Grundlagen der Theoretischen Informatik

Wintersemester 2015/2016

Prof. Dr. Heribert Vollmer

Institut für Theoretische Informatik Leibniz Universität Hannover

15. November 2015

Sprachen und Grammatiken

Inhalt

Sprachen und Grammatiken Die Chomsky-Hierarchie Reguläre (Typ-3-) Sprachen

Endliche Automaten Nichtdeterministische endliche

Automaten

Endliche Automaten und Typ-3-Grammatiken

Das Pumping Lemma für reguläre Sprachen

Kontextfreie (Typ-2-) Sprachen

Kellerautomaten

Das Pumping-Lemma für kontextfreie Sprachen

Typ-1- und Typ-0-Sprachen

Der intuitive Berechenbarkeitsbegriff Berechenbarkeit durch Maschinen

Turing-Berechenbarkeit

Mehrband-Maschinen

Zusammensetzung von

Turingmaschinen Berechenbarkeit in

Programmiersprachen

Die Programmiersprache LOOP
Die Programmiersprache WHILE

Die Church'sche These

Entscheidbarkeit und Aufzählbarkeit

Unentscheidbare Probleme

Das Halteproblem Der Satz von Rice

Alphabete, Zeichen und Symbole

Ein Alphabet ist eine endliche, nichtleere Menge. Die Elemente eines Alphabets heißen auch Zeichen oder Symbole.

Wie üblich: Ist M eine Menge, so bezeichnet |M| die Anzahl der Elemente von M.

Wörter und Sprachen

Sei Σ ein Alphabet.

Ein Wort über Σ ist eine Folge von Symbolen aus Σ .

Ein Wort entsteht also durch Hintereinanderschreiben

(Konkatenation) von Symbolen aus Σ .

Mit ε wird das leere Wort bezeichnet.

Die Menge aller Wörter über dem Alphabet Σ bezeichnen wir mit Σ^* . Eine Sprache über Σ ist eine Menge von Wörtern über Σ , also eine Teilmenge von Σ^* .

Konkatenation

- Für ein Wort w und $n \in \mathbb{N}$ ist w^n die Konkatenation $w^n = \underbrace{w \circ w \circ \cdots \circ w}_{n-mal}$
- Wir definieren: $w^0 = \varepsilon$.

Es ist $|w^n| = n|w|$. Schreibweise: $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$

Konkatenation

- Operation auf Wörtern: Konkatenation bzw. Hintereinanderschreiben
- ► Schreibweise: u ∘ v oder kurz uv für Konkatenation der Wörter u und v
- ▶ Die Länge eines Wortes w ist die Anzahl der Symbole in w. Schreibweise: |w|
- $|\varepsilon|=0.$

Definition

Eine Grammatik ist ein 4-Tupel $G = (V, \Sigma, P, S)$, wobei:

- ► V ist eine endliche Menge, die so genannte Menge der Variablen
- \blacktriangleright Σ ist ein Alphabet, das so genannte Terminalalphabet, mit $V\cap \Sigma=\emptyset$
- ▶ P ist die endliche Menge der Produktionen, $P \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$
- $ightharpoonup S \in V$ ist die so genannte Startvariable

Definition

Sei $G = (V, \Sigma, P, S)$ eine Grammatik und seien $u, v \in (V \cup \Sigma)^*$. Wir definieren eine Relation \Rightarrow_G wie folgt:

- $u \Rightarrow_G v$, falls u, v zerlegt werden können in Teilwörter u = xyz und v = xy'z mit $x, z \in (V \cup \Sigma)^*$ und $y \to y'$ ist Regel in P.
 - "u geht unter (Anwendung einer Regel in) G unmittelbar über in v"
- ▶ $\mathfrak{u} \Rightarrow_{\mathsf{G}}^* \nu$, falls $\mathfrak{u} = \nu$ oder es Wörter $w_1, \ldots, w_k \in (V \cup \Sigma)^*$ gibt mit $\mathfrak{u} = w_1, w_i \Rightarrow_{\mathsf{G}} w_{i+1}$ für $i = 1, 2, \ldots, k-1$ und $\nu = w_k$.

Wir lassen den Index G weg, falls dieser eindeutig ist.

Die von G erzeugte Sprache ist $L(G) = \{w \in \Sigma^* \mid S \Rightarrow_G^* w\}$. Eine Ableitung von $w \in L(G)$ in k Schritten ist eine Folge (w_0, w_1, \dots, w_k) mit $w_0 = S$, $w_k = w$ und $w_i \Rightarrow_G w_{i+1}$ für $i = 0, 1, \dots, k-1$.

Noam Chomsky

* 7. Dez. 1928, Philadelphia 1957: Syntactic Structures

Die Chomsky-Hierarchie

Definition

- ▶ Jede Grammatik ist vom Typ 0 (d. h. keine Einschränkungen).
- ► Eine Grammatik ist vom Typ 1 (oder: kontextsensitiv), falls für alle ihre Regeln $u \rightarrow v$ gilt: |u| < |v|.
- ► Eine Typ-1-Grammatik ist vom Typ 2 (oder: kontextfrei), falls für alle ihre Regeln $u \to v$ gilt, dass u eine einzelne Variable ist $(d.h.\ u \in V)$.
- Eine Typ-2-Grammatik ist vom Typ 3 (oder: regulär), falls für alle ihre Regeln $u \to v$ gilt, dass v ein einzelnes Terminalzeichen ist $(v \in \Sigma)$ oder v aus einem Terminalzeichen gefolgt von einer Variablen besteht.

