Classification with Generative Models

DSE 220

Classification with parametrized models

Classifiers with a fixed no. of parameters can represent a limited set of functions. Learning a model is about picking a good approximation.

Typically the x 's are points in p-dimensional Euclidean space, R^p

Two ways to classify:

- Generative: model the individual classes.
- Discriminative: model the decision boundary between the classes.

Quick review of conditional probability

Formula for conditional probability for any events A, B,

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

Applied twice, this yields Bayes' rule:

$$Pr(H|E) = \frac{Pr(E|H)}{Pr(E)} Pr(H)$$

Example: Toss ten coins. What is the probability that the first is heads, given that nine of them are heads?

H =first coin is heads

E = nine of the ten coins are heads

$$\Pr(H|E) = \frac{\Pr(E|H)}{\Pr(E)} \cdot \Pr(H) = \frac{\binom{9}{8} \frac{1}{2^9}}{\binom{10}{9} \frac{1}{2^{10}}} \cdot \frac{1}{2} = \frac{9}{10}$$

Why Bayes' Rule?

$$Pr(H|E) = \frac{Pr(E|H)}{Pr(E)} Pr(H)$$

 describes the probability of an event based on prior knowledge of conditions that might be related to the event

Example: Suppose cancer is related to age

A = Patient has liver disease

B = Patient is an alcoholic

$$P(A) = 0.10, P(B) = 0.05, P(B|A) = 0.07$$

$$P(A|B) = (0.07 * 0.1)/0.05 = 0.14$$

Disjoint and Independent Events

Disjoint or Mutually Exclusive

- Disjoint events cannot happen at the same time.
- e.g.: when tossing a coin, the result can either be heads or tails but cannot be both.

Independent

- Occurrence of one event does not influence the other(s).
- e.g.: when tossing two coins, the result of one flip does not affect the result of the other.

Disjoint and Independent Events

Disjoint Events

Independent Events

Summation rule

Suppose events A_1, \ldots, A_k are disjoint events, one of which must occur. Then for any other event E,

$$Pr(E) = Pr(E \cap A_1) + Pr(E \cap A_2) + \cdots + Pr(E \cap A_k)$$
$$= Pr(E \mid A_1) Pr(A_1) + Pr(E \mid A_2) Pr(A_2) + \cdots + Pr(E \mid A_k) Pr(A_k)$$

Example: Sex bias in graduate admissions In 1969, there were 12673 applicants for graduate study at Berkeley. 44% of the male applicants were accepted, and 35% of the female applicants.

Over the sample space of applicants, define:

$$M = \text{male}$$

 $F = \text{female}$

A = admitted

So: Pr(A|M) = 0.44 and Pr(A|F) = 0.35.

In every department, the accept rate for female applicants was at least as high as the accept rate for male applicants. How could this be?

Generative models

An unknown underlying distribution D over $X \times Y$. Generating a point (x, y) in two steps:

- 1 When we were studying NN: first choose *x*, then choose *y* given *x*.
- 2 Now: first choose *y*, then choose *x* given *y*.

Example:

$$X = R$$

 $Y = \{1, 2, 3\}$

The overall density is a mixture of the individual densities,

$$Pr(x) = \pi_1 P_1(x) + \cdots + \pi_k P_k(x).$$

The Bayes-optimal prediction

Labels $Y = \{1, 2, ..., k\}$, density $Pr(x) = \pi_1 P_1(x) + ... + \pi_k P_k(x)$

For any $x \in \mathcal{X}$ and any label j,

$$\Pr(y = j | x) = \frac{\Pr(y = j) \Pr(x | y = j)}{\Pr(x)} = \frac{\pi_j P_j(x)}{\sum_{i=1}^k \pi_i P_i(x)}$$

Bayes-optimal prediction: $h^*(x) = \arg \max_j \pi_j P_j(x)$.

Estimating the π_j is easy. Estimating the P_j is hard.

Estimating class-conditional distributions

Estimating an arbitrary distribution in Rp

- Can be done, e.g. with kernel density estimation.
- But number of samples needed is exponential in p.

Instead: approximate each P_i with a simple, parametric distribution.

