Sucessões

Definição

Uma função $a: \mathbb{N} \longrightarrow \mathbb{R}$ diz-se uma sucessão real. À regra de correspondência $n \longmapsto a(n)$ chamamos termo geral da sucessão e ao elemento a(n) chamamos termo de ordem n.

- Dada uma sucessão $a: \mathbb{N} \longrightarrow \mathbb{R}$, denotando a(n) por a_n , representamos a sucessão de uma das seguintes formas:
 - $\bullet \ (a_1,a_2,\ldots,a_n,\ldots)$
 - $\bullet (a_n)_{n \in \mathbb{N}}$
 - $(a_n)_n$ simplesmente, se daí não advier confusão.
- Dada uma sucessão, o seu contradomínio designa-se por conjunto dos termos da sucessão.

1/23

Uma sucessão $(a_n)_n$ diz-se:

- estritamente crescente (respetivamente crescente) se $\forall n \in \mathbb{N} \quad a_n < a_{n+1}$ (respetivamente $a_n \leq a_{n+1}$);
- estritamente decrescente (respetivamente decrescente) se $\forall n \in \mathbb{N} \quad a_{n+1} < a_n$ (respetivamente $a_{n+1} \leq a_n$);
- estritamente monótona (respetivamente monótona) se for estritamente crescente ou estritamente decrescente (respetivamente, crescente ou decrescente);
- majorada (respetivamente minorada, limitada) se $\{a_n : n \in \mathbb{N}\}$ for um conjunto majorado (respetivamente minorado, limitado).

Exemplo

- A sucessão $(\frac{1}{n})_n$ é estritamente decrescente e limitada.
- A sucessão $(1+(-1)^n)_n$ não é monótona mas é limitada.

Definição

Uma sucessão $(x_n)_n$ diz-se enquadrada pelas sucessões $(a_n)_n$ e $(b_n)_n$ se

$$\forall n \in \mathbb{N} \quad a_n \le x_n \le b_n \quad \text{ou} \quad \forall n \in \mathbb{N} \quad b_n \le x_n \le a_n.$$

Exemplo

A sucessão $\left(\frac{1}{n}\right)_n$ está enquadrada pela sucessão constante igual a zero e pela sucessão constante igual a 1.

Dado $a \in \mathbb{R}$, diz-se que uma sucessão $(a_n)_n$ é convergente para a, que tende para a ou que tem limite a, se

$$\forall \varepsilon > 0 \ \exists p \in \mathbb{N} \ \forall n \ge p \qquad |a_n - a| < \varepsilon.$$

Escreve-se $(a_n)_n \xrightarrow{} a$, $a_n \xrightarrow{} a$ ou $\lim_n a_n = a$.

Uma sucessão $(a_n)_n$ diz-se **convergente** se existir um número real a tal que $\lim_n a_n = a$. Uma sucessão que não é convergente diz-se **divergente**.

Teorema

Uma sucessão não pode convergir para dois limites diferentes.

Proposição

Toda a sucessão convergente é limitada.

Proposição

Sejam $(a_n)_n$ uma sucessão convergente para zero e $(b_n)_n$ uma sucessão limitada. Então $(a_nb_n)_n$ é uma sucessão convergente para zero.

Proposição

Sejam $(a_n)_n$ e $(b_n)_n$ duas sucessões convergentes respetivamente para a e para b. Então:

- $(a_n + b_n)_n$ é uma sucessão convergente para a + b;
- $(a_nb_n)_n$ é uma sucessão convergente para ab;
- se $b_n \neq 0$ para todo $n \in \mathbb{N}$ e $b \neq 0$, então $\left(\frac{a_n}{b_n}\right)_n$ é uma sucessão convergente para $\frac{a}{b}$.

Teorema

Sejam $(a_n)_n$ e $(b_n)_n$ duas sucessões convergentes para $c \in \mathbb{R}$. Seja $(c_n)_n$ uma sucessão enquadrada por $(a_n)_n$ e $(b_n)_n$. Então $(c_n)_n \xrightarrow{} c$.

