

3D CNNS FOR MUON REGRESSION

Giles Strong, Tommaso Dorigo, Lukas Layer Quarks to Cosmos, Online - 13/07/21

OVERVIEW

- Convolutional Kernels
- CNNs for muon regression
- Paper architecture

CONVOLUTIONAL KERNELS

LINEAR TRANSFORMATION

Given a vector of n features x, a neuron
 (N) in a fully connected layer transforms the vector according to:

•
$$\bar{w}_j \cdot \bar{x} + b_j \equiv \sum_{i=0}^{n-1} \left[w_{j,i} \times x_i \right] + b_j = h_j$$

- Where \underline{w}_{j} and $\overset{i=0}{b_{j}}$ are the weight vector and bias parameters of neuron N_{j}
- Other neurons have their own weights and biases, and so produce differing values of elements in the output h:

$$\mathbf{W} \cdot \bar{x} + \bar{b} = \bar{h}$$

SERIES DATA

- Consider now if the input data consist of a series of m elements, each with their own set of features x
- We can apply a fully-connected layer to this data by transforming each feature vector separately
 - The linear transformation is convolved over the ID series

Series elements

KERNEL SIZE

- In the previous case, we can refer to the neuron as having kernel size of I
 - For each transformation, it only considers the features of the current element of the ID series of data
- If our series is ordered somehow, we can instead base the output of the neuron on the neighbourhood of elements, not just the current element
 - The weight of N_j is now a 2D matrix but is still applied as an element-wise product and sum to the inputs inside the kernel

$$\sum \left[\mathbf{W}_j \odot \bar{x} \right] + b_j = h_j$$

Kernel size = 3, centred on element I

PADDING

- With a kernel size > I, we are unable to compute outputs for elements near the start and end of the series
 - Either we can live with it and have an output with few elements than our input
 - Or we can pad the input series with sufficient elements to allow us to compute outputs for all elements.
- Common approaches:
 - Zero padding elements have feature values of zero
 - Reflection padding imagine a mirror at the edge, the padding elements' features are equal to the mirror reflection

Kernel size = 3, centred on element 0

h_{o,j}

With padding, we can compute an output of element 0, even with a larger kernel

STRIDE

- So far we have stepped the kernel such that it is centred over each series element in turn
 - A stride-I kernel the kernel is shifted by a distance of I between applications
- The stride can be varied, e.g. a stride-2 kernel would be applied on every other series element
 - The resulting output would only have half the number elements as the original series
 - Through using larger kernels, the output can still depend on all the input elements, even if a kernel is not centred on them
 - This allows the series to be downsampled

Kernel size = 3, stride = 2,

Kernel skips out element I

Output only has half the number of elements as the input

POOLING

- An alternative method of downsampling is to pool elements
 - Within a kernel, compute a fixed, order-invariant function of the features
 - E.g. maximum value or mean value
- Not as powerful as downsampling by strided convolutions
 - But still is sometimes useful

- Adaptive pooling:
 - Kernel size adapts to requested number of output elements
 - Useful when series vary in length by ensuring the same number of outputs are always produced

HIGHER-ORDER CONVOLUTIONS

- So far just considered ID series of elements with features
- Sometimes data contains an inherent structure which makes it beneficial to work with in a higher number of dimensions
 - E.g. pixels in an image naturally have a 2D layout
 - Could reshape into a ID series by concatenating rows of pixels, but connections to pixels above and below would be lost

Same concepts still apply
But each neuron now has a
rank-3 tensor for the weight:
(kernel size x, kennel size y,
number of features (channels))

HIGHER-ORDER CONVOLUTIONS

- In the case of 3D data, the kernel is now also 3D, with a rank-4 weight tensor
- Channel dimension not shown for data or kernel

BATCHNORM

- Parameter initialisation schemes expect unit-Gaussian inputs, but signals can diverge from this as they pass through the network
- <u>Batchnorm</u> renormalises signals
 - Reduces internal covariate shift
- Process also applies learnable rescaling and offset to renormalised signal
 - Can be used to unlearn renormalisation (BN acts as identity function)
 - But also provides convenient parameters to rescale and shift each feature in the signal

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathbf{Var}[x^{(k)}]}}$$
$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

 γ and β are learnable via backpropagation

BATCHNORM

Nominally:

- During training E & Var are computed on the current batch
- Running averages of E & Var are tracked during training, e.g. E_{avg} — 0.9E_{avg} +0.1E_{batch}
- At inference time E & Var are the tracked averages

Running batchnorm (code example):

- The running average of sums and sum-of-squares of features are tracked
- E & Var computed on the fly from tracked averages
- Same transformation applied during training & inference
- Helps with stability & generalisation on sparse data (e.g. muir regression)

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$
$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

