Лабораторная работа № 5. Автокорреляция.

3530901/80201, Шелаев Н. Р.

 $30\,$ мая $2021\,$ г.

Оглавление

1	Корреляция	4
2	Последовательная корреляция	7
3	Автокорреляция периодических сигналов	10
4	Встроенная функция автокорреляции	15
5	Упражнения	18
	5.1 Задание 2	. 18
	5.2 Задание 3	. 20
	5.3 Задание 4	. 22
6	Вывол	28

Список иллюстраций

1.1 1.2	Изменение фазы между двумя одинаковыми сигналами И получили косинусоиду	5 6
2.1	Зависимость значения корреляции от значения параметра .	8
2.2	Зависимость корреляции от начальной фазы сигнала	9
3.1	Спектр данного сигнала	11
3.2	Спектрограмма сигнала	11
3.3	Полученный сегмент сигнала	12
3.4	Спектр этого сегмента	12
3.5	Зависимость значения корреляции от фазы	13
3.6	Зависимость корреляции от начальной фазы сигнала	14
4.1	Полученная зависимость	15
4.2	Взяли правую часть сигнала (фаза > 0)	16
4.3	Сравнение полученных результатов двух различных функ-	
	ций автокорреляции	17
4.4	Разница между результатами двух функций	17
5.1	Спектрограмма сигнала	19
5.2	Полученная спектрограмма	20
5.3	Сигнал BitCoins	21
5.4	Автокорреляция этого сигнала	21
5.5	Сравнение результатов работы двух функций	22
5.6	Спектрограмма сигнала	23
5.7	Спектр сигнала	23
5.8	График корреляции	24
5.9	Спектр сигнала после применения ФВЧ	25
5.10	Снова применили функцию автокорреляции	25
5.11	Спектр сигнала после применения ФВЧ и ФНЧ	26
5.12	Применили функцию автокорреляции	26

Листинги

1.1	Два сдвинутые по фазе сигнала	4
1.2	Корреляция между сигналами в зависимости от фазы	5
2.1	Некоррелированный шум	7
2.2	Броуновский шум	7
2.3	Розовый шум	7
2.4	Немного более подробно изучим Розовый шум	8
2.5	Функция автокорреляции для Розового шума	8
3.1	Запись вокального исполнения чирпов	10
3.2	Уменьшение ширины сегмента	11
3.3	Функция для нахождения корреляции между сигналами	12
3.4	Автокорреляция чирпа	13
4.1	Использование встроенной функции для автокорреляции .	15
4.2	Правая часть сигнала	16
4.3	Сравнение двух функций	16
5.1	Итоговая функция	18
5.2	Проверка работы функции	19
5.3	Метод Бартлетта	20
5.4	Снова сравним две функции	21
5.5	Получение сигнала	22
5.6	Продолжаем исследование	23
5.7	Новая функция для автокорреляции	24
5.8	Применили ФВЧ	24
5.9	Применили ФВЧ и ФНЧ	25

Корреляция

Посмотрим на значение корреляции между двумя одинаковыми сигналами, сдвинутыми по фазе.

```
from thinkdsp import SinSignal
          def make_sine(offset):
               signal = SinSignal(freq = 440, offset = offset)
               wave = signal.make_wave(duration=0.5, framerate
     =10000)
               return wave
          def compute_corr(offset):
              wave1 = make_sine(offset = 0)
9
               wave2 = make_sine(offset = -offset)
10
               wave1.segment(duration = 0.01).plot()
               wave2.segment(duration = 0.01).plot()
12
               corr = wave1.corr(wave2)
               print('corr =', corr)
14
               decorate(xlabel='Time (s)')
1.5
16
          PI2 = np.pi * 2
17
          slider = widgets.FloatSlider(min = 0, max = PI2,
18
     value = 1)
          interact(compute_corr, offset = slider);
19
```

Листинг 1.1: Два сдвинутые по фазе сигнала

Рис. 1.1: Изменение фазы между двумя одинаковыми сигналами

```
offsets = np.linspace(0, PI2, 101)
corrs = []
for offset in offsets:
    wave2 = make_sine(offset)
    corr = np.corrcoef(wave1.ys, wave2.ys)[0, 1]
    corrs.append(corr)

plt.plot(offsets, corrs)
```

Листинг 1.2: Корреляция между сигналами в зависимости от фазы

Рис. 1.2: И получили ... косинусоиду

Корреляция между сигналами в одной фазе равна 1, в противофазе она становится равна -1.

