CISCO

Let's Get Started with ACI Service Insertion

Minako Higuchi, Technical Marketing Engineer @DCBG BRKACI-2486

Agenda

- ACI Contract security
- ACI L4-L7 service integration
 - Firewall Design Options
 - Load Balancer Design Options
 - Multi-Pod/Multi-Site Design Options

BRKACI-2486

Q&A

ACI Contract security

You make networking possible

Cisco ACI - Logical Network Provisioning

Cisco ACI Policy Constructs EPG (End Point Group) and Contract

EPG Classification on an access/server port is based on different attributes

- Port + VLAN, Port + VXLAN, Network/Mask
- IP, MAC Address
- IP, MAC, VM Attributes for VM's

BRKACI-2486

Physical, Virtual, container endpoints can co-exist in same EPG

IP address Network/Mask

Cisco ACI Policy Constructs

Tenants, Application Profiles, Bridge Domains, VRFs

Micro-Segmentation with ACI

- Micro EPG (uSeg EPG)
 - EPG classification based on IP, MAC, VM attributes

- Intra-EPG isolation
 - Deny traffic between endpoints in same EPG

- Intra-EPG contract
 - Contract enforcement on traffic between endpoints in same EPG

Micro EPG (uSeg EPG)

- EPG classification based on IP, MAC, VM attributes
- Endpoints assigned to the uEPG regardless of the encapsulation/port

Intra-EPG Isolation and Intra-EPG Contract

- By default, endpoints in same EPG can talk without contract (permit-all)
- Intra EPG isolation is an option to deny traffic within an EPG (deny-all)
- Intra EPG contract is an option to filter traffic within an EPG (filter)

ACI L4-L7 Service integration

You make networking possible

L4-L7 Design Tips

- Understand desired traffic flow
 - North-South FW?
 - East-West FW?
 - Service Chain order?
 - Is there IP and/or port translation?

Are there devices located in multiple DCs?

BRKACI-2486

L4-L7 Design Options

Understand Requirements

- Firewall/IPS
 - Firewall: Layer 1(inline), Layer 2(Transparent) or Layer 3(Routed)?
 - Gateway: ACI or Firewall?
 - Insertion: VLAN/VRF stitching or PBR?
 - HA option: Active/Standby, Active/Active Cluster or Independent Active nodes
- Load Balancer
 - Load Balancer: Layer 3
 - How to handle return traffic: LB as Gateway, SNAT, PBR or DSR?
 - HA option: Active/Standby
 - VIP: Is VIP in self IP subnet range?

BRKACI-2486

Firewall Design Options

You make networking possible

BRKACI-2486

Firewall Design Options

L2 FW VLAN stitching

Clients

Gateway 10.10.10.1

10.10.10.13

Router C

VLAN10

VLAN11

L3 FW FW as gateway

L3 FW Fabric as gateway VRF sandwich

L3 FW Fabric as gateway PBR

10.10.10.12

10.10.10.11

Option 1: L2 Firewall with VLAN Stitching

- Traditional VLAN stitching
- FW and EPG are in same BD
- ACI as L3
- All inter-BD traffic goes through FW
- Simple
- Service Graph is not mandatory

 L1/L2 PBR available in 4.0 that requires ACI as gateway and dedicated service BDs.

Option 2: L3 Firewall with the Firewall as the Default Gateway

- FW as gateway
- FW and EPG are in same BD
- ACI as L2
- All inter-subnet traffic goes through FW
- Simple

BRKACI-2486

Service Graph is not mandatory

Option 3: L3 Firewall with the Fabric as the Default Gateway – "VRF sandwich"

- Traditional VRF sandwich.
- FW is in L3out
- ACI as L3
- All inter-VRF traffic goes through FW
- Require multiple VRFs and L3outs
- Service Graph is not mandatory

Good for North-South FW

Option 4: L3 Firewall with the Fabric as the Default Gateway, Redirect with PBR

- PBR (Policy Based Redirect).
- ACI as L3
- FW is in BD
- Specific traffic goes through FW
- FW can be two or one arm mode

- Good for Fast-West
- Requires the use of Service-Graph
- Service device can be in same or different BD with servers

ACI PBR Use Cases

Symmetric PBR: Scale Firewall Easily

Ensure incoming and return traffic goes to same firewall

HA Options

Active/Standby Cluster

- PBR is not mandatory
- The Active/Standby pair represents a single MAC/IP entry.

