```
DA Assignment 4
```

Problem Statement : Abalone Age Prediction

Building a Regression Model

Student Name: PRIYADHARSHINI K

Roll Number: 510119205012

```
# Load the Dataset
```

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

data=pd.read_csv("/content/drive/MyDrive/abalone.csv")

data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15

data.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176

Data columns (total 9 columns):

Data	corumns (cocar	o corumns).	
#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64

```
dtypes: float64(7), int64(1), object(1)
     memory usage: 293.8+ KB
#Univariate Analysis
plt.boxplot(data['Rings'])
     {'whiskers': [<matplotlib.lines.Line2D at 0x7f453e0bac90>,
       <matplotlib.lines.Line2D at 0x7f453e0c4210>],
      'caps': [<matplotlib.lines.Line2D at 0x7f453e0c4750>,
       <matplotlib.lines.Line2D at 0x7f453e0c4c90>],
      'boxes': [<matplotlib.lines.Line2D at 0x7f453e0ba6d0>],
      'medians': [<matplotlib.lines.Line2D at 0x7f453e0cc250>],
      'fliers': [<matplotlib.lines.Line2D at 0x7f453e120c10>],
      'means': []}
      30
      25
      20
      15
      10
       5
```

```
df=pd.DataFrame(data)
X=list(df.iloc[:,0])
Y=list(df.iloc[:,1])
plt.bar(X,Y,color='g')
```


#Bivariate Analysis

plt.bar(data['Diameter'],data['Viscera weight'],color='r')

<BarContainer object of 4177 artists>

plt.scatter(data['Height'],data['Shell weight'],color='b')

<matplotlib.collections.PathCollection at 0x7f4537dc8e50>

Multivariate Analysis

sns.catplot(data=data,x="Height",y="Shucked weight",hue="Sex")

<seaborn.axisgrid.FacetGrid at 0x7f4537bbe2d0>

sns.catplot(data=data,x="Whole weight",y="Shell weight",hue="Sex",kind="box")

<seaborn.axisgrid.FacetGrid at 0x7f4538a19ed0>

Perform Descriptive Statistics on the Dataset

data.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct """Entry point for launching an IPython kernel.

Length 0.523992
Diameter 0.407881
Height 0.139516
Whole weight 0.828742
Shucked weight 0.359367
Viscera weight 0.180594

Shell weight 0.238831 Rings 9.933684

dtype: float64

4

data.median()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reduct """Entry point for launching an IPython kernel.

Length 0.5450 Diameter 0.4250 Height 0.1400 Whole weight 0.7995 Shucked weight 0.3360 Viscera weight 0.1710 Shell weight 0.2340 Rings 9.0000

dtype: float64

 \blacktriangleleft

data.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

```
data.shape
     (4177, 9)
# Handling the Missing Values
data.isna().sum()
     Sex
                       0
     Length
     Diameter
                       0
     Height
                       0
     Whole weight
                       0
     Shucked weight
                       0
     Viscera weight
     Shell weight
                       0
     Rings
                       0
     dtype: int64
# Find the Outliers and Replace the Outliers
```

sns.boxplot(data['Height'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f4539b0ddd0>

qnt=data.quantile(q=[0.25,0.75])
qnt

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	8.0
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	11.0

Height

IQR=qnt.loc[0.75] - qnt.loc[0.25]
IQR

Length	0.1650
Diameter	0.1300
Height	0.0500
Whole weight	0.7115
Shucked weight	0.3160
Viscera weight	0.1595
Shell weight	0.1990
Rings	3.0000
dtype: float64	

