## Sydney Technical High School



# Mathematics - Extension One

### HSC Assessment Task 1 December 2012

| Name                                    | Teacher |
|-----------------------------------------|---------|
| *************************************** | 1       |

#### **General Instructions**

- o Working Time 70 minutes.
- o Write using a blue or black pen.
- o Approved calculators may be used.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

#### Total marks (55)

- Attempt Questions 1-11.
- o Marks indicated are a guide.
- All answers must be written in your answer book

|  |  |  | ·         |
|--|--|--|-----------|
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  | $\supset$ |
|  |  |  | **        |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  | )         |
|  |  |  | )         |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |
|  |  |  |           |

### Section 1

#### 5 marks

#### **Attempt Questions 1-5**

Use the multiple-choice answer sheet for Questions 1-5

- 1. An infinite geometric series has a first term of 8 and a limiting sum of 12. What is the common ratio?
  - (A)

- (B)  $\frac{1}{4}$  (C)  $\frac{1}{3}$
- 2. The equation of the normal to the parabola  $x^2 = 4\alpha y$  the variable point  $P(2\alpha\rho, \alpha\rho^2)$  is given by  $x+py = 2\alpha\rho + \alpha\rho^3$ .

How many different values of  $\rho$  are there such that the normal passes through the focus of the parabola?

- (A) 0
- (B) 1
- (C) 2
- (D) 3

3.



**NOT TO SCALE** 

The value of x is

- (A) 2.5
- (B) 6.25
- (C) 10
- (D) 12.5



O is the centre of the circle.
AB is a diameter.
BE is a tangent to the circle.
Find the value of x.

- (A) 40
- (B) 50
- (C) 60
- (D) 70

5. In the circles below, diameter PQ = diameter MN. In diagram I, PRQ is an arc of a circle centre S.





In which diagram is the greater area shaded?

- A. Diagram I
- C. The shaded areas in both diagrams are the same.
- B. Diagram II
- D. Cannot be determined from the information provided.

#### Question 6-11

Question 6 (7 Marks)

a) Find the value of x.

(reason required)

2



b) Over 7 years \$125 grows to \$164.49.

c)

Find the compound interest rate as a percentage per annum.

2

2



In the diagram the points A,B and C lie on the circle and AB produced meets the tangent from C at the point P.

- (i) Given that PC = 12cm, AB = 7cm and PB = x, find x. (reason not required)
- (ii) PC is the diameter of the circle passing through P, B and C.Find the length of BC. (in exact form)

- a) A gardener plants a bed of roses. The bed is planted so that the first row has 24 rose plants. The second row has 29 rose plants. Each succeeding row has 5 more rose plants than the previous row.
  - (i) Calculate the number of roses in the eighth row.

1

(ii) Which row would be the first to contain more than 150 rose plants?

2

(iii) The gardener has planted 2895 roses. Assuming that the above pattern has been continued, how many rows were planted?

**>**.



b)

The diagram shows a circle. The points P, Q, R and S lie on the circumference of the circle. Find the value of x? (reasons required)

3

a) With the drought ever worsening, James and Theodore design a counting generator that can simulate the number of rain drops per minute that fall over a river during a storm. The rain drops falling per minute forms the series

$$1+1+3+9+23+...$$

with the *n*th term given by the formula  $R_n = 1 - 2n + 2^n$ , where *n* represents the number of minutes.

(i) Which term of the series is 115?

1

(ii) Find the total amount of rain drops which fall over the river in the first twenty five minutes.

3

1

If the surface area of the river is 250m<sup>2</sup> find the average number of drops over (iii) the per cm<sup>2</sup> first twenty five minutes. (to the nearest drop)

b)



GF is a tangent to the circle at E and ABCD is a cyclic quadrilateral

3

$$\angle FEC = x^{\circ}$$

Prove DC//GF



PQ is a chord of the parabola  $x^2 = 8y$  passing through the point A(0, 1) where P is  $(4p,2p^2)$  and Q is  $(4q,2q^2)$ .

The tangents to the parabola at P and Q meet at the point T.

R is a point on the chord PQ with  $RT \perp PQ$ .

- a) Show the equation of the tangent at P is given by  $y-px+2p^2=0$  and write the equation of the tangent at Q.
- b) Show the co-ordinates of the point T are x = 2(p+q), y = 2pq

3

- c) Show that the equation of the chord PQ is given by 2y = (p+q)x-4pq
- d) Show that  $pq = -\frac{1}{2}$
- e) Find the equation of RT

a)



Copy or trace this diagram onto your Answer booklet.

