

Enumerating 1324-avoiderswith few inversions

Emil Verkama – KTH Royal Institute of Technology

NORCOM 2025, Einar Fest

Based on joint work with

Svante Linusson – KTH Royal Institute of Technology

Enumerating 1324-avoiders with few inversions

arXiv: 2408.15075

A permutation $\pi \in S_n$ contains a pattern $p \in S_m$ if π has a subsequence that is order-isomorphic to p. Otherwise π avoids p.

A permutation $\pi \in S_n$ contains a pattern $p \in S_m$ if π has a subsequence that is order-isomorphic to p. Otherwise π avoids p.

A permutation $\pi \in S_n$ contains a pattern $p \in S_m$ if π has a subsequence that is order-isomorphic to p. Otherwise π avoids p.

 π contains 3142

A permutation $\pi \in S_n$ contains a pattern $p \in S_m$ if π has a subsequence that is order-isomorphic to p. Otherwise π avoids p.

 π contains 3142

 π avoids 1324

A permutation $\pi \in S_n$ contains a pattern $p \in S_m$ if π has a subsequence that is order-isomorphic to p. Otherwise π avoids p.

We write Av(p) for the set of all permutations that avoid p,

$$\operatorname{Av}_n(p) = \operatorname{Av}(p) \cap S_n$$
 and $\operatorname{av}_n(p) = |\operatorname{Av}_n(p)|$.

History

Early history

MacMahon (1915) showed that

$$\operatorname{av}_n(123) = C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Early history

MacMahon (1915) showed that

$$av_n(123) = C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Erdős–Szekeres theorem (1935): any permutation of length at least (a-1)(b-1)+1 contains the pattern

$$[1, 2, \dots, a]$$
 or $[b, b-1, \dots, 1]$.

Early history

MacMahon (1915) showed that

$$\operatorname{av}_n(123) = C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Erdős–Szekeres theorem (1935): any permutation of length at least (a-1)(b-1)+1 contains the pattern

$$[1, 2, \ldots, a]$$
 or $[b, b-1, \ldots, 1]$.

Knuth (1968) showed that the *stack-sortable* permutations are exactly the 231-avoiders, and $av_n(231) = C_n$.

Major actors:

Major actors:

• The Steingrímsson group.

Major actors:

- The Steingrímsson group.
- (Many others.)

Major actors:

- The Steingrímsson group.
- (Many others.)

Developments:

- The Marcus-Tardos theorem (2004).
- Enumeration of Av(1234) and Av(1342).
- Generalizations: vincular patterns, mesh patterns, ...
- Books: Bóna's Combinatorics of Permutations (2004), Kitaev's Patterns in Permutations and Words (2011).
- Annual conference *Permutation Patterns* (2003–present).

A Big Problem

Holy Grail. Enumerate $av_n(p)$ for some pattern p.

Holy Grail. Enumerate $av_n(p)$ for some pattern p.

Gessel (1990):

$$\operatorname{av}_n(1234) = 2\sum_{k=0}^n \binom{2k}{k} \binom{n}{k}^2 \frac{3k^2 + 2k + 1 - n - 2nk}{(k+1)^2(k+2)(n-k+1)}.$$

Holy Grail. Enumerate $av_n(p)$ for some pattern p.

Gessel (1990):

$$\operatorname{av}_n(1234) = 2\sum_{k=0}^n \binom{2k}{k} \binom{n}{k}^2 \frac{3k^2 + 2k + 1 - n - 2nk}{(k+1)^2(k+2)(n-k+1)}.$$

Bóna (1997):

$$av_n(1342) = (-1)^{n-1} \cdot \frac{7n^2 - 3n - 2}{2} + 3\sum_{k=2}^{n} (-1)^{n-k} \cdot 2^{k+1} \cdot \frac{(2k-4)!}{k!(k-2)!} \cdot \binom{n-i+2}{2}.$$

Big Problem. Enumerate $av_n(1324)$.

This question is still wide open. Can we ask something simpler?

