NLP HW2: Text Classification

Zhang Naifu 2018280351 znf18@mails.tsinghua.edu.cn funaizhang@github

> Tsinghua University May 8, 2019

About

In this homework, we perform sentiment analysis on the *stanfordSentimentTreebank* with a **CNN**. This folder contains the following.

- model.py contains build cnn() for building the model
- train.py contains *train_model* for training the model, and the actual execution of the many variations of models
- test.py contains eval_models() for testing the trained models
- utils.py misc helper functions
- · results.csv summary of results
- plots plots of training & validation losses & acc

1 Model Description

All the following model variations adopt this CNN architecture, similar to the one used in [1].

Figure 1: architecture

There are 4 parameters to vary, (namely: no. of hidden layers, hidden size, whether dropout is used, whether Glove embeddings are used). On top of this, I have also looked at regularizing the model. There are hence $2^5 = 32$ model variations in total.

In theory, a complete grid search should be performed over all variations. However, in the interest of brevity, I have studied only the few notable ones below. I have used *model 1* as a benchmark for the experiments.

model	hidden_size	hidden_layers	dropout	regularize	trainable_embeddings
model1	512	1	0.2	0.05	F
model2	256	1	0.2	0.05	F
model3	512	3	0.2	0.05	F
model4	512	1	None	0.05	F
model5	512	1	0.2	None	F
model6	512	1	None	None	F
model7	512	1	0.2	0.05	T

All models are trained with the following hyperparameters. The limited attempts made to fine-tune these show that varying them within the reasonable range does not really impact results.

Hyperparameters				
Batch size	128			
Epochs	10			
Max. no. of words per sentence	60			

2 Results and Discussion

Results are reported in the table below.

model	train_acc	val_acc	test_acc
model1	93.11%	42.51%	44.52%
model2	88.03%	44.05%	44.03%
model3	26.94%	26.25%	28.78%
model4	95.21%	43.23%	44.89%
model5	96.10%	42.23%	43.57%
model6	97.02%	41.14%	42.26%
model7	96.06%	42.23%	46.38%

Hidden size (model 2): 512 performs better, but really not much difference.

<u>Hidden layer</u> (*model 3*): Having 3 hidden layers hinders *test_acc* hugely. This should not be the case - it is possible that fiddling with the adjacent layers in the model could alter this result.

<u>Dropout and Regularization</u> (*models 4-6*): These prevent models from overfitting. Having these parameters set to non-zero improves *test_acc. model 6* is especially plagued with overfitting, with a high *train acc* and low *test acc.*

Trainable embeddings (*model 7*): This is in theory equivalent to not using pre-trained embeddings, but with a different initialisation. This model achieves the highest *test_acc*, meaning that using no pre-trained embeddings would eventually yield the best performance.

The loss and acc graph of model 1 is plotted below. Please refer to "plots" folder for other models.

Figure 2: Training & validation loss & acc

3 References

[1] Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. [2] Chollet, F. (2016). Keras blog. https://blog.keras.io/using-pre-trained-word-embeddings-in-a-kerasmodel.html