

PROCESS DYNAMICS - CPN321

Semester Test 2

Chemical Engineering Engineering and the Built Environment

Examiner: Carl Sandrock

Date: 2018-10-08

Duration: 90 minutes Total: 50 Total Pages: 6

Instructions - Read carefully

• Answer all the questions. • This is a closed book test. All the information you may use is contained in the paper. • You may use the computer. • Make sure that you motivate all your answers and write legibly.

xkcd.com

1 Comparing ramps

In this question we will consider the responses of two real systems described by the following transfer functions:

$$G_1 = \frac{y_1}{u} = \frac{2}{3s+4}$$
 and $G_2 = \frac{y_2}{u} = \frac{2}{2s^2 + 3s + 4}$

to the input shown below

You may assume u, y_1 and y_2 were all 1 for a long time before the experiment started.

- 1.1. Find the Laplace transform of u. $\boxed{5}$
- 1.2. Calculate the gain, time constant and damping coefficient of the second order system. 3
- 1.3. Sketch (do not calculate) the response of both systems on the paper provided. Indicate clearly which curve is which, as well as main features of the response. [7]

Total for question 1: (15)

2 Temperature response

Consider the following transfer function showing the response of a temperature measurement (T) on a plant to a steam flow rate (Q_s) .

$$G_3 = \frac{T}{Q_s} = \frac{5e^{-10s}}{(20s+1)(5s+1)^2}$$

- 2.1. Approximate G_3 by a first order plus dead time model using Skogestad's method. (10)
- 2.2. A colleague who is investigating this system converted the dead time to a rational function using a 1,1 Padé approximation, obtaining $G_4 \approx G_3$. They are puzzled because the step response of G_4 appears to show that the temperature will go down shortly after the steam flow rate is increased. Explain this observation by referring to the poles and zeros of G_4 . (10)
- 2.3. Explain the benefits and disadvantages of the above methods of approximation. $\boxed{5}$

Total for question 2: (25)

3 Electrically heated stirred tank system

Consider the following equations which represent an electrically heated stirred tank system, written in terms of deviation variables.

$$mC\frac{\mathrm{d}T}{\mathrm{d}t} = wC(T_i - T) + h_e A_e(T_e - T) \tag{1}$$

$$m_e C_e \frac{\mathrm{d}T_e}{\mathrm{d}t} = Q - h_e A_e (T_e - T) \tag{2}$$

It has been determined that $m_e C_e = wC = 20 \text{ kcal/°C}$, mC = 200 kcal/°C and $h_e A_e = 20 \text{ kcal/(°C} \cdot \text{min)}$.

Without using the Laplace domain, show that bounded changes in Q and T_i will result in bounded changes in T_e and T.

Total for question 3: (10)

Full Marks (50)

 This page is blank

DATASHEET: CPN321/CPB410

Compiled on May 5, 2018

General solution of 1st order DE:

$$\dot{x} + P(t)x = Q(t)$$
 \Rightarrow $x = \frac{1}{F_I} \int Q(t)F_I dt + c_1$ with $F_I = \exp\left(\int P(t)dt\right)$

Taylor Series expansion near point x = a:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

$$f(x_1, \dots, x_d) = \sum_{n_1=0}^{\infty} \dots \sum_{n_d=0}^{\infty} \frac{(x_1 - a_1)^{n_1} \dots (x_d - a_d)^{n_d}}{n_1! \dots n_d!} \left(\frac{\partial^{n_1 + \dots + n_d} f}{\partial x_1^{n_1} \dots \partial x_d^{n_d}} \right) (a_1, \dots, a_d)$$

Linear approximation around point $\mathbf{x} = \mathbf{0}$, where $f(\mathbf{x}) = \mathbf{0}$:

$$f(\mathbf{x}) \approx \nabla f(\mathbf{0}) \cdot \mathbf{x}$$
$$f(x_1, x_2, \dots, x_d) \approx \frac{\partial f}{\partial x_1}(0)x_1 + \frac{\partial f}{\partial x_2}(0)x_2 + \dots + \frac{\partial f}{\partial x_d}(0)x_d$$

