Evolution & Learning in GamesEcon 243B

Jean-Paul Carvalho

Lecture 16. Heterogeneous Preferences

Motivation

Adaptive Play by Idiosyncratic Agents (2004 GEB) by David P. Myatt & Christopher Wallace

- ► In the standard approach covered in the first part of the course, players within each population had identical payoff functions and strategy sets.
- ► This paper examines the consequences of introducing (within-population) heterogeneity in payoffs.
- ► Random (idiosyncratic) payoffs introduce noise into the revision process which plays a role similar to that of errors in the Young (1998) framework.

Pairwise Interactions

► Agents are matched to play a game of the following form:

		1			2	
1			а			0
	a			0		
2			0			d
	0			d		

- Assume a > d > 0, so that there are two pure-strategy Nash equilibria, the coordination equilibria (1,1) and (2,2), with the first being risk dominant and payoff dominant.
- ► In the mixed Nash equilibrium $(x^*, 1 x^*)$, $x^* = \frac{d}{a+d}$ which is less than $\frac{1}{2}$ since a > d by assumption.

Payoff Heterogeneity

► Instead of being matched to play the exact game above, each player's payoffs are perturbed:

$$\begin{split} &\tilde{a} = a + \sigma \varepsilon_a \\ &\tilde{d} = d + \sigma \varepsilon_d \end{split} \quad \text{where} \\ &\left[\begin{array}{c} \varepsilon_a \\ \varepsilon_d \end{array} \right] \sim N \left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{cc} \xi_a^2 & \rho \xi_a \xi_d \\ \rho \xi_a \xi_d & \xi_d^2 \end{array} \right] \right). \end{split}$$

- ➤ This is a specific kind of random utility model: the normal distribution is convenient especially due to its unbounded support which allows either strategy to be dominant with positive probability.
- ▶ The common scaling factor σ will be allowed to vanish for the limiting results.

Learning Protocol

- ightharpoonup There is a finite population of n players.
- ▶ Each period, every individual plays a fixed pure strategy against a randomly selected opponent from the n-1 remaining players.
- ▶ The state of play $z \in Z = \{0, ..., n\}$ is the number of players using strategy 1.

Learning Protocol

- ▶ *Birth-death process*: At the end of each period a randomly selected player is replaced and the entrant equipped with new (perturbed payoffs) \tilde{a} and \tilde{d} .
- ▶ The entrant observes the strategy distribution among the remaining n-1 players and selects a (myopic) best response.
- ► This defines a (time-homogeneous) Markov chain on the state space *Z*.

Best Responses

- ▶ Beginning in state z, and following the exit of an incumbent, either i = z or i = z 1 of the remaining incumbents will be using strategy 1.
- Let x = i/(n-1) denote the fraction of agents using strategy 1.
- ► The entrant chooses strategy 1 whenever $x(a + \sigma \varepsilon_a) > (1 x)(d + \sigma \varepsilon_d)$.
- ► Rearranging:

$$(1-x)\varepsilon_d - x\varepsilon_a < [xa - (1-x)d]/\sigma.$$

Best Responses

- ► The LHS is a normally distributed r.v. with mean 0 and variance $x^2\xi_a^2 + (1-x)^2\xi_d^2 2x(1-x)\rho\xi_a\xi_d$.
- ► Hence the entrant chooses pure strategy 1 with probability:

$$Pr[1|x] = \Phi\left(\frac{xa - (1-x)d}{\sigma\sqrt{x^2\xi_a^2 + (1-x)^2\xi_d^2 - 2x(1-x)\rho\xi_a\xi_d}}\right).$$

where Φ denotes the cdf of the standard normal distribution.

Basins of Attraction

► The **basins of attraction** of strategies 1 and 2 are:

$$Z_1 = \{\lceil (n-1)x^* + 1 \rceil, \dots, n\} \text{ and } Z_2 = \{0, \dots, \lfloor (n-1)x^* \rfloor\}.$$

► The **basin depth** faced by an entrant is $\kappa(x)^2$:

$$\kappa(x) = \frac{xa - (1 - x)d}{\sqrt{x^2 \xi_a^2 + (1 - x)^2 \xi_d^2 - 2x(1 - x)\rho \xi_a \xi_d}}.$$

▶ Define
$$\kappa_i = \kappa \left(\frac{i}{n-1}\right)$$
.

Basins of Attraction

- ▶ If $z \in Z_1$, the "flow of play" is toward strategy 1: Pr[1|x] > 1/2. If $z \in Z_2$, the "flow of play" is toward strategy 2.
- ▶ $z = \lceil (n-1)x^* \rceil$ belongs to neither basin of attraction (as defined here). The most likely choice of the entrant depends on the identity of the exiting player.

