

IPv4 Addressing

Andreas Grupp

Andreas.Grupp@zsl-rstue.de

Carina Haag

carina.haag@zsl-rsma.de

Tobias Heine

tobias.heine@zsl-rsma.de

Uwe Thiessat

uwe.thiessat@gbs-sha.de

Netzmaske trennt Netzanteil und Hostanteil

- IPv4-Adresse hat 32 Bit Länge
- Trennung in ...
 - Netzanteil (auch Prefix genannt)
 - Hostanteil

durch Netzmaske mit 32 Bit Länge

- Alle Hosts im gleichen Netz haben identische Bits im Netzanteil!
- Host-Bits kennzeichnen spezifischen Host eindeutig.
- IP-Adresse & Netzmaske sind beides notwendige Konfigurationsangaben
- Angabe der Netzmaske in zwei Formen möglich:
 - "Dotted Decimal" z.B. 255.255.255.0 (siehe oben)
 - "Prefix Length" /24 (Beispiel entspricht diesem Dotted Decimal Wert)
- Pro Oktet sind nur neun Varianten möglich!
 - Dotted Decimal: 255, 254, 252, 248, 240, 224, 192, 128, 0

IPv4-Netzmaske "dotted Decimal", oder ...

- Prefix Length, als alternative Schreibweise zu "dotted Decimal", wurde bei IPv4 zeitlich später definiert und erlaubt.
- Angabe der Netzmaske durch Anzahl der führenden Eins-Bits

Subnet Mask	32-bit Address	Prefix Length
255 .0.0.0	1111111.00000000.0000000.00000000	/8
255.255 .0.0	1111111.11111111.00000000.00000000	/16
255.255.255 .0	1111111.111111111.11111111.00000000	/24
255.255.255.128	11111111.111111111.11111111.10000000	/25
255.255.255.192	11111111.11111111.11111111.11000000	/26
255.255.255.224	11111111.111111111.11111111.11100000	/27
255.255.255.240	11111111.111111111.11111111.11110000	/28
255.255.255.248	11111111.111111111.111111111.11111000	/29
255.255.255.252	11111111.111111111.111111111.11111100	/30

Anmerkung: Prefix-Length kann für Netze durchgängig von 2 bis 30 auftreten.

 Bei IPv4 beide Varianten parallel existierend, abhängig von jeweiliger Geräte-Software verwendet.

Netzmaske, Adressbereich, Broadcast, logisches UND

- Netzmaske nicht an Oktet-/Byte-Grenzen gebunden!
- Anzahl der Hosts (N) in einem Netz, ist von der Anzahl der Hostbits (h) abhängig → N=2^h-2
- Reservierte Adressen:
 - ➤ Alle Hostbits auf '0' → Netzadresse od. Prefix
 - ➤ Alle Hostbits auf '1' → Broadcast-Adresse
- Alle anderen Adressen, zwischen Netz- und Broadcast-Adresse
 - → Hostadressen eines Netzes
 - Für Rechner, Drucker, Router, Switches, ...
 - Haben Broadcast- / Netzadresse / Netzbits / Subnetzmaske gemeinsam

Netzadresse / Prefix durch logisches UND

 Netzadresse / Prefix → durch logische / boolsche Ver-UND-ung einer beliebigen IP-Adresse des Netzes mit der Netzmaske

Beispiel-Berechnung IP-Bereich für Netz 192.168.10.0/24

	Network Portion	Host Portion	Host Bits
Subnet mask 255.255.255. 0 or /24	255 255 255 11111111 11111111 11111111	o 00000000	
Network address 192.168.10 .0 or /24	192 168 10 11000000 10101000 00001010	o 00000000	All 0s
First address 192.168.10 .1 or /24	192 168 10 11000000 10101000 00001010	1 00000001	All 0s and a 1
Last address 192.168.10 .254 or /24	192 168 10 11000000 10101000 00001010	254 11111110	All 1s and a 0
Broadcast address 192.168.10 .255 or / 24	192 168 10 11000000 10101000 00001010	255 11111111	All 1s

Minimal-IPv4-Konfiguration eines Rechners

- IPv4-Adresse, die ohne ...
- Netzmaske keinerlei Sinn ergibt, und das
- Default Gateway
 - Damit der Rechner weiß an wen er IPv4-Pakete für Rechner außerhalb des eigenen Netzes senden kann
 - Default Gateway ist ein Synonym für "Default Router"
 - > Router immer in mind. 2 verschiedenen IP-Netzen beheimatet
- Für rein IP-basierende Kommunikation ist kein DNS-Server nötig
 - Aber "Heute" in fast allen Fällen nur noch Nutzung von Namen
 - Namensbasierte Kommunikation erfordert auch noch dieses "Nachschlagewerk"

Statische IP-Konfiguration – minimale Einstellung

Statische Adressen insbesondere für Drucker, Server, Switches, Router, WLAN-Access-Points, ...