Spezialfall des leeren Wortes

Bei einer Grammatik $G=(V,\Sigma,P,S)$ vom Typ 1, 2 oder 3 ist unabhängig von den oben genannten Restriktionen die Regel $S\to \varepsilon$ zugelassen.

Ist aber $S \to \varepsilon \in P$, so darf es keine Regel in P geben, in der S auf der rechten Seite vorkommt.

Eine Sprache $L \subseteq \Sigma^*$ heißt vom Typ 0 (Typ 1, Typ 2, Typ 3), falls es eine Typ-0-Grammatik (Typ-1-Grammatik, Typ-2-Grammatik, Typ-3-Grammatik) G gibt mit L = L(G).

14

Satz

Das Wortproblem für Typ-1-Sprachen ist "entscheidbar", d. h. es gibt einen Algorithmus, der bei Eingabe einer kontextsensitiven Grammatik $G=(V,\Sigma,P,S)$ und eines Wortes $w\in \Sigma^*$ nach endlicher Zeit mit der Ausgabe " $w\in L(G)$ " oder " $w\notin L(G)$ " anhält.

Reguläre Sprachen

Definition

Ein (deterministischer) endlicher Automat (kurz: DEA) ist ein 5-Tupel

$$M = (Z, \Sigma, \delta, z_0, E),$$

wobei für die einzelnen Komponenten gilt:

- ▶ Z ist eine endliche Menge, die so genannte Zustandsmenge
- ▶ Σ ist ein Alphabet, das so genannte Eingabealphabet, $Z \cap \Sigma = \emptyset$
- ▶ δ : $Z \times \Sigma \rightarrow Z$ ist die so genannte Überführungsfunktion
- ▶ $z_0 \in Z$ ist der so genannte Startzustand
- ▶ E⊂ Z ist die Menge der so genannten Endzustände

Definition

Ein nichtdeterministischer endlicher Automat (kurz: NEA) ist ein 5-Tupel

$$M=(Z,\Sigma,\delta,z_0,E),$$

wobei für die einzelnen Komponenten gilt:

- ightharpoonup Z, Σ , z_0 und E sind wie bei deterministischen endlichen Automaten definiert
- ▶ Für die Überführungsfunktion gilt: δ : $Z \times \Sigma \to \mathcal{P}(Z)$. $\mathcal{P}(Z)$ ist die Potenzmenge von Z. Für $z \in Z$ und $a \in \Sigma$ ist also $\delta(z, a)$ eine Menge von möglichen Folgezuständen

Definition

Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein DEA. Die erweiterte Überführungsfunktion $\hat{\delta}\colon Z\times\Sigma^*\to Z$ ist (induktiv) definiert wie folgt:

 $\hat{\delta}(z, \varepsilon) = z$ für alle $z \in Z$ $\hat{\delta}(z, \alpha x) = \hat{\delta}(\delta(z, \alpha), x)$ für alle $z \in Z$, $\alpha \in \Sigma$ und $x \in \Sigma^*$ Die von M akzeptierte Sprache ist

$$L(M) = \{ x \in \Sigma^* \mid \hat{\delta}(z_0, x) \in E \}.$$

18

Definition

Wir definieren $\hat{\delta}$: $\mathcal{P}(Z) \times \Sigma^* \to \mathcal{P}(Z)$ wie folgt: $\hat{\delta}(Z', \varepsilon) = Z'$ für alle $Z' \subseteq Z$ $\hat{\delta}(Z', \alpha x) = \bigcup_{z \in Z'} \hat{\delta}(\delta(z, \alpha), x)$ für alle $Z' \subseteq Z$, $\alpha \in \Sigma$ und $x \in \Sigma^*$.

Die von M akzeptierte Sprache ist

$$L(M) = \{x \in \Sigma^* \mid \hat{\delta}(\{z_0\}, x) \cap E \neq \emptyset\}.$$

Satz

Zu jedem NEA M existiert ein DEA M' mit L(M) = L(M').

Satz (Pumping-Lemma, uvw-Theorem)

Sei L eine reguläre Sprache. Dann gibt es eine Zahl n, sodass sich alle Wörter $x \in L$ mit $|x| \ge n$ zerlegen lassen in x = uvw, sodass folgende Eigenschaften gelten:

- 1. $|v| \ge 1$
- 2. $|uv| \leq n$
- 3. Für alle $i \ge 0$ gilt: $uv^i w \in L$.

Satz

Sei $L \subseteq \Sigma^*$ eine Sprache. Es gibt einen DEA M mit L = L(M) gdw. es eine reguläre Grammatik G mit L = L(G) gibt.

Logische Struktur der Aussage des Pumping-Lemmas:

$$(L \text{ regul\"ar}) \Rightarrow (\exists n)(\forall x \in L, |x| \ge n)(\exists u, v, w),$$
$$\underbrace{[x = uvw \text{ und (1)-(3) gelten}]}_{\text{Aussage }(\star)}$$

Nach dem Pumping-Lemma gilt: "L regulär \Rightarrow (\star)". Die Umkehrung (d. h. "(\star) \Rightarrow L regulär") gilt im Allgemeinen nicht!

