ECE 210 Review Session

10/15/16

Overview

Part 1

- Steady/Transient State, Zero-State/Zero-Input
- Phasor Circuit Analysis
- Available power
- Frequency Response, Resonance
- Periodic Signals
- Fourier Series

Part 2

Past Exam Problems

Steady State & Transient Responses

System response - sum of the steady state response and the transient response: $y(t) = y_{ss}(t) + y_{tr}(t)$

Steady State Response - y_{ss}(t)

- The component of the system response that is time invariant
- Constants: e.g. 5, j
- Sinusoids: e.g. cos(ωt), sin(ωt)
- $y_{ss}(t) = \lim_{t \to ss} (t \to ss) y(t)$

Transient Response - y_{tr}(t)

- The component of the system that decays to 0 as time proceeds
- Exponentials: e.g. ce^{-at}

Zero-State & Zero-Input Responses

System response - sum of the zero-state response and the zero-input response: $y(t) = y_{zs}(t) + y_{zi}(t)$

Given the ODE describing the system:
$$\frac{\partial y(t)}{\partial t} + y(t) = f(t)$$

Zero-State Response - y_{zs}(t)

• Solution to the ODE given the condition: f(t) = f(t), $y(t_0) = 0$

Zero-Input Response - y_{zi}(t)

• Solution to the ODE given the condition: f(t) = 0, $y(t_0) = k_1$

Phasor Circuit Analysis

Phasor - Vector spinning at an arbitrary angular velocity (w). Usually written in polar form: $|F|e^{j\angle F}$

Conversion of a sinusoid to phasor form requires finding its magnitude and phase, ex: $f(t) = 2\cos(2t + pi/3)$; magnitude = 2, phase = pi/3 rad -> $F = 2e^{j \angle pi/3}$

Impedance (Z) - Ratio of phasor Voltage to phasor Current passing through a circuit component. Z = V/I (extension of Ohm's Law to complex domain)

Impedance of electrical components
$$Z = R$$
 $Z = \frac{1}{j\omega C}$ $Z = j\omega L$

From Chapter 2:

Maximum & Available Power

Absorbed Power

$$p = vi, \quad \sum_{all \, i} p_i = 0$$

Available Power

$$p_a = \frac{v_T}{4R_T}$$

$$R_L = R_T$$

Average, Available Power

Average power:

The average power delivered to a component is $P_{avg} = \frac{1}{2} \text{Re}\{VI^*\}$

Available Power:

The available power is $P_a = \frac{|V_s|^2}{8R_T}$, where $R_T = \text{Re}\{Z_T\}$

Matches Load:

The available power is delivered to the load when $Z_T = Z_T^*$

Resonant Frequency

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

- Possible existence of steady-state co-sinusoidal oscillations in a source-free circuit
- In series resonance, equivalent impedance of L and C is effective short circuit
- In parallel resonance, equivalent impedance of L and C is effective open circuit

Frequency Response

- Given a system described by y(t) ~ f(t), take the fourier transform of both, and H(ω) = Y/F
 - $f(t) -> |F| \cos(\omega t + < F)$
 - $y(t) \rightarrow |Y| \cos(\omega t + \langle Y)$
- For ODEs (d/dt) -> jω

3. (16 pts) Consider the following circuit.

(a) Determine the frequency response $H(\omega) = \frac{Y}{F}$.

Periodic Signals

 A signal is said to be periodic if there exists some delay to such that:

$$f(t-tO) = f(t)$$

• The period of the signal (T): the smallest non-zero value of t0.

Harmonically related frequencies

 All frequencies are positive integer multiples of the frequency of the original wave, known as the fundamental frequency (also called 1st harmonic).

 Note: Fourier series frequency components are harmonically related!

Fourier Series

A way to represent a periodic function as the sum of a set of simple sinusoid or complex exponential waves.

Fourier Series (Cont'd)

Absolutely Integrable: ∫T |f(t)|dt < ∞

if the above inequality is satisfied, then the Fourier

Coefficients Fn must be bounded.

Orthogonality

 $\int (e^{jnwt})(e^{jmwt})^*dt = 0 (m \neq n)$

This condition is crucial to Fourier Series representation!

$f(t)$, period $T = \frac{2\pi}{\omega_o}$	Form	Coefficients
$\sum_{n=-\infty}^{\infty} F_n e^{jn\omega_o t}$	Exponential	$F_n = \frac{1}{T} \int_T f(t) e^{-jn\omega_o t} dt$
$\frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega_o t) + b_n \sin(n\omega_o t)$	Trigonometric	$a_n = F_n + F_{-n}$ $b_n = j (F_n - F_{-n})$
$\frac{c_o}{2} + \sum_{n=1}^{\infty} c_n \cos\left(n\omega_o t + \theta_n\right)$	Compact for real $f(t)$	$c_n = 2 F_n $ $\theta_n = \angle F_n$

Table 1: Fourier series forms.

	Name:	Condition:	Property:
1	Scaling	Constant K	$K f(t) \leftrightarrow K F_n$
2	Addition	$f(t) \leftrightarrow F_n, g(t) \leftrightarrow G_n, \ldots$	$f(t) + f(t) + \ldots \leftrightarrow F_n + G_n + \ldots$
3	Time shift	Delay t_o	$f(t-t_o) \leftrightarrow F_n e^{-jn\omega_o t_o}$
4	Derivative	Continuous $f(t)$	$rac{df}{dt} \leftrightarrow jn\omega_o F_n$
5	Hermitian	Real $f(t)$	$F_{-n} = F_n^*$
6	Even function	f(-t) = f(t)	$f(t) = \frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega_o t)$
7	Odd function	f(-t) = -f(t)	$f(t) = \sum_{n=1}^{\infty} b_n \sin(n\omega_o t)$
8	Average power	10 30 1000	$P \equiv \frac{1}{T} \int_{T} f(t) ^{2} dt = \sum_{n=-\infty}^{\infty} F_{n} ^{2}$

Table 2: Fourier series properties

- 5. (24 pts) Consider the periodic signal $f(t) = \frac{3}{2} + 4\cos^2(\frac{\pi}{4}t) + \sin(\frac{3\pi}{4}t + \frac{\pi}{4})$ being the input to an LTI system having frequency response $H(\omega) = \frac{j\omega}{1+j\omega}$.
 - (a) Obtain the fundamental frequency ω_0 and period T of the input f(t).

(Spring 2016 Exam 2 Problem 5)

$$\omega_0 =$$

(b) For n = 0, 1, -1, 2, -2, obtain the exponential Fourier series coefficients of the input, F_n , and of the output Y_n .

Questions?

Acknowledgement

- A large portion of this slide is taken from HKN ECE210 Review Session slide from Spring 2016.
- Special thanks to Kaidong Peng, Julian Michaels, Seungjun Cho