PROCEDE ET APPAREIL DE RECHERCHE DE POSITION DANS UN SYSTEME DE COMMUNICATION

(19)日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(11)特許番号 特許第3323206号 (P3323206)

(45)発行日 平成14年9月9日(2002.9.9)

(24)登録日 平成14年6月28日(2002.6,28)

(51) Int.Cl.7	識別記号	FI	
G01S	5/12	G01S 5/12	
H04Q	7/34	 H04Q 7/04	C

請求項の数15(全 27 頁)

(21)出願番号	特願平 10-512726	(73)特許権者	99999999
(86) (22)出顧日	平成9年8月27日(1997.8.27)		モトローラ・インコーポレイテッド アメリカ合衆国イリノイ州60196シャン バーグ、イースト・アルゴンクイン・ロ
(65)公表番号	特表2001-500256(P2001-500256A)		− ₹1303
(43)公表日	平成13年1月9日(2001.1.9)	(72)発明者	パフォード,ケビン・エー
(86)国際出願番号	PCT/US97/15054		アメリカ合衆国マサチューセッツ州フラ
(87)国際公開番号	WO98/10306		ンクリン、ジャクソン・サークル28
(87)国際公開日	平成10年3月12日(1998.3.12)	(72)発明者	リード,ジョン・ディー
審查請求日	平成11年7月21日(1999.7.21)		アメリカ合衆国テキサス州アーリント
(31)優先権主張番号	08/706, 751		ン、ブライアークリフ・ドライブ1101
(32)優先日	平成8年9月3日(1996.9.3)	(74)代理人	99999999
(33)優先権主張国	米国(US)		弁理士 大貫 進介 (外2名)
		審査官	神谷 健一
			目が平しゃはノ

最終頁に続く

(54) 【発明の名称】 通信システムにおける位置発見方法および装置

1

(57) 【特許請求の範囲】

【請求項1】通信システムにおいて加入者ユニットの位置を推定する方法であって:

第1基地局において前記加入者ユニットから信号を受信する段階であって、前記信号は拡散シンボルのシーケンスにより変調を介して形成されるところの段階;

前記第1基地局において前記拡散シンボルのシーケンス に基づき前記信号の第1受信時刻を決定する段階;

前記第1基地局において前記信号の第1到着角度の推定 値を決定する段階であって、前記推定値は固定ビーム・ 10 アンテナを利用して決定されるところの段階;および 前記第1受信時刻と、前記第1到着角度と、前記第1基 地局に関する更なる所定の情報に基づいて前記加入者ユニットの位置を決定する段階;

より成ることを特徴とする方法。

【請求項2】更に、

第2基地局において前記拡散シンボルのシーケンスに基 づき前記信号の第2受信時刻を決定する段階;

前記第2基地局において前記信号の第2到着角度の推定値を決定する段階であって、前記推定値は固定ビーム・アンテナを利用して決定されるところの段階;および前記第2受信時刻および前記第2到着角度に基づいて前記加入者ユニットの位置を決定する段階;

より成ることを特徴とする請求項1記載の方法。

【請求項3】更に、所与の加入者ユニットに対してシステム利得を調整する段階より成ることを特徴とする請求項1記載の方法。

【請求項4】更に、被受信信号が第1電波および第2電波を利用し、被受信信号の前記第1電波に応答して前記第1基地局の受信機内の時間オフセットを調整する段階

より成ることを特徴とする請求項1記載の方法。

【請求項5】更に、前記被受信信号の前記第1電波に応 答してアンテナ・アレイを調整する段階より成ることを 特徴とする請求項4記載の方法。

【請求項6】更に、

第2基地局において前記信号の受信を試みる段階; 前記第2基地局において前記信号が受信されなかったこ とを判定する段階;および

前記第2基地局において前記信号が受信されなかったこ との判定に応答して、前記信号の送信電力を増やす段 階;

より成ることを特徴とする請求項1記載の方法。

【請求項7】前記送信電力が、加入者ユニットの接続要 求に応答するのに先立って、遅延を付加することによっ て増加することを特徴とする請求項6記載の方法。

【請求項8】更に、地理データベースからの情報に基づ き前記第1到着角度の推定値を調整し、調整された第1 到着角度の推定値を決定する段階より成ることを特徴と する請求項1記載の方法。

【請求項9】前記所定の情報が道路データベースによっ 20 て提供されることを特徴とする請求項1記載の方法。

【請求項10】更に、グローバル・ポジショニング・シ ステム(GPS)受信機により決定される位置において、 被判定位置と加入者ユニットの較正測定値とを比較する ことによって前記被判定位置を較正する段階より成るこ とを特徴とする請求項1記載の方法。

【請求項11】更に、垂直ビーム・ステアリング・アン テナで受信される前記被受信信号に基づき、前記加入者 ユニットの高度の推定値を決定する段階より成ることを 特徴とする請求項1記載の方法。

【請求項12】複数の基地局を有し通信ユニットの位置 を特定することが可能な通信システムであって:

第1および第2基地局に応答するコントローラであっ て、前記第1および第2基地局の各々は前記通信ユニッ トから信号を受信することが可能な受信機と、拡散シン ボルのシーケンスに基づき前記信号の受信時刻を決定す ることが可能な検出器より成り、前記信号は拡散シンボ ルのシーケンスによって変調を介して形成され、前記受 信機は固定ビーム・アンテナに結合され、該固定ビーム ・アンテナを利用して前記信号の第1到着角度の推定値 40 を決定するところのコントローラ;および

前記コントローラに応答して、前記第1および第2基地 局に対して前記拡散シンボルのシーケンスに基づき前記 信号の第1および第2受信時刻を決定するよう要求する ことが可能な位置プロセッサであって、前記第1および 第2受信時刻と、前記信号の第1到着角度と、前記第1 および第2基地局に関する更なる情報に基づいて前記通 信ユニットの位置を決定することが可能な位置プロセッ サ;

より成ることを特徴とする通信システム。

【請求項13】更に、第2通信システムを用いて第2の 位置測定を実行する段階より成り、前記通信システムが CDMAシステムより成り、前記第2通信システムがアナロ グ・セルラ・システムより成ることを特徴とする請求項 1記載の方法。

【請求項14】加入者ユニットと無線通信を行う第1基 地局であって、前記加入者ユニットから信号を受信し、 前記信号は拡散シンボルのシーケンスにより変調を介し て形成されるところの第1基地局;

前記第1基地局において前記拡散シンボルのシーケンス に基づき前記信号の第1受信時刻を決定する第1到着時 刻検出器:

固定ビーム・アンテナに結合され、該固定ビーム・アン テナを利用して、前記第1基地局において前記信号の第 1到着角度を決定する到着角度検出器;および

前記第1受信時刻と、前記第1到着角度と、前記第1基 地局に関する更なる所定の情報に基づいて前記加入者ユ ニットの位置を推定する位置推定ユニット;

より成ることを特徴とする無線通信システム。

【請求項15】更に、

前記加入者ユニットと無線通信を行う第2基地局; 前記第2基地局において前記拡散シンボルのシーケンス に基づいて前記信号の第2受信時刻を決定する第2受信 時刻検出器;

より成り、前記位置推定ユニットが、第1受信時刻と、 前記第1到着角度と、第2受信時刻と、第2到着角度 と、前記第1基地局に関する更なる所定の情報に基づい て前記加入者ユニットの推定された位置を判定すること を特徴とする請求項14記載の無線通信システム。

30 【発明の詳細な説明】

発明の分野

本発明は、一般にワイヤレス通信システムに関し、さ らに詳しくは、符号分割多重接続(CDMA:Code Division Multiple Access) 通信システムにおいて加入者ユニッ トの位置を特定する方法および装置に関する。 発明の背景

ワイヤレス通信システムにおいては、発呼するユーザ の位置を特定することが望ましい場合が多い。このよう な技術の用途としては、警察/消防/救急車のサービス を発呼中のユーザに派遣できるようにする911緊急サー ビスが含まれる。他の用途としては、不正発見、警察捜 査などがある。

以前に設置されたセルラ・システムには、この点に関 する機能はほとんどない。たとえば、AMPS(アンプス:A dvanced Mobile Phone System) セルラ無線機において は、ユーザにサービスを提供するためにどの基地局アン テナが用いられたかを判断することによって、セル内で ユーザの位置を特定することができた。しかし、セルは 半径が4.8~8キロメートルもあり、この情報は実用的

50 には役に立たない。人工密度の高い都市のセル・サイト

の多くは、現在でははるかに小さくなっており、都市/ 近郊のセル・サイトの多くは、チャネルのサービス・エ リアをセルの1つのセクタにのみ限定するためにセクタ 化アンテナを用いてセクタ化されるので、1つのセルの カバレージ・エリアはさらに小さい。しかし、このよう な小さいセル内のエリアでさえ、1平方マイルより大き い。このため、依然として、大半の目的に関してはユー ザの位置を特定することは実際的ではない。USデジタル ・セルラ(USDC) および汎ヨーロッパ・デジタル化移動 体通信システム (GSM: Group Special Mobile) などの他 10 の無線システムは、セルまたはセクタを識別するために 同じ方法を用いるので、AMPSシステム以上のことはでき ない。

加入者ユニットにおいてGPS(グローバル・ポジショ ニング・システム:Global Positioning System) ユニッ トを用いたり、送信中の加入者ユニットに関して三角測 量を行うなど、位置特定のための代替法が他にもある が、これらや同様の方法は、多くの加入者が用いるには コストが高すぎ、また、三角測量の場合は専用の高額で 時間のかかる資源を他にも必要とする。

従って、ワイヤレス通信システムにおいて加入者の位 置を特定するための改善された、対費用効果の優れた方 法が必要である。

発明の概要

これらと、その他の問題は、本発明による改善された 方法および装置により解決する。第1局面により、通信 システムにおいて加入者ユニットの位置を決定する方法 は、第1基地局において加入者ユニットから信号を受信 する段階,第1基地局において拡散シンボルのシーケン スに基づき信号の第1受信時刻を決定する段階,第1基 30 地局において信号の第1到着角度を決定する段階および 第1受信時刻と、第1到着角度と、第1および第2基地 局に関する所定の情報とから加入者ユニットに位置を決 定する段階を備える。信号は、拡散シンボルのシーケン スにより変調を介して形成される。

