Definition 1 (Extended social argumentation frameworks). *An* extended social argumentation framework is a 4-tuple $F = \langle \mathcal{A}, \mathcal{R}, \mathcal{O}, V \rangle$, where

- A is the set of arguments,
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ is a binary attack relation between arguments,
- $\mathcal{O} = \mathcal{A} \cup \mathcal{R}$ is the set of objects, composed by the union of the sets of arguments and attack relations,
- $V: \mathcal{O} \to \mathbb{N} \times \mathbb{N}$ stores the crowd's pro and con votes for each object.

Definition 2. [Vote Aggregation Function] Given a totally ordered set L with top and bottom elements \top , \bot , a voting function V and a set of objects \mathcal{O} , a vote aggregation function τ is any function such that $\tau: \mathcal{O} \times 2^{\mathcal{O}} \to L$.

Definition 3 (Semantic Framework). A semantic framework is a 6-tuple $\langle L, \lambda_{\mathcal{A}}, \lambda_{\mathcal{R}}, \Upsilon, \neg, \tau \rangle$ where:

- L is a totally ordered set with top and bottom elements T, ⊥, containing all possible valuations of an argument.
- $\Upsilon: L \times L \to L$, is a binary algebraic operation on argument valuations used to combine or aggregate valuations and strengths.
- $\neg: L \to L$ is a unary algebraic operation for computing a restricting value corresponding to a given valuation or strength.
- τ is a vote aggregation function which, given the votes, determines the social support of an object within a set of objects.

Notation 1. Let $F = \langle \mathcal{A}, \mathcal{R}, \mathcal{O}, V \rangle$ be an ESAF, $\mathcal{S} = \langle L, \bot_{\mathcal{A}}, \bot_{\mathcal{R}}, \curlyvee, \neg, \tau \rangle$ a semantic framework. Then, let

- $-V^+(o) \triangleq x$ denote the number of positive votes for object o,
 - $-V^{-}(o) \triangleq y$ denote the number of negative votes for object o,
 - $-v^r: \mathcal{O} \to \mathbb{R}$ be a function s.t. $v^r(o) \triangleq \frac{x}{x+y}$,
 - $-v^t: \mathcal{O} \to \mathbb{N}$ be a function s.t. $v^t(o) \triangleq x + y$, whenever V(o) = (x, y),
- $V: 2^{\mathcal{O}} \to 2^{\mathbb{N} \times \mathbb{N}}$ be a function s.t. $V(\mathcal{O}') = \{V(o) \mid o \in \mathcal{O}'\},\$
- $V^t: 2^{\mathcal{O}} \to 2^{\mathbb{N} \times \mathbb{N}}$ be a function s.t. $V^t(\mathcal{O}') = \{V^t(o) \mid o \in \mathcal{O}'\},$
- $max: 2^{\mathbb{N}} \to \mathbb{N}$ be a function s.t. it returns the maximum value amongst the natural numbers from the non-empty multiset given as the input.

• $\mathcal{R}^{-}(a) \triangleq \{a_i \in \mathcal{A} : (a_i, a) \in \mathcal{R}\}\$ be the set of direct attackers of an argument $a \in \mathcal{A}$,

$$\bigvee_{x \in X} x \triangleq (((x_1 \lor x_2) \lor \ldots) \lor x_n)$$

 $X = \{x_1, x_2, ..., x_n\}$ denote the aggregation of a multiset of elements of L.

Definition 4 (Model). Let $F = \langle \mathcal{A}, \mathcal{R}, \mathcal{O}, V \rangle$ be a social argumentation framework, $\mathcal{S} = \langle L, \lambda_{\mathcal{A}}, \lambda_{\mathcal{R}}, \Upsilon, \neg, \tau \rangle$ be a semantic framework. An \mathcal{S} -model of F is a total mapping $M : \mathcal{A} \to L$ such that for all $a \in \mathcal{A}$,

$$M(a) = \tau(a, \mathcal{A}) \curlywedge_{\mathcal{A}} \neg \bigvee_{a_i \in \mathcal{R}^{-}(a)} (\tau((a_i, a), \mathcal{R}) \curlywedge_{\mathcal{R}} M(a_i))$$

