KEY OBSERVATIONS REGARDING THE PYMACEUTICALS STUDY

Overall, of the four relevant treatments under consideration - namely, Capomulin, Infubinol, Ketapril, and Placebo) - we found that Capomulin seems the most promising and effective in treating tumors in mice. Below, you will find three key observations we concldued from the study data:

- 1. Capomulin is the only treatment for which tumor volume decreases over a 45 day period in mice.
- 2. Over 45 days of treatment, Capomulin has the least increase in metast atic sites.
- 3. Capomulin has the highest survival rate with 21 of 25 mice survival o ver 45 days of treatment.

```
In [1]: %matplotlib inline
In [2]: # Dependencies and Setup
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np

In [3]: # Hide warning messages in notebook
    import warnings
    warnings.filterwarnings('ignore')

In [4]: # File to Load (Remember to Change These)
    mouse_drug_data = "mouse_drug_data.csv"
    clinical_trial_data = "clinicaltrial_data.csv"

In [5]: # Read the Mouse and Drug Data and the Clinical Trial Data
    mouse_drug_data = pd.read_csv("Resources/mouse_drug_data.csv")
    clinical trial_data = pd.read_csv('Resources/clinicaltrial_data.csv')
```

```
In [6]: # Combine the data into a single dataset
    combined_data_df = pd.merge(clinical_trial_data,mouse_drug_data, how='le
    ft', on = 'Mouse ID')
    #Rename columns to make it smoother to code with (N.B. Personal preferen
    ce)
    renamed_df = combined_data_df.rename(columns = {'Mouse ID':'Mouse_ID','T
    umor Volume (mm3)':'Tumor_Volume', 'Metastatic Sites':'Metastatic_Sites'
    })
    renamed_df.head()
```

Out[6]:

	Mouse_ID	Timepoint	Tumor_Volume	Metastatic_Sites	Drug
0	b128	0	45.0	0	Capomulin
1	f932	0	45.0	0	Ketapril
2	g107	0	45.0	0	Ketapril
3	a457	0	45.0	0	Ketapril
4	c819	0	45.0	0	Ketapril

1. Tumor Response to Treatment

Out[7]:

	Drug	Timepoint	Tumor_Volume
0	Capomulin	0	45.000000
1	Capomulin	5	44.266086
2	Capomulin	10	43.084291
3	Capomulin	15	42.064317
4	Capomulin	20	40.716325

```
In [8]: # Store the Standard Error of Tumor Volumes Grouped by Drug and Timepoin
t
# Convert to DataFrame
intermediate2_df = renamed_df.groupby(['Drug','Timepoint',]).Tumor_Volum
e.sem().to_frame().reset_index()
standard_error_df = intermediate2_df[intermediate2_df['Drug'].isin(["Cap
omulin","Infubinol","Ketapril","Placebo"])]
standard_error_df.head()
```

Out[8]:

	Drug	Timepoint	Tumor_Volume
0	Capomulin	0	0.000000
1	Capomulin	5	0.448593
2	Capomulin	10	0.702684
3	Capomulin	15	0.838617
4	Capomulin	20	0.909731

```
In [9]: # Minor Data Munging to Re-Format the Data Frames
    reformat_mean_df = mean_tumor_df.pivot(index = 'Timepoint', columns = 'D
    rug')
    # Preview that Reformatting worked
    reformat_mean_df
```

Out[9]:

Tumor_Volume

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	45.000000	45.000000	45.000000	45.000000
5	44.266086	47.062001	47.389175	47.125589
10	43.084291	49.403909	49.582269	49.423329
15	42.064317	51.296397	52.399974	51.359742
20	40.716325	53.197691	54.920935	54.364417
25	39.939528	55.715252	57.678982	57.482574
30	38.769339	58.299397	60.994507	59.809063
35	37.816839	60.742461	63.371686	62.420615
40	36.958001	63.162824	66.068580	65.052675
45	36.236114	65.755562	70.662958	68.084082

```
In [10]: # Minor Data Munging to Re-Format the Data Frames
    reformat_standard_error_df = standard_error_df.pivot(index = 'Timepoint'
    , columns = 'Drug')
    # Preview that Reformatting worked
    reformat_standard_error_df
```

Out[10]:

Tumor_Volume

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.448593	0.235102	0.264819	0.218091
10	0.702684	0.282346	0.357421	0.402064
15	0.838617	0.357705	0.580268	0.614461
20	0.909731	0.476210	0.726484	0.839609
25	0.881642	0.550315	0.755413	1.034872
30	0.934460	0.631061	0.934121	1.218231
35	1.052241	0.984155	1.127867	1.287481
40	1.223608	1.055220	1.158449	1.370634
45	1.223977	1.144427	1.453186	1.351726

```
#create a figure
In [11]:
         fig, ax = plt.subplots(figsize = (8,6))
         ax.set_title('Tumor Response to Treatment')
         ax.set_ylabel('Tumor Volume (mm3)')
         drugs = ['Capomulin', 'Infubinol', 'Ketapril', 'Placebo']
         colors = ['red', 'blue', 'green', 'black']
         mean_tumor_df.groupby('Drug').plot(marker = 'o', x='Timepoint', y='Tumor
         Volume', yerr=standard_error_df, alpha=0.7, capsize=5, ax=ax, legend =
         False)
         ax.set_xlabel('Time (Days)')
         plt.xlim((-2, 47))
         plt.ylim((35, 72))
         ax.yaxis.grid(True)
         ax.legend(drugs, loc="best", framealpha=0.3, edgecolor='k')
         plt.savefig("Tumor Response To Treatment.png")
         plt.show()
```


2. Metastatic Response to Treatment

```
In [12]: # Store the Mean Met. Site Data Grouped by Drug and Timepoint
# Convert to DataFrame
intermediate3_df= renamed_df.groupby(['Drug','Timepoint',]).Metastatic_S
ites.mean().to_frame().reset_index()
mean_meta_df= intermediate3_df[intermediate3_df['Drug'].isin(["Capomuli n","Infubinol","Ketapril","Placebo"])]
# Preview DataFrame
mean_meta_df.head()
```

Out[12]:

	Drug	Timepoint	Metastatic_Sites
0	Capomulin	0	0.000000
1	Capomulin	5	0.160000
2	Capomulin	10	0.320000
3	Capomulin	15	0.375000
4	Capomulin	20	0.652174

```
In [13]: # Store the Standard Error associated with Met. Sites Grouped by Drug an
    d Timepoint
    # Convert to DataFrame
    intermediate4_df = renamed_df.groupby(['Drug','Timepoint',]).Metastatic_
    Sites.sem().to_frame().reset_index()
    standard_error_meta_df = intermediate4_df[intermediate4_df['Drug'].isin
    (["Capomulin","Infubinol","Ketapril","Placebo"])]
    # Preview DataFrame
    standard_error_meta_df.head()
```

Out[13]:

	Drug	Timepoint	Metastatic_Sites
0	Capomulin	0	0.000000
1	Capomulin	5	0.074833
2	Capomulin	10	0.125433
3	Capomulin	15	0.132048
4	Capomulin	20	0.161621

Out[14]:

Metastatic_Sites

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.160000	0.280000	0.304348	0.375000
10	0.320000	0.666667	0.590909	0.833333
15	0.375000	0.904762	0.842105	1.250000
20	0.652174	1.050000	1.210526	1.526316
25	0.818182	1.277778	1.631579	1.941176
30	1.090909	1.588235	2.055556	2.266667
35	1.181818	1.666667	2.294118	2.642857
40	1.380952	2.100000	2.733333	3.166667
45	1.476190	2.111111	3.363636	3.272727

Out[15]:

Metastatic_Sites

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.000000	0.000000	0.000000	0.000000
5	0.074833	0.091652	0.098100	0.100947
10	0.125433	0.159364	0.142018	0.115261
15	0.132048	0.194015	0.191381	0.190221
20	0.161621	0.234801	0.236680	0.234064
25	0.181818	0.265753	0.288275	0.263888
30	0.172944	0.227823	0.347467	0.300264
35	0.169496	0.224733	0.361418	0.341412
40	0.175610	0.314466	0.315725	0.297294
45	0.202591	0.309320	0.278722	0.304240

```
In [17]: # Generate the Plot (with Error Bars)

fig, ax = plt.subplots(figsize = (8,6))
    ax.set_title('Metastastic Spread during Treatment')
    ax.set_ylabel('Met. Sites')
    mean_meta_df.groupby('Drug').plot(x='Timepoint',yerr= standard_error_met
    a_df, y='Metastatic_Sites', marker = 'o', ax=ax, legend = False)
    ax.set_xlabel('Treatment Duration (Days)')
    plt.xlim((-2, 47))
    ax.yaxis.grid(True)
    ax.legend(drugs, loc="best", framealpha=0.3, edgecolor='k')

# Show the Figure
    plt.savefig("Metastatic_Spread_during_Treatment.png")
    # Save the Figure
    plt.show()
```


3. Survival Rates

Out[18]:

	Drug	Timepoint	Mouse_Count
0	Capomulin	0	25
1	Capomulin	5	25
2	Capomulin	10	25
3	Capomulin	15	24
4	Capomulin	20	23
5	Capomulin	25	22
6	Capomulin	30	22
7	Capomulin	35	22
8	Capomulin	40	21
9	Capomulin	45	21
20	Infubinol	0	25
21	Infubinol	5	25
22	Infubinol	10	21
23	Infubinol	15	21
24	Infubinol	20	20
25	Infubinol	25	18
26	Infubinol	30	17
27	Infubinol	35	12
28	Infubinol	40	10
29	Infubinol	45	9
30	Ketapril	0	25
31	Ketapril	5	23
32	Ketapril	10	22
33	Ketapril	15	19
34	Ketapril	20	19
35	Ketapril	25	19
36	Ketapril	30	18
37	Ketapril	35	17
38	Ketapril	40	15
39	Ketapril	45	11
50	Placebo	0	25
51	Placebo	5	24
52	Placebo	10	24
53	Placebo	15	20
54	Placebo	20	19

	Drug	Timepoint	Mouse_Count
55	Placebo	25	17
56	Placebo	30	15
57	Placebo	35	14
58	Placebo	40	12
59	Placebo	45	11

```
In [19]: reformat_mice_count_df = new_mice_count_df.pivot(index = 'Timepoint', co
    lumns = 'Drug')
# new_reformat_mice_count_df = new_mice_count_df[mice_count_df['Drug'].i
    sin(["Capomulin", "Infubinol", "Ketapril", "Placebo"])]
# new_reformat_mice_count_df = new_mice_count_df.rename(columns = {'Mouse
    _ID':'Mouse_Count'})
# Preview the Data Frame
    reformat_mice_count_df
```

Out[19]:

Mouse_ID

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	25	25	25	25
5	25	25	23	24
10	25	21	22	24
15	24	21	19	20
20	23	20	19	19
25	22	18	19	17
30	22	17	18	15
35	22	12	17	14
40	21	10	15	12
45	21	9	11	11

Out[20]:

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
0	0.00	0.00	-8.00	-4.00
5	0.00	-16.00	-4.35	0.00
10	-4.00	0.00	-13.64	-16.67
15	-4.17	-4.76	0.00	-5.00
20	-4.35	-10.00	0.00	-10.53
25	0.00	-5.56	-5.26	-11.76
30	0.00	-29.41	-5.56	-6.67
35	-4.55	-16.67	-11.76	-14.29
40	0.00	-10.00	-26.67	-8.33

```
In [22]: #COULD NOT FIGURE OUT HOW TO CODE AND DISPLAY (SEE ABOVE CODE LINE) THE
    SURVIVAL RATE % ON THE Y-AXIS
    fig, ax = plt.subplots(figsize = (8,6))
    ax.set_title('Survival Rate during Treatment')
    ax.set_ylabel('Survival Rate (%)')
    survival_rate_df.groupby('Drug').plot(marker = 'o', x='Timepoint', y =
    "Mouse_Count", alpha=0.7, ax=ax)
    ax.set_xlabel('Time (Days)')
    plt.xlim((-2, 47))
    ax.grid(True)
    ax.legend(drugs, loc="lower left", framealpha=0.3, edgecolor='k')

# Save the Figure
    plt.savefig("Survival_Rate_during_Treatment.png")

# Show the Figure
    plt.show()
```


4. Summary Bar Graph

```
In [23]: # Calculate the percent changes for each drug
    percentage_change = reformat_mean_df.pct_change(periods =9)
    x = round(percentage_change.dropna() *100, 2)
    # Display the data to confirm
    x
```

Out[23]:

Tumor_Volume

Drug	Capomulin	Infubinol	Ketapril	Placebo
Timepoint				
45	-19.48	46.12	57.03	51.3

```
In [27]: # Splice the data between passing and failing drugs
# Orient widths. Add labels, tick marks, etc.
# Use functions to label the percentages of changes
# Call functions to implement the function calls
plt.figure(figsize = (10,8))
plt.bar(drugs, change, color = 'g''r''r''r', alpha=0.9, zorder = 0, alig
n="center")
plt.title("Tumor Change over 45 Days of Treatment")
plt.xlabel("Drug")
plt.ylabel("% of Tumor Volume Change")
plt.grid()
# Save the Figure

plt.savefig("Tumor_Change_over_45_Days_of_Treatment.png")
# Show the Figure
plt.show()
```


Metastatic Spread During Treatment

```
In [ ]:
```