Название организации

«»	2016 r
ФИО	зав. кафедрой
зав. кафедрой	
Диссертация допущена	к защите
T-F	

ДИССЕРТАЦИЯ на соискание ученой степени МАГИСТРА

Тема: Тема диссертации

Направление:	111111 – Название направления
Магистерская программа:	111111 – Название программы
Выполнил студент гр. 111	1/1 ФИО автора
Научный руководитель, д. фм. н., ст. н. с.	ФИО руководителя
Рецензент,	
д. фм. н., в. н. с.	ФИО рецензента
Консультант по вопросам	
охраны труда,	
К. т. н., доц.	ФИО консультанта

Оглавление

Введение		3
Глава 1. Картирование с прямой и обратной моделью сено	copa .	4
1.1. Картирование с обратной моделью сенсора		4
1.1.1. Обратная модель сенсора		6
1.1.2. Недостатки метода картирования с обратной модели	ью	7
1.2. Картирование с прямой моделью сенсора		8
1.2.1. Прямая модель сонара Труна		8
1.2.2. Картирование с прямой моделью		10
Глава 2. Картирование с прямой моделью в режиме реал	льногс)
времени		11
2.1. Картирование методом стохастического градиента		11
Заключение		13
Список литературы		14
Приложение А Заголовок приложения		15

Введение

Глава 1

Картирование с прямой и обратной моделью сенсора

В этой главе рассматриваются два ставших уже классическими подхода построения карт проходимости. TODO

1.1. Картирование с обратной моделью сенсора

Пусть m_i - клетка карты проходимости m. Будем считать, что каждая клетка m_i - бинарная случайная величина, принимающая два значения: {свободная, занятая}. Наблюдением сенсора z_t будем называть измерение и позу датчика в момент времени t, где это измерение было сделано. Вместо того, чтобы напрямую решать задачу картирования, будем искать вероятность занятости некоторой карты m при наблюдениях $z_1, ..., z_T$

$$p(m|z_1,...,z_T) \equiv p(m|z_{1,T})$$

Основная проблема в том, что карта проходимости m принадлежит пространству большой размерности. Чтобы обойти эту проблему при оценке $p(m|z_{1,T})$, вводится предположение о том, что клетки карты m_i - случайные, независимые величины. Тогда

$$p(m|z_{1,T}) = \prod_{i} p(m_i|z_{1,T})$$

Таким образом, достаточно понять, как можно оценить вероятность занятости клетки i при известных наблюдениях $z_{1,T}$. Разложим $p(m_i|z_t)$ по правилу Байеса:

$$p(m_i|z_{1,t}) = \frac{p(z_t|m_i, z_{1,t-1})p(m_i|z_{1,t-1})}{p(z_t|z_{1,t-1})}$$
(1.1)

В предположении статичности окружения, ясно, что наблюдение z_t не зависит от предыдущих наблюдений, при условии заданной карты проходимости m:

$$p(z_t|m, z_{1,t-1}) = p(z_t|m)$$

Это действительно верно в предположении о статичности окружения. Однако, в этом методе делается более сильное утверждение: наблюдение z_t не зависит от предыдущих измерений при заданном состоянии клетки m_i , в независимости от состояний соседних клеток.

$$p(z_t|m_i, z_{1,t-1}) = p(z_t|m_i)$$
(1.2)

Подставив в (1.1) формулу выше, снова воспользуемся правилом Байеса

$$p(m_i|z_{1,t}) = \frac{p(z_t|m_i)p(m_i|z_{1,t-1})}{p(z_t|z_{1,t-1})} = \frac{p(m_i|z_t)p(z_t)p(m_i|z_{1,t-1})}{p(m_i)p(z_t|z_{1,t-1})}$$
(1.3)

Напомним, что эта формула написана для случая, когда m_i занята. Похожую формулу можно получить для свободной m_i :

$$p(\overline{m_i}|z_{1,t}) = \frac{p(\overline{m_i}|z_t)p(z_t)p(\overline{m_i}|z_{1,t-1})}{p(\overline{m_i})p(z_t|z_{1,t-1})}$$
(1.4)

