2. Métricas ponto a ponto

- Em ML os algoritmos são baseados na quantificação de semelhança ou dissemilhança de dados;
- De acordo com os tipos de dados e os problemas, há métricas mais adequadas que outras.
- Em problemas de clustering (essencialmente os que vamos tratar) precisamos de quantificar a proximidade entre 2 eventos numa BD.

Assim, considere-se que o espaço de atributos $\mathcal{A} = A_1 \times A_2 \times ... \times A_I$. Sejam $x = (x_1, x_2, ..., x_I) \in \mathcal{A}$ e $x' = (x'_1, x'_2, ..., x'_I) \in \mathcal{A}$

Definição: *d* é uma função de dissemelhança se:

- i) $d(x, x') \ge 0$ (não negatividade).
- ii) d(x,x) = 0 (reflexividade).

Esta função pretende dizer qual o grau de afastamento entre x e x'.

Exemplo 7: Considere a função,

$$d(x,y) = \begin{cases} 0 & \text{se } x_1 = y_1 \\ |x_2 - y_2| & \text{se } x_1 \neq y_1 \end{cases}$$

Verifique que é uma dissemelhança. Calcule d(x,y) para x=(sim,0.7) e y=(Nao,0.25) com $x,y\in\mathcal{A}$ com $\mathcal{A}=\{sim,nao\}\times[0,1]$.

Solução:

Dissemelhança pq d(x,y) só tem 2 outputs possíveis 0 ou o módulo dum número, logo é ≥ 0 . d(x,x)=0 pq se y=x, então $x_1=y_1\to d(x,x)=0$.

$$x = (sim, 0.7) \text{ e } y = (Nao, 0.25) \rightarrow x_1 \neq y_1 \rightarrow d(x, y) = |0.7 - 0.25| = 0.45.$$

Definição: Uma função de dissemelhança d diz-se simétrica se,

$$\forall x, y \in \mathcal{A}, \ d(x, y) = d(y, x).$$

Definição: Uma função de dissemelhança *d* verifica *definitness* (identidade de indiscerníveis) se,

$$\forall x, y \in \mathcal{A}, \ d(x, y) = 0 \equiv x = y.$$

Definição: Uma função de dissemelhança d que verifique,

$$\forall x, y, z \in \mathcal{A}, \ d(x, z) \leq d(x, y) + d(y, z),$$

diz-se que verifica a desigualdade triangular.

Definição: Uma função *d* que verifique,

a)
$$d(x,y) \ge 0$$
 e $d(x,x) = 0$

b)
$$d(x, y) = d(y, x)$$
.

c)
$$\forall x, y \in \mathcal{A}, d(x, y) = 0 \equiv x = y$$
.

d)
$$\forall x, y, z \in \mathcal{A}, \ d(x, z) \leq d(x, y) + d(y, z),$$

diz-se uma dissemelhança métrica (distância).

Até agora considerámos $D = \{e^n, n = 1, ...M\}$ e o evento $e^n = (x^n, y^n)$ com $x^n \in \mathcal{A}$ e $y^n \in \mathcal{C}$. Como vamos essencialmente fazer *clustering* (UML), vamos a partir de agora dizer $e^n = x^n$.

Dados nominativos

Considere-se que temos uma base de dados D que para caracterizar os frutos banana, laranja, limão, maça e amêndoa,

$$A_1 = cor = \{amarelo, laranja, verde, vermelho, castanho\}$$

$$A_2 = sabor = \{doce, amargo, acido\}$$

$$A_3 = forma = \{alongado, redondo\}$$

O espaço dos atributos $A = A_1 \times A_2 \times A_3$.

Um evento da base de dados D: $x^1 = (amarelo, doce, alongado)$. Notação para descrever o evento $e^n = (x_1^n, x_2^n, x_3^n)$ com $x_1 \in A_1$, $x_2 \in A_2$ e $x_3 \in A_3$.

Para medir uma dissemelhança entre 2 eventos de D podemos definir a **métrica** uniforme d_u tal que,

$$d1(x,x') = \begin{cases} 1 & \text{se } x_1 \neq x_1' \\ 0 & \text{se } x_1 = x_1' \end{cases}$$

$$d2(x,x') = \begin{cases} 1 & \text{se } x_2 \neq x_2' \\ 0 & \text{se } x_2 = x_2' \end{cases}$$

$$d3(x,x') = \begin{cases} 1 & \text{se } x_3 \neq x_3' \\ 0 & \text{se } x_3 = x_3' \end{cases}$$

e,

$$d_u(x,x') = \frac{1}{3}(d1(x,x') + d2(x,x') + d3(x,x')).$$

Exemplo 8: Mostrar que $d_u(x, x')$ é uma dissemelhança métrica.

