МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНОЙ РОБОТОТЕХНИКИ

Разработка интерактивного учебного пособия с ответами на естественном языке на основе Retrieval Augmented Generation

Сыренный Илья Игоревич Бакалавриат Курс 4, группа 21930

Научный руководитель: Оглезнев Никита Сергеевич, сотрудник КафИСТИИР, ассистент

Введение

Цель работы:

Разработка системы, использующей методы Retrieval-Augmented Generation (RAG) для облегчения процесса изучения научных статей, обеспечивая поиск и объяснение терминов, а также предоставление ссылок на оригинальные источники.

Задачи:

Поиск и анализ литературы в рамках изучения предметной области.

Проектирование и разработка системы.

Индексация PDF-файлов в реальном времени.

Retrieval Augmented Generation

Проблема:

Большие текстовые массивы сложно использовать напрямую из-за ограниченного контекста моделей. Это затрудняет извлечение точной и актуальной информации.

Решение:

RAG (Retrieval Augmented Generation) сочетает поиск данных и генерацию текста. Поиск (Retrieval) находит релевантные фрагменты текста из базы данных. Генерация (Generation) создает ответ, основываясь на найденных данных.

Архитектура Retrieval Augmented Generation

Chunking

Этап индексации корпуса текста

Retrieval

Поисковой механизм для дополнения запроса в модель контекстом

Generate

Этап генерации ответа

Устройство RAG-пайплайна

Разработка системы

Проектирование:

Для проектирования системы были использованы UML-диаграммы, которые позволили структурировать требования, визуализировать архитектуру и глубже понять функциональность системы.

Компоненты:

Chunking: использован эвристический метод разделения документов на фрагменты.

Rewriting: запрос пользователя переписывается с использованием метода HyDE.

Retrieval: реализация на основе алгоритма BM25.

Reranker: реализован с применением подхода Cross-Encoder и модели ru-bert2.

Generator: на финальном этапе ответ генерируется с помощью API YandexGPT.

Пользовательский интерфейс веб-приложения

Работа с PDF-файлами

Процесс индексации

Система загружает PDF-файлы и разбивает их на логические фрагменты в реальном времени. Для восстановления макета документа используется CRF-модель, обученная на разметке научных статей.

Скорость работы

Книга "Deep Learning" (Goodfellow et al., ~800 страниц) индексируется за ~7 минут

Научная статья (15 стр.) индексируется за ~2 секунды

Система оптимизирована для работы в интерактивном режиме: индексация начинается сразу после загрузки документа

Оценка системы

FRAMES

Датасет для задач вопросно-ответного поиска (QA) на научных статьях в области обработки естественного языка (NLP). Он включает 5,049 вопросов, относящихся к 1,585 научным статьям по NLP.

RAGAS

Использованы метрики

Метрики

Выводы

В итоге получилась система, которая эффективно работает с большими PDFдокументами и позволяет в реальном времени находить и формировать релевантные ответы на вопросы.