Zusammenfassung Numerik von PDEs

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

 $\mathbf{Def.} \ \mathrm{Sei} \ \Omega \subseteq \mathbb{R}^n$ offen. Eine DGL der Form

$$F(x, u, Du, \dots, D^k u) = 0$$

heißt partielle DGL/PDE der Ordnung $k \geq 1$, wobei

$$F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k} \to \mathbb{R}$$

eine gegebene Funktion und $u:\Omega\to\mathbb{R}$ gesucht ist.

Def (Klassifikation von PDEs).

• Die PDE heißt linear, wenn sie die Form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f(x)$$

mit Funktionen $a_{\alpha}, f: \Omega \to \mathbb{R}$ besitzt.

• Die PDE heißt semilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x)D^{\alpha}u + a_0(x, u, D_u, \dots, D^{k-1}u) = 0$$

besitzt, wobei $a_{\alpha}: \Omega \to \mathbb{R}$ und $a_0: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k} \to \mathbb{R}$ gegeben sind.

• Die PDE heißt quasilinear, wenn sie die Form

$$\sum_{|\alpha|=k} a_{\alpha}(x, u, Du, \dots, D^{k-1}u) D^{\alpha}u + a_{0}(x, u, Du, \dots, D^{k-1}u) = 0$$

hat, wobei $a_{\alpha}, a_0 : \Omega \times \mathbb{R} \times \mathbb{R}^n \times \ldots \times \mathbb{R}^{n^k}$ gegeben sind.

 Die PDE heißt nichtlinear, falls die Ableitungen der höchsten Ordnung nicht linear vorkommen.

Def. Sei $\Omega \subseteq \mathbb{R}^n$ offen und $F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}$ eine gegebene Funktion. Eine PDE der Form

$$F(x, u, \partial_{x_1} u, \dots, \partial_{x_n} u, \partial_{x_1} \partial_{x_1} u, \dots, \partial_{x_n} \partial_{x_n} u, \dots, \partial_{x_n} \partial_{x_n} u) = 0$$

heißt PDE zweiter Ordnung.

Notation. $p_i := \partial_{x_i} u, p_{ij} := \partial_{x_i x_j}^2 u$

$$M(x) := \begin{pmatrix} \frac{\partial F}{\partial p_{11}} & \cdots & \frac{\partial F}{\partial p_{1n}} \\ \vdots & & \vdots \\ \frac{\partial F}{\partial p_{n1}} & \cdots & \frac{\partial F}{\partial p_{nn}} \end{pmatrix} = M(x)^{T}.$$

Def (Typeneinteilung für PDEs der 2. Ordnung). Obige PDE zweiter Ordnung heißt

- elliptisch in x, falls die Matrix M(x) positiv o. definit ist.
- parabolisch in x, falls genau ein EW von M(x) gleich null ist und alle anderen dasselbe Vorzeichen haben.
- hyperbolisch in x, falls genau ein EW ein anderes Vorzeichen als die anderen EWe hat.

Lösungstheorie elliptischer PDEs

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt.

• $\mathcal{C}(\overline{\Omega}, \mathbb{R}^m) := \{u : \overline{\Omega} \to \mathbb{R}^m \mid u \text{ stetig}\}, \, \mathcal{C}(\overline{\Omega}) := \mathcal{C}(\overline{\Omega}, \mathbb{R}), \text{ mit Norm}\}$

$$||u||_{\mathcal{C}(\overline{\Omega},\mathbb{R}^m)} = \sup_{x \in \overline{\Omega}} ||u(x)||.$$
 (Supremumsnorm)

• $\mathcal{C}^k(\overline{\Omega}, \mathbb{R}^m)$, $k \in \mathbb{N}$ ist der Raum aller auf Ω k-mal stetig diff'baren Funktionen $u: \Omega \to \mathbb{R}^m$, die zusammen mit ihren Ableitungen bis zur Ordnung k stetig auf $\overline{\Omega}$ fortgesetzt werden können.

$$||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} = \sum_{|\alpha| \le k} ||D^{\alpha}u||_{\mathcal{C}(\overline{\Omega},\mathbb{R}^m)}$$

• Sei $\alpha \in [0,1)$. $C^{0,\alpha}(\overline{\Omega},\mathbb{R}^m) = \{u \in C(\overline{\Omega},\mathbb{R}^m) \mid H_{\alpha}(u,\overline{\Omega}) < \infty\}$ mit

$$H_{\alpha}(u,\overline{\Omega}) := \sup_{x,y \in \overline{\Omega}, x \neq y} \frac{\|u(x) - u(y)\|}{\|x - y\|^{\alpha}}$$
 (Hölder-Koeffizient)

heißt Raum der glm. Hölder-stetigen Fktn zum Exponent α . Der Hölder-Koeffizient ist dabei eine Seminorm auf $\mathcal{C}^{0,\alpha}(\overline{\Omega},\mathbb{R}^m)$.

• $C^{k,\alpha}(\overline{\Omega}, \mathbb{R}^m) := \{ u \in C^k(\overline{\Omega}, \mathbb{R}^m) \mid \forall |\gamma| = k : D^{\gamma}u \in C^{0,\alpha}(\overline{\Omega}, \mathbb{R}^m) \}$ heißt **Hölder-Raum**. Eine Norm ist gegeben durch

$$||u||_{\mathcal{C}^{k,\alpha}(\overline{\Omega},\mathbb{R}^m)} := ||u||_{\mathcal{C}^k(\overline{\Omega},\mathbb{R}^m)} + \sum_{|\gamma|=k} H_{\alpha}(D^{\gamma}u,\overline{\Omega}).$$

Bem. • Jede Hölder-stetige Funktion ist gleichmäßig stetig.

- $\mathcal{C}^{0,1}(\overline{\Omega},\mathbb{R}^m)$ heißt Raum der Lipschitz-stetigen Funktionen.
- \bullet \mathcal{C} , \mathcal{C}^k und $\mathcal{C}^{k,\alpha}$ sind Banach-Räume mit den jeweiligen Normen.

