1 6. Lineare Abbildungen und Matrizen

1.1 Erinnerung

- Begriff der linearen Abbildung $f:V\to W$ und die Begriffe Isomorphismus, Endomorphismus, Automorphismus
- Bisher bewiesene Eigenschaften: Satz 1.11 und Folgerungen daraus, $f(V) = Imf \subseteq W$ und $f^{-1}(\{0\}) = Kerf \subseteq V$ sind UVR, f surjektiv $\iff Imf = W$, f injektiv $\iff Kerf = \{0\}$

1.2 Lemma 6.1

Ist $f: V \to W$ eine injektive lineare Abbildung, so gilt: $v_1, ..., v_n \in V$ linear unabhängig $\Longrightarrow f(v_1), ..., f(v_n) \in W$ linear unabhängig.

1.3 Beweis

```
\alpha_1 \cdot f(v_1) + \dots + \alpha_n \cdot f(v_n) = 0
\implies f(\alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n) = 0, \text{ da } f \text{ linear}
\implies \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n = 0, \text{ da } f \text{ injektiv}
\implies \alpha_1 = 0, \dots, \alpha_n = 0, \text{ da } v_1, \dots, v_n \text{ linear unabhängig.}
```

1.4 Satz 6.2

Sei $f: V \to W$ eine lineare Abbildung und dimV endlich. Sind Basen $(v_1, ..., v_k)$ von Kerf und $(w_1, ..., w_r)$ von Imf sowie beliebige Vektoren $u_1, ..., u_r$ mit $f(u_i) = w_i$ für i = 1, ..., r (also Urbilder der Basisvektoren von Imf gegeben, so ist $\mathcal{A} = (u_1, ..., u_r, v_1, ..., v_k)$ eine Basis von V. Insbesondere folgt daraus die Dimensionsformel:

$$dimV = dim(Kerf) + dim(Imf)$$

1.5 Beweis

(1) \mathcal{A} ist ein Erzeugendensystem von V: Sei $v \in V$ beliebig. Dann ist $f(v) \in Imf$. da $w_1, ..., w_r$ Basis von Imf, folgt: Es existieren $\alpha_1, ..., \alpha_r \in K$ mit $f(v) = \alpha_1 \cdot w_1 + ... + \alpha_r \cdot w_r$. Mit diesen Skalaren setze $v' := \alpha_1 \cdot u_1 + ... + \alpha_r \cdot u_r$. Dann gilt: $f(v') = f(\alpha_1 \cdot u_1 + ... + \alpha_r \cdot u_r)$ $= \alpha_1 \cdot f(u_1) + ... + \alpha_r \cdot f(u_r)$ $= \alpha_1 \cdot w_1 + ... + \alpha_r \cdot w_r$ = f(v) Daraus folgt: f(v-v')=0, d.h. $v-v'\in Kerf$ Da $v_1,...,v_k$ Basis von Kerf, folgt: Es existieren $\beta_1,...,\beta_k\in K$ mit $v-v'=\beta_1\cdot v_1+...+\beta_k\cdot v_k$ Insgesamt folgt: $v=\alpha_1\cdot u_1+...+\alpha_r\cdot u_r+\beta_1\cdot v_1+...+\beta_k\cdot v_k, v\in span(\mathcal{A})$.

(2) \mathcal{A} ist linear unabhängig:

$$\begin{split} \circledast \mu_1 \cdot u_1 + \ldots + \mu_r \cdot u_r + \lambda_1 \cdot v_1 + \ldots + \lambda_k \cdot v_k &= 0 \\ \Longrightarrow f(\mu_1 \cdot u_1 + \ldots + \mu_r \cdot u_r + \lambda_1 \cdot v_1 + \ldots + \lambda_k \cdot v_k) &= f(0) = 0 \\ \Longrightarrow \mu_1 \cdot f(u_1) + \ldots + \mu_r \cdot f(u_r) + \lambda_1 \cdot f(v_1) + \ldots + \lambda \cdot f(v_k) &= 0 \\ \Longrightarrow \mu_1 \cdot w_1 + \ldots + \mu_r \cdot w_1 &= 0, \text{ da } f(v_i) &= 0 \\ \Longrightarrow \mu_1 = , \ldots, \mu_r &= 0, \text{ da } w_1, \ldots w_r \text{ linear unabhängig.} \\ \text{Also gilt wegen } \circledast : \lambda_1 \cdot v_1 + \ldots + \lambda_k \cdot v_k &= 0 \\ \Longrightarrow \lambda_1 = 0, \ldots, \lambda_k &= 0, \text{ da } v_1, \ldots, v_k \text{ linear unabhängig} \end{split}$$

(3) Dimensionformel:

$$\mathcal{A}=(u_1,...,u_r,v_1,...,v_k)$$
 Basis von V mit $r=\dim(Imf)$ und $k=\dim(Kerf)$ \Longrightarrow $\dim V=r+k$

1.6 Korollar

Seien V,W endlich-dimensionale VR, dimV=dimW und $f:V\to W$ eine lineare Abbildung. Dann sind folgende Aussagen äquivalent:

- (1) f ist injektiv
- (2) f ist surjektiv
- (3) f ist Isomorphismus

1.7 Satz 6.3

Seien V, W VR, $v_1, ..., v_r \in V$ und $w_1, ..., w_r \in W$. Dann gilt:

- (1) $v_1,...,v_r$ linear unabhängig \Longrightarrow es gibt mindestens eine lineare Abbildung $f:V\to W$ mit $f(v_i)=w_i$ für i=1,...,r
- (2) $v_1,...,v_r$ Basis von $V \Longrightarrow$ es gibt genau eine lineare Abbildung $f:V\to W$ mit $f(v_i)=w_i$ für i=1,...,r. Dabei hat diese lineare Abbildung folgende Eigenschaften:
- (a) $Im f = span(w_1, ..., w_r)$
- (b) f injektiv $\iff w_1, ..., w_r$ linear unabhängig

1.8 Beweis

(2) Sei $(v_1, ..., v_r)$ eine Basis von V. Seie $v \in V$ beliebig. $\implies v = \alpha_1 \cdot v_1 + \dots + \alpha_1 \cdot v_r$ Da $f(v_i) = w_i$ für i = 1, ..., r und f linear sein soll, gilt: $f(v) = f(\alpha_1 \cdot v_1 + \dots + \alpha_r \cdot v_r)$ $= \alpha_1 \cdot f(v_1) + \dots + \alpha_r \cdot f(v_r)$ $= \alpha_1 \cdot w_1 + \dots + \alpha_r \cdot w_r$ Es gibt also höchstens eine solche Abbildung, nämlich gerade bestimmte. Mindestens eine lineare Abbildung? $(L1)f(v+v') = f(\alpha_1 \cdot v_1 + ... + \alpha_r \cdot v_r + \alpha'_1 \cdot v_1 + ... + \alpha'_r \cdot v_r)$ $= f((\alpha_1 + \alpha_1') \cdot v_1 + \dots + (\alpha_r + \alpha_r') \cdot v_r)$ $= (\alpha + \alpha_1') \cdot w_1 + \dots + (\alpha_r + \alpha_r') \cdot w_r$ $=\alpha_1\cdot w_1+\ldots+\alpha_r\cdot w_r+\alpha'_1\cdot w_1+\ldots+\alpha'_r\cdot w_r$ = f(v) + f(v')(L2) $f(\alpha \cdot v) = f(\alpha \cdot \alpha_1 \cdot v_1 + \dots + \alpha \cdot \alpha_r \cdot v_r)$ $= \alpha \cdot \alpha_1 \cdot w_1 + \dots + \alpha \cdot \alpha_r \cdot w_r$ $= \alpha \cdot (\alpha_1 \cdot w_1 + \dots + \alpha_r \cdot w_r)$ $= \alpha \cdot f(v)$ Nachzuweisen sind noch (a) und (b):

