

sträckor, vektorer Linjärkombinationer

TATA24 Linjär Algebra, Fö 2

Geometriska vektorer

Jan Snellman¹

¹Matematiska Institutionen Linköpings Universitet

Linköping, HT 2022

Detta dokument återfinns på kurshemsidan http://courses.mai.liu.se/GU/TATA24/

Jan Snellman

1 Punkter, riktade sträckor, vektorer Origo, Ortsvektor

Addition och skalning av vektorer Parallellitet

Jan Snellman

TEKNISKA HÖGSKOLAN

ÜNKÖPINOS UNIVERSITET

sträckor, vektorer Linjärkombinationer

> 1 Punkter, riktade sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer Parallellitet

Exempel: Mittpunkter

2 Linjärkombinationer, baser
Koordinater
Avstånd

Jan Snellman

TEKNISKA HÖGSKOLAN

Punkter, riktade sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer Parallellitet

Exempel: Mittpunkter Linjärkombinationer,

Låt oss föreställa oss ett plan (vi kan också tänka oss rummet), med ett antal utvalda punkter. Den riktade sträckan från punkt A till punkt B betecknas \overline{AB} . Det är inte samma sak som \overline{BA} .

Jan Snellman

Punkter, riktade

sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer

Parallellitet
Exempel: Mittpunkter

Liempei. Wittpunkter

En riktad sträcka \overline{AB} från A till B anger en förflyttning, eller en *vektor*. Olika riktade sträckor kan realisera samma vektor. I figuren nedan så är $\overline{AB} = \overline{CD} = \overline{v}$, medan \overline{AC} anger en annan vektor.

Jan Snellman

TEKNISKA HÖGSKOLAI

Punkter, riktade sträckor, vektorer Origo, Ortsvektor

Addition och skalning av vektorer
Parallellitet

Exempel: Mittpunkter

Linjärkombinationer,

Skall man vara pedantisk så definieras vektorn \overline{v} som mängden av alla riktade sträckor <u>vilka</u> har samma längd och rikting som den riktade sträckan \overline{AB} , så det korrekta skrivsättet blir $\overline{AB} \in \overline{v}$. Det är dock brukligt att identifiera representanten \overline{AB} med klassen \overline{v} .

TATA24 Linjär Algebra, Fö 2 Jan Snellman

sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer Parallellitet

Exempel: Mittpunkter Linjärkombinationer,

Vi inför en utvald punkt, som vi kallar *origo* och betecknar med O. Till varje punkt P hör då dess ortsvektor (representerad av) \overline{OP} . Omvänt, varje vektor \overline{v} är ortsvektor till en unik punkt A, så att $\overline{v} = \overline{OA}$.

TEKNISKA HÖGSKOLAN

Punkter, riktade sträckor, vektore Origo, Ortsvektor

Addition och skalning av vektorer
Parallellitet

Exempel: Mittpunkter

Linjärkombinationer,

Definition

Om $\overline{\mathbf{u}} = \overline{AB}$ och $\overline{\mathbf{v}} = \overline{BC}$ så är $\overline{\mathbf{u}} + \overline{\mathbf{v}} = \overline{AC}$.

Jan Snellman

Punkter, riktade sträckor, vektorer Origo, Ortsvektor

Addition och skalning av vektorer
Parallellitet

Exempel: Mittpunkter

Linjärkombinationer

Definition

- Längden av en geometrisk vektor $\overline{\mathbf{u}} = \overline{AB}$ är avståndet mellan A och B. Vi betecknar längden som $\|u\|$.
- Vektorn representerad av AA (för en godtycklig punkt A) kallas för nollvektorn och betecknas 0. Den har längd noll.
- Om $\mathbb{R} \ni c > 0$ så anger $c\overline{\mathrm{u}}$ den vektor som är *lika riktad* med $\overline{\mathrm{u}}$ och har längd $c \|\overline{\mathrm{u}}\|$. Om c = 0 så $c\overline{\mathrm{u}} = \overline{\mathrm{0}}$. Om c < 0 så anger $c\overline{\mathrm{u}}$ den vektor som är *motsatt riktad* med $\overline{\mathrm{u}}$ och har längd $-c \|\overline{\mathrm{u}}\|$.
- Vi har alltså att

$$\|c\overline{\mathrm{u}}\| = |c| \|\overline{\mathrm{u}}\|$$

Om \overline{u} är den gröna vektorn, kan du hitta $2\overline{u}$ och $-\overline{u}$ i figuren? Vilka är de övriga?

