Introduzione alle Reti di Code

Moreno Marzolla

moreno.marzolla@unibo.it

Universitá di Bologna-DISI

6 ottobre 2022

Indice

- 1 Introduzione
 - Notazione
 - Leggi Fondamentali
- 2 Analisi dei Limiti
 - Sistemi Aperti
 - Sistemi Chiusi
- 3 Analisi di Reti in Forma Prodotto
 - Reti Aperte
 - MVA per Reti Chiuse

Indice

- 1 Introduzione
 - Notazione
 - Leggi Fondamentali
- 2 Analisi dei Limiti
 - Sistemi Aperti
 - Sistemi Chiusi
- 3 Analisi di Reti in Forma Prodotto
 - Reti Aperte
 - MVA per Reti Chiuse

Centro di Servizio

- Nella sua forma più semplice, un centro di servizio (server) è rappresentato graficamente da un server con una coda associata
- Le richieste arrivano al centro di servizio con un certo tasso di arrivo λ. Se il server è occupato, vengono poste in coda
- Il server estrae le richieste dalla coda in base ad una opportuna politica di scheduling (es, FIFO), e processa le richieste con un tempo medio di servizio S
- Response Time = Service Time + Queueing Time

Delay Center

- delay center sono una forma particolare di centro di servizio: sono composti da un numero infinito di server identici
- Ogni richiesta in arrivo viene assegnata ad uno dei server liberi (ce ne sono sempre, essendo infiniti), quindi non si forma mai coda
- Le richieste spendono mediamente tempo Z in servizio, e poi proseguono
- Sono generalmente usati per modellare ritardi di quantità media Z

Reti di code

Una rete di code è un insieme di *K* centri di servizio interconnessi.

- La rete può essere aperta se ci sono arrivi di richieste dall'esterno del sistema
- La rete è chiusa se nel sistema circolano una popolazione fissa di *N* richieste.

Reti di code

Esempio di rete chiusa

Esempio di rete aperta

Esempio: Central Server Model

Jeffrey P. Buzen: Computational Algorithms for Closed Queueing Networks with Exponential Servers. Comm. ACM 16(9): 527-531 (1973)

- Esiste una popolazione finita di *N* jobs
- Le richieste spendono un certo tempo tempo di attesa (think time) nei delay center rappresentati da terminali
- Il server centrale rappresenta la CPU
- Ulteriori server rappresentano periferiche di I/O

Analisi Operazionale

Definizione

Le ipotesi operazionalmente testabili (operationally testable) sono quelle che possono essere verificate mediante misure.

Esempio

È possibile verificare se in un intervallo di tempo T il numero di arrivi al centro di servizio i-esimo è uguale al numero di partenze; L'assunzione di bilanciamento del flusso (job flow balance) è operazionalmente testabile.

Esempio

È impossibile stabilire mediante misure se i tempi di servizio delle richieste formano una sequenza di variabili casuali indipendenti. Le assunzioni di indipendenza, sebbene comunemente usate nell'analisi statistica delle reti di code, non sono operazionalmente testabili.

Analisi Operazionale

Definizione

Le ipotesi operazionalmente testabili (operationally testable) sono quelle che possono essere verificate mediante misure.

Esempio

È possibile verificare se in un intervallo di tempo T il numero di arrivi al centro di servizio i-esimo è uguale al numero di partenze; L'assunzione di bilanciamento del flusso (job flow balance) è operazionalmente testabile.

Esempio

È impossibile stabilire mediante misure se i tempi di servizio delle richieste formano una sequenza di variabili casuali indipendenti. Le assunzioni di indipendenza, sebbene comunemente usate nell'analisi statistica delle reti di code, non sono operazionalmente testabili.

Analisi Operazionale

Definizione

Le ipotesi operazionalmente testabili (operationally testable) sono quelle che possono essere verificate mediante misure.

Esempio

È possibile verificare se in un intervallo di tempo T il numero di arrivi al centro di servizio i-esimo è uguale al numero di partenze; L'assunzione di bilanciamento del flusso (job flow balance) è operazionalmente testabile.

Esempio

È impossibile stabilire mediante misure se i tempi di servizio delle richieste formano una sequenza di variabili casuali indipendenti. Le assunzioni di indipendenza, sebbene comunemente usate nell'analisi statistica delle reti di code, non sono operazionalmente testabili.

Alcune Leggi Fondamentali

Osserviamo il server *k*-esimo per un certo tempo

- T Durata intervallo di osservazione;
- A, A_k Numero di arrivi
- C, C_k Numero di completamenti
- B_k Quantità di tempo in cui c'è almeno una richiesta $(B_k \leq T)$.

