MOSTOW RIGIDITY VIA GROMOV NORM

Thm. M, N complete, finite vol, hyp mans n>2Any isomorphism $TL, M \to TL, N$ is induced by a unique isometry $M \to N$

Step 1. $\exists f: M \rightarrow N \text{ homotopy equiv.}$ (uses completeness!)

Step 2. Lift to F: IH" - IH" quasi-isometry

Step 3. Extend to $\partial \hat{\mathbf{f}}: \partial \mathbb{H}^n \longrightarrow \partial \mathbb{H}^n$ continuous

Gromov Norm

Norm on real singular n-chains: $\| \Sigma t_i \tau_i \| = \Sigma \| t_i \|$ \longrightarrow pseudo-norm on $| t_n(X; \mathbb{R}) :$ $\| x \| = \inf_{[\Sigma t_n \tau_n] = K} \| \Sigma t_i \tau_i \| \qquad \text{"Gromov norm"}$

Lemma. $f: X \rightarrow Y$ cont, $\alpha \in H_n(X; \mathbb{R})$ then $\|f_*(\alpha)\| \leq \|\alpha\|$ Cor. f a homot. equiv $\Rightarrow \|f_*(\alpha)\| = \|\alpha\|$.

For M closed, orientable: | MI = | [M] |

Fact. If M admits deg > 1 self-map then IIMII = O.

Step 4. Gromov norm vs. volume

Thm M = closed, hyp n-man

||M|| = Vol(M)/Vn

Vn = max vol of a simplex

Cor. 1 M has no self-maps of deg > 1 2 volume is an invariant.

Step 5. 2 preserves regular ideal tetrahedra (n=3).

Step (a. $\partial \hat{f}$ is conformal (hence agrees with some isometry).

Fact. Let n > 2, ∇ ideal tet, T = face. \exists ! reg ideal tet ∇ ' s.t. $\nabla \cap \nabla' = T$.

Let v = any reg ideal tetrahedron.

Step $5 \Rightarrow \partial f_*(\sigma)$ regular

Up to postcomposing with \bullet conformal map can assume $\widetilde{\mathcal{H}}_{\bullet}(\sigma) = \nabla$.

Fact $\Rightarrow \partial f_*$ fixes every simplex obtained from ∇ via the grp gen by reflections in faces of ∇ .

But the vertices of these tetrahedra are dense in ∂H^3 $\Rightarrow \partial f_* = id$, as desired.

GROMOV'S THM

Straightening simplices

In 14" an arbitrary singular simplex can be straightened:

This works for simplices in M (lift, straighten, project)

Note: O Straightening takes cycles to cycles

3 | straight (Z) | < ||Z|| (some simplices might cancel/vanish).

Lower bound

Prop. ||M|| > Vol(M)/Vn

If. Let
$$Z = \sum t_i \nabla_i$$
 straight cycle with $[Z] = [M]$

$$Vol(M) = \int_M dVol = \sum t_i \int_{\Delta^n} \nabla_i^* (dVol) \le \sum |\frac{1}{2}i| V_n$$

$$\implies \|Z\| \ge Vol(M)/V_n \quad \text{take inf.}$$

Upper bound

Prop. ||M|| < vol(M)/va

Need chains ∇_L with $[\nabla_L] = [M]$ and $\|\nabla_L\| \longrightarrow \text{Vol}(M)/V_n$ as $L \longrightarrow \infty$.

Smeaning.

D = fund: dom. for M

V= simplex in M

~ T = simplex in M = IH"

t = signed measure of simplices in IH with vertices in same copies of D as T (sign means mult by -1 if T reverses or.)

~ Smear (V) = tV

Defining VI.

Consider all regular straight simplices & with side length L, Zeroth vertex in D. Choose XED.

Let T' be the straight simplex with vertices at corresponding translates of x.

VL = I Smear (T').

Check: 1 volume of each such T is Vn-E(L)

lim ε(L) = 0.

- @ each such sum is finite, moreover
- 3 Ti is a cycle

In particular, some multiple of [TI] is [M]. Say this multiple is Z = Itivi

~ | | MI & Zti = vol(M)/Vn-ECL)

Step 5. Regular ideal tetrahedra go to same.

If not, a definite fraction of The loses a definite amount of volume, violating Step 4.