

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

.

Page No: 1/26

WINTER – 2015 EXAMINATION MODEL ANSWER

Subject: ENGINEERING MATHEMATICS (EMS)

Subject Code: 17216

Important Instructions to examiners:

• The model answer shall be the complete solution for each and every question on the question

paper.

• Numerical shall be completely solved in a step by step manner along with step marking.

• All alternative solutions shall be offered by the expert along with self-explanatory comments

from the expert.

• In case of theoretical answers, the expert has to write the most acceptable answer and offer

comments regarding marking scheme to the assessors.

• In should offer the most convincing figures / sketches / circuit diagrams / block diagrams /

flow diagrams and offer comments for step marking to the assessors.

• In case of any missing data, the expert shall offer possible assumptions / options and the

ensuing solutions along with comments to the assessors for effective assessment.

• In case of questions which are out of the scope of curricular requirement, the expert examiner

shall solve the question and mention the marking scheme in the model answer. However, the

experts are requested to submit their clear cut opinion about the scope of such question in the

paper separately to the coordinator.

• Experts shall cross check the DTP of the final draft of the model answer prepared by them.

Subject Code: (17216) Page No: 2/26 Winter 2015

Que.	Sub.	24.114	3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
1)		Attempt any <u>TEN</u> of the following:		20
	(a)	If $z = 1 + 3i$, evaluate $z^2 + 2z + 4$		
	Ans.	$z^2 + 2z + 4$		
		$= (1+3i)^2 + 2(1+3i) + 4$	1/2	
		= 1 + 6i - 9 + 2 + 6i + 4	1	02
		= -2 + 12i	1/2	02
	(b)	Express 1+i in modulus and amplitude form		
	Ans.	Let $z = 1 + i$		
		$\therefore x = 1, y = 1$ $r = z = \sqrt{x^2 + y^2} = \sqrt{1 + 1} = \sqrt{2}$	1/2	
		$\begin{vmatrix} x - z - \sqrt{x} + y - \sqrt{1 + 1} - \sqrt{z} \\ and x, y > 0 \end{vmatrix}$	1	
		$\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{1}{1}\right) = \tan^{-1}\left(1\right) = \frac{\pi}{4}$	1	
		$\therefore z = r(\cos\theta + i\sin\theta)$	1/2	02
		$1+i=\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$,,,	
	c)	If $f(x) = 16^x + \log_4 x$, find $f\left(\frac{1}{2}\right)$		
	Ans.			
		$f(x) = 16^{x} + \log_{4} x ,$ $\therefore f\left(\frac{1}{2}\right) = \left(16\right)^{\frac{1}{2}} + \log_{4}\left(\frac{1}{2}\right)$	1/2	
		$= 4 - \log_4 2$		
		$=4-\frac{\log 2}{\log 4}$	1/2	
		$= 4 - \frac{\log 2}{2 \log 2}$		
		$=4-\frac{1}{-}$	1/2	
		$=\frac{7}{2}$	1/2	02

Subject Code: (17216) Page No: 3/26 Winter-2015

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Woder answers	IVIAIKS	Marks
1.	d)	Define even and odd function		
	Ans.	Even function: If $f(-x) = f(x)$, then the function	1	
		is an even function	1	
		Odd function: If $f(-x) = -f(x)$, then the function	1	
		is an odd function		02
				02
	(e)	Evaluate: $\lim_{x \to 1} \frac{x^2 + 2x + 5}{x + 1}$		
	Ans	$x \to 1$ $x + 1$		
		$\lim_{x \to \infty} \frac{x^2 + 2x + 5}{x^2 + 2x + 5}$		
		$x \to 1$ $x + 1$		
		$=\frac{\left(1\right)^2+2\left(1\right)+5}{1+1}$	1	
		$= \frac{8}{-}$	1/2	
		$=\frac{1}{2}$	72	02
		= 4	1/2	
	(f)	Evaluate: $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$		
	Ans.	$\lim_{x \to 0} \frac{\sin 3x}{\tan 5x}$		
		$\sin 3x$		
		$=\lim_{x\to \infty} \frac{x}{\cos x}$	1/2	
		$\frac{x \to 0}{x} \frac{\tan 5 x}{x}$		
		$\left(\lim \frac{\sin 3x}{3}\right)$		
		$=\frac{\begin{pmatrix} x \to 0 & 3x \end{pmatrix}}{\begin{pmatrix} x \to 0 & 3x \end{pmatrix}}$	1/2	
		$\left(\lim_{x\to 0}\frac{\tan 5x}{5x}.5\right)$		
		$-\frac{(1)3}{}$		
		$=\frac{\sqrt{7}}{(1)5}$	1/2	02
		$=\frac{3}{}$	1/2	
		$=\frac{-}{5}$		

