

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Τηλ.: 210-7722479 - e-mail: eglytsis@central.ntua.gr - www: http://users.ntua.gr/eglytsis/

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Α (Τμήμα Ε-Λ) ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ No. 1

Ασκήσεις για εξάσκηση: No. 1,2,3,4,5 Ασκήσεις για παράδοση: No. 6, 7, 8 Ημερομηνία Παράδοσης: 24 Μαρτίου 2022

Άσκηση 1:

(α) Συνολικό ηλεκτρικό φορτίο Q διανέμεται ομοιόμορφα στον όγκο σφαίρας ακτίνας a. Η σφαίρα αρχίζει να περιστρέφεται με γωνιακή ταχύτητα ω γύρω από κάποια διάμετρό της. Υποθέσατε ότι η κατανομή του ηλεκτρικού φορτίου δεν επηρεάζεται από την περιστροφή. Να βρεθεί η χωρική πυκνότητα ρεύματος παντού μέσα στην σφαίρα. Να υπολογισθεί το συνολικό ρεύμα που διέρχεται από ημικύκλιο ακτίνας a σταθερό στο χώρο και με την βάση του πάνω στον άξονα περιστροφής.

(β) Συνολικό ηλεκτρικό φορτίο Q διανέμεται ομοιόμορφα στην επιφάνεια δίσκου ακτίνας a. Ο δίσκος αρχίζει να περιστρέφεται με γωνιακή ταχύτητα ω γύρω από τον άξονά του (άξονας των z). Υποθέσατε ότι η κατανομή του ηλεκτρικού φορτίου δεν επηρεάζεται από την περιστροφή. Να βρεθεί η επιφανειακή πυκνότητα ρεύματος παντού πάνω στον δίσκο. Να υπολογισθεί το συνολικό ρεύμα που διέρχεται από τμήμα του δίσκου ακτίνας a σταθερό στο χώρο και με την αρχή του πάνω στον άξονα περιστροφής.

Ασκηση 2:

Επιφανειακή πυκνότητα ρεύματος $\vec{K} = ax\hat{\iota}_x + bxy\hat{\iota}_y$ διαρρέει το επίπεδο xy ενός καρτεσιανού συστήματος συντεταγμένων. (α) Να βρεθούν οι μονάδες των σταθερών a και b. (β) Να υπολογισθεί το συνολικό ρεύμα που διέρχεται από το ευθύγραμμο τμήμα που συνδέει την αρχή των αξόνων (0,0,0) με το σημείο $(x_0, y_0, 0)$ όπου $x_0, y_0 > 0$. (γ) Να υπολογισθεί το συνολικό ρεύμα που διέρχεται από το τμήμα κύκλου του επιπέδου xy με κέντρο την αρχή των αξόνων και ακτίνα xy με xy y0.

Άσκηση 3:

Σε κάποια χρονική στιγμή η πυκνότητα ηλεκτρικού ρεύματος ενός συστήματος δίδεται από την σχέση $\vec{J} = A(x^3\hat{\iota}_x + y^3\hat{\iota}_y + z^3\hat{\iota}_z)$ όπου A είναι μιά θετική σταθερά. (α) Ποιά είναι η μονάδα μέτρησης της σταθεράς A; (β) Σε αυτή την χρονική στιγμή ποιός είναι ο ρυθμός μεταβολής της χωρικής πυκνότητας ηλεκτρικού φορτίου στο σημείο (a, a, a); (γ) Θεωρήστε το συνολικό φορτίο Q που περιέχεται μέσα σε μια σφαίρα ακτίνας a με κέντρο την αρχή των αξόνων. Κατά την δεδομένη χρονική στιγμή ποιός είναι ο ρυθμός μεταβολής του Q ως πρός τον χρόνο; Το Q αυξάνεται ή μειώνεται σαν συνάρτηση του χρόνου; (δ) Κατά την δεδομένη χρονική στιγμή ποιό είναι το συνολικό ηλεκτρικό ρεύμα που διέρχεται από το τετράγωνο πλευράς a που φαίνεται στο κάτωθι σχήμα;

