SIN110 Algoritmos e Grafos

aula 14

Grafos

- Árvores Geradoras Mínimas (E10)
- Caminhos Mínimos

Árvore: grafo conexo sem circuitos

Floresta: grafo cujas componentes conexas são árvores

Um caminho é uma árvore?

Sim!

Árvore Geradora Mínima

- Termo em inglês:
 - Minimum Spanning Tree (MST)
- Alguns sinônimos encontrados:
 - Árvores de Expansão Mínima
 - Árvores Geradora Mínima
 - Árvores de Cobertura Mínima
 - Árvores Espalhadas Mínimas

conceito

 Árvore que interliga todos os vértices do grafo utilizando arestas com um custo total mínimo

conceito

 Dado um grafo não dirigido ponderado G, desejamos encontrar uma árvore T que contenha todos os vértices de G e minimize sua soma. A solução final possui uma distância total de 14 milhas. Através desta rede, é possível ir de um posto a qualquer outro posto.

Independente do nó inicial, a solução será a mesma.

Algoritmo de Prim

O algoritmo de Prim usa uma "fila" *de vértices*, com prioridade ditada por uma chave

```
MST Prim(G, x)

 para u ← 1 até n faça

cor[u] ← BRANCO

 pred[u] ← NIL

 chave[u] ← ∞

 Q ← Crie-Fila-Vazia()

 para u ← 1 até n faça

7.
        Insira-na-Fila(u,Q)
8. chave[x] \leftarrow 0
9. pred[x] \leftarrow x

 enquanto Q ≠ Ø faça

11. u \leftarrow Retire-Minimo(Q)
para cada v em Adj[u]faça
13.
            se cor[v] = BRANCO e w(u,v) < chave[v]
14.
                então chave[v] \leftarrow w(u,v)
15.
                     Refaça-Fila(v,Q)
16.
                     pred[v]←u
17. cor[u] \leftarrow PRETO
devolve pred
```

Algoritmo de Prim

- Idéia básica:
 - Tomando como vértice inicial A, crie uma fila de prioridades classificada pelos pesos das arestas conectando A.
 - Repita o processo até que todos os vértices tenham sido visitados.

Algoritmo de Kruskal

O algoritmo de Kruskal começa com uma floresta de árvores formada por apenas um vértice e procura, a cada passo, uma aresta que, além de conectar duas árvores distintas da floresta, possua peso mínimo.

```
MST_Kruskal(G,w)

1. A \leftarrow \emptyset

2. para u \leftarrow 1 até n faça Construa_Conjunto(u)

3. Ordene(E) {arestas de Eem ordem crescente de peso (w)}

4. para cada aresta (u,v) faça {tomadas em ordem crescente de peso (w)}

5. se Conjunto(u) \neq Conjunto(v)

6. então A \leftarrow A \cup \{(u,v)\}

7. Une_Árvores(u,v)

8. devolve A
```

Algoritmo de Kruskal

- Idéia básica:
 - Seleciona a aresta de menor peso que conecta duas árvores de uma floresta.
 - Repita o processo até que todos os vértices estejam conectados sempre preservando a invariante de se ter uma árvore.

Árvores Geradoras Mínimas Solução E10

2) Utilize os algoritmos de Kruskal e de Prim para identificar uma árvore geradora mínima em cada um dos grafos ilustrados nas figuras abaixo. Qual é mais adequado em cada pesquisa? Justifique.

Grafo 2

árvore mínima Grafo 1

árvore mínima Grafo 2

3) Seja um grafo com pesos nas arestas e, suponha que um vetor de predecessores pred representa uma árvore geradora de peso P. Escreva um algoritmo que receba pred e um vértice s e devolva o vetor de predecessores de uma árvore geradora com raiz s e peso P.

Algorit - Converte

- 1. define nova raiz em pred-saída, na posição da raiz e onde pred-entr apontava a raiz.
- 2. percorre vetor pred-entr a partir desse predentr alterando em cada vértice *u*, novo pred será ou quem já o precedia ou quem *antecede*.

