Введение

Синолитические сети в классификации мозговой активности

Власенко Даниил

Научные руководители: Заикин Алесей, Захаров Денис Геннадьевич

18 февраля 2023 г.

- 1 Введение
- 2 Синолитические сети
- Понижение размерности
- 4 Алгоритм
- Б Результаты

Введение

Определение

Функциональная магнитно-резонансная томография или фМРТ — разновидность магнитно-резонансной томографии, которая проводится с целью измерения изменений в токе крови, вызванных нейронной активностью головного или спинного мозга.

Рис.: фМРТ сканер.

Введение о•ооо

Рис.: МРТ скан.

Цель работы

Будем считать, что мозг может функционировать в двух режимах.

Цель работы

Реализация и тестирование нового метода классификации режимов мозговой активности на основе фМРТ данных.

Классификация

Вероятностная постановка задачи классификации

Пусть есть с.в. $\xi:\Omega\to X$ и с.в. $\eta:\Omega\to Y$. Рассмотрим с.в. $(\xi,\eta):\Omega\to (X,Y)$ с распределением p(x,y).

Задача классификации сводится оценке p(y|x) по выборке $(\widetilde{X},\widetilde{Y})=\{(x_k,y_k),k=1,\ldots,N\}$

Алгоритмическая постановка задачи классификации

Пусть X — множество описаний объектов, Y — множество номеров классов. Существует функция $f: X \to Y$, значения которой известны только на объектах выборки $(\widetilde{X},\widetilde{Y}) = \{(x_k,y_k), k=1,\ldots,N\}.$

Требуется построить алгоритм-оценку $\widehat{f}:X o Y$.

Векторизация

NiBabel — библиотека предоставляющая возможность читать различные форматы файлов нейровизуализации.

Рис.: Векторизация фМРТ данных.

Рис.: Классификация на основе построения графов отражающих входные данные.

Обозначения

Пусть $X = \{x_k\}_k$ — множество фМРТ, а $Y = \{y_k\}_k$ — режимы когнитивной активности $\{x_k\}_k$ со значениями I или II.

 $x_k \in X$ конвертируется в массив a^k , на основе которого строиться граф $g_k = (V_k, E_k, R_k, W_k)$, где

- $V_k = \{v_i^k\}_i$ множество вершин,
- ullet $E_k = \{e_{ij}^k\}_{ij}$ множество неориентированных ребер,
- ullet $R_k = \{r_i^k\}_i$ множество значений вершин,
- $W_k = \{w_{ij}^k\}_{ij}$ множество весов ребер,
- v_i^k вершина отражающая область мозга i,
- ullet e^k_{ii} ребро отражающее связь между областями i и j,
- r_i^k значение вершины v_i^k ,
- w_{ii}^k вес ребра e_{ii}^k .

Подсчет весов ребер w_{ij}^k

Вероятностное определение w_{ij}^k

$$w_{ij}^{k} = P(y_{k} = II | r_{i}^{k}, r_{j}^{k}) - P(y_{k} = I | r_{i}^{k}, r_{j}^{k})$$

Пусть $Cl_{ij}:\{y_k|(r_i^k,r_j^k),\{(r_i^n,r_j^n)\}_n,\{y_n\}_n\}_k \to [0,1]$ вероятностный классификатор.

Алгоритмическое определение w_{ij}^{k}

$$w_{ij}^{k} = CI_{ij}(y_{k} = II|(r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n}, \{y_{n}\}_{n}) - CI_{ij}(y_{k} = I|(r_{i}^{k}, r_{i}^{k}), \{(r_{i}^{n}, r_{i}^{n})\}_{n}, \{y_{n}\}_{n})$$

Рис.: Эмпирическая плотность распределения (r_i, r_j) для двух режимов, вычисленная по $\{(r_i^n, r_i^n)\}_n$

Введение

Увеличение размеров вокселя

Увеличение размера шага решетки ϕ MPT в n раз уменьшает число вокселей в n^3 раза.

Рис.: Воксель 2 мм³ Рис.: Воксель 4 мм³ Рис.: Воксель 10 мм³

Понижение размерности по времени

Пусть T — некоторая статистика,

$$a^{kT}=T(a^k),$$

т.е. для $\forall x, y, z$

$$a_{xyz}^{kT} = T(\{a_{xyzt}^k : \forall t\}).$$

Рис.: Значения вокселя.

Смена структуры графа

Переход от полного графа к графу-решетке снижает время вычисления и требуемую память с $O(n^2)$ до O(n), где nчисло вершин графа.

Рис.: Переход от полного графа к графу-решетке.

Обучение модели

Введение

Входные данные:

- выборка $(\widetilde{X}, \widetilde{Y})$,
- новый размер шага решетки фМРТ s,
- статистики вокселей $\{T_r\}_r$,
- минимальное абсолютное значение ребра w для которого ребро не удаляется из графа,
- ullet статистики графов $\{P_u\}_u$, на которых будет учиться модель.

Алгоритм

Обучение модели

Алгоритм:

- ullet изменение шага решетки фМРТ для $\forall x_k \in \widetilde{X}$;
- **2** построение $\{a^k\}_k$;
- **3** подсчет $\{a^{kT_p}\}_{kp}$;
- lacktriangle обучение $\{Cl_{ij}\}$ на выборке $(\{a^{kT_p}\}_{kp},\widetilde{Y});$
- **5** подсчет $W_k = \{w_{ij}^k\}_{ij}$ с помощью $\{Cl_{ij}\}_{ij}$;
- lacktriangle построение графов g_k с помощью a^{kT_p} и $\{w_{ij}^k\}$

Seen Imagined or

Рис.: Наблюдение или воображение объекта.

Рис.: Разделение выборки.

mean	median	max	min	max — min
100	100	95.7	97.1	90

$$\begin{array}{c|ccccc} q_{0.9} & q_{0.1} & q_{0.9} - q_{0.1} \\ \hline 98.6 & 100 & 88.6 \end{array}$$