UNIVERSITÄT HOHENHEIM

Aus dem Institut für Phytomedizin Fachgebiet Phytopathologie Prof. Dr. Ralf Vögele

Etablierung eines Wirts-induzierten RNAi-Systems für die Kontrolle des Asiatischen Sojabohnenrostes *Phakopsora pachyrhizi*

Dissertation zur Erlangung des Grades eines Doktors der Agrarwissenschaften (Dr. sc. agr.)

Vorgelegt der Fakultät Agrarwissenschaften an der Universität Hohenheim

Von Manuel Müller (Dipl. Agr. Biol.)

2014

Inhaltsverzeichnis

Innaitsverzeichnis					
Αk	bildu	ıngsve	rzeichni	s	iii
Та	belle	nverzei	chnis		iv
ΑŁ	kürz	ungsve	erzeichni	is	V
1	Einl 6	eitung Rostpi 1.1.1			1 1 1
				B	1
2			d Metho		2
	2.1	2.1.1 2.1.2 2.1.3	Antibiot Nährme	tika und Naturstoffe	2 2 3 4
	2.2	Verbra 2.2.1 2.2.2	uchsmat Kits Enzyme	erialien	7 7 7
	2.2	2.2.3 2.2.4 2.2.5	Klonieru Primer u	Ikleotide	8 9
	2.3	Biolog: 2.3.1 2.3.2	Saatgut	aterial	12 12 12 12 12 12
		2.3.3	Bakterie 2.3.3.1 2.3.3.2 2.3.3.3	Herstellung SEM-kompetenter Zellen von <i>E. coli</i>	13 13 13 13
	2.4	Geräte			14
	2.52.62.7	Softwa Plasmi	re und S de	erver	16 16 16
	2.8	2.7.1	RNA-Pr ung von Isolation	äparation	16 16 16 17

iteraturverzeichnis 19		
2.8.4	P. pachyrhizi	
2.8.3	Isolation von RNA aus Uredosporen und Keimschläuchen von	17

Abbildungsverzeichnis

Abb. 1 Plasmid pHannibal	. 10	6
--------------------------	------	---

Tabellenverzeichnis

Tab. 1	Verwendete Antibiotika und Naturstoffe	2
Tab. 2	Verwendeten Kits	7
Tab. 3	Verwendete Enzyme	7
Tab. 4	Klonierungsprimer	8
Tab. 5	Primer und Sonden für real-time PCR-Anwendungen	.0

Abkürzungsverzeichnis

DMSO Dimethylsulfoxid

EDTA Ethylendiamintetraessigsäure

EtOH Ethanol

FAM 6-Carboxyfluorescein

GUS β -Glucuronidase

H₂O_{reinst} Reinstwasser

 H_2O_{VE} Vollentsalztes Wasser

HEPES 2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure

HPLC engl. high performance liquid chromatography

LB engl. lysogeny broth

MES 2-N-(Morpholino)ethansulfonsäure

mps engl. movements per second, Bewegungen pro Sekunde

OD₆₀₀ Optische Dichte bei einer Wellenlänge von 600 nm

PE Polyethylen

PCR engl. polymerase chain reaction

rcf engl. relative centrifugal force, relative

Zentrifugalbeschleunigung

rpm engl. rounds per minute, Umdrehungen pro Minute

SEM engl. simple and efficient method

SOC engl. super optimal broth with catabolite repression

TAE TRIS-Acetat-EDTA

TAMRA Tetramethylrhodamin

TB engl. terrific broth

TBE TRIS-Borat-EDTA

TRIS Tris(hydroxymethyl)-aminomethan

X-Gluc Cyclohexylammoniumsalz der

5-Brom-4-chlor-3-indolyl- β -D-glucuronsäure

1 Einleitung

1.1 Rostpilze

Rostpilze blabla (Link et al., 2014)

1.1.1 A

Test YTM! (YTM!) blablabla YTM!

1.1.1.1 B

2 Material und Methoden

2.1 Chemikalien

Die in dieser Arbeit verwendeten Chemikalien waren von analytischem Reinheitsgrad und wurden, soweit im Text nicht anders angegeben, von folgenden Herstellern bezogen:

AppliChem	AppliChem GmbH, Darmstadt
Fluka	Sigma-Aldrich Chemie GmbH, Taufkirchen
Merck	Merck KGaA, Darmstadt
Riedel-deHaën	Sigma-Aldrich Chemie GmbH, Taufkirchen
Roth	Carl Roth GmbH & Co. KG, Karlsruhe
Serva	Serva Electrophoresis GmbH, Heidelberg
SIGMA	Sigma-Aldrich Chemie GmbH, Steinheim

2.1.1 Antibiotika und Naturstoffe

Für die in dieser Arbeit verwendeten Antibiotika und Naturstoffe wurden Stammlösungen angesetzt, welche bis zu ihrer Verwendung bei -20°C gelagert wurden. Die Konzentration der Stammlösungen sowie das jeweilige Lösungsmittel sind in Tab. 1 aufgelistet.