更なる局面により、加入者ユニット位置を推定する方 法は、第1信頼水準を有する第1位置測定を実行する段 階,第2信頼水準を有する第2位置測定を実行する段階 および第1および第2位置測定に基づき、加入者ユニッ トに被推定位置を決定する段階を備える。第1位置測定 40 は、第1基地局において加入者ユニットから信号を受信 し、第1基地局において拡散シンボルのシーケンスに基 づき信号の第1受信時刻を決定し、第1基地局において 信号の第1到着角度を決定することにより決定される。 信号は、拡散シンボルのシーケンスにより変調を介して 形成される。

別の局面により、通信システムは、コントローラと、 コントローラに応答する位置プロセッサとを備える。コ ントローラは、第1および第2基地局に応答し、第1お よび第2基地局の各々は、通信ユニットから、拡散符号 50 地局における第3受信機実行例のブロック図である。

のシーケンスにより変調を介して形成される信号を受信 することのできる受信機と、シーケンスに基づいて信号 の受信時刻を決定することのできる検出器とによって構 成される。位置プロセッサは、コントローラに応答し、 第1および第2基地局に対してシーケンスに基づき信号 の第1および第2受信時刻を決定することを要求し、第 1および第2受信時刻と、第1および第2基地局に関す る更なる情報とから、通信ユニットに位置を決定するこ とができる。

さらに別の局面により、加入者ユニットの位置を決定 する方法は、複数の基地局の第1基地局からの第1信号 および複数の基地局の第2基地局からの第2信号を受信 する段階,第1シーケンスに基づく第1受信時刻と第2 シーケンスに基づく第2受信時刻とを決定する段階およ び第1および第2受信時刻と、第1および第2基地局に 関する更なる情報とから加入者ユニットの位置を決定す る段階を備える。第1および第2信号は、シンボルの第 1シーケンスおよびシンボルの第2シーケンスにそれぞ れ基づいて形成される。

20 図面の簡単な説明

第1図は、本発明を採用するセルラ・システムを示す 概略図である。

第2図は、本発明の第1実施例による加入者ユニット のCDMA受信機のブロック図である。

第3図は、本発明の実施例によるCDMA加入者ユニット の位置発見を示す図である。

第4図は、本発明の実施例により、CDMA加入者ユニッ トの位置に関する伝播遅延を決定するために用いられる タイミング・シーケンスを示す図である。

第5図は、本発明の実施例による基地局におけるCDMA 受信機のブロック図である。

第6図は、本発明の実施例により加入者を計算するた めに用いられる伝播および遅延時間を示すスケジュール 図である。

第7図は、本発明の実施例により加入者が基地局信号 を測定するプロセスを示す流れ図である。

第8図は、本発明の実施例により基地局が加入者信号 を測定するプロセスを示す流れ図である。

第9図ないし第13図は、第2実施例による加入者ユニ ットの位置発見を示す図である。

第14図および第15図は、基地局による加入者ユニット からの信号受信を示す一般図である。

第16図は、加入者ユニットと基地局との間に障害物が ある場合に加入者ユニットの位置発見を示す図である。

第17図は、第2実施例による位置発見に用いられる基 地局における第1受信機実行例のブロック図である。

第18図は、第2実施例による位置発見に用いられる基 地局における第2受信機実行例のブロック図である。

第19図は、第2実施例による位置発見に用いられる基

図面の詳細説明

本発明の第1実施例は、符号分割多重接続(CDMA:Cod e Division Multiple Access) セルラ・システムにおい てユーザの位置を決定するシステムである。CDMA変調情 報を用いて、加入者ユニットにおける第1到着電波か ら、進行または伝播時間の推定値が得られる。第1被受 信電波は、通常は基地と加入者との間の最短経路を表 し、進行時間推定値により、加入者と基地局との間の距 離を計算することができる。複数の、たとえば3つのサ イトへの距離を計算することによって、測定タイミング 10 の精度や、その他の処理遅延により制限される特定の加 入者位置を計算することができる。

第1実施例においては、各基地と加入者との間の信号 の進行時間は、相関受信機内で自動的に計算される。処 理段階には、チップ精度(たとえばチップの1/16)未満 まで時間整合される疑似ノイズ (PN:Pseudo Noise) シ ーケンス符号化信号の送信と、相関アルゴリズムを用い て受信機においてこの信号を相関する段階とが含まれ る。変調シーケンス(たとえばPNシーケンス)は既知で あり、同期/拡散解除に用いられるので、特定のチップ 20 の受信の正確な時刻を決定することができる。複数の関 連信号に関して受信時刻を決定することにより、時間的 遅延を計算して、位置推定値を決定するために用いるこ とができる。

ある実行例においては、加入者は既知のPNシーケンス とオフセット情報とを用いて、同時に送信された異なる 基地(標準的および/または補助基地)からの関連のPN チップのうちいずれかを決定し、また、これらの関連チ ップの受信時刻を決定する。受信時刻間の差から、時間 差すなわち距離差が決定される。基地の距離差と既知位 置を用いて、位置推定値が決定される。ある加入者が1 つまたは2つの基地とのみ通信する場合は、追加の基地 が強制的に能動集合(必要な場合は補助サイトを含む) に入れられ、加入者による時間測定を可能にする。

別の実行例においては、受信側の基地サイトは選択さ れるチップの時間測定を行うよう制御され、受信時刻に おける差を用いて加入者位置を同様に計算する。干渉な どのために別の受信サイトが必要とされる場合は、補助 サイトを制御して、加入者ユニットから送信される信号 を受信する。必要に応じて、緊急の場合は、加入者ユニ 40 ットを最大電力レベルまで電源投入して、少なくとも3 つの基地局が受信することができ、信号の時間推定値を 得ることができるようにする。さらに、より精密な測定 が必要な場合は、特殊な位置メッセージを加入者に送信 することができる。受信すると、加入者は応答信号に関 するチップ/時間オフセットを決定し、オフセットを符 号化し、応答信号を送信する。オフセットを解読して、 オフセットを決定する際に用いられるのと同じチップ (たとえばフレームの第1チップ) の受信時刻を比較す るとすぐに、さまざまな伝播経路について遅延補償時間 50 値が決定され、そこから位置が決定される。最後に、よ り遠く離れた基地で被受信信号を得ることは困難なの で、近隣の基地で緊急の負荷発散を実行して、追加のレ ンジを設けることができる。これは、CDMA無線システム においてはレンジに関して容量をやり取りすることがで きるためである。このようにカバレージが改善され、位 置発見の信頼性が高まる。

ここで第1図を参照して、基地局110,120,130および 加入者140をもつ六角形のセル・パターンを有するセル ラ・システムが全体を100として図示される。補助基地 ユニット121も基地110,120,130の間に存在する。基地11 0,121,130と加入者ユニット140との間の距離は、第1到 着電波の進行または伝播時間を決定することにより推定 される。これは、所定の基準時刻から受信機が被送信信 号に関して相関を実行する時点まで測定される。距離推 定値は過大に推定されたり、過小に推定されるので、こ の推定はより困難になる。これは、受信機内の任意の時 間基準点に関して測定が行われるためである(加入者14 OにおいてGPS信号から得たものや、原子時計のものなど より正確な(そして高価な)タイミング・システムを用 いるときに限り、正確な測定が可能になる)。このた め、距離150,160,170は、それぞれ、チップ速度(約814 ナノ秒(ns)チップ速度(すなわち、PNシーケンス速度 によりTIA(米国電気通信工業会)暫定規準IS-95Aにお いて決定される全拡散信号の速度または約250メートル (m) /チップ;チップ速度より速く時間測定を行うこ とが望ましい) に対する相関に基づく各基地110,121,13 0と加入者140との間の実際の距離よりも長かったり短か ったりする。第1図において、距離150は、加入者ユニ ットの実際の位置を超える点125を標示して過大に推定 された状態で示される。同様に、点115.135も過大に推 定される。これらの点は、下記に説明する距離処理によ り修正されて、加入者の真の位置にはるかに近い推定値 を生み出す。

第2図は、CDMA受信機201,ロケータ・ユニット202お よび送信機203を有するCDMA加入者ユニット200を示すブ ロック図である。受信機201は、3つの独立したレーキ 入力210,220,230に給電する共通のRF(無線周波数)フ ロント・エンド205を有する。これらのレーキ・ユニッ ト210,220,230は、3つの異なる被受信電波上にロック することができる。これらの電波は約1PNチップ時間以 上離れており、これは直接シーケンス拡散スペクトル (DSSS:direct sequence spread spectrum) 受信機に典 型的なものである。サーチャ240は、チップ速度よりも 速く新しい相関ピークを走査し(好適な事例では、50ns クロック速度ほど速い解像度が可能になる)、現在のチ ャネル条件の最良推定値に基づきレーキ入力を再割り当 てすることができる。通常、レーキ210,220,230の相関 器は、入手可能な3つの最も強力な電波にロックし、第 2または第3基地局が充分に強い信号を供給することが

できる場合は、これらの他の基地局信号にロックするために確保される。これらの信号も、IS-95A規準に説明されるようにそれぞれ1PNチップ時間より多く時間的に遅延される。充分に強力な基地局が2つしかない場合は、2つの電波の各々が各基地局専用とされ、第3の電波がいずれかの基地局に関して残りの最も強い電波用とされる。