Ασκηση 4:

Έστω χωρική πυκνότητα ηλεκτρικού ρεύματος $\vec{J}=[400\sin\theta/(r^2+4)]\,\hat{\imath}_r$ (A/m²). (α) Να βρεθεί το ολικό ηλεκτρικό ρεύμα που διέρχεται από μέρος σφαιρικής επιφάνειας ακτίνας $r_0=0.8$ m περιορι-σμένης από τις πολικές γωνίες $\theta_I=0.1\pi$ και $\theta_2=0.3\pi$ και $0<\varphi\leq 2\pi$. (β) Να βρεθεί η μέση τιμή της πυκνότητας ρεύματος πάνω σε αυτή την επιφάνεια. (γ) Να βρεθεί ο ρυθμός μεταβολής (ως προς τον χρόνο) του ηλεκτρικού φορτίου που βρίσκεται στον όγκο που περικλείεται από την προηγούμενη επιφάνεια και περιορίζεται ως προς την διεύθυνση z από επίπεδα κάθετα στο z στις γωνίες θ_I και θ_2 .

 $\frac{\textbf{Άσκηση 5:}}{\textbf{Στον}}$ επίπεδο δίσκο ακτίνας a (στο επίπεδο z=0) υπάρχει γνωστό επιφανειακό ρεύμα επιφανειακής πυκνότητας $\vec{K}=\hat{\imath}_{r_T}K_0\left(\frac{a}{r_T}\right)cos(\frac{2\pi r_T}{a})$. Τα μόνα άλλα ρεύματα που υπάρχουν αλλά δεν είναι γνωστή η τιμή τους είναι: (1) στον ημιάξονα z>0 υπάρχει νηματοειδές ρεύμα I(z), (2) στην κυλινδρική επιφάνεια $r_T=a, z>0$, υπάρχει επιφανειακό ρεύμα $\overrightarrow{K_1}=\hat{\iota}_z K_1(z)$, και (3) στον ημίχωρο $r_T< a, z>0$, υπάρχει ρεύμα με χωρική πυκνότητα ρεύματος $\vec{J}=\hat{\iota}_z J(r_T,z)$. Ρεύματα μπορεί να υπάρχουν στο. + Η μαγνητική διαπερατότητα είναι παντού μ₀. Να προσδιορισθούν τα άγνωστα ρεύματα **χρησιμοποιώντας** τον νόμο διατήρησης ηλεκτρικού φορτίου.

Ασκηση 6: (Αυτή η άσκηση είναι προς παράδοση) [30%]

Το κάτωθι σχήμα δείχνει τη διατομή μιας διάταξης με άπειρο μήκος κατά τον άξονα z. Όλος ο χώρος είναι μη μαγνητικός δηλαδή υπάρχει παντού διαπερατότητα μ_0 . Στη διάταξη αυτή, σε μόνιμη κατάσταση $(\partial/\partial t=0)$ ροή ρεύματος είναι δυνατό να υπάρχει μόνο: (1) Στην περιοχή $\mathbf{b}< r_T<\mathbf{a},\ 0<\varphi<\pi/2$, ως χωρική πυκνότητα $\vec{J}=\hat{\iota}_{r_T}J_T(r_T,\varphi)+\hat{\iota}_{\varphi}J_0(\mathbf{a}/r_T)\sin^2\!\varphi$, όπου J_0 είναι σταθερή ποσότητα, (2) στα επίπεδα όρια $\mathbf{b}< r_T<\mathbf{a},\ \varphi=0$ και $\mathbf{b}< r_T<\mathbf{a},\ \varphi=\pi/2$, ως επιφανειακές πυκνότητες $\vec{K}_1=\hat{\iota}_{r_T}K_1(r_T)$ και $\vec{K}_4=\hat{\iota}_{r_T}K_4(r_T)$, αντίστοιχα, και (3) στις κυλινδρικές επιφάνειες $r_T=\mathbf{a}$ και $r_T=\mathbf{b}$, ως επιφανειακές πυκνότητες $\vec{K}_2=\hat{\iota}_{\varphi}K_2(\varphi)$ και $\vec{K}_3=\hat{\iota}_{\varphi}K_0\sin^2\!\varphi$ για $0<\varphi<\pi/2$ αντίστοιχα.

