Билеты к экзамену «Кратные интегралы и теория поля»

Авторы: Примак Евгений Хоружий Кирилл

От: 7 января 2021 г.

Содержание

Свёрт	ка и приближение функций бесконечно гладкими	2
1	Свёртка функций и её свойства	2
2	Бесконечно гладкие функции с компактным носителем	2
3	Приближение функций бесконечно гладкими	2
Дифф	реренцируемые отображения и криволинейные замены координат	3
4	Дифференцируемые отображения и дифференицрование композиции	3
5	Системы криволинейных координат и теорема об обратном отображении	3
6	Теоремы о системе неявных функций	3
7	Теорема о расщеплении гладкого отображения	4
Векто	ры и дифференциальны формы первой степени	5
13	Вектор, как дифференцирование	5
Решен	ия	6
1	Свёртка функций и её свойства	6
2	Бесконечно гладкие функции с компактным носителем	
3	Приближение функций бесконечно гладкими	

Свёртка и приближение функций бесконечно гладкими

1 Свёртка функций и её свойства

Def 1.1 (Свертка функции). Свёртку ещё пишут как h = f * g

$$h(x) = \int_{\mathbb{R}^n} f(x-t)g(t) dt = \int_{\mathbb{R}^n} f(t)g(x-t) dt,$$

Свёртка также ассоциативна: f * (g * h) = (f * g) * h, для функций с конечным интегралом. Чтобы интеграл существовал, можно заметить, что если одна из функций ограничена, а другая имеет конечный интеграл, тогда и свёртка будет ограничена, кроме того:

Thr 1.2. Если f и g имеют конечный интегралы, то h = f * g определена почти всюду и верно неравенство

$$\int_{\mathbb{R}^n} |f * g| \, dx < \int_{\mathbb{R}^n} |f| \, dx \cdot \int_{\mathbb{R}^n} |g| \, dx,$$

и равенство:

$$\int_{\mathbb{R}^n} f * g \, dx = \int_{\mathbb{R}^n} f \, dx \cdot \int_{\mathbb{R}^n} g \, dx.$$

Lem 1.3. Если свёртка g * f — **ограничена**, где g — имеет конечный интеграл, а f и $\partial_x f$ — ограничены, **то** возможно дифференцирование под знаком интеграла (??), и мы получаем:

$$\frac{\partial (f * g)}{\partial x_i} = \int_{\mathbb{R}^n} \frac{\partial f(x - t)}{\partial x_i} g(t) dt = \frac{\partial f}{\partial x_i} * g.$$

2 Бесконечно гладкие функции с компактным носителем

Возьмём $f \in C^{\infty}$ такую, что $\forall k f^{(k)}(0) = 0$. Из неё составим $\varphi \in C^{\infty}$ большую нуля на (-1,1):

$$f(x) = \begin{cases} 0, & x \le 0; \\ e^{-1/x}, & x > 0. \end{cases} \qquad \varphi(x) = f(x+1)f(1-x).$$

Lem 2.1. $\forall \varepsilon > 0 \; \exists \; \text{бесконечно гладкая} \; \varphi_{\varepsilon} \colon \mathbb{R}^{n} \to \mathbb{R}^{+}, \; \varphi_{\varepsilon}(x) \neq 0 \; \forall x \in U_{\varepsilon}(0), \; \textit{makas umo} \; \int_{\mathbb{R}^{n}} \varphi_{\varepsilon}(x) \, dx = 1.$

Lem 2.2. $\forall \varepsilon > \delta > 0 \ \exists \ \textit{beckoneuho гладкая} \ \psi_{\varepsilon,\delta} \colon \mathbb{R}^n \to [0,1], \ \psi_{\varepsilon,\delta}(x) \neq 0 \ \forall x \in U_{\varepsilon}(0) \ u \ \psi_{\varepsilon,\delta}(x) \neq 0 \ \forall x \in U_{\delta}(0).$

3 Приближение функций бесконечно гладкими

Пусть $\varphi \colon \mathbb{R}^n \to \mathbb{R}$, неотрицательная $\varphi \in C^\infty$, $\varphi \neq 0$ при $|x| \leqslant 1$ и пусть $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1$. Положим $\varphi_k(x) = k^n \varphi(kx)$, у которых так же будут $\int = 1$ и которые $\varphi_k \neq 0$ при $|x| \leqslant 1/k$.

