EE523 Assignment 6 Linli Jia 05/01/2020

For the Kundur system from the previous homeworks, we want to study the small-signal stability properties. Assume a first order exciter control model with KA=50 and TA = 0.01 sec. Assume Vrmin = -4 and VRmax = +4. Efdmin = 0 and Efdmax = 2.0. For the governor model, assume that Tsg = 100 and Ksg = 1 with Psgmin=0 and Psgmax = 1 pu. R=5%. Assume KD= 2 pu for all three type of models. Then carry out initialization and small-signal analysis for each of Type 1, 2 and 3 models.

- 1) Starting from the power-flow solution, initialize the steady-state values of all the dynamic variables.
- 2) Linearize the equations and find the system Jacobian matrix. You can use numerical differencing to compute the Jacobian entries numerically.
- 3) Find all eigenvalues and eigenvectors.
- 4) Compute all the participation factors and analyze each mode.
- 5) Design Power System Stabilizers (PSSs) as needed to render the damping ratios of all modes to be over 5% for each of Type 1 and Type 2 models. Assume KD= 2 pu for Type 1 and Type 2 model.

1. Type 1 model

Type 1 model for Kundur two area system in DAE form can be represented in following form:

$$\dot{v}_{i} = \frac{1}{2H} (P_{mi} - P_{ei} - K_{Di}(w_{i} - 1))$$

$$\dot{x} = f(x, y) = \begin{cases} \dot{\theta}_{i} = (w_{i} - 1)w_{s} \\ \dot{w}_{i} = \frac{1}{T'_{d0i}} (-E'_{qi} - (X_{di} - X'_{di})I_{di} + E_{fdi}) \\ \dot{E}'_{di} = \frac{1}{T'_{q0i}} (-E'_{di} + (X_{qi} - X'_{qi})I_{qi}) \\ \dot{V}_{Ai} = \frac{1}{T_{Ai}} (-V_{Ai} + K_{Ai}(V_{refi} - V_{i})) \\ \dot{P}_{sgi} = \frac{1}{T_{sgi}} (-P_{sgi} + K_{sgi}(P_{ci} + \frac{1}{R_{i}}(1 - w_{i})) \end{cases}$$

$$0 = g(x, y) = \begin{cases} P_{Gi} - P_{Li} - \sum_{j=1}^{n} V_i V_j Y_{ij} \cos(\delta_i - \delta_j - \theta_{ij}) = 0 \\ Q_{Gi} - Q_{Li} - \sum_{j=1}^{n} V_i V_j Y_{ij} \sin(\delta_i - \delta_j - \theta_{ij}) = 0 \end{cases}$$

Here, state variables are

$$x = [\theta_2, \omega_2, E'_{q2}, E'_{d2}, \theta_3, \omega_3, E'_{q3}, E'_{d3}, \theta_4, \omega_4, E'_{q4}, E'_{d4}]^T$$
$$y = [\delta_2, \delta_3, \dots, \delta_{11}, V_2, V_3, \dots, V_{11}]^T$$

1.1 Initialization

The NR power flow solution for Kundur two area system is as shown in table 1.1-1:

Table 1.1-1 N	VR power fl	ow solution t	for Kund	ur system
---------------	-------------	---------------	----------	-----------

Bus	V (p.u.)	δ (deg)	δ (rad)	$P_G(pu)$	$Q_G(pu)$
1	1.0300	0	0	6.9125	0.9763
2	1.0100	-9.3423	-0.1631	6.9999	0.2874
3	1.0300	-19.0143	-0.3319	7.1900	1.3188
4	1.0100	-29.0831	-0.5076	6.9999	0.9600
5	1.0203	-6.2953	-0.1099	0.0000	0.0000
6	1.0118	-15.8988	-0.2775	0.0000	0.0000
7	1.0213	-23.6499	-0.4128	0.0000	0.0000

8	1.0095	-31.6624	-0.5526	0.0000	0.0000
9	1.0025	-43.8034	-0.7645	0.0000	0.0000
10	1.0008	-35.7122	-0.6233	0.0000	0.0000
11	1.0153	-25.5954	-0.4467	0.0000	0.0000

Then the command 'fslove' is used to get the initial values for state variables. Following equations are used:

$$\begin{cases} 0 = (w_{i} - 1)w_{s} \\ 0 = P_{mi} - P_{ei} - K_{Di}(w_{i} - 1) \\ 0 = -E'_{qi} - (X_{di} - X'_{di})I_{di} + E_{fdi} \\ 0 = -E'_{di} + (X_{qi} - X'_{qi})I_{qi} \\ 0 = (-V_{Ai} + K_{Ai}(V_{refi} - V_{i})) \end{cases}$$

$$\begin{cases} 0 = -P_{sgi} + K_{sgi}(P_{ci} + \frac{1}{R_{i}}(1 - w_{i})) \\ V_{di} = V_{i}\sin(\theta_{i} - \delta_{i}) \\ V_{qi} = V_{i}\cos(\theta_{i} - \delta_{i}) \end{cases}$$

$$\begin{cases} I_{di} = \frac{1}{X'_{di}}(E'_{qi} - V_{i}\cos(\theta_{i} - \delta_{i})) \\ I_{qi} = -\frac{1}{X'_{qi}}(E'_{di} - V_{i}\sin(\theta_{i} - \delta_{i})) \end{cases}$$

For type 1 model

$$\begin{split} P_{ei} &= P_{Gi} = V_{di} I_{di} + V_{qi} I_{qi} \\ P_{Gi}^{pf} &= P_{sgi} = P_{Ci} = P_{mi} \end{split}$$

The initial values for dynamic variables are as shown in table 1.1-2:

Table 1.1-2 Initial values for dynamic variables of type 1 model

Bus	$\theta(p.u.)$	$\omega(p.u.)$	$E'_q(p.u.)$	$E'_d(p.u.)$	E_{fd} $(p.u.)$	$E_{ref}(p.u.)$	$P_{sg}(p.u.)$
2	0.7254	1	0.8222	0.5302	1.7486	1.0450	6.9999
3	0.4716	1	0.9122	0.5015	1.8977	1.0680	7.1900
4	0.3256	1	0.8715	0.5057	1.8329	1.0467	6.9999

1.2 Linearization

Above equations can be linearized into following form:

$$\begin{cases} \dot{\Delta x} = A\Delta x + B\Delta y \\ 0 = C\Delta x + D\Delta y \end{cases}$$

$$A = \frac{\partial f}{\partial x} | (x_e, y_e)$$

$$B = \frac{\partial f}{\partial y} | (x_e, y_e)$$

$$C = \frac{\partial g}{\partial x} | (x_e, y_e)$$

$$D = \frac{\partial g}{\partial y} | (x_e, y_e)$$

Then, we can get the system Jacobian matrix for small signal analysis: $J = A - BD^{-1}C$

$$I = A - BD^{-1}C$$

A(18x18):

(
0.0000	376.9911	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.2167	-0.1538	-0.2010	0.0891	0.0000	0.0085	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.4899	0.0000	-0.7500	0.0000	0.1250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3.3294	0.0000	0.0000	-7.7273	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	-100.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	-1.8000	0.0000	0.0000	0.0000	-0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	376.9911	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.2355	-0.1619	-0.2001	0.1053	0.0000	0.0090	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.4633	0.0000	-0.7500	0.0000	0.1250	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.7379	0.0000	0.0000	-7.7273	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-100.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-1.8000	0.0000	0.0000	0.0000	-0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	376.9911	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.2274	-0.1619	-0.2018	0.1000	0.0000	0.0090
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.4672	0.0000	-0.7500	0.0000	0.1250	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.5505	0.0000	0.0000	-7.7273	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-100.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-1.8000	0.0000	0.0000	0.0000	-0.0100

