Settimona 5 <u>Argomenti: Esercizi in Lasse, es in classe</u> Conduttori conduttori in eq. eletrostatica, Materia: Fisica E rai conduttori, teo di Conlomb Classe: 5F Data: 13/10/25 Es 48 pag 227 49(mm) Sup. equipot. 1) t=? 2) d to due sup equipot. in mode de $\Delta V = 1.10^2 V$ ×(mm) Il compo elettrico è costante visto de la sup equipal sono rette Il verso non me ne preoccupo, la diregione è 1 d pieno Dono colcolore y con le geometrie $OT^2 = OX^2 + XT^2 = 5$ $7x = \frac{215}{5} \text{ mm} = \frac{215}{5} \cdot 10^{-3} \text{ m}$ $JX = OX \cdot Siud$ = $2 \cdot \frac{1}{15}$ $E = \frac{V_B}{7X} = \frac{200^{\circ} \cdot 5}{25 \cdot 10^{-3}} \frac{V}{m}$ $V = E_{y}$ w $V_{g} = E \cdot Jx$ $m \in \approx 2.2 \cdot 10^{5} \frac{V}{m}$ (2) $E \cdot d = \Delta V$ m $d = \Delta V \approx 4.5 \cdot 10^{-4} \text{ m}$ Ly Viene de es, gio fatto

(2)
$$V_{H} = V_{H,h} + V_{H,B} = \frac{Q}{4\pi C_{o}} \left(\frac{1}{\sqrt{[Q-Q_{o}^{ab}]^{2}}} - \frac{1}{\sqrt{[b-Q_{o}^{ab}]^{2}}} \right) = 0$$

Timpongo cle $V = V_{H} = 0$ e ricoso y in funzione di x.

$$V(b-x)^{2} + y^{2} = V(a-x)^{2} + y^{2}$$

$$V(b-x)^{2} + y^{2} = V(a-x)^{2} + y^{2}$$

$$V(b-x)^{2} + y^{2} = (a-x)^{2} + y^{2} + y^{2}$$

$$V(b-x)^{2} + y^{2} = (a-x)^{2} + y^{2} + y^{2}$$

$$V(b-x)^{2} + y^{2} = (a-x)^{2} + y^{2} + y^{2$$

n.2. ΔV(V) | 100 | 120 | 140 | 160 | 180 ν(.106 m/c) | 5,94 | 6,52 | 7,03 | 751 | 7,98 Prodotto è ok se la misura rientra in un errora dell' 1% di quella prevista Il connove supera il test? 1) Capita la situazione 2) Calcoliamo i velori teorici U=qV inizio: Ei = Ki+Ui = 0 + eV Er=Ef finele Ef = Kg + Uf = \frac{1}{2} mv^2 + e V_B $var{E}_{i} = E_{f} var{N} e V_{A} = \frac{1}{2} mv^{2} + e V_{B}$ $\frac{1}{2}mv^2 = e\left(V_A - V_B\right)$ $V^2 = -\frac{2e \Delta V}{m}$ Se $\Delta V = 100 V \sim V = 5.92 \cdot 10^6 \text{ m/s}$ Por trouvre orrore /. Laccio Vecerice /= 99.6 /. => L'errore à della 0,4% e la misure è Accettabile noRipeto e se un errore p viene oltre l'11/. il connone è da buttore

$$\frac{n.45}{10} = \frac{1}{100} = \frac{$$

Conduttori Canichi
Remind: Un conduttore è un moteriale in un le coricle si possono nuovere liberamente
Det: Un conduttore è in equilibrio elettratatico se le cariche sono ferme al suo interno e non si muovano.
(1) Se un aggetto è conduttore, tutta la carica si distribuisce sulle
2) Più la superficie è localmente curve più si addensers le coricle in quei purti
Nei punti con più curvoture
finisco no più coricle la corica si concentra nolla porti più incurvate
porti più incurvate
Fatti
1) All'interno dei conduttori in equilibrio elettrostatico, È è nullo
Din 1: Se esistesse È, la corrèbe delle superficie inizierebbers a musuasi
Din 1: Se esistesse È, la coriche della superficie inizierebbers a musursi Ma é in eq. elettrostotics e la coricle sons ferre => È = 0
le coricle si sposterebbero lung E,
2) Sulla superficie di un conduttore in eq elettrostatica È è perpendico lone alla superficie e punta versa l'esterna Dim 2: Se È non fosse perpendicolore, le coricle si sposte rebbera lung Et componente tongenziale di È. Ma è in

equilibrio elettrostation e dunque le variele sono ferme teorena di Carlomo: Sio o la densita superficiale in un punto di un conduttore in equilibrio elettrostatico. Il compo alettrico $E = \frac{10^{11}}{E}$ $E = \frac{10^{11}}{E}$ Din Considero la superficie S e un purto Piu esse e consider un cilindro obbestonze piccolo in mado de 30000 supporte le bosi sompre 1 alle superficie 'Chiomo Q il cilindro e calcolo il Plusso attrovoro to sup. _2. (1) \$\P_s(\vec{\varepsilon}) = \frac{\infty}{\varepsilon_s} \text{ per il tecrema di Groves $\overline{\Phi}_{\mathbf{Q}}(\vec{\mathbf{E}}) = \frac{\Delta \mathbf{Q}}{\mathcal{E}_{\mathbf{Q}}}$ (2) Per det $\Phi_{\Sigma}(\vec{\epsilon}) = \sum_{i=1}^{n} \vec{E}_{i} \cdot \Delta \vec{S}_{i} = \Phi_{Sup}(\vec{\epsilon}) + \Phi_{Sec}(\vec{\epsilon}) + \Phi_{OSec}(\vec{\epsilon})$ » ⊕ (€) = 0 poidré È è nullo all'interno del conduttore D \$ (€) = 0 poiclé IS; e È sono perpendicolori (vedne piono infinito) $D = \Phi_{bose} ect (\vec{\epsilon}) = \vec{E} \cdot \Delta S$ con E compo elettrico uguele orunque per experis. picco esse Dese del cilindo, cosa=1 per

