# Plongement de la sémantique intentionnelle en sémantique inquisitrice

# Valentin RICHARD sous la direction de Philippe de Groote

équipe SÉMAGRAMME LORIA, Nancy

23 juin 2021





- 1 Sémantiques intentionnelle et inquisitrice
- 2 Inquisitorisation

23 juin 2021

3/11

(1) Marie dort.

Valentin RICHARD LORIA Inquisitorisation

# Sémantique intentionnelle [3]

(1) Marie dort.

 $\textbf{sleep}: \mathsf{individu} \times \mathsf{monde} \to \mathsf{valeur} \ \mathsf{de} \ \mathsf{v\'{e}rit\'{e}}$ 

# Sémantique intentionnelle [3]

(1) Marie dort.

sleep: individu  $\times$  monde  $\rightarrow$  valeur de vérité

### Exemple:

- $\blacksquare$  individus  $D = \{\mathbf{m}, \mathbf{j}, \mathbf{c}\}$
- lacksquare mondes possibles  $\textit{W} = \{\textit{w}_{m}\,, \textit{w}_{j}\,, \textit{w}_{c}\}$

| Seule Marie dort  | Wm             |
|-------------------|----------------|
| Seul Jean dort    | w <sub>i</sub> |
| Seul Camille dort | Wc             |

# Sémantique intentionnelle [3]

(1) Marie dort.

 $sleep: individu \times monde \rightarrow valeur de vérité$ 

### Exemple:

- $\blacksquare$  individus  $D = \{\mathbf{m}, \mathbf{j}, \mathbf{c}\}$
- lacksquare mondes possibles  $\textit{W} = \{\textit{w}_{\textbf{m}}, \textit{w}_{\textbf{j}}, \textit{w}_{\textbf{c}}\}$

| Seule Marie dort  | $W_{\mathbf{m}}$ |
|-------------------|------------------|
| Seul Jean dort    | w <sub>j</sub>   |
| Seul Camille dort | Wc               |

Sens:  $|\mathbf{sleep} \, \mathbf{m}| = \{w_{\mathbf{m}}\}$ 

(2) Est-ce que Marie dort ?

Valentin RICHARD LORIA

Inquisitorisation

- (2) Est-ce que Marie dort ?
- (3) a. Jean sait qui dort.
  - b. Est-ce que Jean sait que Marie dort ?

### Conséquence logique :

Qui dort ?  $\models$  Est-ce que Marie dort ?

- (2) Est-ce que Marie dort ?
- a. Jean sait qui dort.
  - b. Est-ce que Jean sait que Marie dort ?

#### Conséquence logique :

Qui dort ?  $\models$  Est-ce que Marie dort ?

- par l'ensemble des leurs réponses
  - $[? (sleep m)] = \{|sleep m|, |\neg (sleep m)|\}$

- (2) Est-ce que Marie dort ?
- (3) a. Jean sait qui dort.
  - b. Est-ce que Jean sait que Marie dort ?

### Conséquence logique :

Qui dort ?  $\models$  Est-ce que Marie dort ?

- par l'ensemble des leurs réponses
  - $[?(sleep m)] = \{|sleep m|, |\neg (sleep m)|\}$



- (2) Est-ce que Marie dort ?
- (3) a. Jean sait qui dort.
  - b. Est-ce que Jean sait que Marie dort ?

#### Conséquence logique :

Qui dort ?  $\models$  Est-ce que Marie dort ?

- par l'ensemble des leurs réponses
  - $[?(sleep m)] = \{|sleep m|, |\neg(sleep m)|\}$



- (2) Est-ce que Marie dort ?
- (3) a. Jean sait qui dort.
  - b. Est-ce que Jean sait que Marie dort ?

#### Conséquence logique :

Qui dort ?  $\models$  Est-ce que Marie dort ?

- par l'ensemble des leurs réponses clos par le bas
  - $[?(sleep m)] = \{|sleep m|, |\neg (sleep m)|\}^{\downarrow}$



- (2) Est-ce que Marie dort ?
- (3) a. Jean sait qui dort.
  - b. Est-ce que Jean sait que Marie dort ?

### Conséquence logique :

Qui dort ?  $\models$  Est-ce que Marie dort ?

#### Représenter le sens des questions

- par l'ensemble des leurs réponses clos par le bas
  - $[?(sleep m)] = \{|sleep m|, |\neg (sleep m)|\}^{\downarrow}$
- les éléments maximaux sont appelés alternatives
- $\mathbb{P} \models \mathcal{Q} \text{ si } [\mathcal{P}] \subseteq [\mathcal{Q}]$

#### |Qui dort ?|



- (2) Est-ce que Marie dort ?
- (3) a. Jean sait qui dort.
  - b. Est-ce que Jean sait que Marie dort ?

