

www.erm-automatismes.com

Pompe à Chaleur Air-Eau Inverter

PAC inverter réversible 8 kW instrumentée

La PAC Air/Eau réversible en un clin d'œil

≻ Section

✓ Energétique

Familles de composants abordées

- ✓ Machines thermodynamiques (→ PAC Air/Eau 8 kW réversible)
- ✓ Régulation thermique
- ✓ Circuits fluidiques (→ Groupe de circulation, Vase d'expansion, Cuve tampon...)
- ✓ Mesure (→ Compteurs d'énergie thermiques et électrique, Température, Manomètre HP et BP)

> Activités pédagogiques

- ✓ Câblage et raccordement hydraulique et électrique
- √ Mise en service, réglages et maintenance
- ✓ Bilan thermique global et par sous-ensemble
- ✓ Analyses technico-économiques et environnementales
- ✓ Dimensionnement d'installation...

➢ Points forts

- ✓ Affichage des températures ramené sur afficheur ou centrale d'acquisition et supervision (options)
- ✓ Installation au sein des ateliers par une équipe de professionnels (Option)

Références

- ✓PC60: PAC Air/Eau Inverter 8 kW réversible instrumentée
- ✓PC61: Option Vanne 3 voies pour production d'ECS (Ballon avec échangeur non fourni)
- ✓ PC63: Composants défectueux
- ✓PC28: Centrale d'acquisition & Télégestion
- ✓PC22: Lecteur enregistreur de températures multivoies et sondes pour circuit frigorifique

≻Produits associés

- ✓ RA20: Banc Equilibrage de radiateurs
- ✓ VC10: Banc Ventilo-convecteurs
- ✓ PV20: Banc Plancher chauffant
- ✓PC25: Aérotherme 6-13 Kw
- ✓ PC26: Aérotherme sur châssis
- ✓ PC27: Echangeur à plaques

➤ Caractéristiques

- √L/I/H:1750 / 900 / 2000 mm
- ✓Énergie électrique : 220 V monophasé
- ✓ Masse : 500 kg

www.erm-automatismes.com

Coffret électrique général

Compteur d'énergie électrique Potentiomètre simulation T°C extérieure

Unité extérieure

Vanne 3 voies eau chaude sanitaire (option PC61)

Collecteur vers bancs d'émission (Départ et retour)

Emplacement pour module hydraulique plancher chauffant (Option PV21)

Ballon tampon

Bac à condensats

www.erm-automatismes.com

Unité intérieure

5

(T)

Architecture fonctionnelle (suite)

Ø

 \Diamond

Module hydraulique bancs

émetteurs

Ballon

Sous-ensemble Pompe à chaleur et Module hydraulique (PC60)

✓ Ce sous-ensemble est constitué:

• D'une pompe à chaleur Air/Eau réversible P = 8 kW (Marque Daikin, Gamme Altherma BT) pour une sortie d'eau à 45°C et une température d'entrée d'air de 7°C

• D'un module d'échange intérieur composé de:

- 1 régulateur

- 1 échangeur à plaque
- 1 capteur de débit
- 1 purgeur
- 1 vase d'expansion
- 1 soupape de sécurité avec manomètre
- 1 circulateur départ chauffage
- 1 appoint électrique (Résistance de 3kW)
- D'un module hydraulique bancs émetteurs composé de:
- 1 circulateur
- 1 indicateur de débit
- 1 indicateur de température
- 1 vanne de réglage
- D'une bouteille de mélange 25L
- D'un ensemble d'accessoires hydrauliques
 - 1 collecteur départ chauffage
 - 1 collecteur retour chauffage
 - 1 ensemble remplissage (Vannes, Filtre et Clapet)
 - 1 ensemble vidage (Vanne)
 - 1 filtre à tamis
- · Une liaison frigorigène au R410A entre l'unité extérieure et l'unité intérieure

Collecteur

Option PC61

Sous-ensemble Coffret électrique (PC60)

✓ Ce sous-ensemble est constitué de:

- · Interrupteur-sectionneur général
- Protections électriques
- Compteur d'énergie électrique (Voir plus bas)
- Potentiomètre de simulation de la température extérieure
- Boucles de mesures de courant PAC et résistance d'appoint (Voir plus bas)
- Prise 230V / 10A