(a)
$$v \in V \implies f(v) = f(\alpha_1 \cdot v_1 + \dots + \alpha_r \cdot v_r) = \alpha_1 \cdot w_1 + \dots + \alpha_r \cdot w_r \in span(w_1, \dots, w_r)$$

Also gilt: $Imf \subseteq span(w_1, \dots, w_r)$
 $w \in span(w_1, \dots, w_r) \implies w = \lambda_1 \cdot w_1 + \dots + \lambda_r \cdot w_r$
 $\implies w = f(\lambda_1 \cdot v_1 + \dots + \lambda_r \cdot v_r) \in Imf$
Also gilt: $span(w_1, \dots, w_r) \subseteq Imf$

- (b) " \Rightarrow : Lemma 6.1
 " \Leftarrow ": Sei $v = \alpha_1 \cdot v_1 + ... + \alpha_r \cdot v_r \in V$ und f(v) = 0 $\Rightarrow \alpha_1 \cdot w_1 + ... + \alpha_r \cdot w_r = f(v) = 0 \Rightarrow \alpha_1 = 0, ..., \alpha_r = 0$, da $w_1, ..., w_r$ linear unabhängig $\Rightarrow v = 0 \Rightarrow Kerf = 0$
- (1) $v_1, ..., v_r$ linear unabhängig $\stackrel{3.14}{\Longrightarrow} v_1, ..., v_r$ kann ergänzt werden zu einer Basis $(v_1, ..., v_r, v_{r+1}, ..., v_n)$ von V.

 Wählen wir nun beliebig zu $w_1, ..., w_r$ weitere Vektoren $w_{r+1}, ..., w_r$, so können wir nach (2) genau eine lineare Abbildung $f: V \to W$ angeben, für die $f(v_i) = w_i, i = 1, ..., r, r+1, ..., n$, gilt.

1.8.1 Bemerkung

n-r ist ein Maß dafür, wie weit f davon entfernt ist, eindeutig zu sein.

1.9 Korollar A

Sind V und W endlich-dimensionale VR, so gilt: Es gibt einen Isormorphismus $f: V \to W$ genaz dann, wenn dim V = dim W.

1.10Beweis

" \Rightarrow " : $f: V \to W$ Isomorphismus $\implies dim(Kerf) = 0$ und dim(Imf) = $dimW \stackrel{6.2}{\Longrightarrow} dimv = dimW$

" \Leftarrow ": $dimV = dimW \implies V$ und W haben Basen gleicher Länge n, etwa $\mathcal{A} = (v_1, ..., v_n)$ Basis von V und $\mathcal{B} = (w_1, ..., w_n)$ Basis von W. Nach 6.3 gibt es daher (genau) einen Isomorphismus $f: V \to W$ mit $f(v_i) = w_i, i = 1, ..., n$.

Korollar B 1.11

Sei V ein VR und dimV = n. Dann gibt es zu jeder Wahl einer Basis $\mathcal{B} =$ $(v_1,...,v_n)$ von V genau einen Isomorphismus $\Phi_{\mathcal{B}}:K^n\to V$ mit $\Phi_{\mathcal{B}}(e_i)=v_i$ für i=1,...,n.

Bezüglich der Basis $\mathcal{B}(v_1,..,v_n)$ ist jeder Vektor $v \in V$ eindeutig gegeben durch seine Darstellung $v = x_1 \cdot v_1 + \dots + x_n \cdot v_n$.

Definitionsgemäß gilt dann für $x = \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix} \in K^n$:

 $\Phi_{\mathcal{B}}(x) = \Phi_{\mathcal{B}}(x_1 \cdot e_1 + \dots + x_n \cdot e_n) = x_1 \cdot v_1 + \dots + x_n \cdot v_n = v$

Das bedeutet: Unter dem Isomorphismus $\Phi_{\mathcal{B}}$ entspricht der Vektor $v=x_1\cdot v_1+$

...
$$+ x_n \cdot v_n \in V$$
 dem Vektor $\Phi_{\mathcal{B}}^{-1}(v) = x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$.

