Y si vas a la derecha Y cambiás hacia la izquierda, adelante. Es mejor que estarse quieto Es mejor que ser un vigilante" Charly García

Comentarios y ejercicios sobre resolución de ecuaciones diferenciales lineales a coeficientes constantes.

Curso 1

Vamos a estudiar las ecuaciones diferenciales lineales aplicando lo visto en la teoría de transformaciones lineales.

Vamos a resolver una ecuación del tipo:

$$L(y) = y^n + a_{n-1}y^{n-1} + \dots + a_1y' + a_0y = f \text{ con } a_i \in \mathbb{R}, \ i = 0, \dots n-1.$$

También se puede notar:

$$L(y) = (D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}I)(y)$$

La incognita y que buscamos es una función derivable, por lo menos hasta el orden n y, para poder asegurar solución, consideramos que f es una función continua.

Como $L: C^\infty(\mathbb{R}) \to C^\infty(\mathbb{R})$ es una transformación lineal, entonces el método que vamos a aplicar para resolver estas ecuaciones es el que tiene en cuenta la característica de las soluciones de una ecuación que involucra a una transformación lineal.

Si L es una t.l. y queremos resolver $L(v) = w \operatorname{con} w \in \operatorname{Im}(T) \Rightarrow$

 \Rightarrow todas las soluciones de la ecuación podrán escribirse como: $v=v_p+v_N$

 v_p solución particular

 v_N elemento del Nu(L), o sea solución de la ecuación homogénea L(y)=0.

Por lo visto en la explicación teórica, si la ecuación es de orden n, el Nu(L) tiene dimensión n.

Además si f es una función continua $\Rightarrow f \in Im(L)$ y podemos asegurar que la ecuación tendrá infinitas soluciones.

Vamos a resolver las ecuaciones diferenciales lineales no homogéneas que se presenten de la siguiente manera:

- Primero buscamos todas las soluciones del sistema homogéneo, o sea calculamos el Nu(L).
- Después buscamos una solución particular de la ecuación. en este curso sólo resolveremos ecuacionescuyas soluciones particulares pueden encontrarse a través del método de coeficientes indeterminados.

La búsqueda del Nu(L) se reduce a buscar las raíces del polinomio asociado a la ecuación diferencial y plantear las funciones exponenciales que corresponden.

Se prueba que $\dim(Nu(L))=n$ para cada ecuacuón diferencial de orden n.

Para cada ecuación ecuación diferencial lineal homogénea, de la forma:

$$y^{n} + a_{n-1}y^{n-1} + \dots + a_{1}y' + a_{0}y = 0$$

$$(D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}I)(y) = 0$$

Se considera el **polinomio característico** asociado a la ecuación:

$$p(r) = r^{n} + a_{n-1}r^{n-1} + \dots + a_{1}r + a_{0}$$

Es fácil verificar que si λ_1 es raíz de $p(r)\Rightarrow e^{\lambda_1 x}$ es solución del sistema homogéneo.

Además si $\lambda_1, \ \lambda_2, \ldots, \ \lambda_n$, son raíces del polinomio característico asociado a la ecuación diferencial, entonces el operador diferencial $D^n + a_{n-1}D^{n-1} + \cdots + a_1D + a_0I$ puede "factorizarse":

$$(D^n + a_{n-1}D^{n-1} + \dots + a_1D + a_0I)(y) = 0 \iff (D - \lambda_1I) \circ (D - \lambda_2I) \cdots \circ (D - \lambda_nI)(y) = 0$$

Si el polinonio característico tiene n raíces reales distintas $\Rightarrow \{e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_n x}\}$ será una base del subespacio de soluciones del sistema homogéneo.

Si el polinomio característico tiene alguna raíz real β de multiplicidad $k \Rightarrow$ vamos a obtener k soluciones l.i. asociadas a esa raíz, de la forma:

$$e^{\beta x}, xe^{\beta x}, \dots, x^{k-1}e^{\beta x}$$

Si el polinomio característico tiene raíces no reales ($\lambda=a\pm ib$), entonces podemos conseguir dos funciones reales l.i. que seran soluciones del sistema homogéneo:

$$\{e^{ax}\cos(bx), e^{ax}\sin(bx)\}$$

La búsqueda de la solución particular por el método de coeficientes indeterminados implica proponer una forma de la función solución y_p , para cierto tipo de función f.

