Value: Undefined

Bit	Name	Description
31:3	RES	Reserved
2:0	DATA	Writing a 1 to any bit in this register clears the corresponding bit.
		■ Any bit set to 1 in this register indicates the interrupt has been triggered in synchronous mode
		■ Any bit set to 0 in this register indicates the corresponding bit in the "Synchronous Priority Interrupt Enable (HOST_INTF_INTR_PRIORITY_SYNC_ENABLE)" register must also be set by software
		Bit[0] Tx interrupt triggered
		Bit[1] Rx Low priority interrupt triggered
		Bit[2] Rx High priority interrupt triggered

6.15.26 Synchronous Priority Interrupt Enable (HOST_INTF_INTR_PRIORITY_SYNC_ENABLE)

Offset: 0x181040C4 Access: Read/Write Reset Value: 0x0

Atheros Communications, Inc. COMPANY CONFIDENTIAL

Bit	Name	Description		
31:3	RES	Reserved		
2:0	DATA	Writing a 1 to a bit in this register allows the interrupt signal to set its corresponding bit in the "Synchronous Priority Interrupt Cause (HOST_INTF_INTR_PRIORITY_SYNC_CAUSE)" register.		
		Bit[0] Tx interrupt enable		
		Bit[1] Rx low priority interrupt enable		
		Bit[2] Rx high priority interrupt enable		

6.15.27 Asynchronous Priority Interrupt Mask (HOST_INTF_INTR_PRIORITY_ASYNC_MASK)

Offset: 0x181040C8 Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:3	RES	Reserved	
2:0	DATA	ing a 1 to a bit in this register allows the corresponding interrupt signal to trigger a rupt provided that the corresponding "Asynchronous Priority Interrupt Cause ST_INTF_INTR_PRIORITY_ASYNC_CAUSE)" register bit is set (which ires the corresponding "Asynchronous Priority Interrupt Enable ST_INTF_INTR_PRIORITY_ASYNC_ENABLE)" bit to be set by software).	
		Bit[0] Tx interrupt mask	
		Bit[1] Rx low priority interrupt mask	
		Rx high priority interrupt mask	

6.15.28 Synchronous Priority Interrupt Mask (HOST_INTF_INTR_PRIORITY_SYNC_MASK)

Offset: 0x181040CC Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:3	RES	Reserved	
2:0	DATA	Writing a 1 to a bit in this register allows the corresponding interrupt signal to trigger a interrupt provided that the corresponding "Synchronous Priority Interrupt Cause (HOST_INTF_INTR_PRIORITY_SYNC_CAUSE)" register bit is set (which requires the corresponding "Synchronous Priority Interrupt Enable (HOST_INTF_INTR_PRIORITY_SYNC_ENABLE)" bit to be set by software.	
		Bit[0] Tx interrupt mask	
		Bit[1] Rx low priority interrupt mask	
		Bit[2] Rx high priority interrupt mask	

6.15.29 Asynchronous Priority Interrupt Cause (HOST_INTF_INTR_PRIORITY_ASYNC_CAUSE)

Offset: 0x181040D0 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:3	RES	Reserved

Bit	Name	Description		
2:0	DATA	triggered bit in the	Writing a 1 to a bit in this register indicates that the corresponding interrupt has been triggered in asynchronous mode. For any bit to be set in this register, the corresponding bit in the "Asynchronous Priority Interrupt Enable (HOST_INTF_INTR_PRIORITY_ASYNC_ENABLE)" register to be set by software.	
		Bit[0]	Tx interrupt triggered	
		Bit[1]	Rx low priority interrupt triggered	
		Bit[2]	Rx high priority interrupt triggered	

6.15.30 Asynchronous Priority Interrupt Enable (HOST_INTF_INTR_PRIORITY_ASYNC_ENABLE)

Offset: 0x181040D4 Access: Read/Write Reset Value: 0x0

Bit	Name	Description		
31:3	RES	Reserve	Reserved	
2:0	DATA	correspo	Writing a 1 to a bit in this register allows the corresponding interrupt signal to set its corresponding bit in the "Asynchronous Priority Interrupt Cause (HOST_INTF_INTR_PRIORITY_ASYNC_CAUSE)" register.	
		Bit[0]	Tx interrupt enable	
		Bit[1]	Rx low priority interrupt enable	
		Bit[2]	Rx high priority interrupt enable	

6.16 RTC Interface Registers

RTC registers occupy the offset range 0x18107000-0x18107FFC in the AR9331 address space. Within this address range, the 0x18107040–0x18107058 registers are always on and available for software access regardless of whether the RTC is asleep. Table 6-15 shows the mapping of these registers.

Table 6-15. RTC Interface Registers (Always On)

Offset	Name	Description	Page
0x1810703C	PLL_CONTROL_2	PLL Frequency Control Signals Register	page 152
0x18107040	RTC_RESET	RTC Reset and Force Sleep and Force Wakeup	page 152
0x18107044	RTC_STATUS	RTC Sleep Status	page 152
0x18107048	RTC_DERIVED	RTC Force Derived RTC and Bypass Derived RTC	page 153
0x1810704C	RTC_FORCE_WAKE	RTC Force Wake	page 153
0x18107050	RTC_INT_CAUSE	RTC Interrupt Cause	page 154
0x18107050	RTC_CAUSE_CLR	RTC Interrupt Cause Clear	page 154

Table 6-15. RTC Interface Registers (Always On) (continued)

Offset	Name	Description	Page
0x1810703C	PLL_CONTROL_2	PLL Frequency Control Signals Register	page 152
0x18107054	RTC_INT_ENABLE	RTC Interrupt Enable	page 155
0x18107058	RTC_INT_MASK	RTC Interrupt Mask	page 155

6.16.1 PLL Frequency Control Signals Register

Offset: 0x1810703C Access: Read/Write

Default: 0

Bit	Description
31:25	Reserved
24:19	DIVINT
18:14	REFDIV
13:0	DIVFRAC

6.16.1 RTC Reset and Force Sleep and Force Wakeup (RTC_RESET)

Offset: 0x18107040 Access: Read/Write

Default: 0

Bit	Description
31:1	Reserved
0	RTC reset (active low)

6.16.2 RTC Sleep Status (RTC_STATUS)

Offset: 0x18107044 Access: Read-Only Default: N/A

Bit	Description
31:6	Reserved
5	PLL_CHANGING signal from RTC
4	RTC cold reset (active high)
3	RTC in wakeup state
2	RTC in sleep state
1	RTC in on state
0	RTC in shutdown state

6.16.3 RTC Force Derived RTC and Bypass Derived RTC (RTC_DERIVED)

Offset: 0x18107048 Access: Read/Write

Default: 0

Bit	Description
31:2	Reserved
1	Force derived RTC
0	Bypass derived RTC

6.16.4 RTC Force Wake (RTC_FORCE_WAKE)

Offset: 0x1810704C Access: Read/Write

Default: 3

Bit	Description	
31:2	Reserve	d
1	0	Do not assert FORCE_WAKE on MAC interrupt
	1	Assert FORCE_WAKE on MAC interrupt
0	FORCE	

6.16.5 RTC Interrupt Cause (RTC_INT_CAUSE)

Offset: 0x18107050 Access: Read-Only

Default: 0

NOTE: The RTC Interrupt controller works the same way as the host interface interrupt controller. Each bit in this interrupt cause register pertains to an event as described.

Bit	Description
31:6	Reserved
5	PLL_CHANGING
4	Software access of an RTC register when it is not in the on state
3	RTC in wakeup state
2	RTC in sleep state
1	RTC in on state
0	RTC in shutdown state

6.16.6 RTC Interrupt Cause Clear (RTC_CAUSE_CLR)

Offset: 0x18107050 Access: Write-Only

Default: 0

NOTE: A write of 1 to any bit in this register clears that bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" register until the

corresponding event reoccurs.

Bit	Description
31:6	Reserved
5	Writing 1 to this bit clears the PLL_CHANGING interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
4	Writing 1 to this bit clears the software access of an RTC register interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
3	Writing 1 to this bit clears the RTC in wakeup state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
2	Writing 1 to this bit clears the RTC in sleep state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
1	Writing 1 to this bit clears the RTC in on state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.
0	Writing 1 to this bit clears the RTC in shutdown state interrupt from the "RTC Interrupt Cause (RTC_INT_CAUSE)" register.

6.16.7 RTC Interrupt Enable (RTC_INT_ENABLE)

Offset: 0x18107054 Access: Read/Write

Default: 0

NOTE: Writing a 1 to any bit in this register allows that bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" register to be set when the corresponding event occurs. Writing a 0 to any bit in this register automatically clears the corresponding bit in the interrupt cause register regardless of the corresponding event.

Bit	Description			
31:6	Reserve			
5 0 Clears the PLL_CHANGING bit in the "RTC Interrupt Cause (RTC_INT_C				
	1	Allows the PLL changing bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.		
4	0	Clears the software access of an RTC register bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".		
	1	Allows the software access of an RTC register bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.		
3 0 Clears the RTC in wakeup state bit in the "RTC Interrupt Cause (RTC_INT		Clears the RTC in wakeup state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".		
	1	Allows the RTC in wakeup state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.		
2 0 Clears the RTC in sleep state bit in the "RTC Interrupt Cause (RTC_INT_CA		Clears the RTC in sleep state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".		
	1	Allows the RTC in sleep state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.		
1	0	Clears the RTC in on state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".		
	1	Allows the RTC in on state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.		
0	0	Clears the RTC in shutdown state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)".		
	1	Allows the RTC in shutdown state bit in the "RTC Interrupt Cause (RTC_INT_CAUSE)" to be set when the corresponding event occurs.		

6.16.8 RTC Interrupt Mask (RTC_INT_MASK)

Offset: 0x18107058 Access: Read/Write

Default: 0

Writing a 1 to any bit in this register allows the corresponding event to generate an RTC

interrupt to the host interface which can in turn be programmed to generate a system interrupt. The corresponding bit in the "RTC Interrupt Enable (RTC_INT_ENABLE)" register must also be set.

Bit	Description
31:6	Reserved
5	Writing 1 to this bit allows the corresponding PLL_CHANGING event to generate an RTC interrupt to the host interface.
4	Writing 1 to this bit allows the corresponding software access of an RTC register event to generate an RTC interrupt to the host interface.
3	Writing 1 to this bit allows the corresponding RTC in wakeup state event to generate an RTC interrupt to the host interface.
2	Writing 1 to this bit allows the corresponding RTC in sleep state event to generate an RTC interrupt to the host interface.
1	Writing 1 to this bit allows the corresponding RTC in on state event to generate an RTC interrupt to the host interface.
0	Writing 1 to this bit allows the corresponding RTC in shutdown state event to generate an RTC interrupt to the host interface.

6.17 MAC PCU Registers

Table 6-16 shows the mapping of these registers.

Table 6-16. MAC PCU Registers

Address	Name	Description	Page
0x18108000	MAC_PCU_STA_ADDR_L32	STA Address Lower 32 Bits	page 159
0x18108004	MAC_PCU_STA_ADDR_U16	STA Address Upper 16 Bits	page 159
0x18108008	MAC_PCU_BSSID_L32	BSSID Lower 32 Bits	page 160
0x1810800C	MAC_PCU_BSSID_U16	BSSID Upper 16 Bits	page 160
0x18108010	MAC_PCU_BCN_RSSI_AVE	Beacon RSSI Average	page 160
0x18108014	MAC_PCU_ACK_CTS_TIMEOUT	ACK and CTS Timeout	page 160
0x18108018	MAC_PCU_BCN_RSSI_CTL	Beacon RSSI Control	page 161
0x1810801C	MAC_PCU_USEC_LATENCY	Millisecond Counter and Rx/Tx Latency	page 161
0x18108020	MAC_PCU_RESET_TSF	Reset TSF	page 161
0x18108038	MAC_PCU_MAX_CFP_DUR	Maximum CFP Duration	page 162
0x1810803C	MAC_PCU_RX_FILTER	Rx Filter	page 162
0x18108040	MAC_PCU_MCAST_FILTER_L32	Multicast Filter Mask Lower 32 Bits	page 163
0x18108044	MAC_PCU_MCAST_FILTER_U32	Multicast Filter Mask Upper 32 Bits	page 163
0x18108048	MAC_PCU_DIAG_SW	Diagnostic Switches	page 163
0x1810804C	MAC_PCU_TSF_L32	TSF Lower 32 Bits	page 164
0x18108050	MAC_PCU_TSF_U32	TSF Upper 32 Bits	page 164
0x1810805C	MAC_PCU_AES_MUTE_MASK_0	AES Mute Mask 0	page 164
0x18108060	MAC_PCU_AES_MUTE_MASK_1	AES Mute Mask 1	page 165
0x18108080	MAC_PCU_LAST_BEACON_TSF	Last Receive Beacon TSF	page 165
0x18108084	MAC_PCU_NAV	Current NAV	page 165
0x18108088	MAC_PCU_RTS_SUCCESS_CNT	Successful RTS Count	page 165
0x1810808C	MAC_PCU_RTS_FAIL_CNT	Failed RTS Count	page 165
0x18108090	MAC_PCU_ACK_FAIL_CNT	FAIL ACK Count	page 166
0x18108094	MAC_PCU_FCS_FAIL_CNT	Failed FCS Count	page 166
0x18108098	MAC_PCU_BEACON_CNT	Beacon Count	page 166
0x181080D4	MAC_PCU_SLP1	Sleep 1	page 166
0x181080D8	MAC_PCU_SLP2	Sleep 2	page 167
0x181080E0	MAC_PCU_ADDR1_MASK_L32	Address 1 Mask Lower 32 Bits	page 167
0x181080E4	MAC_PCU_ADDR1_MASK_U16	Address 1 Mask Upper 16 Bits	page 167
0x181080E8	MAC_PCU_TPC	Tx Power Control	page 167
0x181080EC	MAC_PCU_TX_FRAME_CNT	Tx Frame Counter	page 168
0x181080F0	MAC_PCU_RX_FRAME_CNT	Rx Frame Counter	page 168
0x181080F4	MAC_PCU_RX_CLEAR_CNT	Rx Clear Counter	page 168

Table 6-16. MAC PCU Registers (continued)

Address	Name	Description	Page
0x181080F8	MAC_PCU_CYCLE_CNT	Cycle Counter	page 168
0x181080FC	MAC_PCU_QUIET_TIME_1	Quiet Time 1	page 168
0x18108100	MAC_PCU_QUIET_TIME_2	Quiet Time 2	page 169
0x18108108	MAC_PCU_QOS_NO_ACK	QoS NoACK	page 169
0x1810810C	MAC_PCU_PHY_ERROR_MASK	PHY Error Mask	page 170
0x18108114	MAC_PCU_RXBUF	Rx Buffer	page 170
0x18108118	MAC_PCU_MIC_QOS_CONTROL	QoS Control	page 171
0x1810811C	MAC_PCU_MIC_QOS_SELECT	Michael QoS Select	page 171
0x18108120	MAC_PCU_MISC_MODE	Miscellaneous Mode	page 172
0x18108124	MAC_PCU_FILTER_OFDM_CNT	Filtered OFDM Counter	page 173
0x18108128	MAC_PCU_FILTER_CCK_CNT	Filtered CCK Counter	page 173
0x1810812C	MAC_PCU_PHY_ERR_CNT_1	PHY Error Counter 1	page 173
0x18108130	MAC_PCU_PHY_ERR_CNT_1_MASK	PHY Error Counter 1 Mask	page 174
0x18108134	MAC_PCU_PHY_ERR_CNT_2	PHY Error Counter 2	page 174
0x18108138	MAC_PCU_PHY_ERR_CNT_2_MASK	PHY Error Counter 2 Mask	page 174
0x1810813C	MAC_PCU_TSF_THRESHOLD	TSF Threshold	page 175
0x18108144	MAC_PCU_PHY_ERROR_EIFS_MASK	PHY Error EIFS Mask	page 175
0x18108168	MAC_PCU_PHY_ERR_CNT_3	PHY Error Counter 3	page 175
0x1810816C	MAC_PCU_PHY_ERR_CNT_3_MASK	PHY Error Counter 3 Mask	page 175
0x18108170	MAC_PCU_BLUETOOTH_MODE	Bluetooth Mode	page 176
0x18108174	MAC_PCU_BLUETOOTH_WL_WEIGHTS0	Bluetooth WL_LEVEL	page 176
0x1810817C	MAC_PCU_BLUETOOTH_MODE2	MAC PCU Bluetooth Mode 2	page 177
0x18108180	MAC_PCU_GENERIC_TIMERS2	MAC PCU Generic Timers 2	page 178
0x181081C0	MAC_PCU_GENERIC_TIMERS2_MODE	MAC PCU Generic Timers Mode 2	page 178
0x181081C4	MAC_PCU_BLUETOOTH_WL_WEIGHTS1	MAC PCU BT Coexistence WLAN Weights	page 178
0x181081C8	MAC_PCU_BLUETOOTH_TSF_BT_ACTIVE	MAC PCU BT Coexistence TSF Snapshot for BT_ACTIVE	page 178
0x181081CC	MAC_PCU_BLUETOOTH_TSF_BT_PRIORITY	MAC PCU BT Coexistence TSF Snapshot for BT_PRIORITY	page 179
0x181081D0	MAC_PCU_TXSIFS	SIFS, Tx Latency and ACK Shift	page 179
0x181081D4	MAC_PCU_BLUETOOTH_MODE3	MAC PCU BlueTooth mode 3	page 179
0x181081EC	MAC_PCU_TXOP_X	TXOP for Non-QoS Frames	page 180
0x181081F0	MAC_PCU_TXOP_0_3	TXOP for TID 0 to 3	page 180
0x181081F4	MAC_PCU_TXOP_4_7	TXOP for TID 4 to 7	page 180
0x181081F8	MAC_PCU_TXOP_8_11	TXOP for TID 8 to 11	page 181
0x181081FC	MAC_PCU_TXOP_12_15	TXOP for TID 0 to 3	page 181
0x18108200	MAC_PCU_GENERIC_TIMERS[0:15]	Generic Timers	page 181

Table 6-16. MAC PCU Registers (continued)

Address	Name	Description	Page
0x18108240	MAC_PCU_GENERIC_TIMERS_MODE	Generic Timers Mode	page 182
0x18108244	MAC_PCU_SLP32_MODE	32 KHz Sleep Mode	page 182
0x18108248	MAC_PCU_SLP32_WAKE	32 KHz Sleep Wake	page 182
0x1810824C	MAC_PCU_SLP32_INC	32 KHz Sleep Increment	page 183
0x18108250	MAC_PCU_SLP_MIB1	Sleep MIB Sleep Count	page 183
0x18108254	MAC_PCU_SLP_MIB2	Sleep MIB Cycle Count	page 183
0x18108258	MAC_PCU_SLP_MIB3	Sleep MIB Control Status	page 183
0x1810825C	MAC_PCU_WOW1	MAC PCU Wake-on-Wireless (WoW) 1	page 184
0x18108260	MAC_PCU_WOW2	MAC PCU WOW 2	page 184
0x18108270	MAC_PCU_WOW3_BEACON_FAIL	MAC PCU WoW Beacon Fail Enable	page 184
0x18108274	MAC_PCU_WOW3_BEACON	MAC PCU WoW Beacon Fail Timeout	page 185
0x18108278	MAC_PCU_WOW3_KEEP_ALIVE	MAC PCU WoW Keep Alive Timeout	page 185
0x1810827C	MAC_PCU_WOW_KA	MAC PCU WoW Automatic Keep Alive Disable	page 185
0x1810828C	WOW_EXACT	Exact Length and Offset Requirement Flag for WoW Patterns	page 185
0x18108294	PCU_WOW4	WoW Offset 1	page 186
0x18108298	PCU_WOW5	WoW Offset 2	page 186
0x18108318	MAC_PCU_20_40_MODE	Global Mode	page 186
0x18108328	MAC_PCU_RX_CLEAR_DIFF_CNT	Difference RX_CLEAR Counter	page 186
0x18108330	MAC_PCU_BA_BAR_CONTROL	Control Registers for Block BA Control Fields	page 187
0x18108334	MAC_PCU_LEGACY_PLCP_SPOOF	Legacy PLCP Spoof	page 187
0x18108338	MAC_PCU_PHY_ERROR_MASK_CONT	PHY Error Mask and EIFS Mask	page 187
0x1810833C	MAC_PCU_TX_TIMER	Tx Timer	page 188
0x1810834C	MAC_PCU_WOW6	MAC PCU WoW 6	page 188
0x1810835C	MAC_PCU_WOW5	MAC PCU WoW 5	page 188
0x18108360	MAC_PCU_WOW_LENGTH1	Length of Pattern Match for Pattern 0	page 188
0x18108364	MAC_PCU_WOW_LENGTH2	Length of Pattern Match for Pattern 1	page 189
0x18108368	WOW_PATTERN_MATCH_LESS _THAN_256_BYTES	Enable Control for Pattern Match Feature of WOW	page 189
0x18108370	MAC_PCU_WOW4	MAC PCU WoW 4	page 189
0x18108374	WOW2_EXACT	Exact Length and Offset Requirement Flag for WoW Patterns	page 189
0x18108378	PCU_WOW6	WoW Offset 2	page 190
0x1810837C	PCU_WOW7	WoW Offset 3	page 190
0x18108380	MAC_PCU_WOW_LENGTH3	Length of Pattern Match for Pattern 0	page 190
0x18108384	MAC_PCU_WOW_LENGTH4	Length of Pattern Match for Pattern 0	page 190
0x181083A4	MAC_PCU_TID_TO_AC	TID Value Access Category	page 191
0x181083A8	MAC_PCU_HP_QUEUE	High Priority Queue Control	page 191

Table 6-16. MAC PCU Registers (continued)

Address	Name	Description	Page
0x181083AC	MAC_PCU_BLUETOOTH_BT_WEIGHTS0	MAC PCU BT Coexistence BT Weights 0	page 192
0x181083B0	MAC_PCU_BLUETOOTH_BT_WEIGHTS1	MAC PCU BT Coexistence BT Weights 1	page 192
0x181083B4	MAC_PCU_BLUETOOTH_BT_WEIGHTS2	MAC PCU BT Coexistence BT Weights 2	page 192
0x181083B8	MAC_PCU_BLUETOOTH_BT_WEIGHTS3	MAC PCU BT Coexistence BT Weights 3	page 192
0x181083C8	MAC_PCU_HW_BCN_PROC1	Hardware Beacon Processing 1	page 193
0x181083CC	MAC_PCU_HW_BCN_PROC2	Hardware Beacon Processing 2	page 193
0x18108800	MAC_PCU_KEY_CACHE[0:1023]	Key Cache Lower Half	page 194

6.17.1 STA Address Lower 32 Bits (MAC_PCU_STA_ADDR_L32)

Offset: 0x18108000

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	ADDR_31_0	Lower 32 bits of STA MAC address (PCU_STA_ADDR[31:0])

6.17.2 STA Address Upper 16 Bits (MAC_PCU_STA_ADDR_U16)

Offset: 0x18108004 This register contains the lower 32 bits of the Access: Hardware = Read-Only STA address.

Access: Hardware = Read-Only Software = Read/Write

Software = Read/Write Reset Value: 0x2000_0000

		- · · ·
Bit	Name	Description
31	REG_ADHOC_MCAST_SEARCH	Enables the key cache search for ad hoc MCAST packets
30	PCU_CBCIV_ENDIAN	Endianess of IV in CBC nonce
29	REG_PRESERVE_SEQNUM	Stops PCU from replacing the sequence number; must be set to 1
28	PCU_KSRCH_MODE	Search key cache first. If not, match use offset for $IV = 0, 1, 2, 3$.
		■ If KSRCH_MODE = 0 and IV = 1, 2, or 3, then do not search
		■ If KSRCH_MODE = 0 and IV = 0, then search
27	REG_CRPT_MIC_ENABLE	Enables the checking and insertion of MIC in TKIP
26	RES	Reserved
25	PCU_BSRATE_11B	802.11b base rate
		0 Use all rates
		1 Use only 1–2 Mbps
24	PCU_ACKCTS_6MB	Use 6 Mbps rate for ACK and CTS
23:21	RES	Reserved
20	PCU_PCF	Set if associated AP is PCF capable
19	PCU_NO_KEYSEARCH	Disable key search
18	PCU_PSMODE	Set if STA is in power-save mode
17	PCU_ADHOC	Set if STA is in an ad hoc network
16	PCU_AP	Set if STA is an AP
15:0	PCU_STA_ADDR[47:32]	Upper 16 bits of STA MAC address

6.17.3 BSSID Lower 32 Bits (MAC_PCU_BSSID_L32)

Offset: 0x18108008 This register contains the lower 32 bits of the

Access: Hardware = Read-Only BSS identification information.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PCU_BSSID[31:0]	Lower 32 bits of BSSID

6.17.4 BSSID Upper 16 Bits (MAC_PCU_BSSID_U16)

Offset: 0x1810800C This register contains the upper 32 bits of the

Access: Hardware = Read-Only BSS identification information.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:17	RES	Reserved
26:16	PCU_AID	Association ID
15:0	PCU_BSSID[47:32]	Upper 16 bits of BSSID

6.17.5 Beacon RSSI Average (MAC_PCU_BCN_RSSI_AVE)

Offset: 0x18108010

Access: Hardware = Read/Write Software = Read-Only

Reset Value: 0x800

Bit	Name	Description
31:12	RES	Reserved
11:0	REG_BCN_RSSI_AVE	Holds the average RSSI with 1/16 dB resolution. The RSSI is averaged over multiple beacons which matched our BSSID. AVE_VALUE is 12 bits with 4 bits below the normal 8 bits. These lowest 4 bits provide for a resolution of 1/16 dB. The averaging function is depends on the BCN_RSSI_WEIGHT; determines the ratio of weight given to the current RSSI value compared to the average accumulated value.

6.17.6 ACK and CTS Timeout (MAC_PCU_ACK_CTS_TIMEOUT)

Offset: 0x18108014

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:30	RES	Reserved
29:16	PCU_CTS_TIMEOUT	Timeout while waiting for CTS (in cycles)
15:14	RES	Reserved
13:0	PCU_ACK_TIMEOUT	Timeout while waiting for ACK (in cycles)

6.17.7 Beacon RSSI Control (MAC_PCU_BCN_RSSI_CTL)

Offset: 0x18108018

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:30	RES	Reserved
29	REG_BCN_RSSI_RST_ STROBE	The BCN_RSSI_RESET clears "BCN_RSSI_AVE" to aid in changing channels
28:24	REG_BCN_RSSI_WEIGHT	Used to calculate "BCN_RSSI_AVE"
23:16	RES	Reserved
15:8	PCU_BCN_MISS_THR	Threshold at which the beacon miss interrupt asserts. Because the beacon miss counter increments at TBTT, it increments to 1 before the first beacon.
7:0	PCU_RSSI_THR	The threshold at which the beacon low RSSI interrupt is asserted when the average RSSI ("BCN_RSSI_AVE") below this level

6.17.8 Ms Counter and Rx/Tx Latency (MAC_PCU_USEC_LATENCY)

Offset: 0x1810801C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:29	RES	Reserved
28:23	PCU_RXDELAY	Baseband Rx latency to start of SIGNAL (in µs)
22:14	PCU_TXDELAY	Baseband Tx latency to start of timestamp in beacon frame (in µs)
13:0	RES	Reserved

6.17.9 Reset TSF (MAC_PCU_RESET_TSF)

Offset: 0x18108020 Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:26	RES	Reserved
25	ONE_SHOT	Setting this bit causes the TSF2 to reset. This register clears immediately after reset.
24	ONE_SHOT	Setting this bit causes the TSF to reset. This register clears immediately after reset.
23:0	RES	Reserved

Controls beacon operation by the PCU.

6.17.10 Maximum CFP Duration (MAC_PCU_MAX_CFP_DUR)

Offset: 0x18108038

Access:Hardware = Read-Only Software = Read/Write

This register contains the maximum time for a

Reset Value: 0x0

Bit	Name	Description
31:28	RES	Reserved
27	USEC_FRAC _DENOMINATOR[27:24]	See description for the MAC_PCU_USEC_LATENCY register bit USEC
23:20	RES	Reserved
16:16	USEC_FRAC _DENOMINATOR[19:16]	See description for the MAC_PCU_USEC_LATENCY register bit USEC
15:0	VALUE[15:0]	Maximum contention free period duration (in μs)

6.17.11 Rx Filter (MAC_PCU_RX_FILTER)

Offset: 0x1810803C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

This register determines Rx frame filtering.

NOTE: If any bit is set, the corresponding packet types pass the filter and DMA. All filter conditions except the promiscuous setting rely on the no early PHY error and protocol version being checked to ensure it is version 0.

Bit	Name	Description
31:19	RES	Reserved
18	MGMT_ACTION_MCAST	Enable receive of multicast frames for management action frames
17	HW_BCN_PROC _ENABLE	If set, the beacon frame with matching BSSID is filtered per hardware beacon processing logic. See the HW_BCN_PROC register.
16	RST_DLMTR_CNT _DISABLE	Clearing this bit resets the ST_DLMTR_CNT to 0 when RXSM.STATE leaves the START_DELIMITER state.
15	MCAST_BCAST_ALL	Enables receipt of all multicast and broadcast frames
14	PS_POLL	Enables receipt of PS-POLL
13:10	RES	Reserved
9	MY_BEACON	Retrieves any beacon frame with matching SSID
8	RES	Reserved
7	PROBE_REQ	Probe request enable; enables reception of all probe request frames
6	RES	Reserved
5	PROMISCUOUS	Promiscuous Rx enable; enables reception of all frames, including errors
4	BEACON	Beacon frame enable; enables reception of beacon frames.
3	CONTROL	Control frame enable; enables reception of control frames
2	BROADCAST	Broadcast frame enable; enables reception of non beacon broadcast frames that originate from the BSS whose ID matches BSSID
1	MULTICAST	Multicast frame enable; enables reception of multicast frames that match the multicast filter
0	UNICAST	Unicast frame enable; enables reception of unicast (directed) frames that match the STA address

6.17.12 Multicast Filter Mask Lower 32 Bits (MAC_PCU_MCAST_FILTER_L32)

Offset: 0x18108040

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description	
31:0	PCU_MCAST_MASK	Multicast filter mask low. Lower 32 bits of multicast filter mask.	

6.17.13 Multicast Filter Mask Upper 32 Bits (MAC_PCU_MCAST_FILTER_U32)

Offset: 0x18108044

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PCU_MCAST_MASK	Multicast filter mask high. Upper 32 bits of multicast filter mask.

6.17.14 Diagnostic Switches (MAC_PCU_DIAG_SW)

Offset: 0x18108048

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

Controls the operation of the PCU, including enabling/disabling acknowledgements, CTS, transmission, reception, encryption, loopback, FCS, channel information, and scrambler seeds.

Bit	Name	Description	
31:30	RES	Reserved	
29	RX_CLEAR_EXT_LOW	Force the RX_CLEAR_EXT signal to appear to the MAC as being low	
28	RX_CLEAR_CTL_LOW	Force the RX_CLEAR_CTL signal to appear to the MAC as being low	
27	RES	Reserved	
26	SATURATE_CYCLE_CNT	The saturate cycle count bit, if set, causes the "Cycle Counter (MAC_PCU_CYCLE_CNT)" register to saturate instead of shifting to the right by 1 every time the count reaches 0xFFFFFFFF. This saturate condition also holds the RX_CLEAR, RX_FRAME, and TX_FRAME counts.	
25	FORCE_RX_ABORT	Force Rx abort bit in conjunction with Rx block aids quick channel change to shut down Rx. The force Rx abort bit kills with the Rx_abort any frame currently transferring between the MAC and baseband. while the RX block bit prevents any new frames from getting started.	
24:23	RES	Reserved	
22	CHAN_IDLE_HIGH	Force channel idle high	
21	IGNORE_NAV	Ignore virtual carrier sense (NAV)	
20	RX_CLEAR_HIGH	Force RX_CLEAR high	
19:18	RES	Reserved	
17	ACCEPT_NON_V0	Enable or disable protocol field	
16:7	RES	Reserved	
6	LOOP_BACK	Enable or disable Tx data loopback	
5	HALT_RX	Enable or disable reception	

Bit	Name	Description	
4	NO_DECRYPT	Enable or disable decryption	
3	NO_ENCRYPT	Enable or disable encryption	
2	NO_CTS	Enable or disable CTS generation	
1	NO_ACK	Enable or disable acknowledgement generation for all frames	
0	PCU_INVALKEY_NOACK	Enable or disable acknowledgement when a valid key is not found for the received frames in the key cache.	

6.17.15 TSF Lower 32 Bits (MAC_PCU_TSF_L32)

Offset: 0x1810804C

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0xFFFFFFF

Bit	Name	Description
31:0	VALUE	The timestamp value in μs
		Writes to this register do not cause the TSF to change. Rather, the value is held in a temporary staging area until this register is written, at which point both the lower and upper parts of the TSF are loaded.
		A read result of $0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$

6.17.16 TSF Upper 32 Bits (MAC_PCU_TSF_U32)

Offset: 0x18108050

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0xFFFFFFF

Bit	Name	Description
31:0	VALUE	The timestamp value in µs

6.17.17 AES Mute Mask O (MAC_PCU_AES_MUTE_MASK_O)

Offset: 0x1810805C

Access: Hardware = Read-Only Software = Read/Write Reset Value: See Field Description

Bit	Name	Reset	Description
31:16	QOS_MUTEMASK	0xFFFF	AES mute mask for TID field
15:0	FC_MUTEMASK	0x478F	AES mute mask for frame control field

6.17.18 AES Mute Mask 1 (MAC_PCU_AES_MUTE_MASK_1)

Offset: 0x18108060

Access: Hardware = Read-Only Software = Read/Write Reset Value: See Field Description

Bit	Name	Reset	Description
31:16	FC_MGMT	0xE7FF	AES mute mask for management frame control field
15:0	SEQ_MUTEMASK	0x000F	AES mute mask for sequence number field

6.17.19 Last Rx Beacon TSF (MAC_PCU_LAST_BEACON_TSF)

Offset: 0x18108080

Access: Hardware = Write-only Software = Read-Only

Reset Value: 0x0

This threshold register indicates the minimum amount of data required before initiating a

transmission.

Bit	Name	Description
31:0	LAST_TSTP	Beacon timestamp. Lower 32 bits of timestamp of the last beacon received.

6.17.20 Current NAV (MAC_PCU_NAV)

Offset: 0x18108084

Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description	
31:26	RES	Reserved	
25:0	CS_NAV	Current NAV value (in µs)	

6.17.21 Successful RTS Count (MAC_PCU_RTS_SUCCESS_CNT)

Offset: 0x18108088

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of successful RTS exchanges. The counter stops at 0xFFFF. After a read, automatically resets to 0.

Bit	Name	Description	
31:16	RES	Reserved	
15:0	RTS_OK	RTS/CTS exchange success counter	

6.17.22 Failed RTS Count (MAC_PCU_RTS_FAIL_CNT)

Offset: 0x1810808C Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed RTS exchanges. The counter stops at 0xFFFF. After a read, this register is automatically reset to 0.

Bit	Name	Description	
31:16	RES	Reserved	
15:0	RTS_FAIL	RTS/CTS exchange failure counter	

6.17.23 FAIL ACK Count (MAC_PCU_ACK_FAIL_CNT)

Offset: 0x18108090 Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed acknowledgements. The counter stops at 0xFFFF. After a read, this register is

automatically reset to 0.

Bit	Name	Description
31:16	RES	Reserved
15:0	ACK_FAIL	DATA/ACK failure counter

6.17.24 Failed FCS Count (MAC_PCU_FCS_FAIL_CNT)

Offset: 0x18108094

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of failed frame check sequences. The counter stops at 0xFFFF. After a read, this register is automatically reset

to 0.

Bit	Name	Description
31:16	RES	Reserved
15:0	FCS_FAIL	FCS failure counter

6.17.25 Beacon Count (MAC_PCU_BEACON_CNT)

Offset: 0x18108098

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x0

This register counts the number of valid beacon frames received. The counter stops at 0xFFFF. After a read, automatically resets to 0.

Bit	Name	Description
31:16	RES	Reserved
15:0	BEACONCNT	Valid beacon counter

6.17.26 Sleep 1 (MAC_PCU_SLP1)

Offset: 0x181080D4

Access: Hardware = Read/Write Software = Read-Only

Reset Value: 0x0

The Sleep 1 register in conjunction with the "Sleep 2 (MAC_PCU_SLP2)" register, controls when the AR9331 should wake when waiting for AP Rx traffic. Sleep registers are only used when the AR9331 is in STA mode.

Bit	Name	Reset	Description
31:21	CAB_TIMEOUT	0x5	Time in 1/8 TU the PCU waits for CAB after receiving the beacon or the previous CAB; insures that if no CAB is received after the beacon or if a long gap occurs between CABs, CAB powersave state returns to idle.
20	RES	0x0	Reserved
19	ASSUME_DTIM	0x0	A mode bit which indicates whether to assume a beacon was missed when the SLP_BEACON_TIMEOUT occurs with no received beacons, in which case is assumes the DTIM was missed, and waits for CAB.
18:0	RES	0x0	Reserved

6.17.27 Sleep 2 (MAC_PCU_SLP2)

Offset: 0x181080D8

Access: Hardware = Read/Write

Software = Read-Only

Reset Value: 0x2

Bit	Name	Description
31:21		Time in TU that the PCU waits for a beacon after waking up. If this time expires, the PCU woke due to SLP_NEXT_DTIM, and SLP_ASSUME_DTIM is active, then it assumes the beacon was missed and goes directly to watching for CAB. Otherwise when this time expires, the beacon powersave state returns to idle.
20:0	RES	Reserved

6.17.28 Address 1 Mask Lower 32 Bits (MAC_PCU_ADDR1_MASK_L32)

Offset: 0x181080E0 Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0xFFFFFFF

This STA register provides multiple BSSID support when the AR9331 is in AP mode.

Bit	Name	Description
31:0	STA_MASK_L	STA address mask lower 32-bit register. Provides multiple BSSID support.

6.17.29 Address 1 Mask Upper 16 Bits (MAC_PCU_ADDR1_MASK_U16)

Offset: 0x181080E4 Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0xFFFF

This STA register provides multiple BSSID support when the AR9331 is in AP mode.

Bit	Name	Description
31:16	RES	Reserved
15:0	STA_MASK_L	STA address mask upper 16-bit register. Provides multiple BSSID support.

6.17.30 Tx Power Control (MAC_PCU_TPC)

Offset: 0x181080E8

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x3F

The 6-bit Tx power control sent from the MAC to the baseband is typically controlled using the Tx descriptor field. But self-generated response frames such as ACK, CTS, and chirp that do not have a Tx descriptor use the values in the Tx power control register instead.

Bit	Name	Description
31:30	RES	Reserved
29:24	RPT_PWR	Tx power control for self-generated action/NoACK frame
23:22	RES	Reserved
21:16	CHIRP_PWR	Tx power control for chirp
15:14	RES	Reserved
13:8	CTS_PWR	Tx power control for CTS
7:6	RES	Reserved
5:0	ACK_PWR	Tx power control for ACK

6.17.31 Tx Frame Counter (MAC_PCU_TX_FRAME_CNT)

Offset: 0x181080EC The Tx frame counter counts the number of Access: Hardware = Read/Write cycles the TX_FRAME signal is active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	TX_FRAME_CNT	Counts the number of cycles the TX_FRAME signal is active

6.17.32 Rx Frame Counter (MAC_PCU_RX_FRAME_CNT)

Offset: 0x181080F0 The receive frame counter counts the number Access: Hardware = Read/Write of cycles the RX_FRAME signal is active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	RX_FRAME_CNT	Counts the number of cycles the RX_FRAME signal is active

6.17.33 Rx Clear Counter (MAC_PCU_RX_CLEAR_CNT)

Offset: 0x181080F4 The receive clear counter counts the number of

Access: Hardware = Read/Write cycles the RX_CLEAR signal is not active.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	RX_CLEAR_CNT	Counts the number of cycles the RX_CLEAR signal is low

6.17.34 Cycle Counter (MAC_PCU_CYCLE_CNT)

Offset: 0x181080F8 The cycle counter counts the number of clock

Access: Hardware = Read/Write cycles.

Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	CYCLE_CNT	Counts the number of clock cycles

6.17.35 Quiet Time 1 (MAC_PCU_QUIET_TIME_1)

Offset: 0x181080FC The Quiet Time registers implement the quiet Access: Hardware = Read-Only time function specified in the proposed 802.11h

Software = Read/Write extension supporting radar detection.

Reset Value: 0x0

Bit	Name	Description
31:18	RES	Reserved
17	QUIET_ACK_CTS_ENABLE	If set, then the MAC sends an ACK or CTS in response to a received frame
16:0	RES	Reserved

6.17.36 Quiet Time 2 (MAC_PCU_QUIET_TIME_2)

Offset: 0x18108100

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

The Quiet Time registers implement the quiet time function specified in the proposed 802.11h extension supporting radar detection.

NOTE: QUIET_ENABLE is implemented as GENERIC_TIMER_ENABLE and NEXT_QUIET as GENERIC_TIMER_NEXT. QUIET_PERIOD is implemented as GENERIC_TIMER_PERIOD.