Solução:

- 1. Mostrar de $d_u(x, y)$ é função de dissemelhança.
- a) $d_u(x,y) \ge 0$ ou seja $d_u(x,x') = \frac{1}{3}(d1(x,x') + d2(x,x') + d3(x,x')) \ge 0$. Uma vez que $d_1(x,y)$ ou vale 0 ou vale 1 e o mesmo acontece com $d_2(x,y)$ e $d_3(x,y)$, então, efetivamente $d_u(x,y) \ge 0$.
- b) d(x,x) = 0. Vemos que y = x, ou seja $x_1 = y_1$, $x_2 = y_2$, e $x_3 = y_3$. Ou seja d1(x,y) = 0, d2(x,y) = 0 e d3(x,y) = 0, logo, d(x,y) = 0 quando x = y.
- **2.** Mostrar de $d_u(x, y)$ goza da simetria $(d_u(x, y) = d_u(y, x))$
- Vimos que $d_u(x,y) = \frac{1}{3}(d1(x,y) + d2(x,y) + d3(x,y))$. Por outro lado, $d_u(y,x) = \frac{1}{3}(d1(y,x) + d2(y,x) + d3(y,x))$.
- Vemos que d1(x,y)=d1(y,x) uma vez que quando $x_1\neq y1$ também $y_1\neq x1$. O mesmo se verifica para $d_2(x,y)$ e d3(x,y).

3. Mostrar definitness

 $\forall x,y \in \mathcal{A}: d_u(x,y) = 0 \equiv x = y$. Temos que provar os 2 lados da implicação. A saber,

i)
$$d_{\mu}(x, y) = 0 \rightarrow x = y$$

Como $d1, d2, d3 \ge 0$, d_u sópode ser 0 se d1(x, y) = d2(x, y) = d3(x, y) = 0.

$$d1(x,y)=0\to x_1=y1$$

$$d2(x,y)=0\rightarrow x_2=y2$$

$$d3(x,y)=0\rightarrow x_3=y3$$

Então, x = y.

ii)
$$x = y \rightarrow d_u(x, y) = 0$$

x = y é o mesmo que $x_1 = y_1 \wedge x_2 = y_2 \wedge x_3 = y_3$. Então d1(x,y) = d2(x,y) = d3(x,y) = 0.

4. Mostrar de $d_u(x,y)$ goza da desigualdade trangular $(\forall x,y,z\in\mathcal{A},\ d_u(x,z)\leq d_u(x,y)+d_u(y,z)$)

[TPC]

Notar, que podemos definir outras funções de dissemelhança. Por exemplo poderímos atribuir pesos diferentes às várias parcelas.

$$d_u(x,y) = w1.d1(x,y) + w2.d2(x,y) + w3.d3(x,y)$$
 onde $w1 + w2 + w3 = 1$ e $w1 \ge 0, w2 \ge 0, w3 \ge 0$.

Definição: s é uma função de semelhança se:

- a) $s(x, y) \in \mathbb{R}$;
- b) $s(x, x) \ge s(x, y)$ e $s(x, x) \ge s(y, x)$.

s é uma função que mede a semelhança entre dois dados x e $y \in \mathcal{A}$ (espaço dos atributos).

Definição: *s* é uma semelhança simétrica se:

- a) $s(x, y) \in \mathbb{R}$;
- b) $s(x,x) \geq s(x,y)$.
- c) s(x, y) = s(y, x).

Definição : s é uma semelhança simétrica e normalizada se:

- a) $s(x,y) \in [0,1];$
- b) $s(x,x) \geq s(x,y)$.
- c) s(x, y) = s(y, x).

Quando os atributos têm ordens de grandeza muito diferentes, é costume normalizar.

Definição: Uma função s é uma função de semelhança, semétrica, normalizada e que verifica *definitness* se,

- a) $s(x,y) \in [0,1];$
- b) $s(x,x) \geq s(x,y)$.
- c) s(x, y) = s(y, x).
- d) $s(x, y) = 1 \equiv x = y$.

Dados binários

$$x \in \mathcal{A} = A_1 \times A_2 \times ... \times A_I = \{0,1\}^I$$

Uma das métricas mais usadas com dados binários é a distância de Hamming.

Para comprrender métricas que se possam definir, associadas a dados binários, vamos ter por base uma exemplo.

Exemplo 9: Quantificar a semelhança entre 2 imagens de 4 pixels, que podem ser brancos ou pretos - $x \in \mathcal{A} = A_1 \times A_2 \times A_3 \times A_4 = \{0,1\}^4$.

Vamos definir uma função semelhança pixel a pixel da seguinte forma,

$$s(x,x') = \frac{1}{4}(s1(x,x') + s2(x,x') + s3(x,x') + s4(x,x')),$$
 onde,

$$s1(x,x') = \begin{cases} 0 & \text{se } x_1 \neq x_1' \\ 1 & \text{se } x_1 = x_1' \end{cases}$$

$$s2(x,x') = \begin{cases} 0 & \text{se } x_2 \neq x_2' \\ 1 & \text{se } x_2 = x_2' \end{cases}$$

$$s3(x,x') = \begin{cases} 0 & \text{se } x_3 \neq x_3' \\ 1 & \text{se } x_3 = x_3' \end{cases}$$

$$s4(x,x') = \begin{cases} 0 & \text{se } x_4 \neq x_4' \\ 1 & \text{se } x_4 = x_4' \end{cases}$$

Exemplo 10 : Mostrar que *s* é uma função de semelhança.