Subject Code: (17216) Page No: 4/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
1.	g)	Evaluate: $\lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{\sin x}$		
	Ans	$\lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{\sin x}$		
		$= \lim_{x \to 0} \frac{\left(3^{2x} - 1 - 2^{3x} + 1\right)}{x + 1}$	1/2	
		\overline{x}		
		$= \frac{\lim_{x \to 0} \left(\frac{\left(3^{2x} - 1\right) - \left(2^{3x} - 1\right)}{x} \right)}{\cdot}$	1/2	
		$\lim_{x \to 0} \frac{\sin x}{x}$ $\left(\left(3^{2x} - 1 \right) \cdot \left(2^{3x} - 1 \right) \right)$		
		$= \frac{\lim_{x \to 0} \left(\frac{3^{2x} - 1}{x} - \frac{2^{3x} - 1}{x} \right)}{\sin x}$		
		$\lim_{x \to 0} \frac{\sin x}{x}$ $\left(3^{2x} - 1 \right) \left(2^{3x} - 1 \right)$		
		$= \frac{\left(\lim_{x \to 0} \frac{3^{2x} - 1}{2x}\right) \cdot 2 - \left(\lim_{x \to 0} \frac{2^{3x} - 1}{3x}\right) \cdot 3}{\lim_{x \to 0} \frac{\sin x}{x}}$	1/2	
		$= \frac{2 \log 3 - 3 \log 2}{1}$	1/2	
		$= \log 9 - \log 8 = \log \left(\frac{9}{8}\right)$		02
	(h)	If $y = e^{4x} \cos 3x$, find $\frac{dy}{dx}$		
	Ans	$y = e^{4x} \cos 3x$	1 . 1	
		$\frac{dy}{dx} = e^{4x} \left(-\sin 3x \right) 3 + \cos 3x \ e^{4x}.4$ $\frac{dy}{dy} = e^{4x} \left(-\sin 3x \right) 3 + \cos 3x \ e^{4x}.4$	1+1	
		$\frac{dy}{dx} = e^{4x} \left(-3\sin 3x + 4\cos 3x \right)$		02
	(i)	If $y = \log \left[\sin \left(4x - 3 \right) \right]$, find $\frac{dy}{dx}$		

Subject Code: (17216) Page No: 5/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
1)	Ans	$y = \log \left[\sin (4x - 3) \right]$ $\frac{dy}{dx} = \frac{1}{\sin (4x - 3)} \cos (4x - 3) 4 OR \frac{dy}{dx} = \frac{1}{\sin (4x - 3)} \frac{d}{dx} \left[\sin (4x - 3) \right]$ $\frac{dy}{dx} = \frac{4 \cos (4x - 3)}{\sin (4x - 3)} \qquad OR \frac{dy}{dx} = \frac{\cos (4x - 3)}{\sin (4x - 3)} \frac{d}{dx} (4x - 3)$ $\frac{dy}{dx} = 4 \cot (4x - 3) \qquad OR \frac{dy}{dx} = 4 \cot (4x - 3)$	1+1/2	02
	j) Ans	Find $\frac{dy}{dx}$, if $x = 4 \sin 3\theta$, $y = 4 \cos 6\theta$ $x = 4 \sin 3\theta$, $y = 4 \cos 6\theta$ $\frac{dx}{d\theta} = 12 \cos 3\theta \text{and} \frac{dy}{d\theta} = -24 \sin 6\theta$ $\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-24 \sin 6\theta}{12 \cos 3\theta}$	1/2 +1/2	
		$\frac{dy}{dx} = \frac{-2.2\sin 3\theta \cos 3\theta}{\cos 3\theta}$ $\frac{dy}{dx} = -4\sin 3\theta$		02
	k) Ans	Show that the root of $x^3 - 9x + 1 = 0$ lies between 2 and 3. Let $f(x) = x^3 - 9x + 1$	1	
	1)	$f(2) = -9 < 0$ $f(3) = 1 > 0$ $\therefore \text{ root lies between 2 and 3}$ Find the first iteration by using Jacobi's method for the following system of equations: $5x + 2y + 7 = 12x + 4y + 27 = 15x + 2y + 57 = 20$	1	02
	Ans	system of equations: $5x + 2y + z = 12$, $x + 4y + 2z = 15$, $x + 2y + 5z = 20$ Initial approximations: $x_0 = y_0 = z_0 = 0$ $x = \frac{12 - 2y - z}{5}$ $y = \frac{15 - x - 2z}{4}$		
		$z = \frac{20 - x - 2y}{5}$ $x = 2.4 , y = 3.75 , z = 4$	1 ½	02

Subject Code: (17216) Page No: 6/26 Winter-2015

2.		Attempt any <u>FOUR</u> of the following:		16
	a)	Find cube root of unity and show that one root is square of the other.		
	Ang	$w = \sqrt[3]{1}$		
	Ans	$\therefore w^3 = 1$		
		$Put w^{3} = z$		
		$ \therefore z = 1 + 0i $ $ x = 1 > 0, y = 0 $		
		$r = z = \sqrt{1+0} = 1$	1/	
			1/2	
		$\theta = \tan^{-1} \left(\frac{0}{1} \right) = 0$	1/2	
		General polar form is, $z = r(\cos(2n\pi + \theta) + i\sin(2n\pi + \theta))$	1/2	
		$w^{3} = 1(\cos 2n\pi + i\sin 2n\pi)$	/2	
		$w = (\cos 2n\pi + i\sin 2n\pi)^{\frac{1}{3}}$		
		$w = \cos\left(\frac{2n\pi}{3}\right) + i\sin\left(\frac{2n\pi}{3}\right) ; n = 0,1,2$	1/2	
		when n = 0	1/	
		$w_1 = \cos 0 + i \sin 0 = 1$ $when n = 1$	1/2	
		$w_2 = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$		
		when $n = 2$		
		$w_3 = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$	1/2	
		consider $\left(w_2\right)^2 = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^2$		
		$= \frac{1}{4} - i \frac{\sqrt{3}}{2} - \frac{3}{4}$	1/2	
		$=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$	1/2	04
		$= w_3$		
	b)	Simplify: $\frac{\left(\cos 2\theta + i\sin 2\theta\right)\left(\cos \theta - i\sin \theta\right)^{4}}{\left(\cos 3\theta + i\sin 3\theta\right)\left(\cos 5\theta - i\sin 5\theta\right)^{3}} \text{ using De-Moiver's}$		
		theorem		