- 0 = NEXT_QUIET = TSF[31:0]
- 1 = QUIET_PERIOD
- 2 = QUIET_DURATION (Chip remains awake during QUIET_DURATION)

Bit	Name	Description
31:16	QUIET_DURATION	The length of time in TUs (TU = $1024 \mu s$) that the chip is required to be quiet
15:0	RES	Reserved

6.17.37 QoS NoACK (MAC_PCU_QOS_NO_ACK)

Offset: 0x18108108

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x52

This register provides a mechanism to locate the NoACK information in the QoS field and determine which encoding means NoACK.

Bit	Name	Description		
31:9	RES	Reserved		
8:7	NOACK_BYTE_OFFSET	Number of bytes from the byte after end of the header of a data packet to the byte location where NoACK information is stored. (The end of the header is at byte offset 25 for 3-address packets and 31 for 4-address packets.)		
6:4	NOACK_BIT_OFFSET	Offsets from the byte where the NoACK information should be stored; offset can range from 0 to 6 only		
3:0	NOACK_2_BIT_VALUE	These values are of a two bit field that indicate NoACK		
	S	NOACK_2_BIT_VALUE	Encoding Matching NoACK	
		xxx1	00	
		xx1x	01	
		x1xx	10	
		1xxx	11	

6.17.38 PHY Error Mask (MAC_PCU_PHY_ERROR_MASK)

Offset: 0x1810810C Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x2

NOTE: Provides the ability to choose which PHY errors from the baseband to filter. The error number offsets into this register. If the mask value at the offset is 0, this error filters and does not show up on the Rx queue.

Bit	Name	Description
31	ERROR CCK RESTART	CCK restart error
30	ERROR CCK SERVICE	CCK service error
29:28	RES	Reserved
27	ERROR CCK RATE_ILLEGAL	CCK illegal rate error
26	ERROR CCK HEADER_CRC	CCK CRC header error
25	ERROR CCK TIMING	False detection for CCK
24	RES	Reserved
23	ERROR OFDM RESTART	OFDM restart error
22	ERROR OFDM SERVICE	OFDM service error
21	ERROR OFDM POWER_DROP	OFDM power drop error
20	ERROR OFDM LENGTH_ILLEGAL	OFDM illegal length error
19	ERROR OFDM RATE_ILLEGAL	OFDM illegal rate error
18	ERROR OFDM SIGNAL_PARITY	OFDM signal parity error
17	ERROR OFDM TIMING	False detection for OFDM
16:8	RES	Reserved
7	ERROR TX_INTERRUPT_RX	Transmit interrupt
6	ERROR ABORT	Abort error
5	ERROR RADAR_DETECT	Radar detect error
4	ERROR PANIC	Panic error
3:1	RES	Reserved
0	ERROR TRANSMIT_UNDERRUN	Transmit underrun error

6.17.39 Rx Buffer (MAC_PCU_RXBUF)

Offset: 0x18108114

Access: Hardware = Read-Only Software = Read/Write Reset Value: See Field Description

Bit	Name	Reset	Description
31:12	RES	0x0	Reserved
11	REG_RD _ENABLE	0x0	When reading MAC_PCU_BUF with this bit set, hardware returns the contents of the receive buffer.
10:0	HIGH_PRIORITY _THRSHD	0x7FF	When number of valid entries in the receive buffer is larger than this threshold, the host interface logic gives the higher priority to receive side to prevent receive buffer overflow.

6.17.40 QoS Control (MAC_PCU_MIC_QOS_CONTROL)

Offset: 0x18108118

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0xAA

Bit	Name	Description
31:17	RES	Reserved
16	MIC_QOS_ENABLE	Enable MIC QoS control
		0 Disable hardware Michael
		1 Enable hardware Michael
15:14	MIC_QOS_CONTROL [7]	MIC QoS control [7]. See options for "MIC_QOS_CONTROL [0]".
13:12	MIC_QOS_CONTROL [6]	MIC QoS control [6]. See options for "MIC_QOS_CONTROL [0]".
11:10	MIC_QOS_CONTROL [5]	MIC QoS control [5]. See options for "MIC_QOS_CONTROL [0]".
9:8	MIC_QOS_CONTROL [4]	MIC QoS control [4]. See options for "MIC_QOS_CONTROL [0]".
7:6	MIC_QOS_CONTROL [3]	MIC QoS control [3]. See options for "MIC_QOS_CONTROL [0]".
5:4	MIC_QOS_CONTROL [2]	MIC QoS control [2]. See options for "MIC_QOS_CONTROL [0]".
3:2	MIC_QOS_CONTROL [1]	MIC QoS control [1]. See options for "MIC_QOS_CONTROL [0]".
1:0	MIC_QOS_CONTROL [0]	MIC QoS control [0]
		0 Use 0 when calculating Michael
		1 Use 1 when calculating Michael
		2 Use MIC_QOS_SELECT when calculating Michael
		3 Use inverse of MIC_QOS_SELECT when calculating Michael

6.17.41 Michael QoS Select (MAC_PCU_MIC_QOS_SELECT)

Offset: 0x1810811C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x3210

Bit	Name	Description
31:28	MIC_QOS_SELECT [7]	MIC QoS select [7]. Select the OOS TID bit when calculating Michael.
27:24	MIC_QOS_SELECT [6]	MIC QoS select [6]. Select the OOS TID bit when calculating Michael.
23:20	MIC_QOS_SELECT [5]	MIC QoS select [5]. Select the OOS TID bit when calculating Michael.
19:16	MIC_QOS_SELECT [4]	MIC QoS select [4]. Select the OOS TID bit when calculating Michael.
15:12	MIC_QOS_SELECT [3]	MIC QoS select [3]. Select the OOS TID bit when calculating Michael.
11:8	MIC_QOS_SELECT [2]	MIC QoS select [2]. Select the OOS TID bit when calculating Michael.
7:4	MIC_QOS_SELECT [1]	MIC QoS select [1]. Select the OOS TID bit when calculating Michael.
3:0	MIC_QOS_SELECT [0]	MIC QoS select [0]. Select the OOS TID bit when calculating Michael.

6.17.42 Miscellaneous Mode (MAC_PCU_MISC_MODE)

Offset: 0x18108120

Access: Hardware = Read-Only Software = Read/Write Reset Value: See Field Description

Bit	Name	Reset	Description
31:29	RES	0x0	Reserved
28	ALWAYS_PERFORM KEY_SEARCH	0x0	If this bit is set, key search is performed for every frame in an aggregate. If this bit is cleared, key search is only performed for the first frame of an aggregate. Unless the transmitter address is different between the frames in an aggregate. This bit has no effect on non-aggregate frame packets.
27	SEL_EVM	0x1	If the SEL_EVM bit is set, the evm field of the Rx descriptor status contains the EVM data received from the baseband. If this bit is cleared, the evm field of the Rx descriptor status contains 3 bytes of Legacy PLCP, 2 service bytes, and 6 bytes of HP PLCP.
26	CLEAR_BA_VALID	0x0	If the CLEAR_BA_VALID bit is set, the state of the block ACK storage is invalidated.
25:22	RES	0x0	Reserved
21	TBTT_PROTECT	0x1	If the TBTT_PROTECT bit is set, then the time from TBTT to 20 μ s after TBTT is protected from transmit. Turn this off in ad hoc mode or if this MAC is used in the AP.
20	BT_ANT_PREVENTS _RX	0x1	Prevents Rx of new frames when the BT has control over the antenna, primarily to simplify verification. Even when the antenna is switched over to the BT device, if the WLAN receive frame RSSI is strong it may still be received although attenuated significantly. Setting this bit will prevent this frame from entering the Rx path.
19	RES	0x0	Reserved
18	FORCE_QUIET_ COLLISION	0x0	If the FORCE_QUIET_COLLISION bit is set, the PCU thinks that it is in quiet collision period, kills any transmit frame in progress, and prevents any new frame from starting.
17:13	RES	0x0	Reserved
12	TXOP_TBTT_LIMIT_ ENABLE	0x0	If this limit is set, then logic to limit the value of the duration to fit the time remaining in TXOP and time remaining until TBTT is turned on. This logic will also filter frames, which will exceed TXOP.
11:5	RES	0x0	Reserved
4	CCK_SIFS_MODE	0x0	If the CCK_SIFS_MODE is set, the chip assumes that it is using 802.11g mode where SIFS is set to $10~\mu s$ and non-CCK frames must add 6 to SIFS to make it CCK frames. This bit is needed in the duration calculation, which also needs the SIFS_TIME register.
3	TX_ADD_TSF	0x0	If the TX_ADD_TSF bit is set, the TSF in the transmit packet will be added to the internal TSF value for transmit beacons and prob_response frames.
2	MIC_NEW_ LOCATION_ENABLE	0x0	If MIC_NEW_LOCATION_ENABLE is set, the Tx Michael Key is assumed to be co-located in the same entry that the Rx Michael key is located.
1	RES	0x0	Reserved
0	BSSID_MATCH _FORCE	0x0	If the BSSID_MATCH_FORCE bit is set, all logic based on matching the BSSID thinks that the BSSID matches.

6.17.43 Filtered OFDM Counter (MAC_PCU_FILTER_OFDM_CNT)

Offset: 0x18108124 The filtered OFDM counters use the MIB

Access: Hardware = Read/Write control signals.
Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	RES	Reserved
23:0	FILTOFDM_CNT	Counts the OFDM frames that were filtered using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.

6.17.44 Filtered CCK Counter (MAC_PCU_Filter_CCK_CNT)

Offset: 0x18108128

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	RES	Reserved
23:0	FILTCCK_CNT	Counts the CCK frames that were filtered using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.

6.17.45 PHY Error Counter 1 (MAC_PCU_PHY_ERR_CNT_1)

Offset: 0x1810812C

Access: Hardware = Read/Write

Software = Read/Write

Reset Value: 0x0

The PHY error counters count any PHY error matching the respective mask. The bits of 32-bit

masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to provide flexibility in counting. For example, if setting the mask bits to 0xFF0000FF, then all PHY errors from 0–7 and 24–31 are counted.

Bit	Name	Description
31:24	RES	Reserved
23:0	PHY_ERROR_CNT1	Counts any PHY error1 using MIB control signals. The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle. Counter saturates at the highest value and is writable. If the upper two counter bits are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.

6.17.46 PHY Error Counter 1 Mask (MAC_PCU_PHY_ERR_CNT_1_MASK)

Offset: 0x18108130

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PHY_ERROR_CNT_MASK1	Counts any error that matches the PHY error1 mask. The values of any 32-bit masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to allow counting flexibility (e.g., setting the mask to 0xFF0000FF means all PHY errors from 0:7 and 24:31 are counted).

6.17.47 PHY Error Counter 2 (MAC_PCU_PHY_ERR_CNT_2)

Offset: 0x18108134

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
23:0	PHY_ERROR_CNT	Counts any error that matches the PHY error2 mask.
		The values of any 32-bit masks correspond to the first 32 encoded values of the error. Setting multiple bits in the mask provides an ORing function to allow counting flexibility (e.g., setting the mask to 0xFF0000FF means all PHY errors from 0:7 and 24:31 are counted).
31:24	RES	Reserved

6.17.48 PHY Error Counter 2 Mask (MAC_PCU_PHY_ERR_CNT_2_MASK)

Offset: 0x18108138

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PHY_ERROR_CNT_MASK2	Counts any PHY error2 using MIB control signals.
		The MIB freeze register holds all the values of these registers, and MIB zeros out all the values of these registers. PIB MIB forces incrementation of all registers in each cycle.
		This counter saturates at the highest value and is writable. If the upper two bits of these counters are b11, PCU_MIB_THRESHOLD is asserted and an interrupt generated.

6.17.49 TSF Threshold (MAC_PCU_TSF_THRESHOLD)

Offset: 0x1810813C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0xFFFF

Bit	Name	Description	
15:0	TSF_THRESHOLD	Asserts the PCU_TSF_OUT_OF_RANGE_INTER if the corrected receive TSF in a beacon is different from the internal TSF by more than this threshold.	
31:16	RES	Reserved	

6.17.50 PHY Error EIFS Mask (MAC_PCU_PHY_ERROR_EIFS_MASK)

Offset: 0x18108144

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description	
31:0	VALUE	This mask provides the ability to choose which PHY errors from the baseband cause EIFS delay. The error number is used as an offset into this mask. If the mask value at the offset is 1, then this error will not cause EIFS delay.	

6.17.51 PHY Error Counter 3 (MAC_PCU_PHY_ERR_CNT_3)

Offset: 0x18108168

Access: Hardware = Read-Only

Software = Read/Write

Reset Value: 0x0

Bit	Name Description	
23:0	PHY_ERROR_CNT3	Count of PHY errors that pass the PHY_ERR_CNT_3_MASK filter
31:24	RES	Reserved

6.17.52 PHY Error Counter 3 Mask (MAC_PCU_PHY_ERR_CNT_3_MASK)

Offset: 0x1810816C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	PHY_ERROR_CNT_ MASK3	Mask of the PHY error number allowed to be counted

6.17.53 Bluetooth Mode (MAC_PCU_BLUETOOTH_MODE)

Offset: 0x18108170 Access: Read/Write

Reset Value: See Field Description

Bit	Name	Reset	Description
31:24	FIRST_SLOT_TIME	0x18	Time from the rising edge of BT_ACTIVE to the time in μ s when BT_PRIORITY is sampled as the Tx/Rx and BT_FREQ are sampled.
23:18	PRIORITY_TIME	0x12	Used in the slotted mode (BT_MODE = $0x2$) to indicate the time in μ s from the rising edge or BT_ACTIVE to when BT_PRIORITY can be sampled to indicate priority
17	WL_ACTIVE _POLARITY	0x0	When this bit is high, WL_ACTIVE is active low. When this bit is low, WL_ACTIVE is active high.
16:13	QCU_THRESH	0x3	Indicates which QCUs should be considered high priority. Any QCU number ≥ QCU_THRESH is treated as high priority
12	QUIET	0x0	Causes a quiet collision on Tx if the BT device has higher priority
11:10	BT_MODE	0x3	 ■ If BT_MODE is 0x0, the device is in legacy RX_CLEAR mode (2-wire mode) ■ If BT_MODE is 0x1, the device is in untimed mode (3-wire mode) ■ If BT_MODE is 0x2, the device is in slotted mode (4-wire mode) ■ If BT_MODE is 0x3, the device does not support BT coexistence
9	TX_FRAME _EXTEND	0x0	Extends the RX_CLEAR so that as soon as TX_FRAME is asserted at the MAC the RX_CLEAR will drop
8	TX_STATE _EXTEND	0x0	Extends RX_CLEAR as long as TXSM is transmitting or waiting for a response
7:0	TIME_EXTEND	0x0	Extends RX_CLEAR after frame Tx or Rx so that bursts are protected. The value is in μs .

6.17.54 Bluetooth WL_LEVEL (MAC_PCU_BLUETOOTH_WL_WEIGHTSO)

Offset: 0x18108174 Access: Read/Write Reset Value: 0x33332210

Bit	Name	Description	
31:0	VALUE	Creates a level for every WLAN input condition	

6.17.55 MAC PCU Bluetooth Mode 2 (MAC_PCU_BLUETOOTH_MODE2)

Offset: 0x1810817C Access: Read/Write

Reset Value: See Field Description

Bit	Name	Reset	Description		
31	PHY_ERR_BT _COLL_ENABLE	0x0	If set to 1,the MAC reports a new PHY error, ERROR_BT_COLLISION (64) to RXS 11[15:8] instead of originally received PHY error if BT high priority traffic is in progress simultaneously		
30	INTERRUPT _ENABLE	0x0	If set to 1, a BT_ACTIVE_RISING/FALLING or BT_PRIORITY_RISING/FALLING interrupt can be generated		
29:28	TSF_BT _PRIORITY_CTRL	0x0	0 TSF_BT_PRIORITY does not latch 1 TSF_BT_PRIORITY latches TSF at 0->1 of BT_PRIORITY 2 TSF_BT_PRIORITY latches TSF at 1->0 of BT_PRIORITY 3 TSF_BT_PRIORITY latches TSF at 1<->0 of BT_PRIORITY		
27:26	TSF_BT_ACTIVE _CTRL	0x0	0 TSF_BT_ACTIVE does not latch 1 TSF_BT_ACTIVE latches TSF at 0->1 of BT_ACTIVE 2 TSF_BT_ACTIVE latches TSF at 1->0 of BT_ACTIVE 3 TSF_BT_ACTIVE latches TSF at 1<->0 of BT_ACTIVE		
25	RX_DISCARD _EXTEND	0x0	If set to 1 for 3-wire/4-wire, WL_ACTIVE goes low if received frame is discarded because the filter condition is not passed		
24	WL_TXRX _SEPARATE	0x0	If set to 1 for 3-wire/4-wire, the weight table WLAN parameter divides into WLAN Tx-only and Rx-only. Otherwise, RX_CLEAR_MOD, which does not distinguish Tx from Rx, is used for the WLAN parameter of weight tables. This mode supports concurrent Tx/Rx for WLAN and BT.		
23:22	WL_ACTIVE _MODE	0x0	0 RX_CLEAR_MOD signal is output as WL_ACTIVE 1 The WLAN awake signal is output as WL_ACTIVE 2 The WLAN Tx-in-progress signal is output as WL_ACTIVE		
			3 (2- and 3-wire modes) The WLAN Rx-in-progress signal is output as WL_ACTIVE. RX_CLEAR_MOD is a modified RX_CLEAR including TX_FRAME, TX_STATE, and RX_CLEAR extension.		
21	QUIET_2_WIRE	0x0	If set to 1 for 2-wire mode and if BT weight is higher than WLAN weight, ongoing WLAN Tx stops immediately due to quiet collision. If BT_ANT_PREVENTS_RX is set together with this bit, ongoing WLAN Rx stops immediately even for 2-wire mode.		
20	DISABLE_BT _ANT	0x0	If set high, then BT_ANT signal going from MAC to baseband keeps low, allowing the baseband to do Tx/Rx although BT has high priority. Otherwise, BT_ANT signal keeps its original value as decided by BT_MODE and priority comparison.		
19	PROTECT_BT_AF TER_WAKEUP	0x0	If set high, ongoing BT traffic is protected until falling edge of current BT_ACTIVE. Otherwise, ongoing BT traffic can be stomped by WLAN traffic due to priority inversion.		
18	RES	0x0	Reserved		
17	SLEEP_ALLOW_ BT_ACCESS	0x1	If set high, the WL_ACTIVE and BT_ANT deassert while WLAN device is in sleep, allowing BT to access the channel without WLAN interference. If set low, the WL_ACTIVE and BT_ANT keep the previous value while WLAN device is in sleep, blocking BT traffic based on the previous value. Applies to only slotted mode and unslotted mode.		
16	HOLD_RX _CLEAR	0x0	If set high, the WL_ACTIVE and BT_ANT decision is held for the time that BT_ACTIVE is asserted. If HOLD_RX_CLEAR is low, the WL_ACTIVE and BT_ANT decision is made before every slot boundary. Applies only to the slotted mode.		

Bit	Name	Reset	Description
15:8	BCN_MISS_CNT	0x0	This read-only bit gives the count of consecutive missed beacons
7:0	BCN_MISS _THRESH		If > 1, compared to BCN_MISS_CNT. If < BCN_MISS_CNT, the MAC switches BT_ANT to listen for a beacon until it is received or a timeout occurs. If a beacon timeout occurs, BT_ANT resumes normal behavior until the MAC is waiting for a beacon. If BT_BCN_MISS_THRESH = 0 then the logic is disabled. Applies to both slotted and unslotted modes.

6.17.56 MAC PCU Generic Timers 2 (MAC_PCU_GENERIC_TIMERS2)

Offset: 0x18108180 Access: Read/Write Reset Value: Undefined

Bit	Name	Description	
31:0	DATA	MAC_PCU_GENERIC_TIMERS	

6.17.57 MAC PCU Generic Timers Mode 2 (MAC_PCU_GENERIC_TIMERS2_MODE)

Offset: 0x181081C0

Access: See Field Description Reset Value: Undefined

Bit	Name	Access	Description
31:11	RES	RO	Reserved
10:8	OVERFLOW_INDEX	RO	Overflow index
7:0	ENABLE	R/W	Enable

6.17.58 MAC PCU BT Coexistence WLAN Weights (MAC_PCU_BLUETOOTH_WL_WEIGHTS1)

Offset: 0x181081C4 Access: Read/Write Reset Value: 0x33332210

Bit	Name	Description
31:0	VALUE	Creates a level for every WLAN input condition

6.17.59 MAC PCU BT Coexistence TSF Snapshot for BT_ACTIVE (MAC_PCU_BLUETOOTH_TSF_BT_ACTIVE)

Offset: 0x181081C8 Access: Read-Only Reset Value: 0x0

Bit	Name	Description
31:0	VALUE	Latches TSF at rising/falling/both edges of BT_ACTIVE by control of TSF_BT_ACTIVE_CTRL of the "MAC PCU Bluetooth Mode 2 (MAC_PCU_BLUETOOTH_MODE2)" register.

6.17.60 MAC PCU BT Coexistence TSF Snapshot for BT_PRIORITY (MAC_PCU_BLUETOOTH_TSF_BT_PRIORITY)

Offset: 0x181081CC Access: Read-Only Reset Value: 0x0

Bit	Name	Description
31:0	VALUE	Latches TSF at rising/falling/both edges of BT high priority traffic by control of TSF_BT_PRIORITY_CTRL of the "MAC PCU Bluetooth Mode 2 (MAC_PCU_BLUETOOTH_MODE2)" register

6.17.61 SIFS, Tx Latency and ACK Shift (MAC_PCU_TXSIFS)

Offset: 0x181081D0

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description		
31:15	RES	Reserved		
14:12	ACK_SHIFT	ACK_SHIFT is used to generate the ACK_TIME, which is used to generate the ACK_SIFS_TIME. The ACK_TIME table in the hardware assumes a channel width of 2.5 MHz. This value should be 3 for CCK rates.		
		0 2.5 MHz		
		1	5 MHz	
11:8	TX_LATENCY	TX_LATENCY is the latency in µs from TX_FRAME being asserted by the MAC to when the energy of the frame is on the air. This value is used to decrease the time to TBTT and time remaining in TXOP in the calculation to determine quiet collision.		
7:0	SIFS_TIME	For exam	SIFS_TIME is the number of μs in SIFS. For example, in 802.11a, SIFS_TIME would be set to 16. This value is used to determine quiet collision and filtering due to TBTT and TXOP limits.	

6.17.62 MAC PCU Bluetooth Mode 3 (MAC_PCU_BLUETOOTH_MODE3)

Offset: 0x181081D4 Access: Read/Write Reset Value: 0x0

Bit	Name	Descripti	on
31:21	RES	Reserved	
20	AGC_SATURATION_CNT _ENABLE	Enable M.	AC_PCU_AGC_SATURATION_CNT0/1/2
19:16	ALLOW_CONCURRENT	Used in sl	otted mode (BT_MODE == 0x2)
	_ACCESS	Bit [19]	Indicates where BT_ANT is parked in case concurrent access is allowed. Software can choose the value based on previous statistics like PER/RSSI. ■ 0x0 is in WLAN device ■ 0x1 is in BT device
		Bit [18]	If set to 0x1, BT_ANT is parked at the value of bit [19] in case concurrent access is allowed. Otherwise, BT_ANT is parked at the device whose weight is higher
		Bit [17]	If set to 0x1, WL Tx is concurrently allowed with BT Rx
		Bit [16]	If set to 0x1, WL Tx is concurrently allowed with BT Tx

Bit	Name	Description
15:8	WL_QC_TIME	WL_QC_TIME (Quiet Collision Time) is used in the slotted mode (BT_MODE = $0x2$) to indicate the time in μs from FIRST_SLOT_TIME to when quiet collision occurs internally in order to stop in-progress WLAN Tx/Rx .
7:0	WL_ACTIVE_TIME	WL_ACTIVE_TIME is used in the slotted mode (BT_MODE = 0x2) to indicate the time in μs from FIRST_SLOT_TIME to when WL_ACTIVE is determined based on priority/Tx/Rx information and then WL_ACTIVE is asserted if WLAN weight \geq BT weight.

6.17.63 TXOP for Non-QoS Frames (MAC_PCU_TXOP_X)

Offset: 0x181081EC

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:8	RES	Reserved
7:0	SIFS_TIME	TXOP in units of 32 μ s. A TXOP value exists for each QoS TID value. When a new burst starts, the TID is used to select one of the 16 TXOP values. This TXOP decrements until the end of the burst to make sure that the packets are not sent out by the time TXOP expires. This register is used for legacy non QoS frames.

6.17.64 TXOP for TID 0 to 3 (MAC_PCU_TXOP_0_3)

Offset: 0x181081F0

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	VALUE_3	Value in units of 32 μs
23:16	VALUE_2	Value in units of 32 μs
15:8	VALUE_1	Value in units of 32 μs
7:0	VALUE_0	Value in units of 32 μs

6.17.65 TXOP for TID 4 to 7 (MAC_PCU_TXOP_4_7)

Offset: 0x181081F4

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	VALUE_7	Value in units of 32 μs
23:16	VALUE_6	Value in units of 32 μs
15:8	VALUE_5	Value in units of 32 μs
7:0	VALUE_4	Value in units of 32 μs

6.17.66 TXOP for TID 8 to 11 (MAC_PCU_TXOP_8_11)

Offset: 0x181081F8

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	VALUE_11	Value in units of 32 μs
23:16	VALUE_10	Value in units of 32 μs
15:8	VALUE_9	Value in units of 32 μs
7:0	VALUE_8	Value in units of 32 μs

6.17.67 TXOP for TID 0 to 3 (MAC_PCU_TXOP_12_15)

Offset: 0x181081FC

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:24	VALUE_15	Value in units of 32 μs
23:16	VALUE_14	Value in units of 32 μs
15:8	VALUE_13	Value in units of 32 μs
7:0	VALUE_12	Value in units of 32 μs

6.17.68 Generic Timers (MAC_PCU_GENERIC_TIMERS[0:15])

Offset: 0x18108200

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Address	Default	Description
0x8200- 0x821C	0x0	GENERIC_TIMER_NEXT
0x8220- 0x823C	0x0	GENERIC_TIMER_PERIOD

NOTE: GENERIC TIMER 0, unlike other generic timers, does not wake the MAC before timer expiration and its overflow mechanism does not generate an interrupt. Instead, it silently adds this period repeatedly until the next timer advances past the TSF. Thus when MAC wakes after sleeping for multiple TBTTs, the TGBTT does not assert repeatedly or cause the beacon miss count to jump.

Generic Timer	Function
0	TBTT
1	DMA beacon alert
2	SW beacon alert
3	Reserved
4	NEXT_TIM
5	NEXT_DTIM
6	Quiet time trigger
7	No dedicated function

6.17.69 Generic Timers Mode (MAC_PCU_GENERIC_TIMERS_MODE)

Offset: 0x18108240

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x00100000

Bit	Name	Description
31:11	THRESH	Number of μs that generate a threshold interrupt if exceeded in TSF comparison
10:8	OVERFLOW_INDEX	Indicates the last generic timer that overflowed
7:0	ENABLE	Timer enable

6.17.70 32 KHz Sleep Mode (MAC_PCU_SLP32_MODE)

Offset: 0x18108244

Access: Hardware = Read-Only Software = Read/Write Reset Value: See Field Description

Bit	Name	Reset	Description
31:23	RES	0x0	Reserved
22	DISABLE_32KHZ	0x0	Indicates the 32 KHz clock is not used to control the TSF, but the MAC clock increments the TSF. Only used on AP class devices that do not go to sleep.
21	TSF_WRITE_STATUS	0x1	The TSF write status
20	ENABLE	0x1	When set, indicates that the TSF should be allowed to increment on its own
19:0	HALF_CLK_LATENCY	0xF424	Time in μs from the detection of the falling edge of the 32 KHz clk to the rising edge of the 32 KHz clk

6.17.71 32 KHz Sleep Wake (MAC_PCU_SLP32_WAKE)

Offset: 0x18108248

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x800

Bit	Name	Description
31:16	RES	Reserved
15:0	XTL_TIME	Time in μs before a generic timer should expire that the wake signal asserts to the crystal wake logic. Add an extra 31 μs due to 32 KHz clock resolution.

6.17.72 32 KHz Sleep Increment (MAC_PCU_SLP32_INC)

Offset: 0x1810824C

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x1E848

Bit	Name	Description	
31:20	RES	Reserved	
19:0	TSF_INC	-	

6.17.73 Sleep MIB Sleep Count (MAC_PCU_SLP_MIB1)

Offset: 0x18108250

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	SLEEP_CNT	Counts the number of 32 KHz clock cycles that the MAC has been asleep

6.17.74 Sleep MIB Cycle Count (MAC_PCU_SLP_MIB2)

Offset: 0x18108254

Access:Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	CYCLE_CNT	Counts the absolute number of 32KHz clock cycles. When CYCLE_CNT bit 31 is 1, the MIB interrupt will be asserted. SLEEP_CNT and CYCLE_CNT are saturating counters when the value of CYCLE_CNT reaches 0xFFFF_FFFF both counters will stop incrementing.

6.17.75 Sleep MIB Control Status (MAC_PCU_SLP_MIB3)

Offset: 0x18108258

Access: Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:2	RES	Reserved
1	PENDING	SLEEP_CNT, CYCLE_CNT, and CLR_CNT are writable for diagnostic purposes. Before every read/write, the pending bit should be polled to verify any pending write has cleared.
0	CLR_CNT	CLR_CNT clears both SLEEP_CNT and CYCLE_CNT. Pending is asserted while the clearing of these registers is pending.

6.17.76 MAC PCU WoW 1 (MAC_PCU_WOW1)

Offset: 0x1810825C

Access: See Field Description Reset Value: See Field Description

Bit	Name	Access	Reset	Description
31:28	CW_BITS	R/W	0x4	Indicates the number of bits used in the contention window. If = N, the random backoff is selected between 0 and $(2^N) - 1$. For example, if CS_BITS = 4, the random backoff is selected between 0 and 15. Values larger than 10 are assumed to be 10.
27:22	RES	RO	0x0	Reserved
21	BEACON_FAIL	RO	0x0	Beacon receive timeout
20	KEEP_ALIVE_FAIL	RO	0x0	Indicates excessive retry or other problems which cause the keep alive packet from transmitting successfully
19	INTR_DETECT	RO	0x0	Set when an interrupt was detected
18	INTR_ENABLE	R/W	0x0	When set, indicates that MAC interrupts that are not masked cause WoW detection
17	MAGIC_DETECT	RO	0x0	Set when a magic packet has been detected
16	MAGIC_ENABLE	R/W	0x0	When set, indicates the magic packet detection has been enabled
15:8	PATTERN_DETECT	RO	0x0	Indicate the which of the 8 patterns were matched a receive packet
7:0	PATTERN_ENABLE	R/W	0x0	Indicate the which of the 8 patterns are enabled for compare

6.17.77 PCU WoW 2 (MAC_PCU_WOW2)

Offset: 0x18108260 Access: Read/Write

Reset Value: See Field Description

Bit	Name	Reset	Description
31:24	RES	0X0	Reserved
23:16	TRY_CNT	0X00000008	Time in μs for TRY_CNT
15:8	SLOT	0X0000009	Time in μs for SLOT
7:0	AIFS	0X000000CC	Time in µs for AIFS

6.17.78 MAC PCU WoW Beacon Fail Enable (MAC_PCU_WOW3_BEACON_FAIL)

Offset: 0x18108270 Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:1	RES	Reserved	
0	ENABLE	Enable WoW if the AP fails to send a beacon	

6.17.79 MAC PCU WoW Beacon Fail Timeout (MAC_PCU_WOW3_BEACON)

Offset: 0x18108274 Access: Read/Write Reset Value: 0x40000000

Bit	Name	Description	
31:0	TIMEOUT	WoW beacon fail timeout value (REFCLK cycles)	

6.17.80 MAC PCU WoW Keep Alive Timeout (MAC_PCU_WOW3_KEEP_ALIVE)

Offset: 0x18108278 Access: Read/Write Reset Value: 0x3E4180

Bit	Name	Description	
31:0	TIMEOUT	WoW keep alive timeout value (REFCLK cycles)	

6.17.81 MAC PCU WoW Automatic Keep Alive Disable (MAC_PCU_WOW_KA)

Offset: 0x1810827C Access: Read/Write

Reset Value: See Field Description

Bit	Name	Reset	Description
31:3	RES	0x0	Reserved
2	BKOFF_CS _ENABLE	0x00000001	Enable carrier sense during KEEPALIVEBACKOFF state
1	FAIL_DISABLE	0x00000000	Disable WoW If there is a failure in sending keep-alive frames
0	AUTO_DISABLE	0x00000000	Disable automatic transmission of keep-alive frames

6.17.82 Exact Length and Offset Requirement Flag for WoW Patterns (WOW_EXACT)

Offset: 0x1810828C Access: Read/Write

Reset Value: See Field Descriptions

Bit	Name	Reset	Description
31:16	RES	0x0	Reserved
15:8	OFFSET	0x00	Exact offset requirement flag for WoW patterns, 1 bit for each pattern
7:0	LENGTH	0xFF	Exact length requirement flag for WoW patterns, 1 bit for each pattern

6.17.83 WoW Offset 1 (PCU_WOW4)

Offset: 0x18108294 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	OFFSET3	Offset for pattern 3
23:16	OFFSET2	Offset for pattern 2
15:8	OFFSET1	Offset for pattern 1
7:0	OFFSET0	Offset for pattern 0

6.17.84 WoW Offset 2 (PCU_WOW5)

Offset: 0x18108298 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	OFFSET7	Offset for pattern 7
23:16	OFFSET6	Offset for pattern 6
15:8	OFFSET5	Offset for pattern 5
7:0	OFFSET4	Offset for pattern 4

6.17.85 Global Mode (MAC_PCU_20_40_MODE)

Offset: 0x18108318

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:1	RES	Reserved
0	JOINED_RX_CLEAR	Setting this bit causes the RX_CLEAR used in the MAC to be the AND of the control channel RX_CLEAR and the extension channel RX_CLEAR. If this bit is clear then the MAC will use only the control channel RX_CLEAR.

6.17.86 Difference RX_CLEAR Counter (MAC_PCU_RX_CLEAR_DIFF_CNT)

Offset: 0x18108328

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:0	RX_CLEAR_DIFF_CNT	A cycle counter MIB register. On every cycle of the MAC clock, this counter increments every time the extension channel RX_CLEAR is low when the MAC is not actively transmitting or receiving. Due to a small lag between TX_FRAME and RX_CLEAR as well as between RX_CLEAR and RX_FRAME, the count may have some residual value even when no activity is on the extension channel.

6.17.87 Control Registers for Block BA Control Fields (MAC_PCU_BA_BAR_CONTROL)

Offset: 0x18108330

Access: Hardware = Read-Only Software = Read/Write Reset Value: See Field Description

Bit	Name	Reset	Description
31:13	RES	0x0	Reserved
12	UPDATE_BA_BITMAP _QOS_NULL	0x0	When set, it enables the update of BA_BITMAP on a QoS Null frame
11	TX_BA_CLEAR_BA _VALID	0x0	When set, enables the BA_VALID bits to be cleared upon transmit of the block ACK for an aggregate frame or on receiving a BAR
10	FORCE_NO_MATCH	0x0	Causes the BA logic to never find a match of previous saved bitmap in the memory
9	ACK_POLICY_VALUE	0x1	The value of the ACK policy bit
8	COMPRESSED_VALUE	0x1	The value of the compressed bit
7:4	ACK_POLICY_OFFSET	0x0	Indicates the bit offset in the block ACK or block ACK request control field which defines the location of the ACK policy bit.
3:0	COMPRESSED_OFFSET	0x2	Indicates the bit offset in the block ACK or block ACK request control field which defines the location of the COMPRESSED bit.

6.17.88 Legacy PLCP Spoof (MAC_PCU_LEGACY_PLCP_SPOOF)

Offset: 0x18108334

Access: Hardware = Read-Only Software = Read/Write Reset Value: See Field Description

Bit	Name	Reset	Description
31:9	RES	0X0	Reserved
12:8	MIN_LENGTH	0xE	Defines the minimum spoofed legacy PLCP length
7:0	EIFS_MINUS _DIFS	0x0	Defines the number of μs to be subtracted from the transmit packet duration to provide fairness for legacy devices as well as HT devices.

6.17.89 PHY Error Mask and EIFS Mask (MAC_PCU_PHY_ERROR_MASK_CONT)

Offset: 0x18108338

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:19	RES	Reserved
23:16	EIFS_VALUE	Continuation of MAC_PCU_PHY_ERROR_MASK_VALUE. Bits [2], [1], and [0] correspond to PHY errors 34, 33, and 32. All PHY errors above 39 cause EIFS delay.
15:8	RES	Reserved
7:0	MASK_VALUE	Continuation of MAC_PCU_PHY_ERROR_MASK_VALUE. Bits [2], [1], and [0] correspond to PHY errors 34, 33, and 32. All PHY errors above 39 are filtered.

6.17.90 Tx Timer (MAC_PCU_TX_TIMER)

Offset: 0x1810833C

Access:Hardware = Read/Write Software = Read/Write

Reset Value: 0x0

Bit	Name	Description
31:16	RES	Reserved
15	TX_TIMER_ENABLE	Enabled when this bit is set to 1
14:0	TX_TIMER Guarantees the transmit frame does not take more time than the values programmed in this timer. The unit for this timer is in μ s.	

6.17.91 MAC PCU WoW 6 (MAC_PCU_WOW6)

Offset: 0x1810834C Access: Read-Only Reset Value: 0x0

Bit	Name	Description
31:16	RES	Reserved
15:0	RXBUF_START_ADDR	Indicates the start address of the frame in RxBUF that caused the WoW event

6.17.92 MAC PCU WoW 5 (MAC_PCU_WOW5)

Offset: 0x1810835C Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:16	RES	Reserved
15:0	RX_ABORT_ENABLE	Enables generation of RX_ABORT when a pattern is matched

6.17.93 Length of Pattern Match for Pattern 0 (MAC_PCU_WOW_LENGTH1)

Offset: 0x18108360 Access: Read/Write Reset Value: 0xFF

The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description	
31:24	PATTERN_0	Jsed for pattern matching length of the WoW feature	
23:16	PATTERN_1	Sed for pattern matching length of the WoW feature	
15:8	PATTERN_2	Used for pattern matching length of the WoW feature	
7:0	PATTERN_3	Used for pattern matching length of the WoW feature	

6.17.94 Length of Pattern Match for Pattern 1 (MAC_PCU_WOW_LENGTH2)

Offset: 0x18108364 Access: Read/Write Reset Value: 0xFF

The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description	
31:24	PATTERN_4 Used for pattern matching length of the WoW feature		
23:16	PATTERN_5	Used for pattern matching length of the WoW feature	
15:8	PATTERN_6	Used for pattern matching length of the WoW feature	
7:0	PATTERN_7	Used for pattern matching length of the WoW feature	

6.17.95 Enable Control for Pattern Match Feature of WOW (WOW_PATTERN_MATCH_LESS_THAN_256_BYTES)

Offset: 0x18108368 Access: Read/Write Reset Value: 0x0

The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description	
31:16	RES	Reserved	
15:0	EN	Used for turning on the feature of pattern matching length (<256 bytes) of the WOW feature	

6.17.96 PCU WoW 4 (MAC_PCU_WOW4)

Offset: 0x18108370 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:16	RES	Reserved
15:8	PATTERN_DETECT	Indicates the which of the 8 patterns were matched a receive packet
7:0	PATTERN_ENABLE	Indicates the which of the 8 patterns are enabled for compare

6.17.97 Exact Length and Offset Requirement Flag for WoW Patterns (WOW2_EXACT)

Offset: 0x18108374 Access: Read/Write

Reset Value: See Field Description

Bit	Name	Reset	Description
31:16	RES	0x0	Reserved
15:8	OFFSET	0x0	Exact offset requirement flag for WoW patterns; 1 bit for each pattern
7:0	LENGTH	0xFF	Exact length requirement flag for WoW patterns;1 bit for each pattern

6.17.98 WoW Offset 2 (PCU_WOW6)

Offset: 0x18108378 Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:24	OFFSET11	Offset for pattern 11	
23:16	OFFSET10	Offset for pattern 10	
15:8	OFFSET9	Offset for pattern 9	
7:0	OFFSET8	Offset for pattern 8	

6.17.99 WoW Offset 3 (PCU_WOW7)

Offset: 0x1810837C Access: Read/Write Reset Value: 0x0

Bit	Name	Description	
31:24	OFFSET15	Offset for pattern 15	
23:16	OFFSET14	Offset for pattern 14	
15:8	OFFSET13	Offset for pattern 13	
7:0	OFFSET12	Offset for pattern 12	

6.17.100 Length of Pattern Match for Pattern 0 (MAC_PCU_WOW_LENGTH3)

Offset: 0x18108380 Access: Read/Write Reset Value: 0xFF

The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description		
31:24	PATTERN_8	Used for pattern matching length of the WoW feature		
23:16	PATTERN_9	Used for pattern matching length of the WoW feature		
15:8	PATTERN_10	Used for pattern matching length of the WoW feature		
7:0	PATTERN_11	Used for pattern matching length of the WoW feature		

6.17.101 Length of Pattern Match for Pattern 0 (MAC_PCU_WOW_LENGTH4)

Offset: 0x18108384 Access: Read/Write Reset Value: 0x0

The antenna mask normally comes from the Tx descriptor. For self generated frames, this register provides the antenna mask to the baseband via the MAC/baseband interface.

