Лабораторная работа №1

Векторные пространства

Указания к выполнению лабораторной работы

При решении можно пользоваться электронными таблицами, системами компьютерной алгебры (Maxima, MatLab и т.п.) или написать собственную программу на языке программирования. При выборе Python нельзя использовать стандартные функции библиотек.

В качестве отчета по работе преподавателю предъявляются решения в электронном виде. При необходимости нужно ответить на дополнительные вопросы.

Задание на лабораторную работу

Задание 1. Выполнить операции над векторами.

Вариант	Векторы	Требуется найти
1	a(3.45; 2.71; -0.98)	$3\boldsymbol{a} + \boldsymbol{b} \boldsymbol{a} + 3\boldsymbol{b}$
	b(-1.53; -0.88; 1.23)	b-2a $a-2b$
2	<i>a</i> (-0.18; 1.57; -3.69)	2.5a + b a + 2.5b
	<i>b</i> (2.22; -2.22; 0.07)	b - 3a a - 3b
3	a (0.38; 2.35; 3.36)	$4\boldsymbol{a} + \boldsymbol{b} \boldsymbol{a} + 4\boldsymbol{b}$
	<i>b</i> (-2.02; -2.03; -2.04)	b-2a $a-2b$
4	<i>a</i> (4.53; -2.61; 1.36)	1.7a + b a + 1.7b
	b (1.01; 2.02; 3.03)	b-2a $a-2b$
5	a (0.27; -0.67; 1.34)	1.5a + b a + 1.5b
	<i>b</i> (0.01; -0.22; 3.67)	b - 3a $a - 3b$
6	a(3.45; 2.71; -0.98)	$3\boldsymbol{a} + \boldsymbol{b} \boldsymbol{a} + 3\boldsymbol{b}$
	b(-1.53; -0.88; 1.23)	b-2a $a-2b$
7	<i>a</i> (-0.18; 1.57; -3.69)	2.5a + b a + 2.5b
	<i>b</i> (2.22; -2.22; 0.07)	b - 3a a - 3b
8	a (0.38; 2.35; 3.36)	$4\boldsymbol{a} + \boldsymbol{b} \boldsymbol{a} + 4\boldsymbol{b}$
	<i>b</i> (-2.02; -2.03; -2.04)	b - 2a a - 2b
9	<i>a</i> (4.53; -2.61; 1.36)	1.7a + b a + 1.7b
	b (1.01; 2.02; 3.03)	b-2a $a-2b$
10	<i>a</i> (0.27; -0.67; 1.34)	1.5a + b a + 1.5b
	b (0.01; -0.22; 3.67)	b - 3a $a - 3b$

Задание 2. Найти скалярное произведение векторов.

Вариант	Векторы
1	a(3.45; 2.71; -0.98; -1.35; 2.18; 1.11; -0.025)

	$\boldsymbol{b}(-1.53; -0.88; 1.23; 1.08; -0.67; -0.65; 1.18)$
2	<i>a</i> (-0.18; 1.57; -3.69; 0.15; 0.42; 0.29; 0.21)
	b (2.22; -2.22; 0.07; -1.58; 0.25; 1.36; -0.98)
3	a (0.38; 2.35; 3.36; 0.38; 2.35; 3.36; -0.02)
	b (-2.02; -2.03; -2.04; -0.18; 1.57; -3.69; -0.12)
4	<i>a</i> (4.53; -2.61; 1.36; 3.45; 2.71; -0.98; 0.67)
	b (1.01; 2.02; 3.03; 0.38; 2.35; 3.36; -0.02)
5	<i>a</i> (0.27; -0.67; 1.34; 2.22; -2.22; 0.07; -1.58)
	b (0.01; -0.22; 3.67; 0.15; 0.42; 0.29; 0.21)
6	a(3.45; 2.71; -0.98; -1.35; 2.18; 1.11; -0.025)
	b(-1.53; -0.88; 1.23; 1.08; -0.67; -0.65; 1.18)
7	<i>a</i> (-0.18; 1.57; -3.69; 0.15; 0.42; 0.29; 0.21)
	b (2.22; -2.22; 0.07; -1.58; 0.25; 1.36; -0.98)
8	<i>a</i> (0.38; 2.35; 3.36; 0.38; 2.35; 3.36; -0.02)
	b (-2.02; -2.03; -2.04; -0.18; 1.57; -3.69; -0.12)
9	a (4.53; -2.61; 1.36; 3.45; 2.71; -0.98; 0.67)
	b (1.01; 2.02; 3.03; 0.38; 2.35; 3.36; -0.02)
10	a (0.27; -0.67; 1.34; 2.22; -2.22; 0.07; -1.58)
	b (0.01; -0.22; 3.67; 0.15; 0.42; 0.29; 0.21)

Задание 3

Косинусное сходство используется для поиска сходства между двумя документами. Признак оценивает сходство между векторами, что достигается путем нахождения косинусов углов между ними. Диапазон сходства составляет от 0 до 1: если значение показателя сходства между двумя векторами равно 1, это означает, что существует большое сходство между ними (угол равен 0). С другой стороны, если значение оценки сходства между двумя векторами равно 0, это означает, что между ними нет никакого сходства (угол составляет 90°).

Пусть два документа описаны векторами a и b. Определить их косинусное сходство.

Сравнить свой результат с другими вариантами и выяснить, в каком варианте пара документов наиболее близка, а каком – наименее.