Thr 3.1. Для непрерывной $f: \mathbb{R}^n \to \mathbb{R}$ определим свёртки:

$$f_k(x) = \int_{\mathbb{R}^n} f(x-t)\varphi_k \, dt = \int_{\mathbb{R}^n} f(t)\varphi_k(x-t) \, dt \qquad \rightsquigarrow \qquad f_k \in C^\infty, \ f_k \to f \ \ paвномерно \ \ ha \ \ komnakmax \ \ e \ \mathbb{R}^n.$$

Thr 3.2. Если f имеет непр. производные до m-го порядка, то производные f_k до m-го порядка равномерно cxodsmcs на компактах κ соответствующим f'.

Thr 3.3. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ и $f \in \mathcal{L}_c$. Тогда свёртки $f * \varphi_k$ с функциями из теоремы 3.1 сколь угодно близко приближают f в среднем.

Дифференцируемые отображения и криволинейные замены координат

4 Дифференцируемые отображения и дифференицрование композиции

Def 4.1. Пусть $U \subset \mathbb{R}^n$ – открытое множество. Отображение $f: U \to \mathbb{R}^m$ называется $\partial u \phi \phi$ еренцируемым в точке $x_0 \in U$, если

$$f(x) = f(x_0) + Df_{x_0}(x - x_0) + o(|x - x_0|), \quad x \to x_0,$$

где $Df_{x_0} \colon \mathbb{R}^n \mapsto \mathbb{R}^m$ — линейное отображение, называемое производной f в точке x_0 .

Def 4.2. Функция f называется *непрерывно дифференцируемой* на U, если оно дифференцируемо в каждой точке и Df_x непрерывно зависит от x.

Thr 4.3 (Дифференицрование композиции). Если f дифференицируемо в точке x_0 , g дифференицируемо в точке $y_0 = f(x_0)$, то композиция $g \circ f$ дифференицируема в точке x_0 , и $D(g \circ f)_{x_0} = Dg_{y_0} \circ Df_{x_0}$.

Def 4.4. Производная функции f по направлению $v \in Rn$ в точке x называется

$$\frac{\partial f}{\partial v} = \lim_{t \to 0} \left(\frac{f(x + tv) - f(x)}{t} \right)$$

Lem 4.5. Если функция дифференцируема в точке x, то в этой точке

$$\frac{\partial f}{\partial v} = Df_x(v).$$

В частности для функционалов, верно что $\partial f/\partial v=df_x(v)$. Более того, выбрав в качестве v базисные векторы e_i , поймём что

$$df = \frac{\partial f}{\partial x^i} x^i,$$

 $rde dx^i - \partial u \phi \phi e p e h u u a n u koop d u h a m h u x \phi y h k u u u, o f p a s y v u u e d e o u c m e e h u u c a c u c n e o u$

Thr 4.6. Если отображение $f: U \mapsto \mathbb{R}^m$ из открытого $U \subseteq \mathbb{R}^n$ задано в координатах, как $y_i = f_i(x_1, \dots, x_n)$, для $i = 1, \dots, m$ и функции f_i имеют непрерывные частные производные на U, то f непрерывно дифференцируемо на U.

5 Системы криволинейных координат и теорема об обратном отображении

Def 5.1. *Криволинейная замена координат* — бесконечно гладкое отображение $\varphi: U \to V$ такое, что φ^{-1} определено и тоже бесконечно гладко.

