Sammanfattning av SF1672 Linjär algebra

Yashar Honarmandi

2 december 2017

Sammanfattning

Detta är en sammanfattning av viktiga definitioner, teoremer och algoritmer i kursen SF1672 Linjär algebra.

Innehåll

1	Alg	oritmer	1	
2	Vektorer			
	2.1	Definitioner	2	
	2.2	Satser	2	
3	Matriser			
	3.1	Definitioner	2	
	3.2	Satser	3	
4	Avbildningar 5			
	4.1	Definitioner	5	
	4.2	Satser	6	
5	Vektorrum 6			
	5.1	Definitioner	6	
	5.2	Bevis	7	
6	Vol	ymer	8	

1 Algoritmer

Dessa algoritmer kan vara smarta att kunna för att lösa problemer i linjär algebra.

Gauss-Jordan-elimination Ett ekvationssystem

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_n = b_2$$

$$\vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_n = b_n$$

kan lösas vid att konstruera en totalmatris

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} & b_n \end{bmatrix}$$

och göra Gauss-Jordan-elimination på denna.

Syftet med Gauss-Jordanelimination är att varje kolumn ska ha ett och endast ett pivotelement, även kallad en ledande etta. En ledande etta är en etta som inte har någon andra tal i samma kolumn eller till vänster i samma rad. För att få sådana, gör man operationer på radarna i matrisen enligt följande regler:

- Radar kan multipliceras med konstanter. Forsöka, dock, att undveka 0, eftersom det fjärnar information, vilket är otrevligt.
- Radar kan adderas och subtraheras med andra rader, var båda potensielt multiplicerad med en lämplig konstant.

• Radar kan byta plats.

När man är klar, ska matrisen (förhoppingsvis) se ut så här:

$$\begin{bmatrix}
1 & 0 & \dots & 0 & a_1 \\
0 & 1 & \dots & 0 & a_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & 1 & a_n
\end{bmatrix}$$

var alla a_i är reella tal.

Invertering av en matris Ställ upp en totalmatris [A|I]. Vid att radreducera A till identitetsmatrisen blir I radreducerad till A^{-1} . Att visa detta är enkelt om man använder elementärmatriser.

Basbyte Om man har två baser $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ och $C = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ för ett delrum W, kan man bilda matrisen

$$P = [[\mathbf{b}_1]_C \dots [\mathbf{b}_n]_C]$$

så att

$$[\mathbf{x}]_C = P[\mathbf{x}]_B.$$

Då byter man bas mellan B och C vha. multiplikation med P eller dens invers.

Gram-Schmidts algoritm Låt $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ vara en basis för delrummet $W \neq \{0\}$. Gram-Schmidts algoritm ger dig ett sätt att få en ortogonal basis för W från den gamla basen. Vektorerna i basen ges av

$$\mathbf{w}_{1} = \mathbf{x}_{1},$$

$$\mathbf{w}_{2} = \mathbf{x}_{2} - \operatorname{proj}_{W_{1}}(\mathbf{x}_{2}),$$

$$\vdots$$

$$\mathbf{w}_{i} = \mathbf{x}_{i} - \operatorname{proj}_{W_{i}}(\mathbf{x}_{i}),$$

var vi har definierat

$$W_i = \operatorname{Span}(\mathbf{x}_1, \dots, \mathbf{x}_{i-1}).$$

2 Vektorer

2.1 Definitioner

Linjärt hölje Det linjära höljet av vektorerna $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ är

$$\mathrm{Span}(\{)\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\} = \left\{\sum_{i=1}^n t_i\mathbf{v}_i \mid t_i \in \mathbb{R}\right\} \mathbf{evis} \quad \text{Många multiplikationer}.$$

Linjärt oberoende vektorer Vektorerna $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ är linjärt oberoende om ekvationen

$$\sum_{i=1}^{n} t_i \mathbf{v}_i = \mathbf{0}$$

endast har lösningen $t_i = 0$ för i = $1, 2, \ldots, n$.

