Algorithmic Collusion with Coarse Memory

Graduand: Massimiliano Furlan

Supervisor: Vincenzo Denicolò

July 25, 2022

Literature

► Calvano et al. (2020) and Klein (2021): pricing algorithms can learn to collude

► Assad et al. (2020): empirical evidence in the German retail gasoline market

pricing algorithms are completely unregulated

Algorithmic collusion

high prices by itself is not collusion

- algorithms learn to sustain supra-competitive outcomes with equilibrium strategies
- ► Calvano et al. (2020) and Klein (2021): finite phases of punishment

Coarse memory

- ▶ I limit the algorithms' memory of their rival's past price
- e.g., can only remember if the price of their rival was low, intermediate, or high

Motivation

- ▶ Potentially relevant for two (opposing) reasons:
 - could be useful to prevent algorithmic collusion
 - ▶ firms might introduce coarse memory to foster collusion

Economic environment

- two symmetric firms with constant marginal cost
- infinitely repeated Bertrand model
- ▶ logit demand, differentiated products

Algorithms

- Q-learning: learn from trial and error
 - initially select actions randomly
 - most successful actions are reinforced
- hyperparameters:
 - ightharpoonup learning rate, α
 - ightharpoonup exploration intensity, u

Algorithms (cont'd)

• feasible actions:
$$a \in A$$
, $A = \{p^1, p^N, \dots, p^M, p^{15}\}$

- **>** state of the environment: $s \in S$, $s_t = (p_{1t-1}, p_{2t-1})$
- ▶ aim is to maximize: $\sum_{t=1}^{\infty} \delta^{t-1} \pi_i$

Perfect Memory

Hyperparameters: $\alpha =$ 0.15, $\nu =$ 25

ightharpoonup Average profit gain (Δ): 0.856

Average deviation loss: -2.7%

Coarse memory

 \triangleright memory (3-3-3-3-3)

▶ memory (5–5–5)

no memory of rival's past price

Coarse Memory – Results

	Profit gain	Deviation gain (loss)
Perfect memory	0.856	-2.7 %
(3-3-3-3-3)	0.802	-2.5 %
(5-5-5)	0.742	-2.1 %
No memory	0.078	0.1 %

Table: Averages across 1000 experiments. Deviation to static best-response.

Coarse Memory – Punishments

Coarse Memory – Hyperparameter grid

iguie 4.0. Average pront gam.

Conclusions

- coarse memory does not foster collusion
- partial limitations to the algorithms' memory do not prevent algorithmic collusion either
- with no memory of their rival's past price algorithms price competitively