Revisiting minimum description length complexity for overparameterized models

raaz dwivedi, chandan singh, bin yu & martin wainwright

Non-U shaped "tradeoff" curves in modern ML settings

Belkin-Hsu-Ma-Mandal 18, Muthukumar-Vodrahalli-Sahai 19, Hastie-Montanari-Rosset-Tibshirani 19, ...

Bias-variance tradeoff

- Occam's razor: Pick the simplest model that provides a good fit to the training data
- U-shaped curves: Established for lowdimensional settings with "good" estimators

- We should expect a tradeoff given
 - some fixed data
 - as the "complexity" of the fitted estimator varies

- We should expect a tradeoff given
 - some fixed data
 - as the "complexity" of the fitted estimator varies
- Need not observe a tradeoff for
 - poor choice of estimators

d = number of features n = number of samples

- We should expect a tradeoff given
 - some fixed data
 - as the "complexity" of the fitted estimator varies
- Need not observe a tradeoff for
 - poor choice of estimators

- We should expect a tradeoff given
 - some fixed data
 - as the "complexity" of the fitted estimator varies
- Need not observe a tradeoff for
 - poor choice of estimators

- We should expect a tradeoff given
 - some fixed data
 - as the "complexity" of the fitted estimator varies
- Need not observe a tradeoff for
 - poor choice of estimators
 - poor choice of complexity

Complexity: A tricky concept

- A fundamental notion: Kolmogorov's algorithmic complexity
- Complexity in Statistics and ML
 - Test error ~ Train error + Complexity / n^a
 - useful for model selection
 - x-axis on bias-variance tradeoff—often vaguely defined; parameter count often used

Parameter counting as complexity: Origins (for linear models)

- Akaike Information Criterion (AIC): d/2
- Bayesian information criterion (BIC): $\frac{d}{2} \log n$
- Rademacher complexity: $\mathbb{E}\left[\sup \sum_{i} e_{i}x_{i}^{\mathsf{T}}\theta\right] \sim d$
- Degrees of freedom: $trace(X^TX) \sim d$
- Vapnik-Chervonenkis dimension: d
- Minimum Description Length complexity: $\frac{\pi}{2} \log n$ (asymptotically)

but in high-dimensions these complexity measure neither work nor theoretically well-justified

this talk: a data-dependent complexity using minimum description length that is not just parameter count

Minimum Description Length (MDL)

Another formalism of Occam's razor

"Choose the model that gives the shortest description of data"

- Developed by Rissanen in the 70s with roots in Kolmogorov's algorithmic complexity, making it computable using Shannon's information theory
- Different forms over the years: Two-stage MDL, mixture MDL, normalized maximum likelihood

Underlying principle: Probability models as codes

- Model ←→ Code
 Good fit ←→ Shorter codelength (description)
- Given any distribution Q on the space \mathcal{Y} , we can associate a code such that to encode any observation y, we need $\log(1/Q(y))$ bits
 - This interpretation does not need a generative model

Optimal code: With known true model P^{\star}

• When $y \sim P^*$, the expected code-length when using code Q is given by

$$\mathbb{E}_{y \sim P^{\star}} \log \left(\frac{1}{Q(y)} \right)$$

Optimal code: With known true model P^{\star} is P^{\star}

• When $y \sim P^{\star}$, the expected code-length when using code Q is given by

$$\mathbb{E}_{y \sim P^*} \log \left(\frac{1}{Q(y)} \right) = \mathbb{KL}(P^* || Q) + H(P^*)$$
Redundancy

• Minimized when $Q=P^{\star}$, since redundancy is non-negative

Optimal code: With known true model P^{\star} is P^{\star}

• When $y \sim P^*$, the expected code-length when using code Q is given by

$$\mathbb{E}_{y \sim P^{\star}} \log \left(\frac{1}{Q(y)} \right) = \mathbb{KL}(P^{\star} || Q) + H(P^{\star})$$

- Minimized when $Q=P^{\star}$, since redundancy is non-negative
- ullet P^{\star} also minimizes the worst-case regret

$$p^* = \underset{q}{\text{arg min max}} \left[\log \left(\frac{1}{q(y)} \right) - \log \left(\frac{1}{p^*(y)} \right) \right] \text{ such that } \int q(z) dz \le 1$$

