Применение псевдоразметки для распознавания речи

+ дополнения про авторегрессионные модели

План

Авторегрессионные модели

- Проблемы расхождения обучения и инференса
- Teacher forcing
- Minimum WER training
- Shallow fusion alternatives

План

Псевдоразметка

- Стандартный пайплайн обучения
- Простейшая псевдоразметка (pseudo-labeling)
- Recap: аугментации
- Итеративная псевдоразметка
- slimIPL, экспоненциальное сглаживание учителя
- Объединение wav2vec 2.0 и псевдолейблов
- Софт-лейблы и связь с knowledge distillation

Расхождение обучения и инференса

- Обучение:
 - ???
- Инференс:
 - ???

Расхождение обучения и инференса

- Обучение:
 - Подаем все токены референса до і-го, предсказываем і-й
- Инференс:
 - Модель сама генерирует все, начиная с первого токена
 - Делаем beam-search, поддерживаем N гипотез
 - Подмешиваем скор языковой модели

Teacher forcing

- При обучении мы знаем итоговую транскрипцию, поэтому можем ее подавать на вход модели
- В реальности модель сама выдает токены и их же получает на вход
- Можно генерировать при обучении, но это долго и может сбивать модель при плохом исходном качестве
- Компромисс 1: использовать teacher forcing с некоторой вероятностью, которую мы понижаем со временем (scheduled sampling)

Teacher forcing

- При обучении мы знаем итоговую транскрипцию, поэтому можем ее подавать на вход модели
- В реальности модель сама выдает токены и их же получает на вход
- Можно генерировать при обучении, но это долго и может сбивать модель при плохом исходном качестве
- Компромисс 1: использовать teacher forcing с некоторой вероятностью, которую мы понижаем со временем (scheduled sampling)
- Компромисс 2: заменять часть токенов во входе декодера на случайные

- При обучении модель старается сгенерировать лучший ответ
- В реальности мы делаем beam search и стараемся ранжировать гипотезы, при этом наша метрика WER
- Можно ли отпимизировать WER?

Word Error Rate (WER)

- S substitutions
- I insertions
- o **D** deletions
- N reference words

$$WER = \frac{S + I + D}{N}$$

In order to minimize word error rates on test data, we consider as our loss function, the *expected number of word errors over the training set*:

$$\mathcal{L}_{werr}(\mathbf{x}, \mathbf{y}^*) = \mathbb{E}[\mathcal{W}(\mathbf{y}, \mathbf{y}^*)] = \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})\mathcal{W}(\mathbf{y}, \mathbf{y}^*)$$
(4)

In order to minimize word error rates on test data, we consider as our loss function, the *expected number of word errors over the training set*:

$$\mathcal{L}_{werr}(\mathbf{x}, \mathbf{y}^*) = \mathbb{E}[\mathcal{W}(\mathbf{y}, \mathbf{y}^*)] = \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})\mathcal{W}(\mathbf{y}, \mathbf{y}^*)$$
(4)

$$\mathcal{L}_{ ext{werr}}^{ ext{N-best}}(\mathbf{x},\mathbf{y}^*) = \sum_{\mathbf{y}_i \in ext{Beam}(\mathbf{x},N)} \widehat{P}(\mathbf{y}_i|\mathbf{x}) \left[\mathcal{W}(\mathbf{y}_i,\mathbf{y}^*) - \widehat{W}
ight]$$

Where,
$$\widehat{P}(\mathbf{y}_i|\mathbf{x}) = \frac{P(\mathbf{y}_i|\mathbf{x})}{\sum_{\mathbf{y}_i \in \text{Beam}(\mathbf{x},N)} P(\mathbf{y}_i|\mathbf{x})}$$
, represents the distribu-

tion re-normalized over just the N-best hypotheses, and \widehat{W} is the average number of word errors over the N-best hypotheses, which is applied as a form of variance reduction, since it does not affect the gradient.

mWER

In order to minimize word error rates on test data, we consider as our loss function, the *expected number of word errors over the training set*:

$$\mathcal{L}_{werr}(\mathbf{x}, \mathbf{y}^*) = \mathbb{E}[\mathcal{W}(\mathbf{y}, \mathbf{y}^*)] = \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})\mathcal{W}(\mathbf{y}, \mathbf{y}^*)$$
(4)

$$\mathcal{L}_{ ext{werr}}^{ ext{N-best}}(\mathbf{x},\mathbf{y}^*) = \sum_{\mathbf{y}_i \in ext{Beam}(\mathbf{x},N)} \widehat{P}(\mathbf{y}_i|\mathbf{x}) \left[\mathcal{W}(\mathbf{y}_i,\mathbf{y}^*) - \widehat{W}
ight]$$

