PROGRAMACIÓN

(GRADOS EN INGENIERO MECÁNICO, ELÉCTRICO, ELECTRÓNICO INDUSTRIAL y QUÍMICO INDUSTRIAL)

Sesión	15 (Auto-evaluación. Construcción de programas que resuelven problemas					
	de ingeniería de tratamiento automático de información)				
Temporización	34 horas (no presenciales)					
Objetivos	Diseñar e implementar programas que resuelven problemas de					
formativos	ingeniería usando operaciones abstractas sobre	tipos	abstractos de			
	datos: representar el modelo de información media					
	de estructuras de datos y construir operaciones		lejas mediante			
	técnicas de diseño modular y programación estructu					
	Probar con datos operacionales la correctitud		•			
	programas desarrollados e identificar y corregir los	error	es lógicos que			
	surjan.					
Competencias	RD1: Poseer y comprender conocimientos		X			
a desarrollar	RD2: Aplicación de conocimientos		X			
	UAL1: Conocimientos básicos de la profesión		X			
	UAL3: Capacidad para resolver problemas		Х			
	UAL6: Trabajo en equipo		V			
	FB3: Conocimientos básicos sobre el uso y programa		X			
	de los ordenadores, sistemas operativos, bases de da					
	y programas informáticos con aplicación en la ingeniería.					
Materiales	Archivos con datos de prueba					
_	IDEs: Dev-C++/Code::Blocks (freeware)					
Tarea	Desarrollar los nueve programas propuestos en esta					
	presentar un informe según modelo que se adjunta. Not					
	el máximo nº de programas dentro de los límites de tiempo de esta actividad.					
	La lista de ejercicios propuesta es orientativa: puede al	•				
	orden de los ejercicios o sustituir algunos de ellos por o resulten más interesantes.	JUOS S	imilares que le			
Fecha de	El mismo día del examen final (convocatoria de jun	io o o	la contiambra)			
entrega	deberá entregar firmada y rellena la ficha resumen de es					
Criterios de	 Terminar en el tiempo previsto la tarea. 	ita acti	vidau.			
éxito	Obtener una calificación superior a 5 según baremo	ano co	adiunta			
Plan de	Actividad		mporización			
trabajo	Estudio de conceptos de programación, ejemplos y	10 h	IIIporizacion			
trabajo	sintaxis del Lenguaje de Programación (puede		oximadamente)			
	simultanear esta actividad con cualquiera de las					
	siguientes)					
	Diseño de los algoritmos correspondientes a cada uno 60 mn/ejercicio					
	de los ejercicios propuestos. Nota: puede simultanear		oximadamente)			
	esta actividad con las dos siguientes (para cada		,			
	ejercicio).					
	Implementación de los programas correspondientes a	30 m	n/ejercicio			
	los algoritmos diseñados.	(apro	oximadamente)			
	Pruebas: los programas desarrollados serán validados	60 m	n/ejercicio			

utilizando	como	mínimo	los	datos	de	prueba	(aproximadamente)
suministrac	dos. No	ta: en cas	o de	detecta	ar eri	ores en	
esta fase	de prue	bas, esto	s deb	erán se	er co	rregidos	
modificand	o el	código fu	iente	y/o e	el a	lgoritmo	
correspond	iente.			-			

Ejercicios: desarrollo de programas

Ejercicio 1

Construir un programa para ajustar un conjunto de datos experimentales a una línea recta mediante el método de mínimos cuadrados:

El programa presentará un menú en pantalla con las siguientes opciones:

- Insertar un nuevo punto experimental, introduciendo por teclado los valores de las variables **x** e **y**.
- Imprimir en pantalla un listado numerado con todos los puntos experimentales disponibles.
- Eliminar del conjunto de datos un punto, dado por teclado su número de orden dentro del conjunto.
- Imprimir en pantalla la ecuación de la recta de regresión junto con el coeficiente de correlación.
- Finalizar programa.

