MAT 300 2-26 HW

ID: 1213399809

Name: Lucas Saldyt (lsaldyt@asu.edu)

Collaborators: \varnothing

Problem 1.	4.1.10	1
Problem 2.	4.2.4	2
Problem 3.	4.2.15	Ģ
Problem 4.	A2	4

Problem 1. 4.1.10

Indicate whether the following relations on the given sets are reflexive, symmetric, anti-symmetric, or transitive.

Solution

Part (a)

- (a) $A = \{p : p \text{ is a person in alaska}\}$. x y if x is at least as tall as y. Reflexive, not symmetric, anti-symmetric, and transitive.
- (b) $A = \mathcal{N}$. $x \ y$ if x + y is even. Reflexive, symmetric, not anti-symmetric, and transitive (though somewhat vacuously).
- (c) $A = \mathcal{N}$. $x \ y$ if x + y is odd. Reflexive, symmetric, not anti-symmetric, and transitive, as above.
- (d) $A = \mathcal{P}(\mathcal{N})$. $x \ y$ if $x \subseteq y$. Reflexive, not symmetric, anti-symmetric, and transitive.
- (e) $A = \mathcal{R}$. x y if x = 2y. Not reflexive, not symmetric, not anti-symmetric, and not transitive.
- (f) $A = \mathcal{R}$. $x \ y$ if x y is irrational. Not reflexive, symmetric, not anti-symmetric, and not transitive.
- (g) $A = \{l : l \text{ is a line in the Cartesian plane}\}$. $x \ y \text{ if } x \text{ and } y \text{ are parallel lines or if } x \text{ and } y \text{ are the same line.}$ Reflexive, symmetric, not anti-symmetric, and transitive.

Problem 2. 4.2.4

Let A be a set. Show that $\mathcal{P}(A)$ need not be totally ordered under the relation \subseteq .

Solution

Part (a)

Theorem 0.0.1. $\mathcal{P}(A)$ is not totally ordered under the relation \subseteq .

Proof Recall that a set A is said to be totally ordered if it has a relation which is antisymmetric, transitive, and satisfies the "connex property": a b or b a for any a, b in the set A. While \subseteq satisfies anti-symmetry and transitivity for $\mathcal{P}(A)$, it does not satisfy the connex property. For instance, the powerset of $\{0,1\}$ contains the elements $\{0\}$ and $\{1\}$. Let these be the variables a and b in the connex property, and it is clear that it is not satisfied (because $\{0\} \not\subseteq \{1\}$ and $\{1\} \not\subseteq \{0\}$).

Problem 3. 4.2.15

Let A be a partially ordered set. Prove that if A has a greatest element, then the greatest element is unique. (Assume two greatest elements and show they are the same).

Solution

Part (a)

Theorem 0.0.2. If A has a greatest element, then the greatest element is unique.

Proof Suppose A has a greatest element, a. For all y in a, $y \sim x$. Suppose that there were another greatest element, b, which satisfied the same property. This implies that $a \sim b$ and $b \sim a$. Then, because any partial ordering satisfies anti-symmetry by definition, a = b, and thus the greatest element of A is unique.

Problem 4. A2

Let F_i be the fibonacci numbers. Use complete induction to prove that $F_n \ge \alpha^{n-2}$ for all $n \ge 1$ where $\alpha = (1 + \sqrt{5})/2$.

Solution

Part (a)

Theorem 0.0.3. The formula $F_n \ge \alpha^{n2}$ is true for all $n \ge 1$ where $\alpha = (1 + \sqrt{5})/2$.

Proof First consider the base cases n=1 and n=2. First, $F_1=1$ and $F_2=2$. For $n=1,\ \alpha^{n-2}=\frac{2}{\sqrt{5}+1}=0.618...$, which is less than 1. For $n=2,\ \alpha^{n-2}=1$, which is less than 2. Now, suppose that for all k in $n\geq k\geq 1$, $F_k\geq \alpha^{n-2}$. Using the induction hypothesis and the formula for the fibonacci numbers, $F_{n+1}=F_n+F_{n-1}\geq \alpha^{n-2}+\alpha^{n-3}$. Consider $\alpha=(1+\sqrt{5}/2)$. $\alpha^2=\frac{6+2*\sqrt{5}}{4}=\frac{2+1+\sqrt{5}/2}{2}1+\alpha$. From above we can now say $F_{n+1}\geq \alpha^{n-3}*(\alpha+1)=\alpha n-3*\alpha^2=\alpha n-1$. Thus, since $F_{n+1}\geq \alpha n-1$, by the principle of complete mathematical induction, the hypothesis holds.