Statistik och Dataanalys I

Föreläsning 23 - Chi2-test och beslut under osäkerhet

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Chi2-test för goodness of fit
- Beslutsfattande under osäkerhet

Kortkampanj (Uppgift 22.2 i SDM)

- Bank har tre sorters kreditkort: Silver, Gold och Platinum.
- Marknadsföringkampanj. Skillnad i vilken kortklass kunder ansöker om?
- Undersöker n = 200 personers ansökningar efter kampanj.

Korttyp	Historiskt	Efter kampanj	Observerat antal	Förväntat antal
Silver	60%	55%	111	$200 \cdot 0.6 = 120$
Gold	30%	29.5%	59	$200 \cdot 0.3 = 60$
Platinum	10%	15%	30	$200 \cdot 0.1 = 20$

Chi2-test

- Räknedata. Antal.
- Hypotestest:
 - $ightharpoonup H_0$: räknedata följer fördelning med sannolikhet p_k i cell k.
 - $ightharpoonup H_A$: räknedata följer annan fördelning.
- Totalt antal i hela tabellen: n.
- **Förväntat antal** i cell k: $\operatorname{Exp}_k = n \cdot p_k$
- **Observerat antal** i cell k: Obs_k
- Chi2 (χ^2) test för tabell med N celler **teststatistika**

$$\chi^2 = \sum_{k=1}^{K} \frac{(\mathrm{Obs}_k - \mathrm{Exp}_k)^2}{\mathrm{Exp}_k} = \sum_{\mathsf{all cells}} \frac{(\mathrm{Obs} - \mathrm{Exp})^2}{\mathrm{Exp}}$$

Under H_0 - Chi2-fördelning med K-1 frihetsgrader

$$\chi^2 \sim \chi^2_{K-1}$$

Chi2-fördelning

Chi2-test

Teststatistika

$$\chi^2_{obs} = \sum_{\text{all cells}} \frac{(\text{Obs} - \text{Exp})^2}{\text{Exp}} = \frac{(111 - 120)^2}{120} + \frac{(59 - 60)^2}{60} + \frac{(30 - 20)^2}{20} = 5.6917$$

- Under H_0 Chi2-fördelning med 3-1=2 frihetsgrader
- Kritiskt värde på signifikansnivå 5% från χ_2^2 -tabell: 5.991.
- Eftersom $\chi^2_{obs} < \chi^2_{crit}$ kan vi inte förkasta H_0 .
- Finns inte stöd för att kampanjen har ändrat fördelningen över olika kortklasser.

Beslut under osäkerhet

- Vi behöver ofta fatta beslut i en miljö med osäkerhet.
 - ▶ Beslut: Ska jag ta med ett paraply när jag går ut?
 - ► Osäkerhet: kommer det att regna?
 - ▶ Beslut: ska jag investera i aktier eller spara på banken?
 - Osäkerhet: börsens och inflationens utveckling under min placeringshorisont.
 - Beslut: Ska Sverige satsa på snabbtåg?
 - Osäkerhet: hur kommer elbilar utvecklas? klimatet? vad kommer det kosta? etc etc

Beslut och statistik

- Ett fattat beslut har konsekvenser.
- konsekvenserna beror på osäkra faktorer som vi inte vet när vi fattar beslutet.
- Vi behöver sannolikhetfördelningen för de osäkra kvantiteterna.
- Modellerar osäker kvantitet i form av en slumpvariabel X.
- Använder data (och expertkunskap) för att beräkna dessa sannolikheter. Statistik!

Beslut + Utfall = Konsekvens

Nyttobegreppet

Beslutsprocess:

- ▶ Du fattar beslutet a.
- \triangleright X realiseras som x.
- ► Kombinationen *a* och *x* ger dig viss **nytta** (eng. **utility**):

■ Ibland: förlust L(a,x) - vilket bara är negativ nytta

$$L(a,x) = U(a,x)$$

Nytta

Maximin - en pessimistisk beslutsregel

- Maximin: välj beslut a som maximerar den minimala nyttan.
- Garderar mot det värsta som kan hända (pessimist).

Maximin ignorerar hur sannolika utfallen är.

I spelteori med intelligent motståndare är maximin optimal.

Maximera förväntad nytta

Beslutsregel välj beslut a som maximerar förväntade nytta

$$EU(a) = \sum_{\text{alla } x} U(a, x) \cdot P(X = x)$$

■ Paraply-beslutet:

$$a_1 = \mathsf{Paraply}: \qquad \mathrm{EU}(a) = 0.2 \cdot 0 + 0.8 \cdot 50 = 40$$
 $a_2 = \mathsf{Inget} \ \mathsf{paraply}: \mathrm{EU}(a) = 0.2 \cdot (-100) + 0.8 \cdot 100 = 60$

Optimalt beslut: ta inte med paraply.

Maximera förväntad nytta

Paraply-beslutet i Bergen:

$$\begin{aligned} & \textbf{a}_1 = \mathsf{Paraply}: & & & & & & & & & & & & & & & & & \\ & \textbf{a}_2 = \mathsf{Inget} \ \mathsf{paraply}: & & & & & & & & & & & \\ & \textbf{a}_2 = \mathsf{Inget} \ \mathsf{paraply}: & & & & & & & & & \\ & \textbf{EU(a)} = 0.7 \cdot (-100) + 0.3 \cdot 100 = -40 \end{aligned}$$

Optimal beslut i Bergen: Paraply!

