RANDOM MESH FEM

ASSYR ABDULLE* AND GIACOMO GAREGNANI†

1. Idea. Consider Ω a convex polygon in \mathbb{R}^d , with d = 1, 2, 3 and the elliptic PDE with Dirichlet boundary conditions

(1)
$$\begin{aligned}
-\mathcal{L}u &= f, & \text{in } \Omega, \\
u &= g, & \text{on } \partial\Omega.
\end{aligned}$$

Given a Hilbert space V weak formulation (assume $a(u, u) = ||u||_a^2$)

(2) Find
$$u \in V$$
 such that $a(u, v) = F(v)$ for all $v \in V$.

Galerkin formulation. Consider discretization parameter h > 0 and a mesh T_h (usual hypotheses). Consider the space $V_h \subset V$ defined as

(3)
$$V_h = \{ v \in \mathcal{C}^0(\Omega) \colon v|_K \in \mathcal{P}_1, \ \forall K \in T_h \} \cap V.$$

Given internal vertices $\{x_i\}_{i=1}^N$, then

$$(4) V_h = \operatorname{span}\{\varphi_i\}_{i=1}^N,$$

where $\varphi_i \in V_h$ and $\varphi_i(x_k) = \delta_{ik}$ for i, k = 1, ..., N. Galerkin formulation then reads

(5) Find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = F(v_h)$ for all $v_h \in V_h$.

Consider now a new set of random internal vertices $\{X_i\}_{i=1}^N$ such that

- (i) $\mathbb{E} X_i = x_i$,
- (ii) $\operatorname{Var} X_i = Ch^{2p}$, for a constant C > 0.

for all i = 1, ..., N. Random mesh \mathcal{T}_h is built using the nodes $\{X_i\}_{i=1}^N$ from T_h maintaining connections between vertices with same indices (in 1D it is easy, in 2D/3D is it possible to maintain hypotheses of mesh quality?). Then consider

(6)
$$\mathcal{V}_h = \{ v \in \mathcal{C}^0(\Omega) \colon v|_K \in \mathcal{P}_1, \ \forall K \in \mathcal{T}_h \} \cap V.$$

i.e., $\mathcal{V}_h = \operatorname{span}\{\Phi_i\}_{i=1}^N$, where $\Phi_i \in \mathcal{V}_h$ and $\Phi_i(X_k) = \delta_{ik}$. We then have the random-mesh Galerkin formulation

(7) Find
$$U_h \in \mathcal{V}_h$$
 such that $a(U_h, V_h) = F(V_h)$ for all $V_h \in \mathcal{V}_h$.

Goal. What is

$$\mathbb{E}||U_h - u||_V,$$

$$(9) |\mathbb{E} G(U_h) - G(u)|.$$

2. One-dimensional case. Consider deterministic uniform mesh (spacing h) and perturbation r.v.s such that

(10)
$$X_i = x_i + hP_i, \quad P_i \sim \mathcal{U}(-h^{p-1}/2, h^{p-1}/2).$$

(1/2 so that the ordering does not change). Consider basis functions deterministic case

(11)
$$\varphi_i(x) = \frac{x - x_{i-1}}{x_i - x_{i-1}} \mathbb{1}_{(x_{i-1}, x_i)}(x) + \frac{x_{i+1} - x}{x_{i+1} - x_i} \mathbb{1}_{(x_i, x_{i+1})}(x).$$

^{*}Mathematics Section, École Polytechnique Fédérale de Lausanne (assyr.abdulle@epfl.ch)

[†]Mathematics Section, École Polytechnique Fédérale de Lausanne (giacomo.garegnani@epfl.ch)

The random basis functions are given analogously by

(12)
$$\Phi_i(x) = \frac{x - X_{i-1}}{X_i - X_{i-1}} \mathbb{1}_{(X_{i-1}, X_i)}(x) + \frac{X_{i+1} - x}{X_{i+1} - X_i} \mathbb{1}_{(X_i, X_{i+1})}(x).$$

Let us denote by $\Phi_{i,1}(x)$ and $\Phi_{i,1}(x)$ the two components of the sum above so that $\Phi_i(x) = \Phi_{i,1}(x) + \Phi_{i,2}(x)$. Via the definition of the random variables we rewrite $\Phi_{i,1}(x)$ with elementary operations as

(13)
$$\Phi_{i,1}(x) = \frac{x - x_{i-1} - hP_{i-1}}{x_i - x_{i-1} + h(P_i - P_{i-1})} \mathbb{1}_{(X_{i-1}, X_i)}(x)$$

$$= \frac{x - x_{i-1} - hP_{i-1}}{h(1 + P_i - P_{i-1})} \mathbb{1}_{(X_{i-1}, X_i)}(x)$$

$$= \frac{1}{1 + P_i - P_{i-1}} \left(\frac{x - x_{i-1}}{h} - P_{i-1}\right) \mathbb{1}_{(X_{i-1}, X_i)}(x)$$

Analogously

(14)
$$\Phi_{i,2}(x) = \frac{1}{1 + P_{i+1} - P_i} \left(\frac{x_{i+1} - x}{h} + P_{i+1} \right) \mathbb{1}_{(X_i, X_{i+1})}(x)$$