Definizione

$$\lambda_k \equiv A_k/T \qquad ($$

$$X_k \equiv C_k/T$$
 (2)

$$U_k \equiv B_k/T$$

$$C_K = D_K/T$$

$$S_k \equiv B_k/C_k$$
 (4)

Alcune Leggi Fondamentali

Osserviamo il server *k*-esimo per un certo tempo

T Durata intervallo di osservazione;

A, Ak Numero di arrivi

 C, C_k Numero di completamenti

 B_k Quantità di tempo in cui c'è almeno una richiesta ($B_k \leq T$).

Definizione

$$\lambda_k \equiv A_k/T \qquad (1)$$

$$X_k \equiv C_k/T$$
 (2)

$$U_k \equiv B_k/T$$
 (3)

$$U_k \equiv D_k/I \qquad (3)$$

$$S_k \equiv B_k/C_k$$
 (4)

Osserviamo il server *k*-esimo riportando sul grafico il numero di utenti *totali* (in coda o in servizio)

In questo caso abbiamo

- Numero di arrivi
 - Numero di completamenti $C_k = 7$
 - *T* = 26

Da cui:

- Tasso di Arrivo: $\lambda_k = \frac{A_k}{T} = 7/26$
- Throughput: $X_k = \frac{C_k}{T} = 7/26$
- Utilizzazione: $U_k = \frac{B_k}{T} = 20/26$
- Tempo medio di servizio: $S_k = \frac{B_k}{C} = 20/7$

Osserviamo il server *k*-esimo riportando sul grafico il numero di utenti *totali* (in coda o in servizio)

In questo caso abbiamo:

- Numero di arrivi $A_k = 7$
- Numero di completamenti $C_k = 7$
- *T* = 26

Da cui:

- Tasso di Arrivo: $\lambda_k = \frac{A_k}{T} = 7/26$
- Throughput: $X_k = \frac{C_k}{T} = 7/26$
- Utilizzazione: $U_k = \frac{B_k}{T} = 20/26$
- Tempo medio di servizio: $S_k = \frac{B_k}{C} = 20/7$

Osserviamo il server *k*-esimo riportando sul grafico il numero di utenti *totali* (in coda o in servizio)

In questo caso abbiamo:

- Numero di arrivi $A_k = 7$
- Numero di completamenti $C_k = 7$
- *T* = 26

Da cui:

- Tasso di Arrivo: $\lambda_k = \frac{A_k}{T} = 7/26$
- Throughput: $X_k = \frac{C_k}{T} = 7/26$
- Utilizzazione: $U_k = \frac{B_k}{T} = 20/26$
- Tempo medio di servizio: $S_k = \frac{B_k}{C_k} = 20/7$

Alcune Leggi Fondamentali Utilization Law

Da $X_k = C_k/T$ (2) e $S_k = B_k/C_k$ (4), considerando la definizione di utilizzazione, possiamo dedurre che:

$$S_k X_k = \frac{C_k}{T} \frac{B_k}{C_k} = \frac{B_k}{T} = U_k$$

da cui si ha:

Utilization Law

$$U_k = X_k S_k \tag{5}$$

La legge dell'utilizzazione è un caso particolare della legge di Little. Definiamo:

- N Numero medio di richieste presenti nel sistema
- R Tempo medio di risposta

Intuitivamente se il throughput del sistema è X richieste/secondo, e ciascuna richiesta rimane nel sistema mediamente R secondi, allora per ciascun secondo ci saranno esattamente XR richieste nel sistema.

Legge di Little

$$N = XR$$
 (6)

Le legge di Little si applica sia all'intero sistema, sia a parti di esso.

Si può applicare al singolo server Disk₂ (esclusa la coda) (Box 1).

- N₍₁₎ rappresenta l'utilizzazione di Disk₂
- R₍₁₎ rappresenta il tempo medio di servizio delle richieste;
- X₍₁₎ rappresenta il tasso a cui il server soddisfa le richieste.

Esempio

Supponiamo che il disco processi 40 richieste/secondo ($X_{(1)}=40$) e mediamente ciascuna richiesta richieda 0.0225 secondi ($R_{(1)}=0.0225$). Da (6) si ricava $N_{(1)}=0.9$, ossia l'utilizzazione del disco è 90%

Includiamo la coda (Box 2).

