Geometria A

SECONDO MODULO

DAVIDE BORRA

Sommario

Queste sono le note prodotte durante il secondo modulo del corso di Geometria A, tenuto dal prof. Marco Andreatta. Il docente del corso segue il libro "Geometria 1" di Edoardo Sernesi (Ed. Bollati Boringhieri).

Indice

_	Forme bilineari 1.1 Matrici simili	1 1
2	Soluzioni degli esercizi	8

This work is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Forme bilineari

 \mathbf{DEF} (forma bilineare). Sia V un \mathbb{K} -spazio vettoriale. Si dice forma bilineare una mappa lineare

$$f: V \times V \to \mathbb{K}$$

lineare rispetto ad entrambi gli argomenti, ovvero $\forall v_1, v_2, w_1, w_2 \in V, \forall k \in \mathbb{K}$

- $f(v_1 + v_2, w_1) = f(v_1, w_1) + f(v_2, w_1)$
- $f(v_1, w_1 + w_2) = f(v_1, w_1) + f(v_1, w_2)$

• $f(kv_1, w_1) = kf(v_1, w_1)$

• $f(v_1, kw_1) = kf(v_1, w_1)$

Esistono inoltre alcune forme multilineari particolari:

DEF (Forme bilineari simmetriche). Sia V un \mathbb{K} -spazio vettoriale. Una forma bilineare $f: V \times V \to \mathbb{K}$ si dice simmetrica se $\forall v, w \in V$

$$f(v, w) = f(w, v)$$

DEF (Forme bilineari antisimmetriche). Sia V un \mathbb{K} -spazio vettoriale. Una forma bilineare $f: V \times V \to \mathbb{K}$ si dice antisimmetrica se $\forall v, w \in V$

$$f(v, w) = -f(w, v)$$

Data una matrice, ad essa è associata una forma bilineare del tipo $f_A(x,y) = x^t \cdot A \cdot y$. La dimostrazione del fatto che questa mappa sia bilineare segue dalla proprietà distributiva del prodotto tra matrici.

Esercizio 1.1. Dimostrare che f_A è simmetrica se e solo se A è simmetrica, ovvero se e solo se $A = A^t$. Soluzione a pag. 8

Teorema (Matrice associata). Sia V un \mathbb{K} -spazio vettoriale con dimensione n finita e $\beta = \{e_1, \ldots, e_n\}$ una base di V. Siano inoltre $f: V \times V \to \mathbb{K}$ una forma bilineare e $A = (f(e_i, e_j))_{ij} \in M_{n \times n}(\mathbb{K})$. Allora se $v = \sum_i a_i e_i \ e \ w = \sum_j b_j e_j$, si ha

$$f(v, w) = (a_1, \dots, a_n) \cdot A \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Dimostrazione.

$$f(v,w) = f\left(\sum_{i} a_i e_i, \sum_{j} a_j e_j\right) = \sum_{i} a_i \left(\sum_{j} b_j f(e_i, e_j)\right)$$

Osserviamo che

$$(a_1, \dots, a_n) \cdot A \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = (a_1, \dots, a_n) \begin{pmatrix} \sum_j b_j f(e_1, e_j) \\ \vdots \\ \sum_j b_j f(e_n, e_j) \end{pmatrix} = \sum_i a_i \left(\sum_j b_j f(e_i, e_j) \right)$$

da cui la tesi. QED

Osservazione. Scelta una base esiste una corrispondenza biunivoca tra le forme bilineari e le matrici e una corrispondenza biunivoca tra le forme bilineari simmetriche e le matrici simmetriche.

1.1 Matrici simili

Lemma (Matrici simili). Siano $\beta = \{e_1, \dots, e_n\}$ e $\beta' = \{u_1, \dots, u_n\}$ due basi di V, \mathbb{K} -spazio vettoriale. Sia $f_V \times V \to \mathbb{K}$ una forma bilineare e siano $A = (f(e_i, e_j))_{ij}$ e $A = (f(u_i, u_j))_{ij}$ le matrici associate alla mappa f in β e β' rispettivamente. Allora $\exists M = M_{\beta\beta'}(id) \in \mathcal{Gl}_n(\mathbb{K})$: $B = M^t AM$

1

Notazione se $v = \sum_i x_i e_i = \sum_i x_i' u_i$, allora $\underline{x} = (v)_{\beta}$ e $\underline{x}' = (v)_{\beta}'$. Analogamente per w indicando le coordinate con y.

