ENERGY STUDY OF ARMY INDUSTRIAL FACILITIES

OBER-RAMSTADT WEST GERMANY

EXECUTIVE SUMMARY

FINAL SUBMITTAL

OCTOBER, 1988

DEPARTMENT OF THE ARMY

EUROPEAN DIVISION, CORPS OF ENGINEERS

CONTRACT NO. DACA 90-86-C-0096

ROBERT & COMPANY/NEWCOMB & BOYD A JOINT VENTURE

ATLANTA, GEORGIA

19971016 033 ********

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

OBER-RAMSTADT DEPOT ENERGY STUDY EXECUTIVE SUMMARY FINAL SUBMITTAL CONTENTS

		PAGE
1.0	INTRODUCTION AND SUMMARY	1-1
2.0	EXISTING ENERGY SITUATION	2-1
3.0	ENERGY CONSERVATION OPPORTUNITY (ECO) SELECTION	3-1
4.0	PROJECT DEVELOPMENT	4-1
5 0	PROJECT IMPACT	5-1

INDEX OF TABLES & FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Ober-Ramstadt Depot Location Map	1-7
1.2	Ober-Ramstadt Depot Site Plan	1-8
1.3	Facilities to be Surveyed	1-9
2.1	Steam Distribution System	2-10
2.2	Electric Utility Rate Schedule	2-11
2.3	Electricity Consumption	2-12
2.4	Energy Costs	2-13
2.5	Number 6 Fuel Oil Consumption	2-14
2.6	Steam Production	2-15
2.7	Number 2 Fuel Oil Consumption	2-16
2.8	Number 2 Fuel Oil Consumption (Diesel)	2-17
2.9	Gasoline Consumption	2-18
2.10	Estimated Process Steam Usage	2-19
2.11	Estimated Process Electricity Usage	2-20
2.12	Yearly Consumption Per End Product	2-22
3.1	Recommended ECO's from Annex A,	
	Scope of Work	3-6
3.2	ECO's Evaluated	3-9
3.3	Implemented Projects	3-10
3.4	Planned Projects	3-12
4.1	ECIP Economic Analysis Summary -	
	Architectural ECO's	4-4

INDEX OF TABLES & FIGURES (con't.)

FIGURE NO.	TITLE	PAGE
4.2	ECIP Economic Analysis Summary -	
	Mechanical ECO's	4-5
4.3	ECIP Economic Analysis Summary -	
	Electrical ECO's	4-6
4.4	ECIP Economic Analysis Summary -	
	Process ECO's	4-7
4.5	Low/No Cost Projects - Architectural	4-8
4.6	Low/No Cost Projects - Mechanical	4-9
4.7	Low/No Cost Projects - Electrical	4-10
4.8	Low/No Cost Projects - Process	4-11
4.9	Ecip Economic Analysis Summary	4-12
	Possible Project	
5.1	Energy Consumption FY-1986	5-3
5 2	Estimated Annual Savings	5-4

1.0 INTRODUCTION AND SUMMARY

1.1 Introduction:

This document is the Executive Summary of the Energy Study of Army Industrial Facilities for the Ober-Ramstadt Depot in West Germany. The purpose of this document is to briefly outline the existing and historical energy situation, summarize the methodology for the development of energy conservation opportunities (ECO's) specific to the Ober-Ramstadt Depot, and present the specific energy conservation projects developed through the Energy Study.

This project was performed under the direction of the European Division of the U.S. Army Corps of Engineers under Contract No. DACA 90-86-C-0096. The study was performed by Robert & Company/Newcomb & Boyd, a joint venture, with home offices in Atlanta, Georgia. Local engineering support for the project was provided by Lahmeyer International, GmbH.

1.2 Ober-Ramstadt Depot:

The U.S. Army Depot Activity at Ober-Ramstadt was established in 1946. Located on a 20 acre site in Ober-Ramstadt, a village 10 kilometers south of Darmstadt, the Depot includes 32 buildings. (See Area Plan, Figure 1.1, and Site Plan, Figure 1.2). These buildings house a variety of functions including warehouse, administration, maintenance, process and personnel support. Of these buildings, 18 were identified under the Project's Detailed Scope of Work for inclusion in this Study. (See Building List, Figure 1.3). These buildings include the largest and most energy intensive at the site. The remaining buildings are either unheated or unused structures. The Depot is owned by the U.S. Government, administered by an on-site government staff as an element of the Mainz Army

Depot, and operated by the German firm MIP Instandsetzungsbetriebe GmbH.

1.3 Project Scope:

The energy audit and resulting engineering analysis of the Ober-Ramstadt Depot Industrial Facility included 18 buildings and their utility systems. Analysis of a building included not only the building's envelope mechanical and electrical systems, but also occupancy, operating schedules, and usage. Processes conducted in a building were closely scrutinized for potential energy conservation opportunities.

1.4 Objectives:

The objectives of the energy survey of the Ober-Ramstadt Depot Industrial Facility, as stated in the Scope of Work, were:

- Perform a complete energy audit and analysis of the industrial facility.
- Use and incorporate applicable data and results of related studies, past and current.
- Identify all Energy Conservation Opportunities (ECO's) including Low/No cost items.
- 4. Perform an engineering and economic analysis of each ECO.
- 5. List and prioritize all ECO's based on Savings to Investment Ratio (SIR).

- 6. Prepare complete programming documentation for any Energy Conservation Investment Program (ECIP), Energy Conservation and Management Program (ECAM) projects.
- 7. Prepare implementation documentation for all ECO's identified for Quick Return on Investment Program (QRIP), OSD Productivity Investment Funding (OSD PIF), or Productivity Enhancing Capital Investment Program (PECIP) Funding.
- 8. Provide supporting information to facilitate the implementation of Low/No Cost ECO's.
- 9. Prepare a comprehensive report which will document the work accomplished, the results and recommendations.

1.5 Executive Summary Scope:

This report provides a summary of the energy and cost analysis leading to recommendation of the proposed energy conservation projects documented in the Energy Report. The Energy Report's prime objective is to use the data gathered during site visits and field inspections to select, analyze savings, estimate cost and evaluate economic criteria for energy conservation opportunities.

Section 2.0 of this report provides illustration of the existing energy situation at the site based on the available information provided by the Depot. Energy conservation opportunities (ECO's) considered for selection, or reasons for their rejection are documented in Section 3.0. These ECO's were derived from the list provided in the Scope of Work, facility suggestions, and experience on other projects. Section 4.0 provides a summary of calculated energy savings and capital investment costs for

each of the ECO projects selected in Section 3.0. Section 4.0 of this Executive Summary briefly describes the energy conservation projects developed as a result of this analysis. Section 5.0 of this Summary addresses the impact on energy consumption of implementing the various energy conservation projects.

- 1.6 Final Submittal Methodology:
- 1.6.1 Objectives: The primary end product of the Energy Study of Army Industrial Facilities for the Ober-Ramstadt Depot is a consolidated list of architectural, mechanical, electrical and process modification projects which will result in a reduction of energy consumption.
- 1.6.2 Methodology: The analysis was accomplished by following these basic steps:
 - Step 1 Prepare a master list of energy conservation opportunities (ECO's) for buildings and utility systems based on field survey experience and the list of ECO's included in the Scope of Work.
 - Step 2 For each building and utility system, select those ECO's from the master list which are applicable according to the survey data.
 - Step 3 Calculate energy savings for each
 ECO/building/system combination. The
 calculation process uses a combination of
 computerized and manual methods. Manual
 methods are used where the ECO's are simple
 and are not affected by other ECO's.

Computer analysis is used for building ECO's where many interrelated factors affect the results. The computer analysis consists of a base-line and a modified analysis. The base-line run is based on existing conditions and operations. Subsequent runs simulate performance after the energy conservation project under study is implemented. The difference between these runs are the savings estimated for that ECO.

- Step 4 Calculate the cost to implement each ECO selected for each building. Costs have been developed from manufacturer's quotes, contracting experience, and cost data supplied by our German engineering consultants, Lahmeyer International. All costs in the analysis are based on 1987 prices. In preparing specific project documentation, the cost was escalated as required by the specific program guidance.
- Step 5 Based on the savings and costs identified in Steps 3 and 4, an economic analysis, as defined in ECIP criteria, was performed. Economic parameters include Total Discounted Savings, Simple Payback Period, and SIR.
- Step 6 Suggested packaging schemes for combining individual ECO's for individual buildings into projects are discussed with installation personnel following the Interim and Prefinal Submittals.

- Step 7 Using comments received on the Interim and Prefinal Submittals and the list of qualifying ECO's, associated economic calculations are updated.
- Step 8 Programming or implementation documentation for each energy conservation project were prepared. Documents are prepared using criteria furnished at the Energy Study's inception according to the type of funding source (ECIP, QRIP, OSD-PIF, PECIP, or Low/No Cost).