- N₍₂₎ è il numero totale di utenti (includendo quello in servizio e quelli in coda);
- R₍₂₎ è il tempo speso da ciascuna richiesta nel sistema, includendo il tempo di attesa in coda e quello in servizio
- $X_{(2)}$ è il throughput

Esempio

Supponiamo che il disco stia servendo 40 richieste/secondo $(X_{(2)}=40)$ e il numero medio di richieste sia $N_{(2)}=4$. Da (6) si ricava $R_{(2)}=0.1$. Sapendo che $R_{(1)}=0.0225$, si ricava che il tempo speso in coda è $R_{(2)}-R_{(1)}=0.0775$.

Consideriamo il sottosistema centrale (Box 3).

- N₍₃₎ è il numero totale di utenti nel sottosistema;
- R₍₃₎ è il tempo mediamente speso da ciascuna richiesta nel sottosistema;
- $X_{(3)}$ è il throughput del sottosistema.

Esempio

Supponiamo che il throughput sia $X_{(3)} = 0.5$ e il numero medio di richieste sia $N_{(3)} = 7.5$. Da (6) si ricava $R_{(3)} = 15$.

Consideriamo ora il sistema completo (Box 4).

- N₍₄₎ è il numero totale di utenti nel sistema (costante, essendo un sistema chiuso);
- R₍₄₎ è il tempo totale di servizio + di attesa nel delay center (think time);
- X₍₄₎ è il tasso di passaggio dai terminali al sottosistema centrale.

Esempio

Supponiamo che ci siano $N_{(4)}=10$ utenti, e che il think time sia Z=15. Il tempo speso nel sistema sia $R_{(3)}=15$. Poiché $R_{(4)}=R_{(3)}+Z$, possiamo scrivere $N_{(4)}=X_{(4)}(R_{(3)}+Z)$, da cui $X_{(4)}=0.33$.

> 1 DF > 1 E > 1 E > 2 9 9 9

Alcune Leggi Fondamentali

Response Time Law

L'ultimo dei punti precedenti da luogo ad una legge di tipo generale, applicabile a tutti i sistemi in cui siano presenti dei delay center. Sia:

- R il tempo di risposta del sottosistema privo dei delay center
- X il tasso di passaggio di richieste dai terminali al sottosistema centrale

Si ha allora:

Response Time Law

$$R = \frac{N}{X} - Z \tag{7}$$

Sia C_k il numero di richieste completate dal centro di servizio k-esimo

Definizione

Visit Count
$$V_k = C_k/C$$

Riscrivendolo come $C_k = V_k C$ e ricordando che $X_k = C_k / T$ (2), si ha:

Forced Flow Law

$$X_k = V_k X \tag{8}$$

Alcune Leggi Fondamentali Service Demand

Abbiamo definito con S_k il tempo di servizio richiesto per ogni singola visita al centro di servizio k-esimo.

Ci tornerà comodo definire una ulteriore quantià D_k (domanda di servizio), che rappresenta il tempo di servizio totale richiesto al centro k-esimo.

Definizione

Service Demand
$$D_k = V_k S_k$$
 (9)

Indice

- 1 Introduzione
 - Notazione
 - Leggi Fondamentali
- 2 Analisi dei Limiti
 - Sistemi Aperti
 - Sistemi Chiusi
- 3 Analisi di Reti in Forma Prodotto
 - Reti Aperte
 - MVA per Reti Chiuse

Analisi dei Bound

Vedremo ora come calcolare dei limiti (bound) sui valori del throughput *X* e del tempo di risposta *R* di un sistema in funzione del tasso di arrivo delle richieste o del numero di utenti presenti. L'analisi dei bound:

- Richiede pochissimo sforzo e può fornire informazioni utili in molte situazioni di modellazione dei sistemi.
- Aiuta a individuare l'effetto dei colli di bottiglia (bottlenecks) del sistema.
- Consente di confrontare rapidamente sistemi diversi.

Asymptotic Bounds vs Balanced System Bounds

- I Bound Asintotici consentono di ricavare dei limiti inferiori e superiori su X e R.
 - Vengono ricavati considerando i casi estremi di carico molto basso o molto alto
 - Si applicano solo se il tempo di servizio di una richiesta non dipende dal numero di richieste presenti nel sistema
- I Balanced System Bounds consentono di ricavare dei bound più stretti.
 - Vengono derivati considerando come casi limite dei sistemi in cui tutte le domande di servizio sono uguali
 - Ovviamente i bound si applicano a sistemi generali, in cui le domande di servizio sono arbitrarie.

