Proposition: Closure of a Set is Itself and Boundary

$$\overline{S} = S \cup \partial S$$

Proof -

Let $x \in \overline{S}$, then

- If $x \in S$, then $x \in S \cup \partial S$
- If $x \notin S$, then we have to show that $x \in \partial S \stackrel{\mathbb{D}}{=} \overline{S} \setminus \mathring{S}$, we already know that $x \in \overline{S}$ so it remains to show that $x \notin \mathring{S}$, that is, we need to show that the following is false:

$$\exists \varepsilon \in \mathbb{R}^{>0} \text{ such that } B\left(x, \varepsilon\right) \subseteq S$$

But $x \notin S$, so it's impossible for $B(x,\varepsilon) \subseteq S$ to be true for any ε . Thus $x \notin \mathring{S}$ and we have $x \in \partial S$

- Let $x \in S \cup \partial S$, we need to show that $x \in \overline{S}$, so $\forall \varepsilon \in \mathbb{R}^{>0}$, $B(x,\varepsilon) \cap S \neq \emptyset$. Let $\varepsilon \in \mathbb{R}^{>0}$
- If $x \in S$ then $x \in B(x, \varepsilon)$ and $x \in S$ so $B(x, \varepsilon) \cap S \neq \emptyset$
 - If $x \in \partial S \stackrel{\mathbb{D}}{=} \overline{S} \setminus \mathring{S}$, then $x \in \overline{S}$ as needed.