Subject Code: (17216) Page No: 7/26 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2)	Ans c)	$\frac{\left(\cos 2\theta + i \sin 2\theta\right) \left(\cos \theta - i \sin \theta\right)^{4}}{\left(\cos 3\theta + i \sin 3\theta\right) \left(\cos 5\theta - i \sin 5\theta\right)^{3}}$ $= \frac{\left(\cos \theta + i \sin \theta\right)^{2} \left(\cos \theta + i \sin \theta\right)^{-4}}{\left(\cos \theta + i \sin \theta\right)^{3} \left(\cos \theta + i \sin \theta\right)^{-15}}$ $= \left(\cos \theta + i \sin \theta\right)^{3} \left(\cos \theta + i \sin \theta\right)^{-15}$ $= \left(\cos \theta + i \sin \theta\right)^{10}$ $= \cos 10\theta + i \sin 10\theta$ If $\sin \left(A + iB\right) = x + iy$ prove that: i) $\frac{x^{2}}{\cosh^{2} B} + \frac{y^{2}}{\sinh^{2} B} = 1$ ii) $\frac{x^{2}}{\sinh^{2} A} - \frac{y^{2}}{\cos^{2} A} = 1$	1/2 +1/2+1/2 +1/2 1 1	04
	Ans	$\sin^2 A \cos^2 A$ $\sin (A + iB) = x + iy$ $\sin A \cos (iB) + \cos A \sin (iB) = x + iy$ $\sin A \cosh B + i \cos A \sinh B = x + iy$ $\therefore x = \sin A \cosh B, y = \cos A \sinh B$ i) $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = \frac{\sin^2 A \cosh^2 B}{\cosh^2 B} + \frac{\cos^2 A \sinh^2 B}{\sinh^2 B}$ $= \sin^2 A + \cos^2 A$ $= 1$ ii) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = \frac{\sin^2 A \cosh^2 B}{\sin^2 A} - \frac{\cos^2 A \sinh^2 B}{\cos^2 A}$ $= \cosh^2 B - \sinh^2 B$ $= 1$	1 1 ½ 1 1	04
	d)	If $f(x) = \log\left(\frac{x}{x-1}\right)$ show that $f(a+1) + f(a) = \log\left(\frac{a+1}{a-1}\right)$		
	Ans	$f(a+1) + f(a) = \log\left(\frac{a+1}{a+1-1}\right) + \log\left(\frac{a}{a-1}\right)$ $= \log\left(\frac{a+1}{a} \cdot \frac{a}{a-1}\right)$	1+1	
		$= \log\left(\frac{a+1}{a-1}\right)$	1	04

Subject Code: (17216) Page No: 8/26 Winter-2015

No. Que. Marks Marks Marks	Sub.	26.11	26.1	Total
Ans $ \frac{\sin^{2}\theta + \cos^{2}\theta}{=\left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{2} + \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{2}} = \frac{1}{4i^{2}}(e^{i\theta} - e^{-i\theta})^{2} + \frac{1}{4}(e^{i\theta} + e^{-i\theta})^{2}}{=\frac{1}{4i^{2}}(e^{i\theta} - e^{-i\theta})^{2} + \frac{1}{4}(e^{i\theta} + e^{-i\theta})^{2}}{=\frac{-1}{4}(e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}) + \frac{1}{4}(e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta})} = \frac{1}{1} $ $ = \frac{1}{4}(4e^{i\theta}e^{-i\theta}) = \frac{1}{4}(4e^{0}) = \frac{1}{4}(4e^{0}) = \frac{1}{1} $ $ = \frac{1}{4}(4e^{i\theta}e^{-i\theta}) = \frac{1}{4}(4e^{0}) = \frac{1}{4} $ $ = \frac{3x + 2}{4x - 3} = \frac{1}{4x - 3} $ $ = \frac{3(3x + 2) + 2(4x - 3)}{4(3x + 2) - 3(4x - 3)} = \frac{1}{4} $ $ = \frac{17x}{17} $	Que.	Model answers	Marks	Marks
	e)	Using Euler's exponential formula prove that: $\sin^2 \theta + \cos^2 \theta = 1$ $\sin^2 \theta + \cos^2 \theta$ $= \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2 + \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$ $= \frac{1}{4i^2} \left(e^{i\theta} - e^{-i\theta}\right)^2 + \frac{1}{4} \left(e^{i\theta} + e^{-i\theta}\right)^2$ $= \frac{-1}{4} \left(e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right) + \frac{1}{4} \left(e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right)$ $= \frac{1}{4} \left(4e^{i\theta}e^{-i\theta}\right) = \frac{1}{4} \left(4e^{0}\right)$ $= 1$ Let $f(x) = \frac{3x + 2}{4x - 3}$ show that $f = f^{-1}$ Let $f(x) = f(x)$ $= \frac{3\left(\frac{3x + 2}{4x - 3}\right)}{4\left(\frac{3x + 2}{4x - 3}\right) - 3}$ $= \frac{3\left(\frac{3x + 2}{4x - 3}\right) - 3}{4\left(3x + 2\right) - 3\left(4x - 3\right)}$ $= \frac{17x}{17}$ for $f(x) = x$ $f(x) = f^{-1}(x)$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04
		Que. e) Ans f) Ans	Que. Model answers e) Using Euler's exponential formula prove that: $\sin^2\theta + \cos^2\theta = 1$ $\sin^2\theta + \cos^2\theta$ $= \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2 + \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$ $= \frac{1}{4i^2}(e^{i\theta} - e^{-i\theta})^2 + \frac{1}{4}(e^{i\theta} + e^{-i\theta})^2$ $= \frac{-1}{4}(e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}) + \frac{1}{4}(e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta})$ $= \frac{1}{4}(4e^{i\theta}e^{-i\theta}) = \frac{1}{4}(4e^{i})$ $= 1$ f) If $f(x) = \frac{3x + 2}{4x - 3}$ show that $f = f^{-1}$ Ans Let $f(x) = \frac{3x + 2}{4x - 3}$ consider $fof(x) = f[f(x)]$ $= f\left[\frac{3x + 2}{4x - 3}\right]$ $= \frac{3\left(\frac{3x + 2}{4x - 3}\right) + 2}{4\left(\frac{3x + 2}{4x - 3}\right) - 3}$ $= \frac{3(3x + 2) + 2(4x - 3)}{4(3x + 2) - 3(4x - 3)}$ $= \frac{17x}{17}$ $fof(x) = x$ $\therefore f(x) = f^{-1}(x)$	Que. Model answers Marks e) Using Euler's exponential formula prove that: $\sin^2\theta + \cos^2\theta = 1$ $\sin^2\theta + \cos^2\theta$ $= \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2 + \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2$ $= \frac{1}{4i^2}(e^{i\theta} - e^{-i\theta})^2 + \frac{1}{4}(e^{i\theta} + e^{-i\theta})^2$ $= \frac{1}{4}(4e^{i\theta}e^{-i\theta}) = \frac{1}{4}(4e^{i})$ $= 1$ $= \frac{1}{4}(4e^{i\theta}e^{-i\theta}) = \frac{1}{4}(4e^{i})$ $= 1$ $= 1$ If $f(x) = \frac{3x + 2}{4x - 3}$ show that $f = f^{-1}$ Ans Let $f(x) = \frac{3x + 2}{4x - 3}$ $= \frac{1}{4}(\frac{3x + 2}{4x - 3}) + \frac{1}$

