determine where something is on the evolution curve until it has become a commodity, at which point we can determine where it was in the past. Hence, we are forced to rely on a cheat sheet based upon changing characteristics (chapter 2) along with weak signal analysis to estimate where something is.

There is unfortunately, no crystal ball to the future and we have to embrace a degree of uncertainty until it reaches the point of stability and becomes certain. Since we must rely on changing characteristics and weak signals (if available) to determine where something is on a map then a current map is developed from the consensus of those involved. This can be manipulated or influenced by existing bias hence it is important to not only be transparent with the maps but allow for challenge to them. The maps are imperfect representations of what exists and the axis do constrain a view of the world based upon the anchor (user need), the value chain (position) and evolution (movement). The mapper must accept that the maps are not real any more than a geographical map is real. The question however is not whether it is real but whether it is useful.

As evolution deals with the change to the act itself, it does not care whether some specific change is incremental or disruptive to the past. A company may produce a better product (e.g. a better cable excavator) or instead a product may be substituted by another (e.g. cable vs. hydraulic excavators) but the act of "digging holes" doesn't change. Instead we simply have a more evolved way of doing this. Today, the evolution of computing infrastructure from product to