(α) [10%] Υπολογίστε τις επιφανειακές πυκνότητες ρεύματος $K_1(r_T)$, $K_2(r_T)$, $K_4(\varphi)$ και την χωρική συνιστώσα $J_T(r_T, \varphi)$ χρησιμοποιώντας κατάλληλα τον νόμο διατήρησης ηλεκτρικού φορτίου.

Τα επόμενα ερωτήματα απαιτούν την χρήση υπολογιστού (MatLab, Python, Mathematica, C++, ή άλλο): Θεωρήστε a = 2m (όλες οι αποστάσεις σε m), b = 1m, $J_0 = 1$ A/m², και $K_0 = 1$ A/m.

(β) [10%] Να γίνει (με την βοήθεια της MatLab ή ισοδυνάμου υπολογιστικού πακέτου) γραφική απεικόνιση του μέτρου της χωρικής πυκνότητας ηλεκτρικού ρεύματος $|\vec{J}|$ στον καρτεσιανό χώρο $0m \le x,y \le 2m$ (στο επίπεδο xy). Να χρησιμοποιήσετε την συνάρτηση surface(x,y,J), $shading\ interp$ (ή ισοδύναμη) για την χρωματική απεικόνιση του μέτρου $|\vec{J}|$ στο επίπεδο xy. Επίσης να βρεθούν οι επιφάνειες (γραμμές) σταθερού μέτρου της $|\vec{J}|$ στο επίπεδο xy με την βοήθεια της συνάρτησης contour. Οι επιφάνειες (γραμμές) σταθερού μέτρου να βρεθούν για τιμές $J_{max}[0:0.05:1]$ A/m^2 (J_{max} είναι η μέγιστη τιμή του μέτρου $|\vec{J}|$ και [0:0.05:1] σημαίνει βήματα 0.05 από 0 έως 1). (γ) [10%] Να γίνει μια γραφική απεικόνιση της χωρικής πυκνότητας ηλεκτρικού ρεύματος \vec{J} στο επίπεδο xy στον καρτεσιανό χώρο $0m \le x,y \le 2m$. Προτείνω την χρήση των quiver ΚΑΙ streamslice (Matlab) ή ισοδυνάμων. $E\pi$ ίσης να υπολογιστούν οι δυναμικές γραμμές της χωρικής πυκνότητας ηλεκτρικού ρεύματος στο επίπεδο xy κάνοντας χρήση της συνάρτησης streamline (ή ισοδύναμης). Μια 2D βελτιωμένη έκδοση της stream2 (που χρησιμοποιεί η stream1 βρίσκεται στο αποθηκευτήριο stream2 (με το όνομα stream3) στην ηλεκτρονική διεύθυνση:

https://www.mathworks.com/matlabcentral/fileexchange/38860-improved-2-d-streamlines.