Последовательная корреляция

```
Построим последовательную корреляцию для различных видов шума.
           from thinkdsp import UncorrelatedGaussianNoise
          def serial_corr(wave, lag = 1):
                   N = len(wave)
                   y1 = wave.ys[lag:]
                   y2 = wave.ys[:N-lag]
                   corr = np.corrcoef(y1, y2)[0, 1]
               return corr
           signal = UncorrelatedGaussianNoise()
10
           wave = signal.make_wave(duration=0.5, framerate
     =11025)
          serial_corr(wave)
12
13
                 Листинг 2.1: Некоррелированный шум
  Значение корреляции близко к 0 (кто бы мог подумать?).
           from thinkdsp import BrownianNoise
           signal = BrownianNoise()
          wave = signal.make_wave(duration=0.5, framerate
     =11025)
          serial_corr(wave)
                    Листинг 2.2: Броуновский шум
  Значение корреляции близко к 1 (тоже ничего удивительного).
          from thinkdsp import PinkNoise
           signal = PinkNoise(beta = 1)
```

```
wave = signal.make_wave(duration=0.5, framerate
=11025)
serial_corr(wave)
```

Листинг 2.3: Розовый шум

В этот раз значение корреляции близко к 0,8.

```
np.random.seed(25)
betas = np.linspace(0, 2, 21)
corrs = []

for beta in betas:
    signal = PinkNoise(beta = beta)
    wave = signal.make_wave(duration=1.0, framerate = 11025)

corr = serial_corr(wave)
    corrs.append(corr)

plt.plot(betas, corrs)
```

Листинг 2.4: Немного более подробно изучим Розовый шум

Рис. 2.1: Зависимость значения корреляции от значения параметра

```
def autocorr(wave):
    lags = np.arange(len(wave.ys) // 2)
    corrs = [serial_corr(wave, lag) for lag in lags]
    return lags, corrs
```

```
def plot_pink_autocorr(beta, label):
    signal = PinkNoise(beta = beta)
    wave = signal.make_wave(duration=1.0, framerate
    =10000)

lags, corrs = autocorr(wave)
    plt.plot(lags, corrs, label = label)

np.random.seed(25)

for beta in [1.7, 1.0, 0.3]:
    label = r'$\beta$ = %.1f' % beta
    plot_pink_autocorr(beta, label)
```

Листинг 2.5: Функция автокорреляции для Розового шума

Рис. 2.2: Зависимость корреляции от начальной фазы сигнала

При низких значениях β корреляция быстро падает. По мере увеличения β эта зависимость длится дольше.

Автокорреляция периодических сигналов

Теперь изучим автокорреляцию разных периодических сигналов.

```
from thinkdsp import read_wave

wave = read_wave('28042__bcjordan__voicedownbew.wav')

wave.normalize()

spectrum = wave.make_spectrum()

spectrum.plot()

spectro = wave.make_spectrogram(seg_length = 1024)

spectro.plot(high = 4200)
```

Листинг 3.1: Запись вокального исполнения чирпов

Рис. 3.1: Спектр данного сигнала

Рис. 3.2: Спектрограмма сигнала

```
duration = 0.01
segment = wave.segment(start=0.2, duration=duration)
segment.plot()
spectrum = segment.make_spectrum()
spectrum.plot(high = 1000)
```

Листинг 3.2: Уменьшение ширины сегмента

Рис. 3.3: Полученный сегмент сигнала

Рис. 3.4: Спектр этого сегмента

```
text = r'$\rho =$ %.2g' % corr
plt.text((segment1.start + 0.0005), -0.8, text)
decorate(xlabel = 'Time (s)')

slider1 = widgets.FloatSlider(min = 0, max = 0.004,
step = (0.004 / 40), value = 0)
slider2 = widgets.FloatSlider(min = 0.1, max = 0.5,
step = 0.05, value = 0.2)
interact(plot_shifted, wave = fixed(wave), offset = slider1, start = slider2);
```

Листинг 3.3: Функция для нахождения корреляции между сигналами

Рис. 3.5: Зависимость значения корреляции от фазы

```
wave = read_wave('28042__bcjordan__voicedownbew.wav')
wave.normalize()
duration = 0.01
segment = wave.segment(start=0.2, duration=duration)
lags, corrs = autocorr(segment)
plt.plot(lags, corrs)
```

Листинг 3.4: Автокорреляция чирпа

Рис. 3.6: Зависимость корреляции от начальной фазы сигнала

Встроенная функция автокорреляции

Поспользуемся встроенной функцией автокорреляции в модуле NumPy.

```
N = len(segment)
corrs2 = np.correlate(segment.ys, segment.ys, mode =
'same')
lags = np.arange(-N // 2, N // 2)
plt.plot(lags, corrs2)
```

Листинг 4.1: Использование встроенной функции для автокорреляции

Рис. 4.1: Полученная зависимость

```
N = len(corrs2)
lengths = range(N, N // 2, -1)
half = corrs2[N // 2:].copy()
half /= lengths
half /= half[0]
plt.plot(half)
```

Листинг 4.2: Правая часть сигнала

Рис. 4.2: Взяли правую часть сигнала (фаза > 0)

```
plt.plot(half)
plt.plot(corrs)
diff = corrs - half[:-1]
plt.plot(diff)
```

Листинг 4.3: Сравнение двух функций

Рис. 4.3: Сравнение полученных результатов двух различных функций автокорреляции

Рис. 4.4: Разница между результатами двух функций

Результаты работы этих двух функций очень похожи, но встроенная функция работает быстрее.

