Overview of LLMOps

LLMOPS CONCEPTS

Max Knobbout, PhD
Applied Scientist, Uber

What we will learn in this course

- LLMOps helps to effectively manage,
 deploy, and maintain large language model applications
- We will cover:
 - Fundamentals
 - Lifecycle of LLM applications
 - Challenges and considerations

¹ Illustrations by Manfred Steger @ Pixabay

A recap of LLMs

What are LLMs?

- Trained on extensive text data
- Can understand and generate human-like text
- Represent an Al breakthrough

What sets them apart?

- Typically pre-trained
- 🛮 Massive number of parameters
- 🛘 Significant computational resources
- 🛮 Unpredictable

How it started...

- Queries were directly fed into the model
- The focus was on operating the model
- Only when the model was fine-tuned data was introduced

... versus how it's going

- Integrating organizational data before text generation
- Steps can involve data processing and manipulation
- One, or multiple model calls, accommodating text, image, or multimodal

Resulting in what we call **LLM applications** throughout this course

The need for LLMOps

The need for LLMOps

The need for LLMOps

LLMOps versus MLOps

LLMOps versus MLOps

Some differences:

	LLMOps	MLOps
Model size	Large	Typically smaller
Data	Text	Any data
Pre-trained models	Typically yes	Typically no
Model improvement	Prompt engineering & fine- tuning	Feature engineering & model selection
Generalization	General-purpose	Fixed scope
Unpredictability	High	Low
Output	Primarily text	Task-specific

Let's practice!

LLMOPS CONCEPTS

Lifecycle of LLMs

LLMOPS CONCEPTS

Max Knobbout, PhD
Applied Scientist, Uber

Ideation phase

Chapter 1

Ideation phase Development phase **Chapter 1 Chapter 2**

Ideation phase

Ideation phase

Data sourcing

Ideation phase

Ideation phase

Data sourcing

Base model selection

Prompt engineering

Chains and agents

RAG versus fine-tuning

Operational phase

Deployment

Monitoring and observability

Deployment

Monitoring and observability

Cost management

Governance and security

The full picture

Let's practice!

LLMOPS CONCEPTS

Ideation phase

LLMOPS CONCEPTS

Max Knobbout, PhD
Applied Scientist, Uber

LLM lifecyle: Ideation phase

Data sourcing

• Identifying needs

Finding sources

• Ensuring accessibility

Data sourcing

- 1. Is the data relevant?
- 2. Is the data available?
 - Transform the data
 - Set up additional databases
 - Evaluate costs
 - Consider other access limitations
- 3. Does the data meet standards?
 - Concerns quality and governance

Selecting the base model

Pre-trained models:

Proprietary or open-source?

Proprietary models (privately owned)

Advantages:

- Ease of set-up and use
- Quality assurance
- Reliability, speed, and availability

Limitations:

- Requires exposing data
- Customization

Examples:

Open-source (publicly accessible)

Advantages:

- In-house hosting
- Transparency
- Full customizability

Limitations:

- Support
- Commercial use

Example:

Meta Llama 3

Downloadable from:

Factors in model selection

1. Performance

- Response quality
- Speed

- Data used to train the model
- Context window size
- Fine-tunability

Factors in model selection

3. Practical Considerations

- License
- Cost
- Environmental impact

4. Secondary factors

- Number of parameters
- Popularity

Let's practice!

LLMOPS CONCEPTS

