Höhere Mathematik III für die Fachrichtung
Elektrotechnik und Informationstechnik
Sommersemester 2017
Ioannis Anapolitanos
Karlsruher Institut für Technologie
Institut für Analysis Englerstr. 2, 76131 Karlsruhe
e-mail: ioannis.anapolitanos@kit.edu

Dies ist eine Vorlesungszusammenfassung, gedacht zur Vorlesungsbegleitung und als Gedächtnisstütze, nicht jedoch als etwas, das für sich selbst stehen könnte (wie etwa ein Lehrbuch). Der Besuch der Vorlesung ist durch die Lektüre in keinem Fall zu ersetzen, es gibt dort noch viel mehr an mündlichen Erklärungen, Erläuterungen und veranschaulichenden Skizzen, die für Verständnis und Einordnung des präsentierten Stoffes unabdingbar sind.

<u>Danksagung</u>: Die Vorlesungszusammenfassung ist eine Änderung der Vorlesungszusammenfassung von Herrn Dr. Kunstmann. Ich danke Herrn Dr. Kunstmann, dass er mir die Möglichkeit gegeben hat seine Zusammenfassung zu verwenden.

Contents

1	Elei	mentare Methoden für Differentialgleichungen	4
	1.1	Trennung der Variablen	4
	1.2	Die lineare Differentialgleichung	6
	1.3	Bernoulli-Differentialgleichung	7
	1.4	Riccati-Differentialgleichung	9
	1.5	Lineare Differentialgleichungen zweiter Ordnung	10
	1.6	Lineare Differentialgleichungen höherer Ordnung	12
	1.7	Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten	13
	1.8	Die Eulersche Differentialgleichung	14
	1.9	Potenzreihenansatz	15
	1.10	Abgewandelter Potenzreihenansatz	16
2	Diff	Perentialgleichungssysteme erster Ordnung	20
	2.1	Das Problem	20
	2.2	Existenz- und Eindeutigkeitssatz von Picard-Lindelöf	21
	2.3	Bemerkungen zum Beweis	22
	2.4	Fixpunktiteration	22
	2.5	Globale Existenz	23
	2.6	Lemma von Gronwall	24
	2.7	Existenzsatz von Peano	24
3	Lineare Differentialgleichungssysteme		
	3.1	Lineare Systeme mit variablen Koeffizienten	25
	3.2	Lineare Differentialgleichungssysteme mit konstanten Koeffizienten	27
	3.3	Fundamentalsysteme für nicht-diagonalisierbare Matrizen	28
	3.4	Asymptotisches Verhalten	30
	3.5	Die Matrixexponentialfunktion	30
4	Tra	nsportgleichungen und Charakteristiken	33
	4.1	Lineare Transportgleichung mit konstanten Koeffizienten	33
	4.2	Lineare Transportgleichung im \mathbb{R}^n	35

	4.3	Quasilineare Gleichungen erster Ordnung	35
	4.4	Anfangsbedingungen für quasilineare Gleichungen	37
	4.5	Separation der Variablen	38
5	Die	Diffusionsgleichung	39
	5.1	Motivation (Wärmeleitungsgleichung)	39
	5.2	Die Grundlösung der Wärmeleitungsgleichung	40
	5.3	Anfangswerte für $t=0$	42
	5.4	Maximumsprinzip	42
6	Die	Wellengleichung	44
	6.1	Die eindimensionale Wellengleichung	44
	6.2	Satz für die dreidimensionale Wellengleichung	45
	6.3	Die zweidimensionale Wellengleichung	47
7	Die	Potentialgleichung	48
	7.1	Harmonische Funktionen	48
	7.2	Mittelwerteigenschaft	49
	7.3	Maximumsprinzip	49
	7.4	Grundlösung der Laplace-Gleichung	50
	7.5	Greensche Darstellungsformel	51
	7.6	Greensche Funktion	52
	7.7	Dirichletproblem auf der Kugel	55
	7.8	Die Poissongleichung	55

Gewöhnliche Differentialgleichungen

Wir betrachten zunächst gewöhnliche Differentialgleichungen in expliziter Form

$$y' = f(x, y),$$

wobei $f: D \to \mathbb{R}$ stetig und $D \subseteq \mathbb{R}^2$ in der Regel offen ist.

Definition: Eine Lösung dieser Differentialgleichung ist eine differenzierbare Funktion $\phi: \widetilde{I} \to \mathbb{R}$, wobei $\emptyset \neq \widetilde{I} \subseteq \mathbb{R}$ ein Intervall ist und für alle $x \in \widetilde{I}$ gilt

$$(x, \phi(x)) \in D$$
 und $\phi'(x) = f(x, \phi(x)).$

Da f stetig ist, ist ϕ in \widetilde{I} sogar stetig differenzierbar. (Wenn wir hier von Intervall sprechen, meinen wir stets, dass es mehr als zwei Punkte enthält.)

Die Funktion f ordnet jedem Punkt $(x,y) \in D$ die Zahl f(x,y) zu, die die Steigung einer Lösung in diesem Punkt sein soll. Man kann sich das im sogenannten **Richtungsfeld** veranschaulichen, indem man in "jedem" Punkt $(x,y) \in D$ (dh etwa in jedem Punkt eines geeigneten Gitters) die durch f(x,y) gegebene Steigung einzeichnet. So bekommt man ein Vorstellung vom möglichen Verlauf von Lösungen.

Definition: Ein **Anfangswertproblem** hat die Form

$$y' = f(x, y),$$
 $y(x_0) = y_0,$

wobei f wie oben und $x_0, y_0 \in \mathbb{R}$ mit $(x_0, y_0) \in D$ sind. Eine Lösung $\phi : \widetilde{I} \to \mathbb{R}$ der Differentialgleichung ist eine Lösung des Anfangswertproblems, falls zusätzlich $x_0 \in \widetilde{I}$ und $\phi(x_0) = y_0$ gilt.

1 Elementare Methoden für Differentialgleichungen

1.1 Trennung der Variablen

Eine Differentialgleichung der Form

$$y' = f(x)g(y), (1)$$

wobei $f:I\to\mathbb{R},\ g:J\to\mathbb{R}$ stetig und $I,J\subseteq\mathbb{R}$ Intervalle sind, heißt Gleichung mit getrennten Variablen (oder Veränderlichen). Das Anfangswertproblem

$$y' = f(x)g(y)$$

$$y(x_0) = y_0$$
 (2)

mit $x_0 \in I$, $y_0 \in J$ behandelt man wie folgt:

Fall $g(y_0) = 0$: Eine Lösung ist gegeben durch $y(x) = y_0, x \in I$.

Fall $g(y_0) \neq 0$: Ist $y: \tilde{I} \to \mathbb{R}$ eine Lösung von (2) mit $g(y(x)) \neq 0$ für alle $x \in \tilde{I}$, so gilt

$$\frac{y'(x)}{g(y(x))} = f(x), \quad x \in \tilde{I},$$

und mittels Substitution $\eta = y(t)$, $d\eta = y'(t) dt$:

$$\int_{y_0}^{y(x)} \frac{d\eta}{g(\eta)} = \int_{x_0}^x \frac{y'(t) dt}{g(y(t))} = \int_{x_0}^x f(t) dt, \quad x \in \tilde{I}.$$

Nun löst man nach y(x) auf: Dazu sei F eine Stammfunktion von f auf I und G eine Stammfunktion von 1/g auf dem größten Intervall $\tilde{J} \subseteq J$ mit $y_0 \in \tilde{J}$, auf dem $g \neq 0$ gilt. Dann gilt

$$G(y(x)) = F(x) - F(x_0) + G(y_0).$$

Die stetige Funktion g hat auf \tilde{J} konstantes Vorzeichen, also 1/g, und damit ist G auf \tilde{J} streng monoton mit Umkehrfunktion G^{-1} . Wir erhalten

$$y(x) = G^{-1}(F(x) - F(x_0) + G(y_0))$$

auf einer Umgebung von x_0 in I. Lösungen sind eindeutig, solange man nicht über eine Nullstelle η_0 von g hinwegintegriert, dh so lange, wie g(x) in \tilde{J} verläuft.

Beispiele: (1) y' = (1 - y)y (logistisches Wachstum): Es ist klar, dass y(x) = 0 und y(x) = 1 Lösungen sind. Wir betrachten die Anfangsbedingung $y(x_0) = y_0 \in (0, 1)$ und erhalten

$$\int_{\eta_0}^{y} \frac{d\eta}{(1-\eta)\eta} = x - x_0.$$

Wir schreiben $((1-\eta)\eta)^{-1} = (1-\eta)^{-1} + \eta^{-1}$, so dass das linke Integral

$$= \ln\left(\frac{y(x)}{1 - y(x)}\right) - \ln\left(\frac{y_0}{1 - y_0}\right)$$

ist. Wir erhalten so

$$y(x) = 1 - \left(\frac{y_0}{1 - y_0}e^{x - x_0} + 1\right)^{-1}, \quad x \in [x_0, \infty).$$

Die Lösung ist eindeutig (da $y(x) \in (0,1)$ für alle x).

(2) $y' = \sqrt{|y|}$, y(0) = 0. Eine Lösung ist gegeben durch y(x) = 0, eine andere Lösung durch y(x) = x|x|/4. Die zweite Lösung verläuft durch die Nullstelle von $g(y) = \sqrt{|y|}$. Es gibt noch weitere Lösungen dieses Anfangswertproblems.

1.2 Die lineare Differentialgleichung

Wir betrachten die lineare Differentialgleichung

$$y' = a(x)y + b(x), \tag{1}$$

wobei $a, b: I \to \mathbb{R}$ stetig, $I \subseteq \mathbb{R}$ ein Intervall mit $x_0 \in I$ und $y_0 \in \mathbb{R}$ sind. Hier ist $D = I \times \mathbb{R}$ und f(x, y) = a(x)y + b(x).

(i) Sind ϕ_1, ϕ_2 Lösungen von (1), so ist $z := \phi_1 - \phi_2$ eine Lösung der zugehörigen homogenen Gleichung

$$y' = a(x)y. (2)$$

Hierzu setze man ϕ_1 und ϕ_2 in (1) ein und subtrahiere die Gleichungen voneinander. Die Gleichung (1) heißt für $b \neq 0$ inhomogen.

- (ii) Die allgemeine Lösung der inhomogenen Gleichung (1) erhält man als Summe einer speziellen Lösung der inhomogenen Gleichung (1) und der allgemeinen Lösung der homogenen Gleichung (2).
- (iii) Die allgemeine Lösung der homogenen Gleichung (2) ist gegeben durch

$$y(x) = ce^{\int a(x) dx}, \quad x \in I,$$

wobei $c \in \mathbb{R}$ eine Konstante ist. (Es ist klar, dass hierdurch Lösungen gegeben sind, zur Eindeutigkeit siehe unten.)

(iv) Eine spezielle Lösung der inhomogenen Gleichung (1) erhält man durch den Ansatz

$$y(x) = c(x) \underbrace{e^{\int a(x) dx}}_{=:z(x)}$$
 (Variation der Konstanten).

Hierbei bezeichnet $\int a(x) dx$ eine **feste** Stammfunktion. Es ist dann

$$acz + b = ay + b \stackrel{!}{=} y' = (cz)' = cz' + c'z = acz + c'z,$$

also b = c'z und (beachte $z(x) \neq 0$ für alle x!):

$$c'(x) = \frac{b(x)}{z(x)}.$$

Hieraus gewinnt man c(x) und schließlich eine spezielle Lösung y(x) = c(x)z(x) von (1). Eine spezielle Lösung von (1) wird häufig mit y_p bezeichnet, der Index p steht dabei für "partikulär" (dh "speziell").

(v) Seien $x_0 \in I$, $y_0 \in I$ und $A: I \to \mathbb{R}$ gegeben durch $A(x) := \int_{x_0}^x a(\xi) d\xi$ für $x \in I$. Dann ist die eindeutige Lösung des Anfangswertproblems

$$y' = a(x)y + b(x), \quad x \in I,$$

 $y(x_0) = y_0$ (3)

gegeben durch

$$y(x) = y_0 e^{A(x)} + e^{A(x)} \int_{x_0}^x e^{-A(t)} b(t) dt, \quad x \in I.$$

Beispiel: $y' = \frac{y}{x} + x^2$, wobei $I = (0, \infty)$. Hier ist a(x) = 1/x, $A(x) = \ln x$. Die allgemeine Lösung der homogenen Gleichung ist $z(x) = ce^{A(x)} = cx$, $x \in I$, wobei $c \in \mathbb{R}$ eine Konstante ist.

Durch Variation der Konstanten erhält man die spezielle Lösung $y(x) = x^3/2, x \in I$ (denn $b(x)=x^2$, also mit z(x)=x: $c'(x)=x^2/x=x$, etwa $c(x)=x^2/2$ und $y_p(x)=c(x)z(x)=x^2/2$

Die allgemeine Lösung ist also

$$y(x) = cx + \frac{1}{2}x^3, \quad x > 0,$$

wobei $c \in \mathbb{R}$ eine beliebige Konstante ist.

1.3 Bernoulli-Differentialgleichung

Eine Differentialgleichung der Form

$$y' + g(x)y + h(x)y^{\alpha} = 0,$$

wobei $g, h: I \to \mathbb{R}$ stetig sind und $\alpha \notin \{0, 1\}$ ist, heißt Bernoullische Differentialgleichung. Die Bernoulli-Differentialgleichung lässt sich durch Multiplikation mit $(1-\alpha)y^{-\alpha}$ auf eine lineare Differentialgleichung zurückführen:

$$(y^{1-\alpha})' + (1-\alpha)g(x)y^{1-\alpha} + (1-\alpha)h(x) = 0$$

wird mittels $z := y^{1-\alpha}$ zu

$$z' + (1 - \alpha)g(x)z + (1 - \alpha)h(x) = 0.$$

Diese Differentialgleichung kann wie in 1.2 gelöst werden, und man erhält dann eine Lösung der Bernoulli-Differentialgleichung durch $y(x) := z(x)^{1/(1-\alpha)}$.

Zu beachten: Für nicht-ganze $\alpha < 0$ ist y^{α} nur für positive y erklärt, in diesem Fall ist $D = I \times (0, \infty)$. Positiven Lösungen y(x) entsprechen positive Lösungen z(x). Eindeutigkeit der Lösungen (in $I \times (0, \infty)$) folgt aus 1.2.

Für nicht-ganze $\alpha > 0$ ist y^{α} für $y \geq 0$ erklärt, und durch y(x) = 0 ist eine Lösung gegeben. Laufen Lösungen z(x) durch Null, so kann die Eindeutigkeit der Lösung in diesen Punkten verlorengehen.

Beispiele: 1) $y' + \frac{y}{1+x} + (1+x)y^{-2/3} = 0$, wobei $I = (-1, \infty)$. Hier ist $\alpha = -\frac{2}{3}$, $g(x) = (1+x)^{-1}$ und h(x) = 1+x. Die Substitution $z := y^{5/3}$ führt auf

$$z' + \frac{5}{3} \frac{z}{1+x} + \frac{5}{3} (1+x) = 0.$$

Dies ist eine lineare Differentialgleichung mit $a(x) = -\frac{5}{3}\frac{1}{1+x}$ und $b(x) = -\frac{5}{3}(1+x)$. Dann ist $A(x) = -\frac{5}{3}\ln(1+x)$ und die allgemeine Lösung der homogenen Gleichung ist

$$z_h(x) = ce^{A(x)} = c(1+x)^{-5/3}.$$

Variation der Konstanten führt auf

$$c'(x) = b(x)(1+x)^{5/3} = -\frac{5}{3}(1+x)^{8/3}$$

und $c(x) = -\frac{5}{11}(1+x)^{11/3}$, sowie auf die spezielle Lösung

$$z_p(x) = -\frac{5}{11}(1+x)^{11/3-5/3} = -\frac{5}{11}(1+x)^2.$$

Die allgemeine Lösung der linearen Differentialgleichung ist also

$$z(x) = c(1+x)^{-5/3} - \frac{5}{11}(1+x)^2.$$

Für z(x) > 0 muss c > 0 sein. Für c > 0 sind Lösungen gegeben durch

$$y(x) = \left(c(1+x)^{-5/3} - \frac{5}{11}(1+x)^2\right)^{3/5}, \quad x \in (-1, (11c/5)^{3/11} - 1).$$

2) $y'=\sqrt{y}$: Hier ist $\alpha=\frac{1}{2},\ 1-\alpha=\frac{1}{2},\ g(x)=0$ und h(x)=-1, und man kann die Differentialgleichung in $D=\mathbb{R}\times[0,\infty)$ betrachten. Die Substitution $z:=y^{1/2}$ führt auf

$$z' - \frac{1}{2} = 0$$

mit allgemeiner Lösung $z(x) = \frac{1}{2}x + c$.

Sei $c \in \mathbb{R}$. Es ist $z(x) \ge 0$ für $x \ge -2c$, also ist eine Lösung gegeben durch

$$y(x) = (\frac{x}{2} + c)^2, \quad x \ge -2c.$$

Eine Lösung mit Anfangswert y(-2c) = 0 ist aber auch durch y(x) = 0, $x \ge -2c$ gegeben. Außerdem beachte man, dass beide Lösungen links von -2c nur durch 0 fortgesetzt werden können (wegen $y' \ge 0$, was aus der Differentialgleichung folgt).

1.4 Riccati-Differentialgleichung

Eine Differentialgleichung der Form

$$y' + g(x)y + h(x)y^{2} = k(x), (1)$$

wobei $g, h, k : I \to \mathbb{R}$ stetig sind, heißt Riccati-Differentialgleichung. Für k = 0 auf I ist (1) eine Bernoulli-Differentialgleichung mit $\alpha = 2$ und man kann wie in 1.3 $z = y^{-1}$ substituieren.