Basin Depths

- ▶ While the basins of attraction describe the flow of play, the basin depth $\kappa(x)^2$ measures the difficulty of moving against the flow:
 - ► Consider a state $z \in Z_1$. In this case, $\kappa_i > 0$. An entrant is most likely to play strategy 2 (against the flow) when a player using strategy 1 exits. In this case, $Pr[2|x] = 1 \Phi(\kappa_i/\sigma)$ where i = z 1. Hence the larger is κ_i , the lower is Pr[2|x].
 - Alternatively, consider a state $z \in Z_2$. In this case, $\kappa_i < 0$. An entrant is most likely to play strategy 1 when a player using strategy 2 exits. In this case, $Pr[1|x] = \Phi(\kappa_i/\sigma)$ where i = z. Hence the more negative is κ_i , the lower is Pr[1|x].

Transition Probabilities

- ▶ Due to step-by-step revisions, all transitions are local: $p_{z,z'} = 0$ for |z z'| > 1.
- For states z < n, the probability of a step up is:

$$p_{z,z+1} = \frac{n-z}{n} \times \Phi\left(\frac{\kappa_z}{\sigma}\right).$$

► The other transitions are:

$$p_{z,z-1} = \frac{z}{n} \times \left[1 - \Phi\left(\frac{\kappa_{z-1}}{\sigma}\right) \right].$$

$$p_{z,z} = \frac{n-z}{n} \times \left[1 - \Phi\left(\frac{\kappa_{z}}{\sigma}\right) \right] + \frac{z}{n} \times \Phi\left(\frac{\kappa_{z-1}}{\sigma}\right).$$

Asymptotic Behavior

- ► The Markov chain is irreducible and aperiodic, hence there is a unique stationary distribution (or ergodic distribution) which describes the long-run behavior of the process independently of initial conditions.
- ▶ We know that two-strategy games under arbitrary revision protocols generate reversible Markov processes, which permit easy computation of the stationary distribution.
- ▶ Indeed, we can employ Theorem 9.4 to derive the stationary distribution, which Myatt & Wallace denote by π .
- ► The local maxima of the stationary distribution coincide with the Bayesian Nash equilibria of the underlying game.

Stationary Distribution & BNE

- ► To see why, suppose $x < \Phi(\kappa(x)/\sigma)$ of incumbent players are using strategy 1.
- ► A strategy 1 player is less likely to exit [with prob. x] than enter [with approx. prob. $\Phi(\kappa(x)/\sigma)$]. In expectation, the number of strategy 1 players is growing.
- ► The opposite occurs when $x > \Phi(\kappa(x)/\sigma)$.
- ▶ So the process moves toward stable fixed points of $\Phi(\kappa(x)/\sigma)$, which are Bayesian Nash equilibria.

Stationary Distribution & BNE

Fig. 1. Parameters are a=3, d=2, $\xi_a=\xi_d=1$, $\rho=0$ and n=30.

15/19

Equilibrium Selection: large *n* limit

Proposition 15.1. As $n \to \infty$ all the weight in the stationary distribution focusses on a single Bayesian Nash equilibrium.

Equilibrium Selection: small σ limit

- ▶ Bergin and Lipman (1996, Ecta) demonstrate that for any recurrence class *E* one can choose state-dependent mutations in such a way that *E* is stochastically stable.
- ▶ Blume (1999, SFI working paper) shows that the risk dominant equilibrium is selected if a mild "skew symmetry" condition holds: the probability of a mutation depends only on the absolute difference between the payoffs to the two strategies.
- ▶ When $\xi_a = \xi_d$, the noise process in the current paper is skew symmetric:

Hence as $\sigma \to 0$, the risk-dominant equilibrium is selected in this case.

Equilibrium Selection: small σ limit

▶ For $\xi_a \neq \xi_d$, we need to define:

The **basin volumes** are $B_1 = \sum_{z \in Z_1} \kappa_{z-1}^2$ and $B_2 = \sum_{z \in Z_2} \kappa_z^2$.

Proposition 15.2. If $B_1 > B_2$ then $\lim_{\sigma \to 0} \pi_n = 1$ and if $B_2 > B_1$ then $\lim_{\sigma \to 0} \pi_0 = 1$.

Corollary 15.3. For n = 2, strategy 1 is selected ($\lim_{\sigma \to 0} \pi_n = 1$) whenever $a/\xi_a > d/\xi_d$.

Other Forms of Hetergoneity

- Neary (2012 GEB): 2×2 asymmetric coordination game where row population most prefers A and column population most prefers B. (A, B) convention can be stochastically stable.
- ► Carvalho (2017 ET): Large coordination game in which two populations have different choice sets. Miscoordination can be stochastically stable.