Narges Alavisamani¹, Suhas Vittal¹, Ramin Ayanzadeh¹, Poualmi Das², Moinuddin Qureshi¹

¹School of Computer Science, Georgia Institute of Technology ²Department of Electrical and Computer Engineering, University of Texas at Austin

Quantum Computers are Noisy

The main barrier of running promising applications on quantum computers is their inherent noise in the device level.

Current Physical Error Rate $\approx 10^{-4} \text{ to } 10^{-3}$ Required Error Rate $< 10^{-12}$

Quantum Error Correction (QEC) is required for forming fault-tolerant logical qubits from multiple physical qubits.

Surface Code and the Decoding Problem

Minimum Weight Perfect Matching (MWPM) is a gold standard for decoding surface codes.

Real-Time MWPM Decoder

• To prevent backlog of errors, we require to decode errors within $1\mu s$.

PROMATCH: An Efficient Predecoder

- 1. **High Accuracy:** Correctly matching the flipped bits, not limiting the accuracy of the main decoder.
- 2. **Sufficient Coverage:** Covering enough number of flipped bits, making sure that the rest is manageable by the decoder.

 Conservative Pre-decoder Pre-decoder

We propose **Promatch** that strikes the right balance between accuracy and coverage.

Conservative Pre-decoder Hierarchical Clique Greedy NEO-QEC Decoded by RT-MWPM Coverage

Promatch: An Adaptive Locality-Aware Greedy Predecoder

- Why greedy? error chains of length 1 are extremely common.
- Why locality-aware? Singletons are matched along an error chain of length higher than 1, resulting in higher weights in MWPM solution.
- Why adaptive? Promatch starts with simple matchings (isolated pairs) and to ensure sufficient coverage, it adaptively makes more risky decisions.

Overview of Promach

Evaluations

 Promatch always reaches the sufficient coverage and reduces HW to at most 10.

• Promatch outperforms prior works in accurately decoding surface code of distance 11 and 13, and also achieves MWPM logical error rate when it runs in parallel with Astrea-G, for d = 11 (up to $p = 5 \times 10^{-4}$) and d = 13 (up to $p = 3 \times 10^{-4}$).

Conclusion

Promatch extends MWPM decoding to distance 13 by utilizing adaptive predecoding, effectively simplifying high Hamming weight syndromes for faster processing. This approach enhances quantum error correction real-time decoding, especially when combined with Astrea-G, by balancing accuracy and coverage.