Subject Code: (17216) Page No: 9/26 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3)		Attempt any FOUR of the following:		16
	a)	If $f(x) = \frac{x+3}{4x-5}$ and $t = \frac{3+5x}{4x-1}$ show that $f(t) = x$		
	Ans	$f\left(t\right) = \frac{t+3}{4t-5}$	1/2	
		$= \frac{\frac{3+5x}{4x-1} + 3}{4\left(\frac{3+5x}{4x-1}\right) - 5}$	1	
		$= \frac{\frac{3+5x+3(4x-1)}{4x-1}}{\frac{4(3+5x)-5(4x-1)}{4x-1}}$	1	
		$= \frac{3+5x+12x-3}{12+20x-20x+5}$	1/2	
		$=\frac{17x}{17}=x$	1	04
	b) Ans	If $f(t) = 50 \sin(100\pi t + 0.04)$, then show that $f\left(\frac{2}{100} + t\right) = f(t)$		
		$f\left(\frac{2}{100} + t\right) = 50\sin\left(100\pi\left(\frac{2}{100} + t\right) + 0.04\right)$	1 1	
		$= 50 \sin \left(2\pi + 100\pi t + 0.04\right)$	1	
		$= 50 \sin (100 \pi t + 0.04)$ $= f(t)$	1	04
	c)	Evaluate: $\lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x}$		
	Ans	$= \lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x} \cdot \frac{\sqrt{3+x} + \sqrt{3}}{\sqrt{3+x} + \sqrt{3}}$	1	
		$= \lim_{x \to 0} \frac{3 + x - 3}{x \left(\sqrt{3 + x} + \sqrt{3}\right)}$	1	
		$=\frac{1}{\sqrt{3+0}+\sqrt{3}}$	1	04
		$=\frac{1}{2\sqrt{3}}$	1	UT.

Subject Code: (17216) Page No: 10/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	THOUGHT I IIIS WELS	TVIALITY S	Marks
3)	d) Ans	Evaluate: $\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x^3}$ $= \lim_{x \to 0} \frac{2\sin x \cos x - 2\sin x}{x^3}$	1/2	
		$= \lim_{x \to 0} \frac{-2\sin x \left(1 - \cos x\right)}{x^3}$	1/2	
		$= \lim_{x \to 0} \frac{-2\sin x 2\sin^2\left(\frac{x}{2}\right)}{x^3}$	1/2	
		$= -4 \lim_{x \to 0} \frac{\sin x}{x} \frac{\sin^2 \left(\frac{x}{2}\right)}{x^2}$		
		$= -4 \left(\lim_{x \to 0} \frac{\sin x}{x} \right) \left(\lim_{x \to 0} \frac{\sin \left(\frac{x}{2} \right)}{\frac{x}{2}} \cdot \frac{1}{2} \right)^{2}$	1	
		$=-4\left(1\right)\left(1\cdot\frac{1}{2}\right)^2$	1	04
		$=-rac{4}{4}=-1$	1/2	
	e) Ans	Evaluate: $\lim_{x \to \frac{\pi}{2}} \frac{\cos 3x + 3\cos x}{\left(\frac{\pi}{2} - x\right)^3}$		
		$= \lim_{x \to \frac{\pi}{2}} \frac{4 \cos^3 x - 3 \cos x + 3 \cos x}{\left(\frac{\pi}{2} - x\right)^3}$	1/2	
		$= \lim_{x \to \frac{\pi}{2}} \frac{4 \cos^3 x}{\left(\frac{\pi}{2} - x\right)^3}$		
		Put $x = \frac{\pi}{2} + h$, as $x \to \frac{\pi}{2}$, $h \to 0$	1	
		$= \lim_{h \to 0} \frac{4 \cos^3 \left(\frac{\pi}{2} + h\right)}{\left(-h\right)^3}$	1	
		$= -4 \lim_{h \to 0} \frac{\sin^3 h}{-h^3}$	1	

Subject Code: (17216) Page No: 11/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total Marks
Que. No.	Sub. Que.	Model Answers $= 4 \left(\lim_{h \to 0} \frac{\sin h}{h} \right)^{3}$ $= 4 (1)^{3}$ $= 4$ Evaluate: $\lim_{x \to 3} \frac{\log (x - 2)}{x^{2} - 9}$ Put $x = 3 + h$, as $x \to 3$, $h \to 0$ $= \lim_{h \to 0} \frac{\log (3 + h - 2)}{(3 + h)^{2} - 9}$ $= \lim_{h \to 0} \frac{\log (1 + h)}{9 + 6h + h^{2} - 9}$ $= \lim_{h \to 0} \frac{\log (1 + h)}{h (6 + h)}$ $= \lim_{h \to 0} \frac{\log (1 + h)}{h (6 + h)}$ $= \lim_{h \to 0} \frac{\log (1 + h)}{h (6 + h)}$ $= \frac{\log e}{6}$ $= \frac{1}{6}$	Marks 1/2 1 1 1/2	Total Marks 04

