

§ 3.3一阶谓词演算形式系统

[本节主要内容]

- 1)一阶谓词演算形式系统的组成:包括一阶语言及一阶理论;
- 2)FC的基本定理;

§ 3. 3. 1一阶谓词演算形式系统组成

与命题演算形式系统(PC)的组成相似, 一阶谓词演算形式系统的组成也主要 包括字符集及形成规则、公理、推理 规则及定理推导等几部分。 我们将字符集及形成规则称为一阶谓词 演算形式系统的一阶语言,将公理、推理 规则及定理推导等理论部分称为一阶谓词 演算形式系统的一阶逻辑。

一、一阶语言

1. 字符集:

个体变元: X, y, Z, u, v, w, \cdots 个体常元: a,b,c,d,en元函词: $f^{(n)}, g^{(n)}, h^{(n)}, \cdots$ n元谓词: $P^{(n)}$, $Q^{(n)}$, $R^{(n)}$, ... 真值联结词: 一, 一 量词: ∀、∃; 括号:(,)

2. 形成规则: 即项和谓词公式的定义.

二、一阶逻辑

1. 公理: 下列公理模式及其 全称化均为公理。

$$AX1.1 \quad A \rightarrow (B \rightarrow A)$$

$$AX1.2 \quad (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

$$AX1.3 \quad (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$$

$$AX2$$
 $\forall vA \rightarrow A_t^v (项t对v可代入)$

$$AX3 \quad \forall v(A \rightarrow B) \rightarrow (\forall vA \rightarrow \forall vB)$$

$$AX4$$
 $A \rightarrow \forall vA(v在A$ 中无自由出现)

2. 推理规则: 分离规则 (r_{mp})

即若有结论 A 及 $A \rightarrow B$ 成立则必有结论 B成立.

可用形式化序列表示为: A , $A \rightarrow B$, B

3. 定理:是FC中的重要内容, 包括所有的推理结论及其推理过程。

§ 3.3.2 FC的基本定理

定理1
$$\left| -_{FC} \right| \forall vA \rightarrow A$$

定理2
$$|-A \rightarrow \neg \forall v \neg A|$$
 或 $|-A \rightarrow \exists v A|$

定理3
$$|-\forall vA \rightarrow \exists vA$$

定理4(全称推广)

对FC中任意的公式 A ,变元 V 若|-A 则 $|-\forall vA$

例1 若 $-A \rightarrow B$ 且变元 V在B中无自由出现 则 $-\exists vA \rightarrow B$

全称推广定理扩充到一般的情形:

定理5 FC中任意的公式集 Γ ,公式A 及变元V,且V不在 Γ 的任一公式里自由出现。 若 $\Gamma | -A 则 \Gamma | - \forall vA$

例2 $\exists x \neg A \rightarrow \forall x B | \neg \forall x (\neg A \rightarrow B)$

定理6(演绎定理)

对FC中任意公式集 Γ 和公式 A,B, $\Gamma \cup \{A\} \mid -B$ (或简记为 $\Gamma;A \mid -B$) 当且仅当 $\Gamma \mid -A \rightarrow B$

例3 $\forall x(A \rightarrow B) | -A \rightarrow \forall xB$ 变元 \mathcal{X} 在 A 中无自由出现。

定理7 Γ ; A 一一B 当且仅当 Γ ; B 一一A

定理8(反证法)

若FC的公式集 Γ \bigcup {A}不一致,则 Γ \bigcap - \bigcap A

例4 $\forall x \neg A \rightarrow \exists x B | \neg \exists x (\neg A \rightarrow B)$

定理9

对FC中任意公式集 Γ 和公式A,B,且变元V不在 Γ 的任一公式里自由出现。则 $\Gamma;A-B$ 蕴涵 $\Gamma;\forall vA-B$ 及 $\Gamma;\forall vA-B$

定理10(存在消除)

对FC中任意公式集 Γ 和公式A,B,且变元V不在 Γ 的任一公式里及公式B里自由出现,则由 Γ - $\exists vA$ 及 $\Gamma;A$ -B可推出 Γ -B

例5 $-\exists v(A \rightarrow B) \rightarrow (A \rightarrow \exists vB)$ V在公式 A 里无自由出现。

定理11(替换原理)

设 A, B为FC的公式,且满足 $A \vdash B$ $A \not\in C$ 的子公式,D是将公式 C 中若干个(未必全部) A 的出现换为公式 B 所得的公式,则 $C \vdash\mid D$ 例6 $\forall x(A \to B) \mid -(\exists xA \to \exists xB)$

定理12(改名定理)

在FC中,若 A'是 A 的改名式,且 A' 改用的变元不在 A 中出现,则 $A \mid\mid A'$

例7 设A为FC的公式,则有:

$$\forall u \forall v A - \forall v A_v^u$$