Für $k \neq 0$ lassen sich Lösungen in der Regel nicht in geschlossener Form angeben. Kennt man jedoch bereits eine Lösung ϕ der Differentialgleichung, so lassen sich die übrigen wie folgt berechnen:

Setzt man $u = y - \phi$, so gilt

$$u' + g(x)u + h(x)(y^2 - \phi^2) = 0$$

und wegen $y^2 - \phi^2 = (y + \phi)(y - \phi) = (u + 2\phi)u$ weiter

$$u' + (g(x) + 2\phi(x)h(x))u + h(x)u^{2} = 0.$$
 (2)

Dies ist eine Bernoulli-Differentialgleichung, und die Substitution $z=u^{-1}$ (vgl. 1.3) führt auf die lineare Differentialgleichung

$$z' - (g(x) + 2\phi(x)h(x))z - h(x) = 0.$$
(3)

Die übrigen Lösungen der Riccati-Differentialgleichung (1) erhält man also als

$$y(x) = \phi(x) + u(x) = \phi(x) + \frac{1}{z(x)},$$

wobei z die Lösungen von (3) durchläuft.

Beispiel: $y' + (2x - 1)y - y^2 = 1 - x + x^2$. Hier ist g(x) = 2x - 1, h(x) = -1 und $k(x) = 1 - x + x^2$. Eine spezielle Lösung ist $\phi(x) = x$, und (3) lautet hier

$$z' - \underbrace{(2x - 1 - 2x)}_{=-1} z + 1 = 0.$$

Die allgemeine Lösung dieser Differentialgleichung ist $z(x) = ce^{-x} - 1$, wobei $c \in \mathbb{R}$ eine Konstante ist. Die übrigen Lösungen der ursprünglichen Differentialgleichung sind also

$$y(x) = x + \frac{1}{ce^{-x} - 1},$$

wobei $x \in \mathbb{R}$ für $c \le 0$ und $x \in \mathbb{R} \setminus \{\ln c\}$ für c > 0.

1.5 Lineare Differentialgleichungen zweiter Ordnung

Sei $I \subseteq \mathbb{R}$ ein Intervall und seien $p, q, f: I \to \mathbb{R}$ stetige Funktionen. Wir betrachten die lineare Differentialgleichung zweiter Ordnung

$$y'' + p(x)y' + q(x)y = f(x), \quad x \in I.$$
 (1)

Eine Lösung ist hier eine auf einem Itervall $\tilde{I} \subseteq I$ definierte zweimal stetig differenzierbare Funktion $\varphi: \tilde{I} \to \mathbb{R}$ so, dass für alle $x \in \tilde{I}$ gilt: $\varphi''(x) + p(x)\varphi'(x) + q(x)\varphi(x) = f(x)$. Unter den angegebenen Voraussetzungen findet man immer Lösungen mit $\tilde{I} = I$.

Satz: Ist $x_0 \in I$ und sind $\alpha, \beta \in \mathbb{R}$, so hat das Anfangswertproblem

$$y'' + p(x)y' + q(x)y = f(x)
 y(x_0) = \alpha
 y'(x_0) = \beta$$
(2)

genau eine Lösung auf I (Beweis später).

Die allgemeine Lösung von (1) erhält man durch Addition einer speziellen (partikulären) Lösung der inhomogenen Gleichung (1) und der allgemeinen Lösung der zugehörigen homogenen Gleichung

$$y'' + p(x)y' + q(x)y = 0, \quad x \in I.$$
(3)

Der Lösungsraum der homogenen Gleichung (3)

$$\mathcal{L}_0 := \{ y : I \to \mathbb{R} : y'' + p(x)y' + q(x)y = 0 \}$$

ist ein reeller Vektorraum der Dimension 2.

Eine **Basis** von \mathcal{L}_0 heißt *Fundamentalsystem* für (3) auf *I*. Ist y_1, y_2 ein Fundamentalsystem, dh eine Basis von \mathcal{L}_0 , so erhält man **jede** Lösung von (3) durch *Linearkombination* $\lambda y_1 + \mu y_2$ für geeignete $\lambda, \mu \in \mathbb{R}$.

Wronski-Determinante: Sind $y_1, y_2 : I \to \mathbb{R}$ differenzierbare Funktionen, so heißt

$$w: I \to \mathbb{R}, \quad w(x) := \det \begin{pmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{pmatrix},$$

die Wronski-Determinante des Systems y_1, y_2 .

Bemerkung: Sind $y_1, y_2 \in \mathcal{L}_0$, dh sind y_1, y_2 Lösungen von (3), so gilt für die Wronski-Determinante w von y_1, y_2 :

Entweder ist w(x) = 0 für alle $x \in I$ oder $w(x) \neq 0$ für jedes $x \in I$.

Folgerung: $y_1, y_2 \in \mathcal{L}_0$ bilden genau dann ein Fundamentalsystem von (3), wenn es ein $x_0 \in I$ gibt mit $w(x_0) \neq 0$, wobei w die Wronski-Determinante von y_1, y_2 ist.

Beispiel 1): $y'' - (\cos x)y' + (\sin x)y = \sin x$: Hier löst $y_P(x) = 1$ die inhomogene Gleichung. Die homogene Gleichung

$$y'' - (\cos x)y' + (\sin x)y = 0$$

hat $y_1(x) = e^{\sin x}$ als Lösung.

Wie erhält man eine von y_1 linear unabhängige Lösung y_2 der homogenen Gleichung?

Reduktion der Ordnung (Verfahren von d'Alembert): Sei $y_1 \neq 0$ eine Lösung von (3) auf I. Der Ansatz $y_2(x) = v(x)y_1(x)$ für eine Lösung von (1) führt auf

$$v'' + v' \left(\frac{2y_1'(x)}{y_1(x)} + p(x) \right) = \frac{f(x)}{y_1(x)}.$$
 (4)

Dies ist eine lineare Differentialgleichung für v', die sich lösen lässt. Jede Lösung y von (1) hat die Gestalt $y = vy_1$, wobei v Lösung von (4) ist.

Insbesondere führt für f = 0 eine Lösung v von (4) mit $v' \neq 0$ auf eine von y_1 linear unabhängige Lösung y_2 von (3), so dass y_1, y_2 dann ein Fundamentalsystem von (3) bilden.

Fortsetzung des Beispiels 1): Die Gleichung (4) (mit f = 0) lautet hier

$$v'' + v' \underbrace{\left(\frac{2\cos x \, e^{\sin x}}{e^{\sin x}} - \cos x\right)}_{=\cos x} = 0,$$

dh $v'(x) = ce^{-\sin x}$ und $v(x) = c \int e^{-\sin x} dx + d$, also etwa (mit festem $x_0 \in \mathbb{R}$)

$$y_2(x) = e^{\sin x} \int_{x_0}^x e^{-\sin t} dt$$

als zweite Lösung der homogenen Gleichung im Fundamentalsystem. Die allgemeine Lösung der ursprünglichen Differentialgleichung ist dann gegeben durch

$$y(x) = 1 + c_1 e^{\sin x} + c_2 e^{\sin x} \int_{x_0}^x e^{-\sin t} dt, \quad x \in \mathbb{R},$$

wobei $c_1, c_2 \in \mathbb{R}$ Konstanten sind.

Beispiel 2): $y'' + (1 - x^2)y = 0$. Setzt man $y = e^{g(x)}$ an, so erhält man

$$y'' = (e^{g(x)}g'(x))' = g''e^{g(x)} + (g')^2e^{g(x)} = (g'' + (g')^2)y,$$

dh $g'' + (g')^2 \stackrel{!}{=} x^2 - 1$ mit Lösung $g(x) = -x^2/2$. Somit ist $y_1(x) = e^{-x^2/2}$ eine Lösung auf \mathbb{R} .

Gleichung (4) lautet hier

$$v'' + v' \underbrace{\left(\frac{-2xe^{-x^2/2}}{e^{-x^2/2}} + 0\right)}_{=-2x} = 0,$$

dh $v'(x)=ce^{x^2}$, und die allgemeine Lösung lautet (mit festem $x_0\in\mathbb{R}$) somit:

$$y(x) = c_1 e^{-x^2/2} + c_2 e^{-x^2/2} \int_{x_0}^x e^{t^2} dt, \quad x \in \mathbb{R},$$

wobei $c_1, c_2 \in \mathbb{R}$ Konstanten sind.

1.6 Lineare Differentialgleichungen höherer Ordnung

Sei $n \in \mathbb{N}$, $I \subseteq \mathbb{R}$ ein Intervall und seien $p_0, p_1, \dots, p_{n-1}, f : I \to \mathbb{R}$ stetige Funktionen. Analog zu 1.5 betrachten wir die lineare Differentialgleichung n-ter Ordnung

$$\underbrace{y^{(n)} + p_{n-1}(x)y^{(n-1)} + \ldots + p_1(x)y' + p_0(x)y}_{=:Ly} = f(x), \quad x \in I.$$
 (1)

Satz: Ist $x_0 \in I$ und sind $\alpha_0, \alpha_1, \dots, \alpha_{n-1} \in \mathbb{R}$, so hat das Anfangswertproblem für (1) mit den Anfangswerten

$$y(x_0) = \alpha_0, \ y'(x_0) = \alpha_1, \dots, y^{(n-1)}(x_0) = \alpha_{n-1}$$

genau eine Lösung auf I.

Die allgemeine Lösung von (1) erhält man durch Addition einer speziellen (partikulären) Lösung der inhomogenen Gleichung (1) und der allgemeinen Lösung der zugehörigen homogenen Gleichung

$$Ly = 0, \quad x \in I. \tag{3}$$

Bemerkung: Der Lösungsraum der homogenen Gleichung (3),

$$\mathcal{L}_0 := \{ y : I \to \mathbb{R} : Ly = 0 \text{ auf } I \},$$

ist ein reeller Vektorraum der Dimension n. Eine **Basis** y_1, y_2, \ldots, y_n von \mathcal{L}_0 heißt Fundamentalsystem für (3) auf I.

Die Aussagen über Wronski-Determinante und Reduktion der Ordnung nach d'Alembert aus 1.5 gelten analog (siehe z.B. Walter, Gewöhnliche Differentialgleichungen (7.Auflage), §19).

1.7 Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten

Wir betrachten

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0, (1)$$

wobei $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$.

Ein **Fundamentalsystem** für (1) erhält man wie folgt: Der Ansatz $y(x)=e^{\lambda x}$ für eine Lösung von (1) führt auf

$$\underbrace{\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0}_{=:p(\lambda)} = 0,$$

wobei die linke Seite als charakteristisches Polynom p der Gleichung bezeichnet wird.

1) Ist λ reelle Nullstelle von p mit der Vielfachheit $k \in \mathbb{N}$, so nehme man die k Funktionen

$$e^{\lambda x}, xe^{\lambda x}, \dots, x^{k-1}e^{\lambda x}$$

zum Fundamentalsystem hinzu.

2) Ist $\lambda = \mu + i\tau$ nicht-reelle Nullstelle von p mit der Vielfachheit $k \in \mathbb{N}$, so ist auch $\overline{\lambda} = \mu - i\tau$ Nullstelle von p mit der Vielfachheit k (da p reelle Koeffizienten hat!), und man nehme die folgenden 2k Funktionen (für λ und $\overline{\lambda}$) zum Fundamentalsystem hinzu:

$$e^{\mu x}\sin(\tau x), xe^{\mu x}\sin(\tau x), \dots, x^{k-1}e^{\mu x}\sin(\tau x), e^{\mu x}\cos(\tau x), xe^{\mu x}\cos(\tau x), \dots, x^{k-1}e^{\mu x}\cos(\tau x).$$

Bemerkung: Sind die Koeffizienten $a_0, a_1, \ldots, a_{n-1} \in \mathbb{C}$ komplex, so erhält man ein komplexes Fundamentalsystem, indem man Schritt 1) für jede der verschiedenen Nullstellen von p durchführt.

Beispiel: Für y'' - 2y' + 3y = 0 ist $\lambda^2 - 2\lambda + 3$ das charakteristische Polynom mit Nullstellen $1 \pm \sqrt{2}i$. Ein (reelles) Fundamentalsystem ist also gegeben durch

$$y_1(x) = e^x \sin(\sqrt{2}x), \quad y_2(x) = e^x \cos(\sqrt{2}x), \quad x \in \mathbb{R}.$$

Für die inhomogene Gleichung Ly = f(x) mit einer rechten Seite der Form

$$f(x) = q(x)e^{\sigma x}\sin(\omega x)$$
 oder $f(x) = q(x)e^{\sigma x}\cos(\omega x)$,

wobei $\sigma, \omega \in \mathbb{R}$ und q(x) ein Polynom vom Grad $m \in \mathbb{N}_0$ ist, lautet die Faustregel: Mache für eine spezielle Lösung y_p einen Ansatz "von der Form der rechten Seite", dh

$$y_p(x) = \widetilde{q}(x)e^{\sigma x}\sin(\omega x) + \widetilde{r}(x)e^{\sigma x}\cos(\omega x),$$

wobei $\widetilde{q}(x), \widetilde{r}(x)$ Polynome vom Grad m sind. Dies führt zum Ziel, wenn $\sigma + i\omega$ keine Nullstelle von p ist.

Ist hingegen $\sigma + i\omega$ eine ν -fache Nullstelle von p, so führt der Ansatz

$$y_p(x) = x^{\nu} \left[\widetilde{q}(x) e^{\sigma x} \sin(\omega x) + \widetilde{r}(x) e^{\sigma x} \cos(\omega x) \right]$$

zum Ziel (wobei $\tilde{q}(x), \tilde{r}(x)$ wieder Polynome vom Grad $\leq m$ sind). Beachte, dass sich diese Ansätze auch aus der Laplacetransformationsmethode rechtfertigen lassen (wir schreiben jetzt t statt x und rechnen komplex): Für eine rechte Seite der Form $f(t) = q(t)e^{(\sigma+i\omega)t}$, wobei q(t) Polynom vom Grad m ist, gilt

$$\mathscr{L}{f}(s) = \sum_{j=1}^{m+1} \frac{c_j}{(s - (\sigma + i\omega))^j},$$

und wir erhalten eine spezielle Lösung y_p der inhomogenen Gleichung mittels

$$\mathscr{L}{y_p}(s) = \frac{\mathscr{L}{f}(s)}{p(s)}.$$

Die Art des Ansatzes in der Partialbruchzerlegung richtet sich nun nach der Vielfachheit von $\sigma + i\omega$ als Nullstelle von p.

Beispiel: $y'' - 2y' + 3y = xe^x$ (hier ist $\sigma = 1$, $\omega = 0$). Ansatz

$$y_p(x) = (ax+b)e^x$$
, $y_p'(x) = (ax+a+b)e^x$, $y_p''(x) = (ax+2a+b)e^x$

und $y_p'' - 2y_p' + 3y_p \stackrel{!}{=} xe^x$ führt auf

$$(ax+2a+b)-2(ax+a+b)+3(ax+b)=x,\quad \text{dh } a-2a+3a=1,\ 2a+b-2a-2b+3b=0,$$

also a = 1/2, b = 0. Die allgemeine Lösung ist somit

$$y(x) = c_1 e^x \sin(\sqrt{2}x) + c_2 e^x \cos(\sqrt{2}x) + \frac{1}{2}x e^x, \quad x \in \mathbb{R},$$

wobei $c_1, c_2 \in \mathbb{R}$ Konstanten sind.

1.8 Die Eulersche Differentialgleichung

Sei $n \in \mathbb{N}$ mit $n \geq 2$ und seien $a_{n-1}, \ldots, a_1, a_0 \in \mathbb{R}$. Eine Differentialgleichung der Form

$$x^{n}y^{(n)} + a_{n-1}x^{n-1}y^{(n-1)} + \dots + a_{1}xy' + a_{0}y = 0$$
(1)

heißt Eulersche Differentialgleichung. Da mit y(x) auch y(-x) eine Lösung ist, kann man sich auf x > 0 beschränken und substituiert

$$x = e^t$$
, $u(t) = y(e^t)$, $y(x) = u(\ln x)$.

Wegen

$$\frac{du}{dt} = y'x$$
, $\frac{d^2u}{dt^2} = y'x + y''x^2$, $\frac{d^3u}{dt^3} = y'x + 3y''x^2 + y'''x^3$ etc.

führt dies auf eine lineare Differentialgleichung mit konstanten Koeffizienten für u:

$$\frac{d^n u}{dt^n} + b_{n-1} \frac{d^{n-1} u}{dt^{n-1}} + \dots + b_1 \frac{du}{dt} + b_0 u = 0,$$
(2)

welche wie in 1.7 gelöst werden kann.

Der Ansatz $u=e^{\lambda t}$ für eine Lösung von (2) entspricht dabei dem Ansatz $y=x^{\lambda}$ für eine Lösung von (1).

Beispiele: 1) $x^2y'' - 3xy' + 7y = 0$. Die beschriebene Substitution $u(t) = y(e^t)$ führt auf

$$\frac{d^2u}{dt^2} - 4\frac{du}{dt} + 7u = 0.$$

Das charakteristische Polynom $\lambda^2-4\lambda+7$ hat die Nullstellen $\lambda=2\pm i\sqrt{3}$. Aus den beiden linear unabhängigen Lösungen

$$u_1(t) = e^{2t} \sin(\sqrt{3}t), \quad u_2(t) = e^{2t} \cos(\sqrt{3}t)$$

erhält man als Fundamentalsystem der ursprünglichen Gleichung:

$$y_1(x) = x^2 \sin(\sqrt{3} \ln x), \quad y_2(x) = x^2 \cos(\sqrt{3} \ln x), \quad x > 0.$$

2) $x^2y'' - 3xy' + 4y = 0$. Die beschriebene Substitution führt auf $\frac{d^2u}{dt^2} - 4\frac{du}{dt} + 4u = 0$ mit charakteristischem Polynom $\lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$. Hier ist $\lambda = 2$ doppelte Nullstelle, und wir erhalten als Fundamentalsystem

$$y_1(x) = x^2$$
, $y_2(x) = x^2 \ln x$, $x > 0$.

1.9 Potenzreihenansatz

Für lineare Differentialgleichungen zweiter Ordnung

$$y'' + p(x)y' + q(x)y = 0$$

mit Koeffizienten $p(x) = \sum_{j=0}^{\infty} p_j x^j$ und $q(x) = \sum_{j=0}^{\infty} q_j x^j$, die für |x| < R konvergieren, führt ein Potenzreihenansatz

$$y(x) = \sum_{j=0}^{\infty} c_j x^j$$

und Koeffizientenvergleich auf (lineare) Rekursionsformeln für die Koeffizienten c_j . Die Potenzreihe für y konvergiert dann ebenfalls für |x| < R (ohne Beweis).

