AT6558R BDS/GNSS 卫星定位 SOC 芯片

	标题	AT6558R				
杭州中科微电子有限公司		BDS/GNSS 卫星定位 SOC 芯片				
	文档类型	数据手册				
	文档编号	DS-AT6558-R				
	版本号	1.0				
文档摘要						
本手册提供芯片的功能特点	点,芯片概述以	人及使用简介。				

目录

目	录			2	2
1	芯片概	述		4	ļ
	1.1	芯片简介		4	ļ
	1.2	主要特征		4	ļ
	1.3	性能指标		5	5
	1.4	芯片应用		5	5
2	管脚说	明		6	5
	2.1	管脚排列		ε	5
	2.2	管脚说明		6	5
3	芯片架	构		8	3
	3.1	芯片框图		8	3
	3.2	电源方案		9)
	3	3.2.1 芯片低功耗电源连接方案		9)
	3	3.2.2 不使用 DCDC 的电源连接方案		9)
	3.3	工作模式		10)
	3.4	芯片复位		10)
4	射频前	端		12	2
	4.1	射频前端架构		12	2
	4.2	有源天线检测		12	2
5	基带处	理器		12	2
	5.1	多系统卫星处理引擎		12	<u>)</u>
	5.2	实时时钟备份区域		12	2
	5.3	UART		13	3
6	电气特	性		13	3
	6.1	极限特性		13	3
	6.2	直流特性		13	3
	(6.2.1 电源管脚		13	3
		6.2.2 数字 IO 管脚			3
	析	前州中科微电子有限公司 www.icofchina.com	2 / 25		

6.	3 模拟相关特性 14
6.	4 射频相关特性 14
7 参考	设计15
7.	1 参考方案
7.	2 器件选型
8 应用	方案18
8.	1 有源天线馈电和检测18
8.	2 射频输入增益
8.	3 防雷和 ESD
8.	4 参考时钟晶振 19
9.	5 RTC 时钟 19
8.	6 电源管理
8.	7 DCDC 20
8.	8 LDO 20
8.	9 备份电源 20
8.	10 模式配置 22
9 芯片	封装
9.	1 芯片标识规则 22
10	.2 封装规格
10 芯片	焊接与存储
10	.1 防潮等级:
10	.2 回流焊曲线:
11 包装	長与运输24
11	.1 包装 24
11	.2 ESD 防护 24
12 文村	当更新记录 25
叫五十	L.

1 芯片概述

1.1 芯片简介

AT6558R 是一款高性能 BDS/GNSS 多模卫星导航接收机 SOC 单芯片,片上集成射频前端,数字基带处理器,32 位的 RISC CPU,电源管理功能。

芯片支持多种卫星导航系统,包括中国的北斗卫星导航系统 BDS, 美国的 GPS, 俄罗斯的 GLONASS, 并实现多系统联合定位。

1.2 主要特征

- 功能规范
 - 支持 BDS/GPS/GLONASS 多系统联合定位和单系统独立定位。
- 灵敏度
 - 冷启动捕获灵敏度: -148dBm。
 - 跟踪灵敏度: -162dBm。
- 电源管理
 - 支持 2.7~3.6V 单电源供电,典型 3.3V 供电。
 - RTC 和备份电路电源可低至 1.4V。
 - BDS/GPS 双模连续运行: <23mA (@3.3V)。
 - 待机: 8uA (@3.3V)
- 天线检测与保护
 - 支持有源天线检测。
 - 支持有源天线短路保护。
- 封装与尺寸
 - QFN40 封装, 芯片尺寸: 5mm×5mm×0.9mm。

1.3 性能指标

技术参数	指标
信号接收	支持 BDS/GPS/GLONASS 并行接收和联合定位
冷启动 TTFF	≤32s
热启动 TTFF	≤1s
重捕获 TTFF	≤1s
冷启动捕获灵敏度	-148dBm
热启动捕获灵敏度	-156dBm
重捕获灵敏度	-160dBm
跟踪灵敏度	-162dBm
定位精度	<2m (1 ₀)
测速精度	<0.1m/s (1 ₀)
授时精度	<30ns (1σ)
定位更新率	最大 5Hz