Ασκηση 7: (Αυτή η άσκηση είναι προς παράδοση) [30%]

Το κάτωθι σχήμα δείχνει τη διατομή μιας διάταξης με άπειρο μήκος κατά τον άξονα z. Όλος ο χώρος είναι μη μαγνητικός δηλαδή υπάρχει παντού διαπερατότητα μ_0 . Στη διάταξη αυτή, σε μόνιμη κατάσταση $(\partial/\partial t = 0)$ ροή ρεύματος είναι δυνατό να υπάρχει μόνο:

- (1) Στην περιοχή $r_T < a$, $0 < \varphi < 2\pi/3$, ως χωρική πυκνότητα $\vec{J} = \hat{\imath}_{r_T} J_T(r_T, \varphi) + \hat{\imath}_{\varphi} J_0 \cos \varphi$, όπου J_0 είναι σταθερή ποσότητα, και
- (2) Στα επίπεδα όρια $r_T < a$, $\varphi = 0$ και $r_T < a$, $\varphi = 2\pi/3$, ως επιφανειακές πυκνότητες $\vec{K}_1 = \hat{\imath}_{r_T} K_1(r_T)$ και $\vec{K}_2 = \hat{\imath}_{r_T} K_2(r_T)$, αντίστοιχα.
- (α) [10%] Υπολογίστε τις επιφανειακές πυκνότητες ρεύματος $K_1(r_T)$ και $K_2(r_T)$ και την χωρική συνιστώσα $J_T(r_T, \varphi)$ χρησιμοποιώντας κατάλληλα τον **νόμο διατήρησης ηλεκτρικού φορτίου.**

<u>Τα επόμενα ερωτήματα απαιτούν την χρήση υπολογιστού (MatLab, Python, Mathematica, C++, ή άλλο):</u> Θεωρήστε a = 1m (όλες οι αποστάσεις σε m), $J_0 = 1$ A/ m^2 .

(β) [10%] Να γίνει (με την βοήθεια της MatLab ή ισοδυνάμου υπολογιστικού πακέτου) γραφική απεικόνιση του μέτρου της χωρικής πυκνότητας ηλεκτρικού ρεύματος $|\vec{J}|$ στον καρτεσιανό χώρο $-0.5\text{m} \leq x \leq 1\text{m}$, $0\text{m} \leq y \leq 1\text{m}$ (στο επίπεδο xy). Να χρησιμοποιήσετε την συνάρτηση $\textit{surface}(\mathbf{x},\mathbf{y},\mathbf{J})$, shading interp (ή ισοδύναμη) για την χρωματική απεικόνιση του μέτρου $|\vec{J}|$ στο επίπεδο xy. Επίσης να βρεθούν οι επιφάνειες (γραμμές) σταθερού μέτρου της $|\vec{J}|$ στο επίπεδο xy με την βοήθεια της συνάρτησης contour. Οι επιφάνειες (γραμμές) σταθερού μέτρου να βρεθούν για τιμές [0.25:0.25:5] $\textit{A/m}^2$ ([0.25:0.25:5] σημαίνει βήματα 0.25 από 0.25 έως 5).

(γ) [10%] Να γίνει μια γραφική απεικόνιση της χωρικής πυκνότητας ηλεκτρικού ρεύματος \vec{J} στο επίπεδο xy στον καρτεσιανό χώρο -0.5m $\leq x \leq 1$ m, 0m $\leq y \leq 1$ m (στο επίπεδο xy). Προτείνω την χρήση των quiver KAI streamslice (Matlab) ή ισοδυνάμων. Επίσης να υπολογιστούν οι δυναμικές γραμμές της χωρικής πυκνότητας ηλεκτρικού ρεύματος στο επίπεδο xy κάνοντας χρήση της συνάρτησης streamline (ή ισοδύναμης). Μια 2D βελτιωμένη έκδοση της stream2 (που χρησιμοποιεί η streamline) βρίσκεται στο αποθηκευτήριο MatLab Exchange (με το όνομα mmstream2) στην ηλεκτρονική διεύθυνση:

https://www.mathworks.com/matlabcentral/fileexchange/38860-improved-2-d-streamlines.

