Tema I

Arquitectura básica: Instancia y Base de Datos

- **Instancia**: Es el conjunto de memoria (SGA) y procesos en ejecución que permiten interactuar con una base de datos.
- Base de datos: Conjunto de datos organizados almacenados en discos. Incluye archivos de datos, control y redo logs.
- Relación: Una instancia accede y gestiona una base de datos.

Memoria

- SGA (System Global Area): Memoria compartida por todos los procesos. Componentes principales:
- Buffer Cache: Almacena datos leídos/escritos recientemente.
- Shared Pool: Guarda instrucciones SQL y PL/SQL compiladas.
- Redo Log Buffer: Registra cambios realizados para recuperación.
- Java Pool y Large Pool: Espacios adicionales para tareas específicas.
- PGA (Program Global Area): Memoria privada asignada a cada proceso de usuario.

Procesos

- Procesos de fondo: Ejecutan tareas esenciales. Ejemplos clave:
- DBWn (Database Writer): Escribe datos modificados en disco.
- LGWR (Log Writer): Escribe entradas del Redo Log Buffer en los archivos redo log.
- CKPT (Checkpoint): Marca puntos de recuperación en archivos de control.
- SMON (System Monitor): Maneja recuperación de instancias.
- PMON (Process Monitor): Limpia procesos fallidos.

• **Procesos de usuario**: Interactúan con la base de datos para ejecutar consultas y comandos.

Ficheros

- Archivos de datos: Contienen tablas, índices y otros objetos.
- Archivos de control: Guardan información de estructura y estado de la base de datos.
- Redo Logs: Registran todas las transacciones para recuperación.
- Archivos temporales: Soportan operaciones como sorting.
- Archivos de parámetros (SPFILE/PFILE): Configuran la instancia.

Arquitectura Multitenant

 Introducida en Oracle 12c, permite consolidar múltiples bases de datos (PDBs) dentro de un contenedor único (CDB), optimizando recursos.

Diferencia entre CDB y PDB

- CDB (Container Database):
- Base de datos contenedor que gestiona recursos compartidos y procesos.
- Contiene PDBs y el Root Container (información común).
- PDB (Pluggable Database):
- Base de datos independiente, alojada dentro de un CDB.
- Cada PDB tiene sus propios datos y esquemas.

Ventajas: Aislamiento, gestión centralizada y facilidad de migración.

Tema II Tema II: Creación de Base de Datos

Consejo Multitenant

- Oracle recomienda usar la arquitectura multitenant para consolidación de bases de datos, mejorando la administración, seguridad y escalabilidad.
- A partir de Oracle 21c, multitenant es obligatorio, eliminando la arquitectura tradicional.

DBCA (Database Configuration Assistant)

Herramienta gráfica para crear, configurar y administrar bases de datos Oracle.

1. Crear Base de Datos Tradicional (19c e inferiores):

- Selección manual de opciones para bases de datos autónomas (no multitenant).
- Incluye configuración de parámetros básicos como:
- Ubicación de archivos.
- Configuración de memoria (SGA y PGA).
- Creación de usuarios y esquemas básicos.

2. Crear Base de Datos Multitenant (21c):

- En versiones 21c, solo se pueden crear CDBs con PDBs.
- Pasos adicionales incluyen:
- Definición de cantidad de PDBs iniciales.
- Configuración de ficheros específicos para cada PDB.

Ficheros y Directorios

- Creados por defecto:
- Archivos de datos (.dbf), control y redo logs.

- Archivos de parámetros (SPFILE o PFILE).
- Directorio ORACLE_HOME y subdirectorios asociados a instancia.
- Adicionales en 21c:
- Directorios exclusivos para cada PDB dentro del contenedor (CDB).
- Archivos temporales y de recuperación asignados a cada PDB.

Procesos y Memoria

- Tradicional:
- Recursos dedicados a una única base de datos, gestionados por una instancia específica.
- Multitenant:
- CDB (Contenedor): Procesos y memoria compartidos.
- PDBs (Bases de Datos Alojadas): Reutilizan recursos del contenedor. Consumen menos memoria que instancias tradicionales

Uso Avanzado de DBCA

1. Crear otra Base de Datos Tradicional (19c):

- Selección avanzada permite configurar:
- Ajuste detallado de memoria.
- Configuración de redo logs, archivos de control y almacenamiento.
- Personalización de esquemas iniciales.

2. Crear Multitenant:

- Configuración avanzada para definir el tamaño del contenedor, recursos, y número inicial de PDBs.
- Creación y asignación de directorios específicos.

Configurar Variables de Entorno (oraenv)

- Script para configurar variables necesarias para acceder a diferentes instancias de Oracle.
- Pasos:

- 1. Ejecutar oraenv.
- Especificar el SID (identificador de la base de datos).
- 3. Variables configuradas: ORACLE_HOME, ORACLE_SID, PATH.

Ficheros, Memoria y Procesos en una Multitenant

- **Ficheros:** Cada PDB tiene archivos de datos y temporales separados dentro del almacenamiento asignado por el CDB.
- Memoria: CDB administra la memoria (SGA y PGA), compartiéndola entre las PDBs.
- Procesos: Procesos principales de la instancia del CDB gestionan el acceso y tareas comunes para todas las PDBs.

Tema III: SQL*Plus - Herramienta de Administración

Introducción a SQL*Plus

- **SQL*Plus** es una herramienta de línea de comandos proporcionada por Oracle para interactuar con la base de datos.
- Permite ejecutar comandos SQL, PL/SQL, y comandos específicos de SQL*Plus para administrar y gestionar bases de datos Oracle.
- Características clave:
- Fácil acceso para ejecutar consultas y administrar bases de datos.
- Soporte para scripts de automatización.
- Visualización y formato de resultados.

Un paseo por SQL*Plus

- Acceso:
- 4. Iniciar sesión desde la terminal usando: bash Copiar código

sqlplus usuario/contraseña@base_datos

5. Para usar el entorno local, establecer el SID con oraenv y luego:

Copiar código

sqlplus / as sysdba

Entorno básico:

- 1. Al iniciar, muestra un prompt con el símbolo SQL>.
- 2. Puedes ejecutar comandos SQL directamente o guardar scripts con extensión .sql.
- Salida y formato:
- 1. Los resultados se muestran en formato tabular por defecto.
- Se puede personalizar con comandos como SET para ajustar el ancho de columnas, encabezados, etc.

Algunos comandos útiles de SQL*Plus

- 1. Conexión y Desconexión:
- CONNECT usuario/contraseña@db: Conecta a una base de datos.
- EXIT o QUIT: Salir de SQL*Plus.
- Comandos de entorno:
- SET: Configura opciones de SQL*Plus.
 - SET LINESIZE n: Ajusta el ancho de las líneas.
 - SET PAGESIZE n: Establece el número de filas mostradas por página.
 - SET HEADING OFF: Oculta los encabezados de columna.
- CLEAR: Limpia buffers o ajustes:
 - CLEAR SCREEN: Limpia la pantalla.
 - CLEAR BUFFER: Limpia el buffer de comandos.

3. Manipulación de scripts:

- SPOOL archivo.log: Guarda la salida de la sesión en un archivo.
- @script.sql: Ejecuta un script guardado.
- EDIT script.sql: Abre el script para editar (requiere configurar un editor).

4. Comandos de consulta:

- DESCRIBE tabla: Muestra la estructura de una tabla.
- SELECT: Ejecuta consultas SQL.
- SHOW PARAMETER nombre: Muestra parámetros específicos de la base de datos.

5. Comandos administrativos:

- ALTER SYSTEM: Cambia parámetros a nivel de instancia.
- SHUTDOWN: Cierra la base de datos.
- STARTUP: Inicia la base de datos.

6. Formateo de resultados:

- COLUMN columna FORMAT formato: Ajusta el formato de una columna específica.
- BREAK ON columna: Agrupa resultados basados en una columna.

Tema IV: Administración Básica de la Base de Datos

Introducción al arranque de la Base de Datos

- El arranque de una base de datos Oracle implica inicializar la instancia, asociarla con la base de datos y abrirla para su uso.
- Fases del arranque:
- 1. **No Mount**: Solo se carga la instancia (procesos y memoria).
- 2. **Mount**: La instancia se conecta a los archivos de control.
- 3. **Open**: La base de datos está lista para operaciones.