Aber: (\star) gilt nicht \Rightarrow L nicht regulär. In dieser Form wird das Pumping-Lemma meistens verwendet.

Kontextfreie Sprachen

Erläuterung der Arbeitsweise

Startkonfiguration:

M befindet sich am Anfang im Zustand z_0 . Der Eingabekopf steht auf dem ersten Zeichen der Eingabe. Der Keller enthält lediglich das Symbol #.

Zustandsübergang:

$$\delta(z, a, A) \ni (z', B_1, \dots, B_k)$$
 bedeutet:

Ist M im Zustand z, liest das Eingabezeichen a und ist A das oberste Kellersymbol, so kann M in den Zustand z' übergehen und das Kellersymbol A durch die Symbole B_1, \ldots, B_k (B_1 wird oberstes Kellersymbol) ersetzen. Der Eingabekopf wandert eine Position nach rechts.

$$(z, z' \in \mathsf{Z}, \, \mathfrak{a} \in \mathsf{\Sigma}, \, \mathsf{A}, \mathsf{B}_1, \ldots, \mathsf{B}_k \in \mathsf{\Gamma}.)$$

Definition

Ein (nichtdeterministischer) Kellerautomat (NKA, Pushdown Automaton (PDA)) ist ein 7-Tupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E),$$

wobei für die einzelnen Komponenten gilt:

- ▶ Z ist die endliche Menge der Zustände
- ► Σ ist das Eingabealphabet
- ► Γ ist das Kelleralphabet
- $\delta: \mathbb{Z} \times \Sigma \times \Gamma \to \mathcal{P}(\mathbb{Z} \times \Gamma^*)$ ist die Überführungsfunktion. Es gilt: $\delta(z, \alpha, A)$ ist endlich für alle $z \in Z$, $\alpha \in \Sigma$ und $A \in \Gamma$
- ▶ $z_0 \in Z$ ist der Startzustand
- ▶ $\# \in \Gamma$ ist das unterste Kellersymbol
- ▶ E ⊂ Z ist die Menge der Endzustände

Erläuterung der Arbeitsweise

Ende der Rechnung:

- ▶ Eingabe ganz gelesen
- \triangleright oder keine Einträge in δ passen zur aktuellen Situation, d. h. M stürzt ab, beispielsweise dadurch, dass der Keller geleert wurde.

Akzeptierte Sprache:

Ein Eingabewort wird akzeptiert, falls ein Zustand aus E angenommen wird, nachdem die Eingabe ganz gelesen wurde. Genauer: Falls es eine Folge von nichtdeterministischen Wahlmöglichkeiten gibt, sodass M einen Endzustand annimmt, nachdem die Eingabe ganz gelesen wurde.

$$L(M) = \{ w \in \Sigma^* \mid M \text{ akzeptiert } w \}$$

26

Satz

Eine Sprache L ist kontextfrei gdw. es einen NKA M gibt mit L = L(M).

29

Logische Struktur der Aussage des Pumping-Lemmas:

$$\begin{array}{c} (L \; kontextfrei) \Rightarrow & (\exists n \in \mathbb{N}) (\forall z \in L, |z| \geq n) (\exists u, v, w, x, y), \\ & \underbrace{[z = uvwxy \wedge (1) - (3) \; gelten]}_{(\star)} \end{array}$$

Anwendung: Kontraposition des Satzes, also:

 (\star) gilt nicht \Rightarrow L ist nicht kontextfrei.

Satz (Pumping-Lemma (uvwxy-Theorem))

Sei L eine kontextfreie Sprache. Dann gibt es eine Zahl n, sodass sich alle Wörter $z \in L$ mit $|z| \ge n$ zerlegen lassen in z = uvwxy, sodass folgende Eigenschaften erfüllt sind:

- 1. $|vx| \ge 1$
- 2. $|vwx| \leq n$
- 3. Für alle $i \ge 0$ gilt: $uv^i w x^i y \in L$

Typ-1- und Typ-0-Sprachen

30

Definition

Eine Turingmaschine (TM) ist ein 7-Tupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E),$$

wobei für die einzelnen Komponenten gilt:

- ▶ Z ist die Menge der Zustände
- ► Σ ist das Eingabealphabet
- $ightharpoonup \Gamma \supset \Sigma$ ist das Arbeitsalphabet
- ▶ $z_0 \in Z$ ist der Startzustand
- ▶ $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen bzw. Blank
- ▶ E ⊆ Z ist die Menge der Endzustände
- \blacktriangleright δ ist die Übergangsfunktion

Definition

Eine Konfiguration einer TM $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ ist ein Wort k = uzv, wobei $u, v \in \Gamma^*$ und $z \in Z$.