FIGURE 1.1 OBER - RAMSTADT DEPOT AREA LOCATION MAP

FIGURE 1.2 OBER – RAMSTADT DEPOT STTE PLAN

FIGURE 1.3

FACILITIES TO BE SURVEYED OBER-RAMSTADT INDUSTRIAL FACILITY

Bldg. No.	Use	Area (SF)
4831	Sentry Station	771
4832	Classroom	2,744
4833	Canteen	4,170
4838	Maintenance Shop General Purpose	16,917
4839	Heating Plant Building	5,081
4840	Maintenance Shop General Purpose	2,395
4841	Maintenance Shop General Purpose	1,346
4844	Storage Shed General Purpose	15,902
4845	Maintenance Shop General Purpose	78,088
4846	Maintenance Shop General Purpose	533
4847	Administration Bldg. General Purpose	8,709
4848	Ordance Administration Bldg.	2,633
4849	Change House	4,034
4851	Vehicle Maintenance Shop Organi-	
	zational	6,658
4857	Vehicle Maintenance Shop Organi-	
	zational	1,209
4864	Open Warehouse Facility/Maintenance	
	Shop General Purpose	12,616
4872	Maintenance Shop General Purpose	530
4873	Maintenance Shop General Purpose	12,062

REVISED MARCH 1988

2.0 EXISTING ENERGY SITUATION

2.1 Background:

As part of the energy study for the Ober-Ramstadt Depot, past and present energy consumption was examined.

An examination of the existing energy situation can provide an indication of the relative importance of each type or component of the total energy consumption. By comparing how much energy is used for heating vs. the consumption for domestic water heating, for example, the study may establish priorities for those items having the greatest potential for energy savings. One difficulty which arises in performing this type of analysis is the general lack of sub-metering data of a particular installation's energy consumption. Since most Army facilities were constructed during a time when energy costs were relatively unimportant, very little emphasis in the past has been placed on actual metering of energy usage for a particular function. For example, it's impossible in most cases to examine actual metered data of an individual building's energy consumption within a facility or the usage of energy for different activities within a build-Since this metered data is not available, engineering estimates had to be made to determine the data.

2.2 General Description:

The buildings of the depot facility utilize electricity purchased from the local electric utility. Electricity is utilized for a variety of tasks including lighting, operation of heating system distribution equipment, and office equipment. Many processes performed in refurbishing the tires, trackshoes and road wheels also consume electricity.

Fossil fuels, including No. 2 oil and No. 6 oil, are consumed by the boiler plants to produce steam. This steam is distributed to the various buildings and utilized for space heating, domestic hot water heating and direct process applications.

No detailed sub-metering data is available for the site to provide a break down of energy consumption by component. Computer modeling and engineering estimating techniques have been used to assess constituent energy consumption.

2.3 Distribution Systems Analysis:

2.3.1 Steam System:

Steam is produced in the central boiler plant, Building 4839, by two 3500 kw capacity, No. 6 fuel oil burning boilers, operating at 8 bar pressure and distributed throughout the facility. (See Figure 2.1). The boilers and accessories in the boiler plant are in good condition and well maintained. From steam production records for FY86 25,529 metric tons of steam were produced. the same period, the boiler plant consumed 1,963,249 liters of Number 6 fuel oil. Using this data and energy equivalencies provided in the ECIP guidance, an average steam production efficiency of 85.8% was calculated. Boiler combustion efficiency measurements made during the field survey produced an 87% efficiency at full load and These high efficiencies are 80% efficiency at part load. attributable to good maintenance, modern boiler design, and high system utilization. German regulations on boiler stack emissions will require the conversion of the plant to No. 2 fuel oil.

During full production and during sever winter weather, both boilers are required to meet steam consumption demand. Existing production schedules call for operation of the main boiler plant 24 hours per day, five days per week. In moderate weather, the main boiler plant remains idle on weekends. Space heating demands during these periods can be met by backfeeding the distribution system with 0.3 bar steam from the boiler plant in Building 4847. When weekend temperatures fall below 0°C, the main boiler plant must operate to meet demand.

The steam distribution system heat loss was calculated. Using field data on insulation thickness, pipe sizes, lengths and system operating temperatures for all exterior high and low pressure steam, condensate, and hot water distribution systems, a total annual heat loss of 810.14×10^6 BTU/year was calculated. This value represents less than a 2% distribution system loss. High efficiency is due in part to proper system design and maintenance, and in part to the high steam distribution system utilization.

2.3.2 Electrical System:

The main electrical service to the site is provided by a 20 kv underground primary. This primary serves 5-630 KVA transformers located in three buildings. The 220/380V secondary is then distributed within those buildings and throughout the site.

The site lighting consists primarily of 80 watt high pressure sodium and 55 watt low pressure sodium fixtures. These fixtures are mounted on 30 foot poles and run the perimeter of the site. They are served through one contactor panel which is controlled by one photo electric device.

2.4 Utility Metering:

2.4.1 Electricity:

The electric metering for the site is accomplished by metering the primary input. No separate metering of individual buildings exists.

The total cost for electrical energy is based on a fixed cost for a peak demand and on a kilowatt hour consumption cost. Consumption costs are divided into two rate schedules, one for day and one for night consumption, with an additional cost for each kilowatt hour for environmental taxes. These electrical rate schedules are shown in Figure 2.2.

Records of monthly electrical consumption were obtained for the past 3 years for the site. This data is tabulated in Figure 2.3. These records are for the entire site and are not divided into individual areas or buildings.

2.4.2 Fuels:

Fuel prices were supplied by the Contractor and are shown in Figure 2.4.

No metering of actual fuel consumption installation wide or at a specific building is used. Records of monthly fossil fuel consumption for the Depot were obtained from the Contractor for the past 3 fiscal years from fuel purchase receipts for No. 6, No. 2 and gasoline fuels. These figures represent fuel purchased and are not necessarily the actual fuel consumed.

2.5 Fossil Fuels:

The central boiler plant in Building 4839 burns No. 6 fuel oil. Records of fuel oil purchases for the past 3 years were obtained and are presented in Figure 2.5 in tabular form. Steam production data for the same period is included for comparison as Figure 2.6.

The small boiler plant in Building 4847 burns No. 2 fuel oil. Partial records of fuel purchases over the past 3 years were obtained and are presented in tabular form as Figure 2.7.

Diesel fuel purchases for trucks, fork lifts, and maintenance equipment are tabulated in Figure 2.8.

Records of gasoline consumption are presented in tabulated form as Figure 2.9. The consumption and utilization of gasoline was not specifically addressed in this study because it is used to fuel transportation of products beyond the boundaries of the Depot.

2.6 Energy Utilization Analysis

Investigation of the Ober-Ramstadt Facility showed that two sources, steam and electricity, played the major roles in providing the energy required to operate the facility. Steam is very important to the rubber curing process as it is used to heat the vulcanizing presses. Steam is also used for space heating and many other process applications. Electricity is used in practically every facet of the facility including equipment motors, welding, lighting and HVAC. The task of dividing these energy sources

according to process and area involved data gathering and calculation of many types. The results of these findings are described below.

2.7 Steam:

The total steam consumption for 1986 was not available at the time this analysis was performed and, therefore, the annual consumption for 1985 was used. Steam consumption was calculated for each major piece of equipment and for the heating loads of the various facilities. Using these values and the steam consumption data, yearly steam consumption for each process was calculated giving 23.15 \times 10^9 btu/yr for the tires, 9.26 x 10^9 btu/yr for the roadwheels, 6.19×10^9 btu/yr for the single pin track shoes, 7.54×10^9 BTU/yr for double pin track shoes, and 2.09×10^9 btu/yr for special products, giving a total consumption of 48.23 x 109 btu/yr of steam for the process. Based on the consumptions calculated, a usage of about 69.61 x 109 btu/yr of steam is expected for 1986. The values for process consumption are summarized in Figure 2.10.

2.8 Electricity

The total electrical consumption for 1986 was 4,236,300 kwh taken from data supplied by the plant. Through field investigation and calculation, sources of electrical usage were identified and their consumption approximated. By field data taken from auxiliary HVAC equipment, an annual value of 300,597 kwh was calculated. Lighting arrangements and usages were observed and a lighting consumption of 394,520 kwh was calculated for the facility.

Process electrical consumption was evaluated in several A recording ammeter was used to find current loads at individual pieces of equipment or for entire process Then, based on observed process procedures and areas. times, an annual energy consumption was calculated. Where no amp readings were taken, equipment nameplate data was used to approximate yearly consumption. A large consumer of energy was found to be the air compressor whose amp reading was taken and annual energy usage was calculated to be 821,300 kwh. This value was distributed evenly among the tire, roadwheel, single and double pin track shoe processes since they are primary users of compressed The boiler plant was treated in a similar manner, assuming about 90% of the electricity used to run the boiler is for the processes. Lighting values were also broken out by process and applied to each process total. Combining this number with those for the boiler, compressor and lights yields a consumption of 620,334 kwh/yr for the double pin process. Electrical energy consumption for the other processes was calculated yielding 717,831 kwh/yr for tires; 754,761 kwh/yr for roadwheels; 1,052,635 kwh/yr for single pin track; and 56,060 kwh/yr for special products. This gives a total annual consumption of 3,201,621 kwh/yr for all processes. numbers are compiled and shown in a summary of values on Figure 2.11.

