PREVER ESTÁGIO DE COVID19

Nury Yuleny Arosquipa Yanque NUSP: 9871836

Resumo

Utilizei o dataset disponibilizado pelo GRUPO FLEURY, tem basicamente dois arquivos, um contendo os pacientes e dados associados ao paciente, e o outro arquivo contém basicamente os resultados dos exames por cada paciente e data com que foi feita. A partir disso, processou-se os dados com a finalidade de alimentar uma rede neural profunda por cada estágio da COVID19 (PCR, IgG e IgM), no total 3 redes. Foi muito legal conhecer a adversidade com que se lida quando se trabalha com dados do mundo real, gastei um tempão nisso, não consegui colocar nas CNNs.

Introdução

Pessoalmente eu tive duas motivações principais para resolver este EP. Primeiro, conseguir lidar com dataset do mundo real, quer dizer, entender os dados e arrumar ela de forma que possa ser processada por uma rede neural. Segundo, a partir dos dados que podem ser vários exames e dados do paciente, utilizar uma rede neural (na verdade 3 redes neurais, uma por cada estágio do COVID) conseguir prever qual o estágio do COVID19 num paciente.

Os objetivos do trabalho, para mim, são:

- Processar os dados, isto é, quais são os rótulos? quais que vão ser minhas features? isso conlleva a limpar os dados, transformar os dados, estruturá-los também, etc.
- Criar uma rede neural convolucional por cada estágio do Covid, isto é:
 - CNN para PCR
 - CNN para detecção de anticorpos IgG
 - CNN para detecção de anticorpos IgM

Vamos manter a estrutura proposta pelo EP4.

Metodologia

Pré-processamento dos dados

Estoy trabalhando com os dados disponibilizados pelo grupo Fleury, que são:

- Grupo_Fleury_Dataset_Covid19_Resultados_Exames.csv
- Grupo_Fleury_Dataset_Covid19_Pacientes.csv

Vamos analisar os dois arquivos

Grupo_Fleury_Dataset_Covid19_Pacientes

Tem 129596 registros com 7 colunas:

```
pacientes.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 129596 entries, 0 to 129595
Data columns (total 7 columns):
    Column
                   Non-Null Count
                                     Dtype
    ID PACIENTE 129596 non-null object
    IC_SEXO 129596 non-null AA_NASCIMENTO 129596 non-null
                                     object
                                     object
    CD_PAIS 129596 non-null object
                    129596 non-null object
    CD UF
    CD_MUNICIPIO 129596 non-null object
                   129596 non-null object
    CD CEP
dtypes: object(7)
memory usage: 7.9+ MB
```

- Não tem registros duplicados
- Adicionamos uma nova coluna 'Idade', que calcula o ano do paciente utilizando o 'AA_NASCIMENTO'. Quando o valor do ano é 'AAAA' coloca 95 anos como idade, pois 'AAAA' é o valor asignado quando o ano de nascimento é igual ou anterior a 1930.
- Passou dados categoricos para numericos como os da coluna 'IC_SEXO' e 'CD UF'.
- Deletou-se as seguintes colunas: ['AA_NASCIMENTO', 'CD_PAIS', 'CD_UF', 'CD_MUNICIPIO', 'CD_CEP'].
- Todas estas mudanças foram salvas no arquivo: Covid19_Pacientes_clean.csv

Grupo_Fleury_Dataset_Covid19_Resultados_Exames

- Tem 2 496 591 registros com 8 colunas
- Foram deletados os registros duplicados
- Obteve-se a densidade dos exames, isto é, tendo em conta as colunas
 ['DE_EXAME', 'DE_ANALITO'] a quantidade de cada DE_ANALITO. O resultado foi
 salvo no arquivo examens_agrupados.csv
- A partir disso, se deleteram os seguintes DE ANALITOS:
 - 'COVID 19, Material'

E os IgM e IgG não relacionados com a COVID19

- 'CITOMEGALOVIRUS, ANTICORPOS IgG, soro' 'CMV, IgG'
- 'CITOMEGALOVIRUS, ANTICORPOS IgM, soro' 'CMV, IgM'
- 'RUBEOLA, ANTICORPOS IgG, soro' 'Rubeola, IgG'
- 'RUBEOLA, ANTICORPOS IgM, soro' 'Rubeola, IgM'
- 'VIRUS EPSTEIN BARR (ANTIGENO DO CAPSIDEO VIRAL),
 ANTICORPOS IgM, soro' 'Epstein-Barr, IgM'
- 'VIRUS EPSTEIN BARR (ANTIGENO DO CAPSIDEO VIRAL),
 ANTICORPOS IgG, soro' 'Epstein-Barr, IgG'