Where,
$$\widehat{P}(\mathbf{y}_i|\mathbf{x}) = \frac{P(\mathbf{y}_i|\mathbf{x})}{\sum_{\mathbf{y}_i \in \text{Beam}(\mathbf{x},N)} P(\mathbf{y}_i|\mathbf{x})}$$
, represents the distribu-

tion re-normalized over just the N-best hypotheses, and \widehat{W} is the average number of word errors over the N-best hypotheses, which is applied as a form of variance reduction, since it does not affect the gradient.

$$\mathcal{L}^{ ext{N-best}} = \sum_{(\mathbf{x}, \mathbf{y}^*)} \mathcal{L}^{ ext{N-best}}_{ ext{werr}}(\mathbf{x}, \mathbf{y}^*) + \lambda \mathcal{L}_{ ext{CE}}$$

Авторегрессионные моделиShallow fusion

- Авторегрессионные модели выучивает языковое распределение внутри себя
- ^ почему это проблема при shallow fusion?

Авторегрессионные моделиShallow fusion

Shallow Fusion:

$$\hat{y} = rg \max_y \left(\log P_{ ext{E2E}}(y|x) + \lambda \log P_{ ext{ELM}}(y) + eta|y|
ight)$$

Shallow fusion

Density Ratio

hybrid

$$\hat{y} = rg \max_{y} P_{ ext{AM}}(x|y) P_{ ext{ELM}}(y)$$

$$P_{ ext{RNNT}}(x|y) = rac{P_{ ext{RNNT}}(y|x)P_{ ext{RNNT}}(x)}{P_{ ext{RNNT}}(y)}$$

$$\hat{y} = rg \max_y rac{P_{ ext{RNNT}}(y|x)P_{ ext{RNNT}}(x)}{P_{ ext{RNNT}}(y)} P_{ ext{ELM}}(y) = rg \max_y rac{P_{ ext{RNNT}}(y|x)}{P_{ ext{RNNT}}(y)} P_{ ext{ELM}}(y)$$

$$P_{ ext{RNNT}}(y)pprox P_{ ext{ILM}}(y)$$

$$\hat{y} = rg \max_{y} \left(\log P_{ ext{RNNT}}(y|x) - \log P_{ ext{ILM}}(y) + \log P_{ ext{ELM}}
ight)$$

$$\hat{y} = rg \max_y \left(\log P_{ ext{RNNT}}(y|x) + \lambda_0 \log P_{ ext{ILM}}(y) + \lambda_1 \log P_{ ext{ELM}} + eta|y|
ight)$$

— Internal Language Model: отдельно тренируем neural-LM на trainтранскрипциях

Shallow fusion

<u>ILME</u>

$$h_{t,u}^{
m joint}= anh(W_1^{
m joint}h_t^{
m enc}+W_2^{
m joint}h_u^{
m pred})$$

$$W_2^{
m joint}$$
 $ightarrow$ 0 \Rightarrow CTC-model

 $h_t^{
m enc}$ ightarrow 0 \Rightarrow Internal Language Model Estimation

$$\log P_{ ext{ILM}} = \sum_{u=0}^{U} \log \operatorname{softmax} J(h_u^{ ext{pred}}, \mathbf{0})$$

Авторегрессионные моделиShallow fusion

LODR: low-order density ratio method

были статьи, в которых показывалось, что ты в RNNT использует языковую информацию с малым контекстом в прошлое:

- Prediction Network в RNN-Т не совсем корректно считать языковой моделью
- Ограничение контекста Prediction Network на основе LSTM не ухудшает качество

при этом в <u>Density Ratio</u> используется полноценная языковая модель с большим контекстом. Авторы предлагают low-order density ratio: использовать слабую bigram LM

Псевдоразметка

Стандартный пайплайн обучения

- У нас есть размеченные данные L: пары (x, y), где x звук, y текст
- Мы обучаем акустическую модель, используя СТС или другой лосс
- Применяем модель: beam-search decoding c LM

Стандартный пайплайн обучения

- Проблема: разметка зачастую дорогая, либо мы вообще не можем ее делать (например, это приватные данные)
- В итоге зачастую количество размеченных данных сильно меньше, чем неразмеченных, но последние мы никак не используем
- Что делать?

Псевдо-разметка Простейший вариант

- Обучим модель М0 на размеченных данных L
- Возьмем наш неразмеченный датасет U, содержащий звук x_U
- Применим к нему модель: y_U = M0(x_U), используя beam-search и LM
- Обучим на L и (x_U, y_U) новую модель М1
- Применяем модель: beam-search decoding c LM

Псевдо-разметка

Почему это работает?

Псевдо-разметка Почему это работает?