1.4 芯片应用

- 车载定位与导航
- 授时
- 可穿戴设备
- 便携式设备,如手机、平板电脑

2 管脚说明

2.1 管脚排列

图 2-1 芯片封装管脚排列

2.2 管脚说明

序号	名称	I/O 类型	功能描述
1	VDD_ANA	模拟电源	模拟 LDO 输出, 1.08~1.32V, 1uF 电容接地
2	VX_OUT	模拟 IO	输出给 TCXO 的电源,2.7~3.6V,0.1uF 电容接地
3	XREF	模拟 IO	时钟输入端,外接 TCXO
4	TST_RF	模拟 IO	射频测试端口。默认输出 3.3V 电压
5	VDD12BK	模拟 IO	备份 LDO 的输出, 1.08~1.32V
6	VDD_BK	模拟电源	备份电源的输入, 1.4~3.6V
7	VDD_IO	数字电源	数字 IO 电源的输入, 2.7~3.6V

			通用 GPIO, 默认为模式配置。
8	GPIO8	数字双向	高电平或者悬空时为 BDS +GPS;
			低电平时为 GPS+GLONASS。
9	NC		
10	ANT_BIAS	模拟 IO	有源天线供电和检测,2.7~3.6V
11	RTC_O	模拟 IO	RTC OSC 的输出
12	RTC_I	模拟 IO	RTC OSC 的输入
13	GPIO4	数字双向	通用 GPIO,默认为 UART1 的 TXD
14	GPIO5	数字双向	通用 GPIO, 默认为 UART1 的 RXD
15	TCK	数字输入	SWD 调试接口的时钟线
16	TMS	数字双向	SWD 调试接口的数据线
17	nRST	模拟 IO	外部复位输入,内部有上拉,不用则必须悬空
18	GPIO1	数字双向	通用 GPIO, 默认为 UARTO 的 RXD
19	GPIO0	数字双向	通用 GPIO, 默认为 UARTO 的 TXD
20	GPIO6	数字双向	通用 GPIO, 默认输入
21	DX_IN	模拟电源	DCDC 输入,2.7~3.6V
22	DX_OUT	模拟 IO	DCDC 输出,1.35~1.75V
23	Vcore	模拟电源	芯片主电源输入, 1.4~3.6V
24	VDD12BB	数字电源	数字内核 LDO 输出, 1.08~1.32V
25	NC	数字双向	NC
26	NC	数字双向	NC
27	NC	数字双向	NC
28	NC	数字双向	NC
29	TEST	数字输入	模式控制,正常工作保持低电平;内部下拉
30	ON_OFF	数字输入	关断控制,正常工作保持高电平;内部上拉
31	GPIO10	数字双向	通用 GPIO, 默认 I2C 的 SCL 时钟线
32	GPIO11	数字双向	通用 GPIO, 默认 I2C 的 SDA 数据线
33	GPIO16	数字双向	通用 GPIO, 默认必须悬空
34	GPIO12	数字双向	通用 GPIO, 默认输入
35	GPIO13	数字双向	通用 GPIO, 默认 1PPS 输出
36	GPIO14	数字双向	通用 GPIO, 默认输入
37	GPIO15	数字双向	通用 GPIO, 默认输入
38	VDD_PLL	模拟 IO	锁相环 LDO 输出,1.08~1.32V
39	VDD_RF	模拟 IO	射频 LDO 输出,1.08~1.32V
40	RF_IN	射频 IO	RF 输入
EP	GND	底部金属	公共接地点,必须良好接地

3 芯片架构

3.1 芯片框图

图 3-1 芯片框图

3.2 电源方案

3.2.1 芯片低功耗电源连接方案

如图 3-2 所示, 主电源 VDD 3.3V 提供 3.3V 电源, 给整个芯片供电。

VDD_3.3V 连接到 VDD_IO 给芯片的 IO PAD 供电;同时给内部 POR 供电,并通过一个二极管给备份区域供电;还给天线检测和有源天线部分供电。

VDD_3.3V 连接到 DCDC 的输入端 DX_IN 对 DCDC 供电,使用 DCDC 输出作为内部 LDO 输入,由内部的 LDO 对芯片的射频前端部分,模拟部分和数字部分供电。

外接纽扣电池作为备份电源(VBAT)对芯片的备份区域供电,可在主电源掉电的情况下 为备份电路供电。

图 3-2 芯片低功耗电源连接方案(使用芯片内部 DCDC)