Sous-ensemble Mesurage circuits hydraulique et aéraulique (PC60)

✓ Ce sous-ensemble est constitué de:

- 1 compteur d'énergie électrique consommée par la PAC
- 1 compteur d'énergie thermique entre PAC et bouteille de mélange avec affichage digital et communication M-bus vers une centrale d'acquisition (En
- 1 débitmètre à flotteur sur départ eau
- 1 manomètre sur la soupape de sécurité
- ✓ Le compteur d'énergie thermique (mesure débit, température départ, température retour, puissance, énergie) est installé sur le retour eau chaude chauffage afin d'étudier la puissance calorifique: ✓ Le compteur d' énergie électrique est monté sur l'alimentation PAC afin de
- calculer les différents coefficients de performances
- ✓Le coffret électrique comporte deux boucles de courant pou mesurer les intensités absorbées par la PAC et seulement pas la résistance électrique (Pince ampèremétrique non fournie)

➤ Sous-ensemble Mesurage pression circuit frigorifique (PC60)

- ✓ Ce sous-ensemble est constitué de:
 - 1 manomètre BP
 - · 1 manomètre HP

Composants défectueux (PC63)

- ✓ Ce sous-ensemble est constitué des composants défectueux suivants à utiliser lors de l'activité de maintenance corrective:
 - · Sonde de température
 - Purgeur
 - Vase d'expansion

Unité extérieure

Bouteille de mélange 25L

Coffret d'alimentation et mesure électrique

www.erm-automatismes.com

Architecture fonctionnelle (suite)

> Option Lecteur enregistreur de températures multivoies et > Option Aérotherme 6-13 kW (PC25) sur châssis (PC26) sondes pour circuit frigorifique (PC22)

✓ Cette option est constituée de:

- Un lecteur/Enregistreur de températures multivoies permettant d'enregistrer simultanément les évolutions de 4 sondes de températures. Les données sont exportables sur PC pour traitement avec le logiciel fourni.
- 7 Sondes de température thermocouple situées aux 7 endroits suivants:
 - Température aspiration BP
 - Température refoulement HP
 - Température entrée évaporateur
 - Température sortie évaporateur
 - Température sortie détendeur
 - Température entrée condenseur
 - Température sortie condenseur / entrée détendeur
- · Les différentes sondes de température sont placées sur le circuit frigorifique afin de pouvoir étudier le cycle de fonctionnement réel de la machine

Option Echangeur à plaques à eau perdue (PC27)

- ✓ Ce sous ensemble permet l'utilisation de la PAC l'été en mode chauffage en refroidissant l'eau du circuit hydraulique de manière à forcer son fonctionnement.
- ✓ Ce sous-ensemble est constitué:
 - · D'une échangeur à plaques à eau perdue 8 kW, surface d'échange thermique 0,2m², plaques brasées
 - · D'une électrovanne
 - · D'un aquastat différentiel
 - · De 2 compteurs d'énergies (débitmètre, température...) à affichage digital et communication M-bus
 - » Température entrée Echangeur côté primaire
 - » Température sortie Echangeur côté primaire
 - » Débit et énergie côté primaire
 - » Température entrée Échangeur côté secondaire
 - » Température sortie Echangeur côté secondaire
 - » Débit et énergie côté secondaire
- ✓ Le premier compteur d'énergie thermique est installé du côté eau chaude chauffage afin de mesurer la puissance froide transmise au côté chaud.
- ✓ Le deuxième compteur d'énergie thermique est installé du côté eau froide afin de mesurer la puissance chaude transmise au côté froid.
- ✓L'échangeur à plaques est monté sur un châssis indépendant.

✓ Ce sous-ensemble est constitué:

• D'un aérotherme à eau 13kW (Régime 90-70°C) avec sélecteur de vitesse monté sur le banc ou sur châssis

✓ Option Banc Equilibrage de radiateurs (RA20)

✓ Option Banc Ventilo-convecteurs (VC10)

✓ Option Banc Plancher chauffant (PV20)

www.erm-automatismes.com

Approche pédagogique

> Activités pédagogiques envisageables

- ✓ Câblage et raccordement hydraulique et électrique
- ✓ Mise en service, réglages et maintenance
- ✓ Bilan thermique global et par sous-ensemble
- ✓ Analyses technico-économiques et environnementales
- ✓ Dimensionnement d'installation...

