```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = "SimHei" #解决中文乱码问题
import seaborn as sns
import random
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
from sklearn import model_selection
from sklearn.neighbors import KNeighborsRegressor
```

缺失值查看预处理

```
df_train =
pd.read_csv(r'C:\Users\gaohao\Downloads\data_format1\train_format1.csv')
df_test = pd.read_csv(r'C:\Users\gaohao\Downloads\data_format1\test_format1.csv')
user_info =
pd.read_csv(r'C:\Users\gaohao\Downloads\data_format1\user_info_format1.csv')
user_log =
pd.read_csv(r'C:\Users\gaohao\Downloads\data_format1\user_log_format1.csv')
print(df_test.shape,df_train.shape)
print(user_info.shape,user_log.shape)
(261477, 3) (260864, 3)
(424170, 3) (54925330, 7)
user_info.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 424170 entries, 0 to 424169
Data columns (total 3 columns):
user_id
          424170 non-null int64
age_range
            421953 non-null float64
            417734 non-null float64
gender
dtypes: float64(2), int64(1)
memory usage: 9.7 MB
user_info.head(10)
```

[6]:

	user_id	age_range	gender
0	376517	6.0	1.0
1	234512	5.0	0.0
2	344532	5.0	0.0
3	186135	5.0	0.0
4	30230	5.0	0.0
5	272389	6.0	1.0
6	281071	4.0	0.0
7	139859	7.0	0.0
8	198411	5.0	1.0
9	67037	4.0	1.0

user_info['age_range'].replace(0.0,np.nan,inplace=True) user_info['gender'].replace(2.0,np.nan,inplace=True) user_info.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 424170 entries, 0 to 424169 Data columns (total 3 columns): user_id 424170 non-null int64 329039 non-null float64 age_range gender 407308 non-null float64 dtypes: float64(2), int64(1) memory usage: 9.7 MB user_info['age_range'].replace(np.nan,-1,inplace=True) user_info['gender'].replace(np.nan,-1,inplace=True) fig = plt.figure(figsize = (10, 6)) x = np.array(["NULL","<18","18-24","25-29","30-34","35-39","40-49",">=50"])#<18岁为1; [18,24]为2; [25,29]为3; [30,34]为4; [35,39]为5; [40,49]为6; > = 50时为7 y = np.array([user_info[user_info['age_range'] == -1]['age_range'].count(), user_info[user_info['age_range'] == 1]['age_range'].count(), user_info[user_info['age_range'] == 2]['age_range'].count(), user_info[user_info['age_range'] == 3]['age_range'].count(), user_info[user_info['age_range'] == 4]['age_range'].count(), user_info[user_info['age_range'] == 5]['age_range'].count(), user_info[user_info['age_range'] == 6]['age_range'].count(),

```
user_info[user_info['age_range'] == 7]['age_range'].count() + user_info[user_info['age_range'] == 8]['age_range'].count()]) plt.bar(x,y,label='人数') plt.legend() plt.title('用户年龄分布')
```

[9]:

Text(0.5, 1.0, '用户年龄分布')

 $sns.countplot(x = 'age_range', order = [-1,1,2,3,4,5,6,7,8], data = user_info)$ plt.title('用户年龄分布')

[10]:

Text(0.5, 1.0, '用户年龄分布')


```
sns.countplot(x='gender',order = [-1,0,1],data = user_info)
plt.title('用户性别分布')
```

[11]:

 $sns.countplot(x = 'age_range', order = [-1,1,2,3,4,5,6,7,8],hue= 'gender',data = user_info) plt.title('用户性别年龄分布')$

[12]:

Text(0.5, 1.0, '用户性别年龄分布')

- 年纪的缺省值不少,性别的缺省值倒是不多。
- 用户年纪主要分布在18-34岁,且主要为女性。
- 缺失值处理的话,先简单处理一下,把缺失值都做删除处理吧,后面继续尝试的话可以试试填充缺 失值
- 后来又注释掉了,没有删,因为这里是原始数据,应该在建立好特征之后再删吧

```
user_info['age_range'].replace(-1,np.nan,inplace=True)
user_info['gender'].replace(-1,np.nan,inplace=True)
#user_info = user_info.dropna()
#user_info.info()
sns.countplot(x = 'age_range', order = [-1,1,2,3,4,5,6,7,8],hue= 'gender',data = user_info)
plt.title('用户性别年龄分布')
```

[15]:

Text(0.5, 1.0, '用户性别年龄分布')

user_log.head()

[16]:

	user_id	item_id	cat_id	seller_id	brand_id	time_stamp	action_type
0	328862	323294	833	2882	2661.0	829	0
1	328862	844400	1271	2882	2661.0	829	0
2	328862	575153	1271	2882	2661.0	829	0
3	328862	996875	1271	2882	2661.0	829	0
4	328862	1086186	1271	1253	1049.0	829	0

user_log.isnull().sum(axis=0)

[17]:

```
user_id
                 0
                 0
,item_id
                 0
,cat_id
,seller_id
                0
,brand_id 91015
                0
,time_stamp
,action_type
                 0
,dtype: int64
#user_log = user_log.dropna()
user_log.isnull().sum(axis=0)
```

[18]:

```
user_id
                0
                 0
,item_id
                 0
,cat_id
,seller_id
             0
,brand_id 91015
               0
,time_stamp
                 0
,action_type
,dtype: int64
user_log.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 54925330 entries, 0 to 54925329
Data columns (total 7 columns):
user_id int64
item_id int64
cat_id int64
seller_id int64
brand_id float64
time_stamp
           int64
action_type int64
dtypes: float64(1), int64(6)
memory usage: 2.9 GB
```

- 这里对于用户日志里的商品品牌的缺失也做了删除处理,反正也不多是不是
- 没删,没删

初步可视化

● user_log前面几行全是编码,购物者的唯一ID编码,商品的唯一编码,商品所属品类的唯一编码,商家的唯一ID编码,商品品牌的唯一编码

• 后面是购买时间,与活动日志记录

```
df_train.head(10)
```

[20]:

......

	user_id	merchant_id	label
0	34176	3906	0
1	34176	121	0
2	34176	4356	1
3	34176	2217	0
4	230784	4818	0
5	362112	2618	0
6	34944	2051	0
7	231552	3828	1
8	231552	2124	0
9	232320	1168	0

df_train.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 260864 entries, 0 to 260863

Data columns (total 3 columns):

user_id 260864 non-null int64

merchant_id 260864 non-null int64

label 260864 non-null int64

dtypes: int64(3)

memory usage: 6.0 MB

user_log['time_stamp'].hist(bins = 9)

