GEORDNETE MENGEN IN HYPEREBENENARRANGEMENTS

HENRI MÜHLE

0. Grundlagen

0.1. **Lineare und Affine Räume.** Wir wiederholen ein paar grundlegende Begriffe und Ergebnisse zu linearen und affinen Räumen. Der Einfachheit halber betrachten wir den Vektorraum \mathbb{R}^n mit dem euklidischen Skalarprodukt $\langle \cdot, \cdot \rangle$ definiert durch

$$\langle \vec{x}, \vec{y} \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{n} x_i y_i,$$

für
$$\vec{x} = (x_1, x_2, \dots, x_n), \vec{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
.

DEFINITION 0.1

Eine Teilmenge $X \subseteq \mathbb{R}^n$ heißt

- LINEAR, wenn für alle \vec{x} , $\vec{y} \in X$ auch $a\vec{x} + b\vec{y} \in X$ für $a, b \in \mathbb{R}$ ist;
- AFFIN, wenn für alle $\vec{x}, \vec{y} \in X$ auch $t\vec{x} + (1-t)\vec{y} \in X$ für $t \in \mathbb{R}$ ist;
- KONVEX, wenn für alle $\vec{x}, \vec{y} \in X$ auch $t\vec{x} + (1-t)\vec{y} \in X$ für $t \in \mathbb{R}$ mit $0 \le t \le 1$ ist.

Lemma 0.2

Jede lineare Menge ist affin, und jede affine Menge ist konvex.

DEFINITION 0.3

Für $X, Y \subseteq \mathbb{R}^n$ ist ihre Summe definiert als $X + Y \stackrel{\text{def}}{=} \{\vec{x} + \vec{y} \mid \vec{x} \in X, \vec{y} \in Y\}.$

DEFINITION 0.4

Sei $W \subseteq \mathbb{R}^n$ ein Untervektorraum und sei $\vec{x} \in \mathbb{R}^n \setminus W$. Die Menge $A = \{\vec{x}\} + W$ ist ein AFFINER UNTERRAUM von \mathbb{R}^n . Die DIMENSION von A ist gleich der Dimension von W.

Wenn der affine Unterraum A wie in Definition 0.4 entsteht, bezeichnen wir den zugehörigen Untervektorraum W auch mit T(A).

DEFINITION 0.5

Für zwei affine Unterräume A_1 , A_2 von \mathbb{R}^n ist ihr VERBINDUNGSRAUM $A_1 \sqcup A_2$ der kleinste affine Unterraum, der A_1 und A_2 enthält.

Der Verbindungsraum ist nichts weiter als der Durchschnitt über alle affinen Räume, die A_1 und A_2 enthalten.

2 HENRI MÜHLE

SATZ 0.6

Seien A_1 und A_2 zwei affine Unterräume von \mathbb{R}^n . Wenn $A_1 \cap A_2 \neq \emptyset$ oder $A_1 = \emptyset$ oder $A_2 = \emptyset$, dann gilt

$$\dim(A_1) + \dim(A_2) = \dim(A_1 \sqcup A_2) + \dim(A_1 \cap A_2).$$

Wenn $A_1 \cap A_2 = \emptyset$, sowie $A_1 \neq \emptyset$ und $A_2 \neq \emptyset$, dann gilt

$$\dim(A_1) + \dim(A_2) = \dim(A_1 \sqcup A_2) + \dim(T(A_1) \cap T(A_2)) - 1.$$

0.2. **Ordnungen und Verbände.** Wir wiederholen nun ein paar Begriffe aus der Ordnungstheorie. Sei dazu (P, \leq) eine geordnete Menge. Wir nennen (P, \leq) BESCHRÄNKT, wenn ein kleinstes Element $\hat{0}$ und ein größtes Element $\hat{1}$ existiert.

Zwei Elemente $x, y \in P$ bilden eine BEDECKUNGSRELATION, wenn x < y und für jedes $z \in P$ mit $x \le z \le y$ gilt x = z oder z = y. Wir schreiben in diesem Fall x < y.