Comando STARTUP

 Utilizado para arrancar la base de datos. Sintaxis básica:sql Copiar código

STARTUP [OPENIMOUNTINOMOUNT];

- NOMOUNT: Solo instancia.
- *MOUNT*: Instancia + archivos de control.
- OPEN: Base de datos operativa (predeterminado).
- Ejemplo:sql Copiar código

STARTUP MOUNT;

Parar la Base de Datos: Introducción

 Parar la base de datos implica cerrar conexiones activas, sincronizar cambios pendientes y liberar recursos de memoria y procesos.

Comando SHUTDOWN

Sintaxis básica:sql
 Copiar código

SHUTDOWN [NORMALIIMMEDIATEITRANSACTIONALIABORT];

- NORMAL: Espera a que los usuarios se desconecten.
- *IMMEDIATE*: Desconecta usuarios y guarda transacciones.
- TRANSACTIONAL: Completa transacciones activas antes de desconectar.
- ABORT: Parada inmediata, sin guardar cambios pendientes.

Diccionario de Datos: Tablas y Vistas

- Diccionario de Datos: Conjunto de tablas y vistas que contienen información sobre la estructura de la base de datos.
- Ejemplo: USER_TABLES, ALL_TABLES, DBA_TABLES.

V\$FIXED TABLE: Información de Vistas y Tablas Dinámicas

- V\$: Prefijo de vistas dinámicas que muestran información en tiempo real.
- Para listar vistas dinámicas:sql
 Copiar código

```
SELECT * FROM V$FIXED_TABLE;
```

• **Ejemplo**: Recuperar información de la SGA:sql Copiar código

```
SELECT * FROM V$SGA;
```

Parámetros de la Base de Datos

- Configuran el comportamiento de la base de datos.
- Se almacenan en el archivo de parámetros:
- SPFILE (Server Parameter File): Archivo binario usado por la instancia al arrancar.
- PFILE (Parameter File): Archivo de texto alternativo.

Niveles de Parámetros:

- 1. Sesión: Cambios aplican solo a la sesión actual.
- 2. Sistema: Cambios aplican a toda la instancia.

Cambiar Parámetros

Nivel de Sesión:

sql Copiar código

ALTER SESSION SET parametro = valor;

Ejemplo:

sal

Copiar código

ALTER SESSION SET SORT_AREA_SIZE = 1048576;

Nivel de Sistema:

sql

Copiar código

ALTER SYSTEM SET parametro = valor [SCOPE = {MEMORYISPFILEI BOTH}];

- MEMORY: Solo en la memoria de la instancia actual.
- SPFILE: Se guarda para el siguiente arranque.
- BOTH: Aplica al momento y se guarda.

Ejemplo:

sql

Copiar código

ALTER SYSTEM SET LOG_BUFFER = 1048576 SCOPE = BOTH;

Tema V: Conexiones y Redes en Oracle - Listener

Introducción a las Conexiones y Redes en Oracle

 Oracle usa conexiones cliente-servidor para interactuar con bases de datos.

- Conexión: El cliente envía solicitudes al servidor, que las procesa y devuelve resultados.
- Red: Permite que clientes remotos se conecten a bases de datos Oracle usando protocolos de red como TCP/IP.

Conexiones locales y servicios

- Conexión local: Cliente y base de datos están en el mismo servidor. Usa ORACLE_SID para identificar la instancia.
- Conexión de servicio: Cliente y base de datos están en diferentes servidores. Usa un servicio definido en el archivo TNSNAMES.ORA para conectarse.

Formas de conexión

- 1. Conexión local:
- Se configura en el entorno usando ORACLE_HOME y ORACLE_SID.
- Ejemplo:bash Copiar código

sqlplus / as sysdba

2. Conexión remota:

- Usa un servicio definido en TNSNAMES.ORA.
- Ejemplo:bash
 Copiar código

sqlplus usuario/contraseña@servicio

LISTENER: Ficheros de Configuración

- **Listener**: Proceso que escucha solicitudes de conexión en un puerto específico (por defecto, 1521).
- Archivos principales:
- LISTENER.ORA: Configura el listener.
- TNSNAMES.ORA: Define servicios de red para clientes.
- SQLNET.ORA: Configura parámetros generales de red.

Crear un Listener

- 1. Modificar el archivo LISTENER.ORA (ubicado en \$ORACLE_HOME/network/admin).
- Ejemplo básico:plaintext Copiar código

```
LISTENER = (DESCRIPTION_LIST = (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)(HOST = hostname)(PORT = 1521))))
```

2. Iniciar el listener con Isnrctl:

_{bash} Copiar código

Isnrctl start

Utilidad LSNRCTL

- Herramienta de línea de comandos para administrar el listener.
- Comandos comunes:
- Isnrctl start: Inicia el listener.
- Isnrctl stop: Detiene el listener.
- Isnrctl status: Muestra el estado actual del listener.
- Isnrctl reload: Recarga la configuración sin detener el listener.

Crear SQLNET y TNSNAMES

- 1. **SQLNET.ORA**:
- Configura el protocolo de red y las políticas de autenticación.
- Ejemplo:plaintext Copiar código

SQLNET.AUTHENTICATION_SERVICES = (NTS)

2. TNSNAMES.ORA:

- Define servicios para conexiones remotas.
- Ejemplo:plaintext Copiar código

```
SERVICIO_DB = (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP) (HOST = hostname)(PORT = 1521)) (CONNECT_DATA = (SERVICE_NAME = nombre_base_de_datos)))
```

NETMGR: Otra Utilidad de Configuración de Red

- **Network Manager (NETMGR)**: Herramienta gráfica para configurar LISTENER.ORA, TNSNAMES.ORA, y SQLNET.ORA.
- Ventajas:
- Simplifica la edición de archivos de configuración.
- Útil para administradores menos familiarizados con archivos manuales.

Pasos básicos:

- 1. Abrir netmgr.
- 2. Configurar un nuevo listener o servicio en la base de datos.
- 3. Guardar los cambios, que se aplicarán a los archivos relevantes.

Tema VI: SQL Developer - Herramienta Gráfica para Administración

Introducción a SQL Developer

- SQL Developer es una herramienta gráfica gratuita de Oracle que permite interactuar con bases de datos de forma sencilla.
- Diseñado para desarrolladores y administradores, ofrece funcionalidades para:
- Ejecutar comandos SQL y PL/SQL.
- Administrar bases de datos y objetos (tablas, índices, vistas, etc.).
- Migrar datos entre bases de datos.

• Realizar tareas administrativas como monitoreo y configuración.

Características Principales

- 1. Interfaz amigable:
- Acceso rápido a esquemas, tablas, vistas, procedimientos almacenados y más.
- Paneles gráficos para explorar objetos de la base de datos.
- 2. Ejecución de comandos SQL y PL/SQL:
- Editor avanzado con resaltado de sintaxis y autocompletado.
- Ventana de salida para ver resultados y mensajes de error.
- 3. Administración de Bases de Datos:
- Creación y gestión de usuarios y roles.
- Configuración de privilegios.
- Visualización y modificación de parámetros de la base de datos.
- 4. Exportación e importación de datos:
- Exportar tablas a formatos como CSV, Excel, XML.
- Importar datos desde archivos externos.
- 5. Monitoreo:
- Paneles para visualizar el rendimiento de la base de datos.
- Análisis de sesiones activas y consultas lentas.

Instalación y Configuración

- 1. Descargar desde el sitio oficial de Oracle.
- 2. Requisitos:
- Java Development Kit (JDK) 8 o superior.
- Configurar la conexión con la base de datos, proporcionando:
 - Host y Puerto.
 - SID o Service Name.
 - Usuario y contraseña.

Usos Comunes como Administrador

- Conexión a la base de datos:
- Crear una nueva conexión usando las credenciales de administrador (e.g., SYS o SYSTEM).
- Guardar conexiones para acceder rápidamente en el futuro.
- 2. Exploración de esquemas y objetos:
- Navegar por las tablas, vistas, índices y paquetes.
- Modificar objetos directamente desde la interfaz.
- 3. Ejecución de scripts:
- Ejecutar scripts SQL o PL/SQL desde el editor.
- Guardar y cargar scripts para reutilización.
- 4. Administración de usuarios y privilegios:
- Crear y modificar usuarios.
- Asignar roles y permisos.
- 5. Gestión de rendimiento:
- Visualizar estadísticas de uso de recursos.
- Identificar bloqueos y consultas que consumen recursos.

