Proxy for the import contents

Yannick Kalantzis

May 18, 2018

2 countries: Home and Foreign. Foreign variables are starred.

Vectors of production: Q, Q^* . Denote $Q = \begin{bmatrix} Q \\ Q^* \end{bmatrix}$ the vector of production in both countries.

Direct domestic requirement matrices are A, A^* . Import requirement matrices are B, B^* . The world input-output table is $\mathcal{A} = \begin{pmatrix} A & B^* \\ B & A^* \end{pmatrix}$.

Sectoral vectors of domestic consumption are C for domestically produced consumption and C^* for imported consumption, with total consumption nor-

malized to 1. Denote
$$C$$
 Q we canso C

We have Q = AQ + C so $Q = \mathcal{L}C$, with $\mathcal{L} = (I - A)^{-1}$ the world Leontiev inverse (I is the identity matrix).

Denote the submatrices of
$$\mathcal{L}$$
 as: $\mathcal{L} = \begin{pmatrix} L & M^* \\ M & L^* \end{pmatrix}$.

Then we have
$$\begin{bmatrix} Q \\ Q^* \end{bmatrix} = \begin{pmatrix} L & M^* \\ M & L^* \end{pmatrix} \begin{bmatrix} C \\ C^* \end{bmatrix}$$
. Sectoral domestic production associated to a unit of domestic consumption is given by $Q = LC + M^*C^*$.

If I get it right, the vector of import content of domestic consumption should

The import content itself is the scalar product of $\mathbf{1}$ (a vector of ones) and the vector of import content: $\mathbf{1} \cdot C^* + \mathbf{1} \cdot B(LC + M^*C^*)$.

Next, denote $\tilde{L} = (I - A)^{-1}$ the inverse Leontiev of domestic production alone (ignoring the world input-output linkages). This is what we would use with traditional matrices from one country only. We can decompose the import content in the following way:

$$\underbrace{\mathbf{1}\cdot C^*}_{\text{direct}} + \mathbf{1}\cdot B \Big(\underbrace{\tilde{L}C}_{\text{indirect due to domestic I/O linkages}} + \underbrace{(L-\tilde{L}C)}_{\text{global value chain of domestic production}} + \underbrace{M^*C^*}_{\text{indirect due to domestic production of inputs for Foreign}}\Big).$$

$$(1)$$

The first two terms can be computed with I/O matrices from 1 country only. The last two terms require the full world I/O matrix and reflect global value chains. I think this expression generalizes easily to the case of many countries (the square matrices B and M^* should simply become rectangular).

Can we make a crude approximation of this formula using only simple ratios? Denote $\delta = \mathbf{1} \cdot C^*$ the share of direct imports in consumption, $\beta = \mathbf{1} \cdot B$ the share of imported inputs in total domestic production. Let α the share of domestic inputs in total domestic production and μ the total share of inputs in total production: we have $\alpha + \beta = \mu$ and μ is typically $\approx 1/2$. Finally, define $\tilde{\beta} = \beta/(1-\mu)$ the share of imports in total inputs used by the domestic economy.

Assuming homogeneous sectors, we get a very crude approximation of the

second term: $\frac{1}{\beta(1-\delta)}/(1-\alpha) = \beta(1-\delta)/(1-\mu+\beta) \approx \beta(1-\delta)/(1-\mu) \approx \tilde{\beta}(1-\delta)$ to the first order in β . My guess is that the total import content should be highly correlated with

$$\delta + (1 - \delta)\tilde{\beta}$$
.

If you run a regression of the import content on δ and $(1-\delta)\tilde{\beta}$, you should get a decent fit. The coefficient of δ should be slightly higher than 1, the difference with 1 potentially reflecting global value chain effect captured by the last term of (1). The coefficient of $(1-\delta)\tilde{\beta}$ might also be different from 1, perhaps capturing the third term of (1).

Nons on a 1,06 ((8+p(1-8))) ig

à ontre ever, 3 de 50/5

8+ (1-8)\$ ~ S+D (1-8)\$ CE2HC) ~ pt

(1-p) ~ S + (1-8)\$ + (1-8)\$

E(1 remes)

Conne B et

S mr lies a (eventue)

col or on per.

Récoire avec un sul l'en et 3 deux pays (mgraset). Faire avec un aloc de productivité et von si colo marche.

¹The matrix B becomes β , \tilde{L} becomes $1/(1-\alpha)$, C becomes $1-\delta$.