# Деревья

**Дерево** — это **нелинейная структура данных**, используемая при представлении иерархических связей, имеющих отношения «один ко многим».

Терминология (взята из ботаники и генеалогии)

Дерево – это совокупность элементов, называемых узлами или вершинами, и отношений («родительских») между ними, образующих иерархическую структуру узлов.

Отношения между узлами дерева (из генеалогии):

верхний узел (вершина) называется *родителем* (предком),

нижний – *потомком (сыном или дочерней вершиной).* 

#### Определения узлов – из ботаники.

Самая верхняя вершина - *корень*, а самые нижние вершины – *листья*. Вершины, не имеющие потомков, - *терминальные* (через отношения) или *листья* (через определения). Нетерминальные вершины - внутренние.

#### Дерево через отношения и определения



- Деревья определяются рекурсивно,
- т. е., *дерево с базовым типом Т\_* это:
- либо пустая структура (пустое дерево, один корень);
- либо узел типа Т с конечным числом древовидных структур этого же типа Т, называющихся поддеревьями.
- **Т.о. дерево без ветвей с одной вершиной –** это *пустое* или *нулевое* дерево.

### Уровни:

Корень дерева лежит на *нулевом* уровне.

Максимальный уровень какой-либо вершины дерева - глубина (от корня до узла) или высота (от узла до максимально удаленного листа).

Отсюда макс. уровень корня = 0.

Максимальный уровень всех вершин называется *глубиной дерева.* 

Число непосредственных потомков у вершины (узла) дерева называется степенью вершины (узла).

**Максимальная степень всех вершин** является *степенью дерева.* 

## Длина пути

- Число ветвей от корня к вершине есть длина пути к этой вершине.
- Т. о., корень имеет длину пути, равную 0, длина пути его прямых (т. е., связанных с ним одной ветвью) потомков равна 1 и т.д. Вершина на уровне і имеет длину пути і.
- *Длина внутреннего пути дерева* это сумма длин путей для каждой его вершины.
- Длина внешнего пути дерева это сумма длин путей всех специальных вершин, которые дополняют дерево так, чтобы степени всех вершин были равны степени дерева. Длина внешн. пути дерева:
- $\sum_{i=2}^{n} = (Vi * max степень * hvi) + V1 * степень,$
- где **n** количество вершин, **Vi i**-тая вершина,
- hvi глубина i-той вершины.

Пример:



Глубина дерева = 3. Максимальная степень дерева = 3. Длина внутреннего пути дерева равна 36. Длина внешнего пути дерева равна 120.

# Представление древовидной структуры

- а) скобочное (в выражениях):(A(B(D(I),E(J,K,L)), C(F(O),G(M,N),H(P))))
- б) в виде вложенных множеств
  - в) отступами (в программах структура)

г) в виде графа

### Представление деревьев

а) в виде вложенных множеств:



# Представление деревьев

в) отступами (в программах – структура)

|   | I | <u> </u> |              |
|---|---|----------|--------------|
| Α |   |          |              |
|   | В |          |              |
|   |   | D        |              |
|   |   |          | I            |
|   |   | ${f E}$  |              |
|   |   |          | J            |
|   |   |          | K<br>L       |
|   |   |          | ${f L}$      |
|   | С |          |              |
|   |   | F        |              |
|   |   |          | 0            |
|   |   | G        |              |
|   |   |          | $\mathbf{M}$ |
|   |   |          | N            |
|   |   | H        |              |
|   |   |          | P            |

## Представление деревьев



# Представление деревьев в памяти пример:



а) в виде курсоров на родителей:

| № вер | ш. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-------|------|---|---|---|---|---|---|---|---|----|
|       | 0    | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 3 | 3  |

### б) в виде связного списка сыновей:



# в) в виде структуры данных:



#### Возвращаясь к терминологии:

- **Упорядоченное дерево** это такое дерево, у которого все ветви, исходящие из одной вершины, **упорядочены.**
- Позиционное дерево это корневое дерево, у которого дети любой вершины помечены номерами от 1 до k.
- *К-ичное дерево* это дерево, у которого нет вершины **более** чем с k детьми.
- Полное k-ичное дерево это дерево, у которого все листья имеют одинаковую глубину, а все внутренние вершины степень k.
- Тем самым, структура k-ичного дерева полностью определена его высотой.
- Т. о., количество листьев (n) у k-ичного дерева высотой k:  $\mathbf{n} = \mathbf{k}^h$ , где h высота, равная соответственно  $\mathbf{h} = \mathbf{log}_{\mathbf{k}}\mathbf{n}$ .

