

### **NVIDIA Jetson Nano**

Product Design Guide 今是 Table 和 GPID 14x9是为破价。) 为3把 Nam 1pm MCU 40, 不用荷

# **Document History**

### DG-09502-001\_v2.4

| Version | Date             | Description of Change                                                                                                                                                                       |  |  |  |  |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.0     | June 7, 2019     | Initial Release                                                                                                                                                                             |  |  |  |  |
| 2.0     | March 2, 2020    | <ul> <li>Added MPIO pad code and POR columns to the pin<br/>description tables through the design guide</li> </ul>                                                                          |  |  |  |  |
|         |                  | <ul> <li>Added chapter on modular connector (Chapter 3)</li> </ul>                                                                                                                          |  |  |  |  |
|         |                  | <ul> <li>Updated power down figures (Figure 4-4 and Figure 4-5)</li> <li>Updated Figure 5-1 to show details of FET used as level shifter for VBUS Detect to show it is inverted.</li> </ul> |  |  |  |  |
|         |                  | • Corrected USB2 module pin numbers in Figure 5-1                                                                                                                                           |  |  |  |  |
|         |                  | • Corrected PCIE0_TX3/RX0 pin numbers in Figure 5-7                                                                                                                                         |  |  |  |  |
|         |                  | <ul> <li>Updated the notes to the PCIe signal routing requirements<br/>table (Table 5-9)</li> </ul>                                                                                         |  |  |  |  |
|         |                  | <ul> <li>Updated Gigabit Ethernet controller in Section 5.3</li> </ul>                                                                                                                      |  |  |  |  |
|         |                  | <ul><li>Updated Figure 7-1 to "4 Lanes"</li></ul>                                                                                                                                           |  |  |  |  |
| 2.1     | July 1, 2020     | <ul> <li>Added Chapter 3 "Developer Kit Feature Considerations"</li> </ul>                                                                                                                  |  |  |  |  |
|         |                  | <ul> <li>Updated notes for all pin description tables</li> </ul>                                                                                                                            |  |  |  |  |
|         |                  | <ul> <li>Corrected module pin numbers in Figure 7-2</li> </ul>                                                                                                                              |  |  |  |  |
|         |                  | <ul> <li>Updated Table 9-1 include both 1.8V and 3.3V pins, since the<br/>pins are associated with a rail that may be set to one or the<br/>other voltage</li> </ul>                        |  |  |  |  |
|         |                  | <ul> <li>Updated Figure 9-1 to change SDMMC_SD to connect to<br/>generic GPIO</li> </ul>                                                                                                    |  |  |  |  |
|         |                  | <ul> <li>Removed GPI008 for SD Card Detect from Table 9-3 since<br/>figure shows generic GPI0</li> </ul>                                                                                    |  |  |  |  |
|         |                  | <ul> <li>Updated Table 11-6 to mention buffer on module</li> </ul>                                                                                                                          |  |  |  |  |
|         |                  | <ul> <li>The Jetson Nano pin description and design checklist are<br/>now attachments to this design guide</li> </ul>                                                                       |  |  |  |  |
| 2.2     | November 4, 2020 | <ul> <li>Updated USB SS hub design with public part number</li> </ul>                                                                                                                       |  |  |  |  |
|         |                  | <ul> <li>Added notes to Figure 6-7 related to AC cap requirements<br/>SoC RX lines and to clarify PCIe clock output and RX/TX<br/>signaling type</li> </ul>                                 |  |  |  |  |
|         |                  | <ul> <li>Added notes to Figure 9-1 requiring SD card supply to be<br/>controlled by GPIO and recommendation to have SD card<br/>supply be current limited</li> </ul>                        |  |  |  |  |
|         |                  | <ul> <li>Updated the audio codec connection example figure and<br/>added notes (Figure 10-1)</li> </ul>                                                                                     |  |  |  |  |
|         |                  | <ul> <li>Added Section 11.6 on USB recovery mode</li> </ul>                                                                                                                                 |  |  |  |  |

| Version | Date              | Description of Change                                                                                                                              |  |  |  |
|---------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2.3     | February 23, 2022 | General                                                                                                                                            |  |  |  |
|         |                   | <ul> <li>Removed MPIO Code &amp; Power-on Reset columns from Pin<br/>Desc.</li> <li>Power</li> </ul>                                               |  |  |  |
|         |                   | <ul> <li>Updated SHUTDOWN_REQ* Usage/Desc. in Power and<br/>System Pin Descriptions table.</li> </ul>                                              |  |  |  |
|         |                   | <ul> <li>Added note related to use eFUSE or current limiting devices</li> </ul>                                                                    |  |  |  |
|         |                   | <ul> <li>Updated power control signal descriptions for<br/>SHUTDOWN_REQ* and POWER_EN</li> </ul>                                                   |  |  |  |
|         |                   | <ul> <li>Added warning note related to carrier board driving signals<br/>before SYS_RESET* goes high</li> </ul>                                    |  |  |  |
|         |                   | <ul> <li>Added delay requirement between VDD_IN and POWER_EN</li> </ul>                                                                            |  |  |  |
|         |                   | Updated power sequence figures                                                                                                                     |  |  |  |
|         |                   | Other                                                                                                                                              |  |  |  |
|         |                   | <ul> <li>Added USB SS and Wireless Coexistence section</li> </ul>                                                                                  |  |  |  |
|         |                   | <ul> <li>Added test points for high-speed interfaces section</li> </ul>                                                                            |  |  |  |
| 2.4     | October 20, 2022  | • Chapter 1 Intro: Added notes related to USB 3.2 and updated design guide to use USB 3.2 throughout                                               |  |  |  |
|         |                   | <ul> <li>Chapter 1 Intro: Added note related to replacing "master"<br/>and "slatve" terminology and updated throughout design<br/>quide</li> </ul> |  |  |  |
|         |                   | • Table 5-1 and Section 5.1.2: Corrected module name.                                                                                              |  |  |  |
|         |                   | <ul> <li>Section 5.1.1: Added additional description for<br/>SHUTDOWN_REQ*</li> </ul>                                                              |  |  |  |
|         |                   | <ul> <li>Section 6.1: Updated text with details of USB host/device<br/>support.</li> </ul>                                                         |  |  |  |
|         |                   | Section 6.2: Added text related to PCIe polarity inversion support                                                                                 |  |  |  |
|         |                   | • Figure 10-2: Corrected I2C pull-up voltage in note 2 under figure.                                                                               |  |  |  |
|         |                   | • Table 13-1: Removed SYS_RESET*                                                                                                                   |  |  |  |
|         |                   | • Sections 16.1, 16.2, 16.3, and 16.4: Updated text to use mm instead of in/mils and updated some signal related text.                             |  |  |  |

### Table of Contents

| Chapter 1 | I. Introduction                                | 1  |
|-----------|------------------------------------------------|----|
| 1.1       | References                                     | 1  |
| 1.2       | Abbreviations and Definitions                  | 2  |
| Chapter 2 | 2. Jetson Nano                                 | 4  |
| Chapter 3 | B. Developer Kit Feature Considerations        | 7  |
| 3.1       | USB SuperSpeed Hub                             |    |
| 3.2       | Power Over Ethernet (PoE)                      | 7  |
| 3.3       | TI TXB0108 Level Shifters                      | 8  |
| 3.4       | Features Not to be Implemented                 | 8  |
| Chapter 4 | 4. Modular Connector                           | 9  |
| 4.1       | Module Connector Details                       | 9  |
| 4.2       | Module to Mounting Hardware                    | 9  |
| 4.3       | Module Installation and Removal                | 10 |
| Chapter 5 | 5. Power                                       | 11 |
| 5.1       | Power Supply and Sequencing                    | 12 |
| 5.1.1     | Power Handshake Signals                        | 12 |
| 5.1.2     | Power Sequencing                               | 14 |
| Chapter 6 | S. USB and PCI Express                         | 16 |
| 6.1       | USB                                            | 18 |
| 6.1.1     | USB 2.0 Design Guidelines                      | 19 |
| 6.1.2     | USB 3.2 Design Guidelines                      | 19 |
| 6.1.3     | Common USB Routing Guidelines                  | 23 |
| 6.2       | PCIe                                           | 23 |
| 6.2.1     | 3                                              |    |
| 6.3       | Gigabit Ethernet                               | 27 |
| Chapter 7 | 7. Display                                     | 29 |
| 7.1       | MIPI DSI                                       | 29 |
| 7.1.1     | MIPI DSI and CSI Design Guidelines             | 30 |
| 7.1.2     | MIPI DSI and CSI Connection Guidelines         | 31 |
| 7.2       | eDP and DP                                     |    |
| 7.2.1     | 3                                              |    |
| 7.3       | HDMI and DP                                    |    |
| 7.3.1     |                                                |    |
| 7.3.2     |                                                |    |
| 7.3       | 3.2.1 DP Interface Signal Routing Requirements | 47 |

| Chapter | 8.   | MIPI CSI Video Input                                      | 48         |
|---------|------|-----------------------------------------------------------|------------|
| 8.1     | CSI  | Design Guidelines                                         | 52         |
| Chapter | 9.   | SD Card and SDIO                                          | 53         |
| Chapter | 10.  | Audio                                                     | 56         |
| Chapter | 11.  | Miscellaneous Interfaces                                  | 59         |
| 11.1    | I2C  |                                                           | 59         |
| 11.1    | .1   | I2C Design Guidelines                                     | 60         |
| 11.2    | SPI  |                                                           | 61         |
| 11.2    | .1   | SPI Design Guidelines                                     | 63         |
| 11.3    | UAF  | RT                                                        | 64         |
| 11.4    | Fan  |                                                           | 65         |
| 11.5    | Deb  | oug                                                       | 66         |
| 11.5    | .1   | Debug UART                                                | 67         |
| 11.5    | .2   | JTAG                                                      | 68         |
| 11.6    | USE  | B Recovery Mode                                           | 69         |
| Chapter | 12.  | PADS                                                      | <b>7</b> 0 |
| 12.1    | Inte | rnal Pull-ups for Dual-Voltage Block Pins Powered at 1.8V | 70         |
| 12.2    | Sch  | mitt Trigger Usage                                        | 70         |
| 12.3    | Pin  | s Pulled and Driven High During Power-ON                  | 71         |
| Chapter | 13.  | Unused Interface Terminations                             | 72         |
| 13.1    | Uni  | used Multi-purpose Standard CMPS Pad Interfaces           | 72         |
| Chapter | 14.  | USB 3.2 and Wireless Coexistence                          | <b>7</b> 3 |
| 14.1    |      | gation Techniques                                         |            |
| Chapter | 15.  | Jetson Nano Pin Descriptions and Design Checklist         | 75         |
| Chapter | 16.  | General Routing Guidelines                                | 76         |
| 16.1    | Sigi | nal Name Conventions                                      | 76         |
| 16.2    | Rοι  | iting Guideline Format                                    | 77         |
| 16.3    | Sigi | nal Routing Conventions                                   | 77         |
| 16.4    | Ger  | eral Routing Guidelines                                   | 77         |
| 16.5    | Ger  | eral PCB Routing Guidelines                               | 78         |
| 16.6    | Cor  | nmon High-Speed Interface Requirements                    | 79         |
| 16.7    | Tes  | t Points for High-Speed Interfaces                        | 80         |

# List of Figures

| Figure 2-1.  | Jetson Nano Block Diagram                         | 5  |
|--------------|---------------------------------------------------|----|
| Figure 4-1.  | Jetson Nano Module Installed in SODIMM Connector  | 9  |
| Figure 4-2.  | Module to Connector Assembly Diagram              | 10 |
| Figure 5-1.  | Jetson Nano Power and Control Block Diagram       | 12 |
| Figure 5-2.  | System Power and Control Block Diagram            | 14 |
| Figure 5-3.  | Power Up Sequence No Power Button – Auto Power-On | 14 |
| Figure 5-4.  | Power Up Sequence with Power Button               | 14 |
| Figure 5-5.  | Power Down – Initiated by SHUTDOWN_REQ* Assertion | 15 |
| Figure 5-6.  | Power Down – Sudden Power Loss                    | 15 |
| Figure 6-1.  | USB Connection Example                            | 18 |
| Figure 6-2.  | IL/NEXT Plot                                      | 21 |
| Figure 6-3.  | Trace Spacing for TX/RX Non-Interleaving          | 22 |
| Figure 6-4.  | Via Structures                                    | 22 |
| Figure 6-5.  | ESD Layout Recommendations                        | 22 |
| Figure 6-6.  | Component Order                                   | 22 |
| Figure 6-7.  | Example PCIe Connections                          | 24 |
| Figure 6-8.  | AC Cap Voiding                                    | 26 |
| Figure 6-9.  | Ethernet Connections                              | 27 |
| Figure 6-10. | Gigabit Ethernet Magnetics and RJ45 Connections   | 28 |
| Figure 7-1.  | DSI 1 x 2 Lane Connection Example                 | 30 |
| Figure 7-2.  | DP/eDP Connection Example on DP0 Pins             | 32 |
| Figure 7-3.  | eDP Differential Main Link Topology               | 33 |
| Figure 7-4.  | S-parameter                                       | 35 |
| Figure 7-5.  | Via Topology #1                                   | 36 |
| Figure 7-6.  | Via Topology #2                                   | 36 |
| Figure 7-7.  | HDMI Connection Example                           | 38 |
| Figure 7-8.  | HDMI Clk and Data Topology                        | 39 |
| Figure 7-9.  | IL and FEXT Plot                                  | 42 |
| Figure 7-10. | TDR Plot                                          | 43 |
| Figure 7-11. | HDMI Via Topology                                 | 43 |
| Figure 7-12. | Add-on Components - Top                           | 43 |
| Figure 7-13. | Add-on Components - Bottom                        | 43 |
| Figure 7-14. | AC Cap Void                                       | 44 |
| Figure 7-15. | RPD, Choke, FET Placement                         | 44 |
| Figure 7-16. | ESD Footprint                                     | 44 |
| Figure 7-17. | ESD Void                                          | 44 |
| Figure 7-18. | SMT Pad Trace Entering                            | 44 |

| Figure 7-19. | SMT Pad Trace Between                      | 45 |
|--------------|--------------------------------------------|----|
| Figure 7-20. | Connector Voiding                          | 45 |
| Figure 7-21. | DP Connection Example                      | 46 |
| Figure 8-1.  | 4 Lane CSI Camera Connection Example       | 50 |
| Figure 8-2.  | Available Cameral Control Pins             | 51 |
| Figure 8-3.  | CSI Connection Options                     | 51 |
| Figure 9-1.  | SD Card Connection Example                 | 54 |
| Figure 10-1. | Audio Codec Connection Example             | 57 |
| Figure 11-1. | I2C Connections                            | 60 |
| Figure 11-2. | SPI Connections                            | 62 |
| Figure 11-3. | Basic SPI Initiator and Target Connections | 62 |
| Figure 11-4. | SPI Topologies                             | 63 |
| Figure 11-5. | Jetson Nano UART Connections               | 65 |
| Figure 11-6. | Jetson Nano Fan Connections                | 66 |
| Figure 11-7. | JTAG and Debug UART Connections            | 68 |
| Figure 11-8. | JTAG Test Point Detail                     | 68 |
| Figure 16-1. | GSSG Stack-Up                              | 78 |
| Figure 16-2. | Common Mode Choke                          | 79 |
| Figure 16-3. | Serpentine                                 | 80 |

### List of Tables

| Table 1-1.  | Abbreviations and Definitions                                     | 2  |
|-------------|-------------------------------------------------------------------|----|
| Table 2-1.  | Jetson Nano Interfaces                                            | 4  |
| Table 2-2.  | Jetson Nano Connector Pinout Matrix                               | 5  |
| Table 5-1.  | Power and System Pin Descriptions                                 | 11 |
| Table 6-1.  | USB 2.0 Pin Descriptions                                          | 16 |
| Table 6-2.  | USB 3.2 and PCIe Pin Descriptions                                 | 16 |
| Table 6-3.  | USB 3.2 and PCle Lane Mapping Configurations                      | 17 |
| Table 6-4.  | USB 2.0 Interface Signal Routing Requirements                     | 19 |
| Table 6-5.  | USB 3.2 Interface Signal Routing Requirements                     | 19 |
| Table 6-6.  | USB 2.0 Signal Connections                                        | 23 |
| Table 6-7.  | Miscellaneous USB Signal Connections                              | 23 |
| Table 6-8.  | USB 3.2 Signal Connections                                        | 23 |
| Table 6-9.  | PCIe Interface Signal Routing Requirements                        | 25 |
| Table 6-10. | PCIe Signal Connections                                           | 26 |
| Table 6-11. | Gigabit Ethernet Pin Description                                  | 27 |
| Table 6-12. | Ethernet MDI Interface Signal Routing Requirements                | 28 |
| Table 6-13. | Ethernet Signal Connections                                       | 28 |
| Table 7-1.  | Display General Pin Description                                   | 29 |
| Table 7-2.  | DSI Pin Description                                               | 29 |
| Table 7-3.  | MIPI DSI and CSI Interface Signal Routing Requirements            | 30 |
| Table 7-4.  | MIPI DSI Signal Connections                                       | 31 |
| Table 7-5.  | eDP and DP Pin Description                                        | 31 |
| Table 7-6.  | eDP and DP Main Link Signal Routing Requirements Including DP_AUX | 33 |
| Table 7-7.  | eDP Signal Connections                                            | 36 |
| Table 7-8.  | HDMI and DP Pin Description                                       | 36 |
| Table 7-9.  | DP and HDMI Pin Mapping                                           | 37 |
| Table 7-10. | HDMI Interface Signal Routing Requirements                        | 39 |
| Table 7-11. | HDMI Signal Connections                                           | 45 |
| Table 7-12. | DP Signal Connections                                             | 47 |
| Table 8-1.  | CSI Pin Description                                               | 48 |
| Table 8-2.  | Miscellaneous Camera Pin Descriptions                             | 49 |
| Table 8-3.  | CSI Configuration                                                 | 50 |
| Table 8-4.  | MIPI CSI Signal Connections                                       | 52 |
| Table 8-5.  | Miscellaneous Camera Connections                                  | 52 |
| Table 9-1.  | SDIO Pin Description                                              | 53 |
| Table 9-2.  | SD Card and SDIO Interface Signal Routing Requirements            | 54 |
| Table 9-3.  | SD Card and SDIO Signal Connections                               | 55 |

| Audio Pin Description                                                | 56                    |
|----------------------------------------------------------------------|-----------------------|
| Interface Signal Routing Requirements                                | 57                    |
|                                                                      |                       |
| I2C Pin Description                                                  | 59                    |
| I2C Interface Signal Routing Requirements                            | 61                    |
| I2C Signal Connections                                               | 61                    |
| SPI Pin Description                                                  | 61                    |
| SPI Interface Signal Routing Requirements                            | 63                    |
| UART Pin Description                                                 | 64                    |
| UART Signal Connections                                              | 65                    |
| Fan Pin Description                                                  | 66                    |
| JTAG and Debug UART Description                                      | 66                    |
| Debug UART Connections                                               | 67                    |
| JTAG Connections                                                     | 69                    |
| Pins Pulled and Driven High by Tegra Prior to SYS_RESET* Inactive    | 71                    |
| Pins Pulled High on Module with External Resistors Prior to SYS_RESE | Γ_IN*                 |
| Inactive                                                             | 71                    |
| Unused MPIO Pins and Pin Groups                                      | 72                    |
| Signal Type Codes                                                    | 76                    |
| Common High-Speed Interface Requirements                             | 79                    |
|                                                                      | Audio Pin Description |

## Chapter 1. Introduction

This design guide contains recommendations and guidelines for engineers to follow in creating a product that is optimized to achieve the best performance from the interfaces supported by the NVIDIA® Jetson Nano™ System-on-Module (SOM).

This design guide provides detailed information on the capabilities of the hardware module, which may differ from supported configurations by provided software. Refer to software release documentation for information on supported capabilities.



#### Note:

- Most of the interface usage noted in this design guide is based on the NVIDIA developer kit carrier board design.
- All occurrences of USB 3.2 refer to USB 3.2 Gen 1x1: SuperSpeed USB 5 Gbps only.



**IMPORTANT**: Throughout the design guide, references to "master" and "slave" configurations have been updated to "initiator" and "target" respectively.

### 1.1 References

Refer to the following list of documents or models for more information. Always use the latest revision of all documents.

- Jetson Nano Module Data Sheet
- ► Tegra X1 (SoC) Technical Reference Manual
- Jetson Nano Developer Kit Carrier Board Specification
- ▶ Jetson Nano Module Pinmux
- Jetson Nano Thermal Design Guide
- ▶ Jetson Nano Developer Kit Carrier Board Design Files
- Jetson Nano Developer Kit Carrier Board BOM
- ▶ Jetson Nano SCL (Supported Component List)

### 1.2 Abbreviations and Definitions

Table 1-1 lists abbreviations that may be used throughout this document and their definitions.

