Исследование и разработка методов генерации медицинских изображений с помощью генеративно-состязательных нейронных сетей

Подготовил: студент 3 курса 3 группы Зеленковский Виктор Петрович

Научный руководитель: Ковалев Василий Алексеевич Проблема: Нехватка медицинских изображений для обучения нейронных сетей

Цель: Исследовать и модифицировать существующие методы генерации изображений в соответствии со спецификой исходных данных

Задачи:

- Исследовать существующие методы генерации изображений
- Модифицировать изученные методы для генерации изображений на основе ограниченного набора данных (КТ-снимки)
- Оценить качество изображений, генерируемых с помощью полученных методов

Проделанная работа:

- изучены архитектуры нейросетей StyleGAN, StyleGAN2
- модифицирована архитектура StyleGAN2: в архитектуру добавлены аугментации для увеличения размера датасета исходных данных
- сгенерированы изображения размером 64x64, 128x128, 256x256
- качество полученных изображений измерено с помощью следующих метрик: FID score

Архитектура нейросети

Архитектура StyleGAN схожа с архитектурой ProGAN

Генератор ProGAN

https://arxiv.org/pdf/1812.04948.pdf

Генератор StyleGAN

Архитектура нейросети

Архитектура нейросети

Skip connections & residual nets

Стохастические аугментации дискриминатора

Аугментации, используемые в работе:

- xint_max = 0.125
- scale_std = 0.2
- rotate_max = 1
- aniso_std = 0.2
- brightness_std = 0.2
- contrast_std = 0.5
- noise_std = 0.1
- cutout_size = 0.5

Исходные данные:

1500 KT-снимков размером 512x512

класс 1

класс 2

класс 3

Пример исходных данных

kimg - количество тысяч изображений, использованных для обучения дискриминатора

размер генерируемых изображений - 64х64

kimg = 500

Пример сгенерированных изображений

размер генерируемых изображений - 128x128

kimg = 400

FID (Fréchet Inception Distance): 53.3

Пример сгенерированных изображений

размер генерируемых изображений -128x128

FID score: 55.3 -> 33.4

Пример сгенерированных изображений

размер генерируемых изображений - 256x256

FID score:

- 400 kimg 55.3 -> 46.9
- 500 kimg 39.6

Пример сгенерированных изображений

Выводы

В результате увеличения количества данных, используемых для обучения нейросети, и изменения архитектуры сети удалось:

• избежать mode collapse

улучшить FID метрику: ProGAN - 138.3 StyleGAN - 33.4

Спасибо за внимание!