Homework2 Solution

October 28, 2022

1 Problem 1

1.1 a

Figure 1: Problem 1a

$$\frac{V1 - V2}{R_f} = i_1, i_1 = i_2 - g_m V_1$$

$$\frac{V1 - V2}{R_f} = i_2 - g_m V_1, i_2 = \frac{V_2}{r_0}$$

$$\frac{V_1 - V_2}{Rf} = \frac{V_2}{r_0} - g_m V_1 \Rightarrow V_1 \left(\frac{1}{R_f} + gm\right) = V_2 \left(\frac{1}{r_0} + \frac{1}{R_f}\right)$$

$$V_1(r_0 + g_m r_0 R_f) = V_2 (R_f + r_0)$$

$$\frac{V_2}{V_1} = \frac{r_0 + g_m r_0 R_f}{R_f + r_0}$$

1.2 b

 \Rightarrow

 \Rightarrow

 \Rightarrow

$$R_{in} = \frac{V_1}{i_1}$$
, and $i_1 = \frac{V_2}{r_0} - g_m V_1$

also,

$$i_1 = \frac{V_1}{r_0} \left(\frac{r_0 + g_m r_0 R_f}{R_f + r_0} \right)$$

Hence,

$$\frac{V_1}{i_1} = \frac{1}{\left(\frac{1+g_m R_f}{R_f + r_0}\right) - g_m} = \frac{R_f + r_0}{1 - g_m r_0}$$

$$\Rightarrow R_{in} = \frac{R_f + r_0}{1 - g_m r_0}$$

1.3 c

Figure 2: Problem 1C

$$R_{out} = \frac{V_2}{i_x}, i_x = \frac{V_2}{r_0} - g_m V_1 + \frac{V_2}{R_f + R_s}$$

also,

$$\begin{split} \frac{V_1}{V_2} &= \frac{R_s}{R_f + R_s} \\ i_x &= \frac{V_2}{r_0} - \frac{g_m V_2 R_s}{R_f + R_s} + \frac{V_2}{R_f + R_s} \\ i_x &= V_2 \left(\frac{1}{r_0} + \frac{1}{R_f + R_s} \left(-g_m R_s + 1 \right) \right) \\ &= V_2 \left(\frac{R_f + R_s + r_0 \left(-g_m R_s + 1 \right)}{r_0 (R_f + R_s)} \right) \end{split}$$

 \Rightarrow

$$R_{out} = \frac{V_2}{i_x} = \frac{r_0(R_f + R_s)}{R_f + R_s + r_0(1 - g_m R_s)}$$

2 Problem 2

2.1 a

First assume the NMOS is in saturation region

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(V_{gs} - V_{TH} \right)^2 \left(1 + \lambda V_{DS} \right)$$

Which is

$$I_{DS} = (800uA)(1 + 0.1(1 - 500I_{DS}))$$

Hence, $I_{DS}=846uA$, let's verify is it in saturation region? If $I_{DS}=846\text{mA}$, $V_{DS}=1$ - $500\times I_{DS}=0.577\text{V}$, so $V_{DS}>V_{GS}-V_{TH}$, it is in saturation region.

2.2 b

$$g_m = \frac{2I_D}{V_{GS} - U_{TH}} = \frac{2 \times 846\mu A}{0.8 - 0.4} = \frac{4.23\mu A}{V}$$
$$r_0 = \frac{1}{\lambda I_{DS}} = \frac{1}{0.1V^{-1} \cdot 846\mu A} = 11.82k\Omega$$

2.3 c

Figure 3: Problem 2C

2.4 d

Figure 4: Problem 2D

2.5 e

$$\frac{V_{out}}{r_0} + \frac{V_{out}}{R_d} + g_m V_{in} = 0$$

$$V_{out} \left(\frac{1}{r_o} + \frac{1}{R_d}\right) = -g_m V_{in}$$

$$\frac{V_{out}}{V_{in}} = -gm(r_o//R_d)$$

2.6 f

$$\begin{split} \frac{V_{out}}{V_{in}} &= -gm(r_o//R_d) \\ \frac{V_{out}}{V_{in}} &= \frac{4.23mA}{V} \frac{11.82k\Omega \times 500\Omega}{11.82k\Omega + 500\Omega} \\ \frac{V_{out}}{V_{in}} &= 2.03 \end{split}$$

3 Problem 3

3.1 a

The small signal diagram shown below:

Figure 5: Problem 3A

where

$$A_v = \frac{v_{\text{out}}}{v_{\text{in}}} = -g_m \left(R_D / / r_o \right)$$

$$r_o = \frac{1}{I_D \lambda}$$

$$g_m = \frac{2I_D}{V_{GS} - V_{TH}}$$

$$R_D / / r_o = \frac{R_D r_o}{R_D + r_o}$$

Input impedance:

$$Z_{in} = \infty$$

Output impedance:

$$Z_{\rm out} = R_D / / r_o$$

3.2 b

The smallest $V_{out}=0$, The $V_{outmax}=V_{DD}-|V_{SD}|=V_{DD}-|V_{gs}-V_{TH}|=1-0.1=0.9V$

3.3 c

$$A_v = g_m (r_o / / R_D) \approx g_m R_D = 20$$
$$g_m = \mu_p C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{TH})$$

From the equations above, where we have assumed $r_o >> R_D$, one obtains $\frac{W}{L} = 200, I_D = 50 \mu A$, we then determine $r_o = \frac{1}{\lambda I_D} = 200 k\Omega >> R_D$, the original assumption holds.