

... The Harsh Truth: Most IoT Devices Are Born Vulnerable

IoT is like building a city full of doors... but forgetting to add strong locks on most of them.

Why IoT Isn't Secure:

1. Cheap Devices = No Built-in Security

- Manufacturers focus on cost, not protection.
- Many devices ship without proper encryption or update features.

2. No Regular Updates

- Unlike your phone or laptop, many IoT devices never get security patches.
- o Once hacked, always hacked.

3. **Default Passwords**

- Many devices come with default usernames like admin/admin.
- Users don't change them. Easy entry for hackers.

4. Always Connected

- Devices stay connected to the internet 24/7.
- o That's like leaving your house door open all day.

5. Lack of Standards

- No common security rules followed across companies.
- o One device might be secure, another a total disaster.

Real-World Scary Examples:

- Baby Monitors Hacked: Parents heard strangers talking to their babies.
- Smart TVs Spied On: Some TV models were secretly recording voices.
- Mirai Botnet Attack: Thousands of hacked IoT devices were used to crash major websites in 2016.

? IoT Security & Privacy Measures

Here's how we fight back and secure the IoT world:

🔒 1. Encryption

- Converts data into code so that only the correct device/person can read it.
- Just like speaking in a secret language.

Example: Sensor data from your smartwatch to your phone is encrypted, so even if someone intercepts it — they can't read it.

2. Secure Communication

- Use secure protocols like:
 - HTTPS (not HTTP)
 - MQTTS (secure MQTT)
 - DTLS (secure version of UDP)

• Also uses certificates, tokens, and authentication keys to verify who's allowed in.

Now this is interesting. Let's dive deep.

Blockchain isn't just for cryptocurrency. It's becoming a security shield for IoT.

What is Blockchain?

- A distributed, unchangeable ledger.
- Every transaction is saved as a "block".
- Once added, it can't be changed or faked.

How Blockchain Helps IoT:

1. Device Identity & Trust

- Every IoT device gets a secure, verifiable ID on the blockchain.
- Prevents fake devices from entering the network.

2. Data Integrity

- Once data is recorded, no one can modify it.
- Great for medical, industrial, and financial IoT data.

3. Decentralization

- o No single point of failure.
- o Even if one server is hacked, the system stays safe.

4. Smart Contracts

o Self-executing rules like:

"If sensor detects temperature > 50°C, shut down motor and alert supervisor."

o Executes securely without human help.

Real Example:

A smart energy grid uses blockchain to:

- Track power usage
- Securely bill customers
- Prevent tampering of energy meters

All done transparently and tamper-proof.

Data Storage & Processing in IoT: Cloud vs Edge

loT devices don't just sense data... they must **store it, process it, and make decisions**. That happens in two main places:

Cloud Computing

Think: All data goes to a big server somewhere far away.

V Pros:

- Huge storage capacity
- High processing power
- Easy to run Al models
- Central management of devices

X Cons:

- Delay (Latency): Takes time to send and receive data
- Needs constant internet
- Privacy risks (your data goes to external servers)

Edge Computing

Think: Processing is done locally, close to the sensor/device.

Pros:

• Super fast (real-time response)

- Works without internet
- More privacy (data doesn't leave the device)

X Cons:

- Limited storage
- Less processing power
- Harder to update software

When to Use What?

Situation	Use Cloud or Edge?	Why?
Voice assistant in your phone	Edge	Needs fast response
Analyzing traffic in a smart city	Cloud	Huge data, advanced AI needed
Smartwatch heart monitoring	Edge + Cloud	Immediate alerts + long-term storage
Industrial machine control	Edge	Safety-critical, low latency

(Optimizing Battery Life & Energy-Efficient Computing)

Why Power Management is So Important in IoT?

IoT devices are like tiny **scouts** placed all over the world — in farms, on bridges, inside machines, or even in your shoes (hello, smart insoles). Many of these devices are:

- Battery-powered
- Placed in remote/hard-to-reach places
- Expected to work for months or years without human touch

⚠ So if they run out of battery too fast... it's like having a phone without a charger in the jungle 🌳 — useless.

© Goal: Maximize Battery Life

We want devices to:

- Run longer (months/years)
- Work **smarter** (only when needed)
- Use **less energy** (optimize computing, communication, sensors)

Power-Hungry Parts of an IoT Device

Component	Why It Uses Power
Sensors	Continuously collecting data (e.g., temperature, motion)
Microcontroller (MCU)	Processes data, runs code
Communication module	Sends data via Wi-Fi, LoRa, BLE — this eats up a lot of power
Display (if any)	Displays use extra power (like in smartwatches)

Smart Ways to Save Power in IoT Devices

1. Sleep Modes 💤

- Microcontrollers (like ESP32, STM32) have sleep/deep sleep modes.
- The device goes to "sleep" when not working and wakes up only when needed.
- Example: A temperature sensor might sleep 59 seconds and wake up 1 second every minute.
- Like a lazy genius who only wakes up to do something important, then naps again.

2. Use Low-Power Communication Protocols

- Instead of Wi-Fi (high power), use:
 - o **LoRa**: For long range, super low power
 - o BLE (Bluetooth Low Energy): For wearables

- o **NB-IoT**: Narrowband, cellular-based, but energy-efficient

3. Edge Computing (Think before you speak)

- Instead of sending raw data to the cloud every time, process it **locally**.
- Only send important results.
- Saves network power + cloud costs.
- Like filtering your thoughts before talking more energy-efficient and less annoying

4. Efficient Code & Scheduling

- Optimize the code on the microcontroller.
- Don't run unnecessary loops or tasks.
- Use **interrupts** instead of constantly checking things (polling).

Example: Instead of checking "is button pressed?" every second, use an **interrupt** that triggers only *when the button is pressed*.

5. Hardware Selection Matters

- Choose microcontrollers designed for low power:
 - o ESP32-S2, STM32L0 series, TI MSP430, etc.
- Use **energy-efficient sensors** (with sleep modes)

6. Duty Cycling (Work in Bursts)

- Don't keep the system ON all the time.
- Collect, process, and transmit data in **short bursts** then go back to sleep.

Example:

Time	Task	
00:00	Wake up	
00:01	Read sensor	
00:02	Send data	
00:03	Sleep	
01:00	Wake up again!	

Energy-Saving Modes in Popular Microcontrollers

MCU	Sleep Modes	Approx Power (Deep Sleep)
ESP32	Light, Deep, Hibernation	~10 µA
STM32L0	Sleep, Stop, Standby	~1 µA
Arduino Uno Idle, Power-down		~0.2 mA

🧪 Even 0.1 mA = battery saved = device lives longer 🎉

X Real-Life IoT Example: Smart Agriculture Node (Soil Sensor)

• Sensor: Measures soil moisture every 1 hour

MCU: ESP32

• Comms: LoRa (low power, long range)

Optimization:

o Sleep for 59 min 55 sec

o Wake, read, send, sleep again

o Use solar panel for backup charging

Result: Can work years with a small battery

Summary – Power Management Tips

✓ Strategy	Why It Helps
Sleep/Deep Sleep	Saves battery when idle
Use BLE, LoRa, NB-IoT	Less energy vs Wi-Fi
Local data processing	Avoids unnecessary comms
Use interrupts	Only react when needed
Smart scheduling	Duty cycling = longer life
Low-power hardware	Efficient by design

Final Thought:

"In IoT, it's not how fast your device works — it's how long it survives the wild."

- Prof. Mortius, Dept. of Practical Futurism 😄