

Notas dos slides

APRESENTAÇÃO

O presente conjunto de slides pertence à coleção produzida para a disciplina Introdução ao Processamento Paralelo e Distribuído ofertada aos cursos de bacharelado em Ciência da Computação e em Engenharia da Computação pe

Os sides disponibilizados complementam as videoaulas produzidas e tratam de pontos específicos da disciplina. Embora tenham sido produzidos para ser assistidos de forma independente, a sequência informada reflete o encadeamento dos assuntos no desenvolvimento do conteúdo programático previsto para a disciplina.

Notas da videoaula

DESCRIÇÃO

Nesta videoaula é apresentada uma revisão de conceitos associados a processos e threads e sua manipulação no nível do sistema operacional.

OBJETIVOS

Nesta videoaula o aluno reforçará os principais conceitos de sistemas operacionais, tais como processos, threads e escalonamento, necessários ao domínio dos conteúdos trabalhados na disciplina.

I know I've made some very poor decisions recently, but I can give you my complete assurance that my work will be back to normal. I've still got the greatest enthusiasm and confidence in the mission. And I want to help you.

HAL 9000, in 2001: A Space Odyssey

Sistemas Operacionais

Qualquer sistema computacional requer uma camada de software que habilite a exploração do hardware disponível. De preferência, esta exploração deve promover o uso eficiente dos recursos disponíveis.

Nosso interesse: exploração da CPU.

Processo: Imagem de um Programa em Execução

Um programa, ao ser lançado, produz uma imagem de memória. Nesta imagem está toda a representação do processo. Inclui a área de dados e de código.

Destaca-se que, em função do tamanho do processo, e do número de processos ativos em um determinado instante de tempo, nem todo o processo resida na memória principal durante todo seu ciclo de vida.

Processo: Imagem de um Programa em Execução

Um programa, ao ser lançado, é visto, pelo SO, como um processo. O SO instancia um PCB (Bloco de Controle de Processo) para manipulá-lo.

Pro	CESS	ID

Contador de Programa

Estado dos Registradores

Informações de Gerenciamento de Memória

Arquivos Abertos

Informações para Escalonamento

Informações de E/S (arquivos abertos)

8

Processo: Imagem de um Programa em Execução

Questão 1

Qual a vantagem, no compto final. do SO permitir que mais de um processo esteja ativo durante um determinado instante de tempo?

Questão 2

Oual mecanismo é utilizado pelo SO para manter apenas partes do processo em memória principal?

Questão 3

a memória do processo para restaurar sua execução?

Questão 4

É suficiente salvar Se um programa for lançado duas vezes, o processo criado é o mesmo?

Processo: Imagem de um Programa em Execução

Questão 1

Qual a vantagem, no compto final. do SO permitir que mais de um processo esteja ativo durante um determinado instante de tempo?

Questão 2

Oual mecanismo é utilizado pelo SO para manter apenas partes do processo em memória principal?

a memória do processo para restaurar sua execução?

Questão 3

Questão 4

É suficiente salvar Se um programa for lançado duas vezes, o processo criado é o mesmo?

Escalonamento

Uma das principais atividades do SO é racionalizar o uso dos recursos disponíveis entre os processos ativos. Em particular, o uso da(s) CPU(s) deve ser compartilhado entre todos os processos ativos e aptos à execução.

Um escalonador será correto se permitir que todos os processos submetidos terminem sua execução em tempo finito, nunca alocando dois, ou mais, processos a mesma CPU no mesmo instante de tempo.

Escalonamento

Como consequência, o processo passa por diferentes estados durante seu ciclo de vida.

O Processo

Um processo sequencial possui um único fluxo de execução, uma memória de código e dados e um PCB. Uma porção particular na memória é a pilha (S), onde é realizada a alocação dinâmica na pilha de dados em função do encadeamento de contextos neste fluxo de execução. Nesta representação é destacado também o banco de registradores (BR) que mantém o status atual da execução.

13

Um Processo Multithread

Um processo multithread possui vários fluxos de execução, todos compartilhando a área de memória e o PCB. No entanto, cada thread possui sua própria pilha e seu status é armazenado em um banco próprio de registradores.

Processo e Thread

Processo Pesado

Também referenciado como processo pesado, em função do custo que o SO tem em realizar sua manipulação, em particular, de memória virtual.

Processo Leve

Threads são chamadas de processos leves, uma vez que a complexidade de sua gestão pelo SO é reduzida pelo compartilhamento das informações do PCB.

Implementação de Threads

Um para Um

Toda concorrência descrita pelo programa é mapeada, diretamente, sobre uma unidade de execução (thread kernel) gerida pelo hardware.

N para M

Distingue a descrição da concorrência da aplicação do suporte de paralelismo do hardware. Threads usuário são mapeadas, em espaço usuário, sobre unidades de execução (threads kernel) providas pelo ambiente de execução.

Existe o modelo N x 1.

Implementação de Threads

Durante o curso, você já se defrontou com ferramentas de programação utilizando os modelos 1 x 1 e N x M?

Quais?

Implementação de Threads

Durante o curso, você já se defrontou com ferramentas de programação utilizando os modelos 1 x 1 e N x M?

Quais?

1x1:Pthreads NxM:OpenMP

Inter Process Communication são recursos utilizados para permitir troca de dados entre múltiplos threads em um processo ou entre processos distintos.

Comunicação entre processos

Quando dois (ou eventualmente vários) processos necessitam comunicar e não existe um espaço de memória compartilhado, algum mecanismo deve prover que um dado seja explicitamente encaminhado via algum suporte de comunicação. **Troca de mensagens** é um dos mecanismos possíveis, requerendo envolvimento dos processos comunicantes com a atividade de troca de dados e conhecimento dos processos envolvidos na comunicação.

9

Atividade

Informe em qual Sistema Operacional irá desenvolver o conteúdo da disciplina.

Responda o formulário de atividade.

https://forms.gle/LofDyFsPhqemYF2o9

23