<u>NOM</u> : <u>PRENOM</u> :

Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

On rappelle que, sauf si mentionné explicitement dans le sujet, la notation $E_A(M)$ correspond à la norme du champ $\overrightarrow{E_A}(M)$. Par contre, les angles utilisés sont des angles orientés.

On utilisera par la suite la constante $k = \frac{1}{4\pi\epsilon}$.

OCM (4 points-pas de points négatifs) Entourer la bonne réponse,

1- Le champ électrique, créé par une charge ponctuelle q placée au point O, en un point M s'écrit comme:

a)
$$\vec{E}(M) = k \frac{q}{oM^2} \overrightarrow{OM}$$
 b) $\vec{E}(M) = k \frac{q}{oM^3} \overrightarrow{OM}$ c) $\vec{E}(M) = k \frac{q}{oM} \overrightarrow{OM}$

b)
$$\vec{E}(M) = k \frac{q}{QM^3} \overrightarrow{OM}$$

c)
$$\vec{E}(M) = k \frac{q}{OM} \overrightarrow{OM}$$

2- On s'intéresse à la force électrostatique $\vec{F}_{1 \rightarrow 2}$ qu'une charge q_1 située en A exerce sur une charge q_2 située en B. La norme de cette force est donnée par :

a)
$$F_{1\to 2} = k \frac{q_1 q_2}{AB}$$

b)
$$F_{1\to 2} = k \frac{|q_1||q_2|}{AB}$$

b)
$$F_{1\to 2} = k \frac{|q_1||q_2|}{AB}$$
 c) $F_{1\to 2} = k \frac{|q_1||q_2|}{AB^2}$

3- La force électrostatique est une force :

a) Toujours attractive

b) Toujours répulsive

c) Toujours conservative

4- Quelle propriété vérifie le champ électrostatique \vec{E} associé au potentiel V?

a)
$$\vec{E} = -\overrightarrow{grad}(V)$$

b)
$$\vec{E} = \overrightarrow{grad}(V)$$

c)
$$V = \overrightarrow{grad}(\vec{E})$$

5- On considère une distribution surfacique de charge σ . Un élément infinitésimal de surface dS situé dans un voisinage de P crée en un point M, où se trouve une charge q, une force élémentaire \overrightarrow{dF} d'expression :

a)
$$\overrightarrow{dF} = kq \frac{\sigma dS}{PM} \overrightarrow{PM}$$

b)
$$\overrightarrow{dF} = kq \frac{\sigma dS}{PM^3} \overrightarrow{PM}$$
 c) $\overrightarrow{dF} = kq \frac{\sigma dS}{PM^2} \overrightarrow{PM}$

c)
$$\overrightarrow{dF} = kq \frac{\sigma dS}{PM^2} \overline{PM}$$

6- On considère une distribution surfacique de charge σ positive répartie de façon uniforme sur un cylindre d'axe (Oz), de rayon R et de hauteur h. Quel élément infinitésimal de surface dS n'est pas pertinent dans cette géométrie?

a)
$$dS = rdrd\theta$$

b)
$$dS = dxdy$$

c)
$$dS = rd\theta dz$$

7- On regarde le cas limite d'un cylindre infini d'axe (Oz) (de vecteur unitaire $\overline{u_z}$) et chargé positivement en surface et uniformément. On s'intéresse au champ électrique $\vec{E}(M)$, où M est situé sur l'axe (Oz). Que peut-on dire ?

a)
$$\vec{E}(M) = \vec{0}$$

b)
$$\vec{E}(M)$$
. $\overrightarrow{u_z} > 0$

c)
$$\vec{E}(M)$$
 est divergent.

8- De nouveau avec le cylindre fini de la question 6, en un point M extérieur au cylindre les composantes cylindriques $(E_{\rho}, E_{\theta}, E_{z})$ du champ électrostatique vérifie :

a)
$$E_{\rho} = 0$$

b)
$$E_{\theta} = 0$$

c)
$$E_z = 0$$

Exercice 1

On étudie la distribution de charges suivantes (q > 0), formant un hexagone régulier de côté a et de centre 0.

1- a) Exprimer les champs électrostatiques $\vec{E}_A(O)$, $\vec{E}_C(O)$, $\vec{E}_E(O)$ créés en O par les charges respectivement en A, C et E. Les représenter sur la figure ci-dessus.

b) Calculer la norme du champ électrostatique total généré par ces trois charges au point O.

EFITA / 53	Octobre 2019
2- a) On place une charge $Q < 0$ au point O. Après avoir représenté la force, C et E sur la charge Q , exprimer la norme de cette force.	ce générée par les charges en
b) Exprimer le potentiel électrostatique $V(O)$ créé en O par les charges	placées en B, D et F.

 	1112	 Amu

Exercice 2

On considère une distribution surfacique de charges σ uniformément répartie sur une couronne de rayon r, de largeur dr et de centre O. Le point M est sur l'axe (Oz).

1- Donner l'exp	pression du cr	namp electrosta	tique elementair	$e a E_P(M)$	cree e	n M	par	une	cnarge
élémentaire surf	acique dQ de	centre P.					_		

3- On souhaite déterminer le champ électrostatique $\vec{E}(M)$ créé en M par un disque de rayon R, de centre O et d'axe (Oz). En utilisant la question 2, retrouver l'expression de $\vec{E}(M) = 2\pi k\sigma z \left(\frac{1}{|z|} - \frac{1}{\sqrt{(R^2+z^2)}}\right) \cdot \vec{u_z}$ puis sa norme.

EPITA / S ₃	Octobre 2018
4- En utilisant les symétries de la distribution de cha	rges, commenter la limite $R \to \infty$ (plan infini).

Exercice 3

Soit le po suivante V	otentiel élect $f(x, y, z) = k$	rostatique V $\frac{q}{\sqrt{x^2+y^2+z^2}}$	(x,y,z) do	onné en c	oordonnées	cartésiennes	par l'exp	ression
	er le champ él	¥	, y, z) dériva	ant de ce p	otentiel dans	s la base $(\overrightarrow{u_x},$	$\overrightarrow{u_y}, \overrightarrow{u_z}$).	
<u> </u>								
I								
							3.84	