10

### Multivariate Linear Regression

## ⋒ 多元线性回归

用多个解释变量来预测响应变量结果



科学不知道它对想象力的依赖。

Science does not know its debt to imagination.

—— 拉尔夫·沃尔多·爱默生 (Ralph Waldo Emerson) | 美国思想家、文学家 | 1942 ~ 2018



- matplotlib.pyplot.quiver() 绘制箭头图
- ◀ numpy.arccos() 反余弦函数
- ◀ numpy.cov() 计算协方差矩阵
- ◀ numpy.identity() 构造单位矩阵
- ◀ numpy.linalg.det() 计算矩阵的行列式值
- ◀ numpy.linalg.inv() 求矩阵逆
- numpy.linalg.matrix\_rank() 计算矩阵的秩
- ◀ numpy.matrix() 构造矩阵
- ◀ numpy.ones() 构造全1矩阵或向量
- ◀ numpy.ones like() 按照给定矩阵或向量形状构造全 1 矩阵或向量
- ▼ plot\_wireframe() 绘制线框图
- ✓ scipy.stats.f.cdf() F分布累积分布函数
- ✓ seaborn.heatmap() 绘制热图
- ◀ seaborn.jointplot() 绘制联合分布/散点图和边际分布
- ◀ seaborn.kdeplot() 绘制 KDE 核概率密度估计曲线
- ◀ seaborn.pairplot() 绘制成对分析图
- ◀ statsmodels.api.add constant() 线性回归增加一列常数 1
- ◀ statsmodels.api.OLS() 最小二乘法函数
- ◆ statsmodels.stats.outliers influence.variance inflation factor() 计算方差膨胀因子



### 10.1 多元线性回归

这一章将探讨多元线性回归。多元线性回归模型不止一个考虑自变量,而是多个自变量;即 回归分析中引入多个相关解释因子。

多元线性回归的数学表达式如下:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_D x_D + \varepsilon$$
 (1)

其中, $b_0$  为截距项; $b_1, b_2, ..., b_D$  代表自变量系数, $\varepsilon$  为残差项,D 为自变量个数。多元线性回归得到一个超平面 (hyperplane)。

用矩阵运算表达(1):

$$\mathbf{y} = \underbrace{b_0 \mathbf{I} + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + \dots + b_D \mathbf{x}_D}_{\hat{\mathbf{y}}} + \boldsymbol{\varepsilon}$$
 (2)

换一种方式表达(2):

$$y = Xb + \varepsilon \tag{3}$$

其中.

$$\boldsymbol{X}_{n \times (D+1)} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{D} \end{bmatrix} = \begin{bmatrix} 1 & \boldsymbol{x}_{1,1} & \cdots & \boldsymbol{x}_{1,D} \\ 1 & \boldsymbol{x}_{2,1} & \cdots & \boldsymbol{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \boldsymbol{x}_{n,1} & \cdots & \boldsymbol{x}_{n,D} \end{bmatrix}_{n \times (D+1)}, \quad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}_{1} \\ \boldsymbol{y}_{2} \\ \vdots \\ \boldsymbol{y}_{n} \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} \boldsymbol{b}_{0} \\ \boldsymbol{b}_{1} \\ \vdots \\ \boldsymbol{b}_{D} \end{bmatrix}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \boldsymbol{\varepsilon}^{(1)} \\ \boldsymbol{\varepsilon}^{(2)} \\ \vdots \\ \boldsymbol{\varepsilon}^{(n)} \end{bmatrix}$$
(4)

矩阵 X 常被称作设计矩阵 (design matrix)。图 1 所示矩阵运算对应 (3)。



图 1. 多元线性回归模型矩阵运算

预测值构成的列向量 ŷ, 通过下式计算得到:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} \tag{5}$$

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

残差项的计算式为:

$$\varepsilon = y - \hat{y} = y - Xb \tag{6}$$

如图2所示, 第i个观测点的残差项, 可以通过下式计算得到:

$$\varepsilon^{(i)} = y^{(i)} - \hat{y}^{(i)} = y^{(i)} - x^{(i)}b$$



图 2. 计算第 i 个观测点的残差项

图 3 所示为多元 OLS 线性回归数据关系。也就是说, $\hat{y}$  可以看成设计矩阵 X 的列向量线性组合。



图 3. 多元 OLS 线性回归数据关系

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

注意, 矩阵 X 为 n 行, D+1 列, 第一列为全 1; 增加一列全 1 向量目的是为了考虑常数项。 如图 4 所示, 如果数据都已经中心化,则可以不必考虑常数项。



图 4. 多元 OLS 线性回归数据关系,中心化数据

# 10.2 优化问题: OLS

一般通过如下两种方式求得线性回归参数:

- 最小二乘法 (Ordinary Least Square, OLS),因变量和拟合值之间的欧氏距离最小化
- 最大似然概率估计 (Maximum Likelihood Estimation, MLE), 用样本数据反推最可能的模型参数值

