

### Bibliografía Unidad 5

- Neal. Introduction to causal inference. (Draft) 2020 (Descargar).
- Cinelli. A crash course in good and bad controls; Sociological Methods & Research. 2022- (Descargar). (lectura paper)

#### Otros:

- Pearl et al. **Causal inference in statistics: A primer**. John Wiley & Sons Ltd; 2016 (Descargar). (lecturas 2 a 4)
  - Hernán. Causal inference: What if. CRC Boca Raton, FL. 2020. (Descargar).

### Estimación de efecto causal Paradoja de Simpson



### Estimación de efecto causal Paradoja de Simpson

 $P(\mathsf{Derrumbes}|\mathsf{Intensidad}\;\mathsf{del}\;\mathsf{sismo})$ 



### Estimación de efecto causal Paradoja de Simpson

P(Derrumbes|Intensidad del sismo, Ciudad)



¿Cómo determinar efecto causal entre dos variables x e y?

Paradoja de Simpson

# Estimación de efecto causal Experimentos aleatorizados, do(x).

el principal enfoque para evaluar el efecto causal.

Los **experimentos aleatorizados** sigue siendo

Experimentos aleatorizados, do(x).



Experimentos aleatorizados, do(x).



Un experimento es aleatorizado cuando el tratamiento x se elije independientemente del resultado que genere en la variable objetivo y

Experimentos aleatorizados, do(x).



Experimentos aleatorizados, do(x).



$$P(y_i|\mathsf{do}(x_i),M) = P(y_i|x_i,M_x)$$

La intervención modifica la realidad causal subyacente

# Efecto de las intervenciones do-operator



# Efecto de las intervenciones do-operator



$$P(a) \neq P(a|\operatorname{do}(e=0))$$

# Efecto de las intervenciones do-operator



$$P(a) \neq P(a|\operatorname{do}(e=0)) \neq P(a|e=0)$$

Los niveles del razonamiento causal

1. **Asociacional**:  $P(y \mid x, \text{ Modelo Causal})$  y  $P(\text{Modelo Causal} \mid x)$ Permite evaluar el efecto y el modelo causal sólo si se cumplen ciertas condiciones

Los niveles del razonamiento causal

1. **Asociacional**:  $P(y \mid x, \text{ Modelo Causal})$  y  $P(\text{Modelo Causal} \mid x)$  Permite evaluar el efecto y el modelo causal sólo si se cumplen ciertas condiciones

2. **Intervencional**:  $P(y \mid do(x), Modelo Causal)$  y  $P(Modelo Causal \mid y, do(x))$  Permite evaluar tanto el efecto causal y el modelo causal

Los niveles del razonamiento causal

1. **Asociacional**:  $P(y \mid x, \text{ Modelo Causal})$  y  $P(\text{Modelo Causal} \mid x)$  Permite evaluar el efecto y el modelo causal sólo si se cumplen ciertas condiciones

2. Intervencional:  $P(y \mid do(x), Modelo Causal)$  y  $P(Modelo Causal \mid y, do(x))$  Permite evaluar tanto el efecto causal y el modelo causal

3. **Contrafactual**:  $P(y \mid do(x), y', do(x'), Modelo Causal)$ Permite evaluar el efecto causal contrafactual (no permite evaluar el modelo causal)

Factual

Contrafactual

Los niveles del razonamiento causal

Estos niveles surgen naturalmente del proceso generativo de lo datos

# Monty Hall Causal Los **niveles** del razonamiento causal

### Monty Hall Causal Asociación



#### Asociación

|    | r1  | r2  | r3  |
|----|-----|-----|-----|
| s1 | 0   | 1/6 | 1/6 |
| s2 | 1/6 | 0   | 1/6 |
| s3 | 1/6 | 1/6 | 0   |

### Monty Hall Causal Intervención



#### Intervención

 $P(r, s|\mathsf{do}(c1))$ 

|    | r1  | r2  | r3  |
|----|-----|-----|-----|
| s1 | 0   | 0   | 0   |
| s2 | 1/6 | 0   | 1/3 |
| s3 | 1/6 | 1/3 | 0   |





Factual

 $P(r|\mathsf{do}(c1),s2)$ 

| r1  | r2 | r3  |
|-----|----|-----|
| 1/3 | 0  | 2/3 |





#### Contra factual

 $P(s',r|\mathsf{do}(c1),s2,\mathsf{do}(c'2))$ 

|     | r1  | r2 | r3  |
|-----|-----|----|-----|
| s'1 | 0   | 0  | 2/3 |
| s'2 | 0   | 0  | 0   |
| s'3 | 1/3 | 0  | 0   |

Los niveles del razonamiento causal

#### **Asociación**

|    | r1  | r2  | r3  |
|----|-----|-----|-----|
| s1 | 0   | 1/6 | 1/6 |
| s2 | 1/6 | 0   | 1/6 |
| s3 | 1/6 | 1/6 | 0   |

Los **niveles** del razonamiento causal

| Λ          | -:- | ción |  |
|------------|-----|------|--|
| <b>ASO</b> | cia | cion |  |
|            |     |      |  |

#### Intervención

| $P(r,s \mathbf{c})$ | do(c1) |
|---------------------|--------|
|---------------------|--------|

|    | r1  | r2  | r3  |
|----|-----|-----|-----|
| s1 | 0   | 1/6 | 1/6 |
| s2 | 1/6 | 0   | 1/6 |
| s3 | 1/6 | 1/6 | 0   |

|    | r1  | r2  | r3  |
|----|-----|-----|-----|
| s1 | 0   | 0   | 0   |
| s2 | 1/6 | 0   | 1/3 |
| s3 | 1/6 | 1/3 | 0   |

Los niveles del razonamiento causal

| Asociación                                             | Intervención                                                                                                                                       | Contra factual                                                                                                                                  |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| P(r,s)                                                 | P(r,s do(c1))                                                                                                                                      | P(s',r do(c'2),do(c1),s2)                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccc} & r1 & r2 & r3 \\ \hline s1 & 0 & 0 & 0 \\ \hline s2 & 1/6 & 0 & 1/3 \\ \hline s3 & 1/6 & 1/3 & 0 \\ \hline \end{array} $ | $\begin{array}{c ccccc} & r1 & r2 & r3 \\ \hline s'1 & 0 & 0 & 2/3 \\ \hline s'2 & 0 & 0 & 0 \\ \hline s'3 & 1/3 & 0 & 0 \\ \hline \end{array}$ |

Los niveles del razonamiento causal

| Asociación                                             | Intervención                                                                                                                                      | Contra factual                                                                                                                                  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| P(r,s)                                                 | P(r,s do(c1))                                                                                                                                     | P(s',r do(c'2),do(c1),s2)                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c cccc} & r1 & r2 & r3 \\ \hline s1 & 0 & 0 & 0 \\ \hline s2 & 1/6 & 0 & 1/3 \\ \hline s3 & 1/6 & 1/3 & 0 \\ \hline \end{array} $ | $\begin{array}{c ccccc} & r1 & r2 & r3 \\ \hline s'1 & 0 & 0 & 2/3 \\ \hline s'2 & 0 & 0 & 0 \\ \hline s'3 & 1/3 & 0 & 0 \\ \hline \end{array}$ |

#### Efecto causal

$$P(r,s|\mathsf{do}(c1),\mathsf{Modelo\ Causal}) - P(r,s|\mathsf{do}(c2),\mathsf{Modelo\ Causal})$$

Intervención 1

Intervención 2

Los niveles del razonamiento causal

| Asociación                                             | Intervención                                                                                                                                      | Contra factual                                                                                                                                  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| P(r,s)                                                 | P(r,s do(c1))                                                                                                                                     | P(s',r do(c'2),do(c1),s2)                                                                                                                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c cccc} & r1 & r2 & r3 \\ \hline s1 & 0 & 0 & 0 \\ \hline s2 & 1/6 & 0 & 1/3 \\ \hline s3 & 1/6 & 1/3 & 0 \\ \hline \end{array} $ | $\begin{array}{c ccccc} & r1 & r2 & r3 \\ \hline s'1 & 0 & 0 & 2/3 \\ \hline s'2 & 0 & 0 & 0 \\ \hline s'3 & 1/3 & 0 & 0 \\ \hline \end{array}$ |

#### Efecto causal

Suponemos que el modelo causal es correcto! (está en el condicional)

¿Cómo determinar el efecto causal entre dos variables basados en datos sin experimentos aleatorizados?

# Estimación de efecto causal Datos sin experimentos aleatorizados

- Estado inicial:  $E_0 \in \{\text{Leve }(0), \text{ Severo }(1)\}$
- $\bullet \ \mathsf{Tratamiento} \colon T \in \{ \mathsf{B\'{a}sico} \ (0), \ \mathsf{Especial} \ (1) \}$
- Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

# Estimación de efecto causal Datos sin experimentos aleatorizados

- Estado inicial:  $E_0 \in \{\text{Leve }(0), \text{ Severo }(1)\}$
- Tratamiento:  $T \in \{ \text{Básico } (0), \text{Especial } (1) \}$
- Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

¿El Tratamiento es efectivo para mejorar el estado del paciente?

Datos sin experimentos aleatorizados

- Estado inicial:  $E_0 \in \{\text{Leve }(0), \text{ Severo }(1)\}$
- Tratamiento:  $T \in \{ \text{Básico } (0), \text{Especial } (1) \}$
- Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

|       | $E_0 = 0$ | $E_0 = 1$ |  |
|-------|-----------|-----------|--|
| T = 0 |           |           |  |
| T=1   |           |           |  |
|       |           |           |  |

# Estimación de efecto causal Datos sin experimentos aleatorizados

- Estado inicial:  $E_0 \in \{\text{Leve }(0), \text{ Severo }(1)\}$
- Tratamiento:  $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$ • Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

|       | $E_0 = 0$                     | $E_0 = 1$ |  |
|-------|-------------------------------|-----------|--|
| T = 0 | $P(E_1 = 1   T = 0, E_0 = 0)$ |           |  |
| T=1   | $P(E_1 = 1   T = 1, E_0 = 0)$ |           |  |
|       |                               |           |  |

# Estimación de efecto causal Datos sin experimentos aleatorizados

- Estado inicial:  $E_0 \in \{\text{Leve }(0), \text{ Severo }(1)\}$
- Tratamiento:  $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$ • Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

|       | $E_0 = 0$                     | $E_0 = 1$ |  |
|-------|-------------------------------|-----------|--|
| T = 0 | $P(E_1 = 1   T = 0, E_0 = 0)$ |           |  |
| T=1   | $P(E_1 = 1   T = 1, E_0 = 0)$ |           |  |
|       | $P(E_1=1 T=0,E_0=0)$          |           |  |

- Estado inicial:  $E_0 \in \{\text{Leve } (0), \text{ Severo } (1)\}$
- Tratamiento:  $T \in \{ \text{Básico } (0), \text{Especial } (1) \}$
- Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

|       | $E_0 = 0$                                      | $E_0 = 1$                     |  |
|-------|------------------------------------------------|-------------------------------|--|
| T = 0 | $P(E_1 = 1   T = 0, E_0 = 0)$                  | $P(E_1 = 1   T = 0, E_0 = 1)$ |  |
| T=1   | $P(E_1 = 1   T = 1, E_0 = 0)$                  | $P(E_1 = 1   T = 1, E_0 = 1)$ |  |
|       | $P(E_1=1 T=0,E_0=0)$<br>- $P(E_1=1 T=1,E_0=0)$ |                               |  |

- Estado inicial:  $E_0 \in \{\text{Leve }(0), \text{Severo }(1)\}$
- Tratamiento:  $T \in \{ \text{Básico } (0), \text{Especial } (1) \}$

| • Estado final: $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$ |                               |                               |  |  |  |
|-----------------------------------------------------------------------|-------------------------------|-------------------------------|--|--|--|
|                                                                       | $E_0 = 0$                     | $E_0 = 1$                     |  |  |  |
| T = 0                                                                 | $P(E_1 = 1   T = 0, E_0 = 0)$ | $P(E_1 = 1   T = 0, E_0 = 1)$ |  |  |  |

 $P(E_1=1|T=0,E_0=0)$   $P(E_1=1|T=0,E_0=1)$   $-P(E_1=1|T=1,E_0=0)$   $-P(E_1=1|T=1,E_0=1)$ 

 $T=1 \mid P(E_1=1|T=1, E_0=0) \quad P(E_1=1|T=1, E_0=1)$ 

- Estado inicial:  $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- $\bullet \ \, {\rm Tratamiento:} \ \, T \in \{{\rm B\acute{a}sico} \,\, (0), \, {\rm Especial} \,\, (1)\}$
- Estado final:  $E_1 \in \{\text{Leve }(0), \text{Severo }(1)\}$   $E_0 = 0$

|       | $E_0 = 0$                                 | $E_0 = 1$                                 |                    |
|-------|-------------------------------------------|-------------------------------------------|--------------------|
| T = 0 | $P(E_1 = 1   T = 0, E_0 = 0)$             | $P(E_1 = 1   T = 0, E_0 = 1)$             | $P(E_1 = 1 T = 0)$ |
| T=1   | $P(E_1 = 1   T = 1, E_0 = 0)$             | $P(E_1 = 1   T = 1, E_0 = 1)$             | $P(E_1 = 1 T = 1)$ |
|       | $P(E_1=1 T=0,E_0=0) - P(E_1=1 T=1,E_0=0)$ | $P(E_1=1 T=0,E_0=1) - P(E_1=1 T=1,E_0=1)$ |                    |

