张翔宇工作汇报 (2022.08.03)

过去工作总结

1.论文阅读

《A Mobile Telematics Pattern Recognition Framework for Driving Behavior Extraction》

数据集: 一家欧洲保险公司收集的大规模数据集,数据集包含 50,000 次行程 (20 次行程 × 2500 名司机)

创新之处:

- (1) 选定了五种当前流行的聚类算法,通过比较,最终确定最适合对当前数据集进行分类的聚类算法。
- (2) 确定最佳聚类数量
- (3) 从数据集中提取驾驶行为。每个集群是一组时间序列数据和原始数字
- (4) 根据每个集群的平均v,平均a,然后对照其他论文中相关驾驶行为的描述,对每个集群进行归类

Cluster	Frequency Percentage (%)	Average speed (km/h)	Average acceleration (m/s²)	Acceleration std	Name	Patterns of behavior
17	16.49%	1.961	-0.108	0.088	Warm stopping	Drivers in this group drive at low speeds with low deceleration and are prone to stopping.
29	9.08%	45.808	0.353	0.202	Cornering with medium speed	During cornering behavior, y- acceleration is close to zero. x-acceleration is high with significant standard deviation [2].
13	6.68%	50.550	0.333	0.022	Driving at normal speed	Drivers proceed at normal speed with very low acceleration and standard deviation.
8	5.18%	39.130	0.011	1.288	Swerving at medium speed	While swerving, x- and y-acceleration both have a high peak and high standard deviation [1].
2	4.96%	80.925	0.002	2.225	Weaving at high speed	There is high variation in between x- and y-acceleration. y-acceleration is very smooth over an extended period. The standard deviation of acceleration is high, but with a low mean [3].
11	4.59%	87.621	0.1114	0.163	Cornering at high speed	During cornering, speeds are high and x-acceleration increases rapidly over a short period of time, while y- acceleration is almost zero [3].

《Benchmarking Lane-changing Decision-making for Deep Reinforcement Learning》

创新之处:

- (1) 相比于在路上进行测试既昂贵又低效,本文使用了虚拟场景进行测试。 (通过CARLA构建虚拟测试场景)
- (2) 测试分为了: 随机性测试和确定性测试
- (3) 最后进行对比验证时,随机场景的评定标准为:平均速度,平均换道次数,平均最大加速度,成功运行的平均episode时间和所有测试episode平均通过距离;确定场景评定标准为:车道更改安全率,车道更改成功率和平均最大加速度

2.实践任务

- (1) Nuscenes数据集的使用
- (2) CARLA中用DQN实现路径规划: 搭建环境类

未来计划

- 1.在CARLA中复现DQN
- 2.复现论文《Benchmarking Lane-changing Decision-making for Deep Reinforcement Learning》