# MFIE-Induced RCS Errors in CFIE Simulations of a Fan-Loaded Camera Box

Andrew Maicke, Jon T. Kelley, and Ali E. Yilmaz

The University of Texas at Austin, Austin, TX 78712



#### Outline

# **□** Background

- Integral equations
  - MFIE-induced errors
- CameraBox Problem Set from Austin RCS Benchmark Suite
- ☐ Problem-specific MFIE Induced Error
  - RCS pattern
  - Induced currents
- ☐ Rectification techniques
  - $\alpha$  parameter variation
  - Global mesh refinement
  - Local mesh refinement
- Conclusions



# Background

- ☐ Integral-equation formulation
- ☐ Geometry discretized into elements
  - Basis functions defined on elements, eg. RWG basis functions
  - Fill impedance matrix Z
    - EFIE is accurate, slow to converge
    - MFIE converges quickly, can be less accurate

$$\mathbf{Z}^{\text{EFIE}}[m,n] = \frac{j\omega\mu_{\text{o}} \iint_{S} \mathbf{f}_{m}(\mathbf{r}) \cdot \mathbf{f}_{n}(\mathbf{r}') \frac{e^{-jkR}}{4\pi R} dS' dS}{+\frac{1}{j\omega\epsilon_{\text{o}}} \iint_{S} \iint_{S'} \nabla \cdot \mathbf{f}_{m}(\mathbf{r}) \nabla' \cdot \mathbf{f}_{n}(\mathbf{r}') \frac{e^{-jkR}}{4\pi R} dS' dS}$$

$$\mathbf{Z}^{\text{MFIE}}[m, n] = \frac{1}{2} \iint_{S} \mathbf{f}_{m}(\mathbf{r}) \cdot \mathbf{f}_{n}(\mathbf{r}') dS + \iint_{S} (\mathbf{f}_{m}(\mathbf{r}) \cdot \hat{n}) dS \times \iint_{S'} \left(\mathbf{f}_{n}(\mathbf{r}') \times \nabla' \frac{e^{-jkR}}{4\pi R}\right) dS'$$





# Background

- ☐ Integral-equation formulation
- ☐ Geometry discretized into elements
  - Basis functions defined on elements, eg. RWG basis functions
  - Fill impedance matrix Z
    - EFIE is accurate, slow to converge
    - MFIE converges quickly, can be less accurate
    - CFIE combines relative strengths of the two methods
      - Uses combination parameter  $\alpha$ , often  $\alpha = 0.5$

$$\mathbf{Z}^{\text{CFIE}} = \alpha \mathbf{Z}^{\text{EFIE}} + (1 - \alpha) \mathbf{Z}^{\text{MFIE}}$$

- CFIE formulation can still lead to inaccuracy for certain types of geometries
  - Holes, thin surfaces, small gaps, etc.
- Has been demonstrated for pedagogical examples, but what about realistic geometries?



2.315 µm

0.06 in



### Fan Loaded Camera Box

- ☐ Austin RCS Benchmark Suite contains a number of complex geometries for Radar Cross-Section (RCS) analysis
- ☐ Problem Set IIISD describes a fan-loaded camera box
  - Small gap between back of fan-assembly and cavity wall
  - 40 cm size model



- [2] https://github.com/UTAustinCEMGroup/AustinCEMBenchmarks
- [3] J. T. Kelley, et al., "Reproducible measurements of 'fan blades in a pipe' CEM benchmark," 2023



