1.	. Wynikiem odejmowania 11 (bias=7) -11(bias=5) będzie:					
	a.	Nie ma poprawnej odpowiedzi				
	b.	-2				
	c.	6				
	d.	-6				
2.	C ₁₆ to:					
	a.	11002				
	b.	11 ₁₀				
	c.	148				
	d.	12 ₁₀				
3.	Wynikiem działania 10011,010 – 1,011 jest:					
	a.	10001,101				
	b.	10101,101				
	c.	10101,111				
	d.	10001,111				
4.	C ₁₆ to:					
	a.	120				
	b.	11002				
	C.	148				
	d.	13 ₁₀				
5.	Liczby	zakodowano w kodzie U2. Wynikiem działania 1000 – 1110 jest:				
	a.	1100				
	b.	1010				
	c.	0010				
_	d.	0110				
6.		em operacji 1010 _(bias=7) -0101 _(bias=7) będzie:				
	a.					
	b.	5				
	C.	-1				
_	d.	1				
7.	0,5 ₁₀ to					
	a. •	0,11				
	b.	0,12				
	C.	0,001				
0	d.	0,012				
8.	•					
	a.	-4				
	b. c.	- 3 4				
	d.	1002				
0	-5 to:	1002				
9.		1010 -				
	a. b.	1010 _{u2} 1101 _{u2}				
	υ. C.	1101_{02} 1101_{01}				
	d.	1010 ₁				
	۷.					

12.	Wedłu	g algebry Boola a+1 to:						
	a.	a						
	b.	1						
	C.	0						
	d.	Żadna odpowiedź nie jest poprawna						
13.	Wedłu	g algebry Boola a+-a to:						
	a.							
	b.	0						
	٠.	1						
		-a						
14.	14. Niech A=1, B=1. W algebrze Boola wynikiem operacji ~A+B jest:							
	a.	1						
	b.	0						
		-В						
		-A						
15.		ść funkcji x~yz+~xy~z dla x=1, y=0, z=1 wynosi:						
	a.	1+0						
	b.	0+1						
	C.	0						
4.6	d.							
16.		em minimalizacji będzie:						
	Ab							
	c 0	1 1 0						
	0							
		c+ab						
	b.	b+bc						
	C.	C .						
		b+ac						
17.		em minimalizacji (x+y)(x+z) jest:						
		x+yz						
		y+xz						
	C.	xyz						
	a.	X+Y+Z						

10. Liczba 0,5 jest jednym z przybliżeń liczby 0,25. Błąd względny tego przybliżenia wynosi:

a. ¼-bezwzględny

11. Bramka logiczna wykonująca operację negacji posiada:

a. Jedno wejścia i jedno wyjścieb. Dwa wejścia i dwa wyjścia

d. Jedno wejście i dwa wyjścia

c. Dowolną ilość wejść i jedno wyjście

b. 5/10 c. ½ d. ¾ 18. Poniższy układ realizuje operację:

- a. a+bc
- b. ac+b
- c. abc
- d. ab+c

19. Układ realizuje funkcję:

- a. ~(AB)
- b. ~A+~B
- c. ~A*~B
- d. A+B

20. Układ realizuje funkcję:

- a.)
- b. x*x
- c. x+x
- d. ~x

21. Wynikiem minimalizacji będzie funkcja:

ΑŁ	Ab				
С	0		0	1	0
	0		1	1	1

- a. ab+ac+~bc
- b. ab+~ac+~bc
- c. ab+ac+bc
- d. a~b+~ac+~bc

- 22. Przekształcanie sygnału na dyskretne wartości to operacja:
 - a. Próbkowania
 - b. Kodowanie
 - c. Kwantyzacji
 - d. Szyfrowania
- 23. Szyfrowanie asymetryczne
 - a. Korzysta z jednego klucza
 - b. Pozwala na ujawnienie jednego z kluczy
 - c. Korzysta z dwóch kluczy
 - d. Nie wymaga zastosowania kluczy
- 24. Rejestracja wartości sygnału z odstępem czasowym to:
 - a. Próbkowanie
 - b. Kodowanie
 - c. Kwantowanie
 - d. Przetwarzanie
- 25. W porównaniu z systemami ZM i U1, zakres liczb ujemnych U2:
 - a. Jest taki sam jak liczb dodatnich
 - b. Jest o jeden większy niż liczb dodatnich
 - c. Jest o dwa większy niż liczb dodatnich
 - d. Jest reprezentowany poprzez ustawienie najmłodszego bitu na 1
- 26. Wyróżnienie tekstu w systemie Latex jest możliwe po zastosowaniu operacji:
 - a. \b{text}
 - b. \textbf{text}
 - c. \emph{text}
 - d. \it{text}
- 27. Kod Huffmana:
 - a. Kod wyznaczony jest przez ścieżkę od korzenia do symbolu
 - b. Jest stosowany w kompresji stratnej
 - c. Bazuje na entropii informacji
 - d. Jest stosowany w kompresji bezstratnej
- 28. 1 MB to:
 - a. 2¹⁰ GB
 - b. 1024 KB
 - c. 1/2²⁰ GB
 - d. 2²⁰ B
- 29. Rozdzielczość obrazu:
 - a. Informuje o gęstości pikseli
 - b. To ilość bitów potrzebna do zakodowania obrazu
 - c. Wymiary obrazu opisanego matematycznie
 - d. To liczba pikseli w obrazie
- 30. Kodowanie to:
 - a. Zamiana tekstu jawnego na tekst zaszyfrowany, przy użyciu dowolnego algorytmu
 - b. Zapisanie informacji w postaci umownych znaków
 - c. Wymaga użycia co najmniej dwóch kluczy
 - d. Może być stosowane z dowolną liczbą kluczy