Understanding Analysis Chapter 1

Evan Fox (efox20@uri.edu)

December 24, 2021

The first part of chapter one just went over some prelims/reviews. Here are my solutions to selected exercises.

Question 1.

(a) Prove that the $\sqrt{3} \notin \mathbb{Q}$

First, I prove that $3|x^2 \implies 3|x$ as I will need this fact in my proof of the irrationality of $\sqrt{3}$.

Proof. We use the contrapositive, so assume that $3 \nmid x$. Then there exists $k \in \mathbb{Z}$ such that x = 3k + 1 or x = 3k + 2. Then note that if x = 3k + 1, then

$$x = 3k + 1$$

$$x^2 = 9k^2 + 6k + 1 = 3(3k^2 + 2k) + 1$$

and in the other case we have

$$x = 3k + 2$$

$$x^2 = 9k^2 + 12k + 4 = 3(3k^2 + 4k + 1) + 1$$

So, in both cases we see that $3 \nmid x^2$ as desired.

Now I prove that $\sqrt{3} \notin \mathbb{Q}$

Proof. For the sake of contradiction, assume that $\sqrt{3} \in \mathbb{Q}$. Then we may fix $m, n \in \mathbb{Q}$ such that $\sqrt{3} = \frac{m}{n}$. We then have that,

$$3 = \left(\frac{m}{n}\right)^2$$

by the fundamental theorem of arithmetic, we may write m^2 and n^2 in terms of their prime factors and cancel any factor(s) that they have in common, i.e., we reduce $\frac{m}{n}$ such that they have no common factors. Since m and n have no common factors we note that they cannot both be divisible by 3. Fist observe that

$$3n^2 = m^2 \tag{1}$$

and hence we have $3|m^2$ which implies 3|m; so we fix $k \in \mathbb{Z}$ such that m = 3k and then we substitute this expression for m back into (1).

$$3n^2 = (3k)^2 = 9k^2 \tag{2}$$

$$n^2 = 3k^2 \tag{3}$$

and we have that 3 divides n^2 and by extension 3 divides n. Thus we have a contradiction as desired.

(b) Does a similar argument work to prove that $\sqrt{6} \notin \mathbb{Q}$? Where does the proof breakdown for $\sqrt{4}$?

Yes, weather or not this method works for \sqrt{x} is related to the prime factorization of x, since the prime factors of 6 both have an exponent of $1, 6|m^2 \implies 6|m$ will hold. This is because if 2 and 3 are prime factors of m^2 then they will have to be prime factors of m, otherwise how would they have been prime factors of m^2 ? The point is squaring a number doesn't add new prime factors; it just multiples the exponent of each prime factor by 2. When we try to apply this argument to $\sqrt{4}$ the problem is that $4|m^2 \implies 4|m$ doesn't hold since the exponent of the prime factor of 4 is 2. To give an example note that $4|36 = 6^2 = 2^23^2$ but $4 \nmid 6 = 3(2)$.

Question 2.

Prove that there is no rational number satisfying $2^r = 3$.

Proof. We use contradiction, so assume that there exists $r \in \mathbb{Q}$ such that $2^r = 3$. Then since r is rational by assumption we may fix $m, n \in \mathbb{Q}$ such that $r = \frac{m}{n}$. Substituting in for r gives

$$2^{\frac{m}{n}} = 3$$

then we raise both sides to the n^{th} power and get

$$2^m = 3^n$$

which contradicts the uniqueness of the fundamental theorem of arithmetic. $\,$

Question 3.

The triangle inequality is given by $|a + b| \le |a| + |b|$.

(a) Verify the triangle inequality in the special case that a and b have the same sign.

Proof. Let $a, b \in \mathbb{R}$ and assume that a and b have the same sign. Then if a and b are both negitive we see that |a+b|=a+b and if a and b are both positive then |a+b|=a+b. Then note that regardless of the signs of a and b, |a|+|b|=a+b. It is then clear that the inequality holds.

(b) Give a general proof the triangle inequality.

Proof. First we prove that $(a+b)^2 \leq (|a|+|b|)^2$ by observing $ab \leq |ab|$. Then we multiply both sides by 2 and obtain $2ab \leq 2|ab|$, we then add a^2+b^2 to both sides and get $a^2+2ab+b^2 \leq |a|^2+2|ab|+|b|^2$. Factoring this gives $(a+b)^2 \leq (|a|+|b|)^2$. We can now use this to prove the triangle inequality by taking the square root of both sides which yeilds,

$$|a+b| \le |a| + |b|$$

as desired.

(c) Use the triangle inequality to prove that $|a-b| \le |a-c| + |c-d| + |d-b|$.

Proof. Let x = (a - c) and let y = (c - d) + (d - b), the triangle inequality tells us that

$$|x + y| \le |x| + |y|$$

 $|a - b| \le |a - c| + |(c - d) + (d - b)|$

Now we can apply the triangle inequality again to the second term on the right hand side of the last equation. So we let z=(c-d) and let w=(d-b), by the triangle inequality we the have $|c-b| \leq |c-d| + |d-b|$. Substituting back in gives,

$$|a - b| \le |a - c| + |(c - d) + (d - b)| = |a - c| + |c - d| + |d - b|$$
$$|a - b| \le |a - c| + |c - d| + |d - b|$$

as desired.

Question 4.