Função Exponencial

Função Exponencial e Propriedades

 1° ano E.M.

Professores Cleber Assis e Tiago Miranda

Função Exponencial

Função Exponencial e Propriedades

1 Exercícios Introdutórios

Exercício 1. Calcule as potências abaixo.

- a) 11^2 .
- b) 2⁸.
- c) 17^0 .
- d) $(-4)^4$.
- e) -4^4 .
- f) $\left(\frac{2}{3}\right)^4$.
- g) $2,7^2$.
- h) $\left(\frac{4}{5}\right)^{-3}$.
- i) $(-5)^{-4}$.

Exercício 2. Utilize uma única potência para representar as expressões abaixo.

- a) $5^2 \cdot 5^3 \cdot 5^4$.
- b) $\frac{3^2 \cdot 3^0 \cdot 3^7}{27}$.
- c) $\frac{4 \cdot 8^2 \cdot 2^3}{16 \cdot 2^{-1}}$.
- d) $\frac{a^2 \cdot a^4}{a^3}$

Exercício 3. Escreva os radicais abaixo na forma de potência, simplificando quando possível.

- a) $\sqrt[3]{6^9}$.
- b) $\sqrt[5]{(-8)^2}$.
- c) $\sqrt[3]{(\sqrt{9})^4}$.
- d) $\left(\sqrt[5]{\left(\frac{2}{3}\right)^3}\right)^{10}$.

Exercício 4. Seja a função exponencial $f : \mathbb{R} \to \mathbb{R}$, definida por $f(x) = 2^x$, determine:

- a) f(1).
- b) f(-3).
- c) $f\left(\frac{1}{2}\right)$.

d) x para que f(x) seja igual a $\frac{1}{16}$.

Exercício 5. Seja a função exponencial $f : \mathbb{R} \to \mathbb{R}$, definida por $f(x) = \left(\frac{1}{3}\right)^x$, determine:

- a) f(2).
- b) f(-2).
- c) $f\left(\frac{1}{2}\right)$.
- d) o menor valor de $k \in \mathbb{Z}$ para f(k) < 100.

Exercício 6. Determine o valor numérico da expressão

$$(\sqrt[6]{4})^{-3} - \left(\frac{5}{\sqrt{5}}\right)^2$$
.

Exercício 7. O valor da expressão $\sqrt[3]{5^{-2}} \cdot 5^{1,333...}$ é:

- a) um número primo.
- b) um decimal exato.
- c) uma dízima periódica.
- d) um número irracional.
- e) um número não real.

Exercício 8. Seja a função exponencial $f : \mathbb{R} \to \mathbb{R}$, definida por $f(x) = a^x$. Se f é crescente, então:

- (a) a = 1.
- (b) a > 1.
- (c) 0 < a < 1.
- (d) a < 0.
- (e) a = 0.

Exercício 9. Seja a função exponencial $f: [-1,4] \to \mathbb{R}$, definida por $f(x) = 3^x$, determine o conjunto imagem.

2 Exercícios de Fixação

Exercício 10. Escreva em uma única potência:

- a) a metade de 2^{50} .
- b) o triplo de 3¹⁵.
- c) o quadrado do quíntuplo de 25¹².

Exercício 11. Resolva a equação $8x^2 = 3 \cdot 2^2 - (3^{-2})^{-1} + (0,2)^{-3}$.

Exercício 12. Observe a figura.

Determine:

- a) a medida do lado do quadrado 5.
- b) a área do quadrado *n*.
- c) qual quadrado terá área $81cm^2$.

Exercício 13. Luiz ingeriu 500mg de amoxicilina às 8h. Suponha que a meia-vida dessa substância é de aproximadamente 1h.

- a) Determine a massa dessa substância no organismo de Luiz às 9*h*, 10*h*, 11*h*.
- b) Qual é a massa restante no organismo de Luiz após *t* horas da ingestão do remédio?

