Tema 4. Ecuații omogene

Exercițiul 1. Integrați următoarele ecuații diferențiale omogene sau reductibile la ecuații omogene și comparați soluția găsită cu cea indicată

 $u = t + 2x \rightarrow \ln|4u + 5| + 4u - 8t = C;$

 $l) x' = \frac{t+2x+1}{2t+4x+3},$

Problema 1. Aflați curbele plane pentru care toate tangentele trec printr-un punct dat $Q(t_0, x_0)$.

Soluţie. $x - x_0 = C(t - t_0)$

Problema 2. Aflați curbele plane pentru care toate normalele trec printr-un punct dat $Q(t_0, x_0)$.

Rezolvare. Presupunem că graficul funcției x=x(t), cu $t\in I$, are proprietatea cerută. Normala într-un punct $M(\tau,x(\tau))$ de pe grafic are panta $m_{\perp}=-\frac{1}{x'(\tau)}$, prin urmare ecuația normalei este

$$x - x(\tau) = -\frac{1}{x'(\tau)}(t - \tau).$$

Cerem ca punctul $Q(t_0, x_0)$ să aparțină acestei drepte și obținem ecuația diferentială

$$x_0 - x(\tau) = -\frac{1}{x'(\tau)}(t_0 - \tau), \quad \forall \tau \in I.$$

Această ecuație, rescrisă cu t în loc de τ , are forma

$$x'(x_0 - x) = t - t_0$$

și este o ecuație cu variabile separabile pentru care curbele integrale sunt date de relația

$$(x - x_0)^2 + (t - t_0)^2 = C,$$

adică sunt cercurile de centru $Q(t_0, x_0)$, așa cum era de așteptat.

Problema 3. Aflați curbele plane pentru care segmentul de tangentă determinat de axe are ca mijloc exact punctul de pe curbă.

Soluție. Ecuația diferențială: -x't = x, curbele integrale: x = C/t.

Problema 4. Aflați curbele plane pentru care segmentul de normală determinat de axe are ca mijloc exact punctul de pe curbă.

Soluție. Ecuația diferențială: xx' = t, curbele integrale: $x = \sqrt{t^2 + C}$.