Definition (Fortsetzung)

Bei deterministischen Turingmaschinen (DTM, TM) gilt:

$$\delta: Z \times \Gamma \to Z \times \Gamma \times \{L, N, R\}$$

Bei nichtdeterministischen Turingmaschinen (NTM) gilt:

$$\delta \colon \mathsf{Z} \times \Gamma \to \mathcal{P}(\mathsf{Z} \times \Gamma \times \{\mathsf{L}, \mathsf{N}, \mathsf{R}\})$$

34

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine TM. Wir definieren eine zweistellige Relation \vdash auf der Menge der Konfigurationen wie folgt für $z \in Z \setminus E$:

$$a_1 \dots a_m z b_1 \dots b_n \vdash$$

$$\left\{ \begin{array}{ll} a_1 \ldots a_m z' c b_2 \ldots b_n, & \text{falls } \delta(z,b_1) = (z',c,N), \ m \geq 0, \ n \geq 1 \\ a_1 \ldots a_m c z' b_2 \ldots b_n, & \text{falls } \delta(z,b_1) = (z',c,R), \ m \geq 0, \ n \geq 2 \\ a_1 \ldots z' a_m c b_2 \ldots b_n, & \text{falls } \delta(z,b_1) = (z',c,L), \ m \geq 1, \ n \geq 1 \end{array} \right.$$

Sonderfälle

n = 1, Maschine läuft nach rechts:

$$a_1 \dots a_m z b_1 \vdash a_1 \dots a_m c z' \square$$
, falls $\delta(z, b_1) = (z', c, R)$, $m \ge 0$
 $m = 0$. Maschine läuft nach links:

$$zb_1 \dots b_n \vdash z' \Box cb_2 \dots b_n$$
, falls $\delta(z, b_1) = (z', c, L), n \ge 1$

Für $z \in E$ gibt es keine Konfiguration k mit

$$a_1 \dots a_m z b_1 \dots b_n \vdash k$$
.

37

Definition

Ein linear-beschränkter Automat (LBA) ist eine NTM

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$$

mit folgenden Eigenschaften:

- ▶ $\Gamma \setminus \Sigma$ enthält zwei spezielle Symbole \triangleright und \triangleleft , die so genannte linke bzw. rechte Bandendemarkierung
- ► Falls M > liest, ist keine Kopfbewegung nach links erlaubt
- ► Falls M ⊲ liest, ist keine Kopfbewegung nach rechts erlaubt
- ▶ Die Bandsymbole ▷ und ⊲ dürfen nicht durch andere Zeichen überschrieben werden

Die von M akzeptierte Sprache ist

$$L(M) = \{ w \in \Sigma^* \mid z_0 \triangleright w \triangleleft \vdash^* uzv \text{ für ein } z \in E \text{ und } u, v \in \Gamma^* \}.$$

Definition

Die von einer Turingmaschine $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ akzeptierte Sprache ist

$$L(M) = \{ w \in \Sigma^* \mid z_0 w \vdash^* uzv \text{ für ein } z \in E \text{ und } u, v \in \Gamma^* \}.$$

Dabei ist $k_a \vdash^* k_e$, falls $k_a = k_e$ oder es k_1, \ldots, k_n gibt mit

$$k_a \vdash k_1 \vdash \cdots \vdash k_n \vdash k_e$$
.

Also: Ein Wort wird akzeptiert, falls irgendwann ein Endzustand angenommen wird.

Satz

- 1. Eine Sprache L ist kontextsensitiv (Typ 1) gdw. es einen LBA gibt mit L(M) = L
- 2. Eine Sprache L ist vom Typ 0 gdw. es eine TM M gibt mit L(M) = L gdw. es eine NTM M gibt mit L(M) = L

39

Bemerkung

Es ist unbekannt, ob deterministische LBAen nicht schon die Klasse der Typ-1-Sprachen akzeptieren.

LBA-Problem: Gibt es für jede Typ-1-Sprache einen deterministischen LBA, der sie akzeptiert?

Der intuitive Berechenbarkeitsbegriff

42

41

Berechenbarkeit

Eine Funktion $f \colon \mathbb{N}^k \to \mathbb{N}$ heißt berechenbar, falls es ein Rechenverfahren bzw. einen Algorithmus gibt, das f berechnet, d. h. gestartet mit Eingabe $(n_1,\ldots,n_k) \in \mathbb{N}^k$ hält der Algorithmus nach endlich vielen Schritten mit Ausgabe $f(n_1,\ldots,n_k)$.

Wir fordern nicht, dass f total sein muss, d.h. für gewisse $(n_1, \ldots, n_k) \in \mathbb{N}^k$ darf $f(n_1, \ldots, n_k)$ undefiniert sein. In diesem Fall soll der Algorithmus nicht stoppen (Endlosschleife).

Ziel: Präzisierung des Berechenbarkeitsbegriffs.

Nur so ist es möglich, zu beweisen, dass eine Funktion nicht berechenbar ist.

Beispiel 1

$$f_1(n) = \left\{ \begin{array}{l} 1, & \text{falls } n \text{ ein Anfangsabschnitt der} \\ & \text{Nachkommastellen von } \pi \text{ ist} \\ 0, & \text{sonst} \end{array} \right.$$

Beispiel 2

$$f_2(n) = \left\{ \begin{array}{ll} 1, & \text{falls } n \text{ irgendwo in den} \\ & \text{Nachkommastellen von } \pi \text{ vorkommt} \\ 0, & \text{sonst} \end{array} \right.$$

Turing-Berechenbarkeit

Beispiel 3

$$f_3(n) = \left\{ \begin{array}{l} 1, & \text{falls 7 in den Nachkommastellen von π irgendwo} \\ & & \text{mindestens n-mal hintereinander vorkommt} \\ 0, & & \text{sonst} \end{array} \right.$$