Enhetsvektorer i \mathbb{R}^m Vektorerna

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_m = \begin{bmatrix} \emptyset \text{ch vektoren i } \mathbb{R}^n \\ 0 \\ \vdots \\ 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ 1 \end{bmatrix}$$

i \mathbb{R}^m kallas enhetsvektorer. Man har att Span $\{(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k) = \mathbb{R}^m$.

Skalärprodukt För två vektorer $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \mod \text{koefficienter } u_i \text{ och }$ v_i definierar man

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i.$$

Ortogonalitet Två vektorer är ortogonala om $\mathbf{u} \cdot \mathbf{v} = 0$.

Ortogonala mängder Låt $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ vara en mängd vektorer så att $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ för alla $i \neq j$. En slik mängd kallas en ortogonal mängd.

2.2 Satser

Ortogonalitet och linjärt beroende Vektorerna i en ortogonal mängd är linjärt oberoende.

$$\in \mathbb{R}$$
 Bevis Många multiplikationer.

3.1Definitioner

Matriser

3

Matris-vektor-produkt Betrakta $m \times n\text{-matrisen}$

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} & b_n \end{bmatrix}$$

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right]$$

Matrisproduktet $A\mathbf{x}$ definieras som vektoren

$$A\mathbf{x} = \begin{bmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n \\ \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n \end{bmatrix}$$

i \mathbb{R}^m .

Homogena ekvationssystem Ett homogent ekvationssystem kan skrivas på formen

$$A\mathbf{x} = \mathbf{0}.$$

Motsatsen är då inhomogena ekvationssystem.

Addition av matriser För två matriser $A = (a_{i,j}), B = (b_{i,j})$ har man

$$A + B = (a_{i,j} + b_{i,j}).$$

Mutliplikation av matriser med konstanter För en matris $A = (a_{i,j})$ har man

$$cA = (ca_{i,j}), c \in \mathbb{R}.$$

Diagonalmatriser En matris $D = (d_{i,j})$ kallas en diagonal matris om $d_{i,j} = 0$ när $i \neq j$.

Transponat För en matris $A = (a_{i,j})$ definieras transponatet som $A^T = (a_{j,i})$.

Matrismultiplikation Matrismultiplikation av en $m \times p$ -matris A och en $p \times n$ -matris B ges av

$$AB = C : c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}.$$

Inversen av en matris En matris A sin invers A^{-1} uppfyller

$$AA^{-1} = A^{-1}A = I$$
.

Elementärmatriser En matris E är en elementärmatris om produktet EA kan fås vid att göra en radoperation på A.

Rang Rangen till en matris, skrivit som rank A, är dim(Col A).

Determinant För en $n \times n$ -matris A ges determinanten av

$$\det(A) = |A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_i j)$$
$$= \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_i j),$$

var A_{ij} är matrisen A utan rad i och kolumn j. De två summorna visar att man kan räkna ut determinanten vid att utveckla den långs en given kolumn j i första fallet eller en given rad i i det andra fallet. Formelen är rekursiv, och base case är n=2, som ges av

$$\begin{vmatrix} a & d \\ c & b \end{vmatrix} = ab - cd.$$

Egenvektorer, egenvärden och matriser Egenvektorer och egenvärden definieras analogt för matriser som för linjära avbildningar. För detaljer, se 4.1.

Similära matriser och diagonalisering Två matriser A och B är similära om det finns en matris P så att

$$A = PBP^{-1}.$$

Om B är en diagonalmatris säjs A vara diagonaliserbar.

3.2 Satser

Matriskolumner och linjära höljen Följande påståenden är ekvivalenta:

- a) $A\mathbf{x} = \mathbf{b}$ har lösning för varje
- b) Varje $\mathbf{b} \in \mathbb{R}^m$ är en linjär kombination av kolumnerna i A.
- c) Span($\mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_n}$) = \mathbb{R}^m .
- d) Den reducerade matrisen till A har m ledande ettor.

Bevis Ekvivalensen till a, b och c är vel trivial eller någonting.

