Кислоты

Признак классификации	Группы кислот	Примеры	
Наличие кисло- рода в кислотном	Кислород- содержащие	H ₃ PO ₄ , HNO ₃	
остатке	Бескислородные	H ₂ S, HCl, HBr	
Основность	Одноосно́вные	HCl, HNO ₃	
	Двухосно́вные	H ₂ S, H ₂ SO ₄	
	Трёхосно́вные	H ₃ PO ₄	
Растворимость	Растворимые	H ₂ SO ₄ , H ₂ S, HNO ₃	
в воде	Нерастворимые	H ₂ SiO ₃	
Летучесть	Летучие	H ₂ S, HCl, HNO ₃	
	Нелетучие	H ₂ SO ₄ , H ₂ SiO ₃ , H ₃ PO ₄	
Степень электро-	Сильные	H ₂ SO ₄ , HCl, HNO ₃	
литической диссо- циации	Слабые	H ₂ S, H ₂ SO ₃ , H ₂ CO ₃	
Стабильность	Стабильные	H ₂ SO ₄ , H ₃ PO ₄ , HCl	
	Нестабильные	H ₂ SO ₃ , H ₂ CO ₃ , H ₂ SiO ₃	

Получение кислот

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота.

Оксид серы (VI) реагирует с водой с образованием серной кислоты

$$SO_3 + H_2O = H_2SO_4$$

Оксид кремния (IV) с водой не реагирует

$$SiO_2 + H_2O \neq$$

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Хлор реагирует с водородом

$$H_2^0 + CI_2^0 = 2H^+CI^-$$

3. Электролиз растворов солей. Для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих кислот.

Электролиз раствора сульфата меди (II)

$$2CuSO_4 + 2H_2O = 2Cu + 2H_2SO_4 + O_2$$

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

$$CaCO_3 + H_2SO_4 = CaSO_4 + H_2O + CO_2$$

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

$$P + 5HNO_3 = H_3PO_4 + 5NO_2 + H_2O$$

ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ МЕТАЛЛОВ С АЗОТНОЙ И СЕРНОЙ КИСЛОТАМИ

	Mg	Al	Zn	Fe	Cr	Cu
HNO ₃ (разб.)	Mg(NO ₃) ₂ + в зависимости от концентрации	Al(NO ₃) ₃ + в зависимости от разбавления кислоты: N ₂ O, NH ₄ NO ₃ + H ₂ O	Zn(NO ₃) ₂ + в зависимости от концентрации кислоты:	Fe(NO ₃) ₃ + NO +H ₂ O	пассивация при любой	Cu(NO ₃) ₂ + NO+H ₂ O
HNO ₃ (конц.)	1 12, 1 11 141 103	На холоду - пассивация При нагревании: Al(NO ₃) ₃ + NO + H ₂ O	NO ₂ , NO, N ₂ O, N ₂ , NH ₄ NO ₃ + H ₂ O	На холоду - пассивация При нагревании: Fe(NO ₃) ₃ + NO ₂ + H ₂ O	температуре и концентрац <u>и</u> и	Cu(NO ₃) ₂ + NO ₂ +H ₂ O
H ₂ SO ₄ (pa ₃ 6)	MgSO ₄ + H ₂	$Al_2(SO_4)_3 + H_2$	ZnSO ₄ + H ₂	FeSO ₄ + H ₂	CrSO ₄ + H ₂	_
H ₂ SO ₄ (конц.)	MgSO ₄ +H ₂ S+ + H ₂ O	На холоду – пассивация При нагревании: Al ₂ (SO ₄) ₃ + SO ₂ + H ₂ O	ZnSO ₄ + SO ₂ +H ₂ O При нагревании: ZnSO ₄ + H ₂ S + + H ₂ O	На холоду - пассивация При нагревании: Fe ₂ (SO ₄) ₃ + SO ₂ +H ₂ O	пассивация при любой температуре	CuSO ₄ + SO ₂ + H ₂ O

ПРОДУКТЫ ВЗАИМОДЕЙСТВИЯ НЕМЕТАЛЛОВ С АЗОТНОЙ И СЕРНОЙ КИСЛОТАМИ

	P	S	C	
HNO ₃ (разб.)	H ₃ PO ₄ + NO	$H_2SO_4 + NO$		
HNO ₃ (конц.)	$H_3PO_4+NO_2+H_2O$	$H_2SO_4 + NO_2 + H_2O$	$CO_2 + NO_2 + H_2O$	
H ₂ SO ₄ (разб) —				
H ₂ SO ₄ (конц.)	$H_3PO_4 + SO_2 + H_2O$	$SO_2 + H_2O$	$SO_2 + CO_2 + H_2O$	

