자산 가격 버블의 붕괴 위험 평가를 위한 딥러닝 모델

<u>김진우</u>, 안광원 연세대학교 산업공학과, 금융기술센터 jinu.kim@yonsei.ac.kr

Outline

1. Introduction

2. Data and Methodology

3. Results and Discussion

4. Conclusion

역사적으로 금융 시장의 붕괴는 주식 가격 폭락과 함께 경제 위기 등을 동반하여 많은 사람에게 큰 손실을 유발하였다.

버블 붕괴 = 손실?

- 자산 가격의 붕괴를 예측하기 위한 연구가 진행되었고, 그 중 log-periodic power law (LPPL) 모델은 자산 가격 버블의 붕괴 전에 나타나는 전조 현상에 근거해서 그 붕괴 시점을 추정한다.
- Johansen et al. (2000)이 지진을 예측하기 위해 고안한 모델을 발전시켜 제안했으며, 많은 선행 연구에서 LPPL 모델을 사용하여 과거의 자산 가격 버블 붕괴를 효과적으로 예측하였다 (Dai et al., 2018; Ahn et al., 2023).
- 본 연구에서는 LPPL 모델과 딥러닝 모델을 결합하여, LPPL 모델의 추정 결과를 보다 실용적으로 활용할 수 있게 발전시켰다.

2009년 1월 2009년 7월 2010년 1월 2010년 7월 2011년 1월 2011년 7월

0.55

0.5

6.9

2008-07

2009-01

그러나 LPPL 추정 결과의 해석과 신뢰성 판단은 <mark>연구자의 주관적 판단과 역량에 의존</mark>하였다.

2010-07

2011-01

2010-01

2009-07

2011.03

2011.02

2011.01

2010.10

2010.11 2010.12 2011.01

Date of the last observation

0.04

0.02

2011-07

2011.02

LPPL output

따라서 본 연구는 인고지능 모델을 활용하여 LPPL 추정 파라미터 (t_c) 의 <mark>신뢰도를 계량화</mark>하고자 한다. 나아가 자산 가격 붕괴 위험의 척도로 사용할 수 있는 <mark>위험 지표를 개발</mark>하고자 한다.

■데이터

- •자산 가격 데이터
 - 1990년 이후 상장된 주식 중 S&P500의 시가총액 상위 100개 종목의 일별 종가 데이터 (출처: yahoo finance)

-S&P 500은 세계에서 가장 크고 영향력 있는 지수로, 세계 증시를 대표할 수 있는 일반적으로 사용되는 벤치마크 지수이기 때문에 분석 대상으로 선정하였다.

- 수집 데이터 기간: 1990.01—2019.12 (30y)

■데이터

- 인공지능 데이터
 - 데이터 기간: 1995.01—2019.12 (25y)

■데이터

• 인공지능 데이터

Time	A	В	С	t_c	φ	ω	β	RMSE	Label
1995.01.02	-1.04	-0.01	-0.83	36.37	0.01	6.00	0.37	0.01	0
1995.01.03	4.50	-0.11	0.06	178.78	4.20	6.64	0.36	0.02	1

- 레이블링을 진행하는 데 있어서, 추정 t_c 의 ± 5 trading day의 추정 오차를 허용
- 하나의 Time에 대해서 500개의 LPPL 파라미터를 추정

Table 1. The number of data points

	Crash	Non-Crash	Total	
Log return	1,145 (0.18%)	628,155 (99.82%)	629,300	
	Label 1	Label 0	Total	
LPPL estimation	222,403 (1.61%)	13,627,579 (98.39%)	13,849,982	

■ LPPL (Johansen et al., 2000)

• Solution to the price dynamics:

$$dp_t = u_t p_t dt - \kappa p_t dj$$

$$\log \frac{p_t}{p_{t_0}} = \kappa \int_{t_0}^t h_s d_s$$

 u_t : drift

j: jump process

 κ : jump size (the drop ratio after crash)

 h_t : the hazard rate

• Hazard Rate:

$$h_t \approx B_1(t_c - t)^{-(1-\beta)} \{ 1 + C_1 \cos[\omega \log(t_c - t) + \varphi] \}$$

 t_c : the critical time

- **LPPL (Johansen et al., 2000)**
 - Log-periodic power law:

$$Y_t \approx A + B \cdot (t_c - t)^{\beta} \{1 + C \cos[\omega \log(t_c - t) + \phi]\}$$

