

Low-lying spectroscopy of ^{19,20}O

M. Lozano-González, B. Fernández-Domínguez, J. Lois-Fuentes, F. Delaunay

USC-IGFAE and LPC-Caen

March 2025

Experimental setup

E796 was performed at LISE (GANIL) back in March 2022 under these experimental conditions:

- Beam: ²⁰O @ 35 AMeV
- Gas: 90 %D₂ and 10 % iC₄H₁₀
- Silicons: two front layers and one left. 500 µm-thick

(In)elastic $^{20}O(p,p)$ $^{20}O(d,d)$

 $\begin{array}{c} \textbf{p and n} \\ \textbf{removal} \\ ^{20}\text{O}(d,\,^{3}\text{He}) \\ ^{20}\text{O}(d,t) \\ ^{20}\text{O}(p,d) \end{array}$

Physics case

Inelastic: ²⁰O(p,p') and (d,d') excitations

Probing their isoscalar or isovector character

- 1 Determine β_{nucl} from xs normalization
- 2 Use previous β_{em}
- Bernstein formula for M_n/M_p ratio

	E _{exc} (MeV)	β(p,p') [Escu:74],[Jewe:99]	β(p,p')	β(em) [Ram:87] [Spea:89]	M _n /M N/Z
18O état 2*	1,98	0,37 (3)	0,37 (3)	0,355 (8)	1,05 (13
13O état 3	5,09	0,35 (6)	0,34 (4)	0,562 (24)	0,63 (21
26O état 2*	1,67	0,50 (4)	0,55 (6)	0,261 (9)	2,35 (37
20O état 3	5,61		0,35 (5)	-	-

E.Khan thesis (2000)

- $ightharpoonup \sim 1 \Rightarrow \mathsf{isoscalar}$
- $> 1 \Rightarrow \text{isovector}$

Physics case

Transfer: spectroscopy on ²⁰O(d,t),(p,d)¹⁹O

$$\left. \frac{d\sigma}{d\Omega} \right|_{\rm exp} = C^2 S \cdot \left. \frac{d\sigma}{d\Omega} \right|_{\rm s,p}, \quad \sum C^2 S = (2j+1)$$

Two goals:

- Study of the ²⁰O gs wave-function
- 2 Behaviour of $\mathcal{N}=8$ gap

A glance at the analysis

Independent analyis from Juan: same general idea but different execution and (I hope) some improvements.

Good PID after vetoing punchthrough

 E_x resolution in very good agreement with simulations!

Results: (in)elastic scattering

These are the excitation energy spectra for protons and deuterons.

Only 1st excited state

Up to 7 $E_x > 0$ states observed!

Angular distributions for the **ground state** and first excited states:

Remaining states: low stats. Coming soon.

For the proton scattering:

Issue: gs not reproduced by any OMP!

1st excited seems fine \Rightarrow compare β_2 with E. Khan

About normalizations

Just to recall the xs formula:

$$\frac{d\sigma}{d\Omega} = \frac{N}{N_{\rm beam}N_{\rm targets}\epsilon\Delta\Omega} = \frac{N}{\alpha\epsilon\Delta\Omega}$$

- $N_{\text{beam}} \leftarrow \text{CFA counter}$
- $ightharpoonup N_{\mathsf{targets}} \leftarrow \mathsf{Gas}\;\mathsf{mixture}.$ Sensitive to p.

Theo. lines need scaling (α) to match experimental data α in agreement with Juan's \Rightarrow Not likely ϵ issue

Which norm should we use?

Protons are more "reliable" 🤔

Excited states are populated up to $\sim 15\,\mathrm{MeV}$:

In and 2n **phase spaces** are included in the fit. Small (p,d) contamination at $\sim 16\,\mathrm{MeV}$ under control.

Fresco DWBA with OMPs: Daehnick (d), Pang (t)

Fresco DWBA with OMPs: Daehnick (d), Pang (t)

Almost all are $\Delta L=1!$

SF are compared with shell-model calculations with **YSOX** and **SFO-tls**.

Normalized to gs SF

More $p_{1/2}$ strength than predicted at $E_x < 10 \, \mathrm{MeV}$

About ESPEs

Effective single-particle energies (ESPEs) are needed to locate the $1p_{1/2}$ and $1d_{5/2}$ orbits: Baranger's formula

$$\mathrm{ESPE}_{nlj} = \frac{\sum_{i+} (2j+1) \mathrm{SF}_{i+}(E_{i+} - E_0) + \sum_{i-} \mathrm{SF}_{i-}(E_0 - E_{i-})}{\sum_{i+} (2j+1) \mathrm{SF}_{i+} + \sum_{i-} \mathrm{SF}_{i-}}$$

Removal (—) from our (d,t) or (p,d) channels.

Adding (+) from ²⁰O(d,p)²¹O by B. Fernández-Domínguez et al. PRC 84 (2011)

Assuming all $\Delta L = 1$ states below $E_x = 10 \, \text{MeV}$ are $p_{1/2}...$

Smaller experimental gap than predicted!

Higher $1p_{1/2}$ occupation according to exp.

Note: *p-norm* refers to absolute SFs with (p,p) normalization, whereas *d-norm* to (d,d) data

Fewer states are populated in this channel:

Strong (d,d) background since we only identify the outgoing deuteron!

OMPs: CH89 (p), ADWA (d). Not so encouraging results:

Either Fresco or ZR
Twofnr fail to reproduce
gs 😕

Yet 1st excited state seems well-reproduced!

Future work

Detailed study of inelastic channels

Solve normalization issue or find it an explanation

Ask theoriticians if interactions can be tuned for our data

Continue to investigate (p,d)