[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a59a849438>

• 618和双十一购买的东西最多

```
sns.countplot(x = 'action_type', order = [0,1,2,3], data = user_log)
```

[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x2a59a9b9c50>

• 绝大多数都是单击,加入购物车的动作很少,比购买和收藏的动作还要少

特征工程

```
df_train[df_train['label'] == 1]

[24]:
```

	user_id	merchant_id	label
2	34176	4356	1
7	231552	3828	1
53	306816	1489	1
57	176256	3323	1
59	307584	1340	1
69	309120	4775	1
89	247680	3990	1
90	182400	3938	1
102	53376	839	1
150	127104	4048	1
153	324480	2891	1
154	259200	4048	1
195	269184	4992	1
196	7296	4976	1
204	205440	3472	1
224	340608	2537	1
239	408192	1093	1
305	28032	4044	1
321	97152	361	1
333	165249	1487	1
346	363393	1255	1
361	104577	4005	1
367	368001	2217	1
390	43905	3835	1
392	44673	4976	1
401	111489	608	1
417	114561	4043	1
432	117633	2403	1
439	250497	3889	1
440	250497	3319	1

	user_id	merchant_id	label
260298	319358	191	1
260306	59774	1393	1
260308	387710	10	1
260312	388478	415	1
260337	261758	4536	1
260346	638	191	1
260366	136574	641	1
260405	274814	3363	1
260413	341630	2592	1
260422	212606	1892	1
260427	409982	4525	1
260449	87422	503	1
260453	88190	3266	1
260485	28286	1203	1
260504	162686	1885	1
260515	165503	4701	1
260593	376703	1031	1
260597	311423	3936	1
260603	312959	2928	1
260613	52607	4648	1
260615	53375	3828	1
260618	316031	2031	1
260624	120959	3323	1
260694	133247	1346	1
260720	268415	2397	1
260747	208511	2592	1
260793	87935	1964	1
260794	87935	3734	1
260799	350591	4394	1

	user_id	merchant_id	label
260842	422783	2026	1

15952 rows × 3 columns

,

```
user_log[(user_log['user_id'] == 34176) & (user_log['seller_id'] == 3906)]
```

[25]:

......

	user_id	item_id	cat_id	seller_id	brand_id	time_stamp	action_type
35905644	34176	757713	821	3906	6268.0	1110	0
35905646	34176	757713	821	3906	6268.0	1110	0
35905672	34176	757713	821	3906	6268.0	1110	0
35905696	34176	718096	1142	3906	6268.0	1031	3
35905720	34176	757713	821	3906	6268.0	1031	3
35905791	34176	613698	821	3906	6268.0	1021	0
35905804	34176	757713	821	3906	6268.0	1108	0
35905824	34176	757713	821	3906	6268.0	1029	0
35905830	34176	1093165	1397	3906	6268.0	1027	0
35905831	34176	898580	662	3906	6268.0	1027	0
35905832	34176	569051	1577	3906	6268.0	1027	0
35905834	34176	185202	821	3906	6268.0	1027	0
35905876	34176	757713	821	3906	6268.0	1111	2
35905886	34176	757713	821	3906	6268.0	1111	0
35905895	34176	757713	821	3906	6268.0	1111	0
35905900	34176	757713	821	3906	6268.0	1111	0
35905960	34176	757713	821	3906	6268.0	1107	0
35905966	34176	757713	821	3906	6268.0	1107	0
35905995	34176	965699	662	3906	6268.0	1027	0
35905996	34176	187402	1577	3906	6268.0	1027	0
35905999	34176	757713	821	3906	6268.0	1027	0

	user_id	item_id	cat_id	seller_id	brand_id	time_stamp	action_type
35906001	34176	569051	1577	3906	6268.0	1027	0
35906005	34176	702940	662	3906	6268.0	1027	0
35906007	34176	832131	662	3906	6268.0	1027	0
35906008	34176	48054	302	3906	6268.0	1027	0
35906009	34176	757713	821	3906	6268.0	1027	0
35906011	34176	320263	662	3906	6268.0	1027	0
35906012	34176	468438	821	3906	6268.0	1027	0
35906013	34176	963534	821	3906	6268.0	1027	0
35906014	34176	613698	821	3906	6268.0	1027	0
35906016	34176	757713	821	3906	6268.0	1027	0
35906017	34176	963534	821	3906	6268.0	1027	0
35906020	34176	157439	662	3906	6268.0	1027	0
35906021	34176	475546	1397	3906	6268.0	1027	0
35906023	34176	246109	821	3906	6268.0	1027	0
35906025	34176	757713	821	3906	6268.0	1027	0
35906026	34176	523545	662	3906	6268.0	1027	0
35906027	34176	198962	1577	3906	6268.0	1027	0
35906085	34176	613698	821	3906	6268.0	1020	0

想要建立的特征

需要根据user_id,和merchant_id(seller_id),从用户画像表以及用户日志表中提取特征,填写到df_train这个数据框中,从而训练评估模型需要建立的特征如下:

- 用户的年龄(age_range)
- 用户的性别(gender)
- 某用户在该商家日志的总条数(total_logs)
- 用户浏览的商品的数目,就是浏览了多少个商品(unique_item_ids)
- 浏览的商品的种类的数目,就是浏览了多少种商品(categories)
- 用户浏览的天数(browse_days)
- 用户单击的次数(one_clicks)
- 用户添加购物车的次数(shopping_carts)
- 用户购买的次数(purchase_times)
- 用户收藏的次数(favourite_times)

df_train.head()

	user_id	merchant_id	label
0	34176	3906	0
1	34176	121	0
2	34176	4356	1
3	34176	2217	0
4	230784	4818	0

,

user_info.head()

[27]:

......

	user_id	age_range	gender
0	376517	6.0	1.0
1	234512	5.0	0.0
2	344532	5.0	0.0
3	186135	5.0	0.0
4	30230	5.0	0.0

,

user_log.head()

[28]:

	user_id	item_id	cat_id	seller_id	brand_id	time_stamp	action_type
0	328862	323294	833	2882	2661.0	829	0
1	328862	844400	1271	2882	2661.0	829	0
2	328862	575153	1271	2882	2661.0	829	0
3	328862	996875	1271	2882	2661.0	829	0
4	328862	1086186	1271	1253	1049.0	829	0

age_range,gender特征添加

```
df_train = pd.merge(df_train,user_info,on="user_id",how="left")
df_train.head()
```

[29]:

......

	user_id	merchant_id	label	age_range	gender
0	34176	3906	0	6.0	0.0
1	34176	121	0	6.0	0.0
2	34176	4356	1	6.0	0.0
3	34176	2217	0	6.0	0.0
4	230784	4818	0	NaN	0.0