> Travaux Pratiques proposés par ERM Automatismes

TP1 Mise en service (1)

- ✓ Identifier les composants du système
- ✓ Comprendre le rôle de chacun de ces composants
- ✓ Comprendre le principe de fonctionnement du système

TP2 Mise en service de l'installation hydraulique (2)

- ✓ Découverte de l'installation hydraulique, analyse technologiques des différents appareils.
- ✓ Découverte raccordement électrique, analyse technologiques des différents appareils.
- ✓ Prise en main des compteurs d'énergies pour la réalisation du bilan énergétique en fonctionnement simple production de chaleur directe.
- ✓Les notions fondamentales d'énergie, de puissances thermiques et électriques sont validées.
- ✓Les notions fondamentales d'hydraulique telle que pression, hauteur manométrique, débit et point de fonctionnement des circulateurs sont validées.
- ✓ Une séquence de mesures permettra de vérifier une loi fondamentale de transmission de puissance thermique par un fluide caloporteur au travers d'une bouteille d'alimentation de puissance chaleur

TP3 Analyse fonctionnelle et identification

- ✓ Identifier les constituants
- ✓ Expliquer le rôle de chacun d'eux
- ✓ Expliquer le principe de fonctionnement de la pompe à chaleur en mode chauffage et en mode rafraîchissement

TP4 Intervention sur circuit hydraulique (Circulateur)

- ✓ Rédiger une procédure d'intervention
- ✓ Consigner les énergies
- ✓ Intervenir sur le circuit hydraulique
- √ Faire le remplissage et la purge du circuit hydraulique

TP5 Fonctionnement de la PAC en chauffage puis en rafraichissement

- ✓ Découverte de l'installation frigorifique, analyse technologique des différents appareils.
- ✓ Tracer de cycles frigorifiques sur le diagramme de R410A fourni pour différentes températures de sources
- ✓ Les notions de surchauffe, sous refroidissement, débit volume aspiré par le compresseur, Coefficient Of Performance sont validées.
- ✓ Une vérification des performances de la PAC l'aide des données du constructeur sera réalisée:
- ✓ Des mesures permettront de mettre en évidence les règles de base permettant d'optimiser le fonctionnement les machines thermodynamique, utilisant l'air et l'eau comme source chaude et froide
- ✓ Les notions d'efficacité, de températures moyenne et logarithmique pour des échangeurs à fluides mono et biphasiques seront abordées.

TP6 Maintenance préventive

TP7 Maintenance corrective

TD1 Dimensionnement et sélection

- ✓ Lecture de plan et analyse de la notice descriptive d'une maison
- ✓ Prise en main d'une méthode de détermination des charges thermiques hiver d'une maison.
- ✓ Les notions fondamentales d'énergie, de puissances thermiques et électriques sont validées.
- ✓ Les notions fondamentales d'échanges thermiques appliqués au bâtiment sont validées.
- ✓ Manuellement ou a l'aide d'un tableur on déterminera les besoins thermiques du bâtiment.
- ✓ Suivant le mode de diffusion plancher, chauffant ou réseau de radiateur (régime de température d'eau différentes), on déterminera les caractéristiques de la PAC d'après la documentation fournie.

TD2 Coût de fonctionnement (mono-système)

- ✓ Analyse fonctionnelle d'un point de vue énergétique du système PAC face à un système de production thermique classique.
- ✓ A l'aide de la tarification des fournisseurs d'énergie, du climat du site de la construction et les caractéristiques de performance de la PAC et de la chaudière. On établira à l'aide d'un tableur un bilan énergétique, financier et carbone du fonctionnement de l'installation.
- ✓ Les notions fondamentales d'énergie, de puissances thermiques et électriques sont validées.
- ✓ Les notions d'équivalence énergie-carbone sont validées
- ✓ Les notions de rendement et de coefficient de performance sont validées