Dimostrazione.

$$\underline{x} = M\underline{x}'$$
 $\underline{y} = My'$

da cui

$$f(v,w) = \underline{x}^t A y = (M\underline{x})^t A (My) = (\underline{x}')^t M^t A M y = (\underline{x}')^t B y$$

quindi $B = M^t A M$ QED

DEF (Matrici congruenti). Due matrici $A, B \in M_{n \times n}(\mathbb{K})$ si dicono congruenti se $\exists M \in \mathcal{Gl}_n(K)$:

$$B=M^tAM$$

DEF (Base ortogonale). Siano V un \mathbb{K} -spazio vettoriale, dim $V < \infty$, e β una base di V. Se $i \neq j \implies b(e_i, e_j) = 0$, la base si dice diagonalizzante o ortogonale per la forma bilineare b.

Osservazione. Se la base è ortogonale, allora la matrice associate $A = (b(e_i, e_j))_{ij}$ è diagonale.

DEF (Forma quadratica associata). Siano V un \mathbb{K} -spazio vettoriale, dim $V < \infty$, $b: V \times V \to \mathbb{K}$ bilineare simmetrica. Si definisce la forma quadratica associata

$$\begin{array}{cccc} q: & V & \longrightarrow & \mathbb{K} \\ & v & \longmapsto & b(v,v) \end{array}$$

Osservazione. Non è lineare.

Ricorda. Si dice forma una mappa ad un campo, non necessariamente lineare.

Proprietà (seguono dalla linearità di b)

$$i) \ q(\lambda v) = \lambda^2 q(v)$$

ii)
$$2b(v, w) = q(w + v) - q(v) - q(w)$$

La proprietà (ii)è importante perché permette di definire b usando q e viceversa.

Osservazione. Consideriamo una base $\beta = \{e_1, \dots, e_n\}$ di V, allora un vettore generico si esprime in coordinate come

$$v = \sum_{i} x_i e_i$$

da cui

$$b(v, w) = (x_1 \quad \cdots \quad x_n) (a_{ij})_{ij} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{ij} a_{ij} x_i x_j$$

per cui in coordinate una forma quadratica è un polinomio omogeneo di secondo grado nelle variabili x_i (è importante ricordare che per ipotesi $a_{ij} = a_{ji} \ \forall ij$).

Esempio 1.1.

Consideriamo \mathbb{R}^2 con la base canonica e la forma quadratica

$$q(x_1, x_2) = 3x_1^2 - 2x_1x_2 - x_2^2$$

$$q(x_1, x_2) = 3x_1^2 - 2x_1x_2 - x_2^2 = 3x_1^2 - x_1x_2 - x_2x_1 - x_2^2 = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Essa è quindi associata alla forma bilineare

$$b\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

DEF (Vettori isotropi). Siano V un \mathbb{K} -spazio vettoriale, dim $V < \infty$ e b(v, w) una forma bilineare simmetrica. Un vettore $v \in V$ si dice isotropo se

$$b(v,v) = q(v) = 0$$

DEF (Spazio ortogonale). Siano V un \mathbb{K} -spazio vettoriale, $S \subseteq V$, dim $V < \infty$ e b(v, w) una forma bilineare simmetrica. Si definisce sottospazio perpendicolare a S l'insieme

$$S^{\perp} := \{ v \in V \mid b(v, w) = 0 \ \forall w \in S \}$$

Esercizio 1.2. Dimostrare che S^{\perp} è un sottospazio vettoriale di V. Soluzione a pag. 8

