Unit 13

——Programmable Logic Devices

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

PROM (programmable ROM)

- 出厂时,产品的熔丝都是通的,即存储 单元为全"1"
- 若使某些存储单元改写为"0",用大电流将熔丝烧断,只能改写一次
- PROM器件可用来存放数学函数表、字符发生器等

Applications—— 1. 码制转换

- □ 转换前的 n位 code ⇒ Address of PROM
- □ 转换后的m位code ⇒ stored in PROM
- □ 转换: 按地址读取存储单元的内容

	-组输入
对区	対PROM
的一	-个存储
单元	记的地址

二进制数(存储地址)				5 雷 亞	3 (7	存储	数核	₹)
3 B ₂	\mathtt{B}_1	B ₀		G_3	\mathtt{G}_2	G_1	G_0	_
0	0	0		0	0	0	0	
0	0	1		0	0	0	1	例:
0	1	0		0	0	1	1	
0	1	1		0	0	1	0	4位.
1	0	0		0	1	1	0	•—
1	0	1		0	1	1	1	
1	1	0		0	1	0	1	
1	1	1		0	1	0	0	
0	0	0		1	1	0	0	每一组输出对
0	0	1		1	1	0	1	应PROM的一
0	1	0		1	1	1	1	
0	1	1		1	1	1	0	个存储单元中
1	0	0		1	0	1	0	
1	0	1		1	0	1	1	的存放内容
1	1	0		1	0	0	1	
1	1	1		1	0	0	0	

方法

- 1. 将待设计组合逻辑函数表示成最小项之和的形式 $\mathbf{F} = \sum m_i$
- 2. 画出全译码的与门阵列
- 3. 若组合逻辑函数表达式中包含某最小项 m_i ,则阵列输出线与 m_i 号字线交点处打X

例:设计一个码制转换器,将输入的 4位二进制数转换为格雷码

$$G_3 = \sum (8, 9, 10, 11, 12, 13, 14, 15)$$

$$G_2 = \sum (4, 5, 6, 7, 8, 9, 10, 11)$$

$$G_1 = \sum (2, 3, 4, 5, 10, 11, 12, 13)$$

$$G_0 = \sum (1, 2, 5, 6, 9, 10, 13, 14)$$

二进制数(存储地址)			葛惠	7 60	3 (2	存储	数据)	
B ₃	$\mathtt{B_2}$	B_1	Во	G	³ 3	G_2	G_1	G_0
0	0	0	0	0	ŭ,	0	0	0
0	0	0	1	0		0	0	1
0	0	1	0	0		0	1	1
0	0	1	1	0		0	1	0
0	1	0	0	0		1	1	0
0	1	0	1	0		1	1	1
0	1	1	0	0		1	0	1
0	1	1	1	0		1	0	0
1	0	0	0	1		1	0	0
1	0	0	1	1		1	0	1
1	0	1	0	1		1	1	1
1	0	1	1	1		1	1	0
1	1	0	0	1		0	1	0
1	1	0	1	1		0	1	1
1	1	1	0	1		0	0	1
1	1	1	1	1		0	0	0

四位二进制码转换为葛雷码的真值表

Solution 2

$$\begin{cases} W = A & A & W \\ X = A \oplus B & B & X \\ Y = B \oplus C & C & Y \\ Z = C \oplus D & D & Z \end{cases}$$

Applications—— 2. 利用PROM设计给定波形的节拍发生器

- □ 使用计数器 + 数据选择器设计;
- □ 用移位寄存器 + 反馈电路设计
- □ 用计数器 + PROM设计

$$F_4 = \sum (0, 2, 4, 6)$$

 $F_3 = \sum (0, 1, 4, 5)$

$$F_2 = \sum (1, 2, 5, 6)$$

$$F_1 = \sum (4, 5, 6, 7)$$

Applications——3. 字符发生器

- 将字符点阵存放在PROM中
- 逐行读取字符点阵,并送往显示器件

常用: 9×7, 7×7, 7×5, 8×5

$Q_2Q_1Q_0$	$\mathbf{F_4}\mathbf{F_3}\mathbf{F_2}\mathbf{F_1}\mathbf{F_0}$
0 0 0	1 1 1 1 1
0 0 1	1 0 0 0 0
0 1 0	1 0 0 0 0
0 1 1	1 1 1 1 0
1 0 0	1 0 0 0 0
1 0 1	1 0 0 0 0
1 1 0	1 1 1 1 1
	1

Example

PROM及其应用_1

扩展:设计能存放 64个字符的字库,每个字符用 8×5点阵存放。

- $\cdot A_2 \sim A_0$: 字符中每一行的选择(8行选1)
- · A₈~A₃: 字符选择(64个字符中选1)
 - □汉字需要更多的存储空间

16×16点阵