Def. Sei $\Omega \subset \mathbb{R}^n$ offen, zusammenhängend und beschränkt. Das Gebiet Ω gehört zur Klasse $\mathcal{C}^{k,\alpha}$, wenn in jedem Punkt $x \in \partial \Omega$ eine Umgebung in $\partial \Omega$ existiert, die sich in einem geeigneten Koordinatensystem als ein Graph einer Funktion aus $\mathcal{C}^{k,\alpha}$ darstellen lässt und Ω lokal immer auf einer Seite von $\partial \Omega$ liegt.

Satz (Gauß'scher Integralsatz). Sei $\Omega \subset \mathbb{R}^n$ ein Lipschitz-Gebiet und $u \in \mathcal{C}(\overline{\Omega}, \mathbb{R}^n) \cap \mathcal{C}^1(\Omega, \mathbb{R}^n)$. Dann gilt

$$\int_{\Omega} \operatorname{div} u \, \mathrm{d}x = \int_{\Omega} \sum_{i=1}^{n} \frac{\partial u_{i}}{\partial x_{i}} \, \mathrm{d}x = \int_{\Omega} \sum_{i=1}^{n} u_{i} \nu_{i} \, \mathrm{d}\rho(x) = \int_{\Omega} u \cdot \nu \, \mathrm{d}\rho(x),$$

wobei ν der äußere Normalenvektor an an den Rand von Ω ist.

Problem. Wir betrachten das Randwertproblem

(RWP)
$$\begin{cases} \mathcal{L}u = f & \text{in } \Omega & \text{(PDE)} \\ \mathcal{R}u = q & \text{auf } \partial\Omega & \text{(Randbedingung)} \end{cases}$$

wobei \mathcal{L} der lineare Differentialoperator

$$\mathcal{L}u = -\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} + c(x)u$$

mit Fktn $a_{ij}, b_i, c, f: \Omega \to \mathbb{R}, g: \partial \Omega \to \mathbb{R}$ ist, sodass $A(x) := (a_{ij}(x))$ symmetrisch ist. Als Randbedingung (RB) verlangen wir:

Dirichlet-RB:
$$u = g$$
 auf $\partial\Omega$,
Neumann-RB: $(A(x)\nabla u) \cdot \nu = g$ auf $\partial\Omega$ oder
Robin-RB: $(A(x)\nabla u) \cdot \nu + \delta u = q$ auf $\partial\Omega$.

 $Bem.\ {\rm Man}$ kann auch auf verschiedenen Teilstücken des Randes verschiedene Bedingungen stellen.

Bem. Falls die Funktionen a_{ij} differenzierbar sind, so kann \mathcal{L} in **Divergenzform** geschrieben werden:

$$\mathcal{L}u = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{i}} \right) + \sum_{i=1}^{n} \underbrace{\left(\left(\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} a_{ij}(x) \right) + b_{i}(x) \right)}_{\tilde{b}(x) :=} \frac{\partial u}{\partial x_{i}} + c(x)u$$

Voraussetzung. Wir nehmen im Folgenden an:

• L ist gleichmäßig elliptisch, d.h.

 $= -\operatorname{div}(A(x)\nabla u) + \tilde{b}(x) \cdot \nabla u + c(x)$

$$\exists \lambda_0 > 0 : \forall \xi \in \mathbb{R}^n : \forall x \in \Omega : \xi^T A(x) \xi \ge \lambda_0 \|\xi\|^2$$

Dabei heißt λ_0 Elliptizitätskonstante.

• $a_{ij}, b_i, c, f \in \mathcal{C}(\overline{\Omega}), g \in \mathcal{C}(\partial \Omega)$

Bem. $\mathcal{L} = f$ ist elliptisch auf $\Omega \iff A(x) > 0$ (spd) für alle $x \in \Omega$

Def. Eine Fkt $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ heißt klassische Lsg vom (RWP) mit $\mathcal{R}u \coloneqq u$, wenn die beiden Gleichungen in (RWP) in jedem Punkt von Ω bzw. des Randes $\partial\Omega$ erfüllt sind.

Satz (Maximumsprinzip). Sei $\Omega \subset \mathbb{R}^n$ offen, zshgd u. beschränkt. Sei $u \in \mathcal{C}^2(\omega) \cap \mathcal{C}(\overline{\Omega})$ eine Lösung vom (RWP), $f \leq 0$ in Ω und $c \equiv 0$. Dann nimmt u sein Maximum auf dem Rand $\partial \Omega$ an, d. h.

$$\sup_{x \in \overline{\Omega}} u(x) = \sup_{x \in \partial \Omega} u(x) = \sup_{x \in \partial \Omega} g(x)$$

 $\mathbf{Kor.} \ \ \mathrm{Sei} \ c \geq 0 \ \mathrm{und} \ f \leq 0. \ \mathrm{Dann} \ \mathrm{gilt} \ \sup_{x \in \overline{\Omega}} u(x) \leq \max \{ \sup_{x \in \partial \Omega} u(x), 0 \}.$

Kor (Vergleichsprinzip). Für $u_1, u_2 \in C^2(\Omega) \cap C(\overline{\Omega})$ und $c \geq 0$ gelte $\mathcal{L}u_1 < \mathcal{L}u_2$ in Ω und $u_1 < u_2$ auf $\partial\Omega$. Dann gilt $u_1 < u_2$ auf $\overline{\Omega}$.

Kor (Eindeutigkeit). Sei $c \ge 0$. Dann hat (RWP) höchstens eine Lösung $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$.

Satz. Sei Ω ein beschr. Lipschitz-Gebiet, $a_{ij}, b_i, c, f \in \mathcal{C}(\overline{\Omega}), c \geq 0$, $g \in \mathcal{C}(\partial\Omega)$. Dann besitzt (RWP) genau eine Lsg $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$.