Упражнения

5.1 Задание 2

Создание итоговой функции для оценки основной частоты периодического сигнала.

```
from thinkdsp import read_wave

wave = read_wave('28042__bcjordan__voicedownbew.wav')

wave.normalize()

wave.make_spectrogram(2048).plot(high = 4200)

def estimate_fundamental(segment, low=70, high=150):

lags, corrs = autocorr(segment)

lag = np.array(corrs[low:high]).argmax() + low

period = lag / segment.framerate

frequency = 1 / period

return frequency
```

Листинг 5.1: Итоговая функция

Рис. 5.1: Спектрограмма сигнала

```
step = 0.05
starts = np.arange(0.0, 1.4, step)

ts = []
freqs = []
for start in starts:
        ts.append(start + step / 2)
segment = wave.segment(start=start, duration=duration)

freq = estimate_fundamental(segment)
freqs.append(freq)
wave.make_spectrogram(2048).plot(high = 900)
plt.plot(ts, freqs, color = 'white')
```

Листинг 5.2: Проверка работы функции

Рис. 5.2: Полученная спектрограмма

5.2 Задание 3

Автокорреляция цен в платежной системе BitCoins.

```
import pandas as pd
from thinkdsp import Wave

df = pd.read_csv('BTC_USD_2013-10-01_2020-03-26-
CoinDesk.csv', parse_dates = [0])

ys = df['Closing Price (USD)']

ts = df.index
wave = Wave(ys, ts, framerate = 1)

wave.plot()
lags, corrs = autocorr(wave)
plt.plot(lags, corrs)
```

Листинг 5.3: Метод Бартлетта

Рис. 5.3: Сигнал BitCoins

Рис. 5.4: Автокорреляция этого сигнала

```
N = len(wave)
corrs2 = np.correlate(wave.ys, wave.ys, mode='same')
lags = np.arange(-N // 2, N // 2)
N = len(corrs2)
half = corrs2[N // 2:]
lengths = range(N, N // 2, -1)
half /= lengths
half /= half[0]
plt.plot(corrs, label = 'autocorr')
```

```
plt.plot(half, label = 'correlate')
```

Листинг 5.4: Снова сравним две функции

Рис. 5.5: Сравнение результатов работы двух функций

5.3 Задание 4

Исследуем код в файле saxophone.ipynb.

```
wave=read_wave('100475__iluppai__saxophone-weep.wav')
wave.normalize()
gram = wave.make_spectrogram(seg_length = 1024)
gram.plot(high = 3000)
```

Листинг 5.5: Получение сигнала

Рис. 5.6: Спектрограмма сигнала

```
start = 2.0
duration = 0.5
segment = wave.segment(start = start, duration =
duration)
spectrum = segment.make_spectrum()
spectrum.plot(high = 3000)
```

6

Листинг 5.6: Продолжаем исследование

Рис. 5.7: Спектр сигнала

Пики спектра находятся на частотах 1392, 928 и 464 Гц.

Листинг 5.7: Новая функция для автокорреляции

Рис. 5.8: График корреляции

```
def find_frequency(corrs, low, high):
    lag = np.array(corrs[low:high]).argmax() + low
    period = lag / segment.framerate
    frequency = 1 / period
    return frequency

find_frequency(corrs, 80, 100)
    spectrum2 = segment.make_spectrum()
    spectrum2.high_pass(600)
    spectrum2.plot(high = 3000)
    corrs = autocorr_new(segment2)
```

plt.plot(corrs[:200])

12 13

Листинг 5.8: Применили ФВЧ

Рис. 5.9: Спектр сигнала после применения ФВЧ

Рис. 5.10: Снова применили функцию автокорреляции

```
spectrum4 = segment.make_spectrum()
spectrum4.high_pass(600)
spectrum4.low_pass(1200)
```

```
spectrum4.plot(high = 3000)
corrs = autocorr_new(segment4)
plt.plot(corrs[:200])
```

Листинг 5.9: Применили ФВЧ и ФНЧ

Рис. 5.11: Спектр сигнала после применения ФВЧ и ФНЧ

Рис. 5.12: Применили функцию автокорреляции

В результате, можно сделать вывод, что восприятие высоты тона не пол-

ностью основано на спектральном анализе, но также зависит и от автокорреляции.

Вывод

В данной работе мы изучили изменение корреляции от фазы одинаковых сигналов и посмотрели влияние функции автокорреляции на звучание различных сигналов.