Department of Mathematics Indian Institute of Technology Patna B.Tech. II year (Autumn Semester: 2020-21)

Tutorial Sheet-2: MA201 (Complex Analysis)

- 1. Find the limit of each of the following functions at given points:
 - $f(z) = \frac{xy}{x^2 + y^2} + 2xyi; \text{ when } z \to 0,$
 - (ii) $f(z) = \frac{xy^3}{x^3 + y^3} + \frac{x^8}{y^2 + 1}i; \text{ when } z \to 0,$ (iii) $f(z) = \frac{3z^4 2z^3 + 8z^2 2z + 5}{z i}; \text{ when } z \to i,$ (iv) $f(z) = \frac{z^3 + 8}{z^4 + 4z^2 + 16}; \text{ when } z \to 2e^{\pi i/3},$ (v) $f(z) = \frac{z \bar{z}}{z + \bar{z}}; \text{ when } z \to 1 + i,$ (vi) $f(z) = (|z|^2 i\bar{z}); \text{ when } z \to 1 i.$
- 2. If $\lim_{z\to z_0} f(z) = l$, show that $\lim_{z\to z_0} |f(z)| = |l|$.
- 3. Let $f(z) = \frac{Re(z)}{|z|}$, $z \neq 0$ and f(0) = 1. Is f(z) continuous at the origin? 4. Let $f(z) = \sqrt{z} = \sqrt{|z|}e^{iArg(z)/2}$, where $z \neq 0$. Show that f(z) is discontinuous at each point along the negative real axis.
- 5. Test the continuity of the following functions:
 - (i) $f(z) = z^2$ (ii) $f(z) = \cot z$ (iii) $f(z) = \frac{\tanh z}{z^2 + 1}$
- 6. Show that the function is continuous at the given point z_0 :

 (i) $f(z) = \frac{Re(z)}{z+iz} 2z^2$; $z_0 = e^{i\pi/4}$,

 (ii) $f(z) = \frac{z^3-1}{z^2+z+1}$, $|z| \neq 1$ and $f(z) = \frac{-1+i\sqrt{3}}{2}$, |z| = 1; $z_0 = \frac{1+i\sqrt{3}}{2}$.
- 7. Establish the C-R equations in polar coordinates.
- 8. Derive the Laplace equation in polar form.
- 9. Show that the function $f(z) = \begin{cases} \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}, & z \neq 0, \\ 0, & z = 0 \end{cases}$ is not differentiable at the origin
- (0, 0); although, the C R equations are satisfied there.
- 10. Show that the function $f(z) = \frac{|z^2 \bar{z}^2|^{1/2}}{2}$ is not differentiable at the origin (0, 0). Although, the C-R equations are satisfied there.
- 11. Show that for the function $f(z) = \begin{cases} -\frac{\overline{z}^2}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$, C R equations are satisfied at the origin
- (0,0). Also, check whether or not f'(0) exists?
- 12. Prove that f(z) = xy + yi is everywhere continuous but not analytic.
- 13. Prove that for the function $f(z) = x^3 + i(1-y)^3$, we can write $f'(z) = u_x + iv_x = 3x^2$, only when z = i.
- 14. Check the continuity and analyticity of the function $f(z) = z\bar{z}$ everywhere.
- 15. Prove that the following functions are nowhere differentiable:
 - $\begin{array}{llll} \text{(i)} & f(z) = |z| & \text{(ii)} & f(z) = Re(z) & \text{(iii)} & f(z) = Im(z) & \text{(iv)} & f(z) = \bar{z} \\ \text{(v)} & f(z) = z \bar{z} & \text{(vi)} & f(z) = 2x + ixy^2 & \text{(vii)} & f(z) = e^x e^{-iy}. \end{array}$

- 16. Prove that in each of the following cases, U is a harmonic function. Further, find a function V such that f(z) = U + Vi is analytic.
 - 1. $U = e^x(x\cos y y\sin y),$
 - 2. $U = 4xy x^3 + 3xy^2$,
 - 3. $U = \sin x \cosh y + 2 \cos x \sinh y + x^2 y^2 + 4xy$,
 - 4. $U = x^3 3xy^2 3x^2 3y^2 + 1$.
- 17. Prove that an analytic function with constant modulus is constant.
- 18. Show that if u(x,y) and v(x,y) are harmonic functions in a domain D, then the function $f(z) = (u_y v_x) + i(u_x + v_y)$ is analytic in D.
- 19. Verify the validity of the statement: "If the function f(z) = u(x,y) + iv(x,y) is analytic at a point z, then necessarily the function f(z) = v(x,y) iu(x,y) is analytic at z."