Chapitre 2 : Représentation de l'information dans la machine

- Introduction
- · Représentation des nombres négatifs
 - Signe / valeur absolue
 - Complément à 1
 - Complément à 2
- Représentation des nombres réels
 - Virgule fixe
 - Virgule flottante
- Le codage BCD et EXCESS3
- Représentation des caractères

1. Représentation des nombres entiers

- Il existe deux types d'entiers :

 - les entiers non signés (positifs)et les entiers signés (positifs ou négatifs)
- Problème : Comment indiquer à la machine qu'un nombre est négatif ou positif?
- Il existe 3 méthodes pour représenter les nombres négatifs :
 - Signe/ valeur absolue
 - Complément à 1(complément restreint)
 - Complément à 2 (complément à vrai)

1.1 Représentation signe / valeur absolue (S/VA)

- Si on travail sur n bits, alors le bit du poids fort est utilisé pour indiquer le signe
 - 1 : signe négatif
 - 0 : signe positif
- Les autres bits (n-1) désignent la valeur absolue du nombre.
- Exemple : Si on travail sur 4 bits.

Sur 3 bits on obtient:

signe	VA	valeur
0	00	+ 0
0	01	+ 1
0	10	+ 2
0	11	+ 3
1	00	- 0
1	01	- 1
1	10	- 2 - 3
1	11	- 3

• Les valeurs sont comprises entre -3 et +3

$$\begin{aligned} -3 &\leq N &\leq +3 \\ &- (\ 4\text{-}1\) \leq N \leq + (4\ \text{-}1\) \\ &- (2^2\ \text{-}1) \leq N \leq + (2^2\text{-}1\) \\ &- (2\ (3\ \text{-}1)\ \text{-}1) \leq N \leq + (2\ (3\ \text{-}1)\ \text{-}1\) \end{aligned}$$

Si on travail sur **n** bits , l'intervalle des valeurs qu'on peut représenter en S/VA :

 $-(2^{(n-1)}-1) \le N \le +(2^{(n-1)}-1)$

Avantages et inconvénients de la représentation signe/valeur absolue

- C'est une représentation assez simple .
- On remarque que le zéro possède deux représentations +0 et -0 ce qui conduit à des difficultés au niveau des opérations arithmétiques.
- Pour les opérations arithmétiques il nous faut deux circuits : l'un pour l'addition et le deuxième pour la soustraction .

L'idéal est d'utiliser un seul circuit pour faire les deux opérations, puisque a-b=a+(-b)

1.2 Représentation en complément à un (complément restreint)

 On appel complément à un d'un nombre N un autre nombre N' tel que :

n : est le nombre de bits de la représentation du nombre N .

Exemple:

Soit N=1010 sur 4 bits donc son complément à un de N : $N'=(2^4-1)-N$

$$N'=(16-1)-(1010)_2=(15)-(1010)_2=(1111)_2-(1010)_2=0101$$

Remarque 1:

- Pour trouver le complément à un d'un nombre, il suffit d'inverser tous les bits de ce nombre: si le bit est un 0 mettre à sa place un 1 et si c'est un 1 mettre à sa place un 0.
- Exemple:

Remarque 2

- Dans cette représentation , le bit du poids fort nous indique le signe (0 : positif , 1 : négatif).
- Le complément à un du complément à un d'un nombre est égale au nombre lui même .

CA1(CA1(N))= N

• Exemple :

Quelle est la valeur décimale représentée par la valeur 101010 en complément à 1 sur 6 bits ?

- Le bit poids fort indique qu'il s'agit d'un nombre négatif.
- Valeur = CA1(101010)
 - = (010101)₂= (21)₁₀

Si on travail sur 3 bits :

٦					
	Valeur en CA1	Valeur en binaire	Valeur décimal		
	000	000			
			+ 0		
	001	001	+ 1		
	010	010	+ 2		
	011	011	+ 3		
	100	- 011	- 3		
	101	- 010	- 2		
	110	- 001	- 1		
	111	- 000	- 0		

- •Dans cette représentation , le bit du poids fort nous indique le signe .
- $\bullet On$ remarque que dans cette représentation le zéro possède aussi une double représentation (+0 et 0) .