2.9 Energy Consumption Per End Product

Energy consumption for each process was calculated and combined with production records, enabled calculation of btu's per end product. Data on scrap for each process was included. Scrap comes from three inspection points - receiving, pre-shop inspection and during production and escalates the energy consumption per end product since

some energy is consumed by waste products. The more scrap that can be identified early in the process, such as during receiving and pre-shop inspection rather than during production, the greater the contribution to energy savings per end product. Figure 2.12 shows consumption per product by energy type.

2.9.1 Tires

Based on 1985 production records and the use of electricity, steam and gasoline, the energy consumption rate is calculated to be 477,693 btu/tire. Most of the energy used for tires is from the steam used at various points in the process but mainly for vulcanizing. Much of the scrap from this process is found in preshop inspection and receiving preventing process energy for being wasted on useless items.

2.9.2 Roadwheels

Based on 1985 production recorded for steel and aluminum roadwheels, the energy consumption per end product is calculated to be 289,087 btu/wheel. The main energy source for roadwheels is steam although it uses roughly one half the steam that the tires do. Roadwheels, however, use more gasoline since much more forklift traffic is required than for tires. Large percentages of scrap wheels are found during preliminary receiving inspections helping to reduce wasted process energy.

2.9.3 Single Pin Track Shoes

Also based on 1985 production, an energy consumption of 42,847 btu per shoe was calculated. This consumption is the lowest of all processes, due in part to the small size

of the track shoe, and to higher process efficiencies made possible through high volume output. Steam again is the primary energy source with electricity close behind. All of the scrap items are found during production since preliminary inspection is difficult when these track shoes are still assembled and have rubber on them. This energy consumption, therefore, is quite good considering that a large amount of process energy is wasted on scrap.

2.9.4 Double Pin Track Shoes

Production data from 1986 was used as a basis to calculate energy consumption of 193,759 btu/shoe for double pin track shoes. Although this is lower than that for the tires and roadwheels, it is significantly higher than that for the single pin track shoes, due mainly to the inefficiency of breaking in a new system. Many machines are left on while waiting for parts from other process stages. Steam consumption is again the main energy source and is about 4.7 times higher per shoe than that for the single pins. Electricity consumption is significantly lower but is still about 2.7 times greater than that for single pins. High steam usage may be accounted for in the adhesive dryer system which is rather large but not always worked at capacity. Gasoline consumption is low since the process is contained in one building, keeping forklift time to a minimum. Also, similar to the single pin process, 100% of all scrap is found at some point during production, wasting some process energy on scrap items.

STEAM DISTRIBUTION SYSTEM

FIGURE 2.2

ELECTRIC UTILITY RATE SCHEDULE

FIXED COST FOR PEAK DEMAND

0-250 KILOWATTS - 23.1625 DM/KW 250-500 KILOWATTS - 20.5892 DM/KW OVER 500 KILOWATTS - 18.015 DM/KW

CONSUMPTION COSTS

DAY RATE 0.1079 DM/KWH

APR - SEP: 0700-2000 OCT - MAR: 0600-2100

NIGHT RATE .0809 DM/KWH

APR - SEP: 2000-0700 OCT - MAR: 2100-0600

(PLUS)

ENVIRONMENTAL TAXES- 0.011 DM/KWH

FIGURE 2.3 ELECTRIC ENERGY CONSUMPTION (KILOWATT HOURS)

	FY 1984	FY 1985	FY 1986
OCT	259,900	283,900	267,900
NOV	247,800	307,900	373,100
DEC	284,300	286,100	005'59E
NAL	228,500	233,500	281,200
FEB	415,000	318,500	426,800
MAR	392,046	273,900	433,800
APR	324,800	265,900	315,000
MAY	209,200	244600	350,400
NOC	237,300	201,700	363300
JUL	229,600	238,000	335,800
₽∩¥	228,900	233,300	372,000
SEP	257,900	283400	351,500
TOTAL	3,315,246	3,170,700	4,236,300

REV. MARCH 1988

NOTE: DOUBLE PIN TRACK SHOE PRODUCTION START 1 OCT. 1985

FIGURE 2.4

Energy Costs

	Purchase Price 1	Equivalent Cost ²
Electricity	0.1189 DM/KWH	\$14.16/MBTU
No. 2 Fuel Oil	\$0.21673/liter	\$ 5.91/MBTU
No. 6 Fuel Oil	\$0.19725/kg	\$ 4.85/MBTU
Liquid Nitrogen	. 0.167 DM/liter	\$ 0.04/MBTU

- 1) Fuel and electricity purchase prices are based on current Energy Costs at Ober-Ramstadt Depot at the time of this study.
- 2) Equivalent energy costs were calculated using purchase price and energy conversion factors below from ECIP Guidance dated 4 March 1985 furnished by DAEN-ZCF-U and updated by letter dated 10 January 1986 from DAEN-ZCF-U.

Conversions

=	3,413	BTU
=	138,700	BTU
=	150,000	BTU
=	85.8	BTU
	=	= 138,700 = 150,000

FIGURE 2.5 NUMBER 6 FUEL OIL (LITERS)

	FY 1984	FY 1985	FY 1986
ОСТ		113,814	85,242
NON		183,969	187,303
DEC		140,067	175,773
NAU	229,600	231,273	184,878
FEB	219,379	230,459	234,807
MAR	160,000	208,877	234.260
APR	168,100	185,136	184,688
MAY	656'28	145,009	126,690
NOS	136,900	128,489	121,212
JUL	177,200	124,243	119,595
AUG	111,340	138,116	128,041
SEP	197,137	177,674	180,760
TOTAL		2,007,126	1,963,249

REV. MAY 1988

FIGURE 2.6 STEAM PRODUCTION (METRIC TONS)

	FY 1984	FY 1985	FY 1986
ОСТ	2088	2323	2098
NON	2491	2263	2467
DEC	2501	1829	1461
NAL	2396	3078	2856
FE8	2691	2630	3259
MAR	2784	2467	2530
APR	1979	1902	5289
MAY	1908	1478	1307
JUN	1587	1256	6081
JUL	2199	1529	2000
AUG	1880	1755	9891
SEP	1594	1713	1768
TOTAL	26,098	24,223	25,529.

REV. MARCH 1988

FIGURE 2.7 NUMBER 2 FUEL OIL (LITERS)

8100 8100 - - 4200 600 600 6900 6900 4200 800 1200	FY 1984 FY 1985	FY 1986
8100 6400 4200 6	1	1100
- 6400 6400 600 600 382 6900 4200 800 1200	009 001	2800
6400 4200 600 382 6900 4200 800 1200	- 5220	3600
4200 600 382 6900 4200 800 1200	7600	11,200
600 382 6900 4200 800 1200	4200	3400
382 6900 4200 800 1200	600 1200	1200
6900 4200 800 1200	382 5900	4100
4200 800 1200 -	0021 0069	6650
	1200 1400	8
	- 008	1
SEP -	500	1
	1	1
TOTAL		

REV. MARCH 1988

FIGURE 2.8 NUMBER 2 FUEL OIL (DIESEL) (LITERS)

	FY 1984	FY 1985	FY 1986
ОСТ	1	002	1677
NOV	1	553	2241
DEC	1	329	1586
JAN.	1	1287	2055
FEB		1953	3489
MAR	1	1763	2687
APR	1	1434	2649
MAY	1	9921	2660
NUS	1	632	2744
JUL	1041	1302	3345
AUG	700	1147	3266
SEP	1680	2903	3535
TOTAL	1	15,368	31,934

REV. MARCH 1988

FIGURE 2.9 GASOLINE CONSUMPTION (LITERS)

	FY 1984	FY 1985	FY 1986 ·
ОСТ	2899	5434	4099
NOV	5972	9029	7453
DEC	0019	4912	4277
JAN	4988	5465	4621
FEB	1199	7096	6127
MAR	8019	5926	6090
APR	7580	5661	5129
MAY	5601	5722	4920
NOC	6070	5143	4784
JUL	6626	0169	6252
AUG	5211	5775	5704
SEP	9820	8643	7505
TOTAL	73,586	75,716	196'99

REV. MARCH 1988

FIGURE 2.10
ESTIMATED PROCESS STEAM USAGE

1.	TIRES:							
	Presses Tire Wash Section Molds Leaks	11.20 1.55 1.37 5.36	Million Million	Lbs./Yr. Lbs./Yr. Lbs./Yr. Lbs./Yr.	=	1.84 1.63	Billion Billion Billion Billion	BTU/Yr. BTU/Yr.
	Total	19.48	Million	Lbs./Yr.	=	23.15	Billion	BTU/Yr.
2.	ROADWHEELS:	•						
	Presses Paint Dryer Adhes. Dryer Degreaser Leaks	3.17 1.34 1.15 0.80 1.33	Million Million Million	Lbs./Yr. Lbs./Yr. Lbs./Yr. Lbs./Yr. Lbs./Yr.	=	1.59 1.37 0.95	Billion Billion Billion Billion Billion	BTU/Yr. BTU/Yr. BTU/Yr.
	Total	7.79	Million	Lbs./Yr.	=	9.26	Billion	BTU/Yr.
3.	SINGLE PIN TRACK	SHOES						
	Presses Dryer Degreaser Leaks	1.80 1.73 0.22 1.46	Million Million Million	Lbs./Yr. Lbs./Yr. Lbs./Yr. Lbs./Yr. Lbs./Yr.	=======================================	2.06 0.26 1.73	Billion Billion Billion	BTU/Yr.
4.	DOUBLE PIN TRACK	SHOES						
	Presses Dryer Degreaser Leaks		Million Million	Lbs./Yr. Lbs./Yr. Lbs./Yr. Lbs./Yr.	=	4.36 0.15	Billion Billion	BTU/Yr. BTU/Yr. BTU/Yr. BTU/Yr.
	Total	6.35	Million	Lbs./Yr.	=	7.54	Billion	BTU/Yr.
5.	SPECIAL PRODUCTS							
	Total	1.76	Million	Lbs./Yr.	=	2.09	Billion	BTU/Yr.
6.	TOTAL PROCESS							
		40.59	Million	Lbs./Yr.	=	48.23	Billion	BTU/Yr.
	Note: 1 Pound S	team =	1188 BTU					

