Ejercicio 16

Calcular el acortamiento de los tensores (Δt) situado en las barras FG y HI para que el desplazamiento vertical del nudo central C sea nulo, mediante el método de la flexibilidad (trabajos virtuales).

Solución

Se resuelve la estructura hiperestática del caso real. Para ello, se deben caracterizar tres incógnitas hiperestáticas. En este caso, los axiles de las barras FG y HI y la reacción horizontal en el apoyo E:

$$GH=(B+R)-2N=(13+8)-2.9=3$$

Por simetría de geometría y de carga se calculan las reacciones en los apoyos:

Scanned with CamScanner

Por simplicidad en la resolución se considera una carga genérica P

$$\begin{array}{c}
X \\
N_{GH} \\
N_{AG} \\
N_{BG} \\
N_{GC}
\end{array}
\begin{array}{c}
N_{GH} + N_{GC} \frac{\sqrt{2}}{2} - N_{AG} \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} X = 0 \\
N_{AG} \frac{\sqrt{2}}{2} - N_{AG} \frac{\sqrt{2}}{2} - N_{GC} \frac{\sqrt{2}}{2} = 0
\end{array}$$

$$\begin{array}{c}
N_{GC} = \frac{\sqrt{2}}{2} P \\
N_{GH} = X \sqrt{2} - P
\end{array}$$

Se resuelven los casos virtuales para obtener las incógnitas hiperestáticas X e Y y la condición de diseño (desplazamiento vertical nulo del nudo C).

SV1: Incógnita hiperestática X. Equivalente al sistema isostático equivalente con X=1. Y=P=0.

SV2: Incógnita hiperestática Y. Equivalente al sistema isostático equivalente con Y=1. X=P=0.

SV3: Condición de diseño. Equivalente al sistema isostático equivalente con P=1. X=Y=0.

Se construye la tabla con los valores virtuales y reales para aplicar el PTV:

Barra	LONGITUD	N^R	ΔL ^R (long. real)
AB y DE	1	$P/2 - \frac{\sqrt{2}X}{2} - Y$	$(P/2 - \frac{\sqrt{2}x}{2} - Y)/EA$
BC y CD	1	$P/2-\frac{\sqrt{2}X}{2}-Y$	$(P/2 - \frac{\sqrt{2}x}{2} - Y)/EA$
AG y HE	$\sqrt{2}$	$X - \frac{\sqrt{2}P}{2}$	(X√2-P)/EA
BG y DH	1	0	0
CG y CH	$\sqrt{2}$	$\frac{\sqrt{2}P}{2}$	P/EA
GH	2	X√2-P	(2√2X-2P)/EA

N ^{SV1} (X=1;P=Y=0)	N ^{SV2 (Y=1;P=X=0)}	N ^{SV3} (P=1;X=Y=0)	
-0.707	-1 Figure Y Equivals	0.5	
-0.707	-1	0.5	
1 3/2/	0	-0.707	
0	0	0	
0	- 0	0.707	
1.4142	0	-1	

Considero el SV1 y aplico la condición de comportamiento de las barras FG y HI, cuyo alargamiento es debido al axil X y al acortamiento del tensor :

$$\sum_{N} F^{V} . \delta^{R} = \sum_{R} N^{V} \Delta L^{R}$$

$$1.\delta^{G} + 1.\delta^{H} = 2 \cdot \left((-0.707) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} + (-0.707) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} + (1) \cdot \frac{(X\sqrt{2} - P)}{EA} \right) + (1.4142) \cdot \frac{(2\sqrt{2}X - 2P)}{EA}$$

 δ^G y δ^H son desplazamientos en dirección de las barras:

$$\delta^{G} = -\Delta L_{GF} = -\left(\frac{XL_{GF}}{EA} - \Delta t\right); \delta^{H} = -\Delta L_{HI} = -\left(\frac{XL_{HI}}{EA} - \Delta t\right)$$

Considero el SV2 y aplico la condición de comportamiento del apoyo, en la cual el desplazamiento horizontal del nudo E es nulo:

$$\sum_{N} F^{V} \cdot \mathcal{S}^{R} = \sum_{B} N^{V} \Delta L^{R}$$

$$1.\delta_{X}^{D} = 2 \cdot \left((-1) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} + (-1) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} \right)$$

$$1.0 = 2 \cdot \left((-1) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} + (-1) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} \right)$$

$$0 = P - \sqrt{2}X - 2Y$$

Considero el SV3 y aplico la condición de diseño, en la cual el desplazamiento vertical del nudo C es nulo:

$$\sum_{N} F^{V} . \delta^{R} = \sum_{B} N^{V} \Delta L^{R}$$

$$1.\delta_{Y}^{C} = 2 \left[(0.5) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} + (0.5) \cdot \frac{(\frac{P}{2} - \frac{\sqrt{2}X}{2} - Y)}{EA} + (-0.707) \cdot \frac{(X\sqrt{2} - P)}{EA} + (0.707) \cdot \frac{P}{EA} \right] + (-1) \cdot \frac{(2\sqrt{2}X - 2P)}{EA}$$

Aplicando la condición de diseño:

$$\delta_{\nu}^{C} = 0$$
 \Longrightarrow $0 = (3 + 2\sqrt{2})P - (2 + 3\sqrt{2})X - 2Y$

Resolviendo el sistema de ecuaciones obtenidos de los tres sistemas virtuales se obtiene:

$$X = P = 10N$$

$$Y = \frac{P}{2} - \frac{\sqrt{2}X}{2} = -2.071N$$

$$\Delta t = \frac{\left(2 + 2\sqrt{2}\right)X}{EA} - \frac{\left(1 + \sqrt{2}\right)P}{EA} = \frac{\left(1 + \sqrt{2}\right)P}{EA}$$

Considerando la estructura formada por barras de acero de sección circular llena de 5mm de radio:

$$\Delta t = \frac{\left(1 + \sqrt{2}\right)10}{2.1e^{11}7.854e^{-5}} = 1.4637e^{-6}m$$

Scanned with CamScanner