2. KV2 - Dizajn vizualizacije podataka.

2.1. Pitanja na koja vizualizacija daje odgovor

- Z-2.1.1. Popis pitanja na koja vizualizacija daje odgovor:
 - Kako se obnovljivi izvori energije distribuiraju među europskim državama?
 - Koje su europske države vodeće u korištenju obnovljivih izvora energije, a koje zaostaju?
 - Postoji li povezanost između razine obnovljivih izvora energije I ekonomske siromašnosti u europskim državama?
 - Koje države imaju visok udio obnovljivih izvora energije, ali I visoku razinu siromaštva, te kako se ta situacija može interpretirati?
 - Jesi li države s manje obnovljivih izvora energije sklonije ekonomskom siromaštvu ili postoli li neka druga koleracija?

2.2. Skica vizualizacije podataka

Z-2.2.1.

.Toplinska karta prikazuje postotak udjela obnovljivih izvora energije svake Europske države što na jednostavan način vizualizira koje države su više osviještene u smislu obnovljivih izvora energije. Klikom na svaku od država prikazuju se detaljniji linijski ili stupčasti grafovi za svaki od tipova obnovljivih izvora energije svake države za pojedinu godinu te ovisnost obnovljivih izvora energije I siromaštva te države.

2.3. Postojeća rješenja i primjeri

- Z-2.3.1. D3 Gallery: D3.js ima vlastitu galeriju s primjerima vizualizacija podataka. Ova galerija nudi širok spektar primjera, uključujući heatmap-e I linijske/stupčaste grafove.
- Z-2.3.2. Primjeri koda koji se mogu koristiti za pomoć kod izrade vizualizacije su:
 - D3 Heatmap primjer: D3 galerija ima mnogo primjera za heatmap-e. Većina primjera se može koristiti kao polazna točka I prilagoditi za vlastiti primjer.
 - D3 Line/Bar Chart primjer: Također se može koristiti kao polazna točka za prikaz linijskih I stupčastih grafova u galeriji D3.
 - Priručnik za laboratorijske vježbe
- Z-2.3.3. 1.0 Rješava problem kreiranja toplinske karte za Europske države. Svaka država će biti obojana ovisno o udjelu obnovljivih izvora energije
 - 2.0 Rješava problem kreiranja linijskih grafova te izvlačenja vrijednosti iz .csv datoteke koji će se koristiti za izradu grafova.
 - 3.0 Rješava problem kreiranja karte Europe I kreiranja granica za svaku od država

```
1.0
var myColor = d3.scaleSequential()
    .interpolator(d3.interpolateInferno)
    .domain([1,100])
2.0
d3.csv("https://raw.githubusercontent.com/holtzy/data to viz/m
aster/Example_dataset/3_TwoNumOrdered_comma.csv",
  function(d){
    return { date : d3.timeParse("%Y-%m-%d")(d.date), value :
d.value }
  },
  // Now I can use this dataset:
  function(data) {
    // Add X axis --> it is a date format
    var x = d3.scaleTime()
      .domain(d3.extent(data, function(d) { return d.date; }))
      .range([ 0, width ]);
    svg.append("g")
      .attr("transform", "translate(0," + height + ")")
      .call(d3.axisBottom(x));
    // Add Y axis
    var y = d3.scaleLinear()
      .domain([0, d3.max(data, function(d) { return +d.value;
})])
      .range([ height, 0 ]);
    svg.append("g")
      .call(d3.axisLeft(y));
    // Add the line
    svg.append("path")
      .datum(data)
      .attr("fill", "none")
      .attr("stroke", "steelblue")
      .attr("stroke-width", 1.5)
      .attr("d", d3.line()
        .x(function(d) { return x(d.date) })
        .y(function(d) { return y(d.value) })
})
3.0
d3.json("us.json", function(error, us) {
var statesData = topojson.feature(us, us.objects.states);
var states = svg.selectAll('path.state')
.data(statesData.features)
.enter()
.append('path')
.classed("state", true)
.attr("d", path)
.style("fill", "blue")
.style("stroke", "white")
.style("stroke-width", 2)
.style("fill-opacity", function() { return Math.random(); });
});
```

2.4. Prilagodba podataka

- Z-2.4.1. Zbog prevelikog broja nepotrebnih stupaca koji se neće koristiti iz skupa podataka su obrisani oni stupci koji se neće koristiti. Iz novog skupa podataka obrisani su retci koji nemaju vrijednosti u bilo kojem stupcu te su obrisani retci sa dupliciranim vrijednosti.
- Z-2.4.2. Podaci su trenutno zapisani u .csv formatu, ali zbog lakše izrade toplinske mape i linijskih grafova podaci su prebačeni u .json format.
- Z-2.4.3. Indeks siromaštva svake države

