EXHIBIT "13"

Massachusetts Bay Transportation Authority Red Line Extension Northwest

STATUS REPORT
ON THE MONITORING PROGRAM FOR
GROUNDWATER QUALITY
IN THE SLUDGE SOLIDIFICATION AREA

prepared by

Sverdrup & Parcel and Associates, Inc.

April 1983

TABLE OF CONTENTS

	Table of Contents	i
	List of Figures	i
Ι	Introduction	ì
ΙI	The Monitoring Program as Originally Proposed	ż
III	Data Readings Obtained	_
	A. Readings Before Sludge Solidification and Removal	5
	B. Readings After Sludge Solidification and Removal and	
	Before Tunnel Construction	5
	C. Readings Since Tunnel Construction Has Begun	Ţ
	D. Continuous Readings in One Location	1
I۷	Current Status of Monitoring Equipment	3
V	Proposal for Further Testing	4
	Appendix, Background Information on the Sludge Solidification	•
	Problem	6

LIST OF FIGURES

Figure 1	Monitoring Equipment Locations	_
Figure 2	Relationship between tonductivity	
	and Sulfate Concentration	4
Figure 3	Conductivity Trends	7
	at Observation Wells Al,	
	A2, and A4	_
Figure 4	Conductivity Dondings	6
yuic T	Conductivity Readings	7
rigure 5	Data at Observation Well Al	'n
Figure 6	Data at Obcomunation Hall Ac	Ö
i ante o	Data at Observation Well A2	g
-1gure /	Data at Observation Well A4	~
Figure 8	Continuous Readings at Observation Well A2	Ų
igule o	continuous readings at observation well A2	2
·1gure 9	Location of New Observation Wells	_
-	TO THE TOTAL	71

I INTRODUCTION

The proposal for the solidification of the sludge material disposed of on W. R. Grace property and lying on the proposed alignment of the Red Line Extension Northwest was formally presented to the Cambridge Conservation Commission in a Notice of Intent, as required by the Massachusetts Wetlands Protection Act, on August 29, 1980. The proposal called for the sludge material, a waste product from W. R. Grace's manufacturing operation, to be converted to an insoluable, inert material by a chemical process. The processed material would then be removed to a site outside the City of Cambridge which would meet any requirements set by the Department of Environmental Quality Engineering.

A public hearing regarding the sludge solidification program was held on September 2, 1980. The Cambridge Conservation Commission agreed with the intent of the program in principle but wished to include some restrictions on the operation and some provisions for monitoring the long term affects of the sludge materials. These restrictions and monitoring requirements were reflected in the Order of Conditions of October 9, 1980. Two of the conditions, number 16 and number 17, related specifically to groundwater issues. These are as follows:

- "16. Prior to the commencement of any work hereunder, the applicant shall develop a monitoring program, in consultation with the Water Department of the City of Cambridge, and submit to the Commission, and the Commission shall have approved said program, which program shall assure that the groundwater on the site, which potentially may flow from the site, will not contain any water contaminants.
- 17. If said monitoring as provided in paragraph 16 indicates that water, which potentially may flow from the site, will contain water contaminants, the applicant shall take such reasonable measures as the Commission may require to ensure that said water will not contain contaminants."

The sludge was solidified during the spring of 1981 and the material was later removed to a sanitary landfill in Kingston, Massachusetts. Construction of the subway tunnel is currently taking place on the site under the Massachusetts Bay Transportation Authority's Construction Contract 091-508A and Construction Contract 091-601.

The remainder of this report briefly describes the program which was originally proposed to meet the groundwater monitoring requirements of the Order of Conditions, subsequent developments as the program was carried out, and continuing efforts to monitor groundwater in the sludge solidification area as the construction process has taken place.

II THE MONITORING PROGRAM AS ORIGINALLY PROPOSED

Because of the extensive soil and groundwater analysis program carried out for the design of the tunnel by Goldberg-Zoino & Associates, geotechnical consultant for the project, and the analysis of the sludge problem by both Goldberg-Zoino & Associates and by Haley and Aldrich, who were retained independently by W. R. Grace and Co., several monitoring locations were in existence in the general area of the sludge solidification operation. It was determined that only one additional observation well in addition to those monitoring locations already existing would be sufficient to provide information as required in the Order of Conditions. The original proposal assumed twelve monitoring locations (See Figure 1 "Monitoring Equipment Locations").

It was realized at this time that some of the existing monitoring locations would eventually be destroyed during the construction of the tunnel across the site. Since the groundwater quality was anticipated to improve significantly when the sludge was removed, it seemed likely there would be no need to replace these monitoring locations after they were destroyed.

It had been determined in previous analyses by both Goldberg-Zoino & Associates, and Haley and Aldrich that the sludge materials contained large amounts of sulfates and, consequently, that the groundwater contaminated by the sludge contained relatively high degrees of sulfate ions. The degree of sulfate concentration is related to the electrical conductivity of the groundwater and it was anticipated that once this relationship was definitively established testing for conductivity alone would be sufficient to provide an indication of the changing quality of the groundwater (See Figure 2 "Relationship Between Conductivity and Sulfate Concentration").

The collection and testing of samples was to take place on the following schedule:

- Just prior to the removal of the sludge material to provide a base level or existing conditions measurement.
- O Just after complete removal of the sludge material.
- O Monthly for six months subsequent to the removal of the sludge material.
- o Every other month for the next six months.

It was anticipated that sufficient improvement in groundwater quality would be shown in the year after the removal of sludge material that no further testing would be required.