Achtung. Es muss aber nicht $u \in \mathcal{C}^2(\overline{\Omega})$ gelten!

Differenzenverfahren

Verfahren (DV). Am Beispiel des Poisson-Problems

$$(\text{RWP}_1) \ \left\{ \begin{array}{c} -\Delta u = f & \text{in } \Omega = (0,1) \\ u(0) = g_0, u(1) = g_1 & \text{auf } \partial \Omega \end{array} \right.$$

Wir führen folgende Schritte durch:

1. Diskretisierung: Wähle $n \in \mathbb{N}$, setze $h := \frac{1}{n}$ und

$$\begin{split} \Omega_h &\coloneqq \{x_i \coloneqq ih \,|\, i=1,\dots,n-1\} \qquad \text{(innere Gitterpunkte)} \\ \partial \Omega_h &\coloneqq \{x_0=0,x_n=1\} \qquad \qquad \text{(Randpunkte)} \end{split}$$

2. Approx. der Ableitungen durch Differenzenquotienten (DQ)

$$\begin{array}{ll} u'(x_i) \approx \frac{1}{h} \left(u(x_i + h) - u(x_i) \right) & \text{(Vorwärts-DQ)} \\ u'(x_i) \approx \frac{1}{h} \left(u(x_i) - u(x_i - h) \right) & \text{(Rückwärts-DQ)} \\ u'(x_i) \approx \frac{1}{2h} \left(u(x_i + h) - u(x_i - h) \right) & \text{(zentraler DQ)} \end{array}$$

Für die zweite Ableitung ergibt sich

$$\begin{split} u''(x_i) &= (u'(x_i))' \approx \frac{1}{h} \left(u'(x_i + h) - u'(x_i) \right) \approx \\ &\approx \frac{1}{h} \cdot \left(\frac{1}{h} \left(u(x_i + h) - u(x_i) \right) - \frac{1}{h} \left(u(x_i) - u(x_i - h) \right) \right) \\ &= \frac{1}{h^2} \left(u(x_i + h) - 2 \cdot u(x_i) + u(x_i - h) \right) =: \Delta_h u \end{split}$$

Dabei heißt Δ_h der diskrete eindim. Laplace-Operator. Das diskretisierte Randwertproblem ist nun

$$(\mathrm{RWP}_1)_{\mathbf{h}} \left\{ \begin{array}{c} -\Delta_h u_h = f & \text{in } \Omega_h, \\ u_h(0) = g_0, u_h(1) = g_1 & \text{auf } \partial \Omega_h. \end{array} \right.$$

3. Aufstellen des linearen Gleichungssystems

$$\begin{split} \frac{1}{h^2} \left(2u_h(x_1) - u_h(x_2) \right) &= f(x_1) + \frac{g_0}{h^2} \qquad (i = 1) \\ \frac{1}{h^2} \left(-u_h(x_{i-1}) + u_h(x_i) - u_h(x_{i+1}) \right) &= f(x_i) \quad (i = 2, ..., n-2) \\ \frac{1}{h^2} \left(-u_h(x_{n-2}) + 2u_h(x_{n-1}) \right) &= f(x_{n-1}) + \frac{g_1}{h^2} \left(i = n-1 \right) \end{split}$$

Als lineares Gleichungssystem: $-\tilde{\Delta}_h \tilde{u}_h = \tilde{f}_h$ mit

$$-\tilde{\Delta}_{h} = \frac{1}{h^{2}} \begin{pmatrix} 2 & -1 & & & & 0 \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ 0 & & & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{(n-1)\times(n-1)}, \qquad \begin{aligned} & = R_{h}\mathcal{L}u(x) - \mathcal{L}_{h}R_{h}u(x) \\ & = R_{h}\mathcal{L}u(x) - \mathcal{L}_{h}R_{h$$

$$\tilde{u}_h = \begin{pmatrix} u_h(x_1) \\ \vdots \\ u_h(x_{n-1}) \end{pmatrix}, \quad \tilde{f}_h = \begin{pmatrix} f(x_1) + \frac{g_0}{h^2} \\ f(x_2) \\ \vdots \\ f(x_{n-2}) \\ f(x_{n-1}) + \frac{g_1}{h^2} \end{pmatrix}$$

Ziel. Herausfinden, was die Lösung u_h von (RWP)_h (die man durch Lösen von (LGS) erhält) mit der Lösung u zum ursprünglichen Problem (RWP) zu tun hat. Ist etwa u_h die Einschränkung von u_h oder zumindest annäherungsweise? Wenn ja, wie klein muss man hwählen, damit die Approximation gut wird?

$$\begin{aligned} & (\text{RWP}) & \left\{ \begin{array}{c} -\mathcal{L}u = f & \text{in } \Omega, \\ u = g & \text{auf } \partial \Omega \end{array} \right. \\ & (\text{RWP})_{\text{h}} & \left\{ \begin{array}{c} -\mathcal{L}_h u = f_h & \text{in } \Omega_h, \\ u_h = g_h & \text{auf } \partial \Omega_h \end{array} \right. \\ & (\text{LGS}) & \tilde{\mathcal{L}}_h \tilde{u}_h = \tilde{f}_h \end{aligned}$$

Notation. $U_h := \{\Omega_h \to \mathbb{R}\}, \quad R_h : \mathcal{C}(\overline{\Omega}) \to U_h, \quad u \mapsto u|_{\Omega_h}$

Def. Das Differenzenverfahren (RWP)_b heißt

• konvergent von der Ordnung p, falls C > 0, $h_0 > 0$ existieren, sodass für die Lösung u von (RWP) und die Lösung u_h von (RWP)_h gilt:

$$||u_h - R_h u||_h \le Ch^p$$
 für alle $0 < h \le h_0$,

wobei $\|-\|_h$ eine Norm zu U_h ist, wie z.B. $\|u_h\|_h := \max_{x \in \mathcal{X}} |u_h(x)|$.