Поделив (1.3) на (1.4) получим

$$\frac{p(m_i|z_{1,t})}{p(\overline{m_i}|z_{1,t})} = \frac{p(m_i|z_t)}{p(\overline{m_i}|z_t)} \frac{p(\overline{m_i})}{p(m_i)} \frac{p(m_i|z_{1,t-1})}{p(\overline{m_i}|z_{1,t-1})}$$
(1.5)

Заметим, что $p(\overline{m_i})=1-p(m_i)$. Поэтому, переписав (1.5) в виде log-odds $l(p(m_i))=\log \frac{p(m_i)}{1-p(m_i)}$, окончательно получаем формулу позволяющую рекурсивно вычислять $l(m_i|z_{1,t})$

$$l(m_i|z_{1,t}) = l(m_i|z_t) - l(m_i) + l(m_i|z_{1,t-1})$$
(1.6)

Алгоритм 1: Картирование с обратной моделью сенсора

Инициализация

Рекурсивное обновление log-odds

end

Получение вероятностей из log-odds

for all
$$m_i$$
 in m do
$$p(m_i|z_{1,T}) = 1 - e^{-l_i}$$
end

В (1.5) вероятность $p(m_i)$ выражает наши априорные представления о карте, обычно её полагают равной 0.5, считая что какой-либо информации о занятости всей карты в целом нам ничего определенного неизвестно.

1.1.1. Обратная модель сенсора

Величину $p(m_i|z_t)$ называют обратной моделью сенсора (inverse sensor model), выражающую вероятность занятости клетки m_i при известном наблюдении z_t . Пример того как выглядит эта вероятность можно увидеть на рисунке TODOInverseModelExample.

Заметим, что обратная модель напрямую не содержит в себе зависимость от соседних клеток. Это очень важное допущение, которое предполагает, что о состоянии клетки можно сделать выводы основываясь только на наблюдениях, независимо от соседних клеток карты. В этом заключается основной проблема этого метода, когда гипотеза о независимости клеток не работает.

1.1.2. Недостатки метода картирования с обратной моделью

Важное предположение о независимости клеток, необходимое для разложения вероятности p(m) на произведение всех $p(m_i)$, является в некоторых случаях существенным. Рассмотрим в качестве примера ситуацию, когда для картирования используется идеальные сонары (без ошибки измерений). В отличие от лазерного дальномера, сонар имеет достаточно широкую область видимости, которая часто представляется в виде конуса, пересекающий множество клеток (см рис TODOInverseSonarsExample). Измерение сонара говорит о следующем - на конце конуса должно находится препятствие, которое должно хорошо объяснять полученное измерение.

На рисунке TODOInverseSonarsExample изображены два сонара, области видимости которых пересекаются в нескольких клетках. Для левого сонара эти клетки принадлежат области препятствия, а для правого - области свободной от препятствия. В результате работы алгоритма мы получим, противоречивую информацию о занятости этих клеток: одно измерение говорит о том, что эти клетки должны быть заняты, другое - что свободны. Легко понять, что эти клетки должны быть свободны, так как есть другие клетки хорошо объясняющие эти 2 измерения (Рис TODOInverseSonarsExample). Однако эта важная дополнительная информация не используется методом, в силу предположения о независимости клеток.

В случае идеальных лазерных дальномеров, у которых очень узкая область видимости, эта проблема практически не касается.

Таким образом, можно сделать вывод, что по крайней мере в случае сонаров, использовать этот метод с предположением о независимости клеток нельзя. Но напрямую вычислить вероятность $p(m|z_{1-t})$ не представляется возможным, так как пространство всевозможных карт огромно.

Себастьян Трун (Sebastian Thrun) в работе TODOThrun предложил другой метод картирования, лишенный проблем выше.

