Exercise 1

- 1. Using D'Alembert's test (ratio test), determine the nature of the series $\sum \frac{n!}{n^n}$
- 2. Using Cauchy's test (root test), determine the nature of the series $\sum \left(\frac{(n+1)^2}{(an)^2+1}\right)^n$ depending on the parameter $a \in \mathbb{R}$.
- 3. Using Leibniz's test for alternating series, determine the nature of the series $\sum (-1)^n \frac{n+1}{n \ln(n)}$.

Exercise 2

Let
$$A = \begin{pmatrix} 1 & -4 & -2 \\ -1 & 1 & -1 \\ 2 & 4 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -2 & -2 \\ -2 & -1 & -4 \\ 2 & 4 & 7 \end{pmatrix}$.

Are A and B diagonalisable in $\mathcal{M}_3(\mathbb{R})$? If so, give a transfer matrix and the associated diagonal matrix; find the eigenvectors using a methodic study of the eigenspaces.

Exercise 3

Study, depending on the parameter $a \in \mathbb{R}$, the diagonalisability of the matrix

$$A = \begin{pmatrix} 1 & 2 - 2a & 1 - a \\ 1 & 4 & 1 \\ 0 & 2a - 2 & a \end{pmatrix}$$

(It is not necessary to give a decomposition with transfer matrices and a diagonal matrix).

Exercise 4

Let A be the matrix $\begin{pmatrix} 4 & 4 & 2 \\ 4 & 3 & 3 \\ 4 & 5 & 1 \end{pmatrix}$.

We denote f the endomorphism of \mathbb{R}^3 standardly associated to A (that is to say, if we denote \mathscr{B} the standard basis of \mathbb{R}^3 then $A = \operatorname{Mat}_{\mathscr{B}}(f)$).

Let \mathscr{E} be the set ((1,0,1),(2,2,2),(3,3,1)) of vectors from \mathbb{R}^3 .

- 1. Determine Ker(f) and Im(f).
- 2. Is A invertible? Justify without calculations.
- 3. Show that \mathscr{E} is a basis of \mathbb{R}^3 .
- 4. Determine $Mat_{\mathscr{E}}(f)$

Exercise 5

Let E be a vector space over \mathbb{R} , of dimension 4, and let $\mathscr{E} = (e_1, e_2, e_3, e_4)$ be a basis of E. Let $p \in \mathscr{L}(E)$ such that

$$\operatorname{Mat}_{\mathscr{E}}(p) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

- 1. Show that p is a projection (i.e. $p \circ p = p$).
- 2. By looking at the images by p of the vectors of \mathscr{E} , find a basis of $\mathrm{Im}(p)$.
- 3. Using the rank theorem, find the dimension of Ker(p).
- 4. Deduce a basis of Ker(p) depending on the e_i vectors.

Exercise 6

The goal of this exercise is to determine a direct formula to compute the terms of the sequence defined by the relation of recurrence

$$u_{n+3} = -u_{n+2} + 4u_{n+1} + 4u_n$$

and whose first terms are $u_0 = 0, u_1 = 1, u_2 = 1$.

- 1. Denoting $X_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$, determine a matrix M such that $X_{n+1} = MX_n$. Find an expression of X_n depending on M, n and X_0 .
- 2. Calculate (over expanded form) the characteristic polynomial of M; by remarking that it can be divided by (X+1), factorise it. Show that M is diagonalisable, and find a diagonal matrix D and an invertible matrix P such that $M = PDP^{-1}$.
- 3. Deduce M^n depending on n, then u_n depending on n. Remark: you can check the compatibility of your results with the given data by comparing the first values of u_n , calculated both with the relation of recurrence and the obtained formula.