Universidade Federal de Minas Gerais

Departamento de Matemática

O Teorema de Mordell

Wodson Mendson

Sejam $a, b \in \mathbb{Z}$ e considere $f(X, Z) = X^3 + aXZ^2 + bZ^3 \in \mathbb{Z}[X, Z]$. Suponha que f é não singular. Para simplificar a exposição iremos supor que $f(X, Z) = (X - a_1 Z)(X - a_2 Z)(X - a_3 Z)$ com $a_1, a_2, a_3 \in \mathbb{Z}$. Em particular, temos $a_i \neq a_j$ se $i \neq j$.

Seja $F(X,Y,Z) = ZY^2 - f(X,Z) \in \mathbb{Z}[X,Y,Z]$ e considere o seguinte conjunto:

$$X_F(\mathbb{Q}) := \{ [x : y : z] \in \mathbb{P}^2_{\mathbb{Q}} \mid F(x, y, z) = 0 \}.$$

 $X_F(\mathbb{Q})$ descreve uma curva projetiva sobre \mathbb{Q} . Denote $\mathcal{O} = [0:1:0]$. Chamaremos tal ponto de **ponto** no infinito da cúbica descrita por F. Observe que se $P = [u:v:t] \in X_F(\mathbb{Q})$ é tal que $P \neq \mathcal{O}$ então $t \neq 0$. Assim, existe uma bijeção

$$X_F(\mathbb{Q}) \cong \{(u, v) \in \mathbb{Q}^2 \mid F(u, v, 1) = 0\} \cup \{\mathcal{O}\}.$$

Dessa forma, podemos encarar o conjunto $X_F(\mathbb{Q})$ como uma curva afim descrita por $g(X,Y) = Y^2 - f(X,1)$ munida de um ponto "extra".

1 A estrutura de grupo

No que se segue fixamos $a, b \in \mathbb{Z}$ e consideramos o conjunto $X_F(\mathbb{Q})$ tal como definido acima.

Definição 1. O mapa multiplicação em $X_F(\mathbb{Q})$, denotado por *, associa $(P,Q) \in X_F(\mathbb{Q})^2 \mapsto P * Q$ é definido da seguinte forma:

Tome L a reta passando por P e Q. Pelo teorema de Bezout, sabemos que L intersecta $X_F(\mathbb{C})$ em um terceiro ponto R. Como as operações envolvidas para calcular R são realizadas sobre o corpo primo \mathbb{Q} , temos que R possui coeficientes em \mathbb{Q} i.e. $R \in X_F(\mathbb{Q})$. Definimos P * Q := R.

A seguinte proposição estabelece algumas propriedade da operação *.

Proposição 1. A operação * satisfaz as seguintes propriedades:

- (i) P * Q = Q * P
- (ii) P * (P * Q) = Q.
- (iii) P * P = P se e somente se P é um ponto de inflexão.
- (iv) $\mathcal{O} * \mathcal{O} = \mathcal{O}$.

Demonstração. Os itens (i) e (ii) são triviais. O item (iii) segue da definição de ponto de inflexão. Relembre que $P \in X_F(\mathbb{C})$ é dito um ponto de inflexão se $L \cap X_F(\mathbb{C}) = \{P\}$, onde L denota a reta tangente a $X_F(\mathbb{Q})$ sobre P. Uma verificação rotineira, mostra que \mathcal{O} é um ponto de inflexão.

Exercício 1. Verifique que a operação * não estabelece uma lei de grupo no conjunto $X_F(\mathbb{Q})$.

Agora, vamos equipar o conjunto $X_F(\mathbb{Q})$ com uma lei de grupo. Para esse fim, fixaremos $\mathcal{O} = [0:1:0]$ e usaremos tal ponto para desempenhar o elemento neutro.

Definição 2. Sejam $P, Q \in X_F(\mathbb{Q})$. A operação soma + em $X_F(\mathbb{Q})$ é definida pondo

$$P + Q := \mathcal{O} * (P * Q).$$

Teorema. $(X_F(\mathbb{Q}),+)$ é um grupo abeliano com \mathcal{O} desempenhando o elemento neutro.