## Двоичные (бинарные) деревья

- Если у каждой вершины дерева имеется не более **двух потомков**, то такое дерево называется **двоичным** или **бинарным**.
- Т.е., двоичным деревом называют конечный набор элементов, являющихся узлами (вершинами) дерева, такой, что:
- а) Т это пустое или нулевое дерево,
- либо
- б) Т состоит из корня (вершины) с двумя отдельными двоичными деревьями, называющимися соответственно левым и правым поддеревьями.
- Деревья степени больше 2 называют сильно ветвящимися деревьями.

Пример: Представление троичного дерева в виде двоичного.



#### Двоичные деревья (2-Д) используются:

- а) для представления алгебраических выражений
- б) в представлении генеалогических деревьев,
- в) в описании турниров и т.п.
- 2-Д является *полным*, если все его уровни, кроме последнего, имеют по 2 узла и все нижние узлы имеют хотя бы левого сына.
- Глубина полного 2-Д с **n** узлами:
- :  $D_n = log_2 n + 1$ ,
- например, при n= 10<sup>6</sup>, то D<sub>n</sub> = 21.

#### Идеально сбалансированное 2-дерево

- **Идеально сбалансированное дерево (ИДС)** это дерево, у которого **количество вершин** в левом и правом поддеревьях отличается не более, чем на **1**.
- Для построения ИСД используется рекурсия. **Алгоритм построения идеально сбалансированного дерева**:
- 1. Взять одну вершину в качестве корня;
- 2. Построить левое поддерево с **nl = n div (\) 2** узлами тем же способом; (где **n** количество всех вершин)
- 3. Построить правое поддерево с **nr** = **n nl 1** вершинами тем же способом.

#### Алгоритм построения ИДС

```
Type
   P_Tr = ^Node; //указатель на вершину
   Node = Record
                         // запись (структура)
                   : Type_Inf;
        Inf
        Left, Right : P_Tr;
              End:
                                 // нотация Паскаля
Function Tree (N : Integer): P_tr; //результат функции – указатель на дерево
 Var NewNode: P Tr;
           NI,Nr: Integer:
Begin
   If N=0
    Then Tree ← пусто
    Else
       NI \leftarrow N \text{ div } 2
       Nr \leftarrow N-NI-1
       Создать новую вершину (NewNode)
          В поле данных (Inf) ← данные
          Left ← Tree(NI)
          Rigt \leftarrow Tree(Nr)
   Tree ← NewNode
```

End:

Иллюстрация построения идеально сбалансированного дерева:





→ идеально сбалансированное дерево:



#### Представление бинарных деревьев

#### Обозначим:

- **P(n)** объем памяти, занимаемый представлением двоичного дерева, **n** количество узлов.
- Списочное представление
- Массивы
- Польская запись

#### Списочное представление:

В этом случае **P(n) = 3n**, т. к. хранится еще и **nil**, и половина связей не используется.

#### Массивы:

Главным недостатком статического способа представления двоичного дерева является то, что массив имеет фиксированную длину. Размер массива выбирается исходя из максимально возможного количества уровней двоичного дерева, и чем менее полным является дерево, тем менее рационально используется память. Кроме того, недостатком являются большие накладные расходы при изменении структуры дерева (например, при обмене местами двух поддеревьев).

Вершины в массиве располагаются так, что все узлы поддерева данной вершины располагаются вслед за этой вершиной. Вместе с вершиной хранится индексы левого и правого сыновей, т. е, дерево **T** определяется таким образом:

T: Array[1..n] of Record

i : info; //вершина

k:1..n; //индексы

end;

Здесь P(n) = 2n



### Польская запись:

аналогична второму представлению, но вместо связей фиксируется «размеченная степень» 0 — лист, 1 — левая связь, 2 — правая связь, 3 — обе связи, тогда

T: Array[1..n] of Record

i : info;

d: 0..3;

end;

И в этом случае P(n) = 2n.

Если степень узла имеется в информации об узле, то ее можно не хранить: В наиболее компактный вид хранения, где **P(n) = n**.

Этот вид хранения используется для представления выражений.

Например,  $\mathbf{a} + \mathbf{b} * \mathbf{c}$  в польской записи будет выглядеть так:  $\mathbf{a} \mathbf{b} \mathbf{c} * + \mathbf{.}$ 

#### Префиксный код бинарного дерева.

- Каждой вершине дерева (кроме корня) сопоставляется число. Левому потомку корня приписывается 0, а правому 1, потомкам 00 и 01 соответственно и т.д.
- Достаточно хранить в памяти компьютера не все построенные числа, а только расположенные на листах, слева направо.
- {000, 010, 011, 10, 110, 1110, 1111} это и есть префиксный вид бинарного дерева.
- Он определяет дерево однозначно. По нему можно восстановить бинарное дерево, т.к. каждое из чисел в перфективном коде позволяет однозначно восстановить весь путь от корня до листа, тем самым все дерево.
- Но, для больших деревьев префиксивный код очень объемен. Если у бинарного дерева 10 уровней, то возникает 10-битовые двоичные числа, в количестве до 1024.