	A	В	С
1	Entity	Year	Poverty_Index
2	Albania	2000	0.1675749555956
3	Albania	2001	0.1784406157249987
4	Albania	2002	0.1514183846679703
5	Albania	2003	0.1611691558090973
6	Albania	2004	0.16407096822649464
7	Albania	2005	0.1658685784689513
8	Albania	2006	0.17036003747517495
9	Albania	2007	0.1745029991968103
10	Albania	2008	0.19016170394076742
11	Albania	2009	0.15797871127154667
12	Albania	2010	0.16047927426838896
13	Albania	2011	0.15382490046313504
14	Albania	2012	0.14438486211508797
15	Albania	2013	0.14225042578391958
16	Albania	2014	0.14891790304682312
17	Albania	2015	0.14864440130296872
18	Albania	2016	0.1577439390032722
19	Albania	2017	0.16367344988512159
20	Albania	2018	0.169593665495513
21	Albania	2019	0.1560850451072863
22	Albania	2020	0.11026106035216822
23	Austria	2000	0.27465805126128057
24	Austria	2001	0.25887910791449364
25	Austria	2002	0.27234948988959
26	Austria	2003	0.30025480222121137
27	Austria	2004	0.33974836679234427
28	Austria	2005	0.345121015671515
29	Austria	2006	0.3668057238547448
30	Austria	2007	0.4042742557516461
31	Austria	2008	0.4151258023568538

Postotak obnovljivih energija svake države:

	A	В	С
1	Entity	Year	Renewable Energy Percentage
2	Albania	2000	97.01492537313433
3	Albania	2001	96.43835616438356
4	Albania	2002	95.60439560439559
5	Albania	2003	98.08429118773947
6	Albania	2004	97.65342960288808
7	Albania	2005	98.7012987012987
8	Albania	2006	98.21428571428572
9	Albania	2007	97.52650176678446
10	Albania	2008	98.17232375979113
11	Albania	2009	100.0
12	Albania	2010	100.0
13	Albania	2011	98.55421686746989
14	Albania	2012	100.0
15	Albania	2013	100.0
16	Albania	2014	100.0
17	Albania	2015	100.0
18	Albania	2016	100.0
19	Albania	2017	100.0
20	Albania	2018	100.0
21	Albania	2019	100.0
22	Albania	2020	100.0
23	Austria	2000	72.58145363408521
24	Austria	2001	69.17785784474287
25	Austria	2002	69.03938045806558
26	Austria	2003	60.69583189803651
27	Austria	2004	63.975456160180855
28	Austria	2005	63.38967281749108
29	Austria	2006	65.28580603725112
30	Austria	2007	68.62184072484501
31	Austria	2008	69.03875968992249

Z-2.4.4. Primjer vizualizacije podataka

2.5. Boje i podatci

Z-2.5.1. TAMNO ZELENA - Tamno zelena boja često se percipira kao simbol prirode, ekologije I održivosti. Ovaj izbor boje može potaknuti asocijacije na ekološki osviještene države koje vode brigu o zaštiti okoliša I smanjenju emisija plinova SVIJETLO ZELENA – Korištenjem svijetlo zelene boje za države s visokim udjelom obnovljivih izvora energije može signalizirati pozitivan napredak prema održivijoj budućnosti I poticanje na daljnje ulaganje u obnovljive izvore energije. ŽUTA – Žuta boja simbolizira neutralnost ili stabilnost. Žuta boja signalizira da te države možda nisu ni vodeće ni zaostajuće u korištenju obnovljivih izvora energije, već se nalaze negdje između. Boja između svijetlo zelene i narančaste bi bila žuta.

NARANČASTA – Naračnasta boja je mnogo slična crvenoj boji, te ona može ukazivati na potrebu za većim ulaganjem u obnovljive izvore energije kako bi se postigla održivija energetska budućnost.

CRVENA – Crvena boja često se percipira kao simbol opasnosti, upozorenja ili visokog rizika. Kada se koristi za prikazivanje država s najmanjim udjelom obnovljivih izvora energije, crvena boja može ukazivati na hitnost I potrebu za hitnim djelovanjem kako bi se smanjila ovisnost o neobnovljivim izvorima energije I smanjili negativni utjecaji na okoliš