III DATA READINGS OBTAINED

Unfortunately, the proposed monitoring program was not able to be successfully carried out. The construction activity associated with the sludge solidification operation destroyed most of the monitoring instrumentation and subsequent tunnel construction activity destroyed all except one of the observation wells. However, data readings were obtained prior to the sludge solidification and removal process and these will be able to serve as a basis for comparison with future information.

The following is a compendium of the information that has been obtained through the monitoring program:

A. READINGS BEFORE SLUDGE SOLIDIFICATION AND REMOVAL

Long term trends on the site have been recorded at three multi-level monitoring locations, (1) observation well A-1, (2) observation well A-2, and (3) observation well A-4. Periodic readings of conductivity were taken at these locations at all three levels dating back to September 1978 (See Figure 3 "Conductivity Trends at Observation Wells A-1, A-2, and A-4"). Periodic readings were also taken at wells installed on the site by Haley and Aldrich for W. R. Grace. This information is not considered as reliable as that from wells A-1, A-2, and A-4 because of interstratum mixing, but is presented as background material along with readings from wells A-1, A-2, and A-4 in Figure 4 "Conductivity Readings". This is a complete record of all readings taken as part of the groundwater monitoring program.

An extensive field analysis was conducted in 1978 involving 25 locations in the sludge solidification area. In many cases a laboratory analysis was also performed. This material is contained in the Contaminated Groundwater Report of December 1978 and provides a good indication of groundwater conditions on the site prior to any sludge removal or tunnel construction activity.

A field analysis is available for observation wells A-1, A-2, and A-4 and a laboratory analysis is available for observation wells A-1 and A-4 (see Figures 5, 6, and 7).

This material provides an initial cross reference between sample conductivity at these locations, pH readings, and chemical makeup.

B. READINGS AFTER SLUDGE SOLIDIFICATION AND REMOVAL AND BEFORE TUNNEL CONSTRUCTION

Because of the extensive destruction of monitoring equipment, the fact that stockpiles of solidified sludge material, for which removal was delayed, made some areas inaccessible, and the very short time span between the end of sludge removal and the beginning of tunnel construction, no measurements were made during this interim period.

ation We	[]		Da	ate							
	9/78	1177	7/80	11/80	4/8/	6/81	9/82	ule:			
1-1-1	4900		5500	4300	2/00	1290					
A-1-2	10,700		7500	5 200	2000	3550	Ī				
1-1-3	5/0	510	620	560	400	3/0	: :				
1-2-1	2150	2300	2000		 	1.0.00	 '	· ·			
1-2.2		28 000	-	1200	17 000	12 90		2500			
1-2-3	400	420	<u> </u>	320	600	300	38/0	50 P			
		 			ļ	ļ]: -				
à l	2400	1600	1310	820	2000	1420	•				
B-4-3	1470 540	520 430	1200	9 ce 420	500	350	:				
1						 	1				
A-5-1		-			9 000	3600	ļ				
A-5-2		 			2900	1950	;	٠.			
A-5-3			4		170	150	1 .				
DW-2-1		1600	; 		•						
0w-2-2		26000									
DW-2-3		28 000			-						
DW-2-4		480				٠.					
Dw -3-/		5600		· · · · ·						4	
DW-3-2		2/000			3200	6000	: i				
DW-3-3		12 000			495	2000					
DW-3-4		520			250	7000					
		1			- 2						
DW-4-1		4500					•				
DW-4-2		4800	i					•			
Dw-4-3		5600								•	
Dw-4-4		2900									
DW-1-1		200	•								
DW-6-2		120									
DW-6-3		220									
DW-6-4	. !	340.	:					_			
ow-7-1	ł	3 000	!	ı	:	·		C	ondi	<i>JCtivit</i>	1
Dw-7-2		15 000			4150		<u>.</u>				J
DW-7-3		5/00			5000	4320			7	J!	
Dw-7-4		7300			-	5500		· 1	rea(agnit	
0w-8-1		3300			1000	i				•	
DW-8-2	·	19000			1700	 :					
QW-8-3		12 000			6 500	8100					
DW-8-4	i	580			300	/300					
		+									
DW-10-1		3/00			/300	_=_					
DW-10-Z	···	3000	,		_=_			•			
2W-10-3		2300			3800	_= !	•		•	•	
w-10-4		2200	, 			4250					
/#/_7/2:3	-	·	— -		450	900					
		····					•				
5W-8	i	5260									

GROUNDWATER MONITORING

FIGURE 4

	4	SAM	PLE INVENT	ORY AND	FIELD ANALY	rsis		
Date	Well #	Color	Odor	Salinity ⁰ /00	Conductivity Mhos/cm	pH (Field)	Ground Water Depth (Ft.BGS)	Ground Water Elev.
5/27/78	A-1-1		Moderate	_	_		3.6	109.0
5/27/78	A-1-2		Very Strong	·		5.0-5.5		105.0
5/27/78	A-1-3	-	Slight	<u> </u>	_	5.0-5.6		
7/27/78	A-1-1	_	Very Strong			3.0		
7/27/78	A-1-2	_	Very Strong			5.0		-
7/27/78	A-1-3		None		_	6.5		
8/28/78	A-1-1	Orange Brown	Moderate	2.2	4,200	3.3	2.8	100.0
8/28/78	A-1-2	Orange Brown	Moderate	3.8	11,000	5.7	2.6	109.8
8/28/78	A-1-3	_	None	0.0	620	8.2	_	<u> </u>
9/7/78	A-1-1	Orange Brown	Strong	3.0	4,850	3.7	2 2	100 /
9/7/78		Orange Brown		6.9	10,900	5.7	3.2	109.4
9/7/78	A-1-3	_	None	0.0	490	8.4		
9/25/78	A-1-1	Orange Brown	Strong	3.0			_	_
9/25/78		Orange Brown		6.8	5,000	3.8	3.9	108.7
9/25/78	A-1-3	- DIOWII	Very Slight	0.0	10,900	5.8		
, . •			AETA STIRUC	. 0.0	500	7.8		-