- Интуитивно кажется, что модель не может выучить ничего нового из своих же предсказаний
- На деле:
 - Языковая модель сдвигает предсказание в сторону себя
 - Beam search позволяет получить лучшее предсказание
 - За счет того, что мы берем hard лейблы (не вероятности), это уже получается не совсем то же самое, что простой выход модели
 - Если добавить аугментации при обучении, усложняем М1 задачу еще сильнее

Самые популярные аугментации (Бонус)

Самые популярные аугментации (Бонус)

- Ускорение/замедление записи
- Добавление шумов
- SpecAugment: зануляем некоторые фреймы и частоты самая популярная аугментация в статьях

Итеративная псевдоразметка

"Iterative Pseudo-Labeling for Speech Recognition" (Facebook)

- Повторить процесс, обучив модель М2, М3 и т.д.
- Бонус: стартовать с обученных весов, чтобы ускорить процесс

Algorithm 1: Iterative pseudo-labeling

Data: Labeled data $L = \{x_i, y_i\}_{i=1}^l$, Unlabeled data $U = \{x_j'\}_{j=1}^u$

Result: Acoustic model p_{θ}

Initialize p_{θ} by training on only labeled data L;

repeat

- 1. Draw a subset of unpaired data $\tilde{U} \in U$;
- 2. Apply p_{θ} and decoding with LM to the subset \tilde{U} to generate $\hat{U} = \{(x, \hat{y}) | x \in \tilde{U}\};$
- 3. Fine tune p_{θ} on $L \cup \hat{U}$ with data augmentation;

until convergence or maximum iterations are reached;

Итеративная псевдо-разметка

"Iterative Pseudo-Labeling for Speech Recognition" (Facebook)

Итеративная псевдо-разметка

"Iterative Pseudo-Labeling for Speech Recognition" (Facebook)

Table 3: WER of greedy path on dev-other for IPL and training from scratch for multiple rounds. 4-gram $LS \setminus LV$ LM is used for pseudo-labels generation.

Γ	7	IPI.				
Labeled	Unlabeled	0	1	2	3	
LS-100	LS-860	27.76				10.69
LS-100 LS-960	LS + LV LV-54K	27.76 7.31	16.3 5.00	12.9 4.69	10.95 4.57	7.90 4.12

Итеративная псевдоразметка

Проблемы

- Начинаем расходиться со временем
- Псевдолейблы от LAS-моделей плохо работают:
 - модель может выдавать слишком короткие транскрипции (почему?)
 - модель может зацикливаться
- Каждый раз перегенерировать предсказания может быть дорого

Итеративная псевдоразметка

Решения

- Начинаем расходиться со временем => Храним псевдолейблы от старых версий модели (по сути получаем псевдолейблы от ансамбля всех версий)
- Псевдолейблы от LAS-моделей плохо работают => Фильтруем предсказания
- Каждый раз перегенерировать предсказания может быть дорого => Убираем LM и beam-search decoding
 Почему оно до сих пор работает? Аугментации!

Про расходимость

Figure 1: Learning curves on *dev-other* for models trained on LL-10/LS-960 (left) and LS-100/LS-860 (right). slimIPL models refer to baseline models (grey) from Table 3.

Фильтрация

- Можем брать скор языковой модели (Google)
- Можем построить эвристику: смотреть на соотношение длин звука и таргета, отсекать выбросы (Facebook, актуально для LAS-моделей)
- Выкидывать предсказания, где случилось зацикливание (Facebook, LAS)
- Фильтрацию со временем можно ослаблять, это увеличит датасет => можно ослаблять аугментации/регуляризацию
- (А можно наоборот усиливать аугментацию, усложняя задачу для модели)

Итеративная псевдоразметка slimIPL

Algorithm 1: slimIPL

Data: labeled $L = \{x_i, y_i\}$ and unlabeled $U = \{x_j\}$ **Result:** Acoustic model \mathcal{M}_{θ} 1. Train \mathcal{M}_{θ} on L with augmentation for M updates; 2. while cache is not full at size C do

- Draw a random batch from $x \in U$;
- Generate its PL \hat{y} by \mathcal{M}_{θ} following Eq.(1);
- Store $\{x, \hat{y}\}$ into the cache;
- Train \mathcal{M}_{θ} on L with augmentation for 1 update;

end

3. Decrease model's \mathcal{M}_{θ} dropout;

repeat

- 4. Train \mathcal{M}_{θ} on L with augmentation for N_L updates;
- 5. for N_U updates do
 - Draw a random batch $B = \{ \boldsymbol{x}, \hat{\boldsymbol{y}} \}$ from the cache;
 - With probability p, B is removed from cache and a new pair of random batch $x' \in U$ and its PL \hat{y}' generated by \mathcal{M}_{θ} is added in;
 - Apply augmentation to batch B and make an optimization step to update \mathcal{M}_{θ} .

end

until convergence or maximum iterations are reached;

Итеративная псевдоразметка slimIPL

Table 2: Comparison with other semi- and unsupervised methods: LL-10/LS-960 (top) and LS-100/LS-860 (bottom).