Optimal code when P^* is unknown

• Given a class of models $\{p_{\theta}, \theta \in \Theta\}$, not necessarily containing p^{\star} , consider the generalization of the min-max regret problem:

$$\min_{q} \max_{y} \left[\log \left(\frac{1}{q(y)} \right) - \min_{\theta} \log \left(\frac{1}{p_{\theta}(y)} \right) \right] \text{ such that } \int_{q} q(z) dz \le 1$$

• Shtarkov (1981) showed that

$$q_{NML}(y) \propto \max_{\theta} p_{\theta}(y)$$
 i.e., $q_{NML}(y) = \frac{\max_{\theta} p_{\theta}(y)}{\int \max_{\theta'} p_{\theta'}(z) dz}$

solves the optimization problem above where NML stands for "normalized maximum likelihood"; the normalization makes this a universal (valid for any y) code

NML Complexity

- . $\log \max_{\theta} p_{\theta}(z)dz$ is both the worst-case and the average regret of
 - Referred to as the NML or Shtarkov complexity for the class $\{p_{\theta}, \theta \in \Theta\}$
- For d-dimensional parametric-class $\{p_{\theta}, \theta \in \Theta\}$, Rissanen showed that the Shtarkov complexity simplifies to $\frac{d}{2}\log n$ (under regularity conditions)

When $\int \max_{\theta \in \Theta} p_{\theta}(z) dz$ is infinite, the

NML distribution is ill-defined

Issues with NML: Linear model

• Consider linear regression with n samples and d feature:

$$p_{\theta}(y) = \mathcal{N}(X\theta, \sigma^2 I_n)$$

(we assume X and σ^2 fixed and known)

• Then Q_{NML} is given by

$$q_{NML}(y) \propto \max_{\theta} p_{\theta}(y) = p_{\widehat{\theta}}(y) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} ||X\widehat{\theta}_{OLS} - y||^2\right)$$

the normalization constant $\int\limits_{ heta}^{ ext{max}} p_{ heta}(z)dz$ is infinite if ${\mathscr Y}$ is unbounded

Fixes for NML

- Truncate the output space \(\gamma \): [Barron-Rissanen-Yu 96]
- This talk: Use regularization and define a modified NML complexity

Ridge luckiness normalized maximum likelihood

- Instead of $\max_{\theta} p_{\theta}(y)$, we use $\max_{\theta} p_{\theta}(y) w_{\theta}$ for some "luckiness factor" w_{θ}
- Use w_{θ} induced by ridge regularization—-since tuned ridge estimators provide good performance for all range of d:

$$q_{\Lambda}(y) \propto \max_{\theta} \exp\left(-\frac{1}{2\sigma^2} ||X\theta - y||^2 - \frac{1}{2\sigma^2} \theta^{\mathsf{T}} \Lambda \theta\right)$$

Ridge luckiness normalized maximum likelihood

- Instead of $\max_{\theta} p_{\theta}(y)$, we use $\max_{\theta} p_{\theta}(y) w_{\theta}$ for some ''luckiness factor" w_{θ}
- Use w_{θ} induced by ridge regularization—-since tuned ridge estimators provide good performance for all range of d:

$$q_{\Lambda}(y) \propto \exp\left(-\frac{1}{2\sigma^2}||X\widehat{\theta}_{\Lambda} - y||^2 - \frac{1}{2\sigma^2}\widehat{\theta}_{\Lambda}^{\intercal}\Lambda\widehat{\theta}_{\Lambda}\right)$$
 where
$$\widehat{\theta}_{\Lambda} = \min_{\theta}||X\theta - y||^2 + \theta^{\intercal}\Lambda\theta = (X^{\intercal}X + \Lambda)^{-1}X^{\intercal}y$$