Exercício 14. Determine o valor da expressão

$$\frac{4^3 \cdot 2^{-3} + \left(\frac{1}{3}\right)^{-4} \cdot 3^{-2}}{5 \cdot (1,2)^{-1}}.$$

Exercício 15. Há uma lenda que credita a invenção do xadrez a um brâmane de uma côrte indiana, que, atendendo a um pedido do rei, inventou o jogo para demonstrar o valor da inteligência. O rei, encantado com o invento, ofereceu ao brâmane a escolha de uma recompensa. De acordo com essa lenda, o inventor do jogo de xadrez pediu ao rei que a recompensa fosse paga em grãos de arroz da seguinte maneira: 1 grão para a casa 1 do tabuleiro, 2 grãos para a casa 2, 4 para a casa 3, 8 para a casa 4 e assim sucessivamente. Ou seja, a quantidade de grãos para cada casa do tabuleiro correspondia ao dobro da quantidade da casa imediatamente anterior.

- a) De acordo com a lenda, qual é quantidade de grãos de arroz correspondente à casa 6 do tabuleiro?
- b) Escreva uma função f que expresse a quantidade de grãos de arroz em função do número x da casa do tabuleiro.
- c) Escreva, na forma de potência, quantos grãos de arroz devem ser colocados na última casa do tabuleiro de xadrez.

Exercício 16. Jonas precisa fazer um empréstimo em um banco, que cobra uma taxa de juros compostos de 10% ao mês. Ele tomou emprestado R\$2.400,00.

- a) Se Jonas pagar sua dívida depois de 3 meses, qual será o valor total pago?
- b) Escreva uma função f que expresse a quantia paga em função do tempo t, dado em meses.

c) Ao final de *m* meses, ele pagou ao banco *R*\$3.513, 84. Qual o valor de *m*?

Exercício 17. Se
$$a = \left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{3}\right)^{-2}$$
 e $b = \frac{2 \cdot \left(\frac{1}{3}\right)^{-1} - 2^2}{\left(\frac{1}{2}\right)^{-2}}$, determine a^b .

3 Exercícios de Aprofundamento e de Exames

Exercício 18. Considere $a=11^{50}$, $b=4^{100}$ e $c=2^{150}$ e assinale a alternativa correta.

- a) c < a < b.
- b) c < b < a.
- c) a < b < c.
- d) a < c < b.

Exercício 19. O processo de resfriamento de um determinado corpo é descrito por: $T(t) = T_A + \alpha \cdot 3^{\beta t}$, onde T(t) é a temperatura do corpo, em graus Celsius, no instante t, dado em minutos, T_A é a temperatura ambiente, supostamente constante, e α e β são constantes. O referido corpo foi colocado em um congelador com temperatura de $-18^{\circ}C$. Um termômetro no corpo indicou que ele atingiu $0^{\circ}C$ após 90 minutos e chegou a $-16^{\circ}C$ após 270 minutos.

- a) Encontre os valores numéricos das constantes α e β .
- b) Determine o valor de t para o qual a temperatura do corpo no congelador é apenas $\left(\frac{2}{3}\right)$ ${}^{o}C$ superior à temperatura ambiente.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com

Respostas e Soluções.

1.

a)
$$11^2 = 121$$
.

b)
$$2^8 = 256$$
.

c)
$$17^0 = 1$$
.

d)
$$(-4)^4 = 256$$
.

e)
$$-4^4 = -256$$
.

f)
$$\left(\frac{2}{3}\right)^4 = \frac{16}{81}$$
.

g)
$$2,7^2 = 7,29$$
.

h)
$$\left(\frac{4}{5}\right)^{-3} = \frac{125}{64}$$
.

i)
$$(-5)^{-4} = \frac{1}{625}$$

2

a)
$$5^2 \cdot 5^3 \cdot 5^4 = 5^{2+3+4} = 5^9$$
.

b)
$$\frac{3^2 \cdot 3^0 \cdot 3^7}{27} = 3^{2+0+7-3} = 3^6$$
.

c)
$$\frac{4 \cdot 8^2 \cdot 2^3}{16 \cdot 2^{-1}} = \frac{2^2 \cdot 2^6 \cdot 2^3}{2^4 \cdot 2^{-1}} = 2^{2+6+3-4+1} = 2^8.$$

d)
$$\frac{a^2 \cdot a^4}{a^3} = a^{2+4-3} = a^3$$
.