3.2.2 不使用 DCDC 的电源连接方案

在有外部 PMU 或者对功耗不敏感情况下,可不使用芯片内部的 DCDC。可省去 DCDC 外部的电感和电容等元件;同时性能较使用 DCDC 有一定提升。

外接纽扣电池作为备份电源(VBAT)对芯片的备份区域供电,可在主电源掉电的情况下为备份电路供电。

注:不使用 DCDC 时, DX_IN 和 DX_OUT 管脚推荐悬空。

图 3-3 不用芯片内部 DCDC 的电源连接方案

3.3 工作模式

芯片有多种工作模式:全工作模式、休眠模式和电池备份模式。

全工作模式: 所有电源正常供电,且 ON_OFF 管脚为高电平时,芯片处于全工作模式,进行正常的信号接收和解算。

休眠模式: 所有电源正常供电, ON_OFF 管脚拉低, 将关闭 DCDC 和 LDO, 射频电路和基带电路停止工作, 进入低功耗休眠状态。当 ON_OFF 管脚拉高后, 芯片将自动恢复全工作模式 (相当于热启动)。

电池备份模式:关闭除 VDD_BK 之外的所有电源,这时只需要极小的电流维持 RTC 时钟和备份 RAM 即可。电源恢复后,导航程序可以从备份 RAM 恢复,以实现快速的热启动。

模式	射频前端	基带内核	IO/POR	RTC/备份 RAM
全工作模式	٧	٧	٧	V
休眠模式	×	×	٧	V
电池备份模式	×	×	×	٧

3.4 芯片复位

芯片内部集成上电复位电路,并支持从芯片外部复位。复位时序如下:

图 3-5 芯片复位时序图

4 射频前端

4.1 射频前端架构

射频前端支持全星座的卫星信号频点: BDS B1、GPS L1、GLONASS L1。数据通道共用 LNA/RFA 和 PLL, 支持多种参考频率。集成有源天线检测电路,集成时钟倍频电路,ADC 采 样频率可配置。

图 4-1 芯片射频前端框图

4.2 有源天线检测

芯片集成了有源天线检测电路,可以给外部有源天线馈电。并根据馈电电流的大小,指示有源天线的状态。有源天线检测电路还提供了短路保护,通过限制给有源天线馈电的电流,保护芯片和有源天线不被损坏。

检测电路定义了三种状态,当电流小于设定值时,指示天线开路;当电流大于设定值时,指示天线正常;当电流过大或者发生短路时,指示天线过流。

5 基带处理器

5.1 多系统卫星处理引擎

芯片集成了最新的多系统卫星处理引擎,支持BDS,GPS,GLONASS系统的信号,并实现联合定位,可以显著改善定位精度和定位可用度,尤其是在城市峡谷等复杂环境下,性能改进更显著。

5.2 实时时钟备份区域

实时时钟(RTC)位于电池供电区域,并且配备有一块备份 RAM。使用独立的低功耗 LDO进行供电。RTC 在主电源供电消失的情况下能够正常工作,同时保证备份 RAM 中的数据不丢失。

5.3 UART

包含两个独立的全双工 UART 模块,实现数据在串行和并行之间的转换,波特率最大支持 256000bps,并且具有自动波特率检测功能。

6 电气特性

6.1 极限特性

参数	最大摆幅	单位
电源对地电压(模拟内核电源、数字内核电源)	-0.3~1.8	V
电源对地电压(数字 IO 后驱电源、LDO 输入电源)	-0.3~4.1	V
模拟引脚电压	-0.3~1.8	V
其他引脚电压	-0.3~4.1	V
最大射频输入功率	5	dBm
工作环境温度	-40~85	$^{\circ}$ C
结温	150	$^{\circ}$ C
存储温度	-50~125	$^{\circ}$ C

6.2 直流特性

6.2.1 电源管脚

参数	最小值	典型值	最大值	单位
VDD12BB	1.08	1.2	1.32	V
VDD12BK	1.08	1.2	1.32	V
VDD_ANA	1.08	1.2	1.32	V
VDD_PLL	1.08	1.2	1.32	V
VDD_RF	1.08	1.2	1.32	V
VDD_IO	2.7	3.3	3.6	V
VDD_BK	1.4	3.3	3.6	V
VCore	1.4	1.5	3.6	V
DX_IN	2.7	3.3	3.6	V
DX_OUT	1.4	1.5	1.75	V

6.2.2 数字 IO 管脚

参数	说明	最小值	典型值	最大值	单位
Ileak	漏电流输入管脚		<1		uA
Vil	低电平输入电压	-0.3	0	VDD_IO*0.2	V
Vih	高电平输入电压	VDD_IO*0.8		VDD_IO+0.3	V

