Adaptive Mantel Test for High-dimensional Inference

Dustin Pluta

26 Mar 2018

Acknowledgements

- **Gui Xue**, PI and data provider, Beijing Normal University, Center for Brain and Learning Sciences
- Chuansheng Chen, UCI, Dept. of Psychology and Social Behavior
- Hernando Ombao, KAUST, Dept. of Statistics
- Zhaoxia Yu, UCI, Dept. of Statistics
- Tong Shen, UCI, Dept. of Statistics (PhD Student)

Overview of Talk

- 1. **Scientific motivation** from imaging genetics.
- 2. **Kernel Mantel test** and metric-based association testing.
- 3. The **adaptive Mantel test** for penalized inference.
- 4. Application to test heritability of EEG coherence during a working memory task.

Scientific Motivation

What is the heritability of brain connectivity features (measured from fMRI or EEG)?

Data Description

- **350 students** from the Beijing Normal University
- ~10 minute 64 channel EEG recording during Visual Working Memory task
- 13 SNPs selected for analysis, previously identified as potential factors for Alzheimer's disease risk.

Scientific Motivation

Estimating Heritability with Variance Components Model

• Let X be an $n \times p$ matrix of single nucleotide polymorphism (SNP) data, and Y be an observed scalar phenotype.

$$Y = g + \varepsilon$$
,

where $g \sim N(0, \sigma_g^2 G)$, for $G = XX^T/p$, and $\varepsilon \sim N(0, \sigma_\varepsilon^2 I_n)$.

Narrow-sense heritability of the phenotype measured by *Y* can then be estimated as

$$\hat{h}^2 = \frac{\hat{\sigma}_g^2}{\hat{\sigma}_g^2 + \hat{\sigma}_\varepsilon^2}.$$

Association Testing Methods

- **Mantel's test** (Mantel 1967) uses the inner product of the pairwise distance/similarity matrices from *X* and *Y*.
- The **RV coefficient** (Escoufier 1976) uses a test statistic based on the multivariate correlation between *X* and *Y*.
- The **distance covariance** (dCov) test (Szekely, Rizzo, Bakirov, 2007) is defined as the covariance of distances between *X* and *Y*.
- Adaptive sum of powered score test (Xu et. al 2017).

• Given **similarity functions** \mathcal{K}_X : $\mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ and \mathcal{K}_Y : $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, we can form two $n \times n$ **Gram matrices** K and H, where

$$K_{ij} = \mathcal{K}_X(X_i, X_j)$$

$$H_{ij} = \mathcal{K}_{Y}(Y_i, Y_j).$$

• The **correlation** of these matrices is

$$r(H, K) := \frac{\langle K, H \rangle}{\|K\| \cdot \|H\|},$$

How should we test the significance of the correlation?

Mantel's original approach (1967) is to **permute** rows and columns of one of the pairwise distance matrices to generate the reference distribution.

That is, for test statistic

$$T = \langle K, H \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} K_{ij} H_{ij} = \operatorname{tr}(KH),$$

we compute the **permutation** *P***-value** by permuting *H* to approximate the reference distribution.

Similarity with Weighted Inner Products

For two vectors $u, v \in \mathbb{R}^p$, the **weighted inner product** $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ for some positive semi-definite matrix \mathcal{W} , is defined as

$$\langle u, v \rangle_{\mathcal{W}} = u^T \mathcal{W} v.$$

The **Mantel Test Statistic** for similarity $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ is

$$T_{\mathcal{W}} = \operatorname{tr}(X\mathcal{W}X^TYY^T) = Y^TX\mathcal{W}X^TY.$$

Similarity with Weighted Inner Products

For two vectors $u, v \in \mathbb{R}^p$, the **weighted inner product** $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ for some positive semi-definite matrix \mathcal{W} , is defined as

$$\langle u, v \rangle_{\mathcal{W}} = u^T \mathcal{W} v.$$

The **Mantel Test Statistic** for similarity $\langle \cdot, \cdot \rangle_{\mathcal{W}}$ is

$$T_{\mathcal{W}} = \operatorname{tr}(X\mathcal{W}X^TYY^T) = Y^TX\mathcal{W}X^TY.$$

Question

How does the choice of weight matrix affect the test characteristics?

How should the weight matrix be chosen?

Weight Matrices

Euclidean Inner Product

• Choosing $W = I_p$ gives

$$K_E = XX^T$$
,

which is the Gram matrix for the standard Euclidean inner product.

Mahalanobis Similarity

• Choosing $W = (X^T X)^{-1}$ gives

$$K_M = X(X^T X)^{-1} X^T,$$

which is a similarity matrix related to the Mahalanobis distance, and is the projection matrix for the column space of X.