Active/Active Cluster ('Scale-Up' Model)

- PBR is required if the cluster is stretched across pods.
- The Active/Active cluster represents a single MAC/IP entry.
- Spanned Ether-Channel Mode supported with Cisco ASA/FTD platforms

BRKACI-2486

Independent Active Nodes ('Scale-Out' Model)

- · PBR is required.
- Each Active node represent a unique MAC/IP entry.
- Use of Symmetric PBR to ensure each flow is handled by the same Active node in both directions

Copy Service

provider **EPG** Contract Client

IDS

consumer

- APIC 2.0
- Service Graph is mandatory and EX/FX hardware is required

EPG

Web

PBR Design FAQ

You make networking possible

Can We Use PBR for L3out EPG?

Can We Use PBR for EPGs in Same Subnet?

 Inspection between endpoints in same subnet

 Inspection between endpoints even in same EPG

One-Arm vs Two-Arm?

- One-Arm
 - Simple routing design on service node
 - Some firewall doesn't allow intra-interface traffic by default

Default GW: 172.16.1.254

- · Two-Arm
 - Need to manage routing design on service node
 - · Different security level on each interface

Can We Reuse Same PBR Node Multiple Times?

- Multiple consumer/provider EPGs
- Multiple contracts using same PBR destination and Service Graph.

Note

BRKACI-2486

 Depending on routing design, one-arm mode deployment may be required.

Can We Insert Firewall to Any-To-Shared-Service?

- vzAny is useful if we have a security requirement that is applied to all EPGs in same VRF and also it helps to reduce policy TCAM consumption.
- Prior to 3.2, PBR with vzAny (consumer) is supported.
- In ACI 3.2, PBR with vzAny (provider) is also supported.
- Use case: Insert Firewall everywhere.

Can PBR Node be in Consumer/Provider Subnet?

- Prior to APIC version 3.1, PBR node must be different than the consumer/provider BDs.
- Starting from APIC version 3.1, this requirement no longer mandatory. (Need EX/FX Leaf)

Can We Concatenate Services? Multi-Node PBR

- Prior to ACI 3.2: Concatenating PBR nodes is not supported.
 - For example, both 1st and 2nd node can't be PBR nodes. Either one of them can be.

 ACI 3.2: Support more than 1 node PBR in a Service Graph.

Load Balancer Design Options

You make networking possible

cisco live!

BRKACI-2486

Load Balancer Design Options

Two-arm (inline)
LB as Gateway
No SNAT/PBR

Two-arm (inline)
Fabric as Gateway
VRF sandwich

Two-arm
Fabric as Gateway
SNAT/PBR

BRKACI-2486

One-arm
Fabric as Gateway
DSR/SNAT/PBR

Option 1: Two-Arm (Inline) with the SLB as the Default Gateway

- LB and EPG are in same BD
- ACI as L2
- All inter-BD traffic goes through LB
- Simple
- ACI can be L3 for external side of LB
- Service Graph is not mandatory
- SNAT/PBR is not required

Option 2: Two-Arm (inline) with the Fabric as the Default Gateway

- Traditional VRF sandwich
- ACI as L3
- All inter-VRF traffic goes through LB
- Service Graph is not mandatory
- SNAT/PBR is not required

 If SNAT is enabled on LB using LB internal interface as NAT IP, LB-in can be in a BD.
 VRF2 and L3Out LB-in are not required.

Option 3: Two-Arm with the Fabric as the Default Gateway – SNAT/PBR

- PBR or SNAT is required
- ACI as L3
- Service device can be in same or different BD with servers

- If it's PBR:
 - Service Graph is required
 - Specific traffic goes through LB

Option 4: One-Arm with the Fabric as the Default Gateway - L2DSR/SNAT/PBR

- L2DSR, PBR or SNAT is required
- ACI as L3
- Service device can be in same or different BD with servers

- If it's PBR:
 - Service Graph is required
 - Specific traffic goes through LB

What if the VIP is not in LB Interface IP Subnet Range? Use L3Out (or /32 static route on BD)

Two-arm (inline) LB as Gateway No SNAT/PBR

Two-arm (inline)
Fabric as Gateway
VRF sandwich

Two-arm
Fabric as Gateway
SNAT or PBR(After 5.0)

Multi-location Data Centres

You make the power of data **possible**

ACI Anywhere

Service Insertion in Multiple DC Locations

What is the Challenge of Service Insertion in Multiple DC Locations?

