# Funções de Auto-Interpretação na FAC

# Propósito

Fornecer ao usuário interpretações automatizadas e imediatas que favoreçam sua tomada de decisão.

O objetivo final é se distanciar de um simples reporte dos resultados.

# **Caminho**

Construir sequências de funções cujas entradas são os dados já processados pela Ferramenta (FAC).

Essas funções terão o papel de estimar índices interpretativos e a partir deles retornar informações diretas sobre esses próprios índices ou, ainda, informações sobre a relação entre esses índices.

# **Desafios**

- Elaborar as funções no sentido de:
- Desenvolver parâmetros comparativos;
- Mecanizar interpretações visuais;
- O Definir as diversas possibilidades interpretativas e mecaniza-las.
- Dar segurança ao usuário sobre as auto-interpretações e *insights* gerados.

# Frentes de Abordagem

**FASE 1:** 

Extrair, armazenar e expressar os resultados obtidos pela plataforma **FASE 2:** 

Relacionar, interpretar e extrair insights das informações anteriores **FASE 3:** 

Construção de fontes de informação para gerar interpretações e insights

**FASE 1** 

Extrair, armazenar e expressar os resultados obtidos pela plataforma

# Fase 1

Trata-se da sistematização de métodos que realizem a síntese numérica/textual/lógica decorrente de resultados tabelados ou gráficos soltos pela plataforma para usuário.



# Fase 1 - Exemplo A

Indicação do comportamento da taxa de falhas com base no TTT-plot.



### Fase 1 - Exemplo A

Extrair a informação: Criamos uma função cujas entradas são todas as coordenadas dos eixos x e y do gráfico anterior. Essa função retornará o comportamento da taxa de falhas.

No exemplo, seria:



### Fase 1 - Exemplo A

Armazenar a informação: Criamos uma lista de resultados relacionados à cada gráfico/tabela.

No exemplo: ttt\_resu = ("crescente")

Expressar os resultados: Criamos uma nova função que retornará uma frase informativa do resultado obtido.





# Fase 1 - Exemplo B

Indicação da qualidade do ajuste com base em um dado gráfico de resíduos



# (5)

### Fase 1 - Exemplo B

Extrair a informação: Criamos uma função cujas entradas são data.frames com informações dos resíduos de Cox-Snell utilizadas para construir o gráfico anterior. Essa função retornará, por exemplo, um resultado lógico para a afirmação "Pelo menos 90% das estimativas de Confiabilidade encontram-se no range do intervalo de confiança"



# Fase 1 - Exemplo B

Armazenar a informação: Criamos uma lista de resultados relacionados à cada gráfico/tabela.

No exemplo: cs\_resu = (TRUE)

Expressar os resultados: Criamos uma nova função que retornará uma frase informativa do resultado obtido.





# Fase 1 - Exemplo C

Indicação da porcentagem de falhas e da concentração das falhas ao longo da observação.





### Fase 1 - Exemplo C

**Extrair a informação:** Criamos funções cujas entradas são o data.frame com os tempos de falha e censuras. Essas funções retornarão, por exemplo:

A: a porcentagem de falhas observadas em relação ao total de registros;

B: a concentração de falhas/censuras por tempo em cada quartil do tempo



### Fase 1 - Exemplo C



**Armazenar a informação:** No exemplo:

 $\bigcirc$ 

$$percent_resu = (23)$$

0

$$conc_resu = (6.9; 6.8; 2.6; 1.4)$$

#### **Expressar os resultados:**

percent\_resu conc\_resu



"A porcentagem de falhas observadas é de 23%"

"As falhas estão concentradas no início da observação"

**2** FASE 2

Relacionar, interpretar e extrair insights das informações anteriores

# Fase 2

Trata-se da sistematização de métodos que busquem, nos resultados, situações que seriam evidenciadas por analistas técnicos em um processo de análise formal.



### Fase 2 - Exemplo A

Identificar e reportar mudanças abruptas no comportamento da função de confiabilidade.



#### Fase 2 - Exemplo A

Interpretar informações anteriores: Na Fase 1 foi criada uma função que retorna a taxa de variação da confiabilidade em intervalos de tempo. Nessa fase, criamos uma função que analisa essas taxas e verifica se há e quais são as taxas de variação muito altas. Se houver, essa função retorna um "alerta" sobre esse fato para o usuário.