加入者200が位置発見機能を望む場合は、位置を正確 に推定するために充分な情報を入手することができるよ うに、各電波に関して1つ、3つの異なる基地局を発見 しようと試みることが好ましい。そのため、3つの基地 サイトに接続するために、レーキ210,220,230は、少な くとも3つの基地ユニット信号が解読されるよう調整さ れる。可能な場合は、基地サイト間に物理的に配置され る緊急パイロット発生器(第1図の補助基地ユニット12 1などの)をビーコン要求に応答して起動させ、追加の 基準信号をもつエリアを覆い、加入者が標準基地サイト だけでなくこれらのパイロット発生器に基づき位置推定 を行うことができるようにすることもできる。これらの 補助ユニットは、周辺の基地局とは異なるPNオフセット を有して、適切な同期/タイミングのためのGPS受信機 を装備するのが普通である。これらは、任意の便宜な手 段、たとえばワイヤレスまたは撚り線対ケーブルにより インフラストラクチャ内の基地局または他のコントロー ラに結合される。これらは、使用可能な基地が3つ未満 しかないと加入者が標示すると発せられる、コントロー ラに対する要求またはサービスを提供する基地局による その制御下にあるローカル補助ユニットに対する命令に よって起動されることが好ましい。あるいは、補助ユニ ットには走査受信機が装備されており、この受信機は加 入者による要求信号に応答して、限られた期間の間(た とえばシステム干渉を最小限に抑えるために5秒間)送 信を開始する。適切に配置することにより、このような 補助ユニットを用いて、ある地域における不確定性を削 減し、主要高速道路,モールまたは中央の商業地域など 戦略的エリアにおける位置発見の精度を全体的に高める ことができる。CDMAシステムの干渉制限性により、場合 によっては、1つの基地局だけが加入者の信号を受信す ることができたり、あるいはその逆の場合もある。この ため、必要な複数の読み取り値を得るには補助ユニット が必要である。

各信号の相対受信時刻は、サーチャ内の関連相関ピークの先端(またはピーク)に関する情報を用いて、これを精密時間整合回路(たとえば、フィルタ250~270と結合される、各ブランチ毎の遅延ロック・ループ(DLL:de lay lock loop)214,225または235)内で決定されるオフセット分だけ調整することにより決定される。好ましくは、関連相関ピークは、異なるブランチ上で、しかし互いの1つのチップ内に受信されるピークである。この方法では、先端の正確な時刻が、PNシーケンス番号(す 50 り出し、各チップに関するサーチャ240からの受信時刻を修正して、各ブランチに関する修正済みの相対受信時刻を予える。最も初期の時刻、たとえばB1(すなわち基地 1 からの信号が受信される時刻)から、他の信号B2, B 3の受信時刻の差tB21, tB31が決定され、対応する距離dB 21, dB31が決定される。かくして、基地1(110),2(12 0),3(130)からの距離がそれぞれdB1,(dB1+dB2 1),(dB1+dB31)であることがわかる。さらに、PNオ方法では、先端の正確な時刻が、PNシーケンス番号(す 50 フセットから、基地の識別子がわかり、それらの地理的

なわち反復PNシーケンス(16,000チップ長)のチップ位 置(たとえば番号245)と共に決定される。すでに決定 されたPNシーケンス・オフセットを用い、PNシーケンス が各基地局に関して同一であり、独自のPNシーケンス・ オフセットに同一のシステム時間をプラスまたはマイナ スして送信されるシステム設計を用いると、相対時刻の 差は伝播経路遅延の差を生み出す。これを第3図に示 す。時刻TOにおいて、2つの基地B1,B2が送信中である が、基地B1はPNチップ0を送信し、基地B2は、256チッ プのPNシーケンス・オフセットをもつためにPNチップ25 6を送信する。ある時刻T1において、位置発見が起動さ れた後、加入者はB1からのPNチップ4の先端が受信され たと判定する。基地B2からのPNチップの次の先端は、時 刻T2において1チップの1/8後に受信され、このチップ はPNシーケンスの280番目であると判定される。これら の受信時刻とPN番号とから、伝播遅延差は((PNB2ーオ フセット)+(受信差,T2ーT1))-(PNB1-オフセッ ップ*814ns/チップ=916nsと計算される。無線信号のn s電波速度毎約1/3メートルにおいては、これは伝播経路 距離にして約300mの差となる。位置精度は、使用される システム・クロック速度と、同期の度合のみにより制約 を受ける。すべての基地局がGPSタイミング情報を用い る場合は、50ns以内まで(チップ速度の約1/16)の同期 送信(すなわちチップの先端の)が現在のところ可能で ある。ローカル・クロックが少なくとも同じ20MHzのク ロック速度を発する場合は、100nsまたは30m以内の位置 が発見可能である。

10

第2図に戻り、DLL215, 225, 235は各レーキ210, 220, 23 0にそれぞれ帰還されて、精密に時間整合される信号を 出力するために信号を調整する。上記のように、DLL出 力はPNチップの受信時刻を調整する精密位相オフセット 情報としても働くことができる。これは好ましくは、各 DLL215, 225, 235の出力を有効に平均化する各チャネルの 低域通過フィルタ(LPF:Low Pass Filter)それぞれ25 0,260,270において濾波後のことである。この平均化さ れた精密位相オフセット情報は、サーチャ240 (PNチッ プ/時刻検出に関しても適応される) からのチップ番号 /時刻/基地識別子またはオフセット(すなわちB1~B3 情報)と共に位置サーチャ280に送られる。位置サーチ ャ280は、各ブランチから精密位相オフセット情報を取 り出し、各チップに関するサーチャ240からの受信時刻 を修正して、各ブランチに関する修正済みの相対受信時 刻を予える。最も初期の時刻、たとえばB1(すなわち基 地1からの信号が受信される時刻)から、他の信号B2.B 3の受信時刻の差tB21,tB31が決定され、対応する距離dB 21.dB31が決定される。かくして、基地1(110).2(12 0),3(130)からの距離がそれぞれdB1,(dB1+dB2 1) , (dB1+dB31) であることがわかる。さらに、PNオ

位置をメモリ281から検索することができる。すると、第4図に示されるような1つを判定し、移動局の地理的座標を決定するための検索ルーチンを実行することは簡単である。第4図の例では、既知の基地位置を用いて、3本の直線L12 (151),L23 (152),L13 (153) からそれぞれ減じて、残りの線分を垂線N12 (154),N23 (156),N13 (155) により二等分する。これらの直線N12 (154),N23 (156),N13 (155) の交点が加入者140の位置である。この情報をサービスを提供する基地局に送り、サービス提供中の位置レジスタの要求側に転送したり、あるいは加入者が(たとえば図示されないが、マップ・グリッドまたは他の位置装置上で)用いるために転送することができる。

あるいは、基地サイト位置情報が加入者に入手できない場合、位相オフセット、チップ、タイミングおよび基地オフセット情報を位置要求信号内でサービスを提供する基地局に送付することができる。ここで、位置サーチャは、自身のデータベースにアクセスし、加入者の位置を決定することができる。この位置情報は、次に位置応20答メッセージ内で加入者または他の要求装置に返送される。

しかし、インフラストラクチャを用いる位置特定の好適な方法は、第5図を参照して見ることができる。第5図は、第1CDMA基地局301を有するCDMAインフラストラクチャ・システム300のブロック図を一般的に示す。基地301は、310、320、330と示される4つの独立レーキ入力に給電する共通RFフロント・エンド305を有する。これらのレーキは、DSSS受信機には典型の少なくとも1PNチップ時間だけ隔てられる4つの異なる被受信電波にロックすることができる。2つのサーチャ340が新しい相関ピークを走査し、現行のチャネル条件の最良推定値に基づきレーキを再割り当てすることができる。通常、レーキ310、320、330の4つの相関器は、可能な最も強力な4つの電波にロックする。

位置発見機能を望む場合、2つの一般的な方法が可能である。すなわち受動的(すなわち加入者ユニット応答がない)方法と、能動的方法である。いずれの場合にも、位置を推定するために充分な情報を入手できるように、加入者信号を受信することのできる少なくとも3つの異なる基地局を発見することが好ましい。第1実施例の受動モードにおいては、基地301の4つのレーキ・ブランチ310,320...330を用いて、アップリンク信号を検出する。各レーキからは、遅延ロック・ループ(DLL:Delay Lock Loop)を用いて、相関電波のタイミング(すなわち調整)推定値を生成する。これにより、上記の加入者ユニットにより用いられるプロセスと同様に、より正確な相関時刻が推定される。サーチャおよびチップ/時刻検出器340は、各ブランチにおいて信号をピーク相関させ、また用いるのに最良のブランチを決定する(好 50 入者位置の決定に用いることである。

ましくは同一チップに関して最も早く受信されたピークに基づくが、現行で最良のブランチを決定するための他の選択法を用いてもよい);加入者サーチャ240の場合と同様に、PNチップおよび受信時刻情報の決定に際して、この最良のブランチ信号を用いる。

12

位置特定プロセスを開始するために、好適な実施例に おいては、システム300内でコマンドが発される。これ は、移動交換センター(MSC:mobile switching cente r) 365, オペレーション・センターなどの地域装置にお いて、あるいはPSTN (公衆電話交換網) 375などの接続 ネットワーク内で行われることが多い。位置要求は、ホ ーム位置レジスタ (HLR:home location register) 366 を介して処理され、現在サービスを提供中の基地局を決 定する。位置コマンドを受信すると、基地301のプロセ ッサ350(および他のサービス提供中基地の同様のプロ セッサ) は検出器340を用いて、チップ受信時刻を決定 する。好ましくは、これは、PNチップの指定されたグル ープの先端立ち上がり時刻を決定するすべての基地によ り、たとえば、所定のチップ数たとえば10に関して64番 目毎のチップ(すなわちPNシーケンス番号0,64,128な ど)の立ち上がり時刻を決定することにより実行され る。この情報は、次に、各基地受信機によって、そのID (識別子)と共に指定された装置、たとえばBSC (基地 サイト・コントローラ:base site controller) 360の位 置サーチャ361またはHLR366の位置サーチャ367に送られ る。かくして、各々が同一の1回のチップ送信に由来す る同じチップに関する受信時刻の差を用いて、伝播遅延 差を決定することができる。言い換えると、各チップ番 号毎に、異なる基地における受信時刻間の差が伝播差を 生み、第4図に上述されるのと同様の方法で受信基地の 既知の位置と組み合わせて、この情報から位置を決定す ることができる。比較的短い時間フレームにおける(た とえば約50マイクロ秒に亘り64チップ毎に10回)複数集 合の情報を取り、決定された位置を用いて平均化あるい は最良適合計算(best-fit calculating)をすること により、位置の誤差を最小限に抑えることができる。熟 練者には、実際の計算において他の方法を用いることが できることが理解頂けよう。たとえば、指定されたシス テム時刻およびチップ番号からの時差と共に所定の時刻 の1チップ内の先端を同一のシステム時刻において検出 する方法を伝播遅延差を決定する際に用いることができ る(しかし、異なるチップの送信時刻は加入者のクロッ ク速度の精度により制約を受けるので別の誤差が起こる こともある;50nsのクロック・サイクルが存在しても、 (タイミング誤差のない) 同一チップの送信に存在する さらに大きな誤差がある。重要なのは、チップID(たと えばPNシーケンスにおける番号/位置)と異なる基地に おける正確な受信時刻(たとえば、オーバーサンプリン グされたクロック速度における先端またはピーク)を加

