وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا قَلِيلًا Dr. Hesham Omran

Ain Shams University – Master Micro LLC

Analog IC Design (Xschem, Ngspice, ADT) Lab 04

Common Drain Frequency Response

Intended Learning Objectives

In this lab you will:

- Learn how to use the Sizing Assistant (SA) to size the transistors.
- Design and simulate a common-drain amplifier.
- Use PMOS input transistor to avoid body effect in a CD amplifier.
- Investigate the ringing and peaking problem in a capacitive-loaded CD amplifier with a large source resistance (Rsig) and learn how to solve it.

Part 1: Device Sizing Using SA

1) From the square law, we have

$$g_m = \frac{2I_D}{V_{ov}} \to V_{ov} = \frac{2}{g_m/I_D}$$

For a real MOSFET, if we compute V_{ov} and $\frac{2}{g_m/I_D}$ they will not be equal. We can define V-star (V^*) , which is calculated from actual simulation data using the formula

$$V^* = \frac{2}{g_m/I_D} \leftrightarrow g_m = \frac{2I_D}{V^*}$$

The lower the V^* the higher the g_m , but the larger the area and the lower the speed. An often used sweet-spot that provides good compromise between different trade-offs is $V^* = 200mV$.

2) Although the V^* is a nice parameter that is inspired by the square-law, it does not have an intuitive or a physical meaning (it is not an actual voltage in the circuit). We actually defined V^* in order to be able to define a relation between the g_m and I_D . Thus, the real parameter that we should care about is the g_m over I_D ratio (g_m/I_D) .

If the square-law is valid

$$g_m = \frac{2I_D}{V_{ov}} \to \frac{g_m}{I_D} = \frac{2}{V_{ov}}$$

Using V^*

$$\frac{g_m}{I_D} = \frac{2}{V^*}$$

A small g_m/I_D means large V_{ov} (biasing in strong inversion) and a large g_m/I_D means small V_{ov} (biasing in weak inversion).

3) There are many good things about using the g_m/I_D as a design knob:

- The g_m/I_D gives a direct relation between the most important MOSFET parameter (g_m) and the most valuable resource (I_D) . For example, a $g_m/I_D=10$ S/A means you get $10~\mu S$ of g_m for every $1~\mu A$ of bias current.
- The g_m/I_D is a normalized knob: it has a limited search range (typically from 5 to 25 S/A) independent of the technology or the device type.
- The g_m/I_D is intuitive because it tells you directly about the inversion level (bias point) and consequently all related trade-offs. For example, $g_m/I_D=5\,S/A$ means strong inversion (SI), $g_m/I_D=15\,S/A$ means moderate inversion (MI), and $g_m/I_D=25\,S/A$ means weak inversion (WI).
- The g_m/I_D is an orthogonal knob: If we define the g_m/I_D then we define the inversion level (bias point). If you change I_D or L while keeping g_m/I_D fixed, then the inversion level (bias point) is kept fixed. The W is treated as an output variable instead of being treated as an input variable.
- The higher the g_m/I_D (the lower the V^*) the higher the efficiency and the headroom (the available swing), but the larger the area and the lower the speed. An often used sweet-spot that provides good compromise between different trade-offs is $g_m/I_D=10\ S/A\ (V^*=200mV)$. Larger g_m/I_D is usually used for low-voltage and low-power designs.
- 4) We want to design a CD amplifier that has ideal current source load with the parameters below.

Parameter	
Input transistor	PMOS
L^1	1μm
V *	200mV
Quiescent (DC) input voltage	0 <i>V</i>
Supply	1.8V
Current consumption	10μΑ

- 5) We assume we use a PMOS transistor that is placed in a dedicated n-well to be able to connect the body and source terminals. This will avoid the degradation of the CD amplifier gain due to body effect.
- 6) Draw the amplifier schematic. Note that the load is connected to the source, not to the drain.
- 7) Since the square-law is not accurate, we cannot use it to calculate the sizing. Instead, we will use the Sizing Assistant (SA) which is a powerful analog calculator that uses LUTs that are pre-generated from the simulations. The input of SA is shown below. Note that since both the gate and the drain are connected to ground, we can set VDS = VGS.