Jan Snellman

TEKNISKA MÖGSKOLAN

Punkter, riktade sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer

Parallellitet

Exempel: Mittpunkter

Linjärkombinationer, baser

Definition

Vi säger att vektorn \overline{v} är parallell med vektorn \overline{u} omm $\overline{v}=c\overline{u}$ för någon skalär c. Nollvektorn $\overline{0}$ är parallell med alla andra vektorer.

Alla dessa är parallella.

Jan Snellman

TEKNISKA HÖGSKOLAN

Punkter, riktade sträckor, vektore

Origo, Ortsvektor Addition och skalning av vektorer

Parallellitet

Exempel: Mittpunkter

Linjärkombinationer,

Sats

Vi definierar $-\overline{\mathbf{u}} = (-1)\overline{\mathbf{u}}$ och $\overline{\mathbf{u}} - \overline{\mathbf{v}} = \overline{\mathbf{u}} + (-1)\overline{\mathbf{v}}$. Då har vi följande räknelagar för vektorer:

$$(\overline{u} + \overline{v}) + \overline{w} = \overline{u} + (\overline{v} + \overline{w})$$

$$\overline{u} + \overline{v} = \overline{v} + \overline{u}$$

$$\overline{u} + \overline{0} = \overline{u}$$

$$\overline{u} + \overline{v} = \overline{w} \iff \overline{v} = \overline{w} - \overline{u}$$

$$1\overline{u} = \overline{u}$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$c(d\overline{\mathbf{u}}) = (cd)\overline{\mathbf{u}} \tag{6}$$

$$(c+d)\overline{\mathbf{u}} = c\overline{\mathbf{u}} + d\overline{\mathbf{u}} \tag{7}$$

$$c(\overline{\mathbf{u}} + \overline{\mathbf{v}}) = c\overline{\mathbf{u}} + c\overline{\mathbf{v}} \tag{8}$$

Jan Snellman

Punkter, riktade sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer

Parallellitet

Exempel: Mittpunkter

Jan Snellman

TEKNISKA HÖGSKOLAN

Punkter, riktade sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer

Parallellitet

Exempel: Mittpunkter

Jan Snellman

Punkter, riktade sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer

Parallellitet

Exempel: Mittpunkter

Jan Snellman

Punkter, riktade sträckor, vektorer Origo, Ortsvektor Addition och skalning av vektorer

Parallellitet

Exempel: Mittpunkter

Exempel: Mittpunkter

Linjärkombinationer,

- Låt A, B vara två punkter (i planet, eller om de ligger i rummet: i det unika plan som innehåller O, A, B).
- Låt M vara mittpunkten på sträckan mellan dem. Hur kan vi uttrycka ortsvektorn OM i termer av A och B?
- Vi får att

$$\overline{OM} = \overline{OA} + \overline{AM} = \overline{OA} + \frac{1}{2}\overline{AB} = \overline{OA} + \frac{1}{2}(\overline{OB} - \overline{OA}) = \frac{1}{2}\overline{OA} + \frac{1}{2}\overline{OB}$$

Exempel: Mittpunkter

Linjärkombinationer,

- Låt A, B vara två punkter (i planet, eller om de ligger i rummet: i det unika plan som innehåller O, A, B).
- Låt M vara mittpunkten på sträckan mellan dem. Hur kan vi uttrycka ortsvektorn OM i termer av A och B?
- Vi får att

$$\overline{OM} = \overline{OA} + \overline{AM} = \overline{OA} + \frac{1}{2}\overline{AB} = \overline{OA} + \frac{1}{2}(\overline{OB} - \overline{OA}) = \frac{1}{2}\overline{OA} + \frac{1}{2}\overline{OB}$$