Table 1-1. Abbreviations and Definitions

| Abbreviation                                                 | Definition                                          |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| CEC                                                          | Consumer Electronic Control                         |  |  |  |
| CSI                                                          | Camera Serial Interface                             |  |  |  |
| Diff                                                         | Differential                                        |  |  |  |
| DP                                                           | VESA® DisplayPort™ (output)                         |  |  |  |
| DSI                                                          | Display Serial Interface                            |  |  |  |
| eDP                                                          | Embedded DisplayPort                                |  |  |  |
| ESD                                                          | Electrostatic Discharge                             |  |  |  |
| еММС                                                         | Embedded MMC                                        |  |  |  |
| EMI                                                          | Electromagnetic Interference                        |  |  |  |
| FET                                                          | Field Effect Transistor                             |  |  |  |
| GPIO                                                         | General Purpose Input Output                        |  |  |  |
| HDCP                                                         | High-bandwidth Digital Content Protection           |  |  |  |
| HDMI™                                                        | High Definition Multimedia Interface                |  |  |  |
| I2C                                                          | Inter IC Interface                                  |  |  |  |
| 125                                                          | Inter IC Sound Interface                            |  |  |  |
| LCD                                                          | Liquid Crystal Display                              |  |  |  |
| LD0                                                          | Low Dropout (voltage regulator)                     |  |  |  |
| LPDDR4 Low Power Double Data Rate DRAM, Fourth generati      |                                                     |  |  |  |
| MDI Medium-Dependent Interface                               |                                                     |  |  |  |
| MIL                                                          | 1/1000 <sup>th</sup> of an inch                     |  |  |  |
| MIPI                                                         | Mobile Industry Processor Interface                 |  |  |  |
| mm                                                           | Millimeter                                          |  |  |  |
| PCIe                                                         | Peripheral Component Interconnect Express interface |  |  |  |
| PCM                                                          | Pulse Code Modulation                               |  |  |  |
| PHY                                                          | Physical Interface (i.e. USB PHY)                   |  |  |  |
| ps                                                           | Pico-Seconds                                        |  |  |  |
| PMU                                                          | Power Management Unit                               |  |  |  |
| RJ45 8P8C modular connector used in Ethernet and other links |                                                     |  |  |  |
| RTC                                                          | Real Time Clock                                     |  |  |  |

| Abbreviation | Definition                                  |  |  |  |
|--------------|---------------------------------------------|--|--|--|
| SD Card      | Secure Digital Card                         |  |  |  |
| SDIO         | Secure Digital I/O Interface                |  |  |  |
| SE           | Single-Ended                                |  |  |  |
| SPI          | Serial Peripheral Interface                 |  |  |  |
| TMDS         | Transition-minimized differential signaling |  |  |  |
| UART         | Universal Asynchronous Receiver-Transmitter |  |  |  |
| USB          | Universal Serial Bus                        |  |  |  |

# Chapter 2. Jetson Nano

The Jetson Nano resides at the center of the embedded system solution and includes the following:

- ► Power (PMIC/Regulators, etc.)
- ► DRAM (LPDDR4)
- ► eMMC
- ▶ Gigabit Ethernet Controller
- Power Monitor

In addition, a wide range of interfaces are available at the main connector for use on the carrier board as shown Table 2-1 and Figure 2-1.

Table 2-1. Jetson Nano Interfaces

| Category     | Function                                                    | Category       | Function                               |
|--------------|-------------------------------------------------------------|----------------|----------------------------------------|
| USB          | USB 2.0 Interface (3x)                                      | LAN            | Gigabit Ethernet                       |
| 038          | USB 3.2 (1x)                                                | I2C            | 4x                                     |
| PCIe         | PCIe (x1/2/4)                                               | UART           | 3x                                     |
| Camera       | CSI (3 x4 or 2 x4 + 2 x2 or 1 x4 + 3 x2),<br>Control, Clock | SPI            | 2x                                     |
|              | eDP/DP (see Note 1)                                         | Wi-Fi/BT/Modem | PCIe/UART/I2S, Control/handshake       |
| Display      | HDMI/DP Interface (w/CEC)                                   | Fan            | FAN PWM and Tach Input                 |
|              | DSI (1, 2-lane), Display/Backlight Control                  | Debug          | JTAG test points on module and UART    |
| Audio        | I2S Interface (2x) and Clock                                | System         | Power Control, Reset, alerts           |
| SD Card/SDIO | SD Card or SDIO Interface (1x)                              | Power          | Main Input and battery back-up for RTC |

Note: DP on eDP interface does not support HDCP or Audio



Figure 2-1. Jetson Nano Block Diagram



#### Note:

<sup>1</sup>DP on eDP interface does not support HDCP or Audio

Table 2-2 lists the 260-pin SO-DIM description for the Jetson Nano connector.

Table 2-2. Jetson Nano Connector Pinout Matrix

| Module Signal Name | Pin# | Pin# | Module Signal Name |
|--------------------|------|------|--------------------|
| GND                | 1    | 2    | GND                |
| CSI1_D0_N          | 3    | 4    | CSIO_DO_N          |
| CSI1_D0_P          | 5    | 6    | CSIO_DO_P          |
| GND                | 7    | 8    | GND                |
| RSVD               | 9    | 10   | CSIO_CLK_N         |
| RSVD               | 11   | 12   | CSIO_CLK_P         |
| GND                | 13   | 14   | GND                |
| CSI1_D1_N          | 15   | 16   | CSIO_D1_N          |
| CSI1_D1_P          | 17   | 18   | CSIO_D1_P          |
| GND                | 19   | 20   | GND                |
| CSI3_D0_N          | 21   | 22   | CSI2_D0_N          |
| CSI3_D0_P          | 23   | 24   | CSI2_D0_P          |
| GND                | 25   | 26   | GND                |
| CSI3_CLK_N         | 27   | 28   | CSI2_CLK_N         |
| CSI3_CLK_P         | 29   | 30   | CSI2_CLK_P         |
| GND                | 31   | 32   | GND                |

| Module Signal Name | Pin # | Pin# | Module Signal Name |
|--------------------|-------|------|--------------------|
| PCIEO_RXO_P        | 133   | 134  | PCIEO_TXO_N        |
| GND                | 135   | 136  | PCIEO_TXO_P        |
| PCIEO_RX1_N        | 137   | 138  | GND                |
| PCIEO_RX1_P        | 139   | 140  | PCIEO_TX1_N        |
| GND                | 141   | 142  | PCIEO_TX1_P        |
| RSVD               | 143   | 144  | GND                |
| KEY                | KEY   | KEY  | KEY                |
| RSVD               | 145   | 146  | GND                |
| GND                | 147   | 148  | PCIEO_TX2_N        |
| PCIEO_RX2_N        | 149   | 150  | PCIEO_TX2_P        |
| PCIEO_RX2_P        | 151   | 152  | GND                |
| GND                | 153   | 154  | PCIEO_TX3_N        |
| PCIEO_RX3_N        | 155   | 156  | PCIEO_TX3_P        |
| PCIEO_RX3_P        | 157   | 158  | GND                |
| GND                | 159   | 160  | PCIEO_CLK_N        |
| USBSS_RX_N         | 161   | 162  | PCIEO_CLK_P        |

| Module Signal Name   | Pin# | Pin# | Module Signal Name   |
|----------------------|------|------|----------------------|
| CSI3_D1_N            | 33   | 34   | CSI2_D1_N            |
| CSI3 D1 P            | 35   | 36   | CSI2 D1 P            |
| GND                  | 37   | 38   | GND                  |
| DPO TXDO N           | 39   | 40   | CSI4 D2 N            |
| DP0 TXD0 P           | 41   | 42   | CSI4 D2 P            |
| GND                  | 43   | 44   | GND                  |
| DP0_TXD1_N           | 45   | 46   | CSI4 D0 N            |
| DP0_TXD1_P           | 47   | 48   | CSI4 D0 P            |
| GND                  | 49   | 50   | GND                  |
| DPO TXD2 N           | 51   | 52   | CSI4 CLK N           |
| DP0 TXD2 P           | 53   | 54   | CSI4 CLK P           |
| GND                  | 55   | 56   | GND                  |
| DPO TXD3 N           | 57   | 58   | CSI4 D1 N            |
| DPO TXD3 P           | 59   | 60   | CSI4 D1 P            |
| GND                  | 61   | 62   | GND                  |
| DP1_TXD0_N           | 63   | 64   | CSI4_D3_N            |
| DP1_TXD0_P           | 65   | 66   | CSI4_D3_N            |
| GND                  | 67   | 68   | GND                  |
| DP1 TXD1 N           | 69   | 70   | DSI DO N             |
| DP1 TXD1_N           | 71   | 72   | DSI_DO_N             |
| GND                  | 73   | 74   | GND                  |
| DP1 TXD2 N           | 75   | 76   | DSI CLK N            |
| DP1_TXD2_P           | 77   | 78   | DSI_CLK_N            |
| GND                  | 79   | 80   | GND                  |
| DP1_TXD3_N           | 81   | 82   | DSI D1 N             |
| DP1 TXD3_N           | 83   | 84   | DSI_D1_N<br>DSI_D1_P |
| GND                  | 85   | 86   | GND                  |
| GPIO00               | 87   | 88   | DPO HPD              |
| SPIO MOSI            | 89   | 90   | DPO_NED              |
| SPIO_SCK             | 91   | 92   | DP0_AUX_P            |
| SPIO_MISO            | 93   | 94   | HDMI_CEC             |
| SPIO CSO*            | 95   | 96   | DP1 HPD              |
| SPIO_CS1*            | 97   | 98   | DP1 AUX N            |
| UARTO TXD            | 99   | 100  | DP1_AUX_P            |
| UARTO RXD            | 101  | 102  | GND                  |
| UARTO_RTS*           | 103  | 104  | SPI1_MOSI            |
| UARTO_CTS*           | 105  | 106  | SPI1_IVIOSI          |
| GND                  | 107  | 108  | SPI1_MISO            |
| USBO D N             | 109  | 110  | SPI1_CS0*            |
| USBO_D_P             | 111  | 112  | SPI1_CS1*            |
| GND                  | 113  | 114  | CAMO_PWDN            |
| USB1 D N             | 115  | 116  | CAMO_FWDN  CAMO MCLK |
| USB1_D_N<br>USB1 D P | 117  | 118  | GPIO01               |
| GND                  | 117  | 120  | CAM1 PWDN            |
| USB2 D N             | 121  | 122  | CAM1_PWDN  CAM1 MCLK |
| USB2_D_N<br>USB2_D_P | 123  | 124  | GPIO02               |
| GND                  | 125  | 126  | GPI002               |
| GPIO04               | 127  | 128  | GPIO03<br>GPIO05     |
| GPIO04<br>GND        | 127  | 130  |                      |
|                      |      |      | GPIO06               |
| PCIEO_RXO_N          | 131  | 132  | GND                  |

| Module Signal Name | Pin # | Pin# | Module Signal Name |
|--------------------|-------|------|--------------------|
| USBSS_RX_P         | 163   | 164  | GND                |
| GND                | 165   | 166  | USBSS_TX_N         |
| RSVD               | 167   | 168  | USBSS_TX_P         |
| RSVD               | 169   | 170  | GND                |
| GND                | 171   | 172  | RSVD               |
| RSVD               | 173   | 174  | RSVD               |
| RSVD               | 175   | 176  | GND                |
| GND                | 177   | 178  | MOD_SLEEP*         |
| PCIE_WAKE*         | 179   | 180  | PCIEO_CLKREQ*      |
| PCIEO_RST*         | 181   | 182  | RSVD               |
| RSVD               | 183   | 184  | GBE_MDI0_N         |
| I2CO_SCL           | 185   | 186  | GBE_MDI0_P         |
| I2CO SDA           | 187   | 188  | GBE LED LINK       |
| I2C1_SCL           | 189   | 190  | GBE_MDI1_N         |
| I2C1 SDA           | 191   | 192  | GBE MDI1 P         |
| I2SO DOUT          | 193   | 194  | GBE LED ACT        |
| 12S0_DIN           | 195   | 196  | GBE_MDI2_N         |
| I2SO FS            | 197   | 198  | GBE MDI2 P         |
| I2SO_SCLK          | 199   | 200  | GND                |
| GND                | 201   | 202  | GBE MDI3 N         |
| UART1_TXD          | 203   | 204  | GBE MDI3 P         |
| UART1 RXD          | 205   | 206  | GPIO07             |
| UART1 RTS*         | 207   | 208  | GPIO08             |
| UART1_CTS*         | 209   | 210  | CLK_32K_OUT        |
| GPI009             | 211   | 212  | GPIO10             |
| CAM_I2C_SCL        | 213   | 214  | FORCE RECOVERY*    |
| CAM_I2C_SDA        | 215   | 216  | GPIO11             |
| GND                | 217   | 218  | GPIO12             |
| SDMMC DATO         | 219   | 220  | I2S1 DOUT          |
| SDMMC DAT1         | 221   | 222  | I2S1 DIN           |
| SDMMC_DAT2         | 223   | 224  | I2S1 FS            |
| SDMMC_DAT3         | 225   | 226  | I2S1_SCLK          |
| SDMMC CMD          | 227   | 228  | GPIO13             |
| SDMMC CLK          | 229   | 230  | GPIO14             |
| GND                | 231   | 232  | I2C2 SCL           |
| SHUTDOWN REQ*      | 233   | 234  | I2C2_SDA           |
| PMIC_BBAT          | 235   | 236  | UART2_TXD          |
| POWER EN           | 237   | 238  | UART2 RXD          |
| SYS RESET*         | 239   | 240  | SLEEP/WAKE*        |
| GND                | 241   | 242  | GND                |
| GND                | 243   | 244  | GND                |
| GND                | 245   | 246  | GND                |
| GND                | 247   | 248  | GND                |
| GND                | 249   | 250  | GND                |
| VDD IN             | 251   | 252  | VDD IN             |
| VDD_IN             | 253   | 254  | VDD_IN             |
| VDD_IN             | 255   | 256  | VDD_IN             |
| VDD_IN             | 257   | 258  | VDD_IN             |
| VDD_IN             | 259   | 260  | VDD_IN             |
|                    |       |      |                    |

| Legend | Ground | Power | Reserved - must be left unconnected |
|--------|--------|-------|-------------------------------------|

# Chapter 3. Developer Kit Feature Considerations

The Jetson Nano Developer Kit Carrier Board design files are provided as a reference design. This chapter describes details necessary for designers to know to replicate certain features if desired. In addition, aspects of the design that are specific to the NVIDIA Developer Kit usage but not useful or supported on a custom carrier board are also identified.

Most of the features implemented on the Jetson Nano Developer Kit carrier board design can be duplicated by copying the connections from the P3449 carrier board reference design. The Some features have aspects that would require additional information as listed

- USB SuperSpeed Hub
- Power over Ethernet (PoE)
- ► TI TXB0108 level shifters
- ► ID EEPROM (Not to be copied from reference design)

### 3.1 USB SuperSpeed Hub

The USB 3.2 hub design uses a Realtek RTS5411-GRT device. The hub device has been customized using internal fuses with the Realtek tool. A design intending to duplicate the developer kit hub implementation should customize the hub as follows:

- ▶ Power enables (DPS1/2/3/4\_PWR) set to be active high
- Charging feature disabled
- ► SSC valid

### 3.2 Power Over Ethernet (PoE)

The P3449 carrier board includes a 4-pin Power over Ethernet (PoE) header (J38) which brings out the VC power pins of the Ethernet connector. To use this alternate PoE power mechanism to power the carrier board, the design would require a power converter to take the high voltage PoE supply (38V-60V) and convert it to the correct voltage for the custom carrier board. This could be the 5V that the Jetson Nano Developer Kit uses, or a different voltage depending on the design of the custom carrier board.

### 3.3 TI TXB0108 Level Shifters

The P3449 carrier board uses these level shifters to shift many of the signals going to the 40-pin header from 1.8V to 3.3V. The design of these level shifters supports bidirectional signaling without the use of a direction signal but has some side effects that should be considered. See the Jetson Nano Developer Kit 40-Pin Expansion Header GPIO Usage Considerations Applications Note for details.

### 3.4 Features Not to be Implemented

The Jetson Nano Developer Kit carrier board features that should not be copied as they are not required or useful for a custom carrier board design. The ID EEPROM (P3449 - U11) is a feature that is used for NVIDIA internal purposes, but not useful on a custom design. A similar function may be desired for a custom design, but the NVIDIA software will not interact with these devices and the I2C address used by the developer kit carrier board ID EEPROM on the I2C2 interface (7'h57) should be avoided.

### Chapter 4. Modular Connector

### 4.1 Module Connector Details

Jetson Nano modules connect to the carrier board using a 260-pin SO-DIMM connector. The mating connector used on the Developer Kit carrier board is listed in the Jetson Nano SCL (Supported Components List). This connector is a DDR4 SODIMM, 260-pin, right-angle, standard key type. The full height of the connector is 9.2 mm. Refer to the Connector specification for details. Other heights are available.

### 4.2 Module to Mounting Hardware

The Jetson Nano module is installed in the SODIMM connector which has latching mechanisms to hold the board in place. In addition, it is required that the module is mounted to the main carrier board PCB using metal standoffs and screws (or equivalent), both for mechanical integrity and to provide additional grounding points. The Developer Kit uses threaded standoffs that are hex, 4.5 mm widths (narrow diameter)  $\times$  6.57  $\pm$  0.1 mm length. These have M.2.5 threads. The screws used are M2.5  $\times$  3.7 mm, pad head.

Other SODIMM connector heights are available. If a different height connector is used, the standoff height will have to be adjusted accordingly to account for the difference in height from main PCB to module PCB.

Figure 4-1. Jetson Nano Module Installed in SODIMM Connector



### 4.3 Module Installation and Removal

To install the Jetson Nano module correctly, follow the sequence and mounting hardware instructions:

Here are some suggested assembly guidelines.

- 1. Assemble any required thermal solution on the module.
- 2. Install the Jetson Nano module
  - a) Baseboard with suitable standoff for as per SODIMM connector height defined
  - b) Insert module fully at an angle of 25-35 degree into the SODIMM connector.
  - c) Arc down the module board until the SODIMM connector latch engages.
  - d) Secure the Jetson Nano module to the baseboard with screws into the standoff/spacer. The developer kit (shown in Figure 4-2) uses a standoff and screws to secure the module to the system/base- board.

Figure 4-2. Module to Connector Assembly Diagram



To remove the Jetson Nano module correctly, follow the reverse of the installation sequence.

# Chapter 5. Power

Power for the module is supplied on the **VDD\_IN** pins and is nominally 5.0V (see the *Jetson Nano Data Sheet* for supply tolerance and maximum current).



**CAUTION:** Jetson Nano is not hot-pluggable. When installing the module, the main power supply should not be connected. Before removing the module, the main power supply (to **VDD\_IN** pins) must be disconnected and allowed to discharge below 0.6V.

Table 5-1. Power and System Pin Descriptions

| Pin #                      | Module Pin Name     | Tegra X1 Signal                          | Usage/Description                                                                                                                                                                                                                                                                                                    | Usage on NVIDIA<br>DevKit Carrier Board  | Direction | Pin Type            |
|----------------------------|---------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------|---------------------|
| 251<br><del>V</del><br>260 | VDD_IN              | _                                        | Main power – Supplies PMIC and other regulators                                                                                                                                                                                                                                                                      | Main DC input                            | Input     | 5.0V                |
| 235                        | PMIC_BBAT           | -                                        | PMIC Battery Back-up. Optionally used to provide back-up power for the Real-Time-Clock (RTC). Connects to Lithium Cell or super capacitor on Carrier Board. PMIC is source when charging cap or coin cell. Super cap or coin cell is source when system is disconnected from power.                                  | Battery Back-up using<br>Super-capacitor | Bidir     | 1.65V-5.5V          |
| 214                        | FORCE_<br>RECOVERY* | BUTTON_VOL_UP                            | Force Recovery strap pin. Held low when SYS_RESET* goes high (i.e. during poweron) places system in USB recovery mode.                                                                                                                                                                                               | Automation header                        | Input     | CMOS -<br>1.8V      |
| 240                        | SLEEP/WAKE*         | BUTTON_PWR_ON                            | Sleep/Wake. Configured as GPIO for optional use to indicate the system should enter or exit sleep mode.                                                                                                                                                                                                              | Automation header                        | Input     | CMOS -<br>5.0V      |
| 233                        | SHUTDOWN_<br>REQ*   | -                                        | When driven/pulled low by the module, requests the carrier board to shut down. ~5kΩ pull-up to VDD_IN (5V) on the module.                                                                                                                                                                                            | System                                   | Output    | Open Drain,<br>5.0V |
| 237                        | POWER_EN            | (PMIC EN0<br>through converter<br>logic) | Signal for module on/off: high level on, low level off. Connects to module PMIC EN0 through converter logic. POWER_EN is routed to a Schmitt trigger buffer on the module. A $100k\Omega$ pulldown is also on the module.                                                                                            | System                                   | Input     | Analog 5.0V         |
| 239                        | SYS_RESET*          | SYS_RESET_IN_N                           | Module Reset. Reset to the module when driven low by the carrier board. Used as carrier board supply enable when driven high by the module when module power sequence is complete. Used to ensure proper power on/off sequencing for between module and carrier board supplies. 4.7kΩ pull-up to 1.8V on the module. | Automation header                        | Bidir     | Open Drain,<br>1.8V |

| Pin# | Module Pin Name | Tegra X1 Signal | Usage/Description                                                                                                                                        | Usage on NVIDIA<br>DevKit Carrier Board               | Direction | Pin Type       |
|------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|----------------|
| 178  | MOD_SLEEP*      | GPIO_PA6        | Indicates the module sleep status. Low is in sleep mode, high is normal operation. This pin is controlled by system software and should not be modified. | HDMI termination pull-<br>down FET control<br>disable | Output    | CMOS -<br>1.8V |

#### Notes:

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- The directions for FORCE\_RECOVERY\* and SLEEP/WAKE\* signals are true when used for those functions. Otherwise as GPIOs, the direction is bidirectional.

