

دورة: 2019

المدة: 03 سا و30 د

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (06 نقاط)

هل تعلم؟ في 27 أكتوبر 1998، قتلت الصاعقة فريق كرة قدم بأكمله في جمهورية الكونغو الديمقراطية.

أثناء العاصفة الرعدية، تُسبب التيارات العنيفة في السحاب تصادمات بين جزيئات الماء، ظهور شحنات موجبة وشحنات سالبة. الشحنتان متعاكستان ومنفصلتان: قاعدة السحابة مشحونة سلبًا والجزء العلوي إيجاباً. في نفس الوقت تكون التربة مشحونة إيجاباً كما بالشكل 1 المنمذج للصورة المقابلة. وبالتالي، فإنها تشكل مكثفة مشحونة، أحد لبوسيها هو الأرض (اللبوس A الموجب) والآخر قاعدة السحابة (اللبوس B السالب)، سعتها C، التوتر الكهربائي بين $U_{AB} = E = 10^8 \, \mathrm{V}$ طرفي المكثفة هو

1. البرق ظاهرة كهربائية طبيعية تحدث نتيجة تفريغ كهربائي في الهواء الرطب ما بين الأرض وسحابة. نعتبر الهواء الرطب ناقلا أوميا مقاومته R.

تتطور شدة التيار الكهربائي أثناء التفريغ وفق المنحنى البياني الشكل 2.

- 1.1. ارسم شكلا تخطيطيا لدارة التفريغ الكهربائية المنمذجة للظاهرة الموصوفة بالشكل 1.
- 2.1. بتطبيق قانون جمع التوترات الكهربائية، أسس i(t) المعادلة التفاضلية لتطور شدة التيار
- ين أن: $e^{-\frac{i}{RC}}$ علا للمعادلة التغاضلية .3.1 السابقة.

LeCongolais

الشكل 1. رسم تخطيطي للصورة

الشكل 2. تطور شدة التيار الكهربائى بدلالة الزمن

4.1. باستغلال البيان (الشكل 2):

- R,C استخرج قيمة كل من شدة التيار الكهربائي العظمى I_0 وثابت الزمن الثنائي القطب. I_0
 - C احسب قيمة R واستنتج قيمة سعة المكثفة C احسب
- 5.1. المثلان القائلان «عندما يهدر الرعد، اذهب إلى الداخل» و «إذا كان هناك برق بالقرب من موقعك، فأنت لست آمنا بالخارج». على ضوء هذا أعط بعض قواعد الحماية من الصاعقة.

- c . c
 - .T عدّد نمط الاهتزاز واستنتج قيمة شبه الدور .T
 - $T \approx T_0$ باعتبار لوشيعة L .2.2 جِد قيمة ذاتية الوشيعة T_0 .1.4 حيث: T_0 الدور الذاتي للدارة المثالية

 $u_{C}(t)$ الشكل 3. تطور التوتر

التمرين الثاني: (07 نقاط)

1. نقترح ثلاثة محاليل مائية (S_1) ، (S_1) و (S_2) ، للأحماض (S_3) و (S_3) و للأحماض على التركيز المولي (S_3) و (S_3) قيم الدركيز المحاليل الثلاث: 1,3، (S_3) و (S_3) قيم الدركيز قوتها المحاليل الثلاث: 1,3، (S_3) و ترتب هذه الأحماض حسب تزايد قوتها الحمضية الشكل 4.

يهدف هذا التمرين إلى مقارنة قوة الأحماض.

 $25^{\circ}C$ كل المحاليل مأخوذة في الدرجة

- 1.1. أعط تعريفا للحمض الضعيف.
- .2.1 انسب لكل محلول قيمة الـ pH الموافق له مع التبرير .
- وي. HA_1 و أن الحمضين HA_2 و HA_3 عصض قوي. HA_1
 - $. HA(aq)/A^{-}(aq)$ الثنائية Ka الموضة عبارة ثابت الحموضة .4.1
 - 5.1. اثبت أن عبارة اله pH تعطى بالعلاقة:

$$pH = -\frac{1}{2}\log[HA]_{\acute{e}q} + \frac{1}{2}pKa$$

6.1 من أجل قيم مختلفة للتركيز المولي $[HA]_{\ell a}$ للمحلولين

الحمضيين الضعيفين السابقين، نقيس قيم pH الموافقة ثم نمثل المنحنى البياني لتطور الـ pH بدلالة $-\log[HA]_{eq}$ (الشكل 5).

1.6.1. ارفق كل منحنى بالحمض الموافق له مع التعليل.

.5 من المنحنيين \bigcirc و \bigcirc بالشكل بالشكل PKa من المنحنيين \bigcirc و \bigcirc بالشكل .2.6.1

 (C_2H_5-OH) نسخن بالارتداد وبوجود وسيط، مزبجا ستوكيومتربا لأحد الحمضين النقيين السابقين مع الايثانول (C_2H_5-OH) فينتج المركب العضوي ($CH_3COO - C_2H_5$) والماء.

- 2.2. المتابعة الزمنية للتحول الكيميائي الحادث عن طربق معايرة الحمض المتبقى مكنت من رسم المنحنى البياني لتطور كمية مادة الحمض المتبقى بدلالة الزمن .6 الشكل n = f(t)
 - 1.2.2. احسب سرعة اختفاء الحمض عند اللحظة واستنتج سرعة التفاعل عند نفس $t=10\,\mathrm{min}$
 - 2.2.2. اذكر العوامل التي تؤثر في سرعة هذا التحول.

