

$$\lambda = -6 + \sqrt{b^2 + 496}$$

MyP

066

SIMPLE LINEAR REGRESION

= MX + b

$$V = \frac{1}{2}bhl$$

$$\frac{x}{5} + \frac{y}{5} = 1$$

$$ax^2 + bx + c = 0$$

$$V=\frac{4}{3}\pi r^3$$

NAMA KELOMPOK:

- 1. Achmad Dwiki Nomansyah (3122500054)
- 2. Aaron Febrian Prakoso (3122500060)

y=mx+b

$$\sqrt{=\frac{4}{3}\pi r^3}$$

STUDI KASUS:

Implementasi Simple Linear Regresion terhadap data gaji karyawan suatu perusahaan berdasarkan lama pengalaman masa kerjanya.

y= mx + b

$$\sqrt{=\frac{4}{3}\pi r^3}$$

TABEL DATA GAJI KARYAWAN BERDASARKAN LAMA PENGALAMAN MASA KERJANYA:

YearsExperience	Salary
1.1	39343.00
1.3	46205.00
1.5	37731.00
2.0	43525.00
2.2	39891.00
2.9	56642.00
3.0	60150.00
3.2	54445.00
3.2	64445.00
3.7	57189.00
3.9	63218.00
4.0	55794.00
4.0	56957.00
4.1	57081.00
4.5	61111.00

YearsExperience	Salary
4.9	67938.00
5.1	66029.00
5.3	83088.00
5.9	81363.00
6.0	93940.00
6.8	91738.00
7.1	98273.00
7.9	101302.00
8.2	113812.00
8.7	109431.00
9.0	105582.00
9.5	116969.00
9.6	112635.00
10.3	122391.00
10.5	121872.00

Dari data tersebut, diketahui bahwa semakin lama pengalaman masa karyawan bekerja di perusahaan tersebut, maka semakin besar pula gajinya.

$$y=mx+b$$

$$V=\frac{4}{3}\pi r^3$$

IMPLEMENTASI MENGGUNAKAN SIMPLE REGRESI LINEAR

$$V = \frac{1}{b}bhl$$

0=

$$\frac{9}{5} = 1$$

$$ax^2 + bx + c = 0$$

MELAKUKAN IMPORT FILE DATA (CSV) UNTUK MENAMPILKAN DATA YANG ADA PADA FILE TERSEBUT

MELAKUKAN PERHITUNGAN JUMLAH BARIS DAN KOLOM TERHADAP DATAFRAME, SERTA MENAMPILKAN RINCIAN DATAFRAME TERSEBUT

MELAKUKAN PERHITUNGAN JUMLAH DATA, MEAN, STANDAR DEVIASI, NILAI MINIMUM, KUARTIL BAWAH, MEDIAN, KUARTIL ATAS, DAN NILAI MAXIMUM

 $ax^2 + bx + c = 0$

MEMBUAT FIGURE DENGAN DUA SUBPLOT, YAITU COUNTPLOT DAN BOXPLOT

```
# Membuat figure dengan dua subplot

f = plt.figure(figsize=(12, 4))

# Subplot pertama: Countplot untuk 'YearsExperience'
f.add_subplot(1, 2, 1)
sns.countplot(df['YearsExperience'])

# Subplot kedua: Boxplot untuk 'Salary'
f.add_subplot(1, 2, 2)
plt.boxplot(df['Salary'])

# Menampilkan plot
plt.show()
```


MELAKUKAN REGRESI LINEAR SEDERHANA PADA DATA

VC -

melakukan regresi linier sederhana pada data

X = df["YearsExperience"] # kolom YearsExperience sebagai variabel independen

Y = df["Salary"] # kolom Salary sebagai variabel dependen

 $X_b = np.c_{np.ones((len(X), 1)), X}$ # menyiapkan matriks X dengan kolom konstan

beta_values = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(Y)

print(beta_values)

