CS 480

Introduction to Artificial Intelligence

November 1, 2022

Announcements / Reminders

- Follow Week 10 TO DO List
- Written Assignment #03 due on Sunday
 (11/06/22) Thursday (11/10) at 11:00 PM CST
- Grading TA assignment:

https://docs.google.com/spreadsheets/d/1ExS0bKnGt_fdf4LHa3YS1qRA7-Iq4xqXVjfSAPMaGVk/edit?usp=sharing

- UPDATED Final Exam date:
 - December 1st, 2022 (last week of classes!)
 - Ignore the date provided by the Registrar

Plan for Today

Quantifying and dealing with uncertainty

Prior vs. Posterior Probabilities

Prior Probability

Posterior Probability

P(A)

P(A | parents(A))

Marginal Probability

Marginal probability: the probability of an event occurring $P(\boldsymbol{A})$.

It may be thought of as an unconditional probability.

It is not conditioned on another event.

Joint Probability

The probability of event A and event B occurring (or more than two events). It is the probability of the intersection of two or more events.

$$P(A \wedge B)$$

For any propositions f_1, f_2, \ldots, f_n :

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n)$$

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions f_1, f_2, \ldots, f_n :

$$P(f_{1} \land f_{2} \land \dots \land f_{n}) =$$

$$P(f_{1}) *$$

$$P(f_{2} | f_{1}) *$$

$$P(f_{3} | f_{1} \land f_{2}) *$$
...
$$P(f_{n} | f_{1} \land \dots \land f_{n-1}) =$$

$$= \prod_{i=1}^{n} P(f_{i} | f_{1} \land \dots \land f_{i-1})$$

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions f_1, f_2, \ldots, f_n :

$$P(f_{1} = x_{1} \land f_{2} = x_{2} \land \dots \land f_{n} = x_{n}) =$$

$$P(f_{1} = x_{1}) *$$

$$P(f_{2} | f_{1} = x_{1}) *$$

$$P(f_{3} | f_{1} = x_{1} \land f_{2} = x_{2}) *$$

$$\dots$$

$$P(f_{n} = x_{n} | f_{1} = x_{1} \land \dots \land f_{n-1} = x_{n-1}) =$$

$$= \prod_{i=1}^{n} P(f_{i} = x_{i} | f_{1} = x_{1} \land \dots \land f_{i-1} = x_{i-1})$$

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

P(cause | effect) diagnostic direction relation

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

P(effect | cause) causal direction relation

 $P(disease \mid symptoms)$ diagnostic direction relation

$$P(disease \mid symptoms) = \frac{P(symptoms \mid disease) * P(disease)}{P(symptoms)}$$

 $P(symptoms \mid disease)$ causal direction relation

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

Problem: a single card is drawn from a standard deck of cards. What is the probability that we drew a queen if we know that a face card (J, Q, K) was drawn?

$$P(queen \mid face) = \frac{P(face \mid queen) * P(queen)}{P(face)}$$

$$P(queen \mid face) = \frac{1*4/52}{12/52} = \frac{1}{3}$$

$$P(cause \mid effect) = \frac{P(effect \mid cause) * P(cause)}{P(effect)}$$

Problem: Calculate probability that a patient has

meningitis if a patient has stiff neck. Meningitis is a cause of neck stiffness in 70% of cases, probability of having meningitis is 1/50000. Stiff neck happens to 1% of patients.

$$P(m \mid s) = \frac{P(s \mid m) * P(m)}{P(s)}$$

$$P(m \mid s) = \frac{0.7 * 1/50000}{0.01} = 0.0014$$

Independence

Assume that the knowledge of the truth of one proposition Y, does not affect the agent's belief in another proposition, X, in the context of other propositions Z. We say that X is independent of Y given Z.

Conditional Independence

Random variable X is conditionally independent of random variable Y given Z if for all $x \in Dx$, for all $y \in Dy$, and for all $z \in Dz$, such that

$$P(Y = y \land Z = z) > 0 \text{ and } P(Y = y \land Z = z) > 0$$

$$P(X = x | Y = y \land Z = z) = P(X = x | Y = y \land Z = z)$$

In other words, given a value of Z, knowing Y's value DOES NOT affect your belief in the value of X.

Conditional Independence

The following four statements are equivalent as long as conditional probabilities:

- 1. X is conditionally independent of Y given Z
- 2. Y is conditionally independent of X given Z
- 3. P(X | Y, Z) = P(X | Z)
- 4. P(X, Y | Z) = P(X | Z) * P(Y | Z)

Bayes' Rule: Another Interpretation

Another way to think about Baye's rule: it allows us to update the hypothesis \mathbf{H} in light of some new data/evidence \mathbf{e} .