OLS 线性最小二乘法通过最小化残差值平方和 SSE 来计算得到最佳的拟合回归线参数:

$$\underset{b}{\operatorname{arg\,min}} \text{ SSE} \tag{7}$$

对于多元线性回归,残差平方和 SSE 为:

$$SSE = \sum_{i=1}^{n} \left( \varepsilon^{(i)} \right)^{2} = \varepsilon \cdot \varepsilon = \left\| \varepsilon \right\|_{2}^{2} = \varepsilon^{T} \varepsilon = \left( y - Xb \right)^{T} \left( y - Xb \right) = \left\| y - Xb \right\|_{2}^{2}$$
(8)

OLS 多元线性优化问题的目标函数可以写成:

$$f(b) = (y - Xb)^{T} (y - Xb)$$
(9)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

f(b) 可以整理为:

$$f(b) = (y - Xb)^{T} (y - Xb)$$

$$= (y^{T} - b^{T} X^{T}) (y - Xb)$$

$$= y^{T} y - y^{T} Xb - b^{T} X^{T} y + b^{T} X^{T} Xb$$

$$= \underbrace{b^{T} X^{T} Xb}_{Quadratic term} \underbrace{-2b^{T} X^{T} y}_{Linear term} + y^{T} y$$

$$= \underbrace{b^{T} X^{T} Xb}_{Quadratic term} \underbrace{-2b^{T} X^{T} y}_{Constant} + y^{T} y$$

$$= \underbrace{b^{T} X^{T} Xb}_{Quadratic term} \underbrace{-2b^{T} X^{T} y}_{Constant} + y^{T} y$$

$$= \underbrace{b^{T} X^{T} Xb}_{Quadratic term} \underbrace{-2b^{T} X^{T} y}_{Constant} + y^{T} y$$

$$= \underbrace{b^{T} X^{T} Xb}_{Quadratic term} \underbrace{-2b^{T} X^{T} y}_{Constant} + y^{T} y$$

$$= \underbrace{b^{T} X^{T} Xb}_{Quadratic term} \underbrace{-2b^{T} X^{T} y}_{Constant} + y^{T} y$$

$$= \underbrace{b^{T} X^{T} Xb}_{Quadratic term} \underbrace{-2b^{T} X^{T} y}_{Constant} + y^{T} y$$

观察上式,发现  $f(\mathbf{b})$  为多元二次函数,含有二次项、一次项和常数项。因此,对于二元回归,不考虑常数项系数  $b_0$ ,  $b_1$  和  $b_2$  构成的曲面  $f(b_1,b_2)$  为椭圆抛物面,如图 5 所示。





图 5. f(b1, b2) 函数曲面

#### f(b) 梯度向量如下:

$$\nabla f(\boldsymbol{b}) = \frac{\partial f(\boldsymbol{b})}{\partial \boldsymbol{b}} = (2\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{b} - 2\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y})^{\mathrm{T}}$$
(11)

f(b) 为连续函数,取得极值时,梯度向量为零向量:

$$\nabla f(b) = 0 \quad \Rightarrow \quad X^{\mathsf{T}} X b - X^{\mathsf{T}} y = 0 \tag{12}$$

如果 $X^TX$ 可逆,b的解为:

$$\boldsymbol{b} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} \tag{13}$$

f(b) 的黑塞矩阵为:

$$\nabla^2 f(\boldsymbol{b}) = \frac{\partial^2 f(\boldsymbol{b})}{\partial \boldsymbol{b} \partial \boldsymbol{b}^{\mathrm{T}}} = 2\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$$
 (14)

下面,判断 f(b) 黑塞矩阵为正定矩阵,这样极值点为最小值点。

对于任意非零向量a,下式恒大于等于0:

$$\boldsymbol{a}^{\mathsf{T}}\left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\right)\boldsymbol{a} = \left(\boldsymbol{X}\boldsymbol{a}\right)^{\mathsf{T}}\left(\boldsymbol{X}\boldsymbol{a}\right) = \left\|\boldsymbol{X}\boldsymbol{a}\right\|^{2} \ge 0 \tag{15}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

等号成立时,即 Xa = 0,即当 X 列向量线性相关,我们暂时不考虑这种情况。因此,对于 X 为列满秩,f(b) 黑塞矩阵为正定矩阵,f(b) 在极值点处取得最小值。

模型拟合值向量 ŷ 为:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} = \mathbf{X} \left( \mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y} \tag{16}$$

残差向量 $\varepsilon$ 为:

$$\varepsilon = y - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y \tag{17}$$

 $X(X^TX)^{-1}X^T$  为《矩阵力量》第 9 章介绍的帽子矩阵 (hat matrix) H, 它常出现在矩阵投影运算中。令、

$$\boldsymbol{H} = \boldsymbol{X} \left( \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \tag{18}$$

帽子矩阵 H 为幂等矩阵 (idempotent matrix),即满足  $H^2 = H$ 。

利用H,

$$\begin{cases} \hat{y} = Hy \\ \varepsilon = (I - H)y \end{cases} \tag{19}$$

### 10.3 几何解释: 投影

图 6 所示为多维空间视角下的数据矩阵;矩阵  $X[x_1,x_2,...,x_D]$  每一列为一个特征,每一列可以看做一个向量。丛书《矩阵力量》一书中,我们反复探讨过这一点。



