Abschlussprüfung 2018 an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Nam	e:	Vorname:																			
Klass	se:	Platznummer:							Punkte:												
	Auf	gabe /	41													Hau	ptte	rmin	1		
A 1.0	Es wer Der Te weise (G = II Dabei i Anfang Runden	durch R ⁺ × IR st nac stempe	eine +, y _A h x M eratur e	lauf y e Ex ∈ IR ⁺ Iinute des W	währ apone , y _u o n die asse:	end entia ∈ IR e Te rs be	die lfun †) t emp eträg	eser aktion besch eratu gt y _A	Ver n o nreib or do	such der en. es V und	re l Fo Was	ässt orm sers Um	aut aut	ch j =(: f y	ewe	ils y _U ges	nähe)·0,9 unke	erung 9* + : en. E	gs- y _U Die		
A 1.1	Im ers Umgebi Berechi	ten V	ersucl	n kül tur vo	nlt 9 n 20	95 °C	Ch	neiße	s V	Vass	ser	in	ein								
A 1.2	Im zwe Umgebe Abkühl Wasser Berecht	ungster vorgan eine T	mpera g in e emper	tur v einem atur v	on zwe on 3	18 °C	C f Rai	für um f sitzt.	3 M Tür v	inut weit	en ere	ab. 8 M	Aı inut	nsch	ließ	end	wi	rd o	der		
						 			- 	 							 		3 P		

A 2.0 Das gleichschenklige Dreieck ABC mit der Basis [BC] und der Höhe [AM] ist die Grundfläche der Pyramide ABCS mit der Spitze S. Der Punkt D∈[AM] ist der Fußpunkt der Pyramidenhöhe [DS], die senkrecht auf der Grundfläche steht.

Es gilt:
$$\overline{AM} = 8 \text{ cm}$$
; $\overline{BC} = 10 \text{ cm}$; $\overline{AD} = 4.5 \text{ cm}$; $\overline{DS} = 8.5 \text{ cm}$.

Die untenstehende Zeichnung zeigt ein Schrägbild der Pyramide ABCS.

In der Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$; [AM] liegt auf der Schrägbildachse.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

A 2.1 Berechnen Sie das Maß des Winkels MAC.

[Ergebnis: \angle MAC = 32,01°]

1 P

A 2.2 Punkte P_n liegen auf der Strecke [DS]. Die Winkel DAP $_n$ haben das Maß ϕ mit $\phi \in \,]0^\circ; 62,10^\circ \, [$.

Zeichnen Sie den Punkt P_1 und die Strecke $[AP_1]$ für $\phi=40^\circ$ in das Schrägbild zu A 2.0 ein.

1 P

A 2.3 Durch die Punkte P_n verlaufen zur Grundfläche ABC parallele Ebenen, die die Kanten der Pyramide ABCS in Punkten $E_n \in [AS]$, $F_n \in [BS]$ und $G_n \in [CS]$ und die Strecke [MS] in Punkten N_n schneiden. Die Dreiecke $E_nF_nG_n$ sind die Grundflächen von Pyramiden E_nF_nG_nD mit der Spitze D.

Zeichnen Sie die Pyramide E₁F₁G₁D und den Punkt N₁ in das Schrägbild zu A 2.0 ein.

1 P

A 2.4 Berechnen Sie die Längen der Strecken $\left[DP_{_{n}}\right]$ und $\left[E_{_{n}}N_{_{n}}\right]$ in Abhängigkeit von ϕ .

Ergebnisse: $\overline{DP_n}(\varphi) = 4.5 \cdot \tan \varphi \text{ cm}; \quad \overline{E_n N_n}(\varphi) = (8 - 4.24 \cdot \tan \varphi) \text{ cm}$

3 P

A 2.5 Berechnen Sie das Volumen der Pyramide E₁F₁G₁D.

Aufgabe A 3

Haupttermin

A 3.0 Gegeben sind Dreiecke AB_nC mit der Seitenlänge $\overline{AC} = 4 \text{ cm}$.

Die Winkel B_nAC haben das Maß α mit $\alpha \in \left]0^\circ;60^\circ\right[$.

Das Maß der Winkel ACB_n ist doppelt so groß wie das Maß der Winkel B_nAC.

A 3.1 Ergänzen Sie die Zeichnung zum Dreieck AB_1C für $\alpha = 50^{\circ}$.

1 P

A 3.2 Bestimmen Sie die Länge der Strecken $\left[B_{n}C\right]$ in Abhängigkeit von α und vereinfachen Sie mithilfe einer Supplementbeziehung.

2 P

A 3.3 Das Dreieck AB₂C ist gleichschenklig mit der Basis [AB₂].

Begründen Sie, dass das Dreieck AB₂C rechtwinklig ist.

Abschlussprüfung 2018

an den Realschulen in Bayern

4 P

5 P

Haupttermin

Prüfungsdauer: 150 Minuten

Aufgabe B 1

Mathematik I

B 1.0 Gegeben ist die Funktion f_1 mit der Gleichung $y = -2 \cdot \log_{0.5} x - 1.5$ ($\mathbb{G} = \mathbb{R} \times \mathbb{R}$).