,

total_logs特征添加

```
total_logs_temp =
user_log.groupby([user_log["user_id"],user_log["seller_id"]]).count().reset_index
()[["user_id","seller_id","item_id"]]
total_logs_temp.head(10)
```

[31]:

......

	user_id	seller_id	item_id
0	1	471	1
1	1	739	1
2	1	925	4
3	1	1019	14
4	1	1156	1
5	1	2245	5
6	1	4026	5
7	1	4177	1
8	1	4335	1
9	2	420	26

```
total_logs_temp.rename(columns=
{"seller_id":"merchant_id","item_id":"total_logs"},inplace=True)
total_logs_temp.head()
```

[32]:

	user_id	merchant_id	total_logs
0	1	471	1
1	1	739	1
2	1	925	4
3	1	1019	14
4	1	1156	1

,

```
df_train = pd.merge(df_train,total_logs_temp,on=
["user_id","merchant_id"],how="left")
df_train.head()
```

[33]:

......

	user_id	merchant_id	label	age_range	gender	total_logs
0	34176	3906	0	6.0	0.0	39
1	34176	121	0	6.0	0.0	14
2	34176	4356	1	6.0	0.0	18
3	34176	2217	0	6.0	0.0	2
4	230784	4818	0	NaN	0.0	8

unique_item_ids特征添加

```
unique_item_ids_temp =
user_log.groupby([user_log["user_id"],user_log["seller_id"],user_log["item_id"]])
.count().reset_index()[["user_id","seller_id","item_id"]]
unique_item_ids_temp.head(10)
```

	user_id	seller_id	item_id
0	1	471	638653
1	1	739	556107
2	1	925	504149
3	1	1019	1110495
4	1	1156	896183
5	1	2245	181459
6	1	2245	452837
7	1	2245	543397
8	1	2245	779078
9	1	4026	112203

,

```
unique_item_ids_temp1 =
unique_item_ids_temp.groupby([unique_item_ids_temp["user_id"],unique_item_ids_tem
p["seller_id"]]).count().reset_index()
unique_item_ids_temp1.head(10)
```

[37]:

	user_id	seller_id	item_id
0	1	471	1
1	1	739	1
2	1	925	1
3	1	1019	1
4	1	1156	1
5	1	2245	4
6	1	4026	1
7	1	4177	1
8	1	4335	1
9	2	420	15

```
unique_item_ids_temp1.rename(columns=
{"seller_id":"merchant_id","item_id":"unique_item_ids"},inplace=True)
unique_item_ids_temp1.head(10)
```

[39]:

	user_id	merchant_id	unique_item_ids
0	1	471	1
1	1	739	1
2	1	925	1
3	1	1019	1
4	1	1156	1
5	1	2245	4
6	1	4026	1
7	1	4177	1
8	1	4335	1
9	2	420	15

```
df_train = pd.merge(df_train,unique_item_ids_temp1,on=
["user_id","merchant_id"],how="left")
df_train.head()
```

[40]:

......

	user_id	merchant_id	label	age_range	gender	total_logs	unique_item_ids
0	34176	3906	0	6.0	0.0	39	20
1	34176	121	0	6.0	0.0	14	1
2	34176	4356	1	6.0	0.0	18	2
3	34176	2217	0	6.0	0.0	2	1
4	230784	4818	0	NaN	0.0	8	1

categories特征构建

```
categories_temp =
user_log.groupby([user_log["user_id"],user_log["seller_id"],user_log["cat_id"]]).
count().reset_index()[["user_id","seller_id","cat_id"]]
categories_temp.head(20)
```

[42]:		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

	user_id	seller_id	cat_id
0	1	471	389
1	1	739	1252
2	1	925	1023
3	1	1019	992
4	1	1156	1256
5	1	2245	276
6	1	4026	1252
7	1	4177	1252
8	1	4335	389
9	2	420	602
10	2	420	1213
11	2	1179	500
12	2	1544	737
13	2	1679	1130
14	2	1784	420
15	2	1816	276
16	2	1974	737
17	2	1974	1326
18	2	2076	703
19	2	2194	276

```
categories_temp1 =
categories_temp.groupby([categories_temp["user_id"],categories_temp["seller_id"]]
).count().reset_index()
categories_temp1.head(10)
```

[43]:

......

	user_id	seller_id	cat_id
0	1	471	1
1	1	739	1
2	1	925	1
3	1	1019	1
4	1	1156	1
5	1	2245	1
6	1	4026	1
7	1	4177	1
8	1	4335	1
9	2	420	2

,

```
categories_temp1.rename(columns=
{"seller_id":"merchant_id","cat_id":"categories"},inplace=True)
categories_temp1.head(10)
```

[44]:

......

	user_id	merchant_id	categories
0	1	471	1
1	1	739	1
2	1	925	1
3	1	1019	1
4	1	1156	1
5	1	2245	1
6	1	4026	1

	user_id	merchant_id	categories
7	1	4177	1
8	1	4335	1
9	2	420	2

,

```
df_train = pd.merge(df_train,categories_temp1,on=
["user_id","merchant_id"],how="left")
df_train.head(10)
```

[46]:

	user_id	merchant_id	label	age_range	gender	total_logs	unique_item_ids	categories
0	34176	3906	0	6.0	0.0	39	20	6
1	34176	121	0	6.0	0.0	14	1	1
2	34176	4356	1	6.0	0.0	18	2	1
3	34176	2217	0	6.0	0.0	2	1	1
4	230784	4818	0	NaN	0.0	8	1	1
5	362112	2618	0	4.0	1.0	1	1	1
6	34944	2051	0	5.0	0.0	3	2	1
7	231552	3828	1	5.0	0.0	83	48	15
8	231552	2124	0	5.0	0.0	7	4	1
9	232320	1168	0	4.0	1.0	4	1	1

browse_days特征构建

```
browse_days_temp =
user_log.groupby([user_log["user_id"],user_log["seller_id"],user_log["time_stamp"
]]).count().reset_index()[["user_id","seller_id","time_stamp"]]
browse_days_temp.head(10)
```

[48]:

	user_id	seller_id	time_stamp
0	1	471	1111
1	1	739	1018

	user_id	seller_id	time_stamp
2	1	925	1011
3	1	1019	1111
4	1	1156	1111
5	1	2245	1009
6	1	4026	1018
7	1	4026	1021
8	1	4177	1018
9	1	4335	1111

,

```
browse_days_temp1 =
browse_days_temp.groupby([browse_days_temp["user_id"],browse_days_temp["seller_id
"]]).count().reset_index()
browse_days_temp1.head(10)
```

[49]:

	user_id	seller_id	time_stamp
0	1	471	1
1	1	739	1
2	1	925	1
3	1	1019	1
4	1	1156	1
5	1	2245	1
6	1	4026	2
7	1	4177	1
8	1	4335	1
9	2	420	1

```
browse_days_temp1.rename(columns=
{"seller_id":"merchant_id","time_stamp":"browse_days"},inplace=True)
browse_days_temp1.head(10)
```

.....

	user_id	merchant_id	browse_days
0	1	471	1
1	1	739	1
2	1	925	1
3	1	1019	1
4	1	1156	1
5	1	2245	1
6	1	4026	2
7	1	4177	1
8	1	4335	1
9	2	420	1

,

```
df_train = pd.merge(df_train,browse_days_temp1,on=
["user_id","merchant_id"],how="left")
df_train.head(10)
```

[52]:

......