Kommunikations- / Übertragungsvarianten in IP-Netzen (1)

- Unicast von <u>einem</u> Host zu <u>einem</u> anderen Host
 - Unicast-Adressen: 1.0.0.1 223.255.255.255
 - Absender-Adresse ist immer eine Unicast-Adresse
- Broadcast von einem zu <u>allen</u> Hosts
 - Directed Broadcast → an alle Hosts eines bestimmten Netzes. Router blockieren normalerweise Weiterleitung, können aber für Weiterleitung konfiguriert werden
 - Limited Broadcast → 255.255.255.255 sozusagen an alle IPs der ganzen Welt. Werden aber per Default durch Router blockiert – glücklicherweise
 - > Typische Verwendung: ARP-, DHCP-Requests

Kommunikationsvarianten in IP-Netzen (2)

- Multicast Nachricht von einem Host an eine Gruppe anderer Hosts, über ein einzelnes IP-Packet
 - Adressbereich allg.: 224.0.0.0 239.255.255.255
 - Multicast-Clients registrieren sich für MC-Gruppe, hören anschließend auch auf Adresse der Gruppe
 - Absenderadresse ist Unicast-Adresse
 - Zieladresse ist einzelne Multicast-Adresse der Gruppe
 - Verwendung z.B. bei Routing-Protokoll OSPF → 224.0.0.5

Private Adressen – werden im Internet nicht geroutet

Anmerkung: NAT ist bei uns meist schon beim Ausgangsrouter eines LANs aktiv, nicht erst beim ISP.

Private Adressen nach RFC 1918:

10.0.0.0 bis 10.255.255.255 (10.0.0.0/8)

172.16.0.0 bis 172.31.255.255 (172.16.0.0/12)

192.168.0.0 bis 192.168.255.255 (192.168.0.0/16)

Einrichtung von Zonen mit privaten IPs / öffentlichen IPs

Spezielle IPv4-Adressen

- 127.0.0.1 Loopback-Adresse. Genau genommen ist 127.0.0.0/8 (127.0.0.1 bis 127.255.255.254) für Localhost reserviert
- 169.254.0.0 169.254.255.255 (169.254.0.0/16) ist der "Link Local" Bereich - Automatic Private IP Addressing (APIPA)
 - für autom. Adressvergabe (ohne DHCP) durch OS
 - kein Routing dieser Adressen
- 192.0.2.0 192.0.2.255 (192.0.2.0/24) für Lehre
 - > TEST-NET, auch Domain example.com / example.net
- 240.0.0.0 255.255.255.254 für IP-Forschungszwecke reserviert

Legacy Classfull Adressing / IP-Adressklassen

Heute als historisch zu sehen! Außer in Spezialgebieten des Routings keinerlei Relevanz mehr! Starre Netzmasken – jeweils entsprechend der Adressklasse

Weitere Klasse wäre noch der Multicast-Bereich im Class D Bereich

Ist nur noch an ganz wenigen Stellen relevant – u.a. bei der Konfiguration von Routing-Protokollen

Seit 1993 \rightarrow Classless Addressing, bzw. "Classless Inter-Domain Routing (CIDR)" mit beliebiger Prefix-Length der relevante Standard!

IP-Vergabe durch "Internet Assigned Numbers Authority (IANA)"

Delegiert Blöcke an "Regional Internet Registries (RIRs)", z.B.

RIRs vergeben Blöcke an Internet-Service-Provider (ISPs). Diese ISPs versorgen Kunden mit IP-Adressen

Broadcasts und Segmentierung

- Broadcasts existieren ...
 - auf Layer 2 Ebene (z.B. Adress Resolution Protocl ARP)
 - bei IPv4 auch auf Layer 3 Ebene (z.B. Dynamic Host Configuration Protocol – DHCP)
- Umgang von Geräten mit Broadcasts ...
 - Switches leiten diese weiter aus allen Ports, außer Empfangsport
 - → Broadcast-Domain
 - Router blockieren normalerweise (unterscheide "directed" und "limited" Broadcast)
 - → Router ist damit "Außengrenze" einer Broadcast-Domain
- Problematisch sind Netze mit "vielen" Rechnern
 - → große Broadcast-Domain, signifkante Broadcast-Last

Broadcasts und Segmentierung

Auftrennung in kleinere Broadcast-Domain. Beachte die Aufteilung / Segmentierung des IP-Adressbereichs (Netmaske, Prefix, Größe, ...)