| *** |      |  |  |
|-----|------|--|--|
| a   | 00   |  |  |
| b   | 10   |  |  |
| С   | 010  |  |  |
| d   | 110  |  |  |
| е   | 0110 |  |  |
| f   | 0111 |  |  |
| g   | 1110 |  |  |
| h   | 1111 |  |  |



# Основные операции с двоичными деревьями:

- 1. Обход (посещение) вершин
- 2. Поиск по дереву
- 3. Включение узла в дерево
  - 4. Удаление узла в ДДП

# 1. Обход (посещение) вершин:

- Основной рекурсивный подход для обхода (непустого) бинарного дерева: Начиная с узла N делаем следующее:
- (L) Рекурсивно обходим левое поддерево. Этот шаг завершается при попадании опять в узел N.
- (R) Рекурсивно обходим правое поддерево. Этот шаг завершается при попадании опять в узел N.
- (N) Обрабатываем сам узел N.
- Эти шаги могут быть проделаны <u>в любом порядке</u>. Если (L) осуществляется перед (R), процесс называется обходом слева направо, в противном случае обходом справа налево.

- сверху вниз: N,L,R.
- слева направо: L,N,R
- снизу вверх: L,R,N



#### Прямой обход – сверху вниз (NLR)



Прямой обход: F, B, A, D, C, E, G, I, H.

- 1.Проверяем, не является ли текущий узел пустым или null.
- 2.Показываем поле данных корня (или текущего узла).
- 3.Обходим левое поддерево рекурсивно, вызвав функцию прямого обхода.
- 4.Обходим правое поддерево рекурсивно, вызвав функцию прямого обхода.

#### Обратный обход - снизу вверх (LRN)

Слева направо - центрированный обход (LNR)[



Центрированный обход: A, B, C, D, E, F, G, H, I.

- 1.Проверяем, не является ли текущий узел пустым или null.
- 2.Обходим левое поддерево рекурсивно, вызвав функцию центрированного обхода.
- 3. Показываем поле данных корня (или текущего узла).
- 4.Обходим правое поддерево рекурсивно, вызвав функцию центрированного обхода.

В <u>двоичном дереве поиска</u> центрированный обход извлекает данные в отсортированном порядке. <sup>[4]</sup>.



Обратный порядок: A, C, E, D, B, H, I, G, F.

Проверяем, не является ли текущий узел пустым или null.

- 2.Обходим левое поддерево рекурсивно, вызвав функцию обратного обхода.
- 3.Обходим правое поддерево рекурсивно, вызвав функцию обратного обхода.
- 4.Показываем поле данных корня (или текущего узла).

Последовательность обхода называется секвенциализацией дерева. Последовательность обхода — это список всех посещённых узлов. Ни одна из секвенциализаций согласно прямому, обратному или центрированному порядку не описывает дерево однозначно. Если задано дерево с различными элементами, прямой или обратный обход вместе с центрированным обходом достаточны для описания дерева однозначно. Однако прямой обход вместе с обратным оставляет некоторую неоднозначность в структуре дерева.

- Если дерево **T** является нулевым деревом, то в список обхода записывается пустая строка;
- Если дерево **T** состоит из одного узла, то в список обхода записывается этот узел;
- Пусть дерево **T** имеет корень **N** и поддеревья **T1** , **T2** , ... **Tm** , как показано на рисунке
- Тогда для различных способов обхода имеем следующее:
- Прямой обход (сверху вниз, префиксный). Сначала посещается корень N, затем в прямом порядке узлы поддерева T1, далее все узлы поддерева T2 и т.д. Последними посещаются в прямом порядке узлы поддерева Tm.
- Обратный обход (снизу вверх, постфиксный). Сначала посещаются в обратном порядке все узлы поддерева **T1**, затем в обратном порядке узлы поддеревьев **T2**... **Tm**, последним посещается корень **N**.
- Симметричный обход (слева направо, инфиксный). Сначала в симметричном порядке посещаются все узлы поддерева Т1, затем корень N, после чего в симметричном порядке все узлы поддеревьев Т2... Тт.

