# 2435. Paths in Matrix Whose Sum Is Divisible by K

# Description

You are given a **0-indexed** [m x n] integer matrix [grid] and an integer [k]. You are currently at position [(0, 0)] and you want to reach position [(m - 1, n - 1)] moving only **down** or **right**.

Return the number of paths where the sum of the elements on the path is divisible by k. Since the answer may be very large, return it modulo 109 + 7.

### Example 1:

| 5 | 2 | 4 | 5 | 2 | 4 |
|---|---|---|---|---|---|
| 3 | 0 | 5 | 3 | 0 | 5 |
| 0 | 7 | 2 | 0 | 7 | 2 |

```
Input: grid = [[5,2,4],[3,0,5],[0,7,2]], k = 3
Output: 2
Explanation: There are two paths where the sum of the elements on the path is divisible by k.
The first path highlighted in red has a sum of 5 + 2 + 4 + 5 + 2 = 18 which is divisible by 3.
The second path highlighted in blue has a sum of 5 + 3 + 0 + 5 + 2 = 15 which is divisible by 3.
```

#### Example 2:



```
Input: grid = [[0,0]], k = 5

Output: 1

Explanation: The path highlighted in red has a sum of 0 + 0 = 0 which is divisible by 5.
```

## Example 3:



```
Input: grid = [[7,3,4,9],[2,3,6,2],[2,3,7,0]], k = 1
Output: 10
Explanation: Every integer is divisible by 1 so the sum of the elements on every possible path is divisible by k.
```

# **Constraints:**

- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 5 \* 10  $^4$
- 1 <= m \* n <= 5 \* 10 <sup>4</sup>
- 0 <= grid[i][j] <= 100
- 1 <= k <= 50