UNIVERSITATEA BABEȘ-BOLYAI FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ

CONCURS MATE-INFO aprilie 2016 INFORMATICĂ VARIANTA II

În atenția concurenților:

- 1. Rezolvările se vor scrie în pseudocod sau într-un limbaj de programare (Pascal/C/C++).
- **2.** Primul criteriu în evaluarea rezolvărilor va fi *corectitudinea* algoritmului, iar apoi *performanța* din punct de vedere al *timpului de executare* si al *spațiului de memorie utilizat*.
- **3.** Este necesară folosirea *comentariilor* pentru a ușura înțelegerea rezolvării date (se va explica semnificația identificatorilor și se vor descrie *ideile principale pe care se bazează rezolvarea*).
- **4.** Nu se vor folosi funcții sau biblioteci predefinite (de exemplu: *STL*, funcții predefinite pe șiruri de caractere etc.).

Subjectul I (50 puncte)

1. Triunghiul lui Pascal (20 puncte)

Triunghiul lui Pascal este un triunghi isoscel cu mai multe linii orizontale formate din numere naturale astfel: laturile egale conțin doar cifra 1, iar fiecare număr de pe o linie n reprezintă suma celor două numere vecine de pe linia superioară n-1, pentru n>1. Liniile sunt numerotate de sus în jos începând de la 0, ca în figura alăturată:

Scrieți un subalgoritm care generează numerele aflate pe linia r ($2 \le r \le 32$), fără a folosi structuri de date bidimensionale. Parametrul de intrare este numărul natural r, iar parametrul de ieșire va fi șirul numerelor de pe linia r.

2. Virusi (10 puncte)

În cadrul unui experiment, o populație de n ($3 \le n \le 1000$) viruși poate evolua astfel:

- **a.** dacă la începutul unei ore populația este formată dintr-un număr *par* de viruși, atunci la sfârșitul orei populația va fi mai mică cu 50%;
- **b.** dacă la începutul unei ore populația este formată dintr-un număr *impar* de viruși, atunci la sfârșitul orei populația de viruși va crește cu 1 virus;
- c. dacă la sfârșitul unei ore populația este formată dintr-un număr de viruși *strict mai mic decât un număr critic de supraviețuire*, atunci populația dispare.

Scrieți un subalgoritm care determină numărul de ore, notat nrOre, necesar distrugerii unei populații inițiale de n viruși, cunoscând numărul critic de supraviețuire k $(2 \le k < n)$. Parametrii de intrare sunt n și k, iar nrOre va fi parametru de ieșire.

Exemplu: dacă n = 11 și k = 3, populația se distruge în nrOre = 5.

3. Produs maxim (20 puncte)

Se consideră un şir x cu n ($3 \le n \le 10000$) elemente numere întregi mai mari decât -30000 şi mai mici decât 30000.

Scrieți un subalgoritm care determină trei elemente din șirul x al căror produs este maxim. Parametrii de intrare ai subalgoritmului sunt n și x, iar cei de ieșire vor fi a, b și c, reprezentând trei elemente din șirul x, având proprietatea cerută. Dacă problema are mai multe solutii, determinati una singură.

Exemplu: dacă n = 10 și a = (3, -5, 0, 5, 2, -1, 0, 1, 6, 8), cele trei numere sunt: <math>a = 5, b = 6, c = 8.

Subjectul II (15 puncte)

Se dă următorul subalgoritm, unde parametrul de intrare este numărul natural a ($0 < a \le 30\,000$):

```
Subalgoritm F(a):

b ← 0

p ← 1

CâtTimp a > 0 execută

c ← a mod 10 { mod calculează restul împărțirii întregi a lui a la 10 }

Dacă c mod 2 ≠ 0 atunci

b ← b + p * c

p ← p * 10

SfDacă

a ← a div 10 { div calculează câtul împărțirii întregi a lui a la 10 }

SfCâtTimp

returnează b

SfAlgoritm
```

- a. Enunțați problema pe care o rezolvă subalgoritmul dat.
- b. Ce valoare returnează apelul F (2103)?
- c. Scrieți o variantă recursivă a subalgoritmului, respectând antetul subalgoritmului din varianta iterativă.

Subjectul III (25 puncte)

Un șir de numere naturale se numește *palindrom* dacă se citește la fel de la stânga la dreapta și de la dreapta la stânga. De exemplu, șirul (1, 2, 3, 2, 1) este *palindrom*, iar șirul (1, 2, 3, 2, 4) nu este *palindrom*. Un șir de numere naturale se numește *palindrom ciclic* dacă se transformă în *palindrom* printr-o serie de permutări ciclice ale elementelor sale. O permutare ciclică a elementelor șirului reprezintă deplasarea lor cu o poziție spre stânga (cu excepția primului element, care trece pe ultima poziție).

Scrieți un program care decide dacă un șir a, având n ($1 \le n \le 1000$) elemente numere naturale este un palindrom ciclic sau nu, și afișează un mesaj corespunzător (Da/Nu). În caz afirmativ, programul va determina numărul de permutări ciclice care transformă șirul dat în palindrom.

Exemple:

- $\operatorname{sirul} a = (1, 1, 2, 2)$ se transformă în palindromul (1, 2, 2, 1) printr-o singură permutare ciclică.
- şirul a = (3, 4, 3, 2, 1, 1, 2) se transformă în palindrom prin cinci permutări ciclice astfel: (4, 3, 2, 1, 1, 2, 3); (3, 2, 1, 1, 2, 3, 4); (2, 1, 1, 2, 3, 4, 3); (1, 1, 2, 3, 4, 3, 2); (1, 2, 3, 4, 3, 2, 1).
- sirul a = (1, 2, 3) nu se poate transforma în palindrom prin permutări ciclice.

Scrieți subprograme pentru:

- a. citirea șirului a de la tastatură;
- **b.** afișarea pe ecran a mesajului *Da/Nu*; în caz afirmativ, afișarea numărului de permutări ciclice necesare;
- c. verificarea proprietății de palindrom;
- **d.** determinarea numărului de permutări ciclice necesare.

Notă:

- 1. Toate subiectele sunt obligatorii.
- 2. Rezolvările trebuie scrise detaliat pe foile de examen (ciornele nu se iau în considerare).
- 3. Se acordă 10 puncte din oficiu.
- **4.** Timpul efectiv de lucru este de 3 ore.