Projektstrukturierungstechniken

Louis Kobras

15. August 2016

Seminar Konzepte verteilter Softwareentwicklung

Motivation

todo...

Einführung

todo...

- 1 Geschichtlicher Überblick
 - Ursprünge im Wasserfall
 - Flexible Modelle
 - Agile Entwicklung
- 2 Langzeitstrukturierung
 - Critical Path
 - PERT
 - Gantt-Diagramme
- 3 Kurzzeitstrukturierung
 - Kanban
 - Daily Scrum und Stand-Up-Meeting

Ursprünge im Wasserfall

- Beginn als Wasserfallmodell
- entlehnt aus Ingenieurswesen
- nicht sinnvoll f
 ür Software anwendbar
- 7 Phasen im Original [Royce1970], 5 nach Konsolidierung
- Code-Schreiben auf 30-40% reduziert [OXAgile]
- kein guter Umgang mit Änderungen

Ursprünge im Wasserfall

Abbildung 1: Modifiziertes Wasserfallmodell

Flexible Modelle

- Anfänge späte 80er frühe 90er
- Fokus auf Flexibilität
- Ablehnung "schwergewichtiger" dokumentationslastiger Softwareentwicklung
- Entwicklung von Prototyping, Spiralmodell, Scrum, XP et. al.
- "iterativ", "inkrementell", "lightweight"

Agile Entwicklung

- Treffen 2001
- Festlegung auf gemeinsame Prinzipien
- "'Agiles Manifest"
- 4 Grundsätze, 12 Prinzipien
- unterschrieben von u.A. den Scrum-Entwicklern und den XP-Entwicklern

Agile Entwicklung

Wir erschließen bessere Wege, Software zu entwickeln, indem wir es selbst tun und anderen dabei helfen. Durch diese Tätigkeit haben wir diese Werte zu schätzen gelernt:

- Individuen und Interaktionen mehr als Prozesse und Werkzeuge
- Funktionierende Software mehr als umfassende Dokumentation
- Zusammenarbeit mit dem Kunden mehr als Vertragsverhandlung
- Reagieren auf Veränderung mehr als das Befolgen eines Plans

Das heißt, obwohl wir die Werte auf der rechten Seite wichtig finden,

schätzen wir die Werte auf der linken Seite höher ein.

(http://agilemanifesto.org/iso/de/manifesto.html)

- Techniken aus dem Projektmanagement
- Überblick über das gesamte Projekt
- Engpässe erkennen, Ressourcen verwalten, Deadlines im Auge behalten

Hintergrund

- Fabrikkonstruktion in den USA 195n
- kritischer Pfad, ohne den ein Projekt nicht abgeschlossen werden kann
- berücksichtigt Abhängigkeiten und Fehlertoleranz

Critical Path Analysis (CPA)

- 1. Aufgaben nach Abhängigkeiten in Flowchart sortiert
- 2. Zeitanforderungen aller Pfade vergleichen
- 3. Pfad mit größter Zeitanforderung ist Critical Path

Pro und Contra

Pro:

- erhöht Effizienz und Produktivität
- Pfad nimmt Rücksicht auf Störungen
 - ⇒ Deadlines werden nicht in Mitleidenschaft gezogen
- Ressourcenengpässe im Vorraus bekannt

Contra:

- kann schnell unübersichtlich werden
- Erfüllung kann viel micromanagement erfodern

Abbildung 2: Critical Path

Einführung

- Von der US-Navy für Atom-U-Boote kreiert
- Alternative zu CPM mit mehr analytischem Ansatz
- Milestones und Aktivitäten statt Tasks

Konstruktion

Zeit einer Aktivität lässt sich durch Formel approximieren

$$E = \frac{B + 4 \cdot A + W}{6}$$

- Berücksichtigt Extremfälle, legt aber mehr Gewicht auf Normalfall
- Anordnen der Milestones und Aktivitäten in Flowchart
- Kritischer Pfad aus Diagramm ablesbar

Pro und Contra

Pro:

- gibt erwarteteFertigstellungszeit an
- Start- und Endzeit von Tasks sind einsehbar
- gute Übersicht über Abhängigkeiten

Contra:

- Zeitschätzug nach wie vor subjektiv
- Lässt weniger float, sodass Nebenpfade kritisch werden können
- kann ebenfalls schnell unübersichtlich werden

