

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۳

یادگیری ویژگی

Feature Learning

شبکههای عصبی

• یک شبکه عصبی چندلایه شامل تعدادی لایه خطی و توابع فعالسازی غیرخطی است

$$y = f(W x)$$

$$y = f_2(W_2 f_1(W_1 x))$$

- شبكه ۲ لايه:

$$y = f_3 (W_3 f_2(W_2 f_1(W_1 x)))$$

توابع فعالسازى

• به دلیل خطی بودن ضرب داخلی، وجود توابع فعالسازی غیرخطی ضروری است

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

ReLU

 $\max(0,x)$

tanh

tanh(x)

Leaky ReLU

 $\max(0.1x, x)$

شبکههای عصبی

28 x 28 784 pixels

شبكههاى عصبى عميق

- آیا یک شبکه دارای لایههای زیاد می تواند منجر به بهبود طبقه بندی تصویر شود؟
- مهمترین ایراد این ساختار در پردازش تصویر آن است که اطلاعات همسایگی را لحاظ نمی کند
 - به عبارت دیگر، دانش بدست آمده را میان پیکسلهای تصویر به اشتراک نمی گذارد
- ایده اصلی در پیشرفت یادگیری عمیق در حوزه بینایی کامپیوتر استفاده از لایههای کانولوشنی است

شبكههاى عصبى كانولوشني

Convolutional Neural Networks

- در لایههای کاملا متصل، مقدار هر نورون در لایه خروجی وابسته به تمام نورونها در لایه قبل است
- کانولوشن یکبعدی مشابه با لایه کاملا متصل است اما هر نورون خروجی تنها به بخشی از نورونهای لایه ورودی متصل است

• در پردازش تصاویر از کانولوشن دوبعدی استفاده میشود

30	3	2_2	1	0
02	0_2	1_0	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

مثال: عملگر Sobel

+1	0	-1
+2	0	-2
+1	0	-1

+1	+2	+1
0	0	0
-1	-2	-1

لايه كانولوشني

خروجی لایه کانولوشنی حاصل فیلتر کردن ماتریس ورودی با فیلتر مربوطه است که به صورت مکانی بر روی آن لغزانده میشود

ورودی یک ماتریس ۳ بعدی است

5x5x3 filter

لایه کانولوشنی

خروجی لایه کانولوشنی حاصل فیلتر کردن ماتریس ورودی با فیلتر مربوطه است که به صورت مکانی بر روی آن لغزانده میشود

ورودی یک ماتریس ۳ بعدی است

خروجی برابر با ضرب داخلی بین فیلتر و همسایگی مربوطه برای هر پیکسل است که معادل با ۷۵ ضرب و جمع است $w^T x + b$

لایه کانولوشنی

خروجی لایه کانولوشنی حاصل فیلتر کردن ماتریس ورودی با فیلتر مربوطه است که به صورت مکانی بر روی آن لغزانده می شود

ورودی یک ماتریس ۳ بعدی است

لايه كانولوشني

• البته یک فیلتر می تواند تنها یک مشخصه از تصویر را استخراج نماید

ورودی یک ماتریس ۳ بعدی است

لايه كانولوشني

• البته یک فیلتر می تواند تنها یک مشخصه از تصویر را استخراج نماید

ورودی یک ماتریس ۳ بعدی است

28

نقشههای فعالیت

لایه کانولوشنی در Keras

filters: Integer, the dimensionality of the output space

kernel_size: Specifying the height and width of the 2D convolution window

activation: Activation function to use. If you don't specify anything, no

activation is applied (see keras.activations)

• به دلیل کاهش محاسبات می توان پنجره را با گام بزرگتر جابجا کرد

• به دلیل کاهش محاسبات می توان پنجره را با گام بزرگتر جابجا کرد

• به دلیل کاهش محاسبات می توان پنجره را با گام بزرگتر جابجا کرد

• به دلیل کاهش محاسبات می توان پنجره را با گام بزرگتر جابجا کرد

• به دلیل کاهش محاسبات می توان پنجره را با گام بزرگتر جابجا کرد

• به دلیل کاهش محاسبات می توان پنجره را با گام بزرگتر جابجا کرد

Stride=2

$$Output \, Size = \frac{N - F}{Stride} + 1$$

خروجی یک تصویر 3x3 است

لایه کانولوشنی در Keras

filters: Integer, the dimensionality of the output space

kernel_size: Specifying the height and width of the 2D convolution window

activation: Activation function to use. If you don't specify anything, no activation is applied

