Logique et ensembles – Relations et applications – Calculs de sommes et de produits

Questions de cours.

- 1. Énoncer et démontrer le théorème de récurrence. On utilisera le fait que toute partie non vide de N admet un plus petit élément.
- 2. Énoncer et démontrer la propriété qui exprime le fait qu'"une relation d'équivalence induit une partition".
- **3.** Pour $a \in \mathbb{R}$ et $n \in \mathbb{N}$, que vaut $\sum_{k=0}^{n} a^k$ (attention à la valeur de a!)? Le démontrer.

1 Logique et ensembles

Exercice 1.1 (Lois de Morgan, \star). Soit E un ensemble et A, B \subset E. Montrer que :

- **1.** $E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$
- **2.** $E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$.

Exercice 1.2 (*). Soit X un ensemble. Pour $f: X \to X$, on définit f^n par récurrence en posant $f^0 = \operatorname{id}_X$ et $\forall n \in \mathbb{N}, f^{n+1} = f \circ f^n$.

- **1.** Montrer que $\forall n \in \mathbb{N}, f^{n+1} = f^n \circ f$.
- **2.** Si f est bijective, montrer que $\forall n \in \mathbb{N}, (f^{-1})^n = (f^n)^{-1}$.

Exercice 1.3 (Inégalité de Bernoulli, *).

- **1.** Montrer (de deux manières différentes) que $\forall a \in]-1, +\infty[$, $\forall n \in \mathbb{N} \setminus \{0,1\}$, $(1+a)^n \geqslant 1+na$.
- 2. Étudier les cas d'égalité.

Exercice 1.4 (*). On définit la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ par $F_1=F_2=1$ et $\forall n\in\mathbb{N}, F_{n+2}=F_{n+1}+F_n$. Montrer que :

$$\forall n \in \mathbb{N}, F_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}.$$

Exercice 1.5 (*). Soit $A \subset \mathbb{N}^*$ t.q. (i) $1 \in A$, (ii) $\forall n \in \mathbb{N}^*$, $n \in A \Longrightarrow 2n \in A$ et (iii) $\forall n \in \mathbb{N}^*$, $n+1 \in A \Longrightarrow n \in A$.

- **1.** Montrer que $\forall m \in \mathbb{N}, 2^m \in A$.
- **2.** Montrer que $A = \mathbb{N}^*$.

Exercice 1.6 (Inégalité arithmético-géométrique, \star). On cherche à montrer que :

$$\forall n \in \mathbb{N}^*, \ \forall (x_1, \dots, x_n) \in (\mathbb{R}_+^*)^n, \ \left(\prod_{k=1}^n x_k\right)^{1/n} \leqslant \frac{1}{n} \sum_{k=1}^n x_k.$$

- 1. Démontrer l'inégalité dans le cas n=2 et étudier les cas d'égalité.
- 2. En utilisant le résultat de l'exercice 1.5, démontrer l'inégalité dans le cas général.
- 3. Étudier les cas d'égalité.

2 Relations et applications

Exercice 2.1 (\star) . Soit $f: E \to F$ et $g: F \to G$ deux applications. Montrer que:

- **1.** $(g \circ f \text{ injective et } f \text{ surjective}) \Longrightarrow g \text{ injective.}$
- **2.** $(g \circ f \ surjective \ et \ g \ injective) \Longrightarrow f \ surjective.$

Exercice 2.2 (*). Soit E un ensemble et $f: E \to E$ une application. Une partie $X \subset E$ est dite f-stable lorsque $f(X) \subset X$.

1. Montrer que \varnothing , E et f(E) sont des parties f-stables.

- **2.** Montrer que si $X \subset E$ est f-stable, alors f(X) aussi.
- **3.** Montrer que si $X \subset E$ est f-stable, alors $f^{-1}(X)$ aussi.

Exercice 2.3 (*). Soit $f: E \to F$ une application. On définit une relation \mathcal{R}_f sur E par :

$$\forall (x,y) \in E^2, \ x \mathcal{R}_f y \iff f(x) = f(y).$$

- 1. Montrer que \mathcal{R}_f est d'équivalence.
- **2.** Caractériser l'injectivité de f en fonction des classes d'équivalence de \mathcal{R}_f .

Exercice 2.4 (\star) . Soit E un ensemble, A, B \subset E. On définit :

$$f: \begin{vmatrix} \mathcal{P}(E) \longrightarrow \mathcal{P}(A) \times \mathcal{P}(B) \\ X \longmapsto (X \cap A, X \cap B) \end{vmatrix}.$$

Donner une CNS sur A et B pour que f soit injective (resp. surjective).

Exercice 2.5 (*). Soit $f: E \to F$.

- **1.** Si $(B_i)_{i\in I}$ est une partition de F, montrer que $(f^{-1}(B_i))_{i\in I}$ est une partition de E.
- **2.** Donner un exemple où f est surjective, $(A_i)_{i\in I}$ est une partition de E, mais $(f(A_i))_{i\in I}$ n'est pas une partition de F.

Exercice 2.6 (\star). On considère :

$$f: \begin{vmatrix} [0,1] \longrightarrow [0,1] \\ x \longmapsto \begin{cases} x & \text{si } x \in \mathbb{Q} \\ 1-x & \text{sinon} \end{cases}$$

f est-elle injective? Surjective? Bijective?

Exercice 2.7 (Fonctions indicatrices, \star). Soit E un ensemble. Pour $A \subset E$, on définit la fonction indicatrice de A par :

$$\mathbb{1}_A: \begin{vmatrix} E \longrightarrow \{0,1\} \\ x \longmapsto \begin{cases} 1 & si \ x \in A \\ 0 & sinon \end{cases}$$

- **1.** Soit $A, B \subset E$. Montrer que $A = B \iff \mathbb{1}_A = \mathbb{1}_B$.
- **2.** Exprimer $\mathbb{1}_{E \setminus A}$, $\mathbb{1}_{A \cap B}$, $\mathbb{1}_{A \cup B}$ (et $\mathbb{1}_{A \triangle B}$) en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$.

Exercice 2.8 (*). Soit E, F, G trois ensembles. Montrer que les ensembles $(E^F)^G$ et $E^{F \times G}$ sont en bijection.

Exercice 2.9 (Théorème de Cantor, *). Soit E un ensemble. Montrer qu'il n'existe pas de surjection $E \to \mathcal{P}(E)$.

Calculs de sommes et de produits

Exercice 3.1 (\star) . Calculer les sommes suivantes :

1.
$$\sum_{k=1}^{n} k(k+1)$$
 2. $\sum_{k=1}^{n} k(k^2+1)$ 3. $\sum_{k=1}^{n} (k-2)(k+3)$.

3.
$$\sum_{k=1}^{n} (k-2)(k+3)$$

Exercice 3.2 (*). Calculer les sommes suivantes : 1. $\sum_{i=0}^{n} \sum_{j=0}^{n} i^{2} j^{3}$ 2. $\sum_{i=1}^{n} \sum_{j=i}^{i+3} 2 j^{2} i$ 3. $\sum_{1 \leq i \leq j \leq n} \frac{i}{j+1}$ 4. $\sum_{0 \leq i+j \leq n} (i+j)$.

1.
$$\sum_{i=0}^{n} \sum_{i=0}^{n} i^2 j^3$$

2.
$$\sum_{i=1}^{n} \sum_{j=i}^{i+3} 2j^2i$$

3.
$$\sum_{1 \leq i \leq j \leq n} \frac{i}{i+1}$$

2

$$4. \sum_{0 \leqslant i+j \leqslant n} (i+j)$$