d) 4π

(2017 - ME)

(2017 - ME)

2017-ME-27-39

EE24BTECH11001 - ADITYA TRIPATHY

2) A parametric curve defined by $x = \cos\left(\frac{\pi u}{2}\right)$, $y = \sin\left(\frac{\pi u}{2}\right)$ in the range $0 \le u \le 1$ is rotated about the *x*-axis by 360 degrees. Area of the surface generated is

c) 2π

1) For the vector $\mathbf{V} = 2yz\mathbf{i} + 3xz\mathbf{j} + 4xy\mathbf{k}$, the value of $\nabla \cdot (\nabla \times \mathbf{V})$ is

b) π

a) $\frac{\pi}{2}$

3) $P(0,3), Q(0.5,4)$, and $R(1,5)$ are three points on the defined by $f(x)$. Numerical integration is carried out using bothe trapezoidal rule and Simpson's rule within limits $x = 0$ and $x = 1$ for the curve. The difference between the two results will be $(2017 - ME)$				
a) 0	b) 0.25	c) 0.5	d) 1	
4) The velocity profile inside the boundary layer flow for flow over a flat plate is given by $\frac{u}{u_{\infty}}$ is the free stream velocity and δ is the local boundary layer thickness, If δ^* is the local displacement thickness, the value of $\frac{\delta^*}{\delta}$ is (2017 – <i>ME</i>)				
a) $\frac{2}{\pi}$	b) $1 - \frac{2}{\pi}$	c) $1 + \frac{2}{\pi}$	d) 0	
5) Consider steady flow of an incompressible fluid through two long and straight pipes of diameters d_1 and d_2 arranged in series. Both pipes are of equal length and the flow is turbulent in both pipes. The friction factor for turbulent flow thorught pipes is of the form $f = K(Re)^{-n}$, where K and n are known positive constants and Re is the Reynolds number. Neglecting minor losses, the ration of the frictional pressure drop in pipe 1 to that in pipe 2, $\frac{\Delta P_1}{\Delta P_2}$, is given by (2017 – ME)				
a) $\left(\frac{d_2}{d_1}\right)^{(5-n)}$	b) $\left(\frac{d_2}{d_1}\right)^5$	c) $\left(\frac{d_2}{d_1}\right)^{(3-n)}$	d) $\left(\frac{d_2}{d_1}\right)^{(5+}$	n)
6) For a steady flow, the velocity field is $\mathbf{V} = (-x^2 + 3z)\mathbf{i} + (2xy)\mathbf{j}$. The magnitude of the acceleration of a particle at $(1, -1)$ is $(2017 - ME)$				
a) 2	b) 1	c) $2\sqrt{5}$	d) 0	
7) One kg of an ideal gas (gas constant, $R = 400J/kg K$; specific heat at constant volume $c_v = 1000J/kg K$) at 1 bar, and 300K is contained in a sealed rigid cylinder. During an adiabatic processs, $100kJ$ of work is done on the system by a stirrer. The increase in entropy of the system is $(2017 - ME)$				
8) The pressure ratio across a gas turbine for air,(specific heat at constant pressure, $C_p = 1040 J/kgK$ and ratio of specific heats $\gamma = 1.4$) is 10. If the inlet temperature to the turbine is 1200 K and the isoentropic efficiency is 0.9, the gas temperature at turbine exit is (2017 – ME)				
9) Moist air is treated as an ideal gas mixture of water vapor and dry air (molecular weight of air = 28.84 and molecular weight of water = 18). At a location, the total pressure is $100kPa$, the temperature is				

- 30° and the relative humidity is 55%. Given that the saturation pressure of water at 30° is 42646Pa, the mass of water vapor per kg of dry air is (2017 ME)
- 10) Air contains $79\%N_2$ and $21\%O_2$ on a molar basis. Methane (CH_4) is burned with 50% excess air than required stoichiometrically. Assuming complete combustion of methane, the molar percentage of N_2 in the products is (2017 ME)
- 11) Two black surfaces, AB and BC, of lengths 5m amd 6m, respectively, are oriented as shown. Both surfaces extend infinitely into the third dimension. Given that view factor $F_{12} = 0.5$, $T_1 = 800K$, $T_2 = 600K$, $T_{surrounding} = 300K$ and Stefan Boltzman constant $\sigma = 5.67 \times 10^{-8} W/(m^2 K^4)$ the heat transfer from Surface 2 to the surrounding environment is (inkW) (2017 ME)

- 12) Heat is generated uniformly in a long solid cylindrical rod (diameter = 10mm) at the rate of $4 \times 10^7 W/m^3$. The thermal conductivity of the rod material is 25 W/mK. Under steady state conditions, the temperature difference between the centre and the surface of the rod is (in $^{\circ}C$) (2017 ME)
- 13) An initially stress free massless elastic beam of length L and circular cross-section with diameter d (d << L) is held fixed between two walls as shown. The beam material has Young's modulus E and coefficient of thermal expansion α . If the beam is slowly and uniformly heated, the temperatture rise required to cause the beam to buckle is proportional to

(2017 - ME)

a) *d*

b) d^2

c) d^3

d) d^4