Задачи к семинарам 23.09.2024

- 1 Случайная величина ξ имеет стандартное нормальное распределение $\mathcal{N}(0,1)$. Найдите плотность случайной величины ξ^2 .
- ${\bf 2}\,$ Случайная величина ξ имеет стандартное распределение Коши, т.е. плотность ξ равна

$$p(x) = \frac{1}{\pi(1+x^2)}, \quad x \in \mathbb{R}.$$

Найдите плотности распределения случайных величин (a) $\xi^2/(1+\xi^2)$, (b) $1/(1+\xi^2)$, (c) $2\xi/(1-\xi^2)$, (d) $1/\xi$.

- 3 Случайные величины ξ и η независимы. Пусть $F_{\xi}(x)$ и $F_{\eta}(x)$ их функции распределения. Положим $\zeta_1 = \max(\xi, \eta), \ \zeta_2 = \min(\xi, \eta)$. Вычислите функции распределения случайных величин ζ_1 и ζ_2 .
- 4 Пусть ξ_1, \ldots, ξ_n независимые одинаково распределенные (т.е. их функции распределения равны) случайные величины с функцией распределения F(x) и плотностью f(x). Упорядочим значения ξ_1, \ldots, ξ_n по неубыванию. Возникает новая последовательность случайных величин

$$\xi_{(1)} \leq \ldots \leq \xi_{(n)}$$

(т.е. $\xi_{(k)}-k$ -я по порядку величина из ξ_1,\dots,ξ_n). Найдите

- (a) функцию распределения случайной величины $\xi_{(k)}, k = 1, \dots, n$.
- (b) плотность случайной величины $\xi_{(k)}, \ k=1,\ldots,n.$

Памятка. Случайные величины ξ_1, \dots, ξ_n называются независимыми (в совокупности), если для любых $x_1, \dots, x_n \in \mathbb{R}$ выполнено

$$P(\xi_1 \le x_1, \dots, \xi_n \le x_n) = \prod_{k=1}^n P(\xi_k \le x_k).$$