upper_extreme=qnt.loc[0.75]+1.5*IQR
upper_extreme

Length	0.86250
Diameter	0.67500
Height	0.24000
Whole weight	2.22025
Shucked weight	0.97600

```
Viscera weight
                       0.49225
     Shell weight
                       0.62750
     Rings
                      15.50000
     dtype: float64
lower_extreme=qnt.loc[0.25]-1.5*IQR
lower_extreme
     Length
                      0.20250
     Diameter
                      0.15500
     Height
                    0.04000
     Whole weight
                     -0.62575
     Shucked weight -0.28800
     Viscera weight -0.14575
     Shell weight
                     -0.16850
     Rings
                      3.50000
     dtype: float64
df=data[(data['Height']<upper_extreme['Height'])&(data['Height']>lower_extreme['Height'])]
data.shape
     (4177, 9)
df.shape
     (4148, 9)
sns.boxplot(df['Height'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: FutureWarning <matplotlib.axes. subplots.AxesSubplot at 0x7f453932c750>

Check for Categorical Columns and Perform Encoding from sklearn.preprocessing import LabelEncoder

Height

le=LabelEncoder()
df['Sex']=le.fit_transform(df['Sex'])

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve

4

df.head()

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings			
	0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15			
# Split the Data into Dependent and Independent Variables													
	2	Λ	0.530	N 42N	0 135	ი 6770	0 2565	0 1415	N 21N	9			
<pre>y=df['Rings'] x=df.drop(columns=['Rings'],axis=1)</pre>													
	4	1	U.33U	0.∠ວວ	U.UOU	U.ZUOU	บ.บ๐ษอ	บ.บวชอ	ບ.ບວວ	1			
x.hea	d()												

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055

Scale the Independent Variables

from sklearn.preprocessing import scale

names = x.columns
names

```
x=scale(x)
x
```

x=pd.DataFrame(x,columns=[names])

x.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	1.148697	-0.602629	-0.455911	-1.194353	-0.653289	-0.618277	-0.738398	-0.649152
1	1.148697	-1.497391	-1.485933	-1.327737	-1.246310	-1.185892	-1.221522	-1.228140
2	-1.278606	0.036486	0.110601	-0.127275	-0.318237	-0.472968	-0.365702	-0.214910
3	1.148697	-0.730452	-0.455911	-0.394044	-0.649178	-0.659146	-0.618767	-0.612965
4	-0.064954	-1.667821	-1.588935	-1.594507	-1.288449	-1.231301	-1.304344	-1.336701

Split the data into training and testing

from sklearn.model_selection import train_test_split

```
df.iloc[:,:-1]
df.iloc[:,-1]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.05,random_state=0)
```

x_train

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
531	-0.064954	-0.048730	-0.043903	0.006110	-0.522763	-0.729530	-0.333494	-0.439268
2973	-1.278606	0.846031	0.831616	-0.794199	0.625252	0.753079	0.094416	0.382172
528	-1.278606	-0.773060	-0.764918	-0.794199	-0.928730	-0.868028	-0.876434	-0.938646
2062	-1.278606	0.803424	0.831616	0.539649	0.460809	0.600959	0.577541	0.237425
991	-1.278606	0.590385	0.419607	0.272879	0.580030	1.025534	0.361285	0.074584
1033	-1.278606	1.272108	1.604132	1.473342	2.067208	1.833818	1.658819	2.267504
3264	1.148697	0.079093	0.110601	0.539649	-0.229849	-0.388961	-0.158649	-0.106350
1653	-1.278606	0.675601	0.986119	1.073187	1.237801	1.670345	0.761588	1.384546
2607	-0.064954	-1.454783	-1.279928	-1.194353	-1.242199	-1.204056	-1.230725	-1.217284
2732	-0.064954	-0.006122	-0.095404	-0.260660	-0.385042	-0.071097	-0.485333	-0.287284

3940 rows × 8 columns

x_test

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
825	-0.064954	-0.687845	-0.867920	-1.060968	-0.932842	-0.822619	-0.747600	-1.090630
4077	-1.278606	1.655577	1.861637	1.740111	1.886321	1.883768	2.220164	1.739177
971	-1.278606	0.206916	0.368106	0.406264	0.326172	0.832546	-0.029816	-0.157011
1499	1.148697	1.059070	0.780115	0.006110	0.705418	0.519222	0.572940	-0.178723
3176	-1.278606	-1.199137	-1.125425	-1.060968	-1.149700	-1.131401	-1.143302	-1.155767
1927	1.148697	0.888639	0.831616	0.406264	0.864722	1.223064	0.595945	0.356841
2052	1.148697	0.206916	0.007599	-0.260660	0.079508	0.385265	0.278464	-0.193198
3169	-1.278606	0.718208	0.625611	0.539649	0.380644	0.296717	0.407297	0.581199

y_train

Name: Rings, Length: 3940, dtype: int64

y_test

834 7 4106 11 980 9

