§ 11,12 Two sided bar ronstruction and function spaces:

· Functors as modules:

For a small categories \pm , I the functors :

. F:
$$\bot \longrightarrow \mathcal{M}$$
 can be thought of as a left \bot -module $\in \bot$ -mod

. G
$$\bot^{\bullet}\longrightarrow \mathcal{M}$$
 can be thought of as a right \bot -module \in mod- \bot

.
$$H: I \times J^{op} \longrightarrow \mathcal{M}$$
 "an $I-J$ be module $\in I-J$ mod

· If objects of
$$\mathcal M$$
 are sets, let $f \in F(i)$ for $i \in \mathbb Z$. For $f = i \to j$ in $\mathbb Z$, we can define $w.f := F(i \to j)f \in F(j)$ similarly for G , H

· Jersous and woends:

$$F: \exists xJ \xrightarrow{\circ h} \mathcal{M} \in \exists \exists J \text{ mod}$$

$$G: J \times K^{olp} \longrightarrow \mathcal{M} \in J-K \mod \mathcal{M}$$

The cound defined as

$$F_{\mathfrak{G}}G = \int_{\mathfrak{I}}^{\mathfrak{I}} F(-,j) \times G(j,-) = coeq \left[\bigsqcup_{i \leftarrow j} F(-,i) \times G(j,-) \Longrightarrow \bigsqcup_{i \in \mathfrak{I}} F(-,j) \times G(i,-) \right]$$
is an I-K mod

· Universal property?

For
$$F \in \mathbb{I} \times \mathbb{J}^{d}$$
, $G \in \mathbb{J} \times \mathbb{K}^{d}$, $H \in \mathbb{I} \times \mathbb{K}^{d}$ what is the set of makes $hom_{\mathbb{I} - \mathbb{K}} (F \otimes G, H)$?

$$hom_{\mathbb{I} - \mathbb{K}} (F \otimes G, H) = hom_{\mathbb{I} - \mathbb{K}} (coeq \left[\coprod_{i \leftarrow j} F(\cdot, i) \times G(j, \cdot) \Longrightarrow \coprod_{i \in \mathbb{J}} F(\cdot, i) \times G(i, \cdot) \right], H(\cdot, \cdot))$$

$$hom\left(\int_{F\times G}^{F\times G},H\right) = eq\left[hom_{I-K}\left(\prod_{i \leftarrow j}F(\cdot,i)\times G(j,\cdot),H(\cdot,\cdot)\right) \stackrel{\longleftarrow}{\longleftarrow} hom\left(\prod_{i}F(\cdot,i)\times G(i,\cdot),H(\cdot,\cdot)\right)\right]$$

$$= eq\left[\prod_{i \leftarrow j}hom\left(F(\cdot,i)\times G(j,\cdot),H(\cdot,\cdot)\right) \stackrel{\longleftarrow}{\longleftarrow} hom\left(F(\cdot,i)\times G(i,\cdot),H(\cdot,\cdot)\right)\right]$$

$$G = hom_{S}(i, -) \in J - mod \quad gaines \quad hom_{-K}(F \otimes hom_{-K}(F), H) \cong hom_{-K}(F, hom_{-K}(H))$$

$$\cong hom_{-K}(F, hom_{-K}(H))$$

$$By Toneda's lemma$$

$$F = hom_{J}(-,i) \in mod-J$$
 gives hom $(hom_{J}(-,j) \otimes G_{g}H) \cong hom (hom_{J}(-,j)$, hom $(G_{g}H)$)

$$(i,j) \longmapsto h_{om_{\underline{I}}}(j,i)$$

$$\in \underline{I}\text{-}\underline{I}\text{mod}$$

$$= F(k) = (\underline{I}\otimes F)$$

$$\begin{array}{c|c}
(k,i) & F(i) \times I(k,i) \\
F(i) \times I(k,j) & F(j) \times I(k,j)
\end{array}$$

· Bar construction:

Bar construction should be thought of as a fathered version of \otimes

· Def given $W \in J$ -I mod, $X \in I$ -K mod, define the two-sided bar construction as

$$\beta_{\bullet}(w, \pm, x)$$
 [n] = $\psi(i_{\circ}) \times x(i_{\circ}) \times x$ $\in J-K-mod$

