Robert Stephenson

Dr. Tan

MSC 450-01

5 October 2023

Midterm

First we will import the data and run a basic linear regression on the raw data without manipulating any data.

		OLS Regress	sion Results				
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model:	Leas Thu, 05	price OLS t Squares Oct 2023 03:07:12 540 529 10	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	: tistic):		0.868 0.865 346.4 2e-225 935.6 9893. 9940.	
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const airconditioning hotwaterheating basement guestroom mainroad area bedrooms bathrooms stories parking	-1.99e+04 -627.6635 -358.8964 1331.7594 -188.2469 -551.6684 6.5789 308.4766 2400.1873 1702.2485 775.0578	631.814 232.231 483.557 232.131 284.738 301.545 0.158 154.663 221.901 137.413 125.123	-31.500 -2.703 -0.742 5.737 -0.661 -1.829 41.578 1.995 10.816 12.388 6.194	0.000 0.007 0.458 0.000 0.509 0.068 0.000 0.047 0.000 0.000	-2.11e+04 -1083.871 -1308.824 875.747 -747.603 -1144.041 6.268 4.647 1964.273 1432.306 529.258	-1.87e+04 -171.456 591.031 1787.772 371.109 40.704 6.890 612.306 2836.102 1972.191	
Omnibus: Prob(Omnibus): Skew: Kurtosis: Notes: [1] Standard Err [2] The conditionstrong multicoll	ors assume t n number is	197.678 0.000 1.444 10.099 	Se+04. This m	on: (JB): ===================================	9.97 2.3 errors is co	1.748 21.689 2e-288 35e+04 =====	ied.

The fitted model is price = $-1.99e^4$ - airconditioning 627.6635 - hotwaterheating 358.8964 + basement 1331.7594 - guestroom 188.2469 - mainroad 551.6684 + area 6.5789 + bedrooms 308.4766 + bathrooms 2400.1873 + stories 1702.2485 + parking 775.0578.

Our adjusted R² is 0.865.

Here are the diagnostic graphs for this raw model.

We can see a possible violation of the zero mean assumption as the residual plot could be seen to have a very slight u-shaped curve. There is also a violation of the constant variance assumption as the data starts tight and the scatters towards the end. Our QQ plot also shows us a heavy positive tail which indicates a violation of the normality assumption. Our data also seems to be very left skewed.

We then see that area is our only variable that can be easily identified as to whether or not it has a linear relationship with the response variable as it is the only non-categorical or continuous variable. Our graph shows us that it appears to be linear.

We will then try a log-transformation of the response variable. Here is the model we then construct with the log-transformed response variable.

===========		OLD Kegres:	sion Results 			====	
Dep. Variable:		<u></u>	R-squared:			.910	
Model:	OLS		Adj. R-squa		0.909		
Method:			F-statistic			37.2	
Date:	Thu, 0	5 Oct 2023			1.26e		
Time:		03:07:12	Log-Likelih	ood:		8.62	
No. Observations:		540	AIC:			15.2	
Df Residuals:		529	BIC:		-3	68.0	
Df Model:		10					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	6.3858	0.045	141.216	0.000	6.297	6.475	
airconditioning	-0.0123	0.017	-0.738	0.461	-0.045	0.020	
hotwaterheating	0.0243	0.035	0.702	0.483	-0.044	0.092	
basement	0.1497	0.017	9.013	0.000	0.117	0.182	
guestroom	0.0250	0.020	1.229	0.220	-0.015	0.065	
mainroad	0.0160	0.022	0.741	0.459	-0.026	0.058	
area	0.0006	1.13e-05	51.754	0.000	0.001	0.001	
bedrooms	0.0373	0.011	3.372	0.001	0.016	0.059	
bathrooms	0.1541	0.016	9.704	0.000	0.123	0.185	
stories	0.1405	0.010	14.283	0.000	0.121	0.160	
parking	0.0600	0.009	6.695	0.000	0.042	0.078	
 Omnibus:		4.442	 Durbin-Wats		 1	.955	
		0.108	Jarque-Bera		4	.840	
Prob(Omnibus):					a	0889	
Prob(Omnibus): Skew:		-0.118	Prob(JB):		υ.	0009	

We see an improvement of R^2 in our new model and as it will be shown later, we also see improvements in our assumption violations.

The new fitted model is Log_price = 6.3858 - airconditioning 0.0123 + hotwaterheating 0.0243 + basement 0.1497 + guestroom 0.0250 + mainroad 0.0160 + area 0.0006 + bedrooms 0.0373 + bathrooms 0.1541 + stories 0.1405 + parking 0.0600.

Our adjusted R² is 0.909

Here are our new diagnostic plots.

We can see from our residual plot that our zero mean and constant variance violations now seem to be rectified as the curvature shape is gone and the variance seems to be much more consistent.

We can also see that the positive tail that was in our previous QQ plot is now gone and our data is now only slightly left skewed. Which would indicate that we may have repaired our possible violation of the normality assumption.