Tab. 1: Liste der verwendeten Antibiotika und Naturstoffe

Substanz	Konzentration	Hersteller
Acetosyringon	200 mM in EtOH	Carl Roth GmbH, Karlsruhe
Ampicilin	$100mg/ml$ in H_2O_{reinst}	AppliChem GmbH, Darmstadt
Kanamycin	$50 \text{mg/ml} \text{in} \text{H}_2 \text{O}_{reinst}$	Duchefa B.V, Haarlem, NL
Spectinomycin	$100\mathrm{mg/ml}$ in $\mathrm{H_2O}_{reinst}$	Sigma-Aldrich GmbH, Steinheim
Rifampicin	50 mg/ml in DMSO	Duchefa B.V, Haarlem, NL

Soweit im Text nicht anders angegeben, wurden Ampicilin und Spectinomycin in einer Endkonzentration von $100\,\mu g/ml$, Kanamycin und Rifampicin in einer Endkonzentration von $50\,\mu g/ml$ eingesetzt. Acetosyringon wurde in einer Endkonzentration von $200\,\mu M$ verwendet.

2.1.2 Nährmedien

LB-Medium	Bacto-Trypton	1	%(w/v)
	Hefeextrakt	0,5	%(w/v)
	NaCl	1	%(w/v)
	рН	7,0	, ,
	•		
TB-Medium	Bacto-Trypton	1	%(w/v)
	Hefeextrakt	2,4	%(w/v)
	Glycerin	0,4	%(v/v)
	Das Medium wurde autokla	viert	und ab-
	gekühlt. Anschließend wurd	en 10)% (v/v)
	KPO ₄ -Puffer zugegeben. Die	weite	ere Lage-
	rung erfolgte bei Raumtempe	eratui	r .
SOB-Medium	Bacto-Trypton	2	%(w/v)
	Hefeextrakt	0,5	, ,
	KCL	2,5	, ,
		10	mM
	Das Medium wurde autokla		
	Raumtemperatur gelagert. I		
	Verwendung, wurde MgSO ₄		
	konzentration von 10 mM zu		
SOC-Medium	Racta Twenton	2	0/ (*** /**)
50C-Medium	Bacto-Trypton Hefeextrakt	2	%(w/v) %(w/v)
	NaCl KCl		mM mM
		2,5	mM mM
	0 2	10	mM mM
	0 1	10	mM
	Das Medium wurde autoklaviert und ab-		
	gekühlt. Anschließend wurde Glukose zu		
	einer Endkonzentration von		O
	geben. Die weitere Lagerun	g err	oigie bei
	Raumtemperatur.		

YEB-Medium	Pepton	5	%(w/v)
	Hefeextrakt	1	%(w/v)
	Fleischextrakt	5	%(w/v)
	Saccharose	5	%(w/v)
	$MgSO_4$	2	mM
	рН	7,2	

2.1.3 Puffer und Lösungen			
Anilinblau	Anilinblau	0,05	% (w/v)
	Glyzerin	50	% (v/v)
	Milchsäure	25	% (v/v)
EDTA	EDTA	0,5	M
	pH (NaOH)	8,0	
	Die Lösung wurde Raumtemperatur gel		und bei
GUS-Färbepuffer	NaPO ₄ -Puffer (1M)	50	mM
	EDTA	10	mM
	K_3 Fe(CN) ₆	0,5	mM
	K_4 Fe(CN) ₆	0,5	mM
	Triton X-100	0,1	% (v/v)
	X-Gluc	2	mM
	Der Puffer ist nur e	eingeschränk	t lagerfä-
	hig und wurde dahe brauch angesetzt.	er unmittelba	r vor Ge-
HEPES	HEPES	1	mM
	pH (NaOH)	7,0	
	Der Puffer wurde o 0,2 µm Porenweite st gelagert.		
HEPES-Puffer 1	HEPES	1	% (v/v)
	Der Puffer wurde d	lurch einen 1	Filter mit
0,2 μm Porenweite sterilfiltriert u gelagert.			d bei 4°C

HEPES-Puffer 2 **HEPES** 1 %(v/v)Glyzerin 10 %(v/v)Der Puffer wurde durch einen Filter mit 0,2 μm Porenweite sterilfiltriert und bei 4°C gelagert. Infiltrationspuffer **MES** 10 mM $MgCl_2$ 10 mM 200 Acetosyringon μM Der Puffer ist nur eingeschränkt lagerfähig und wurde daher unmittelbar vor Gebrauch angesetzt. KPO₄-Puffer KH_2PO_4 0,17 M K₂HPO₄ 0,72 M Der Puffer wurde autoklaviert und bei Raumtemperatur gelagert. **MES MES** 500 mM5,6 pH (NaOH) Der Puffer wurde durch einen Filter mit 0,2 μm Porenweite sterilfiltriert und bei 4°C gelagert. 1 M Na₂HPO₄ Na_2HPO_4 Die Lösung wurde autoklaviert und bei Raumtemperatur gelagert. NaH₂PO₄ NaH₂PO₄ 1 M Die Lösung wurde autoklaviert und bei Raumtemperatur gelagert. NaPO₄-Puffer Na_2HPO_4 (1M) 72 %(v/v) NaH_2PO_4 (1M) 28 %(v/v)pН 7,2 Der Puffer wurde autoklaviert und bei Raumtemperatur gelagert.

PIPES	Pipes-Na ₂ pH Der Puffer wurde durch 0,2 μm Porenweite sterilfil gelagert.		
TAE (50fach)	TRIS	2	M
	Eisessig	5,7	% (v/v)
	EDTA (0,5M)	50	mM
	рН	8,0	
	Zur Verwendung wurde d	er Puffe	er 1:50 mit
	H_2O_{VE} verdünnt.		
TB-Puffer	$CaCl_2$	15	mM
	KCL	250	mM
	PIPES	10	mM
	pH mit 1 M KOH auf 6,7 e	instelle	n
	$MnCl_2$	55	mM
	Der Puffer wurde durch	einen !	Filter mit
	0,2 μm Porenweite sterilfil	triert ur	nd bei 4°C
	gelagert.		
TBE (5fach)	TRIS	445	mM
	Borsäure	445	mM
	EDTA	10	mM
	Zur Verwendung wurde d H_2O_{VE} verdünnt.	er Puffe	er 1:10 mit

2.2 Verbrauchsmaterialien

2.2.1 Kits

Die in dieser Arbeit verwendeten Enzyme und Kits sowie die jeweiligen Hersteller sind in Tab. 3 und Tab. 2 aufgelistet.

