The Stata Journal (yyyy)

vv, Number ii, pp. 1–5

Importing Financial Data

Mehmet F. Dicle Loyola University New Orleans New Orleans, LA / USA mfdicle@loyno.edu

John Levendis Loyola University New Orleans New Orleans, LA / USA jlevendi@loyno.edu

Abstract. This note describes two programs – *fetchyahooquotes* and *fetchyahookeystats* – which import historical financial data and key current financial statistics from Yahoo! Finance.

Keywords: st0001, finance, financial data, stocks, ETF, historical data

1 Introduction

Yahoo! Finance offers the public large amounts of financial and economic data. Often, small amounts of this data can be imported into Stata without much difficulty. However, to be able to use this data in econometric analysis, some automated download procedure may prove useful. Below, we describe two programs¹, fetchyahooquotes and fetchyahookeystats, that automate the process of importing financial data from Yahoo! Finance.

These two programs are useful for instructors who work with financial data during their lectures and need quick access to current data. They are especially useful for finance project assignments. Students do not have to spend long hours to download data into Excel spreadsheets and to merge them into portfolios. These programs are also important for researchers. Many teaching universities do not have subscriptions to costly finance databases. While Yahoo! Finance is not a substitute, it is a useful alternative. Finally, they are important for investors. fetchyahooquotes and fetchyahookeystats make financial data access fast and easy.

The fetchyahooquotes command is used to download time series of the more common financial statistics of multiple financial instruments. Thus, one could download the daily opening and closing prices over the past ten years of IBM and Microsoft stocks, for example. Fetchyahookeystats is similar to fetchyhooquotes, but downloads only the current day's key financial statistics for multiple financial instruments (for example, today's opening and closing prices for IBM and Microsoft).

© yyyy StataCorp LP

st0001

^{1.} fetchyahooquotes and fetchyahookeystats commands can be installed from http://www.loyno.edu/~mfdicle/stata

2 The fetchyahooquotes and fetchyahookeystats commands

2.1 Syntax

fetchyahooquotes namelist, freq(d/w/m/v) [field(string) chg(ln/per/sper)
 save(filename) start(string) end(string) ff3]

fetchyahookeystats namelist, field(string) [save(filename)]

2.2 Options

namelist is a list of ticker symbols to be downloaded from Yahoo! Finance's API. Ticker symbols are separated by spaces. The ticker symbol will become part of the variable name. Regardless of whether the symbol includes special characters, ticker is typed (including the special character) exactly as it is used by Yahoo! Finance's API. Any special characters will be replaced for the variable name with underscores "_" since they are not allowed as Stata variable names.

freq(d/w/m/v) specifies the frequency of the historic price including (d)daily, (w)weekly, (m)monthly or (v)dividends only. Note: If the frequency is either daily, weekly or monthly then the variable with the symbol name is the adjusted closing price. If the frequency is to include only the dividends then the symbol name is the dividend payment.

chg(ln/per/sper) is the periodic return. Three different periodic changes can be calculated for the adjusted closing price; natural log difference, percentage change and symmetrical percentage change. The change is based on the continuous trading assumption. Thus, even though the tsset is the date (which may contain gaps), returns are calculated assuming there are no gaps in the data.

save(filename) is the output file name. Stata data file is created under the current working directory.

start(string) is the starting date for the prices (i.e. 1mar2010) in DMY format.

end(string) is the ending date for the prices (i.e. 23feb2011) in DMY format.

ff3 Fama/French daily factors are downloaded from "Kenneth R. French - Data Library 2 ".

field(string), for fetchyahooquotes, is the variables to download in addition to the adjusted close and the date: These include: (o) open, (h) high, (l) low, (c) close, (v) volume.

field(string), for fetchyahookeystats, is the Yahoo! Finance's specific field code corre-

 $^{2.\} Available\ through\ http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html$

Dicle and Levendis 3

sponding to a key statistic. These include (but are not limited to):

a	Ask
b	Bid
b4	Book Value
c	Percent Change
c1	Change
d	Dividend per Share
d1	Last Trade Date
e	Earning per Share
f6	Float Shares
g	Day's Low
h	Day's High
j	52-Week Low
j1	Market Capitalization
j4	EBITDA
k	52-Week High