- Datos sin experimentos aleatorizados
- Estado inicial:  $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- $\bullet \ \, {\sf Tratamiento} \colon \, T \in \{ {\sf B\'{a}sico} \,\, (0), \, {\sf Especial} \,\, (1) \}$
- Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

|       | $E_0 = 0$                                 | $E_0 = 1$                                 |                               |
|-------|-------------------------------------------|-------------------------------------------|-------------------------------|
| T = 0 | $P(E_1 = 1   T = 0, E_0 = 0)$             | $P(E_1 = 1   T = 0, E_0 = 1)$             | $P(E_1 = 1 T = 0)$            |
| T=1   | $P(E_1 = 1   T = 1, E_0 = 0)$             | $P(E_1 = 1   T = 1, E_0 = 1)$             | $P(E_1 = 1 T = 1)$            |
|       | $P(E_1=1 T=0,E_0=0) - P(E_1=1 T=1,E_0=0)$ | $P(E_1=1 T=0,E_0=1) - P(E_1=1 T=1,E_0=1)$ | $P(E_1=1 T=0) - P(E_1=1 T=1)$ |

Datos sin experimentos aleatorizados

- Estado inicial:  $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento:  $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

|       | $E_0 = 0$       | $E_0 = 1$     |                 |
|-------|-----------------|---------------|-----------------|
| T = 0 | 15%             | 30%           | 16%             |
|       | 210/1400<br>10% | 30/100<br>20% | 240/1500<br>19% |
| T=1   | 5/50            | 100/500       | 105/550         |
|       | -5%             | -10%          | +4%             |
|       |                 |               |                 |

Datos sin experimentos aleatorizados





Datos sin experimentos aleatorizados

El efecto causal depende del modelo causal

- Estado inicial:  $E_0 \in \{\text{Leve }(0), \text{Severo }(1)\}$
- $\bullet \ \mathsf{Tratamiento} \colon T \in \{ \mathsf{B\'{a}sico} \ (0), \ \mathsf{Especial} \ (1) \}$
- Estado final:  $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

# Estimación de efecto causal Modelo causal (M)



# Estimación de efecto causal Modelo causal (M)



|       | $E_0 = 0$ | $E_0 = 1$ |          |
|-------|-----------|-----------|----------|
| T = 0 | 15%       | 30%       | 16%      |
| I = 0 | 210/1400  | 30/100    | 240/1500 |
| T = 1 | 10%       | 20%       | 19%      |
| I-1   | 5/50      | 100/500   | 105/550  |

| P(E       | $\mathcal{L}_0$ ) | <b>\</b>                |
|-----------|-------------------|-------------------------|
| $E_0 = 0$ | $E_0 = 1$         | $E_0$                   |
| 1450/2050 | 600/2050          |                         |
|           | •                 |                         |
|           |                   | $T \longrightarrow E_1$ |
|           |                   |                         |

|       | $E_0 = 0$ | $E_0 = 1$ |          |
|-------|-----------|-----------|----------|
| T = 0 | 15%       | 30%       | 16%      |
| I = 0 | 210/1400  | 30/100    | 240/1500 |
| T=1   | 10%       | 20%       | 19%      |
| I = 1 | 5/50      | 100/500   | 105/550  |

|           |     | P(E)      | $E_0$ |           | Modelo causal (M        |
|-----------|-----|-----------|-------|-----------|-------------------------|
|           |     | $E_0 = 0$ |       | $f_0 = 1$ | $E_0$                   |
|           | 145 | 50/2050   | 600   | 0/2050    |                         |
|           |     | P(T B)    | $E_0$ |           | $T \longrightarrow E_1$ |
|           |     | T=0       | )     | T=1       |                         |
| $\Xi_0 =$ |     | 1400/14   | 150   | 50/1450   |                         |
| $\Xi_0 =$ | = 1 | 100/60    | 00    | 500/600   |                         |
|           |     |           |       |           |                         |

|       | $E_0 = 0$ | $E_0 = 1$ |          |
|-------|-----------|-----------|----------|
| T = 0 | 15%       | 30%       | 16%      |
| T = 0 | 210/1400  | 30/100    | 240/1500 |
| T=1   | 10%       | 20%       | 19%      |
| I = 1 | 5/50      | 100/500   | 105/550  |

| $P(E_0)$                                                                                                     | iviodelo causai (M)           |                                                              |                                         |                                                                                 |
|--------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|
| $ \begin{vmatrix} E_0 = 0 & E_0 = 1 \\ 1450/2050 & 600/2050 \end{vmatrix} $ $ P(T E_0) $ $   T = 0 & T = 1 $ | $E_0$ $T \longrightarrow E_1$ | T = 0 $T = 1$                                                | $P(E_1 T, E_0)$ $E_1 = 0$ $0.85$ $0.90$ | $egin{array}{c} E_1 = 1 \ \hline oldsymbol{0.15} \ oldsymbol{0.10} \end{array}$ |
| $E_0 = 0$   1400/1450   50/1450   $E_0 = 1$   100/600   500/600                                              |                               | $ \begin{array}{c} (E_0 = 1) \\ T = 0 \\ T = 1 \end{array} $ | $E_1 = 0$ $0.70$ $0.80$                 | $E_1 = 1$ <b>0.30 0.20</b>                                                      |
| $E_0 = 0$                                                                                                    | $E_0 = 1$                     |                                                              |                                         |                                                                                 |

|       | $E_0 = 0$ | $E_0 = 1$ |          |
|-------|-----------|-----------|----------|
| T = 0 | 15%       | 30%       | 16%      |
| T = 0 | 210/1400  | 30/100    | 240/1500 |
| T=1   | 10%       | 20%       | 19%      |
| I-1   | 5/50      | 100/500   | 105/550  |

Modelo causal (M)

 $P(E_0)$  $E_0 = 1$  $E_0$  $E_0 = 0$  $P(E_1|T,E_0)$ 600/2050 1450/2050  $E_1 = 0$  $(E_0 = 0)$  $E_1 = 1$ T = 00.850.15 $P(T|E_0)$ T=10.900.10T = 0T = 1 $E_1 = 0$  $E_1 = 1$  $E_0 = 0$ 1400/1450 50/1450  $(E_0 = 1)$ 0.70 $E_0 = 1$ 100/600 500/600 T = 00.30T=10.80 0.20

Modelo causal (M)

| $P(E_0)$   |           |          |           |  |
|------------|-----------|----------|-----------|--|
|            | $E_0 = 0$ |          | $E_0 = 1$ |  |
| 1450/2050  |           | 600/2050 |           |  |
|            |           |          |           |  |
| $P(T E_0)$ |           |          |           |  |
|            | T = 0     |          | T = 1     |  |
| $E_0 = 0$  | 1400/1450 |          | 50/1450   |  |
| $E_0 = 1$  | 100/600   |          | 500/600   |  |

D(D)



$$P(E_1|\mathsf{do}(T)) \neq P(E_1|T)$$

$$P(E_1|do(T)) \neq P(E_1|T) \neq P(E_1|T, E_0)$$





$$P_{M_T}(T) = \mathrm{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$T \longrightarrow I$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

#### Estimación de efecto causal Modelo causal intervenido $(M_T)$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$
 
$$T \longrightarrow$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t)$$

#### Estimación de efecto causal Modelo causal intervenido $(M_T)$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$
 
$$T \longrightarrow F$$

$$_{_{T}}(e_{1},t)$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)}$$

$$\label{eq:modelo causal intervenido} \text{Modelo causal intervenido } (M_T)$$
 
$$P_{M_T}(T) = \text{Bern}(0.5)$$
 
$$P_{M_T}(T) = P(T)$$

$$P_{M_T}(T) = \operatorname{Bern}(0.5)$$
 $P_{M_T}(E_0) = P(E_0)$ 
 $P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$ 
 $T \longrightarrow E_1$ 

$$\frac{e(e_1,t)}{e(t)} = \frac{\sum_{e_0} P_{M_T}(e_0,t,e_1)}{P_{M_T}(e_0,t,e_1)}$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0,t,e_1)}{P_{M_T}(t)}$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$
 
$$T \longrightarrow P$$

$$T \longrightarrow E_1$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)}$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$
 
$$T \longrightarrow I$$

$$T \longrightarrow E_1$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)}$$

$$\begin{split} P_{M_T}(T) &= \mathsf{Bern}(0.5) \\ P_{M_T}(E_0) &= P(E_0) \end{split}$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$$

$$T \longrightarrow E_1$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1, t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1)}{P_{M_T}(t)}$$

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)} \\ &= \sum_{e0} P_{M_T}(e_0) P_{M_T}(e_1|t,e_0) \end{split}$$

Modelo causal intervenido 
$$(M_T)$$

 $= \sum_{e_0} P(e_0) P(e_1|t, e_0)$ 

$$P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$$

$$T \longrightarrow E_1$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1, t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t)}{P_{M_T}(t)}$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)}$$

$$P_{M_T}(T) = \operatorname{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$$
 
$$T \longrightarrow E_1$$

$$P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$$

$$T \longrightarrow E_1$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1, t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t, e_0)}{P_{M_T}(t)}$$

$$= \sum_{e_0} P(e_0) P(e_1|t, e_0)$$

$$P(e_0)P(e_1|t,e_0)$$
Adjustment formula

Modelo causal intervenido  $(M_T)$ 

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$
 
$$T \longrightarrow P$$

formula

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)} \\ &= \sum_{e} P(e_0) P(e_1|t,e_0) \end{split}$$

$$= \sum_{e_0} P(e_0)P(e_1|t,e_0)$$

Adjustment • Encontramos los efectos causales en cada subgrupo  $P(e_1|t,e_0)$ 

• Y los ponderamos por el tamaño de cada subgrupo  $P(e_0)$ 

$$P_{M_T}(T) = \operatorname{Bern}(0.5)$$
 
$$P_{M_T}(E_0) = P(E_0)$$
 
$$P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$$
 
$$T \longrightarrow E$$

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)} \\ &= \sum_{e0} P(e_0) P(e_1|t,e_0) \end{split}$$

$$\underbrace{P(E_1 = 1 | \mathsf{do}(T = 1)) - P(E_1 = 1 | \mathsf{do}(T = 0))}_{\text{Efecto causal general}}$$

Modelo causal intervenido  $(M_T)$ 

$$\begin{split} P_{M_T}(T) &= \mathsf{Bern}(0.5) \\ P_{M_T}(E_0) &= P(E_0) \\ P_{M_T}(E_1|T,E_0) &= P(E_1|T,E_0) \\ T &\longrightarrow E_1 \\ \\ P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(e_0)}{P_{M_T}(e_0)} \end{split}$$

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)} \\ &= \sum_{e} P(e_0) P(e_1|t,e_0) \end{split}$$

$$\underbrace{P(E_1 = 1|\mathsf{do}(T=1)) - P(E_1 = 1|\mathsf{do}(T=0))}_{\text{Ff. s. b.}} = -0.0646$$

Efecto causal general





$$P(y|\mathsf{do}(x)) =$$



$$P(y|\mathsf{do}(x)) = P(y|x)$$



$$P(y|\mathsf{do}(x)) = P(y|x)$$

¿Cuándo hay que ajustar y cuándo no?

Adjustment formula general

$$P(Y = y|\mathsf{do}(X = x)) = \sum P(Y = y|X = x, \mathbf{K}_x = \kappa)P(\mathbf{K}_x = \kappa)$$

Adjustment formula general

$$P(Y = y | \mathsf{do}(X = x)) = \sum P(Y = y | X = x, \mathbf{K}_x = \kappa) P(\mathbf{K}_x = \kappa)$$

$$P(y|\mathsf{do}(x)) = \left(\frac{P(x|\kappa)}{P(x|\kappa)}\right) \sum_{\kappa} P(y|x,\kappa)P(\kappa)$$

Adjustment formula general

$$P(Y = y | \mathsf{do}(X = x)) = \sum P(Y = y | X = x, \mathbf{K}_x = \kappa) P(\mathbf{K}_x = \kappa)$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} \frac{P(y|x,\kappa)P(x|\kappa)P(\kappa)}{P(x|\kappa)}$$

Adjustment formula general

$$P(Y = y | \mathsf{do}(X = x)) = \sum P(Y = y | X = x, \mathbf{K}_x = \kappa) P(\mathbf{K}_x = \kappa)$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} \frac{P(y|x,\kappa)P(x|\kappa)P(\kappa)}{P(x|\kappa)} = \sum_{\kappa} \frac{P(y,x,\kappa)}{P(x|\kappa)}$$

Adjustment formula general

**La regla del efecto causal**. Dado un DAG en el que el conjunto de variables  $K_x$  que causan X, el efecto causal entre X e Y es

$$P(Y = y|\mathsf{do}(X = x)) = \sum P(Y = y|X = x, \mathbf{K}_x = \kappa)P(\mathbf{K}_x = \kappa)$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} \frac{P(y|x,\kappa)P(x|\kappa)P(\kappa)}{P(x|\kappa)} = \sum_{\kappa} \frac{P(y,x,\kappa)}{P(x|\kappa)}$$

Propensity Score  $:= P(x|\kappa)$ 

Adjustment formula general

**La regla del efecto causal**. Dado un DAG en el que el conjunto de variables  $K_x$  que causan X, el efecto causal entre X e Y es

$$P(Y = y|\mathsf{do}(X = x)) = \sum_{x} P(Y = y|X = x, \mathbf{K}_x = \kappa) P(\mathbf{K}_x = \kappa)$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} \frac{P(y|x,\kappa)P(x|\kappa)P(\kappa)}{P(x|\kappa)} = \sum_{\kappa} \frac{P(y,x,\kappa)}{P(x|\kappa)}$$

¿Y si no podemos ajustar por las causas  $\kappa$  del tratamiento x?