Bound superiore su Throughput $X(\lambda)$

Consideriamo la legge dell'utilizzazione per il centro di servizio k-esimo (eq. 5):

$$U_k = X_k S_k$$

Denotando con X il throughput dell'intero sistema si ha $X_k = XV_k$ (eq. 8), che combinata con la precedente da:

$$U_k = XV_kS_k = XD_k$$

Dato che per definizione $U_k \le 1$, si ha che deve valere $\forall k, X \le 1/D_k$ ossia, posto $D_{max} = \max_k \{D_k\}$:

Bound su $X(\lambda)$

$$X(\lambda) \le \frac{1}{D_{max}}$$
 (10)

Nel caso ottimo, in cui nel sistema ci sia una sola richiesta, il tempo di risposta R sarà uguale alla domanda totale di servizio $D = \sum_k D_k$:

Bound su $R(\lambda)$

$$R(\lambda) \ge D \tag{11}$$

- Nel caso pessimo non è possibile fornire alcun bound
 - Assumiamo che n utenti arrivino ogni n/λ unità di tempo (il tasso d'arrivo è $n\lambda/n=\lambda$);
 - Nel caso peggiore, l'ultimo utente può venire accodato dietro a tutti i precedenti, e quindi sperimentare un tempo di risposta arbitrariamente alto al crescere di n.

Asymptotic Bound per Sistemi Chiusi

Bound su Throughput X(N)

Sia *N* il numero di utenti nel sistema. Se *N* cresce, chiaramente aumenta l'utilizzazione dei centri di servizio, la quale comunque deve restare minore o guale a uno

$$U_k = XD_k \le 1$$
 per ogni k

Da questo si deriva:

$$X(N) \le 1/D_{max} \tag{12}$$

Nel caso limite di N=1 (una singola richiesta), il throughput del sistema sarebbe X=1/(D+Z) perchè ad ogni interazione la richiesta spende tempo $D=\sum D_k$ in servizio, e Z in attesa.

 Il throughput massimo si ha quando gli utenti non interferiscono l'un l'altro (cioè nessun utente trova altri utenti davanti a sé in coda ai centri di servizio)

$$X(N) \le N/(D+Z) \tag{13}$$

Il throughput minimo si ha quando invece ciascun utente trova nelle code davanti a sé gli altri N − 1 utenti. In questo caso (N − 1)D tempo è speso in coda dietro agli altri N − 1 utenti, D tempo è speso in servizio e Z in attesa fuori dal sistema

$$X(N) \ge N/(ND + Z) \tag{14}$$

Combinando le Eq. 12, 13 e 14 si ottiene

Bound per X(N)

$$\frac{N}{ND+Z} \le \frac{X(N)}{ND+Z} \le \min\left(\frac{N}{D+Z}, \frac{1}{D_{max}}\right) \tag{15}$$

Riscriviamo (15), ricordando che da (7) si ha X(N) = N/(R(N) + Z)

$$\frac{\textit{N}}{\textit{ND} + \textit{Z}} \leq \frac{\textit{N}}{\textit{R(N)} + \textit{Z}} \leq \min\left(\frac{1}{\textit{D}_{\textit{max}}}, \frac{\textit{N}}{\textit{D} + \textit{Z}}\right)$$

Invertiamo tutti i membri

$$\max\left(\textit{D}_{\textit{max}}, \frac{\textit{D} + \textit{Z}}{\textit{N}}\right) \leq \frac{\textit{R}(\textit{N}) + \textit{Z}}{\textit{N}} \leq \frac{\textit{ND} + \textit{Z}}{\textit{N}}$$

Da cui si ottiene:

Bound per R(N)

$$\max(D, ND_{max} - Z) \le \frac{R(N)}{ND} \le ND$$
 (16)

Riepilogo Bound Asintotici

Sistemi Aperti

$$X(\lambda) \le 1/D_{max}$$
 $D \le R(\lambda)$

Sistemi Chiusi

$$\frac{N}{ND+Z} \leq \quad \frac{X(N)}{ND+Z} \leq \min\left(\frac{N}{D+Z}, \frac{1}{D_{max}}\right)$$

$$\max(D, ND_{max} - Z) \leq \quad \frac{R(N)}{ND} \leq ND$$

Riepilogo Bound Asintotici

Fonte: Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik, *Quantitative System Performance: Computer Systems Analysis using Queueing Network Models*, Prentice-Hall, p. 75