图 6. 多维空间视角下的矩阵 X

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

不考虑常数项,预测值向量 $\hat{y}$ 可以通过下式计算得到:

$$\hat{\mathbf{y}} = b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + \dots + b_D \mathbf{x}_D \tag{20}$$

(20) 说明,预测值向量  $\hat{y}$  是自变量向量  $x_1, x_2, ..., x_D$  的线性组合。如果  $x_1, x_2, ..., x_D$ ,构成一个超平面 H;  $\hat{y}$  在 H 这个平面内。

有了这一思想,构造因变量向量y和自变量向量 $x_1, x_2, ..., x_D$ 的线性回归模型,相当于y向 $x_1, x_2, ..., x_D$ 构成的超平面H投影。如图7所示,预测值向量 $\hat{y}$ 是因变量向量y在H的投影结果:

$$y = \hat{y} + \varepsilon \tag{21}$$



图 7. 几何角度解释多元最小二乘法线性回归

而残差项向量  $\varepsilon$  是预测值向量  $\hat{y}$  是因变量向量 y 两者之差:

$$\varepsilon = y - \hat{y} \tag{22}$$

残差项向量  $\varepsilon$  垂直于  $x_1, x_2, ..., x_D$  构成的超平面 H。

由上所述,残差  $\varepsilon$  ( $\varepsilon = y - \hat{y}$ ) 是无法通过 ( $x_0, x_1, ..., x_{D-1}, x_D$ ) 解释部分向量,垂直于超平面:

$$\boldsymbol{\varepsilon} \perp \boldsymbol{X} \quad \Rightarrow \quad \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\varepsilon} = 0 \tag{23}$$

得到

$$\boldsymbol{X}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}) = 0 \quad \Rightarrow \quad \boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{b} = \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} \tag{24}$$

这和上一节得到的结果完全一致,但是从几何视角看 OLS,让求解过程变得非常简洁。请大家再次注意,只有 X 为列满秩时, $X^TX$  才存在逆。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

此外,我们可以很容易在 X 最左侧加入一列全 1 向量 1, b 的解也可以通过 **Error! Reference source not found.** 计算得到。

 $\operatorname{rank}(\boldsymbol{X}) = D + 1$  $\det(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}) \neq 0$ 

表1所示为用矩阵方式再次表达 OLS 线性回归假设。

| 假设       | 矩阵表达                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 线性模型     | $y = Xb + \varepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 残差服从正态分布 | $\varepsilon   X \sim N(0, \hat{\sigma}^2 I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 残差期望值为 0 | $\mathrm{E}(arepsilon X) = oldsymbol{	heta}$ $\mathrm{E}(arepsilon) = oldsymbol{	heta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 残差同方差性   | $\operatorname{var}(\boldsymbol{\varepsilon} \boldsymbol{X}) = \begin{bmatrix} \operatorname{var}(\boldsymbol{\varepsilon}^{(1)}) & \operatorname{cov}(\boldsymbol{\varepsilon}^{(1)}, \boldsymbol{\varepsilon}^{(2)}) & \cdots & \operatorname{cov}(\boldsymbol{\varepsilon}^{(1)}, \boldsymbol{\varepsilon}^{(n)}) \\ \operatorname{cov}(\boldsymbol{\varepsilon}^{(2)}, \boldsymbol{\varepsilon}^{(1)}) & \operatorname{var}(\boldsymbol{\varepsilon}^{(2)}) & \cdots & \operatorname{cov}(\boldsymbol{\varepsilon}^{(2)}, \boldsymbol{\varepsilon}^{(n)}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(\boldsymbol{\varepsilon}^{(n)}, \boldsymbol{\varepsilon}^{(1)}) & \operatorname{cov}(\boldsymbol{\varepsilon}^{(n)}, \boldsymbol{\varepsilon}^{(2)}) & \cdots & \operatorname{var}(\boldsymbol{\varepsilon}^{(n)}) \end{bmatrix} = \hat{\sigma}^{2} \boldsymbol{I}$ |

#### 表 1. 用矩阵运算表达 OLS 线性回归假设

### 10.4 **二元回归**

矩阵X不存在多重共线性

二元线性回归解析式为:

$$\hat{\mathbf{y}} = b_0 \mathbf{1} + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 \tag{25}$$

图 8 所示为二元 OLS 线性回归数据关系。



图 8. 二元 OLS 线性回归数据关系

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本节介绍利用两个股票日收益率解释 S&P 500 日收益率。图 9 所示为参与回归数据  $[y, x_1, x_2]$  的散点图。图 10 所示为  $[y, x_1, x_2]$  数据的成对特征分析图。图 11 所示为  $[y, x_1, x_2]$  数据的协方差矩阵、相关性和夹角热图。图 12 所示为二元 OLS 线性回归结果。图 13 所示为三维数据散点图和回归平面。