Beispiel 4

$$f_4(n) = \left\{ \begin{array}{ll} 1, & \text{falls die Antwort auf das LBA-Problem ,,ja" ist} \\ 0, & \text{sonst} \end{array} \right.$$

45

Definition

```
Eine Funktion f \colon \mathbb{N}^k \to \mathbb{N} heißt Turing-berechenbar, falls es eine DTM M gibt, sodass für alle n_1, \dots, n_k, m \in \mathbb{N} gilt: f(n_1, \dots, n_k) = m \Rightarrow \\ M \text{ mit Eingabe } bin(n_1) \# \dots \# bin(n_k) \\ hält \text{ mit } \square \dots \square bin(m) \square \dots \square \\ \text{auf dem Arbeitsband.}  f(n_1, \dots, n_k) \text{ undefiniert } \Rightarrow \\ M \text{ mit Eingabe } bin(n_1) \# bin(n_2) \# \dots \# bin(n_k) \\ \text{stoppt nicht.}
```

bin(n) für $n\in\mathbb{N}$ bezeichnet die Binärdarstellung von nohne führende Nullen.

Bemerkung

Das Eingabealphabet einer TM, die eine Funktion über \mathbb{N} im obigen Sinne berechnet, ist stets $\{0, 1, \#\}$.

Mehrband-Maschinen

Definition

Eine Funktion $f: \Sigma^* \to \Delta^*$ heißt Turing-berechenbar, falls es DTM M gibt, sodass für alle $x \in \Sigma^*$ und $y \in \Delta^*$ gilt: $f(x) = y \Rightarrow$

M mit Eingabe x hält mit $\square \cdots \square y \square \cdots \square$ auf dem Arbeitsband.

f(x) undefiniert \Rightarrow

M mit Eingabe x stoppt nicht.

49 50

Definition

Eine k-Band-DTM ist ein 7-Tupel

$$M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E),$$

52

wobei für die einzelnen Komponenten gilt:

- ▶ Z, Σ , Γ , z_0 , \square und E sind wie bei einer 1-Band-DTM definiert.
- $\bullet \ \delta \colon \underbrace{\mathsf{Z}}_{(i)} \times \underbrace{\mathsf{\Gamma}^k}_{(ii)} \to \underbrace{\mathsf{Z}}_{(iii)} \times \underbrace{\mathsf{\Gamma}^k}_{(iv)} \times \underbrace{\{L,R,N\}^k}_{(v)} \ \mathrm{mit}$
 - (i) aktueller Zustand
 - (ii) gelesene Zeichen auf den k Bändern
 - (iii) neuer Zustand
 - (iv) geschriebene Zeichen auf den k Bändern
 - (v) Kopfbewegungen auf den k Bändern

Arbeitsweise

Die Eingabe steht zunächst auf Band 1. Die Bänder 2 bis k sind zunächst leer.

Die Maschine führt einzelne Schritte durch, analog zu gewöhnlichen DTMn.

Akzeptierte Sprache: Das Eingabewort x wird akzeptiert gdw. M erreicht irgendwann einen Endzustand.

Berechnete Funktion: $f(n_1, \ldots, n_k) = m$ gdw. M mit Eingabe $bin(n_1) \# \ldots \# bin(n_k)$ erreicht irgendwann einen Endzustand mit bin(m) auf Band 1.

(Berechnung von Funktionen f: $\Sigma^* \to \Delta^*$ analog.)

Zusammensetzung von Turingmaschinen

Satz

Sei k > 1. Zu jeder k-Band-DTM M gibt es eine (1-Band-)DTM M', sodass L(M) = L(M') bzw. dass M und M' dieselbe Funktion berechnen.

Beweisidee:

Sei $M = (Q, \Sigma, \Gamma, \delta, z_0, \square, E)$. Wir unterteilen das Band von M' in 2k "Spuren", in denen wir die Inhalte von k Bändern von M sowie die Position der k Köpfe von M speichern.

54

1-Band nach k-Band

Sei M eine 1-Band-TM. Dann bezeichnet M(i,k) $(1 \le i \le k)$, die k-Band-TM, die auf Band i genau die Aktion ausführt, die M auf seinem Band ausführt, und die Bänder $1, \ldots, i-1, i+1, \ldots, k$ unverändert lässt. Ist also z. B. in M $\delta(z,\alpha)=(z',b,X)$ mit $X \in \{L,N,R\}$, so ergibt sich für M(2,4): $\delta(z,c_1,\alpha,c_3,c_4)=(z',c_1,b,c_3,c_4,N,X,N,N)$

für alle c_1 , c_3 und c_4 aus dem Arbeitsalphabet von M (= Arbeitsalphabet von M(2,4)).

Schreibweise: M(i) statt M(i,k), falls k aus dem Kontext klar.

Hintereinanderschaltung von Turingmaschinen

Seien $M_i=(Z_i,\Sigma,\Gamma_i,\delta_i,z_{0,i},\square,E_i)$ mit i=1,2 zwei DTMn mit o. B. d. A. $Z_1\cap Z_2=\emptyset$.