Datos	de
prueb	а

Opción menú	Datos de entrada	Resultados	
Recta regresión		Ningún punto introducido	
Insertar puntos	x = 100		
	y = 100		
Recta regresión		Solo hay un punto experimental	
Insertar puntos	x = 300		
	y = 300		
	x = 200		
	y = 200		
Imprimir puntos		Listado de puntos:	
		1 (100.00,100.00)	
		2 (300.00,300.00)	
		3 (200.00,200.00)	
Recta regresión		y = 0.00 + 1.00 * x	
		r = 1.00	
Eliminar puntos	nº punto: 1		

Imprimir puntos		Listado de puntos: 1 (300.00,300.00) 2 (200.00,200.00)	
Eliminar puntos	nº punto: 1		
Insertar puntos	x = 200		
	y = 400		
Recta regresión		x = 200.00	
		r indeterminado	
Finalizar programa			

Ejercicio 2

Diseñar un programa lo mas modular posible que dado por teclado un conjunto tabulado de hasta 100 valores de dos variable x e y, introducidos por teclado (con valores de x_i diferentes):

X ₁	X 2	X 3	X 4	 Xn
y 1	y ₂	y 3	y 4	 y n

calcule e imprima en pantalla el valor de y para algún valor de x introducido por teclado que caiga entre dos de los valores tabulados, usando la fórmula de Lagrange de la interpolación polinomial:

$$y(x) = f_1(x) * y_1 + f_2(x) * y_2 + f_3(x) * y_3 + ... + f_n(x) * y_n$$

donde $f_i(x)$ es el polinomio siguiente:

$$f_i(x) = \frac{(x-x_1)^* (x-x_2)^* \dots *(x-x_{i-1})^* (x-x_{i+1})^* \dots *(x-x_n)}{(x_i-x_1)^* (x_i-x_2)^* \dots *(x_i-x_{i-1})^* (x_i-x_{i+1})^* \dots *(x_i-x_n)}$$

El programa presentará en pantalla un menú con las siguientes opciones:

- 1) Inserción de un nuevo punto en el conjunto tabulado: se introducirán por teclado los valores de las variables **x** e **y**, se comprobará que el valor de **x** es diferente a los del conjunto, y se insertará el punto en el lugar correspondiente.
- 2) Interpolación de un punto: se calculará (si ello es posible) y se presentará en pantalla el valor y correspondiente al valor x introducido por teclado.
- 3) Eliminación de todos los puntos del conjunto tabulado.
- 4) Fin de ejecución.

Datos de Prueba

Datos de entrada:

X	10	20	30	35
у	7.5	9.0	8.3	6.4

Puntos interpolados:

x	у		
11	7.682880		
15	8.380000		
5	Fuera de rango		
30	8.300000		
31.5	7.861845		

Datos de entrada:

X	10	20	30	35
y	10	10	10	10

Puntos interpolados:

x	у
11	10.000000
15	10.000000
5	Fuera de rango

Ejercicio 3

Diseñar un programa lo mas modular posible para resolver un sistema lineal de m ecuaciones con n incógnitas por el método de eliminación de Gauss-Jordan, dados por teclado el n^{o} de ecuaciones (hasta un máximo de 10), el n^{o} de incógnitas (máximo 10), los coeficientes de las incógnitas y los términos independientes.

Nota: el objetivo consiste en reducir el sistema a otro equivalente que tenga las mismas soluciones, haciendo uso de operaciones tales como:

- Multiplicar una ecuación por un escalar no nulo.
- Intercambiar de posición dos ecuaciones.
- Sumar a una ecuación un múltiplo de otra.

Ejemplo:

$$2*x + y - z = 8$$
 (1)
 $-3*x - y + 2*z = -11$ (2)
 $-2*x + y + 2*z = -3$ (3)

1) Eliminar **x** de la segunda y tercera ecuación:

(1)
$$\rightarrow$$
 (1) $2*x+y-z=8$ (1) $-3*(1)-2*(2) \rightarrow$ (2) $-y-z=-2$ (2) $-2*(1)-2*(3) \rightarrow$ (3) $-4*y-2*z=-10$ (3)

2) Eliminar **y** de la primera y tercera ecuación:

$$1*(2)-(-1)*(1) \rightarrow (1)$$
 $2*x$ $-2*z = 6$ (1)
(2) \rightarrow (2) $-y-z=-2$ (2)
 $-4*(2)-(-1)*(3) \rightarrow (3)$ $2*z=-2$ (3)

