## ДОСЛІДЖЕННЯ ГЕНЕТИЧНОГО АЛГОРИТМУ

Мета роботи - ознайомлення з принципами реалізації генетичного алгоритму, вивчення та дослідження особливостей даного алгоритму з використанням засобів моделювання і сучасних програмних оболонок.

## 3.1. Основні теоретичні відомості

Генетичні алгоритми служать, головним чином, для пошуку рішень в багатовимірних просторах пошуку.

Можна виділити наступні етапи генетичного алгоритму:

- (Початок циклу)
- Розмноження (схрещування)
- Мутація
- Обчислити значення цільової функції для всіх особин
- Формування нового покоління (селекція)
- Якщо виконуються умови зупинки, то (кінець циклу), інакше (початок циклу).

Розглянемо приклад реалізації алгоритму для знаходження цілих коренів діофантового рівняння a+b+2c=15.

Згенеруємо початкову популяцію випадковим чином, але з дотриманням умови — усі згенеровані значення знаходяться у проміжку від одиниці до y/2, тобто на відрізку [1;8] (узагалі, границі випадкового генерування можна вибирати на свій розсуд):

Отриманий генотип оцінюється за допомогою функції пристосованості (fitness function). Згенеровані значення підставляються у рівняння, після чого обраховується різниця отриманої правої частини з початковим у. Після цього рахується ймовірність вибору генотипу для ставання батьком — зворотня дельта ділиться на сумму сумарних дельт усіх генотипів.

$$1+1+2\cdot5=12 \qquad \Delta=3 \qquad \frac{\frac{1}{3}}{\frac{27}{24}} = 0,7$$

$$2+3+2\cdot1=7 \qquad \Delta=8 \qquad \frac{\frac{1}{8}}{\frac{27}{24}} = 0,11$$

$$3+4+2\cdot1=9 \qquad \Delta=6 \qquad \frac{\frac{1}{6}}{\frac{27}{24}} = 0,15$$

$$3+6+2\cdot4=17 \qquad \Delta=2 \qquad \frac{\frac{1}{2}}{\frac{27}{24}} = 0,44$$

Наступний етап включає в себе схрещування генотипів по методу кросоверу – у якості дітей виступають генотипи, отримані змішуванням коренів – частина йде від одного з батьків, частина від іншого, наприклад:

$$(3 | 6,4) \longrightarrow \begin{cases} (3,1,5) \\ (1 | 1,5) \end{cases}$$

Лінія кросоверу може бути поставлена в будь-якому місці, кількість потомків також може вибиратися. Після отримання нових генотипів вони перевіряються функцією пристосованості та створюють власних потомків, тобто виконуються дії, описані вище.

Ітерації алгоритму відбуваються, поки один з генотипів не отримає  $\Delta$ =0, тобто його значення будуть розв'язками рівняння.

## 3.2. Завдання на лабораторну роботу

Налаштувати генетичний алгоритм для знаходження цілих коренів діофантового рівняння  $ax_1+bx_2+cx_3+dx_4=y$ . Розробити відповідний мобільний додаток і вивести отримані значення. Провести аналіз витрат часу на розрахунки.

## 3.3 Зміст звіту

Звіт по лабораторній роботі повинен містити такі матеріали:

- 1. Титульний лист.
- 2. Основні теоретичні відомості, необхідні для виконання лабораторної роботи.
- 3. Умови завдання для варіанту бригади.
- 4. Лістинг програми із заданими умовами завдання.
- 5. Результати виконання кожної програми.
- 6. Висновки щодо виконання лабораторної роботи.