الشكل 6. تطور كمية مادة الحمض المتبقى بدلالة الزمن

التمرين التجريبي: (07 نقاط)

تُعتبر منطقة تيميمون بولاية أدرار المعروفة بالواحة الحمراء مقصداً للسُيَّاح لممارسة رباضة التزحلق على الكثبان الرملية.

يهدف التمرين الى دراسة الحركة المستقيمة لمتزحلق على الرمل.

باستغلال شريط فيديو لمتزحلق (الشخص + لوازمه) تم تصويره من طرفٍ أحد زوار منطقة تيميمون، ندرس الجملة {المتزحلق} التي m مركز عطالتها G المنمذجة بنقطة مادية كتلتها

صورة لمتزحلق على الرمل

m = 70 kg كتلة الجملة 4

المعطيات:

- ◄ شدة تسارع حقل الجاذبية $g = 9.8 \, m \cdot s^{-2}$ الأرضية
- \Rightarrow طول المسار الأفقى BC = 12m على المسار
 - $\alpha = 41^{\circ}$ زاوية المبل

1. المرحلة الأولى (المسار AB):

حركة المتزحلق تتم على مستو مائل انطلاقا من النقطة A دون سرعة ابتدائية الشكل 7. معالجة شريط الفيديو السابق ببرمجية A مكنتنا من تسجيل المواضع المتتالية لمركز عطالة الجملة خلال مجالات زمنية متتالية ومتساوية $\Delta t = 0.8$ الشكل $\Delta t = 0.8$

الشكل 8. تسجيل المواضع المتتالية لمركز عطالة الجملة

- 1.1. عرّف المرجع الغاليلي (العطالي).
- .2.1 احسب قيم السرعة في اللحظات t_5 ، t_5 و t_5 الموافقة للمواضع على الترتيب.
- v = f(t) الرمن على ورق ميليمتري المنحنى البياني لتطور السرعة اللحظية بدلالة الزمن v = f(t)
 - .4.1 جِد بيانياً قيمة تسارع مركز عطالة الجملة a_{G} واستنتج طبيعة الحركة.
 - G_{8} و G_{0} المسافة المقطوعة بين الموضعين ألمسافة المقطوعة بين الموضعين ألمسافة المقطوعة بين الموضعين أ
 - 6.1. بإهمال قوى الاحتكاك على المسار AB:
 - مته. واحسب قيمته. a'_{G} بتطبيق القانون الثانى لنيوتن، جِد عبارة التسارع a'_{G} واحسب قيمته.
 - 2.6.1. برّر الاختلاف بين قيمتى التسارع المحسوبتين في السؤالين (4.1) و (4.1.).

2. المرحلة الثانية (المسار BC):

BC يصل المتزحلق الى النقطة B بسرعة $C_B = 12 \, m \cdot s^{-1}$ ويواصل حركته المستقيمة على المستوي الأفقي الأفقى ليتوقف عند الموضع $C_B = 12 \, m \cdot s^{-1}$ الشدة.

- G القوى الخارجية المطبقة على مركز عطالة الجملة G.
 - 2.2. جِد شدة القوة \overline{f} ، بتطبيق مبدأ إنحفاظ الطاقة للجملة المدروسة.

الموضوع الثانى

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (06 نقاط)

داء الفاكيز يصيب النخاع العظمي ويُحدِث تكاثر غير طبيعي في الكريات الحمراء، لمعالجة هذا المرض يُحقن المريض بمحلول يحتوي على نظير الفوسفور $\frac{32}{15}$ الذي يُدمر الكريات الحمراء الزائدة بفعل الإشعاع المُنبعث منه.

يهدف هذا التمرين إلى دراسة النشاط الإشعاعي لنظير الفوسفور.

المعطيات:

$$N_A = 6.02 \times 10^{23} \, mol^{-1}$$
 ثابت أفوغادرو \sim

$$t_{1/2}^{13}(^{32}_{15}P) = 14,32 jours$$
 نصف العمر خصف العمر

$$m(^{32}_{15}P) = 31,97391u$$

$$m\binom{30}{15}P = 29,97831u$$

$$m_p = 1,00728u$$
 كتلة البروتون $m_p = 1,00728u$ ؛

$$m_n = 1,00866u$$
 كتلة النيترون \sim

$$.1u = 931,5 MeV/c^2$$

- 1. اذكر أنواع التفككات الإشعاعية الطبيعية مع تحديد الجسيم المنبعث عن كل تفكك.
 - 2. اعتمادا على المخطط الممثل في الشكل 1:
 - استنتج قيمة كل من العددين Aو Z ثم أعط رمز النواة الموافقة.
 - 2.2. اكتب معادلة تفكك النواة P_{15}^{32} إلى النواة Z^{A} ، محددا نوع التفكك النووي الحادث.
 - 3. في اللحظة t=0 يُحقن مريض بجرعة من محلول يحتوي على كمية قدرها $n_0=3,12\times 10^{-10} \, \text{mol}$ من نظير الفوسفور 32.
 - 1.3. احسب عدد أنوية الفوسفور 32 المحتواة في هذه الجرعة.
 - 2.3. يزول مفعول الجرعة عندما تتفكك %99 من الأنوية الابتدائية، بيّن أن مفعولها يزول بعد 95 jours من لحظة الحقن.