### Fan Loaded Camera Box

- ☐ Austin RCS Benchmark Suite contains a number of complex geometries for Radar Cross-Section (RCS) analysis
- ☐ Problem Set IIISD describes a fan-loaded camera box
  - Small gap between back of fan-assembly and cavity wall
  - Suite provides meshes at many densities



| IIISD   |                         |             |  |
|---------|-------------------------|-------------|--|
|         | Average Edge Length (m) | Patch Count |  |
| Mesh YY | 2.50E-02                | 6 084       |  |
| Mesh YZ | 1.80E-02                | 12 304      |  |
| Mesh ZZ | 1.30E-02                | 24 602      |  |
| Mesh ZA | 9.00E-03                | 48 462      |  |
| Mesh AA | 6.30E-03                | 96 244      |  |
| Mesh AB | 4.40E-03                | 192 968     |  |
| Mesh BB | 3.10E-03                | 384 328     |  |
| Mesh BC | 2.30E-03                | 770 348     |  |
| Mesh CC | 1.60E-03                | 1 588 708   |  |
| Mesh CD | 1.10E-03                | 3 139 192   |  |
| Mesh DD | 8.10E-04                | 6 065 984   |  |
| Mesh DE | 5.60E-04                | 11 945 578  |  |
| Mesh EE | 4.10E-04                | 24 282 792  |  |

- [2] https://github.com/UTAustinCEMGroup/AustinCEMBenchmarks
- [3] J. T. Kelley, et al., "Reproducible measurements of 'fan blades in a pipe' CEM benchmark," 2023



#### Outline

### ■ Background

- Integral equations
  - MFIE-induced errors
- CameraBox Problem Set from Austin RCS Benchmark Suite

# ☐ Problem-specific MFIE Induced Error

- RCS pattern
- Induced currents

### ☐ Rectification techniques

- $\alpha$  parameter variation
- Global mesh refinement
- Local mesh refinement

#### Conclusions



- ☐ Compute VV- and HH-polarized RCS patterns
- $\Box$  CFIE,  $\alpha = 0.5$
- $\square$  Mesh ZA,  $\lambda_0/13.1$ , 72 693 RWGs
- $\square$  Most of look-angles agree with measurement; notable exception in  $\sigma_{\theta\theta}$







 $\phi$  (°) [3] J. T. Kelley, et al., "Reproducible measurements of 'fan blades in a pipe' CEM benchmark," 2023



#### ☐ Error in RCS simulation is due to MFIE error

- Use mesh ZA from Benchmark Suite
- 48 462 surface patches
- Average edge length of  $8.93 \times 10^{-3}$  m
  - Mesh density is  $\lambda_0/13.1$
- $\alpha = 0.5$







#### ☐ Error in RCS simulation is due to MFIE error

- Use mesh ZA from Benchmark Suite
- 48 462 surface patches
- Average edge length of  $8.93 \times 10^{-3}$  m
  - Mesh density is  $\lambda_0/13.1$
- $\alpha = 0.5$
- Increasing  $\alpha$  dramatically improves results







#### lacktriangle Visualize surface currents on back plate with change in $\alpha$











#### Outline

# ■ Background

- Integral equations
  - MFIE-induced errors
- CameraBox Problem Set from Austin RCS Benchmark Suite
- ☐ Problem-specific MFIE Induced Error
  - RCS pattern
  - Induced currents

### ☐ Rectification techniques

- $\alpha$  parameter variation
- Global mesh refinement
- Local mesh refinement
- Conclusions



#### $\alpha$ Parameter Variation

#### Error in RCS simulation is due to MFIE error

- Use mesh ZA from Benchmark Suite
- 48 462 surface patches
- Average edge length of  $9 \times 10^{-3}$  m
  - Mesh density is  $\lambda_0/13.1$
- $\alpha = 0.5$
- Need to push all the way to EFIE to see improvement







#### $\alpha$ Parameter Variation

- $\Box$  Increasing  $\alpha$  increases the number of iterations necessary to converge in solve stage
  - TFQMR convergence is at  $1 \times 10^{-4}$
  - Number of iterations increases by  $\sim \times 7$
  - Serialized run-time increases by  $\sim \times 6$