Exempel: Mittpunkter

Linjärkombinationer,

- Låt A, B vara två punkter (i planet, eller om de ligger i rummet: i det unika plan som innehåller O, A, B).
- Låt M vara mittpunkten på sträckan mellan dem. Hur kan vi uttrycka ortsvektorn OM i termer av A och B?
- Vi får att

$$\overline{OM} = \overline{OA} + \overline{AM} = \overline{OA} + \frac{1}{2}\overline{AB} = \overline{OA} + \frac{1}{2}(\overline{OB} - \overline{OA}) = \frac{1}{2}\overline{OA} + \frac{1}{2}\overline{OB}$$

Exempel: Mittpunkter

Linjärkombinationer,

- Låt A, B vara två punkter (i planet, eller om de ligger i rummet: i det unika plan som innehåller O, A, B).
- Låt M vara mittpunkten på sträckan mellan dem. Hur kan vi uttrycka ortsvektorn OM i termer av A och B?
- Vi får att

$$\overline{\mathit{OM}} = \overline{\mathit{OA}} + \overline{\mathit{AM}} = \overline{\mathit{OA}} + \frac{1}{2}\overline{\mathit{AB}} = \overline{\mathit{OA}} + \frac{1}{2}(\overline{\mathit{OB}} - \overline{\mathit{OA}}) = \frac{1}{2}\overline{\mathit{OA}} + \frac{1}{2}\overline{\mathit{OB}}$$

Punkter, riktade sträckor, vektorer

Linjärkombinationer, baser

Koordinater Avstånd

Definition

Låt $\overline{\mathbf{u}}_1, \dots, \overline{\mathbf{u}}_k$ vara vektorer, och x_1, \dots, x_n skalärer. Då är

$$\sum_{k=1}^{n} x_k \overline{\mathbf{u}}_k$$

en *linjärkombination* av $\overline{\mathbf{u}}_1, \dots, \overline{\mathbf{u}}_k$.

Sats

- En linjärkombination av linjärkombinationer av $\overline{u}_1, \ldots, \overline{u}_k$ är ånyo en linjärkombinationer av $\overline{u}_1, \ldots, \overline{u}_k$.
- Låt ū₁, ū₂ vara två icke-parallella vektorer i planet, och v en vektor i planet. Då kan v uttryckas som en linjärkombination v = x₁ū₁ + x₂ū₂ på ett entydigt sätt.
- Låt ū₁, ū₂, ū₃ vara tre vektorer planet, sådana att det inte finns något plan som innehåller alla tre. Låt ⊽ vara en vektor i rummet. Då kan ⊽ uttryckas som en linjärkombination ⊽ = x₁ū₁ + x₂ū₂ + x₃ū₃ på ett entydigt sätt.

Jan Snellman

TEKNISKA MÖGSKOLAN
LINKÖPINGS UNIVERSITET

Punkter, riktade sträckor, vektorer

Linjärkombinationer, baser

Koordinater Avstånd

Existens (planet):

Figur 2.11: $\mathbf{v} = \mathbf{v_1} + \mathbf{v_2} = x_1 \mathbf{u_1} + x_2 \mathbf{u_2}$

Jan Snellman

Punkter, riktade sträckor, vektorei

Linjärkombinationer, baser

Koordinater Avstånd

Existens (rummet):

Figur 2.12: $\mathbf{v} = \mathbf{v}' + \mathbf{v_3} = x_1 \mathbf{u_1} + x_2 \mathbf{u_2} + x_3 \mathbf{u_3}$

Punkter, riktade sträckor, vektorei

Linjärkombinationer, baser Koordinater

Aystånd

Entydighet: Om

$$\overline{\mathbf{v}} = x_1 \overline{\mathbf{u}}_1 + x_2 \overline{\mathbf{u}}_2 = y_1 \overline{\mathbf{u}}_1 + y_2 \overline{\mathbf{u}}_2$$

så

$$x_1\overline{\mathbf{u}}_1 + x_2\overline{\mathbf{u}}_2 - y_1\overline{\mathbf{u}}_1 - y_2\overline{\mathbf{u}}_2 = \overline{0}$$

varför

$$(x_1-y_1)\overline{\mathbf{u}}_1+(x_2-y_2)\overline{\mathbf{u}}_2=\overline{\mathbf{0}}$$

Vi hävdar att $x_2 - y_2 = 0$. Om inte, så

$$(x_1-y_1)\overline{\mathbf{u}}_1=(y_2-x_2)\overline{\mathbf{u}_2},$$

vilket ger att $\overline{u_1}$ och $\overline{u_2}$ är parallella, en motsägelse.