Tab. 2: Liste der verwendeten Kits

Bezeichnung	Verwendung	Hersteller	
peqGold Cycle Pure Kit	PCR-Aufreinigung	Peqlab GmbH, Erlangen	
peqGold Gel Extraction Kit	DNA Gelextraktion	Peqlab GmbH, Erlangen	
peqGold Plasmid Mini Kit	Plasmidisolation	Peqlab GmbH, Erlangen	
Plant RNA Isolation Kit	RNA Isolation	Agilent GmbH, Böblingen	
Qubit RNA BR Assay Kit	RNA-Quantifizierung	Life Technologies,	
		Carlsbad, USA	
Qubit DNA BR Assay Kit	DNA-Quantifizierung	Life Technologies,	
		Carlsbad, USA	
Sensifast Probe no-ROX Kit	Real Time PCR	Bioline GmbH,	
		Luckenwalde	
Sensifast Sybr no-ROX Kit	Real-Time PCR	Bioline GmbH,	
		Luckenwalde	
Tetro cDNA Synthese Kit	cDNA-Synthese	Bioline GmbH,	
		Luckenwalde	

2.2.2 Enzyme

Tab. 3: Liste der verwendeten Enzyme

Bezeichnung	Enzym	Hersteller		
DNA-free	RNAse-freie DNAse	Life Technologies,		
		Carlsbad, CA, USA		
FastAP	Alkalische Phosphatase	Fisher Scientific GmbH, Schwerte		
FastDigest BamHI	Restriktionsendonuklease	Fisher Scientific GmbH, Schwerte		
FastDigest EcoRI	Restriktionsendonuklease	Fisher Scientific GmbH, Schwerte		
FastDigest ClaI	Restriktionsendonuklease	Fisher Scientific GmbH, Schwerte		
FastDigest <i>Kpn</i> I	Restriktionsendonuklease	Fisher Scientific GmbH, Schwerte		
FastDigest XbaI	Restriktionsendonuklease	Fisher Scientific GmbH, Schwerte		
FastDigest XhoI	Restriktionsendonuklease	Fisher Scientific GmbH, Schwerte		
MightyMix	T4 DNA Ligase	Takara Bio Europe S.A.S,		
		Saint-Germain-en-Laye, FR		
Phusion	DNA Polymerase	Fisher Scientific GmbH, Schwerte		
Taq Polymerase	DNA Polymerase	Fisher Scientific GmbH, Schwerte		

2.2.3 Oligonukleotide

Die Synthese von Oligonukleotiden für konventionelle PCR-Anwendungen erfolgte bei der Biomers.net GmbH, Ulm. Oligonukleotide und TaqMan[™] -Sonden für realtime PCR-Anwendungen waren HPLC-gereinigt und wurden von der Apara Bioscience GmbH, Denzlingen bezogen.

2.2.4 Klonierungsprimer

Die in dieser Arbeit verwendeten Klonierungsprimer sind in Tab. 4 aufgelistet. Diese Primer wurden mit 5'-Überhängen entworfen, um DNA-Fragmente mit Restriktionsschnittstellen zu amplifizieren. Die so erzeugten PCR-Produkten konnten nach einem Restriktionsverdau in Plasmidvektoren ligiert werden. Zusätzlich zu den palindromischen Erkennungssequenzen wurden jeweils drei Schutzbasen angehängt.

Tab. 4: Liste der verwendeten Klonierungsprimer

Bezeichnung	Überhang - Sequenz (5' \rightarrow 3')	Tm (°C)	Schnittstelle
00415fw	TGAGGATCC-CACCTGCTCGTCCTAC	70	BamHI
00415rv	TGAGGATCC-TGCTTACGCCGTTATATTGCC	71	BamHI
01251fw	TGGGATCC-AAACTGTTGGCTTTTGATCCAT	70	BamHI
01251rv	TGAGGATCC-TATCTGCCCCCTCATTTACACT	71	BamHI
01371fw	CTGGGATCC-TGGCTTTTCTATCAGCAAGTGA	71	BamHI
01371rv	TGAGGATCC-TCCCAGATCTAGTCCACCATCT	72	BamHI

