

CS 372 Lecture #41

Security

- threats
- policies
- mechanisms

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach*, 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

Cyber Crime

- Internet enables new types of crime
- Explosive growth of the problem
 - laws have been reactive instead of proactive
 - types of activities not anticipated
 - many "crimes" are not illegal yet
 - cost of protection
 - cost of security breaches
- Perpetrators
 - Criminal hackers (crackers)
 - Terrorists
 - Governments
 - Unknowing accomplices

2012 Poneman Report

- Most costly types of attacks
 - Malicious code
 - Denial of services
 - Web-based attacks
 - Stolen devices
 - Malicious insiders
 - Social Engineering, Phishing
 - Viruses, worms, trojans
 - Botnets
 - Malware
- Wireless/mobility makes crimes easier to commit, harder to trace

Costs of attacks

- Norton/Symantec estimates cost of internet theft
 - to US companies \$250 billion/year
 - to US <u>consumers</u> \$110 billion/year (<u>not</u> <u>including</u> costs passed on from companies)
 - globally \$388 billion (including downtime)
- McAfee estimates that \$1 trillion was spent globally for remediation.
- National security
 - cyber attacks now considered greater threat than terrorism
- Personal security
 - identity theft, privacy
- Interruption of essential services
 - power, water, medical, etc.
- etc.

Security policies

- "Secure" is not an absolute term
- Need to define security policy for organization
- Costs and benefits of security policies must be assessed
 - What is the value of information?
- Policies must consider <u>stored information</u> as well as transmitted information.
- Users must be <u>educated</u>
 - Security policy is useless if users respond to "phishing", etc.

Maintaining security

Data integrity

- Data should be transmitted unchanged
- Stored data should be "safe"

Data availability

- Authorized users should have access
- Access should not be interrupted

Data confidentiality

- Only authorized users should have access
- No snooping, wiretapping, etc.

Privacy

- User identity is protected
- Private transactions are protected

Security mechanisms

- Perimeter security
- Password / data encryption
- Others
 - Virtual private networks
 - Use Internet to transfer data among organization's sites but ensure that data cannot be read by others
 - Message authentication codes (MAC)
 - Digital signatures
 - etc.

Perimeter security

- Using packet filters to create a firewall
- Secure host ("bastion" host) runs application-layer gateways or proxies
- There are many variations.

Firewalls can't protect against ...

- Malicious insiders
- •Connections that don't go through it
 - E.G., dial-up connections
- Completely new threats
- Unknown viruses

Commercial / open-source security systems

- IDS Intrusion Detection System
- Kerberos from MIT
- SSH and OpenSSH Secure Shell
- SSL and OpenSSL Secure Socket Layer
- ... and many others

Summary

Lecture #41

- Cyber crime
 - scope of the problem
 - types of attacks
- Security
 - policies
 - mechanisms