Vol	低电平输出电压		0	0.4	V
Voh	高电平输出电压	VDD_IO-0.4			V
Rpu	上拉电阻		40		kΩ
Rpd	下拉电阻		40		kΩ

6.3 模拟相关特性

序号	参数	条件	参数指标			单位
77.7			最小值	典型值	最大值	十四
1	复位电压	@VDD_IO	2.35	2.45	2.6	٧
2	复位时间	晶振频率	1	160		ms
	文 [2] [7]	26.000MHz		100		1113
3	TCXO 晶振频率 []]			26.000000		MHz
4	TCXO 幅度		0.5	1.5		Vpp
5	有源天线		2.5			mA
	检测电流		2.5			ША
6	有源天线		45	50	60	mA
	短路保护电流		45	30	00	ША
7	天线检测电路压降	输入 3.3V, 50mA 负载			0.3	٧
8	工作电流	@3.3V BDS+GPS		23		mA
9	电池备份电流			8		uA
10	休眠模式电流	ON_OFF=0		20		uA
11	RTC Crystal 频率			32.768		kHz
12	RTC Crystal 等效				80	ΚΩ
12	串联电阻 Rs				80	1/77
13	RTC Crystal 串联电容			8		pF

6.4 射频相关特性

序	参数	条件	参数指标			单位	
号	/ / / / / / / / / / / / / / / / / / /	茶 竹	最小值	典型值	最大值	十世	
		GPS		1575.42		MHz	
1	输入频率	Galileo		1575.42		MHz	
1	Fin	BDS		1561.098		MHz	
		GLONASS	1597.78	1602	1605.66	MHz	
2	输入信号电平 P _{IN}		-110		-65	dBm	
3	输入反射系数 S11				-10	dB	
4	噪声系数 NF			2.5		dB	
5	1dB 压缩点			-75		dBm	
6	镜像抑制比		16	26		dB	
7	锁相环锁定时间				100	us	
8	AGC 稳定时间				100	us	

7 参考设计

7.1 参考方案

图 7-1 芯片参考设计方案

应用方案可采用无源天线或者有源天线,芯片外部总增益建议大于 18dB,小于 35dB。有源天线通过 ANT_BIAS 供电,以提供天线检测和短路保护。用于天线馈电的阻交流电感和电容应靠近射频入口。

注意,RF_IN 管脚的直流电压不超过 1.2V。如果外置 LNA 的输出是带直流的,必须加电容进行隔直。

定位信息通过串口输出,输出端口为 UARTO,对应为 GPIO0 (TXD0)和 GPIO1 (RXD0)。 材料清单:器件选型请参考"主要外围器件 BOM 选型表"

7. 2 器件选型

主要外围器件 BOM 选型表

器件名称	参数	封装	规格	厂家	型号
DC/DC 功率电感	2.2uH	0603	1200/ C20m A 0 5 5th	SAMSUNG	CIG10W2R2MNC
	2.2un	0603	±20%,620mA,0.5 欧	MURATA	LQM18PN2R2MFR
	4.2m11		±0.2nH,750mA,0.07 欧		LQW15AN4N3C00D
	4.3nH		±0.3nH,300mA,0.21 欧		LQG15HN4N3S02
高频电感	6.2nH	0402	±3%,570mA,0.13 欧	MURATA	LQW15AN6N8H00D
向侧 电燃	0.211П	0402	±5%,300mA,0.29 欧	IVIORAIA	LQG15HN6N8J02
	33nH		±3%,260mA,0.63 欧		LQW15AN33NH00D
	ээнп		±5%,200mA,0.67 欧		LQG15HN33NJ02
RTC 晶体	32.768K	SMD221E	20ppm,CL=8pF	EPSON	FC-135
		SMD3215		KDS	DST310S
		SMD2520		EPSON	TG-5035CG
				LF3ON	TG-5006CG
			3.3V,	KDS	DSB221SDN
TCXO 晶振	26M		0.5ppm@-30°C to +85°C	KYOCERA	KT2520K26000ACW33T
			或 0.5ppm@-40℃ to +85℃	NDK	NT2520SB
				TXC	7L26003
				SIWARD	STO-2520A
低噪声放大器	LNA	6UDFN	Gain=21.5dB,NF=0.8dB	杭州中科微	AT2659