Data generated from variance components model with $\sigma_b^2 = 1$

Left Data generated from variance components model with $\sigma_b^2 = 1$. **Right** Data generated from fixed effects model with $\beta = (0.75, -0.75)$.

Can we compromise between the Mahalanobis and Euclidean metrics?

Weight Matrices

Goal

We want a weight matrix that adjusts for the correlation structure in the data like the Mahalanobis metric, but which is closer to the Euclidean metric.

Weight Matrices

Goal

We want a weight matrix that adjusts for the correlation structure in the data like the Mahalanobis metric, but which is closer to the Euclidean metric.

Solution: Penalize the Mahalanobis weight matrix.

• Let $\lambda \geq 0$. Consider the penalized weight matrix:

$$\mathcal{W}_{\lambda} = (X^T X + \lambda I_p)^{-1}.$$

- As $\lambda \to \infty$, the penalty term λI_p dominates X^TX , and so W_λ tends to a constant diagonal matrix.
- We call $\mathcal{K}(u, v) = u^T \mathcal{W}_{\lambda} v$ the **ridge kernel**.

Weight Matrices

• **Summarizing**, the Euclidean and Mahalanobis inner products are linked by the ridge kernel, where $W_{\lambda=0}$ gives the Mahalanobis metric, and $\lambda \to \infty$ gives the Euclidean metric.

Metric Gram Matrix

Mahalanobis $K_M = X(X^TX)^{-1}X^T$

Euclidean $K_E = XX^T$

Ridge Kernel $K_{\lambda} = X(X^{T}X + \lambda I)^{-1}X^{T}$

Assume rank(X) = r with singular value decomposition $X = U_{n \times r} D_{r \times r} V_{p \times r}^T$, where η_i , $j = 1, \dots, r$ are the squared singular values. Let $H = YY^T$ and $Z = U^TY$.

Mahalanobis Metric
$$r(H, K_M) = \frac{\sum_{j=1}^r z_j^2}{\sqrt{p} \sum_{i=1}^n y_i^2},$$

Euclidean Metric
$$r(H, K_E) = \frac{\sum_{j=1}^r \eta_j z_j^2}{\sqrt{\sum_{j=1}^r \eta_j^2} \sum_{i=1}^n y_i^2},$$

Ridge Similarity
$$r(H, K_{\lambda}) = \frac{\sum_{j=1}^{r} \frac{\eta_{j}}{\lambda + \eta_{j}} z_{j}^{2}}{\sqrt{\sum_{j=1}^{r} \left(\frac{\eta_{j}}{\eta_{j} + \lambda}\right)^{2} \sum_{i=1}^{n} y_{i}^{2}}}.$$

This implies limit relationships between the three measures of correlation:

$$r(H, K_{\lambda=0}) = r(H, K_M)$$

Linear Model Definitions

Linear Model Score Tests

Model	Score Stat.	Equivalent Stat.	Null Distribution
Fixed	$S = Z^T D (D^T D)^{-1} D^T Z$	$T_M = \operatorname{tr}(K_M H)$	$c_1 \chi_p^2$
Random	$S = Z^T D D^T Z$	$T_E = \operatorname{tr}(K_E H)$	$c_2 \sum_{j=1}^r \eta_j \chi_1^2$
Ridge	$S = Z^T D (D^T D + \lambda I_p)^{-1} D^T Z$	$T_{\lambda} = \operatorname{tr}(K_{\lambda}H)$	$c_3 \sum_{j=1}^r \frac{\eta_j}{\lambda + \eta_j} \chi_1^2$

Linear Model Score Tests

Geometric Interpretation

Consider $Z = U^T Y$, as the projection of Y into the column space of X.

- 1. The *Random Effects* model tests the **weighted Euclidean norm** of Z, where the jth component is weighted by the jth eigenvalue η_i .
- 2. The *Fixed Effects* model tests the **Euclidean norm** of *Z*
- 3. The *Ridge Penalization* weights the Euclidean norm of *Z* proportional to the eigenvalues, but these weights are now flattened by a factor of $(\lambda + \eta_i)^{-1}$.

Adaptive Mantel Test

Problem

Choosing a good penalty term for inference can be difficult, since we must control the type I error.

Idea

To simultaneously test a set of tuning parameters, use the **minimum** *P*-**value** across all parameters as the test statistic, and approximate the reference distribution using permutations.

Adaptive Mantel Test

Algorithm 1: Adaptive Mantel Algorithm

- 1 Input: $X, Y, \Lambda = {\lambda_j}_{j=1}^m$.
- 2 Output: Adaptive Mantel P-value.