Subject Code: (17216) Page No: 12/26 Winter-2015

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
4)		Attempt any FOUR of the following:		16
	a)	If u and v are differentiable functions of x and $y = \frac{u}{v}$, where $v \neq 0$		
	Ans	then prove that $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ Let $\delta u, \delta v, \delta y$ are small increments in u, v, y respectively corresponding to increment δx in x .		
		$y + \delta y = \frac{u + \delta u}{v + \delta v}$ $\delta y = \frac{u + \delta u}{v + \delta v} - y$	1/2	
		$\delta y = \frac{v + \delta v}{v + \delta v} - \frac{u}{v}$	1/2	
		$\delta y = \frac{uv + v\delta u - u(v + \delta v)}{v(v + \delta v)}$	1/2	
		$\delta y = \frac{v \delta u - u \delta v}{v^2 + v \delta v}$		
		$\frac{\delta y}{\delta x} = \frac{\frac{v\delta u - u\delta v}{\delta x}}{\frac{\delta x}{v^2 + v\delta v}}$		
		$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \frac{\frac{v \delta u - u \delta v}{\delta x}}{\frac{\delta x}{v^2 + v \delta v}}$	1	
		$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{v \lim_{\delta x \to 0} \frac{\delta u}{\delta x} - u \lim_{\delta x \to 0} \frac{\delta v}{\delta x}}{v^2}$	1/2	
		$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \qquad (\because \text{ as } \delta x \to 0, \delta v \to 0)$	1	04
	b)	By using first principle find the derivative of $y = \cos x$	-	
	b) Ans	$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	1	
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$		

Subject Code: (17216) Page No: 13/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No. 4)	Que.	$\frac{dy}{dx} = \lim_{h \to 0} \frac{-2\sin\left(\frac{x+h+x}{2}\right)\sin\left(\frac{x+h-x}{2}\right)}{h}$ $\cdot \left(2x+h\right) \cdot \left(h\right)$	1	Marks
		$\frac{dy}{dx} = -2\lim_{h \to 0} \frac{\sin\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h}$ $\frac{dy}{dx} = -2\left(\lim_{h \to 0} \sin\left(\frac{2x+h}{2}\right)\right) \left(\lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \cdot \frac{1}{2}\right)$	1	
		$\frac{dy}{dx} = -2\left(\sin x\right)\frac{1}{2}$ $\frac{dy}{dx} = -\sin x$	1/2	04
	c) Ans	If $y = \sin^{-1} \left[\frac{1}{\sqrt{1 + x^2}} \right]$, find $\frac{dy}{dx}$ Put $x = \tan \theta \Rightarrow \tan^{-1} x = \theta$ $y = \sin^{-1} \left[\frac{1}{\sqrt{1 + \tan^2 \theta}} \right]$	1/2	
		$ \left[\sqrt{1 + \tan^2 \theta} \right] $ $ y = \sin^{-1} \left[\frac{1}{\sec \theta} \right] $ $ y = \sin^{-1} \left[\cos \theta \right] $ $ y = \sin^{-1} \left[\sin \left(\frac{\pi}{2} - \theta \right) \right] $	1	
		$y = \frac{\pi}{2} - \theta$ $y = \frac{\pi}{2} - \tan^{-1} x$	1/2	
		$\frac{dy}{dx} = 0 - \frac{1}{1+x^2}$ $\frac{dy}{dx} = -\frac{1}{1+x^2}$	1	
				04

Subject Code: (17216) Page No: 14/26 Winter-2015

Que.	Sub.	Model Answers		Total
No.	Que.	Model Answers	Marks	Marks
_		OR If $y = \sin^{-1} \left[\frac{1}{\sqrt{1 + x^2}} \right]$, find $\frac{dy}{dx}$ Put $x = \cot \theta \Rightarrow \cot^{-1} x = \theta$ $y = \sin^{-1} \left[\frac{1}{\sqrt{1 + \cot^2 \theta}} \right]$ $y = \sin^{-1} \left[\sin \theta \right]$ $y = \theta$ $y = \cot^{-1} x$ $\frac{dy}{dx} = -\frac{1}{1 + x^2}$ Find $\frac{dy}{dx}$ if $y = \frac{(\cos x)^x}{1 + x^2}$ Given, $y = \frac{(\cos x)^x}{1 + x^2}$ $\log y = \log \left[\frac{(\cos x)^x}{1 + x^2} \right]$ $\log y = \log (\cos x)^x - \log (1 + x^2)$ $\frac{1}{y} \frac{dy}{dx} = x \frac{1}{\cos x} (-\sin x) + \log (\cos x) - \frac{1}{1 + x^2} 2x$ $\frac{dy}{dx} = y \left(-x \tan x + \log (\cos x) - \frac{2x}{1 + x^2} \right)$ $\frac{dy}{dx} = \frac{(\cos x)^x}{1 + x^2} \left[-x \tan x + \log (\cos x) - \frac{2x}{1 + x^2} \right]$	Marks 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	

