CS2100 Comp Org Notes

AY23/24 Sem 1, github.com/gerteck

12. Boolean Algebra

Digital Circuits

- Two voltage levels, 1 for high, 0 for low.
- Digital circuits over analog circuits are more reliable, specified accurarcy (determinable).
- Digital circuits abstracted using simple mathematical model: (Boolean Algebra)
- Design, Analysis and simplification of digital circuit:
 Digital Logic Design.
- **Combinational**: no memory, output depends solely on the input. (gates, adders, multiplexers)
- **Sequential:** with memory, output depends on both input and current state. (counters, registers, memories)

Boolean Algebra

connectives in order of precedence:

- **negation** A' equivalent to **NOT**
- conjunction $A \cdot B$ equivalent to **AND**
- disjunction A + B equivalent to \mathbf{OR}
- Note: always write the AND operator ·, do not omit, as it may be confused with a 2 bit value, AB.
- **Truth Table**: Provides listing of every possible combination of inputs and corresponding outputs. We may prove using truth table by comparing columns.

Duality

- **Duality**: if the AND/OR operators and identity elements 0/1 interchanged in a boolean equation, it remains valid.
- e.g. the dual equation of $a+(b\cdot c)=(a+b)\cdot (a+c)$ is $a\cdot (b+c)=(a\cdot b)+(a\cdot c)$., where if one is valid, then its dual is also valid.

Laws & Theorems of Boolean Algebra

Identity laws	
A + 0 = 0 + A = A	$A \cdot 1 = 1 \cdot A = A$
Inverse/complement laws	
A + A' = A' + A = 1	$A \cdot A' = A' \cdot A = 0$
Commutative laws	
A + B = B + A	$A \cdot B = B \cdot A$
Associative laws *	
A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Distributive laws	
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$

Idempotency					
X + X = X	$X \cdot X = X$				
One element / Zero element					
X + 1 = 1 + X = 1	$X \cdot 0 = 0 \cdot X = 0$				
Involution					
(X')' = X					
Absorption 1					
$X + X \cdot Y = X$	$X \cdot (X + Y) = X$				
Absorption 2					
$X + X' \cdot Y = X + Y$	$X \cdot (X' + Y) = X \cdot Y$				
DeMorgans' (can be generalised to more than 2 variables)					
$(X + Y)' = X' \cdot Y'$	$(X \cdot Y)' = X' + Y'$				
Consensus					
$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$	$(X+Y)\cdot(X'+Z)\cdot(Y+Z)=(X+Y)\cdot(X'+Z)$				

left/right equations are duals of each other

Proving Theorems

• Theorems can be proved using truth table, or by algebraic manipulation using other theorems/laws.

```
Example: Prove absorption theorem X + X-Y = X

X + X Y = X + X Y (by identity law)

= X (1+Y) (by distributivity)

= X 1 (by one element law)

= X (by identity law)

By the principle of duality, we may also cite (without proof) that X (X+Y) = X
```

Boolean Functions, Complements

- Represented by F, e.g. $F1(x, y, z) = x \cdot y \cdot z'$.
- To prove F1 = F2, we may use boolean algebra, or use truth tables.
- Complement Function is denoted as F', obtained by interchanging 1 with 0 in function's output values.

Standard Forms

- Literals: A Boolean variable on its own or in its complemented form. (e.g. x, x')
- **Product Term**: A single literal or a logical product (AND, ·) of several literals. (e.g. $x, x \cdot y \cdot z'$)
- Sum Term: A single literal or a logical sum (OR +) of several literals. (e.g. A + B')
- **sum-of-products** (**SOP**) **expression**: A product term or a logical sum (OR +) of several product terms.
- **product-of-sums (POS) expression**: A sum term or a logical product (AND) of several sum terms.
- Every boolean expr can be expressed in SOP/POS form.

Minterms and Maxterms

- minterm (of n variables): a product term that contains n literals from all the variables; denoted m0 to $m[2^n 1]$
- maxterm (of n variables): a sum term that contains n literals from all the variables; denoted M0 to $M[2^n 1]$
- Each minterm is the complement (m2'=M2) of its corresponding maxterm, vice versa.

