AUTHENTICATED ENCRYPTION

Mihir Bellare UCSD 1

Authenticated Encryption

In practice we often want both privacy and authenticity.

Example: A doctor wishes to send medical information M about Alice to the medical database. Then

- We want data privacy to ensure Alice's medical records remain confidential.
- We want authenticity to ensure the person sending the information is really the doctor and the information was not modified in transit.

We refer to this as authenticated encryption.

Mihir Bellare UCSD 3

So Far ...

We have looked at methods to provide privacy and authenticity separately:

Goal	Primitive	Security notion
Data privacy	symmetric encryption	IND-CPA
Data authenticity	MAC	UF-CMA

Mihir Bellare UCSD

Authenticated Encryption Schemes

Syntactically, an authenticated encryption scheme is just a symmetric encryption scheme $\mathcal{AE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ where

Privacy of Authenticated Encryption Schemes

The notion of privacy for symmetric encryption carries over, namely we want IND-CPA.

Mihir Bellare UCSD

INT-CTXT

Let $\mathcal{AE}=(\mathcal{K},\mathcal{E},\mathcal{D})$ be a symmetric encryption scheme and A an adversary.

Game INTCTXT $_{AE}$ procedure Initialize

 $K \stackrel{\$}{\leftarrow} \mathcal{K} ; S \leftarrow \emptyset$

procedure Enc(M)

 $C \stackrel{\$}{\leftarrow} \mathcal{E}_{K}(M)$ $S \leftarrow S \cup \{C\}$

Return C

procedure Finalize(C)

 $M \leftarrow \mathcal{D}_K(C)$ if $(C \notin S \land M \neq \bot)$ then return true

Else return false

The int-ctxt advantage of A is

$$\mathbf{Adv}_{\mathcal{AE}}^{\mathrm{int-ctxt}}(A) = \mathsf{Pr}[\mathsf{INTCTXT}_{\mathcal{AE}}^A \Rightarrow \mathsf{true}]$$

Mihir Bellare UCSD 7

Integrity of Authenticated Encryption Schemes

Adversary's goal is to get the receiver to accept a "non-authentic" ciphertext C.

Integrity of ciphertexts: C is "non-authentic" if it was never transmitted by the sender.

Mihir Bellare UCSD 6

Integrity with privacy

5

The goal of authenticated encryption is to provide both integrity and privacy. We will be interested in IND-CPA + INT-CTXT.

Plain Encryption Does Not Provide Integrity

$\begin{array}{c|c} \mathbf{Alg} \ \mathcal{E}_{\mathcal{K}}(M) \\ \hline C[0] \overset{\$}{\leftarrow} \{0,1\}^n \\ \text{For } i=1,\ldots,m \ \text{do} \\ C[i] \leftarrow \mathsf{E}_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \hline \text{Return } C \\ \end{array}$

Question: Is CBC\$ encryption INT-CTXT secure?

Answer: No, because any string C[0]C[1]...C[m] has a valid decryption.

Plain Encryption Does Not Provide Integrity

$$\begin{array}{l} \operatorname{\mathbf{Alg}} \ \mathcal{E}_{\mathcal{K}}(M) \\ \hline C[0] \overset{\$}{\leftarrow} \{0,1\}^n \\ \operatorname{For} \ i = 1, \ldots, m \ \operatorname{do} \\ C[i] \leftarrow \operatorname{E}_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \operatorname{Return} \ C \\ \end{array} \quad \begin{array}{l} \operatorname{\mathbf{Alg}} \ \mathcal{D}_{\mathcal{K}}(C) \\ \hline \operatorname{For} \ i = 1, \ldots, m \ \operatorname{do} \\ M[i] \leftarrow \operatorname{E}_{\mathcal{K}}^{-1}(C[i]) \oplus C[i-1] \\ \operatorname{Return} \ M \\ \end{array}$$

adversary A

$$C[0]C[1]C[2] \stackrel{\$}{\leftarrow} \{0,1\}^{3n}$$

Return $C[0]C[1]C[2]$

Then

$$\mathsf{Adv}^{\mathrm{int\text{-}ctxt}}_{\mathcal{SE}}(A) = 1$$

This violates INT-CTXT.

A scheme whose decryption algorithm never outputs \perp cannot provide integrity!