B(18x20):

0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.0016	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2167	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.3941	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4899	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4.0568	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-3.3294	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-5000.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2355	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.4339	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4633	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	3.7623	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-3.7379	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	-5000.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	-0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2274	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.4203	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4672	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	3.8687	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-3.5505	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	-5000.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

C(20x18):

25.3584	0.0000	23.5154	-10.4226	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	26.1731	0.0000	22.2398	-11.7012	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	25.2719	0.0000	22.4250	-11.1145	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.1918	0.0000	19.1080	12.8266	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0387	0.0000	21.4523	12.1308	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0764	0.0000	20.3767	12.2318	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

D(20x20)

-6.7408	0.0000	0.0000	0.0000	-6.9181	0.0000	0.0000	0.0000	0.0000	0.0000	-86.2624	0.0000	0.0000	0.0000	60.9041	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	-7.0182	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-7.0814	0.0000	-88.4946	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	62.3215
0.0000	0.0000	-6.8550	0.0000	0.0000	0.0000	0.0000	0.0000	-6.9943	0.0000	0.0000	0.0000	-85.5035	0.0000	0.0000	0.0000	0.0000	0.0000	60.2316	0.0000
0.0000	0.0000	0.0000	-4.0409	-2.7572	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-103.6606	40.9967	0.0000	0.0000	0.0000	0.0000	0.0000
6.9307	0.0000	0.0000	10.6364	-14.0255	-3.5848	0.0000	0.0000	0.0000	0.0000	60.9041	0.0000	0.0000	39.6324	-203.2999	102.7634	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	23.6579	-12.8719	-1.1109	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	100.0035	-127.9587	27.9552	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	6.5007	-4.5453	-2.0455	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	27.1785	-45.3737	18.1953	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	5.5601	-11.7308	23.7982	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	17.4289	-114.3831	96.9542	0.0000
0.0000	0.0000	6.9307	0.0000	0.0000	0.0000	0.0000	-4.1365	-13.8726	10.8643	0.0000	0.0000	60.2316	0.0000	0.0000	0.0000	0.0000	99.7506	-198.8933	38.9111
0.0000	6.9806	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-3.1047	-4.0211	0.0000	62.3215	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	40.3249	-102.6463
-82.5947	0.0000	0.0000	0.0000	60.1916	0.0000	0.0000	0.0000	0.0000	0.0000	-6.8082	0.0000	0.0000	0.0000	7.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	-85.4128	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	61.3805	0.0000	-7.2287	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	7.1900
0.0000	0.0000	-83.3461	0.0000	0.0000	0.0000	0.0000	0.0000	60.1828	0.0000	0.0000	0.0000	-6.9236	0.0000	0.0000	0.0000	0.0000	0.0000	7.0000	0.0000
0.0000	0.0000	0.0000	-101.5947	40.5171	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.1231	2.7898	0.0000	0.0000	0.0000	0.0000	0.0000
60.3011	0.0000	0.0000	38.8426	-200.9217	100.6177	0.0000	0.0000	0.0000	0.0000	-7.0000	0.0000	0.0000	-10.8527	14.1915	3.6612	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	98.8336	-124.3078	27.6911	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-23.9379	22.8164	1.1215	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	26.6110	-44.9450	18.1493	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-6.6394	4.5887	2.0507	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	17.2642	-113.0964	96.8757	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-5.6131	29.4306	-23.8175	0.0000
0.0000	0.0000	59.6352	0.0000	0.0000	0.0000	0.0000	99.4984	-198.7322	38.3236	0.0000	0.0000	-7.0000	0.0000	0.0000	0.0000	0.0000	4.1470	13.8839	-11.0308
0.0000	60.5063	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	40.2922	-101.0965	0.0000	-7.1900	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.1072	4.0828

Jacobian for Type 1 model:

	376.991118		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.0953029	-0.1538462	-0.1093832	0.02528548	0	0.00854701	0.00774128	0	-0.0009767	-0.0077456	0	0	0.00768511	0	-0.0041386	-0.009918	0	0
-0.2256716	0	-0.355265	-0.0096484	0.125	0	0.02726841	0	0.02969839	-0.0084886	0	0	0.04184211	0	0.04088636	-0.01616	0	0
1.36007624	0	0.49499962	-5.3835483	0	0	-0.0198939	0	0.33837701	0.21039422	0	0	0.12996192	0	0.5727729	0.21578138	0	0
128.877452	0	-2358.9078	-1691.1693	-100	0	-122.80178	0	-401.02067	-113.3593	0	0	-307.57076	0	-631.46626	-78.65609	0	0
0	-1.8	0	0	0	-0.01	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	376.991118	0	0	0	0	0	0	0	0	0	0
0.00897084	0	0.00325885	-0.0070317	0	0	-0.070166	-0.1619433	-0.0981201	0.00953441	0	0.00899685	0.04809463	0	0.00959814	-0.0408883	0	0
0.02086291	0	0.03768089	0.00354377	0	0	-0.1707241	0	-0.2908867	-0.0114403	0.125	0	0.12650309	0	0.16312278	-0.025284	0	0
-0.1144721	0	0.22019466	0.26276015	0	0	0.82975062	0	0.62919282	-4.6687672	0	0	-0.4862871	0	1.10198571	1.12882631	0	0
-37.064802	0	-360.87052	-200.57742	0	0	376.962889	0	-2983.0718	-2042.067	-100	0	-367.81537	0	-1664.6357	-636.70555	0	0
0	0	0	0	0	0	0	-1.8	0	0	0	-0.01	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	376.991118	0	0	0	0
0.01314333	0	0.00931393	-0.0073018	0	0	0.05574182	0	0.03186002	-0.0337143	0	0	-0.0870069	-0.1619433	-0.1110671	0.01806195	0	0.00899685
0.02923956	0	0.05975426	0.00955662	0	0	0.09790824	0	0.17492241	0.0082521	0	0	-0.1582444	0	-0.2805396	-0.0193352	0.125	0
-0.1848111	0	0.22614131	0.33871496	0	0	-1.0225667	0	0.5038737	1.23573587	0	0	1.54652723	0	1.17401331	-5.0844966	0	0
-26.47648	0	-481.56688	-291.19797	0	0	197.152604	0	-1297.7817	-919.19993	0	0	-243.46849	0	-3356.7959	-1766.8545	-100	0
0	0	0	0	0	0	0	0	0	0	0	0	0	-1.8	0	0	0	-0.01

1.3 Eigenvalues and Eigenvectors

Figure 1.3-1 Eigenvalues for Type 1 Model As we can see from the above figure, all eigenvalues of type 1 model locate at the left-half plane, so the system is small signal stable.

