2022-2023 MP2I

À chercher pour lundi 09/01/2023, corrigé

TD 12:

Exercice 5. Remarquons déjà que f est paire puisque pour $x \in \mathbb{R}$, $f(-x) = f((-x)^2) = f(x^2) = f(x)$. On va donc étudier f sur \mathbb{R}_+ . Fixons à présent $x \in]0,1[$. Posons $x_n = x^{2^n}$. On a alors pour $n \in \mathbb{N}$, $x_n = e^{2^n \ln(x)}$ qui tend vers 0 quand n tend vers l'infini par composition de limites. On en déduit que $\lim_{n \to +\infty} f(x_n) = f(0)$ par continuité de f.

Or, on peut montrer par récurrence que $\forall n \in \mathbb{N}, \ f(x_n) = f(x)$. Cette propriété est vraie au rang 0. Si elle est vraie au rang $n \in \mathbb{N}$ fixé, alors :

$$f(x_{n+1}) = f(x^{2^{n+1}}) = f((x^{2^n})^2) = f(x^{2^n}) = f(x_n).$$

Par hypothèse de récurrence, on a donc la propriété voulue au rang n+1, et elle est donc vraie à tout rang. On en déduit que $\lim_{n\to +\infty} f(x_n) = f(x)$. Par unicité de la limite, on en déduit que f(x) = f(0). On en déduit que $\forall x \in [0,1[,f(x)=f(0).$ Par continuité de f en 1 à gauche, on a également f(1)=f(0).

Si on fixe à présent x > 1, en considérant cette fois la suite $x_n = x^{\frac{1}{2^n}}$, alors cette suite tend vers 1 quand n tend vers l'infini et en reprenant la même preuve que ci-dessus, on montre que la suite $(f(x_n))$ est constante égale à f(x). Par passage à la limite, on a donc f(x) = f(1) = f(0). On en déduit donc que f est constante sur \mathbb{R}_+ et par parité, elle est constante égale à la même constante sur \mathbb{R}_- .

Réciproquement, si f est constante, elle est bien continue et vérifie la propriété demandée. Les fonctions vérifiant cette équation sont donc exactement les fonctions constantes.

Exercice 10. Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$. On suppose que |f(x)| tend vers $+\infty$ en $+\infty$.

On en déduit que $\forall M > 0$, $\exists x_0 \in \mathbb{R} / \forall x \geq x_0$, $|f(x)| \geq M$. Montrons que f(x) tend vers $+\infty$ ou bien que f(x) tend vers $-\infty$ quand x tend vers $+\infty$.

Pour cela, fixons M > 0. Soit le x_0 associé à la limite de |f(x)| vers l'infini. On va séparer les cas selon les signes de f(M):

Supposons $f(x_0) > 0$. Supposons par l'absurde qu'il existe $x_1 > x_0$ tel que $f(x_1) < 0$. On en déduit alors d'après le théorème des valeurs intermédiaires (que l'on peut utiliser car f est continue sur $[x_0, x_1]$) qu'il existe $x_2 > x_0$ tel que $f(x_2) = 0$. On a alors $|f(x_2)| < M$: absurde! Ceci entraine que pour tout $x > x_0$, $f(x) \ge 0$ et donc que |f(x)| = f(x). On en déduit en utilisant la définition de la limite écrite au début de l'énoncé que :

$$\forall x \ge x_0, \ f(x) \ge M.$$

M étant choisi quelconque, on a donc montré que $f(x) \to +\infty$ quand $x \to +\infty$.

Si $f(x_0) < 0$, alors par une preuve similaire, on montre que $f(x) \to -\infty$ quand $x \to +\infty$.

Exercice 14. Soit $f: \mathbb{R} \to \mathbb{R}$ continue et 1-périodique.

On a f continue sur [0,1] donc elle est bornée sur ce segment et atteint ses bornes d'après le théorème des bornes atteintes. Puisqu'elle est 1-périodique, on en déduit que f est bornée par le même maximum et le même minimum sur \mathbb{R} . On a donc bien que f admet un minimum et un maximum sur \mathbb{R} .

Exercice 15.

1) Posons $\varepsilon = \frac{1}{2} > 0$. Puisque $\lim_{x \to -\infty} f(x) = 0$, alors il existe $a_1 \in \mathbb{R}_+^*$ tel que $\forall x \leq a_1$, $|f(x)| \leq \frac{1}{2}$. De meme, puisque $\lim_{x \to +\infty} f(x) = 0$, alors il existe $a_2 \in \mathbb{R}_+^*$ tel que $\forall x \geq a_2$, $|f(x)| \leq \frac{1}{2}$. En posant $a = \max(-a_1, a_2)$, on en déduit que :

$$\forall x \in \mathbb{R}, \ |x| \ge a \Rightarrow |f(x)| \le \frac{1}{2} \Rightarrow f(x) \le \frac{1}{2}.$$

2) On a déjà f minorée car f est à valeurs dans \mathbb{R}_+ . D'après le théorème des bornes atteintes, puisque f est continue sur [-a,a], elle y admet un maximum. Puisque f(0)=1 et que $0\in [-a,a]$, la valeur de ce maximum est supérieure ou égale à 1. Puisqu'en dehors de [-a,a], f est inférieure à $\frac{1}{2}$, on en déduit que f est bornée sur \mathbb{R} et admet un maximum qui est atteint sur [-a,a].

Exercice 18.

1) On procède par récurrence. Pour n = 0, on a $f(x_0) = x_0$. Soit $n \in \mathbb{N}$. On suppose $f(x_n) = x_n$. On a alors:

$$f(x_{n+1}) = f(g(x_n))$$

$$= g(f(x_n))$$

$$= g(x_n)$$

$$= x_{n+1}.$$

La propriété est donc vraie au rang n+1. Par récurrence, elle est donc vraie à tout rang.

2) On suppose que $\forall x \in [0,1]$, f(x) > g(x). On a alors pour $n \in \mathbb{N}$, $f(x_n) > g(x_n)$ donc $x_n > x_{n+1}$. La suite (x_n) est donc (strictement) décroissante. Puisque $\forall n \in \mathbb{N}$, $x_n \in [0,1]$ (car [0,1] est stable par g et que $\forall n \in \mathbb{N}$, $x_{n+1} = g(x_n)$ et que $x_0 \in [0,1]$). On a donc (x_n) minorée. Elle est donc convergente et tend vers $l \in [0,1]$.

Par passage à la limite dans l'égalité $f(x_n) = x_n$ et par continuité de f, on a f(l) = l. Par passage à la limite dans $x_{n+1} = g(x_n)$ et continuité de g, on a l = g(l). On obtient donc f(l) = g(l): absurde!

3) D'après la question précédente, il existe $x \in [0,1]$ tel que $f(x) \leq g(x)$. On procède ensuite comme à la question précédente : si par l'absurde $\forall x \in [0,1], \ f(x) < g(x),$ alors on trouve que (x_n) est croissante et majorée donc converge et de meme que dans la question précédente, on obtient f(l) = l = g(l) : absurde! On en déduit qu'il existe $y \in [0,1]$ tel que $f(y) \geq g(y)$.

On en déduit que la fonction $h: x \mapsto f(x) - g(x)$ change de signe (elle n'a pas le meme signe en x et en y) et est continue. On en déduit d'après le théorème des valeurs intermédiaires que h s'annule sur $[x,y] \subset [0,1]$ et donc qu'il existe $a \in [0,1]$ tel que $h(a) = 0 \Leftrightarrow f(a) = g(a)$.