Pegamos aquí una tabla con algunos de los casos:

f	y_p	Raíces pol. caract.
P_n	P_n	$r \neq 0$
P_n	P_{n+1}/P_{n+k}	r=0 raíz simple/ $r=0$ raíz mult.k
$e^{\lambda x}$	$ke^{\lambda x}$	$si\;r\neq\lambda$
$e^{\lambda x}$	$P_k e^{\lambda x}$	si λ es raíz de mult. k
sen(cx)	$k_1 \operatorname{sen}(cx) + k_2 \cos(cx)$	$\operatorname{si} r \neq ci$
sen(cx)	$P_k \mathbf{sen}(cx) + Q_k \cos(cx)$	si $r=ci$ raíz de multip k
$\cos(cx)$	$k_1 \operatorname{sen}(cx) + k_2 \cos(cx)$	$r \neq ci$

Cuadro 1: Propuestas de y_p , para L(y) = f. Notación: P_k polinomio a coef. reales de grado k.

Empecemos con los primeros ejemplos:

1. Encontrar todas las soluciones de los sistemas homogéneos:

a
$$y'' + 5y' + 6y = 0$$

b
$$y'' + 4y' + 4y = 0$$

c
$$y'' - 4y' + 13y = 0$$

Resolución:

Todo se reduce a encontrar las raíces del polinomio característico asociado a la ecuación diferencial en cada caso

En el caso a. tenemos:
$$r^2 + 5r + 6 = 0 \iff r = -2$$
 o $r = -3$.

En el caso b. tenemos $r^2+4r+4=0 \Longleftrightarrow r=-2$, r=-2 es raíz de multiplicidad 2 del polinomio.

En el caso c. tenemos:
$$r^2 - 4r + 13 = 0 \iff r = 2 + 3i$$
 o $r = 2 - 3i$.

Así que ya tenemos las soluciones en cada caso:

- a Las soluciones de la ecuación homogénea son las funciones que están el subespacio $S_{Ha} = \text{gen}\{e^{-2x}, e^{-3x}\}.$
- b Las soluciones de la ecuación homogénea son las funciones que están el subespacio $S_{Hb}=\mathrm{gen}\{e^{-2x},xe^{-2x}\}.$
- c Las soluciones de la ecuación homogénea son las funciones que están el subespacio $S_{Hc} = \text{gen}\{e^{2x}\cos(3x), e^{2x}\text{sen}(3x)\}.$
- 2. Encontrar la solución general de las siguientes ecuaciones no homogéneas:

a
$$y'' + 5y' + 6y = x^2 + 3x + e^{2x}$$

$$\mathsf{b}\ y'' + 4y' + 4y = e^{\lambda x},\ \lambda \in \mathbb{R}$$

c
$$y'' - 4y' + 13y = \cos(x)$$

Resolución:

Como ya tenemos, en cada caso, las soluciones de la ecuación homogénea nos dedicaremos directamente a la búsqueda de la solución particular.

Para el item a. tenemos como $f = (x^2 + 3x) + e^{2x}$.

Como la ecuación es lineal, podemos buscar una solución particular y_{p1} tal que $L(y_{p1})=x^2+3x$ y otra y_{p2} tal que $L(y_{p2})=e^{2x}$. De esa forma si tomamos $y_p=y_{p1}+y_{p2}\Longrightarrow L(y_p)=L(y_{p1}+y_{p2})=$ $=L(y_{p1})+L(y_{p2})=(x^2+3x)+e^{2x}$ \checkmark

Buscamos y_p1 , para eso proponemos como solución particular $y_p1 = ax^2 + bx + c$ y reemplazamos en la ecuación diferencial:

$$2a + 5(2ax + b) + 6(ax^2 + bx + c) = x^2 + 3x$$

$$6ax^2 + (10a + 6b)x + 2a + 5b + 6c = x^2 + 3x$$

Igualando coeficiente a coeficiente, queda:

$$a = \frac{1}{6}, \ b = (3 - \frac{10}{6})\frac{1}{6} = \frac{2}{9}, \ c = \frac{-5b - 2a}{6} = -\frac{13}{54}$$

Obtenemos
$$y_{p1} = \frac{1}{6}x^2 + \frac{2}{9}x - \frac{13}{54}$$

Proponemos $y_{p2}=ke^{2x}$ y reemplazamos en la ecuación para encontrar el valor de k :

$$4ke^{2x} + 10ke^{2x} + 6ke^{2x} = e^{2x} \Longleftrightarrow 20k = 1 \Longleftrightarrow k = \frac{1}{20}.$$

Obtenemos
$$y_{p2} = \frac{1}{20}e^{2x}$$

De esta manera conseguimos una solución particular:

$$y_p = y_{p1} + y_{p2} = (\frac{1}{6}x^2 + \frac{4}{3}x - \frac{21}{3}) + \frac{1}{20}e^{2x}$$

Buscamos una solución particular en el item b.

