Introduction

Peter Hoff Duke STA 610

Subpopulation inferences

Population inferences

Cross-level inferences

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called hierarchical data or clustered data.

Examples:

Educational testing: students nested within classes;

Small area estimation: households nested within counties;

Agricultural experiments: subplots nested within whole plots;

Clinical trials: measurements nested within patients, patients within hospitals.

observational unit: an object or condition for which data are measured.

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

- The population: all possible units from all possible groups:

observational unit: an object or condition for which data are measured. macro-level unit: a unit within which other units are nested.

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

- The population: all possible units from all possible groups:

observational unit: an object or condition for which data are measured. macro-level unit: a unit within which other units are nested. micro-level unit: a unit nested within another unit.

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

- The population: all possible units from all possible groups:

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

Multilevel data

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say units are nested within groups.

- The population: all possible units from all possible groups:

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say units are nested within groups.

Notation: $y_{i,j} = \text{measurement of } i \text{th unit in } j \text{th group.}$

- The population: all possible units from all possible groups:

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say units are nested within groups.

Notation: $y_{i,j} = \text{measurement of } i \text{th unit in } j \text{th group.}$

Populations:

- The population: all possible units from all possible groups;
- A subpopulation: all possible units from a single group group.

Types of multilevel inference

Subpopulation inferences: Group-specific features are of primary interest.

- What is the mean within each group, based on a sample from each group?
- What is the treatment effect for each group?
- Do the groups differ? If so, how do they differ?

Population inferences: Across-group averages are of primary interest.

- What is the population mean, based on cluster sample?
- What is the population treatment effect?

Cross-level inferences: Both types of features are important.

What is the average treatment effect, adjusting for group differences?

Example: Educational testing data

Exercise: Identify the populations and subpopulations.

Example: Environmental monitoring data

Exercise: Identify the populations and subpopulations.

Group-specific inferences

Targets of inference: Subpopulation means $\theta_1, \ldots, \theta_p$.

Data: Subpopulation samples $\{y_{1,1},\ldots,y_{1,n_1}\},\ldots,\{y_{1,p},\ldots,y_{1,n_n}\}.$

Statistical methods:

- Variance tests and estimation: What is $Var[\theta_1, \dots, \theta_p]$? Is it zero?
- Estimates of θ_i : $\hat{\theta}_i = \bar{y}_{ij}$ or $\hat{\theta}_i = w\bar{y}_{ij} + (1-w)\bar{y}_{ij}$;
- Confidence intervals: $Pr(\theta_i \in C(\mathbf{y})|\theta_i) = 1 \alpha$, or $Pr(\theta^* \in C(\mathbf{y})) = 1 \alpha$;

Cluster sampling

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

Cluster sampling

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Task: Estimate the population mean μ from sample data.

- How do cluster sampling and SRS compare?
- How do you infer μ from cluster sample data?

Estimation of a population mean

Task: Estimate the population mean μ from sample data.

Questions:

- How do cluster sampling and SRS compare?
- How do you infer μ from cluster sample data?

 μ =2.0494009 , \bar{y} =2.3547727

 μ =2.0494009 , \bar{y} =1.896463

Variability of sample mean

 μ =2.0494009 , \bar{y} =2.1696295

 μ =2.0494009 , \bar{y} =1.9804926

Variability of sample mean

Comparison of sampling variability

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity ⇔ within-group correlation or dependence

$$\mathsf{Var}[ar{y}_{tss}] \geq \mathsf{Var}[ar{y}_{srs}]$$

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity ⇔ within-group correlation or dependence

Across-group heterogeneity increases the variance of the sample mean, and so

$$\mathsf{Var}[\bar{y}_{tss}] \ge \mathsf{Var}[\bar{y}_{srs}]$$

if the total samples sizes are the same.

Task: Construct a 95% CI for the population mean.

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n$$

$$\bar{y} \stackrel{.}{\sim} N(\mu, \sigma^2/n) \; , \; \frac{\bar{y} - \mu}{\sigma/\sqrt{n}} \stackrel{.}{\sim} N(0, 1).$$

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \text{ ,where } s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/\mathit{n}.$$

$$ar{y} \stackrel{.}{\sim} N(\mu, \sigma^2/n) \; , \; rac{ar{y} - \mu}{\sigma/\sqrt{n}} \stackrel{.}{\sim} N(0, 1).$$

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \; , ext{where} \; s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$\bar{y} \sim N(\mu, \sigma^2/n) , \ \frac{\bar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \; , ext{where} \; s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \; , \; rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \ , \ \ \, \text{where} \ s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2.$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$
 is a 95% CI for μ

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \; , \; \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \; , \; rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar{y}-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \ , ext{where} \ s^2 = rac{1}{n-1} \sum (y_i - ar{y})^2.$$

From this, we have

$$\bar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Population inferences

$\bar{v} \pm t_{n-1}$ 975 $\times s/\sqrt{n}$

What if we apply the formula to data from a cluster sample?

