Nome e cognome:	Classe: Data:Gri	glia
Risposte (variante 21)		

1	2	3	4	5	6	7	8	9	10
11	10	10	1.4	1.5	1.0	17	10	10	20
11	12	13	14	15	16	17	18	19	20

- 1. Nel range di energie tipico della radiodiagnostica (es. $30-150\,\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?
 - (a) Scattering di Rayleigh (coerente).

(c) Produzione di coppie (e^+/e^-) .

(b) Effetto fotoelettrico.

- (d) Effetto Compton.
- Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (b) Viene assorbito completamente dall'elettrone.
 - (c) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (d) Passa attraverso l'elettrone senza interagire.
- Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che la luce è composta da particelle (fotoni).
 - (b) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (c) Che il principio di indeterminazione non è valido.
 - (d) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
- Una radiazione di frequenza $f=1.0\times 10^{15}\,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\,\mathrm{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34} \text{ J} \cdot \text{s e 1 eV} \approx 1.6 \times 10^{-19} \text{ J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)
 - (a) $K_{max} \approx 2.14 \,\text{eV}$
- (b) $K_{max} \approx 6.14 \,\text{eV}$ (c) $K_{max} \approx 2.0 \,\text{eV}$
- (d) $K_{max} \approx 4.14 \,\text{eV}$
- Il nucleo di Deuterio ($^{2}_{1}$ H) è formato da 1 protone ($m_{p} \approx 1.0073$ u) e 1 neutrone ($m_{n} \approx 1.0087$ u). La sua massa misurata è $m_D \approx 2.0141 \,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 2.0141 \,\mathrm{u}$

- (c) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (b) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- (d) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?
 - (a) Il tempo trascorso dall'inizio dell'esperimento.
 - (b) L'atto di osservazione o misurazione (apertura della scatola).
 - (c) La volontà del gatto.
 - (d) Il decadimento dell'atomo radioattivo all'interno della scatola.
- Completare la seguente reazione di decadimento beta meno (β^-) : ${}_{6}^{14}C \rightarrow ? + e^- + \bar{\nu}_e$
 - (a) ${}_{6}^{14}C$

(b) ${}_{5}^{14}B$

(c) ${}^{14}_{7}$ N

- (d) $^{13}_{6}$ C
- Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?

10.		sperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' - \lambda)$ de diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
	(a)	La variazione è indipendente dall'angolo $\theta.$
	(b)	Quando l'angolo di diffusione è $\theta=0^\circ$ (nessuna diffusione).
	(c)	Quando l'angolo di diffusione è $\theta=180^\circ$ (diffusione all'indietro).
	(d)	Quando l'angolo di diffusione è $\theta=90^{\circ}$.
11.		i calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?
	(a)	$E_B = (b)$ $E_B = (\Delta m)c^2$. (c) $E_B = (\Delta m)/c^2$. (d) $E_B = m_{nucleo}c^2$. $(\sum m_{costituenti})c^2$.
12.		o la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale gono emessi elettroni, indipendentemente dall'intensità della luce?
	(a)	Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
	(b)	Perché a basse frequenze la luce si comporta solo come un'onda.
	(c)	Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
	(d)	Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
13.	Il princ	ipio di indeterminazione è una conseguenza fondamentale:
	(a)	Degli errori sperimentali inevitabili negli strumenti di misura.
	(b)	Del modello atomico di Bohr.
	(c)	Della teoria della relatività di Einstein.
	(d)	Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
14.	Identific	care il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}\mathrm{U} \to X + \alpha$
	(a)	$X = ^{234}_{88}$ Ra (Radio- (b) $X = ^{234}_{90}$ Th (Torio- (c) $X = ^{238}_{90}$ Th (Torio- 234) (d) $X = ^{234}_{92}$ U (Uranio- 234)
15.	La "cata	astrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
	(a)	Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.
	(b)	Che l'energia emessa fosse quantizzata fin dall'inizio.
	(c)	Un'intensità energetica nulla per lunghezze d'onda molto piccole.
	(d)	Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).
16.	Cosa po	ostula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
	(a)	Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
	(b)	Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
	(c)	Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
	(d)	Un atomo emette radiazione solo quando viene ionizzato.
17.	La legge	e del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:

Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2}=5\,\mathrm{giorni}$. Se inizialmente abbiamo 16 mg di questo isotopo,

(c) 1 mg

(d) 2 mg

(a) Lo stato "gatto vivo".

(d) Lo stato "gatto morto".

(a) 8 mg

quanti milligrammi rimarranno dopo $20\,\mathrm{giorni?}$

(b) Uno stato indeterminato che non è né vivo né morto.

(c) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".

(b) 4 mg

	(a) L'attività del campione al tempo t .
	(b) Il numero $N(t)$ di nuclei radioattivi non ancora decaduti presenti al tempo t , partendo da N_0 nuclei al tempo $t=0$.
	(c) Il tempo di dimezzamento del campione.
	(d) Il numero di nuclei decaduti al tempo t .
18.	Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
	(a) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
	(b) Il nucleo atomico vibra emettendo fotoni.
	(c) Gli urti tra atomi eccitati producono lo spettro.
	(d) L'elettrone emette un fotone di energia definita $(E = hf)$ quando salta da un'orbita permessa a energia superiore

19. Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $(^{18}_{9}F)$ può decadere β^+ : $^{18}_{9}F \rightarrow ? + e^+ + \nu_e$

(c) ${}_{9}^{19}$ F

(c) Decadimento Alfa (α)

(d) Emissione Gamma (γ)

(d) $^{18}_{10}$ Ne

(b) ${}_{9}^{17}$ F

Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?

a una a energia inferiore.

(a) Decadimento Beta meno (β^{-})

(b) Decadimento Beta più (β^+)

(a) ${}^{18}_{8}$ O