Aquí $f=e^{\lambda x}$ El polinomio característico asociado a la ecuación homogénea tenía una raíz doble en r=-2.

Busquemos la solución particular en los dos casos posibles: $\lambda \neq -2$ y $\lambda = -2$.

CASO
$$\lambda \neq -2$$

Proponemos $y_p = ke^{\lambda x}$, reemplazamos en la ecuación y queda:

$$k\lambda^2 e^{\lambda x} + 4k\lambda e^{\lambda x} + 4ke^{\lambda x} = e^{\lambda x}$$

$$ke^{\lambda x}(\lambda^2 + 4\lambda + 4) = e^{\lambda x}$$

$$k(\lambda^2+4\lambda+4)=1$$
 y como $\lambda^2+4\lambda+4\neq 0$ porque $\lambda\neq -2$

$$k=rac{1}{\lambda^2+4\lambda+4}$$
 y entonces $oxed{y_p=rac{1}{\lambda^2+4\lambda+4}e^{\lambda x}}$

CASO
$$\lambda = -2$$

Si $\lambda=-2$, como el polinomio característico tiene a este valor como raíz doble, proponemos $y_p=Kx^2e^{-2x}$ y reemplazando obtenemos:

$$e^{-2x}(4kx^2 - 8kx + 2k) + 4e^{-2x}(2kx - 2kx^2) + 4kx^2e^{-2x} = e^{-2x} \iff$$

$$\iff k = \frac{1}{2} \Rightarrow \mathbf{y}_p = \frac{1}{2}x^2e^{-2x}$$

Para el item c.

Aquí $f = \cos(x)$ y proponemos una solución particular de la forma:

 $y_p = A\cos(x) + B\operatorname{sen}(x)$ y reemplazamos en la ecuación:

$$(-A\cos(x) - B\text{sen}(x)) - 4(-A\text{sen}(x) + B\cos(x)) + 13(A\cos(x) + B\text{sen}(x)) = \cos(x)$$
$$(12A - 4B)\cos(x) + (4A + 12B)\text{sen}(x) = \cos(x)$$

Como $\cos(x)$ y $\sin(x)$ son funciones I.i, para que se cumpla la igualdad debe cumplirse:

$$12A-4B=1$$
 y $4A+12B=0,$ de aquí: $A=\frac{3}{40}$ y $B=\frac{-1}{40}$

Obtenemos para este caso:

$$y_p = \frac{3}{40}\cos(x) - \frac{1}{40}\sin(x)$$

Planteamos entonces la solución general en cada item:

a
$$y'' + 5y' + 6y = x^2 + 3x + e^{2x}$$

Tenemos que:

$$S_{Ha} = gen\{e^{-2x}, e^{-3x}\}.$$

$$y_p = y_{p1} + y_{p2} = (\frac{1}{6}x^2 + \frac{4}{3}x - \frac{21}{3}) + \frac{1}{16}e^{2x}$$

La solución general es:

$$y_G(x) = k_1 e^{-2x} + k_2 e^{-3x} + \left(\frac{1}{6}x^2 + \frac{4}{3}x - \frac{21}{3}\right) + \frac{1}{20}e^{2x}$$

$$k_1, k_2 \in \mathbb{R}$$

$$\mathsf{b}\ y'' + 4y' + 4y = e^{\lambda x},\ \lambda \in \mathbb{R}$$

Tenemos que:

$$S_{Hb} = gen\{e^{-2x}, xe^{-2x}\}.$$

CASO
$$\lambda \neq -2$$

$$y_p = \frac{1}{\lambda^2 + 4\lambda + 4} e^{\lambda x}$$

Así que:

$$y_G = k_1 e^{-2x} + k_2 x e^{-2x} + \frac{1}{(\lambda^2 + 4\lambda + 4)} e^{\lambda x}$$

$$y_p = \frac{1}{2}x^2e^{-2x}$$

Así que:

$$y_G(x) = k_1 e^{-2x} + k_2 x e^{-2x} + \frac{1}{2} x^2 e^{-2x}$$

c
$$y'' - 4y' + 13y = \cos(x)$$

Ya calculamos que:

$$S_{Hc} = \mathrm{gen}\{e^{2x}\cos(3x), e^{2x}\mathrm{sen}(3x)\} \; y_p = \frac{3}{10}\mathrm{cos}(x) - \frac{1}{10}\mathrm{sen}(x)$$

Así que podemos escribir la solución general:

$$y_G(x) = k_1 e^{2x} \cos(3x) + k_2 e^{2x} \sin(3x) + \frac{3}{40} \cos(x) - \frac{1}{40} \sin(x)$$