3) Eliminar z de la primera y segunda ecuación:

$$-2*(3)-2*(1) \rightarrow (1)$$
 $-4*x = -8$ (1)
 $-1*(3)-2*(2) \rightarrow (2)$ $2*y = 6$ (2)
 $(3) \rightarrow (3)$ $2*z = -2$ (3)

4) Las soluciones del sistema son:

$$x=-8/(-4)=2$$
 $y=6/2=3$ $z=-2/2=-1$

Sistema incompatible: se habría obtenido una ecuación del tipo **0=1**. Sistema compatible indeterminado: nº de incógnitas>nº de ecuaciones

Nota: las ecuaciones del tipo **0=0** no se contabilizan

Datos de Prueba	Sistema de ecuaciones a resolver	Soluciones	Sistema de ecuaciones a resolver	Soluciones
	x + y = 3	x = 1	y + z = 2	x = 1
	x - y = -1	y = 2	y + 2*z = 4	y = 0
	2*x + y = 4		x + y + z = 3	z = 2
	x + y = 3	Sistema	x + y + z = 6	Sistema
	x - y = 4	incompatible	x + y + 2*z = 4	compatible
	x + 2*y = 1		x + y - z = 10	indeterminado
	x + y + z + u = 1	x = 1	2*x = 4	x = 2

$ \begin{array}{cccc} x - y + z & = & 0 \\ x & -z + u = & 3 \end{array} $	y = 0	
x - z + u = 3	z = -1	
y-z-u=0	u = 1	
-x - y + z = -2 $x + u = 2$		
x + u = 2		

Ejercicio 4

Construir un programa que calcule las soluciones aproximadas de la ecuación diferencial de primer orden: y'=f(x,y), con la condición inicial: $y(x_0)=y_0$, en el intervalo [a,b] para n valores equidistantes $(\Delta x=(b-a)/n)$. Utilice para ello los dos métodos siguientes:

• Método de Euler: x₀=a

 $x_{i+1}=x_i+\Delta x$

 $y_{i+1}=y_i+f(x_i,y_i)*\Delta x$

• Método de Runge-Kutta: $x_0=a$

 $x_{i+1}=x_i+\Delta x$

 $y_{i+1}=y_i+(k_1+2*k_2+2*k_3+k_4)/6$

 $k_1 = \Delta x * f(x_i, y_i)$

 $k_2 = \Delta x * f(x_i + \Delta x/2, y_i + k_1/2)$ $k_3 = \Delta x * f(x_i + \Delta x/2, y_i + k_2/2)$ $k_4 = \Delta x * f(x_i + \Delta x, y_i + k_3)$

El programa leerá por teclado los valores a, b, y_0 y n, calculará las soluciones (x_i, y_i) por los dos métodos y presentará en pantalla los resultados.

Datos de prueba

, 1
$dy/dx = (1+x)*y^2/2$
[a,b] = [0,0.5]
y(0) = 1
n=5

x		у		
	Euler	Runge-Kutta		
0.0	1.000000	1.000000		
0.1	1.050000	1.055409		
0.2	1.110637	1.123596		
0.3	1.184648	1.208459		
0.4	1.275869	1.315790		
0.5	1.389818	1.454545		

Ejercicio 5

Construir un programa que lea por teclado los datos de una serie de transformaciones geométricas 2D sucesivas a aplicar $(M_1, M_2, ..., M_n)$ y que calcule e imprima en pantalla la matriz de la transformación compuesta como el producto de las matrices que representan las diferentes transformaciones individuales:

$$M=M_n\ldots\ldots M_2\cdot M_1$$

A continuación, el programa solicitará por teclado la introducción de una serie de puntos en el plano, para cada uno de los cuales calculará las coordenadas del punto en que se transforma al aplicar la secuencia de transformaciones. Para el cálculo de las coordenadas transformadas se utilizará la siguiente notación homogénea:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = M . \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Datos de Prueba	Secuencia de transformaciones	Matriz transformación compuesta	Puntos iniciales	Puntos transformados
	1) T(10,20) 2) T(5,10)	1 0 15 0 1 30 0 0 1	(0,0) (20,-10) (10,20)	(15,30) (35,20) (25,50)
	1) R(45º) 2) R(20º) 3) R(25º)	0 -1 0 1 0 0 0 0 1	(0,0) (10,0) (-10,10)	(0,0) (0,10) (-10,-10)
	1) S(1,2) 2) S(0.5,1)	0.5 0 0 0 2 0 0 0 1	(0,0) (10,20) (-30,10)	(0,0) (5,40) (-15,20)
	1) T(5,0) 2) R(90º)	0 -1 0 1 0 5 0 0 1	(0,0) (5,0) (0,5)	(0,5) (0,10) (-5,5)
	1) R(90º) 2) T(5,0)	0 -1 5 1 0 0 0 0 1	(0,0) (5,0) (0,5)	(5,0) (5,5) (0,0)
	1) T(-100,-100) 2) S(0.5,0.5) 3) R(90º) 4) T(100,175)	0 -0.5 150 0.5 0 125 0 0 1	(0,0) (50,50) (150,50)	(150,125) (125,150) (125,200)
	7, 1(100,173)		(100,150)	(75,175)

Ejercicio 6

Construir un programa que lea por teclado los vértices de un polígono y los almacene en una variable estructurada con la siguiente tipología:

A continuación, el programa determinará si se trata de un polígono válido (cóncavo o convexo) o no válido (tiene aristas que intersectan entre sí), escribiendo en pantalla el mensaje correspondiente. Finalmente, si se trata de un polígono convexo, calculará el área mediante triangulación, presentando el resultado en pantalla.

Nota 1: para determinar si dos aristas intersectan entre sí, se calcula el punto de intersección de las rectas que las contienen, y se comprueba si dicho punto de intersección forma parte de las aristas (segmentos de línea recta) utilizando las ecuaciones paramétricas de la línea recta:

 $m=(y_2-y_1)/(x_2-x_1)$ $d_1=u^*(x_2-x_1)$ $d_2=m^* d_1=u^*(y_2-y_1)$ (0 ≤ u ≤ 1) → segmento de línea recta $x=x_1+u^*(x_2-x_1)=x_1+u^*\Delta x$ $y=y_1+u^*(y_2-y_1)=y_1+u^*\Delta y$

Nota 2: para identificar si un polígono es convexo o no, se puede proceder calculando la componente **z** del producto vectorial de los vectores de aristas sucesivas. Si todos tienen el mismo signo, el polígono es convexo y en caso contrario es cóncavo. Ejemplo:

Nota 3: cálculo del área de un polígono convexo mediante la técnica de triangulación:

Área triangulo: $(s*(s-l_1)*(s-l_2)*(s-l_3))^{1/2}$ $s=(l_1+l_2+l_3)/2$ (semiperímetro) $l_1+l_2+l_3$: longitudes de los lados

Datos de	Vértices	Tipo de polígono	Área	
Prueba	(0,0),(2,0),(2,1),(1,1),	Polígono regular	5.00	
	(1,2),(2,2),(2,3),(0,3)	Polígono cóncavo		
	(0,0),(2,0),(0,2)	Polígono regular	2.00	
		Polígono convexo		
	(0,0),(2,0),(0,2),(2,2)	Polígono irregular		
	(0,0),(2,2)	No es un polígono		

Ejercicio 7

Construir un programa que calcule el área encerrada por una curva y=f(x) en el intervalo [a,b] con el eje x mediante el método de MonteCarlo. Se supone que f(x) es positiva para cualquier valor de x dentro de los límites del intervalo [a,b]. Sea y_{max} el valor mayor de f(x) dentro de esos límites (determinarlo mediante prueba y error). El método de MonteCarlo funciona de la siguiente manera:

- i. Inicializar un contador a **0**.
- ii. Generar un número aleatorio r_x de valor comprendido entre a y b.
- iii. Evaluar $f(r_x)$.
- iv. Generar un segundo número aleatorio $\emph{r}_{\emph{y}}$ de valor

comprendido entre $\mathbf{0}$ e \mathbf{y}_{max} .

