Introduction to Algorithms

Meng-Tsung Tsai

11/28/2018

Single-Source Shortest Paths

Problem

Input: a directed graph G, a weight function $\omega : E \to \mathbb{R}$, and a (source) node s in G.

Output: for each node v in G, output the shortest (may be not simple) path P from s to v ($\omega(P) = \sum_{e \in P} \omega(e)$ is minimized).

Example.

Problem

Input: a directed graph G, a weight function $\omega : E \to \mathbf{R}$, and a (source) node s in G.

Output: for each node v in G, output the shortest (may be not simple) path P from s to v ($\omega(P) = \sum_{e \in P} \omega(e)$ is minimized).

Example.

A path is simple if no node on it repeats.

Problem

Input: a directed graph G, a weight function $\omega : E \to \mathbb{R}$, and a (source) node s in G.

Output: for each node v in G, output the shortest (may be not simple) path P from s to v ($\omega(P) = \sum_{e \in P} \omega(e)$ is minimized).

Example.

Negative Cycles

We say a cycle C **negative** if $\omega(C) = \sum_{e \in C} \omega(e) < 0$.

Let dis(v) be the shortest distance between s and v. That is, there exists a path P from s to v whose $\omega(P) = dis(v)$ and there exists no P' from s to v whose $\omega(P') < dis(v)$.

Negative Cycles

We say a cycle C negative if $\omega(C) = \sum_{e \in C} \omega(e) < 0$.

Let dis(v) be the shortest distance between s and v. That is, there exists a path P from s to v whose $\omega(P) = dis(v)$ and there exists no P' from s to v whose $\omega(P') < dis(v)$.

Clearly, dis(s) = 0. What is dis(u)?

Negative Cycles

We say a cycle C **negative** if $\omega(C) = \sum_{e \in C} \omega(e) < 0$.

Let dis(v) be the shortest distance between s and v. That is, there exists a path P from s to v whose $\omega(P) = dis(v)$ and there exists no P' from s to v whose $\omega(P') < dis(v)$.

Clearly, dis(s) = 0. What is dis(u)?

$$dis(u)=dis(x)=dis(v)=-\infty$$
.

Reachability

There may be some nodes in G not reachable from s.

Let $dis(v) = \infty$ for any node v that is not reachable from s.

Preliminaries

Building blocks (1/3)

```
Initialization(G, s) {
	foreach node v in G {
		est(v) \leftarrow \infty; // an upper bound of dis(v)
		pred(v) \leftarrow NIL;
	}
	est(s) \leftarrow 0;
}
```

The estimated distance est(v) is initialized as ∞ , and it will be modified by some shortest-path algorithm A. When A terminates, est(v) = dis(v).

Building blocks (1/3)

```
Initialization(G, s) {
	foreach node v in G {
		est(v) \leftarrow \infty; // an upper bound of dis(v)
		pred(v) \leftarrow NIL;
	}
	est(s) \leftarrow 0;
}
```

pred(v) is initialized as NIL, and it will be modified by some shortest-path algorithm A. When A terminates, prev(v) will be the predecessor of v in a shortest path P from s to v.

Building blocks (2/3)

```
Print-Path(G, s, v){
    if(s == v){
       output s; return;
    }
    Print-Path(G, s, pred(v));
    output v; return;
}
```

```
The shortest path s \rightarrow v = the shortest path s \rightarrow \text{pred}(v) + \text{the edge (pred(v), v)}.
```

Building blocks (3/3)

```
Relax(u, v, \omega){
    if(est(v) > est(u) + \omega(u, v)){ // the inequality does not hold
    if est(u) = est(v) = \infty because \infty and \infty+C are incomparable
        est(v) \leftarrow est(u) + \omega(u, v);
        pred(v) \leftarrow u;
    }
}
```

If $est(v) \neq \infty$, then it implies that we found a path P (s \rightarrow v) whose $\omega(P) = est(v)$.

Building blocks (3/3)

```
Relax(u, v, \omega){
    if(est(v) > est(u) + \omega(u, v)){ // the inequality does not hold
    if est(u) = est(v) = \infty because \infty and \infty+C are incomparable
        est(v) \leftarrow est(u) + \omega(u, v);
        pred(v) \leftarrow u;
    }
}
```

```
Let P_u be the shortest path s \rightarrow u found so far.

Let P_v be the shortest path s \rightarrow v found so far.

If \omega(P_u) + \omega(u, v) < \omega(P_v), we replace P_v with P_u + (u, v).
```

The Bellman-Ford Algorithm

Restriction

We assume that the input graph G contains no negative cycle reachable from s for the Bellman-Ford algorithm. Note that G may have negative cycles not reachable from s.

<u>Claim</u>. No negative cycle reachable from $s \Rightarrow$ for any node v in G reachable from s, there exists a shortest path $s \rightarrow v$ of length < n. (length: # of edges)

Proof. If $s \to v$ is a path P of length $\ge n$, then $s \to v$ contains a cycle C. Since $\omega(C) \ge 0$, we can obtain P' by removing C from P so that $\omega(P') \le \omega(P)$. We repeatedly remove cycles from P until the resulting P' has length < n.