Exemplo:

raiz	V:	а	b	C	d	е	f	g	h
d	pred -entr	b	d	d	d	d	е	е	f
h	pred-saída	b	d	d	е	f	h	е	h
С	pred-saída'	b	d	С	С	d	е	е	f

4) A tabela abaixo mostra as possibilidades de instalação de seções de rede elétrica em um loteamento de sítios (o custo é dado em unidades de R\$ 1000). A rede principal, a partir da qual o loteamento será abastecido, passa em frente ao sítio a.

um sítio	a	a	a	b	b	С	С	d	d	d	е	е	f	g	g	h	i
outro sítio	b	С	ď	d	е	d	f	f	g	h	g	i	h	h	i	j	j
custo	7	5	5,5	7,5	8	6	6,5	5,5	3,5	6,5	4	5	5	5	5	7,5	5,5

Agora, examine a seguinte situação: a empresa responsável pelo loteamento não se obriga, por contrato, a instalar a rede elétrica enquanto pelo menos 80% dos sítios não forem vendidos; até o momento, apenas a e j encontraram comprador e o proprietário deste último, pessoa influente, pressiona a empresa para que esta leve, imediatamente, energia até o seu sítio. Esta, por seu lado, não julga conveniente aproveitar a ocasião para estender a instalação aos demais sítios.

a) Você é consultado pela empresa, que deseja saber como atender ao proprietário influente da forma mais econômica, ou seja, determinar que seções da rede devem ser construídas de modo a levar energia ao sítio j, sem se preocupar com os sítios pelos quais o itinerários escolhidos vão passar;

um sítio	a	а	a	b	b	С	С	d	d	d	е	е	f	g	g	h	i
outro sítio	b	С	d	d	е	d	f	f	g	h	g	i	h	h	i	j	j
custo	7	5	5,5	7,5	8	6	6,5	5,5	3,5	6,5	4	5	5	5	5	7,5	5,5

a) atende ligando: A - D - G - I - J custo = 19,5

b) A empresa lhe pede, ainda, que planeje uma rede geral que abasteça todos os sítios, a qual tenha o custo mais baixo possível, levando-se em conta que a linha de a para j já foi instalada;

um sítio	a	a	a	b	b	С	С	d	d	d	е	е	f	g	g	h	i
outro sítio	b	U	d	d	е	d	f	f	g	h	g	-	h	h		j	j
custo	7	5	5,5	7,5	8	6	6,5	5,5	3,5	6,5	4	5	5	5	5	7,5	5,5

b) MST loteamento:

c) Enfim, a empresa deseja saber se teve prejuízo ao atender à exigência, de modo a poder, eventualmente, compensá-lo ao vender os sítios restantes.

b) MST loteamento:

c) Considerando que após 80% vendidos (8 dos 10 seriam ligados) , precisou ligar 50% e portanto a venda desses já resgata o gasto além de viabilizar o investimento pois toda a rede será instalada com menor custo.

Caminhos de custo mínimo

6. Caminhos Mínimos

Introdução

Encontrar o caminho, mais curto possível, entre as cidades de Medina/MG e Bom Jesus/SC.

Solução

- → Um mapa das estradas de rodagem do Brasil, determinar uma rota mais curta?
- → Uma maneira, enumerar todas as rotas possíveis ... haverá milhões de possibilidades!
- → Modelar o problema em um dígrafo ponderado!

Estudando o problema dos *caminhos de custo mínimo* obtemos um resultado eficiente e com menor esforço!

Caminhos mínimos

("Shortest Paths" – SP)

Seja G=(V,E) um grafo pesado orientado ou não-orientado, e $P=v_0,v_1,\ldots v_k$ um caminho nesse grafo. O *peso* do caminho P define-se como

$$w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$$

Um caminho P do vértice v para o vértice w diz-se um caminho mais curto entre v e w se não existe nenhum caminho de v para w com peso inferior a w(P). P não é necessariamente único.

O nome vem da analogia geográfica, quando os vértices representam *locais* e os pesos *distâncias* entre eles. Outras aplicações: pesos podem representar *custos*, por exemplo de viagens entre locais.

Caminhos mínimos

O problema: dado um grafo G e dois vértices v e w nesse grafo, determinar um caminho mais curto entre eles.

Questão prévia: se construírmos uma árvore geradora mínima com origem em v, será o caminho (único) de v para w contido nessa árvore um caminho mais curto? A resposta pode ser encontrada no exemplo anterior . . .

