

Universidade de Brasília - UnB Faculdade UnB Gama - FGA Requisitos de Software - 201308

Relatório de Projeto

Grupo: 7 Bruno Contessotto Bragança Pinheiro Eduardo Henrique Fonseca Moreira Omar Faria dos Santos Junior Ricardo Lupiano Andrade

> Orientador: George Marsicano Corrêa, MSc.

Brasília, DF Maio de 2015

Bruno Contessotto Bragança Pinheiro - 09/0107853 Eduardo Henrique Fonseca Moreira - 13/0008371 Omar Faria dos Santos Junior - 13/0015920 Ricardo Lupiano Andrade - 13/0016969

Relatório de Projeto

Trabalho referente ao relatório de projeto da primeira entrega da materia de Engenharia de Requisitos - 201308 do curso de Engenharia de *Software* da Universidade de Brasília - UnB

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Professor Orientador: George Marsicano Corrêa, MSc.

Brasília, DF Maio de 2015

Sumário

1	Cronograma	ь
2	Justificativa da Abordagem	7
	2.1 Processo Unificado	7
	2.2 SAFe	7
	2.3 Resultados Obtidos	7
3	Processo de Engenharia de Requisitos	9
	3.1 Atividades	9
	3.1.1 Nível de Portifólio	9
	3.1.2 Nível de Programa	10
	3.1.3 Nível de Time	10
	3.2 Papéis	11
4	Técnicas de Elicitação	12
5	Rastreabilidade	13
	5.1 Rastreabilidade Vertical	13
	5.2 Rastreabilidade Horizontal	15
6	Atributos de Requisitos	16
	6.1 Prioridade	16
	6.2 Status	16
	6.3 Dificuldade	16
7	Ferramentas de Gerência de Requisitos	17
	7.1 Ferramentas Analisadas	17
	7.2 Ferramenta Escolhida: codeBeamer	18

Lista de Tabelas

1	Escolha da Metodologia	8
2	Atributo de prioridade	16
3	Atributo de status	16
4	Atributo de dificuldade	17

Lista de Figuras

1	exemplo de rastreabilidade vertical e horizontal	13
2	exemplo de rastreabilidade vertical de tema de investimento à histórias de	
	usuário	14
3	exemplo de rastreabilidade horizontal entre histórias de usuário	15

1 Cronograma

(Espaço reservado para a elaboração do cronograma)

2 Justificativa da Abordagem

Para a definição da abordagem foram estudados o Processo Unificado e o (Scaled Agile Framework).

2.1 Processo Unificado

(Espaço reservado para o Processo Unificado)Wthreex (2014)

2.2 SAFe

(Espaço reservado para o SAFe)Sommerville et al. (2003).

2.3 Resultados Obtidos

De acordo com estudos realizados sobre o Processo Unificado e o *Scaled Agile FrameWork*, do contexto de negócio e das características dos *stakeholders*, chegamos a algumas questões a serem respondidas. São Elas:

- Integração:
 - O time de desenvolvimento poderá se encontrar com alta frequência?
 - O cliente terá disponibilidade alta para encontros?
- Time:
 - O time mudará durante o desenvolvimento do projeto?
 - O time possui experiência?
 - O time possui forte integração?
- Negócio:
 - A estrutura organizacional da empresa é estavel?
 - O cliente demanda formalidades?
 - O sistema é crítico?
 - Os requisitos do projeto mudarão com frequência?
 - O cliente demanda entrega contínua de Software?

A partir das perguntas levantas, foram respondidas, individualmente por cada membro da equipe de desenvolvimento, as perguntas, e chegou-se a conclusão que:

O time apesar de não possuir tamanha experiência, estão motivados a trabalhar com desenvolvimento ágil, e o farão em reuniões frequentes e semanais, alêm de possuirem forte integração resultante de projetos passados.

O cliente não demanda formalidades apesar de necessitar de documentação, e, com a possibilidade de mudança nos requisitos, foi optado por contínua entrega de software e um contato próximo com o cliente.

A partir do resultado obtido foi gerada a seguinte tabela que resultou na abordagem adaptativa *SAFe* para o desenvolvimento do projeto

Tabela 1: Escolha da Metodologia

Itens	Características	Trad	Ágil	
	Reuniões - equipe de de-		X	A equipe de desenvolvimento se reunirá
3	senvolvimento			com frequência
	Encontro com cliente		Х	A equipe de desenvolvimento manterá
				contato próximo ao cliente
Time	Mudança de equipe de de-		Х	Não haverá mudanças na equipe de de-
	senvolvimento			senvolvimento
	Experiência da equipe		Х	A equipe possui experiência com desen-
				volvimento ágil de software
	Equipe integrada		Х	A equipe se conhece e já trabalhou junta
				em trabalhos anteriores
Negócio	Requisitos mutáveis		Х	Provável evolução do sistema após o fim
				da primeira etapa de projeto.
	Documentação extensiva		Х	Cliente não requer documentação for-
	para manter o sistema			mal/extensa
	Entregas parciais	Х		Não há necessidade de entregas parcias
				do software
	Projeto não é crítico		Х	O projeto em desenvolvimento não é cri-
				tico, não exigindo que todo o projeto seja
				elicitado e bem definido no inicio de seu
				desenvolvimento

