Analysis II

Benjamin Dropmann

March 20, 2025

1 Metrische Räume

Skalarproduct

Seien zwei vektoren $x, y \in \mathbb{R}^n$ dann ist der skalaproduktwie Folgt definiert:

$$x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

Eufklidische Norm

Sei $x \in \mathbb{R}^n$ dann ist die Euklidische norm des Vektors

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Euklidischer Abstand

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Dreiecksungleichung

 $\forall x, y, zin\mathbb{R}^n \to ||x - z|| \le ||x - y|| + ||y - z||$

Metrische Räume

Ein metrische (M.R) (X, d) ist eine nicht-leere menge X zusammen mit einer funktion $d: X \times X \to [0; \infty[$ Welche die folgenden Eigenschaften besitzt:

- 1. Positiv definiert $\forall x, y \in X$ $d(x, y) = 0 \Leftrightarrow x = y$
- 2. Symmetrie $\forall x, y \in X$ d(x, y) = d(y, x)
- 3. Dreiecksungleichung $\forall x, y, z \in X$ $d(x, z) \leq d(x, y) + d(y, z)$

Folgen

Sei X eine Menge dann ist $(a_n)_{n\in\mathbb{N}_0}$ eine Folge $\mathbb{N}_0\to X$ mit dem bild $a_n=a(n)$.

Konvergenz einer Folge in X

 $(dim(x \ge 1))$ Sei (X, d) ein M.R. und $(a_n)_{n \in \mathbb{N}_0}$ eine Folge. Dann konvergiert die folge auf eine zahl $A \in X$ falls.

$$\forall \varepsilon > 0 \qquad \exists N > 0 : \qquad d(a_n, A) < \epsilon$$

Falls es kein A gibt dann divergiert die Folge.

Teilfolgen

Sei ein M.R. (X, d) und $(a_n)_{n \in \mathbb{N}_0}$ eine folge, dann existier eine teilfolge $(x_{n_k})_{n \in \mathbb{N}_0}$ wobei $(n_k)_{k \in \mathbb{N}_0}$ eine Folge von reellen Zahlen ist.

Häufungspunkt

Sei (X,d) ein M.R. und $(a_n)_{n\in\mathbb{N}_0}$ eine Folge. $A\in X$ ist ein Häufungspunkt der Folge falls es eine Teilfolge die auf A Konvergiert.

Satz

 $y \subset X$ Teilmenge eines M.R. (X,d) $x \in X$ ist Häufungspunkt von y falls eine Folge $(y_n)_{n \in \mathbb{N}_0}$ existiert welche gegen x konvergiert.

Lemma

Es sei $(x_n)_{n\in\mathbb{N}_0}$ eine Folge im Metrischen Raum (X,d) mit $x\in X$ Dann konvergiert $(x_n)_{n\in\mathbb{N}_0}$ genau dann wenn jede Teilfolge $(x_{n_k})_{k\in\mathbb{N}_0}$ eine Teilfolge $(x_{n_m})_{k\in\mathbb{N}_0}$ die gegen x konvergiert.

Lemma

Eine Folfe in $(\mathbb{R}^n, d(x,y) = ||x-y||)$ Konvergiert genau dann wenn sie koordinaten weise konvergiert.

1.1 Cauchy Folge

Eine Folge $(a_n)_{n\in\mathbb{N}_0}$ in einem Metrischen Raum (X,d) heisst cauchy foglge falls:

$$\forall \varepsilon > 0 \quad \exists N > 0 \text{ So dass } \forall m, n > N : \quad d(a_n, a_m) < \varepsilon$$

Lemma

Analog zur Folgen in \mathbb{R} gilt:

- Jede Cauchy-Folge ist beschränkt, $\Leftrightarrow \exists K \in \mathbb{R} \text{ so dass } d(a_n, a_0 \leq K \forall n \in \mathbb{N}_0$
- Jede Konvergente Folge ist eine Cauchy-Folge.
- Eine Cauchy Folge konvergiert genau dann wenn sie eine konvergente Teilfolge besitzt

Vollstandigkeit

Eine Metrischer Raum heisst vollständig falls jede Cauchy-Folge in X Konvergiert.

Theorem

Für alle $n \geq 1$ ist \mathbb{R}^n mit der Standard metrik ist Vollständig.

Beweis Analog zur tatsache, das in \mathbb{R}^n konvergenz im Metrischen Raum äquivalent ist zur Koordinaten-weise konvergenz: Eine Cauchy-Folge in \mathbb{R}^n zu sein ist äquivalent zur Tatsache dass jede Koordinate eine Cauchy-Folge liefert (in den Reelen zahlen). In den Reellen Zahlen konvergieren alle Cauchy-Folgen, Daher muss die Behauptung stimmen. Q.E.D.