#### Conséquence logique :

Qui dort ?  $\models$  Est-ce que Marie dort ?

- par l'ensemble des leurs réponses clos par le bas
  - $[? (sleep m)] = \{|sleep m|, |\neg (sleep m)|\}^{\downarrow}$
- les éléments maximaux sont appelés alternatives
- $\mathbb{P} \models \mathcal{Q} \text{ si } [\mathcal{P}] \subseteq [\mathcal{Q}]$
- sens affirmatif: une seule alternative (assertion)

[sleep m] = |sleep m|
$$\downarrow$$
 =  $\wp(|sleep m|)$  (ensemble des parties)  
sleep m |= ?(sleep m)



#### **Extension conservatrice**

#### Transformation

sens lexical intentionnel Inquisitorisation sens lexical inquisiteur

notamment: S

$$S\subseteq W\longmapsto \wp(S)$$

#### **Extension conservatrice**

Transformation

sens lexical intentionnel Inquisitorisation sens lexical inquisiteur

notamment :  $S \subseteq W \longmapsto \wp(S)$ 

qui conserve

- la logique d'origine
  - la conséquence logique
- la composition

#### **Extension conservatrice**

#### Transformation

sens lexical intentionnel Inquisitorisation sens lexical inquisiteur

notamment :  $S \subseteq W \longmapsto \wp(S)$ 

#### qui conserve

- la logique d'origine
  - la conséquence logique
- la composition

# Of Intérêt :

- transporter un lexique déjà construit
- pour y ajouter des opérateurs inquisiteurs

#### **Extension conservatrice**

Transformation

sens lexical intentionnel Inquisitorisation sens lexical inquisiteur

notamment :  $S \subseteq W \longmapsto \wp(S)$ 

qui conserve

la logique d'origine

■ la conséquence logique

la composition

Intérêt :

■ transporter un lexique déjà construit

pour y ajouter des opérateurs inquisiteurs

- Notamment pour les constantes d'ordre supérieur
- ex. adjectifs **skillful** :  $(e \rightarrow s \rightarrow t) \rightarrow (e \rightarrow s \rightarrow t)$

- 1 Sémantiques intentionnelle et inquisitrice
- 2 Inquisitorisation

### $\lambda$ -calcul simplement typé

- types atomiques :
  - t : valeur de vérité
  - e: individu
  - s: monde possible

### $\lambda$ -calcul simplement typé

- types atomiques :
  - t : valeur de vérité
  - e: individu
  - s: monde possible
- constantes typées
- - m : e, j : e, c : e ■ sleep :  $e \rightarrow s \rightarrow t$
- connecteurs logiques
  - $\neg: t \to t$
  - $\lor$  :  $t \rightarrow t \rightarrow t$

### $\lambda$ -calcul simplement typé

- types atomiques :
  - t : valeur de vérité
  - e: individu
  - s: monde possible
- constantes typées
  - m : e, j : e, c : e
  - sleep:  $e \rightarrow s \rightarrow t$
- connecteurs logiques
  - $\neg : t \rightarrow t$
  - $\forall : t \to t \to t$
- .



### Connecteurs intentionnels

(4) Marie dort ou Camille ne dort pas.  $(\varphi)$ 

$$|\varphi| = |(\text{sleep m}) \vee_{\mathbf{i}} (\neg_{\mathbf{i}} (\text{sleep c}))| = |\text{sleep m}| \cup \mathbb{C}|\text{sleep c}| = \{100, 101\}$$

#### $\lambda$ -calcul simplement typé

- types atomiques :
  - t : valeur de vérité
  - e individu
  - s: monde possible
- constantes typées
- - m : e, i : e, c : e  $\blacksquare$  sleep :  $e \rightarrow s \rightarrow t$
- connecteurs logiques
  - $\neg \cdot t \rightarrow t$
  - $\blacksquare$   $\vee$  :  $t \rightarrow t \rightarrow t$



#### Connecteurs intentionnels

(4) Marie dort ou Camille ne dort pas.  $(\varphi)$ 

$$|\varphi| = |(\text{sleep m}) \vee_{\mathbf{i}} (\neg_{\mathbf{i}} (\text{sleep c}))| = |\text{sleep m}| \cup \mathbb{C}|\text{sleep c}| = \{100, 101\}$$

#### Connecteurs inquisiteurs

Est-ce que Marie dort ? (5)

$$[?(sleep m)] = [sleep m] \cup C[sleep m] = \{\{100\}, \{010, 001\}, \{010\}, \{001\}, \emptyset\}$$

