REFERENCES

- [1] World Health Organization (WHO), "Cardiovascular diseases," Jun. 11, 2021. Accessed: Dec. 27, 2021. [Online]. Available: https://www.who.int/health-topics/cardiovascular-diseases
- [2] Government of Westren Australia, Department of Health, "Com- mon medical tests to diagnose heart conditions," Accessed: Dec. 29, 2021. [Online]. Available: https://www.healthywa.wa.gov.au/Articles/A_ E/Common-medical-tests-to-diagnose-heart-conditions
- [3] M. Swathy and K. Saruladha, "A comparative study of classification and prediction of cardio-vascular diseases (CVD) using machine learning and deep learning techniques," ICT Exp., to be published, 2021. [Online]. Available: https://doi.org/10.1016/j.icte.2021.08.021
- [4] R. R. Lopes et al., "Improving electrocardiogram-based detection of rare genetic heart disease using transfer learning: An application to phos- pholamban p.Arg14del mutation carriers," Comput. Biol. Med., vol. 131, 2021, Art. no. 104262. [Online]. Available: https://doi.org/10.1016/j. compbiomed.2021.104262
- [5] R. J. Martis, U. R. Acharya, and H. Adeli, "Current methods in electro- cardiogram characterization," Comput. Biol. Med., vol. 48, pp. 133–149, 2014. [Online]. Available: https://doi.org/10.1016/j.compbiomed.2014. 02.012382
- [6] A. Rath, D. Mishra, G. Panda, and S. C. Satapathy, "Heart disease detection using deep learning methods from imbalanced ECG samples," Biomed. Signal Process. Control, vol. 68, 2021, Art. no. 102820. [Online]. Avail- able: https://doi.org/10.1016/j.bspc.2021.102820
- [7] A. Mincholé and B. Rodriguez, "Artificial intelligence for the electro- cardiogram," Nature Med., vol. 25, no. 1, pp. 22–23, 2019. [Online]. Available: https://doi.org/10.1038/s41591-018-0306-1

- [8] A. Isin and S. Ozdalili, "Cardiac arrhythmia detection using deep learning," Procedia Comput. Sci., vol. 120, pp. 268–275, 2017. [Online]. Available: https://doi.org/10.1016/j.procs.2017.11.238
- [9] H. Bleijendaal et al., "Computer versus cardiologist: Is a machine learn- ing algorithm able to outperform an expert in diagnosing phospholam- ban (PLN) p.Arg14del mutation on ECG?," Heart Rhythm, vol. 18, no. 1, pp. 79–87, 2020. [Online]. Available: https://doi.org/10.1016/j. hrthm.2020.08.021
- [10] U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, "Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network," Knowl.-Based Syst., vol. 132, pp. 62–71, 2017. [Online]. Available: https://doi.org/10.1016/j. knosys.2017.06.003
- [11] M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, 3rd ed. Hoboken, NJ, USA: Wiley, 2020.
- [12] S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining, 1st ed. Berlin, Germany: Springer, 2015.
- [13] G. Dougherty, Pattern Recognition and Classification: An Introduction. Berlin, Germany: Springer, 2013.
- [14] A. Subasi, Practical Machine Learning for Data Analysis Using Python. Cambridge, MA, USA: Academic, 2020.
- [15] J. Soni, U. Ansari, D. Sharma, and S. Soni, "Predictive data mining for medical diagnosis: An overview of heart disease prediction," Int. J. Comput. Appl., vol. 17, no. 8, pp. 43–48, 2011.

[16] K. Dissanayake and M. G. Md Johar, "Comparative study on heart disease prediction using feature selection techniques on classification algorithms," Appl. Comput. Intell. Soft Comput., vol. 2021, 2021, Art. no. 5581806. [Online]. Available: https://doi.org/10.1155/2021/5581806

[17] A. H. Gonsalves, F. Thabtah, R. M. A. Mohammad, and G. Singh, "Pre-diction of coronary heart disease using machine learning: An experimental analysis," in Proc. 3rd Int. Conf. Deep Learn. Technol., 2019, pp. 51–56. [Online]. Available: https://doi.org/10.1145/3342999.3343015