PPPD - Lab. 09

Copyright ©2021 M. Śleszyńska-Nowak i in.

Zadanie punktowane, lab 09, 2017/2018

Zbiór danych train_wine zawiera informacje na temat składu chemicznego win produkowanych z dwóch odmian (klas) winogron. Zbiór będziemy reprezentować jako macierz postaci:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{n1} & a_{n2} \end{bmatrix} \in \mathbb{R}^{n \times 2},$$

gdzie *i*-ty wiersz macierzy \mathbf{A} , $\mathbf{a}_i = (a_{i1}, a_{i2})$ opisuje dwie cechy fizykochemiczne *i*-tego wina, $i = 1, \dots, n$.

Pierwsza kolumna (zmienna) opisuje liczbę gramów kwasu winowego na decymetr sześcienny trunku, zaś druga kolumna zawartość kwasu octowego.

Dodatkowo mamy dany wektor $\mathbf{c} = (c_1, c_2, \dots, c_n)$ taki, że $c_i \in \{0, 1\}$ określa do której z dwóch klas (odmian) należy *i*-te wino, $i = 1, \dots, n$.

Macierz **A** i wektor **c** będziemy nazywać **zbiorem uczącym**.

Wyobraźmy sobie, że pojawia się teraz wektor opisujący własności fizykochemiczne jakiegoś nowego wina, $\mathbf{z} = (z_1, z_2)$. Wektor ten nie jest wierszem macierzy \mathbf{A} – zatem jego klasa c nie jest znana. Naszym zadaniem będzie jej odgadnięcie (na podstawie informacji ze zbioru uczącego). W tym celu posłużymy się metodą k najbliższych sąsiadów (ang. k-nearest neighbors) w najprostszej wersji, tj. dla k = 1. Polega ona na:

- 1. znalezieniu wiersza macierzy \mathbf{A} , tj. wektora \mathbf{a}_i , dla którego odległość od wektora \mathbf{z} jest najmniejsza, tzn. $d(\mathbf{a}_i, \mathbf{z}) = \min_{j=1,\dots,n} d(\mathbf{a}_j, \mathbf{z})$, gdzie d oznacza odległość euklidesową; tak wyznaczony wektor \mathbf{a}_i nazywamy najbliższym sąsiadem wektora \mathbf{z} ;
- 2. przyporządkowaniu obserwacji \mathbf{z} klasy jego najbliższego sąsiada, tj. c_i .

Innymi słowy, nowej obserwacji zostaje przyporządkowana klasa taka sama, jak klasa wina do niej najbardziej podobnego.

Wczytywanie danych i funkcja distance() [1 p.]

- 1. Wczytaj macierz train_wine.csv oraz train_class.txt. Upewnij się, że:
- wczytana ze zbioru train_wine.csv lista jest poprawnie zdefiniowaną macierzą o dwóch kolumnach;
- wczytana lista ze zbioru train_class.txt zawiera elementy ze zbioru {0,1} oraz że jej liczba elementów
 jest równa liczbie wierszy macierzy.

Uwaga: w każdym wierszu pliku train_class.txt znajduje się jedna wartość całkowita.

Uwaga: plik train wine.csv możesz wczytać, korzystając z poleceń:

```
import csv
A = []
f = open("train_wine.csv", "r")  # r=do odczytu
for row in csv.reader(f):
    for i in range(len(row)):
        row[i] = float(row[i]) # konwersja z str na float
        list.append(A, row)  # == A.append(row)
f.close()
```

2. Napisz funkcję distance (u, v), która wyznacza odległość Euklidesową między dwoma m-elementowymi listami liczbowymi:

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{\sum_{i=1}^{m} (u_i - v_i)^2}.$$

Funkcja nearest_neighbor_class() oraz knn() [2 p.]

- 3. Napisz funkcję nearest_neighbor_class(A, c, z), która przyjmuje jako argumenty:
 - a. macierz uczącą $\mathbf{A} \in \mathbb{R}^{n \times m}$,
 - b. listę reprezentującą wektor klas $\mathbf{c} \in \{0,1\}^n$,
 - c. listę reprezentującą wektor $\mathbf{z} \in \mathbb{R}^m$.

Funkcja powinna wyznaczyć $i \in \{1, ..., n\}$ takie, że odległość $d(\mathbf{a}_i, \mathbf{z})$ jest najmniejsza z możliwych i zwrócić odpowiadającą wartość c_i .

- 4. Napisz funkcję knn(A, c, Z), która przyjmuje jako argumenty:
 - a. macierz uczącą $\mathbf{A} \in \mathbb{R}^{n \times m}$,
 - b. listę reprezentującą wektor klas $\mathbf{c} \in \{0,1\}^n,$
 - c. macierz testową $\mathbf{Z} \in \mathbb{R}^{l \times m}$.

