2003-2004 学年度第二学期数据结构期末试题(字期数据结构期末试题(B)
专	业:	学号:
一、	单项选择题(20分)	
1.	下列排序算法中,、	属于稳定排序,、属于不
	稳定排序(4分)	
	A. 起泡排序	B. 快速排序
	C. 插入排序	D. Shell 排序
2.	双端队列,是一种在线性表	两端都可进行插入和删除操作(也仅
	可在两端进行)的数据结构	,假定输入序列为123456,下列
	哪个序列不可能是双端队列	的输出序列(3分)
	A. 1 2 3 4 5 6	B. 4 2 1 3 5 6
	C. 1 2 6 4 5 3	D. 5 2 6 3 4 1
3.	通过元素比较和交换来进行	排序的排序算法的时间复杂性下界
	为(2分)	
	A. n	B. nlogn
	C. n ²	$D. \log^2 n$
4.	4个节点的二叉树的结构共有种(3分)	
	A. 12	B. 13
	C. 14	D. 15
5.	己知二叉树的的结果,	不可推导出唯一的二叉树结构(3分)
	A. 先序遍历和中序遍历	B. 先序遍历和后序遍历
	C. 中序遍历和后序遍历	

6. 二叉树节点数为 n,	以链接方式进行存储,非空指针数量为
(3分)	
A. n-1	B. n
C. n+1	D. n/2
7. 图 G 的顶点数为 n,	则生成树的边的数量为(2分)
A. n/2	B. n-1
C. n	D. n+1
二、 画出下面程序段运 #include <stack> stack<char> s; char x, y, z; s. push('a'); s. push('b'); while (!s. empty()) x = s. top();</char></stack>	运行过程中,栈的变化情况

三、 对下面的整数列表,写出执行堆排序算法形成递增序列的过程(写出建堆的结果和每次删除最大元后堆的重整过程)(8分) 49 38 65 97 76 13 27 52

四、 写出下面二叉树的先序、中序、后序遍历结果(10分)

五、 对下图, 画出邻接链表的描述方式, 并根据邻接链表, 给出从顶点1开始的深度优先遍历和宽度优先遍历结果(12分)

六、 在下面 AVL 树中, 删除节点 m, 画出结果 (8分)

七、 对下图,利用 Kruskal 算法求其最小生成树(12分)

八、 设计函数:对保存在一个数组中的实数列表进行重整,使 所有负数都位于所有非负数之前,算法复杂性要求达到Θ(n), 且不能使用辅助数组。函数原型如下: a 为待重整数组, n 为 数组大小。(13 分)

void rearrange(float a[], int n)

九、 设计算法:对给定的中序遍历和后序遍历结果,构造对应 的二叉树结构。并利用算法对下面遍历结果构造二叉树结构。

中序遍历: 1, 7, 5, 8, 3, 6, 2, 4 后序遍历: 7, 8, 5, 6, 3, 4, 2, 1