Figure 5-1. Jetson Nano Power and Control Block Diagram



### 5.1 Power Supply and Sequencing

This section details the power supply and sequencing for the Jetson Nano module.

### 5.1.1 Power Handshake Signals

The carrier board receives the main power source and uses this to generate the enable to Jetson Nano (POWER\_EN) after the carrier board has ensured the main supply is stable and the associated decoupling capacitors have charged. The carrier board supplies are not enabled at this time. Once POWER\_EN is driven active (high), the module begins to Power-ON. When the module Power-ON sequence has completed, the SYS\_RESET\* signal is released (pulled high on module) and this is used by the carrier board to enable its various supplies.



**Note**: The carrier board cannot drive high or pull high any signals that are associated with the module when the module rails are off. If the designer cannot guarantee a signal will not be driven or pulled high, then either the power rail related to that signal should be left off, or the signals would need to be buffered to isolate them from the module pins. The buffers should only be enabled towards the module when SYS\_RESET\* goes high.

### POWER\_EN

▶ POWER\_EN is a level active signal. When high, the system powers on or stays on. When low, the system powers down or stays off. A minimum delay of 400ms is required between VDD IN valid to POWER\_EN active.

### SYS RESET\*

- ▶ SYS\_RESET\* is bidirectional. The signal is controlled by the PMIC during power-on and power-off. When the system is powered on, SYS\_RESET\* can be driven by the carrier board to reset the module. This results in a full system power cycle.
- ► The **SYS\_RESET\*** signal is asserted by the PMIC during power-on.
- ➤ SYS\_RESET\* is not asserted externally during the power-down sequence. When POWER\_EN is de-asserted, the PMIC performs a power down sequence that includes asserting SYS\_RESET\*.

### SHUTDOWN REQ\*

- ► SHUTDOWN\_REQ\* is driven active (low) by the module if the system must be shut down, due to a software shutdown request, over-temperature event, undervoltage event, or other faults. The power control logic on the carrier board must drive POWER\_EN inactive (low) if SHUTDOWN\_REQ\* is asserted.
- ► SHUTDOWN\_REQ\* is not driven during power-on. It is pulled up to the 5V supply, so stays inactive. If the system is on and reset is driven low, the PMIC will initiate a full power cycle and start the power-on sequence. Again, SHUTDOWN\_REQ\* will only go low when the system needs to shut down.
- ▶ SHUTDOWN\_REQ\* comes from a latch on module and is cleared when POWER\_EN goes low.
- ▶ If SHUTDOWN\_REQ\* is asserted, the carrier board must de-assert POWER\_EN as soon as possible. One reason for this is to give the system enough time to do a correct power down sequence in the case of a sudden power loss case. In this case, once the 5V supply drops to -4.2V, the on-module VIN\_PWR\_BAD\_N signal is asserted which results in SHUTDOWN\_REQ\* being asserted. The PMIC then starts the power down sequence, which takes -4 to 5 ms. The sequence must finish before the input voltage drops below 3.0V to correctly power off the module.

#### Power Rail Discharge

- To satisfy the power down sequencing requirement and prevent unwanted back drive from the carrier board to the module, the following must be true:
- ► The carrier board 3.3V power supply that powers any module I/O must be off within 1.5 ms of SYS RESET\* assertion.
- ▶ The 1.8V power supply that powers any module I/O must be off within 4 ms.
- ▶ The power rails should be fully discharged before attempting to power back up.

Figure 5-2. System Power and Control Block Diagram





**Note**: Designs which implement an eFUSE or current limiting device on the input power rail of the module should select a part that DOES NOT limit reverse current.

### 5.1.2 Power Sequencing

The following figures show the power sequencing for the Jetson Nano module.

Figure 5-3. Power Up Sequence No Power Button – Auto Power-On



Figure 5-4. Power Up Sequence with Power Button



Figure 5-5. Power Down – Initiated by SHUTDOWN\_REQ\* Assertion



Figure 5-6. Power Down – Sudden Power Loss



**Note**: SHUTDOWN\_REQ\* must always be serviced by the carrier board to toggle POWER\_EN from high to low, even in cases of sudden power loss.

# Chapter 6. USB and PCI Express

Jetson Nano allows multiple USB 2.0, USB 3.2 and PCIe interfaces to be brought out of the module.

Table 6-1. USB 2.0 Pin Descriptions

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description           | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type            |
|-------|--------------------|-----------------|-----------------------------|--------------------------------------------|---------------|---------------------|
| 87    | GPI000             | USB_VBUS_EN0    | GPIO #0 (USB 0 VBUS Detect) | USB 2.0 Micro B                            | Input         | Open Drain,<br>1.8V |
| 109   | USB0_D_N           | USB0_DN         | LICE 2.0 Deat 0 Dete        | LICD 2 0 Missas D                          | D:J:          | USB PHY             |
| 111   | USB0_D_P           | USB0_DP         | USB 2.0 Port 0 Data         | USB 2.0 Micro B                            | Bidir         | O2R PHI             |
| 115   | USB1_D_N           | USB1_DN         | USB 2.0 Port 1 Data         | USB Hub                                    | Bidir         | USB PHY             |
| 117   | USB1_D_P           | USB1_DP         | USB 2.0 Port   Data         | O2R HND                                    | Blair         | USB PHY             |
| 121   | USB2_D_N           | USB2_DN         | LICE 2.0 Death 2 Death      | MOKANE                                     | D:J:          | LICD DLIV           |
| 123   | USB2_D_P           | USB2_DP         | USB 2.0, Port 2 Data        | M.2 Key E                                  | Bidir         | USB PHY             |

#### Notes:

Table 6-2. USB 3.2 and PCIe Pin Descriptions

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                    | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type |
|-------|--------------------|-----------------|--------------------------------------|--------------------------------------------|---------------|----------|
| 131   | PCIE0_RX0_N        | PEX_RX4N        | PCIe #0 Receive 0 (PCIe Ctrl #0 Lane | M 2 Kan E                                  |               |          |
| 133   | PCIE0_RX0_P        | PEX_RX4P        | 0)                                   | M.2 Key E                                  |               | 50. 50.  |
| 137   | PCIE0_RX1_N        | PEX_RX3N        | PCIe #0 Receive 1 (PCIe Ctrl #0 Lane |                                            |               |          |
| 139   | PCIE0_RX1_P        | PEX_RX3P        | 1)                                   |                                            |               |          |
| 149   | PCIE0_RX2_N        | PEX_RX2N        | PCIe #0 Receive 2 (PCIe Ctrl #0 Lane |                                            | Input         | PCIe PHY |
| 151   | PCIE0_RX2_P        | PEX_RX2P        | 2)                                   | Not Assigned                               |               |          |
| 155   | PCIE0_RX3_N        | PEX_RX1N        | PCIe #0 Receive 3 (PCIe Ctrl #0 Lane |                                            |               |          |
| 157   | PCIE0_RX3_P        | PEX_RX1P        | 3)                                   |                                            |               |          |

<sup>1.</sup> In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

<sup>2.</sup> The direction of GPI000 is true when used for this function. Otherwise as a GPI0, the direction is bidirectional.

| Pin # | Module Pin<br>Name | Tegra X1 Signal     | Usage/Description                                                            | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type           |
|-------|--------------------|---------------------|------------------------------------------------------------------------------|--------------------------------------------|---------------|--------------------|
| 179   | PCIE_WAKE*         | PEX_WAKE_N          | PCIe Wake. $100k\Omega$ pull-up to $3.3V$ on the module.                     | M.2 Key E                                  | Input         | Open Drain<br>3.3V |
| 181   | PCIE0_RST*         | PEX_L0_RST_N        | PCIe #0 Reset (PCIe Ctrl #0). 4.7kΩ pull-up to 3.3V on the module.           | Not Assigned                               | Output        | Open Drain<br>3.3V |
| 134   | PCIE0_TX0_N        | PEX_TX4N            | PCIe #0 Transmit 0 (PCIe Ctrl #0 Lane                                        | M 2 V av E                                 |               |                    |
| 136   | PCIE0_TX0_P        | PEX_TX4P            | 0)                                                                           | M.2 Key E                                  |               |                    |
| 140   | PCIE0_TX1_N        | PEX_TX3N            | PCIe #0 Transmit 1PCIe Ctrl #0 Lane                                          |                                            | Output        | PCIe PHY           |
| 142   | PCIE0_TX1_P        | PEX_TX3P            | 1)                                                                           | Not Assigned                               |               |                    |
| 148   | PCIE0_TX2_N        | PEX_TX2N            | PCIe #0 Transmit 2 (PCIe Ctrl #0 Lane                                        |                                            |               |                    |
| 150   | PCIE0_TX2_P        | PEX_TX2P            | 2)                                                                           |                                            |               |                    |
| 154   | PCIE0_TX3_N        | PEX_TX1N            | PCIe #0 Transmit 3 (PCIe Ctrl #0 Lane                                        |                                            |               |                    |
| 156   | PCIE0_TX3_P        | PEX_TX1P            | 3)                                                                           |                                            |               |                    |
| 160   | PCIE0_CLK_N        | PEX_CLK1N           | DCIa #0 Dafarara a Clask (DCIa Chal #0)                                      | M 2 V av E                                 | Outmut        | DCIa DUV           |
| 162   | PCIE0_CLK_P        | PEX_CLK1P           | PCIe #0 Reference Clock (PCIe Ctrl #0)                                       | M.2 Key E                                  | Output        | PCIe PHY           |
| 180   | PCIEO_CLKREQ       | PEX_L0_<br>CLKREQ_N | PCIE #0 Clock Request (PCIe Ctrl #0).<br>47kΩ pull-up to 3.3V on the module. | Not Assigned                               | Bidir         | Open Drain<br>3.3V |
| 161   | USBSS_RX_N         | PEX_RX6N            | LICE O O Deserving (LICE O O Obel 110)                                       |                                            | la a d        | LICD 2 2 DUV       |
| 163   | USBSS_RX_P         | PEX_RX6P            | USB 3.2 Receive (USB 3.2 Ctrl #0)                                            | LICD 2 2 Tuna A                            | Input         | USB 3.2 PHY        |
| 166   | USBSS_TX_N         | PEX_TX6N            | LICD 2 2 Tananasik (LICD 2 2 Ckal #0)                                        | USB 3.2 Type A                             | Outenut       | LICD 2 2 DUV       |
| 168   | USBSS_TX_P         | PEX_TX6P            | USB 3.2 Transmit (USB 3.2 Ctrl #0)                                           |                                            | Output        | USB 3.2 PHY        |

#### Notes

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The directions for PCIE\_WAKE\*, PCIE0\_RST\*, and PCIE0\_CLKREQ are true when used for those functions. Otherwise as GPIOs, the direction is bidirectional.

Table 6-3 lists the mapping options for Jetson Nano.

Table 6-3. USB 3.2 and PCIe Lane Mapping Configurations

| Module                               | Pin Names   | na                                           | PCle3    | PCIe 2   | PCle 1   | PCIe 0    | USBSS      |
|--------------------------------------|-------------|----------------------------------------------|----------|----------|----------|-----------|------------|
| Teg                                  | ra X1 Lanes | Lane 0                                       | Lane 1   | Lane 2   | Lane 3   | Lane 4    | Lane 6     |
| USB 3.2                              | PCle        |                                              |          |          |          |           |            |
| 1                                    | 1x4         | PCIe#1_0 - Used<br>for Ethernet on<br>Module | PCIe#0_3 | PCIe#0_2 | PCle#0_1 | PCle#0_0  | USB_SS#0   |
| Usage on NVIDIA DevKit Carrier Board |             | N/A                                          |          | Unused   |          | M.2 Key E | USB Type A |

### 6.1 USB

The USB 2.0 ports all support host mode. USB 2.0 Port 0 (USB0\_D\_N/P) also supports device mode (including USB Recovery Mode). The USB 3.2 port supports host mode only.

Figure 6-1 shows the USB connection example.

Figure 6-1. USB Connection Example



#### Notes:

- 1. AC capacitors should be located close to either the USB connector, or the Jetson Nano pins.
- 2. USB0 must be available to use as USB Device for USB Recovery Mode.
- 3. The load switch supplying VBUS should have over current protection. In Figure 6-1, this is supported by routing the over current (OC) pin of the load switch to the GPI000 (USB\_VBUS\_EN0) which is bidirectional and can be used to detect an over current condition. Load switch can be enabled by SYS\_RESET\* or an available GPI0.
- 4. Connector used must be USB Implementers Forum certified if USB 3.2 implemented.

### 6.1.1 USB 2.0 Design Guidelines

These requirements apply to the USB 2.0 controller PHY interfaces: USB[2:0]\_D\_N/P.

Table 6-4. USB 2.0 Interface Signal Routing Requirements

| Parameter                                                 | Requirement    | Units       | Notes      |
|-----------------------------------------------------------|----------------|-------------|------------|
| Max frequency (high speed) - Bit Rate/UI period/Frequency | 480/2.083/240  | Mbps/ns/MHz |            |
| Max loading - High Speed / Full Speed / Low Speed         | 10 / 150 / 600 | pF          |            |
| Reference plane                                           | GND            |             |            |
| Trace impedance - Diff pair / SE                          | 90 / 50        | Ω           | ±15%       |
| Via proximity (signal to reference)                       | < 3.8 (24)     | mm (ps)     | See Note 1 |
| Max trace length/delay - Microstrip / Stripline           | 6 (960)        | In (ps)     |            |
| Max intra-pair skew between USBx_D_P and USBx_D_N         | 7.5            | ps          |            |

#### Notes

### 6.1.2 USB 3.2 Design Guidelines

The requirements following apply to the USB 3.2 port #0 PHY interface: **USBSS\_TX\_N/P**, **USBSS\_RX\_N/P**.

Table 6-5. USB 3.2 Interface Signal Routing Requirements

| Parameter                              | Requirement     | Units   | Notes                                     |  |  |  |  |  |  |
|----------------------------------------|-----------------|---------|-------------------------------------------|--|--|--|--|--|--|
| Specification                          |                 |         |                                           |  |  |  |  |  |  |
| Data rate / UI period                  | 5.0 / 200       | Gbps/ps |                                           |  |  |  |  |  |  |
| Max number of loads                    | 1               | load    |                                           |  |  |  |  |  |  |
| Termination                            | 90 differential | Ω       | On-die termination at TX and RX           |  |  |  |  |  |  |
| Electrical Specification               |                 |         |                                           |  |  |  |  |  |  |
| Insertion loss @ 2.5GHz                |                 |         | Only PCB with add-on components           |  |  |  |  |  |  |
| Туре-С                                 | <=2             | dB      | (connector excluded) is considered        |  |  |  |  |  |  |
| Туре А                                 | <=7             | dB      |                                           |  |  |  |  |  |  |
| Resonance dip frequency                | >8              | GHz     |                                           |  |  |  |  |  |  |
| TDR dip                                | >= 75           | Ω       | Using TDR pulse with Tr (10%-90%) = 200ps |  |  |  |  |  |  |
| Near-end crosstalk (NEXT) @ DC to 5GHz | <=-45           | dB      | For each TX-RX NEXT                       |  |  |  |  |  |  |
| IL/NEXT plot                           | See Figure 6-2  |         |                                           |  |  |  |  |  |  |
| Impedance                              |                 |         |                                           |  |  |  |  |  |  |

<sup>1.</sup> Up to four signal vias can share a single GND return via.

<sup>2.</sup> Adjustments to the USB drive strength, slew rate, termination value settings should not be necessary, but if any are made, they MUST be done as an offset to default values instead of overwriting those values.

| Parameter                                                                                                                                                    | Requirement                                                       | Units                 | Notes                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|
| Reference plane                                                                                                                                              | GND                                                               |                       |                                                                                                                            |
| Trace impedance - Diff pair / SE                                                                                                                             | 85-90 / 45-55                                                     | Ω                     | ±15%                                                                                                                       |
| Trace Spacing – for TX/RX non-interleaving                                                                                                                   |                                                                   |                       |                                                                                                                            |
| TX-RX Xtalk is very critical in PCB trace routing.                                                                                                           | The ideal solution is t                                           | o route TX and        | RX on different layers.                                                                                                    |
| If routing on the same layer, strongly recommen                                                                                                              |                                                                   |                       | ·                                                                                                                          |
| If it is necessary to have interleaved routing in br                                                                                                         |                                                                   |                       | ould follow the rule of inter-SNEXT                                                                                        |
| The breakout trace width is suggested to be the i                                                                                                            |                                                                   |                       |                                                                                                                            |
| Do not perform serpentine routing for intra-pair                                                                                                             |                                                                   |                       | <u> </u>                                                                                                                   |
| See Figure 6-3                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                             |                       |                                                                                                                            |
| Min inter-SNEXT (between TX/RX)  Breakout  Main-route                                                                                                        | 4.85x<br>3x                                                       | Dielectric<br>height  | This is the recommended dimension for meeting NEXT requirement Stripline structure in a GSSG structure is                  |
| Min inter-Sfext (between TX/TX or RX/RX)  Breakout  Main-route  Max length                                                                                   | 1x<br>1x                                                          | Inter-pair<br>spacing | assumed; it holds in broadside-coupled<br>stripline structure<br>All values are in terms of minimum<br>dielectric height   |
| Breakout<br>Main-route                                                                                                                                       | 11<br>Max trace length<br>- LBRK                                  | mm                    |                                                                                                                            |
| Trace Spacing                                                                                                                                                |                                                                   |                       |                                                                                                                            |
| Pair-Pair (inter-pair) - Microstrip / Stripline To plane and capacitor pad - Microstrip / Stripline To unrelated high-speed signals - Microstrip / Stripline | 4x / 3x<br>4x / 3x<br>4x / 3x                                     | dielectric<br>height  |                                                                                                                            |
| Trace Length/Skew                                                                                                                                            |                                                                   |                       |                                                                                                                            |
| Trace loss characteristic @ 2.5GHz                                                                                                                           | < 0.7                                                             | dB/in                 | The following max length is derived based on this characteristic. See Note 1.                                              |
| Breakout region - Max trace delay                                                                                                                            | 11                                                                | mm                    | Minimum width and spacing                                                                                                  |
| Max trace length/delay                                                                                                                                       | 152.3 (1014)                                                      | mm (ps)               |                                                                                                                            |
| Max PCB via distance/delay from pin                                                                                                                          | 6.29 (41.9)                                                       | mm (ps)               |                                                                                                                            |
| Max within pair (intra-pair) skew                                                                                                                            | 0.15 (1)                                                          | mm (ps)               |                                                                                                                            |
| Differential pair uncoupled length/delay                                                                                                                     | 6.29 (41.9)                                                       | mm (ps)               |                                                                                                                            |
| AC Cap                                                                                                                                                       |                                                                   |                       |                                                                                                                            |
| Value                                                                                                                                                        | 0.1                                                               | uF                    | Smallest size preferred (i.e. 0201). See note under USB Connection Diagrams for details on when AC capacitors are required |
| Location (max distance to adjacent discontinuities)                                                                                                          | 8 (53.22)                                                         | mm (ps)               | The AC cap location should be located as close as possible to nearby discontinuities                                       |
| Via                                                                                                                                                          |                                                                   |                       |                                                                                                                            |
| via structure                                                                                                                                                | Y-pattern is strongly<br>recommended (keep symmetry)              |                       | Xtalk suppression is best when using Y-pattern. Can also reduce the limit of pairpair distance. See Figure 6-4.            |
| GND via                                                                                                                                                      | Place <b>GND</b> via as symmetrically as p<br>the data pair vias. | oossible to           | GND via is used to maintain return path, while its Xtalk                                                                   |
|                                                                                                                                                              | The data pair vias.                                               |                       | suppression is limited.                                                                                                    |

| Parameter                                                                                   | Requirement                                                                  | Units                                                       | Notes                                                                            |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
|                                                                                             | Up to 4 signal vias (2 diff pairs) can share a single <b>GND</b> return via" |                                                             |                                                                                  |  |  |
| AC cap pad voiding                                                                          | GND (or PWR) void under /<br>above the cap is preferred                      |                                                             | Voiding is required if cap size is 0603 or large.                                |  |  |
| Max via stub length                                                                         | 0.4 mm                                                                       |                                                             | long via stub requires review (IL and resonance dip check).                      |  |  |
| ESD                                                                                         |                                                                              |                                                             |                                                                                  |  |  |
| Preferred device                                                                            |                                                                              |                                                             | Type: Texas Instruments TPD4I05U06. Optional. Place ESD component near connector |  |  |
| Max junction capacitance (IO to GND)                                                        | 0.8                                                                          | pF                                                          |                                                                                  |  |  |
| Location (max distance to connector)                                                        | 8 (53)                                                                       | mm (ps)                                                     |                                                                                  |  |  |
| Layout recommendations                                                                      |                                                                              |                                                             | See USB 3.2 Guideline Figure 6-5                                                 |  |  |
| Common-mode choke (not recommended – only<br>See Chapter 16 for details on CMC if implement | •                                                                            | required for E                                              | MI issues)                                                                       |  |  |
| Component Order                                                                             |                                                                              |                                                             |                                                                                  |  |  |
| Component order                                                                             |                                                                              | Chip _ AC capacitor (TX o mode choke _ ESD _ Co Figure 6-6. |                                                                                  |  |  |

#### Note:

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. Recommend trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 3. Place GND vias as symmetrically as possible to data pair vias.

