Algebraic Structures

Dr. E.SURESH BABU

Assistant Professor

Computer Science and Engineering Department

National Institute of Technology, Warangal

Warangal

Algebraic Structures

Why Study Finite Fields?

- ❖ It is almost impossible to fully understand practically any feature of modern cryptography and several important aspects of general computer security
 - ✓ if you do not know what is meant by a **Finite Field**.

Why Study Finite Fields?

- ❖ Without understanding the notion of a finite field,
 - ✓ You will NOT be able to **understand AES**
 - ✓ You will NOT be able to understand the **derivation of the RSA**algorithm for public-key cryptography.
 - ✓ You will not be able to understand the workings of several modern protocols (like the SSH protocol)

Why Study Finite Fields?

- ❖ You will never understand the **up coming ECC algorithm**.
- * Finally, if you do not understand the concepts then you might as well give up on learning computer and network security.

The starting point for learning finite fields is the concept of a group. That's where we begin in the next section.

Algebraic Structures

- Cryptography requires sets of integers and specific operations that are defined for those sets.
- ❖ The combination of the **set and the operations** that are applied to the **elements of the set** is called an **Algebraic Structure**.

Algebraic Structures

- **❖** We will define **Three Common Algebraic Structures**:
 - 1. Groups,
 - 2. Rings, and
 - 3. Fields.

Groups

Groups

- ❖ A Group (G) is a set of elements with a binary operation (•) that satisfies four properties.
 - **✓** Closure
 - **✓** Associativity
 - **✓** Existence of identity
 - **✓** Existence of inverse

Operations on Group

- ❖ If the operation is addition, we may refer to the group as an additive group or a group under addition.
 - ✓ Additive groups are normally **abelian(Supports Commutative)**.
- ❖ If the operation is multiplication, we may refer to the group as a multiplicative group or a group under multiplication.
- ❖ We typically write G as (G,+) and (G,X)

Operations on Group

❖ The algebraic group properties of the combinations can be summarized as in the following table

	Addition	Multiplication
Closure	a+b is an integer	a*b is an integer
Associativity	a+(b+c)=(a+b)+c	$a^*(b^*c) = (a^*b)^*c$
Existence of an identity element	a+0=a	a*I = a
Existence of inverse elements	a+(-a) = 0	Only 1 and -1 have inverses: $1*1 = 1$, $-1*(-1) = 1$
Commutativity	a+b=b+a	a*b = b*a

Operations on Group

* The operations are addition modulo n and Multiplication modulo

n.

	Addition modulo n	Multiplication modulo n
Closure	$a+b \equiv c \mod n, 0 \le c \le n-1$	$a*b \equiv c \mod n, 0 \le c \le n-1$
Associativity	$a+(b+c) \equiv (a+b)+c \bmod n$	$a^*(b^*c) \equiv (a^*b)^*c \bmod n$
Existence of an identity element	$a+0 \equiv a \mod n$	$a*l \equiv a \mod n$
Existence of inverse elements	$a+(n-a) \equiv 0 \bmod n$	a has the inverse only when a is coprime to n
Commutativity	$a+b \equiv b+a \bmod n$	$a*b \equiv b*a \mod n$

Additive Group

 \diamond Consider the set $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ of integers modulo 5. This

has the group table for addition modulo 5 below:

Multiplicative Group

multiplication modulo 6.

 \diamond Consider the set $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$, together with

Multiplicative Group

❖ Consider the set $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, together with multiplication modulo 5.

Cyclic Group

Cyclic Groups

* A Cyclic Group is a group that is its Own Cyclic Subgroup.

$$\{e, g, g^2, \dots, g^{n-1}\}\$$
, where $g^n = e$

❖ The subgroup of group can be **generated** using the **power of an**

element then such a subgroup is called the Cyclic Subgroup.

$$a^n \to a \bullet a \bullet \dots \bullet a \quad (n \text{ times})$$

Note: The Term Power is used here, to repeatedly applying the group operation to the element

Cyclic Groups Generator

❖ The exponentiation as **repeated application of operator**

$$a^{-3} = a.a.a$$

and the **Identity Element** can be:

$$a^0 = e$$

Cyclic Groups Generator

❖ A **group is cyclic** if every element is a power of some fixed element

$$b = a^k$$

For some 'a' and every 'b' in group

* 'a' is said to be a generator of the group

Cyclic Groups Generator

❖ The element that generates the Cyclic Subgroup and which can generate the group itself, then such a element is called as Group Generator

❖ Note: The Cyclic Group can have Many **GENERATOR**

- ❖ What is the **Order of a Group**
 - ✓ The order of the group is the cardinality of the group
 - ✓ In other words the number of elements in the group.

- ❖ What is the order of an element in a group;
 - ✓ The order of an element $a \in G$ is the smallest value t such that
 - $a^t \equiv a \circ a \circ \dots$ (t times) ... $\circ a = \text{group identity element}$
 - where is the **group operator**.

- ❖ What is the **purpose of notation Z***_p
 - In the given notation p is a prime p,
 - The set $\{1, 2, 3, \dots, p-1\}$ constitutes a group with the

group operator being modulo p multiplication.

- ❖ The group $\mathbf{Z_p}^*$ is merely a set of \mathbf{p} -1 integers (1 through \mathbf{p} 1.)
 - ✓ Example : **Z***₇ contains only the **6 integers** from **1 through 6**
- * Z*p is also frequently referred to as a multiplicative group of

order p - 1 with 1 being the group identity element.