Bit	Name	Description	
31:24	PATTERN_12	Used for pattern matching length of the WoW feature	
23:16	PATTERN_13	Used for pattern matching length of the WoW feature	
15:8	PATTERN_14	Used for pattern matching length of the WoW feature	
7:0	PATTERN_15	Used for pattern matching length of the WoW feature	

6.17.102 TID Value Access Category (MAC_PCU_TID_TO_AC)

Offset: 0x181083A4 Access: Read/Write Reset Value: 0x0

Bit	Name	Description			
31:0	DATA	Maps the 16 user priority TID values to corresponding access category (AC). Two bits denote the AC for each TID. Bits [1:0] define the AC for TID 0 and next two bits are used for AC of TID 1, and finally bits [31:30] define the AC for TID 15.			
			t values are as specified in the 11e specification: TID 1 and 2 are BK, TID 0 and K, TID 4 and 5 are VI, and TID 6 and 7 are V0.		
		ACs:			
		00	BE		
		01	ВК		
		10	VI VO		
		11			

6.17.103 High Priority Queue Control (MAC_PCU_HP_QUEUE)

Offset: 0x181083A8 Access: Read/Write

Reset Value: See Field Descriptions

Bit	Name	Reset	Description
31:21	RES	0x0	Reserved
20	UAPSD_EN	0xF	Enable UAPSD trigger
19:16	FRAME_SUBTYPE_MASK0	0x0	Frame subtype mask for FRAME_SUBTYPE0, to be matched for the frame to be placed in high priority receive queue
15:12	FRAME_SUBTYPE0	0x0	Frame sub type to be matched for the frame to be placed in high priority receive queue
11:10	FRAME_TYPE_MASK0	0x3	Frame type mask for FRAME_TYPE0, to be matched for the frame to be placed in high priority receive queue
9:8	FRAME_TYPE0	0x0	Frame type to be matched for the frame to be placed in high priority receive queue
7	FRAME_BSSID_MATCH0	0x0	If set to 1, frames with matching BSSID are only moved to high priority receive queue on a frame type match
6	FRAME_FILTER_ENABLE0	0x0	Enables the mode where a frame is moved to high priority receive queue based on frame type
5	HPQON_UAPSD	0x0	Set to 1 if UAPSD receive frame needs to be placed in high priority receive queue. If UAPSD is enable is set for AC of an error free QoS frame with Address1 match with AP address, the frame will be placed in high priority receive queue
4	AC_MASK_VO	0x0	Set to 1 if BK traffic needs to be placed in high priority Rx queue
3	AC_MASK_VI	0x0	Set to 1 if VI traffic needs to be placed in high priority Rx queue
2	AC_MASK_BK	0x0	Set to 1 if BK traffic needs to be placed in high priority Rx queue
1	AC_MASK_BE	0x0	Set to 1 if BE traffic needs to be placed in high priority Rx queue
0	ENABLE	0x0	Enables high priority Rx queue

6.17.104 MAC PCU BT Coexistence BT Weights 0 (MAC_PCU_BLUETOOTH_BT_WEIGHTS0)

Offset: 0x181083AC Access: Read/Write Reset Value: 0x33332210

Bit	Name	Description	
31:0	VALUE	Creates a level for every BT input condition	

6.17.105 MAC PCU BT Coexistence BT Weights 1 (MAC_PCU_BLUETOOTH_BT_WEIGHTS1)

Offset: 0x181083B0 Access: Read/Write Reset Value: 0x33332210

Bit	Name	Description	
31:0	VALUE	Creates a level for every BT input condition	

6.17.106 MAC PCU BT Coexistence BT Weights 2 (MAC_PCU_BLUETOOTH_BT_WEIGHTS2)

Offset: 0x181083B4 Access: Read/Write Reset Value: 0x33332210

Bit	Name	Description	
31:0	VALUE	Creates a level for every BT input condition	

6.17.107 MAC PCU BT Coexistence BT Weights 3 (MAC_PCU_BLUETOOTH_BT_WEIGHTS3)

Offset: 0x181083B8 Access: Read/Write Reset Value: 0x33332210

Bit	Name	Description
31:0	VALUE	Creates a level for every BT input condition

6.17.108 Hardware Beacon Processing 1 (MAC_PCU_HW_BCN_PROC1)

Offset: 0x181083C8 Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	ELM2_ID	Element ID 2
23:16	ELM1_ID	Element ID 1
15:8	ELM0_ID	Element ID 0
7	EXCLUDE_ELM2	Exclude information with element ID ELM2 in CRC calculation
6	EXCLUDE_ELM1	Exclude information with element ID ELM1 in CRC calculation
5	EXCLUDE_ELM0	Exclude information with element ID ELM0 in CRC calculation
4	EXCLUDE_TIM_ELM	Exclude beacon TIM element in CRC calculation
3	EXCLUDE_CAP_INFO	Exclude beacon capability information in CRC calculation
2	EXCLUDE_BCN_INTVL	Exclude beacon interval in CRC calculation
1	RESET_CRC	Reset the last beacon CRC calculated
0	CRC_ENABLE	Hardware beacon processing

6.17.109 Hardware Beacon Processing 2 (MAC_PCU_HW_BCN_PROC2)

Offset: 0x181083CC Access: Read/Write Reset Value: 0x0

Bit	Name	Description
31:24	RES	Reserved
23:16	ELM3_ID	Element ID 3
15:8	FILTER_INTERVAL	Filter interval for beacons
7:3	RES	Reserved
2	EXCLUDE_ELM3	Exclude information with element ID ELM3 in CRC calculation
1	INTERVAL	Reset internal interval counter
0	FILTER_INTERVAL _ENABLE	Enable filtering beacons based on filter interval

6.17.110 Key Cache (MAC_PCU_KEY_CACHE[0:1023])

Offset: 0x18108800

Access: Hardware = Read-Only Software = Read/Write

Reset Value: 0x0

Table 6-17. Offset to First Dword of Nth Key [1]

Intra Key	Offset Bits	Desc	ription		
8*N + 00	31:0	Key[3	Key[31:0]		
8*N + 04	15:0	Key[4	47:32]		
8*N + 08	31:0	Key[7	79:48]		
8*N + 0C	15:0	Key[9	95:79]		
8*N + 10	31:0	Key[1	127:96]		
8*N + 14	2:0	Key t	ype:		
		0	40b		
		1	104b		
		2	TKIP without MIC		
		3	128b		
		4	TKIP		
		5	Reserved		
		6	AES_CCM		
		7	Do nothing		
8*N + 14	14:3	Reser	ved		
8*N + 18	31:0	Addr[32:1]			
8*N + 1C	14:0	Addr	[47:33]		
	15	Key v	valid		
	17:16	Key I	D		

[1]Key = (Address: 8800 + 20*N)

When the key type is 4 (TKIP) and key is valid, this entry + 64 contains the Michael key.

Table 6-18. Offset to First Dword of Nth Key (continued)

Intra Key	Offset Bits	Description
8*N + 800	31:0	Rx Michael key 0
8*N + 804	15:0	Tx Michael key 0 [31:16]
8*N + 808	31:0	Rx Michael key 1
8*N + 80C	15:0	Tx Michael key 0 [15:0]
8*N + 810	31:0	Tx Michael key 1
8*N + 814	RES	Reserved
8*N + 818	RES	Reserved
8*N + 81C	RES	Reserved
	15	Key Valid = 0

TKIP keys are not allowed to reside in the entries 64–127 because they require the Michael key. Entries 64–67 are always reserved for Michael.

NOTE: Internally this memory is 50 bits wide, thus to write a line of the memory requires two 32-bit writes. All writes to registers with an offset of 0x0 or 0x8 actually write to a temporary holding register. A write to register with an offset of 0x4 or 0xC writes to the memory with the current write value concatenated with the temporary holding register.

6.18 Ethernet Registers

Table 6-19 summarizes the Ethernet registers for the AR9331.

Table 6-19. Ethernet Registers Summary

GEO Address	GE1 Address	Description		Page
0x19000000	0x1A000000	MAC Configuration 1		page 198
0x19000004	0x1A000004	MAC Configuration 2		page 199
0x19000008	0x1A000008		IPG/IFG	page 200
0x1900000C	0x1A00000C		Half-Duplex	page 200
0x19000010	0x1A000010]	Maximum Frame Length	page 201
0x19000020	0x1A100020		MII Configuration	page 201
0x19000024	0x1A000024		MII Command	page 202
0x19000028	0x1A000028		MII Address	page 202
0x1900002C	0x1A00002C		MII Control	page 203
0x19000030	0x1A000030		MII Status	page 203
0x19000034	0x1A000034		MII Indicators	page 203
0x19000038	0x1A000038		Interface Control	page 203
0x1900003C	0x1A00003C		Interface Status	page 204
0x19000040	0x1A000040		STA Address 1	
0x19000044	0x1A000044		STA Address 2	
0x19000048	0x1A000048		ETH Configuration 0	page 206
0x1900004C	0x1A00004C	ETH Configuration 1		page 206
0x19000050	0x1A000050			page 207
0x19000054	0x1A000054	ETH Configuration 3		page 207
0x19000058	0x1A000058	ETH Configuration 4		page 208
0x1900005C	0x1A00005C		ETH Configuration 5	page 209
0x19000080	0x1A000080	TR64	Tx/Rx 64 Byte Frame Counter	page 209
0x19000084	0x1A000084	TR127	Tx/Rx 65-127 Byte Frame Counter	page 209
0x19000088	0x1A000088	TR255	Tx/Rx 128-255 Byte Frame Counter	page 209
0x1900008C	0x1A00008C	TR511	Tx/Rx 256-511 Byte Frame Counter	page 210
0x19000090	0x1A000090	TR1K	Tx/Rx 512-1023 Byte Frame Counter	page 210
0x19000094	0x1A000094	TRMAX	Tx/Rx 1024-1518 Byte Frame Counter	page 210
0x19000098	0x1A000098	TRMGV Tx/Rx 1519-1522 Byte VLAN Frame Counter		page 210
0x1900009C	0x1A00009C	RBYT Receive Byte Counter		page 211
0x190000A0	0x1A0000A0	RPKT Receive Packet Counter		page 211
0x190000A4	0x1A0000A4	RFCS Receive FCS Error Counter		page 211
0x190000A8	0x1A0000A8	RMCA Receive Multicast Packet Counter		page 211
0x190000AC	0x1A0000AC	RBCA Receive Broadcast Packet Counter		page 212
0x190000B0	0x1A0000B0	RXCF	Receive Control Frame Packet Counter	page 212

Table 6-19. Ethernet Registers Summary (continued)

GEO Address	GE1 Address		Description	Page
0x190000B4	0x1A0000B4	RXPF	Receive Pause Frame Packet Counter	page 212
0x190000B8	0x1A0000B8	RXUO Receive Unknown OPCode Packet Counter		page 212
0x190000BC	0x1A0000BC	RALN Receive Alignment Error Counter		page 213
0x190000C0	0x1A0000C0	RFLR	Receive Frame Length Error Counter	page 213
0x190000C4	0x1A0000C4	RCDE	Receive Code Error Counter	page 213
0x190000C8	0x1A0000C8	RCSE	Receive Carrier Sense Error Counter	page 213
0x190000CC	0x1A0000CC	RUND	Receive Undersize Packet Counter	page 214
0x190000D0	0x1A0000D0	ROVR	Receive Oversize Packet Counter	page 214
0x190000D4	0x1A0000D4	RFRG	Receive Fragments Counter	page 214
0x190000D8	0x1A0000D8	RJBR	Receive Jabber Counter	page 214
0x190000DC	0x1A0000DC	RDRP	Receive Dropped Packet Counter	page 215
0x190000E0	0x1A0000E0	TBYT	Transmit Byte Counter	page 215
0x190000E4	0x1A0000E4	TPKT	Transmit Packet Counter	page 215
0x190000E8	0x1A0000E8	TMCA	Transmit Multicast Packet Counter	page 215
0x190000EC	0x1A0000EC	TBCA	Transmit Broadcast Packet Counter	page 216
0x190000F0	0x1A0000F0	TXPF	Transmit Pause Control Frame Counter	page 216
0x190000F4	0x1A0000F4	TDFR Transmit Deferral Packet Counter		page 216
0x190000F8	0x1A0000F8	TEDF	Transmit Excessive Deferral Packet Counter	page 216
0x190000FC	0x1A0000FC	TSCL	Transmit Single Collision Packet Counter	page 217
0x19000100	0x1A000100	TMCL	Transmit Multiple Collision Packet	page 217
0x19000104	0x1A000104	TLCL Transmit Late Collision Packet Counter		page 217
0x19000108	0x1A000108	TXCL	Transmit Excessive Collision Packet Counter	page 217
0x1900010C	0x1A00010C	TNCL	Transmit Total Collision Counter	page 218
0x19000110	0x1A000110	TPFH	Transmit Pause Frames Honored Counter	page 218
0x19000114	0x1A000114	TDRP	Transmit Drop Frame Counter	page 218
0x19000118	0x1A000118	TJBR	Transmit Jabber Frame Counter	page 218
0x1900011C	0x1A00011C	TFCS	Transmit FCS Error Counter	page 219
0x19000120	0x1A000120	TXCF	Transmit Control Frame Counter	page 219
0x19000124	0x1A000124	TOVR	Transmit Oversize Frame Counter	page 219
0x19000128	0x1A000128	TUND	Transmit Undersize Frame Counter	page 219
0x1900012C	0x1A00012C	TFRG	Transmit Fragment Counter	page 220
0x19000130	0x1A000130	CAR1	Carry Register 1	page 220
0x19000134	0x1A000134	CAR2	Carry Register 2	
0x19000138	0x1A000138	CAM1	Carry Mask Register 1	page 222
0x1900013C	0x1A00013C	CAM2	Carry Mask Register 2	page 223

Table 6-19. Ethernet Registers Summary (continued)

GEO Address	GE1 Address		Description	Page
0x19000180	0x1A000180	DMATXCNTRL_Q0	DMA Transfer Control for Queue 0	page 223
0x19000184	0x1A000184	DMATXDESCR_Q0	Descriptor Address for Queue 0 Tx	page 224
0x19000188	0x1A000188		DMA Tx Status	page 224
0x1900018C	0x1A00018C	DMARXCTRL	Rx Control	page 224
0x19000190	0x1A000190	DMARXDESCR	Pointer to Rx Descriptor	page 225
0x19000194	0x1A000194	DMARXSTATUS	Rx Status	page 225
0x19000198	0x1A000198	DMAINTRMASK	Interrupt Mask	page 226
0x1900019C	0x1A00019C	Interrupts		page 227
0x190001A4	0x1A0001A4	ETH_TXFIFO_TH Ethernet Tx FIFO Max and Min Threshold		page 228
0x190001A8	0x1A0001A8	ETH_XFIFO_DEPTH Current Tx and Rx FIFO Depth		page 228
0x190001AC	0x1A0001AC	ETH_RXFIFO_TH Ethernet Rx FIFO		page 228
0x190001B8	0x1A0001B8	ETH_FREE_TIMER	Ethernet Free Timer	page 229
0x190001C0	0x1A0001C0	DMATXCNTRL_Q1	DMA Transfer Control for Queue 1	page 229
0x190001C4	0x1A0001C4	DMATXDESCR_Q1	Descriptor Address for Queue 1 Tx	page 229
0x190001C8	0x1A0001C8	DMATXCNTRL_Q2 DMA Transfer Control for Queue 2		page 230
0x190001CC	0x1A0001CC	DMATXDESCR_Q2 Descriptor Address for Queue 2 Tx		page 230
0x190001D0	0x1A0001D0	DMATXCNTRL_Q3 DMA Transfer Control for Queue 3		page 230
0x190001D4	0x1A0001D4	DMATXDESCR_Q3 Descriptor Address for Queue 3 Tx		page 230
0x190001D8	0x1A0001D8	DMATXARBCFG	DMA Tx Arbitration Configuration	page 230

6.18.1 MAC Configuration 1

GE0 Address: 0x19000000 GE1 Address: 0x1A000000 Access: See field description Reset: See field description

This register is used to set the actions for transmitting and receiving frames.

Bit	Bit Name	Туре	Reset	Description	
31	SOFT_RESET	RW	0x1	Setting this bit resets all modules except the host interface. The host interface is reset via HRST.	
30:20	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
19	RESET_RX_MAC_ CONTROL	RW	0x0	Resets the receive (Rx) MAC control block	
18	RESET_TX_MAC_ CONTROL	RW	0x0	Resets the transmit (Tx) MAC control	
17	RESET_RX_ FUNCTION	RW	0x0	Resets the Rx function	
16	RESET_TX_ FUNCTION	RW	0x0	Resets the Tx function	
15:9	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
8	LOOP_BACK	RW	0x0	Setting this bit causes MAC Rx outputs to loop back to the MAC Rx inputs. Clearing this bit results in normal operation.	
7:6	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.	
5	RX_FLOW _CONTROL	RW	0x0	Setting this bit causes the Rx MAC control to detect and act on pause flow control frames.	
4	TX_FLOW_ CONTROL	RW	0x0	Setting this bit causes the Tx MAC control to send requested flow control frames. Clearing this bit prevents the MAC from sending flow control frames. The default is 0.	
3	SYNCHRONIZED_RX	RO	0x0	Rx enable synchronized to the receive stream	
2	RX_ENABLE	RW	0x0	Setting this bit will allow the MAC to receive frames from the PHY. Clearing this bit will prevent the reception of frames.	
1	SYNCHRONIZED_TX	RO	0x0	Tx enable synchronized to the Tx stream	
0	TX_ENABLE	RW	0x0	Allows the MAC to transmit frames from the system. Clearing this bit will prevent the transmission of frames.	

6.18.2 MAC Configuration 2

GE0 Address: 0x19000004 GE1 Address: 0x1A000004 Access: Read/Write Reset: See field description This register is used to set the parameters relating to the MAC, including duplex, CRC, and oversized frames.

Bit	Bit Name	Reset	Description			
31:16	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.			
15:12	PREAMBLE_ LENGTH	0x7	Determines the length of the preamble field of the packet, in bytes.			
11:10	RES	0x0	Reserved. Must be written with zero. Contains ze	ros when rea	d.	
9:8	INTERFACE_	0x0	Determines the type of interface to which the MA	C is connecte	ed.	
	MODE		Interface Mode	Bit [9]	Bit [8]	
			RESERVED	0	0	
			Nibble Mode (10/100 Mbps MII/RMII/SMII)	0	1	
			RESERVED	1	0	
			RESERVED	1	1	
7:6	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.			
5	HUGE_FRAME	0x0	Set this bit to allow frames longer than the MAXIMUM FRAME LENGTH to be transmitted and received. Clear this bit to have the MAC limit the length of frames at the MAXIMUM FRAME LENGTH value, which is contained in the "Maximum Frame Length" register.			
4	LENGTH_FIELD	0x0	Set this bit to cause the MAC to check the frame's length field to ensure it matches the actual data field length. Clear this bit if no length field checking is desired.			
3	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.			
2	PAD/CRC ENABLE	0x0	Set this bit to have the MAC pad all short frames and append a CRC to every frame whether or not padding was required. Clear this bit if frames presented to the MAC have a valid length and contain a CRC.			
1	CRC_ENABLE	0x0	Set this bit to have the MAC append a CRC to all frames. Clear this bit if frames presented to the MAC have a valid length and contain a valid CRC.			
0	FULL_DUPLEX	0x0	Setting this bit configures the MAC to operate in full-duplex mode. Clearing this bit configures the MAC to operate in half-duplex mode only.			

6.18.3 IPG/IFG

GE0 Address: 0x19000008 GE1 Address: 0x1A000008 Access: Read/Write Reset: See field description This register is used to configure settings for the inter-packet gap and the inter-frame gap.

Bit	Bit Name	Reset	Description
31	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
30:24	NON BACK-TO- BACK INTER- PACKET GAP 1	0x40	This programmable field represents the carrier sense window. If a carrier is detected, the MAC will defer to the carrier. If, however, the carrier becomes active, the MAC will continue timing and transmission, knowingly causing a collision and ensuring fair access to the medium.
23	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
22:16	NON BACK-TO- BACK INTER- PACKET GAP 2	0x60	This programmable field represents the non-back-to-back inter-packet gap in bit times
15:8	MINIMUM_IFG_ ENFORCEMENT	0x50	This programmable field represents the minimum IFG size to enforce between frames (expressed in bit times). Frames whose IFG is less than that programmed, are dropped.
7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6:0	BACK-TO-BACK INTER- PACKET_GAP	0x60	This programmable field represents the IPG between back-to-back packets (expressed in bit times). This IPG parameter is used in full-duplex mode when two Tx packets are sent back-to-back. Set this field to the desired number of bits.

6.18.4 Half-Duplex

GE0 Address: 0x1900000C GE1 Address: 0x1A00000C Access: Read/Write Reset: See field description This register is used to configure the settings for half-duplex, including backpressure, excessive defer and collisions.

Bit	Bit Name	Reset	Description
31:24	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
23:20	ALTERNATE BINARY EXPONENTIAL BACKOFF TRUNCATION	0xA	Used when bit [19] is set. The value programmed is substituted for the Ethernet standard value of ten.
19	ALTERNATE BINARY EXPONENTIAL BACKOFF ENABLE	0x0	Setting this bit will configure the Tx MAC to use the setting of bits [23:20] instead of the tenth collision. Clearing this bit will cause the TX MAC to follow the standard binary exponential backoff rule, which specifies that any collision after the tenth uses 210-1 as the maximum backoff time.
18	BACKPRESSURE_N O_BACKOFF	0x0	Setting this bit will configure the Tx MAC to immediately retransmit following a collision during backpressure operation. Clearing this bit will cause the Tx MAC to follow the binary exponential backoff rule.
17	NO_BACKOFF	0x0	Setting this bit will configure the Tx MAC to immediately retransmit following a collision. Clearing this bit will cause the Tx MAC to follow the binary exponential backoff rule.

16	EXCESSIVE_ DEFER	0x1	Setting this bit will configure the Tx MAC to allow the transmission of a packet that has been excessively deferred. Clearing this bit will cause the Tx MAC to abort the transmission of a packet that has been excessively deferred.	
15:12	RETRANSMISSION _MAXIMUM	0xF	This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The maximum number of attempts is defined by 802.11 standards as 0xF.	
11:10	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
9:0	COLLISION_ WINDOW	0x37	This programmable field represents the slot time or collision window during which collisions might occur in a properly configured network. Since the collision window starts at the beginning of a transmission, the preamble and SFD are included. The reset value (0x37) corresponds to the count of frame bytes at the end of the window. If the value is larger than 0x3F the TPST single will no longer work correctly.	

6.18.5 Maximum Frame Length

GE0 Address: 0x19000010 GE1 Address: 0x1A000010

Access: Read/Write

Reset: 0x600

This register is used to set the maximum allowable frame length.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	MAX_FRAME _LENGTH	This programmable field sets the maximum frame size in both the Tx and Rx directions

6.18.6 MII Configuration

GE0 Address: 0x19000020 GE1 Address: 0x1A000020

Access: Read/Write

Reset: 0x0

This register is used to set the MII management parameters.

Bit	Bit Name	Description
31	RESET_MII_ MGMT	Setting this bit resets the MII Management. Clearing this bit allows MII Management to perform management read/write cycles as requested by the Host interface.
30:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5	SCAN_AUTO_ INCREMENT	Setting this bit causes MII Management to continually read from a set of contiguous PHYs. The starting address of the PHY is specified by the PHY address field recorded in the MII Address register. The next PHY to be read will be PHY address + 1. The last PHY to be queried in this read sequence will be the one residing at address 0x31, after which the read sequence will return to the PHY specified by the PHY address field.
4	PREAMBLE_ SUPRESSION	Setting this bit causes MII Management to suppress preamble generation and reduce the management cycle from 64 clocks to 32 clocks. Clearing this bit causes MII Management to perform Management read/write cycles with the 64 clocks of preamble.

3:0	MGMT_CLOCK_ SELECT	This field determines the clock frequency Default is 0x0.	of the mana	gement cl	ock (MDC	C).
		Management Clock Select	3	2	1	0
		Source clock divided by 4	0	0	0	0
		Source clock divided by 4	0	0	0	1
		Source clock divided by 6	0	0	1	0
		Source clock divided by 8	0	0	1	1
		Source clock divided by 10	0	1	0	0
		Source clock divided by 14	0	1	0	1
		Source clock divided by 20	0	1	1	0
		Source clock divided by 28	0	1	1	1
		Source clock divided by 34	1	0	0	0
		Source clock divided by 42	1	0	0	1
		Source clock divided by 50	1	0	1	0
		Source clock divided by 58	1	0	1	1
		Source clock divided by 66	1	1	0	0
		Source clock divided by 74	1	1	0	1
		Source clock divided by 82	1	1	1	0
		Source clock divided by 98	1	1	1	1

6.18.7 MII Command

GE0 Address: 0x19000024 GE1 Address: 0x1A000024

Access: Read/Write

Reset: 0x0

This register is used to cause MII management to perform read cycles.

Bit	Bit Name	Description
31:2	RES	Reserved. Must be written with zero. Contains zeros when read.
1	SCAN_CYCLE	Causes MII management to perform read cycles continuously (e.g. to monitor link fail).
0	READ_CYCLE	Causes MII management to perform a single read cycle.

6.18.8 MII Address

GE0 Address: 0x19000028 GE1 Address: 0x1A000028 Access: Read/Write

Reset: 0x0

All switch registers are accessed via the MII address and MII control registers of GE0 only. GE1 MII address and control registers are not used. The details of the Ethernet Switch that are accessible through the MAC 0 MII address.

Bit	Bit Name	Description	
31:13	RES	Reserved. Must be written with zero. Contains zeros when read.	
12:8	PHY_ADDRESS	Represents the five-bit PHY address field used in management cycles. Up to 31 PHYs can be addressed (0 is reserved).	
7:5	RES	Reserved. Must be written with zero. Contains zeros when read.	
4:0	REGISTER ADDRESS	Represents the five-bit register address field used in management cycles. Up to 32 registers can be accessed.	

6.18.9 MII Control

GE0 Address: 0x1900002C GE1 Address: 0x1A00002C

Access: Write-Only

Reset: 0x0

All switch registers are accessed via the MII Address and MII Control registers. This register is used to perform write cycles using the information in the MII Address register.

	Bit	Bit Name	Description
	31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
_	15:0		When written, an MII management write cycle is performed using the 16-bit data and the pre-configured PHY and register addresses from ""MII Address"" (0x0A).

6.18.10 MII Status

GE0 Address: 0x19000030 GE1 Address: 0x1A000030

Access: Read-Only

Reset: 0x0

This register is used to read information following an MII management read cycle.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	MII_MGMT_ STATUS	Following an MII management read cycle, 16-bit data can be read from this register.

6.18.11 MII Indicators

GE0 Address: 0x19000034 GE1 Address: 0x1A000034

Access: Read-Only

Reset: 0x0

This register is used indicate various functions of the MII management are currently being

performed.

Bit	Bit Name	Description	
31:3	RES	Reserved. Must be written with zero. Contains zeros when read.	
2	NOT_VALID	When a 1 is returned, this bit indicates that the MII management read cycle has not yet completed and that the read data is not yet valid	
1	SCANNING	When a 1 is returned, this bit indicates that a scan operation (continuous MII management read cycles) is in progress	
0	BUSY	When a 1 is returned, this bit indicates that the MII management block is currently performing an MII management read or write cycle	

6.18.12 Interface Control

MAC 0 Address: 0x19000038 MAC 1 Address: 0x1A000038

Access: Read/Write

Reset: 0x0

This register is used to configure and set the interface modules.

Bit	Bit Name	Description
31	RESET_ INTERFACE_ MODULE	Setting this bit resets the interface module. Clearing this bit allows for normal operation. This bit can be used in place of bits [23], [15] and [7] when any interface module is connected.

30:28	RES	Reserved. Must be written with zero. Contains zeros when read.		
27	TBIMODE	Setting this bit configures the A-RGMII module to expect TBI signals at the GMII interface. This bit should not be asserted unless this mode is being used.		
26	GHDMODE	Setting this bit configures the A-RGMII to expect half-duplex at the GMII interface. It also enables the use of CRS and COL signals.		
25	LHDMODE	Setting this bit configures the A-RGMII module to expect 10 or 100 Mbps half-duplex MII at the GMII interface and will enable the use of CRS and COL signals. This bit should not be asserted unless this mode is being used.		
24	PHY_MODE	Setting this bit configures the serial MII module to be in PHY Mode. Link characteristics are taken directly from the RX segments supplied by the PHY.		
23	RESET_PERMII	Setting this bit resets the PERMII module. Clearing this bit allows for normal operation.		
22:17	RES	Reserved. Must be written with zero. Contains zeros when read.		
16	SPEED	This bit configures the reduced MII module with the current operating speed.		
		0 Selects 10 Mbps mode		
		1 Selects 100 Mbps mode		
15	RESET_PE100X	This bit resets the PE100X module, which contains the 4B/5B symbol encipher/decipher code.		
14:11	RES	Reserved. Must be written with zero. Contains zeros when read.		
10	FORCE_QUIET	Affects PE100X module only.		
		0 Normal operation		
		1 Tx data is quiet, allowing the contents of the cipher to be output		
9	NO_CIPHER	Affects PE100X module only.		
		0 Normal ciphering occurs		
		1 The raw transmit 5B symbols are transmitting without ciphering		
8	DISABLE_LINK_	Affects PE100X module only.		
	FAIL	0 Normal Operation		
		Disables the 330-ms link fail timer, allowing shorter simulations. Removes the 330-ms link-up time before stream reception is allowed.		
7	RESET GPSI	This bit resets the PE10T module which converts MII nibble streams to the serial bit stream of ENDEC PHYs. Affects PE10T module only.		
6:1	RES	Reserved. Must be written with zero. Contains zeros when read.		
0	ENABLE_ JABBER_ PROTECTION	This bit enables the Jabber Protection logic within the PE10T in ENDEC mode. Jabber is the condition where a transmitter is on for longer than 50 ms preventing other stations from transmitting. Affects PE10T module only.		

6.18.13 Interface Status

GE0 Address: 0x1900003C GE1 Address: 0x1A00003C

Access: Read-Only

Reset: 0x0

Identifies the interface statuses. The range of bits that are active are dependant upon the optional interfaces connected at the time.

Bit	Bit Name	Description	
31:10	RES	Reserved. Must be written with zero. Contains zeros when read.	

9	EXCESS_DEFER	This bit sets when the MAC excessively defers a transmission. It clears when read. This bit latches high.		
8	CLASH	Used to identify the serial MII module mode		
		0	In PHY mode or in a properly configured MAC to MAC mode	
		1	MAC to MAC mode with the partner in 10 Mbps and/or half-duplex mode indicative of a configuration error	
7	JABBER	Used to	identify a jabber condition as detected by the serial MII PHY	
		0	No jabber condition detected	
		1	Jabber condition detected	
6	LINK_OK	Used to	identify the validity of a serial MII PHY link	
		0	No valid link detected	
		1	Valid link detected	
5	FULL_DUPLEX	Used to	identify the current duplex of the serial MII PHY	
		0	Half-duplex	
		1	Full-duplex	
4	SPEED	Used to	identify the current running speed of the serial MII PHY	
		0	10 Mbps	
		1	100 Mbps	
3	LINK_FAIL	Used to read the PHY link fail register. For asynchronous host access must be read at least once every scan read cycle of the PHY.		
		0	The MII management module has read the PHY link fail register to be 0	
		1	The MII management module has read the PHY link fail register to be 1	
2	CARRIER_LOSS	Carrier s	status. This bit latches high.	
		0	No carrier loss detection	
		1	Loss of carrier detection	
1	SQE_ERROR	0	Has not detected an SQE error. Latches high.	
		1	Has detected an SQE error.	
0	JABBER	0	Has not detected a Jabber condition. Latches high.	
		1	Has detected a Jabber condition	

6.18.14 STA Address 1

GE0 Address: 0x19000040 GE1 Address: 0x1A000040 Access: Read/Write

Reset: 0x0

This register holds the first four octets of the station address.

Bit	Bit Name	Description
31:24	STATION_ ADDRESS_1	This field holds the first octet of the station address
23:16	STATION_ ADDRESS_2	This field holds the second octet of the station address
15:8	STATION_ ADDRESS_3	This field holds the third octet of the station address
7:0	STATION_ ADDRESS_4	This field holds the fourth octet of the station address

6.18.15 STA Address 2

GE0 Address: 0x19000044 GE1 Address: 0x1A000044

Access: Read/Write

Reset: 0x0

This register holds the last two octets of the station address.

Bit	Bit Name	Description
31:24	STATION_ ADDRESS_5	This field holds the fifth octet of the station address
23:16	STATION_ ADDRESS_6	This field holds the sixth octet of the station address
15:0	RES	Reserved

6.18.16 ETH Configuration 0

GE0 Address: 0x19000048 GE1 Address: 0x1A000048 Access: See field description

Reset: 0x0

This register is used to assert and negate functions concerning the ETH module.

Bit	Bit Name	Access	Description
31:13	RES	RO	Reserved. Must be written with zero. Contains zeros when read.
12	FTFENREQ	RW	Enable the FIFOs
11	STFENREQ	RW	FIFOs start out as $0x1F$ and must be written to $0x0$.
10	FRFENREQ	RW	
9	SRFENREQ	RW	
8	WTMENREQ	RW	
7:5	RES	RW	Reserved. Must be written with zero. Contains zeros when read.
4	HSTRSTFT	RW	Put the FIFOs into reset
3	HSTRSTST	RW	FIFOs start out as 0x1F and must be written to 0x0.
2	HSTRSTFR	RW	
1	HSTRSTSR	RW	
0	HSTRSTWT	RW	

6.18.17 ETH Configuration 1

GE0 Address: 0x1900004C GE1 Address: 0x1A00004C Access: Read/Write

Reset: See field description

This register is used to configure the ETH storage area.

Bit	Bit Name	Reset	Description	
31:28	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
27:16	CFGFRTH [11:0]	0xFFFF	This hex value represents the minimum number of 4-byte locations to store simultaneously in the receive RAM, relative to the beginning of the frame being input, before FRRDY may be asserted. Note that FRRDY will be latent a certain amount of time due to fabric transmit clock to system transmit clock time domain crossing, and conditional on FRACPT assertion. When set to the maximum value, FRRD may be asserted only after the completion of the input frame. The value of this register must be greater than 18D when HSTDRPLT64 is asserted.	
15:0	CFGXOFFRTX	0xFFFF	This hexadecimal value represents the number of pause quanta (64-bit times) after an XOFF pause frame has been acknowledged until the ETH reasserts TCRQ if the ETH receive storage level has remained higher than the low watermark.	

6.18.18 ETH Configuration 2

MAC 0 Address: 0x19000050 MAC 1 Address: 0x1A000050

Access: Read/Write Reset: See field description This register is used to number the minimum amount of 8-byte words in the Rx RAM before pause frames are transmitted.

Bit	Bit Name	Reset	Description	
31:29	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
28:16	CFGHWM [12:0]	0xAAA	This hex value represents the maximum number of 8-byte words to store simultaneously in the Rx RAM before TCRQ and PSVAL facilitates an XOFF pause control frame.	
15:13	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
12:0	CFGLWM [12:0]	0x555	This hex value represents the minimum number of 8-byte words to store simultaneously in the Rx RAM before TCRQ and PSVAL facilitate an XON pause control frame in response to a previously transmitted XOFF pause control frame.	

6.18.19 ETH Configuration 3

GE0 Address: 0x19000054 GE1 Address: 0x1A000054 Access: Read/Write Reset: See field description This register is used denote the minimum number of 4-byte locations to simultaneously store in the Tx RAM before assertion.

Bit	Bit Name	Туре	Reset	Description
31:28	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
27:16	CFGHWMFT [11:0]	RW	0x555	This hex value represents the maximum number of 4-byte locations to store simultaneously in the Tx RAM before FTHWM is asserted. Note that FTHWM has two FTCLK clock periods of latency before assertion or negation, as should be considered when calculating headroom required for maximum size packets.
15:12	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
11:0	CFGFTTTH [11:0]	RW	0xFFF	This hex value represents the minimum number of 4-byte locations to store simultaneously in the Tx RAM, relative to the beginning of the frame being input, before TPSF is asserted. Note that TPSF is latent for a certain amount of time due to fabric Tx clock system Tx clock time domain crossing. When set to the maximum value, TPSF asserts only after the completion of the input frame.

6.18.20 ETH Configuration 4

GE0 Address: 0x19000058 GE1 Address: 0x1A000058

Access: Read/Write

Reset: 0x0

This register is used to signal drop frame conditions internal to the Ethernet.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17	Unicast MAC address match	In combination with "ETH Configuration 5", bits [17:0] of this register control which frames are dropped and which are sent to the DMA engine. If the bit is set in "ETH
16	Truncated frame	Configuration 5" and it does not match the value in this bit, then the frame is dropped.
15	VLAN tag	
14	Unsupported op-code	
13	Pause frame	
12	Control frame	
11	Long event	
10	Dribble nibble	
9	Broadcast	
8	Multicast	
7	OK	
6	Out of range	
5	Length mismatch	
4	CRC error	
3	Code error	
2	False carrier	
1	RX_DV event	
0	Drop event	

6.18.21 ETH Configuration 5

GE0 Address: 0x1900005C GE1 Address: 0x1A00005C Access: Read/Write

Reset: See field description

This register is used to assert or negate bits of the ETH component.

Bit	Bit Name	Reset Description	
31:20	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
19	Byte/Nibble	0x0	This bit should be set to 1 for GE0 or set to 0 for GE1.
18	Short Frame	0x0	If set to 1, all frames under 64 bytes are dropped.
17:0	Rx Filter[17:0]	0x3FFFF	If set in this vector, the corresponding field must match exactly in "ETH Configuration 4" for the packet to pass on to the DMA engine.

6.18.22 Tx/Rx 64 Byte Frame Counter (TR64)

GE0 Address: 0x19000080 GE1 Address: 0x1A000080

Access: Read/Write

Reset: 0x0

This register is used to count frames transmitted or received that were up to 64 bytes in length.

Bit	Bit Name	Description		
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.		
17:0	TR64	The transmit and receive 64 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which is 64 bytes in length inclusive (excluding framing bits but including FCS bytes).		

6.18.23 Tx/Rx 65-127 Byte Frame Counter (TR127)

GE0 Address: 0x19000084 GE1 Address: 0x1A000084

Access: Read/Write

Reset: 0x0

This register is used to count frames transmitted or received that were between 65-127 bytes in length.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR127	The transmit and receive 65–127 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 65-127 bytes in length inclusive (excluding framing bits but including FCS bytes).

6.18.24 Tx/Rx 128-255 Byte Frame Counter (TR255)

GE0 Address: 0x19000088 GE1 Address: 0x1A000088

Access: Read/Write

Reset: 0x0

This register is used to count frames transmitted or received that were between 128-255 bytes in length.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR255	The transmit and receive 128-255 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 128-255 bytes in length inclusive (excluding framing bits but including FCS bytes).

6.18.25 Tx/Rx 256-511 Byte Frame Counter (TR511)

GE0 Address: 0x1900008C This register is used to count frames

GE1 Address: 0x1A00008C transmitted or received that were between 256-

Access: Read/Write 511 bytes in length.

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR511	The transmit and receive 256–511 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 256–511 bytes in length inclusive (excluding framing bits but including FCS bytes).

6.18.26 Tx/Rx 512-1023 Byte Frame Counter (TR1K)

GE0 Address: 0x19000090 This register is used to count frames

GE1 Address: 0x1A000090 transmitted or received that were between 512-

Access: Read/Write 1023 bytes in length.

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TR1K	The transmit and receive 512–1023 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 512–1023 bytes in length inclusive (excluding framing bits but including FCS bytes).

6.18.27 Tx/Rx 1024-1518 Byte Frame Counter (TRMAX)

GE0 Address: 0x19000094 This register is used to count frames GE1 Address: 0x1A000094 transmitted or received that were between

1024–1518 bytes in length. Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TRMAX	The transmit and receive 1024-1518 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 1024-1518 bytes in length inclusive (excluding framing bits but including FCS bytes).

6.18.28 Tx/Rx 1519-1522 Byte VLAN Frame Counter (TRMGV)

GE0 Address: 0x19000098 This register is used to count frames GE1 Address: 0x1A000098 transmitted or received that were between

Access: Read/Write 1519–1522 bytes in length.

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TRMGV	The transmit and receive 1519–1522 byte frame counter. This bit is incremented for each good or bad frame transmitted and received which between 1519–1522 bytes in length inclusive (excluding framing bits but including FCS bytes).