Bezeichnung	Überhang - Sequenz (5' \rightarrow 3')	Tm (°C)	Schnittstelle
01750fw	TGAGGATCC-GCCTTCGCCAAGGAGACTTA	72	BamHI
01750rv	TGAGGATCC-GGCAGTTGGCACATCAGTTG	73	BamHI
04224fw	TGAGGATCC-CAGTCGTTGCCACCAAGTGT	72	BamHI
04224rv	TGAGGATCC-CACGGCGACACCAATCATTA	74	BamHI
04224XhoI	CTACTCGAG-TTGCCACCAAGTGTACG	68	XhoI
04224 <i>Kpn</i> I	CTAGGTACC-TAGAGCACGGCGACACC	71	KpnI
04224XbaI	CTATCTAGAT-TGCCACCAAGTGTACG	64	XbaI
04224 <i>Cla</i> I	CTAATCGAT-TAGAGCACGGCGACACC	69	ClaI
05320fw	TGAGGATCC-GACTAGTGAAATATACCCTC	66	BamHI
05320rv	TGAGGATCC-TCGCGTCTGTAAGCATCACT	72	BamHI
06673fw	TGAGGATCC-CCTGGTTCCTTTGAACCACC	73	BamHI
06673rv	TGAGGATCC-GATTTGATGTATTGATGTCTCTG	67	BamHI
1976 <i>Xho</i> I	CTACTCGAG-GGTGCTAACTCTTC	67	XhoI
1976 <i>Kpn</i> I	CTAGGTACC-AGCCACAGTGACAATC	66	KpnI
1976 <i>Xba</i> I	CTATCTAGA-GGTGCTAACACCTCTTC	63	XbaI
1976 <i>Cla</i> I	CTAATCGAT-AGCCACAGTGACAATC	63	ClaI
2356fw	TGAGGATCC-GGTGGGATGGGAACAGGTCGTAG	76	BamHI
2356rv	TGAGGATCC-TGGTCTTGCAGTGGGAGTGATTC	74	BamHI
2683 <i>Xho</i> I	CTACTCGAG-GTTGCTCAGTGAATAAGTC	66	XhoI
2683 <i>Kpn</i> I	CTAGGTACC-ATATGATACGAGAGGCTGTAG	66	KpnI
2683 <i>Xba</i> I	CTATCTAGA-GTTGCTCAGTGAATAAGTC	62	XbaI
2683 <i>Cla</i> I	CTAATCGAT-ATATGATACGAGAGGCTGTAG	63	ClaI
3015fw	TGAGGATCC-GAGTTTGTAGACGGTCTGTCTGC	73	BamHI
3015rv	TGAGGATCC-GAATAGAGCTTCCAGAGTCATCTG	71	BamHI
462XhoI	CTACTCGAG-GCAAAGGCTTGTATTAACG	67	XhoI
462 <i>Kpn</i> I	CTAGGTACC-GGCTCTAATTGTTTGTCAG	66	KpnI
462XbaI	CTATCTAGA-GCAAAGGCTTGTATTAACG	63	XbaI
462ClaI	CTAATCGAT-GGCTCTAATTGTTTGTCAG	64	ClaI
PDS <i>Xho</i> I	CTACTCGAG-AAAGAACAGCGCCTTCC	68	XhoI
PDS <i>Kpn</i> I	CTAGGTACC-GCCCAAACCAGTCAATG	69	KpnI
PDSXbaI	CTATCTAGA-AAAGAACAGCGCCTTCC	65	XbaI
PDSClaI	CTAATCGAT-GCCCAAACCAGTCAATG	66	ClaI
iGUSBamHI	CTAGGATCC-TCATTGTTTGCCTCCCTGCTGCGGT	76	BamHI
iGUSEcoRI	CTAGAATTC-ATGGTACGTCCTGTAGAAACCCCAA	70	EcoRI

2.2.5 Primer und Sonden für real-time PCR-Anwendungen

Die in Tab. 5 aufgelisteten Primer und Sonden wurden zur Genexpressionsanalyse eingesetzt. Die Amplifikationseffizienz (E) der einzelnen Primerpaare wurde über

Standardkurven bestimmt (Siehe MM Standardkurven, Siehe Anhang Stdcrv). Die verwendete TaqManTM-Sonde war mit dem Fluorophor FAM und dem Quencher TAMRA gelabelt.

Tab. 5: Liste der verwendeten Primer und Sonden für real-time PCR Anwendungen

Bezeichnung	Sequenz $5' \rightarrow 3'$	Tm (°C) E (%)
ActinDis1f	ACAGTTTCACCACAACCGCC	65
ActinDis1r	TGACCGTCGGGAAGTTCG	63
AtubDis1f	CTGCGAACAACTATGCTCGTC	63
AtubDis1r	CACGAAGAAGCCTTGGAGTCC	64
CytB1f	TCAAGACGCATCCAAATTCTAGGTC	64
CytB1r	GTGTTACACCCGTGATAATCTGAATGAT	65
Elf1a1f	GTGAGCGTGGTATCACCATC	62
Elf1a1r	CAGAATGGCGCAATCAGC	61
Elf1a2f	GGAAATGGATACGCTCCTGTC	62
Elf1a2r	CTTAACTAAGGCGGCGTCTC	62
GAPDH1f	GGTATGGCTTTCCGAGTTCCA	64
GAPDH1r	TCAGTTGATACCAAATCATCCTCAG	62
Gmcons4fw	GATCAGCAATTATGCACAACG	60
Gmcons4rv	CCGCCACCATTCAGATTATGT	62
Gmcons6fw	AGATAGGGAAATGGTGCAGGT	63
Gmcons6rv	CTAATGGCAATTGCAGCTCTC	61
Gmcons7fw	ATGAATGACGGTTCCCATGTA	61
Gmcons7rv	GGCATTAAGGCAGCTCACTCT	64
Gmcons15fw	TAAAGAGCACCATGCCTATCC	61
Gmcons15rv	TGGTTATGTGAGCAGATGCAA	62
RibPro2f	CGGCAACAGTTGTATGACCTC	63
RibPro2r	AGTGTCAGCCTCAGATCTTGG	63
RibPro3f	GTGAATGGGAGACCAATCTCAG	62
RibPro3r	TTGCCTCCATGAGTCAG	63
Ubc1f	CGGACCAGTACCCTTACAAATC	62
Ubc1r	ATCAAACATCGGCGACCAG	62
UbcE22f	ATATACCCTAACCCGGAGTCG	62
UbcE22r	GTTCCTGGCATGGATATCAGTC	62
UbcE23f	GTCGAACTGTGACGAGTTTG	61
UbcE23r	ACGGCCTTAGTCTTCGATG	61
q00153fw	AGTTGATCGAGTGACTGGTG	61
q00153rv	CATCTTGGGCAGCCAACATG	63
q00239fw	GCGGAAAAGGATAAGGGG	59
q00239rv	TCCGATCCTTAGTCTGGCCT	64