- $^{30}_{15}P$ لعنصر الفوسفور نظير آخر هو 4.
- MeV النووي $^{32}_{15}P$ و $^{30}_{15}P$ الكل من النواتين $^{30}_{15}P$ و النواقة الربط النووي $^{32}_{\ell}$
 - 2.4. بيّن أي النواتين أكثر استقرارا مع التعليل.

التمرين الثاني: (07 نقاط)

في حياتنا اليومية، أمثلة كثيرة عن النواس الثقلي مثل: الأرجوحة، رقاص ساعة حائط، ثُريّة...

غاليلو غاليلي (1564م – 1642م)

يُعتبر العالم الفيزيائي والفلكي الإيطالي غاليلو غاليلي، أوّل من استوحَى فكرة دراسة النواس الثقلي عندما شاهد التُريّة المعلقة في سقف قاعة الحفلات وهي تهتز بعد أن حرّكتها التيّارات الهوائية.

المعطيات:

$$g = 9.8 \, m \cdot s^{-2}$$
 شدة تسارع حقل الجاذبية الأرضية $g = 9.8 \, m \cdot s^{-2}$ ث

◄ نهمل تأثير الهواء.

أولاً: دراسة الحركة الاهتزازية للنواس البسيط

يُعتبر النواس البسيط نموذجا مثاليا للنواس الثقلي ويتألف من خيط مهمل الكتلة وعديم الامتطاط طوله ℓ مثبت من إحدى نهايتيه بنقطة O ومعلق بنهايته الحرة كريّة كتلتها m مهملة الأبعاد بالنسبة لطول الخيط (جسم نقطي) الشكل ℓ .

O نُزيح النواس في المستوي الشاقولي عن وضع توازنه المستقر O بزاوية O في جهة نعتبرها موجبة، ثم نتركه لحاله من النقطة O دون سرعة ابتدائية في اللحظة O ونقيس بواسطة ميقاتية زمن O اهتزازات كاملة فنحده O فنحده O .

2. احسب قيمة الدور الذاتي T_0 للنواس البسيط.

$$(1) \quad T_0 = 2\pi \cdot \sqrt{\frac{g}{\ell}} \quad \text{ (2)} \quad T_0 = 2\pi \cdot \sqrt{\frac{\ell}{g}} \quad \text{ (3)} \quad T_0 = 2\pi \cdot \sqrt{\frac{\theta_0}{g}} \quad \text{ (4)} \quad T_0 = 2\pi \cdot \sqrt{\frac{m}{\ell}}$$

 ℓ احسب طول النواس البسيط ℓ).

5. ضع الإشارة (\checkmark) أمام العبارة الصحيحة والاشارة (*) أمام العبارة الخاطئة لما يلي:

$ \longrightarrow \dots m $	، بالكتلة	لا يتعلق	- الدور '
-----------------------------	-----------	----------	-----------

$$\square$$
 الدور يتناسب طردا مع $\sqrt{\ell}$

$$\square \dots \sqrt{g}$$
 الدور يتناسب طردا مع

$$\square$$
.... θ_0 الدور يتعلق بالسعات الصغيرة –

ثانياً: دراسة حركة قذيفة

عند مرور الكرية بوضع التوازن O في الاتجاه الموجب بالسرعة $v_0 = 0.3 \, m \cdot s^{-1}$ ينقطع الخيط فتتحرر الكريّة في الهواء لتصطدم بسطح الأرض الذي يبعد عن المستوي الأفقي المار بنقطة التعليق O' بارتفاع h = 1.5m.

- .2 الشكل (Ox,Oy) في المعلم (Ox,Oy). الشكل 1.
 - . استنتج معادلة المسار وحدّد احداثيي نقطة الاصطدام E بسطح الأرض.
 - E عين خصائص شعاع سرعة مركز عطالة الكرية G عند الموضع G

التمرين التجريبي: (07 نقاط)

تُصنّف التحولات الكيميائية إلى تامة وغير تامة.

نقترح في هذا التمرين دراسة تحولين أحدهما تام والآخر غير تام.

MnO_4^- أولا: دراسة تفاعل الكحول (B) ذي الصيغة المجملة C_3H_8O مع شوارد البرمنغنات

المعطيات:

 $M(B) = 60g \cdot mol^{-1}(B)$ الكتلة المولية الجزيئية للكحول

نضع في إيرلينة ماير موضوعة فوق مخلاط مغناطيسي حجما $V_0=50\,mL$ من محلول برمنغنات البوتاسيوم نضع في إيرلينة ماير موضوعة فوق مخلاط مغناطيسي حجما $V_0=50\,mL$ من المحرّن المركّن المركّن ($K^+(aq)+MnO_4^-(aq)$) تركيزه المولي $K^+(aq)+MnO_4^-(aq)$ من المحول ($K^+(aq)+MnO_4^-(aq)$) في اللحظة $K^+(aq)+MnO_4^-(aq)$ نضيف للمزيج كتلة قدرها $K^+(aq)+MnO_4^-(aq)$ من المحول ($K^+(aq)+MnO_4^-(aq)$) التحوّل الكيميائي الحادث بطيء، نُنمذِجه بالمعادلة الكيميائية: حيث يصبح حجم الوسط التفاعلي $K^+(aq)+MnO_4^-(aq)$. التحوّل الكيميائي الحادث بطيء، نُنمذِجه بالمعادلة الكيميائية:

$$5C_3H_8O(l) + 2MnO_4^-(aq) + 6H^+(aq) = 5C_3H_6O(l) + 2Mn^{2+}(aq) + 8H_2O(l)$$