Wir definieren daraus die neue Turingmaschine

$$M = (Z_1 \cup Z_2, \Sigma, \Gamma_1 \cup \Gamma_2, \delta, z_{0,1}, \square, E_2),$$

wobei:

$$\delta(z,\alpha) = \left\{ \begin{array}{ll} \delta_1(z,\alpha), & \text{falls } z \in \mathsf{Z}_1 \setminus \mathsf{E}_1 \text{ und } \alpha \in \mathsf{\Gamma}_1 \\ \delta_2(z,\alpha), & \text{falls } z \in \mathsf{Z}_2 \text{ und } \alpha \in \mathsf{\Gamma}_2 \\ (z_{0,2},\alpha,\mathsf{N}), & \text{falls } z \in \mathsf{E}_1 \text{ und } \alpha \in \mathsf{\Gamma}_1 \end{array} \right.$$

Bezeichnungen für M: " M_1 ; M_2 " oder Start $\to M_1 \to M_2 \to Stopp$. Dies lässt sich analog definieren für mehr als zwei Maschinen.

Test auf Null

Definiere $M = (\{z_0, z_1, j_a, nein\}, \Sigma, \Gamma, \delta, z_0, \square, \{j_a, nein\})$ mit

- \triangleright $\Sigma \supseteq \{0, 1\}$
- $\Gamma \supset \{0, 1, \square\}$
- für die Überführungsfunktion δ gilt:

$$\begin{array}{lll} \delta(z_0,\alpha) & = & (\text{nein},\alpha,N) \text{ für } \alpha \in \Gamma \setminus \{0\} \\ \delta(z_0,0) & = & (z_1,0,R) \\ \delta(z_1,\square) & = & (\text{ja},\square,L) \\ \delta(z_1,\alpha) & = & (\text{nein},\alpha,L) \text{ für } \alpha \in \Gamma \setminus \{0\} \end{array}$$

Bezeichnung für M: "Band = 0?".

Schreibweise: "Band i = 0? "statt "Band = 0? (i)".

Bedingte Verzweigungen

bezeichnet die Turingmaschine, die zuerst M simuliert und vom Endzustand z_{e_1} von M nach M_1 und vom Endzustand z_{e_2} von M nach M_2 übergeht.

Bezeichnung: "IF M THEN M_1 ELSE M_2 ", falls $z_{e_1} = \text{ ja und } z_{e_2} = \text{ nein.}$

58

60

Schleifen

Sei nun M eine beliebige Turingmaschine. "WHILE Band $i \neq 0$ DO M" bezeichnet dann die Turingmaschine

Die Programmiersprache LOOP

Syntax von LOOP

▶ Sind x_i und x_i Variablen und c eine Konstante, so sind

$$x_i := x_i + c$$
 und $x_i := x_i - c$

LOOP-Programme.

▶ Sind P₁ und P₂ LOOP-Programme, so ist

$$P_1; P_2$$

ein LOOP-Programm.

▶ Ist P ein LOOP-Programm und x_i eine Variable, so ist

LOOP
$$x_i$$
 DO P END

ein LOOP-Programm.

Syntaktische Komponenten von LOOP

Variablen: x₀, x₁, x₂,...
 Zur besseren Lesbarkeit werden wir auch Variablennamen wie z. B. u, v, x, y, z,... benutzen.

► Konstanten: 0, 1, 2, . . .

► Operationszeichen: + und −

► Trennsymbole: ; und :=

► Schlüsselwörter: LOOP, DO und END

Semantik von LOOP

Sei P ein LOOP-Programm. P berechnet eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ wie folgt:

Zu Beginn der Rechnung befinden sich Eingabewerte $n_1,\dots,n_k\in\mathbb{N} \text{ in den Variablen } x_1,\dots,x_k. \text{ Alle anderen}$ Variablen haben den Startwert 0. P wird wie folgt ausgeführt:

- ▶ Durch das Programm " $x_i := x_j + c$ " erhält x_i den Wert von $x_j + c$.
- ▶ Durch das Programm " $x_i := x_j c$ " erhält x_i den Wert von $x_i c$, falls dieser nicht negativ ist, ansonsten den Wert 0.
- ▶ Bei Ausführung von "P₁; P₂" wird zunächst P₁ und dann P₂ ausgeführt.
- ▶ Ausführung des Programms "LOOP x_i DO P' END": P' wird so oft ausgeführt, wie der Wert der Variablen x_i zu Beginn angibt, d. h. Zuweisungen an x_i in P' haben keinen Einfluss auf die Anzahl der Wiederholungen.

62

Ergebnis der Ausführung von P

 $f(n_1, \ldots, n_k) = \text{Wert von } x_0 \text{ am Ende der Ausführung.}$ Eine Funktion $f \colon \mathbb{N}^k \to \mathbb{N}$ heißt LOOP-berechenbar, falls es ein LOOP-Programm gibt, das f wie soeben festgelegt berechnet.

Beachte: Jedes LOOP-Programm hält nach endlich vielen Schritten an. Daraus folgt, dass jede LOOP-berechenbare Funktion total ist. Einige spezielle LOOP-Programme

$$x_i := x_j$$

steht für

$$x_i := x_j + 0$$
.

