

University of Duisburg-Essen

Networked Embedded Systems Group
Institute for Computer Science and
Business Information Systems (ICB)
Schützenbahn 70
D-45127 Essen, Germany

Kommunikationsnetze 2 9 – Internet of Things

Prof. Dr. Pedro José Marrón

Literature and Acknowledgements

- Z. Shelby, C. Bormann.6LoWPAN: Embedded Internet
 - PDF online available
- J.P. Vasseur, A. Dunkels.
 Interconnecting Smart Objects
 with IP The Next Internet
 - PDF online available
- Part of the slides are a revision of the material from the Embedded Internet course at TU Graz, taught by Carlo Alberto Boano

What is the Internet of Things?

https://iot-analytics.com/10-internet-of-things-applications/

The Internet of Things

- From the Internet of People to the Internet of Embedded Devices
 - Everything is connected
- Enablers
 - Computing power
 - Progress in communication technologies
 - Better and cheaper sensors
 - New materials
- Obstacles
 - Batteries and their capacity
 - Scalability
 - Maintainability
 - Privacy and safety concerns

Cisco IBSG, April 2011

Many Names for the Same Paradigm

- Ubiquitous Computing (Marc Weiser, Xerox PARC, 1988)
 - "The most profound <u>technologies</u> are those <u>that disappear</u>. They weave themselves into the fabric of everyday life until they are indistinguishable from it"
- Internet of Things (Kevin Ashton, Auto-ID@MIT, 1999)
 - "We need an internet for things, <u>a standardized way for computers to understand the</u> real world"
- Ambient Intelligence (Emile Aarts, 1999)
 - "In an ambient intelligence world, <u>devices work in concert to support people</u> in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network"
- Internet of Everything (Cisco, 2013)
 - "The Internet of Everything (IoE) brings together people, processes, data, and things to make networked connections more relevant and valuable than ever before – <u>turning</u> <u>information into actions</u> that create new capabilities, richer experiences, and unprecedented economic opportunity for businesses, individuals, and countries."
- ..., Wireless Sensor Networks, Cyber-Physical Systems, ...

History: From Early Visions to the First Connected Objects

- 1990: A toaster connected to the Internet (Romkey and Hackett)
 - A human had to insert bread... until 1991
- 2000: LG Internet refrigerator
 - Unsuccessful: expensive and unnecessary
- 2001/2002: Mobile phones
- 2008: More connected devices than people
- 2001 201X: Many prototypical deployments

History: First Deployments for Scientists

History: First Deployments for Society

Today

Networked Embedded Systems Group University of Duisburg-Essen

Keith Smiley @SmileyKeith

Got in our @Zipcar we've been driving for 3 days. It doesn't start. Call Zipcar and get told that the car can't access the internet so it won't start. The only option is to have a tow truck come and tow it to somewhere where it has internet.

2:28 PM - 27 Dec 2018

Keith Smiley @SmileyKeith · 28 Dec 2018 Update: we moved the car 4 feet and it started

9

Towards IoT Networking: First Solutions

- The alphabet soup of different solutions
 - Isolated networks
 - Application and scenario specific solutions
 - Focus: constrained resources and network-level challenges

Towards IoT Networking: The Edge Network

- Use proxy/gateway to bridge low-power wireless networks and the Internet
- Problems:
 - Gateways break the networking model
 - Lack of flexibility,
 scalability and reliability
 - Inherent complexity

Why Not Using IP Instead?

- IP is ubiquitous
- From vertical, ad-hoc solutions to a common network and service infrastructure
- Standards foster adoption and provide interoperability
- Easy learning curve
- End-to-end connectivity

Why not? i.e. Challenges

- Minimum IPv6 MTU: 1280 bytes
- Small packet size (802.15.4)
 - Frame size: 127 bytes (Ethernet 1500 Bytes)
 - Payload 102 bytes
 - Payload with security: 81 bytes
- Mismatched header sizes
 - IPv6: 40 bytes
- 64 bit MAC addresses (support for 16 bit)
- Data rate up to 250 kbps
- RAM/ROM constraints on node
- Lossy links
- Dynamic changes in topology

μIP

- Support for IP, UDP and TCP (minimal functionality only)
- Developed for 8-bit and 16-bit devices
- First release 2001
- 3-5 KB code, 100 bytes-2KB RAM (configurable)
- How
 - Shared packet buffer
 - Low throughput
 - No sockets, instead proprietary event-driven API
- Later extended for IPv6
 - A few KB of RAM, a few tens of KB of ROM

