MPPI 샘플링 기법 향상을 통한 실시간 MPC

2024. 04. 12

이이수 박사님 연구실 석사과정 서윤수

1. Introduction to MPPI

2. Research Objectives

3. Research Result

4. Moreover Study

5. Summary & Future plan

Introduction to MPPI

Why MPPI
What is MPPI

Introduction to MPPI – Why MPPI?

• Research Goal: 비선형 모델의 무게중심 경로 생성

	MPC	MPPI ¹	
개념 모델 예측을 기반으로 시스템 상태 최적제어 입력을 계산하는 제어 알고		다중 경로 샘플링 및 확률적 경로 최적화로 최적제어 입력을 찾는 제어 알고리즘	
방법론	(Deterministic) Optimal Control	Stochastic Optimal Control	
모델 요구 사항	선형 모델 (NMPC는 비선형모델)	모델 제약 없음 (비선형모델, 뉴럴넷 등)	
계산 비용	높음	낮음 (샘플링 방법에 따라 차이)	
GPU 적용 가능성 X		0	

Performance 유지하며 Computation time 단축

Introduction to MPPI – What is MPPI?

MPPI = SBMPC(Sampling based MPC)¹ + Path Integral

 $C_3 = C_{31} + C_{32} + C_{33} + C_{34} + C_{35} + C_{36}$

5

Introduction to MPPI – What is MPPI?

Dynamic model

Drift term
$$d\mathbf{x} = \mathbf{f}(\mathbf{x}_{t}, t)dt + \mathbf{G}(\mathbf{x}_{t}, t)\mathbf{u}(\mathbf{x}_{t}, t)dt + \mathbf{B}(\mathbf{x}_{t}, t)d\mathbf{w}$$

$$d\mathbf{x}_{t} = \mathbf{f}(\mathbf{x}_{t}, t)\Delta t + \mathbf{G}(\mathbf{x}_{t}, t)\left(\mathbf{u}(\mathbf{x}_{t}, t) + \frac{1}{\sqrt{\rho}}\frac{\epsilon}{\sqrt{\Delta t}}\right)\Delta t \qquad (1)$$

$$= \delta u$$

(1)의 최적 control input을 구하면¹⁾

$$\mathbf{u}(\mathbf{x}_{t_i}, t_i)^* \approx \mathbf{u}(\mathbf{x}_{t_i}, t_i) + \frac{\sum_{k=1}^{K} \exp(-\frac{1}{\lambda} \widetilde{S}(\tau_i, k)) \delta u_{i,k}}{\sum_{k=1}^{K} \exp(-\frac{1}{\lambda} \widetilde{S}(\tau_i, k))}$$

$$\widetilde{S}(\tau) = \phi(x_T) + \sum_{j=1}^{N} \widetilde{q}(x, u, dx)$$

$$\tilde{q}(\mathbf{x}, \mathbf{u}, d\mathbf{x}) = \underline{q(\mathbf{x}_t, t)} + \frac{(1 - v^{-1})}{2} \delta \mathbf{u}^T R \delta \mathbf{u} + \mathbf{u}^T R \delta \mathbf{u} + \frac{1}{2} \mathbf{u}^T R \mathbf{u}$$

Running cost Importance sampling as additional cost

Introduction to MPPI – What is MPPI?

```
1: Given: K: Number of samples
2: N: Number of time steps
3: (\boldsymbol{u}_0, \boldsymbol{u}_1, \dots \boldsymbol{u}_{N-1}): Initial control sequence
4: \Delta t, \mathbf{x}_{t_0}, f, G, B, v: System/sampling dynamics
5: \phi, q, R, \lambda: Cost parameters
6: u_{init}: Value to initialize new controls to
7: while task not completed, do
                                                                                                  샘플 생성
     Generate random control variations \delta u
     for k \leftarrow 0 to K - 1. do
                                                                                                  System 받아오기
11:
      for i \leftarrow 1 to N-1, do
      \mathbf{x}_{i+1} = \mathbf{x}_i + (f + G(\mathbf{u}_i + \delta \mathbf{u}_{i,k}))\Delta t
                                                                                                  샘플 control input 입력 시 cost 계산
      S(\tau_{i+1,k}) = S(\tau_{i,k}) + \tilde{q}
     for i \leftarrow 0 to N-1, do
        u_i \leftarrow u_i + \left[\sum_{k=1}^K (\exp(-(1/\lambda)\tilde{S}_{(\tau_{i,k})})\delta u_{i,k}/\sum_{k=1}^K \exp(-(1/\lambda)\tilde{S}_{(\tau_{i,k})}))\right] Cost에 따른 control input 계산
15:
      send to actuators (u_0)
                                                                                                  첫번째 최적화 input 적용
      for i \leftarrow 0 to N-2. do
        u_{i} = u_{i+1}
19: u_{N-1} = u_{\text{init}}
      Update the current state after receiving feedback
21: Check for task completion
```