Let CDB = x

Prove BCEF is a cyclic quadrilateral.

O is the centre of the circle. (reasons required)

3

5

b) Prove by mathematical induction that the following is true for all positive integers n.

$$\sum_{r=1}^{n} r(2^{r}) = (n-1) \cdot 2^{n+1} + 2$$

- a) The sum of the first n terms of a series is given by  $S_n = \frac{n}{3}(n+1)(n+2)$ .
  - i) Show that the *n*th term is given by  $T_n = n(n+1)$ .

2

ii) Find the sum of the second 50 terms.

- 2
- b) Stella sets up a prize fund with a single investment of \$1000 to provide her school with an annual prize of \$72.00. The fund accrues interest at a rate of 6% per annum, compounded annually. The first prize is awarded one year after the investment is set up.
  - i) Calculate the balance in the fund at the beginning of the second year, after the first prize has been awarded.
- ii) Let  $\$B_n$  be the balance in the fund at the end of n years (after the nth Prize has been awarded and while funds are still available). Show that  $B_n = 1200 200 (1.06)^n$
- 2
- iii) At the end of the tenth year (after that prize has been awarded), it is decided that the prize will henceforward be increased to \$90.
- 3
- Show that the fund can only award the full prize for 14 more years.

| ) 24,29,34 i) T <sub>8</sub> = 24 + 7x5 T <sub>8</sub> = 59 |                                                                                                               |                                                                                                                         | - 1 I                                                                              | $R = \left(\frac{ l_{+} + 4q}{12.5}\right)^{1/7}$ $R = 03999867$ $R^{0}/_{0} = 4.00^{0}/_{0}$ $A = 4.00^{0}$ | $4x = 30$ $\frac{96.5}{164.44} = 125(1+8)^{7}$ $\frac{164.44}{125} = (1+8)^{7}$                                                                                         | S.T.H.S HSC TASK 1 - EXT 1-  0 1 C  0 2 B  0 3 B  0 4 A  0 5 C  Ouestion 6 4 = 5  A)  4 = 5                                                                                                                                                                                                            |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ii) $R_h = (1-2n) + 2^n$ $A^p = (2-2n) + 2^n$               | Question 8  a) i) Guess (Check n=7  R_1=1-2×7+27  R_7=115 7th term                                            | SQR=68 (angles in same segment)  QSR=68 (angles opposite equal sides in isosceles triangle)  OL=14" (angle sum of DASR) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                              | b) P Q Q O                                                                                                   | $289S = \frac{n}{2} (48 \pm (n-1) \times S)$ $5790 = n (48 \pm 5n - S)$ $5790 = n (5n + 43)$ $0 = 5n^2 + 43n - 5790$ $n = -43 \pm \sqrt{43^2 - 4 \cdot 5 \cdot - 5790}$ | ii) Tn > 150  24+ (n-1)xS > 150  24+ 5n-5 > 150  5n > 131  n > 26.2  iii) Sn-= 2895                                                                                                                                                                                                                    |  |
|                                                             | Question 9                                                                                                    | sterior angle of gclic guad ABCB) DEE and they                                                                          | D D D D D D D D D D D D D D D D D D D                                              | iii) 250m²= 2,500,000cm²  : 67108237 = 27 drops/cm² 2500,000 = 27 drops/cm²                                  | 2-1<br>= 67108862<br>Total rain in first 25 min<br>67108,237 drops                                                                                                      | $\begin{array}{c} R^{p}: T_{h} = 1 - 2  h \\ -1  h = 3  h = 5  \dots   & \alpha = -1  d = -2 \\ S_{25} = \frac{25}{2} \left( -2 + 24  h \times -2 \right) \\ =6  25 \\ CP T_{h} = 2^{n} \\ S_{2} = \frac{2}{3} \left( 2^{25} - 1 \right) \\ S_{2} = \frac{2}{3} \left( 2^{25} - 1 \right) \end{array}$ |  |
| - 3 S                                                       | c) chord PQ<br>$-m_{PQ} = \frac{2p^2 - 2q^2}{4p - 4q} = \frac{2(p - q)(p + q)}{4(p - q)}$<br>$m_{PQ} = p + q$ | y= = 2(p+q) -2p2<br>y=2p2+2pq-2p2<br>y=2pq<br>-2pq<br>-2pq                                                              | $px - 2p^{2} = qx - 2q^{2}$ $-px - qx = 2p^{2} - 2q^{2}$ $x = 2(p+q)$ $x = 2(p+q)$ | 4-9x+29-0-0                                                                                                  |                                                                                                                                                                         | a) $x^2 = 8y$ $y = \frac{x^2}{8}$ $\frac{dy}{dx} = \frac{2x}{8}$ $\frac{dy}{dx} = \frac{x}{4}$ $\frac{dy}{dx} = \frac{x}{4}$ $\frac{dy}{dx} = \frac{x}{4}$ $\frac{dy}{dx} = \frac{x}{4}$                                                                                                               |  |

