

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

INVESTIGACION DE OPERACIONES

ASIGNATURA: PROFESOR: PERÍODO ACADÉMICO: Investigación de Operaciones.

Ing. Luis Ponce. Sep. 2015 - Feb. 2016

CONSULTA Nº 1

TÍTULO:

MÉTOD SIMPLEX

ESTUDIANTE

SANCHEZ ARTEAGA FREDY VICENTE

FECHA DE REALIZACIÓN: 24 de octubre de 2015

FECHA DE ENTREGA: 25 de octubre de 2015

TABLA DE CONTENIDO

ı.	TEMAS DE LA CONSULTA	. 1
ΜĚ	TODO SIMPLEX	. 1
<u>II.</u>	OBJETIVO	. 1
	DESARROLLO.	1
<u> </u>	DESARROLLO	
EJEI	MPLO:OCEDIMIENTO DE RESOLUCIÓN:	. 1
Dec	OCEDIMIENTO DE RESOLUCIÓN:	7
DEC	ULTADOS:	, 2
KE2	ULTADOS:	. ၁
	CONCLUSIÓNES	
IV.	CONCLUSIONES	<u>. 5</u>
v	RECOMENDACIONE	_
<u>v.</u>	NECOIVIEIVDACIONE	<u>. 3</u>
VI.	BIBLIOGRAFÍA	. 6
		_

I. TEMAS DE LA CONSULTA

MÉTODO SIMPLEX

II. OBJETIVO.

 Determinar por medio de la realización de un ejercicio la resolución de problemas de programación lineal con el método simplex para el caso en que las restricciones sean mayor o igual con dos variables.

III. DESARROLLO.

Ejemplo:

M&D es una empresa de productos químicos que elabora dos productos que son vendidos como materia prime a dos compañías que elaboran jabón de baño y detergente de ropa. Basados en un análisis del inventario actual y la demanda potencial del siguiente mes, el gerente de M&D ha especificado que la combinación de los productos A y B debe ser en total por lo menos 350 galones. Adicionalmente se debe cumplir con una orden de 125 galones del producto A solicitada por uno de sus principales clientes. El producto A requiere de 2 horas de procesamiento por galón y el producto B requiere 1 hora de procesamiento por galón. Para el mes entrante se cuenta con 600 horas de procesamiento disponibles. El objetivo de M&D es satisfacer estos requerimientos a un costo total mínimo de producción. [1]

El costo de producción es de \$2 por galón para el producto A y \$3 por galón para el producto B. Determinar el número de galones del producto A y producto B que produzcan el mínimo costo de producción. [1]

Realizamos el proceso necesario para extraer las variables y restricciones correspondientes:

Variables de decisión

```
x_1 = Número de galones del producto A.

x_2 = Número de galones del producto B.
```

Función objetivo

$$Minimizar z = 2x_1 + 3x_2$$
.

- Restricciones

```
R1: x_1 \ge 125 Produccion de A por pedido del cliente.
R2: x_1 + x_2 \ge 350 Produccion total de productos A y B.
R3: x_1 + x_2 \le 600 Horas de procesamiento disponible.
R4: x_1, x_2 \ge 0 No negatividad.
```

Declaración del problema

```
Min 2x_1 + 3x_2

Sujeto a

x_1 \ge 125 Demanda producto A.

x_1 + x_2 \ge 350 Produccion total.

2x_1 + x_2 \le 600 Tiempo de produccion.

x_1, x_2 \ge 0
```

Para realizar este tipo de ejercicios en caso que las restricciones sean≥: Se basa en el hecho de que cualquier problema de minimización puede ser convertido a un problema de maximización equivalente multiplicando la función objetivo en 1. Solución el problema de maximización resultante será la solución que busque a la minimización problema. [1]

Tabla referencial:

	VI	II	ΛΙ	Columna pivote variable entrante	Sustitución optima cuando Cj — Zj	Extras
Maximizar	+SI	1 11	-SI + AI	Mayor positivo	Son (-)	Coef.AI - M
Minimizar	+31	+AJ	-31 + AI	Menor negativo	Son (+)	Coef.AI + M

Procedimiento de resolución:

1. Multiplicamos la función objetivo por -1 para convertir el problema de minimización en un problema de maximización equivalente.

