Lecture 11

Rigid body kinematics: Velocity analysis examples; Five-term acceleration formula; Applications

1-7 September, 2021

Example 1

Find the angular velocity of the slotted arm

General strategy for systems with connected rigid bodies:

1. Connections impose *kinematic constraints*.

- 2. Usually partial kinematic information is given for each rigid body. *For example,* slotted arm rotates in plane; point *O* on arm is fixed; collar *C* moves vertically.
- 3. Find a convenient point whose motion is found in two ways, say w.r.t. two rigid bodies, and equate. For example, point B is on collar C and velocity \mathbf{v}_B is known. But \mathbf{v}_B can also be found by sitting in the slotted arm's BFCS. Comparing the two expressions of \mathbf{v}_B solves the problem.

Example 2

Given ω_1 , find ω_2 and ω^{AB} in this configuration.

Note: Even when stationary, link AB can rotate in an arbitrary manner about AB, because of spherical joints at hinges A and B.

Implication: We can write

$$\boldsymbol{\omega}^{AB} = (\boldsymbol{\omega}^{AB} \cdot \hat{\mathbf{n}}_{AB}) \, \hat{\mathbf{n}}_{AB} + \hat{\mathbf{n}}_{AB} \times (\boldsymbol{\omega}^{AB} \times \hat{\mathbf{n}}_{AB})$$

$$\boldsymbol{\omega}_{a}^{AB}$$
, along AB $\boldsymbol{\omega}_{n}^{AB}$, normal to AB

- 1. The **Note** above says that we can <u>not</u> expect to find $\boldsymbol{\omega}_{a}^{AB} = (\boldsymbol{\omega}_{AB} \cdot \hat{\mathbf{n}}_{AB}) \, \hat{\mathbf{n}}_{AB}$.
- 2. Will only find $\boldsymbol{\omega}_n^{AB} = \hat{\mathbf{n}}_{AB} \times (\boldsymbol{\omega}_{AB} \times \hat{\mathbf{n}}_{AB})$.

Acceleration analysis

Relating acceleration of point *P* in two CS.

- 1. *P*'s acceleration is $\mathbf{a}_{\mathcal{E}}^{P}(=:\mathbf{a}_{rel}^{P})$ *w.r.t.* rigid body \mathcal{B} with BFCS $\{\mathcal{E}(t), G, \hat{\mathbf{e}}_{i}(t)\}$.
- 2. \mathscr{B} rotates at $\omega_{\mathscr{B}} := \omega_{\mathscr{E}/\mathscr{E}_0}$ and $\alpha_{\mathscr{B}} = \alpha_{\mathscr{E}/\mathscr{E}_0}$ w.r.t. CS $\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i\}$.

Find P's acceleration w.r.t. \mathscr{E}_0 , i.e. $\mathbf{a}_{\mathscr{E}_0}^P =: \mathbf{a}^P$

In general, \mathcal{E}_0 and \mathcal{E} have <u>different</u> origins:

- a. \mathcal{E}' s origin is at $\mathbf{r}^{G/O}(t)$ w.r.t. O, and
- b. \mathcal{E}' s origin has acceleration $\mathbf{a}_{\mathcal{E}_0}^G =: \mathbf{a}^G$:

$$\mathbf{a}^{P} = \mathbf{a}_{rel}^{P} + \boldsymbol{\omega}_{\mathscr{B}} \times (\boldsymbol{\omega}_{\mathscr{B}} \times \mathbf{r}^{P/G}) \dots$$
$$\dots + \boldsymbol{\alpha}_{\mathscr{B}} \times \mathbf{r}^{P/G} + 2\boldsymbol{\omega}_{\mathscr{B}} \times \mathbf{v}_{rel}^{P} + \mathbf{a}^{G}.$$

c. $\mathbf{a}^G = 0$, if \mathcal{E}_0 and \mathcal{E} have <u>same</u> origins.

"Five-term" formula

$$\mathbf{a}^{P} = \mathbf{a}_{rel}^{P} + \boldsymbol{\omega}_{\mathscr{B}} \times \left(\boldsymbol{\omega}_{\mathscr{B}} \times \mathbf{r}^{P/G}\right) + \boldsymbol{\alpha}_{\mathscr{B}} \times \mathbf{r}^{P/G} + \dots$$
$$\dots + 2\boldsymbol{\omega}_{\mathscr{B}} \times \mathbf{v}_{rel}^{P} + \mathbf{a}^{G}.$$

Acceleration \mathbf{a}^P of P in $\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i\}$ is found by measuring P's motion in $\{\mathscr{E}(t), G, \hat{\mathbf{e}}_i(t)\}$ which rotates at $\boldsymbol{\omega}_{\mathscr{B}}$ and $\boldsymbol{\alpha}_{\mathscr{B}}$ and translates $w.r.t. \mathscr{E}_0$.

I. FIVE terms in above formula:

- 1. \mathbf{a}_{rel}^P : *P's* acceleration *measured in* \mathcal{E} .
- 2. $\boldsymbol{\omega}_{\mathcal{B}} \times (\boldsymbol{\omega}_{\mathcal{B}} \times \mathbf{r}^{P/G})$: Centripetal acceleration
- 3. $\alpha_{\mathcal{B}} \times \mathbf{r}^{P/G}$: Angular acceleration
- 4. $2\omega_{\mathscr{B}} \times \mathbf{v}_{rel}^P$: Coriolis acceleration
- 5. \mathbf{a}^G : G's acceleration measured in \mathscr{E}_0 .
- II. $\omega_{\mathcal{B}} \times (\omega_{\mathcal{B}} \times \mathbf{r}^{P/G}) + \alpha_{\mathcal{B}} \times \mathbf{r}^{P/G}$: Measurement in <u>rotating</u> \mathcal{E} misses <u>obvious</u> rotational effects
- III. $2\omega_{\mathscr{B}} \times \mathbf{v}_{rel}^P$: Two sources measurement of rate of change of \mathbf{v}_{rel}^P and $\mathbf{r}^{P/G}$ in rotating \mathscr{E} .

Application

I. **Example 1**. Relating accelerations of two points on the same rigid body. Let A and B be points on a rigid body \mathcal{B} , rotating at $\boldsymbol{\omega}_{\mathcal{B}}$ and $\boldsymbol{\alpha}_{\mathcal{B}}$ w.r.t. $\{\mathcal{E}_0, O, \hat{\mathbf{E}}_i\}$. Let \mathbf{a}^A be acceleration of A in \mathcal{E}_0 .

Find \mathbf{a}^B measured w.r.t. \mathcal{E}_0 .

Answer:
$$\mathbf{a}^{B} = \mathbf{a}^{A} + \boldsymbol{\omega}_{\mathcal{B}} \times (\boldsymbol{\omega}_{\mathcal{B}} \times \mathbf{r}^{B/A}) + \boldsymbol{\alpha}_{\mathcal{B}} \times \mathbf{r}^{B/A}$$

II. **Example 2**. Find acceleration of the rod's end. $|\hat{\mathbf{E}}_3|$

Answer:

$$\left\{-\left(\omega_0^2+\dot{\theta}^2\right)\sin\theta+\ldots\right.$$

$$\ddot{\theta}\cos\theta$$
 $\Big\}L\hat{\mathbf{E}}_1+\dots$

$$2\omega_0\dot{\theta}L\cos\theta\hat{\mathbf{E}}_2 + \dots$$

$$(\dot{\theta}^2 \cos \theta + \ddot{\theta} \sin \theta) L \hat{\mathbf{E}}_3$$

ONE DAY ON THE BRIDGE

Don't cheat, nor allow others. Be careful who you help/know.