1.4 Participation Factors and Modal Analysis

Parti	cipat:	ion ta	ctors	tor	each	mode	is as	shov	vn in	figure	1.4	- I					
0.0000	0.0000	0.0000	0.0183	0.0183	0.9984	0.9984	0.1174	0.1174	0.0151	0.0151	0.0000	0.0478	0.0779	0.0006	0.0003	0.0006	0.0000
0.0000	0.0000	0.0000	0.0183	0.0183	1.0000	1.0000	0.1180	0.1180	0.0155	0.0155	0.0001	0.0491	0.0829	0.0007	0.0000	0.0000	0.0000
0.0087	0.0292	0.0009	0.0065	0.0065	0.0544	0.0544	0.0549	0.0549	0.1298	0.1298	0.0025	0.1675	1.0000	0.0039	0.0000	0.0000	0.0000
0.0002	0.0001	0.0000	0.0009	0.0009	0.0713	0.0713	0.0205	0.0205	0.1547	0.1547	0.0143	1.0000	0.2756	0.0006	0.0000	0.0000	0.0000
0.1275	1.0000	0.0413	0.0005	0.0005	0.0014	0.0014	0.0017	0.0017	0.0071	0.0071	0.0002	0.0096	0.0242	0.0001	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000	0.1662	1.0000	0.0009
0.0000	0.0000	0.0000	0.7079	0.7079	0.0532	0.0532	0.9950	0.9950	0.0349	0.0349	0.0024	0.0010	0.0167	0.0232	0.0021	0.0000	0.0004
0.0000	0.0000	0.0000	0.7091	0.7091	0.0533	0.0533	1.0000	1.0000	0.0359	0.0359	0.0025	0.0010	0.0179	0.0253	0.0000	0.0000	0.0000
0.0519	0.0026	0.0221	0.0704	0.0704	0.0030	0.0030	0.0470	0.0470	0.9989	0.9989	0.1296	0.0250	0.0142	0.8752	0.0000	0.0000	0.0000
0.0008	0.0000	0.0000	0.0393	0.0393	0.0028	0.0028	0.0418	0.0418	0.9740	0.9740	0.8205	0.0822	0.0125	0.1747	0.0000	0.0000	0.0000
0.7612	0.0884	1.0000	0.0065	0.0065	0.0002	0.0002	0.0011	0.0011	0.0547	0.0547	0.0078	0.0014	0.0003	0.0149	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0002	0.0002	0.0000	0.0000	0.0019	0.0019	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	1.0000	0.0615	0.9137
0.0000	0.0000	0.0000	0.9983	0.9983	0.0029	0.0029	0.8694	0.8694	0.1188	0.1188	0.0074	0.0001	0.0048	0.0333	0.0020	0.0000	0.0005
0.0000	0.0000	0.0000	1.0000	1.0000	0.0029	0.0029	0.8738	0.8738	0.1222	0.1222	0.0076	0.0002	0.0051	0.0363	0.0000	0.0000	0.0000
0.0682	0.0003	0.0198	0.1150	0.1150	0.0008	0.0008	0.0901	0.0901	1.0000	1.0000	0.1037	0.0034	0.0010	1.0000	0.0000	0.0000	0.0000
0.0007	0.0000	0.0001	0.1086	0.1086	0.0000	0.0000	0.0458	0.0458	0.9447	0.9447	1.0000	0.0181	0.0015	0.1939	0.0000	0.0000	0.0000
1.0000	0.0092	0.8946	0.0058	0.0058	0.0001	0.0001	0.0022	0.0022	0.0548	0.0548	0.0061	0.0002	0.0000	0.0170	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0003	0.0003	0.0000	0.0000	0.0017	0.0017	0.0001	0.0001	0.0000	0.0000	0.0000	0.0002	0.9795	0.0230	1.0000
							_				/						

Figure 1.4-1 Participation Factors for Modes (Type 1 model)

Table 1.4-1 Mode Analysis for Type 1 Model

#	Mode Type	λ	Frequency (Hz)	Damping ratio	Dominant States
---	-----------	---	----------------	---------------	-----------------

		_		1.0000	
1		93.6195 +	0	1.0000	$E_{fd2}, E'_{q3}, E_{fd3}, E'_{q4},$
1		0.0000i	Ü		E_{fd4}
		-97.1773			_
2		+0.0000i	0	1.0000	E_{q2}^{\prime} , E_{fd2}, E_{fd3}
				1.0000	F. E' F.
3		-97.8485	0	1.0000	$E_{fd2}, E_{q3}', E_{fd3},$
		+ 0.0000i		1.0000	E'_{q4}, E_{fd4}
					θ 2, w2, θ 3, w3,
4	Local Area mode	-0.4754 +	1.1017	0.0685	$E'_{q3}, E'_{d3}, \theta 4, w 4,$
		6.9219i			E'_{q4}, E'_{d4}
_	т 1 м 1	-0.4754 -	1 1017		02 02 2 04 4
5	Local Area mode	6.9219i	1.1017	0.0685	θ 2, θ 3, w3, θ 4, w4
	T 4 A 1	-0.3480 +	0.0610		02 2
6	Intro Area mode	6.0437i	0.9619	0.0575	θ 2, w2
7	T , A 1	-0.3480 -	0.0610		02 2
7	Intro Area mode	6.0437i	0.9619	0.0575	θ 2, w2
0	T , A 1	-0.2443 +	0.4622		00 2 04 4
8	Inter Area mode	2.9043i	0.4622	0.0838	θ 3, w3, θ 4, w4
	T	-0.2443 -	0.4622		00 0 1
9	Inter Area mode	2.9043i	0.4622	0.0838	θ 3, w3, θ 4, w4
1.0	T	-4.8685 +	0.2221		
10	Inter Area mode	2.0241i	0.3221	0.9234	$E'_{q3}, E'_{d3}, E'_{q4}, E'_{d4}$
	T	-4.8685 -	0.2221		
11	Inter Area mode	2.0241i	0.3221	0.9234	$E'_{q3}, E'_{d3}, E'_{q4}, E'_{d4}$
10		-6.0667 +	0		n/ n/
12		0.0000i	0	1.0000	E'_{d3}, E'_{d4}
1.0		-5.6557 +			-1
13		0.0000i	0	1.0000	E'_{d2}
		-2.4757 +			7.1
14		0.0000i	0	1.0000	E_{q2}'
		-1.8254 +	-	2.000	71 -1
15		0.0000i	0	1.0000	$E_{q3}^{\prime},E_{q4}^{\prime}$
		-0.0100 +	_	2.000	_
16		0.0000i	0	1.0000	P_{m3},P_{m4}
		-0.0100 +	-	2.000	_
17		0.0000i	0	1.0000	P_{m2}
		-0.0100 +	-	2.000	_
18		0.0000i	0	1.0000	P_{m3} , P_{m4}
	<u> </u>	0.00001		1.0000	<u> </u>

2. Type 2 model

On the basis of Type-1 model, there's two more assumptions for type 2 model:

1) Represent load as constant impedance load model

$$Y_{Li} = \frac{S_{Li}^*}{V_i^2}$$

2) No saliency on generators, so for G2, G3 and G4

$$X'_{di} = X'_{qi} = \frac{X'_{di} + X'_{qi}}{2} = X'$$

For type 2 model, we define

$$E' \angle \gamma = \sqrt{E'_{di}^2 + E'_{qi}^2} \angle (arctan\left(\frac{E'_{qi}}{E'_{di}}\right) + \theta_i - \frac{\pi}{2})$$

And following equations can be derived:

$$P_{ei} = \sum_{j=1}^{N_{G+1}} y_{Gij} E'_i E'_j \cos (\gamma_i - \gamma_j - \theta_{Gij})$$

$$I_{di} = \sum_{j=1}^{N_{G+1}} y_{Gij} E'_{j} \sin (\theta_{i} - \gamma_{j} - \theta_{Gij})$$

$$I_{gi} = \sum_{j=1}^{N_{G+1}} y_{Gij} E'_{j} \cos(\theta_{i} - \gamma_{j} - \theta_{Gij})$$

$$I_{qi} = \sum_{j=1}^{N_{G+1}} y_{Gij} E_j' \cos(\theta_i - \gamma_j - \theta_{Gij})$$

