15EEE337 Digital Image Processing

Sarath T.V.

Last Lecture

- Image acquisition
 - Single sensor
 - In-line sensor
 - Sensor array
- Sampling and quantization.

Digital image representation

- Surface plot
- As plot/graph with spatial location (x,y)
 as two axes and third axis being the
 intensities at that specific spatial
 coordinates.
- Easily infer the structure,
- For complex images its very difficult to interpret from such plot.

Digital image representation

- Visual Intensity array.
- more common.
- Intensity of each point is proportional to the value of *f* at that point.
- Eg-only three equally spaced intensity values.
- Normalized to [0,1], values can be either 0, 0.5, 1.
- A monitor /printer converts these values to either black, gray or white respectively.

Digital image representation

- Displaying the numerical values of f(x,y) as a array.
- For large images ,complete array values to be displayed is tedious and nothing much can be inferred from it.
- Only parts of the image are printed as numerical values.

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,N-1) \\ f(1,0) & f(1,1) & \cdots & f(1,N-1) \\ \vdots & \vdots & & \vdots \\ f(M-1,0) & f(M-1,1) & \cdots & f(M-1,N-1) \end{bmatrix}$$

- Continuous image to Digital image.
- Matrix representation- M rows & N columns.
- For Image digitization –values of M,N and L (the number of discrete intensity levels) need to be chosen.
- M,N –positive integers.
- L value- depends on digital storage and quantizing hardware considerations
- L is taken as integer power of 2

- Terms Dynamic range.
- Ratio of maximum measurable intensity to the min detectable intensity level.
- Saturation and noise.
- Highest value beyond which all intensity values are clipped.

Image Contrast

- Difference in intensity between the highest and lowest intensity level in an image.
- Contrast ratio highest/lowest intensity level in an image.
- Image with high dynamic range → expect high contrast.
- Image with low dynamic range → dull washed out gray look.

washed ode gray look.

Low Contrast Proper Contrast **High Contrast**

K – bit image

Spatial resolution

- Spatial resolution :
 - measure of smallest observable detail in an image.
 - Line pairs per unit distance
 - Pixel (dots) per unit distance.
- dpi (dots per inch) unit in printing and publishing industry.
 - Newspaper -75dpi
 - Magazines 133 dpi
 - Glossy brochure -175dpi
- Higher Image size means better image ??
 - 1024x1024 image vs 512x512

Image at left has a higher pixel count than the one to the right, but is still of worse spatial resolution.

Just make out difference!

Spatial resolution Z Pixel count

• Image size alone doesn't mean ,it is a better image. The spatial resolution has to be considered also.

Understanding resolution

- Pixels
- The amount of these pixels and the way they are distributed are the two factors that you need to consider to understand resolution.
- Pixel count
- Pixel density
- "a rubber band, you can stretch it or shrink it but you're not changing the composition of the band, you're not adding or cutting any of the rubber."

Last Lecture

- Digital image representation.
- Dynamic range
- Contrast
- Spatial resolution

Effect of reducing spatial resolution

- 1250,300,150 and 72 dpi.
- Slight distortion in the large black needle in the first two images.
- As the resolution reduces the difference in quality or degradation of the image is more visible.

Intensity resolution

- Intensity resolution: Smallest observable change in intensity level.
- Number of bits used to quantize intensity.
- The number of intensity levels is an integer power of 2.
- Image that is quantized into 256 levels has 8 bit intensity resolution.
- Most common no of bits is 8 bit.
- Capturing small levels of brightness: intensity resolution high.
- For a Intensity profile
- Coarse discretization, smooth variation /transitions will not be detected properly.

Effect of intensity resolution reduction

Quantity equals quality ??

- People think that megapixels equal quality
- On top of the quantity you should also consider the depth of the pixels, this is what determines the amount of tonal values that your image will have.
- For example,
 - o a 2-bit depth can store only black, white and two shades of grey,
 - With an 8-bit photo (2 to the power of 8 = 256) you'll have 256 tones.

Role of image size

- Higher resolution means a sharper image??
- True only if all images were the same size. But hardly it's the case.
- Quality of image depends –density and image size.
- Pixels in a images fixed.
- If we try to change physical size of image- changes number of pixels per inch. → lower dpi.

Reducing number of pixels

Types of images

Indexed Images

- An indexed image consists of a data matrix, X, and a colormap matrix, map. map is an m-by-3 array of class double containing floating-point values in the range [0, 1].
- Each row of map specifies the red, green, and blue components of a single color.
- An indexed image uses "direct mapping" of pixel values to colormap values.
- The color of each image pixel is determined by using the corresponding value of X as an index into map. Values of X therefore must be integers. The value 1 points to the first row in map, the value 2 points to the second row, and so on

Grayscale (Intensity) Images

- A grayscale image, sometimes referred to as an intensity image, is a data matrix I whose values represent intensities within some range.
- A grayscale image is represented as a single matrix, with each element of the matrix corresponding to one image pixel.

0.5342 0.5342	0.205	0.2157	0.2826	0.3822	0.455	
5.5342	0.2251	0.2563	0.2826	0.2826	0.4391	0.439
0.5342	0.1789	0.1307	0.1789	0.2051	0.3256	0.2483
3.4308	0.2483	0.2624	0.3344	0.3344	0.2624	0.2540
1	23344	0.2624	0.3344	0.3344	0 3344	

RGB (Truecolor) Images

- An RGB image, sometimes referred to as a truecolor image, is stored as an *m-by-n-by-3* data array that defines red, green, and blue color components for each individual pixel.
- The color of each pixel is determined by the combination of the red, green, and blue intensities stored in each color plane at the pixel's location.

