Синтез речи

Лекция №3

- 1. Tacotron 2
- 2. Global Style Tokens (GST)
- 3. Multispeaker TTS
- 4. Multilanguage TTS5. Неавторегрессивный TTS

Данные для ТТС

Single speaker:

- LJSpeech
- HiFiTTS

Multi speaker:

- VCTK
- LibriTTS

Дополнительная разметка:

- Montreal Forced Aligner (MFA)
- Reaper
- Audacity

Tacotron 2

```
seq2seq:
```

encoder + attention + decoder + postnet

+WaveNet vocoder

Tacotron 2 encoder

Tacotron encoder

Tacotron 2 encoder

- нет FC после embedding слоя
- нет ResCon и Highway layers

Tacotron 2 decoder

LSTM input = Concat(Prenet(last_frame), context)

Teacher forcing:

encoder out

batch_size x num_letters x 512 -> batch_size x 512

Tacotron 2 attention

Location sensitive attention:

Bahdanau:

$$e_{i,j} = w^T anh(W s_{i-1} + V h_j + b)$$

scores:

$$e_{i,j} = w^T anh(Ws_{i-1} + Vh_j + Uf_{i,j} + b)$$

Всем привет

location features: |

$$f_i = F * \alpha_{i-1}.$$

weights:
$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{k=1}^{T_x} \exp\left(e_{ik}\right)},$$

context = sum(encoder_out * alpha)

Tacotron 2 другие attention механизмы

Решаются проблемы:

- артефакты
- сходимость
- длинные предложения

Новые проблемы:

- энкодер учится хуже
- монотонность речи
- контекст вектор локальный

Tacotron 2 inference

Dropout:

«In order to introduce output variation at inference time, dropout with probability 0.5 is applied only to layers in the pre-net of the autoregressive decoder»

$$D\left[\sum_{i=1}^n c_i X_i
ight] = \sum_{i=1}^n c_i^2 D[X_i] + 2\sum_{1\leqslant i < j \leqslant n} c_i c_j \operatorname{cov}(X_i, X_j),$$

$$D[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

- без дропаута плохо говорит
- синтез каждый раз разный

Vocoder fine-tune:

1.

Training	Synthesis	
	Predicted	Ground truth
Predicted	4.526 ± 0.066	4.449 ± 0.060
Ground truth	4.362 ± 0.066	4.522 ± 0.055

2.

Просодия

Речь = кто + что + как

как = высокоуровневая просодия + низкоуровневая просодия

- ЭМОЦИЯ
- громкость
- скорость
- TOH

- эмфаза
- вопросы
- паузы

Global Style Tokens

Reference encoder:

GST:

ground truth spec -> style vector

ground truth spec -> mixture of styles

Global Style Tokens

Global Style Tokens

Проблемы:

- не воспроизводится :)
- стиль выучивает длину, громкость и тон
- не интерпретируется
- неоткуда брать референс

Text predicted style embedding:

Задачи:

seen2seen - обычный ms tts

seen2unseen - thisvoicedoesnotexist

unseen2unseen - zero shot voice transfer

Схема решения:

конкат speaker embedding к энкодеру

one-hot speaker embedding:

[num_speakers x embedding_dim]

speaker verification:

- benchmark: VoxCeleb (1, 2)
- transfer learning
- metric learning

speaker embedding = mixture of encodings

k-means

Vanilla LDE:

Multilanguage TTS

Speaking fluently in foreign language

train: inference:

X, en

Y, ru

Y, en

«привет мир» «hello world»

Non-autoregressive TTS

Fastspeech-family: transformer + duration predictor

 \mathcal{H}_{mel} Linear Layer Training Add & Norm FFT Block MSE Loss Positional Conv1D Duration Extractor Length Regulator Add & Norm Linear Layer Duration Predictor Conv1D + Norm FFT Block Multi-Head Attention Autoregressive Positional Conv1D + Norm Transformer TTS Phoneme Embedding Phoneme

(a) Feed-Forward Transformer

(b) FFT Block

(c) Length Regulator

(d) Duration Predictor

Diffusion-based:

Спасибо:)