We will now try to remove outliers with the following method.

data	[abs(resid	dual_norm) >	3]								
	Log_price	airconditioning	hotwaterheating	basement	guestroom	mainroad	area	bedrooms	bathrooms	stories	parking
157	10.219759	0	0	1	1	1	4062.019202	4	2	2	0
406	7.936753	0	0	0	0	1	2315.707235	3	1	3	0
407	7.996794	0	0	1	0	1	2554.407955	3	1	2	0
469	8.478565	0	0	0	0	0	3298.484500	4	1	2	1
data	= data[al	os(residual_n	orm) <= 3]								

Now that we have removed the outliers we will do another linear regression model.

Dep. Variable:	Log_price		R-squared:		0.915		
Model:	OLS		Adj. R-squa	red:	0.914		
Method:	Least Squares		F-statistic	:	568.1		
Date:	Thu, 05 Oct 2023		Prob (F-sta	tistic):	3.89e-274		
Γime:	03:07:13		Log-Likelih	ood:	237.92		
No. Observations:	536		AIC:		-453.8		
Df Residuals:		525	BIC:		-406.7		
Of Model:		10					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975	
const	6.4072	0.044	146.811	0.000	6.321	6.49	
airconditioning	-0.0142	0.016	-0.887	0.376	-0.046	0.017	
notwaterheating	0.0218	0.033	0.656	0.512	-0.044	0.087	
asement	0.1519	0.016	9.472	0.000	0.120	0.18	
uestroom	0.0171	0.020	0.871	0.384	-0.022	0.056	
nainroad	0.0132	0.021	0.632	0.528	-0.028	0.054	
irea	0.0006	1.09e-05	53.164	0.000	0.001	0.001	
pedrooms	0.0380	0.011	3.560	0.000	0.017	0.059	
athrooms	0.1470	0.015	9.602	0.000	0.117	0.17	
tories	0.1445	0.009	15.235	0.000	0.126	0.16	
arking	0.0617	0.009	7.145	0.000	0.045	0.079	
)mnibus:		0.073	Durbin-Wats			.024	
Prob(Omnibus):		0.964	Jarque-Bera	(JB):	e	.158	
kew:		0.004	Prob(JB):		e	.924	
urtosis:		2.916	Cond. No.		2.35	e+04	

Our new fitted model is Log_price = 6.4072 - airconditioning 0.0142 + hotwaterheating 0.0218 + basement 0.1519 + guestroom 0.0171 + mainroad 0.0132 + area 0.0006 + bedrooms 0.0380 + bathrooms 0.1470 + stories 0.1445 + parking 0.0617.

Our new adjusted R² is 0.914

Here are our new diagnostics plots.

We can see that while our charts stay the same we do see that the data is now almost not skewed at all and seems to have a near-perfect bell shaped curve. Which is likely because of our removal of outliers.

We then remove unnecessary predictors by doing a subset selection. We determined the model with 6 predictors to be the best as it had the highest R^2 value as well as the lowest AIC and BIC. We will then create another linear regression model on this new subset.

	OLS R	egress	ion Re	sults			
 Dep. Variable:	Log p	===== rice	R-sau	========= ared:	======	0.915	
Model:	8_P			R-squared:		0.914	
	Least Squ		_			949.0	
				Prob (F-statistic):			
Time:				Log-Likelihood:			
No. Observations:			AIC:			236.64 -459.3	
Of Residuals:		529	BIC:			-429.3	
Of Model:		6					
Covariance Type:							
coef				P> t			
const 6.4154	0.042	153	.296	0.000	6.333	6.498	
basement 0.1564	0.015	10	.568	0.000	0.127	0.185	
rea 0.0006	1.03e-05	56	.578	0.000	0.001	0.001	
pedrooms 0.0373	0.011	3	.519	0.000	0.016	0.058	
oathrooms 0.1472	0.015	9	.667	0.000	0.117	0.177	
tories 0.1439	0.009	15	.964	0.000	0.126	0.162	
parking 0.0618		7		0.000	0.045	0.078	
 Mmnibus:				======== n-Watson:	======	2.029	
Prob(Omnibus):				e-Bera (JB):		0.234	
kew:	-0	.005	Prob(JB):		0.889	
(urtosis:		.898				2.24e+04	
 Notes: [1] Standard Errors a [2] The condition num strong multicollinear	nber is large	, 2.24	e+04.	This might ind			

Our new fitted model is Log_price = 6.4154 + basement 0.1564 + area 0.0006 + bedrooms 0.0373 + bathrooms 0.1472 + stories 0.1439 + parking 0.0618.

Our new adjusted R^2 is 09.14.

Interestingly our diagnostics charts seem to remain the exact same from our last model.

I believe this model has adequately addressed violations of the error term assumptions, removed unnecessary predictors, and has dealt with outliers. This will be the final model that I will report.

- In the final model: guestroom, hot water heater, and air conditioning do not significantly influence housing price as they are not in the final model. Basement however, does influence the housing price as its p-value of 0.000 is less than a 0.05 significance level.
 Basement's relation to the independent variable is that for every 1 unit increase in basement there is a 0.1564 unit increase in Log_price.
- 2. We make the predictions on the housing_test.csv and our MSE is 5999659.242668923.