Some options:

- Product distributions.
 Assume coordinates are independent: naive Bayes.
- Multivariate Gaussians.
 Linear and quadratic discriminant analysis.
- More general graphical models.

Naive Bayes

- 1 Probabilistic model (fits P(label |data))
- Makes a conditional independence assumption that features are independent given the label.

 $P(feature_i, feature_i | label) = P(feature_i, label) \cdot P(feature_i, label)$

posterior prior likelihood
$$p(label|features) = \frac{p(label)p(features|label)}{p(features)}$$
 evidence

Naive Bayes

Due to the conditional independence assumption, we get

$$p(label|features) = \frac{p(label) \prod_{i} p(feature_i|label)}{p(features)}$$

Denominator doesn't matter because we are interested in

$$p(label|features)$$
 vs. $p(\neg label|features)$

both of which have same denominator

Example: MNIST

Binarized MNIST:

- k = 10 classes
- $X = \{0, 1\}^{784}$

Assume that within each class, the individual pixel values are independent.

$$P_j(x) = P_{j1}(x_1) \cdot P_{j2}(x_2) \cdots P_{j,784}(x_{784}).$$

Example: MNIST

Pick a class *j* and a pixel *i*. We need to estimate

$$p_{ji} = \Pr(x_i = 1 | y = j).$$

Out of a training set of size *n*,

 n_j = # of instances of class j n_{ii} = # of instances of class j with x_i = 1

Then the maximum-likelihood estimate of p_{ii} is

$$\widehat{p}_{ji}=n_{ji}/n_j$$
.

This causes problems if $n_{ji} = 0$. Instead, use "Laplace smoothing":

$$\widehat{p}_{ji}=\frac{n_{ji}+1}{n_j+2}.$$

Maximum Likelihood

Given observed values $X_1 = x_1$, $X_2 = x_2$... $X_n = x_n$.

Likelihood(θ) = probability of observing the given data as a function of θ .

Maximum Likelihood estimate of θ = value of θ that maximises Likelihood(θ).

Form of the classifier

Data space $X = \{0, 1\}^p$, label space $Y = \{1, \dots, k\}$. Estimate:

- $\{\pi_j : 1 \le j \le k\}$
- $\{p_{ji}: 1 \leq j \leq k, 1 \leq i \leq p\}$

Then classify point x as

$$\arg\max_{j} \quad \pi_{j} \prod_{i=1}^{p} p_{ji}^{x_{i}} (1-p_{ji})^{1-x_{i}}.$$

To avoid underflow: take the log:

$$\arg\max_{j} \quad \log \pi_{j} + \sum_{i=1}^{p} \left(x_{i} \log p_{ji} + (1-x_{i}) \log(1-p_{ji})\right)$$
of the form $w \cdot x + b$

A linear classifier!

Example: MNIST

Result of training: mean vectors for each class.

Test error rate: 15.54%.

Visualization of the "confusion matrix" →

Variance

If you had to summarize the entire distribution of a r.v. X by a single number, you would use the mean (or median). Call it μ .

But these don't capture the *spread* of *X*:

What would be a good measure of spread? How about the average distance away from the mean: $E(|X - \mu|)$?

For convenience, take the square instead of the absolute value.

Variance:
$$\operatorname{var}(X) = \mathbb{E}(X - \mu)^2 = \mathbb{E}(X^2) - \mu^2$$
,

where $\mu = \mathbb{E}(X)$. The variance is always ≥ 0 .

Variance: example

Recall: $var(X) = E(X - \mu)^2 = E(X^2) - \mu^2$, where $\mu = E(X)$.

Toss a coin of bias p. Let $X \in \{0, 1\}$ be the outcome.

$$\mathbf{E}(X) = p$$

$$\mathbf{E}(X^2) = p$$

$$\mathbf{E}(X - \mu)^2 = p^2 \cdot (1 - p) + (1 - p)^2 \cdot p = p(1 - p)$$

$$\mathbf{E}(X^2) - \mu^2 = p - p^2 = p(1 - p)$$

This variance is highest when p = 1/2 (fair coin).

