Prova da Desigualdade de Chebyshev a partir de Teoremas Avançados em Estatística

Luiz Tiago Wilcke

6 de fevereiro de 2025

Resumo

Neste artigo, demonstramos a Desigualdade de Chebyshev utilizando duas abordagens avançadas: uma baseada na Desigualdade de Markov e outra empregando conceitos do espaço L^2 e a Desigualdade de Cauchy-Schwarz. Tais demonstrações evidenciam a relevância dos fundamentos da análise funcional e teoria da probabilidade na compreensão e aplicação de resultados estatísticos clássicos.

1 Introdução

A Desigualdade de Chebyshev é um dos resultados fundamentais da teoria da probabilidade, que fornece uma estimativa para a probabilidade de que uma variável aleatória se desvie de sua média. Sejam X uma variável aleatória com média $\mu = E[X]$ e variância $\sigma^2 = \text{Var}(X)$ finita, a desigualdade afirma que, para todo $\epsilon > 0$,

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}.$$

Nas seções a seguir, exploramos duas abordagens para a prova desta desigualdade.

2 Abordagem 1: Utilizando a Desigualdade de Markov

Passo 1: Aplicação da Desigualdade de Markov

Considere a variável aleatória não negativa

$$Y = (X - \mu)^2.$$

Pela Designal da de Markov, para qualquer a > 0 temos:

$$P(Y \ge a) \le \frac{E[Y]}{a}$$
.

Escolhendo $a = \epsilon^2$, obtemos:

$$P((X - \mu)^2 \ge \epsilon^2) \le \frac{E[(X - \mu)^2]}{\epsilon^2}.$$

Observando que

$$\{(X - \mu)^2 \ge \epsilon^2\} = \{|X - \mu| \ge \epsilon\},\$$

concluímos:

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}.$$

3 Abordagem 2: Utilizando o Espaço L^2 e a Desigualdade de Cauchy-Schwarz

Nesta abordagem, empregamos conceitos da análise funcional aplicados ao espaço $L^2(\Omega, \mathcal{F}, P)$, o espaço das funções quadrado-integráveis.

Passo 1: Consideração de Funções em L^2

Seja

$$A = \{ \omega \in \Omega : |X(\omega) - \mu| \ge \epsilon \}.$$

Note que tanto $X - \mu$ quanto a função indicadora 1_A pertencem a L^2 .

Passo 2: Aplicação da Desigualdade de Cauchy-Schwarz

Utilizando a desigualdade de Cauchy-Schwarz para as funções $|X - \mu|$ e 1_A , temos:

$$E[|X - \mu| \cdot 1_A] \le \sqrt{E[(X - \mu)^2] E[1_A^2]}.$$

Como $1_A^2 = 1_A$ e $E[1_A] = P(A)$, obtemos:

$$E[|X - \mu| \cdot 1_A] \le \sqrt{E[(X - \mu)^2] P(A)}.$$

Passo 3: Estimativa Inferior para $E[|X - \mu| \cdot 1_A]$

Para $\omega \in A$, tem-se $|X(\omega) - \mu| \ge \epsilon$. Assim,

$$|X(\omega) - \mu| \cdot 1_A(\omega) \ge \epsilon \cdot 1_A(\omega).$$

Tomando a expectativa dos dois lados:

$$E[|X - \mu| \cdot 1_A] \ge \epsilon E[1_A] = \epsilon P(A).$$

Passo 4: Combinação das Desigualdades

Combinando as desigualdades acima, temos:

$$\epsilon P(A) \le \sqrt{E[(X - \mu)^2] P(A)}.$$

Se P(A) > 0, dividindo ambos os lados por $\sqrt{P(A)}$ (notando que $\sqrt{P(A)} > 0$) obtemos:

$$\epsilon \sqrt{P(A)} \le \sqrt{E[(X-\mu)^2]}$$
.

Elevando ambos os lados ao quadrado, concluímos:

$$\epsilon^2 P(A) \le E[(X - \mu)^2] = \sigma^2.$$

Isolando P(A), tem-se:

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}.$$

4 Conclusão

Ambas as abordagens demonstram que

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2},$$

o que é a Desigualda de de Chebyshev. Este resultado ilustra como técnicas avançadas da análise e da teoria das probabilidades, como a aplicação das desigualdades de Markov e de Cauchy-Schwarz em espaços L^2 , podem fundamentar e reforçar resultados estatísticos clássicos.