11	Last Trade Price
m3	50-Day Moving Average
m4	200-Day Moving Average
\mathbf{n}	Name
O	Open
p	Previous Close
p5	Price/Sales
p6	Price/Book
q	Ex-Dividend Date
\mathbf{r}	Price/Earnings
\mathbf{S}	Symbol
s7	Short Ratio
\mathbf{v}	Volume
X	Exchange
v	Dividend Yield

3 Using fetchyahooquotes to import historical prices

▶ Example

Single company historic share prices: This example uses fetchyahooquotes to import the adjusted daily closing price of Microsoft shares from the beginning of 2010 to the end of 2010. Fama/French daily factors are downloaded as well as the Microsoft share prices. The program also calculates the log difference change of the daily closing share prices.

. fetchyahooquotes MSFT, freq(d) chg(ln) start("01jan2010") end("31dec2010") ff3 Fama/French daily factors are downloaded from `Kenneth R. French - Data Library´. MSFT is downloaded.

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
date	252	18446.69	104.8328	18266	18627
adjclose_M \sim T	252	26.26262	2.06914	22.33	30.32
ln_MSFT	251	0003306	.013845	0419884	.0515297
ff3_Mkt_RF	252	.0007242	.0117564	0408	.0453
ff3_SMB	252	.000479	.00558	0202	.0165
ff3_HML	252	0000512	.0051936	0162	.0154
ff3_RF	252	7.94e-07	2.71e-06	0	.00001

By specifying the chg(ln) option, we requested to calculate the log difference changes in these prices. With the fl3 option, Fama/French factors are also downloaded. Fama/French original variable names are used with prefix of "fl3".

⊳ Example

^{3.} Explanations of these variables are available through http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html

Multiple companies' historic share prices: This example downloads monthly historical data on the closing share prices of Microsoft and IBM, and computes the log difference changes. The monthly data is actually the data for the first day of trading in the month.

. fetchyahooquotes MSFT IBM XYZ, freq(m) chg(ln) MSFT is downloaded.
IBM is downloaded.

XYZ does not have sufficient number of observations.

. sum

Variable	0bs	Mean	Std. Dev.	Min	Max
date	590	9679.19	5175.287	732	18630
adjclose_M \sim T	299	14.43371	12.00902	.08	46.74
ln_MSFT	298	.0196599	.1049801	4211015	.430783
$adjclose_IBM$	589	32.60188	37.39051	1.55	155.5
ln_IBM	588	.0070381	.0708084	303776	.3030213

. list in 1/3

	date	adjclo \sim T	ln_MSFT	adjclo \sim M	$ln_{-}IBM$
1	02jan1962			2.48	
2	01feb1962			2.46	0080972
3	01mar1962			2.44	0081633

Since Microsoft did not exist in 1962, missing values are reported. Since symbol XYZ does not exist, no data could be downloaded for XYZ.

▷ Example

Multiple companies' indices and a foreign symbol's historic values: This example downloads the adjusted closing prices of IBM and Google, as well as the S&P-500 (denoted as ^GSPC) and shares of BMW.DE (BMW shares that are listed on the XETRA in Germany). We requested to download, not just the closing prices of these, but also the daily high, low, and opening prices.

```
. fetchyahooquotes IBM GOOG ^GSPC BMW.DE, freq(d) field(h l o) IBM is downloaded.
GOOG is downloaded.
^GSPC is downloaded.
BMW.DE is downloaded.
```