Necesitamos un contexto W que permita interpretar al tratamiento observado T como un experimento aleatorizado: que su elección sea independiente del resultado potencial

Necesitamos un contexto W que permita interpretar al tratamiento observado T como un experimento aleatorizado: que su elección sea independiente del resultado potencial Contrafactual

Notación Neyman-Rubin:

$$\underbrace{Y_i(t)}_{\mbox{\scriptsize Potential}} := \underbrace{\left(Y_i|\mbox{\it do}(T_i=t)\right)}_{\mbox{\scriptsize outcome}}$$

Necesitamos un contexto W que permita interpretar al tratamiento observado T como un experimento aleatorizado: que su elección sea independiente del resultado potencial

$$\left(\underbrace{Y'|\mathsf{do}(T'=0)}_{Y(0)}\right), \left(\underbrace{Y'|\mathsf{do}(T'=1)}_{Y(1)}\right) \perp \!\!\! \perp T \mid W$$

Necesitamos un contexto W que permita interpretar al tratamiento observado T como un experimento aleatorizado: que su elección sea independiente del resultado potencial

$$\underbrace{\left(Y'|\mathsf{do}(T'=0)\right),\left(Y'|\mathsf{do}(T'=1)\right)}_{\mathsf{Contra-factuales}} \perp \perp T \mid W$$

Necesitamos un contexto W que permita interpretar al tratamiento observado T como un experimento aleatorizado: que su elección sea independiente del resultado potencial

$$\underbrace{\left( \left. Y' \middle| \mathsf{do}(T'=0) \right), \left( Y' \middle| \mathsf{do}(T'=1) \right. \right)}_{\mathsf{Contra-factuales}} \bot \!\!\!\bot T \mid W$$

¿Cómo se puede probar esta independencia?

Necesitamos un contexto W que permita interpretar al tratamiento observado T como un experimento aleatorizado: que su elección sea independiente del resultado potencial

Sabemos que 
$$Y \perp \!\!\! \perp X \Longleftrightarrow P(Y,X) = P(Y)P(X)$$

Necesitamos un contexto W que permita interpretar al tratamiento observado T como un experimento aleatorizado: que su elección sea independiente del resultado potencial

$$\underbrace{\left( \left. Y' \middle| \mathsf{do}(T'=0) \right), \left( Y' \middle| \mathsf{do}(T'=1) \right. \right)}_{\mathsf{Contra-factuales}} \bot \!\!\!\bot T \mid W$$

Sabemos que 
$$Y \perp \!\!\! \perp X \Longleftrightarrow P(Y,X) = P(Y)P(X)$$

¿Pero cuál es la distribución conjunta en este caso?

Modelo causal con contra-factuales



Modelo causal con contra-factuales



Modelo causal con contra-factuales



$$E_1(t) \perp \!\!\! \perp T \mid W \iff P(E_1', T \mid T' = t, W) = P(E_1' \mid T' = t, W) P(T \mid T' = t, W)$$

Modelo causal con contra-factuales

**Twin Network**. Un modelo causal con contra-factuales es igual al modelo original salvo que se le añaden las variables contra-factuales.



$$E_1(t) \perp \!\!\!\perp T \mid W \iff P(E_1', T \mid T' = t, W) = P(E_1' \mid T' = t, W) P(T \mid T' = t, W)$$

Ejercicios.

Calcular la conjunta y las marginales y mostrar que  $(E_1(t) \not\perp \!\!\! \perp T | \emptyset)$  y  $(E_1(t) \perp \!\!\! \perp T | \{E_0\})$ 

# Variables de control Modelo causal









$$Y(x) \perp \!\!\!\perp X | \mathbf{K}_x$$
 con  $\underbrace{\mathbf{K}_x = \{A, C, Z\}}_{\text{Causas del tratamiento } X}$ 



$$Y(x) \perp \!\!\!\perp X | \mathbf{K}_x$$
 con  $\mathbf{K}_x = \{A, C, Z\}$ 
Causas del tratamiento  $X$ 

Modelo causal con contra-factuales



Sabemos que

$$Y(x) \perp \!\!\!\perp X | \mathbf{K}_x$$
 con  $\mathbf{K}_x = \{A, C, Z\}$ 
Causas del tratamiento  $X$ 

Las causas de X,  $K_x$ , cortan el flujo de inferencia entre X e Y(x)

Modelo causal con contra-factuales



Sabemos que

$$Y(x) \perp \!\!\!\perp X | \mathbf{K}_x$$
 con  $\mathbf{K}_x = \{A, C, Z\}$ 
Causas del tratamiento  $X$ 

¿Y si no podemos medir (y por lo tanto ajustar) por las causas  $oldsymbol{K}_X$ ?



Necesitamos encontrar otro conjunto Q que corte el flujo de inferencia entre X e Y(x)

$$Y(x) \perp \!\!\!\perp X|Q$$



Necesitamos encontrar otro conjunto Q que corte el flujo de inferencia entre X e Y(x)

$$Y(x) \perp \!\!\!\perp X|Q$$

Cómo?





Dos variables Y(x) y X son condicionalmente independientes dado  $\mathbf{Q}$ ,  $(Y(x) \perp \!\!\! \perp X | \mathbf{Q})$ 

Las variables son independientes en todos los caminos que las conectan



$$\label{eq:con} \boldsymbol{\xi} Y(x) \perp \!\!\! \perp X | \boldsymbol{Q} \qquad \text{con } \boldsymbol{Q} = \{C,Z\} ?$$



$$X \longleftarrow \widehat{Z} \longrightarrow Y'$$



$$X \longleftarrow Z \longrightarrow Y'$$

$$X \longleftarrow A \longrightarrow C \longrightarrow Y$$

 $i Y(x) \perp \!\!\! \perp X | \mathbf{Q} \quad \text{con } \mathbf{Q} = \{C, Z\}?$ 



$$X \longleftarrow A \longrightarrow C \longrightarrow Y'$$

$$X \longleftarrow A \longrightarrow \widehat{(C)} \longleftarrow B \longrightarrow Y'$$



**Fork** 

$$X \longleftarrow A \longrightarrow (C) \longrightarrow Y'$$

$$B \longrightarrow Y'$$



**Fork** 

Fork + Pipe

$$X \longleftarrow A \longrightarrow C \longrightarrow Y'$$

$$Y \longleftarrow A \longrightarrow C \longleftarrow B \longrightarrow Y'$$



$$X \longleftarrow Z \longrightarrow Y'$$
 Fork  
 $X \longleftarrow A \longrightarrow C \longrightarrow Y'$  Fork + Pipe  
 $X \longleftarrow A \longrightarrow C \longleftarrow B \longrightarrow Y'$  Fork + Collider + Fork

$$X \longleftarrow Z \longrightarrow Y'$$
 Fork 
$$X \longleftarrow A \longrightarrow C \longrightarrow Y'$$
 Fork + Pipe 
$$X \longleftarrow A \longrightarrow C \longleftarrow B \longrightarrow Y'$$
 Fork + Collider + Fork

Hay flujo de inferencia entre los extremos de una cadena si: (camino *d-conectado*)

- Todas las consecuencias comunes (o sus descendientes) son observables
- Ninguna otra variable es observable

Hay flujo de inferencia entre los extremos de una cadena si: (camino *d-conectado*)

- Todas las consecuencias comunes (o sus descendientes) son observables
- Ninguna otra variable es observable

Se cierra el flujo si está <u>no d-conectado</u> d-separado



$$X \longleftarrow Z \longrightarrow Y'$$
 Fork  
 $X \longleftarrow A \longrightarrow C \longrightarrow Y'$  Fork + Pipe  
 $X \longleftarrow A \longrightarrow C \longleftarrow B \longrightarrow Y'$  Fork + Collider + Fork



$$Y(x) \not\perp LX | \mathbf{Q} \quad \text{con } \mathbf{Q} = \{C, Z\}$$

$$X \longleftarrow Z \longrightarrow Y'$$
 Fork  
 $X \longleftarrow A \longrightarrow C \longrightarrow Y'$  Fork + Pipe

Fork + Collider + Fork



$$Y(x) \perp \perp X | \mathbf{Q}$$
 con  $\mathbf{Q} = \{C, Z, B\}$ 

$$X \longleftarrow Z \longrightarrow Y'$$
 Fork  
 $X \longleftarrow A \longrightarrow C \longrightarrow Y'$  Fork + Pipe  
 $X \longleftarrow A \longrightarrow C \longleftarrow B \longrightarrow Y'$  Fork + Collider + Fork



$$Y(x) \perp \perp X | Q$$
 con  $Q = \{C, Z, B\}$ 

Las variables Q cortan el flujo de inferencia entre X e Y(x)



$$Y(x) \perp \perp X | \mathbf{Q}$$
 con  $\mathbf{Q} = \{C, Z, B\}$ 

Las variables  ${m Q}$  cortan el flujo de inferencia entre X e Y(x) pero no entre X e Y ( $Y \not\perp\!\!\!\perp X | {m Q}$ )



$$Y(x) \perp \perp X | \mathbf{Q}$$
 con  $\mathbf{Q} = \{C, Z, B\}$ 

Las variables Q cortan el flujo de inferencia entre X e Y(x)

Solo cortan el flujo trasero entre X e Y

#### **Backdoor criterion**

- 1.  $oldsymbol{Q}$  cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

#### **Backdoor criterion**

- 1. Q cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

```
P(y|\mathsf{do}(t))
```

#### **Backdoor criterion**

- 1. Q cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

$$P(y|\mathsf{do}(t)) = \sum_{q \in Q} P(y, q|\mathsf{do}(t))$$

#### **Backdoor criterion**

- 1. Q cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

$$P(y|\mathsf{do}(t)) = \sum_{q \in Q} P(y|\mathsf{do}(t), q) P(q|\mathsf{do}(t))$$

#### **Backdoor criterion**

Dado un conjunto de variable Q tal que:

- 1. Q cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

$$P(y|\mathsf{do}(t)) = \sum_{q \in Q} P(y|\mathsf{do}(t),q) P(q|\mathsf{do}(t))$$

1. Porque Q corta el flujo trasero vale: P(y|do(t),q) = P(y|t,q)

#### **Backdoor criterion**

- 1. Q cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

$$P(y|\mathsf{do}(t)) = \sum_{q \in \mathbf{Q}} P(y|\mathsf{do}(t),q) P(q|\mathsf{do}(t))$$

- 1. Porque Q corta el flujo trasero vale: P(y|do(t),q) = P(y|t,q)
- 2. Porque Q no contiene descendientes de T vale: P(q|do(t)) = P(q)

#### **Backdoor criterion**

- 1. Q cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

$$P(y|\mathsf{do}(t)) = \sum_{q \in \mathbf{Q}} P(y|\mathsf{do}(t),q) P(q|\mathsf{do}(t)) = \sum_{w} P(y|t,q) P(q)$$

- 1. Porque Q corta el flujo trasero vale: P(y|do(t),q) = P(y|t,q)
- 2. Porque Q no contiene descendientes de T vale: P(q|do(t)) = P(q)

### Variables de control Ejercicio

Listar todos los conjuntos de variables que satisfacen el backdoor criterion

























### Controles malos Sesgo de selección



# Controles neutrales Mejoran precisión



# Controles neutrales Mejoran precisión



# Controles neutrales Reducen precisión





## Estimación de efecto causal



## Estimación de efecto causal



## Estimación de efecto causal Modelos lineales



Modelos lineales

```
# https://github.com/glandfried/bayesian-linear-model
from linear_model import BayesianLinearModel
import numpy as np
N = 1000
z1 = np.random.uniform(-3,3, size=N)
w1 = 3*z1 + np.random.normal(size=N,scale=1)
z2 = np.random.uniform(-3.3, size=N)
w2 = 2*z2 + np.random.normal(size=N,scale=1)
z3 = -2*z1 + 2*z2 + np.random.normal(size=N.scale=1)
x = -1*w1 + 2*z3 + np.random.normal(size=N,scale=1)
w3 = 2*x + np.random.normal(size=N.scale=1)
y = 2 - 1*w3 - z3 + w2 + np.random.normal(size=N,scale=1)
```

# Estimación de efecto causal Modelos lineales



# Estimación de efecto causal Modelos lineales



Table 2 Fallacy

Es una falacia presentar los coeficientes de los controles también como efectos causales

F: Fuma.