Ventajas

- Reducción de la complejidad en tareas administrativas.
- Mayor productividad gracias a su interfaz gráfica.
- Compatible con bases de datos Oracle locales y en la nube.

Tema VI: SQL Developer -Herramienta Gráfica para Trabajar como Administrador

Introducción a SQL Developer

- SQL Developer es una herramienta gráfica gratuita proporcionada por Oracle para interactuar con bases de datos de manera sencilla y eficiente.
- Diseñada para administradores y desarrolladores, ofrece:
 - Ejecución de consultas SQL y PL/SQL.
 - Administración de objetos de base de datos.
 - Gestión de usuarios y roles.
 - Migración y exportación de datos.

Funciones Principales

Interfaz gráfica intuitiva:

- Navegador de base de datos para explorar esquemas, tablas, vistas y otros objetos.
- Editor de consultas con resaltado de sintaxis y autocompletado.

2. Administración de bases de datos:

- Creación y modificación de tablas, índices y vistas.
- Administración de usuarios, roles y privilegios.
- Configuración de parámetros y monitoreo de sesiones.

3. Ejecución de comandos SQL y PL/SQL:

- Ventana de entrada para escribir y ejecutar comandos.
- Soporte para scripts complejos.

4. Exportación e importación de datos:

Exportación a formatos como CSV, Excel, XML, etc.

• Importación de datos desde archivos externos.

5. Monitoreo y gestión de rendimiento:

- Análisis de consultas y uso de recursos.
- Identificación de sesiones activas y consultas costosas.

Instalación y Configuración

Descargar SQL Developer:

 Disponible en el sitio oficial de Oracle: <u>Descargar SQL Developer</u>.

2. Requisitos:

- Java Development Kit (JDK) 8 o superior.
- Configuración del entorno: Conexión a base de datos (host, puerto, SID o servicio).

3. Configuración inicial:

- Crear una conexión:
 - Introducir las credenciales del usuario (nombre, contraseña).
 - Especificar el nombre del host, puerto y SID o nombre del servicio.

Usos Comunes como Administrador

1. Conexión a la base de datos:

- Crear conexiones a bases de datos locales o remotas.
- Guardar conexiones para reutilización.

2. Administración de esquemas:

- Navegar y modificar objetos como tablas, vistas y procedimientos almacenados.
- Crear nuevos objetos o eliminar los existentes.

3. Gestión de usuarios y roles:

- Crear usuarios y asignar privilegios.
- Gestionar roles y perfiles de recursos.

4. Optimización de consultas:

- Uso del Explain Plan para analizar el costo de consultas.
- Identificación de índices faltantes.

5. Exportación e importación de datos:

- Exportar datos para análisis externo o respaldos.
- Importar datos para poblar tablas nuevas.

Ventajas de SQL Developer

- Simplifica tareas administrativas mediante una interfaz gráfica amigable.
- Reduce la necesidad de comandos manuales para configuraciones básicas.
- Permite monitoreo en tiempo real de actividades y uso de recursos.

Tema VII: MULTITENANT - Conceptos Adicionales

Repaso de la arquitectura Multitenant

- Introducida en Oracle 12c, la arquitectura multitenant permite consolidar varias bases de datos (PDBs) dentro de una base de datos contenedora (CDB).
- Componentes principales:
- CDB (Container Database): Contiene estructuras comunes (archivos de control, memoria, procesos).
- PDB (Pluggable Database): Bases de datos individuales alojadas dentro del contenedor.
- Root Container: Almacena datos y metadatos compartidos entre todas las PDBs.
- Seed PDB: Plantilla para crear nuevas PDBs.

Primeros pasos con una CDB: Arrancarla

1. Arrancar la CDB:

 Comando básico para arrancar la base de datos contenedora:sql Copiar código

STARTUP;

 La CDB inicia en el estado abierto, pero las PDBs asociadas permanecen cerradas por defecto.

2. Verificar PDBs en la CDB:

sal

Copiar código

SELECT CON_ID, NAME, OPEN_MODE FROM V\$PDBS;

Abrir y cerrar PDBs

1. Abrir una PDB:

sal

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb OPEN;

2. Abrir todas las PDBs:

sal

Copiar código

ALTER PLUGGABLE DATABASE ALL OPEN;

Cerrar una PDB:

sal

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb CLOSE;

Arrancar PDBs de forma automática

Configuración para abrir PDBs automáticamente al iniciar la CDB:

sql

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb SAVE STATE;

Verificar el estado guardado:

sql

SELECT PDB NAME, PDB STATE FROM DBA PDB SAVED STATES;

Conectarnos en una Multitenant

- 1. Conexión a la CDB:
- Con el usuario SYS o SYSTEM:
 bash
 Copiar código

sqlplus sys/contraseña@cdb service name AS SYSDBA

- 2. Conexión a una PDB específica:
- Indicar el servicio de la PDB:bash Copiar código

sqlplus usuario/contraseña@pdb_service_name

Más opciones de conexión

 Cambiar entre CDB y PDBs en una sesión abierta:sql Copiar código

ALTER SESSION SET CONTAINER = nombre_pdb;

Vistas para consultar CDBs

- Consultar información de la CDB y sus PDBs:
- V\$PDBS: Detalles sobre las PDBs asociadas.
- CDB_TABLES, CDB_USERS: Información consolidada de objetos en todas las PDBs.
- DBA_PDBS: Detalles administrativos de las PDBs.

Ejemplo:

sql

Copiar código

SELECT NAME, OPEN_MODE, RESTRICTED FROM V\$PDBS;

Crear PDBs desde DBCA

1. Iniciar el asistente de configuración (DBCA).

- 2. Seleccionar "Gestionar bases de datos pluggable (PDB)".
- 3. Configurar el nombre de la PDB, ubicación de los archivos y opciones iniciales.
- 4. Crear la PDB usando la **Seed PDB** como plantilla.

Crear una PDB de forma manual

1. Conectar a la CDB como administrador:

bash Copiar código

sqlplus sys/contraseña@cdb_service_name AS SYSDBA

2. Crear la PDB usando la Seed:

sql

Copiar código

CREATE PLUGGABLE DATABASE nombre_pdb ADMIN USER admin IDENTIFIED BY contraseña FILE_NAME_CONVERT = ('/ruta_seed/', '/ruta_nueva_pdb/');

3. Abrir la PDB recién creada:

eal

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb OPEN;

4. Verificar la creación:

sql

Copiar código

SELECT NAME, OPEN_MODE FROM V\$PDBS;

Tema VII: MULTITENANT - Conceptos Adicionales

Repaso de la arquitectura Multitenant

- Introducida en Oracle 12c, la arquitectura multitenant permite consolidar varias bases de datos (PDBs) dentro de una base de datos contenedora (CDB).
- Componentes principales:
- CDB (Container Database): Contiene estructuras comunes (archivos de control, memoria, procesos).
- PDB (Pluggable Database): Bases de datos individuales alojadas dentro del contenedor.
- Root Container: Almacena datos y metadatos compartidos entre todas las PDBs.
- Seed PDB: Plantilla para crear nuevas PDBs.

Primeros pasos con una CDB: Arrancarla

- 1. Arrancar la CDB:
- Comando básico para arrancar la base de datos contenedora:sql
 Copiar código

STARTUP;

- La CDB inicia en el estado abierto, pero las PDBs asociadas permanecen cerradas por defecto.
- 2. Verificar PDBs en la CDB:

_{sql} Copiar código

Abrir y cerrar PDBs

1. Abrir una PDB:

sql

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb OPEN;

2. Abrir todas las PDBs:

sql

Copiar código

ALTER PLUGGABLE DATABASE ALL OPEN;

3. Cerrar una PDB:

sal

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb CLOSE;

Arrancar PDBs de forma automática

• Configuración para abrir PDBs automáticamente al iniciar la CDB:

sql

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb SAVE STATE;

· Verificar el estado guardado:

sql

Copiar código

SELECT PDB_NAME, PDB_STATE FROM DBA_PDB_SAVED_STATES;

Conectarnos en una Multitenant

- 1. Conexión a la CDB:
- Con el usuario SYS o SYSTEM: bash Copiar código

sqlplus sys/contraseña@cdb_service_name AS SYSDBA

- 2. Conexión a una PDB específica:
- Indicar el servicio de la PDB:bash Copiar código

sqlplus usuario/contraseña@pdb_service_name

Más opciones de conexión

 Cambiar entre CDB y PDBs en una sesión abierta:sql Copiar código

ALTER SESSION SET CONTAINER = nombre_pdb;

Vistas para consultar CDBs

- Consultar información de la CDB y sus PDBs:
- V\$PDBS: Detalles sobre las PDBs asociadas.
- CDB_TABLES, CDB_USERS: Información consolidada de objetos en todas las PDBs.
- DBA_PDBS: Detalles administrativos de las PDBs.

