ESO 205A (P)

Nature and Properties of Materials

Interaction session: 6:30 – 7:20 pm Thursdays

Nilesh Prakash Gurao

Associate Professor

Department of Materials Science and Engineering
Indian Institute of Technology Kanpur
Co-ordinates: FB-408, 6688, 8756562710, npgurao@iitk.ac.in

Module 1

Crystal structure and X-ray diffraction

14 Bravais lattice in 3D

- 7 crystal classes
 Cubic (P, I, F)
 Tetragonal (P, I)
 Orthorhombic (P, I, B, F)
 Rhombohedral (P)
 Hexagonal (P)
 Monoclinic (P, B)
 Triclinic (P)
- 4 type of unit cells
 Primitive (P)
 Body centered (I)
 Base centered (A, B, C)
 Face centered (F)

Crystal systems

Minimum Symmetry

Crystal System:	Minimum Symmetry:
Triclinic	No Symmetry
Monoclinic	1 A2
Trigonal	1 A3
Tetragonal	1 A4
Hexagonal	1 A6
Orthorhombic	3 A2
Cubic	4 A3

Crystal System	Axial and Angular Relationships	Bravais Lattice*	No. of lattice points/cell
	$a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$	Simple Cubic (P)	1
Cubic		Body Centred Cubic (I)	2
		Face Centred Cubic (F)	4
Tetragonal	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	Simple Tetragonal (P)	1
		Body Centred Tetragonal (I)	2
	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	Simple Orthorhombic (P)	1
Orthorhombic		Body Centred Orthorhombic (I)	2
		Base Centred Orthorhombic (C)	2
		Face Centred Orthorhombic (F)	4
Hexagonal	$a = b \neq c$ $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$	Simple Hexagonal (P)	1
Rhombohedral	$a = b = c$ $\alpha = \beta = \gamma \neq 90^{\circ}$	Simple Rhombohedral (P)	1
Monoclinic	$a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$	Simple Monoclinic (P)	1
		Base Centred Monoclinic (C)	2
Triclinic	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Simple Triclinic (P)	1

Number of lattice points per unit cell in 3D

Primitive (P): 1

Body centered (I): 2

Base centered (A, B, C): 2

Face centered (F): 4

Prove to your self that only 14 Bravais lattices are possible

Face centered tetragonal = Body Centered Tetragonal

Voids

Crystallographic directions

- > Red arrow [213]
- Orange arrow [222] not 2 * [111]
- ➤ Green arrow foes not pass through origin so draw a parallel line (dashed) from origin and get [310]

Crystallographic planes

- Crystalline materials in 3D have different crystallographic planes
- Different planes have different properties in the same crystal
- Planes are essentially surfaces
- Number of atoms per plane different
- ➤ Understanding of planes and the sub dimensional information like number of atoms, and planar packing density important
- Same is true for directions

Miller indices for planes

- 1. Intercept with X, Y, and Z axis
- 2. (k, 0, 0); (0, l, 0) and (0, 0, m)
- 3. Determine k/a, l/b, m/c, where a, b, c are lattice parameters along X, Y and Z resp.
- 4. Determine a/k, b/l, c/m
- 5. If fractions then multiply each of these by lowest common multiple (LCM), let say it is N
- Or, if the three numbers have a common factor then divide them with this highest common factor (HCF)

The Miller indices of the plane are

$$\left(\frac{a}{k}N \, \frac{b}{l} N \, \frac{c}{m} N\right)$$

X-ray diffraction

Bragg equation

 $n\lambda = 2d.\sin\theta$

n: Order of reflection

d: Plane spacing

$$= \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

 θ : Bragg Angle

Path difference must be integral multiples of the wavelength for constructive interference

Scattering of X-rays by an unit cell

Reciprocal space Real space Crystal Lattice Reciprocal Lattice Crystal structure — Diffraction pattern Unit cell content Structure factor

Reciprocal space

$$a^* = \frac{b \times c}{a \bullet (b \times c)}$$

 $a^* = \frac{b \times c}{a \bullet (b \times c)}$ Reciprocal lattice of FCC is BCC and vice versa

$$b^* = \frac{c \times a}{a \bullet (b \times c)}$$

$$c^* = \frac{a \times b}{a \bullet (b \times c)}$$

Structure factor

- > Link crystal structure with diffraction pattern
- Position and intensity of peaks $F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)}$
- ➤ Atomic positions decide presence of hkl peak
- \triangleright SC: (0, 0, 0), so all peaks possible
- \triangleright BCC: (0, 0, 0) and (0.5, 0.5, 0.5) so only h+k+l = even peaks possible
- ightharpoonup Remember $e^{2n\pi i}=1$, where n is an integer
- $ightharpoonup e^{p\pi i}=-1$, if p is odd

Bravais Lattice	Reflections possibly present	Reflections necessarily absent
Simple	All	None
Body Centered	(h+k+l): Even	(h+k+l): Odd
Face Centered	h, k, and l unmixed i.e. all odd or all even	h, k, and l: mixed

Permitted Reflections

Simple Cubic	(100), (110), (111), (200), (210), (211), (220), (300), (221)
BCC	(110), (200), (211), (220), (310), (222)
FCC	(111), (200), (220), (311)

Physical interpretation

- ➤ 100 peak in SC not in BCC and FCC
- Bragg equation derivation
- > 100 plan²e in SC has 1 atom (4 * 0.25) for a² area and 200 plane has zero atom for area of a. $d_{100} = 2d_{200} = a$

- Constructive interference between 100 planes so 100 peak in SC
- In BCC 1 atom for a² area for 100 plane and 1 atom per a² area for 200 plane. Destructive interference so no 100 peak but 200 peak
- Similar analogy for FCC

From hkl to theta

- ➤ We can measure 1/10th of a nanometer
- ➤ In fact we can get a precision of 1/1000th of a nanometer

$$ightharpoonup$$
 s = 1, 2, 3...6, 8 for SC (no 7)

$$\triangleright$$
 s = 2, 4, 6, 8 for BCC

$$\lambda = 2dSin\theta$$

$$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$\lambda^2 = \frac{4a^2 \sin^2 \theta}{h^2 + k^2 + l^2}$$

$$(h^2 + k^2 + l^2) = \frac{4a^2}{\lambda^2} \sin^2 \theta$$

$$s = (h^2 + k^2 + l^2) \propto \sin^2 \theta$$

XRD pattern for Cubic Crystals

Intensity of X-ray pattern

- > structure factor (F²)
- polarization factor
- multiplicity factor
- > Lorentz factor
- absorption factor
- > temperature factor

Module 1 Assignment

➤ Visit the webpage and take snapshots of SC, BCC and FCC crystals from different views. Mention the plane or direction along which you are acquiring the snapshot.

https://jeremyberchtold.com/UnitCellVisualizer/

Visualize 4 distinct planes such that h ≠ k ≠ l using this tool

http://calistry.org/calculate/latticePlanesMillerIndices

➤ Index the X-ray diffraction pattern provided in the file. Find the crystal structure and lattice parameter

Stay safe and take care Get vaccinated

Thank you