E: Edad.

S: Salud.



F: Fuma.

E: Edad.

S: Salud.



$$S \longleftarrow F \longrightarrow Y$$

F: Fuma.

E: Edad.

S: Salud.





F: Fuma.

E: Edad.

S: Salud.



$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

F: Fuma.

E: Edad.

S: Salud.



$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

F: Fuma.

E: Edad.

S: Salud.



$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

$$S \longleftarrow \widehat{F} \longrightarrow Y$$

F: Fuma.
E: Edad.
S: Salud.
Y: Síntoma

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow F \longrightarrow Y$$

$$S \longleftarrow F \longleftarrow E \longrightarrow Y$$

$$F$$
: Fuma.  $E$ : Edad.  $S$ : Salud.  $Y$ : Síntoma  $F$ 

$$y \sim c_0 + c_s s + c_f f + c_e e$$

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow F \longrightarrow Y$$

$$S \longleftarrow F \longleftarrow E \longrightarrow Y$$

F: Fuma.

E: Edad.

S: Salud.



$$y \sim c_0 + c_s \, s + \underbrace{c_f \, f + c_e \, e}_{\text{Efectos causales directos}}$$

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

F: Fuma.
E: Edad.
S: Salud.
Y: Síntoma

$$y \sim c_0 + c_s \, s + c_f \, f + c_e \, e$$

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow F \longrightarrow Y$$

$$F$$
: Fuma.  $E$ : Edad.  $S$ : Salud.  $Y$ : Síntoma

$$y \sim c_0 + c_s \, s + c_f \, f + c_e \, e$$

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow F \longrightarrow Y$$

$$S \longleftarrow F \longrightarrow V$$

$$F$$
: Fuma.
 $E$ : Edad.
 $S$ : Salud.
 $Y$ : Síntoma

$$y \sim c_0 + c_s \, s + c_f \, f + c_e \, e$$

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow F$$

$$S \longleftarrow F \longleftarrow U \longrightarrow Y$$

$$F$$
: Fuma.
 $E$ : Edad.
 $S$ : Salud.
 $Y$ : Síntoma

$$y \sim c_0 + c_s \, s + \underbrace{c_f \, f + c_e \, e}_{\substack{\text{No son efectors causales!}}}$$

$$S \longleftarrow F \longrightarrow Y$$

$$S \longleftarrow E \longrightarrow F \longrightarrow Y \qquad S \longleftarrow F \longleftarrow U \longrightarrow Y$$

$$S \longleftarrow F \longleftarrow E \longrightarrow Y \qquad S \longleftarrow E \longrightarrow F \longrightarrow U \longrightarrow Y$$

Cómo publicar artículos científicos

• Obtener una base de datos con varias variables.

- Obtener una base de datos con varias variables.
- Buscar un regresión lineal con coeficientes significativos (suele ser el paso más fácil).

- Obtener una base de datos con varias variables.
- Buscar un regresión lineal con coeficientes significativos (suele ser el paso más fácil).
- Proponer una historia causal a medida de los coeficientes significativos.

- Obtener una base de datos con varias variables.
- Buscar un regresión lineal con coeficientes significativos (suele ser el paso más fácil).
- Proponer una historia causal a medida de los coeficientes significativos.
- Jamás revelar los secretos que obligarían rechazar la interpretación propuesta.

- Obtener una base de datos con varias variables.
- Buscar un regresión lineal con coeficientes significativos (suele ser el paso más fácil).
- Proponer una historia causal a medida de los coeficientes significativos.
- Jamás revelar los secretos que obligarían rechazar la interpretación propuesta.
- Incluir en el CV ese fabuloso artículo científico.

Cómo hacer inferencia causal

#### Estimación de efecto causal Cómo hacer inferencia causal

• Enunciar el problema de conocimiento que se quiere resolver.

• Enunciar el problema de conocimiento que se guiere resolver.

• Especificar los modelos causales existentes en el conocimiento experto del área.

Cómo hacer inferencia causal

- Enunciar el problema de conocimiento que se quiere resolver.
- Especificar los modelos causales existentes en el conocimiento experto del área.
- Simular datos a partir del modelo causal y validarlo sobre los datos sintéticos.

- Enunciar el problema de conocimiento que se quiere resolver.
- Especificar los modelos causales existentes en el conocimiento experto del área.
- Simular datos a partir del modelo causal y validarlo sobre los datos sintéticos.
- Estimar las variables ocultas y los efectos causales dado los datos.

- Enunciar el problema de conocimiento que se quiere resolver.
- Especificar los modelos causales existentes en el conocimiento experto del área.
- Simular datos a partir del modelo causal y validarlo sobre los datos sintéticos.
- Estimar las variables ocultas y los efectos causales dado los datos.
- Los fracasos son éxitos que nos sirven para revisar y repetir el proceso.

# Inferencia pasiva de efecto causal

Casos especiales y criterio general.

La disputa contra el industria del tabaco

 $F:\mathsf{Fumar}$ 

 $C:\mathsf{Cancer}$ 

 $U: \mathsf{Otras} \ \mathsf{variables}$ 



La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$ 

 $C:\mathsf{Cancer}$ 

 $U: \mathsf{Otras}\ \mathsf{variables}$ 

 $D: {\sf Dep\'ositos}\ {\sf en}\ {\sf pulmones}$ 



La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$ 



|       | D=0     |       | D = 1 |         |         |         |
|-------|---------|-------|-------|---------|---------|---------|
|       | F = 0   | F=1   | F = 0 | F = 1   | F = 0   | F = 1   |
| C = 0 | 10%     | 90%   | 5%    | 85%     | 9.75%   | 85%     |
|       | 38/380  | 18/20 | 1/20  | 323/380 | 39/400  | 341/400 |
| C = 1 | 90%     | 10%   | 95%   | 15%     | 90.25%  | 15%     |
|       | 342/380 | 2/20  | 19/20 | 57/380  | 361/400 | 59/400  |
|       |         |       |       |         |         |         |

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$ 



|       | D=0     |       | D = 1 |         |                |             |
|-------|---------|-------|-------|---------|----------------|-------------|
|       | F = 0   | F=1   | F = 0 | F = 1   | F = 0          | F = 1       |
| C = 0 | 10%     | 90%   | 5%    | 85%     | 9.75%          | 85%         |
|       | 38/380  | 18/20 | 1/20  | 323/380 | 39/400         | 341/400     |
| C = 1 | 90%     | 10%   | 95%   | 15%     | <b>90.25</b> % | <b>15</b> % |
|       | 342/380 | 2/20  | 19/20 | 57/380  | 361/400        | 59/400      |

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$ 



| D=0 $D=1$ $D=0$ $D=1$ $D=0$ $D=0$                                  | =1   |
|--------------------------------------------------------------------|------|
|                                                                    |      |
|                                                                    | 1%   |
| 0     38/380     1/20     18/20     323/380     56/400     324/380 | /400 |
| 90% 95% 10% 15% 81% 9                                              | )%   |
| C=1 342/380 19/20 2/20 57/380 344/400 76/                          | /400 |

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$ 



|       | F =         | = 0         | F =   | = 1     |         |         |
|-------|-------------|-------------|-------|---------|---------|---------|
|       | D = 0       | D = 1       | D = 0 | D=1     | D = 0   | D=1     |
| C = 0 | 10%         | 5%          | 90%   | 85%     | 19%     | 81%     |
| C = 0 | 38/380      | 1/20        | 18/20 | 323/380 | 56/400  | 324/400 |
| C = 1 | <b>90</b> % | <b>95</b> % | 10%   | 15%     | 81%     | 9%      |
| C=1   | 342/380     | 19/20       | 2/20  | 57/380  | 344/400 | 76/400  |

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$ 



|       | F =            | = 0        | F =          | = 1                |                |                |
|-------|----------------|------------|--------------|--------------------|----------------|----------------|
|       | D = 0          | D=1        | D=0          | D=1                | D = 0          | D=1            |
| C = 0 | 10%<br>38/380  | 5%<br>1/20 | 90%<br>18/20 | 85%<br>323/380     | 19%<br>56/400  | 81%<br>324/400 |
| C = 1 | 90%<br>342/380 | 95% 19/20  | 10%<br>2/20  | <b>15</b> % 57/380 | 81%<br>344/400 | 9%<br>76/400   |

La disputa contra el industria del tabaco

TT  $F: \mathsf{Fumar}$  $C:\mathsf{Cancer}$  $U: \mathsf{Otras} \ \mathsf{variables}$ 

D=1

5%

1/20

95%

19/20

D : Depósitos en pulmones

D = 0

10%

38/380

90%

342/380

C = 0

C=1

F = 0

| / \       |   |
|-----------|---|
|           |   |
| F $D$ $C$ | ) |

D = 0

90%

18/20

10%

2/20

F = 1

D=1

85%

323/380

15%

57/380

| P(d f) | D = 0 |  |
|--------|-------|--|
| F = 0  |       |  |
| F = 1  |       |  |

D=0

19%

56/400

81%

344/400

D=1

D=1

81%

324/400

9%

76/400

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$  $C:\mathsf{Cancer}$ U: Otras variables

|   | P(d f) | D = 0   |
|---|--------|---------|
|   | F = 0  | 380/400 |
| ) | F = 1  |         |

19%

56/400

81%

344/400

$$\frac{D=1}{20/400}$$

81%

324/400

9%

76/400

| D: | Depositos | en | pu | Imone | 2S |
|----|-----------|----|----|-------|----|
|    |           |    |    |       |    |

342/380

|       | F =           | = 0        | F =          | = 1            |
|-------|---------------|------------|--------------|----------------|
|       | D = 0         | D=1        | D=0          | D=1            |
| C = 0 | 10%<br>38/380 | 5%<br>1/20 | 90%<br>18/20 | 85%<br>323/380 |
|       | 90%           | 95%        | 10%          | 15%            |

19/20

$$O = 1$$

57/380

| D = 0 | D = 1 |
|-------|-------|

| ( | $\Gamma$ |       |       |     |
|---|----------|-------|-------|-----|
|   |          |       | F = 1 | 1   |
| 1 |          | D = 0 |       | D - |

2/20

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$  U  $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$ 

D: Depósitos en pulmones

| J |        |       |      |   |
|---|--------|-------|------|---|
|   | P(d f) | D = 0 | D=1  |   |
|   | F = 0  | 0.95  | 0.05 | 1 |
|   | F = 1  |       |      |   |
|   |        |       |      |   |

|       | F       | = 0   | F =   | = 1     |         |         |
|-------|---------|-------|-------|---------|---------|---------|
|       | D=0     | D=1   | D=0   | D=1     | D = 0   | D=1     |
| C = 0 | 10%     | 5%    | 90%   | 85%     | 19%     | 81%     |
|       | 38/380  | 1/20  | 18/20 | 323/380 | 56/400  | 324/400 |
| C = 1 | 90%     | 95%   | 10%   | 15%     | 81%     | 9%      |
|       | 342/380 | 19/20 | 2/20  | 57/380  | 344/400 | 76/400  |

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$ C: Cancer  $U: \mathsf{Otras} \ \mathsf{variables}$ 

95%

19/20

| P(d f)       |  |
|--------------|--|
| F = 0        |  |
| $\Gamma - 1$ |  |

57/380

| 0  | D=1     |
|----|---------|
| 5  | 0.05    |
| 00 | 380/400 |

76/400

10%

2/20

| D: L       | epósitos en pi | ulmones |       |         |        |
|------------|----------------|---------|-------|---------|--------|
|            | F =            | = 0     | F =   | = 1     |        |
|            | D = 0          | D=1     | D=0   | D=1     | D=0    |
| C = 0      | 10%            | 5%      | 90%   | 85%     | 19%    |
| $\cup - 0$ | 38/380         | 1/20    | 18/20 | 323/380 | 56/400 |

| C             | , ,           | , ,            |
|---------------|---------------|----------------|
| D=1           | D = 0         | D=1            |
| 85%<br>23/380 | 19%<br>56/400 | 81%<br>324/400 |
| 15%           | 81%           | 9%             |

344/400

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$ 



| P(d f) | D = 0 | D = 1 |
|--------|-------|-------|
| F = 0  | 0.95  | 0.05  |
| F = 1  | 0.05  | 0.95  |
|        |       |       |

|     | F =            | = 0        | F =          | = 1            |                |                |
|-----|----------------|------------|--------------|----------------|----------------|----------------|
|     | D = 0          | D = 1      | D=0          | D=1            | D = 0          | D=1            |
| C=0 | 10%<br>38/380  | 5%<br>1/20 | 90%<br>18/20 | 85%<br>323/380 | 19%<br>56/400  | 81%<br>324/400 |
| C=1 | 90%<br>342/380 | 95% 19/20  | 10%<br>2/20  | 15%<br>57/380  | 81%<br>344/400 | 9%<br>76/400   |

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$  U  $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$ 

19/20

342/380

| P(d f) | D = 0 |  |
|--------|-------|--|
| F = 0  | 0.95  |  |
| F = 1  | 0.05  |  |

344/400

D=1

0.05

76/400

|       | )epósitos en pu |            | D            | F' =           | 1   0.05      | 0.95           |
|-------|-----------------|------------|--------------|----------------|---------------|----------------|
|       | F =             | = 0        | F =          | = 1            |               |                |
|       | D = 0           | D=1        | D=0          | D=1            | D = 0         | D=1            |
| C = 0 | 10%<br>38/380   | 5%<br>1/20 | 90%<br>18/20 | 85%<br>323/380 | 19%<br>56/400 | 81%<br>324/400 |
| C = 1 | 90%             | 95%        | 10%          | 15%            | 81%           | 9%             |

2/20

57/380

La disputa contra el industria del tabaco

| F:Fumar                   | U                                             |        |       |      |
|---------------------------|-----------------------------------------------|--------|-------|------|
| C:Cancer                  |                                               | P(d f) | D = 0 | D=1  |
|                           |                                               | F = 0  | 0.95  | 0.05 |
| U:Otras variables         |                                               | F = 1  | 0.05  | 0.95 |
| D : Depósitos en pulmones | $(F) \longrightarrow (D) \longrightarrow (C)$ |        |       | I    |

¿Podemos evaluar el efecto causal de F en C sin controlar por U?