Boundary maps:
$$B(W,T,X)[n] \xrightarrow{di} B(W,T,W)[n-1]$$
 The differentials correspond to $BT^{\circ p}$ $W(i_0) \times X(i_n) \times X(i_n)$ $W(i_0) \times X(i_n) \times X(i_n)$ $W(i_0) \times X(i_n) \times X(i_n)$

define
$$|B(W,T,X)| =: B(W,T,X)$$
 $W(i_n) \times X(i_{n-1})$

$$\begin{array}{ll} \cdot & \text{Overy} & \left(B_{1} \big(W, \mathbb{T}_{3} X \big) \Longrightarrow B_{\bullet} (W_{3} \mathbb{T}_{3} X \big) \right) = & \text{Greg} \left(\coprod_{i_{0} \leftarrow i_{1}} W \left(i_{0} \right)_{X} \times (i_{1}) \Longrightarrow \coprod_{i} W \left(i \right)_{X} \times (i) \right) \\ & = & W \underset{X}{\otimes} X \end{array}$$

We have a natural map $\beta.(W, I, X) \longrightarrow W \otimes X$

(his is true for Top)

 $\mathcal{T}^{h}_{\cdot}, \quad \mathcal{B}(w, \mathtt{I}, \mathsf{X}) \otimes \mathsf{Y} \cong \mathcal{B}(w, \mathtt{I}, \mathsf{X} \otimes \mathsf{Y}) \quad , \qquad \mathsf{Z} \otimes \mathcal{B}(w, \mathtt{I}, \mathsf{X}) \cong \mathcal{B}(\mathsf{Z} \otimes w, \mathtt{I}, \mathsf{X})$

- $b(W, T, \times) \cong W \otimes b(T, T, T) \otimes X$ Q. What is B(T, T, T)? This also justifies why B. is like a fattered version of \otimes

$$\cdot \ \, \beta_n(\mathtt{I},\mathtt{I},\mathtt{I}) = \underbrace{ \mid }_{\mathsf{i}_{\mathfrak{o}}-\mathsf{i}_{\mathfrak{o}}} \ \, \mathsf{hom}_{\mathtt{I}}(\mathsf{i}_{\mathfrak{o}},\mathsf{-}) \times \mathsf{hom} \ \, (\mathsf{-},\mathsf{i}_{\mathsf{n}})$$

This is an I-I mod in sets

eg:
$$(\cdot,\cdot)$$

eq:
$$(-1)^{2} \times (-1)^{2} \times (-1)^$$

$$\cdot \beta(x, T, X)(n) = \prod_{i_0 \leftarrow i_n} \times (i_n) = Svop X$$

•
$$\beta(\pm,\pm,\times)$$
 [n] = $\frac{1}{i_0 \leftarrow --- \leftarrow i_n}$ from $(i_0,--) \times X(i_n)$

$$B(\underline{\tau},\underline{\tau},\times) (\underline{n}) (\underline{R}) = \lim_{\substack{i_0 \neq \dots \neq i_n \\ k \neq i_0 \neq \dots \neq i_n}} h_{om} (\underline{i_0},\underline{k})_{\times} \times (\underline{i_n}) \qquad \text{Note: } B(\underline{\tau},\underline{\tau},\times) \in \underline{\tau}\text{-mod}$$

$$= \lim_{\substack{k \neq i_0 \neq \dots \neq i_n \\ k \neq i_0 \neq \dots \neq i_n}} \times (\underline{i_n})$$

$$= B(\underline{x},\underline{\tau})_{\times} (\underline{x})_{\times} (\underline{n})$$

$$\Rightarrow \beta(*, \pm, \times)(-) = hocolim \times \pm \frac{1}{2}$$

$$\Rightarrow$$
 $\beta(*, \pm, \times) = \emptyset \times$

 \Rightarrow all the above statements non be rewritten for $\bot^{\circ p}$

- Function Spaces:

We have a categorical version of hom as well:

· Def For X, Y & I mod define

$$F_{\pm}(x,y) := \bigoplus_{i \to j} M_{\alpha \beta} (x(i),y(i)) \xrightarrow{T} M_{\alpha \beta} (x(i),y(j))$$

This gives us the much awaited adjunctions: for ZEK-mod, XEI-K-mod, YEI-mod $\cdot \ F_{K}(Z,F_{\pm}(X,Y)) = \ \text{Rom}_{\pm}\left(Z_{K} \circ X,Y\right)$