FIGURE 2.11
ESTIMATED PROCESS ELECTRICITY USAGE

1.	TIRES:		
	Molds	52,592	KWH/Yr.
	Buffing Skiving	177,212	KWH/Yr.
	Tire Drying *	5,000	KWH/Yr.
	Tire Wash	20,000	KWH/Yr.
	Inspection Area	10,000	KWH/Yr.
	Strip Application	110,000	KWH/Yr.
	Boiler Plant	56,270	KWH/Yr.
	Compressor	205,325	KWH/Yr.
	Lights	81,432	KWH/Yr.
	Total	717,831	KWH/Yr.
2.	ROADWHEELS:		
	1/2 Building 4838	315,552	KWH/Yr.
	Welding	102,544	KWH/Yr.
	Induct. Furnace/N2 4840	40,000	KWH/Yr.
	Boiler	56,720	KWH/Yr.
	Compressor	205,325	KWH/Yr.
	Lights	35,070	KWH/Yr.
	Total	754,761	KWH/Yr.
3.	SINGLE PIN TRACK SHOES		
	1/2 Building 4838	315,552	KWH/Yr.
	Induct. Furnace 4840	70,000	KWH/Yr.
	Bushing Presses 4845	236,664	KWH/Yr.
	Auto. Welder 4845	18,664	KWH/Yr.
	Weld/Grind 4845	33,527	KWH/Yr.
	Hyd. Pumps 4845	19,722	KWH/Yr.
	Hyd. Pumps 4841	20,000	KWH/Yr.
	Boiler	56,270	KWH/Yr.
	Compressor	205,325	KWH/Yr.
	Ligħts	56,270	KWH/Yr.
	Total	1,052,635	KWH/Yr.
4.	DOUBLE PIN TRACK SHOES		
	Building 4873 Main	289,913	KWH/Yr.
	Compressor	205,325	KWH/Yr.
	Boiler	6,270	KWH/Yr.
	Lights	68,826	
	Total	620,334	KWH/Yr.

FIGURE 2.11 (Continued)

ESTIMATED PROCESS ELECTRICITY USAGE

5. SPECIAL PRODUCTS

	Equipment Lights		KWH/Yr. KWH/Yr.
	Total	56,060	KWH/Yr.
6.	TOTAL	3,201,621	KWH/Yr.

Notes: All KWH values measured with recording ammeter except those marked (*) which are estimates based on name plate data.

"Boiler" load includes total estimated HVAC auxiliary load.

Compressor and boiler plant load distributed evenly among processes. Assume 90% of boiler load is process load.

GURE 2.12
ARLY CONSUMPTION PER END PRODUCT

ODUCT	STEAM		ELECTRICITY	?	GASOLINI	Ε	TOTAL BTU/ PRODUCT	# PRODUCED
res	431,147	BTU	45,628	BTU	918	BTU	477,692	53,694
adwheels	223,380	BTU	62,141	BTU	3,566	BTU	269,087	41,454
ngle Pin	26,708	BTU	15,501	BTU	638	BTU	42,847	231,766
uble Pin	163,366 (149,752				2,135 (1,957		211,374 * (193,759)*	46,154 (50,350)*

tes: All values in BTU/END PRODUCT

 $[\]mbox{\#}$ Produced bases on 1986 production for double pin track shoes and 1985 production for all others.

^(*) Production data for 1986 had one month missing. Corrected for 1986 using 11 month year.

3.0 ENERGY CONSERVATION OPPORTUNITY (ECO) SELECTION

3.1 Introduction

The objective of this study was to develop ECO's which will reduce energy consumption at the Ober-Ramstadt Depot. Energy conservation opportunities are the individual elements of work which can be performed to save energy. For example, replacing single glazed windows with double glazed windows is an energy conservation opportunity. Adding insulation to an existing roof is another example of an energy conservation opportunity. Using this list of ECO's, military construction, renovation and maintenance related projects were created. These construction projects consist of several energy conservation opportunities logically combined to form a single project.

3.2 Creation of Master ECO List

The first step was to identify those energy conservation opportunities which will be analyzed as a part of the study. Once those items are identified, their applicability to a particular building must be determined through judgement based on the field survey data. The Scope of Work provides a list of ECO's which have been successful at similar facilities. This list of ECO's is reproduced in Figure 3.1.

These ECO's were examined for their applicability to this specific site. Using ECO's from the supplied list, supplemented by additional ECO's identified during the field survey, a list of potential ECO's to be evaluated was prepared. This master list of ECO's was subdivided

into 4 "Trades": Architectural, Mechanical, Electrical and Process.

3.3 ECO Descriptions

3.3.1 Architectural ECO's

n

Mechanical ECO's:

Ml	Install Thermostat/Timeclock Controls
M2	Install Condensate/Hot Water Heat Exchanger
м3	Interconnect Boiler Plants
M4	Convert from Steam to Hot Water Heat
M5	Install Flow Restrictors
M6	Install Electric Control Valves
M7	Install Automatic Boiler Blowdown
M8	Install Heat Recovery Systems
м9	Insulate Condensate Tanks

M10	Repair Insulation
M11	Insulate Piping
M12	Reduce Domestic Hot Water Temperature
M13	Repair Control Valve
M14	Insulate Tank
M15	Repair Steam Valve
M16	Convert Boilers to No. 2 Oil
M17	Install Exhaust Hood Outside Air Make-Up
Electrica	al ECO's
E-1	Use Photocell and Timer Control of Fluorescent
	Lighting In Buildings with Skylights
E-2	Photocell Override
E-3	Personnel to be Trained in Energy Conservation

Process ECO's:

E-4

E-5

E-6 E-7

E-8

P-1 Fix compressed air leaks throughout the plant.

Modify Localized Switching of Fluorescent

lighting in Buildings with Skylights

Recircuit Feed to 400 HP Air Compressor

Reconfiguration of the Distribution System in

P-2 Fix steam leaks throughout the plant.

Paint Removal from Windows

Replace Quartz Fixtures

Building 4838

- P-3 Schedule shutting down machinery when not needed.
- P-4 Grade tire by M.I.P. representatives at receiving stations prior to shipment to
 Ober-Ramstadt.
- P-5 Improve field loading so that maximum capacity is obtained for each vehicle.
- P-6 Utilize machinery available to increase production, saving time and energy.

Close doors and windows, especially in areas P-7 requiring special conditions. Reinsulate nitrogen piping. P-8Reinsulate tire wash tank and hot water piping P-9 at Building 4864. Provide insulation on non-insulated steam and P-10 condensate piping at production equipment. Insulate vulcanizing, tire, track shoe and P-11 roadwheel molds. Add material handling system in Building 4838 P-12 from extruder to paint booth to facilitate handling of roadwheels at molds for trimming, etc. Evaluate four day work week. P-13 Evaluate building sunscreen over the nitrogen P - 14tank. Evaluate implementing condensate monitoring P-15 system. Evaluate automatic welding system versus P-16 semiautomatic welding system for single pin track shoes. Evaluate hiring of clean up crew to clean P - 17process areas so that production personnel may continue work until the end of their shift. Evaluate lowering of hot water temperature at P-18 the tire wash and inspection. Add to and up grade material handling system in P-19 Building 4845. Evaluate separating heating and process steam P - 20to buildings so that steam can be turned off to the molds, etc., while still keeping the buildings warm enough to prevent freezing. Relocate tire drying to Building 4864. P-21 Provide new conveyor system for transporting

tires from Building 4864 to Building 4845.

P-22

- P-23 Relocate the single pin track disassembly from Building 4841 to Building 4845.
- P-24 Relocate single pin induction furnace from Building 4840 to Building 4845.
- P-25 Relocate single pin bushing removal as a result of ECOs P-21 and P-22.
- P-26 Add sandblasting for single pin shoes in Building 4845 to achieve straight line product flow.

3.4 ECO's Evaluated:

A matrix indicating which ECO's were analyzed in each building is presented as Figure 3.2.

3.5 Other Projects Underway:

During the field survey, information on projects relating to energy conservation at the Depot which have either been implemented in the recent past or are planned and funded for installation in the near future was requested. Figure 3.3 contains a list of projects which have been implemented. Figure 3.4 contains a list of planned projects by the Mainz Army Depot.

