HOMEWORK 4

JACKSON VAN DYKE

Exercise 1 (Hatcher $\S 1.2, 1$). Show that the free product G * H of nontrivial groups G and H has trivial center, and that the only elements of G * H of finite order are the conjugates of finite-order elements of G and H.

Exercise 2 (Hatcher §1.2, 3). Show that the complement of a finite set of points in \mathbb{R}^n is simply-connected if $n \geq 3$.

Exercise 3 (Hatcher §1.2, 4). Let $X \subset \mathbb{R}^3$ be the union of n lines through the origin. Compute π_1 ($\mathbb{R}^3 \setminus X$).

Exercise 4 (Hatcher §1.2, 7). Let X be the quotient space of S^2 obtained by identifying the north and south poles to a single point. Put a cell complex structure on X and use this to compute $\pi_1(X)$.

Exercise 5 (Hatcher §1.2, 8). Compute the fundamental group of the space obtained from two tori $S^1 \times S^1$ by identifying a circle $S^1 \times \{x_0\}$ in one torus with the corresponding circle $S^1 \times \{x_0\}$ in the other torus.

Exercise 6 (Hatcher §1.2, 14). Consider the quotient space of a cube I^3 obtained by identifying each square face with the opposite square face via the right-handed screw motion consisting of a translation by one unit in the direction perpendicular to the face combined with a one-quarter twist of the face about its center point. Show this quotient space X is a cell complex with two 0 cells, four 1 cells, three 2 cells, and one 3 cell. Using this structure, show that $\pi_1(X)$ is the quaternion group $\{\pm 1, \pm i, \pm j, \pm k\}$ of order eight.

Exercise 7. Let X be obtained from Y by attaching an n-cell. Let $q: D^n \coprod Y \to X$ be the quotient map $i: D^n \to D^n \coprod Y$ inclusion, and $f = qi: D^n \to X$. Show that

- (1) $f|_{int(D^n)}$ is a homeomorphism of int (D^n) onto f (int (D^n));
- (2) Y is Hausdorff $\implies X$ is Hausdorff.

ercise 8. (i) Show that the group $\langle x,y \mid x^2=y^3=(xy)^5=1 \rangle$ is non-trivial. (Hint: consider the symmetric group S_5 .) (ii) Show that the group $\langle x,y \mid x^{-1}yx=y^2,y^{-1}xy=x^2 \rangle$ is trivial.

Exercise 9. Express the solid torus $S^1 \times D^2$ as a cell-complex.

Date: September 26, 2019.

1