Ejemplo:

sal

Copiar código

SELECT NAME, OPEN_MODE, RESTRICTED FROM V\$PDBS;

Crear PDBs desde DBCA

1. Iniciar el asistente de configuración (DBCA).

- 2. Seleccionar "Gestionar bases de datos pluggable (PDB)".
- 3. Configurar el nombre de la PDB, ubicación de los archivos y opciones iniciales.
- 4. Crear la PDB usando la **Seed PDB** como plantilla.

Crear una PDB de forma manual

1. Conectar a la CDB como administrador:

bash Copiar código

sqlplus sys/contraseña@cdb_service_name AS SYSDBA

2. Crear la PDB usando la Seed:

sql

Copiar código

CREATE PLUGGABLE DATABASE nombre_pdb ADMIN USER admin IDENTIFIED BY contraseña FILE_NAME_CONVERT = ('/ruta_seed/', '/ruta_nueva_pdb/');

3. Abrir la PDB recién creada:

eal

Copiar código

ALTER PLUGGABLE DATABASE nombre_pdb OPEN;

4. Verificar la creación:

sql

Copiar código

SELECT NAME, OPEN_MODE FROM V\$PDBS;

Tema VIII: Tablespaces y Gestión del Almacenamiento

Introducción al Almacenamiento

- Un **tablespace** es la unidad lógica de almacenamiento en una base de datos Oracle.
- Contiene uno o más archivos de datos físicos donde se almacenan objetos como tablas e índices.
- Tipos comunes:
- Tablespace permanente: Para datos persistentes.
- Tablespace temporal: Para operaciones transitorias como sorting.
- Tablespace de deshacer: Para gestionar rollback.

Vistas para ver Tablespaces

- Vistas comunes para consultar información de tablespaces:
- DBA_TABLESPACES: Información general.
- DBA_DATA_FILES: Archivos asociados.
- V\$TABLESPACE: Estado de los tablespaces en tiempo real.

Ejemplo:

sql

Copiar código

SELECT TABLESPACE_NAME, STATUS, CONTENTS FROM DBA_TABLESPACES;

Crear una Tablespace

1. Sintaxis básica:

sql Copiar código

CREATE TABLESPACE nombre_tablespace DATAFILE '/ruta/archivo.dbf' SIZE 100M AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED;

2. Tablespace por defecto:

 Al crear usuarios, se les asigna un tablespace predeterminado:sql Copiar código

ALTER DATABASE DEFAULT TABLESPACE nombre_tablespace;

Tablespaces en la Multitenant

- Cada PDB tiene su propio conjunto de tablespaces, pero hereda configuraciones del contenedor (CDB).
- Consultar tablespaces de una PDB:sql Copiar código

SELECT TABLESPACE_NAME FROM CDB_TABLESPACES WHERE CON_ID = (ID_DE_PDB);

Gestión de Extensiones

1. AUTOALLOCATE:

- Oracle gestiona automáticamente el tamaño de los segmentos.
- Ideal para bases de datos con tamaños de objetos variables.
- 2. sql Copiar código

CREATE TABLESPACE nombre AUTOALLOCATE:

UNIFORM:

- Asigna bloques del mismo tamaño.
- Mejor para bases de datos con objetos similares.
- 4. sql Copiar código

CREATE TABLESPACE nombre UNIFORM SIZE 1M;

Añadir ficheros a un Tablespace

 Permite expandir el tamaño del tablespace agregando más archivos:sql
 Copiar código

ALTER TABLESPACE nombre ADD DATAFILE '/ruta/nuevo_archivo.dbf' SIZE 100M;

Cambiar el Estado de un Tablespace

 OFFLINE: No está disponible para uso:sql Copiar código

ALTER TABLESPACE nombre OFFLINE;

 READ_ONLY: Disponible solo para consultas:sql Copiar código

ALTER TABLESPACE nombre READ ONLY;

Autoextender Ficheros

 Activar autoextensión para un archivo de datos:sql Copiar código

ALTER DATABASE DATAFILE '/ruta/archivo.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED;

Cambiar Manualmente el Tamaño de un Fichero

 Incrementar el tamaño de un archivo:sql Copiar código

ALTER DATABASE DATAFILE '/ruta/archivo.dbf' RESIZE 200M;

Mover y Renombrar Ficheros

- Cambiar ubicación de un archivo:
- 5. Mover el archivo al nuevo destino y renombrarlo:sql Copiar código

ALTER DATABASE RENAME FILE '/ruta/archivo_viejo.dbf' TO '/ruta/archivo_nuevo.dbf';

Hacer online nuevamente:sql Copiar código

ALTER TABLESPACE nombre ONLINE;

Tablespaces Temporales

- Usados para operaciones temporales como ordenamiento y unión.
- Consultar tablespaces temporales:sql
 Copiar código

SELECT TABLESPACE_NAME FROM DBA_TABLESPACES WHERE CONTENTS = 'TEMPORARY';

Trabajar con tablespaces temporales:

• Crear:sql Copiar código

CREATE TEMPORARY TABLESPACE temp_tbs TEMPFILE '/ruta/tempfile.dbf' SIZE 50M;

 Asignar a un usuario:sql Copiar código

ALTER USER nombre TEMPORARY TABLESPACE temp_tbs;

Borrar una Tablespace

Eliminar un tablespace junto con sus archivos:sql
 Copiar código

DROP TABLESPACE nombre INCLUDING CONTENTS AND DATAFILES:

Uso de Enterprise Manager con Tablespaces

- Enterprise Manager proporciona una interfaz gráfica para:
- · Crear, modificar y eliminar tablespaces.

- Monitorear el uso de espacio y rendimiento.
- Configurar opciones de autoextensión y agregar archivos de datos.

Tema IX: Ficheros de Control

Introducción a los Ficheros de Control

- Los **ficheros de control** son componentes esenciales en una base de datos Oracle.
- Contienen información clave sobre la estructura y el estado de la base de datos:
- Identificadores de la base de datos.
- Ubicación de los archivos de datos y redo logs.
- Información sobre puntos de recuperación (checkpoints).
- Registros de archivos archivados.

Características principales:

- Se actualizan constantemente durante el funcionamiento de la base de datos.
- Una base de datos debe tener al menos un fichero de control, pero se recomienda mantener múltiples copias en ubicaciones distintas para mayor redundancia.

Comprobar los Ficheros de Control

Consultar los ficheros de control configurados:

sql Copiar código

SELECT NAME FROM V\$CONTROLFILE;

Verificar el estado de los ficheros:

sql Copiar código

SELECT STATUS FROM V\$CONTROLFILE_RECORD_SECTION;

Crear un init.ora desde un SPFILE

- 1. Extraer parámetros de un SPFILE:
- Usar el comando:sql Copiar código

CREATE PFILE='/ruta/init.ora' FROM SPFILE:

- 2. Modificar el archivo init.ora según sea necesario:
- Ajustar rutas, tamaños, etc.
- Arrancar la base de datos con el init.ora:
- Asegurarse de que la base de datos esté cerrada:sql Copiar código

SHUTDOWN IMMEDIATE;

 Arrancar la base de datos usando el PFILE:sql Copiar código

STARTUP PFILE='/ruta/init.ora';

Añadir un ControlFile y Arrancar

- 1. Editar el PFILE o SPFILE para incluir un nuevo fichero de control:
- En el init.ora:plaintext Copiar código

CONTROL_FILES = ('/ruta/control01.ctl', '/ruta/nuevo_control.ctl')

Para un SPFILE:sql
 Copiar código

ALTER SYSTEM SET CONTROL_FILES='/ruta/control01.ctl', '/ruta/nuevo_control.ctl' SCOPE=SPFILE;

2. Crear el nuevo fichero de control como una copia de uno existente:

bash Copiar código

3. Arrancar la base de datos:

sql Copiar código

STARTUP:

Crear un SPFILE desde un init.ora y Arrancar la Base de Datos

1. Convertir un init.ora en un SPFILE:

^{sql} Copiar código

CREATE SPFILE='/ruta/spfile.ora' FROM PFILE='/ruta/init.ora';

2. Arrancar la base de datos usando el nuevo SPFILE:

 Apagar la base de datos si está en ejecución:sql Copiar código

SHUTDOWN IMMEDIATE;

 Arrancar de nuevo:sql Copiar código

STARTUP:

Enterprise Manager y Ficheros de Control

- Enterprise Manager proporciona una interfaz gráfica para:
- Visualizar los ficheros de control configurados.
- Monitorear su estado.
- Agregar o modificar ubicaciones de ficheros de control.
- Para realizar cambios, acceder al menú de configuración de almacenamiento en la consola de Enterprise Manager.

