PRÁCTICA 2 (2 sesiones de clase)

Instrumentación y reflectometría en el dominio del tiempo (TDR)

Autores Liceth Natalia Moreno Cruz

Código: 2184259

Jherys Lorena Vega Gamboa

Código: 2184220

Grupo de laboratorio: D1B

Subgrupo de clase Cinco

1.1. SDR — OSCILOSCOPIO

Tomando como referencia el SDR como generador de señales (use la señal de referencia constante) y el canal 1 del osciloscopio. tome los datos de amplitud leídos en el osciloscopio. variando la frecuencia de transmisión del radio (fc) y la amplitud de la señal constante. Nota: los valores de fc se pueden variar de acuerdo con el criterio propio o con los datos presentados por el profesor durante la práctica.

FC = 50 MHz	
Amplitud generada	Amplitud medida en el osciloscopio
1	416.76
0.5	209.88
0.25	106.92
0.125	55.44
0.0625	31.68
FC = 75 MHz	
Amplitud generada	Amplitud medida en el osciloscopio
1	520.74
0.5	223.75
0.25	114.84
0.125	59.60
0.0625	31.28
FC = 100 MHz	
Amplitud generada	Amplitud medida en el osciloscopio
1	334.62
0.5	166.32
0.25	84.74
0.125	43.37
0.0625	22.97
FC = 130 MHz	
Amplitud generada	Amplitud medida en el osciloscopio
1	104.94
0.5	49.50
0.25	23.52
0.125	11.39
0.0625	6.34
-	

1.2. SDR – ANALIZADOR DE ESPECTROS

Para esta parte del laboratorio, se debe hacer la transmisión entre dos grupos de trabajo, el primero debe generar una señal desde el radio y el otro grupo debe medir la señal desde el analizador de espectros usando su cable RG58 A/U que usó en la sección anterior.

Usando el SDR como generador de señales (use la señal de referencia constante) por el puerto RX/TX (Un equipo de trabajo), y el analizador de espectros como equipo de medida conecte el cable RG58 A/U (del grupo de trabajo 2) y un atenuador de 30 dB. Varíe la ganancia del transmisor para cada valor de frecuencia de transmisión (fc) como se relaciona en la siguiente tabla.

Frecuencia de operación (fc) MHz	Ganancia del transmisor (GTx=0)	Ganancia del transmisor (GTx=10)	Ganancia del transmisor (GTx=20)	Ganancia del transmisor (GTx=30)
50	-47,12	-37,64	-28,07	-18,79
60	-46,16	-36,55	-26,89	-17,65
70	-45,96	-36,34	-26,66	-17,51
80	-45,99	-36,39	-26,71	-17,48
90	-46,07	-36,44	-26,75	-17,51
100	-46,16	-36,57	-26,84	-17,49
200	-47,98	-38,43	-28,78	-19,45
300	-49,53	-40,12	-30,54	-21,22
400	-50,98	-41,72	-32,26	-22,95
500	-52,86	-43,59	-34,07	-24,76
600	-54,9	-45,46	-35,95	-26,58
700	-56,82	-47,34	-37,83	-28,44
800	-58,28	-48,81	-39,27	-29,84
900	-60,12	-50,65	-41,12	-31,66
1000	-62,1	-52,43	-42,88	-33,43
2000	-78,5	-68,15	-59,39	-49,96

2. Análisis de datos

DESARROLLO DEL OBJETIVO 1. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 1.

Trabajo previo: Cable coaxial RG-58 Impedancia característica (Zo) \approx 50 $[\Omega]$

Ancho de banda = 350 [MHz]

Obtenga el coeficiente de reflexión para cada una de las cargas agregadas al final de la línea de transmisión, explique la importancia de su análisis.

• Carga de 50Ω $Zr = 50 \Omega$ $Zo \approx 50 \Omega$

$$\Gamma = \frac{Zr - Zo}{Zr + Zo} = \frac{50 - 50}{50 + 50} = 0$$

• Corto circuito 0Ω

$$\Gamma exp = \frac{V^{-}}{V} = \frac{-1.48}{1.84} = -0.804$$

$$\Gamma teo = -1$$

• Circuito abierto $\infty \Omega$

$$\Gamma exp = \frac{V^{-}}{V} = \frac{69m}{186} = 370,96 \,\mu$$

 $\Gamma teo = 1$

• Carga mayor a 50 Ω (200 Ω)

• Carga mayor a 50 Ω (1k Ω)

• Carga menor a 50 Ω

Onda incidente:

Onda reflejada:

$$\Gamma = \frac{V^{-}}{V} = \frac{1,89}{430m} = 4.39$$

Teniendo en cuenta los datos obtenidos. encuentre la atenuación de las líneas de transmisión utilizadas en la práctica.

Circuito abierto:

 α = Tensión reflejada — Tensión Incidente

 α = 69*10^-3 - 186 = -185.93

 α = 10 log(185.93) = 22.69 dB

Corto circuito 0 Ω :

 α = Tensión reflejada – Tensión Incidente

 α = 1.48 - 1.84 = -0.36

 α = 10 log(0.36) = -4.43 dB

Realice una descripción general de los comportamientos con los terminales en circuito abierto, cortocircuito y carga acoplada (ZL= $50~\Omega$) en las líneas de transmisión.

Al utilizar los terminales en circuito abierto el coeficiente de reflexión es aproximadamente 1, lo que hace que la onda se refleje hacia el generador. Con el cortocircuito el coeficiente de reflexión es negativo y en carga acoplada la onda incide y se elimina la onda reflejada.

DESARROLLO DEL OBJETIVO 2. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 2.1.