B 1.0 Gegeben ist die Funktion f_1 mit der Gleichung $y = -2 \cdot \log_{0.5} x - 1.5$ ($G = \mathbb{R} \times \mathbb{R}$). Der Graph der Funktion f_1 wird durch orthogonale Affinität mit der x-Achse als Affinitätsachse und dem Affinitätsmaßstab k = -0.5 sowie anschließende Parallelverschiebung mit dem Vektor $\overrightarrow{v} = \begin{pmatrix} 0 \\ -1.5 \end{pmatrix}$ auf den Graphen der Funktion f_2 abgebildet.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

- B 1.1 Zeigen Sie rechnerisch, dass die Funktion f_2 die Gleichung $y = \log_{0.5} x 0.75$ mit $G = IR \times IR$ hat.
- B 1.2 Zeichnen Sie die Graphen zu f_1 und f_2 für $x \in [0,5;11]$ in ein Koordinatensystem. Berechnen Sie sodann die Nullstelle der Funktion f_1 .

Für die Zeichnung: Längeneinheit 1 cm; $-1 \le x \le 12$; $-5 \le y \le 6$

B 1.3 Punkte $A_n(x | -2 \cdot \log_{0.5} x - 1.5)$ auf dem Graphen zu f_1 haben dieselbe Abszisse x wie Punkte $B_n(x | \log_{0.5} x - 0.75)$ auf dem Graphen zu f_2 . Sie sind für x > 1.19 zusammen mit Punkten C_n Eckpunkte von Dreiecken $A_n B_n C_n$.

Es gilt:
$$\overrightarrow{A_n} \overrightarrow{C_n} = \begin{pmatrix} 4 \\ -1,5 \end{pmatrix}$$
.

Zeichnen Sie das Dreieck $A_1B_1C_1$ für x=2 und das Dreieck $A_2B_2C_2$ für x=7 in das Koordinatensystem zu B 1.2 ein.

- B 1.4 Das Dreieck $A_3B_3C_3$ ist gleichschenklig mit der Basis $[A_3B_3]$.

 Bestimmen Sie rechnerisch die x-Koordinate des Punktes A_3 .

 4 P
- B 1.5 Berechnen Sie die Koordinaten der Schwerpunkte S_n der Dreiecke $A_n B_n C_n$ in Abhängigkeit von der Abszisse x der Punkte A_n und geben Sie die Gleichung des Trägergraphen der Punkte S_n an.

Zeichnen Sie sodann die Schwerpunkte S_1 und S_2 der Dreiecke $A_1B_1C_1$ und $A_2B_2C_2$ in das Koordinatensystem zu B 1.2 ein.

Abschlussprüfung 2018

an den Realschulen in Bayern

Prüfungsdauer: 150 Minuten

Mathematik I

Haupttermin Aufgabe B 2 B 2.0 Die Punkte A(-2|2) und C(3|3) sind für x < 8 gemeinsame Eckpunkte von Vierecken AB_nCD_n . Die Eckpunkte $B_n(x|0.5x)$ liegen auf der Geraden g mit der Gleichung y = 0.5x ($G = \mathbb{R} \times \mathbb{R}$). Der Punkt M ist der Mittelpunkt der Diagonalen [AC]. Für die Diagonalen $\left[B_{n}D_{n}\right]$ gilt: $M \in \left[B_{n}D_{n}\right]$ und $\overrightarrow{B_{n}D_{n}} = 3, 5 \cdot \overrightarrow{B_{n}M}$. Runden Sie im Folgenden auf zwei Stellen nach dem Komma. B 2.1 Zeichnen Sie die Gerade g und das Viereck AB_1CD_1 für x = 0.5 sowie die Diagonalen [AC] und [B₁D₁] in ein Koordinatensystem. 2 P Für die Zeichnung: Längeneinheit 1 cm; $-5 \le x \le 5$; $-2 \le y \le 10$ B 2.2 Berechnen Sie die Koordinaten der Punkte D_n in Abhängigkeit von der Abszisse x der Punkte B_n. Ergebnis: $D_n \left(-2.5x + 1.75 | -1.25x + 8.75 \right)$ 3 P B 2.3 Bestimmen Sie die Gleichung des Trägergraphen der Punkte D_n. 2 P B 2.4 Unter den Vierecken AB_nCD_n gibt es das Drachenviereck AB₂CD₂. Zeigen Sie rechnerisch, dass für die x-Koordinate des Punktes B_2 gilt: x = 0.91. Berechnen Sie sodann den Flächeninhalt des Drachenvierecks AB₂CD₂. 5 P B 2.5 Der Punkt C' entsteht durch Achsenspiegelung des Punktes C an der Geraden g. Für das Viereck AB_3CD_3 gilt: $B_3 \in [AC']$. Berechnen Sie die Koordinaten von C' und zeichnen Sie sodann das Viereck AB₃CD₃ 3 P in das Koordinatensystem zu B 2.1 ein. B 2.6 Begründen Sie, dass für die Flächeninhalte der Dreiecke AMD, und MB, C gilt: 2 P $A_{AMD_n}: A_{MB_nC} = 2.5:1.$