TD3 Coût de fonctionnement en relève de chaudière

- ✓ Analyse fonctionnelle d'un point de vue énergétique du système PAC en relève d'un système de production thermique classique.
- ✓ A l'aide de la tarification des fournisseurs d'énergie, du climat du site de la construction et les caractéristiques de performance de la PAC et de la chaudière. On établira à l'aide d'un tableur un bilan énergétique, financier de l'installation.
- ✓ La connaissance des modes de fonctionnement et raccordement des systèmes en relève de chaudières
- ✓ Les notions fondamentales d'énergie, de puissances thermiques et électriques sont validées.
- ✓ Les notions d'équivalence énergie-carbone sont validées
- ✓ Les notions de rendement et de coefficient de performance sont validées

> Autres éléments pédagogiques du dossier technique

- ✓ Ressources sur les échangeurs de chaleur
- ✓ Ressources sur les fluides frigorigènes, dont le R410
- ✓ Modélisation 3D Solidworks et vidéos de fonctionnement de compresseur
- ✓ Modélisation 3D Solidworks de vanne 4 voies d'inversion de cycle

www.erm-automatismes.com

Centrale d'acquisition & télé-gestion

Centrale de supervision d'installation climatique

La Centrale d'acquisition & télé-gestion en un clin d'œil

► Intérêt de la centrale

- ✓ Cette centrale est constituée d'un coffret contenant:
 - Un datalogger et un module de communication
 - Des borniers et protections permettant de raccorder des sondes de température, compteurs d'énergie et <u>autres capteurs</u> pour acquisition des données
 - 12 sondes de température PT1000 à connecteurs rapides
 - 6 fiches Jack pour raccordement à compteurs d'énergie via le protocole MBUS
- ✓II permet de centraliser un grand nombre de mesure pour visualisation des courbes sur un PC

(Températures, Consommations électriques, Débits...)

- ✓ Sa mémoire embarquée permet d'enregistrer les mesures sur un temps donné, ce qui facilitera l'analyse des fonctionnements dans le temps
- ✓ Affichage des mesures sur un schéma synoptique de l'installation

> Caractéristiques

- ✓ Coffret portable destiné à l'acquisition et à l'enregistrement de tous types de mesures utiles en génie climatique
- ✓ Centrale de télégestion de type Ewon Flexy
- ✓ Exportation des données sur Ethernet
- ✓ Logiciel de télégestion inclus (Serveur Web, Historiques, ...)

> Activités pédagogiques

- ✓ Mise en place de structures d'acquisition et télégestion sur systèmes climatiques
- ✓ Etude des solutions de communication industrielle

➢Points forts

✓ Nombre élevé d'entrées / sorties et de possibilités de communication

➢ Référence

✓ PC28: Centrale d'acquisition et télé-gestion

www.erm-automatismes.com

Passerelle industrielle Ewon Flexy 102

- ✓ Ewon Flexy est une gamme de passerelles industrielles modulaires destinées à la communication universelle avec divers équipements de terrain
- ✓ Communication Modbus (Températures, Consommations électriques, Débits...)
- ✓ Collecte de données et tableaux de bords locaux
 - Prise en charge des principaux protocoles d'API pour l'historisation des données et la notification d'alarmes
 - Tableau de bord web local pour la surveillance à distance
- ✓ Collecte de données centralisée via internet
 - Flexibilité totale pour l'envoi des données vers n'importe quel serveur (local ou dans le cloud)
 - Prise en charge de MQTT ou HTTPS via le moteur de scripts BASIC ou JVM (Java Virtual Machine) embarqué

Passerelle M-Bus vers Modbus

- ✓ Cette passerelle permet d'intégrer un réseau M-Bus avec un réseau Modbus
- ✓ Prise en charge des compteurs d'energie thermique, électrique, eau, ...
 (Diehl Metering, ...)

Master Modbus Modbus Network Existing M-Bus Slave HD67063

Transmetteurs de température Modbus

- ✓ Convertisseurs pour thermistances PT1000 à canaux de mesure isolés
- ✓ Communication vers la passerelle Ewon en Modbus RTU sur bus RS485

Centrale Acquisition et Télégestion

