

Utilizing Deep Learning with Faster-RCNN

By: Tomomi Bahun & Joshua Turner

Project Description

- Hand Gesture Recognition (Like, Dislike, Okay, and Stop)
- Object detection solution
 - Identify gesture location
 - Classify gesture
- Potential use of this application includes: ASL translation and self-driving car
- Language and tools:
 - Development Environment: Google Colab
 - Implementation Format: Jupyter Notebook
 - Language: Python
 - Libraries: Pytorch

Materials

Datasets

- Several datasets made, including simple and complex variants
- Hand-crafted, including photos and annotations
 - Script to automate train/test/validation set splits
- Annotations in YOLO format, done using MakeSense.ai
 - o Class, X Position, Y Position, Width, Height
 - o 0.543505 0.523965 0.170343 0.450980
- Over 1000 images in total!

Original Dataset - Highly varied in subject and background

Simplified Dataset - Focus on gestures, simple background

Architecture

- Faster-RCNN used for final pipeline
 - ResNet 50 backbone for classification
 - RPN (Region Proposal Network) for object detection
 - Shared convolutional layers between the two
- Pre-built PyTorch Implementation
- Pretrained weights on backbone (ResNet50 classifier)
 - Weights pre-trained on ImageNet dataset

Methods

File Structure

Pipeline

- Custom Dataset class to handle file structure
 - Getting items by text file, not folder structure
- Image and BBox augmentations added to increase data variance
 - Utilized Albumentations library
- Utilized Adam optimizer in training
 - o Training set 70% of full dataset
 - Starting params: Learning Rate 0.0001, weight decay 0.0005
- Validate on validation set every training step
 - Validation set 10% of full dataset
 - Validate with NMS filtered classification loss
- Test
 - Test set 20% full dataset
 - Tested on NMS filtered classification accuracy, includes confusion matrix

Augmentations

- Augment existing dataset with image variations using Albumentations
- Transformation pattern includes:
 - Horizontal flip
 - Median Blur
 - Rotation
 - o Grayscale

Example 1: Grayscale + Blur

Example 2: Horizontal Flip + Blur

Validation & Testing

Validation:

- Validation set consists of 10% full dataset
- Validate on classification loss after NMS filtering
- Validate on all images of the validation set per training step
- Plot training and validation loss curves

Testing:

- Testing set consists of 20% full dataset
- Computing total and per class classification accuracy
- Producing confusion matrix

Results

Run 1: No transforms

Learning Rate: 0.0001, Weight Decay: 0.0005, Batch size: 4, Epochs: 2

Basic Dataset:

- Average IoU:
 - 0.532
- Average Classification Accuracy given NMS filtering at 0.95 IoU
 - o 77%

Advanced Dataset:

- Average IoU:
 - o 0.4222
- Average Classification Accuracy given NMS filtering at 0.95 IoU
 - o 49%

Run 2: No transforms

Learning Rate: 0.0001, Weight Decay: 0.0005, Batch size: 4, Epochs: 10

Basic Dataset:

- Average IoU:
 - 0.657
- Average Classification Accuracy given NMS filtering at 0.95 IoU
 - o 95%

Advanced Dataset:

- Average IoU:
 - 0.4308
- Average Classification Accuracy given NMS filtering at 0.95 IoU
 - 0 80%

Run 3: With Transforms

Learning Rate: 0.0001, Weight Decay: 0.0005, Batch size: 4, Epochs: 20

Basic Dataset:

- Average IoU:
 - 0.5955
- Average Classification Accuracy given NMS filtering at 0.95 IoU
 - o **94%**

Advanced Dataset:

- Average IoU:
 - 0.5849
- Average Classification Accuracy given NMS filtering at 0.95 IoU
 - o 88%

Example Output:

Basic dataset trained at:

LR 0.0001, Weight Decay 0.0005, 10 epochs

Advanced dataset trained at:

LR 0.0001, Weight Decay 0.0005, 10 epochs

Conclusion

- The model is capable to recognize hand gestures based on:
 - Relatively small dataset
 - Both simple and complex dataset
- High classification accuracy: 77 95%
- Object detection can be still improved: Average IoU 0.422 0.657

Discussion

Difficulties:

- Google Colab resource limitations
- Problems implementing and debugging original YOLOv3 implementation
 - Issues converting original pipeline to Faster-RCNN
- Learning to create good datasets from scratch
 - Annotation is time consuming
- Current augmentation pipeline fails for some data

Points of Note:

- NMS threshold was chosen to focus on classification accuracy
 - Reducing the threshold will give a better representation of the model's detection abilities

Outlooks

<u>Improvements:</u>

- Further increase the size of our dataset
 - Experiments have shown more data increases model performance
- Redesign validation and testing pipelines to increase performance
 - Compute and add more losses, such as objectness and bbox regression
- Evaluate on more metrics, such as precision and recall
- Increase model's detection capabilities

<u>Avenues of Further Exploration:</u>

- Increasing number of learned gestures
 - Potential applications: ASL translation