Sequences

James Bang

December 3, 2021

Last time when I took this lecture, someone complained that my problem set was too hard and I didn't give enough time to solve the questions. I've made the sheet slightly easier than last time (maybe).

Rules for this lecture

- Solve the questions and alert me when you have done so.
- In the following questions, N is meant to be any given positive integer.
- 1. Let $(a_n)_{n\geq 1}$ and $(p_n)_{n\geq 1}$ be two sequences of positive integers with $a_1\geq 2$, such that p_n is the smallest prime divisor of a_n , and $a_{n+1}=a_n+\frac{a_n}{p_n}$ for all $n\geq 1$. Show that there exists $M\in\mathbb{N}$ such that $a_{n+3}=3\times a_n$ for all $n\geq M$.
- 2. Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two infinite arithmetic positive integer sequences. Suppose that the set

$$S \stackrel{\text{def}}{=} \{(i, j) \in \mathbb{N} : 0 < j - i < 2021 \text{ and } a_i \mid b_i\}$$

has infinite size. Show that $\forall i \geq 1, \exists j \geq 1 \text{ such that } (i, j) \in S$.

- 3. Suppose $\mathbb{N} = \bigcup_{j=1}^{N} S_j$ where S_j is an infinite arithmetic progression with common difference d_j . Show that there is a unique $i \leq N$ such that $\prod_{j \neq i} d_j \in S_i$.
- 4. Let $(a_n)_{n\geq 0}$ be a sequence of nonzero integers, and denote $P_n(x) \stackrel{\text{def}}{=} a_0 + a_1 x + \cdots + a_n x^n$. Show that there exists $n \geq 2021$ such that all real roots of $P_n(x)$ have modulus less than $2 + \frac{1}{2021}$.
- 5. Suppose $S \subset \mathbb{N}$ with $3 \leq |S| < \infty$. Show that it is possible to label $S = \{a_1, \ldots, a_N\}$ with N = |S|, such that a_i does **not** divide $a_{i-1} + a_{i+1}$ for each $2 \leq i \leq N$.
- 6. Let n > 1 and $(a_i)_{0 \le i < n}$ be positive integers, such that $a_i \equiv i \pmod{n}$ for all i < n. Show the existence of an infinite sequence $(b_i)_{i \in \mathbb{N}}$, such that $0 \le b_i < n$ and $\sum_{k \in \mathbb{N}} a_{b_k} n^{-k} \in \mathbb{N}$.

1

- 7. Let $(a_n)_{n\geq 1}$ be a sequence of positive integers such that:
 - $gcd(a_i, a_j) \le gcd(i, j)^{2021}$ for all $i, j \ge 1$
 - $0 \le a_n n \le 2021$ for all $n \ge 1$.

Show that $\exists M \in \mathbb{N}$ such that $f(n) = n, \forall n \geq M$.