Big Problem. Enumerate $av_n(1324)$.

This question is still wide open. Can we ask something simpler?

Theorem (Marcus–Tardos, 2004). For any pattern p, the *Stanley–Wilf limit*

$$L(p) := \lim_{n \to \infty} \operatorname{av}_n(p)^{1/n}$$

exists and is finite.

Examples: L(132) = 4, L(1234) = 9, L(1342) = 8.

What is known

Known bounds for L(1324).

	Lower	Upper
Bóna (2004)		288
Bóna (2005)	9	
Albert-Elder-Rechnitzer-Westcott-Zabrocki (2006)	9.35	
Claesson-Jelínek-Steingrímsson (2012)		16
Bóna (2014)		13.93
Bóna (2015)		13.74
Bevan (2015)	9.81	
Bevan-Brignall-Elvey Price-Pantone (2020)	10.27	13.5

What is known

Known bounds for L(1324).

	Lower	Upper
Bóna (2004)		288
Bóna (2005)	9	
Albert–Elder–Rechnitzer–Westcott–Zabrocki (2006)	9.35	
Claesson-Jelínek-Steingrímsson (2012)		16
Bóna (2014)		13.93
Bóna (2015)		13.74
Bevan (2015)	9.81	
Bevan-Brignall-Elvey Price-Pantone (2020)	10.27	13.5

An innocent conjecture

Inversion = 21-pattern.

$$\operatorname{Av}_n^k(p) = \left\{ \pi \in \operatorname{Av}_n(p) : \operatorname{inv}(\pi) = k \right\}, \quad \operatorname{av}_n^k(p) = |\operatorname{Av}_n^k(p)|.$$

An innocent conjecture

Inversion = 21-pattern.

$$\operatorname{Av}_n^k(p) = \{ \pi \in \operatorname{Av}_n(p) : \operatorname{inv}(\pi) = \frac{k}{k} \}, \qquad \operatorname{av}_n^k(p) = |\operatorname{Av}_n^k(p)|.$$

Conjecture (Claesson-Jelínek-Steingrímsson, 2012).

$$av_n^k(1324) \le av_{n+1}^k(1324)$$

for all k, n, i.e. 1324 is inversion monotone.

Corollary. L(1324) < 13.002.

```
10
                                                                       19
   1
2
                                                  Numbers av<sub>n</sub> (1324)
   1 2 2 1
   1 2 5 10 16 20 20
  1 2 5 10 20 36 65 106 171 262 397 568
                                     784
                                         1019 1264
11
   1 2 5 10 20 36 65 110 185 300 481 748 1151 1732 2577 3768 5450 7766 10976 15312
13
   1 2 5 10 20 36 65 110 185 300 481 752 1161 1756 2627 3868 5634 8098 11526 16216
  1 2 5 10 20 36 65 110 185 300 481 752 1165 1766 2651 3918 5734 8282 11858 16786
15
  1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2661 3942 5784 8382 12042 17118
  1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2665 3952 5808 8432 12142 17302
  1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2665 3956 5818 8456 12192 17402
```

```
19
2
                                                        Numbers av<sub>n</sub> (1324)
     2 5 10 20 32 51
   1 2 5 10 20 36 61
                                                347
   1 2 5 10 20 36 65 106 171 262 397
                                      568
                                           784
    1 2 5 10 20 36 65 110 185 296 467 714 1077 1582
11
   1 2 5 10 20 36 65 110 185 300 477 738 1127 1682 2477
    1 2 5 10 20 36 65 110 185 300 481 748 1151 1732 2577
    1 2 5 10 20 36 65 110 185 300 481 752 1161 1756 2627 3868 5634 8098 11526 16216
13
    1 2 5 10 20 36 65 110 185 300 481 752 1165 1766 2651 3918 5734 8282
15
   1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2661 3942 5784 8382
   1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2665 3952 5808 8432 12142 17302
    1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2665 3956 5818 8456 12192 17402
```

Claesson-Jelínek-Steingrímsson (2012) finds the blue sequence.

