

Summer Internship Report

Tyler Jones

Engineering Intern

Supervised By: Kyle Schneider

Custom Equipment Design

Manufacturing

Presented To: Executive Team

Tweet/Garot Mechanical Inc.

Summer 2024

Manufacturing Process Improvement

Goal

- Bridge the gap between field employees and shop programmers to reduce programming lead time

 - Improve tracking of inventory, Bills of Materials (BOMs), and Bills of Operations (BOOs), and increase estimating accuracy.

Workflow

- Receive Hand Drawings: Design request from shop scheduler
- **Design:** Create part(s) or assembly via CAD (Autodesk Inventor)
- Engineering Drawings: Create engineering drawings and import files to Autodesk Vault
- Data Integration: Transfer metadata into manufacturing software (SAP)
- Release Process: Finalize and release the process for production

Manufacturing Process Improvement: Examples

<u>Georgia Pacific – Dust Collector</u>

Manufacturing Process Improvement: Examples

<u>Tyson Warren – I-Beam Cross Supports</u>

Custom Equipment Design Overview

Main Projects

- Feeder Platforms ConAgra
- Cob Conveyor Platforms ConAgra
- Screw Conveyor Counterweight ConAgra
- Peeler Table Tyson Foods

Poly 6 Platform

Poly 9 Platform

Poly 10 Platform

Poly 11 Platform

Poly 12 Platform

- Is this design safe?
 - Add stiffeners between legs
 - Finite Element Analysis
 - Validify NASTRAN results for a benchmark case
 - Conduct FEA
 - Analyze results

- Benchmark Test Case on 2D Plate
 - Uniformly distributed compressive load on top edge

My Programmed Analysis via MATLAB

Inventor: Stress Analysis

Type: X Displacement

8/6/2024, 12:24:18 PM

0.3914 Max

0.2349

0.1566

0.0783

Unit: in

Project: Cob Conveyor Platforms

Displacement Results

Type: X Displacement Unit: in 8/6/2024, 12:26:44 PM 0.3507 Max 0.1403

Stress Results

tweetarot

Project: Conveyor Cover Counterweight

Project: Conveyor Cover Counterweight

Project: Conveyor Cover Counterweight

Analysis

• Force required by operator to lift cover – Two different approaches

Inventor: Dynamic Simulation

My Programmed Solution via Fortran

tweetarot

Project: Peeler Table

Applications from Education

- Computational Engineering
 - CFD for HVAC
 - FEA for Custom Equipment Design team
 - Programming: Fortran and MATLAB
- Engineering Mechanics
 - Mechanics of Materials
 - Material Science
 - Static/Dynamic Analysis
 - Stress Analysis
- Computer Aided Design
 - Autodesk Inventor
 - Design for Manufacturing

tweetarot

Close Support

- Manufacturing
 - Kyle Schneider Production Manager
 - Bethany VanSickle Manufacturing Engineer
 - Jason Waligursky Shop Scheduler
 - Shop and field employees
- Custom Equipment Design
 - Rod Jones CED Manager
 - Brandon Blochowiak CED Engineer
 - Tony Vertz Virtual Designer
 - Amber Hady Virtual Designer
 - Leon Xiong Virtual Designer

THANK YOU!