

TD n°1: Analyse Mathématique

SEG - S1 - 2022/2023 - Pr. Hamza El Mahjour

Fonctions réelles : Limites, dérivées , Rolle et TAF

Exercice 1

Donner le domaine de définition de chacune des fonctions suivantes :

$$1. f_1(x) = Ln(x+1),$$

$$2.f_2(x) = \sqrt{x-3}$$

$$3. f_3(x) = (x-2)^2 (x+\sqrt{2}),$$

$$4. f_4(x) = \sqrt{-x^2 + 3x + 1}$$

Donner le domaine de definition de chacune des fonctions
$$1.f_1(x) = Ln(x+1),$$
 $2.f_2(x) = \sqrt{x-3},$ $3.f_3(x) = (x-2)^2(x+\sqrt{2}),$ $4.f_4(x) = \sqrt{-x^2+3x+1},$ $5.f_5(x) = \frac{\sin(x)}{(1+x)(x-\sqrt{3})},$ $6.f_6(x) = \frac{1}{x^2-4x-1},$ $7.f_7(x) = \frac{x}{\cos(x)}.$

$$6.f_6(x) = \frac{1}{x^2 - 4x - 1},$$

[01]

$$7.f_7(x) = \frac{x}{\cos(x)}.$$

Exercice 2

Dites, à partir de chaque graphe \mathscr{C}_f , si les fonctions qui sont inversibles et dessiner ensuite le graphe de leurs fonctions inverses $\mathscr{C}_{f^{-1}}$.

[03]

Exercice 3

Soit f la fonction

$$f(x) = \frac{3x - 1}{(x - \sqrt{3})^2} + 2.$$

- (a) Calculez les limites $\lim_{x \to \sqrt{3}^-} f(x)$, $\lim_{x \to \sqrt{3}^+} f(x)$, $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- (c) Interprétez les limites précédentes et tracez (approximativement) le graphe de la fonction au voisinage de $\sqrt{3}$, $-\infty$ et $+\infty$.

[03]

Exercice 4

Dérivez les fonctions suivantes :

$$h_1(x) = 3x^2 + 2x h_2(x) = x^4 \sin(x) + 1 h_3(x) = \cos(4x^2) - x h_4(x) = x\log(x) + \exp(-3x + 1) h_5(x) = \frac{1}{\arctan(x - 1)} h_6(x) = \frac{-1}{x + 1} + 8x + 2$$

Exercice 5

Soit la fonction $f(x) = \sin(x)e^x$.

- 1. Justifier pourquoi f est continue.
- 2. Donner le signe des deux valeurs $f(-\pi/4)$ et $f(\pi/2)$ (sans calculer de façon précise).
- 3. En déduire que f admet un zéro sur l'intervalle $]-\pi/4,\pi/2[$.

En utilisant les techniques précédentes, l'étude des limites en $\pm \infty$ et de la monotonie, étudier la fonction $p: x \mapsto x^5 - 5x + 1$ sur \mathbb{R} et en déduire que l'équation $x^5 - 5x + 1 = 0$ admet trois solutions réelles.

Exercice 6

Soit f une fonction n fois dérivable sur]a,b[s'annulant en n+1 points de]a,b[. Montrer que si $f^{(n)}$ est continue, il existe un point x_0 de]a,b[tel que $f^{(n)}(x_0)=0$.

Exercice 7

On veut montrer, grâce au théorème des accroissements finis, que :

$$\forall x > 0, \qquad \frac{1}{x+1} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}.$$

Pour celà on passera par les étapes suivantes.

- 1. Appliquer le T.A.F sur la fonction $x \mapsto ln(x)$ sur l'intervalle]x, x+1[pour x>0.
- 2. Utiliser le résultat précédent et le fait que $c \in]x, x+1[\Longrightarrow \frac{1}{c} \in]\frac{1}{x+1}, \frac{1}{x}[$ pour en déduire le résultat demandé.

[07]