• To derive complexity: Optimize over Λ

LNML codes induced by ridge estimators

Optimize over the following class

$$\mathcal{Q}_{\mathsf{ridge}} = \{ Q_{\Lambda}, \Lambda = UDU^{\mathsf{T}}, D \geq 0 \}$$

where U denotes the eigenvectors of the matrix $X^{\mathsf{T}}X$

• Need to account for encoding Λ (not present in usual NML): For $\Lambda=U$ diag $(\lambda_1,\ldots,\lambda_d)U^{\mathsf{T}}$

$$\mathcal{Z}(\Lambda) = \sum \log(\lambda_i/\Delta)$$

for small enough (discretization) Δ

MDL-COMP: Optimal LNML code in the ridge class

• MDL-COMP captures the best possible redundancy (excess codelength) of Q_{ridge} compared to P^{\star} :

$$\mathcal{R}_{opt} = \frac{1}{n} \min_{Q \in \mathcal{Q}_{ridge}} \mathbb{KL}(P^* || Q)$$

$$MDL - COMP = \mathcal{R}_{opt} + \frac{1}{n}\mathcal{L}(\Lambda_{opt})$$

Main result: Analytical MDL-COMP for linear models

• Let ρ_i denote the eigenvalues of $X^T X$ and let $w_i = U^T \theta^*$. When $y \sim \mathcal{N}(X\theta^*, \sigma^2 I_n)$, then

$$\mathcal{R}_{opt} = \frac{1}{n} \sum_{i=1}^{\min\{n,d\}} \log \left(1 + \frac{\rho_i w_i^2}{\sigma^2} \right)$$

$$MDL - COMP = \frac{1}{n} \sum_{i=1}^{\min\{n,d\}} \log \left(\rho_i + \frac{\sigma^2}{w_i^2} \right) + \min \left\{ 1, \frac{d}{n} \right\} \log \left(\frac{1}{\Delta} \right)$$

Not just parameter count but data dependent—a function of the covariate design, and the interaction between signal and covariates

Unpacking the result for Gaussian X

• When $X \in \mathbb{R}^{n \times d}$ has i.i.d. $\mathcal{N}(0, 1/n)$ entries, then

$$\begin{cases} \frac{d}{n}\log\left(1+\frac{d_{\star}}{r^{2}}\right)+\frac{d}{n}\log\left(\frac{1}{\Delta}\right), & \text{if } d \in [1,d_{\star}] \\ \frac{d}{n}\log\left(1+\frac{d}{r^{2}}\right)+\frac{d}{n}\log\left(\frac{1}{\Delta}\right), & \text{if } d \in [d_{\star},n] \\ \log\left(\frac{d}{n}+\frac{d}{r^{2}}\right)+\log\left(\frac{1}{\Delta}\right), & \text{if } d \in [n,\infty) \end{cases}$$

[here d_\star denotes the true dimensionality of θ^\star , and we assume $\mathbb{E}[y|X] = \tilde{X}\theta^\star$ where \tilde{X} denotes the first d_\star columns of X; and $r^2 = \|\theta^\star\|^2$]

Numerical computation

Consequences for double descent

- Since MDL-COMP (for Gaussian covariates) is monotone in d, the double-descent curve for the OLS or ridge remains qualitatively the same
- The double descent likely due to the estimator choice

Other optimality properties from MDL-COMP

ullet Λ_{opt} provides optimal regularization for the in-sample risk (a proxy for test error)

$$\Lambda_{opt} = \arg\min_{\Lambda} \mathbb{E} \left(\sum_{i=1}^{n} (x_i^{\mathsf{T}} \hat{\theta}_{\Lambda} - x_i^{\mathsf{T}} \theta^{\star})^2 \right)$$

• Q_{opt} corresponds to the min-max optimal code over a family of distributions, i.e.,

$$Q_{opt} = \arg\min_{Q \in \mathcal{Q}_{ridge}} \max_{P \in \mathcal{P}} \mathbb{E}_{y \sim P} \log \left(\frac{1}{q(y)}\right)$$

where
$$\mathcal{P} = \{ P \mid E_P(y \mid X) = X\theta^*, Var(y \mid X) \leq \sigma^2 I_n \}$$

Extension to kernel methods

To be added

Can MDL-COMP be useful for practice?