Eftersom $(x_2 - y_2 = 0$, så får vi att

$$(x_1 - y_1)\overline{\mathbf{u}}_1 = \overline{\mathbf{0}}$$

Nu måste $x_1-y_1=0$, ty annars är $\overline{u_1}=\overline{0}$, en motsägelse eftersom nollvektorn är parallell med allt, inklusive \overline{u}_2 .

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

sträckor, vektorer

Linjärkombinationer, baser

Koordinater Avstånd

Definition

En ordnad uppsättning vektorer i planet (eller i rummet) kallas en *bas* om varje vektor i planet (rummet) på ett entydigt sätt kan skrivas som en linjärkombination av elementen i basen.

Sats

En bas i planet består av två icke-parallella vektorer. En bas i rummet består av tre vektorer, sådana att det inte finns något plan vilket innehåller alla tre.

Ej bas, bas:

Jan Snellman

Punkter, riktade sträckor, vektorer

Linjärkombinationer, baser

Koordinater Avstånd

Figur 2.12: $\mathbf{v} = \mathbf{v}' + \mathbf{v_3} = x_1 \mathbf{u_1} + x_2 \mathbf{u_2} + x_3 \mathbf{u_3}$

Jan Snellman LINKÖPINGS UNIVERSITET

Koordinater Aystånd

Definition

Låt $\overline{u}_1, \overline{u}_2$ vara en bas i planet, och antag att $\overline{v} = x_1 \overline{u}_1 + x_2 \overline{u}_2$. Då kallas talparet x_1, x_2 för koordinaterna för \overline{v} i basen $\overline{u}_1, \overline{u}_2$.

Vi skriver $u = [\overline{u}_1, \overline{u}_2]$ och

$$\overline{\mathbf{v}} = \underline{\mathbf{u}} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

Om istället $\overline{u}_1, \overline{u}_2, \overline{u}_3$ är en bas i rummet rummet så får vi $u = [\overline{u}_1, \overline{u}_2, \overline{u}_3]$ och

$$\overline{\mathbf{v}} = \underline{\mathbf{u}} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Ian Snellman

TEKNISKA HÖGSKOLAN

Punkter, riktade sträckor, vektore

Linjärkombinationer

Koordinater Avstånd

Exempel

Koordinaterna beror såväl på vektorn som på den valda basen:

Figur 2.13: v som linjärkombination av baserna e och f.

Exempel 2.3.4. Betrakta figur 2.13. Där har vi två olika baser, \mathbf{f}_1 , \mathbf{f}_2 och \mathbf{e}_1 , \mathbf{e}_2 . I figuren ser vi att \mathbf{v} kan skrivas

$$\mathbf{v} = 2\mathbf{f_1} + 1\mathbf{f_2} = (\mathbf{f_1} \ \mathbf{f_2}) \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \underline{\mathbf{f}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
och
$$\mathbf{v} = 5\mathbf{e_1} + 4\mathbf{e_2} = (\mathbf{e_1} \ \mathbf{e_2}) \begin{pmatrix} 5 \\ 4 \end{pmatrix} = \underline{\mathbf{e}} \begin{pmatrix} 5 \\ 4 \end{pmatrix},$$

 $dvs \mathbf{v}$ har koordinaterna $\begin{pmatrix} 2\\1 \end{pmatrix}$ i basen $\underline{\mathbf{f}}$ och $\begin{pmatrix} 5\\4 \end{pmatrix}$ i basen $\underline{\mathbf{e}}$.

Punkter, riktade sträckor, vektorer

Linjärkombinationer, baser

Koordinater Avstånd

Exempel

Låt A,B vara två punkter i planet, låt O vara origo, låt $\overline{e}_1,\overline{e}_2$ vara en bas för rummet.