Химические свойства кислот

1. В водных растворах кислоты диссоциируют на катионы водорода H⁺ и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Соляная кислота диссоциирует почти полностью

$$HCI = H^+ + CI^-$$

Более точный процесс - протолиз воды. В растворе образуются ионы гидроксония

$$HCI + H_2O = H_3O^+ + CI^-$$

Многоосновные кислоты диссоциируют ступенчато

Сернистая кислота диссоциирует в две ступени

$$H_2SO_3 \leftrightarrow H^+ + HSO_3^-$$

$$HSO^{3-} \longleftrightarrow H+ + SO_3^{2-}$$

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами.

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой

$$Cu(OH)_2 + 2HBr = CuBr_2 + 2H_2O$$

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой

$$Cu(OH)_2 + H_2SiO_3 \neq$$

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислоты.

Щёлочи взаимодействуют с любыми кислотами— сильными и слабыми. При этом образуются средняя соль и вода.

Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении реагентов 1:1

$$NaOH + H_3PO_4 = NaH_2PO_4 + H_2O$$

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты

$$2NaOH + H_3PO_4 = Na_2HPO_4 + 2H_2O$$

В избытке щелочи или при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла

$$3NaOH + H_3PO_4 = Na_3PO_4 + 3H_2O$$

4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид = соль + вода

Растворимая кислота + амфотерный гидроксид = соль + вода

Уксусная кислота взаимодействует с гидроксидом алюминия

$$3CH3COOH + AI(OH)3 = (CH3COO)3AI + 3H2O$$

5. Некоторые кислоты являются сильными восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H2SO3 и др.).

Йодоводород можно окислить хлоридом меди (II)

$$4HI^{-} + 2Cu^{+2}CI_{2} = 4HCI + 2Cu^{+}I + I_{2}^{0}$$

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит.

Соляная кислота взаимодействует с нитратом серебра в растворе

$$AgNO_3 + HCl = AgCl + HNO_3$$

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты вытесняют менее сильные кислоты из солей.

Карбонат кальция реагирует с соляной кислотой (более сильной, чем угольная)

$$CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2$$

5. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей.

кислая соль1 + кислота1 = средняя соль2 + кислота2/оксид + вода

Гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды

$$KHCO_3 + HCI = KCI + CO_2 + H_2O$$

Гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия

$$H_3PO_4 + K_2HPO_4 = 2KH_2PO_4$$

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Гидроксокарбонат меди (II) растворяется в серной кислоте

$$2H_2SO_4 + (CuOH)_2CO_3 = 2CuSO_4 + 3H_2O + CO_2$$

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Гидроксохлорид алюминия взаимодействует с соляной кислотой

$$AI(OH)CI_2 + HCI = AICI_3 + H_2O$$

6. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H_2SO_4 , фосфорная кислота H_3PO_4 , плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода

Взаимодействие металлов с кислотами-окислителями

Сероводородная кислота H_2S , угольная H_2CO_3 , сернистая H_2SO_3 и кремниевая H_2SiO_3 с металлами не взаимодействуют.

Кислоты-окислители (азотная кислота HNO_3 любой концентрации и серная концентрированная кислота H_2SO_4 (конц)) при взаимодействии с металлами водород не образуют, т.к. окислителем выступает не водород, а азот или сера.

7. Некоторые кислоты разлагаются при нагревании

Угольная H_2CO_3 , сернистая H_2SO_3 и азотистая HNO_2 кислоты разлагаются самопроизвольно

$$H_2CO_3 = H_2O + CO_2$$

$$H_2SO_3 = H_2O + SO_2$$

$$2HNO_2 = NO + H_2O + NO_2$$

Кремниевая H₂SiO₃, йодоводородная HI кислоты разлагаются при нагревании

$$H_2SiO_3 = H_2O + SiO_2$$

$$2HI = H_2 + I_2$$

Азотная кислота HNO₃ разлагается при нагревании или на свету

$$4HNO_3 = O_2 + 2H_2O + 4NO_2$$