- Например, если представить алгебраическое выражение вида
- (a + b \* c) \* (d e / f) в виде дерева:
- то обходя это дерево и выписывая символы, находящиеся в вершинах, получим:
- При обходе дерева сверху вниз: \* + a \* b c d / e f
   Эта форма записи называется префиксной.
- При обходе дерева слева направо:
- **a** + **b** \* **c** \* **d e** / **f**, т. е., исходное выражение, но без скобок. *Инфиксная* форма записи.
- При обходе дерева снизу вверх:
- abc\*+def/-\* <u>постфиксноая.</u>

Представление алгебраическое выражение вида (a + b \* c) \* (d - e / f) в виде дерева:



сверху вниз (префиксная, прямая): \*+a\*bc-d/ef слева направо (инфиксная, симметричная): a+b\*c\*d-e/f снизу вверх (постфиксная, обратная): abc\*+def/-\*

# Для деревьев общего вида

Порядок узлов этого дерева в случае **прямого обхода** будет следующим: 1 2 3 5 8 9 6 10 4 7.

**Обратный обход** даст нам следующий порядок узлов: 2 8 9 5 10 6 3 7 4 1.

При **симметричном обходе** мы получим такую последовательность узлов: 2 1 8 5 9 3 10 6 7 4.



#### операции в виде рекурсивных процедур:

```
Type
 P_Tr = ^Node;
 Node = Record Inf
                          : Type Inf;
               Left, Right : P_Tr;
         End;
Procedure Wr TPref(Q : P Tr);
                                     void preOrderTravers(Node* root) {
 //префиксный обход
                                          if (root)
 Begin
  WriteLn(Q^.Inf) //печать инф-ции узла
                                               printf("%d ", root->data)
  If Q^.Left <> Nil Then Wr_TPref(Q^.Left);
                                               preOrderTravers(root->left);
  If Q^.Right <> Nil Then Wr_TPref(Q^.Right);
                                               preOrderTravers(root->left);
 End;
```

Процедура работает в двух режимах. В первом режиме осуществляется обход по направлению к левым потомкам до тех пор, пока не встретится лист, при этом выполняется печать значений вершин, и занесение указателей на них в стек. Во втором режиме осуществляется возврат по пройденному пути с поочередным извлечением указателей из стека до тех пор, пока не встретится вершина, имеющая еще ненапечатанного правого потомка. Тогда процедура переходит в первый режим и исследует новый путь, начиная с этого потомка.

```
Procedure Wr_TInf (Q: P_Tr); //инфиксный обход
   Begin
      If Q^.Left <> Nil Then Wr_TInf(Q^.Left);
      WriteLn(Q^.Inf);
      If Q^.Right <> Nil Then Wr_TInf(Q^.Right);
   End;
Procedure Wr_TPost (Q: P_Tr); //постфиксный обход
    Begin
      If Q^.Left <> Nil Then Wr_TPost(Q^.Left);
      If Q^.Right <> Nil Then Wr_TPostf(Q^.Right);
      Writeln(Q^.lnf);
   End;
```

• Следует обратить внимание на то, **что Q** – **параметр-значение**, **не ссылка (НЕ указатель)** .

### Дерево двоичного поиска (ДДП)

(BST: Bynary Search Tree)

Каждая вершина ДДП (BST) имеет значение, которое больше, чем содержание любой из вершин его левого поддерева и меньше, чем содержание любой из вершин его правого поддерева.



## 2. Поиск по дереву

Алгоритмы поиска по дереву.

Для реализации алгоритмов поиска по дереву используются **ДДП** (BST) т.е. **дерево**, в котором все левые сыновья моложе предка, а все правые – старше.

Это свойство называется характеристическим свойством дерева двоичного поиска и выполняется для любого узла, включая корень.

#### Поиск узла со значением Х с помощью рекурсии:

```
Function Poisk_R (X : Type_Inf; Q : P_Tr) : P_Tr;
   Begin
      If (Q = Nil) Or (X = Q^{Inf}) Then Return Q;
      If X < Q^.Inf Then Return Poisk_R (X, Q^.Left)
                     Else Return Poisk_R (X,Q^.Right);
   End;
                 либо с помощью итерации:
Function Poisk_ I(X : Type_Inf; Q : P_Tr) : P_Tr;
   Begin
      Poisk I ← Nil;
      While Q^.Inf <> X Do
             If X < Q^{\cdot}.Inf Then Q \leftarrow Q^{\cdot}.Left
                           Else Q ← Q^.Right;
             Poisk I \leftarrow Q;
   End;
```

Если элемент с ключом не найден, то возвращает значение **Nil**.

## 3. Включение в дерево

Элемент с ключом X можно включить в дерево, реализовав алгоритм поиска по дереву с включением.

