A. Introduction

A.1. Description & Discussion of the Background

Minsk is the capital and largest city of Belarus. As the capital, Minsk has a special administrative status in Belarus and is the administrative center of Minsk Region and Minsk District. The population in January 2018 was 1,982,444 making Minsk the 11th most populous city in Europe. As a resident of this city, I decided to use Minsk in my project. The city is divided into 9 boroughs and 64 neighborhoods in total.

In this project, I would like to raise the topic of a healthy lifestyle. Consider which neighborhoods of Minsk are most suitable for this (gyms, swimming pools, yoga studios q-ty). Additionally, I will attempt to answer the question for investor "Where should I open a gym?"

When we consider all these problems, we can create a map where each neighborhood is clustered according to the venue density.

A.2. Data Description

To consider the problem we can list the data as below:

- I didn't found any useful file with Administrative Divisions. So I used different resources (wiki, Ato.by, realt.by) and created excel file with all boroughs and neighborhoods of Minsk. I cleaned the data and used **geopy** library to add latitude and longitude.
- I used Forsquare API to get the most common venues.
- I used **transliterate** library to convert all text from Russian

B. Methodology

As a database, I used GitHub repository in my study. My master data which has the main components *Borough*, *Neighborhood*, *Full address* information of the city.

	Borough	Neighborhood	Full address
0	Фрунзенский	Сухарево	Минск, Фрунзенский район, Сухарево
1	Фрунзенский	Запад	Минск, Фрунзенский район, Запад
2	Фрунзенский	Красный Бор	Минск, Фрунзенский район, Красный Бор
3	Фрунзенский	Медвежино	Минск, Фрунзенский район, Медвежино
4	Фрунзенский	Кунцевщина	Минск, Фрунзенский район, Кунцевщина

I used **geopy** library and Full address column to add longitude and latitude of all Neighborhoods.

	Borough	Neighborhood	Latitude	Longitude
0	Фрунзенский	Сухарево	53.8867	27.4271
1	Фрунзенский	Запад	53.8993	27.4503
2	Фрунзенский	Красный Бор	53.902	27.4245
3	Фрунзенский	Медвежино	53.8955	27.4689
4	Фрунзенский	Кунцевщина	53.9114	27.4441

I used **transliterate** library to convert from Cyrillic (Russian language) to Latin.

	Borough	Neighborhood	Latitude	Longitude	
0	Frunzenskij	Suharevo	53.8867	27.4271	
1	Frunzenskij	Zapad	53.8993	27.4503	
2	Frunzenskij	Krasnyj Bor	53.902	27.4245	
3	Frunzenskij	Medvezhino	53.8955	27.4689	
4	Frunzenskij	Kuntsevschina	53.9114	27.4441	

I used python **folium** library to visualize geographic details of Minsk and its boroughs/neighborhoods.

I utilized the Foursquare API to explore the neighborhoods and segment them. I designed the limit as **100 venue** and the radius **600 meter** for each neighborhood from their given latitude and longitude information. In summary of this data 1030 venues were returned by Foursquare. Here is a merged table of boroughs and venues. We can see 20 main venue categories:

As we raised the topic of healthy lifestyle, let's explore Venue categories (gyms, pools, yoga studios, etc.)

In summary 75 venues were returned by Foursquare. Then I created a table which shows list of top venue category for each neighborhood in below table.

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue
0	Akademgorodok	Gymnastics Gym	Gym / Fitness Center	Athletics & Sports	Yoga Studio	Sports Club	Pool	Gym Pool
1	Akademija nauk	Gym Pool	Gym	Yoga Studio	Sports Club	Pool	Gymnastics Gym	Gym / Fitness Center
2	Angarskaja	Gym / Fitness Center	Pool	Yoga Studio	Sports Club	Gymnastics Gym	Gym Pool	Gym
3	Borovljany	Athletics & Sports	Yoga Studio	Sports Club	Pool	Gymnastics Gym	Gym Pool	Gym / Fitness Center
4	Brilevichi	Pool	Yoga Studio	Sports Club	Gymnastics Gym	Gym Pool	Gym / Fitness Center	Gym

Then I created a data-frame with pandas one hot encoding for the venue categories. I used pandas groupby on neighborhood column and calculate the mean of the frequency of occurrence of each venue category.

	Neighborhood	Athletics & Sports	Gym	Gym / Fitness Center	Gym Pool	Gymnastics Gym	Pool	Sports Club	Yoga Studio
0	Akademgorodok	0.333333	0.0	0.333333	0.0	0.333333	0.00	0.0	0.0
1	Akademija nauk	0.000000	0.5	0.000000	0.5	0.000000	0.00	0.0	0.0
2	Angarskaja	0.000000	0.0	0.750000	0.0	0.000000	0.25	0.0	0.0
3	Borovljany	1.000000	0.0	0.000000	0.0	0.000000	0.00	0.0	0.0
4	Brilevichi	0.000000	0.0	0.000000	0.0	0.000000	1.00	0.0	0.0

minsk_grouped.shape

(34, 9)

We have common venue categories in neighborhoods. In this reason I used unsupervised learning K-means algorithm to cluster them. K-Means algorithm is one of the most common cluster method of unsupervised learning.

First, I will run K-Means to cluster the boroughs into 5 clusters because when I analyze the K-Means with elbow method it ensured me the 5 degree for optimum k of the K-Means.

Here is my merged table with cluster labels for each neighborhood.

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue
0	Frunzenskij	Suharevo	53.8867	27.4271	3	Yoga Studio	Gym / Fitness Center	Sports Club	Pool	Gymnastics Gym	Gym Pool	Gym
1	Frunzenskij	Zapad	53.8993	27.4503	2	Gym / Fitness Center	Yoga Studio	Sports Club	Pool	Gymnastics Gym	Gym Pool	Gym
4	Frunzenskij	Kuntsevschina	53.9114	27.4441	0	Gym	Yoga Studio	Sports Club	Pool	Gymnastics Gym	Gym Pool	Gym / Fitness Center
5	Frunzenskij	Kamennaja Gorka	53.9069	27.4359	2	Gym / Fitness Center	Yoga Studio	Sports Club	Pool	Gymnastics Gym	Gym Pool	Gym
6	Frunzenskii	Dombrovka	53.9195	27.4526	2	Gym / Fitness Center	Yoga Studio	Sports Club	Pool	Gymnastics Gym	Gym Pool	Gvm

C. Results & Discussion

Now we can see a map with clustering.

We got a glimpse of the Healthy Lifestyle venues in Minsk and were able to find out some interesting insights which might be useful to the citizens as well as people with business interests.

We found that only **34 (53%)** from 64 neighborhoods have venues for healthy lifestyle. It means you need to think twice before choosing an area to stay.

The clustering is completely based on the most common venues obtained from Foursquare data.

However, in our analysis, we have ignored other factors like range of prices of houses/flats in Minsk, reviews of the venues and so on.

D. Conclusion

The results can help traveler/citizen/investor to decide about the neighborhood that fit the most his needs.

I have made use of some frequently used python libraries to scrap web-data, use Foursquare API to explore the major neighborhoods of Minsk and saw the results of segmentation of neighborhoods using Folium leaflet map.

Similarly, data can also be used to solve other problems, which most people face in metropolitan cities. Potential for this kind of analysis in a real-life problem is discussed in great detail. Also, some of the drawbacks and chance for improvements to represent even more realistic pictures are mentioned.