Demonstração. Seja $P \in X_F(\mathbb{Q})$. Temos que $P + \mathcal{O} = \mathcal{O} * (P * \mathcal{O}) = \mathcal{O} * (\mathcal{O} * P) = P$. Além disso, se $Q = \mathcal{O} * P$ temos $P + Q = \mathcal{O} * (P * (\mathcal{O} * P)) = \mathcal{O} * \mathcal{O} = \mathcal{O}$ por (iv) da proposição acima. Assim, temos a fórmula para o inverso $-P = \mathcal{O} * P$. Resta verificar a associatividade. Para isso, devemos provar que dados $P, Q, R \in X_F(\mathbb{Q})$ temos (P + Q) + R = P + (Q + R). Ora, por definição

$$(P+Q)+R=\mathcal{O}*(R*(\mathcal{O}*(P*Q))) \qquad P+(Q+R)=\mathcal{O}*(P*(\mathcal{O}*(R*Q))).$$

Aplicando \mathcal{O} vemos que é suficiente mostrar a seguinte igualdade

$$R * (\mathcal{O} * (P * Q)) = P * (\mathcal{O} * (R * Q)).$$

Isso pode ser provado por computação tediosa, o qual omitimos.

Exercício 2. Seja $P = [x : y : 1] \in X_F(\mathbb{Q})$. Verifique que -P = [x : -y : 1].

Proposição 2. Sejam $P, Q, R \in X_F(\mathbb{Q})$.

$$P + Q + R = \mathcal{O} \iff P, Q \in R \text{ são colineares.}$$

Demonstração.

$$P + Q + R = \mathcal{O} \iff \mathcal{O} * (R * (\mathcal{O} * (P * Q))) = \mathcal{O} \iff R = \mathcal{O} * (\mathcal{O} * (P * Q)) = P * Q.$$

Corolário 1. $3P = \mathcal{O}$ se e só se P é um ponto de inflexão.

Demonstração. Pela proposição acima, $P+P+P=\mathcal{O}$ se e só a reta tangente sobre P tem contato triplo com $X_F(\mathbb{C})$.

2 Grupos normados

Seja G um grupo abeliano (notação aditiva). Observe que para cada $n \in \mathbb{N}$ obtemos um mapa de grupos

$$[n]: G \longrightarrow G \qquad g \mapsto ng.$$

onde
$$Ker([n]) = G[n]$$
, $Im([n]) = nG$ e $Coker([n]) = G/nG$.

Denotamos [G:nG]=#Coker([n]). Dizemos que nG é de indice finito em G se $[G:nG]<\infty$. Note que se G é finitamente gerado então $[G:nG]<\infty$. Nessa seção, mostramos a reciproca para uma classe particular de grupos. Mais precisamente, mostraremos que se G é um grupo abeliano normado com $[G:2G]<\infty$ então G é finitamente gerado.

Definição 3. Seja G um grupo abeliano. Dizemos que G é normado se existir uma função $h: G \longrightarrow \mathbb{R}_{\geq 0}$ tal que:

- (i) Para cada $r \in \mathbb{R}_{>0}$ o conjunto $H(r) := \{P \in G \mid h(P) \le r\}$ é finito.
- (ii) $h(mP) = |m|^2 h(P)$ para todo $P \in G$ e $m \in \mathbb{Z}$.
- (iii) h(P+Q) + h(P-Q) = 2h(P) + 2h(Q) (regra do paralelogramo).

Uma função satisfazendo as propriedades acima \acute{e} dita uma **função altura em** G. Dizemos que G \acute{e} normado se pode ser equipado com uma função altura.

Observação 1. Suponha que G é um grupo munido de uma função altura h e denote por $G_{tor} := \{g \in G \mid ng = 0\}$ por algum $n \in \mathbb{Z}$. Nesse caso, temos que $\#G_{tor} < \infty$. De fato, note que ng = 0 implica que $0 = h(0) = h(ng) = |n|h(g) \Longrightarrow h(g) = 0$. Assim, $G_{tor} \subseteq H(0)$ e por (i) temos $\#H(0) \le \infty$.

Exemplo 1. Seja \mathbb{R}^n com a norma euclidiana $|\ |$ e considere a função $h: \mathbb{Z}^n \longrightarrow \mathbb{R}_{\geq 0}$ que associa $P \mapsto h(P) := |P|^2 = \langle P, Q \rangle$, a restrição do produto interno usual de \mathbb{R}^n em \mathbb{Z}^n . Então, h é uma função altura em $G := \mathbb{Z}^n$.

