Estatística I

Prof. Fernando de Souza Bastos fernando.bastos@ufv.br

Departamento de Estatística Universidade Federal de Viçosa Campus UFV - Viçosa

Sumário

Probabilidade Condicional e Independência

Teorema de Bayes

Para dois eventos quaisquer A e B, sendo P(B) > 0, definimos a probabilidade condicional de A dado B, como sendo

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{1}$$

Assim, a probabilidade de A muda após o evento B ter acontecido. Isso porque o resultado de A é uma das possibilidades de B ou de B^c .

Considere-se um baralho de 52 cartas. A probabilidade de ao retirar uma carta sair um rei é 4/52, ou 1/13. No entanto, se alguém retira uma carta e nos diz que é uma figura, então a probabilidade de a carta retirada ser um rei é 4/12 = 1/3, ou seja, P(sair um rei|sair uma figura) = 1/3.

Uma urna contém 10 bolas brancas e 10 bolas pretas. Retiro sucessivamente 2 bolas, sem reposição. Qual é a probabilidade de:

a) Ambas pretas?

Uma urna contém 10 bolas brancas e 10 bolas pretas. Retiro sucessivamente 2 bolas, sem reposição. Qual é a probabilidade de:

- a) Ambas pretas? $P(P_1 \cap P_2) = P(P_1) \times P(P_2|P_1)$
- b) Segunda ser preta?

Uma urna contém 10 bolas brancas e 10 bolas pretas. Retiro sucessivamente 2 bolas, sem reposição. Qual é a probabilidade de:

- a) Ambas pretas? $P(P_1 \cap P_2) = P(P_1) \times P(P_2|P_1)$
- b) Segunda ser preta? $P(P_2) = P[(P_1 \cap P_2) \cup (P_2 \cap P_2)]$

Resultados	Probabilidades
BB	9/38
ВР	10 38
РВ	$\frac{10}{38}$
PP	9 38
Total	1

Figura: Com reposição

Resultados	Probabilidades
ВВ	$\frac{1}{4}$
ВР	$\frac{1}{4}$
РВ	$\frac{1}{4}$
PP	$\frac{1}{4}$
Total	1

Observem que, neste segundo caso, $P(B_2|B_1) = P(B_2) = \frac{1}{2}$. Ou seja,

$$P(A|B) = P(A)$$
 ou $P(B|A) = P(B)$.

Nesse caso, dizemos que o evento A independe do evento B e, usando (1), temos que

$$P(A \cap B) = P(A)P(B) \tag{2}$$

É fácil ver que se A independe de B, então B independe de A. A fórmula acima pode ser tomada como definição de independência entre dois eventos, ou seja, A e B são independentes se, e somente se, (2) for válida.

Considere ainda a urna dos exemplos anteriores, mas vamos fazer três extrações sem reposição. Indiquemos por P_i ou B_i a obtenção de bola preta ou branca na i-ésima extração, respectivamente, i=1,2,3.

Resultados	Probabilidades
BBB	0, 105263158
BBP	0, 131578947
BPB	0, 131578947
PBB	0, 131578947
BPP	0, 131578947
PBP	0, 131578947
PPB	0, 131578947
PPP	0, 105263158
Total	1

Observem que:

$$P(B_1 \cap B_2 \cap B_3) = P(B_1) \times P(B_2|B_1) \times P(B_3|B_1 \cap B_2)$$
 (3)

$$= \frac{10}{20} \times \frac{9}{19} \times \frac{8}{18} \tag{4}$$

$$=\frac{1}{2}\times\frac{9}{19}\times\frac{4}{9}\tag{5}$$

$$= 0,105263158 \tag{6}$$

De modo geral, dados três eventos $A, B \in C$, temos que

$$P(A \cap B \cap C) = P(A) \times P(B|A) \times P(C|A \cap B)$$

Essa relação pode ser estendida para um número finito qualquer de eventos.

Dizemos que os eventos $A, B \in C$ são independentes se, e somente se:

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cap C) = P(A)P(C)$$

$$P(B \cap C) = P(B)P(C)$$

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

Se apenas as três primeiras relações de (7) estiverem satisfeitas, dizemos que os eventos A, B e C são mutuamente independentes. É possível que três eventos sejam mutuamente independentes, mas não sejam completamente independentes.

Teorema de Bayes

Uma das relações mais importantes envolvendo probabilidades condicionais é dada pelo Teorema de Bayes. A versão mais simples desse teorema é dada pela fórmula

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(B)} \tag{8}$$

Observe que P(A|B) > P(A) se P(B|A) > P(B).

Exemplo 5.14

Temos cinco urnas, cada uma com seis bolas. Duas dessas urnas (tipo C_1) têm 3 bolas brancas, duas outras (tipo C_2) têm 2 bolas brancas, e a última urna (tipo C_3) tem 6 bolas brancas. Escolhemos uma urna ao acaso e dela retiramos uma bola. Qual a probabilidade de a urna escolhida ser do tipo C_3 , sabendo-se que a bola sorteada é branca?

Queremos encontrar $P(C_3|B)$, sabendo que

$$P(C_1) = 2/5, \ P(B|C_1) = 1/2$$

 $P(C_2) = 2/5, \ P(B|C_2) = 1/3$
 $P(C_3) = 1/5, \ P(B|C_3) = 1$

Da definição de probabilidade condicional, temos

$$P(C_3|B) = \frac{P(C_3 \cap B)}{P(B)} = \frac{P(C_3)P(B|C_3)}{P(B)}$$

Precisamos encontrar o valor de P(B), já que o numerador é conhecido. Como C1, C2 e C3 são eventos mutuamente exclusivos, e reunidos formam o espaço amostral completo, podemos decompor o evento B na reunião de três outros, também mutuamente exclusivos, como $B = (C_1 \cap B) \cup (C_2 \cap B) \cup (C_3 \cap B)$, então:

$$P(B) = P(C_1 \cap B) + P(C_2 \cap B) + P(C_3 \cap B)$$

$$= P(C_1)P(B|C_1) + P(C_2)P(B|C_2) + P(C_3)P(B|C_3)$$

$$= \frac{2}{5} \times \frac{1}{2} + \frac{2}{5} \times \frac{1}{3} + \frac{1}{5} \times 1$$

$$= \frac{8}{15}$$

Logo,

$$P(C_3|B) = \frac{P(C_3)P(B|C_3)}{P(B)}$$

$$= \frac{1/5 \times 1}{8/15}$$

$$= \frac{3}{2}$$
(11)

Referências Bibliográficas

L. A. Peternelli. Roteiro de aulas da disciplina estatística 1, 2022.