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n]$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n]$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n]$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n].$$

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n].$$

 s/\sqrt{n} is generally an underestimate of the sd of \bar{y} .

$$\bar{y} \pm t_{n-1,.975} \times s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$Var[\bar{y}] = \sigma^2/n = E[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$Var[\bar{y}] > \sigma^2/n \approx E[s^2/n].$$

 s/\sqrt{n} is generally an underestimate of the sd of \bar{y} .

How will the resulting confidence interval behave if $sd(\bar{y}) > s/\sqrt{n}$?

- Across-group heterogeneity = within-group similarity.
- The variance of the sample mean from (positively) correlated data is

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is
- Statistical inference ignoring such correlation will be inaccurate.

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

Remedy: We will develop techniques to

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

Remedy: We will develop techniques to

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = E[y|x=1]$
- $\mu_0 = E[y|x=0]$

Suppose

- $x \in \{0, 1\}$
- $\bullet \ \mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \dots, (y_{n,j}, x_{n,j})$.

Question: What could go wrong by ignoring the multilevel nature of the data?

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = E[y|x=0]$

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = E[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = E[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = E[y|x=1]$
- $\mu_0 = E[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Question: What could go wrong by ignoring the multilevel nature of the data?

Overconservative analysis

- Overlap across groups, no overlap within groups.
- Across-group variation is *large* compared to the treatment effect.
- Ignoring group differences can lead to overconservative analysis.

Underconservative analysis

- The population mean difference is zero.
- The sample mean difference based on pairs of two groups is not zero.
- Ignoring group differences can lead to underconservative analysis.

Effect reversal

- $\mu_1 \mu_0 > 0$ in population, $\mu_{1,j} \mu_{0,j} < 0$ in every group.
- Within-group effects may be different from population effects.
- This is sometimes called Simpson's paradox.

Consequences of across-group heterogeneity

- Across-group heterogeneity can lead to over or under conservative analysis.
- Population-level effects may be different from group-level effects.
- Data analysis ignoring groups can be inaccurate in unpredictable ways.

- differentiate between macro and micro level effects:
- appropriately control for within and between-group heterogeneity.

Consequences of across-group heterogeneity

Summary:

- Across-group heterogeneity can lead to over or under conservative analysis.
- Population-level effects may be different from group-level effects.
- Data analysis ignoring groups can be inaccurate in unpredictable ways.

Remedy: We will develop techniques to

- differentiate between macro and micro level effects:
- appropriately control for within and between-group heterogeneity.

Macro and micro effects

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables

What are the effects of SES (x) on political opinion (y)? (a micro-micro effect)

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables

What are the effects of State GDP (X) on political opinion (y)? (a macro-micro effect)

Macro, micro and cross-level effects

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables

What are the effects of State GDP (X) on statewide political opinion (Y)? (a macro-macro effect)

Macro, micro and cross-level effects

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables

What are the effects of State GDP (X) and SES (x) on political opinion (y)? (multilevel effects)

Exit poll data from 2004 presidential election

- $j \in \{1, ..., 50\}$ indexes the states,
- y_{i,j} is the voting variable for person i in state j,
- $x_{i,j}$ is a measure of income for person (i,j).

Macro effects

Micro effects

In general we may be interested in understanding all of the following:

- macro level effects.
- micro level effects.
- macro effects on micro variables.
- heterogeneity of micro effects across groups.

$$y_{i,j} \sim a_j + b_j x_{i,j} + \epsilon_{i,j}$$

= $(\alpha_0 + \alpha_1 w_i + z_i) + (\beta_0 + \beta_1 w_i + e_i) x_{i,j} + \epsilon_{i,j}$.

Joint estimation of effects

In general we may be interested in understanding all of the following:

- macro level effects.
- micro level effects.
- macro effects on micro variables.
- heterogeneity of micro effects across groups.

$$\begin{array}{lcl} y_{i,j} & \sim & a_j & + & b_j x_{i,j} & +\epsilon_{i,j} \\ & = & \left(\alpha_0 + \alpha_1 w_j + z_j\right) & + & \left(\beta_0 + \beta_1 w_j + e_j\right) x_{i,j} & +\epsilon_{i,j}. \end{array}$$

In general we may be interested in understanding all of the following:

- macro level effects.
- micro level effects.
- macro effects on micro variables.
- heterogeneity of micro effects across groups.

$$y_{i,j} \sim a_j + b_j x_{i,j} + \epsilon_{i,j}$$

= $(\alpha_0 + \alpha_1 w_j + z_j) + (\beta_0 + \beta_1 w_j + e_j) x_{i,j} + \epsilon_{i,j}$

In general we may be interested in understanding all of the following:

- macro level effects.
- micro level effects.
- macro effects on micro variables.
- heterogeneity of micro effects across groups.

$$y_{i,j} \sim a_j + b_j x_{i,j} + \epsilon_{i,j}$$

= $(\alpha_0 + \alpha_1 w_j + z_j) + (\beta_0 + \beta_1 w_j + e_j) x_{i,j} + \epsilon_{i,j}$.