Exercise 1

Exercise 1. Consider the two sequences of measures $\mu_n = \delta_{1-2^{-n}}$ and $\nu_n = \frac{1}{n}\delta_{-1} + \frac{1}{n}\delta_{-1}$ $(1-\frac{1}{n})\delta_1$. From the mere look of it one would guess that both of these sequences approach the measure $\pi = \delta_1$ in some way. The KL divergence $KL(\mu|\nu)$ from μ to ν is defined as ∞ if there is an x with $\mu(x) > 0$ and $\nu(x) = 0$ and

$$KL(\mu|\nu) = \sum_{x \in \text{supp}(\mu)} \mu(x) \log \left(\frac{\mu(x)}{\nu(x)}\right)$$

otherwise.

Leh's start with exploring the sequences un and un:

$$\mu_n = S_{1-2} - n$$

$$n=0:$$
 $\mu_0=S_0=S(\times)$

$$n = 1$$
: $\mu_{\Lambda} = \delta_{0.5} = \delta(x - 0.5)$

$$n = 1$$
: $\mu_{1} = \delta_{0.5} = \delta(x - 0.5)$
 $n = 2$: $\mu_{2} = \delta_{0.75} = \delta(x - 0.75)$

$$n = 10$$
: $\mu_{10} = \xi_{1-2-10} = \xi(x-x_0)$ with $x_0 = 0.893$

$$\rightarrow$$
 the \times in $S(\times -\times)$ converges towards 1

$$O_n = \frac{1}{0} S_{-1} + (1 - \frac{1}{0}) S_1$$

$$\begin{array}{ccc} S_{-1} &=& S_{-1}(\times + 1) \\ S_{1} &=& S_{-1}(\times - 1) \end{array}$$

$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = 1$$

-> first impression: as n increases the second term $(1-\frac{1}{0})$ ξ_1 will more and more overpower the first term

There is one important difference between the sequence of un and un:

Regardlers of how big n is, the x_0 in $\xi(x-x_0)$ will never reach exactly 1 Therefore, $\mu_0(1) = 0 \quad \forall n \in \mathbb{N}$

In contrast to that, on (1) > 0 Yne M because the term & never vanishes.

Moreover, the Sollowing Rolds:

 $supp(\mu_n) \cap supp(\nu_n) = \emptyset \quad \forall n \in \mathbb{N}$

and $(U_{n\in\mathbb{N}} \operatorname{supp}(\mu_n))$ \cap $(U_{n\in\mathbb{N}} \operatorname{supp}(U_n)) = \emptyset$

because supp $(\mu_n) = [0,1)$ and supp $(0,n) = \{-1,+1\}$ $\forall n \in \mathbb{N}$

Definition of KL (MO)

$$KL(\mu | v) = \begin{cases} cc \\ \sum_{x \in Supp(\mu)} \mu(x) \log \left(\frac{\mu(x)}{v(x)}\right) \end{cases}$$

$$OHerrise$$

(i) Calculate $KL(\pi|\mu_n)$ and $KL(\pi|\nu_n)$. Do the sequences μ_n and ν_n converge to π w.r.t. the KL-divergence? I.e. do the sequences $\mathrm{KL}(\pi|\mu_n)$ and $\mathrm{KL}(\pi|\nu_n)$ approach 0?

$$\pi = \xi_1 = \xi(x-1) \Rightarrow \sup_{x \in \mathbb{R}} \{\pi = \xi + 1\}$$

 $supp(\mu_n) \in [0,1)$ \Rightarrow $supp(\pi) \cap supp(\mu_n) = \phi$

 $Supp(O_n) = \{-1, +1\} \implies Supp(\pi) \cap Supp(O_n) = \{+1\}$

$$KL(\pi)\mu_n$$
) = +00 because $\pi(1) > 0$ and $\mu_n(1) = 0$

This holds independent of n, i.e. $\lim_{n\to\infty} KL(\pi|\mu_n) = +\infty$

$$KL(\pi | \mathcal{I}_n) = \sum_{x \in Supp(\pi)} \pi(x) \log \left(\frac{\pi(x)}{\mathcal{I}_n(x)}\right)$$

$$= \pi(1) \log \left(\frac{\pi(1)}{\mathcal{D}_{n}(1)} \right) = S_{1}(1) \log \left(\frac{S_{1}(1)}{\frac{1}{10}} S_{1}(1) + (1-\frac{1}{10}) S_{1}(1) \right)$$

because
$$7 \times \pi(x) > 0$$
 and $9 \times \pi(x) = 0$
The only $9 \times \pi(x) = 0$ is $9 \times \pi(x) = 0$
 $9 \times \pi(1) \log \left(\frac{\pi(1)}{9 \times 10^{11}}\right) = 8 \times \pi(1) \log \left(\frac{8 \times \pi(1)}{16 \times 10^{11}}\right) = 8 \times \pi(1) \log \left(\frac{8 \times \pi(1)}{16 \times 10^{11}}\right) = 8 \times \pi(1) \log \left(\frac{8 \times \pi(1)}{16 \times 10^{11}}\right) = 8 \times \pi(1) \log \left(\frac{1}{16 \times 10^{$

Note: $S_{\Lambda}(\Lambda) = 1$

$$\lim_{n\to\infty} KL(\pi | \mathcal{I}_n) = \lim_{n\to\infty} S_1(1) \log \left(\frac{n}{n-1}\right) = 0$$

a)
$$\mu_n$$
 and π :

Because the support of un and the support of TT only consist of a single element, there is only one possible transport:

Wasserstein-2 distance:

$$W(T^*) = \sqrt{\sum_{i,j} + \sum_{i} |a_i - a_j|^2} = \sqrt{|1 - 2^{-n} - 1|^2} = 2^{-n}$$

$$\lim_{n\to\infty} \mathcal{W}(T^*) = \lim_{n\to\infty} 2^{-n} = 0$$

→ the sequence μη converges to π in the Wasserstein-2 distance

b)
$$v_0$$
 and π :

$$supp(v_n) = \{-1, +1\}$$

To address this problem it belps to interpret the two measures as two discrete random variables (even if formally that is incorrect).

$$\pi \sim X_2$$
 is a constant with $P[X_2 = 1] = 1$

A coupling between X_1 and X_2 can be described by the vector $T = (t_1 t_2)$. T has to fulfill certain conditions to be valid as a coupling:

$$(1) t_1 + t_2 = 1$$

(2)
$$\pm_1 = \frac{1}{10}$$

(3)
$$t_2 = 1 - \frac{1}{n}$$

$$T^* = \begin{pmatrix} 1 & 1 - 1 \\ 1 & 1 \end{pmatrix}$$

$$t_1^* \qquad t_2^*$$

$$W(T^*) = \sqrt{\sum_{i,j} + i} |a_i - a_j|^2 =$$

$$= \int t_1 |-1-1|^2 + t_2 |1-1|^2 = \int 4\frac{1}{0} = \frac{2}{50}$$

$$\lim_{n\to\infty} W(T^*) = \lim_{n\to\infty} \frac{2}{\sqrt{n}} = 0$$

⇒ the sequence on converges to IT in the Wasserstein-2 distance