

Jurusan Teknologi Informasi Politeknik Negeri Malang **Mata Kuliah Data Warehouse Kuis 1**

Nama : Bagas Satria Yudho Nugraha

Nomor Urut : SIB 2B

1. Tuliskan perbandingan star schema dan snowflake schema pada tabel berikut:

	Star Schema	Snowflake Schema
Normalisasi	Denormalisasi(Tabel dimensi	Ternormalisasi(Tabel dimensi
	tidak memiliki normalisasi	dinormalisasi untuk
	atau minimal)	menghindari redundansi data)
Kompleksitas desain/skema	Sederhana(Struktur langsung dengan tabel fakta dan tabel dimensi utama)	Lebih kompleks(Tabel dimensi dipecah menjadi subtable untuk menghilangkan redundasi)
Kompleksitas query	Lebih sederhana(Query lebih	Lebih kompleks(Memerlukan
	mudah ditulis karena jumlah	lebih banyak join karena tabel
	join lebih sedikit)	dimensi terpecah)
Performa query	Lebih cepat untuk query analitik karena jumlah join lebih sedikit	Bisa lebih lambat dibandingkan star schema karena lebih banyak join
Storage	Membutuhkan lebih banyak ruang penyimpanan karena adanya data yang berulang dalam dimensi	Lebih hemat penyimpanan karena redundansi dikurangi melalui normalisasi
Integritas data	Kurang terjaga karena adanya duplikasi data dalam tabel dimensi	Lebih baik karena data lebih terstruktur dan tidak redundan
Maintenance (pengisian	Lebih mudah karena struktur	Lebih kompleks karena
data dengan proses ETL	sederhana dan lebih sedikit	memerlukan pengisian data ke
dari OLTP)	tabel yang harus diupdate	banyak tabel terkait

2. Gambar berikut menunjukkan skema OLTP database dari sebuah sistem informasi ekspedisi. Buatlah data warehouse dalam star schema yang digunakan sebagai dasar analisis performa ekspedisi.

Analisis Diagram Star Schema untuk Performa Pengiriman Ekspedisi

1. Struktur Model Data

Diagram ini merepresentasikan model **Star Schema** yang digunakan untuk menganalisis performa pengiriman ekspedisi. Model ini terdiri dari **satu tabel fakta utama** (Fakta_Pengiriman) yang berhubungan dengan beberapa **tabel dimensi** untuk mendukung analisis lebih mendalam.

2. Tabel Fakta - Fakta_Pengiriman

Tabel ini menyimpan data utama terkait pengiriman, termasuk:

Foreign Key (FK):

- Id_KecamatanAsal dan Id_KecamatanTujuan → Lokasi pengiriman
- Id_Kurir → Kurir yang bertugas
- Id_StatusPengiriman → Status terkini dari pengiriman
- Id_Pembayaran → Informasi pembayaran

Atribut Fakta:

- Nama_Pelanggan → Informasi pelanggan
- AlamatAsal, AlamatTujuan → Detail alamat pengiriman
- Berat → Bobot barang yang dikirim
- TanggalPengiriman, TanggalSampaiPerkiraan, TanggalSampaiAktual → Waktu pengiriman dan estimasi

3. Tabel Dimensi

a. Dimensi_Kurir

- Berisi informasi terkait kurir yang bertugas dalam pengiriman.
- Atribut: Id_Kurir, Nama, Tipe_Kendaraan, No_HP.
- Berguna untuk menganalisis kinerja kurir berdasarkan jumlah pengiriman dan ketepatan waktu.

b. Dimensi_Lokasi

- Menyimpan informasi lokasi pengiriman dan tujuan secara hierarkis.
- Atribut: Id_Kecamatan, Nama_Kecamatan, Id_Kota, Nama_Kota, Id_Provinsi, Nama_Provinsi.
- Berguna untuk analisis rute pengiriman berdasarkan wilayah geografis.

c. Dimensi_Status_Pengiriman

- Berisi informasi status pengiriman untuk memantau perjalanan paket.
- Atribut: Id_Status_Pengiriman, Nama_Status (Misalnya: Dalam Proses, Tertunda, Diterima).
- Berguna untuk melihat persentase pengiriman yang tepat waktu dan yang tertunda.

d. Dimensi_Pembayaran

- Menyimpan informasi transaksi pembayaran.
- Atribut: Id_Pembayaran, Total, Id_Status_Pembayaran, Id_Tipe_Pembayaran.
- Berguna untuk analisis keuangan dan metode pembayaran yang paling banyak digunakan.

e. Dimensi_Status_Pembayaran

- Menyimpan informasi status pembayaran.
- Atribut: Id_Status_Pembayaran, Nama_Status (Misalnya: Lunas, Belum Lunas, Ditolak).
- Berguna untuk memantau transaksi yang berhasil atau gagal.

f. Dimensi_Tipe_Pembayaran

- Berisi informasi terkait metode pembayaran yang digunakan pelanggan.
- Atribut: Id_Tipe_Pembayaran, Nama_Tipe (Misalnya: Transfer, COD, Kartu Kredit).
- Berguna untuk melihat preferensi pelanggan terhadap metode pembayaran tertentu.

Kesimpulan

Struktur **Star Schema** ini memungkinkan analisis yang lebih mendalam mengenai pengiriman ekspedisi. Dengan model ini, perusahaan dapat:

- Mengevaluasi kinerja kurir berdasarkan kecepatan dan ketepatan pengiriman.
- Menganalisis distribusi pengiriman berdasarkan lokasi geografis.
- Memantau status pengiriman untuk mengidentifikasi kendala operasional.
- Melakukan analisis keuangan terkait metode pembayaran dan status transaksi.

Dengan demikian, model ini sangat berguna untuk meningkatkan efisiensi dan efektivitas layanan ekspedisi.