Link-Layer Technologies for Smart Objects

Wireless

- IEEE 802.15.4
- Bluetooth LE
- IEEE 802.15.7 (VLC)
- Low-Power WiFi
- Long-Range Wireless

Wired

Powerline Communication

IEEE 802.15.4

- Still one of the reference standard to build IoT
 - Target: low-power & low-data-rate applications
 - Low-cost radio transceivers
 - Data rates up to 20/40 kb/s (868/915 MHz), 250 Kb/s (2.4 GHz)
 - Specifies PHY & MAC layer
 - Main features
 - Transceiver management
 - Channel access
 - PAN management

IEEE 802.15.4: Device Types

Two Device types:

- Full-Function Devices (FFDs)
 - They can perform all duties described in IEEE 802.5.4 standard
 - They can accept any role in the network
 - They can communicate with any other devices
 - Typically always-on with permanent power supply
- Reduced-Function Devices (RFDs)
 - They have limited capabilities
 - They can only communicate with an FFD device
 - Typically on batteries

A Star Network Topology

IEEE 802.15.4: Peer-to-Peer Topology – Mesh

IEEE 802.15.4: Peer-to-Peer Topology – Tree

IEEE 802.15.4: PHY

Main features

- Activation and deactivation of the radio transceiver
- Energy detection within the current channel
- Channel frequency selection

E. Callaway *et al.*, "Home networking with IEEE 802.15.4: a developing standard for low-rate wireless personal area networks," in *IEEE Communications Magazine*, 2002

IEEE 802.15.4: Frame Format

- IEEE 802.15.4 is intended for devices with low data rates
 - Packets relatively small
 - Preamble (4 bytes) to achieve synchronization
 - SFD (1 byte): Start frame identifier
 - Frame length (7 bits): length of the PHY payload (up to 125 bytes)
 - MAC Frame types: data, beacon, ACK, command
- Addressing
 - unique 64-bit long address
 - short 16-bit address (only valid within a PAN)

IEEE 802.15.4: MAC

- Two different channel access methods
 - Beacon enabled duty-cycled mode
 - Non-beacon enabled mode

IEEE 802.15.4: Beacon Enabled MAC

- Beacon enabled mode (Superframe)
 - CAP = Contention access period with simplified CSMA/CA
 - CFP = Contention-free period (GTS: Guaranteed Time Slot)
 - BI = Becaon Interval
 - SD = Superframe duration

G. Anastasi, M. Conti and M. Di Francesco, "A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks." in *IEEE Transactions on Industrial Informatics*, 2011

IEEE 802.15.4: Non-beacon Enabled MAC

- Carrier Sense Multiple Access with Collision Avoidance
 - As in IEEE 802.11, with RTS/CTS/ACK
 - No need for synchronization, more flexible
- Many (many) alternatives
 - Idea: use CCA also at receiver to check for ongoing transmission

IEEE 802.15.4: Non-beacon Enabled MAC

- Carrier Sense Multiple Access with Collision Avoidance
 - As in IEEE 802.11, with RTS/CTS/ACK
 - No need for synchronization, more flexible
- Many (many) alternatives
 - Idea: use CCA also at receiver to check for ongoing transmission

Specific Scheme:
A. Dunkels, "The ContikiMAC Radio Duty Cycling Protocol," Tec.Rep., 2011

IEEE 802.15.4e

- IEEE 802.15.4 limitations
 - Unbounded latency
 - No guaranteed bandwidth
 - Prone to interference (and other factors, like temperature)
- In 2012, amendment with Time Slotted Channel Hopping (TSCH)
 - Slotted access
 - Shared and dedicated slots
 - Multichannel communication
 - Frequency hopping

IEEE 802.15.4e: Slotted Access

http://www.ieee802.org/15/pub/TG4e.html

IEEE 802.15.4e: Slotted Access

- Devices are configured with a slot frame and timeslots to communicate with each other
- Devices use timeslots to:
 - Schedule when they wakeup to transmit or listen
 - Keep time synchronized
 - Time the sequence of operations
 - Allow source and destination to set frequency channel
 - Listening for a packet
 - Sending a packet
 - Listening for an ACK
 - Generating an ACK
 - Synchronize channel hopping

IEEE 802.15.4e: Link Types

Dedicated link

- Assigned to one device for transmission and to one or more devices for reception
 - Dedicated broadcast link assigned to all devices for reception