Mihir Bellare UCSD 11

Plain Encryption Does Not Provide Integrity

$$\begin{array}{l} \operatorname{\mathbf{Alg}} \ \mathcal{E}_{\mathcal{K}}(M) \\ \hline C[0] \overset{\$}{\leftarrow} \{0,1\}^n \\ \operatorname{For} \ i = 1, \ldots, m \ \operatorname{do} \\ C[i] \leftarrow \operatorname{E}_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \operatorname{Return} \ C \\ \end{array}$$

Question: Is CBC\$ encryption INT-CTXT secure?

Encryption with Redundancy

Here $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ is our block cipher and $h: \{0,1\}^* \to \{0,1\}^n$ is a "redundancy" function, for example

- $h(M[1]...M[m]) = 0^n$
- $h(M[1]...M[m]) = M[1] \oplus \cdots \oplus M[m]$
- A CRC
- h(M[1]...M[m]) is the first n bits of SHA1(M[1]...M[m]).

The redundancy is verified upon decryption.

Encryption with Redundancy

Let $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be our block cipher and $h: \{0,1\}^* \to \{0,1\}^n$ $\{0,1\}^n$ a redundancy function. Let $\mathcal{SE}=(\mathcal{K},\mathcal{E}',\mathcal{D}')$ be CBC\$ encryption and define the encryption with redundancy scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ via

Alg
$$\mathcal{E}_{K}(M)$$
 $M[1] \dots M[m] \leftarrow M$
 $M[m+1] \leftarrow h(M)$
 $C \stackrel{\$}{\leftarrow} \mathcal{E}'_{K}(M[1] \dots M[m]M[m+1])$
return C

$$\begin{array}{c|c} \underline{\mathsf{Alg}}\ \mathcal{E}_{\mathcal{K}}(M) \\ \hline M[1] \dots M[m] \leftarrow M \\ M[m+1] \leftarrow h(M) \\ C \xleftarrow{\$} \mathcal{E}'_{\mathcal{K}}(M[1] \dots M[m]M[m+1]) \\ \mathrm{return}\ C \end{array} \qquad \begin{array}{c|c} \underline{\mathsf{Alg}}\ \mathcal{D}_{\mathcal{K}}(C) \\ \hline M[1] \dots M[m]M[m+1] \leftarrow \mathcal{D}'_{\mathcal{K}}(C) \\ \mathrm{if}\ (M[m+1] = h(M))\ \mathrm{then} \\ \mathrm{return}\ M[1] \dots M[m] \\ \mathrm{else\ return}\ \bot \end{array}$$

UCSD Mihir Bellare 13

Encryption with Redundancy Fails

adversary A

$$M[1] \stackrel{\$}{\leftarrow} \{0,1\}^n ; M[2] \leftarrow h(M[1])$$
 $C[0]C[1]C[2]C[3] \stackrel{\$}{\leftarrow} Enc(M[1]M[2])$
Return $C[0]C[1]C[2]$
 $M[1] \qquad h(M[1])$
 $M[2] \qquad h(M[1]M[2])$
 $E_K \qquad E_K \qquad E_K$

This attack succeeds for any (not secret-key dependent) redundancy function h.

UCSD Mihir Bellare 15

Arguments in Favor of Encryption with Redundancy

The adversary will have a hard time producing the last enciphered block of a new message.

Mihir Bellare UCSD 14

WEP Attack

A "real-life" rendition of this attack broke the 802.11 WEP protocol, which instantiated h as CRC and used a stream cipher for encryption [BGW].

What makes the attack easy to see is having a clear, strong and formal security model.

UCSD Mihir Bellare 16

Generic Composition

Build an authenticated encryption scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ by combining

- a given IND-CPA symmetric encryption scheme $\mathcal{SE} = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$
- a given PRF $F: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$

	CBC\$-AES	CTR\$-AES	<u> </u>
HMAC-SHA1			
CMAC			
ECBC			
:			

Mihir Bellare UCSD 17

Generic Composition Methods

The order in which the primitives are applied is important. Can consider

Method	Usage
Encrypt-and-MAC (E&M)	SSH
MAC-then-encrypt (MtE)	SSL/TLS
Encrypt-then-MAC (EtM)	IPSec

We study these following [BN].