FIGURE 3.1

RECOMMENDED ECO'S FROM ANNEX A

OF

PROJECT SCOPE OF WORK

ECO	Evaluated by ECO's	Notes
Production equipment replacement,	P-6, P-16, P-22,	
modifications, disposals.	M-9, $M-10$, $M-11$	
Energy efficient motors and variable frequency drives.		(a)
Scheduling/loading of production equipment.	P-3, P-13	
Waste heat recovery from industrial processes.	M-2, M-8	
Automated control of production equip- ment - integrated with existing or proposed EMCS equipment, if appropriate.		(b)
Improve facility layout and space utilization.	P-12	-
Solar applications.	P-14, A-6, A-7	(c)
Consolidate processes and equipment requiring special environments.	P-20, P-21, P-23, P-24, P-25, P-26	
Building ventilation, exhaust systems.	M-17	

FIGURE 3.1 (continued)

RECOMMENDED ECO'S FROM ANNEX A

OF

PROJECT SCOPE OF WORK

Production equipment maintenance.	P-8, P-9, P-10 P-11	
<pre>Improve methods/controls to reduce scrap, rework, and gold-plating, "</pre>		
which consume energy without contri- buting to production mission.	P-4, P-5, P-16, P-19	
Steam distribution and condensate return systems.	P-2, P-10	
Compressed air distribution systems.	P-1	
Lighting control (zones, levels, etc.).	E-1, E-2, E-4, E-5	
Electrical distribution.	E-6, E-7	
Radiant heating		(d)
Loading dock seals.	A-8, A-9	
Thermal storage.		(e)

Notes

The preceding list of ECO's were evaluated as applicable at the facility, except those noted.

- (a) Energy efficient motors are included as part of the new equipment ECO's. Variable speed drives are not appropriate for the processes studied.
- (b) The Detailed Scope of Work indicated that the evaluation of an EMCS was not included in this project. Computer controlled machinery is used at the Depot and replacement of aging manual process machines with automated units was considered.
- (c) The Detailed Scope of Work deleted requirements for the evaluation of solar energy utilization. However, the use of skylights for daylighting was considered.
- (d) Existing buildings are heated by steam radiators and unit heaters. Natural gas fired radiant heaters cannot be installed as natural gas is not available at the site. Electric radiant heaters are not cost effective with Germany's high electric rates. LP gas fired heaters also are uneconomic at current fuel costs.
- (e) Thermal storage is not practical. These processes would not benefit from the storage of energy. Space heating is provided as a by-product of the process energy utilized, and thus cannot derive much benefit from thermal storage either unless energy is stored over prolonged periods of time.

•	4	ARCHITECHTURAL	H.			Σ	MECHANICAL	8				ELECTRICAL	¥				ă	PROCESS	25				
BUILDING 1918 2 3 4	AAA	4 A A	A A A A S S S S S S S S S S S S S S S S	40	2 3 4	Σ:0	₩ ₩	8 9 10 1 2 3 4 5 6 7 8 9 10 1 12	Σ <u>υ</u> Σ <u>τ</u>	MMMMM 1314151617	EEE E	医 4 图 50	E E E	РРР 123	9 4 5	р р р 6 7 8	9	12 13	0111213141316171619	9 Z	9 P P	P P P P P P P P P P P P P P P P P P P	P P 252
4831	8				•										\exists			1	1				
4832														,					1				
4833	•			. ,																			
4838			•	•							•	•	•	•		\dashv			•	•			
4839							-			•													
4840																							
4841																							
4844											•		-										
4845		•	•								•	•				•			•	•			
4846																							
4847	•																						
4848	•																						
4849								•															
4851																							
4857																							
4864																	•		-	•			
4872														\exists			\exists				_		
4873				•								-				•		-					

ECO'S EVALUATED FIGURE 3.2

FIGURE 3.3

IMPLEMENTED PROJECTS

Number	Description	Cost	Date
	Replace 2 Boilers		1979
	Replace Steam Lines, Insulation to		
•	Buildings 4835, 4840, 4841, 4845	-	1980
MA 131-81	Repair Water System	_	1982
MA 149-81	Repair Skylights, Building 4838	_	1982
MA 65-82	Repair Roof, Building 4845	-	1982
	Replace Steam Lines, Building 4851	-	1982
	Replace Lighting System Buildings 48	838,	
	4844, 4845	-	1983
	Install Insulation on Track Shoe, Ro	oad	
	Wheel Molds	-	1984
	Replace 18 Tire Molds	-	1985-86
MA 26-82	Repair Roof of Bldgs. 4840, 4941	_	1982
MA 31-82	Modernize Boiler Plant, 4839		1982
MA 32-82	Rehabilitate Heating System, Bldg.	4 847 -	1982
MA 99-82	Replace 20KV Supply	33,900DM	FY82
MA 105-82	Dismantle Bldg 4844	5,000DM	FY82
MA 243-83	Install Storage Bldg.	487,000DM	FY83
MA 252-83	Repair Flooring in Bldgs.		
	4838, 4845	350,000DM	FY83
MA 34-82	Rehabilitate Bldg. 4833, Incl.		
	Windows	79,000DM	1983-84
MA 63-82	Rehabilitate Bldg. 4848, Htg. Sys.	340,000DM	1983
MA 67-82	Repair Compressed Air Lines,		
	Bldg. 4845	150,000DM	1983
MA 225-83	Rehabilitate Bldg. 4851	310,000DM	1984
MA 230-83	Repair Sewer System	425,000DM	FY83
MA 238-83	Tire Receiving Inspection,		
	Bldg. 4864	385,000DM	1984

FIGURE 3.3 (cont)

IMPLEMENTED PROJECTS

Number	Description	Cost	Date
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
MA 306-84	Repair Concrete Roads	587,000DM	FY85
MA 307-84	Repair Sewer System	876,000DM	FY85
MA 309-84	Repair Roofs, Bldgs. 4845, 4847	1,095,000DM	FY85
MA 315-84	Construct Bituminous Area	495,000DM	FY85
MA 358-84	Alter Bldg. 8443	514,000DM	FY85
MA 159-85	Repair Skylights, Bldg. 4845	51,200	FY85
MA 7-86	Roof Insulation, B.dg 4848	-	1986

PLANNED PROJECTS

FIGURE 3.4

Number	Description	Cost	Date
MA 316-84	Construct New Workshop	\$ 92,900	Start 1986
MA 316-84	Extend Warehouse	393,000	1988
	Construct Wash for Rollers	121,000	1988
	Extend Bldg. 4857	37,000	1989
	Alter Bldg. 4863	146,000	1990
MA 529-88	Convert Boiler Plant 4839	210,000	
MA 329-00	to No. 2 Fuel Oil	248,800	1987
MA 41-86	Thermal Insul, Dbl. Glass, 4838	585,000	1987
MA 57-86	Replace Heating System, 4833	300,000	1987
MA 37-00	Thermal Insulation, 4845	110,000	1987
	Install metering-Steam,	,	
-	Electricity	140,000	1988
MA 204-87	Repair 20KV Transformer Station,	•	1987
111 201 07	4845	·	
MA 221-87	Repair Heating System	169,000	1988
MA 213-87	Rehabilitate Bldg. 4851	183,000	1988
	Install Central Steam Trap		
	Monitor	124,000	1989
	Install Thermal Insul., 4851	149,000	1990
	Install Thermal Insul., 4865	146,000	1991
	Repair Steam and Condensate		•
	Mains	194,000	1991
	Repair Steam and Condensate		
	Mains	134,000	1993
	Construct Storage Shelter		
	0 4864	203,000	FY88
	Repair Concrete Roads		
	@ 4838	148,000	FY88
	Install Water Purification,		
	4838	49,000	FY88

FIGURE 3.4 (continued)

PLANNED PROJECTS

Number	Description	Cost	Date
			=== 00
	Rehabilitate/Alter Rms, 4845	360,000	FY88
	Repair Concrete Roads	193,000	FY89
	Repair Roof, 4851	149,000	FY89
	Alter Rubber Dust Hopper	302,000	FY89
•	Upgrade Bldg. 4845	10,427,000	FY89
	Replace Elec. Distrib. Sys.,		
	4845	122,500	FY90
	Alter Bldg. 4865	146,000	FY90
	Upgrade Heating Plant 4839	-	FY90
	Repair Concrete Storage Area	250,000	FY90
	Repair Emerg. Light. Sys	34,000	FY90
	Repair Steam and Condensate		
	Mains	242,500	FY90
	Install Central Clock Sys	46,000	FY90
	Repair Supporting Wall, 4839	102,000	FY91
	Upgrade Welding Shop, 4845	292,000	FY91
	Rehabilitate Cellar,4847	26,000	FY91
	Improve Storage Area, 4866	169,000	FY91
	Repair Concrete Roads	187,000	FY91
	Repair Main Water Supply Lines	118,000	FY91
	Mark Roads and Areas	54,000	FY92
	Rehabilitate Wash & Locker Rms	107,000	FY92
	Repair Water Main Lines	54,000	FY92
	Repair Blacktop Roads	70,000	FY92
	Repair Steam and Condensate		
	Main Lines	167,500	FY92
	Repair Electric and Lighting Sy	s 100,000	FY92
	Replace Boilers, 4847	235,000	FY92
	Upgrade Parking Lot, 4848	80,000	FY92

FIGURE 3.4 (continued)

PLANNED PROJECTS

Number	Description	Cost	Date
		107 000	71100
	Exterior/Interior Painting	107,000	FY92
	Extend Motorpool, 4857	37,000	FY92
	Rehabilitate 4845, Single Pin		
	Shoes	509,000	FY92
	Construct Track Shoe Wash Rack	169,000	FY92
	Install Metering Devices	167,000	FY93
	Extend Warehouse	393,000	FY93
	Improve Exterior Lighting	93,000	FY93
	Improve Storage Areas	399,000	FY93
	Paint Exterior, Bldgs. 4838,		
	4845	85,000	FY93
	Renovate Parking, 4830	162,000	FY93
	Repair Railroad Tracks	72,000	FY93
	Repair Blacktop Areas	29,000	FY93
	Exterior/Interior Painting	75,000	FY93

4.0 PROJECT DEVELOPMENT

Once the appropriate ECOs were identified for each building, the next step in the process was the calculation of the savings which would result from and the cost to implement each ECO. The savings were calculated using a combination of manual and computerized analysis techniques.