The following figures show the USB 3.2 interface signal routing requirements.

Figure 6-2. IL/NEXT Plot



Figure 6-3. Trace Spacing for TX/RX Non-Interleaving



Figure 6-4. Via Structures



Figure 6-5. ESD Layout Recommendations



Figure 6-6. Component Order



### 6.1.3 Common USB Routing Guidelines

If routing to USB device or USB connector includes a flex or 2nd PCB, the total routing including all PCBs and flexes must be used for the max trace and skew calculations.

Keep critical USB related traces away from other signal traces or unrelated power traces and areas or power supply components.

Table 6-6. USB 2.0 Signal Connections

| Jetson Nano Ball Name        | Туре     | Termination                                                                                                        | Description                                                                                               |
|------------------------------|----------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| USB[2:0]_D_P<br>USB[2:0]_D_N | DIFF I/O | 90Ω common mode chokes close to<br>connector. ESD Protection between<br>choke and connector on each line to<br>GND | USB Differential Data Pair: Connect to USB connector, Mini-Card socket, hub or another device on the PCB. |

### Table 6-7. Miscellaneous USB Signal Connections

| Module Pin Name | Туре | Termination              | Description                                                                                                                                                           |
|-----------------|------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPI000          | А    | 5V to 1.8V level shifter | USB0 VBUS Enable: Connect to VBUS pin of USB connector receiving USB0_+/- interface through level shifter. Also connects to VBUS power supply if host mode supported. |

### Table 6-8. USB 3.2 Signal Connections

| Module Pin Name                | Туре        | Termination                                                                                                                                 | Description                                                                                                |
|--------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| USBSS_TX_N/P (USB 3.2 Port #0) | DIFF<br>Out | Series 0.1uF caps. ESD<br>Protection near connector if<br>required.                                                                         | USB 3.2 Differential Transmit Data Pairs: Connect to USB 3.2 connectors, hubs or other devices on the PCB. |
| USBSS_RX_N/P (USB 3.2 Port #0) | DIFF<br>In  | If routed directly to a peripheral on the board, AC caps are needed for the peripheral TX lines. ESD protection near connector if required. | USB 3.2 Differential Receive Data Pairs: Connect to USB 3.2 connectors, hubs or other devices on the PCB.  |

### 6.2 PCIe

NVIDIA® Tegra® contains a PCIe controller that brings one interface up to four lanes to the module pins for use on the carrier board. A second single-lane PCIe interface is used on-

module for Ethernet. The Jetson Nano PCIe interface supports lane reversal and polarity inversion (P/N swapping).

**Jetson** Tegra - PCle 0.1uF **PEX** PEX\_TXON 0.1uF PEX TXOP 0.1uF PEX\_RXON Ethernet 0.1uF PEX\_RXOP PHY PEX CLK2 N PEX\_CLK2\_P PCIE0\_TX3\_P 154 156 0.1uF PCIe#0 Lane 3 PEX TX1N PEX TX1P PCIE0\_RX3\_N 155 PEX\_RX1N PCIE0\_RX3\_P PEX\_RX1P 0.1uF PCIE0\_TX2\_N PEX\_TX2N 148 0.1uF PCIe#0 Lane 2 PCIE0\_TX2\_P PEX\_TX2P 150 PCIE0\_RX2\_N PEX\_RX2N PCIE0\_RX2\_P PEX RX2P 0.1 uF PCIE0\_TX1\_N 140 0.1uF PCIe#0 Lane 1 PEX\_TX3N PCIE0\_TX1\_P PEX TX3P 142 PCIE0\_RX1\_N PEX\_RX3N 137 PCIE0\_RX1\_P 139 PEX\_RX3P PCIE0\_TX0\_N 134 0.1uF PEX\_TX4N 0.1uF PCIe#0 Lane 0 PCIE0\_TX0\_P PEX\_TX4P 136 PCIE0\_RX0\_N 131 PEX RX4N PCIE0\_RX0\_P PEX\_RX4P PCIE0\_CLK\_N PEX\_CLK1\_N 160 PCIE0\_CLK\_P PEX CLK1 P 162 dVDD\_3V3\_SYS PCIe#0 - Routed to M.2 Key E **Connector on Carrier Board** PCIE0\_CLKREQ\* **PEX** PEX\_LO\_CLKREQ\_N 180 PCIE0\_RST\* PEX LO RST N Control PEX\_L1\_CLKREQ\_N To Ethernet PEX\_L1\_RST\_N PEX\_WAKE\_N

Figure 6-7. Example PCIe Connections



### Notes:

- AC capacitors required on RX lines on carrier board if connected directly to device. They
  should not be on the carrier board if connected to PCIe connector, M.2 Key M, etc. In those
  cases, the AC caps are on the board connected to those connectors.
- 2. The PCIEx\_CLK clock outputs comply to the PCIe CEM specification "REFCLK DC Specifications and AC Timing Requirements." The clocks and RX/TX signals are HCSL compatible.

### 6.2.1 PCIe Design Guidelines

Table 6-9 and Figure 6-8 provide the signal routing requirements for the PCIe interface.

Table 6-9. PCIe Interface Signal Routing Requirements

| Parameter                                                                                                      | Requirement                                        | Units                | Notes                                                                         |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|-------------------------------------------------------------------------------|
| Specification                                                                                                  |                                                    |                      |                                                                               |
| Data rate / UI period                                                                                          | 5.0 / 200                                          | Gbps/ps              | 2.5GHz, half-rate architecture                                                |
| Configuration / device organization                                                                            | 1                                                  | Load                 |                                                                               |
| Topology                                                                                                       | Point-point                                        |                      | Unidirectional, differential                                                  |
| Termination                                                                                                    | 50                                                 | Ω                    | To <b>GND</b> Single Ended for P and N                                        |
| Impedance                                                                                                      |                                                    |                      |                                                                               |
| Trace Impedance - diff / SE                                                                                    | 85 / 50                                            | Ω                    | ±15%. See Note 1                                                              |
| Reference plane                                                                                                | GND                                                |                      |                                                                               |
| Spacing                                                                                                        |                                                    | '                    |                                                                               |
| Trace Spacing (Stripline/Microstrip)  pair – pair  To plane and capacitor pad  To unrelated high-speed signals | 3x / 4x<br>3x / 4x<br>3x / 4x                      | dielectric<br>height | See Note 2                                                                    |
| Length/Skew                                                                                                    |                                                    |                      |                                                                               |
| Trace loss characteristic @ 2.5 GHz                                                                            | < 0.7                                              | dB/in                | The following max length is derived based on this characteristic. See Note 3  |
| Breakout region (max length)                                                                                   | 41.9                                               | ps                   | Minimum width and spacing. 4x or wider dielectric height spacing is preferred |
| Max trace length/delay                                                                                         | 5.5 (880)                                          | in (ps)              |                                                                               |
| Max PCB via distance from the BGA                                                                              | 41.9                                               | ps                   | Max distance from BGA ball to first PCB via                                   |
| PCB within pair (intra-pair) skew                                                                              | 0.15 (0.5)                                         | mm (ps)              | Do trace length matching before hitting discontinuities                       |
| Within pair (intra-pair) matching between subsequent discontinuities                                           | 0.15 (0.5)                                         | mm (ps)              |                                                                               |
| Differential pair uncoupled length                                                                             | 41.9                                               | ps                   |                                                                               |
| Via                                                                                                            |                                                    |                      |                                                                               |
| Via placement                                                                                                  |                                                    |                      | as possible to data pair vias. <b>GND</b> via nan 1x the diff pair via pitch  |
| Max # of vias<br>PTH vias<br>Micro-vias                                                                        | 2 for TX traces and 2 for RX trace  No requirement |                      |                                                                               |
| Max via stub length                                                                                            | 0.4                                                | mm                   | Longer via stubs would require review                                         |
| Routing signals over antipads                                                                                  | Not allowed                                        |                      |                                                                               |
| AC Cap                                                                                                         |                                                    |                      |                                                                               |
| Value - Min/Max                                                                                                | 0.075 / 0.2                                        | uF                   | Only required for TX pair when routed to connector                            |
| Location (max length to adjacent discontinuity)                                                                | 8                                                  | mm                   | Discontinuity such as edge finger, component pad                              |

| Parameter                                                                                                 | Requirement                                                  | Units     | Notes           |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------|-----------------|--|--|
| Voiding                                                                                                   | Voiding the plane of the pad 3-4 mils lathe pad size is reco | rger than | See Figure 6-7. |  |  |
| General. See Chanter 16 for guidelines related to sementine routing routing over voids and noise counting |                                                              |           |                 |  |  |

#### Notes

- 1. The PCIe specification has 40-60  $\Omega$  absolute min/max trace impedance, which can be used instead of the 50 $\Omega$ ,  $\pm$  15%.
- 2. If routing in the same layer is necessary, route group TX and RX separately without mixing RX/TX routes and keep distance between nearest TX/RX trace and RX to other signals 3x RX-RX separation.
- 3. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 4. Do length matching before via transitions to different layers or any discontinuity to minimize common mode conversion.

Figure 6-8. AC Cap Voiding



Table 6-10. PCIe Signal Connections

| Module Pin Name                                         |                                              | Туре        | Termination                                                                             | Description                                                                                                                                                         |  |  |  |
|---------------------------------------------------------|----------------------------------------------|-------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PCIe Interface #0 (x4)                                  |                                              |             |                                                                                         |                                                                                                                                                                     |  |  |  |
| PCIEO_TX3_N/P PCIEO_TX2_N/P PCIEO_TX1_N/P PCIEO_TX0_N/P | (Lane 3)<br>(Lane 2)<br>(Lane 1)<br>(Lane 0) | DIFF<br>OUT | Series 0.1uF Capacitor                                                                  | Differential Transmit Data Pairs: Connect to TX_N/P pins of PCIe connector or <b>RX_N/P</b> pin of PCIe device through AC cap according to supported configuration. |  |  |  |
| PCIEO_RX3_N/P PCIEO_RX2_N/P PCIEO_RX1_N/P PCIEO_RX0_N/P | (Lane 3)<br>(Lane 2)<br>(Lane 1)<br>(Lane 0) | DIFF IN     | Series 0.1uF capacitors<br>near Jetson Nano pins or<br>device if device on main<br>PCB. | Differential Receive Data Pairs: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.         |  |  |  |
| PCIE0_CLK_N/P                                           |                                              | DIFF<br>OUT |                                                                                         | Differential Reference Clock Output: Connect to REFCLK_N/P pins of PCle device/connector                                                                            |  |  |  |
| PCIE0_CLKREQ*                                           |                                              | 1/0         | 47kΩ pull-up to VDD_3V3_SYS on module                                                   | PCIe Clock Request for PCIEO_CLK: Connect to CLKREQ pins on device/connector(s)                                                                                     |  |  |  |
| PCIE0_RST*                                              |                                              | 0           | 4.7kΩ pull-up to VDD_3V3_SYS on module                                                  | PCIe Reset: Connect to PERST pins on device/connector(s)                                                                                                            |  |  |  |
| PCIE_WAKE*                                              |                                              | I           | 100kΩ pull-up to VDD_3V3_SYS on module                                                  | PCIe Wake: Connect to WAKE pins on device or connector                                                                                                              |  |  |  |

### 6.3 Gigabit Ethernet

Jetson Nano integrates a Realtek RTL8119I-CG Gigabit Ethernet controller. The magnetics and RJ45 connector would be implemented on the carrier board. Contact Realtek for carrier board placement and routing quidelines.

Table 6-11. Gigabit Ethernet Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description              | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type |
|-------|--------------------|-----------------|--------------------------------|--------------------------------------------|---------------|----------|
| 194   | GBE_LED_ACT        | _               | Ethernet Activity LED (Yellow) |                                            | Output        | -        |
| 188   | GBE_LED_LINK       | _               | Ethernet Link LED (Green)      |                                            | Output        | -        |
| 184   | GBE_MDI0_N         | _               | GbF Transformer Data 0         | LAN                                        | Bidir         | MDI      |
| 186   | GBE_MDI0_P         | _               | GDE   Fansformer Data U        |                                            |               |          |
| 190   | GBE_MDI1_N         | _               |                                |                                            |               |          |
| 192   | GBE_MDI1_P         | _               | GbE Transformer Data 1         |                                            |               |          |
| 196   | GBE_MDI2_N         | _               |                                |                                            |               |          |
| 198   | GBE_MDI2_P         | _               | GbE Transformer Data 2         |                                            |               |          |
| 202   | GBE_MDI3_N         | -               |                                |                                            |               |          |
| 204   | GBE_MDI3_P         | _               | GbE Transformer Data 3         |                                            |               |          |

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 6-9. Ethernet Connections





Figure 6-10. Gigabit Ethernet Magnetics and RJ45 Connections

Table 6-12. Ethernet MDI Interface Signal Routing Requirements

| Parameter                                  | Requirement | Units   | Notes                                                                                                                                |
|--------------------------------------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|
| Reference plane                            | GND         |         |                                                                                                                                      |
| Trace impedance - Diff pair / Single Ended | 100 / 50    | Ω       | $\pm 15\%$ . Differential impedance target is 100Ω. 90Ω can be used if $100\Omega$ is not achievable                                 |
| Min trace spacing (pair-pair)              | 0.763       | mm      |                                                                                                                                      |
| Max trace length/delay                     | 109 (690)   | mm (ps) |                                                                                                                                      |
| Max within pair (intra-pair) skew          | 0.15 (1)    | mm (ps) |                                                                                                                                      |
| Number of vias                             | minimum     |         | Ideally there should be no vias, but if required for breakout to Ethernet controller or magnetics, keep very close to either device. |

Table 6-13. Ethernet Signal Connections

| Module Pin Name  | Туре        | Termination          | Description                                                            |
|------------------|-------------|----------------------|------------------------------------------------------------------------|
| GBE_MDI[3:0]_N/P | DIFF<br>I/O |                      | Gigabit Ethernet MDI IF Pairs: Connect to Magnetics -/+ pins           |
| GBE_LED_LINK     | 0           | 110Ω series resistor | Gigabit Ethernet Link LED: Connect to green LED on RJ45 connector      |
| GBE_LED_ACT      | 0           | 110Ω series resistor | Gigabit Ethernet Activity LED: Connect to yellow LED on RJ45 connector |

# Chapter 7. Display

Tegra X1 Embedded designs can select from several display options including MIPI DSI and eDP for embedded displays, and HDMI or DP for external displays. The maximum number of simultaneous displays supported by Jetson Nano is two.

Table 7-1. Display General Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                     | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type    |
|-------|--------------------|-----------------|---------------------------------------|--------------------------------------------|---------------|-------------|
| 206   | GPI007             | LCD_BL_PWM      | GPIO or Pulse Width Modulation signal | Expansion header                           | Output        | CMOS - 1.8V |

### Notes:

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The direction of GPI007 is true when used for this function. Otherwise as a GPI0, the direction is bidirectional.

## 7.1 MIPI DSI

Tegra supports two total MIPI DSI data lanes and a single clock lane. Each data lane has a peak bandwidth up to 1.5Gbps.

Table 7-2. DSI Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description        | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type   |
|-------|--------------------|-----------------|--------------------------|--------------------------------------------|---------------|------------|
| 76    | DSI_CLK_N          | DSI_A_CLK_N     | Diaglas DCI dada         |                                            | 0             |            |
| 78    | DSI_CLK_P          | DSI_A_CLK_P     | Display, DSI clock       |                                            | Output        |            |
| 70    | DSI_D0_N           | DSI_A_D0_N      | D: 1 DC  1 1 0           |                                            | D. I.         | MIDLD DILV |
| 72    | DSI_D0_P           | DSI_A_D0_P      | Display, DSI data lane 0 | Not assigned                               | Bidir         | MIPI D-PHY |
| 82    | DSI_D1_N           | DSI_A_D1_N      | D: 1 DC  1 1 1           |                                            |               |            |
| 84    | DSI_D1_P           | DSI_A_D1_P      | Display, DSI data lane 1 |                                            | Output        |            |

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Figure 7-1. DSI 1 x 2 Lane Connection Example





**Note**: If EMI/ESD devices are necessary, they must be tuned to minimize impact to signal quality, which must meet the DSI spec. requirements for the frequencies supported by the design.

# 7.1.1 MIPI DSI and CSI Design Guidelines

Table 7-3 details the MIPI DSI and CSI interface signal routing requirements.

Table 7-3. MIPI DSI and CSI Interface Signal Routing Requirements

| Parameter                                             | Requirement          | Units                | Notes                                                                                                                                                                     |
|-------------------------------------------------------|----------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Max frequency/data rate (per data lane)               | 750 / 1500           | MHz/Mbps             |                                                                                                                                                                           |
| Number of loads                                       | 1                    | load                 |                                                                                                                                                                           |
| Reference plane                                       | GND                  |                      |                                                                                                                                                                           |
| Trace impedance - Diff pair / SE                      | 90-100 / 45-50       | Ω                    | ±10%                                                                                                                                                                      |
| Via proximity (signal to reference)                   | < 0.65 (3.8)         | mm (ps)              |                                                                                                                                                                           |
| Intra-pair trace spacing                              | 0.15mm               | mm                   | Can be adjusted to meet Differential<br>Impedance. Loosely Coupled Diff. Pair<br>recommended by Spec.                                                                     |
| Inter-pair trace spacing - Microstrip / Stripline     | 4x / 3x              | dielectric<br>height |                                                                                                                                                                           |
| Max PCB breakout length                               | 5                    | mm                   |                                                                                                                                                                           |
| Max trace delay<br>1 Gbps<br>1.5 Gbps                 | 1100<br>800          | ps                   |                                                                                                                                                                           |
| Max intra-pair skew                                   | 1                    | ps                   |                                                                                                                                                                           |
| Max trace delay skew between <b>DQ</b> and <b>CLK</b> | 5                    | ps                   | DQ includes all the data lines associated with a single clock. This may be 2 differential data lanes for a x2 interface, or 4 differential data lanes for a x4 interface. |
| Keep critical traces away from other signal trace     | s or unrelated power | r traces/areas o     | or power supply components                                                                                                                                                |

## 7.1.2 MIPI DSI and CSI Connection Guidelines

Table 7-4 details the MIPI DSI signal connections.

Table 7-4. MIPI DSI Signal Connections

| Module Pin Name | Туре     | Termination | Description                                                                                             |
|-----------------|----------|-------------|---------------------------------------------------------------------------------------------------------|
| DSI_CLK_N/P     | DIFF OUT |             | DSI Differential Clock: Connect to CLKn and CLKp pins of the primary DSI display                        |
| DSI_D[1:0]_N/P  | DIFF OUT |             | DSI Differential Data Lanes 1:0: Connect to corresponding data lanes of DSI display.                    |
| GPI007          | 0        |             | Optional LCD Backlight Pulse Width Modulation: Connect to LCD backlight solution PWM input if supported |

# 7.2 eDP and DP

Table 7-5 details the MIPI DSI and CSI connection pin descriptions for the eDP and DP displays.

Table 7-5. eDP and DP Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type    |
|-------|--------------------|-----------------|----------------------------------|--------------------------------------------|---------------|-------------|
| 90    | DP0_AUX_N          | DP_AUX_CH0_N    | Disales Deat Oscalisans de anal  |                                            | D: J:         | - DD/DD     |
| 92    | DP0_AUX_P          | DP_AUX_CH0_P    | Display Port 0 auxiliary channel |                                            | Bidir         | eDP/DP      |
| 39    | DP0_TXD0_N         | EDP_TXDN0       | B: 1                             |                                            | Output        | eDP/DP      |
| 41    | DP0_TXD0_P         | EDP_TXDP0       | Display port 0 data lane 0       | DP connector                               |               |             |
| 45    | DP0_TXD1_N         | EDP_TXDN1       | D: 1 10 11 1                     |                                            |               |             |
| 47    | DP0_TXD1_P         | EDP_TXDP1       | Display port 0 data lane 1       |                                            |               |             |
| 51    | DP0_TXD2_N         | EDP_TXDN2       | B. 1                             |                                            |               |             |
| 53    | DP0_TXD2_P         | EDP_TXDP2       | Display port 0 data lane 2       |                                            |               |             |
| 57    | DP0_TXD3_N         | EDP_TXDN3       | D: 1 0 1 1 1 0                   |                                            |               |             |
| 59    | DP0_TXD3_P         | EDP_TXDP3       | Display port 0 data lane 3       |                                            |               |             |
| 88    | DP0_HPD            | DP_HPD0         | Display port 0 hot-plug detect   |                                            | Input         | CMOS - 1.8V |

### Notes:

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The direction for DP0\_HPD is true when used for this function. Otherwise as a GPIO, the direction is bidirectional.

Tegra supports an eDP interface. The eDP interface can also be used for DP. DP support on these pins does not include HDCP or Audio.

Figure 7-2. DP/eDP Connection Example on DP0 Pins



### Notes:

- Level shifter required on DP0\_HPD to avoid the pin from being driven when Jetson Nano is off. The level shifter must be non-inverting (preserve the polarity of the HPD signal from the display).
- Load Switch enable is from powergood pin of main 3.3V supply.
- If eDP interface used for DP, note that HDCP is not supported.

# 7.2.1 eDP Routing Guidelines

Figure 7-3 shows the eDP topology, and Table gives the eDP and DP signal routing requirements.