La disputa contra el industria del tabaco

| F:Fumar                      | U         |        |       |      |
|------------------------------|-----------|--------|-------|------|
| C:Cancer                     |           | P(d f) | D = 0 | D=1  |
| C . Cancer                   |           | F = 0  | 0.95  | 0.05 |
| U:Otras variables            |           | F=1    | 0.05  | 0.95 |
| $D: Dep\'ositos$ en pulmones | (F) $(D)$ |        |       | l    |

$$P(d|\mathsf{do}(f)) = ?$$
 (se puede controlar?)

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Depósitos} \ \mathsf{en} \ \mathsf{pulmones}$ 



| P(d f) | D = 0 | D = 1 |
|--------|-------|-------|
| F = 0  | 0.95  | 0.05  |
| F-1    | 0.05  | 0.95  |

$$P(d|\mathsf{do}(f)) = P(d|f)$$

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$  : Otras variabl

 $U: \mathsf{Otras} \ \mathsf{variables}$ 

D : Depósitos en pulmones



| P(d f) | D = 0 |
|--------|-------|
| T 0    | 0.05  |

$$D = 0$$
  $D = 1$   $0.05$   $0.05$ 

$$F = 1$$

$$P(d|\mathsf{do}(f)) = P(d|f)$$

$$P(c|\mathsf{do}(d)) = ?$$

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Depósitos} \ \mathsf{en} \ \mathsf{pulmones}$ 



|   | P(d f) | D = 0 | D=1  |
|---|--------|-------|------|
|   | F = 0  | 0.95  | 0.05 |
| \ | F = 1  | 0.05  | 0.95 |

$$P(d|\mathsf{do}(f)) = P(d|f)$$

$$P(c|\mathsf{do}(d)) = \sum_f P(c|d,f)P(f)$$

La disputa contra el industria del tabaco

 $F: \mathsf{Fumar}$   $C: \mathsf{Cancer}$   $U: \mathsf{Otras} \ \mathsf{variables}$   $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$ 



|   | P(d f) | D = 0 | D = 1 |
|---|--------|-------|-------|
|   | F = 0  | 0.95  | 0.05  |
| \ | F = 1  | 0.05  | 0.95  |
| ) |        |       |       |

|                                  |          | F =         | 0            | F =   | = 1     |
|----------------------------------|----------|-------------|--------------|-------|---------|
|                                  | P(c d,f) | D = 0       | D = 1        | D = 0 | D=1     |
| P(d do(f)) = P(d f)              | C = 0    | 0.1         | 0.05         | 0.9   | 0.85    |
| <u></u>                          | C = 0    | 0.1 38/380  | 1/20         | 18/20 | 323/380 |
| $P(c do(d)) = \sum P(c d,f)P(f)$ | C - 1    | 0.9         | 0.95 $19/20$ | 0.1   | 0.15    |
| f                                | 0 – 1    | 0.9 342/380 | 19/20        | 2/20  | 57/380  |
|                                  |          |             |              |       |         |

D=1

0.05

0.95

D = 0

0.95

 $F: \mathsf{Fumar}$ 

 $C:\mathsf{Cancer}$ 

 $U: \mathsf{Otras} \ \mathsf{variables}$ 

D : Depósitos en pulmones

| U |        |
|---|--------|
|   | P(d f) |
|   | F = 0  |

| D: Depósitos en pulmones          |            |               |       |       |         |
|-----------------------------------|------------|---------------|-------|-------|---------|
|                                   |            | F =           |       | F =   | = 1     |
| D(11 (6)) D(11 6)                 | P(c d,f)   | D = 0         | D=1   | D = 0 | D=1     |
| P(d do(f)) = P(d f)               | C = 0      | 0.1<br>38/380 | 0.05  | 0.9   | 0.85    |
|                                   | C = 0      | 38/380        | 1/20  | 18/20 | 323/380 |
| $P(c do(d)) = \sum P(c d,f) P(f)$ | <i>C</i> 1 | 0.9           | 0.95  | 0.1   | 0.15    |
| $\overline{f}$                    | C = 1      | 0.9 342/380   | 19/20 | 2/20  | 57/380  |

 $F = 0 \mid F = 1$ 0.5 | 0.5

F = 1

 $D = 1 \\
0.85 \\
323/380 \\
0.15 \\
57/380$ 

|   | I' | • | П  | umai  |
|---|----|---|----|-------|
|   | C  | : | Ca | ancer |
| : | Ot | r | as | varia |

7 : Otras variables Depósitos en pulmo

C . Eumar

D : Depósitos en pulmones

| U               |
|-----------------|
|                 |
|                 |
|                 |
|                 |
|                 |
| (F) $(D)$ $(C)$ |
|                 |
|                 |

|   | P(d f) | D = 0 | D=1  |
|---|--------|-------|------|
|   | F = 0  | 0.95  | 0.05 |
| \ | F = 1  | 0.05  | 0.95 |
| ) |        |       | '    |
|   |        |       |      |

F = 0

|                                  |          | I - 0          |       |       |
|----------------------------------|----------|----------------|-------|-------|
| $\mathcal{D}(A \cup A \cup B)$   | P(c d,f) | D = 0          | D=1   | D = 0 |
| P(d do(f)) = P(d f)              | C = 0    | 0.1            | 0.05  | 0.9   |
|                                  | C = 0    | 0.1<br>38/380  | 1/20  | 18/20 |
| $P(c do(d)) = \sum P(c d,f)P(f)$ | C = 1    | 0.9            | 0.95  | 0.1   |
| $\overline{f}$                   | C = 1    | 0.9<br>342/380 | 19/20 | 2/20  |
|                                  |          |                |       |       |

 $P(c|\mathsf{do}(f)) = f$ 

D=1

F = 0 | F = 1

 $C:\mathsf{Cancer}$ 

 $F: \mathsf{Fumar}$ 

 $P(d|\mathsf{do}(f)) = P(d|f)$ 

 $U: \mathsf{Otras} \ \mathsf{variables}$ 

D : Depósitos en pulmones

P(c|d,f)

C = 0

D = 0

0.1

0.9

342/380

F = 1

0.05

D = 0

0.95

F = 1

0.05

0.95

$$P(c|\mathsf{do}(d)) = \sum_{f} P(c|d,f)P(f)$$
 
$$C = 1$$
 
$$P(c|\mathsf{do}(f)) = \sum_{f} P(c|\mathsf{do}(d))P(d|\mathsf{do}(f))$$

| P(d do( | f) |
|---------|----|

$$F = 0$$

$$D = 1$$

P(d|f)

$$D=0$$

$$\begin{array}{c|cccc}
D = 0 & D = 0 \\
\hline
0.1 & 0.0 \\
38/380 & 1/3
\end{array}$$

0.1

2/20

$$0.85$$
 323/380

0.15

57/380

D=1

0.95

19/20

F = 0 | F = 1

D=10.05

 $U: \mathsf{Otras} \ \mathsf{variables}$ 

F = 1

0.95

D=1

$$P(d|\mathsf{do}(f)) = P(d|f)$$

 $F: \mathsf{Fumar}$ 

 $C:\mathsf{Cancer}$ 

D : Depósitos en pulmones

$$\begin{array}{c|cccc}
F = 0 \\
\hline
P(c|d, f) & D = 0 \\
\hline
C = 0 & 0.1 \\
38/380 & 0.1
\end{array}$$

D = 0

0.95

0.05

$$\begin{array}{c|c}
D = 0 \\
\hline
0.9 \\
18/20
\end{array}$$

F = 1

0.85323/380 0.1557/380

$$P(c|\mathsf{do}(d)) = \sum_f P(c|d,f)P(f)$$

$$\begin{array}{c|cc}
P(c|d,f) & D = 0 \\
\hline
C = 0 & 38/380 \\
\hline
0.9 & 0.9
\end{array}$$

342/380

C = 1

D=1

$$P(c|\mathsf{do}(f)) = \sum_{i} P(c|\mathsf{do}(d)) P(d|\mathsf{do}(f)) = \sum_{i} P(d|f) \sum_{i} P(c|d,f') P(f')$$

0.1

# Frontdoor criterion

Doble aplicación de backdoor



$$P(y|\mathsf{do}(t)) = \sum_{m} P(m|t) \sum_{t'} P(y|m,t') P(t')$$

#### Frontdoor criterion

Doble aplicación de backdoor



$$P(y|\mathsf{do}(t)) = \sum_{m} P(m|t) \sum_{t'} P(y|m,t') P(t')$$

#### Frontdoor criterion

Un conjunto de variables mediadoras M satisfacen el criterio frontdoor entre un tratamiento T y una variable objetivo Y si:

- 1. M media completamente el efecto causal de T en Y
- 2. No hay caminos traseros abiertos entre  $oldsymbol{M}$  y T
- 3. Todos los caminos traseros entre M e Y están bloqueados por T

#### ¿Frontdoor criterion? Doble aplicación de backdoor



#### Frontdoor criterion

Un conjunto de variables mediadoras  ${m M}$  satisfacen el criterio  ${\it front door}$  entre un tratamiento T y una variable objetivo Y si:

- 1. M media completamente el efecto causal de T en Y
- 2. No hay caminos traseros abiertos entre  $oldsymbol{M}$  y T
- 3. Todos los caminos traseros entre M e Y están bloqueados por T

## Frontdoor criterion

Doble aplicación de backdoor



#### Frontdoor criterion

Un conjunto de variables mediadoras  ${\pmb M}$  satisfacen el criterio  ${\it front door}$  entre un tratamiento T y una variable objetivo Y si:

- 1. M media completamente el efecto causal de T en Y
- 2. No hay caminos traseros abiertos entre  $oldsymbol{M}$  y T
- 3. Todos los caminos traseros entre M e Y están bloqueados por T





$$P(m|\mathsf{do}(t)) =$$



$$P(m|\mathsf{do}(t)) = ?$$
 (hay controles?)



$$P(m|do(t)) = ?$$
 (hay controles?)



$$P(m|do(t)) = ?$$
 (hay controles?)



$$P(m|\mathsf{do}(t)) = \sum P(m|t,w_1)P(w_1)$$



$$P(m|\mathsf{do}(t)) = \sum P(m|t, w_1)P(w_1)$$

$$P(y|\mathsf{do}(m)) = ?$$

$$M \longleftarrow W_1 \longrightarrow T \longleftarrow U \longrightarrow Y \qquad U$$

$$M \longleftarrow T \longleftarrow U \longrightarrow Y$$

$$M \longleftarrow W_2 \longrightarrow Y \qquad T \longrightarrow M \longrightarrow Y$$

$$W_1 \qquad W_2$$

$$P(m|\mathsf{do}(t)) = \sum_{w_1} P(m|t, w_1) P(w_1)$$

$$P(y|\mathsf{do}(m)) = ?$$

$$P(m|\mathsf{do}(t)) = \sum_{w_0} P(m|t, w_1)P(w_1)$$

$$P(y|\mathsf{do}(m)) = ?$$

$$P(m|\mathsf{do}(t)) = \sum P(m|t, w_1)P(w_1)$$

$$P(y|\mathsf{do}(m)) = \sum_{t,w_1,w_2,} P(y|m,t,w_1,w_2)P(t,w_1,w_2)$$

$$P(y|\mathsf{do}(t)) = \sum_{m} P(y|\mathsf{do}(m))P(m|\mathsf{do}(t)) \overset{U}{\underset{W_{1}}{\longleftarrow}} \overset{W}{\underset{W_{2}}{\longleftarrow}} \overset{W}{\underset{W}{\longleftarrow}} \overset{W$$

$$P(m|\mathsf{do}(t)) = \sum P(m|t, w_1)P(w_1)$$

 $t, w_1, w_2,$ 

$$P(y|do(m)) = \sum P(y|m, t, w_1, w_2)P(t, w_1, w_2)$$

### do-calculus Criterio general

#### do-calculus Criterio general

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(\boldsymbol{y}|\mathsf{do}(\boldsymbol{t}),\boldsymbol{q})$$