Antag att c gäller och att A ej har m ledande ettor. Då måste man vid Gauss-Jordan-elimination av A få en rad med bara nollor. Antag att detta är sista raden i matrisen. Betrakta vektorn

$$\mathbf{b}' = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Eftersom Gauss-Jordan-elimination inte ändrar det linjära höljet av kolummnerna till en matris, borde man kunne hitta en kombination av elementerna i den sista raden i A så att man får 1, eftersom $\mathbf{b}' \in \mathbb{R}^m$. Då alla elementerna i denna raden är nollor, är detta omöjligt.

Lösningen till inhomogena ekvationssystem Om det inhomogena ekvationssystemet

$$A\mathbf{x} = \mathbf{0}$$

har lösningen \mathbf{x}_h , har det inhomogena ekvationssystemet

$$A\mathbf{x} = \mathbf{b}$$

lösningen $\mathbf{x} = \mathbf{x}_h + \mathbf{x}_i$, var \mathbf{x}_i är någon vektor som uppfyllar ekvationssystemet.

Bevis Ganska enkelt.

Linjärt beroende av kolumner i en matris Kolumnerna i en matris är linjärt oberoende omm (om och endast om) $A\mathbf{x} = \mathbf{0}$ endast har den triviala lösningen. Specielt gäller det att om antal rader är mindre än antal kolumner är kolumnvektorerna linjärt beroende.

Bevis Någonting med radreduktion.

Inverterbarhet av en matris En matris A är inverterbar om och endast om det(A) = 0.

Bevis Använd elementärmatriser.

Rangsatsen För en $n \times m$ -matris A är rank $A + \dim(\text{Null } A) = m$.

Bevis Something something pivotkolumner.

Determinanten för triangulära matriser För en triangulär $n \times n$ matris A, dvs. en matris som har endast nollor över eller under diagonalen, ges determinanten av

$$\det(A) = \prod_{i=1}^{n} a_{ii}.$$

Bevis Inses lätt.

ele- Kärnan till en avbildning För ele- en avbildning $T(\mathbf{x}): V \to W$ definierar man kärnan till T som

$$\det(E) = \begin{cases} -1, & E \text{ byter plats på två } \operatorname{rad}_{\mathbb{R}^n}(T) = \{\mathbf{x} : T(\mathbf{x}) = \mathbf{0}\} \subset V. \\ 1, & E \text{ adderar en multippel av en rad till en annan.} \\ t, & E \text{ multiplicerar en rad med en skalar} t \neq 0. \end{cases}$$

och att

$$B = EA \implies \det(B) = \det(E)\det(A)$$

 ${f Bevis}$ Radreducera med matriser.

Determinant för matrisprodukt

$$det(AB) = det(A)det(B)$$

Bevis Fallindelning och annat bra.

Kriterier för diagonalisering En $n \times n$ -matris A är diagonaliserbar om och endast om den har n linjärt oberoende egenvektorer. Detta ger även att kolumnerna i P är egenvektorerna till A och D är en diagonalmatris med egenvärden motsvarande kolumnerna i P på diagonalen.

Bevis Gör saker.

4 Avbildningar

4.1 Definitioner

Bilden till en avbildning För en avbildning $T(\mathbf{x}): V \to W$ definierar man bildet till T som

$$\operatorname{Im}(T) = \{ \mathbf{y} : \mathbf{y} = T(\mathbf{x}) \} \subset W.$$

Detta är ett delrum.

Linjära avbildningar En avbildning T är linjär om

$$T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y}),$$

 $T(c\mathbf{x}) = cT(\mathbf{x}), c \in \mathbb{R}.$

Egenvektorer och egenvärden Låt $T: V \to V$ vara en linjär avbildning. Egenvektorerna till T är alla nollskilda vektorer $\mathbf{x} \in V$ så att

$$T(\mathbf{x} = \lambda \mathbf{x}.$$

 λ är det motsvarande egenvärdet till ${\bf x}.$

Egenrum Låt \mathbf{x} vara en egenvektor med motsvarande egenvärde λ till avbildningen T. Då definieras egenrummet motsvarande λ enligt

$$E_{\lambda} = \{ \mathbf{x} \in V : T(\mathbf{x}) = \lambda \mathbf{x} \}.$$

Merk att nollvektoren även inkluderas i E_{λ} .