2.1 Initialization

Here equations for initialization is the same as Type1 model, but $X'_d = X'_q =$ $\frac{X'_d + X'_q}{2}$. The initial values for type 2 model are as shown below:

Bus	$\theta(p.u.)$	$\omega(p.u.)$	$E'_q(p.u.)$	$E'_d(p.u.)$	$E_{fd}(p.u.)$	$V_{ref}(p.u.)$	$P_{sg}(p.u.)$
2	0.7252	1	0.8996	0.5878	1.7489	1.0450	7.0000
3	0.4715	1	0.9944	0.5560	1.8978	1.0680	7.1900
4	0.3255	1	0.9518	0.5605	1.8332	1.0467	7.0000

2.2 Linearization

Using 'jacobian' command in Matlab, Jacobian matrix(18x18) of type 2 model can be achieved, as shown below:

0.0000	376.9911	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-0.0820	-0.1538	-0.0990	0.0265	0.0000	0.0085	0.0051	0.0000	-0.0039	-0.0073	0.0000	0.0000	0.0046	0.0000	-0.0071	-0.0091	0.0000	0.0000
-0.1736	0.0000	-0.3260	-0.0264	0.1250	0.0000	0.0196	0.0000	0.0083	-0.0151	0.0000	0.0000	0.0259	0.0000	0.0077	-0.0227	0.0000	0.0000
1.6719	0.0000	0.4897	-6.2271	0.0000	0.0000	0.0037	0.0000	0.2805	0.1531	0.0000	0.0000	0.1008	0.0000	0.4212	0.1421	0.0000	0.0000
489.0692	0.0000	-1839.8994	-1745.8668	-100.0000	0.0000	-154.9811	0.0000	-209.4516	38.7525	0.0000	0.0000	-254.2314	0.0000	-277.6603	103.5851	0.0000	0.0000
0.0000	-1.8000	0.0000	0.0000	0.0000	-0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	376.9911	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0080	0.0000	-0.0005	-0.0092	0.0000	0.0000	-0.0622	-0.1619	-0.0909	0.0117	0.0000	0.0090	0.0432	0.0000	-0.0035	-0.0475	0.0000	0.0000
0.0168	0.0000	0.0146	-0.0092	0.0000	0.0000	-0.1305	0.0000	-0.2811	-0.0315	0.1250	0.0000	0.0880	0.0000	0.0740	-0.0489	0.0000	0.0000
-0.1426	0.0000	0.1707	0.2701	0.0000	0.0000	1.1094	0.0000	0.5833	-5.3958	0.0000	0.0000	-0.7980	0.0000	0.9071	1.3727	0.0000	0.0000
-76.1625	0.0000	-206.9234	-50.5413	0.0000	0.0000	587.7720	0.0000	-2410.9695	-1939.0835	-100.0000	0.0000	-372.9047	0.0000	-1070.6074	-238.7251	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-1.8000	0.0000	0.0000	0.0000	-0.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	376.9911	0.0000	0.0000	0.0000	0.0000
0.0118	0.0000	0.0011	-0.0124	0.0000	0.0000	0.0507	0.0000	0.0110	-0.0448	0.0000	0.0000	-0.0790	-0.1619	-0.1103	0.0180	0.0000	0.0090
0.0220	0.0000	0.0216	-0.0103	0.0000	0.0000	0.0726	0.0000	0.0850	-0.0255	0.0000	0.0000	-0.1285	0.0000	-0.3136	-0.0555	0.1250	0.0000
-0.2481	0.0000	0.1917	0.4011	0.0000	0.0000	-1.3037	0.0000	0.4735	1.5758	0.0000	0.0000	1.8627	0.0000	1.0286	-5.9982	0.0000	0.0000
-60.6316	0.0000	-274.4132	-111.9042	0.0000	0.0000	39.1745	0.0000	-940.1655	-565.0476	0.0000	0.0000	149.7286	0.0000	-2301.9030	-1512.9853	-100.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-1.8000	0.0000	0.0000	0.0000	-0.0100

2.3 Eigenvalues

Eigenvalues for type 2 model is as shown below:

-97.7295 + 0.0000i
-98.2833 + 0.0000i
-95.5443 + 0.0000i
-0.3952 + 6.4780i
-0.3952 - 6.4780i
-0.1730 + 5.6460i
-0.1730 - 5.6460i
-0.1475 + 3.0481i
-0.1475 - 3.0481i
-6.9080 + 0.0000i
-6.3423 + 0.0000i
-4.3540 + 1.7177i
-4.3540 - 1.7177i
-2.3017 + 0.0000i
-1.7709 + 0.0000i
-0.0100 + 0.0000i
-0.0100 + 0.0000i
-0.0100 + 0.0000i

As we can see from the above figure, all eigenvalues of type 2 model also locate at the left-half plane, so the system is small signal stable.

2.4 Participation Factors and Modal Analysis

Participation factors for each mode of type 2 model is as shown in following figure:

0																	
0.0000	0.0000	0.0000	0.0091	0.0091	0.9991	0.9991	0.1014	0.1014	0.0002	0.0313	0.0106	0.0106	0.0476	0.0020	0.0003	0.0006	0.0000
0.0000	0.0000	0.0000	0.0091	0.0091	1.0000	1.0000	0.1017	0.1017	0.0002	0.0321	0.0109	0.0109	0.0508	0.0021	0.0000	0.0000	0.0000
0.0233	0.0005	0.0040	0.0035	0.0035	0.0600	0.0600	0.0856	0.0856	0.0010	0.0885	0.0442	0.0442	1.0000	0.0591	0.0000	0.0000	0.0000
0.0001	0.0000	0.0001	0.0009	0.0009	0.0881	0.0881	0.0217	0.0217	0.0032	1.0000	0.0538	0.0538	0.2192	0.0095	0.0000	0.0000	0.0000
1.0000	0.0305	0.0866	0.0002	0.0002	0.0043	0.0043	0.0027	0.0027	0.0001	0.0057	0.0020	0.0020	0.0223	0.0010	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0005	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.1659	1.0000	0.0008
0.0000	0.0000	0.0000	0.6673	0.6673	0.0400	0.0400	0.9971	0.9971	0.0195	0.0001	0.0919	0.0919	0.0094	0.0090	0.0019	0.0000	0.0004
0.0000	0.0000	0.0000	0.6684	0.6684	0.0401	0.0401	1.0000	1.0000	0.0200	0.0001	0.0949	0.0949	0.0101	0.0098	0.0000	0.0000	0.0000
0.0014	0.0142	0.0467	0.0812	0.0812	0.0043	0.0043	0.0454	0.0454	0.0788	0.0107	0.9877	0.9877	0.0533	0.7696	0.0000	0.0000	0.0000
0.0000	0.0001	0.0006	0.0644	0.0644	0.0027	0.0027	0.0480	0.0480	0.7167	0.0328	1.0000	1.0000	0.0085	0.1326	0.0000	0.0000	0.0000
0.0619	0.8108	1.0000	0.0064	0.0064	0.0003	0.0003	0.0015	0.0015	0.0056	0.0007	0.0467	0.0467	0.0012	0.0127	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0003	0.0003	0.0000	0.0000	0.0017	0.0017	0.0000	0.0000	0.0001	0.0001	0.0000	0.0001	1.0000	0.0641	0.8747
0.0000	0.0000	0.0000	0.9984	0.9984	0.0041	0.0041	0.7875	0.7875	0.0129	0.0000	0.1791	0.1791	0.0018	0.0179	0.0018	0.0000	0.0005
0.0000	0.0000	0.0000	1.0000	1.0000	0.0041	0.0041	0.7898	0.7898	0.0132	0.0000	0.1850	0.1850	0.0020	0.0196	0.0000	0.0000	0.0000
0.0000	0.0175	0.0424	0.0523	0.0523	0.0010	0.0010	0.0489	0.0489	0.0585	0.0020	0.8203	0.8203	0.0000	1.0000	0.0000	0.0000	0.0000
0.0000	0.0001	0.0004	0.1376	0.1376	0.0001	0.0001	0.0517	0.0517	1.0000	0.0035	0.7816	0.7816	0.0003	0.1638	0.0000	0.0000	0.0000
0.0019	1.0000	0.9074	0.0016	0.0016	0.0001	0.0001	0.0007	0.0007	0.0040	0.0001	0.0387	0.0387	0.0000	0.0165	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0004	0.0004	0.0000	0.0000	0.0014	0.0014	0.0000	0.0000	0.0001	0.0001	0.0000	0.0001	0.9411	0.0219	1.0000

