Data Smoothing

Exercise 3

Data Smoothing Report

Author Cesare De Cal Professor
ANNIE CUYT
Assistant Professor
FERRE KNAEPKENS

1 Introduction

This exercise asks to use the linearly independent basis functions:

$$\Phi_{3,i}(x) =$$

to find the optimal combination

$$\Phi(x) = \lambda_0(x)$$

that minimizes for the 20 data points (x_j,y_j) given in

j	x_j	y_j		
0	0.0	-0.80		
1	0.6	-0.34		
2	1.5	0.59		
3	1.7	0.59		
4	1.9	0.23		
5	2.1	0.10		
6	2.3	0.28		
7	2.6	1.03		
8	2.8	1.50		
9	3.0	1.44		
10	3.6	0.74		
11	4.7	-0.82		
12	5.2	-1.27		
13	5.7	-0.92		
14	5.8	-0.92		
15	6.0	-1.04		
16	6.4	-0.79		
17	6.9	-0.06		
18	7.6	1.00		
19	8.0	0.00		

2 Tools

The following programming language and libraries have been used in this exercise:

- Item 1
- C Math Library
- GSL (GNU Scientific Library)

The following double-precision GSL data types have been used in the exercise:

• gsl_vector ?

The following GSL methods have been used in the exercise:

- gsl_matrix_alloc(size1, size2)
- gsl_matrix_set_zero(matrix)
- gsl_matrix_set(matrix, row, column, value)
- gsl_matrix_get(matrix, row, column)
- gsl_vector_alloc(size)
- gsl_vector_set_zero(vector)
- gsl_vector_set(vector, index, value)
- gsl_vector_get(vector, index)
- gsl_matrix_memcpy(matrixToCopyFrom, matrix)
- gsl_linalg_SV_decomp(A, V, S, workspaceVector)
- gsl_vector_minmax(vector, minInVector, maxInVector)

In order to factorize a matrix into the LU decomposition, and then solve the square system Ax = y using the decomposition of A, I've used the following methods:

- gsl_linalg_LU_decomp(A, permutation, signum)
- gsl_linalg_LU_solve(LU, permutation, b, x)
- gsl_permutation_alloc(size)

The following method from the C Math library was used in this exercise to calculate the absolute value of a number:

• fabs(x)

3 Computation

First off, I compute the coefficients A of the linear system by using the linearly independent basis function. This is what A looks like:

[1.000000000000000000000000000000000000	0.000000000000000000000e + 00	0.00000000000000000e + 00	0.00000000000000000000000000000000000
6.4000000000000002e - 02	2.8800000000000000e - 01	4.320000000000001e - 01	2.16000000000000000e - 01
-1.250000000000000000000e - 01	1.12500000000000000e + 00	-3.37500000000000000e + 00	3.37500000000000000e + 00
-3.429999999999999e - 01	2.4990000000000000e + 00	-6.06899999999998e + 00	4.91299999999999999999999999999999999999
-7.28999999999998e - 01	4.61699999999998e + 00	-9.7470000000000000e + 00	6.85899999999999999999999999999999999999
-1.3310000000000000e + 00	7.623000000000002e + 00	-1.4553000000000000e + 01	9.261000000000001e + 00
-2.196999999999999e + 00	1.1661000000000000e + 01	-2.063099999999999e + 01	1.2167000000000000e + 01
-4.09600000000001e + 00	1.99680000000001e + 01	-3.2448000000000000e + 01	1.7576000000000000e + 01
-5.83199999999998e + 00	2.721599999999999e + 01	-4.233599999999999e + 01	2.195199999999999e + 01
-8.000000000000000000000000000000000000	3.6000000000000000e + 01	-5.4000000000000000e + 01	2.70000000000000000e + 01
-1.7576000000000000e + 01	7.300800000000001e + 01	-1.010880000000000e + 02	4.665600000000001e + 01
-5.06530000000001e + 01	1.9302900000000000e + 02	-2.4519900000000000e + 02	1.0382300000000000e + 02
-7.40880000000001e + 01	2.7518400000000000e + 02	-3.4070400000000000e + 02	1.4060800000000000e + 02
-1.0382300000000000e + 02	3.77739000000001e + 02	-4.5810900000000000e + 02	1.851930000000000e + 02
-1.1059200000000000e + 02	4.0089600000000000e + 02	-4.8441600000000000e + 02	1.9511200000000000e + 02
-1.25000000000000000000000000000000000000	4.50000000000000000e + 02	-5.4000000000000000e + 02	2.16000000000000000e + 02
-1.5746400000000000e + 02	5.598720000000002e + 02	-6.635520000000001e + 02	2.621440000000001e + 02
-2.0537900000000000e + 02	7.205670000000001e + 02	-8.42697000000001e + 02	3.285090000000001e + 02
-2.8749600000000000e + 02	9.93167999999998e + 02	-1.1436480000000000e + 03	4.389759999999999e + 02
$\begin{bmatrix} -3.4300000000000000000000000000000000000$	1.17600000000000000e + 03	-1.3440000000000000e + 03	5.12000000000000000e + 02

- 4 Plot
- 5 Observations