Вариа		Координаты векторов									
нт		1	2	3	4	5	6	7	8	9	10
		0,1504	0,4214	0,2905	0,2133	0,7994	0,6193	0,3501	0,8943	0,2864	0,4109
1	a	28	3	83	66	32	16	26	95	74	59
1		0,3008	0,8428	0,5811	0,4267	1,5988	1,2386	0,7002	1,7887	0,5729	0,8219
	b	57	6	66	32	65	31	53	91	48	18
		0,3702	0,8993	0,0824	0,4468	0,7529	0,9311	0,5559	0,0555	0,6349	0,9217
2	a	24	43	17	87	73	09	93	45	49	75
2		0,8540	0,3341	0,5620	0,2286	0,7372	0,6004	0,0887	0,4086	0,0811	0,3219
	b	34	38	71	92	06	51	52	66	55	58
2		0,1291	0,5782	0,5515	0,3115	0,3520	0,6822	0,9989	0,8399	0,8079	0,0582
3	a	96	92	55	11	41	11	35	34	94	68

ĺ	I	0,4521	2,0240	1,9304	1,0902	1,2321	2,3877	3,4962	2,9397	2,8279	0,2039
	b	86	23	43	9	43	38	71	69	78	4
	-	0,7929	0,8486	0,4319	0,5261	0,9688	0,5167	0,2650	0,9335	0,1601	0,5567
	a	64	3	11	77	7	19	73	51	97	68
4	-	0,5157	0,5364	0,7971	0,6298	0,8785	0,8390	0,1009	0,8473		0,5143
	b	32	88	32	84	57	16	03	61	0,011	32
		0,0720	0,4812	0,3846	0,5848	0,8792	0,0678	0,7012	0,4461	0,4569	0,9129
_	a	94	42	83	67	05	01	76	74	09	76
5		0,1081	0,7218	0,5770		1,3188	0,1017	1,0519	0,6692	0,6853	1,3694
	b	41	63	24	0,8773	08	02	13	61	63	64
		0,2773	0,1030	0,5418	0,9671	0,4413	0,0910	0,9081	0,3238	0,2682	0,5318
	a	52	93	8	27	73	64	14	48	46	42
6		0,0577	0,7764	0,5306	0,2280	0,9312	0,2050	0,3614	0,9069	0,7503	0,8457
	\boldsymbol{b}	29	59	25	19	06	29	86	61	41	51
		0,0527	0,3806	0,4818	0,0830	0,0600	0,4365	0,9451	0,2829	0,4240	0,3551
7	a	24	36	39	29	01	85	34	99	53	45
/		0,0421	0,3045	0,3854	0,0664	0,0480	0,3492	0,7561	0,2263	0,3392	0,2841
	b	79	09	71	23	01	68	07	99	43	16
		0,7856	0,6228	0,2257	0,3454	0,5303	0,6293	0,0241	0,1367	0,7217	0,2704
8	a	83	31	65	58	54	84	67	5	29	93
0		0,6534	0,9103	0,9040	0,0629	0,3263	0,9832	0,7422	0,9808	0,3500	0,9050
	\boldsymbol{b}	46	19	26	94	59	04	53	86	81	66
		0,1403	0,9254	0,8547	0,5983	0,2072	0,5294	0,9045		0,3065	0,6735
9	a	7	08	46	65	63	41	3	0,971	5	75
		0,1080	0,7125	0,6581	0,4607	0,1595	0,4076	0,6964	0,7476	0,2360	0,5186
	b	85	64	54	41	92	69	88	7	43	53
		0,0169	0,9162	0,8666	0,1068	0,6422	0,7986	0,9295	0,4029	0,0986	0,2620
10	a	49	13	21	23	47	79	34	04	88	6
10		0,4571	0,0429	0,7252	0,7051	0,7427	0,2239	0,9782	0,7056	0,4647	0,5207
	\boldsymbol{b}	94	07	81	95	74	74	68	05	69	23

Задание 4. Определить, будет ли система векторов линейно независимой (с точностью до $0{,}001$).

Вариант	Векторы
1	<i>a</i> (0,15; 0,42; 0,29; 0,21; 0,8)
	b (0,30; 0,84; 0,58; 0,43; 1,6)
2	<i>a</i> (0,37; 0,9; 0,08; 0,45; 0,75)
	b (0,85; 0,33; 0,56; 0,23; 0,74)
3	a (0,13; 0,58; 0,55; 0,31; 0,35)
	b (0,45; 2,02; 1,93; 1,09; 1,23)
4	<i>a</i> (0,79; 0,85; 0,43; 0,53; 0,97)
	b (0,52; 0,54; 0,8; 0,63; 0,88)
5	a (0,07; 0,48; 0,38; 0,58; 0,88)
	b (0,11; 0,72; 0,58; 0,88; 1,32)
6	<i>a</i> (0,28; 0,1; 0,54; 0,97; 0,44)
	b (0,06; 0,78; 0,53; 0,23; 0,93)
7	a (0,05; 0,38; 0,48; 0,08; 0,06)
	b (0,04; 0,3; 0,39; 0,07; 0,05)
8	a (0,79; 0,62; 0,23; 0,35; 0,53)

Математические основы анализа данных

	b (0,65; 0,91; 0,9; 0,06; 0,32)
9	a (0,14; 0,93; 0,85; 0,6; 0,2)
	b (0,11; 0,71; 0,66; 0,46; 0,16)
10	a (0,02; 0,92; 0,87; 0,1; 0,64)
	b (0,46; 0,04; 0,73; 0,71; 0,74)