CJS conjecture: increasing

Another view

```
2
                                                        Numbers av<sub>n</sub> (1324)
    1 2 5 10 16 20 20
    1 2 5 10 20 32 51 67
   1 2 5 10 20 36 61 96 148 208 268 321
                                           351
                                                347
   1 2 5 10 20 36 65 106 171 262 397 568
                                          784 1019 1264
   1 2 5 10 20 36 65 110 181 286 443 664 985 1416 1988 2715 3589 4579
   1 2 5 10 20 36 65 110 185 296 467 714 1077 1582 2305 3284 4617 6374
11
   1 2 5 10 20 36 65 110 185 300 477 738 1127 1682 2477 3584 5134 7240 10100 13915
    1 2 5 10 20 36 65 110 185 300 481 748 1151 1732 2577
13
    1 2 5 10 20 36 65 110 185 300 481 752 1161 1756 2627 3868 5634 8098 11526 16216
    1 2 5 10 20 36 65 110 185 300 481 752 1165 1766 2651 3918 5734 8282 11858 16786
    1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2661 3942 5784 8382
15
    1 2 5 10 20 36 65 110 185 300 481 752 1165 1770 2665 3952 5808 8432 12142 17302
     2 5 10 20 36 65 110 185 300 481 752 1165 1770 2665 3956 5818 8456 12192 17402
```

Claesson–Jelínek–Steingrímsson (2012) finds the blue sequence.

Linusson-V. (2025) proves the conjecture in the red region.

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
1	0	1																					
2	0	1	2	1												Po	w di	fforo	ncoc				
3	0	0	3	5	5	3	1									Row differences							
4	0	0	0	4	11	17	19	15	9	4	1												
5	0	0	0	0	4	12	31	52	70	76	67	49	29	14	5	1							
6	0	0	0	0	0	4	10	29	69	128	200	272	322	333	303	240	165	98	49	20			
7	0	0	0	0	0	0	4	10	23	54	129	247	433	672	956	1237	1463	1583	1570	1421			
8	0	0	0	0	0	0	0	4	10	24	46	96	201	397	724	1237	1961	2898	4012	5213			
9	0	0	0	0	0	0	0	0	4	10	24	50	92	166	317	569	1028	1795	3034	4867			
10	0	0	0	0	0	0	0	0	0	4	10	24	50	100	172	300	517	866	1435	2394			
11	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	316	526	876	1397			
12	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	550	904			
13	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	570			
14	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332			
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184			
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100			
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50			

A constant sequence appears in the red region.

Why?

Decomposability

Decomposable permutations

Permutations can be decomposed with respect to the *direct sum*:

Decomposable permutations

Permutations can be decomposed with respect to the *direct sum*:

Fact. A decomposable $\pi \in S_n$ avoids 1324 if and only if

$$\pi = \sigma \oplus id \oplus \tau$$
.

where $\sigma \in Av(132)$, $\tau \in Av(213)$.

The limit sequence

Fact. If $n \ge k + 1$, then

$$\operatorname{av}_n^k(132) = p(k),$$

the number of integer partitions of k.

The limit sequence

Fact. If
$$n \ge k + 1$$
, then

$$\operatorname{av}_n^k(132) = p(k),$$

the number of integer partitions of k.

The limit sequence

Fact. If $n \ge k + 1$, then

$$\operatorname{av}_n^k(132) = p(k),$$

the number of integer partitions of k.

The limit sequence

Fact. If $n \ge k + 1$, then

$$\operatorname{av}_n^k(132) = p(k),$$

the number of integer partitions of k.

The limit sequence

Fact. If $n \ge k + 1$, then

$$\operatorname{av}_n^k(132) = p(k),$$

the number of integer partitions of k.

Combining the facts: if $n \ge k + 2$, then

$$av_n^k(1324) = \sum_{i=0}^k p(i)p(k-i) = [x^k](P(x)^2).$$

This is the blue sequence

from the table!