Tema X: UNDO

Introducción a UNDO

- UNDO es un mecanismo en Oracle que gestiona los cambios realizados en una transacción antes de que sean confirmados (COMMIT).
- Proporciona:
- Consistencia en lectura: Permite que los usuarios vean datos coherentes durante una transacción.
- Recuperación de transacciones: Facilita el rollback en caso de fallos o cancelación de operaciones.

Consistencia en Lectura

- Oracle utiliza segmentos de UNDO para mantener una copia consistente de los datos que están siendo modificados.
- Ejemplo:
- Un usuario modifica una fila, pero otro usuario la consulta antes del COMMIT. Oracle usa UNDO para mostrar la versión previa de la fila al segundo usuario.

Parámetros de UNDO y Tablespaces

- 1. Parámetros clave:
- UNDO_TABLESPACE: Define el tablespace usado para segmentos de UNDO.
- UNDO_RETENTION: Tiempo (en segundos) que Oracle retiene información UNDO para consultas de consistencia en lectura y recuperación.

2. Configurar parámetros:

sql Copiar código

ALTER SYSTEM SET UNDO_TABLESPACE = nombre_undo_tablespace; ALTER SYSTEM SET UNDO_RETENTION = 900;

Ver Transacciones

 Consultar las transacciones activas que usan UNDO:sql Copiar código

SELECT * FROM V\$TRANSACTION;

Crear Tablespace de UNDO y Convertirla en la Predeterminada

1. Crear un tablespace de UNDO:

^{sql} Copiar código

CREATE UNDO TABLESPACE undo_tbs DATAFILE '/ruta/undo_tbs.dbf' SIZE 500M;

2. Hacerlo el tablespace de UNDO por defecto:

^{sql} Copiar código

ALTER SYSTEM SET UNDO_TABLESPACE = undo_tbs;

Periodo de Retención de UNDO (UNDO_RETENTION)

- Especifica cuánto tiempo se retiene la información UNDO después del COMMIT.
- Configurar el tiempo de retención:sql Copiar código

ALTER SYSTEM SET UNDO_RETENTION = 1200;

 Consultar el valor actual:sql Copiar código

Vistas para Consultar UNDO

- Vistas importantes:
- DBA UNDO EXTENTS: Información sobre extensiones UNDO.
- V\$UNDOSTAT: Estadísticas de uso y retención de UNDO.
- DBA_TABLESPACES: Detalles sobre los tablespaces de UNDO.

Ejemplo:

sql

Copiar código

SELECT BEGIN_TIME, END_TIME, UNDOTSN, UNDOBLKS FROM V\$UNDOSTAT;

Borrar Tablespace UNDO

- 1. Mover transacciones activas a otro tablespace:
- Configurar un nuevo tablespace de UNDO por defecto:sql Copiar código

ALTER SYSTEM SET UNDO_TABLESPACE = nuevo_undo_tbs;

2. Eliminar el tablespace antiguo:

sql Copiar código

DROP TABLESPACE antiguo_undo_tbs INCLUDING CONTENTS AND DATAFILES;

Enterprise Manager y UNDO

- Enterprise Manager simplifica la administración de UNDO:
- Monitoriza el uso de UNDO en tiempo real.
- Configura el tablespace predeterminado y el periodo de retención.
- Optimiza el tamaño y la extensión de UNDO.

Tema XI: REDO LOGS

Introducción a los Redo Logs

- Redo Logs son un componente clave en Oracle para garantizar la recuperación de datos en caso de fallos.
- Función principal:
- Registrar todas las transacciones (modificaciones de datos) realizadas en la base de datos, ya sean confirmadas (COMMIT) o no.
- Estructura:
- Conjunto de grupos de redo logs que contienen uno o más miembros (copias idénticas del grupo para redundancia).
- Los Redo Logs permiten a Oracle restaurar los cambios en caso de fallos inesperados.

Ver el Funcionamiento de los Redo Logs

1. Consultar los grupos de redo logs:

sql Copiar código

SELECT GROUP#, STATUS, MEMBERS, BYTES FROM V\$LOG;

2. Consultar los miembros de redo logs:

sql Copiar código

SELECT GROUP#, MEMBER FROM V\$LOGFILE:

- 3. Estados comunes de los grupos:
- CURRENT: Grupo activo que está registrando cambios.
- ACTIVE: Cambios guardados en disco pero necesarios para recuperación.
- *INACTIVE*: Cambios ya archivados, no necesarios para recuperación inmediata.

Añadir un Miembro de Redo Log

 Para aumentar la redundancia de un grupo:sql Copiar código

ALTER DATABASE ADD LOGFILE MEMBER '/ruta/nuevo_redo01.log' TO GROUP 1;

Añadir un Grupo de Redo Log

 Para mejorar la capacidad de registro y rendimiento:sql Copiar código

ALTER DATABASE ADD LOGFILE GROUP 4 ('/ruta/redo04a.log', '/ruta/redo04b.log') SIZE 50M;

Borrar un Miembro de un Grupo de Redo Log

- 1. Comprobar que el miembro no está en uso:
- Consultar el estado del grupo:sql Copiar código

SELECT GROUP#, STATUS FROM V\$LOG;

2. Eliminar un miembro del grupo:

^{sql} Copiar código

ALTER DATABASE DROP LOGFILE MEMBER '/ruta/miembro_a_eliminar.log';

Borrar un Grupo de Redo Log

- 1. Asegurarse de que el grupo no está activo:
- Cambiar el grupo activo si es necesario:sql Copiar código

ALTER SYSTEM SWITCH LOGFILE;

2. Eliminar el grupo:

^{sql} Copiar código

ALTER DATABASE DROP LOGFILE GROUP 3;

Enterprise Manager y Redo Logs

- Enterprise Manager permite:
- Visualizar el estado y tamaño de los redo logs.
- Añadir o eliminar grupos y miembros mediante una interfaz gráfica.
- Monitorear la actividad y el uso de los redo logs en tiempo real.

Tema XII: ARCHIVELOG

Introducción a Archivelog

- Modo ARCHIVELOG en Oracle permite que los redo logs se almacenen en formato de archivo una vez llenos.
- Función principal:
- Facilitar la recuperación completa de datos en caso de fallos, incluyendo datos perdidos desde el último backup.
- Ventaja clave:
- Permite respaldos en línea, sin necesidad de apagar la base de datos.

Propiedades de los Archivelog

- Al habilitar ARCHIVELOG:
- Los redo logs llenos se copian a un destino de archivo (archivo de log archivado).

- Se conserva el historial de todas las transacciones de la base de datos
- Vista para consultar el estado del modo:sql Copiar código

SELECT LOG_MODE FROM V\$DATABASE;

- ARCHIVELOG: El modo está habilitado.
- NOARCHIVELOG: El modo está deshabilitado.

Configurar Destinos y Formatos

- Configurar el destino donde se almacenarán los archivos de log:
- Cambiar el destino:sql
 Copiar código

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/ruta/archivelogs/';

Configurar múltiples destinos (opcional):sql Copiar código

ALTER SYSTEM SET LOG ARCHIVE DEST 2='SERVICE=standby db';

- 2. Configurar el formato del archivo:
- Definir formato de nombres:sql Copiar código

ALTER SYSTEM SET LOG_ARCHIVE_FORMAT='log_%t_%s_%r.arc';

%t: Número de thread.

- %s: Número de secuencia.
- %r: ID de restauración de la base de datos.