Calcolo dei bound asintotici

Implementazione in GNU Octave

ab_closed.m

```
## Throughput Asymptotic Bound
function [lower, upper] = ab_X_closed( N, D, Z )
    D_tot = sum(D);
    D_max = max(D);
    lower = N/(N*D_tot+Z);
    upper = min( N/(D_tot+Z), 1/D_max );
endfunction

## Response Time Asymptotic Bound
function [lower, upper] = ab_R_closed( N, D, Z )
    D_max = max(D);
    D_tot = sum(D);
    D_tot = sum(D);
    lower = max( D_tot, N*D_max-Z );
    upper = N*D_tot;
endfunction
```

Calcolo dei bound asintotici

Implementazione in GNU Octave

Esempio

```
 \begin{split} Z &= 15; & \textit{\# Think Time} \\ D &= [1.0, \ 2.0, \ 0.5]; \textit{\# Domande di servizio} \\ \text{for } N=1:5 \\ &[\text{I}, u] &= ab\_R\_closed(\ N, \ D, \ Z\ ); \\ &\text{printf}(\text{``%02d\_\%6.2f\_\%6.2f\n''}, \ N, \ I, \ u); \\ \text{endfor} \\ \end{split}
```

Output:

```
01 3.50 3.50
02 3.50 7.00
03 3.50 10.50
04 3.50 14.00
05 3.50 17.50
```

Riconsideriamo il nostro sistema a servente centrale

Parametri Dati

$$D_1 = 2.0, D_2 = 0.5, D_3 = 3.0$$

$$V_2 = 10, V_3 = 100$$

$$S_2 = 0.05, S_3 = 0.03$$

Consideriamo quattro possibili scenari:

- **1** Rimpiazzare la CPU con una il doppio più veloce ($D_1 \leftarrow 1$);
- Spostare alcuni file dal disco lento (centro serv. 2) a quello veloce (centro serv. 3) in modo da rendere uguali le domande di servizio tra i due;
- 3 Aggiungere un ulteriore disco (centro serv. 4, con $S_4 = 0.03$) che gestisca metà del carico del centro serv. 3;
- Tutte e tre le alternative precedenti: CPU più veloce, nuovo disco con $S_4=0.03$, bilanciamento della domanda di servizio tra i tre dischi.

$$D_1 = 2.0, D_2 = 0.5, D_3 = 3.0$$

Rimpiazziamo la CPU (centro di servizio 1) con una veloce il doppio. Quindi D_1 si dimezza, da cui: $D_1 = 1.0, D_2 = 0.5, D_3 = 3.0$

Spostiamo i dati dal disco lento a quello veloce, in modo da avere $D_2 = D_3$ (ricordiamo che $D_k = V_k S_k$). Si deve risolvere il sistema lineare:

$$\left\{ \begin{array}{rcl} V_2 + V_3 & = & 110 & \textit{Il numero di visite deve restare inalterato} \\ V_2 S_2 & = & V_3 S_3 & \textit{Bilanciare le domande di servizio} \end{array} \right.$$

Da cui risulta $V_2 = 41$, $V_3 = 69$, ossia $D_2 = D_3 = 2.06$

Aggiungiamo un ulteriore disco "veloce" che gestisca metà del carico del disco esistente più carico. Avremo quindi K=4 centri di servizio, con $D_1=2.0, D_2=0.5, D_3=1.5, D_4=1.5$

In questo scenario usiamo una CPU più veloce ($D_1 \leftarrow 1.0$), aggiungiamo un disco veloce ($S_4 = 0.03$) e facciamo in modo da bilanciare il carico tra tutti i dischi. Similmente al caso 2 avremo:

$$\begin{cases} V_2 + V_3 + V_4 &= 110 \\ V_2 S_2 &= V_3 S_3 \\ V_3 S_3 &= V_4 S_4 \end{cases}$$

Da cui si ottiene $D_2 = D_3 = D_4 = 1.27$.

Balanced System Bound

Bound per Sistemi Aperti

$$rac{m{\mathcal{X}}(\lambda) \leq 1/D_{max}}{1 - \lambda D_{ave}} \leq rac{m{\mathcal{D}}}{1 - \lambda D_{max}}$$

