Chapter 5 Context-free Grammars and Languages

(Solutions/Hints)

5.1 Identify the nonterminals and terminals in the following grammars:

(a) $S \rightarrow ABa \mid b$	$A \rightarrow BB \mid aa$	$B \rightarrow bB \mid c$	$C \rightarrow cC \mid d$
(b) $S \rightarrow XY1 \mid 0$	$X \rightarrow 00X \mid 1$	$Y \rightarrow 1X1$	
(c) $S \rightarrow XY$	$X \rightarrow YSY$	$X \rightarrow YY \mid a$	$Y \rightarrow aXb \mid b$
(d) $S \rightarrow XY$	$X \rightarrow YSY$	$X \rightarrow YY \mid 1$	$Y \rightarrow 0X1 \mid 1$

Sol. (a) Terminals= $\{a, b, c, d\}$ Nonterminals= $\{S, A, B, C\}$

- (b) Terminals= $\{1, 0\}$ Nonterminals= $\{S, X, Y\}$
- (c) Terminals= $\{a, b\}$ Nonterminals= $\{S, X, Y\}$
- (d) Terminals= $\{1, 0\}$ Nonterminals= $\{S, X, Y\}$

5.2 Remove unit productions from the following grammars and generate equivalent grammar:

- (a) $S \rightarrow ABC \mid 0, A \rightarrow 1, B \rightarrow C \mid 0, C \rightarrow D, D \rightarrow E, E \rightarrow 2$
- (b) $S \rightarrow ABCD \mid 0, A \rightarrow BC \mid 1, B \rightarrow C, C \rightarrow D, D \rightarrow d$

Sol. (a)
$$S \rightarrow ABC|0$$
 $A \rightarrow 1$ $B \rightarrow C|0$ $C \rightarrow 2$ (b) $S \rightarrow ABBB|0$ $A \rightarrow BB|1$ $B \rightarrow d$

- 5.3 Convert the following CFGs to GNF:
 - (a) $S \rightarrow XY1 \mid 0$ $X \rightarrow 00X \mid 1$ $Y \rightarrow 1X1$
 - (b) $S \to XY$ $X \to YSY$ $X \to YY \mid 1$ $Y \to 0X1 \mid 1$
 - (c) $S \rightarrow Xa$ $X \rightarrow aY$ $Y \rightarrow Xa \mid b$
- Sol. (a) Let us introduce two new variables P and Q such that $P \rightarrow 1$ and $Q \rightarrow 0$. Now,

$$Y \rightarrow 1XP$$
 $X \rightarrow 0QX|1$ $S \rightarrow XYP|0$
 $S \rightarrow XYP|0$ leads to $S \rightarrow 0QXYP|1YP|0$

Total production set in GNF:

S
$$\rightarrow$$
0QXYP|1YP|0 X \rightarrow 0QX|1 Y \rightarrow 1XP

(b) $X \rightarrow 1$ and $Y \rightarrow 1$ are a lready in GNF.

Introduce a new variable P such that $P \rightarrow 1$, it is different from X and Y in the manner that they have other productions $X \rightarrow YY$ and $Y \rightarrow 0X1$ as well. Now, we have $Y \rightarrow 0XP$ and $P \rightarrow 1$ both of which are in GNF.

New production set

 $X \rightarrow YY|YSY|1$ leads to $X \rightarrow 0XPY|1Y|0XPSY|1SY|1$

 $S \rightarrow XY$ leads to $S \rightarrow 0XPYY | 1YY | 0XPSYY | 1SYY | 1YY |$

Total grammar in GNF is

 $S\rightarrow 0XPYY|1YY|0XPSYY|1SYY|1Y$

 $X\rightarrow 0XPY|1Y|0XPSY|1SY|1$

 $Y \rightarrow 0XP \mid 1$

 $P\rightarrow 1$

(c) $X \rightarrow aY$ and $Y \rightarrow b$ are already in GNF.

To convert this grammar into GNF, we modify the grammar as follow: $Y \rightarrow XP|b$

 $S \rightarrow XP$ $X \rightarrow aY$

Now the grammar can be written in GNF as follow:

 $S \rightarrow aYP$ $X \rightarrow aY$ $Y \rightarrow aYP|b$ $P \rightarrow a$

5.4 Convert the following CFG to CNF:

- (a) $S \rightarrow aAC$
- $A \rightarrow aB \mid bAB$
- $B \rightarrow b$

 $C \rightarrow c$

(b) $S \rightarrow 0X1Y$

 $X \rightarrow 0X \mid 0$

 $Y \rightarrow 1Y \mid 1$

(c) $S \rightarrow abSab \mid a \mid aAAb$

 $A \rightarrow bS \mid aAAb \mid c$

 $P \rightarrow a$

Sol. (a) $B \rightarrow b$ and $C \rightarrow c$ are already in CNF.

 $A \rightarrow XB \mid ZB$ where $X \rightarrow a$, $Z \rightarrow YA$ and $Y \rightarrow b$.

 $S \rightarrow WC$ where $W \rightarrow XA$.

