Machine Translation

Module: Natural Language Processing

Date: 01.07.2021

Fernandes Elanton, Opitz Dominik

Content

- Introduction
 - Problem Statement
 - Initial Proposal
- Model
 - Datasets
 - Architecture
- Results
 - Examples
 - Evaluation
- Take Home Message
- Sources

Introduction

Problem:

Translate German sentence to English sentences

Initial Proposal:

Based on Bahdanau et al. (2015) making use of Bidirectional LSTM

Model

Encoder

:Final Hidden Vector (forward direction)

∠ :Final Hidden Vector (backward direction)

 $h_n^{
ightarrow}$:Hidden vector for token n (forward)

 $h_{N-n}^{\overline{}}$:Hidden vector for token N-n (backward)

N :Total number of tokens

decoder_input_layer: InputLayer | input: [(None, None)] | output: [(None, None)] | output: [(None, None)] | input: (None, None) | output: (None, None, 256) | output: (None, None, 256) |

Attention

$$h_n = [h_n^{
ightarrow}; h_{N-n}^{\leftarrow}]$$

 h_n : Concatenated hidden state

g: 2 input neural network

a: Attention weight

Decoder

W: Context vector

 S_n : Decoder hidden state

Design Choices

• Embedding size: 256

• Hidden units: 512

• Sequence length: 24

Vocabulary size: 5000

Results

Training

• Parameters:

• Training size: 700K samples

Validation size: 150K samples

Test size: 150K samples

Epochs: 10

o Batch size: 256

o Optimizer: RMS prop

• Loss: Sparse categorical cross-entropy

Datasets

- Parallel corpus of German and English sentences
- Europarl:
 - o 1.9M samples
 - Contains political speeches (complicated, nested sentences)
- ELRC:
 - 53K samples
 - o contains German-English texts extracted from the website of the Federal Foreign Office Berlin.
- Rapid:
 - 1.5M samples
 - Contains news reports
- Custom:
 - 1M samples
 - mixed from the above datasets

Human Evaluation

- Variables
 - A: Number of sentences that were correct
 - B: Similarly score given by human evaluator
 - o C: Grammatical correctness score given by human evaluator
- Formula

$$Z=rac{1}{100}[A imesrac{B+C}{2}]$$

Examples

Good:

Review German: technische hilfe aus <unk> fur kroatien im vorfeld des <unk> Original English: technical assistance extended to croatia ahead of eu accession Predicted English: technical assistance for croatia ahead of the accession

Bad:

German: mit blick auf die <unk> <unk> , die es auf allen seiten gegeben hat , ist hier jede <unk> erforderlich , um Original English: given the serious willingness to negotiate shown by all sides , every effort is needed to reach an overall outcome.

Predicted English: with regard to the terrorist of the , the us of the people , we are now here to do ,

Results

	Europarl 1M	Europarl 30K	Rapid 1M	Rapid 30K	ELRC 50K	Custom 1M
Training Time	1h 9min	7min	1h 9min	4min	0h 10min	2h 10min
BLEU-1	71.82	63.88	67.89	58.05	58.86	<u>72.69</u>
BLEU-2	<u>61.40</u>	49.41	59.90	47.62	46.17	<u>63.57</u>
BLEU-3	53.92	39.01	<u>54.58</u>	41.46	37.78	<u>57.41</u>
BLEU-4	48.31	31.87	50.52	37.31	31.99	<u>52.78</u>
Human Eval.	10.0	7.0	27.0	26.5	9.0	<u>35.0</u>

Results (Transfer Learning)

Trained on: RAPID 1M

Evaluated on: EUROPARL 1M

	Rapid 1M	Europarl 1M	
BLEU-1	<u>67.89</u>	55.18	
BLEU-2	<u>59.90</u>	34.99	
BLEU-3	<u>54.58</u>	21.46	
BLEU-4	<u>50.52</u>	15.37	

Challenges & Review

- Adapting architecture to memory requirements:
 - When training on larger parameters, model ran out of memory.
- Difficulties in finding suitable vocab-size
- Consider implementing Teacher Forcing Ratio
 - Considering we have limited vocab size (5000)
- Dealing with Unknown tokens:
 - We chose the second most probable token when encountered.

Challenges & Review

- Adapting architecture to memory requirements:
 - When training on larger parameters, model ran out of memory.
- Difficulties in finding suitable vocab-size
- Consider implementing Teacher Forcing Ratio
 - Considering we have limited vocab size (5000)
- Dealing with Unknown tokens:
 - We chose the second most probable token when encountered.

Challenges & Review

- Adapting architecture to memory requirements:
 - When training on larger parameters, model ran out of memory.
- Difficulties in finding suitable vocab-size
- Consider implementing Teacher Forcing Ratio
 - Considering we have limited vocab size (5000)
- Dealing with Unknown tokens:
 - We chose the second most probable token when encountered.

German: mit blick auf die $\langle unk \rangle$ $\langle unk \rangle$, die es auf allen seiten gegeben hat , ist hier jede $\langle unk \rangle$ erforderlich , um

Original English: given the $\langle unk \rangle$ willingness to negotiate shown by all sides , every effort is needed to reach an overall $\langle unk \rangle$.

 ${f Predicted \ English:}$ with regard to the terrorist of the , the us of the people , we are now here to do ,

Take Home Messages

- Larger embedding size encode more information but take more training time.
 - Restrict embedding size between 100 to 300 depending on dataset size.
- Model works better with a Bidirectional LSTM than just forward LSTM layers.
 - **Bidirectional LSTM encode vicinity** of word to help in prediction.
- Datasets that have larger variety.
 - Positively affects results.
- Training text style influences predictions.
 - For different text style, prediction done in training style.
- One needs to think about how to deal with unknown vocabulary.
 - We took the second highest probable token as a design choice to deal with this.

Sources

- Images:
 - https://github.com/bentrevett/pytorch-seq2seq/blob/master/3%20 %20Neural%20Machine%20Translation%20by%20Jointly%20Learning%20to%20Align%20and%20Translate.ipynb
- Guideline:
 - <u>https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism-5e59b57bd2ac</u>