

## Université Nord-Américaine privée Institut International de Technologie Département Informatique



ENONCE DE PROJET ©

Matière : Fouille de données Enseignants : Taoufik Ben Abdallah

**Discipline**: 2<sup>ème</sup> année Génie Informatique

Tarek Ben Said

Année Universitaire: 2024-2025 / S1

Pour proposer des offres de contrats d'assurance habitation personnalisées, une compagnie d'assurance souhaite intégrer à son système un modèle capable de prédire la survenue d'un accident dans un bâtiment au cours de la période d'assurance. À cet effet, nous mettons à votre disposition le dataset train\_insurance.csv, contenant 5012 observations décrites par 12 attributs descripteurs et une variable cible, claim.

## Voici une brève description des différentes variables :

- Customer Id: Le numéro d'identification du bénéficiaire
- YearOfObservation : L'année d'observation de l'état du bâtiment
- Insured Period: La période d'assurance (1:1 ans, 0.5:6 mois)
- Residential : Le bâtiment est-il résidentiel ? (1 : oui, 0 : non)
- Building Painted: Le bâtiment est-il peint? (N: oui, V: non)
- Building\_Fenced : Le bâtiment est-il clôturé ? (N : oui, V : non)
- Garden: Le bâtiment a-il un jardin? (V: oui, O: non)
- Settlement : La zone du bâtiment. (R : zone rurale, U : zone urbain)
- Building Dimension: La taille du bâtiment en m<sup>2</sup>
- Building\_Type: Le type de bâtiment ('Fire-resistive', 'Non-combustible', 'Ordinary', 'Wood-framed')
- NumberOfWindows : Le nombre de fenêtres du bâtiment (<u>without</u> dans le cas de 0 fenêtre)
- Geo Code : Le code géographique du bâtiment assuré
- Claim: La variable classe (oui si le bâtiment a au moins une réclamation pendant la période d'assurance, et non si le bâtiment n'a pas eu de réclamation pendant la période d'assurance)

Le Tableau 1 montre un extrait du jeu de données train insurance.csv

| Customer Id | YearOfObservation | Insured_Period | Residential | Building_Painted | Building_Fenced | Garden | Settlement | Building Dimension | Building_Type       | NumberOfWindows | Geo_Code | Claim |
|-------------|-------------------|----------------|-------------|------------------|-----------------|--------|------------|--------------------|---------------------|-----------------|----------|-------|
| H13501      | 2012              | 1.0            | 1           | N                | V               | V      | U          | 1240.0             | Wood- framed        | without         | 75117    | non   |
| H14962      | 2012              | 1.0            | 0           | N                | V               | V      | U          | 900.0              | Non-<br>combustible | without         | 62916    | non   |
| H17755      | 2013              | 1.0            | 1           | V                | N               | 0      | R          | 4984.0             | Non-<br>combustible | 4               | 31149    | oui   |
| H13369      | 2016              | 0.5            | 0           | N                | V               | V      | U          | 600.0              | Wood-framed         | without         | 6012     | oui   |
| H12988      | 2012              | 1.0            | 0           | N                | V               | V      | U          | 900.0              | Non-<br>combustible | without         | 57631    | non   |
| H3052       | 2016              | 0.5            | 0           | N                | V               | V      | U          | 2675.0             | Ordinary            | without         | 38185    | non   |
| :           | :                 | i              | :           | :                | :               | :      | :          | ÷                  | :                   | :               | :        | ÷     |

Tableau 1 : Extrait du jeu de données train insurance.csv

NB. Le fichier test\_insurance. csv représente le jeu de données de test. Il comporte 2147 observations, et sera utilisé pour l'évaluation et la validation des modèles générés.

## Travail à faire:

- 1/ Analyser et visualiser les données
- 2/ Nettoyer, si necessaire, les données
- 3/ Sélectionner, si necessaire, les descripteurs les plus discriminants
- 4/ Encoder les données et générer un ou plusieurs modèle(s) de prédiction en appliquant des <u>techniques d'apprentissage supervisée</u> (DecisionTreeClassifier, SVC, MLPClassifier GradientTreeBoosting, RandomForestClassifier, etc.)
- 5/ Évaluer les performances du/des modèle(s) obtenu(s). <u>Interpréter les résultats</u>



## Chaque groupe doit préparer une présentation PowerPoint comprenant trois parties :

- 1. Contexte et motivation : présenter le cadre du projet.
- 2. **Travail réalisé :** décrire les tâches effectuées, en détaillant les étapes suivies, les choix réalisés, et en interprétant les résultats obtenus à l'aide de diverses métriques et études comparatives.
- 3. **Conclusion et perspectives :** proposer des pistes d'amélioration pouvant être utiles pour optimiser les résultats obtenus.

La présentation ne doit pas dépasser 15 minutes, et <u>il est recommandé de ne pas inclure de captures</u> d'écran des codes.

En parallèle, les fichiers notebook (.ipynb) doivent être soigneusement préparés et déposés sur Moodle au plus tard 24 heures avant le jour de la soutenance.

Bon Travail