Bezeichnung	Sequenz $5' \rightarrow 3'$	Tm (°C) E (%)
q00241fw	CAATCGCCTGAGGACCGTAA	63
q00241rv	CTGGGGCAACTTGTAGAGCA	64
q00415Fw	CGAGAGTGTGCTGAAGCAGT	64
q00415Rv	TCCTCAATTCCCAGGAGGTCT	64
q00583fw	AATGCGTGGTCTCTCTGGTG	64
q00583rv	GCTCGTCCAAGATCACCACA	64
q00682fw	GGACTGGGCTTCAAGACTCC	64
q00682rv	GAATCCTGCCCTGATCGAG	64
q01371fw	TGCCACTGGAGCAAAATCAC	63
q01371rv	AGTGGAACTAAGCAGGGAGG	62
q01750fw	ATGTGGTGAATGGGTGAGGC	64
q01750rv	CTTTCGAGGGCCCAGATTC	64
q02726fw	ACCTCCCGTTCAGCTAGTCT	64
q02726rv	AATTCATCAGAGTCGGCCCC	64
q04224F1	CCTAAGAGGTTTGAGTTAGCTG	60
q04224R1	CTGCAAAGATGATTTGCCTCTC	61
q05106fw	CTTCGTGCCGCTTTGTGATT	63
q05106rv	GGGGTTTGTCGTCGGTTTTG	64
q05320fw	GTTGCTTGCATTGGAACGTT	62
q05320rv	TTTACAACGTTGCTGGCCAC	63
q05320as-R1	TCGACGGTCTTGAAGAGTGA	62
q1976Fw	TGCAGCATTGGTTTTGGGCG	66
q1976Rv	AGGTTGCTGAGCCGCTTGTT	66
q2356Fw	TAAACAGACCGCAGTGGTGG	64
q2356Rv	CCTCGTTGTAGCCTGGTTGT	64
q2683Rv	TGGAACACAGTTTTGGGCAGT	64
q3015Fw	TCCAGCTATCGCCAACAACC	64
q3015Rv	TCCACAGTTCCTCCTCCGTC	65
q3015as-R1	CGACACAGATTGTGATGGAA	59
q462Fw	CCGGCGCATACACCAACTCA	66
q462Rv	GCGTCCAAAGCCCATAGTGC	64
pBPMV-F1	ACATTCCTGGGAATTGATCTTCC	63
pBPMV-R1	GATCGGGGAAATTCGAGCTATC	59
qBPMV-Probe	FAM-TCCTCATGCAGAGGATTCCGCA-TAMRA	69
qGUS-Fw	CTGGGTGGACGATATCACCG	64
qGUS-Rv	TCCAGTTGCAACCACCTGTT	64
qPDK-Fw	TGTTAGAAATTCCAATCTGCTTGT	60
qPDK-Rv	AATGATAGATCTTGCGCTTTGTT	61

 $[^]a$ (Schmitz, 2013), b (Libault $et\ al.$, 2008)

2.3 Biologisches Material

2.3.1 Saatgut und Anzucht von G. max

Für die Anzucht von Sojabohnen (*Glycine max* (L.) Merr) wurde Saatgut der Sorte Thorne (Bayer CropScience AG, Lyon, Frankreich) verwendet. Die Kultivierung erfolgte ohne Düngung in Topfsubstrat (Einheitserde Typ T, Gebr. Patzer GmbH, Sinntal-Jossa) bei einer Tag/Nacht-Periode von 16 h/8 h und 22° C Umgebungstemperatur.

2.3.2 Pilzisolat

Im Rahmen der vorliegenden Arbeit wurden Uredosporen eines kompatiblen Wildisolats (Thai 1) des Asiatischen Sojabohnenrostes *P. pachyrhizi* Syd. & P.Syd aus der Stammsammlung des Instituts für Phytomedizin, Universität Hohenheim verwendet.

2.3.2.1 Inokulation von G. max mit P. pachyrhizi

Zur Inokulation von *G. max* mit *P. pachyrhizi* wurden die Blätter 21-tage alter Sojabohnen gleichmäßig mittels eines DC-Zerstäubers (Carl Roth GmbH, Karlsruhe) mit 0,002 % (w/v) Inokulationssuspension besprüht und anschließend bei Dunkelheit, 95% relativer Luftfeuchte und 20° C für 12 h inkubiert. Die weitere Kultivierung der Pflanzen erfolgte unter den in 2.3.1 beschriebenen Bedingungen.