3.

a)
$$\sqrt[3]{6^9} = 6^{\frac{9}{3}} = 6^3$$
.

b)
$$\sqrt[5]{(-8)^2} = 2^{\frac{6}{5}}$$
.

c)
$$\sqrt[3]{\left(\sqrt{9}\right)^4} = \sqrt[3]{3^4} = 3^{\frac{4}{3}}$$
.

d)
$$\left(\sqrt[5]{\left(\frac{2}{3}\right)^3}\right)^{10} = \left(\frac{2}{3}\right)^{\frac{30}{5}} = \left(\frac{2}{3}\right)^6$$
.

4

a)
$$f(1) = 2^1 = 2$$
.

b)
$$f(-3) = 2^{-3} = \frac{1}{8}$$
.

c)
$$f\left(\frac{1}{2}\right) = 2^{\frac{1}{2}} = \sqrt{2}$$
.

d) Temos
$$2^x = \frac{1}{16}$$
, segue que $x = -4$.

5.

a)
$$f(2) = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$$
.

b)
$$f(-2) = \left(\frac{1}{3}\right)^{-2} = 9.$$

c)
$$f\left(\frac{1}{2}\right) = \left(\frac{1}{3}\right)^{\frac{1}{2}} = \sqrt{\frac{1}{3}} = \frac{\sqrt{3}}{3}$$
.

d) Como $\left(\frac{1}{3}\right)^{-4} < 100 < \left(\frac{1}{3}\right)^{-5}$, então o menor valor de k é -4.

6.

$$(\sqrt[6]{4})^{-3} - \left(\frac{5}{\sqrt{5}}\right)^2 = 2^{-\frac{6}{6}} - \frac{25}{5} = 2^{-1} - 5 = \frac{1}{2} - 5 = -\frac{9}{5}.$$

7.

$$\sqrt[3]{5^{-2} \cdot 5^{1,333...}} = 5^{-\frac{2}{3} \cdot 5^{1+\frac{1}{3}}} = 5^{-\frac{2}{3} \cdot 5^{\frac{4}{3}}} = 5^{-\frac{2}{3} + \frac{4}{3}} = 5^{\frac{2}{3}} = \sqrt[3]{25}.$$

Resposta D.

8. B.

9. f é uma função exponencial crescente, então o menor valor de f é $f(-1)=3^{-1}=\frac{1}{3}$ e o maior é $f(4)=3^4=81$. Portanto, o conjunto imagem é $\left[\frac{1}{3},81\right]$.

10.

a)
$$2^{50} = \frac{2^{50}}{2} = 2^{50-1} = 2^{49}$$
.

b)
$$3 \cdot 3^{15} = 3^{1+15} = 3^{16}$$
.

c)
$$(5 \cdot 25^{12})^2 = 5^{2+24} = 5^{26}$$

11.

$$8x^{2} = 3 \cdot 2^{2} - (3^{-2})^{-1} + (0,2)^{-3}$$

$$8x^{2} = 12 - 3^{2} + \left(\frac{1}{5}\right)^{-3}$$

$$8x^{2} = 12 - 9 + 5^{3}$$

$$8x^{2} = 128$$

Portanto x = -4 ou x = 4.

12.

- a) 5cm.
- b) n^2 .
- c) Se $n^2 = 81$, então n = 9cm. Portanto, será o Quadrado 9.
- 13. (Extraído da Vídeo Aula)
- a) A massa às 9h era 250mg, às 10h era 125mg e às 11h 62,5mg.
- b) Como a cada hora a massa reduz-se à metade, após t horas, será $500 \cdot 2^{-t}$.