Ασκηση 8: (Αυτή η άσκηση είναι προς παράδοση) [40%]

Σε χώρο (ομοιόμορφο ως προς z) με μαγνητική διαπερατότητα μ_0 παντού, υπάρχουν οι ακόλουθες πυκνότητες ηλεκτρικού ρεύματος: (1) Χωρική πυκνότητα $\vec{J}=\hat{\iota}_x\,J_0\Big(1+\frac{y}{b}\Big)$ στο χώρο $0< x< a,\, 0< y< b.$ (2) Επιφανειακή πυκνότητα $\vec{K}_1=\hat{\iota}_y\,K_1(y)$ στην ταινία $0< y< b,\, x=0.$ (3) Επιφανειακή πυκνότητα $\vec{K}_2=\hat{\iota}_x\,K_2(x)$, στην ταινία $0< x< a,\, y=0.$ (4) Επιφανειακή πυκνότητα $\vec{K}_3=\hat{\iota}_y\,K_3(y)$ στην ταινία $0< y< b,\, x=a.$ Άλλα ρεύματα ΔΕΝ υπάρχουν. Οι σταθερές J_0 , a, και b θεωρούνται γνωστές.

(α) [15%] Να βρεθούν οι άγνωστες κατανομές $K_1(y)$, $K_2(x)$, $K_3(y)$ σαν συνάρτηση των συντεταγμένων και των σταθερών του προβλήματος.

Τα επόμενα ερωτήματα απαιτούν την χρήση υπολογιστού (MatLab, Python, Mathematica, C++, ή άλλο): Υποθέσετε ότι a=2m, b=1m, και $J_0=1A/m^2$.

- (β) [10%] Να γίνουν οι γραφικές παραστάσεις των $K_1(y)$, $K_2(x)$, $K_3(y)$ σαν συναρτήσεις των αντιστοίχων μεταβλητών y, x, y.
- (β) [10%] Να γίνει (με την βοήθεια της MatLab ή ισοδυνάμου υπολογιστικού πακέτου) γραφική απεικόνιση της χωρικής πυκνότητας ηλεκτρικού ρεύματος \vec{J} στον καρτεσιανό χώρο $0 \le x \le a$, $0 \le y \le b$ (όπου a = 2m και b = 1m, και $J_0 = 1 \text{A/m}^2$) στο επίπεδο xy. Να χρησιμοποιήσετε την συνάρτηση $\textit{surface}(\mathbf{x},\mathbf{y},\mathbf{J})$, shading interp (ή ισοδύναμη) για την χρωματική απεικόνιση της \vec{J} στο επίπεδο xy. Επίσης να βρεθούν οι επιφάνειες (γραμμές) σταθερού μέτρου της \vec{J} στο επίπεδο xy με την βοήθεια της συνάρτησης contour. Οι επιφάνειες (γραμμές) σταθερού μέτρου να βρεθούν για τιμές $[J_{\min}:0.20:J_{\max}]$ $\textit{A/m}^2$ ($[J_{\min}:0.20:J_{\max}]$ σημαίνει βήματα 0.20 από J_{\min} έως J_{\max}). J_{\min} και J_{\max} είναι η ελάχιστη και η μέγιστη τιμή της χωρικής πυκνότητας ρεύματος, αντίστοιχα.
- (γ) [5%] Να γίνει μια γραφική απεικόνιση της χωρικής πυκνότητας ηλεκτρικού ρεύματος \vec{J} στο επίπεδο xy στον καρτεσιανό χώρο $0 \le x \le a$, $0 \le y \le b$ (στο επίπεδο xy). Προτείνω την χρήση των **quiver** και **streamslice** (Matlab) ή ισοδυνάμων.

Σημείωση: Σε όσες από τις ασκήσεις για παράδοση χρησιμοποιήσετε προγράμματα (σε matlab ή σε άλλα υπολογιστικά πακέτα) θα πρέπει υποχρεωτικά (για να πάρετε τον βαθμό του αντιστοίχου ερωτήματος της άσκησης) στις απαντήσεις σας να συμπεριλάβετε και ένα αντίγραφο (printout) του κώδικα που έχετε χρησιμοποιήσει.