Linear Discriminant Analysis

Group Number: 5

AU1741036 - Ratnam Parikh

AU1741042 - Manay Shah

AU1741074 - Arpitkumar Patel

AU1741051 - Jainam Ajmera

AU1741092 - Hardi Trivedi

Introduction

Definition: Linear Discriminant Analysis (LDA) is most commonly used as dimensionality reduction technique in the pre-processing step for pattern-classification and machine learning applications.

Objective: The objective of the LDA is to project the original data matrix onto lower dimensional space.

Introduction

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

good projection: separates classes well

Existing Approaches(Matlab Scripting):

Difficulties Faced Using HDL Coder:

Different Algorithms Researched:

Algorithm For Square Root:

- 1)Restoring Algorithm
- 2)Non-Restoring Algorithm

Algorithm For Division:

1)Non-Restoring Algorithm For Division

Reason Not To Use These Algorithms:

These algorithms were mainly used for fixed point number or integers and so, floating point calculations were difficult to be solved.

For Floating Point Calculations:

- We use online available FPU(Floating Point Unit).
- Features Of FPU:
 - 1)Input can be given as standard IEEE-754 floating point format.
 - 2)Output generated is also in the standard IEEE-754 floating point format.
- FPU Used For:
 - 1)Addition
 - 2)Subtraction
 - 3)Multiplication
- Advantages Of using FPU:
 - 1) Any of the above operations can be performed in 1 clock cycle.

Using IP CORE:

- The use of IP core in our project is for calculating division and square root of floating point inputs.
- Input: 32 Bit Floating Point(IEEE 754 Floating Point Representation, Single Precision).
- Output: 32 Bit Floating Point(IEEE 754 Floating Point Representation, Single Precision).
- Limitations Of using IP CORE:
 1)IP core takes 40 clock cycles for calculation of division and square root of floating point inputs.

