281 Live Session

Week 13 - 2023/4/12

Agenda

Non-Linear Classifiers

Basic CNN Architecture Types

Exercise – Face Classification Part 2

Modern Computer Vision Systems

Non-Linear Classifiers

13.1 Linear SVM, Implementation	13.8 Hidden Layers
13.2 Slack Variables	13.9 Xor With a Hidden Layer
13.3 Nonlinear SVM	13.10 Universal Approximation Theorem
13.4 Neurons	13.11 Backpropagation
13.5 Delta Rule	13.12 Convolutional Neural Networks
13.6 Sigmoidal Neurons	13.13 Conclusion

Intuition goals:

- Differences between linear and nonlinear SVMs
- What is a neuron? What functions can it perform?
- What is changing in a network on each iteration?
- What is an activation function? How do they work?

Linear vs Nonlinear SVMs

Neural Networks

 $x \rightarrow data$ $z \rightarrow labels$ $w \rightarrow weights (learned)$ $f \rightarrow activation function$ $\alpha \rightarrow step size$ $\Delta \rightarrow direction of gradient$

$$E(\vec{w}) = \sum_{k=1}^{m} (z_k - f(\vec{x}_k^T \cdot \vec{w}))^2$$
$$\Delta w_i = \sum_{k=1}^{m} \alpha(z_k - f(\vec{x}_k^T \cdot \vec{w}))(x_{k,i})(f'(\vec{x}_k^T \cdot \vec{w}))$$

Non-Linear Classifiers

13.1 Linear SVM, Implementation	13.8 Hidden Layers
13.2 Slack Variables	13.9 Xor With a Hidden Layer
13.3 Nonlinear SVM	13.10 Universal Approximation Theorem
13.4 Neurons	13.11 Backpropagation
13.5 Delta Rule	13.12 Convolutional Neural Networks
13.6 Sigmoidal Neurons	13.13 Conclusion

Intuition goals:

- Differences between linear and nonlinear SVMs
- What is a neuron? What functions can it perform?
- What is changing in a network on each iteration?
- What is an activation function? How do they work?

Model Building Steps

- 1. Inspect your data
 - Can it be standardized? Cleaned up? Augmented?
- 2. Split data into training, test, and validation set
- 3. Choose features to extract
 - What information do you need for training?
 - Are your features robust across all images?
- 4. Decide on a model
 - Linear? Nonlinear? Neural?
- 5. Define the error function
 - Usually quadratic
- 6. Define the gradient function
 - Usually the derivative of the error
- 7. Test a range of hyperparameters
- 8. Iterate!

AlexNet, VGGNet, & ResNet

AlexNet (original deep CNN)

VGGNet (fewer parameters)

ResNet (skip connections)

Benefits of Skip Connections

Addresses vanishing gradient problem

Can be combined using addition or concatenation

Exercise — Faces Part 2 (ResNet Features)

Modern Computer Vision Systems

Generative Adversarial Networks (GANs)

- Unsupervised learning (look ma, no labels!)
- Simultaneously learn the *generator* (makes images) and the *discriminator* (decides if images are fake or real)

Unsolved problems for GANs

- Unstable / hard to train reliably
- Not usually good at long-range correlations (eg earrings)

Modern Computer Vision Systems

Diffusion Models

- Similar to an auto-encoder, except using noise instead of down-sampling
- Can be used directly for denoising/superresolution
- Or, can be guided for image generation

Unsolved problems for Diffusion Models

- Structure vs texture limitations
- Difficult to control

Modern Computer Vision Systems

There is still significant work needed to improve the usefulness of these systems

- Robustness
- Data privacy
- Bias / ethics concerns
- Explainability

Upcoming ToDo's

Watch async lectures for unit 13

Course evaluations next week

Final project presentations next week (10 minutes!)

Written report due April 23rd