6.18.29 Receive Byte Counter (RYBT)

GE0 Address: 0x1900009C GE1 Address: 0x1A00009C

Access: Read/Write

Reset: 0x0

This register is used to count incoming frames and then increment this register accordingly.

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:0	RBYT	The receive byte counter. This statistic count register is incremented by the byte count of all frames received, including bad packets but excluding framing bits but including FCS bytes.

6.18.30 Receive Packet Counter (RPKT)

GE0 Address: 0x190000A0 GE1 Address: 0x1A0000A0

Access: Read/Write

Reset: 0x0

This register is used to count packets received.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	RPKT	The receive packet counter. This register is incremented for each received packet (including bad packets, all Unicast, broadcast and Multicast packets).

6.18.31 Receive FCS Error Counter (RFCS)

GE0 Address: 0x190000A4 GE1 Address: 0x1A0000A4

Access: Read/Write

Reset: 0x0

This register is used to count frames received between 64–1518 in length and has a FCS error.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RFCS	The received FCS error counter. This register is incremented for each frame received that has an integral 64–1518 length and contains a frame check sequence error.

6.18.32 Receive Multicast Packet Counter (RMCA)

GE0 Address: 0x190000A8 GE1 Address: 0x1A0000A8

Access: Read/Write

Reset: 0x0

This register is used to count received good standard multicast packets.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	RMCA	The receive multicast packet counter. This register is incremented for each multicast good frame of lengths smaller than 1518 (non-VLAN) or 1522 (VLAN) excluding broadcast frames. This does not include range/length errors.

6.18.33 Receive Broadcast Packet Counter (RBCA)

GE0 Address: 0x190000AC GE1 Address: 0x1A0000AC

Access: Read/Write

Reset: 0x0

This register is used to count received good

broadcast frames.

Bit	Bit Name	Description
31:22	RES	Reserved. Must be written with zero. Contains zeros when read.
21:0	RBCA	The receive broadcast packet counter. This register is incremented for each broadcast good frame of lengths smaller than 1518 (non-VLAN) or 1522 (VLAN) excluding multicast frames. This does not include range or length errors.

6.18.34 Receive Control Frame Packet Counter (RXCF)

GE0 Address: 0x190000B0 This register is used to count received MAC GE1 Address: 0x1A0000B0 control frames.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	RXCF	The receive control frame packet counter. This register is incremented for each MAC control frame received (pause and unsupported).

6.18.35 Receive Pause Frame Packet Counter (RXPF)

GE0 Address: 0x190000B4 This register is used to count received pause GE1 Address: 0x1A0000B4

Access: Read/Write

Reset: 0x0

frame packets.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RXPF	The receive pause frame packet counter. This register is incremented each time a valid pause MAC control frame is received.

6.18.36 Receive Unknown OPCode Packet Counter (RXUO)

GE0 Address: 0x190000B8 This register is used to count received MAC control frames that contain an opcode. GE1 Address: 0x1A0000B8

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RXUO	The receive unknown OPcode counter. This bit is incremented each time a MAC control frame is received which contains an opcode other than a pause.

6.18.37 Receive Alignment Error Counter (RALN)

GE0 Address: 0x190000BC GE1 Address: 0x1A0000BC

Access: Read/Write

Reset: 0x0

This register is used to count received packets with an alignment error.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RALN	The receive alignment error counter. This register is incremented for each received frame from 64–1518 bytes that contains an invalid FCS and is not an integral number of bytes.

6.18.38 Receive Frame Length Error Counter (RFLR)

GE0 Address: 0x190000C0 GE1 Address: 0x1A0000C0

Access: Read/Write

Reset: 0x0

This register is used to count received frames

that have a length error.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	RFLR	The received frame length error counter. this register is incremented for each received frame in which the 802.3 length field did not match the number of data bytes actually received (46–1500 bytes). The counter is not incremented if the length field is not a valid 802.3 length, such as an EtherType value.

6.18.39 Receive Code Error Counter (RCDE)

GE0 Address: 0x190000C4 GE1 Address: 0x1A0000C4

Access: Read/Write

Reset: 0x0

This register is used to count the number of received frames that had a code error counter.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RCDE	The receive code error counter. This register is incremented each time a valid carrier was present and at least one invalid data symbol was detected.

6.18.40 Receive Carrier Sense Error Counter (RCSE)

GE0 Address: 0x190000C8 GE1 Address: 0x1A0000C8

Access: Read/Write

Reset: 0x0

This register is used to count the number of frames received that had a false carrier.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RCSE	The receive false carrier counter. This register is incremented each time a false carrier is detected during idle, as defined by a 1 on RX_ER and an 0xE on RXD. This event is reported along with the statistics generated on the next received frame. Only one false carrier condition can be detected and logged between frames.

6.18.41 Receive Undersize Packet Counter (RUND)

GE0 Address: 0x190000CC GE1 Address: 0x1A0000CC

Access: Read/Write

Reset: 0x0

This register is used to count the number of received packets that were undersized.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RUND	The receive undersize packet counter. This register is incremented each time a frame is received which is less than 64 bytes in length and contains a valid FCS and were otherwise well formed. This does not include Range Length errors

6.18.42 Receive Oversize Packet Counter (ROVR)

GE0 Address: 0x190000D0 GE1 Address: 0x1A0000D0

Access: Read/Write

Reset: 0x0

This register is used to count received packets

that were oversized.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	ROVR	The receive oversize packet counter., This register is incremented each time a frame is received which exceeded 1518 (non-VLAN) or 1522 (VLAN) and contains a valid FCS and were otherwise well formed. This does not include Range Length errors.

6.18.43 Receive Fragments Counter (RFRG)

GE0 Address: 0x190000D4 GE1 Address: 0x1A0000D4

Access: Read/Write

Reset: 0x0

This register is used to count received fragmented frames.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RFRG	The receive fragments counter. This register is incremented for each frame received which is less than 64 bytes in length and contains an invalid FCS. This includes integral and non-integral lengths.

6.18.44 Receive Jabber Counter (RJBR)

GE0 Address: 0x190000D8 GE1 Address: 0x1A0000D8

Access: Read/Write

Reset: 0x0

This register is used to count received jabber

frames.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RJBR	The received jabber counter. This register is incremented for frames which exceed 1518 (non-VLAN) or 1522 (VLAN) bytes and contains an invalid FCS, including alignment errors.

6.18.45 Receive Dropped Packet Counter (RDRP)

GE0 Address: 0x190000DC GE1 Address: 0x1A0000DC

packets.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	RDRP	The received dropped packets counter. this register is incremented for frames received which are streamed to the system but are later dropped due to a lack of system resources.

6.18.46 Transmit Byte Counter (TBYT)

GE0 Address: 0x190000E0 GE1 Address: 0x1A0000E0

Access: Read/Write

Reset: 0x0

This register is used to count transmitted bytes.

This register is used to count received dropped

Bit	Bit Name	Description
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.
23:0	TYBT	The transmit byte counter. This register is incremented by the number of bytes that were put on the wire including fragments of frames that were involved with collisions. This count does not include preamble/SFD or jam bytes.

6.18.47 Transmit Packet Counter (TPKT)

GE0 Address: 0x190000E4 GE1 Address: 0x1A0000E4

Access: Read/Write

Reset: 0x0

This register is used to count transmitted packets.

This register is used to count transmitted

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TPKT	The transmit packet counter. This register is incremented for each transmitted packet (including bad packets, excessive deferred packets, excessive collision packets, late collision packets, all Unicast, Broadcast and Multicast packets.

6.18.48 Transmit Multicast Packet Counter (TMCA)

GE0 Address: 0x190000E8 GE1 Address: 0x1A0000E8

multicast packets.

Access: Read/Write

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TMCA	Transmit multicast packet counter. Incremented for each multicast valid frame transmitted (excluding broadcast frames).

6.18.49 Transmit Broadcast Packet Counter (TBCA)

GE0 Address: 0x190000EC This register is used to count transmitted

GE1 Address: 0x1A0000EC broadcast packets. Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17:0	TBCA	Transmit broadcast packet counter. Incremented for each broadcast frame transmitted (excluding multicast frames).

6.18.50 Transmit Pause Control Frame Counter (TXPF)

GE0 Address: 0x190000F0 This register is used to count transmitted pause

GE1 Address: 0x1A0000F0 control frames.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TXPF	Transmit pause frame packet counter. Incremented each time a valid pause MAC control frame is transmitted.

6.18.51 Transmit Deferral Packet Counter (TDFR)

GE0 Address: 0x190000F4 This register is used to count transmitted GE1 Address: 0x1A0000F4 deferral packets.

Access: Read/Write

Reset: 0x0

Bit **Bit Name** Description **RES** Reserved. Must be written with zero. Contains zeros when read. 31:12 11:0 **TDFR** Transmit deferral packet counter. Incremented for each frame that was deferred on its first transmission attempt. Does not include frames involved in collisions.

6.18.52 Transmit Excessive Deferral Packet Counter (TEDF)

GE0 Address: 0x190000F8 This register is used to count excessive GE1 Address: 0x1A0000F8 transmitted deferral packets.

Access: Read/Write

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TEDF	Transmit excessive deferral packet counter. Incremented for frames aborted that were deferred for an excessive period of time (3036 byte times).

6.18.53 Transmit Single Collision Packet Counter (TSCL)

GE0 Address: 0x190000FC This register is used to count transmitted single GE1 Address: 0x1A0000FC

Access: Read/Write

Reset: 0x0

collision packets.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TSCL	Transmit single collision packet counter. Incremented for each frame transmitted that experienced exactly one collision during transmission.

6.18.54 Transmit Multiple Collision Packet (TMCL)

GE0 Address: 0x19000100 This register is used to count transmitted GE1 Address: 0x1A000100 multiple collision packets.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TMCL	Tx multiple collision packet counter. Incremented for each frame transmitted that experienced 2–15 collisions (including any late collisions) during transmission as defined using the RETRY[3:0] field of the Tx function control register.

6.18.55 Transmit Late Collision Packet Counter (TLCL)

GE0 Address: 0x19000104 This register is used to count transmitted late GE1 Address: 0x1A000104 collision packets.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TLCL	Transmit late collision packet counter. Incremented for each frame transmitted that experienced a late collision during a transmission attempt. Late collisions are defined using the LCOL[5:0] field of the Tx function control register.

6.18.56 Transmit Excessive Collision Packet Counter (TXCL)

GE0 Address: 0x19000108 This register is used to count excessive GE1 Address: 0x1A000108 transmitted collision packets.

Access: Read/Write

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TXCL	Transmit excessive collision packet counter. Incremented for each frame that experienced 16 collisions during transmission and was aborted.

6.18.57 Transmit Total Collision Counter (TNCL)

GE0 Address: 0x1900010C GE1 Address: 0x1A00010C

Access: Read/Write

Reset: 0x0

This register is used to count transmitted total

collision packets.

Bit	Bit Name	Description
31:13	RES	Reserved. Must be written with zero. Contains zeros when read.
12:0	TNCL	Transmit total collision counter. Incremented by the number of collisions experienced during the transmission of a frame as defined as the simultaneous presence of signals on the DO and RD circuits (i.e., transmitting and receiving at the same time). Note, this register does not include collisions that result in an excessive collision condition).

6.18.58 Transmit Pause Frames Honored Counter (TPFH)

GE0 Address: 0x19000110 This register is used to count honored

GE1 Address: 0x1A000110 transmitted pause frames.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TPFH	Transmit pause frames honored counter. Incremented each time a valid pause MAC control frame is transmitted and honored.

6.18.59 Transmit Drop Frame Counter (TDRP)

GE0 Address: 0x19000114 This register is used to count transmitted drop GE1 Address: 0x1A000114 frames.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TDRP	Transmit drop frame counter. Incremented each time input PFH is asserted.

6.18.60 Transmit Jabber Frame Counter (TJBR)

GE0 Address: 0x19000118 This register is used to count transmitted jabber GE1 Address: 0x1A000118 frames.

Access: Read/Write

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TJBR	Transmit jabber frame counter. Incremented for each oversized transmitted frame with an incorrect FCS value.

6.18.61 Transmit FCS Error Counter (TFCS)

GE0 Address: 0x1900011C GE1 Address: 0x1A00011C

Access: Read/Write

Reset: 0x0

This register is used to count transmitted FCS

errors.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TFCS	Transmit FCS error counter. Incremented for every valid sized packet with an incorrect FCS value.

6.18.62 Transmit Control Frame Counter (TXCF)

GE0 Address: 0x19000120 GE1 Address: 0x1A000120

Access: Read/Write

Reset: 0x0

Bit

31:12

11:0

This register is used to count transmitted control frames.

Description
Reserved. Must be written with zero. Contains zeros when read.
Transmit control frame counter. Incremented for every valid size frame with a type field signifying a control frame.

6.18.63 Transmit Oversize Frame Counter (TOVR)

GE0 Address: 0x19000124

GE1 Address: 0x1A000124000128

Bit Name

RES

TXCF

Access: Read/Write

Reset: 0x0

This register is used to count transmitted

oversize frames.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TOVR	Transmit oversize frame counter. Incremented for each oversized transmitted frame with an correct FCS value.

6.18.64 Transmit Undersize Frame Counter (TUND)

GE0 Address: 0x19000128 GE1 Address: 0x1A000128

Access: Read/Write

Reset: 0x0

This register is used to count transmitted undersize frames.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TUND	Transmit undersize frame counter. Incremented for every frame less then 64 bytes, with a correct FCS value.

6.18.65 Transmit Fragment Counter (TFRG)

GE0 Address: 0x1900012C GE1 Address: 0x1A00012C

Access: Read/Write

Reset: 0x0

This register is used to count transmitted fragments.

Bit	Bit Name	Description
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.
11:0	TFRG	Transmit fragment counter. Incremented for every frame less then 64 bytes, with an incorrect FCS value.

6.18.66 Carry Register 1 (CAR1)

GE0 Address: 0x19000130 GE1 Address: 0x1A000130

Access: Read-Only

Reset: 0x0

Carry register bits are cleared on carry register write while the respective bit is asserted.

Bit	Bit Name	Description
31	C1_64	Carry register 1 TR64 counter carry bit
30	C1_127	Carry register 1 TR127 counter carry bit
29	C1_255	Carry register 1 TR255 counter carry bit
28	C1_511	Carry register 1 TR511 counter carry bit
27	C1_1K	Carry register 1 TR1K counter carry bit
26	C1_MAX	Carry register 1 TRMAX counter carry bit
25	C1_MGV	Carry register 1 TRMGV counter carry bit
24:17	RES	Reserved. Must be written with zero. Contains zeros when read.
16	C1_RBY	Carry register 1 RBYT counter carry bit
15	C1_RPK	Carry register 1 RPKT counter carry bit
14	C1_RFC	Carry register 1 RFCS counter carry bit
13	C1_RMC	Carry register 1 RMCA counter carry bit
12	C1_RBC	Carry register 1 RBCA counter carry bit
11	C1_RXC	Carry register 1 RXCF counter carry bit
10	C1_RXP	Carry register 1 RXPF counter carry bit
9	C1_RXU	Carry register 1 RXUO counter carry bit
8	C1_RAL	Carry register 1 RALN counter carry bit
7	C1_RFL	Carry register 1 RFLR counter carry bit
6	C1_RCD	Carry register 1 RCDE counter carry bit
5	C1_RCS	Carry register 1 RCSE counter carry bit
4	C1_RUN	Carry register 1 RUND counter carry bit
3	C1_ROV	Carry register 1 ROVR counter carry bit
2	C1_RFR	Carry register 1 RFRG counter carry bit
1	C1_RJB	Carry register 1 RJBR counter carry bit
0	C1_RDR	Carry register 1 RDRP counter carry bit

6.18.67 Carry Register 2 (CAR2)

GE0 Address: 0x19000134 GE1 Address: 0x1A000134

Access: Read-Only

Reset: 0x0

Carry register bits are cleared on a carry register write while the respective bit is asserted.

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19	C2_TJB	Carry register 2 TJBR counter carry bit
18	C2_TFC	Carry register 2 TFCS counter carry bit
17	C2_TCF	Carry register 2 TXCF counter carry bit
16	C2_TOV	Carry register 2 TOVR counter carry bit
15	C2_TUN	Carry register 2 TUND counter carry bit
14	C2_TFG	Carry register 2 TFRG counter carry bit
13	C2_TBY	Carry register 2 TBYT counter carry bit
12	C2_TPK	Carry register 2 TPKT counter carry bit
11	C2_TMC	Carry register 2 TMCA counter carry bit
10	C2_TBC	Carry register 2 TBCA counter carry bit
9	C2_TPF	Carry register 2 TXPF counter carry bit
8	C2_TDF	Carry register 2 TDFR counter carry bit
7	C2_TED	Carry register 2 TEDF counter carry bit
6	C2_TSC	Carry register 2 TSCL counter carry bit
5	C2_TMA	Carry register 2 TMCL counter carry bit
4	C2_TLC	Carry register 2 TLCL counter carry bit
3	C2_TXC	Carry register 2 TXCL counter carry bit
2	C2_TNC	Carry register 2 TNCL counter carry bit
1	C2_TPH	Carry register 2 TPFH counter carry bit
0	C2_TDP	Carry register 2 TDRP counter carry bit

6.18.68 Carry Mask Register 1 (CAM1)

GE0 Address: 0x19000138 GE1 Address: 0x1A000138

Access: Read/Write

Reset: 0x1

When one of these mask bits is set to zero, the corresponding interrupt bit is allowed to cause interrupt indications on output CARRY.

Bit	Bit NaM1e	Description
31	M1_64	Mask register 1 TR64 counter carry bit
30	M1_127	Mask register 1 TR127 counter carry bit
29	M1_255	Mask register 1 TR255 counter carry bit
28	M1_511	Mask register 1 TR511 counter carry bit
27	M1_1K	Mask register 1 TR1K counter carry bit
26	M1_MAX	Mask register 1 TRMAX counter carry bit
25	M1_MGV	Mask register 1 TRMGV counter carry bit
24:17	RES	Reserved. Must be written with zero. Contains zeros when read.
16	M1_RBY	Mask register 1 RBYT counter carry bit
15	M1_RPK	Mask register 1 RPKT counter carry bit
14	M1_RFC	Mask register 1 RFCS counter carry bit
13	M1_RMC	Mask register 1 RMCA counter carry bit
12	M1_RBC	Mask register 1 RBCA counter carry bit
11	M1_RXC	Mask register 1 RXCF counter carry bit
10	M1_RXP	Mask register 1 RXPF counter carry bit
9	M1_RXU	Mask register 1 RXUO counter carry bit
8	M1_RAL	Mask register 1 RALN counter carry bit
7	M1_RFL	Mask register 1 RFLR counter carry bit
6	M1_RCD	Mask register 1 RCDE counter carry bit
5	M1_RCS	Mask register 1 RCSE counter carry bit
4	M1_RUN	Mask register 1 RUND counter carry bit
3	M1_ROV	Mask register 1 ROVR counter carry bit
2	M1_RFR	Mask register 1 RFRG counter carry bit
1	M1_RJB	Mask register 1 RJBR counter carry bit
0	M1_RDR	Mask register 1 RDRP counter carry bit

6.18.69 Carry Mask Register 2 (CAM2)

GE0 Address: 0x1900013C GE1 Address: 0x1A00013C

Access: Read/Write

Reset: 0x1

When one of these mask bits is set to zero, the corresponding interrupt bit is allowed to cause interrupt indications on output CARRY.

Bit	Bit Name	Description
31:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19	M2_TJB	Mask register 2 TJBR counter carry bit
18	M2_TFC	Mask register 2 TFCS counter carry bit
17	M2_TCF	Mask register 2 TXCF counter carry bit
16	M2_TOV	Mask register 2 TOVR counter carry bit
15	M2_TUN	Mask register 2 TUND counter carry bit
14	M2_TFG	Mask register 2 TFRG counter carry bit
13	M2_TBY	Mask register 2 TBYT counter carry bit
12	M2_TPK	Mask register 2 TPKT counter carry bit
11	M2_TMC	Mask register 2 TMCA counter carry bit
10	M2_TBC	Mask register 2 TBCA counter carry bit
9	M2_TPF	Mask register 2 TXPF counter carry bit
8	M2_TDF	Mask register 2 TDFR counter carry bit
7	M2_TED	Mask register 2 TEDF counter carry bit
6	M2_TSC	Mask register 2 TSCL counter carry bit
5	M2_TMA	Mask register 2 TMCL counter carry bit
4	M2_TLC	Mask register 2 TLCL counter carry bit
3	M2_TXC	Mask register 2 TXCL counter carry bit
2	M2_TNC	Mask register 2 TNCL counter carry bit
1	M2_TPH	Mask register 2 TPFH counter carry bit
0	M2_TDP	Mask register 2 TDRP counter carry bit

6.18.70 DMA Transfer Control for Queue 0 (DMATXCNTRL_Q0)

GE0 Address: 0x19000180 GE1 Address: 0x1A000180 Access: Read/Write

Bit	Bit Name	Description			
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.			
0	TX_ENABLE	Enables queue 0			

6.18.71 Descriptor Address for Queue 0 Tx (DMATXDESCR_Q0)

GE0 Address: 0x19000184 GE1 Address: 0x1A000184

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description		
31:2	DESCR_ ADDR	The descriptor address to be fetched for queue 0		
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.		

6.18.72 Transmit Status (DMATXSTATUS)

GE0 Address: 0x19000188 GE1 Address: 0x1A000188

Access: Read/Write

Reset: 0x0

This register is used to set the bits and flags regarding the DMA controller and its

transferring status.

Bit	Bit Name	Description				
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.				
23:16	TXPKTCOUNT	This 8-bit TX packet counter increments when the DMA controller transfers a packet successfully, and decrements when the host writes a 1 to TX_PKT_SENT (bit [0]).				
15:12	RES	Reserved.				
11	TX_UNDERRUN_Q3	ndicates TXUNDERRUN_Q3 as an interrupt source				
10	TX_UNDERRUN_Q2	Indicates TXUNDERRUN_Q2 as an interrupt source				
9	TX_UNDERRUN_Q1	Indicates TXUNDERRUN_Q1 as an interrupt source				
8:4	RES	Reserved. Must be written with zero. Contains zeros when read.				
3	BUS_ERROR	Indicates that the DMA controller received a host/slave split, error, or retry response				
2	RES	Reserved. Must be written with zero. Contains zeros when read.				
1	TXUNDERRUN_Q0	This bit is set when the DMA controller reads a set ("1") Empty Flag in the descriptor it is processing				
0	TXPKTSENT	Indicates that one or more packets transferred successfully. This bit is cleared when TXPKTCOUNT (bits [23:16]) is zero. Writing a 1 to this bit reduces TXPKTCOUNT by one.				

6.18.73 Receive Control (DMARXCTRL)

GE0 Address: 0x1900018C GE1 Address: 0x1A00018C

Access: Read/Write

Reset: 0x0

This register is used to enable the DMA to receive packets.

Bit	Bit Name	Description		
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.		
0	RXENABLE	Allows the DMA to receive packet transfers. When set, the built-in DMA controller begins receiving packets as the FIFO indicates they are available (FRSOF asserted). The DMA controller clears this bit when it encounters an RX overflow or bus error state.		

6.18.74 Pointer to Receive Descriptor (DMARXDESCR)

GE0 Address: 0x19000190 GE1 Address: 0x1A000190 This register is used to find the location of the first TX packet descriptor in the memory.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description			
31:2	DESCRIPTOR_ ADDRESS	The descriptor address. When the RXENABLE (bit [0] of the "Receive Control (DMARXCTRL)" register) is set by the host, the DMA controller reads this register to find the host memory location of the first receive packet descriptor.			
1:0	RES	Ignored by the DMA controller, because it is a requirement of the system that all descriptors are 32-bit aligned in the host memory.			

6.18.75 Receive Status (DMARXSTATUS)

GE0 Address: 0x19000194 GE1 Address: 0x1A000194

Access: Read/Write

Reset: 0x0

This register is used to set the bits and flags regarding the DMA controller and its receiving

status.

Bit	Bit Name	Description			
31:24	RES	Reserved. Must be written with zero. Contains zeros when read.			
23:16	RXPKTCOUNT	This 8-bit receive packet counter increments when the DMA controller transfers a packet successfully, and decrements when the host writes a 1 to RXPKTRECEIVED (bit [0]).			
15:4	RES	Reserved. Must be written with zero. Contains zeros when read.			
3	BUSERROR	Indicates that the DMA controller received a host/slave split, error, or retry response			
2	RES	Reserved. Must be written with zero. Contains zeros when read.			
1	RXOVERFLOW	This bit is set when the DMA controller reads a set empty flag in the descriptor it is processing			
0	RXPKT RECEIVED	Indicates that one or more packets were received successfully. This bit is cleared when the RXPKTCOUNT (bits [23:16]) is zero. Writing a 1 to this bit reduces RXPKTCOUNT by one.			

6.18.76 Interrupt Mask (DMAINTRMASK)

GE0 Address: 0x19000198 GE1 Address: 0x1A000198

Access: Read/Write

Reset: 0x0

This register is used to configure interrupt masks for the DMA. Setting a bit to 1 enables the corresponding status signal as an interrupt source. The register "DMA Interrupts" is the AND of DMA status bits with this register.

Bit	Bit Name	Description		
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.		
11	TX_UNDERRUN_Q3_MASK	Setting this bit 1 enables TXUNDERRUN_Q3(bit [11] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source		
10	TX_UNDERRUN_Q2_MASK	Setting this bit 1 enables TXUNDERRUN_Q2 (bit [10] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source		
9	TX_UNDERRUN_Q1_MASK	Setting this bit 1 enables TXUNDERRUN_Q1 (bit [9] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source		
8	RES	Reserved. Must be written with zero. Contains zeros when read.		
7	BUS_ERROR_MASK	Setting this bit to 1 enables BUSERROR (bit [3] in the "Receive Status (DMARXSTATUS)" register) as an interrupt source		
6	RX_OVERFLOW_MASK	Setting this bit to 1 enables RXOVERFLOW (bit [1] in the "Receive Status (DMARXSTATUS)" register) as in interrupt source		
5	RES	Reserved. Must be written with zero. Contains zeros when read.		
4	RXPKTRECEIVED_MASK	Enables RXPKTRECEIVED (bit [0] in the "Receive Status (DMARXSTATUS)" register) as an interrupt source		
3	BUSERROR_MASK	Setting this bit to 1 enables BUSERROR (bit [3] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source		
2	RES	Reserved. Must be written with zero. Contains zeros when read.		
1	TX_UNDERRUN_Q0_MASK	Setting this bit 1 enables TXUNDERRUN_Q0 (bit [1] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source		
0	TXPKTSENT_MASK	Setting this bit to 1 enables TXPKTSENT (bit [0] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source		

6.18.77 Interrupts (DMAINTERRUPT)

GE0 Address: 0x1900019C GE1 Address: 0x1A00019C

Access: Read/Write

Reset: 0x0

This register is used to configure interrupts for the DMA. Flags in this register clear when their corresponding Status bit is cleared.

Bit	Bit Name	Description					
31:12	RES	Reserved. Must be written with zero. Contains zeros when read.					
11	TX_UNDERRUN_ Q3	Setting this bit 1 enables TXUNDERRUN_Q3(bit [11] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source					
10	TX_UNDERRUN_ Q2	Setting this bit 1 enables TXUNDERRUN_Q2 (bit [10] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source					
9	TX_UNDERRUN_ Q1	Setting this bit 1 enables TXUNDERRUN_Q1 (bit [9] in the "Transmit Status (DMATXSTATUS)" register) as an interrupt source					
8	RES	Reserved. Must be written with zero. Contains zeros when read.					
7	BUS_ERROR _MASK	etting this bit to 1 records an Rx bus error interrupt when BUS_ERROR (bit [3] in the "Receive Status (DMARXSTATUS)" register) and BUS_ERROR_MASK (bit "Interrupt Mask (DMAINTRMASK)" register) are both set					
6	RX_OVERFLOW_ MASK	Setting this bit to 1 records an Rx overflow error interrupt when RX_OVERFLOW (bit [1] in the "Receive Status (DMARXSTATUS)" register) and RX_OVERFLOW_MASK (bit [6] of the "Interrupt Mask (DMAINTRMASK)" register) are both set					
5	RES	Reserved. Must be written with zero. Contains zeros when read.					
4	RXPKT_ RECEIVED_ MASK	Records a RX_PKT_RECEIVED error interrupt when RX_PKT_RECEIVED (bit [0] in the "Receive Status (DMARXSTATUS)" register) and RXPKT_RECEIVED_MASK (bit [4] of the "Interrupt Mask (DMAINTRMASK)" register) are both set					
3	BUS_ERROR	Setting this bit to 1 enables BUSERROR (bit [3] in the "Transmit Status (DMATXSTATUS)" register) and BUSERROR_MASK (bit [3] of the "Interrupt Mask (DMAINTRMASK)" register) are both set					
2	RES	Reserved. Must be written with zero. Contains zeros when read.					
1	TX_UNDERRUN_ Q0	Setting this bit to 1 enables TX_UNDERRUN (bit [1] in the "Transmit Status (DMATXSTATUS)" register) and TX_UNDERRUN_MASK (bit [1] of the "Interrupt Mask (DMAINTRMASK)" register) are both set					
0	TXPKTSENT	Set this bit to 1 enables TXPKTSENT (bit [0] in the "Transmit Status (DMATXSTATUS)" register) and TXPKTSENT_MASK (bit [0] of the "Interrupt Mask (DMAINTRMASK)" register) are both set					

6.18.78 Ethernet Tx FIFO Throughput (ETH_TXFIFO_TH)

GE0 Address: 0x190001A4 GE1 Address: 0x1A0001A4 Access: Read/Write Reset: See field description This Ethernet register has a 2 KB Tx FIFO. It is use to determine the minimum and maximum levels of the transfer FIFO and correspondingly keep the transmit levels within the range to keep a continuous data transfer flowing.

Bit	Bit Name	Reset	Description	
31:26	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
25:16	TXFIFO_MAXTH	0x1D8	This bit represents the maximum number of double words in the Tx FIFO, and once this limit is surpassed, this bit should be de-asserted	
15:10	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
9:0	TXFIFO_MINTH	0x160	This bit specifies the minimum number of double words in the Tx FIFO, and if it is less than this value, this bit needs to be asserted.	

6.18.79 Current Tx and Rx FIFO Depth (ETH_XFIFO_DEPTH)

GE0 Address: 0x190001A8 GE1Address: 0x1A0001A8 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:26	RES	Reserved
25:16	CURRENT_RX_FIFO_DEPTH	Current Rx FIFO depth
15:10	RES	Reserved
9:0	CURRENT_TX_FIFO_DEPTH	Current Tx FIFO depth

6.18.80 Ethernet Rx FIFO Threshold (ETH_RXFIFO_TH)

GE0 Address: 0x190001AC GE1 Address: 0x1A0001AC Access: Read/Write Reset: See field description

This Ethernet register has a 2 KB Rx FIFO. It is used to determine the minimum and maximum levels of the transfer FIFO and correspondingly keep the transmit levels within the range to keep a continuous data transfer flowing.

Bit	Bit Name	Reset	Description	
31:10	SCRATCHREG_0	0x28	This bit is a pure scratch pad register that can be used by the CPU for any general purpose.	
9:0	RCVFIFO_MINTH	0x0	The minimum number of double words in the Rx FIFO. Once this number is reached, this bit needs to be asserted.	

6.18.81 Ethernet Free Timer

GE0 Address: 0x190001B8 GE1 Address: 0x1A0001B8 Access: Read/Write Reset: See field description This register updates the Ethernet descriptors with time stamps

Bit	Bit Name	Reset	Description		
31	TIMER_UPDATE	0x1	0	Timer update at the AHB_CLK	
			1	Free timer at the AHB_CLK/4	
30:21	SCRATCHREG_1	0x0	The pure general purpose register for use by the CPU		
20:0	FREE_TIMER	0x3FFFFF	Free timer		

6.18.82 DMA Transfer Control for Queue 1 (DMATXCNTRL_Q1)

GE0 Address: 0x190001C0 GE1 Address: 0x1A0001C0 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	TX_ENABLE	Enables queue 1

6.18.83 Descriptor Address for Queue 1 Tx (DMATXDESCR_Q1)

GE0 Address: 0x190001C4 GE1 Address: 0x1A0001C4 Access: Read/Write

Reset: 0x0

Bit	Bit Bit Name Description	
31:2	DESCR_ADDR	The descriptor address to be fetched for queue 1
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.18.84 DMA Transfer Control for Queue 2 (DMATXCNTRL_Q2)

GE0 Address: 0x190001C8 GE1 Address: 0x1A0001C8 Access: Read/Write

Bit	Bit Name	Description	
31:1	RES Reserved. Must be written with zero. Contains zeros when read.		
0	TX_ENABLE	ABLE Enables queue 2	

6.18.85 Descriptor Address for Queue 2 Tx (DMATXDESCR_Q2)

GE0 Address: 0x190001CC GE1 Address: 0x1A0001CC

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:2	DESCR_ ADDR	The descriptor address to be fetched for queue 2
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.18.86 DMA Transfer Control for Queue 3 (DMATXCNTRL_Q3)

GE0 Address: 0x190001D0

GE1 Address: 0x1A0001D0 Access: Read/Write

Reset: 0x0

Bit	Bit Name Description	
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	TX_ENABLE	Enables queue 3

6.18.87 Descriptor Address for Queue 3 Tx (DMATXDESCR_Q3)

GE0 Address: 0x190001D4 GE1 Address: 0x1A0001D4 Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:2	DESCR_ADDR	The descriptor address to be fetched for queue 3
1:0	RES	Reserved. Must be written with zero. Contains zeros when read.

6.18.88 DMA Transfer Arbitration Configuration (DMATXARBCFG)

GE0 Address: 0x190001D8 GE1 Address: 0x1A0001D8 Access: Read/Write Reset: See field description This register is used to select the type of arbitration used for the QoS feature and the weight to be assigned to a particular queue. Note that a weight of zero is not permitted and causes the hardware to misbehave.

Bit	Bit Name	Reset	Description	
31:26	WGT3	0x1	The weight for Queue 3, if WRR has been selected	
25:20	WGT2	0x2	The weight for Queue 2, if WRR has been selected	
19:14	WGT1	0x4	The weight for Queue 1, if WRR has been selected	
13:8	WGT0	0x8	The weight for Queue 0, if WRR has been selected	
7:1	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
0	RRMODE	0x4	Round robin mode	
			0 Simple priority (Q0 highest priority)	
			1 Weighted round robin (WRR)	

6.19 USB Controller Registers

Table 6-20 summarizes the USB controller registers and the modes they support.

Table 6-20. USB Controller Registers [1]

Offset	Access	Name	Description	DEV	SPH	Page
		Name	Description	DLV	31 11	rage
Identification Declare the sla		ce presence				
0x1B000000	RO	ID	Identification	X	X	page 233
0x1B000004	RO	HWGENERAL	General Hardware Parameters	X	Х	page 233
0x1B000008	RO	HWHOST	Host Hardware Parameters		Х	page 233
0x1B00000C	RO	HWDEVICE	Device Hardware Parameters	X		page 234
0x1B000010	RO	HWTXBUF	Tx Buffer Hardware Parameters	Х	X	page 234
0x1B000014	RO	HWRXBUF	Rx Buffer Hardware Parameters	Х	Х	page 234
Device/Host Ti Measure time-						
0x1B000080	RW	GPTIMER0LD	General Purpose Timer 0 Load	X	X	page 234
0x1B000084	Varies	GPTIMER0CTRL	General Purpose Timer 0 Control	Х	Х	page 235
0x1B000088	RW	GPTIMER1LD	General Purpose Timer 1 Load	Х	Х	page 235
0x1B00008C	RW	GPTIMER1CTRL	General Purpose Timer 1 Control	Х	Х	page 236
Device/Host Ca Specify the sof			abilities of the host/device controller im	npleme	ntatior	1
0x1B000100	RO	CAPLENGTH	Capability Register Length	X	Х	page 236
0x1B000102	RO	HCIVERSION	Host Interface Version Number	Х	Х	page 236
0x1B000104	RO	HCSPARAMS	Host Control Structural Parameters	Х	Х	page 237
0x1B000108	RO	HCCPARAMS	Host Control Capability Parameters		Х	page 238
0x1B000120	RO	DCIVERSION	Device Interface Version Number	X		page 238
0x1B000122	RO	DCCPARAMS	Device Control Capability Parameters	Х		page 239

December 2010

Table 6-20. USB Controller Registers (continued)^[1]

Offset	Access	Name	Description	DEV	SPH	Page
Device/Host O	perational	Registers		1	1	
0x1B000140	Varies	USBCMD	USB Command	Χ	X	page 239
0x1B000144	Varies	USBSTS	USB Status	X	Х	page 242
0x1B000148	RW	USBINTR	USB Interrupt Enable	X	Х	page 244
0x1B00014C	Varies	FRINDEX	USB Frame Index	X	Х	page 246
0x1B000154	RW	PERIODICLISTBASE	Frame List Base Address		Х	page 247
_	RW	DEVICEADDR	USB Device Address	Χ		page 247
0x1B000158	RW	ASYNCLISTADDR	Next Asynchronous List Address		X	page 247
_	RW	ENDPOINTLIST_ ADDR	Address at Endpoint List in Memory	Х		page 248
0x1B00015C	RW	TTCTRL	TT Status and Control		X	page 248
0x1B000160	RW	BURSTSIZE	Programmable Burst Size	X	Х	page 248
0x1B000164	RW	TXFILLTUNING	Host Tx Pre-Buffer Packet Tuning		Х	page 249
0x1B000174	RWC	ENDPTNAK	Endpoint NAK	Х		page 250
0x1B00017C	RW	ENDPTNAKEN	Endpoint NAK Enable	Х		page 250
0x1B000180	RO	CONFIGFLAG	Configured Flag		X	page 251
0x1B000184	Varies	PORTSC0	Port/Status Control	X	Х	page 251
0x1B0001A8	RW	USBMODE	USB Mode	X	Х	page 255
0x1B0001AC	RWC	ENDPTSETUPSTAT	Endpoint Setup Status	Х		page 256
0x1B0001B0	RWC	ENDPTPRIME	Endpoint Initialization	Х		page 257
0x1B0001B4	WC	ENDPTFLUSH	Endpoint De-Initialization	Х		page 257
0x1B0001B8	RO	ENDPTSTATUS	Endpoint Status	Х		page 258
0x1B0001BC	RWC	ENDPTCOMPLETE	Endpoint Complete	X		page 258
0x1B0001C0	RW	ENDPTCTRL0	Endpoint Control 0	Х		page 259
0x1B0001C4	RW	ENDPTCTRL1	Endpoint Control 1	Х		page 260
0x1B0001C8	RW	ENDPTCTRL2	Endpoint Control 2	X		page 260
0x1B0001CC	RW	ENDPTCTRL3	Endpoint Control 3	Х		page 260
0x1B0001D0	RW	ENDPTCTRL4	Endpoint Control 4	X		page 260
0x1B0001D4	RW	ENDPTCTRL5	Endpoint Control 5	Х		page 260

[1]DEV = Device Mode SPH = Single-Port Host

6.19.1 Identification (ID)

Offset: 0x1B000000 Access: Read-Only Reset Value: 0x42FA05 Provides a simple way to determine whether the system provides the USB-HS USB 2.0 core and identifies the USB-HS USB 2.0 core and revision number.

Bit	Name	Description
31:24	RES	Reserved. Must be set to 0.
23:16	REVISION[7:0]	Core revision number
15:14	RES	Reserved. Must be set to 1.
13:8	NID[5:0]	Complement version of ID bits [5:0]
7:6	RES	Reserved. Must be set to 0.
5:0	ID	Configuration number; Set to 0x05 Indicates that the peripheral is the USB-HS USB 2.0 core.

6.19.2 General Hardware Parameters (HWGENERAL)

Offset: 0x1B000004 Access: Read-Only Reset Value: 0x22

Bit	Name	Description
31:10	RES	Reserved. Must be set to 0.
9	SM	VUSB_HS_PHY_SERIAL
8:6	PHYM	VUSB_HS_PHY_TYPE
5:4	PHYW	VUSB_HS_PHY16_8
3	RES	Reserved
2:1	CLKC	VUSB_HS_CLOCK_CONFIGURATION
0	RT	VUSB_HS_RESET_TYPE

6.19.3 Host Hardware Parameters (HWHOST)

Offset: 0x1B000008 Access: Read-Only Reset Value: 0x1002001

Bit	Name	Description
31:24	TTPER	VUSB_HS_TT_PERIODIC_CONTEXTS
23:16	TTASY	VUSB_HS_TT_ASYNC_CONTEXTS
15:4	RES	Reserved. Must be set to 0.
3:1	NPORT	VUSB_HS_NUM_PORT – 1
0	НС	VUSB_HS_HOST

6.19.4 Device Hardware Parameters (HWDEVICE)

Offset: 0x1B00000C Access: Read-Only Reset Value: 0xD

Bit	Name	Description
31:6	RES	Reserved. Must be set to 0.
5:1	DEVEP	VUSB_HS_DEV_EP
0	DC	Device capable; [0 ≥ VUSB_HS_DEV]

6.19.5 Tx Buffer Hardware Parameters (HWTXBUF)

Offset: 0x1B000010 Access: Read-Only Reset Value: 0x80060908

Bit	Name	Description
31:24	RES	Reserved. Must be set to 0.
23:16	TXCHANADD	VUSB_HS_TX_CHAN_ADD
15:8	TXADD	VUSB_HS_TX_ADD
7:0	TXBURST	VUSB_HS_TX_BURST

6.19.6 Rx Buffer Hardware Parameters (HWRXBUF)

Offset: 0x1B000014 Access: Read-Only Reset Value: 0x608

Bit	Name	Description
31:16	RES	Reserved. Must be set to 0.
15:8	RXADD	VUSB_HS_RX_ADD
7:0	RXBURST	VUSB_HS_RX_BURST

6.19.7 General Purpose Timer O Load (GPTIMEROLD)

Offset: 0x1B000080 Access: Read/Write Reset Value: 0 Contains the timer duration or load value.