1.2. Картирование с прямой моделью сенсора

Величина p(z|m) представляет собой вероятностное распределение наблюдения сенсора z при некоторой заданной карте проходимости m, которую будем называть npsmoй modenbo $(forward\ model)$ по аналогии с обратной моделью p(m|z). Интуитивно прямая модель показывает на сколько хорошо наблюдение z объясняет карту проходимости m. Далее приведено подробное описание прямой модели сонара Себастьяна Труна, так как в дальнейшем оно будет использовано в работе.

1.2.1. Прямая модель сонара Труна

Предполагается, что сонар выдает измерения г принадлежащие $[R_{min}, R_{max}]$. Измерение r может быть получено в результате двух сценариев:

- 1. Случайный выброс. С вероятностью p_{rand} сонар выдает случайное значение дальности, распределенное равномерно на $[R_{min}, R_{max}]$. Этот случай описывает возможные ошибочные измерения сенсора, которые могут получится в результате переотражений, зашумлений другими сонарами и т.д.
- 2. **Обычный случай.** С вероятностью p_{hit} некоторое препятствие, которое находится в области видимости сонара, может отразить волну, таким образом сонар измерит дистанцию до этого препятствия с некоторой гауссовой ошибкой. С вероятностью $1-p_{hit}$ препятствие волну не отразит, но волна может отразиться от либо следующего препятствия, либо сонар в качестве измерения вернет максимальное R_{max} .

В качестве примера рассмотрим случай на Рис Сонар3Препятсвия. Видно что самое близкое препятствие не лежит в конусе видимости сонара, поэтому при обычном сценарии работы сонара оно не влияет на p(z|m). С вероятностью p_{rand} сонар выдаст ошибочное изменение. Пусть d_1 и d_2 расстояния до

первого и второго препятствия в области видимости сонара соответственно. С вероятностью $(1-p_{rand})p_{hit}$ сонар обнаружит первое препятствие и вернёт d_1+e , где e - гауссова ошибка. Однако с вероятностью $(1-p_{rand})(1-p_{hit})$ первое препятствие не будет замечено сенсором. Аналогично с вероятностью $(1-p_{rand})(1-p_{hit})p_{hit}$ будет обнаружено второе препятствие. С вероятностью $(1-p_{rand})(1-p_{hit})(1-p_{hit})$ сенсор вернет максимальное измерение R_{max} .

Теперь опишем эту модель формально. Пусть внутри области видимости сонара находятся K препятствий, отсортированных в порядке возрастания дистанции d_k . Через $\{c_*, c_0, c_{1,K}\}$ будем обозначать множество различных сценариев работы сонара, через c_* - случайный выброс, c_0 - измерение R_{max} .

1. Пусть реализовался случай, когда измерение было порождено событием $c_k, k \in \{0,..,K\}$

$$p(z|m, c_k) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(z-d_k)^2}{\sigma^2}}$$
(1.7)

2. Если реализовался случай c_* , то

$$p(z|m, c_*) = \frac{1}{R_{max}}$$
 (1.8)

Таким образом, распределение p(z|m) является смесью распределений

$$p(z|m) = \sum_{c_i \in \{c_*, c_{0,K}\}} p(z|m, c_k) p(c_k)$$
(1.9)

Из рассуждений выше запишем априорную вероятность $p(c_k)$

$$p(c_k) = \begin{cases} p_{rand}, & k = * \\ (1 - p_{rand})(1 - p_{hit})^K, & k = 0 \\ (1 - p_{rand})(1 - p_{hit})^{k-1}p_{hit}, & k > 0 \end{cases}$$
(1.10)

Окончательно получаем

$$p(z|m) = \frac{1}{R_{max}} p_{rand} + \sum_{i \in \{1, \dots, K\}} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(z-d_k)^2}{\sigma^2}} (1 - p_{rand}) (1 - p_{hit})^{k-1} p_{hit} + \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(z-R_{max})^2}{\sigma^2}} (1 - p_{rand}) (1 - p_{hit})^K$$

$$(1.11)$$

1.2.2. Картирование с прямой моделью

Придумать какие-то слова про картирование с помощью EM алгоритма и какой-нибудь ещё метод. БЛАБЛА

По сравнению с методами картирования, которые используют обратную модель, алгоритмы с прямой моделью сохраняют зависимости между клетками карты, что позволяет лучше восстанавливать карту проходимости. На Рис ОбрПрямДверь видно, что метод из работы РаботаТрун восстановила дверной проем, в отличии от метода обратной модели.