1.2 Topologie Metrischer Raume

Es sei (X, d) ein Metrischer Raum, $x \in X$ und r > 0 eine reelle Zahl. Der offene Ball um den Punkt x mit radius r ist die Menge:

$$B_r(x) = B(x, r := [y \in X] \qquad d(x, y) < r]$$

1.3 Innere/Abschulss-mengen und Ränder

Sei (X,d) ein Metrischer Raum und $A \subset X$ eine Teilmenge

ullet das innere der Menge A ist gegebe durch

$$A^o = int(A) := \bigcup [E \subset A]$$
 E ist offen]

Und ist die grösste offene Menge, welche in A enthalten ist.

• Der Abschluss von A:

$$\overline{A} := \bigcap [A \subset U | U \text{ ist abgeschlossen}]$$

und ist die kleinste abgeschlossene Menge welche A enthält.

• Dr Tipologische Rabd von A ist \overline{A}/A^o

Beispiel, in \mathbb{R} mit $A =]0,1[\rightarrow A^o =]0,1[$ und $\overline{A} = [0,1]$ dann ist der Rand: $\{0\} \cup \{1\}$.

Proposition

Es sei (X, d) ein Metrischer Raum:

• Eine Teilmenge $A \subset X$ ist genau dann offen, alls für jede konvegente Folge $(x_n)_{n \in \mathbb{N}_0}$ mit grenzwert $x \in A$ gilt:

$$\exists N \in \forall n > N \qquad x : n \in A$$

• Eine Teilmenge $A \subset X$ ist genau dann abgeschlossen falls fur jede konvergente Folge $(x_n)_{n \in \mathbb{N}_0} \subset A$ mit grenzwert $x \in A$ ist $x \in A$

Der beweis läuft wie folgt ab:

Beweis Fall der Offene Menge: " \Rightarrow " Es sei $(x_n)_{n\in\mathbb{N}_0}$ eine Konvergente Folge mit grenzwert $x\in A$. Gemäss vorassetzung wissen wir, dass die Teilmenge A offen ist Da A offen ist, und $x\in A$ gibt es ein Offenen Ball $B(x,\varepsilon)\subset A$. Für dieses $\varepsilon>0\exists N\in\mathbb{N}_0$ (wegen der Konvergenz der betrachteten Folge) $d(x,x_n)<\varepsilon$ (Konvergente folgen sind in X Cauchy-Folgen) dies Bedeutet das FOlgeglieder mit index n>N in $B(x,\varepsilon)$

"\(\epsilon\)" Wir nehmen jetzt an das $A \subset X$ nicht offen ist. Dies bedeutet dass $\exists x \in A\varepsilon > 0$ $B(x,\varepsilon)/A \neq \emptyset$ Insbesonde konnen wir $\varepsilon = 2^{-1}$ betrachten und eine Folge $(x_n)_{n \in \mathbb{N}}$ konstruiren mit $x_n \in B(x,2^{2-n})/A$ Es gilt für diese Folge aber auch dass Folgende $x_n \to x \in A$

Der Fall der Geschlossene Menge:

" \Rightarrow " Wir nehmen an dass A abgeschlossen ist. Wir betrachten dann eine beliebige Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n\to x\in X$ Da $V:=X/A=A^c$ offen ist, kann der Grenzwert x nicht in dieser offennen Menge liegen, da sonst die Folgenglieder ab einen bestimmten Index ebenfalls in dieser Offenene Menge liegen müssen, damit muss gelten dass: $x\in A$

"\(\infty\)" Wir nehmen an dass A nicht abgeschlossen ist, dann ist A^c nicht offen Dies bedeutet dass: $\exists y \in A^c \forall \varepsilon > 0$ $B(y,\varepsilon) \cap A \neq \emptyset$ Damit kann man eine Folge konstruiren $(x_n)_{n \in \mathbb{N}}$ mit $d(y,x_n) < \varepsilon$ \Rightarrow $x \to y \in A^c$ Dann ist de beweis fertig Dann ist de beweis fertig.

Proposition

Es sei (X,d) ein Metrischer Raum. Eine folge $(x_n)_{n\in\mathbb{N}_0}$ konvergiert genau dann gegen x wenn alle offene Mengen U gilt:

$$\exists N \in \mathbb{N} \forall n > N \qquad x_n \in U$$

Beweis " \Rightarrow " Sei $(x_n)_{n\in\mathbb{N}}$ eine gegen x konvergierende Folge, es sei ausserdem U offen mit $x\in U$. Da U offen ist: $\exists \varepsilon > 0 B(x,\varepsilon)$ Dann gilt auch

$$\forall \varepsilon \exists N \in \mathbb{N} \forall n > N \qquad d(x, x_n) < \varepsilon$$

"\(\sigma^n\) $\forall \epsilon$ $B(x,\epsilon)$ ist offen. Und es gilt $\exists N \in \mathbb{N} : x_n \in \forall n > NB(x,\epsilon)$ Dies bedeutet gemäss definition dass $\lim_{n \to \infty} x_n = x$.