图 9. 二元线性回归数据



图 10. 二元线性回归数据  $[y,x_1,x_2]$  成对特征分析图



图  $11. [y, x_1, x_2]$  数据的协方差矩阵、相关性和夹角热图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML本书配套微课视频均发布在 B 站——生姜 DrGinger: ht —生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### OLS Regression Results

|                 |              |            | ======         | ===        |                         |        |           |
|-----------------|--------------|------------|----------------|------------|-------------------------|--------|-----------|
| Dep. Variable:  | SP           | 500 R      | -sq            | uared:     |                         | 0.830  |           |
| Model:          |              |            | OLS A          | dj.        | R-squared:              |        | 0.829     |
| Method:         |              | Least Squa | res F          | -st        | atistic:                | 607.4  |           |
| Date:           | Date: XXXXXX |            |                |            | (F-statistic):          |        | 1.69e-96  |
| Time:           | XXX          | XXXXXXXXX  | XXX L          | og-        | Likelihood:             |        | 831.06    |
| No. Observation |              | 252 A      | IC:            |            |                         | -1656. |           |
| Df Residuals:   |              | 249 в      | IC:            |            |                         | -1646. |           |
| Df Model:       |              |            | 2              |            |                         |        |           |
| Covariance Typ  | pe:          | nonrob     | ust            |            |                         |        |           |
|                 |              |            |                | ===        |                         |        |           |
|                 | coef         | std err    |                | t          | P> t                    | [0.025 | 0.975]    |
| const           | -0.0006      | 0.001      | -0.9           | 84         | 0.326                   | -0.002 | 0.001     |
| AAPL            | 0.3977       | 0.024      | 16.3           | 26         | 0.000                   | 0.350  | 0.446     |
| MCD             | 0.4096       | 0.028      | 14.4           | 42         | 0.000                   | 0.354  | 0.465     |
| Omnibus:        | :======      | 37.        | =====<br>744 D | ===<br>urb | =========<br>in-Watson: |        | <br>1.991 |
| Prob (Omnibus): |              | 0.         | 000 J          | arq        | ue-Bera (JB):           |        | 157.711   |
| Skew:           |              | 0.         | 492 P          | rob        | (JB):                   |        | 5.67e-35  |
| Kurtosis:       |              | 6.         | 749 C          | ond        | . No.                   |        | 59.4      |
|                 |              |            |                |            |                         |        |           |

#### 图 12. 二元 OLS 线性回归分析结果



图 13. 三维空间, 回归平面



#### Bk6\_Ch10\_01.py 完成本节二元线性回归。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

### 10.5 多元回归

本节介绍一个多元回归问题,构造多元 OLS 线性回归模型,用 12 只股票日收益率预测 S&P 500 日收益率。图 14 所示股价数据。



图 14. 股价数据, 起始值归一化

根据股价水平计算得到的日收益率。图 15 所示为日收益率热图。图 16 所示为[y, X] 数据协方差矩阵。图 17 所示为均方差 (即波动率) 直方图。

图 18 所示为[y, X] 数据相关性系数矩阵热图。图 19 所示为股价收益率和 S&P 500 收益率相关性系数柱状图。利用余弦相似性,根据相关性系数矩阵,可以计算得到[y, X] 标准差向量夹角,矩阵热图如图 20 所示。图 21 所示为多元 OLS 线性回归解。



本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### 图 15. [y, X] 日收益率热图



图 16. [y, X] 数据协方差矩阵



图 17. 日波动率柱状图

本书配套徽课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

| SP500 - | 1.000   | 0.463  | 0.359  | 0.505  | 0.417  | 0.571  | 0.386  | 0.433  | 0.341  | 0.390        | 0.340  | 0.517  | 0.570  |
|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|
| TSLA –  | 0.463   | 1.000  | 0.211  | 0.238  | 0.044  | 0.150  | 0.420  | 0.052  | 0.143  | -0.009       | -0.039 | 0.353  | 0.193  |
| WMT –   | 0.359   | 0.211  | 1.000  | 0.148  | -0.021 | 0.160  | 0.282  | 0.020  | -0.040 | 0.111        | 0.104  | 0.562  | 0.149  |
| MCD -   | 0.505   | 0.238  | 0.148  | 1.000  | 0.152  | 0.508  | 0.188  | 0.132  | -0.003 | 0.352        | 0.305  | 0.358  | 0.243  |
| USB –   | 0.417   | 0.044  | -0.021 | 0.152  | 1.000  | 0.456  | -0.127 | 0.908  | 0.309  | 0.631        | 0.497  | -0.193 | 0.327  |
| YUM –   | 0.571   | 0.150  | 0.160  | 0.508  | 0.456  | 1.000  | -0.003 | 0.438  | 0.276  | 0.488        | 0.410  | 0.180  | 0.365  |
| NFLX -  | 0.386   | 0.420  | 0.282  | 0.188  | -0.127 | -0.003 | 1.000  | -0.183 | -0.143 | -0.074       | -0.011 | 0.468  | -0.013 |
| ЈРМ —   | 0.433   | 0.052  | 0.020  | 0.132  | 0.908  | 0.438  | -0.183 | 1.000  | 0.338  | 0.608        | 0.455  | -0.167 | 0.331  |
| PFE –   | 0.341   | 0.143  | -0.040 | -0.003 | 0.309  | 0.276  | -0.143 | 0.338  | 1.000  | 0.227        | 0.238  | 0.011  | 0.479  |
| F –     | 0.390   | -0.009 | 0.111  | 0.352  | 0.631  | 0.488  | -0.074 | 0.608  | 0.227  | 1.000        | 0.721  | 0.039  | 0.269  |
| GM –    | 0.340   | -0.039 | 0.104  | 0.305  | 0.497  | 0.410  | -0.011 | 0.455  | 0.238  | 0.721        | 1.000  | 0.045  | 0.308  |
| COST –  | 0.517   | 0.353  | 0.562  | 0.358  | -0.193 | 0.180  | 0.468  | -0.167 | 0.011  | 0.039        | 0.045  | 1.000  | 0.229  |
| JNJ –   | 0.570   | 0.193  | 0.149  | 0.243  | 0.327  | 0.365  | -0.013 | 0.331  | 0.479  | 0.269        | 0.308  | 0.229  | 1.000  |
|         | SP500 - | TSLA - | WMT -  | MCD -  | USB -  | - MUX  | NFLX - | – Mdt  | PFE -  | [ <u>T</u> , | – WĐ   | COST – | . UNI  |