Table 2.4-1Mode Analysis for Type 2 Model

Ш	M - 1 - T	2	Frequency	Damping	Dominant
#	Mode Type	λ	(Hz)	ratio	States
1		-97.7295 + 0.0000i	0	1.0000	E_{fd2}
2		-98.2833 + 0.0000i	0	1.0000	E_{fd3}, E_{fd4}
3		-95.5443 + 0.0000i	0	1.0000	E_{fd3}, E_{fd4}
4	Local mode	-0.3952 + 6.4780i	1.0310	0.0609	θ 3, w3, θ 4, w4
5	Local mode	-0.3952 - 6.4780i	1.0310	0.0609	θ3, w3, θ4, w4
6	Intra area mode	-0.1730 + 5.6460i	0.8986	0.0306	θ 2, w2
7	Intra area mode	-0.1730 - 5.6460i	0.8986	0.0306	θ 2, w2
8	Inter area mode	-0.1475 + 3.0481i	0.4851	0.0483	θ 3, w3, θ 4, w4
9	Inter area mode	-0.1475 - 3.0481i	0.4851	0.0483	θ3, w3, θ4, w4
10		-6.9080 + 0.0000i	0	1.0000	E'_{d3}, E'_{d4}
11		-6.3423 + 0.0000i	0	1.0000	E'_{d2}
12	Inter area mode	-4.3540 + 1.7177i	0.2734	0.9302	$E_{ m q3}^{\prime}$, $E_{ m d3}^{\prime}$, $E_{ m q4}^{\prime}$ $E_{ m d4}^{\prime}$
13	Inter area mode	-4.3540 - 1.7177i	0.2734	0.9302	$E_{ ext{q3}}^{\prime},E_{ ext{d3}}^{\prime},E_{ ext{q4}}^{\prime} \ E_{ ext{d4}}^{\prime}$
14		-2.3017 + 0.0000i	0	1.0000	E_{q2}'
15		-1.7709 + 0.0000i	0	1.0000	E'_{q3}, E'_{q4}
16		-0.0100 + 0.0000i	0	1.0000	P_{m3} , P_{m4}
17		-0.0100 + 0.0000i	0	1.0000	P_{m2}
18		-0.0100 + 0.0000i	0	1.0000	P_{m3} , P_{m4}

Damping ratio for modes 6,7,8,9 are smaller than 5%, through adding PSS to type 2 model, damping ratio can be improved to above 5%. Dynamic equations for PSS model are as follows:

$$\dot{V_W} = \frac{1}{T_W} (-V_W - \dot{w_l} T_W K_{stab})$$

$$\dot{V_{PSS}} = \frac{1}{T_2} (-V_{PSS} + V_W + \dot{V_W} T_1)$$

Correspondingly, make change to dynamic equation of exciter:

$$\dot{V_{Ai}} = \frac{1}{T_{Ai}} (-V_{Ai} + K_{Ai} (V_{refi} - V_i - V_{PSSi}))$$

Here, parameters of PSS are as follows:

$$K_{stab} = 5$$
, $T_1 = 0.06$, $T_2 = 0.02$, $T_W = 10$

With PSS, all of the damping ratio is improved to above 5%:

-	1
-	1
-	1
-	1
-	1
-	1
0.0707	7
0.0707	7
0.049	9
0.049	9
-	1
-	1
0.1397	7
0.1397	
0.9207	7
0.9207	7
	1
-	1
-	1
	1
	1
	1
	1
	1
·	

3. Type 3 model (classical model)

The type-3 model (ODE):

On the basis of type 2 model, in type 3 model, we have two more assumptions;

1) E'_{di} and E'_{qi} are constants

2)
$$\gamma_i = \theta_i$$

Then we get the classical model:

$$\dot{x} = f(x) \\ x = [\theta_2, w_2, \theta_3, w_3, \theta_4, w_4]^T$$

$$f(x) = \begin{cases} \dot{\theta}_i = (w_i - 1)w_s \\ 2H\dot{w}_i = P_{mi} - P_{ei} - K_{Di}(w_i - 1) \end{cases}, i = 2,3,4$$

$$P_{ei} = \sum_{j=1}^{N_{G+1}} y_{Gij} E_i' E_j' \cos(\gamma_i - \gamma_j - \theta_{Gij})$$

3.1 Initialization

The initial values for type 3 model is as shown below:

	Ε'	θ
G1	1.0300	0
G2	1.0746	0.1464
G3	1.1392	-0.0383
G4	1.1046	-0.2068

3.2 Linearization

Jacobian matrix of type 3 model is as shown below:

0.0000	376.9911	0.0000	0.0000	0.0000	0.0000
-0.0820	-0.1538	0.0051	0.0000	0.0046	0.0000
0.0000	0.0000	0.0000	376.9911	0.0000	0.0000
0.0080	0.0000	-0.0622	-0.1619	0.0432	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	376.9911
0.0118	0.0000	0.0507	0.0000	-0.0790	-0.1619

3.3 Eigenvalues

Eigenvalues for type 3 model are as follows:

-0.0810 + 6.6747i
-0.0810 - 6.6747i
-0.0770 + 5.6087i
-0.0770 - 5.6087i

-0.0809 + 2.8449i	
-0.0809 - 2.8449i	

As we can see from the above figure, all eigenvalues of type 3 model also locate at the left-half plane, so the system is small signal stable.