Abbildung 3: PERT-Diagramm

Einführung

- Offiziell 191n von Henry Gantt entwickelt
- ähnliches System 1896 von Karol Adamiecki verwendet, allerdings erst 1931 veröffentlicht
- stellt Zeiten im Projekt dar, moderne Darstellungen stellen auch Abhängigkeiten dar
- unterstützt PERT und CPM

Konstruktion

- Ziele des Projektes klar definieren
- Aufgaben nach Verfügbarkeit und Fähigkeit der Teammitglieder verteilen
- Task-Dauer bestimmen (PERT-Formel)
- Abhängigkeiten auflösen (CPM)
- Diagramm mit Team abstimmen [Smartdraw]

Pro und Contra

Pro:

- Sortieren von Projektdetails
- einfaches Darstellen komplexer Zusammenhänge
- unterstützt bei Erstellung, Einhaltung und Überarbeitung von Deadlines
- Außenstehende erhalten leicht einen Überblick [PM-Hut]

Contra:

- sehr schnell enorme Ausmaße
- muss stets aktuell gehalten werden
- Hang zur Unübersichtlichkeit

Abbildung 4: Ein Gantt-Diagramm mit Critical Path

- Techniken aus Softwareentwicklungspraktiken
- entnommen aus Lean und Scrum/XP
- geeignet für Iterationsmanagement
- ungeeignet für Vollständigkeit großer Projekte

Einführung

- Entnommen aus Lean
- Technik zur Autofertigung
- beschleunigt und vereinfacht Produktion
- justierbar für persönliche Vorlieben(?)

Verwendung

- Auswahl von sinnvollen Kategorien (Backlog, Todo, Doing, Revision, Finished)
- Tasks in die entsprechenden Kategorien hängen
- zu Beginn jeder Iteration Tasks in die nächste Kategorie hängen
- optional: auf WIP-Limit achten

Pro und Contra

todo...

Abbildung 5: Ein Kanban-Brett

Live-Beispiel

Daily Scrum und Stand-Up-Meeting

Einführung

- Technik aus Scrum und XP
- täglich zur gleichen Zeit am gleichen Ort
- entstanden im Scrum 1997, übernommen von XP 1998, als agile Kernpraxis übernommen 2005 [AgileDaily]
- Als Orientierung die 3 Scrum-Fragen [Agile3Q]
 - 1. Was wurde seit dem letzten Treffen fertig gestellt?
 - 2. Was soll bis zum nächsten Treffen fertig sein?
 - 3. Welche Probleme sind aufgetreten?
- sollte nicht länger als 15 Minuten dauern
- wird seit XP im Stehen abgehalten

Daily Scrum und Stand-Up-Meeting

Vorteile

- alle wissen alles wichtige
- jeder hat einen Projektüberblick
- soziale Vernetzung
- weiche Kontrolle über den Projektstatus

Daily Scrum und Stand-Up-Meeting

Probleme

- "Scrum-Zombie"-ness
- Meeting wird zum Statusbericht
- Überlänge

Zusammenfassung

todo...

Fazit

todo...

Grafikenverzeichnis

Nummer	Quelle
1	Grafik: http://www.oxagile.com/wp-content/
	uploads/2014/02/waterfall.png, Seite:
	http://www.oxagile.com/company/blog/
	the-waterfall-model/
2	Grafik: http://tr1.cbsistatic.com/hub/i/2009/
	09/09/76bb5c08-c3b4-11e2-bc00-02911874f8c8/
	<pre>cpm1.jpg, Seite: http://www.techrepublic.</pre>
	com/blog/tech-decision-maker/
	${\tt why-critical-path-is-critical-to-project-manage}$

Nummer	Quelle
3	Grafik: https://upload.wikimedia.org/wikipedia/
	<pre>commons/thumb/3/37/Pert_chart_colored.svg/</pre>
	1000px-Pert_chart_colored.svg.png, Sei-
	te: https://en.wikipedia.org/wiki/Program_
	evaluation_and_review_technique
4	Grafik: https://wcs.smartdraw.
	com/cmsstorage/exampleimages/
	49d69987-97a4-4d57-8123-262e16a32261.
	png?bn=1510011143, Seite: https://www.
	smartdraw.com/gantt-chart/examples/
	<pre>prototype-vehicle-gantt-chart/</pre>

١	Nummer	Quelle
	5	Grafik: http://blog.novatec-gmbh.de/wp-content/
		uploads/2013/05/kanban-board.jpg,

Quellenverzeichnis

todo...