Estimated costs were calculated based on the extent of work required in each building. Unit prices used in the estimate were obtained from Lahmeyer International, GMBH, a mechanical consulting and contracting firm located in Frankfurt, West Germany. Construction cost estimates are in Deutsch Marks and are for FY88.

The savings and cost data for each ECO was used to compute economic parameters to determine the viability of a particular project. This economic analysis was performed in accordance with ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) GUIDANCE dated 15 February 1985, which was furnished as criteria for this EEAP study. That ECIP guidance requires the computation of a number of economic measures. These include:

- 1. ECO construction cost (Deutsch Marks).
- 2. Total annual energy savings.
- 3. Annual cost savings (\$).
- 4. Total discounted cost savings (\$).
- Discounted savings/investment ratio (SIR).
- 6. Discounted energy savings/investment ratio (ESIR).

Economic analysis, including computation of these values, was performed using LOTUS 1-2-3, an electronic "spreadsheet" program running on an IBM personal computer, created by Lotus Development Corporation.

The results of this analysis are presented in Tables 4.1 through 4.4. The tables contain data on architectural, mechanical, electrical and process ECO's, respectively. ECO's listed in these tables are numbered according to the system used in the ECO descriptions and list of Section 3.0.

Having performed the economic analysis, ECO's not meeting the minimum economic criteria of savings/investment ratio (SIR) greater than 1.0 were dropped from further consideration. The remaining projects were combined to form projects falling into one of three project categories.

- 1. Low Cost / No Cost Projects.
- 2. ECIP Projects.
- Other funding program projects.

4.1 Low Cost / No Cost Projects:

Many ECO's studied were of little or no cost to implement and produced significant energy savings. These projects, such as fluorescent lamp replacement, reduction of domestic hot water temperature, and weatherstripping, are classified as Low Cost / No Cost projects. Projects identified which fall into this category are presented by trade in Tables 4.5 through 4.8. Most of these projects have already been implemented or programmed by the Depot.

4.2 Project Development:

Remaining ECO's with SIR's and ESIR's greater than 1.0 are normally combined to form projects meeting the minimum project cost requirements of various funding source criteria.

Because of the small number of remaining, qualifying ECO's and their low total cost, it was decided to group all ECO's into one project for funding. If the project has a total cost of more than \$3,000 and an amortization period of 4 years or less, it may qualify as a Productivity Enchancing Capital Investment Program (PECIP).

Projects with a cost of less than \$100,000 and an amortization period of less than 2 years can be classified as Ouick Return on Investment Programs (QRIP).

Projects whose total cost is greater than \$100,000 and an amortization period of 4 years or less, may qualify as OSD Productivity Investment Funding (OSD PIF) projects.

Finally, if a project has a total cost greater than \$200,000, and both the SIR and the SIR calculated using the project nonenergy qualification test are greater than 1.0, it may be funded as an Energy Conservation Investment Program (ECIP) project.

Table 4.9 summarizes the remaining qualified ECO's for the proposed project. It is obvious that the remaining ECO's either individually or in combination do not meet any of the funding criteria, despite their energy conserving potential. These ECO's, although not exactly low cost, should be considered for implementation as a part of the depot's aggressive ongoing energy conservation efforts.

TABLE 4.1- ECIP ECONOMIC ANALYSIS SUMMARY ARCHITECTURAL ECO'S

COMMENT	8.503 COMPLETED 6.037 PROGRAMMED 3.174 COMPLETED 2.376 COMPLETED 2.376 COMPLETED 1.354 COMPLETED 1.354 COMPLETED 1.354 COMPLETED 0.987 0.773 COMPLETED 0.600 0.526 0.490 0.526 0.490 0.351 0.177 0.159 0.149 0.117 0.128 0.128 0.1084 COMPLETED 0.098
SIR	8.503 6.037 4.668 3.174 2.376 2.376 1.354 1.128 ******** 0.528 0.528 0.528 0.528 0.177 0.173 0.159 0.159 0.159 0.1098
TOTAL DISCOUNT SAVINGS (\$)	4249 20588 4152 13014 18577 21171 6146 3065 39270 2838 7338 7338 7184 1695 5449 1695 1695 24382 13995 24382
FIRST YEAR SAVINGS (\$)	254 1231 248 778 1111 1266 368 368 368 183 234 130 131 101 326 297 491 620 620 837 1458
SIMPLE PAYBACK PERIOD (YEARS)	2.2 3.1 4.0 5.9 7.8 9.2 13.7 16.5 31.6 31.6 31.6 31.6 105.1 116.6 124.7 124.7 124.7 124.7 124.7 124.7 124.7 124.7
TOTAL. COST (\$)	555 3789 988 4555 8687 11674 5045 3019 4197 5252 13870 66265 16293 16293 3707 13073 13073 158457
EXCHANGE RATE (DM/\$)	2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46
TOTAL COST (DM)	1366 9321 2431 11206 21370 28717 12410 7426 *************** 10325 138806 12920 34119 163013 40080 13209 84255 70089 91207 172647 221392 32159 32159
ECON	
ECO DESCRIPTION	4845 A-10 INSULATE EXTERIOR DOOR 4845 A-3 REPAIR BROKEN WINDOWS 4831 A-1a INSULATE ROOF 4833 A-1a INSULATE SYLIGHT 25 4833 A-1a INSULATE ROOF 4838 A-9 REPLACE DRAFT BARRIER 25 4838 A-9 REPLACE DRAFT BARRIER 25 4838 A-9 REPLACE DRAFT BARRIER 25 4873 A-9 REPLACE DRAFT BARRIER 25 4873 A-9 REPLACE DRAFT BARRIER 25 4873 A-9 REPLACE ROOF VENTS 25 4831 A-1b INSULATE WALLS 4845 A-8 CONSTRUCT VESTIBULE 25 4847 A-1a INSULATE WALLS 4838 A-5 REPLACE WINDOWS 4838 A-6 CONSTRUCT VESTIBULE 25 4847 A-1b INSULATE WALLS 4838 A-7 REPLACE WINDOWS 4838 A-8 CONSTRUCT VESTIBULE 25 4847 A-1b INSULATE WALLS 4838 A-8 CONSTRUCT VESTIBULE 25 4847 A-1b INSULATE WALLS 4847 A-1b REPLACE WINDOWS 4838 A-4 REPLACE SYYLIGHTS 25 4845 A-4 REPLACE SYYLIGHTS 25 4845 A-4 REPLACE WINDOWS 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28
BLDG. ECO NO. NO.	4845 A-10 4845 A-13 4831 A-13 4845 A-7 4833 A-13 4838 A-9 4838 A-3 4845 A-9 4845 A-10 4833 A-10 4833 A-13 4833 A-13 4833 A-13 4833 A-13 4833 A-13 4838 A-5 4847 A-13 4838 A-5 4847 A-13 4838 A-6 4838 A-7