- 1. عرّف كل من المُؤكسِد والمُرجِع.
- 2. بيّن أنّ التفاعل الحادث هو تفاعل أكسدة -ارجاع، ثم اكتب الثنائيتين Ox/Red المشاركتين في التفاعل.
 - 3. وضّح دور حمض الكبريت المركّز في هذا التفاعل.
- x_{max} 4. أنشئ جدولاً لتقدّم التفاعل واحسب قيمة التقدّم الأعظمي x_{max}
 - 5. المتابعة الزّمنية لتطور كمّية مادة الكحول (B)، مكّنتنا من رسم المنحنى البيّاني الممثّل بالشكل S.
- .1.5 حدّد قيمة التقدّم النهائي x_f ثمّ أثبت أنّ هذا التفاعل تام.

الشكل 3. تطور كمية مادة الكحول (B) بدلالة الزمن

- .2.5 عرّف زمن نصف التفاعل $t_{1/2}$ ثمّ حدّد بيانياً قيمته.
- .t=0 في اللحظة (B) لحجمية لاختفاء الكحول (B) في اللحظة t=0

(CH_3COOH) عصض الايثانويك ((B) مع حصض الايثانويك

لتحديد صِنف الكحول (B)، نجري تفاعل أسترة لمزيج ابتدائي متساوي المولات(B)من الكحول (B)و مع إضافة قطرات من حمض الايثانويك (A)) مع إضافة قطرات من حمض الكبريت المركّز.

نُسخِّن المزيج بالارتداد لمدة ساعة.

- 1. وضِّح دور حمض الكبريت المركّز في هذا التفاعل.
 - 2. اكتب معادلة التفاعل الحادث.
- x_{max} . أنشئ جدولاً لتقدّم التفاعل واحسب قيمة التقدّم الأعظمي x_{max}
 - 4. المنحنى البياني الممثّل بالشكل 4 يُمثِّل تطور كمّية مادة الكحول (B) بدّلالة الزمن:
 - 1.4. اكتب بروتوكولا تجريبيا توضح فيه كيفية الحصول على المنحنى البياني الشكل 4.
 - ديد قيمة التقدّم النهائي x_f وأثبت أنّ هذا التفاعل x_f غير تام.
 - 3.4. احسب مردود التفاعل واستنتج صِنف الكحول (B)
- (B) الشكل 4. تطور كمية مادة الكحول بدلالة الزمن

5. دعّم هذه الجملة بالتفسير أكثر «يمكن الحصول على الإستر السابق بتفاعل آخر تام، سربع وناشر للحرارة».

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عاصر الإجابة (الموصوع الأون)
	3×0.25	u_{C} التمرين الأول: (06 نقاط) u_{R} u_{R} u_{R} التمرين الأول: ($i<0$) لا نقطيطي لدارة التغريغ الكهربائية المنمذجة للظاهرة u_{R} الموصوفة. u_{C} u_{R}
	4×0.25	$i(t)$ التفاضلية لتطور شدة التيار $i(t)$ التيار $u_C(t) + u_R(t) = 0$ التيار $u_C(t) + u_R(t) = 0$ الكهربائية الكهربائية $u_C(t) + u_R(t) = 0$ الكهربائية $u_C(t) = \frac{1}{C} \cdot q(t)$ العربائية $u_C(t) = \frac{1}{C} \cdot q(t)$ العربائية $u_C(t) = \frac{1}{C} \cdot q(t)$ العربائية المعادلة بالنسبة للزمن $u_C(t) = \frac{1}{C} \cdot q(t)$ باشتقاق طرفي المعادلة بالنسبة للزمن $u_C(t) = 0$ العربائية $u_C(t) = 0$ العربائية $u_C(t) = 0$ العربائية $u_C(t) = 0$ العربائية التربائية التربائية التربائية $u_C(t) = 0$ العربائية التربائية التعربائية التربائية التربائية التربائية التربائية التربائية التعربائية التعربائ
	4×0.25	عدد المعادلة التفاضلية السابقة: $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}} : it.$ 3.1 لنبيّن أن: $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}} : it.$ 3.1 نشتق ($i(t)$ بالنسبة للزمن نجد $i(t) = \frac{I_0}{\tau} \cdot e^{-\frac{t}{\tau}} : it.$ 4 نعوض في المعادلة التفاضلية السابقة $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}}$ ومنه $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}}$ ومنه $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}} : e^{-\frac{t}{\tau}} = 0$
5	3×0.25	1.4.1. باستغلال البيان (الشكل 2) لتستنتج قيمة كل من: $I_0 = i_0 = I_0$ الكهربائي العظمى $I_0 = I_0 = -I_0 = -2 \cdot 10^4 A$ عند اللحظة $I_0 = 1$ يكون $I_0 = -2 \cdot 10^4 A$ ومنه $I_0 = 2 \times 10^4 A$ عند الزمن $I_0 = -2 \cdot 10^4 A$ عند اللحظة $I_0 = -2 \cdot 10^4 A$ بإسقاط القيمة على بيان $I_0 = I_0 = I_0 = I_0$ عند اللحظة $I_0 = I_0 = I_0 = I_0 = I_0$ عند المحل على $I_0 = I_0 = I_0 = I_0 = I_0$ الزمن $I_0 = I_0 = I_0 = I_0 = I_0$ ملاحظة: يمكن تحديد قيمة ثابت الزمن $I_0 = I_0 = I_0 = I_0$ بطريقة المماس عند المبدأ.
	4×0.25	$E=R\cdot I_0\Rightarrow R=rac{E}{I_0}=rac{10^8}{2\cdot 10^4}=5000\Omega=rac{0.25}{5k\Omega}:R$ قيمة ج $ au=R\cdot C\Rightarrow C=rac{ au}{R}=rac{5\cdot 10^{-5}}{5\cdot 10^{-5}}=10$ ويمة سعة المكثفة $C=R\cdot C\Rightarrow C=rac{ au}{R}=rac{5\cdot 10^{-5}}{5\cdot 10^{-5}}=10$
	0.5	5.1. بعض قواعد الحماية من البرق: نكر قاعدتين على الاقل التواجد في المرتفعات العالية عند حدوث البرق. التواجد قرب الأبراج المعدنية. التواجد قرب مصادر المياه تجنب التواجد قرب مصادر المياه

