Halloween Mini Project

Andy Hsu

Analyzing Public Candy Preferences

Initial Data Analysis

The first step, as always, is to download the file.

```
candy_file <- "candy-data.csv"

candy = read.csv("https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	ricewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar j	pluribus	sugarpe	ercent	priceper	cent wir	npercent	
100 Grand	0	1	0)	0.732	0	.860	66.97173	
3 Musketeers	0	1	0)	0.604	0	.511 6	67.60294	
One dime	0	0	0)	0.011	0	.116 3	32.26109	
One quarter	0	0	0)	0.011	0	.511 4	46.11650	
Air Heads	0	0	0)	0.906	0	.511 5	52.34146	
Almond Joy	0	1	0)	0.465	0	.767	50.34755	

Taking a quick glance at our dataset, we can see that there are 85 candies in the data set, 38 of which are fruity.

```
nrow(candy)
```

```
[1] 85
```

```
sum(candy$fruity)
```

[1] 38

Looking at individual data points, we find the corresponding win rates for each of the following candies, including Warheads, my personal favorite.

```
candy["Warheads","winpercent"]

[1] 39.0119

candy["Kit Kat","winpercent"]

[1] 76.7686

candy["Tootsie Roll Snack Bars","winpercent"]
```

[1] 49.6535

If we use the **skimr** package, we can find even more information on the data set.

```
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Judging from the results, we can tell that win percent is on a different scale from the rest of the set. We can also assume that 0 and 1 indicate true or false for whether a candy is chocolately, for instance.

Next, we can plot some data to get an idea of distributions. We'll start with a histogram of win percents.

hist(candy\$winpercent)

Histogram of candy\$winpercent

We can see from the distribution that it is not symmetrical, and that the center of the distribution is below 50%.

```
mean(candy$winpercent[as.logical(candy$chocolate)])
```

[1] 60.92153

```
mean(candy$winpercent[as.logical(candy$fruity)])
```

[1] 44.11974

t.test(candy\$winpercent[as.logical(candy\$chocolate)],candy\$winpercent[as.logical(candy\$fru

Welch Two Sample t-test

data: candy\$winpercent[as.logical(candy\$chocolate)] and candy\$winpercent[as.logical(candy\$fi
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0

```
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
```

From the above code, we can tell that chocolate candies are rated higher on average than fruity candies, and that the difference is statistically significant, with a p-value of 2.9e-8.

Candy Rankings

Now, using the **dplyr** package, we can find the top 5 and bottom 5 candies based on win percent in this dataset.

```
library("dplyr")

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

# Bottom 5
    candy %>% arrange(winpercent) %>% head(5)
```

	chocolate	fruity	caran	nel :	${\tt peanutyalr}$	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511

```
Chiclets
                                0
                                    0 0
                                                         0.046
                                                                      0.325
                                                1
Super Bubble
                                    0 0
                                                 0
                                                         0.162
                                                                      0.116
Jawbusters
                                    1 0
                                                 1
                                                         0.093
                                                                      0.511
                  winpercent
                   22.44534
Nik L Nip
Boston Baked Beans
                   23.41782
Chiclets
                   24.52499
Super Bubble
                   27.30386
Jawbusters
                   28.12744
  # Top 5
```

candy %>% arrange(-winpercent) %>% head(5)

				_			_
	chocolate	fruity	caram	e⊥]	${\tt peanutyaln}$	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedri	cewafer	hard	bar	pluribus	sugai	rpercent
Reese's Peanut Butter cup)	0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperc	ent winp	percen	t			
Reese's Peanut Butter cup	0.0	651 84	4.1802	9			
Reese's Miniatures	0.5	279 83	1.8662	6			
Twix	0.9	906 83	1.6429	1			
Kit Kat	0.	511 76	3.7686	0			
Snickers	0.0	651 76	6.6737	8			

Now, we can use ggplot to plot a bar graph of all the candies according to win rate.

```
library("ggplot2")
ggplot(candy, aes(winpercent, rownames(candy))) + geom_col()
```


To order by winpercent, we can edit our code.

```
ggplot(candy, aes(winpercent, reorder(rownames(candy), winpercent))) + geom_col()
```


Next, we can label bar colors based on the type of candy. We first create a dataset with the corresponding colors we want, then apply it to the graph.

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy, aes(winpercent, reorder(rownames(candy), winpercent))) + geom_col(fill=my_colate)
```


From this informative plot, we can observe that the worst ranked chocolate candy is Sixlets, and the highest ranked fruity candy is Starburst.

Looking at Price Percent

To determine if price plays a part in the winpercent of a candy, we can plot winpercent against pricepercent. In this graph, we will use the **ggrepel** package to ensure no labels overlap.

```
library("ggrepel")

ggplot(candy, aes(winpercent, pricepercent, label=rownames(candy))) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Looking at the results, we can see that Reese's Miniatures offers the most bang for your buck, with a high winpercent and low pricepercent. We can also look at the 5 most expensive candies, finding that Nik L Nip is the least popular of these.

```
price <- candy %>% arrange(pricepercent) %>% tail(5)
price["winpercent"]
```

	winpercent
Hershey's Special Dark	59.23612
Mr Good Bar	54.52645
Ring pop	35.29076
Nik L Nip	22.44534
Nestle Smarties	37.88719

Correlation Structure

Next, we will use the **corrplot** package to plot and analyze a correlation plot to gain more knowledge on the dataset.

```
library("corrplot")
```

```
corrplot(cor(candy))
```


From this graph, we can see that the two most inversely correlated variables are chocolate and fruity. Conversely, the two most positively correlated variables are chocolate and bar.

Principal Component Analysis

Finally, we can perform PCA on this data set to obtain an idea of relationship between individual candies.

```
pca <- prcomp(candy,scale=T)
summary(pca)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Standard deviation 2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530 Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539 Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369

PC8 PC9 PC10 PC11 PC12 Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

Now, we can plot our PC1 vs PC2 plot.

We can add our colors from our earlier bar graph.

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```


Let's convert this code to ggplot and a size indicating win rate.

```
cdf <- cbind(candy, pca$x[,1:3])

p <- ggplot(cdf, aes(PC1,PC2,size=winpercent/100,text=rownames(cdf),label=rownames(cdf)))
    geom_point(col=my_cols)
p</pre>
```


We can also add labels to the points to more clearly indicate individual candies.

```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

Lastly, let's look at our loadings for the PCA.

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


From the plot, we can tell that the most positive variables were fruity, hard, and plubirus. This makes sense, as most fruity candies are hard and come in packets of many.

And that concludes our analysis of this dataset of popular candies.