EECS 495: Randomized Algorithms Moments and Deviations

Lecture 6

Reading: Text: Chapter 3

Take-Aways

Concepts/Techniques:

• Tail bounds: Markov, Chebyshev, Chernoff

Applications:

- \bullet Selecting k'th smallest elt
- Routing in hypercube

Tail Bounds

Claim: Markov Inequality: Let Y be a nonneg. random var. Then for all $t \in \Re^+$,

$$\Pr[Y \ge t] \le E[Y]/t,$$

or, equivalently,

$$\Pr[Y \ge kE[Y]] \le 1/k.$$

Proof: Define

$$f(y) = \begin{cases} 1 : y \ge t \\ 0 : y < t \end{cases}$$

Then since $f(y) \leq y/t$ for all y,

$$\Pr[Y > t] = E[f(Y)]$$

$$\leq E[\frac{Y}{t}] \\ = \frac{E[Y]}{t}.$$

Claim: Let X be a random var. with mean μ and variance $\sigma^2 = E[(X - \mu)^2]$. Then for any $t \in \Re^+$,

$$\Pr[|X - \mu| \ge t\sigma] \le \frac{1}{t^2}.$$

Proof: Note that

$$\Pr[|X - \mu| \ge t\sigma] = \Pr[(X - \mu)^2 \ge t^2\sigma^2.$$

The random var. $Y = (X - \mu)^2$ has expectation σ^2 so result follows by Markov.

Randomized Selection

Given:

- An unordered set S of n elts
- \bullet A total order on elts of S

Output:

• k'th smallest elt of S

Question: Algorithms?

- Sort plus binary search: $O(n \log n)$
- Random pivot: O(n)

Idea: Take sample mean to narrow search.

Algorithm: LazySelect:

- 1. Pick $n^{3/4}$ elts R from S with replacement
- 2. Sort R
- 3. Find fences:
 - (a) Let $x = \frac{k^{3/4}}{n} = kn^{-1/4}$
 - (b) Pick left post $l = x \sqrt{n}$, right post $h = x + \sqrt{n}$
 - (c) Let $a = R_{(l)}, b = R_{(h)}$
 - (d) Find $r_S(a)$ and $r_S(b)$ by comparing S to a, b
- 4. Project S to smaller space and solve:
 - (a) Let $P = \{y \in S | a \le y \le b\}$
 - (b) If $S_{(k)} \in P$ and $|P| \le 4n^{3/4} + 2$, sort P and find $S_{(k)}$
 - (c) Else start over

[[Sample with replacement to make analy-]]

Claim: In each pass, LazySelect performs 2n + o(n) comparisions.

Proof: # of comparisons:

- sort sample: $O(n^{3/4} \log n) = o(n)$
- project: 2n
- sort projection: $O(n^{3/4} \log n) = o(n)$

Claim: With probability $1 - O(n^{-1/4})$, Lazy-Select performs just one pass.

Note: Two failure modes:

- fences don't suround $S_{(k)}$
- |P| is too big

Proof: Bound prob. bad fences because $a > S_{(k)}$:

Let $X_i = 1$ if i'th sample at most $S_{(k)}$, $X = \sum_{i=1}^{n^{3/4}} X_i$ be # samples less than $S_{(k)}$.

- $\mu(X_i) = \Pr[X_i = 1] = k/n$
- $\mu(X) = \sum_{i=1}^{n^{3/4}} \mu(X_i) = kn^{-1/4}$
- $\sigma^2(X_i) = \left(\frac{k}{n}\right)\left(1 \frac{k}{n}\right) \le \frac{1}{4}$
- $\sigma^2(X) = \sum_{i=1}^{n^{3/4}} \sigma^2(X_i) \le \frac{n^{3/4}}{4}$

So $\sigma(x) \le n^{3/8}/2$.

Apply Chebyshev:

$$\Pr[a > S_{(k)}] = \Pr[X \le kn^{-1/4} - \sqrt{n}]$$

$$\le \Pr[|X - \mu| \ge \sqrt{n}]$$

$$\le O(n^{-1/4})$$

since $t\sigma = \sqrt{n}$ implies $t = n^{1/8}/2$.

Similarly, $\Pr[b < S_{(k)}] \leq O(n^{-1/4})$ so by union bound, fences surround whp.

Other failure mode, similar analysis.

Tail Bounds

Claim: Chernoff Bound: Let $X_1, ..., X_n$ be independent Poisson trials with $\Pr[X_i = 1] = p_i$, where $0 < p_i < 1$, $X = \sum_{i=1}^n X_i$, $\mu = E[X]$, $0 < \delta \le 1$,

$$\Pr[X < (1 - \delta)\mu] < \exp(-\mu \delta^2/2).$$

Alternatively, for $\delta > 2e - 1$,

$$\Pr[X > (1+\delta)\mu] < \exp(-(1+\delta)\mu).$$

Proof:

• exponentiate to study moment generating function $\exp(tX)$

- apply Markov to moment generating Claim: function and study $E[\exp(t\sum X_i)] = \Omega(\sqrt{N/E})$ nodes.
- use independence to turn $E[\prod ...]$ into $\prod E[...]$
- pick t to get tightest possible bound

Can only apply when variables are independent!

Routing in a Parallel Computer

Given:

- network of parallel processors represented by directed graph
 - nodes processors
 - edges communication links
- destination d(i) for packet originating at processor i

Output:

• set of routes with min steps to get all packets to destinations

Note: Restrictions/assumptions:

- packets sent in sequence of synchronous steps
- at most one packet per link in each step
- permutation routing: $\{d(i)\}$ are a permutation of $\{1, \ldots, N\}$
- oblivious routing: route for packet of node i depends only on d(i) and not d(j) for $j \neq i$

Claim: Any deterministic alg. takes $\Omega(\sqrt{N/d})$ steps where d is out-degree of nodes.

Hypercube

[[Popular network for parallel processing]]

- N nodes represented as bit strings, $n = \log N$ dimensions
- Nn directed edges, from node i to node j iff (i_0, \ldots, i_{n-1}) and (j_0, \ldots, j_{n-1}) differ in exactly one position

Question: How many steps to route?

- \bullet paths of length n, so at least n steps
- Nn edges for N length n paths, no implied congestion bound

Algorithm: Natural routing: bit fixing (left to right)

Example: 1011 to 1100:

$$1011 \rightarrow 1111 \rightarrow 1101 \rightarrow 1100$$

Claim: Bit-fixing takes $\Omega(\sqrt{N})$ steps.

Proof: Transpose permutation: for each i, let $i = a_i \circ b_i$ where $|a_i| = |b_i| = n/2$. Then set

$$d(i) = b_i \circ a_i.$$

Consider nodes i such that $a_i = 0$ and b_i is odd.

- destination: $b_i \circ 0$
- $\bullet\,$ at some point must pass from $1\!\circ\!0$ to $0\!\circ\!0$
- so $2^{n/2}/2$ such i, so at least $\Omega(\sqrt{N})$ steps