• Only are computing in narrow window; solve stage dominates full RCS sweep









### Global Mesh Refinement

#### $\Box$ Instead of increasing $\alpha$ , can refine the mesh

 Increased resolution will allow more accurate capture of currents in problem region



| IIISD   |                         |             |  |
|---------|-------------------------|-------------|--|
|         | Average Edge Length (m) | Patch Count |  |
| Mesh YY | 2.50E-02                | 6 084       |  |
| Mesh YZ | 1.80E-02                | 12 304      |  |
| Mesh ZZ | 1.30E-02                | 24 602      |  |
| Mesh ZA | 9.00E-03                | 48 462      |  |
| Mesh AA | 6.30E-03                | 96 244      |  |
| Mesh AB | 4.40E-03                | 192 968     |  |
| Mesh BB | 3.10E-03                | 384 328     |  |
| Mesh BC | 2.30E-03                | 770 348     |  |
| Mesh CC | 1.60E-03                | 1 588 708   |  |
| Mesh CD | 1.10E-03                | 3 139 192   |  |
| Mesh DD | 8.10E-04                | 6 065 984   |  |
| Mesh DE | 5.60E-04                | 11 945 578  |  |
| Mesh EE | 4.10E-04                | 24 282 792  |  |



### Global Mesh Refinement

- $\square$  Instead of increasing  $\alpha$ , can refine the mesh
  - Increased resolution allows more accurate capture of currents in problem region
  - Densest mesh is  $\lambda_0/52.4$
- $\square$  Accuracy improves more slowly than  $\alpha$  increase







### Global Mesh Refinement

- $lue{}$  Compared to lpha increase, global mesh refinement iterations grow much more slowly
- Increased memory costs in fill stage, increased time costs









# Local Mesh Refinement

#### ☐ No need to globally refine mesh

- Locally refining the mesh in the problem region can save on computational costs
- One level of refinement from 'base' mesh



| IIISD      |                         |             |  |
|------------|-------------------------|-------------|--|
|            | Average Edge Length (m) | Patch Count |  |
| Mesh YY    | 2.50E-02                | 6 084       |  |
| Mesh YZ    | 1.80E-02                | 12 304      |  |
| Mesh ZZ    | 1.30E-02                | 24 602      |  |
| Mesh ZA    | 9.00E-03                | 48 462      |  |
| Mesh ZA.R1 | 7.70 <b>E</b> -03       | 61 826      |  |
| Mesh AA    | 6.30E-03                | 96 244      |  |
| Mesh AA.R1 | 5.70 <b>E</b> -03       | 112 120     |  |
| Mesh AB    | 4.40E-03                | 192 968     |  |
| Mesh AB.R1 | 4.10E-03                | 223 394     |  |
| Mesh BB    | 3.10E-03                | 384 328     |  |
| Mesh BB.R1 | 2.90E-03                | 447 066     |  |
| Mesh BC    | 2.30E-03                | 770 348     |  |
| Mesh CC    | 1.60E-03                | 1 588 708   |  |
| Mesh CD    | 1.10E-03                | 3 139 192   |  |
| Mesh DD    | 8.10 <b>E</b> -04       | 6 065 984   |  |
| Mesh DE    | 5.60 <b>E</b> -04       | 11 945 578  |  |
| Mesh EE    | 4.10E-04                | 24 282 792  |  |



### Local Mesh Refinement

#### ☐ No need to globally refine mesh

• Locally refining the mesh in the problem region can save on computational costs





#### Local Mesh Refinement

- ☐ Compared to global refine, iterations grow more quickly due to uneven mesh
- Costs appear to grow at similar rate
  - How do we more accurately compare local vs. global refine strategies?









# Method Comparison

#### ☐ Reference is the data published on the Benchmark Suite







# Method Comparison

#### ☐ Reference is the data published on the Benchmark Suite







# Method Comparison

☐ Visualize surface currents on back plate for most accurate/expensive simulation from each method





#### Conclusions

- In a realistic, complex geometry, MFIE can on occasion induce large errors in RCS
- ☐ Investigated 3 ways to decrease errors
  - $\alpha$  control
    - No memory increase
    - Number of iterations grows quickly
    - Moderate increase in solve time
  - Global mesh refinement
    - Largest memory and cost increases
    - Slow iteration count growth
  - Local mesh refinement
    - Moderate-large cost increase
    - Moderate iteration count growth
- Best results from combination of strategies, or more targeted local mesh refinement

