# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

### ОТЧЕТ

по лабораторной работе №2 по дисциплине «Компьютерная графика»

Тема: Примитивы OpenGL.

| Студент гр. 0304 | <br>Алексеев Р.В.  |
|------------------|--------------------|
| Преподаватель    | <br>Герасимова Т.В |

Санкт-Петербург

2023

# Цель работы.

- Ознакомление с основными примитивами OpenGL.
- Освоение возможности подключения графической библиотеки в среду разработки.

#### Задание.

На базе разработанной вами оболочки из 1 работы разработать программу реализующую представление тестов отсечения ( glScissor), прозрачности (glAlphaFunc), смешения цветов (glBlendFunc) в библиотеке OpenGL на базе разработанных вами в предыдущей работе примитивов.

Разработанная на базе шаблона программа должна быть пополнена возможностями остановки интерактивно различных атрибутов тестов через вызов соответствующих элементов интерфейса пользователя

## Выполнение работы.

Работы была выполнена на основе программы, созданой в ходе 1 лабораторной работы при помощи Qt и библиотеки OpenGL.

```
Для ыполнения поставленной задачи был изменен метод paintGL():

void GLWidget::paintGL()

{
    glEnable(GL_SCISSOR_TEST);
    glEnable(GL_ALPHA_TEST);
    glEnable(GL_BLEND);

    glClearColor(1, 1, 1, 0);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glPointSize(6);
    glLineWidth(3);

    glAlphaFunc(visibleType, coeffVisible);
    glScissor(scissorsX * sizeW, scissorsY * sizeH, scissorsW * (1.0 - scissorsX) * sizeW, scissorsY) * sizeH);
    glBlendFunc(sfactorType, dfactorType);
```

```
glBegin(primType);
        glColor4d(0.0f, 0.0f, 1.0f, 0.08);
        glVertex2d(0.0, 0.8);
        glColor4d(0.0f, 1.0f, 1.0f, 0.13);
        glVertex2d(0.4, 0.6);
        glColor4d(0.0f, 1.0f, 0.0f, 0.31);
        glVertex2d(0.8, 0.0);
        glColor4d(1.0f, 1.0f, 0.0f, 0.45);
        glVertex2d(0.3, -0.6);
        glColor4d(1.0f, 0.0f, 0.0f, 0.6);
        glVertex2d(0.0, -0.8);
        glColor4d(1.0f, 0.0f, 1.0f, 0.71);
        glVertex2d(-0.3, -0.7);
        glColor4d(0.0f, 1.0f, 0.7f, 0.87);
        glVertex2d(-0.8, 0.0);
        glColor4d(0.5f, 0.5f, 1.0f, 1.0);
        glVertex2d(-0.4, 0.6);
    glEnd();
    glDisable(GL_SCISSOR_TEST);
    glDisable(GL_ALPHA_TEST);
    glDisable(GL_BLEND);
}
```

Для теста прозрачности был вызван метод glAlphaFunc(), который принимает тип — visibleType, и значение ref - coeffVisible, отностительно которого будет выполняться сравнивание.

Для теста отсечения был вызван метод *glScissor()*, который принимает координаты левого нижнего угла и ширину и длину области отрисовки.

Для теста смешивания цветов был вызван метод glBlendFunc(), который принимает тип вычисления входящих факторов — sfactorType, и тип вычисления факторов смешивания — dfactorType.

## Тестирование.

Был выполнен ряд тестов с разными входными параметрами, результаты представлены на рис. 1-5.



Рисунок 1 — Изначальные параметры без тестов.



Рисунок 2 — Тестирование прозрачности.



Рисунок 3 — Тестирование отсечения.



Рисунок 4 — Тестирование смешения цветов.



Рисунок 5 — Одновременное тестирование прозрачности, отсечения и смешивания цветов.

# Выводы.

В ходе работы была дополнена программа из лабораторной работы 1 так, чтобы было возможно провести тесты прозрачности, отсечения и смешивания цветов.