Korollar

Es sei X eine Menge und d_1, d_2 zwei verschieden Metriken. Dann haben $(X, d_1), (X, d_2)$ genau dann die selben konvergente Folgen wenn die Topologien von d_1 und d_2 ubereinstimmen.

1.4 Banachscher Fixpunkttheorem

Sei (X,d) Ein Vollständiger Metrischer raum mit eine Abbildung $f:X\to X$ die Lipschitz stetig ist mit L<1

$$\forall x, x' \in X$$
 $d(f(x), f(x')) \le Ld(x, x')$

Dann gibt es ein wert $z \in X$ wofür f(z) = z

Beweis der Existenz des Fixpunkts

Wir nehmen $x \in x_0$ beliebig, dann konstruiren wir iterativ eine Folge in X und zwar wie folgt: $x_{n+1} := f(x_n)$ Dies ergibt tatsächlich eine Folge $(x_n)n \in \mathbb{N}_0$ Als nächstes wollen wir Zeigen dass diese Folge eine Cauchy-Folge ist.

- $d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1})) = d(f^n(x_0), f^n(x_0)) \le L^n d(x_1, x_0)$
- $d(x_m,x_n) \leq \sum_{k=n}^{m-1} d(x_{k+1},x_k) \leq \sum_{k=n} a^{m-1} L^k d(x_1,x_0) = d(x_1,x_0) \sum_{k=n}^{m-1} l^k$ Und diese Reihe ist für $L < 1 \ \forall n,m \in \mathbb{N}_0$ und sogar $m \to \infty$ konvergent. Und wir finden:

$$\forall m, n \in \mathbb{N}_0, d(x_n, x_m) \le d(x_1, x_0) \underbrace{\frac{L^n}{1 - L}}_{\text{für } n \to \infty,} \xrightarrow{\rightarrow 0}$$

Und damit ist unsere Folge eine Cauchy-Folge

Es bleibt noch zu zeigen dass \overline{x} ein Fixpunkt ist:

$$f(\overline{x}) = \lim$$

1.5 Kompaktheit

Ein Intervall $I \subset \mathbb{R}$ ist kompakt genau dann wenn I beschränkt und abgeschlossen ist. Die beschränktheit geht aber nicht trivial in den Metrischen Raum über.

Definition

Sei (X, d) ein Metrischer Raum, und K Eine Teilmenge.

- K heisst Folgenkompakt falls jede Folge $(x_n)_{n\in\mathbb{N}_0}\subset K$ eine in K konvergente Teilfolge.
- K heisst Topologisch Kompakt falls jede Familie von Offenen Mengen $\mathbb{U} := \{\mathbb{U}_i\}_i \in I$, welche K uberdeckt, also dass:

$$K \subset \bigcup \mathbb{U} = \bigcup_{i \in I} U_i$$

eine Endliche Teilüberdeckung besitzt, (eine endliche familie welche K immer noch überdeckt.)

Definition

Sei (X, d) ein metrischer und $K \subset X$ eine Teilmenge. K heisst totalbeschränkt, falls $\forall r > 0 \quad \exists x_1, ..., x_n \in K$ so dass $\bigcup B_i$ (wobei $B_i = B(x_i, r)$) K überdeckt.

Beispiele

Das intervall I = [0, 1[ist beschränkt aber nicht abgeschlossen (im sinne von Analysis I). WIr bemerken auch dass es nicht Topologisch kompakt ist da

$$\{\mathbb{U}_i\}_{i\in\mathbb{N}} \quad \mathbb{U}_i = [0, 1 - 2^{-i}[$$

Keine endliche Teilüberdeckung von I besitzt.

Bemerkung

Es sei (X, d) ein Metrischer Raum. Falls (X, d) totalbeschränkt ist so ist es auch beschränkt d.h. $\exists d$ so dass $\limsup d(x, y) < \infty$

Bemerkung

Ein beschränkter Metrischer Raum muss nicht totalbeschrankt sein. Hier ein Gegenbeispiel

$$X=\mathbb{N}$$
 $d(n,m)=arctan(|n-m|)\Rightarrow r=rac{\pi}{8}$ Dann ist der Raum nicht mit endlichen bällen überdeckbar

Theorem

Es sei (X,d) ein metrischer Raum und $K \subset X$ eine Teillmenge, dann sind folgende aussagen äquivalent:

- K ist Folgenkompakt
- K ist Topologish kompakt
- K ist vollstänfig und totallbeschränkt

Wir nennen hier die Teilmenge einfach Kompakt.