Основной недостаток этих методов заключается в том, что они не работают в режиме реального времени и требуют больших вычислительных ресурсов для поиска оптимальной карты.

Глава 2

Картирование с прямой моделью в режиме реального времени

2.1. Картирование методом стохастического градиента

Используя прямую модель Труна, мы предлагаем метод картирования, который использует преимущества прямой модели, при этом допускает реализацию, работающую в режиме реального времени. Как и раньше, через m будем обозначать карту проходимости. Через S - множество сонаров s. Через $o(m_i)$ будем обозначать занятость клетки m_i : $o(m_i) = 1$ - клетка проходима, $o(m_i) = 0$ - клетка непроходима. Введем следующий функционал от m и S:

$$\Phi(m, S) = \phi_{sonars}(m, S) + \phi_{occupancy}(m) + \phi_{borders}(m), \qquad (2.1)$$

Рассмотрим составляющие функционала (2.1)

1. ϕ_{sonars} - распределение наблюдений сонаров z_s при заданной карте проходимости m.

$$\phi_{sonars} = p(z_1, ..., z_S | m) = \prod_{s \in S} p(z_s | m)$$
 (2.2)

2. $\phi_{occupancy}(m)$ отвечает за априорные представления о проходимости карты

$$\phi_{occupancy}(m) = \sum_{m_i} w_o o(m_i) \tag{2.3}$$

3. $\phi_{borders}(m)$ вводит штраф пропорциональный квадрату числа границ между проходимыми и непроходимы клетками

$$\phi_{borders}(m) = \sum_{m_i} w_b n^2(m_i) \tag{2.4}$$

Весовые коэффициенты w_o и w_b позволяют регулировать значимость регуляризации и показаний сонаров.

Таким образом задача картирования сводится к задаче минимизации (2.1) по всем возможным картам проходимости

$$m^* = \underset{m}{\operatorname{argmin}} \phi_{sonars}(m, S) + \phi_{occupancy}(m) + \phi_{borders}(m)$$
 (2.5)

Минимизация проводится стохастического градиента. На каждом шаге оптимизации выполняется следующее:

- 1. Случайным образом выбирается клетка m_i и значение проходимости $o(m_i)$ инвертируется.
- 2. Для нового значения проходимости клетки m_i пересчитываются $\phi_{sonars}(m,S)$, $\phi_{occupancy}(m)$ и $\phi_{borders}(m)$.
- 3. Если $\Phi_{new}(m,S) < \Phi_{old}(m,S)$, то сохраняем новое значение $o(m_i)$, иначе инвертируем обратно. Для избежания застревания в локальных минимумах, инвертирование сохраняется с вероятностью p_{rand} , вне зависимости от $\Phi_{new}(m,S)$.

При инвертировании одной клетки слагаемые $\phi_{occupancy}(m)$ и $\phi_{borders}(m)$ меняется очевидным образом (TODO описать???).

В слагаемом $\phi_{sonars}(m,S) = \prod_{s \in S} p(z_s|m)$ меняются только те члены произведения, для которых инвертированная клетка лежит в области видимости сенсора.

Все это позволяет на каждом шаге быстро пересчитывать значение функционала $\Phi_{new}(m,S)$, так как приходится пересчитывать лишь малую часть функционала $\phi_{sonars}(m,S)$, значения $\phi_{occupancy}(m)$ и $\phi_{borders}(m)$ зависит только от локальной части карты.

Заключение

Список литературы

Приложение А

Заголовок приложения