Exemplo 2. Seja $G_1, ..., G_r$ grupo abelianos munidos de funções alturas $h_i : G_i \longrightarrow \mathbb{R}$. Então $G := G_1 \oplus \cdots \oplus G_r$ é um grupo abeliano munido de uma função altura. De fato, defina $h : G \longrightarrow \mathbb{R}$ pondo $h(P_1 + \cdots + P_r) := h_1(P_1) + \cdots + h_r(P_r)$. Em particular, se G é finitamente gerado temos $G = G_{tor} \oplus \mathbb{Z}^r$ e assim G pode ser equipado com uma função altura.

Teorema. Seja G um grupo abeliano. Suponha que G é normado e $[G:2G]<\infty$. Então G é finitamente gerado.

Demonstração. Se G é um grupo de tipo finito, as observações acima mostram que $[G:nG]<\infty$ para todo inteiro n>1 e G é normado. Reciprocamente, suponha que G é um grupo abeliano normado, com altura h, e $[G:2G]<\infty$. Devemos mostrar que G é de tipo finito. Seja $G/2G=\{\overline{P}_1,...,\overline{P}_k\}$ e denote por $\alpha:=\mathbf{Max}\{h(P_1),...,h(P_k)\}+1$. Por propriedade (i) de função altura, temos que $H(\alpha)$ é um conjunto finito. Seja $S:=(H(\alpha))$ o subgrupo gerado pelos pontos de $H(\alpha)$. Vamos mostrar que G=S.

Suponha que tal não ocorra i.e. seja $P \in G - S$. Seja $\beta := h(P)$ e tome $R \in H(\beta) \cap (G - S)$ com $h(R) \leq h(P)$ para todo $P \in H(\beta)$. Isso mostra que podemos supor que P é um elemento que não está em S e possui altura minimal com respeito a essa propriedade. Temos $\overline{P} = \overline{P}_j$ por algum j. Assim, $P = P_j + 2Q$ por algum $Q \in G$. Dai, $Q = P_j - P$ e

$$4h(Q) = h(2Q) = h(P_i - P) = 2h(P_i) + 2h(P) - h(P_i + P) \le 2\alpha + 2h(P) + 0.$$

Assim,
$$4h(Q) \le 2\alpha + 2h(P) < 2h(P) + 2h(P) = 4h(P) \Longrightarrow h(Q) < h(P)$$
.

Minimalidade de P implica que $Q \in S$. Como $P_j \in S$ temos $P = P_j + 2G \in S$, o que é um absurdo. Isso demonstra o teorema.

3 Finitude de $[X_F(\mathbb{Q}): 2X_F(\mathbb{Q})]$.

Relembre as convenções: $X_F(\mathbb{Q}):=\{[x:y:z]\in\mathbb{P}^2_{\mathbb{Q}}\mid F(x,y,z)=0\}$ onde $F=ZY^2-f(X,Z)$ com $f(X,Z)=(X-a_1Z)(X-a_2Z)(X-a_3Z)$ e $a_i\neq a_j$ se $i\neq j$ equipado com a lei de grupo descrita na 1º seção.

Nessa seção mostraremos a finitude do indice $[X_F(\mathbb{Q}): 2X_F(\mathbb{Q})]$. Começamos provando o seguinte¹.

Critério para Divisibilidade por 2 . Seja $(x_1, y_1) \in X_F(\mathbb{Q})$. Existe $(x_2, y_2) \in X_F(\mathbb{Q})$ tal que $2(x_2, y_2) = (x_1, y_1)$ se e somente se $x_1 - a_1, x_1 - a_2, x_1 - a_3 \in \mathbb{Q}^*$.

Demonstração. Mostraremos apenas a implicação \Longrightarrow . Para mais detalhes, veja o livro do Knapp. Assim, suponha $P=(x_1,y_1)$ tal que $2(x_2,y_2)=P$. Tome L a reta passando por -P e $2(x_2,y_2)$, digamos y=mx+b. Substituindo na equação da cubica obtemos

$$(mx+b)^2 = (x-a_1)(x-a_2)(x-a_3).$$

Por hipótese, $f(X) = (mX + b)^2 - (X - a_1)(X - a_2)(X - a_3)$ é um polinomio com raizes x_1, x_2 , onde x_2 é uma raiz dupla. Assim, $f(X) = (X - x_2)^2(X - x_1)$. Avaliando em a_i , obtemos

$$(ma_i + b)^2 = (a_i - x_2)^2 (a_i - x_1) \Longrightarrow (x_1 - a_i) \in \mathbb{Q}^{*2}.$$

Assim, $x_1 - a_1, x_1 - a_2, x_1 - a_3 \in \mathbb{Q}^{*^2}$.