Uma estratégia imediata: força bruta – construír *todos* os caminhos de v para $w \ (\Rightarrow \ como?)$; seleccionar o mais curto.

Veremos em seguida um algoritmo muito mais eficiente.

Uma definição necessária: a distância d(x,y) do vértice x ao vértice y é o peso de um caminho mais curto de x para y.

Existem algumas variantes deste problema, são elas:

- Menor caminho com destino único: encontrar um caminho mais curto para um vértice destino v
- Menor caminho para um par: encontrar um caminho mais curto para um determinado par de vértices u e v
- Menor caminho para todos os pares: encontrar um caminho mais curto de u
 para v, para todos e quaisquer pares u e v

Em algumas instâncias do *problema de menor caminho com uma única origem*, podem existir arestas cujos pesos possuem *valor negativo*.

Exemplo de como achar o *caminho mais curto* em um dígrafo, que só tem pesos positivos nos arcos:

Como poderíamos obter a árvore de caminhamentos mínimos partindo da origem s?

Dois possíveis resultados:

Algoritmo de Dijkstra

- Muito semelhante ao algoritmo de PRIM para MSTs.
- Selectiona em cada passo um vértice da orla para acrescentar à árvore que vai construindo.
- O algoritmo vai construindo caminhos cada vez mais longos (no sentido do peso maior) a partir de v, dispostos numa árvore; pára quando encontrar w.
- A grande diferença em relação ao algorito de Prim é o critério de seleção do arco candidato.
- A análise do tempo de execução é análoga.

Algoritmo de Dijkstra - Arcos Candidatos

- Para cada nó z na orla, existe um caminho mais curto v, v₁, . . . vk na árvore construída, tal que (vk, z) ∈ E.
- Se existirem vários caminhos v, v₁,... v_k e arco (v_k, z) nas condições anteriores, o arco candidato (único) de z será aquele para o qual d(v, v_k) + w(v_k, z) fôr mínimo.
- Em cada passo, o algoritmo selecciona um vértice da orla para acrescentar à árvore. Este será o vértice z com valor $d(v, v_k) + w(v_k, z)$ mais baixo.

$$d(A, A) + w(A, B) = 2;$$
 $d(A, A) + w(A, F) = 9;$ $d(A, A) + w(A, G) = 5.$

$$d(A, B) + w(B, C) = 6;$$
 $d(A, A) + w(A, F) = 9;$ $d(A, A) + w(A, G) = 5.$

$$d(A,B) + w(B,C) = 6;$$
 $d(A,A) + w(A,F) = 9;$ $d(A,G) + w(G,H) = 10;$ $d(A,G) + w(G,I) = 7.$

$$d(A,C) + w(C,D) = 8;$$
 $d(A,A) + w(A,F) = 9;$ $d(A,G) + w(G,H) = 10;$ $d(A,G) + w(G,I) = 7.$

Houve uma alteração do arco candidato de H!

Algoritmo de Dijkstra – Exemplo

Algoritmo de Dijkstra – Exemplo

Algumas definições:

- Em cada vértice v, mantemos um atributo d[v], que é o limite superior do peso de um menor caminho da origem s até o vértice v, por exemplo, d[s] = 0, d[y] = 11.
- Chamamos d[v] de estimativa de menor caminho
- Iniciamos as estimativas de menor caminho e predecessores através do seguinte procedimento:

IniciaOrigemÚnica(G,s)

- 1 para cada vértice v em G faça
- 2 d[v] ← ∞
- 3 pred[v] ← NIL
- 4 $d[s] \leftarrow 0$

O algoritmo consiste em testar se é possível identificar um menor caminho para um vértice v passando pelo vértice u (processo de relaxamento de uma aresta (u,v)), e caso afirmativo atualizar d[v] e pred[v].

O passo de relaxamento pode reduzir a estimativa de menor caminho, e atualizar o predecessor de um determinado vértice, o procedimento a seguir realiza o relaxamento:

```
Relaxa(u,v,w)

1 se d[v] > d[u] + w(u,v)

2 então d[v] \leftarrow d[u] + w(u,v)

3 pred[v] \leftarrow u
```

Exemplos:

Algoritmo de Dijkstra

Vemos a seguir o algoritmo de Dijkstra que resolve o problema de caminhos mínimos com uma única fonte para um dígrafo $G = (V_L E)$, quando não há arcos de peso negativo, ou seja, $w(u, v) \ge 0$ para qualquer arco $(u, v) \in E$.

