Komplexní analýza

Komplexní funkce komplexní proměnné

Zdeněk Mihula

Katedra matematiky FEL ČVUT v Praze mihulzde@fel.cvut.cz

Reálná a imaginární část funkce

- Komplexní funkce komplexní proměnné je zobrazení $f: D \to \mathbb{C}$, kde $D \subseteq \mathbb{C}$.
- Protože $f(z) \in \mathbb{C}$ pro každé $z = x + iy \in \mathbb{C}$, můžeme psát

$$f(z) = u(x, y) + iv(x, y),$$

kde *u*, *v* jsou reálné funkce dvou reálných proměnných.

Definice

- Reálnou funkci u jako výše nazýváme **reálná část funkce** f. Píšeme Re f = u.
- Reálnou funkci v jako výše nazýváme **imaginární část funkce** f. Píšeme $\mathrm{Im}\, f = v$.

Upozornění

Reálná i imaginárná část funkce jsou reálné funkce.

Příklad

Uvažme funkci $f(z) = z^2$. Reálná část funkce f je $u(x,y) = x^2 - y^2$ a imaginární část je v(x,y) = 2xy.

Okolí bodu, otevřené množiny a oblasti

"Blízká komplexní čísla jsou blízké body v rovinně."

Definice

Nechť $z_0 \in \mathbb{C}$ a $\varepsilon > 0$.

- Množinu $U(z_0, \varepsilon) = \{z \in \mathbb{C} : |z z_0| < \varepsilon\}$ nazýváme **okolí bodu** z_0 s poloměrem ε .
- Množinu $P(z_0, \varepsilon) = \{z \in \mathbb{C} : 0 < |z z_0| < \varepsilon\}$ nazýváme **prstencové okolí bodu** z_0 s poloměrem ε .

Poučení

 $U(z_0,\varepsilon)$ je otevřený kruh se středem v z_0 a poloměru ε .

 $P(z_0,\varepsilon)$ je $U(z_0,\varepsilon)$ bez svého středu.

Úmluva

Stručněji budeme psát jen $U(z_0)$ a $P(z_0)$, pokud nás přesný poloměr (prstencového) okolí nezajímá.

Definice

Množina $M \subseteq \mathbb{C}$ je:

- otevřená, jestliže pro každé $z \in M$ existuje U(z) tak, že $U(z) \subseteq M$;
- oblast, jestliže je otevřená a každé dva body z množiny Ω lze spojit lomenou čarou ležící v Ω .

Příklad

- 1 \mathbb{C} , \emptyset , U(z) a P(z) (pro každé $z \in \mathbb{C}$) jsou oblasti.
- 2 $\mathbb{C} \setminus \{z \in \mathbb{C} : \operatorname{Re} z \leq 0, \operatorname{Im} z = 0\}$ je oblast.
- 3 Je-li $G \subseteq \mathbb{C}$ oblast/otevřená, pak také $G \setminus \{z_1, \dots, z_n\}$ je oblast/otevřená pro každé $z_1, \dots, z_n \in \mathbb{C}$, $n \in \mathbb{N}$.
- U(i,1) ∪ U(-i,1) je otevřená, ale není to oblast.
 - Další pojmy jako hranice, uzávěr, uzavřené množiny... a vztahy mezi nimi jsou stejné jako v R².

Limita

I pojem limity a spojitosti je jako u funkcí dvou reálných proměnných.

Definice

Nechť $z_0 \in \mathbb{C}$ a f je komplexní funkce definovaná na $P(z_0)$. Řekneme, že f **má limitu** $L \in \mathbb{C}$ v bodě z_0 , jestliže ke každému okolí U(L) existuje prstencové okolí $P(z_0)$ takové, že pro každé $z \in P(z_0)$ platí $f(z) \in U(L)$. Píšeme $\lim_{z \to z_0} f(z) = L$.

- · Limita je jednoznačná, pokud existuje.
- Mějme $z_0=x_0+iy_0$ a L=A+Bi. Platí $\lim_{z\to z_0}f(z)=L$ právě tehdy, když

$$\lim_{(x,y)\to(x_0,y_0)}u(x,y)=A\quad \text{a}\quad \lim_{(x,y)\to(x_0,y_0)}v(x,y)=B,$$

kde $u = \operatorname{Re} f$ a $v = \operatorname{Im} f$.

Spojitost

Definice

Nechť $z_0 \in \mathbb{C}$ a f je komplexní funkce definovaná na $U(z_0)$. Řekneme, že f je **spojitá v bodě** z_0 , jestliže $\lim_{z \to z_0} f(z) = f(z_0)$.

Řekneme, že f je **spojitá na množině** $M \subseteq \mathbb{C}$, jestliže je spojitá v každém bodě množiny M.

• f(z) = u(x,y) + iv(x,y) je spojitá právě tehdy, když obě u(x,y) a v(x,y) jsou spojité (jako reálné funkce reálných proměnných).

Příklad

Konstantní funkce, polynomy, $\operatorname{Re} z$, $\operatorname{Im} z$, \overline{z} a |z| jsou spojité funkce na $\mathbb C$.

7

Dosud v zásadě nic moc nového

Otázka

A proč to tedy děláme, když je všechno prakticky stejné jako u funkcí dvou reálných proměnných?

Derivace

Upozornění

U pojmu derivace začínají zásadní odlišnosti od reálné analýzy.