Bit	Name	Description
31:24	RES	Reserved. Must be set to 0.
23:0	GPTLD	General purpose timer load value The value to load into the GPTCNT countdown timer on a reset action. This value in this register represents the time (in ms minus 1) for the timer duration.

6.19.8 General Purpose Timer O Control (GPTIMEROCTRL)

Offset: 0x1B000084

Access: See Field Descriptions

Reset Value: 0

Contains the timer control. A data field can be queried to determine the running count value. This timer has granularity on 1 μs and can be programmed to over 16 s. This timer supports two modes: a one-shot and a looped count. When the timer counter value goes to zero an interrupt can be generated using the timer interrupts in the USBSTS and USBINTR registers.

Bit	Name	Descri	ption
31	GPTRUN	General purpose timer run (read/write) Enables the general-purpose timer to run. Setting or clearing this bit will not have an effect on the GPTCNT.	
		0	Timer stop
		1	Timer run
30	GPTRST	Genera	ll purpose timer reset (write-only)
		0	No action
		1	Load counter value Writing a one to this bit reloads GPTCNT with the value in GPTLD.
29:25	RES	Reserved. Must be set to 0.	
24	GPTMODE		al purpose timer mode (read/write) between a single-timer (one-shot) countdown and a looped countdown.
		0	One-shot The timer counts down to zero, generates an interrupt, and stops until the counter is reset by software.
		1	Repeat The timer counts down to zero, generates an interrupt, and automatically reloads the counter to restart.
23:0	GPTCNT		nning timer value.

6.19.9 General Purpose Timer 1 Load (GPTIMER1LD)

Offset: 0x1B000088 Access: Read/Write Reset Value: 0 See also "General Purpose Timer 0 Load (GPTIMER0LD)" on page 234.

Bit	Name	Description
31:24	RES	Reserved. Must be set to 0.
23:0	GPTLD	General purpose timer load value The value to load into the GPTCNT countdown timer on a reset action. This value in this register represents the time (in ms minus 1) for the timer duration.

6.19.10 General Purpose Timer 1 Control (GPTIMER1CTRL)

See also "General Purpose Timer 0 Control Offset: 0x1B00008C (GPTIMER0CTRL)" on page 235. Access: Read/Write

Reset Value: 0

Bit	Name	Descript	ion
31	GPTRUN	General purpose timer run (read/write) Enables the general-purpose timer to run. Setting or clearing this bit will not have effect on the GPTCNT.	
		0	Timer stop
		1	Timer run
30	GPTRST	General p	ourpose timer reset (write-only)
		0	No action
		1	Load counter value
			Writing a one to this bit reloads GPTCNT with the value in GPTLD.
29:25	RES	Reserved. Must be set to 0.	
24	GPTMODE	General purpose timer mode (read/write)	
		Selects between a single-timer (one-shot) countdown and a looped countdown.	
		,	One-shot The timer counts down to zero, generates an interrupt, and stops until the counter is reset by software.
			Repeat The timer counts down to zero, generates an interrupt, and automatically reloads the counter to restart.
23:0	GPTCNT	General purpose timer counter (read-only)	
		The runn	ing timer value.

6.19.11 Capability Register Length (CAPLENGTH)

Offset: 0x1B000100 Access: Read-Only Reset Value: 40H

Bit	Name	Description
31:8	RES	Reserved. Must be set to 0.
7:0	CAPLENGTH	Capability register length Indicates which offset to add to the beginning of the register base address of the operational registers (see Table 6-20, "Device/Host Operational Registers" on page 232)

6.19.12 Host Interface Version Number (HCIVERSION)

Offset: 0x1B000102 Access: Read-Only

Bit	Name	Description
31:16	RES	Reserved. Must be set to 0.
15:0	HCIVERSION	This two-byte register contains a BCD encoding of the EHCI revision number supported by this host controller. The most significant byte of this register represents a major revision, and the least significant byte is the minor revision.

6.19.13 Host Control Structural Parameters (HCSPARAMS)

Offset: 0x1B000104 Access: Read-Only

Bit	Name	Description	
31:28	RES	Reserved. Must be set to 0.	
27:24	N_TT	Number of transaction translators Indicates the number of embedded transaction translators associated with the USB2.0 host controller. Always set to 0.	
23:20	N_PTT	Number of ports per transaction translator Indicates the number of ports assigned to each transaction translator within the USB2.0 host controller.	
19:17	RES	Reserved. Must be set to 0.	
16	PI	Port indicator Indicates whether ports support port indicator control. This field is always set to 1,so the port status and control registers include a read/writable field for controlling the port indicator state.	
15:12	N_CC	Number of companion controllers Indicates the number of companion controllers associated with this USB2.0 host controller. A value larger than zero in this field indicates there are companion USB1.1 host controller(s) and port-ownership hand-offs are supported. High, Full-and Low-speed devices are supported on the host controller root ports.	
11:8	N_PCC	Number of ports per companion controller Indicates the number of ports supported per internal companion controller; used to indicate the port routing configuration to the system software.	
7:5	RES	Reserved. Must be set to 0.	
4	PPC	Port power control Indicates whether the host controller implementation includes port power control.	
		Indicates the ports do not have port power switches. The value of this field affects the functionality of the port power field in each port status and control register.	
		1 Indicates the ports have port power switches	
3:0	N_PORTS	Number of downstream ports Specifies the number of physical downstream ports implemented on this host controller. The value determines how many port registers are addressable in the operational registers (see Table 6-20, "Device/Host Operational Registers" on page 232). Valid values range from 1h–Fh. A zero in this field is undefined.	

December 2010

6.19.14 Host Control Capability Parameters (HCCPARAMS)

Offset: 0x1B000108 Identifies multiple mode control addressing Access: Read-Only capability.

Reset Value: 0006h

Bit	Name	Description		
31:16	RES	Reserved. Must be set to 0.		
15:8	EECP	EHCI extended capabilities pointer (default = 0) This optional field indicates the existence of a capabilities list.		
7:4	IST	Isochronous scheduling threshold; Indicates where software can reliably update the isochronous schedule relative to the current position of the executing host controller.		
		bit [7] The value of the least significant three bits indicates the number of micro-frames a host controller can hold a set of isochronous data structures (one or more) before flushing the state		
		bit [7] Host software assumes the host controller may cache an isochronous data structure for an entire frame		
3	RES	Reserved. Must be set to 0.		
2	ASP	Asynchronous schedule park capability (default = 1) The feature can be disabled or enabled and set to a specific level by using the asynchronous schedule park mode enable and asynchronous schedule park mode count fields in the register "USB Command (USBCMD)" on page 239.		
		1 The host controller supports the park feature for high-speed queue heads in the asynchronous schedule		
1	PFL	Programmable frame list flag		
		O System software must use a frame list length of 1024 elements with this host controller. The frame list size field in the register "USB Command (USBCMD)" is read-only and must be set to zero.		
		System software can specify and use a smaller frame list and configure the host controller via the frame list size field in the register "USB Command (USBCMD)". The frame list must always be aligned on a 4K-page boundary, ensuring the frame list is always physically contiguous.		
0	ADC	64-bit addressing capability; must be set to 0. 64-bit addressing capability is not supported.		

6.19.15 Device Interface Version Number (DCIVERSION)

Offset: 0x1B000120 Access: Read-Only

Bit	Name	Description
31:16	RES	Reserved. Must be set to 0.
15:0	DCIVERSION	The device controller interface conforms to the two-byte BCD encoding of the interface version number contained in this register.

6.19.16 Device Control Capability Parameters (DCCPARAMS)

Offset: 0x1B000122 Access: Read-Only

Bit	Name	Description
31:9	RES	Reserved. Must be set to 0.
8	HC	Host capable; the controller can operate as an EHCI-compatible USB 2.0 host controller.
7	DC	Device capable; when set to 1, this controller is capable of operating as a USB 2.0 device.
6:5	RES	Reserved. Must be set to 0.
4:0	DEN	Device endpoint number Indicates the number of endpoints (0–16) built into the device controller. If this controller is not device capable, this field is zero.

6.19.17 USB Command (USBCMD)

Offset: 0x1B000140

Access: See Field Descriptions Reset Value: 00080B00h (host mode) 00080000h (device mode)

Bit	Name	Desci	escription				
31:24	RES	Reser	Reserved. Must be set to zero.				
23:16	ITC	RW	System	onterrupt threshold control by stem software uses this field to set the max. rate the host/device controller issues interrupts at. ITC contains the maximum interrupt interval measured in micro-frames. Oh			
			00h				
			01h	1 micro-frame			
			02h	02h 2 micro-frames			
			04h	04h 4 micro-frames 08h 8 micro-frames 10h 16 micro-frames			
			08h				
			10h				
			20h	32 micro-frames			
			40h	64 micro-frames			

Bit	Name	Desc	ription				
15	FS2	RW /RO	Param list that	write if programmable frame list flag in the register "Host Control Structural eters (HCSPARAMS)" on page 237 is set to one. Specifies the size of the frame to controls which bits in the register "USB Frame Index (FRINDEX)" on 46 to use for the frame list current index. This field is made up of bits [15, 3:2] of			
			000	1024 elements (4096 bytes) (default)			
			001	512 elements (2048 bytes)			
			010	256 elements (1024 bytes)			
			011	128 elements (512 bytes)			
			100	64 elements (256 bytes)			
			101	32 elements (128 bytes)			
			110	16 elements (64 bytes)			
			111	8 elements (32 bytes)			
14	ATDT W	RW	Used as (primed be clear	Add dTD tripwire (device mode only) Used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoint's linked list. This bit is set and cleared by software. This bit shall also be cleared by hardware when is state machine is hazard region for which adding a dTD to a primed endpoint may go unrecognized.			
13	SUTW	RW	Used as the DC new set for a pr	Setup tripwire (device mode only) Used as a semaphore to ensure the 8-byte setup data payload is extracted from a QH by the DCD without being corrupted. If the setup lockout mode is off, a hazard exists when new setup data arrives while the DCD is copying the setup data payload from the QH for a previous setup packet. This bit is set and cleared by software and cleared by hardware when a hazard exists.			
12	RES	Rese	ved. Must be set to zero.				
11	ASPE	RW /RO	If the as Param the bit	Asynchronous schedule park mode enable (optional) If the asynchronous park capability bit in the register "Host Control Structural Parameters (HCSPARAMS)" is a one, this bit defaults to 1h and is R/W. Otherwise the bit must be a zero and is RO. Software uses this bit to enable or disable park mode.			
			0	Park mode is disabled			
		_	1	Park mode is enabled			
10	RES		eserved. Must be set to zero.				
9 8	ASP1 ASP0	RW /RO	If the as	ronous schedule park mode count (optional) synchronous park capability bit in the register "Host Control Structural structural (LICSPARAMO)": 1			
7	RES	Reco	Parameters (HCSPARAMS)" is a one, this field defaults to 3h and is R/W. Otherwise it defaults to zero and is RO. Contain a count of the number of successive transactions the host controller is allowed to execute from a high-speed queue head on the asynchronous schedule before continuing traversal of the asynchronous schedule. Valid values are 1h–3h. Software should not write a zero to this bit when park mode is enabled.				
/	KES	Reserved. Must be set to zero.					

Bit	Name	Desc	ription					
6	IAA	RW	Used as time it a doorbel sets the (USBS) Interru the nex The hos advance	Interrupt on asynchronous advance doorbell (host mode only) Used as a doorbell by software to tell the host controller to issue an interrupt the next time it advances asynchronous schedule. Software must write a 1 to this bit to ring the doorbell. When the host controller has evicted all appropriate cached schedule states, it sets the interrupt on the asynchronous advance status bit in the register "USB Status (USBSTS)". If the interrupt on synchronous advance enable bit in the register "USB Interrupt Enable (USBINTR)" is set to one, the host controller asserts an interrupt at the next interrupt threshold. The host controller sets this bit to zero after setting the interrupt on the synchronous advance status bit in the register "USB Status (USBSTS)" to one. Software should not write a one to this bit if asynchronous schedule is inactive.				
5	ASE	RW	Asynch	ronous schedule enable (host mode only)				
			0	Do not process the asynchronous schedule (default)				
			1	Use the register "Next Asynchronous List Address (ASYNCLISTADDR)" to access the asynchronous schedule				
4	PSE	RW	Periodi	c schedule enable (host mode only)				
			0	Do not process the periodic schedule (default)				
			1	Use the register "Frame List Base Address (PERIODICLISTBASE)" on page 247 to access the asynchronous schedule				
3	FS1	RW		Frame list size				
2	FS0	/RO	See bit	[15], "FS2", for description.				
1	RST	controller when the reset process is complete. Software cannot terminal process early by writing a zero to this register. Host When this bit is enabled, the host controller resets internal pipe		re uses this bit to reset the controller. This bit is set to zero by the host/device er when the reset process is complete. Software cannot terminate the reset				
				terminated. A USB reset is not driven on downstream ports. SW should not set this bit to 1 when HCHalted in the register "USB Status (USBSTS)" is set to 0.				
			Device	When software writes a 1 to this bit, the device controller resets internal pipelines, timers, etc. to the initial values. Writing a 1 to this bit when the device is in the attached state is not recommended. To ensure the device is not in attached state before initiating a device controller reset, primed endpoints must be flushed and the run/stop bit [0] set to 0.				
0	RS	RW	Run/St	op $(1 = \text{Run}, 0 = \text{stop (default)})$				
				Host	When set to a 1, the host controller proceeds with the schedule and continues as long as this bit is set to 1. When this bit is set to 0, the host controller completes the current transaction on the USB then halts. The HCHalted bit in the register "USB Status (USBSTS)" indicates when the host controller has completed the transaction and stopped. Software should not write a one to this field unless the host controller is stopped.			
			Device	Writing a 1 to this bit causes the device controller to enable a pull-up on D+ and initiates an attach event. This bit is not connected to pull-up enable, as the pull-up becomes disabled on transitioning to high-speed mode. This bit to prevents an attach event before the device controller is properly initialized. Writing a 0 causes a detach event.				

6.19.18 USB Status (USBSTS)

Offset: 0x1B000144

Access: See Field Descriptions

Reset Value: 0

Indicates various states of the host/device controller and pending interrupts. This register does not indicate status resulting from a transaction on the serial bus. Software clears some bits in this register by writing a 1 to them.

Bit	Name	Descr	Description			
31:26	RES	Reser	ved. Must be set to zero.			
25	TI	RW C	General purpose timer interrupt 1 Set when the counter in the register "General Purpose Timer 1 Control (GPTIMER1CTRL)" on page 236 transitions to zero. Write-one-to-clear.			
24	TI0	RW C	General purpose timer interrupt 0 Set when the counter in the register "General Purpose Timer 0 Control (GPTIMER0CTRL)" on page 235 transitions to zero. Write-one-to-clear.			
23:20	RES	Reser	ved. Must be set to zero.			
19	UPI	RW C	USB host periodic interrupt Set by the host controller when the cause of an interrupt is a completion of a USB transaction where the transfer descriptor (TD) has an interrupt on complete (IOC) bit set and the TD was from the periodic schedule. This bit is also set by the host controller when a short packet (the actual number of bytes received was less than the expected number of bytes) is detected and the packet is on the periodic schedule. Write-one-to-clear.			
18	UAI	RW C	USB host asynchronous interrupt Set by the host controller when the cause of an interrupt is a completion of a USB transaction where the TD has an interrupt on complete (IOC) bit set AND the TD was from the asynchronous schedule. This bit is also set by the host controller when a short packet (the actual number of bytes received was less than the expected number of bytes) is detected and the packet is on the asynchronous schedule. Write-one-to-clear.			
17	RES	Reser	Reserved. Must be set to zero.			
16	NAKI	RO Set by hardware when for one endpoint, both the Tx/Rx endpoint NAK corresponding Tx/Rx endpoint NAK enable bit are set. Automatically cl hardware when the all enabled Tx/Rx endpoint NAK bits are cleared.				
15	AS	RO	Reports the real status of the asynchronous schedule (host mode only) The host controller is not required to immediately disable or enable the asynchronous schedule when software transitions the asynchronous schedule enable bit in the register "USB Command (USBCMD)" on page 239. When this bit and the asynchronous schedule enable bit are the same value, the asynchronous schedule is either enabled (1) or disabled (0 = Default).			
14	PS	RO	Reports the real status of the periodic schedule (host mode only) The host controller is not required to immediately disable or enable the periodic schedule when software transitions the periodic schedule enable bit in the register "USB Command (USBCMD)". When this bit and the periodic schedule enable bit are the same value, the periodic schedule is either enabled (1) or disabled (0 = Default).			
13	RCL	RO	Reclamation (host mode only) Used to detect an empty asynchronous schedule.			
12	НСН	RO	HCHalted (host mode only) This bit is a zero whenever the run/stop bit in the register "USB Command (USBCMD)" is set to one. The host controller sets this bit to one (default setting) after it has stopped executing because the run/stop bit is set to 0, either by software or by the host controller hardware.			

Bit	Name	Description					
11	RES	Reserved. Mu	st be set to zero.				
10	ULPII	RW ULPI in C Only p					
9	RES	Reserved. Must be set to zero.					
8	SLI	C When a	DCSuspend When a device controller enters a suspend state from an active state, this bit is set to 1 Cleared by the device controller upon exiting from a suspend state. Write-one-to-clear.				
7	SRI	C When to device this bit synchrom Becaus	f-(micro-)frame (SOF) received the device controller detects a SOF, this bit is set to 1. When a SOF is late, the controller automatically sets this bit to indicate that an SOF was expected, thus is set about every 1 ms in device FS mode and every 125 ms in HS mode, and onized to the received SOF. The third the transfer of the tran				
			l of 1 ms during the prelude to connect and chirp. Write-one-to-clear.				
6	URI	C When t	USB reset received (device controller only) When the device controller detects a USB Reset and enters the default state (0), this bit is set to 1. Write-one-to-clear.				
5	AAI	C System host co asynch	1 , J				
4	RES	Reserved. Must be set to zero.					
3	FRI	C The ho maxim list size Comm					
2	PCI		ange detect				
		C Host	The host controller sets this bit to 1 when on any port, a connect status or a port enable/disable change occurs, or the force port resume bit is set as the result of a transition on the suspended port.				
		Device	The device controller sets this bit to 1 when the port controller enters full- or high-speed operational state. When the port controller exits full- or high-speed operation states due to reset or suspend events, the notification mechanisms are the USB Reset Received bit and the DCSuspend bits respectively. Write-one-to-clear.				
1	UEI	RW USB error interrupt C When completion of a USB transaction results in an error condition, this bit along with the USBINT bit is set by the host/device controller if the TD on which the error interrupt occurred also had its interrupt on complete (IOC) bit set. Write-one-to-clear.					
0	UI	C Set by t USB tra Also se	terrupt the host/device controller when the cause of an interrupt is a completion of a completion where the TD has an interrupt on complete (IOC) bit set. t by the host/device controller when a short packet (the actual number of bytes d was less than the expected number of bytes) is detected. Write-one-to-clear.				

6.19.19 USB Interrupt Enable (USBINTR)

Offset: 0x1B000148 Access: Read/Write Reset Value: 0

Interrupts to software are enabled with this register. An interrupt is generated when a bit is set and the corresponding interrupt is active. The "USB Status (USBSTS)" register still shows interrupt sources even if they are disabled by this register, allowing polling of interrupt events by software.

Bit	Name	Description			
31:26	RES	Reserved. Must be set to zero.			
25	TIE1	General	purpose timer interrupt	enable 1; when enabled:	
		This bit:	USBSTS bit:	Controller:	
		= 1	GPTINT1 = 1	Issues an interrupt at acknowledged by software clearing the general purpose timer interrupt 1 bit.	
24	TIE0	General	purpose timer interrupt	enable 0; when enabled:	
		This bit:	USBSTS bit:	Controller:	
		= 1	GPTINT0 = 1	Issues an interrupt at acknowledged by software clearing the general purpose timer interrupt 0 bit.	
23:20	RES	Reserved	d. Must be set to zero.		
19	UPIE	USB hos	t periodic interrupt enab	le; when enabled:	
		This bit:	USBSTS bit:	Host controller:	
		= 1	USBHSTPERINT = 1	Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USB host periodic interrupt bit.	
18	UAIE	USB host asynchronous interrupt enable; when enabled:			
		This bit:	USBSTS bit:	Host controller:	
		= 1	USBHSTASYNCINT = 1	Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USB host asynchronous interrupt bit.	
17	RES	Reserve	d. Must be set to zero.	1	
16	NAKE		errupt enable. Set by sof Cinterrupt bit. When ena	tware if it wants to enable the hardware interrupt for bled:	
		This bit:	USBSTS bit:	Interrupt:	
		= 1	NAKI = 1	A hardware interrupt is generated.	
15:11	RES	Reserved. Must be set to zero.			
10	ULPIE	ULPI en	able; when enabled:		
		This bit:	USBSTS bit:	Device Controller:	
		= 1	ULPII = 1	Issues an interrupt acknowledged by software writing a one to the ULPI interrupt bit.	
9	RES	Reserved. Must be set to zero.			

Bit	Name	Description			
8	SLE	When this	leep enable; when enabled: Vhen this bit is 1, and the bit in the register "USB Status (USBSTS)" transitions, the evice controller issues an interrupt acknowledged by software DCSuspend bit.		
		This bit:	USBSTS bit:	Device Controller:	
		= 1	SLI = 1	Issues an interrupt acknowledged by software writing a one to the DCSuspend bit.	
7	SRE	SOF receiv	ed enable; when enal	bled:	
		This bit:	USBSTS bit:	Device Controller:	
		= 1	SRI = 1	Issues an interrupt acknowledged by software clearing the interrupt on the SOF received bit.	
6	URE	USB reset	enable; when enabled	1:	
		This bit:	USBSTS bit:	Device Controller:	
		= 1	URI = 1	Issues an interrupt acknowledged by software clearing USB reset received bit.	
5	AAE	Interrupt o	on asynchronous adva	ance enable; when enabled:	
		This bit:	USBSTS bit:	Host/Device Controller:	
		= 1	AAI = 1	Issues an interrupt acknowledged by software clearing the interrupt on the asynchronous advance bit.	
4	SEE	SEE System error enable; when enabled:		oled:	
		This bit:	USBSTS bit:	Host/Device Controller:	
		= 1	SEI = 1	Issues an interrupt acknowledged by software clearing the system error bit.	
3	FRE	Frame list rollover enable (host controller only); when enabled:			
		This bit:	USBSTS bit:	Host Controller:	
		= 1	FRI = 1	Issues an interrupt acknowledged by software clearing the frame list rollover bit.	
2	PCE	Port chang	ge detect enable; when	n enabled:	
		This bit:	USBSTS bit:	Host/Device Controller:	
		= 1	PCE = 1	Issues an interrupt acknowledged by software clearing the port change detect bit.	
1	UEE	USB error	interrupt enable; whe	en enabled:	
		This bit:	USBSTS bit:	Host Controller:	
		= 1	USBERRINT = 1	Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USB error interrupt bit.	
0	UE	USB interr	upt enable; when ena	abled:	
		This bit:	USBSTS bit:	Host/Device Controller:	
		= 1	USBINT = 1	Issues an interrupt at the next interrupt threshold. The interrupt is acknowledged by software clearing the USB interrupt bit.	
				=	

6.19.20 USB Frame Index (FRINDEX)

Offset: 0x1B00014C

Access: Read/Write (host mode) Read-Only (device mode)

Reset Value: Undefined (free-running counter)

Used by the host controller to index the periodic frame list. The register updates every 125 ms (once each micro-frame). Bits [N:3] are used to select a particular entry in the periodic frame list during periodic schedule execution. The number of bits used for the index depends on the size of the frame list as set by system software in the frame list size field in the register "USB Command (USBCMD)" on page 239. This register must be written as a DWord. Byte writes produce-undefined results. This register cannot be written unless the Host Controller is in the halted state. A write to this register while the run/stop hit is set to a one produces undefined results. Writes to this register also affect the SOF value.

In device mode this register is read only and, the device controller updates the FRINDEX [13:3] register from the frame number indicated by the SOF marker. Whenever a SOF is received by the USB bus, FRINDEX [13:3] is checked against the SOF marker. If FRINDEX [13:3] is different from the SOF marker, FRINDEX [13:3] is set to the SOF value and FRINDEX [2:0] is set to 0 (i.e., SOF for 1 ms frame). If FRINDEX [13:3] is equal to the SOF value, FRINDEX [2:0] increments (i.e., SOF for 125-µs micro-frame.)

Bit	Name	Description					
31:14	RES	Reserved. Must be written to 0.					
13:0	FRINDEX	Frame index					
		[N:3] are used for the frame l	crements at the end of each tin ist current index, thus each loonicro-frames) before moving to	cation of the frame list is			
		In device mode the value is the not used as an index.	he current frame number of the	e last frame transmitted. It is			
		In either mode bits 2:0 indica	te the current micro-frame.				
			The values of <i>N</i> are based on the value of the frame list size field in the register "USB Command (USBCMD)" when used in host mode:				
		USBCMD	[Frame Size List] Number	Elements N			
		00b	1024	12			
		001b	512	11			
		010b	256	10			
		011b	128	9			
		100b	64	8			
		101b	32	7			
		110b	16	6			
		111b	8	5			

6.19.21 Frame List Base Address (PERIODICLISTBASE)

Offset: 0x1B000154

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31:12	PERBASE	Contains the beginning address of the periodic frame list in the system memory. HCD loads this register prior to starting the schedule execution by the host controller. The memory structure referenced by this physical memory pointer is assumed to be 4-Kb aligned. The contents of this register are combined with the frame index register (FRINDEX) to enable the host controller to step through the periodic frame list in sequence.
11:0	RES	Reserved. Must be written to zero.

6.19.22 USB Device Address (DEVICEADDR)

Access: Read/Write Reset Value: 0

Bit	Name	Description
31:25	USBADR	USB device address
		After any controller reset or a USB reset, the device address is set to the default address (0). The default address will match all incoming addresses. Software shall reprogram the address after receiving a SET_ADDRESS descriptor.
24	USBADRA	Device address advance (default=0)
		When written to 0, any writes to USBADR are instantaneous.
		When this bit is written to 1 at the same time or before USBADR (bits [31:25]) is written, the write to the USBADR field is staged and held in a hidden register. After an IN occurs on endpoint 0 and is ACKed, USBADR is loaded from the holding register.
		Hardware will automatically clear this bit if:
		■ IN is ACKed to endpoint 0 (USBADR is updated from staging register)
		■ OUT/SETUP occur to endpoint 0 (USBADR is not updated)
		■ Device reset occurs (USBADR is reset to 0)
		Note: After the status phase of the SET_ADDRESS descriptor, the DCD has 2 ms to program the USBADR field. This mechanism ensures this specification is met when the DCD can not write of the device address within 2ms from the SET_ADDRESS status phase. If the DCD writes the USBADR with USBADRA = 1 after the SET_ADDRESS data phase (before the prime of the status phase), the USBADR is programmed instantly at the correct time and meets the 2 ms USB requirement.
23:0	RES	Reserved. Must be written to zero.

6.19.23 Next Asynchronous List Address (ASYNCLISTADDR)

Offset: 0x1B000158

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31:5	ASYBASE	Link pointer low (LPL) (host controller only) Correspond to memory address signals [31:5], respectively.
4:0	RES	Reserved. Must be written to zero.

6.19.24 Address at Endpointlist in Memory (ENEDPOINTLIST_ADDR)

Access: Read/Write Reset Value: 0

Bit	Name	Description
31:11	EPBASE	Endpoint list pointer (low) These bits correspond to memory address signals [31:11], respectively. This field references a list of up to 32 queue heads, i.e., one queue head per endpoint and direction.
		In device mode, this register contains the address of the top of the endpoint list in system memory. Bits [10:0] of this register cannot be modified by the system software and will always return a zero when read. The memory structure referenced by this physical memory pointer is assumed 64-byte.
10:0	RES	Reserved. Must be written to zero.

6.19.25 TT Status and Control (TTCTRL)

Offset: 0x1B00015C

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31	RES	Reserved. Must be written to zero.
30:24	TTHA	Internal TT hub address representation Used to match against the hub address field in queue head and SITD to determine whether the packet is routed to the internal TT for directly attached FS/LS devices. If the hub address in the queue head or SITD does not match this address, the packet is broadcast on the high speed ports destined for a downstream high speed hub with the address in the queue head or SITD. This register contains parameters needed for internal TT operations. This register is not used in the device controller operation.
23:0	RES	Reserved. Must be written to zero.

6.19.26 Programmable Burst Size (BURSTSIZE)

Offset: 0x1B000160

Access: Read/Write (writes must be DWord)

Reset Value: 0

Bit	Name	Description
31:16	RES	Reserved. Must be written to zero.
15:8	TXPBURST	Programmable Tx burst length Represents the maximum length of the burst in 32-bit words while moving data from system memory to the USB bus. The default is the constant VUSB_HS_TX_BURST.
7:0	RXPBURST	Programmable Rx burst length Represents the maximum length of the burst in 32-bit words while moving data from the USB bus to system memory. The default is the constant VUSB_HS_RX_BURST.

6.19.27 Host Tx Pre-Buffer Packet Tuning (TXFILLTUNING)

Offset: 0x1B000164

Access: Read/Write (writes must be DWord)

Reset Value: See Field Descriptions

Definitions:

T ₀	Standard packet overload
	Standard packet overload
T_1	Time for send data payload
T_{FF}	Time to fetch a packet into Tx FIFO up to specified level
T_S	Total packet flight time (send-only) packet $= T_0 + T_1$
T_P	Total packet time (fetch-and-send) packet = $T_{FF} + T_0 + T_1$

Controls performance tuning associated with how the host controller posts data to the Tx latency FIFO before moving the data to the USB bus. The specific areas of performance include how much data to post into the FIFO

and an estimate of how long the operation will take in the target system.

On discovery of a Tx packet (OUT/SETUP) in the data structures, the host controller checks whether T_P remains before the end of the (micro-)frame. If so, it pre-fills the Tx FIFO. If during the pre-fill operation the time remaining in the (micro-)frame is < T_S , the packet attempt ceases and the packet is tried at a later time. This condition is not an error and the host controller eventually recovers, but a note of a "back-off" occurrence is made on the scheduler health counter. When a back-off event is detected, the partial packet fetched may need to be discarded from the latency buffer to make room for periodic traffic that begins after the next SOF. Excessive back-off events can waste bandwidth and power on the system bus and thus should be minimized. Back-offs can be minimized with use of the TSCHHEALTH (T_{FF}).

Bit	Name	Description
31:22	RES	Reserved. Must be written to zero.
21:16	TXFIFOTHRES	FIFO burst threshold (Default = 2) Controls the number of data bursts posted to the Tx latency FIFO in host mode before the packet begins on to the bus. The minimum value is 2; this value should be a low as possible to maximize USB performance. A higher value can be used in systems with unpredictable latency and/or insufficient bandwidth where the FIFO may underrun because the data transferred from the latency FIFO to USB occurs before it can be replenished from system memory.
15:13	RES	Reserved. Must be written to zero.
12:8	TXSCHEALTH	Scheduler health counter (Default = 0) Increments when the host controller fails to fill the Tx latency FIFO to the level programmed by TXFIFOTHRES before running out of time to send the packet before the next SOF. This health counter measures how many times this occurs to aid in selecting a proper TXSCHOH. Writing to this register clears the counter and this counter maxes out at 31.
7:0	TXSCHOH	Scheduler overload (Default = 0) This register adds an additional fixed offset to the schedule time estimator described above as $T_{\rm FF}$ As an approximation, the value chosen for this register should limit the number of back-off events captured in the TXSCHHEALTH to less than 10 per second in a highly utilized bus. Choosing a value that is too high for this register is not desired as it can needlessly reduce USB utilization.

6.19.28 Endpoint NAK (ENDPTNAK)

Offset: 0x1B000174

Access: Read/Write-to-Clear

Reset Value: 0

Bit	Name	Description
31:16	EPTN	Tx endpoint NAK Each Tx endpoint has 1 bit in this field. The bit is set when the device sends a NAK handshake on a received IN token for the corresponding endpoint.
		Bit [15] Endpoint 15
		Bit [1] Endpoint 1
		Bit [0] Endpoint 0
15:0	EPRN	Rx endpoint NAK Each Rx endpoint has 1 bit in this field. The bit is set when the device sends a NAK handshake on a received OUT or PING token for the corresponding endpoint.
		Bit [15] Endpoint 15
		Bit [1] Endpoint 1
		Bit [0] Endpoint 0

6.19.29 Endpoint NAK Enable (ENDPTNAKEN)

Offset: 0x1B00017C Access: Read/Write Reset Value: 0

Bit	Name	Description
31:16	EPTNE	Tx endpoint NAK enable Each bit is an enable bit for the corresponding Tx endpoint NAK bit. If this bit is set and the corresponding Tx endpoint NAK bit is set, the NAK interrupt bit is set.
		Bit [15] Endpoint 15
		Bit [1] Endpoint 1
		Bit [0] Endpoint 0
15:0	EPRNE	Rx endpoint NAK enable Each bit is an enable bit for the corresponding Rx endpoint NAK bit. If this bit is set and the corresponding Rx endpoint NAK bit is set, the NAK interrupt bit is set.
		Bit [15] Endpoint 15
		Bit [1] Endpoint 1
		Bit [0] Endpoint 0

6.19.30 Configured Flag (CONFIGFLAG)

Offset: 0x1B000180 Access: Read-Only Reset Value: 00000001h

6.19.31 Port/Status Control (PORTSCO)

Offset: 0x1B000184

Access: See Field Descriptions Reset Value: See Field Descriptions

Host Controller

A host controller must implement one to eight port registers; the number is implemented by a instantiation of a host controller (see the register "Host Control Structural Parameters (HCSPARAMS)" on page 237). Software uses this information as an input parameter to determine how many ports need service. This register is only reset when power is initially applied or in response to a controller reset. The initial conditions of a port are:

This register is not used in this implementation. A read from this register returns a constant of a 00000001h to indicate that all port routings default to this host controller.

- No device connected
- Port disabled

If the port has port power control, this state remains until software applies power to the port by setting port power to one.

Device Controller

A device controller must implement only port register one and does not support power control. Port control in device mode is only used for status port reset, suspend, and current connect status. It also initiates test mode or forces signaling and allows software to place the PHY into low power suspend mode and disable the PHY clock.

Bit	Name	Access	Descrip	tion		
31:30	BO PTS RW/		Parallel transceiver select			
		RO	VUSB_H	IS_PHY_TYPE to	ed in conjunction with the configuration constant control which parallel transceiver interface is selected.	
					E is set for 0–3 then this bit is read only	
					E is set for 4–7, this bit is read/write	
			This field	d resets to:		
			00	UTMI/UTMI	If $VUSB_HS_PHY_TYPE = 0, 4$	
			01	RES	Reserved	
			10	ULPI	If VUSB_HS_PHY_TYPE = 2, 6	
			11	Serial/1.1 PHY (FS Only)	If VUSB_HS_PHY_TYPE = 3, 7	
29	RES	RO	Reserved	d	1	
28	PTW	PTW RW/		transceiver width		
		RO			the configuration constant VUSB_HS_PHY16_8 to a fthe UTMI transceiver interface.	
			■ If VU	SB_HS_PHY16_8	is set for 0 or 1, this bit is read only	
			■ If VU	SB_HS_PHY16_8	is 2 or 3, this bit is read/write	
				resets to 1 if VUSE s else it is reset to	B_HS_PHY16_8 selects a default UTMI interface width 0.	
			This bit	has no effect if the	serial interface is selected.	
			0	Writing this bit to	0 0 selects the 8-bit [60MHz] UTMI interface	
			1	Writing this bit to	o 1 selects the 16-bit [30MHz] UTMI interface	

December 2010

Bit	Name	Access	Description
27:26	PSPD	RO	Port speed
			Indicates the speed at which the port is operating. For HS mode operation in the host controller and HS/FS operation in the device controller the port routing steers data to the protocol engine. For FS and LS mode operation in the host controller, the port routing steers data to the Protocol Engine with the embedded transaction translator.
			00 Full Speed
			01 Low Speed
			10 High Speed
25	RES	RO	Reserved. Must be set to zero.
24	PFSC	RW	Port force full speed connect; default = 0b (debug mode only)
			Setting this bit to 1 forces the port to only connect at Full Speed and disables the chirp sequence, allowing the port to identify itself as High Speed (useful for testing FS configurations with a HS host, hub or device).
23	PHCD	RW	PHY low power suspend: clock disable (PLPSCD)
			0 Disables the PHY clock (Default)
			1 Enables the PHY clock
			Reading this bit indicates the status of the PHY clock. NOTE: The PHY clock cannot be disabled if it is being used as the system clock.
			Device Mode The PHY can be put into Low Power Suspend–Clock Disable when the device is not running (USBCMD Run/Stop=0b) or the host has signaled suspend (PORTSC SUSPEND=1b). Low power suspend clears automatically when the host has signaled resume if using a circuit similar to that in 10. Before forcing a resume from the device, the device controller driver must clear this bit.
			Host Mode The PHY can be put into Low Power Suspend–Clock Disable when the downstream device has been put into suspend mode or when no downstream device is connected. Low power suspend is completely under the control of software.
22	WKOC	RW	Wake on over-current enable (WKOC_E)
			0 This field is zero if Port Power (PP) is zero (Default)
			1 Sensitizes the port to over-current conditions as wake-up events
21	WKDS	RW	Wake on Disconnect Enable (WKDSCNNT_E)
			0 This field is zero if Port Power (PP) is zero or in device mode (Default)
			1 Sensitizes the port to device disconnects as wake-up events
20	WKCN	RW	Wake on connect enable (WKCNNT_E)
			This field is zero if Port Power (PP) is zero or in device mode (Default)
10.11	DEC	DIA	1 Sensitizes the port to device connects as wake-up events
19:14	RES	RW	Reserved
13	РО	RO	Port owner; default = 0 Port owner hand-off is not implemented in this design, therefore this bit always reads back as 0. System software uses this field to release ownership of the port to a selected host controller (in the event that the attached device is not a high-speed device.
			This bit unconditionally returns to 0 when the configured bit in the register "Configured Flag (CONFIGFLAG)" on page 251 makes a 0 to 1 transition.
			This bit unconditionally goes to 1 the configured bit in the register "Configured Flag (CONFIGFLAG)" on page 251 is zero. A one in this bit indicates that an internal companion controller owns and controls the port. Software writes a one to this bit when the attached device is not a high-speed device.
12	RES	RW	Reserved

Bit	Name	Access	Descrip	tion
11:10	LS	RO	Line sta	tus; bit encoding is:
			Setting	Meaning
			00	SE0
			01	J_ STATE
			10	K_STATE
			11	Undefined
			These bi	its reflect the current logical levels of the D+ (bit [11]) and D– (bit [10]) nes.
			Device Mode	In device mode, the use of line-state by the device controller driver is not necessary.
			Host Mode	In host mode, the use of line-state by the host controller driver is not necessary (unlike EHCI), because the port controller state machine and the port routing manage the connection of LS and FS.
9	HSP	RO	High-sp	eed port; see also bits [27:26], PSPD
			0	Connected host/device is not in a high-speed mode (Default)
			1	The host/device connected to the port is in high-speed mode
8	PR	RW/ RO	Port rese	
		KO		field is zero if Port power (PP) is zero
				n software writes a one to this bit, the bus-reset sequence as defined in .0 is started. This bit automatically changes to zero after reset.
				lode: Read-Only
				reset from the USB bus is also indicated in the register "USB Status" on page 242.
			Host Mo	de: Read/Write
			0	Port is not in reset (Default)
			1	Port is in reset
7	SUSP	RW/	Suspend	
		RO	Port Ena	abled Bit and Suspend bit of this register define the port states:
			Bits	Port State
			0x	Disable
			10	Enable
			11	Suspend
				d is zero if Port Power (PP) is zero in host mode.
			Device Mode	Read-Only
			Wiode	0=Port not in suspend state (Default)1=Port in suspend state
			Host	Read/Write
			Mode	■ 0=Port not in suspend state (Default)
				■ 1=Port in suspend state
				In suspend state, downstream propagation of data is blocked on this port, except for port reset. The blocking occurs at the end of the current transaction if a transaction was in progress when this bit was written to 1. In the suspend state, the port is sensitive to resume detection. Note that the bit status does not change until the port is suspended and that there may be a delay in suspending a port if there is a transaction currently in progress on the USB. The host controller unconditionally sets this bit to zero when software sets the force port resume bit to zero. The host controller ignores a
				write of zero to this bit. If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is a zero) the results are undefined.