2.3.2.2 In vitro-Erzeugung von Keimschläuchen

Die *in vitro*-Erzeugung von Keimschläuchen von *P. pachyrhizi* erfolgte nach der von Posada-Buitrago und Frederick (2005) beschriebenen Methode. Dafür wurden 100 mg tiefgefrorene Uredosporen für 5 min einem Hitzeschock bei 42 °C unterzogen und anschließend gleichmäßig auf die Wasseroberfläche einer mit H_2O_{VE} gefüllten Petrischale verteilt. Zur Keimung wurden die Uredopsoren für 12 h bei Raumtemperatur und Dunkelheit inkubiert.

2.3.2.3 *In vitro*-Erzeugung von Appressorien

Zur *in vitro*-Erzeugung von Appressorien wurden kreisrunde Stücke PE-Folie (Ø 20 cm) gleichmäßig mittels eines DC-Zerstäubers (Carl Roth GmbH, Karlsruhe) mit 0,002 % Uredosporensuspension besprüht und in Glaspetrischalen für 16 h bei Raumtemperatur und Dunkelheit inkubiert.

2.3.3 Bakterienstämme

Die Vermehrung von Plasmidkonstrukten erfolgte in *Escherichia coli* DH 10B (Grant *et al.*, 1990). Für die transiente Transformation von *G. max* und *N. benthamiana* wurde *A. tumefaciens* LBA 4404 (Ooms *et al.*, 1981) verwendet.

2.3.3.1 Herstellung SEM-kompetenter Zellen von E. coli

Die Herstellung SEM-kompetenter Zellen erfolgte nach der von Inoue et~al.~(1990) beschriebenen Methode. Zur Herstellung einer Vorkultur wurden 5 ml LB-Medium mit einer Kolonie E.~coli~DH10B angeimpft und über Nacht bei 37°C und 125 rpm auf einem Rotator inkubiert. Am Folgetag wurden 250 ml SOB-Medium mit 2 % (v/v) Vorkultur angeimpft und bis zum erreichen einer $OD_{600} = 0.6$ auf einem Schüttler bei Raumtemperatur inkubiert. Die Zellen wurden für 10 min auf Eis inkubiert und anschließend in vorgekühlte 250 ml Zentrifugenbecher überführt. Es folgte eine 10-minütige Zentrifugation bei 4°C und 2500 rcf. Der Überstand wurde verworfen und die Zellen in 80 ml eiskaltem TB-Puffer resuspendiert. Die Zellen wurden für 10 min auf Eis inkubiert und anschließend erneut für 10 min bei 4°C und 2500 rcf zentrifugiert. Der Überstand wurde verworfen und die Zellen in 20 ml eiskaltem TB-Puffer resuspendiert. Es wurde DMSO zu einer Endkonzentration von 7% (v/v) zugegeben und die Zellen erneut für 10 min auf Eis inkubiert. Anschließend wurden die Zellen zu je 100 μ l in sterile 2 ml Reaktionsgefäße aliquotiert und in flüssigem Stickstoff schockgefroren. Die Lagerung der kompetenten Zellen erfolgte bei -70°C.

2.3.3.2 Transformation von *E. coli*

Die Transformation SEM-kompetenter Zellen von *E. coli* erfolgte mittels Hitzeschock. Dafür wurden 100 μl SEM-kompetente Zellen auf Eis aufgetaut und 50-100 ng Plasmid-DNA dazupipettiert. Der Transformationsansatz wurde 30 min auf Eis inkubiert und anschließend einem Hitzeschock (60 s, 42°C) unterzogen. Nach einer 5-minütigen Inkubation auf Eis, wurde 1 ml SOC-Medium dazugegeben und behutsam auf-und abpipettiert. Anschließend wurde die Zellsuspension für 2 h bei 37°C und 125 rpm auf einem Rotator inkubiert. Abschließend wurden 200 μl des Transformationsansatzes auf Selektivmedium ausplattiert und für 12-16 h bei 37°C inkubiert.

2.3.3.3 Herstellung elektro-kompetenter Zellen von A. tumefaciens

Die Herstellung elektro-kompetenter Zellen von *A. tumefaciens* erfolgte nach einer modifizierten Variante der von Seidman *et al.* (2001) beschriebenen Methode. Zur Herstellung einer Vorkultur, wurden 5 ml YEB-Medium_{Rif} mit einer Kolonie von *A. tumefaciens* LBA 4404 angeimpft und über Nacht bei 28°C und 125 rpm auf einem Rotator

inkubiert. Am Folgetag wurden 200 ml YEB-Medium $_{Rif}$ mit 2 % (v/v) Vorkultur angeimpft und in einem 1000 ml Erlenmeyerkolben bei 28°C und 150 rpm bis zum Erreichen einer OD $_{600}$ = 0,6 auf einem Schüttler inkubiert. Die Zellen wurden für 15 min in einem Eiswasserbad inkubiert und anschließend in vorgekühlte 250 ml Zentrifugenbecher überführt. Es folgte eine 20-minütige Zentrifugation bei 4°C und 1900 rcf. Der Überstand wurde verworfen und die pelletierten Zellen in 20 ml eiskaltem HEPES-Puffer 1 resuspendiert. Die Zellen wurden erneut für 20 min bei 4°C und 1900 rcf zentrifugiert und nach Verwerfen des Überstandes in 1 ml eiskaltem HEPES-Puffer 2 resuspendiert. Die resuspendierten Zellen wurden in 2 ml Reaktionsgefäße überführt und 5 min bei 4°C und 10000 rcf zentrifugiert. Der Überstand wurde verworfen und die pelletierten Bakterien in 200 μ l eiskaltem HEPES-Puffer 2 resuspendiert. Die resuspendierten Bakterien wurden zu 50 μ l in 2 ml Reaktionsgefäße aliquotiert und in flüssigem Stickstoff schockgefroren. Die Lagerung der kompetenten Zellen erfolgte bei -70°C.

