Lista 5 - Aritmética Modular

Matemática Discreta I

Outubro 2022

- 1. Verifique a veracidade ou falsidade das seguintes afirmações:
 - (a) $7 \equiv 24 \pmod{5}$
 - (b) $529 \equiv -8 \pmod{3}$
 - (c) $33 \equiv 57 \pmod{6}$
 - (d) $-12 \equiv -72 \pmod{8}$
 - (e) $-285 \equiv 27 \pmod{8}$
 - (f) $695 \equiv 22 \pmod{8}$
- 2. Sejam a,b,c inteiros positivos tais que $a \equiv -1 \pmod{7}$ e os restos da divisão por 7 de b e c são 6 e 3, respectivamente. Encontre o resto da divisão de a+b+c por 7.
- 3. Calcule o resto da divisão de
 - (a) 7^{25} por 3
 - (b) $17^{15689879}$ por 3
 - (c) 23^{71355} por 4
- 4. Mostre que se $n \in \mathbb{N}$, então o algorismo das unidades na representação da base 10 de 3^n só pode ser 1, 3, 7 ou 9.
- 5. Ache o algorismo das unidades na representação da base 10 dos seguintes números:
 - (a) 3^{2022}
 - (b) 3^{2003}
 - (c) 3⁷⁴¹
- 6. Calcule o resto da divisão de
 - (a) 11^{p-1} por p, em que p é primo
 - (b) 2^{100} por 11
 - (c) $20^{15} 1$ por 11

Dica: utilize o Pequeno Teorema de Fermat.