- 'ZIKA VÍRUS, PESQUISA DE ANTICORPOS DA CLASSE IGM, soro' 'Zika vírus - IgM'
- 'ZIKA VÍRUS, PESQUISA DE ANTICORPOS DA CLASSE IGM, soro' 'Zika vírus - IgM - Índice'
- 'HERPES SIMPLEX, TIPO 1, ANTICORPOS IgG, soro' 'Herpes Simplex, Tipo 1, IgG'
- 'HERPES SIMPLEX, TIPO 2, ANTICORPOS IgG, soro' 'Herpes Simplex, Tipo 2, IgG'- 'SARAMPO, ANTICORPOS IgG, soro' 'Sarampo, Anticorpos IgG'
- 'SARAMPO, ANTICORPOS IgM, soro' 'Sarampo, Anticorpos IgM'
- 'CHLAMYDIA TRACHOMATIS, ANTICORPOS IgG, soro' 'Chlamydia Trachomatis, IgG'
- 'CHLAMYDIA TRACHOMATIS, ANTICORPOS IgM, soro' 'Chlamydia Trachomatis, IgM'
- 'VARICELLA-ZOSTER VIRUS, ANTICORPOS IgG, soro' 'Varicella-Zoster, anticorpos IgG'
- 'VARICELLA-ZOSTER VIRUS, ANTICORPOS IgM, soro' 'Varicella-Zoster, anticorpos IgM'
- 'ZIKA VÍRUS, PESQUISA DE ANTICORPOS DA CLASSE IGG, soro' 'Zika vírus - IgG - Índice'
- 'ZIKA VÍRUS, PESQUISA DE ANTICORPOS DA CLASSE IGG, soro' 'Zika vírus - IgG'
- 'DENGUE, ANTICORPOS IgG, PROVA RÁPIDA, soro' 'Dengue, IgG'
- 'DENGUE, ANTICORPOS IgM, PROVA RÁPIDA, soro' 'Dengue, IgM
- 'DENGUE, ANTICORPOS IgG, soro' 'Dengue, IgG'
- 'DENGUE, ANTICORPOS IgM, soro' 'Dengue, IgM'
- 'HERPES SIMPLEX, TIPO 1 e 2, ANTICORPOS IgG, soro' 'Herpes Simplex, Tipo 1 e 2, IgG'
- 'HERPES SIMPLEX, TIPO 1 e 2, ANTICORPO IgM, soro' 'Herpes Simplex, Tipo 1 e 2, IgM'
- 'CAXUMBA, ANTICORPOS IgG, soro' 'Caxumba, IgG'
- 'CAXUMBA, ANTICORPOS IgM, soro' 'Caxumba, IgM
- 'HELICOBACTER PYLORI, ANTICORPOS IgG, soro' 'Helicobacter Pylori, IgG'
- 'ERITROVIRUS B19, ANTICORPOS IgM, soro' 'Eritrovírus B19, IgM'
- 'ANTICORPOS IgM CONTRA O VIRUS DA HEPATITE A (ANTI-VHA IgM)'
 'Anti-VHA, IgM'
- 'ANTICORPO IgM CONTRA ANTIGENO DO CORE DO VIRUS DA HEPATITE B, soro' 'Anti-HBc, IgM'
- 'TOXOPLASMA, ANTICORPOS IgG, soro' 'Toxoplasma, IgG'
- 'TOXOPLASMA, ANTICORPOS IgM, soro' 'Toxoplasma, IgM'
- Tem Resultados redundantes em alguns exames, por exemplo, eles estão expressados de duas maneiras, primeiro dado original, e a outra forma é de maneira normalizada (%), exemplo:

15	542 HEMOGRAMA, sangue total	Neutrófilos (%)	35484
16	541 HEMOGRAMA, sangue total	Neutrófilos	35484
17	537 HEMOGRAMA, sangue total	Monócitos	35484
18	538 HEMOGRAMA, sangue total	Monócitos (%)	35484
19	532 HEMOGRAMA, sangue total	Linfócitos (%)	35484
20	528 HEMOGRAMA, sangue total	Hemoglobina	35484
21	531 HEMOGRAMA, sangue total	Linfócitos	35484
22	519 HEMOGRAMA, sangue total	Basófilos (%)	35483
23	540 HEMOGRAMA, sangue total	Morfologia, Série Vermelha	35483
24	524 HEMOGRAMA, sangue total	Eosinófilos (%)	35483
19 20 21 22 23 24 25 26	518 HEMOGRAMA, sangue total	Basófilos	35483
26	523 HEMOGRAMA, sangue total	Eosinófilos	35483

Entonces aqui deletamos o original, e mantemos o normalizado.

