	<pre>import pandas as pd import matplotlib.pyplot as plt import seaborn as sns housing = pd.DataFrame(pd.read_csv("Housing.csv")) housing.head() price area bedrooms bathrooms stories mainroad guestroom basement hotwaterheating airconditioning parking prefarea furnishingstatus 0 13300000 7420</pre>
	<pre>2 12250000 9960 3</pre>
	price area bedrooms bathrooms stories mainroad guestroom basement hotwaterheating airconditioning parking prefarea furnishingstatus 0 13300000 7420 4 2 3 1 0 0 0 1 2 1 furnished 1 12250000 8960 4 4 1 0 0 0 1 3 0 furnished 2 12250000 9960 3 2 2 1 0 1 0 2 1 semi-furnished 3 12215000 7500 4 2 2 1 0 1 3 1 furnished from sklearn.model_selection import train_test_split
t[4]: [5]:	<pre>np.random.seed(0) df_train, df_test = train_test_split(housing, train_size = 0.7, test_size = 0.3, random_state = np.random) df_train.shape (381, 13) num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking','price'] df_Newtrain = df_train[num_vars] df_Newtest = df_test[num_vars] df_Norm = df_Newtrain df_Standard = df_Newtrain df_Newtrain.head()</pre>
	area bedrooms bathrooms stories parking price 454 4500 3 1 2 0 3143000 392 3990 3 1 2 0 3500000 231 4320 3 1 1 0 4690000 271 1905 5 1 2 0 4340000 250 3510 3 1 3 0 4515000
	<pre>warnings.filterwarnings('ignore') from sklearn.preprocessing import MinMaxScaler, StandardScaler scaler = MinMaxScaler() df_Norm[num_vars] = scaler.fit_transform(df_Norm[num_vars]) df_Norm.head(20) area bedrooms bathrooms stories parking price 454 0.193548</pre>
	250 0.121622 0.50 0.0 0.666667 0.00000 0.239394 541 0.040976 0.50 0.0 0.000000 0.001485 461 0.226969 0.25 0.0 0.000000 0.00000 0.115152 124 0.340671 0.50 0.5 1.00000 0.333333 0.363636 154 0.131793 0.50 0.5 0.333333 0.666667 0.327273 451 0.357018 0.25 0.0 0.000000 0.000000 0.121212 59 0.302528 0.50 0.5 1.000000 0.000000 0.000000 0.000000 405 0.145601 0.05 0.0 0.000000 0.000000 0.133131
	465 0.142691 0.25 0.0 0.000000 0.011211 490 0.182650 0.50 0.0 0.333333 0.93939 540 0.084568 0.25 0.0 0.00000 0.666667 0.006061 406 0.253124 0.25 0.0 0.00000 0.666667 0.212121 190 0.418774 0.75 0.0 0.333333 0.484848 55 0.302528 0.50 0.0 0.00000 0.333333 0.303030
	<pre>import warnings warnings.filterwarnings('ignore') from sklearn.preprocessing import MinMaxScaler, StandardScaler scaler = StandardScaler() df_Standard[num_vars] = scaler.fit_transform(df_Standard[num_vars]) df_Standard.head(20) area bedrooms bathrooms stories parking price 454 -0.286366</pre>
	271 -1.601145 2.884176 -0.581230 0.207401 -0.822960 -0.228768 250 -0.787958 0.073764 -0.581230 1.352614 -0.822960 -0.135256 541 -1.350349 0.073764 -0.581230 -0.937813 -0.822960 -1.603589 461 -0.053303 -1.331442 -0.581230 -0.937813 -0.822960 -0.902058 124 0.739618 0.073764 1.488383 2.497828 0.321375 0.631546 154 -0.717026 0.073764 1.488383 0.207401 1.465710 0.407116 451 0.853616 -1.331442 -0.581230 -0.937813 -0.822960 -0.864653 59 0.473622 0.073764 1.488383 2.497828 0.321375 1.304836
	493 -0.559962 0.073764 -0.581230 -0.937813 -0.822960 -1.051678 465 -0.641027 -1.331442 -0.581230 -0.937813 -0.822960 -0.920761 490 -0.362365 0.073764 -0.581230 0.207401 0.321375 -1.032976 540 -1.046354 -1.331442 -0.581230 -0.937813 1.465710 -1.575348 406 0.129094 -1.331442 -0.581230 -0.937813 0.321375 -0.696331 289 0.397623 -1.331442 -0.581230 -0.937813 1.465710 -0.303578 190 1.284276 1.478970 -0.581230 0.207401 1.465710 0.145281 55 0.473622 0.073764 -0.581230 0.207401 0.321375 0.257496 171 2.636548 0.073764 -0.581230 -0.937813 0.321375 0.257496