. sum

Dicle and Levendis 5

Variable	Obs	Mean	Std. Dev.	Min	Max
date	15430	7554.218	6451.202	-3650	18648
open_IBM	12350	191.5857	139.1102	41	649
$high_IBM$	12350	193.2161	139.9349	41.75	649.88
low_IBM	12350	190.052	138.4056	40.63	645.5
$adjclose_IBM$	12350	32.50723	37.26821	1.4	155.8
open_G00G	1619	429.4347	133.5289	99.19	741.13
$high_GOOG$	1619	434.461	134.1036	101.74	747.24
low_GOOG	1619	423.8753	132.3732	95.96	725
adjclose_G~G	1619	429.1093	133.2038	100.01	741.79
$open__GSPC$	15363	388.8959	453.9477	16.66	1564.98
highGSPC	15363	391.5098	457.0745	16.66	1576.09
lowGSPC	15363	386.15	450.5819	16.66	1555.46
adjclose~C	15363	388.9835	454.0107	16.66	1565.15
$open_BMW_DE$	2085	36.26493	7.734583	17.28	64.98
$high_BMW_DE$	2085	36.72145	7.740518	17.82	65.49
low_BMW_DE	2085	35.7866	7.736921	16	64.3
adjclose_B~E	2085	34.90521	7.879823	16.71	64.8

Since variable names in Stata cannot have special characters such as ".", and since our convention is to include the ticker name in the variable names, this presents a problem. That is, we would like to report the daily open price of BMW.DE as a variable entitled "open_BMW.DE", however Stata does not allow periods in variable names. Thus, fetchyahooquotes replaces special characters with an underscore: open_BMW.DE becomes open_BMW_DE. Likewise, open_^GSPC becomes open_GSPC.

▶ Example

Multiple companies' historic dividends: This example downloads the dividend payments of IBM, BMW and Ford.

```
. fetchyahooquotes IBM VWS.CO BMW.DE F, freq(v) IBM is downloaded.  
VWS.CO does not have sufficient number of observations.  
BMW.DE does not have sufficient number of observations.  
F is downloaded.
```

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
date	312	10583.16	4671.158	767	18847
$dividends_{-}IBM$	196	.1837389	.1535859	.001	.75
$dividends_F$	116	.2428889	1.113203	.01907	12.06693

4 Using fetchyahookeystats to import historical prices

▶ Example

Using fetchyahookeystats to import key statistics for multiple companies: This example uses fetchyahookeystats to download today's (Jan. 24^{th} , 2011) key statistics for IBM, Google, BMW and the S&P-500.

. fetchyahookeystats IBM GOOG ^GSPC BMW.DE, field(n s 11 a b d1 g h k e n s k e L) save(my_portfolio)

(17 vars, 4 obs)

Under the field option, we specified that we wanted the full name of the item (n), the ticker symbol (s), the last traded price (11), the day's low (g), the day's high (h), the 52-week high (k), and the earnings per share (e). Note that, n, s, k and e are included twice into the field option. Also, L is included into the field option which is not listed as a known Yahoo! Finance key statistics field.

. describe

	storage	display	value	
variable name	type	format	label	variable label
Symbol	str6	%9s		
Name	str17	%17s		
Last_Trade_Pr~e	float	%9.0g		
Ask	double	%10.0g		
Bid	double	%10.0g		
Days_Low	float	%9.0g		
$\mathtt{Days_High}$	float	%9.0g		
_52_Week_High	float	%9.0g		
Earnings_per_~e	double	%10.0g		
Unknown_Field_1	str6	%9s		
$Last_Trade_Date$	double	%td		
G t . 1 1				

Sorted by:

Notice that the fields options that are included twice (n, s, k and e) are ignored for their second time. The option L is downloaded and named Unknown_Field_1.

. sum

Variable	Obs	Mean	Std. Dev.	Min	Max
Symbol	0				
Name	0				
Last_Trad~ce	4	528.4316	561.952	55.23	1290.27
Ask	2	332.285	391.7301	55.29	609.28
Bid	2	332.205	391.6735	55.25	609.16
Days_Low	4	523.3575	559.071	54.4	1282.47
Days_High	4	529.6325	562.3061	55.83	1291.14
_52_Week_H~h	4	540.3225	563.9871	65.49	1296.06
Earnings_p~e	3	12.61	13.18882	0	26.31
Unknown_Fi~1	0				
$Last_Trad^te$	4	18651	0	18651	18651

About the authors

Mehmet F. Dicle is an assistant professor of finance at Loyola University New Orleans. John Levendis is an assistant professor of economics at Loyola University New Orleans.