30

能動的位置特定のための好適な実施例においては、加 入者からのチップ受信時刻情報と一定の応答情報の両方 を用いて、双方向の距離測定システムが実現される。本 実施例においても、プロセスはシステム・インフラスト ラクチャ内の位置特定要求が加入者と通信する基地301 に送られることで始まる。プロセッサ350は、位置要求 信号(LOC_S351)を転送し、エンコーダ352および拡散 変調器355により適切に符号化する。システム・クロッ ク353(好ましくはGPS準拠であるが、原子クロックなど 他の精密手段を用いてもよい)を用いて、精密時刻調整 10 装置354 (たとえばストロボ発生器) が変調器355を制御 して、好ましくは50ns以内の精度で、出力チップの先端 を精密に出力する。プロセッサ350は、変調器355および クロック353を介して、基準チップ(たとえばシステム 時刻TS(0)における16384個のチップのシーケンスの チップ1024) に関する精密なシステム時刻の決定も行 う。このシステム時刻から、他のチップ送信時刻を後で 決定することができる。その後で、出力チップ・シーケ ンスが加入者に送信される。

再び第2図を参照して、位置要求信号351の復調およ び受信に続き、プロセッサ280はサーチャ240を制御し て、上述と同様の方法で次のPNチップに関するIDとタイ ミング情報とを決定する。説明の目的で、加入者相対時 刻TR(0)において判定されたチップが1088(基地PNシ ーケンスの)であるとする。加入者内の転向時刻に関し て正確な情報を提供するために、プロセッサ280は加入 者PNシーケンスの所定のチップが次に送信されるローカ ル時刻を決定する。便宜上、この所定のチップは、これ から送信される反復系列(たとえば、加入者のPNシーケ ンスの50番目毎のチップ)の1つ(たとえばチップ10 0) として選択されることが好ましい;別の任意のチッ プ、たとえば次の20msフレームの第1チップを選択する こともできるが、好ましくは、加入者の精密タイミング 出力要件とシステム位置処理を最小限にする観点から選 択される。いずれにしても、送信機回路203の変調器291 から出力される選択されたチップのローカル時刻は、た とえば現行のチップの出力時刻を(たとえばPN/時刻検 出器292を介して)決定し、所定のチップの出力時刻 (たとえば、TR(24 1/16)におけるチップ100で、相 対時刻はこの場合チップ速度間隔において測定される) を決定するための先行分を計算することにより決定され る。もちろん、進行中の送信が現在ない場合は、所定の チップの送信に先立ち、基地が加入者のPNシーケンスを 追跡するのに充分な遅延時間(たとえば約2秒)が与え られる。次にプロセッサは、位置応答信号RESP282を転 送し、エンコーダ290によって符号化し、変調器291を制 御して所定の時刻(すなわちTR(24 1/16))において 所定のチップを精密に出力させる。また、チップの周期 的なグループを監視しようとする場合は、所定の期間の 間に周期的グループの後続のチップ(たとえばチップ15 50 なされる(この場合は、所定のチップだけを精密に出力

0,200など)を精密に出力する。RESP282は、チップ情報 (1088, TR(O)) と、所定のチップ情報(100, TR(24 1/16)) と、加入者ユニット・プロフィルの一部として インフラストラクチャにすでに既知でない場合は、捕捉 前および出力後遅延(すなわちアンテナの信号がサーチ ャ240に到達するのに要する時間と、出力信号が変調器2 91から時間的に精密に出力された後でアンテナにおいて 放出されるのにかかる時間)に関する所定の(すなわち 較正/計算済みの)加入者遅延要因とを含む。

14

第5図を参照して、システムが基地301を制御して位 置要求信号351を送付するのと同時に、他の通信中基地 に対して位置情報の格納を開始するよう通知する。通信 中の(すなわちソフト・ハンドオフ状態の)あるいは加 入者信号を受信することのできる基地が3つ未満の場 合、発信装置(たとえば位置サーチャ/プロセッサ361 または367)が、サービスを提供する基地の近隣に位置 する基地356などの1つ以上の補助基地局に対し、加入 者の指定された周波数において受信を開始するよう命令 する。かくして、最も簡単な実行例においては、補助基 地を精密なシステム・クロック(たとえばGPS修正クロ ック)をもつ可同調受信機とすることができる;配線を 介してBSCに接続される補助基地がない場合は、補助基 地を固定加入者ユニット(ワイヤレス・アクセス固定ユ ニット (WAFU:wireless access fixed unit) などの) として実現することもできる。加入者ユニットとの唯一 の差は、WAFUがシステム時刻で(たとえばGPSクロック を介して)動作することである。この後者の実施例にお いては、WAFUは、それ自身のサービス提供中の基地局、 たとえば基地301を介して位置応答情報を通信する。

すべての受信基地、たとえば基地301および補助基地3 56は、位置要求の開始と同時に加入者チップ/時刻情報 の格納を開始する。格納される情報は、時刻(たとえば 先端受信時刻)および所定の期間の間に受信される各チ ップのチップ番号である。各チップをセーブする代わり に、この場合は1つの20msフレーム内に25,000近いエン トリを意味するが、チップの周期的番号(たとえばシー ケンス内の50番目毎のチップ)をすべての受信基地によ り用いることが好ましい。この後者の場合、加入者は上 述のように周期的チップの1つである所定のチップ(チ ップ100など)を選択するよう構成される。熟練者は、 すべての基地において同じチップ(群)に関して情報が 収集される限り、任意の数の期間または特定のチップ (たとえばフレームの第1チップ) を用いることができ ることを認識されよう。便宜上、適切に構成される加入 者が所定のチップを、基地により監視されるチップと一 致するように選択することが好ましく、これによってそ の後の計算を簡素化する;この選択は、予めプログラミ ングしておくか、あるいは監視するべきチップ(群)/ 期間を標示する位置要求信号351内のデータに基づいて

20

すればよい)。

P信号282を送る。

加入者から(好ましくは進行中の音声/データ通信を 伴うインバンド信号化を介して) 拡散RESP信号を受信す るとすぐに、基地301,356のプロセッサ350,358は信号と 所定のチップ情報とを検出し、所定数のチップ/時刻対 を位置サーチャ361または367に転送する。たとえば、精 度を高めるために平均化を行うには、各基地301,356が 所定のチップから始まる8つのチップ/時刻対とその受 信時刻(たとえば対 {100, TS (28 7/16) } , {150, TS (78 7/16) } ,... {450, TS (378 8/16) } ならびに、R 10 ESP信号情報(たとえば基地チップ/時刻対 {(基地)1 088, TR(0)}, 所定のチップ/時刻対 {(加入者) 10 0, TR(24 1/16)} および基地の遅延因子 {4/32}) と を転送する。このシーケンスを示すスケジュールを第6 図に示す。TS(0)は、開始システム時刻を表し、ここ では便宜上システム・クロックの0番目のビットとして 示される。またTR(0)は加入者の相対クロック時刻を 表す。PNB(1088)は、第1基地局(301)のPNシーケン ス内の1088番目のチップを表し、PNS(100)は加入者の PNシーケンス内の100番目のチップを表す。このよう に、基地チップ1088がシステム時刻0で出力され、基地 アンテナから送信遅延時間DtB1分だけ遅く放出される。 伝播遅延DP1および加入者受信遅延時間DrS(すなわち加 入者アンテナから検出器240への)分だけ後で、検出器2 40がチップ1088をTR(0)において受信すると判定す る。プロセッサ280は、加入者シーケンスの次の50番目 のチップをチップ100と判断し、現在の加入者チップ/ 時刻からチップ100の出力時刻がTR(2 42/16)になると 計算する。較正された遅延DrS, DtS(出力からアンテナ 放出までの遅延)が、たとえば、それぞれ2/32チップと 30 知れると、加入者は情報たとえば [{1088, TR (O) }, {100, TR (24 1/16), {4/32}] を含むRES

基地301の検出器240は、システム時刻TS(18 7/16) において加入者チップ100を受信し、基地357はそれを時 刻TS (29 7/16) において受信する。このときDP2, DrB1 およびDP3, DrB2の伝播および受信(すなわちアンテナか ら検出器への) 遅延がそれぞれ伴う。同様の反復測定も 実行される。たとえば基地301は時刻TS (78 7/16) でチ ップ150を受信し、加入者はチップ150の出力時刻をTR (74 1/16) すなわち厳密には50チップ(40,700ns)後 に制御する。

所定数の対が決定されると、チップ/時刻情報および 応答信号情報は位置サーチャ361または367に転送され る。サーチャ361または367は、他の既知の情報を用い て、伝播遅延たとえばDP1-DP3を計算する。この場合、 較正された基地遅延DtB1,DrB1,DrB2を5/32,3/32,3/32チ ップとする。DP1は基本的にはDP2と同じなので: 2DP1 = (TS (287/16) - TS (0)) - (DtB1 + DrB1) -(TR (241/16) - TR (0)) - (DrS+DtS)