3.4 Participation Factors and Mode Analysis

Participation factors for each mode of type 3 model is as shown in following figure:

0.0026	0.0026	1.0000	1.0000	0.0437	0.0437
0.0026	0.0026	1.0000	1.0000	0.0437	0.0437
0.6873	0.6873	0.0229	0.0229	1.0000	1.0000
0.6873	0.6873	0.0229	0.0229	1.0000	1.0000
1.0000	1.0000	0.0043	0.0043	0.7076	0.7076
1.0000	1.0000	0.0043	0.0043	0.7076	0.7076

#	Mode Type	λ	Frequency	Damping	Dominant
			(Hz)	ratio	States
1	Local mode	-0.0810 + 6.6747i	1.0623	1.0623	E_{fd2}
2	Local mode	-0.0810 - 6.6747i	1.0623	1.0623	E_{fd3}, E_{fd4}
3	Intra area mode	-0.0770 + 5.6087i	0.8927	0.8927	E_{fd3}, E_{fd4}
4	Intra area mode	-0.0770 - 5.6087i	0.8927	0.8927	θ3, w3, θ4, w4
5	Inter area mode	-0.0809 + 2.8449i	0.4528	0.4528	θ3, w3, θ4, w4
6	Inter area mode	-0.0809 - 2.8449i	0.4528	0.4528	θ 2, w2

Appendix

Following the main scripts for this report are appended.

1.main script for type-1

```
%% homework 6
%generator parameters, changing rating from 900MVA to 100MVA
%p---prime; pp---double prime
clear all
 format shortEng
 format compact
X d(2:4,1)=1.8*100/900;
X q(2:4,1)=1.7*100/900;
X_1(2:4,1)=0.2*100/900;
X dp(2:4,1)=0.3*100/900;
X qp(2:4,1)=0.55*100/900;
X dpp(2:4,1)=0.25*100/900;
X \text{ qpp}(2:4,1)=0.25*100/900;
R a(2:4,1)=0;
T d0p(2:4,1)=8.0;
T_{q0p(2:4,1)=0.4;}
T d0pp(2:4,1)=0.03;
T = q0pp(2:4,1)=0.05;
H(1)=6.5*900/100;
H(2)=6.5*900/100;
H(3)=6.175*900/100;
H(4)=6.175*900/100;
K D(2:4,1)=2*900/100;
X=(X_d+X_q)/2;
X_p=(X_dp+X_qp)/2;
ws=2*pi*60;
no_of_states = 6;
%% Exciter parameters
KA=50;
TA=0.01;
VRmin=-4;
VRmax=4;
Efdmin=0;
Efdmax=2.0;
%% Governer parameters
Tsq=100;
Ksq=1;
Psgmin=0;
Psgmax=1;
R=0.05/9;
%% read grid data from file
file_name='b_kundur_system.txt';
[S Base, No of Buses, No of Lines, Bus data, Line data] = read data(file name);
[PQ,nPQ,PV,nPV,Y ang,Y mag,V mag,V Delta,P gen cal,Q gen cal, V result,
P load, Q load =
NR power_flow_type1(S_Base, No_of_Buses, No_of_Lines, Bus_data, Line_data);
%% solve equilibrium points
V_bus0=V_mag;
Delta0=V_Delta;
```

```
for genbus=1:4 %generator buses, including slack bus
    x0=[0;1;1;0.5;1;1;1.7;7;1;7;7]; %
    options=optimoptions('fsolve', 'algorithm', 'levenberg-
marquardt','display','off');
    [solution, \sim, exitflag] = fsolve(@(x)
type1 equilibrium points(x,genbus,ws,K D,X d,X dp,X qp,KA,P gen cal,
Q gen cal, V bus0, Delta0, R), x0, options);
    theta 0(genbus,1)=solution(1);
    omega 0(genbus,1)=solution(2);
    E qp0(genbus,1)=solution(3);
    E dp0(genbus,1)=solution(4);
    E fd0(genbus,1)=solution(7);
    Pm 0(genbus,1)=solution(8);
    V ref(genbus,1)=solution(9);
    Pc(genbus, 1) = solution(10);
    Pe 0(genbus,1)=solution(11);
end
%% consider load as ZIP model
% initialize ZIP lodad model
P p=0.5; P q=0.5; %constant power percent
I p=0; I q=0; %constant current percent
Z p=0.5; Z q=0.5; % constant impedance percent
PL0=P p* P load;
M0=(I_p* P_load)./V_mag;
G0=(Z p*P load)./(V mag.^2);
QL0=P q* Q load;
H0=(I q* Q load)./V mag;
B0=(Z_q*Q_load)./(V_mag.^2);
V_bus=sym('V_bus', [1,11]);
% V_bus_mag= sym('V_bus_mag', [1,11]);
Delta=sym('Delta',[1,11]);
theta=sym('theta',[1,4]); %rotor angle
omega=sym('omega',[1,4]);
Eqp=sym('Eqp',[1,4]);
Edp=sym('Edp',[1,4]);
Efd=sym('Efd',[1,4]);
Psg=sym('Psg',[1,4]);
Pg= zeros(1,11)*omega(1);
Qg= zeros(1,11)*omega(1);
V bus mag=sgrt(real(V bus).^2+imag(V bus).^2);
for i=1:4
Vd(i)=V bus mag(i)*sin(theta(i)-Delta(i));
Vq(i)=V bus maq(i)*cos(theta(i)-Delta(i));
Id(i)=(Eqp(i)-V_bus_mag(i)*cos(theta(i)-Delta(i)))/X_dp(i);
Iq(i)=(-1/X qp(i))*(Edp(i)-V bus mag(i)*sin(theta(i)-Delta(i)));
Pg(i)=Vd(i)*Id(i)+Vg(i)*Ig(i);
Qg(i)=Vg(i)*Id(i)-Vd(i)*Ig(i);
end
for i=2:4
```

```
f(1+6*(i-2))=(omega(i)-1)*ws;
    f(2+6*(i-2))=(Psg(i)-Pg(i)-K D(i)*(omega(i)-1))/(2*H(i));
    f(3+6*(i-2))=(-Eqp(i)-(X d(i)-X dp(i))*Id(i)+Efd(i))/T d0p(i);
    f(4+6*(i-2))=(-Edp(i)+(X q(i)-X qp(i))*Iq(i))/T q0p(i);
    f(5+6*(i-2))=(-Efd(i)+KA*(V_ref(i)-V_bus_mag(i)))/TA;
    f(6+6*(i-2))=(-Psg(i)+Ksg*(Pc(i)+(1-omega(i))/R))/Tsg;
end
x0 = [theta 0(2:4)', omega 0(2:4)', E qp0(2:4)', E dp0(2:4)', E fd0(2:4)', Pm 0(2:4)']
4)',Delta0(2:4)',V bus0(2:4)'];
A=jacobian(f,[theta(2),omega(2),Eqp(2),Edp(2),Efd(2),Psg(2),...
    theta(3),omega(3),Eqp(3),Edp(3),Efd(3),Psg(3),...
    theta(4),omega(4),Eqp(4),Edp(4),Efd(4),Psg(4)]);
A=double(subs(A,[theta(2:4),omega(2:4),Edp(2:4),Edp(2:4),Efd(2:4),Psg(2:4),De