Generic Composition

Build an authenticated encryption scheme $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ by combining

- a given IND-CPA symmetric encryption scheme $\mathcal{SE} = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$
- a given PRF $F: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$

A key $K = K_e || K_m$ for \mathcal{AE} always consists of a key K_e for \mathcal{SE} and a key K_m for F:

$$\begin{split} & \frac{\textbf{Alg } \mathcal{K}}{\mathcal{K}_e \xleftarrow{\mathfrak{s}} \mathcal{K}'; \ \mathcal{K}_m \xleftarrow{\mathfrak{s}} \{0,1\}^k} \\ & \text{Return } & \mathcal{K}_e || \mathcal{K}_m \end{split}$$

Mihir Bellare UCSD 18

Encrypt-and-MAC

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \textbf{Alg } \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(M) \\ \text{Return } C'||T \end{array} \qquad \begin{array}{c|c} \textbf{Alg } \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ \hline \text{Else return } \bot \end{array}$$

Security	Achieved?
IND-CPA	
INT-CTXT	

UCSD Mihir Bellare 20

Encrypt-and-MAC

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$\overline{Alg\;\mathcal{E}_{K_e K_m}(M)}$	$ig $ Alg $\mathcal{D}_{K_e K_m}(C' T)$
$C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M)$	$ \overline{M \leftarrow \mathcal{D}'_{K_e}(C')} $ If $(T = F_{K_m}(M))$ then return M
$T \leftarrow F_{K_m}(M)$	If $(T = F_{K_m}(M))$ then return M
Return $C' T$	Else return \perp

Security	Achieved?
IND-CPA	NO
INT-CTXT	

Why? $T = F_{K_m}(M)$ is a deterministic function of M and allows detection of repeats.

Mihir Bellare UCSD 21

Encrypt-and-MAC

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(M) \\ \text{Return } C'||T \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ \text{Else return } \bot \end{array}$$

Security	Achieved?
IND-CPA	NO
INT-CTXT	NO

Why? May be able to modify C' in such a way that its decryption is unchanged.

Mihir Bellare UCSD 23

Encrypt-and-MAC

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(M) \\ \text{Return } C'||T \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ \hline \text{Else return } \bot \\ \end{array}$$

Security	Achieved?
IND-CPA	NO
INT-CTXT	

Mihir Bellare UCSD 22

MAC-then-Encrypt

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline T \leftarrow F_{K_m}(M) \\ C \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M||T) \\ \text{Return } C \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C) \\ \hline M||T \leftarrow \mathcal{D}'_{K_e}(C) \\ \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ \text{Else return } \bot \end{array}$$

Security	Achieved?
IND-CPA	
INT-CTXT	

MAC-then-Encrypt

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

Alg $\mathcal{E}_{K_e K_m}(M)$	\mid Alg $\mathcal{D}_{K_e\mid\mid K_m}(\mathcal{C})$
$T \leftarrow F_{K_m}(M)$	$ \overline{M T \leftarrow \mathcal{D}'_{K_0}(C)} $
$C \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M T)$	$ M T \leftarrow \mathcal{D}'_{K_e}(C) $ If $(T = F_{K_m}(M))$ then return M
Return C	Else return ⊥

Security	Achieved?
IND-CPA	YES
INT-CTXT	

Why? $\mathcal{SE}' = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$ is IND-CPA secure.

Mihir Bellare UCSD 25

MAC-then-Encrypt

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline T \leftarrow F_{K_m}(M) \\ C \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M||T) \\ \text{Return } C \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C) \\ \hline M||T \leftarrow \mathcal{D}'_{K_e}(C) \\ \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ \text{Else return } \bot \end{array}$$

Security	Achieved?
IND-CPA	YES
INT-CTXT	NO

Why? May be able to modify C in such a way that its decryption is unchanged.

MAC-then-Encrypt

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline T \leftarrow F_{K_m}(M) \\ C \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M||T) \\ \text{Return } C \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C) \\ \hline M||T \leftarrow \mathcal{D}'_{K_e}(C) \\ \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ \text{Else return } \bot \end{array}$$

Security	Achieved?
IND-CPA	YES
INT-CTXT	

Mihir Bellare UCSD 26

Encrypt-then-MAC

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

27

$\overline{Alg\;\mathcal{E}_{K_e K_m}(M)}$	Alg $\mathcal{D}_{K_e K_m}(C' T)$
$C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M)$	
$T \leftarrow F_{K_m}(C')$	If $(T = F_{K_m}(C'))$ then return M
Return $C' T$	Else return \perp