Eine Teilmenge $X \subseteq P$ ist eine Kette, wenn je zwei Elemente von X vergleichbar bzgl. \leq sind. Eine Kette ist GESÄTTIGT, wenn sich ihre Elemente als Folge von Bedeckungsrelationen schreiben lassen. Eine Kette ist MAXIMAL, wenn sie maximal bzgl. Inklusion ist.

Ein Element $x \in P$ heißt MINIMAL, wenn für alle $y \in P$ aus $y \le x$ stets y = x folgt. Dual dazu heißt $x \in P$ MAXIMAL, wenn für alle $y \in P$ aus $x \le y$ stets x = y folgt.

Eine geordnete Menge (P, \leq) heißt Gradiert, wenn alle maximalen Ketten die gleiche Kardinalität haben. Insbesondere besitzen gradierte Halbordnungen eine Rangfunktion. Das ist eine Funktion $\mathrm{rk}: P \to \mathbb{N}$, die wie folgt induktiv definiert werden kann: $\mathrm{rk}(x) = 0$ für x minimal und $\mathrm{rk}(y) = \mathrm{rk}(x) + 1$ für jede Bedeckungsrelation x < y.

Ein VERBAND ist ein geordnete Menge (P, \leq) in der für je zwei Elemente $x, y \in P$ das SUPREMUM $x \lor y$ und das INFIMUM $x \land y$ existiert. Insbesondere sind endliche Verbände beschränkt.

0.3. **Die Inzidenzalgebra.** Im folgenden wollen wir die Inzidenzalgebra einer geordneten Menge $\mathcal{P} = (P, \leq)$ beschreiben, wie sie in [10, Abschnitt 3] eingeführt wurde.

Definition 0.7

Sei $\mathcal{P}=(P,\leq)$ eine endliche geordnete Menge. Die Inzidenzalgebra $\operatorname{Inz}(\mathcal{P})$ ist der \mathbb{R} -Vektorraum aller Funktionen $f:P\times P\to\mathbb{R}$ mit f(x,y)=0 falls $x\not\leq y$. Für $f,g\in\operatorname{Inz}(\mathcal{P})$ definieren wir ihre Faltung durch

$$(f \cdot g)(x,y) \stackrel{\text{def}}{=} \sum_{x \le z \le y} f(x,z)g(z,y).$$

Wir können uns $Inz(\mathcal{P})$ im Prinzip als eine \mathbb{R} -Algebra oberer Dreiecksmatrizen vorstellen. Das neutrale Element in $Inz(\mathcal{P})$ ist die Delta-Funktion

$$\delta(x,y) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{wenn } x = y, \\ 0, & \text{sonst.} \end{cases}$$

Für uns sind zwei weitere Elemente von $Inz(\mathcal{P})$ von Bedeutung: die Zeta- und die Möbius-Funktion, die wie folgt definiert werden

$$\zeta(x,y) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{wenn } x \le y, \\ 0, & \text{sonst,} \end{cases}$$

$$\mu(x,y) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{wenn } x = y, \\ -\sum_{x \le z < y} \mu(x,z), & \text{sonst.} \end{cases}$$

Lemma 0.8

In Inz(\mathcal{P}) gilt $(\mu \cdot \zeta)(x,y) = \delta(x,y)$.

Beweis. Zunächst bemerken wir, dass nach Definition $\sum_{x \le z \le y} \mu(x, z) = \delta(x, y)$ gilt. Damit folgt

$$(\mu \cdot \zeta)(x,y) = \sum_{x \le z \le y} \mu(x,z) \zeta(z,y) = \sum_{x \le z \le y} \mu(x,z) = \delta(x,y).$$

Die Möbius-Funktion ermöglicht das folgende fundamentale Prinzip der MÖBIUS-INVERSION.