NOTE: Sampling intervals:

10/11/78 A-1-1

10/17/78 A-1-1

A-1-1 \longrightarrow 2.5' to [2.5' below ground surface (Elev. 100.0 to 110.1)

A-1-2 -- 20' to 22' below ground surface (Elev. 90.6 to 92.6)

A-1-3 - 30' to 32' below ground surface (Elev. 80.6 to 82.6)

LABORATORY ANALYSIS

	Conductivity							<u> </u>	T
Well #	Field	Field Lab	Acidity	Alkalinity	Chloride	Calcium	Magnesium	Iron	Sulfate
A-1-1	5,000 4,900	3.8	240	-	149	5 60	82.69		1546.3
À-1-2	10,900	5.8	 .	110	798	440	972.80	3206.00	2569.4
A-1-3	500 510	7.8	-	140	133	8	4.86	20.97	28.7

NOTES: (1) All concentrations reported in parts per million. (2) Sample collected 9/25/78; analysis 11/15/78.

Source; Contaminated Groundwater Report, 1978

Data at Observation Well A1

GROUNDWATER MONITORING

FIGURE 5

3.4

2.8

109.2

109.8

Date	Ve11 #	Color	Odor	pfl (Field)	Conductivity	Salinity 0/00	Salinity Groundwater Groundwater o/oo (Ft. BGS) Elevation	Groundwater Elevation	Remark
9/11/78	A-2-1	1	· J	ſ	1	l	1	e de la constante de la consta	Sampled three hours after completion.
9/11/78	A-2-2	pale yellow	slight	6.7	1,630	0.5		Į.	- \$
9/11/78	A-2-3	light gray	none	8.0	095	0.0	ı	1	=
9/25/78	A-2-1	orange brown	Poll	6.5	2,650		1	1	Slight oil [lim? No chemical analysis.
9/25/18	A-2-2	11ght brown	strong	6.2	13,100	8.2	.	1	
9/25/78	A-2-3	none	none	8.1	700	0.0	1	ı	
10/17/78 A-2-1	A-2-1	l	l	ı	ı	1	6.4	109.4	

(1) No Laboratory analyses were performed on samples from these wells. NOTES:

(2) Intervals sampled:

A-2-1 1' to 10' helow ground surface (Elev. 103.1 to 112.1)

A-2-2 17' to 19' below ground surface (Elev. 94.1 to 96.1)

A-2-3 26.5' to 28.5' below ground surface (Elev. 84.6 to 86.6)

Source; Contaminated Groundwater

Report, 1978

Data at Observation Well A2

GROUNDWATER MONITORING

ဖ

FIGURE

SAMPLE INVENTORY AND FIELD ANALYSIS

Date	Well #	Color	Odor	Salinity ^O /oo	Conductivity M mhos/cm	•	Ground Water Depth (Ft.BGS)	Ground Water Elev.
9/14/78 9/14/78 9/14/78	A-4-1 A-4-2 A-4-3	Pale Yellow Faint Yellow None	Moderate Slight None	1.0 0.1 0.0	1920 970 460	6.6 8.0 8.2	5.3 — —	109.1
9/25/78 9/25/78 9/25/78	A-4-1 A-4-2 A-4-3	Pale Orange None None	Moderate Slight Very Slight	1.0 0.5 0.0	2350 1560 52 0	6.5 7.9 8.0	5.6	108.8
10/11/78 10/17/78		_	<u>-</u>	-	<u>-</u>	-	5.5 4.0	108.9 110.4

NOTE: Sampling intervals:

 $A-4-1 \longrightarrow 4.5$ ' to 13' below ground surface (Elev. 101.4 to 109.9) $A-4-2 \longrightarrow 20.2$ ' to 22.2' below ground surface (Elev. 92.2 to 94.2)

A-4-3 --> 33.8' to 35.8' below ground surface (Elev. 78.6 to 80.6)

LABORATORY ANALYSIS

Well #	Conductivity Field Lab	Field	Acidity	Alkalinity	Chloride	Calcium	Magnesium	Iron	Sulfate
A-4-1	2350 2400	6.5		39 0	66	640		'23.1	1149.8
A-4-2	1560	7.9	_	244	103	140	36.5	2.1	422.2
A-4-3	520 540	8.0		90	193	56	7.3	1.4	16.3

- NOTES: (1) All concentrations reported in parts per million.
 - (2) Sample collected 9/25/78; analyzed 11/15/78.

Source; Contaminated Groundwater Report, 1978

Data at Observation Well A4

GROUNDWATER MONITORING

FIGURE 7

C. READINGS SINCE TUNNEL CONSTRUCTION HAS BEGUN

Readings since construction has begun are limited because most of the monitoring equipment was destroyed early in the tunnel construction process through slurry wall construction, the movement of equipment, or through the stockpiling of material. Since tunnel construction began in 1981 only one monitoring location has remained in use, observation well A-2. A measurement was taken here in September 1982 and again in November 1982.

D. CONTINUOUS READINGS IN ONE LOCATION

As a result of the unanticipated losses of the monitoring equipment, continuous readings are available for only one observation well, number A-2, located adjacent to Alewife Brook Parkway and south of the tunnel.