العلامة		/ 1 \$1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
1	2×0.25	1.2. تحدید نمط الاهتزاز واستنتج قیمة شبه الدور T : - نمط الاهتزاز: اهتزازات کهربائیة حرة متخامدة - استنتاج قیمة شبه الدور T : T : - استنتاج قیمة شبه الدور T :
	2×0.25	$T pprox T_0$ قيمة ذاتية الوشيعة L باعتبار أن $T pprox T_0$ قيمة ذاتية الوشيعة L باعتبار أن $T pprox T_0 = 2 \cdot \Pi \sqrt{L \cdot C} \Rightarrow L = \frac{T^2}{4 \cdot \Pi^2 \cdot C} = \frac{4 \cdot 10^{-8}}{40 \cdot 10^{-8}} = 0,1 \mathrm{H}$
	0.25	التمرين الثاني: (07 نقاط) 1.1. الحمض الضعيف: يكون انحلاله في الماء وفق تفاعل غير تام(محدود).
	4×0.25	2.1. انسب لكل محلول قيمة الـ pH الموافق له مع التبرير . كل المحاليل لها نفس التركيز : الحمض الأقوى (الأكثر انحلال) يوافق قيمة pH أقل .0.25 كل المحاليل لها نفس التركيز : الحمض الأقوى (الأكثر انحلال) يوافق قيمة pH_3 أقل .30.25 $pH_3=3,2$ يوافق pH_3 يوافق p
	4×0.25	HA_1 عمض قوي: $ HA_1 = HA_2 $ مض قوي: $ PH = -\log \left[H_3 O^+ \right]_{eq} \Rightarrow \left[H_3 O^+ \right]_{eq} = 10^{-pH} $ 0.25 $ PH = -\log \left[H_3 O^+ \right]_{eq} \Rightarrow \left[H_3 O^+ \right]_{eq} = 10^{-pH} $ 0.25 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_1} = 5 \times 10^{-2} mol \cdot L^{-1} = c : HA_1 $ 0.26 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_2} = 1,25 \times 10^{-3} mol \cdot L^{-1} < c : HA_2 $ 0.27 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_2} = 6,3 \times 10^{-3} mol \cdot L^{-1} < c : HA_3 $ 0.28 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_2} = 6,3 \times 10^{-3} mol \cdot L^{-1} < c : HA_3 $ مملاحظة: يمكن حساب النسبة النهائية لتقدم التفاعل $ \tau_f = 1 $ حيث $ \tau_f = 1 $ (حمض ضعيف) $ \tau_f < 1 $ (حمض ضعيف).
5.25	0.25	$Ka = rac{\left[H_3O^+\right]_{eq}\cdot\left[A^-\right]_{eq}}{\left[AH\right]_{eq}} : HA\left(aq\right)/A^-\left(aq\right)$ للثنائية Ka للثنائية .4.1
	4×0.25	: $pH = -\frac{1}{2}\log[HA]_{eq} + \frac{1}{2}pKa$ البات أن عبارة اله pH تعطى بالعلاقة pH عبارة اله pH عبارة اله pH عبارة اله pH عبارة اله عبارة اله عبارة العشري بين طرفي العلاقة pH الموغاريتم العشري بين طرفي العلاقة pH الموغارية
	3×0.25	$1.6.1$. ارفاق كل منحنى بالحمض الموافق له مع التعليل: 0.25 HA_3 وبالتالي: HA_3 مضان ضعيفان و HA_3 أكثر انحلال من HA_3 فإن HA_3 وبالتالي: المنحنى (2) يوافق HA_3 والمنحنى (1) يوافق HA_3 .

