

GPU Accelerated Tandem Traversal of Blocked Bounding Volume Hierarchies

Jesper Damkjær and Kenny Erleben
{damkjær,kenny}@diku.dk

Department of Computer Science University of Copenhagen

October 2009

Traditional BVH Traversal

- Two BVHs are traversed
 - Using either a stack or a queue
 - Using a descend rule descending either tree
 - Descend both trees simultainiously
- For each descend, the BVs in the nodes are compared for overlap

Naive BVH on GPU

- One pair of BVHs per Thread
- Upper space bound for stack

$$k(c-1)\max(\mathbf{height}(A),\mathbf{height}(B)),$$

max. cardinality, c, and size of two BV node references, k.

Shared memory too small and global memory too slow

Use Blocks

- 1 Block ≡ Each node has 4 children
- If overlap \Rightarrow 16 new overlaps

Less data to transfer and more work per thread

Use Double Buffered List

Stack/Queue ⇒ Double buffered list

input pairs

output pairs

Swap input/output paris for next pass

Memory Trick Needed

Need Imaginary Nodes

Less than 4 children \Rightarrow fill with imaginary nodes

Fills up space \Rightarrow part of calculation time \Rightarrow use sparesly

Blocks with Mixed Internal or Leaf Nodes

Not allowed \Rightarrow Simpler code

Internal Block versus Leaf Block


```
if collide (a, k) \Rightarrow \text{push } (e, k)
if collide (a, l) collision \Rightarrow \text{push } (e, k)
if collide (a, m) collision \Rightarrow \text{push } (e, k)
if collide (a, n) collision \Rightarrow \text{push } (e, k)
```

Redundant results ⇒ add extra check to code

The Test Setup

Three different configuration types

Structured stack

Unstructured Pile

Rock Slide

The Test Setup (Cont'd)

- For each configuration type
 - Increasing number of triangles in objects
 - Increasing number of objects
- Test against Rapid
 - Rapid uses OBBs we use AABBs
- No optimization of imaginary nodes in BVHs (upto 33%)

Results

Rapid on Intel Quad CPU using one core

Cuda on ge9800 GX2 using one core

Stack: Cuda only

Pile (3-7)

Rockslide: Cuda only

Slide (2)

Thanks

Questions?

