Inequality Process Simulation

Modeling and Simulation in Science, Engineering, and Economics

Yao Xiao | Ziyue Wang

Courant Institute of Mathematical Sciences December 22, 2022

Introduction

- *n* people in a room, each with *m* dollars initially
- In each step, a random person gives a dollar to another random person
- How will the money be distributed?

Introduction

- Uniform?
- · Exponential-like
- The inequality process

Model

- *n* people in a society, with some distribution of initial wealth
- In each step, randomly select two people
- Exchange their wealth following some transaction function

The Fugivity of Surplus Wealth Principle

Surplus is the difference between subsistence and the total production of wealth; societal net product. At the level of the individual person, where people are able to produce a surplus, some of the surplus will be **fugitive** and **leave the possession of people who produce it**. Moreover, this implies encounters in which surplus wealth changes hands fairly readily.

Transaction Function #1

$$X'_{A} = X_{A} + dU \cdot X_{B} - (1 - d)U \cdot X_{A}, \tag{1}$$

$$X'_{B} = X_{B} + (1 - d)U \cdot X_{A} - dU \cdot X_{B}, \tag{2}$$

where

 $X_A, X'_A =$ the surplus wealth of A before (respectively, after) an encounter with B, $X_B, X'_B =$ the surplus wealth of B before (respectively, after) an encounter with A,

$$d = \left\{ \begin{array}{ll} 1, & \text{with probability } 0.5, \\ 0, & \text{otherwise}, \end{array} \right. \quad \text{and} \quad \textit{U} \sim \text{Uniform}(0,1).$$

Equal population, size=2000, mean=100.0, simulating 20000 steps Exchange strategy: winner takes random proportion of wealth from the loser

į					std															
ï					0.00															
ij	2000	İ	0.41	Ĺ	74.62	Ĺ	0	Ĺ	3	İ	41	İ	100	Ĺ	139	Ĺ	237	Ĺ	320	Ĺ
-1	4000	1	0.51	1	97.35	1	0	Ī	1	Ī	23	1	73	Ī	147	Ī	294	Ī	404	1
-1	6000	1	0.56		113.12	1	0		1		17	1	62		140		323		490	
-1	8000		0.59		122.36	1	0	I	0		14	1	56	I	133		356		557	1
-1	10000	1	0.61		133.63	1	0		0		13	1	51		132		357		592	
-1	12000		0.62		135.18	1	0	I	0		12	1	47	I	137		365		613	1
- 1	14000		0.63		134.91	1	0		0		11	1	45		140		382		597	
- 1	16000		0.63		140.42	1	0	I	0		9	1	45		136		376		638	1
-1	18000		0.63		138.91	1	0	I	0		9	1	46	I	136		372		609	1
- 1	20000		0.63		139.88	1	0	I	0		10	1	46		133		378		603	1
+		+		-+-		+		+		+		+		+		+-		+-		+

The Snowball Principle

Wealth confers on those who possess it the ability to extract wealth from others. So netting out each person's ability to do this in a general competition for surplus wealth, **the rich tend to take surplus away from the poor**.

Transaction Function #2

$$X'_{A} = X_{A} + dU \cdot X_{B} - (1 - d)U \cdot X_{A}, \tag{3}$$

$$X'_{B} = X_{B} + (1 - d)U \cdot X_{A} - dU \cdot X_{B}, \tag{4}$$

where

 X_A , X'_A , X_B , and X'_B are as previously stated,

$$d = \left\{ \begin{array}{ll} 1, & \text{with probability } \delta \text{ if } \textit{X}_{\textit{A}} > \textit{X}_{\textit{B}} \text{ and } (1-\delta) \text{ otherwise,} \\ 0, & \text{otherwise,} \end{array} \right.$$

 $U \sim \text{Uniform}(0, 1)$.

