#### Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра оптимального управления

# Отчет по практикуму

# Программа для решения краевых задач методом продолжения по параметру

Студент Группы 313 Царьков Денис Владимирович

Преподаватели
Киселёв Юрий Николаевич
Аввакумов Сергей Николаевич
Дряженков Андрей Александрович

Москва, 2025

# Содержание

| 1 | О проекте                          | 3  |
|---|------------------------------------|----|
|   | 1.1 Цель проекта                   | 3  |
|   | 1.2 Технологический стек           | 3  |
|   | 1.3 Архитектура программы          | 3  |
|   | 1.4 Функциональные возможности     | 4  |
|   | 1.5 Области применения             | 4  |
| 2 | Метод продолжения по параметру     | 4  |
| 3 | Примеры                            | 6  |
| 4 | Описание интерфейса                | 8  |
|   | 4.1 Основные компоненты интерфейса | 8  |
|   | 4.2 Окно результатов               | 8  |
| 5 | Описание математических вычислений | 9  |
| 6 | Литература                         | 10 |

# 1 О проекте

#### 1.1 Цель проекта

Разработка программного обеспечения на Python для численного решения краевых задач систем обыкновенных дифференциальных уравнений методом параметрического продолжения. Программный комплекс включает:

- Графический интерфейс для задания уравнений и краевых условий
- Инструменты настройки параметров численного метода
- Визуализацию решений в графическом и табличном форматах
- Функционал вычисления интегралов от компонент решения

#### 1.2 Технологический стек

Программа реализована с использованием следующих технологий:

- Язык программирования: Python 3
- Библиотеки:
  - PyQt5 графический интерфейс
  - SciPy численные методы (solve\_ivp, root)
  - NumPy вычисления с массивами
  - Matplotlib визуализация результатов

#### 1.3 Архитектура программы

Программа имеет модульную структуру с многооконным интерфейсом. Основные компоненты:

#### • Меню управления:

- Работа с файлами (сохранение/загрузка)
- Доступ к библиотеке примеров
- Справка и информация о программе

#### • Блок ввода задачи:

- Поля для метаданных (название, комментарии)
- Настраиваемые таблицы для системы ОДУ
- Таблица краевых условий с автоматической адаптацией размерности

#### • Параметры решения:

- Интервал интегрирования [a, b]
- Контрольные точки  $(t^*)$

- Точности вычислений
- Параметры метода продолжения
- Начальные приближения

#### • Инструменты визуализации:

- Построение графиков решений
- Табличное представление результатов
- Вычисление интегралов
- Настройка осей и экспорт данных

#### 1.4 Функциональные возможности

Программа поддерживает:

- Решение нелинейных краевых задач для систем ОДУ
- Метод продолжения по параметру с адаптивным выбором шага
- Различные численные методы (Рунге-Кутта, BDF, Radau)
- Обработку сложных краевых условий (включая нелинейные)
- Интерактивное исследование решений

### 1.5 Области применения

Разработанный программный комплекс может быть использован для:

- Исследования динамических систем в механике и физике
- Анализа устойчивости решений
- Решения задач оптимального управления
- Образовательных целей при изучении численных методов

# 2 Метод продолжения по параметру

Для решения краевой задачи

$$\dot{x} = f(t, x), \quad t \in [a, b], \quad x \in \mathbb{R}^n$$
  
$$R(x(a), x(b)) = 0$$

где  $f:[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$  и  $R:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}^n$  – гладкие векторные функции, используется метод продолжения по параметру. Основная идея метода заключается в сведении исходной краевой задачи к задаче Коши для специальной системы дифференциальных уравнений относительно параметра продолжения или к последовательности нелинейных алгебраических уравнений.

В данной реализации используется предиктор-корректор схема метода продолжения. Исходная краевая задача (??) сводится к решению нелинейного векторного уравнения относительно вектора начальных условий  $p = x(a) \in \mathbb{R}^n$ :

$$\Phi(p) \equiv R(x(a,p),x(b,p)) = 0$$

где x(t,p) – решение задачи Коши  $\dot{x}=f(t,x)$  с начальным условием x(a)=p. Вводится гомотопия:

$$\Psi(p, \mu) = \Phi(p) - (1 - \mu)\Phi(p_0) = 0$$

где  $\mu \in [0,1]$  – параметр продолжения, а  $p_0$  – начальное приближение для x(a). При  $\mu = 0$  уравнение  $\Psi(p,0) = 0$  сводится к  $\Phi(p) = \Phi(p_0)$ , что удовлетворяется при  $p = p_0$ . При  $\mu = 1$  уравнение  $\Psi(p,1) = 0$  сводится к  $\Phi(p) = 0$ , что является исходной задачей.

Метод продолжения строит последовательность решений  $p(\mu_k)$  для дискретных значений  $\mu_k$ , где  $0 = \mu_0 < \mu_1 < \dots < \mu_N = 1$ . На каждом шаге от  $\mu_k$  к  $\mu_{k+1}$ :

1. **Предиктор:** Используется информация о решении при  $\mu_k$  для получения начального приближения  $p_{k+1}^{(0)}$  для решения при  $\mu_{k+1}$ . В данной реализации используется касательный предиктор:

$$p_{k+1}^{(0)} = p_k + \frac{dp}{d\mu}\Big|_{\mu_k} (\mu_{k+1} - \mu_k)$$

где  $\frac{dp}{d\mu} = -[\Phi'(p)]^{-1}\Phi(p_0)$ . Для вычисления  $\Phi'(p)$  решается расширенная система ОДУ для x(t,p) и матрицы чувствительности  $X(t,p) = \frac{\partial x(t,p)}{\partial p}$ :

$$\dot{x} = f(t, x), \quad x(a) = p$$
$$\dot{X} = A(t, x)X, \quad X(a) = I$$

где 
$$A(t,x)=\frac{\partial f}{\partial x}(t,x)$$
. Тогда  $\Phi'(p)=R'_x(x(a,p),x(b,p))X(a,p)+R'_y(x(a,p),x(b,p))X(b,p)$ .