Antag att

$$\overline{\mathit{OA}} = \underline{\mathrm{e}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\overline{\textit{OB}} = \underline{\mathrm{e}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Enligt vad vi gjort tidigare så är

$$\overline{\mathit{OM}} = rac{1}{2}\overline{\mathit{OA}} + rac{1}{2}\overline{\mathit{OB}} = \ rac{1}{2}\mathrm{e} \left(egin{matrix} -1 \ 1 \end{matrix}
ight) + rac{1}{2}\mathrm{e} \left(egin{matrix} 2 \ 1 \end{matrix}
ight) = \mathrm{e} \left(egin{matrix} 1/2 \ 1 \end{matrix}
ight)$$

Jan Snellman

TEKNISKA HÖGSKOLAL
LINKÖPINGS UNIVERSITE

Punkter, riktade sträckor, vektorer

Linjärkombinationer baser

Koordinater Avstånd

Definition

Antag att vi har valt origo i planet (rummet) och dessutom en ordnad bas. Då är koordinaterna för en punkt M, map detta koordinatsystem, givet av koordinaterna för ortsvektorn \overline{OM} .

Vi skriver antingen $\overline{OM} = \underline{e} \begin{pmatrix} x \\ y \end{pmatrix}$ eller M = (x, y). Den senare notationen beror (osynligt) på både O och \underline{e} .

Exempel

En punkts koordinater beror således även av val av origo: vi har nedan att

$$\overline{\mathit{OM}} = \underline{\mathrm{e}} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \overline{\mathit{O'M}} = \underline{\mathrm{e}} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Så beroende av val av origo så har vi antingen M = (2,1) eller M = (3,2).

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Punkter, riktade sträckor, vektorer

Linjärkombinationer baser

Koordinater Avstånd

Exempel

Vi kan flytta origo så att vårt problem blir lättare. Nedan vill vi hitta mittpunkten till triangeln ABC. Genom att sätta O=C får vi en enklare figur; för att få ut formeln för M då origo inte ligger i C adderar vi bara C.

Punkter, riktade sträckor, vektorer

Linjärkombinationer, baser

Koordinater Avstånd

Exempel (forts)

Om linjerna från hörn till mittpunkt alla skär i en gemensam punkt så

$$\overline{OM_1} = \frac{1}{2}\overline{OA}$$

$$\overline{OM_3} = \frac{1}{2}\overline{OB}$$

$$\overline{OM_2} = \frac{1}{2}\overline{OA} + \frac{1}{2}\overline{OB}$$

$$\overline{OM} = s\overline{OM_2} = s\frac{1}{2}\overline{OA} + s\frac{1}{2}\overline{OB}$$

$$\overline{OM} = \overline{OA} + t\overline{AM_3} = \overline{OA} + t(\overline{OM_3} - \overline{OA}) = \overline{OA} + t(\frac{1}{2}\overline{OB} - \overline{OA})$$

$$\overline{OM} = \overline{OB} + r\overline{BM_1} = \overline{OB} + r(\overline{OM_1} - \overline{OB}) = \overline{OB} + r(\frac{1}{2}\overline{OA} - \overline{OB})$$

Koordinater Aystånd

Exempel (forts)

Vi sätter uttrycken för \overline{OM} lika:

$$s\frac{1}{2}\overline{OA} + s\frac{1}{2}\overline{OB} = \overline{OA} + t(\frac{1}{2}\overline{OB} - \overline{OA}) = \overline{OB} + r(\frac{1}{2}\overline{OA} - \overline{OB})$$

Eftersom $[\overline{OA}, \overline{OB}]$ är en bas, kan vi jämföra koordinater, och får

$$s/2 = 1 - t = r/2$$

 $s/2 = t/2 = 1 - r$

så s = t = r och t/2 = 1 - t, så s = t = r = 2/3.

