Classi prime Scientifico - opzione scienze applicate
Bassano del Grappa, Novembre 2022
Prof. Giovanni Mazzocchin

# Motivazioni

 Le macchine digitali comprendono solo sistema binario, ma l'essere umano lo trova abbastanza scomodo e verboso

• Ad esempio, per rappresentare 1024<sub>dec</sub> bisogna scrivere:

#### 0b1000000000

• È chiaramente una notazione verbosa e *antipatica* per l'essere umano



# Motivazioni

- La quantità di cifre che servono per rappresentare un numero *n* in un sistema posizionale **S** in base **b** è inversamente proporzionale alla dimensione di **b**:
  - **i.e.** più grande è la base, meno cifre servono per rappresentare *n*
- 1024<sub>dec</sub>:
  - richiede 4 cifre decimali (qual è l'esponente naturale e per cui 10^e si avvicina a 1024 per difetto? → 3 (10^3 = 1000))
  - 0b1000000000 richiede 11 cifre binarie decimali (qual è l'esponente naturale e per cui 2^e si avvicina a 1024 per difetto? → 10 (2^10 = 1024))
  - Il numero di cifre necessarie per rappresentare un numero in una base b è proporzionale al **logaritmo** in base **b** del numero da rappresentare... farete i logaritmi in terza

## Motivazioni

- Vogliamo utilizzare un sistema posizionale comodo per l'essere umano quasi quanto il sistema decimale, ma utile per l'informatica
- Ci serve un sistema posizionale la cui base sia una potenza di 2 che ci permette di scrivere anche numeri grandi utilizzando *poche* cifre, meno di quelle richieste dal sistema decimale
  - base 4 (2^2)?: troppo piccola
  - base 8  $(2^3)$ ?: si usa ma non è la più utilizzata (**sistema ottale**)
  - base 16  $(2^4)$ : sistema esadecimale (hexadecimal), il più utilizzato

ecco i 16 simboli (cifre) utilizzate nel sistema esadecimale

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F



# ll sistema esadecimale – tabella di corrispondenza

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   | 0 <sub>hex</sub> | <b>00</b> <sub>dec</sub> | $0000_{bin}$        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|---------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   |                  | <b>01</b> <sub>dec</sub> | $0001_{\text{bin}}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   |                  | <b>02</b> <sub>dec</sub> | $0010_{bin}$        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   |                  | <b>03</b> <sub>dec</sub> | $0011_{bin}$        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   |                  |                          | $0100_{bin}$        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   |                  | 05 <sub>dec</sub>        | $0101_{bin}$        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   | 6 <sub>hex</sub> | 06 <sub>dec</sub>        | $0110_{bin}$        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                   |                  | <b>07</b> <sub>dec</sub> | $0111_{bin}$        |
| $\begin{array}{cccc} A_{\text{hex}} & 10_{\text{dec}} & 1010_{\text{bin}} \\ B_{\text{hex}} & 11_{\text{dec}} & 1011_{\text{bin}} \\ C_{\text{hex}} & 12_{\text{dec}} & 1100_{\text{bin}} \\ D_{\text{hex}} & 13_{\text{dec}} & 1101_{\text{bin}} \\ E_{\text{hex}} & 14_{\text{dec}} & 1011_{\text{bin}} \end{array}$ | 8 <sub>hex</sub> | <b>08</b> <sub>dec</sub> | $1000_{\text{bin}}$ |
| $\begin{array}{ccc} B_{\text{hex}} & 11_{\text{dec}} & 1011_{\text{bin}} \\ C_{\text{hex}} & 12_{\text{dec}} & 1100_{\text{bin}} \\ D_{\text{hex}} & 13_{\text{dec}} & 1101_{\text{bin}} \\ E_{\text{hex}} & 14_{\text{dec}} & 1011_{\text{bin}} \end{array}$                                                          | 9 <sub>hex</sub> | <b>09</b> <sub>dec</sub> | $1001_{bin}$        |
| $\begin{array}{ccc} B_{\text{hex}} & 11_{\text{dec}} & 1011_{\text{bin}} \\ C_{\text{hex}} & 12_{\text{dec}} & 1100_{\text{bin}} \\ D_{\text{hex}} & 13_{\text{dec}} & 1101_{\text{bin}} \\ E_{\text{hex}} & 14_{\text{dec}} & 1011_{\text{bin}} \end{array}$                                                          |                  | <b>10</b> <sub>dec</sub> | $1010_{bin}$        |
| $\begin{array}{ccc} D_{\text{hex}} & 13_{\text{dec}} & 1101_{\text{bin}} \\ E_{\text{hex}} & 14_{\text{dec}} & 1011_{\text{bin}} \end{array}$                                                                                                                                                                          |                  | <b>11</b> <sub>dec</sub> | $1011_{bin}$        |
| $\begin{array}{ccc} D_{\text{hex}} & 13_{\text{dec}} & 1101_{\text{bin}} \\ E_{\text{hex}} & 14_{\text{dec}} & 1011_{\text{bin}} \end{array}$                                                                                                                                                                          | C <sub>hex</sub> | <b>12</b> <sub>dec</sub> | $1100_{bin}$        |
|                                                                                                                                                                                                                                                                                                                        |                  |                          | $1101_{\text{bin}}$ |
|                                                                                                                                                                                                                                                                                                                        |                  |                          | $1011_{bin}$        |
|                                                                                                                                                                                                                                                                                                                        |                  |                          | $1111_{bin}$        |