Valentin BICHARD LORIA Inquisitorisation 23 juin 2021

#### Cadre:

- Langage objet de Montague  $\Sigma_e$  (extensionnel)
- Proposition intentionnelle :  $s \rightarrow t$
- Proposition inquisitrice :  $(s \rightarrow t) \rightarrow t$



Figure 1: Inquisitorisation

#### Cadre:

- Langage objet de Montague  $\Sigma_e$  (extensionnel)
- Proposition intentionnelle :  $s \rightarrow t$
- Proposition inquisitrice :  $(s \rightarrow t) \rightarrow t$
- Plongement et projection pour tout type

$$\mathbb{E}_t S = \wp S$$

$$\mathbb{P}_t \mathcal{P} = \bigcup \mathcal{P}$$

 $\mathbb{E}_a x = \mathbb{P}_a x = x$  pour tout autre type atomique a



Figure 1: Inquisitorisation

#### Cadre:

- Langage objet de Montague  $\Sigma_e$  (extensionnel)
- Proposition intentionnelle :  $s \rightarrow t$
- Proposition inquisitrice :  $(s \rightarrow t) \rightarrow t$
- Plongement et projection pour tout type

$$\mathbb{E}_{t} S = \wp S$$

$$\mathbb{P}_{t} \mathcal{P} = \bigcup \mathcal{P}$$

$$\mathbb{E}_{a} x = \mathbb{P}_{a} x = x \text{ pour tout autre type atomique } a$$

$$\mathbb{E}_{A \to B} M = \lambda x^{\mathfrak{L}_{\mathbf{q}}(A)} \cdot \mathbb{E}_{B} (M(\mathbb{P}_{A} x))$$

$$\mathbb{P}_{A \to B} M = \lambda x^{\mathfrak{L}_{\mathbf{l}}(A)} \cdot \mathbb{P}_{B} (M(\mathbb{E}_{A} x))$$



Figure 1: Inquisitorisation

#### Cadre:

- Langage objet de Montague  $\Sigma_e$  (extensionnel)
- Proposition intentionnelle :  $s \rightarrow t$
- Proposition inquisitrice :  $(s \rightarrow t) \rightarrow t$
- Plongement et projection pour tout type

 $\mathbb{P}_{A \to B} M = \lambda x^{\mathfrak{L}_{i}(A)} \cdot \mathbb{P}_{B} (M(\mathbb{E}_{A} x))$ 

$$\begin{array}{lll} \mathbb{E}_t\,\mathcal{S} &=& \wp\,\,\mathcal{S} \\ & \mathbb{P}_t\,\mathcal{P} &=& \bigcup\,\mathcal{P} \\ & \mathbb{E}_a\,x &=& \mathbb{P}_a\,x &=& x \,\,\text{pour tout autre type atomique } a \end{array}$$
 
$$\mathbb{E}_{A\to B}\,M &=& \lambda x^{\mathfrak{L}_{\mathbf{q}}(A)}.\,\mathbb{E}_B\,(M\,(\mathbb{P}_A\,x))$$



Figure 1: Inquisitorisation

#### Théorème

L'inquisitorisation est une extension conservatrice qui conserve la conséquence logique :

si 
$$M \models_{\mathbf{i}} N$$
 alors  $\mathbb{E} M \models_{\mathbf{q}} \mathbb{E} N$  (1)

References

# Cas général

### Théorème [2]

Dans une structure  $(T, \mathsf{U}, \bullet, \mathsf{C}, (\mathbb{E}_a)_{a \in \mathcal{B}_0}, (\mathbb{P}_a)_{a \in \mathcal{B}_0})$  selon [2], on peut construire  $\mathbb{E}_A$  et  $\mathbb{P}_A$  pour tout type  $A \in \mathcal{T}(\mathcal{B}_0)$ .



En définissant  $\mathcal{L}_2$  selon  $\mathbb{E}$ ,  $\mathcal{L}_2$  est une **extension conservatrice** de  $\mathcal{L}_1$ 

De plus, le plongement conserve la composition:  $(\mathbb{E}(UM))(\mathbb{E}(UN)) \cong_{\mathbf{k}} \mathbb{E}(U(MN))$ 

#### Théorème principal

De plus, si tous les opérateurs sont croissants

alors E conserve la conséquence logique

### Exemples

■  $\mathfrak{L}_{\mathbf{q}}(\mathsf{sleep}) = \lambda x^e$ .  $\wp(\lambda w. \mathsf{sleep}\ w. x)$ 

