* Wort to integrate over regions of a general shape

· Type I - Regions D= {(x,y) | a = x = b, g(x) = y = h(x)}

A Watch demo on website

Fix x, find area of slice of z=f(x,y):

Suming these areas as x varries on [a,b]:

· Type II - Regions D = {(x,y) | c=y=d, g(y)=x=h(y)}

Example Evaluate $\iint (x+2y)dA$ where D is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$.

Example Evaluate $\iint xy dA$, where D is the region bounded by the line y=x-1 and the parabola $y^2=2x+6$.

- · Properties of Double Integrals:
 - (1)
 - (2)
- (3)
- 4
- (5)
- 6

- · Extra Examples
- #17. $\iint_D x \cos y \, dA$, D is bounded by y = 0, $y = x^2$, x = 1

21. If (2x-y)dA, D bounded by Circle at (0,0) with radius 2.

#47. Sketch the region and reverse the order of integration \(\int_0^2 \int_0^{\lambda x} \) of \((x, y) \, dy dx \).

62. If f(x,y)dA = \int_{0}^{1}\int_{0}^{2}\text{f(x,y)dxdy} + \int_{0}^{3}\int_{0}^{3-y}\text{f(x,y)dxdy}

Sketch D and reverse the order of Integration.