Potential Cardinality

for Countable First-Order Theories

Douglas Ulrich, Richard Rast, Chris Laskowski

University of Maryland

AMS Western Sectional Meeting on Descriptive Set Theory and its Applications April 9, 2016

The Main Idea

The Goal: Understand the countable models of a theory Φ

Chosen framework: if $\Phi \leq_{\!\scriptscriptstyle B} \Psi$ then the countable models of Φ are "more tame" than the countable models of Ψ .

Relatively easy: show $\Phi \leq_{\mathcal{B}} \Psi$; Relatively hard: show $\Phi \nleq_{\mathcal{B}} \Psi$

Theorem (Ulrich, R., Laskowski)

If $\Phi \leq_{R} \Psi$ then $\|\Phi\| \leq \|\Psi\|$.

Motivation?

Why study Borel reductions?

Comparing the number of models is pretty coarse. Consider:

- Countable sequences of Q-vector spaces
- @ Graphs

These both have \beth_1 countable models, but Borel reductions can easily show the former is much smaller than the latter.

Counterexamples to Vaught's conjecture are pretty weird; Borel reductions give a nice way to make this formal (even given CH).

Borel Reductions

Fix $\Phi, \Psi \in L_{\omega_1\omega}$.

 $\operatorname{Mod}_{\omega}(\Phi)$ and $\operatorname{Mod}_{\omega}(\Psi)$ are Polish spaces under the formula topology.

 $f: \mathrm{Mod}_{\omega}(\Phi) \to \mathrm{Mod}_{\omega}(\Psi)$ is a Borel reduction if:

- For all $M, N \models \Phi$, $M \cong N$ iff $f(M) \cong f(N)$
- ② For any $\psi \in L_{\omega_1\omega}$ (with parameters from ω) there is a $\phi \in L_{\omega_1\omega}$ (with parameters from ω) where $f^{-1}(\operatorname{Mod}_{\omega}(\Psi \wedge \psi)) = \operatorname{Mod}_{\omega}(\Phi \wedge \phi)$

(preimages of Borel sets are Borel)

Say $\Phi \leq_{\mathbb{R}} \Psi$.

A Serious Question

It's somewhat clear how to show that $\Phi \leq_{\!\scriptscriptstyle B} \Psi.$

How is it possible to show that $\Phi \not\leq_{\mathcal{B}} \Psi$?

Partial answer: there are some techniques, but they only apply when Φ and/or Ψ is Borel¹ (and low in the hierarchy).

Very little is known when you can't assume Borel.

¹That is, the isomorphism relation is a Borel subset of the product space.

Roadmap

Borel Reductions

Model Theory and Games

3 Connections

Back-and-Forth Equivalence

Let M and N be L-structures. $\mathcal{F}: M \to N$ is a back-and-forth system if:

- **①** \mathcal{F} is a nonempty set of partial functions $M \to N$
- ② All $f \in \mathcal{F}$ preserve L-atoms and their negations
- **③** For all $f \in \mathcal{F}$, all $m \in M$, and all $n \in N$, there is a $g \in \mathcal{F}$ where $m \in \text{dom}(g)$, $n \in \text{im}(g)$, and $f \subset g$

Say $M \equiv_{\infty\omega} N$ if there is such an \mathcal{F} .

If $M \cong N$ then $M \equiv_{\infty \omega} N$. If M and N are countable and $M \equiv_{\infty \omega} N$, then $M \cong N$.

Canonical Scott Sentences

Canonical Scott sentences form a canonical invariant of each $\equiv_{\infty\omega}$ -class.

For all M, N, the following are equivalent:

- $\mathbf{0} M \equiv_{\infty \omega} N$
- $N \models css(M)$ (and/or $M \models css(N)$)

The following relations are definable and absolute:

- ullet ϕ is in the syntactic form of a canonical Scott sentence
- $\phi = \operatorname{css}(M)$

Consistency

Proofs in $L_{\infty\omega}$:

- Predictable axiom set
- \bullet $\phi, \phi \rightarrow \psi \vdash \psi$
- $\{\phi_i : i \in I\} \vdash \bigwedge_{i \in I} \phi_i$
- $\phi_i \vdash \bigvee_{i \in I} \phi_i$

Proofs are now trees which are well-founded but possibly infinite.

 $\phi \in L_{\infty \omega}$ is consistent if it does not prove $\neg \phi$.

Warning: folklore

Consistency, II

If $\phi \in L_{\omega_1 \omega}$ is formally consistent, then it has a model.

This is not true for larger sentences:

- Let $\psi = \cos(\omega_1, <)$, so ψ has no countable models.
- Let $L = \{<\} \cup \{c_n : n \in \omega\}.$
- Let $\phi = \psi \wedge (\forall x \bigvee_n x = c_n)$

Then ϕ is formally consistent, but ϕ has no models.