Shared link

- Assigned to more than one device for transmission
 - ACK failures detect collisions
 - A back-off algorithm resolves collisions

http://www.ieee802.org/15/pub/TG4e.html

IEEE 802.15.4e: Link Scheduling

- Link = (Timeslot, Channel offset)
 - The two links from B to A are dedicated
 - D and C share a link for transmitting to A
 - The shared link does not collide with dedicated links

IEEE 802.15.4e: Channel Hopping

 $ASN = (N \times S + t)$

ASN: Absolute Slot Number

S: slotframe size

n_{ch}: number of used channels

N: slotframe cycle

t: current slot Time Chanel offset $B \rightarrow A$ $B \rightarrow A$ $B \rightarrow A$ (Ch24) (Ch12) (Ch16) $C \rightarrow A$ C→A C→A $D \rightarrow A$ $D \rightarrow A$ $D \rightarrow A$ $B \rightarrow A$ $B \rightarrow A$ $B \rightarrow A$ $B \rightarrow C$ $B \rightarrow C$ $B \rightarrow C$ $B \rightarrow E$ $B \rightarrow E$ $B \rightarrow E$ $B \rightarrow F$ $B \rightarrow F$ $B \rightarrow F$

Cycle N Cycle N+1

(N+1)*4

N*4+3

Cycle N+2

N*4+2

N*4+1

ASN=

N*4

IEEE 802.15.4e: Schedule Formation

- Network formation
 - Difficult due to frequency mismatch
 - Based on beacons
 - Special frames containing
 - ASN and timeslot information
 - Synchronization and channel hopping information
 - Regularly broadcasted by the PAN coordinator
 - And by FFD already synchronized with the network
- How to build a schedule is not defined by the standard
 - Centralised and distributed policies are possible

http://info.iet.unipi.it/~anastasi/talks/2016-MST.pdf https://ans.disi.unitn.it/inw2015/presentations/s6-3-vogli-scheduling.pdf

IEEE 802.15.1: Bluetooth

- Wireless technology for cable replacement
 - Low-power, cheap with reduced range
- RF radio layer
 - 2.4 GHz, 79 frequency channels, 1 MHz wide
 - Data rate: 1 Mbps (nominal)
 - Radio frequency hopping with a common sequence for all devices of a piconet
- Piconet: Bluetooth units sharing a single (frequency-hopping) channel
 - Single master with max 7 slaves
 - Master gives slaves clock and identifiers
 - All devices hop together in unison

- Master device
- S Slave device
- Parked device (inactive)

IEEE 802.15.1: Communication and Limitations

Basic communication

- Slots are dedicated to a master or a specific slave
- Master "polls" slaves and slave uses next slot to answer
- Control packets in addition to data packets
 - NULL packet for ACK (if slave has no payload to transmit)
 - POLL packet when master has no payload to send

Limitations

- Connection-oriented: a link is maintained even if no data
- Long and complex discovery process
- Scalability: max 7 devices
- Data throughput is the focus!

Bluetooth Low-Energy (BLE)

New PHY layer

- 2.4 GHz, 40 Channels with 2 MHz spacing with adaptive frequency hopping
- 3 channels reserved for advertising and 37 channels for data
- Not compatible with Bluetooth classic
- Four device roles
 - Peripheral device: connectable advertiser (slave)
 - Central device: connection initiator (master)
 - Broadcaster: non-connectable advertiser
 - Observer: scans for advertisements without connecting

Bluetooth Low-Energy (BLE)

Data exchange

- Connection-oriented
 - Connection request on advertising channels
 - Master informs slave about hopping sequence and wake-up times
 - Further transactions in the 37 data channels
 - Deep sleep allowed between transactions
- Connection-less
 - Devices can broadcast advertisements outside a connection
 - Observer can scans for advertisements

Further Link-Layer Technologies

- IEEE 802.15.7 (VLC)
 - Short-range optical wireless communication using visible light spectrum
 - Problems: dimming support and flickering mitigation
 - Multiple light sources also possible
- Low-Power Wi-Fi
 - Optimised for low-power consumption
 - Standby mode with timings to prevent disassociation
- Long-Range Technologies
 - Allows to trade energy for throughput, reliability and range
 - Small amounts of data
 - Examples: LoRa ("long-range low-power WiFi") and NB-loT ("cellular loT")

http://tinyurl.com/hpf3fhv

6LoWPAN

- IPv6 over Low-power Wireless
 Personal Area Networks
 - An "adaptation layer"
 - Cover the mismatch between
 - IPv6
 - Link-layer technologies designed for low-power wireless embedded devices

