MA 231: Topology

Naman Mishra

August 2025

Contents

Lectures

1	Tuo	August 5																9
T	rue,	August 5				•	•		•		•		•		•			Δ

The course

Textbook: Lecture 1.

Tuesday

- (1) Viro, O.Ya., Ivanov, O.A., Netsvetaev, N., and Kharlamov, V.M., August 5 Elementary Topology: Problem Textbook, AMS, 2008.
- (2) Armstrong, M. A., Basic Topology, Springer (India), 2004.
- (3) Munkres, J. R., Topology, Pearson Education, 2005.

Teams Code:

Study of properties associated with continuity and limits.

Examples.

- Any continuous function $f: [0,1] \to \{0,1\}$ is constant, by the intermediate value theorem.
- Any continuous function $f: [0,1] \to \mathbb{R}$ is bounded.

The first example illustrates connectivity, and the second compactness. We study continuous functions $f \colon X \to Y$ between topological spaces. Topological spaces must come with a notion of continuity and limits. They must coincide with our usual understanding in familiar settings such as \mathbb{R}^n , convergence of sequences, and so on. We should be able to construct new topological spaces from old ones.

Our first attempt is metric spaces.

Definition .1 (Metric space). A *metric* on a set X is a function $d: X \times X \to [0, \infty)$ such that

- (1) d(x,x) = 0 for all $x \in X$,
- (2) [Symmetry] $d(x_1, x_2) = d(x_2, x_1)$ for all $x_1, x_2 \in X$, and
- (3) [Triangle inequality] $d(a,c) \leq d(a,b) + d(b,c)$ for all $a,b,c \in X$.

Lectures 3

(4) [Positivity] $d(x_1, x_2) = 0$ implies that $x_1 = x_2$.

The pair (X, d) is called a *metric space*.

Remark. If positivity does not hold, then we can define $a \sim b$ on X iff d(a,b) = 0. d then induces a metric on the quotient space X/\sim .

In the early 1900's, it wasn't clear whether the notion of a topological space is even required. In fact, Hausdorff introduced topological spaces in the second edition of his textbook, but went back to metric spaces in the third edition.

Here is a non-example of a metric space. Consider $X = \mathbb{R}^{\mathbb{R}}$ and say that $f_n \to f$ iff $f_n(x) \to f(x)$ for all $x \in \mathbb{R}$.

Claim. There is no metric on $\mathbb{R}^{\mathbb{R}}$ such that $f_n \to f$ iff $d(f_n, f) \to 0$.

Suppose (X,d) is a metric space and \sim an equivalence relation on X. We want that any continuous function $f\colon X\to Y$ for which $a\sim b$ implies f(a)=f(b), the induced function $\tilde{f}\colon X/\!\!\sim\to Y$ is continuous. This is similar to how group homomorphisms induce a homomorphism on quotient groups. In general, such quotient metrics do not exist. $\underline{\hspace{1cm}}$ Examples.

- Consider \mathbb{R} with $a \sim b$ iff $a b \in \mathbb{Q}$.
- \mathbb{R}^2 with equivalence classes as Jay drew.

The standard approach is to abstract properties of *open sets*. In the metric space (X, d), a set $U \subseteq X$ is open if for every $x \in U$ there exists an $\varepsilon > 0$ such that the ε -neighborhood of x is contained in U.

Definition .2 (Topological space). Let X be a set. A *topology* on X is a collection \mathcal{T} of subsets of X such that

- (1) $\varnothing, X \in \mathcal{T}$;
- (2) if $\{U_{\alpha}\}_{{\alpha}\in I}$ is a subcollection of \mathcal{T} , then $\bigcup_{{\alpha}\in I}U_{\alpha}\in \mathcal{T}$;
- (3) if $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap \cdots \cap U_n \in \mathcal{T}$.

Sets in \mathcal{T} are called *open sets* and the pair (X,\mathcal{T}) is called a *topological space*.

Examples.

• [Discrete topology] For any set X, 2^X is a topology on X.

We will prove this much later, once we study product topologies and first countability.

We will come back to this with Hausdorff things.

4 Lectures

- [Indiscrete topology] For any set X, $\{\varnothing,X\}$ is a topology on X.
- [Standard topology on \mathbb{R}] The collection of all subsets that can be expressed as a union of open intervals is a topology on \mathbb{R} . Alternatively and more simply, the metric space definition also yields the same topology.