

Nilai yang mewakili sebuah matriks bujur sangkar

Determinan Ordo 2x2

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Nilai determinan A disimbolkan dengan |A|, cara menghitung nilai determinan A dapat dilihat seperti pada cara di bawah.

$$det(A) = |A| = ad - bc$$

Contoh Soal:

Tentukan nilai determinan matriks

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$$

Pembahasan:

$$|A| = ad - bc = 3 \cdot 5 - 1 \cdot 2 = 15 - 2 = 13$$

Determinan Ordo 3x3

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Nilai determinan A disimbolkan dengan |A|, cara menghitung nilai determinan A dapat dilihat seperti pada cara di bawah.

$$det(A) = |A| = ad - bc$$

Contoh Soal:

Tentukan nilai determinan matriks

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$$

Pembahasan:

$$|A| = ad - bc = 3 \cdot 5 - 1 \cdot 2 = 15 - 2 = 13$$

Determinan Matriks Ordo 3x3

- Menggunakan prinsip perkalian diagonal kanan (blok biru) dikurangi diagonal kiri (blok kanan)
- Aturan Sarrus : Melakukan perhitungan terhadap elemen matriks dengan menambahkan 2 kolom bayangan yang diambil dari kolom 1 dan kolom 2 matriks aslinya.

$$|A| = aei + bfg + cdh - ceg - afh - bdi$$

Contoh Soal

Contoh perhitungan determinan pada matriks ordo 3:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

Maka,

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 2 & 1 & 2 \end{vmatrix}$$

$$|A| = 1 \cdot 3 \cdot 2 + 2 \cdot 1 \cdot 2 + 1 \cdot 3 \cdot 1 - 2 \cdot 3 \cdot 1 - 1 \cdot 1 \cdot 1 - 2 \cdot 3 \cdot 2$$

$$|A| = 6 + 4 + 3 - 6 - 1 - 12$$

$$|A| = -6$$

Pertidaksamaan 3 Variable

Mencari nilai x,y,z yang memenuhi kondisi berikut :

$$4x - 3y + 10z = 6$$
$$3x - 2y + 7z = 3$$
$$2x - y + 5z = 4$$

Ubah ke dalam bentuk matriks

$$4x - 3y + 10z = 6$$
$$3x - 2y + 7z = 3$$
$$2x - y + 5z = 4$$

4	-3	10	6
3	-2	7	3
2	-1	5	4

Mencari Dx

Cari Dx, Dy, Dz dan D

4	-3	10	6
3	-2	7	3
2	-1	5	4

6	-3	10
3	-2	7
4	-1	5

Dx = -7

Mencari Dy

Cari Dx, Dy, Dz dan D

4	-3	10	6
3	-2	7	3
2	-1	5	4

4	6	10
3	3	7
2	4	5

$$Dy = 2$$

Mencari Dz

Cari Dx, Dy, Dz dan D

4	-3	10	6
3	-2	7	3
2	-1	5	4

4	-3	6
3	-2	3
2	-1	4

$$Dz = 4$$

$$Dx = -7$$

$$Dy = 2$$

Mencari D

Cari Dx, Dy, Dz dan D

4	-3	10	6
3	-2	7	3
2	-1	5	4

4	-3	10	
3	-2	7	D = 1
2	-1	5	

$$Dx = -7$$
$$Dy = 2$$

$$Dz = 4$$

Mencari Nilai x,y,z

Hasil Perhitungan Dx, Dy, Dz, D

$$Dx = -7$$

$$Dy = 2$$

$$Dz = 4$$

$$D = 1$$

Nilai yang dicari dibagi dengan D

$$X = \frac{Dx}{D} = \frac{-7}{1} = -7$$

$$y = \frac{Dy}{D} = \frac{2}{1} = 2$$

$$Z = \frac{Dz}{D} = \frac{4}{1} = 4$$

Minor Kofaktor

Metode untuk menghitung determinan matriks terutama untuk yang di atas ordo 3x3

- Minor elemen a_{ij} diberi notasi M_{ij},
 adalah M_{ij}=det(A_{ij}). → Eliminasi
- Kofaktor elemen a_{ij}, diberi notasi α_{ij},
 adalah α_{ij}=(-1)_{i+j}M_{ij}. → Perkalian bersyarat dengan hasil poin 1

Minor
$$a_{11} = M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$
.

Minor $a_{21} = M_{21} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{22} & a_{23} \\ a_{11} & a_{22} & a_{23} \\ a_{11} & a_{22} & a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{22} & a_{23} \end{vmatrix}$

Minor $a_{12} = M_{12} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{22} & a_{23} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{23} \\ a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$

Minor $a_{12} = M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$

Minor $a_{12} = M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} & a_{33} \end{vmatrix}$

Minor

- 1. Pilih baris atau kolom yang mau dieliminasi
- 2. Eliminasi ke -i dan kolom ke-j : hasilnya adalah matriks A_{ij.}

 Jumlah yg dieliminasi = ordo (Misal 3x3 maka akan ada 3x eliminasi, 4x4 akan ada 4x eliminasi)
- 3. Hitung determinan matriks Aij (Mij)

Contoh:

Misalkan suatu matriks A berukuran 3x3 seperti berikut ini:

$$A = \begin{pmatrix} 4 & 2 & 8 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix}$$

A₁₁: eliminasi baris ke-1 kolom ke 1 dari Matriks A

$$A_{11} = \begin{pmatrix} 4 & 2 & 8 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 2 & 4 \end{pmatrix} \quad maka \quad M_{11} = \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}$$

Mij = Determinan dari Aij

$$A_{11} = \begin{pmatrix} 4 & 2 & 8 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 2 & 4 \end{pmatrix} \quad maka \quad M_{11} = \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}$$

$$M_{11} = 4 - 10$$

 $M_{11} = -6$

Ulangi sebanyak jumlah ordo

A₁₁ diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-1.

$$A_{11} = \begin{pmatrix} 4 & 2 & 8 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 2 & 4 \end{pmatrix}$$
 maka $M_{11} = \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}$

A₁₂ diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-2.

$$A_{12} = \begin{pmatrix} 4 & 2 & 8 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix} - \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$$
 make $M_{12} = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$

A₁₃ diperoleh dengan menghilangkan elemen-elemen pada baris ke-1 dan kolom ke-3.

$$A_{13} = \begin{pmatrix} 4 & 2 & 6 \\ \hline 2 & 1 & 5 \\ \hline 3 & 2 & 4 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
 maka $M_{13} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$

Kofaktor

$$C_{ij} = (-1)^{i+j} . M_{ij}$$

$$M_{11} = -6$$
 $M_{12} = -7$
 $M_{13} = 1$

$$C_{11} = (-1)^{1+1}$$
. M_{11}
 $C_{11} = (-1)^{2}$. -6
 $C_{11} = 1$. -6
 $C_{11} = -6$

Determinan

$$|\mathbf{A}| = \sum_{i=0}^{i} a_{ij} \cdot C_{ij}$$

Contoh:

Misalkan suatu matriks A berukuran 3x3 seperti berikut ini:

$$A = \begin{pmatrix} 4 & 2 & 8 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix}$$

$$C_{11} = -6$$

 $C_{12} = 7$
 $C_{13} = 1$

$$|A| = (a_{11}, C_{11}) + (a_{12}, C_{12}) + (a_{13}, C_{13})$$

$$|A| = (4.-6) + (2.7) + (8.1)$$

$$|A| = (-24) + (14) + (8)$$

$$|A| = -2$$