• konsistent von der Ordnung p, falls

$$\|\mathcal{L}_h R_h u - R_h \mathcal{L} u\|_h \le ch^p \|u\|_{\mathcal{C}^{p+2}(\overline{\Omega})} \quad \forall u \in \mathcal{C}^{p+2}(\overline{\Omega}).$$

• stabil, falls \tilde{L}_h invertierbar ist und ein $h_0 > 0$ existiert mit

$$\sup_{0< h \leq h_0} \|\tilde{\mathcal{L}}_h^{-1}\|_h < \infty, \quad \text{wobei } \|\tilde{\mathcal{L}}_h^{-1}\|_h \coloneqq \sup_{f \neq 0} \frac{\|\tilde{\mathcal{L}}_h^{-1}f\|_h}{\|f\|_h}.$$

Bem. Die ind. Matrixnorm ist $\|\tilde{\mathcal{L}}_h^{-1}\|_h = \|\tilde{\mathcal{L}}_h^{-1}\|_\infty = \max_{1 \le i \le n} \sum_{i=1}^n |l_{ij}|$.

Satz. Ist das DV (RWP)_h konsistent und stabil, so auch konvergent. Genauer gilt: Ist (RWP) $_h$ stabil und konsistent von der Ordnung pund $u \in \mathcal{C}^{p+2}(\overline{\Omega})$, dann ist (RWP)_h konvergent von der Ordnung p.

Beweis. Setze $w_h := u_h - R_h u$. Für $x \in \partial \Omega_h$ gilt dann $w_h(x) = 0$ und für $x \in \Omega_h$ gilt

$$\begin{split} \tilde{\mathcal{L}}_h w_h(x) &= \mathcal{L}_h w_h(x) = \mathcal{L}_h u_h(x) - \mathcal{L}_h R_h u(x) \\ &= f_h(x) - \mathcal{L}_h R_h u(x) = R_h f(x) - \mathcal{L}_h R_h u(x) \\ &= R_h \mathcal{L}u(x) - \mathcal{L}_h R_h u(x) \end{split}$$

$$\|w_h\|_h = \|\tilde{\mathcal{L}}_h^{-1} (R_h \mathcal{L}u - \mathcal{L}_h R_h u)\| \le \|\tilde{\mathcal{L}}_h^{-1}\|_h \cdot \|R_h \mathcal{L}u - \mathcal{L}_h R_h u\|_h$$
$$\le c_1 \cdot c_2 \cdot h^p \cdot \|u\|_{\mathcal{C}^{p+2}(\overline{\Omega})} \le Ch^p \qquad \text{für } 0 < h \le h_0.$$

Lem. Das DV (RWP₁)_h ist konsistent von der Ordnung 2. Es gilt

$$\|\Delta_h R_h u - R_h \Delta u\|_h \le \frac{1}{12} \|u\|_{\mathcal{C}^4(\overline{\Omega})} h^2 \quad \forall u \in \mathcal{C}^4(\overline{\Omega}).$$

Bem. Um zu zeigen, dass (RWP₁)_h konvergent ist, müssen wir noch zeigen, dass $\tilde{L}_h = -\tilde{\Delta}_h$ invertierbar ist und sup $\|\tilde{\Delta}_h\| < \infty$.

Def. Eine Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ heißt M-Matrix, falls

- a) $a_{ii} > 0$ für i = 1, ..., n, b) $a_{ij} \le 0$ für $i \ne j, i, j = 1, ..., n$,
- c) A invertierbar ist und d) für $A^{-1} =: B = (b_{ij})$ gilt $b_{ij} \ge 0$.

Lem. Erfülle $A \in \mathbb{R}^{n \times n}$ die Bedingungen a) und b). Zerlege A = D + L + R in eine Diagonalmatrix und strikte untere/obere Dreiecksmatrizen. Dann ist A genau dann eine M-Matrix wenn

$$\rho(D^{-1}(L+R)) < 1.$$

Bem. Es gilt folgende Monotonie-Eigenschaft für M-Matrizen:

$$x \le y \implies A^{-1}x \le A^{-1}y.$$

Def. Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt **reduzibel** (oder zerlegbar), wenn es eine Permutationsmatrix $P \in \mathbb{R}^{n \times n}$ gibt, sodass

$$PAP^{T} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$
 mit $A_{11} \in \mathbb{R}^{k \times k}$, $0 < k < n$.

Lem (Gerschgorin). Alle EWe einer Matrix $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ liegen in der Menge

$$\bigcup_{i=1}^{n} \overline{B_{r_i}(a_{ii})} \quad \text{mit} \quad r_i := \sum_{j=1}^{n} |a_{ij}|.$$

Falls A irreduzibel ist, so liegen sie sogar in

$$\left(\bigcup_{i=1}^{n} B_{r_i}(a_{ii})\right) \cup \left(\bigcap_{i=1}^{n} \partial B_{r_i}(a_{ii})\right)$$

Def. Sei $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ eine Matrix.

• A heißt schwach diagonaldominant, falls

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \le |a_{ii}| \quad \text{für } i = 1, \dots, n$$

und ein i_0 existiert, sodass die Ungleichung strikt ist.

• A heißt diagonaldominant, falls

$$\sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| < |a_{ii}| \quad \text{für } i = 1, \dots, n$$

• A heißt irreduzibel diagonaldominant, falls A irreduzibel und schwach diagonaldominant ist.

Lem. Sei $A = (a_{i,i}) \in \mathbb{R}^{n \times n}$ eine Matrix mit $a_{i,i} > 0, i = 1, \dots, n$ und $a_{i,j} < 0, i, j = 1, ..., n, i \neq j$, die diagonaldominant oder irreduzibel diagonal dominant ist. Dann ist A eine M-Matrix.

Bem. $-\tilde{\Delta}_h$ ist irreduzibel diagonal dominant, also eine M-Matrix.