Partial fraction expansion (for strictly proper rational functions of s)

$$F(s) = \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)^n(s-p_2)(s-p_3)\cdots} = \underbrace{\sum_{m=0}^{n-1} \frac{A_m}{(s-p_1)^{n-m}}}_{\text{repeated roots}} + \frac{B}{s-p_2} + \frac{C}{s-p_3}\cdots$$

$$A_m = \lim_{s \to p_1} \left\{ \frac{\mathrm{d}^m}{\mathrm{d}s^m} \left[(s - p_1)^n F(s) \right] \right\} \frac{1}{m!}$$
$$B = \lim_{s \to p_2} \left[(s - p_2) F(s) \right]$$

Euler identity:

$$e^{i\theta} = \cos\theta + i\sin\theta$$
 $\therefore e^{-i\theta} = \cos\theta - i\sin\theta$ and $e^{i\pi} - 1 = 0$

(1,1) Padé approximation of dead time:

$$e^{-Ds} \approx \frac{1 - \frac{D}{2}s}{1 + \frac{D}{2}s}$$

PID controller:

$$m = K_C \left(\varepsilon + \frac{1}{\tau_I} \int_0^t \varepsilon dt + \tau_D \frac{d\varepsilon}{dt} \right) \qquad \frac{m}{\varepsilon}(s) = K_C \left(1 + \frac{1}{\tau_I s} + \tau_D s \right)$$

Tuning rules:

	Ziegler-Nichols			Cohen-Coon (with $\phi = \frac{t_D}{\tau_P}$)		
	K_C	$ au_I$	$ au_D$	K_C	$ au_I$	$ au_D$
Р	$\frac{K_u}{2}$			$\frac{\phi+3}{3K_P\phi}$		
ΡΙ	$\frac{K_u}{2.2}$	$\frac{P_u}{1.2}$		$\frac{5\phi + 54}{60K_P\phi}$	$t_D \frac{30 + 3\phi}{9 + 20\phi}$	
PID	$\frac{K_u}{1.7}$	$\frac{P_u}{2}$	$\frac{P_u}{8}$	$\frac{3\phi + 16}{12K_P\phi}$	$t_D \frac{32 + 6\phi}{13 + 8\phi}$	$\frac{4t_D}{11 + 2\phi}$

Time domain	Laplace-transform	z-transform $(b = e^{-aT})$
Impulse: $\delta(t)$	1	1
Unit step: $u(t)$	$\frac{1}{s}$	$\frac{1}{1-z^{-1}}$
Ramp: t	$\frac{1}{s^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
t^n	$\frac{n!}{s^{n+1}}$	$\lim_{a \to 0} (-1)^n \frac{\partial^n}{\partial a^n} \frac{1}{1 - bz^{-1}}$
e^{-at}	$\frac{1}{s+a}$	$\frac{1}{1 - bz^{-1}}$
te^{-at}	$\frac{1}{(s+a)^2}$	$\frac{Tbz^{-1}}{(1 - bz^{-1})^2}$
t^2e^{-at}	$\frac{2}{(s+a)^3}$	$\frac{T^2bz^{-1}(1+bz^{-1})}{(1-bz^{-1})^3}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z^{-1}\sin(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$
$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$	$\frac{1 - z^{-1}\cos(\omega T)}{1 - 2z^{-1}\cos(\omega T) + z^{-2}}$
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{(1-b)z^{-1}}{(1-z^{-1})(1-bz^{-1})}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2 + \omega^2}$	$\frac{z^{-1}b\sin(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{1 - z^{-1}b\cos(\omega T)}{1 - 2z^{-1}b\cos(\omega T) + b^2z^{-2}}$
Initial value theorem: $\lim_{t\to 0} f(t)$	$\lim_{s \to \infty} sF(s)$	$\lim_{z \to \infty} F(z)$
Final value theorem: $\lim_{s\to\infty} f(t)$	$\lim_{s \to 0} sF(s)$	$\lim_{z \to 1} \left[\left(1 - z^{-1} \right) F(z) \right]$
Translation: $f(t-D)u(t-D)$	$e^{-Ds}F(s)$	$F(z)z^{-n}$ where $D=nT$
Derivative: $\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n} = f^n(t)$	$s^{n}F(s) - \sum_{k=1}^{n} s^{k-1}f^{n-k}(0)$	
Integral: $\int_0^t f(t)dt$	$\frac{1}{s}F(s)$	
Zero th order hold	$H(s) = \frac{1 - e^{-Ts}}{s}$	