Research Objectives

Research Objectives

• Conventional MPPI로 Performance 를 유지하며 실시간 연산 (Over 1kHz)

Model Predictive Path Integral Control using Covariance Variable Importance Sampling 2015

Grady Williams¹, Andrew Aldrich¹, and Evangelos A. Theodorou¹

Computation time: 50Hz

Williams, G (2015). Model predictive path integral control using covariance variable importance sampling. *arXiv*

STORM: An Integrated Framework for Fast Joint-Space Model-Predictive Control for Reactive Manipulation 2022

Mohak Bhardwaj^{1,2}, Balakumar Sundaralingam¹, Arsalan Mousavian¹, Nathan Ratliff¹,
Dieter Fox^{1,2}, Fabio Ramos^{1,3}, Byron Boots^{1,2}

¹NVIDIA ²U

²University of Washington

3 University of Sydney

Computation time: 125Hz

Bhardwaj, Mohak, et al. "Storm: An integrated framework for fast joint-space model-predictive control for reactive manipulation." *Conference on Robot Learning*. PMLR

Research Result

Humanoid CoM trajectory

Application – Humanoids CoM trajectory Advanced Robot Control Lab

Dynamical system : LIPM

$$\hat{x}_{k+1} = A\hat{x}_k + Bu_k$$
$$z_k = C\hat{x}_k$$

$$A = \begin{bmatrix} 1 & \Delta t & \Delta t^{2}/2 \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} \Delta t^{3}/6 \\ \Delta t^{2}/2 \\ \Delta t \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & -h_{c}/g \end{bmatrix}$$

• Sample : control input jerk

$$u = \ddot{x}$$

$$u_{n,k} = \sum_{0}^{N} \omega_{n,k} \varepsilon_{n,k}$$

Cost function

$$\hat{c} = \frac{1}{2}Q_1(Z_{k+1} - Z_{k+1}^{ref}) + \frac{1}{2}Q_2u_k$$

• \hat{x}_k : CoM Pos,Vel,Acc

• z_k : Position of ZMP

• $u_{n,k}$: control input

• $\omega_{n,k}$: weight

• $\varepsilon_{n,k}$: sample

• N: total timestep

• k: sampling number

• *n*: timestep

• Q_1, Q_2 : weighting

parameter

1) Y. Seo, D. Kim, J. Bak, Y. Oh and Y. Lee, "Extremely Fast Computation of CoM Trajectory Generation for Walking Leveraging MPPI Algorithm," 2023 IEEE-RAS

Application – Humanoids CoM trajectory¹

• Single step sampling (Uniform distribution[R_{min} , R_{max}])

	R_{max}	R_{max}	R_{max}	R_{max}	
	$2 \times R_{max}$	$2 \times R_{max}$	$2 \times R_{max}$	$2 \times R_{max}$	
	(dR-1)	(dR-1)	(dR-1)	(dR-1)	
dR -	0	0	0	0	
	$2 \times R_{min}$	$2 \times R_{min}$	$2 \times R_{min}$	$2 \times R_{min}$	
	(dR-1)	(dR-1)	(dR-1)	(dR-1)	
	R_{min}	R_{min}	R_{min}	R_{min}	
	Δt_{h1}	Δt_{h1}	Δt_{h1}	Δt_{h1}	
	t_{h1}				

Binary segmented sampling

Application – Humanoids CoM trajectory Advanced Robot Control Lab

Conventional MPC² vs MPPI

Update Frequency(Hz)	Control Method	Average Compute Time(ms)	Maximum compute Time(ms)	Average ZMP Error(m)
200	Proposed MPPI	0.089	0.113	0.013
	MPC-QP	184.02	217.32	0.001
	MPC-analytic	8.616	9.187	0.001
2000	Proposed MPPI	0.064	0.08	0.011
	Conventional MPPI	0.209	0.536	0.023
AMC Ryzen 5 5600	OX 4.6GHz processor and 32	Gbyte memory	•	apOASES 사

Low cost board

Raspberry Pi 3b 1.2 GHz processor 1GByte memory

평균 2.3ms 최대 2.5ms

¹⁾ Y. Seo, D. Kim, J. Bak, Y. Oh and Y. Lee, "Extremely Fast Computation of CoM Trajectory Generation for Walking Leveraging MPPI Algorithm," 2023 IEEE-RAS (Humanoids),

²⁾ P. -b. Wieber, "Trajectory Free Linear Model Predictive Control for Stable Walking in the Presence of Strong Perturbations," 2006 6th IEEE-RAS 13

Application – Humanoids CoM trajectory Advanced Robot Control Lab

Generated CoM trajectory

•
$$t_h = 0.904(s)$$

•
$$t_{h1} = 0.004(s)$$

•
$$t_{h2} = 0.9(s)$$

•
$$\Delta t_{h1} = 0.0005(s)$$

•
$$\Delta t_{h2} = 0.1(s)$$

•
$$R_{max} = 7$$

•
$$R_{min} = -7$$

•
$$dR = 1$$

1) Y. Seo, D. Kim, J. Bak, Y. Oh and Y. Lee, "Extremely Fast Computation of CoM Trajectory Generation for Walking Leveraging MPPI Algorithm," 2023 IEEE-RAS 22nd (Humanoids),

