Solving Recurrences

Divide-and-Conquer design paradigm

- 1. Divide : divide a problem into subproblems
- 2. Conquer: solve the subproblems recursively
- 3. Combine : combine the subproblem solutions appropriately

Merge Sort

- 1. Divide: Divide the input array in 2 subarrays.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Merge 2 sorted subarrays.

```
\frac{\text{function mergesort}}{\text{Input: An array of numbers }a[1\dots n]} \text{Output: A sorted version of this array} \text{if }n>1: \text{return merge(mergesort}(a[1\dots \lfloor n/2\rfloor])\text{, mergesort}(a[\lfloor n/2\rfloor+1\dots n])\text{)} \text{else:} \text{return }a
```

Merge Sort

<u>Merge</u>

```
function merge (x[1...k], y[1...l])

if k = 0: return y[1...l]

if l = 0: return x[1...k]

if x[1] \le y[1]:

return x[1] \circ \text{merge}(x[2...k], y[1...l])

else:

return y[1] \circ \text{merge}(x[1...k], y[2...l])
```

Analysis of Merge Sort

Recurrences

- When we analyze algorithms expressed in a recursive way, we get a recurrence.
 - Merge sort
 - Selection sort: find the smallest element and put it in the leftmost position. Then, recursively sort the remainder of the array.
- Base cases: when the problem size gets down to a small constant, just use a brute force approach that takes constant time.

$$T(n) \le c$$
 for all $n \le n_0$

Solving recurrences

- Solve by unrolling
- Substitution method
- Recursion tree
- Master method

Solve by unrolling

• Selection sort: find the smallest element and put it in the leftmost position. Then, recursively sort the remainder of the array.

$$T(n) = cn + T(n-1) = cn + c(n-1) + c(n-2) + \dots + c$$

top n/2 terms are each at least $cn/2$
 $(n/2)(cn/2) \le T(n) \le cn^2$
 $T(n) = \Theta(n^2)$

- Guess the form of the solution
- Use mathematical induction to find the constants and show that the solution works.

- Guess the form of the solution
- Use mathematical induction to find the constants and show that the solution works.

Ex)
$$T(n) = 4 T(n/2) + n$$

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

$$T(n) = 4 T(n/2) + n$$

$$\leq 4 c (n/2)^3 + n$$

$$= (c/2) n^3 + n$$

$$= cn^3 - ((c/2) n^3 - n)$$

$$\leq cn^3 \text{ if } (c/2) n^3 - n \geq 0, \text{ for example, if } c \geq 2 \text{ and } n \geq 1.$$

Ex)
$$T(n) = 4 T(n/2) + n$$

- We must handle the initial conditions, i.e., ground the induction with base cases.
- Base : $T(n) = \Theta(1)$ for all $n < n_0$, for a suitable constant n_0 .
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.
- This bound is not tight.

Tighter bound?

Ex)
$$T(n) = 4 T(n/2) + n$$

- We shall prove that $T(n) = O(n^2)$.
- Assume that $T(k) \le ck^2$ for k < n.

$$T(n) = 4 T(n/2) + n$$

$$\leq 4 c (n/2)^2 + n$$

$$= c n^2 + n$$

$$= O(n^2)$$

Tighter bound?

Ex)
$$T(n) = 4 T(n/2) + n$$

- We shall prove that $T(n) = O(n^2)$.
- Assume that $T(k) \le ck^2$ for k < n.

$$T(n) = 4 T(n/2) + n$$

$$\leq 4 c (n/2)^{2} + n$$

$$= c n^{2} + n$$

$$= \frac{O(n^{2})}{n^{2}}$$

Wrong! We must prove the exact form of the I.H.

 $\leq c n^2$ for no choice of c > 0!

IDEA: Strengthen the inductive hypothesis by subtracting a low-order term.

I.H.: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

Tighter bound?

Ex)
$$T(n) = 4 T(n/2) + n$$

IDEA: Strengthen the inductive hypothesis by subtracting a low-order term.

I.H.:
$$T(k) \le c_1 k^2 - c_2 k$$
 for $k < n$.

$$T(n) = 4 T(n/2) + n$$

$$\leq 4 (c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1 n^2 - 2 c_2 n + n$$

$$= c_1 n^2 - c_2 n - (c_2 n - n)$$

$$\leq c_1 n^2 - c_2 n \text{ if } c_2 > 1.$$

Pick c_1 big enough to handle the initial conditions.

- Show the upper and lower bounds separately. (Might need to use different constants for each.)
- Make sure you show the same *exact* form of the inductive hypothesis.
 - Subtract a lower-order term if necessary

Recursion-tree method

- Can be used to provide a good guess for the substitution method.
- Each node represents the cost of a single subproblem somewhere in the set of recursive function invocations.
- Sum the costs within each level of the tree to obtain a set of per-level costs.
- Sum all the per-level costs to determine the total cost of all levels of the recursion.

