Recursão

Definição e exemplos

Prof. Edson Alves - UnB/FGA

2018

Sumário

- 1. Recursão
- 2. Chamadas Recursivas

Recursão

Recursão

- A definição de um objeto é dita recursiva se ela se refere ao próprio objeto a ser definido
- Uma definição recursiva tem duas partes: o caso base e as regras de construção
- No caso base, todos os elementos estruturais básicos são listados
- As regras de construção determinam como os elementos estruturais se relacionam, e envolvem o próprio objeto
- Uma função é dita recursiva se o cálculo do seu retorno envolve a chamada da própria função

Exemplo de definição recursiva: números naturais

- caso base: $0 \in N$
- regra de construção: se $n \in N$, então $(n+1) \in N$
- definição de escopo: não há outros elementos no conjunto N (isto é, não há outras formas de se obter números naturais)

Exemplo de função recursiva: fatorial de um número natural

• O fatorial do número natural n é dado por

$$n! = \begin{cases} 1, & \text{se } n = 0 \\ n \cdot (n-1)!, & \text{se } n > 0 \end{cases}$$

- Observe que a primeira parte da definição corresponde ao caso base
- Já a segunda parte se refere à regra de construção
- ullet A definição ade escopo fica implícita: n deve ser um número natural
- A implementação em C/C++ é quase idêntica à definição:

```
int factorial(int n)
2 {
3    return n == 0 ? 1 : n * factorial(n - 1);
4 }
```

Relações de pertinência

- É possível determinar se um elemento pertence ou não a um conjunto de elementos definidos recursivamente aplicando a regra de construção sucessivamente, decompondo o elemento em outros elementos do conjunto
- Por exemplo, para n=5,

$$\begin{array}{l} 5=4+1, \text{ logo se } 4\in N, \text{ então } 5\in N\\ 4=3+1, \text{ logo se } 3\in N, \text{ então } 4\in N\\ 3=2+1, \text{ logo se } 2\in N, \text{ então } 3\in N\\ 2=1+1, \text{ logo se } 1\in N, \text{ então } 2\in N\\ 1=1+0 \end{array}$$

 $\bullet \ \ \mathsf{Como} \ 0 \in N \text{, então} \ 1, 2, 3, 4, 5 \in N \\$

Resolução de recorrências

- Para encontrar o n-ésimo termo do conjunto, é necessário encontrar todos os termos anteriores que se fizerem presentes de acordo com as regras de construção
- Este processo impacta diretamente na complexidade computacional da rotina
- Onde for possível, a troca de uma definição recursiva por uma definição que seja independente dependa de termos anteriores leva a implementações mais eficientes
- Por exemplo, a definição recursiva

$$g(n) = \begin{cases} 1, & \text{se } n = 0 \\ 2g(n-1), & \text{se } n > 0 \end{cases}$$

equivale a definição

$$g(n) = 2^n$$

Resolução de recorrência por hipótese e demonstração

- Uma maneira de se resolver uma relação de recorrência é observar alguns termos, formular uma hipótese e demonstrar esta hipótese usando indução matemática
- Por exemplo, se h(n) = 2h(n-1) + 1, com h(1) = 1, então

$$h(2) = 3, h(3) = 7, h(4) = 15, \dots$$

- Pode se observar que, para estes termos, é possível formular a hipótese de que $h(n)=2^n-1$
- Para provar esta hipótese, primeiramente deve-se verificar o caso base:

$$h(1) = 2^1 - 1 = 1,$$

de modo que a hipótese vale para o caso base

Resolução de recorrência por hipótese e demonstração

• Suponha que a hipótese seja verdadeira para $m \in N$. Daí, usando a definição recursiva de h(n) e a hipótese, segue que

$$h(m+1) = 2h(m) + 1 = 2(2^m - 1) + 1 = 2^{m+1} - 2 + 1 = 2^{m+1} - 1,$$

de modo que h(m+1) é verdadeira sempre que h(m) for verdadeira

- Assim, de acordo com o Princípio da Indução, a hipótese é verdadeira
- ullet Observe que, se a hipótese fosse falsa, ou ela falharia no caso base, ou não seria possível provar a segunda parte da indução, isto é, que a veracidade para m implica a veracidade para m+1

Resolução de recorrência por expansão

- Outra maneira de resolver uma relação de recorrência é aplicar a recorrência em si mesmo, expandindo sua definição
- ullet Utilizando a mesma definição de h(n), tem-se que

$$h(n) = 2h(n-1) + 1$$

$$= 2(2h(n-2) + 1) + 1 = 4h(n-2) + 3$$

$$= 4(2h(n-3) + 1) + 3 = 8h(n-3) + 7$$
...

