FEUILLE DE T.D. 4

Exercice 1.

1. Déterminer les limites suivantes :

$$\lim_{n\to\infty} \int_0^1 \frac{1+nx}{(1+x)^n} dx$$
 ; $\lim_{n\to\infty} \int_0^1 \sin\frac{1}{nx} dx$

2. Montrer que :
$$\lim_{n\to\infty} \int_0^{+\infty} \frac{e^{-nx}}{\sqrt{x}} dx = 0$$

3. Soit
$$u_n = \int_0^n \left(1 - \frac{x}{n}\right)^n \cos x \ dx$$

Calculer $\lim_{n\to\infty} u_n$

Exercice 2.

Soit à calculer la limite :

$$L_{\alpha} = \lim_{n \to \infty} \int_{0}^{n} \left(1 - \frac{x}{n} \right)^{n} e^{\alpha x} dx.$$

- 1. Pour $\alpha=1/2$, calculer, par le théorème de convergence dominée la valeur de L_{α} .
- 2. On se propose à présent de déterminer L_{α} en utilisant le résultat de convergence monotone. On pose alors :

$$h_n(x) = \left(1 - \frac{x}{n}\right)^n e^{\alpha x}$$

En calculant la quantité $\ln{(\frac{h_{n+1}}{h_n})}$, montrer qu'il s'agit d'une suite monotone. Conclure.