图 18. [y, X] 数据相关性系数矩阵热图



图 19. 股价收益率和 S&P 500 收益率相关性系数柱状图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML本书配套微课视频均发布在 B 站——生姜 DrGinger: ht

<sup>—</sup>\_生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

| SP500 - | 0.0     | 62.4   | 69.0  | 59.7  | 65.3  | 55.2  | 67.3   | 64.3  | 70.1  | 67.1   | 70.1 | 58.9   | 55.2  |
|---------|---------|--------|-------|-------|-------|-------|--------|-------|-------|--------|------|--------|-------|
| TSLA -  | 62.4    | 0.0    | 77.8  | 76.2  | 87.5  | 81.4  | 65.1   | 87.0  | 81.8  | 90.5   | 92.3 | 69.3   | 78.9  |
| WMT -   | 69.0    | 77.8   | 0.0   | 81.5  | 91.2  | 80.8  | 73.6   | 88.9  | 92.3  | 83.6   | 84.0 | 55.8   | 81.4  |
| MCD -   | 59.7    | 76.2   | 81.5  | 0.0   | 81.3  | 59.4  | 79.2   | 82.4  | 90.2  | 69.4   | 72.2 | 69.0   | 76.0  |
| USB –   | 65.3    | 87.5   | 91.2  | 81.3  | 0.0   | 62.9  | 97.3   | 24.7  | 72.0  | 50.9   | 60.2 | 101.1  | 70.9  |
| YUM –   | 55.2    | 81.4   | 80.8  | 59.4  | 62.9  | 0.0   | 90.2   | 64.0  | 74.0  | 60.8   | 65.8 | 79.6   | 68.6  |
| NFLX -  | 67.3    | 65.1   | 73.6  | 79.2  | 97.3  | 90.2  | 0.0    | 100.6 | 98.2  | 94.2   | 90.6 | 62.1   | 90.7  |
| ЈРМ –   | 64.3    | 87.0   | 88.9  | 82.4  | 24.7  | 64.0  | 100.6  | 0.0   | 70.2  | 52.6   | 62.9 | 99.6   | 70.7  |
| PFE -   | 70.1    | 81.8   | 92.3  | 90.2  | 72.0  | 74.0  | 98.2   | 70.2  | 0.0   | 76.9   | 76.2 | 89.4   | 61.4  |
| F -     | 67.1    | 90.5   | 83.6  | 69.4  | 50.9  | 60.8  | 94.2   | 52.6  | 76.9  | 0.0    | 43.8 | 87.8   | 74.4  |
| GM -    | 70.1    | 92.3   | 84.0  | 72.2  | 60.2  | 65.8  | 90.6   | 62.9  | 76.2  | 43.8   | 0.0  | 87.4   | 72.1  |
| COST -  | 58.9    | 69.3   | 55.8  | 69.0  | 101.1 | 79.6  | 62.1   | 99.6  | 89.4  | 87.8   | 87.4 | 0.0    | 76.8  |
| JNJ –   | 55.2    | 78.9   | 81.4  | 76.0  | 70.9  | 68.6  | 90.7   | 70.7  | 61.4  | 74.4   | 72.1 | 76.8   | 0.0   |
|         | SP500 - | TSLA - | WMT - | MCD - | USB - | YUM - | NFLX - | - Mdf | PFE - | ГТ<br> | - WD | COST - | - INI |