16

= (287/16) - (8/32) - (241/16) - (4/32)=4チップ

となる。このため、DP1は2チップまたは1628nsであ り、伝播経路長は約488m(100nsの全不確定性において +/-30m) である。DP1がわかると、DP3を同様に計算 することができ、図示される例では3チップの時刻と73 3mの距離を得ることができる。少なくとも3つの受信機 に関して伝播経路長を計算し、受信基地に関する位置情 報を(たとえばデータベース362または368から)検索す ることにより、それぞれの伝播経路がすべて交差するこ とのできる一意的な点(または最も確率の高い小さな地 域)を計算することで、加入者の位置を決定することが できる。このプロセスを時間/チップの集合毎に繰り返 す。次に計算された各点(または可能性のある領域の重 心)を加入者位置の決定に用いる。これは単純に平均化 により行うことができるが、複数の点/領域から確率の 高い点/領域を適合決定する任意の適切なプロセスを用 いることができる。確率の高い点/領域の位置は、好ま しくはHLR366のユーザ・プロフィル・データベース369 に格納される。また、秒または分単位で、1つ以上の時 間的期間の後でプロセス全体を繰り返し行うことができ る。このときは、複数の確率の高そうな領域を用いて加 入者の移動速度と方向とを決定する;充分に正確な加入 者クロックを用いて変動が複数分の延長期間に亘り50ns 未満であるようにすると(すなわち加入者クロックのシ ステム時刻からのオフセットがその期間に関して既知で ある)、基地で繰り返される検出を要求信号を反復せず に実行することができる。最後に、決定された位置およ び移動速度/方向が当初の要求装置、たとえばオペレー タ370に、あるいはPSTN375を介して転送される。

能動位置特定プロセスを用いる場合の非能動プロセス に対する1つの利点は、所望の場合に、三次元情報をよ り正確に判定することができることである。これは、伝 播経路の傾斜角度が水平よりも大幅に0度より大きい都 市エリアまたは丘陵地帯において特に便利である。基地 の三次元座標および第1近似加入者位置の既知の地形を 用いて受動プロセスの精度を高めることができるが、熟 練者は伝播時間の差のみに対し、測定された伝播時間か らより良い近似値を導くことができることを認識されよ う。決定された伝播経路は三次元と同様に正確であるの で、可能性のある位置の三次元領域を決定するために は、基地サイトの位置の z 軸(すなわち三次元) 座標な らびに x 軸および y 軸座標の処理を追加すればよい。こ れを既知の建物または地形情報と比較すると、単独の建 物内で+/-8階分(100nsの不確定性において)以内 の位置特定が可能である。相対被受信信号強度および建 物内の同様の経路損失特性などの追加情報を用いて、可 能性のある位置の領域をさらに狭めることができる。

全体を400と示される第7図は、位置推定値を得るた 50 めに加入者が基地局信号を測定するシステム・プロセス

18

の流れ図である。プロセスはブロック405で始まるが、 このブロックは加入者により(たとえば、加入者が開始 するか、あるいは自動車事故を標示する運動センサなど の他のインジケータに自動的に基づいて) 実行されるべ き位置特定コマンドの発生を表す。ブロック410で、加 入者の状況がチェックされ、415で加入者が3方向のソ フト・状態にあるか否かの意志決定がなされる。ノーの 場合は、ブロック420が実行され、候補集合内に3つの 基地があるか否かを調べる。ない場合は、意志決定ブロ ック425が実行されて、候補者集合に基地を追加する閾 値がチェックされる。これが最小限度にない場合は、ブ ロック430は閾値を下げて、プロセス段階420に戻る。ブ ロック425ですでに最小レベルにある場合は、ブロック4 50が実行される。このブロックでは、緊急機能と非緊急 機能との位置特定機能を区別する。このため、非緊急機 能を処理中の場合は、使用レベルが高くないときに限り システム・レベルの変更が認められる。これは、変更す ると干渉レベルをあげることによりユーザがサービスを 受けられない可能性があるためである。システム負荷の 高い非緊急時には、ブロック460が実行される。緊急の 場合は、ブロック460の前にブロック455が実行される。 これは、好ましくは補助パイロット発生器が同調される 緊急ビーコン信号に応答して起こり、自動的に応答す る;あるいは、緊急信号をサービス提供中の基地に送 り、補助基地を起動するよう制御するための処理が行わ れる。後者の場合は、第2の非緊急要求信号を同様に用 いて、制御プロセッサ(たとえば第5図のBSC360のプロ セッサ/サーチャ361) がシステム負荷が負荷閾値より 下にあると標示すると、起動コマンドが生成される。こ れにより、ブロック455で複数のサイトによって、より 完璧なカバレージを提供する近隣のパイロット発生器が 起動され、加入者は複数の基地から信号を受信すること ができる。ブロック460で、加入者が3方向のソフト・ ハンドオフにあるか否かが調べられる。ない場合は、加 入者はブロック465で、少なくとも3つの基地局からの 最大の電波を用いて、3方向のソフト・ハンドオフ状態 を形成するよう命令される。460の結果がイエスの場 合、あるいはブロック465が終了すると、ブロック440が 実行され、第2図に関して説明されたようにデータの収 集が行われる。このデータは、位置推定値を処理するた 40 めに用いられ(たとえば、第2図のメモリ281からの追 加データを用いてサーチャ280内で)、システムは定格 条件に戻る(ブロック445)。

ブロック415に戻り、加入者が3方向のハンドオフ状態にあると、ブロック440が実行される。ブロック420に戻り、候補者集合内に3つの基地があると、ブロック435が実行され、能動集合内に3つの異なる基地を配置する。次に、前述のようにブロック440が実行され、その後ブロック445が実行される。

全体を500と示される第8図は、位置推定値を得るた

めに加入者を測定する基地局のプロセスの流れ図であ る。プロセスは、位置特定機能が起動されるとブロック 505で開始される。ブロック510で加入者の状況がチェッ クされ、ブロック515で加入者が3方向のソフト・ハン ドオフにあるか否かの意志決定がなされる。ノーの場 合、ブロック520が任意で実行され、候補者集合内に3 つの基地があるか否かが調べられる。ない場合は、意志 決定ブロック525で、候補者集合に基地を追加する閾値 がチェックされる。これが最小限度にない場合は、ブロ ック530で閾値を下げ、プロセス段階520に戻る。ブロッ ク525ですでに最小レベルにある場合は、ブロック535が 実行され、位置推定の処理が継続されるが、ここでは2 つの基地のみで行われる。これは、測定に3つの基地を 有する所望の場合よりも精度が低くなる。ブロック515 に戻り、加入者が3方向のソフト・バンドオフ状態にあ る場合、あるいはブロック520で候補者集合に3つの基 地がある場合は、ブロック540が実行される。ブロック5 40では、3つの基地が加入者の信号を受信するために能 動であることが確認される。次にブロック545が任意で 実行される。このブロックは、各基地が加入者を受信す ることができるか否かを調べる。各基地が受信できる場 合は、ブロック550が実行され、能動モードの場合は位 置要求信号が送付され、いずれのモードでも上記の方法 で、入手可能なデータが収集され、位置推定値が処理さ れる。ブロック555が実行され、すべてのパラメータが 正常に戻され、測定が完了する。ブロック545に戻っ て、加入者を受信することのできる基地が3つ未満の場 合は、ブロック546で、補助基地ユニットが使用可能で あるか否かが調べられる。使用可能な場合は、ローカル の補助サイトがブロック547で起動され、ブロック560で 緊急が標示されるか否かが調べられる。ノーの場合は、 受信される基地しか測定に用いることができず、これは 推定値の品質低下を招く可能性がある。緊急が標示され る場合(たとえば番号911がダイヤルされるなどの加入 者信号または、インフラストラクチャに接続される認可 装置からの緊急要求により)、ブロック565が実行され て、加入者ユニットが最大電力にあるか否かを調べる。 ノーの場合は、ブロック570が実行されて電力を上げ、 プロセスはブロック540に戻る。ブロック565が最大電力 にある場合、ブロック575で各基地が加入者を受信する ことができるか否かを調べる。イエスの場合はブロック 550が実行される;そうでない場合は、ブロック580によ りセル負荷が削減されて、加入者ユニットを受信するこ とが困難な能動集合内のセルの有効レンジを広げる。次 にブロック585で、負荷発散の限界に到達したか否かを 調べ、イエスの場合はブロック550が実行される;そう でない場合は、ブロック575をもう一度実行して、各基 地が加入者を受信することができるか否かを調べる。

負荷発散にはセルラ・トラフィックを削減する、ある 50 いはこのようなトラフィックを転送して、より多数の基

地サイトを用いてより正確な位置推定を行うことができ るようにする方法がいくつかある。加入者負荷を通信媒 体から離したり、あるいは他のCDMAキャリヤやAMPSチャ ネルなどに移すこともできる。これにより、必要に応じ て目的のCDMAチャネルを空にすることができる。あるい は位置特定をする必要のあるユーザを、負荷の小さいチ ャネルにハンドオフすることができる。また、システム ・パラメータを変更して、加入者ユニットの測定能力を 改善することもできる。負荷の変更と組み合わせて、あ るいは単独で、パイロット(PPG)電力の変更を行い、 種々の基地サイトからのカバレージ・ゾーンを変更し、 基地局画目的の領域をカバーする能力を高めることがで きる。基地局のPPC電力の一部を選択的にビームに加 え、特定の加入者ユニットを追跡するように形成して、 特定の基地と接触する特定の加入者の能力を高めるよう にすることもできる。

本発明の第2実施例において、加入者の位置を決定す る方法および装置が提供される。上記のように、少なく とも3つのサイトへの距離を同時に導き出すことによ り、現地の加入者の位置を特定することができる。サイ 20 トの数が少ないと、ユーザ位置の決定における不確定性 が大きくなるのが普通である。角度情報を用いることに より、この不確定性を削減するが、これはサイトが3つ 未満しか用いられない場合に特に重要である。また、位 置決定に関して3つ以上のサイトを使用することができ る場合には、角度情報を用いることにより信頼性が改善 される。

