Homework #3

Due Date: Monday, March 29, 2023 **Sample Solution**

Submission: electronically on eTL (scan & upload)

Question 1

Integer Multiplication

For this problem we use a 16-bit version of the multiplier discussed in the book in Chapter 3.3 / Figure 3.5.

Compute the product 106×81 and show the values of the product register, the multiplicand register, and the action of control for each step.

Step	Product register	Multiplicand	Control
Init	0 0000 0000 0101 000 <mark>1</mark>	0110 1010	add & shift
1	0 0011 0101 0010 100 0	0110 1010	shift
2	0 0001 1010 1001 010 0	0110 1010	shift
3	0 0000 1101 0100 101 0	0110 1010	shift
4	0 0000 0110 1010 010 <mark>1</mark>	0110 1010	add & shift
5	0 0011 1000 0101 001 0	0110 1010	shift
6	0 0001 1100 0010 100 1	0110 1010	add & shift
7	0 0100 0011 0001 010 0	0110 1010	shift
8	0 0010 0001 1000 1010	0110 1010	done
	0x218A = 8586 = 81 x 106		

Question 2 *Integer Division*

For this problem we use a 16-bit version of the divider discussed in the book in Chapter 3.4 / Figure 3.11.

Compute the result of the division 97/5 and show the values of the remainder register, the divisor register, and the action of control for each step.

Step	Remainder register	Divisor	Control		
Init	0 <u>0000 0000</u> 0110 0001	0000 0101	smaller: shift in 0		
1	0 <u>0000 0000</u> 1100 0010	0000 0101	smaller: shift in 0		
2	0 <u>0000 0001</u> 1000 0100	0000 0101	smaller: shift in 0		
3	0 <u>0000 0011</u> 0000 1000	0000 0101	smaller: shift in 0		
4	0 <u>0000 0110</u> 0001 0000	0000 0101	bigger: sub, shift in 1		
5	0 <u>0000 0010</u> 0010 0001	0000 0101	smaller: shift in 0		
6	0 <u>0000 0100</u> 0100 0010	0000 0101	smaller: shift in 0		
7	0 <u>0000 1000</u> 1000 0100	0000 0101	bigger: sub, shift in 1		
8	0 <u>0000 0111</u> 0000 1001	0000 0101	bigger: sub, shift in 1		
9	0 <u>0000 0010</u> 0001 0011	0000 0101	done		
	remainder quotient				
	2 19				

Note that in the last iteration only the quotient is shifted (not the remainder)!

Question 3

Floating Point Addition

Given is the floating point format "fp8" with the following organization.

sign		exp		frac					
7	6	5	4	3	2	1	0		

The fields exp and frac are encoded in the same way as in the IEEE 754 standard. The bias is -3.

Compute the sum of a = 5.5 and b = 0.55 in fp8. Follow the steps outlined in the textbook, chapter 3.5. When rounding, use round-to-even mode.

Step 0: fp8 representation

	sign		exp				fr	ac			
a = 5.5	0	1	0	1	1.	0	1	1	0		
b = 0.55	0	0	1	0	1.	0	0	0	1	1	0

Step 1: Align

	sign	sign exp					fr				
a	0	1	0	1	1.	0	1	1	0	0	Θ
b	0	1	0	1	0.	0	0	1	0	0	Θ

Step 2: Add

-	sign		exp					ac			
a+b	0	1	0	1	1.	1	0	0	0	0	0

Step 3: Normalize

	sign		exp				G	R			
a+b	0	1	0	1	1.	1	0	0	0	0	Θ

Step 4: Round

r	sign		exp				fr	ac		G	R
a+b	0	1	0	1	1.	1	0	0	0	0	0

a+b = 6.0