 γ and β are learnable via backpropagation

CNNS IN PYTORCH

kernel size=kernel sz, padding=padding, stride=stride, Number of Number of Can either be an Number of Stride in Whether channels features to integer (kernel zero-padded (x,y,z), or to (features) to produce: same size in every elements to single include a expect in the Every kernel dimension), or a include. Either number for bias incoming produces one tuple of integers integer for same stride term. data channel; this (size in x,y,z) same number Generally in every sets the number in each dimension not used of different dimension, or when kernels to apply specify per **BatchNo** dimension as to the incoming rm is data a tuple. present kernel size//2 results in no 14 loss of

elements

CNNS FOR MUON REGRESSION

CONCEPTUAL IDEA

- Data is:
 - Single channel: recorded energy
 - 3D inherent structure
 - High multiplicity (50x32x32 = 51,200 elements total)
- Use 3D CNN to downsample and optimally process raw data
 - Output of CNN is reshaped into a flat vector of features
- Fully connected layers applied to CNN output to regress to muon energy
 - Single output: predicted energy

BASELINE CNN

- 3D grid downsampled 4 times by padded, stride-2 kernels
 - $(50,32,32) \rightarrow (25,16,16) \rightarrow (13,8,8) \rightarrow (7,4,4) \rightarrow (4,2,2)$
- Compensate for downsampling by increasing number channels in data
 - I → 8 in first downsample
 - channel_coef * n_channels on subsequent downsamples
- CNN output reshaped into a flat vector with 16*channels elements
 - In this case: 27 channels = 432 elements

```
rm3d(
  (conv_layers): Sequential(
  (0): Sequential(
  (0): Sequential(
   (0): Conv3d(1, 8, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (1): Sequential(
   (0): Conv3d(8, 12, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (1): ReLU()
  )
  (2): Sequential(
   (0): Conv3d(12, 18, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (1): ReLU()
  )
  (3): Sequential(
   (0): Conv3d(18, 27, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (1): ReLU()
  )
  )
  (6c_layers): Sequential(
   (0): Sequential(
   (0): Linear(in_features=432, out_features=216, bias=True)
   (1): ReLU()
  )
  (1): Sequential(
   (0): Linear(in_features=216, out_features=108, bias=True)
   (1): ReLU()
  )
  (2): Sequential(
   (0): Linear(in_features=108, out_features=1, bias=True)
  )
}
```

DEEPER CNN

- Can use n_layers_per_res to add additional stride-1 layers in between each stride-2 layer
 - Allows use to build deeper networks whilst retaining the same output size

```
(conv layers): Sequential(
 (0): Sequential(
   (0): Conv3d(1, 8, kernel size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (0): Conv3d(8, 8, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
   (1): ReLU()
   (0): Conv3d(8, 12, kernel size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (1): ReLU()
   (0): Conv3d(12, 12, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
  (4): Sequential(
   (0): Conv3d(12, 18, kernel size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (0): Conv3d(18, 18, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
   (0): Conv3d(18, 27, kernel_size=(3, 3, 3), stride=(2, 2, 2), padding=(1, 1, 1), bias=False)
   (0): Conv3d(27, 27, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
   (1): ReLU()
(fc layers): Sequential(
   (0): Linear(in features=432, out features=216, bias=True)
   (1): ReLU()
   (0): Linear(in_features=216, out_features=108, bias=True)
   (1): ReLU()
 (2): Sequential(
   (0): Linear(in_features=108, out_features=1, bias=True)
```

PAPER ARCHITECTURE

PAPER ARCHITECTURE - CNN BLOCK

- Custom 3D CNN arch aims to learn small corrections to reco. Energy
 - Reco. energy summed up by 2x2 filter
 - Correction learnt by <u>residual convolutional layers</u>
 - Summed reco. energy is concatenated to output, so always available to later layers
- Running BatchNorm, helps with data sparsity
 - Applies running average during training, rather than batchwise stats
- Swish-I used as activation function
- <u>Squeeze-excitation</u> block further improves performance

PAPER ARCHITECTURE - FULL MODEL

- Can build deeper networks by not downsampling the grid
- Further downsampling uses pre-activation layout
- Full CNN contains 12 blocks, followed by mean and max aggregation
 - 51,200 inputs \rightarrow 98 features
- CNN head outputs combined with HL features and fed through 3 FC layers

PAPER ARCHITECTURE - ABLATION

- CNN much better than flattening raw hits
- Running BN improves performance and stability
- ResNet layout is useful
- Other additional components provide indications of improvement

Ablation	MI	Change in MI [%]
Default	19.42 ± 0.08	N/A
No BN	18.5 ± 0.3	-5 ± 1
No identity path	18.72 ± 0.08	-3.6 ± 0.6
Nominal BN	19.2 ± 0.2	-1.1 ± 0.9
No E-pass	19.30 ± 0.05	-0.6 ± 0.5
No SE	19.33 ± 0.09	-0.5 ± 0.6
No pooling	19.4 ± 0.1	-0.4 ± 0.7
No CNN	17.45 ± 0.09	-10.2 ± 0.6