Some Hecke algebras of GL_n (type A)

Finite(Iwahori-) Hecke algebra H_n^f

Generators
$$T_1, \dots, T_{n-1}$$

Relations $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$
 $T_i T_j = T_j T_i \quad (|i-j| > 1)$
 $(T_i - q)(T_i + 1) = 0$

- Non-degenerate means q is a root of 1; Degenerate means $q=1, H_n^f \cong k\mathfrak{S}_n$
- Last relation $\leftrightarrow (T_i Q)(T_i + Q^{-1})$ via transformation $T_i \mapsto \sqrt{q}T_i$
- $(T_i Q)(T_i + Q^{-1})$ -presentation renormalizes the natural inner product on H_n^f
- When $q \neq 0$, these are symmetric algebra via symmetrizing form $T_w \mapsto \delta_{1,w}$
- nil-version: replace last relation by $T_i^2 = 1$; symmetrizing form is δ_{w,w_0} where w_0 is longest element

Affine Hecke algebra H_n

	Non-degenerate	Degenerate	nil
Form	$\mathbb{Z}[X_1^{\pm 1}, \dots, X_n^{\pm 1}] \otimes H_n^f$	$\mathbb{Z}[X_1,\ldots,X_n]\otimes H_n^f$	$\mathbb{Z}[X_1,\ldots,X_n]\otimes H_n^f$
Generators	$X_1^{\pm 1}, \dots, X_n^{\pm 1}; T_1, \dots, T_{n-1}$	$X_1,\ldots,X_n;T_1,\ldots,T_{n-1}$	$X_1,\ldots,X_n;T_1,\ldots,T_{n-1}$
Relations	relations for non-degen. H_n^f $X_i^{\pm 1} X_j^{\pm 1} = X_j^{\pm 1} X_i^{\pm 1}$ $T_i X_j = X_j T_i j \neq i, i+1$ $T_i X_{i+1} - X_i T_i = (q-1) X_{i+1}$ $X_i X_i^{-1} = 1$	relations for degen. H_n^f $X_i X_j = X_j X_i$ $T_i X_j = X_j T_i j \neq i, i+1$ $T_i X_{i+1} - X_i T_i = 1$	relations for degen. H_n^f $X_i X_j = X_j X_i$ $T_i X_j = X_j T_i j \neq i, i+1$ $T_i X_{i+1} - X_i T_i = 1$ $T_i X_i - X_{i+1} T_i = -1$

• In the nil case, X_i is called divided difference operator ∂_i

$$\partial_i(f(x_1,\ldots,x_n)) = \frac{f - s_i f}{x_i - x_{i+1}}$$

where s_i acts on $k[x_1, \ldots, x_n]$ by sapping x_i and x_{i+1}

- Third new relation can be written as $T_i X_i T_i = q X_{i+1}$
- q = 1: $T_i X_{i+1} X_i T_i = 1$ is the same as saying $T_i X_i X_{i+1} T_i = -1$
- Think of H_n as $U_q(\mathfrak{sl}_n)$, then $\mathbb{Z}[X_1,\ldots,X_n]$ is analogue of the Cartan subalgebra, with evals $\{1,q,q^2,\ldots,q^{e-1}\}$ where e is as in the definition for H_n^{Λ}

Cyclotomic Hecke algebra/Ariki-Koike algebra H_n^{Λ} or $H_{l,n}=H(G(l,1,n))$

(1) Brundan-Kleshchev definition

I=vertex set of quiver $A_{e-1}^{(1)}$ (or A_{∞})= $\mathbb{Z}/e\mathbb{Z}$ [\leftrightarrow $\mathfrak{g}=\widehat{\mathfrak{sl}}_e$ or \mathfrak{sl}_{∞}] quantum characteristic of q:=e=

either: minimal +ve integer s.t. $1 + q + ... + q^{e-1} = 0$ or: 0 if no such e exists

 $\Lambda \in P^+$ (a positive dominant weight)

Level of $\Lambda = l = \sum_{i \in I} (\Lambda, \alpha_i)$

(2) Ariki-Koike definition Take $Q_1, \ldots, Q_l \in R$

This corresponds to taking values $\in \{0, q^i, i\}$ in Brundan-Kleshchev definition.

	Non-degenerate	Degenerate
Form	$H_n/\langle \prod_{i\in I} (X_1-q^i)^{(\Lambda,\alpha_i)}\rangle$	$H_n/\langle \prod_{i\in I} (X_1-i)^{(\Lambda,\alpha_i)}\rangle$
Generators	$T_0(\leftrightarrow X_1), T_1, \dots, T_{n-1}$	
Relations	Relations from H_n^f with second one replaced by: $T_iT_j = T_jT_i (i-j > 1; i, j = 0, \dots, n-1)$ $(T_0 - Q_1) \cdots (T_0 - Q_l) = 0$ $T_0T_1T_0T_1 = T_1T_0T_1T_0$	

- \bullet isom to cyclotomic KLR-algebra for type A
- The extra relation translates to $y_1^{\delta_{i_1,0}}e(\boldsymbol{i})=0$ (or $y_1^{(\Lambda,\alpha_{i_1})}e(\boldsymbol{i})=0$) in KLR Renewed relation comes from first 2 relations of affine case
- T_0, T_1 -relation comes from $T_i X_{i+1}$ -relation of affine case
- The subalgebra gen. by T_1, \ldots, T_{n-1} is H_n^f
- In particular, with above parameters

$$q = 1, Q_k = \xi^k \ (\xi \text{ primitive } \sqrt[l]{1}) \Rightarrow R(C_l \wr \mathfrak{S}_n)$$

 $l = 1 \text{ or } \Lambda \text{ fundamental} \Rightarrow H_n^f$

$$l = 1 \text{ or } \Lambda \text{ fundamental} \qquad \Rightarrow H_i^2$$

$$l=2$$
 \Rightarrow Hecke algebra of type B (can rewritten as $(T_0-Q)(T_0+1)=0$)

$$l=2, q=1$$
 \Rightarrow Morita to Brundan-Stroppel diagram algebra

- $\bigoplus_n H_n^{\Lambda}$ -mod categorify irred. h.w. \mathfrak{g} -module $V(\Lambda)$ but not as $U_q(\mathfrak{g})$ -module
- \rightsquigarrow AIM: make $U_q(\mathfrak{g})$ visible
- \rightsquigarrow we need q to correspond to some good grading of H_n^{Λ}
- → consider cyclotomic KLR-algebra (Brundan-Kleshchev's result showed this is possible)