An Analytical Introduction to Probability Theory

1. Basics of Real Analysis - I

DASN, NTU

https://personal.ntu.edu.sg/wptay/

1.1 Introduction

This basic real analysis introduction covers topics in sequences, compact spaces and continuity. Recommended textbook is "Principles of Mathematical Analysis" by Walter Rudin.

1.2 Sequences

Inner product space \subset normed space \subset metric space \subset topological space. Working with metric spaces suffices for our purposes.

Definition 1.1. A metric space is an ordered pair (\mathcal{X}, d) where \mathcal{X} is a set and d is a metric on \mathcal{X} , such that $\forall x, y, z \in \mathcal{X}$, the following holds:

- 1) $d(x,y) \ge 0$, where equality holds iff x = y.
- 2) d(x,y) = d(y,x).
- 3) Triangle inequality: $d(x,y) \le d(x,z) + d(y,z)$.

Example 1.1. Examples of metric space:

- $(\mathbb{R}, |x-y|)$ (normed space)
- $(\mathbb{R}^k, ||x-y||_p)$, where $p \ge 1$ (normed space)
- $\ell^p(\mathbb{R}) = \left\{ x = (x_n)_{n \ge 1} : ||x||_p = \left(\sum_{n \ge 1} |x_n|^p \right)^{1/p} < \infty \right\}$ (normed space)
- (\mathcal{X}, d) , where d(x, y) = 0 if x = y and d(x, y) = 1 otherwise.

We write (x_n) or $(x_n)_{n\geq 1}$ as shorthand for the sequence x_1, x_2, \ldots

Definition 1.2. For $(x_n) \subset \mathcal{X}$, we say that $x_n \to x$ as $n \to \infty$ or $\lim_{n \to \infty} x_n = x$ if

$$\forall \epsilon > 0, \ \exists N \text{ s.t. } d(x_n, x) < \epsilon, \ \forall n \ge N.$$

Definition 1.3. We say x_n diverges to ∞ if there exists $x_0 \in \mathcal{X}$ and

$$\forall K \geq 0, \ \exists N \text{ s.t. } d(x_n, x_0) \geq K, \ \forall n \geq N.$$

We define extended real numbers $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$. For $x \in \mathbb{R}$, we have:

- 1) $x + \infty = \infty$
- 2) $x \infty = -\infty$
- 3) $x \cdot \pm \infty = \pm \infty, \forall x > 0$
- 4) $0 \cdot \pm \infty = 0$ (by convention)

The following lemmas are based on $(\mathbb{R}, |\cdot|)$ but most can be generalized to (\mathcal{X}, d) .

Lemma 1.1. If (a_n) converges, then its limit is unique.

Proof. Supposing $a_n \to a$ and $a_n \to a'$, we have

$$\forall \epsilon > 0, \ \exists N \text{ s.t. } |a_n - a| < \epsilon \text{ and } |a_n - a'| < \epsilon, \ \forall n \ge N.$$

By the triangle inequality, we obtain:

$$|a - a'| \le |a_n - a| + |a_n - a'| < 2\epsilon.$$

Since ϵ is arbitrary, a = a'.

Lemma 1.2. If (a_n) converges, $|a_n| < \infty$.

Proof. Supposing $a_n \to a$, $\exists N$, s. t. $|a_n - a| < 1$, $\forall n \ge N$. Then we obtain

$$|a_n| \leq |a| + 1, \forall n \geq N,$$

and

$$|a_n| \le \max\{a_1, \dots, a_{N-1}, |a|+1\} < \infty.$$

Lemma 1.3. If (a_n) is increasing (i.e., $a_{n+1} \ge a_n$ for all $n \ge 1$) and is bounded above, then (a_n) converges.

Proof. To prove the lemma, we need some definitions. We define $\sup A = \text{least upper bound}$ (LUB) of A if $A \neq \emptyset$ and $A \subset \mathbb{R}$, i.e.,

- 1) $\forall a \in A, a < \sup A$.
- 2) if $\gamma < \sup A$, $\exists a \in A$, s. t. $\gamma < a$.