Definice

Nechť $z_0 \in \mathbb{C}$ a f je definovaná na $U(z_0)$. Pokud existuje vlastní limita

$$\lim_{h\to 0}\frac{f(z_0+h)-f(z_0)}{h},$$

pak její hodnotu nazýváme **derivací** funkce f v bodě z_0 . Značíme ji $f'(z_0)$ nebo $\frac{\mathrm{d}f}{\mathrm{d}z}(z_0)$.

Existuje-li $f'(z_0)$, pak říkáme, že f je **diferencovatelná** v bodě z_0 .

- Diferenční podíl má smysl, protože komplexní čísla můžeme na rozdíl od prvků \mathbb{R}^2 dělit.

- Jelikož aritmetika limit je stejná jako v reálném oboru, platí i stejná aritmetika derivací.
- · Jsou-li f a g diferencovatelné v bodě $z \in \mathbb{C}$, pak
 - (f+g)'(z) = f'(z) + g'(z);
 - 2 (fg)'(z) = f'(z)g(z) + f(z)g'(z);
- Je-li g diferencovatelná v bodě $z \in \mathbb{C}$ a f diferencovatelná v bodě g(z), pak
 - **4** $(f \circ g)'(z) = f'(g(z))g'(z)$

Příklad

Uvažme funkci $f(z)=z^n$, kde $n\in\mathbb{N}$. Potom pro každé $z\in\mathbb{C}$ je $f'(z)=nz^{n-1}$.

· Diferencovatelnost implikuje spojitost.

Cauchyovy-Riemannovy podmínky

Věta (Cauchyovy-Riemannovy podmínky)

Nechť f(z) = u(x,y) + iv(x,y) je definovaná na nějakém okolí bodu $z_0 = x_0 + iy_0 \in \mathbb{C}$. Nechť u a v mají spojité parciální derivace v bodě (x_0, y_0) . Potom f je diferencovatelná v bodě $z_0 = x_0 + iy_0$ právě tehdy, když jsou splněny tzv. Cauchyovy-Riemannovy podmínky:

$$\begin{split} &\frac{\partial u}{\partial x}(x_0,y_0) = \frac{\partial v}{\partial y}(x_0,y_0), \\ &\frac{\partial u}{\partial y}(x_0,y_0) = -\frac{\partial v}{\partial x}(x_0,y_0). \end{split}$$

V takovém případě navíc platí, že

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$$

Příklad

- 1 Funkce $f(z) = \operatorname{Re} z$ je spojitá na \mathbb{C} , ale není diferencovatelná v žádném bodě $z \in \mathbb{C}$.
- 2 Funkce $f(z) = |z|^2$ je spojitá na \mathbb{C} , ale je diferencovatelná pouze v bodě z = 0, kde platí f'(0) = 0.

Upozornění

I na první pohled "pěkné a rozumné" funkce často nejsou v komplexní analýze diferencovatelné.

Holomorfní funkce

Definice

Řekneme, že funkce f je **holomorfní na otevřené množině** $\Omega \subseteq \mathbb{C}$, jestliže je diferencovatelná v každém bodě množiny Ω .

Funkce holomorfní na $\mathbb C$ se nazývá **celistvá**.

Příklad

- 1 Polynom $f(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, kde $a_n, \ldots, a_0 \in \mathbb{C}$ a $n \in \mathbb{N}_0$, je celistvá funkce.
- 2 Racionální funkce $f(z) = \frac{P(z)}{Q(z)}$, kde P, Q jsou polynomy a $Q \not\equiv 0$, je holomorfní funkce na svém definičním oboru $D = \{z \in \mathbb{C} : Q(z) \neq 0\}$.
- 3 Naopak funkce $\operatorname{Re} z$, $\operatorname{Im} z$ či $|z|^2$ nejsou holomorfní na žádné otevřené množině podmnožině $\mathbb C$.

Harmonické funkce

Holomorfní funkce úzce souvisí s tzv. harmonickými funkcemi, které možná znáte z fyziky (např. elektrostatiky).

Definice

Nechť $\Omega \subseteq \mathbb{R}^2$ je otevřená množina. Řekneme, že reálná funkce Φ definovaná na Ω je **harmonická** na Ω , jestliže Φ má spojité druhé parciální derivace na Ω a $\Delta\Phi(x,y)=0$ pro každé $(x,y)\in\Omega$.

Symbol Δ je Laplaceův operátor, tj. $\Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2}$.

Příklad

Uvažme celistvou funkci $f(z) = z^2$. Její reálná část $u(x,y) = x^2 - y^2$ a imaginární část v(x,y) = 2xy jsou harmonické na \mathbb{R}^2 .

Upozornění

Součet druhých nesmíšených parciálních derivací musí být konstantně nulový v každém bodě Ω.

Předchozí příklad nebyl náhoda.

Tvrzení

Nechť f je holomorfní na otevřené množině $\Omega \subseteq \mathbb{C}$. Potom reálná a imaginární část funkce f jsou harmonické funkce na Ω .

Příklad

Je dána funkce $u(x,y) = x^2 - y^2 + x$, $(x,y) \in \mathbb{R}^2$.

- Funkce u je harmonická na \mathbb{R}^2 .
- · Všechny funkce v na \mathbb{R}^2 takové, že f=u+iv je celistvá, jsou tvaru v(x,y)=2xy+y+K, kde K je libovolná reálná konstanta.
- · Funkce v jako výše se nazývá harmonicky sdružená funkce k u.
- Obecně nemusí existovat k zadané harmonické funkci harmonicky sdružená funkce, ale na tzv. jednoduše souvislých oblastech (bude později) vždy existuje.