......

browse_days
9
3
2
1
3
1
1
3
1
2

one_clicks、shopping_carts、purchase_times、favourite_times特征构建

```
one_clicks_temp =
user_log.groupby([user_log["user_id"],user_log["seller_id"],user_log["action_type
"]]).count().reset_index()[["user_id","seller_id","action_type","item_id"]]
one_clicks_temp.head(10)
```

[54]:

	user_id	seller_id	action_type	item_id
0	1	471	0	1
1	1	739	0	1
2	1	925	0	3
3	1	925	2	1
4	1	1019	0	10
5	1	1019	2	4
6	1	1156	0	1
7	1	2245	0	5
8	1	4026	0	4
9	1	4026	2	1

,

```
one_clicks_temp.rename(columns=
{"seller_id":"merchant_id","item_id":"times"},inplace=True)
one_clicks_temp.head(10)
```

[56]:

......

	user_id	merchant_id	action_type	times
0	1	471	0	1
1	1	739	0	1
2	1	925	0	3
3	1	925	2	1
4	1	1019	0	10

	user_id	merchant_id	action_type	times
5	1	1019	2	4
6	1	1156	0	1
7	1	2245	0	5
8	1	4026	0	4
9	1	4026	2	1

,

```
one_clicks_temp["one_clicks"] = one_clicks_temp["action_type"] == 0
one_clicks_temp["one_clicks"] = one_clicks_temp["one_clicks"] *
one_clicks_temp["times"]
one_clicks_temp.head(10)
```

[59]:

......

, , , ,

	user_id	merchant_id	action_type	times	one_clicks
0	1	471	0	1	1
1	1	739	0	1	1
2	1	925	0	3	3
3	1	925	2	1	0
4	1	1019	0	10	10
5	1	1019	2	4	0
6	1	1156	0	1	1
7	1	2245	0	5	5
8	1	4026	0	4	4
9	1	4026	2	1	0

```
one_clicks_temp["shopping_carts"] = one_clicks_temp["action_type"] == 1
one_clicks_temp["shopping_carts"] = one_clicks_temp["shopping_carts"] *
one_clicks_temp["times"]
one_clicks_temp.head(10)
```

,,,,,,,,,,,,,,,,,

	user_id	merchant_id	action_type	times	one_clicks	shopping_carts
0	1	471	0	1	1	0
1	1	739	0	1	1	0
2	1	925	0	3	3	0
3	1	925	2	1	0	0
4	1	1019	0	10	10	0
5	1	1019	2	4	0	0
6	1	1156	0	1	1	0
7	1	2245	0	5	5	0
8	1	4026	0	4	4	0
9	1	4026	2	1	0	0

,

```
one_clicks_temp["purchase_times"] = one_clicks_temp["action_type"] == 2
one_clicks_temp["purchase_times"] = one_clicks_temp["purchase_times"] *
one_clicks_temp["times"]
one_clicks_temp.head(10)
```

[65]:

......

	user_id	merchant_id	action_type	times	one_clicks	shopping_carts	purchase_times
	user_iu	merchant_iu	action_type	tilles	Offe_Clicks	Shopping_carts	purchase_times
0	1	471	0	1	1	0	0
1	1	739	0	1	1	0	0
2	1	925	0	3	3	0	0
3	1	925	2	1	0	0	1
4	1	1019	0	10	10	0	0
5	1	1019	2	4	0	0	4
6	1	1156	0	1	1	0	0
7	1	2245	0	5	5	0	0
8	1	4026	0	4	4	0	0
9	1	4026	2	1	0	0	1

```
one_clicks_temp["favourite_times"] = one_clicks_temp["action_type"] == 3
one_clicks_temp["favourite_times"] = one_clicks_temp["favourite_times"] *
one_clicks_temp["times"]
one_clicks_temp.head(10)
```

[68]:

......

	user_id	merchant_id	action_type	times	one_clicks	shopping_carts	purchase_times	favourite_times
0	1	471	0	1	1	0	0	0
1	1	739	0	1	1	0	0	0
2	1	925	0	3	3	0	0	0
3	1	925	2	1	0	0	1	0
4	1	1019	0	10	10	0	0	0
5	1	1019	2	4	0	0	4	0
6	1	1156	0	1	1	0	0	0
7	1	2245	0	5	5	0	0	0
8	1	4026	0	4	4	0	0	0
9	1	4026	2	1	0	0	1	0

,

```
four_features =
one_clicks_temp.groupby([one_clicks_temp["user_id"],one_clicks_temp["merchant_id"
]]).sum().reset_index()
four_features.head(10)
```

[71]:

......

	user_id	merchant_id	action_type	times	one_clicks	shopping_carts	purchase_times	favourite_times
0	1	471	0	1	1	0	0	0
1	1	739	0	1	1	0	0	0
2	1	925	2	4	3	0	1	0
3	1	1019	2	14	10	0	4	0
4	1	1156	0	1	1	0	0	0
5	1	2245	0	5	5	0	0	0
6	1	4026	2	5	4	0	1	0
7	1	4177	0	1	1	0	0	0
8	1	4335	0	1	1	0	0	0
9	2	420	2	26	23	0	3	0

```
four_features = four_features.drop(["action_type","times"], axis=1)

df_train = pd.merge(df_train,four_features,on=
["user_id","merchant_id"],how="left")

df_train.head(10)
```

[74]:

,

	user_id	merchant_id	label	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times
0	34176	3906	0	6.0	0.0	39	20	6	9	36	0	1	2
1	34176	121	0	6.0	0.0	14	1	1	3	13	0	1	0
2	34176	4356	1	6.0	0.0	18	2	1	2	12	0	6	0
3	34176	2217	0	6.0	0.0	2	1	1	1	1	0	1	0
4	230784	4818	0	NaN	0.0	8	1	1	3	7	0	1	0
5	362112	2618	0	4.0	1.0	1	1	1	1	0	0	1	0
6	34944	2051	0	5.0	0.0	3	2	1	1	2	0	1	0
7	231552	3828	1	5.0	0.0	83	48	15	3	78	0	5	0
8	231552	2124	0	5.0	0.0	7	4	1	1	6	0	1	0
9	232320	1168	0	4.0	1.0	4	1	1	2	2	0	1	1

