

Searches for invisible decay modes of the Higgs boson with the CMS detector

<u>P. Dunne</u> - Imperial College London on behalf of the CMS Collaboration PANIC 2014 - 26/08/2014

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
- large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- ▶ Many BSM theories predict Higgs boson decays to invisible final states:
- e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ► These final state particles are often dark matter candidates

Direct and Indirect Searches

Indirect searches

► BSM Higgs decays affect the total Higgs width:

$$- \ \Gamma_{tot} = \Gamma_{tot}^{SM} \cdot \frac{\sum\limits_{x}^{obs} \kappa_{x}^{2} \cdot BR_{x}^{SM}}{1 - BR_{BSM}}, \kappa_{x}^{2} = \frac{\Gamma_{x}^{obs}}{\Gamma_{x}^{SM}}$$

 Visible decays can, therefore, constrain the invisible branching fraction

Direct searches

- Direct searches must be performed in channels where the Higgs recoils against a visible system
- We look in the VBF (left) and ZH (right) channels
- For ZH we study the case where the Z decays to two leptons $Z(\ell\ell)H$ or two b quarks Z(bb)H

VBF outline

Signal Topology and Selection

- Two jets with large rapidity separation and missing transverse momentum (MET)
- 2 jets, $p_T > 50\, GeV$, $\eta_{j1} \cdot \eta_{j2} < 0$, $\Delta \eta_{jj} > 4.2$
- $M_{jj} > 1100$ GeV , $\Delta\phi_{jj} < 1.0$
- *MET* > 130 *GeV*

Backgrounds and Rejection Cuts

- $W \rightarrow \ell \nu + {
 m jets}$: Veto any events with leptons with $p_T > 10~{
 m GeV}$
- ightharpoonup Z
 ightarrow
 u
 u + jets: Irreducible
- QCD multijet events: Veto events with jets with p_T > 30 GeV between the two selected jets (CJV)
- ▶ Minor backgrounds from: $t\bar{t}$, single top, diboson and $Z \rightarrow \ell\ell$ +jets

VBF background estimation

Z+jets - Estimate using $Z o \mu \mu$ +jets events

- ► Sig. sel.+two muons 60< $m_{\mu\mu}<$ 120 GeV
- ► Control→signal extrapolation factor from MC
- $N_{Z \to \mu\mu} = 99 \pm 29(stat.) \pm 25(syst.)$

W+jets - Estimate using $W o \ell u + { m jets}$ events

- ► Sig. sel. + require one $e/\mu/\tau$
- ► Control→signal extrapolation factor from MC
- $N_{W \to e\nu} = 63 \pm 9(stat.) \pm 18(syst.)$
- $N_{W \to \mu \nu} = 67 \pm 5 (stat.) \pm 16 (syst.)$
- $N_{W \to \tau \nu} = 53 \pm 18 (stat.) \pm 18 (syst.)$

QCD - Use "ABCD method" in MET and CJV

 $N_{QCD} = 30.9 \pm 1.6(stat.) \pm 23.0(syst.)$

>130

<130

MFT

arXiv:1404.1344

VBF results

Total background	$332 \pm 35(stat.) \pm 45(syst.)$	
VBF H(inv.)	$210\pm30(\mathit{syst.})$	
ggF H(inv.)	$14\pm11(\mathit{syst.})$	
Observed data	390	

- Set limits on $\sigma \times B(H \rightarrow inv.)$
- Perform a single bin counting experiment using CL_S method
- Assuming SM Higgs production cross-section and acceptance:
- observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for m_H =125 GeV is 65(49)%

arXiv:1404.1344

$Z(\ell\ell)H$ outline \bar{q}

Signal Topology and Selection

- ► Two same flavour opposite sign electrons or muons
 - $p_T >$ 20 GeV, $|M_{\ell\ell} m_Z| <$ 15 GeV
- Large MET
- MET > 120 GeV

Backgrounds and Rejection Cuts

- ► $ZZ(\ell\ell\nu\nu)$ +jets, $WW(\ell\nu\ell\nu)$ +jets
- ▶ WZ($\ell\nu\ell\ell$)+jets
- Veto events with >3 leptons, $p_T >$ 10 GeV
- ightharpoonup $Z(\ell\ell)$ +jets
- MET cut, MET- $\ell\ell$ balance requirement
- $ightharpoonup t\overline{t}$, single top, W($\ell\nu$), QCD
- ≤1 jet, *p*_T>30 GeV
- no b-tagged jets, $p_T > 30 \text{ GeV}$

$Z(\ell\ell)H$ background estimation

$ZZ(\ell\ell\nu\nu)$ +jets and $WZ(\ell\nu\ell\ell+jets)$

Estimated from MC prediction

$Z(\ell\ell)$ +jets

- Estimated from photon + jets events
- Photon p_T spectrum reweighted to match Z spectrum

$WW(\ell\nu\ell\nu)$ +jets, single top, $t\bar{t}$, $Z(\tau\tau)$

- **E**stimated from $e\mu$ events and Z peak sidebands:
- $m_{\ell\ell}$ 40-70 and 110-200 GeV $N_{\ell\ell}^{\rm sig} = N_{e\mu}^{\rm sig} \cdot N_{\ell\ell}^{SB}/N_{e\mu}^{SB}$