Bit	Name	Access	Descrip	tion
6	FPR	RW	Force po	ort resume
			0	No resume (K-state) detected/driven on port (Default)
			1	Resume detected/driven on port
			This fiel	d is zero if Port Power (PP) is zero in host mode.
			Device Mode	After the device has been in suspend state for 5 ms or more, software must set this bit to 1 to drive resume signaling before clearing. The device controller sets this bit to one if a J-to-K transition is detected while the port is in the suspend state. The bit will be cleared when the device returns to normal operation. Also, when this bit transitions to a one because a J-to-K transition detected, the port change detect bit in the register "USB Status (USBSTS)" is also set to one.
			Host Mode	Software sets this bit to one to drive resume signaling. The host controller sets this bit to one if a J-to-K transition is detected while the port is in the suspend state. When this bit transitions to a one because a J-to-K transition is detected, the port change detect bit in the register "USB Status (USBSTS)" is also set to one.
				This bit automatically changes to zero after the resume sequence is complete. This behavior is different from EHCI where the host controller driver is required to set this bit to a zero after the resume duration is timed in the driver.
5	OCC	RWC	Over-cu	rrent change. For device-only implementations this bit shall always be 0.
			0	(Default)
			1	This bit is set to 1 when there is a change to over-current active. Software clears this bit by writing a one to this bit position.
4	OCA	RO	Over-cu	rrent active. For device-only implementations this bit shall always be 0.
7	OCA	KO	0	This port does not have an over-current condition. This bit
			O O	automatically transitions from one to zero when the over-current condition is removed. (Default)
			1	This port currently has an over-current condition
3	PEC	RWC	Port ena	ble/disable change
			0	No change (Default)
			1	Port enabled/disabled status has changed
			This fiel	d is zero if Port Power (PP) is zero.
			Device Mode	The device port is always enabled (this bit will be zero)
			Host Mode	For the root hub, this bit gets set to a one only when a port is disabled due to disconnect on the port or due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB Specification). Software clears this by writing a one to it.
2	PE	RW	Port ena	bled/disabled
			0	Disabled (Default)
			1	Enabled
			This fiel	d is zero if Port Power (PP) is zero in host mode.
			Device Mode	The device port is always enabled (this bit will be one)
			Host Mode	Ports can only be enabled by the host controller as a part of reset and enable. Software cannot enable a port by writing a one to this field. Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by the host software. Note that the bit status does not change until the port state actually changes. There may be a delay in disabling or enabling a port due to other host controller and bus events. When the port is disabled, (0b) downstream propagation of data is blocked except for reset.

Bit	Name	Access	Description	
1	CSC	RWC	Connect status change	
			0 No change (Default)	
			1 Change in current connect status. Software clears this bit by writing a 1 to it.	
			This field is zero if Port Power (PP) is zero in host mode.	
			Device This bit is undefined in device controller mode. Mode	
			Host Mode Indicates a change has occurred in the port's Current Connect Status. The host/device controller sets this bit for all changes to the port device connect status, even if system software has not cleared an existing connect status change. For example, the insertion status changes twice before system software has cleared the changed condition, hub hardware will be 'setting' an already-set bit (i.e., the bit will remain set).	
0	CCS	RO	Current connect status	
			Device Mode Mode Mode Device Mode Mode Device Mode A zero indicates that the device did not attach successfully or was forcibly disconnected by the software writing a zero to the Run bit in the register "USB Command (USBCMD)" on page 239. It does not state the device being disconnected or suspended.	
				■ 1 = Attached A 1 indicates that the device successfully attached and is operating in either high speed or full speed as indicated by the high speed port bit in this register.
			Host Mode This value reflects the current state of the port, and may not correspond directly to the event that caused the connect status change bit to be set.	
			\blacksquare 0 = No device is present. (Default)	
			■ 1 = Device is present on port.	
			This field is zero if Port Power (PP) is zero in host mode.	

6.19.32 USB Mode (USBMODE)

Offset: 0x1B0001A8 Access: Read/Write Reset Value: 0

Bit	Name	Description	
31:5	RES	Reserved. Must be written to zero.	
4	SDIS	DIS Stream disable mode ■ 0 = Inactive (Default) ■ 1 = Active	
		Device Mode	Setting to a 1 disables double priming on both Rx and Tx for low bandwidth systems. This mode, when enabled, ensures that the Rx and Tx buffers are sufficient to contain an entire packet, so the usual double buffering scheme is disabled to prevent overruns/underruns in bandwidth limited systems.
		Host Mode	Setting to a 1 ensures that overruns/underruns of the latency FIFO are eliminated for low bandwidth systems where the Rx and Tx buffers are sufficient to contain the entire packet. Enabling stream disable also has the effect of ensuring the Tx latency is filled to capacity before the packet is launched onto the USB.

Bit	Name	Descrip	otion
3	SLOM		ockout mode
		In device	te mode, this bit controls behavior of the setup lock mechanism.
		0	Setup lockouts on (Default)
		1	Setup lockouts off
2	ES	Endian	select
		bus arcl	ange the byte ordering of transfer buffers to match the host microprocessor intecture. The bit fields in the microprocessor interface and the DMA data res (including the setup buffer within the device QH) are unaffected by the f this bit, because they are based upon 32-bit words.
		Bit	Meaning
		0	Little Endian (Default)
			First byte referenced in least significant byte of 32-bit word
		1	Big Endian
			First byte referenced in most significant byte of 32-bit word
1:0	CM	Control	ler mode
		Bit	Meaning
		00	Idle (Default for combination host/device)
		01	Reserved
		10	Device Controller (Default for device-only controller)
		11	Host Controller (Default for host-only controller)

6.19.33 Endpoint Setup Status (ENDPTSETUPSTAT)

Offset: 0x1B0001AC

Access: Read/Write-One-to-Clear

Reset Value: 00000000h

Bit	Name	Description
31:16	RES	Reserved
15:0	ENDPTSETUPSTAT	Setup endpoint status For every setup transaction received, a corresponding bit in this register is set to 1. Software must clear or acknowledge the setup transfer by writing a one to a respective bit after it has read the setup data from Queue head. The response to a setup packet as in the order of operations and total response time is crucial to limit bus time outs while the setup lock our mechanism is engaged. See Managing Endpoints in the Device Operational Model.

6.19.34 Endpoint Initialization (ENDPTPRIME)

Offset: 0x1B0001B0

Access: Read/Write-One-to-Clear

Reset Value: 00000000h

Bit	Name	Description	
31:16	РЕТВ	Prime endpoint Tx buffer For each endpoint a corresponding bit is used to request that a buffer prepared for a Tx operation in order to respond to a USB IN/INTERRUPT transaction. Software should write a 1 to the corresponding bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for a new transfer descriptor from the queue head and prepare a Tx buffer. Hardware clears this bit when the associated endpoint(s) are successfully primed.	
		Bit [15] Endpoint 15	
		Bit [1] Endpoint 1	
		Bit [0] Endpoint 0	
15:0	PERB	Prime endpoint Rx buffer For each endpoint a corresponding bit is used to request that a buffer prepared for a Rx operation in order to respond to a USB IN/INTERRUPT transaction. Software should write a 1 to the corresponding bit when posting a new transfer descriptor to an endpoint. Hardware automatically uses this bit to begin parsing for a new transfer descriptor from the queue head and prepare a Rx buffer. Hardware clears this bit when the associated endpoint(s) are successfully primed.	
		Bit [15] Endpoint 15	
		Bit [1] Endpoint 1	
		Bit [0] Endpoint 0	

6.19.35 Endpoint De-Initialization (ENDPTFLUSH)

Offset: 0x1B0001B4

Access: Writing a 1 to a bit in this register causes the associated endpoint(s) to

clear any primed buffers.

Reset Value: 0

Bit	Name	Description		
31:16 FETB		Flush endpoint Tx buffer If a packet is in progress for one of the associated endpoints, that transfer continues until completion. Hardware clears this register after the endpoint flush operation.		
		Bit [15] Endpoint 15		
		Bit [1] Endpoint 1		
		Bit [0] Endpoint 0		
15:0	FERB	Flush endpoint Rx buffer If a packet is in progress for one of the associated endpoints, that transfer continues until completion. Hardware clears this register after the endpoint flush operation.		
		Bit [15] Endpoint 15		
		Bit [1] Endpoint 1		
		Bit [0] Endpoint 0		

6.19.36 Endpoint Status (ENDPTSTATUS)

Offset: 0x1B0001B8 Access: Read-Only Reset Value: 0

Name	Description		
ETBR	Endpoint Tx buffer ready One bit for each endpoint indicates status of the respective endpoint buffer. This bit is set to a 1 by the hardware as a response to a command from a corresponding bit in the register "Endpoint Initialization (ENDPTPRIME)" on page 257. A delay always occurs between setting a bit in the ENDPTPRIME register and endpoint indicating ready. This delay time varies based upon the current USB traffic and the number of bits set in the ENDPTPRIME register. Buffer ready is cleared by USB reset, by the USB DMA system, or through the ENDPTFLUSH register.		
	Bit [15] Endpoint 15 Bit [1] Endpoint 1 Bit [0] Endpoint 0		
ERBR	Endpoint Rx buffer ready One bit for each endpoint indicates status of the respective endpoint buffer. This bit is set to a 1 by the hardware as a response to a command from a corresponding bit in the register "Endpoint Initialization (ENDPTPRIME)". A delay always occurs between setting a bit in the ENDPTPRIME register and endpoint indicating ready. This delay time varies based upon the current USB traffic and the number of bits set in the ENDPTPRIME register. Buffer ready is cleared by USB reset, by the USB DMA system, or through the ENDPTFLUSH register.		
	Bit [15] Endpoint 15		
	Bit [1] Endpoint 1 Bit [0] Endpoint 0		
	ETBR		

6.19.37 Endpoint Complete (ENDPTCOMPLETE)

Offset: 0x1B0001BC

Access: Read/Write-One-to-Clear

Reset Value: 0

Bit	Name	Description		
31:16	Indicates a Tx event (IN/INTERRUPT) occurred and software should reacorresponding endpoint queue to determine the endpoint status. If the		s a Tx event (IN/INTERRUPT) occurred and software should read the onding endpoint queue to determine the endpoint status. If the onding IOC bit is set in the transfer descriptor, this bit is set simultaneously	
		Bit [15] Endpoint 15		
		Bit [1]	Endpoint 1	
		Bit [0]	Endpoint 0	

Bit	Name	Descrip	Description		
15:0	ERCE	Endpoint Rx complete event Indicates a Rx event (IN/INTERRUPT) occurred and software should read the corresponding endpoint queue to determine the endpoint status. If the corresponding IOC bit is set in the transfer descriptor, this bit is set simultaneously with the register USBINTR.			
		Bit [15]	Bit [15] Endpoint 15		
		Bit [1]	[1] Endpoint 1		
		Bit [0]	Endpoint 0		

6.19.38 Endpoint Control O (ENDPTCTRLO)

Offset: 0x1B0001C0 Access: Read/Write Reset Value: 0080008h Every device implements Endpoint0 as a control endpoint.

Bit	Name	Description		
31:24	RES	Reserved. Must be written to zero.		
23	TXE	Tx endpoint enable		
22:20	RES	Reserved. Must be written to zero.		
19:18	TXT	Tx endpoint type (0 = Control)		
17	RES	Reserved. Must be written to zero.		
16	TXS	Tx endpoint stall		
		0 Endpoint OK (Default)		
		1 Endpoint stalled		
15:8	RES	Reserved. Must be written to zero.		
7	RXE	Rx endpoint enable		
6:4	RES	Reserved. Must be written to zero.		
3:2	RXT	Rx endpoint type (0 = Control)		
1	RES	Reserved. Must be written to zero.		
0	RXS	Rx endpoint stall		
		0 Endpoint OK (Default)		
		1 Endpoint stalled		

6.19.39 Endpoint Control 1 (ENDPTCTRL1)

Offset: 0x1B0001C4 (Endpoint Control 1)

0x1B0001C8 (Endpoint Control 2)

0x1B0001CC (Endpoint Control 3)

0x1B0001D0 (Endpoint Control 4)

0x1B0001D4 (Endpoint Control 5)

Access: Read/Write Reset Value: 0

Bit	Name	Description			
31:24	RES	Reserved. Must be written to zero.			
23	TXE	Tx endpoint enable			
		An Endpoint should be enabled only after it has been configured			
22	TXR	Tx data toggle reset			
		When a configuration event is received for this Endpoint, software must write a 1 to this bit in order to synchronize the data PIDs between the host and device.			
21	TXI	Tx data toggle inhibit			
		0 PID sequencing enabled (Default)			
		1 PID sequencing disabled			
20	RES	Reserved. Must be written to zero.			
19:18	TXT	Tx endpoint type			
		00 Control			
		01 Isochronous			
		10 Bulk			
		11 Interrupt			
17	TXD	Tx endpoint data source; should always be written to zero			
16	TXS	Tx endpoint stall			
		0 Endpoint OK (Default)			
		1 Endpoint stalled			
15:8	RES	Reserved. Must be written to zero.			
7	RXE	Rx endpoint enable			
		An Endpoint should be enabled only after it has been configured			
6	RXR	Rx data toggle reset			
		When a configuration event is received for this Endpoint, software must write this bit in order to synchronize the data PIDs between the host and device.	a 1 to		
5	RXI	Rx data toggle inhibit			
		0 PID sequencing enabled (Default)			
		1 PID sequencing disabled			
4:3	RES	Reserved. Must be written to zero.			
2	RXT	Tx endpoint type			
		00 Control			
		01 Isochronous			
		10 Bulk			
		11 Interrupt			
1	RXD	Rx endpoint data source; should always be written to zero			
0	RXS	Rx endpoint stall			
		0 Endpoint OK (Default)			
		1 Endpoint stalled			

6.20 Serial Flash Registers

Table 6-21 shows the serial flash registers for the AR9331.

Table 6-21. Serial Flash Registers

Offset	Name	Description	Page
0x1F000000	SPI_FUNCTION_SELECT	SPI Function Select Register	page 261
0x1F000004	SPI_CONTROL	SPI Control Register	page 261
0x1F000008	SPI_IO_CONTROL	SPI IO Control	page 261
0x1F00000C	SPI_READ_DATA	SPI Read Data	page 261

6.20.1 SPI Function Select (SPI_FUNC_SELECT)

Address: 0x1F000000 Enables or disables the SPI.

Access: Read/Write

Reset: 0x0

Bit	Bit Name	Description
31:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	FUNCTION_SELECT	0 enables SPI. Setting this bit to 1 makes the other registers visible

6.20.2 SPI Control (SPI_CONTROL)

Address: 0x1F000004 Used to set the functions for the SPI control, Access: Read/Write and can be written only if the Reset: See field description FUNCTION_SELECT bit is set to 1.

Bit	Bit Name	Reset	Description
31:7	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
6	REMAP_ DISABLE	0x0	Remaps 4 MB space over unless explicitly disabled by setting this bit to 1. If set to 1, 16 MB is accessible.
5:0	CLOCK_ DIVIDER	0x8	Specifies the clock divider setting. Actual clock frequency would be (AHB_CLK/((CLOCK_DIVIDER+1)*2)). Therefore by default, if the AHB_CLK is 200 MHz, this would give 200/18 = ~11MHz.

6.20.3 SPI I/O Control (SPI_IO_CONTROL)

Address: 0x1F000008 This register is used to configure the in/out bits Access: Read/Write for the SPI.

Reset: 0x0

Bit	Bit Name	Description
31:19	RES	Reserved. Must be written with zero. Contains zeros when read.
18	IO_CS_2	The chip select 2 bit to be output
17	IO_CS_1	The chip select 1 bit to be output
16	IO_CS_0	The chip select 0 bit to be output
8	IO_CLOCK	The clock bit to be output
7:1	RES	Reserved. Must be written with zero. Contains zeros when read.
0	IO_DO	The data bit to be output

6.20.4 SPI Read Data (SPI_READ_DATA)

Address: 0x1F00000C Used to return the data read from the flash Access: Read-Only device with bits sampled after every clock.

Reset: 0x0

Bit	Bit Name	Description
31:0	READ_DATA	The read data sampled in every clock

6.21 PHY Control Registers

Table 6-22 summarizes the PHY Control registers. These registers are located in REG_addr [4:0] of the MDC/MDIO interface. There are five port PHYs. The PHY address is from 0x0 to 0x4. PHY0 and PHY3 are used as

LAN ports and PHY4 is connected to the WAN port.

The types in this section will include RO (Readonly), R/W (read/write), LL (Latch Low), LH (Latch High) and SC (Self Clearing).

Table 6-22. PHY Register Summary

Offset	Description	Page		
0	Control Register	page 263		
1	Status Register	page 264		
2	PHY Identifier	page 266		
3	PHY Identifier 2	page 266		
4	Auto-negotiation Advertisement Register	page 267		
5	Link Partner Ability Register	page 269		
6	Auto-negotiation Expansion Register	page 270		
7	Next Page Transmit Register	page 271		
8	Link Partner Next Page Register	page 272		
9	Reserved			
10	Reserved			
11	Reserved			
12	Reserved			
13	Reserved			
14	Reserved			
15	Reserved			
16	Function Control Register	page 273		
17	PHY-specific Status Register	page 274		
18	Interrupt Enable Register	page 275		
19	Interrupt Status Register	page 277		
20	Smart Speed Register	page 278		
21	Receive Error Counter Register	page 279		
22	Virtual Cable Tester Control Register	page 279		
23	Reserved			
24	Reserved			
25	Reserved			
26	Reserved			
27	Reserved			
28	Virtual Cable Tester Status Register	page 280		
29	Reserved			
30	Reserved			
31	Reserved			

6.21.1 Control Register

Address Offset: 0x00

Table 6-23 summarizes the Registers

Table 6-23. Control Register

Bit	Symbol	Ту	/pe	Description
15	Reset	Mode HW Rst	R/W 0	PHY Software Reset. Writing a "1" to this bit causes the PHY the reset operation is done, this bit is cleared to "0" automatically. The reset occurs
		SW Rst	SC	immediately. 1 = PHY reset 0 = Normal operation
14	Loopback	Mode	R/W	When loopback is activated, the transmitter data
		HW Rst	0	presented on TXD is looped back to RXD internally. Link is broken when loopback is
		SW Rst	0	enabled. 1 = Enable Loopback 0 = Disable Loopback
13	Speed Selection	Mode	R/W	0.6 0.13
		HW Rst		1 1 = Reserved - 1 0 = Reserved
		SW Rst		0.1 = 100 Mb/s 0.0 = 10 Mb/s
12		1 = Enable Auto-Negotiation Process		
		HW Rst		0 = Disable Auto-Negotiation Process
		SW Rst		
11	Power Down	Mode	R/W	When the port is switched from power down to
		HW Rst	0	normal operation, software reset and restart Auto- Negotiation are performed even when bits Reset
		SW Rst	0	(0.15) and Restart Auto-Negotiation (0.9) are not set by the user.
				1 = Power down
10	T1. (.	M. 1.	D /IA7	0 = Normal operation
10	Isolate	Mode	R/W	The MII output pins are tri-stated when this bit is set to 1.
		HW Rst	0	The MII inputs are ignored.
		SW Rst	0	1 = Isolate0 = Normal operation
9	Restart Auto-	Mode	R/W, SC	Auto-Negotiation automatically restarts after
	negotiation	HW Rst	0	hardware or software reset regardless of whether or not the restart bit (0.9) is set.
		SW Rst	SC	1 = Restart Auto-Negotiation Process 0 = Normal operation
8	Duplex Mode	Mode	R/W, SC	1 = Full Duplex
		HW Rst		0 = Half Duplex
		SW Rst		

Bit	Symbol	Туре		Description
7	Collision Test	Mode	R/W	Setting this bit to 1 will cause the COL pin to assert
		HW Rst	0	whenever the TX_EN pin is asserted. 1 = Enable COL signal test
		SW Rst	0	0 = Disable COL signal test
6	Speed Selection (MSB)	Mode	R/W	See bit 0.13
		HW Rst	See Desc.	
		SW Rst		
5:0	Reserved	Mode	RO	Will always be 00000.
		HW Rst	000000	
		SW Rst	00000	

6.21.2 Status Register

Address Offset: 0x01

Table 6-24 summarizes the Registers

Table 6-24. Status Register

Bit	Symbol	Ту	/pe	Description
15	100Base-T4	Mode	RO	100BASE-T4.
		HW Rst	Always 0	This protocol is not available.
		SW Rst	Always 0	0 = PHY not able to perform 100BASE-T4
14	100BASE-X Full	Mode	RO	Capable of 100-Tx Full Duplex operation
		HW Rst	Always 1	
		SW Rst	Always 1	
13	100BASE-X Half	Mode	RO	Capable of 100-Tx Half-Duplex operation
		HW Rst	Always 1	
		SW Rst	Always 1	
12	10 Mbps Full-Duplex	Mode	RO	Capable of 10-Tx Full Duplex operation
		HW Rst	Always 1	
		SW Rst	Always 1	
11	10 Mbps Half	Mode	RO	Capable of 10 Mbps Half Duplex operation
		HW Rst	Always 1	
		SW Rst	Always 1	
10	100Base-T2 Full-Duplex	Mode	RO	Not able to perform 100BASE-T2
		HW Rst	Always 0	
		SW Rst	Always 0	
9	100Base-T2 Half-Duplex	Mode	RO	Not able to perform 100BASE-T2
		HW Rst	Always 0	
		SW Rst	Always 0	1

Bit	Symbol	Ту	pe	Description
8	Extended Status	Mode	RO	Extended status information in register15
		HW Rst	Always 0	
		SW Rst	Always 0	
7	Reserved	Mode	RO	Always 0
		HW Rst	Always 0	
		SW Rst	Always 0	
6	MF Preamble Suppression	Mode	RO	PHY accepts management frames with
		HW Rst	Always 1	preamble suppressed
		SW Rst	Always 1	
5	Auto-negotiation Complete	Mode	RO	1 = Auto negotiation process complete
		HW Rst	0	0 = Auto negotiation process not complete
		SW Rst	0	
4	Remote Fault	Mode	RO, LH	1 = Remote fault condition detected
		HW Rst	0	0 = Remote fault condition not detected
		SW Rst	0	
3	Auto-negotiation Ability	Mode	RO	1 = PHY able to perform auto negotiation
		HW Rst	Always 1	
		SW Rst	Always 1	
2	Link Status	Mode	RO, LL	This register bit indicates whether the link
		HW Rst	0	was lost since the last read. For the current link status, read
		SW Rst	0	register bit 17.10 Link Real Time.
				1 = Link is up 0 = Link is down
1	Jabber Detect	Mode	RO, LH	1 = Jabber condition detected
1	Jabbel Detect			0 = Jabber condition not detected
		HW Rst SW Rst	0	4
0	Extended Completition			1 - Estandad magistan
0	Extended Capability	Mode	RO	1 = Extended register capabilities
		HW Rst	Always 1	4
		SW Rst	Always 1	

6.21.3 PHY Identifier

Address Offset: 0x02

Table 6-25 summarizes the Registers

Table 6-25. PHY Identifier

Bit	Symbol	Туре		Description
15:0	Organizationally Unique	Mode	RO	Organizationally Unique Identifier bits 3:18
Identifer Bit 3:18	HW Rst	Always 16'h004d		
		SW Rst	Always 16'h004d	

6.21.4 PHY Identifier 2

Address Offset: 0x03

Table 6-26 summarizes the Registers

Table 6-26. PHY Identifier 2

Bit	Symbol	Туре		Description
15	OUI LSB Model Number	Mode	RO	Organizationally Unique Identifier bits
	Revision Number	HW Rst	Always 16'hd041	19:24
		SW Rst	Always 16'hd041	

6.21.5 Auto-negotiation Advertisement Register

Address Offset: 0x04

Table 6-27 summarizes the Registers

Table 6-27. Auto-negotiation Advertisement Register

Bit	Symbol	Ту	pe	Description	
15	Next Page	Mode	R/W	The value of this bit will be updated immediately after	
		HW Rst	0	writing this register. But the value written to this bit does not takes effect until any one of the following occurs:	
		SW Rst	Update	 Software reset is asserted (register 0.15) Restart Auto-Negotiation is asserted (register 0.9) Power down (register 0.11) transitions from power down to normal operation Link goes down 	
				Register 4.15 should be set to 0 if no additional next pag are needed. 1 = Advertise	
				0 = Not advertised	
14	Ack	Mode	RO	Must be 0	
		HW Rst	Always 0		
		SW Rst	Always 0		
13	Remote Fault	Mode	R/W	1 = Set Remote Fault bit	
		HW Rst	Always 0	0 = Do not set Remote Fault bit	
		SW Rst	Always 0		
12	Reserved	Mode	RO	Always 0.	
		HW Rst	Always 0		
		SW Rst	Always 0		
11	Asymmetric Pause	Mode	R/W	The value of this bit will be updated immediately after	
		HW Rst	1	writing this register. But the value written to this bit does not takes effect until any one of the following occurs:	
		SW Rst	Update	 Software reset is asserted (register 0.15) Restart Auto-Negotiation is asserted (register 0.9) Power down (register 0.11) transitions from power down to normal operation Link goes down Asymmetric Pause No asymmetric Pause (This bit has added the pad control and can be set from the F001 top. Its default value is one) 	

Bit	Symbol	Ту	pe	Description
10	PAUSE	Mode	R/W	The value of this bit will be updated immediately after
		HW Rst	1	writing this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst	Update	 Software reset is asserted (register 0.15) Restart Auto-Negotiation is asserted (register 0.9) Power down (register 0.11) transitions from power down to normal operation Link goes down
				1 = MAC PAUSE implemented
				0 = MAC PAUSE not implemented (This bit has added the pad control and can be set from the F001 top. Its default value is one)
9	100Base-T4	Mode	RO	Not able to perform 100BASE-T4
		HW Rst	Always 0	
		SW Rst	Always 0	
8	100Base -TX	Mode	R/W	The value of this bit will be updated immediately after
		HW Rst	1	writing this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst	Update	 Software reset is asserted (register 0.15) Restart Auto-Negotiation is asserted (register 0.9) Power down (register 0.11) transitions from power down to normal operation Link goes down 1 = Advertise
				0 = Not advertised
7	100BASE-TX	Mode	R/W	The value of this bit will be updated immediately after
	Half Duplex	HW Rst	1	writing this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst	Update	 Software reset is asserted (register 0.15) Restart Auto-Negotiation is asserted (register 0.9) Power down (register 0.11) transitions from power down to normal operation Link goes down
				1 = Advertise
	10DACE TV	Mada	D /IA7	0 = Not advertised
6	10BASE-TX Full Duplex	Mode HW Rst	R/W 1	The value of this bit will be updated immediately after writing this register. But the value written to this bit does
	1	SW Rst	Update	not takes effect until any one of the following occurs:
		OW NOT	Opuate	 Software reset is asserted (register 0.15) Restart Auto-Negotiation is asserted (register 0.9) Power down (register 0.11) transitions from power down to normal operation Link goes down
				1 = Advertise
				0 = Not advertised

Bit	Symbol	Ту	pe	Description
5	10BASE-TX	Mode	R/W	The value of this bit will be updated immediately after
	Half Duplex	HW Rst	1	writing this register. But the value written to this bit does not takes effect until any one of the following occurs:
		SW Rst	Update	 Software reset is asserted (register 0.15) Restart Auto-Negotiation is asserted (register 0.9) Power down (register 0.11) transitions from power down to normal operation Link goes down Advertise Not advertised
4:0	Selector Field	Mode	RO	Selector Field mode
		HW Rst	Always 00001	00001 = 802.3
		SW Rst	Always 00001	

6.21.6 Link Partner Ability Register

Address Offset: 0x05

Table 6-28 summarizes the Registers

Table 6-28. Link Partner Ability Register

Bit	Symbol	Ту	pe	Description
15	15 Next Page	Mode	RO	Received Code Word Bit 15
		HW Rst	0	1 = Link partner capable of next page
		SW Rst	0	— 0 = Link partner not capable of next page
14	Ack	Mode	RO	Acknowledge
		HW Rst	0	Received Code Word Bit 14
		SW Rst	0	1 = Link partner received link code word0 = Link partner does not have Next Page ability
13	Remote Fault	Mode	RO	Remote Fault
		HW Rst	0	Received Code Word Bit 13
		SW Rst	0	1 = Link partner detected remote fault0 = Link partner has not detected remote fault
12	Reserved	Mode	RO	Technology Ability Field
		HW Rst	0	Received Code Word Bit 12
		SW Rst	0	
11	Asymmetric Pause	Mode	RO	Technology Ability Field
		HW Rst	0	Received Code Word Bit 11
		SW Rst	0	 1 = Link partner requests asymmetric pause 0 = Link partner does not request asymmetric pause

December 2010

Bit	Symbol	Ту	pe	Description
10	PAUSE	Mode	RO	Technology Ability Field
		HW Rst	0	Received Code Word Bit 10
		SW Rst	0	1 = Link partner is capable of pause operation 0 = Link partner is not capable of pause operation
9	100BASE-T4	Mode		Technology Ability Field
		HW Rst		Received Code Word Bit 9 — 1 = Link partner is 100BASE-T4 capable
		SW Rst		0 = Link partner is 100bASE-14 capable
8	100BASE-TX	Mode	RO	Technology Ability Field
	Full Duplex	HW Rst	0	Received Code Word Bit 8
		SW Rst	0	1 = Link partner is 100BASE-TX full-duplex capable
				0 = Link partner is not 100BASE-TX full-duplex capable
7	100BASE-TX	Mode	RO	Technology Ability Field
	Half Duplex	HW Rst	0	Received Code Word Bit 7
		SW Rst	0	1 = Link partner is 100BASE-TX half-duplex capable
				0 = Link partner is not 100BASE-TX half-duplex capable
6	10BASE-TX	Mode	RO	Technology Ability Field
	Full Duplex	HW Rst	0	Received Code Word Bit 6
		SW Rst	0	1 = Link partner is 10BASE-T full-duplex capable 0 = Link partner is not 10BASE-T full-duplex
				capable
5	10BASE-TX	Mode	RO	Technology Ability Field
	Half Duplex	HW Rst	0	Received Code Word Bit 5 1 = Link partner is 10BASE-T half-duplex capable
		SW Rst	0	0 = Link partner is not 10BASE-T half-duplex capable
4:0	Selector field	Mode	RO	Selector Field
		HW Rst	00000	Received Code Word Bit 4:0
		SW Rst	00000	

6.21.7 Auto-negotiation Expansion Register

Address Offset: 0x06

Table 6-29 summarizes the Registers

Table 6-29. Auto-negotiation Expansion Register

Bit	Symbol	Туре		Description
15:5	Reserved	Mode RO		Reserved. Must be 0.
		HW Rst	Always 0x000	
		SW Rst	Always 0x000	

Bit	Symbol	Ту	pe	Description
4	Parallel Detection Fault	Mode	RO, LH	1 = A fault has been detect
		HW Rst	0	0 = No fault has been detected
		SW Rst	0	
3	Link Partner Next Page Able	Mode	RO	1 = Link partner is Next page able
		HW Rst	0	0 = Link partner is not next page able
		SW Rst	0	
2	Local Next Page Able	Mode	R/W	1 = Local Device is Next Page able
		HW Rst	1	_
		SW Rst	1	_
1	Page Received	Mode	RO, LH	1 = A new page has been received
		HW Rst	0	0 = No new page has been received
		SW Rst	0	_
0	Link Partner Auto-	Mode	RO	1 = Link partner is auto negotiation able
	negotiation Able	HW Rst	0	0 = Link partner is not auto negotiation able
		SW Rst	0	

6.21.8 Next Page Transmit Register

Address Offset: 0x07

Table 6-30 summarizes the Registers

Table 6-30. Next Page Transmit Register

Bit	Symbol	Ту	pe	Description
15 Next Page		Mode	R/W	Transmit Code Word Bit 15
		HW Rst	0	
		SW Rst	0	
14	Reserved	Mode	R/W	Transmit Code Word Bit 14
		HW Rst	0	
		SW Rst	0	
13	Message Page Mode	Mode	R/W	Transmit Code Word Bit 13
		HW Rst	0	
		SW Rst	0	
12	Ack	Mode	R/W	Transmit Code Word Bit 12
		HW Rst	0	
		SW Rst	0	
11	Toggle	Mode	RO	Transmit Code Word Bit 11
		HW Rst	0	
		SW Rst	0	

Bit	Symbol	Туре		Description
10:0	Message/Unformatted Field	Mode	R/W	Transmit Code Word Bit 10:0
		HW Rst	0x001	
		SW Rst	0x001	

6.21.9 Link Partner Next Page Register

Address Offset: 0x08

Table 6-31 summarizes the Registers

Table 6-31. Link Partner Next Page Register

Bit	Symbol	Ту	pe	Description
15	Next Page	Mode	RO	Received Code Word Bit 15
		HW Rst	0	
		SW Rst	0	
14	Reserved	Mode	RO	Received Code Word Bit 14
		HW Rst	0	
		SW Rst	0	
13	Message Page Mode	Mode	RO	Received Code Word Bit 13
		HW Rst	0	
		SW Rst	0	
12	Ack2	Mode	RO	Received Code Word Bit 12
		HW Rst	0	
		SW Rst	0	
11	Toggle	Mode	RO	Received Code Word Bit 11
		HW Rst	0	
		SW Rst	0	
10:0	Message/	Mode	R/W	Received Code Word Bit 10:0
	Unformatted Field	HW Rst	0x000	
		SW Rst	0x000	

6.21.10 Function Control Register

Address Offset: 0x10

Table 6-32 summarizes the Registers

Table 6-32. Function Control Register

Bit	Symbol	Туре		Description
15:12	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
11	Assert CRS on Transmit	Mode	R/W	11
		HW Rst	0	
		SW Rst	Retain	
10	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
9:8	Energy Detect	Mode	R/W	0x = Off
		HW Rst	0	10 = Sense only on Receive (Energy Detect)
		SW Rst	0	— 11 = Sense and periodically transmit NLP
6:5	MDI Crossover Mode	Mode	R/W	Changes to these bits are disruptive to the
		HW Rst	11	normal operation; therefore any changes to these registers must be followed by a software
		SW Rst	Upgrade	reset to take effect. 00 = Manual MDI configuration 01 = Manual MDIX configuration 10 = Reserved 11 = Enable automatic crossover for all modes
4:3	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
2	SQE Test	Mode	R/W	SQE Test is automatically disabled in full-
		HW Rst	0	duplex mode. 1 = SQE test enabled
		SW Rst	Retain	0 = SQE test disabled
1	Polarity Reversal	Mode	R/W	If polarity is disabled, then the polarity is
		HW Rst	0	forced to be normal in 10BASE-T.
		SW Rst	Retain	1 = Polarity Reversal Disabled 0 = Polarity Reversal Enabled
0	Disable Jabber	Mode	R/W	Jabber has effect only in 10BASE-T half-duplex
		HW Rst	0	mode 1 = Disable jabber function
		SW Rst	Retain	0 = Enable jabber function

6.21.11 PHY Specific Status Register

Address Offset: 0x11

Table 6-33 summarizes the Registers

Table 6-33. PHY Specific Status Register

Bit	Symbol	Ту	pe	Description
15:14	Speed	Mode	RO	These status bits are valid when Auto-
		HW Rst	00	Negotiation is completed or Auto-Negotiation is disabled.
		SW Rst	Retain	11 = Reserved
				10 = Reserved
				01 = 100 Mbps 00 = 10 Mbps
13	Duplex	Mode	RO	This status bit is valid only when Auto-
		HW Rst	0	Negotiation is complete or disabled.
		SW Rst	Retain	'1' = Full-Duplex '0' = Half-Duplex
12	Page Received (Real Time)	Mode	RO	1 = Page received
	rage recerved (rear rance)	HW Rst	0	0 = Page not received
		Retain		
11	Speed and Duplex	ed and Duplex Mode RO When	When Auto-Negotiation is not enabled for	
	Resolved	HW Rst	0	force speed mode.
		SW Rst	0	1 = Resolved 0 = Not resolved
10	Link (Real Time)	Mode	RO	1 = Link up
		HW Rst	0	0 = Link down
		SW Rst	0	
9:7	Reserved	Mode	RO	Always 0
		HW Rst	0	
		SW Rst	0	
6	MDI Crossover	Mode	RO	This status bit is valid only when Auto-
	Status	HW Rst	0	Negotiation is completed or Auto-Negotiation is disabled.
		SW Rst	Retain	1 = MDIX 0 = MDI
5	Wirespeed downgrade	Mode	RO	1 = Downgrade
		HW Rst	0	0 = No Downgrade
		SW Rst	0	
4	Energy Detect Status	Mode	RO	1 = Sleep
		HW Rst	0	0 = Active
		SW Rst	0	

Bit	Symbol	Type		Description
3	Transmit Pause Enabled	Mode	RO	This is a reflection of the MAC pause
		HW Rst	0	resolution. This bit is for information purposes and is not used by the device.
		SW Rst	0	This status bit is valid only when Auto-Negotiation is completed or Auto-Negotiation is disabled.
				1 = Transmit pause enabled
				0 = Transmit pause disabled
2	Receive Pause Enabled	Mode	RO	This is a reflection of the MAC pause
		HW Rst	0	resolution. This bit is for information purposes and is not used by the device.
		SW Rst	Retain	This status bit is valid only when Auto-Negotiation is completed or Auto-Negotiation is disabled.
				1 = Receive pause enabled
				0 = Receive pause disabled
1	Polarity (Real Time)	Mode	RO	1 = Reversed
		HW Rst	0	0 = Normal
		SW Rst	0	
0	Jabber (Real Time)	Mode	RO	1 = Jabber
		HW Rst	0	0 = No jabber
		SW Rst	Retain	

6.21.12 Interrupt Enable Register

Address Offset: 0x12

Table 6-34 summarizes the Registers

Table 6-34. **Interrupt Enable Register**

Bit	Symbol	Ту	pe	Description
15	Auto-Negotiation	Mode	R/W	1 = Interrupt enable
	Error Interrupt	HW Rst	0	0 = Interrupt disable
	Enable	SW Rst	Retain	
14	Speed Changed	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
13	Duplex Changed	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
12	Page Received	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	

Bit	Symbol		pe	Description
11	Auto-Negotiation	Mode	R/W	1 = Interrupt enable
	Completed	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
10	Link Status	Mode	R/W	1 = Interrupt enable
	Changed	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
9	Symbol Error	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
8	False Carrier	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
7	FIFO Over/	Mode	R/W	1 = Interrupt enable
	Underflow Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
6	Changed	Mode	R/W	1 = Interrupt enable
		HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
5	Wirespeed-	Mode	R/W	1 = Interrupt enable
	downgrade	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
4	Energy Detect	Mode	R/W	1 = Interrupt enable
	Interrupt Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	
3:2	Reserved	Mode	R/W	Always 00
		HW Rst	0	
		SW Rst	Retain	
1	Polarity	Mode	R/W	1 = Interrupt enable
	Changed	HW Rst	0	0 = Interrupt disable
	Interrupt Enable	SW Rst	Retain	
0	Jabber Interrupt	Mode	R/W	1 = Interrupt enable
	Enable	HW Rst	0	0 = Interrupt disable
		SW Rst	Retain	

6.21.13 Interrupt Status Register

Address Offset: 0x13

Table 6-35. **Interrupt Status Register**

Bit	Symbol	Ту	pe	Description
15	Auto-Negotiation	Mode	RO, LH	An error is said to occur if MASTER/SLAVE
	Error	HW Rst	0	does not resolve, parallel detect fault, no common HCD, or link does not come up after negotiation
		SW Rst	Retain	is completed.
				1 = Auto-Negotiation Error
				0 = No Auto-Negotiation Error
14	Speed Changed	Mode	RO, LH	1 = Speed changed
		HW Rst	0	0 = Speed not changed
		SW Rst	Retain	
13	Reserved	Mode	RO, LH	Reserved
		HW Rst	0	
		SW Rst	Retain	
12	Page Received	Mode	RO	1 = Page received
		HW Rst	0	0 = Page not received
		SW Rst	Retain	
11	Auto-Negotiation	Mode	RO	1 = Auto-Negotiation completed
	Completed HW Rst	0	0 = Auto-Negotiation not completed	
		SW Rst	Retain	
10	Link Status	Mode	RO, LH	1 = Link status changed
	Changed	HW Rst	0	0 = Link status not changed
		SW Rst	Retain	
9	Symbol Error	Mode	RO, LH	1 = Symbol error
		HW Rst	0	0 = No symbol error
		SW Rst	Retain	
8	False Carrier	Mode	RO, LH	1 = False carrier
		HW Rst	0	0 = No false carrier
		SW Rst	Retain	
7	FIFO Over/Underflow	Mode	RO, LH	1 = Over/Underflow Error
		HW Rst	0	0 = No FIFO Error
		SW Rst	Retain	
) (D) C	3.6.1	DO 111	Not implement, always 0.
6	MDI Crossover	Mode	RO, LH	1 = Crossover changed
	Changed	HW Rst		0 = Crossover not changed
		SW Rst	Retain	
5	Wirespeed-	Mode	RO, LH	1 = Wirespeed-downgrade detected.
	downgrade Interrupt	HW Rst	0	0 = No Wirespeed-downgrade.
	interrupt	SW Rst	Retain	
4	Energy Detect Changed	Mode	RO, LH	1 = Energy Detect state changed
		HW Rst	0	0 = No Energy Detect state change detected
		SW Rst	Retain	Not implement, always 0.