The readings from one location cannot be considered as representative of the entire site especially since observation well A-2 is located in an area of previous high contamination. In any case, the conductivity of the samples, which is indicative of the sulfate ion content of the groundwater, despite some intermediate fluctuations, shows no lessening from the levels measured in 1978, 1979, and 1980 prior to the removal of the sludge material (See Figure 8 "Continuous Readings at Observation Well A-2").

	•	,
Date	На	Conductivity (MHO)
At Elevation 103 (appr	oximately 10' below ground 1	
9-78		
9-79	6.5	2500
9-80	-	2200
4-81	6.5	2000
6-81	-	17000
11-82	6.3	1500
	6.3	2500 ⁻
•		
At Elevation 95 (approx	cimately 18' below ground lev	vel):
9-78	6.2	1000
9-79	•·····································	10000
9-80	6.2	28000
4-81	-	6000
6-81	•	3000
11-82	5.4	2500 23500
		22500
At Elevation 86 (approx	imately 27' below ground lev	el):
9-78	8.1	400
9-79	-	400
9-80	8.1	600
4-81		650
6-81	-	300
11-82	7.3	500 500
		300

Continuous Readings at Observation Well A2

GROUNDWATER MONITORING

FIGURE 8

IV CURRENT STATUS OF MONITORING EQUIPMENT

Observation Well A2 is still in existence and is still available for monitoring purposes. None of the previous monitoring locations are still in existence.

It was considered impractical to try to replace any of the monitoring equipment as they were destroyed since the operations that had eliminated them in the first place were still ongoing. At this point construction has progressed far enough so that replacement of some of the observation wells in the same location to provide a continuation of previously obtained data has been accomplished.

V PROPOSAL FOR FURTHER TESTING

Three new observation wells has been installed to supplement the very limited information on current site conditions provided by the one existing observation well. They are located both in the more average contamination areas, that is east of the sludge piles on the north and south sides of the tunnel alignment, and in the highly contaminated area on the north side of the tunnel opposite A-2, the existing observation well. The locations of these three new wells are shown on Figure 9 "Location of New Observation Wells".

The placement of these wells will allow for an evaluation of the dilution experienced in the groundwater as it moves down the groundwater gradient in the area of the tunnel and a comparison with previous readings at these locations. To assess this change, new readings will be taken after an initial stabilization period for the new wells is allowed for.

APPENDIX

Background Information on the Sludge Solidification Problem

0	Groundwater Quality Data Summaries from the		
	Contaminated Groundwater Report, December 1978, by		
	Goldberg, Zoino & Associates for field and laboratory		
	analyses of samples taken at 25 locations in the		
	sludge solidification area		17
0	Results of a chemical analysis of a groundwater sample	• •	
	by NUS Corporation dated June 25, 1979 which		
	identifies the compounds found and describes		
	the testing procedure		26
0	Summary of Analytical Results of a groundwater sample from	• •	
	Preliminary Toxic Hazard Evaluation at the Red Line		
	Construction Site, September 1981 by GCA Corporation		28
0	Data Report for a groundwater sample analysis by		
٠	GCA Corporation, September 18, 1981, and		
	October 5, 1981		29
0	Analysis results for soil samples from Analysis		
	of Soil Samples from the Red Line Construction Site,		
	November 1981, by GCA Corporation		32
0	Correspondence from the Massachusetts Department of		
-	Environmental Quality Engineering dated		
•	June 16, 1981, classifying the solidified		
	sludge material as a solid waste requiring		
_	no special handling		34
)	Correspondence from the Massachusetts Department of		
	Environmental Quality Engineering dated		
	November 1, 1982, confirming that soils		
	contiguous to the previously removed		
	solidified sludge material are not		
	hazardous		36

GROUNDWATER QUALITY DATA SUMMARY

UNCASED AUGER HOLES

Date	Well #	Ground Water Temp.°C	Odor	pH (Field)	Conductivity Amhos/cm	Salinity 0/00	Table	Water Table Elev.	Remark
8/28/78	A-101	17.6	None	6.1	880	0.0	3.7	108.3	
8/28/78	A-102.	18	None	6.0	1080	0.1	3.5	108.5	
8/28/78	A-103	16.7	None		178	0.0	3.5	110.5	
8/28/78	A-104	18.2	None		580	0.0	4.4	108.6	
8/28/78	A-105	15.5	_		2520	0.8	5.5	112.5	
8/28/78	A-106	18	Slight	5.5	850	0.1	2.5	109.5	:
8/28/78	A-107	19	Strong	7.4	1850	0.6	4.0	110.0	
8/28/78	A-108	17	Slight	5.8	1780	0.1	4.0	110.0	,
8/28/78	A-109	15.8	Strong	5.3	20 00	1.0	4.9	108.1	Pale orange brown
8/28/78	A-110	19.5	Slight	6.1	3500	1.8	4.5		Pale orange brown
8/28/78	A-111	19	Mod ¹	6.4	800	0.0	2.6	109.4	Distinct odor of alcohol.
9/7/78	A-101	18	None	6.5	750	0	3.5	108.5	
9/7/78	A-102	18	None	6.2	950	0.	3.9	108.1	· ·
9/7/78	A-103	16.2	None	6.8	180	0	3.9	110.1	•
9/7/78	A-104	19	Slight	6.2	520	0	4.7	108.3	
9/7/78	A-105	16.4	Slight	6.9	30 00	1.5	5.7	112.3	i
9/7/78	A-106	Hole co	llapsed	— No	s a mple		-	••••	!
9/7/78	A-107	Hole	caved	— No 1	sample	_	_	_	
9/7/78	A-108	Hole	caved	- No 1	sample			-	
9/7/78	A-109	Hole fu	11 of m	ud .		_	4.1	108.9	;
9/7/78	Ä-110	19	Slight	5.9	600	3.7	3.0	110.0	<u> </u>
9/7/78	A-111	19.2	Slight	6.7	780	0.1	2.9	109.1	