Traffic Symmetricity is important

For Your Reference

Multi-Pod and Network Services

Integration Models

Typical options for an Active/Active DC use case

- Active and Standby pair deployed across Pods
- No issues with asymmetric flows

- Active/Active FW cluster nodes stretched across Sites (single logical FW)
- Requires the ability of discovering the same MAC/IP info in separate sites at the same time
- Supported from ACI release 3.2(4d) with the use of Service-Graph with PBR

- Independent Active/Standby pairs deployed in separate Pods
- Use of Symmetric PBR to avoid the creation of asymmetric paths crossing different active FW nodes

Active/Active Cluster Across Pods Anycast IP/MAC with PBR

 All the active FW nodes have the same IP/MAC identity, so one of them will be picked

By default one of the nodes local to a Pod is selected (based on IS-IS metric toward the IP address)

Without Anycast IP/MAC Feature

With Anycast IP/MAC Feature

ACI Multi-Site and Network Services

Integration Models

Deployment options fully supported with ACI Multi-Pod

- Active and Standby pair deployed across Pods
- Currently supported only if the FW is in L2 mode or in L3 mode but acting as default gateway for the endpoints

- Active/Active FW cluster nodes stretched across Sites (single logical FW)
- Requires the ability of discovering the same MAC/IP info in separate sites at the same time
- Not supported

- · Recommended deployment model for ACI Multi-Site
- Option 1: supported from 3.0 for N-S if the FW is connected in L3 mode to the fabric → mandates the deployment of traffic ingress optimization
- Option 2: supported from 3.2 release with the use of Service Graph with Policy Based Redirection (PBR)

Use of Service Graph and Policy Based Redirection

North-South Communication – Inbound Traffic

- Inbound traffic can enter any site when destined to a stretched subnet (if ingress optimization is not deployed or possible)
- PBR policy is always applied on the compute leaf node where the destination endpoint is connected
 - Requires the VRF to have the Ingress policy enforcement preference and direction
 - Supported only intra-VRF in ACI release 4.0.
 - Ext-EPG and Web EPG can indifferently be provider or consumer of the contract

Use of Service Graph and Policy Based Redirection

North-South Communication – Inbound Traffic

• Inbound traffic can enter any site when destined to a stretched subnet (if ingress optimization is not deployed or possible)

- PBR policy is always applied on the compute leaf node where the destination endpoint is connected
 - · Requires the VRF to have the Ingress policy enforcement preference and direction
 - Supported only intra-VRF in ACI release 4.0.
 - Ext-EPG and Web EPG can indifferently be provider or consumer of the contract

Use of Service Graph and Policy Based Redirection

North-South Communication – Outbound Traffic

- PBR policy is always applied on the same leaf where it was applied for inbound traffic
- Ensures the same service node is selected for both legs of the flow
- Different L3Outs can be used for inbound and outbound directions of the same flow

Summary

- ACI Contract security
- ACI L4-L7 service integration
 - Firewall Design Options
 - Inline FW, FW as gateway, VRF sandwich or PBR
 - Load Balancer Design Options
 - LB as gateway, SNAT or PBR for return traffic
 - Multi-Pod/Multi-Site Design Options

Useful Links

Service Graph Design with Cisco Application Centric Infrastructure White Paper

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-734298.html

 Cisco Application Centric Infrastructure Policy-Based Redirect Service Graph Design White Paper

https://www.cisco.com/c/en/us/solutions/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739971.html

ACI Fabric Endpoint Learning White Paper

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739989.html

Useful Links

ACI Multi-pod and Service Node Integration White paper

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739571.html

ACI Multi-site and Service Node Integration White paper

https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-743107.html

BRKACI-2486

53

ıı|ıı|ıı CISCO

Thank you

You make **possible**