

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK

Anyagismeret 2009/10

Törés

Dr. Krállics György Dr. Reé András

1

Bevezetés

Törés: az anyagban folytonossági hiány jön létre, amitől darabokra eshet szét.

Törés folyamata:

- Repedés keletkezése;
- Repedés terjedése és a törés létrejötte.

Képlékeny (szívós) **törés:** a törést megelőzően jelentős mértékű képlékeny alakváltozás lép fel.

Ridegtörés: hirtelen bekövetkező jelenség, minimális képlékeny alakváltozás előzi meg. A kis hőmérséklet, a bonyolult, húzó feszültségi állapot és a nagy terhelési sebesség elősegíti a ridegtörés fellépését.

Repedés mindig van az anyagban, legfeljebb nem tudjuk kimutatni.

Repedés keletkezése a gyártás során

Öntészet: pórusok, lunkerek, zárványok, melegrepedések keletkezhetnek a technológiai paraméterektől függően.

Melegalakítás: az alakváltozási képesség csökken, pl. szemcsehatármenti kiválásoknál.

Ausztenit szemcsehatár károsodása anizotrop szerkezet következtében.

Hidegalakítás: az alakváltozó képesség kimerülése miatt. **Hidrogén** hatására bekövetkező repedés, pelyhesedés.

Hőkezelés: edzési repedés.

Hegesztés: meleg- és hidegrepedés, relaxációs repedés. **Forgácsolás:** életlen szerszám vagy túl nagy terhelés

esetén.

3

Repedés keletkezése üzemelésnél

- Időleges túlterhelés, illetve környezeti tényezők hatása
- Ismétlődő igénybevétel fáradás
- Feszültségkorrózió
- Hidrogén okozta elridegedés
- Kúszás emelt hőmérséklet és mechanikai terhelés együttes hatása
- Hősokk okozta repedés.

Repedések kimutatása:

roncsolásmentes anyagvizsgálati módszerekkel.

A törés atomi modellje

5

Feszültség-elmozdulás görbe:

A törés során az atomsíkok eltávolodnak egymástól, két új felület keletkezik.

Szívós törés mechanikai sémája szakításnál

ç

Ridegtörés (szakítás)

- A töretfelület merőleges a húzás tengelyére.
- Kontrakció nem lép fel az alakítás során.
- Nincs makroszkopikus képlékeny alakváltozás.
- A töretfelület átmetszi a szemcséket.

Repedés keletkezés diszlokációs modellje

Repedés keletkezésének feltétele: képlékeny alakváltozás. Képlékeny alakváltozáskor megnő a diszlokációsűrűség, ami üregeket, repedéseket eredményez.

t.k.k - Cottrell-féle "hasadási" diszlokáció

13

Repedésterjedés fajtái

Stabil repedésterjedés: terjedése energiát fogyaszt, a repedés csúcsa előtt üregek keletkeznek, majd egyesülnek.

Instabil repedésterjedés: terjedése energiafelszabadulás közben megy végbe nagy sebességgel, így makroszkopikusan ridegtörést okoz.

Fokozatos repedésterjedés: a stabil repedésterjedés hosszabb időtartamra kiterjedő változata, jellemző a *fáradásos* törés, a *kúszás* és a *feszültségkorrózió* okozta törés esetében.

Terhelési módok

legveszélyesebb

Cél: méretezés törésre

1

Törésmechanikai elméletek

- a) Lineáris rugalmas alakváltozás
- b) Kis területre korlátozódó képlékeny alakváltozás
- c) Rugalmas-képlékeny alakváltozás
- d) Képlékeny alakváltozás az egész testben

Eredmény – új fogalmak:

Feszültségintenzitási tényező – K_I Törési szívósság – K_c , K_{Ic}

Instabil repedésterjedéskor $K_I = K_c$. Ha a repedésterjedés síkbeli alakváltozási állapotban lép fel, akkor $K_I = K_{Ic}$, az utóbbi anyagjellemző (törési szivósság).