Relembre a bijeção: $X_F(\mathbb{Q}) \cong \{(u,v) \in \mathbb{Q}^2 \mid y^2 = (x-a_1)(x-a_2)(x-a_3)\} \cup \{\mathcal{O}\}$ $[x:y:t] \mapsto (x/t,y/t)$ se $[x:y:t] \neq \mathcal{O}$.

Proposição 3. Defina o mapa

$$\Phi_{a_1}: X_F(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/\mathbb{Q}^{*^2}.$$

$$P \longmapsto \begin{cases} (x - a_1)\mathbb{Q}^{*^2} & se \quad P = (x, y) \notin \{(a_1, 0), \mathcal{O}\}.\\ (a_1 - a_2)(a_1 - a_3)\mathbb{Q}^{*^2} & se \quad P = (a_1, 0).\\ 1 & se \quad P = \mathcal{O}. \end{cases}$$

Então, Φ_{a_1} é um mapa de grupos.

Assim, como $\Phi_{a_1}(2P) = \Phi_{a_1}(P)^2 = 1 \mod \mathbb{Q}^*$ temos que $2X_F(\mathbb{Q}) \subset Ker(\Phi_{a_1})$ de modo que Φ_{a_1} induz $\varphi_{a_1} : X_F(\mathbb{Q})/2X_F(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/\mathbb{Q}^{*^2}$, por passagem ao quociente.

Demonstração. Sejam $P_1, P_2, P_3 \in X_F(\mathbb{Q})$. Note que para mostrar que Φ_{a_1} é um mapa de grupos é suficiente mostrar que

$$P_1 + P_2 + P_3 = \mathcal{O} \Longrightarrow \Phi_{a_1}(P_1)\Phi_{a_1}(P_2)\Phi_{a_1}(P_3) = 1.$$

Observe que se $P_i = \mathcal{O}$ por algum i, então o resultado é trivial. Assim, suporemos $P_1, P_2, P_3 \neq \mathcal{O}$.

1º Caso: $P_1, P_2, P_3 \neq (a_1, 0)$. Nesse caso, tome L: Y = mX + b a reta passando por P_1, P_2 e P_3 . Então x_1, x_2 e x_3 são raizes do polinômio $f(X) = (mX + b)^2 - (X - a_1)(X - a_2)(X - a_3)$. Assim, $f(X) = (X - x_1)(X - x_2)(X - x_3)$. Tomando $X = x_1$, obtemos

$$(x_1 - a_1)(x_1 - a_2)(x_1 - a_3) = (mx_1 + b)^2 \in \mathbb{Q}^{*^2}.$$

Dai,
$$(x_1 - a_1)(x_1 - a_2)(x_1 - a_3) = \Phi_{a_1}(P_1)\Phi_{a_1}(P_2)\Phi_{a_1}(P_3) = 1 \text{ em } \mathbb{Q}^*/\mathbb{Q}^{*2}$$
.

2º Caso: $P_1=(a_1,0)$. Temos assim que $P_2,P_3\neq(a_1,0)$. Seja L:Y=mX+b a reta passando por P_1,P_2,P_3 . Então, a_1,x_2,x_3 são raizes do polinomio $f(X)=(mX+b)^2-(X-a_1)(X-a_2)(X-a_3)$ i.e. $(mX+b)^2-(X-a_1)(X-a_2)(X-a_3)=(X-a_1)(X-x_2)(X-x_3)$. Em particular, $X-a_1$ divide $mX+b\Longrightarrow mX+b=d(X-a_1)^2$, com $d\in\mathbb{Q}$. Fazendo as devidas simplificações obtemos

$$d(X - a_1) - (X - a_2)(X - a_3) = (X - x_2)(X - x_3).$$

Avaliando em $X = a_1$ obtemos $(a_1 - a_2)(a_1 - a_3) = (a_1 - x_2)(a_1 - x_3)$ e assim $\Phi_{a_1}(P_1) = \Phi_{a_1}(P_2)\Phi_{a_2}(P_3) \Longrightarrow \Phi_{a_1}(P_1)\Phi_{a_1}(P_2)\Phi_{a_2}(P_3) = 1$.