まず第9図を参照して、加入者ユニット(S)920と 通信する単独の基地サイト910が図示される。位置測定 に1つの基地のみしか関与しないので、時刻または距離 計算(第1実施例による)では、サイトからの半径たと えば970しか与えられない。これは、ユーザに他の情報 がない場合、半径970により規定される360度の角度930 内のいずれにも居る可能性があるので、角度において大 きな不確定性を生み出す。ボアサイト角度がベクトル94 0,950,960と示されるセクタ化アンテナを用いることに より、セクタ化アンテナの各々から受信される信号レベ ル間の比較によって、最も強い信号を識別することがで きる。これは、最も強い伝播経路が受信される方向を標 示する。これが一般には、加入者が位置する方向の最良 40 の推定値となる。このため、たとえば最強の信号が基地 サイト・ベクトルが950のセクタ・アンテナにおいて受 信される場合、加入者920の可能性のある位置は、セク タ角度方位と決定される距離970+/-距離および角度 の不確定性により定義される円弧980に沿う;さらに処 理を加えると(下記)、単独の基地サイトしか用いなく ともはるかに優れた推定値を得ることができる。第9図 の破線は、セクタ化アンテナ940,950,960間の分隔を示 し、最良のカバレージ・エリアはセクタ間で変わる。2 つのセクタがほぼ同じ被受信信号レベルを有すると、加 50 できる。加入者の電力を上げることは信号を他の基地で

入者はセクタ間の境界線上にあると考えるのが一般的で

第10図を参照して、基地1010において、セクタ・アン テナをアンテナ・アレイまたは狭固定ビーム・アンテナ の集合と置き換えて、はるかに広い角度解像度を与え る。ビーム・パターン1040は非常に狭い。 (あるいは、 回転するアンテナを用いて、加入者に対する最良の角度 を見つけることもできる)。角度1070は、最良の伝播経 路に対する角度または、方向1060にある伝播遅延の最も 10 短い信号に対する角度を表す。基地サイト1010から加入 者ユニット1020までの距離測定値である半径1050は、上 記の如く伝播遅延を計算することにより決定することが できる。加入者1020に対する最良の角度1070を発見する ことにより、半径1050および角度1070に基づく改善され た位置推定値を得ることができる。

定義された受信/送信角度を有する他のアンテナ構造 を用いることもできる;たとえば、回転アンテナを用い て、所望の領域(全方向, セクタなど)を掃引する場合 に最強の信号レベルがどこに現れるかに基づいて、最良 角度を決定することができる。加入者ユニットに関して 水平に測定するだけでなく、用途によっては、垂直にも 測定することが望ましい場合もある。高さを推定する別 の方法は、垂直のビーム・ステアリング・パターンを送 り出すマイクロセル・サイトを用いて、加入者ユニット の高さならびに経度および緯度を推定する方法である。

第11図を参照して、加入者1120の方向でアンテナ・パ ターン1140における切欠(ノッチ)に同調することので きる基地1110のアンテナ・アレイが図示される。切欠を 加入者1120の方向に同調することを、当技術ではヌル・ ステアリングとも呼ぶ。第11図では、アンテナ・パター ンが角度1170に切欠を有し、他の方向すべてにほぼ一定 の利得を有して図示されるが、これはビーム1040と同様 であり、加入者1120から遠ざかる方向に同調されるの で、加入者1120の方向の利得がピークから小さくなる。 加入者のいずれかの側の主ビームを同調することによ り、加入者1120の方向の利得が小さくなる。加入者ユニ ット1120に向けられるアンテナ利得が小さくなると、IS -95CDMAシステム仕様の一部である標準電力制御ループ によって加入者1120はその送信電力レベルを上げる。加 入者1120がその送信電力を上げると、サーチャ(基地局 受信機の一部)は時間的には早いが検出がより困難な基 地1110への潜在的信号経路を識別することができる。こ の信号は、角度1170における強力な信号経路より、基地 から加入者への伝播経路における減衰が大きい信号など である。エリア全体で主ビームを同調することにより、 伝播遅延が短い方向に改善された利得を与えることがで きる。遅延時間が短い経路から受信される信号が検出さ れると、遅延の短い経路にロックし、その経路の角度を 測定することによって修正された角度を決定することが

受信する可能性を大きくするための基本的な方法である ので、切欠を加入者1120の方向に同調することは、他の 基地が加入者電力の増大から恩恵を得ることができるよ うにする別の方法である。

第12図は、加入者(1290)位置の推定を改善するため の2つのサイト1210,1211からの角度と距離の推定値の 組み合わせを示す。2つのサイト1210,1211が図示さ れ、これらは固定セクタ化狭ビーム・アンテナまたは、 アンテナ・アレイや可動ビーム・アンテナによって形成 される操縦可能な適応アンテナを有することができる。 ここでは、操縦可能ビーム1240,1241が図示される。信 号の時間的遅延を推定することによって、半径値1250.1 260が得られる。これらの半径は、2つの異なる位置で 交差するので、角度情報がないと加入者1290の位置に不 確定性が存在することに注目されたい。アンテナの角度 解像度により、到着角度測定値1230.1231を推定するこ とができ、それにより加入者1290に関してより正確な位 置推定が可能になる。基地から加入者への距離を推定す るための2つの方法が第12図に図示される。半径1250,1 260は、絶対時間測定から得られる。到着時差(TDOA:ti 20 me difference of arrival) とも呼ばれる相対時差を表 す第2直線1270が図示される。TDOA法においては、加入 者から2つの基地局への各々への2つの経路間で時差が 計算される。TDOA測定により、線1270により図示される ように一定の時差の双曲線が得られる。第12図に関して 図示されるように位置推定を改善するための角度推定値 の使用は、絶対時間測定またはTDOAのいずれか、もしく はその両方を用いて実現される。

第13図は、加入者(1390)位置の推定を改善するため の3つのサイトからの角度と距離の推定値の組み合わせ 30 を示す。3つのサイト1310,1311,1312が図示され、これ らは固定セクタ化狭ビーム・アンテナまたは、アンテナ ・アレイや可動ビーム・アンテナによって形成される操 縦可能な適応アンテナを有することができる。ここで は、操縦可能ビーム1340,1341,1342が図示される。信号 の時間的遅延を推定することによって、半径値1350,135 1,1352が得られる。これらの半径は、1つの一意的位置 で交差することに注目されたい。また、時間的遅延情報 が完全に精密であれば、角度情報は必要ではない。しか し、実世界のシステムにはどれでもタイミング情報にお 40 ける不確定性が存在するので、3つのサイトからの角度 情報を用いることで位置の推定を改善することができ る。角度推定値1320,1321,1322は、それぞれサイト131 0,1311,1312から得られる。第13図に関して開示される ように、特定の移動加入者ユニットの位置推定を改善す るために到着角度推定値を用いることは、絶対時間測定 またはTDOAのいずれか、もしくはその両方を用いて実現 される。一定の位置特定用途においては、絶対時間基準 が必要でないので、TDOAが好適である。さらに、本明細 書に開示される実施例のいずれにおいても、絶対時間測

定の代わりに、あるはそれに加えてTDOAを用いることが できることを理解頂きたい。

第14図を参照して、基地と加入者との間の最も直接的 な伝播経路を表す第1到着電波を発見しようとするため の受信機フィンガ管理法が図示される。定格の多重経路 分散のみが第1到着電波に影響を与える場合は、信号は 第14図に示されるように狭く定義される時間に到着す る。ピーク振幅1420は、電力遅延プロフィル1410のこの 第1主ピークを受信するように設定される相関受信機の 10 位置を示す。第1到着ピークを拡散させるために距離的 に充分に隔てられる大きな分散がある場合は、基地サイ ト内の相関受信機のサーチャの処理は、単独のピークを 発見し、相関受信機フィンガを第15図に関して説明され る単独のピークにロックしようとする傾向がある。電力 のみに基づいてフィンガを割り当てる従来の探査および ロック方法は、加入者への最短経路をより明確に表す第 1 到着電波の先端を無視することが多いという欠点があ る。発散が第1到着電波を電力遅延プロフィル1510に示 されるように広くする場合は、この問題は特に面倒であ る。たとえば、被受信信号の第1伝播1530は、信号のピ ーク1520よりも早く到着する。

これらの問題を克服するために、ピークから一定の閾 値内に依然としてある最も早い到着電波を発見するため により早期に走査するようにサーチャをプログラミング することができる。相関受信機を、オフピーク位置に設 定することにより、第2相関器は第2電波1540にロック して、信号ダイバーシチを得るようにすることができる 場合がある。この場合、第1電波1530と第2電波1540 は、ピーク1520に相関するよりも良い組合せ結果を生む ことがある。最短遅延時間すなわち最良の位置を推定す る目的で、第1電波1530は電力レベルのみを用いるより も良い推定値を提供する。

第16図は、2つの基地が加入者1690から信号を受信す るが、経路1663に沿った障害物のために、信号が弱くサ イト1611により真の位置では検出されずに、反射のため に1661から1641への経路がより強力になって、1631によ り示されるように角度が推定される条件を図示する。予 測される距離1660は、経路1661+1662の距離に基づく が、これは加入者1690の実際の位置を超える推定値とな る。サイト1610に関しては、距離1650の推定値と角度16 30は、直接経路により定義される精度限度内にある。こ の場合、2つの基地サイト1610,1611からの情報が矛盾 することになるので、位置の単純な計算は不可能であ る。1691における位置推定値は距離推定値1650,1660と 角度1631に基づいて適切に思われるが、角度1630はこの 評価とは矛盾する。真の位置1690は、距離1650および角 度1630により標示されるが、他の入力はそれと相容れな い。この状況では、誤差の推定回復方法が非常に望まれ る。

通常、反射のために、測定される伝播距離が長くなる

50

だけなので、短いほうの距離に大きな重みがかけられ る。強力な反射物の潜在性に関して各経路を分析するこ とによって、反射を見る可能性が判定される。さらに、 封鎖された経路に対する潜在性が分析に加えられて、ど の経路が実際の経路であるのか、ひいてはどれが最良の 位置推定値であるのかという推定が改善される。

1631の方向にある経路が、強力な鏡反射を発生するこ とができると考えられる障害物の以前に生成されたデー タベースから走査される。この経路は半径全体に沿って 調べられ、位置1695は、強力な反射潜在性を有する位置 10 であると判定される。この距離を計算することにより、 位置1690は経路1661&1662に関して正当な位置であるこ とがわかる。経路1663はかなりの度合まで封鎖される が、これも以前に記録されたデータベースに格納され る。他のサイトを調べると、経路1610から1690までの経 路には障害物が見つからないので、この経路が信頼性が あると思われる。かくして、入手可能な入力を分析する と、位置1690が、加入者ユニットの真の位置に関して最 良の推定値であると判定される。

