PRML LAB-2

Name: Shalin Jain Roll No.: - B21CS070

Problem 1

Part 1 Pre-processing the data

The data was pre-processed by dropping the null values and normalizing the dataset

Part 2 Varying Hyper-Parameters

We varied three hyper-parameters that are max_depth, min_sample_leaf and max_features. The obtained graph for mse are as shown

ii) Min_Samples_Leaf

iii) Max_Features

Because max_depth and min_sample_leaf are very useful while defining the height and complexity of the tree we used these hyper-parameters. We took the value of hyper-parameters for which the mse is the lowest.

2) 5-Fold Cross Validation

```
[0.99557134 0.9895716 0.98878805 0.95162691 0.9855022 ] 0.982212020348493
```

3) Repeated 5-Fold Cross Validation

```
[0.99579498 0.99773435 0.98701509 0.94664839 0.99555791 0.98671735 0.99204476 0.98825463 0.99124105 0.98925572 0.99624069 0.98783929 0.97992079 0.99138788 0.99217751 0.98715791 0.99262532 0.99510298 0.99668783 0.9810375 0.98476795 0.99582544 0.99132729 0.96677709 0.99455043]
0.982212020348493
```

Tree Plot

Part 4 L1 and L2 Loss

The loss function L2 that is mean squared error performs better in case of regression.

L1

0.9996323293581979

L2

0.9997753642918821

i) L1 Loss

ii) L2 Loss

Problem 2

Part 1 Training a Decision Tree Classifier and Plotting Decision Tree Boundary

Decision boundary of a decision tree

Part 2 Dropping one value and plotting the decision boundary

Decision boundary of a decision tree

Part 3 Changing max_depth to None and plotting decision boundary

Decision boundary of a decision tree

The difference between first and the third plot is that the decision boundary is more precise with increase in max_depth.

Part 4 Creating a random dataset

	X1	X2	Y
0	3.73	3.13	1
1	4.39	3.07	1
2	2.33	4.65	0
3	3.59	3.90	1
4	1.25	3.92	0
195	1.67	2.39	0
196	4.60	2.49	1
197	1.78	3.95	0
198	2.81	1.46	1
199	1.90	0.09	0
200 rows × 3 columns			

Decision Tree (Max_depth = 2)

Decision Boundary

Decision Tree Boundary

Decision boundary after rotating

Decision Tree Boundary

Regression

Part 1

We can clearly see the difference that if minimum samples in a leaf is less then more accurate boundary is present.

In the part 1 we can decision boundary's precision and accuracy increases with increase in max_depth. The increase in max_depth increase more accurate splits as well as predictions.

Problem 3

Data visualization

Decision Tree Class

For the third problem I have used entropy for the loss function and used information gain to get gain for each parent, child attribute and the best gain is used find the best split. The split is calculated with the help of information gain as well as the threshold.

We used the formula given below to find the entropy gain: -

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

The overall as well as class wise accuracy for my model is as follows

Where 0,1,2 are the respective classes of species.