TABLE NO. 1745-W-1.9-4

December 20, 1978

PLATE NO. AGR-C-1

GROUNDWATER QUALITY DATA SUMMARY SINGLE-LEVEL OBSERVATION WELLS

				WELL IN	INVENTORY AND	ID FIELD	ANALYSES	3.5				1
							Groundwater	П	Interval Sa	Sampled		I
Well	# Date	Color	Odor	pH (Field)	Conductivity Amhos/cm	Salinity 0/00	Depth (Ft.BGS)	Elev.	Depth (Ft.BGS)	Elev.	Remark	
4-WO	9/7/78	Light Gray	None	9.9	290	0.0	5.1	107.7	5-13		Water is clear	
7-M0	9/25/78	Light Gray	None	6.3	310	0.0	5.1	107.7	5-13	99.8- 107.8		
04-5	7/28/77	Yellow	Moderate	1	I			i	1	S	See 7/28/77	
04-5	8/28/78	Dark Brown	Strong	1.9	4,000	2.2	. 1	İ	-	1		
04-5 04-5 04-5	9/7/78 9/7/78 9/7/78	Orange Orange Brown Dark Brown	Moderate Strong Strong	7:11	4,550 13,800 16,100	9.0	9.7	109.5 109.5 109.5	5.5 8.0 14.3	108.3 104.8 98.6	Strongly stratified well	
. OW-5	9/25/78	Dark Brown	Strong	2.5	10,000	6.1	6.9	109.2	5-15	98- B ₂	Bailed 3 Gals. before sample.	
				,	LABORATORY	ANALYSES	S					-
· .	Condi	Conductivity mhos/cm	Hd									#
We11#	Fie	, ag	Field Lab	Acidity	tv Alkalinitv	tv Chloride		Calcina	Macadata	3		
04-51	-51 10,000	, 6		1660			#	680	63.23	7	-	
OW-52,3	2,3		2.4	1	1	498	8	1			3630.0	
	NOTES:	£355	Sample collected Sample collected Sulfide -S 3.00 All concentration	. = :	9/25/78; analyzed 11/15/78 7/28/78. ppm; Sulfide - H ₂ S 3.19 p s reported in parts per mi	11/15/78. 3.19 ppm. s per million	n. Llon.					
TABLE	NO.	1745-W-1.9-5			December 20, 1978	1978		-		PLATE N	PLATE NO. AGR-C-2	

DPW00422

GROUNDWATER QUALITY DATA SUMMARY SINGLE-LEVEL OBSERVATION WELLS

					WELL I	INVENTORY	AND	FIELD ANALYSES	SES				
								Grou	Groundwater	Interval	al Sampled	Pa	
Well #	# Date		Color	Odor	pH (Field)		Conductivity Salinity Amhos/cm 0/00	(F		Depth Elev. (Ft. BGS)	h GS) Elev.	v. Remark	ark
9-110	9/1/18	Pal	Pale Yellow	None	9.9	1550	0.5		ļ <u>.</u>	108.3 6.6	106.8	&	
9-100	9/25/78		merged (Submerged under puddle	•	no sample possible	ssible			·	····		
						LABORAT	LABORATORY ANALYSES	YSES					
Well #	Conduc- tivity Amhos/cm Lab	pH Lab	S111ca /	Silica Alkalinity (S102) (Ca CO3)	Chloride	Chloride Calcium Magnesium	Magnes 1 um	Iron and Aluminum Sulfate Oxide (SO4)	Sulfate (SO4)	Potassium	<u> </u>	Sulfide Hardness (H ₂ S) (Ca CO ₃)	Total Dissolved Solids
0W-61	1550	6.5	8.4	009	149.0	380	120	73.5	0.25	145	None	200	1306
				NOTES: (1	(1) Sampl (2) All c	Sample collected 3/5/78. All concentrations in parts per million.	rd 3/5/78. Ions in pa	irts per m	111ion.				
TABLE	TABLE NO. 1745-W-1.9-6	-W-1.9	9-			Decemb	December 20, 1978	78			ገ _ሬ	PLATE NO. AGR-C-3	cR−C−3

GROUNDWATER QUALITY DATA SUMMARY

SINGLE-LEVEL OBSERVATION WELLS

H				WE	ELL INVE	INVENTORY AND F	FIELD ANA	ANALYSES				
*								Groundwater	ater	Interval	Sampled	
	Well #	Date	Color	Odor	pH (Field)	Conductivity	Salinity 0/00.	Depth (Ft.BGS)	Elev.	Depth (Ft.BGS)	Elev.	Remark
	A-7	81/1/6	Pale Yellow	None	7.2	1000	0.1	4.8	108.3	6.3	107	2 hrs. after completion
	A-7 A-7	9/8/78	11	Very Slight	7.2	1250	1 1	8.4	108.3	6.3	107	9:00
	A-7 A-7	9/8/78	Pale Gray	S11gh S11gh S11gh	7.1	1100	0.2	8.8	108.3	6.3	107	12:00 12:00
	A-7	9/25/78	Light Gray	Very Slight	6.8	1630	9.0	4.8	108.3	5-15	98-108	
7	A-7	10/11/78	11	11		11	11	4.6	108.5 108.8	1 1		
0-	A-8	81/1/6	.1	None	1:	360	1	3.8	109.1	5.3	108	
	A-8 A-8	9/8/78 9/8/78	11	None None	6.7	250 312	0.0	3.9	109.0	5.4 12.8	108	•
	A-8	9/25/78	j	None	9.9	220	0.0	4.0	108.9	1	١	See analysis below
	A-8 A-8	10/11/78 10/17/78	11	11		11	11	4.0	108.9	1 1	11.	
					1.	LABURATORY AN	ANALYSIS					
	We 11	-	ctivity los/cm	Pield Lab	Acidity	Alkalinity	Chloride	e Calctum		Magnesim	Iron	Sulfate
DPW004	A-8	520	¥	<u> </u>			48			2.43	1.40	32.96
24		NOTES:	(3)	Sample collected 9 All concentrations	/25/78 repor	analyzed ed in part	11/15/78. s per million.	ë.				
*************************************	TABL	TABLE NO. 1745-W-1.9-7	5-W-1.9-7		· · ·	wember 20,	1978				PLATE NO.	. ACR-C-4