Funkcja ta ma zwracać l-elementową listę o wartościach ze zbioru $\{0,1\}$ taką, że jej i-ty element odpowiada odgadniętej klasie i-tego wiersza z macierzy \mathbf{Z} , por. funkcję nearest_neighbor_class(A, c, z).

Wykres [2 p.]

- 5. Stwórz wizualizację działania implementowanej metody w następujący sposób:
 - a. wygeneruj dwie listy ${\bf x}$ oraz ${\bf y}$ reprezentujące dwa ciągi arytmetyczne długości ${\mathbb N}$ (dla wybranego ${\mathbb N}$) takie, że:

```
x=[a0, a0+r, a0+2*r, ..., a1]
y=[b0, b0+t, b0+2*t, ..., b1]
```

gdzie a0 i a1 oznaczają, odpowiednio, najmniejszą i największą wartość w pierwszej kolumnie macierzy A, a b0 i b1 – najmniejszą i największą wartość w drugiej kolumnie macierzy A. Ponadto r i t to odpowiednio wyznaczone stałe rzeczywiste;

- b. dla każdego punktu z siatki (x_i, y_j) dla i, j = 1, ..., N wyznacz odpowiadającą mu klasę (możesz skorzystać z funkcji knn() wywołanej na odpowiednio stworzonej macierzy zawierającej wszystkie punkty z siatki);
- c. wygeneruj rysunek, na którym naniesiesz punkty z macierzy A oraz z siatki (x_i, y_j) dla $i, j = 1, \ldots, N$, przy czym przynależność klasy każdego wektora oznaczysz różnymi kolorami.

W tym celu skorzystaj z funkcji plt.scatter() w następujący sposób:

- kolor punktu możesz zmienić, korzystając z argumentu color (np. b niebieski lub r czerwony);
- dla punktów należących do siatki (x_i, y_j) ustaw przezroczystość koloru na wartość 0.2 (możesz to zrobić, korzystając z argumentu alpha) oraz kształt punktu na . (kształt punktu możesz zmienić, korzystając z argumentu marker);
- punkty do wykresu możemy dorysowywać, wywołując wielokrotnie funkcję plt.scatter(),
 np:

Uwaga: im więcej punktów N rozważamy, tym dłuższy jest czas wykonania rysunku.

Ocena jakości klasyfikatora [2 p.]

- 6. Wczytaj pliki test_wine.csv (zbiór testowy). Korzystając z funkcji knn(), odgadnij dla każdego testowanego wina jego klasę.
- 7. Aby oszacować jak skutecznie funkcja knn() odgaduje klasę każdej testowanej obserwacji, porównaj otrzymany wynik z prawdziwą klasą zapisaną w pliku test_class.txt. Niech \hat{c}_i oznacza prognozowaną (tzn. wyznaczoną przy użyciu funkcji knn()) klasę i-tego wina z macierzy testowej, a \tilde{c}_i klasę prawdziwą (na podstawie danych z pliku). Utwórz plik output.txt, który będzie zawierał następujące miary:
 - macierz pomyłek zdefiniowaną jako:

gdzie:

- TN (ang. true negatives) oznacza liczbę wierszy testowych, dla których $\hat{c}_i = 0$ i $\tilde{c}_i = 0$,
- FP (ang. false positives) oznacza liczbę wierszy testowych, dla których $\hat{c}_i = 1$ i $\tilde{c}_i = 0$,
- FN (ang. false negatives) oznacza liczbę wierszy testowych, dla których $\hat{c}_i = 0$ i $\tilde{c}_i = 1$,
- TP (ang. true positives) oznacza liczbę wierszy testowych, dla których $\hat{c}_i = 1$ i $\tilde{c}_i = 1$.
- dokładność (ang. accuracy), tj. liczbę poprawnie zaklasyfikowanych win testowych:

$$A(\tilde{\mathbf{c}}, \hat{\mathbf{c}}) = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}};$$

• precyzję (ang. precision), tj.:

$$P(\tilde{\mathbf{c}}, \hat{\mathbf{c}}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}};$$

• czułość (ang. recall), tj.:

$$R(\mathbf{\tilde{c}},\mathbf{\hat{c}}) = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}};$$

• miarę F_1 , tj.:

$$F_1(\mathbf{\tilde{c}},\mathbf{\hat{c}}) = \frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}.$$

Przykładowy plik output.txt:

	1	0	I	1
0	1	30		9
1	1	6	- 1	27

Dokladnosc = 0.79 Precyzja = 0.75 Czulosc = 0.82 Miara F1 = 0.78

Jakość kodu

- Przesłany skrypt musi wykonać się bez błędów.
- Kod musi być napisany w sposób czytelny.
- Kod musi być dobrze i dokładnie udokumentowany.

Rysunek 1: Przykładowy rysunek dla $\mathbb{N} {=}\ 20$

Rysunek 2: Przykładowy rysunek dla $\mathbb{N}{=}\ 100$