Pseudocode

```
Bellman-Ford(G, \omega, s){
  Initialization(G, s);
  for i = 1 to n-1
     foreach edge (u, v) in G
        Relax(u, v, \omega);
  foreach edge (u, v) in G
     if (est(v) > est(u) + \omega(u, v)) // can be further relaxed
        return There-Exists-a-Negative-Cycle-Reachable-from-s;
  return No-Negative-Cycle-Reachable-from-s;
```

Pseudocode

```
Bellman-Ford(G, \omega, s){
  Initialization(G, s);
  for i = 1 to n-1
     foreach edge (u, v) in G
        Relax(u, v, \omega);
  foreach edge (u, v) in G
     if (est(v) > est(u) + \omega(u, v)) // can be further relaxed
        return There-Exists-a-Negative-Cycle-Reachable-from-s;
  return No-Negative-Cycle-Reachable-from-s;
```

When Bellman-Ford terminates, est(v)=dis(v) for all v's. In addition, $est(v)=est(pred(v))+\omega(pred(v), v)$ for all v's.

```
Bellman-Ford(G, \omega, s) {
    Initialization(G, s);
    for i = 1 to n-1
        foreach edge (u, v) in G
        Relax(u, v, \omega);
```

Let the shortest path $s \rightarrow v$ be edges $(s, x_1) (x_1, x_2) ... (x_k, v)$.


```
Bellman-Ford(G, \omega, s) {
    Initialization(G, s);
    for i = 1 to n-1
        foreach edge (u, v) in G
        Relax(u, v, \omega);
```

Let the shortest path $s \rightarrow v$ be edges $(s, x_1) (x_1, x_2) ... (x_k, v)$.

Any subpath between x_i and x_j for $0 \le i < j \le k+1$ in the shortest path $s \to v$ is a shortest path $x_i \to x_j$. Why?

```
Bellman-Ford(G, \omega, s) {
    Initialization(G, s);
    for i = 1 to n-1
        foreach edge (u, v) in G
        Relax(u, v, \omega);
```

Let the shortest path $s \rightarrow v$ be edges $(s, x_1) (x_1, x_2) ... (x_k, v)$.

est(s) = 0 before the loop. Since G contains no cycle C from s to s whose $\omega(C) < 0$, we have est(s) = dis(s) = 0 as an invariant in the loop. We color any node v orange when est(v) becomes an invariant in the loop.

```
Bellman-Ford(G, \omega, s) {
    Initialization(G, s);
    for i = 1 to n-1
        foreach edge (u, v) in G
        Relax(u, v, \omega);
```

Let the shortest path $s \rightarrow v$ be edges $(s, x_1) (x_1, x_2) ... (x_k, v)$.

est(x_1) = ∞ before the loop. After seeing the edge (s, x_1) in the 1st iteration of the loop, est(x_1) \leq est(s) + ω (s, x_1) = dis(x_1). The last equality holds because edge (s, x_1) is a shortest path s \rightarrow x_1 . (Why?) Since we can't have est(v) \leq dis(v) for any v, est(x_1) = dis(x_1) after the 1st iteration of the loop. We color x_1 orange since then.

```
Bellman-Ford(G, \omega, s) {
    Initialization(G, s);
    for i = 1 to n-1
        foreach edge (u, v) in G
        Relax(u, v, \omega);
```

Let the shortest path $s \rightarrow v$ be edges $(s, x_1) (x_1, x_2) ... (x_k, v)$.

est(x₂) = ∞ before the loop. After seeing the edge (x₁, x₂) in the 2nd iteration of the loop, est(x₂) \leq est(x₁) + ω (x₁, x₂) = dis(x₂). The last equality holds because a shortest path s \rightarrow x₁ + edge (s, x₁) is a shortest path s \rightarrow x₂. We color x₂ orange since then.

```
Bellman-Ford(G, \omega, s) {
    Initialization(G, s);
    for i = 1 to n-1
        foreach edge (u, v) in G
        Relax(u, v, \omega);
```

Let the shortest path $s \rightarrow v$ be edges $(s, x_1) (x_1, x_2) ... (x_k, v)$.

By induction, we have est(v) = dis(v) after the (k+1)-th iteration of the loop. Because $k+1 \le n-1$ (why?), after the loop is finished we have est(v) = dis(v) and est(pred(v)) = dis(pred(v)). This holds for any v and the predecessor of any v.

```
foreach edge (u, v) in G

if (est(v) > est(u) + \omega(u, v)) // can be further relaxed

return There-Exists-a-Negative-Cycle-Reachable-from-s;

return No-Negative-Cycle-Reachable-from-s;
```

If G has no negative cycle reachable from s, we can't Relax an edge in the loop because est(v) becomes an invariant for all v's.

If G has some negative cycle reachable from s, let the cycle C be $(x_1, x_2, x_3, ..., x_k, x_1)$ and $\omega(C) < 0$. If G passes the test in the loop, then $est(x_2) \le est(x_1) + \omega(x_1, x_2)$, $est(x_3) \le est(x_2) + \omega(x_2, x_3)$, ..., and $est(x_1) \le est(x_k) + \omega(x_k, x_1)$. Summing all inequalities, we get $0 \le \omega(C)$. $\rightarrow \leftarrow$ This case can't pass the test.

Running time

```
Bellman-Ford(G, \omega, s){
  Initialization(G, s);
  for i = 1 to n-1
     foreach edge (u, v) in G
        Relax(u, v, \omega);
  foreach edge (u, v) in G
     if (est(v) > est(u) + \omega(u, v)) // can be further relaxed
        return There-Exists-a-Negative-Cycle-Reachable-from-s;
  return No-Negative-Cycle-Reachable-from-s;
```

The nested loops have O(nm) iterations, and Relax() needs O(1) time. Thus, the Bellman-Ford algorithm runs in O(nm) time.

Exercise

Input: a directed graph G and a weight function $\omega : E \to \mathbf{R}$.

Output: If G has a negative cycle, output "Yes." Otherwise, output "No."

Is this problem solvable in O(nm) time? Why or why not?