Multilayer perceptron Quiz, 4 questions

1
point
1. Choose the correct statements about MLP
We can train MLP with SGD
A hidden layer of MLP automatically learns new helpful features for the task
MLP can have only 1 hidden layer
The first hidden layer contains predictions for your task
MLP with a linear activation function is better than a linear model
1
point
2. Apply a chain rule to calculate $\frac{\partial a}{\partial x}$ where $a(x,y) = ain(xy) \cdot a^x$
Apply a chain rule to calculate $rac{\partial a}{\partial x}$ where $a(x,y)=sin(xy)\cdot c^x$.
Here is an example of the syntax: sin(x*y)*exp(x), more info <u>here</u>
Preview
$ye^{x}\cos\left(xy ight) +e^{x}\sin\left(xy ight)$
sin(x*y)*exp(x) + cos(x*y)*y*exp(x)
1 point
3.
Choose the correct statements about backpropagation

It is an efficient way to apply a chain rule

4 questio	It is the way to train modern neural networks VET PETCEPTION ons You can use non-differentiable loss to train your MLP
	It is done in one pass
1	
poin	t
4. What is graph?	s the time complexity of backpropagation algorithm w.r.t. number of edges N in the computational
	O(N)
	O(log(N))
	O(N!)
	$O(N^2)$
	Jiadai Zhao , understand that submitting work that isn't my own may result in permanent failure of this ourse or deactivation of my Coursera account.
Le	earn more about Coursera's Honor Code
	Submit Quiz