Teorema

Seja $(a_n)_n$ uma sucessão monótona e limitada. Então $(a_n)_n$ é convergente e:

- se $(a_n)_n$ é crescente, $\lim_n a_n = \sup\{a_n : n \in \mathbb{N}\};$
- se $(a_n)_n$ é decrescente, $\lim_n a_n = \inf\{a_n : n \in \mathbb{N}\}.$

Exemplo

A sucessão $(a_n)_n$ definida por recorrência por

$$\begin{cases} a_1 = 1, \\ a_{n+1} = \sqrt{1 + a_n}, \quad \forall n \in \mathbb{N} \end{cases}$$

é crescente e majorada logo é convergente.

$$\lim_{n} a_n = \frac{1+\sqrt{5}}{2}.$$

Cálculo

Subsucessões

Definição

Dada uma sucessão $(a_n)_n$, diz-se que $(b_n)_n$ é uma subsucessão ou sucessão parcial de $(a_n)_n$, se existir uma função $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ estritamente crescente tal que $\forall n \in \mathbb{N}$ $b_n = a_{\varphi(n)}$.

Proposição

Se $(a_n)_n$ é uma sucessão convergente para a, qualquer sua subsucessão é convergente para a.

Corolário

Se uma sucessão $(a_n)_n$ possuir uma subsucessão divergente ou admitir subsucessões convergentes para limites diferentes então $(a_n)_n$ é divergente.

8 / 23

Limites infinitos

Definição

Diz-se que uma sucessão
$$(a_n)_n$$
 tende para $+\infty$ (resp. $-\infty$) se

$$\forall M \in \mathbb{R} \ \exists p \in \mathbb{N} \ \forall n \geq p \qquad a_n > M \qquad \text{(resp. } a_n < M\text{)}.$$

Escreve-se
$$\lim_{n} a_n = +\infty$$
 ou $a_n \xrightarrow{n} +\infty$
 $(resp. \lim_{n} a_n = -\infty \text{ ou } a_n \xrightarrow{n} -\infty).$

Exemplo

A sucessão (n^2) tende para $+\infty$.

Infinitésimos vs infinitamente grandes

Proposição

Se
$$(a_n)_n$$
 é uma sucessão tal que $a_n \neq 0$, $\forall n \in \mathbb{N}$, então $\lim_n a_n = 0$ se e só se $\lim_n \frac{1}{|a_n|} = +\infty$.

Nota

A proposição anterior diz-nos que o inverso de um infinitésimo (sucessão convergente para zero) é, em módulo, um infinitamente grande e que o inverso de um infinitamente grande em módulo é um infinitésimo.

Séries

Definição

Dada uma sucessão real $(a_n)_n$, chama-se **série real** ao par de

sucessões
$$((a_n)_n,(s_n)_n)$$
 tais que $s_n=\sum_{k=1}a_k$, para todo o $n\in\mathbb{N}.$

- $(a_n)_n$ diz-se a sucessão geradora da série.
- $(s_n)_n$ diz-se a sucessão das somas parciais da série.

Chamamos termo de ordem n de uma série ao termo a_n da sucessão geradora.

Nota

Para conhecer uma série $((a_n)_n, (s_n)_n)$:

• basta conhecer a sucessão geradora $(a_n)_n$, pois

$$s_n = \sum_{k=1}^n a_k, \, n \in \mathbb{N};$$

• basta conhecer a sucessão das somas parciais, pois

$$\begin{cases} a_1 = s_1, \\ a_n = s_n - s_{n-1}, & \text{se } n \in \mathbb{N} \setminus \{1\}. \end{cases}$$

A série gerada por uma sucessão $(a_n)_n$ diz-se convergente se a sucessão das somas parciais, $(s_n)_n$, convergir. Nesse caso, a

$$S = \lim_n s_n$$
 chama-se soma da série e representa-se $S = \sum_{n=1}^{\infty} a_n$.

Uma série não convergente diz-se divergente.

Nota

Por abuso de notação, escreveremos $\sum_{n=1}^{\infty} a_n$ ou $\sum_{n\in\mathbb{N}} a_n$ para designar a série gerada por $(a_n)_n$, quer se trate de uma série convergente ou de uma série divergente.

Nota

Frequentemente, por conveniência, consideramos séries em que a sucessão geradora tem domínio \mathbb{N}_0 ou domínio $\{n\in\mathbb{N}:n\geq n_0\}$, sendo $n_0\in\mathbb{N}$. Escrevemos então $\sum_{n=0}^\infty a_n$ ou $\sum_{n\in\mathbb{N}_0} a_n$ e $\sum_{n=n_0}^\infty a_n$ ou

$$\sum_{n>n_0} a_n.$$

Exemplo

Série harmónica $\sum_{n\in\mathbb{N}}\frac{1}{n}$. É uma série divergente.

