Détection de faux billets Création d'un programme

Analyse du projet

?

Introduction

La PJ nous a transmis un <u>jeu de données</u> contenant les caractéristiques géométriques de billets de banque.

Nous allons créer un programme capable d'effectuer une prédiction sur un billet, c'est-à-dire de déterminer s'il s'agit d'un vrai ou d'un faux billet. Pour chaque billet, votre programme devra donner la probabilité que le billet soit vrai si cette probabilité est supérieure ou égale à 0.5,

Les données

Le jeu de données fourni est un tableau de 170 lignes, chacune représentant un billet. Chaque ligne est composées de 7 colonnes:

- -6 colonnes numériques, contenant les caractéristiques géométriques des billets.
- -1 une colonne contenant la nature Vrai/Faux des billets.

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.67	103.74	103.70	4.01	2.87	113.29
2	True	171.83	103.76	103.76	4.40	2.88	113.84
3	True	171.80	103.78	103.65	3.73	3.12	113.63
4	True	172.05	103.70	103.75	5.04	2.27	113.55
165	False	172.11	104.23	104.45	5.24	3.58	111.78
166	False	173.01	104.59	104.31	5.04	3.05	110.91
167	False	172.47	104.27	104.10	4.88	3.33	110.68
168	False	171.82	103.97	103.88	4.73	3.55	111.87
169	False	171.96	104.00	103.95	5.63	3.26	110.96

<class 'pandas.core.frame.DataFrame'> RangeIndex: 170 entries, 0 to 169 Data columns (total 7 columns): Column Non-Null Count Dtype is genuine 170 non-null bool diagonal 170 non-null float64 height left 170 non-null float64 3 height_right 170 non-null float64 margin_low 170 non-null float64 margin_up 170 non-null float64 length 170 non-null float64 dtypes: bool(1), float64(6) memory usage: 8.3 KB

Aucune valeur manquante.

Description des données

170 rows × 7 columns

Les valeurs •—

- 'Length' représente la longueur du billet (en mm): moyenne: 112.57 médiane: 112.84 écart-type: 0.92, Min:109.97 Max:113.98.
- 'height_left' représente la hauteur du billet (côté gauche, en mm): moyenne: 104.07 médiane: 104.06 écart-type: 0.3, Min:103.23 Max:104.86.
- 'height_right' représente la hauteur du billet (côté droit, en mm) : moyenne: 103.93 médiane: 103.95 écart-type: 0.33,Min:103.14 Max:104.95.
- 'margin_up' représente la marge entre le bord supérieur du billet et l'image de celui-ci (en mm): moyenne: 3.17 médiane: 3.17 écart-type: 0.24,Min:2.27,Max:3.68.
- 'margin_low' représente la marge entre le bord inférieur du billet et l'image de celui-ci (en mm): moyenne: 4.61 médiane: 4.45 écart-type: 0.7, Min:3.54 Max:6.28.
- 'diagonal' représente la diagonale du billet (en mm) : moyenne: 171.94 médiane: 171.94 écart-type: 0.31, Min:171.04 Max:173.01.
- 'is_genuine' représente la colonne donnant la nature Vrai/Faux du billet: 'True': 100 'False': 70

Analyses graphiques .

Analyse univariée :

Analyse bivariée :

Deux groupes se distinguent sous certaines conditions.

Analyse en composantes principales

Le cumul de la variance expliqué nous indique que nous disposons de 47.44 % de l'information disponible sur la première composante et de 69.39% avec les deux premiers facteurs

Cercle des corrélations

Les variables les plus corrélées a F1 sont 'height_left/height_right/margin_up /margin_low (positivement) et lenght(correlee négativement a F1).

La variable 'diagonal' est corrélée à F2.

On remarque 'Length' et 'margin low' en opposition(correlation negative),.

Contribution des individus à l'inertie totale

	contrib_it	is_genuine
64	0.813929	True
98	0.878319	True
85	1.431664	True
76	1.435202	True
59	1.484454	True
39	15.052608	True
122	16.790944	False
4	18.039567	True
0	18.410598	True
166	20.625650	False

Les valeurs les plus hautes sont aux extrémités alors que les plus basses sont plutôt vers le centre des vrais billets

Qualité de représentation des individus par axe

	COS2_	1 COS	S2_2 C	OS2_F1F2	is_genuine
3	5 0.02478	36 0.000	0346	0.025132	True
4	3 0.03875	55 0.060	3289	0.102043	True
16	0.06874	12 0.042	2901	0.111643	False
8	8 0.02327	3 0.13	5767	0.159040	True
5	2 0.07667	73 0.106	6134	0.182807	True
-					
15	4 0.54273	32 0.41	7831	0.960564	False
4	5 0.63130	0.33	1305	0.962613	True
4	6 0.96229	0.000	3343	0.965639	True
14	3 0.97345	6 0.00	7584	0.981040	False
14	8 0.57819	0.410	0807	0.989001	False

69.45 % est le pourcentage moyen de la qualité de représentation des faux billets.