建立好的特征的缺失值处理

df_train.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 260864 entries, 0 to 260863 Data columns (total 13 columns): user_id 260864 non-null int64 merchant_id 260864 non-null int64 label 260864 non-null int64 203802 non-null float64 age_range gender 250170 non-null float64 260864 non-null int64 total_logs unique_item_ids 260864 non-null int64 categories 260864 non-null int64 browse_days 260864 non-null int64 one_clicks 260864 non-null int64 shopping_carts 260864 non-null int64 purchase_times 260864 non-null int64

```
favourite_times 260864 non-null int64

dtypes: float64(2), int64(11)

memory usage: 27.9 MB

df_train.isnull().sum(axis=0)
```

[76]:

```
user_id
                      0
,merchant_id
                       0
,label
                       0
,age_range
                   57062
                   10694
,gender
total_logs,
,unique_item_ids
,categories
,browse_days
                       0
one_clicks,
,shopping_carts
,purchase_times
                       0
,favourite_times
,dtype: int64
df_train = df_train.fillna(method='ffill')
# 缺失值向前填充
df_train.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 260864 entries, 0 to 260863
Data columns (total 13 columns):
user_id
                 260864 non-null int64
merchant_id 260864 non-null int64
label
                  260864 non-null int64
                 260864 non-null float64
age_range
gender
                  260864 non-null float64
                 260864 non-null int64
total_logs
unique_item_ids
                  260864 non-null int64
categories
                 260864 non-null int64
browse_days
                  260864 non-null int64
one_clicks
                  260864 non-null int64
shopping_carts
                 260864 non-null int64
```

```
purchase_times 260864 non-null int64

favourite_times 260864 non-null int64

dtypes: float64(2), int64(11)

memory usage: 27.9 MB
```

特征可视化

```
plt.style.use('ggplot')
sns.countplot(x = 'age_range', order = [1,2,3,4,5,6,7,8],hue= 'gender',data = df_train)
plt.title('训练集用户性别年龄分布')
```

[79]:

```
Text(0.5, 1.0, '训练集用户性别年龄分布')
```



```
colnm = df_train.columns.tolist()
print(colnm)
plt.figure(figsize = (5, 4))
color = sns.color_palette()

df_train[colnm[5]].hist(range=[0,80],bins = 80,color = color[1])
plt.xlabel(colnm[5],fontsize = 12)
plt.ylabel('用户数')
['user_id', 'merchant_id', 'label', 'age_range', 'gender', 'total_logs',
'unique_item_ids', 'categories', 'browse_days', 'one_clicks', 'shopping_carts',
'purchase_times', 'favourite_times']
```

[80]:

```
Text(0, 0.5, '用户数')
```



```
df_train[colnm[6]].hist(range=[0,40],bins = 40,color = color[1])
plt.xlabel(colnm[6],fontsize = 12)
plt.ylabel('用户数')
```

[81]:

Text(0, 0.5, '用户数')


```
df_train[colnm[7]].hist(range=[0,10],bins = 10,color = color[1])
plt.xlabel(colnm[7],fontsize = 12)
plt.ylabel('用户数')
```

[82]:

```
Text(0, 0.5, '用户数')
```



```
df_train[colnm[8]].hist(range=[0,10],bins = 10,color = color[1])
plt.xlabel(colnm[8],fontsize = 12)
plt.ylabel('用户数')
```

[83]:

Text(0, 0.5, '用户数')


```
df_train[colnm[9]].hist(range=[0,50],bins = 50,color = color[1])
plt.xlabel(colnm[9],fontsize = 12)
plt.ylabel('用户单击次数统计')
```

[84]:

Text(0, 0.5, '用户单击次数统计')


```
df_train[colnm[10]].hist(range=[0,3],bins = 3,color = color[1])
plt.xlabel(colnm[10],fontsize = 12)
plt.ylabel('用户数')
```

[85]:

Text(0, 0.5, '用户数')


```
df_train[colnm[11]].hist(range=[0,6],bins = 7,color = color[1])
plt.xlabel(colnm[11],fontsize = 12)
plt.ylabel("用户数")
```

[86]:

```
Text(0, 0.5, '用户数')
```



```
df_train[colnm[12]].hist(range=[0,6],bins = 6,color = color[1])
plt.xlabel(colnm[12],fontsize = 12)
plt.ylabel("用户数")
```

[87]:

Text(0, 0.5, '用户数')


```
plt.figure(figsize = (10,8))
colnm = df_train.columns.tolist()[2:13]
mcorr = df_train[colnm].corr()
# np.zero_like的意思就是生成一个和你所给数组a相同shape的全0数组。
mask = np.zeros_like(mcorr, dtype=np.bool)
# np.triu_indices_from()返回方阵的上三角矩阵的索引
mask[np.triu_indices_from(mask)] = True
cmap = sns.diverging_palette(220, 10, as_cmap=True)
g = sns.heatmap(mcorr, mask=mask, cmap=cmap, square=True, annot=True,fmt='0.2f')
# 相关性好像不大,可是日志里确实也没啥可以用的其他特征了啊
```


模型构建与调参

逻辑斯特模型

```
Y = df_train['label']
X = df_train.drop(['user_id','merchant_id','label'],axis = 1)
X.head(10)
```

[89]:

.....

......

	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times
0	6.0	0.0	39	20	6	9	36	0	1	2
1	6.0	0.0	14	1	1	3	13	0	1	0
2	6.0	0.0	18	2	1	2	12	0	6	0
3	6.0	0.0	2	1	1	1	1	0	1	0
4	6.0	0.0	8	1	1	3	7	0	1	0
5	4.0	1.0	1	1	1	1	0	0	1	0
6	5.0	0.0	3	2	1	1	2	0	1	0
7	5.0	0.0	83	48	15	3	78	0	5	0
8	5.0	0.0	7	4	1	1	6	0	1	0
9	4.0	1.0	4	1	1	2	2	0	1	1

```
Y.head(10)
```

[90]:

```
0
    0
,1 0
, 2
   1
,3 0
, 4
    0
   0
, 5
,6 0
,7 1
, 8
     0
,9
     0
,Name: label, dtype: int64
X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size =
0.25, random\_state = 10)
Logit = LogisticRegression(solver='liblinear')
Logit.fit(X_train, y_train)
Predict = Logit.predict(X_test)
Predict_proba = Logit.predict_proba(X_test)
print(Predict[0:20])
print(Predict_proba[:])
Score = accuracy_score(y_test, Predict)
Score
# 一般的准确率验证方法
[[0.79596485 0.20403515]
 [0.95828116 0.04171884]
 [0.95192756 0.04807244]
 [0.94051927 0.05948073]
 [0.95677735 0.04322265]
 [0.93242882 0.06757118]]
```