Процедура поиска по дереву с включением выглядит так:

```
Procedure Search(X : Type_Inf; Var Q : P_Tr);
    Begin
      If Q = Nil Then Begin
                  New (Q); //создание узла
                    Q^{\Lambda}.Inf \leftarrow X;
                    Q^{\Lambda}.Left \leftarrow Nil;
                    Q^{\Lambda}.Right \leftarrow Nil;
                          End
                          Begin
                 Else
                    If X < Q^.Inf Then Search (X, Q^.Left);
                    If X > Q^{1}. Then Search (X, Q^.Right);
                          End;
    End;
```

Здесь Q – параметр-переменная (ссылка), а не параметр-значение(!).

- Алгоритм поиска по дереву с включением применяется и для сортировки дерева.
- При появлении одинаковых ключей, можно сделать: **X ≥ Q^.Inf**.
- При большом количестве одинаковых ключей можно добавить их количество:
- Type
- P\_Tr = ^Node;
- Node = Record
- Inf : Type\_Inf;
- Count : Word;Left, Right : P\_Tr;
- End;

## 4. Удаление узла в ДДП

Удаление не столь тривиально и зависит от расположения в дереве удаляемого элемента.

#### Бывает 3 случая:

- 1. Элемента с ключом **X** в дереве нет.
- 2. Элемент с ключом **X** имеет не более одного потомка или является листом (терминальной вершиной).
- 3. Элемент с ключом **X** имеет двух потомков.

#### Удаление элементов

Один потомок или лист:

а) исключаем ссылку на лист:



ИЛИ

б) переставляем ссылку на него:



- В первом случае ничего не делаем удалять нечего.
- Во втором случае, или
  - а) исключаем ссылку на лист;
  - б) или переставляем ссылку на него.
- В третьем случае, чтобы не нарушить характеристическое свойство ДДП, необходимо заменить удаляемый элемент или на самый правый элемент его левого поддерева (т. е., на наибольший элемент среди потомков левого сына),
  - или на **самый левый элемент** его **правого поддерева** (т. е.. на наименьший элемент среди потомков правого сына), причем, они должны иметь не более одного потомка.:

## Например, для случая:



#### удалить элемент с ключом 20 можно либо так:



либо так:



Рекурсивная процедура удаления элемента из дерева включает вспомогательную рекурсивную процедуру, которая вызывается в случае удаления элемента, имеющего двух потомков.

При удалении какого-либо элемента необходимо изменить ссылку на сам элемент в его родителе. Поэтому введем дополнительный указатель для просмотра удаляемых элементов из его родителей.

#### Алгоритм процедуры удаления:

```
Type
 P_Tr = ^Node;
 Node = Record
              Key: Type_Inf;
             Left, Right : P_Tr;
         End;
Procedure Delete_X (X : Type_Inf; Var P : P_Tr);
    Var
       Q : P_Tr;
                                  //вершина –заменитель
  Procedure Changer (Var R : P_Tr);
     Begin
        If R^.Right <> Nil
              Then Changer(R^.right)
              Else
                  Q^*.Key \leftarrow R^*.Key;
                  Q ← R:
                  R ← R^.Left; //вых –левый потомок
  End;
```

```
Begin
              {исключение эл-та}
   If P = Nil
        Then Writeln('Элемента в дер. нет')
        Else
          If X < P^*. Key
                Then Delete_X (X, P^.Left)
                Else
                   If X > P^*. Key
                      Then Delete_X (X, P^.Right)
                       Else
                         Begin //удаление Р
                            Q \leftarrow P;
                             If Q^.Right = Nil
                                Then P← Q^.Lleft
                                Else
                                   If Q^.Left = Nil
                                        Then P \leftarrow Q^{\Lambda}.Right
                                        Else Changer (Q^.Left);
    Dispose(P); // освобождение вершины
End;
```

- Вспомогательная рекурсивная процедура Changer начинает работать только в случае 3 (см. выше). Она «спускается» вдоль правой ветви левого поддерева элемента Q^, который нужно исключить, и заменяет существующую в Q^ информацию
- (т. е., ключ) на соответствующее значение из самой правой компоненты R^ левого поддерева, после чего элемент R^ можно исключить.

## Ассоциативная память

- Ассоциативная память (АП): каждой записи (порции) данных ставят в соответствие (ассоциируют) ключ значение из некоторого вполне упорядоченного множества.
- Записи могут иметь произвольную природу и различные размеры. Доступ к данным осуществляется по значению ключа, который обычно выбирается простым, компактным и удобным для работы. (см. 2л.р.)

### Примеры Ассоциативной памяти

#### Толковый словарь:

- запись это словарная статья,
- ключ заголовок словарной статьи.

#### Адресная книга:

- запись адресная информация (адрес, телефон и др.),
- ключ имя абонента.

#### Банковские счета:

• запись – финансовая информация, ключ – номер счета.

