$$\Rightarrow \log_3 L(s, \chi) = \sum_{p} \frac{\chi(p)}{ps} + O(1)$$

Proposition: Let 1q be the principal character mod q. Then $\lim_{s\to 1^+} \log_2 L(s, 1q) = \infty$.

Proof: Observation: for L(s, Iq),
$$log_2$$
 L(s, Iq) = log L(s, Iq)

Here "by" is the usual by function. (Idea of proof: $(\log L(s, 1q))' = \frac{L'(s, 1q)}{L(s, 1q)}$. Therefore, lim log, L(s, Iq) = lim log L(s, Iq) = log lim L(s, Ig) = 00 (Recall: Lis, Ig) = Zis) [(1-ps) and lim Zis) = \in) A Proposition: Let χ (mod 9) be a non principal character. Suppose that $L(1, \chi) \neq 0$. Then we can find a constant C $\left|\log_2 L(s, \chi)\right| \leq C$ when $s \in (1,2)$ Faut: Let $f: I \rightarrow \mathbb{C}$ be a continous function Suppose that I is a closed interval and $f(x) \neq 0$ for any XEI. Then we can find A>O such that $|f(x)| \ge A$ for any $x \in I$. Proof of proposition: Assume that $L(1, x) \neq 0$.

Recall: lim L(s, X) = 1. Then we can find a large M, such that $|L(s, \chi)| \ge \frac{1}{2}$ when $S \ge M$. Next, $L(1,X) \neq 0 \Rightarrow L(s,X) \neq 0$ for $S \in [1,M]$ Then |LIS, XX | > A when S & [1, M] This implies: $|L(s, x)| \ge C'$ when $s \in [1, \infty)$ Then: for $S \in (1,2)$ $\left| \log_2 L(s, \chi) \right| = \left| \int_S^{\infty} \frac{L'(s, \chi)}{L(s, \chi)} ds \right|$ $\leq \int_{S}^{\infty} \left| \frac{L'(s, \chi)}{L(s, \chi)} \right| ds$ $\leq \frac{1}{c} \left| \frac{c}{c} \left| \frac{L'(s, x)}{ds} \right| ds$ Sine $L'(s, \chi) = O(\sqrt{s})$, we can show: $|\log_2 L(s, \chi)| \leq C$ for some constant C. A. Theorem: Let 0,9 be integers and (0,9)=1. Suppose that for any X (mod q), a non principal character, Then there are ∞ -many primes in the arithmetic progression. a, atq, at29, at39, ... It suffices to show; $\lim_{S\to 1^+} \sum_{p \equiv a \pmod{q}} \frac{1}{p^s} = \infty$ $\frac{1}{P = a \pmod{q}} \frac{1}{P^{s}} = \frac{1}{P \text{ prime}} \frac{1}{P^{s}} \frac{1}{P^{s}}$ $= \frac{1}{p \text{ prime}} \frac{1}{p^3} \cdot \frac{1}{\varphi(q)} \frac{1}{\chi(nod q)} \frac{\chi(q)}{\chi(q)} \chi(p)$ $=\frac{1}{\varphi(q)}\frac{\chi(q)}{\chi(mdq)}\frac{\chi(q)}{\chi(q)}$ $=\frac{1}{\varphi(q)}\frac{1}{\chi(mdq)}\frac{\chi(\alpha)}{\chi(\alpha)}\left(\log_2 L(s,\chi) + O(1)\right)$ $=\frac{1}{919}\sum_{\chi(m)}\frac{\chi(a)}{\chi(a)}\log_2L(s,\chi)+O(1)$

RHS =
$$\frac{1}{919}$$
 log₂ L(s, 19) + $\frac{1}{919}$ $\frac{1}{2(mdq)}$ $\frac{1}{2}$ $\frac{1}{2}$

Then $L(1, X) \neq 0$.

Lemma: When S>1

$$\int \int L(s, x) > 1$$
.

Proof: $\left[\frac{1}{\chi \pmod{q}} \right] = \left[\frac{1}{\chi \pmod{q}} \exp \left(\frac{1}{\chi \pmod{q}} \right) \right]$

$$= \exp\left(\frac{\sum_{\chi \text{ (mod q)}} \sum_{p} \log_{1} \frac{1-\chi(p)}{p^{3}}\right)$$

$$= \exp\left(\frac{\sum_{x \in Mod q}}{\sum_{p \in Nod q}} \frac{\sum_{p \in Nod q}}{\sum_{p \in Nod q}} \frac{\left(\frac{x(p)}{p^3}\right)^{\ell} \cdot \frac{1}{\ell}}{\ell}\right)$$

$$= \exp\left(\frac{\sum_{\chi(n) \neq q}}{\chi(n)} \frac{\sum_{\gamma \neq q}}{\sum_{\gamma \neq q}} \frac{\chi(p^2)}{2p^2}\right)$$

$$= \exp\left(\frac{\sum}{P} \sum_{l \geq 0} \frac{1}{\ell p^{ls}} \cdot \sum_{\chi (mdq)} \chi(p^{\ell})\right)$$

Exercise: $\sum_{\chi \text{ (mod q)}} \chi(n) = \begin{cases} 919 \\ 0 \end{cases}$ otherwise.

This implies:
$$\sum_{p} \sum_{l \geqslant 0} \frac{1}{lpls} \sum_{\chi (mod q)} \chi(p^l) > 0$$

 $= \left(\left(\left| s-1 \right| \right) \right)$

This yields: him [[L(s,x) = D s-1 x(molg)]

A contradiction to the lemma!

I