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(Hypothesis \mid evidence) = \frac{P(evidence \mid Hypothesis) * P(Hypothesis)}{P(evidence)}$$

where:

- P(H) probability of the Hypothesis H being true BEFORE we see new data/evidence e (prior probability)
- P(H | e) probability of the Hypothesis H being true AFTER we see new data/evidence e (posterior probability)
- P(e | H) probability of new data/evidence e being true under the Hypothesis H (likelihood)
- P(e) probability of new data/evidence e being true under ANY hypothesis (normalizing constant)

All possible cases

Cases where Hypothesis H is true | Cases where Hypothesis H is false P(H)

 $P(\neg H)$

Cases where evidence e is true P(e)

Cases where evidence e is true given Hypothesis H true P(e | H)

Cases where evidence e is true given Hypothesis H false $P(e \mid \neg H)$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(H) * P(e \mid H) + P(\neg H) * P(e \mid \neg H)}$$

Cases where Hypothesis H is true | Cases where Hypothesis H is false P(H)

 $P(\neg H)$

Cases where evidence e is true P(e)

Cases where evidence e is true given Hypothesis H true P(e | H)

Cases where evidence e is true given Hypothesis H false $P(e \mid \neg H)$

All CS 480 Students

Hypothesis H: graduate student

Cases where Hypothesis H is true P(H) = P(grad = true)

Cases where Hypothesis H is false

$$P(\neg H) = P(grad = false)$$

Cases where evidence e is true

$$P(e) = P(female = true)$$

Cases where ${\color{red} e}$ true given H true

$$P(e \mid \neg H) = P(female = true \mid grad = false)$$

Given (made up roster data):

% of G students: P(H)

% of UG students: $P(\neg H)$

%of female students: P(e)

% of female G students: $P(e \mid H)$

%of female UG students: $P(e \mid \neg H)$

Cases where Hypothesis H is true

Cases where Hypothesis H is false

$$P(\neg H) = 63 / 81$$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where $\ensuremath{\text{e}}$ true given H true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(H) * P(e \mid H) + P(\neg H) * P(e \mid \neg H)}$$

Cases where Hypothesis H is true | Cases where Hypothesis H is false

$$P(H) = 18 / 81$$

$$P(\neg H) = 63 / 81$$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{6 / 18 * 18 / 81}{13 / 81}$$

$$P(H \mid e) = \frac{6/18*18/81}{18/81*6/18+63/81*7/63}$$

Cases where Hypothesis H is true

$$P(H) = 18 / 81$$

Cases where Hypothesis H is false

$$P(\neg H) = 63 / 81$$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where $\underline{\textbf{e}}$ true given \boldsymbol{H} true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) \approx 0.462$$

Cases where Hypothesis H is true

$$P(H) = 18 / 81$$

Cases where Hypothesis H is false

$$P(\neg H) = 63 / 81$$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where $\underline{\textbf{e}}$ true given \boldsymbol{H} true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Prior probability:

$$P(H) = 18 / 81 \approx 0.222$$

Posterior probability:

$$P(H \mid e) \approx 0.462$$

Cases where Hypothesis H is true P(H) = 18 / 81

Cases where Hypothesis H is false $P(\neg H) = 63 / 81$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where $\underline{\textbf{e}}$ true given \boldsymbol{H} true

$$P(e \mid H) = 6 / 18$$

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule: Belief/Probability Update

A student approaches the podium. Without looking I create a hypothesis H:

this is a grad student (grad = true)

My belief in H being true is based on prior probability:

$$P(H) = 18 / 81 \approx 0.222$$

I look up and see a female student, which is <u>new data /</u> <u>evidence</u> e (<u>female</u> = <u>true</u>). Bayes' Rule helps me update my <u>belief</u> in H being <u>true</u> with <u>posterior</u> probability:

$$P(H \mid e) = \frac{6 / 18 * 18 / 81}{18 / 81 * 6 / 18 + 63 / 81 * 7 / 63} \approx 0.462$$