Figure 7-3. eDP Differential Main Link Topology



Table 7-6. eDP and DP Main Link Signal Routing Requirements Including DP\_AUX

| Parameter                      | Requirement          | Units          | Notes                                                                                                                            |
|--------------------------------|----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| Specification                  |                      |                |                                                                                                                                  |
| Max data rate / Min UI         |                      |                | Per data lane                                                                                                                    |
| R <b>BR</b>                    | 1.62 / 617           | Gbps / ps      |                                                                                                                                  |
| HBR                            | 2.7 / 370            |                |                                                                                                                                  |
| HBR2                           | 5.4 / 185            |                |                                                                                                                                  |
| Number of loads / topology     | 1                    | load           | Point-Point, differential, unidirectional                                                                                        |
| Termination                    | 100                  | Ω              | On die at TX/RX                                                                                                                  |
| Electrical Spec                |                      |                |                                                                                                                                  |
| IL                             |                      |                |                                                                                                                                  |
| RBR                            | 0.7                  | dB @ 0.81GHz   |                                                                                                                                  |
| HBR                            | 1.2                  | dB @ 1.35GHz   |                                                                                                                                  |
| HBR2                           | 2.4                  | dB @ 2.7GHz    |                                                                                                                                  |
| Resonance dip frequency        | >8                   | GHz            |                                                                                                                                  |
| TDR dip                        | >85                  | Ω              | @ Tr-200ps (10%-90%)                                                                                                             |
| FEXT                           | <= -40dB @ DC        | See Figure 7-4 |                                                                                                                                  |
|                                | <= -30dB @<br>2.7GHz |                |                                                                                                                                  |
| Impedance                      |                      |                |                                                                                                                                  |
| Trace impedance - Diff pair    | 90-100<br>85         | Ω (±15%)       | $90\Omega$ - $100\Omega$ is the spec. target. $85\Omega$ is an implementation option (Zdiff does not account for trace coupling) |
|                                |                      |                | 85Ω is preferable as it can provide better trace loss characteristic performance. See Note 1.                                    |
| Reference plane                | GND                  |                |                                                                                                                                  |
| Trace Length, Spacing and Skew | ı                    | 1              |                                                                                                                                  |

| Parameter                                                                        | Requirement                                                                                                                                         | Units                 | Notes                                                                                                                                                                                      |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trace loss characteristic:                                                       | < 0.81                                                                                                                                              | dB/in                 | © 2.7GHz. The following max length is derived based on this characteristic. See Note 2.                                                                                                    |
| Max PCB via dist. from connector RBR/HBR HBR2                                    | No requirement 7.63 (0.3)                                                                                                                           | mm (in)               |                                                                                                                                                                                            |
| Max trace length/delay from Module TX to conn.  RBR/HBR (Stripline / Microstrip) | 215 (1138)/215<br>(975)                                                                                                                             | mm (ps)               | 175ps/inch assumption for stripline,<br>150ps/inch for microstrip.                                                                                                                         |
| HBR2 (Stripline) HBR2 (Microstrip, 5x / 7x)                                      | 102 (700)<br>89 (525) / 102<br>(600)                                                                                                                |                       |                                                                                                                                                                                            |
| Trace spacing (pair-pair) Stripline Microstrip (HBR/RBR) Microstrip (HBR2)       | 3x<br>4x<br>5x to 7x                                                                                                                                | dielectric height     |                                                                                                                                                                                            |
| Trace spacing (Main link to AUX) -<br>Stripline/Microstrip                       | 3x / 5x                                                                                                                                             | dielectric height     |                                                                                                                                                                                            |
| Max intra-pair (within pair) skew                                                | 0.15 (1)                                                                                                                                            | mm (ps)               | See Note 2                                                                                                                                                                                 |
| Maxinter-pair (pair-pair) skew                                                   | 150                                                                                                                                                 | ps                    | See Note 3                                                                                                                                                                                 |
| Via                                                                              |                                                                                                                                                     |                       |                                                                                                                                                                                            |
| Max <b>GND</b> transition via distance                                           | < 1x                                                                                                                                                | diff pair pitch       | For signals switching reference layers, add symmetrical <b>GND</b> stitching via near signal vias.                                                                                         |
| Via Structure                                                                    |                                                                                                                                                     |                       |                                                                                                                                                                                            |
| Impedance dip                                                                    | ≥97<br>≥92                                                                                                                                          | Ω @ 200ps<br>Ω @ 35ps | The via dimension is required for HDMI-DP co-layout.                                                                                                                                       |
| Recommended via dimension Drill/Pad Antipad Via pitch                            | 200/400<br>>840<br>>880                                                                                                                             | um<br>um<br>um        |                                                                                                                                                                                            |
| Topology                                                                         | Y-pattern is recom<br>symmetry.                                                                                                                     | nmended. Keep         | Y-pattern helps with Xtalk<br>suppression. It can also reduce the<br>limit of pair-pair distance. Need<br>review (NEXT/FEXT check) if via<br>placement is not Y-pattern. See<br>Figure 7-5 |
|                                                                                  | For in-line via, the distance from a via of one lane to the adjacent via from another lane >= 1.2 mm center-center.                                 |                       | See Figure 7-6                                                                                                                                                                             |
| GND via                                                                          | Place <b>GND</b> via as symmetrically as possible to data pair vias. Up to four signal vias (2 diff pairs) can share a single <b>GND</b> return via |                       | <b>GND</b> via is used to maintain a return path, while its Xtalk suppression is limited.                                                                                                  |
| Max # of vias                                                                    |                                                                                                                                                     |                       |                                                                                                                                                                                            |
| PTH vias<br>Micro vias                                                           | 2 if all vias are PTH via  Not limited if total channel loss meets IL spec                                                                          |                       |                                                                                                                                                                                            |
| Max via stub length                                                              | 0.4                                                                                                                                                 | mm                    |                                                                                                                                                                                            |
| AC Cap                                                                           | 1                                                                                                                                                   | 1                     | 1                                                                                                                                                                                          |

| Parameter                                          | Requirement                        | Units | Notes                                                                                                                                                                                                |
|----------------------------------------------------|------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Value                                              | 0.1                                | uF    | Discrete 0402                                                                                                                                                                                        |
| Max distance from AC cap to connector RBR/HBR HBR2 | No requirement                     | in    |                                                                                                                                                                                                      |
| Voiding<br>RBR/HBR<br>HBR2                         | No requirement<br>Voiding required |       | HBR2: Voiding the plane directly under the pad 3-4 mils larger than the pad size is recommended.                                                                                                     |
| Connector                                          |                                    |       |                                                                                                                                                                                                      |
| Voiding RBR/HBR HBR2                               | No requirement<br>Voiding required |       | HBR2: Standard DP connector: Voiding requirement is stack-up dependent. For typical stack-ups, voiding on the layer under the connector pad is required to be 5.7 mil larger than the connector pad. |

General: See Chapter 16 for guidelines related to Serpentine routing, routing over voids and noise coupling

#### Notes:

- 1. For eDP/DP, the spec puts a higher priority on the trace loss characteristic than on the impedance. However, before selecting 85Ω for impedance, it is important to make sure the selected stack-up, material and trace dimension can achieve the needed low loss characteristic.
- 2. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 4. The average of the differential signals is used for length matching.

The following figures show the eDP and DP interface signal routing requirements.

Figure 7-4. S-parameter



Figure 7-5. Via Topology #1



Figure 7-6. Via Topology #2



Table 7-7. eDP Signal Connections

| Module Pin Name  | Туре | Termination                                                                                                                    | Description                                                                             |
|------------------|------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| DP0_TXD[3:0]_N/P | 0    | Series 0.1uF capacitors and ESD to <b>GND</b> on all.                                                                          | eDP/DP Differential CLK/Data Lanes: Connect to matching pins on display connector.      |
| DP0_AUX_N/P      | I/OD | Series 0.1uF capacitors. 100kΩ pulldown on DP0_AUX_P and 100kΩ pull-up to VDD_3V3_SYS on DP0_AUX_N. ESD to <b>GND</b> on both. | eDP/DP: Auxiliary Channels: Connect to AUX_CH-/+ on display connector.                  |
| DP0_HPD          | I    | From module pin: 10kΩ pull-up to 1.8V, level shifter and 100kΩ pulldown on connector side of shifter and ESD to <b>GND</b> .   | eDP/DP: Hot Plug Detect: Connect to HPD pin on display connector through level shifter. |

# 7.3 HDMI and DP

A standard DP 1.2a or HDMI V2.0 interface is supported. These share the same set of interface pins, so either DisplayPort or HDMI can be supported natively.

Table 7-8. HDMI and DP Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                  | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type                  |
|-------|--------------------|-----------------|------------------------------------|--------------------------------------------|---------------|---------------------------|
| 98    | DP1_AUX_N          | DP_AUX_CH1_N    | DisplayPort 1 Aux– or HDMI DDC SDA |                                            |               | eDP/DP or                 |
| 100   | DP1_AUX_P          | DP_AUX_CH1_P    | DisplayPort 1 Aux+ or HDMI DDC SCL | HDMI Conn.                                 | Bidir         | Open-Drain,<br>1.8V (3.3V |

| Pin # | Module Pin<br>Name | Tegra X1 Signal     | Usage/Description                    | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type            |
|-------|--------------------|---------------------|--------------------------------------|--------------------------------------------|---------------|---------------------|
|       |                    |                     |                                      |                                            |               | tolerant -<br>DDC)  |
| 63    | DP1_TXD0_N         | HDMI_DP_TXDN<br>0   | Disale Dest 11 ere 0 er HDML ere 2   |                                            |               |                     |
| 65    | DP1_TXD0_P         | HDMI_DP_TXDP<br>0   | DisplayPort 1 Lane 0 or HDMI Lane 2  |                                            |               |                     |
| 69    | DP1_TXD1_N         | HDMI_DP_TXDN<br>1   |                                      |                                            |               |                     |
| 71    | DP1_TXD1_P         | HDMI_DP_TXDP        | DisplayPort or HDMI Lane 1           |                                            |               |                     |
| 75    | DP1_TXD2_N         | HDMI_DP_TXDN<br>2   | D: 1 D 141 0 HDMI                    |                                            | Output        | HDMI/DP             |
| 77    | DP1_TXD2_P         | HDMI_DP_TXDP<br>2   | DisplayPort 1 Lane 2 or HDMI Lane 0  |                                            |               |                     |
| 81    | DP1_TXD3_N         | HDMI_DP_TXDN 3      | DisplayPort 1 Lane 3– or HDMI Clk    |                                            |               |                     |
| 83    | DP1_TXD3_P         | HDMI_DP_TXDP<br>3   | Lane                                 |                                            |               |                     |
| 96    | DP1_HPD            | HDMI_INT_DP_<br>HPD | HDMI or Display Port Hot Plug Detect |                                            | Input         | CMOS – 1.8V         |
| 94    | HDMI_CEC           | HDMI_CEC            | HDMI CEC                             |                                            | Bidir         | Open Drain,<br>3.3V |

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The directions for DP1\_HPD and HDMI\_CEC are true when used for these functions. Otherwise as GPIOs, the direction is bidirectional

Table 7-9. DP and HDMI Pin Mapping

| Module Pin Name | Module Pin #s | HDMI  | DP   |
|-----------------|---------------|-------|------|
| DP1_TXD3_P      | 83            | TXC+  | TX3+ |
| DP1_TXD3_N      | 81            | TXC - | TX3- |
| DP1_TXD2_P      | 77            | TX0+  | TX2+ |
| DP1_TXD2_N      | 75            | TX0-  | TX2- |
| DP1_TXD1_P      | 71            | TX1+  | TX1+ |
| DP1_TXD1_N      | 69            | TX1-  | TX1- |
| DP1_TXD0_P      | 65            | TX2+  | TX0+ |
| DP1_TXD0_N      | 63            | TX2-  | TX0- |

### 7.3.1 HDMI

This section shows the HDMI connection requirements, signal routing requirements, and topology.

Figure 7-7. HDMI Connection Example



### Notes:

- 1. Level shifters required on DDC/HPD. Tegra pads are not 5V tolerant and cannot directly meet HDMI VIL/VIH requirements. HPD level shifter can be non-inverting or inverting. HPD level shifter on the Jetson Nano Developer Kit is inverting.
- 2. If EMI/ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing and electrical requirements of the HDMI specification for the modes to be supported. See requirements and recommendations in the related sections of Table 7-10.
- 3. The DP1\_TXx pads are native DP pads and require series AC capacitors (ACCAP) and pull-downs (RPD) to be HDMI compliant. The  $499\Omega$ , 1% pull-downs must be disabled when Jetson Nano is off or in sleep mode to meet the HDMI VOFF requirement. The enable to the FET, enables the pull-downs when the HDMI interface is to be used. Chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 4. Series resistors RS are required. See the RS section of Table 7-10 for details.
- 5. See reference design for CEC level shifting/blocking circuit.

Figure 7-8. HDMI Clk and Data Topology





- 1.RPD pad must be on the main trace. RPD and ACCAP must be on same layer.
- 2.Chokes  $(600\Omega \ @ 100 \ MHz)$  or narrow traces  $(1uH@DC-100 \ MHz)$  between pull-downs and FET are chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 3. The trace after the main route via should be routed on the top or bottom layer of the PCB, and either with 100 ohm differential impedance, or as uncoupled 50 ohm SE traces.
- 4.RS series resistor is required. See the RS section of Table 7-10 for details.

Table 7-10. HDMI Interface Signal Routing Requirements

| Parameter                | Requirement      | Units                  | Notes                                                                                                        |
|--------------------------|------------------|------------------------|--------------------------------------------------------------------------------------------------------------|
| Specification            |                  |                        |                                                                                                              |
| Max frequency / UI       | 5.94 / 168       | Gbps/ps                | Per lane – not total link bandwidth                                                                          |
| Topology                 | Point to point   |                        | Unidirectional, differential                                                                                 |
| Termination              |                  |                        | Differential To 3.3V at receiver                                                                             |
| At receiver              | 100              | Ω                      | To GND near connector                                                                                        |
| On-board                 | 500              |                        |                                                                                                              |
| Electrical Specification |                  |                        |                                                                                                              |
| IL                       | <= 1.7           | dB @ 1GHz              |                                                                                                              |
|                          | <= 2             | dB @ 1.5GHz            |                                                                                                              |
|                          | <= 3             | dB @ 3GHz              |                                                                                                              |
|                          | < 6              | dB @ 6GHz              |                                                                                                              |
| resonance dip frequency  | > 12             | GHz                    |                                                                                                              |
| TDR dip                  | >= 85            | Ω @ Tr=200ps           | 10%-90%. If TDR dip is 75~85ohm that dip width should < 250ps                                                |
| FEXT (PSFEXT)            | <= -50<br><= -40 | dB at DC<br>dB at 3GHz | PSNEXT is derived from an algebraic summation of the individual NEXT effects on each pair by the other pairs |

| Parameter                                                                                                    | Requirement                                                                                                                           | Units                            | Notes                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                              | <= -40                                                                                                                                | dB at 6GHz                       |                                                                                                                                     |
|                                                                                                              | IL/FEXT plot: See F                                                                                                                   | igure 7-9                        | TDR plot: See Figure 7-10                                                                                                           |
| Impedance                                                                                                    | '                                                                                                                                     |                                  |                                                                                                                                     |
| Trace impedance - Diff pair                                                                                  | 100                                                                                                                                   | Ω                                | $\pm 10\%$ . Target is $100\Omega$ . $95\Omega$ for the breakout and main route is an implementation option.                        |
| Reference plane                                                                                              | GND                                                                                                                                   |                                  |                                                                                                                                     |
| Trace spacing/Length/Skew                                                                                    |                                                                                                                                       |                                  |                                                                                                                                     |
| Trace loss characteristic:                                                                                   | < 0.8<br>< 0.4                                                                                                                        | dB/in. @ 3GHz<br>dB/in. @ 1.5GHz | The max length is derived based on this characteristic. See Note 1.                                                                 |
| Trace spacing (pair-pair) Stripline Microstrip: pre 1.4b                                                     | 3x<br>4x<br>5x to 7x                                                                                                                  | dielectric height                | For Stripline, this is 3x of the thinner of above and below.                                                                        |
| Microstrip: 1.4b/2.0  Trace spacing (Main link to DDC)  Stripline  Microstrip                                | 3x 5x                                                                                                                                 | dielectric height                | For Stripline, this is 3x of the thinner of above and below.                                                                        |
| Max total length/delay (1.4b/2.0 - up to 5.94Gbps) Stripline Microstrip (5x spacing) Microstrip (7x spacing) | 63.5/2.5 (437)<br>50.8/2.0 (300)<br>63.5/2.5 (375)                                                                                    | mm/in (ps)                       | Propagation delay: 175ps/in. for stripline, 150ps/in. for microstrip).                                                              |
| Max Total Length/Delay (Pre-1.4b - up to<br>165Mhz)<br>Microstrip<br>Stripline                               | 254/10 (1500)<br>225/8.5 (1500)                                                                                                       | mm/in (ps)                       | Propagation delay: 175ps/in. for stripline, 150ps/in. for microstrip).                                                              |
| Max intra-pair (within pair) skew                                                                            | 0.15 (1)                                                                                                                              | mm (ps)                          | See notes 1, 2, and 3                                                                                                               |
| Max inter-pair (pair to pair) skew                                                                           | 150                                                                                                                                   | ps                               | See notes 1, 2, and 3                                                                                                               |
| Max GND transition via distance                                                                              | 1x                                                                                                                                    | Diff pair via pitch              | For signals switching reference layers, add one or two ground stitching vias. It is recommended they be symmetrical to signal vias. |
| Via                                                                                                          |                                                                                                                                       | 1                                | 1                                                                                                                                   |
| Topology                                                                                                     | Y-pattern is recommended keep symmetry                                                                                                |                                  | Xtalk suppression is the best by Y-pattern. Also, it can reduce the limit of                                                        |
| Minimum impedance dip                                                                                        | 97<br>92                                                                                                                              | Ω@200ps<br>Ω@35ps                | pair-pair distance. Need review [NEXT/FEXT check] if via placement is not Y-pattern. See Figure 7-11                                |
| Recommended via dimension drill/pad Antipad via pitch                                                        | 200/400<br>840<br>880                                                                                                                 | uM                               |                                                                                                                                     |
| GND via                                                                                                      | Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (2 diff pairs) can share a single GND return via |                                  | GND via is used to maintain return path, while its Xtalk suppression is limited                                                     |
| Max # of vias<br>PTH via<br>u-via                                                                            | 4 if all vias are PTH via Not limited if total channel loss meets IL spec.                                                            |                                  |                                                                                                                                     |

| Parameter                                                                                | Requirement                                                                                                   | Units                              | Notes                                                                     |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------|
| Max via stub length                                                                      | 0.4                                                                                                           | mm                                 | long via stub requires review (IL and resonance dip check)                |
| Topology                                                                                 |                                                                                                               |                                    |                                                                           |
| The main route via dimensions should comply with                                         | n the via structure ru                                                                                        | les (See via section)              | See Figure 7-8                                                            |
| For the connector pin vias, follow the rules for the                                     | connector pin vias (S                                                                                         | See via section)                   |                                                                           |
| The traces after main route via should be routed a 50ohm SE traces on PCB top or bottom. | s 100Ω differential or                                                                                        | as uncoupled                       |                                                                           |
| Max distance from RPD to main trace (seg B)                                              | 1                                                                                                             | mm                                 |                                                                           |
| Max distance from AC cap to RPD stubbing point (seg A)                                   | ~0                                                                                                            | mm                                 |                                                                           |
| Max distance between ESD and signal via                                                  | 3                                                                                                             | mm                                 |                                                                           |
| Add-on Components                                                                        |                                                                                                               |                                    |                                                                           |
| Example of a case where space is limited for placing components.                         | Top: See Figure 7-1                                                                                           | 2                                  | Bottom: See Figure 7-13                                                   |
| AC Cap                                                                                   |                                                                                                               |                                    |                                                                           |
| Value                                                                                    | 0.1                                                                                                           | uF                                 |                                                                           |
| Max via distance from BGA                                                                | 7.62 (52.5)                                                                                                   | mm (ps)                            |                                                                           |
| Location                                                                                 | must be placed bef                                                                                            | ore pull-down                      | The distance between the AC cap and the HDMI connector is not restricted. |
| Placement<br>PTH design<br>Micro-via design                                              | Place cap on bottor<br>route above core<br>Place cap on top lay<br>below core<br>Not Restricted               |                                    |                                                                           |
| Void                                                                                     | GND (or PWR) void under/above the cap is needed. Void size = SMT area + 1x dielectric height keepout distance |                                    | See Figure 7-14                                                           |
| Pull-down Resistor (Rpb), choke/FET                                                      |                                                                                                               |                                    |                                                                           |
| Value                                                                                    | 500                                                                                                           | Ω                                  |                                                                           |
| Location.                                                                                | Must be placed aft                                                                                            | er AC cap                          | Placement: See Figure 7-15                                                |
| Layer of placement                                                                       | Same layer as AC c<br>choke can be place<br>layer thru a PTH via                                              | d on the opposite                  |                                                                           |
| Choke between RPD and FET choke  Max trace Rdc                                           | 600 or<br>1<br>≤20                                                                                            | Ω @ 100 MHz<br>uH@DC-100 MHz<br>mΩ | Can be choke or Trace. Recommended option for HDMI2.0 HF1-9 improvement.  |
| Max trace length                                                                         | 4                                                                                                             | mm                                 |                                                                           |
| Void                                                                                     | GND/PWR void und preferred                                                                                    | er/above cap is                    |                                                                           |
| Common-mode Choke (Not recommended – only                                                | · · · · · · · · · · · · · · · · · · ·                                                                         | quired for EMI issues              | 5]                                                                        |
| See Appendix A for details on CMC if implemented                                         |                                                                                                               |                                    |                                                                           |
| ESD (On-chip protection diode can withstand 2kV stuffing option)                         | HMM. External ESD                                                                                             | is optional. Designs               | should include ESD footprint as a                                         |
| Max junction capacitance (IO to GND)                                                     | 0.35                                                                                                          | pF                                 | e.g. Texas Instruments<br>TPD4E02B04DQAR                                  |
| Footprint                                                                                | Pad right on the ne                                                                                           | et instead of trace                | See Figure 7-16                                                           |

| fter pull-down resi<br>efore Rs<br>IND/PWR void unde<br>eeded. Void size =<br>air<br>IT HDMI 2.0 (manda         | er/above the cap is<br>1mm x 2mm for 1                                                                                                         | ± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| eeded. Void size = air r HDMI 2.0 (manda                                                                        | 1mm x 2mm for 1                                                                                                                                | ± 10%. 0ohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to |  |
|                                                                                                                 | •                                                                                                                                              | design passes the HDMI2.0 HF1-9 test.<br>Otherwise, adjust the Rs value to                               |  |
| 6                                                                                                               | Ω                                                                                                                                              | design passes the HDMI2.0 HF1-9 test.<br>Otherwise, adjust the Rs value to                               |  |
|                                                                                                                 |                                                                                                                                                | ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test                                 |  |
| fter all component<br>onnector                                                                                  | s and before HDMI                                                                                                                              |                                                                                                          |  |
| GND/PWR void under/above the Rs device is needed. Void size = SMT area + 1x dielectric height keepout distance. |                                                                                                                                                |                                                                                                          |  |
|                                                                                                                 |                                                                                                                                                |                                                                                                          |  |
| 00                                                                                                              | Ω                                                                                                                                              | ± 10%                                                                                                    |  |
| t component regio                                                                                               | n (Microstrip)                                                                                                                                 |                                                                                                          |  |
| Ine 45°                                                                                                         |                                                                                                                                                | See Figure 7-18                                                                                          |  |
| Incoupled structure                                                                                             | е                                                                                                                                              | See Figure 7-19                                                                                          |  |
|                                                                                                                 |                                                                                                                                                |                                                                                                          |  |
| Voiding the ground below the signal lanes 0.1448(5.7mil) larger than the pin itself                             |                                                                                                                                                | See Figure 7-20                                                                                          |  |
| o in it                                                                                                         | onnector  ND/PWR void under electric height kee  no component region ne 45° ncoupled structure oiding the ground anes 0.1448(5.7mil) in itself | ND/PWR void under/above the Rs device electric height keepout distance.  O                               |  |

