2. BREAK EVEN ANALYSIS

TYPES OF COST		
TOTAL COST		TOTAL REVENUE COST
TOTAL FIXED COST	TOTAL VARIABLE COST	
• E.g. Initial investments	E.g. Cost Required for unit production	E.g. Revenue generated from
(Land, Machine)	(Manpower, Electricity)	the production.
	$T.V.C. = QV_c$	T.R.C. = QP
	V_c = Variable cost/ unit item	P = Revenue cost/ unit item
6 —	10	15
4	5	10
2 —		5
0 —	0 —	0
1 2 3 Qty	0 1 2 Qty	0 1 2 Qty
COST-QTY	COST-QTY	COST-QTY
$TOTAL\ COST = F.C. + V.C. = F.C. + OV_c$		T.R.C. = OP

BREAK EVEN POINT: It's the qty at which total revenue cost is equal to total cost. (No profit, No loss)

Ditable 2 valve of the def at which total revenue cost is equal to total costs (100 profits, 100 ross)			
$At BEP, Q = \frac{F.C.}{P-V_c}, \theta = Angle \ of \ inclidence.$	 If θ is more, Q_{BEP} is less. If θ is less, Q_{BEP} is more. 		
Break From Sales (RES) - PO F.C. F.C.	*55.		
Profit = T.R.CF.C.	$\mathbf{O}_{r} = \frac{F.C. + Profit}{\mathbf{O}_{r}}$		
Q_x equation is obtained from Profit equation at Q_x selling.	$P-V_c$		

CONTRIBUTION OF MARGIN OR PROFIT TO VOLUME RATIO:

It's used to identify the best profitable product among multiple product for same company.

Contribution of margin =
$$T.R.C.-T.V.C.$$

Contribution of margin ratio $(C.M.R.) = \frac{T.R.C.-T.V.C.}{T.R.C.} = \frac{PQ_x - Q_xV_c}{PQ_x} = 1 - \frac{V_c}{P}$

CONTRIBUTION OF SALES IN %:

$$M.\,O.\,S.\,in\,\% = \left[\frac{(T.\,R.\,C.\,)_{x} - (T.\,R.\,C.\,)_{BEP}}{(T.\,R.\,C.\,)_{x}}\right] *\,100 = \left[\frac{PQ_{x} - PQ_{BEP}}{PQ_{x}}\right] *\,100$$