

IN THE CLAIMS

1 Claims 1-65 (Canceled).

1 66. (Previously presented) A system that acquires and analyzes spectral images of a
2 wafer, the system comprising:
3 a plurality of stations;
4 a transfer mechanism operable to transfer the wafer between each of the plurality of
5 stations;
6 an illumination source that illuminates the wafer as the wafer is transferring
7 between the plurality of stations;
8 a spectral imager configured to detect light of the illumination source that is
9 reflected from the wafer as the transfer mechanism is transferring the wafer between the
10 plurality of stations, the spectral imager configured to produce a plurality of one-
11 dimensional spectral frames using information of the light reflected from the wafer as the
12 wafer is transferring between the plurality of stations; and
13 circuitry for analyzing said plurality of one-dimensional spectral frames and
14 aggregating at least one of the one-dimensional spectral frames to form two-dimensional
15 spectral images.

1 67. (Previously presented) The system of claim 66, wherein the wafer includes a
2 substrate and at least one layer of at least one thin film on the substrate, wherein the at
3 least one thin film includes a plurality of properties, wherein the plurality of properties
4 comprise a thickness value of the at least one layer at one or more sites on the wafer.

1 Claim 68 (Canceled).

1 69. (Previously presented) A method for imaging a wafer having one or more film
2 layers, comprising:
3 illuminating the wafer with light;

4 positioning the wafer so that a portion of the wafer is illuminated;
5 detecting light reflected from the portion of the wafer using a spectral imager
6 configured to produce a sequence of one-dimensional spectral frames while the spectral
7 imager and the wafer undergo relative motion provided by a transfer mechanism moving
8 the wafer between a plurality of stations;
9 aggregating said sequence of one-dimensional spectral frames to form a two-
10 dimensional spectral image, and analyzing said two-dimensional image to determine a
11 property of the film layers.

1 70. (Previously presented) The method of claim 69, wherein the property is a thickness
2 value of one of the one or more film layers at one or more sites on the wafer.

1 Claim 71 (Canceled).

1 72. (Previously presented) A CMP system that images a wafer, comprising:
2 a plurality of stations for performing one or more aspects of a CMP process;
3 a wafer transfer mechanism disposed within the system to transfer the wafer
4 between said stations;
5 a light source for illuminating the wafer while the wafer transfer mechanism is
6 transferring the wafer between the stations;
7 a spectral imager disposed to detect light from the light source that is reflected from
8 the wafer and configured to produce a plurality of one-dimensional spectral frames while
9 said spectral imager and the wafer undergo relative motion provided by said wafer
10 transfer mechanism; and
11 circuitry for processing said plurality of one-dimensional spectral frames, wherein
12 the circuitry aggregates sequential one-dimensional spectral frames to form a two-
13 dimensional spectral image, and analyzes said two-dimensional spectral image to
14 determine one or more properties of one or more film layers of the wafer.

1 73. (Previously presented) The system of claim 72, wherein the one or more properties
2 include a thickness value of one of the one or more film layers at one or more sites on the
3 wafer.

1 Claim 74 (Canceled).

1 75. (Previously presented) A method for imaging a wafer having one or more film
2 layers, comprising:
3 illuminating the wafer with light;
4 positioning the wafer so that a portion of the wafer is illuminated;
5 detecting light reflected from the portion of the wafer using a spectral imager
6 configured to produce a sequence of spatially contiguous one-dimensional spectral frames
7 while said spectral imager and the wafer undergo relative motion provided by a transfer
8 mechanism used to move wafers between stations; and
9 aggregating said frames to form a two-dimensional spectral image.

1 76. (Previously presented) The method of claim 75, further comprising analyzing the
2 two-dimensional spectral image, wherein analyzing determines a film layer thickness
3 value of one of the one or more film layers at one or more sites on the wafer.