Subject Code: (17216) Page No: 15/26 Winter-2015

Que.	Sub.	M 11A	M 1	Total
No.	Que.	Model Answers	Marks	Marks
4)	e) Ans	If $x^p cdot y^q = (x+y)^{p+q}$ show that $\frac{dy}{dx} = \frac{y}{x}$ $\log (x^p y^q) = \log (x+y)^{p+q}$ $\log x^p + \log y^q = (p+q)\log (x+y)$ $p \log x + q \log y = (p+q)\log (x+y)$ $p \frac{1}{x} + q \frac{1}{y} \frac{dy}{dx} = (p+q) \left[\frac{1}{x+y} \left(1 + \frac{dy}{dx} \right) \right]$ $\frac{p}{x} + \frac{q}{y} \frac{dy}{dx} = \frac{p+q}{x+y} + \left(\frac{p+q}{x+y} \right) \frac{dy}{dx}$ $\left(\frac{q}{y} - \frac{p+q}{x+y} \right) \frac{dy}{dx} = \frac{p+q}{x+y} - \frac{p}{x}$ $\left(\frac{qx+qy-py-qy}{y(x+y)} \right) \frac{dy}{dx} = \frac{px+qx-px-py}{x(x+y)}$ $\left(\frac{qx-py}{y} \right) \frac{dy}{dx} = \frac{qx-py}{x}$ $\therefore \frac{dy}{dx} = \frac{y}{x}$	1/2 1/2 1 1 1/2 1/2 1/2 1/2	04
	f)	If $y = 3 \sin t - 2 \sin^3 t$, $x = 3 \cos t - 2 \cos^3 t$, find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$		
	Ans	$y = 3\sin t - 2\sin^3 t, x = 3\cos t - 2\cos^3 t$ $\therefore \frac{dy}{dt} = 3\cos t - 6\sin^2 t \cos t$ $\frac{dx}{dt} = -3\sin t + 6\cos^2 t \sin t$ $\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3\cos t - 6\sin^2 t \cos t}{-3\sin t + 6\cos^2 t \sin t}$ $\frac{dy}{dx} = \frac{3\cos t (1 - 2\sin^2 t)}{3\sin t (2\cos^2 t - 1)}$ $\frac{dy}{dx} = \frac{\cos t \cos 2t}{\sin t \cos 2t} = \cot t$ $\cot t = \frac{\pi}{4}$ $\frac{dy}{dt} = \cot \frac{\pi}{4}$	1/2 1/2 1/2 1/2 1	
		$\frac{dy}{dx} = \cot \frac{dy}{dx} = 1$		04

Subject Code: (17216) Page No: 16/26 Winter-2015

Que.	Sub.	Model Anowers	Marks	Total
No.	Que.	Model Answers	IVIAIKS	Marks
5)		Attempt any <u>FOUR</u> of the following:		16
	a) Ans	Evaluate: $\lim_{x\to 0} \frac{6^x - 3^x - 2^x + 1}{x^2}$		
		$= \lim_{x \to 0} \frac{6^x - 3^x - 2^x + 1}{x^2}$		
		$= \lim_{x \to 0} \frac{3^{x} 2^{x} - 3^{x} - 2^{x} + 1}{x^{2}}$	1/2	
		$= \lim_{x \to 0} \frac{3^{x} (2^{x} - 1) - (2^{x} - 1)}{x^{2}}$		
		$= \lim_{x \to 0} \frac{(3^{x} - 1)(2^{x} - 1)}{x^{2}}$	1	
		$= \left(\lim_{x \to 0} \frac{3^x - 1}{x}\right) \left(\lim_{x \to 0} \frac{2^x - 1}{x}\right)$	1/2	
		$= (\log 3)(\log 2)$	1+1	04
	b)	Evaluate: $\lim_{x \to 3} \frac{\log x - \log 3}{x - 3}$		
	Ans	Put $x = 3 + h$ as $x \to 3$, $h \to 0$	1	
		$= \lim_{h \to 0} \frac{\log (3 + h) - \log 3}{3 + h - 3}$		
		$=\lim_{h\to 0}\frac{\log\left(\frac{3+h}{3}\right)}{h}$	1	
		$= \lim_{h \to 0} \frac{1}{h} \log \left(1 + \frac{h}{3} \right)$		
		$= \lim_{h \to 0} \log \left(1 + \frac{h}{3} \right)^{\frac{1}{h}}$	1/2	
		$= \log \left[\lim_{h \to 0} \left(1 + \frac{h}{3} \right)^{\frac{3}{h}} \right]^{\frac{1}{3}}$	1	
		$= \log e^{\frac{1}{3}}$		
		$=\frac{1}{3}\log e = \frac{1}{3}$	1/2	04

Subject Code: (17216) Page No: 17/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Widdel / Miswers	With	Marks
5)	c)	Find the approximate roots of the equation $x^3 - x - 4 = 0$ by bisection method.		
	Ans	$Let f(x) = x^3 - x - 4$		
		$f\left(1\right) = -4 < 0$	1	
		f(2) = 2 > 0	1	
		\therefore root lies in $(1,2)$		
		$x_1 = \frac{a+b}{2} = \frac{1+2}{2} = 1.5$	1	
		f(1.5) = -2.125 < 0		
		\therefore the root lies in (1.5,2)		
		$x_2 = \frac{x_1 + b}{2} = \frac{1.5 + 2}{2} = 1.75$	1	
		$f\left(x_2\right) = -0.39 < 0$		
		\therefore the root lies in (1.75,2)		
		$x_3 = \frac{x_2 + b}{2} = \frac{1.75 + 2}{2} = 1.875$	1	04
		OR		
		$Let f(x) = x^3 - x - 4$		
		$f\left(1\right) = -4 < 0$		
		$f\left(2\right)=2>0$	1	
		\therefore root lies in $(1,2)$		
		a b $x = \frac{a+b}{2}$ $f(x)$		
		1 2 1.5 -2.125		
		1.5 2 1.75 -0.39	1+1+1	04
		1.75 2 1.875		
	d)	Show that root of the equation $x^3 - 4x + 1 = 0$ in $(1, 2)$ and find it by using Newton-Raphson method performing two iterations.		

