肥 工 业 大 学 线 性 代 数 试 卷 (A) 评 分 标 准

系(所或教研室)主任审批签名 (石) 四(名) 2023~2024 学年第 一 学期 课程代码 线性代数 命题教师 集体 1400071B 课程名称

教学班级

学生姓名

考试日期 2023 年 12 月 10 日 10:20-12:20 成绩

一、填空题(每小题3分,共18分)

请将你的答案对应填在横线上:

1.
$$\frac{1}{2}$$
 , 2. $\begin{pmatrix} 12 & 0 \\ -10 & 4 \end{pmatrix}$, 3. $\begin{pmatrix} 3 & 4 & 3 \end{pmatrix}$

- 5. ______, 6. _______. 二、选择题(每小题 3 分, 共 18 分)

请将你所选择的字母 A, B, C, D 之一对应填在下列表格里:

题号	1	2	3	4	5	6
答案	В	D	D	С	A	В

三、(本题 12 分)
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 2 & 3 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{pmatrix}$$
. (1) 求 $|\mathbf{A}|$; (2) 求 $\mathbf{A}_{21} + \mathbf{A}_{22} + \mathbf{A}_{23} + \mathbf{A}_{24}$, 其

中 A_{ii} 是 A 的 (i, j) 位置元的代数余子式

【解】 (1)
$$|A| = \frac{c_1 - 2c_3}{c_1 - 4c_4}$$

$$\begin{vmatrix} -14 & 0 & 2 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

= -14 =

(2)
$$\boldsymbol{A}_{21} + \boldsymbol{A}_{22} + \boldsymbol{A}_{23} + \boldsymbol{A}_{24} = \begin{vmatrix} 2 & 0 & 2 & 3 \\ 1 & 1 & 1 & 1 \\ 2 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{vmatrix} = \frac{c_i - c_2}{i = 1, 3, 4} |\boldsymbol{A}|$$

从而 $\mathbf{A}_{21} + \mathbf{A}_{22} + \mathbf{A}_{23} + \mathbf{A}_{24} = -14$

四、(本题 12 分) 已知
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$. 若 $\mathbf{X}\mathbf{A} = \mathbf{A}^2 - \mathbf{A}\mathbf{B}$, $\mathbf{A}\mathbf{Y} = \mathbf{A}^2 - \mathbf{A}\mathbf{B}$.

(1) 求 \mathbf{Y} ; (2) 求 \mathbf{X}^2 .

【解】 (1)
$$|\mathbf{A}| \neq 0$$
, $\mathbf{Y} = \mathbf{A} - \mathbf{B}$

$$= \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$(2)$$
 $X = A - ABA^{-1} = A(A - B)A^{-1}$
从而 $X^2 = A(A - B)^2A^{-1}$
 $= E$

五、(本题 12 分)已知向量组 $\alpha_1 = (1,-1,1)^T$, $\alpha_2 = (1,a,-1)^T$, $\alpha_3 = (a,1,2)^T$, $\alpha_4 =$ $(4, a^2, -4)^T$, 满足 α_4 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示且表示方法不唯一. (1) 求 a; (2) 求上述向量 组的秩以及一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.

【解】(1)
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$
 初等行变换
$$\begin{pmatrix} 1 & -1 & 2 & -4 \\ 0 & 2 & a-2 & 8 \\ 0 & 0 & (a+1)(4-a) & 2a(a-4) \end{pmatrix}$$

由条件可知 a=4.

(2) 此时
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$
 初等行变换 $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

故该向量组的秩为 2.

极大无关组可取 α_1, α_2 ,

$$\alpha_3 = 3\alpha_1 + \alpha_2, \alpha_4 = 4\alpha_2.$$

合 肥 工 业 大 学 线 性 代 数 试 卷 (A)

系 (所或教研室) 主任审批签名 (石) 四 图 命题教师 2023~2024 学年第 一 学期 课程代码 课程名称 集体 1400071B 线性代数

教学班级

学生姓名

学号

考试日期 2023 年 12 月 10 日 10:20-12:20 成绩

六、(本题 10 分) $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, 求 \mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解.

【解】增广矩阵 $(\mathbf{A}\mathbf{b})$ <u>初等行变换</u> $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 等价于解方程组 $\begin{cases} x_1+x_3 &= 0 \\ x_2 &= 1 \end{cases}$ 取 x_1,x_2 为主未知元, x_3 为自由未知元, 求得一个特解为

对应齐次方程的一组基础解系为 $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的通解为 $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + k \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, 其中 k 为任意实数.

七、(本题 12 分) 已知二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 2ax_2x_3(a>0)$ 经过正交变换 x=Py变为 $by_1^2 + y_2^2 - y_3^2$. (1) 求 a, b; (2) 求正交矩阵 P.

【解】 (1) 二次型的矩阵为 $\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & a \\ 0 & a & 0 \end{pmatrix}$,

则 \mathbf{A} 与 $\begin{pmatrix} b & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ 相似,

故上述矩阵的行列式与迹相等. 由此可得 a=1(舍去 -1), b=2

分别就 $\lambda = 2, 1, -1$ 时求解线性方程组 $(\lambda E - A)x = 0$, 并进行单位化, 可得:

A 属于特征值 $\lambda = 2$ 的一个单位特征向量为 $\alpha_1 = (1,0,0)^T$,

A 属于特征值 $\lambda = 1$ 的一个单位特征向量为 $\alpha_2 = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T$,

 \boldsymbol{A} 属于特征值 $\lambda = -1$ 的一个单位特征向量为 $\boldsymbol{\alpha}_3 = \left(0, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T$ $P = (\alpha_1, \alpha_2, \alpha_3).$

八、(本题 6 分) $A = (\alpha_1, \alpha_2, \alpha_3)$ 是 3 阶实方阵. 若齐次线性方程组 Ax = 0 的通解为 $k(1,1,1)^T$, 其中 k 是任意常数. 证明: 对任意的 $1 \le i < j \le 3$, α_i , α_j 是向量组 α_1 , α_2 , α_3 的极 大线性无关组.

【证明】由条件齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的通解为 $k(1,1,1)^T$, 其中 k 是任意常数, 可知 $R(\mathbf{A}) = 2$. 由 $\alpha_1 + \alpha_2 + \alpha_3 = 0$ 可知 $\alpha_k = -\alpha_i - \alpha_j$, $\{i, j, k\} = \{1, 2, 3\}$, 从而向量组 $\alpha_1, \alpha_2, \alpha_3$ 可由任意 的 $1 \le i < j \le 3$, α_i , α_j 线性表示,

显然有任意的 $1 \le i < j \le 3$, α_i , 可由向量组 α_1 , α_2 , α_3 线性表示, 故这两个向量组等价. 从而任意的 $1 \le i < j \le 3$, α_i , α_j 的秩等于 2, 故 α_i , α_j 线性无关, 是向量组 α_1 , α_2 , α_3 的极大 线性无关组.