De maneira análoga podemos considerar o mapa Φ_{a_2} . Assim, tomando o produto, obtemos o mapa:

$$\Phi_{a_1} \times \Phi_{a_2} : X_F(\mathbb{Q}) \longrightarrow \mathbb{Q}^*/\mathbb{Q}^{*^2} \times \mathbb{Q}^*/\mathbb{Q}^{*^2}.$$

Proposição 4. $Ker(\Phi_{a_1} \times \Phi_{a_2}) = 2X_F(\mathbb{Q}).$

Demonstração. Pela proposição acima temos $2X_F(\mathbb{Q}) \subset Ker(\Phi_{a_1} \times \Phi_{a_2})$. Agora, seja $P = (x,y) \in Ker(\Phi_{a_1} \times \Phi_{a_2})$. Considere os casos:

1º Caso: $P \notin \{(a_1,0),(a_2,0)\}$. Nesse caso, temos que $x-a_1,x-a_2 \in \mathbb{Q}^{*^2}$. Da equação $y^2=(x-a_1)(x-a_2)(x-a_3)$ obtemos $x-a_3 \in \mathbb{Q}^{*^2}$ e pelo critério de divisibilidade por 2 temos que existe $(x_2,y_2) \in X_F(\mathbb{Q})$ tal que $2(x_2,y_2)=(x_1,y_1)$.

2º Caso: $P = (a_1, 0)$. Nesse caso, temos $(a_1 - a_2)(a_1 - a_3) \in \mathbb{Q}^{*^2}$ e $(a_1 - a_2) \in \mathbb{Q}^{*^2}$. Dai, $(a_1 - a_3) \in \mathbb{Q}^{*^2}$. Como 0 é quadrado, $a_1 - a_2$ e $a_1 - a_3$ são quadrados, segue do critério de divisibilidade que $(a_1, 0) = 2(x_2, y_2)$ para algum $(x_2, y_2) \in X_F(\mathbb{Q})$.

3º Caso: $P = (a_2, 0)$. Inteiramente análogo ao caso anterior.

Assim, obtemos um mapa injetivo

$$\varphi_{a_1} \times \varphi_{a_2} : X_F(\mathbb{Q})/2X_F(\mathbb{Q}) \hookrightarrow \mathbb{Q}^*/\mathbb{Q}^{*^2} \times \mathbb{Q}^*/\mathbb{Q}^{*^2}.$$

Para provar o próximo teorema usaremos a função p-ádica:

Definição 4. Seja $p \in \mathbb{Z}$ um primo. Seja $n = a/b \in \mathbb{Q}$ uma fração reduzida i.e. mdc(a,b) = 1. Escreva $n = p^{\alpha}a^{'}/b^{'}$, onde $mdc(a^{'},p) = mdc(b^{'},p) = 1$. Definimos $ord_{p}(n) := \alpha$. Por convenção, definimos $ord_{p}(0) = \infty$.

Observe que se $n \in \mathbb{Z}$ então $ord_p(n)$ é o expoente do inteiro primo p ocorrendo na decomposição de n.

Proposição 5. A função ord_p satisfaz as seguintes proprieades:

- $(i) \ \forall \ n,m \in \mathbb{Q} \ temos \ ord_p(n+m) \geq \mathbf{Min}(ord_p(n),ord_p(m)) \ com \ igualdade \ se \ e \ s\'o \ se \ ord_p(n) \neq ord_p(m)$
- (ii) $ord_p(nm) = ord_p(n) + ord_p(m)$.

Demonstração. um exercicio simples.

No que se segue usaremos a bijeção:

$$f: \mathbb{Q}^*/\mathbb{Q}^{*^2} \longrightarrow \mathbb{Z}/2\mathbb{Z} \oplus \bigoplus_{p \in \mathbb{Z} \text{ primo}} \mathbb{Z}/2\mathbb{Z}$$

que associa $\alpha = \overline{(-1)^{a_0}p_1^{a_1}\cdots p_k^{a_k}} \mapsto (a_0 \mod 2, a_1 \mod 2, ..., a_k \mod 2)$. Por meio de tal identificação, diremos a $a_j \mod 2$ é a p_j -ésima componente de α .

O próximo teorema garante que $[X_F(\mathbb{Q}): 2X_F(\mathbb{Q})] < +\infty$.