The standard deviation of X is $std(X) = \sqrt{var(X)}$. It is the average amount by which X differs from its mean.

It is the average amount by which X differs from its mean.

Variance of a sum

 $var(X_1 + \cdots + X_k) = var(X_1) + \cdots + var(X_k)$ if the X_i are independent.

<u>Symmetric random walk</u>. A drunken man sets out from a bar. At each time step, he either moves one step to the right or one step to the left, with equal probabilities. Roughly where is he after *n* steps?

Let $X_i \in \{-1, 1\}$ be his ith step. Then $E(X_i) = ?0$ and $var(X_i) = ?1$.

His position after n steps is $X = X_1 + ... + X_n$.

$$\mathbb{E}(X) = 0$$
 $\mathsf{var}(X) = n$
 $\mathsf{stddev}(X) = \sqrt{n}$

The univariate Gaussian

The Gaussian $N(\mu, \sigma^2)$ has mean μ , variance σ^2 , and density function

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

But what if we have two variables?

Bivariate distributions

Simplest option: treat each variable as independent.

Example: For a large collection of people, measure the two variables

$$H = height$$

$$W = weight$$

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h) Pr(W = w),$$

which would also imply E(HW) = E(H) E(W).

Is this an accurate approximation?

No: we'd expect height and weight to be **positively correlated**.

Types of correlation

H, W positively correlated. This also implies

$$\mathbb{E}(HW) > \mathbb{E}(H)\mathbb{E}(W).$$

X, Y uncorrelated

Pearson (1903): fathers and sons

How to quantify the degree of correlation?

Correlation pictures

Covariance and correlation

Suppose X has mean μ_X and Y has mean μ_Y

Covariance

$$cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

Maximized when X = Y, in which case it is var(X). In general, it is at most std(X)std(Y).

Correlation

$$corr(X, Y) = \frac{cov(X, Y)}{std(X) std(Y)}$$

This is always in the range [-1, 1].

Covariance and correlation: example 1

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

In this case, X, Y are independent. Independent variables always have zero covariance and correlation.

Covariance and correlation: example 2

$$cov(X, Y) = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \mathbb{E}[XY] - \mu_X \mu_Y$$
$$corr(X, Y) = \frac{cov(X, Y)}{std(X)std(Y)}$$

In this case, X and Y are negatively correlated.

The bivariate (2-d) Gaussian

A distribution over $(x, y) \in \mathbb{R}^2$, parametrized by:

- Mean $(\mu_x, \mu_y) \in \mathbb{R}^2$
- Covariance matrix

$$\Sigma = \left[\begin{array}{cc} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{array} \right]$$

where $\Sigma_{xx} = \text{var}(X)$, $\Sigma_{yy} = \text{var}(Y)$, $\Sigma_{xy} = \Sigma_{yx} = \text{cov}(X, Y)$

Density
$$p(x,y) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}^T \Sigma^{-1} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}\right)$$

The density is highest at the mean, and falls off in ellipsoidal contours.

Bivariate Gaussian: examples

In either case, the mean is (1, 1).

$$\Sigma = \left[\begin{array}{cc} 4 & 0 \\ 0 & 1 \end{array} \right]$$

$$\Sigma = \left[egin{array}{ccc} 4 & 1.5 \ 1.5 & 1 \end{array}
ight]$$

The multivariate Gaussian

 $N(\mu, \Sigma)$: Gaussian in \mathbb{R}^p

- mean: $\mu \in \mathbb{R}^p$
- covariance: $p \times p$ matrix Σ

Density
$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Let $X = (X_1, X_2, \dots, X_p)$ be a random draw from $N(\mu, \Sigma)$.

 \bullet μ is the vector of coordinate-wise means:

$$\mu_1 = \mathbb{E}X_1, \ \mu_2 = \mathbb{E}X_2, \ldots, \ \mu_p = \mathbb{E}X_p.$$

ullet is a matrix containing all pairwise covariances:

$$\Sigma_{ij} = \Sigma_{ji} = \text{cov}(X_i, X_j)$$
 if $i \neq j$
 $\Sigma_{ii} = \text{var}(X_i)$

• In matrix/vector form: $\mu = \mathbb{E}X$ and $\Sigma = \mathbb{E}[(X - \mu)(X - \mu)^T]$.