Lem. Sei A eine irreduzible M-Matrix. Dann gilt $A^{-1} > 0$.

Lem. Sei $A \in \mathbb{R}^{n \times n}$ eine M-Matrix und es existiere ein Vektor v, sodass $(Av)_i \ge 1, j = 1, ..., n$. Dann gilt $||A^{-1}||_{\infty} \le ||v||_{\infty}$.

Lem.
$$\|\tilde{\Delta}_h^{-1}\|_{\infty} \leq \frac{1}{8}$$

Satz. Das DV (RWP₁)_h ist konvergent von der Ordnung 2, falls die Lösung von (RWP₁) zu $\mathcal{C}^4([0,1])$ gehört. Es gilt die Abschätzung

$$||u_h - R_h u||_{\infty} \le \frac{h^2}{96} ||u||_{\mathcal{C}^4([0,1])}.$$

Problem. Wir betrachten nun

$$(\mathrm{RWP}_2) \left\{ \begin{array}{ccc} -\Delta u & = & f & \text{ in } \Omega = (0,1) \times (0,1) \\ u & = & g & \text{ auf } \partial \Omega \end{array} \right.$$

1. Diskretisierung: Setze $h := \frac{1}{n}, n \in \mathbb{N}$ und

$$\begin{split} &\Omega_h \coloneqq \{(x,y) \in \Omega \,|\, x = ih, y = jh, i, j = 1, \dots, n-1\} \\ &\partial \Omega_h \coloneqq \{(x,y) \in \partial \Omega \,|\, x = ih, y = jh, i, j = 1, \dots, n-1\} \end{split}$$

2. Approximation der Ableitungen

$$\begin{split} -\Delta u(x,y) &= -\frac{\partial^2 u}{\partial x^2}(x,y) - \frac{\partial^2 u}{\partial y^2}(x,y) \\ &\approx -\frac{u(x+h,y) - 2u(x,y) + u(x-h,y)}{h^2} - \frac{u(x,y+h) - 2u(x,y) + u(x,y-h)}{h^2} \\ &= -\frac{u(x+h,y) + u(x-h,y) - 4u(x,y) + u(x,y+h) + u(x,y-h)}{h^2} =: -\Delta_h u \end{split}$$

Dabei hat der diskrete Laplace-Operator Δ_h die Form eines Differenzensterns. Gesucht ist die Lsg $u_h: \Omega_h \cup \partial \Omega_h \to \mathbb{R}$ von

$$(RWP_2)_h \left\{ \begin{array}{rcl} -\Delta_h u_h & = & f_h & \text{in } \Omega_h \\ u_h & = & g & \text{auf } \partial \Omega_h. \end{array} \right.$$

3. Aufstellen des linearen Gleichungssystems $-\tilde{\Delta}_h \tilde{u}_h = f_h$:

$$\tilde{u}_h = \begin{pmatrix} u_{11} \\ u_{12} \\ \vdots \\ u_{n-1,n-2} \\ u_{n-1,n-1} \end{pmatrix} \in \mathbb{R}^{(n-1)^2},$$

$$-\tilde{\Delta}_{h} = \frac{1}{h^{2}} \begin{pmatrix} A & -I & & & 0 \\ -I & A & -I & & & \\ & \ddots & \ddots & \ddots & \\ & & -I & A & -I \\ 0 & & & -I & A \end{pmatrix} \in \mathbb{R}^{(n-1)^{2} \times (n-1)^{2}},$$

$$A = \begin{pmatrix} 4 & -1 & & & 0 \\ -1 & 4 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 4 & -1 \\ 0 & & & -1 & 4 \end{pmatrix} \in \mathbb{R}^{n-1 \times n-1}$$

 $\boldsymbol{Lem.}\,$ Das DV $(RWP_2)_h$ ist konsistent von der Ordnung 2. Es gilt

$$\|\Delta_h R_h u - R_h \Delta u\|_h \le \frac{1}{6} \|u\|_{\mathcal{C}^r(\overline{\Omega})} h^2.$$

Lem. Das DV (RWP₂)_h ist stabil. Es gilt $\|\tilde{D}_h^{-1}\|_{\infty} \le 1/8$.

 $\bf Satz.$ Das DV (RWP₂)_h ist konvergent von der Ordnung 2, falls die Lösung von (RWP₂) zu $C^4(\overline\Omega)$ gehört. Es gilt

$$||u_h - R_h u||_h \le 1/48||u||$$

Bem. Durch die Einbeziehung weiterer Gitterpunkte zur Approximation des Differentialoperators lässt sich die Konvergenzordnung erhöhen:

$$\begin{split} -\Delta_h^{(9)}u(x,y) &= \frac{1}{12h^2}\left(u(x-2h,y) - 16u(x-h,y) + 30u(x,y) \right. \\ &\quad -16u(x+h,y) + u(x+2h,y) + u(x,y-2h) - 16u(x,y-h) \\ &\quad +30u(x,y) - 16u(x,y+h) + u(x,y+2h) \approx -\Delta u(x,y) \end{split}$$

Damit erreicht man die Konsistenzordnung 4.

Situation. Sei $\Omega \subset \mathbb{R}^2$ beschränkt.

Def. • $\Omega_h := \{x, y \in \Omega \mid x/h, y/h \in \mathbb{Z}\}$ heißen innere Gitterpkte.

- Ein Punkt $z_R \in \partial \Omega$ heißt **Randgitterpunkt** (notiert $z_R \in \partial \Omega_h$), falls es einen inneren Gitterpunkt $z \in \Omega_h$ gibt, sodass $z_R = r + \alpha h e_1$ oder $z_R = z + \alpha h e_2$ mit $|\alpha| \leq 1$. Die Nachbarn N(x,y) eines Punktes (x,y) sind $(x+s_rh,y), (x-s_lh,y), (x,y+y_oh), (x,y-s_uh)$, falls $s_r,s_l,s_o,s_u \in (0,1]$ und die Verbindungsstrecken zu (x,y) in Ω liegen.
- Ein Punkt $(x, y) \in \Omega_h$ heißt **randnah**, falls (x, y) die Nachbarn $(x s_l h, y), (x + s_r h, y), (x, y s_u h), (x, y + s_o h)$ hat mit mindestens einem $s_i < 1$. Ansonsten heißt (x, y) **randfern**.