# do-calculus Criterio general

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(oldsymbol{y}|\mathsf{do}(oldsymbol{t}),oldsymbol{q})$$

Regla 1 (Ignorar una observación):

$$P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$$
 si  $\boldsymbol{V} \perp \!\!\!\perp_{G} \boldsymbol{X} \mid \boldsymbol{C}$  (d-separación)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(oldsymbol{y}|\mathsf{do}(oldsymbol{t}),oldsymbol{q})$$

Regla 1 (Ignorar una observación):

$$P(oldsymbol{v}|\mathsf{do}(oldsymbol{z}), oldsymbol{x}, oldsymbol{c}) = P(oldsymbol{v}|\mathsf{do}(oldsymbol{z}), oldsymbol{c})$$
 si  $oldsymbol{V} \perp\!\!\perp_{G_{\overline{Z}}} oldsymbol{X} \mid oldsymbol{C}$  (d-separación)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(oldsymbol{y}|\mathsf{do}(oldsymbol{t}),oldsymbol{q})$$

Regla 1 (Ignorar una observación):

$$P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$$
 si  $\boldsymbol{V} \perp \!\!\!\perp_{G} \boldsymbol{X} \mid \boldsymbol{C}$  (d-separación)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(oldsymbol{y}|\mathsf{do}(oldsymbol{t}),oldsymbol{q})$$

Regla 1 (Ignorar una observación):

$$P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$$
 si  $\boldsymbol{V} \perp \!\!\! \perp_{G} \boldsymbol{X} \mid \boldsymbol{C}$ 

Regla 2 (Intervención como observación):

$$P(oldsymbol{v}|\mathsf{do}(oldsymbol{x}),oldsymbol{c}) = P(oldsymbol{v}|oldsymbol{x},oldsymbol{c}) \quad \mathrm{si} \quad oldsymbol{V} \perp\!\!\!\perp_{G_{oldsymbol{X}}} oldsymbol{X} \mid oldsymbol{C}$$

(no backdoor)

(d-separación)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(oldsymbol{y}|\mathsf{do}(oldsymbol{t}),oldsymbol{q})$$

Regla 1 (Ignorar una observación):

$$P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$$
 si  $\boldsymbol{V} \perp \!\!\! \perp_{G} \boldsymbol{X} \mid \boldsymbol{C}$ 

Regla 2 (Intervención como observación):

C (no backdoor)

(d-separación)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(oldsymbol{y}|\mathsf{do}(oldsymbol{t}),oldsymbol{q})$$

Regla 1 (Ignorar una observación):

$$P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$$
 si  $\boldsymbol{V} \perp \!\!\! \perp_{G} \boldsymbol{X} \mid \boldsymbol{C}$ 

Regla 2 (Intervención como observación):

$$P(oldsymbol{v}|\mathsf{do}(oldsymbol{x}),oldsymbol{c}) = P(oldsymbol{v}|oldsymbol{x},oldsymbol{c}) \quad \mathrm{si} \quad oldsymbol{V} \perp\!\!\!\perp_{G_{oldsymbol{X}}} oldsymbol{X} \mid oldsymbol{C}$$

(no backdoor)

(d-separación)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y dadas las co-variables Q (siempre que sea identificable).

$$P(\boldsymbol{y}|\mathsf{do}(\boldsymbol{t}),\boldsymbol{q})$$

$$P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$$
 si  $\boldsymbol{V} \perp \!\!\! \perp_{G} \boldsymbol{X} \mid \boldsymbol{C}$ 

Regla 2 (Intervención como observación):

$$P(\boldsymbol{v}|\mathsf{do}(\boldsymbol{x}), \boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{x}, \boldsymbol{c}) \quad \text{si} \quad \boldsymbol{V} \perp \!\!\!\perp_{G_{\underline{X}}} \boldsymbol{X} \mid \boldsymbol{C}$$

Regla 3 (Ignorar una intervención):

$$P(c|\mathsf{do}(x)) = P(c)$$
 si  $C \perp_{G_{\overline{x}}} X$ 

(controles c)

(d-separación)

(no backdoor)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Ydadas las co-variables Q (siempre que sea identificable).

$$P(\boldsymbol{y}|\mathsf{do}(\boldsymbol{t}),\boldsymbol{q})$$

Regla 1 (Ignorar una observación):

$$P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$$
 si  $\boldsymbol{V} \perp \!\!\! \perp_{G} \boldsymbol{X} \mid \boldsymbol{C}$ 

Regla 2 (Intervención como observación):

$$P(\boldsymbol{v}|\mathsf{do}(\boldsymbol{x}),\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) \quad \text{si} \quad \boldsymbol{V} \perp \!\!\!\perp_{G_{\underline{X}}} \boldsymbol{X} \mid \boldsymbol{C}$$

Regla 3 (Ignorar una intervención):

$$P(oldsymbol{c}|\mathsf{do}(oldsymbol{x}),oldsymbol{v}) = P(oldsymbol{c}|oldsymbol{v}) \quad \mathsf{si} \quad oldsymbol{C} \perp\!\!\!\perp_{G_{oldsymbol{v}}(oldsymbol{x})} oldsymbol{X} \mid oldsymbol{V}$$

(controles c)

(d-separación)

(no backdoor)

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Ydadas las co-variables Q (siempre que sea identificable).

$$P(\boldsymbol{y}|\mathsf{do}(\boldsymbol{t}), \boldsymbol{q})$$

 $P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$  si  $\boldsymbol{V} \perp \!\!\! \perp_G \boldsymbol{X} \mid \boldsymbol{C}$ 

 $P(c|\mathsf{do}(x), v) = P(c|v)$  si  $C \perp \!\!\! \perp_{G_{\overline{X(V)}}} X \mid V$ 

Regla 2 (Intervención como observación):

Regla 1 (Ignorar una observación):

Regla 3 (Ignorar una intervención):

Seguro vale para intervenciones que no son ancestros de V, X(V), porque V pude ser collider

 $P(\boldsymbol{v}|\mathsf{do}(\boldsymbol{x}),\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c})$  si  $\boldsymbol{V} \perp \!\!\!\perp_{G_{\boldsymbol{x}}} \boldsymbol{X} \mid \boldsymbol{C}$ 

(d-separación)

(no backdoor)

(controles c)

#### do-calculus Criterio general Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Y

dadas las co-variables Q (siempre que sea identificable).

$$P(\boldsymbol{y}|\mathsf{do}(\boldsymbol{t}), \boldsymbol{q})$$

 $P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$  si  $\boldsymbol{V} \perp \!\!\! \perp_G \boldsymbol{X} \mid \boldsymbol{C}$ 

Regla 2 (Intervención como observación):

(no backdoor)

(controles c)

(d-separación)

Regla 3 (Ignorar una intervención):

Regla 1 (Ignorar una observación):

 $P(\boldsymbol{c}|\mathsf{do}(\boldsymbol{z}),\mathsf{do}(\boldsymbol{x}),\boldsymbol{v}) = P(\boldsymbol{c}|\mathsf{do}(\boldsymbol{z}),\boldsymbol{v}) \quad \mathrm{si} \quad \boldsymbol{C} \perp \!\!\! \perp_{G_{\overline{Z}}} \boldsymbol{X} \mid \boldsymbol{V}$ 

Seguro vale para intervenciones que no son ancestros de V, X(V), porque V pude ser collider

 $P(\boldsymbol{v}|\mathsf{do}(\boldsymbol{x}),\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c})$  si  $\boldsymbol{V} \perp \!\!\!\perp_{G_{\boldsymbol{x}}} \boldsymbol{X} \mid \boldsymbol{C}$ 

Determina el estimador de un efecto causal entre los tratamientos T y los objetivos Ydadas las co-variables Q (siempre que sea identificable).

$$P(\boldsymbol{y}|\mathsf{do}(\boldsymbol{t}), \boldsymbol{q})$$

 $P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{c})$  si  $\boldsymbol{V} \perp \!\!\! \perp_G \boldsymbol{X} \mid \boldsymbol{C}$ 

 $P(c|\mathsf{do}(x), v) = P(c|v)$  si  $C \perp \!\!\! \perp_{G_{\overline{X(V)}}} X \mid V$ 

Regla 2 (Intervención como observación):

Regla 1 (Ignorar una observación):

Regla 3 (Ignorar una intervención):

Seguro vale para intervenciones que no son ancestros de V, X(V), porque V pude ser collider

 $P(\boldsymbol{v}|\mathsf{do}(\boldsymbol{x}),\boldsymbol{c}) = P(\boldsymbol{v}|\boldsymbol{x},\boldsymbol{c})$  si  $\boldsymbol{V} \perp \!\!\!\perp_{G_{\boldsymbol{x}}} \boldsymbol{X} \mid \boldsymbol{C}$ 

(d-separación)

(no backdoor)

(controles c)

Regla 3. Ignorar una intervención.



Si q son variables ascendentes a t, q no se ve afectado por la intervención en t

Regla 3. Ignorar una intervención.



Si q son variables ascendentes a t, q no se ve afectado por la intervención en t salvo que algún collider abra el flujo de inferencia



$$P(y|\mathsf{do}(t)) = \sum P(y,m|\mathsf{do}(t))$$



$$P(y|\mathsf{do}(t)) = \sum_{m} P(y,m|\mathsf{do}(t))$$
 
$$= \sum_{m} P(y|\mathsf{do}(t),m)P(m|\mathsf{do}(t))$$
 
$$T \longrightarrow T$$

Derivando frontdoor y backdoor

$$P(y|\mathsf{do}(t)) = \sum_{m} P(y, m|\mathsf{do}(t))$$

$$= \sum_{m} P(y|\mathsf{do}(t), m) P(m|\mathsf{do}(t))$$

$$= \sum_{m}^{m} P(y|\mathsf{do}(t), m) P(m|\mathsf{do}(t)) \qquad \qquad T \longrightarrow M \longrightarrow$$



 $P(m|\mathsf{do}(t)) =$ 



Derivando frontdoor y backdoor

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|\mathsf{do}(t)) \end{split}$$



$$P(m|\mathsf{do}(t)) = \begin{array}{c} \text{Intervención como observación} \\ \text{no backdoor entre } t \neq m \end{array}$$

 $T \longleftarrow U \longrightarrow Y \longleftarrow M$ 



$$P(y|\mathsf{do}(t)) = \sum P(y,m|\mathsf{do}(t))$$

$$= \sum_{m}^{m} P(y|\mathsf{do}(t), m) P(m|\mathsf{do}(t))$$



$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$
 Intervención como observación no backdoor entre  $t$  y  $m$ 

$$T \longleftarrow U \longrightarrow Y \longleftarrow M$$



$$P(y|\mathsf{do}(t)) = \sum_{m} P(y,m|\mathsf{do}(t))$$

$$= \sum_{m} P(y|\mathsf{do}(t), m) \frac{P(m|t)}{P(t)}$$

$$U \longrightarrow M \longrightarrow Y$$

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

Derivando frontdoor y backdoor

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$



$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$T(m|\mathbf{dO}(t)) = T(mt)$$

 $P(y|\mathsf{do}(t),m) =$ 

$$U$$
 $T$ 
 $M$ 
 $Y$ 

Derivando frontdoor y backdoor

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$



$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

 $P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m))$ 

Intervención como observación No hay backdoor entre 
$$m$$
 e  $y$  dado  $\operatorname{do}(t)$ 

## do-calculus Derivando frontdoor y ba

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) =$$



# do-calculus Derivando frontdoor y backdoor

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$



$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m))$$

Ignorar una intervención No hay controles descendentes a  $\boldsymbol{t}$ 

Derivando frontdoor y backdoor

$$P(y|\mathrm{do}(t)) = \sum P(y,m|\mathrm{do}(t))$$

 $= \sum P(y|\mathsf{do}(t),m)P(m|t)$ 

$$U$$
 $M \longrightarrow Y$ 

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(m|\mathsf{do}(t)) = P(m|$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) = \sum P(y,t'|\mathsf{do}(m))$$

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$



$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(m|\mathsf{do}(t)) = P(m|t)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) = \sum P(y|\mathsf{do}(m),t')P(t'|\mathsf{do}(m))$$

Derivando frontdoor y backdoor

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$

$$U$$
 $M \longrightarrow Y$ 

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(m|\mathsf{do}(t)) = P(m|t)$$

$$T$$
 $M$ 
 $Y$ 

 $P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) = \sum P(y|\mathsf{do}(m),t') P(t'|\mathsf{do}(m))$ 

Derivando frontdoor y backdoor

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$

$$U \longrightarrow M \longrightarrow Y$$

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) \stackrel{3}{=} \sum P(y|\mathsf{do}(m),t') \frac{P(t')}{P(t')}$$



Ignorar una intervención Intervenir en m no afecta a t

### do-calculus Derivando frontdoor y ba

$$\label{eq:posterior} \mbox{Derivando frontdoor y backdoor}$$
 
$$P(y|\mbox{do}(t)) = \sum P(y,m|\mbox{do}(t))$$

$$= \sum_{m}^{m} P(y|\mathsf{do}(t), m) P(m|t)$$

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) \stackrel{3}{=} \sum \textcolor{red}{P(y|\mathsf{do}(m),t')} P(t')$$