```
11/3/22, 11:12 PM
                                                                 Assignment 4(updated).ipynb - Colaboratory
         1513
                  8
         3201
                  6
         1942
                  9
         2069
                  9
         3194
                 12
                  8
         998
         604
                 12
        Name: Rings, Length: 208, dtype: int64
   # Build the Model
   from sklearn.linear_model import LinearRegression
   lin_reg=LinearRegression()
   # Train the Model
   lin_reg.fit(x,y)
         /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:1692: FutureWarning: Feature names only support names that a
           FutureWarning,
         LinearRegression()
   # Test the Model
   lin_reg.predict(x)
         /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:1692: FutureWarning: Feature names only support names that a
           FutureWarning,
         array([ 8.50595288, 7.31132061, 10.72922803, ..., 11.51826065,
                 9.37712194, 11.10957517])
```

predict=lin_reg.predict(x) predict

```
sns.scatterplot(df['Diameter'],df['Rings'],color='red')
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f4532dd79d0>


```
def viz_linear():
    sns.scatter(x,y,color='red')
    sns.plot(x,prediction,color='blue')
    viz_linear()

from sklearn.preprocessing import PolynomialFeatures
poly_reg=PolynomialFeatures(degree=2)
x_poly=poly_reg.fit_transform(x)
x_poly
```

```
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:1692: FutureWarning: Feature names only support names that a
 FutureWarning,
/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:1692: FutureWarning: Feature names only support names that a
  FutureWarning,
             , 1.1486969 , -0.60262947, ..., 0.54523172,
array([[ 1.
        0.47933228, 0.42139778],
             , 1.1486969 , -1.49739064, ..., 1.49211715,
      [ 1.
        1.50020089, 1.50832843],
                , -1.27860557, 0.03648565, ..., 0.13373804,
        0.07859308, 0.04618635],
            , 1.1486969 , 0.63299309, ..., 0.95617853,
      [ 1.
        0.48339806, 0.2443829 ],
             , -1.27860557, 0.84603146, ..., 0.53872815,
        0.29909925, 0.16605844],
             , 1.1486969 , 1.57036193, ..., 3.2286868 ,
      [ 1.
        3.32011482, 3.41413183]])
```

```
pol_reg=LinearRegression()
pol_reg.fit(x_poly,y)
prediction=pol_reg.predict(x_poly)
```

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

[#] Performance using Evaluation Metrics.

```
from sklearn import metrics
from sklearn.metrics import mean_squared_error
metrics.r2 score(y,prediction)
     0.5790843515069326
np.sqrt(mean_squared_error(y,prediction))
     2.077178028336633
metrics.r2_score(y,prediction)
     0.5790843515069326
np.sqrt(mean_squared_error(y,prediction))
     2.077178028336633
print('R_squared:',metrics.r2_score(y,prediction))
print('MSE:',mean_squared_error(y,prediction))
print('RMSE:',np.sqrt(mean_squared_error(y,prediction)))
     R_squared: 0.5790843515069326
     MSE: 4.314668561404462
     RMSE: 2.077178028336633
```

Colab paid products - Cancel contracts here

✓ 0s completed at 11:10 PM

• ×