	х		Minterms		Maxterms		
		У	Term	Notation	Term	Notation	
	0	0	x'·y'	m0	х+у	M0	
	0	1	x'·y	m1	x+y'	M1	
	1	0	x·y'	m2	x'+y	M2	
	1	1	x·y	m3	x'+y'	M3	

Canonical Forms

- Canonical/normal form: a unique form of representation.
- **Sum-of-minterms** = Canonical sum-of-products
- **Product-of-maxterms** = Canonical product-of-sums

• We can convert between sum-of-minterms and product-of-maxterms easily, by DeMorgan's.

13. Logic Gates & Simplification

Logic Gates

- Fan-in: The number of inputs of a gate $\geq 1, 2$.
- Implement bool exp / function as logic circuit.

Universal Gates

- universal gate: can implement a complete set of logic.
- $\{AND, OR, NOT\}$ are a complete set of logic, sufficient for building any boolean function.
- $\{NAND\}$ and $\{NOR\}$ themselves a complete set of logic. Implement NOT/AND/OR using only NAND or NOR gates.

SOP and POS

- an SOP expression can be easily implemented using o 2-level AND-OR circuit or 2-level NAND circuit
- a POS expression can be easily implemented using o 2-level OR-AND circuit or 2-level NOR circuit

Algebraic Simplification

- Function Simplification: Make use of alegbraic (using theorems) or Karnaugh Maps (easier to use, limited to no more than 6 variables) or Quine-McCluskey.
- Algebraic Simplification: aims to minimise
- 1. number of literals (prioritised over number of terms)
- 2. number of terms.

Half Adder

outputs

• Half adder is a circuit that adds 2 single bits (X, Y) to produce a result of 2 bits (C, S).

$$\circ C = X \cdot Y; \qquad S = S \oplus Y$$

	Inp	uts	Outputs		
	Х	Υ	C	S	
	0	0	0	0	
	0	1	0	1	
	1	0	0	1	
ı	1	1	1	0	

Universal Gates

Gate Symbols

AND Gate

OR Gate

(NOT gate)

0

0

0 0

0

0

0

1

1

B (A ⊕ B)'

0

0

XOR gate

XNOR gate

(Example: A O B)

y O		

NAND as Universal Gate (Complete Logic Set)

NOR as Universal Gate (Complete Logic Set)

NOR

Proof: Implement NOT/AND/OR using only NOR gates.

XOR

XNOR

NAND

Gray Code

• Only a **single bit change** from one code value to the next. 4 bit standard gray code:

Decimal	Binary	Gray Code	Decimal	Binary	Gray code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

- not restricted to decimal digits: n bits can have up to 2^n values.
- aka reflected binary code. To generate gray code, reflect.
- not unique multiple possible Gray code sequences

K Maps

- Simplify (SOP) expressions, with fewest possible product terms and literals.
- Based on **Unifying Theorem** (A + A' = 1), **complement law.**
- Abstract form of Venn diagram, matrix of squares, each square represents a minterm.
- Two adjacent squares represent minterms that differ by exactly one literal.

K Map for a function:

- The K-map for a function is filled by putting:
- \circ A '1' in the square the corresponds to a minterm
- o A '0' otherwise
- Each **valid grouping** of adjacent cells containing '1' corresponds to a simpler product term.
- Group must have width/length (size) in **powers of 2**.
- larger group = fewer literals in result product term
- **fewer groups** = fewer product terms in final SOP exp.
- Group maximum cells, and select fewest groups.

K-Maps

3-Variable

4-Variable

5-Variable

Valid Groupings

6-Variable

Using a K-map

- K-map of function easily filled in when function in sum-of-minterms form.
- If not in sum-of-minterms, convert into sum-of-products (SOP) form, expand SOP expr into sum-of-minterms, or fill directly based on SOP.

(E)PIs

- **implicant**: product term that could be used to cover minterms of the function.
- **prime implicant**: a product term obtained by combining the maximum possible number of minterms from adjacent squares in the map.
- essential prime implicant: a prime implicant that includes at least one minterm that is not covered by any other prime implicant

K-maps to find POS

- shortcut: group maxterms (0s) of given function
- long way: 1. convert K-map of F to K-map of F' (by flipping 0/1s), 2. get SOP of F' POS=(SOP)'.

Don't-Care Conditions

 \bullet denoted d, e.g.:

$$F(A, B, C) = \sum m(3, 5, 6) + \sum d(0, 7)$$