Antennas Theory

Assignment 1

October 2024

1. Polarization

- a) The axial ratio of a circularly polarized wave is 1 dB. Find the relative cross-polar level and the polarization efficiency.
- b) A desired linearly polarized wave has an axial ratio of 20 dB. Find the relative cross-polar level and the polarization efficiency.

Phase Center

The table below shows a measured phase pattern.

Theta	0	±10 deg	±20 deg	±30 deg	±40 deg
Phase	95 deg	105 deg	140 deg	−175 deg	−90 deg

- a) Calculate the phase center location within the ± 20 deg sector. Calculate the phases for all angles when the phase reference point is moved to this phase center.
- b) Calculate the phase center location within the ± 30 deg sector. Calculate the phases for all angles when the phase reference point is moved to this phase center.

3. Relative Cross Polarization

- a) Evaluate and compare the relative cross polar levels in dB of the linearly y-polarized incremental electric current source at $\theta = 20^{\circ}$ in the $\phi = 0$, 45° and 90° planes.
- b) Compare also the level of the back radiation at $\theta = 180^{\circ}$.

4. BOR₀ Antenna

Antennas for telemetry, tracking and command (TTC) of satellites are often rotationally symmetric biconical antennas with a rotational symmetric radiation field function of the BOR₀ form:

$$\vec{G}(\theta,\phi) = B_0(\theta)\hat{\theta},$$

where $B_0(\theta)$ is a complex function. The z-axis is herein referred as the vertical axis.

a. Which polarization does the radiation field function have in the horizontal plane?

- b. Which value must $B_0(\theta)$ have in the vertical direction and why?
- c. Calculate the directive gain when

$$B_0(\theta) = \begin{cases} A & \text{for } 70^\circ < \theta < 110^\circ \\ 0 & \text{elsewhere} \end{cases}$$

where *A* is a real constant. Give the answer in dBi.

~ End of Assignment 1 ~