Determine la ganancia de amplitud del cable para cada valor de frecuencia de uso. Grafique estos valores en escala semilogarítmica.

	_	-
FC = 50 MHz		
Amplitud Amplitud medida en el generada osciloscopio		Ganancia dB
1	416.76	-3.80
0.5	209.88	-3.76
0.25	106.92	-3.68
0.125	55.44	-3.53
0.0625 31.68		-2.95
FC = 75 MHz		
Amplitud generada	Amplitud medida en el osciloscopio	
1	520.74	-2.83
0.5	223.75	-3.49
0.25	114.84	-3.37

0.125	59.60	-3.21
0.0625	31.28	-3.006
FC = 100 MHz		
Amplitud generada	Amplitud medida en el osciloscopio	
1	334.62	-4.75
0.5	166.32	-4.78
0.25	84.74	-4.69
0.125	43.37	-4.59
0.0625 22.97		-4.34
FC = 130 MHz		
Amplitud Amplitud medida en el generada osciloscopio		
1 104.94		-9.79
0.5 49.50		-10.12
0.25	23.52	-10.26
0.125	0.125 11.39	
0.0625 6.34		-9.93

¿Es posible medir una señal que opera a una frecuencia central de 100 MHz y un ancho de banda de 20 MHz con el osciloscopio del laboratorio de comunicaciones? Justifique su respuesta.

Si, ya que la frecuencia máxima del osciloscopio del laboratorio es de 100 MHZ, pero estas medidas al límite pueden presentar datos erróneos si por alguna razón se sobrepasa así sea en poca medida.

DESARROLLO DEL OBJETIVO 2. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 2.2.

Determine la atenuación del cable RG58 A/U del cable para cada valor de ganancia del transmisor usado. Grafique estos valores en escala semilogarítmica en función de la frecuencia.

Distancia del cable = 41.26 [m]

Atenuador = 30

PTX = -14

Atenuación del cable				
Frecuencia MHz	GTX = 0 dB	GTX = 10 dB	GTX = 20 dB	GTX = 30 dB
50	-3,12	-3,64	-4,07	-4,79
60	-2,16	-2,55	-2,89	-3,65
70	-1,96	-2,34	-2,66	-3,51
80	-1,99	-2,39	-2,71	-3,48
90	-2,07	-2,44	-2,75	-3,51
100	-2,16	-2,57	-2,84	-3,49
200	-3,98	-4,43	-4,78	-5,45
300	-5,53	-6,12	-6,54	-7,22
400	-6,98	-7,72	-8,26	-8,95
500	-8,86	-9,59	-10,07	-10,76
600	-10,90	-11,46	-11,95	-12,58
700	-12,82	-13,34	-13,83	-14,44
800	-14,28	-14,81	-15,27	-15,84
900	-16,12	-16,65	-17,12	-17,66
1000	-18,10	-18,43	-18,88	-19,43

Determine la atenuación del cable por unidad de longitud y compare los datos medidos con la hoja de datos del fabricante. Justifique a qué se debe el margen de error.

Frequency (MHz)	Attenuation (dB/100m)
1	1.4
10	5.0
50	12.2
100	17.8
200	26.6

Frequency (MHz)	(dB/100m)
400	40.7
700	58.1
900	69.3
1000	74.9

El porcentaje de error que se presenta es mayor, ya que la medida del cable que se encuentra en el laboratorio es de 50m de longitud, es decir que estas medidas en base a 100m pueden presentar variaciones ya que dependen de su longitud.

- ¿Es posible medir una señal que opera a una frecuencia central de 2200 MHz y un ancho de banda de 20 MHz con el analizador de espectro del laboratorio de comunicaciones?, justifique su respuesta.

El rango máximo de frecuencia con el que trabaja el analizador de espectros del laboratorio es de 1000 MHz, por esta razón no es posible generar una señal que opere a una frecuencia de 2200 MHz.

CONCLUSIONES:

Se encuentra que el problema de reflexión donde la señal queda invertida, se arregla cuando Zr=Zo. Es decir cuando se tiene una impedancia de carga aproximadamente igual a la impedancia característica de la línea de transmisión, se tiene un coeficiente de reflexión igual a cero, donde toda la señal transmitida llega a la carga y no se presentan reflexiones.

Las ganancias no variaron en gran medida al cambiar las frecuencias,pero el mayor valor se presentó cuando la frecuencia fue mayor, es decir que el osciloscopio pudo tener una amplitud mayor en su señal de salida; por lo tanto la ganancia incrementó.

Al utilizar los terminales en circuito abierto hace que la onda se refleje hacia el generador. Con el cortocircuito el coeficiente de reflexión es negativo y en carga acoplada la onda incide y se elimina la onda reflejada.

Matriz de evaluación

Categoría	4	3	2	1
Procedimientos	están enlistados con pasos claros. Cada paso está enumerado y es una	Los procedimientos están enlistados en un orden lógico, pero los pasos no están enumerados y/o no son oraciones completas.	están enlistados, pero no están en un orden lógico o son	no enlistan en forma precisa todos los
Dibujos / Diagramas	precisos que facilitan la comprensión del	Se incluyen diagramas que están etiquetados de una manera ordenada y precisa.	diagramas y éstos	
Datos	profesional y precisa de los datos en tablas y/o gráficas. Las gráficas y las tablas están	gráficas. Las gráficas		
Cálculos	los cálculos y los resultados son correctos y están etiquetados	resultados son correctos y están	cálculos y los resultados están	ningún cálculo.
	endencias/patrones analizados	variables es discutida y las tendencias/patrones analizados	1	variables no es discutida.
Conclusión	los descubrimientos que apoyan la	hipótesis y lo que se aprendió del		