Day 2 Notes

Mann, J

September 15, 2015

Introduction 1

Tensor analysis is designed to make it so that you don't have to worry about the coordinate system until you actually do a calculation.

Example:

$$\vec{F} = m\vec{a}$$

which is independent of coordinates.

A moment to explain Covariant/contravariant tensors in practice:

Example: Let us define a function $f(\vec{x})$:

$$f(\vec{x}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
$$f(\vec{x}) = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Where a_i is a constant, and x_i is a variable representing position. \vec{a} is covariant, while \vec{x} is contravariant.

Another notation is:

$$a[\vec{x}] = f(\vec{x})$$

 $\mathbf{i}^{++}\dot{\underline{c}}$ and \vec{a} are vectors, which are Rank 1 contravariant tensors. In (Einstein) index notation,

$$F^i = ma^i$$

$$\mathrm{d}x^i = v^i \mathrm{d}t$$

$$\mathrm{d}v^i = a^i \mathrm{d}t$$

Note: Upper index is for contravariant tensors

Rank must be conserved, just like dimensional analysis units must be conserved.

Let $\phi(x)$ be a scalar function, which is a Rank 0 contravariant tensor. Then

$$-\frac{\partial \phi(\underline{x})}{\partial x^i} = F_i$$

is a covariant tensor of rank 1.

2 Covariant and Contravariant Tensors

Transformations:

Figure 1: Transformation T_3 is the composition of transformations T_1 and T_2

$$T_1 := \left\{ y^i = y^i(x^1, x^2, x^3) \right.$$
$$T_2 := \left\{ z^i = z^i(y^1, y^2, y^3) \right.$$

Now think of a composite function \circ , (like multiplication, addition, etc of \mathbb{R})

For example, if we were dealing with scalars, $A \circ B$ could be $A \times B$, A + B, or $A \div B$.

 \circ needs to be Associative $(T_4 \circ (T_2 \circ T_1) = (T_4 \circ T_2) \circ T_1$ The point you need to get to is that T_1, T_2 , etc. form a group

$$T_2 \circ T_1 := \left\{ z^i = z^i(y^i(x)) \right\}$$
$$T_2 \circ T_1 = T_3$$

$$T_4 \circ (T_2 \circ T_1) = (T_4 \circ T_2) \circ T_1$$

 $1 + (2+3) = (1+2) + 3$

There are coordinate systems so that I can

 $T_i \circ T_j = T_3$ for all well posed coordinate systems

Continuity condition $y^i = y^i(x) - C^1$ 1st derivatives also continuous

$$\mathrm{d}T = \begin{pmatrix} \frac{\partial y^1}{\partial x^1} & \frac{\partial y^1}{\partial x^2} & \frac{\partial y^1}{\partial x^3} \\ \frac{\partial y^2}{\partial x^1} & \frac{\partial y^2}{\partial x^2} & \frac{\partial y^2}{\partial x^3} \\ \frac{\partial y^3}{\partial y^3} & \frac{\partial y^3}{\partial x^2} & \frac{\partial y^3}{\partial x^3} \end{pmatrix}$$

The determinant of dT is called the jacobian $J(T) \neq 0$, this also implies that the inverso of T, T^{-1} also exists.

$$T \circ T^{-1} = T^{-1} \circ T = I$$

$$I:=y^i=x^i$$

Exsitence of T, Definition of \circ , I have $J \neq 0$, identity, inverse - This system is a group GROUP.

2.1 Example of the Jacobian being 0

PICTURE Example: The convesion between cartesian and spherical coordinates. At a finite number of points, the Jacobian will be equal to zero. (R=0) The GROUP here includes the transformation between cartesian and spherical coordinates, as well as every other transformation you could make.

3 Consider

$$y^{i} = y^{i}(\underline{x})$$
$$dy^{i} = \frac{\partial Y^{i}}{\partial x^{j}} \partial x^{j}$$

Using the Einstein sum convention A^i_{kl} suppose $A^i_{il} \equiv \sum_{i=1}^3 A^i_{il}$

Note: dyⁱ is a contravariant Rank 1 tensor transformed from dx^j through the matrix $\frac{\partial y^i}{\partial x^j}$

The y^i coordinate system \leftarrow the x^i coordinate system

$$A^i \leftarrow \frac{\partial y^i}{\partial x^i} A^j$$

$$\frac{\partial \phi}{\partial x^i}\frac{\partial x^i}{\partial y^j}=\frac{\partial \phi}{\partial y^j}$$
a covariant vector

4 Matrices

Let us define variables

$$\vec{e}_1, \vec{e}_2, \vec{e}_3$$

 $\vec{e}_1 \rightarrow \frac{\partial y^i}{\partial x^1}, \text{etc.}$

and

$$g_{ij} = \vec{e}_i \cdot \vec{e}_j$$

Which is to say that g is a metric tensor.

Now, let us look at derivatives:

$$dS^{i} = \begin{pmatrix} dx^{1} & dx^{2} & dx^{3} \end{pmatrix} \begin{pmatrix} dx^{1} \\ dx^{2} \\ dx^{3} \end{pmatrix} = (dx)^{t} dx$$

in cartesian coordinates.

$$\mathrm{d}x^i = \frac{\partial x^i}{\partial y^j} \partial y^j$$

Gone from

$$dS^{2} = (dx^{1})^{2} + (dx^{2})^{2} + (dx^{3})^{2}$$

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

$$dS^{2} = \delta_{ij} dx^{i} dx^{j}$$

$$dS^{2} = g_{ij} dx^{i} dx^{j}$$

$$J = \sqrt{g}$$

$$g = \det(g)$$

Now that we have g_{ij} defined, does there exist g^{kl} such that

$$g_{ij}g^{jl} = \delta_i^l = \begin{cases} 1 \text{ if } i = l \\ 0 \text{ if } i \neq l \end{cases} ?$$

It turns out that g^{kl} is the matrix inverse of g_{ij}

$$A^{i} = \text{contravariant}$$

 $A^{i}g_{ij} = A_{j}$
 $A_{i}g^{ij} = A^{i}$

$$\frac{\partial \phi}{\partial x^i} g^{ij} = \left(\frac{\partial \phi}{\partial x^i}\right)_{\text{contravariant}}^j |B_i g^{ij}| = B^j$$

Note:

$$\vec{F} = m\vec{a} + -\nabla\phi$$

 \vec{a} is contravariant, $-\nabla \phi$ is covariant, so we need to rewrite this.

$$F^i = ma^i - \frac{\partial \phi}{\partial x^j} g^{ji}$$

Now this is tensor consistent, both sides of the "=" are contravariant.

Now, the sort of tensors we use in this course, we don't have to worry about the coordinate system that we're in. A place where you have to be very careful is when the surface is curved. For formulating mass/momentum transport to deal with interfaces, we can deal with just cartesian tensors.

5 Experimental Methods

Define surface tension as a function of T, P, c, etc.

- 1. Geometric Methods
 - Capillary Rise (since the 1700's!) Take a glass tube with a small inside diameter, put it into your solution, and you will get liquid that rises up to a head height. That is related to the surface tension.
- 2. Force Methods