Teorema. Seja $f(X) = (X - a_1)(X - a_2)(X - a_3)$ e $D := \prod_{i < j} (a_i - a_j)^2$. Seja $|D| = \prod_k p_k^{l_k}$ a decomposição em fatores primos. Então,

$$Im(\varphi_{a_1} \times \varphi_{a_2}) \subset \{((-1)^{t_{01}} p_1^{t_{11}} \cdots p_r^{t_{r1}}, (-1)^{t_{02}} p_1^{t_{12}} \cdots p_r^{t_{r2}}) \mid t_{ii} \in \{0,1\}\}.$$

Em particular, $[X_F(\mathbb{Q}): 2X_F(\mathbb{Q})] < +\infty$.

Demonstração. Seja $P = (x, y) \in X_F(\mathbb{Q})$ e defina $S := \{((-1)^{t_{01}}p_1^{t_{11}}\cdots p_r^{t_{r1}}, (-1)^{t_{02}}p_1^{t_{12}}\cdots p_r^{t_{r2}}) \mid t_{ij} \in \{0, 1\}\}$. Vamos mostrar que

$$\Phi_{a_1} \times \Phi_{a_2}(P) \in S$$
.

Consideremos dois casos:

1º Caso $x \notin \{a_1, a_2, a_3\}$: Nesse caso, fixe um primo $p \in \mathbb{Z}$ e defina $A, B \in C \in \mathbb{Z}$ pondo

$$A := ord_p(x - a_1) \qquad B := ord_p(x - a_2) \qquad C := ord_p(x - a_3).$$

Pela equação da cúbica, sabemos que $y^2 = (x - a_1)(x - a_2)(x - a_3)$. Dai, pela propriedade (ii) da função ord_n temos que

$$2ord_p(y) = ord_p((x - a_1)(x - a_2)(x - a_3)) = ord_p(x - a_1) + ord_p(x - a_2) + ord_p(x - a_3) = A + B + C.$$

Em particular, $A+B+C\equiv 0 \mod 2$. Observe que se A=B=C=0 então $\Phi_{a_1}(P)=(x-a_1)\mathbb{Q}^{*^2}=1$ e $\Phi_{a_2}(P)=(x-a_2)\mathbb{Q}^{*^2}=1$ de modo que $(\Phi_{a_1}\times\Phi_{a_2})(P)=(1,1)\in S$. Suponha que ao menos um dos inteiros $A,B\in C$ é negativo, digamos A<0. Então, como $a_1\in \mathbb{Z}$ sabemos que $A=ord_p(x-a_1)=ord_p(x)$ (aplique propriedade (i) da função ord_p). Assim, $B=ord_p(x-a_2)=ord_p(x)$ e $C=ord_p(x-a_3)=ord_p(x)$ de modo que A=B=C. Pelo fato, $A+B+C\equiv 0 \mod 2$ obtemos $A\equiv 0$, $B\equiv 0$, $C\equiv 0 \mod 2$. Assim, a p-ésima componente de $\Phi_{a_1}(P)$ e $\Phi_{a_2}(P)$ é 0.

Suponha agora que ao menos um dos inteiros A, B e C é positivo, digamos A > 0. Temos,

$$B = ord_p(x - a_2) = ord_p((x - a_1) + (a_1 - a_2)) \ge \mathbf{Min}(ord_p(x - a_1), ord_p(a_2 - a_1)) = \mathbf{Min}(A, ord_p(a_2 - a_1)).$$

Assuma que p não divide |D|. Nesse caso, $A>0=ord_p(a_2-a_1)$ e por propriedade (i) da função ord_p temos que $B=\mathbf{Min}(A,ord_p(a_2-a_1))=0$. Analogamente, temos que C=0. Assim, usando o fato $A+B+C=A\equiv 0\mod 2$ concluimos que A é par. Assim, a p-ésima componente de $\Phi_{a_1}(P)$ e $\Phi_{a_2}(P)$ vale 0.

2º Caso $x \in \{a_1, a_2, a_3\}$: Nesse caso, $\Phi_{a_i}(P)$ é da forma $(a_k - a_j)\mathbb{Q}^{*^2}$. Assim, se p não divide |D| temos que $ord_p((a_k - a_j)) = 0$ de modo que a p-ésima componente é nula.

Conclusão: Os únicos primos que possivelmente ocorrem em $\Phi_{a_1}(P)$ e $\Phi_{a_2}(P)$ são aqueles que dividem o discriminante |D|. Assim, $\Phi_{a_1} \times \Phi_{a_2}(P) \in S$.