#### Способы реализации АП:

- Неупорядоченный массив;
- Упорядоченный массив;
- Двоичное дерево поиска;
- Таблица расстановки (хэш-таблица);

#### Основные операции с АП:

- Добавление ключа (записи);
- Поиск ключа (записи);
- Удаление ключа (записи);

## Сравнение представлений ассоциативной памяти (АП)

- n количество элементов
- «Стоимость» операций для различных представлений АП

|            | Неупорядочен-<br>ный массив | Упорядочен-<br>ный массив | Дерево<br>сортировки |
|------------|-----------------------------|---------------------------|----------------------|
| Добавление | O(1)                        | O(n)                      | $O(\log_2 n)O(n)$    |
| Поиск      | O(n)                        | O(log <sub>2</sub> n)     | $O(\log_2 n)O(n)$    |
| Удаление   | O(n)                        | O(n)                      | $O(\log_2 n)O(n)$    |

• Эффективность операций сортировки ограничена сверху высотой дерева. Дерево сортировки может расти неравномерно. Например, если при загрузке дерева исходные данные уже упорядочены, то полученное дерево будет право или леволинейным (левосторонним) и будет менее эффективным, чем даже неупорядоченный массив. Т. е., худшими при использовании бинарных случаями деревьев являются такие, когда дерево имеет вид последовательности вершин:

## Левостороннее дерево поиска:

Почему хуже неупорядоченного массива?



# Сбалансированные деревья поиска

### self-balancing binary search tree

Высота поддеревьев любого узла различаются не более чем на заданную константу **k** 

## Виды сбалансированных деревьев поиска:

АВЛ-деревья(AVL tree) эффективность временная - O(log n) емкостная O(n)

Красно-черные деревья (Red-black tree)

В-деревья (B-tree)

## Красно-черное дерево



КЧ-деревья – это двоичные деревья поиска, каждый узел которых хранит дополнительное поле color, цвет: красный или черный:

```
struct RBNode {
```

```
key_type key;
struct RBNode *left;
struct RBNode *right;
struct RBNode *parent;
char color; // цвет
}
```

Если left или right равны NULL, то это «указатели» на фиктивные листья. Т.о., все узлы – внутренние (нелистовые).

для КЧ-деревьев выполнняются свойства:

- 1. каждый узел либо красный, либо черный;
- 2. каждый лист (фиктивный) черный;
- 3. если узел красный, то оба его сына черные
- 4. любой простой путь от узла-предка до листового узла-потомка содержит одинаковое число чёрных узлов.
- (Рудольф Байер (немецк.). Название эта СД получила в статье Леонидаса Гимпаса и Роберта Седжвика 1978 года)

**В-дерево** - СД, дерево поиска. С точки зрения внешнего логического представления, оно сбалансированное и сильно ветвистое. Часто используется для хранения данных во **внешней** памяти.

Использование В-деревьев впервые было предложено Р. Бэйером в 1970г.

Сбалансированность означает, что длина любых двух путей от корня до листьев различается не более, чем на единицу.



**Адельсон-Вельский и Ландис** (1962г.), сформулировали критерий сбалансированности двоичного дерева:

дерево называется сбалансированным тогда и только тогда, когда высоты двух поддеревьев каждой из его вершин отличаются не более чем на единицу. Такие деревья называют АВЛ-деревьями.

• (в *идеально сбалансированном* дереве не более чем на единицу отличается <u>число</u> вершин в левом и правом поддереве. *Идеально сбалансированное дерево* является также и *АВЛ-деревом*).

• Максимально несимметричное АВЛ-дерево:

•



• Для каждого узла высота двух поддеревьев отличается не более чем на 1.

## Включение в сбалансированные деревья (СБ)

Рассмотрим включение в левое поддерево. При включении в СБ возможны 3 случая:

- Левое и правое поддеревья становятся не равной высоты, но критерий сбалансированности не нарушается.
- Левое и правое поддерево приобретают равную высоту и т.о. сбалансированность даже улучшается.
- Критерий сбалансированности нарушается, и дерево надо перестраивать

#### включение в левое поддерево

эффективность временная - O(log n) емкостная O(n)

| Bal |         | Высота<br>после<br>включения | Действие     | Bal = hr - hl |
|-----|---------|------------------------------|--------------|---------------|
| 0   | hl = hr | hl > hr                      | нет          | -1            |
| 1   | hl < hr | $h\mathbf{l} = h\mathbf{r}$  | нет          | 0             |
| -1  | hl > hr | h <b>l</b> >> h <b>r</b>     | балансировка | -2 (!)        |

- Рассмотрим эти случаи.
- Допустим, есть дерево:



 Не нарушая сбалансированности этого дерева, в него можно включить 9 и 11 вершины. Если же мы включим вершины 1, 3, 5, 7, то тем самым мы нарушим баланс дерева.

