

Classification with Drug Consumption

Tao Shan, Dan Chen, Zhengqi Sun, Janny Liu, Ziwei Pan, Xinwei Lyu

Schedule

- 02 Data Exploration
- 03 Feature Selection
- 04 Model Prediction
- (05) Discussion & Conclusion

Drug consumption
 Biological measurement: NEO-FFI-R, BIS-11, ImpSS basic information: Level of education, age, sex

- Classification problem
 Predict when people uses Cannabis within one year
- Why prediction matters?

Introduction to the data set

- Shape: (1885, 32)
- Attributes description:
 - Basic information: column 2-6
 - Biological measurement: column 7-13
 - Legal and illegal drugs: column 14-32
- Type of data
- Target variable (CL0 CL6)

Data Cleaning

Check if there is any missing values
Using the sum(is.na()) function in R

- Change the elements in the data to meaningful values
 It can help us to understand the data better
- Adding the column name to the data
 Since it can help us to select whole column of data
- Transform the data to suit our models

 All the models require data to be digital, change some of our data to fit

Data Exploration

- Correlation
- Max correlation value and name of column as the first column researched object
- For example (Yellow Highlighting)
 Focusing on object Cannabis,
 highest correlation: Mushrooms
 Correlation value:
 0.579735959383825

Alcohol	0.126879148256191	Caff	Country	0.354095419716683	Age
Mushrooms	0.579735959383825	Cannabis	Ascore	0.220339231983922	Gender
Country	0.124574585387424	Choc	Cscore	0.240416985604378	Education
Ecstasy	0.61065639330959	Coke	Age	0.354095419716683	Country
Heroin	0.527087582650511	Crack	Cannabis	0.138182754852153	Ethnicity
Coke	0.61065639330959	Ecstasy	Benzos	0.272186016518824	Nscore
Crack	0.527087582650511	Heroin	Cscore	0.308048827313314	Escore
Ecstasy	0.508246586396852	Ketamine	SS	0.421534861718457	Oscore
Ecstasy	0.553991012261566	Legalh	Cscore	0.247534431601236	Ascore
Mushrooms	0.668527578338545	LSD	Escore	0.308048827313314	Cscore
Benzos	0.519414622062725	Meth	SS	0.623223378722803	Impulsive
LSD	0.668527578338545	Mushrooms	Impulsive	0.623223378722803	SS
Cannabis	0.515067092600041	Nicotine	Education	0.130668713640973	Alcohol
Mushrooms	0.0991112664292815	Semer	Coke	0.531203890998502	Amphet
Legalh	0.319523257338639	VSA	Coke	0.377136702373278	Amyl
Alcohol	0.126879148256191	Caff	Meth	0.519414622062725	Benzos

 The proportion of people who used Cannabis last day is largest, which is more than 450.

- People who take
 Cannabis most
 frequently are young
 adults, from 18-24
 years old.
- And older adults like those more than 55 years old seldom take Cannabis.

Bar Chart (Cannabis - Other Variables - Count)

The most people who take Cannabis is the US, and then the UK;

Other countries contribute little Cannabis Consumption.

 Those who often buy Cannabis have a relatively high level of Education.

 i.e., entered the University, however, are not successfully graduated.

 Most people who buy Cannabis are white, and other species get poorly involved.

- K-Means Clustering
- Assign similar data to the same cluster.

Based on squared
 Euclidean distance
 and k-means
 clustering algorithm,
 we could set k = 2
 first to perform the
 clustering.

K-Means Clustering

- Use factoextra
 package writing a
 function to choose
 the most suitable k
 value.
- based on the graph and line, we found k=4

• 4-means clustering

- Stepwise feature selection step(), klaR StepClass()
- Feature importance Tree methods
 Random forest, decision tree (rpart)

Feature importanceTree methods

Random Forest

- Use random forest package
- Classification treeand get an error rate
- Variable Importance

Decision Tree

- Variable Importance
- Work with data discrete labels
- Reduce the overfitting to improving the accuracy

Model Prediction

- Split 75% data as training, 25% data as testing by Stratified Folds. (R spiltools library)
- Our models:
 - Neural Network
 - KNN
 - Decision tree
 - Random forest
 - SVM
 - Boosting
 - XGboost