TABLE 4.2 - ECIP ECONOMIC ANALYSIS SUMMARY MECHANICAL ECO'S

СОМИЕНТ	COMPLETED PROGRAMMED COMPLETED PROGRAMMED ***********************************
	202 G 344 II 108 II 108 II 779 II 779 II 779 II 8854 G 550 G
AT S SIR	98 88.7 96 17.6 93 16.8 93 16.8 94 17.7 77 4.1 77 7.1 77 7.1 77 7.1 78 82 2.2 95 7.2 95 7.1 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DISCOUNT SAVINGS (\$)	3598 4896 24715 27598 4493 4493 14994 6541 6904 121 33877 2671 3582 2671 3582 2671 31623 31623 31623 31623
FIRST YEAR SAVINGS (\$)	314 293 1478 269 269 3577 1308 571 413 2026 2026 2026 2026 1189 2026 1189 11891 1249 731
SIMPLE PAYBACK PERIOD (YEARS)	0.1 1.1 1.1 1.2 1.2 2.6 4.1 4.2 4.3 12.3 **** 14.8 **** 31.2 40.6 ***
TOTAL COST (\$)	45 314 1626 1904 316 5167 2121 952 1055 680 952 1328 1281 4193 8227 680 952 27 1328 1281 4193 8373 8448 58923 58923 1509
EXCHANGE RATE (DM/\$)	1.2 2.46 45 0.1 7.2 2.46 314 1.1 883 2.46 1626 1.1 883 2.46 1904 0.8 7.1 2.46 316 1.2 8.2 2.46 5167 1.4 8.2 2.46 2121 1.6 8.2 2.46 952 1.7 8.3 2.46 8227 4.1 8.4 2.46 8227 4.2 8.7 2.46 8227 4.2 8.7 2.46 8227 4.2 8.7 2.46 952 3.3 8.4 2.46 1328 4.2 8.4 2.46 1281 5.4 8.4 2.46 58923 31.2 8.5 2.46 58923 31.2 8.6 2.46 58923 31.2 8.6 2.46 88923 31.2 8.7 2.46 58923 31.2 8.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
TOTAL COST (DM)	
ECON	115 255 255 255 255 256 257 257 257 257 257 257 257 257 257 257
ECO DESCRIPTION	4838 M-17b INSTALL OA MAKE-UP UNIT 15 7 4838 M-9 INSULATE CONDENSATE TANK 25 46 4838 M-9 INSULATE CONDENSATE TANK 25 4838 M-9 INSTALL TIMECLOCK 25 15 4845 M-1 INSTALL TIMECLOCK 25 12 4845 M-1 INSTALL TIMECLOCK 25 12 4849 M-12 REDAIR CONDENSATE TANK 25 25 20 18449 M-12 REDUCE DOMESTIC HW TEMP 25 25 26 4845 M-1 INSTALL TIMECLOCK 25 25 25 4849 M-1 INSTALL STEAM CTRL VAULE 25 25 23 4849 M-1 INSTALL STEAM CTRL VAULE 25 25 23 4845 M-1 INSTALL STEAM CTRL VAULE 25 25 4848 M-1 INSTALL STEAM CTRL VAULE 25 15 4845 M-1 INSTALL BLDGS 4831, 25 124 4833 M-1 CONVERT BLDGS 4831, 25 124 4839 M-1 INSTALL BLR BLOWDOWN CTRL 25 16 4839 M-1 INSTALL BLR BLOWDOWN CTRL 25 16 4838 M-17c INSTALL OA MAKE-UP UNIT 15 3
BLDG. ECO NO. NO. EC	4838 M-17b IP 4833 M-9 IP 4839 M-9 IP 4838 M-1 IP 4845 M-1 IP 4845 M-1 IP 4847 M-9 IP 4845 M-1 IP 4849 M-12 R 4849 M-12 R 4849 M-1 IP 4845 M-1 IP 4849 M-1 IP 4845 M-1 IP 4839 M-1 IP

TABLE 4.3 - ECIP ECONOMIC ANALYSIS SUMMARY ELECTRICAL ECO'S

COMMENT	14.203 PROGRAMMED 6.788 PROGRAMMED 2.773 PROGRAMMED 2.719 2.086 1.815 PROGRAMMED 1.432 NOT ALLOWED ************************************
SIR	14.203 6.788 6.269 2.773 2.719 . 2.086 1.815 1.432 4.************************************
TOTAL DISCOUNT SAVINGS (\$)	4925 3722 18240 21910 9013 3984 4650 2599 *********
FIRST YEAR SAVINGS (\$)	415 313 1535 1844 759 334 391 219 219 0
SIMPLE PAYBACK PERIOD (YEARS)	0.9 1.9 2.1 4.8 4.8 7.3 9.2 ***********************************
TOTAL COST (\$)	385 609 3233 8779 3683 2122 2847 2017 ********
exchange rate (dm/\$)	2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46
TOTAL COST (DM)	948 1499 7953 21598 9059 5220 7004 4961 *********
ECON	** ** ** ** ** ** ** ** ** ** ** ** **
ECO DESCRIPTION	4844 E-2 INSTALL PHOTOCELL & TIMER 25 4838 E-4 SWITCHES FOR SKYLIGHT AREA 25 4845 E-4 SWITCHES FOR SKYLIGHT AREA 25 51TE E-3 INSTALL PHOTOCELL & TIMER 25 51TE E-5 INSTALL METAL HALIDE LIGHTS 25 4838 E-1 INSTALL PHOTOCELL & TIMER 25 4844 E-8 REMOVE PAINT FROM WINDOWS 25 4845 E-6 RECONFIGURE ELECT DIST 25 4845 E-6 RECIRCUIT AIR COMP 25
BLDG. ECO NO. NO.	4844 E-2 4838 E-4 4845 E-4 4845 E-1 SITE E-3 SITE E-3 4838 E-1 4844 E-8 4838 E-1 4838 E-7 4838 E-7

TABLE 4.4 - ECIP ECONOMIC ANALYSIS SUMMARY PROCESS ECO'S

		;	ì																	ÄL	K K					,	CAL										
	-	COMMENT	COMPLETED	_	_	COMPLETED		COMPLETED	COMPLETED	COMPLETED	COMPLETED		PROGRAMMED	PROGRAMMED	-	• • •			_		×	COMPLETED					NOT PRACTICAL			-			-	PROGRAMMED			
٠		SIR		214.097	214.097	104.834	74.576	•	. 26	37.740	ë.	6.30	19.463	.33	14.498	13.480	9.042	3.534	1.654	:	* * * * *	0.794	0.643		(0.628	0.626	0.461		0.438	•		20.0	0.217	0.198		50.
TOTAL	DISCOUNT	(\$)	46	6463	6463	3165	2251	2251	207188	30790	79377	2146	114088	16019	239515	444261	73618	177093	672	:	*	81	7555		•	1748	19405	5418		5149	2202	2027	4408	38492	1/13/	# V C E	0 T C
FIRST	YEAR SAVINGS	(\$)	387	387	387	189	189	189	12406	59	4753	129	6832	959	14342	26602	4408	13150	40		***	48	636		1	797	1162	456		777) (7 5	3/5	2305	1030		43/
SIMPLE	PAYBACK Pertod	(YEARS)	0.1	0.1	0.1	0.2	0.2	0.2	0.3	•	o. 5	0.7	٦.0	٦.٦	1.3	1.4	2.1	4.2	11.2	17.0	****	23.4	20.5		,	20.6	29.6	28.6		ר	4 6	•	34.8	85.5	93.6		382.5
	TOTAL	•	34	34	34	34	34	34	3372	206	2603	91	6513	1090	18356	36618	9047	55678	451	76146	*******	1133	13054			3445	34447	13054		7 20 0 0	#CO5T	6346	13054	197165	96423	2	167295
	EXCHANGE	(\$/MG)	2.46	4	2.46	2.46	2.46	4	4	4	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	2.46	******	2.46	2.46			2.46	4.	2.46		•	7.4	2.4	2.4	2.4	2.46	7.	₹.
	TOTAL		83	. 83	83	83	83	8	8296	2230	6405	223	16023	2680	45156	90081	22255	136969		187320	*******	2788	32112			8474	84740	32112		•	32112	15610	32112	æ	237201	673	411547
	CHONONE	E CELL	25	25	25	25	25	25	25	22.2	25	25	25	25	25	25	25	25	25	25	*****	25	25			25	25	25		1	25	25	25	25	25	25	25
PROCESS ECO. S	300	ECO DESCRIPTION LIFE	DEDATE STEAM LEAKS	STEAM	STEAM			DEDATE ATE LEAKS	TACOBASE BODE HETT, TRAUTON		TASHLATE COND PIPING	TOWER WITH WASH TEMP	TNSTAIL TRAP MONITORING	TNSTATT TRAP MONITORING	TNOTALL TRAP MONITORING	TNSTALL TRAP MONITORING	TNSHILATE COND PIPING	PEARRANGE PROCESS FLOW	THE WASH TANK	INSULATE MOLDS	**************************************	CLOSE DOORS & WINDOWS	TMPLEMENT CLEAN UP CREW	SINGLE PIN SHOES - BLDGS	4838,4840,4841 & 4845	SCREEN NITROGEN TANK	TNSULATE MOLDS	IMPLEMENT CLEAN UP CREW	ROADWHEELS - BLDGS 4830,	4840 & 4845	IMPLEMENT CLEAN UP CREW	INSULATE MOLDS	IMPLEMENT CLEAN UP CREW	INSTALL CONVEYER	INSTALL NEW SANDBLASTER	INSULATE NITROGEN PIPING	EVALUATE AUTOMATIC WELDER
1 4		BLDG. ECO NO. NO. E	020 D-2	20 41 4	2 1 6	ָּהְ הַ	1 6	1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	040 FILE	ם נו נו נו נו	0.00	ם בו	0110	ָר קר ניים	בות מנות	845 0-15	CT 10	01.0	2 0	P-11	*****	7-0 3707	D-17	i 1		p-14					4845 P-17	4873 P-11					

rable 4.5 - LOW COST/NO COST PROJECTS
ARCHITECTURAL

SIR COMMENT	8.503 COMPLETED 4.668 PROGRAMMED	
TOTAL DISCOUNT SAVINGS (\$)	4249	8400
FIRST YEAR SAVINGS (\$)	254 248	502
SIMPLE PAYBACK. PERIOD (YEARS)	2.2	
ANNUAL ENERGY SAVINGS (MBTU / YEAR)	52.4 51.2	103.6
TOTAL COST (\$)	555 988 888	1543
TOTAL COST (DM)	1366 2431	3797
ECO DESCRIPTION	INSULATE EXTERIOR DOOR	TOTAL
BLDG. ECO NO. NO.	4845 A-10 4831 A-1a	

