L3 SECURITY

EN.600.444/644

Spring 2019

Dr. Seth James Nielson

IPV4 PROTOCOL

- Layer 3 Protocol
- Handles fragmentation and reassembly
 - Assumed that across multiple LANS, multiple MAC protocols
 - Each MAC protocol might have its own MTU
- Also, of course, includes the global IP address
 - Kind of global...

IPV4 HEADER

		32	Bits —		
8		8	8	8	
Version	Header Length	Type of Service or DiffServ	Total Length		
	Ident	ifier	Flags	Fragment Offset	
Time t	o Live	Protocol		Header Checksum	
		Source	Address		
		Destination	on Address		
		Options		Padding	

IPV4 HEADER FIELDS

- Version 0100 (binary 4)
- Header Length Length of header in 4-byte increments
- Total Length Size of header and data in bytes (max 65535)
- Identification for recognizing fragments
- Flags
 - Reserved. Always 0
 - Don't fragment
 - More fragments

MORE IPV4 HEADER FIELDS

- Fragment Offset Offset in original datagram
- TTL Counter to prevent infinite routing
- Protocol Information about upper layer (17=UDP, 6=TCP)
- Header Checksum
 - Recomputed each hop (because of TTL changes)
 - Checksum field itself always presumed to be 0

ORIGINAL TOS

DIFFERENTIATED SERVICES

ECN

- Explicit Congestion Notification
- When enabled, indicates congestion without dropping
- Not all hardware/software supports ECN

IPV4 ADDRESSES

- IPv4 Addresses are a.b.c.d where each is between 0-255
- In actuality, just a 32-bit number ("four octets")
 - 192.0.2.235
 - 3221226219
 - 0xC00002EB (0xC0.0x00.0x02.0xEB)
- Private Networks:
 - 10.0.0.0
 - 172.16.0.0
 - 192.168.0.0

FRAGMENTATION

- If packet size > MTU, and DNF is 0
 - Each fragment gets its own size
 - Each fragment except the last gets MF set to I
 - Fragment offset is location in the original packet
 - Identification field is unique identifier of original datagram
- Reassembly
 - Use src, dst, protocol, and identification to identify fragments
 - Use offset to store data in reassembly buffer
 - Use MF = 0 to recognize end of reassembly

FRAGMENTATION ISSUES

- IPv4 Fragmentation had security issues
 - IP Fragmentation Overlap (overwrite a fragment)
 - Buffer full (too many incomplete fragments)
 - Fragment overrun
 - (Note that most of these are DoS, but some evasion)

IPV6

IPv4 Header			IPv6 Header						
Version	IHL	Type of Service	Total Length		Version	/ersion Traffic Class		Flow Label	
Identification Flags		Flags	Fragment Offset	Payload Length		Next Header Hop Limi			
Time to Li	ive	Protocol	Heade	er Checksum					
Source Address			Source Address						
Destination Address				Source Address					
Options Padding									
egend			Destination Address						
Field's name kept from IPv4 to IPv6									
		pt in IPv6							
Name and position changed in IPv6 New field in IPv6									
New fi	eld in	1Pv6							

IPV6 HEADER FIELDS

- Version = 0110 (binary 6)
- Traffic Class: Differentiated services plus ECN
- Flow label: Hint for multiple outbound paths
- Payload length: Includes extension headers, in bytes
- Next header: Type of next extension or transport header
- Hop limit: Decrement by I, discard if 0

EXTENSION HEADERS

- IPv6 is always 40 bytes for main header
- Can have additional headers:

COMMON EXTENSION HEADERS

Order	Header Type	Next Header Code	
1	Basic IPv6 Header	-	
2	Hop-by-Hop Options	0	
3	Destination Options (with Routing Options)	60	
4	Routing Header	43	
5	Fragment Header	44	
6	Authentication Header	51	
7	Encapsulation Security Payload Header	50	
8	Destination Options	60	
9	Mobility Header	135	

IPV6 FRAGMENTATION

- To deal with IPv4 Frag issues, ONLY SENDER can frag in IPv6
- Ergo, sender must know smallest MTU of path!
- Path MTU Discovery (PMTUD)
 - If too big, send an ICMPv6 "packet too big" to sender
- Otherwise, max IPv6 packet size is 1,280 bytes.
- Uses a fragmentation extension header
 - Identification
 - MF, etc

IPV6 FRAG PROBLEMS

- Studies from 2014-present indicate IPv6 fragmentation fails
- About one-third of IPv6 hosts could not receive frags
- Many are concluding that IPv6 fragmentation is deprecated
- Maximum IPv6 packet size between 1280 and 1350
- See,
 - https://blog.apnic.net/2016/05/19/fragmenting-ipv6/
 - https://labs.apnic.net/?p=1033