2.3.3.4 Transformation von A. tumefaciens

Die Elektroporation von *A. tumefaciens* erfolgte mit einem ECM 600 Electro Cell Manipulator (BTX Harvard Apparatus, Holliston, MA, USA). Dafür wurden 50 μ l kompetente Zellen auf Eis aufgetaut und 25 - 50 ng Plasmid-DNA dazupipettiert. Die Zellen wurde für 5 min auf Eis inkubiert und anschließend in eine gekühlte Elektroporationsküvette (Peqlab GmbH, Erlangen) mit 2 mm Elektrodenabstand überführt. Die Elektroporation erfolgte bei 2,5 kV, 200 Ω und 25 μ F. In die Elektroporationsküvette wurde 1 ml SOC-Medium gegeben und behutsam auf- und abpipettiert. Anschließend wurde die Zellsuspension in ein steriles 2 ml Reaktionsgefäß überführt und für 2 h bei 28°C und 125 rpm auf einem Rotator inkubiert. Abschließend wurden 200 μ l des Transformationsansatzes auf Selektivmedium ausplattiert und für 48-72 h bei 28°C inkubiert.

2.4 Geräte

Gerät	Bezeichnung, Hersteller	Verwendung
Biolistik-System	PDS-100-He [®] , BioRad	Transformation von
	GmbH, München	G. max
Elektro-Zell-Manipulator	ECM 600 [®] , BTX Harvard	Transformation von
	Apparatus, Holliston, USA	A. tumefaciens
Fluorometer	Qubit 2.0®,	Quantifizierung von
	Life Technologies GmbH,	Nukleinsäuren
	Darmstadt	

Gerät	Bezeichnung, Hersteller	Verwendung
Geldokumentations-	Quantum 1100 [®] ,	Auswertung von
system	PEQLAB GmbH,	Agarosegelen
	Erlangen	
Gelelektrophorese-	wissenschaftliche	Gelelektrophorese
kammer	Werkstätten, Universität	
	Konstanz	
Homogenisator	FastPrep®-24,	Aufschluss biologischer
	MP Biomedicals GmbH,	Materialien
	Eschwege	
Mikroskop	Primo Star, Zeiss AG	Mikroskopie
Orbitalschüttler	Shaker DOS 10L, LTF	Inkubation von
	Labortechnik	Bakterienkulturen
PCR-Cycler	C1000 touch, BioRad	PCR
	GmbH, München	
	Cfx96, BioRad GmbH,	real-time PCR
	München	
	Masterycler gradient,	PCR
	Eppendorf AG, Hamburg	
Rotator	Rotator, NeoLab GmbH,	Inkubation von
	Heidelberg	Bakterienkulturen
Thermoblock	Thriller, PEQLAB GmbH,	Inkubation von
	Erlangen	Reaktionsansätzen
Vortexmischer	VM-300, neolab GmbH,	Mischen von
	Heidelberg	Reaktionsansätzen
Wasserbad	F12, Julabo GmbH,	Inkubation von
	Seelbach	Reaktionsansätzen
Zentrifugen	Sorvall RC5B, DuPont	Ultrazentrifugation
	5417R, Eppendorf AG,	Zentrifugation
	Hamburg	
	5415R, Eppendorf AG,	Zentrifugation
	Hamburg	

2.5 Software und Server

2.6 Plasmide

Als Ausgangsplasmid für den Aufbau viraler Silencingkonstrukte diente pBPMV-IA-V1 (Quelle). Für den Aufbau hpRNA-exprimierender Genkonstrukte wurde das Plasmid pHannibal (Quelle) verwendet. Zur Transformation von *G. max* und *N. benthamia-na* mit den in pHannibal aufgenauten Konstrukten, wurde das binäre Plasmid pART27 verwendet

pBPMV

pHannibal und pART27

Abb. 1: Plasmid pHannibal für den Aufbau von hpRNA-Konstrukten blablabla

2.7 Molekularbiologische Methoden

2.7.1 RNA-Präparation

2.8 Isolierung von Nukleinsäuren

2.8.1 Isolation von Plasmid DNA

Die Isolation von Plasmid-DNA aus *E. coli* und *A. tumefaciens* erfolgte mittels peqGold Plasmid Mini Kit (Peqlab GmbH, Erlangen) nach den Angaben des Herstellers.

