2024-PH- 40-52

1

EE24BTECH11016 - DHWANITH M DODDAHUNDI

40) In a parallel plate capacitor, the plate at x = 0 is grounded and the plate at x = d is maintained at a potential V_0 . The space between the two plates is filled with a linear dielectric of permittivity $\epsilon = \epsilon_0 \left(1 + \frac{x}{d}\right)$, where ϵ_0 is the permittivity of free space.

Neglecting the edge effects, the electric field (\overrightarrow{E}) inside the capacitor is

a)
$$-\frac{V_0}{(d+x)ln2}\hat{x}$$

$$\begin{array}{ccc} \mathbf{a}) & -\frac{1}{(d+x)ln2} \\ \mathbf{b}) & V_0 & \hat{\mathbf{c}} \end{array}$$

c)
$$-\frac{dV_0}{(d+r)}$$

d)
$$-\frac{V_0 d}{(d+x)x}$$

41) The equation of motion for the forced simple harmonic oscillator is

$$\ddot{x}(t) + \omega^2 x(t) = F \cos(\omega t)$$

where x(t = 0) = 0 and $\dot{x}(t = 0) = 0$. Which one of the following options is correct?

- a) $x(t) \propto t \sin(\omega t)$
- b) $x(t) \propto t \cos(\omega t)$
- c) $x(t) = \infty$
- d) $x(t) \propto e^{\omega t}$
- 42) An atom is subjected to a weak uniform magnetic field \vec{B} . The number of lines in its Zeeman spectrum for transition from n = 2, l = 1 to n = 1, l = 0 is
 - a) 8
 - b) 10
 - c) 12
 - d) 5
- 43) Consider two matrices: $P = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Which of the following statement is/are true'

- a) P and Q have same set of eigenvalues
- b) P and Q commute with each other
- c) P and Q have different sets of linearly independent eigenvectors
- d) P is diagonalizable
- 44) An infinite one dimensional lattice extends along x-axis. At each lattice site there exists an ion with spin $\frac{1}{2}$. The spin can point either in +z or -z direction only. Let S_P, S_F , and S_A denote the entropies of paramagnetic, ferromagnetic and antiferromagnetic configurations, respectively. Which of the following relation is/are true?
 - a) $S_P > S_F$
 - b) $S_A > S_F$
 - c) $S_A = 4S_F$
 - d) $S_P > S_A$

45) Cosider a vector field $\overrightarrow{F} = (2xz + 3y^2)\hat{y} + 4yz^2\hat{z}$. The closed path $(\Gamma: A \to B \to C \to D \to A)$ in z = 0 plane is shown in figure.

 $\oint \overrightarrow{F} \cdot \overrightarrow{dl}$ denotes the line integral of \overrightarrow{F} along the closed path Γ . Which of the following option is/are true?

- a) $\oint_{\Gamma} \overrightarrow{F} \cdot \overrightarrow{dl} = 0$
- b) \overrightarrow{F} is non-conservative c) $\overrightarrow{\nabla} \cdot \overrightarrow{F} = 0$
- d) \overrightarrow{F} can be written as the gradient of a scalar field
- 46) Two point charges of charge +q each are placed a distance 2d apart. A grounded solid conducting sphere of radius a is placed midway between them. Assume $a^2 \ll d^2$. Which of the following statement is/are true?
 - a) If $a > \frac{d}{8}$ the net force acting on the charges is directed towards each other
 - b) The potential at the surface of the sphere is zero
 - c) Total induced charge on the sphere is $\left(-\frac{2aq}{d}\right)$
 - d) The potential at the center of the sphere is non-zero
- 47) A particle of mass m is moving in the potential

$$V(x) = \begin{cases} V_0 + \frac{1}{2}m\omega_0^2 x^2 & x > 0\\ \infty & x \le 0 \end{cases}$$

 $V(x) = \begin{cases} V_0 + \frac{1}{2}m\omega_0^2 x^2 & x > 0\\ \infty & x \le 0 \end{cases}$ Figures P, Q, R and S show different combinations of the values of ω_0 and V_0 .

Figure R V(x)

 $E_j^{(P)}, E_j^{(Q)}, E_j^{(R)}$ and $E_j^{(S)}$ with $j = 0, 1, 2, \cdots$ are the eigen-energies of the j-th level for the potentials shown in figures P, Q, R and S, respectively. Which of the statement is/are true?

a)
$$E_0^{(P)} = E_0^{(Q)}$$

b) $E_0^{(Q)} = E_0^{(S)}$

b)
$$E_0^{(Q)} = E_0^{(S)}$$

c)
$$E_0^{(P)} = E_0^{(R)}$$

d) $E_0^{(R)} \neq E_0^{(Q)}$

d)
$$E_0^{(R)} \neq E_0^{(Q)}$$

48) The non-relativistic Hamiltonian for a single electron atom is

$$H_0 = \frac{p^2}{2m} - V(r)$$

where V(r) is the Coulomb potential and m is the mass of the electron. Considering the spin-orbit interaction term

$$H' = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \overrightarrow{L} \cdot \overrightarrow{S}$$

added to H_0 , which of the following statement is/are true?

- a) H' commutes with L^2
- b) H' commutes with L_z and S_z
- c) For a given value of principal quantum number n and orbital angular momentum quantum number l, there are 2(2l+1) degenerate eigenstates of H_0
- d) H_0, L^2, S^2, L_z and S_z have a set of simultaneous eigenstates
- 49) Decays of mesons and baryons can be categorized as weak, strong and electromagnetic decays depending upon the interactions involved in the processes. Which of the following option is/are true?
 - a) $\pi^0 \to \gamma \gamma$ is a weak decay
 - b) $\Lambda^0 \to \pi^0 + p$ is an electromagnetic decay
 - c) $K^0 \rightarrow \pi^+ + \pi^-$ is a weak decay
 - d) $\nabla^{++} \rightarrow p + \pi^{+}$ is a strong decay

50) An extrinsic semiconductor shown in figure carries a current of 2mA along its length parallel to +x axis

When the majority charge carrier concentration is 12.5×10^{13} cm⁻³ and the sample is exposed to a constant magnetic field applied along the +z direction, a Hall voltage of 20 mV is measured with the negative polarity at y=0 plane. Take the electric charge as 1.6×10^{-19} C. The concentration of minority charge carrier is negligible. Which of the following statement is/are true?

- a) The majority charge carrier is electron
- b) The magnitude of the applied magnetic field is 1 Tesla
- c) The electric field corresponding to the Hall voltage is in the +y direction
- d) The magnitude of Hall coefficient is 50,000 m^3C^{-1}
- 51) A^{α} and B_{β} ($\alpha, \beta = 1, 2, 3, \dots, n$) are contravariant and covariant vectors, respectively. By convention, any repeated indices are summed over. Which of the following expression is/are tensors?
 - a) $A^{\alpha}B_{\beta}$
 - b) $\frac{A^{\alpha}B_{\beta}}{A^{\alpha}B_{\alpha}}$
 - c) $\frac{A_{\alpha}}{R_{\alpha}}$
 - d) $A^{\alpha} + B_{\beta}$
- 52) The temperature T dependence of magnetic susceptibility γ (Column I) of certain magnetic materials (Column II) are given below. Which of the following option is/are correct?

	Column 1	Column 2
(1)		(P) Diamagnetic
(2)		(Q) Paramagnetic
(3)		(R) Ferromagnetic
(4)		(S) Antiferromagnetic