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. The average of the differential signals is used for length matching.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion
- 4. If routing includes a flex or 2nd PCB, the max trace delay and skew calculations must include all the PCBs/flex routing. Solutions with flex/2nd PCB may not achieve maximum frequency operation.

The following figures show the HDMI interface signal routing requirements.

Figure 7-9. IL and FEXT Plot



Figure 7-10. TDR Plot



Figure 7-11. HDMI Via Topology



Figure 7-12. Add-on Components – Top



Figure 7-13. Add-on Components – Bottom



Figure 7-14. AC Cap Void



Figure 7-15. RPD, Choke, FET Placement



Figure 7-16. ESD Footprint



Figure 7-17. ESD Void



Figure 7-18. SMT Pad Trace Entering



Figure 7-19. SMT Pad Trace Between



Figure 7-20. Connector Voiding



Table 7-11. HDMI Signal Connections

| Module Pin Name                                                                | Туре        | Termination (see note on ESD)                                                                                                                                                                                                            | Description                                                                                                 |  |  |
|--------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| DP1_TXD3_N/P                                                                   | DIFF<br>OUT | 0.1uF series ACcap → 500Ω Rpd (controlled by FET)<br>→ ESD to <b>GND</b> →.≼6Ω Rs (series resistor)                                                                                                                                      | HDMI Differential Clock: Connect to <b>C</b> -/ <b>C+</b> and pins on HDMI connector                        |  |  |
| DP1_TXD[2:0]_N/P                                                               | DIFF<br>OUT |                                                                                                                                                                                                                                          | HDMI Differential Data: Connect to HDMI<br>Data pins (See Table 7-9)                                        |  |  |
| DP1_HPD                                                                        | I           | From module pin: $10k\Omega$ PU to $1.8V \rightarrow$ level shifter $\rightarrow 100k\Omega$ series resistor. $100k\Omega$ to <b>GND</b> on connector side $\rightarrow 100pF/12pF$ caps to <b>GND</b> $\rightarrow$ ESD to <b>GND</b> . | HDMI Hot Plug Detect: Connect to <b>HPD</b> pin on HDMI connector                                           |  |  |
| HDMI_CEC                                                                       | I/OD        | Gating circuitry, See Figure 7-7 for details.                                                                                                                                                                                            | HDMI Consumer Electronics Control:<br>Connect to CEC on HDMI connector<br>through circuitry.                |  |  |
| DP1_AUX_N/P                                                                    | I/OD        | From module pins: $10k\Omega$ PU to $3.3V \rightarrow$ level shifter $\rightarrow$ $1.8k\Omega$ PU to $5V \rightarrow$ ESD to <b>GND</b>                                                                                                 | HDMI: DDC Interface – Clock and Data:<br>Connect DP1_AUX_N to SDA and<br>DP1_AUX_P to SCL on HDMI connector |  |  |
| HDMI 5V Supply                                                                 | Р           | Adequate decoupling (0.1uF and 10uF recommended) on supply near connector and ESD to GND.                                                                                                                                                | HDMI 5V supply to connector: Connect to +5V on HDMI connector.                                              |  |  |
| Note: Any ESD and /or EMI solutions must support targeted modes (frequencies). |             |                                                                                                                                                                                                                                          |                                                                                                             |  |  |

### 7.3.2 DP on DP1 Pins

Figure 7-21 shows the DisplayPort connection.

Figure 7-21. DP Connection Example



### Notes:

- 1. Level shifter required on DP1\_HPD to avoid the pin from being driven when Jetson Nano is off. The level shifter must be non-inverting (preserve the polarity of the HPD signal from the display).
- 2. Any EMI/ESD included on the HDMI\_DP pins must be suitable for the highest frequency modes supported (<1pf capacitive load recommended).

# 7.3.2.1 DP Interface Signal Routing Requirements

See eDP and DP signal routing requirements.

Table 7-12. DP Signal Connections

| Module Pin Name                                                              | Туре | Termination (see note on ESD)                                                                                                                                     | Description                                                                                                       |  |  |
|------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| DP1_TXD3_N/P<br>DP1_TXD[2:0]_N/P                                             | 0    | Series 0.1uF capacitors → ESD on all.                                                                                                                             | DP Differential Lanes: Connect to D[3:0] -/+. See DP/HDMI pin mapping table for correct connections of data pins. |  |  |
| DP1_HPD                                                                      | 1    | From Module pin: $10k\Omega$ pull-up to $1.8V \rightarrow$ level shifter and $100k\Omega$ pulldown on connector side of shifter $\rightarrow$ ESD to <b>GND</b> . | DP Interrupt (Hot Plug Detect): Connect to HPD pin on DP connector w/termination described.                       |  |  |
| DP1_AUX_N/P                                                                  | I/OD | From module pins: series 0.1uF caps $\rightarrow$ then 100K $\Omega$ PD on <b>AUX_P</b> and 100K $\Omega$ PU to 3.3V on <b>AUX_N</b> $\rightarrow$ ESD.           | DP: Auxiliary Channels: Connect to AUX_CH-/+ on DP connector                                                      |  |  |
| DP 3.3V Supply                                                               | Р    | Adequate decoupling (0.1uF and 10uF recommended) on supply near connector.                                                                                        | DP supply to connector: Connect 3.3V supply pin on DP connector to VDD_3V3_SYS.                                   |  |  |
| Note: Any ESD and/or EMI solutions must support targeted modes (frequencies) |      |                                                                                                                                                                   |                                                                                                                   |  |  |

# Chapter 8. MIPI CSI Video Input

Jetson Nano brings twelve MIPI CSI lanes to the connector. Three quad-lane camera streams or two quad-lane plus two dual-lane camera streams or one quad-lane plus three dual-lane camera streams are supported. Each data lane has a peak bandwidth of up to 1.5 Gbps.



**Note**: In Table 8-1 and Table 8-2 the Direction column, the Output is from Jetson Nano and the Input is to Jetson Nano. Bidir is for bidirectional signals.

Table 8-1. CSI Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type   |
|-------|--------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|------------|
| 10    | CSI0_CLK_N         | CSI_A_CLK_N     | Camera, CSI 0 Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |               |            |
| 12    | CSI0_CLK_P         | CSI_A_CLK_P     | Camera, CSI o Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |               |            |
| 4     | CSI0_D0_N          | CSI_A_D0_N      | Camera, CSI 0 Data 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Camera                                     |               |            |
| 6     | CSI0_D0_P          | CSI_A_D0_P      | Camera, CSI u Data u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Connector #1                               |               |            |
| 16    | CSI0_D1_N          | CSI_A_D1_N      | Camera, CSI 0 Data 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |               |            |
| 18    | CSI0_D1_P          | CSI_A_D1_P      | Camera, CSI u Data 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |               |            |
| 3     | CSI1_D0_N          | CSI_B_D0_N      | Carrage CCL1 Data 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |               |            |
| 5     | CSI1_D0_P          | CSI_B_D0_P      | Camera, CSI 1 Data 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Assissand                              |               |            |
| 15    | CSI1_D1_N          | CSI_B_D1_N      | Commune CCL1 Date 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Assigned                               |               | MIDLD DIIV |
| 17    | CSI1_D1_P          | CSI_B_D1_P      | Camera, CSI 1 Data 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | Innut         |            |
| 28    | CSI2_CLK_N         | CSI_E_CLK_N     | 0 001001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | - Input       | MIPI D-PHY |
| 30    | CSI2_CLK_P         | CSI_E_CLK_P     | Camera, CSI 2 Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |               |            |
| 22    | CSI2_D0_N          | CSI_E_D0_N      | Communication of the Communica | Camera                                     |               |            |
| 24    | CSI2_D0_P          | CSI_E_D0_P      | Camera, CSI 2 Data 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Connector #2                               |               |            |
| 34    | CSI2_D1_N          | CSI_E_D1_N      | 0.00000.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |               |            |
| 36    | CSI2_D1_P          | CSI_E_D1_P      | Camera, CSI 2 Data 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |               |            |
| 27    | CSI3_CLK_N         | CSI_F_CLK_N     | 0 001001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |               |            |
| 29    | CSI3_CLK_P         | CSI_F_CLK_P     | Camera, CSI 3 Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |               |            |
| 21    | CSI3_D0_N          | CSI_F_D0_N      | 0 0012 Data 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Assigned                               |               |            |
| 23    | CSI3_D0_P          | CSI_F_D0_P      | Camera, CSI 3 Data 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |               |            |

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description    | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type |
|-------|--------------------|-----------------|----------------------|--------------------------------------------|---------------|----------|
| 33    | CSI3_D1_N          | CSI_F_D1_N      | Carrage OCI 2 Data 1 |                                            |               |          |
| 35    | CSI3_D1_P          | CSI_F_D1_P      | Camera, CSI 3 Data 1 |                                            |               |          |
| 52    | CSI4_CLK_N         | CSI_C_CLK_N     | 0.001/01             |                                            |               |          |
| 54    | CSI4_CLK_P         | CSI_C_CLK_P     | Camera, CSI 4 Clock  |                                            |               |          |
| 46    | CSI4_D0_N          | CSI_C_D0_N      | 0.0014.0             |                                            |               |          |
| 48    | CSI4_D0_P          | CSI_C_D0_P      | Camera, CSI 4 Data 0 |                                            |               |          |
| 58    | CSI4_D1_N          | CSI_C_D1_N      | Commune CCL / Date 1 |                                            |               |          |
| 60    | CSI4_D1_P          | CSI_C_D1_P      | Camera, CSI 4 Data 1 |                                            |               |          |
| 40    | CSI4_D2_N          | CSI_D_D0_N      | 0.001/10.4.0         |                                            |               |          |
| 42    | CSI4_D2_P          | CSI_D_D0_P      | Camera, CSI 4 Data 2 |                                            |               |          |
| 64    | CSI4_D3_N          | CSI_D_D1_N      | 0 001/ D + 0         |                                            |               |          |
| 66    | CSI4_D3_P          | CSI_D_D1_P      | Camera, CSI 4 Data 3 |                                            |               |          |

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

Table 8-2. Miscellaneous Camera Pin Descriptions

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                                              | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type             |
|-------|--------------------|-----------------|----------------------------------------------------------------|--------------------------------------------|---------------|----------------------|
| 213   | CAM_I2C_SCL        | CAM_I2C_SCL     | Camera I2C Clock. 2.2kΩ pull-up to 3.3V on the module.         | OCI M                                      | Bidir         | Open Drain –<br>3.3V |
| 215   | CAM_I2C_SDA        | CAM_I2C_SDA     | Camera I2C Data. $2.2k\Omega$ pull-up to $3.3V$ on the module. | CSI Mux                                    |               |                      |
| 114   | CAM0_PWDN          | CAM1_PWDN       | Camera 0 Powerdown or GPIO                                     | Camera                                     | Output        | CMOS - 1.8V          |
| 116   | CAM0_MCLK          | CAM1_MCLK       | Camera 0 Reference Clock                                       | Connector #1                               |               |                      |
| 120   | CAM1_PWDN          | CAM2_PWDN       | Camera 1 Powerdown or GPIO                                     | Camera                                     |               |                      |
| 122   | CAM1_MCLK          | CAM2_MCLK       | Camera 1 Reference Clock                                       | Connector #2                               |               |                      |

### Notes.

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The directions for CAM[1:0]\_PWDN and CAM[1:0]\_MCLK are true when used for these functions. Otherwise as GPIOs, the directions are bidirectional.



Figure 8-1. 4 Lane CSI Camera Connection Example

Table 8-3. CSI Configuration

| Cameras        | CSI_0<br>CLK/Data[1:0] | CSI_1<br>Data[1:0] | CSI_2<br>CLK/Data[1:0] | CSI_3<br>CLK | CSI_3<br>Data[1:0] | CSI_4<br>CLK/Data[1:0] |
|----------------|------------------------|--------------------|------------------------|--------------|--------------------|------------------------|
| 2-Lanes Each   |                        |                    |                        |              |                    |                        |
| 1 of 4 cameras | V                      |                    |                        |              |                    |                        |
| 2 of 4 cameras |                        |                    | V                      |              |                    |                        |
| 3 of 4 cameras |                        |                    |                        | V            | V                  |                        |
| 4 of 4 cameras |                        |                    |                        |              |                    | V                      |
| 4-Lanes Each   |                        |                    |                        |              |                    |                        |
| 1 of 3 cameras | V                      | V                  |                        |              |                    |                        |
| 2 of 3 cameras |                        |                    | V                      |              | V                  |                        |
| 3 of 3 cameras |                        |                    |                        |              |                    | V                      |

- 1.CSI 4 can be used as as a x1, x2, or x4 CSI interface.
- 2. If CSI 0/1 and CSI 4 are used for 4-lane interfaces each, CSI 2 and CSI 2 can be used for two 1 or 2-lane interfaces.
- 3. Each 2-lane options shown above can also be used for one single lane camera.

Figure 8-2. Available Cameral Control Pins





**Note**: The CAM\_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40.

Figure 8-3. CSI Connection Options





**Note**: Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.

# 8.1 CSI Design Guidelines

CSI and DSI use the MIPI D-PHY for the physical interface. The routing and connection requirements are found in the DSI section (Section 7.1),

Table 8-4. MIPI CSI Signal Connections

| Module Pin Name                        | Туре | Termination | Description                                                                            |
|----------------------------------------|------|-------------|----------------------------------------------------------------------------------------|
| CSI[4:2,0]_CLK_N/P                     | I    | See Note    | CSI Differential Clocks. Connect to clock pins of camera. See Table 8-3 for details    |
| CSI[3:0]_D[1:0]_N/P<br>CSI4_D[3:0]_N/P | 1/0  | See Note    | CSI Differential Data Lanes: Connect to data pins of camera. See Table 8-3 for details |

Note: Depending on the mechanical design of the platform and camera modules, ESD protection may be necessary. In addition, EMI control may be needed. Both are shown in Figure 8-1. Any EMI/ESD solution must be compatible with the frequency required by the design.

Table 8-5. Miscellaneous Camera Connections

| Module Pin Name            | Туре     | Termination                                                                                                     | Description                                                                                                                                                                 |
|----------------------------|----------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAM_I2C_CLK<br>CAM_I2C_DAT | 0<br>I/0 | 2.2kΩ pull-ups <b>VDD_3V3_SYS</b> (on Jetson Nano). See note related to EMI/ESD in Table 8-4.                   | Camera I2C Interface: Connect to I2C SCL and SDA pins of imager. The CAM_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40. |
| CAM[1:0]_MCLK              | 0        | 120Ω bead in series (on Jetson Nano)<br>See note related to EMI/ESD under<br>MIPI CSI Signal Connections table. | Camera Master Clocks: Connect to camera reference clock inputs.                                                                                                             |
| CAM[1:0]_PWDN              | 0        |                                                                                                                 | Camera Power Control signals (or GPIOs [1:0]):<br>Connect to power down pins on camera(s).                                                                                  |

# Chapter 9. SD Card and SDIO

Jetson Nano uses one SDMMC interface for on-module eMMC (SDMMC4 on Tegra) and brings one to the connector pins for SD Card or SDIO use.

Table 9-1. SDIO Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description       | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type  |
|-------|--------------------|-----------------|-------------------------|--------------------------------------------|---------------|-----------|
| 229   | SDMMC_CLK          | SDMMC3_CLK      | SD Card or SDIO Clock   |                                            | Output        |           |
| 227   | SDMMC_CMD          | SDMMC3_CMD      | SD Card or SDIO Command |                                            |               |           |
| 219   | SDMMC_DAT0         | SDMMC3_DAT0     | SD Card or SDIO Data 0  |                                            |               | CMOS -    |
| 221   | SDMMC_DAT1         | SDMMC3_DAT1     | SD Card or SDIO Data 1  | Not Assigned                               | Bidir         | 1.8V/3.3V |
| 223   | SDMMC_DAT2         | SDMMC3_DAT2     | SD Card or SDIO Data 2  |                                            |               |           |
| 225   | SDMMC_DAT3         | SDMMC3_DAT3     | SD Card or SDIO Data 3  |                                            |               |           |

### Notes:

<sup>1.</sup> In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

<sup>2.</sup> The directions for SDMMC\_x and GPI008 are true when used for these functions. Otherwise as GPI0s, the directions are bidirectional.



Figure 9-1. SD Card Connection Example



- 1. The SD card supply must be enabled with a GPIO to prevent back-driving the Tegra SDMMC interface during power-on sequencing. The GPIO should have power-on reset (POR) that will ensure the supply is not enabled by default.
- 2. Having  $0\Omega$ , 0402 resistor is recommended in case of issues with EMI where it can be replaced with an appropriate device.
- 3. It is recommended that the SD card supply is current limited in case the supply is shorted to GND.

Table 9-2. SD Card and SDIO Interface Signal Routing Requirements

| Parameter       | Requirement    | Units  | Notes                                    |
|-----------------|----------------|--------|------------------------------------------|
| Max frequency   |                |        | See Note 1                               |
| 3.3V Signaling  |                |        |                                          |
| DS              | 25 (12.5)      | MHz    |                                          |
| HS              | 50 (25)        | (MB/s) |                                          |
| 1.8V Signaling  |                |        |                                          |
| SDR12           | 25 (12.5)      |        |                                          |
| SDR25           | 50 (25)        |        |                                          |
| SDR50           | 100 (50)       |        |                                          |
| SDR104          | 208 (104)      |        |                                          |
| DDR50           | 50 (50)        |        |                                          |
| Topology        | Point to point |        |                                          |
| Reference plane | GND or PWR     |        | See Note 2                               |
| Trace impedance | 50             | Ω      | ±15%. 45Ω optional depending on stack-up |
| Max via count   |                |        | Independent of stack-up layers.          |
| PTH             | 4              |        | Depends on stack-up layers.              |
| HDI             | 10             |        |                                          |

| Parameter                                                               | Requirement                       | Units                | Notes                                                    |
|-------------------------------------------------------------------------|-----------------------------------|----------------------|----------------------------------------------------------|
| Via proximity (Signal to reference)                                     | < 3.8 (24)                        | mm (ps)              | Up to four signal vias can share 1 <b>GND</b> return via |
| Trace spacing Microstrip / Stripline                                    | 4x / 3x                           | dielectric<br>height |                                                          |
| Trace length SDR50 / SDR25 / SDR12 / HS / DS Min Max SDR104 / DDR50 Min | 16 (100)<br>139 (876)<br>16 (100) | mm (ps)              |                                                          |
| Max                                                                     | 83 (521)                          |                      |                                                          |
| Max trace length/delay skew in/between <b>CLK</b> and <b>CMD/DAT</b>    |                                   |                      | See Note 3                                               |
| SDR50 / SDR25 / SDR12 / HS / DS<br>SDR104 / DDR50                       | 14 (87.5)<br>2 (12.5)             | mm (ps)              |                                                          |

Keep CLK, CMD and DATA traces away from other signal traces or unrelated power traces/areas or power supply components

### Notes:

- 1. Actual frequencies may be lower due to clock source/divider limitations.
- 2. If PWR, 0.01uF decoupling cap required for return current.