Este algoritmo mantém um conjunto 5 de vértices, através de uma fila Q, onde

```
Dijsktra(G, w, s)
1. IniciaOrigemÚnica(G,s)
2. Q ← Cria-Fila( )
3. enquanto Q ≠ Ø faça
4. u ← Retire-Mínimo(Q)
5. para cada v em Adj[u]faça
6. Relaxa(u,v,w)
7. devolve pred
```

O comando **Crie-Fila()** cria uma "fila" com todos os vértices. A prioridade dos vértices na fila é dada pelo vetor d. O comando **Retire-Mínimo**(Q) retira de Q um vértice u para o qual d[u] é mínimo. A alteração do valor de d[v] no procedimento **Relaxa()** pode afetar a estrutura da fila; isso deve ser levado em conta quando a fila for implementada.

+ exemplo:

Algoritmo de Bellman - Ford

O algoritmo Bellman-Ford resolve o problema do menor caminho com uma única origem de uma forma mais genérica, incluindo arestas com peso negativo.

O algoritmo indica se um ciclo de comprimento negativo alcançável a partir de s foi ou não encontrado. Em caso afirmativo não há solução e, em caso contrário - onde não há ciclo negativo alcançável a partir de s - o algoritmo produz a árvore de caminhos mínimos com raiz em s e os seus respectivos comprimentos (pesos).

```
Bellman-Ford (G, w)

1. IniciaOrigemÚnica(G,s)

2. para i ← 1 até |V| -1 faça (|V| = n vértices)

3. para cada (u,v) ∈ E faça (E = conjunto de arcos)

4. Relaxa(u,v,w)

5. para cada (u,v) ∈ E faça (verifica se existe ciclo negativo)

6. se d[v] > d[u] + w(u,v)

7. então devolve 0 (tem ciclo negativo alcançavel a partir de s)

8. devolve 1 (não tem ciclo negativo)
```

As estimativas de caminhos mais curtos são mostradas dentro dos vértices, e a origem dos arcos "vermelhos" indica os predecessores.

+ exemplo:

+ exemplo: ... solução

Checagem de Ciclos Negativos

Depois de executado (V-1) a técnica do relaxamento, precisamos verificar se o grafo não contém um ciclo negativo.

Passo 1:

Definimos o vértice A como fonte:

Vértices: A B C D E

Distância 0 6 7 ∞ ∞

Distância de: A A A

Passo 2:

Agora o vértice B como fonte:

Vértices: A B C D E Distância 0 6 7 11 2 Distância de: A A A B B

Passo 3:

Agora o vértice E como fonte:

Vértices: A B C D E Distância 0 6 7 9 2 Distância de: A A A E E

Passo 4:

Agora o vértice C como fonte:

Vértices: A B C D E Distância 0 6 7 4 2 Distância de: A A A C B

Passo 5:

Agora o vértice D como fonte:

Vértices: A B C D E Distância 0 2 7 4 2 Distância de: A D A C B

2ªiteração

Passo 6:

Agora o vértice B como fonte:

Vértices: A B C D E Distância 0 2 7 4 -2 Distância de: A D A C B

3ªiteração

Passo 7:

Agora o vértice E como fonte:

Vértices: A B C D E Distância 0 2 7 4 -2 Distância de: A D A C B

Conclusão:

Vértice	Distância de A		
А	0		
В	2		
С	7		
D	4		
E	-2		

O algoritmo Floyd-Warshall resolve o problema de calcular o caminho mais curto entre todos os pares de vértices em um dígrafo G = (V, E).

Arestas com *peso negativo* podem estar presentes, mas assumimos por conveniência que não há ciclos com pesos negativos. (O algoritmo é capaz de detectar tais ocorrências.)