			Insertion Loss= 0.9dB@1575.42M	TDK EPCOS	B39162B9416K610	
			impedance=50 欧	TER EI COS	553162551161616	
			nsertion Loss =1.3dB@1561.098M		SAFFB1G56KB0F0A	
			0.9dB@1575.42M, 1.4dB@1602M			
滤波器			impedance=50 Ω			
	SAW	SMD1411	Insertion Loss = 0.95dB@1575.42M	MURATA	SAFEB1G57KE0F00	
			impedance=50 欧		SAFEBIGS/REGIOO	
			Insertion Loss = 0.9dB@1575.42M		SAFEA1G58KA0F00	
			1.3dB@1602M, impedance=50 欧		SAFEAIGSONAUFUU	
			Insertion Loss = 1.0dB@1575.42M	WISOL	CTUC90DO103	
			1.3dB@1602M, impedance=50 欧	WISOL	SFHG89DQ102	

8 应用方案

8.1 有源天线馈电和检测

如下图,芯片的有源天线检测电路可以检测有源天线的状态,输入为系统 IO 电源,最大电压 3.6V。ANT_BIAS 向有源天线馈电,接一个 33nH 或 47nH 的电感和 0.1uF 电容的滤波器用于阻隔交流信号。该电感电容在 PCB 上应靠近射频输入端。

注意:即使加入了阻隔交流信号的 LC 滤波器,低频的交流大信号仍可能会馈通到 ANT_BIAS 端口,造成检测电路误判。特别是在强干扰环境或者大功率发射装置附近,出现误判的概率会增大。

天线接入的默认最小检测电流为 2.5mA, 短路保护的限流电流默认为 50mA。

图 8.1 有源天线检测和保护

8.2 射频输入增益

射频信号从 RF_IN 输入,外置天线单元(无源介质+LNA,或者有源天线)的增益建议为 18~35dB。

8.3 防雷和 ESD

设备的射频接口通常暴露在外,虽然本芯片已通过 HBM2000V ESD 测试,但在测试和使用过程中,较强的冲击仍可能导致芯片损毁; 所以芯片测试和使用过程中请做好 ESD 防护,并在电路中添加合适的 ESD 防护设计。

导航天线放置在户外的应用,还需要增加防雷保护设计。

8.4 参考时钟晶振

参考时钟的频率稳定度将很大程度的影响接收机的性能,包括灵敏度、定位精度、授时精度、定位时间等。所以通常情况下为获得最优的性能,建议使用者选用高稳定度的晶振作为导航芯片的时钟参考源。推荐选用频率初始误差小于 2ppm,温度-40℃~85℃范围稳定度小于 0.5ppm、并对温度和环境振动不敏感的温补晶振 TCXO。

9.5 RTC 时钟

实时时钟(RTC)位于备份电池供电区域,保证主电源掉电后备份 RAM 中的数据不丢失,当主电源重新上电后能够快速重定位。RTC OSC 采用无源晶体,接在芯片的 RTC_I 和 RTC_O 引脚,无需片外电容和反馈电阻,如下图:

图 8.2 32k RTC 无源晶体

芯片也支持直接时钟输入,*注意信号必需从RTC_I 输入*,且需确保 RTC_I 上的电压不超过 1.5V。如下图,时钟信号经电阻分压后加到 RTC_I 上,调整 R1 与 R2 比值,使 RTC_I 上时钟高电平为 1.2V。

图 8.3 32k 直接时钟输入(电阻分压)

8.6 电源管理

芯片有2种方法进入低功耗模式:

- 1) 关闭除 BDD BK 之外的所有电源。
- 2)将ON_OFF引脚设置为低电平。芯片进入低功耗休眠状态,只消耗极少的电流。

功耗模式		内核	IO/POR	LNA	тсхо	天线	RTC	主电源
全工作模式		√	√	√	√	√	√	ON
低功耗	关闭电源	×	×	×	×	×	√	OFF
模式	ON_OFF 拉低	×	√	×	×	×	√	ON

8.7 DCDC

如果系统对功耗不敏感,或者为节省电感电容成本,可以不使用 DCDC。此时 DCDC 输入和输出管脚推荐悬空。同时 VCORE 供电可以为 1.4~3.6V。

采用片上 DCDC 可有效降低芯片功耗。

为减小 DCDC 开关噪声对芯片性能的影响,应尽量减小 DCDC 电感和电容与管脚 DCDC OUT 的连线长度,并且远离射频信号输入口及射频相关元器件。

DCDC 输入端的电源滤波非常重要,应采用 2.2uF 以上电容,并将滤波电容尽量靠近 DX_IN 管脚。

所有滤波电容应良好接地。包括 DCDC 输入滤波电容接地,输出电容接地。以及芯片底部金属,都必须充分而良好的接地。为此请适当增大 PCB 走线宽度和过孔数目。

8.8 LD0

芯片内部集成 LDO。

射频模拟部分的 LDO 输出如 VDD_ANA、VDD_RF、VDD_PLL 对旁路滤波要求较高, PCB 设计时请尽量缩小旁路电容与相应管脚的走线长度,并注意旁路电容的良好接地。