#### Рассмотрим схематично эти случаи.

- (Допускается перемещение только по вертикали, а относительно горизонтали расположение показанных вершин и поддеревьев должно оставаться без изменения.)
- Имеются лишь две существенно различные возможности. Остальные могут быть получены симметричным преобразованием этих двух возможностей. Вариант 1 определяется включением узла 1 или ключа 3, вариант 2 включение узла 5 или 7.



$$(1+2)+3$$





 Алгоритм включения и балансировки существенно зависит от способа хранения информации о сбалансированности дерева. Можно хранить в каждой вершине показатель ее сбалансированности:

```
Type
   P_Tr = ^Node;
   Node = Record
            Key: Integer;
           Count
                    : Integer; {количество вершин с
                                  одинаковым значением}
          Left, Right : P_Tr;
                    : -1..1; {показатель сбалансированности}
             Bal
          End;
struct node {
       int key;
       int count;
     node* left;
     node* right;
       int bal; // -1..1
```

- В дальнейшем сбалансированность будет у нас определяться как разность между высотой правого и высотой левого поддеревьев. Процесс включения вершины практически состоит из трех последовательно выполняемых частей:
- 1. Проход по пути поиска (пока не убедимся, что элемента с таким ключом в дереве нет);
- 2. Включение новой вершины и определение показателя сбалансированности;
- 3. «Отступление» по пути поиска, проверка показателей сбалансированности каждой вершины, и если необходимо, балансировка.

- На каждом шаге необходима информация о высоте дерева Н. Возьмем Н типа Boolean, причем Н для процедуры параметр-переменная, указывающий, что высота дерева увеличилась (H = True).
- Допустим, процесс возвращается из левой ветви к вершине
   P^ и ее высота увеличилась.

#### Тогда возможны следующие ситуации:

- 1. hl < hr, P^.bal = 1. В этом случае предыдущая несбалансированность уравновешивается;
- 2. hI = hr,  $P^{*}.baI = 0$  т.е.левое дерево стало перевешивать.
- 3. hl > hr, P^.bal = -1 т.е. необходима балансировка.
- Операция по балансировке состоит только из последовательных переприсваиваний ссылок. Фактически ссылки циклически меняются, что приводит к одно- или двукратному повороту двух или трех участвующих в процессе балансировки вершин. Кроме вращения, необходимо должным образом изменять и показатели сбалансированности этих вершин (баланс-фактор).

#### Типы поворотов:

- Одиночный правый поворот (**RR**-rotation, single right rotation)
- Одиночный левый поворот
  - (**LL**-rotation, single left rotation)
- Двойной лево-правый поворот (большой)
  - (**LR**-rotation, double left-right rotation)
- Двойной право-левый поворот (большой) (**RL**-rotation, double right

```
struct node // структура для представления узлов дерева
   int key;
   unsigned char height;
   node* left;
   node* right;
  node(int k) { key = k; left = right = 0; height = 1; }
```

#### три вспомогательные функции, связанные с высотой

1-я является оберткой для поля height, она может работать и с нулевыми указателями (с пустыми деревьями):

```
unsigned char height(node* p)
    return p?p->height:0; }
2-я вычисляет balance factor заданного узла (работает только с ненулевыми
  указателями):
int bfactor(node* p)
    return height(p->right)-height(p->left); }
3-я восстанавливает корректное значение поля height заданного узла
   (при условии, что значения этого поля в правом и левом дочерних
   узлах являются корректными):
void fixheight(node* p)
   unsigned char hl = height(p->left);
   unsigned char hr = height(p->right);
  p->height = (hl>hr?hl:hr)+1;
```



```
node* rotateright(node* p) // правый поворот вокруг р
{ node* q = p->left;
 p->left = q->right;
 q->right = p;
 fixheight(p);
 fixheight(q);
 return q;
 \
```





Анализ возможных случаев в рамках данной ситуации показывает, что для исправления расбалансировки в узле р достаточно выполнить либо простой поворот влево вокруг р, либо так называемый большой поворот влево вокруг того же р. Простой поворот выполняется при условии, что высота левого поддерева узла q больше высоты его правого поддерева:  $h(s) \leq h(D)$ .

## Большой поворот

Большой поворот применяется при условии h(s)>h(D) и сводится в данном случае к двум простым — сначала правый поворот вокруг q и затем левый вокруг р.