Cambiar la Base de Datos a ARCHIVELOG

- 1. Preparar la base de datos:
- Asegurarse de que la base de datos esté en modo MOUNT:sql Copiar código

SHUTDOWN IMMEDIATE; STARTUP MOUNT;

2. Habilitar el modo ARCHIVELOG:

sql Copiar código

ALTER DATABASE ARCHIVELOG;

3. Abrir la base de datos:

sql Copiar código

ALTER DATABASE OPEN;

4. Verificar el cambio:

sql Copiar código

ARCHIVE LOG LIST;

Enterprise Manager y Archivelog

- Enterprise Manager simplifica la configuración del modo ARCHIVELOG:
- Configura destinos y formatos de manera gráfica.
- Muestra el estado actual del modo.
- Permite habilitar o deshabilitar ARCHIVELOG desde el menú de configuración.

Tema XIII: Procesos en Oracle

Introducción a los Procesos en Oracle

- Los procesos son programas en ejecución que permiten la interacción entre el cliente y la base de datos Oracle.
- Se dividen en dos tipos principales:

1. Procesos de usuario:

 Representan las solicitudes de los clientes (consultas SQL, PL/SQL, etc.).

2. Procesos de servidor:

- Manejan las solicitudes de los usuarios interactuando con la base de datos.
- Modos de configuración de procesos de servidor:
- Servidor Dedicado: Cada usuario tiene un proceso de servidor exclusivo.
- 2. **Servidor Compartido**: Un conjunto de procesos de servidor se comparte entre múltiples usuarios.

Repaso de Procesos Dedicados

- En el **modo dedicado**, cada conexión de cliente recibe un proceso de servidor único.
- Ventajas:
- Mejor rendimiento para usuarios individuales.
- Ideal para sistemas con pocas conexiones simultáneas.
- Desventajas:
- Requiere más recursos en sistemas con muchas conexiones.
- Ejemplo de conexión en modo dedicado:bash Copiar código

sqlplus usuario/contraseña@servidor

Configurar Servidores Compartidos

- En el modo compartido, múltiples conexiones de usuario utilizan un grupo de procesos de servidor.
- Ventajas:
- Reduce el uso de recursos al compartir procesos.
- Escalable para sistemas con muchas conexiones concurrentes.
- Desventajas:
- Latencia adicional debido al intercambio de procesos.
- 3. Configurar parámetros en el archivo de inicialización:
- Activar servidores compartidos:sql Copiar código

ALTER SYSTEM SET SHARED SERVERS = 5;

Definir procesos máximos:sql
 Copiar código

ALTER SYSTEM SET MAX_SHARED_SERVERS = 20;

• Configurar colas de despacho:sql Copiar código

ALTER SYSTEM SET DISPATCHERS = '(PROTOCOL=TCP)' (DISPATCHERS=2)';

2. Verificar configuración de servidores compartidos:

Consultar la vista V\$SHARED_SERVER:sql
 Copiar código

SELECT SERVER, STATUS FROM V\$SHARED_SERVER;

Modificar dinámicamente la cantidad de servidores compartidos:

sqı . . .

Copiar código

ALTER SYSTEM SET SHARED_SERVERS = 10;

Tema XIV: Usuarios y Privilegios

Introducción a la Seguridad

- La seguridad en Oracle se basa en:
- Usuarios: Identidades que interactúan con la base de datos.
- Privilegios: Permisos que determinan las acciones que un usuario puede realizar.
- Roles: Conjuntos de privilegios asignados a usuarios.

Usuarios Creados por Defecto

- Oracle crea usuarios predeterminados al instalar la base de datos, como:
- SYS y SYSTEM: Administradores.
- HR, SCOTT, etc.: Usuarios de ejemplo.
- Consultar usuarios predeterminados:sql Copiar código

SELECT USERNAME FROM DBA USERS;

Crear un Usuario

1. Sintaxis básica:sql

Copiar código

CREATE USER nombre IDENTIFIED BY contraseña;

2. Ejemplo:sql

Copiar código

CREATE USER juan IDENTIFIED BY 12345;

Usuarios en Multitenant

- 1 Usuarios comunes:
- Existen en el contenedor raíz (CDB) y en todas las PDBs.
- Se crean usando el prefijo C##:sql Copiar código

CREATE USER C##admin IDENTIFIED BY admin123 CONTAINER=ALL;

2. Usuarios locales:

- Existen solo dentro de una PDB específica.
- Crear usuario local en una PDB:sql Copiar código

CREATE USER local_user IDENTIFIED BY localpass;

3. Usuarios globales:

- Autenticados mediante servicios externos (LDAP).
- Ejemplo:sql Copiar código

CREATE USER global_user IDENTIFIED GLOBALLY AS 'CN=usuario,OU=unidad,DC=dominio';

Modificar un Usuario

Cambiar contraseña:

sql Copiar código

ALTER USER nombre IDENTIFIED BY nueva contraseña;

• Cambiar parámetros (como límite de espacio):

sql Copiar código

ALTER USER nombre QUOTA 100M ON tablespace_nombre;

Reservar Espacio para los Usuarios

 Asignar espacio en un tablespace:sql Copiar código

ALTER USER nombre QUOTA 100M ON nombre_tablespace;

Estado de los Usuarios

Bloquear cuentas:

sql Copiar código

ALTER USER nombre ACCOUNT LOCK;

Desbloquear cuentas:

sql

Copiar código

ALTER USER nombre ACCOUNT UNLOCK;

Expiración de contraseñas:

sql

Copiar código

ALTER PROFILE DEFAULT LIMIT PASSWORD_LIFE_TIME 90;

Borrar un Usuario

 Eliminar usuario y sus objetos:sql Copiar código

DROP USER nombre CASCADE;

Privilegios: Introducción

- Los privilegios se dividen en:
- **Privilegios de sistema**: Permiten acciones administrativas (crear tablas, sesiones, etc.).
- **Privilegios de objeto**: Permiten operaciones sobre objetos específicos (tablas, vistas, etc.).

Dar Privilegios de Sistema

Sintaxis básica:sql
 Copiar código

GRANT privilegio TO usuario;

• Ejemplo:sql

Copiar código

GRANT CREATE SESSION TO juan;

Heredar Privilegios

 Usar roles para agrupar privilegios:sql Copiar código

CREATE ROLE manager_role; GRANT CREATE TABLE, CREATE VIEW TO manager_role; GRANT manager_role TO juan;

Eliminar Privilegios de Sistema

 Revocar privilegios:sql Copiar código

REVOKE privilegio FROM usuario;

• Ejemplo:sql Copiar código

REVOKE CREATE SESSION FROM juan;

Dar Privilegios de Objeto

 Permitir acceso a un objeto:sql Copiar código

GRANT SELECT, INSERT ON tabla TO usuario;

Dar Privilegios sobre Columnas

• Especificar columnas al conceder privilegios:sql Copiar código

GRANT SELECT (columna1, columna2) ON tabla TO usuario;

Heredar Privilegios de Objeto

 Usar un rol para agrupar privilegios de objeto y asignarlo a un usuario:sql Copiar código

GRANT SELECT ON tabla TO rol; GRANT rol TO usuario;

Quitar Privilegios de Objeto

 Revocar privilegios de un objeto:sql Copiar código

REVOKE SELECT ON tabla FROM usuario;

Vistas para Visualizar Privilegios

- Consultar privilegios otorgados:
- DBA_SYS_PRIVS: Privilegios de sistema.
- DBA_TAB_PRIVS: Privilegios de objetos.
- USER_ROLE_PRIVS: Roles asignados al usuario.
- Ejemplo:sql Copiar código

SELECT * FROM DBA SYS PRIVS WHERE GRANTEE = 'JUAN':

Usar Enterprise Manager con Usuarios y Roles

- Enterprise Manager facilita:
- Crear, modificar y eliminar usuarios.
- Asignar roles y privilegios mediante una interfaz gráfica.
- Monitorear el uso de recursos por usuario.

Tema XV: Roles

Introducción a los Roles

- Roles en Oracle son conjuntos de privilegios agrupados que facilitan la gestión de permisos para usuarios.
- Beneficios:
- Simplifican la asignación y revocación de permisos.
- Mejoran la administración de seguridad en bases de datos con muchos usuarios.

Roles Predefinidos

- Oracle proporciona roles predefinidos con permisos comunes:
- CONNECT: Permite iniciar sesiones en la base de datos.
- RESOURCE: Permite crear objetos como tablas e índices.
- DBA: Privilegios administrativos completos.
- SELECT_CATALOG_ROLE: Permite acceder a vistas del diccionario de datos.