Full Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$	Conditional probabilities
true	true	$P(H \mid e)*P(e)\approx 0.074$	$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)} = \frac{6 / 18 * 18 / 81}{13 / 81} \approx 0.462$
true	false	$P(H \mid \neg e) * P(\neg e) \approx 0.148$	$P(H \mid \neg e) = \frac{P(\neg e \mid H) * P(H)}{P(\neg e)} = \frac{12 / 18 * 18 / 81}{68 / 81} \approx 0.176$
false	true	$P(\neg H \mid e)*P(e)\approx 0.086$	$P(\neg H \mid e) = \frac{P(e \mid \neg H) * P(\neg H)}{P(e)} = \frac{7 / 63 * 63 / 81}{13 / 81} \approx 0.538$
false	false	$P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$	$P(\neg H \mid \neg e) = \frac{P(\neg e \mid \neg H) * P(\neg H)}{P(\neg e)} = \frac{56 / 63 * 63 / 81}{68 / 81} \approx 0.824$
		SUM = 1	

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability Distribution

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H \mid e) * P(e) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H \mid \neg e) * P(\neg e) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H \mid e) * P(e) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability Distribution

H: e: grad female	$P(H, e) = P(H \land e):$ $P(grad \land female)$
true true	0.074
true false	0.148
false true	0.086
false false	0.691
	SUM = 1

If we know the joint probability distribution, we can infer:

- marginal probabilities P(H), $P(\neg H)$, P(e), and $P(\neg e)$
- conditional probabilities $P(H \mid e)$, $P(H \mid \neg e)$, $P(\neg H \mid e)$, and $P(\neg H \mid \neg e)$

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(H):

$$P(H) = P(grad = true) = 0.074 + 0.148 \approx 18 / 81$$

Probability P(H): "sum of all probabilities where H true"

Joint Probability: Marginalization

H: e. grad fem		$P(H, e) = P(H \land e)$: $P(grad \land female)$
true tru	ue	0.074
true fal	lse	0.148
false tru	ue	0.086
false fals	lse	0.691
		SUM = 1

Probability P(e):

$$P(e) = P(female = true) = 0.074 + 0.086 \approx 13 / 81$$

Probability P(e): "sum of all probabilities where e true"

Marginal Probability

Marginal probability: the probability of an event occurring $P(\boldsymbol{A})$.

It may be thought of as an unconditional probability.

It is not conditioned on another event.

Joint Probability Distribution

	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability: Conditionals

	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)}$$

Joint Probability: Conditionals

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)} = \frac{0.074}{0.074 + 0.086} \approx 0.462$$

H: or grad fer	e: male	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true tr	rue	0.074
true fa	alse	0.148
false tr	rue	0.086
false fa	alse	0.691
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

	Toot	hache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Random variables:

Toothache - Boolean

Cavity - Boolean

Catch (dentist's probe catches tooth) - Boolean

	Toot	hache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Probability P(Cavity ∨ Toothache):

$$P(Cavity = true \lor Toothache = true) =$$

= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064
= 0.28

	Toot	hache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Marginal probability P(Cavity):

$$P(Cavity = true) = 0.108 + 0.012 + 0.072 + 0.008$$

= 0.2

	Toot	hache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Conditional probability P(Cavity | Toothache):

$$P(Cavity = true \mid Toothache = true) =$$

$$= \frac{P(Cavity = true \land Toothache = true)}{P(Toothache = true)} =$$

$$= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

	Toot	hache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Conditional probability $P(\neg Cavity \mid Toothache)$:

$$P(\neg Cavity = true \mid Toothache = true) =$$

$$= \frac{P(\neg Cavity = true \land Toothache = true)}{P(Toothache = true)} =$$

$$= \frac{0.016 + 0.164}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

	Toot	hache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Note that:

$$P(Cavity \mid Toothache) = \frac{P(Cavity \land Toothache)}{P(Toothache)} = 0.6$$

$$P(\neg Cavity \mid Toothache) = \frac{P(\neg Cavity \land Toothache)}{P(Toothache)} = 0.4$$

add up to 1 and the same denominator is involved.

	Toot	hache	¬Toothache		
	Catch	¬Catch	Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Note that P() is the distribution, NOT individual probability:

$$P(Cavity \mid Toothache) = \alpha * P(Cavity, Toothache) =$$

$$= \alpha * [P(Cavity, Toothache, Catch) + P(Cavity, Toothache, \neg Catch)] =$$

$$= \alpha * [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle] =$$

$$= \alpha * \langle 0.12, 0.08 \rangle =$$

$$= \langle 0.6, 0.4 \rangle$$

General Inference Procedure

Given:

- a query involving a single variable X (in our example: Cavity),
- \blacksquare a <u>list</u> of evidence variables E (in our example: just Toothache),
- a list of observed values e for E,
- a list of remaining unobserved variables Y (in our example: just Catch),

where X, E, and Y together are a COMPLETE set of variables for the domain, the probability $P(X \mid E)$ can be evaluated as:

$$P(X \mid e) = \alpha * P(X, e) = \alpha * \sum_{y} P(X, e, y)$$

where ys are all possible values for Ys, α - normalization constant. P(X, e, y) is a subset of probabilities from the joint distribution

Complex Joint Distributions

Consider a complex joint probability distribution involving N random variables P_1 , P_2 , P_3 , ..., P_{N-1} , Pp_N .