Let's make it computable from data

$$\begin{aligned} & \operatorname{Prac-MDL-COMP} = \min_{\lambda} \log \left(\frac{1}{q_{\lambda}(y)} \right) \\ &= \min_{\lambda} \left[\frac{\|X \widehat{\theta}_{\lambda} - y\|^2}{2\sigma^2} + \frac{\lambda \|\widehat{\theta}_{\lambda}\|^2}{2\sigma^2} + \sum_{i=1}^{\min\{n,d\}} \log \left(1 + \frac{\rho_i}{\lambda} \right) \right] \end{aligned}$$

where

$$\hat{\theta}_{\lambda} = (X^{\mathsf{T}}X + \lambda I)^{-1}X^{\mathsf{T}}y$$
 and ρ_{i} denote the eigenvalues of $X^{\mathsf{T}}X$

Model selection with Prac-MDL-COMP

Model selection with Prac-MDL-COMP

d/n = 1/10

d/n = 1/2

d/n = 1

Look Ma, no peak

Using Prac-MDL-COMP for hyperparameter tuning

$$\min_{\lambda} \left[\frac{\|X\widehat{\theta}_{\lambda} - y\|^2}{2\sigma^2} + \frac{\lambda \|\widehat{\theta}_{\lambda}\|^2}{2\sigma^2} + \sum_{i=1}^{\min\{n,d\}} \log\left(1 + \frac{\rho_i}{\lambda}\right) \right]$$

K-fold computational savings compared to K-fold cross validation

Experiments on PMLB datasets

Diverse set of tabular datasets

Predicting breast cancer from image features

Predicting automobile prices

Election results from previous elections

Experiments on PMLB datasets

fMRI experimental setup

Extract gabor features

Predictive model

Experiments on fMRI data from 100 voxels

MDL-COMP better than Bayesian-ARD regression, and pretty comparable to CV tuning

Neural tangent kernels (NTK)

NTK approximates neural net with infinite width

Jacot et al. 2018

Varies with number of layers and nonlinearity

•
$$K(x, x') = \mathbb{E}_{\theta \sim W} \left[\left\langle \frac{\partial f(\theta, x)}{\partial \theta}, \frac{\partial f(\theta, x')}{\partial \theta} \right\rangle \right]$$

- Analytical expressions for simple architectures (e.g., cosine kernel for 2 layer Relu networks)
- Software libraries for computing the kernel for deeper networks

Kernel version of the computation

Prac-MDL-COMP =
$$\min_{\lambda} \log \left(\frac{1}{q_{\lambda}(y)} \right)$$

$$= \min_{\lambda} \left[\frac{\|K\widehat{\theta}_{\lambda} - y\|^2}{2\sigma^2} + \frac{\lambda \widehat{\theta}_{\lambda}^{\mathsf{T}} K \widehat{\theta}_{\lambda}}{2\sigma^2} + \sum_{i=1}^{n} \log\left(1 + \frac{\rho_i}{\lambda}\right) \right]$$

where

$$\hat{\theta}_{\lambda} = (K + \lambda I)^{-1} y$$
 and ρ_i denote the eigenvalues of the kernel matrix K

Experiments on NTK with fMRI data voxels

Summary

- MDL-COMP—a modified NML complexity measure using "optimal" ridge estimators
 - not just parameter count— $\log d$ scaling in overparameterized regime for Gaussian covariates
 - Provides competitive-to-cross validation but computationally more efficient ridge hyper-parameter tuning
- Going forward
 - Establish relationship between MDL-COMP and out-of-sample generalization?
 - Closer to real deep networks: MDL-COMP analytical computations hard for complex models—-Approximations?

Additional slides

Bias-variance tradeoff: Few things to note...

- We should expect a tradeoff given
 - some fixed data
 - as the "complexity" of the fitted estimator changes
- Do not expect a tradeoff for
 - poor choice of estimators
 - poor choice of complexity

MDL-COMP for kernel methods

Universal codes induced by kernel ridge regression

• Define the code Q_{λ} :

$$q_{\lambda}(y) \propto \exp\left(-\frac{1}{2\sigma^2} ||K\hat{\theta}_{\lambda} - y||^2 - \frac{\lambda}{2\sigma^2} \hat{\theta}_{\lambda}^{\mathsf{T}} K \hat{\theta}_{\lambda}\right)$$

where

$$\widehat{\theta}_{\lambda} = \min_{\theta} ||K\theta - y||^2 + \lambda \theta^{\mathsf{T}} K\theta = (K + \lambda I)^{-1} y$$