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
 $T(n)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^2$$
 $(n/2)^2$ $T(n/16)$ $T(n/8)$ $T(n/8)$ $T(n/4)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^2$$
 $(n/2)^2$ $(n/16)^2$ $(n/8)^2$ $(n/8)^2$ $(n/4)^2$ \vdots $\Theta(1)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^{2} \qquad (n/2)^{2} \qquad \frac{5}{16}n^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Theta(1) \qquad \text{Total} = n^{2} \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \cdots\right)$$

$$= \Theta(n^{2}) \qquad \text{geometric series} \ \blacksquare$$

Geometric series

$$\sum_{i=0}^{k} \alpha^{i} = 1 + \alpha + \alpha^{2} + \dots + \alpha^{k}$$

- If $\alpha > 1$, the last term dominates.
- If α < 1, the first term dominates.

$$1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \ne 1$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

Divide-and-conquer style recurrence

$$T(n) = a T(n / b) + c n^k$$

$$cn^{k} \left[1 + a/b^{k} + (a/b^{k})^{2} + (a/b^{k})^{3} + \dots + (a/b^{k})^{\log_{b} n} \right]$$

Define $r = a / b^k$

$$cn^{k} \left[1 + r + r^{2} + r^{3} + \dots + r^{\log_{b} n} \right]$$

$$cn^{k} \left[1 + r + r^{2} + r^{3} + \dots + r^{\log_{b} n} \right]$$

- Case 1: r < 1
 - Upper bound : $cn^{k}/(1-r)$

Lower bound : cn^k

$$\Theta(n^k)$$

- Case 2: r = 1 $\Theta(n^k \log n)$
- Case 3: r > 1

The last term dominates.

$$cn^k r^{\log_b n} \left[(1/r)^{\log_b n} + \ldots + 1/r + 1 \right]$$

$$T(n) \in \Theta\left(n^k(a/b^k)^{\log_b n}\right)$$

$$b^{k \log_b n} = n^k$$
 $T(n) \in \Theta\left(a^{\log_b n}\right)$.

$$T(n) \in \Theta\left(n^{\log_b a}\right)$$

$$T(n) = a T(n / b) + c n^k$$

$$T(n) \in \Theta(n^k) \text{ if } a < b^k$$
 $T(n) \in \Theta(n^k \log n) \text{ if } a = b^k$
 $T(n) \in \Theta(n^{\log_b a}) \text{ if } a > b^k$

Master method

• Master theorem

Let $a \ge 1$, b > 1 be constants, function f(n) > 0 and let T(n) be defined on the nonnegative integers by the recurrence T(n) = a T(n/b) + f(n).

Then T(n) can be bounded asymptotically as follows.

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if f(n) satisfies the regularity condition $a f(n/b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Compare f(n) with $n^{\log_b a}$

$$T(\mathbf{n}) = a \ T(n/b) + f(n).$$

If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Case 1: f(n) is polynomially smaller. (f(n) is asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ε} for some constant $\varepsilon > 0$.)

Cost is dominated by leaves.

$$T(\mathbf{n}) = a T(n/b) + f(n).$$

If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.

Case 1: f(n) is polynomially smaller. (f(n) is asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ε} for some constant $\varepsilon > 0$.)

Cost is dominated by leaves.

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

$$T(n) = a T(n/b) + f(n).$$

If
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
 for some constant $k \ge 0$,
then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Case 2: f(n) and $n^{\log_b a}$ grow at similar rates - multiply by a logarithmic factor.

$$T(n) = a T(n/b) + f(n).$$

If
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
 for some constant $k \ge 0$,
then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Case 2: f(n) and $n^{\log_b a}$ grow at similar rates - multiply by a logarithmic factor.

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \lg n)$.

$$T(n) = a T(n/b) + f(n).$$

If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if f(n) satisfies the regularity condition $a f(n/b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Case 3 : f(n) is polynomially larger. Satisfy "regularity" condition a $f(n/b) \le c f(n)$

Cost is dominated by root.

$$T(n) = a T(n/b) + f(n).$$

If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if f(n) satisfies the regularity condition $a f(n/b) \le c f(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

$$T(n) = a T(n/b) + f(n)$$

Recursion tree: f(n/b) f(n/b) \cdots f(n/b) \cdots af(n/b) $f(n/b^2) \ f(n/b^2) \ \cdots \ f(n/b^2) \cdots a^2 f(n/b^2)$

$$T(n) = a T(n/b) + f(n)$$

```
Recursion tree:
                              \cdots f(n/b)----af(n/b)
              f(n/b) f(n/b)
h = \log_b n
```

$$T(n) = a T(n/b) + f(n)$$

$$T(n) = a T(n/b) + f(n)$$

$$T(n) = a T(n/b) + f(n)$$

Recursion tree:
$$f(n) = f(n)$$

$$f(n/b) f(n/b) \cdots f(n/b) \cdots af(n/b)$$

$$f(n/b^2) f(n/b^2) \cdots f(n/b^2) \cdots a^2 f(n/b^2)$$

$$\vdots$$

$$f(n/b^2) f(n/b^2) \cdots f(n/b^2) \cdots a^2 f(n/b^2)$$

$$\vdots$$

$$\vdots$$

$$T(1) = \begin{cases} CASE 2 : (k = 0) \text{ The weight is approximately the same on each of the } \log_b n \text{ levels.} \end{cases}$$

$$\Theta(n^{\log_b a} \lg n)$$

$$T(n) = a T(n/b) + f(n)$$

