下推自动机

- 下推自动机
- 下推自动机接受的语言
- 下推自动机与文法的等价性
 - 由 CFG 到 PDA
 - 由 PDA 到 CFG
- 确定型下推自动机

由 CFG 到 PDA

例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 PDA.

$$0, Z_0/Z_0$$

$$\varepsilon, Z_0/\varepsilon$$

$$0, Z_0/OZ_0$$

$$0, Z_0/OZ_0$$

$$0, Z_0/OZ_0$$

$$0, 0/O0$$

$$1, 0/\varepsilon$$

$$0, 0/O0$$

$$1, 0/\varepsilon$$

$$0, 0/O0$$

续例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 CFG.

CFG G:

$$S \to AB$$

$$A \to 0A \mid \varepsilon$$
$$B \to 0B1 \mid 01$$

$$S \rightarrow AB \rightarrow 0AB \rightarrow 0B \rightarrow 00B1 \rightarrow 00011$$

$$S \underset{\stackrel{\longrightarrow}{\text{lm}}}{\Rightarrow} AB \underset{\stackrel{\longrightarrow}{\text{lm}}}{\Rightarrow} 0AB \underset{\stackrel{\longrightarrow}{\text{lm}}}{\Rightarrow} 0B \underset{\stackrel{\longrightarrow}{\text{lm}}}{\Rightarrow} 00B1 \underset{\stackrel{\longrightarrow}{\text{lm}}}{\Rightarrow} 00011$$

续例 5. 语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$. 用 PDA 栈顶符号的替换, 模拟文法的最左派生:

		PDA		CF	FG
PDA	A 的 ID 4	传移	PDA 的动作	产生式	最左派生
$(q_0,$	00011,	S)			S
$\vdash (q_0,$	00011,	AB)	$\varepsilon, S/AB$	$S \to AB$	$\Rightarrow AB$
$\vdash (q_0,$	00011,	0AB)	$\varepsilon, A/0A$	$A \to 0A$	$\Rightarrow 0AB$
$\vdash (q_0,$	0011,	AB)	$0,0/\varepsilon$		
$\vdash (q_0,$	0011,	B)	arepsilon, A/arepsilon	$A \to \varepsilon$	$\Rightarrow 0B$
$\vdash (q_0,$	0011,	0B1)	$\varepsilon, B/0B1$	$B \to 0B1$	$\Rightarrow 00B1$
$\vdash (q_0,$	011,	B1)	$0,0/\varepsilon$		
$\vdash (q_0,$	011,	011)	$\varepsilon, B/01$	$B \to 01$	$\Rightarrow 00011$
$\vdash (q_0,$	11,	11)	$0,0/\varepsilon$		
$\vdash (q_0,$	1,	1)	$1,1/\varepsilon$		
$\vdash (q_0,$	$\varepsilon,$	$\varepsilon)$	1,1/arepsilon		

续例 5. 语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$.

任何
$$CFLL$$
, 一定存在 $PDAP$, 使 $L = \mathbf{N}(P)$.

构造与文法等价的 PDA

如果 CFG G = (V, T, P', S), 构造 PDA

$$\bullet \ \forall A \in V:$$

$$VA \in V$$
.

那么 L(G) = N(P).

$$P = (\{q\}, T, V \cup$$

$$\{q\}, T, V \cup T$$

$$P = (\{q\}, T, V \cup T, \delta, q, S, \varnothing),$$

 $\delta(q, \varepsilon, A) = \{ (q, \beta) \mid A \to \beta \in P' \}$

 $\delta(q, a, a) = \{(q, \varepsilon)\}$

$$T, \delta, q, S, \varnothing),$$

$$S, \varnothing$$
).

例 6. 为文法 $S \rightarrow aAA,\, A \rightarrow aS \mid bS \mid a$ 构造 PDA.

$$\varepsilon, S/aAA \quad \varepsilon, A/aS \quad a, a/\varepsilon$$

$$\varepsilon, A/a \quad \varepsilon, A/bS \quad b, b/\varepsilon$$
start

证明·往证

 $S \stackrel{*}{\Rightarrow} w \iff (q, w, S) \vdash_{\Xi} (q, \varepsilon, \varepsilon).$

 $S \stackrel{*}{\Rightarrow} w \implies (q, w, S) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon).$