Special case: spherical Gaussian

The X_i are independent and all have the same variance σ^2 . Thus

$$\Sigma = \sigma^2 I_p = \text{diag}(\sigma^2, \sigma^2, \dots, \sigma^2)$$

(off-diagonal elements zero, diagonal elements σ^2).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma^2)$:

$$\Pr(x) = \prod_{i=1}^{p} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-(x_i - \mu_i)^2 / 2\sigma^2} \right) = \frac{1}{(2\pi)^{p/2} \sigma^p} \exp\left(-\frac{\|x - \mu\|^2}{2\sigma^2} \right)$$

Density at a point depends only on its distance from μ :

Special case: diagonal Gaussian

The X_i are independent, with variances σ_i^2 . Thus

$$\Sigma = \mathsf{diag}(\sigma_1^2, \ldots, \sigma_p^2)$$

(all off-diagonal elements zero).

Each X_i is an independent univariate Gaussian $N(\mu_i, \sigma_i^2)$:

$$p(x) = \frac{1}{(2\pi)^{p/2}\sigma_1 \cdots \sigma_p} \exp\left(-\sum_{i=1}^p \frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

Contours of equal density are axisaligned ellipsoids centered at μ :

The general Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^p

Eigendecomposition of Σ yields:

- **Eigenvalues** $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$
- Corresponding eigenvectors
 u₁,..., u_p

Recall density:
$$p(x) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} \underbrace{(x-\mu)^T \Sigma^{-1} (x-\mu)}_{\text{What is this?}}\right)$$

If we write $S = \Sigma^{-1}$ then S is a $p \times p$ matrix and

$$(x - \mu)^T \Sigma^{-1} (x - \mu) = \sum_{i,j} S_{ij} (x_i - \mu_i) (x_j - \mu_j),$$

a quadratic function of x.

Binary classification with Gaussian generative model

Estimate class probabilities π_1, π_2 and fit a Gaussian to each class:

$$P_1 = N(\mu_1, \Sigma_1), P_2 = N(\mu_2, \Sigma_2)$$

E.g. If data points $x^{(1)}, \ldots, x^{(m)} \in \mathbb{R}^p$ are class 1:

$$\mu_1 = \frac{1}{m} \left(x^{(1)} + \dots + x^{(m)} \right) \text{ and } \Sigma_1 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_1) (x^{(i)} - \mu_1)^T$$

Given a new point x, predict class 1 iff:

$$\pi_1 P_1(x) > \pi_2 P_2(x) \Leftrightarrow x^T M x + 2 w^T x \geq \theta,$$

where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

and θ is a constant depending on the various parameters.

 $\Sigma_1 = \Sigma_2$: linear decision boundary. Otherwise, quadratic boundary.

Linear decision boundary

When $\Sigma_1 = \Sigma_2 = \Sigma$: choose class 1 iff

$$\times \cdot \underbrace{\Sigma^{-1}(\mu_1 - \mu_2)}_{w} \geq \theta.$$

Geometric picture: Suppose w is a unit vector (that is, ||w|| = 1). Then $x \cdot w$ is the **projection** of vector x onto direction w.

And we can always make w a unit vector by dividing both sides of the inequality by ||w||.

Linear decision boundary

Let w be any vector in \mathbb{R}^p . What is meant by decision rule $w \cdot x \geq \theta$?

Common covariance: $\Sigma_1 = \Sigma_2 = \Sigma$

Linear decision boundary: choose class 1 iff

$$\times \underbrace{\Sigma^{-1}(\mu_1-\mu_2)}_{w} \geq \theta.$$

Example 1: Spherical Gaussians with $\Sigma = I_p$ and $\pi_1 = \pi_2$.

Example 2: Again spherical, but now $\pi_1 > \pi_2$.

One-d projection onto w:

Example 3: Non-spherical.