The Ranked Society

Equal population, size=2000, mean=100.0, simulating 20000 steps
Exchange strategy: winner takes random proportion of wealth from the loser
however, the richer party has 80% chance of winning

step gini std 1% 5% 25% 50% 75% 95% 0 0 0 0 0 10	99%
0 0.00 0.00 100 100 100 100 100 100	
2000 0.43 80.77 0 2 31 100 139 257 4000 0.57 113.32 0 0 11 64 145 342 6000 0.64 136.25 0 0 5 42 145 363 8000 0.69 153.72 0 0 2 30 140 402 10000 0.72 166.94 0 0 1 22 125 449 12000 0.75 177.94 0 0 1 18 114 469 14000 0.76 185.20 0 0 0 1 14 104 502	356 477 632 741 776 843 831
16000 0.77 191.89 0 0 0 13 101 537	891
18000 0.78 201.22 0 0 0 12 95 550	
20000 0.79 209.72 0 0 0 10 90 536	

The Ranked Society

Equal population, size=2000, mean=100.0, simulating 20000 steps
Exchange strategy: winner takes random proportion of wealth from the loser
however, the richer party has 60% chance of winning

1	step	gini	std	1%	5%	25%	50%	75%	95%	99%
ĺ	0 2000 4000 6000 10000 12000 14000	0.00 0.42 0.54 0.60 0.62 0.64 0.65 0.67	0.00 78.41 106.00 122.39 133.45 136.92 144.07 148.14	100 0 0 0 0 0 0 0	100 3 1 0 0 0 0	100 39 17 11 9 7 7	100 100 72 56 48 42 41	100 136 143 144 142 138 137	100 249 308 346 361 389 390 416	100 363 482 565 636 619 671
			147.34							670
			153.62							711
			158.94	0	0	4	l 34			789

The Ranked Society (80% bias)

The Ranked Society (80% bias)

Problem

- Biased towards the poorer party?
- Equality or inequality?

The Resistance of Loss Principle

Surplus should be viewed as being **made up of layers** and that the top layers are **more fugitive**, more easily lost than the bottom layers, those close to the level of subsistence.

Transaction Function #3

$$X'_{A} = X_{A} + dZ \cdot X_{B} - (1 - d)Z \cdot X_{A}, \tag{5}$$

$$X'_{B} = X_{B} + (1 - d)Z \cdot X_{A} - dZ \cdot X_{B}, \tag{6}$$

where

 X_A , X'_A , X_B , X'_B , and d are as previously stated,

$$Z = \sum_{k=1}^{I} \frac{U_k^k}{I}$$
, with $U_k \sim \text{Uniform}(0,1)$, $k = 1, \dots, n$.

The Industrial Society

Lenski Hypothesis

With the evolution of the industrial society, there will be more layers with increasing resistance to loss, and the total expectation of loss should thus drop.

Indeed, we can compute that

$$\mathbb{E}(Z) = \frac{1}{I} \sum_{k=1}^{I} \mathbb{E}(U_k^k) = \frac{1}{I} \sum_{k=1}^{I} \int_0^1 x^k dx = \frac{1}{I} \sum_{k=1}^{I} \frac{1}{k+1}.$$

The Industrial Society (2 layers)

The Industrial Society (5 layers)

Transaction Function #4

$$X'_{A} = X_{A} + d \cdot (ZX_{B} - \tan(ZX_{B})) - (1 - d) \cdot ZX_{A}, \tag{7}$$

$$X'_{B} = X_{B} + (1 - d) \cdot (ZX_{A} - \tan(ZX_{A})) - d \cdot ZX_{B}, \tag{8}$$

where

 X_A , X'_A , X_B , X'_B , d, and Z are as previously stated,

 $tax: transaction amount \mapsto tax amount.$

Note that the tax will be later **evenly distributed across the total population**.