Case 01-01139-AMC Doc 6346-14 Filed 09/09/04 Page 25 of 34

GROUNDWATER QUALITY DATA SUMMARY

SINGLE-LEVEL OBSERVATION WELLS

!											,	
						-		croundwarer	/acer	Interval	Sampled	
	Well #	Date	Color	Odor	pH (Field)	Conductivity	Salinity 0/00	Depth (Ft.BGS)	Elev.	Depth (Ft.BGS)	Elev.	Remark
	A-9	8//8/6		auou	7.0	867		8.7	7 801	6.3	106.9	Slotted from 15'-20'
-			pale gray	none	7.0	077	0.0	4.8	108.4	14.2	99.0	
				none	7.0	510	1	4.8	108.4	24.2	89.0	
		9/25/78	9/25/78 pale orange brown slight	slight	6.8	2430	1.0	4.8	108.4	5-25	88-108	Bailed 2½ gallons
	. — 	10/11/78	ŀ	1	1	- 1	l	4.7	108.5	ı	l	
		10/17/78	l	l	ı		!	4.5	108.7	ı	1	
-21-	A-10	8//8/6	pale yellow	pom pom	9.9	2050	1.0	5.1	106.9	6.6	105.4	Distinctive odor of alcohol in G.W.
		9/25/78	-	 prohibited; pro		 lem with adjacent volatile solvent tank	i cent volat	ile solv	ent tan	•		
		10/11/78	ı	1				4.9	107.1	. [ı	
		10/11/78	1	1	I.	1	1	9.4	107.4	ľ	İ	
	A-11	8//8/6	brown	рош	6.4	1040	1.0	3.7	108.8	7.7	108.1	
		9/25/78	pale yellow	рош	6.5	069	0.0	ļ	l	2-5	107-110	
	٠.	10/11/78		1 1	1 1		1.1	3.1	109.4	11	11	
_	A-13	9/25/78	orange brown	slicht	7.9	1250	1.2	5.4	108.8	10-25	89-104	Slotted from 10'-25'
ת		10/11/78)					5.5 5.3	108.6	1,1	1 1	
PW0	A-14	9/7/78	pale grav	altohr		1950	0	ı		į	į	4 hrs after complete
042		9/8/18	pale yellow	pou	4.7	2220	1.1	6.4	1.601	6.4		133 18 611
-		0/26/10		pom.	4.7	2320	•	6.9	109.1	13.8	1	
		10/11/78	Ingne gray	BIIght	- - -	0597	7:	× × ×	109.2	<u> </u>	601-66	
		10/17/78	ı	. 1	ı	ı	1	4.6	109.4	1	-	
_					1	2			-		-	

PLATE NO. ACR-C-5

December 20, 1978

TABLE NO. 1745-W-1.9-8

GROUNDWATER QUALITY DATA SUMMARY MULTI-LEVEL OBSERVATION WELL A-1

		SAMI	PLE INVENT	ORY AND	FIELD ANALY	rsis		
Date	Well#	Color	Odor	Salinity ⁰ /00	Conductivitymhos/cm	pH (Field)	Ground Water Depth (Ft.BGS)	Ground Water Elev.
5/27/78 5/27/78 5/27/78	A-1-1 A-1-2 A-1-3		Moderate Very Strong Slight			 5.0-5.5 5.0-5.6	3.6	109.0
7/27/78 7/27/78 7/27/78	A-1-1 A-1-2 A-1-3	<u>-</u>	Very Strong Very Strong None		_ _ _	3.0 5.0 6.5	<u> </u>	
8/28/78 8/28/78 8/28/78		Orange Brown Orange Brown		2.2 3.8 0.0	4,200 11,000 620	3.3 5.7 8.2	2.8	109.8
9/7/78 9/7/78 9/7/78		Orange Brown Orange Brown -		3.0 6.9 0.0	4,850 10,900 490	3.7 5.7 8.4	3.2 — —	109.4
9/25/78 9/25/78 9/25/78		Orange Brown Orange Brown		3.0 6.8 0.0	5,000 10,900 500	3.8 5.8 7.8	3.9 — —	108.7 — —
10/11/78 10/17/78		_		<u> </u>		<u></u> -	3.4 2.8	109.2 109.8

NOTE: Sampling intervals:

A-1-1 \longrightarrow 2.5' to [2.5' below ground surface (Elev. 100.0 to 110.1)

 $A-1-2 \longrightarrow 20'$ to 22' below ground surface (Elev. 90.6 to 92.6)

 $A-1-3 \longrightarrow 30'$ to 32' below ground surface (Elev. 80.6 to 82.6)

LABORATORY ANALYSIS

Well #		Field	Acidity	Alkalinity	Chloride	Calcium	Magnesium	Iron	Sulfate
A-1-1	5,000 4,900	3.8	240	-	149	560	82.69	102.75	1546.3
A-1-2	10,900	5.8	-	110	798	440	972.80	3206.00	2569.4
A-1-3	500 510	7.8	_	140	133	8	4.86	20.97	28.7

NOTES: (1) All concentrations reported in parts per million.