lta(2:4), V bus(2:4), x0 A);
x0 B = [theta 0(2:4)', omega 0(2:4)', E qp0(2:4)', E dp0(2:4)', E fd0(2:4)', Pm 0(2:4)']
4)',Delta0(2:11)',V bus0(2:11)'];
B= jacobian(f,[V bus(2:11),Delta(2:11)]);
double(subs(B,[theta(2:4),omega(2:4),Eqp(2:4),Edp(2:4),Efd(2:4),Psg(2:4),Delt
a(2:11), V bus(2:11), x0 B);
P load=PL0'+(M0').*V bus mag + (G0').*(V bus mag.^2);
Q_load=QL0'+(H0').*V_bus_mag + (B0').*(V_bus_mag.^2);
P temp= zeros(1,11)*omega(1);
Q temp= zeros(1,11)*omega(1);
for i=2:11
    for j=1:11
    P_temp(i)=P_temp(i)+V_bus_mag(i)*V_bus_mag(j)*Y_mag(i,j)*cos(Delta(i)-
Delta(j)-Y_ang(i,j));
    Q_temp(i)=Q_temp(i)+V_bus_mag(i)*V_bus_mag(j)*Y_mag(i,j)*sin(Delta(i)-
Delta(j)-Y ang(i,j));
    g(i-1)=Pg(i)-P load(i)-P temp(i);
    g(i+9)=Qg(i)-Q_load(i)-Q_temp(i);
x0_C=[theta_0(2:4)',omega_0(2:4)',E_qp0(2:4)',E_dp0(2:4)',E_fd0(2:4)',Pm_0(2:4)']
4)',Delta0(1:11)',V_bus0(1:11)'];
C= jacobian(g,[theta(2),omega(2),Eqp(2),Edp(2),Efd(2),Psg(2),...
    theta(3),omega(3),Eqp(3),Edp(3),Efd(3),Psg(3),...
    theta(4),omega(4),Eqp(4),Edp(4),Efd(4),Psg(4)]);
C=
double(subs(C,[theta(2:4),omega(2:4),Eqp(2:4),Edp(2:4),Efd(2:4),Psg(2:4),Delt
a(1:11), V bus(1:11), x0 C)
x0_D = [theta_0(2:4)', omega_0(2:4)', E_qp0(2:4)', E_dp0(2:4)', E_fd0(2:4)', Pm_0(2:4)']
4)',Delta0(1:11)',V_bus0(1:11)'];
D=jacobian(g,[V bus(2:11),Delta(2:11)]);
double(subs(D,[theta(2:4),omega(2:4),Eqp(2:4),Edp(2:4),Efd(2:4),Psg(2:4),Delt
a(1:11), V bus(1:11), x0 D);
J_type1=A-B*inv(D)*C;
[right_EV,Eigen]=eig(J_type1);
                                  %% Right eigen vector and eigenvalues
                                    %% Left eigen vector
left EV=inv(right EV);
```

```
EG=eig(J_type1)
plot(EG, 'o')
axis([-100 5 -8 8])
xlabel('Real')
ylabel('Imaginary')
title('Eigenvalue for Type 1 model')
%% participation factor matrix
for i=1:length(J type1)
    for k=1:length(J type1)
        Participation matrix(k,i)=right EV(k,i)*left EV(i,k);
    end
end
Max Participation matrix=max(abs(Participation matrix)); % Normalaizing the
Participation matrix by dividing by the maximum valueof each column
for e=1:length(J_type1)
Participation matrix(:,e)=abs(Participation matrix(:,e))/Max Participation ma
trix(e);
end
%% Calculating the Frequency
frequency = abs(imag(EG))./(2*pi)
%% Calculating the damping ratio
damping ratio = -real(EG)./abs(EG)
2.main script for type-2
%% homework 6
*generator parameters, changing rating from 900MVA to 100MVA
%p---prime; pp---double prime
clc
clear all
 format shortEng
% format compact
X d(2:4,1)=1.8*100/900;
X q(2:4,1)=1.7*100/900;
X_1(2:4,1)=0.2*100/900;
X dp(2:4,1)=0.3*100/900;
X qp(2:4,1)=0.55*100/900;
X dpp(2:4,1)=0.25*100/900;
X \text{ qpp}(2:4,1)=0.25*100/900;
R a(2:4,1)=0;
T d0p(2:4,1)=8.0;
T q0p(2:4,1)=0.4;
T d0pp(2:4,1)=0.03;
T_q0pp(2:4,1)=0.05;
psi_t1(2:4,1)=0.9;
H(1)=6.5*900/100;
H(2)=6.5*900/100;
H(3)=6.175*900/100;
H(4)=6.175*900/100;
KD(2:4,1)=2*900/100;
```

```
ws=2*pi*60;
no of states = 6;
% for type2 and type 3
X p=(X dp+X qp)/2;
X dp=X p;
X_qp=X_p;
%% Exciter parameters
KA=50;
TA=0.01;
VRmin=-4;
VRmax=4:
Efdmin=0;
Efdmax=2.0;
%% Governer parameters
Tsq=100;
Ksq=1;
Psqmin=0;
Psqmax=1;
R=0.05/9
%% read grid data from file
file name='b kundur system.txt';
[S Base, No of Buses, No of Lines, Bus data, Line data] = read data(file name);
[PQ,nPQ,PV,nPV,Y_mat,V_mag,V_Delta,P_gen_cal,Q_gen_cal, V_result]=
NR power flow(S Base, No of Buses, No of Lines, Bus data, Line data);
%% revise y matrix, and form y gen
file name 2='b kundur system extended.txt';
[S Base 2, No of Buses 2, No of Lines 2, Bus data 2, Line data 2] = read data(file
name 2);
[Y_mat_ex,Theta_ex,Y_mag_ex,B_ex,G_ex]=y_bus(Bus_data_2,Line_data_2,No_of_Bus
es 2, No of Lines 2);
[Y gen, Y gen mag, Y gen angle]=Ygen(Y mat ex, 4, 10);
V bus0=V mag;
Delta0=V Delta;
for genbus=1:4 %generator buses, including slack bus
    x0=[0;1;1;0.5;1;1;1.7;7;1;7;7];
    [solution, \sim, exitflag] = fsolve(@(x))
type2 equilibrium points(x,genbus,ws,K D,X d,X dp,X q,X qp,KA,P gen cal,
Q gen cal, V bus0, Delta0, R) ,x0, optimset('algorithm', 'levenberg-
marquardt', 'display', 'off'));
    theta 0(genbus,1)=solution(1);
    omega 0(genbus,1)=solution(2);
    E gp0(genbus,1)=solution(3);
    E dp0(genbus,1)=solution(4);
    E fd0(genbus,1)=solution(7);
    Pm 0(genbus,1)=solution(8);
    V ref(genbus,1)=solution(9);
    Pc(genbus, 1) = solution(10);
    Pe 0(genbus,1)=solution(11);
end
```