Question. 1324-avoiders with very few inversions are decomposable. What if we allow slightly more inversions?

Question. 1324-avoiders with very few inversions are decomposable. What if we allow slightly more inversions?

Definition (Linusson–V. 2025). $\pi \in S_n$ is *almost decomposable* if it is indecomposable, but

$$comp(\pi \setminus e) \ge 2$$
.

Question. 1324-avoiders with very few inversions are decomposable. What if we allow slightly more inversions?

Definition (Linusson–V. 2025). $\pi \in S_n$ is *almost decomposable* if it is indecomposable, but

$$comp(\pi \setminus e) \ge 2$$
.

Question. 1324-avoiders with very few inversions are decomposable. What if we allow slightly more inversions?

Definition (Linusson–V. 2025). $\pi \in S_n$ is *almost decomposable* if it is indecomposable, but

$$comp(\pi \setminus e) \ge 2$$
.

Question. 1324-avoiders with very few inversions are decomposable. What if we allow slightly more inversions?

Definition (Linusson–V. 2025). $\pi \in S_n$ is *almost decomposable* if it is indecomposable, but

$$comp(\pi \setminus e) \ge 2$$
.

Theorem (Linusson–V. 2025). If $n \ge \frac{k+7}{2}$, then all permutations in $\operatorname{Av}_n^k(1324)$ are decomposable or almost decomposable.

This is exactly the red region in the table!

Theorem (Linusson–V. 2025). If $n \ge \frac{k+7}{2}$, then all permutations in $\operatorname{Av}_n^k(1324)$ are decomposable or almost decomposable.

This is exactly the red region in the table!

Theorem (Linusson–V. 2025). If $n \ge \frac{k+7}{2}$, then all permutations in $\operatorname{Av}_n^k(1324)$ are decomposable or almost decomposable.

This is exactly the red region in the table!

Theorem (Linusson–V. 2025). If $n \ge \frac{k+7}{2}$, then all permutations in $\operatorname{Av}_n^k(1324)$ are decomposable or almost decomposable.

This is exactly the red region in the table!

Theorem (Linusson–V. 2025). If $n \ge \frac{k+7}{2}$, then all permutations in $\operatorname{Av}_n^k(1324)$ are decomposable or almost decomposable.

This is exactly the red region in the table!

Theorem (Linusson–V. 2025). If $n \ge \frac{k+7}{2}$, then all permutations in $\operatorname{Av}_n^k(1324)$ are decomposable or almost decomposable.

This is exactly the red region in the table!

Theorem (Linusson–V. 2025). If $n \ge \frac{k+7}{2}$, then all permutations in $\operatorname{Av}_n^k(1324)$ are decomposable or almost decomposable.

This is exactly the red region in the table!

The harvest

Theorem (Linusson–V. 2025). For all $n \ge \frac{k+7}{2}$,

$$av_n^k(1324) = a(k) - 4a(k - n + 1) - 6\sum_{i=0}^{k-n} a(i),$$

where
$$a(k) = \sum_{i=0}^{k} p(i)p(k-i)$$
.

The harvest

Theorem (Linusson–V. 2025). For all $n \ge \frac{k+7}{2}$,

$$av_n^k(1324) = a(k) - 4a(k - n + 1) - 6\sum_{i=0}^{k-n} a(i),$$

where $a(k) = \sum_{i=0}^{k} p(i)p(k-i)$.

Corollary. The conjecture holds when $n \ge \frac{k+7}{2}$.

Open problems.

• Prove the full conjecture. Can our method be extended?

Open problems.

- Prove the full conjecture. Can our method be extended?
- Does almost-decomposability have other applications?

Open problems.

- Prove the full conjecture. Can our method be extended?
- Does almost-decomposability have other applications?
- Other distributional properties of inv over Av(1324)? For example, is

$$av_n^0(1324), av_n^1(1324), \dots, av_n^{\binom{n}{2}}(1324)$$

unimodal?

Thank you, and **Happy Birthday to Einar!**

Open problems.