→ Host-Bits des Originalnetzes werden für Subnetze verwendet

Neben der Reduzierung der Broadcast-Last, gibt es weitere Gründe für Segmentierung von Netzen ...

Weitere Gründe für Segmentierung / Subnetting von Netzen

Grundprinzip des Subnettings

■ Die klassischen (legacy) Netzmasken / Prefixes sehen so aus:

Prefix Länge	Subnetz- Maske	Subnetz-Maske binär (n = network, h = host)	# an Hosts	# an Netzen
/8	255.0.0.0	nnnnnnn.hhhhhhhh.hhhhhhhhhhhhhhhhhhhhh	16.777.214	256
/16	255.255.0.0	nnnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhh 1111111.11111111.00000000.00000000	65.534	65.536
/24	255.255.255.0	nnnnnnn.nnnnnnnnnnnnnn.hhhhhhh 11111111.1111111.1111111.0000000	254	16.777.216

- Widmet man Host-Bits sozusagen zu Netzwerk-Bits um …
 - hat man weniger Hosts im Netz
 - hat dafür aber weitere Kombination um Netze zu bilden
 - die "Subnetze"

Beispiel: Subnetting von 10.0.0.0/8 mit neuer Prefix-Length /16

Subnetz Adresse (256 mögliche Subnetze)	Host Bereich (65.534 mögliche Hosts pro Subnetz)	Broadcast
10.0.0.0/16	10.0.0.1 - 10.0.255.254	10.0.255.255
10.1.0.0/16	10.1.0.1 - 10.1.255.254	10.1.255.255
10.2.0.0/16	10.2.0.1 - 10.2.255.254	10.2.255.255
10.3.0.0/16	10.3.0.1 - 10.3.255.254	10.3.255.255
10.4.0.0/16	10.4.0.1 - 10.4.255.254	10.4.255.255
10.5.0.0/16	10.5.0.1 - 10.5.255.254	10.5.255.255
10.6.0.0/16	10.6.0.1 - 10.6.255.254	10.6.255.255
10.7.0.0/16	10.7.0.1 - 10.7.255.254	10.7.255.255
10.255.0.0/16	10.255.0.1 - 10.255.255.254	10.255.255.255

Aus einem großen Netz, werden so 28 = 256 kleinere Netze

Beispiel: Subnetting von 10.0.0.0/8 mit neuer Prefix-Length /24

Subnetz Adresse (65.536 mögliche Subnetze)	Host-Bereich (254 mögliche Hosts pro Subnetz)	Broadcast
10.0.0.0/24	10.0.0.1 - 10.0.0.254	10.0.0.255
10.0.1.0/24	10.0.1.1 - 10.0.1.254	10.0.1.255
10.0.2.0/24	10.0.2.1 - 10.0.2.254	10.0.2.255
10.0.255.0/24	10.0.255.1 - 10.0.255.254	10.0.255.255
10.1.0.0/24	10.1.0.1 - 10.1.0.254	10.1.0.255
10.1.1.0/24	10.1.1.1 - 10.1.1.254	10.1.1.255
10.1.2.0/24	10.1.2.1 - 10.1.2.254	10.1.2.255
10.100.0.0/24	10.100.0.1 - 10.100.0.254	10.100.0.255
10.255.255.0/24	10.255.255.1 - 10.2255.255.254	10.255.255.255

Aus einem großen Netz, werden so 2^{16} = 65.536 kleinere Netze

Subnetting nicht nur auf Oktett-Grenzen

Statt in Schritten von 8 Bit jeweils exakt auf Oktett-Grenzen zu gehen, kann man auch bitweise, und damit innerhalb eines Oktetts subnettieren. Ausgangslage → /24

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnnnnnnnnnnn. n hhhhhh 11111111.11111111111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn. nn hhhhh 1111111.11111111.1111111. 11 000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnn. nnn hhhh 1111111.11111111.1111111. 1111 0000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnn. nnnnn hhh 1111111.11111111.1111111. 11111 000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnhh 11111111.1111111111	64	2

/25 row - Borrowing 1 bit from the fourth octet creates 2 subnets supporting 126 hosts each.

/26 row - Borrowing 2 bits creates 4 subnets supporting 62 hosts each.