[8]:	<pre>X_n = df_Norm.values[:,[0,1,2,3,4]] y_n = df_Norm.values[:,5] X_t = df_Newtest.values[:,[0,1,2,3,4]] y_t = df_Newtest.values[:,5] X_s = df_Standard.values[:,[0,1,2,3,4]] y_s = df_Standard.values[:,5]</pre> mean = np.ones(X_n.shape[1]) std = np.ones(X_n.shape[1]) for i in range(0, X_n.shape[1]):
[10]:	<pre>mean[i] = np.mean(X_n.transpose()[i]) std[i] = np.std(X_n.transpose()[i]) for j in range(0, X_n.shape[0]):</pre>
[11]:	<pre>mean = np.ones(X_t.shape[1]) std = np.ones(X_t.shape[1]) for i in range(0, X_t.shape[1]): mean[i] = np.mean(X_t.transpose()[i]) std[i] = np.std(X_t.transpose()[i]) for j in range(0, X_t.shape[0]): X_t[j][i] = (X_t[j][i] - mean[i])/std[i]</pre> def compute_cost(X, n, theta): h = np.ones((X.shape[0],1)) theta = theta.reshape(1,n+1)
[13]:	<pre>for i in range(0,X.shape[0]): h[i] = float(np.matmul(theta, X[i])) h = h.reshape(X.shape[0]) return h def gradient_descent(X, y, theta, alpha, iterations, n, h): lam = 1000 cost = np.ones(iterations) for i in range(0,iterations): theta[0] = theta[0] - (alpha/X.shape[0]) * sum(h - y) for j in range(1,n+1):</pre>
[14]:	<pre>h = compute_cost(X, n, theta) cost[i] = (1/X.shape[0]) * 0.5 * sum(np.square(h - y)) theta = theta.reshape(1,n+1) return theta, cost def linear_regression(X, y, alpha, iterations): n = X.shape[1] one_column = np.ones((X.shape[0],1)) X = np.concatenate((one_column, X), axis = 1) theta = np.zeros(n+1) h = compute_cost(X, n, theta) theta, cost = gradient_descent(X, y, theta, alpha, iterations, n, h) return theta. cost</pre>
[15]:	<pre>return theta, cost iterations = 500; theta, cost = linear_regression(X_n, y_n, 0.1, iterations) print('Final value of theta with normalization =', theta) cost = list(cost) n_iterations = [x for x in range(1,(iterations + 1))] Final value of theta with normalization = [[1.42056096e-16 1.24270894e-01 7.53179957e-02 1.10985844e-01 9.01203112e-02 7.75127501e-02]] theta2, cost2 = linear_regression(X_s, y_s, 0.1, iterations) print('Final value of theta with standardization =', theta2)</pre>
[17]:	<pre>cost = list(cost2) n_iterations2 = [x for x in range(1,(iterations + 1))] Final value of theta with standardization = [[1.42056096e-16 1.24270894e-01 7.53179957e-02 1.10985844e-01 9.01203112e-02 7.75127501e-02]] theta_t, cost_t = linear_regression(X_t, y_t, 0.1, iterations) print('Final value of theta of the test set =', theta) cost_t = list(cost_t) n_iterations_t = [x for x in range(1,(iterations + 1))] Final value of theta of the test set = [[1.42056096e-16 1.24270894e-01 7.53179957e-02 1.10985844e-01 9.01203112e-02 7.75127501e-02]]</pre>
[18]: [18]:	plt.plot(n_iterations, cost, label='Traing set normalization') plt.legend() plt.rcParams["figure.figsize"]=(10,6) plt.grid() plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Convergence of gradient descent') Text(0.5, 1.0, 'Convergence of gradient descent') Convergence of gradient descent Taing set normalization
	0.36 0.36 0.30
[19]: [19]:	plt.plot(n_iterations2, cost2, label='Traing set standardization') plt.legend() plt.rcParams["figure.figsize"]=(10,6) plt.grid() plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Convergence of gradient descent') Text(0.5, 1.0, 'Convergence of gradient descent') Convergence of gradient descent