65

" $x_i := c$ " (für eine Konstante c)

steht für

$$x_i := x_i + c$$

 $(x_j$ ist eine noch nicht benutzte Variable, die also den Wert 0 hat).

```
"IF x_i = 0 THEN P END" (für ein LOOP-Programm P) steht für 
"x_j := 1; 
LOOP x_i DO x_j := 0 END; 
LOOP x_j DO P END." 
(x_i ist eine Variable, die in P nicht vorkommt)
```

$$\label{eq:continuity} \begin{split} \text{,} x_i &:= x_j + x_k \text{``} \\ \text{steht für} \\ \text{,} x_i &:= x_j; \\ \text{LOOP } x_k \text{ DO } x_i &:= x_i + 1 \text{ END.''} \end{split}$$

$$\label{eq:continuous} \begin{split} \text{,} x_i &:= x_j * x_k \text{``} \\ \text{steht für} \\ \text{,} x_i &:= 0; \\ \text{LOOP } x_k \text{ DO } x_i &:= x_i + x_j \text{ END.''} \end{split}$$

70

Analog: $"x_i := x_j \text{ DIV } x_k"$ $"x_i := x_j \text{ MOD } x_k"$

Die Programmiersprache WHILE

Syntax von WHILE

Erweiterung von LOOP:

neues Schlüsselwort: WHILE

Syntax: Ist P ein WHILE-Programm und x_i eine Variable, so ist

WHILE $x_i \neq 0$ DO P END

ein WHILE-Programm.

Beispiel

Das LOOP-Programm

LOOP x DO P END

kann simuliert werden durch

y := x;

WHILE $y \neq 0$ DO y := y - 1; P END.

(Dabei ist y eine noch nicht verwendete Variable.)

Semantik von WHILE

Die Ausführung von "WHILE $x_i \neq 0$ DO P END" geschieht so, dass Programm P so lange wiederholt ausgeführt wird, wie der Wert von x_i ungleich Null ist.

P berechnet $f \colon \mathbb{N}^k \to \mathbb{N}$ wie folgt: Eingabewerte n_1, \dots, n_k in Variablen x_1, \dots, x_k , die anderen Variablen haben Startwert 0.

 $f(n_1,...,n_k)$ ist der Wert von x_0 nach der Ausführung von P, falls diese stoppt, ansonsten ist $f(n_1,...,n_k)$ undefiniert.

Eine Funktion f heißt WHILE-berechenbar, falls es ein WHILE-Programm gibt, das f wie eben festgelegt berechnet.

Korollar

Jedes WHILE-Programm ist äquivalent zu (d. h. berechnet die gleiche Funktion) einem WHILE-Programm, in dem keine LOOP-Schleifen vorkommen.

Erfahrung:

WHILE-Berechenbarkeit = Java-Berechenbarkeit.

Satz

Jede WHILE-berechenbare Funktion ist Turing-berechenbar.

Satz

Jede Turing-berechenbare Funktion ist WHILE-berechenbar.

Die Church'sche These

78

80

WHILE-Berechenbarkeit = Java-Berechenbarkeit

= C++-Berechenbarkeit

= Berechenbarkeit in beliebigen

Programmiersprachen

= Berechenbarkeit mit Quanten-Computern

Markov-Berechenbarkeit

= λ-Berechenbarkeit

= Berechenbarkeit in jedem bislang untersuchten formalen System

WHILE-Berechenbarkeit = Turing-Berechenbarkeit

These von Church

Eine Funktion ist berechenbar im intuitiven Sinne, gdw. sie Turing-berechenbar ist.

(Nicht beweisbar, da "berechenbar im intuitiven Sinne" nicht formal gefasst.)

Entscheidbarkeit und Aufzählbarkeit

Definition

Eine Sprache $A\subseteq \Sigma^*$ heißt semi-entscheidbar, wenn die Funktion

 $\chi_A\colon \Sigma^* \to \{0,1\} \text{ mit }$

$$\chi_{\mathsf{A}}(w) := \left\{ egin{array}{ll} 1, & ext{falls } w \in \mathsf{A} \ & ext{undefiniert,} & ext{sonst} \end{array}
ight.$$

berechenbar ist.

Definition

Eine Sprache $A\subseteq \Sigma^*$ heißt entscheidbar, wenn die Funktion $c_A\colon \Sigma^* \to \{0,1\}$ mit

$$c_A(w) := \left\{ egin{array}{ll} 1, & ext{falls } w \in A \ 0, & ext{sonst} \end{array}
ight.$$

berechenbar ist. c_A heißt charakteristische Funktion von A.

Beobachtung

Sei $A \subseteq \Sigma^*$. Es gilt:

- ightharpoonup A ist semi-entscheidbar.
- ightharpoonup A ist entscheidbar $\Longleftrightarrow \overline{A}$ ist entscheidbar.
- ightharpoonup A ist entscheidbar $\Longrightarrow A$ und \overline{A} sind semi-entscheidbar.

Satz

Sei $A \subseteq \Sigma^*$. Es gilt:

A ist entscheidbar gdw. A und \overline{A} sind semi-entscheidbar.

Satz

Eine Sprache ist rekursiv-aufzählbar gdw. sie semi-entscheidbar ist.

Definition

Eine Sprache $A\subseteq \Sigma^*$ heißt rekursiv-aufzählbar, falls $A=\emptyset$ oder falls es eine totale berechenbare Funktion $f\colon \mathbb{N}\to \Sigma^*$ gibt, sodass

$$A = \{f(0), f(1), f(2), \ldots\}.$$

Wir sagen: f zählt A auf.

i i

Korollar

Eine Sprache A ist entscheidbar gdw. A und \overline{A} rekursiv-aufzählbar sind.