Törésmechanikai méretezés

A szerkezetben mindig van repedés! Azt kell megakadályozni, hogy a repedés instabilan terjedjen.

$$K_I \leq K_{Ic}$$

Feszültségintenzitási tényező

(szerkezettől és terheléstől függ)

Törési szívósság

(anyagjellemző, mérésből)

$$K_{I} = Y\sigma\sqrt{\pi a} \le K_{Ic}$$

$$\sigma_{\max} \le \frac{K_{Ic}}{Y\sqrt{\pi a}} \qquad a_{\max} \le \frac{1}{\pi} \left(\frac{K_{Ic}}{\sigma Y}\right)^{2}$$

17

K_I mérése, kompakt próbatest (CT)

a = 0,5 W, vastagság B = 0,5 W

A K_c változása a falvastagság függvényében

Ha csak K_I mérhető, az csak az adott falvastagság esetén érvényes !!!

19

Lineáris rugalmas törésmechanika – Griffith elmélet

Ha **rideg anyagban** a terhelés elér egy kritikus értéket, a jelenlévő repedés terjedni kezd, és a szerkezet eltörik. A folyamat hajtóereje a rendszer teljes energiájának csökkenése, amely a próbatestben tárolt rugalmas energiából és a terjedő repedés felületi energiájából áll.

A repedésterjedés feltétele síkbeli alakváltozási állapotban:

$$\boldsymbol{\sigma}_{krit} = \sqrt{\frac{2E\gamma}{\pi a \left(1 - \boldsymbol{v}^2\right)}} \qquad \qquad \mathcal{E}_z = 0 \,; \qquad \boldsymbol{\sigma}_z = \boldsymbol{v} \left(\boldsymbol{\sigma}_x + \boldsymbol{\sigma}_y\right)$$
 ("z" irány érintőleges a repedés éléhez)

Kis képlékeny tartomány esetén (síkbeli alakváltozásra)

$$r_p = \frac{1}{2\pi} \left(\frac{K_I}{R_e}\right)^2 \left(1 - 2\nu\right)^2$$

A módosított repedéshosszal számolva a rugalmas anyagra vonatkozó törési elmélet alkalmazható:

$$a_{egven\acute{e}rt\acute{e}k \H{u}} = a + r_p$$

Állapottényezők

Az anyag képlékeny vagy rideg viselkedése az anyagnak nem tulajdonsága, hanem állapota, és annak szerkezetén kívül az állapottényezők befolyásolják.

Feszültségállapot

A többtengelyű húzófeszültségek a rideg állapot felé, a többtengelyű nyomófeszültségek a képlékeny állapot felé viszik el az anyag viselkedését.

Hőmérséklet

Növekvő hőmérséklet hatására az anyag képlékenyebben, csökkenő hőmérséklet esetén ridegebben viselkedik.

Alakváltozás sebessége

Növekvő alakváltozási sebesség hatására az anyag ridegebben, csökkenő alakváltozási sebesség esetén képlékenyebben viselkedik.

21

Töretfelületek vizsgálata

Ridegtörés: a törési energia új felületek képződésére fordítódik, a törés pedig:

- I. Transzkrisztallin, vagy
- II. Interkrisztallin lehet.

Szívós törés: a törési energia képlékeny alakváltozásra és új felületek képződésére fordítódik. Üregek keletkezése, növekedése és összenövése a jellemző.

23

Transzkrisztallin (hasadásos) törés

A repedés a szemcséken keresztül, meghatározott atomsíkokon terjed.

Interkrisztallin törés

A törés a szemcsék között, a szemcsehatárokon történik.

25

Szívós törés

A töretfelület gödrös, tompa fényű. A törést a csúsztatófeszültségek hatására bekövetkező elnyíródás okozza.

Üregek összenövése

Üregek képződése második fázis körül

Fogalmak

- Törés fogalma
- Rideg- és szívóstörés
- Repedések gyártásnál
- Repedések üzemelésnél
- Törés atomi modellje
- Állapottényezők
- Ridegtörési felületek mikroszkópi jellemzői
- Szívóstörési felületek mikroszkópi jellemzői
- Repedés keletkezésének diszlokációs modellje

- Stabil repedésterjedés
- Instabil repedésterjedés
- Fokozatos repedésterjedés
- Griffith-féle elmélet
- Terhelési esetek
- Feszültségintenzitási elmélet
- ❖ A K_c falvastagság függése
- Törési szivósság
- Képlékeny zóna
- Törésmechanikai méretezés alapegyenlete