National Institute of Technology, Warangal, Telangana state

KE ASSIGNMENT

Date: 7th March 2022

Topic: KE Lab Assignment

Submitted by:

Kundan Kumar

Roll No: 207929

MCA 2nd Year

Q1. a. Compute the sum of sales, grouping by City and Item name.

Query: select sum(f.units_sold) as UnitSold, t.city,i.item_name from sales_fact f, location_dimension t , item_dimension i where f.location_key = t.location_key group by cube(t.city,i.item_name);

Output:

Q1.b Compute the sum of sales, grouping by city.

Query: select sum(f.units_sold) as UnitSold, t.city
from sales_fact f, location_dimension t
where f.location_key = t.location_key
group by cube(t.city);

Output:

	MA SOL	All Pows Fe	tched: 3 in 0.002 seconds
	⊕ UNITSOLD		tarica. 3 il 1 0.002 secoria.
1	220	(null)	
2	170	Warangal	
3	50	Aurangabad	

Q1.c Compute the sum of sales, grouping by item.

Query: select sum(f.units_sold) as UnitSold, (i.item_name, t.city)

from sales_fact f, item_dimension i

where f.item_key = i.item_key

group by cube(i.item_name);

Output:

Q1.d What is the maximum number of cells in the base cuboid.

Sol'n: Formula for maximum number of cells in the base cuboid is:

$$(p+1)^n$$

Here p=4, n=4

So $(p+1)^n => (4+1)^4 => 625$ Ans.

Q1.e What is the maximum number of cells in the base cuboid.

Sol'n: Formula for minimum number of cells in the base cuboid is : p Here $p=4 \implies 4$ Ans.

Q2.a Implement that operation using OLAP query language.

Query:

```
select sum("A1".charge*"A2".count)
from "SYSTEM"."game_sales" "A1",
   "SYSTEM"."game_location" "A2",
   "SYSTEM"."game_spectators" "A3",
   "SYSTEM"."game_date" "A4",
   where
   (
    "A2".city = 'GM_PLACE' and
    "A4".year = '2013' and
    "A3".type = 'Adult'
)
   group by
   "A2".city;
   select * from game;
```

Output:

Q2.b: Perform roll up operation from date to year.

Query:

SELECT

```
"A1"."DAY" "DAY",

"A1"."MONTH" "MONTH",

"A1"."YEAR" "YEAR",

SUM("A2"."CHARGE" * "A2"."COUNT") "SUM( A2 .CHARGE* A2 .COUNT)" FROM

"SYSTEM"."game_sales " "A2",

"SYSTEM"."game_dates" "A1"
```

WHERE

ROLLUP("A1"."DAY","A1."MONTH","A1"."YEAR");

Output:

Q2.c: What is the average charge paid by students, adults and seniors for each category you need to compute average?

Query:

```
"A1"."TYPE",

AVG("A2"."CHARGE" *

"A2"."COUNT") FROM

"SYSTEM"."game_sales"

"A2", "SYSTEM"."spectators"

"A1"

WHERE

"A1".sped_id="A2".spec_i
d GROUP BY

"A1"."TYPE";
```

Output:

Q2.d: Snowflake diagram for the above data warehouse.