### балансировка

```
node* balance(node* p) // балансировка узла р
    fixheight(p);
    if( bfactor(p)==2)
              if( bfactor(p->right) < 0 )
                  p->right = rotateright(p->right);
              return rotateleft(p);
    if( bfactor(p)==-2)
              if( bfactor(p->left) > 0 )
                  p->left = rotateleft(p->left);
              return rotateright(p);
    return p; // балансировка не нужна
```

- Описанные функции поворотов и балансировки не содержат ни циклов, ни рекурсии, а значит выполняются за постоянное время, не зависящее от размера АВЛ-дерева.
- Из-за условия балансированности высота дерева O(log(N)),
- где N- количество вершин, поэтому добавление элемента требует O(log(N)) операций.

### Вставка ключа

Вставка нового ключа в АВЛ-дерево выполняется, так же, как это делается в простых деревьях поиска: спускаемся вниз по дереву, выбирая правое или левое направление движения в зависимости от результата сравнения ключа в текущем узле и вставляемого ключа. Единственное отличие заключается в том, что при возвращении из рекурсии (т.е. после того, как ключ вставлен либо в правое, либо в левое поддерево, и это дерево сбалансировано) выполняется балансировка текущего узла. Строго доказывается, что возникающий при такой вставке дисбаланс в любом узле по пути движения не превышает двух, а значит применение вышеописанной функции балансировки является корректным.

# балансировка



## Удаление ключей

основана на алгоритме удаления из дерева, т.е., замене удаляемой вершины на самого левого потомка из правого поддерева или на самого правого потомка из левого поддерева, с учетом операции балансировки (тех же поворотов узлов).

При выходе из рекурсии не забываем выполнить балансировку узлов.

• Г. М. Адельсон-Вельский и Е. М. Ландис доказали теорему, согласно которой высота АВЛ-дерева с N внутренними вершинами заключена между log<sub>2</sub>(N+1) и 1.4404\*log<sub>2</sub>(N+2)-0.328, то есть высота АВЛ-дерева никогда не превысит высоту идеально сбалансированного дерева более, чем на 45 %. Для больших N имеет место оценка  $1.04*log_2(N)$ . Таким образом, выполнение основных операций 1-3 (слайд 71) требует порядка **log<sub>2</sub>(N)** сравнений. Экспериментально выяснено, что балансировка приходится на каждые два включения и на каждые пять исключений.

### Деревья оптимального поиска

- Построены по вероятности появления ключей или обращения к ключам.
- n количество вершин
- Рі –вероятность обращения для Кі-й вершины
- Сумма всех вероятностей =1, т.е.

$$\sum_{1}^{n} P i = 1$$

### Например:

Ключи: 1, 2, 3 с вероятностью соотв. 1/7, 2/7, 4/7.

Для построенных деревьев, считая, что корень дерева имеет высоту =1, то:

Взвешенная длина пути = Pi\*Hi (1<=I<=n)

- P(a) = 1\*4/7 + 2\*2/7 + 3\*1/7 = 11/7
- P(b) = 1\*4/7 + 2\*1/7 + 3\*2/7 = 12/7
- P(c) = 1\*2/7 + 2\*1/7 + 2\*4/7 = 12/7
- P(d) = 1\*1/7 + 2\*4/7 + 3\*2/7 = 15/7
- P(e) = 1\*4/7 + 2\*2/7 + 3\*4/7 = 17/7

Дерево с минимальной взвешенной длиной пути – а)

#### Деревья оптимального поиска



• На практике приходится решать несколько более общую задачу, а именно, при построении дерева учитывать вероятности неудачного поиска, т.е. поиска ключа, не включенного в дерево. В частности, при реализации сканера желательно уметь эффективно распознавать идентификаторы, которые не являются ключевыми словами. Можно считать, что поиск по ключу, отсутствующему в дереве, приводит к обращению к "специальной" вершине, включенной между реальными вершинами с меньшим и большим значениями ключа соответственно. Если известна вероятность qj обращения к специальной j-той вершине, то к общей средней взвешенной длине пути дерева необходимо добавить сумму qj\*ej для специальных вершин, где еј - высота специальной вершины.

- При построении дерева оптимального поиска вместо значений **pi** и **qj** обычно используют полученные статистически значения числа обращений к соответствующим вершинам.
- Т.О.избегается вычисление вероятностей по измеренным частотам, а еще имеется выигрыш от использования целых чисел для построения оптимального дерева.
- Процедура построения дерева оптимального поиска достаточно сложна и опирается на тот факт, что любое поддерево дерева оптимального поиска также обладает свойством оптимальности. Поэтому известный алгоритм строит дерево "снизу-вверх", т.е. от листьев к корню.
- Сложность этого алгоритма и расходы по памяти составляют O(n²). Имеется эвристический алгоритм, дающий дерево, близкое к оптимальному, со сложностью O(n\*log n) и расходами памяти O(n).