## Table 9-3. SD Card and SDIO Signal Connections

| Function Signal Name | Type | Termination | Description                                          |
|----------------------|------|-------------|------------------------------------------------------|
| SDMMC_CLK            | 0    |             | SD Card / SDIO Clock: Connect to CLK pin of device.  |
| SDMMC_CMD            | 1/0  |             | SD Card / SDIO Command: Connect to CMD pin of device |
| SDMMC_D[3:0]         | 1/0  |             | SD Card / SDIO Data: Connect to Data pins of device  |

# Chapter 10. Audio

Tegra supports multiple PCM/I2S audio interfaces and includes a flexible audio-port switching architecture.

Table 10-1. Audio Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                   | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type    |
|-------|--------------------|-----------------|-------------------------------------|--------------------------------------------|---------------|-------------|
| 193   | I2S0_DOUT          | DAP4_DOUT       | I2S Audio Port 0 Data Out           |                                            | Output        | CMOS - 1.8V |
| 195   | I2S0_DIN           | DAP4_DIN        | I2S Audio Port 0 Data In            |                                            | Input         | CMOS - 1.8V |
| 197   | I2S0_FS            | DAP4_FS         | I2S Audio Port 0 Left/Right Clock   | Expansion Header                           | Bidir         | CMOS - 1.8V |
| 199   | I2S0_SCLK          | DAP4_SCLK       | I2S Audio Port 0 Clock              |                                            | Bidir         | CMOS - 1.8V |
| 220   | I2S1_DOUT          | DMIC2_CLK       | I2S Audio Port 1 Data Out           |                                            | Bidir         | CMOS - 1.8V |
| 222   | I2S1_DIN           | DMIC1_DAT       | I2S Audio Port 1 Data In            | M 0 1/2 - 5                                | Input         | CMOS - 1.8V |
| 224   | I2S1_FS            | DMIC1_CLK       | I2S Audio Port 1 Left/Right Clock   | M.2 Key E                                  | Bidir         | CMOS - 1.8V |
| 226   | I2S1_SCLK          | DMIC2_DAT       | I2S Audio Port 1 Clock              |                                            | Bidir         | CMOS - 1.8V |
| 211   | GPI009             | AUD_MCLK        | GPIO #9 or Audio Codec Master Clock | Expansion Header                           | Output        | CMOS - 1.8V |

### Notes:

<sup>1.</sup> In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.

<sup>2.</sup> The directions for I2S[1:0]x and GPI009 are true when used for those functions. Otherwise as GPI0s, the directions are bidirectional.



Figure 10-1. Audio Codec Connection Example

- 1. The Interrupt pin from the audio codec can connect to any available Jetson Nano GPIO. If the pin must be wake-capable, choose one of the GPIOs that supports this function.
- 2. I2C2 supports 1.8V operation since the interface is pulled to 1.8V through  $2.2k\Omega$  resistors on the module. If another I2C interface on Jetson Nano is used, a level shifter will be required as all the others are 3.3V.
- 3. Refer to the Intel High Definition Audio/AC'97 website for the latest information: <a href="https://www.intel.com/content/www/us/en/support/articles/000005512/boards-and-kits/desktop-boards.html">https://www.intel.com/content/www/us/en/support/articles/000005512/boards-and-kits/desktop-boards.html</a>.

Table 10-2. Interface Signal Routing Requirements

| Requirement       | Units                                                   | Notes                                                                                                    |
|-------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1                 | load                                                    |                                                                                                          |
| 8                 | pF                                                      |                                                                                                          |
| GND               |                                                         |                                                                                                          |
| Min width/spacing |                                                         |                                                                                                          |
| 50                | Ω                                                       | ±20%                                                                                                     |
| < 3.8 (24)        | mm (ps)                                                 | See note                                                                                                 |
| 2x                | dielectric<br>height                                    |                                                                                                          |
| ~22 (3600)        | In (ps)                                                 |                                                                                                          |
| ~1.6 (250)        | In (ps)                                                 |                                                                                                          |
|                   | 1 8 8 GND Min width/spacing 50 < 3.8 (24) 2x -22 (3600) | 1 load  8 pF  GND  Min width/spacing  50 Ω  < 3.8 (24) mm (ps)  2x dielectric height  ~22 (3600) In (ps) |

# Table 10-3. Audio Signal Connections

| Module Pin Name | Туре | Termination | Description                                                                        |
|-----------------|------|-------------|------------------------------------------------------------------------------------|
| 12S[1:0]_SCLK   | 1/0  |             | I2S Serial Clock: Connect to I2S/PCM CLK pin of audio device.                      |
| I2S[1:0]_FS     | 1/0  |             | I2S Frame Select (Left/Right Clock): Connect to corresponding pin of audio device. |
| I2S[1:0]_DOUT   | 1/0  |             | I2S Data Output: Connect to data input pin of audio device.                        |
| I2S[1:0]_DIN    | I    |             | I2S Data Input: Connect to data output pin of audio device.                        |
| GPI009          | 0    |             | Audio Codec Master Clock: Connect to clock pin of audio codec.                     |

# Chapter 11. Miscellaneous Interfaces

# 11.1 I2C

Jetson Nano brings four I2C interfaces to the connector pins. CAM\_I2C is included in Table 8-2. The assignments in the I2C interface mapping table should be used where applicable for the I2C interfaces.

Table 11-1. I2C Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                                                  | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type             |
|-------|--------------------|-----------------|--------------------------------------------------------------------|--------------------------------------------|---------------|----------------------|
| 185   | I2C0_SCL           | GEN1_I2C_SCL    | General I2C 0 Clock. 2.2k $\Omega$ pull-up to 3.3V on module.      |                                            |               | Open Drain –<br>3.3V |
| 187   | I2C0_SDA           | GEN1_I2C_SDA    | General I2C 0 Data. 2.2kΩ pull-up to 3.3V on the module.           |                                            |               | Open Drain –<br>3.3V |
| 189   | I2C1_SCL           | GEN2_I2C_SCL    | General I2C 1 Clock. $2.2k\Omega$ pull-up to $3.3V$ on the module. | 100 (                                      | D. I.         | Open Drain –<br>3.3V |
| 191   | I2C1_SDA           | GEN2_I2C_SDA    | General I2C 1 Data. 2.2kΩ pull-up to 3.3V on the module.           | - I2C (general)                            | Bidir         | Open Drain –<br>3.3V |
| 232   | I2C2_SCL           | GEN3_I2C_SCL    | General I2C 2 Clock. 2.2kΩ pull-up to 1.8V on the module.          |                                            |               | Open Drain –<br>1.8V |
| 234   | I2C2_SDA           | GEN3_I2C_SDA    | General I2C 2 Data. 2.2kΩ pull-up to 1.8V on the module.           |                                            |               | Open Drain –<br>1.8V |

Notes: In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.



Figure 11-1. I2C Connections



Note: If an I2C interface is routed to an M.2 Key E or M.2 Key M socket, it is recommended that  $0\Omega$  series resistors be included on the lines. If the design will be used with WiFi modules that require I2C then the  $0\Omega$  series resistors would be installed. However, the WiFi modules must be fully spec compliant and not hold the I2C lines low during boot, which could interfere with communications with other devices on this I2C bus and possibly prevent the system from booting.

# 11.1.1 I2C Design Guidelines

Care must be taken to ensure I2C peripherals on same I2C bus connected to Jetson Nano do not have duplicate addresses. Addresses can be in two forms: 7-bit, with the read/write bit removed or 8-bit including the read/write bit. Be sure to compare I2C device addresses using the same form (all 7-bit or all 8-bit format). The I2C2 interface is connected to an EEPROM on the module which uses I2C address 7'h50. The CAM\_I2C interface is connected to the power monitor device on the module which uses I2C address 7'h40.



### Notes:

- The Jetson Nano I2C interfaces have  $2.2k\Omega$  pull-ups on the module. Pads for additional pull-ups are recommended in case a stronger pull-up is required due to additional loading on the interfaces.
- The I2C pad LPMD bit is set by default for the I2C[2:0] pins, but not for the CAM\_I2C pins. These settings can be changed if necessary, to improve signal integrity.

Table 11-2. I2C Interface Signal Routing Requirements

| Parameter                                | Requirement         | Units                  | Notes                |
|------------------------------------------|---------------------|------------------------|----------------------|
| Max frequency - Standard-mode / Fm / Fm+ | 100 / 400 / 1000    | kHz                    | See Note 1           |
| Topology                                 | Single ended, bi-di | rectional, multiple in | itiators and targets |
| Max loading - Standard-mode / Fm / Fm+   | 400                 | pF                     | Total of all loads   |
| Reference plane                          | GND or PWR          |                        |                      |
| Trace impedance                          | 50 – 60             | Ω                      | ±15%                 |
| Trace spacing                            | 1x                  | dielectric height      |                      |
| Max trace length/delay                   |                     | ps (in)                |                      |
| Standard Mode                            | 3400 (~20)          |                        |                      |
| Fm, Fm+ Modes                            | 1700 (~10)          |                        |                      |

- 1. Fm = Fast-mode, Fm+ = Fast-mode Plus.
- 2. Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
- 3. No requirement for decoupling caps for PWR reference.

### Table 11-3. I2C Signal Connections

| Module Pin Name     | Type | Termination                                            | Description                                                                 |
|---------------------|------|--------------------------------------------------------|-----------------------------------------------------------------------------|
| I2C0_SCL/SDA        | I/OD | 2.2kΩ pull-ups to <b>VDD_3V3_SYS</b> on<br>Jetson Nano | I2C #0 Clock and Data. Connect to CLK and Data pins of any 3.3V devices     |
| I2C1_SCL/SDA        | I/OD | 2.2kΩ pull-ups to <b>VDD_3V3_SYS</b> on Jetson Nano    | I2C #1 Clock and Data. Connect to CLK and Data pins of 3.3V devices.        |
| I2C2_SCL/SDA        | I/OD | 2.2kΩ pull-ups to <b>VDD_1V8</b> on Jetson<br>Nano     | I2C #2 Clock and Data. Connect to CLK and Data pins of any 1.8V devices     |
| CAM_I2C_SCL/SD<br>A | I/OD | 2.2kΩ pull-ups to <b>VDD_3V3_SYS</b> on Jetson Nano    | Camera I2C Clock and Data. Connect to CLK and Data pins of any 3.3V devices |

### Notes:

- 1. If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
- 2. For I2C interfaces that are pulled up to 1.8V, disable the E\_I0\_HV option for these pads. For I2C interfaces that are pulled up to 3.3V, enable the E\_I0\_HV option. The E\_I0\_HV option is selected in the Pinmux registers.

# 11.2 SPI

The Jetson Nano brings out two of the Tegra SPI interfaces. See Figure 11-2.

## Table 11-4. SPI Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                 | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type    |
|-------|--------------------|-----------------|-----------------------------------|--------------------------------------------|---------------|-------------|
| 89    | SPI0_MOSI          | SPI1_MOSI       | SPI 0 Initiator Out and Target In |                                            | Bidir         | CMOS - 1.8V |
| 91    | SPI0_SCK           | SPI1_SCK        | SPI 0 Clock                       | Expansion header                           |               |             |

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                 | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type |
|-------|--------------------|-----------------|-----------------------------------|--------------------------------------------|---------------|----------|
| 93    | SPI0_MIS0          | SPI1_MIS0       | SPI 0 Initiator In and Master Out |                                            |               |          |
| 95    | SPI0_CS0*          | SPI1_CS0        | SPI 0 Chip Select 0               |                                            |               |          |
| 97    | SPI0_CS1*          | SPI1_CS1        | SPI 0 Chip Select 1               |                                            |               |          |
| 104   | SPI1_MOSI          | SPI2_MOSI       | SPI 1 Initiator Out and Target In |                                            |               |          |
| 106   | SPI1_SCK           | SPI2_SCK        | SPI 1 Clock                       |                                            |               |          |
| 108   | SPI1_MIS0          | SPI2_MISO       | SPI 1 Initiator In and Target Out |                                            |               |          |
| 110   | SPI1_CS0*          | SPI2_CS0        | SPI 1 Chip Select 0               |                                            |               |          |
| 112   | SPI1_CS1*          | SPI2_CS1        | SPI 1 Chip Select 1               |                                            |               |          |

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The directions for SPI[1:0]x are true when used for those functions. Otherwise as GPIOs, the directions are bidirectional.

Figure 11-2. SPI Connections



Figure 11-3 shows the basic connections used.

Figure 11-3. Basic SPI Initiator and Target Connections



# 11.2.1 SPI Design Guidelines

Figure 11-4 shows the SPI topologies and Table gives the SPI interface signal routing requirements.

Figure 11-4. SPI Topologies



Table 11-5. SPI Interface Signal Routing Requirements

| Parameter                                                                                           | Requirement               | Units             | Notes        |
|-----------------------------------------------------------------------------------------------------|---------------------------|-------------------|--------------|
| Max frequency                                                                                       | 65                        | MHz               |              |
| Configuration / device organization                                                                 | 4                         | load              |              |
| Max loading (total of all loads)                                                                    | 15                        | pF                |              |
| Reference plane                                                                                     | GND                       |                   |              |
| Breakout region impedance                                                                           | Minimum width and spacing |                   |              |
| Max PCB breakout delay                                                                              | 75                        | ps                |              |
| Trace impedance                                                                                     | 50 - 60                   | Ω                 | ±15%         |
| Via proximity (signal to reference)                                                                 | < 3.8 (24)                | mm (ps)           | See note     |
| Trace spacing - Microstrip / Stripline                                                              | 4x / 3x                   | dielectric height |              |
| Max trace length/delay (PCB main trunk - For MOSI, MISO, SCK & CS)  Point-point  2x-load star/daisy | 195 (1228)<br>120 (756)   | mm (ps)           |              |
| Max trace length/delay (Branch-A) for MOSI,<br>MISO, SCK and CS<br>2x-load star/daisy               | 75 (472)                  | mm (ps)           |              |
| Max trace length/delay skew from MOSI, MISO and CS to SCK                                           | 16 (100)                  | mm (ps)           | At any point |

Note: Up to four signal vias can share a single GND return via.

## 11.3 **UART**

The Jetson Nano brings three UARTs out to the main connector. See Figure 11-5 for typical assignments of the three available UARTs.

Table 11-6. UART Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description                                                                                                                                              | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type    |
|-------|--------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|-------------|
| 99    | UART0_TXD          | UART3_TXD       | UART #0 Transmit. Buffered on module to keep connected devices from affecting state of the pin during power-on as it is one of the SoC strap pins.             | M.2 Key E                                  | Output        |             |
| 101   | UART0_RXD          | UART3_RXD       | UART #0 Receive                                                                                                                                                | M.2 Key E                                  | Input         |             |
| 103   | UART0_RTS*         | UART3_RTS       | UART #0 Request to Send                                                                                                                                        | M.2 Key E                                  | Output        |             |
| 105   | UART0_CTS*         | UART3_CTS       | UART #0 Clear to Send                                                                                                                                          | M.2 Key E                                  | Input         |             |
| 203   | UART1_TXD          | UART2_TXD       | UART #1 Transmit                                                                                                                                               | Expansion Header                           | Output        |             |
| 205   | UART1_RXD          | UART2_RXD       | UART #1 Receive                                                                                                                                                | Expansion Header                           | Input         | CMOS - 1.8V |
| 207   | UART1_RTS*         | UART2_RTS       | UART #1 Request to Send                                                                                                                                        | Expansion Header                           | Output        |             |
| 209   | UART1_CTS*         | UART2_CTS       | UART #1 Clear to Send                                                                                                                                          | Expansion Header                           | Input         |             |
| 236   | UART2_TXD          | UART1_TXD       | UART #2 Transmit. Buffered on<br>module to keep connected devices<br>from affecting state of the pin during<br>power-on as it is one of the SoC strap<br>pins. | Automation<br>Header                       | Output        |             |
| 238   | UART2_RXD          | UART1_RXD       | UART #2 Receive                                                                                                                                                | Automation<br>Header                       | Input         |             |

#### Notes:

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The directions for UART[2:0]x are true when used for those functions. Otherwise as GPIOs, the direction is bidirectional.



Figure 11-5. Jetson Nano UART Connections

Table 11-7. UART Signal Connections

| Ball Name      | Туре | Termination | Description                                                   |
|----------------|------|-------------|---------------------------------------------------------------|
| UART[2:0]_TXD  | 0    |             | UART Transmit: Connect to peripheral RXD pin of device        |
| UART[2:0]_RXD  | I    |             | UART Receive: Connect to peripheral TXD pin of device         |
| UART[1:0]_CTS* | I    |             | UART Clear to Send: Connect to peripheral RTS pin of device   |
| UART[1:0]_RTS* | 0    |             | UART Request to Send: Connect to peripheral CTS pin of device |

### 11.4 Fan

Jetson Nano provides PWM and Tachometer functionality for controlling a fan as part of the thermal solution. Information on the PWM and Tachometer pins/functions can be found in the following locations:

#### Jetson Nano Module Pin Mux:

• This is used to configure GPI014 (PWM) for FAN\_PWM and GPI008 (SDMMC\_CD) for FAN\_TACH. The pin used for FAN\_PWM is configured as PM3\_PWM3. The pin used for FAN\_TACH is configured as a GPI0.

#### ► Tegra X1 (SoC) Technical Reference Manual (TRM):

• Functional descriptions and related registers can be found in the TRM for the FAN\_PWM (PWM chapter).

Table 11-8. Fan Pin Description

| Pin # | Module Pin<br>Name | Tegra X1 Signal | Usage/Description | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type    |
|-------|--------------------|-----------------|-------------------|--------------------------------------------|---------------|-------------|
| 230   | GPI014             | GPIO_PE7        | Fan PWM           | Fan                                        | Output        | CMOS - 1.8V |
| 208   | GPI008             | GPIO_PX2        | Fan tachometer    | Fan                                        | Input         | CMOS - 1.8V |

#### Notes:

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The directions for GPI014 and GPI008 are true when used for those functions. Otherwise as GPI0s, the directions are bidirectional.

Figure 11-6. Jetson Nano Fan Connections



## 11.5 Debug

Jetson Nano supports a UART and JTAG for debugging purposes. The UART intended for debug is UART2 with is routed to a level shifter then to a 12-pin automation header on the developer kit carrier board. JTAG is not brought to the module pins, however, but to test points on the module.

Table 11-9. JTAG and Debug UART Description

| Pin # | Module Pin<br>Name (See<br>Note) | Tegra X1 Signal | Usage/Description | Usage on NVIDIA<br>DevKit Carrier<br>Board          | Directio<br>n | Pin Type    |
|-------|----------------------------------|-----------------|-------------------|-----------------------------------------------------|---------------|-------------|
|       | JTAG_GP0                         | JTAG_TRST_N     | JTAG test reset   | N. ITAO                                             | Input         | CMOS - 1.8V |
|       | JTAG_RTCK                        | JTAG_RTCK       | JTAG return clock | None – JTAG not<br>brought to the<br>module pins on | Input         | CMOS - 1.8V |
|       | JTAG_TCK                         | JTAG_TCK        | JTAG test clock   |                                                     | Input         | CMOS - 1.8V |
|       | JTAG_TDI                         | JTAG_TDI        | JTAG test data In | Jetson Nano                                         | Input         | CMOS - 1.8V |

| Pin # | Module Pin<br>Name (See<br>Note) | Tegra X1 Signal | Usage/Description     | Usage on NVIDIA<br>DevKit Carrier<br>Board | Directio<br>n | Pin Type    |
|-------|----------------------------------|-----------------|-----------------------|--------------------------------------------|---------------|-------------|
|       | JTAG_TD0                         | JTAG_TD0        | JTAG test data Out    |                                            | Output        | CMOS - 1.8V |
|       | JTAG_TMS                         | JTAG_TMS        | JTAG test mode select |                                            | Input         | CMOS - 1.8V |
| 238   | UART2_RXD                        | UART1_RX        | UART 2 receive        | Automation                                 | Input         | CMOS - 1.8V |
| 236   | UART2_TXD                        | UART1_TX        | UART 2 transmit       | Header                                     | Output        |             |

#### Notes:

- 1. In the Type/Dir column, Output is from Jetson Nano. Input is to Jetson Nano. Bidir is for Bidirectional signals.
- 2. The direction for UART2\_RXD is true when used for this function. Otherwise as a GPIO, the direction is bidirectional.
- 3. JTAG is brought to on-module test points only.

## 11.5.1 Debug UART

The UART2 interface is intended to be used for debug purposes.

#### Table 11-10. Debug UART Connections

| Module Pin Name | Туре | Termination                                                                                     | Description                                          |
|-----------------|------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|
| UART2_TXD       | 0    |                                                                                                 | UART #2 Transmit: Connect to RX pin of serial device |
| UART2_RXD       | I    | If level shifter implemented, $100k\Omega$ to supply on the non-Jetson Nano side of the device. | UART #2 Receive: Connect to TX pin of serial device  |

### 11.5.2 JTAG

Jetson Nano provides access to JTAG via test points on the module. Figure 11-7 shows the JTAG and debug UART connections based on the Jetson Nano Developer Kit design.