Segue, análise dos rótulos dos estágios da COVID19, isto é, DE_ANALITO que confirme se tem COVID19 ou que não tem, DE_ANALITO que confirme se tem IgG ou que não tem, e DE_ANALITO que confirma se tem IgM ou que não tem.

PCR

O único 'DE ANALITO' relacionado com a confirmação de COVID19 é:

- 'Covid 19, Detecção por PCR' tem 50223 ocorrencias.

Os 'DE RESULTADO' encontrados no dataset são:

NÃO DETECTADO	19285
NÃO DETECTADO (NEGATIVO)	18287
DETECTADO	8159
DETECTADO (POSITIVO)	4362
Inconclusivo	48
INCONCLUSIVO	41
Inconclusivo	40
INCONCLUSIVO	1
Name: DE_RESULTADO, dtype:	int64

Deletamos os INCONCLUSIVOS, pois não se tem certeza se tem COVID19 ou não tem, além disso temos poucos registros deste tipo.

Agora temos 4 tipos de respostas redundantes, vamos converter apenas para resposta binária, onde:

- positivo/detectado: 1
- não detectado/negativo: 0

Finalmente, temos:

```
IALITO'] == 'Covid 19, Detecção por PCR']['DE_RESULTADO'].value_counts()

0    37572
1    12521
Name: DE_RESULTADO, dtype: int64
```

IgG

Temos os seguintes DE_EXAME, DE_ANALITO relacionadas con anticorpos IgG Covid19:

- 'COVID19, ANTICORPOS IgG, soro' 'Covid 19, Anticorpos IgG, Quimiolumin.-Índice'
- 'COVID19, ANTICORPOS IgG, soro' 'Covid 19, Anticorpos IgG, Quimioluminescência'

Ambos explicam a mesma coisa de duas formas diferentes, pois o índice é a quantidade de **índice** IgG, porém o outro teste tem o resultado, que nada mais que é quando aplica um umbral de 0.8 no **índice**, se ele for inferior do 0,8, o resultado deste exame é NÂO REAGENTE, caso contrário é REAGENTE. Deletamos os resultados que diz 'Indeterminado' e fica da seguinte forma

```
9, Anticorpos IgG, Quimioluminescência']['DE_RESULTADO'].value_counts()

NÃO REAGENTE 73795
REAGENTE 7894
Name: DE_RESULTADO, dtype: int64
```

Também mapeamos esses valores para valores numéricos:

```
[resultados_exames['DE_ANALITO'] == 'Covid 19, Anticorpos IgG, Quimiolu

0 73795
1 7894
Name: DE RESULTADO, dtype: int64
```

Também tem-se esse DE EXAME, DE ANALITO que obtém o IgG

- 'COVID19, ANTICORPOS IgG, soro' 'Covid 19, Anticorpos IgG, Elisa Índice'
- 'COVID19, ANTICORPOS IgG, soro' 'Covid 19, Anticorpos IgG, Elisa'

Processando e mapeando eles para dados numéricos temos:

```
0 3301
1 543
Name: DE RESULTADO, dtype: int64
```

Além disso, também temos este exame q calcula anticorpos IgG:

 'SARS-CoV-2, ANTICORPOS IgM E IgG, TESTE RÁPIDO' 'Covid 19, Anticorpos IgG, teste rápido'

E por último:

- 'SARS-COV-2, ANTICORPOS IgG, soro' 'Covid 19, Anticorpos IgG, Elisa Índice'
- 'SARS-COV-2, ANTICORPOS IgG, soro' 'Covid 19, Anticorpos IgG, Elisa'

```
ains('Covid 19, Anticorpos IgG, Elisa')]['DE_RESULTADO'].value_counts()

0     3301
1     543
Name: DE_RESULTADO, dtype: int64
```

Por tanto, os DE_ANALITO associados a anticorpos IgG que mais pra frente vão ser nossos rótulos para nossa rede IgG são:

- 'Covid 19, Anticorpos IgG, Quimioluminescência'
- 'Covid 19, Anticorpos IgG, Elisa'
- 'Covid 19, Anticorpos IgG, teste rápido'

IgM

DE EXAME e DE ANALITO associados:

 'SARS-CoV-2, ANTICORPOS IgM E IgG, TESTE RÁPIDO' 'Covid 19, Anticorpos IgM, teste rápido'

Também os seguintes:

- COVID19, ANTICORPOS IgM, soro Covid 19, Anticorpos IgM, Quimiolumin.-Índice
- COVID19, ANTICORPOS IgM, soro Covid 19, Anticorpos IgM, Quimioluminescência

Por tanto, os DE_ANALITO associados a anticorpos IgM que mais pra frente vão ser nossos rótulos para nossa rede IgM são:

- 'Covid 19, Anticorpos IgM, Quimioluminescência'
- 'Covid 19, Anticorpos IgM, teste rápido'

Uma vez tendo os rótulos prontos para os 3 estágios da COVID19, seguimos analisando os registros dos exames.