Application – Humanoids CoM trajectory

Simulation result

- Robot specification: 19-DoF human-sized (MAHRU-WL)
- Simulator : Mujoco(v2.0.0)

Result

평균 **0.09ms**로 풀리며 **2kHz** update 가능 라즈베리 파이에서도 **200Hz** update 가능

Moreover Study

Manipulator task space control

Application – Manipulator task space control

Dynamic time horizon

- · Constraint에 따른 cost 변화
- 1) Goal convergence cost

$$C_{goal} = \begin{cases} w_{pos}\tilde{e}_{pos} + w_{ori}\tilde{e}_{ori} + T^2 & \text{if } k_2 < \tilde{e}_{pos} \\ w_{pos}\tilde{e}_{pos} + w_{ori}\tilde{e}_{ori} + T & \text{if } k_1 < \tilde{e}_{pos} \le k_2 \\ 0.5w_{pos}\tilde{e}_{pos} + w_{ori}\tilde{e}_{ori} & \text{otherwise,} \end{cases}$$

2) Joint limit cost

$$C_{lim} = \boldsymbol{C}_{lim}^{pos} + C_{lim}^{vel}$$

3) Local minima cost

$$C_{man} = w_{man} \{1 - \sqrt{\det(JJ^T)}\}$$

$$C_{cen} = w_{cen} (\theta_{cen} - \theta)^2,$$

$$\theta_{cen} = \frac{\theta_{max} - \theta_{min}}{2},$$

$$C_{local\text{-}min} = C_{man} + C_{cen}$$

4) Self collision cost (neural network)

$$C_{self\text{-}coll} = \begin{cases} k_{self\text{-}coll} & \text{if } collision \\ 0 & \text{otherwise,} \end{cases}$$

Application – Manipulator task space control Advanced Robot Control Lab

Local minima recovery

Joint limit recovery

Method	Conventional MPPI(Storm) ¹	Proposed MPPI
평균 연산시간(ms)	5.53	0.274

¹⁾ Bhardwaj, Mohak, et al. "Storm: An integrated framework for fast joint-space model-predictive control for reactive manipulation." *Conference on Robot Learning.*

Application – Manipulator task space control Advanced Robot Control Lab

Goal Convergence cost result

Local minima cost result

Joint limit cost result

Self collision cost result

Conclusion

Summary Future plan

Conclusion

- MPPI Summary
- Forward pass 모델 적용의 용이성
- GPU 연산 속도
- Development
- Binary segmented sampling
- Single step sampling
- Constraint에 따른 cost변화

Future plan

- Real time foot planing + MPPI CoM trajectory generation
- 비선형 모델에서의 MPPI 적용

Thank you Q&A

Single step sampling

- Motivation
 - Real time control을 위한 연산 속도를 높이기 위한 노력
 - Single-step sampling : noise sampling(control input의 변화량) 을 prediction horizon동 안 동일하게 유지

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}_t, t)dt + \mathbf{G}(\mathbf{x}_t, t)\mathbf{u}(\mathbf{x}_t, t)dt + \mathbf{B}(\mathbf{x}_t, t)d\mathbf{w}$$

$$x_{t+1} = x_t + dx_t$$

$$= x_t + f(x_t, t)\triangle t + B(x_t, t)\epsilon\sqrt{\triangle t}$$

$$\epsilon \sim N(0, 1)$$

Stochastic

$$S(\mathbf{x_0}, \mathbf{x_1}, x_2, x_3, x_4, ... x_T) = \phi(x_T) + \sum_{i=0}^N q(x_t, t)$$
 Initial state
$$u(x_{t-1}) + \delta u$$

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}_t, t) dt + \mathbf{G}(\mathbf{x}_t, t) \mathbf{u}(\mathbf{x}_t, t) dt + \mathbf{B}(\mathbf{x}_t, t) d\mathbf{w}$$

Single-step cost-to-go

$$S(x_0, x_1) = \phi(x_1) + \sum_{i=0}^{1} q(x_t, t)$$

$$x_{t+0} > u_0 + \epsilon$$

$$x_t = \begin{cases} x_{t+1} > u_0 + 2\epsilon \\ \vdots \\ x_{t+N} > u_0 + N\epsilon \end{cases}$$

Single step sampling

• 검증

- 전개 과정이 value function의 HJB 로부터 시작되었으므로, 수정한 single-step value function이 HJB equation을 만족하는지 확인
- 1. discretize 한 value function 에서 $\Delta t = T$, N = 1
- 2. 위식을 continuous time space 로 변형
- 3. Continuous time space에서도 벨만 방정식의 원형을 유지함을 보임
 - 1. Stochastic HJB equation 이용가능.