			N Rar	ndom Variables			Joint	
	\mathbf{P}_1	P_2	P_3		P_{N-1}	P_{N}	Probability	
els)	true	true	true	•••	true	true	false	
del	true	true	true	•••	true	false	true	
Mo	true	true	false	•••	false	true	false	
ible Worlds (Mod				•••				2 ^N values
Possible	false	false	true		true	false	true	
	false	false	true		false	true	true	
2^{N}	false	false	false	•••	false	false	false	

Non-binary / Non-Boolean RVs

Some Random Variables are going to have more than two possible, discrete, values:

- height -> short, average, tall
- size -> S, M, L, XL
- streetLight -> green, orange, red
- vision -> 20/20, 15/15, etc.
- continent -> Africa, Antarctica, Asia, Australia,
 Europe, North America, South America

Non-binary RVs increase the complexity.

This May Be Impossible to Manage!

			N Ra	ndom Variables			Joint	
	\mathbf{P}_1	P_2	P_3		P_{N-1}	$P_{ m N}$	Probability	
(5	true	true	true		true	true	false	
de	true	true	true		true	false	true	
Mo	true	true	false		false	true	false	
$2^{ m N}$ Possible Worlds (Models)		•••	•••	•••	•••			2 ^N values
SSİ	false	false	true		true	false	true	
Pc	false	false	true		false	true	true	
2	false	false	false	•••	false	false	false	

Independent Variable

		Toot	hache	¬Too	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576
		Toot	hache	$\neg Too$	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
Clo	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576

Let's introduce another random variable Cloudy representing some weather conditions. It is difficult to imagine the other random variables here (Toothache, Cavity, Catch) being dependent on Cloudy and vice versa.

Independent Variable

		Toot	hache	¬Too	thache
Cloudy		Catch	¬Catch	Catch	¬Catch
J. C.	Cavity	0.108	0.012	0.072	0.008
'	¬Cavity	0.016	0.064	0.144	0.576
		Toot	hache	$\neg Too$	thache
ndy		Toot Catch	hache −Catch	¬Too Catch	thache —Catch
Cloudy	Cavity				

Let's try to calculate the following probability:

P(Toothache, Catch, Cavity, Cloudy)

using the Product Rule:

P(Toothache, Catch, Cavity, Cloudy) == P(Cloudy | Toothache, Catch, Cavity) * P(Toothache, Catch, Cavity)

Independent Variable

		Toot	hache	¬Too	thache
Cloudy		Catch	\neg Catch	Catch	¬Catch
	Cavity	0.108	0.012	0.072	0.008
'	¬Cavity	0.016	0.064	0.144	0.576
		Toothache		¬Toothache	
Cloudy		Catch	¬Catch	Catch	¬Catch
Clo	Cavity	0.108	0.012	0.072	0.008
	¬Cavity	0.016	0.064	0.144	0.576

It's hard to imagine Cloudy influencing other variables, so:

 $P(Cloudy \mid Toothache, Catch, Cavity) = P(Cloudy)$

and then:

$$P(Toothache, Catch, Cavity, Cloudy) =$$

= $P(Cloudy) * P(Toothache, Catch, Cavity)$

Independent Variable / Factoring

		Toot	nache	¬Toothache	
Cloudy		Catch	¬Catch	Catch	¬Catch
	Cavity	0.108	0.012	0.072	0.008
1	¬Cavity	0.016	0.064	0.144	0.576
		Toothache		¬Toothache	
\triangleright					
nd		Catch	¬Catch	Catch	¬Catch
Cloudy	Cavity	Catch 0.108	¬Catch 0.012	Catch 0.072	¬Catch 0.008

It's hard to imagine Cloudy influencing other variables, so:

P(Toothache, Catch, Cavity, Cloudy) == P(Cloudy) * P(Toothache, Catch, Cavity)

This shows that Cloudy is INDEPENDENT of other variables and factoring can be applied.