8.9 备份电源

推荐外接一个可充电的 3V 钮扣电池或者法拉电容,提供 RTC 和备份 RAM 的备份电源,以支持热启动定位。芯片内置涓流充电电路与防反充电路。注意钮扣电池或法拉电容的最大可充电电压应大于 VDD_IO+0.3V。

如果系统不需要热启动功能, VDD_BK 管脚可悬空; 当系统掉电后, RTC 和备份 RAM 由于没有电源供给,将停止工作,定位信息不能保存,热启动功能将失效。

注:无论是否加备份电源,VDD12BK上的1uF电容都不可去掉。

图 8.4 备份电源连接方案图

8.10 模式配置

芯片有两种方法进行模式配置。

- 1)通过 UART 发命令,可以将系统模式切换为 BDS/GPS/ GLONASS 的组合,比如 BDS+GPS 双模,或者 GPS+GLONASS 双模,或者 GPS 单模等。
- 2) 通过 GPIO8 设置。GPIO8 悬空或者高电平,芯片工作在 BDS+GPS 双模状态。GPIO8 低电平时,芯片工作在 GPS+GLONASS 双模状态。

9 芯片封装

9.1 芯片标识规则

编码	说明
AT6558R	芯片型号
LLLLLLLLLL	芯片序列号

10.2 封装规格

芯片采用 QFN5×5-40L (P0.4T0.8) 封装, 下面是封装尺寸。

Side View

封装尺寸

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min. Max.		Min.	Max.	
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008REF.		
D	4.924	5.076	0.194	0.200	
E	4.924	5.076	0.194	0.200	
D1	3.300	3.500	0.130	0.138	
E1	3.300	3.500	0.130	0.138	
k	0.200MIN.		0.008	BMIN.	
b	b 0.150 0.250 0.0		0.006	0.010	
е	0.400TYP.		0.016TYP.		
L	0.324	0.476	0.013	0.019	

10 芯片焊接与存储

10.1 防潮等级:

Moisture Sensitivity Level (MSL): 3 级 MSL 请参考 IPC/JEDEC J-STD-020 标准。

10.2 回流焊曲线:

! 注意

调整平衡时间以保证锡膏溶化时气体的合理化处理。如果 PCB 板上有过多空隙,可以增加平衡时间。

考虑到产品长时间放置在焊接区(温度在 180℃以上),为了防止元器件和底板的损伤,应 尽可能缩短放置时间。

! 曲线的重要特征:

上升速度=1~4°C/sec, 25°C to 150°C平均

预热温度=140°C to 150°C, 60sec~90sec

温度波动=225°C to 250°C, 大约 30sec

下降速度=2~6° C/sec, to 183° C, 大约 15sec

总时间 = 大约 300sec

11 包装与运输

11.1 包装

芯片采用真空卷带包装,具备防潮、防静电等特性。使用过程与业内主要贴片机兼容。 最小包装 1000 颗/盘。具体卷带尺寸如下:

11.2 ESD 防护

请注意在芯片运输和生产过程中防静电和防潮。

CAUTION! ESD SENSITIVE DEVICE!

请注意使用、包装和运输过程中的静电防护!

12 文档更新记录

日期	版本	说明
2018.03.29	V0.1	文档起草
2018.08.22	V1.0	
2018.09.06	V1.1	1 修改器件选型 2.2uH 电感型号
		2 管脚说明增加 GPIO8 的配置说明
		3 应用方案增加"8.10 模式配置"

联系方式

杭州中科微电子有限公司

Hangzhou Zhongke Microelectronics Co., Ltd

www.icofchina.com

地址 (Add): 杭州市滨江区江南大道 3850 号创新大厦 10 楼

10F Innovation Tower, #3850 Jiangnan Avenue Binjiang,

Hangzhou, China

电话 (Tel): +86-571-28918107

传真 (Fax): +86-571-28918122