高级算法 Advanced Topics in Algorithms

陈旭

计算机学院

Intelligence

Individual Intelligence

Reinforcement Learning

Collective Intelligence Game Theory

AlphaGo

Pluribus

Intelligence Optimization Theory Basis

Individual Intelligence Reinforcement Learning

- Decision Model and Process
- Markov Decision Process
- Policy and Value iterations
- Reinforcement Learning
- Monto-Carlo, TD-learning
- Deep Reinforcement Learning

Collective Intelligence Game Theory

- Nash Equilibrium
- Static Game
- Dynamic Game
- Subgame-Perfect NE
- Repeated Game
- Population Game

Multiagent Reinforcement Learning

Exploit Social Trust For Cooperation: A Social Group Utility Maximization Framework

Packet Forwarder's Dilemma

Forwarding has an energy cost of c (c << 1) Successfully delivered packet: benefit of 1 for packet owner

```
If Green <u>drops</u> and Blue <u>forwards</u>: (1,-c) If Green forwards and Blue drops: (-c,1) If both forward: (1-c,1-c) If both drop: (0,0)
```

Each user is trying to selfishly maximize it's individual net gain

What can we predict?

Packet Forwarder's Dilemma

Non-Cooperative Game:

Players: Green, Blue

Actions: Forward (F), Drop (D)

Payoffs: (1-c,1-c), (0,0), (-c,1), (1,-c)

Green		
Blue	Forward	Drop
Forward	(1-c, 1-c)	(-c, 1)
Drop	(1, -c)	(0, 0)

Packet Forwarder's Dilemma

Sometimes being fully rational/selfish may lead to tragedy of commons!

From Non-cooperative Game to Network Utility Maximization

- Non-cooperative game (NCG)
 - o Each user is selfish, aiming to maximize its individual utility
 - Widely applied to model strategic interaction among network entities
- Network utility maximization (NUM)
 - Users are altruistic, aiming at social welfare maximization
 - Extensively studied for network resource allocation
- NCG and NUM are two extreme cases: socially oblivious or fully social-ware

Question: What is between these two extremes?

Mobile Social Networking

- A new paradigm for mobile social networking; offer rich flexibility in modeling the continuum between NCG and NUM
 - Hand-held mobile devices are operated by human beings
 - People have diverse social relationships and care about their social neighbors at different levels (e.g., family, friends, acquaintances)
 - Explosive growth of online social networks opens up a new avenue to integrate social interactions for cooperative network design

Social Network Overlays Mobile Network

- Physical-social coupling among mobile devices
 - Physical domain: physical coupling subject to physical relationship
 - Social domain: social coupling due to social ties among users

Physical Graph Model

- A set of wireless users N={1,2,...,n}
- Feasible strategy set X_i : User-specific, due to heterogeneous physical constraints, e.g., channel selection, power level selection
- Physical graph G^p={N,E^p}
 - Two users are connected by a physical edge if they have physical coupling
 - Capture the physical relationships among the users, e.g., interference
 - \circ N_i^p : the set of users having physical coupling with user i
- Individual user utility $U_i(x)$
 - \circ User's payoff under strategy profile x, e.g., achieved data rate or QoS requirement satisfaction
 - Depend on the underlying physical graph, e.g., interference graph

Social Graph Model

- Exploit social tie for enhancing mobile networking
 - Knowledge of human social ties can be leveraged, e.g., kinship, friendship, or colleague relationship
- Social graph G^s={N,E^s}
 - Two users are connected by a social edge if they have social tie
 - Capture the social coupling among the users
 - \circ N_i^s : user i's social group, i.e., the set of users having social ties with it
 - o a_{ij} : strength of the social tie from user i to user j with $0 \le a_{ij} \le 1$
- Social group utility

Each user is social aware and cares about users having social tie with it

Social Group Utility Maximization Game

- Distributed decision making among users
 - Each user aims to maximize its own social group utility
- Social group utility maximization (SGUM) game
 - N → player set
 - \circ $X_i \rightarrow$ strategy space of player i
 - $\circ S_i(x) \rightarrow$ payoff function of player i
- Social-aware Nash equilibrium (SNE)

$$x_i^{SNE} = \underset{x_i \in X_i}{\operatorname{argmax}} S_i(x_i, x_{-i}^{SNE}), \forall i \in N$$

o $(x_1^{SNE}, ..., x_n^{SNE})$ is a SNE if no user can improve its social group utility by unilaterally changing its strategy

Social Group Utility Maximization Game

- SGUM provides rich modeling flexibility
 - o If no social tie exists (i.e., $a_{ij}=0, \forall i,j$), SGUM degenerates to NCG as $S_i(x_i, \mathbf{x}_{-i}) = u_i(x_i, \mathbf{x}_{-i})$
 - o If all social ties have the maximum strength (i.e., $a_{ij}=1, \forall i, j$), SGUM becomes NUM as $S_i(x_i, \mathbf{x}_{-i}) = \sum_{j=1}^n u_j(x_j, \mathbf{x}_{-j})$
 - Span the continuum space between NCG and NUM

Packet Forwarder's Dilemma: Revisited

Forwarding has an energy cost of c (c << 1) Successfully delivered packet: benfit of 1 for packet owner

```
If Green <u>drops</u> and Blue <u>forwards</u>: (1,-c) If Green forwards and Blue drops: (-c,1) If both forward: (1-c,1-c) If both drop: (0,0)
```

Suppose Blue and Green have a social tie of w

Packet Forwarder's Dilemma: Revisited

If w>c, then (Forward, Forward) is social-aware NE!

A little social trust leads to efficient outcome!

Extensions

 Study SGUM for more applications and investigate the impact of negative social ties (e.g., malicious user)

