KAIYUE SHEN

 \diamond Phone: (+41) 768172997 \diamond Date of birth: 20.08.1997 \diamond Nationality: Chinese

♦ Student-ID: 19-950-229 ♦ Email: kashen@ethz.ch ♦ Homepage: https://skype-line.github.io

EDUCATION

Master in Electrical Engineering & Information Technology, ETH Zürich

2019 - present

Areas of Study: computer vision, deep learning, machine learning, reinforcement learning, robotics.

GPA: 5.74 / 6

Bachelor in Electronic Information Engineering, University of Electronic Science and Technology of China GPA: 91.5 / 100, Rank: 1 / 285

WORK EXPERIENCE

Computer Vision Intern, Seervision AG, Zürich, Switzerland

September 2021 - March 2022

- Prototype, implement and benchmark state-of-the art approaches in person re-identification.
- Collect, process, and annotate datasets for use in the training and evaluation of person reid task.
- Analyze, solve and document failure cases in the real production.

SKILLS

Programming: Python (PyTorch, TensorFlow, Scikit-Learn, Keras), C++ (ROS), MATLAB

Others: Linux, Git, LaTex, Docker

PROJECTS

Implicit Expressive Human Avatar

Master Thesis, Research Assistant, Advanced Interactive Technologies Lab, ETHZ Supervisors: Prof. Dr. Otmar Hilliges, Dr. Jie Song, Chen Guo

• Proposed a new implicit modelling method for expressive human avatars.

April 2022 - present

- Created a novel pipeline to learn the model from either scans or RGB-D data using PyTorch.
- Built a coarse-to-fine registration pipeline that fits a parametric model to our motion-captured scans.
- Contributed a dataset of high-quality textured scans of clothed people performing varied body and hand movements and facial expressions.

Continual learning for autonomous mobile robots

Semester Project, Autonomous Systems Lab, ETHZ Supervisors: Prof. Dr. Roland Siegwart, Dr. Abel Gawel October 2020 - February 2021

- Built a network that continually learns the foreground and background segmentation task using TensorFlow.
- Implemented several methods for continual learning: fine-tuning (baseline), feature distillation, output distillation, elastic weight consolidation, progress and compress.
- Conducted two experiments on NYU & CLA datasets to test the performance of all methods.

Gradual Transition From Model-Based to Model-Free

Course project of Deep Learning

October 2020 - January 2021

Co-workers: Le Chen, Yunke Ao, Zheyu Ye

- Proposed a method that gradually transform a model-based RL framework to a model-free actor-critic architecture to combine their advantages using PyTorch.
- Developed a general RL training pipeline that goes through 3 stages: model-free pre-training, model-based imitation and model-free fine-tuning where the second stage is the most creative part of our work.

• Evaluated our algorithm on benchmark tasks in the OpenAI Gym and showed its faster convergence and higher final performance compared with other baselines: MVE, DDPG and modified Mb-Mf.

Simple Hexapod Robot Control

Course project of Computational Models of Motion

Co-workers: Chao Ni, Ji Shi

• Developed a locomotion control framework for Hexapod in simulation using C++.

- Implemented an inverse kinematics solver, and a gait controller that outputs target offsets for the IK solver.
- Achieved multiple gaits and transitions, basic navigation and obstacle avoidance, and complicated terrain test.

Object Reconstruction with Depth Error Compensation Using Azure Kinect

Course project of 3D Vision

March - July 2020

May - June 2020

Supervisor: Taein Kwon

Co-workers: Yunke Ao, Yifei Dong, Panayiotis Panayiotou

- Presented a method for creating object meshes based on existing SLAM frameworks, and a learning-based depth error compensation mechanism for Time-of-Flight cameras using Python and C++.
- Implemented an object reconstruction pipeline composed of five processes: point cloud generation, background removal, geometric registration, surface reconstruction and bias correction (in charge of last two parts).
- Demonstrated the effectiveness of our method using the Azure Kinect RGBD camera, and showed better performance compared with the depth correction method adopted by BADSLAM.

Intern in Institute of Image Processing, UESTC

Supervisor: Prof. Yang Hu

July 2018 - June 2019

- Researched Virtual Try-on (fashion image synthesis) based on Generative Adversarial Networks using PyTorch.
- Reproduced and examined different ideas: FiNet, VITON, fashionGAN, CP-VTON, etc.
- Refined the performance of FiNet model by modifying the model framework and adding training techniques.
- Crawled 18,000+ pairs of images from the fashion website Zalando to make our own dataset.

AWARDS

• 2017-2018 National Scholarship	Ministry of Education of P.R.C, 2018.
• 2016-2017 National Scholarship	Ministry of Education of P.R.C, 2017.
• 2015-2016 National Scholarship	Ministry of Education of P.R.C, 2016.
• The Meritorious Winner in MCM (Top 1%)	COMAP, 2018.

HOBBIES

• Hiking, skating, skiing, badminton, cooking.