Bit	Symbol	Type		Description
3:2	Reserved	Mode	RO, LH	Always 0
		HW Rst	0	
		SW Rst	Retain	
1	Polarity	Mode	RO, LH	1 = Polarity Changed
	Changed	HW Rst	0	0 = Polarity not changed
		SW Rst	Retain	
0	Jabber	Mode	RO, LH	1 = Jabber
		HW Rst	0	0 = No jabber
		SW Rst	Retain	

6.21.14 Smart Speed Register

Address Offset: 0x14

Table 6-36 summarizes the Registers

Table 6-36. Smart Speed Register

Bit	Symbol	Ту	pe	Description
15:11	Reserved	Mode	RO	Reserved. must be 00000000
		HW Rst	0	
		SW Rst	0	
10	aneg_now_qual	Mode	R/W	A rise of input pin "aneg_now" will set this bit to 1'b2,
		HW Rst	1′b0	and cause PHY to restart auto-negotiation. Self-clear.
		SW Rst	Retain	Joen clean
9	Rev_aneg_qual	Mode	R/W	Make PHY to auto-negotiate in reversed mode. This
		HW Rst	1′b0	bit takes its value from the input pin "rev_aneg" upon following:
		SW Rst	Update	1 HW reset (fall of rst_dsp_i);
				2 PHY SW reset;
				3 Rise of aneg_now.
8	Giga_dis_qual	Mode	R/W	Make PHY to disable GIGA mode. This bit takes its
		HW Rst	1′b0	value from the input pin "giga_dis" upon following: 1 HW reset (fall of rst_dsp_i);
		SW Rst	Update	2 PHY SW reset;
				3 Rise of aneg_now.
7	Cfg_pad_en	Mode	RO, LH	The default value is zero; if this bit is set to one, then
		HW Rst	0	the auto negotiation Arbitration FSM will bypass the LINK_STATUS_CHECK state when the 10 BaseT/100
		SW Rst	Retain	
6	Mr_ltdis	Mode	R/W	The default value is zero; if this bit is set to one, then
		HW Rst	0	the NLP Receive Link Integrity Test FSM will stays at the NLP_TEST_PASS state.
		SW Rst	Update	

Bit	Symbol	Ту	pe	Description
5	Smartspeed_en	Mode HW Rst SW Rst	R/W 1 Update	The default value is one; if this bit is set to one and cable inhibits completion of the training phase, then After a few failed attempts, the card automatically downgrades the highest ability to the next lower speed: from 100 to 10.
4:2	Smartspeed_retry_li mit	Mode HW Rst SW Rst	R/W 011 Update	The default value is three; if these bits are set to three, then the card will attempt five times before downgrading; The number of attempts can be changed through setting these bits.
1	Bypass_smartspeed_ timer	Mode HW Rst SW Rst	R/W 0 Update	The default value is zero; if this bit is set to one, the Smartspeed FSM will bypass the timer used for stability.
0	Reserved	Mode HW Rst SW Rst	RO 0 0	Reserved. Must be 0.

6.21.15 Receive Error Counter Register

Address Offset: 0x15

Table 6-37 summarizes the Registers

Table 6-37. Status Register

Bit	Symbol	Туре		Description
15:0	Receive Error Count	Mode	RO	Counter will peg at 0xFFFF and will not roll
		HW Rst	0x0000	over. (when rx_dv is valid, count rx_er numbers)
		SW Rst	Retain	(in this version, only for 100Base-T)

6.21.16 Virtual Cable Tester Control Register

Address Offset: 0x16

Table 6-38 summarizes the Registers

Table 6-38. Virtual Cable Tester Contol Register

Bit	Symbol	Туре		Description
15:10	Reserved	Mode	RO	Reserved
		HW Rst	Always 0	
		SW Rst	Always 0	

Bit	Symbol	Ту	ре	Description
9:8	MDI Pair Select	Mode HW Rst SW Rst	R/W 00 Retain	Virtual Cable Tester TM Control registers. Use the Virtual Cable Tester Control Registers to select which MDI pair is shown in the Virtual Cable Tester Status register. 00 = MDI[0] pair 01 = MDI[1] pair 10 = Reserved 11 = Reserved
7:1	Reserved	Mode HW Rst	RO 0	Always 0.
0	Enable Test	Mode HW Rst SW Rst	R/W 0 Retain	When set, hardware automatically disable this bit when VCT is done. 1 = Enable VCT Test 0 = Disable VCT Test

6.21.17 Virtual Cable Tester Status Register

Address Offset: 0x1C

Table 6-39 summarizes the Registers

Table 6-39. Virtual Cable Tester Status Register

Bit	Symbol	Ту	pe	Description
15:10	Reserved	Mode	RO	Reserved.
		HW Rst	Always 0	
		SW Rst	Always 0	-
9:8	Status	Mode	RO	The content of the Virtual Cable Tester Status Registers
		HW Rst	00	applies to the cable pair selected in the Virtual Cable Tester™ Control
		SW Rst	00	Registers.
				11 = linkup state, no open or short in cable.
				00 = Valid test, normal cable (no short or open in cable)
				10 = Valid test, open in cable
				01 = Valid test, short in cable
7:0	Delta_Time	Mode	R/W	Delta time to indicate distance.
		HW Rst	0	Length = Delta_Time * 0.824
		SW Rst	0	

Ethernet Switch Registers

This section describes the internal registers of the Ethernet Switch registers. Table 6-40 summarizes the Ethernet registers for the Ethernet Switch.

Table 6-40. Ethernet Switch Registers Summary

Address	Description	Page
0x0000-0x0098	Global Control Registers	page 282
0x0100-0x0120	Port0 Control Registers	page 294
0x0200-0x0220	Port1 Control Registers	
0x0300-0x0320	Port2 Control Registers	
0x0400-0x0420	Port3 Control Registers	
0x0500-0x0520	Port4 Control Registers	
0x20000-0x200A4	Port0 Statistics Counters	page 301
0x20100-0x201A4	Port1 Statistics Counters	
0x20200-0x202A4	Port2 Statistics Counters	
0x20300-0x203A4	Port3 Statistics Counters	
0x20400-0x204A4	Port4 Statistics Counters	

These registers are accessed by the CPU through the GE1 "MII Address" and "MII Control" registers. GE1 has a MDIO master, while the Ethernet Switch has a MDIO slave.

The MDC/MDIO interface allows users to access the switch internal registers and the MII registers. The format required to access the MII registers in the embedded PHY for a PHY_ADDR from 0x00 to 0x04 is:

start	OP	2'b0	Phy_	Reg_	TA	Data
			Addr	Addr	[1:0]	[15:0]
			[2:0]	[4:0]		

The Op code "10" indicates the read command and "01" is the write command.

The switch internal registers are 32-bits wide, but the MDIO access is only 16-bits wide, so two access cycles are required to access all 32 bits of the internal registers. Moreover, address spacing is more than the 10 bits supported by MDIO, so the upper address bits must be written to internal registers, similar to the page mode access method.

For example, the register address bits [18:9] are treated as a page address and are written out first as High_Addr[9:0]:

start	OP	2′b11	8'b0	6'b0	High_Addr [9:0]
-------	----	-------	------	------	--------------------

Then the register would be accessed via:

start	OP	2'b10	Low_Addr	TA	Data
			[7:0]	[1:0]	[15:0]

Where:

■ Low_Addr[7:1] is the address bit [8:2] of the register AND Low_Addr[0] is 0 for Data[15:0]

■ Low_Addr[0] is 1 for Data[31:16]

6.22 Global Control Registers

Table 6-41 summarizes the global control registers for the AR9331.

Table 6-41. Global Control Registers

Offset	Register	Page
0x0000	Global Mask Control	page 282
0x0010	Global Interrupt	page 283
0x0014	Global Interrupt Mask	page 284
0x0020	Global MAC Address 0	page 285
0x0024	Global MAC Address 1	page 284
0x002C	Flood Mask	page 285
0x0030	Global Control	page 286
0x0040	VLAN Table Function 0	page 286
0x0044	VLAN Table Function 1	page 287
0x0050	Address Table Function 0	page 287
0x0054	Address Table Function 1	page 288
0x0058	Address Table Function 2	page 288
0x005C	Address Table Control	page 289
0x0060	IP Priority Mapping 0	page 289
0x0064	IP Priority Mapping 1	page 290
0x0068	IP Priority Mapping 2	page 290
0x006C	IP Priority Mapping 3	page 291
0x0070	Tag Priority Mapping	page 291
0x0074	Service Tag	page 292
0x0078	CPU Port	page 292
0x0080	MIB Function0	page 292
0x0098	MDIO Control	page 293

6.22.1 Global Mask Control

Address: 0x0000 Access: Read/Write Reset: See field description This register is used for soft resets.

Bit	Bit Name	Туре	Reset	Description
31	SOFT_RET	WO	0x0	Software reset. This bit is set by software to initialize the hardware, and should be self-cleared by hardware after the initialization is done.
30:0	RES	RO	0x0	Reserved.

6.22.2 Global Interrupt

Address: 0x0010 Access: Read/Write

Reset: 0x0

This register provides the status of various interrupts based global parameters. Interrupts are only generated when the corresponding bits of the following "Global Interrupt Mask" are set.

Bit	Bit Name	Description
31:18	RES	Reserved. Must be written with zero. Contains zeros when read.
17	LOOKUP_ERR_INT	Generates an interrupt when there is an error detected during a lookup
16	QM_ERR_INT	This bit generates an interrupt when the QM detects an error
15	RES	Reserved. Must be written with zero. Contains zeros when read.
14	HARDWARE_ INI_DONE	This bit generates an interrupt when the hardware memory initialization has completed
13	MIB_INI_INT	This bit generates an interrupt when the MIB memory initialization has completed
12	MIB_DONE_ INT	This bit generates an interrupt when the CPU has completed accessing the MIB
11	RES	Reserved
10	VT_MISS_VIO_ INT	This bit generates an interrupt when a VID is not located in the VLAN table
9	VT_MEM_VIO_INT	This bit generates an interrupt when a VID is located in the VLAN table, yet the source port is not a member of the VID
8	VT_DONE_INT	This bit generates an interrupt after completing an access to the VLAN table by the CPU
7	QM_INI_INT	Generates an interrupt after the QM memory initialization is completed
6	AT_INI_INT	Generates an interrupt when the address table initialization has completed
5	ARL_FULL_INT	This bit generates an interrupt when there is an address attempting to be added to the address resolution table, yet the table is full
4	ARL_DONE_ INT	This bit generates and interrupt when the address resolution table was accessed and the process has completed
3	MDIO_DONE_ INT	Generates an interrupt when the MDIO access switch register is done
2	PHY_INT	Generates an interrupt originating from the physical layer
1:0	RES	Reserved

6.22.3 Global Interrupt Mask

Address: 0x0014 Access: Read/Write Reset: See field description

This register controls various interrupts based global parameters. Interrupts are only generated when the bits of this register are set.

Bit	Bit Name	Reset	Description
31:18	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
17	LOOKUP_ERR_INT_ EN	0x0	Enables an interrupt when there is an error detected during a lookup
16	QM_ERR_INT_EN	0x0	Enables an interrupt when the QM detects an error
15	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
14	HARDWARE_ INI_DONE_EN	0x0	Enables an interrupt when the hardware memory initialization has completed
13	MIB_INI_INT_ EN	0x0	Enables an interrupt when the MIB memory initialization has completed
12	MIB_DONE_ INT_EN	0x0	Enables an interrupt when the CPU is finished accessing the MIB
11	RES	0x0	Reserved
10	VT_MISS_VIO_ INT_EN	0x0	Enables an interrupt when a VID is not located in the VLAN table
9	VT_MEM_VIO_INT_ EN	0x0	Enables an interrupt when a VID is located in the VLAN table, yet the source port is not a member of the VID
8	VT_DONE_INT_EN	0x0	Enables an interrupt after completing an access to the VLAN table by the CPU
7	QM_INI_INT_EN	0x0	Enables an interrupt after the QM memory initialization has been completed
6	AT_INI_INT_ EN	0x0	Enables an interrupt when the address table initialization has completed
5	ARL_FULL_INT_EN	0x0	Enables an interrupt when there is an address attempting to be added to the address resolution table, yet the table is full
4	ARL_DONE_ INT_EN	0x0	Enables interrupt when the address resolution table was accessed and the process has completed
3	MDIO_DONE_ INT_EN	0x0	Enables an interrupt when the MDIO access switch register is done
2	PHY_INT_EN	0x0	Enables an interrupt originating from the physical layer
1:0	RES	0x0	Reserved

6.22.4 Global MAC Address 1

Address: 0x0020 Access: Read/Write Reset: See field description This register, along with the preceding "Global MAC Address 2", are used to identify the station address of the switch.

Bit	Bit Name	Reset	Description
31:16	RES	0x0	Reserved
15:8	MAC_ADDR_ BYTE4	0x0	These bits represent the station address of the switch which is used
7:0	MAC_ADDR_ BYTE5	0x01	as a source address in pause frames or other management frames

6.22.5 Global MAC Address 2

Address: 0x0024 Access: Read/Write

Reset: 0x0

This register, along with the following "Global MAC Address 1", are used to identify the station address of the switch.

Bit	Bit Name	Description
31:24	MAC_ADDR_ BYTE0	These bits represent the station address of the switch, which is used as a
23:16	MAC_ADDR_ BYTE1	source address in pause frames or other management frames
15:8	MAC_ADDR_ BYTE2	
7:0	MAC_ADDR_ BYTE3	

6.22.6 Flood Mask

Address: 0x002C Access: Read/Write Reset: See field description This register is used to allocate broadcast, multicast and unicast frames.

Bit	Bit Name	Reset	Description	
31:27	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
26	BROAD_TO_ CPU_EN	0x0	0	Broadcast frames cannot be transmitted to the CPU port
			1	Broadcast frames can be transmitted to the CPU port
25	ARL_MULTI_ LEAKY_EN	0x0	0	Ignores the LEAKY_EN bit in the ARL table to control multicast frame leaky VLANs. Uses only port-base MULTI_LEAKY_EN to control the frame leaky VLAN.
			1	Uses the LEAKY_EN bit in the ARL table to control multicast frame leaky VLANs and ignore the MULTI_LEAKY_EN
24	ARL_UNI_ LEAKY_EN	0x0	0	Ignores the LEAKY_EN bit in the ARL table to control unicast frame leaky VLAN. Uses only port-base UNI_LEAKY_EN to control the unicast frame leaky VLAN.
			1	Uses the LEAKY_EN bit in the ARL table to control unicast frame leaky VLANs and ignore the UNI_LEAKY_EN
23:21	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
20:16	MULTI_FLOOD _DP	0x3F	These bits are used to find a destination port for a unknown multicast frame received by the MAC, within which the destination address is not contained in the address resolution table (ARL). Bit 16 corresponds to MAC0, bit 17 corresponds to MAC1,, bit 20 corresponds to MAC4.	
15:5	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
4:0	UNI_FLOOD_ DP	0x3F	These bits are used to find a destination port for a unknown unicast frame received by the MAC, within which the destination address is not contained in the address resolution table (ARL). Bit 0 corresponds to MAC0, bit 1 corresponds to MAC1,, bit 4 corresponds to MAC4.	

6.22.7 Global Control

Address: 0x0030 Access: Read/Write Reset: See field description

Bit	Bit Name	Reset	Description	
31 WEIGHT_		0x0	0 Use strict priority for egress	
PRIORITY	1 If MIX_WEIGHT_PRIORITY = 0, use an 8, 4, 2, 1 weighted fair queueing scheme, otherwise use mix mode			
30:29	RES	0x3	Reserved	
28	MIX_WEIGHT _PRIORITY	0x0	0 Use the 8, 4, 2, 1 weighted fair queueing scheme when the WEIGHT_PRIORITY bit is set to 1	
			Strict priority and weight priority mix mode. The highest priority uses strict priority, other priorities use a 4, 2, 1 weighted fair queueing scheme when the WEIGHT_PRIORITY bit is set as 1.	
27:24	RES	0xF	Reserved	
23:14	RES	0x0	Reserved	
13:0	MAX_FRAME _SIZE	0x5EE	Max frame size can be received and transmitted by the MAC. The MAC drops any packet sized larger than MAX_FRAME_SIZE. The value is for normal packets; the MAC adds 4 if it supports VLAN, it adds 8 for double VLAN, and adds 2 for some headers.	

6.22.8 VLAN Table Function 0

Address: 0x0040 Access: Read/Write

Reset: 0x0

This register is used to set the various functions of the VLAN table, such as priority and ports.

Bit	Bit Name	Description			
31	VT_PRI_EN	Represe	Represents the priority of a VLAN in the VLAN table. VTU [3]		
30:28	VT_PRI	Represents the priority of a VLAN in the VLAN table. VTU [2:0]			
27:16	VID	Represents the value of the VLAN ID (VID) to be added or purged			
15:12	RES	Reserved. Must be written with zero. Contains zeros when read.			
11:8	VT_PORT_ NUM	The port number in the VLAN table			
7:5	RES	Reserved			
4	VT_FULL_VIO	This bit is set when there is a violation of the VLAN table. Set to 1 if the VLAN table is full when the CPU wishes to add a new VID to the VLAN table			
3	VT_BUSY	The VLAN table is busy. This bit must be set to 1 to start a VLAN table operation and cleared to zero after the operation has completed. If this bit is set to 1, the CPU cannot request another operation.			
2:0	VT_FUNC	The VLAN table operating functions			
		000	No operation		
		001	Flush all entries in the VLAN table		
		010	The CPU wants to load an entry into other VLAN table		
		011	Used to purge an entry from the VLAN table		
		100	Used to identify a port to be removed from the VLAN table. This port is indicated in the VT_PORT_NUM bit		
		101	Used to get the next entry in the VLAN table		
		If the VID is 0 and VT_BUSY is set by the software, the hardware should search for the first valid entry in the VLAN table.			
		If the VID is 0 and the VT_BUSY is reset by the hardware, there is no valid entry from the VID set by the software.			

6.22.9 VLAN Table Function 1

Address: 0x0044 Access: Read/Write

Reset: 0x0

This register is used to identify VLAN entries in the VID table.

Bit	Bit Name	Type	Reset	Description
31:12	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
11	VT_VALID	RW	0x0	Represents a valid entry in the VLAN table. VTU [15]
10	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.
9:0	VID_MEM	RW	0x0	Represents a VID member in the VLAN table. VTU [25:16]

6.22.10 Address Table Function 0

Address: 0x0050 Access: Read/Write

Reset: 0x0

This register is used to configure functions of the address resolution (ARL) table.

Bit	Bit Name	Descrip	Description				
31:24	AT_ADDR_ BYTES4	The fifth	The fifth byte of the address				
23:16	AT_ADDR_ BYTES5	The last	The last byte of the address				
15:13	RES	Reserved	d. Must be written with zero. Contains zeros when read.				
12	AT_FULL _VIO	to add a	le full violation. This bit is set to 1 if the ARL table is full when the CPU wishes new entry into the ARL table, and if the ARL table is empty when the CPU purge an entry from the ARL table.				
11:8	AT_PORT_ NUM		number to be flushed. If the AT_FUNC is set to 101, the lookup module must unicast entries for the port				
7:5	RES	Reserved	d. Must be written with zero. Contains zeros when read.				
4	FLUSH_STAT IC_EN	0	When the AT_FUNC is set to 101, only dynamic entries in the ARL table will be flushed				
		1	When the AT_FUNC is set to 101, static entries in the ARL table can be flushed				
3	AT_BUSY	cleared t	The address table is busy. Setting this bit to 1 starts an ARL operation and it must be cleared to zero after the operation is complete. If set to 1, the CPU cannot request another operation				
2:0	AT_FUNC	The add	The address table operation functions				
		000	No operation				
		001	Flush all entries				
		010	Used to load an entry. If these bits are set, the CPU wishes to load an entry into the ARL table				
		011	If these bits are set, used by the CPU to purge an entry from the ARL table				
		100	Flushes all unlocked entries from the ARL				
		101	Flushes the entries of one port from the Address table				
		110	Used to get the next valid or static entry in the ARL table				
		111	Setting these bits enables a MAC address to be searched				
		If the address and the AT_STATUS are both zero, the hardware will search valid entry from entry0.					
		dress is set to zero and the AT_STATUS is not zero, the hardware will discover valid entry which has an address of 0x0.					
			rdware returns an address and the AT_STATUS is zero, there is no next valid the address table.				

6.22.11 Address Table Function 1

Address: 0x0054 Access: Read/Write

Reset: 0x0

This register holds the address of the ARL table, along with bits [23:16] and [31:24] of the preceding "Address Table Function 0".

Bit	Bit Name	Description
31:24	AT_ADDR_ BYTE0	The first byte of the address to operate. This byte is the highest byte of the MAC address for the most significant bit (MSB).
23:16	AT_ADDR_ BYTE1	The second byte of the address
15:8	AT_ADDR_ BYTE2	The third byte of the address
7:0	AT_ADDR_ BYTE3	The fourth byte of the address

6.22.12 Address Table Function 2

Address: 0x0058 Access: Read/Write

Reset: 0x0

This register is used to set parameters for the address resolution table (ARL) such as destination and source address.

Bit	Bit Name	Description
31:27	RES	Reserved. Must be written with zero. Contains zeros when read.
26	COPY_TO_CPU	ATU [7:0]
25	REDIRECT_TOCPU	ATU [69]
24	LEAKY_EN	Used to enable the leaky VLAN. ATU [68]
23:20	RES	Reserved. Must be written with zero. Contains zeros when read.
19:16	AT_STATUS	The destination address status. Associated with the "status" bits in the Address Table ATU [67:64]
15	RES	Reserved. Must be written with zero. Contains zeros when read.
14	SA_DROP_EN	Source address (SA) drop enable. ATU [62]
13	MIRROR_EN	Setting this bit to 1 enables the copying of the DA frame to the mirror port. ATU [61]
12	AT_PRIORITY_EN	Setting this bit to 1 enables the use of a DA priority. ATU [60]
11:10	AT_PRIORITY	The destination address (DA) priority. ATU [59:58]
9:6	RES	Reserved. Must be written with zero. Contains zeros when read.
5:0	DES_PORT	The destination port bits for address ATU [53:48]

6.22.13 Address Table Control

Address: 0x005C Access: Read/Write Reset: See field description This register is used to set the parameters of the Address Table Control, including address age out time and MAC address changes.

Bit	Bit Name	Reset	Description	
31:21	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
20	ARP_EN	0x0	ARP frame acknowledge enable. Setting this bit to 1 is an acknowledgement by the hardware of a received ARP frame and allows it to be copied to the CPU port.	
19	RES	0x1	Reserved.	
18	18 LEARN_ 0x CHANGE_EN		0x0	MAC address change
		EN	0 If a hash violation occurs during learning, no new address will be learned in the ARL	
			1 Enables a new MAC address change if a hash violation occurs during learning	
17	AGE_EN	0x1	Enables the age operation. Setting this bit to 1 allows the lookup module that can age the address in the address table.	
16	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.	
15:0	AGE_TIME	0x2B	The address table age timer. This determines the time that each entry remains valid in the address table, since it was last accessed. The maximum age time is about 10,000 minutes. The default value of 0x2B is for 5 minutes. If the AGE_EN is set to 1, these bits should not be set to 0.	

6.22.14 IP Priority Mapping 0

Address: 0x0060 Access: Read/Write Reset: See field description This register is used to configure the priority mapping value of IPv4 ToS or IPv6 TC field. Bits [7:2] are used to map queue priority, but bits [1:0] are ignored. If ToS [7:2] or TC [7:2] is equal to 0x3C, the queue priority should be mapped to the value of these bits.

Bit	Bit Name	Reset	Description
31:30	IP_MAP	0x0	IP_0x3C
29:28	IP_MAP	0x0	IP_0x38
27:26	IP_MAP	0x0	IP_0x34
25:24	IP_MAP	0x0	IP_0x30
23:22	IP_MAP	0x0	IP_0x2C
21:20	IP_MAP	0x0	IP_0x28
19:18	IP_MAP	0x0	IP_0x24
17:16	IP_MAP	0x0	IP_0x20
15:14	IP_MAP	0x0	IP_0x1C
13:12	IP_MAP	0x0	IP_0x18
11:10	IP_MAP	0x0	IP_0x14
9:8	IP_MAP	0x0	IP_0x10
7:6	IP_MAP	0x0	IP_0x0C
5:4	IP_MAP	0x0	IP_0x08
3:2	IP_MAP	0x0	IP_0x04
1:0	IP_MAP	0x0	IP_0x00

6.22.15 IP Priority Mapping 1

Address: 0x0064 Access: Read/Write Reset: See field description Configures the priority mapping value of the IPv4 ToS or IPv6 TC field. Bits [7:2] map queue priority, but bits [1:0] are ignored. If ToS [7:2] or TC [7:2] is equal to 0x3C, the queue priority should be mapped to the value of these bits.

Bit	Bit Name	Reset	Description
31:30	IP_MAP	0x1	IP_0x7C
29:28	IP_MAP	0x1	IP_0x78
27:26	IP_MAP	0x1	IP_0x74
25:24	IP_MAP	0x1	IP_0x70
23:22	IP_MAP	0x1	IP_0x6C
21:20	IP_MAP	0x1	IP_0x68
19:18	IP_MAP	0x1	IP_0x64
17:16	IP_MAP	0x1	IP_0x60
15:14	IP_MAP	0x1	IP_0x5C
13:12	IP_MAP	0x1	IP_0x58
11:10	IP_MAP	0x1	IP_0x54
9:8	IP_MAP	0x1	IP_0x50
7:6	IP_MAP	0x1	IP_0x4C
5:4	IP_MAP	0x1	IP_0x48
3:2	IP_MAP	0x1	IP_0x44
1:0	IP_MAP	0x1	IP_0x40

6.22.16 IP Priority Mapping 2

Address: 0x0068 Access: Read/Write Reset: See field description This register is used to configure the priority mapping value of IPv4 ToS or IPv6 TC field. Bits [7:2] are used to map queue priority, but bits [1:0] are ignored. If ToS [7:2] or TC [7:2] is equal to 0x3C, the queue priority should be mapped to the value of these bits.

Bit	Bit Name	Reset	Description
31:30	IP_MAP	0x2	IP_0xBC
29:28	IP_MAP	0x2	IP_0xB8
27:26	IP_MAP	0x2	IP_0xB4
25:24	IP_MAP	0x2	IP_0xB0
23:22	IP_MAP	0x2	IP_0xAC
21:20	IP_MAP	0x2	IP_0xA8
19:18	IP_MAP	0x2	IP_0xA4
17:16	IP_MAP	0x2	IP_0xA0
15:14	IP_MAP	0x2	IP_0x9C
13:12	IP_MAP	0x2	IP_0x98
11:10	IP_MAP	0x2	IP_0x94
9:8	IP_MAP	0x2	IP_0x90
7:6	IP_MAP	0x2	IP_0x8C
5:4	IP_MAP	0x2	IP_0x88
3:2	IP_MAP	0x2	IP_0x84
1:0	IP_MAP	0x2	IP_0x80

6.22.17 IP Priority Mapping 3

Address: 0x006C Access: Read/Write Reset: See field description This register is used to configure the priority mapping value of IPv4 ToS or IPv6 TC field. Bits [7:2] are used to map queue priority, but bit [1] and bit [0] are ignored. If ToS [7:2] or TC [7:2] is equal to 0x3C, the queue priority should be mapped to the value of these bits.

Bit	Bit Name	Reset	Description
31:30	IP_MAP	0x3	IP_0xFC
29:28	IP_MAP	0x3	IP_0xF8
27:26	IP_MAP	0x3	IP_0xF4
25:24	IP_MAP	0x3	IP_0xF0
23:22	IP_MAP	0x3	IP_0xEC
21:20	IP_MAP	0x3	IP_0xE8
19:18	IP_MAP	0x3	IP_0xE4
17:16	IP_MAP	0x3	IP_0xE0
15:14	IP_MAP	0x3	IP_0xDC
13:12	IP_MAP	0x3	IP_0xD8
11:10	IP_MAP	0x3	IP_0xD4
9:8	IP_MAP	0x3	IP_0xD0
7:6	IP_MAP	0x3	IP_0xCC
5:4	IP_MAP	0x3	IP_0xC8
3:2	IP_MAP	0x3	IP_0xC4
1:0	IP_MAP	0x3	IP_0xC0

6.22.18 Tag Priority Mapping

Address: 0x0070 Access: Read/Write Reset: See field description This register is used to map the priority value of TAG. If the pri [2:0] in the tag is equal to 0x07, the queue priority should be mapped to the value of these bits.

Bit	Bit Name	Reset	Description
31:16	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
15:14	TAG7	0x3	The priority mapping value of TAG. TAG_0x07
13:12	TAG6	0x3	The priority mapping value of TAG. TAG_0x06
11:10	TAG5	0x2	The priority mapping value of TAG. TAG_0x05
9:8	TAG4	0x2	The priority mapping value of TAG. TAG_0x04
7:6	TAG3	0x1	The priority mapping value of TAG. TAG_0x03
5:4	TAG2	0x0	The priority mapping value of TAG. TAG_0x02
3:2	TAG1	0x0	The priority mapping value of TAG. TAG_0x01
1:0	TAG0	0x1	The priority mapping value of TAG. TAG_0x00

6.22.19 Service Tag

Address: 0x0074 Access: Read/Write

Reset: 0x0

This register is used to double tag egress packets and recognize double tagged packets at ingress.

Bit	Bit Name	Description
31:16	RES	Reserved. Must be written with zero. Contains zeros when read.
15:0	SERVICE_TAG	The service tag. These bits are used to recognize the double tag at ingress and insert the double tag at egress.

6.22.20 CPU Port

Address: 0x0078 Access: Read/Write

Reset: See field description

This register is used to identify CPU connected ports and mirror ports.

Bit	Bit Name	Reset	Description
31:8	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
7:4	MIRROR_PORT _NUM	0xF	Represents the port number to which packets are to be mirrored. 0x0 is port0, 0x1 is port1 and so on. If this value is more than 5, no mirror port is connected to the switch.
3:0	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.

6.22.21 MIB Function0

Address: 0x0080 Access: Read/Write

Reset: 0x0

This register is used to set the MIB functions such as the auto-cast timer and MIB functions.

Bit	Bit Name	Descrip	Description		
31:27	RES	Reserve	Reserved. Must be written with zero. Contains zeros when read.		
26:24	MIB_FUNC	The current MIB function			
		000	No Operation		
		001	Flush all counters on all ports		
		010	Reserved		
		011	Capture all counters for all ports and auto-cast to the CPU port		
		1xx	Reserved		
23:18	RES	Reserve	Reserved. Must be written with zero. Contains zeros when read.		
17	MIB_BUSY	The MI	The MIB module status		
		0	The MIB module is currently empty and can access a new command		
		1	The MIB module is busy and cannot access a new command		
16	MIB_AT _HALFEN	The MIB auto-cast is enabled due to half flow. If set to one, the MIB will be auto-cast when the highest bit count for any counter is set as 1.			
15:0	MIB_TIMER		B auto-cast timer. If set to 0, the MIB will not auto-cast because the timer out. This timer is set in periods of 8.4 ms. The recommended value is $0x100$. x 4)		

6.22.22 MDIO Control

Address: 0x0098 Access: Read/Write

Reset: 0x0

This register is used to control the functions of the MDIO interface.

Bit	Bit Name	Descrip	tion	
31	MDIO_BUSY	Writing a one to this bit represents the internal MDIO interface as busy. This bit should be set when the CPU reads or writes to the PHY register through the internal MDIO interface, and should be cleared after the hardware finishes this command		
30	MDIO_ MASTER_EN	Writing a 1 to this bit enables the MDIO master which is used to configure the PHY register. MDC should change to the internal MDC to PHY		
29:28	RES	Reserved. Must be written with zero. Contains zeros when read.		
27	MDIO_CMD	This bit represents the commands given for the MDIO		
		0	Write	
		1	Read	
26	MDIO_SUP_ PRE	Writing a 1 to this bit enables the supposed preamble		
25:21	PHY_ADDR	These bits represent the PHY address		
20:16	REG_ADDR	These bits represent the PHY register address		
15:0	MDIO_DATA		rrite, these bits are data written to the PHY register. When read, these read out from the PHY register	

6.23 Port Control Registers

Table 6-43 summarizes the port control registers for the AR9331.

NOTE: Table 6-42 shows the offset address for Port0. Port0 through Port4 use these offsets:

Table 6-42. Offset Addresses for PortO

Port0	0x100
Port1	0x200
Port2	0x300
Port3	0x400
Port4	0x500

Table 6-43. Port Control Registers

Offset ^[1]	Register	Page
0x0100	Port Status	page 294
0x0104	Port Control	page 295
0x0108	Port Base VLAN	page 296
0x010C	Rate Limit 0	page 297
0x0110	Priority Control	page 298
0x0114	Storm Control	page 298
0x0118	Queue Control	page 299
0x011C	Rate Limit 1	page 300
0x0120	Rate Limit 2	page 301

[1]See Table 6-42.

6.23.1 Port Status

Address: 0x0100 (See Table 6-42) Access: See field description

Reset: 0x0

This register denotes the settings for the port including flow control and speed.

Bit	Bit Name	Туре	Description
31:13	RES	RO	Reserved. Must be written with zero. Contains zeros when read.
12	FLOW_LINK_EN	RW	Flow control selection.
			0 CPU can configure the flow control through bit 5:4
			1 Enable MAC flow control configuration from autonegotiation.
11	LINK_ASYN_PAUSE_EN	RO	The link partner supports ASYN flow control
10	LINK_PAUSE_ EN	RO	The link partner support flow control
9	LINK_EN	RW	This bit is used to enable the PHY link mode
			0 Allows the MAC to be configured by the software
			1 Enables the use of the PHY link status to configure the MAC
8	LINK	RO	The current link status
			0 PHY link down
			1 PHY link up
7	RES	RO	Reserved. Must be written with zero. Contains zeros when read.
6	DUPLEX_MODE	RW	The duplex mode
			0 Half-duplex mode
			1 Full-duplex mode
5	RX_FLOW_EN	RW	Rx MAC flow control enable
4	TX_FLOW_EN	RW	Tx MAC flow control enable
3	RXMAC_EN	RW	Enables the Rx MAC
2	TXMAC_EN	RW	Enables the Tx MAC

1:0	SPEED	RW	The s	speed mode
			00	10 Mbps
			01	100 Mbps
			10	Reserved
			11	Speed mode error

6.23.2 Port Control

Address: 0x0104 (See Table 6-42)

Access: Read/Write Reset: See field description This register is used to configure port functions such as port mirroring and spanning tree.

Bit	Bit Name	Reset	Description				
31:18	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.				
17	ING _MIRROR_EN	0x0	Setting this bit to 1 will enable ingress port mirroring where all packets received on this port will be copied to a mirror port				
16	EG_MIRROR_ EN	0x0	Setting this bit to 1 enables egress port mirroring where all packets sent out through this port will be copied to a mirror port				
15	DOUBLE _TAG_VLAN	0x0	Setting this bit to 1 will enable the double tag where the MAC will check received frames for the service tag and if found, remove it.				
14	LEARN_EN	0x1	Used to enable the learning operation. Setting this bit to 1 will allow the lookup module to learn new addresses to the address table				
13	SINGLE _VLAN_EN	0x0	Setting this bit allows the MAC to transmit and receive packets with the single VLAN enabled				
12	MAC_LOOP_ BACK	0x0	Setting this bit to 1 enables the MAC Loop back function on the MII interface				
11	RES	0x0	Reserved.				
10	IGMP_MLD _EN	0x0	Enables IGMP/MLD Snooping. Setting this bit to one allows the port to examine all received frames and copy or redirect them to the CPU port, based on the IGMP_COPY_EN bit setting.				
9:8	EG_VLAN_	0x0	Egress VLAN mode based on the following				
	MODE		00 Egress should transmit frames unmodified				
			01 Egress should transmit without VLAN				
			10 Egress should transmit frames with VLAN				
			Double tagged. The MAC should add one tag after the source address. This tag will be set in the SERVICE_TAG register				
7	LEARN_ONE	0x0	0 Normal learning mode				
	_ LOCK		1 This port should not learn source addresses except from the first packet which will be locked in as a static address				
6	PORT_LOCK_ EN	0x0	When this bit is set to 1, the port lock is enabled. All packets received with the source address not found in the ARL table, or the source address resides in the ARL table but the port member is not the source address, should be redirected to the CPU or dropped, which is controlled by the LOCK_DROP_EN bit.				
5	LOCK_DROP _ EN	0x0	0 If the source address is not in the ARL table or the port member is not the source port, the packet should be re4directed to the CPU when the PORT_LOCK_EN bit is set to 1.				
			1 If the source address is not in the ARL table or if it is there but the port member is not the source port, the packet should be dropped when the PORT_LOCK_EN bit is set to 1.				
4:3	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.				

2:0	PORT_STATE	0x4	Port state. These bits manage the port to determine what kind of frames may enter or leave the port for simple bridge loop detection or 803.1D Spanning Tree.			
			000 Disabled mode: port cannot send or receive frames			
			O01 Blocking mode: port forwards Rx management frames to the designed port only. Other frames are not transmitted or received and do not learn source addresses.			
			O10 Listening mode: port receives and transmits only management frames without learning the source address. Other frames are not transmitted or received.			
			O11 Learning mode: port learns all source addresses and discards all frames except management frames, which can only be transmitted.			
			Forwarding mode: port learns all source addresses and transmit and receive frames normally.			

6.23.3 Port Base VLAN

Address: 0x0108 (See Table 6-42)

Access: Read/Write

Reset: 0x0

This register is used to configure the bits for the VLANs, including port VIDs and Leaky VLANs.

Bit	Bit Name	Desc	ription	
31:30	8021Q_MODE	Sets the 802.1Q mode for this port		
		00	Disables the 802.1Q VLAN function. Port-based VLAN used only.	
		01	Enables 802.1Q for all received frames. If the VID for the received frame is not contained in the VLAN table, port VLANs will be used and ingress membership will not be discarded.	
		10	Enables 802.1Q for all received frames. Frames will be discarded only if the VID of the frames are not contained in the VLAN table. Ingress membership will not be discarded.	
		11	Enables 802.1Q for all received frames. Frames will be discarded if the VID of the frames are not contained in the VLAN table and ingress membership will be discarded.	
29:27	ING_PORT_PRI	The p	port default priority for received frames.	
26	FORCE_PORT_ VLAN_EN	Setting this bit forces port-based VLANs to be enabled. This uses the port base VLAN and the VLAN table to determine the destination port.		
25:16	PORT_VID_ MEMBER	Port Base VLAN Member. Each bit restricts which port can send frames to, for port 0, bit 16 must be set to 1, for port 1, bit 17 must be set to 1, etc. These bits are set to one after reset except the port's bit. This prevents frames going out from the port they are received.		
15	ARP_LEAKY_EN	Setting this bit to 1 allows received frames from this port on the MAC to cross all VLANs (both port-based and 802.1Q)		
14	UNI_LEAKY_EN	Used to enable Unicast frames for the leaky VLAN. If the MAC receives unicast frames on this port, it should forward them as leaky VLAN frames. These frame may be switched to the destination port defined in the ARL table and then acros all VLANs (including port-based and 802.1Q). Users may enable the ARL_MULTI_LEAKY_EN bit and the LEAKY_EN bit the		
		When	table to control unicast frames for the leaky VLAN. In the ARL_MULTI_LEAKY_EN is set to 0, only the MULTI_LEAKY_EN tols multicast frames for the leaky VLAN.	
		If the ARL_MULTI_LEAKY_VLAN bit is set to 1, only frame destination address in the ARL table and their LEAKY_EN be forwarded as leaky VLAN frames. This will force the MULT be ignored.		

13	MULTI_LEAKY_ EN	Used to enable Multicast frames for the leaky VLAN. If the MAC receives multicast frames on this port, it should forward them as leaky VLAN frames. These frames may be switched to the destination port defined in the ARL table and then across all VLANs (including port-based and 802.1Q).			
		Users may enable the ARL_MULTI_LEAKY_EN bit and the LEAKY_EN b ARL table to control unicast frames for the leaky VLAN.			
		When the ARL_MULTI_LEAKY_EN is set to 0, only the MULTI_LEAKY_EN controls multicast frames for the leaky VLAN.			
		addre	ARL_UNI_LEAKY_VLAN bit is set to 1, only frames with the destination ess in the ARL table and their LEAKY_EN bit is set to 1 can be forwarded as VLAN frames. This will force the UNI_LEAKY_EN bit to be ignored.		
12	FORCE_ DEFALUT_VID_	0	Received frames will use only the tag set with the received frames for port default VID and priority		
	EN	1	When 802.1Q is enabled, the received frames must use the port default VID and priority issued to them by the switch		
11:0	PORT_VID	The port default VID. Untagged frames transmitted from this port will have the default VID tagged to them			

6.23.4 Rate Limit

Address: 0x0010C (See Table 6-42)

Access: Read/Write Reset: See field description This register is used to set rate limits various frame types.