### Fase 2 - Exemplo B

Sugerir modelos para o ajuste de dados a partir de índices interpretativos relacionados (por exemplo, TTT-plot com densidade de falhas e/ou confiabilidade).



#### Fase 2 - Exemplo B-1

Relacionar informações anteriores: Na Fase 1 foi criada uma função que retorna o formato da função de risco e outra função que retorna as concentrações das falhas observadas por tempo nos quartis. Agora, criamos uma função com essas duas entradas para sugerir modelos que ajustem dados com essas características.



# \*

#### Fase 2 - Exemplo B-2

Na Fase 1 criamos uma função que retorna a menor confiabilidade obtida. Essa informação combinada com o TTT-plot e a concentração de censuras no final da observação pode sugerir tipos especiais de modelos para os dados.



ttt\_resu conc\_resu conf\_resu



"Para esse conjunto de dados sugerimos modelos de *fração de cura*, como a Weibull Modificada Generalizada." **FASE 3** 

Construção de fontes de informação que se relacionarão com os resultados anteriores para gerar interpretações e *insights*.

# Fase 3

- Trata-se do resumo tabulado (ou registrado de outra forma) da caracterização sistemática e formalizada dos métodos\modelos\funções de interpretação.
- O intuito dessa construção é trazer outros tipos de *insights* e interpretações, que vão além da capacidade humana de um analista técnico.

# Ilustração de uma ideia de caracterização de Modelos

|          | Função de Risco                       | Concentração de<br>Falhas              | Queda Brusca de<br>Confiabilidade | Fração de Cura | ••• |
|----------|---------------------------------------|----------------------------------------|-----------------------------------|----------------|-----|
| Modelo X | Constante                             | 1° quartil<br>2° quartil               | Não                               | Não            | ••• |
| Modelo Y | Constante<br>Crescente<br>Decrescente | 1º quartil<br>2º quartil<br>3ª quartil | Sim                               | Não            | ••• |
| Modelo Z | Crescente<br>Unimodal                 | 3° quartil<br>4° quartil               | Sim                               | Sim            | ••• |
| •••      | •••                                   | •••                                    | •••                               | •••            |     |

# Ilustração de uma ideia de caracterização de Modelos

|          | Tamanho<br>Amostral | Prop. de<br>Censuras | Prop. de NAs | Config. dos<br>Parâmetros | Distorção<br>Média das<br>Estimativas | Alcançou<br>Estabilidade | Prop. de<br>Indicações<br>Corretas |  |
|----------|---------------------|----------------------|--------------|---------------------------|---------------------------------------|--------------------------|------------------------------------|--|
| Modelo X | 20                  | 0                    | 0.05         | A = 0.5<br>B = 2.5        | Ahat = 0.98 A<br>Bhat = 1.05 B        | Sim                      | 0.99                               |  |
| Modelo X | 20                  | 0.05                 | 0.05         | A = 0.5<br>B = 2.5        | Ahat = 0.93 A<br>Bhat = 1.30 B        | Não                      | 0.95                               |  |
| Modelo X | 20                  | 0.10                 | 0.05         | A = 0.5<br>B = 2.5        | Ahat = 0.89 A<br>Bhat = 2.25 B        | Não                      | 0.93                               |  |
| •••      | •••                 | •••                  |              |                           | •••                                   | •••                      | •••                                |  |

#### Fase 3 - Possibilidades

Uso da caracterização dos modelos de confiabilidade e demais métodos estatísticos disponíveis na plataforma.

 $\bigcirc$ 

Para informar se, por exemplo, em situações próximas à apresentada pelos dados, o modelo escolhido costuma performar bem e, caso contrário, qual a magnitude da distorção das estimativas dos parâmetros e/ou das quantidades de interesse prático. Essa questão se aplica aos métodos de imputação, detecção de outliers, etc.

#### Fase 3 - Possibilidades

- Uso da caracterização dos métodos de extração e indicação implementados pelo Grupo de Risco.
- Para informar a performance das recomendações gerais feitas pela plataforma.

# Status (Módulo I)



# Obrigado!

Perguntas?

Grupo de Risco