Lemma. Siano V un \mathbb{K} -spazio vettoriale, $S \subseteq V$, dim $V < \infty$. Sia inoltre $v \in V$ non isotropo. Allora

$$\langle v \rangle \oplus v^{\perp} = V$$

Dimostrazione. Prendo un qualsiasi $w \in V$, allora sottraggo a w la sua componente lungo v e dimostro che appartiene a v^{\perp} , infatti

$$b\left(w - \frac{b(w, v)}{b(v, v)}v, v\right) = b(w, v) - b\left(\frac{b(w, v)}{b(v, v)}v, v\right) = b(w, v) - \frac{b(w, v)}{b(v, v)}b(v, v) = 0$$

quindi

$$w - \frac{b(w,v)}{b(v,v)}v \in v^{\perp}$$

Allora posso scrivere w come la somma di un vettore in $\langle v \rangle$ e un vettore in v^{\perp} :

$$w = \underbrace{\frac{b(w,v)}{b(v,v)}v}_{\in \langle v \rangle} + \underbrace{\left(w - \frac{b(w,v)}{b(v,v)}v\right)}_{\in v^{\perp}}$$

di conseguenza $\langle v \rangle + v^{\perp} = V$. Inoltre osserviamo che per costruzione di v^{\perp} , $\langle v \rangle \cap v^{\perp} = \{0\}$, quindi la somma è diretta. QED

Teorema (Diagonalizzabilità di forme bilineari). Siano V un \mathbb{K} -spazio vettoriale, dim $V<\infty$. Se b è una forma bilineare simmetrica, allora esiste una base ortogonale per b, ovvero esiste una matrice $M\in \mathcal{Gl}_n(\mathbb{K})$ tale che M^tAM è diagonale.

Dimostrazione. Se b(v, w) è identicamente nulla, il teorema vale. Altrimenti possiamo supporre che $\exists v, w \in V$: $b(v, w) \neq 0$. Esiste quindi un vettore non isotropo, infatti

- se $b(v,v) \neq 0$, è v;
- se $b(w, w) \neq 0$, è w;
- altrimenti, se b(v,v) = b(w,w) = 0, $b(v+w,v+w) = b(v,v) + b(w,w) + 2b(v,w) = 2b(v,w) \neq 0$, per cui il vettore non isotropo é v+w.

Procediamo ora per induzione su $n = \dim V$:

N0) Se n=1 il teorema è vero (una matrice 1×1 è diagonale)

N1) Supponiamo vero il teorema per dimV=n, dimostriamo che3 vale per dimV=n+1, ovvero che esiste una base diagonalizzante per ogni matrice simmetrica e per ogni spazio vettoriale di dimensione n. Prendiamo quindi un vettore e_1 non isotropo. Definiamo quindi il suo spazio perpendicolare, che (per il lemma precedente e la formula di Grassman) ha dimensione n. Per ipotesi induttiva esiste quindi una base ortogonale $\gamma = \{e_2, \ldots, e_n\}$ di e_1^{\perp} per $b|_{e_1^{\perp}}$, per cui la base cercata è

$$\beta = \gamma \cup \{e_1\} = \{e_1, \dots, e_n\}$$

QED

Esempio 1.2.

Sia $V = \mathbb{R}^3$ e $\beta = \{e_1, e_2, e_3\}$ la base canonica di V. In questa base sia q(x, y, z) = xy + xz + yz una forma quadratica: diagonalizzarla.

Non è presente il termine x^2 per cui dobbiamo fare in modo di ricavarlo. Poniamo quindi

$$\begin{cases} x' = x \\ y' = y + x \\ z' = z \end{cases} \qquad \begin{cases} x = x' \\ y = y' - x' \\ z = z' \end{cases}$$

Sostituiamo e completiamo il quadrato

$$q(x',y',z') = x'(y'-x') + x'z' + (y'-x')z' = -x'^2 + x'y' + y'z' = -\left(x' - \frac{1}{2}y'\right)^2 + \frac{1}{4}y'^2 + y'z'$$

Cambiamo coordinate

$$\begin{cases} x'' = x' - \frac{1}{2}y' \\ y'' = y' \\ z'' = z' \end{cases} \qquad \begin{cases} x' = x'' + \frac{1}{2}y'' \\ y' = y'' \\ z' = z'' \end{cases}$$

$$q(x'', y'', z'') = -x''^2 + \frac{1}{4}y''^2 + y''z'' = -x''^2 + \left(\frac{1}{2}y'' + z''\right)^2 - z''^2$$

$$\begin{cases} x''' = x'' \\ y''' = \frac{1}{2}y'' + z'' \\ z''' = z'' \end{cases} \qquad \begin{cases} x'' = x''' \\ y'' = 2y''' - 2z''' \\ z'' = z''' \end{cases}$$

$$q(x''', y''', z''') = -x'''^2 + y'''^2 - z'''^2$$

Ricaviamo ora le matrici di cambio di base:

$$[I] \qquad \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{bmatrix} III \end{bmatrix} \qquad \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x'' \\ y'' \\ z' \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

$$III \end{bmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x''' \\ y''' \\ z''' \end{pmatrix} = \begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix}$$

quindi

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix}}_{} \begin{pmatrix} x''' \\ y''' \\ z''' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