$$14_{dec}*16^{0} + 15_{dec}*16^{1} + 10_{dec}*16*2 + 12_{dec}*16*3$$
=
$$51966_{dec}$$

• Anche il sistema esadecimale è posizionale, quindi i principi di funzionamento sono identici a quelli dei sistemi binario e decimale

**1 0** hex

$$0_{dec}*16^0 + 1_{dec}*16^1$$
=
 $16_{dec}$ 

10

• Anche il sistema esadecimale è posizionale, quindi i principi di funzionamento sono identici a quelli dei sistemi binario e decimale

1 0 0 hex

$$0_{dec}*16^0 + 0_{dec}*16^0 + 1_{dec}*16^2 =$$

**256**<sub>dec</sub>

• Anche il sistema esadecimale è posizionale, quindi i principi di funzionamento sono identici a quelli dei sistemi binario e decimale

D E A D hex

$$13_{dec}*16^{0} + 10_{dec}*16^{1} + 14_{dec}*16^{2} + 13_{dec}*16^{3} =$$

57007<sub>dec</sub>

24/11/2022 Il sistema esadecimale 13

• Qual è il numero decimale più grande rappresentabile con 5 cifre decimali?

9 9 9 9 <sub>dec</sub>

• Qual è il numero binario più grande rappresentabile con 5 cifre binarie?

1 1 1 1 1 bin

• Qual è il numero esadecimale più grande rappresentabile con 5 cifre esadecimali?

• Cosa succede se aggiungete 1 al numero precedente?

# Conversione intuitiva da decimale a esadecimale

• Scrivere il numero **98<sub>dec</sub>** come somma di potenze di 16 ad esponente naturale, con il numero minimo di addendi

$$16^{1} + 16^{1} + 16^{1} + 16^{1} + 16^{1} + 16^{1} + 16^{1} + 16^{1} + 16^{1}$$



#### Addizione esadecimale

```
F E hex +
2 6 hex =

1 2 4 hex
```

```
colonna 0: E_hex + 6_hex = 14_dec + 6_dec = 20_dec = 14_hex ---> 4 con
riporto di 1

colonna 1: F_hex + 2_hex + 1_hex (riporto) = 15_dec + 2_dec + 1_dec =
18_dec = 12_hex ---> 2 con riporto di 1
```

# Sottrazione, moltiplicazione, divisione intera

Sottrazione, moltiplicazione e divisione intera nel sistema esadecimale sono del tutto analoghe a quelle dei sistemi binario e decimale, in quanto si tratta sempre di sistemi posizionali

Non possiamo soffermarci troppo per ragioni di tempo

Utilizzare python come calcolatore esadecimale e binario. Provare i seguenti comandi:

0xCAFE hex(567) 0b11000 bin(4536)