Quantification across scales

class - 3 (8.8.24)

LS2103 (Autumn 2024)

Dr. Neelanjana Sengupta Associate Professor, DBS

https://www.iiserkol.ac.in/~n.sengupta/

Orders of Magnitude

How would you compare the "rate of movement" of E. coli with that of fastest humans?

E. coli

- Speed: ~20 μm/s
- ~10 body lengths/s
- Water: 'high resistance' medium

Average walker

- Speed: ~1.3 m/s
- ~1 body length/s
- Air: 'low resistance'

'Fastest' humans (outliers)

- Speed: ~12.4 m/s
- ~10 body lengths/s
- Air: 'low resistance'

Table 1.1: Rules of thumb for biological estimates.

	Quantity of interest	Symbol	Rule of thumb	
E. coli				
	Cell volume Cell mass Cell cycle time Cell surface area Macromolecule concentration in cytoplasm Genome length Swimming speed	V _{E. coli} m _{E. coli} t _{E. coli} A _{E. coli} c _{E. coli} c _{E. coli} N ^{E. coli} bp V _{E. coli}	$\approx 1 \mu\text{m}^3$ $\approx 1 pg$ $\approx 3000 s$ $\approx 6 \mu\text{m}^2$ $\approx 300 mg/mL$ $\approx 5 \times 10^6 bp$ $\approx 20 \mu\text{m/s}$	
Yeast				
	Volume of cell Mass of cell Diameter of cell Cell cycle time Genome length	V _{yeast} m _{yeast} d _{yeast} t _{yeast} N ^{yeast} Nbp	≈60 µm ³ ≈60 pg ≈5 µm ≈200 min ≈10 ⁷ bp	
Organelles				
	Diameter of nucleus Length of mitochondrion Diameter of transport vesicles	d _{nucleus} I _{mito} d _{vesicle}	≈5 µm ≈2 µm ≈50 nm	

Surface-to-Volume ratios of organisms (in general)

In general, for any entity of spatial scale 's',
$$\frac{S}{V} \propto \frac{1}{r} \qquad \qquad \frac{S}{V}$$

$$\frac{S}{V} \propto \frac{1}{r} \qquad \qquad \frac{S}{V}$$

$$\frac{S}{V} \propto \frac{1}{r} \qquad \qquad \frac{S}{V} \propto \frac{1}{r} \qquad \qquad \frac{10^{-6} \text{m}}{V} \sim 10^{-6} \text{m}} \sim 10^{-6} \text{m}$$

$$\frac{V_{\text{nicellular}}}{V_{\text{organisms}}} \sim \frac{V_{\text{organisms}}}{V_{\text{organisms}}} \sim \frac{V_{\text{organisms}}}{V_{\text{organisms$$

- The (S/A) ratio is high for prokaryotes
- It reduces in complex multicellular organisms
 - It is not very sensitive to size in multi-cellular organisms

Table 1.1: Rules of thumb for biological estimates.

THE THE	nes or triumb for brotogrear estimates.			
	Quantity of interest	Symbol	Rule o	f thumb
Water				
	Volume of molecule Density of water Viscosity of water		V _{H2} Ο ρ η	\approx 10 ^{−2} nm ³ 1 g/cm ³ \approx 1 centipoise (10 ^{−2} g/(cm s))
	Hydrophobic embedding energy		≈E _{hydr}	2500 cal/(mol nm ²)

- What is the approx. radius of water molecule?
- What is the "E_{hydr}" given above?

Table 1.1: Rules of thumb for biological estimates.

		3			
		Quantity of interest	Symbol	Rule of thumb	
Amino	acids and				
proteir	ns				
		Radius of "average" protein Volume of "average" protein Mass of "average" amino acid Mass of "average" protein Protein concentration in cytoplasm		r _{protein} V _{protein} M _{aa} M _{protein} C	≈2 nm ≈25 nm ³ ≈100 Da ≈30,000 Da ≈150 mg/mL
		Characteristic force of protein motor		F _{motor}	≈5 pN
		Characteristic speed of protein motor		v _{motor}	≈200 nm/s
		Diffusion constant of "average" protein in cytoplasm		D _{protein}	$\approx 10 \mu m^2/s$

• How does mass of a typical amino acid, and a typical protein, compare with mass of a water molecule?

Table 1.1: Rules of thumb for biological estimates.

	Quantity of interest	Symbol	Rule of thumb	
Lipid bilayers				
	Thickness of lipid bilayer Area per molecule Mass of lipid molecule		d A _{lipid} m _{lipid}	\approx 5 nm $\approx \frac{1}{2}$ nm ² \approx 800 Da

- Consider that a protein of radius 1 nm displaces water to embed into a lipid bilayer.
- Estimate the energetic cost in kcal/mol.

DNA			
	Length per base pair	I _{bp}	≈1/3 nm
	Volume per base pair	V _{bp}	≈1 nm ³
	Charge density	λ _{DNA}	2 e/0.34 nm
	Persistence length	∮p	50 nm

Numerical estimates: pH

 $pH = -log_{10}[H^+]$

Eukaryotic cell: typical pH values of subcellular compartments

Numerical estimates: pH

 $pH = -log_{10}[H^+]$

HW. Calculate the number of H⁺ ions for a lysosome of radius 500 nm at steady state

B. ATP hydrolysis: "Energy currency" in Biology

Note: Values may fluctuate (within the order of magnitude)

Eg. Enzymatic reactions

By what factor does the rate change?

Bjerrum length (λ_R **):** Distance between charges where the electrostatic interactions are comparable to thermal energy (k_BT)

$$\lambda_B = rac{e^2}{4\pi\epsilon_0\epsilon_r k_B T}$$
 e: Elementary charge

- Show that the equation is dimensionally correct.
- Find $\lambda_{\rm B}$ at 300 K in water ($\epsilon_r \sim 80$)

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \, N \, m^2 C^2$$

Dimensional Analysis

Extracting mathematical relationships between physical quantities

Fundamental Quantity	Dimension	SI Units
Mass	[M]	Kilograms (kg)
Length	[L]	Metre (m)
Time	[T]	Second (s)
Charge	[Q]	Coulomb (C)
Temperature	[K]	Kelvin (K)

$$A \ [M]^{\alpha} \ [L]^{\beta} \ [T]^{\gamma} \ [Q]^{\delta} \ [K]^{\kappa} \ = B \ [M]^{\pi} \ [L]^{\theta} \ [T]^{\rho} \ [Q]^{\sigma} \ [K]^{\upsilon}$$

Dimensional Analysis: examples

 $A [M]^{\alpha} [L]^{\beta} [T]^{\gamma} [Q]^{\delta} [K]^{\kappa} = B [M]^{\pi} [L]^{\theta} [T]^{\rho} [Q]^{\sigma} [K]^{\upsilon}$

1. Natural frequency of a simple spring

Find the dependence of Time Period (τ) and Frequency (ν) on the spring's characteristic parameters using dim. analys.

Start with known physics (Hooke's Law):

$$F = K X$$

Dimensional Analysis: examples

- 2. Based on Coulomb's Law, find:
- Dimensions of the medium characteristic 'k'
- What should be the S.I units of 'k□?

Bjerrum length (λ_B **):** Distance between charges where the electrostatic interaction is comparable to thermal energy (*RT*)

Biomolecules often exist and function in highly charged environments https://www.youtube.com/watch?v=4Z4KwuUfh0A