The Modern Society (3% tax)

The Modern Society (10% tax)

The Modern Society (20% tax)

The Modern Society (45% tax)

Distribution Fitting

- · Take the normalized histogram
- For each distribution, maximize its likelihood function $\mathcal{L}(heta|x)$

Algorithm

$$\hat{\theta} = \arg\max_{\theta} f(\mathbf{x}; \theta) = \arg\min_{\theta} \left(-\sum_{i=1}^{n} \log f(x_i, \theta) \right), \tag{9}$$

where f is the probability density function, and \mathbf{X} is the random vector as a sample of n independent random variables with this probability density function.

Distribution Fitting

- Take all distributions from the scipy.stats library
- Compute the mean-squared error and perform the Kolmogorov-Smirnov test
- Pick the top $20\ \mathrm{fits}$ according to MSE

Distribution Fitting (unbiased, single layer)

Distribution Fitting (unbiased, 5 layers)

Distribution Fitting (60% biased, single layer)

Distribution Fitting (60% biased, 5 layers)

Distribution Fitting (unbiased, single layer)

Fitting with transaction function win_take_layer, simulating 200000 steps
Testing on equal population of size=2000, mean=100.00, transaction bias=60%, layers=5

geninvgauss
beta 6.24E-06 2.33E-02 2.24E-01

Validation

- Real-world economic system
 Stochastic simulation of economic exchange
- · Gamma distribution
- Pareto distribution

Remark

The fitting results are algorithm-dependent, but should not affect the final conclusion. The maximum likelihood estimation may detect some nice fits while missing others, and the same can happen to other methods (*e.g.*, the method of moments estimation).

Taxes on Personal Income

People's Republic of China

Annual taxable income (CNY)	Tax rate (%)	Quick deduction (CNY)
0 to $36,000$	3	0
Over $36,000$ to $144,000$	10	2,520
Over $144,000$ to $300,000$	20	16,920
Over $300,000$ to $420,000$	25	31,920
Over $420,000$ to $660,000$	30	52,920
Over $660,000$ to $960,000$	35	85,920
Over $960,000$	45	181,920

Taxes on Personal Income

Design

```
below 0.15 times initial mean | 3% 0.15 to 0.50 times initial mean | 10% 0.50 to 1.04 times initial mean | 20% 1.04 to 1.96 times initial mean | 25% 1.96 to 2.29 times initial mean | 30% 2.29 to 3.33 times initial mean | 35% above 3.33 times initial mean | 45%
```

```
Equal population, size=2000, mean=100.00, simulating 200000 steps
Exchange strategy: winner takes some proportion of wealth from the loser (taxed)
with the loser resisting the loss of wealth at Lvl. 5
the richer party has 60% chance of winning
```

-		- 4		- 4-				4				- 4		4		1.		-4.		4
į	step	į	0		std	ĺ	1%	İ	5%	İ	25%	Ì	50%	ĺ	75%	ĺ	95%	İ	99%	
1	0	1			0.00										100					T
	20000																			
	20000	- 1	0.45	1	85.33	1	5		11	ı	35	- 1	11	1	136	1	211	-	390	1
	40000		0.44		84.68	-	5		11		36		76		138		268		396	1
	60000		0.44	1	85.21	1	5	1	12		37		75		137		260		400	1
	80000		0.44	1	85.50	1	5	1	12		37		74	1	136		271		401	1
	100000	-1	0.44	1	85.67	1	5		11		37	-1	77		134		276		387	
	120000	-1	0.44	1	85.41	1	5		12		39	-1	76		133		280		407	
	140000		0.45	1	87.31	1	4	1	10		36		74		136		269		414	1
	160000		0.45	1	86.74	1	5	1	11		35		74	1	139		275		407	1
	180000		0.44	1	86.12	1	5	1	11		37		74	1	137		270		399	1
	200000		0.45	1	87.59	1	4	1	10		35		75	1	136		270		404	

Validation

- The Gini coefficient of China has been around 0.43 0.49 for years
- Recent research on economic exchange
- The beta prime distribution is suitable for describing real-world wealth distribution, given that it can mimic various behaviors (e.g., exponential behavior for both large and small values).

distr		KS-stat	
betaprime	2.04E-06		

Concluding Remarks

Thanks for listening!