This choice comes from kernel ridge regression:

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda ||f||_{\mathcal{H}}^2$$

Kernel ridge regression

One can show that for the optimization proboem

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda ||f||_{\mathcal{H}}^2,$$

it suffices to consider the functions of the form

$$f = \sum_{i=1}^{n} \theta_i K(x_i, \cdot),$$

and this leads to the kernel ridge regression problem in the previous slide

MDL-COMP for kernel regression

• Let ρ_i denote the eigenvalues of the kernel matrix $(K(x_i, x_j))_{i,j=1}^n$ and suppose $y \sim \mathcal{N}(f^*(X), \sigma^2 I_n)$ for some f^* in RKHS of K, then

$$\mathcal{R}_{opt} \leq \frac{1}{2n} \left[\min_{\lambda} \frac{\lambda ||f^{\star}||_{\mathcal{H}}^{2}}{\sigma^{2}} + \sum_{i=1}^{n} \log \left(1 + \frac{\rho_{i}}{\lambda} \right) \right]$$

(no easy closed-form)

Since there is only a single hyper-parameter, we can directly take

$$MDL - COMP = \mathcal{R}_{opt}$$

Unpacking MDL-COMP for Sobolev kernels

• For Sobolev kernel of smoothness α , the eigenvalues decay like $\rho_i \sim i^{-2\alpha}$, and one can derive

$$\mathcal{R}_{opt} \leq C \left(\frac{\|f^{\star}\|_{\mathcal{H}}^{2}}{\sigma^{2}} \right)^{\frac{1}{2\alpha+1}} \cdot n^{-\frac{2\alpha}{2\alpha+1}}$$

Proofs

Proof sketch for linear models

$$\mathcal{D}_{\mathrm{KL}}(\mathbb{P}_{\theta_{\star}} \parallel \mathbb{Q}_{\Lambda}) = \mathbb{E}_{\mathbf{y}} \left[\log \frac{p(\mathbf{y}; \mathbf{X}, \theta_{\star})}{q_{\Lambda}(\mathbf{y})} \right]$$

$$= \mathbb{E}_{\mathbf{y}} \left[\log \left(\frac{\frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}} \|\mathbf{y} - \mathbf{X}\theta_{\star}\|^{2}\right)}{\frac{1}{C_{\Lambda}(2\pi\sigma^{2})^{n/2}} \exp\left(-\frac{1}{2\sigma^{2}} \|\mathbf{y} - \mathbf{X}\widehat{\theta}\|^{2} - \frac{1}{2\sigma^{2}}\widehat{\theta}^{\top}\Lambda\widehat{\theta}\right)} \right) \right]$$

$$= -\mathbb{E}_{\mathbf{y}} \left[\frac{1}{2\sigma^{2}} \|\mathbf{y} - \mathbf{X}\theta_{\star}\|^{2} \right] + \mathbb{E} \left[\frac{1}{2\sigma^{2}} \|\mathbf{y} - \mathbf{X}\widehat{\theta}\|^{2} + \frac{1}{2\sigma^{2}}\widehat{\theta}^{\top}\Lambda\widehat{\theta} \right] + \underbrace{\log C_{\Lambda}}_{=:T_{3}}.$$

$$= :T_{3}$$

(33a)
$$T_{2} = \frac{(n - \min\{n, d\})}{2} + \frac{1}{2} \sum_{i=1}^{\min\{n, d\}} \frac{(\rho_{i} w_{i}^{2} / \sigma^{2} + 1)\lambda_{i}}{\lambda_{i} + \rho_{i}}, \text{ and}$$
(33b)
$$T_{3} = \frac{1}{2} \sum_{i=1}^{\min\{n, d\}} \log \left(\frac{\rho_{i} + \lambda_{i}}{\lambda_{i}}\right)$$

$$\frac{1}{n}\mathcal{D}_{\mathrm{KL}}(\mathbb{P}_{\theta_{\star}} \parallel \mathbb{Q}_{\Lambda}) = T_1 + T_2 + T_3$$

$$= -\frac{\min\{n,d\}}{2n} + \frac{1}{2n} \sum_{i=1}^{\min\{n,d\}} \underbrace{\left(\frac{(\rho_i w_i^2/\sigma^2 + 1)\lambda_i}{\lambda_i + \rho_i} + \log\left(\frac{\rho_i + \lambda_i}{\lambda_i}\right)\right)}_{=:f_i(\lambda_i)}.$$