1.12Definition 6.4

Sei V ein KVR und dimV = n. Dann heißt der zu einer Basis $\mathcal{B} = (v_1, ..., v_n)$ von V eindeutig bestimmte Isomorphismus $\Phi_{\mathcal{B}}: K^n \to V$ mit $\Phi_{\mathcal{B}}(e_i) = v_i$ für i=1,...,n das durch $\mathcal B$ bestimmte Koordinatensystem in V. Für v=1,...,n

$$x_1 \cdot v_1 + ... + x_n \cdot v_n \in V$$
 heißt $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \Phi_{\mathcal{B}}^{-1}(v)$ die Koordinatendarstellung von v bzgl. \mathcal{B} und $x_1, ..., x_n$ heißten die Koordinaten von v .

von v bzgl. \mathcal{B} und $x_1,...,x_n$ heißten die Koordinaten von v.

(Zur Berechnung:
$$(v_1, ..., v_n) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = v$$
)

1.13 Lemma 6.5

Zu jeder linearen Abbildung $f: K^n \to K^m$ gibt es genau eine Matrix $A \sim (m, n)$ sodass $f(x) = A \cdot x$ für alle $x \in K^n$.

1.14 Beweis

$$\begin{aligned} &\text{Sei } (e_1,...,e_n) \text{ die Standardbasis von } K^n \text{ und sei } f(e_1) = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, ..., f(e_n) = \\ & \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}. \text{ Dann ist } A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \text{ da } A \cdot x = x_1 \cdot \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + ... + x_n \cdot \\ & \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = x_1 \cdot f(e_1) + ... + x_n \cdot f(e_n) = f(x) \end{aligned}$$

1.15 Satz 6.6

Seien V und W KVR, $\mathcal{A}=(v_1,...,v_n)$ Basis von V und $\mathcal{B}=(w_1,...,w_m)$ Basis von W. Dann gibt es zu jeder linearen Abbildung $f:V\to W$ gneau eine Matrix $A=(a_{ij})\in K^{(m,n)}$, sodass $f(v_j)=\sum\limits_{i=1}^m a_{ij}\cdot w_i$ für j=1,...,n.

Die Matrix, die f bzgl. der Basen \mathcal{A} und \mathcal{B} darstellt, bezeichnet man mit $M_{\mathcal{B}}^{\mathcal{A}}(f)$ und nennt sie dia darstellende Matrix von f bzgl. \mathcal{A} und \mathcal{B} .

1.16 Beweis

Da \mathcal{B} Basis, ist zu jedem $f(v_j) = \sum_{i=1}^m a_{ij} \cdot w_i$ die Linearkombination eindeutig bestimmt und damit die j-te Spalte von A. Folglich ist $M_{\mathcal{B}}^{\mathcal{A}}(f)$ eindeutig bestimmt.

1.17 Folgerung

Seien V, W KVR, $dimV = n, dimW = m, \mathcal{A} = (v_1, ..., v_n)$ eine Basis von $V, \mathcal{B} = (w_1, ..., w_m)$ eine Basis von $W, \Phi_{\mathcal{B}}(e_j^{(n)}) = v_j$ und $\Phi_{\mathcal{B}} : K^m \to W$ mit $\Phi_{\mathcal{B}}(e_i^{(m)} = w_i$ seien die durch die Basen \mathcal{A} und \mathcal{B} bestimmten Koordinatensysteme in V bzw. W. Dann erhält man für jede lineare Abbildung $f : V \to W$ das folgende Diagramm:

$$K^{n} \xrightarrow{\Phi_{\mathcal{A}}} V$$

$$M_{\mathcal{B}}^{\mathcal{A}}(f) \middle| \qquad \qquad \downarrow f$$

$$K^{m} \xrightarrow{\Phi_{\mathcal{B}}} W$$

wobei $\Phi_{\mathcal{B}} \circ M_{\mathcal{B}}^{\mathcal{A}}(f) = f \circ \Phi_{\mathcal{A}}$. Oder gleichbedeutend: $M_{\mathcal{B}}^{\mathcal{A}}(f) = \Phi_{\mathcal{B}}^{-1} \circ f \circ \Phi_{\mathcal{A}}$ Man sagt kurz: Das Diagramm ist kommutativ.

1.18 Beweis

Nach Satz 6.3 genügt es zu zeigen, dass $\Phi_{\mathcal{B}} \circ M_{\mathcal{B}}^{\mathcal{A}}(f)$ und $f \circ \Phi_{\mathcal{A}}$ auf der kanonischen Basis $(e_1^{(n)}, ..., e_n^{(n)})$ von K^n übereinstimmen. Setze $M_{\mathcal{B}}^{\mathcal{A}}(f) =: A$.

Kanonischen Basis
$$(e_1^{(n)}, ..., e_n^{(n)})$$
 von K^n übereinstimmen
$$\Phi_{\mathcal{B}}(A(e_j^{(n)})) = \Phi_{\mathcal{B}}(A_{\bullet j}) = \sum_{i=1}^n a_{ij} \cdot w_i$$

$$f(\Phi_{\mathcal{A}}(e_j^{(n)})) = f(v_j) \stackrel{6.6}{=} \sum_{i=1}^n a_{ij} \cdot w_i$$

$$\Longrightarrow Gleichheit$$

1.18.1 Bemerkung

IstW=V, als $f:V\to V$ ein Endomorphismus, so wählt man im Allgemeinen $\mathcal{A}=\mathcal{B}.$

Bezeichnung: $M_{\mathcal{A}}(f)$ statt $M_{\mathcal{A}}^{\mathcal{A}}(f)$.

Die Matrix der identischen Abbildung $id_V: V \to V$ mit $id_V(v) = v$ bzgl. einer Basis \mathcal{A} in V ist $M_{\mathcal{A}}(id_V) = I_n$.

1.18.2 Beispiel

 $\mathcal{A} = (v_1, v_2, v_3) \text{ sei eine Basis von } \mathbb{R}^3$ $\mathcal{B} = (w_1, w_2) \text{ sei eine Basis von } \mathbb{R}^2$ lineare Abbildung $f : \mathbb{R}^3 \to \mathbb{R}^2$ mit $f(v_1) = 2 \cdot w_1 + w_2$, $f(v_2) = w_1 - w_2$, $f(v_3) = w_1 - 2 \cdot w_2$ $M_{\mathcal{B}}^{\mathcal{A}}(f) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix}$ $\Phi_{\mathcal{A}} : \mathbb{R}^3 \to \mathbb{R}^3 \text{ mit } \Phi_{\mathcal{A}}(e_i) = v_i$ $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \overset{\Phi_{\mathcal{A}}}{\mapsto} \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \alpha_3 \cdot v_3$ $\Phi_{\mathcal{B}} : \mathbb{R}^2 \to \mathbb{R}^2 \text{ mit } \Phi_{\mathcal{B}}(e_j) = w_j$ $\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \overset{\Phi_{\mathcal{B}}}{\mapsto} \beta_1 \cdot w_1 + \beta_2 \cdot w_2$