TABLE 4.6 - LOW COST/NO COST PROJECTS MECHANICAL

SIR COMMENT	88.202 COMPLETED 17.344 PROGRAMMED 16.891 16.108 COMPLETED 7.854 7.636 PROGRAMMED 7.270 PROGRAMMED 4.950 COMPLETED 4.365 3.815 COMPLETED 3.056 PROGRAMMED 2.997 PROGRAMMED	-
TOTAL DISCOUNT SAVINGS (\$)	3598 4896 24715 27598 4493 14994 6541 6904 121 3268 3582	106150
FIRST YEAR SAVINGS (\$)	314 293 1478 2408 269 1308 571 413 113 160 285 313	8064
SIMPLE PAYBACK ' PERIOD (YEARS)	044044444 4448467,9988444	* .
ANNUAL ENERGY SAVINGS (MBTU / YEAR)	64.7 306.4 304.8 496.6 496.6 1117.7 85.1 32.9 58.8 51.3	1662.7
TOTAL COST (\$)	45 314 1626 1904 316 2121 952 1055 1328	12629
TOTAL COST (DM)	112 772 4000 4683 778 778 5218 2342 2596 1673 2342 3267	31066
ECO DESCRIPTION	НИНИМИНЬМИ	INSULATE PIPING TOTAL
ECO NO.	M-17b M-9 M-9 M-13 M-13 M-12 M-12 M-12 M-12	Ж-11
BLDG. ECO NO. NO.	488 488 488 488 488 488 488 488 488 488	4849

TABLE 4.7 - LOW COST/NO COST PROJECTS BLECTRICAL

5.	ED ED WED
COMMENT	PROGRAMMED PROGRAMMED NOT ALLOWED
SIR	14.203 6.788 2.086 1.815 1.432 0.000
TOTAL DISCOUNT SAVINGS (\$)	4925 3722 3984 4650 2599 0
FIRST YEAR SAVINGS (\$)	415 313 334 391 219 0
SIMPLE PAYBACK PERIOD (YEARS)	**********
ANNUAL ENERGY SAVINGS (MBTU / YEAR)	29.3 22.1 27.0 27.6 15.5 0.0
TOTAL COST (\$)	385 609 2122 2847 2017 1812
TOTAL COST (DM)	948 1499 5220 7004 4961 4457 24088
ECO DESCRIPTION	INSTALL PHOTOCELL & TIMER SWITCHES FOR SKYLIGHT AREA INSTALL METAL HALIDE LIGHTS INSTALL PHOTOCELL & TIMER REMOVE PAINT FROM WINDOWS RECIRCUIT AIR COMP
BLDG. ECO	4844 E-2 4838 E-4 SITE E-5 4838 E-1 4844 E-8 4845 E-6

TABLE 4.8- LOW COST/NO COST PROJECTS PROCESS

соммент	COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED COMPLETED	
SIR	214.097 214.097 214.097 104.834 74.576 74.576 37.740 33.876 16.335	
TOTAL DISCOUNT SAVINGS (\$)	6463 6463 6463 3165 2251 2251 30790 79377 2146 16019 672	126060
FIRST YEAR SAVINGS (\$)	387 387 387 387 189 189 2592 4753 129 959 40	10202
SIMPLE PAYBACK PERIOD (YEARS)	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
ANNUAL ENERGY SAVINGS (MBTU / YEAR)	79.8 79.8 13.4 13.4 13.4 13.4 13.4 193.0 26.5 8.3	1675.2
TOTAL S COST (\$)	34 34 34 34 34 36 30 2603 1090 451	5343
TOTAL COST (DM)		13144
ECO DESCRIPTION	REPAIR STEAM LEAKS REPAIR STEAM LEAKS REPAIR STEAM LEAKS REPAIR AIR LEAKS SHUTDOWN UNNECESSARY MACHINES INSULATE COND PIPING INSTALL TRAP MONITORING REINSULATE TIRE WASH TANK	TOTAL
BLDG, ECO	4838 P-2 4845 P-2 4873 P-2 4873 P-1 4838 P-1 4845 P-1 4864 P-10 4864 P-15	

TABLE 4.9 - ECIP ECONOMIC ANALYSIS SUMMARY POSSIBLE PROJECT

SIR	1.650	2.719	2.150
TOTAL DISCOUNT S SAVINGS (\$)	6227	9013	15241
FIRST YEAR SAVINGS (\$)	543	759	1302
SIMPLE PAYBACK PERIOD. (YEARS)	7.7	4.9	6.0
ANNUAL ENERGY SAVINGS (MBTU / YEAR)	112.1	53.6	165.6
TOTAL COST (\$)	4193	3683	7875
TOTAL COST (DM)	10314	9059	19373
ECO DESCRIPTION	INSTALL FLOW RESTRICTOR	REDUCE LIGHT USEAGE	PROJECT TOTALS
BLDG. ECO NO. NO.	4849 M-5	SITE E-3	

5.0 PROJECT IMPACT

5.1 Introduction:

The ultimate goal of the Energy Study process is to conserve energy and save money. It is easy to lose sight of this goal however and get lost in the reams of paper and millions of calculations that compose the supporting documentation of the study. This section summarizes the energy savings of the investigated ECO's. The results of implementing these projects are compared with present energy consumption.

5.2 Total Energy Consumption:

The total energy consumption of the Depot for Fiscal Year 1986 was estimated for comparison purposes. From the data presented in Section 2.0, the total estimated energy consumption is derived in Table 5.1. This Figure, 96,561.5 MBTU/year, represents the total energy being consumed at the Depot at the time of the Energy Study.

5.3 Projected Energy Savings:

Table 5.2 summarizes the energy savings identified by the Energy Study for each type of energy conservation project. Energy savings are listed in MBTU's using energy equivalency conversion factors supplied in the ECIP criteria. In the interest of being concise, the total energy savings for all projects is listed rather than listing each project separately.

Many of the ECO's identified by this study, particularly the low/no cost projects, have already been accomplished as a part of the Depot's ongoing energy conservation efforts. Through the implementation of all energy savings projects identified by the Energy Study, energy savings of 22,167 MBTU/yr are possible. This represents a potential savings of 23.0%.

TABLE 5.1
ENERGY CONSUMPTION FY-1986

FUEL	CONSUMPTION	CONVERSION	MBTU
#2 FUEL OIL #6 FUEL OIL GASOLINE	4,236,300 KWH 51,075 LITERS 1,963,249 LITERS 66,961 LITERS	3,413 BTU/KWH 36,642 BTU/Liter 39,627 BTU/Liter 36,347 BTU/Liter	14,458.5 1,871.5 * 77,797.7 2,433.8 96,561.5

^{*} Part year data extrapolated to 12 month consumption.

TABLE 5.2
ESTIMATED ANNUAL SAVINGS

PROJECT DESCRIPTION	TOTAL COST (\$)	ANNUAL ENERGY SAVINGS (MBTU/ YEAR)		TOTAL DISCOUNTED SAVINGS (\$)
ARCHITECTURAL			:	
LOW / NO COST ECO'S	1,543	103.6	502	8,400
MECHANICAL				
LOW / NO COST ECO'S	12,629	1,662.7	8,064	106,150
ELECTRICAL				
LOW / NO COST ECO'S	9,792	121.5	1,673	19,881
PROCESS LOW / NO COST ECO'S	5,343	1,675.2	10,202	156,060
2011 / 110 0000 200	.,	_,	·	·
TOTAL		2 562 0	00 441	200 401
LOW / NO COST ECO'S	29,307	3,563.0	20,441	290,491
IMPLEMENTED				
ARCHITECTURAL ECO'S	38,312	1,121.8	5,440	90,961
IMPLEMENTED				
MECHANICAL ECO'S	34,067	2,911.5	14,119	190,231
IMPLEMENTED ELECTRICAL ECO'S	17,871	333.1	4,718	56,046
	•		•	-

TABLE 5.2 (Continued)
ESTIMATED ANNUAL SAVINGS

PROJECT DESCRIPTION	TOTAL COST (\$)	ANNUAL ENERGY SAVINGS (MBTU/ YEAR)	FIRST YEAR SAVINGS (\$)	TOTAL DISCOUNTED SAVINGS (\$)
IMPLEMENTED PROCESS ECO'S	134,804	14,072.0	87,625	1,407,425
TOTAL IMPLEMENTED ECO'S	225,054	18,438.4	111,902	1,744,663
REMAINING UNIMPLE- MENTED ECO'S	7,875	165.6	1,302	15,241
TOTAL OF ALL IDENTIFIED ECO'S	262,236	22,167.0	133,645	2,050.396