	0.36 0.36 0.30 0.30 0.30 0.30 0.30 0.30
[20]: [20]:	plt.plot(n_iterations_t, cost_t, label='Traing set standardization') plt.legend() plt.rcParams["figure.figsize"]=(10,6) plt.grid() plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Convergence of gradient descent') Text(0.5, 1.0, 'Convergence of gradient descent') Convergence of gradient descent Taing set standardization
[21]:	num_vars = ['area', 'bedrooms', 'bathrooms', 'mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning', 'parking', 'prefarea', 'price']
	df_Newtrain = df_train[num_vars] df_Newtest = df_test[num_vars] df_Norm = df_Newtrain df_Newtrain.head() area bedrooms bathrooms mainroad guestroom basement hotwaterheating airconditioning parking prefarea price 454 4500 3 1 1 0 0 1 0 0 3143000 392 3990 3 1 1 0 0 0 0 3500000 231 4320 3 1 1 0 0 0 0 1 4690000 271 1905 5 1 0
[22]:	<pre>import warnings warnings.filterwarnings('ignore') from sklearn.preprocessing import MinMaxScaler, StandardScaler scaler = MinMaxScaler() df_Norm[num_vars] = scaler.fit_transform(df_Norm[num_vars]) df_Norm.head(20) area bedrooms bathrooms mainroad guestroom basement hotwaterheating airconditioning parking prefarea price 454 0.193548 0.50 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.000000 0.0 0.</pre>
	392 0.156495 0.50 0.0 1.0 0.0 0.0 0.0 0.000000 0.0 0.151515 231 0.180471 0.50 0.0 1.0 0.0
	451 0.357018 0.25 0.0 1.0 0.0 0.0 0.0 0.000000 0.0 0.121212 59 0.302528 0.50 0.5 1.0 1.0 0.0 0.0 1.0 0.3333333 0.0 0.472727 493 0.154316 0.50 0.0 1.0 0.0
[23]:	55 0.302528 0.50 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.333333 0.0 0.484848 171 0.612685 0.50 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
	454-0.2863660.073764-0.5812300.393123-0.457738-0.711287-0.2161091.422607-0.822960-0.564215-0.677628392-0.5447620.073764-0.5812300.393123-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-0.677628231-0.3775640.073764-0.5812300.393123-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-0.041744271-1.6011452.884176-0.581230-2.543735-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-0.228768250-0.7879580.073764-0.5812300.393123-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-0.135256541-1.3503490.073764-0.581230-2.543735-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-1.603589461-0.053303-1.331442-0.5812300.393123-0.457738-0.711287-0.216109-0.7029350.321375-0.564215-0.9020581240.7396180.0737641.4883830.393123-0.457738-0.711287-0.216109-0.7029350.321375-0.5642150.6031546154-0.7170260.0737641.4883830.393123-0.457738-0.711287-0.216109-0.7029351.465710-0.5642150.407116
	4510.853616-1.331442-0.5812300.393123-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-0.864653590.4736220.0737641.4883830.3931232.184657-0.711287-0.2161091.4226070.321375-0.5642151.304836493-0.5599620.073764-0.5812300.393123-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-1.051678465-0.641027-1.331442-0.5812300.393123-0.457738-0.711287-0.216109-0.702935-0.822960-0.564215-0.920761490-0.3623650.073764-0.581230-2.543735-0.457738-0.7112874.627285-0.7029350.321375-0.564215-1.032976540-1.046354-1.331442-0.5812300.393123-0.457738-0.711287-0.216109-0.7029351.465710-0.564215-1.5753484060.129094-1.331442-0.5812300.393123-0.457738-0.711287-0.216109-0.7029350.3213751.772373-0.6963312890.397623-1.331442-0.5812300.3931232.1846571.405903-0.216109-0.7029351.465710-0.564215-0.303578