6LoWPAN

Goals

- Adapt IPv6 to constraints of IoT
- Transparent Internet integration
- Scalability consider large local area networks
- End-to-end connectivity
- Provide Standards
- Close cooperation with 802.15.4 working group
- IETF 6lowpan working group
 - RFC4919: ""IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals"
 - RFC4944: "Transmission of IPv6 Packets over IEEE 802.15.4 Networks"

Features

- Provide adaptation layer
- Header compression
- Fragmentation: overcome payload restrictions for 1280 MTU
- Stateless auto configuration (from IPv6)
 - Use hardware MAC address as host address
 - Router solicitation multicasts
- Tight integration with underlying network (i.e. 802.15.4)
- Routing is not covered (complementing standardization efforts)

Header Compression

Assumptions

- Within the LoWPAN: flat address space
- Unique MAC layer addresses (802.15.4: 16 bit or 64 bit)

Approach

- Omit network prefix: assume known within the WPAN
- IID (src/destination)
 - Omit if link-local (i.e., within WPAN): addresses are part of 802.15.4 header
 - Compress for multihop
- Stacking of headers
 - Include only what is needed (e.g., for fragmentation)

Header Dispatch

Basic structure

```
+----+
| IPv6 Dispatch | IPv6 Header | Payload |
+----+
```

- Header dispatch: Identify what kind of header is following
 - 00: Not LoWPAN
 - 01: LoWPAN IPv6 addressing header
 - 10: LoWPAN mesh header
 - 11: LoWPAN fragmentation header

LoWPAN IPv6 addressing header

Dispatch:

- 000001: uncompressed IPv6 address (40 bytes)
- 000010: HC1 (Fully compressed: 1 byte)
 - Source: MAC header
 - Destination: MAC header
 - Traffic Class + Flow Label: 0
 - Next Header: UDP/TCP/ICMP
- Hop limit is never compressed

HC1 compressed header

- Flags HC1 encoding (bit 0-7)
 - 0: Source prefix omitted (i.e., use link layer)
 - 1: Source interface ID omitted (i.e., use link layer)
 - 2: Destination prefix omitted (i.e., use link layer)
 - 3: Destination interface ID omitted (i.e., use link layer)
 - 4: Traffic and Flow Label omitted (assume 0)
 - 5-6: Next header (00 uncompressed, 01 UDP, 11 TCP, 11 ICMP)
 - 7: HC2 encoding follows (e.g., compressed UDP header)

Compressed UDP header

- HC_UDP encoding (= HC2 for UDP)
 - 0: source port compressed to 4 bits follows
 ActualPort=61616+ShortPort (i.e., 61616-61631)
 - 1: destination port compressed to 4 bits follows (cf., above)
 - 2: length computed from link layer packet length and header lengths

Fragmentation

- Approach: all fragments carry same "tag" (sequence number)
- Fragments may arrive out-of-order
- Datagram size: size of complete datagram (11 bits)
- First fragment:

Subsequent fragments

6LoWPAN Neighbor Discovery

- Standard IPv6 neighbor discovery not suitable
 - Assumes single link for subnet (e.g., Ethernet cable)
 - Assumes nodes are always-on
 - Heavy use of multicast (would require flooding)
- 6LoWPAN ND
 - Standardization in progress
 - Minimize control traffic
 - Re-use MAC layer capabilities
 - Optimize host-router interface

6LoWPAN Neighbor Discovery (2)

- Address Auto-Configuration
 - Prefix disseminated in network
 - Interface ID: from 64-bit 802.15.4 address
- Nodes exchange information with neighboring nodes
 - Neighborhood tables
 - Duplicate address detection
 - Address resolution

Routing for 6LoWPAN

- IETF ROLL working group
 - "Routing Over Low power and Lossy networks" (LLN)
 - Separate from (but cooperating with) 6LoWPAN
 - One possible routing implementation on top of 6LoWPAN
- RFC 6550: "RPL: IPv6 Routing Protocol for Low power and Lossy Networks"

RPL – Assumptions

- Dominant traffic pattern differs from traditional network
 - Many-to-one (Convergecast)
 - One-to-many (Network broadcast, dissemination)