3
$$H^{(0)} \leftarrow YY^T$$

4 for
$$j = 1, ..., m$$
 do

$$\mathbf{5} \mid K_{\lambda_i} \leftarrow X(X^TX + \lambda I_p)^{-1}X^T$$

6 Generate B permutations of $H^{(0)}$, labeled $H^{(b)}$, $b = 1, \ldots, B$

7
$$T_j^{(b)} \leftarrow \operatorname{tr}(H^{(b)}K_{\lambda_j}), \quad \forall b = 0, \dots, B; j = 1, \dots, m$$

$$P_j^{(b)} \leftarrow \frac{1}{B+1} \sum_{b'=0}^{B} \mathbb{1}(T_j^{(b)} \ge T_j^{(b')}), \quad \forall b = 0, \dots, B; j = 1, \dots, m$$

9
$$P^{(b)} \leftarrow \min_j P_j^{(b)}, \quad \forall b = 0, \dots, B$$

10
$$P_{ADA} \leftarrow \frac{1}{B+1} \sum_{b=0}^{B} \mathbb{1}(P^{(0)} \leq P^{(b)})$$

Application Example

- 350 Subjects from the BNU data set
- ~10 minute 64 channel EEG recording during VWM task
 - Preprocessed according to standard pipeline
 - Coherence measures for each channel pair was calculated by the FFT, and grouped into five frequency bands (in Hz):

$$\delta$$
 (1 – 4), θ (4 – 8), α (8 – 16), β (16 – 32), γ (32 +)

- 13 SNPs selected for analysis, previously identified as potential factors for Alzheimer's disease risk
 - All 13 SNPs passed standard quality control checks

Visual Working Memory Experiment

Visual Working Memory Experiment

Adaptive Mantel Test Results

- Results of adaptive Mantel test for association of AD SNPs and EEG Coherence at particular frequency bands
- Used L_2 similarity for SNPs, and ridge kernel similarity for coherence, with penalty terms $\Lambda = \{0.5, 1, 5, 10, 100, 1000, \infty\}$

Band	Channels	P − value
β	All	0.619
β	Frontal	0.517
α	All	0.075
α	Frontal	0.381
θ	All	0.416
θ	Frontal	0.081
δ	All	0.015
δ	Frontal	0.088

Links

- Adaptive Mantel Test Paper: arxiv.org/pdf/1712.07270.pdf
- Slides available: github.com/dspluta/Presentations/
- Adaptive Mantel R Package: github.com/dspluta/adamant

References

- Wu M., et al. Kernel Machine SNP-set Testing under Multiple Candidate Kernels. Genetic Epideomiology. 2013. 37(3): 267-275.
- Cai T., et al., Kernel Machine Approach to Testing the Significance of Multiple Genetic Markers for Risk Prediction. Biometrics. 2011. 67(3): 975-986.
- Ge T, et al. Massively Expedited Genome-Wide Heritability Analysis (MEGHA). PNAS. 2015. 112, 2479-2484.
- Xue G, et al. Functional Dissociations of Risk and Reward Processing in the Medial Prefrontal Cortex. Cerebral Cortex. 2009. 19, 1019-1027.
- Yang J, et al. GCTA: A Tool for Genome-wide Complex Trait Analysis. The American Journal of Human Genetics. (2011) 88, 76-82.
- Tzeng et al. (2009) Biometrics 65, 822.
- Visscher et al. (2014) Statistical power to detect genetic (co)variance of complex traits using SNP data. PLoS Genetics.
- GCTA Power, http://cnsgenomics.com/shiny/gctaPower/

Appendix

Adaptive Mantel Test

Computing the adaptive Mantel test can be done efficiently using either the SVD or a linear algebra trick, depending on the relative sizes of n and p.

SVD

- Computing the SVD $X = UDV^T$ can be completed in $O(np^2)$.
- When $rank(X) = r \le n$, the Mantel statistic can be then be computed in $O(n^2)$:

$$T = \sum_{i=1}^{r} \eta_i z_i^2$$

• Using *B* permutations gives a total complexity of $O(np^2 + Bn^2)$.

Adaptive Mantel Test

Linear Algebra Trick

When $p \gg n$, it is better to instead use the following reformulation for K:

$$K_{\lambda} = X(X^TX + \lambda I_p)^{1} = (XX^T + \lambda I_n)^{-1}XX^T.$$

Calculating K_{λ} with this alternative form can be done in $O(n^2p)$, giving a total computational cost of $O(n^2(p+B))$.

- The computation for the adaptive test scales this cost linear relative the number of tuning parameters included.
- The computations can be easily parallelized.

EEG Pre-processing

- EEG pre-processing:
 - 1. Downsample from 1024 Hz to 128 Hz
 - 2. Remove bad channels
 - 3. Band-pass filter from 1 Hz to 45 Hz
 - 4. Interpolate/re-reference bad channels
 - 5. ICA to remove eyeblinks and motion artifacts
 - 6. Remove remaining bad trials. Exclude subjects if > 5% of trials removed.
- Calculate coherence for all subjects and all channels using the FFT, and compute mean coherence by frequency band.