| chord PQ P S                                                     | Show true for n=1                                   | ii) S = 2 - 2 - 2                                             |                            |
|------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|----------------------------|
| L L L L L L L L L L L L L L L L L L L                            | LHS=1.2'=2                                          | and 50 tein) 1000. 50                                         | Λ                          |
| RHS -                                                            | RHS = (1-1) 2 + 2 = 2                               | (7)(5)(5)(5)(5)(5)                                            | 100 / 1500 / = n led 1.06  |
| T.(2(p.19,),2pg)                                                 | Step(2) assume true for nate                        |                                                               | 1.859                      |
| P+9                                                              | c positive integel                                  |                                                               | ( LISO) of 601 = u         |
| 1                                                                | 1.54 = (k-1)2 k+12                                  | b) i) het 18 be amount in                                     | 109 (1.06)                 |
|                                                                  | Step 3 Show Mue for n=4+1                           | account after n payments                                      | #I # U                     |
| x + 2                                                            |                                                     | S <sub>1</sub> = 1000(1+ 100) - 72 = \$488                    |                            |
| (b+d)                                                            | S 42+1 = S + T T D2x1                               | (1) B = (1000 (1.06) 2 (1)                                    | Lat. by dured subst.       |
| (p+4)                                                            |                                                     | z ι' - ζι'() ο () - ζ() ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο | RNS = 14.88.05             |
|                                                                  | R=1). 2 +2 + (k.                                    | 1-V. V.                                                       | inot enough for next prisc |
| Question 10 /c 3.                                                | 2 0 (4 (2 ) + 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ς Γ 21 (0,0) - (0,0) - 12 · · · · · · · · · · · · · · · · · · |                            |
| 10 m                                                             | 1 2 12 +1                                           | +(106)                                                        |                            |
|                                                                  | ቲ                                                   | ( ) C   C   C   C   C   C   C   C   C   C                     |                            |
| O Step (# S                                                      | Step (4) Since true for n=1                         | 6 6 7                                                         |                            |
| Ð                                                                | issumed tive for n=4                                | Bn= 1000(1.06) - 72 (1.06-1) **                               |                            |
| <u>ril</u>                                                       | (a positive integet) ue have                        | (-90.)                                                        |                            |
| BAD = of a Heinate comment the offer.                            | Shown by M. I. , true for n=- 12+1                  |                                                               | • • • •                    |
|                                                                  | 11/16- for all positive integriz                    | ڪ ان موما ج                                                   |                            |
| DAE = 40° (400) L in semi circle 1: 40° (1.00 + 1:00)            |                                                     | 150 = 1200 200,(1.06)"                                        |                            |
| Ш_                                                               |                                                     |                                                               |                            |
| : 1                                                              | - Sn-1                                              | (11) Atter 10 years Brown 15                                  |                            |
| ·                                                                | = 0 (v+1)(v) - (v+1)(v+1)                           | prize ned increases to 490                                    |                            |
|                                                                  | (n+1)(n+2 - (n-1))                                  | 44:                                                           |                            |
| -<br>-                                                           | = \$ (1+1)(2)                                       | Br = Bro + (1.06) - 90 (1.06-1)                               |                            |
| 4 90 -K                                                          |                                                     | Fund used when A                                              |                            |
| (1+v) & - 1 - 0001 - 1 - 0000 0000 00000 00000 00000 00000 00000 | 3(0+1)                                              | 0051+ (900) 0051-(900) 281118 =0                              |                            |
| BCEF is a cyclic guad.                                           |                                                     | )                                                             |                            |