Subject Code: (17216) Page No: 18/26 Winter-2015

	Sub.	Model Answers		Total
No.	Que.	1.10 001 1 2.10 1.010	Marks	Marks
5)	Ans	Let, $f(x) = x^3 - 4x + 1$		
		$f\left(1\right) = -2 < 0$		
		$f\left(2\right)=1>0$	1	
		$f'(x) = 3x^2 - 4$	1/2	
		$\therefore f'(2) = 8$, 2	
		\therefore Initial root $x_0 = 2$		
		$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 2 - \frac{1}{8} = 1.875$	1 ½	
		$x_2 = x_1 - \frac{f(x_1)}{f(x_1)} = 1.875 - \frac{0.091}{6.546} = 1.861$	1	04
		OR		
		Let, $f(x) = x^3 - 4x + 1$		
		$f\left(1\right) = -2 < 0$		
		$f\left(2\right)=1>0$	1	
		$f'(x) = 3x^2 - 4$		
		$\therefore f'(2) = 8$	1/2	
		\therefore Initial root $x_0 = 2$		
		$x_{n+1} = \frac{xf'(x) - f(x)}{f'(x)}$		
		$x_{n+1} = \frac{x(3x^2 - 4) - (x^3 - 4x + 1)}{3x^2 - 4}$		
		$x_{n+1} = \frac{3x^3 - 4x - x^3 + 4x - 1}{3x^2 - 4}$		
		$x_{n+1} = \frac{2x^3 - 1}{3x^2 - 4}$	1	
		n=0,1,2		
		$x_1 = 1.875$	1	
		$x_2 = 1.86$	1/2	04
			1/2	

Subject Code: (17216) Page No: 19/26 Winter-2015

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Widder alliswers	Marks	Marks
5)	e) Ans	Solve the following equations, Using Gauss elimination method: $x + 2y + 3z = 14$, $3x + y + 2z = 11$, $2x + 3y + z = 11$ $x + 2y + 3z = 14$ $3x + y + 2z = 11$ $2x + 3y + z = 11$		
		x + 2y + 3z = 14 $6x + 2y + 4z = 22$ $$	1 1 1 1	04
	f) Ans	Solve the following equations by Gauss-Seidel method: $5x - y = 9$, $x - 5y + z = -4$, $y - 5z = 6$ $x = \frac{1}{5}(9 + y)$ $y = \frac{1}{-5}(-4 - x - z)$ $z = \frac{1}{-5}(6 - y)$ Starting with $y_0 = z_0 = 0$ $x_1 = 1.8$ $y_1 = 1.16$ $z_1 = -0.968$	1	

Subject Code: (17216) Page No: 20/26 Winter-2015

Que.	Sub.	Model Angwers	Marks	Total
No.	Que.	Model Answers	IVIAIKS	Marks
5)		$x_2 = 2.032$ $y_2 = 1.012$ $z_2 = -0.997$	1	
		$x_3 = 2.003$ $y_3 = 1.001$ $z_3 = -0.9998$	1	04
6)		Attempt any FOUR of the following:		16
		If $y = e^{m \sin^{-1} x}$ prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - m^2 y = 0$		
	Ans	$y = e^{m \sin^{-1} x}$		
		$\frac{dy}{dx} = e^{m \sin^{-1} x} m \frac{1}{\sqrt{1 - x^2}}$	1	
		$\sqrt{1-x^2} \frac{dy}{dx} = my (1)$	1/2	
		$\sqrt{1-x^2} \frac{d^2 y}{dx^2} + \frac{dy}{dx} \frac{1}{2\sqrt{1-x^2}} (0-2x) = m \frac{dy}{dx}$	1	
		$\left(1-x^2\right)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=m\sqrt{1-x^2}\frac{dy}{dx}$	1/2	
		$ (1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} = m \cdot my by (1) $ $ (1 - x^{2}) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} - m^{2}y = 0 $	1/2	
		$\left(1 - x^2\right) \frac{3}{dx^2} - x \frac{3}{dx} - m^2 y = 0$ OR	1/2	04
		$y = e^{m \sin^{-1} x}$ $\frac{dy}{dx} = e^{m \sin^{-1} x} m \frac{1}{\sqrt{1 - x^2}}$	1	
		$\sqrt{1-x^2} \frac{dy}{dx} = m e^{m \sin^{-1} x}$		
		$\sqrt{1-x^2} \frac{d^2 y}{dx^2} + \frac{dy}{dx} \frac{1}{2\sqrt{1-x^2}} (0-2x) = m e^{m \sin^{-1} x} m \frac{1}{\sqrt{1-x^2}}$	1½	
		$\left(1-x^2\right)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=m^2y$	1	

Subject Code: (17216) Page No: 21/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel Allsweis	Warks	Marks
6)		$(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - m^2 y = 0$	1/2	04
	b) Ans	If $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$		
		$x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$		
		$\frac{dx}{d\theta} = a\left(1 + \cos\theta\right) (1)$	1/2	
		$\frac{dy}{d\theta} = -a\sin\theta$ $\frac{dy}{d\theta} = -a\sin\theta$	1/2	
		$\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$		
		$\frac{dy}{dx} = \frac{-a\sin\theta}{a\left(1+\cos\theta\right)}$	1/2	
		$\frac{dy}{dx} = \frac{-2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}{2\cos^2\left(\frac{\theta}{2}\right)}$		
		$\frac{dy}{dx} = -\tan\left(\frac{\theta}{2}\right)$	1	
		$\therefore \frac{d^2 y}{dx^2} = -\sec^2\left(\frac{\theta}{2}\right) \frac{1}{2} \frac{d\theta}{dx}$	1/2	
		$\frac{d^2 y}{dx^2} = -\sec^2\left(\frac{\theta}{2}\right) \frac{1}{2} \frac{1}{\frac{dx}{d\theta}}$		
		$\frac{d^2 y}{dx^2} = -\sec^2\left(\frac{\theta}{2}\right) \frac{1}{2} \frac{1}{a\left(1 + \cos\theta\right)}$		
		$\frac{d^2 y}{dx^2} = -\sec^2\left(\frac{\theta}{2}\right) \frac{1}{2} \frac{1}{a 2 \cos^2\left(\frac{\theta}{2}\right)} = -\frac{1}{4a} \sec^4\left(\frac{\theta}{2}\right)$		