Análisis gerais

Deletamos as seguintes colunas, pois não agregam valor :

['DE_ORIGEM', 'CD_UNIDADE', 'DE_VALOR_REFERENCIA']

Se a densidade de DE_ANALITO for menor do que 400 deletamos o registro que contenha esses DE_ANALITO, pois 400 é muito pouco comparado ao número de pacientes, por tanto tem muito paciente que não se fizeram esses exames.

1014 rows × 3 columns

Outra coisa que se avaliou foi a quantidade de EXAMES FEITO POR PACIENTE:

```
resultados exames['ID PACIENTE'].value counts()
CE1F4D06FE83023E08DF680EC7324BF5
A9DFF7F65875D4R92F59D50F9R21DCF2
                                      644
                                      643
                                CE
                                      587
to scroll output; double click to hide
                                08
                                      558
D5777D57B14E3CB2E2ED600C2EC86742
                                        1
B24C127D85F494A6145A60EE30246FE7
                                        1
C01D8355ABF56655EB5989E8789E663A
                                        1
5BFE3D28F619425E2E25D160F267E198
0F4844A9976A99DC30DE8E011C0BA4DF
Name: ID PACIENTE, Length: 128706, dtype: int64
```

Só vamos analisar pacientes que tenham feito como mínimo 18 exames DE ANALITO:

```
resultados exames['ID PACIENTE'].value counts()
CE1F4D06FE83023E08DF680EC7324BF5
                                     649
A9DEF7F65875D4B92E59D50F9B21DCF2
                                    644
FD10C24CA5986B00FFDDED743447EC81
                                     643
4AD9371C8FAF9B4B3C409589E09104CE
                                     587
FC5675885071BBF89EE97CFFBB80B5D8
                                     558
A420012B68C72D4CD71088AD560A302F
                                      18
4EFF38F5EC982B7A9F1AEFB154154A3C
                                      18
C2060E3D27DC2CAEF2A28E14E108061D
                                      18
3DBB1C0ADD2799027ED193569CE8B4C1
                                      18
AFBA550AA6D3DE60D29DB92B431AC854
                                      18
Name: ID_PACIENTE, Length: 26032, dtype: int64
```

Propagação de resultados dos testes por ID_PACIENTE e DATA_COLETA

Agrupamos por paciente, e ordenamos segundo a DATA_COLETA, e utilizamos o DE_RESULTADO da última DATA_COLETA que o paciente fez o exame de interesse. O resultado da propagração esta no arquivo: **resultados_pcr_prograsao.csv**E os rotulos que vamos utilizar por cada ID_PACIENTE estão salvos no arquivo: **paciente_covid_resultado_final.csv**

Arquitetura da rede neural

Minha proposta é treinar uma rede por cada ESTÁGIO DA COVID19

CNN PCR

As features para esta Rede são os top 30 DE_ANALITOS que são os exames que tem resultado de COVID19 positivo ou não para serem utilizados como label no momento de treinar e testar a rede.

Hemat <mark>ó</mark> crito	11927
Concentração de Hemoglobina Corpuscular	11927
Leucócitos	11927
Hemoglobina Corpuscular Média	11927
Linfócitos (%)	11927
Plaquetas	11927
Monócitos (%)	11927
Eritrócitos	11927
/CM	11927
Neutrófilos (%)	11927
Hemoglobina	11926
Morfologia, Série Branca	11926
Basófilos (%)	11926
Eosinófilos (%)	11926
Morfologia, Série Vermelha	11926
RDW	11925
/olume plaquetário médio	11662
Covid 19, Detecção por PCR	9117
Creatinina	8986
Glicose	8462
ALT (TGP)	8359
AST (TGO)	8283
Jréia	7877
Hormônio Tiroestimulante	7521
Γriglicérides	7173
Colesterol total	7141
HDL-Colesterol	7097
LDL-Colesterol	6955
Colesterol não-HDL, soro	6948
/LDL-Colesterol	6699

Note-se que temos 9117 rótulos, isto quer dizer que teremos 29 colunas que são os exames restantes e 1 coluna como o label associado ao registro de resultados dos exames. No momento temos o arquivo sem ainda converter no formato de colunas de features, que é **resultados_exames_covid19.csv**

CNN IgG

CNN IgM

Descrição dos experimentos

Resultados

Discussão

Bibliografia