[92]:

```
0.9382053483807654
print("lr.coef_: {}".format(Logit.coef_))
print("lr.intercept_: {}".format(Logit.intercept_))
# 截距与斜率
lr.coef_: [[ 0.0494296  -0.09897898  0.01360686  0.01184834  0.07017633  0.06282481
-0.01775597  -0.13624657  0.17884728  -0.01123788]]
lr.intercept_: [-3.47137226]
```

```
#初始化逻辑回归算法
LogRegAlg=LogisticRegression(random_state=1,solver='liblinear')
re = LogRegAlg.fit(X,Y)
#使用sklearn库里面的交叉验证函数获取预测准确率分数
scores = model_selection.cross_val_score(LogRegAlg,X,Y,cv=3)
#使用交叉验证分数的平均值作为最终的准确率
print("准确率为: ",scores.mean())
准确率为: 0.9386998590700669
```

K近邻模型

```
# 模型实例化,并将邻居个数设为3
reg = KNeighborsRegressor(n_neighbors=1000)
# 利用训练数据和训练目标值来拟合模型
reg.fit(X_train, y_train)
print("Test set R^2: {:.2f}".format(reg.score(X_test, y_test)))
Test set R^2: 0.01
```

"这一算法对于有很多特征(几百或更多)的数据集往往效果不好,对于大多数特征的大多数取值都为 0 的数据集(所谓的稀疏数据集)来说,这一算法的效果尤其不好"我的数据里面零很多,果然预测效果很不好,和闹着玩似的

决策树

```
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(max_depth=4, random_state=0)
tree.fit(X_train, y_train)
Predict_proba = tree.predict_proba(X_test)
print(Predict_proba[:])
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))
[[0.89760368 0.10239632]
[0.95837129 0.04162871]
 [0.95837129 0.04162871]
 . . .
 [0.91089364 0.08910636]
 [0.95837129 0.04162871]
 [0.93376113 0.06623887]]
Accuracy on training set: 0.939
Accuracy on test set: 0.938
from sklearn.tree import export_graphviz
export_graphviz(tree, out_file="tree.dot", class_names=["0","1"],
feature_names=X.columns.tolist(), impurity=False, filled=True)
# 我们可以利用 tree 模块的 export_graphviz 函数来将树可视化。这个函数会生成一 个 .dot 格式
的文件,这是一种用于保存图形的文本文件格式。
```

```
# 设置为结点添加颜色 的选项,颜色表示每个结点中的多数类别,同时传入类别名称和特征名称,这样可以对
树正确标记
import graphviz
with open("tree.dot") as f:
    dot_graph = f.read()
graphviz.Source(dot_graph)
```

[98]:

[100]:

<BarContainer object of 10 artists>

随机森林

```
[1.      0. ]
[0.95003622 0.04996378]
[1.      0. ]]
Accuracy on training set: 0.959
Accuracy on test set: 0.933
plt.barh(X.columns.tolist(),height=0.5,width=forest.feature_importances_,align="center")
```

[102]:

<BarContainer object of 10 artists>

梯度提升回归树

```
from sklearn.ensemble import GradientBoostingClassifier
gbrt = GradientBoostingClassifier(random_state=0)
gbrt.fit(X_train, y_train)
Predict_proba = gbrt.predict_proba(X_test)
print(Predict_proba[:])
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))
[[0.87042249 0.12957751]

[0.957535    0.042465 ]

[0.9548853    0.0451147 ]

...

[0.91902328    0.08097672]
[0.96209947    0.03790053]
[0.91587013    0.08412987]]
```

```
Accuracy on training set: 0.939

Accuracy on test set: 0.938

plt.barh(X.columns.tolist(),height=0.5,width=gbrt.feature_importances_,align="center")
```

[104]:

<BarContainer object of 10 artists>

多层感知机

```
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(solver='lbfgs',
activation='relu',alpha=0.1,random_state=0,hidden_layer_sizes=
[10,10]).fit(X_train, y_train)
Predict = mlp.predict(X_test)
Predict_proba = mlp.predict_proba(X_test)
print(Predict_proba[:])
Score = accuracy_score(y_test, Predict)
print(Score)
[[0.88631107 0.11368893]
 [0.95665074 0.04334926]
 [0.95105044 0.04894956]
 [0.93326781 0.06673219]
 [0.96103722 0.03896278]
 [0.92282799 0.07717201]]
0.938190014720314
plt.figure(figsize=(20, 5))
plt.imshow(mlp.coefs_[0], interpolation='none', cmap='viridis')
plt.yticks(range(10), X.columns.tolist())
plt.xlabel("Columns in weight matrix")
```

```
plt.ylabel("Input feature")
plt.colorbar()
# 显示了连接输入和第一个隐层之间的权重。图中的行对应 10个输入特征,列对应 10个隐单元。
```

[166]:

<matplotlib.colorbar.Colorbar at 0x2a5d561eb00>

原始数据预处理之缩放

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = X_train[X_train.columns.tolist()].astype(float)
X_test = X_test[X_test.columns.tolist()].astype(float)
scaler.fit(X_train)

[109]:

```
StandardScaler(copy=True, with_mean=True, with_std=True)
# 变换数据

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

mlp1 = MLPClassifier(solver='lbfgs', random_state=0,hidden_layer_sizes=
[10]).fit(X_train_scaled, y_train)

Predict = mlp1.predict(X_test)

Score = accuracy_score(y_test, Predict)

print(Score)

0.9381286800785084
```

缩放之后的结果也没啥大不了的

实践预测

df_test.head()

[113]:

......

	user_id	merchant_id	prob
0	163968	4605	NaN
1	360576	1581	NaN
2	98688	1964	NaN
3	98688	3645	NaN
4	295296	3361	NaN

,

特征构建

```
df_test = pd.merge(df_test,user_info,on="user_id",how="left")
df_test = pd.merge(df_test,total_logs_temp,on=
["user_id","merchant_id"],how="left")
df_test = pd.merge(df_test,unique_item_ids_temp1,on=
["user_id","merchant_id"],how="left")
df_test = pd.merge(df_test,categories_temp1,on=
["user_id","merchant_id"],how="left")
df_test = pd.merge(df_test,browse_days_temp1,on=
["user_id","merchant_id"],how="left")
df_test = pd.merge(df_test,four_features,on=["user_id","merchant_id"],how="left")
df_test = df_test.fillna(method='bfill')
df_test = df_test.fillna(method='ffill')
# 軟失值向后填充
df_test.head(10)
```

[121]:

.....