For the definition to be well-defined, we need the LUB/Completeness axiom: $\sup A$ exists in \mathbb{R} for all $A \neq \emptyset$ bounded above. (Note that this axiom does not hold for \mathbb{Q} .) If A is not bounded above, we set $\sup A = \infty$. From Item 2), we obtain a useful property:

$$\forall \epsilon > 0, \ \exists a \in A, \ \text{s. t. } \sup A - \epsilon < a.$$

The greatest lower bound of A is written as $\inf A$.

Returning to the proof of the lemma, let $a = \sup a_n < \infty$ since (a_n) is bounded. We have

$$\forall \epsilon > 0, \ \exists N, \ \text{s.t.} \ a - \epsilon \le a_N \le a_n \le a, \ \forall n \ge N.$$

 $\implies a_n \to a.$

Applying Lemma 1.3 to the negative of a sequence, we also conclude that any decreasing sequence that is bounded below converges.

Remark 1.1.

- 1. If $a_n \in \overline{\mathbb{R}}_+$ and is increasing, then $\lim_{n\to\infty} a_n$ exists (maybe ∞).
- 2. If $a_n \in \mathbb{R}_+$, then from Lemma 1.3, $\sum_{k=1}^{\infty} a_k \triangleq \lim_{n \to \infty} \sum_{k=1}^{n} a_k$ exists.

Definition 1.4. A subsequence of (a_n) is a sequence (a_{n_i}) , where $n_1 < n_2 < \dots$ is an increasing sequence of indices.

Lemma 1.4. If $a_n \to a \iff a_{n_i} \to a$, for all subsequences (a_{n_i}) .

Proof. The direction " \Leftarrow " is obvious. To prove the other direction, we have $\forall \epsilon > 0, \exists N$ s. t. $|a_n - a| < \epsilon, \ \forall n \ge N$. Therefore, $\forall n_i \ge N, \ |a_{n_i} - a| < \epsilon$.

Lemma 1.5. Every sequence (a_n) in \mathbb{R} has a monotone subsequence.

Proof. Suppose there are no increasing subsequences. Then, $\exists n_1$, s.t. $a_{n_1} \geq a_n$, $\forall n \geq n_1$. Similarly, $\exists n_2 > n_1$, s.t. $a_{n_2} \geq a_n$, $\forall n \geq n_2$, and so on. This constructs a decreasing subsequence $a_{n_1} \geq a_{n_2} \geq \dots$

Lemma 1.6. Every bounded sequence in \mathbb{R} contains a convergent subsequence.

Proof. From Lemma 1.5, a bounded sequence has a monotone subsequence, which converges from Lemma 1.3. \Box

Let S = set of subsequence limits of $(a_n) \subset \overline{\mathbb{R}}$. We define $\limsup_{n \to \infty} a_n = \sup S$, and $\liminf_{n \to \infty} a_n = \inf S$. We have

$$\forall \epsilon > 0, \ \exists s \in S, \ \text{s. t. } \sup S - \epsilon/2 \le s \le \sup S.$$

Let $a_{n_i} \to s$ (can you see why such a subsequence must exist?) so that

$$\forall \epsilon > 0, \exists N, \text{ s. t. } |a_{n_i} - s| < \epsilon/2, \forall n_i > N.$$

Therefore,

$$|a_{n_i} - \sup S| \le |a_{n_i} - s| + |s - \sup S| < \epsilon,$$

which implies that $\sup S \in S$ and $\sup S = \max S$, i.e., $\limsup_{n \to \infty} a_n$ exists. Similarly, we have $\inf S = \min S$.

Lemma 1.7. Suppose $s = \limsup_{n \to \infty} a_n > -\infty$. Then $\forall \epsilon > 0$, $\exists N$ s.t. $a_n \leq s + \epsilon$, $\forall n \geq N$.