Rule: $w \cdot x \ge \theta$

- w, θ dictated by probability model, assuming it is a perfect fit
- Common practice: choose w as above, but fit θ to minimize training/validation error

Different covariances: $\Sigma_1 \neq \Sigma_2$

Quadratic boundary: choose class 1 iff $x^T M x + 2w^T x \ge \theta$, where:

$$M = \frac{1}{2} (\Sigma_2^{-1} - \Sigma_1^{-1})$$

$$w = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2$$

Example 1: $\Sigma_1 = \sigma_1^2 I_p$ and $\Sigma_2 = \sigma_2^2 I_p$ with $\sigma_1 > \sigma_2$

Example 2: Same thing in 1-d. $\mathcal{X} = \mathbb{R}$.

Example 3: A parabolic boundary.

Many other possibilities!

Multiclass discriminant analysis

k classes: weights π_j , class-conditional distributions $P_j = N(\mu_j, \Sigma_j)$

Each class has an associated quadratic function

$$f_j(x) = \log (\pi_j P_j(x))$$

To class a point x, pick $arg_i max f_i(x)$.

If $\Sigma_1 = \cdots = \Sigma_k$, the boundaries are **linear**.

Example: "wine" data set

Data from three wineries from the same region of Italy

- 13 attributes: hue, color intensity, flavanoids, ash content, ...
- 178 instances in all: split into 118 train, 60 test

Test error using multiclass discriminant analysis: 1/60

Example: MNIST

To each digit, fit:

- class probability π_i
- mean $\mu_i \in \mathbb{R}^{784}$
- covariance matrix $\Sigma_i \in R^{784x784}$

Problem: formula for normal density uses Σ_{j}^{-1} , which is singular.

- Need to regularize: $\Sigma_j \to \Sigma_j + \sigma^2 I$
- This is a good idea even without the singularity issue

Error rate with regularization: ???

Fisher's linear discriminant

A framework for linear classification without Gaussian assumptions.

Use only first- and second-order statistics of the classes.

Class 1	Class 2
mean μ_1	mean μ_2
$cov \Sigma_1$	cov Σ ₂
# pts <i>n</i> ₁	# pts <i>n</i> ₂

A linear classifier projects all data onto a direction w. Choose w so that:

- Projected means are well-separated, i.e. $(w \cdot \mu_1 w \cdot \mu_2)^2$ is large.
- Projected within-class variance is small.

Fisher LDA (linear discriminant analysis)

Two classes: means μ_1, μ_2 ; covariances Σ_1, Σ_2 ; sample sizes n_1, n_2 .

Project data onto direction (unit vector) w.

- Projected means: $w \cdot \mu_1$ and $w \cdot \mu_2$
- Projected variances: $w^T \Sigma_1 w$ and $w^T \Sigma_2 w$
- Average projected variance:

$$\frac{n_1(w^T\Sigma_1w)+n_2(w^T\Sigma_2w)}{n_1+n_2}=w^T\Sigma w,$$

where
$$\Sigma = (n_1\Sigma_1 + n_2\Sigma_2)/(n_1 + n_2)$$
.

Find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

Solution: $w \propto \Sigma^{-1}(\mu_1 - \mu_2)$. Look familiar?

Fisher LDA: proof

Goal: find w to maximize
$$J(w) = \frac{(w \cdot \mu_1 - w \cdot \mu_2)^2}{w^T \Sigma w}$$

- **1** Assume Σ_1 , Σ_2 are full rank; else project.
- 2 Since Σ_1 and Σ_2 are p.d., so is their weighted average, Σ .
- 3 Write $u = \Sigma^{1/2}w$. Then

$$\max_{w} \frac{(w^{T}(\mu_{1} - \mu_{2}))^{2}}{w^{T}\Sigma w} = \max_{u} \frac{(u^{T}\Sigma^{-1/2}(\mu_{1} - \mu_{2}))^{2}}{u^{T}u}$$
$$= \max_{u:\|u\|=1} (u \cdot (\Sigma^{-1/2}(\mu_{1} - \mu_{2})))^{2}$$

- 4 Solution: *u* is the unit vector in direction $\Sigma^{-1/2}(\mu_1 \mu_2)$.
- **5** Therefore: $w = \Sigma^{-1/2} u \propto \Sigma^{-1} (\mu_1 \mu_2)$.