- v. Si $r_y \le f(r_x)$ entonces este punto caerá en o bajo la curva dada, en cuyo caso se incrementa el contador en **1**.
- vi. Repetir los pasos del ii. al v. un número grande de veces. Cada iteración se denomina un ciclo.
- vii. Calcular la fracción **F** de puntos que caen en o bajo la curva tras completar un número de ciclos:

F=contador/nº total de ciclos

El área bajo la curva se obtiene como: $F^*y_{max}^*(b-a)$

Datos de Prueba

$$f(x) = x^3 - 3x^2 + 5$$

3X" + 5			
а	b	nº de ciclos	Area
0	2	10	7.00000
		100	4.800000
		1000	5.970000
		10000	6.014000
		100000	5.995200
1.5	4	10	15.750000
		100	12.075000
		1000	14.385000
		10000	14.469000
		100000	14.463750

 $f(x) = \exp(-x^2)$

<u> </u>			
а	b	nº de ciclos	Area
-1	1	100000	1.493960
-5	5	100000	1.756300
-10	10	100000	1.782000

Ejercicio 8

Diseñar un programa que represente en pantalla la configuración electrónica de un átomo según el modelo de capas utilizando el principio de Aufbau, dado por teclado su número atómico (nº de electrones). Ejemplos:

 $1s^2 2s^2 2n^6 3s^2 3n^6$

Regla de Aufbau:

Argón: 18 e

	25 2	<u> </u>	s sp	
n				
	S	р	d	f
8	0	0	0	0
7	0	0	0	0
6	0	0	0	0
5	0	0	0	0
4	0	0	0	0
3	2	6	0	
2	2	6		
1	2			

Plomo: 82 e⁻

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p²

n			I	
	S	р	d	f
8	0	0	0	0
7	0	0	0	0
6	2	2	0	0
5	2	6	10	0
4	2	6	10	14
3	2	6	10	
2	2	6		
1	2			

Orbitales atómicos: regiones del espacio donde es más probable encontrar al electrón (estados estacionarios de la función de onda de un electrón). Se describen mediante cuatro números cuánticos cuyos valores posibles son:

 Número cuántico principal (n): 1,2,3,... (capas electrónicas o niveles: K, L, M, N,...)

- Número cuántico acimutal (*I*): 0,1,...n-1 (sub-capas o sub-niveles: tipos de orbitales: s, p, d, f,...)
- Número cuántico magnético (m): -1..+/ (orbitales en cada sub-capa)
- Número cuántico de espín (*m*_s): -1/2,+1/2 (cada orbital lo ocupan dos electrones con espines opuestos)

Distribución electrónica en niveles y sub-niveles:

- Principio de exclusión de Pauli: en un mismo átomo no pueden existir dos electrones en el mismo estado físico (sus cuatro números cuánticos iguales).
- Principio de construcción de Aufbau: los electrones ocupan los orbitales en orden de energías crecientes. La energía de un orbital viene determinada por los números cuánticos n y l (Energía Relativa: n+l) y el orden de llenado de los mismos se ilustra en la figura superior izquierda (regla de Aufbau). El método de representación estándar del llenado consiste en escribir las letras de definición de cada orbital (en la forma n y l) seguidas del número de electrones correspondientes al orbital (o al conjunto de orbitales en la misma sub-capa) hasta agotar el número de electrones del átomo (ver ejemplos).

Datos de prueba

Argón: 18 e⁻ 1s² 2s² 2p⁶ 3s² 3p⁶

s p d f 8 0 0 0 0 7 0 0 0 0 6 0 0 0 0 5 0 0 0 0					
8 0 0 0 0 7 0 0 0 0 6 0 0 0 0 5 0 0 0 0	n				
7 0 0 0 0 6 0 0 0 0 5 0 0 0 0		S	р	đ	f
6 0 0 0 0 5 0 0 0 0	8	0	0	0	0
5 0 0 0 0		0	0		0
		0	0	0	0
		0	0	0	0
4 0 0 0 0	4	0	0	0	0
3 2 6 0		2	6	0	
2 2 6	2	2	6		
1 2	1	2			