图 20. [y, X] 标准差向量夹角矩阵热图,余弦相似性

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

|             |                    |             |                        |                     |        | 0.774            |  |  |  |
|-------------|--------------------|-------------|------------------------|---------------------|--------|------------------|--|--|--|
| Dep. Varial | ole:               |             | _                      | R-squared:          |        |                  |  |  |  |
| Model:      |                    |             | _                      | R-squared:          |        | 0.750<br>32.48   |  |  |  |
| Method:     |                    | Least Squa: |                        | Prob (F-statistic): |        |                  |  |  |  |
| Date:       |                    | XXXXXXXXXXX |                        |                     |        |                  |  |  |  |
| Time:       |                    | XXXXXXXXXXX | KXX Log-Li<br>127 AIC: | kelihood:           |        | 493.88           |  |  |  |
| No. Observa |                    |             |                        |                     |        | -961.8<br>-924.8 |  |  |  |
| Df Model:   | ıs:                |             | 114 BIC:<br>12         |                     |        | -924.6           |  |  |  |
| Covariance  | Time:              | nonrob      |                        |                     |        |                  |  |  |  |
| ========    | туре.<br>========= | :========   | .============          |                     |        |                  |  |  |  |
|             | coef               | std err     | t                      | P> t                | [0.025 | 0.975]           |  |  |  |
| const       | -0.0005            | 0.000       | -1.038                 | 0.302               | -0.001 | 0.000            |  |  |  |
| TSLA        | 0.0248             | 0.011       | 2.248                  | 0.027               | 0.003  | 0.047            |  |  |  |
| TMW         | 0.0272             | 0.041       | 0.667                  | 0.506               | -0.054 | 0.108            |  |  |  |
| MC D        | 0.1435             | 0.057       | 2.536                  | 0.013               | 0.031  | 0.256            |  |  |  |
| USB         | 0.0164             | 0.051       | 0.322                  | 0.748               | -0.084 | 0.117            |  |  |  |
| YUM         | 0.1469             | 0.047       | 3.114                  | 0.002               | 0.053  | 0.240            |  |  |  |
| NFLX        | 0.0972             | 0.021       | 4.539                  | 0.000               | 0.055  | 0.140            |  |  |  |
| JPM         | 0.1415             | 0.055       | 2.583                  | 0.011               | 0.033  | 0.250            |  |  |  |
| PFE         | 0.0546             | 0.033       | 1.662                  | 0.099               | -0.010 | 0.120            |  |  |  |
| F           | -0.0068            | 0.036       | -0.187                 | 0.852               | -0.078 | 0.065            |  |  |  |
| GM          | -0.0105            | 0.027       | -0.388                 | 0.699               | -0.064 | 0.043            |  |  |  |
| COST        | 0.2176             | 0.059       | 3.713                  | 0.000               | 0.101  | 0.334            |  |  |  |
| JNJ         | 0.2414             | 0.056       | 4.350                  | 0.000               | 0.131  | 0.351            |  |  |  |
| Omnibus:    |                    | 7.          | 561 Durbir             | n-Watson:           |        | 1.862            |  |  |  |
| Prob (Omnib | us):               | 0.          | 023 Jarque             | e-Bera (JB):        |        | 8.445            |  |  |  |
| Skew:       |                    | 0.          | 400 Prob(J             | лв):                |        | 0.0147           |  |  |  |
| Kurtosis:   |                    | 3.          | 978 Cond.              | No.                 |        | 156.             |  |  |  |

图 21. 多元 OLS 线性回归分析结果



Bk6\_Ch10\_02.py 完成本节多元线性回归。

# 10.6 正交关系

#### 第一个直角三角形

通过上一章学习,大家都很清楚第一个勾股关系:

$$\underbrace{\|\mathbf{y} - \overline{\mathbf{y}}\mathbf{I}\|_{2}^{2}}_{\text{SST}} = \underbrace{\|\hat{\mathbf{y}} - \overline{\mathbf{y}}\mathbf{I}\|_{2}^{2}}_{\text{SSR}} + \underbrace{\|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2}}_{\text{SSE}} \tag{26}$$

具体如图 22 所示。上一章提到这一个直角三角形可以帮助我们解释  $\mathbb{R}^2$ 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466



Hyperplane spanned by column vectors of X

图 22. 第一个直角三角形

#### 第二个直角三角形

除了 (26) 这个重要的直角三角形的勾股定理之外,还有另外一个重要的直角三角形勾股定理 关系。

$$\|\mathbf{y}\|_{2}^{2} = \|\hat{\mathbf{y}}\|_{2}^{2} + \|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2} = \|\hat{\mathbf{y}}\|_{2}^{2} + \|\mathbf{\varepsilon}\|_{2}^{2}$$
 (27)

具体如图 23 所示。图 23 这个直角很容易理解。残差向量  $\pmb{\varepsilon}$  垂直于超平面  $\pmb{H}$  内的一切向量,显然  $\pmb{\varepsilon}$  垂直  $\hat{\pmb{y}}$  。



图 23. 第二个直角三角形

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### 第三个直角三角形

此外,《矩阵力量》第22章介绍过,向量 $y-\bar{y}I$ 垂直于向量 $\bar{y}I$ :

$$\left(\overline{y}I\right)^{\mathrm{T}}\left(y-\overline{y}I\right)=0\tag{28}$$

具体如图 24 所示。上式体现的核心思想就是 y 的均值为  $\bar{y}$  。



Hyperplane spanned by column vectors of X

图 24. 第三个直角三角形

#### 第四个直角三角形

OLS 假设残差之和为 0:

$$\sum_{i=1}^{n} \varepsilon^{(i)} = 0 \tag{29}$$

对应向量运算:

$$\mathbf{1}^{\mathsf{T}}\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{\mathsf{T}}\mathbf{1} = 0 \tag{30}$$