7

Satz

Eine Sprache $A\subseteq \Sigma^*$ ist rekursiv-aufzählbar gdw. es eine berechenbare Funktion $f\colon \mathbb{N}\to \Sigma^*$ gibt, sodass

$$A = \{f(0), f(1), f(2), \ldots\}.$$

Unentscheidbare Probleme

Satz

Eine Sprache $A\subseteq \Sigma^*$ ist rekursiv-aufzählbar gdw. es eine entscheidbare Sprache B gibt, sodass

$$A = \{x \in \Sigma^* \mid \exists y : \langle x, y \rangle \in B\}.$$

89 90

Erkennen von Endlosschleifen:

Das Halteproblem ist die Sprache

 $H = \{\langle M, x \rangle \mid M_w \text{ hält bei Eingabe } x\}.$

Gödelisierung

Gödelisierung = Kodierung von Turing-Maschinen durch Binärwörter

Sei $w \in \{0, 1\}^*$. Dann ist

$$M_w := \left\{ egin{array}{ll} M, & ext{falls } w ext{ G\"odelisierung von } M \\ \widehat{M}, & ext{sonst (d. h. } w ext{ ist keine g\"ultige G\"odelisierung)}, \end{array}
ight.$$

wobei $\widehat{\mathbf{M}}$ eine festgehaltene Turingmaschine ist.

Beobachtung

K ist rekursiv-aufzählbar.

Definition

Das spezielle Halteproblem ist die Sprache

$$K = \{w \in \{0, 1\}^* \mid M_w \text{ h\"alt bei Eingabe } w\}$$

Das (allgemeine) Halteproblem ist die Sprache

$$H = \{w \# x \mid M_w \text{ hält bei Eingabe } x\}.$$

93 94

Satz

K ist nicht entscheidbar.

Korollar

K ist nicht rekursiv-aufzählbar.

Lemma

Ist $A \leq B$ und B entscheidbar, so ist A entscheidbar.

Definition

Seien $A\subseteq \Sigma^*$ und $B\subseteq \Gamma^*$ Sprachen.

A heißt auf B reduzierbar, in Zeichen: $A \leq B$, falls es eine totale, berechenbare Funktion $f \colon \Sigma^* \to \Gamma^*$ gibt, sodass für alle $w \in \Sigma^*$ gilt:

$$w \in A \Leftrightarrow f(w) \in B$$

9

Satz

97

H ist nicht entscheidbar.

Zusammenfassung

Sei A eine Sprache. Aus den bisherigen Resultaten ergibt sich, dass die folgenden Aussagen äquivalent sind:

- 1. A ist vom Typ 0.
- 2. A = L(M) für eine Turingmaschine M
- 3. A ist rekursiv-aufzählbar
- 4. A ist Wertebereich einer totalen berechenbaren Funktion oder $A=\emptyset$
- 5. A ist semi-entscheidbar
- 6. A ist Definitionsbereich einer berechenbaren Funktion
- 7. A ist Wertebereich einer (eventuell partiellen) berechenbaren Funktion

Korollar

Die Klasse der Typ-1-Sprachen ist eine echte Teilmenge der Klasse der Typ-0-Sprachen.

101

Satz von Rice

Sei $\mathcal R$ die Klasse aller berechenbaren Funktionen. Sei $\mathcal S\subseteq\mathcal R$ mit $\mathcal S\neq\emptyset$ und $\mathcal S\neq\mathcal R$. Dann ist die Sprache

 $C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion ist aus } S \}$

nicht entscheidbar.

Definition

Das Halteproblem auf leerem Band ist die Sprache

 $H_0 = \{w \mid M_w \text{ angesetzt auf leerem Band hält}\}.$

Satz

H₀ ist nicht entscheidbar.

Korollar (Satz von Rice)

nicht entscheidbar.

Sei \mathcal{R} die Klasse aller berechenbaren Funktionen. Sei $\mathcal{S}\subseteq\mathcal{R}$ mit $\mathcal{S}\neq\emptyset$ und $\mathcal{S}\neq\mathcal{R}$. Dann ist die Sprache

 $C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion ist aus } S \}$

Satz

Sei \mathcal{R} die Klasse aller berechenbaren Funktionen. Sei $\mathcal{S}\subseteq\mathcal{R}$ mit $\mathcal{S}\neq\emptyset$ und $\mathcal{S}\neq\mathcal{R}$. Die Sprache $C(\mathcal{S})$ sei definiert als

 $C(S) = \{w \mid \text{die von } M_w \text{ berechnete Funktion ist aus } S\}.$

Dann gilt:

$$K \leq C(\mathcal{S})$$
 oder $\overline{K} \leq C(\mathcal{S})$

106

Korollar

Die folgenden Sprachen sind nicht entscheidbar:

- ► {w | M_w berechnet eine totale Funktion} "Das gegebene Programm stürzt nicht ab."
- $\{w \mid M_w \text{ berechnet eine monotone Funktion}\}$
- $\{w \mid M_w \text{ berechnet eine konstante Funktion}\}$
- ▶ $\{w \mid M_w \text{ berechnet die Funktion } f(x) = x + 1\}$ "Das gegebene Programm erfüllt eine Spezifikation."