68.18 % est le pourcentage moyen de la qualité de représentation des vrais billets.

Contribution des individus à l'inertie d'un axe .

	CTR_1	is_genuine			CTR_2	is_genuine
21	0.000002	True	13	37	0.000002	False
27	0.000014	True	8	80	0.000003	True
152	0.000038	False	;	31	0.000003	True
12	0.000053	True	;	35	0.000005	True
78	0.000059	True	,	16	0.000006	True
158	0.015743	False	7	70	0.031331	True
112	0.017845	False	1	56	0.032074	False
29	0.017982	True	;	34	0.033106	True
49	0.019505	True	10	66	0.037704	False
122	0.023618	False		5	0.039503	True

Les 5 valeurs les plus fortes sont déterminants pour le premier axe, on les retrouve aux extrémités de celuici.

Pareil pour le second axe.

Classification par l'algorithme KMeans

Le coude nous confirme qu'une clustérisation par K = 2 est le nombre de groupes idéal.

Résultats de l'algorithme KMeans

Pourcentage de similitude de KMeans comparé aux résultats réels : 94.70 %

Les 9 erreurs de l'algorithme Kmeans :

	diagonal	height_left	height_right	margin_low	margin_up	length
0	171.81	104.86	104.95	4.52	2.89	112.83
5	172.57	104.65	104.44	4.54	2.99	113.16
9	172.14	104.34	104.20	4.63	3.02	112.47
10	172.27	104.29	104.22	3.89	3.53	113.50
65	172.16	104.43	104.06	4.51	3.19	112.69
69	171.94	104.11	104.16	4.08	3.35	111.76
84	172.30	104.58	104.17	4.36	3.33	112.98
96	172.00	104.32	104.26	4.53	3.04	112.93
144	171.56	103.80	103.87	5.66	2.98	112.95

L'algorithme KMeans découpe clairement la projection des individus en deux parties distinctes.

Projection des individus classifiés par régression logistique

Résultats de l'algorithme de régression logistique

La précision après test de l'algorithme de régression logistique sur les données d'entrainement : 98.82 %

Les 2 erreurs de l'algorithme de régression logistique :

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
69	1	171.94	104.11	104.16	4.08	3.35	111.76
102	0	171.94	104.21	104.10	4.28	3.47	112.23

Le billet 69 prédit comme étant faux est une erreur commune aux 2 algorithmes

Test sur le fichier 'example.csv'

Test de l'algorithme de classification

Nom du fichier d'entrainement (sans l'extension .csv) : notes Pourcentage de précision après test de l'algorithme sur les données d'entrainement : 98.82 %. Nom du fichier à traiter (sans l'extension .csv) : example Ajout de la colonne 'prediction', 1 pour un vrai billet, 0 pour un faux billet. Résultats de la verification de vos billets: 40.0 pourcents des billets sont vrais.

	diagonal	height_left	height_right	margin_low	margin_up	length	id	vrai_%	prediction
0	171.76	104.01	103.54	5.21	3.30	111.42	A_1	4.00	0
1	171.87	104.17	104.13	6.00	3.31	112.09	A_2	0.91	0
2	172.00	104.58	104.29	4.99	3.39	111.57	A_3	2.77	0
3	172.49	104.55	104.34	4.44	3.03	113.20	A_4	87.74	1
4	171.65	103.63	103.56	3.77	3.16	113.33	A_5	99.64	1

Conclusion

Apres une analyse des données fournies, il s'est avéré que les vrais billets avaient tendance a êtres plus long que les faux, et les faux billets comme ayant une marge entre le bord inférieur du billet et l'image supérieure plus importante que les vrais billets.

Deux algorithmes aux caractéristiques différentes ont été utilisés afin de déterminer si un billet est vrai ou faux à partir des données fournies :

Un algorithme de classification non supervisé, Kmeans, qui nous a fourni un pourcentage de similitude de 94.70 % lors d'un essai sur les données fournies.

Un algorithme de classification supervisé, la régression logistique, qui nous a fourni une précision de 98.82 % lors d'un essai sur les données fournies.

Un programme de prédiction a été mis au point à partir de la modélisation des données fournies à l'aide de la régression logistique, programme qui a partir de caractéristiques géométriques prédéfinies déterminera la probabilité qu'un billet soit vrai.