Beispiel: $y'' - x^2y = 0$. Der Ansatz $y(x) = \sum_{j=0}^{\infty} c_j x^j$ führt auf

$$x^{2}y(x) = c_{0}x^{2} + c_{1}x^{3} + c_{2}x^{4} + \dots, \quad y''(x) = 2 \cdot 1 \cdot c_{2} + 3 \cdot 2 \cdot c_{3}x + 4 \cdot 3 \cdot c_{4}x^{2} + \dots$$

Hier sind c_0 , c_1 frei wählbar (beachte $c_0 = y(0)$, $c_1 = y'(0)$), und wir erhalten:

$$2 \cdot 1 \cdot c_2 = 0$$
, $3 \cdot 2 \cdot c_3 = 0$, $4 \cdot 3 \cdot c_4 = c_0$, $5 \cdot 4 \cdot c_5 = c_1$, etc.

Also ist $c_2 = c_3 = 0$ und

$$c_{k+4} = \frac{c_k}{(k+4)(k+3)}$$
 für $k = 0, 1, 2, \dots$

Die Lösung y von $y'' - x^2y = 0$ mit y(0) = 0, y'(0) = 1 ist also

$$y(x) = x + \frac{x^5}{5 \cdot 4} + \frac{x^9}{9 \cdot 8 \cdot 5 \cdot 4} + \frac{x^{13}}{13 \cdot 12 \cdot 9 \cdot 8 \cdot 5 \cdot 4} + \dots,$$

denn die Anfangsbedingungen $c_0=0,$ $c_1=1,$ führen zu $c_4=c_8=\ldots=0$ und $c_5=\frac{1}{5\cdot 4},$ $c_9=\frac{1}{9\cdot 8\cdot 5\cdot 4},$ etc.

Bemerkung: Allgemeiner kann man einen Potenzreihenansatz natürlich auch für inhomogene Gleichungen

$$y'' + p(x)y' + q(x)y = f(x)$$

oder auch für Gleichungen dritter und höherer Ordnung durchführen, wenn Koeffizienten und rechte Seite durch auf |x| < R konvergente Potenzreihen gegeben sind.

1.10 Abgewandelter Potenzreihenansatz

In Verallgemeinerung der Eulerschen Differentialgleichung in 1.8 betrachten wir

$$x^{2}y'' + xp(x)y' + q(x)y = 0,$$
(1)

wobei $p(x) = \sum_{j=0}^{\infty} p_j x^j$ und $q(x) = \sum_{j=0}^{\infty} q_j x^j$ für |x| < R konvergente Potenzreihen seien (wir betrachten wie vorher auch nur $p_j, q_j \in \mathbb{R}$). Hier macht man den Ansatz

$$y(x) = x^{\rho} \sum_{k=0}^{\infty} c_k x^k,$$

wobei die Koeffizienten c_k und ρ zu berechnen sind. Es ist

$$x^{2}y'' = \sum_{k=0}^{\infty} c_{k}(k+\rho)(k-1+\rho)x^{k+\rho},$$

$$xp(x)y' = \left(\sum_{j=0}^{\infty} p_{j}x^{j}\right)\left(\sum_{j=0}^{\infty} c_{j}(j+\rho)x^{j+\rho}\right)$$

$$= \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} p_{k-j}c_{j}(j+\rho)\right)x^{k+\rho},$$

$$q(x)y = \left(\sum_{j=0}^{\infty} q_{j}x^{j}\right)\left(\sum_{j=0}^{\infty} c_{j}x^{j+\rho}\right)$$

$$= \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} q_{k-j}c_{j}\right)x^{k+\rho}.$$

Koeffizientenvergleich für k=0 führt auf

$$(\rho(\rho-1) + p_0\rho + q_0)c_0 = 0,$$

und die determinierende Gleichung

$$\underbrace{\rho(\rho - 1) + p_0 \rho + q_0}_{=:f(\rho)} = 0 \tag{2}$$

für ρ . Für $k = 1, 2, 3, \ldots$ erhalten wir

$$(\underbrace{(\rho+k)(\rho+k-1) + p_0(\rho+k) + q_0}_{=f(\rho+k)})c_k = -\sum_{j=0}^{k-1} (p_{k-j}(\rho+j) + q_{k-j})c_j$$
(3)

als rekursive Gleichung für die Koeffizienten.

Satz: Es gelte

$$f(\rho) = (\rho - \rho_1)(\rho - \rho_2)$$
 mit $\rho_1 \ge \rho_2$, falls beide reell sind

 $(\rho_1, \rho_2 \text{ sind die Nullstellen der determinierenden Gleichung}).$

Falls $\rho_1, \rho_2 \in \mathbb{R}$, so gibt es für 0 < |x| < R ein Fundamentalsystem von (1) der Gestalt

$$y_1(x) = |x|^{\rho_1} \sum_{k=0}^{\infty} c_k x^k, \quad y_2(x) = A \ln|x| y_1(x) + |x|^{\rho_2} \sum_{k=0}^{\infty} d_k x^k,$$

mit $A \in \{0, 1\}$, wobei

$$\begin{cases} A = 0, c_0 \neq 0, d_0 \neq 0 &, \text{falls } \rho_1 - \rho_2 \notin \mathbb{N}_0 \\ A = 1, c_0 \neq 0, d_0 = 0 &, \text{falls } \rho_1 = \rho_2 \\ A \in \{0, 1\}, c_0 \neq 0, d_0 \neq 0 &, \text{falls } \rho_1 - \rho_2 \in \mathbb{N}. \end{cases}$$

Falls $\rho_1 \notin \mathbb{R}$ ist, so ist $\rho_2 = \overline{\rho_1}$ und es gibt ein Fundamentalsystem von (1) der Gestalt

$$y_1(x) = \operatorname{Re}(|x|^{\rho_1} v_1(x)), \quad y_2(x) = \operatorname{Im}(|x|^{\rho_1} v_1(x))$$

mit $v_1(x)$ als für |x| < R konvergenter Potenzreihe und $v_1(0) \neq 0$.

[Wir verweisen auf \rightarrow Heuser: Gewöhnliche Differentialgleichungen, Abschnitt 27.]

Bemerkung: Für den Fall komplexer Exponenten $\rho = \sigma + i\tau$ mit $\sigma, \tau \in \mathbb{R}$ beachte man im Vergleich mit 1.8, dass für x > 0 gilt:

$$x^{\rho} = e^{\rho \ln x} = e^{\sigma \ln x} e^{i\tau \ln x} = x^{\sigma} (\cos(\tau \ln x) + i \sin(\tau \ln x)) = x^{\sigma} \cos(\tau \ln x) + i x^{\sigma} \sin(\tau \ln x).$$

Beispiel: $x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$ (Besselsche Differentialgleichung der Ordnung 1/2). Der Ansatz $y(x) = \sum_{k=0}^{\infty} c_k x^{k+\rho}$ führt auf

$$\left(\rho^2 - \frac{1}{4}\right)c_0x^{\rho} + \left((\rho+1)^2 - \frac{1}{4}\right)c_1x^{\rho+1} + \sum_{k=2}^{\infty} \left(\left((\rho+k)^2 - \frac{1}{4}\right)c_k + c_{k-2}\right)x^{\rho+k} = 0.$$

Koeffizientenvergleich liefert die determinierende Gleichung

$$\rho^2 - \frac{1}{4} = 0$$
 mit Nullstellen $\rho_1 = \frac{1}{2}, \, \rho_2 = -\frac{1}{2}$

und

$$\left((\rho+1)^2 - \frac{1}{4}\right)c_1 = 0, \qquad \left((\rho+k)^2 - \frac{1}{4}\right)c_k = -c_{k-2}, k \ge 2.$$

Für $\rho_1 = \frac{1}{2}$ erhalten wir $c_1 = c_3 = c_5 = ... = 0$ und

$$c_k = -\frac{c_{k-2}}{k(k+1)}, \quad k = 2, 4, 6, \dots,$$

also

$$c_{2k} = -\frac{c_{2k-2}}{2k(2k+1)} = \frac{(-1)^k c_0}{(2k+1)!}, \quad k = 1, 2, 3, \dots$$

Mit $c_0 = 1$ ist schließlich

$$y_1(x) = x^{1/2} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k} = \frac{1}{x^{1/2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = \sqrt{\frac{1}{x}} \sin x, \quad x > 0.$$

Wir sind im Fall $\rho_1 - \rho_2 = 1 \in \mathbb{N}$ des Satzes und mit dem Ansatz

$$y_2(x) = x^{-1/2} \sum_{k=0}^{\infty} d_k x^k$$

und der Wahl $d_0=1$ kann man auf ähnliche Weise wie oben zu $y_2(x)=\sqrt{\frac{1}{x}}\cos x$ gelangen. Hier hat man also A=0.

Bemerkung: Der allgemeinere Fall

$$x^{2}r(x)y'' + xp(x)y' + q(x)y = 0$$

mit p(x), q(x) wie oben und $r(x) = \sum_{j=0}^{\infty} r_j x^j$ und $r_0 \neq 0$ (!) lässt sich durch Multiplikation mit $\frac{1}{r(x)}$ auf (1) zurückführen. Auch

$$(x - x_0)^2 y'' + (x - x_0)\widetilde{p}(x)y' + \widetilde{q}(x)y = 0$$

mit für $|x - x_0| < R$ konvergenten Potenzreihen $\widetilde{p}(x)$ und $\widetilde{q}(x)$ führt durch Translation auf (1).

2 Differentialgleichungssysteme erster Ordnung

2.1 Das Problem

Sei $D \subseteq \mathbb{R} \times \mathbb{R}^n$ offen, $F: D \to \mathbb{R}^n$ stetig. Wir schreiben Punkte aus D als (x, \vec{y}) mit $x \in \mathbb{R}$ und $\vec{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ und betrachten

$$\vec{y}' = F(x, \vec{y}). \tag{1}$$

Eine Lösung von (1) ist eine stetig differenzierbare Funktion $\vec{y}: I \to \mathbb{R}^n$, wobei $I \subseteq \mathbb{R}$ ein Intervall ist, mit

$$(x, \vec{y}(x)) \in D,$$

$$\begin{pmatrix} y_1'(x) \\ y_2'(x) \\ \vdots \\ y_n'(x) \end{pmatrix} = F(x, y_1(x), y_2(x), \dots, y_n(x)) \quad \text{für alle } x \in I.$$

Wir erinnern dabei an
$$\vec{y}'(x) = \frac{d}{dx}y(x) = \begin{pmatrix} y_1'(x) \\ y_2'(x) \\ \vdots \\ y_n'(x) \end{pmatrix}$$
.

Entsprechend betrachten wir Anfangswertprobleme, wobei man für gegebene $(x_0, \vec{y}_0) \in D$ Lösungen $\vec{y}: I \to \mathbb{R}^n$ von (1) mit der Bedingung $x_0 \in I$ und $\vec{y}(x_0) = \vec{y}_0$ sucht.

Beispiele: 1) Das Lotka-Volterrasche Räuber-Beute-Modell

$$u' = \alpha u - \beta uv$$

$$v' = -\gamma v + \delta uv$$

mit $\alpha, \beta, \gamma, \delta > 0$ beschreibt das Wachstum einer Räuberpopulation v (z.B. Füchse), die sich von einer Beutepopulation u (z.B. Hasen) ernährt: ohne Räuber vermehrt sich u exponentiell, während v ohne Beute exponentiell ausstirbt. Begegnungen von Räuber und Beute (proportional zum Produkt uv) führen zu Wachstum bei v und zur Abnahme bei u. Man kann das System durch w(x) = au(cx) und z(x) = bv(cx) mittels geeigneter a, b, c > 0 so skalieren, dass man

$$w' = w - wz$$
$$z' = -\varepsilon z + wz$$

mit nur noch einem Parameter $\varepsilon > 0$ erhält. Das System hat die Form (1) für $\vec{y} = {w \choose z}$, wobei

$$F(x, w, z) = \begin{pmatrix} w - wz \\ -\varepsilon w + wz \end{pmatrix}.$$

2) Man kann explizite Differentialgleichungen höherer Ordnung in ein System von Differentialgleichungen erster Ordnung der Form (1) umschreiben, z.B. die van der Polsche Gleichung

$$y'' + \mu(y^2 - 1)y' + y = 0, (2)$$

wobei $\mu > 0$ eine Konstante ist. Setzt man u = y, v = y', so erhält man

$$\binom{u}{v}' = \binom{v}{-u - \mu(u^2 - 1)v}, \tag{3}$$

also die Form (1) mit

$$F(x, u, v) = \begin{pmatrix} v \\ -u - \mu(u^2 - 1)v \end{pmatrix}.$$

Hier ist $F: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ stetig. Ist $x \mapsto \binom{u(x)}{v(x)}$ eine stetig differenzierbare Lösung von (3), so ist $x \mapsto u(x)$ eine zweimal stetig differenzierbare Lösung von (2). Ist umgekehrt $x \mapsto y(x)$ eine C^2 -Lösung von (2), so ist $x \mapsto \binom{y(x)}{y'(x)}$ eine C^1 -Lösung von (3). In diesem Sinne sind also (2) und (3) äquivalent.

2.2 Existenz- und Eindeutigkeitssatz von Picard-Lindelöf

Seien D und F wie in 2.1, sowie $(x_0, \vec{y}_0) \in D$. Sei F bzgl. der Variablen y_1, y_2, \ldots, y_n in D stetig partiell differenzierbar. Dann ist das Anfangswertproblem

$$\vec{y}' = F(x, \vec{y})
\vec{y}(x_0) = \vec{y}_0$$
(AWP)

eindeutig lösbar, dh

- (i) Es gibt eine Lösung $\vec{y}: I \to \mathbb{R}^n$ von (AWP), wobei $I \subseteq \mathbb{R}$ offen ist.
- (ii) Sind $\vec{y}: I_1 \to \mathbb{R}^n$, $\vec{z}: I_2 \to \mathbb{R}^n$ Lösungen von (AWP), so stimmen \vec{y} und \vec{z} auf $I_1 \cap I_2$ überein.

Zusatz: Es gibt eine eindeutige Lösung $\vec{y}_{\max}: I_{\max} \to \mathbb{R}^n$ von (AWP) mit maximalem Existenzintervall I_{\max} . Jede Lösung von (AWP) ist dann Einschränkung von \vec{y}_{\max} . Diese maximale Lösung verläuft "von Rand zu Rand", was im Falle $D = J \times \mathbb{R}^n$ bedeutet, dass entweder sup $I_{\max} = a := \sup J$ (globale Existenz nach rechts) oder sup $I_{\max} = b < a$ und $\lim_{x\to b^-} \|\vec{y}(x)\| = \infty$ ("Blow-up" in endlicher Zeit).

Beispiele: 1) Das Lotka-Volterrasche Räuber-Beute-Modell hat für alle Anfangswerte $\binom{u(0)}{v(0)} \in \mathbb{R}^2$ eine lokal existierende, eindeutige Lösung $\binom{u(x)}{v(x)}$. Man kann zeigen, dass für u(0), v(0) > 0 die Lösung global existiert und u(x), v(x) > 0 für alle $x \geq 0$ gilt.

2) Die van der Polsche Gleichung (2) in 2.1 hat für alle $\alpha, \beta \in \mathbb{R}$ eine lokal existierende, eindeutige Lösung y(x) mit $y(0) = \alpha$ und $y'(0) = \beta$. Man kann zeigen, dass diese Lösung global auf ganz \mathbb{R} existiert.

3) Das Anfangswertproblem $y' = \sqrt{|y|}$, y(0) = 0 ist nicht eindeutig lösbar. Hier ist n = 1 und $F(x, y) = \sqrt{|y|}$ ist in Punkten (x, 0) nicht partiell nach y differenzierbar.

2.3 Bemerkungen zum Beweis

1) Ist $\vec{y}: I \to \mathbb{R}^n$ eine Funktion, so gilt

 \vec{y} ist stetig differenzierbar und Lösung von (AWP)

genau dann, wenn \vec{y} stetig ist und

$$\vec{y}(x) = \vec{y}_0 + \int_{x_0}^x F(t, \vec{y}(t)) dt, \quad x \in I.$$
 (FP)

Diese Gleichung ist eine Fixpunktgleichung, zu deren Lösung man Fixpunktsätze verwenden kann (beim Beweis von 2.2 den \rightarrow Banachschen Fixpunktsatz).

2) Ist I ein abgeschlossenes Intervall und $B \subseteq \mathbb{R}^n$ eine abgeschlossene Kugel mit $I \times B \subseteq D$, so gibt es eine Konstante L > 0 mit

$$\|F(x,y)-F(x,\widetilde{y})\| \leq L\|y-\widetilde{y}\| \quad \text{für alle } x \in I,\, y,\widetilde{y} \in B.$$

(Man sagt, dass F lokal einer Lipschitzbedingung bzgl. der zweiten Komponente genügt; das ist die Bedingung, die im Beweis tatsächlich benutzt wird).

2.4 Fixpunktiteration

Ein Beweis von 2.2 mithilfe des Banachschen Fixpunktsatzes zeigt außerdem:

Setzt man $I := [x_0 - \delta_1, x_0 + \delta_2]$ und $\vec{y}_0(x) := \vec{y}_0, x \in I$, sowie iterativ für $k = 0, 1, \ldots$:

$$\vec{y}_{k+1}(x) := \vec{y}_0 + \int_{x_0}^x F(t, \vec{y}_k(t)) dt, \quad x \in I,$$

so konvergiert die Folge (\vec{y}_k) für $k \to \infty$ (gleichmäßig) gegen die eindeutige Lösung $\vec{y}: I \to \mathbb{R}^n$ von (AWP), wenn nur $\delta_1, \delta_2 > 0$ klein genug sind.