Caminhos mínimos entre todos os pares:

- Consideramos o problema de encontrar o caminho mais curto entre cada par de vértices de um grafo G = (V, E).
- Este problema pode surgir na construção de uma tabela de distâncias entre cidades de um atlas.
- É dado um dígrafo G = (V, E) com função peso das arestas dada por w : E → R.
- Problema: para cada par u, $v \in V$, encontre o caminho de menor peso de u para v.

Métodos de solução

- Podemos resolver o "problema de caminhos mínimos entre todos os pares de vértices" resolvendo |V| = n "problemas de caminhos mínimos com uma fonte."
- Se todos os pesos são não negativos, podemos utilizar o algoritmo de Dijkstra em cada vértice.
- Se há arestas com pesos negativos, precisaremos utilizar o algoritmo de Bellman-Ford, que deve ser executado a partir de cada vértice: um processo mais lento se comparado com Dijkstra.
- Temos uma solução mais eficiente: algoritmo de Floyd-Warshall:

Definições

- Comparando com os algoritmos anteriores, que utilizaram lista de adjacência, representaremos o dígrafo por meio de uma matriz de adjacência.
- Por conveniência, assumiremos que os vértices são numerados 1, 2, . . . , |V| = n.
- Ciclos com peso negativo podem ocorrer, mas assumiremos que o grafo não contém ciclo negativo.
- A saída tabulada do algoritmo é uma matriz D = [d_{ij}].
- Cada entrada d_{ij} contém o comprimento do caminho mais curto do vértice i ao vértice j, ou seja, d_{ij} = $\delta(i, j)$.
- Computamos não apenas a distância, mas também o caminho. Para tanto, utilizamos uma matriz Π = $[\pi_{ij}]$ com os predecessores.
- A entrada π_{ij} = NIL se i = j e π_{ij} é o predecessor de j em um caminho mais curto de i para j .

- Da mesma forma que nos problemas anteriores, o subdígrafo predecessor G_π é uma árvore de caminhos mínimos a partir de um vértice.
- O subdigrafo predecessor $G_{\pi,i}$ induzido pela i-ésima linha é uma árvore de caminhos mínimos em G a partir de i .
- O dígrafo predecessor $G_{\pi,i}$ é definido por: $V_{\pi,j} = \{j \in V : \pi_{i,j} \neq NIL\} \cup \{i\}$ $E_{\pi,i} = \{(\pi_{i,j},j) : j \in V_{\pi,i} \{i\}\}$
- Como os vértices são V = {1, 2, ..., n} considere um subconjunto {1, 2, ..., k};
- Para qualquer par de vértices (i,j) em V, considere todos os caminhos de i a j cujos vértices intermediários pertencem ao subconjunto {1, 2, ..., k}, e p como o mais curto de todos eles;
- O algoritmo explora um relacionamento entre o caminho p e os caminhos mais curtos de i a j com todos os vértices intermediários em {1, 2, ..., (k-1)};
- O relacionamento depende de k ser ou não um vértice intermediário do caminho p.

Algoritmo:

```
Floyd-Warshall (G)
```

```
    n ← |V|
    D<sup>0</sup> ← G (iteração zero = matriz de adjacência de G)
    para k ← 1 até n faça
    para i ← 1 até n faça
    para j ← 1 até n faça
    d<sup>k</sup><sub>ij</sub> ← Mínimo{ d<sup>k-1</sup><sub>ij</sub>, d<sup>k-1</sup><sub>ik</sub> + d<sup>k-1</sup><sub>kj</sub> }
    devolve D<sup>n</sup> .
```

- Há uma variedade de métodos para construção do caminho mais curto no algoritmo de Floyd-Warshall.
- ▶ Um jeito é computar a matriz Dⁿ de distâncias e depois construir a matriz predecessora П a partir de Dⁿ.
- Outra maneira é computar a matriz predecessora ∏ "on-line", da mesma forma que o algoritmo Floyd-Warshall calcula as matrizes D^k.
- ▶ Podemos computar $\Pi^0, \Pi^1, \ldots, \Pi^n$, onde $\Pi = \Pi^n$.
- ▶ Π_{ii}^k é definida como a matriz predecessora do vértice j no caminho mais curto a partir de i, tendo como vértices intermediários os elementos do conjunto $\{1, 2, \ldots, k\}$.
- Podemos dar uma fórmula recursiva para Π^k_{ii}.
- Quando k = 0, um caminho mais curto de i para j não tem vértices intermediários,

logo:
$$\pi_{ij}^0 = \begin{cases} nil & \text{if } i = j \text{ or } w_{ij} = \infty \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty \end{cases}$$

