COMP 330/543: Relational Databases 1

Luis Guzman

Sinan Kockara

Chris Jermaine

Rice University

What is a Database?

A collection of data

Plus, a set of programs for managing that data

Back in the Day...

The dominant data model was the network or navigational model (60's and 70's)

Data were a set of records with pointers between them

Much DB code was written in COBOL

Big problem was lack of physical data independence

- Code was written for specific storage model
- Want to change storage? Modify your code
- Want to index your data? Modify your code
- Led to very little flexibility
 - ➤ Your code locked you into a physical database design!

Some People Realized This Was a Problem

By 1970, EF Codd (IBM) was looking at the so-called relational model

- Landmark 1970 paper, "A relational model of data for large shared data banks"
- Led to the 1981 Turing Award
 - ▶ Highest honor a computer scientist receives
 - ▶ Analogous to a Nobel Prize

Idea: data stored in "relations"

- A relation is a table of tuples or records
- Attributes of a tuple have no sub-structure (are atomic)

No pointers!

Querying in the Relational Model

Querying is done via a "relational calculus"

Declarative

- You give a mathematical description of the tuples you want
- System figures out how to get those for you

Why is this good?

Querying in the Relational Model

Querying is done via a "relational calculus"

Declarative

- You give a mathematical description of the tuples you want
- System figures out how to get those for you

Why is this good?

- Data independence!
- Your code has no data access specs
- So can change physical org, no code re-writes

Relation Schema

All data are stored in tables, or relations

A relation schema consists of:

- A relation name (e.g., LIKES)
- A set of (attribute_name, attribute_type) pairs
 - ▶ Each pair is referred to as an "attribute"
 - Or sometimes as a "column"
- Usually denoted using LIKES (DRINKER string, BEER string)
- Or simply LIKES (DRINKER, BEER)

A Relation

A relation schema defines a set of sets

- Specifically, if $T_1, T_2, ..., T_n$ are the n attribute types
- Where each T_i is a set of possible values
 - Ex: string is all finite-length character strings
 - \triangleright Ex: integer is all numbers from -2^{31} to $2^{31}-1$
- Then a realization of the schema (aka a "relation") is a subset of
 - $ightharpoonup T_1 \times T_2 \times ... \times T_n$
 - \triangleright where \times is the Cartesian product operator

Attribute Types Forming a Relation

T ₁	T ₂		T _n		T ₁	T ₂	 T _n
0	Α		Red		0	Α	 Red
1 X	В	X X	Blue	=	0	Α	 Blue
					0	В	 Red
					0	В	 Blue
					1	Α	 Red
					1	Α	 Blue
					1	В	 Red
					1	В	 Blue

A Relation (continued)

So for the relation schema LIKES (DRINKER string, BEER string)

A corresponding relation might be

```
{("Luis", "Modelo"),

("Sinan", "PBR")}
```

This is also referred to as a "table"

The entries in the relation are referred to as

- "rows"
- "tuples"
- "records"

Keys

In the relational model, given $R(A_1, A_2, ..., A_n)$

A set of attributes $K = \{K_1, ..., K_m\}$ is a KEY of R if:

- For any valid realization R' of R...
- For all t_1, t_2 in R'...
- If $t_1[K_1] = t_2[K_1]$ and $t_1[K_2] = t_2[K_2]$ and ... $t_1[K_m] = t_2[K_m]$...
- Then it must be the case that $t_1 = t_2$

Note: every relation schema MUST have a key... why?

Keys

What is a key for

STUDENT (NETID, FNAME, LNAME, AGE, COLLEGE)?

What is a key for

LIKES (DRINKER, BEER)?

Keys (continued)

A relation schema can have many keys

Those that are minimal are CANDIDATE KEYs

• "Minimal" means no subset is a key

One is designated as the PRIMARY KEY denoted with an underline

• STUDENT (<u>NETID</u>, FNAME, LNAME, AGE, COLLEGE)

Surrogate Key

• No real-world meaning, added to simplify primary key

Keys (continued)

Connecting Relations

The relational model does not have pointers

Why? Two reasons:

- Not nice mathematically
 - ▶ Mathematical elegance key goal in model design
- Implementation difficult
 - ▶ Move an object? All pointers are invalid!
 - Can have centralized look-up table
 - Dut expensive, complicated, plus problem still exists

Connecting Relations

But we still need some notion of between-tuple references

- DRINKERS (DRN_ID, FNAME, LNAME)
- LIKES (DRN_ID, BEER)

Clearly, LIKES.DRN_ID refers to DRINKERS.DRN_ID

• Why not the other way around?

Accomplished via the idea of a FOREIGN KEY

Solution: Foreign Keys

- DRINKERS (DRN_ID, FNAME, LNAME)
- LIKES (DRN_ID, BEER)

Given relation schemas R_1 , R_2

- We say a set of attributes K_1 from R_1 is a foreign key to a set of attributes K_2 from R_2 if...
- (1) K_2 is a candidate key for R_2 , and...
- (2) For any valid realizations R'_1 , R'_2 of R_1 , R_2 ...
- For each $t_1 \in R'_1$, it MUST be the case that there exists $t_2 \in R'_2$ s.t...
- $t_1[K_{1,1}] = t_2[K_{2,1}]$ and $t_1[K_{1,2}] = t_2[K_{2,2}]$ and ... $t_1[K_{1,m}] = t_2[K_{2,m}]$

Intuitively, what does this mean?