,

	user_id	merchant_id	prob	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times
0	163968	4605	NaN	2.0	0.0	2	1	1	1	1	0	1	0
1	360576	1581	NaN	2.0	0.0	10	9	4	1	5	0	5	0
2	98688	1964	NaN	6.0	0.0	6	1	1	1	5	0	1	0
3	98688	3645	NaN	6.0	0.0	11	1	1	1	10	0	1	0
4	295296	3361	NaN	2.0	1.0	50	8	4	5	47	0	1	2
5	33408	98	NaN	2.0	0.0	11	2	1	4	9	0	1	1
6	230016	1742	NaN	5.0	1.0	13	6	1	1	11	0	2	0
7	164736	598	NaN	3.0	1.0	2	1	1	1	1	0	1	0
8	164736	1963	NaN	3.0	1.0	3	2	1	1	2	0	1	0
9	164736	2634	NaN	3.0	1.0	7	4	3	1	6	0	1	0

```
df_test.isnull().sum(axis=0)
```

[122]:

```
user_id
,merchant_id
                        0
,prob
                   261477
                        0
,age_range
,gender
                        0
,total_logs
                        0
,unique_item_ids
,categories
                      0
,browse_days
                      0
,one_clicks
,shopping_carts
                      0
,purchase_times
                      0
,favourite_times
,dtype: int64
```

模型预测

```
X1 = df_test.drop(['user_id','merchant_id','prob'],axis = 1)
X1.head(10)
```

[124]:

.....

......

	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times
0	2.0	0.0	2	1	1	1	1	0	1	0
1	2.0	0.0	10	9	4	1	5	0	5	0
2	6.0	0.0	6	1	1	1	5	0	1	0
3	6.0	0.0	11	1	1	1	10	0	1	0
4	2.0	1.0	50	8	4	5	47	0	1	2
5	2.0	0.0	11	2	1	4	9	0	1	1
6	5.0	1.0	13	6	1	1	11	0	2	0
7	3.0	1.0	2	1	1	1	1	0	1	0
8	3.0	1.0	3	2	1	1	2	0	1	0
9	3.0	1.0	7	4	3	1	6	0	1	0

逻辑斯特模型

```
Predict_proba = Logit.predict_proba(X1)

df_test["Logit_prob"] = Predict_proba[:,1]

Predict_proba[0:10]
```

[127]:

[128]:

......

,,,,,,,,,,,,,

	user_id	merchant_id	prob	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times	Logit_prob
0	163968	4605	NaN	2.0	0.0	2	1	1	1	1	0	1	0	0.045679
1	360576	1581	NaN	2.0	0.0	10	9	4	1	5	0	5	0	0.121231
2	98688	1964	NaN	6.0	0.0	6	1	1	1	5	0	1	0	0.054257
3	98688	3645	NaN	6.0	0.0	11	1	1	1	10	0	1	0	0.053202
4	295296	3361	NaN	2.0	1.0	50	8	4	5	47	0	1	2	0.058431
5	33408	98	NaN	2.0	0.0	11	2	1	4	9	0	1	1	0.053664
6	230016	1742	NaN	5.0	1.0	13	6	1	1	11	0	2	0	0.058423
7	164736	598	NaN	3.0	1.0	2	1	1	1	1	0	1	0	0.043567
8	164736	1963	NaN	3.0	1.0	3	2	1	1	2	0	1	0	0.043889
9	164736	2634	NaN	3.0	1.0	7	4	3	1	6	0	1	0	0.050510

决策树

```
Predict_proba = tree.predict_proba(X1)
df_test["Tree_prob"] = Predict_proba[:,1]
Predict_proba[0:10]
```

[131]:

```
array([[0.95837129, 0.04162871],
,        [0.89760368, 0.10239632],
,        [0.95837129, 0.04162871],
,        [0.95837129, 0.04162871],
,        [0.93145807, 0.06854193],
,        [0.95232015, 0.04767985],
,        [0.91089364, 0.08910636],
,        [0.95837129, 0.04162871],
,        [0.95232015, 0.04767985],
,        [0.95232015, 0.04767985],
,        [0.93145807, 0.06854193]])
df_test.head(10)
```

[132]:																																																		
,,,,,,	, , ,	, , ,	, , ,	, ,	, ,	, ,	, ,	, ,	, ,	,	, ,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	, ,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	, ,	,	, ,	, ,	, ,	, ,	, ,	, ,	,	, ,	,	, ,	, ,	, ,	, ,	, ,	, ,	,
,,,,,,	, , ,	,,,	, , ,	, ,	, ,	, ,	, ,	, ,	, ,	,	, ,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	, ,	, ,	,	, ,	,	, ,	,	, ,	,	, ,	, ,	,	, ,	, ,	, ,	, ,	,	, ,	,	, ,	,	, ,	, ,	, ,	,	, ,	,	,
,,,,,,	,,,	, , ,	, , ,	, ,	, ,	, ,	, ,																																											

	user_id	merchant_id	prob	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times	Logit_prob	Tree_prob
0	163968	4605	NaN	2.0	0.0	2	1	1	1	1	0	1	0	0.045679	0.041629
1	360576	1581	NaN	2.0	0.0	10	9	4	1	5	0	5	0	0.121231	0.102396
2	98688	1964	NaN	6.0	0.0	6	1	1	1	5	0	1	0	0.054257	0.041629
3	98688	3645	NaN	6.0	0.0	11	1	1	1	10	0	1	0	0.053202	0.041629
4	295296	3361	NaN	2.0	1.0	50	8	4	5	47	0	1	2	0.058431	0.068542
5	33408	98	NaN	2.0	0.0	11	2	1	4	9	0	1	1	0.053664	0.047680
6	230016	1742	NaN	5.0	1.0	13	6	1	1	11	0	2	0	0.058423	0.089106
7	164736	598	NaN	3.0	1.0	2	1	1	1	1	0	1	0	0.043567	0.041629
8	164736	1963	NaN	3.0	1.0	3	2	1	1	2	0	1	0	0.043889	0.047680
9	164736	2634	NaN	3.0	1.0	7	4	3	1	6	0	1	0	0.050510	0.068542

,

随机森林

```
Predict_proba = forest.predict_proba(X1)
df_test["Forest_prob"] = Predict_proba[:,1]
Predict_proba[0:10]
```

[135]:

[136]:

......