Karakteristisk polynom Låt T: $\mathbb{R}^n \to \mathbb{R}^n$ med standardmatris A. Då är det karakteristiska polynomet (av grad n) till T

$$C(\lambda) = \det(A - \lambda I),$$

var I är identitetsmatrisen.

Multiplicitet för egenvärden Ett egenvärdes algebraiska multipliciteten är multipliciteten till detta egenvärdet i det karakteristiska polynomet. Ett egenvärdes geometriska multiplicitet är dimensionen till egenrummet motsvarande detta egenvärdet.

4.2 Satser

Avildningar och enhetsvektorer För en linjär avbildning $T(\mathbf{x})$ har man att

$$T(\mathbf{x}) = \sum_{i=1}^{n} x_i T(\mathbf{e}_i)$$

var x_i är komponenterna av \mathbf{x} .

Bevis Borde gå.

Avbildningar och matriser För en avbildning $T(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$ kan man definiera matrisen

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)]$$

var \mathbf{e}_i är enhetsvektorerna i \mathbb{R}^n . Då kan avbildningen skrivas som

$$T(\mathbf{x}) = A\mathbf{x}.$$

Bevis Inte svårt alls.

Samansättning av linjära avbildningar För två linjära avbildningar S,T är avbildningen $S \circ T$ linjär.

Bevis Vi använder oss av definitionen.

Dimensionalitet och avbildningar För en avbildning $T : \mathbb{R}^n \to \mathbb{R}^m$ är $\dim(\operatorname{Im}(T)) + \dim(\ker(T)) = n$. Bevis Oklart?

Karakteristisk polynom och egenvärden Låt $T: \mathbb{R}^n \to \mathbb{R}^n$. Egenvärden till T är lösningerna till $C(\lambda) = 0$.

Bevis Lösa för det.

Egenrum och dimensionalitet Låt T vara en avbildning med p distinkta egenvärden. Då gäller:

- Dimensionen till egenrummet motsvarande något egenvärde är mindre än eller lika med multipliciteten till detta egenvärdet.
- Standardmatrisen A, givet en avbildning mellan rum med samma dimensionalitet n, är diagonaliserbar om och endast om summan av egenrummens dimension är n.
- Om standardmatrisen är diagoniserbar och B_k är en bas för egenrummet till egenvärdet λ_k , bilder samlingen av basvektorerna till alla B_I en bas för \mathbb{R}^n .

Diagonalisering och avbildningar Låt $A = PDP^{-1}$ vara standardmatrisen för en avbildning, och B en basis för \mathbb{R}^n bildat av kolumnerna i P. Då är D matrisen för avbildningen i bas B.

Bevis Ganska enkelt.

5 Vektorrum

5.1 Definitioner

Grupper En grupp G definieras av en mängd X och en binär operation \cdot på två elementer i X (kommer ej skrivas ut). Denna operationen ska uppfylla

- operationen är assosiativ, dvs. a(bc) = (ab)c.
- grupen är stängd under operationen, dvs. för $a, b \in G$ är $ab \in G$.
- det finns ett enhetselement e så att ae = ea = a.
- det för varje element finns en invers så att $aa^{-1} = a^{-1}a = e$.

Abelska grupper En grupp är abelsk om den uppfyllar ab = ba för alla $b, a \in X$.

Vektorrum Om man definierar skalärmultiplikation med elementer i en abelsk grupp, bildar grupen ett vektorrum V under addition om

- $c\mathbf{x} \in V$, $c \in \mathbb{R}$, $\mathbf{x} \in V$.
- $c(\mathbf{x} + \mathbf{y}) = c\mathbf{x} + c\mathbf{y}, c \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in V.$
- $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}, \ c, d \in \mathbb{R}.$
- $c(d\mathbf{x}) = (cd)\mathbf{x}$.
- $1\mathbf{x} = \mathbf{x}$.

Delrum En delmängd V av ett vektorrum är ett delrum om

• $e \in V$.

- $x, y \in V \implies x + y \in V$.
- $cx \in V$ för alla $c \in \mathbb{R}$.

Om V är ett delrum, kan det skrivas som $V = \text{Span}(()\mathbf{v}_1, \dots, \mathbf{v}_n)$.