残差向量可以写成:

$$\varepsilon = y - \hat{y} = y - \overline{y}I - (\hat{y} - \overline{y}I) \tag{31}$$

上式左乘  $I^T$ , 得到:

$$I^{\mathsf{T}}_{0} \varepsilon = \underbrace{I^{\mathsf{T}} \left( y - \overline{y} I \right)}_{0} - I^{\mathsf{T}} \left( \hat{y} - \overline{y} I \right)$$
(32)

即

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{I}^{\mathrm{T}}\left(\hat{\boldsymbol{y}} - \overline{\mathbf{y}}\boldsymbol{I}\right) = 0 \tag{33}$$

也就是说,如图 25 所示, $\hat{y} - \bar{y}I$  垂直于向量  $\bar{y}I$ :

$$\overline{y} \mathbf{I}^{\mathrm{T}} \left( \hat{\mathbf{y}} - \overline{y} \mathbf{I} \right) = 0 \tag{34}$$

上式体现的核心思想就是 $\hat{y}$ 的均值为 $\bar{y}$ 。



Hyperplane spanned by column vectors of X

图 25. 第四个直角三角形

## 10.7 三个平方和

这一节介绍对于多元 OLS 线性回归,如何求解 SST、SSR 和 SSE 这三个平方和。

对于多元 OLS 线性回归模型, SST 可以通过矩阵运算求得:

$$SST = y^{T} \left( I - \frac{J}{n} \right) y \tag{35}$$

其中矩阵 J 为全 1 方阵,形状为  $n \times n$ :

$$\boldsymbol{J}_{n \times n} = \boldsymbol{I} \boldsymbol{I}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
(36)

SSR 可以通过矩阵运算求得:

$$SSR = \mathbf{y}^{\mathrm{T}} \left( \mathbf{H} - \frac{\mathbf{J}}{n} \right) \mathbf{y} \tag{37}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

其中矩阵 H 为本书前文所讲的帽子矩阵,形状为  $n \times n$ :

$$\boldsymbol{H} = \boldsymbol{X} \left( \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \tag{38}$$

同样,对于多元 OLS 线性回归模型, SSE 可以通过矩阵运算求得:

$$SSE = \mathbf{y}^{\mathrm{T}} (\mathbf{I} - \mathbf{H}) \mathbf{y} \tag{39}$$

对于多元 OLS 线性回归模型, MSE 的矩阵运算为:

$$MSE = \frac{\left\| (I - H) y \right\|_{2}^{2}}{n - k}$$

$$= \frac{y^{\mathsf{T}} y - 2 y^{\mathsf{T}} H y + y^{\mathsf{T}} H^{2} y}{n - k}$$

$$= \frac{y^{\mathsf{T}} y - y^{\mathsf{T}} H y}{n - k}$$

$$= \frac{y^{\mathsf{T}} (I - H) y}{n - k}$$

$$(40)$$

上式推导过程采用帽子矩阵重要的性质,帽子矩阵 H 为幂等矩阵 (idempotent matrix),即满足  $H^2 = H$ 。

## 10.8 t 检验

对于多元 OLS 线性回归模型,模型系数  $b_0$ 、 $b_1$ 、 $b_2$  ...  $b_D$ 的方差协方差矩阵 C 可以通过下式计算得到:

$$\boldsymbol{C} = \hat{\boldsymbol{\sigma}}^2 \left( \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \tag{41}$$

其中.

$$\hat{\sigma}^2 = MSE = \frac{\varepsilon^T \varepsilon}{n - k} \tag{42}$$

矩阵 C 的对角线元素  $C_{j+1,j+1}$  为  $\hat{b_j}$  的方差,非对角线元素为  $\hat{b_j}$  和  $\hat{b_k}$  的协方差。

 $\hat{b}_{j}$ 的标准误  $SE(\hat{b}_{j})$  为:

$$SE(\hat{b}_j) = \sqrt{C_{j+1,j+1}} \tag{43}$$

对于多元线性回归, 假设检验原假设和备择假设分别为:

$$\begin{cases}
H_0: b_j = b_{j,0} \\
H_1: b_j \neq b_{j,0}
\end{cases}$$
(44)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

 $b_i$ 的 t 检验统计值:

$$T_{j} = \frac{\hat{b}_{j} - b_{j,0}}{\operatorname{SE}(\hat{b}_{j})} \tag{45}$$

类似地,如果下式成立,接受零假设 $H_0$ :

$$-t_{1-\alpha/2, n-k} < T_{i} < t_{1-\alpha/2, n-k} \tag{46}$$

否则,则拒绝零假设  $H_0$ 。

系数  $b_i$ 的  $1-\alpha$  置信区间为:

$$\hat{b}_{j} \pm t_{1-\alpha/2, n-k} \cdot \text{SE}(\hat{b}_{j}) \tag{47}$$

对于多元 OLS 线性模型,预测值  $\hat{y}^{(i)}$ ,的  $1-\alpha$  置信区间:

$$\hat{y}^{(i)} \pm t_{1-\alpha/2, n-2} \cdot \sqrt{\text{MSE}} \cdot \sqrt{x^{(i)} \left(X^{\mathrm{T}} X\right)^{-1} \left(x^{(i)}\right)^{\mathrm{T}}}$$

$$\tag{48}$$

 $x^{(i)}$  为矩阵 X 的第 i 行:

$$\mathbf{x}^{(i)} = \begin{bmatrix} 1 & x_{i,1} & x_{i,2} & \cdots & x_{i,D} \end{bmatrix}$$
 (49)

