Proposition 11.9 yields another proof of part (b) of the duality theorem (theorem 11.4) that does not involve the existence of bases (in infinite dimension).

Proposition 11.10. For any vector space E and any subspace V of E, we have $V^{00} = V$.

Proof. We begin by observing that $V^0 = V^{000}$. This is because, for any subspace U of E^* , we have $U \subseteq U^{00}$, so $V^0 \subseteq V^{000}$. Furthermore, $V \subseteq V^{00}$ holds, and for any two subspaces M, N of E, if $M \subseteq N$ then $N^0 \subseteq N^0$, so we get $V^{000} \subseteq V^0$. Write $V_1 = V^{00}$, so that $V_1^0 = V^{000} = V^0$. We wish to prove that $V_1 = V$.

Since $V \subseteq V_1 = V^{00}$, the canonical projection $p_1 \colon E \to E/V_1$ factors as $p_1 = f \circ p$ as in the diagram below,

$$E \xrightarrow{p_1} E/V$$

$$\downarrow^f$$

$$E/V_1$$

where $p: E \to E/V$ is the canonical projection onto E/V and $f: E/V \to E/V_1$ is the quotient map induced by p_1 , with $f(\overline{u}_{E/V}) = p_1(u) = \overline{u}_{E/V_1}$, for all $u \in E$ (since $V \subseteq V_1$, if $u - u' = v \in V$, then $u - u' = v \in V_1$, so $p_1(u) = p_1(u')$). Since p_1 is surjective, so is f. We wish to prove that f is actually an isomorphism, and for this, it is enough to show that f is injective. By transposing all the maps, we get the commutative diagram

$$E^* \stackrel{p^{\top}}{\rightleftharpoons} (E/V)^*$$

$$\downarrow^{f^{\top}}$$

$$(E/V_1)^*,$$

but by Proposition 11.9, the maps $p^{\top} \colon (E/V)^* \to V^0$ and $p_1^{\top} \colon (E/V_1)^* \to V_1^0$ are isomorphism, and since $V^0 = V_1^0$, we have the following diagram where both p^{\top} and p_1^{\top} are isomorphisms:

$$V^{0} \stackrel{p^{\top}}{\longleftarrow} (E/V)^{*}$$

$$\downarrow^{f^{\top}}$$

$$(E/V_{1})^{*}.$$

Therefore, $f^{\top} = (p^{\top})^{-1} \circ p_1^{\top}$ is an isomorphism. We claim that this implies that f is injective.

If f is not injective, then there is some $x \in E/V$ such that $x \neq 0$ and f(x) = 0, so for every $\varphi \in (E/V_1)^*$, we have $f^{\top}(\varphi)(x) = \varphi(f(x)) = 0$. However, there is linear form $\psi \in (E/V)^*$ such that $\psi(x) = 1$, so $\psi \neq f^{\top}(\varphi)$ for all $\varphi \in (E/V_1)^*$, contradicting the fact that f^{\top} is surjective. To find such a linear form ψ , pick any supplement W of Kx in E/V, so that $E/V = Kx \oplus W$ (W is a hyperplane in E/V not containing x), and define ψ to be zero