Beispiel (zur Fixpunktiteration): Wir betrachten das Differentialgleichungssystem

$$\binom{u}{v}' = \binom{v}{u}$$

auf $I = [0, \infty)$ mit Anfangswert $\binom{u(0)}{v(0)} = \binom{\alpha}{\beta}$. Die Iteration beginnen wir mit $\binom{u_0}{v_0}(x) = \binom{\alpha}{\beta}$. Man zeigt leicht, dass für $k \ge 1$ gilt:

$$\binom{u_k}{v_k}(x) = \binom{\alpha}{\beta} + \binom{\beta}{\alpha}x + \binom{\alpha}{\beta}\frac{x^2}{2} + \binom{\beta}{\alpha}\frac{x^3}{3!} + \dots + \begin{cases} \binom{\alpha}{\beta}\frac{x^k}{k!} & , k \text{ gerade} \\ \binom{\beta}{\alpha}\frac{x^k}{k!} & , k \text{ ungerade} \end{cases} .$$

Der Grenzwert $\lim_{k\to\infty}\binom{u_k}{v_k}(x)$ existiert für jedes x und ist gleich

$$\binom{u}{v}(x) = \binom{\alpha \cosh x + \beta \sinh x}{\beta \cosh x + \alpha \sinh x}.$$

Das ist auch die Lösung des Differentialgleichungssystems.

2.5 Globale Existenz

Ist unter den Voraussetzungen von 2.2 $D = I \times \mathbb{R}^n$ und gibt es $C \geq 0$ mit

$$||F(x, \vec{y})|| \le C(1 + ||\vec{y}||)$$
 für alle $\vec{y} \in \mathbb{R}^n$,

so existiert die maximale Lösung zu $(x_0, \vec{y_0})$ auf I.

Beweis. (nur nach rechts) Wir verwenden die Darstellung aus 2.3 1) für die Lösung des Anfangswertproblems und setzen $\varphi(t) := \|\vec{y}(x_0 + t)\| + 1$. Dann gilt

$$\varphi(t) \leq (1 + \|\vec{y}_0\|) + \int_0^t \|F(x_0 + \tau, \vec{y}(x_0 + \tau))\| d\tau
\leq (1 + \|\vec{y}_0\|) + C \int_0^t (1 + \|\vec{y}(x_0 + \tau)\|) d\tau
\leq (1 + \|\vec{y}_0\|) + C \int_0^t \varphi(\tau) d\tau,$$

so dass wir nach 2.6 unten erhalten: $\varphi(t) \leq (1 + ||\vec{y_0}||)e^{Ct}$. Blow-Up in endlicher Zeit kann es also nicht geben. Nach dem Zusatz in 2.2 existiert die Lösung global nach rechts.

Beispiel: Sei $\alpha > 0$ und $y(x) = (1-x)^{-\alpha}$ für $x \in (-1,1)$. Dann ist y Lösung des Anfangswertproblems $y' = \alpha |y|^{1+1/\alpha}$, y(0) = 1. Hier wächst die Funktion $F: (-1, \infty) \to \mathbb{R}$, $F(x,y) := \alpha |y|^{1+1/\alpha}$ schneller als linear und wir haben Blow-Up in endlicher Zeit.

Beispiel: Sei I=[0,T] und seien $p,q,f:I\to\mathbb{R}$ stetig. Das Anfangswertproblem

$$y'' + p(x)y' + q(x)y = f(x), \quad x \in I$$
$$y(0) = \alpha, \quad y'(0) = \beta$$

schreiben wir um zu

$$\begin{pmatrix} u \\ v \end{pmatrix}' = \underbrace{\begin{pmatrix} v \\ -p(x)v - q(x)u + f(x) \end{pmatrix}}_{=:F(x,u,v)}, \qquad \begin{pmatrix} u \\ v \end{pmatrix}(0) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

Da I abgeschlossen und beschränkt ist, gilt $\|g\|_{\infty}:=\sup_{x\in I}|g(x)|<\infty$ für $g\in\{p,q,f\}$ und somit

$$||F(x, u, v)|| \le |v| + |p(x)||v| + |q(x)||u| + |f(x)| \le \underbrace{(1 + ||p||_{\infty} + ||q||_{\infty} + ||f||_{\infty})}_{=:C} (1 + ||p||_{\infty} + ||f||_{\infty}) (1 + ||q||_{\infty}) (1 + ||$$

Nach 2.5 existiert die maximale Lösung auf I.

2.6 Lemma von Gronwall

Sei $I := [0, T], \varphi : I \to \mathbb{R}$ stetig, sowie $\alpha \in \mathbb{R}, \beta > 0$. Es gelte

$$\forall t \in I : \varphi(t) \le \alpha + \beta \int_0^t \varphi(\tau) \, d\tau. \tag{*}$$

Dann gilt

$$\forall t \in I : \varphi(t) \le \alpha e^{\beta t}. \tag{**}$$

Beweis. Sei $\varepsilon > 0$. Dann gilt $\varphi(t) < \alpha + \varepsilon + \beta \int_0^t \varphi(\tau) d\tau$ für jedes t. Wir zeigen

$$\forall t \in I : \varphi(t) < (\alpha + \varepsilon)e^{\beta t}. \tag{**_{\varepsilon}}$$

Für $\varepsilon \to 0$ folgt daraus (**). Wenn (** ε) falsch ist, gibt es ein minimales $t_0 \in I$ mit "=" in (** ε). Wegen $\beta > 0$ erhalten wir

$$(\alpha + \varepsilon)e^{\beta t_0} = \varphi(t_0) < (\alpha + \varepsilon) + \beta \int_0^{t_0} \underbrace{\varphi(\tau)}_{\leq (\alpha + \varepsilon)e^{\beta \tau}} d\tau \leq (\alpha + \varepsilon) + \beta \left[\frac{\alpha + \varepsilon}{\beta}e^{\beta \tau}\right]_0^{t_0} = (\alpha + \varepsilon)e^{\beta t_0},$$

dh einen Widerspruch.

2.7 Existenzsatz von Peano

Seien D und F wie in 2.1 und sei $(x_0, \vec{y_0}) \in D$. Dann hat das Anfangswertproblem (AWP) eine Lösung, und es gibt eine maximale (dh auf kein größeres Intervall fortsetzbare) Lösung $\vec{y}: I_{\text{max}} \to \mathbb{R}^n$ von (AWP), die "von Rand zu Rand verläuft".

Bemerkung: Lösungen des Anfangswertproblems (AWP) sind unter diesen Voraussetzungen i.a. nicht eindeutig. Insbesondere müssen auch die Existenzintervalle maximaler Lösungen zum selben Anfangswert nicht übereinstimmen.

3 Lineare Differentialgleichungssysteme

Wir bezeichnen hier die unabhängige Variable nicht mit x, sondern mit t.

3.1 Lineare Systeme mit variablen Koeffizienten

Existenz und Eindeutigkeit von Lösungen: Sei $I \subseteq \mathbb{R}$ ein Intervall und seien $\vec{b}: I \to \mathbb{R}^n$ und $A: I \to \mathbb{R}^{n \times n}$ stetig (letzteres bedeutet, dass in der Darstellung $A(t) = (a_{jk}(t))_{j,k=1}^n$ alle Funktionen $a_{jk}: I \to \mathbb{R}$ stetig sind). Ist $t_0 \in I$, so hat das Anfangswertproblem

$$\vec{y}' = A(t)\vec{y} + \vec{b}(t), \quad t \in I,
\vec{y}(t_0) = \vec{y}_0$$
(1)

für jedes $\vec{y_0} \in \mathbb{R}^n$ eine eindeutige Lösung $\vec{\phi}: I \to \mathbb{R}^n$.

Beweis: Wende Satz 2.2 und 2.5 an auf $D = I \times \mathbb{R}^n$ und $F(t, \vec{y}) = A(t)\vec{y} + \vec{b}(t)$ und beachte $\frac{\partial}{\partial \vec{y}} F(t, \vec{y}) = A(t)$.

Struktur der Lösungen: Für Lösungen des inhomogenen Differentialgleichungssystems

$$\vec{y}' = A(t)\vec{y} + \vec{b}(t), \quad t \in I, \tag{2}$$

gelten die uns schon von anderen linearen Differentialgleichungen vertrauten Eigenschaften:

Die **allgemeine** Lösung von (2) erhält man durch Addition einer **speziellen** (partikulären) Lösung des inhomogenen Systems (2) und der **allgemeinen** Lösung des zugehörigen homogenen Systems

$$\vec{y}' = A(t)\vec{y}, \quad t \in I. \tag{3}$$

Bemerkung: Der Lösungsraum des homogenen Systems (3)

$$\mathscr{L}_0 := \{ \vec{y} : I \to \mathbb{R}^n : \ \vec{y}' = A(t)\vec{y}, \ t \in I \}$$

ist ein reeller Vektorraum der Dimension n.

Eine Basis $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n$ von \mathcal{L}_0 heißt Fundamentalsystem für (3) auf I. Ist $\vec{\phi}_1, \dots, \vec{\phi}_n$ ein Fundamentalsystem, dh eine Basis von \mathcal{L}_0 , so erhält man **jede** Lösung von (3) durch eine Linearkombination

$$c_1\vec{\phi}_1 + c_2\vec{\phi}_2 + \ldots + c_n\vec{\phi}_n$$

für geeignete $c_1, c_2, \ldots, c_n \in \mathbb{R}$.

Wronski-Determinante: Für $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n \in \mathscr{L}_0$ heißt

$$w: I \to \mathbb{R}, \quad w(t) := \det \left(\begin{array}{ccc} | & | & | \\ \vec{\phi}_1(t) & \vec{\phi}_2(t) & \dots & \vec{\phi}_n(t) \\ | & | & | \end{array} \right),$$

die Wronski-Determinante des Systems $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n$. Es sind äquivalent:

- die Funktionen $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n$ bilden ein Fundamentalsystem;
- es ist $w(t) \neq 0$ für alle $t \in I$;
- es ist $w(t_0) \neq 0$ für ein $t_0 \in I$.

Bilden $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n$ ein Fundamentalsystem von (3), so bezeichnen wir auch

$$\Phi(t) := \left(\begin{array}{ccc} | & | & | \\ \vec{\phi}_1(t) & \vec{\phi}_2(t) & \dots & \vec{\phi}_n(t) \\ | & | & | \end{array} \right), \quad t \in I,$$

als Fundamentalsystem. Beachte, dass $\Phi(t)$ für jedes $t \in I$ eine invertierbare $n \times n$ -Matrix ist (wegen det $\Phi(t) = w(t) \neq 0$ für $t \in I$). Außerdem gilt

$$\Phi'(t) = A(t)\Phi(t), \quad t \in I,$$

und für $\vec{c} = (c_1, c_2, \dots, c_n) \in \mathbb{R}^n$ ist

$$c_1\vec{\phi}_1(t) + c_2\vec{\phi}_2(t) + \ldots + c_n\vec{\phi}_n(t) = \begin{pmatrix} | & | & | \\ \vec{\phi}_1(t) & \vec{\phi}_2(t) & \ldots & \vec{\phi}_n(t) \\ | & | & | \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \Phi(t)\vec{c}, \quad t \in I,$$

dh man erhält alle Lösungen von (3) durch Multiplikation der matrixwertigen Funktion $\Phi(t)$ mit festen Vektoren $\vec{c} \in \mathbb{R}^n$.

Variation der Konstanten: Ist $\Phi(t)$ ein Fundamentalsystem für (3) auf I, so macht man für eine Lösung $\vec{y}(t)$ von (2) den Ansatz

$$\vec{y}(t) = \Phi(t)\vec{c}(t), \quad t \in I,$$

und erhält

$$A(t)\Phi(t)\vec{c}(t) + \vec{b}(t) \stackrel{!}{=} \vec{y}'(t) = A(t)\Phi(t)\vec{c}(t) + \Phi(t)\vec{c}'(t),$$

also

$$\Phi(t)\vec{c}'(t) = \vec{b}(t)$$
 bzw. $\vec{c}'(t) = \Phi(t)^{-1}\vec{b}(t)$.

Die eindeutige Lösung von (1) ist dann gegeben durch

$$\vec{y}(t) = \Phi(t)\Phi(t_0)^{-1}\vec{y}_0 + \Phi(t) \int_{t_0}^t \Phi(\tau)^{-1}\vec{b}(\tau) d\tau, \quad t \in I.$$

Man vergleiche dies mit der Formel aus 1.2.

Bemerkung: Die Aussagen gelten entsprechend, wenn $A: I \to \mathbb{C}^{n \times n}$ und $\vec{b}: I \to \mathbb{C}^n$ stetig sind. In diesem Fall gilt der Existenz- und Eindeutigkeitssatz für $\vec{y_0} \in \mathbb{C}^n$, und der Lösungsraum \mathcal{L}_0 des homogenen Systems ist ein *komplexer* Vektorraum der Dimension n.

3.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten

Wir betrachten das homogene System

$$\vec{y}' = A\vec{y}, \quad t \in \mathbb{R},$$
 (1)

wobei $A \in \mathbb{C}^{n \times n}$, und wollen ein Fundamentalsystem bestimmen.

Grundlegende Beobachtung: Ist $\lambda \in \mathbb{C}$ ein Eigenwert von A und $\vec{v} \in \mathbb{C}^n \setminus \{\vec{0}\}$ ein zugehöriger Eigenvektor (dh gilt $A\vec{v} = \lambda \vec{v}$), so ist durch

$$\vec{\phi}(t) := e^{\lambda t} \vec{v}, \quad t \in \mathbb{R},$$

eine Lösung von (1) gegeben.

Folgerung: Gibt es eine *Basis* $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ des \mathbb{C}^n aus Eigenvektoren von A mit zugehörigen Eigenwerten $\lambda_1, \lambda_2, \dots, \lambda_n$, so ist durch

$$\vec{\phi}_j(t) := e^{\lambda_j t} \vec{v}_j, \quad t \in \mathbb{R}, \ j = 1, 2, \dots, n,$$

ein Fundamentalsystem $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_n$ von (1) gegeben.

Bemerkung (Erinnerung): Es gibt genau dann eine Basis aus Eigenvektoren von A, wenn A diagonalisierbar ist, dh genau dann, wenn für jeden Eigenwert algebraische (dh Nullstellenvielfachheit im charakteristischen Polynom) und geometrische Vielfachheit (dh Dimension des zugehörigen Eigenraumes) übereinstimmen.

Das ist z.B. immer der Fall, wenn A n verschiedene Eigenwerte $\lambda_1, \lambda_2, \dots, \lambda_n$ hat.

Beispiel: Wir betrachten die Matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

Es gilt

$$\det (A - \lambda I) = (4 - \lambda)(\lambda - 1)^{2}.$$

Ein Eigenvektor zum Eigenwert 4 ist gegeben durch $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, und der Eigenraum zum

Eigenwert 1 wird aufgespannt von den Vektoren $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. Ein Fundamen-

talsystem von (1) ist also gegeben durch

$$\vec{\phi}_1(t) = e^{4t} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ \vec{\phi}_2(t) = e^t \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \ \vec{\phi}_3(t) = e^t \begin{pmatrix} 0\\1\\-1 \end{pmatrix}.$$

Reelle Matrizen mit nicht-reellen Eigenwerten: Sei $A \in \mathbb{R}^{n \times n}$ komplex diagonalisierbar und $\lambda \in \mathbb{C} \setminus \mathbb{R}$ ein Eigenwert mit zugehörigem Eigenvektor $\vec{v} \in \mathbb{C}^n \setminus \mathbb{R}^n$. Dann ist auch $\overline{\lambda}$ Eigenwert von A mit Eigenvektor $\overline{\vec{v}}$. Die linear unabhängigen komplexwertigen Lösungen $e^{\lambda t} \vec{v}$ und $e^{\overline{\lambda} t} \overline{\vec{v}}$ im Fundamentalsystem ersetze man durch die linear unabhängigen reellwertigen Lösungen

$$\operatorname{Re}\left(e^{\lambda t}\vec{v}\right), \quad \operatorname{Im}\left(e^{\lambda t}\vec{v}\right).$$

Beispiel: Wir betrachten

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right).$$

Es gilt

$$\det(A - \lambda I) = \lambda^2 + 1 = (\lambda - i)(\lambda + i).$$

Ein Eigenvektor zum Eigenwert $\pm i$ ist gegeben durch $\begin{pmatrix} 1 \\ \pm i \end{pmatrix}$, und es gilt

$$\begin{pmatrix} 1 \\ i \end{pmatrix} e^{it} = \begin{pmatrix} 1 \\ i \end{pmatrix} (\cos t + i \sin t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}.$$

Ein reelles Fundamentalsystem von (1) ist also gegeben durch

$$\vec{\phi}_1(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}, \quad \vec{\phi}_2(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}.$$

3.3 Fundamentalsysteme für nicht-diagonalisierbare Matrizen

Wir betrachten weiter das homogene System

$$\vec{y}' = A\vec{y}, \quad t \in \mathbb{R},$$
 (H)

wobei $A \in \mathbb{C}^{n \times n}$ nicht diagonalisierbar ist.

Man führe das folgende Verfahren für jeden Eigenwert von ${\cal A}$ durch:

Sei $\lambda_0 \in \mathbb{C}$ ein Eigenwert von A mit algebraischer Vielfachheit m (dh λ_0 ist m-fache Nullstelle aber nicht m+1-fache Nullstelle des charakteristischen Polynoms $p(\lambda) = \det (A - \lambda I)$).

Man bestimme eine Basis $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ des Hauptraumes von A zum Eigenwert λ_0 , dh eine Basis von Kern $(A - \lambda_0 I)^m$ (selbst wenn der Eigenraum Kern $(A - \lambda I)$ von A zum Eigenwert λ eine Dimension < m hat, hat der entsprechende Hauptraum immer die Dimension m). Dazu bestimme man zunächst eine Basis

von Kern $(A - \lambda_0 I)$, erweitere diese zu einer Basis von Kern $(A - \lambda_0 I)^2$ usw. Zweckmäßigerweise bestimmt man dabei in jedem Schritt Vektoren \vec{w} mit

$$(A - \lambda_0 I)\vec{w} = \vec{v},$$

wobei \vec{v} aus dem Spann der bisher gefundenen Vektoren ist (und $\vec{v}=0$ im ersten Schritt).