Plomo: 82 e⁻

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d¹⁰ 6p²

n			l	
	S	р	d	f
8	0	0	0	0
7	0	0	0	0
6	2	2	0	0
5	2	6	10	0
4	2	6	10	14
3	2	6	10	
2	2	6		
1	2			

Ejercicio 9

Construir un programa para gestionar una lista de fórmulas químicas moleculares (fórmula molecular: indica los elementos presentes en una sustancia así como la cantidad exacta de átomos de cada elemento en una molécula de la misma). Para ello, considerar las siguientes estructuras de datos para representar la tabla periódica de elementos y una lista de fórmulas químicas moleculares:

CONST MAX=108 { Numero de elementos de la tabla periódica } MAX_E=5 { Máximo número de elementos en cada fórmula } MAX_F=1000 { Máximo número de fórmulas a representar }

```
TIPOS
        tipo_archivo_elementos: archivo_s de tipo_elemento
         tipo_archivo_formulas: archivo_s de tipo_formula
         tipo t p: vector[1..MAX] de tipo elemento
         tipo_v_f: vector[1..MAX_F] tipo_formula
         tipo elemento: registro de
           z: entero { Núm. atómico (nº protones)
           a: real
                     { Nº másico (protones+neutrones) }
                              { Símbolo del elemento }
           sim: cadena2
           nom: cadena15
                               { Nombre del elemento }
         Fin registro
         tipo_formula: registro de
           nom: cadena30 (Nombre fórmula química )
                         { Numero elementos (1-5) }
           v: tipo v ae { Átomos de cada elemento}
         Fin registro
         tipo_v_ae: vector[1..MAX_E] de tipo_atomos
         tipo atomos: registro de
           sim: cadena2 { Símbolo elemento
                                                    }
                        { Número átomos en fórmula }
           n: entero
         Fin_registro
         cadena2: cadena[3]
         cadena15: cadena[16]
         cadena30: cadena[31]
```

tp: tipo t p { Tabla periódica de elementos } { Vector de fórmulas moleculares} vf: tipo_v_f Lista de fórmulas { Nº de fórmulas registradas n: entero

El vector tp será inicializado al principio de la ejecución del programa con los datos de todos los elementos de la tabla periódica almacenados en un archivo (los elementos se encuentran en el archivo clasificados por el campo clave del símbolo del elemento en orden alfabético). Análogamente el vector vf también será inicializado con las fórmulas registradas en un archivo (nótese que inicialmente este archivo no existe y habrá que crearlo). A continuación el programa presentará en pantalla un menú con las siguientes opciones:

Insertar una fórmula. Se leerá por teclado una fórmula válida y se añadirá al final de la lista de fórmulas. Esta opción deberá leer por teclado: el nombre de la sustancia (deberá ser diferente de los ya insertados), el número de elementos diferentes de la misma (entre 1 y 5), así como los símbolos de los diferentes elementos (deberán estar en la tabla periódica) y su número de átomos (mayor que cero y menor de 100). Para las correspondientes comprobaciones, implementar una función lo más eficiente posible que localice y devuelva a través de su identificador la posición de un elemento dado su símbolo (-1 en caso de no encontrarse) en el vector de elemento, así como una segunda función que localice y devuelva a través de su identificador la posición en la lista de fórmulas de una fórmula dado su nombre (-1 en caso de no encontrarse), no distinguiéndose si los caracteres del nombre están en mayúsculas o en minúsculas.

VAR

• Borrar fórmula. Se pedirá por teclado el nombre de la sustancia y se procederá a eliminarla de la lista si ésta se encuentra en la misma.

 Listar todas las fórmulas. Se imprimirán en pantalla la lista de formulas moleculares registradas indicando su nombre, su fórmula y su peso molecular (obtenido como la suma de las masa atómicas de todos los átomos de la misma). Ejemplos:

Nombre Sustancia	Fórmula Molecular	<u>Peso</u>
<u>Molecular</u>		
Glucosa	$C_6H_{12}O_6$	180.18
Agua	H_2O	18.02
Acetileno	C_2H_2	26.04
Benceno	C_6H_6	78.12
Sal Común	NaCl	58.45
Ácido Láctico	$C_3H_6O_3$	90.09

Nota: aproximar la masa atómica de cada elemento con su número másico.