Factoring / Decomposition

Use Chain Rule To Decompose

		N Ra	ndom Variables			Joint
P_1	\mathbf{P}_2	\mathbf{P}_3		P_{N-1}	$\mathbf{P}_{\mathbb{N}}$	Probability
true	true	true	***	true	true	false
true	true	true		true	false	true
true	true	false		false	true	false
			***		,	***
					11.5.5.0	
						12
false	false	true	***	true	false	true
false	false	true	***	false	true	true
false	false	false	***	false	false	false
			•			
	Ī					

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions

$$f_1, f_2, ..., f_n$$
:

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \prod_{i=1}^n P(f_i \mid f_1 \wedge \ldots \wedge f_{i-1})$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H) * P(e \mid H) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H) * P(\neg e \mid H) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H) * P(e \mid \neg H) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_{1} \wedge f_{2}) = \prod_{i=1}^{2} P(f_{i} | f_{1} \wedge ... \wedge f_{i-1})$$

$$P(f_{1} \wedge f_{2}) = P(f_{1}) * P(f_{2} | f_{1})$$

$$so: P(grad \wedge female) = P(H \wedge e) = P(H) * P(e | H)$$

H: e:
$$P(H, e) = P(H \land e)$$
: $P(H, e) = P(H \land e)$: $P(H, e) = P(H \land e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 * 0.074$ true false $P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 * 0.148$ false true $P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 * 0.086$ false false $P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 * 0.691$ SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_{1} \wedge f_{2}) = \prod_{i=1}^{2} P(f_{i} | f_{1} \wedge ... \wedge f_{i-1})$$

$$P(f_{1} \wedge f_{2}) = P(f_{1}) * P(f_{2} | f_{1})$$

$$so: P(grad \wedge female) = P(H \wedge e) = P(H) * P(e | H)$$

H: e:
$$P(H, e) = P(H \land e)$$
: $P(H, e) = P(H \land e)$: $P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$

true false $P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$

false true $P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$

false false $P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$

SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_1 \wedge f_2) = \prod_{i=1}^2 P(f_i \mid parents(f_i))$$

 $P(f_1 \wedge f_2) = P(f_1) * P(f_2 \mid parents(f_i))$
so: $P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$

H: e:
$$P(H, e) = P(H \land e)$$
: $P(H, e) = P(H \land e)$: $P(H, e) = P(H \land e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$ true false $P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$ false true $P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$ false false $P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$ SUM = 1

$$P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$$

H:	¬H:
grad	–grad
$18 / 81 \approx 0.22$	63 / 81 ≈ 0.78

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

$$P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$$

H: grad	¬H: ¬grad	
$18 / 81 \approx 0.22$	63 / 81 ≈ 0.78	
Conditional P	obability Table	(CPT)

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayesian (Belief) Network

A Bayesian belief network describes the joint probability distribution for a set of variables.

A Bayesian network is an acyclic, directed graph (DAG), where the nodes are random variables (propositions). There is an edge (arc) from each elements of $parents(X_i)$ into X_i . Associated with the Bayesian network is a set of conditional probability distributions - the conditional probability of each variable given its parents (which includes the prior probabilities of those variables with no parents).

Consists of:

- a graph (DAG) with nodes corresponding to random variables
- a domain for each random variable
- a set of conditional probability distributions $P(X_i | parents(X_i))$

Bayesian (Belief) Network: Example

Random Variables (Propositions):

- Tampering: true if the alarm is tampered with
- Fire: true if there is a fire
- Alarm: true if the alarm sounds
- Smoke: true if there is smoke
- Leaving: true if people leaving the building at once
- Report: true if someone who left the building reports fire

Domain for all variables: {true, false}

NOTE: RVs don't have to be Boolean

Building Bayesian (Belief) Network

- 1. Order Random Variables (ordering matters!)
- 2. Create network nodes for each Random Variable
- 3. Add edges between parent nodes and children nodes
 - For every node node X_i:
 - choose a minimal set S of parents for X_i
 - for each parent node Y in S add an edge from Y to X_i
- 4. Add Conditional Probability Tables

Make it compact / sparse: choose your Random Variable ordering wisely.

Ordering Matters!

Create Vertices / Node / Random Vars

Add Edges

Add Conditional Probability Tables

$$P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$$

H: grad	¬H: ¬grad	*
18 / 81 ≈ 0.22	63 / 81 ≈ 0.78	
Conditional Pr	obability Table	(CPT)

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Create Vertices / Node / Random Vars

Create Vertices / Node / Random Vars

Add Edges

Add Conditional Probability Tables

H:	¬H:
grad	−grad
$18 / 81 \approx 0.22$	63 / 81 ≈ 0.78

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayesian Network: Car Insurance