Definition 5. [Enhanced Vote Aggregation]

Given a voting function V and a set of objects \mathcal{O} , enhanced vote aggregation function $\tau_e: \mathcal{O} \times 2^{\mathcal{O}} \to [0,1]$ is the vote aggregation function such that

$$\tau_e(o,\mathcal{O}) = \begin{cases} 0 & V(o) = (0,0) \\ \frac{v^+(o)}{v^t(o) + \frac{1}{\max(v^t(o) \cup \mathcal{O})}} & otherwise \end{cases}$$

Property 1. [Absolute argument freeness]

Let τ be a a vote aggregation function given a set of values L, a set of objects \mathcal{O} and a value function V. We say that τ is 'absolute argument free' if

$$\forall o \in \mathcal{O}, \ \tau(o, \mathcal{O}) \neq \top.$$

Property 2. [Precedence of the vote ratio]

Let τ be a a vote aggregation function given a set of values L, a set of objects \mathcal{O} and a value function V. We say that τ is 'vote ratio precedent' if

$$\forall o_1, o_2 \in \mathcal{O}, (v^r(o_1) \ge v^r(o_2)) \implies (\tau(o_1, \mathcal{O}) \ge \tau(o_2, \mathcal{O})).$$

Property 3. [Precedence of the total number of votes]

Let τ be a a vote aggregation function given a set of values L, a set of objects \mathcal{O} and a value function V. We say that τ is 'total votes precedent' if

$$\forall o_1, o_2 \in \mathcal{O},$$

$$((v^r(o_1) = v^r(o_2)) \land (v^t(o_1) > (v^t(o_2))) \implies (\tau(o_1, \mathcal{O}) > \tau(o_2, \mathcal{O})).$$

Proposition 1. Enhanced Vote Aggregation function respects Property 1.

Proof. Let L be a totally ordered set with top and bottom elements \top , \bot , V a voting function, \mathcal{O} a set of objects and an arbitrary $o \in \mathcal{O}$.

We consider the two main cases for the enhanced vote aggregation function with respect to o.

Firstly, if V(o) = (0,0), by definition $\tau_e(o,\mathcal{O}) = 0 < 1$.

Now assume $V(o) \neq (0,0)$. We know that for an arbitrary multiset of naturals X where $\exists (n_1,n_2) \in X$ s.t. $(n_1,n_2) \neq (0,0)$, $max(X) \in \mathbb{N}^+$. And consequently $\frac{1}{max(X)} > 0$. Furthermore we have $v^t(o) = v^+(o) + v^-(o)$.

From the two inferences we get: $(v^t(o) + \frac{1}{\max(v^t(o \cup \mathcal{O}))}) > v^+$.

Hence it follows that:

$$\tau_e(o,\mathcal{O}) = \frac{v^+(o)}{v^t(o) + \frac{1}{\max(v^t(o \cup \mathcal{O}))}} < 1.$$

Conjecture 1. Enhanced Vote Aggregation function respects Property 2.

Proposition 2. Vote Aggregation function[1] does not respect Property 2.

Proof. It's sufficient to display a counter example.

Let L be a totally ordered set with top and bottom elements \top , \bot , V a voting function, \mathcal{O} a set of objects and $o_1, o_2 \in \mathcal{O}$.

EXTEND PART

Furthermore assume $\epsilon = 0.1, V(o_1) = (1, 1)$ and $V(o_2) = (499, 501)$.

Since $v^r(o_1) \geq v^r(o_2)$ via the property the following should hold $\tau(o_1, \mathcal{O}) \geq \tau(o_2, \mathcal{O})$.

However $\tau(v_1^+, v_1^-) = \tau(1, 1) \cong 0.4761$ and $\tau(v_2^+, v_2^-) = \tau(499, 501) \cong 0.4989$. Hence, $\tau(v_1^+, v_1^-) < \tau(v_2^+, v_2^-)$.

We conclude a contradiction.

Conjecture 2. Enhanced Vote Aggregation function respects Property 3.

References

[1] S.Egilmez, J. Martins, and J. Leite. Extending social abstract argumentation with votes on attacks. In *Procs. of TAFA 2013*. TBA, 2013.