Lemma

Es sei (X,d) ein metrischer Raum. Dann ist $K \subset X$ genau dann topologisch kompakt falls für alle Familien $\mathbb{A} := \{A_i\}_{i \in I}$ abgeschlossener Teilmengen, jede Schnittmenge endlicher vieler Mengen aus \mathbb{A} einen nicht leeren Schnitt mit K besitzt, ist auch $K \cup \bigcup_{i \in I} A_i$ nicht leer.

Lemma Diagonalfolge

Es seien $\mathbb{N}_0 \supset N_0 \supset N_1 \supset \dots$ eine unendliche Familie einander verschachteter Mengen. Des Weitern besitze jede Mengen N_k unendlich viele Elemente. Dann existiert eine streng monoton wachsende Funktion $f: \mathbb{N}_0 \to \mathbb{N}_0$ mit der Eigenschaft $f(k) \in N_k \quad \forall k \in \mathbb{N}_0$.

Beweis Die Funktion f wird iterativ konstruirt, Als erstes wählen wir f(0) beliebig aus N_0 und dann für jedes nachfolgende $f(k) := \min\{m \in \mathbb{N}_0 \cup N_k\}$

Korollar

Es sei (X,d) ein metrischer Raum $A \subset X$ eine abgeschlossene Teilmenge und $K \subset X$ eine kompakte Teilmenge. Dann ist $A \cap K$ kompakt.

Theorem Heine Borel

Eine Teilmenge $K \subset \mathbb{R}^n$ ist genau dann kompakt wenn sie abgeschlossen und beschränkt ist.

Beweis

Hinrichtung " \Rightarrow " Es sei K Kompakt, Dann ist K insbesondere totalbeschränkt. Die Abgeschlossenheit von K folgt aus dem vorherigen Korollar.

Rückrichtung " \Leftarrow " Für die Rückrichtung müssen wir nur nachweisen dass K vollständig und totalbeschränkt ist.

Vollständigkeit: Aus der Tatsache dass \mathbb{R} vollständig (vollständig=Cauchy \Rightarrow Konvergent) ist, muss \mathbb{R}^n vollständig sein und daher auch $K \subset \mathbb{R}^n$

Totalbeschränkteit: K ist beschränkt, d.h. $\exists N \in \mathbb{N}_0$ so dass $K \subset [-2^N, 2^N]$ Nun sei r > 0 vorgegeben, dann wählen wir M so dass $2^-M < \frac{r}{\sqrt{n}}$. Dann betrachten wir de bälle dessen Mittelpunkte auf den folgenden Gitter:

$$y = (y_1, ... y_n) \in \mathbb{Z} \text{ mit } -2^{N+M} \le y_i \le 2^{N+M}$$

 $\rightarrow z_i = 2^{-M}y_i$ Die bälle sind $B_i = B(r, z_i)$ und hier brauchen wir nur endlich viele bälle und überdeckt die gnaze Teilmenge.

Theorem

Es seien (X, d_X) und (Y, d_Y) zwei metrische Räume, $f: X \to Y$ eine stetige Abbildung und $K \subset X$ eine Kompakte Teilmenge von X Dann ist f(K) eine kompakte teilmenge von Y

Beweis Hier geben wir nur die Struktur des Beweises an:

Wir benutzen einerseits die Beschreibung der stetigkeit als Folgenstetigkeit und andererseits die Beschreibung der Kompaktheit als Folgenkompaktheit

Zu zeigen jede Folge im Bild von K unter f, f(K) hat eine konvergente Teilfolge.

Proposition

Es seien (X, d_X) und (Y, d_Y) zwei metrische Räume, $f: X \to Y$ eine stetige Abbildung. Falls X kompakt ist, ist f gleichmässig stetig

Beweis Wenn X kompakt ist, dann ist auch $f(X) \subseteq Y$ kompakt und daher auch Beschränkt. Wir setzen also inf(f(X)) = m und M = sup(f(X)) also ist

$$\forall x, y \in X$$
 $\frac{|f(x) - f(y)|}{|x - y|} \le \frac{M - m}{|f^{-1}(M) - f^{-1}(m)|}$

Also kann man hiermit δ definieren $\forall \varepsilon$

Korollar 9.49

Es seien (X, d_X) und $(Y = \mathbb{R}, d_Y = |\cdot|)$ Metrische Räum, $f : X \to Y$ eine Stetige Abbildung und $K \subset X$ eine kompakte teilmenge von X Dann nimmt f ihr Maximum und ihr Minimum an:

$$f(\underline{x} \le f(x)) \le f(\overline{x}) \qquad \forall x \in K$$