SC 216

Calculus with Complex Variables

Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) Version 3 (Spring 2008)

INSTRUCTIONS:

- There are 3 pages (6 pages double side). Ensure that you have all the pages.
- Answer all questions, writing clearly in the space provided.
- Show all your work and explain how you arrived at your answers, unless explicitly told to do otherwise.
- Write your name and student number **clearly** at the top of each page.
- You have **two hours** to complete the test
- Marks for each question are indicated in brackets at right. You may use point form for your answers, but make sure the points are clear and unambiguous.

FOR MARKER'S USE ONLY

Question	Possible	Received
1	5	
2	5	
3	5	
4	5	
5	5	
TOTAL	25	

1. ODE

(a) Construct an example of an ordinary differential equation which has no solution and another example which has only one solution. (5)

DA-IICT, SC 216 (Spring 2008)

Version 3

2. IF

(a) Suppose we want to develop a method for finding Integrating Factor of a differential equation

$$M(x,y)dx + N(x,y)dy = 0$$

What we should do? Sketch the method

(5)

3. l.i. / l.d.

- (a) Are the following statements true or false? If the statement is true, justify it by a short proof and if it is false give a counter example showing it is false.
- (b) If ϕ_1, ϕ_2 are linearly independent functions on an interval I, they are linearly independent on any interval J contained inside I. (2.5)

(c) If ϕ_1, ϕ_2 are linearly dependent functions on an interval I, they are linearly dependent on any interval J contained inside I. (2.5)

(2.0)

4. (a) Find the radius of the convergence of the following series

$$F(a, b, c, x) = 1 + \sum_{n=1}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} x^n$$

Also show that F(a, b, c, x) is a solution of the equation

$$x(1-x)y^{"} + [c - (a+b+1)x]y^{'} - aby = 0.$$

(5)

- 5. Complex
 - (a) Show using method from complex analysis that

$$\int_0^\infty \frac{\cos mx}{x^2 + 1} dx = \frac{\pi}{2} e^{-m}, m > 0.$$

(5)