

TTS - PROJEKT 4 - Łącze optyczne

Na rysunku pokazano schemat prostego łącza światłowodowego do przesyłania dwustanowych sygnałów cyfrowych. Znasz amplitudę $I_M[mA]$ prądu w impulsie "1" sterującego diodę laserową o nachyleniu $S_L[mW/mA]$. Zegar modulacji pracuje z częstotliwością f_{MOD} i określa liczbę bitów w jednej sekundzie. Moc optyczna $P_N(t)$ wygenerowana przez laser zawiera ciąg impulsów o maksymalnej wartości mocy równej $P_M[mW]$. Impulsy skierowano światłowodem o długości L[km] do odbiornika z fotodiodą o czułości $R_F[mA/mW]$. Światłowód został złożony z kilku odcinków nie dłuższych, niż 5 km, przy czym każde połączenie światłowodu wprowadza straty mocy optycznej równe 0,5 dB.

Wykonaj następujące obliczenia:

- 1. Oblicz moc optyczną w impulsie P_M[mW] na wyjściu nadajnika,
- 2. Oblicz całkowite tłumienie T[dB] światłowodu, z uwzględnieniem strat 0,5 dB na każdym połączeniu i obu końcach światłowodu,
- 3. Oblicz moc optyczną P_{MO}[mW] w impulsie docierającym do odbiornika,
- 4. Oblicz wartość prądu I_{MO}[mA] w impulsie w prądzie fotodiody
- 5. Oblicz liczbę fotonów n_{NAD} w impulsie na wyjściu nadajnika i n_{ODB} docierających do fotodiody. Przyjmij długość fali promieniowania lasera λ = 1320 nm.

Wpisz swoje dane do Tabeli 1:

I _M [mA]	S _L [mW/mA]	f _{MOD} [GHz]	L[km]	α[dB/km]	R _F [mA/mW]
50	0,22	32	46	0,27	0,78

Końcowe obliczone parametry wpisz do Tabeli 2:

P _{MN} [mW]	T[dB]	P _{M0} [mW]	I _{M0} [mA]	n _{NAD}	n _{ODB}
8,8	17,92	0,1421	0,1108	5,84e16	29480

PMN = 8,8 [mW] 0 [m= 30 [mA] T = 12,92 [dB] Sc = 0,22 [mW/mA] Pmo = Oilyer Emw] fund = 32 [642] Imo = 6,1108 LWA] 1_ = 46 [km] nool= d = 0,27[elB/km] Modb = RF = 0.78 [mA/mW] A = (30/mm) pr Por EmvJ Iprox = 10[m A] | DI = 15 [mA] POF (50-10) -SL = 40.0,22= 4.2,2 = 8.86m) > loc[w] 46 Kin = 10 odcindos, knidy 2konce = Par = 10+1 fociy Popt = Sco(1c-1prop) = Scx lm T=d.l+11.05=0,22.66+11.05=12,92[db] Port=[mV] TE-3=10 MARZIO = 61,9441 E-] Pout = 8,8/6(,9441 = 0,1421 Zmw] Pout Edhus = 10-log(Pout = 9,44-1), a2 = -8,4752 EdBa 3 Ropt Rpd Fund/mW] = 0,78 - Pout ImW] = Jout = 0,78 - Pout = 0,18 - 0,1421 = 0, 1108/m/) (4) Eg=h-foot=6,626.6-30-32-60 I out = 0,78. Pout = 0,78. 0,1421 = 0,1188 [unt] f= C= 2,7+ [TH2] Ep=[]= hof= 1,51.10 =0 Modb= 4. Parl = 99480 n [1(s)= 8.8 Imw], 1e3/ Ee = 5,84,016 From N [1/1/4] = N/Fmod = 1876139 !