Security	Achieved?
IND-CPA	
INT-CTXT	

Encrypt-then-MAC

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$\overline{\textbf{Alg }\mathcal{E}_{\mathcal{K}_e \mathcal{K}_m}(M)}$	Alg $\mathcal{D}_{K_e K_m}(C' T)$
$C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M)$	$M \leftarrow \mathcal{D}'_{K_e}(C')$
$T \leftarrow F_{K_m}(C')$	$M \leftarrow \mathcal{D}'_{K_e}(C')$ If $(T = F_{K_m}(C'))$ then return M
Return $C' T$	Else return ot

Security	Achieved?	
IND-CPA	YES	
INT-CTXT		

Why? $\mathcal{SE}' = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$ is IND-CPA secure.

Mihir Bellare UCSD 29

UCSD

Encrypt-then-MAC

Mihir Bellare

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \mathbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(C') \\ \mathsf{Return} \ C'||T \end{array} \qquad \begin{array}{c|c} \mathbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \mathsf{If} \ (T = F_{K_m}(C')) \ \mathsf{then} \ \mathsf{return} \ M \\ \mathsf{Else} \ \mathsf{return} \ \bot \end{array}$$

Security	Achieved?	
IND-CPA	YES	
INT-CTXT	YES	

Why? If C||T| is new then T will be wrong.

Encrypt-then-MAC

 $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(C') \\ \text{Return } C'||T \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \text{If } (T = F_{K_m}(C')) \text{ then return } M \\ \text{Else return } \bot \end{array}$$

Security	Achieved?	
IND-CPA	YES	
INT-CTXT		

Mihir Bellare UCSD 30

Two keys or one?

31

We have used separate keys K_e , K_m for the encryption and message authentication. However, these can be derived from a single key K via $K_e = F_K(0)$ and $K_m = F_K(1)$, where F is a PRF such as a block cipher, the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message authentication is error-prone, but works if done correctly.

Exercise

Let E = AES. Let \mathcal{K} return a random 128-bit AES key \mathcal{K} . Let $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ where \mathcal{E} , \mathcal{D} are below. Here, X[i] denotes the i-th 128-bit block of a string whose length is a multiple of 128.

Alg $\mathcal{E}_{K}(M)$ if $|M| \neq 512$ then return \perp $M[1] \dots M[4] \leftarrow M$ $C_{e}[0] \stackrel{\$}{\leftarrow} \{0,1\}^{128} C_{m}[0] \leftarrow 0^{128}$ for $i = 1, \dots, 4$ do $C_{e}[i] \leftarrow E_{K}(C_{e}[i-1] \oplus M[i])$ $C_{m}[i] \leftarrow E_{K}(C_{m}[i-1] \oplus M[i])$ $C_{e} \leftarrow C_{e}[0]C_{e}[1]C_{e}[2]C_{e}[3]C_{e}[4]$ $T \leftarrow C_{m}[4]$; return (C_{e}, T)

Alg
$$\mathcal{D}_K((C_e, T))$$

if $|C_e| \neq 640$ then return \perp
 $C_m[0] \leftarrow 0^{128}$
for $i = 1, \dots, 4$ do
 $M[i] \leftarrow E_K^{-1}(C_e[i]) \oplus C_e[i-1]$
 $C_m[i] \leftarrow E_K(C_m[i-1] \oplus M[i])$
if $C_m[4] \neq T$ then return \perp
return M

Mihir Bellare UCSD 33

Exercise

- 1. Is SE IND-CPA-secure? Why or why not?
- 2. Is SE INT-CTXT-secure? Why or why not?
- 3. Is \mathcal{SE} an Encrypt-and-MAC construction? Justify your answer.

Mihir Bellare UCSD 34

Generic Composition in Practice

AE in	is based on	which in	and in this
		general is	case is
SSH	E&M	insecure	secure
SSL	MtE	insecure	insecure
SSL + RFC 4344	MtE	insecure	secure
IPSec	EtM	secure	secure
WinZip	EtM	secure	insecure

Why?

- Encodings
- Specific "E" and "M" schemes
- For WinZip, disparity between usage and security model

Authenticated encryption today

- Dedicated schemes: OCB, OCBx (x=1,2,3), GCM, CCM, EAX
- TLS uses GCM
- CAESAR competition to standardize new schemes: http://competitions.cr.yp.to/caesar.html