Lem 5.2. Пусть открытое множество $U \subset \mathbb{R}^n$ выпукло. Для непрерывно дифференцируемого отображения $\varphi \colon U \to \mathbb{R}^m$ найдётся непрерывное отображение $A \colon U \times U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, такое что $\forall x', \ x'' \in U$

$$\varphi(x'') - \varphi(x') = A(x', x'')(x'' - x')$$

 $u A(x,x) = D\varphi_x$.

Thr 5.3 (Теорема об обратном отображении). Если отображение $\varphi \colon U \mapsto \mathbb{R}^n$ непрерывно дифференцируемо в окрестности точки x u его дифференциал $D\varphi_x$ являетсяя невырожденным линейным преобразованием, то это отображение взаимно однозначно отображает некоторую окрестность $V \ni x$ на окрестность $W \ni y$, где $y = \varphi(x)$. Обратное отображение $\varphi^{-1} \colon W \to V$ тоже непрерывно дифференцируемо.

Def 5.4. *Криволинейной системой координат* в окрестности точки $p \in \mathbb{R}^n$ называется набор таких функций, которые явяются координатами гладкого отображения окрестности p на некоторое открытое множество в \mathbb{R}^n с гладким обратным отображением.

6 Теоремы о системе неявных функций

Thr 6.1 (Теорема о неявной функции). Пусть функции f_1, \ldots, f_k непрерывно дифференцируемы в окрестности $p \in \mathbb{R}^n$ и

$$\det\left(\frac{\partial f_i}{\partial x_j}\right) \neq 0$$

 $^{^1}$ По теореме об обратном отображении для проверки системы преобразования достаточно проверить невырожденность $(\partial y_i/\partial x_j)$ в точке p, или линейную независимость dy^i в точке p.

в этой окрестности (поверхность является регулярной). Пусть $f_i(p) = y_i$. Тогда найдётся окрестности точки p вида $U \times V$, $U \subset \mathbb{R}^k$, $V \subset \mathbb{R}^{n-k}$, такая что в этой окрестности множество решений системы уравнений

$$\begin{cases} f_1(x) = y_1, \\ \dots \\ f_k(x) = y_k, \end{cases}$$

 $cosnadaem\ c$ графиком непрерывно дифференцируемого отображения $arphi\colon V o U$, заданного в координатах как

$$\begin{cases} x_1 = \varphi_1(y_1, \dots, y_k, x_{k+1}, \dots, x_n), \\ \dots \\ x_k = \varphi_k(y_1, \dots, y_k, x_{k+1}, \dots, x_n), \end{cases}$$

то есть отображения $\mathbb{R}^{n-k} \mapsto \mathbb{R}^k$.

7 Теорема о расщеплении гладкого отображения

Thr 7.1 (Теорема о расщеплении отображения на элементарные). Если отображение φ непрерывно дифференцируемо в окрестности точки $p \in \mathbb{R}^n$ и имеет обратимый $D\varphi_x$, то его можно представить в виде композиции перестановки координат, отображений координат и элементарных отображений, непрерывно дифференцируемо и возрастающим образом меняющих только одну координату $y_i = \psi_i(x_1, \dots, x_n)$.

Thr 7.2. Теоремы об обратном отображении, о неявной функции и о расщеплении отображения дают отображения класса C^k при $k \geqslant 1$, если исходные отображени были класса C^k .

Векторы и дифференциальны формы первой степени

13 Вектор, как дифференцирование

Lem 13.1. Всякую гладкую функцию, определенную в некоторой окрестности $x_0 \in \mathbb{R}^n$, в возмоно меньшей окрестности x_0 , можно представить в виде

$$f(x) = f(x_0) + \sum_{k=1}^{n} (x_k - x_{0,k}) g_k(x),$$

c гладкими g_k .

Решения (ВЕТА)

Свёртка функций и её свойства

- 1.2. 1) $f(y)g(x) \in \mathcal{L}$ и по thr. Фубини: $\int |f \cdot g| = \int |f| \cdot \int |g|$;
 - 2) то же верно для f(x-t)g(t), отличие в лин. замене коор-т с det = 1;
 - 3) требуемое равенство напрямую из (1) и (2) замена: x t = y;
 - 4) для неравенства интегрируем по $x: |\int f(x-t)g(t) dt| \leq \int |f(x-t)g(t)| dt$.