Ejemplo para consultar roles predefinidos:

sql

Copiar código SELECT * FROM DBA_ROLES;

Crear un Rol

1. Sintaxis básica:

^{sql} Copiar código

CREATE ROLE nombre_rol;

2. **Ejemplo**:

sql

Copiar código

CREATE ROLE admin_role;

Crear un Rol Global en Multitenant

- Un rol global se autentica mediante un servicio externo (como LDAP).
- Ejemplo:sql Copiar código

CREATE ROLE global_role IDENTIFIED GLOBALLY;

Otorgar y Quitar Permisos a un Rol

1. Otorgar privilegios:

sql Copiar código

GRANT CREATE SESSION, CREATE TABLE TO admin_role;

2. Revocar privilegios:

sql Copiar código

REVOKE CREATE TABLE FROM admin_role;

Asignar un Rol a un Usuario

1. Otorgar un rol:

sql Copiar código

GRANT admin_role TO juan;

2. Revocar un rol:

sql Copiar código

REVOKE admin_role FROM juan;

Vistas para Ver Información de los Roles

- Vistas clave:
- DBA ROLES: Lista de roles existentes.
- DBA_ROLE_PRIVS: Roles asignados a usuarios.
- ROLE_TAB_PRIVS: Privilegios de objeto asociados a roles.

Ejemplo:

sql

Copiar código

SELECT * FROM DBA_ROLE_PRIVS WHERE GRANTEE = 'JUAN';

Borrar un Rol

 Eliminar un rol de la base de datos:sql Copiar código

DROP ROLE admin_role;

Enterprise Manager para Roles

- Enterprise Manager permite:
- Crear, modificar y eliminar roles.
- Asignar y revocar privilegios y roles a usuarios.
- Monitorear el uso de roles y privilegios asignados.

Tema XVI: Profiles

Introducción a los Profiles

- Profiles son herramientas de Oracle para controlar y limitar el uso de recursos y definir políticas de contraseñas para usuarios.
- Objetivos principales:
- Gestionar recursos del sistema (CPU, sesiones, etc.).
- Aplicar políticas de seguridad de contraseñas.

Perfil Default

- Oracle crea un perfil predeterminado llamado DEFAULT.
- Todos los usuarios sin un perfil específico utilizan este.
- El perfil DEFAULT se puede modificar, pero no eliminar.

Ejemplo para consultar el perfil DEFAULT:

sql

Copiar código

SELECT * FROM DBA_PROFILES WHERE PROFILE = 'DEFAULT';

Crear y Modificar un Perfil (Recursos de Kernel)

1. Crear un perfil:

sql Copiar código CPU_PER_SESSION 10000 CPU_PER_CALL 3000;

2. Modificar un perfil existente:

sql Copiar código

ALTER PROFILE nombre_perfil LIMIT SESSIONS_PER_USER 3 IDLE_TIME 30;

Asignar un Perfil a un Usuario

 Para asignar un perfil a un usuario:sql Copiar código

ALTER USER nombre_usuario PROFILE nombre_perfil;

Recursos de Password de un Perfil

- Políticas relacionadas con la seguridad de contraseñas, como:
- LONGITUD MÍNIMA: Número mínimo de caracteres.
- EXPIRACIÓN: Tiempo máximo de vida de una contraseña.
- REUTILIZACIÓN: Número de contraseñas previas que no pueden reutilizarse.

Ejemplo para definir recursos de contraseña:

sql

Copiar código

ALTER PROFILE nombre_perfil LIMIT PASSWORD_LIFE_TIME 90 PASSWORD_REUSE_TIME 365 PASSWORD_LOCK_TIME 1;

Trabajar con Recursos de Password

1. Bloquear cuentas tras intentos fallidos:

sql Copiar código

ALTER PROFILE nombre_perfil LIMIT FAILED_LOGIN_ATTEMPTS 5;

2. Configurar tiempo de bloqueo tras intentos fallidos:

sql Copiar código

ALTER PROFILE nombre_perfil LIMIT PASSWORD_LOCK_TIME 1/24;

Borrar un Perfil

- Un perfil no se puede eliminar si está asignado a usuarios:
- 3. Cambiar a los usuarios al perfil DEFAULT:sql Copiar código

ALTER USER nombre usuario PROFILE DEFAULT;

4. Eliminar el perfil:sql Copiar código

DROP PROFILE nombre_perfil CASCADE;

Enterprise Manager para Profiles

- Enterprise Manager permite:
- Crear y modificar perfiles de manera gráfica.
- Configurar límites de recursos y políticas de contraseñas.
- Asignar perfiles a usuarios.

Tema XVII: Memoria

Introducción a la Gestión de Memoria

- Oracle utiliza memoria compartida y privada para optimizar el rendimiento y la gestión de la base de datos.
- Componentes principales:
- SGA (System Global Area): Memoria compartida por todos los procesos de la base de datos.
- PGA (Program Global Area): Memoria privada asignada a cada proceso del usuario.

Objetivo de la gestión de memoria: **Optimizar el rendimiento** ajustando el uso de recursos según la carga de trabajo.

Configurar la Memoria Automática en Oracle (AMM)

- AMM (Automatic Memory Management) permite que Oracle administre automáticamente SGA y PGA.
- Habilitar AMM:
- 1. Configurar el parámetro MEMORY_TARGET (tamaño total):sql Copiar código

ALTER SYSTEM SET MEMORY_TARGET = 2G SCOPE = SPFILE;

2. Configurar el límite máximo:sql Copiar código

ALTER SYSTEM SET MEMORY_MAX_TARGET = 2G SCOPE = SPFILE;

3. Reiniciar la base de datos:sql Copiar código

SHUTDOWN IMMEDIATE; STARTUP;

Configurar la SGA de Forma Automática

- Habilitar **ASMM** (Automatic Shared Memory Management) para que Oracle ajuste automáticamente los componentes de la SGA.
- Parámetro clave: SGA_TARGET.sql
 Copiar código

ALTER SYSTEM SET SGA_TARGET = 1G SCOPE = SPFILE;

 Desactivar AMM y habilitar ASMM:sql Copiar código

ALTER SYSTEM SET MEMORY_TARGET = 0 SCOPE = SPFILE; ALTER SYSTEM SET SGA_TARGET = 1G SCOPE = SPFILE; ALTER SYSTEM SET PGA_AGGREGATE_TARGET = 500M SCOPE = SPFILE;

Configurar la SGA de Forma Manual

• Se gestionan manualmente los componentes clave:

Buffer Cache:sql

Copiar código

ALTER SYSTEM SET DB_CACHE_SIZE = 500M;

Shared Pool:sql

Copiar código

ALTER SYSTEM SET SHARED_POOL_SIZE = 300M;

Large Pool:sql

Copiar código

ALTER SYSTEM SET LARGE_POOL_SIZE = 100M;

Crear Buffers de Datos y Tablespaces con Tamaños de Bloque Distintos

- 1. Buffers de datos:
- Crear un nuevo buffer para un tamaño de bloque específico:sql Copiar código

ALTER SYSTEM SET DB_nK_CACHE_SIZE = 128M;

Donde n es el tamaño de bloque (4, 8, 16, etc.).

- 2. Tablespaces con tamaños de bloque distintos:
- Crear un tablespace con tamaño de bloque personalizado:sql Copiar código

CREATE TABLESPACE tbs_nk DATAFILE '/ruta/tbs_nk.dbf' SIZE 100M BLOCKSIZE 16K;

Configurar la PGA

- **PGA (Program Global Area)** es memoria privada utilizada para tareas como sorting y hash joins.
- · Configuración:
- Habilitar PGA automática:sql Copiar código

ALTER SYSTEM SET PGA AGGREGATE TARGET = 500M;

 Consultar el tamaño configurado:sql Copiar código

SELECT VALUE FROM V\$PARAMETER WHERE NAME = 'pga_aggregate_target';

Enterprise Manager y Memoria

- Enterprise Manager permite:
- Monitorear el uso de SGA y PGA en tiempo real.
- Configurar parámetros de memoria de manera gráfica.
- Ajustar valores como SGA_TARGET, PGA_AGGREGATE_TARGET, y otros componentes específicos.

Tema XVII: BACKUP y Recovery con RMAN

Introducción al Backup y Recovery

- Backup y recovery son pilares de la administración de bases de datos Oracle para garantizar la disponibilidad y recuperación de datos en caso de fallos.
- RMAN (Recovery Manager):
- Herramienta de línea de comandos para gestionar respaldos y recuperaciones.
- Optimiza la creación, administración y recuperación de backups.