0.25 0.25

العلامة		/ t
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		باستغلال البيان نقوم بتمديد المنحنيين الى غاية التقاطع مع محور التراتيب. PKa المنحنين DKa عاية التقاطع مع محور التراتيب.
	4x0.25	$pH_{1} = \frac{1}{2} pKa_{1} = 2, 4 \Rightarrow pKa_{1} = 2 \times pH_{1} = 4, 8 \textcircled{1}$ $pH_{2} = \frac{1}{2} pKa_{2} = 1, 9 \Rightarrow pKa_{2} = 2 \times pH_{2} = 3, 8 \textcircled{2}$
	2×0.25	1.2. الوظيفة الكيميائية: إسترية. 0.25 اسم المركب العضوي الناتج: إيثانوات الإيثيل. 0.25
1.75	3×0.25	0.25. سرعة اختفاء الحمض عند اللحظة $t=10min$: برسم المماس وحساب الميل 0.25 $v_{acide}=-\frac{dn_{acide}}{dt}=10^{-2}mol\cdot min^{-1}$ استنتاج سرعة التفاعل عند نفس اللحظة: $v=v_{acide}=10^{-2}mol\cdot min^{-1}$
	2×0.25	2.2.2. العوامل التي تؤثر في سرعة التحول الحادث: درجة الحرارة والوسيط.
	0.5	التمرين التجريبي: (07 نقاط) 1. المرحلة الأولى(المسار AB): 1.1. تعريف المرجع الغاليلي: هو كل مرجع يتحقق فيه مبدأ العطالة.
	4×0.25	2.2. حساب قيم السرعة اللحظية: $v_3 = \frac{G_2G_4}{2 \cdot \tau} = \frac{1,8 \times 4}{1,6} = 4,5m \cdot s^{-1} : G_3$ 2.2. عند الموضع $v_5 = \frac{G_4G_6}{2 \cdot \tau} = \frac{3 \times 4}{1,6} = 7,5m \cdot s^{-1} : G_5$ 2.2. عند الموضع $v_7 = \frac{G_6G_8}{2 \cdot \tau} = \frac{4,2 \times 4}{1,6} = 10,5m \cdot s^{-1} : G_7$ 2.2. عند الموضع $v_7 = \frac{G_6G_8}{2 \cdot \tau} = \frac{4,2 \times 4}{1,6} = 10,5m \cdot s^{-1} : G_7$
	2x0.25	$v = f(t)$ $v(m \cdot s^{-1})$ $t(s)$ $0,8$

العلامة		/ t \$21 ti\ " 1	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
	3×0.25	0.25 $a = \frac{\Delta v}{\Delta t} = 1,88 m \cdot s^{-2}$ بيانيا: $a = \frac{\Delta v}{\Delta t}$ بيانيا: $a = \frac{\Delta v}{\Delta t}$ بيعة الحركة: حركة مستقيمة متسارعة بانتظام.	
		$:G_{8}$ و $:G_{0}$ بين الموضعين الموضعين الموضعين $:G_{0}$ على المسافة المقطوعة بين الموضعين $:G_{0}$	
	0.5	$t=0.s$ قيمتها تساوي عدديا مساحة المثلث المحصور بين اللحظتين G_0	
		$G_0G_8 = \frac{12 \times 6, 4}{2} = 38, 4m$ و $t = 6, 4s$ و بالتالي $t = 6, 4s$	0.25
		\overrightarrow{R} : a_G عبارة التسارع : a_G	
		الجملة المدروسة: متزحلق	
4.75		المعلم: سطحي أرضي نعتبره عطاليا. \overrightarrow{P}	
		بتطبيق القانون الثاني لنيوتن لمركز عطالة	
	5x0.25	0.25 $\sum \vec{F}_{ext} = m \cdot \vec{a}_G$ الجملة	
		محور الحركة: $a_G' = g \cdot \sin \alpha$ بالإسقاط على محور الحركة: $\overrightarrow{P} + \overrightarrow{R} = m \cdot \overrightarrow{a}_G'$	
		$a'_G = g \cdot \sin \alpha = 9,80 \times \sin \left(41^\circ\right) = 6,4 m \cdot s^{-2}$.25
	0.5	2.6.1. تبرير اختلاف قيمتي التسارع: القيمة النظرية للتسارع أكبر من القيمة التجريبية يعود	
	0.5	الى وجود قوى معيقة للحركة 0.25	
		G الحصاء وتمثيل القوى الخارجية المطبقة على مركز عطالة الجملة:	
		$ ightharpoonup \overline{R}$ 0.25 $ec{p}$ قوة الْثقل $ec{p}$	
	3×0.25	- قوة رد فعل السطح الأفقي على المتزحلق \vec{R} 0.25 - قوة رد فعل السطح	
		$ec{\vec{P}}$ 0.25 $ec{f}$ قوة الاحتكاك $ec{f}$	
2.25			
		2.2. ايجاد شدة القوة \overrightarrow{f} بتطبيق معادلة انحفاظ الطاقة على الجملة المدروسة:	
	5x0.25	$E_f = E_i + E_{re} - E_{ced} \Rightarrow E_i - E_{ced} = 0$ 2x0.25	
		$\Rightarrow \frac{1}{2}mv_B^2 = f \cdot BC \qquad 2x0.25$	
		$\Rightarrow f = 420N 0.25$	
		ملاحظة: تغيير الجملة المدروسة والنتيجة صحيحة 0.50	