2. **Корректор:** Решается нелинейное уравнение  $\Psi(p,\mu_{k+1})=0$  для нахождения скорректированного решения  $p_{k+1}$  при  $\mu_{k+1}$ , начиная с предсказания  $p_{k+1}^{(0)}$ . Используется итерационный метод (например, метод Ньютона или его модификации), реализованный в scipy.optimize.root.

Процесс продолжается до достижения  $\mu = 1$ .

# 3 Примеры

В программе реализована библиотека примеров краевых задач, демонстрирующих возможности метода:

• Пример 1: Краевая задача двух тел. Задача гравитационного движения



Рис. 1: Траектория гравитационного взаимодействия

двух тел, сводящаяся к системе из 4 ОДУ с краевыми условиями на координаты в начальный и конечный моменты времени. Параметры:  $x_1(0)=2,\ x_2(0)=0,\ x_1(7)\approx 1.07,\ x_2(7)\approx -1.10.$ 

• Пример 2: Предельные циклы в системе Эквейлера. Задача поиска пе-



Рис. 2: Фазовый портрет предельного цикла

риодических решений для системы Эквейлера  $\dot{x}_1 = x_3x_2, \, \dot{x}_2 = x_3(-x_1 + \sin x_2).$  Формулируется как краевая задача на интервале  $t \in [0,1]$  с условиями периодичности.

• Пример 3: Трехкратный интегратор. Пример с малым параметром  $\nu$  в



Рис. 3: Фазовые траектории интегратора

нелинейном управлении:  $\dot{x}_3 = 0.5(\sqrt{\nu + (u+1)^2} - \sqrt{\nu + (u-1)^2})$ . Краевые условия задают переход из начального состояния в нулевое за время T = 3.275.

• Пример 4: Быстродействие с лункой. Задача оптимального управления с



Рис. 4: Оптимальные управления  $u_1(t)$  и  $u_2(t)$ 

гладкими управлениями в форме "лунок". Управления имеют вид:

$$u_1(t) = \begin{cases} -0.5\sin(\pi t/0.15) & t \in (0, 0.15) \\ 0.5\sin(\pi(t-0.45)/0.1) & t \in (0.45, 0.55) \\ 0 & \text{иначе} \end{cases}$$

$$u_2(t) = \begin{cases} t/0.2 & t \in [0, 0.2) \\ 1-2(t-0.5)/0.3 & t \in [0.5, 0.8) \\ -1 & t \ge 0.8 \end{cases}$$

# 4 Описание интерфейса

Программа имеет интуитивно понятный графический интерфейс, реализованный с помощью библиотеки PyQt5. Основные элементы управления:



Рис. 5: Общий вид интерфейса программы

#### 4.1 Основные компоненты интерфейса

- Меню управления (верхняя панель):
  - Файловые операции (создание/сохранение задач)
  - Доступ к библиотеке примеров
  - Справка и настройки

#### 4.2 Окно результатов

После вычисления открывается отдельное окно с результатами:

Рис. 9: Окно визуализации результатов

Функционал окна результатов включает:

- Интерактивные графики решений
- Настройка отображаемых компонент
- Табличное представление данных
- Инструменты приближения/отдаления
- Вычисление интегралов от решений

#### 5 Описание математических вычислений

Математические вычисления в программе основаны на алгоритме метода продолжения по параметру, описанном в учебном пособии [5].

Внутренняя задача: Решение систем обыкновенных дифференциальных уравнений (как исходной системы для получения траектории, так и расширенной системы для вычисления матрицы чувствительности) выполняется с использованием функции scipy.integrate.solve\_ivp. Поддерживаются различные методы численного интегрирования ОДУ, доступные в SciPy (например, RK45, Radau, BDF).

**Вычисление Якобианов:** Якобиан правой части системы ОДУ  $A(t,x) = \frac{\partial f}{\partial x}(t,x)$  в текущей реализации вычисляется с использованием конечных разностей. Якобианы краевых условий  $R'_x$  и  $R'_y$  вычисляются на основе парсинга строковых представлений краевых условий, предполагая их линейную структуру относительно x(a) и x(b).

Внешняя задача (Корректор): На каждом шаге продолжения решается нелинейное уравнение  $\Psi(p, \mu_{k+1}) = 0$  относительно вектора p. Для этого используется функция scipy.optimize.root, которая предоставляет различные методы поиска корней нелинейных систем (например, 'hybr', 'krylov', 'broyden').

**Численное интегрирование:** Для вычисления определенного интеграла от функции, зависящей от t и x(t), используется функция scipy.integrate.quad. Эта функция выполняет численное интегрирование с адаптивным алгоритмом. Подынтегральная функция динамически создается на основе введенной пользователем строки, используя функцию решения x(t), полученную после успешного нахождения p.

# 6 Литература

# Список литературы

- [1] Мнацаканян Ш.А. Отчет по практикуму. Программа для решения краевых задач методом продолжения по параметру. Москва, 2017.
- [2] Киселёв Ю.Н., Аввакумов С.Н., Орлов М.В. Оптимальное управление. Линейная теория и приложения. Издательский отдел факультета ВМК МГУ имени М.В. Ломоносова, 2007.
- [3] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., ... & van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature Methods*, 17(3), 261-272.
- [4] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T.E. (2020). Array programming with NumPy. *Nature*, 585(7825), 357-362.
- [5] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95.
- [6] Riverbank Computing Ltd. PyQt5. https://www.riverbankcomputing.com/software/pyqt/