/27 row - Borrowing 3 bits creates 8 subnets supporting 30 hosts each.

/28 row - Borrowing 4 bits creates 16 subnets supporting 14 hosts each.

/29 row - Borrowing 5 bits creates 32 subnets supporting 6 hosts each.

/30 row - Borrowing 6 bits creates 64 subnets supporting 2 hosts each.

Bisheriges Fazit zu Basic-Subnetting

- Es werden n Bits aus dem bisherigen Hostbereich "geliehen" (mind. 2 Bit Rest für Hostbereich!)
- 2ⁿ ergibt Anzahl möglicher Subnetze (früher – od. bei alter Technik – durfte "Subnet Zero" und das "All-Ones-Subnet" nicht verwendet werden!
- Es verbleiben h Hostbits => 2^h-2 ergibt Anzahl mgl. Hosts im Subnetz
- Typische tabellarische Schreibweise des Ergebnisses mit Netz-ID, Host-Range, Broadcast

Subnetting-Beispiel (1)

Sie haben von Ihrem ISP folgenden IP-Bereich erhalten: 172.16.84.0/22

Die diversen von Ihnen zu betreuenden Netze versorgen Sie aus diesem Bereich durch Subnetting. Sie benötigen voraussichtlich IP-Adressen für max. 28 gleich große Netze und sollen die Anzahl der möglichen Hosts möglichst maximieren.

Folge aus diesen Forderungen: Subnetting des obigen Netzes mit 5 weiteren Subnet-Bits:

25=32 mögliche Netze

Subnetting-Beispiel (2)

22 Bit SN-Mask => 255.255.252.0 => bisherige Grenze zwischen Netz- und Hostanteil liegt offenbar im 3. Oktet.

Ein weiteres Subnetting mit 5 Bits verwendet also die beiden verbleibenden Bits aus dem 3. Octet sowie weitere 3 Bits aus dem 4. Octet.

Die "roten" Bits gehören nach dem Subnetting also zum Netzanteil!

Subnetting-Beispiel (3)


```
0101 01xx.xxx0 0000 \rightarrow 84.0
```

```
(1. Subnetz "Zero")
      0100.0000 0000 \rightarrow 84.0
0101
                   0000 → 84.32
                                   2. Subnetz-ID)
      0100.0010
0101
                                   3. Subnetz-ID
                   0000 → 84.64
0101
      0100.0100
                   0000 → 84.96
                                   (4. Subnetz-ID)
      0100.0110
0101
                   0000 → 84.128 (5. Subnetz-ID)
0101
      0100.1000
                   0000 → 84.160 (6. Subnetz-ID)
      0100.1010
0101
                   0000 → 84.192 (7. Subnetz-ID)
      0100.1100
                   0000 → 84.224 (8. Subnetz-ID)
      0100.1110
                   0000 → 85.0
                                 (9. Subnetz-ID)
      0101.0000
0101 0101.0010 0000 \rightarrow 85.32 (10. Subnetz-ID)
```

0111.1100 0000 → 87.192 (31. Subnetz-ID)

0101 0111.1110 0000 \rightarrow 87.224 (32. SN "All-ones")

Subnetting-Beispiel (4)

Um die möglichen IP-Nummern in den Netzen zu bestimmen, werden anschließend die 5 Host-Bits variiert. Hier am Beispiel des 2. Subnets:

```
0101 0100.001x xxxx → 84.32 (2. Subnetz-ID)

0101 0100.0010 0000 → 84.32 (Netz-ID – 2. Subnetz)

0101 0100.0010 0001 → 84.33 (1. IP-Nr. – 2. Subn.)

0101 0100.0010 0010 → 84.34 (2. IP-Nr. – 2. Subn.)

0101 0100.0010 0011 → 84.35 (3. IP-Nr. – 2. Subn.)

...

0101 0100.0011 1110 → 84.62 (30. IP-Nr. – 2. Subn.)
```


 $0100.0011 \ 1111 \rightarrow 84.63$

(Broadcast – 2. Subn.)