العلامة		/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (06 نقاط)
		1. أنواع التفككات وتحديد الجسيمات:
0.75	3×0.25	$lpha$ و هو نواة الهليوم 4He و هو نواة الهليوم 2He
		و التفكك eta^- : eta^- جسيم له مواصفات الالكترون e : eta^-
		و هو البوزيتون $e^{0}_{+1}e$ و هو البوزيتون eta^{+}
		1.2. استنتاج العددين A و Z وكتابة رمز النواة الموافقة:
	3×0.25	من المخطط: $N = 16$ ، $Z = 16$
	3×0.23	0.25 $A=32$ ومنه $A=N+Z$ لدينا
		و منه رمز النواة $\frac{^{32}S}{^{16}}$ 0.25
1.5		2.2. معادلة التفكك وتحديد نوع الإشعاع:
	2×0.25	$0.25 {}^{32}_{15}P \rightarrow {}^{32}_{16}S + {}^{A}_{Z}X$
	3×0.25	ومنه المعادلة الانحفاظ : $A=0$ و $Z=-1$ و منه المعادلة $S+\frac{32}{16}P \to \frac{32}{16}S+\frac{0}{16}$ ومنه المعادلة الانحفاظ
		روع الإشعاع هو eta^- 0.25 نوع الإشعاع
		1.3. حساب عدد الأنوية المتواجدة في الجرعة:
	2×0.25	0.25 $N_0 = n_0.N_A$
		$N_0 = 3.12 \times 10^{-10} \times 6.02 \times 10^{23} = 1.88 \times 10^{14} $ noyaux 0.25
		2.3. حساب مدة زوال مفعول الجرعة:
2	6×0.25	$\frac{N}{N_0} = e^{-\lambda t}$ \rightarrow $t = \frac{1}{\lambda} \ln \frac{N_0}{N}$ 0.25 $N = N_0 e^{-\lambda t}$
		$t = \frac{t_{1/2}}{\ln 2} \ln \frac{N_0}{N} \qquad 0.25$
		ميث عدد الأنوية المتبقية $N = (100 - 99)\%$ $N_0 = 1\%.N_0$ عدد الأنوية المتبقية
		$t = \frac{14.32}{\ln 2} \ln 100 = 95 jours$ تصبح $t = \frac{14.32}{\ln 2} \ln 100 = 95 jours$ المقلوب 100 وعليه فإن بعد 95 يوما يزول مفعول الجرعة 0.25
		وعليه فإن بعد 95 يوما يزول مفعول الجرعة 0.25

مة	العلا	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
1.75	3×0.25	$^{32}_{15}P$ و $^{30}_{15}P$
	4×0.25	0.25 $\frac{E_{\ell}}{A} {30 \choose 15} P = \frac{242,926}{30} = 8,097 MeV / nuc$.2.4 $\frac{E_{\ell}}{A} {32 \choose 15} P = \frac{263,158}{32} = 8,224 MeV / nuc$ النواة الأكثر استقرارا هي $\frac{32}{15} P = \frac{32}{15} P = \frac{263,158}{15} = \frac{32}{15} P$ النعليل: $\frac{E_{\ell}}{A} {32 \choose 15} P > \frac{E_{\ell}}{A} {30 \choose 15} P$
0.25	0.25	التمرين الثاني: (07 نقاط) أولا: دراسة الحركة الاهتزازية للنواس البسيط أولا: دراسة الحركة الاهتزازية للنواس البسيط 1. تعريف دور النواس البسيط: زمن اهتزازة كاملة. تقبل صيغ أخرى للتعبير عن الدور
0.25	0.25	0.25 $T_0 = \frac{t}{10} = 1,4s$: قيمة الدور الذاتي: 2.
0.75	3×0.25	$T_0=2\pi\sqrt{rac{\ell}{g}}$ أو إلغاء الخاطئة منها $T_0=2\pi\sqrt{rac{\ell}{g}}$ أو إلغاء الخاطئة منها $T_0=2\pi\sqrt{rac{\ell}{g}}$ بما أنّ للدور $T_0=1$ نفس بعد الزمن فهو متجانس. $ [T_0]=\left[rac{l}{g} ight]^{\frac{1}{2}}=rac{[l]^{\frac{1}{2}}}{[g]^{\frac{1}{2}}}=rac{L^{\frac{1}{2}}.T}{L^{\frac{1}{2}}}=T$
0.5	2×0.25	$egin{aligned} egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & & & egin{aligned} & & egin{aligned} & & & egin{aligned} & & & egin{aligned} & & & \ & & & \ & & \ & & \ & & \ & \ $
1	4×0.25	0.25