Solução: Temos que mostrar 3 coisas,

- 1) $s(x,y) \in \mathbb{R}$.
- 2) $s(x, x) \ge s(x, y)$.
- 3) $s(x, x) \ge s(y, x)$.

- s(x,x') é a soma de 4 funções cujo valor é 0 ou 1. A soma de 4 números reais é um número real.

$$\begin{split} -s(x,x) &= \frac{1}{4}(s1(x,x) + s2(x,x) + s3(x,x) + s4(x,x)) = 1; \\ s(x,x') &= \frac{1}{4}(s1(x,x') + s2(x,x') + s3(x,x') + s4(x,x')) = \\ &= \frac{1}{4}.((0 \ ou \ 1) + (0 \ ou \ 1) + (0 \ ou \ 1) + (0 \ ou \ 1)) \\ \text{então, } s(x,x) &> s(x,x'). \end{split}$$

Exemplo 11: Mostrar que *s* é simétrica.

Pretende-se mostrar que s(x, y) = s(y, x)

$$s(x,y) = \frac{1}{4}(s1(x,y) + s2(x,y) + s3(x,y) + s4(x,y)) e$$

$$s(y,x) = \frac{1}{4}(s1(y,x) + s2(y,x) + s3(y,x) + s4(y,x)).$$

Olhemos para uma das parcelas das expressões acima.

$$s1(x,y) = \begin{cases} 0 & se \ x_1 \neq y_1 \\ 1 & se \ x_1 = y_1 \end{cases} \quad s1(y,x) = \begin{cases} 0 & se \ y_1 \neq x_1 \\ 1 & se \ y_1 = x_1 \end{cases}$$
 Quando $x_1 = y_1$, também $y_1 = x_1$, logo $s1(x,y) = s1(y,x)$ pelo que $s(x,y) = s(y,x)$.

Exemplo 12: Mostrar que s(x, y) é normalizada e verifica a propriedade de *definitness*.

Matriz de confusão para dois eventos binários - $x, y \in \{0, 1\}^I$

Na aula passada já vimos o que é a matriz de confusão. Recordemos,

$$M00(x,y) = \sum_{i=1}^{J} \neg x_i \neg y_i$$
 - número de vezes que x e y têm 0 em comum.

$$M01(x,y) = \sum_{i=1}^{I} \neg x_i y_i$$
 - número de vezes que $x \notin 0$ e e $y \notin 1$.

$$M10(x,y) = \sum_{i=1}^{n} x_i \neg y_i$$
 - número de vezes que x é 1 e e y é 0 .

$$M11(x,y) = \sum_{i=1}^{I} x_i y_i$$
 - número de vezes que x e y têm 1 em comum.

A partir de M00, M01, M10 e M11 podemos definir funções de dissemelhança entre dois eventos de dados x e y. Por outro lado, M00 + M01 + M10 + M11 = I que é o número de atributos dum evento x.

Podemos definir,

$$d(x,y)=\frac{M01+M10}{I}.$$

Exemplo 13 : Mostar que d(x, y) definido antes é uma dissemelhança.

Temos que provar d(x,x) = 0 e que $0 \le d(x,y) \le 1$.

Exemplo 14 : Mostar que d(x, y) definido antes é uma dissemelhança simétrica.

Pista: Pode-se usar o facto que M10(x,y) = M01(y,x) e ainda que M10(y,x) = M01(x,y).

A seguir apresenta-se um conjunto de métricas de semelhança e dissemelhança usadas no contexto de eventos usando dados binários.

Semelhança de Jaccard :
$$s_J = \frac{M11}{M01 + M10 + M11}$$
.

Dissemelhança de Jaccard :
$$d_J = \frac{M01 + M10}{M01 + M10 + M11}$$
.

Semelhança de Dice :
$$s_D = \frac{2M11}{M01 + M10 + 2M11}$$
.

Dissemelhança de Dice :
$$d_D = \frac{M01 + M10}{M01 + M10 + 2M11}$$
.

Semelhança Overlap :
$$s_O = \frac{M11 + M00}{M01 + M10 + M11 + M00}$$
.

Disemelhança Overlap :
$$d_O = \frac{M01 + M10}{M01 + M10 + M11 + M00}$$
.

A métrica a escolher depende da natureza do problema.

Exemplo 15: Considere
$$x = (1, 0, 1, 0, 0, 0)$$
 e $y = (1, 1, 1, 0, 0, 0)$

- a) Avaliar a semelhança e dissemelhança entre x e y usando Jaccard.
- b) Avaliar a semelhança e dissemelhança entre x e y usando Overlap.