Repasemos la Importancia de ARCHIVELOG

- En modo **ARCHIVELOG**, los redo logs se archivan, permitiendo:
- Recuperación completa de datos en caso de fallos.
- Respaldo sin necesidad de apagar la base de datos.
- Consultar el estado del modo:sql Copiar código

ARCHIVE LOG LIST;

Funcionamiento de los Archivelog

- Los redo logs llenos se copian a un archivo en el destino de archivelogs.
- Se usan en recuperaciones para reproducir cambios realizados después de un backup.

FRA - Fast Recovery Area

- FRA (Fast Recovery Area): Espacio de almacenamiento dedicado para backups, archivelogs y otros archivos de recuperación.
- Configurar FRA:sql
 Copiar código

ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/ruta/fra'; ALTER SYSTEM SET DB RECOVERY FILE DEST SIZE=10G;

Recuperación Automática de Instancia

 Oracle puede recuperar automáticamente la base de datos después de un fallo, aplicando redo logs y archivelogs según sea necesario.

Backup y Restore Completo en Frío

- Backup en frío: Base de datos apagada y sin usuarios conectados.
- Pasos:
- Apagar la base de datos:sql Copiar código

SHUTDOWN IMMEDIATE:

- Copiar los archivos de datos, redo logs y controlfiles al destino de backup.
- Reiniciar la base de datos:sql Copiar código

STARTUP:

Activar ARCHIVELOG

 Cambiar al modo MOUNT:sql Copiar código

SHUTDOWN IMMEDIATE; STARTUP MOUNT;

2. Activar ARCHIVELOG:sql

Copiar código

ALTER DATABASE ARCHIVELOG;

3. Abrir la base de datos:sql Copiar código

ALTER DATABASE OPEN;

Introducción a RMAN

 RMAN es la herramienta principal para realizar backups y recuperar datos en Oracle.

Conectarnos con RMAN

1. Desde el terminal:bash Copiar código

rman target / # Conexión local

2. Con usuario y contraseña:bash

Copiar código

rman target sys/password@base_datos

Configuración Persistente de RMAN

- Definir configuraciones que persisten entre sesiones.
- Ejemplo:sql Copiar código

CONFIGURE RETENTION POLICY TO REDUNDANCY 2; CONFIGURE CONTROLFILE AUTOBACKUP ON;

Formato de los Backups con RMAN

 Definir nombres de archivos de backup:sql Copiar código

CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/ruta/backup_%U.bkp';

Scripts de RMAN

- Ejecutar comandos almacenados en scripts.
- Ejemplo:bash Copiar código

RUN { BACKUP DATABASE PLUS ARCHIVELOG; }

Backup Completo de la Base de Datos

 Realizar un backup completo:bash Copiar código

BACKUP DATABASE;

LIST: Buscando Información de los Backups

 Consultar detalles de backups realizados: bash Copiar código

LIST BACKUP:

Backup de Tablespaces

 Respaldo de un tablespace específico: bash Copiar código

BACKUP TABLESPACE users:

Backup de Tablespace como Image Copy

 Crear una copia exacta de un tablespace: bash Copiar código

BACKUP AS COPY TABLESPACE users;

Backup de Datafiles

Respaldo de un archivo de datos específico: bash Copiar código

BACKUP DATAFILE '/ruta/datafile01.dbf';

Backup de Controlfiles

 Incluir el controlfile en un backup: bash Copiar código

BACKUP CURRENT CONTROLFILE;

Backup de Archivelogs

 Respaldar todos los archivelogs disponibles:bash Copiar código

BACKUP ARCHIVELOG ALL;

Backups Incrementales: Introducción

- Backups incrementales: Solo respaldan bloques de datos modificados desde el último backup.
- Ejemplo:bash Copiar código

BACKUP INCREMENTAL LEVEL 1 DATABASE;

Canales: Cambiar el Canal por Defecto

Configurar un canal para dispositivos específicos: bash Copiar código

CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/ruta/canal_%U.bkp';

RUN: Lanzar Jobs en RMAN

 Crear un bloque de comandos: bash Copiar código

RUN { ALLOCATE CHANNEL c1 DEVICE TYPE DISK; BACKUP DATABASE; RELEASE CHANNEL c1; }

RECOVER: Introducción

 Usado para aplicar archivelogs y restaurar el estado de la base de datos.

Recuperar la Base de Datos Completa

Ejemplo:bash
 Copiar código

RECOVER DATABASE;

Recuperar una Tablespace

• Ejemplo:bash Copiar código

RECOVER TABLESPACE users;

Recuperación Hasta un Punto en el Tiempo

Restaurar la base de datos a un estado específico: bash Copiar código

RECOVER DATABASE UNTIL TIME '2024-11-14 10:00:00';

Política de Retención

 Configurar la retención de backups: bash Copiar código

CONFIGURE RETENTION POLICY TO REDUNDANCY 2;

Comando REPORT

 Analizar información sobre backups:bash Copiar código

REPORT OBSOLETE:

DELETE: Borrar Backups

Eliminar backups innecesarios: bash Copiar código

DELETE BACKUP;

TEMA XVIII: Resolución de Problemas

Introducción a la Gestión de Problemas

- La **gestión de problemas** en Oracle permite identificar, registrar y solucionar errores que ocurren en la base de datos.
- Componentes clave:
- ADR (Automatic Diagnostic Repository): Framework para almacenar información diagnóstica.
- Ficheros de trazas: Contienen detalles técnicos sobre el funcionamiento y errores.
- Fichero de Alert Log: Registra eventos importantes como errores, cambios en la base de datos y operaciones administrativas.

Revisión del ADR

- ADR (Automatic Diagnostic Repository):
- Almacena información estructurada sobre incidentes, problemas y diagnósticos.
- Incluye:
 - Ficheros de trazas.
 - Dumps (información detallada de errores graves).
 - Información de incidentes.

Consultar ubicación del ADR:

sal

Copiar código

SELECT VALUE FROM V\$DIAG_INFO WHERE NAME = 'ADR Home';

Fichero de Alert Log

- Alert Log registra:
- Cambios en la base de datos (arranques, apagados).
- Errores de memoria, disco o transacciones.
- Problemas relacionados con procesos.
- Ubicación:
- En el directorio trace del ADR.
- Consultar el archivo directamente: bash Copiar código

```
tail -f /ruta/alert_<SID>.log
```

Ficheros de Traza, Core y Dump

- Trazas: Información detallada sobre procesos específicos.
- Generadas para comandos problemáticos o fallos.
- Ejemplo: Logs de SQL problemáticos.
- **Core Dumps**: Datos detallados sobre fallos graves (errores de memoria o sistema).

 Dumps de procesos: Información de diagnóstico para sesiones y procesos problemáticos.

Trazas de los Comandos DDL

 Registrar trazas para comandos DDL:sql Copiar código

```
ALTER SESSION SET SQL_TRACE = TRUE;
```

Consultar los resultados en los ficheros de traza generados.

ADRCI: Herramienta en Modo Comando para ADR

- ADRCI (ADR Command-Line Interface):
- Interfaz para acceder y gestionar información en el ADR.
- Comandos básicos:
 - Iniciar ADRCI:bash Copiar código

adrci

Trabajar con ADRCI

- Ver trazas, incidentes y problemas:
- Listar problemas:bash Copiar código

SHOW PROBLEM;

Ver incidentes relacionados con un problema:
 bash
 Copiar código

SHOW INCIDENT;

 Consultar trazas específicas: bash Copiar código

SHOW TRACEFILE;

- Ejemplo de problema e incidente:
- Identificar un problema: bash Copiar código

SHOW PROBLEM;

Ver detalles del incidente asociado: bash Copiar código

SHOW INCIDENT WHERE PROBLEM_ID = <ID>;

Crear un Paquete para Mandar a Oracle Soporte

1. Crear un paquete para incidentes: bash Copiar código

IPS CREATE PACKAGE PROBLEM cproblem_id>;

2. Agregar incidentes al paquete: bash Copiar código

IPS ADD INCIDENT <incident_id> PACKAGE <package_id>;

3. Finalizar el paquete:bash

Copiar código

IPS GENERATE PACKAGE <package_id>;

4. Consultar la ubicación del paquete: bash Copiar código

SHOW PACKAGE;