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
2	8×0.25	المعادلتين الزمنيتين للحركة قذيفة المعادلتين الزمنيتين للحركة: المعادلتين الزمنيتين للحركة: المعادل المع
1	0.25 3×0.25	0.25 $y = \frac{g}{2{v_0}^2}.x^2$: معادلة المسار يوقطة الاصطدام بسطح الأرض $y = h - l = 1m$ $y = h - l = 1m$ $y = \frac{1}{2}.g.t^2 \to t = \sqrt{\frac{2.y}{g}} \approx 0,45s$ ملاحظة: يمكن استعمال معادلة المسار $x = v_0.t \approx 0,14m$ $E(0,14m,1m)$
1.25	5x0.25	: خصائص شعاع السرعة : قصائص شعاع السرعة : E المبدأ: موضع السقوط E المبدأ: موضع السقوط E المعامل: مستقيم مماس للمسار في الموضع v_E الاتجاه: يجب تحديد الزاوية التي يصنعها الشعاع المحصل v_E مع المحور الأفقي v_E و v_E

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.50	2×0.25	التمرين التجريبي: (07 نقاط) أولا: دراسة تفاعل الكحول (B) مع شوارد البرمنغنات 1. المؤكسد: هو كل فرد كيميائي يكتسب الكترون أو أكثر خلال تحول كيميائي. 0.25 المرجع: هو كل فرد كيميائي يفقد الكترون أو أكثر خلال تحول كيميائي. 0.25
1	4×0.25	$Ox/\operatorname{Re} d$ عادلتين النصفيتين والثنائيتين $Ox/\operatorname{Re} d$: $Ox/\operatorname{Re} d$.2 $Ox/\operatorname{Re} d$.2 $Ox/\operatorname{Re} d$.3 $Ox/\operatorname{Re} d$.4 $Ox/\operatorname{Re} d$.4 $Ox/\operatorname{Re} d$.5 $Ox/\operatorname{Re} d$.6 $Ox/\operatorname{Re} d$.7 O
0.25	0.25	دور حمض الكبريت المركز هو توفير شوارد H_3O^+ اللازمة للتفاعل ولا يُعتبر وسيطا لأن H_3O^+ تشارك في التفاعل.
0.75	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,25 0,25 0,25	$n_f(B) = 50 mmol$: ومن المنحنى لدينا $n_f(B) = n_0(B) - 5 x_f$ من جدول التقدم لدينا: $n_f(B) = n_0(B) - 5 x_f$ ومن المنحنى لدينا $x_f = 2,5 mmol$ ومنه نجد $x_f = 2,5 mmol$ بما أن $x_f = x_{max}$ فإن التفاعل تام. $x_f = x_{max}$ نصف $x_f = x_{max}$ التفاعل نصف التفاعل نصف التفاعل $x_f = x_{max}$ المدة الزمنية اللازمة لبلوغ تقدم التفاعل نصف
1,50	0,25	قيمته الأعظمية. 0.25 $t_{1/2}=2,4min$ وبالإسقاط نجد $n_B(t_{1/2})=\frac{n_0(B)+n_f(B)}{2}$ وبالإسقاط نجد $t_{1/2}=1$
	0,50	: $t=0$ size (B) size (B) size (B) in the size $v_{Vol}(B) = -\frac{1}{V_T} \cdot \frac{dn(B)}{dt}$, $v_{Vol(B)}(0) = -\frac{1}{0,06} \cdot \frac{0-62,5}{18-0} = 57,87 \text{mmol} \cdot L^{-1} \text{min}^{-1}$

العلامة		مناهد الأمادة التوميم الثان	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	
0.25	0.25	CH_3COOH ثانيا: دراسة تفاعل الكحول C_3H_8O مع حمض الايثانويك	
0,25	0,25	1. دور حمض الكبريت المركز: تسريع التفاعل ويُعتبر وسيطا. 0.25	
0.25	0,25	0.25 $C_3H_8O(l)+CH_3COOH(l)=CH_3COOC_3H_7(l)+H_2O(l)$: كتابة معادلة التفاعل 2.	
		3. جدول تقدم التفاعل:	
	0,50	ماء + إستر = حمض + كحول	
		كمية المادة (mmol) التقدم	
0.75		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0,25	ن ح ن x_f $50-x_f$ $50-x_f$ x_f x_f	
		$x_{max} = 50$ ومنه: $x_{max} = 50$ ومنه: $x_{max} = 50$ ومنه: 0.25 ومنه: $x_{max} = 50$	
	0,50	1.4. البروتوكول التجريبي	
		نقسم المزيج الابتدائي بالتساوي على عدة انابيب اختبار، نسدها بإحكام ونضعها في حمام مائي	
		درجة حرارته ثابتة. نأخذ من حين لآخر أحد الأنابيب ونبرده ثم نعاير الحمض المتبقي بواسطة	
		0.25 محلول أساسي ذو تركيز مولي معلوم.	
		كمية الكحول المتبقية هي نفسها كمية الحمض المتبقية.	
1.50	0,25	$n_f(B) = 50 - x_f$: من جدول التقدم لدينا x_f من عدول التقدم لدينا .2.4	
		ومن المنحنى لدينا: $n_f(B) = 20$ ومنه نجد $n_f(B) = 20$	
	0,25	التحقق أنّ التفاعل غير تام: بما أن $x_f < x_{max}$ فإن التفاعل غير تام.	
	0,25	0.25 $r = 60\%$ و منه: $r = \frac{x_f}{x_{max}} \times 100$ دينا: .3.4	
	0,25	صنف الكحول (B) المستعمل: ثانوي 0.25	
0.25	0,25	5. يمكن تحضير الإستر الناتج بتفاعل تام: استعمال كلور الإيثانويل بدل حمض الإيثانويك.	