Notation. Wir haben eine Einteilung $\Omega_h = \Omega_h^{\rm rn} \sqcup \Omega_h^{\rm rf}$ der Gitterpunkte in randnahe und randferne Punkte.

Lem (Dividierte Differenzen von Newton). Für $u \in C^3([x_l, x_r]), x \in (x_l, x_r)$ gilt

$$u''(x) = \frac{2}{x_r - x_l} \left(\frac{u(x_r) - u(x)}{x_r - x} - \frac{u(x) - u(x_l)}{x - x_l} \right) + \mathcal{O}(x_r - x_l)$$

$$= \frac{2}{x_r - x_l} \left(\frac{1}{x_r - x} u(x_r) + \frac{1}{x - x_l} u(x_l) \right) - \frac{2}{(x_r - x)(x - x_l)} u(x)$$

Verfahren (Shortley-Weller-Diskretisierung).

Dadurch inspiriert approximieren wir den Laplace-Operator durch

$$\mathcal{D}_{h}u(x,y) = \frac{1}{h^{2}} \left(\frac{2u(x - s_{l}h, y)}{s_{l}(s_{r} + s_{l})} + \frac{2u(x + s_{r}h, y)}{s_{r}(s_{r} + s_{l})} + \frac{2u(x, y - s_{u}h)}{s_{u}(s_{o} + s_{u})} + \frac{2u(x, y + s_{o}h)}{s_{o}(s_{o} + s_{u})} - \left(\frac{2}{s_{l}s_{r}} + \frac{2}{s_{o}s_{u}} \right) u(x, y) \right)$$

wobe
i $x_r-x=s_rh,\ x-x_l=s_lh,\ y_o-y=s_oh,\ y-y_u=s_uh.$ Wir betrachten nun

$$(\text{RWP}_2)'_{\text{h}} \begin{cases} -\mathcal{D}_h u_h &= f_h & \text{in } \Omega_h \\ u_h &= g & \text{auf } \partial \Omega_h \end{cases}$$

$$(\text{LGS}_2)' \begin{cases} -\tilde{\mathcal{D}}_h \tilde{u}_h &= \tilde{f}_h \\ \tilde{f}_h &= f_h + g_h \end{cases}$$

$$\text{mit } g_h(x,y) = \frac{1}{h^2} \sum_{\substack{(x_N,y_N) \in N(x,y) \cap \partial \Omega_h}} S_{x_N,y_N} g(x_N,y_N)$$

wobei

$$S_{x_N,y_N} \coloneqq \begin{cases} 2/s_r(s_l + s_r) & \text{falls } (x_N, y_N) = (x + s_r h, y), \\ 2/s_o(s_o + s_u) & \text{falls } (x_N, y_N) = (x, y + s_o h), \\ 2/s_u(s_o + s_u) & \text{falls } (x_N, y_N) = (x, y - s_u h), \end{cases}$$

$$-\tilde{D}_h = (d_{ij}) \quad \text{mit} \quad d_{ii} = 1/h^2 \left(\frac{2}{s_{il}s_{ir}} + \frac{2}{s_{iu}s_{io}} \right) \quad \text{und}$$

$$d_{ij} = 1/h^2 \begin{cases} -2/s_{il}(s_{il} + s_{ir}) & \text{falls } j \text{ der linke Nachbar von } i \text{ ist,} \\ -2/s_{iu}(s_{iu} + s_{io}) & \text{falls } j \text{ der untere Nachbar von } i \text{ ist,} \\ -2/s_{io}(s_{iu} + s_{io}) & \text{falls } j \text{ der obere Nachbar von } i \text{ ist,} \end{cases}$$

Lem. • Die Matrix $-\tilde{\mathcal{D}}_h$ ist eine M-Matrix.

Sei Ω ⊂ ℝ² beschränkt und gehöre zu dem Streifen
 (x₀, x₀ + d) × ℝ oder ℝ × (y₀, y₀ + d). Dann gilt ||Ď_b⁻¹|| ≤ d²/s.

Bem. Das DV (RWP₂)'_h hat in den randnahen Punkten nur die Konsistenzordnung 1. Dennoch gilt:

Satz. Sei $\Omega \subset \mathbb{R}^3$ beschränkt und Teilmenge des Streifens $(x_0, x_0 + d) \times \mathbb{R}$ oder $\mathbb{R} \times (y_0, y_0 + d)$. Dann ist das Verfahren (RWP₂)'_h konvergent von der Ordnung 2. Es gilt

$$\|u_h - R_h u\|_h \le (1/3h^3 + d^2/48h^2) \|u\|_{C^4(\overline{\Omega})}$$

Idee. Bestimme den Wert von u bei randnahen Punkten (x,y) durch lineare Interpolation:

•
$$u(x,y) \approx \frac{s_r}{s_r + s_l} u(x - s_l h, y) + \frac{s_l}{s_r + s_l} u(x + s_r h, y)$$

•
$$u(x,y) \approx \frac{s_o}{s_u + s_o} u(x, y - s_u h) + \frac{s_u}{s_u + s_o} u(x, y + s_o h)$$

$$(RWP_2)^{"}_{h} \begin{cases} -\mathcal{D}_h u = f_h & \text{in } \Omega_h \\ u_h = g & \text{auf } \partial \Omega_h \end{cases}$$
$$(LGS_2)^{"} - \tilde{\mathcal{D}}_h \tilde{u}_h = \tilde{f}_h$$

Lem. Dieses Verfahren besitzt Konsistenzordnung (und somit Konvergenzordnung) 2.