(2) Sample collected 9/25/78; analysis 11/15/78.

TABLE NO. 1745-W-1.9-9

December 20, 1978

PLATE NO. AGR-C-6

GROUNDWATER QUALITY DATA SUMMARY

MULTI-LEVEL OBSERVATION WELL A-2

Date	Uo11 \$	Color	Odor	pli (Field)	Conductivity	Salinity o/oo	Groundwater (Ft. BGS)	Groundwater Elevation	Remark
9/11/78	A-2-1							1	Sampled three hours after completion.
9/11/78	A-2-2	pale yellow	slight	6.7	1,630	0.5	1	l	
9/11/78	A-2-3	11ght gray	none	8.0	460	0.0	1	1	
9/25/78	A-2-1	orange brown	pom	6.5	2,650	1.1	ı	ļ	Slight oil [[lm? No chemical analysis.
9/25/78	A-2-2	11ght brown	strong	6.2	13,100	8.2	1	1	=
9/25/78	A-2-3	none	none	8.1	700	0.0	1		*
10/17/78	A-2-1		l		1	l	4.9	109.4	
		NOTES: (1)	No laboratory	B	analyses were performed on samples from these wells.	formed on	samples from	these wells.	
		(2)	Intervals samp		led:	one participation	(Flow, 103.1	to 112.1)	
:			A-2-2	12.	to 19' below ground surface (Elev. 94.1 to 96.1)	und surfac	e (Elev. 94.1	to 96.1)	
			A-2-3	26.	5' to 28.5' below ground surface (Elev. 84.6 to 86.6)	ground su	irface (Elev.	84.6 to 86.6)	
TABLE 1	NO. 1745-	TABLE NO. 1745-W-1.9-10			December 20, 1978	1, 1978			PLATE NO. AGR-C-7

DPW00427

GROUNDWATER QUALITY DATA SUMMARY MULTI-LEVEL OBSERVATION WELL A-3

		SAMPL	E INVENTOR	Y AND F	ELD ANALYS	IS		
Date	Well #	Color	Odor	Salinity O/oo	Conductivity	pH (Field)	Ground Water Depth (Ft.BGS)	Ground Water Elev.
9/14/78 9/14/78 9/14/78	A-3-1 A-3-2 A-3-3	Yellow Pale Gray Pale Gray	None None None	0.1 0.0 0.0	1020 560 580	6.9 8.4 8.5	6.6	108.1
9/25/78 9/25/78 9/25/78	A-3-1 A-3-2 A-3-3	Pale Yellow — Light Gray	Very Slight None None	0.4 0.0 0.01	1440 860 900	6.5 7.9 8.4	7.0	107.7 — —
10/11/78 10/17/78			<u>-</u>		_	_	6.6 6.3	108.1 108.4

NOTE: Sampling intervals:

 $A-3-1 \longrightarrow 2'$ to 12' below ground surface (Elev. 102.6 to 112.6)

 $A-3-2 \longrightarrow 20.5$ to 22.5' below ground surface (Elev. 92.2 to 94.2)

 $A-3-3 \longrightarrow 30'$ to 32' below ground surface (Elev. 82.7 to 84.7)

LABORATORY ANALYSIS

	Conductivity Field	Field							
Well #	Lab	Lab	Acidity	Alkalinity	Chloride	Calcium	Magnesium	Iron	Sulfate
A-3-1	1,440	6.5		380	133	240	14.59	6.29	302.6
A-3-2	860 850	7.9	_	236	148	16	4.86	27.96	81.1
A-3-3	900 900	8.4	_	389	103	14.4	0.97	36.35	17.6

NOTES: (1) All concentrations reported in parts per million.

(2) Sample collected 9/25/78; analyzed 11/15/78.

TABLE NO. 1745-W-1.9-11

December 20, 1978

PLATE NO. AGR-C-8

GROUNDWATER QUALITY DATA SUMMARY MULTI-LEVEL OBSERVATION WELL A-4

		SAMPL	E INVENTOR	Y AND F	ELD ANALYS	I S		
Date	Well #	Color	Odor	Salinity º/oo	Conductivity A mhos/cm	pH (Field)	Ground Water Depth (Ft.BGS)	Ground Water Elev.
9/14/78	A-4-1	Pale Yellow	Moderate	1.0	1920	6.6	5.3	109.1
9/14/78	A-4-2	Faint Yellow	Slight	0.1	970	8.0	•	
9/14/78	A-4-3	None	None	0.0	460	8.2	_	
9/25/78	A-4-1	Pale Orange	Moderate	1.0	23 50	6.5	5.6	108.8
9/25/78	A-4-2	None	Slight	0.5	1560	7.9	: —	_
9/25/78	A-4-3	None	Very Slight	0.0	520	8.0		_
10/11/78	A-4-1	_	· 		<u> </u>	-	5.5	108.9
10/17/78		_	-	_		_	4.0	110.4

Sampling intervals: NOTE:

 $A-4-1 \longrightarrow 4.5$ ' to 13' below ground surface (Elev. 101.4 to 109.9) $A-4-2 \longrightarrow 20.2$ ' to 22.2' below ground surface (Elev. 92.2 to 94.2)

A-4-3 -> 33.8' to 35.8' below ground surface (Elev. 78.6 to 80.6)