..........

	user_id	merchant_id	prob	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times	Logit_prob	Tree_prob	Forest_prob
0	163968	4605	NaN	2.0	0.0	2	1	1	1	1	0	1	0	0.045679	0.041629	0.032803
1	360576	1581	NaN	2.0	0.0	10	9	4	1	5	0	5	0	0.121231	0.102396	0.000000
2	98688	1964	NaN	6.0	0.0	6	1	1	1	5	0	1	0	0.054257	0.041629	0.010370
3	98688	3645	NaN	6.0	0.0	11	1	1	1	10	0	1	0	0.053202	0.041629	0.000000
4	295296	3361	NaN	2.0	1.0	50	8	4	5	47	0	1	2	0.058431	0.068542	0.100000
5	33408	98	NaN	2.0	0.0	11	2	1	4	9	0	1	1	0.053664	0.047680	0.000000
6	230016	1742	NaN	5.0	1.0	13	6	1	1	11	0	2	0	0.058423	0.089106	0.000000
7	164736	598	NaN	3.0	1.0	2	1	1	1	1	0	1	0	0.043567	0.041629	0.039958
8	164736	1963	NaN	3.0	1.0	3	2	1	1	2	0	1	0	0.043889	0.047680	0.046536
9	164736	2634	NaN	3.0	1.0	7	4	3	1	6	0	1	0	0.050510	0.068542	0.000000

,

梯度提升回归树

```
Predict_proba = gbrt.predict_proba(X1)

df_test["Gbrt_prob"] = Predict_proba[:,1]

Predict_proba[0:10]
```

[140]:

	user_id	merchant_id	prob	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times	Logit_prob	Tree_prob	Forest_prob	Gbrt_prob
0	163968	4605	NaN	2.0	0.0	2	1	1	1	1	0	1	0	0.045679	0.041629	0.032803	0.036615
1	360576	1581	NaN	2.0	0.0	10	9	4	1	5	0	5	0	0.121231	0.102396	0.000000	0.109463
2	98688	1964	NaN	6.0	0.0	6	1	1	1	5	0	1	0	0.054257	0.041629	0.010370	0.043843
3	98688	3645	NaN	6.0	0.0	11	1	1	1	10	0	1	0	0.053202	0.041629	0.000000	0.043843
4	295296	3361	NaN	2.0	1.0	50	8	4	5	47	0	1	2	0.058431	0.068542	0.100000	0.076745
5	33408	98	NaN	2.0	0.0	11	2	1	4	9	0	1	1	0.053664	0.047680	0.000000	0.045435
6	230016	1742	NaN	5.0	1.0	13	6	1	1	11	0	2	0	0.058423	0.089106	0.000000	0.074029
7	164736	598	NaN	3.0	1.0	2	1	1	1	1	0	1	0	0.043567	0.041629	0.039958	0.037901
8	164736	1963	NaN	3.0	1.0	3	2	1	1	2	0	1	0	0.043889	0.047680	0.046536	0.043581
9	164736	2634	NaN	3.0	1.0	7	4	3	1	6	0	1	0	0.050510	0.068542	0.000000	0.053930

多层感知机

```
Predict_proba = mlp.predict_proba(X1)

df_test["mlp_prob"] = Predict_proba[:,1]

Predict_proba[0:10]
```

[169]:

[1	7	0]:																																																																													
,	,	,	, ,	,	,	,	,	,	, ,	,	,	,	,	, ,	, ,	,	,	,	,	,	,	,	,	,	,	,	,	,	, ,	,	, ,	, ,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	, ,	,	,	,	,	,	, ,	,	,	,	,	, ,	, ,	,	,	,	,	,	,	,	,	, ,	,	,	,	,	,	,	,
,	,	,	, ,	,	,	,	,	,	, ,	,	,	,	,	, ,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	, ,	, ,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	, ,	,	,	,	,	,	,	,	,	,	,	, ,	, ,	,	,	,	,	,	,	,	, ,	, ,	,	,	,	,	,	,	,
,	,	,	, ,	,	,	,	,	,	, ,	,	,	,	,	, ,	, ,	,	,	,	,	,	,	,	,	,	,	,	,	,	, ,	,	, ,	, ,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,	,																														

	user_id	merchant_id	prob	age_range	gender	total_logs	unique_item_ids	categories	browse_days	one_clicks	shopping_carts	purchase_times	favourite_times	Logit_prob	Tree_prob	Forest_prob	Gbrt_prob	mlp_prob
0	163968	4605	NaN	2.0	0.0	2	1	1	1	1	0	1	0	0.045679	0.041629	0.032803	0.036615	0.046588
1	360576	1581	NaN	2.0	0.0	10	9	4	1	5	0	5	0	0.121231	0.102396	0.000000	0.109463	0.085585
2	98688	1964	NaN	6.0	0.0	6	1	1	1	5	0	1	0	0.054257	0.041629	0.010370	0.043843	0.041592
3	98688	3645	NaN	6.0	0.0	11	1	1	1	10	0	1	0	0.053202	0.041629	0.000000	0.043843	0.036898
4	295296	3361	NaN	2.0	1.0	50	8	4	5	47	0	1	2	0.058431	0.068542	0.100000	0.076745	0.092972
5	33408	98	NaN	2.0	0.0	11	2	1	4	9	0	1	1	0.053664	0.047680	0.000000	0.045435	0.053878
6	230016	1742	NaN	5.0	1.0	13	6	1	1	11	0	2	0	0.058423	0.089106	0.000000	0.074029	0.060397
7	164736	598	NaN	3.0	1.0	2	1	1	1	1	0	1	0	0.043567	0.041629	0.039958	0.037901	0.042136
8	164736	1963	NaN	3.0	1.0	3	2	1	1	2	0	1	0	0.043889	0.047680	0.046536	0.043581	0.050951
9	164736	2634	NaN	3.0	1.0	7	4	3	1	6	0	1	0	0.050510	0.068542	0.000000	0.053930	0.062244

结果保存

```
choose = ["user_id","merchant_id","mlp_prob"]
res = df_test[choose]
res.rename(columns={"mlp_prob":"prob"},inplace=True)
print(res.head(10))
res.to_csv(path_or_buf =
r"C:\Users\gaohao\Downloads\data_format1\prediction.csv",index = False)
D:\anaconda\lib\site-packages\pandas\core\frame.py:3781: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-
docs/stable/indexing.html#indexing-view-versus-copy
  return super(DataFrame, self).rename(**kwargs)
  user_id merchant_id
                          prob
0
   163968
                4605 0.035843
  360576
                 1581 0.097485
2
    98688
                1964 0.042821
3
    98688
                 3645 0.047452
   295296
                 3361 0.067267
5
   33408
                  98 0.038221
  230016
                1742 0.076726
7
   164736
                  598 0.036325
   164736
                 1963 0.044482
   164736
                2634 0.050063
```