Feature Scaling

In general, gradient descent converges much faster with feature scaling than without it.

How about Hidden Layer?

Batch

$$x^{1} + W^{1} + z^{1} + w^{2} + w^{2$$

$$\tilde{z}^i = \frac{z^i - \mu}{\sigma}$$

$$\tilde{z}^{i} = \frac{z^{i} - \mu}{\sigma}$$

$$\hat{z}^{i} = \gamma \odot \tilde{z}^{i} + \beta$$

At testing stage:

We do not have **batch** at testing stage.

Ideal solution:

Computing μ and σ using the whole training dataset.

Practical solution:

Computing the moving average of μ and σ of the batches during training.

Batch normalization - Benefit

- BN reduces training times, and make very deep net trainable.
 - Because of less Covariate Shift, we can use larger learning rates.
 - Less exploding/vanishing gradients
 - Especially effective for sigmoid, tanh, etc.
- Learning is less affected by initialization.

BN reduces the demand for regularization.

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.