Ideales primos y máximos

Ejercicio 1

Sea A un anillo conmutativo unitario e I un ideal de A. Demuestre que si todo elemento de A-I es invertible, entonces I es un ideal maximal. Pruebe además que éste es el único ideal maximal de A.

Solución. Veamos primero que I es un ideal maximal, o lo que es equivalente, que A/I es un cuerpo. Primero notemos que si A es unitario entonces A/I es unitario, y su unidad viene dada por (1+I) donde 1 es la unidad de A. Ahora, para todo $a \in A - I$ tenemos que existe $a^{-1} \in A$, y por lo tanto

$$(a+I)(a^{-1}+I) = (a^{-1}+I)(a+I) = aa^{-1}+I = 1+I.$$

Por la ecuación anterior todo elemento de A/I, que sea distinto de I, es invertible. Pero esto es lo mismo que decir que A/I es un cuerpo, puesto que I es el cero de A/I. Tenemos entonces que I es un ideal maximal como se buscaba.

Supongamos ahora que existe un ideal I' de A tal que A/I' es un cuerpo. Como A/I' es un cuerpo, todo elemento no nulo —es decir, distinto de I'— es invertible, por lo que si tomamos un $a+I' \in A/I'$ existe un $b+I' \in A/I'$ tal que

$$(a+I')(b+I') = (b+I')(a+I') = ab+I' = 1+I'.$$

Pero la ecuación anterior implica que para todo $a \in A - I'$ existe su inverso. Como, por hipótesis, todo elemento de A - I' es invertible, debemos tener necesariamente que A - I' = A - I y que I = I'. Por lo que I es el único ideal principal de A.

Ejercicio 2

Sea A un anillo conmutativo con identidad e I un ideal de A. Demuestre que I es primo si, y solo si, A/I es un dominio entero

Solución. Supongamos que I es un ideal primo de A. Sean $ab \in I$, entonces —como I es primo— se tiene que $a \in I$ o $b \in I$. Pero esto implica que en el siguiente producto

$$(a+I)(b+I) = I$$

se tiene a+I=I o b+I=I—debido a que si $a\in I$ entonces, como I es un ideal, a+I=I—y, como I es el cero de A/I, lo anterior nos dice que A/I no tiene divisores de cero, o lo que es lo mismo, que A/I es un dominio entero.

Supongamos ahora que A/I es un dominio entero. Entonces en el siguiente producto

$$(ab+I) = (a+I)(b+I) = I$$

se tiene que (a+I)=I o (b+I)=I. Esto a su vez implica que $a\in I$ o $b\in I$ siempre que $ab\in I$ (debido a que si ab+I=I entonces $ab\in I$) y que I es un ideal primo.

Ejercicio 3

Sea $h:A\to B$ un homomorfismo de anillos. Pruebe que la imagen inversa de un ideal primo de B es un ideal primo de A.

Solución. Sea B' un ideal primo de B y $ab \in h^{-1}(B')$, entonces $h(ab) \in B'$. Como h es un homomorfismo tenemos que h(ab) = h(a)h(b) y $h(a)h(b) \in B'$. Como B' es primo se sigue que $h(a) \in B'$ o $h(b) \in B'$ y esto es lo mismo que decir que $a \in h^{-1}(B')$ o $b \in h^{-1}(B')$.

Entonces $ab \in h^{-1}(B')$ implica que $a \in h^{-1}(B')$ o $b \in h^{-1}(B')$, por lo que $h^{-1}(B')$ es un ideal primo de A.

Ejercicio 4

Demuestre que si A es un anillo conmutativo con unidad, entonces todo ideal maximal de A es un ideal primo.

Solución. Si I es un ideal maximal de A, entonces A/I es un cuerpo. En particular A/I es un dominio entero, y por el Ejercicio 2 se tiene que I es un ideal primo.

Ejercicio 5

Sea A un domino entero tal que todo ideal de A es principal. Demuestre que todo ideal primo de A distinto de $\{0\}$ es un ideal maximal.

Solución. Suponemos que A es conmutativo. Sea P=(p) un ideal primo de A. Supongamos que existe algún ideal I=(i) de A tal que

$$P \subseteq I \subseteq R$$
,

es decir, que contenga a P. Como el elemento $p \in (p) \subseteq (i)$ se tiene que existe un $v \in A$ tal que p = vi y como P es primo se sigue que $v \in P$ o $i \in P$.

Si $i \in P$ entonces se sigue que $I = (i) \subseteq P$ y que I = P. Si $v \in P$ entonces existe un $w \in A$ tal que v = wp. De donde se sigue que

$$p = vi = wpi$$

como A es un dominio entero y $p \neq 0$,

$$1 = wi$$

por lo que i es una unidad y I = (i) = A.

Tenemos entonces que, siempre que tengamos $P \subseteq I \subseteq R$, se sigue que I = P o I = R. Por lo que I es maximal.