Subnetting-Beispiel (5)

Netz-ID	Host-Range	Broadcast
172.16.84.0	172.16.84.1 - 172.16.84.30	172.16.84.31
172.16.84.32	172.16.84.33 - 172.16.84.62	172.16.84.63
172.16.84.64	172.16.84.65 - 172.16.84.94	172.16.84.95
172.16.84.96	172.16.84.97 - 172.16.84.126	172.16.84.127
172.16.84.128	172.16.84.129 – 172.16.84.158	172.16.84.159
172.16.84.160	172.16.84.161 – 172.16.84.190	172.16.84.191
172.16.84.192	172.16.84.193 – 172.16.84.222	172.16.84.223
172.16.84.224	172.16.84.225 - 172.16.84.254	172.16.84.255
172.16.85.0	172.16.85.1 - 172.16.85.30	172.16.85.31
172.16.85.32	172.16.85.33 - 172.16.85.62	172.16.85.63

VLSM – Beispiel (I)

- Speziell mit dem knappem Gut öffentlicher IP-Adressen muss noch effizienter umgegangen werden als mit privaten IP-Adressen
- Variable Length Subnet Masking (VLSM)
- Eine Firma mit 2 Standorten hat das Netz 192.168.1.0/24 erhalten
- Insgesamt sind 4 IP-Netze mit insgesamt 217 Rechnern zu versorgen:
 - > Support-Abteilung → 28 Hosts
 - ≻ Kunden-Server → 119 Hosts
 - Verwaltungs-Abteilung → 12 Hosts
 - ➤ Entwickler-Abteilung → 58 Hosts
 - Die serielle Verbindung zwischen den Standorten muss auch bedient werden.

VLSM - Beispiel (II)

192.168.1.0/24 → Gesamtes Class-C-Netz L 192.168.1.0/25 → 126 Hosts → Kundenserver 192.168.1.128/25 → 126 Hosts L 192.168.1.128/26 → 62 Hosts → Entwickler 192.168.1.192/26 → 62 Hosts **L** 192.168.1.192/27 → 30 Hosts → Support 192.168.1.224/27 → 30 Hosts L 192.168.1.224/28 → 14 Hosts → Verwaltung 192.168.1.240/28 → 14 Hosts **L** 192.168.1.240/29 → 6 Hosts → WAN-Link 192.168.1.248/29 → 6 Hosts

VLSM - Beispiel (III)

- Eingesetzte Subnetze:
 - > 192.168.1.0/25
- ➤ Kundenserver
- > 192.168.1.128/26
- ▶ Entwickler
- > 192.168.1.192/27
- ► Support
- > 192.168.1.224/28
- Verwaltung
- 192.168.1.240/29
- WAN-Verbindung
- Auf seriellem WAN-Link könnte noch effizienter z.B. auch 192.168.1.248/30 od. 10.1.1.0/30 mit jeweils 2 Hosts eingesetzt werden!

Starres Subnetting versus VLSM

Merke: VLSM ist Subnetting eines Subnetzes!

Ebenfalls zu beachten: Subnetze können nicht an einer beliebigen Stelle dieses "Pizza-Modells" starten und enden!

Faustregel für VLSM: Netze nach Größe sortieren und von groß nach klein abarbeiten.

Strukturiertes Design / Entwurf von IP-Netzen

- Anzahl der Netze sowie deren Größenbedarf feststellen
 - Dazu Geräte mit IPv4-Bedarf festellen
 - User-Endgeräte (Laptops, PCs, Laptops, Smartphones, ...)
 - Server innerhalb der Firma, in der DMZ, …
 - Intermediary Devices (Switches, Monitoring, Security, ...)
 - Gateway / Router, Firewall
- Wachstum einrechnen
- Wo sind private, wo sind öffentliche IPv4-Adressen
 - Starres, ggf. Verschwenderisches Subnetting
 - Sparsames, aufwändigeres VLSM

Quizze, Activities, Laborübungen, ... dieses Moduls

- 11.1.7 Activity ANDing to Determine the Network Address
- 11.1.8 Check Your Understanding IPv4 Address Structure
- 11.2.4 Activity Unicast, Broadcast, or Multicast
- 11.3.7 Activity Public or Private IPv4 Address
- 11.3.8 Check Your Understanding Types of IPv4 Addresses
- 11.4.4 Check Your Understanding Network Segmentation
- 11.5.5 Packet Tracer Subnet an IPv4 Network
- 11.6.5 Activity Calculate the Subnet Mask
- 11.6.6 Lab Calculate IPv4 Subnets
- 11.7.4 Activity Determine the Number of Bits to Borrow
- 11.7.5 Packet Tracer Subnetting Scenario
- 11.8.6 Activity VLSM Practice
- 11.9.3 Packet Tracer VLSM Design and Implementation Practice
- 11.10.1 Packet Tracer Design and Implement a VLSM Addressing Scheme
- 11.10.2 Lab Design and Implement a VLSM Addressing Scheme

Könnte in der Form in einer Prüfung sein

Fragen