Бесконечно гладкие функции с компактным носителем

- 2.1. 1) для введённой φ достаточно: $\varphi_{\varepsilon}(x_1,\ldots,x_n) = A\varphi\left(\frac{\sqrt{n}x_1}{\varepsilon}\right)\ldots\varphi\left(\frac{\sqrt{n}x_n}{\varepsilon}\right)$.
 - 2) $\psi(x) = B \int_{-\infty}^{x} \varphi(t) dt$, выбирем $B: \psi(x) \equiv 0 \ \forall x \leqslant -1 \ \mathsf{n} \ \psi(x) \equiv 1 \ \forall x \geqslant -1;$
 - 3) достаточно положить: $\psi_{\varepsilon,\delta}(x) = \psi\left(\frac{\delta + \varepsilon 2|x|}{\varepsilon \delta}\right)$.

Приближение функций бесконечно гладкими

- 3.1. 1) $f_k(x) f(x) = \int_{\mathbb{R}}^n (f(x-t) f(x)) \varphi_k(t) dt$;
 - 2) Пусть f р-но непр. в $U_\delta(K\subset\mathbb{R}^n)$ и пусть $|f(x)-f(y)|<\varepsilon$ при $|x-y|<\delta$ там же;
 - 3) Выбирая $k: 1/k < \delta$, тогда $\varphi_k(t) \neq 0$ при $|t| < \delta$ и тогда $|f(x-t) f(x)| < \varepsilon$ при $x \in K$.
 - 4) при $x\in K$ верна р-ная сходимость: $|f_k(x)-f(x)|\leqslant \varepsilon\int_{\mathbb{R}^n}\varphi_k(x)\,dx=\varepsilon.$
 - 5) продифференцируем по параметру $\int_{\mathbb{R}^n} f(t)\varphi_k(x-t)\,dt$;
- 6) производная (5) при $x \in K$ будет зависеть только значений f в $U_{1/k}(K)$, то есть f можно считать интегрируемой при дифференцировании по параметру, что позволяет применять теорему.
- 3.2. По различным $\partial_{x_i} f * \varphi_k(x)$ получим по лемме 1.3, для производных свёрток схожее равенство, с самой f, а значит и р-ную сходимость.

$$\frac{\partial^m (f * \varphi_k)}{\partial x_{i_1} \dots \partial x_{i_m}} = \frac{\partial^m f}{\partial x_{i_1} \dots \partial x_{i_m}} * \varphi_k.$$

- 3.3. 1) по thr(??) f=h+g, где g эл. ступ., $\int_{\mathbb{R}^n}|h|\,dx<\varepsilon$; 2) по thr(1.2): $\int_{\mathbb{R}^n}|h*\varphi_k|\,dx<\varepsilon$. То есть, если окажется: $\int_{\mathbb{R}^n}|g-g*`f_k|\,dx<\varepsilon$, то

$$\int_{\mathbb{R}^n} \left| f - f * \varphi_k \right| dx \leqslant \int_{\mathbb{R}^n} \left| g - g * \varphi_k \right| dx + \int_{\mathbb{R}^n} \left| h \right| dx + \int_{\mathbb{R}^n} \left| h * \varphi_k \right| dx < 3\varepsilon.$$

- 3) Раскладывая g в сумму х-их χ_P , останется доказать для одной χ_P ;
- 4) $\chi_P \chi_P \varphi_k \neq 0$ только в $U_{1/k}(\partial P)$ и по модулю $\leqslant 1$;
- 5) То есть после интегрирования получим не более $\mu(U_{1/k}(\partial P))$.
- 6) Напрямую можно убедиться, что эта $\mu \to 0$ при $k \to 0$.