Alltså är

$$\overline{OM} = \frac{2}{3}\overline{OM_2} = \frac{2}{3}\overline{OM_2} = \frac{2}{3}(\frac{1}{2}\overline{OA} + \frac{1}{2}\overline{OB}) = \frac{1}{3}\overline{OA} + \frac{1}{3}\overline{OB} = \frac{1}{3}\overline{OA} + \frac{1}{3}\overline{OB} + \frac{1}{3}\overline{OO}$$

Jan Snellman

TEKNISKA HÖGSKOLAN
LINKÖPINGS UNIVERSITET

Punkter, riktade sträckor, vektorei

Linjärkombinationer, baser

Koordinater Aystånd

Exempel (forts)

M1-C

$$\underbrace{\mathsf{Om}}_{\mathsf{C}} C \neq \underbrace{\mathsf{O}}_{\mathsf{S}} \text{ så sätter vi } O' = C. \text{ Då blir } \overline{O'A} = \overline{\mathit{OA}} - \overline{\mathit{OC}}, \ \overline{O'B} = \overline{\mathit{OB}} - \overline{\mathit{OC}},$$

$$\overline{O'C} = \overline{OC} - \overline{OC} = \overline{OO}$$
 och

$$\overline{O'M} = \frac{1}{3}\overline{O'A} + \frac{1}{3}\overline{O'B}$$

Vi får

$$\overline{\mathit{OM}} \ = \ \overline{\mathit{OC}} \ + \ \overline{\mathit{O'M}} \ = \ \overline{\mathit{OC}} \ + \ \frac{1}{3}(\overline{\mathit{OA}} \ - \ \overline{\mathit{OC}}) \ + \ \frac{1}{3}(\overline{\mathit{OB}} \ - \ \overline{\mathit{OC}}) \ = \ \frac{1}{3}\overline{\mathit{OA}} \ + \ \frac{1}{3}\overline{\mathit{OB}} \ + \ \frac{1}{3}\overline{\mathit{OC}}$$

Punkter, riktade sträckor, vektorei

Linjärkombinationer, baser

Koordinater Avstånd

Definition

Låt A, B vara punkter i planet (rummet). Då är avståndet mellan A och B givet av längden av den riktade sträckan mellan punkterna,

$$d(A,B) = \left\| \overline{AB} \right\|$$

Definition

Ett koordinatsystem i planet (rummet) är rätvinkligt (ortogonalsystem) om basvektorerna är parvis vinkelräta mot varandra. Det är ett *ortonormalt system* (ON) om dessutom alla basvektorer har längd 1.

Sats (Pythagoras sats)

Om \underline{e} utgör ett ON-system i planet och $\overline{v}=x_1\overline{e}_1+x_2\overline{e}_2$ så $\|\overline{v}\|=x_1^2+x_2^2$. Om \underline{e} utgör ett ON-system i rummet och $\overline{v}=x_1\overline{e}_1+x_2\overline{e}_2+x_3\overline{e}_3$ så $\|\overline{v}\|=x_1^2+x_2^2+x_3^2$.

Ian Snellman

Koordinater Avstånd

Lösning: Av figuren framgår att

$$\overline{OQ} = \overline{OP} + \overline{PQ} \tag{2.4.1}$$

$$\iff$$

$$\overline{PQ} = \overline{OQ} - \overline{OP} = \underline{\mathbf{e}} \left(\begin{array}{c} 4 \\ 2 \end{array} \right) - \underline{\mathbf{e}} \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \underline{\mathbf{e}} \left(\begin{array}{c} 2 \\ -1 \end{array} \right).$$

Pythagoras sats ger att avståndet är

$$\sqrt{1^2 + 2^2} = \sqrt{5} = |\overline{PQ}|.$$

Se (2.4.1) ovan som alternativa resvägar till samma mål, punkten Q; åk antingen raka spåret från O till Q, dvs längs \overline{OQ} eller först från O till P, sedan från P till Q. Båda vägarna ger samma slutmål Q, dvs resulterar i samma vektor.

Figur 2.14: Koordinaträkning i planet

Jan Snellman

Punkter, riktade sträckor, vektorer

Linjärkombinationer, baser

Koordinater Avstånd

Figur 2.16: $|\mathbf{v}|^2 = x_1^2 |\mathbf{e}_1|^2 + x_2^2 |\mathbf{e}_2|^2 + x_3^2 |\mathbf{e}_3|^2$