Cyclic Groups

- ❖ When will be Z*_p is in cyclic group
 - The group $\mathbf{Z_p^*}$ is a cyclic group if all the elements of $\mathbf{group}\ \mathbf{Z_p^*}$ can be expressed as
 - α^i mod p for all $i = 0, 1, 2, \cdots$ and for some element $\alpha \in \mathbb{Z}_p^*$
 - The **group** \mathbb{Z}_{p}^{*} is a cyclic group for certain values of p.

Cyclic Groups: Example

- ❖ For illustration, \mathbb{Z}_{7}^{*} is a cyclic group with $\alpha = 3$. That is,
 - if you compute $3^i \mod 7$ for all $i = 0, 1, 2, \cdots$

```
3^{1} \mod 7 = 3^{0} \times 3 = 1 \times 3 = 3 \equiv 3 \mod 7
3^{2} \mod 7 = 3^{1} \times 3 = 3 \times 3 = 9 \equiv 2 \mod 7
3^{3} \mod 7 = 3^{2} \times 3 = 2 \times 3 = 6 \equiv 6 \mod 7
3^{4} \mod 7 = 3^{3} \times 3 = 6 \times 3 = 18 \equiv 4 \mod 7
3^{5} \mod 7 = 3^{4} \times 3 = 4 \times 3 = 12 \equiv 5 \mod 7
3^{6} \mod 7 = 3^{5} \times 3 = 5 \times 3 = 15 \equiv 1 \mod 7
```

 \diamond you will get the **6 numbers** {**2,3,6,4,5,1**} in the multiplicative group \mathbf{Z}^*_7

Another Example of \mathbf{Z}^*_{17}

- ❖ if we use 2 as a generator element, we get the cyclic subgroup {1, 2, 4, 8, 16, 15, 13, 9} whose order is 8.
- All of the elements in this subgroup are given by $2^i \mod 17$ for all i = 0, 1, 2,

Cyclic Groups Generator: Addition

 \clubsuit The group $G = \langle Z_6, + \rangle$ is a cyclic group with two generators

$$g = 1 \text{ and } g = 5.$$

Cyclic Groups Generator - Examples: Addition

 \clubsuit Let the **Group G** = $\langle \mathbb{Z}_6, + \rangle$. Then we can form **Four cyclic**

subgroups They are

$$H_1 = \langle \{0\}, + \rangle$$

$$H_2 = \langle \{0, 2, 4\}, + \rangle$$

$$H_3 = \langle \{0, 3\}, + \rangle$$

$$\mathbf{H_4} = \mathbf{G}.$$

Examples: $H_1 = < \{0\}, + > :$ **Element** = **0**

$$0^0 \mod 6 = 0$$

Examples: $H_2 = G$. Element = '1'

$$1^{0} \mod 6 = 0$$
 $1^{1} \mod 6 = 1$
 $1^{2} \mod 6 = (1 + 1) \mod 6 = 2$
 $1^{3} \mod 6 = (1 + 1 + 1) \mod 6 = 3$
 $1^{4} \mod 6 = (1 + 1 + 1 + 1) \mod 6 = 4$
 $1^{5} \mod 6 = (1 + 1 + 1 + 1 + 1) \mod 6 = 5$

Examples: $H_3 = < \{0, 3\}, + >$, Element ='3'

$$3^0 \mod 6 = 0$$

 $3^1 \mod 6 = 3$

Examples: $H_4 = \{0, 2, 4\}, + \}$, Element ='2'

$$2^0 \mod 6 = 0$$

 $2^1 \mod 6 = 2$
 $2^2 \mod 6 = (2 + 2) \mod 6 = 4$

Examples: $H_4 = \{0, 2, 4\}, + \}$; Element = '4'

$$4^0 \mod 6 = 0$$

 $4^1 \mod 6 = 4$
 $4^2 \mod 6 = (4 + 4) \mod 6 = 2$

Stop: The Process will be repeated

Note: This is not a New Group

Examples: $H_5 = G$; Element = '5'

$$5^{0} \mod 6 = 0$$
 $5^{1} \mod 6 = 5$
 $5^{2} \mod 6 = 4$
 $5^{3} \mod 6 = 3$
 $5^{4} \mod 6 = 2$
 $5^{5} \mod 6 = 1$

Stop: The Process will be repeated

Note: This is not a New Group

Cyclic Groups Generator: Multiplications

* The group $G = \langle Z_{10}^*, \times \rangle$ is a cyclic group with two generators

$$g = 3$$
 and $g = 7$.

Examples: Multiplication

 \clubsuit Let the **Group G** = $\langle \mathbf{Z}_{10*}, \times \rangle$. Then we can form **Four elements**

1,3,7, and 9. The cyclic subgroups are

$$H_1 = < \{1\}, \times >$$

$$H_2 = \langle \{1, 9\}, \times \rangle$$

$$\mathbf{H}_3 = \mathbf{G}$$
.

Examples: $H1 = \langle \{1\}, \times \rangle$, Element = 1

$$1^0 \mod 10 = 1$$

Examples: Element = '3'

$$3^0 \mod 10 = 1$$
 $3^1 \mod 10 = 3$
 $3^2 \mod 10 = 9$
 $3^3 \mod 10 = 7$

Examples: Element ='7'

 $7^{0} \mod 10 = 1$ $7^{1} \mod 10 = 7$ $7^{2} \mod 10 = 9$ $7^{3} \mod 10 = 3$

7 is a Group Generator

Examples: Element ='9'

$$9^0 \mod 10 = 1$$

 $9^1 \mod 10 = 9$

Thank U