TP2 – Droites de régression

Exercice 1 : estimation de D_{YX} par maximum de vraisemblance

Lancez le script donnees.m, qui affiche n points $P_i = (x_i, y_i)$ du plan censés être alignés. En utilisant l'équation paramétrique y = ax + b d'une droite et en notant $r_{a,b}(P_i) = y_i - ax_i - b$ le résidu de cette équation pour le point P_i , il est légitime de modéliser ces résidus par une loi normale centrée :

$$f_{\sigma,a,b}(P_i) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{r_{a,b}(P_i)^2}{2\sigma^2}\right\}$$
 (1)

La droite de régression de Y en X d'un tel nuage de points, notée D_{YX} , est la droite d'équation paramétrique $y = a^*x + b^*$, où a^* et b^* sont les valeurs des paramètres a et b qui maximisent la log-vraisemblance :

$$(\sigma^*, a^*, b^*) = \underset{(\sigma, a, b) \in \mathbb{R}^+ \times \mathbb{R}^2}{\operatorname{arg \, max}} \left\{ \ln \left[\prod_{i=1}^n f_{\sigma, a, b}(P_i) \right] \right\} = \underset{(\sigma, a, b) \in \mathbb{R}^+ \times \mathbb{R}^2}{\operatorname{arg \, min}} \left\{ n \ln \sigma + \frac{1}{2\sigma^2} \sum_{i=1}^n r_{a, b}(P_i)^2 \right\}$$
(2)

Si l'on suppose l'écart-type du bruit σ fixé, alors le problème se simplifie :

$$(a^*, b^*) = \underset{(a,b) \in \mathbb{R}^2}{\operatorname{arg \, min}} \left\{ \sum_{i=1}^n r_{a,b}(P_i)^2 \right\} = \underset{(a,b) \in \mathbb{R}^2}{\operatorname{arg \, min}} \left\{ \sum_{i=1}^n (y_i - ax_i - b)^2 \right\}$$
(3)

La résolution de (3) par tirages aléatoires n'est pas aussi simple qu'il y paraît, car d'une part, les inconnues a et b ne sont pas bornées, et d'autre part, a ne suit pas une loi uniforme. Néanmoins, il est facile de montrer que D_{YX} contient le centre de gravité G. On peut donc calculer les coordonnées (x_G, y_G) de G, puis centrer les données. L'équation de D_{YX} devenant $y' = a^*x'$ après changement d'origine, le problème se simplifie encore :

$$a^* = \operatorname*{arg\,min}_{a \in \mathbb{R}} \left\{ \sum_{i=1}^n (y_i' - ax_i')^2 \right\} = \tan \left[\operatorname*{arg\,min}_{\psi \in]-\frac{\pi}{2}, \frac{\pi}{2}[} \left\{ \sum_{i=1}^n (y_i' - \tan \psi \, x_i')^2 \right\} \right]$$
(4)

Dans (4), la deuxième égalité vient de ce que le paramètre a d'une droite est égal à la tangente de son angle polaire ψ . La résolution de (4) peut être effectuée par tirages aléatoires de ψ , selon une loi uniforme sur $]-\frac{\pi}{2},\frac{\pi}{2}[$. Complétez le script exercice_1.m de façon à estimer ψ^* , puis les paramètres a^* et b^* , en suivant ce procédé.

Exercice 2 : estimation de D_{YX} par résolution d'un système linéaire

Le critère à minimiser dans (2) s'écrit $\mathcal{F}(\sigma,a,b)=n$ ln $\sigma+\frac{1}{2\sigma^2}\sum_{i=1}^n r_{a,b}(P_i)^2$. Le problème (2) peut donc également être considéré comme un problème d'optimisation différentiable. En notant $\mathcal{G}(a,b)=\sum_{i=1}^n r_{a,b}(P_i)^2$:

$$\nabla \mathcal{F}(\sigma, a, b) = 0 \quad \Longleftrightarrow \quad \begin{cases} \nabla_{\sigma} \mathcal{F}(\sigma, a, b) = 0 \\ \nabla_{a, b} \mathcal{F}(\sigma, a, b) = 0 \end{cases} \quad \Longleftrightarrow \quad \begin{cases} \sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} r_{a, b}(P_{i})^{2} \\ \nabla \mathcal{G}(a, b) = 0 \end{cases}$$
 (5)

La première de ces équations était prévisible, puisque c'est la définition même de la variance. Quant à la deuxième équation, elle correspond à l'optimalité du critère à minimiser dans (3). Or, ce critère s'écrit aussi :

$$\mathcal{G}(a,b) = ||AX - B||^2 \quad \text{, avec } A = \begin{bmatrix} x_1 & \dots & x_n \\ 1 & \dots & 1 \end{bmatrix}^{\top}, X = \begin{bmatrix} a \\ b \end{bmatrix} \text{ et } B = \begin{bmatrix} y_1 & \dots & y_n \end{bmatrix}^{\top}$$
 (6)

Minimiser $\mathcal{G}(a,b)$ revient donc à chercher une solution approchée du système linéaire AX = B, au sens des moindres carrés ordinaires. Le problème se résout en écrivant les équations normales $A^{\top}AX = A^{\top}B$, dont la solution s'écrit $X^* = (A^{\top}A)^{-1}A^{\top}B = A^{+}B$, où $A^+ = (A^{\top}A)^{-1}A^{\top}$ est la matrice pseudo-inverse de A (pinv).