IPSEC

- IPSec provides the following protocols:
 - Authentication Headers integrity of immutable fields
 - Encapsulating Security Payloads confidentiality
 - Security Associations negotiate parameters of AH, ESP
 - Internet Key Exchange (IKE)

AH FIELDS

- Operates ON TOP of IP!
 - Protocol Number 51
- Next Header (e.g.,TCP)
- Payload Length 4-octet units minus 2
- Security Parameters Index With dest address forms SA
- Sequence Number increasing number to prevent replay
- Integrity Check Value the authenticated hash

AH VISUAL

ESP FIELDS

- Operates on top of IP, protocol number 50
- Security Parameter Index With dest addr, identifies the SA
- Sequence Number Increasing number to prevent replay
- Protected content of the original IP packet
- Padding for encryption
- Pad Length Size of pad in octets
- Next Header (e.g.,TCP)
- Integrity Check Value authenticated hash

ESP VISUAL

IKE

- Internet Key Exchange
- IKEvI (RFC 2409 + many updates)
- IKEv2 (RFC 4306 + many updates)
 - Most recent version is 7296, updated by 7427, 7670, 8247

IKEVI

- RFC 2409
- Contains three protocols:
 - ISAKMP provides a framework for authentication and key exchange but does not define them
 - Oakley describes a series of key exchanges
 - SKEME describes a versatile key exchange technique which provides anonymity, repudiability, and quick key refreshment.
- Uses part of Oakley and part of SKEME in conjunction with ISAKMP to obtain authenticated keying material

IKEVI PROTOCOL PHASES

- Phase I where the two ISAKMP peers establish a secure, authenticated channel with which to communicate. This is called the ISAKMP Security Association (SA)
- Phase 2 Phase 2 is where Security Associations are negotiated on behalf of services such as IPsec or any other service which needs key material and/or parameter negotiation.
- One phase I can permit many phase 2's

ISEKMP

ISAKMP HEADER

- Initiator Cookie Cookie of initiating device
- Responder's Cookie Must be 0 on first message!
- Next Payload Indicates ISAKMP payload (examples:)
 - Security Association
 - Proposal
 - Transform
- Exchange Type (phase 1, phase 2)

ISAKMP EXCHANGE

PHASE I AUTHENTICATION

- Pre-shared keys
- Digital Signatures
- Public-key Encryption
- Revised mode, Public-key Encryption

PHASE 2

IKEV2

- Significantly less complicated than IKEv1
- IKEv1 sends at least 6-9 messages for setup
 - 6 if using "aggressive" mode
 - 9 if using "main" mode
- IKEv2 sends 4 messages total
 - SA exchange
 - AUTH exchange

Figure 3-2 Relationship of Attributes Sent in IKEv1 Exchanges, Compared to IKEv2

If additional IPsec Services

IKEV2 AUTH

- Pre-shared Keys
- Digital Signatures
- EAP (Extensible Access Protocol)
 - ONLY FOR VALIDATING THE INITIATOR
 - Can
- Asymmetric Authentication

identity; this allows for separate IKE and EAP identities to exist for a device. Initiator Responder RADIUS HDR, SAi1, KEi, Ni HDR, SAr1, KEr, Nr [CertReq] HDR, SK {IDi, [Cert], [CertReq], SAi2, TSi, TSr} HDR, SK {IDr, [Cert], AUTH, EAP-Req(Identity)} HDR, SK {EAP(EAP-Resp(Identity))} Access-Request (EAP-ID) IKEv2 -Access-Challenge(EAP-Method) HDR, SK {IDr, [Cert], AUTH, EAP-Req(EAP-Method)} -RADIUS HDR, SK {EAP(EAP-Resp(EAP-Method))} Access-Request (EAP-Method) Access-Accept(EAP-Success) HDR, SK {EAP-Success} HDR, SK{AUTH} HDR, SK {AUTH, SAr2, TSi, TSr)

Figure 2-8 EAP with Query-Identity Used

ADDITIONAL IKE2 BENEFITS

- High Availability
- Identities + Parallel SA's between peers
- "Built-in" NAT
- Mobility and Multi homing
- Request-response (retry) reliability
- Combined-mode Ciphers

MODES OF OPERATION

- Transport Mode
 - AH or ESP on payload of IP Packet
- Tunnel Mode
 - Entire IP Packet is encrypted and/or authenticated
 - Put into a NEW IP packet (i.e., VPN tunnel)
- Can use AH and ESP, but typically shouldn't.