$$Max - 2x_1 - 3x_2$$

 $Sujeto \ a$
 $x_1 \ge 125 \ Demanda \ producto \ A.$
 $x_1 + x_2 \ge 350 \ Produccion \ total.$
 $2x_1 + x_2 \le 600 \ Tiempo \ de \ produccion.$
 $x_1, x_2 \ge 0$

2. Se debe restar una variable de excedente para obtener la restricción de igualdad y luego añadir una variable artificial para mantener la restricción de no negatividad. El coeficiente de la variable de excedente en la función objetivo se le asigna un valor de cero. El coeficiente de la variable artificial en la función objetivo se le asigna un valor de -M. La variable artificial se convierte en una de las variables básicas en inicial solución básica factible. [1]

$$\begin{array}{lll} \mathit{Max} & -2x_1 - 3x_2 + 0S_1 + 0S_2 + 0S_3 - \mathit{M}_{a1} - \mathit{M}_{a2} \\ \mathit{Sujeto} \ a & & & & & \\ x_1 & -S_2 & + a_1 & \geq 125 \\ x_1 + x_2 - S_1 & + a_2 & \geq 350 \\ 2x_1 + x_2 & + S_3 & \leq 600 \\ x_1, x_2, S_1 + S_2 + S_3 + a_1 + a_2 \geq 0 \end{array}$$

3. Representamos en la tabla:

			X_1	X_2	S ₁	S_2	S_3	a_1	a_2	
	Bases	C_J	-2	-3	0	0	0	-M	-M	
R1	a_1	-M	1	0	-1	0	0	1	0	125
R2	a_2	-M	1	1	0	-1	0	0	1	350
R3	S_3	0	2	1	0	0	1	0	0	600
	zj		-2M	-M	M	M	0	-M	-M	-475M
	Cj - zj		-2+2M	-3+M	-M	-M	0	0	0	

Nota: para llenar los valores de la tabla se realiza el siguiente procedimiento:

a. Se coloca la estructura de la tabla donde la columna Bases es llenada con los valores positivos de las variables de exceso y variables artificiales de cada una de las restricciones, y en el caso de la columna C_J se toma los valores representados en Bases de la Función Objetivo.

- b. Colocamos en la parte superior todas las variables que conforman nuestra función objetivo y colocamos sus respectivos valores tanto de las variables de exceso como las artificiales.
- c. Colocamos las restricciones referentes en nuestra tabla teniendo en cuenta su base.
- d. La fila zj es llenada con los valores correspondientes a la columna C_J por los valores de las columnas de las variables de la función objetivo $(X_1, X_2, S_1, S_2, S_3, a_1, a_2)$ y luego los resultados son sumados.

Ejemplo:
$$(-M * 1) + (-M * 1) + (0 * 2) = -2M$$

Este cálculo es realizado con la columna X_1 y C_J luego será realizado con X_2 y C_J y sucesivamente.

- e. Al final se realiza la suma correspondiente entre Cj zj.
- 4. Encontramos la columna pivote para ello de la fila Cj zj seleccionamos en mayor positivo tomando en cuenta que M es un minero muy grande, y para la fila pivote tenemos que dividir las variables al lado derecho de la igualdad para la columna pivote teniendo entonces:

a.
$$350/_1 = 350$$

b.
$$\frac{125}{1} = 125$$

c.
$$600/_{2} = 300$$

De los resultados tomamos el menor de todos. En este caso 125.

Y de esa forma encontramos al elemento pivote que el que se intersecta.

- 5. Empleamos método de gauss y además, en la primera iteración, x1 se pone en la base y se retira a1. [1]
 - a. Realizamos las operaciones para poner ceros en el resto de la columna.

$$-R1 + R2 \rightarrow R2$$
$$-2R1 + R3 \rightarrow R3$$

			X_1	X_2	S_1	S_2	S_3	a_2			
	Bases	C_J	-2	-3	0	0	0	-M			
R1	X_1	-2	1	0	-1	0	0	0	125		
R2	a_2	-M	0	1	1	-1	0	1	225		
R3	S_3	0	0	1	2	0	1	0	350		
	zj		-2	-M	2-M	M	0	-M	-250-225M		
	Cj - zj		0	-3+M	-2+M	-M	0	0			

Realizo nuevamente el pivotaje para la columna el mayor de la fila Cj – zj y para la fila:

i.
$$\frac{125}{-1} = -125$$

ii.
$$\frac{225}{1} = 225$$

iii.
$$350/2 = 175$$

iv. Tomamos el menor positivo.

