$$f(x) x \in D \subset \mathbb{R}$$

 x^0 – предельная точка D

1 Определение по Коши

$$A = \lim_{x \to x^0} f(x) \leftrightarrow \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in D \cap \dot{U}_{\delta}(x^0) \to f(x) \in U_{\varepsilon}(A)$$

2 Определение по Гейне

 $x^{(k)}$ — последовательность

$$A = \lim_{x \to x^0} f(x) \leftrightarrow \forall x^{(k)} : (x^{(k)} \neq 0) \text{ и } x^{(k)} \to x^0, \ n \to \infty$$

3 Предел на множестве

$$A = \lim_{x \to x^0, x \in M} f(x) \leftrightarrow \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in D \cap \dot{U}_{\delta}(x^0) \cap M \to f(x) \in U_{\varepsilon}(A)$$

Если $\exists \lim_{x\to x^0}$, то $\forall M : \lim_{x\to x^0, x\in M} = \lim_{x\to x^0} f(x)$

4 Повторный предел

Определение 4.1 Пусть f(x,y) определена в $(x_0 - \delta, x_0 + \delta) \times (y_0 - \delta, y_0 + \delta)$ и $\forall x \in (x_0 - \delta, x_0 + \delta)$ $\exists \lim_{y \to y_0} f(x,y) = g(x)$, тогда $\exists \lim_{x \to x^0} g(x)$, называемый повторным пределом

5 Непрерывность

Определение 5.1 f(x) называется непрерывной в $x^0 \in \mathbb{R}^n$, если $\lim_{x \to x^0} f(x) = f(x^0)$

Определение 5.2 Функция называется непрерывной на множестве M в $x^0 \in M \subset \mathbb{R}^n$, если $\lim_{x\to x^0} f(x) f(x^0)$

Теорема 5.1 (о непрерывности сложной функции) Пусть $y_i = \varphi_i(x), i \in (1, ..., n)$ определены в $U(x^0)$ и непрерывны в $x^0 \in \mathbb{R}^m$. f(y) определена в $U(y^0), y^0 = \varphi(x^0)$, непрерывна в y^0 Тогда существует и непрерывна в $x^0, \phi(x^0) = f(\varphi(x))$

Доказательство 5.1
$$\forall \varepsilon > 0, \ \exists \sigma > 0, \ \forall y \in \dot{U}_{\sigma}(y^0) : |f(y) - f(y^0)| < \varepsilon \ //$$
т.к. f – непрерывна

т. к.
$$\forall \varphi_i$$
 – непрерына по σ , $\exists \delta_i \forall x \in \dot{U_{\delta_i}}(x^0) : (y_i(x) - y_i(x^0)) < \frac{\sigma}{\sqrt{n}}, i \in (1, \dots, n) \to \rho(y, y^0) < \sigma$

$$\delta = min(\delta_i), i \in (1, \dots, n)$$

$$\forall x \in \dots U_{\delta}(x^0) \to \rho(y, y^0) < \sigma \to |f(y) - f(y^0)| < \varepsilon$$