Fact: the property " ϕ is consistent" is absolute.

Potential Cardinality

Let $\Phi \in L_{\omega_1\omega}$. $\sigma \in L_{\infty\omega}$ is a potential canonical Scott sentence of Φ if:

- $oldsymbol{\circ}$ σ has the syntactic form of a CSS
- \odot σ formally proves Φ

Let $CSS(\Phi)$ be the set of all these sentences. Let $\|\Phi\| = |CSS(\Phi)|$.

Easy fact:
$$I(\Phi, \aleph_0) \leq I_{\infty\omega}(\Phi) \leq \|\Phi\|$$
.

Note: $I_{\infty\omega}(\Phi)$ is the number of models of Φ up to $\equiv_{\infty\omega}$

The Connection

If $f: \Phi \leq_{\mathbb{B}} \Psi$, then f induces an injection from the countable Scott sentences of Φ to the countable Scott sentences of Ψ .

Theorem (Ulrich, R., Laskowski)

If $f : \Phi \leq_{\!\scriptscriptstyle B} \Psi$, then get an injection $\overline{f} : \mathrm{CSS}(\Phi) \to \mathrm{CSS}(\Psi)$.

Proof Idea:

- Fix $\tau \in CSS(\Phi)$.
- $\overline{f}(\tau)$ is what f would take τ to, in some $\mathbb{V}[G]$ making τ countable.
- Schoenfield: " $\exists M \in \mathrm{Mod}_{\omega}(\Phi) \ (M \models \tau \land f(M) \models \sigma)$ " is absolute
- If G_1 and G_2 are independent, then $\mathbb{V}[G_1] \cap \mathbb{V}[G_2] = \mathbb{V}...$
- ... so $\overline{f}(\tau) \in \mathbb{V}$ and $\overline{f}(\tau) \in \mathrm{CSS}(\Psi)$.

Some Easy Facts

Fact: If Φ is Borel, then $\|\Phi\| < \beth_{\omega_1}$ Proof Idea:

- Hjorth, Kechris, Louveau: If Φ is Π^0_{α} , then Φ is reducible to \cong_{α} .
- $\|\cong_{\alpha}\|=\beth_{-1+\alpha+1}$, so $\|\Phi\|\leq \beth_{-1+\alpha+1}$.

Fact: If Φ is Borel complete, then $\|\Phi\| = \infty$ Proof Idea:

- ullet (Folklore): all ordinals are back-and-forth inequivalent, so $\|LO\|=\infty.$
- LO $\leq_{\!\scriptscriptstyle R} \Phi$, so $\|\Phi\| = \infty$.

Some Excellent Questions

Hanf Number: Is it possible to get $\beth_{\omega_1} \leq \|\Phi\| < \infty$? Unknown!

Is it possible for $\|\Phi\| = \infty$ when Φ is not Borel complete? Yes!

Unknown if there are first-order examples

Is it possible for $\|\Phi\| < \beth_{\omega_1}$ when Φ is not Borel? Yes! And there are first-order examples!

The last "yes!" answers a stubborn conjecture:

Can a first-order theory be neither Borel nor Borel complete?

A First Order Example

Let REF have language $L = \{E_n : n \in \omega\}$.

Axioms:

- Each E_n is an equivalence relation on the universe with 2^n classes.
- Each E_n -class splits into exactly two E_{n+1} classes.

REF is complete with quantifier elimination.

REF is superstable but not \aleph_0 -stable.

REF Is Not Complicated

Despite not being Borel, REF is really nice:

- $I_{\infty\omega}(\text{REF}) = \beth_2$: Idea: for all M, there is $N \subseteq M$ where $M \equiv_{\infty\omega} N$ and $|N| \le \beth_1$.
- REF is grounded for all $\Phi \in CSS(REF)$, there is $M \models \Phi$ in \mathbb{V} . Idea:
 - ▶ Let V[G] collapse $|\Phi|$ to \aleph_0 , let $N \models \Phi$ be its countable model.
 - ▶ Compute a bunch of invariants $\mathcal{I}(N)$ in $\mathbb{V}[G]$.
 - ▶ $\mathcal{I}(N) \in \mathbb{V}$, even though N is not.
 - ▶ Construct $M \models \Phi$ from $\mathcal{I}(N)$.

So: $\|\mathrm{REF}\| = \beth_2$, so $\cong_3 \not\leq_{_B} \mathrm{REF}$, so REF is not Borel complete.

REF is Not Borel

REF has countable models of arbitrarily high Scott ranks.

Proof Sketch:

- Fix $A, B \models \text{REF}$ countable where $A \equiv_{\alpha} B$ and $A \ncong B$.
- Construct models M_1 and M_2 where $M_1 \not\cong M_2$ and $M_1 \equiv_{\alpha+1} M_2$.