Dann sind $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_m$, gegeben durch

$$\vec{\phi}_j(t) = e^{\lambda_0 t} \left(\vec{v}_j + t(A - \lambda_0 I) \vec{v}_j + \frac{t^2}{2!} (A - \lambda_0 I)^2 \vec{v}_j + \ldots + \frac{t^{m-1}}{(m-1)!} (A - \lambda_0 I)^{m-1} \vec{v}_j \right)$$

für j = 1, 2, ..., m, linear unabhängige Lösungen von (H).

Falls $A \in \mathbb{R}^{n \times n}$ ist, beachte man folgendes:

Ist in der obigen Situation $\lambda_0 \in \mathbb{R}$, so bestimmt man eine reelle Basis $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m \in \mathbb{R}^n$ des Hauptraumes und erhält so reellwertige Funktionen $\vec{\phi}_1, \vec{\phi}_2, \dots, \vec{\phi}_m$.

Ist $\lambda_0 \in \mathbb{C} \setminus \mathbb{R}$, so ist auch $\overline{\lambda_0}$ ein Eigenwert der algebraischen Vielfachheit m. In diesem Fall erhält man 2m linear unabhängige reellwertige Lösungen von (H) durch

$$\operatorname{Re} \vec{\phi}_1, \operatorname{Re} \vec{\phi}_2, \dots, \operatorname{Re} \vec{\phi}_m, \operatorname{Im} \vec{\phi}_1, \operatorname{Im} \vec{\phi}_2, \dots, \operatorname{Im} \vec{\phi}_m.$$

Der Eigenwert $\overline{\lambda_0}$ wird in dem Verfahren dann nicht mehr berücksichtigt!

Beispiel: Sei

$$A = \left(\begin{array}{ccc} 0 & 1 & -1 \\ -2 & 3 & -1 \\ -1 & 1 & 1 \end{array}\right).$$

Es gilt det $(A - \lambda I) = -(\lambda - 1)^2(\lambda - 2)$ und $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ ist Eigenvektor zum Eigenwert 2.

Weiter gilt

$$\operatorname{Kern}\left(A - I\right) = \operatorname{Kern}\left(\begin{array}{ccc} -1 & 1 & -1 \\ -2 & 2 & -1 \\ -1 & 1 & 0 \end{array}\right) = \operatorname{lin}\{\left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right)\}, \quad \operatorname{Kern}\left(A - I\right)^2 = \operatorname{lin}\{\left(\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \\ -1 \end{array}\right)\}.$$

Also ist ein Fundamentalsystem gegeben durch

$$\vec{\phi}_1(t) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{2t}, \quad \vec{\phi}_2(t) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^t, \quad \vec{\phi}_3(t) = \left[\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right] e^t.$$

3.4 Asymptotisches Verhalten

Sei $A \in \mathbb{C}^{n \times n}$. Wir interessieren uns für das Verhalten von Lösungen von

$$\vec{y}' = A\vec{y}, \quad t \in \mathbb{R},$$
 (H)

für $t \to \infty$. Aus der Gestalt der Funktionen im Fundamentalsystem aus 3.3 erhalten wir den

Satz: (1) Alle Lösungen von (H) konvergieren gegen Null für $t \to \infty$ genau dann, wenn Re $\lambda < 0$ für jeden Eigenwert λ von A gilt.

(2) Alle Lösungen von (H) bleiben für $t \to \infty$ beschränkt genau dann, wenn Re $\lambda \le 0$ für alle Eigenwerte λ von A gilt und wenn für jeden Eigenwert λ mit Re $\lambda = 0$ geometrische und algebraische Vielfachheit übereinstimmen.

3.5 Die Matrixexponentialfunktion

Sei $A \in \mathbb{C}^{n \times n}$. Für jedes $t \in \mathbb{R}$ definiert man

$$\exp(tA) := e^{tA} := \sum_{l=0}^{\infty} \frac{t^l A^l}{l!}.$$

Die Reihe konvergiert dabei in dem Sinne, dass für jedes (j,k) der Eintrag der Matrix $\sum_{l=0}^{N} \frac{t^l A^l}{l!}$ an der Stelle (j,k) konvergiert.

[Zum Beweis bestimme man $C \geq 0$ so, dass $||A\vec{x}|| \leq C||\vec{x}||$ für alle $\vec{x} \in \mathbb{R}^n$ gilt (das gilt z.B. für $C = \left(\sum_{j,k=1}^n |a_{jk}|^2\right)^{1/2}$). Dann ist $||A^l\vec{x}|| \leq C^l||\vec{x}||$ für alle $l \in \mathbb{N}_0$ und

$$\sum_{l=0}^{\infty} \left\| \frac{t^l A^l \vec{x}}{l!} \right\| \le \sum_{l=0}^{\infty} \frac{|t|^l C^l \|\vec{x}\|}{l!} = e^{C|t|} \|\vec{x}\| < \infty,$$

so dass die Reihe $\sum_{l=0}^{\infty} \frac{t^l A^l \vec{x}}{l!}$ für jedes $\vec{x} \in \mathbb{C}^n$ in \mathbb{C}^n absolut konvergiert.]

Eigenschaften: Seien $A, B \in \mathbb{C}^{n \times n}$.

(1) Ist AB = BA, so gilt

$$e^{A+B} = e^A e^B.$$

Beweis wie beim Cauchyprodukt, wobei man beachtet, dass (wegen AB=BA!) gilt

$$(A+B)^{l} = \sum_{j=0}^{l} {l \choose j} A^{j} B^{l-j}, \quad l \in \mathbb{N}_{0}.$$

- (2) Die Matrix e^A ist invertierbar mit $(e^A)^{-1} = e^{-A}$.
- (3) Für alle $s, t \in \mathbb{R}$ gilt $e^{(s+t)A} = e^{sA}e^{tA}$.
- (4) Für jedes $\vec{y_0} \in \mathbb{C}^n$ definiert $\vec{\phi}(t) := e^{tA}\vec{y_0}$ eine Lösung des homogenen Systems (H) mit Anfangswert $\vec{\phi}(0) = \vec{y_0}$. Hieraus erhalten wir:

Ist $\Phi(t)$ ein Fundamentalsystem von (H), so gilt $e^{tA} = \Phi(t)\Phi(0)^{-1}$, $t \in \mathbb{R}$. Insbesondere ist e^{tA} das Fundamentalsystem $\Psi(t)$ von (H) mit $\Psi(0) = I$.

Bemerkung: Sind $\vec{v} \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ und $m \in \mathbb{N}$ so, dass $(A - \lambda I)^m \vec{v} = 0$ gilt, so haben wir

$$e^{tA}\vec{v} = e^{\lambda t}e^{t(A-\lambda I)}\vec{v} = e^{\lambda t}\sum_{k=0}^{m-1}\frac{t^k}{k!}(A-\lambda I)^k\vec{v}, \quad t \in \mathbb{R},$$

womit klar ist, dass die in 3.3 angegebenen $\vec{\phi}_i$ Lösungen von (H) sind.

Beispiele: 1) $A = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}$: Es gilt $A^2 = -\omega^2 I$, also für $k \in \mathbb{N}$:

$$A^{2k+1} = (-1)^k \omega^{2k} A, \qquad A^{2k} = (-1)^k \omega^{2k} I.$$

Somit ist für jedes $t \in \mathbb{R}$:

$$e^{tA} = \begin{pmatrix} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} (\omega t)^{2k} & \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (\omega t)^{2k+1} \\ -\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (\omega t)^{2k+1} & \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} (\omega t)^{2k} \end{pmatrix} = \begin{pmatrix} \cos(\omega t) & \sin(\omega t) \\ -\sin(\omega t) & \cos(\omega t) \end{pmatrix}.$$

Beachte $e^{0A} = I$ und

$$\frac{d}{dt}(e^{tA}) = \begin{pmatrix} -\omega \sin(\omega t) & \omega \cos(\omega t) \\ -\omega \cos(\omega t) & -\omega \sin(\omega t) \end{pmatrix} = A e^{tA}, \quad t \in \mathbb{R}.$$

$$2) \ J = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix} \in \mathbb{C}^{n \times n}. \text{ Es gilt}$$

$$J = \lambda I + \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 0 & 1 \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix} = \lambda I + N.$$

Wegen $(\lambda I)N = N(\lambda I)$ ist also

$$e^{tJ} = e^{t\lambda I}e^{tN} = e^{\lambda t}e^{tN}$$
.

Nun hat N^k für $k=1,\ldots,n-1$ auf der k-ten Nebendiagonalen Einsen und sonst Nullen, und N^k ist die Nullmatrix für $k\geq n$. Somit ist

$$e^{tJ} = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{t^2}{2} & \cdots & \frac{t^{n-1}}{(n-1)!} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \frac{t^2}{2} \\ \vdots & & \ddots & 1 & t \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}.$$

Variation der Konstanten: Ist $I \subseteq \mathbb{R}$ ein Intervall, $A \in \mathbb{C}^{n \times n}$, $t_0 \in I$, $\vec{b} : I \to \mathbb{C}^n$ stetig und $\vec{y_0} \in \mathbb{C}^n$, so ist die eindeutige Lösung von

$$\vec{y}' = A\vec{y} + \vec{b}(t), \quad t \in I,$$

mit $\vec{y}(t_0) = \vec{y}_0$ gegeben durch

$$\vec{y}(t) = e^{(t-t_0)A} \vec{y}_0 + \int_{t_0}^t e^{(t-\tau)A} \vec{b}(\tau) d\tau, \quad t \in I.$$

Beispiel: Für $A = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}$ aus Beispiel 1) oben ist

$$e^{tA} = \begin{pmatrix} \cos(\omega t) & \sin(\omega t) \\ -\sin(\omega t) & \cos(\omega t) \end{pmatrix} \quad \text{und} \quad (sI - A)^{-1} = \frac{1}{s^2 + \omega^2} \begin{pmatrix} s & \omega \\ -\omega & s \end{pmatrix}.$$

Wir betrachten $\vec{y}_0 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ und $\vec{b}(t) = \begin{pmatrix} \cos(\omega t) \\ -\sin(\omega t) \end{pmatrix}$, $\mathcal{L}\{\vec{b}(t)\}(s) = \frac{1}{s^2 + \omega^2} \begin{pmatrix} s \\ -\omega \end{pmatrix}$. Dann ist

$$\vec{y}(t) = e^{tA}\vec{y_0} + \int_0^t \begin{pmatrix} \cos(\omega(t-\tau)) & \sin(\omega(t-\tau)) \\ -\sin(\omega(t-\tau)) & \cos(\omega(t-\tau)) \end{pmatrix} \begin{pmatrix} \cos(\omega\tau) \\ -\sin(\omega\tau) \end{pmatrix} d\tau$$

$$= \begin{pmatrix} 2\cos(\omega t) + \sin(\omega t) \\ -2\sin(\omega t) + \cos(\omega t) \end{pmatrix} + \begin{pmatrix} t\cos(\omega t) \\ -t\sin(\omega t) \end{pmatrix}.$$

Partielle Differentialgleichungen

Eine partielle Differentialgleichung ist eine Gleichung, welche Ableitungen einer gesuchten Funktion $u: D \to \mathbb{R}$ enthält, wobei D eine offene Teilmenge des \mathbb{R}^n und $n \geq 2$ ist.

Im Gegensatz zu gewöhnlichen Differentialgleichungen gibt es bei partiellen Differentialgleichungen je nach Art der vorliegenden Gleichung viele verschiedene Theorien. Partielle Differentialgleichungen können nach verschiedenen Aspekten klassifiziert werden, zB nach der *Ordnung* der höchsten auftretenden Ableitung der gesuchten Funktion oder *algebraisch*:

Lineare Gleichungen enthalten die gesuchte Funktion u und ihre Ableitungen nur linear, quasilineare Gleichungen sind linear in den höchsten Ableitungen von u. Gleichungen, die nicht quasilinear sind heißen voll nicht-linear. Solche Gleichungen können durch Differenzieren in quasilineare Gleichungen überführt werden.

Das Gebiet ist riesig, und wir werden einige typische Vertreter kennenlernen.

Beispiele: 1) $\partial_t u + \partial_x u = 0$ ist von erster Ordnung und linear.

- 2) $\partial_t u + u \partial_x u = 0$ ist von erster Ordnung und quasilinear.
- 3) $u_{xx}u_{yy} (u_{xy})^2 = f$ ist von zweiter Ordnung und voll nicht-linear. Leitet man nach x ab, erhält man die Gleichung

$$u_{xxx}u_{yy} + u_{xx}u_{xyy} - 2u_{xy}u_{xxy} = f_x,$$

die von dritter Ordnung und quasilinear ist.

4) Die Gleichungen $\Delta u = 0$ (Laplacegleichung), $u_t = u_{xx}$ (Wärmeleitungsgleichung) und $u_{tt} = u_{xx}$ (Wellengleichung) sind von zweiter Ordnung und linear.

4 Transportgleichungen und Charakteristiken

4.1 Lineare Transportgleichung mit konstanten Koeffizienten

Wir betrachten die Gleichung

$$\partial_t u + a \partial_x u = g(x, t), \quad (x, t) \in \mathbb{R}^2,$$
 (1)

für eine Funktion u = u(x,t), die wir mit der Anfangsbedingung

$$u(x,0) = f(x), \quad x \in \mathbb{R},$$
 (2)

lösen wollen. Hierbei sind $g: \mathbb{R}^2 \to \mathbb{R}$, $f: \mathbb{R} \to \mathbb{R}$ und $a \in \mathbb{R}$ gegeben. Eine Lösung soll eine Funktion $u \in C^1(\mathbb{R}^2)$ sein, die (1) und (2) genügt. Man ersieht hieraus schon, dass $g \in C(\mathbb{R}^2)$ und $f \in C^1(\mathbb{R})$ gelten muss.

Bemerkung: Die Abbildung $C^1(\mathbb{R}^2) \to C(R^2)$, $u \mapsto \partial_t u + a\partial_x u$ (hier werden Funktionen abgebildet) ist linear. Deshalb erhält man die Lösung von (1), (2) durch Addition der Lösungen für die Fälle g = 0 und f = 0.

Die linke Seite von (1) ist in der (x,t)-Ebene die Richtungsableitung von u in Richtung des Vektors $\binom{a}{1}$.

Fall g = 0: Dann bedeutet (1), dass u auf Geraden $\binom{x}{t} + r\binom{a}{1}$, $r \in \mathbb{R}$, konstant ist. Ist $\binom{x}{t}$ fixiert, so trifft diese Gerade die Achse $\mathbb{R} \times \{0\}$ im Punkt $\binom{x-at}{0}$ (setze r = -t). Aus (2) erhält man also

$$u(x,t) = f(x-at), \quad (x,t) \in \mathbb{R}^2,$$

dh der Anfangswert wird mit Geschwindigkeit a nach rechts transportiert. Für $f \in C^1(\mathbb{R}^2)$ ist dies tatsächlich die eindeutige Lösung von (1), (2) im Fall g = 0.

Fall f = 0: Dann bedeutet (1):

$$\frac{\partial u}{\partial (a,1)}(x,t) = g(x,t), \quad (x,t) \in \mathbb{R}^2,$$

und wir erhalten u durch Integration von g auf der Geraden $\binom{x}{t} + \mathbb{R}\binom{a}{1}$:

$$u(x,t) = u(x,t) - \underbrace{u(x-at,0)}_{=f(x-at,0)} = \int_0^t \partial_r (u(x-a(t-r),r)) dr$$
$$= \int_0^t \underbrace{\left(\frac{\partial_x u}{\partial_t u}\right) (x-a(t-r),r) \cdot \binom{a}{1}}_{=g(x-a(t-r),r)} dr = \int_0^t g(x-(t-r)a,r) dr.$$

Ist g stetig partiell nach x differenzierbar, so ist hierdurch tatsächlich eine Lösung von (1) mit $u(x,0) = 0, x \in \mathbb{R}$, gegeben (\rightarrow Differentiation von Parameterintegralen, s.u.).

Satz: Ist $f : \mathbb{R} \to \mathbb{R}$ stetig differenzierbar und $g : \mathbb{R}^2 \to \mathbb{R}$ stetig und stetig partiell nach x differenzierbar, so ist die eindeutige Lösung von (1), (2) gegeben durch

$$u(x,t) = f(x-at) + \int_0^t g(x-a(t-r),r) dr, \quad (x,t) \in \mathbb{R}^2.$$
 (3)

Will man nachrechnen, dass u eine Lösung ist, so verwendet man den folgenden Satz über Integrale, die von einem Parameter abhängen.

Satz: Sei h = h(t, r) eine Funktion von t und r, die stetig sei und außerdem stetig partiell nach t differenzierbar. Seien $\varphi = \varphi(t)$, $\psi = \psi(t)$ stetig differenzierbare Funktionen. Dann ist durch

$$k(t) := \int_{\varphi(t)}^{\psi(t)} h(t, r) dr$$

eine stetig differenzierbare Funktion gegeben mit

$$k'(t) = \int_{\varphi(t)}^{\psi(t)} (\partial_t h)(t, r) dr + h(t, \psi(t)) \psi'(t) - h(t, \varphi(t)) \varphi'(t).$$

[Zum Beweis differenziert man $F(t,a,b):=\int_a^b h(t,r)\,dr$ zunächst nach t, das ist die eigentliche Arbeit. Dann leitet man $k(t):=F(t,\varphi(t),\psi(t))$ nach der Kettenregel ab.]

Diesen Satz wenden wir (für festes x!) an auf $h(t,r):=g(x-a(t-r),r),\,\varphi(t)=0,\,\psi(t)=t$:

$$\partial_t \left(\int_0^t g(x - a(t - r), r) \, dr \right) = -a \int_0^t (\partial_x g)(x - a(t - r), r) \, dr + g(\underbrace{x - a(t - t)}_{r}, t).$$

Hingegen ergibt die Anwendung (für festes t!) auf h(x,r)=g(x-a(t-r),r) und $\varphi(x)=0$, $\psi(x)=t$:

$$\partial_x \Big(\int_0^t g(x - a(t - r), r) \, dr \Big) = \int_0^t (\partial_x g)(x - a(t - r), r) \, dr.$$

Folglich ist das oben angegebene u = u(x,t) tatsächlich eine Lösung der Gleichung.