4

da cui

$$M^{t} \cdot \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \cdot M = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Teorema (Sylvester I). Sia \mathbb{K} un campo algebricamente chiuso. Sia V un \mathbb{K} -spazio vettoriale con dim $V = n \geq 1$. Sia $b: V \times V \to \mathbb{K}$ una forma bilineare simmetrica. Allora esiste una base

$$\beta = \{u_1, \dots, u_n\}$$

tale che

$$i \neq j \implies b(u_i, u_j) = 0;
 1 \leq i \leq r \leq n \implies b(u_i, u_i) = 1;
 r < i \leq n \implies b(u_i, u_i) = 0.$$

Equivalentemente la forma quadratica rispetto a β è

$$q(x_1, \dots, x_n) = x_1^2 + \dots + x_r^2$$

Dimostrazione. Per il teorema precedente, esiste una abse ortogonale $\gamma = \{e_i\}_i$. Riordinando possiamo supporre che

$$1 \le i \le r \le n \implies b(e_i, e_i) \ne 0;$$

$$r < i \le n \implies b(e_i, e_i) = 0.$$

Poniamo

$$\begin{cases} u_i := \frac{e_i}{\sqrt{b(e_i, e_i)}} & i = 1, \dots, r \\ u_i := e_i & i = r + 1, \dots, n \end{cases}$$

Otteniamo che $\beta = \{u_i\}_i$ è la base cercata.

QED

Teorema (Sylvester II). Siano V un \mathbb{R} -spazio vettoriale e b : $V \times V \to \mathbb{R}$ una forma bilineare simmetrica. Allora esiste una base

$$\beta = \{u_2, \dots, u_n\}$$

tale che

$$\begin{array}{ccc} i \neq j & \Longrightarrow & b(u_i,u_j) = 0; \\ 1 \leq i \leq r \leq t \leq n & \Longrightarrow & b(u_i,u_i) = 1; \\ 1 \leq r < i \leq t \leq n & \Longrightarrow & b(u_i,u_i) = -1; \\ t < i \leq n & \Longrightarrow & b(u_i,u_i) = 0. \end{array}$$

La dimostrazione è analoga al teorema precedente ponendo

$$\begin{cases} u_i := \frac{e_i}{\sqrt{|b(e_i, e_i)|}} & i = 1, \dots, r \\ u_i := e_i & i = r + 1, \dots, n \end{cases}$$

e riordinando opportunamente.

Un'osservazione interessante è che il numero di 0, di 1 e di -1 non dipende dalla scelta di una base ortogonale.

Teorema (Rango). ($V \mathbb{K}$ -spazio vettoriale, dim V = n) Data una forma bilineare simmetrica $b : V \times V \to \mathbb{K}$ e una sua base diagonalizzante $\beta = \{e_i\}_i$, il numero di vettori e_i tali che $b(e_i, e_i) = 0$ non dipende dalla scelta della base diagonalizzante. Esso è uguale al rango di ogni matrice associata.

Dimostrazione. Ricordiamo il seguente lemma:

Lemma. Siano $A \in Mn \times m(\mathbb{K})$, $N \in \mathcal{Gl}_n(\mathbb{K})$ $e M \in \mathcal{Gl}_m(\mathbb{K})$, allora $\operatorname{rk}(NAM) = \operatorname{rk} A$.

Siano $\beta \in \beta'$ due basi, $M = M_{\beta\beta'}(Id)$, $A = M_{\beta}(b) \in B = M_{\beta'}(b)$. Allora per dimostrazione precedente si ha $B=M^tAM$. Per il lemma appena enunciato segue che, siccome $M\in \mathcal{Gl}_n(\mathbb{K})$, rk $B=\operatorname{rk} A$. Supponiamo che esistano due basi $\beta = \{e_i\}_i$ e $\beta' = \{u_i\}_i$ diverse tali che (numeri di 1 e -1 diversi).