- Prove the full conjecture. Can our method be extended?
- Does almost-decomposability have other applications?
- Other distributional properties of inv over Av(1324)?
 For example, is

$$av_n^0(1324), av_n^1(1324), \dots, av_n^{\binom{n}{2}}(1324)$$

unimodal?

Based on joint work with

Svante Linusson – KTH Royal Institute of Technology

Enumerating 1324-avoiders with few inversions

arXiv: 2408.15075

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1																			
2	1	1														Mum	hor	. o.,k	(132	4)
3	1	2	2	1											'	vuii	ibers	av_n	(132	+)
4	1	2	5	6	5	3	1													
5	1	2	5	10	16	20	20	15	9	4	1									
6	1	2	5	10	20	32	51	67	79	80	68	49	29	14	5	1				
7	1	2	5	10	20	36	61	96	148	208	268	321	351	347	308	241	165	98	49	20
8	1	2	5	10	20	36	65	106	171	262	397	568	784	1019	1264	1478	1628	1681	1619	1441
9	1	2	5	10	20	36	65	110	181	286	443	664	985	1416	1988	2715	3589	4579	5631	6654
10	1	2	5	10	20	36	65	110	185	296	467	714	1077	1582	2305	3284	4617	6374	8665	11521
11	1	2	5	10	20	36	65	110	185	300	477	738	1127	1682	2477	3584	5134	7240	10100	13915
12	1	2	5	10	20	36	65	110	185	300	481	748	1151	1732	2577	3768	5450	7766	10976	15312
13	1	2	5	10	20	36	65	110	185	300	481	752	1161	1756	2627	3868	5634	8098	11526	16216
14	1	2	5	10	20	36	65	110	185	300	481	752	1165	1766	2651	3918	5734	8282	11858	16786
15	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2661	3942	5784	8382	12042	17118
16	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2665	3952	5808	8432	12142	17302
17	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2665	3956	5818	8456	12192	17402

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1																			
2	1	1														Mum	hore	k	(132	4)
3	1	2	2	1											- 1	vuii	bers	av_n	(132	+)
4	1	2	5	6	5	3	1													
5	1	2	5	10	16	20	20	15	9	4	1									
6	1	2	5	10	20	32	51	67	79	80	68	49	29	14	5	1				
7	1	2	5	10	20	36	61	96	148	208	268	321	351	347	308	241	165	98	49	20
8	1	2	5	10	20	36	65	106	171	262	397	568	784	1019	1264	1478	1628	1681	1619	1441
9	1	2	5	10	20	36	65	110	181	286	443	664	985	1416	1988	2715	3589	4579	5631	6654
10	1	2	5	10	20	36	65	110	185	296	467	714	1077	1582	2305	3284	4617	6374	8665	11521
11	1	2	5	10	20	36	65	110	185	300	477	738	1127	1682	2477	3584	5134	7240	10100	13915
12	1	2	5	10	20	36	65	110	185	300	481	748	1151	1732	2577	3768	5450	7766	10976	15312
13	1	2	5	10	20	36	65	110	185	300	481	752	1161	1756	2627	3868	5634	8098	11526	16216
14	1	2	5	10	20	36	65	110	185	300	481	752	1165	1766	2651	3918	5734	8282	11858	16786
15	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2661	3942	5784	8382	12042	17118
16	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2665	3952	5808	8432	12142	17302
17	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2665	3956	5818	8456	12192	17402