 \bullet Sur 3 bits on remarque que les valeurs sont comprises entre -3 et +3

$$\begin{array}{c} -3 \leq N \leq +3 \\ - \left(\ 4\text{-}1 \ \right) \leq N \leq + \left(4 \ \text{-}1 \ \right) \\ - \left(2^2 \ \text{-}1 \right) \leq N \leq + \left(2^2 \ \text{-}1 \right) \\ - \left(2 \ \frac{\left(3 \ \text{-}1 \right)}{3} \ \text{-}1 \right) \leq N \leq + \left(2 \ \frac{\left(3 \ \text{-}1 \right)}{3} \ \text{-}1 \right) \end{array}$$

Si on travail sur n bits , l'intervalle des valeurs qu'on peut représenter en CA1 :

$$-(2^{(n-1)}-1) \le N \le +(2^{(n-1)}-1)$$

- 1.3 Complément à 2 (complément à vrai)
- Si on suppose que ${\color{red} a}$ est un nombre sur ${\color{red} n}$ bits alors :

$$a + 2^n = a \mod 2^n$$

et si on prend le résultat sur ${\color{red} n}$ bits on va obtenir la même valeur que ${\color{red} a}$.

$$a + 2^{n} = a$$

Exemple: soit a = 1001 sur 4 bits $2^4 = 10000$

Si on prend le résultat sur 4 bits on trouve la même valeur de a = 1001

•Si on prend deux nombres entiers \mathbf{a} et \mathbf{b} sur \mathbf{n} bits , on remarque que la soustraction peut être ramener à une addition : $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$

• Pour cela il suffit de trouver une valeur équivalente à -b ?

$$a - b = a + 2^{n} - b = a + (2^{n} - 1) - b + 1$$

On a b + CA1(b)=
$$2^n - 1$$
 donc CA1(b) = $(2^n - 1) - b$

Si on remplace dans la première équation on obtient : a-b=a+CA1(b)+1

La valeur CA1(b)+1 s'appelle le complément à deux de b : CA1(b)+1 = CA2(b)

Et enfin on va obtenir : $a - b = a + CA2(b) \rightarrow transformer$ la soustraction en une addition .

Exemple

• Trouver le complément à vrai de : 01000101 sur 8 bits ?

```
CA2(01000101)= CA1(01000101)+ 1
CA1(01000101)= (10111010)
CA2(01000101)=(10111010)+ 1 = (10111011)
```

Remarque 1 :

Pour trouver le compétemment à 2 d'un nombre : il faut parcourir les bits de ce nombre à partir du poids faible et garder tous les bits avant le premier 1 et inverser les autres bits qui viennent après.

Remarque 2

- Dans cette représentation, le bit du poids fort nous indique le signe (0: positif, 1: négatif).
- Le complément à deux du complément à deux d'un nombre est égale au nombre lui même .

CA2(CA2(N))= N

• Exemple :

Quelle est la valeur décimale représentée par la valeur 101010 en complément à deux sur 6 bits ?

- Le bit poids fort indique qu'il s'agit d'un nombre négatif.
- Valeur = CA2(101010)
 - = (010101 + 1)
 - = (010110)₂= (22)

Si on travail sur 3 bits:

Valeur en CA2	Valeur en binaire	valeur
000	000	+ 0
001	001	+ 1
010	010	+ 2
011	011	+ 3
100	- 100	- 4
101	- 011	- 3
110	- 010	- 2
111	- 001	- 1

- •Dans cette représentation , le bit du poids fort nous indique le signe .
- •On remarque que le zéro n'a pas une double représentation.

•Sur 3 bits on remarque que les valeurs sont comprises entre -4 et +3

$$\begin{array}{lll} -4 & \leq N \leq +3 \\ -4 \leq N \leq + (4 - 1) \\ -2^2 \leq N \leq + (2^2 - 1) \\ -2 \, {\textstyle \binom{(3 - 1)}{3}} \leq N \leq \left(2 \, {\textstyle \binom{(3 - 1)}{3}} - 1\right) \end{array}$$

Si on travail sur n bits , l'intervalle des valeurs qu'on peut représenter en CA2 :

$$-(2 (n-1)) \le N \le +(2 (n-1) -1)$$

La représentation en complément à deux (complément à vrai) est la représentation la plus utilisée pour la représentation des nombres négatifs dans la machine.