Method St	Stride	Tokens	Criterion	LM	Dev WER		Test WER		Compute Resources		
	Surac	TORCHS			clean	other	clean	other	Train Time (Days)	# G/TPUs	G/TPU-days
Libri-Light [2]	20 ms	letters	CTC	word 4-gram	30.5	55.8	30.1	57.2	-	-	-
IPL [<u>5</u>]	80ms	5k wp	CTC	- + rescoring	23.8 23.5	25.7 25.5	24.6 24.4	26.5 26.0	3	64 GPUs	192
wav2vec 2.0 [28]	20ms	letters	CTC	- word 4-gram word Transf.	8.1 3.4 2.9	12.0 6.9 5.7	8.0 3.8 3.2	12.1 7.3 6.1	2.3	128 GPUs	294.4
slimIPL	30ms	letters	CTC	word 4-gram + rescoring	11.4 6.6 5.3	14 9.6 7.9	11.4 6.8 5.5	14.7 10.5 9.0	4.7	16 GPUs	75.2
IPL [5]	80ms	5k wp	CTC	- + rescoring	5.5 5.0	9.3 8.0	6.0 5.6	10.3 9.0	3	64 GPUs	192
Improved T/S [9]	-	16k wp	S2S	LSTM	4.3 3.9	9.7 8.8	4.5 4.2	9.5 8.6	10 × 5	32 TPUs	1600
wav2vec 2.0 [28]	20ms	letters	CTC	- word 4-gram word Transf.	4.6 2.3 2.1	9.3 5.7 4.8	4.7 2.8 2.3	9.0 6.0 5.0	2.3	128 GPUs	294.4
slimIPL	30ms	letters	CTC	- word 4-gram + rescoring	3.7 2.8 2.2	7.3 5.6 4.6	3.8 3.1 2.7	7.5 6.1 5.2	5.2	16 GPUs	83.2

EMA

- Вместо хранения
 псевдолейблов от старых
 версий модели можно
 усреднять веса с разных версий
- Перебирая параметры alpha и Delta, мы будем больше склоняться к более новым или более старым версиям
- Ищем баланс между расхождением и субоптимальным качеством

Fig. 1. Block diagram of the Kaizen framework.

wav2vec 2.0 + псевдолейблы

- обучаем wav2vec, файн-тюним на размеченном датасете, генерируем псевдолейблы
- особенно полезно, если у нас совсем мало разметки
- fun fact: LAS дополнительно выигрывает от псевдолейблов, т.к. декодер меньше переобучается

Table 3: WER on Librispeech with and without a language model (LM) for 10 min, and 960h of labeled data and LibriVox as unlabeled data.

Model	de	ev	test		
	clean	other	clean	other	
10 min labeled					
wav2vec 2.0 [24]	5.0	8.4	5.2	8.6	
- LM	38.3	41.0	40.2	38.7	
wav2vec 2.0 + ST (s2s scratch)	2.6	4.7	3.1	5.4	
- LM	3.3	5.9	3.7	6.5	
wav2vec 2.0 + ST (ctc ft)	2.8	4.6	3.0	5.2	
- LM	4.2	6.9	4.3	7.2	
960h labeled					
wav2vec 2.0 [24]	1.6	3.0	1.8	3.3	
- LM	2.1	4.5	2.2	4.5	
wav2vec 2.0 + ST (s2s scratch)	1.1	2.7	1.5	3.1	
- LM	1.3	3.1	1.7	3.5	
wav2vec 2.0 + ST (ctc ft)	1.6	2.9	1.8	3.3	
- LM	1.7	3.6	1.9	3.9	

Soft labels

- Мы можем подавать софт-лейблы (иначе говоря логиты) вместо хард-лейблов => получаем по сути классическую дистилляцию
- Соответственно, нужен другой лосс (KL divergence)
- Плохо работает в комбинации с СТС/ RNN-Т (почему?) — исключение: selftraining https://arxiv.org/abs/2210.05793
- Если стартовать с тех же весов, то лосс может стать равен нулю:) Поэтому аугментации особенно актуальны

Дистилляция

Используем ансамбль моделей в качестве учителя

Recap

- Псевдолейблы помогают использовать неразмеченные данные и улучшать качество
- Псевдолейблы дают модели новую информацию за счет:
 - beam search decoding'a
 - языковой модели
 - аугментаций
 - более сильных моделей-учителей (включая ансамбли)
- Делая новые итерации псевдолейблов, мы улучшаем качество еще больше
- Unsupervised pre-training дает дополнительный профит
- Можно использовать софт-лейблы, получая от них дополнительную информацию (плохо работает для СТС)

Спасибо! Вопросы?:)