

# **GOLDS-UFSC Documentation**

GOLDS-UFSC Documentation SpaceLab, Universidade Federal de Santa Catarina, Florianópolis - Brazil

#### **GOLDS-UFSC Documentation**

June, 2020

#### **Project Chief:**

Eduardo Augusto Bezerra

#### Authors:

Gabriel Mariano Marcelino André Martins Pio de Mattos Eduardo Augusto Bezerra

#### **Contributing Authors:**

#### **Revision Control:**

| Version | Author               | Changes           | Date       |
|---------|----------------------|-------------------|------------|
| 0.1     | Gabriel M. Marcelino | Document creation | 2020/06/05 |



© 2020 by SpaceLab. GOLDS-UFSC Documentation. This work is licensed under the Creative Commons Attribution–ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

| · · · · · · · · · · · · · · · · · · · | List of Figures |
|---------------------------------------|-----------------|
|---------------------------------------|-----------------|

| 4.1 | Reference diagram of the PC-104 bus. |  | 8 |
|-----|--------------------------------------|--|---|
|-----|--------------------------------------|--|---|

## List of Tables

| 3.1 | Mission schedule              | 5  |
|-----|-------------------------------|----|
| 4.1 | PC-104 bus pinout             | 9  |
| 4.2 | PC-104 bus signal description | 10 |

## Contents

| Lis | st of Figures                                                                                                  | V                                |
|-----|----------------------------------------------------------------------------------------------------------------|----------------------------------|
| Lis | sta of Tables                                                                                                  | vii                              |
| No  | omenclature                                                                                                    | vii                              |
| 1   | Introduction1.1 Mission Description1.2 Mission Objectives                                                      | <b>1</b><br>1                    |
| 2   | Mission Requirements                                                                                           | 3                                |
| 3   | Mission Schedule                                                                                               | 5                                |
| 4   | Overall Description 4.1 General Diagrams 4.2 General Behaviour 4.3 Power Budget 4.4 Link Budget 4.5 PC-104 Bus | <b>7</b> 7 7 7 7                 |
| 5   | Subsystems 5.1 On-Board Data Handling                                                                          | 11<br>11<br>11<br>11<br>11<br>11 |
| 6   | Ground Segment                                                                                                 | 13                               |
| 7   | Operation Planning                                                                                             | 15                               |
| Re  | eferences                                                                                                      | 15                               |

### Introduction

.

## 1.1 Mission Description

.

## 1.2 Mission Objectives

- 1. To serve as a host platform for the EDC payload.
- 2. Validate the EDC payload in orbit.
- 3. Validate EDC functionality in orbit.
- 4. Validate core-satellite functions in orbit.
- 5. Evaluate the behavior of the core modules.
- 6. Perform experiments on radiation effects in electronic components in orbit.
- 7. Serve as relay for amateur radio communications.

### Mission Requirements

- 1. The power system shall be able to harvest solar energy.
- 2. The power system shall be able to store energy for use when GOLDS-UFSC is eclipsed.
- 3. The power system shall supply energy to all other modules.
- 4. The data handling system shall communicate with the other modules and store their data.
- 5. The communications system shall send a beacon signal periodically using VHF radio.
- 6. The communications system shall send the CubeSat telemetry using UHF radio.
- 7. The communications system shall be able to receive telecommands and respond to them accordingly.
- 8. The attitude system shall be able to perform a 1-axis stabilization of the CubeSat.
- 9. GOLDS-UFSC shall have the capability to receive and execute a shutdown telecommand, therefore ceasing all transmissions.
- 10. The downlink transmissions shall be done once at a time, either telemetry or beacon.
- 11. The ground station shall operate under the proper radio frequency communication licenses.
- 12. GOLDS-UFSC shall comply with international and Brazilian radio license agreements and restrictions.
- 13. The team shall build and operate a ground station for full communication with GOLDS-UFSC.

### Mission Schedule



Table 3.1: Mission schedule.

Overall Description

.

4.1 General Diagrams

.

4.2 General Behaviour

.

4.3 Power Budget

.

4.4 Link Budget

.

4.5 PC-104 Bus



Figure 4.1: Reference diagram of the PC-104 bus.