4.2 Lineare Transportgleichung im \mathbb{R}^n

Sei $n \in \mathbb{N}$, $\vec{a} \in \mathbb{R}^n$ und seien $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ gegeben. Das Anfangswertproblem

$$\partial_t u + \vec{a} \cdot \nabla u = g(\vec{x}, t), \quad (\vec{x}, t) \in \mathbb{R}^n \times \mathbb{R}$$

$$u(\vec{x}, 0) = f(\vec{x}), \quad \vec{x} \in \mathbb{R}^n,$$
 (1)

lässt sich wie in 4.1 behandeln.

Satz: Ist $f: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar und $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ stetig und nach jedem x_j , $j = 1, \ldots, n$, stetig partiell differenzierbar, so ist die eindeutige Lösung von (1) gegeben durch

$$u(\vec{x},t) = f(\vec{x} - t\vec{a}) + \int_0^t g(\vec{x} - (t - r)\vec{a}, r) \, dr, \quad (\vec{x},t) \in \mathbb{R}^n \times \mathbb{R}.$$
 (2)

4.3 Quasilineare Gleichungen erster Ordnung

Allgemeiner als in 4.1 und 4.2 betrachten wir quasilineare Gleichungen der Form

$$\vec{a}(\vec{x}, u) \cdot \nabla u = b(\vec{x}, u), \quad \vec{x} \in D,$$
 (Q)

in $D \subseteq \mathbb{R}^n$, wobei $\vec{a}: D \times J \to \mathbb{R}^n$ und $b: D \times J \to \mathbb{R}$ gegeben sind und J ein reelles Intervall ist. Lösungen sind Funktionen $u \in C^1(\widetilde{D})$, wobei $\widetilde{D} \subseteq D$ möglichst groß ist, mit

$$\forall \vec{x} \in \widetilde{D} : u(\vec{x}) \in J \text{ und } \vec{a}(\vec{x}, u(\vec{x})) \cdot \nabla u(\vec{x}) = b(\vec{x}, u(\vec{x})).$$

Nach den Erfahrungen in 4.1 betrachten wir eine gegebene Lösung $\vec{x} \mapsto u(\vec{x})$ auf Kurven $s \mapsto \vec{k}(s)$ in D und setzen $w(s) := u(\vec{k}(s))$ (s ist hier ein reeller Parameter aus einem Intervall I).

Ableiten von w ergibt nach der Kettenregel:

$$w'(s) = \nabla u(\vec{k}(s)) \cdot \vec{k}'(s) = \vec{k}'(s) \cdot \nabla u(\vec{k}(s)).$$

Andererseits ist

$$\vec{a}(\vec{k}(s), w(s)) \cdot \nabla u(\vec{k}(s)) = b(\vec{k}(s), w(s)).$$

Dies legt nahe, zur Lösung von (Q) das folgende charakteristische System zu betrachten

$$\vec{k}'(s) = \vec{a}(\vec{k}(s), w(s))$$

$$w'(s) = b(\vec{k}(s), w(s)).$$
(CS)

Dies ist ein System gewöhnlicher Differentialgleichungen (n+1 Gleichungen für die Funktion $\binom{\vec{k}}{w}: I \to \mathbb{R}^n \times \mathbb{R}$).

Definition: Lösungen $\binom{\vec{k}}{w}$ des charakteristischen Systems (CS) heißen *Charakteristiken* der Gleichung (Q), dabei heißt die Funktion \vec{k} *Grundcharakteristik*.

Bemerkung: Ist $\binom{\vec{k}}{w}$ eine Charakteristik, so ist die Grundcharakteristik \vec{k} eine Kurve im Argumentraum $D \subseteq \mathbb{R}^n$ und w beschreibt (hoffentlich) den Wert einer Lösung auf dieser Kurve.

Hängt $\vec{a}(\vec{x}, u) = \vec{a}(\vec{x})$ nicht von u ab (man spricht dann von einer semilinearen Gleichung), so hängen die Grundcharakteristiken nicht von den Werten w ab, und man kann zunächst die erste Gleichung in (CS) und dann die zweite lösen. Gilt zusätzlich b = 0, so ist w konstant, was bedeutet, dass Lösungen von (Q) auf Grundcharakteristiken konstant sind.

Beispiel: Schreibt man in 4.1 (x_1, x_2) statt (x, t) und bringt die Gleichung 4.1 (1) mit $\vec{a}(\vec{x}, u) = \binom{a}{1}$ und $b(\vec{x}, u) = g(x_1, x_2)$ auf die Form (Q), so lautet das zugehörige charakteristische System

$$k'_1(s) = a$$

 $k'_2(s) = 1$
 $w'(s) = g(k_1(s), k_2(s)).$

Grundcharakteristiken sind hier gegeben durch $\binom{k_1}{k_2}(s) = s\binom{a}{1} + \binom{c_1}{c_2}$, wobei $c_1, c_2 \in \mathbb{R}$ Konstanten sind. Dies sind die Geraden aus 4.1.

4.4 Anfangsbedingungen für quasilineare Gleichungen

Im Fall n=2 wird man Anfangswerte für (Q) auf einer Kurve Γ in D vorgeben wollen. Man sieht schon im Beispiel in 4.3, dass Γ nicht eine der Grundcharakteristiken sein darf, da auf diesen die Werte der Lösung ja durch die zweite Gleichung in (CS) gegeben sind.

Im allgemeinen Fall gibt man eine genügend glatte Hyperfläche Γ in D vor und dort ebenfalls genügend glatte Anfangswerte $f(\vec{\xi})$, $\vec{\xi} \in \Gamma$. Dabei fordert man

 (Γ, f) ist *nicht-charakteristisch*: in keinem $\vec{\xi} \in \Gamma$ ist $\vec{a}(\vec{\xi}, f(\vec{\xi}))$ tangential an Γ .

Diese Forderung gewährleistet, dass die Grundcharakteristiken Γ in einem Winkel $\neq 0$ schneiden. Sind dann noch \vec{a} und b hinreichend glatt, kann man zeigen, dass (Q) lokal um Γ eindeutig lösbar ist.

Zweckmäßigerweise setzt man s=0 auf Γ und löst (CS) mit dem Anfangswert

$$\binom{\vec{k}}{w}(0) = \binom{\vec{\xi}}{f(\vec{\xi})}$$
 für jedes $\vec{\xi} \in \Gamma$.

Bezeichnet man die Lösung von (CS) mit $\binom{\vec{k}(s,\vec{\xi})}{w(s,\vec{\xi})}$, so erhält man die Lösung $u(\vec{x})$ von (Q) durch

$$u(\vec{x}) = w(s, \vec{\xi}), \text{ falls } \vec{x} = \vec{k}(s, \vec{\xi}).$$

Beispiel: $\partial_t u + x \partial_x u = 0$ mit u(x,0) = f(x) und $x \in \mathbb{R}$. Hier ist $\vec{a}(x,t,u) = {x \choose 1}$. Zur Parametrisierung der x-Achse verwenden wir den reellen Parameter ξ , hier ist $\Gamma = \{(\xi,0) : \xi \in \mathbb{R}\}$. Das charakteristische System und die Anfangsbedingungen lauten

$$k'_1(s) = k_1(s)$$
 $k_1(0) = \xi$
 $k'_2(s) = 1$ $k_2(0) = 0$
 $w'(s) = 0$ $w(0) = f(\xi)$.

mit Lösung
$$\begin{pmatrix} k_1(s,\xi) \\ k_2(s,\xi) \\ w(s,\xi) \end{pmatrix} = \begin{pmatrix} \xi e^s \\ s \\ f(\xi) \end{pmatrix}$$
. Wir haben

$$\vec{k}(s,\xi) = \begin{pmatrix} x \\ t \end{pmatrix} \iff s = t, \, \xi = xe^{-t}.$$

Wenn f stetig differenzierbar ist, ist die eindeutige Lösung des Problems also gegeben durch

$$u(x,t) = f(e^{-t}x), \qquad (x,t) \in \mathbb{R}^2.$$

4.5 Separation der Variablen

Wir betrachten die Wärmeleitungsgleichung $(u_t = u_{xx})$ auf dem Intervall [0,1] mit homogenen Neumannrandbedingungen $u_x(0,t) = u_x(1,t) = 0$. Die Herleitung der Wärmeleitungsgleichung und die Bedeutung der Neumannrandbedingungen werden in den nächsten Vorlesungen disktutiert werden:

$$u_t - u_{xx} = 0$$
, $x \in (0,1), t > 0$ $u_x(0,t) = u_x(1,t) = 0$, $u(x,0) = f(x)$, (1)

wobei $f:[0,1]\to\mathbb{R}$ gegeben ist. Zur Lösung machen wir den Separationsansatz

$$u(x,t) = v(t)w(x), x \in [0,1], t > 0.$$

Dann ist $u_t = v'(t)w(x)$ und $u_{xx} = v(t)w''(x)$, und Einsetzen in die Gleichung führt (für $v \neq 0, w \neq 0$) auf

$$\frac{v'(t)}{v(t)} = \frac{w''(x)}{w(x)}, \qquad x \in [0, 1], t > 0.$$

Da die linke Seite nicht von x und die rechte Seite nicht von t abhängt, geht dies nur, wenn es eine Konstante $\lambda \in \mathbb{R}$ gibt mit

$$\frac{v'(t)}{v(t)} = \lambda = \frac{w''(x)}{w(x)}, \qquad x \in [0, 1], t > 0.$$

Dies führt auf $v(t) = e^{\lambda t}v(0), t > 0$, und auf

$$w''(x) - \lambda w(x) = 0,$$
 $w'(0) = w'(1) = 0,$

wobei wir auch die Randbedingungen des ursprünglichen Problems berücksichtigt haben. Wir suchen nun λ , für die es Lösungen $w \neq 0$ dieses Randwertproblems gibt.

Für $\lambda=0$ ist jede Lösung von w''=0 eine Gerade. Aus den Randbedingungen folgt dann $w=\mathrm{const.}$

Für $\lambda \neq 0$ ist jede Lösung von $w'' - \lambda w = 0$ dabei eine Linearkombination

$$w(x) = c_1 e^{\mu x} + c_2 e^{-\mu x},$$

wobe
i $\mu\in\mathbb{C}\setminus\{0\}$ mit $\mu^2=\lambda.$ Die Randbedingungen implizieren nun

$$c_1 - c_2 = 0$$
 und $c_1 e^{\mu} - c_2 e^{-\mu} = 0$.

Dieses lineares Gleichungssystem hat genau dann eine nichttriviale Lösung $\binom{c_1}{c_2} \neq \binom{0}{0}$, wenn $e^{-\mu} = e^{\mu}$ ist. Dies ist äquivalent zu $e^{2\mu} = 1$, dh zu $\mu = k\pi i$ für ein $k \in \mathbb{Z} \setminus \{0\}$ (k = 0) ist wegen $\mu \neq 0$ ausgeschlossen). Wir erhalten also $\lambda_k = -k^2\pi^2$ und als zugehörige reelle Lösung (bis auf eine multiplikative Konstante)

$$w_k(x) = \cos(k\pi x) = \frac{1}{2} (e^{k\pi ix} + e^{-k\pi ix}), \qquad x \in [0, 1].$$

Zusammen haben wir also Lösungen

$$u_k(x,t) = e^{-k^2\pi^2 t} w_k(x) = e^{-k^2\pi^2 t} \cos(k\pi x), \quad x \in [0,1], t \ge 0,$$

erhalten mit Anfangswerten $u_k(x,0) = w_k(x) = \cos(k\pi x), x \in [0,1].$

Gilt nun $f(x) = \sum_{k=0}^{m} a_k \cos(k\pi x)$ für ein $m \in \mathbb{N}$ und gewisse $a_k \in \mathbb{R}$, so ist die Lösung von (1) gegeben durch

$$u(x,t) = \sum_{k=0}^{m} a_k u_k(x,t) = \sum_{k=0}^{m} a_k e^{-k^2 \pi^2 t} \cos(k\pi x), \quad (x,t) \in [0,1] \times [0,\infty).$$

Entsprechendes gilt für $m = \infty$, wenn man die Koeffizienten (a_k) so sind, dass man den Reihen einen Sinn geben kann. Dies ist z.B. für $\sum_{k=0}^{\infty} |a_k| < \infty$ der Fall. Die Reihe für f konvergiert dann absolut und gleichmäßig auf [0,1] und f ist stetig auf $[0,1] \times [0,\infty)$. Gliedweises Ableiten der Reihe für f ist in $[0,1] \times (0,\infty)$ möglich nach Sätzen aus HM I.

Man findet z.B. (a_k) mit $\sum_{k=0}^{\infty} |a_k| < \infty$ und $f(x) = \sum_{k=1}^{\infty} a_k \cos(k\pi x)$, $x \in [0, 1]$, wenn $f \in C^1[0, 1]$ und f(0) = f(1), f'(0) = 0 = f'(1) gilt.

Bemerkung: Ein analoges Vorgehen ist möglich bei Gleichungen

$$\partial_t u - \Delta u = 0, \ \vec{x} \in \Omega, t > 0, \qquad u(\vec{x}, t) = 0, \ \vec{x} \in \partial \Omega, \qquad u(\vec{x}, 0) = f(\vec{x}), \ \vec{x} \in \Omega,$$
 (2)

wobei $\Omega \subseteq \mathbb{R}^n$ beschränkt ist. Auch hier muss man λ (die *Eigenwerte*) und Funktionen $w: \Omega \to \mathbb{R}$ (die *Eigenfunktionen*) suchen mit

$$\Delta w = \lambda w \text{ in } \Omega, \qquad w|_{\partial\Omega} = 0.$$

Man braucht etwas mehr mathematische Theorie um zu zeigen, dass dies hier immer auf eine Folge (λ_k) von Eigenwerten führt mit $\lambda_k \to -\infty$ (ohne weitere Voraussetzungen an Ω).

Fordert man statt der homogenen Dirichletbedingung $u(\vec{x},t)=0,\ \vec{x}\in\partial\Omega,$ homogene Neumann-Randbedingungen

$$\frac{\partial}{\partial \vec{N}} u(\vec{x}, t) = 0, \quad \vec{x} \in \partial \Omega,$$

so braucht man für eine entsprechende Aussage Regularitätsvoraussetzungen an den Rand $\partial\Omega$.

5 Die Diffusionsgleichung

5.1 Motivation (Wärmeleitungsgleichung)

Sei $\Omega \subseteq \mathbb{R}^3$ ein Gebiet. Wir betrachten Wärmeleitung in Ω und eine Funktion $u = u(\vec{x}, t)$, wobei $t \in [0, T]$ und $\vec{x} \in \Omega$, welche die Temperaturverteilung beschreibt. Wir setzen voraus,

dass das Medium in Ω homogen ist. Für jedes Gebiet $G \subseteq \Omega$ ist dann

$$\iiint_C u(\vec{x},t) \, d\tau(\vec{x})$$

proportional zur Wärmeenergie in G. Energieerhaltung bedeutet also für ein glattes Gebiet G:

$$\frac{d}{dt} \iiint_{G} u(\vec{x}, t) \, d\tau(\vec{x}) = - \iint_{\partial G} \vec{j}(\vec{x}, t) \cdot \vec{N}(\vec{x}) \, do(\vec{x}) + \iiint_{G} f(\vec{x}, t) \, d\tau(\vec{x}) ,$$
Wärmetransport durch ∂G Wärmequellen in G

wobei $\vec{j}(\vec{x},t)$ der Vektor des Wärmeflusses sei. Wenn u glatt genug ist, kann man links Integral und $\frac{d}{dt}$ vertauschen (vgl. das Vorgehem in 4.1) und erhält mit dem Divergenzsatz:

$$\iiint\limits_{G} \frac{\partial}{\partial t} u(\vec{x},t) \, d\tau(\vec{x}) = - \iiint\limits_{G} \operatorname{div} \vec{j}(\vec{x},t) \, d\tau(\vec{x}) + \iiint\limits_{G} f(\vec{x},t) \, d\tau(\vec{x}).$$

Da $G \subseteq \Omega$ sonst beliebig ist, geht dies nur, wenn gilt:

$$\frac{\partial}{\partial t}u(\vec{x},t) = -\operatorname{div}\vec{j}(\vec{x},t) + f(\vec{x},t) \quad \text{für alle } (\vec{x},t) \in \Omega \times (0,T).$$

Fouriers Gesetz besagt nun

$$\vec{j}(\vec{x},t) = -c\nabla u(\vec{x},t)$$
 für ein $c > 0$,

dh dass sich die Wärme in Richtung des größten Temperaturgefälles ausbreitet und betragsmäßig proportional zur Länge des Gradienten $\nabla u(\vec{x},t) = \begin{pmatrix} u_{x_1} \\ \vdots \\ u_{x_n} \end{pmatrix} (\vec{x},t)$ ist. Zusammen ergibt sich die Wärmeleitungsgleichung

$$\frac{\partial}{\partial t} u(\vec{x},t) = c \Delta u(\vec{x},t) + f(\vec{x},t) \quad \text{für alle } (\vec{x},t) \in \Omega \times (0,T),$$

wobei sich $\Delta = \sum_{i=1}^3 \frac{\partial^2}{\partial x_i^2}$ nur auf die räumlichen Variablen bezieht.

Bemerkung: Genauso lässt sich argumentieren, wenn $u(\vec{x},t)$ die Dichte eines Gases beschreibt, das in Ω der Diffusion unterliegt, oder wenn $\Omega \subseteq \mathbb{R}^n$ mit $n \neq 3$.