4 Função altura no grupo $X_F(\mathbb{Q})$

Nessa seção, construimos uma função altura no grupo $X_F(\mathbb{Q})$.

Definição 5. Seja $a/b \in \mathbb{Q}$ escrito na forma reduzida. Definimos a pseudo-altura de a/b pondo H(a/b) := Max(|a|,|b|). A altura logaritmica é definida tomando o logaritmo; h(a/b) := log(H(a/b)).

Observe que para cada $n \in \mathbb{R}$ o conjunto $\{\alpha \in \mathbb{Q} \mid h(\alpha) < n\}$ é finito, já que existe um número finito de naturais m tais que m < n.

Definição 6. Seja $P \in X_F(\mathbb{Q})$. Se $P \neq \mathcal{O}$ escreva P = [x : y : 1]. A função **altura logaritmica** em $X_F(\mathbb{Q})$ é definida pondo

$$\tilde{h}(\mathcal{O}) = 0$$
 e $\tilde{h}(P) = h(x)$.

Observação 2. Dado $n \in \mathbb{R}$ o conjunto

$$\{P \in X_F(\mathbb{Q}) \mid \tilde{h}(P) < n\}$$

é finito.

Definição 7. Sejam G um grupo abeliano e $f: G \longrightarrow \mathbb{R}_{\geq 0}$ uma aplicação. Diremos que f \acute{e} discreta se para qualquer $r \in \mathbb{R}$, o conjunto

$$\{\alpha \in G \mid f(\alpha) < r\}$$

é finito.

Pela observação acima, concluimos que a função altura logaritmica em $X_F(\mathbb{Q})$ é discreta.

Lema 1. Existe uma constante $c \in \mathbb{R}_{>0}$ tal que para quaisquer $P, Q \in X_F(\mathbb{Q})$ temos

$$|\tilde{h}(P+Q) + \tilde{h}(P-Q) - 2\tilde{h}(P) - 2\tilde{h}(Q)| \le c$$

Demonstração. Veja [1], pág 218 ou exercicio 3.2 de [2] na pág 102.

Teorema. Seja X uma curva eliptica sobre ² Q. Existe uma função

$$\sigma: X_F(\mathbb{Q}) \longrightarrow \mathbb{R}_{>0}.$$

que possui as seguintes propriedades:

- (i) $\sigma(P) \geq 0$ para todo $P \in X_F(\mathbb{Q})$.
- (ii) Existe uma constante $r \in \mathbb{R}_{\geq 0}$ tal que

$$|\sigma(P) - \frac{1}{2}\tilde{h}(P)| < r.$$

- (iii) σ é discreta.
- (iv) $\sigma(mP) = m^2 \sigma(P)$ para todo $P \in X_F(\mathbb{Q})$.
- (v) $\sigma(P+Q) + \sigma(P-Q) = 2\sigma(P) + 2\sigma(Q)$ para todos pontos $P, Q \in X_F(\mathbb{Q})$.
- (vi) $\sigma(P) \neq 0$ se e só se $P \notin X_F(\mathbb{Q})_{tor}$.

Demonstração. Usando o lema acima com P = Q, obtemos

$$|\tilde{h}(2P) - 4\tilde{h}(P)| < c$$
 para todo $P \in X_F(\mathbb{Q})$.

Defina

$$\delta(P) := \lim_{n \to \infty} \frac{\tilde{h}(2^n P)}{4^n} \quad \text{e} \quad \sigma(P) := \frac{1}{2} \delta(P).$$

Obseve que o limite acima existe. Com efeito, temos

$$\frac{\tilde{h}(2^n P)}{4^n} = \tilde{h}(P) + \sum_{k=1}^n \frac{1}{4^k} (\tilde{h}(2^k P) - 4\tilde{h}(2^{k-1} P)) \tag{*}$$

Agora,

$$\frac{1}{4^k}|(\tilde{h}(2^kP) - 4\tilde{h}(2^{k-1}P))| < \frac{1}{4^k}c.$$

Assim, por teste de comparação, a série $\sum_{k=1}^{n} \frac{1}{4^k} (\tilde{h}(2^k P) - 4\tilde{h}(2^{k-1}P))$ converge de modo que o limite

$$\lim_{n \to \infty} \frac{\tilde{h}(2^n P)}{4^n} = \tilde{h}(P) + \sum_{k=1}^{\infty} \frac{1}{4^k} (\tilde{h}(2^k P) - 4\tilde{h}(2^{k-1} P))$$

existe.