- Listar las fórmulas que contengan un elemento dado. Se pedirá por teclado el símbolo de un elemento válido, y se presentarán en pantalla todas las fórmulas que contengan al menos un átomo de dicho elemento.
- Finalizar ejecución. El vector de fórmulas moleculares se grabará íntegramente en un archivo en memoria secundaria (borrando y sobreescribiendo el archivo actual).

Datos de prueba

Archivo con tabla periódica de elementos clasificados alfabéticamente por símbolo del elemento: *tabla_pc.txt*

Opción menú	Datos de	e entr	ada	R	esultados
Insertar fórmula	Glucosa	3			
		С	6		
		Н	12		
		0	6		
	Agua	2	•		
		Н	2		
		0	1		
	Acetileno	2			
		С	2		
		Н	2		
	Benceno	2			
		С	6		
		Н	6		
	Sal	2			
	Común	Na	1		
		Cl	1		
	agua	•	•	Ya está registr	ada esa fórmula
	Ácido	3			
	Láctico	С	3		
		Н	6		
		0	3		
Listar todas las	Nombre Sustar	<u>ncia</u>	•	Fórmula Molecular	
fórmulas	Glucosa Agua			C ₆ H ₁₂ O ₆ H ₂ O	180.18 18.02

		Acetileno Benceno Sal Común Ácido Láctico		C_2H_2 C_6H_6 NaCl $C_3H_6O_3$	26.04 78.12 58.45 90.09	
	Listar todas las fórmulas que contengan un elemento dado	С	Nombre Sustar Glucosa Acetileno Benceno Ácido Láctico	C ₆ C ₂ C ₆		
	Borrar fórmula	Aceite Agua		No se encuen	tra dicha fórmula	
	Listar todas las fórmulas	Nombre Sustan Glucosa Acetileno Benceno Sal Común Ácido Láctico	<u>cia</u>	Fórmula Molecular C ₆ H ₁₂ O ₆ C ₂ H ₂ C ₆ H ₆ NaCl C ₃ H ₆ O ₃		
	Finalizar programa					

Asignatura	Programación			
Plan de Estudios	Grados en Ingeniero Mecánico, Eléctrico, Electrónico Industrial y			
	Químico Industrial			
Actividad	Trabajo individual	Sesión	15	
Tiempo empleado				

Apellidos, nombre	DNI	Firma

Resultados de la auto-evaluación: para obtener la calificación de esta prueba de auto-evaluación en una escala de 0 a 10, busque en primer lugar en las categorías de calificación la que mejor se ajuste en su caso a cada programa construido, a continuación multiplique por dos el número de dicha categoría y finalmente reste 1 punto por cada hora adicional consumida (que exceda de las 2 horas previstas en esta prueba). Finalmente calcule la media aritmética de las calificaciones parciales.

	Calificación obtenida (categoría*2-penalización exceso tiempo)				
Ejercicio	Descripción	Calificación			
1	Regresión lineal: método de mínimos cuadrados				
2	Fórmula de Lagrange para interpolación lineal				
3	Eliminación de Gauss-Jordan: resolución sistema lineal ecuaciones				
4	Método Runge-Kutta: soluciones ecuación diferencial primer orden				
5	Transformaciones geométricas compuestas en notación homogénea				
6	Cálculo de área polígono regular convexo mediante triangulación				
7	Cálculo de integral definida por el método de Monte-Carlo				
8	Configuración electrónica de un átomo con regla de Aufbau				
9	Fórmulas químicas moleculares				
	(otros ejercicios)				
	Media aritmética				
	5: Funcionamiento correcto del programa sin modificaciones del d	iseño inicial.			
Categoría	4: Funcionamiento correcto tras modificación del diseño inicial.				
de	3: Funcionamiento incorrecto en algunos casos de prueba.				
calificacio	2: Funcionamiento incorrecto en todos los casos de prueba.				
	1: Se ha diseñado el algoritmo pero no se ha implementado el programa.				
	0: No se ha diseñado el algoritmo				