5.2 Die Grundlösung der Wärmeleitungsgleichung

Wir betrachten

$$\partial_t u(\vec{x}, t) = (\Delta u)(\vec{x}, t), \quad \vec{x} \in \mathbb{R}^n, t > 0.$$
 (W)

Die für t > 0 und $\vec{x} \in \mathbb{R}^n$ definierte Funktion

$$G(\vec{x},t) := (4\pi t)^{-n/2} e^{-\frac{\|\vec{x}\|^2}{4t}}$$

heißt Grundlösung der Wärmeleitungsgleichung oder Wärmeleitungskern auf dem \mathbb{R}^n . Es gilt

$$\partial_t G(\vec{x}, t) = \Delta G(\vec{x}, t)$$
 für alle $t > 0, \vec{x} \in \mathbb{R}^n$,

dh G ist Lösung von (W). Es gilt

$$\int_{\mathbb{D}^n} G(\vec{x}, t) \, d\tau(\vec{x}) = 1 \tag{I}$$

für alle t > 0 und

$$G(\vec{x}, t) \longrightarrow 0 \quad (t \to 0+) \quad \text{für } \vec{x} \neq \vec{0},$$

sowie

$$G(\cdot,t) \longrightarrow \delta_{\vec{0}} \quad (t \to 0+)$$

im Sinne von

$$\int_{\mathbb{R}^n} G(\vec{x}, t) \varphi(\vec{x}) \, d\tau(\vec{x}) \longrightarrow \varphi(\vec{0}) \quad (t \to 0+)$$
 (K)

für alle stetigen Funktionen $\varphi: \mathbb{R}^n \to \mathbb{R}$ mit $\varphi = 0$ außerhalb einer Kugel $B(\vec{0}, R)$. Die Konvergenzaussage gilt dabei für viel mehr Funktionen, vgl. 5.3 unten.

Beweis für (I): Das Integral $\int_{\mathbb{R}^n} G(\vec{x}, t) d\tau(\vec{x})$ ist gleich

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{j=1}^{n} \left((4\pi t)^{-1/2} e^{-\frac{x_j^2}{4t}} \right) dx_n \cdots dx_2 dx_1 = \prod_{j=1}^{n} \left((4\pi t)^{-1/2} \int_{-\infty}^{\infty} e^{-\frac{x_j^2}{4t}} dx_j \right).$$

Für ein einzelnes Integral führt die Substitution $\xi=2\eta\sqrt{t},\,d\xi=2\sqrt{t}\,d\eta,$ auf

$$(4\pi t)^{-1/2} \int_{-\infty}^{\infty} e^{-\frac{\xi^2}{4t}} d\xi = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\eta^2} d\eta = 1.$$

Beweisskizze für (K): Zunächst ist φ beschränkt, und es gibt K > 0 mit $\|\varphi(\vec{x})\| \le K$ für alle $\vec{x} \in \mathbb{R}^n$. Sei nun $\varepsilon > 0$ und $\delta > 0$ so, dass $\|\varphi(\vec{x}) - \varphi(\vec{0})\| < \varepsilon/2$ für $\|\vec{x}\| \le \delta$. Dann gilt

$$\begin{split} \left| \int_{\mathbb{R}^n} G(\vec{x}, t) \varphi(\vec{x}) \, d\tau(\vec{x}) - \varphi(\vec{0}) \right| & \leq \int_{\mathbb{R}^n} \underbrace{G(\vec{x}, t)}_{>0} \left| \varphi(\vec{x}) - \varphi(\vec{0}) \right| \, d\tau(\vec{x}) \\ & \leq \underbrace{\frac{\varepsilon}{2}}_{\|\vec{x}\| \leq \delta} G(\vec{x}, t) \, d\tau(\vec{x}) + 2K \int_{\|\vec{x}\| \geq \delta} G(\vec{x}, t) \, d\tau(\vec{x}). \end{split}$$

Das erste Integral rechts ist ≤ 1 wegen (I). Im zweiten Integral substituiert man $\vec{x} = \vec{y}\sqrt{t}$ und erhält

$$\int_{|\vec{x}|| \ge \delta} G(\vec{x}, t) \, d\tau(\vec{x}) = \int_{\|\vec{y}\| > \delta/\sqrt{t}} G(\vec{y}, 1) \, d\tau(\vec{y}) \longrightarrow 0 \quad (t \to 0+).$$

Insbesondere findet man $t_0 > 0$ so, dass für $t \in (0, t_0)$ das zweite Integral $\leq \frac{\varepsilon}{4K}$ ist.

5.3 Anfangswerte für t = 0

Ist $f: \mathbb{R}^n \to \mathbb{R}$ stetig und beschränkt, so gibt es genau eine beschränkte Lösung des Problems

$$\begin{array}{rcl} \partial_t u(\vec{x},t) & = & (\Delta u)(\vec{x},t), & \vec{x} \in \mathbb{R}^n, \ t > 0 \\ u(\vec{x},0) & = & f(\vec{x}), & \vec{x} \in \mathbb{R}^n. \end{array}$$

Diese ist gegeben durch

$$u(\vec{x},t) = \int_{\mathbb{R}^n} G(\vec{x} - \vec{y}, t) f(\vec{y}) d\tau(\vec{y}), \quad \vec{x} \in \mathbb{R}^n, t > 0.$$

Es gilt $u \in C^{\infty}(\mathbb{R}^n \times (0, \infty))$ und

$$u(\vec{x},t) \longrightarrow f(\vec{x}) \quad (t \to 0+) \quad \text{für jedes } \vec{x} \in \mathbb{R}^n.$$

Bemerkung: Ist $g: \mathbb{R}^n \times (0, \infty)$ stetig und beschränkt, so ist eine Lösung von

$$\partial_t u(\vec{x},t) - \Delta u(\vec{x},t) = g(\vec{x},t), \ \vec{x} \in \mathbb{R}^n, t > 0 \quad u(\vec{x},0) = 0, \ \vec{x} \in \mathbb{R}^n,$$

gegeben durch

$$u(\vec{x},t) = \int_0^t \int_{\mathbb{R}^n} G(\vec{x} - \vec{y}, t - r) g(\vec{y}, r) d\tau(\vec{y}) dr, \quad \vec{x} \in \mathbb{R}^n, t > 0.$$

Dies ist (formal!) die "Variation-der-Konstanten-Formel".

5.4 Maximumsprinzip

Sei $\Omega \subseteq \mathbb{R}^n$ beschränkt, $T \in (0, \infty)$ und $\Omega_T := \Omega \times (0, T)$. Dann gilt

$$\partial\Omega_T = (\overline{\Omega} \times \{0, T\}) \cup (\partial\Omega \times [0, T]).$$

Wir definieren den parabolischen Rand

$$\partial^* \Omega_T := (\overline{\Omega} \times \{0\}) \cup (\partial \Omega \times [0, T]),$$

bei dem der "Deckel" des Zylinders fehlt.

Wir setzen voraus

$$u: \overline{\Omega} \times [0, T] \to \mathbb{R}$$
 ist stetig und in Ω_T zweimal stetig partiell differenzierbar nach x_1, \ldots, x_n , sowie stetig partiell nach t differenzierbar. (RV)

Satz: Es gelte (RV) und $\partial_t u - \Delta u = 0$ in Ω_T . Dann nimmt u Maximum und Minimum auf dem parabolischen Rand $\partial^* \Omega_T$ an, dh es gilt

$$\max\{u(\vec{x},t): (\vec{x},t) \in \overline{\Omega_T}\} = \max\{u(\vec{x},t): (\vec{x},t) \in \partial^*\Omega_T\} \min\{u(\vec{x},t): (\vec{x},t) \in \overline{\Omega_T}\} = \min\{u(\vec{x},t): (\vec{x},t) \in \partial^*\Omega_T\}.$$

Allgemeiner gilt die Aussage über das Minimum, wenn $\partial_t u - \Delta u \geq 0$ in Ω_T , und die Aussage über das Maximum gilt, wenn $\partial_t u - \Delta u \leq 0$ in Ω_T .

Folgerung: Das Anfangs-Randwertproblem

$$\partial_t u - \Delta u = g \text{ in } \Omega_T, \qquad u(\vec{x}, t) = f(\vec{x}, t), \ (\vec{x}, t) \in \partial^* \Omega_T,$$

hat höchstens eine Lösung $u: \Omega \times [0,T] \to \mathbb{R}$ mit der Eigenschaft (RV).

Beweis: Sind u_1 und u_2 Lösungen, so ist $v := u_1 - u_2$ Lösung von

$$\partial_t u - \Delta u = 0 \text{ in } \Omega_T, \qquad u|_{\partial^* \Omega_T} = 0.$$

Aus dem Maximumsprinzip folgt dann u = 0 in Ω_T .

6 Die Wellengleichung

6.1 Die eindimensionale Wellengleichung

Wir betrachten

$$u_{tt}(x,t) - u_{xx}(x,t) = 0 \quad \text{für } x \in \mathbb{R}, t \in \mathbb{R}$$

$$u(x,0) = f(x),$$

$$u_{t}(x,0) = g(x),$$
(W1)

wobei $f, g : \mathbb{R} \to \mathbb{R}$ gegeben sind. Eine Lösung ist eine C^2 -Funktion $u : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, die (W1) genügt. Somit muss $f \in C^2(\mathbb{R})$ und $g \in C^1(\mathbb{R})$ gelten.

Wir setzen also $f \in C^2(\mathbb{R}), g \in C^1(\mathbb{R})$ voraus. Zur Lösung von (W1) faktorisieren wir

$$\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial x}\right)$$

und setzen $v := u_t + u_x$. Zu lösen ist also zunächst

$$v_t - v_x = 0$$
, $v(x,0) = u_t(x,0) + u_x(x,0) = g(x) + f'(x)$, $x \in \mathbb{R}$.

Die eindeutige Lösung ist nach 4.1 gegeben durch

$$v(x,t) = g(x+t) + f'(x+t), \quad (x,t) \in \mathbb{R}^2.$$

Wir lösen nun

$$u_t + u_x = v(x,t) = q(x+t) + f'(x+t), \qquad u(x,0) = f(x), \ x \in \mathbb{R}.$$

Nach 4.1 ist die eindeutige Lösung hiervon gegeben durch

$$u(x,t) = f(x-t) + \int_0^t g(x-t+2r) + f'(x-t+2r) dr.$$

Wir substituieren x - t + 2r = y, also $dr = \frac{1}{2} dy$, und erhalten

$$u(x,t) = f(x-t) + \frac{1}{2} \int_{x-t}^{x+t} g(y) \, dy + \frac{1}{2} \underbrace{\int_{x-t}^{x+t} f'(y) \, dy}_{=f(x+t)-f(x-t)},$$

also

$$u(x,t) = \frac{1}{2}(f(x+t) + f(x-t)) + \frac{1}{2} \int_{x-t}^{x+t} g(y) \, dy$$
 (D1)

als Darstellung für die eindeutige Lösung von (W1) auf $\mathbb{R} \times \mathbb{R}$ (beachte dabei die Differenzierbarkeitsvoraussetzungen an f und g).

Bemerkung: Man erhält die Lösungsformel auch aus der Beobachtung, dass für C^2 -Funktionen φ und ψ durch

$$u(x,t) = \varphi(x+t) + \psi(x-t), \quad (x,t) \in \mathbb{R}^2$$

eine Lösung von $u_{tt}-u_{xx}=0$ gegeben ist. Dann sucht man φ und ψ so, dass u Lösung von (W1) wird.

Diskussion An der Formel (D1) kann man wesentliche Unterschiede zu Lösungen der Wärmeleitungsgleichung erkennen:

- Man kann die Wellengleichung für $t \in \mathbb{R}$ lösen, die Wärmeleitungsgleichung hingegen nur für t > 0.
- Für t > 0 ist der Wert u(x,t) einer Lösung der Wellengleichung schon bestimmt durch die Werte von f und g im Intervall [x-t,x+t]. Umgekehrt beeinflussen die Anfangswerte im Punkt (0,y) die Werte der Lösung nur in dem Kegel $|x-y| \le t$, dh Störungen haben eine endliche Ausbreitungsgeschwindigkeit (hier = 1). Hingegen haben Störungen im Anfangswert für die Wärmeleitungsgleichung eine unendliche Ausbreitungsgeschwindigkeit: ist der Anfangswert etwa > 0 nur auf einem kleinen Intervall und = 0 außerhalb, so ist u(x,t) > 0 für alle $(x,t) \in (0,\infty) \times \mathbb{R}$.
- Lösungen der Wärmeleitungsgleichung sind C^{∞} in $(0, \infty) \times \mathbb{R}$, selbst wenn der Anfangswert nur (beschränkt) und stetig ist. Hier müssen wir hingegen $f \in C^2$, $g \in C^1$ voraussetzen, um $u \in C^2$ zu erhalten. Für mehr Regularität von u muss man mehr Regularität von den Anfangswerten fordern.

6.2 Satz für die dreidimensionale Wellengleichung

Die eindeutige Lösung für das Problem

$$u_{tt}(\vec{x},t) - \Delta u(\vec{x},t) = 0 \quad \text{für } \vec{x} \in \mathbb{R}^3, \ t > 0$$

$$u(\vec{x},0) = f(\vec{x}),$$

$$u_t(\vec{x},0) = g(\vec{x}),$$
(W3)

mit gegebenen $f \in C^3(\mathbb{R}^3)$, $g \in C^2(\mathbb{R}^3)$ lässt sich darstellen als

$$u(\vec{x},t) = \frac{1}{4\pi t^2} \iint_{\partial B(\vec{x},|t|)} \left(tg(\vec{y}) + f(\vec{y}) + \nabla f(\vec{y}) \cdot (\vec{y} - \vec{x}) \right) do(\vec{y}). \tag{D3}$$

Beweisskizze (Methode der sphärischen Mittel): Sei $u(\vec{x}, t)$ eine Lösung von (W3). Wir definieren für r > 0:

$$M(\vec{x}, t, r) := \frac{1}{4\pi r^2} \iint_{\partial B(\vec{x}, r)} u(\vec{y}, t) \, do(\vec{y})$$

und

$$F(\vec{x},r) := \frac{1}{4\pi r^2} \iint\limits_{\partial B(\vec{x},r)} f(\vec{y}) \, do(\vec{y}), \qquad G(\vec{x},r) := \frac{1}{4\pi r^2} \iint\limits_{\partial B(\vec{x},r)} g(\vec{y}) \, do(\vec{y})$$

und setzen diese Funktionen gerade auf $r \in \mathbb{R}$ fort. Dann gilt

$$\frac{\partial^2}{\partial t^2} M(x, t, r) = \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}\right) M(x, t, r). \tag{*}$$

Zum Beweis von (*) setzen wir für $v \in C^2(\mathbb{R}^3)$:

$$S(v,r) := \frac{1}{4\pi r^2} \iint_{\partial B(\vec{x},r)} v(\vec{y}) \, do(\vec{y}).$$

Dann ist mithilfe der Substitution $\vec{y} = \vec{x} + r\vec{\eta}$, $do(\vec{y}) = r^2 do(\vec{\eta})$:

$$\partial_{r}S(v,r) = \partial_{r} \left[\frac{1}{4\pi} \iint_{\partial B(\vec{0},1)} v(\vec{x} + r\vec{\eta}) \, do(\vec{\eta}) \right]$$

$$= \frac{1}{4\pi} \iint_{\partial B(\vec{0},1)} (\nabla v)(\vec{x} + r\vec{\eta}) \cdot \vec{\eta} \, do(\vec{\eta})$$

$$= \frac{1}{4\pi r^{2}} \iint_{\partial B(\vec{x},r)} \frac{\partial v}{\partial \vec{N}}(\vec{y}) \, do(\vec{y})$$

$$= \frac{1}{4\pi r^{2}} \iiint_{B(\vec{x},r)} (\Delta v)(\vec{y}) \, do(\vec{y}),$$

wobei wir beim dritten Gleichheitszeichen zurücksubstituieren und $\vec{N}(\vec{y}) = \frac{\vec{y} - \vec{x}}{r} = \vec{\eta}$ für $\vec{y} \in \partial B(\vec{x}, r)$ beachten und beim letzten Gleichheitszeichen den Divergenzsatz verwenden. Daraus folgt

$$\partial_r^2 S(v,r) = \frac{-2}{4\pi r^3} \iiint\limits_{B(\vec{x},r)} (\Delta v)(\vec{y}) \, do(\vec{y}) + \frac{1}{4\pi r^2} \iint\limits_{\partial B(\vec{x},r)} (\Delta v)(\vec{y}) \, do(\vec{y}) = -\frac{2}{r} \partial_r S(v,r) + S(\Delta v,r).$$

Wir wenden diese Formel für festes t auf $v(\vec{y}) = u(\vec{y}, t)$ an. Da u Lösung von (W3) ist, gilt

$$u_{tt}(\vec{y},t) = \Delta u(\vec{y},t) = \Delta v(\vec{y}),$$

und nach den Eigenschaften von Parameterintegralen ist

$$\partial_t^2 M(\vec{x}, t, r) = S(u_{tt}(\vec{y}, t), r).$$

Damit ist (*) gezeigt.

Nach (*) ist für festes \vec{x} also $w(r,t) := M(\vec{x},t,r)$ Lösung von

$$w_{tt} = w_{rr} + \frac{2}{r}w_r, \qquad w(r,0) = F(\vec{x},r), \ w_t(r,0) = G(\vec{x},r).$$

Damit ist aber v := rw Lösung von

$$v_{tt} = v_{rr}, v(r,0) = rF(\vec{x},r), v_t(r,0) = rG(\vec{x},r).$$

Nach 6.1 haben wir also

$$rM(\vec{x},t,r) = \frac{1}{2} \Big[(r+t)F(\vec{x},r+t) + (r-t)F(\vec{x},r-t) \Big] + \frac{1}{2} \int_{r-t}^{r+t} \rho G(\vec{x},\rho) \, d\rho,$$

$$M(\vec{x},t,r) = \frac{1}{2r} \Big[(t+r)F(\vec{x},t+r) - (t-r)F(\vec{x},t-r) \Big] + \frac{1}{2r} \int_{t-r}^{t+r} \rho G(\vec{x},\rho) \, d\rho.$$

Bei der zweiten Gleichung wird verwendet, dass $r \mapsto F(\vec{x}, r)$ eine gerade Funktion ist und $\rho \mapsto \rho G(\vec{x}, \rho)$ eine ungerade Funktion ist.

