Backpropagation-Free Parallel Deep Reinforcement Learning

William H. Guss

Machine Learning at Berkeley 2650 Durant Ave, Berkeley CA, 94720 wguss@ml.berkeley.edu

Utkarsh S

Machine Learning at Berkeley Berkeley CA, 94720 philkuz@ml.berkeley.edu

Mike Zhong

Machine Learning at Berkeley Berkeley CA, 94720 lol@gmail.com

Max Johansen

Machine Learning at Berkeley Berkeley CA, 94720 max@ml.berkeley.edu

Abstract

In this paper we conjecture that an agent, envirionment pair (π, E) trained using DDPG with an actor network μ and critic network Q can be decomposed into a number of sub-agent, sub-environment pairs (π_n, E_n) ranging over every neuron in μ ; that is, we show empircially that treating each neuron a as an agent $\pi_n: \mathbb{R}^n \to \mathbb{R}$ of its inputs and optimizing a value function Q_n with respect to the weights of π_n is dual to optimizing Q with respect to the weights of μ . Finally we propose a learning rule which simultaneously optimizes each π_n without error backpropogation achieving state of the art results across a variety of OpenAI Gym environments.

1 Introduction

Introduction to DDPG and recent advances in deep RL.

Biological diffusion of dopamine in the brain \implies error backpropagation is not biologically feasible.

Synthetic gradients are a step in the right direction, but still require eventual back propogation.

Therefore it is feasible that each neuron is maximizing the expectation on his future dopamine intake, and so we propose the following theorem.
2 Agent-Environment Decomposition
Start out with background, define the symbols and $math$.
Write conjecture on decomposition which is free of neural configuration. Subject to change in later versions of ArXiv paper
Emperical justification of the iff using the following experiment (s). 1. Training a network on Atari using DDPG and plotting average critic functions for neurons using window.
2. Possibly others.
Therefore we propose the following learning rule in aims to evidence the reverse, training μ using simultaneous optimization on all Q_n w.r.t π_n 's weights.
3 Decentralized Deep Determinstic Policy Gradient

Proposal of the rule. Linear approximation of the ${\cal Q}$ function for every neuron is good enough, (experimentally).

Implications of the rule to DDPG

Implications of the rule to entirely recurrent networks (infinite time horizion and NO unrolling since the environment the local actions of the neuron which globally recurr to that neuron again are *encoded* into Q_n ; large time horizion probably implies that better regresser needed for Q_n .)

Parallelism, no error backprop, and only 2x operations, but no locking on GPU, so all can be run sumultaneously if we cache!

4 Results

To validate the new learning rule we throw a fuck ton of experiments together on the following list (or better using OpenAI Gym).

```
blockworld1 1.156 1.511 0.466 1.299 -0.080 1.260
blockworld3da 0.340 0.705 0.889 2.225 -0.139 0.658
canada 0.303 1.735 0.176 0.688 0.125 1.157
canada2d 0.400 0.978 -0.285 0.119 -0.045 0.701
cart 0.938 1.336 1.096 1.258 0.343 1.216
cartpole 0.844 1.115 0.482 1.138 0.244 0.755
cartpoleBalance 0.951 1.000 0.335 0.996 -0.468 0.528
cartpoleParallelDouble 0.549 0.900 0.188 0.323 0.197 0.572
cartpoleSerialDouble 0.272 0.719 0.195 0.642 0.143 0.701
cartpoleSerialTriple 0.736 0.946 0.412 0.427 0.583 0.942
cheetah 0.903 1.206 0.457 0.792 -0.008 0.425
fixedReacher 0.849 1.021 0.693 0.981 0.259 0.927
fixedReacherDouble 0.924 0.996 0.872 0.943 0.290 0.995
fixedReacherSingle 0.954 1.000 0.827 0.995 0.620 0.999
gripper 0.655 0.972 0.406 0.790 0.461 0.816
gripperRandom 0.618 0.937 0.082 0.791 0.557 0.808
hardCheetah 1.311 1.990 1.204 1.431 -0.031 1.411
hopper 0.676 0.936 0.112 0.924 0.078 0.917
hyq 0.416 0.722 0.234 0.672 0.198 0.618
movingGripper 0.474 0.936 0.480 0.644 0.416 0.805
pendulum 0.946 1.021 0.663 1.055 0.099 0.951
reacher 0.720 0.987 0.194 0.878 0.231 0.953
reacher3daFixedTarget 0.585 0.943 0.453 0.922 0.204 0.631
reacher3daRandomTarget 0.467 0.739 0.374 0.735 -0.046 0.158
reacherSingle 0.981 1.102 1.000 1.083 1.010 1.083
```

walker2d 0.705 1.573 0.944 1.476 0.393 1.397

walke12d 0.703 1.373 0.344 1.470 0.333 1.337
1. Show that training decentralized policy gradient \implies total policy optimization
2. Show speed improvements on update step through parallelism (samples per second vs DDPG).
3. Show results are comparable with the state of the art.
5 Conclusion
We wrecked deep reinforcement learning using biological inspiration.
5.1 Future Work
Would like to try the method with full recurrent networks and purely asynchronous implementation of leaky integration networks.
Would like to prove the conjecture. List possible methods of proof.