LC 2: La liaison ionique

<u>Élément imposé</u>: Constante de Madelung, ionicité de la liaison

Biblio: L'indispensable en liaison chimique Fiche 16, Housecroft, Shriver, Hprépa PC, Schott,

Fosset PCSI

Niveau: L2 pour la thermo

<u>Prérequis</u>: Interaction electrostatique, thermodynamique: grandeur de réaction, cycle thermodynamique, premier principe, Electronégativité de pauling, liaison covalente, base de cristallographie.

Intro pédagogique: Exemple fil conducteur: NaCl

Introduction

On a vu liaison covalente. Autre modèle de liaison qui décrit l'interaction entre ion et caractérise les solides ioniques. La liaison ionique provient des interactions électrostatiques entre les ions.

I. Propriétés de la liaison ionique A. Définition de la liaison ionique

Liaison ionique : liaison entre atomes possédant une grande différence d'électronégativité. IUPAC L'atome de plus faible électronégativité donne un ou plusieurs électrons à celui de plus forte électronégativité. Formation d'anion et cation.

Exemple: NaCl: L'indispensable, schéma, dif electro<0 Donc au sens strict: interaction entre anion et cation Liaison non dirigée, isotrope car purement électrostatique.

Rayon ionique : distance internucléaire entre un anion et un cation en contact dans un solide ionique En eet, cette distance est égale à la somme des rayons anionique et cationique. Schéma Hprépa p274 Peut être mesurée par diffraction des rayons X.

Évolution dans le tableau périodique : Hprépa p274, Housecroftp163, Chimie3p246-115

B. Degré d'ionicité

Mais liaison non purement ionique. Notion de degré d'ionicité

Degré d'ionicité : $1 - \exp(-1/4 (\chi A - \chi B)^2)$ pour la liaison entre A et B, avec χ l'électronégativité

de Pauling.

Exemple: I(NaC1) = 71%

C. Solide ionique

Les ions se disposent selon arrangement régulier dans les 3D de façon à minimiser l'énergie du système.

Le réseau cristallin dépend de la taille relative des ions. Ions = sphères dures indéformables. Le solide ionique est une entité stable. Maximise contacts anion-cation et minimise contacts cationcation ou anion-anion. On considère donc le rapport des rayons ioniques r+/r- que l'on compare au rapport critique : rapport de rayons ioniques à partir duquel il ne peut plus y avoir contact dans une structure donnée -> règle des rayons ioniques Chimie3 p248

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/chimie/01/06-Exemple NaCl. Etat solide/deug/nacl.html

Propriétés: mauvais conducteurs (réseau cristallin rigide), Tfus élevée, dureté forte. Fosset PCSI p 658Schott p404

II. Cohésion des solides ioniques

A. Énergie réticulaire

Énergie réticulaire : variation d'énergie interne qui accompagne la formation d'une mole de solide ionique à partir des ions le constituant en phase gazeuse à 0 K. L'indispensable

Exemple: Pour NaCl: $Na^+(g) + Cl^-(g) \rightarrow NaCl(s) \ a \ 0K$

L'énergie dépend :

- de la charge des ions
- de la polarisabilité des ions

Tableau valeur l'indispensable

L'énergie réticulaire peut être déterminée par un modèle électrostatique ou par un cycle thermodynamique.

B. Modèle électrostatique

Shriver p 93, Housecroft p 171, Chimie3p254

Equation de Born-Landé Housecroft p 173

Décomposition en deux termes :

Attractive : interaction électostatique entre les ions, constante de Madelung Tableau valeur

Housecroft p 173, Chimie³ p254, Fosset PCSI Répulsive : Pénetration des nuages électroniques

Pour aller plus loin : Equation de Born Mayer et Kaputinskii Housecroft/Shriver

C. Cycle de Born-Haber

Détermination de l'énergie réticualire par un cycle thermodynamique.

Exemple pour NaCl: Chimie³p 251, Wikipédia

Formation du sel NaCl à partir du sodium solide et du dichlore gazeux :

 $Na(s) + 1/2 Cl_2(g) \rightarrow NaCl(s)$

Décompose en plusieurs étapes : Schéma cycle.

La mesure de l'enthalpie de formation de NaCl(s) permet d'accéder à l'énergie réticulaire à partir des données tabulées. (enthalpie de sublimation ΔsubH, enthalpie de dissociation de liaison D, enthalpie de 1re ionisation I et anité électronique AE)