Bound per Sistemi Chiusi

$$\begin{split} \frac{N}{D+Z+\frac{(N-1)D_{max}}{1+Z/(ND)}} &\leq \frac{\textbf{X}(\textbf{N})}{D} \leq \min\left(\frac{1}{D_{max}}, \frac{N}{D+Z+\frac{(N-1)D_{ave}}{1+Z/D}}\right) \\ \max\left(ND_{max}-Z, D+\frac{(N-1)D_{ave}}{1+Z/D}\right) &\leq \frac{\textbf{R}(\textbf{N})}{1+Z/(ND)} \end{split}$$

bsb_closed.m

```
## Throughput Balanced System Bound
function [lower, upper] = bsb_X_closed( N, D, Z )
 D \max = \max(D);
 D \text{ tot } = \text{sum}(D):
 D_ave = sum(D) / size(D,2);
 lower = N/(D tot+Z+((N-1)*D max)/(1+Z/(N*D tot)));
 upper = min(1/D max. N/(D tot+Z+((N-1)*D ave)/(1+Z/D tot)));
endfunction
## Response Time Balanced System Bound
function [lower, upper] = bsb_R_closed( N, D, Z )
 D \max = \max(D):
 D \text{ tot } = \text{sum}(D);
 D ave = sum(D) / size(D.2):
 lower = max(N*D max-Z, D tot+((N-1)*D ave)/(1+Z/D tot));
 upper = D tot + ((N-1)*D \max)/(1+Z/(N*D tot));
endfunction
```

Confronto tra AB e BSB

Esempio

Confronto tra AB e BSB

Indice

- 1 Introduzione
 - Notazione
 - Leggi Fondamentali
- 2 Analisi dei Limiti
 - Sistemi Aperti
 - Sistemi Chiusi
- 3 Analisi di Reti in Forma Prodotto
 - Reti Aperte
 - MVA per Reti Chiuse

- In ciascun centro di servizio il numero di arrivi deve uguagliare i numero di completamenti (Service Center Flow Balance)
- Non devono avvenire due cambiamenti di stato nel sistema nello stesso istante (One-Step Behaviour)
- La probabilità che una richiesta che completa servizio al centro i venga messa in coda al centro j è indipendente dalla lunghezza di qualsiasi coda (Routing Homogeneity)
- Il tasso di completamento in un centro di servizio deve essere indipendente dal numero di job in coda, e dal numero di utenti nel sistema (Service Time Homogeneity)
- Il numero di arrivi dall'esterno non deve dipendere dal numero o dal posizionamento delle eventuali richieste nel sistema (Homogeneous External Arrivals)

- In ciascun centro di servizio il numero di arrivi deve uguagliare il numero di completamenti (Service Center Flow Balance)
- Non devono avvenire due cambiamenti di stato nel sistema nello stesso istante (One-Step Behaviour)
- La probabilità che una richiesta che completa servizio al centro i venga messa in coda al centro j è indipendente dalla lunghezza di qualsiasi coda (Routing Homogeneity)
- Il tasso di completamento in un centro di servizio deve essere indipendente dal numero di job in coda, e dal numero di utenti nel sistema (Service Time Homogeneity)
- Il numero di arrivi dall'esterno non deve dipendere dal numero o dal posizionamento delle eventuali richieste nel sistema (Homogeneous External Arrivals)

- In ciascun centro di servizio il numero di arrivi deve uguagliare il numero di completamenti (Service Center Flow Balance)
- Non devono avvenire due cambiamenti di stato nel sistema nello stesso istante (One-Step Behaviour)
- La probabilità che una richiesta che completa servizio al centro i venga messa in coda al centro j è indipendente dalla lunghezza di qualsiasi coda (Routing Homogeneity)
- Il tasso di completamento in un centro di servizio deve essere indipendente dal numero di job in coda, e dal numero di utenti nel sistema (Service Time Homogeneity)
- Il numero di arrivi dall'esterno non deve dipendere dal numero o dal posizionamento delle eventuali richieste nel sistema (Homogeneous External Arrivals)

- In ciascun centro di servizio il numero di arrivi deve uguagliare il numero di completamenti (Service Center Flow Balance)
- Non devono avvenire due cambiamenti di stato nel sistema nello stesso istante (One-Step Behaviour)
- La probabilità che una richiesta che completa servizio al centro i venga messa in coda al centro j è indipendente dalla lunghezza di qualsiasi coda (Routing Homogeneity)
- Il tasso di completamento in un centro di servizio deve essere indipendente dal numero di job in coda, e dal numero di utenti nel sistema (Service Time Homogeneity)
- Il numero di arrivi dall'esterno non deve dipendere dal numero o dal posizionamento delle eventuali richieste nel sistema (Homogeneous External Arrivals)

- In ciascun centro di servizio il numero di arrivi deve uguagliare il numero di completamenti (Service Center Flow Balance)
- Non devono avvenire due cambiamenti di stato nel sistema nello stesso istante (One-Step Behaviour)
- La probabilità che una richiesta che completa servizio al centro i venga messa in coda al centro j è indipendente dalla lunghezza di qualsiasi coda (Routing Homogeneity)
- Il tasso di completamento in un centro di servizio deve essere indipendente dal numero di job in coda, e dal numero di utenti nel sistema (Service Time Homogeneity)
- Il numero di arrivi dall'esterno non deve dipendere dal numero o dal posizionamento delle eventuali richieste nel sistema (Homogeneous External Arrivals)