Figure 11-7. JTAG and Debug UART Connections





#### Notes:

- 1. Pull-ups or Pull-downs are present on the UART TX and RTS lines for RAM Code strapping.
- 2.If level shifter is implemented, pull-up is required on the RXD line on the non-Jetson Nano side of the level shifter. This is required to keep the input from floating and toggling when no device is connected to the debug UART.

Figure 11-8. JTAG Test Point Detail



Jetson Nano Bottom Side View

| T     44 44  | IT 4 0 0 1.      |
|--------------|------------------|
| Table 11-11. | JTAG Connections |
| Table Hill.  | JIAO GUIIIEGUUIS |

| Jetson Nano<br>Test Point<br>Signal Name | Туре | Termination                     | Description                                                                                                                                                                                                                                                        |
|------------------------------------------|------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JTAG_TMS                                 | 1    |                                 | JTAG Mode Select: Connect to TMS pin of connector                                                                                                                                                                                                                  |
| JTAG_TCK                                 | 1    | 100kΩ to <b>GND (on module)</b> | JTAG Clock: Connect to TCK pin of connector                                                                                                                                                                                                                        |
| JTAG_TD0                                 | 0    |                                 | JTAG Data Out: Connect to TDO pin of connector                                                                                                                                                                                                                     |
| JTAG_TDI                                 | I    |                                 | JTAG Data In: Connect to TDI pin of connector                                                                                                                                                                                                                      |
| JTAG_RTCLK                               | 1    |                                 | JTAG Return Clock: Connect to RTCK pin of connector                                                                                                                                                                                                                |
| JTAG_TRST_N                              | I    | 100kΩ to <b>GND (on module)</b> | JTAG Test Reset: This signal is used to select normal operation or scan test mode operation.                                                                                                                                                                       |
|                                          |      |                                 | Normal operation: Leave pulldown resistor on module installed.                                                                                                                                                                                                     |
|                                          |      |                                 | <ul> <li>Boundary Scan test mode: Connect JTAG_TRST_N to VDD_1V8     install 100kΩ resistor to VDD_1V8 and remove 100kΩ resistor to     GND. Or install strong enough resistor connected to VDD_1V8 to     overcome weak 100kΩ pulldown (1ΩΩ to 4.7kΩ).</li> </ul> |

## 11.6 USB Recovery Mode

- ▶ USB Recovery mode provides an alternate boot device (USB). In this mode, the system is connected to a host system and boots over USB. This is used when a new image needs to be flashed. To enter USB recovery mode, the FORCE\_RECOVERY\* pin is held low when SYS\_RESET\* goes high which can be when the system is powered on or SYS\_RESET\* is asserted after the system is powered on. FORCE\_RECOVERY\* is the SoC RCM0 strap.
- ► Only **USB0\_D\_N/P** supports USB Recovery Mode.

No other signals are required or supported for entering Force Recovery mode. Neither VBUS or ID detection is needed. As long as the force recovery strap is held low coming out of reset, Jetson Nano will configure USB0 as a device and enter recovery mode.

See the USB section (Section 6.1) for an example figure that shows USB0 connected to a USB Micro B connector.

## Chapter 12. PADS

Jetson Nano signals that come from Tegra X1 may glitch when the associated power rail is enabled. This may affect pins that are used as GPIO outputs. Designers should take this into account. GPIO outputs that must maintain a low state even while the power rail is being ramped up may require special handling.

## 12.1 Internal Pull-ups for Dual-Voltage Block Pins Powered at 1.8V

Several of the MPIO pads are on blocks designed to be powered at either 1.8V or 3.3V. These blocks are powered at 1.8V on Jetson Nano, and the internal pull-up at initial Power-ON is not effective. The signal may only be pulled up a fraction of the 1.8V rail. Once the system boots, software can configure the pins for 1.8V operation and the internal pull-ups will work correctly. If these signals need the pull-ups during Power-ON, external pull-up resistors should be added. The following list is the affected pins list. These are the Jetson Nano pins on the dual-voltage blocks powered at 1.8V with Power-ON reset default of Internal pull-up enabled.

- ► SDMMC\_DATO
- ► SDMMC\_DAT1
- ► SDMMC DAT2
- ► SDMMC\_DAT3
- ► SDMMC CMD
- ► SPI1 CS0\*
- ► SPI1 CS1\*

### 12.2 Schmitt Trigger Usage

The MPIO pins have an option to enable or disable Schmitt-trigger mode on a per-pin basis. This mode is recommended for pins used for edge-sensitive functions such as input clocks, or other functions where each edge detected will affect the operation of a device. Schmitt-trigger mode provides better noise immunity and can help avoid extra edges from being "seen" by the Tegra inputs. Input clocks include the I2S and SPI clocks (I2Sx\_SCLK and SPIx\_SCK) when

Tegra is in target mode. The FAN\_TACH pin [GPI08] is another input that could be affected by noise on the signal edges. The SDMMC\_CLK pin, while used to output the clock, also sample the clock at the input to help with read timing. Therefore, the SDMMC\_CLK pin may benefit from enabling Schmitt-trigger mode. Care should be taken if the Schmitt-trigger mode setting is changed from the default initialization mode as this can influence interface timing.

## 12.3 Pins Pulled and Driven High During Power-ON

The Jetson Nano is powered up before the carrier board (See Section 5.1). Table 12-1 lists the pins on Jetson Nano that default to being pulled or driven high. Care must be taken on the carrier board design to ensure that any of these pins that connect to devices on the carrier board (or devices connected to the carrier board) do not cause damage or excessive leakage to those devices. Some of the ways to avoid issues with sensitive devices are:

- External pull-downs on the carrier board that are strong enough to keep the signals low are one solution, given that this does not affect the function of the pin.
- ▶ Buffers or level shifters can be used to separate the signals from devices that may be affected. The buffer and shifter should be disabled until the device power is enabled.

Table 12-1. Pins Pulled and Driven High by Tegra Prior to SYS\_RESET\*
Inactive

| Jetson Nano Pin | Power-ON reset Default | Pull-up<br>Strength (kΩ) | Jetson Nano Pin | Power-ON reset Default | Pull-up<br>Strength (kΩ) |
|-----------------|------------------------|--------------------------|-----------------|------------------------|--------------------------|
| SLEEP/WAKE*     | Internal pull-up       | ~100                     | SPI0_CS0*       | Internal pull-up       | ~15                      |
| FORCE_RECOVERY* | Internal pull-up       | ~100                     | SPI0_CS1*       | Internal pull-up       | ~15                      |
| UART1_RXD       | Internal pull-up       | ~100                     | SPI1_CS0*       | Internal pull-up       | ~18                      |
|                 |                        |                          | SPI1_CS1*       | Internal pull-up       | ~18                      |

Table 12-2. Pins Pulled High on Module with External Resistors Prior to SYS\_RESET\_IN\* Inactive

| Jetson Nano Pin | Pull-up Supply<br>Voltage (V) | External<br>Pull-up (kΩ) | Jetson Nano Pin | Pull-up Supply<br>Voltage (V) | External<br>Pull-up (kΩ) |
|-----------------|-------------------------------|--------------------------|-----------------|-------------------------------|--------------------------|
| I2C0_SCL/SDA    | 3.3                           | 2.2                      | SPI1_CS0*       | 1.8                           | 100                      |
| I2C1_SCL/SDA    | 3.3                           | 2.2                      | SPI1_CS1*       | 1.8                           | 100                      |
| I2C2_SCL/SDA    | 1.8                           | 2.2                      | PCIE0_CLKREQ*   | 3.3                           | 47                       |
| CAM_I2C_SCL/SDA | 3.3                           | 2.2                      | PCIE0_RST*      | 3.3                           | 4.7                      |
|                 |                               |                          | PCIE_WAKE*      | 3.3                           | 100                      |

## Chapter 13. Unused Interface Terminations

## 13.1 Unused Multi-purpose Standard CMPS Pad Interfaces

The following Jetson Nano pins (and groups of pins) are Tegra MPIO pins that support either special function IOs (SFIO) and/or GPIO capabilities. Any unused pins or portions of pin groups listed in Table 13-1 that are not used can be left unconnected.

Table 13-1. Unused MPIO Pins and Pin Groups

| Jetson Nano Pins and Pin Groups | Jetson Nano Pins and Pin Groups |
|---------------------------------|---------------------------------|
| FORCE_RECOVERY*                 | SDMMC                           |
| GPI000                          | I2S                             |
| PCIE0_CLK/RST/CLKREQ/WAKE       | UART                            |
| GPI007, GPI013, GPI014          | I2C                             |
| DP0_HPD, DP1_HPD, HDMI_CEC      | SPI                             |
| CAM Control, Clock              |                                 |

# Chapter 14. USB 3.2 and Wireless Coexistence

USB 3.2 supports a 5 Gbps (or multiple) signaling rate. The USB 3.2 specification requires USB 3.2 data to be scrambled and spread spectrum is required. The noise from the USB 3.2 data spectrum has been found from around DC to 4 GHz and beyond. This noise can desensitize nearby receivers operating in the cellular and WiFi 2.4 GHz band. This includes, for example, WiFi 802.11b/g/n or Bluetooth® including Bluetooth mouse devices, Bluetooth keyboards, and so on. This noise causes:

- WiFi sensitivity degradation
- Wireless link throughput drop
- Wireless operation range degradation

This chapter is focusing on USB 3.2. However, other high-speed interfaces such as HDMI, DP, and so on, can also cause issues with wireless subsystems. The issues and recommended mitigation techniques would be similar.

## 14.1 Mitigation Techniques

Each design is different due to unique construction and relative location of USB 3.2 circuits and connectors and receiving antenna. Depending on the level of noise generated, emitted, radiated, and coupled to receiver antenna, some or all the recommendations might need to be implemented to limit unwanted noise from radiating from the circuit.

The following mitigation techniques described will help minimize the USB 3.2 de-sense.

#### **INCREASE THE USB 3.2 TO ANTENNA SEPARATION**

During the placement phase of the design, care must be taken to identify the noise source and try to physically increase the separation between the noise source and antenna. One of the major noise sources is the USB 3.2 connector itself. If possible, the antenna or USB 3.2 location can be changed to increase physical isolation. In general, doubling the distance between antenna and noise source, reduces the coupling by around 6 dB.

#### USB 3.2 CONNECTOR PART SELECTION: CHOOSE A BETTER USB 3.2 PART

A USB 3.2 connector has many metal fingers that are perfect in length for radiating in and around the 2.4 GHz band and beyond. A USB 3.2 connector should be selected to minimize radiation from the USB 3.2 part itself. Some recommendations are:

- Connector fully enclosed by metal
- No slots in the connector walls, or if there are slots, the size is very small. Also, the number of slots should be minimal.
- Connector has as many grounding legs as possible. More legs provide better grounding from the USB 3.2 exterior to the PCB and the structure is less likely to radiate. Choose four legged connectors over two legged connectors and so on.

The quality of the external USB 3.2 device used in the USB 3.2 port will have impact on the overall experience. If the external USB 3.2 device used in the USB 3.2 port is of poor quality, the part itself will radiate and issues will continue. A plastic base USB 3.2 device works inferior compared to fully metalized USB 3.2 devices.

#### **GROUND THE USB 3.2 PART SOLIDLY**

The USB 3.2 connector is grounded through "the grounding legs" previously mentioned. Care must be taken to ensure the leg area is a very good RF ground. One way to do this is to increase the number of ground vias placed in the "grounding leg" area.

#### IMPROVE THE ROUTING AND GROUNDING AROUND THE USB 3.2 PART AREA

The routing and grounding around the USB 3.2 connector part area must be handled carefully. Since this area is very "hot," any traces running on the surface layer below the physical connector part can pick up noise and transfer it to other areas or radiate the noise. These traces need to be moved to an inner layer, and this area needs to be made a very good ground.

#### **BURY THE USB 3.2 LINES IN INNER LAYERS**

The USB 3.2 lines should be routed as impedance controlled differential pairs, with ground on either side and on the layers above and below.

#### SHIELD THE USB 3.2 CONNECTOR PART

The radiation from the USB 3.2 connector part is very strong. Need to make a "shield" and put on top of the USB 3.2 connectors. The shield must touch the USB 3.2 body in multiple points. The shield track must have number of grounding vias so that any emitted noise from the USB 3.2 connector is swiftly grounded.

# Chapter 15. Jetson Nano Pin Descriptions and Design Checklist

The Jetson Nano pin description and design checklist are attached to this design guide.

To access the attached files, click the **Attachment** icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (**Open, Save**) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

## Chapter 16. General Routing Guidelines

## 16.1 Signal Name Conventions

The following conventions are used in describing the signals for Tegra:

- ➤ Signal names use a mnemonic to represent the function of the signal. For example, Secure Digital Interface #3 Command signal is represented as SDMMC\_CMD, and in a different font to distinguish it from other text. All active-low single-ended signals are identified by an asterisk (\*) after the signal name. For example, SYS\_RESET\* indicates an active-low signal. Active-high signals do not have the asterisk after the signal name. For example, SDMMC\_CMD indicates an active-high signal. Differential signals are identified as a pair with the same names that end with \_P and \_N (for positive and negative, respectively). For example, CSI\_0\_D0\_P and CSI\_0\_D0\_N indicate a differential signal pair.
- ▶ The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The following table lists the I/O codes used in the signal description tables.

Table 16-1. Signal Type Codes

| Code     | Definition                              |  |  |  |
|----------|-----------------------------------------|--|--|--|
| Α        | Analog                                  |  |  |  |
| DIFF I/O | Bidirectional Differential Input/Output |  |  |  |
| DIFF IN  | Differential Input                      |  |  |  |
| DIFF OUT | Differential Output                     |  |  |  |
| 1/0      | Bidirectional Input/Output              |  |  |  |
| I        | Input                                   |  |  |  |
| 0        | Output                                  |  |  |  |
| OD       | Open Drain Output                       |  |  |  |
| I/OD     | Bidirectional Input / Open Drain Output |  |  |  |
| Р        | Power                                   |  |  |  |

## 16.2 Routing Guideline Format

The routing guidelines have the following format to specify how a signal should be routed.

- ▶ Breakout traces are traces routed from BGA ball either to a point beyond the ball array, or to another layer where full normal spacing guidelines can be met. Breakout trace delay limited to 12.5 mm unless otherwise specified.
- After breakout, signal should be routed according to specified impedance for differential, single-ended, or both (for example: HDMI). Trace spacing to other signals also specified.
- Follow max and min trace delays where specified. Trace delays are typically shown in "mm" (millimeter) in terms of signal delay in "ps" (pico-seconds) or both.
  - For differential signals, trace spacing to other signals must be larger of specified × dielectric height or inter-pair spacing.
  - Spacing to other signals/pairs cannot be smaller than spacing between complementary signals (intra-pair).
  - Total trace delay depends on signal velocity which is different between outer (microstrip) and inner (stripline) layers of a PCB.

## 16.3 Signal Routing Conventions

Throughout this design guide, the following signal routing conventions are used:

- ► SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing
  - SE impedance of trace (along with diff impedance for diff pairs) is achieved by spacing requirement. Spacing is multiple of dielectric height. Dielectric height is typically different for microstrip and stripline.



**Note**: Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to traces making up a differential pair. For this case, spacing/trace widths are chosen to meet differential impedance requirement.

## 16.4 General Routing Guidelines

Pay close attention when routing high speed interfaces, such as HDMI/DP, USB 3.2, PCIe or DSI/CSI. Each of these interfaces has strict routing rules for the trace impedance, width, spacing, total delay, and delay/flight time matching. The following guidelines provide an overview of the routing guidelines and notations used in this design guide.

#### Controlled Impedance

Each interface has different trace impedance requirements and spacing to other traces. It is up to designer to calculate trace width and spacing required to achieve specified SE and Diff impedances. Unless otherwise noted, trace impedance values are  $\pm 15\%$ .

#### Max Trace Lengths/Delays

Trace lengths/delays should include the carrier board PCB routing (where the Jetson Nano mating connector resides) and any additional routing on a Flex/ secondary PCB segment connected to main PCB. The max length/delay should be from Jetson Nano to the actual connector (i.e. USB, HDMI, etc.) or device (i.e. onboard USB device, Display driver IC, camera imager IC, etc.)

#### Trace Delay/Flight Time Matching

Signal flight time is the time it takes for a signal to propagate from one end (driver) to other end (receiver). One way to get same flight time for signal within signal group is to match trace lengths within specified delay in the signal group.

- Total trace delay = Carrier PCB trace delay only. Do not exceed maximum trace delay specified.
- For six layers or more, it is recommended to match trace delays based on flight time of signals. For example, outer-layer signal velocity could be 5.9 ps/mm and inner-layer 6.9 ps/mm. If one signal is routed 250 mm on the outer layer and second signal is routed 250 mm in the inner layer, the difference in flight time between two signals will be 250 ps! That is a big difference if required matching is 15 ps (trace delay matching). To fix this, inner trace needs to be 36 mm shorter or outer trace needs to be 42 mm longer.
- In this design guide, terms such as intra-pair and inter-pair are used when describing differential pair delays. Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching). Inter-pair matching refers to matching differential pairs average delays to other differential pair average delays.

## 16.5 General PCB Routing Guidelines

For GSSG stack-up to minimize crosstalk, signal should be routed in such a way that they are not on top of each other in two routing layers (see Figure 6-1).

Figure 16-1. GSSG Stack-Up



Do not route other signals or power traces/areas directly under or over critical high-speed interface signals.



**Note**: The requirements detailed in the interface signal routing requirements tables must be met for all interfaces implemented or proper operation cannot be guaranteed.

# 16.6 Common High-Speed Interface Requirements

Table 16-2 provides the common high-speed interface requirements.

Table 16-2. Common High-Speed Interface Requirements

| Parameter                                                                             |                                                   | Requirement                                                                                                              | Units          | Notes                                                                            |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------|--|
| Common-mode Choke (Not recommended – only used if absolutely required for EMI issues) |                                                   |                                                                                                                          |                |                                                                                  |  |
| Preferred device                                                                      |                                                   |                                                                                                                          |                | Type: TDK ACM2012D-900-2P. Only if needed. Place near connector. See Figure 16-2 |  |
| Location - Max distance from to adjacent discontinuities – ex, connector, AC cap)     |                                                   | 8 (53)                                                                                                                   | mm (ps)        | TDK ACM2012D-900-2P<br>See Figure 16-2                                           |  |
| Common-mode impedance @ 100MF                                                         | łz Min/Max                                        | 65/90                                                                                                                    | Ω              | ]                                                                                |  |
| Max Rdc                                                                               |                                                   | 0.3                                                                                                                      | Ω              | @Tr-200ps (10%-90%)                                                              |  |
| Differential TDR impedance                                                            |                                                   | 90                                                                                                                       | Ω              |                                                                                  |  |
| Min Sdd21 @ 2.5GHz                                                                    |                                                   | 2.22                                                                                                                     | dB             |                                                                                  |  |
| Max Scc21 @ 2.5GHz                                                                    |                                                   | 19.2                                                                                                                     | dB             |                                                                                  |  |
| Serpentine                                                                            |                                                   |                                                                                                                          |                |                                                                                  |  |
| Min bend angle                                                                        |                                                   | 135                                                                                                                      | deg (a)        | S1 must be taken care in order to                                                |  |
| Dimension                                                                             | Min A Spacing<br>Min B, C Length<br>Min Jog Width | 4x<br>1.5x<br>3x                                                                                                         | Trace<br>width | consider Xtalk to adjacent pair. See<br>Figure 16-3                              |  |
| General                                                                               |                                                   |                                                                                                                          |                |                                                                                  |  |
| Routing over Voids                                                                    |                                                   | Routing over voids not allowed except void around device ball/pin the signal is routed to.                               |                |                                                                                  |  |
| Noise Coupling                                                                        |                                                   | Keep critical high-speed traces away from other signal traces or unrelated power traces/areas or power supply components |                |                                                                                  |  |

The following figures are the common high-speed interface signal routing requirements figures.

Figure 16-2. Common Mode Choke



Figure 16-3. Serpentine



## 16.7 Test Points for High-Speed Interfaces

Ideally, test points are not preferred on very high-speed interface traces as they can degrade signal integrity. However, to be able to do compliance testing, or interface tuning where applicable, it may be necessary to include test points at least for early revisions of a design. The test points are generally required near the receiver. If a connector or some other device (capacitor, resistor, and so on) exists near the receiver, the pins can be used as test points without creating additional signal degradation. Where connector or discrete device pins are not accessible near the receiver end of an interface, it may be necessary to include test points. When test points are needed for very high-speed interface signals, follow these recommendations:

- ► Test points should be very small (less than 0.5 mm).
- ▶ Test points should be located on the existing trace (no stub).

If the test points are placed on differential signals, they should be symmetric for each P and N signal.

#### Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA'S aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

#### Trademarks

NVIDIA, the NVIDIA logo, Jetson Nano, and Tegra are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

#### VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

#### **HDMI**

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

#### Bluetooth

The Bluetooth word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc., and any use of such marks by NVIDIA is under license.

#### ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

#### Copyright

© 2019, 2020, 2022 NVIDIA Corporation. All rights reserved.