Y desplazamos a la base S_3 y colocamos a S_1 .

6. Realizamos las operaciones para poner 1 en el elemento pivote.

$$\frac{1}{2}R3 \rightarrow R3$$

			<i>X</i> ₁	<i>X</i> ₂	S_1	S_2	S_3	a_2	
	Bases	C_J	-2	-3	0	0	0	-M	
R1	X_1	-2	1	0	-1	0	0	0	125
R2	a_2	-M	0	1	1	-1	0	1	225
R3	S_1	0	0	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	175
	zj		-2	-M	2-M	M	0	-M	-250-225M
	Cj - zj		0	-3+M	-2+M	-M	0	0	

7. Tenemos que hacer ceros el resto de la columna.

Realizamos las operaciones para poner ceros en el resto de la columna.

$$-R3 + R2 \rightarrow R2$$
$$R3 + R1 \rightarrow R1$$

			X_1	X_2	S_1	S_2	S_3	a_2	
	Bases	C_J	-2	-3	0	0	0	-M	
R1	X_1	-2	1	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	0	300
R2	a_2	-M	0	$\frac{\overline{1}}{2}$	0	-1	$-\frac{1}{2}$	1	50
R3	S_1	0	0	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	175
	zj		-2	-M	0	M	$1 - \frac{1}{2}M$	-M	-600-50M
	Cj - zj		0	-3+M	0	-M	$1-\frac{1}{2}M$	0	

Realizo nuevamente el pivotaje para la columna el mayor de la fila Cj – zj y para la fila:

i.
$$300/_{1/2} = 600$$

ii.
$$50/1/2 = 100$$

iii.
$$\frac{175}{1/2} = 350$$

iv. Tomamos el menor positivo.

Y desplazamos a la base a_2 y colocamos a X_2 .

8. Realizamos las operaciones para poner 1 en el elemento pivote.

$$2R2 \rightarrow R2$$

			X_1	X_2	S_1	S_2	S_3	a_2	
	Bases	C_J	-2	-3	0	0	0	-M	
R1	<i>X</i> ₁	-2	1	$\frac{1}{2}$	0	0	0	0	300
R2	X_2	-3	0	1	0	-2	-2	2	100
R3	S_1	0	0	$\frac{1}{2}$	1	0	$\frac{1}{2}$	0	175
	zj		-2	-M	0	M	$-\frac{1}{2}M$	-M	-600-50M
	Cj - zj		0	-3+M	0	-M	$\frac{1}{2}M$	0	

9. Tenemos que hacer ceros el resto de la columna.

Realizamos las operaciones para poner ceros en el resto de la columna.

$$-\frac{1}{2}R2 + R1 \rightarrow R1$$
$$-\frac{1}{2}R2 + R3 \rightarrow R3$$

			X_1	X_2	S_1	S_2	S_3	
	Bases	C_J	-2	-3	0	0	0	
R1	<i>X</i> ₁	-2	1	0	0	1	1	250
R2	<i>X</i> ₂	-3	0	1	0	-2	-1	100
R3	S_1	0	0	0	1	1	1	125
	zj		-2	-3	0	4	1	-800
	Cj - zj		0	-3+M	0	-M	$\frac{1}{2}M$	

Resultados:

El valor de la función objetivo es -800 debe ser multiplicado por -1 para obtener el valor de la función objetivo para el problema de minimización originales.

Entonces, el costo mínimo total de la solución factible es de \$800.

Cumpliendo con las restricciones del caso.

IV. CONCLUSIÓNES.

- Se cumple con la realización del ejercicio con el método Simplex y dos variables utilizando la técnica de la gran M y sostenido las reglas complementarias en el caso de maximizar o minimizar (tabla).

V. RECOMENDACIONE.

Para realizar la minimización en un ejercicio se emplea los procedimientos que la maximización solamente al multiplicar por -1 la función objetivo.

VI. BIBLIOGRAFÍA.

[1] D. Anderson, D. Sweeney, T. Williams, J. Camm and K. Martin, An introduction to management science, quantitative approaches to decision making., vol. 13th ed. Mason, USA: South-Western CENGAGE Learning, 2012.