• Esta expansão leva a nova hipótese de que

$$h(n) = 2^k h(n-k) + (2^k - 1),$$

para k natural

- Esta hipótese pode ser provada por indução
- Fazendo k=(n-1) e lembrando que h(1)=1, segue que $h(n)=2^n-1$

Chamadas Recursivas

Chamadas de funções

- No momento em que uma função é chamada, algumas tarefas são realizadas em plano de fundo para que o programa se comporte como esperado
- Se a função tem parâmetros, eles são inicializados com os valores passados na chamada
- O sistema operacional tem que saber de onde continuar após o encerramento da função chamada, de modo que o ponto de retorno é armazenado
- Quem chamou a função tem que ter acesso ao retorno da função chamada, logo uma área de memória é reservada para armazenar este valor

Chamadas de funções

- Algumas informações devem ser preservadas ao se chamar uma função, para se manter o estado correto do programa
- Em relação a função que realizou a chamada de um outra função, devem ser preservadas as variáveis locais e os seus parâmetros
- Também deve ser armazenado o endereço de memória que aponta para o lugar onde o programa deve prosseguir após a execução da função chamada

Registro de ativação

- A área de dados que armazena as informações listadas anteriormente é denominada registro de ativação ou stack frame
- O registro de ativação é alocado dinamicamente na pilha de execução
- Este registro existe enquanto a função que ele se refere está sendo executada
- O registro de ativação guarda todas as informações necessárias para a correta execução e retorno de uma função
- Um registro de ativção é criado quando a função é chamada e é destruído no retorno da função
- Apenas o registro de ativação da função main() fica ativo durante toda a execução do programa

Visualização da pilha de execução no início do programa

Visualização da pilha após main() chamar f1()

Visualização da pilha após f1() chamar f2()

Notas sobre os registros de ativação

- O endereço de retorno aponta para o endereço de memória que contém a instrução imediamente após a chamada da função
- O ponteiro do registro da função que fez a chamada aponta para o elemento antecessor da pilha de execução
- Como o tamanho dos registros podem variar, o valor de retorno fica imediamente acima do registro da função que fez a chamada
- A criação de registros de ativação a cada chamada de função permitem a implementação da recursão
- De fato, a recursão consiste em chamar uma função que tem o mesmo nome da função que fez a chamada
- A função não chama a si mesma, mas a uma nova instância que tem a mesma estrutura da função original

Tail Call Optimization

- Tail Call Optimization (TCO) é uma técnica de otimização que permite reduzir o espaço utilizado pela pilha de execução
- Se o retorno de uma função f() é a chamada de uma função g(), torna-se desnecessário manter o registro de ativação de f()
- Se a função é recursiva e f = g, então é possível implementar f() usando espaço em memória constante (O(1))
- Se o retorno envolver alguma outra operação que não a chamada de g(), não será possível usar a TCO

Implementação do fatorial que evita a TCO

```
int factorial(int n)

{
    if (n == 0)
        return 1;

    return n * factorial(n);
}
```

Implementação do fatorial que permite a TCO

```
int factorial(int n, int ans = 1)

{
    if (n == 0)
        return ans;

    return factorial(n - 1, n * ans);
}
```

Referências

- 1. **DROZDEK**, Adam. *Algoritmos e Estruturas de Dados em C++*, 2002.
- 2. **ERICKSON**, Jeff. Solving Recurrences, acesso em 27/02/2019.¹
- 3. Stack Overflow. What is Tail Call Optimization?, acesso em 27/02/2019.²

¹http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf

 $^{^2} https://stackoverflow.com/questions/310974/what-is-tail-call-optimization$