$Z(\ell\ell)H$ results

	Process	$\sqrt{s} = 7 \text{TeV}$		$\sqrt{s} = 8 \text{TeV}$	
		ee	$\mu\mu$	ee	$\mu\mu$
0 jets	Total backgrounds	8.7 ± 6.5	11.0 ± 3.3	37.4 ± 3.7	51.6 ± 4.8
•	ZH(125)	2.3 ± 0.2	3.1 ± 0.3	10.3 ± 1.2	14.7 ± 1.5
	Observed data	9	10	36	46
	S/B	0.26	0.28	0.28	0.24
1 jet	Total backgrounds	2.6 ± 0.7	2.8 ± 0.9	10.6 ± 4.2	13.8 ± 5.8
, i	ZH(125)	0.4 ± 0.1	0.5 ± 0.1	1.6 ± 0.2	2.5 ± 0.3
	Observed data	1	4	11	17
	S/B	0.15	0.18	0.15	0.18

- lackbox Limits obtained from a 2D fit to m_T and $\Delta\phi(\ell\ell)$
 - 1D fit to m_T for 7 TeV data
- Assuming SM Higgs production cross-section and acceptance:
 - observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for m_H =125 GeV is 83(86)%

Z(bb)H outline and backgrounds

Signal Topology and Selection

- ▶ Two b-tagged jets, $p_T > 30/60 \text{ GeV}$
 - $p_{Tjj} > 100 130 \; \text{GeV}$
- ► Three bins in MET
- 100-130, 130-170, $> 170 \; \text{GeV}$

Backgrounds and Rejection Cuts

- \triangleright Z($\nu\nu$)+jets, W($\ell\nu$)+jets
- ► ZZ(ννbb)
- \blacktriangleright WZ($\ell\nu b\bar{b}$), $t\bar{t}$, single top
 - Veto events with leptons, $p_T{>}15~{\rm GeV}$
- QCD
 - MET quality requirements

Background estimation - data normalised MC

- Normalisation obtained from a simultaneous fit in seven control regions:
 - Z+jets (0,1,2 b-jets), W+jets (0,1,2 b-jets), t̄t

arXiv:1404.1344

Imperial College London

$Z(b\bar{b})H$ results

High $p_T(V)$	Intermediate $p_T(V)$	Low $p_T(V)$
181.3 ± 9.8	64.8 ± 4.1	40.5 ± 4.1
12.6 ± 1.1	3.6 ± 0.3	1.6 ± 0.1
204	61	38
	$181.3 \pm 9.8 \\ 12.6 \pm 1.1$	181.3 ± 9.8 64.8 ± 4.1 12.6 ± 1.1 3.6 ± 0.3

- Multivariate analysis (BDT) performed for each mass hypothesis and boost region
- Limits computed from a fit to the BDT output distribution
- Assuming SM Higgs production cross-section and acceptance:
 - observed(expected) 95% C.L. limit on $B(H \rightarrow inv)$ for $m_H{=}125$ GeV is 182(199)%

Combined Results

- The individual limits on $\sigma \times B(H \to inv)$ from the three channels are combined
- SM production cross-sections are used to interpret this as a limit on $B(H{\to}\text{inv})$

Observed (expected) limits on B(H \rightarrow inv) at 95% C.L. for m_H =125 GeV

Channel Limit/%
VBF 65(49)
ZH($\ell\ell$ +bb) 81(83)
VBF + ZH 58(44)

Signatures of Dark Matter (DM)

▶ If DM couples to the Higgs the following diagrams are possible

- ▶ Limits on $\mathcal{B}(H\rightarrow inv.)$ therefore constrain Higgs Portal DM models
- These constraints are directly comparable to those from other experiments

Dark Matter Interpretation - Results

- ightharpoonup We use an effective field theory Higgs Portal model which allows us to translate B(H o inv.) to a DM-nucleon cross-section (details in backup)
- ▶ At 90% C.L. the CMS limit on B(H \rightarrow inv) is 51% for a 125 GeV Higgs
- We consider three DM spin scenarios: scalar, vector, Majorana fermion

Central DM limit from lattice calculation. Min and max from MILC collaboration (see backup)

 $\mathcal{B}(H o inv.)$ gives important exclusion in the $M_\chi < m_h/2$ region

Conclusions

- ▶ Direct searches for Higgs boson decays to invisible final sates have been carried out using the 2011 and 2012 CMS data sets:
- The mass range searched in is 105-400~GeV
- The VBF, $Z(\ell\ell)H$ and Z(bb)H channels have been considered
- ▶ No significant excesses are seen over the background predictions
- ▶ The combined limit is 58(44)% observed (expected) at 95% C.L. for $m_H = 125 \text{GeV}$
- This is the most sensitive direct Higgs to invisible limit to date
- A Higgs portal dark matter interpretation of the above results has been presented
- The results are competitive with direct DM detection experiments in the low DM mass region

References

- ► CMS Higgs combination CMS-PAS-HIG-14-009
- ► CMS Higgs to Invisible paper arXiv:1404.1344
- CMS TWIKI with addition Higgs to Invisible results https://twiki.cern.ch/twiki/bin/view/CMSPublic/ Hig13030PubTWiki

Backup

High mass combination

- ▶ $Z(\ell\ell)H(inv)$ and VBF searches both go up to at least m_H =300 GeV
- ► The same combination method as used above was used to combine these two channels between 115 and 300 GeV

Other direct Limits

- ▶ ATLAS also produce a limit in the $Z(\ell\ell)H$ channel:
- observed (expected) 75% (62%) at 95% C.L.

DM model

Formulae

- ► EFT model as described in Phys.Lett. B709 (2012) 6569

- - m_N is the nucleon mass, 0.939 GeV
 - f_N is the Higgs-nucleon coupling, central value 0.326, from Phys. Rev. D 81 (2010) 01453
 - Min and max values of fN from MILC collaboration Phys. Rev. Lett. 103 (2009) 122002
 - v is the Higgs vacuum expectation, 174 GeV
- $\beta = \sqrt{1 4M_\chi^2/m_H^2}$
- $B(H \rightarrow inv.) = \Gamma_{inv}/(\Gamma_{SM} + \Gamma_{inv})$