Problem. Wir betrachten nun

(RWP₃)
$$\begin{cases} -\mathcal{L}u &= f & \text{in } \Omega = (0,1) \times (0,1) \\ u &= q & \text{auf } \partial \Omega \end{cases}$$

mit

$$-\mathcal{L}u = -(a_{11}(x, y)u_{xx} + 2a_{12}(x, y)u_{xy} + a_{22}(x, y)u_{yy})$$
$$+ b_1(x, y)u_x + b_2(x, y)u_y + c(x, y)u$$

wobei $c(x, y) \leq 0, \, \xi^T A(x, y) \xi \geq \lambda_0 \|\xi\|^2, \, \lambda_0 > 0$ und

$$A(x,y) = \begin{pmatrix} a_{11}(x,y) & a_{12}(x,y) \\ a_{21}(x,y) & a_{22}(x,y) \end{pmatrix}$$

Verfahren. 1. Diskretisierung: h = 1/n, Ω_h , $\partial \Omega_h$ wie früher.

2. Approximation:

$$u_x(x,y) \approx \frac{u(x+h,y)-u(x-h,y)}{2h}, \qquad u_y(x,y) \approx \dots$$
$$u_{xx}(x,y) \approx \frac{u(x+h,y)-2u(x,y)+u(x-h,y)}{h^2}, \quad u_{yy}(x,y) \approx \dots$$

Für die Approx. von u_{xy} haben wir mehrere Möglichkeiten: Wir könnten etwa den zentralen DQ in x- und y-Richrung verwenden und erhalten

$$u_{xy}(x,y) \approx \frac{1}{4h^2} (u(x+h,y+h) - u(x+h,y-h) - u(x-h,y+h) + u(x-h,y-h))$$

Diese Annäherung hat allerdings den Nachteil, dass sie zu keiner M-Matrix führt. Stattdessen nehmen wir

$$u_{xy}(x,y) \approx \frac{1}{2h^2} \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix} \frac{1}{2h^2} \begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$
für $a_{12} > 0$ für $a_{12} < 0$.

Wir fassen diese Approx. in folgendem 7-Stern zusammen:

$$-\mathcal{L}_{h}u := \frac{1}{h^{2}} \begin{pmatrix} a_{12}^{-} & |a_{12}| - a_{22} & a_{12}^{+} \\ |a_{12}| - a_{11} & 2(a_{11} + a_{22} - |a_{12}|) & |a_{12}| - a_{11} \\ -a_{12}^{+} & |a_{12}| - a_{22} & a_{12} \end{pmatrix}$$

$$+ \frac{1}{h} \begin{pmatrix} -b_{2} \\ -b_{1} & 0 & b_{1} \end{pmatrix} + \begin{pmatrix} c \\ b_{2} \end{pmatrix}$$

$$(IEV) \begin{cases} \frac{1}{\tau} (u_{i}^{k+1} - u_{i}^{k}) - \tilde{\Delta}_{h} u_{i}^{k+1} & = f_{i}^{k+1} \\ u_{i}^{0} & = g_{h} \end{cases}$$

$$(CNV) \begin{cases} \frac{1}{\tau} (u_{i}^{k+1} - u_{i}^{k}) - \frac{1}{2} \tilde{\Delta}_{h} (u_{i}^{k} + u_{i}^{k+1}) & = g_{h} \end{cases}$$

$$u_{i}^{0} & = g_{h} \end{cases}$$

Dabei ist $a_{ij}^+ := \max(a_{ij}, 0) \text{ und } a_{ij}^- := \min(a_{ij}, 0).$

$$(RWP_3)_h \begin{cases} -\mathcal{L}_h u_h &= f_h & \text{in } \Omega_h \\ u_h &= g & \text{auf } \partial \Omega_h \end{cases}$$

$$(LGS_3) - \tilde{\mathcal{L}}_h \tilde{u}_h = \tilde{f}_h$$

Satz. Sei $|a_{12}| \leq \min(a_{11}, a_{22}), c \geq 0$ in Ω , \mathcal{L} gleichmäßig elliptisch. Falls $a_{ii} > |a_{12}| + \frac{h}{2}|b_i|$ für i = 1, 2 in Ω und $u \in \mathcal{C}^4(\overline{\Omega})$, so ist das DV (RWP₃)_h konvergent von der Ordnung 2.

$$\begin{array}{l} \textbf{Problem.} \\ \text{(RWP4)} \end{array} \left\{ \begin{array}{ll} u_t(x,t) - \Delta_x u(x,t) &= f(x,t) \ \ \text{in} \ \Omega = (0,1) \times (0,T) \\ u(x,0) &= g(x) \ \ \ \text{für} \ x \in (0,1) \\ u(0,t) &= g_0(t) \ \ \ \text{für} \ t \in [0,T] \\ u(1,t) &= g_1(t) \ \ \ \text{für} \ t \in [0,T] \end{array} \right. \end{array}$$

Verfahren. 1. Diskretisierung mit n Raum- und m Zeitschritten:

$$x_i = ih, \ h = 1/n, \ t_k = k\tau, \ \tau = T/m, \ u(x_i, t_k) \approx u_i^k$$

2. Approximation der Ableitungen:

$$u_{xx}(x,t) \approx \frac{1}{h^2} (u(x-h,t) - 2u(x,t) + u(x+h,t)) =: \Delta_h u(x,t)$$