%% linearization

20

```
V_bus=sym('V_bus', [1,4]);
V bus mag= sym('V bus mag', [1,4]);
% Delta=sym('Delta',[1,11]);
theta=sym('theta',[1,4]); %rotor angle
omega=sym('omega',[1,4]);
Eqp=sym('Eqp',[1,4]);
Edp=sym('Edp',[1,4]);
Efd=sym('Efd',[1,4]);
Psg=sym('Psg',[1,4]);
Pe=zeros(4,1)*omega(1);
Id=zeros(4,1)*omega(1);
Iq=zeros(4,1)*omega(1);
E p = sym('E p', [1,4]);
E p mag= sym('E_p_mag',[1,4]);
gama = sym('gama',[1,4]);
for i=1:4
                      E_p(i) = sqrt((Edp(i))^2 + (Eqp(i))^2) *exp(1j*(atan(Eqp(i)/Edp(i)) + theta(i) - theta(i) + theta
pi/2));
                      E p mag(i)=sqrt(Edp(i)^2+Eqp(i)^2);
                      gama(i)=atan(Eqp(i)/Edp(i))+theta(i)-pi/2;
end
for i=1:4
                      for j=1:4
                                            Pe(i)=Pe(i)+Y_gen_mag(i,j)*E_p_mag(i)*E_p_mag(j)*cos(gama(i)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)
Y gen angle(i,j));
                                            Id(i)=Id(i)+Y_gen_mag(i,j)*E_p_mag(j)*sin(theta(i)-gama(j)-
Y_gen_angle(i,j));
                                            Iq(i)=Iq(i)+Y gen mag(i,j)*E p mag(j)*cos(theta(i)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(j)-gama(
Y gen angle(i,j));
                      end
end
I_gen=zeros(4,1)*omega(1);
for i=1:4
for m=1:4
                      I_gen(i)=I_gen(i)+Y_gen(i,m)*E_p(m);
end
                      V_bus(i)=E_p(i)-I_gen(i)*(1j*X_p(i));
                      V_bus_mag(i)=sqrt(real(V_bus(i))^2+imag(V_bus(i))^2);
end
for i=2:4
                      f(1+6*(i-2))=(omega(i)-1)*ws;
                      f(2+6*(i-2))=(Psg(i)-Pe(i)-K D(i)*(omega(i)-1))/(2*H(i));
                      f(3+6*(i-2))=(-Eqp(i)-(X_d(i)-X_dp(i))*Id(i)+Efd(i))/T_d0p(i);
                      f(4+6*(i-2))=(-Edp(i)+(X q(i)-X qp(i))*Iq(i))/T q0p(i);
                      f(5+6*(i-2))=(-Efd(i)+KA*(V_ref(i)-V_bus_mag(i)))/TA;
                      f(6+6*(i-2))=(-Psg(i)+Ksg*(Pc(i)+(1-omega(i))/R))/Tsg;
end
```

```
x0 A = [theta 0(1:4)', omega 0(1:4)', E qp0(1:4)', E dp0(1:4)', E fd0(1:4)', Pm 0(1:4)']
4)'1;
 J type2=jacobian(f,[theta(2),omega(2),Eqp(2),Edp(2),Efd(2),Psg(2),...
    theta(3), omega(3), Eqp(3), Edp(3), Efd(3), Psg(3), ...
    theta(4),omega(4),Eqp(4),Edp(4),Efd(4),Psg(4)]);
J_type2=double(subs(J_type2,[theta(1:4),omega(1:4),Eqp(1:4),Edp(1:4),Efd(1:4))
,Psg(1:4)],x0_A));
[right EV,Eigen]=eig(J type2);
                                  %% Right eigen vector and eigenvalues
left EV=inv(right EV);
                                    %% Left eigen vector
EG=eig(J_type2)
plot(EG, 'b*')
axis([-100 5 -5 8])
xlabel('Real')
ylabel('Imaginary')
title('Eigenvalue for Type 2 model')
%% participation factor matrix
for i=1:length(J type2)
    for k=1:length(J_type2)
        Participation_matrix(k,i)=right_EV(k,i)*left_EV(i,k);
    end
end
% Normalaizing the Participation matrix by dividing by the maximum valueof
each column
Max Participation matrix=max(abs(Participation matrix));
for e=1:length(J type2)
Participation_matrix(:,e)=abs(Participation_matrix(:,e))/Max_Participation_ma
trix(e)
end
writematrix(Participation matrix, 'Participation2.csv')
%% Calculating the Frequency
frequency = abs(imag(EG))./(2*pi)
%% Calculating the damping ratio
damping_ratio = -real(EG)./abs(EG)
```

3.main script for type-3

```
%% homework 6
*generator parameters, changing rating from 900MVA to 100MVA
%p---prime; pp---double prime
clear all
format short
X_d(2:4,1)=1.8*100/900;
X q(2:4,1)=1.7*100/900;
X 1(2:4,1)=0.2*100/900;
X dp(2:4,1)=0.3*100/900;
X_qp(2:4,1)=0.55*100/900;
X dpp(2:4,1)=0.25*100/900;
X_{qpp}(2:4,1)=0.25*100/900;
R a(2:4,1)=0;
T d0p(2:4,1)=8.0;
T q0p(2:4,1)=0.4;
T d0pp(2:4,1)=0.03;
T = q0pp(2:4,1)=0.05;
psi t1(2:4,1)=0.9;
H(1)=6.5*900/100;
H(2)=6.5*900/100;
H(3)=6.175*900/100;
H(4)=6.175*900/100;
KD(2:4,1)=2*900/100;
X=(X d+X q)/2;
X_p = (X_dp + X_qp)/2;
ws=2*pi*60;
no_of_states = 2;
%% read grid data from file
file name='b kundur system.txt';
[S_Base, No_of_Buses, No_of_Lines, Bus data, Line data]=read data(file name);
[PQ,nPQ,PV,nPV,Y_mat,V_mag,V_Delta,P_gen_cal,Q_gen_cal, V_result]=
NR power flow(S Base, No of Buses, No of Lines, Bus data, Line data)
%% revise y matrix, and form y_gen
file name 2='b kundur system extended.txt';
[S Base 2, No of Buses 2, No of Lines 2, Bus data 2, Line data 2] = read data(file
name 2);
[Y_mat_ex,Theta_ex,Y_mag_ex,B_ex,G_ex]=y_bus(Bus_data_2,Line_data_2,No_of_Bus
es 2, No of Lines 2);
[Y gen, Y gen mag, Y gen angle]=Ygen(Y mat ex, 4, 10);
%% solving for equilibrium point at t=0
S=complex(P gen cal, O gen cal):
I=conj(S./(V_mag.*cos(V_Delta)+1i.*V_mag.*sin(V_Delta)));
I mag=abs(I);
I angle=angle(I);
E p=zeros(4,1);
for i=1:4
E p(i)=complex(V mag(i)*cos(V Delta(i)),V mag(i).*sin(V Delta(i)))+I(i).*(R a
(i)+1i.*X p(i)
end
E p mag=abs(E p);
```

```
E_p_angle=angle(E_p);
w 0(PV)=1; %initialize omega
[Pe 0]=Pe type3(Y gen mag,Y gen angle,E p mag,E p angle,nPV,PV);
Pm 0=Pe 0;
%% calculate Jacobian for model analysis
J type3=[]
for e=1:nPV
     for k=1:nPV
         i=PV(e);
         j=PV(k);
[A]=Jacobian type3(i,j,ws,Y gen mag,Y gen angle,E p mag,E p angle,H,K D)
        row = no_of_states*(e-1)+1;
        col = no of states*(k-1)+1;
        J type3((row:(row+no of states-1)),(col:(col+no of states-1))) =
    %% Store in the Jacobian structure
Α:
    end
end
                                  %% Right eigen vector and eigenvalues
[right_EV,Eigen]=eig(J_type3);
left_EV=inv(right_EV);
                                    %% Left eigen vector
EG=eig(J_type3)
plot(EG, 'r*')
axis([-1 \ 1 \ -8 \ 8])
xlabel('Real')
ylabel('Imaginary')
title('Eigenvalue for Type 3 model')
%% participation factor matrix
for i=1:length(J type3)
    for k=1:length(J type3)
        Participation matrix(k,i)=right EV(k,i)*left EV(i,k);
    end
end
% Normalaizing the Participation matrix by dividing by the maximum valueof
each column
Max_Participation_matrix=max(abs(Participation_matrix));
for e=1:length(J type3)
Participation matrix(:,e)=abs(Participation matrix(:,e))/Max Participation ma
trix(e);
end
%% Calculating the Frequency
frequency = abs(imag(EG))./(2*pi)
%% Calculating the damping ratio
damping ratio = -real(EG)./abs(EG)
```