Production set in CNF:

 $S \rightarrow WC$

 $W \rightarrow XA$

 $A \rightarrow XB \mid ZB$

X→a

 $Z \rightarrow YA$

 $Y \rightarrow b$

 $B \rightarrow b$

 $C \rightarrow c$

(b) $S \rightarrow PQ$ $P \rightarrow RX$

 $Q \rightarrow TY$ $R \rightarrow 0$ $T \rightarrow 1$

 $X \rightarrow RX|0$ $Y \rightarrow TY \mid 1$

 $S \rightarrow WZ | a| PQ$ $P \rightarrow XA$

 $X \rightarrow a$ $Q \rightarrow AY$

 $Y \rightarrow b$ $Z \rightarrow XY$ $A \rightarrow YS|PQ|c$

 $W \rightarrow ZS$

5.5 Identify and remove the nonreachable nonterminals from the following grammars:

- (a) $S \rightarrow XY1 \mid 0$
- $X \rightarrow 00X \mid 1$
- $Y \rightarrow 1X1$
- $Z \rightarrow 00$

(b) $S \rightarrow XZ \mid 0$

 $X \rightarrow YA \mid 1$

 $Y \rightarrow Z1 \mid A2$

 $A \rightarrow 01$

 $B \rightarrow X \mid 2$

Sol. (a) $V = \{S, X, Y, Z\}$

 $W1 = \{S\}$

 $W2=\{S\} \cup \{X,Y\}=\{S,X,Y\}$

W3=W2

Non reachable terminals= V-W3=Z

Grammar without non reachable terminals:

 $S \rightarrow XY1 \mid 0 \quad X \rightarrow 00X \mid 1 \quad Y \rightarrow 1X1$

(b) $V = \{S, X, Y, Z, A, B\}$

 $W1 = \{S\}$

 $W2=\{S\} \cup \{X,Z\}=\{S,X,Z\}$

 $W3=\{S, X, Z\} \cup \{Y, A\}=\{S, X, Z, Y, A\}$

 $W4=\{S, X, Z, Y, A\} \cup \{Z\}=\{S, X, Z, Y, A\}$

W5=W4

Non reachable term in als= V-W5=B

Grammar without non reachable terminals:

 $S \rightarrow XZ \mid 0$ $X \rightarrow YA \mid 1$ $Y \rightarrow Z1 \mid A2$ $A \rightarrow 01$

5.6 Identify the nonterminals from the following grammars, which fail to generate terminals:

(a)
$$S \rightarrow XY1 \mid 0$$
 $X \rightarrow 00X$

$$X \rightarrow 00X$$

$$Y \rightarrow 1X1 \mid 2$$

(b)
$$S \rightarrow XZ$$

(b)
$$S \rightarrow XZ \mid 0$$

$$X \rightarrow YA \mid 1$$

$$Y \rightarrow Z1 \mid A2 \mid 3$$

$$Z \rightarrow 3Z$$

Sol. (a) $V = \{S, X, Y\}$

$$W1 = \{S, Y\}$$

$$W2=W1$$

Terminals which fail to generate terminals:

$$V-W2=\{X\}$$

(b)
$$V = \{S, X, Y, Z, A\}$$

$$W1 = \{S, X, Y\}$$

$$W2=W1$$

Terminals which fail to generate terminals:

$$V-W2=\{Z, A\}$$

5.7 Consider the following grammar:

$$S \rightarrow ASA \mid BSB \mid ASB \mid BSA \mid 1$$

$$A \rightarrow 0$$

$$B \rightarrow 1$$

Derive the strings 010, 111, 00101, and 11100 using both left and right derivation.

Sol. String 010

Left derivation: $S \Rightarrow ASA \Rightarrow 0SA \Rightarrow 01A \Rightarrow 010$

Right derivation : $S \Rightarrow ASA \Rightarrow AS0 \Rightarrow A01 \Rightarrow 010$

String 111

Left derivation: $S \Rightarrow BSB \Rightarrow 1SB \Rightarrow 11B \Rightarrow 111$

Right derivation : $S \Rightarrow BSB \Rightarrow BS1 \Rightarrow B11 \Rightarrow 111$

String 00101

Left derivation: $S \Rightarrow ASB \Rightarrow 0SB \Rightarrow 0ASAB \Rightarrow 00SAB \Rightarrow 001AB \Rightarrow 0010B \Rightarrow 00101$

Right derivation:

 $S \Rightarrow ASB \Rightarrow AS1 \Rightarrow AASA1 \Rightarrow AAS01 \Rightarrow AAS01 \Rightarrow AA101 \Rightarrow A0101 \Rightarrow 00101$

String 11100

Left derivation:

 $S \Rightarrow BSA \Rightarrow BBSAA \Rightarrow 1BSAA \Rightarrow 11SAA \Rightarrow 111AA \Rightarrow 1110A \Rightarrow 11100$

Right derivation: $S \Rightarrow BSA \Rightarrow BSO \Rightarrow BBSA 0 \Rightarrow BBSO \Rightarrow BB100 \Rightarrow B1100 \Rightarrow 11100$