3 Processo de Engenharia de Requisitos

3.1 Atividades

3.1.1 Nível de Portifólio

(a) Realizar Workshop com o cliente para compreensão do contexto:

 Descrição: Nessa atividade será realizado uma reunião com os clientes e envolvidos para a compreensão do negócio e levantamento inicial de requisitos do sistema. O entendimento das necessidades dos envolvidos deverá ser alcançado nessa atividade.

• Tarefas:

- Preparação para o workshop: Definir um local, participantes e o facilitador do workshop.
- Realização do workshop: O surgimento natural de idéias divergentes deve ser anotado e não ulgado. Posteriormente, deve-se entrar num consenso do contexto de negócio.
- Definições pós-workshop: Após entrar em um consenso, a equipe de desenvolvimento terá compreensão do que o cliente necessita e deve realizar um documento contendo as concluões acordadas no workshop.
- Artefato(s) de Entrada: Documento de contexto do negócio.
- Artefato(s) de saída: Relatório do Workshop
- Papéis dos Envolvidos: Product Owner (Equipe de Modelagem), Equipe de Desenvolvimento.

(b) **Definir Tema de Investimento**:

- Descrição: Nessa atividade, o time definirá o tema de investimento para a priorização dos investimentos da organização.
- Tarefas:
 - Definir tema de investimento e posicionamento da organização: Devese criar um documento para estabelecer o tema de investimento da empresa.
- Artefato(s) de Entrada: Nenhum.
- Artefato(s) de saída: Tema de Investimento
- Papéis dos Envolvidos: Product Owner (Equipe de Modelagem), Equipe de Desenvolvimento.

(c) Identificar os Épicos:

• Descrição: Nessa atividade, serão elicitados os épicos de negócio com o cliente.

• Tarefas:

- Identificar épicos: A partir do relatório do workshop, deverão ser identificados os épicos.
- Documentar épicos: Definição dos épicos e criação do backlog de portifólio na ferramenta de gerência para documentar os épicos definidos.
- Artefato(s) de Entrada: Relatório do workshop.
- Artefato(s) de saída: Backlog de Portifólio
- Papéis dos Envolvidos: Product Owner (Equipe de Modelagem), Equipe de Desenvolvimento.

3

3.1.2	Nível de Programa
(a)	
(b)	
(c)	
(d)	
(e)	
3.1.3	Nível de Time

3

- (a) ..
- (b) ..
- (c) ..
- (d) ..
- (e) ..
- (f) ..
- (g) ..
- (h) ..
- (i) ..

- (j) ..
- (k) ..
- (l) ..
- (m) ..
- (n) ..

3.2 Papéis

4 Técnicas de Elicitação

(Espaço reservado para a elaboração das técnicas de eliticitação)

5 Rastreabilidade

A rastreabilidade auxilia a engenharia de requisitos no controle dos requisitos, elementos de modelagem e outros artefatos do processo de software. Por meio dela, é possivel obter visualizar de onde surgiu tal requisito, quais são suas dependências e ainda quais deles serão afetados quando houver algum tipo de mudança.

Figura 1: exemplo de rastreabilidade vertical e horizontal

No desenvolver deste projeto será utilizado dois tipos de rastreabildade, a vertical e a horizontal.

5.1 Rastreabilidade Vertical

A rastreabilidade vertical será utilizada no projeto para identificar a origem dos requisitos, ela está presente nas relações de um nível de abstração e outro.

Figura 2: exemplo de rastreabilidade vertical de tema de investimento à histórias de usuário.

5.2 Rastreabilidade Horizontal

A rastreabilidade horizontal será utilizada no projeto para identificar as dependencias entre um requisito e outro de um mesmo nível de abstração.

User Stories			User Stories		
Req7 → US-1122	User Story Test 8	DONE		=	
Req7 → US-1121	User Story Test 7	DONE		El .	
Req7 → US-1120	User Story Test 6	TODO		ES.	
Req7 → US-1119	User Story Test 5	TODO			
Req7 → US-1118	User Story Test 4	TODO		=:	
Req7 → US-1117	User Story Test 3	TODO		HI .	
Req7 → US-1079	User Story Test 2	DONE	Req7 → US-1078	User Story Test 1 🛄	IN PROGRE
Req7 → US-1078	User Story Test 1	IN PROGRESS	B Req7 → US-1079	User Story Test 2	DONE

Figura 3: exemplo de rastreabilidade horizontal entre histórias de usuário.