Bit	Bit Name	Reset	Description
31:24	ADD_RATE_ BYTE	0x18	The byte number should be added to the frame when calculating the rate limit. The default is 24 bytes for IPG, preamble SFD and CRC.
23	EGRESS_RATE_ EN	0x0	Enables the port base rate limit. The rate should be set using the EG_PRI3_RATE
22	EGRESS_ MANAGE_RATE _EN	0x0	Enables management frames to be included in the calculations for the egress rate limit
21	INGRESS_ MANAGE_RATE _EN	0x0	Enables management frames to be included in the calculations for the ingress rate limit
20	INGRESS_MULT I_RATE_EN	0x0	Enables multicast frames to be included in the calculations for the ingress rate limit, if the destination address of those multicast frames is found in the ARL table
19:15	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
14:0	ING_RATE	0x7FFF	The Ingress Rate Limit for all priorities. This rate is limited to multiples of 32kbps. The default of 0x7FFF disables the rate limit for ingress traffic. When these bits are set to 0x0, no frames should be received on the port.

6.23.5 Priority Control

Address: 0x0110 (See Table 6-42)

Access: Read/Write Reset: See field description This register is used to set the priority for QoS based on priorities set for other functions like ToS and IP.

Bit	Bit Name	Reset	Description
31:20	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
19	PORT_PRI_EN	0x1	Setting this bit to 1 allows the port-based priority to be used for QoS
18	DA_PRI_EN	0x0	Setting this bit to 1 allows the destination address priority to be used for QoS
17	VLAN_PRI_EN	0x0	Setting this bit to 1 allows the VLAN priority to be used for QoS
16	IP_PRI_EN	0x0	Setting this bit to 1 allows the ToS/TC to be used for QoS
15:8	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
7:6	DA_PRI_SEL	0x0	The DA priority selected level for QoS, which has five levels. The highest priority is the one found in the packet header. The other four are selected by these bits. If these bits are set to 0, the destination address priority is selected after the header. If set to n, the destination address priority is selected after the priority is set to n-1.
5:4	VLAN_PRI_SEL	0x1	VLAN priority selected level for QoS
3:2	IP_PRI_SEL	0x2	IP priority selected level for QoS
1:0	PORT_PRI_SEL	0x3	Port-based priority selected level for QoS

6.23.6 Storm Control

Address: 0x0114 (See Table 6-42)

Access: Read/Write

Reset: 0x0

This register sets the rate for the storm control based on incoming broadcast, unicast and multicast frames.

Bit	Bit Name	Туре	Reset	Description				
31:11	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read. $ \\$				
10	MULTI_STORM_ EN	RW	0x0	Setting this bit to 1 enables unknown multicast frames to be included in the calculations for storm control				
9	UNI_STORM_EN	RW	0x0	Setting this bit to 1 enables unknown unicast frames to be included in the calculations for storm control				
8	BROAD_STORM _EN	RW	0x0	Setting this bit to 1 enables broadcast frames to be included in the calculations for storm control				
7:4	RES	RO	0x0	Reserved. Must be written with zero. Contains zeros when read.				
3:0	STORM_RATE	RW	0x0	The storm control rate				
				0x0 Disables storm control				
				0x1 Rate set at 1 K frames per second				
				0x2 Rate set at 2 K frames per second				
				0x3 Rate set at 4 K frames per second				
				0x4 Rate set at 8 K frames per second				
				0x5 Rate set at 16 K frames per second				
				0x6 Rate set at 32 K frames per second				
				0x7 Rate set at 64 K frames per second				
				0x8 Rate set at 128 K frames per second				
				0x9 Rate set at 256 K frames per second				
				0xA Rate set at 512 K frames per second				
				0xB Rate set at 1 M frames per second				

6.23.7 Queue Control

Address: 0x0118 (See Table 6-42)

Access: Read/Write Reset: See field description This register is used to set the buffer controls for QoS queues.

Bit	Bit Name	Reset	Description				
31:26	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.				
25	PORT_QUEUE _CTRL_EN	0x1	etting this bit to 1 enables the specified port to use the memory depth ontrol feature				
24	PRI_QUEUE_ CTRL_EN	0x0	etting this bit to 1 enables the memory depth control for this port based n priority				
23:21	RES	0x0	eserved. Must be written with zero. Contains zeros when read.				
20:16	PRI_QUEUE_ NUM	0x10	This field sets the limit of the buffer size for QoS priority queue. Each bit represents a block of memory x 4, where each block represents 256 bytes. Therefore the maximum amount of memory that this bit can hold in the queue is 1024 bytes. (4x 256 = 1024)				
			0x0 No memory for the queue				
			0x1 A maximum of 4 blocks (1024 bytes)				
			0x2 A maximum of 8 blocks (2048 bytes)				
			0x3 A maximum of 12 blocks (3072 bytes)				
			0x1F A maximum of 120 blocks (30720 bytes)				
			Each successive hex value holds the same formula until 0x1F which will be a maximum of 120 blocks (30720 bytes)				
15:12	PRI3_QUEUE_ NUM	0x0	This field sets the limit of the buffer size for QoS priority queue 3. Each bit represents a block of memory x 4, where each block represents 256 bytes. Therefore the maximum amount of memory that this bit can hold in the queue is 1024 bytes. (4x 256 = 1024)				
			0x0 No memory for the queue				
			0x1 A maximum of 4 blocks (1024 bytes)				
			0x2 A maximum of 8 blocks (2048 bytes)				
			0x3 A maximum of 12 blocks (3072 bytes)				
			0xF A maximum of 60 blocks (15360 bytes)				
			Each successive hex value holds the same formula until 0xF which will be a maximum of 60 blocks (15360 bytes)				
11:8	PRI2_QUEUE_ NUM	0x0	This field sets the limit of the buffer size for QoS priority queue 2. Each bit represents a block of memory x 4, where each block represents 256 bytes. Therefore the maximum amount of memory that this bit can hold in the queue is 1024 bytes. (4x 256 = 1024)				
			0x0 No memory for the queue				
			0x1 A maximum of 4 blocks (1024 bytes)				
			0x2 A maximum of 8 blocks (2048 bytes)				
			0x3 A maximum of 12 blocks (3072 bytes)				
			0xF A maximum of 60 blocks (15360 bytes)				
			Each successive hex value holds the same formula until 0xF which will be a maximum of 60 blocks (15360 bytes)				

7:4	PRI1_QUEUE_ NUM	0x0	This field sets the limit of the buffer size for QoS priority queue 1. Eabit represents a block of memory x 4, where each block represents 25 bytes. Therefore the maximum amount of memory that this bit can h in the queue is 1024 bytes. (4x 256 = 1024)					
			0x0	No memory for the queue				
			0x1 A maximum of 4 blocks (1024 bytes)					
			0x2 A maximum of 8 blocks (2048 bytes)					
			0x3 A maximum of 12 blocks (3072 bytes)					
			0xF A maximum of 60 blocks (15360 bytes)					
			Each successive hex value holds the same formula until 0xF which will be a maximum of 60 blocks (15360 bytes)					
3:0	PRI0_QUEUE_ NUM	0x0	This field sets the limit of the buffer size for QoS priority queue 0. Each bit represents a block of memory x 4, where each block represents 256 bytes. Therefore the maximum amount of memory that this bit can hold in the queue is 1024 bytes. ($4x$ 256 = 1024)					
			0x0	No memory for the queue				
			0x1	A maximum of 4 blocks (1024 bytes)				
			0x2	A maximum of 8 blocks (2048 bytes)				
			0x3	A maximum of 12 blocks (3072 bytes)				
			0xF A maximum of 60 blocks (15360 bytes)					
			Each successive hex value holds the same formula until 0xF wholes a maximum of 60 blocks (15360 bytes)					

6.23.8 Rate Limit Register 1

Address: 0x011C (See Table 6-42)

Access: Read/Write Reset: See field description This register is used to set the rate limits for priority queues.

Bit	Bit Name	Reset	Description
31	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
30:16	EG_PRI1_RATE	0x7FFF	The egress rate limit for priority 1. The rate limit is calculated in increments of 32 Kbps. The reset value will disable the rate limit for egress priority 2. If these bits are set to 0 no priority 1 frame will be sent out from this port.
15	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
14:0	EG_PRI0_RATE	0x7FFF	The egress rate limit for priority 0. The rate limit is calculated in increments of 32 Kbps. The reset value will disable the rate limit for egress priority 2. If these bits are set to 0 no priority 0 frame will be sent out from this port.

6.23.9 Rate Limit Register 2

Address: 0x0120 (See Table 6-42)

Access: Read/Write Reset: See field description This register used to set the rate limits for priority queues.

Bit	Bit Name	Reset	Description
31	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
30:16	EG_PRI3_RATE	0x7FFF	The egress rate limit for priority 3. The rate limit is calculated in increments of 32 Kbps. The reset value will disable the rate limit for egress priority 0. If these bits are set to 1 no priority 3 frame will be sent out from this port.
15	RES	0x0	Reserved. Must be written with zero. Contains zeros when read.
14:0	EG_PRI2_RATE	0x7FFF	The egress rate limit for priority 2. The rate limit is calculated in increments of 32 Kbps. The reset value will disable the rate limit for egress priority 2. If these bits are set to 0 no priority 2 frame will be sent out from this port.

6.23.10 Statistics Counters

Table 6-44 lists the AR9331 statistics counters.

Table 6-44. Extensive RMON/Statistics Counters

Name	Description	Port0	Port1	Port2	Port3	Port4
RxBroad	The number of good broadcast frames received	20000	20100	20200	20300	20400
RxPause	The number of pause frames received	20004	20104	20204	20304	20404
RxMulti	The number of good multicast frames received	20008	20108	20208	20308	20408
RxFcsErr	Total frames received with a valid length that have an invalid FCS and an integral number of octets	2000C	2010C	2020C	2030C	2040C
RxAllignErr	Total frames received with a valid length that not have an integral number of octets and invalid FCS	20010	20110	20210	20310	20410
RxRunt	The number of frames received that are less than 64 byte long and good FCS	20014	20114	20214	20314	20414
RxFragment	The number of frames received that are less than 64 byte long and bad FCS	20018	20118	20218	20318	20418
Rx64Byte	The number of frames received that are exactly 64 byte long, including those with errors	2001C	2011C	2021C	2031C	2041C
Rx128Byte	The number of frames received whose length between 65 to 127, including those with errors	20020	20120	20220	20320	20420
Rx256Byte	The number of frames received whose length between 128 to 255, including those with errors	20024	20124	20224	20324	20424
Rx512Byte	The number of frames received whose length between 256 to 511, including those with errors	20028	20120	20228	20328	20428

Table 6-44. Extensive RMON/Statistics Counters (continued)

Rx1024Byte	The number of frames received whose length between 512 to 1023, including those with errors	2002C	2012C	2022C	2032C	2042C
Rx1518Byte	The number of frames received whose length between 1024 to 1518, including those with errors	20030	20130	20230	20330	20430
RxMaxByte	The number of frames received whose length between 1519 to MaxLength, including those with errors (Jumbo)	20034	20134	20234	20334	20434
RxTooLong	The number of frames received whose length exceed MaxLength, including those with FCS errors	20038	20138	20238	20338	20438
RxGoodByte	Total data octets received in frame with a valid FCS; all size frames are included	2003C	2013C	2023C	2033C	2043C
RxBadByte	Total data octets received in frame with a invalid FCS alignment error; all size frames are included and pause frame is included with a valid FCS	20044	20144	20244	20344	20444
RxOverFlow	Total valid frames received that are discarded due to lack of buffer space.	2004C	2014C	2024C	2034C	2044C
Filtered	Port disable and unknown VID	20050	20150	20250	20350	20450
TxBroad	Total good frames transmitted with a broadcast destination address	20054	20154	20254	20354	20454
TxPause	Total good PAUSE frames transmitted	20058	20150	20258	20358	20458
TxMulti	Total good frames transmitted with a multicast destination address	2005C	2015C	2025C	2035C	2045C
TxUnderRun	Total valid frames discarded that were not transmitted due to Tx FIFO underflow	20060	20160	20260	20360	20460
Tx64Byte	Total frames transmitted with a length of exactly 64 byte, including errors	20064	20164	20264	20364	20464
Tx128Byte	Total frames transmitted with length between 65 to 127, including errors	20068	20138	20268	20368	20468
Tx256Byte	Total frames transmitted with length between 128 to 255, including errors	2006C	2016C	2026C	2036C	2046C
Tx512Byte	Total frames transmitted with length between 256 to 511, including errors	20070	20170	20270	20370	20470
Tx1024Byte	Total frames transmitted with length between 512 to 1023, including errors	20074	20174	20274	20374	20474
Tx1518Byte	Total frames transmitted with length between 1024 to 1518, including errors	20078	20178	20278	20378	20478
TxMaxByte	Total frames transmitted with length between 1519 to MaxLength, including errors (Jumbo)	2007C	2017C	2027C	2037C	2047C
TxOverSize	Total frames over MaxLength but transmitted truncated with bad FCS	20080	20180	20280	20380	20480
TxByte	Total data octets transmitted from frames counted, included with bad FCS	20084	20184	20284	20384	20484
TxCollision	Total collisions experienced by a port during packet transmissions	2008C	2018C	2028C	2038C	2048C

Table 6-44. Extensive RMON/Statistics Counters (continued)

TxAbortCol	Total number of frames not transmitted because the frame experienced 16 transmission attempts and was discarded	20090	20190	20290	20390	20490
TxMultiCol	Total number of successfully transmitted frames that experienced more than one collision	20094	20194	20294	20394	20494
TxSingalCol	Total number of successfully transmitted frames that experienced exactly one collision	20098	20198	20298	20398	20498
TxExcDefer	The number of frames that deferred for an excessive period of time	2009C	2019C	2029C	2039C	2049C
TxDefer	Total frames whose transmission was delayed on its first attempt because the medium was busy	200A0	201A0	202A0	203A0	204A0
TxLateCol	Total number of times a collision is detected later than 512 bit-times into the transmission of a frame	200A4	201A4	202A4	203A4	204A4

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

Table 7-1 summarizes the absolute maximum ratings and Table 7-2 lists the recommended operating conditions for the AR9331. Absolute maximum ratings are those values beyond which damage to the device can occur.

Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Table 7-1. Absolute Maximum Ratings

Symbol	Parameter	Max Rating	Unit
V _{dd12}	Supply Voltage	-0.3 to 1.8	V
V _{dd33}	Maximum I/O Supply Voltage	-0.3 to 4.0	V
T _{store}	Storage Temperature	-65 to 150	°C
T_j	Junction Temperature	125	°C
ESD	Electrostatic Discharge Tolerance	2000	V
	Electrostatic Discharge Tolerance (LDO_OUT)	TBD	V
	Electrostatic Discharge Tolerance (USB_DP, USB_DM)	TBD	V

7.2 Recommended Operating Conditions

Table 7-2. Recommended Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD33}	Supply Voltage	± 10%	2.97	3.3	3.63	V
V_{DD25}	I/O Supply Voltage	± 10%	2.25	2.5	2.75	V
V_{DD12}	Core Supply Voltage	± 5%	1.14	1.2	1.26	V
AV_{DD20}	Voltage for Ethernet PHY	_	1.9	2.0	2.15	V
V _{DD_DDR} ^[1]	DDR1 I/O Voltage (2.6 V)	± 5%	2.47	2.6	2.73	V
	DDR2 I/O Voltage (1.8 V)	± 5%	1.71	1.8	1.89	V
	SDRAM I/O Voltage (3.0 V)	± 5%	2.85	3.0	3.15	V
T _{case}	Commercial Case Temperature	_	0	_	110	°C
Psi _{JT}	Thermal Parameter ^[2]	_	_	_	2.2	°C/W

^[1]VDD_DDR voltage is configured by the boot strap setting.

^[2]For 12x12 dual-row LPCC package.

7.3 25/40 MHz Clock Characteristics

When using an external clock, the XTALI pin is grounded and the XTALO pin should be driven with a square wave clock.

AC coupling is recommended for the clock signal to the XTALO pin.

The internal circuit provides the DC bias of approximately 0.6 V. The peak-to-peak swing of the external clock can be between 0.6 V to 1.2 V. Larger swings and sharper edges will reduce jitter.

Table 7-3. 25/40 Clock Square Wave Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	Input High Voltage	_	0.9	_	1.4	V
$V_{ m IL}$	Input Low Voltage ^[1]	_	-0.2	_	0.2	V
T _{DCycle}	Duty Cycle	_	40	50	60	%
T _{Rise}	Rise Time	_	_	_	2	ns
T_{Fall}	Fall Time	_	_	_	2	ns

 $^[1]V_{IL}$ of -0.2 V is limited by the ESD protection diode. If V_{IL} is less than -0.2 V, the ESD diode turns on and protects the chip. However, $V_{\rm IL}$ can go as low as -0.7 V without damage so long as the DC current sourced by the pin is limited by an AC coupling capacitor.

7.4 GPIO Characteristics

Table 7-4 and Table 7-5 define the input and output characteristics of the GPIO pins for the AR9331. This table already takes into account the V_{DD25} tolerance which originates from

LDO25_OUT which has an output voltage of $2.62 \text{ V} \pm 5\%$.

Table 7-4. General GPIO Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	Output High Voltage	_	2.44	_	_	V
V _{OL}	Output Low Voltage	_	_	_	0.1	V
V_{IH}	Input High Voltage	_	0.7	_	_	V
V_{IL}	Input Low Voltage	_	0.3	_	_	ns

Table 7-5. GPIO Characteristics

Signal Name	Pin	Туре	Drive	PU/PD Resistance
GPIO_0 – GPIO_28	A27, A29, A28, A52, A54, A56, A57, A75, A76, A77, A78, A79, B23, B22, B24, B25, B46, B48, B49, B50, B51, B64, B65, B66, B68		Up to 24 mA	200 ΚΩ

7.5 Power On Sequence

The AR9331 has an internal power on circuit reset. when all power inputs, including VDD33, VDD12 and VDD25, are ready, the RESET_L signal; will be released from low to high. This signal is connected to a digital counter which controls the digital reset and is released after 5 µs. When the digital reset goes from low to high, the CPU begins fetching instructions from the internal ROM or the external SPI in order to boot the system. Figure 7-1 better describes the power on sequencing for the AR9331

Figure 7-1. Power on sequencing for the AR9331

7.6 SPI Flash Timing

Figure 7-2 depicts the SPI Flash timing for the AR9331.

Figure 7-2. SPI Flash Timing

Table 7-6 denotes the timing, in nanoseconds, for the SPI Flash.

Table 7-6. SPI Flash Timing per signal

Signal Name	Description	Min (ns)	Max (ns)
T _{CK}	SPI_CK_P pin period	20	_
T _{CSV}	SPI_CS valid time after SPI_CK falling edge	0	3.0
T_{DH}	SPI_DI hold time after SPI_DI rising edge	_	5.0
$T_{ m DSU}$	SPI_DI setup time before SPI_CK rising edge	_	5.0
T_{DRDY}	SPI_DO data delay time after SPI_CK falling edge	5.0	0

7.7 DDR Output Timing

Figure 7-3 depicts the DDR output timing for the AR9331.

Figure 7-3. AR9331 Output timing

COMPANY CONFIDENTIAL

Table 7-7 details the output timing of the Data, Address and Control signals.

Table 7-7. Data, address and control signals output timing

Signal Name	Description	Min (ns)	Max (ns)
T _{CK}	CK_P pin period	2.5	_
T _{DSQSD}	DQS delay time after CK_P rising edge	-0.3	0.2
T_{DH}	Data hold time after DQS edge	0.4	1.3
T _{DRDY}	Data ready time after DQS edge	0.5	1.6
T _{CH}	Control/address hold time after CK_P edge	0.5	1.3
T_{CRDY}	Control/address ready time after CK_P edge	0.4	1.5

7.8 Radio Receiver Characteristics

Table 7-8 summarizes the AR9285 receiver characteristics.

Table 7-8. Radio Receiver Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F_{rx}	Receiver input frequency range	5 MHz center frequency	2.412	_	2.472	GHz
NF	Receive chain noise figure (max gain)	LNA2 (dedicated Rx)	_	5.0	_	dB
		LNA1 (Tx/Rx shared)	_	5.0	_	
S _{rf}	Sensitivity ^[1]				ı	
	CCK, 1 Mbps	See Note ^[2]	-80	-93	_	dBm
	CCK 11 Mbps		-76	-87	_	
	OFDM, 6 Mbps		-82	-88	_	
	OFDM, 54 Mbps		-65	-74	_	
	HT20, MCS0, 1 stream, 1 Tx, 1 Rx	See Note ^[2]	-82	-88	_	dBm
	HT20, MCS7, 1 stream, 1 Tx, 1 Rx		-64	-71	_	
	HT40, MCS0, 1 stream 1 Tx, 1 Rx	See Note ^[2]	-79	-85	_	dBm
	HT40, MCS7, 1 stream 1 Tx, 1 Rx		-61	-69	_	
IP1dB	Input 1 dB compression (min. gain)	_	_	-4	_	dBm
IIP3	Input third intercept point (min. gain)	_	_	5.5	_	dBm
Z _{RFin_input}	Recommended LNA differential drive impedance	LNA2	_	27-j5	_	Ω
ER _{phase}	I, Q phase error	_	_	0.15	_	0
ER _{amp}	I, Q amplitude error	_	_	1.0	_	dB
R _{adj}	Adjacent channel rejection				II.	
,	OFDM, 6 Mbps	10 to 20 MHz ^[3]	16	34	_	dB
	OFDM, 54 Mbps		-1	19	_	
	HT20, MCS0		16	34	_	dB
	HT20, MCS7		-2	18	_	
TR _{powup}	Time for power up (from synthesizer)	_		1.5	_	μs

^[1]Sensitivity for LNA2 (Rx only chain). Sensitivity for LNA1 (Rx/Tx shared chain) is 3dB worse than LNA2.

^[2]Sensitivity performance based on Atheros reference design, which includes Tx/Rx antenna switch. Minimum values based on IEEE 802.11 specifications.

^[3] Typical values measured with reference design. Minimum values based on IEEE 802.11 specifications.

7.9 Radio Transmitter Characteristics

Table 7-9 summarizes the transmitter characteristics of the AR9285.

Table 7-9. Transmitter Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{tx}	Transmit output frequency range	5 MHz center frequency	2.412	_	2.472	GHz
P _{out}	Mask Compliant CCK output power	See Note ^[1]	_	19.5	_	dBm
	Mask Compliant OFDM output power			11	11	
	802.11g BPSK 6 Mbps	See Note ^[2]	_	20	_	dBm
	HT20, MCS0		_	19	_	
	HT40, MCS0		_	16	_	
	EVM Compliant OFDM output power					
	802.11g 64 QAM 54 Mbps	See Note ^[1]	_	19	_	
	HT20, MCS7		_	17	_	dBm
	HT40, MCS7		_	16	_	
SP _{gain}	PA gain step	See Note ^[2]	_	0.5	_	dB
A _{pl}	Accuracy of power leveling loop	See Notes ^{[3][4]}	_	±0.5	_	dB
Z _{RFout_load}	Recommend differential PA load impedance	See Note ^[5]	_	12+j13	_	Ω
OP1dB	Output P1dB (max. gain)	2.442 GHz	_	21	_	dBm
OIP3	Output third order intercept point (max. gain)	2.442 GHz	_	31	_	dBm
SS	Sideband suppression	_	_	-37	_	dBc
RS	Synthesizer reference spur	_	_	-62	_	dBc
TT _{powup}	Time for power up (from synthesizer on)	_		1.5	_	μs

^[1] Measured using the balun recommended by Atheros under Tx power control.

December 2010

^[2]Guaranteed by design.

^[3] Manufacturing calibration required.

^[4] Not including tolerance of external power detector and its temperature variation.

^[5] See the impedance matching circuit in the Atheros reference design schematics. To achieve good RF performance, it is strongly recommended not to alter the RF portion of the Atheros reference design for different matching networks.

7.10 Synthesizer Characteristics

Table 7-10 summarizes the synthesizer characteristics for the AR9331.

Table 7-10. Synthesizer Composite Characteristics for 2.4 GHz Operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pn	Phase noise (at Tx_Out)					
	At 30 KHz offset		_	-97	_	dBc/Hz
	At 100 KHz offset		_	-95	_	
	At 500 KHz offset		_	-110	_	
	At 1 MHz offset		_	-114	_	
F _c	Center channel frequency	Center frequency at 5 MHz spacing ^[1]	2.412	_	2.472	GHz
F _{ref}	Reference oscillator frequency	± 20 ppm ^[2]	_	25 or 40	_	MHz
TS _{powup}	time for power up	_	_	200	_	μs

^[1] Frequency is measured at the Tx output.

7.11 Power Consumption Parameters

The following conditions apply to the typical characteristics unless otherwise specified:

Table 7-11 shows the typical power drain as a function of the AR9331's operating mode.

$$V_{dd12} = 1.2 \text{ V}$$

 $V_{dd33} = 3.3 \text{ V}$, Tamb = 25 °C

Table 7-11. Power Consumption for 2.4 GHz Operation^{[1][2][3][4]}

Mode	Operating Mode	3.3 V Supply (mA)	1.2V Supply (mA)
HT40	Tx	260	250
	Rx	86	290
HT20	Tx	308	240
	Rx	86	276
802.11g	Tx	308	240
	Rx	86	276
802.11b	Tx	373	237
	Rx	86	276

^[1] Values in this table include integrated PA, LNA and LDO.

^[2] Over temperature variation and aging.

^[2] For Tx, transmitter and synthesizer are on. Tx power at 18 dBm for 802.11b/802.11q/HT20 and 16dBm for HT40.

^[3] For Rx, receiver and synthesizer are on with maximum receiver gain.

^[4] With an internal 5-port Ethernet Switch and USB interface in operation mode. All 5 Ethernet ports are connected in 100 MHz mode.

8. Package Dimensions

The AR9331 is packaged in a dual-row LPCC package. The body size is 12 mm by 12 mm. The package drawings and dimensions are provided in Figure 8-1 and Figure 8-2, and Table 8-1.

Figure 8-1. AR9331 Package Drawing: Top View and Detail

Figure 8-2. AR9331 Package Drawing: Bottom and Side View

Table 8-1. Package Dimensions

Dimension Label	Min	Nom	Max	Unit	Min	Nom	Max	Unit
A	0.80	0.85	0.90	mm	0.031	0.033	0.035	inches
A1	0.00	0.02	0.05	mm	0.000	0.001	0.002	inches
A2	0.65	0.70	0.75	mm	0.026	0.028	0.030	inches
A3		0.15 1	REF			0.006	REF	
b	0.18	0.22	0.30	mm	0.18	0.22	0.30	inches
D/E	11.90	12.00	12.10	mm	0.469	0.472	0.476	inches
D1/E1		11.75 BSC		mm		0.463 BSC		inches
D2/E2	5.30	5.40	5.50	mm	0.209	0.213	0.217	inches
D3/E3		5.15 BSC			0.203 BSC			inches
eT	0.50 BSC			mm		0.020 BSC		inches
eR		0.65 BSC		mm		0.026 BSC		inches
K	0.20	_	_	mm	0.008	_	_	inches
L	0.30	0.40	0.50	mm	0.012	0.016	0.020	inches
R	0.09	_	_	mm	0.004	_	_	inches
aaa		0.10		mm		0.004		inches
bbb		0.10		mm		0.004		inches
ССС		0.10		mm		0.004		inches
ddd		0.05		mm		0.002		inches
eee		0.08		mm	0.003			inches
fff		0.10		mm		0.004		inches
ggg		0.20		mm		0.008		inches
θ	5	_	15	٥	5	_	15	0

Notes:

1. Controlling dimension: Millimeter

2. Reference Document: JEDEC MO-267

9. Ordering Information

The order number AR9331-AL1A specifies a lead-free standard-temperature version of the AR9331.

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Atheros assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any updates. Atheros reserves the right to make changes, at any time, to improve reliability, function or design and to attempt to supply the best product possible.

Document Number: MKG-1517 Rev. 1

Atheros Communications, Incorporated

5480 Great America Parkway Santa Clara, CA 95054 tel: 408.773.5200

fax: 408.773.9940 www.atheros.com

COMPANY CONFIDENTIAL
Subject to Change without Notice

Rayson Bluetooth ® Module

Bluetooth Smart Ready ® **Module**

BTM-320

<u>Features</u> <u>Outline</u>

- The module is a Max.6dBm module.
- Bluetooth standard V4.0+EDR conformity.
- No external regulators required for USB Supply operation :
- Low-power selectable 1.2 to 3.6V I/O
- Integrated balun
- Full_speed USB2.0 interface
- Hardware support for dual-mode Bluetooth low energy available
- Fast AGC for enhanced dynamic range
- Power-on-reset cell detects low supply voltage
- RoHS Compliant
- Small outline. 8 x 9 x 1.6 mm

Applications

- PC notebooks,netbooks and desktops
- USB Bluetooth dongles
- Bluetooth designs requiring the USB interface and an HCI interface

Absolute Maximum Ratings				
Ratings	Min.	Max.		
Storage Temperature	-40 ℃	+85℃		
Supply Voltage: USB_VBUS	3.0V	5.75 V		
Supply voltage: VDD_PADS	1.2 V	3.6V		
Supply Voltage: VDD_HOST	3.1V	3.6V		
Supply Voltage: VREG_EN_RST#	Maximum vo	Maximum voltage is VDD_PADS		
Recommended Operating Condition				
Operating Condition	Min.	Max.		
Operating Temperature range	-30 ℃	+85℃		
Supply voltage: USB_VBUS	4.25V	5.75V		
Supply voltage: VDD_PADS	1.8V	3.6V		
Supply voltage: VDD_HOST	3.1V	3.6V		
Supply Voltage: VREG_EN_RST#	Maximum vo	Maximum voltage is VDD_PADS		

Transmitter Perf	ADS=1.8V or 3.3V			Temperature=+20°C		
Parameter		Min.	Type	Max	Bluetooth Spec.	Unit
Maximum RF transmit	power ^(a)	2.0	6.0	-	-6 to +4(C)	dBm
RF power variation over	er temperature					
range with compensat	ion enabled(±)(d)		1.5	2	-	dB
RF power variation over	er temperature					
range with compensat	ion enabled(±)(d)		2.7	5	-	dB
RF power control rang	е	25	35	-	≥16	-
RF power range contro	ol resolution	-	0.5	1.5	-	dB
20dB bandwidth for me	odulated carrier	-	940	1000	≤1000	KHz
Adjacent channel	$F = F0 \pm 2MHz(f) (g)$	-	-45	-20	≤-20	dBm
	$F = F0 \pm 3MHz(f) (g)$	-	-45	-40	≪- 40	dBm
transmit power	$F = F0 \pm > 3MHz(f)(g)$	-	-50	-40	≪-40	dBm
	△F1avg	140	164	175	14 0≤△ F1a vg≤175	KHz
Maximum Modulation	△F2avg	115	150	-	115	KHz
	△F1avg/△F2avg	0.8	0.97	-	≥0.8	-
Initial carrier	frequency tolerance	-30	5	30	±75	KHz
Drift Rate		-	7	20	≤20	kHz/50
						μ s
Drift	single slot packet	-	10	25	≤25	KHz
	five slot packet	-	12	40	≪40	KHz
2nd Harmonic	-	-	-50	-30	≤-30	dBm
Content						
3rd Harmonic	-	-	-45	-30	≤-30	dBm
Content						

Receiver Performance VDD_PADS=1.8V or 3.3V Temperature=+20℃						20℃
Parameter	Frequency (GHz)	Min.	Туре	Max.	Bluetooth Spec.	Unit
Sensitivity at 0.1%	2.402	-	-86.5	-82.5		dBm
BER for all packet	2.441	-	-86.5	-82.5	≤-70	dBm
types	2.480	-	-86.5	-82.5		dBm
Maximum receive sig	nal at 0.1% BER	-20	>-10	-	≪-20	dBm
C/I performance	C/I co-channel	-	7	11	≤11	dB
Adjacent channel	F=F ₀ +1MHz ^{(a) (b)}	-	-4	0	≤0	dB
sensitivity	F=F ₀ -1MHz ^{(a) (b)}	-	-3	0	≤0	dB
	F=F ₀ +2MHz ^{(a) (b)}	-	-45	-30	≪-30	dB

	F=F ₀ -2MHz ^{(a) (b)}	-	-23	-20	≤- 20	dB
	F=F ₀ +3MHz ^{(a) (b)}	-	-48	-40	≪- 40	dB
	F=F ₀ -5MHz ^{(a) (b)}	-	-48	-40	≪- 40	dB
	F=F _{image} (a) (b)	-	-20	-9	≤-9	dB
Max. level of intermod	ulation	-39	-15	-	≥- 39	dBm
interferers ^(c)						
Spurious output level	d)	-	<-130	-		dBm/Hz

Note: (a) Up to five exceptions are allowed in the Bluetooth V4.0+EDR specification on receiver part.

- (b) Measured at $F_0 = 2441MHz$.
- (c) Measured at f1-f2=5MHz. Measurement is performed in accordance with Bluetooth RF test RCV/CV/05.., i.e., wanted signal at -64dBm
- (d) Measured at unbalanced port of balun. Integrated in 100KHz bandwidth and normalised to 1Hz. actual figure is typically below -130dBm/Hz except for peaks -80dBm at 1600MHz, -80dBm in band at 2.4GHz and -80dBm at 3.2GHz

Radio Characteristics – Enhanced Data Rate

Transmitter Performance VDD_PADS=1.8V or 3.3V Temperature=+20℃						
		Min	Туре	Max	Bluetooth Specification	Unit
Maximum RF transmit power ⁽¹⁾			3.5	-	-6 to +4 ⁽²⁾	dBm
Relative transmit power ⁽³⁾			-1.0	-	-4 to +1	dB
π/4 DQPSK max carrier frequency stability ⁽³⁾ W ₀			-2.0	-	<= ±10 for all blocks	KHz
π/4 DQPSK max carrier frequency stability ⁽³⁾ W _i			0.0	-	<= \pm 75 for all blocks	KHz
$\pi/4$ DQPSK max carrier frequency stability ⁽³⁾ $ W_0+W_i $			-2.0	-	<= ±75 for all blocks	KHz
8DPSK max carrier frequency stability ⁽³⁾ W ₀			-2.0	-	<= ±10 for all blocks	KHz
8DPSK max carrier frequency	stability ⁽³⁾ W _i	-75	-1.0	-	<= ± 75 for all blocks	KHz
8DPSK max carrier frequency stability ⁽³⁾ W ₀ +W _i			-2.0	-	<= ± 75 for all blocks	KHz
—/4 DODCK Madulation	RMS DEVM	-	6	-20	<= 20	%
π/4 DQPSK Modulation Accuracy ^{(3) (4)}	99% DEVM≤0.3	99	100	-	≥99	%
	Peak DEVM	-	15	-	≤35	%
ODDOK Marshallatian	RMS DEVM	-	6	-	≤13	%
8DPSK Modulation	99% DEVM≪0.2	-99	100	-	≥99	%
Accuracy ^{(3) (4)}	Peak DEVM	-	14	-	≤25	%
In-band spurious emission ⁽⁵⁾	F>F ₀ +3MHz	-	<-50	-	≪- 40	dBm
	F <f<sub>0 – 3MHz</f<sub>	-	<-50	-	≪- 40	dBm
	F=F ₀ – 3MHz	-	-45	-	≪-40	dBm
	F=F ₀ – 2MHz	-	-42	-	≪- 20	dBm
	F=F ₀ – 1MHz	-	-36	-	≪- 26	dB
	F=F ₀ + 1MHz	-	-32	-	≤- 26	dB

	F=F ₀ + 2MHz	-	-32	-	≪- 20	dBm
	F=F ₀ + 3MHz		-38	-	≪- 40	dBm
EDR Differential Phase Encoding		99	No errors	-	≥99	%

Note: (1) BlueCore8510 ROM firmware maintains the transmit power to be within the Bluetooth V4.0+EDR specification limits.

- (2) Class2 RF transmit power range, Bluetooth V4.0+EDR specification.
- (3) Measurements methods are in accordance with the Bluetooth V4.0+EDR specification.
- (4) Modulation accuracy utilises differential error vector magnitude(DEVM) with tracking of frequency drift.
- (5) Bluetooth specification value are for 8DPSK. Three exception are allowed in Bluetooth V4.0+EDR specification.

Receiver Performance	VDD_PADS=1.8V or 3.3V				Temperature=+20℃	
	Modulation	Min	Туре	Max	Bluetooth Specification	Unit
Sensitivity at 0.01% BER ⁽¹⁾	π/4 DQPSK	-	-86	-82-	≤-70	dBm
	8DPSK	-	-79	-75	≤-70	dBm
Maximum Received signal at	π/4 DQPSK	-20	≥-10	-	≥-20	dBm
0.01% BER ⁽¹⁾	8DPSK	-20	≥-10	-	≥-20	dBm
C/I co-channel at	π/4 DQPSK	-	8	13	≤13	dB
0.01% BER ⁽¹⁾	8DPSK	-	15	21	≤21	dB
Adjacent channel selectivity	π/4 DQPSK	-	-1	0	≪0	dB
C/I F=F ₀ +1MHz ⁽¹⁾ (2) (3)	8DPSK	-	4	5	≤ 5	dB
Adjacent channel selectivity	π/4 DQPSK	-	-1	0	≪0	dB
C/I F=F ₀ -1MHz ⁽¹⁾ (2) (3)	8DPSK	-	4	5	≤=5	dB
Adjacent channel selectivity	π/4 DQPSK	-	-38	-30	≤-30	dB
C/I F=F ₀ +2MHz ⁽¹⁾ (2) (3)	8DPSK	-	-35	-25	≤-25	dB
Adjacent channel selectivity	π/4 DQPSK	-	-22	-20	≤-20	dB
C/I F=F ₀ -2MHz ⁽¹⁾ (2) (3)	8DPSK	-	-21	-13	≤-13	dB
Adjacent channel selectivity	π/4 DQPSK	-	-49	-40	≤-40	dB
C/I F=F ₀ +3MHz ⁽¹⁾ (2) (3)	8DPSK	-	-43	-33	≤-33	dB
Adjacent channel selectivity	π/4 DQPSK	-	-45	-40	≤-40	dB
C/I F=F ₀ -5MHz ⁽¹⁾ (2) (3)	8DPSK	-	-38	-33	≤-33	dB
Adjacent channel selectivity	π/4 DQPSK	-	-19	-7	≤-7	dB
C/I F=F _{Image} ^{(1) (2) (3)}	8DPSK	-	-12	0	≪0	dB

Note: (1) Measurements methods are in accordance with the Bluetooth V4.0+EDR specification.

- (2) Up to five exceptions are allowed in the Bluetooth V4.0+EDR specification on receiver part.
- (3) Measured at F0 = 2405MHz, 2441MHz, 2477MHz.

Application circuit

BTM-320 Pins Function

No.	Pin Name	Pin Type	Pin description

1	PIO[0]	Bi-directional	Programmable input/output
2	GND	GND	Common ground
3	RF_IN	Analogue	Antenna interface Request
4	GND	GND	Common ground
5	PIO[1]	Bi-directional	Programmable input/output
6	PIO[3]	Bi-directional	Programmable input/output
7	PIO[4]	Bi-directional	Programmable input/output
8	PCM_CLK/SPI_CLK	CMOS input	PCM synchronous data clock/Serial Peripheral Interface clock
9	PCM_IN/SPI_MOSI	CMOS input	PCM synchronous data input/Serial Peripheral Interface data input
10	PCM_SPI#_SEL	CMOS input	High lines to SPI, Low Lines to PCM/PIO,
11	GND	GND	Common ground
12	VDD_PADS	Power input	Connect to 1.8V or 3.3V
13	3.3V	Power	Internal Regulator Output 3.3V
14	VDD_HOST	Power input	3.3V Power Supply Input for USB
15	VBUS	Power	Input to USB regulator. Connect to external USB Bus
16	USB_DP(D+)	Bi-directional	USB data plus
17	USB_DN(D-)	Bi-directional	USB data minus
18	1.8V	Power	Internal Regulator Output 1.8V
19	VREG_EN_RST#	CMOS input	Enable internal regulators/ acts as active low reset. Maximum voltage is VDD_PADS
20	PIO[2]	Bi-directional	Programmable input/output line
21	PIO[5]	Bi-directional	Programmable input/output line
22	PCM_SYNC/SPI_CSB	CMOS input	PCM Synchronous data output /Chip select for Synchronous Serial Interface active low
23	PCM_OUT/SPI_MISO	CMOS	PCM synchronous data input /Serial Peripheral Interface data output

Dimension:

Unit: mm

