Digital Design Scribe

Lecture Date – 22nd October, 2013

Submission By:

Kunal Kishore Singh(120123022)

Himanshu Goyal (120101029)

Pandey Vineet Kumar (120101047)

Finite State Machine

- A sequential logic unit which
 - Takes an input in current state
 - Produces an output and a new state
- Finite-state machines provide a simple computational model with many applications.
- It consists of a finite no. of states and is composed of a combinational logic unit and flip flops in such a way so as to maintain state information.

State Diagram of a FSM

Types of FSM

There are two types of Finite State Machines:

- MOORE MACHINE
- MEALY MACHINE

In the theory of computation, a Moore machine is a finite state machine whose input values are determined by its current state. In contrast to it, a mealy machine's output is determined by its current state and values of its input.

Circuit diagram of Moore and Mealy machine

Specifying outputs for a Moore machine

- Output is only function of state
- Outputs are specified "state bubbles" in state diagram.

		current	next	
reset	input	state	state	output
1	_	_	А	
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	D	0
0	0	С	E	0
0	1	С	С	0
0	0	D	E	1
0	1	D	С	1
0	0	Е	В	1
0	1	Е	D	1

Specifying outputs for a Mealy machine

- Output is a function of state and inputs
- Outputs are specified on transition arcs between states

		current	next	
reset	input	state	state	output
1	_	_	А	0
0	0	А	В	0
0	1	Α	c	0
0	0	В	В	0
0	1	В	c	1
0	0	С	В	1
0	1	С	c	0

Comparison of Moore and Mealy machine

MEALY MACHINE

- Mealy Machines have less number of states because several inputs can be specified in one state.
- It generates faster response than Moore machines.
- Mealy machines are a bit unsafe to use as an input change can cause the output change.

MOORE MACHINE

- Moore have more number of states.
- Moore machines reacts slower as it waits until the next state to respond.
- Moore machines are safe to use as output changes at clock edge.

Examples of Finite State Machines

- Odd Parity Checker
- 2-Bit Gray code up-counter

Odd Parity Checker

 The output is high when there are odd number of Is.

```
O/P I; odd number of Is

0; even number of Is
```

State Diagrams of Odd Parity Checker

Mealy Machine

Moore Machine

State Transition Tables and local minimization

Mealy Machine

PS	I/P	NS	O/P
0	0	0	0
0	I	I	I
I	0	I	I
I	I	0	0

NS - PS ⊕ I/P O/P - PS ⊕ I/P

Moore Machine

PS	I/P	NS	O/P
0	0	0	0
0	I	I	0
I	0	I	I
ı	I	0	I

O/P - PS

NS - PS ⊕ I/P

2-Bit Gray Code Up-Counter

- I/P = I (continue up counting)
- I/P = 0 (count=0)

- Entering and exiting intial state (O/P=0)
- Otherwise (O/P=I)

State Diagram of 2-Bit Gray Code Up-Counter

Table of Next State and O/P

PS	I/P	NS	O/P
00	I	01	0
00	0	00	0
01	I	П	I
01	0	00	0
П	I	10	I
П	0	00	0
10	I	00	0
10	0	00	0

THANK YOU