	190 1.284276 1.478970 -0.581230 0.393123 -0.457738 -0.711287 -0.216109 1.422607 1.465710 -0.564215 0.145281 55 0.473622 0.073764 -0.581230 0.393123 -0.457738 -0.711287 -0.216109 1.422607 0.321375 -0.564215 1.379646 171 2.636548 0.073764 -0.581230 0.393123 -0.457738 -0.711287 -0.216109 -0.702935 0.321375 1.772373 0.257496 X_n = df_Norm.values[:,0:10] y_n = df_Norm.values[:,0:10] y_t = df_Newtest.values[:,0:10] x_t = df_Newtest.values[:,0:10] y_s = df_Standard.values[:,0:10] y_s = df_Standard.values[:,0:10]
[25]: [26]:	<pre>mean = np.ones(X_n.shape[1]) std = np.ones(X_n.shape[1]): for i in range(0, X_n.shape[1]): mean[i] = np.mean(X_n.transpose()[i]) std[i] = np.std(X_n.transpose()[i]) for j in range(0, X_n.shape[0]):</pre>
[27]:	<pre>mean[i] = np.mean(X_s.transpose()[i]) std[i] = np.std(X_s.transpose()[i]) for j in range(0, X_s.shape[0]):</pre>
[28]:	theta, cost = linear_regression(X_n, y_n, 0.1, iterations) print('Final value of theta with normalization =', theta) cost = list(cost) n_iterations = [x for x in range(1,(iterations + 1))] Final value of theta with normalization = [[1.38369922e-16 1.08337017e-01 7.58521283e-02 1.08013107e-01 5.54076634e-02 5.32500668e-02 3.66508358e-02 3.65154719e-02 9.68953820e-02 6.81505402e-02 7.57869446e-02]] theta2, cost2 = linear_regression(X_s, y_s, 0.1, iterations) print('Final value of theta with standardization =', theta2) cost2 = list(cost2)
[30]:	<pre>n_iterations2 = [x for x in range(1,(iterations + 1))] Final value of theta with standardization = [[1.38369922e-16 1.08337017e-01 7.58521283e-02 1.08013107e-01 5.54076634e-02 5.32500668e-02 3.66508358e-02 3.65154719e-02 9.68953820e-02 6.81505402e-02 7.57869446e-02]] theta_t, cost_t = linear_regression(X_Test, y_Test, 0.1, iterations) print('Final value of theta of the test set =', theta_t) cost_t = list(cost_t) n_iterations_t = [x for x in range(1,(iterations + 1))] Final value of theta of the test set = [[4.68135283e+06 9.14174376e+04 7.10541172e+04 1.03091554e+05 6.81362933e+04 4.24713613e+04 1.63927974e+04 8.78780977e+02</pre>
[31]: [31]:	6.38058529e+04 5.14196389e+04 2.74614616e+04]] plt.plot(n_iterations, cost, label='Traing set normalization') plt.legend() plt.rcParams["figure.figsize"]=(10,6) plt.grid() plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Convergence of gradient descent') Text(0.5, 1.0, 'Convergence of gradient descent') Convergence of gradient descent
	0.36
[32]:	plt.plot(n_iterations2, cost2, label='Traing set standarization') plt.legend() plt.rcParams["figure.figsize"]=(10,6) plt.grid()
[32]:	plt.grld() plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Convergence of gradient descent') Text(0.5, 1.0, 'Convergence of gradient descent Convergence of gradient descent
	0.32
[33]: [33]:	plt.plot(n_iterations_t, cost_t, label='Traing set standarization') plt.legend() plt.rcParams["figure.figsize"]=(10,6) plt.grid() plt.xlabel('Iterations') plt.ylabel('Cost') plt.ylabel('Convergence of gradient descent') Text(0.5, 1.0, 'Convergence of gradient descent')
	1e12 Convergence of gradient descent Taing set standarization Taing set standarization
	4
[]:	2 0 100 200 300 400 500 No. of iterations