- Most traffic flows through few nodes
 - Sinks
 - Gateways to different physical networks (e.g., 802.15.4 ←→
 Ethernet)
- Traffic out of the network into the internet important
- Experiences from research
- Requirements gathered from industry

Approach

- Build DAG(s) rooted at "important" nodes
 - Usually border routers (gateways)
- Consider 2 directions:
 - Down: from root in direction to the leafs
 - Up: in direction to the root

Point to point connections by "up" then "down"

- DAG more robust than tree
 - Multiple possible parents

Terminology

- DAG root
 - Node with no outgoing edges
 - 1 or more per DAG
 - All paths terminate at a DAG root
- DODAG "Destination Oriented DAG"
 - A DAG with exactly 1 root
 - Can offer routing to set of destination prefixes
- Rank of a node (in a DODAG)
 - The position with respect to a root
 - Topological distance or more advanced metrics
- DODAG Parent
 - Immediate successor on path to root
 - Lower Rank
- DODAG Sibling
 - Neighboring node with same rank
 - May or may not share common parents

Terminology (2)

- Goal
 - Is a node or a set of nodes satisfying an application objective
- Goal nodes within the network become roots
- Nodes with access to external goal nodes become roots
- A DODAG is
 - Grounded: it provides access to its goal
 - Floating: otherwise (e.g., during repair phases)

Objective Function

- Metrics
 - Compare possibilities (ranking)
- Constraints
 - Reduce number of possibilities
- Node metrics and constraints & Link metrics and constraints
- Metrics can be used as constraint (maximum/minimum requirements)
- Objective Function (OF): specifies goal based on metrics and constraints
 - E.g.: "Avoid battery operated links and compute the path that optimizes reliability"
 - Is well known in the network
 - Multiple OFs may be present and used for constructing multiple DODAGs

Node Metrics and Constraints

Node state and attributes

- Overloaded
- Traffic aggregator: node is able to reduce traffic by aggregation
- Extensible (but currently no other properties defined)

Node Energy Object

- Support for different levels of detail
- Simplest: Powered vs. scavenger vs. battery
- Mid: Energetic happiness
 - Scavenger: H=PowerGenerated/PowerConsumed in percent
 - Battery: H=EstimatedLifetime/DesiredMinimumLifetime
- Extensible: definition of more possibilities underway

Hop Count

Number of hops to root

Link Metrics and Constraints

- Throughput (bytes/second)
- Latency (milliseconds)
- Link reliability
 - Link Quality Level: unknown or 1-3 (1=best)
 - As constraint: require minimum value
 - As metric: aggregate over DAG; either sum or minimum
 - ETX (cf. chapter Routing): as (additive) metric or constraint
- Link color
 - Static, administrative attribute (e.g., bit 1: encryption)
 - 10 bits → 10 colors; links can have multiple colors
 - Metric: count number of links of each color, i.e. 10 counters
 - Constraint: exclude/include links with certain color

RPL Instance

- Routing topology for a given objective function
- 1 or more DODAG roots
- Node disjoint DODAG(s) (1 per root)
- Each root has a DODAGID
 - Multiple roots can have the same ID
 - Different DODAGs but, e.g. offer routing to same set of destination prefixes

DODAG Iteration

 A DODAG root can request a reconstruction of a DODAG by increasing the DODAGSequenceNumber

DAG Construction

- Similar to tree based routing
- Uses link-local broadcasts
- Root starts broadcasts: DODAGID + metric values
- Nodes join DAG when suitable parent is found
 - Based on objective function
- Nodes rebroadcast DAG information with local metric values
- Rank is calculated based on position in DAG
- Information is periodically rebroadcasted to detect inconsistencies → Trickle Timer

The Trickle Algorithm

- Density-aware local broadcast
- Used for dissemination
- Goals
 - Quick resolving of inconsistency
 - Energy saving in stable states
 - Energy saving in dense topologies
- Originally used for code dissemination
 - Disseminate meta data (incl. version numbers) for code updates
- Share information with neighbors
 - Detect + repair loops
 - React to topology changes (e.g., node failures, link failures)

Trickle Algorithm

- Information is broadcasted locally "from time to time"
- Parameters:
 - Minimum Interval (e.g., 100 ms): Imin
 - Should be based on link parameters (e.g., 4* worst-case latency)
 - Maximum Interval: Imax
 - In doublings of the minimum interval
 - E.g.: $16 \rightarrow 100$ ms * $2^16 = 6553.5$ s ~ 109 minutes
 - Redundancy constant: k
- Variables
 - I: current interval
 - t: time within current interval
 - c: counter

