Fundamentals of Computer Science Exercises on Regular languages

March 2016

Exercise 1. For a given string $w = w_1 w_2 \dots w_n$ ($w_i \in \Sigma$) we denote the reversed string as $w^{\mathcal{R}} = w_n \dots w_2 w_1$. For a given language L we write $L^{\mathcal{R}} = \{w^{\mathcal{R}} \mid w \in L\}$. Given L is regular, is $L^{\mathcal{R}}$ regular as well?

Exercise 2. Give for every language below over the alphabet $\Sigma = \{0,1\}$ a regular expression that determines the language. Construct an NFA that decides the language.

- 1. $\{w \mid \text{ every odd position of } w \text{ is a } 1\}$
- 2. $\{w \mid w \text{ contains at least two 0s and at most one 1}\}$
- 3. The complement language of $\{11, 111\}$
- 4. $\{w \mid \text{the numbers of occurrences of 01 and 10 in } w \text{ are the same}\}$

Exercise 3. Prove that for every $n \ge 1$ there exists an NFA that decides the following languages.

- 1. $L_n = \{a^k \mid k \text{ is a multiple of } n\}$ over the alphabet $\Sigma = \{a\}$.
- 2. $L_n = \{x \mid x \text{ is the binary representation of a natural number that is a multiple of } n\}$

Exercise 4. Given the alphabet Σ_3 :

$$\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
 (1)

Consider a string over Σ_3 as three rows of 0's and 1's and consider every row to be the binary representation of a binary number (little-endian). We define L as the language

$$\{w \mid \text{the last row of } w \text{ is the sum of the two rows above.}\}$$
 (2)

over Σ_3 . Thus $\begin{bmatrix} 0\\0\\1\end{bmatrix}\begin{bmatrix} 1\\0\\0\end{bmatrix}\begin{bmatrix} 1\\0\\0\end{bmatrix}\begin{bmatrix} 1\\1\\0\end{bmatrix}$ is an element of L, but $\begin{bmatrix} 0\\0\\1\end{bmatrix}\begin{bmatrix} 1\\0\\1\end{bmatrix}$ isn't. Show that L is a regular language.

Exercise 5. An all-paths-NFA $\langle Q, \Sigma, \delta, q_0, F \rangle$ differs from an NFA because it accepts a string w only if

- for every possible subdivision $w = y_1 y_2 \dots y_m$, $y_i \in \Sigma_{\varepsilon}$ and every state sequence r_0, r_1, \dots, r_m such that $r_0 = q_0$ and $r_{i+1} \in \delta(r_i, y_{i+1})$, it holds that $r_m \in F$;
- there is at least one subdivision $w = y_1 y_2 \dots y_m$, $y_i \in \Sigma_{\varepsilon}$ such that there is a state sequence r_0, \dots, r_m with $r_0 = q_0$ and $r_{i+1} \in \delta(r_i, y_{i+1})$.

Show that L is regular, if and only if there exists an all-paths-NFA that decides L.