Subject Code: (17216) Page No: 22/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel Filis Wers	Walks	Marks
6)		at $\theta = \frac{\pi}{2}$ $\frac{d^2 y}{dx^2} = -\frac{1}{4a} \sec^4 \left(\frac{\pi}{4}\right) = -\frac{1}{4a} \left(\sqrt{2}\right)^4$	1/2	
		$\frac{d^2 y}{dx^2} = \frac{-1}{a}$	1/2	04
	c)	Using Regula-Falsi method, find the root of the equation		
	Ans.	$x^3 - x - 1 = 0$		
	Alls.	Let $x^3 - x - 1 = 0 = 0$ $f(x) = x^3 - x - 1$		
		f(1) = -1 < 0 f(2) = 5 > 0	1	
		∴ the root lies in (1,2)		
		$x_{1} = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{1(5) - 2(-1)}{5 + 1} = 1.167$	1	
		$f(x_1) = -0.578 < 0$		
		∴ the root lies in (1.167,2)		
		$x_2 = \frac{1.167(5) - 2(-0.578)}{5 + 0.578} = 1.253$	1	
		$f\left(x_{2}\right) = -0.286 < 0$		
		: the root lies in (1.253,2)		
		$x_3 = \frac{1.253(5) - 2(-0.286)}{5 + 0.286} = 1.293$	1	04
		OR		
		$\therefore x^3 - x - 1 = 0$		
		$\therefore x^3 - x - 1 = 0$ $f(x) = x^3 - x - 1$		

Subject Code: (17216) Page No: 23/26 Winter-2015

Que.	Sub.	Model Answers							Total
No.	Que.								Marks
6)		$f(1) = -1 <$ $f(2) = 5 > 0$ $\therefore \text{ the root li}$	0	(1,2)				1	
		a	b	f (a)	f(b)	$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$	f(x)	1.1.1	
		1	2	-1	5	1.167	-0.578	1+1+1	
		1.167	2	-0.578	5	1.253	-0.286		
		1.253	2	-0.286	5	1.293			04
	d) Ans		$y = 17$ $y + 2$ $-3x$ $2x + $ $x_0 = $	(3x + 20y) $z)$ $+ z)$ $3y)$	-z = -18	Jacobi's method. $3,2x-3y+20z=25$		1 1	
		$x_3 = 1.001$ $y_3 = -1.00$ $z_3 = 1.003$	02					1	04

Subject Code: (17216) Page No: 24/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
6)	e) Ans	Solve the following equations by Gauss elimination method: $4x + y + 2z = 12, -x + 11y + 4z = 33, 2x - 3y + 8z = 20$ 4x + y + 2z = 12 -x + 11y + 4z = 33 2x - 3y + 8z = 20		
		4x + y + 2z = 12 $-4x + 44y + 16z = 132$ $+$	1	
		45 y + 18 z = 144 $9 y - 18 z = -36$ $$	1 1 1	04
	f)	Note: In the above solution, first x is eliminated and then z is eliminated to find the value of y first. If in case the problem is solved by elimination of another unknown i . e ., either first y or z , appropriate marks to be given as per above scheme of marking Using Newton-Raphson method to evaluate $\sqrt[3]{20}$ correct to three		
	Ans	decimal places. $x = \sqrt[3]{20}$ Let, $x^3 - 20 = 0$ $f(x) = x^3 - 20$ f(2) = -12 < 0 f(3) = 7 > 0	1/2	

Subject Code: (17216) Page No: 25/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total Marks
6)	Que.			Marks
0)		$f'(x) = 3x^2$	1/2	
		$\therefore \text{ Initial root } x_0 = 3$	72	
		f'(3) = 27		
		$x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 3 - \frac{(3^3 - 20)}{3(3)^2} = 2.740$	1	
		$x_2 = x_1 - \frac{f(x_1)}{f(x_1)} = 2.74 - \frac{((2.74)^3 - 20)}{3(2.74)^2} = 2.714$	1	
		$x_3 = x_2 - \frac{f(x_2)}{f(x_2)} = 2.714 - \frac{((2.714)^3 - 20)}{3(2.714)^2} = 2.714$	1	04
		OR		
		$x = \sqrt[3]{20}$		
		Let, $x^3 - 20 = 0$		
		$f\left(x\right) = x^3 - 20$	1/2	
		f(2) = -12 < 0		
		f(3) = 7 > 0	1/2	
		$f'(x) = 3x^2$	/2	
		$\therefore \text{ Initial root } x_0 = 3$		
		$x_{n+1} = \frac{xf'(x) - f(x)}{f'(x)}$		
		$x_{n+1} = \frac{x(3x^2) - (x^3 - 20)}{3x^2}$		
		$x_{n+1} = \frac{3x^3 - x^3 + 20}{3x^2 - 4}$		
		$x_{n+1} = \frac{2 x^3 + 20}{3 x^2}$	1	

Subject Code: (17216) Page No: 26/26 Winter-2015

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
6)		n = 0, 1, 2		
		$x_1 = 2.740$	1	
		$x_2 = 2.714$	1/2	
		$x_3 = 2.714$	1/2	04
		<u>Important Note</u>		
		In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		