

- As etapas do processo de aprendizagem não supervisionada são:
 - (1) Seleção de atributos
 - (2) Medida de proximidade
 - (3) Critério de agrupamento
 - (4) Algoritmo de agrupamento
 - (5) Verificação dos resultados
 - (6) Interpretação dos resultados

- Seleção de atributos:
 - Atributos devem ser adequadamente selecionados de forma a codificar a maior quantidade possível de informações relacionada a tarefa de interesse.
 - Os atributos devem ter também uma redundância mínima entre eles.
- Medida de Proximidade:
 - Medida para quantificar quão similar ou dissimilar são dois vetores de atributos.
 - É ideal que todos os atributos contribuam de maneira igual no cálculo da medida de proximidade.
 - Um atributo não pode ser dominante sobre o outro, ou seja, é importante normalizar os dados.

- Critério de Agrupamento:
 - Depende da interpretação que o especialista dá ao termo sensível com base no tipo de cluster que são esperados.
 - Por exemplo, um cluster compacto de vetores de atributos pode ser sensível de acordo com um critério enquanto outro cluster alongado, pode ser sensível de acordo com outro critério.

- Algoritmo de Agrupamento:
 - Tendo adotado uma medida de proximidade e um critério de agrupamento devemos escolher um algoritmo de agrupamento que revele a estrutura agrupada do conjunto de dados
- Validação dos Resultados:
 - Uma vez obtidos os resultados do algoritmo de agrupamento, devemos verificar se o resultado esta correto.
 - Isto geralmente é feito através de testes apropriados.
- Interpretação dos Resultados:
 - Em geral, os resultados do agrupamento devem ser integrados com outras evidências experimentais e análises para chegar as conclusões corretas.

- Medidas de Dissimilaridade:
 - Métrica l_p ponderada;
 - Métrica Norma I_∞ ponderada;
 - Métrica l2 ponderada (Mahalanobis);
 - Métrica lp especial (Manhattan);
 - Distância de Hamming;
- Medidas de Similaridade:
 - Produto interno (inner);
 - Medida de Tanimoto;

- Os algoritmos de agrupamento buscam identificar padrões existentes em conjuntos de dados.
- Os algoritmos de agrupamento podem ser divididos em varias categorias:
 - Métodos Hierárquicos;
 - Métodos Particionais;
 - Métodos Baseados em Densidade;
 - Métodos Baseados em Grade;
 - Métodos Baseados em Modelos;
 - Métodos Baseados em Redes Neurais;
 - Métodos Baseados em Lógica Fuzzy;
 - Métodos Baseados em Kernel;
 - Métodos Baseados em Grafos;
 - Métodos Baseados em Computação Evolucionária.

- Particionais: constroem uma partição dos dados
- Hierárquicos: constroem uma hierarquia de partições

Hierárquicos

Particionais

- Algoritmos de Particionamento:
 - Os algoritmos particionais dividem a base de dados em k-grupos, onde o número k é dado pelo usuário.
 - São algoritmos diretos e rápidos.
 - Geralmente, todos os vetores de características são apresentados ao algoritmo uma ou várias vezes.
 - O resultado final geralmente depende da ordem de apresentação dos vetores de características.

- Algoritmos Hierárquicos:
 - Algoritmos de clusterização baseados no método hierárquico (HC) organizam um conjunto de dados em uma estrutura hierárquica de acordo com a proximidade entre os indivíduos.
 - Os resultados de um algoritmo HC são normalmente mostrados como uma árvore binária ou dendograma, que é uma árvore que iterativamente divide a base de dados em subconjuntos menores.
 - A raiz do dendograma representa o conjunto de dados inteiro e os nós folhas representam os indivíduos.

• Algoritmos Hierárquicos:

- Algoritmos Hierárquicos:
 - Aglomerativos (bottom-up):
 - Produzem uma sequência de agrupamentos com um número decrescente de clusters a cada passo.
 - Os agrupamentos produzidos em cada passo resultam da fusão de dois clusters em um.
 - Divisivos (top-down):
 - Atuam na direção oposta, isto é, eles produzem uma sequência de agrupamentos com um número crescente de clusters a cada passo.
 - Os agrupamentos produzidos em cada passo resultam da partição de um único cluster em dois.

- Algoritmos Baseados em Densidade:
 - Clusters são definidos como regiões densas, separadas por regiões menos densas que representam os ruídos
- Algoritmos Baseados em Grade:
 - Usam uma estrutura de dados em grade de multiresolução.
- Algoritmos Baseados em Modelo:
 - Usam um modelo de referência para cada cluster.
- Algoritmos Baseados em Lógica Fuzzy:
 - Os métodos de clusterização baseados em Lógica Fuzzy são métodos não 'hard', que permitem associar um indivíduo a todos os clusters usando uma função de pertinência.

- Algoritmos Baseados em RNA:
 - Têm suas raízes no método de clusterização ART (Teoria Ressonante Adaptativa) ou nos Mapas Auto Organizáveis de Kohonen.
- Algoritmos Baseados em Kernel:
 - Usam do espaço de características para permitir uma separação não-linear no espaço de entrada.
 - São capazes de produzir uma separação não linear entre os hiperespaços dos clusters, ao contrário dos algoritmos tradicionais que produzem por partes fronteiras lineares entre os dados

- Algoritmos Baseados em Grafos:
 - Buscam representar um conjunto de dados em um grafo, onde cada vértice representa um elemento do conjunto de dados e a existência de uma aresta conectando dois vértices é feita com base na proximidade entre os dois dados.
- Algoritmos Baseados em Computação Evolucionária:
 - Compreende um conjunto de técnicas de busca e otimização baseados em mecanismos da evolução biológica, tais como reprodução, mutação, recombinação e seleção natural e estão sendo utilizados amplamente pela comunidade de inteligência artificial para obter modelos de inteligência computacional.