14.

$$\frac{4^{3} \cdot 2^{-3} + \left(\frac{1}{3}\right)^{-4} \cdot 3^{-2}}{5 \cdot (1,2)^{-1}} = \frac{2^{6} \cdot 2^{-3} + 3^{4} \cdot 3^{-2}}{5 \cdot \left(\frac{6}{5}\right)^{-1}} = \frac{2^{3} + 3^{2}}{5 \cdot \frac{5}{6}} = \frac{102}{25}.$$

15.

- a) A sequência é (1,2,4,8,16,32), portanto, na casa 6, a quantidade de grãos é 32.
- b) $f(x) = 2^{x-1}$, sendo x um número natural de 1 a 64.
- c) 2^{63} .

16.

- a) $2.400 \cdot 1, 1^3 = R$3.194, 40$.
- b) $f(x) = 2.400 \cdot 1, 1^t$.
- c)

$$2.400 \cdot 1, 1^{m} = 3.513, 84$$

$$1, 1^{m} = 1, 4641$$

$$1, 1^{m} = 1, 1^{4}$$

$$m = 4.$$

17.

$$a = \left(\frac{1}{4}\right)^{-2} + \left(\frac{1}{3}\right)^{-2}$$

$$= 4^{2} + 3^{2}$$

$$= 16 + 9$$

$$= 25.$$

$$b = \frac{2 \cdot \left(\frac{1}{3}\right)^{-1} - 2^2}{\left(\frac{1}{2}\right)^{-2}}$$
$$= \frac{6 - 4}{4}$$
$$= \frac{2}{4}$$
$$= \frac{1}{2}.$$

Temos, portanto, $a^b = 25^{\frac{1}{2}} = \sqrt{25} = 5$.

- **18.** (Extraído da EPCAR 2017) Temos $b=4^{100}=2^{200}>2^{150}=c$, ou seja, b>c. Temos também $a=11^{50}<16^{50}=4^{100}=b$, ou seja, a<bb/>b. Por fim, $a=11^{50}>8^{50}=2^{150}=c$. Portanto, c< a< b. Resposta A.
- 19. (Extraído da Unicamp)
- a) Como a temperatura do congelador é $-18^{\circ}C$, então $T_A=-18$. Se T(90)=0, temos $0=-18+\alpha\cdot 3^{90\beta}$, ou seja, $3^{90\beta}=\frac{18}{\alpha}$. Se T(270)=-16, então:

$$-16 = -18 + \alpha \cdot 3^{270\beta}$$

$$\alpha \cdot 3^{270\beta} = 2$$

$$\alpha \cdot \left(3^{90\beta}\right)^3 = 2$$

$$\alpha \cdot \left(\frac{18}{\alpha}\right)^3 = 2$$

$$\alpha^2 = \frac{18^3}{2}$$

$$\alpha^2 = 18^2 \cdot 9$$

$$\alpha = 54.$$

Perceba, pela segunda linha do cálculo acima, que α deve ser positivo. Voltando à primeira equação, temos:

$$0 = -18 + 54 \cdot 3^{90\beta}$$

$$54 \cdot 3^{90\beta} = 18$$

$$3^{90\beta} = \frac{18}{54}$$

$$3^{90\beta} = 3^{-1}$$

$$90\beta = -1$$

$$\beta = -\frac{1}{90}$$

$$T_A + 54 \cdot 3^{-\frac{t}{90}} = \frac{2}{3} + T_A$$

$$54 \cdot 3^{-\frac{t}{90}} = \frac{2}{3}$$

$$3^{-\frac{t}{90}} = \frac{1}{81}$$

$$3^{-\frac{t}{90}} = 3^{-4}$$

$$-\frac{t}{90} = -4$$

$$t = 360min.$$

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com