2.8.2 Isolation von RNA aus Pflanzenmaterial

Die Isolation von RNA aus infiziertem und nicht-infiziertem Pflanzenmaterial von G. max erfolgte nach einem modifizierten Protokoll mittels Plant RNA Isolation Kit (Agilent GmbH, Böblingen). Dafür wurden bis zu 100 mg Pflanzenmaterial mit einem Korkbohrer ausgestanzt und zusammen mit zwei Edelstahlkügelchen (Ø4 mm) in 2 ml Schraubdeckelröhrchen überführt. Das Pflanzenmaterial wurde in flüssigem Stickstoff schockgefroren und zweimal für 20 s bei 4000 mps im FastPrep®-24 homogenisiert, wobei das Material zwischen den Homogenisierungsschritten erneut schockgefroren wurde. Anschließend wurden 600 µ Extraktionslösung dazugegeben und durch vortexen gemischt. Das Homogenat wurde für 2 min bei 4°C und 16.000 rpm zentrifugiert. Anschließend wurde der Überstand abgenommen und auf ein Filtersäulchen überführt. Nach einer 3-minütigen Zentrifugation bei 4°C und und 16.000 rpm wurde der Durchfluß in ein RNAse-freies 2ml Reaktionsgefäß überführt und 600 µl Isopropanol dazugegeben. Die Lösung wurde durch mehrfaches invertieren gemischt und für 5 min bei Raumtemperatur inkubiert. Anschließend wurden 600 μl der Lösung auf ein Isolationssäulchen überführt und für 30 s bei 4°C und 16.000 rpm zentrifugiert. Der Durchfluss wurde verworfen und das Säulchen erneut mit 600 µl beladen und ein weiteres mal für 30 s bei 4°C und 16.000 rpm zentrifugiert. Es folgten 2 Waschschritte bei welchen jeweils 500 µl Waschlösung auf das Säulchen gegebebn wurden und anschließend für 30 s bei 4°C und 16.000 rpm zentrifugiert wurde. Der Durchfluss wurde verworfen und das Säulchen zur Trocknung der gebundenen RNA für 2 min bei 4°C und $16.000\,\mathrm{rpm}$ zentrifugiert. Anschließend wurden $30-50\,\mathrm{\mu l}$ H $_2\mathrm{O}_{DEPC}$ auf die Mitte der Säulchenmembran pipettiert und das Säulchen auf ein RNAse-freies 1,5 ml Reaktionsgefäß überführt. Nach einer Inkubationszeit von 2 min bei Raumtemperatur wurde die gelöste RNA durch Zentrifugation für 30 s bei 4°C und 16.000 rpm in das Reaktionsgefäß überführt. Die kurzzeitige Lagerung der RNA erfolgte auf Eis. Zur langfristigen Lagerung wurde die RNA durch Zugabe von 1/10 Volumen Natriumacetat (3M, pH irgendwas) und 2,5 Volumen EtOH gefällt und bei -80°C aufbewahrt.

2.8.3 Isolation von RNA aus Uredosporen und Keimschläuchen von *P. pachyrhizi*

Die Isolation von RNA aus Uredosporen und Keimschläuchen (siehe 2.3.2.2) erfolgte analog zu der in 2.8.2 beschriebenen Methode.

2.8.4 Isolation von RNA aus Appressorien von P. pachyrhizi

Zur Isolation von RNA aus Appressorien von *P. pachyrhizi* wurden die in 2.3.2.3 beschriebenen PE-Folie behutsam mit Filterpapier trocken getupft und anschließend

600 µl Extraktionslösung darauf gegebenen. Die Extraktionslösung wurde mit einem Gummiwischer (Carl Roth GmbH, Karlsruhe) verteilt, wodurch sich die pilzlichen Strukturen von der Folie lösten und mit einer abgeschnittenen Pipettenspitze in ein 2 ml Reaktionsgefäß mit einer Mischung aus Quarzsand und Glaskügelchen (Lysing Matrix E, MP Biomedicals GmbH, Eschwege) überführt werden konnten. Die Appressorien wurden 2-mal für 20 s bei 6500 mps im FastPrep®-24 homogenisiert, wobei das Material zwischen den Homogenisierungsschritten auf Eis gekühlt wurde. Das Homogenat wurde für 2 min bei 4°C und 16.000 rpm zentrifugiert. Anschließend wurde der Überstand abgenommen und auf ein Filtersäulchen überführt. Die weitere Vorgehensweise erfolgte analog zu der in 2.8.2 beschriebenen Methode.

Literaturverzeichnis

- **Grant SGN**, **Jessee J**, **Bloom FR**, und **Hanahan D**, 1990. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proceedings of the National Academy of Sciences of the United States of America, 87(12):4645–4649.
- **Inoue H, Nojima H,** und **Okayama H,** 1990. High efficiency transformation of *Escherichia coli* with plasmids. Gene, 96(1):23–28.
- **Libault M**, **Thibivilliers S**, **Bilgin DD**, **Radwan O**, **Benitez M**, **Clough SJ**, und **Stacey G**, 2008. Identification of Four Soybean Reference Genes for Gene Expression Normalization. The Plant Genome, 1(1):44–54.
- Link TI, Lang P, Scheffler BE, Duke MV, Graham MA, Cooper B, Tucker ML, van de Mortel M, Voegele RT, Mendgen K, Baum TJ, und Whitham SA, 2014. The haustorial transcriptomes of *Uromyces appendiculatus* and *Phakopsora pachyrhizi* and their candidate effector families. Molecular Plant Pathology, 15(4):379–393.
- **Ooms G, Hooykaas, Paul J J, Moolenaar G**, und **Schilperoort RA**, 1981. Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene, 14(1–2):33–50.
- **Posada-Buitrago ML** und **Frederick RD**, 2005. Expressed sequence tag analysis of the soybean rust pathogen Phakopsora pachyrhizi. Fungal Genetics and Biology, 42(12):949–962.
- **Schmitz HK**, 2013. In vivo und molekularbiologische Untersuchungen zur Sensitivität von Phakopsora pachyrhizi gegenüber Demethylierungs-Inhibitoren und Qo-Inhibitoren. Dissertation, Universität Hohenheim, Stuttgart-Hohenheim.
- **Seidman CE**, **Struhl K**, **Sheen J**, und **Jessen T**, 2001. Introduction of Plasmid DNA into Cells. In **Ausubel FM** (Hg.), Current Protocols in Molecular Biology, Band 37, 1.8.1–1.8.10. John Wiley & Sons, Inc.