(see keras.activations)

strides: Specifying the strides of the convolution

padding: One of "valid" or "same"

مقایسه نتایج

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 128)	3584
conv2d_1 (Conv2D)	(None, 28, 28, 128)	147584
flatten (Flatten)	(None, 100352)	0
dense (Dense)	(None, 10)	1003530

Total params: 1,154,698
Trainable params: 1,154,698

Non-trainable params: 0

Output Shape	Param #
(None, 30, 30, 128)	3584
(None, 14, 14, 128)	147584
(None, 25088)	0
(None, 10)	250890
	(None, 30, 30, 128) (None, 14, 14, 128) (None, 25088)

Total params: 402,058 Trainable params: 402,058 Non-trainable params: 0

Epoch 1/10
500/500 [===================================
Epoch 2/10
500/500 [===================================
Epoch 3/10
500/500 [======================] - 8s 17ms/step - loss: 1.9560 - accuracy: 0.2870 - val_loss: 1.9654 - val_accuracy: 0.3169
Epoch 4/10
500/500 [===================================
Epoch 5/10
500/500 [========================] - 8s 16ms/step - loss: 1.5726 - accuracy: 0.4372 - val_loss: 1.6168 - val_accuracy: 0.4404
Epoch 6/10
500/500 [===================================
Epoch 7/10
500/500 [===================================
Epoch 8/10
500/500 [======================] - 8s 16ms/step - loss: 0.8247 - accuracy: 0.7158 - val_loss: 1.6274 - val_accuracy: 0.5264
Epoch 9/10
500/500 [=======================] - 8s 16ms/step - loss: 0.6205 - accuracy: 0.7847 - val_loss: 1.8569 - val_accuracy: 0.5369
Epoch 10/10
500/500 [===================================

لايه Pooling

- لایه Pooling در خروجی لایههای کانولوشنی قرار می گیرد و پیکسلهای همسایه را با یکدیگر ترکیب می کند تا ابعاد نقشههای ویژگی کاهش بیابد
 - یکی از دستاوردهای اصلی لایه Pooling کاهش ابعاد نورونها و کاهش تعداد پارامترهای شبکه است
 - لایه Pooling بر روی هر نقشه فعالیت به صورت جداگانه اعمال میشود
 - میانگین و ماکزیمم متداول هستند

لايه Pooling

8	5
3	6

3	2
1	4

لایه Pooling

$$-W_2 = (W_1 - F + 2P)/S + 1$$

$$- H_2 = (H_1 - F + 2P)/S + 1$$

$$- D_2 = D_1$$

- است $W_1 imes H_1 imes D_1$ است ورودی یک حجم با ابعاد
 - ابرپارامترهای لایه Pooling عبارتند از:
 - نحوه تلفيق
 - F اندازه فیلترها -
 - S اندازه گام
 - P مقدار گسترش مرزها
- است $W_2 \times H_2 \times D_2$ است خروجی یک حجم با ابعاد $W_2 \times H_2 \times D_2$
 - پارمتر ندارد

Layer (type)	Output	Shape	Param #
conv2d_4 (Conv2D)	(None,	30, 30, 128)	3584
conv2d_5 (Conv2D)	(None,	28, 28, 128)	147584
max_pooling2d (MaxPooling2D)	(None,	14, 14, 128)	0
flatten_2 (Flatten)	(None,	25088)	0
dense_2 (Dense)	(None,	10)	250890

Total params: 402,058

Trainable params: 402,058 Non-trainable params: 0

مقایسه نتایج

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 30, 30, 128)	3584
conv2d_3 (Conv2D)	(None, 14, 14, 128)	147584
flatten_1 (Flatten)	(None, 25088)	0
dense_1 (Dense)	(None, 10)	250890

Total params: 402,058 Trainable params: 402,058 Non-trainable params: 0