Finally to compute the \mathcal{R}_{opt} (32), we need to minimize the KL-divergence (34) where we note the objective depends merely on $\lambda_1, \ldots, \lambda_{\min\{n,d\}}$. We note that the objective (RHS of equation (34)) is separable in each term λ_i . We have

(35)
$$f'_i(\lambda_i) = 0 \iff -\frac{(\rho_i w_i^2 / \sigma^2 + 1)}{(1 + \rho_i / \lambda_i)^2} + \frac{1}{1 + \rho_i / \lambda_i} = 0 \iff \lambda_i^{\text{opt}} = \frac{\sigma^2}{w_i^2}.$$

Proof sketch for the result with Gaussian X

• When $X \in \mathbb{R}^{n \times d}$ has i.i.d. $\mathcal{N}(0,1/n)$ entries, then for $X^{\top}X = U \mathrm{diag}(\rho_1,\ldots,\rho_d)U^{\top}$

• The matrix U has uniform distribution over the set of $d \times d$ orthonormal matrices and hence for any fixed θ^{\star} , the coordinates of $w = U^{\mathsf{T}}\theta^{\star}$ are identically distributed, and we can use the approximation $w_i^2 \approx \frac{\|\theta^{\star}\|^2}{d}$

Proof sketch for the result with Gaussian X

• When $X \in \mathbb{R}^{n \times d}$ has i.i.d. $\mathcal{N}(0,1/n)$ entries, then for $X^{\mathsf{T}}X = U \mathrm{diag}(\rho_1,\ldots,\rho_d)U^{\mathsf{T}}$

- ullet The eigenvalues ho_i follow Marcenko-Pastur Law with the following approximation
- $d \ll n$, $X^{\mathsf{T}}X \approx I_d$, $\rho_i \approx 1$

Two-stage MDL

Two-stage MDL

• Consider a parametric class of codes $\{p_{\theta}, \theta \in \Theta\}$, and then use the valid codelength for any fixed p_{θ}

$$\log\left(\frac{1}{p_{\theta}(y)}\right)$$

- Minimizing this codelength is same as MLE over the given parametric class
- But the choice of $\widehat{\theta}$ varies with y, so need to account for the codelength needed to transmit the value of $\widehat{\theta}$

Two-stage MDL

Thus the overall codelength is

$$\log\left(\frac{1}{p_{\widehat{\theta}}(\mathbf{y})}\right) + \frac{d}{2}\log n$$
 Codelength for data Codelength for d -dimensional parameter upto $1/\sqrt{n}$ resolution

- For a fixed parametric class, same as MLE (since the second term is constant)
- For a family of parametric classes, same as BIC procedure (model selection)

MDL-COMP vs Cross-validation

• For $n \times d$ covariates, for each value of λ , the computational costs are

- K-fold cross-validation: $K \times OLS$ solver = $K \times (nd^2 + \min(n^3, d^3))$
- Prac-MDL-COMP: $1 \times SVD$ solver = $nd^2 + n^2d$

Prac-MDL-COMP provides a proxy for complexity and saves K-fold computation!

Issues with NML

Issues with NML: Linear model

• Then Q_{NML} is given by

$$q_{NML}(y) \propto \max_{\theta} p_{\theta}(y) = p_{\widehat{\theta}}(y) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} ||X\widehat{\theta} - y||^2\right)$$

$$\hat{\theta} = \arg\max_{\theta} p(y) = \arg\min_{\theta} ||X\theta - y||^2 = \hat{\theta}_{OLS}$$

(We can use min-norm OLS when d > n)

ssues with NML: Linear model

If ¾ is not compact (even when d<n)

$$\int \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} ||X\hat{\theta} - y||^2\right) dy = \infty$$

• Easiest to see when d>n so that $X\widehat{\theta}=y$, and we have

$$\int \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} ||X\hat{\theta} - y||^2\right) dy = \int_{\mathbb{R}^n} \frac{1}{(2\pi\sigma^2)^{n/2}} dy = \infty$$