### do-calculus Derivando frontdoor y ba

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$

$$U$$
 $M \longrightarrow Y$ 

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) \stackrel{3}{=} \sum P(y|m,t')P(t')$$

Intervención como observación No hay backdoor entre 
$$m$$
 e  $y$  dado  $t$ 





Derivando frontdoor y backdoor

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(y|\mathsf{do}(t),m) P(m|t) \end{split}$$



$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) \stackrel{3}{=} \sum P(y|m,t')P(t')$$

Derivamos:

- Dos casos especiales de backdoor, P(m|do(t)) y P(y|do(m)).
- Y un caso especial de frontdoor, P(y|do(t)).

$$\begin{split} P(y|\mathsf{do}(t)) &= \sum_{m} P(y,m|\mathsf{do}(t)) \\ &= \sum_{m} P(m|t) \sum_{m} P(y|m,t') P(t') \end{split} \qquad \qquad T &\longrightarrow M \end{split}$$

$$U$$
 $M \longrightarrow Y$ 

$$P(m|\mathsf{do}(t)) \stackrel{2}{=} P(m|t)$$

$$F\left(m|\mathsf{do}(t)\right) = F\left(m|t\right)$$

$$P(y|\mathsf{do}(t),m) \stackrel{2}{=} P(y|\mathsf{do}(t),\mathsf{do}(m)) \stackrel{3}{=} P(y|\mathsf{do}(m)) \stackrel{3}{=} \sum P(y|m,t')P(t')$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} P(y|x,\kappa)P(\kappa)$$

$$P(y|\mathsf{do}(x)) = \left(\frac{P(x|\kappa)}{P(x|\kappa)}\right) \sum_{x} P(y|x,\kappa)P(\kappa)$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} \frac{P(y|x,\kappa)P(x|\kappa)P(\kappa)}{P(x|\kappa)}$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} \frac{P(y|x,\kappa)P(x|\kappa)P(\kappa)}{P(x|\kappa)} = \sum_{\kappa} \frac{P(y,x,\kappa)}{P(x|\kappa)}$$

$$P(y|\mathsf{do}(x)) = \sum_{\kappa} \frac{P(y|x,\kappa)P(x|\kappa)P(\kappa)}{P(x|\kappa)} = \sum_{\kappa} \frac{P(y,x,\kappa)}{P(x|\kappa)}$$

Propensity Score 
$$:= P(x|\kappa)$$

(Se usa cuando la combinación de valores de  $\kappa$  es algunos órdenes de magnitud mayor a el tamaño de la muestra.)





| $P(T E_0)$ |                 |
|------------|-----------------|
| T = 0      | T=1             |
| 1400/1450  | 50/1450         |
| 100/600    | 500/600         |
|            | T = 0 1400/1450 |

 $E_0 =$ 



|       |         |     | $P(T E_0)$                        |        | 1   | $E_0$                 |
|-------|---------|-----|-----------------------------------|--------|-----|-----------------------|
|       |         |     | T = 0                             | T = 1  |     |                       |
|       | $E_0 =$ | = 0 | 0.9655                            | 0.0345 |     |                       |
|       | $E_0 =$ | = 1 | $0.9655 \\ 0.1666$                | 0.8333 | T — | $\longrightarrow E_1$ |
|       |         |     |                                   |        |     |                       |
| 00    | 0.      | D   | $(t, e_0, e_1)$                   |        |     |                       |
| $e_0$ | $e_1$   | 1 ( | $(\iota, \epsilon_0, \epsilon_1)$ | -      |     |                       |
| 1     | 1       | (   | 0.0488                            |        |     |                       |
| 1     | 0       |     | 0.1951                            |        |     |                       |
| 0     | 1       | (   | 0.0024                            |        |     |                       |
|       |         |     |                                   |        |     |                       |

0.0220

0.0146

0.0341 0.1024 0.5805

1.0000

0

0

0

0

|       |           |     | $P(T E_0)$    |     |       |       | $E_0$                   |
|-------|-----------|-----|---------------|-----|-------|-------|-------------------------|
|       |           | T=0 | T =           | = 1 |       |       |                         |
|       | $E_0 =$   | = 0 | 0.9655        | 0.0 | 345   |       |                         |
|       | $E_0 = 1$ |     | 0.1666        | 0.8 | 333   | ′     | $T \longrightarrow E_1$ |
|       |           |     |               |     |       |       |                         |
| $e_0$ | $e_1$     | P   | $(t,e_0,e_1)$ | t   | $e_0$ | $e_1$ | $P(e_0, e_1 t=1)$       |
| 1     | 1         |     | 0.0488        | 1   | 1     | 1     | 0.0488/P(t =            |
| 1     | 0         |     | 0.1951        | 1   | 1     | 0     | 0.1951/P(t =            |
| 0     | 1         |     | 0.0024        | 1   | 0     | 1     | 0.0024/P(t=             |
| 0     | 0         |     | 0.0220        | 1   | 0     | 0     | 0.0220/P(t =            |
| 1     | 1         |     | 0.0146        |     |       |       | 1.0000                  |

0

0

0.0341 0.1024 0.5805

1.0000

|       |           |     | $P(T E_0)$    |     |       |       | $E_0$                   |
|-------|-----------|-----|---------------|-----|-------|-------|-------------------------|
|       |           | T=0 | T =           | = 1 |       |       |                         |
|       | $E_0 =$   | = 0 | 0.9655        | 0.0 | 345   |       |                         |
|       | $E_0 = 1$ |     | 0.1666        | 0.8 | 333   | ′     | $T \longrightarrow E_1$ |
|       |           |     |               |     |       |       |                         |
| $e_0$ | $e_1$     | P   | $(t,e_0,e_1)$ | t   | $e_0$ | $e_1$ | $P(e_0, e_1 t=1)$       |
| 1     | 1         |     | 0.0488        | 1   | 1     | 1     | 0.0488/P(t =            |
| 1     | 0         |     | 0.1951        | 1   | 1     | 0     | 0.1951/P(t =            |
| 0     | 1         |     | 0.0024        | 1   | 0     | 1     | 0.0024/P(t=             |
| 0     | 0         |     | 0.0220        | 1   | 0     | 0     | 0.0220/P(t =            |
| 1     | 1         |     | 0.0146        |     |       |       | 1.0000                  |

0

0

0.0341 0.1024 0.5805

1.0000

0.1951/P(t=1)

0.0024/P(t=1)

0.0220/P(t=1)

1.0000

 $P(e_0, e_1 | do(t = 1))$ 

 $0.0488/P(t|e_0)$ 

 $0.1951/P(t|e_0)$ 

 $0.0024/P(t|e_0)$ 

 $0.0220/P(t|e_0)$ 

1.0000

 $e_1$ 

0

0

 $e_0$ 

0

0

|       |       |   | T = 0<br>0.9655<br>0.1666 | 0.0 | 345     | -     | $E_1$             |
|-------|-------|---|---------------------------|-----|---------|-------|-------------------|
| $e_0$ | $e_1$ | P | $(t, e_0, e_1)$           | t   | $ e_0 $ | $e_1$ | $P(e_0, e_1 t=1)$ |
| 1     | 1     | ( | 0.0488                    | 1   | 1       | 1     | 0.0488/P(t=1)     |

 $\Omega$ 

0

0

0

0

0.1951

0.0024

0.0220

0.0146

0.0341 0.1024

0.5805

1.0000

|    |       | $E_0 =$ | = 1 | 0.1666        | 0.8 | 333   |       | $T \longrightarrow E_1$ |    |  |
|----|-------|---------|-----|---------------|-----|-------|-------|-------------------------|----|--|
| t  | $e_0$ | $e_1$   | P(  | $(t,e_0,e_1)$ | t   | $e_0$ | $e_1$ | $P(e_0, e_1 t=1)$       | t  |  |
| -1 | -1    | -1      |     | 2.0400        | -1  | -1    | -1    | 0.0400/D/4 1)           | -1 |  |

0

0

0

0.1024

0.5805

1.0000

0

|   |   |   |        |   |   |   | $P(e_0, e_1 t=1)$              |   |   |   |        |
|---|---|---|--------|---|---|---|--------------------------------|---|---|---|--------|
| 1 | 1 | 1 | 0.0488 | 1 | 1 | 1 | 0.0488/P(t=1)<br>0.1951/P(t=1) | 1 | 1 | 1 | 0.0488 |
| 1 | 1 | 0 | 0.1951 | 1 | 1 | 0 | 0.1951/P(t-1)                  | 1 | 1 | 0 | 0.1951 |

| t | $e_0$ | $e_1$ | $P(t,e_0,e_1)$ | t | $e_0$ | $e_1$ | $P(e_0, e_1 t=1)$ | t | $e_0$ | $e_1$ | $P(e_0, e_1 do(t=1)$ |
|---|-------|-------|----------------|---|-------|-------|-------------------|---|-------|-------|----------------------|
| 1 | 1     | 1     | 0.0488         | 1 | 1     | 1     | 0.0488/P(t=1)     | 1 | 1     | 1     | $0.0488/P(t e_0)$    |
| 1 | 1     | 0     | 0.1951         | 1 | 1     | 0     | 0.1951/P(t=1)     | 1 | 1     | 0     | $0.1951/P(t e_0)$    |
| 1 | 0     | 1     | 0.0024         | 1 | 0     | 1     | 0.0024/P(t=1)     | 1 | 0     | 1     | $0.0024/P(t e_0)$    |
| 1 | 0     | 0     | 0.0220         | 1 | 0     | 0     | 0.0220/P(t=1)     | 1 | 0     | 0     | $0.0220/P(t e_0)$    |
| 0 | 1     | 1     | 0.0146         |   |       |       | 1.0000            |   |       |       | 1.0000               |
| 0 | 1     | 0     | 0.0341         |   | '     | '     |                   |   | 1     | '     |                      |

 $P(t=1) = \sum_{t} P(t, e_0, e_1) = \mathbf{0.2683}$ 

0.0818

1.0000

 $e_1$ 

0

0

 $e_0$ 

0

0

 $P(e_0, e_1 | do(t = 1))$ 

 $0.0488/P(t|e_0)$  $0.1951/P(t|e_0)$ 

 $0.0024/P(t|e_0)$ 

 $0.0220/P(t|e_0)$ 

1.0000

|         | -     | $ E_0 = E_0 = E_0 $ | = 0 | T = 0 $0.9655$ $0.1666$ | 0.0 | 345   | 1     |          | $E_1$      |   |
|---------|-------|---------------------|-----|-------------------------|-----|-------|-------|----------|------------|---|
| $t_{-}$ | $e_0$ | $e_1$               | P(  | $(t, e_0, e_1)$         | t   | $e_0$ | $e_1$ | $P(e_0,$ | $,e_1 t=1$ | ) |

| t | $e_0$ | $e_1$ | $P(t,e_0,e_1)$ | t | $e_0$ | $e_1$ | $P(e_0, e_1 t=1)$ |
|---|-------|-------|----------------|---|-------|-------|-------------------|
| 1 | 1     | 1     | 0.0488         | 1 | 1     | 1     | 0.1818            |
| 1 | 1     | 0     | 0.1951         | 1 | 1     | 0     | 0.7272            |
| 1 | 0     | 1     | 0.0024         | 1 | 0     | 1     | 0.0909            |

0.0220

0.0146

0.0341 0.1024

0.5805

1.0000

0

0

0

0

0

0.0909

0.0818

1.0000

 $e_1$ 

0

0

 $e_0$ 

0

0

 $P(e_0, e_1 | do(t = 1))$ 

 $0.0488/P(t|e_0)$  $0.1951/P(t|e_0)$ 

 $0.0024/P(t|e_0)$ 

 $0.0220/P(t|e_0)$ 

1.0000

0

|   |       |       |                | 1 |       |       |                  |
|---|-------|-------|----------------|---|-------|-------|------------------|
|   |       |       |                |   |       |       |                  |
| t | $e_0$ | $e_1$ | $P(t,e_0,e_1)$ | t | $e_0$ | $e_1$ | $P(e_0, e_1 t =$ |
| 1 | 1     | 1     | 0.0488         | 1 | 1     | 1     | 0.1818           |
| 1 | 1     | 0     | 0.1951         | 1 | 1     | 0     | 0.7272           |

0.0024

0.0220

0.0146

0.0341

0.1024

0.5805

1.0000

0

0

0

0

0

0

0

0

0

0.7272

0.0909

0.0818

1.0000

|   |       |         |      |               |     |       |       | /        | \                     |
|---|-------|---------|------|---------------|-----|-------|-------|----------|-----------------------|
|   |       |         |      | T = 0         | T = | = 1   |       |          |                       |
|   |       |         |      | 0.9655        |     |       |       |          |                       |
|   |       | $E_0 =$ | = 1  | 0.1666        | 0.8 | 333   | /     | T ——     | $\longrightarrow E_1$ |
|   |       |         |      |               |     |       |       |          | -                     |
|   | I     | 1       | L D. | <i>(</i> .    |     | I     | ı     | D/       | 1. 4)                 |
| t | $e_0$ | $e_1$   | P(   | $(t,e_0,e_1)$ | t   | $e_0$ | $e_1$ | $P(e_0,$ | $e_1 t=1)$            |
| 1 | 1     | 1       |      | 0.0488        | 1   | 1     | 1     | 0        | .1818                 |