このような誤差の推定回復方法の例を説明する。 段階1,推定されるレンジと基地への到着角度を用いて、 各サイトに基づく位置推定値を決定する。 段階2, すべての入力が相補的であるか否かを判断する。 相補的である場合は、各々により供給される情報の度合 まで、すべての入力を含む位置推定値を計算する。 段階3,相補的でない場合は、誤差推定回復段階を開始す る。

誤差推定回復段階:

段階1,各サイトについて、角度情報により表示される方 向の経路を分析して、データベース内に以前に記録され 30 た強力な反射物に関する潜在性を判断する。

段階2,既知の反射物をもたないサイトに関して、位置推 定値が正当であると想定して作業を継続する。

段階3.他のサイトによる同時性を調べる。標示される方 向の反射物を調べて、適切な長さとすることができ、潜 在的反射物が標示されると適切な角度で到達することが できる経路が存在するか否かを判断する。存在する場合 は、これで位置推定値が立証される。存在しない場合 は、立証は不可能であり、加入者追跡など別の方法によ り排除されるまで不確定性が存在する。暫定的な段階と 40 して、レンジの最も短いサイトによる位置推定値を正し い位置と示唆するが、より確実な解答が得られるまで は、表示される一定の信頼性水準をもって、ある目的に ついては両方の位置が用いられるわけではない。当業者 は、絶対時間測定の代わりにTDOA法を用いて、同様の方 法を実行することができることを理解されよう。

距離測定と到着角度推定の両方を実行することのでき るワイヤレス通信システムには多くの特定の実行例があ るが、以下にいくつかの事例システムを説明する。第17 図を参照して、上述の位置特定を実行するのに適したワ 50

イヤレス通信システムが図示される。システム1700は、 角度検出ユニット1702および基地局301を備える。基地 局301は上記に詳細に説明されたことに注目されたい。 角度検出ユニット1702は、各々が信号線1704を介してバ トラ・マトリクス1708に結合される複数のアンテナ (M, 好ましくは8など、2の累乗)を備える。各バトラ・マ トリクス1708は、信号線1710を介してアンテナ・セレク タおよびRFフロント・エンド・ユニット305に結合され る。バトラ・マトリクス1708は、M個の要素1706を振幅 と位相において合成し、N個の出力を提供する。ただし Nも好ましくは、4など2の累乗である。アンテナ1706 の各々は、異なる目的角度に向けられる狭ビーム・アン テナ・パターンを形成する要素である。好ましくは、ア ンテナ・タワー(図示せず)の各面について1つのアン テナ1706が存在する。ある例では、120度のセクタが互 いに30度をなす4つの隣接ビームによりカバーされるこ とがある。狭ビーム・アンテナ・パターンを用いること により、またこれらの狭ビーム・アンテナ・パターンの 各々に対応する信号を検出することにより、加入者ユニ 20 ットから受信される信号の角度推定値を、信号強度測定 値の最も強いビームを選ぶなどして決定できることは当 業者には認識頂けよう。単独の角度検出器1702と単独の 基地局301のみが図示されるが、複数の角度検出器1702 を有する複数の基地局301を、セルラCDMAシステムなど の完全なワイヤレス通信システム内で用いて、加入者ユ ニットの位置推定を実行することができることはいうま でもない。

24

第18図を参照して、到着角度検出の代替の実行例が図 示される。第18図のシステム1800においては、セクタ・ アンテナ1802, 1804, 1806が、第17図のシステム1700で用 いられる固定狭ビーム・アンテナ1607およびバトラ・マ トリクス1708の代わりに用いられる。2つのアンテナが 各セクタで用いられ、通常は、数メートル隔てて設置さ れ、空間的相関解除(decorrelation)およびダイバー シチ受信を行う。また、この例におけるセクタの各々 は、方向的に120度隔てて配置される。推定される到着 角度は、信号測定値の最も強いセクタからの方向に角度 が受信されると推定するなどして、セクタ1802,1804,18 06の各々からの信号強度に基づき決定される。固定狭ビ ーム・アンテナまたはセクタ・アンテナに加えて、角度 検出ユニット1702を、適切な制御帰還回路構成をもつビ ーム形成網を用いるなどして多くの方法で組み込むこと もある。

第19図は、CDMA受信機に対する適応アンテナ・アレイ の接続を示す。各セクタは、1902,1904,1906と示される 適応アレイ・アンテナにより表され、これは適応ビーム 形成網305に接続される。帰還信号1972がCDMA復調器345 からビーム形成網に接続される。帰還信号1972は、レー キ・フィンガ310などのいくつかの源から導出される。 アレイ網は、各要素1910がRFフロント・エンドおよび下

とができ、他の基地に対する複数の経路を得る確率を改

26

方変換器ユニット1920に接続された状態でアレイ1902か ら信号を受信する。下方変換器ユニット1920は、下方変 換された信号のアナログーデジタル直角位相サンプリン グも行って、デジタル・サンプルを生成する。スプリッ タ1930が下方変換器ユニット1920からサンプルを分配し て、調整バンク1935を分隔する。バンクの各々は、利得 1940および位相1950調整を含む。ビーム形成制御プロセ ッサ1970が利得および位相調整計算を実行して、レーキ 受信機310などの受信機からの帰還情報に基づき、調整 バンク1935内でそれぞれに利得1940および位相1950装置 10 を制御する。調整バンク1935からの出力は加算器1960に おいて加算され、次に対応するレーキ受信機310,320,33 0に送られる。移動ユニットから受信される信号の角度 推定値は、アレイ・アンテナを調整するために用いられ る利得および位相値を評価することにより決定される。

到着角度および距離情報を用いることに加えて、加入 者ユニットの位置推定を改善するために他の多くの方法 を用いることができる。たとえば、加入者ユニットを検 出するための基地局の能力を高めるために、いくつかの 可能な方法を採用して接続中あるいは通話中に加入者ユ 20 ニットの送信電力を高めることができる。これらの方法 には、次のような技術が含まれる:

1.) 特定の加入者ユニットに関してシステム利得を調整 する。これには、ヌルを操縦するため、あるいは加入者 の方向の利得を下げるために適応アンテナ・アレイを用 いることが含まれる場合もある。加入者の方向の利得を 下げることにより、別の経路損失が起こり、そのために 加入者は呼を維持する、あるいは呼に接続するためによ り多くの電力を送信することが必要とされる。基地局受 信機で入力減衰を高めることも、システム利得を下げる ために用いられる。

2.) 初期接続に応答して基地局に時間的遅延を選択的に 追加することによって、加入者ユニットは、試行中のあ る時点で連続的に高い電力レベルで自動的に新規の接続 要求を送る。この場合、IS-95に規定されるCDMA加入者 ユニットに関する標準ソフトウェア仕様により、試行回 数と最大送付電力には限度が指定される。これにより、 加入者の接続要求に応答する前に遅延を加えることによ って、加入者ユニットはより高い電力において繰り返し 試行を送信することになり、それにより複数の基地局が 40 加入者ユニットからの信号の測定を試みることができ る。遅延量は指定された期間とするか、あるいは加入者 ユニットの接続試行を測定することのできる数の基地局 を含むいくつかのパラメータにより制御することもでき

3.) 加入者ユニットにおいてアンテナ利得または方向性 を調整することにより、最も強い基地に対する経路損失 を大きくして、加入者ユニットにおける被送信電力を上 げ、他の基地の方向のアンテナ利得を変更または改善す

GPS, グローバル・ポジショニング・システムを用いる などして、現地の加入者の位置を特定するための従来の 方法はいくつか存在する。GPSに対する改善策には、差 分修正 (Differential Correction) が含まれる。この 方法ではFM無線局のサブキャリヤ上に補助GPS受信機か ら誤差信号が送信されて、小型の受信機で拾うことがで きる。車両用として使用可能な別の改善策には、走行距 離と進行角度を測定する非天側位置推定法機能が含まれ る。これらの組合せ法を適応して、最悪の混雑したエリ アにおいて一般に10メートル未満、遮るもののないエリ アではさらに良い誤差の位置精度を達成することができ る。残念ながら、価格の問題から、平均的ユーザがこれ らのより正確な位置特定法を用いることは、現在のとこ ろ実際的ではない。

しかし、このような精度が高いが価格も高いシステム を、セルラ位置特定システムを較正するための方法とし て用いることができる。差分修正および非天側位置推定 法(および他の可能な改善方法)を備えたGPS受信機を 搭載した車両を運転することにより、運転試験毎に位置 ログを記録することができる。同様に、セルラ・インフ ラストラクチャ装置により作成される位置推定値をログ に記録することができる。各口グにはGPS時刻による時 刻が記入されるので、2つのログを比較して、位置推定 値の相関と較正を行うことができる。次に位置推定値に 基づいてデータベースを作成したり、時間的遅延および 基地アンテナ・ビーム方向の角度推定値の関数としてア クセスすることができる。このデータベースを用いて、 位置推定値の精度を高めることができる。たとえば、推 定される時間的遅延および角度を用いてデータベースを 調べることにより、較正運転試験の間に行われた入力と 対応する記録済みのGPS位置の以前の密接な組合せを用 いて、改善された位置推定値を得ることができる。調査 した位置をこのように較正にも用いることができる。た とえば、試験プローブを較正しようとする位置推定値に 関して調査した位置に移動することができる。