Complétez le script exercice_2.m de manière à comparer cette méthode d'estimation de D_{YX} avec celle de l'exercice 1. Observez l'évolution des résultats lorsque la valeur de nb_tirages diminue. Testez également différentes valeurs du nombre $n \ge 2$ de données.

Exercice 3 : estimation de D_{\perp} par maximum de vraisemblance

Une droite D du plan peut également être définie par son équation cartésienne normalisée $x\cos\theta + y\sin\theta = \rho$:

- θ est l'angle polaire du vecteur \vec{v} orthogonal à D, de norme 1, tel que $\theta \in]0,\pi]$ (cf. figure 1).
- À partir d'un point P = (x, y) quelconque de D, on peut calculer le second paramètre $\rho = x \cos \theta + y \sin \theta$.

FIGURE 1 – Les droites D_- et D_+ correspondent aux paramètres $(\theta, \rho_-) = (130, -1)$ et $(\theta, \rho_+) = (130, 1)$.

Si l'on désigne par $r_{\theta,\rho}(P_i) = x_i \cos \theta + y_i \sin \theta - \rho$ le résidu au point P_i de l'équation cartésienne normalisée, il semble à nouveau légitime de modéliser ces résidus par une loi normale centrée :

$$f_{\sigma,\theta,\rho}(P_i) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{r_{\theta,\rho}(P_i)^2}{2\sigma^2}\right\}$$
 (7)

La droite de régression en distance orthogonale de ce nuage de points, notée D_{\perp} , est la droite d'équation $x\cos\theta^* + y\sin\theta^* = \rho^*$, où θ^* et ρ^* sont les valeurs des paramètres θ et ρ qui maximisent la log-vraisemblance :

$$(\sigma^*, \theta^*, \rho^*) = \underset{(\sigma, \theta, \rho) \in \mathbb{R}^+ \times [0, \pi] \times \mathbb{R}}{\operatorname{arg max}} \left\{ \ln \left[\prod_{i=1}^n f_{\sigma, \theta, \rho}(P_i) \right] \right\} = \underset{(\sigma, \theta, \rho) \in \mathbb{R}^+ \times [0, \pi] \times \mathbb{R}}{\operatorname{arg min}} \left\{ n \ln \sigma + \frac{1}{2\sigma^2} \sum_{i=1}^n r_{\theta, \rho}(P_i)^2 \right\}$$
(8)

En supposant σ fixé, et sachant que la droite de régression D_{\perp} contient elle aussi le centre de gravité G, la résolution du problème (8) est en tout point analogue à celle du problème (2). Par analogie avec (4) :

$$\theta^* = \operatorname*{arg\,min}_{\theta \in \,]0,\pi]} \left\{ \sum_{i=1}^n (x_i' \cos \theta + y_i' \sin \theta)^2 \right\} \tag{9}$$

Complétez le script exercice_3.m de manière à estimer les paramètres θ^* et ρ^* en suivant ce procédé.

Exercice 4 : estimation de D_{\perp} par résolution d'un système linéaire

Le critère $\mathcal{I}(\theta) = \sum_{i=1}^{n} (x_i' \cos \theta + y_i' \sin \theta)^2$ à minimiser dans (9) s'appelle l'*inertie*. Il s'écrit également :

$$\mathcal{I}(\theta) = \|CY\|^2 \quad , \text{ avec } C = \begin{bmatrix} x_1' & \dots & x_n' \\ y_1' & \dots & y_n' \end{bmatrix}^\top \text{ et } Y = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 (10)

Or, la solution approchée du système linéaire CY = O, au sens des moindres carrés ordinaires, vaut $C^+O = O$. Pour éviter cette solution, on impose la contrainte ||Y|| = 1 (résolution approchée au sens des moindres carrés totaux). Ce nouveau problème se résout en introduisant le lagrangien $\mathcal{L}(Y,\lambda) = ||CY||^2 + \lambda (1 - ||Y||^2)$, où λ est un multiplicateur de Lagrange. La condition d'optimalité de \mathcal{L} s'écrit :

$$\nabla \mathcal{L}(Y,\lambda) = 0 \iff \begin{cases} \nabla_Y \mathcal{L}(Y,\lambda) = 0 \\ \nabla_\lambda \mathcal{L}(Y,\lambda) = 0 \end{cases} \iff \begin{cases} C^\top CY = \lambda Y \\ \|Y\| = 1 \end{cases}$$
 (11)

Sachant que $C^{\top}C$ est symétrique réelle, cette matrice admet une base orthonormée de vecteurs propres. De plus, comme $C^{\top}C$ est semi-définie positive, ses valeurs propres sont positives ou nulles. Le minimiseur de $\mathcal{I}(\theta)$ de norme 1, noté Y^* , est donc un des deux vecteurs propres associés à la plus petite valeur propre de $C^{\top}C$. En effet, pour un vecteur propre Y_p de norme 1, associé à la valeur propre $\lambda_p: \|CY_p\|^2 = Y_p^{\top}C^{\top}CY_p = \lambda_p Y_p^{\top}Y_p = \lambda_p$.

Complétez le script exercice_4.m de manière à comparer cette méthode d'estimation de D_{\perp} avec celle de l'exercice 3. Observez l'évolution des résultats pour différentes valeurs de nb_tirages et de n.

Enfin, affichez sur une même figure les droites de régression D_{YX} et D_{\perp} : que constatez-vous?