6 Atributos de Requisitos

Atributos de requisitos são propriedades dos mesmos e armazenam informacões adicionais. Para o desenvolvimento deste projeto, foram escolhidos os seguintes atributos:

- Prioridade
- Status
- Dificuldade

6.1 Prioridade

O atributo **prioridade** indica a importância que as histórias de usuários têm para os *stakeholders*. A prioridade da história de usuário pode ser definida em:

Tabela 2: Atributo de prioridade

Atributo	Descrição
Alta	Resquisito que possui grande interesse para o cliente
Média	Resquisito que possui elevado interesse para o cliente
Baixa	Resquisito que possui pouco interesse para o cliente
Indefinida	Prioridade indefinida

6.2 Status

O atributo **status** indica a fase ou progresso atual do requisito. O status de um requisito pode ser definido em:

Tabela 3: Atributo de status

Atributo	Descrição
ToDo	Resquisito identificado porem não definido
In Progress	Resquisito difinido porem não completado
To Verify	Requisito implementado porêm não verificado ou aceito
Done	Requisitos completado

6.3 Dificuldade

O atributo **dfilculdade** indica o nível de esforço necessário para o desenvolvimento da história de usuário. A dificuldade de uma história de usuário pode ser definido em:

Tabela 4: Atributo de dificuldade

Atributo	Descrição
Alta	Resquisito que possui grande dificuldade para ser implementado
Média	Resquisito que possui elevada dificuldade para ser implementado
Baixa	Resquisito que possui pouco dificuldade para ser implementado
Indefinida	Dificuldade indefinida

7 Ferramentas de Gerência de Requisitos

7.1 Ferramentas Analisadas

Foram analisadas várias ferramentas de gerência de requisitos, dentre elas, ferramentas web com tempo limite de uso (dentre 7 a 1 mês) como: RequirementOne; SpiraTest; Jira; Visure Requirement; InteGREAT. Ferramentas web free, porem com recursos limitados, como a Rally e o ReqView, e ferramentas onde é necessário a instalação de vários pacotes na máquina local, o que torna a sua instalação difícil ou até mesmo não viável, como a IBM Rational DOORS, Axiom 4, codeBeamer e a enterprise Architect.

Para escolha da ferramenta, foi avaliado se a ferramenta possuía os seguites quesitos:

- possibilidade de abstração a nível de portfólio;
- possibilidade de abstração a nível de programa;
- possibilidade de abstração a nível de time;
- matriz de Rastreabilidade:
 - rastreabilidade Horizontal;
 - rastreabilidade Vertical;
- tabela de Atributo de Requisitos:
 - implementação de novos atributos;
- controle de backlog;

Todas as ferramentas citadas acima que possuiam um tempo limitado de uso menor ou igual a um mês foram descartadas, apesar de tais ferramentas serem as mais faceis de serem usadas. As ferramentas IBM Rational DOORs e Axiom 4 foram estudadas através de tutoriais e várias tentativas de instalações foram realizadas sem sucesso, tanto no ambiente linux quanto no windows.

As ferramentas ReqView e Enterprise Architect foram implementadas com êxito, porêm a reqview é muito simples e não atendia às necessidades do projeto, já a Enterprise

Architect é um ferramenta especializada para projeto com abordagens tradicionais, sendo dificil a utilização para abordagem ágil, com isso ambos também foram descartadas, restando apenas as ferramentas Rally e a codeBeamer.

A ferramenta RALLY foi desenvolvida para auxiliar desenvolvedores na criação de grandes projetos de abordagem ágil, com grande foco na metodologia lean e no SAFe. Sua versão free permite registro e rastreabilidades de abstrações no nível de time (para pequenos projetos), deixando abstrações a nível de programa e portfólio apenas para contribuidores, com isso chegamos a nossa escolha final da ferramenta, a codeBeamer.

7.2 Ferramenta Escolhida: codeBeamer

A ferramenta codeBeamer é uma ferramente de gerência de requisitos e de projetos gratuita, com limite a um projeto com duração de um ano.

Ela permite o usuário montar qual tipo de rastreabilidade ele necessita a partir dos identificadores criados ou pré-existentes (histórias de usuário, features, epicos, temas, entre outros) permitindo assim uma rastreabilidade tanto na horizontal quanto na vertical. O codeBeamer permite ainda a criação de novos atributos, tornando possível a visualização de uma matriz de atributos de requisitos completa a partir da necessidade do usuário.

A ferramente codeBeamer conseguiu atender a todos os quesitos exigidos para a implementação deste projeto, se tornando assim, a ferramente escolhida.

Referências

SOMMERVILLE, I. et al. *Engenharia de software*. [S.I.]: Addison Wesley, 2003.

WTHREEX. *Rational Unified Process*. 2014. Disponível em: http://www.wthreex.com/rup/portugues/index.htm.