このデータベース法はいくつかの方法で適応すること ができる。運転ルートの大きな集合を分析することによ り、第16図におけるように、鏡反射によって強力な信号 が最短経路以外の経路をたどることになる特に悪い位置 を判定することができる。このようにしてわかった反射 と陰を作る障害物を識別し記録することができる。後 で、位置特定アルゴリズムによって矛盾する情報が収集 されると、影響を生みそうな可能性のある収差に関し て、エリアをチェックすることができる。次にアルゴリ ズムを変更して、位置推定の信頼性を高めるためにこれ らの影響を補正することができる。これは、角度1631の 方向にある反射物の経路の認識を用いて、経路1662に沿 ることができる。この機能は、基地局により命令するこ 50 う半径1660を調整して、距離1661が示す既知の反射物か らの半径を形成することができる第16図の場合などである。これによって、1631の方向に反射物が存在し、経路1663は1690において目的の位置に関して陰になるというデータベース情報を用いることにより、位置1690の推定を改善することができる。

追加の情報は、ログ手順の間に記録して、比較すべき 追加情報に関して現在の加入者の信号に比較するために 用いることができる。たとえば、Rician K因子を、電力 レベルおよび遅延光線の数値と共に、各位置に関して推 定することができる。

改善された位置推定値を得るための別の方法は、予測 モデルを用いることである。予測モデルが改善され、す なわち高度なデジタル高度地図 (DEM: Digital Elevatio n Maps), オルトフォトおよび建物データを含むランド ・クラッタ・モデルなどにより、環境の完璧な3Dモデル が1メートル未満の精度に近い高度な精度をもって可能 になる。これらの予測モデル・データベースにより、多 重レベルの反射および回折を含む電波追跡(Ray-Traci ng) 伝播予測モデル化を実行することが可能である。か くして、電波が地上または建物から反射し、あるいはコ 20 ーナーまたは屋上で回折する電波をモデル化することが できる。このようなモデルを測定された時間的遅延およ び基地サイトで得られる角度情報と組み合わせて用いる ことにより、位置推定値の信頼性を改善することができ る。第16図に示されるように、経路1663の陰や、経路16 61~1662に沿う反射も同様に予測することができる。こ れにより、最初は矛盾すると見える情報を実際に予測す ることができ、予想位置の計算のためや、測定結果の解 釈の補助として用いることができる。

位置推定を実行する際に望ましい機能の1つは、時間 の経過と共にユーザの位置を追跡する能力である。これ がなされると、複数のアルゴリズムを適応することによ り位置推定値の改善が図られる。まず、第16図の例を考 察する。陰を作る障害物と強力な反射の両方を生み出す 位置は比較的少なく、移動中のユーザはこのようなエリ アを比較的素早く通過してしまう傾向がある。かくして ユーザを追跡することにより、見かけ上の距離または角 度における突然のジャンプが、伝播経路内に反射または 他の障害物を標示する。このような反射または障害物は 加入者がこの障害エリアを通過する間、位置推定値の信 頼性を低くする傾向がある。時間の経過と共に定期的に 距離、角度および位置測定値をとるなどして、ユーザを 追跡することにより、速度と位置の推定値を用いて、位 置確度の低い数秒間までの位置の予測を行うことができ る。また、ユーザの位置推定値に平均化を行い、推定値 の無作為変動を排除することができる。平均化は追跡さ れるユーザにも、静止するユーザまたは追跡されないユ ーザにも行うことができる。

位置推定値を改善する別の方法は、地理データベース するために用いることもできる。あるものは1階付近に を用いることである。地理データベースは現在では一般 50 あり、あるものは種々の屋上にある一群の基地サイトを

的なもので、道路の分類カテゴリ、掲示速度および道路ベクトルの地図などの情報を含む。推定速度や、セルラ・システムの基地サイトにより判定される方向などの被測定情報を位置推定値および地理データベースと共に用いて、ユーザを適切な道に導くことができる。それによって、道路情報を含むことによる位置推定値の改善機能を提供し、誤差を小さくし、位置推定値の全体的な信頼性を向上させる。たとえば、地理データベースに相関させることにより、高速道路がわずか数十メートルしか離れていないときに、遮るもののない地域と共同住宅複合体を高速度で運転する加入者の位置推定を行う場合などの誤差を検出して補正することもできる。

28

さらにいくつかの可能な方法によって、位置特定精度を改善することができる。これには、信頼係数の高い移動ユニット、たとえば基地局に返送される一体型GPS受信機を備える移動ユニットの使用が含まれる。GPSユニットを備える移動局の位置推定値が、未知の位置をもつ加入者の位置推定値に対応する場合、未知の位置をGPS位置と同じであると想定することができる。

加入者ユニットの位置を推定し、第2加入者ユニット への角度および距離を計算することによって、第1加入 者ユニットの方向に関する情報を第2加入者ユニットに 送り、第1加入者ユニットの位置に対する進行方向およ び距離を表示することができる。また、位置推定値、ス トリート座標,推定速度および加速度情報を第2加入者 ユニットに送ることもできる。ユーザの位置を発見しよ うとする救急車または警察車両を考える。進行方向およ び距離および/またはストリート座標を警察車両または 救急車に送信することにより、ディスプレイは警察また は救急車に発呼者の位置を指示することができる。進行 方向、距離および座標情報に加えて、情報の推定信頼度 をディスプレイに入れることもできる。追跡応答は、ユ ーザが高い信頼度で最新の既知位置を見ることができる ようにする異なる信頼度をもつ一連の位置と、その後 で、それよりも低いあるいは高い信頼水準で、ユーザが そのエリアの知識を用いてデータを解釈することができ るようにする位置を表示することができる。グラフィッ ク・マップ表示が好適な方法であろう。

高速道路の通話ボックスなど位置がわかっているユニットを用いても位置特定システムの調整および較正を行うことができる。これにより、ビーム・アンテナ、角度および(加入者ユニット内の時間的遅延以外の)タイミングに基づく距離推定値を日常的に較正することができる。このような固定加入者ユニットをいくつか異なる角度および距離において用いて、システム較正の助けとすることもできる。

異なる相対角度にある複数の基地サイトを用いて、多次元位置特定システムを、加入者ユニットの高度を推定するために用いることもできる。あるものは1階付近にあり、あるものは種々の屋上にある一群の基地サイトを

考察する。高度寸法を含み、測定するために充分な経路 を有することにより、高度推定値を作成することができ る。垂直ビーム・パターンを用いても移動局高度の推定 を改善させることができる。

上記の如く加入者ユニットの位置推定値を改善する と、このような位置推定値を用いる多くの用途およびサ ービスを提供することができる。たとえば、レストラ ン、ガソリンスタンドなどに対するイエローページ型の 要求などの、データベース・アクセスに位置推定値を用 いることができる。別の例としては、911緊急サービス に対する発呼者IDに位置推定値、最寄りの道路または交 差点および速度を含めてもよい。たとえば、自動車を運 転中のユーザを静止中のあるいは建物内にいるユーザと 区別することができる。

別の用途は、ユーザ・プロフィルにゾーン別課金など のエリア境界を入れることができるようにすることであ る。ゾーン別課金システムにおいては、加入者を位置に よって異なるレートで課金することができる。たとえ ば、低い課金レートを家庭で用いて、高い課金レートを 加入者が車内にいるときに用いる。ゾーン別課金は、加 20 入者が家庭、仕事先および移動中に同じ電話を用いる便 利な単一番号サービスを提供するのに便利である。

別の用途は、ユーザ・プロフィルに不認可エリアなど の境界を含めることができるようにすることである。基 地局による定期的な検査により、プローブは加入者の電 話を鳴らさずにユーザの位置を追跡することができる。 不認可エリア境界付近では、追跡の周波数を上げること ができる。ユーザが不認可エリアに対する境界線を横断 すると、呼が所定の番号に送られ、情報またはデータが 記録される。記録された情報またはデータをもつ加入者 30 けず、添付の請求項およびその等価物の精神と範囲によ ユニットに呼を発することもできる。例としては、ユー ザが特定の国に入らないように求めたり、ティーンエー*

* ジャに特定の地域に入らないように求めるレンタカー会 社がある。時刻を不認可エリアの定義の一部とすること もできる。

30

別の用途では、特定のセルラ・サイト境界において、 異なる種類のシステムをもつ異なるシステム・オペレー タが存在する。ある位置では、オペレータは「A」集合 の周波数を有し、別の位置ではオペレータは「B」集合 の周波数を有する。このため、複雑な重複移行エリアな しに、境界においてハード・ハンドオフを実行すること 10 が望ましい。位置推定値を用いることによって、ハード ・ハンドオフ(搬送周波数の変更)を適切な時刻と位置 で実行することができる。進行方向および速度情報をハ ンドオフ決定に含めることもできる。

本発明は特定の実施例に関連して説明されたが、上記 の説明に照らして多くの改変、修正および変更が当業者 に容易であることは明白である。たとえば、加入者ユニ ット200のサーチャ240,280,基地局301のサーチャ340と プロセッサ350およびその他の回路は、特定の論理/機 能回路構成関係において説明されるが、これらを種々の 方法で具現化することができることを当業者には理解頂 けよう。たとえば、適切に構築されプログラミングされ るプロセッサ、ASIC(特定用途向け集積回路)およびDSP (デジタル信号プロセッサ) などである。さらに本発明 は、IS-95CDMAシステムにおけるチップ情報を介する位 置決定に限らず、任意のCDMAシステムまたは他の通信シ ステムによ適応可能である。さらに、位置特定に関して 多くの用途が説明されるが、本発明は特定の位置特定用 途に限られない。

従って、本発明は実施例の上記の説明による制約を受 る、これらすべての改変、修正および変形を包含するも のである。

【第2図】

【第6図】

【第5図】

【第7図】

【第8A図】

【第8B図】

【第9図】

【第13図】

【第17図】

【第18図】

【第19図】

フロントページの続き

(72)発明者 ロザンスキ, ウォルター・ジェイ

アメリカ合衆国テキサス州ハースト、ヘ

ザー・レーン408

(72)発明者 ゴーシュ,アミタバ

アメリカ合衆国イリノイ州バーノン・ヒ

ルズ、ハンター・コート289

(56)参考文献 特開 平5-211470 (JP, A)

特開 平7-202777 (JP, A)

特開 昭63-238477 (JP, A)

米国特許5508708 (US, A)

(58)調査した分野(Int.Cl.⁷, DB名)

GO1S 5/00 - 5/14

H04B 7/14 - 7/195

H04B 7/22 - 7/26

H04Q 7/00 - 7/38