

Iterative Deepening A* Search

Alfons Juan Jorge Civera

Departament de Sistemes Informàtics i Computació

Objectives

- ► To apply the IDA* algorithm.
- ► To build the IDA* search tree.
- ► To analyse the optimality and complexity of IDA* search.

Contents

1	Introduction	3
2	The IDA* algorithm	4
3	IDA* search space	6
4	Optimality and complexity	7
5	Conclusions	8

1 Introduction

IDA* search is based on IDS with backtracking using an f value to bound the search at each iteration, instead of a maximum depth:

 IDA^* computes the next bound as the minimum f value of those nodes exceeding the current bound.

2 The IDA* algorithm (main) [1]

```
IDA(G, s', h)// G weighed graph, s' start, h heuristicP = InitStack(s')// Init Path with source nodeb = h(s')// Init bound with f_{s'} = h(s')while True:(nextb, r) = BT(G, P, h, b)//BT returns next bound and goal stateif r \neq NULL: return P// if solution, return Path to goalif nextb = \infty: return NULL // no children to compute next boundb = nextb// bound updated for next iteration
```

The IDA* algorithm (backtracking) [1]

```
BT(G, P, h, b)
                           //G weighed graph, Path P, h, bound b
s = Top(P)
                                    // Path: extract node from stack
f_s = q_s + h(s)
                                  // f value of node being explored
if f_s > b: return (f_s, NULL) // b exceeded return to compute nextb
if Goal(s): return (f_s, s)
                                                   // solution found!
                                      // children's minimum f value
min = \infty
                                      // generation: n first child of s
n = FirstAdjacent(G, s)
while n \neq \text{NULL}:
                    // while there are children left to explore
  if n \notin P:
                                      // n not in Path to avoid loops
   Push(P, n)
                            // add child to the Path being explored
   (nextb, r) = BT(G, P, h, b) // child returns min f and goal state
   if r \neq \text{NULL}: return (nextb, r) / / \text{if } r solution, get out recursion
   if nextb < min: min = nextb
                                         // update minimum f value
                                      // Discard last child from Path
   Pop(P)
  n = NextAdjacent(G, s, n)
                                     // generation: n next child of s
return (min, NULL)
                                // sol. not found, return minimum f
```

3 IDA* search space

4 Optimality and complexity

- ► Completeness: As A*, it always finishes in finite graphs.
- ▶ Optimality: If h is admissible, IDA* returns the optimal solution. IDA* expands nodes in increasing f value.
- ► Space complexity: As IDS with backtracking, O(d)
- ► Temporal complexity: As A^* , $O(b^d)$, in practice:
 - A subset of nodes are re-expanded at each iteration
 - \triangleright Iterations depends on number of nodes with different f value
 - No need of *Open* priority queue or *Closed* set

5 Conclusions

We have studied:

- ► The IDA* algorithm.
- ► The IDA* search space.
- Optimality and complexity in IDA* search.

Some aspects to highlight on IDA*:

- ► Complete and optimum with positive-cost edges and *h* admissible.
- Reduced spatial cost thanks to backtracking.
- Temporal cost depends on evaluation function f

IDA* exercise

f-value next to each node

Run a trace of IDA* on the state space on the left and answer the following questions:

- Number of iterations to find solution?
- Maximum number of nodes in memory?
- Total number of nodes generated?

IDA* solution

References

[1] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. *Artificial Intelligence*, 27:97–109, 1985.

IDS with backtracking

```
IDS(G, s) // Iterative deepening search for m = 0, 1, 2, ...: if (r = \mathsf{BT}(G, s, m)) \neq \mathsf{NULL}: return r
```

```
BT(G, s, m)
                        // Backtracking with maximum depth of m
                                                    // solution found!
if Goal(s) return s
if m=0 return NULL
                                         // maximum depth reached
n = FirstAdjacent(G, s)
                                      // generation: n first child of s
while n \neq \text{NULL}:
 r = \mathsf{BT}(G, n, m-1)
                                               // current child result
  if r \neq NULL: return r
                                               // if r is solution, stop
  n = NextAdjacent(G, s, n)
                                     // generation: n next child of s
return NULL
                                                 // no solution found
```