设 $S \stackrel{*}{\Rightarrow} w$ 中第 i 个左句型为 $x_i A_i \alpha_i$, 其中 $x_i \in \Sigma^*$, $A_i \in V$, $\alpha_i \in (V \cup T)^*$. 并将 S 看作第 0 个左句型 $x_0 A_0 \alpha_0 = S$. 那么

$$x_0 = \varepsilon, A_0 = S, \alpha_0 = \varepsilon$$

将 w 看作为第 n 个左句型 $x_n A_n \alpha_n = w$, 那么

$$x_n = w, A_n = \varepsilon, \alpha_n = \varepsilon.$$

再对派生步骤 i 归纳. 往证

 $S \stackrel{i}{\Rightarrow} x_i A_i \alpha_i \wedge w = x_i y_i \Longrightarrow (q, w, S) \vdash^* (q, y_i, A_i \alpha_i).$

归纳基础: 当最左派生要 () 步时, 显然成立

$$(q, w, S) \stackrel{*}{\vdash} (q, y_0, A_0 \alpha_0) = (q, w, S).$$

归纳递推: 假设i步时上式成立. 当第i+1步时,

一定是
$$A_i \rightarrow \beta$$
 应用到 $x_i A_i \alpha_i$

$$S \stackrel{i}{\Rightarrow} x_i A_i \alpha_i \Rightarrow x_i \beta \alpha_i = x_{i+1} A_{i+1} \alpha_{i+1}.$$

变元 A_{i+1} 一定在 $\beta\alpha_i$ 中. 设 A_{i+1} 之前的终结符为 x', 则有

又因为 $w = x_i y_i = x_i x' y_{i+1} = x_{i+1} y_{i+1}$, 所以有

 $y_i = x' y_{i+1}.$

 $\beta \alpha_i = x' A_{i+1} \alpha_{i+1}$.

那么, 在 PDA 中从 ID $(q, y_i, A_i\alpha_i)$ 模拟最左派生,

用产生式
$$A_i \to \beta$$
 替换栈顶 A_i 后,有
$$(q, w, S) \stackrel{\text{!`}}{=} (q, y_i, A_i \alpha_i)$$
 归纳假设

 $\vdash (q, y_i, \beta \alpha_i)$ $A_i \to \beta$ $= (q, x'y_{i+1}, x'A_{i+1}\alpha_{i+1}) \qquad y_i = x'y_{i+1}$ $\vdash^* (q, y_{i+1}, A_{i+1}\alpha_{i+1})$ 弹出终结符

因此 $S \stackrel{n}{\Rightarrow} w \Longrightarrow (q, w, S)^*(q, y_n, A_n \alpha_n) = (q, \varepsilon, \varepsilon)$, 即充分性得证.

[必要性] 往证更一般的, 对任何变元 A, 都有:

 $(q, x, A) \vdash^* (q, \varepsilon, \varepsilon) \Longrightarrow A \stackrel{*}{\Longrightarrow} x.$ 可以看作"从输入带中消耗掉x"与"从栈中弹出A"两种作用相互抵消。

对 ID 转移 $(q, x, A) \vdash (q, \varepsilon, \varepsilon)$ 的次数 i 归纳证明.

归纳基础: 当 i=1 次时, 只能是 $x=\varepsilon$ 且 $A\to\varepsilon$ 为产生式, 所以 $A\Rightarrow\varepsilon$.

归纳递推: 假设 $i \le n \ (n \ge 0)$ 时上式成立. 当 i = n+1 时, 因为 A 是变元, 其第 1 步转移一定是

$$(q, x, A) \vdash (q, x, Y_1 Y_2 \cdots Y_m)$$

且 $A \rightarrow Y_1 Y_2 \cdots Y_m$ 是产生式, 其中 Y_i 是变元或终结符. 而其余的 n 步转移

$$(q, x, Y_1Y_2\cdots Y_m) \vdash^* (q, \varepsilon, \varepsilon)$$

中每个 Y_i 从栈中被完全弹出时,将消耗掉的那部分 x 记为 x_i ,那么显然有

$$x = x_1 x_2 \cdots x_m.$$

而每个 Y_i 从栈中被完全弹出时, 都不超过 n 步, 所以由归纳假设,

$$(q, x_i, Y_i) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow Y_i \stackrel{*}{\Longrightarrow} x_i$$

再由 A 的产生式 $A \rightarrow Y_1Y_2 \cdots Y_m$, 有

$$A \Rightarrow Y_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots x_m = x.$$

因此当 A = S, x = w 时,

$$(q, w, S) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow S \stackrel{*}{\Longrightarrow} w$$

成立, 即必要性得证.

所以,任何 CFL 都可由 PDA 识别.