SATZ 0.9: [10, Proposition 2]

Seien (P, \leq) eine endliche geordnete Menge, und seien $f, g : P \to \mathbb{R}$ zwei Funktionen. Die folgenden Beziehungen sind für alle $x \in P$ äquivalent.

$$g(x) = \sum_{x \le y} f(y);$$

$$f(x) = \sum_{x \le y} \mu(x, y)g(y).$$

Beweis. Sei \mathbb{R}^P die Menge aller Funktionen $f:P\to\mathbb{R}$. Dann ist \mathbb{R}^P ein \mathbb{R} -Vektorraum, und $\operatorname{Inz}(\mathcal{P})$ wirkt von links vermöge

$$(\xi \cdot f)(x) = \sum_{x \le y} \xi(x, y) f(y)$$

für alle $\xi \in \operatorname{Inz}(\mathcal{P})$ und $f \in \mathbb{R}^P$. (Wir können diese Wirkung auch als Matrix-Vektor-Multiplikation verstehen.) Die Behauptung des Satzes kann dann so umformuliert werden, dass $g = \zeta \cdot f$ genau dann gilt, wenn $f = \mu \cdot g$ gilt. Diese Beziehung folgt direkt aus Lemma 0.8.

Der folgende Satz von Philip Hall beschreibt eine kombinatorische Möglichkeit die Möbius-Funktion einer geordneten Menge zu berechnen.

SATZ 0.10

Sei (P, \leq) eine endliche, beschränkte geordnete Menge mit # $P \geq 2$. Es bezeichne c_i die Anzahl aller Ketten $\hat{0} = x_0 < x_1 < \cdots < x_i = \hat{1}$ der Länge i. Dann gilt

$$\mu(\hat{0}, \hat{1}) = \sum_{i>1} (-1)^i c_i.$$

Beweis. Siehe Übung.

0.4. **Die Möbiusalgebra.** Nun betrachten wir die Möbius-Algebra eines endlichen Verbandes $\mathcal{L} = (L, \leq)$, die ihren Ursprung in [5] hat, und von [11] inspiriert ist.

HENRI MÜHLE

DEFINITION 0.11

4

Sei $\mathcal{L}=(L,\leq)$ ein endlicher Verband. Die MÖBIUS-ALGEBRA Möb (\mathcal{L}) ist der \mathbb{R} -Vektorraum mit Basis L, zusammen mit der Multiplikation $x\cdot y=x\vee y$ für alle $x,y\in L$.

Eine wichtige Rolle in $M\ddot{o}b(\mathcal{L})$ spielen die folgenden Elemente:

$$\sigma_x \stackrel{\mathrm{def}}{=} \sum_{x \le y} \mu(x, y) y.$$

LEMMA 0.12

Die Menge $\{\sigma_x \mid x \in L\}$ ist eine Basis von Möb (\mathcal{L}) .

Beweis. Zunächst stellen wir fest, dass $\#\{\sigma_x \mid x \in L\} = \#L = \dim(\text{M\"ob}(\mathcal{L}))$. Mit Satz 0.9 folgt $x = \sum_{x \leq y} \sigma_y$. Es folgt, dass die σ_x ein Erzeugendensystem von $\text{M\"ob}(\mathcal{L})$ von minimaler Größe bilden; sie bilden also eine Basis.

Proposition 0.13

Sei $\mathcal{L} = (L, \leq)$ ein endlicher Verband, und seien $x, y \in L$. Dann gilt

$$\sigma_x \cdot \sigma_y = \begin{cases} \sigma_x, & \text{wenn } x = y, \\ 0, & \text{sonst.} \end{cases}$$

Beweis. Wir definieren uns zunächst eine \mathbb{R} -Algebra $A'(\mathcal{L})$ mit Basis $\{\sigma'_x \mid x \in L\}$ in der die Multiplikation durch

$$\sigma'_x \cdot \sigma'_y = \begin{cases} \sigma'_x, & \text{wenn } x = y, \\ 0, & \text{sonst} \end{cases}$$

definiert ist. Wir definieren weiter $x' = \sum_{x \le s} \sigma'_s$ für $x \in L$. Dann gilt

$$x' \cdot y' = \left(\sum_{x \le s} \sigma_s'\right) \cdot \left(\sum_{y \le t} \sigma_t'\right) = \sum_{\substack{x \le s \\ y \le t}} \sigma_s' \cdot \sigma_t' = \sum_{\substack{x \le s \\ y \le s}} \sigma_s' = \sum_{x \lor y \le s} \sigma_s' = (x \lor y)'.$$

Die lineare Abbildung $\varphi: \text{M\"ob}(\mathcal{L}) \to A'(\mathcal{L})$, die durch $\varphi(x) = x'$ definiert ist, ist also ein Isomorphismus von \mathbb{R} -Algebren. Wegen $\varphi(\sigma_x) = \sigma_x'$ folgt dann die gewünschte Eigenschaft.