 $\begin{array}{ccc} i \neq j & \Longrightarrow & b(e_i,e_j) = 0; \\ 1 \leq i \leq t \leq r \leq n & \Longrightarrow & b(e_i,e_i) = 1; \\ 1 \leq t < i \leq r \leq n & \Longrightarrow & b(e_i,e_i) = -1; \\ r < i \leq n & \Longrightarrow & b(e_i,e_i) = 0. \end{array}$

$$r < i \le n \implies b(e_i, e_i) = 0.$$

$$\begin{array}{cccc} i \neq j & \Longrightarrow & b(u_i,u_j) = 0; \\ 1 \leq i \leq s \leq r \leq n & \Longrightarrow & b(u_i,u_i) = 1; \\ 1 \leq s < i \leq r \leq n & \Longrightarrow & b(u_i,u_i) = -1; \\ r < i \leq n & \Longrightarrow & b(u_i,u_i) = 0. \end{array}$$

con $s \neq t$. È lecito supporre che t > s (altrimenti scegliamo al posto di U e W i rispettivi complementi diretti a V). Siano $U = \langle e_1, \ldots, e_t \rangle$ e $W = \langle u_{s+1}, \ldots, u_n \rangle$. Segue quindi che dim U = t e dim W = n - s, da cui

$$\dim U + \dim W = n - s + t > n,$$

quindi per la formula di Grassman segue che dim $U \cap V > 0$. Prendiamo quindi un vettore non nullo $v \in U \cap V$.

$$v = \sum_{i=1}^{t} a_i e_i = \sum_{i=s+1}^{n} b_i u_i$$

per cui

$$b(v,v) = \sum_{i=1}^{t} \underbrace{b(e_i, e_i)}_{1} a_i^2 = \sum_{i=1}^{t} a_i^2 > 0$$
$$= \sum_{i=s+1}^{n} \underbrace{b(u_i, u_i)}_{-1} b_i^2 = -\sum_{i=s+1}^{n} b_i^2 < 0$$

Si presenta quindi un assurdo, per cui deve essere che s=t.

QED

DEF (Rango). (V K-spazio vettoriale, dim V=n) Si definisce rango di una forma bilineare simmetrica $b: V \times V \to \mathbb{K}$ il numero di vettori e_i di una base diagonalizzante tali che $b(e_i, e_i) \neq 0$. Esso si indica rk b. Se rk $b = \dim V$, allora la forma si dice non degenere.

DEF (Segnatura). Siano V un \mathbb{R} -spazio vettoriale, $b:V\times V\to\mathbb{K}$ una forma bilineare simmetrica e $\beta = \{e_i\}_i$ una base diagonalizzante normalizzata. Allora si definiscono

- indice di positività: $t = \#\{e \in \beta \mid b(e, e) = 1\}$
- indice di negatività: $s = \#\{e \in \beta \mid b(e, e) = -1\}$

La coppia (t, s) è detta segnatura di b.

DEF (Forme definite positive/negative). ($V \mathbb{R}$ -spazio vettoriale, dim V = n) Una forma quadratica q su V si dice:

- definita positiva se $q(v) > 0 \ \forall v \in V$
- definita negativa se $q(v) < 0 \ \forall v \in V$
- semidefinita positiva se $q(v) \ge 0 \ \forall v \in V$
- semidefinita negativa se $q(v) \leq 0 \ \forall v \in V$

In particolare lo è se lo è su una base.

Lemma (Finestra sul mondo duale). Siano V un \mathbb{K} -spazio vettoriale, $b:V\times V\to \mathbb{K}$ una forma bilineare simmetrica non degenere, allora esiste un isomorfismo

lora esiste un isomorfismo
$$\psi: \begin{array}{cccc} \psi: & V & \stackrel{\sim}{\longrightarrow} & V^{\vee} \\ & v & \longmapsto & \psi(v): & V & \longrightarrow & \mathbb{K} \\ & & w & \longmapsto & \psi(v)(w) := b(v,w) \end{array}$$
 zione del lemma precedente è lasciata per esercizio.

