Método de Euler en sistemas de ecuaciones diferenciales Métodos numéricos II

María del Mar Ruiz Martín
Antonio R. Moya Martín-Castaño
Francisco Luque Sánchez
Doble Grado de Ingeniería Informática y Matemáticas
Universidad de Granada - UGR
18001 Granada, Spain

May 18, 2016

1 Introducción

2 Descripción general de un sistema de ecuaciones diferenciales

Para comenzar, veamos lo que es una ecuación diferencial. Una ecuación diferencial es una igualdad en la que interviene una variable independiente (t), una variable dependiente (x(t)) y las sucesivas derivadas de la variable dependiente respecto de la independiente. En forma general, podemos escribir dicha ecuación de la siguiente forma:

$$F(t, x, x', ..., x^{n}) = 0$$

Se define el orden de dicha ecuación diferencial como el mayor orden de derivación de la variable dependiente que aparece en dicha ecuación.

Una solución de esta ecuación es un conjunto de funciones que satisfacen las condiciones de dicha ecuación.

Asociado a esta ecuación diferencial, se define un problema de valores iniciales (PVI) como dicha ecuación diferencial junto con los n valores siguientes. Fijado t_0 :

$$x(t_0) = y_0, x'(t_0) = y_1, ..., x_{n-1}(t_0) = y_{n-1}$$

Se dice que un PVI está bien planteado si existe solución, es única y depende de forma continua de los datos del problema.

Pasamos ahora a definir el concepto de sistema de ecuaciones diferenciales. Un sistema de ecuaciones diferenciales es un conjunto de ecuaciones diferenciales en las que

se ven implicadas una variable independiente, un conjunto de variables dependientes de la misma, y las sucesivas derivadas de dichas variables dependientes respecto de la independiente. En forma general, podemos escribir un sistema de ecuaciones diferenciales como sigue:

$$\begin{cases} F_1(t,x_1,x_1',...,x_1^{n_1)},...,x_m,x_m',...,x_m^{n_m})=0\\ F_2(t,x_1,x_1',...,x_1^{n_1)},...,x_m,x_m',...,x_m^{n_m})=0\\ \vdots\\ F_r(t,x_1,x_1',...,x_1^{n_1)},...,x_m,x_m',...,x_m^{n_m})=0 \end{cases}$$

Al igual que para las ecuaciones diferenciales, la solución de un sistema de ecuaciones diferenciales está compuesto por un conjunto de ecuaciones que satisfacen las condiciones impuestas por las ecuaciones del sistema

De nuevo, podemos definir un PVI asociado al sistema de ecuaciones anterior. Dicho PVI viene definido por el sistema de ecuaciones diferenciales más el siguiente conjunto de valores:

//TODO: Introducir los valores.

Se dice que un sistema de ecuaciones diferenciales está bien planteado si cumple las propiedades definidas previamente:

- ∃ solución
- Es única
- Depende de forma continua de las propiedades del problema

Durante el trabajo, dado que el método de Euler se aplica a ecuaciones y sistemas de primer orden, trabajaremos con este tipo de sistemas. Podemos escribir este tipo de sistemas de la siguiente manera:

$$\begin{cases} F_1(t, x_1, ..., x_m) = \frac{\partial x_1}{\partial t} \\ F_2(t, x_1, ..., x_m) = \frac{\partial x_2}{\partial t} \\ \vdots \\ F_m(t, x_1, ..., x_m) = \frac{\partial x_m}{\partial t} \end{cases}$$

Y asociado a este sistema de ecuaciones, el PVI definido por el sistema anterior y el conjunto de valores:

$$x_1(t_0) = y_1, x_2(t_0) = y_2, ..., x_m(t_0) = y_m$$

- 3 Ecuaciones diferenciales de orden superior y reescritura como sistemas
- 4 Método de Euler para sistemas de ecuaciones diferenciales
- 5 Estudio del error y análisis de la convergencia del método