LABORATORY ANALYSIS

	Conductivity	pН							· .
Well #	Field Lab	Field	Acidity	Alkalinity	Chloride	Calcium	Magnesium	Iron	Sulfate
A-4-1		6.5	<u></u>	390	66	640		23.1	1140.8
A-4-2	1560 1470	7.9	-	244	. 103	140	36.5	2.1	422.2
A-4-3	520 540	8.0	_	90	193	56	7.3	1.4	16.3

NOTES:

- All concentrations reported in parts per million. (1)
- Sample collected 9/25/78; analyzed 11/15/78. (2)

TABLE NO. 1745-W-1.9-12

December 20, 1978

PLATE NO. AGR-C-9

SERVICES LABORATORY
15 No. AVENUE - PITTSBURGH, PA. 15205
412-343-9200

CYHUS WM. RICE DIVISION

Mr. Charles W. Amelotti SVERDRUP & PARCEL & ASSOCIATES, INC. 800 North 12th Boulevard St. Louis, MO 63101

Client No.	Ω	
Date Sampled		
Date Received _	4-3-79	· · · · · · · · · · · · · · · · · · ·
Date Reported		

Test results reported in mg/liter unless otherwise noted.

Rice Sample		
No.		·
19040106	SEP A-1-2	
·	The following compounds were identified be EPA priority pollutant protocol procedure	by GC/MS in the sample following es(PP) for sample preparation:
	Volatile Organic Compounds	Concentration, ug/liter PPB
	Methylene Chloride	1300
	-Chloroform	60
	∠ 1,1,1-Trichloroethane	. 1
	Trichloroethylene	1
	Benzene	4
·	/ Titrachlornethylene	5
l. 	Toluene	1
	- Ethylbenzene	4
	ν 2,2'-Thio-bis-propane	500
•	Freon TF	20
	2-Propanol	10
·	Extractable Organic Acid Compounds	
	Phenol	32
	2,4-Dimethyl Phenol	96
	"Methyl Phenols"	400
	"Dimethyl Phenols"	1000
•	Benzoic Acid	2000
	"Methylbenzoic Acids"	>5000
	"Benzamide and Methylbenzamides"	1500
	Naphthalene ·	250
	Extractable Organic Base Neutral Compo	
ł	Naphthalene	10
	Dimethyl Phthalate	20
ł	Dioctyl Phthalate	5
	"Methyl Anilines"	400 200
	"Methyl Phenois"	3000
	"Dimethyl Phenols" ":Wethyl Benzamides"	400
	Extractable Pesticide Compounds None Detected by SC/EC	DDW00421

DPW00431

Mr. Charles W. Amelotti Page 2 May 25, 1979

19040106 SEP A-1-2 (cont'd)

Static headspace was sampled with a 5.0-ml gas-tight syringe, the syringe was connected to the purger in the usual manner and the PP procedure followed. The following compounds were identified by GC/MS:

Headspace Volatile Organic Compounds	Concentration ug/liter of air		
Methylene Chloride	550		
Benzene	6		
Tetrachloroethylene	3		
2,2'-Thio-bis-propane	300		
Freon TF	150		
Carbon Disulfide	15		

The headspace was sampled again at a later date. The sample was run by GC/TC. There was indication that it contained methane and formaldehyde. However these compounds were not confirmed.

A 500-ml portion of the original sample which had been filteredthrough glass wool (pH 3.9) was scrially extracted with three 100-ml portions of methylene chloride. The dissolved methylene chloride was removed by heating on the steam bath. Ferrous iron, ferric oxide and calcium sulfate were positively identified in the water. After removal of the iron and calcium with sodium carbonate a pale yellow solution remained.

The yellow solution was allowed to evaporate at approximately 40°C. Solids formed were removed by filtration at two different times. The infrared spectra of the solids indicated sulfonic acid (sufonate), bonded hydroxyl, imido, or amido groups, and substituted benzene rings. No positive identification of any compound was made.

By lowering the pH of the solution to below 1.0 the color became a purple-red.

It is suspected that the solution contained a mixture of sulfonates and water soluble "tar" acids.

TABLE 2. SUMMARY OF ANALYTICAL RESULTS

	Sample (values in µg/1)			
Compound	Ground water	Trench soil	Solidified sludge	
	(GCA No. 15394 and 15396)	(GCA No. 15392)	(GCA No. 15393)	
Priority Pollutants				
Phenol, 2,4-dimethyl	300	350		
Naphthalene	380		2,300	
Phenanthrene	20		•	
Luchanthene				
Nonpriority Pollutants				
Propene, 2,2'-thiobis-	5,000			
Pyridine, 4-methyl	280		• 1	
Pyridine, 2 6-dimethyl	140			
Pyridine, 4-ethyl	130			
Pyridine, 2,4-dimethyl	160	•		
Pyridine, 2,4,6-trimethyl	8.0			
Quinoline	8,200		4,900	
Isoquinoline	2,000		2,400	
Naphthalene, 1- or 2-methyl	180			
Quinoline, methyl- or Iso-				
quinoline, methyl isomer	410			
Quinoline, 5-, 6-, or	•			
7-methy1	150			
Naphthalene, 1- or			4,600	
2-carboxylic acid			4,000	
Naphthalene, 1- (2-	•	•	5,600	
naphthalenyl methyl)		•	5,000	

TABLE 3. DETECTION LIMITS FOR PRIORITY POLLUTANTS

GCA Control Number	Sample Identification	Detection limits for priority pollutents	
15392	Soil Sample, Seq 1 Soil Sample, Seq 2	240 ug/kg (ppb) 270 ug/kg (ppb)	based on wet weight of soil
15393 15396	Water Sample, Seq 3 Base/Neutral and Acid	10 µg/l (ppb)	
15394	Extractables Volatile Organics	50 μg/l (ppb)	