Esercizio 1.3. La dimostrazione del lemma precedente è lasciata per esercizio. $Soluzione\ a\ pag.\ 8$

Davide Borra

7

2 Soluzioni degli esercizi

Esercizio 1.1

Dimostrazione.

" \Rightarrow " Assumiamo che la mappa sia bilineare simmetrica e dimostriamo che $A = A^t$. In particolare si ha che $f_A(x,y) = f_A(y,x)$. Osserviamo che se $k \in \mathbb{K}$ come \mathbb{K} spazio vettoriale, $k^t = k$, quindi (ricordado che la trasposizione inverte l'ordine nel prodotto tra matrici)

$$f_A(x,y) = [f_A(x,y)]^t = (x^t \cdot A \cdot y)^t = y^t \cdot A^t \cdot (x^t)^t = y^t \cdot A^t \cdot x$$

Per ipotesi si ha che $f_A(x,y) = f_A(y,x)$, quindi

$$y^t \cdot A^t \cdot x = y^t \cdot A \cdot x$$

da cui segue $A = A^t$.

"\(\infty\)" Assumiamo $A = A^t$ e dimostriamo che $f_A(x,y) = f_A(y,x)$. Per quanto detto prima $f_A(x,y) = y^t \cdot A^t \cdot x$. Inoltre per ipotesi $A = A^t$, quindi $f_A(x,y) = y^t \cdot A \cdot x = f_A(y,x)$.

QED

La dimostrazione è analoga per matrici e mappe antisimmetriche.

Esercizio 1.2

Dimostrazione. Per definizione di sottospazio vettoriale, S^{\perp} deve essere

non vuoto:

$$0 \in S^{\perp}$$
, infatti $b(0, w) = b(0 \cdot 0, w) = 0 \cdot b(0, w) = 0$

• chiuso rispetto a somma e prodotto per scalari:

 \forall

QED

Esercizio 1.3

Dimostrazione. Le proprietà di ψ seguono direttamente dalle proprietà di b:

• $\psi(v)$ è lineare $\forall v$

$$\psi(v)(\lambda_1 w_1 + \lambda_2 w_2) = b(v, \lambda_1 w_1 + \lambda_2 w_2) = \lambda_1 b(v, w_1) + \lambda_2 b(v, w_2) = \lambda_1 \psi(v)(w_1) + \lambda_2 \psi(v)(w_2)$$

• ψ è lineare

$$\psi(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 \psi(v_1) + \lambda_2 \psi(v_2)$$

Si tratta di un'uguaglianza tra mappe, per cui è verificata se e solo se è verificata $\forall w$:

$$\psi(\lambda_1 v_1 + \lambda_2 v_2)(w) = b(\lambda_1 v_1 + \lambda_2 v_2, w) = \lambda_1 b(v_1, w) + \lambda_2 b(v_2, w) = \lambda_1 \psi(v_1)(w) + \lambda_2 \psi(v_2)(w)$$

• ψ è iniettiva, equivalentemente $\ker \psi = \{0\}$ Se $\psi(v)$ è la mappa nulla, allora v = 0, ovvero se $\forall w, \psi(v)(w) = 0$, allora v = 0. Prendiamo un qualsiasi $v, w \in W$. Sia $\beta = \{e_i\}_i$ una base di V che diagonalizza b (esiste perchè b è simmetrica per ipotesi), allora

$$v = \sum_{i} x_i e_i \qquad \qquad w = \sum_{j} y_j e_j.$$

Per linearità segue che

$$\psi(v)(w) = b\left(\sum_{i} x_i e_i, \sum_{j} y_j e_j\right) = \sum_{i} \sum_{j} x_i y_j b(e_i, e_j).$$

Siccome la base β diagonalizza b, segue che $i \neq j \implies b(e_i, e_j) = 0$, quindi

$$\psi(v)(w) = \sum_{i} x_i y_i b(e_i, e_i).$$

Inoltre, siccome la mappa b è non degenere, per la legge di annullamento del prodotto, segue che $a_i = 0 \forall i$, quindi v = 0. Per l'arbitrarietà di w, la mappa è iniettiva.

8

• ψ è suriettiva: segue dal teorema Nullità + Rango.

QED