Opérations arithmétiques en CA2 Effectuer les opérations suivantes sur 5 Bits , en utilisant la représentation en CA2

La retenue et le débordement

- On dit qu'il y a une retenue si une opération arithmétique génère un report .
- On dit qu'il y a un débordement (Over Flow) ou dépassement de capacité: si le résultat de l'opération sur n bits et faux.
 - Le nombre de bits utilisés est insuffisant pour contenir le résultat
 - Autrement dit le résultat dépasse l'intervalle des valeurs sur les n bits utilisés.

Cas de débordement

- •Nous avons un débordement si la somme de deux nombres positifs
- donne un nombre négatif .

 •Ou la somme de deux nombres négatifs donne un Nombre positif •Il y a jamais un débordement si les deux nombres sont de signes différents.

2. La représentation des nombres réels

- Un nombre réel est constitué de deux parties : la partie entière et la partie fractionnelle (les deux parties sont séparées par une virgule)
- Problème : comment indiquer à la machine la position de la virgule?
- Il existe deux méthodes pour représenter les nombre réel:
 - Virgule fixe : la position de la virgule est fixe
 - Virgule flottante : la position de la virgule change (dynamique)

2.1 La virgule fixe

- Dans cette représentation la partie entière est représentée sur n bits et la partie fractionnelle sur p bits, en plus un bit est
- Exemple : si n=3 et p=2 on va avoir les valeurs suivantes

ĺ	Signe	P.E	P.F	valeur
	0	000	00	+ 0,0
	0	000	01	+ 0,25
	0	000	10	+ 0,5
	0	000	11	+ 0,75
	0	001	.00	+ 1,0
		ļ.		
		I	1	

Dans cette représentation les valeurs sont limitées et nous n'avons pas une grande précision

2.2 Représentation en virgule flottante

• Chaque nombre réel peut s'écrire de la façon suivante :

$$N = \pm M * b e$$

- M : mantisse
- b: la base ,e: l'exposant

Exemple:

15,6 = 0,156 * 10+2

 $-(110,101)_2 = -(0,110101)_2 * 2^{+3}$ $(0,00101)_2 = (0,101)_2 * 2^{-2}$

on dit que la mantisse est normalisée si le premier chiffre après la virgule est différent de 0 et le premier chiffre avant la virgule est égale à 0.

- Dans cette représentation sur n bits :
 - La mantisse est sous la forme signe/valeur absolue
 - · 1 bit pour le signe
 - et k bits pour la valeur.
 - L'exposant (positif ou négatif) est représenté sur p bits

Signe mantisse	Exposant	Mantisse normalisée
1 bit	p bits	k bits

- •Pour la représentation de l'exposant on utilise :
 - Le complément à deux
 - Exposant décalé ou biaisé

Représentation de l'exposant en complément à deux On veut représenter les nombres (0,015)₈ et -(15,01)₈ en virgule flottante sur une machine ayant le format suivant : Signe mantisse Exposant en CA2 Mantisse normalisée 1 bit 4 bits 8 bits (0,015)₈=(0,000001101)₂= 0,1101 * 2-5 Signe mantisse : positif (0) Mantisse normalisé : 0,1101 Exposant = -5 → utiliser le complément à deux pour représenter le -5 Sur 4 bits CA2(0101)=1011 0 1 0 1 1 1 1 0 1 0 0 0 0 1 bit 4 bits 8 bits

Avec l'exposant biaisé on a transformé les exposants

la valeur 2p -1.

Exposant Biaisé = Exposant réel + Biais

négatifs à des exposants positifs en rajoutons à l'exposant

L' Exposant décalé (biaisé) • en complément à 2, l'intervalle des valeurs qu'on peut représenter sur p bits : $-2 \stackrel{(p-1)}{=} N \leq 2 \stackrel{(p-1)}{=} -1$ Si on rajoute la valeur $2 \stackrel{(p-1)}{=}$ à tout les terme de cette inégalité : $-2 \stackrel{(p-1)}{=} + 2 \stackrel{(p-1)}{=} \leq N + 2 \stackrel{(p-1)}{=} \leq 2 \stackrel{(p-1)}{=} -1 + 2 \stackrel{(p-1)}{=}$ • On pose $N' = N + 2 \stackrel{(p-1)}{=}$ donc : $0 \leq N' \leq 2 \stackrel{p}{=} -1$ • Dans ce cas on obtient des valeur positives. • La valeur 2^{p-1} s'appelle le biais ou le décalage