- Para k ≥ 1, se tomamos o caminho i → k → j, com k ≠ j, então o predecessor de j é o mesmo que o predecessor de i escolhido no caminho mais curto de k para j, com vértices intermediários do conjunto {1,..., k − 1}.
- Ou seja, o predecessor de j no caminho p^{k-1}_{kj}.
- ▶ Formalmente, temos: $\pi_{ij}^{k} = \begin{cases} \pi_{ij}^{k-1} & \text{if } d_{ij}^{k-1} \leqslant d_{ik}^{k-1} + d_{kj}^{k-1} \\ \pi_{kj}^{k-1} & \text{if } d_{ij}^{k-1} > d_{ik}^{k-1} + d_{kj}^{k-1} \end{cases}$

Obtidas as matrizes \mathbf{D}^n e Π^n podemos imprimir um caminho mais curto desde o vértice i até o vértice j, onde i, $j \in V$.

MostraCaminhoMaisCurto(T, i, j)

- 1. se i = j
- 2. então escreve i
- 3. senão se π_{ij} = NIL
- 4. então escreve i"não há caminho de" i "para" j
- 5. senão Mostra Caminho Mais Curto (Π , i, π_{ij})
- 6. escreve j.

Considere o dígrafo abaixo, que contêm pesos positivos e negativos e não tem ciclo negativo

Aplicando o algoritmo de Floyd-Warshall obtemos a sequência de matrizes D^k e Π^k :

$$D^{(0)} = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(0)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & NIL & 4 & NIL & NIL \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

Aplicando o algoritmo de Floyd-Warshall obtemos a sequência de matrizes D^k e $\mathsf{\Pi}^k$:

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(1)} = \begin{pmatrix} NIL & 1 & 1 & NIL & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & NIL & NIL \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

Aplicando o algoritmo de Floyd-Warshall obtemos a sequência de matrizes D^k e Π^k :

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 1 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$\Pi^{(3)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

Aplicando o algoritmo de Floyd-Warshall obtemos a sequência de matrizes D^k e Π^k :

$$D^{(3)} = \begin{bmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$D^{(4)} = \begin{bmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{bmatrix}$$

$$\Pi^{(3)} = \begin{pmatrix} NIL & 1 & 1 & 2 & 1 \\ NIL & NIL & NIL & 2 & 2 \\ NIL & 3 & NIL & 2 & 2 \\ 4 & 3 & 4 & NIL & 1 \\ NIL & NIL & NIL & 5 & NIL \end{pmatrix}$$

$$\Pi^{(4)} = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & NIL & 4 & 5 & NIL \end{pmatrix}$$

Aplicando o algoritmo de Floyd-Warshall obtemos a sequência de matrizes D^k e Π^k :

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} NIL & 1 & 4 & 2 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & NIL & 4 & 5 & NIL \end{pmatrix}$$

$$\Pi^{(5)} = \begin{pmatrix} NIL & 3 & 4 & 5 & 1 \\ 4 & NIL & 4 & 2 & 1 \\ 4 & 3 & NIL & 2 & 1 \\ 4 & 3 & 4 & NIL & 1 \\ 4 & 3 & 4 & 5 & NIL \end{pmatrix}$$

Aplicando o algoritmo de Floyd-Warshall obtemos a sequência de matrizes D^k e Π^k :

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

E se queremos verificar o caminho mais curto entre os vértices:

- "3" e "4" obtemos como MostraCaminhoMaisCurto(Π , 3, 4): $3 \rightarrow 2 \rightarrow 4$.
- Ou, entre "5" e "2" aplicamos MostraCaminhoMaisCurto(Π , 5, 2): $5 \rightarrow 4 \rightarrow 3 \rightarrow 2$.

+ exemplo...

Encontre os caminhos mínimos de todos os pares do dígrafo:

	1	2	3	4
1	-	-1	∞	3
2	∞	-	3	2
3	∞	3	-	1
4	2	-1	∞	-