[25792.20019867 9449.96232146]

$$y = \frac{1}{2}bhl$$

$$\frac{x}{a} + \frac{y}{b} = \frac{1}{2}bhl$$

$$ax^2 + bx + c = 0$$

MENGGUNAKAN MODEL UNTUK MEMPREDIKSI SALARY BERDASARKAN YEARS EXPERIENCE

```
# Menggunakan model untuk memprediksi Salary berdasarkan YearsExperience

X_new = np.array([[1.1]]) # Prediksi gaji untuk YearsExperience 1.1

X_new_b = np.c_[np.ones((1, 1)), X_new] # Menyiapkan matriks untuk prediksiS

y_predict = X_new_b.dot(beta_values) # Melakukan prediksi

# Menampilkan hasil prediksi

print(f"Years Experience = {X_new[0][0]}; Predicted Salary is {y_predict[0]:.2f}, actual Salary is 39343.00")

Years Experience = 1.1; Predicted Salary is 36187.16, actual Salary is 39343.00
```

PREDICTED SALARY=β0+β1×YEARSEXPERIENCE

 $\alpha x^2 + bx + c = 0$

MELAKUKAN PLOTTING YANG AKAN MEMPERLIHATKAN HUBUNGAN ANTARA 'YEARSEXPERIENCE' DAN 'SALARY'

```
4=111X+b
                                                                                                              ↑ ↓ ⊖ ■ 🛊 🗓 📋 :
# Melakukan plotting yang akan memperlihatkan hubungan antara 'YearsExperience' dan 'Salary's
X_plot = np.array([[1, 30]]) # Dari 1 sampai 30 untuk plot garis regresi
X_{plot_b} = np.c_{np.ones((2, 1)), X_{plot.T}}
Y_plot = X_plot_b.dot(beta_values)
Equation_line = "Y = {:.3f} + {:.3f}X".format(beta_values[0], beta_values[1])
plt.plot(X_plot.T, Y_plot, "r-", label=Equation_line) # Plot garis regresi
sns.scatterplot(data=df, x='YearsExperience', y='Salary', label="Training Data")
                                                                              # Plot data sebenarnya
plt.legend()
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.title('Linear Regression Fit')
plt.show()
```


-49

MyP

MELAKUKAN REGRESI LINEAR DENGAN MENGGUNAKAN PUSTAKA SCIKIT-LEARN UNTUK MENGETAHUI SEBERAPA BAIK MODEL REGRESI LINEAR

hyp

```
# Menggunakan pustaka scikit-learn untuk melakukan regresi linier.
from sklearn.linear_model import LinearRegression
reg = LinearRegression() # Menggunakan Linear Regression dari scikit-learn
#df = pd.read_csv("Salary_data.csv")
# Mengambil kolom YearsExperience dan Salary sebagai variabel X dan Y
X = df["YearsExperience"]
Y = df["Salary"]
# Mengubah bentuk X dan Y menjadi 2 dimensi (array 2D) karena itulah yang diharapkan oleh LinearRegression di scikit-learn
X = X.values.reshape(-1,1)
Y = Y.values.reshape(-1,1)
# Melatih model regresi linier
reg.fit(X, Y)
print("The value obtained for beta_o is: ", reg.intercept_)
print("The value obtained for beta_1 is: ",reg.coef_)
r_squared = reg.score(X, Y)
print("R-squared: ", r squared)
The value obtained for beta o is: [25792.20019867]
The value obtained for beta_1 is: [[9449.96232146]]
R-squared: 0.9569566641435086
                                                                  ax^2 + bx + c = 0
```


PREDIKSI GAJI BERDASARKAN YEARS EXPERIENCE 30 DAN 1

On = [11] # Pred

```
[11] # Prediksi gaji berdasarkan YearsExperience 30 dan 1
    X_new = np.array([[30],[1]])
    print(reg.predict(X_new))
```

[[309291.06984232] [35242.16252012]]

$$= \frac{1}{2}bhl$$

$$= \frac{1}{2}bhl$$

$$= \frac{1}{2}bhl$$

$$ax^2 + bx + c = 0$$

$$\sqrt{=\frac{4}{3}\pi r^3}$$

TERIMA KASIH

Link colab google:

https://colab.research.google.com/drive/1TB

gCOvzrubdH 4K0Jc0ldT30WienAEnp?

usp=sharing

y=mx+b

$$\sqrt{=\frac{4}{3}\pi r^3}$$