Proof. If $s = \infty$, the lemma obviously holds. Suppose $s < \infty$. We prove by contradiction. Suppose $\exists \epsilon > 0$ and subsequence (a_{n_i}) s. t. $a_{n_i} > s + \epsilon$. Since $s < \infty$, (a_{n_i}) is bounded. Then from Lemma 1.6, \exists subsubsequence $(a_{n_i'})$, s. t. $a_{n_i'} \to a' \ge s + \epsilon > s$, a contradiction to the definition of s.

Lemma 1.8. $\limsup_{n\to\infty} a_n = \inf_{n\geq 1} \sup_{m\geq n} a_m$ and $\liminf_{n\to\infty} a_n = \sup_{n\geq 1} \inf_{m\geq n} a_m$.

Proof. If $\limsup_{n\to\infty} a_n = \pm \infty$, then the result clearly holds. Suppose $-\infty < \limsup_{n\to\infty} a_n = \sup S < \infty$, where S is the set of subsequential limits.

For any $\epsilon > 0$, there exists a subsequence (a_{n_i}) s. t. $\sup S - \epsilon \leq a_{n_i}$. Then,

$$\sup S - \epsilon \le \sup_{m > n} a_m, \ \forall \, n \ge n_1.$$

Letting $n \to \infty$, we have

$$\sup S - \epsilon \le \lim_{n \to \infty} \sup_{m > n} a_m = \inf_{n \ge 1} \sup_{m > n} a_m,$$

since $\sup_{m\geq n} a_m$ is a decreasing sequence in n. As ϵ is arbitrary, we have

$$\sup S \le \inf_{n \ge 1} \sup_{m > n} a_m.$$

On the other hand, for each $n \geq 1$, $\exists a_{m_n} \geq \sup_{m \geq n} a_m - 1/n$. Then we have

$$\sup S \ge \lim_{n \to \infty} a_{m_n} \ge \inf_{n \ge 1} \sup_{m > n} a_m.$$

The other claim is proved similarly and the proof is now complete.

1.3 Cauchy Sequences

Definition 1.5. A sequence (a_n) is a Cauchy sequence if $\forall \epsilon > 0$, $\exists N$ s.t. $d(a_n, a_m) < \epsilon$, $\forall n, m \geq N$.

Lemma 1.9. If (a_n) converges, then it is Cauchy.

Proof. Suppose $a_n \to a$. Then $\forall \epsilon > 0$, $\exists N$ s. t. $d(a_n, a) < \epsilon/2 \ \forall n \ge N$. Then $\forall n, m \ge N$, we have

$$d(a_n, a_m) \le d(a_n, a) + d(a_m, a) < \epsilon.$$

Definition 1.6. A metric space (\mathcal{X}, d) in which every Cauchy sequence converges in \mathcal{X} is complete.

Example of an incomplete space is \mathbb{Q} , the set of rational numbers: for every irrational number, one can construct a sequence of rational numbers that converges to it.

Theorem 1.1. \mathbb{R}^k is complete.

Proof. WLOG, we prove for \mathbb{R} . We first show 2 lemmas.

Lemma 1.10. A Cauchy sequence is bounded.

Proof. Similar to Lemma 1.2.

Lemma 1.11. If (a_n) is Cauchy and there is a subsequence $a_{n_i} \to a$, then $a_n \to a$.

Proof. For any $\epsilon > 0$, $\exists N$ such that $\forall n, n_i \geq N$,

$$d(a_n, a) \le d(a_n, a_{n_i}) + d(a_{n_i}, a) \le \epsilon.$$

We now return to the proof of Theorem 1.1. Let (a_n) be a Cauchy sequence in \mathbb{R} . Then (a_n) is bounded from Lemma 1.10. From Lemma 1.6, there exists a convergent subsequence. Lemma 1.11 then implies (a_n) converges and the proof is complete.