Trickle Algorithm Rules

- 1. Start of interval
 - \circ c := 0
 - t := random(I/2, I)
- 2. On receive transmission
 - If consistent => c++
 - If inconsistent =>
 - resetTimer => If I != Imin => I := Imin; goto 1
- 3. At time t: if c < k => broadcast
- 4. At end of interval: I := max(I*2, Imax)
- 5. On external event (i.e. change of value): resetTimer

RPL Traffic Flows

- MP2P: Multipoint-to-Point Traffic
 - Similar to Convergecast: goals are the possible destinations
 - Traffic routed to root
 - But root can be intermediate node on path to final destination
- P2MP: Point-to-Multipoint Traffic (optional feature)
 - Routing towards destination prefixes, away from root
- P2P: Point-to-Point Traffic (optional feature)
 - One hop (neighbors)
 - Multi-hop over DAG
 - Possibility (but no specification) for additional routing mechanisms

Upward Routes

- By using DODAG
 - Send to parent
- Nodes store preferred parent
- Nodes can store one or more parents
 - Increase path diversity
 - Load balancing
 - By-pass faulty nodes
- Links to siblings can be used for increased diversity
- Messages are forwarded upwards until...
 - Destination reached or ...
 - A node with a route to destination is reached, e.g.,
 - Destination
 - Gateway node
 - Neighbor of destination
 - Intermediate node with route to destination (start downward routes)

Downward Routes

- Optional feature if P2MP or P2P traffic is required
- Nodes can send Destination Advertisement Objects (DAO)
 - Contain destination prefix
 - Sent to parent
 - Parent adds own address to routing stack and forwards
 - May store information for later use
 - "no-DAO" clears previous established downward route
- Source routing is used for downward routes

Web of Things

Web of Things:

- Approaches, software, architectures and programming patterns that allow smart objects to be part of the World Wide Web
- Web Services for Resourceconstrained devices

MQTT: Message Queuing Telemetry Transport

- Publish/Subscribe messaging protocol
 - Explicitly designed for lightweight machine-to-machine (M2M) communications
 - ISO standard
 - Not a new IoT protocol
 - First version in 1999
 - Version 3.1.1 5.0
 - Not specifically designed for IoT

MQTT: Protocol

- Client/Server model
- Every sensor is a client and connects to a server (known as broker)
 - Connection using TCP
- Every message is published to an address (known as topic)
 - Clients may subscribe to multiple topics
 - Every client subscribed to a topic receives every message published to the topic
- Allows one-to-one, one-to-many, many-to-one communication

MQTT: Example

- A simple network with three clients and a central broker
- All three clients open TCP connections with the broker
- Clients B and C subscribe to the topic temperature

MQTT: Example

- A simple network with three clients and a central broker
- All three clients open TCP connections with the broker
- Clients B and C subscribe to the topic temperature
- Later, client A publishes a value of 22.5 for topic temperature
- The broker forwards the message to all subscribed clients

MQTT: Topics and QoS

- Topics are hierarchical
 - Like a file system (e.g., kitchen/oven/temperature)
 - Wildcards are allowed when registering a subscription (but not when publishing)
 - Example: kitchen/+/temperature
- Application-level QoS
 - Abilities of TCP exploited in different ways
 - Three quality of service levels supported
 - Fire and forget
 - Delivered at least once
 - Delivered exactly once
- Limitations: TCP!

CoAP: Constrained Application Protocol

- CoRE: Constrained ReSTful Environments
 - CoAP used withing the LoWPAN
 - Proxy maps CoAP to HTTP and viceversa

https://www.slideshare.net/zdshelby/coap-tutorial

CoAP: Constrained Application Protocol

- CoAP is similar to HTTP...
 - Request/response communication model
 - GET, POST, PUT, DELETE semantics (easy to map to HTTP)
 - URI support
- but it is optimised for low-power and lossy networks
 - UDP binding with reliability and multicast support
 - Support for asynchronous message exchange
 - Low header overhead and parsing complexity
 - Small, simple 4 byte header

CoAP: Features

- Built on top of UDP
 - Reliable unicast
 - Best-effort unicast
 - Support for asynchronous message exchanges
- Message types
 - Confirmable (CON), for reliable transmission
 - Non-confirmable (NON), for unreliable transmission
 - Acknowledgement (ACK)
 - Reset (RST)
- Ongoing communication identified by message IDs and tokens