Série geométrica de termo inicial a e razão r com $a, r \in \mathbb{R}$ $\sum_{n \in \mathbb{N}_0} a \, r^n$.

Convergente sse |r| < 1 ou a = 0.

Série de Riemann $\sum_{n\in\mathbb{N}}\frac{1}{n^{\alpha}}$ com $\alpha>0$. Convergente sse $\alpha>1$.

Proposição

Sejam $\sum_{n\in\mathbb{N}}a_n$ e $\sum_{n\in\mathbb{N}}b_n$ duas séries convergentes, de soma S e T, respetivamente e seja $\lambda\in\mathbb{R}$. Então:

- $\sum_{n\in\mathbb{N}} \left(a_n+b_n\right)_n$ é uma série convergente de soma S+T;
- $\sum_{n\in\mathbb{N}} (\lambda a_n)_n$ é uma série convergente de soma λS .

Definição

Duas séries $\sum_{n\in\mathbb{N}}a_n$ e $\sum_{n\in\mathbb{N}}b_n$ dizem-se da mesma natureza se forem ambas convergentes ou ambas divergentes.

Cálculo 2. Sucessões e séries 2018/2019

16/23

Teorema

Seja $(a_n)_n$ uma sucessão real. Se a série gerada por $(a_n)_n$ converge, então $(a_n)_n$ converge para zero.

Definição

A uma série do tipo $\sum_{n\in\mathbb{N}}(-1)^na_n$ ou $\sum_{n\in\mathbb{N}}(-1)^{n+1}a_n$, em que $(a_n)_n$ é uma sucessão de termos positivos, chamamos série alternada.

Teorema (critério de Leibniz)

Seja $\sum_{n\in\mathbb{N}} (-1)^n a_n$ uma série alternada tal que:

- $(a_n)_{n\in\mathbb{N}}$ é decrescente;
- $(a_n)_{n\in\mathbb{N}}$ converge para zero.

Então a série $\sum_{n\in\mathbb{N}} (-1)^n a_n$ é convergente.

Uma série $\sum_{n\in\mathbb{N}}a_n$ diz-se absolutamente convergente se a série

gerada pela sucessão dos módulos, $\sum_{n\in\mathbb{N}}|a_n|$, for convergente.

Teorema

Se a série gerada por $(a_n)_n$ for absolutamente convergente então é convergente. Além disso,

$$\left| \sum_{n \in \mathbb{N}} a_n \right| \le \sum_{n \in \mathbb{N}} |a_n|.$$

Teorema (primeiro critério de comparação)

Sejam $(a_n)_n$ e $(b_n)_n$ sucessões de termos não negativos tais que

$$\exists p \in \mathbb{N} \ \forall n \ge p \qquad a_n \le b_n.$$

Se a série $\sum_{n\in\mathbb{N}}b_n$ é convergente então a série $\sum_{n\in\mathbb{N}}a_n$ também é convergente.

Teorema (segundo critério de comparação)

Sejam $(a_n)_n$ uma sucessão de termos não negativos e $(b_n)_n$ uma sucessão de termos positivos tais que existe $\lim_n \frac{a_n}{b_n} = \alpha$.

- Se $\alpha \in \mathbb{R}^+$, $\sum_{n \in \mathbb{N}} a_n$ e $\sum_{n \in \mathbb{N}} b_n$ são séries da mesma natureza.
- Se lpha=0, a convergência de $\sum_{n\in\mathbb{N}}b_n$ implica a convergência de $\sum_na_n.$
- Se $\alpha=+\infty$, a convergência de $\sum_{n\in\mathbb{N}}a_n$ implica a convergência de

$$\sum_{n\in\mathbb{N}}b_n.$$

Teorema (critério de Cauchy)

Seja $(a_n)_n$ uma sucessão de termos não negativos tal que $\lim_n \sqrt[n]{a_n} = \alpha$.

- Se $\alpha < 1$, então $\sum_{n=1}^{\infty} a_n$ é convergente.
- Se $\alpha>1$, então $\sum_{n\in\mathbb{N}}a_n$ é divergente.

Teorema (critério de d'Alembert)

Seja $(a_n)_n$ uma sucessão de termos positivos tal que $\lim_n \frac{a_{n+1}}{a} = \alpha$.

- Se $\alpha < 1$, então $\sum_{n=1}^{\infty} a_n$ é convergente.
- Se $\alpha>1$, então $\sum_{n\in\mathbb{N}}a_n$ é divergente.