 $^{^2 {\}rm lembre}$ das convenções.

- (i): Se segue da definição da função δ .
- (ii) Temos

$$|\sigma(P) - \frac{1}{2}\tilde{h}(P)| = |\frac{1}{2}\delta(P) - \frac{1}{2}\tilde{h}(P)| = \frac{1}{2}|\delta(P) - \tilde{h}(P)|.$$

Assim, por (*) obtemos

$$|\delta(P) - \tilde{h}(P)| \le |\sum_{k=1}^{\infty} \frac{1}{4^k} (\tilde{h}(2^k P) - 4\tilde{h}(2^{k-1} P))| \le \sum_{k=1}^{\infty} \frac{1}{4^k} |(\tilde{h}(2^k P) - 4\tilde{h}(2^{k-1} P))| < \sum_{k=1}^{n} \frac{1}{4^k} c = \frac{c}{3}$$

de modo que

$$|\sigma(P) - \frac{1}{2}\tilde{h}(P)| < \frac{c}{6} \qquad (**)$$

- (iii) Seuponha que $\sigma(P) < r$, por algum $r \in \mathbb{R}$. Usando (**) temos $\frac{1}{2}\tilde{h}(P) < \sigma(P) + \frac{c}{6} < r + \frac{c}{6}$. Assim, a função σ é discreta já que \tilde{h} é discreta.
 - (v) Usando o lema técnico temos

$$\frac{1}{4^n}|\tilde{h}(2^n(P+Q))+\tilde{h}(2^n(P-Q))-2\tilde{h}(2^nP)-2\tilde{h}(2^nQ)|<\frac{c}{4^n}.$$

Por passagem ao limite obtemos a regra do paralelogramo $\sigma(P+Q) + \sigma(P-Q) = 2\sigma(P) + 2\sigma(Q)$.

(iv) Isso se segue por indução em m. Para m=2 temos

$$\delta(2P) = \lim_{k \to \infty} \frac{1}{4^k} \tilde{h}(2^{k+1}P) = 4 \lim_{k \to \infty} \frac{1}{4^{k+1}} \tilde{h}(2^{k+1}P) = 4\delta(P).$$

Assim, $\sigma(2P) = 4\sigma(P)$. Para o caso geral seja $m \in \mathbb{N}$. Então,

$$\sigma((m+1)P) = \sigma(mP+P) = 2\sigma(mP) + 2\sigma(P) - \sigma((m-1)P)$$
 pela regra do paralelogramo.

Dai, pela hipótese de indução vem $2\sigma(mP)+2\sigma(P)-\sigma((m-1)P)=2m^2\sigma(P)+2\sigma(P)-(m-1)^2\sigma(P)=(2m^2+2-m^2+2m-1)\sigma(P)=(m^2+2m+1)\sigma(P)=(m+1)^2\sigma(P).$

(iv) Seja $P \in X_F(\mathbb{Q})_{tor}$. Então, $nP = \mathcal{O}$ por algum n > 1. Temos assim, $0 = \sigma(nP) = n^2\sigma(P) \Longrightarrow \sigma(P) = 0$. Suponha que $\sigma(P) = 0$. Considere o conjunto $S := \{nP \mid n \in \mathbb{N}\}$. Como $S \subset \{P \in X_F(\mathbb{Q}) \mid h(Q) = 0\}$ e a função σ é discreta, temos que S é finito. Em particular, P tem ordem finita.

Corolário 2. A função σ ocorrendo no teorema acima define uma norma no grupo $X_F(\mathbb{Q})$.

Assim, combinando os resultados obtidos com os resultados das seções anteriores obtemos o seguinte

Teorema (Mordell -1922). $(X_F(\mathbb{Q}), +)$ é um grupo abeliano finitamente gerado.

5 Referências

- $\left[1\right]$ Washington, Lawrence C. Elliptic curves: number theory and cryptography. CRC press, 2008.
- [2] Silverman, J. H., Tate, J. T. (1992). Rational points on elliptic curves (Vol. 9). New York: Springer-Verlag.
- [3] Knapp, A. W. (1992). Elliptic curves (Vol. 40). Princeton University Press.