KOROLLAR 0.14

Die multiplikative Identität von Möb(\mathcal{L}) ist $\sum_{x \in L} \sigma_x$.

Es gilt der folgende Satz von Louis Weisner.

SATZ 0.15

Sei (L, \leq) ein endlicher Verband mit $\#L \geq 2$, und sei $a \in L \setminus \{\hat{0}\}$. Dann gilt

$$\sum_{x \in L: \ x \lor a = \hat{1}} \mu(\hat{0}, x) = 0.$$

Beweis. Siehe Übung.

Der folgende Satz von Curtis Greene beschreibt eine alternative Darstellung von $\sigma_{\hat{0}}$.

SATZ 0.16

Sei (L, \leq) ein endlicher Verband, und sei $z \in L$. Dann gilt

$$\sigma_{\hat{0}} = \left(\sum_{v \in L: \ v \leq z} \mu(\hat{0}, v)v\right) \left(\sum_{y \in L: \ y \wedge z = \hat{0}} \mu(\hat{0}, y)y\right)$$

Beweis. Siehe Übung.

Mit Hilfe der Möbius-Algebra können wir eine weitere kombinatorische Methode zur Berechnung der Möbius-Funktion in endlichen Verbänden beweisen.

Eine Teilmenge $C \subseteq L \setminus \{\hat{0}, \hat{1}\}$ heißt UNTERER QUERSCHNITT, wenn für jedes $x \in L \setminus \{\hat{0}\}$ ein Element $c \in C$ mit $c \le x$ existiert. Es gilt der folgende QUERSCHNITT-SATZ von Gian-Carlo Rota.

SATZ 0.17: [10, Theorem 3]

Sei $\mathcal{L} = (L, \leq)$ ein endlicher Verband und sei $C \subseteq L$ ein unterer Querschnitt. Dann gilt

$$\mu(\hat{0}, \hat{1}) = \sum_{X \subset C: \ \bigvee \ X = \hat{1}} (-1)^{\#X}.$$

Beweis. Für $x \in L$ gilt

$$\hat{0} - x = \sum_{\hat{0} \le y} \sigma_y - \sum_{x \le y} \sigma_y = \sum_{x \not \le y} \sigma_y$$

in $M\ddot{o}b(\mathcal{L})$. Mit Proposition 0.13 folgt

$$\prod_{x \in C} (\hat{0} - x) = \prod_{x \in C} \left(\sum_{x \le y} \sigma_y \right) = \sum_{\substack{x \le y \\ \text{für alle } x \in C}} \sigma_y \stackrel{(*)}{=} \sigma_{\hat{0}} = \sum_{x \in L} \mu(\hat{0}, x) x.$$

Die markierte Gleichung folgt dabei aus der Querschnitteigenschaft von C. Der Koeffizient von $\hat{1}$ in dieser Entwicklung ist offenbar $\mu(\hat{0}, \hat{1})$.

Direktes ausmultiplizieren liefert außerdem

$$\prod_{x \in C} (\hat{0} - x) = \sum_{X \subseteq C} (-1)^{\#X} \bigvee X.$$

Der Koeffizient von $\hat{1}$ in dieser Summe ist gerade $\sum_{X\subseteq C:\;\bigvee X=\hat{1}} {(-1)}^{\#X}$, und der Satz ist gezeigt. $\ \ \Box$

6 HENRI MÜHLE

ABBILDUNG 1. Ein Verband.

Beispiel 0.18

Sei $\mathcal L$ der in Abbildung 1 abgebildete Verband. Direktes ausrechnen liefert $\mu(\hat 0,\hat 1)=3$. Weiter gibt es in $\mathcal L$ nur einen einzigen Querschnitt, nämlich $C=\{a,b,c,d\}$. Jede Teilmenge von C, die aus mehr als einem Element besteht, ist aufspannend. Also gilt

$$\sum_{X\subseteq C \text{ aufspannend}} (-1)^{\#X} = 6-4+1 = 3,$$

wie gewünscht.