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1951

0.0024

0.0220

0.0146

0.0341

0.1024

0.5805

1.0000

| $\longrightarrow$ $E_1$ |   |       |       |                      |
|-------------------------|---|-------|-------|----------------------|
|                         |   |       |       |                      |
| $,e_{1} t=1)$           | t | $e_0$ | $e_1$ | $P(e_0, e_1 do(t=1)$ |
| 0.1818                  | 1 | 1     | 1     | 0.0488/0.8333        |

0

0

0

0

= 1))

0.1951/0.8333

0.0024/0.0345

0.0220/0.0345

1.0000

|   |       |         |     | T = 0           | T = | = 1   |       |          |                       |
|---|-------|---------|-----|-----------------|-----|-------|-------|----------|-----------------------|
|   |       |         |     | 0.9655          |     |       | ]     |          |                       |
|   |       | $E_0 =$ | = 1 | 0.1666          | 0.8 | 333   |       | T ——     | $\longrightarrow E_1$ |
|   |       |         |     |                 |     |       |       |          |                       |
| t | $e_0$ | $e_1$   | P   | $(t, e_0, e_1)$ | t   | $e_0$ | $e_1$ | $P(e_0,$ | $e_1 t=1$             |
| 1 | 1     | 1       |     | 0.0488          | 1   | 1     | 1     | 0        | .1818                 |

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.1951

0.0024

0.0220

0.0146

0.0341

0.1024

0.5805

1.0000

|         | T → B             | 4 |
|---------|-------------------|---|
|         | $D(a \cdot a)t =$ |   |
| $^{2}1$ | $P(e_0, e_1 t =$  |   |
| 1       | 0.1818            |   |

0.7272

0.0909

0.0818

1.0000

| 1  |   |       |       |                         |
|----|---|-------|-------|-------------------------|
| 1) | t | $e_0$ | $e_1$ | $P(e_0, e_1   do(t=1))$ |
|    | 1 | 1     | 1     | 0.0585                  |
|    | 1 | 1     | 0     | 0.2341                  |

0

0.0707

0.6366

1.0000

0

0

Evaluación de modelos causales alternativos



Notación extendida para de los modelos gráficos (Factor graph)



 $P(A, B|\mathsf{Modelo}_{A\to B})$ 

Notación extendida para de los modelos gráficos (Factor graph)



**Nodos**: Variables y Funciones

**Ejes**: Variable v es parámetro de la función f





| $P(A, B, do_A $ | $Modelo_{B	o A})$ |
|-----------------|-------------------|







$$P(A, B, \mathsf{do}_A|\mathsf{Modelo}_{B\to A}) = P(B) P_0(A|B)^{1-\mathsf{do}_A} P_1(A)^{\mathsf{do}_A} P(\mathsf{do}_A)$$



$$P(A, B | \underbrace{\mathsf{do}_A = 1, \mathsf{Modelo}_{B \to A}}) = P(B) P_1(A)$$
Intervención



$$P(A, B | \underbrace{\mathsf{do}_A = 0, \mathsf{Modelo}_{B \to A}}) = P(B) P_0(A|B)$$

A través de intervenciones do $(\cdot)$ 

#### Datos:

| i  | $do_{Ai}$ | $A_i$ | $B_i$ |
|----|-----------|-------|-------|
| 1  | 0         | 1     | 1     |
|    | 0         |       |       |
| 10 | 0         | 0     | 0     |
| 11 | 1         | 0     | 1     |
| 12 | 1         | 1     | 0     |
|    | 1         |       |       |

A través de intervenciones do $(\cdot)$ 

Datos:

| i  | $do_{Ai}$ | $A_i$ | $B_i$ |
|----|-----------|-------|-------|
| 1  | 0         | 1     | 1     |
|    | 0         |       |       |
| 10 | 0         | 0     | 0     |
| 11 | 1         | 0     | 1     |
| 12 | 1         | 1     | 0     |
|    | 1         |       |       |

| $P(Modelo_{B 	o A}   Datos) =$ | $P(Datos M_{B\to A})P(M_{B\to A})$ |
|--------------------------------|------------------------------------|
| $I(Wodelo_{B\to A} Datos) =$   | P(Datos)                           |

 $\frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})\,P(\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{A\to B})\,P(\mathsf{M}_{A\to B})}$ 

A través de intervenciones do $(\cdot)$ 

Datos:

11 12

| i  | $do_{Ai}$ | $A_i$ | $B_i$ |
|----|-----------|-------|-------|
| 1  | 0         | 1     | 1     |
|    | 0         |       |       |
| 10 | 0         | 0     | 0     |

| $4_i$ | $B_i$ |
|-------|-------|
| 1     | 1     |
|       |       |
| 0     | 0     |
| 0     | 1     |
| 1     | 0     |
|       |       |

A través de intervenciones do $(\cdot)$ 

Datos:

 $\frac{11}{12}$ 

| $P(NIodelo_{B\to A} Datos)$           | _ | 1 |
|---------------------------------------|---|---|
| $\overline{P(Modelo_{A\to B} Datos)}$ | _ | Ì |

| i  | $do_{Ai}$ | $A_i$ | $B_i$ |
|----|-----------|-------|-------|
| 1  | 0         | 1     | 1     |
|    | 0         |       |       |
| 10 | Ω         | n     | Ω     |

| Ι | 1 |
|---|---|
|   |   |
| 0 | 0 |
| 0 | 1 |
| 1 | 0 |
|   |   |

$$rac{\mathsf{Datos})}{\mathsf{Datos}} = rac{P(\mathsf{Datos}|\mathsf{M}_{B o A})}{P(\mathsf{Datos}|\mathsf{M}_{A o B})}$$

A través de intervenciones do $(\cdot)$ 

 $\frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{A\to B})}$ 

Datos:

11

12

| i  | $do_{Ai}$ | $A_i$ | $B_i$ |
|----|-----------|-------|-------|
| 1  | 0         | 1     | 1     |
|    | 0         |       |       |
| 10 | 0         | 0     | 0     |

0

$$\begin{array}{c}
B_i \\
\hline
1 \\
\hline
0 \\
\hline
\end{array}$$

0

$$_{A_{i}}|\mathsf{M}_{BA})$$

$$(A_i|M_{BA})$$

$$= \frac{\prod_{i}^{n} P(B_i, A_i, \mathsf{do}_{A_i} | \mathsf{M}_{BA})}{\prod_{i}^{n} P(B_i, A_i, \mathsf{do}_{A_i} | \mathsf{M}_{AB})}$$

#### Identificación de modelo causal A través de intervenciones do(·)

A traves de intervenciones do(·)

Datos:

12

0

 $\frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{A\to B})}$ 

$$=\frac{\prod_{i}^{n}P(B_{i}|\mathsf{M}_{BA})P_{0}(A_{i}|B_{i},\mathsf{M}_{BA})^{1-\mathsf{do}_{A}}P_{1}(A_{i}|\mathsf{M}_{BA})^{\mathsf{do}_{A}}P(\mathsf{do}_{A}|\mathsf{M}_{BA})}{\prod_{i}^{n}P(A_{i}|\mathsf{do}_{A},\mathsf{M}_{AB})P(B_{i}|A_{i},\mathsf{M}_{AB})P(\mathsf{do}_{A}|\mathsf{M}_{AB})}$$

A través de intervenciones do $(\cdot)$ 

Datos:

 $do_{Ai}$ 

$$\begin{array}{c|cccc} \operatorname{do}_{Ai} & A_i & B_i \\ \hline 0 & 1 & 1 \\ \hline 0 & \dots & \dots \\ \end{array}$$

$$\frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{A\to B})}$$

(Modelo
$$_{A o B}|$$
Datos)  $P(\mathsf{Datos}|\mathsf{M}_{A o B})$  
$$\prod_{i}^{n}P(B_{i}|\mathsf{M}_{\mathsf{DA}})P_{0}(A_{i}|B_{i},\mathsf{M}_{\mathsf{DA}})^{1-\mathsf{do}_{A}}P_{1}(A_{i}|\mathsf{M}_{\mathsf{DA}})^{\mathsf{do}_{A}}$$

$$= \frac{\prod_{i}^{n} P(B_{i}|\mathsf{M}_{BA}) P_{0}(A_{i}|B_{i},\mathsf{M}_{BA})^{1-\mathsf{do}_{A}} P_{1}(A_{i}|\mathsf{M}_{BA})^{\mathsf{do}_{A}}}{\prod_{i}^{n} P(A_{i}|\mathsf{do}_{A},\mathsf{M}_{AB}) P(B_{i}|A_{i},\mathsf{M}_{AB})}$$

#### Identificación de modelo causal A través de intervenciones do(·)

A través de intervenciones do $(\cdot)$ 

 $\frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{A\to B})}$ 

| $=\prod_{i}^{n}P(B_{i} M_{\scriptscriptstyle{BA}})P_{0}(A_{i} B_{i},M_{\scriptscriptstyle{BA}})^{1-do_{A}}P_{1}(A_{i} M_{\scriptscriptstyle{BA}})^{do_{A}}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-\prod_{i}^{n}P(A_{i} do_{A},M_{_{AB}})P(B_{i} A_{i},M_{_{AB}})$                                                                                           |
|                                                                                                                                                             |

 $i \mid \mathsf{do}_{Ai} \mid A_i \mid B_i \mid$ 

#### Identificación de modelo causal A través de intervenciones do $(\cdot)$

Datos:

 $\mathsf{do}_{Ai} \mid A_i \mid B_i \mid$ 

$$\frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{A\to B})}$$

$$\frac{1}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{1}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})}$$

$$= \prod_{i=1}^{n} \frac{P(B_i|\mathsf{M}_{\scriptscriptstyle{BA}})P_1(A_i|\mathsf{M}_{\scriptscriptstyle{BA}})}{P(B_i|A_i,\mathsf{M}_{\scriptscriptstyle{AB}})P(A_i|\mathsf{do}_A=1,\mathsf{M}_{\scriptscriptstyle{AB}})}$$

A través de intervenciones do $(\cdot)$ 

$$\frac{P(\mathsf{Modelo}_{B o A} | \mathsf{Datos})}{P(\mathsf{Modelo}_{B o A} | \mathsf{Datos})} = \frac{P(\mathsf{Datos} | \mathsf{M}_{B o A})}{P(\mathsf{Modelo}_{B o A} | \mathsf{Datos})}$$

$$\begin{array}{ll} \mathsf{Datos:} & \frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{A\to B}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{A\to B})} \\ & \underline{i \mid \mathsf{do}_{Ai} \mid A_i \mid B_i} \\ & = \prod_{i=1}^n \frac{P(B_i|\mathsf{M}_{BA})\alpha^{A_i} \, (1-\alpha)^{1-A_i}}{P(B_i|A_i,\mathsf{M}_{AB})\alpha^{A_i} \, (1-\alpha)^{1-A_i}} \end{array}$$

A través de intervenciones do $(\cdot)$ 

$$\frac{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})}{P(\mathsf{Modelo}_{B\to A}|\mathsf{Datos})} = \frac{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}{P(\mathsf{Datos}|\mathsf{M}_{B\to A})}$$

|        | $P(Modelo_{B 	o A}   Datos)$               | $P(Datos M_{B	o A})$            |
|--------|--------------------------------------------|---------------------------------|
| Datos: | $\overline{P(Modelo_{A \to B}   Datos)} =$ | $\overline{P(Datos M_{A	o B})}$ |

$$\begin{array}{c|c} \text{Datos:} & \frac{P(\text{Modelo}_{B \to A}|\text{Datos})}{P(\text{Modelo}_{A \to B}|\text{Datos})} = \frac{P(\text{Datos}|\text{M}_{B \to A})}{P(\text{Datos}|\text{M}_{A \to B})} \\ & i \mid \text{do}_{Ai} \mid A_i \mid B_i \\ & = \prod_{i=11}^n \frac{P(B_i|\text{M}_{BA})}{P(B_i|A_i,\text{M}_{AB})} \end{array}$$

A través de intervenciones do $(\cdot)$ 

$$i \mid \mathsf{do}_{Ai} \mid A_i \mid B_i$$

| $P(Modelo_{B 	o A}   Datos)$                    | $P(Datos M_{B \to A})$          |
|-------------------------------------------------|---------------------------------|
| $\overline{P(Modelo_{A  ightarrow B}   Datos)}$ | $\overline{P(Datos M_{A	o B})}$ |

$$= \prod_{i=1}^{n} \frac{P(B_i|\mathsf{M}_{BA})}{P(B_i|A_i,\mathsf{M}_{AB})}$$



#### Identificación de modelo causal El conocimiento experto

La principal fuente de información para la identificación

modelos causales alternativos es el conocimiento experto.

# P=5 Laboratorios de

Métodos Bayesianos