- **Fitting the LPPL Parameters**
 - Optimization: Genetic algorithm
 - Evaluation metric: Root mean squared error

$$RMSE = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (y_t - Y_t^2)}$$

Table 2. LPPL parameters

Parameter	Constraint	Meaning				
A	$(\max P, +\infty)$	(1) The price at critical time; (2) Higher than the current price				
В	$(-\infty,0)$	Negative, measuring the distance to critical price				
C	$C \in (-1,1)$	Oscillations cannot overwhelm the trend				
t_c	$(t, +\infty)$	(1) The most probable critical time; (2) Haven't crashed				
$oldsymbol{\phi}$	$[0,2\pi)$	Phase adjustment				
ω	[4.8, 13]	The frequency of the fluctuations during the bubble				
		Too small False oscillation				
		Too large Fit the random noises				
β [0.		The exponent of the power law growth				
	[0.1, 0.9]	Negative β Infinite critical price				
		Positive but close to 0 No trend				
		Positive but close to 1 Low hazard rate				

■ DNN based classification model

• 입력 변수는 파라미터 A, t_c 를 제외한 6개의 변수 $(B,C,\phi,\omega,\beta,RMSE)$ 를 사용하였다.

• 제안하는 모델은 총 3개의 은닉층으로 구성되어 있으며, 각 은닉층은 128, 64, 32개의 노드로 이루어진 신경망이다.

• 데이터 불균형 문제를 해결하기 위해 SMOTE(Synthetic minority oversampling technique)을 사용하였다.

■ DNN based classification model

• Train/Validation/Test period

- Evaluation metric
 - -Accuracy = TP + TN / TP + TN + FP + FN
 - Precision = TP / TP + FP
 - -Recall = TP / TP + FN
- -F1 score = 2 * TP / 2 * TP + FP + FN

■ DNN based classification model

Model	Input variables	Accuracy	Recall	Precision	F1 score
AI (DNN)	$B, C, t_c, \phi, \omega, \beta$	56.35%	50.09%	57.26%	53.44%
Non-linear ML (Random forest)	$B, C, t_c, \phi, \omega, \beta$	49.72%	1.58%	42.61%	3.05%
Linear ML (Logistic regression)	$B, C, t_c, \phi, \omega, \beta$	50.71%	41.20%	50.88%	45.53%

■ DNN based classification model

- Test data에 대해 정확도, 재현율, 정밀도, F1 score 모든 지표에서 제안하는 DNN 모델이 선형 ML, 비선형 ML 보다 더 높은 성과를 보인다. 이는 LPPL 추정 파라미터의 신뢰도 판단 문제가 복잡한 비선형 패턴을 보이기 때문으로 판단된다.
- 드물게 발생하는 자산 가격의 붕괴는 큰 손실을 가져오기 때문에 보수적인 자세로 위험을 최소화하는 것이 중요하다. 따라서 57.26%의 정밀도는 43.73%의 오경보를 감안하더라도 자산 가격의 붕괴에 의한 손실을 최소화하고 이익을 창출하기에 충분한 수치이다.
- 나아가 56.35% 정확도와 전체 붕괴 중 50% 이상을 성공적으로 예측하는 재현율은 해당 모델이 유의미한 정보를 금융 시장 참여자에게 제공할 수 있음을 시사한다.

■ Application: Risk metric

■ Application: Risk metric

- 인공지능 모델 구축에 사용된 데이터의 이후 기간인 2020년부터 2023년 까지의 S&P 500지수 데이터에 대한 위험 지표는 2020년 2월과 2022년 1월 발생한 자산 가격 버블의 붕괴에 대한 위험을 사전에 비교적 효과적으로 감지한다.
- 해당 결과를 통해 본 연구에서 제안하는 위험 지표가 자산 가격 버블의 붕괴 위험을 적절히 계량화하는 것으로 판단할 수 있다.

4. Conclusion

Summary

- 본 연구는 LPPL 추정 파라미터의 신뢰도를 판단하는 딥러닝 모델을 구축하고, 이를 활용한 새로운 위험 지표를 제안하였다.
- 제안하는 모델은 벤치마크 모델에 비해 추정 파라미터의 신뢰도 판단에 있어서 좋은 성능을 보여주었으며, 개발한 위험 지표는 위험을 적절히 감지하였다.

4. Conclusion

Future work

- 향후 연구에서는 시계열 데이터의 특성을 감안하여 시계열 데이터에 주로 사용하는 인공지능 모델을 활용하거나 학습 데이터의 window size를 조절함으로써 분류 성능을 높이는 시도를 할 것이다.
- Risk metric의 평가 지표를 설정하고, 이를 최적화하는 방향으로 발전시켜 나가는 연구를 진행할 것이다.

4. Conclusion

Contribution

- 본 연구는 기존 LPPL에 대한 연구들과 달리 파라미터 추정 방법이나 실증 분석이 아닌 추정된 파라미터를 어떻게 해석하고 실용적으로 활용할 것인가에 대해 연구하였다.
- 본 연구의 결과를 통해 투자자와 정책입안자는 자산 가격 버블의 붕괴 위험을 사전에 분석하고 효과적으로 대응할 수 있을 것으로 기대한다.