Neural Network

- Caret (nnet)
 Nnet is feed-forward neural network with single hidden layer
- Hyper pruning parameter
 Size, decay
- Result

Final model: size = 3 and decay = 0.1

Accuracy: 0.636

K Nearest Neighbor

Choosing the distance calculating function (Euclidean Metric)

$$d(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + \ldots + (x_n-y_n)^2} = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}$$

- Define the most suitable k value for the data
- Using min-max standardization with the following method:

$$X_{new} = rac{X - min(X)}{max(X) - min(X)}$$

- Fit the model and check the performance by using result table
- Score: 0.640

Decision Tree

- C50
 - → Model Training
 - → Evaluate the Performance using Testing Data
 - → Calculate the accuracy of testing date

- Result
 - → Accuracy: 0.5596
 - → Error: 0.4404

	2	3	4	5	6
2	191	11	3	3	13
3	15	10	8	7	13
4	10	6	3	8	8
5	11	5	5	9	17
6	23	12	5	24	50

Random Forest

- Use the "caret" package
- Plot OOB error as the number of trees increase
- Select the tuning parameter and specify the grid for the key parameter mtry
- Result

Final model: mtry = 6

Accuracy: 0.636

Support Vector Machine (SVM)

- Supervised learning models
- The sets to discriminate are not linearly separable in that space
- The original finite-dimensional space be mapped into a much higher-dimensional space, making the separation easier.

The accuracy is 0.651

Boosting

Comparison

- Boosting
- Model: method='cv', number=10, summaryFunction = multiClassSummary
- interaction.depth = c(2,3,4,5,6),n.trees = c(100,300,500)
- The best result: 5 levels: 0.6255

XGBoost

- Gradient boost tree
- Hyper pruning parameter
 Find the best parameter by cross_validation score in training set, choose different parameters: eta, max_depth, subsample, etc.)
- Result

Final model: eta = "0.01", max_depth = "4", subsample = "6" Accuracy: 0.653

Discussion

	Accuracy 5 levels	
Neural network		0.636
KNN		0.640
Decision		
Tree		0.557
Random		
Forest		0.636
SVM		0.651
Boosting		0.632
XGboost		0.653

 Result: (accuracy table for all models)

XGBoost: 0.653

SVM: 0.651

05

Discussion

- Accuracy table for 5&7 levels:
- Boosting: (5 levels: 0.6255319)
 X2 X3 X4 X5 X6
 X2 205 18 6 9 20
 X3 5 7 2 3 7
 X4 1 0 2 1 3
 X5 2 3 4 3 7

X6 8 25 21 31 77

(7 levels: 0.5010616) X0 X1 X2 X3 X4 X5 X6 X0 85 25 14 4 2 2 5 X1 10 17 5 2 0 1 3 X2 6 7 35 10 3 4 7 X3 0 0 5 4 3 2 5 X4 0 0 0 0 1 0 0 X5 0 0 0 1 1 1 2 X6 2 2 8 32 25 37 93

- Not enough data for some levels (3,4,5)
- What about merge levels of target variable?
 - Accuracy increases
 - But model itself should be the same
 - Solve the problem of not enough data

- Model Sampling
- Combine different models, reduce bias
- Predict probability for each labels.
- 80% from Xgboost, 20% from Random forest
- Accuracy: 0.657

05 Conclusion

- Final Result: model sampling (XGB + RF)
- Merge levels solve not enough data
- Application
 - 2-level prediction problem (CL0 with drug, CL1-6 no drug) Our group has more meaningful result

©5 Conclusion

- Further improvement
 (might use these later in the future improvement, we didn't use them yet)
 - Collect more data for the research
 - Stacking classifier
 - Advanced Deep learning models (CNN)
 - PCA, SVD

Stacking Classifier

CNN

PCA & SVD

- Principal Component Analysis
- Explained variance ratio
 PCA uses 50% columns, SVD uses 70% columns,
 With 90% of explained variance ratio.
- Reduce computational cost
- Small size of data

Thank you