Nach der Folgerung gilt dann:
$$\Phi_{\mathcal{B}}(M_{\mathcal{B}}^{\mathcal{A}}(f) \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}) = f(\Phi_{\mathcal{A}} \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix})$$
Sei $v = -2 \cdot v_1 + 6 \cdot v_2 - 5 \cdot v_3$. Bestimme $f(v)$:
$$f(v) = f(-2 \cdot v_1 + 6 \cdot v_2 - 5 \cdot v_3)$$

$$= f(\Phi_{\mathcal{A}} \cdot \begin{pmatrix} -2 \\ 6 \\ -5 \end{pmatrix})$$

$$= \Phi_{\mathcal{B}}(M_{\mathcal{B}}^{\mathcal{A}}(f) \cdot \begin{pmatrix} -2 \\ 6 \\ -5 \end{pmatrix})$$

$$= \Phi_{\mathcal{B}}(\begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 6 \\ -5 \end{pmatrix})$$

$$= \Phi_{\mathcal{B}}\begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$= -3 \cdot w_1 + 2 \cdot w_2$$

1.19 Korollar (zu Satz 6.6)

Sei $f: V \to W$ linear, dimV = n, dimW = m und dim(Imf) = r. Dann gibt es Basen \mathcal{A} (von V) und \mathcal{B} (von W), sodass gilt.

$$M_{\mathcal{B}}^{\mathcal{A}}(f) = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix} \sim (m, n)$$

1.20 Beweis

Nach Satz 6.2 gibt es eine Basis $\mathcal{A} = (u_1, ..., u_r, v_1, ..., v_{n-r})$ von V mit $(v_1, ..., v_{n-r})$ ist eine Basis von Kerf und $(w_1 = f(u_1), ..., w_r = f(u_r))$ ist eine Basis von Imf. Wir ergänzen $(w_1, ..., w_r)$ zu einer Basis von $\mathcal{B} = (w_1, ..., w_r, w_{r+1}, ..., w_m)$ von W (mit dem Basisergänzungssatz). Dann gilt:

$$\begin{cases} f(u_j) = w_j \text{ für } j = 1, ..., r \\ f(v_j) = 0 \text{ für } j = 1, ..., n - r \end{cases} \implies M_{\mathcal{B}}^{\mathcal{A}}(f) = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

1.21 Satz 6.7

Seien U, V, W KVR mit Basen $\mathcal{A}, \mathcal{B}, \mathcal{C}$ und seien $g: U \to V, f: V \to W$ lineare Abbildungen. Dann gilt $M_{\mathcal{C}}^{\mathcal{A}}(f \circ g) = M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{\mathcal{A}}(g)$

Beweis (Hier fehlen noch die Zahlen und die Klam-1.22mer im DIagramm)

Zz: Das Diagramm 5 ist kommutativ

Die Diagramme \mathbb{O}, \mathbb{O} und \mathbb{O} sind kommutativ nach Definition der darstellenden Matrizen.

Das Diagramm ${\mathfrak D}$ ist natürlich kommutativ.

Damit folgt: $\Phi_{\mathcal{C}} \circ M_{\mathcal{C}}^{\mathcal{B}}(f) \circ M_{\mathcal{B}}^{\mathcal{A}}(g)$

$$\stackrel{2}{=} f \circ \Phi_{\mathcal{B}} \circ M_{\mathcal{B}}^{\mathcal{A}}(g)$$

$$\stackrel{1}{=} f \circ g \circ \Phi_{\mathcal{A}}$$

$$\stackrel{3}{=} \Phi_{\mathcal{C}} \circ M_{\mathcal{C}}^{\mathcal{A}}(f \circ g)$$

 $\stackrel{3}{=} \Phi_{\mathcal{C}} \circ M_{\mathcal{C}}^{\mathcal{A}}(f \circ g)$ Da $\Phi_{\mathcal{C}}$ Isomorphismus folgt: $M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{\mathcal{A}}(g) = M_{\mathcal{C}}^{\mathcal{A}}(f \circ g)$

1.23 Folgerung

Sei Vein KVR mit der Basis $\mathcal B$ und seien $f,g:V\to V$ Endomorphismen. Dann

 $M^{\mathcal{B}}(f \circ g) = M_{\mathcal{B}}(f) \cdot M_{\mathcal{B}}(g).$