

Chem 132A

Shane Flyn

The First Law
Enthalpy
The Second Law

Helmholtz Free Energy Reversible Work

Gibbs Free Energ

Physical Chemistry (Chem 132A)

Presentation By: Shane Flynn

Department of Chemistry, University of California, Irvine, 2208 Natural Sciences II

October 11, 2017

Navigating The Equations

Chem 132A

Shane Flynn

What We Know
The First Law
Enthalpy
The Second Law
Helmholtz Free
Energy
Reversible Work

Gibbs Free Energ

■ The First Law of Thermodynamics

$$\Delta U = q + w \tag{1}$$

$$w_{PV} = -\int_{V_i}^{V_f} P_{ext} dV \tag{2}$$

Assume an Equation of State to solve for work! ... q=?, U(T,V)

■ State Functions and Total Differentials

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV \tag{3}$$

Giving Names to Partial Derivatives

$$C_V \equiv \left(\frac{\partial U}{\partial T}\right)_V \quad \Rightarrow \quad q = C_V \Delta T$$
 (4)

Navigating The Equations

Chem 132A

Shane Flynr

The First Law

Enthalpy

The Second Law

Helmholtz Free Energy Reversible Work

Gibbs Free Energ

Different Thermodynamic Potentials

$$H \equiv U + PV \tag{5}$$

Consider a Different Total Differential H(T,P)

$$C_P \equiv \left(\frac{\partial H}{\partial T}\right)_P \tag{6}$$

And using a new set of assumptions we were able to express the heat in a different form.

$$q = C_P \Delta T \tag{7}$$

Navigating The Equations

Chem 132A

Shane Flyn

The First Law
Enthalpy
The Second Law

Helmholtz Free Energy Reversible Work

Conclusion

- Heat and Energy · · · Chemists Want Direction
- Enter The Second Law of Thermodynamics

$$dS \equiv \frac{\delta q_r}{T}, \quad \Rightarrow \quad \Delta S = \int_i^f \frac{\delta q_r}{T}$$
 (8)

- And we claimed without any justification that Entropy was a state function (Integrating Factor).
- We think of entropy as the 'disorder', and people discuss things like 'number of micro-states'.
- Take Statistical Mechanics if you would like a more rigorous definition!

$$dS \ge \frac{\delta q}{T} \tag{9}$$

Accounting For Entropy

Chem 132A

Shane Flyn

The First Law
Enthalpy
The Second Law

Helmholtz Free Energy

Reversible V

Gibbs Free Energ

- Perpetual Motion, Maxwell's Demon · · · No Free Lunch.
- Entropy as the Universal Tax, we MUST account for it.

Defining a new Thermodynamic Potential:

Closed system; constant Volume, constant Temperature.

$$dU = \delta q$$

$$dS \ge \left(\frac{dU}{T}\right)_{V}$$

$$TdS \ge dU$$

$$0 \ge dU - TdS$$

$$0 > d(U - TS)$$

$$(10)$$

The Helmholtz Free Energy

Chem 132A

Shane Flynr

What We Knov The First Law Enthalpy The Second Law

Helmholtz Free Energy Reversible Work

ibbs Free Energy

Conclusion

■ What does this mean and why should we care?

$$A \equiv U - TS \tag{11}$$

- A is called the Helmholtz Free Energy
- All of these variables are in terms of the SYSTEM.
- The derivation assumes constant T and V \Rightarrow A(T,V).
- A system with a negative Helmholtz implies a spontaneous process.

$$\Delta A = \Delta U - T \Delta S \tag{12}$$

If S is negative, U would have to be negative to be spontaneous; heat enters the environment.

Helmholtz as the Work Function

Chem 132A

Shane Flyni

The First Law
Enthalpy
The Second Law

Helmholtz Free Energy Reversible Work

Gibbs Free Energy

Conclusion

$$\Delta A = \Delta U - T \Delta S \tag{13}$$

- Clearly we need either negative Internal Energy or positive Entropy, to generate a spontaneous Helmholtz Free Energy.
- Consider a reversible process with constant Temperature.

$$\Delta A_r = \Delta U_r - T \Delta S_r$$

$$= \Delta U_r - T \frac{q_r}{T}$$

$$= \Delta U_r - q_r$$

$$= q_r + w_r - q_r$$

$$\Delta A_r = w_r$$
(14)

Accounting For Entropy · · · Again

Chem 132A

What We Know The First Law Enthalpy The Second Law

Helmholtz Free Energy Reversible Work

Gibbs Free Energy Conclusion

Defining Another Thermodynamic Potential:

- Experimentalists would really like a thermodynamic potential with characteristic variables T and P.
- \blacksquare A(T,V). Let's try our strategy again!

Consider a constant pressure process, and only PV work.

$$\delta q = dH \tag{15}$$

Assuming a constant temperature we can use the Second Law

$$dS \ge \frac{\delta q}{T} \Rightarrow dS - \frac{\delta q}{T} \ge 0$$

$$TdS - dH \ge 0 \Rightarrow$$

$$d(H - TS) \le 0$$
(16)

The Gibbs Free Energy

Chem 132A

Shane Flyn

The First Law
Enthalpy
The Second Law
Helmholtz Free

Gibbs Free Energy Conclusion

$$G \equiv H - TS \tag{17}$$

- G is called the **Gibbs Free Energy**
- Again we see that a spontaneous process must have a negative Gibbs Free Energy. \Rightarrow G(T,P).

$$\Delta G = \Delta H - T \Delta S \tag{18}$$

■ If Δ G = 0, a chemical reaction has no drive to move towards products or reactants. This is equilibrium!

Gibbs: Maximum Non-Expansion Work
If you assume constant Temperature, constant Pressure, and a
reversible process you find (Page 135).

$$dG = \delta w_{\text{non-PV}} \tag{19}$$

Summary

Chem 132A

Shane Flyni

The First Law
Enthalpy
The Second Law
Helmholtz Fre
Energy
Reversible Work

Conclusion

- We are developing various equations for different sets of physical conditions.
- The method for developing each set of equations is VERY similar, and depends on what variables you wish to hold constant.
- Entropy defines spontaneity. There is no way to avoid The Second Law.
- The Free Energies (Helmholtz and Gibbs) account for the entropy by construction.
- The Free Energies are in terms of the **SYSTEM**.
- These potentials are naturally functions of: A(T,V) G(T,P)