| Pin Row | H1 Odd      | H1 Even   | H2 Odd      | H2 Even     |
|---------|-------------|-----------|-------------|-------------|
| 1-2     |             |           |             |             |
| 3-4     | _           | _         | _           | _           |
| 5-6     | _           | _         | BE_UART_RX  | _           |
| 7-8     | _           | _         | BE_UART_TX  | _           |
| 9-10    | _           | _         |             | _           |
| 11-12   | _           | _         | BE_SPI_MOSI | BE_SPI_CLK  |
| 13-14   | _           | _         | BE_SPI_CS   | BE_SPI_MISO |
| 15-16   | _           | _         | _           | _           |
| 17-18   | _           | PLX_EN    | -           | -           |
| 19-20   | _           | _         | -           | -           |
| 21-22   | _           | _         | _           | _           |
| 23-24   | _           | _         | _           | _           |
| 25-26   | EDC_UART_TX | _         | -           | _           |
| 27-28   | EDC_UART_RX | _         | -           | _           |
| 29-30   | GND         | GND       | GND         | GND         |
| 31-32   | GND         | GND       | GND         | GND         |
| 33-34   | -           | _         | _           | -           |
| 35-36   | RD_SPI_CLK  | _         | ANT_VCC     | ANT_VCC     |
| 37-38   | RD_SPI_MISO | _         | -           | _           |
| 39-40   | RD_SPI_MOSI | RD_SPI_CS | -           | _           |
| 41-42   | PLX_I2C_SDA | _         | -           | _           |
| 43-44   | PLX_I2C_SCL | _         | -           | _           |
| 45-46   | OBDH_VCC    | OBDH_VCC  | BAT_VCC     | BAT_VCC     |
| 47-48   | EDC_VCC     | EDC_VCC   | -           | -           |
| 49-50   | RD_VCC      | RD_VCC    | EPS_I2C_SDA | -           |
| 51-52   | BE_VCC      | BE_VCC    | EPS_I2C_SCL | _           |

Table 4.1: PC-104 bus pinout.

| Signal      | Din/c)        | Used Ru   | Description                          |
|-------------|---------------|-----------|--------------------------------------|
| Signal      | Pin(s)        | Used By   | Description                          |
| GND         | H1-29, H1-30, | All       | Ground reference                     |
|             | H1-31, H1-32, |           |                                      |
|             | H2-29, H2-30, |           |                                      |
|             | H2-31, H2-32  |           |                                      |
| BAT_VCC     | H2-45, H2-46  | EPS       | Battery terminals (+)                |
| ANT_VCC     | H2-35, H2-36  | EPS, ANT  | Antenna power supply (3.3 V)         |
| OBDH_VCC    | H1-45, H1-46  | EPS, OBDH | OBDH power supply (3.3 V)            |
| EDC_VCC     | H1-47, H1-48  | EPS, EDC  | EDC power supply (5 V)               |
| RD_VCC      | H1-49, H1-50  | EPS, TTC  | Main radio power supply (5 V)        |
| BE_VCC      | H1-51, H1-52  | EPS, TTC  | Beacon power supply (5 V)            |
| RD_SPI_CLK  | H1-35         | OBDH, TTC | CLK signal of the main radio SPI bus |
| RD_SPI_MISO | H1-37         | OBDH, TTC | MISO signal of the main radio        |
|             |               |           | SPI bus                              |
| RD_SPI_MOSI | H1-39         | OBDH, TTC | MOS signal of the main radio         |
|             |               |           | SPI bus                              |
| RD_SPI_CS   | H1-40         | OBDH, TTC | CS signal of the main radio          |
|             |               |           | SPI bus                              |
| EPS_I2C_SDA | H2-49         | OBDH, EPS | SDA signal of the EPS I2C            |
|             |               |           | bus                                  |
| EPS_I2C_SCL | H2-51         | OBDH, EPS | SCL signal of the EPS I2C bus        |
| BE_UART_RX  | H2-5          | EPS, TTC  | EPS TX, Beacon RX (UART              |
|             |               |           | bus)                                 |
| BE_UART_TX  | H2-7          | EPS, TTC  | EPS RX, Beacon TX (UART              |
|             |               |           | bus)                                 |
| EDC_UART_TX | H1-25         | OBDH, EDC | OBDH RX, EDC TX (UART                |
|             |               |           | bus)                                 |
| EDC_UART_RX | H1-27         | OBDH, EDC | OBDH TX, EDC RX (UART                |
|             |               |           | bus)                                 |
| PLX_EN      | H1-18         | OBDH,     | Payload X enable (GPIO)              |
|             |               | Payload X |                                      |
| PLX_I2C_SDA | H1-41         | OBDH,     | SDA signal of the Payload X          |
| DIV 10      |               | Payload X | I2C bus                              |
| PLX_I2C_SCL | H1-43         | OBDH,     | SCL signal of the Payload X          |
|             |               | Payload X | I2C bus                              |

Table 4.2: PC-104 bus signal description.

**Subsystems** 

.

## 5.1 On-Board Data Handling

**OBDH** 

5.2 Telemetry, Tracking and Command Module

TTC

5.3 Electrical Power System

**EPS** 

5.4 Attitude Determination and Control System

**ADCS** 

5.5 Mechanical Structure

.

- 5.6 Payloads
- 5.6.1 Environmental Data Collection

**EDC** 

# **Ground Segment**

.

# Operation Planning

.