¹ A relatively long L is intentionally used to be able to use the simplified frequency response expressions given in the lecture slides.

Part 2: CD Amplifier

1. OP (Operating Point) Analysis

1) Create a new schematic for the CD amplifier (the schematic is not included in the lab document and is left for the student as an exercise). Use a PMOS transistor and use a $10\mu A$ ideal current source load for biasing (note that the current source will be connected to the source terminal). Connect the source to the bulk. Use $L=1\mu m$ and W as determined in Part 1. Use $C_L=2pF$, input source resistance $R_{sig}=2M\Omega$, and a DC input voltage = 0V.

3) Check that the transistor operates in saturation.

2. AC Analysis

- 1) Perform AC analysis (1Hz:10GHz, logarithmic, 20points/decade) to investigate the frequency domain peaking.
- 2) Report the Bode plot magnitude.
- 3) Do you notice frequency domain peaking? How much is the peaking?
- 4) Analytically calculate the quality factor (use approximate expressions). Is the system underdamped or overdamped?
- 5) Perform parametric sweep: CL = 2p, 4p, 8p.
 - Report Bode plot magnitude overlaid on same plot.
 - Report the peaking vs CL.

- Comment on the results.
- 6) Perform parametric sweep: Rsig = 20k, 200k, 2M.
 - Report Bode plot magnitude overlaid on same plot.
 - Report the peaking vs Rsig.
 - Comment on the results.

3. Transient Analysis

- 1) Use a pulse source as your transient stimulus and set it as follows: delay time = 2us, initial (zero value) = 0V, period = 8us, pulse (one value) = 100mV, fall time = 1ns, rise time = 1ns, pulse width = 4us.
- 2) Run transient analysis for 10us with 10ns step to investigate the time domain ringing.
- 3) Report Vin and Vout overlaid vs time.
- 4) Calculate the DC voltage difference (DC shift) between Vin and Vout.
 - What is the relation between the DC shift and VGS of the transistor?
 - How to shift the signal down instead of shifting it up?
- 5) Do you notice time domain ringing? How much is the overshoot?
- 6) Perform parametric sweep: CL = 2p, 4p, 8p.
 - Report Vout vs time overlaid on same plot.
 - Report the overshoot vs CL.
 - Comment.
- 7) Perform parametric sweep: Rsig = 20k, 200k, 2M.
 - Report Vout vs time overlaid on same plot.
 - Report the overshoot vs Rsig.
 - Comment on the results.

4. Z_{out} (Inductive Rise)

- 1) We want to simulate the CD amplifier output impedance. Replace CL with an AC current source with magnitude = 1. Remove the AC input signal.
- 2) Perform AC analysis (1Hz:10GHz, logarithmic, 10points/decade). The voltage across the AC current source is itself the output impedance.
- 3) Plot the output impedance (magnitude and phase) vs frequency. Do you notice an inductive rise? Why?
- 4) Does Z_{out} fall at high frequency? Why? Hint: C_{ad} appears in parallel with R_{sig} .
- 5) Analytically calculate the zeros, poles, and magnitude at low/high frequency for Z_{out} . Compare with simulation results in a table.

5. [Optional] How to solve the peaking/ringing problem?

- 1) The simple solution is to place the input/output poles away from each other (as we did when we swept CL and Rsig).
- Alternatively, a compensation network can be used to compensate for the negative input impedance and prevent overshoots. Read [Johns and Martin, 2012] Section 4.4 and try to implement the compensation network.

Lab Summary

In Part 1 you learned:

- How to find transistor sizing using the Sizing Assistant (SA).
- How to design a PMOS common-drain amplifier.

In Part 2 you learned:

- How to perform AC, DC and transient simulations of a CD amplifier.
- How the peaking in the frequency response of a CD amplifier changes with the load capacitor and source resistance.
- How the ringing in the transient response of a CD amplifier changes with the load capacitor and source resistance.
- How the output impedance of a CD amplifier shows inductive behavior.

Acknowledgements