Bas $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ är en bas för V om

- Span(() $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$) = V.
- vektorerna i basen är linjärt oberoende.

Om vi kallar basen till V för β kan alla vektorer i V skrivas som basvektorer på följande sätt:

$$\mathbf{x} = \sum_{i=0}^{k} c_i \mathbf{v}_i,$$

$$\begin{bmatrix} c_1 \end{bmatrix}$$

$$[\mathbf{x}]_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}.$$

Ortogonal bas En ortogonal bas för ett vektorrum W är en ortogonal mängd av vektorer som bildar en bas för W.

Dimension Dimensionen till ett vektorrum är antalet vektorer i basis.

5.2 Bevis

Delrum i \mathbb{R}^n Om V är ett delrum i \mathbb{R}^n kan det skrivas som $\mathrm{Span}(()\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k)$.

Bevis 2 ez.

Linjärt beroende och basstorlek Projektion Låt $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ vara Låt $\beta = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ vara en bas för V och $\{\mathbf{w}_1,\ldots,\mathbf{w}_p\}$ vara vektorer i $V \mod p > n$. Då är $\{\mathbf{w}_1, \dots, \mathbf{w}_p\}$ linjärt beroende.

Bevis Basvektorer.

Antal vektorer i en bas Antalet vektorer i basen för ett delrum V är oberoende av valet av bas.

Bevis Typ det samma.

Val av bas För ett delrum med dimension n är vilken som helst mängd av n linjärt oberoende vektorer i Ven bas för V.

Bevis Mer av det här?!

Avbildningar med val av bas Låt B vara en bas för delrummet V, C en bas för delrummet W och T en linjär avbildning från V till W. Då ges avbildningen i koordinatvektorer av

$$[T(\mathbf{x}]_C = A[\mathbf{x}]_B,$$

var A ges av

$$A = [[T(\mathbf{b}_1)]_C \dots [T(\mathbf{b}_n)]_C].$$

Vektorer och ortogonala baser Låt $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ vara en ortogonal bas för W. Alla vektorer $\mathbf{w} \in W$ kan skrivas som

$$\mathbf{w} = \sum_{i=1}^{n} \frac{\mathbf{w} \cdot \mathbf{u}_i}{\left|\mathbf{u}_i\right|^2} \mathbf{u}_i.$$

Bevis Oklart.

en ortogonal bas för W. Då gäller

$$\operatorname{proj}_{W}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\mathbf{x} \cdot \mathbf{u}_{i}}{\left|\mathbf{u}_{i}\right|^{2}} \mathbf{u}_{i}.$$

Bevis Varför behövs det?

Bästa approximationers Låt W vara ett delrum till \mathbb{R}^n och $\mathbf{x} \in \mathbb{R}^n$. Då gäller

$$|\mathbf{x} - \operatorname{proj}_W(\mathbf{x})| \le |\mathbf{x} - \mathbf{w}|, \mathbf{w} \in W.$$

Bevis Schmart.

6 ${f Volymer}$

Denna delen diskuterar hur man beräknar storheten volym för objekter i \mathbb{R}^n . Ordet volym kommer att användas om area i \mathbb{R}^2 , volym i \mathbb{R}^3 och en analog storhet i andra \mathbb{R}^n .

En kropp i \mathbb{R}^n En kropp i \mathbb{R}^n är en mängd punkter. Ett enkelt exempel är ett prism P, som ges av

$$P = \{ \mathbf{x} \mid \mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{v}_i \}.$$

Vektorerna $\mathbf{v}_1, \dots, \mathbf{v}_n$ definierar då prismet.

Volym av ett prism Ett prism P i \mathbb{R}^n definieras av vektorerna $\mathbf{v}_1, \dots, \mathbf{v}_n$. Konstruera en matris A vars kolumner är vektorerna som definierar prismet. Då ges volymen till P av

$$V_P = \det(A)$$
.

Volym av en transformerad kropp Om man använder en linjär avbildning T med standardmatris A på punkterna i en kropp K, ges volymen av kroppen som fås efter avbildningen av

$$V_{T(K)} = \det(A)V_K.$$