### Exemples

- $\mathbb{L}_{\mathbf{q}}(\mathsf{sleep}) = \lambda x^e. \ \wp(\lambda w. \, \mathsf{sleep} \, w \, x)$
- $\blacksquare$  ( $\mathbb{E} \neg_{\mathbf{i}}$ )  $\mathcal{P} = \wp \mathbb{C} \bigcup \mathcal{P} = \neg_{\mathbf{g}} \mathcal{P}$





### Exemples

■ 
$$\mathfrak{L}_{\mathbf{q}}(\mathsf{sleep}) = \lambda x^e$$
.  $\wp(\lambda w. \mathsf{sleep}\ w\ x)$ 

$$\blacksquare$$
 ( $\mathbb{E} \neg_{\mathbf{i}}$ )  $\mathcal{P} = \wp \mathbb{C} \bigcup \mathcal{P} = \neg_{\mathbf{g}} \mathcal{P}$ 

$$\blacksquare \ \mathcal{P}\left(\mathbb{E} \wedge_{i}\right)\mathcal{Q} = \wp\left(\left(\bigcup \mathcal{P}\right)\right) \cap \left(\bigcup \mathcal{Q}\right) \cong_{\mathbf{q}} ! \mathcal{P} \wedge_{\mathbf{q}} ! \mathcal{Q}$$

$$\blacksquare (\mathbb{E} \mathbf{K}) x \mathcal{P} \cong_{\mathbf{q}} \mathbf{K}_{\mathbf{q}} x ! \mathcal{P}$$

$$\Rightarrow$$
 on peut redéfinir  $\mathfrak{L}_{f q}(\wedge)=\wedge_{f q}$  et  $\mathfrak{L}_{f q}({f K})={f K}_{f q}$ 





### Exemples

■ 
$$\mathfrak{L}_{\mathbf{q}}(\mathsf{sleep}) = \lambda x^{\mathsf{e}}$$
.  $\wp(\lambda w. \mathsf{sleep}\ w\ x)$ 

$$\blacksquare$$
 ( $\mathbb{E} \neg_{\mathbf{i}}$ )  $\mathcal{P} = \wp \mathbb{C} \bigcup \mathcal{P} = \neg_{\mathbf{q}} \mathcal{P}$ 

$$\blacksquare \ \mathcal{P}\left(\mathbb{E} \wedge_{i}\right)\mathcal{Q} = \wp\left(\left(\bigcup \mathcal{P}\right)\right) \cap \left(\bigcup \mathcal{Q}\right) \cong_{\mathbf{q}} ! \mathcal{P} \wedge_{\mathbf{q}} ! \mathcal{Q}$$

$$\blacksquare (\mathbb{E} \mathbf{K}) x \mathcal{P} \cong_{\mathbf{q}} \mathbf{K}_{\mathbf{q}} x ! \mathcal{P}$$

$$\Rightarrow$$
 on peut redéfinir  $\mathfrak{L}_{f q}(\wedge)=\wedge_{f q}$  et  $\mathfrak{L}_{f q}({f K})={f K}_{f q}$ 

$$\mathbb{P} \left( \mathbb{E} \vee_{\mathbf{i}} \right) \mathcal{Q} = \wp \left( \left( \bigcup \mathcal{Q} \right) \cup \left( \bigcup \mathcal{R} \right) \right) \neq ! \mathcal{P} \vee_{\mathbf{q}} ! \mathcal{Q}$$

$$= ! (\mathcal{P} \vee_{\mathbf{q}} \mathcal{Q})$$





### Conclusion

#### Ma contribution

- Plongement de la sémantique intentionnelle en sémantique inquisitrice
- Extension du théorème d'extension conservatrice à la conséquence logique
- Analyse syntaxique des questions françaises avec une grammaire catégorielle abstraite

#### Perspectives futures

- Améliorer l'analyse syntaxique
- Affaiblir les conditions du théorème en utilisant la théorie des catégories

11 / 11

- Ivano Ciardelli, Floris Roelofsen, and Nadine Theiler. Composing alternatives. Linguistics and Philosophy, 40(1):1–36, February 2017. ISSN 1573-0549. doi: 10.1007/s10988-016-9195-2.
- [2] Philippe de Groote. On Logical Relations and Conservativity. In EPiC Series in Computing, volume 32, pages 1–11. EasyChair, July 2015. doi: 10.29007/gwlt.
- [3] Irene Heim and Angelika Kratzer. Semantics in Generative Grammar. Blackwell, 1998.
- [4] Richard Montague. English as a Formal Language. De Gruyter Mouton, 1970. ISBN 978-3-11-154621-6.