1 Claim 77 (Canceled).

1 78. (Previously presented) A semiconductor wafer processing system that acquires and
2 analyzes spectral images of a wafer prior to, during, and/or following a process, the
3 system comprising:
4 a plurality of stations;
5 a wafer transfer mechanism disposed within the system to transfer the wafer
6 between the stations;
7 a light source for illuminating the wafer while the wafer is transferred between said
8 stations;

9 a spectral imager disposed to detect light from the light source that is reflected from
10 the wafer, the spectral imager is configured to produce a plurality of one-dimensional
11 spectral frames while said spectral imager and the wafer undergo relative motion
12 provided by said wafer transfer mechanism; and

13 a processor for analyzing said plurality of one-dimensional spectral frames, wherein
14 the processor aggregates sequential one-dimensional spectral frames to form two-
15 dimensional spectral images.

1 Claims 79 and 80 (Canceled).

1 81. (Previously presented) The system of claim 78, wherein the process includes one or
2 more of a CVD process, a CMP process, or a stand-alone metrology process.

1 82. (Previously presented) The system of claim 78, wherein the stations include one or
2 more of a load station, an unload station, or a process station.

1 83. (Previously presented) The system of claim 78, wherein the lights source is one of
2 pulsed or continuous while said spectral imager detects light.

1 84. (Previously presented) A semiconductor wafer processing system that provides and
2 analyzes spectral images of a wafer having one or more film layers prior to, during,
3 and/or following a process, the system comprising:

4 a wafer transfer mechanism disposed within the system to transfer the wafer
5 between a load station and a wafer chuck;

6 a light source for illuminating the wafer while the wafer is transferred between said
7 load station and said wafer chuck;

8 a spectral imager disposed to detect light reflected from the wafer and configured to
9 produce a one-dimensional spectral frame while said spectral imager and the wafer
10 undergo relative motion of transferring the wafer; and

11 a processor that analyzes said one-dimensional frame.

1 Claims 85 and 86 (Canceled).

1 87. (Previously presented) A semiconductor wafer imaging system that acquires and
2 analyzes spectral images of a wafer having one or more film layers, the system
3 comprising:

4 a first processing system that performs a first manufacturing process on the wafer;
5 a second processing system that performs a second manufacturing process on the
6 wafer, where said second manufacturing process follows said first manufacturing process;
7 a wafer transfer mechanism disposed to transfer the wafer between said first
8 processing system and said second processing system;
9 a light source for illuminating the wafer while the wafer is transferred between said
10 first processing system and said second processing system;
11 a spectral imager disposed to detect light from the light source that is reflected from
12 the wafer during the transfer, and configured to produce one-dimensional spectral frames;
13 and
14 circuitry for aggregating said one-dimensional spectral frames to form a two-
15 dimensional spectral image and analyzing said two-dimensional spectral image to
16 determine a film layer property of the one or more film layers.

1 88. (Previously presented) The system of claim 87, wherein the one or more film layer
2 properties ~~is~~ include a thickness value of one of the one or more film layers at one or
3 more sites on the wafer.

1 89. (Previously presented) A method of obtaining and analyzing a spectral image of a
2 wafer having one or more film layers, the method comprising:
3 securing the wafer from a first processing system using a transfer mechanism;
4 illuminating the wafer with light from a light source;
5 positioning the wafer using said transfer mechanism so that a portion of the wafer is
6 illuminated by light from said light source;

7 detecting light reflected from said portion of the wafer using a spectral imager
8 configured to produce a sequence of contiguous one-dimensional spectral frames while
9 said transfer mechanism moves the wafer;
10 aggregating said sequence of contiguous one-dimensional spectral frames to form a
11 two-dimensional spectral image;
12 analyzing said two-dimensional image to determine one or more film layer
13 properties of the one or more film layers; and
14 transferring the wafer to a second processing system.

1 90. (Previously presented) The method of claim 89, wherein the one or more film layer
2 properties **is** include a thickness value of one of the one or more film layers at one or
3 more sites on the wafer.

1 Claims 91-155 (Canceled).