I Ginzburg-Landau theory of superconductivity

I.1 Coherence length and penetration depth in strongly correlated superconductors

[wittBypassingLatticeBCSBEC2024]

Order parameter (OP) of a superconducting condensate with FMP has the form

$$\Psi_{\mathbf{q}}(\mathbf{r}) = |\Psi_{\mathbf{q}}|e^{i\mathbf{q}\mathbf{r}} \tag{I.1}$$

where \mathbf{q} is the center-of-mass momentum of Cooper pairs.

FMP is well known from Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) theory, where the single-momentum phase used here corresponds to FF-type pairing.

What does that mean? More details on FFLO theory

1.2 Ginzburg-Landau description

First: Motivate how the FMP constraint relates to λ_L and ξ_0 .

GL low-order expansion of the free energy density $f_{\rm GL}$ in terms of the FMP-constrained OP reads

$$1 (I.2)$$

The temperature dependent correlation length ξ appears as the natural length scale of the amplitude mode ($\propto \alpha$) and kinetic energy term

$$\xi(T) = \tag{I.3}$$

with the zero temperature value ξ_0 being the coherence length.

More details on GL theory in general

Fill in equation

Fill in equation

1.3 Phase transitions and broken symmetry

 $Following \ [{\bf colemanIntroductionManyBodyPhysics 2015}].$

I.3.1 Order parameter concept

Landau theory: phase transitions (e.g. iron becomes magnetic, water freezes, superfluidity/superconductivity) are associated with the development of an order parameter when the temperature drops below the transition temperature T_C

 $|\psi| = \begin{cases} 0 , T > T_C \\ |\psi_0| > 0 , T < T_C \end{cases}$ (I.4)

Landau theory does not need microscopic expression for order parameter, it provides corse-grained description of the properties of matter. The order parameter description is good at length scales above ξ_0 , the coherence length (e.g. size of Cooper pairs for SC).

This works also for phase transitions not dependent of temperatures, so e.g. in pressures?

I.3.2 Landau theory

Landau theory

Going from a one to a n-component order parameters, we can actually

Particularly important example: complex or two component order parameter in superfluids and superconductors:

$$\psi = \psi_1 + i\psi_2 = |\psi|e^{i\phi} \tag{I.5}$$

The Landau free energy takes the form:

$$f[\psi] = r(\psi^*\psi) + \frac{u}{2}(\psi^*\psi)^2$$
 (I.6)

Figure I.1 shows the Landau free energy as function of ψ .

In this 'Mexican hat' potential: order parameter can be rotated continuously from one broken-symmetry state to another. If we want the phase to be rigid, we need to introduce an There is a topological argument for the fact that the phase is rigid. This leads to Ginzburg-Landau theory. Will see later: well-defined phase is associated with persistent currents or superflow.

Rest of Landau theory

Figure I.1: Mexican hat potential

1.3.3 Ginzburg-Landau theory I: Ising order

Landau theory: energy cost of a uniform order parameter, more general theory needs to account for inhomogenous order parameters, in which the amplitude varies or direction of order parameter is twisted -> GL theory. First: one-component, 'Ising' order parameter. GL introduces additional energy $\delta f \propto |\Delta \psi|^2$, $f_{GL}[\psi, \Delta \psi] = \frac{s}{2}|\Delta \psi|^2 + f_L[\psi(s)]$, or in full:

$$f_{GL}[\psi, \Delta \psi, h] = \frac{s}{2} (\Delta \psi)^2 + \frac{r}{2} \psi^2 + \frac{u}{4} \psi^4 - h\psi$$
 (I.7)

GL theory is only valid near critical point, where OP is small enough to permit leading-order expansion.

What is the h here?

length scale/correlation length

1.3.4 Ginzburg-Landau theory II: complex order and superflow

Now: G-L theory of complex or two-component order parameters, so superfluids and superconductors. Heart of discussion: emergence of a 'macroscopic wavefunction', where the microscopic field operators $\psi(x)$ acquire an expectation value:

$$\langle \psi(x) \rangle = \psi(x) = |\psi(x)| e^{i\theta(x)}$$
 (I.8)

What exactly are field operators again?

Magnitude determines density of particles in the superfluid:

$$|\psi(x)|^2 = n_s(x) \tag{I.9}$$

More info on the

Does that come later in chapter

Twist/gradient of phase determines superfluid velocity:

$$\mathbf{v}_s(x) = \frac{\hbar}{m} \Delta \phi(x) \tag{I.10}$$

We will derive this later in the chapter. Counterintuitive from quantum mechanics: GL suggested that $\Phi(x)$ is a macroscopic manifestation of a macroscopic number of particles condensed into precisely the same quantum state. Emergent phenomenon, collective properties of mater not a-priori self-evident from microscopic physics.

GL free energy density for superfluid (with one added term in comparison to Landau energy):

$$f_{GL}[\psi, \Delta \psi] = \frac{\hbar^2}{2m} |\Delta \psi|^2 + r|\psi|^2 + \frac{u}{2}|\psi|^4$$
 (I.11)

Interpreted as energy density of a condensate of bosons in which the field operator behaves as a complex order parameter. Gives interpretation of gradient term as kinetic energy:

$$s|\Delta\psi|^2 = \frac{\hbar^2}{2m} \langle \Delta\hat{\psi}^{\dagger} \Delta\hat{\psi} \rangle \implies s = \frac{\hbar^2}{2m}$$
 (I.12)

As in Ising order: correlation length/GL-coherence length governs characteristic range of amplitude fluctuations of the order parameter:

$$\xi = \sqrt{\frac{s}{|r|}} = \sqrt{\frac{\hbar^2}{2m|r|}} = \xi_0 (1 - \frac{T}{T_C})^{-\frac{1}{2}}$$
 (I.13)

where $\xi_0 = \xi(T=0) = \sqrt{\frac{\hbar^2}{2maT_C}}$ is the coherence length. Beyond this length: only phase fluctuations survive. Freeze out fluctuations in amplitude (no x-dependence in amplitude) $\psi(x) = \sqrt{n_s}e^{\mathrm{i}\phi(x)}$, then $\Delta\psi = \mathrm{i}\Delta\phi\psi$ and $|\Delta\psi|^2 = n_s(\Delta\phi)^2$, dependency of kinetic energy on the phase twist is (bringing it into the form $\frac{m}{2}v^2$):

$$\frac{\hbar^2 n_s}{2m} (\Delta \phi)^2 = \frac{m n_s}{2} (\frac{\hbar}{m} \Delta \phi)^2 \tag{I.14}$$

energy density of bosonic field? -> for comparison!

Compare with Ising order, especially dependence on T

Compare with Ising order. Is that derived or postulated?

So twist of phase results in increase in kinetic energy, associated with a superfluid velocity:

$$\mathbf{v}_s = \frac{\hbar}{m} \Delta \phi \tag{I.15}$$

Phase rigidity and superflow: in GL theory, energy is sensitive to a twist of the phase. Substitute $\psi = |\psi|e^{\mathrm{i}\phi}$ into GL free energy, gradient term is:

$$\Delta \psi = () \tag{I.16}$$

1.3.5 Ginzburg-Landau theory III: charged fields

Coherent states/Interpretation of states/Off-diagonal long-range order

Here: particlecurrent operator, especially for coherent state, connection with phase twist

Here: Meissner effect, etc