Unit 18: Discrete Maths

Unit code F/618/7429

Unit level 5

Credit value 15

Introduction

Digital computer technologies operate with distinct steps and data is stored as separate bits. This method of finite operation is known as 'discrete', and the division of mathematics that describes computer science concepts such as software development, programming languages and cryptography is known as 'discrete mathematics'. This branch of mathematics is a major part of a computer science course and aids, ultimately, in the development of logical thinking and reasoning that lies at the core of all digital technology.

This unit introduces students to the discrete mathematical principles and theory that underpin software engineering. Through a series of case studies, scenarios and task-based assessments, students will explore set theory and functions in a variety of scenarios, perform analysis using graph theory, apply Boolean algebra to applicable scenarios and, finally, explore additional concepts in abstract algebra.

Among the topics included in this unit are set theory and functions, Eulerian and Hamiltonian graphs, binary problems, Boolean equations, algebraic structures and group theory.

On successful completion of this unit, students will have gained confidence in the discrete mathematics that is needed to understand software engineering concepts. As a result, they will have developed skills such as communication literacy, critical thinking, analysis, reasoning and interpretation, which are crucial for gaining employment and developing academic competence.

Learning Outcomes

By the end of this unit students will be able to:

- LO1 Examine set theory and functions applicable to software engineering
- LO2 Analyse mathematical structures of objects using graph theory
- LO3 Investigate solutions to problem situations using the application of Boolean algebra
- LO4 Explore applicable concepts within abstract algebra.

Essential Content

LO1 Examine set theory and functions applicable to software engineering

Set theory:

Sets and set operations. Algebra within set theory.

Set identities and proof of identities. Bags manipulation functions.

Functions:

Domain, range and mappings.

Inverse relations and the inverse function. Injective and surjective functions, and transitive relations

LO2 Analyse mathematical structures of objects using graph theory

Graph theory:

Structure and characterisation of graphs. Spanning trees and rooted trees.

Eulerian and Hamiltonian graphs. Vertex and edge colourings of graphs.

Directed graphs:

Directed and undirected graphs.

Walks, trails, paths and shortest paths.

LO3 Investigate solutions to problem situations using the application of Boolean algebra

Boolean algebra:

Binary states (e.g. on/off; 1/0; open/closed; high/low).

Identification of binary problems and labelling inputs and outputs. Production of a truth table corresponding to a problem situation.

Equations:

Express a truth table as a Boolean equation.

Simplify a Boolean equation using algebraic methods. Represent a Boolean equation using logic gates.

LO4 Explore applicable concepts within abstract algebra

Algebraic structures:

Binary operations and associated properties. Commutative and associative operations.

Algebraic structures and substructures.

Groups:

Introduction to groups, semigroups and monoids. Families of groups and group codes.

Substructures and morphisms.

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Examine set theory and functions applicable to software engineering		
P1 Perform algebraic set operations in a formulated mathematical problem.P2 Determine the cardinality of a given bag (multiset).	M1 Determine the inverse of a function using appropriate mathematical techniques.	D1 Formulate corresponding proof principles to prove properties about defined sets.
LO2 Analyse mathematical structures of objects using graph theory		
P3 Model contextualised problems using trees, both quantitatively and qualitatively.	M2 Assess whether a Eulerian and Hamiltonian circuit exists in an undirected graph.	D2 Construct a proof of the Five Color Theorem.
P4 Use Dijkstra's algorithm to find a shortest path spanning tree in a graph.		

Pass	Merit	Distinction
LO3 Investigate solutions to problem situations using the application of Boolean algebra		
P5 Diagram a binary problem in the application of Boolean algebra.	M3 Simplify a Boolean equation using algebraic methods.	D3 Design a complex system using logic gates.
P6 Produce a truth table and its corresponding Boolean equation from an applicable scenario.		
LO4 Explore applicable concepts within abstract algebra		
P7 Describe the distinguishing characteristics of different binary operations that are performed on the same set.	M4 Validate whether a given set with a binary operation is indeed a group.	D4 Explore, with the aid of a prepared presentation, the application of group theory relevant to your given example.
P8 Determine the order of a group and the order of a subgroup in given examples.		

Recommended Resources

Textbooks

Attenborough, M. (2003) *Mathematics for Electrical Engineering and Computing.* Oxford: Newnes.

Piff, M. (2008) *Discrete Maths Software Engineers: An Introduction for Software Engineers.* Cambridge: Cambridge University Press.

Journals

Journal of Graph Theory. Wiley.

Journal of Mathematical Modelling and Algorithms in Operations Research. Springer.

Links

This unit links to the following related units:

Unit 14: Maths for Computing

Unit 33: Applied Analytical Models.