如果 GNF 格式的 CFG
$$G = (V, T, P', S)$$
, 那么构造 PDA

$$(T, T, P', S)$$
, 那么构造 PDA

 $P = (\{q\}, T, V, \delta, q, S, \emptyset),$

 $\delta(q, a, A) = \{(q, \beta) \mid A \to a\beta \in P'\}.$

构造与 GNF 格式文法等价的 PDA

为每个产生式, 定义 δ 为:

续例 6. 文法 $S \rightarrow aAA, A \rightarrow aS \mid bS \mid a$ 为 GNF 格式, 构造等价的 PDA.

start
$$\longrightarrow$$
 $a, S/AA$

$$b, A/S$$

$$a, A/\varepsilon$$

由 PDA 到 CFG

定理 28

如果 PDA P, 有 $L = \mathbf{N}(P)$, 那么 L 是上下文无关语言.

构造与 PDA 等价的 CFG

 $i=0, \; \not \mid [qXp] \to a.$

如果 PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$, 那么构造 CFG $G = (V, \Sigma, P', S)$, 其中 $V \rightarrow P' \rightarrow P'$

$$P'$$
 为 $V = \{[aXn] \mid n \mid a \in O \mid X \in \Gamma\} \cup \{S\}$:

①
$$V = \{[qXp] \mid p,q \in Q, X \in \Gamma\} \cup \{S\};$$

② 对 $\forall p \in Q$. 构造产生式 $S \rightarrow [q_0Z_0p];$

对
$$\forall (p, Y_1Y_2\cdots Y_n) \in \delta(q, a, X),$$
 构造 $|Q|^n$ 个产生之

対
$$\forall (p, Y_1Y_2 \cdots Y_n) \in \delta(q, a, X)$$
,构造 $|Q|^n$ 个产生式
$$\left[q(Y_n) \right] \rightarrow q[q(Y_n)] \left[q(Y_n) \right] \left[q(Y_n) \right]$$

其中
$$a \in \Sigma \cup \{\varepsilon\}$$
, $X,Y_i \in \Gamma$, 而 $r_i \in Q$ 是 n 次 $|Q|$ 种状态的组合; 若

$$rac{1}{2}$$
 对 $orall (p,Y_1Y_2\cdots Y_n)\in \delta(q,a,X)$,构造 $[Q]^n$ 化产生式
$$[qXr_n] o a[pY_1r_1][r_1Y_2r_2]\cdots [r_{n-1}Y_nr_n]$$

例 7. 将 PDA $P = (\{p,q\}, (0,1), \{X,Z\}, \delta, q, Z)$ 转为 CFG, 其中 δ 如下:

(1) $\delta(q,1,Z) = \{(q,XZ)\}$ (2) $\delta(q,1,X) = \{(q,XX)\}$ (3) $\delta(q,0,X) = \{(p,X)\}$ (4) $\delta(q,\varepsilon,Z) = \{(q,\varepsilon)\}$

(5) $\delta(p, 1, X) = \{(p, \varepsilon)\}\$ (6) $\delta(p, 0, Z) = \{(q, Z)\}\$

	+ .1 · ·		
δ	产生式		
$\overline{(0)}$	$S \to [qZq]$		
	$S \to [qZp]$		
(1)	$[qZq] \rightarrow 1[qXq][qZq]$		
	$[qZq] \rightarrow 1[qXp][pZq]$	消除无用符号	重命名 (可选)
	$[qZp] \rightarrow 1[qXq][qZp]$	$S \rightarrow [qZq]$	$S \to A$
(2)	$[qZp] \to 1[qXp][pZp]$	$[qZq] \rightarrow 1[qXp][q$	
(2)	$[qXq] \to 1[qXq][qXq]$	$[qXp] \rightarrow 1[qXp][$	
	$ [qXq] \rightarrow 1[qXp][pXq] $	$[qXp] \rightarrow 0[pXp]$	$B \to 0D$
	$[qXp] \to 1[qXq][qXp]$	$[qZq] o \varepsilon$	$A \to \varepsilon$
(9)	$\begin{bmatrix} [qXp] \rightarrow 1[qXp][pXp] \\ [qXq] \rightarrow 0[qXq] \end{bmatrix}$	$[pXp] \rightarrow 1$	$D \rightarrow 1$
(3)	$\begin{bmatrix} qXq \end{bmatrix} \to 0[pXq]$	$[pZq] \to 0[qZq]$	$C \to 0A$
(4)	$[qXp] \to 0[pXp]$		
(4)	$[qZq] o \varepsilon$		
(5)	$ [pXp] \rightarrow 1$		
(6)	$[pZp] \to 0[qZp]$		
	$[pZq] \to 0[qZq]$		