类似地,对于多元 OLS 线性回归模型, yp 的预测区间估计为:

$$\hat{y}^{(i)} \pm t_{1-\alpha/2, n-2} \cdot \sqrt{\text{MSE}} \cdot \sqrt{1 + x^{(i)} (X^{\mathrm{T}} X)^{-1} (x^{(i)})^{\mathrm{T}}}$$
(50)

### 10.9 多重共线性

线性回归模型的解释变量不满足相互独立的基本假设前提下,如果模型的解释变量存在多重 共线性,将导致最小二乘法得到的模型参数估计量非有效且方差变大,参数估计量经济含义不合 理等。上一章介绍过采用条件数 (Condition number) 来判定多重共线性。

对  $X^TX$  进行特征值分解,得到最大特征值  $\lambda_{max}$  和最小特征值  $\lambda_{min}$ 。条件数的定义为两者的比值的平方根。条件数小于 30,可以不必担心多重共线性。

如果  $X^TX$  可逆,  $X^TX$  的行列式值不为 0:

$$\det\left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)\neq0\tag{51}$$

这里再介绍一个共线性的度量指标,方差膨胀因子 (variance inflation factor, VIF),也称为方差扩大因子。一个还有 n 个解释变量的矩阵  $\hat{X}_{i}$ ,对于其中的任意解释变量  $\left\{X_{i,t}\right\}$ ,其对应的方差膨胀因子 VIF<sub>i</sub> 可由下式计算:

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$VIF_i = \frac{1}{1 - R_i^2} \tag{52}$$

其中 $R_i^2$ 是解释变量 $\{X_{i,i}\}$ 与其解释变量 $\{X_{j,i}\}$ ,  $j \neq i$  回归模型的决定系数:

$$X_{i,t} = \alpha_0 + \sum_{j=1, j \neq i}^{n} \alpha_j X_{j,t} + \varepsilon_t$$
 (53)

当某个变量 $\{X_{i,t}\}$  能被其他变量完全线性解释时, $R_i^2$  的值趋近于 1, $VIF_i$  的值将趋近于无穷大;所以,各个变量的 VIF 值越小,说明共线性越弱。最常用的 VIF 阈值是 10,即解释变量的 VIF 值都不大于 10 时,认为共线性在可接受范围内;此外,VIF  $\leq 5$  也是比较常见的、但相对而言更为严格的判断标准。

### 10.10 条件概率视角看多元线性回归

《统计至简》第12章介绍过,多元线性回归本质上就是条件概率中的条件期望值。

如果随机变量向量 $\chi$ 和 $\gamma$ 服从多维高斯分布:

$$\begin{bmatrix} \chi \\ \gamma \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} \mu_{\chi} \\ \mu_{\gamma} \end{bmatrix}, \begin{bmatrix} \Sigma_{\chi\chi} & \Sigma_{\chi\gamma} \\ \Sigma_{\chi\chi} & \Sigma_{\gamma\gamma} \end{bmatrix}$$
 (54)

其中, $\chi$  为随机变量  $X_i$  构成的列向量, $\gamma$  为随机变量  $Y_i$  构成的列向量:

$$\chi = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_D \end{bmatrix}, \quad \gamma = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_M \end{bmatrix}$$
 (55)

如图 26 所示,给定  $\chi = x$  的条件下  $\gamma$  的条件期望为:

$$E(\gamma | \chi = x) = \mu_{\gamma | \chi = x} = \Sigma_{\gamma \chi} \Sigma_{\chi \chi}^{-1} (x - \mu_{\chi}) + \mu_{\gamma}$$
(56)



图 26. 给定  $\chi = x$  的条件下  $\gamma$  的期望值的矩阵运算,图片来自《统计至简》

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

对于本例, 我们对 (56) 进行转置得到:

$$\mu_{y|x} = E(y) + (x - E(X)) \underbrace{(\Sigma_{XX})^{-1} \Sigma_{Xy}}_{b}$$
(57)

[y, X] 对应的协方差矩阵如图 27 所示。图 28 为对  $\Sigma xx$  求逆。



图 27. [y, X] 协方差矩阵



本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### 图 28. 分块协方差矩阵求逆

如图 29 所示,截距系数之外的多元线性回归系数向量为:

$$\boldsymbol{b}_{1\sim D} = \left(\boldsymbol{\Sigma}_{XX}\right)^{-1} \boldsymbol{\Sigma}_{Xy} \tag{58}$$



图 29. 求线性回归参数, 除截距以外

如图 30 所示, b<sub>0</sub> 为:

$$b_0 = \mathbf{E}(\mathbf{y}) - \mathbf{E}(\mathbf{X})\mathbf{b}_{1\sim D} \tag{59}$$

其中, E(X) 为行向量。



图 30. 求截距系数

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com



Bk6\_Ch10\_03.py 完成本节运算。