Intuitively what does it mean?

- The foreign key (k_1) must be a set of attributes that uniquely identify a record in another table (R_2)
- The combination of attribute values present in every tuple of (R_1) must also be present in (R_2)

Why is this a requirement?

Intuitively what does it mean?

- The foreign key (k_1) must be a set of attributes that uniquely identify a record in another table (R_2)
- The combination of attribute values present in every tuple of (R_1) must also be present in (R_2)

Why is this a requirement?

- To prevent inconsistencies
- To match to a single target

RDBMS enforce these requirements via

- Cascading deletes
- Failed inserts

Which one is R_1 and R_2 ?

DRINKERS

DRN_ID	FNAME	LNAME
lg67	Luis	Guzman
sk212	Sinan	Kockara

LIKES

DRN_ID	BEER
lg67	Modelo
sk212	PBR
lg67	Corona

What happens here?

DRINKERS

DRN_ID	FNAME	LNAME
lg67	Luis	Guzman
sk212	Sinan	Kockara

LIKES

DRN_ID	BEER
lg67	Modelo
sk212	PBR
lg67	Corona
cmj4	Blue Moon

Queries/Computations in the Relational Model

The original query language was the RELATIONAL CALCULUS

• Fully declarative programming language

next was the RELATIONAL ALGEBRA

- Imperative
- Define a set of operations over relations
- A RA program is then a sequence of those operations
- This is the "abstract machine" of RDBs

Today we use SQL

- Heavily influenced by RC
- Has aspects of RA

Overview of Relational Calculus

RC is a variant on first-order logic

You say: "Give me all tuples t where P(t) holds"

P(t) is a predicate in first-order logic

• A predicate is basically boolean function

Predicates

First order logic allows predicates

- > predicate: a function that evals to true/false
- \triangleright "It's raining on day X" or Raining(X)
- \triangleright "It's cloudy on day X" or Cloudy(X)

Can build more complicated preds using logical operations over them

- \triangleright and (\land)
- **▷** or (∨)
- \triangleright not (\neg)
- \triangleright implies (\rightarrow)
- \triangleright iff (\leftrightarrow)

Predicates (continued)

Example: $Raining(X) \wedge Cloudy(X)$

Evals to true if:

 \triangleright It is raining and cloudy on day X

Example: $Raining(X) \rightarrow Cloudy(X)$

Evals to true if either:

- \triangleright It is not raining on day X, or
- \triangleright It is raining and cloudy on day X

Note the difference between them!

 \triangleright \rightarrow is like a logical "if-then"

First Order Logic

Just predicates and logical ops?

➤ You've got predicate logic

But when you add quantification

- $\triangleright \forall, \exists$
- ➤ You've got first order logic

Universal Quantification

Asserts that a predicate is true all of the time

Example:

- $\triangleright \ \forall (X)(Raining(X) \rightarrow Cloudy(X))$
- ▶ This is a zero-arg predicate (takes no params)
- Asserts that it only rains when it is cloudy
- ▶ Note: idea of universe of discourse is key!

Universal Quantification: Example 1

$$\forall (X)(Raining(X) \rightarrow Cloudy(X))$$

Universal Quantification

Asserts that a predicate is true all of the time

- $\triangleright \ \forall (X)(Friends(X,Y))$
- \triangleright This is a predicate over Y
- \triangleright Evals to true if the person Y is friends with everyone

Universal Quantification: Example 2

Existential Quantification

Asserts that a predicate can be satisfied

Example:

- $ightharpoonup \exists (X)(Raining(X) \land not\ Cloudy(X))$
- ▶ Asserts that it can rain when it is not cloudy
- ▶ A.K.A a "sun shower"

Existential Quantification: Example 1

 $\exists (X)(Raining(X) \land not\ Cloudy(X))$

Existential Quantification

Asserts that a predicate can be satisfied

Example:

- ightharpoonup not $\exists (X,Y)(Friends(X,Y) \land Friends(X,Z) \land Friends(Y,Z))$
- ightharpoonup This is a predicate over Z
- ▶ Evals to true when?

Existential Quantification

Asserts that a predicate can be satisfied

Example:

- ightharpoonup not $\exists (X,Y)(Friends(X,Y) \land Friends(X,Z) \land Friends(Y,Z))$
- \triangleright This is a predicate over Z
- \triangleright Evals to true when? (If there is not a pair of friends who are both friendly with Z)

Important Equivalence

```
\forall (X)(P(X)) is equivalent to... not \exists (X)(\text{not }P(X))
```

- \triangleright Ex: not $\exists (X,Y)(Friends(X,Y) \land Friends(X,Z) \land Friends(Y,Z))$
- ➤ Can be changed to:
- $\triangleright \ \forall (X,Y) (\text{not} \ (Friends(X,Y) \land Friends(X,Z) \land Friends(Y,Z)))$
- ightharpoonup Or $\forall (X,Y) (\text{not } Friends(X,Y) \lor \text{not } Friends(X,Z) \lor \text{not } Friends(Y,Z))$

Which is easier?

- IMO: often easier to reason about \forall
- With ∃ tend to get into double and triple negatives
- Unfortunately, SQL does not have \forall

Questions?