Wir wollen nun eine Lösung von

$$\begin{cases} \dot{u}_h(t) - \tilde{\Delta}_h u_h(t) &= f_h(t) \\ u_h(0) &= g_h \end{cases}$$

für alle Zeiten t mit

$$u_h(t) = \begin{pmatrix} u_h(h,t) \\ u_h(2h,t) \\ \vdots \\ u_h(1-h,t) \end{pmatrix}, \quad f_h(t) = \begin{pmatrix} f(h,t) + \frac{1}{h^2}g_0(t) \\ f(2h,t) \\ \vdots \\ f(1-h,t) + \frac{1}{h^2}g_1(t) \end{pmatrix} \qquad \begin{array}{l} \text{Ziel: } u_h(t_{k+1}) \xrightarrow{k \to \infty} 0 \\ \text{Für Stabilität sollte } |\lambda_j(M)| < 1 \text{ gelten, wobei } \\ M = (I - \sigma \tau \tilde{\Delta}_h)^{-1}(I + (1 - \sigma)\tau \tilde{\Delta}_h). \end{array}$$

berechnen. Dazu verwenden wir ein Einschrittverfahren, wie das expl./impl. Gauß-Verfahren oder das Crank-Nicolson-Verfahren:

(EEV)
$$\begin{cases} \frac{1}{\tau} (u_i^{k+1} - u_i^k) - \tilde{\Delta}_h u_i^k &= f_i^k \\ u_i^0 &= g_h \end{cases}$$
(IEV)
$$\begin{cases} \frac{1}{\tau} (u_i^{k+1} - u_i^k) - \tilde{\Delta}_h u_i^{k+1} &= f_i^{k+1} \\ u_i^0 &= g_h \end{cases}$$
(CNV)
$$\begin{cases} \frac{1}{\tau} (u_i^{k+1} - u_i^k) - \frac{1}{2} \tilde{\Delta}_h (u_i^k + u_i^{k+1}) &= f(x_i, t_k + \frac{\tau}{2}) \\ u_i^0 &= g_h \end{cases}$$

Lem. Sei $f(x,-) \in \mathcal{C}^1([0,T])$ für alle $x \in [0,1]$. Dann gilt für die Approximation von (RWP₄):

- Die Verfahren (EEV) und (IEV) besitzen einen Konsistenzfehler von $\mathcal{O}(h^2 + \tau)$, falls $u \in \mathcal{C}^4([0,1] \times [0,T])$
- Das Verfahren (CNV) besitzt einen Konsistenzfehler von $\mathcal{O}(h^2 + \tau^2)$, falls $u \in \mathcal{C}^4([0, 1] \times [0, T])$.

Lem. Es gelte für (EEV) $2\tau < h^2$. Die Verfahren (EEV), (IEV) und • ... ermöglicht Adaptivität bzw. unregelmäßige Gitter nur sehr (CNV) sind stabil.

$$(I - \sigma \tau \tilde{\Delta}_h) u_h(t_{k+1}) = (I + (1 - \sigma)\tau \tilde{\Delta}_h) u_h(t_k) + \tau f_h(t_k + \sigma \tau)$$

Man erhält für $\sigma = 0$ das EEV, für $\sigma = 1$ das IEV und für $\sigma = 1/2$ das CNV. Es folgt

$$u_h(t_{k+1}) = (I - \sigma \tau \tilde{\Delta}_h)^{-1} (I + (1 - \sigma)\tau \tilde{\Delta}_h) u_h(t_k) + (I - \sigma \tau \tilde{\Delta}_h)^{-1} f_h(t_k + \sigma \tau \tilde{\Delta}_h)^{-1} (I + (1 - \sigma)\tau \tilde{\Delta}_h))^k u_h(t_0) + (I - \sigma \tau \tilde{\Delta}_h)^{-1} \sum_{j=0}^k \mu_j f_h(t_k)^{-1} \int_{0}^{\infty} \mu_j f_h(t_k) dt_h(t_k) dt_h(t$$

$$M = (I - \sigma \tau \tilde{\Delta}_h)^{-1} (I + (1 - \sigma)\tau \tilde{\Delta}_h).$$

Es gilt:
$$\lambda_j(M) = \frac{1 + (1 - \sigma)\tau\lambda_j(\tilde{\Delta})}{1 - \sigma\tau\lambda_j(\tilde{\Delta})}$$

Bem. Konsistenz + Stabilität ⇒ Konvergenz

Wellengleichung:

$$\left\{ \begin{array}{ll} \partial_{tt}u - c^2 \partial_{xx} u = f(x,t) \\ u(0,t) = g_0(t), u(1,t) = g_1(t) & \text{für } t \in [0,T] \\ u(x,0) = q_0(x), u_t(x,0) = q_1(x) & \text{für } \in (0,1) \end{array} \right.$$

- 1. Diskretisierung: $x_i = ih$, $h = \frac{1}{n}$, $t_k = k\tau$, $\tau = \frac{T}{m}$
- 2. Approximation:

$$\begin{split} \partial_{xx} u(x_i, t_k) &\approx \frac{1}{h^2} \left(u(x_{i-1}, t_k) - 2u(x_i, t_k) + u(x_{i+1}, t_k) \right) \\ \partial_{tt} u(x_i, t_k) &\approx \frac{1}{\tau^2} \left(u(x_i, t_{k-1}) - 2u(x_i, t_k) + u(x_i, t_{k+1}) \right) \\ \partial_t u(x_i, 0) &\approx \frac{1}{2\tau} (u(x_i, t_1) - u(x_i, t_{-1})) \end{split}$$

Somit:

$$\left\{ \begin{array}{l} \frac{1}{\tau^2}(u_i^{k-1}-2u_i^k+u_i^{k+1})-\frac{c^2}{h^2}(U_{i-1}^k-2u_i^k+u_{i+1}^k)=f_i^k \\ \text{ für } i=1,\ldots,n-1 \text{ und } k=0,\ldots,m. \\ u_0^k=g_0^k=g_0(t_k), \quad u_n^k=g_1^k=g_1(t_k), \\ u_i^0=q_{0,i}=q_0(x_i), \quad \frac{1}{2\tau}(u_i^1-u_i^{-1})=q_{1,i}=q_1(x_i) \end{array} \right.$$

Bem. Das Differenzenverfahren . . .

- ... ist einfach in der Herleitung und Implementierung.
- ... besitzt eine gute Konvergenz (z. B. Ordnung 2) bei genügend
- schwer.