 $- (15,01)_8 = (001101,000001)_2 = 0,1101000001 * 2^4$ Signe mantisse : négatif (1)
Mantisse normalisée : 0,1101000001
Exposant réel = +4
Calculer le biais : b= $2^{4\cdot 1} = 8$ Exposant Biaisé = $4 + 8 = +12 = (1100)_2$ $\boxed{1 \quad 1100 \qquad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0}$ I bit 4 bits $\boxed{11}$ bits

Opérations arithmétiques en virgule flottante

- Soit deux nombres réels N1 et N2 tel que N1=M1*be1 et N2=M2*be2
- On veut calculer N1+N2?
- Deux cas se présentent :
 - Si e1 = e2 alors N3= (M1+M2) be1
 - Si e1 <> e2 alors élevé au plus grand exposant et faire l'addition des mantisses et par la suite normalisée la mantisse du résultat.

Exemple

• Effectuer l'opération suivante : $(0,15)_8$ + $(1,5)_8$ =(?) :

```
 \begin{aligned} &(0,15)_8 = (0,001101) = 0,1101 \quad ^*2^2 \\ &(1,5)_8 = (001,1 \quad 01) = 0,1101 \quad ^*2^1 \\ &(0,15)_8 + (1,5)_8 = 0,1101 \quad ^*2^2 + 0,1101 \quad ^*2^1 \\ &= 0,0001101 \quad ^*2^1 + 0,1101 \quad ^*2^1 \\ &= 0,1110101 \quad ^*2^1 \end{aligned}
```


Exercice

Donner la représentation des deux nombres N1= (-0,014) $_8$ et N2=(0,14) $_8$ sur la machine suivante :

Signe mantisse	Exposant biaisé (décalé)	Mantisse normalisée
1 bit	5 bits	10 bits

• Calculer N2-N1 ?.

```
\begin{aligned} &\text{N2 - N1} = 0.14 - (-0.014) = 0.14 + 0.014 \\ &\text{N2 - N1} = (0.1100)_2. \ 2^2 + (0.1100)_2. \ 2^5 \\ &= (0.1100)_2. \ 2^2 + (0.0001100)_2. \ 2^2 \\ &= (0.1101100)_2. \ 2^2 \end{aligned}
&\text{•Si on fait les calculs avec l'exposant biaisé :}
&\text{N2 - N1} = (0.1100)_2. \ 2^{14} + (0.1100)_2. \ 2^{11} \\ &= (0.1100)_2. \ 2^{14} + (0.0001100)_2. \ 2^{14} \\ &= (0.1101100)_2. \ 2^{14} + (0.0001100)_2. \ 2^{14} \end{aligned}
&\text{Exposant biaisé} = 14
&\text{Exposant réel} = \text{Exposant biaisé} - \text{Biais} \\ &\text{Exposant réel} = 14 - 16 = -2 \end{aligned}
&\text{Donc on trouve le même résultat que la première opération.}
```

3. Le codage BCD (Binary Coded Decimal)

- Pour passer du décimal au binaire , il faut effectuer des divisions successives. Il existe une autre méthode simplifiée pour le passage du décimal au binaire.
- Le principe consiste à faire des éclatement sur 4 bits et de remplacer chaque chiffre décimal par sa valeur binaire correspondante.
- Les combinaisons supérieures à 9 sont interdites

Décimal	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Exemple

129 = (0001 0010 1001)₂

562 = (0101 0110 0010)₂

Le codage EXCESS3 (BCD+3)

Décimal	BCD+3	Binaire
0	3	0011
1	4	0100
2	5	0101
3	6	0110
4	7	0111
5	8	1000
6	9	1001
7	10	1010
8	11	1011
9	12	1100

4. Codage des caractères

- Les caractères englobent : les lettres alphabétiques (A, a, B , B,..) , les chiffres , et les autres symboles (> , ; / :) .
- Le codage le plus utilisé est le ASCII (American Standard Code for Information Interchange)
- Dans ce codage chaque caractère est représenté sur 8 bits .
- Avec 8 bits on peut avoir $2^8 = 256$ combinaisons
- Chaque combinaison représente un caractère
 - Exemple :
 - Le code 65 $(01000001)_2$ correspond au caractère A
 - Le code 97 (01100001) correspond au caractère a
 - Le code 58 (00111010) correspond au caractère :
- Actuellement il existe un autre code sur 16 bits, se code s'appel UNICODE.