- In ciascun centro di servizio il numero di arrivi deve uguagliare il numero di completamenti (Service Center Flow Balance)
- Non devono avvenire due cambiamenti di stato nel sistema nello stesso istante (One-Step Behaviour)
- La probabilità che una richiesta che completa servizio al centro i venga messa in coda al centro j è indipendente dalla lunghezza di qualsiasi coda (Routing Homogeneity)
- Il tasso di completamento in un centro di servizio deve essere indipendente dal numero di job in coda, e dal numero di utenti nel sistema (Service Time Homogeneity)
- Il numero di arrivi dall'esterno non deve dipendere dal numero o dal posizionamento delle eventuali richieste nel sistema (Homogeneous External Arrivals)

Consideriamo una generica rete aperta di cui siano noti i parametri:

- V_k numero di visite al centro k-esimo
- lacksquare S_k tempo medio di servizio
- λ tasso di arrivo
 - Il tasso di arrivo massimo che il sistema può supportare senza diventare saturo è

$$\lambda_{sat} = 1/D_{max}$$

■ Consideriamo pertantosolo valori $\lambda < \lambda_{sat}$

■ Throughput: In un sistema stabile, il tasso di arrivo λ deve essere uguale al throughput complessivo X. Per la legge del flusso forzato (8), avremo:

$$X_k(\lambda) = \lambda V_k$$

Utilizzazione: Applichiamo la legge dell'utilizzazione (5) combinata con (9):

$$U_k(\lambda) = X_k(\lambda)S_k = \lambda V_k S_k = \lambda D_k$$

Analisi di Reti Aperte Descrizione dell'Algoritmo

Tempo di Risposta:

 Nel caso di Delay Center, non c'è mai coda e il tempo di risposta è il tempo medio di servizio

$$R_k(\lambda) = S_k$$
 (delay centers)

■ Nel caso di centro di servizio con coda, sia $A_k(\lambda)$ il numero medio di utenti in coda visti da un nuovo utente che arriva. Allora si ha:

$$R_k(\lambda) = S_k + S_k A_k(\lambda)$$

= $S_k (1 + A_k(\lambda))$

Se valgono le ipotesi descritte in precedenza, allora si ha $A_k(\lambda) = Q_k(\lambda)$, da cui:

$$egin{aligned} R_k(\lambda) &= S_k \left(1 + Q_k(\lambda)
ight) \ &= S_k \left(1 + X_k R_k(\lambda)
ight) \qquad ext{applicando (6)} \ &= S_k + U_k(\lambda) R_k(\lambda) \qquad ext{applicando (5)} \ &= rac{S_k}{1 - U_k(\lambda)} \qquad ext{(queueing centers)} \end{aligned}$$

Numero utenti nel centro di servizio: da (6) si ha:

$$\begin{split} Q_k(\lambda) &= X_k(\lambda) R_k(\lambda) \\ &= \begin{cases} U_k(\lambda) & \text{(delay centers)} \\ \frac{U_k(\lambda)}{1 - U_k(\lambda)} & \text{(queueing centers)} \end{cases} \end{split}$$

Tempo di risposta del sistema:

$$R(\lambda) = \sum_{k} V_{k} R_{k}(\lambda)$$

Numero medio di utenti totali nel sistema:

$$Q(\lambda) = \sum_k Q_k(\lambda)$$

Implementazione in GNU Octave

mva.m

```
function [U,R,Q] = open qn( lambda, V, S, delay )
  K = size(S, 2);
  R = zeros(1,K);
 Q = zeros(1,K);
 D = V .* \dot{S};
  U = lambda * D;
  for k=1.K
    if ( delay(k) )
      R(k) = S(k);
     Q(k) = U(k);
    else
      R(k) = S(k)/(1-U(k));
     Q(k) = U(k)/(1-U(k));
    endif
  endfor
endfunction
```


Sono dati i seguenti parametri:

- $V_1 = 121, V_2 = 70, V_3 = 50$
- $S_1 = 0.005, S_2 = 0.030, S_3 = 0.027$

```
# Definizione dei parametri
> V = [121, 70, 501;
> S = [0.005, 0.030, 0.027];
> lambda = 0.3;
# Calcoliamo le domande di servizio
> D = V . * S
D = 0.60500 2.10000 1.35000
# Calcoliamo il tasso di arrivo max
> lambda sat = 1 / max(D)
lambda sat = 0.47619
# Risolviamo il modello
> [U,R,Q] = open_qn(lambda, V, S, zeros(1,3))
# CPU Disk1 Disk2
U = 0.18150 \quad 0.63000 \quad 0.40500
R = 0.0061087 \ 0.0810811 \ 0.0453782
0 = 0.22175 \quad 1.70270 \quad 0.68067
# Tempo di risposta complessivo
> R \text{ tot} = \text{sum}(R .* V)
R \text{ tot} = 8.6837
# Numero totale di utenti nel sistema
> O tot = lambda * R tot
0 \text{ tot} = 2.6051
# ...si poteva calcolare anche come
> 0 tot =sum(0)
0 \text{ tot} = 2.6051
```

Consideriamo il sistema precedente, con $V_1 = 121$, $V_2 = 70$, $V_3 = 50$, $S_1 = 0.005$, $S_2 = 0.030$, $S_3 = 0.027$

 $Q(\lambda)$ e $R(\lambda)$ tendono ad infinito se $\lambda \to \lambda_{sat}$

Mean Value Analysis (MVA)

Mean Value Analysis (MVA) è un algoritmo molto semplice per l'analisi di reti chiuse in forma prodotto.

Mediante MVA è possibile calcolare il valore esatto di:

- Utilizzazione *U_i*
- Tempo medio di risposta R_i
- Numero medio di utenti nel centro di servizio Q_i da cui è poi facile ricavare le quantità di interesse rimanenti

■ Tempo di Risposta del sistema: Il tempo di risposta dell'intero sistema R(N) è dato da

$$R(N) = \sum_{k} V_{k} R_{k}(N)$$

Throughput: La legge di Little applicata all'intero sistema da

$$X(N) = \frac{N}{Z + R(N)}$$

Numero utenti in coda: La legge di Little applicata al singolo centro di servizio k da

$$Q_k(N) = X_k(N)R_k(N)$$

= $X(N)V_kR_k(N)$

Per il calcolo del tempo di risposta $R_k(N)$ vale ancora la relazione precedentemente individuata:

$$R_k(N) = egin{cases} S_k & ext{(delay centers)} \\ S_k(1 + A_k(N)) & ext{(queueing centers)} \end{cases}$$

Nel caso di reti chiuse in cui valgono le proprietà precedentemente descritte, si ha $A_k(N) = Q_k(N-1)$.

Quindi nel caso di reti chiuse con N utenti l'algoritmo MVA richiede di calcolare iterativamente X(n), $R_k(n)$, $Q_k(n)$ per n = 1 ... N.

mva.m

```
function [U,R,Q] = mva(N, V, S, Z, delay)
  K = size(S,2);
 Q = zeros(1,K);
 R = zeros(1,K);
  D = V .* S;
 X = 0;
  for n=1:N
    for k=1:K
      if ( delay(k) )
       R(k) = S(k);
      else
       R(k) = S(k)*(1+Q(k));
      endif
    endfor
    R \text{ tot} = sum (R .* V); # system response time
   X = n / (Z+R_tot);
   Q = X*(V .* R);
  endfor
  U = X * D;
endfunction
```


Sono dati i seguenti parametri:

$$V_1 = 121, V_2 = 70, V_3 = 50$$

$$S_1 = 0.005, S_2 = 0.030, S_3 = 0.027$$

$$N = 3, Z = 15$$


```
# Definizione dei parametri
> V = [121, 70, 50];
> S = [0.005, 0.030, 0.027];
> D = V .* S;
> N = 3;
> 7 = 15:
# Risolviamo il modello
> [U,R,O] = mva(N,V,S,Z,zeros(1,3));
# CPU Disk1 Disk2
U = 0.091667 \quad 0.318185 \quad 0.204547
R = 0.0053217 \ 0.0372101 \ 0.0310237
Q = 0.097566 \quad 0.394657 \quad 0.235030
# Tempo di risposta del sistema
> R \text{ tot} = sum(V .* R)
R \text{ tot} = 4.7998
# Throughput del sistema
> X = N/(Z+R tot)
X = 0.15152
# Numero totale di utenti _in coda_ nel sistema
> O tot = N-X*Z
0 \text{ tot} = 0.72725
```

MVA vs Balanced System Bounds

Consideriamo il sistema chiuso visto in precedenza, facendo variare *N*.

I grafici mostrano il confronto tra il risultato ottenuto dall'algoritmo MVA con i Balanced System Bound per sistemi chiusi (vedi p. 46)