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1																			
2	1	1														Mum	hore	k	(132	4)
3	1	2	2	1											- 1	vuii	bers	av_n	(132	+)
4	1	2	5	6	5	3	1													
5	1	2	5	10	16	20	20	15	9	4	1									
6	1	2	5	10	20	32	51	67	79	80	68	49	29	14	5	1				
7	1	2	5	10	20	36	61	96	148	208	268	321	351	347	308	241	165	98	49	20
8	1	2	5	10	20	36	65	106	171	262	397	568	784	1019	1264	1478	1628	1681	1619	1441
9	1	2	5	10	20	36	65	110	181	286	443	664	985	1416	1988	2715	3589	4579	5631	6654
10	1	2	5	10	20	36	65	110	185	296	467	714	1077	1582	2305	3284	4617	6374	8665	11521
11	1	2	5	10	20	36	65	110	185	300	477	738	1127	1682	2477	3584	5134	7240	10100	13915
12	1	2	5	10	20	36	65	110	185	300	481	748	1151	1732	2577	3768	5450	7766	10976	15312
13	1	2	5	10	20	36	65	110	185	300	481	752	1161	1756	2627	3868	5634	8098	11526	16216
14	1	2	5	10	20	36	65	110	185	300	481	752	1165	1766	2651	3918	5734	8282	11858	16786
15	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2661	3942	5784	8382	12042	17118
16	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2665	3952	5808	8432	12142	17302
17	1	2	5	10	20	36	65	110	185	300	481	752	1165	1770	2665	3956	5818	8456	12192	17402

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	0	1																		
2	0	1	2	1												Do	الم بيا	fforo	nces	
3	0	0	3	5	5	3	1									RU	w ai	nere	nces	
4	0	0	0	4	11	17	19	15	9	4	1									
5	0	0	0	0	4	12	31	52	70	76	67	49	29	14	5	1				
6	0	0	0	0	0	4	10	29	69	128	200	272	322	333	303	240	165	98	49	20
7	0	0	0	0	0	0	4	10	23	54	129	247	433	672	956	1237	1463	1583	1570	1421
8	0	0	0	0	0	0	0	4	10	24	46	96	201	397	724	1237	1961	2898	4012	5213
9	0	0	0	0	0	0	0	0	4	10	24	50	92	166	317	569	1028	1795	3034	4867
10	0	0	0	0	0	0	0	0	0	4	10	24	50	100	172	300	517	866	1435	2394
11	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	316	526	876	1397
12	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	550	904
13	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	570
14	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50

$n \setminus k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	0	1																		
2	0	1	2	1												Do	ناہ یہ	fforo	nces	
3	0	0	3	5	5	3	1									ΚU	w ui	nere	lices	
4	0	0	0	4	11	17	19	15	9	4	1									
5	0	0	0	0	4	12	31	52	70	76	67	49	29	14	5	1				
6	0	0	0	0	0	4	10	29	69	128	200	272	322	333	303	240	165	98	49	20
7	0	0	0	0	0	0	4	10	23	54	129	247	433	672	956	1237	1463	1583	1570	1421
8	0	0	0	0	0	0	0	4	10	24	46	96	201	397	724	1237	1961	2898	4012	5213
9	0	0	0	0	0	0	0	0	4	10	24	50	92	166	317	569	1028	1795	3034	4867
10	0	0	0	0	0	0	0	0	0	4	10	24	50	100	172	300	517	866	1435	2394
11	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	316	526	876	1397
12	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	550	904
13	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	570
14	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	0	1																		
2	0	1	2	1												Dο	w di	fforo	nces	
3	0	0	3	5	5	3	1									ΚU	w ui	iieie	lices	
4	0	0	0	4	11	17	19	15	9	4	1									
5	0	0	0	0	4	12	31	52	70	76	67	49	29	14	5	1				
6	0	0	0	0	0	4	10	29	69	128	200	272	322	333	303	240	165	98	49	20
7	0	0	0	0	0	0	4	10	23	54	129	247	433	672	956	1237	1463	1583	1570	1421
8	0	0	0	0	0	0	0	4	10	24	46	96	201	397	724	1237	1961	2898	4012	5213
9	0	0	0	0	0	0	0	0	4	10	24	50	92	166	317	569	1028	1795	3034	4867
10	0	0	0	0	0	0	0	0	0	4	10	24	50	100	172	300	517	866	1435	2394
11	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	316	526	876	1397
12	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	550	904
13	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332	570
14	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184	332
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100	184
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50	100
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	10	24	50