Für $r \to 0$ erhalten wir

$$u(\vec{x},t) = tG(\vec{x},t) + \frac{\partial}{\partial t}(tF(\vec{x},t)), \tag{D3'}$$

woraus (D3) folgt. Umgekehrt definiert (D3) tatsächlich eine Lösung der Wellengleichung (man muss dazu wie beim Beweis von (*) substituieren).

Bemerkung: Der Wert von u im Punkt (\vec{x},t) hängt hier nur von den Anfangsdaten auf der Sphäre $\partial B(\vec{x},t)$ ab, aber nicht von Werten im Inneren der Kugel $B(\vec{x},t)$ (Huygenssches Prinzip, "there's music in \mathbb{R}^3 ").

Hier braucht man sogar $f \in C^3$, $g \in C^2$, damit $u \in C^2$ ist, dh die Anfangsdaten müssen regulärer sein, als es die Lösung ist.

6.3 Die zweidimensionale Wellengleichung

Man erhält die Lösung der zweidimensionalen Wellengleichung, indem man $x_3=0$ in (D3') setzt. Die dreidimensionale Sphäre

$$\{(y_1, y_2, y_3) \in \mathbb{R}^3 : (y_1 - x_1)^2 + (y_2 - x_2)^2 + y_3^2 = t^2\}$$

wird (mit $\vec{x}=(x_1,x_2),\ \vec{y}=(y_1,y_2)$) über die abgeschlossene Kreisscheibe $\overline{B(\vec{x},t)}$ parametrisiert, dh durch

$$y_3 = \pm \sqrt{t^2 - \|\vec{x} - \vec{y}\|^2}.$$

Dies führt auf

$$u(\vec{x},t) = \frac{1}{2\pi} \iint_{B(\vec{x},t)} \frac{g(\vec{y})}{\sqrt{t^2 - \|\vec{x} - \vec{y}\|^2}} d\tau(\vec{y}) + \frac{\partial}{\partial t} \left(\frac{1}{2\pi} \iint_{B(\vec{x},t)} \frac{f(\vec{y})}{\sqrt{t^2 - \|\vec{x} - \vec{y}\|^2}} d\tau(\vec{y}) \right).$$
(D2)

Hier hängt der Wert von u im Punkt (\vec{x}, t) von den Anfangsdaten in der ganzen Kreisscheibe $B(\vec{x}, t)$ ab.

7 Die Potentialgleichung

Die Potentialgleichung oder auch *Poisson-Gleichung* ist die lineare Gleichung zweiter Ordnung

$$\Delta u = f$$

in einem Gebiet $\Omega \subseteq \mathbb{R}^n$. Im homogenen Fall f=0 spricht man auch von der Laplace-Gleichung

$$\Delta u = 0.$$

Bemerkung: Ein wirbelfreies Vektorfeld \vec{F} (dh rot $\vec{F} = 0$) ist (in einem einfach zusammenhängenden Gebiet, dh jedenfalls lokal) als Gradient eines Skalarfeldes V darstellbar $\vec{F} = \nabla V$. Ist das Vektorfeld zusätzlich quellenfrei (dh div $\vec{F} = 0$), so genügt V der Laplace-Gleichung:

$$\Delta V = \operatorname{div}(\nabla V) = \operatorname{div}\vec{F} = 0.$$

Beispiel ist in der Elektrostatik das elektrische Feld $\vec{E} = -\nabla V$, wobei typischerweise das Potential V an der Oberfläche eines Gebietes vorgegeben ist.

7.1 Harmonische Funktionen

Sei $\Omega \subseteq \mathbb{R}^n$ ein Gebiet. Eine C^2 -Funktion $u:\Omega \to \mathbb{R}$ heißt harmonisch in Ω , falls gilt

$$\Delta u = 0$$
 in Ω .

Beispiele: 1) Für n = 1 und $I \subseteq \mathbb{R}$ Intervall sind die in I harmonischen Funktionen u alle von der Form $u(x) = ax + b, x \in I$.

2) Sei n=2 und $\Omega\subseteq\mathbb{R}^2=\mathbb{C}$, sowie $f:\Omega\to\mathbb{C}$, f(x+iy)=u(x,y)+iv(x,y) eine holomorphe Funktion (\to KAI). Dann sind u und v beliebig oft differenzierbar, und es gelten die Cauchy-Riemannschen Differentialgleichungen

$$u_x = v_y, \quad u_y = -v_x \quad \text{in } \Omega.$$

Durch Differenzieren erhalten wir

$$u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0, \quad v_{xx} + v_{yy} = -u_{yx} + u_{xy} = 0,$$

dh Real- und Imaginärteil einer holomorphen Funktion sind harmonisch.

Umgekehrt ist eine harmonische Funktion $u:\Omega\to\mathbb{R}$ zumindest lokal Realteil einer holomorphen Funktion (der "passende" Imaginärteil v heißt konjugiert harmonische Funktion von u).

Insbesondere ist für n=2 eine harmonische Funktion immer beliebig oft differenzierbar. Dies gilt auch für n>2.

3) Die durch $u(\vec{x}) = ||\vec{x}||^{-1}$ definierte Funktion u ist in $\mathbb{R}^3 \setminus \{\vec{0}\}$ harmonisch.

7.2 Mittelwerteigenschaft

Sei $\Omega \subseteq \mathbb{R}^3$. Ein stetiges $u:\Omega \to \mathbb{R}$ ist genau dann harmonisch, wenn für jede Kugel

$$B(\vec{x}_0, r) = {\{\vec{x} \in \mathbb{R}^3 : ||\vec{x} - \vec{x}_0|| \le r\}} \subseteq \Omega$$

gilt

$$u(\vec{x}_0) = \frac{1}{|B(\vec{x}_0, r)|} \iiint_{B(\vec{x}_0, r)} u \, d\tau$$
 (Kugelmittel, Volumenintegral)

bzw. genau dann, wenn für jede solche Kugel gilt

$$u(\vec{x}_0) = \frac{1}{|\partial B(\vec{x}_0, r)|} \iint_{\partial B(\vec{x}_0, r)} u \, do$$
 (sphärisches Mittel, Oberflächenintegral).

Hierbei bezeichnet $|B(\vec{x}_0, r)| = \frac{4\pi}{3}r^3$ das Volumen von $B(\vec{x}_0, r)$ und $|\partial B(\vec{x}_0, r)| = 4\pi r^2$ die Oberfläche der Kugel.

Die entsprechenden Aussagen gelten aber für jedes $n \geq 2$.

Beweis. Nur die sphärische Mittelwerteigenschaft für harmonisches u und $\vec{x}_0 = \vec{0}$: Betrachte für $t \in [0, 1]$:

$$I(t) := \iint_{\partial B(\vec{0},r)} u_t \, do,$$

wobei $u_t(\vec{x}) = u(t\vec{x})$. Es gilt $I(0) = |\partial B(\vec{0}, r)|u(\vec{0})$ und zu zeigen ist I(0) = I(1). Mit einem Satz wie in 4.1 haben wir

$$\frac{d}{dt}I(t) = \iint_{\partial B(\vec{0},r)} \partial_t u_t \, do.$$

Dabei ist $\partial_t u_t(\vec{x}) = (\nabla u)(t\vec{x}) \cdot \vec{x}$ und $(\nabla u_t)(\vec{x}) = t(\nabla u)(t\vec{x})$, also nach Gauß

$$\frac{d}{dt}I(t) = \frac{1}{t} \iint_{\partial B(\vec{0},r)} (\nabla u_t) \cdot \vec{x} \, do = \frac{r}{t} \iint_{\partial B(\vec{0},r)} (\nabla u_t) \cdot \vec{N} \, do = \frac{r}{t} \iiint_{B(\vec{0},r)} \Delta u_t \, d\tau.$$

Das letzte Integral verschwindet, da auch u_t harmonisch ist. Somit ist I(1) = I(0).

7.3 Maximumsprinzip

Sei u harmonisch im Gebiet Ω .

1. Gibt es ein $\vec{x}_0 \in \Omega$ mit

$$u(\vec{x}_0) \ge u(\vec{x})$$
 für alle $\vec{x} \in \Omega$ (*u* hat lokales Maximum in \vec{x}_0) oder $u(\vec{x}_0) \le u(\vec{x})$ für alle $\vec{x} \in \Omega$ (*u* hat lokales Minimum in \vec{x}_0),

so ist u auf Ω konstant.

2. Ist Ω beschränkt und u stetig auf $\overline{\Omega}$, so gilt für jedes $\vec{x} \in \Omega$:

$$\min_{\vec{y} \in \partial \Omega} u(\vec{y}) \le u(\vec{x}) \le \max_{\vec{y} \in \partial \Omega} u(\vec{y}),$$

dh harmonische Funktionen nehmen Maximum und Minimum auf dem Rand von Ω an.

7.4 Grundlösung der Laplace-Gleichung

Die für $\vec{x} \in \mathbb{R}^n \setminus \{\vec{0}\}$ definierte Funktion

$$\Gamma(\vec{x}) := \begin{cases} \frac{1}{2\pi} \ln \|\vec{x}\| & \text{für } n = 2, \\ -\frac{1}{4\pi} \|\vec{x}\|^{-1} & \text{für } n = 3 \end{cases}$$

heißt Grundlösung der Laplacegleichung oder auch Fundamentallösung. Häufig schreibt man dann

$$\Gamma(\vec{x}, \vec{y}) = \Gamma(\vec{x} - \vec{y})$$
 für $\vec{x}, \vec{y} \in \mathbb{R}^n$ mit $\vec{x} \neq \vec{y}$.

Bemerkung: Für allgemeines $n \geq 3$ lautet die Formel für die Grundlösung

$$\Gamma(\vec{x}) = \frac{1}{n(2-n)\omega_n} ||\vec{x}||^{2-n},$$

wobei ω_n das Volumen der *n*-dimensionalen Einheitskugel bezeichnet (es ist also $\omega_2 = \pi$, $\omega_3 = \frac{4}{3}\pi$).

Man erhält $\Gamma(\vec{x})$, wenn man eine Lösung u der Laplacegleichung der Form $u(\vec{x}) = g(\|\vec{x}\|)$ sucht, wobei g = g(r) eine C^2 -Funktion auf $(0, \infty)$ ist. Das führt auf die Gleichung (vgl. HM II)

$$g''(r) + \frac{n-1}{r}g'(r) = 0, \quad r > 0,$$

mit Lösung $g'(r) = cr^{1-n}$. Dies bestimmt g bis auf eine additive Konstante, c wird so gewählt, dass die Formel in 7.5 unten gilt.

Wir konzentrieren uns im folgenden auf den Fall n=3.

Eigenschaften (n = 3): Für j = 1, ..., 3 gilt

$$\frac{\partial}{\partial x_j} \Gamma(\vec{x}) = \frac{1}{4\pi} x_j ||\vec{x}||^{-3},$$

also

$$\nabla\Gamma(\vec{x}) = \frac{1}{4\pi} \vec{x} ||\vec{x}||^{-3}$$

und

$$\nabla_{\vec{x}}\Gamma(\vec{x}, \vec{y}) = \frac{1}{4\pi}(\vec{x} - \vec{y}) \|\vec{x} - \vec{y}\|^{-3}, \qquad \nabla_{\vec{y}}\Gamma(\vec{x}, \vec{y}) = \frac{1}{4\pi}(\vec{y} - \vec{x}) \|\vec{x} - \vec{y}\|^{-3},$$

wobei $\nabla_{\vec{x}}$ bedeutet, dass der Gradient bzgl. der Komponenten von \vec{x} gebildet wird, dh also, dass nach x_1, x_2, x_3 partiell differenziert wird ($\nabla_{\vec{y}}$ ist analog gemeint). Weiter ist

$$\Delta\Gamma(\vec{x}) = 0 \quad (\vec{x} \neq \vec{0}), \qquad \Delta_{\vec{x}}\Gamma(\vec{x}, \vec{y}) = 0 \quad (\vec{x} \neq \vec{y}), \qquad \Delta_{\vec{y}}\Gamma(\vec{x}, \vec{y}) = 0 \quad (\vec{y} \neq \vec{x}),$$

dh Γ ist in $\mathbb{R}^3 \setminus \{\vec{0}\}$ harmonisch, für festes $\vec{y} \in \mathbb{R}^3$ ist $\vec{x} \mapsto \Gamma(\vec{x}, \vec{y})$ in $\mathbb{R}^3 \setminus \{\vec{y}\}$ harmonisch und für festes $\vec{x} \in \mathbb{R}^3$ ist $\vec{y} \mapsto \Gamma(\vec{x}, \vec{y})$ in $\mathbb{R}^3 \setminus \{\vec{x}\}$ harmonisch.

7.5 Greensche Darstellungsformel

Sei Ω ein beschränktes Gebiet in \mathbb{R}^3 mit C^2 -Rand, und sei $V \subseteq \mathbb{R}^n$ offen mit $\overline{\Omega} \subseteq V$. Ist $u \in C^2(V)$, so gilt für jedes $\vec{x} \in \Omega$:

$$u(\vec{x}) = \iint\limits_{\partial\Omega} \left(u(\vec{y}) \frac{\partial \Gamma}{\partial \vec{N}_y} (\vec{x}, \vec{y}) - \Gamma(\vec{x}, \vec{y}) \frac{\partial u}{\partial \vec{N}} (\vec{y}) \right) \, do(\vec{y}) + \iiint\limits_{\Omega} \Gamma(\vec{x}, \vec{y}) \Delta u(\vec{y}) \, d\tau(\vec{y}).$$

Beachte hierbei $\frac{\partial u}{\partial \vec{N}}(\vec{y}) = \nabla u(\vec{y}) \cdot \vec{N}(\vec{y})$ und

$$\frac{\partial \Gamma}{\partial \vec{N}_y}(\vec{x}, \vec{y}) = \nabla_{\vec{y}} \Gamma(\vec{x}, \vec{y}) \cdot \vec{N}(\vec{y}) = \frac{\vec{y} - \vec{x}}{4\pi \|\vec{x} - \vec{y}\|^3} \cdot \vec{N}(\vec{y}).$$

Beweisidee: Verwende für festes $\vec{x} \in \Omega$ die zweite Greensche Formel, dh

$$\iint\limits_{\partial G} \left(g \frac{\partial f}{\partial \vec{N}} - f \frac{\partial g}{\partial \vec{N}} \right) do = \iiint\limits_{G} \left(g \Delta f - f \Delta g \right) d\tau$$

 $\frac{\text{für }G=\Omega_{\varepsilon}=\Omega\setminus B(\vec{x},\varepsilon),\ g(\vec{y})=u(\vec{y})\ \text{und}\ f(\vec{y})=\Gamma(\vec{x},\vec{y}).\ \text{Hierbei sei}\ \varepsilon\ \text{so klein, dass}}{B(\vec{x},\varepsilon)\subseteq\Omega\ \text{gilt. Dann ist}}$

$$\iiint_{\Omega_{\varepsilon}} \Gamma(\vec{x}, \vec{y}) \Delta u(\vec{y}) \, d\tau(\vec{y}) + \iint_{\partial \Omega} \left(u(\vec{y}) \frac{\partial \Gamma}{\partial \vec{N}_{y}} (\vec{x}, \vec{y}) - \Gamma(\vec{x}, \vec{y}) \frac{\partial u}{\partial \vec{N}} (\vec{y}) \right) \, do(\vec{y})$$

$$= \iint_{\partial B(\vec{x}, \varepsilon)} \left(u(\vec{y}) \frac{\partial \Gamma}{\partial \vec{N}_{y}} (\vec{x}, \vec{y}) - \Gamma(\vec{x}, \vec{y}) \frac{\partial u}{\partial \vec{N}} (\vec{y}) \right) \, do(\vec{y}).$$

Beachte hier, dass für $\vec{y} \in \partial B(\vec{x}, \varepsilon)$ gilt: $\vec{N}(\vec{y}) = \frac{\vec{y} - \vec{x}}{\varepsilon}$. Mit der Formel für $\nabla_{\vec{y}} \Gamma(\vec{x}, \vec{y})$ aus 7.4 erhalten wir

$$= \iint\limits_{\partial B(\vec{x},\varepsilon)} u(\vec{y}) \underbrace{\frac{\|\vec{y} - \vec{x}\|^2}{4\pi\varepsilon \|\vec{y} - \vec{x}\|^3}}_{=1/(4\pi\varepsilon^2)} do(\vec{y}) + \iint\limits_{\partial B(\vec{x},\varepsilon)} \underbrace{\frac{1}{4\pi \|\vec{y} - \vec{x}\|}}_{=1/(4\pi\varepsilon)} \frac{\partial u}{\partial \vec{N}}(\vec{y}) do(\vec{y}).$$

Da u in \vec{x} stetig ist und $4\pi\varepsilon^2$ gerade die Oberfläche von $B(\vec{x},\varepsilon)$, konvergiert das erste Integral für $\varepsilon \to 0$ gegen $u(\vec{x})$. Da ∇u in der Nähe von \vec{x} beschränkt ist, konvergiert das zweite Integral für $\varepsilon \to 0$ gegen Null.

7.6 Greensche Funktion

Sei Ω ein beschränktes Gebiet. Eine Funktion $G(\vec{x}, \vec{y})$, welche für $\vec{x}, \vec{y} \in \overline{\Omega}$ mit $\vec{x} \neq \vec{y}$ definiert ist, heißt Greensche Funktion von Ω , falls G symmetrisch ist (dh $G(\vec{x}, \vec{y}) = G(\vec{y}, \vec{x})$ gilt) und für jedes $\vec{y} \in \Omega$ gilt:

$$G(\vec{x}, \vec{y}) = 0$$
 für alle $\vec{x} \in \partial \Omega$ und $\vec{x} \mapsto h(\vec{x}, \vec{y}) := G(\vec{x}, \vec{y}) - \Gamma(\vec{x}, \vec{y})$ ist harmonisch in Ω .

Bemerkung: Die zweite Bedingung bedeutet, dass G und Γ in $\vec{x} = \vec{y}$ "die gleiche" Singularität haben (ihre Differenz h hat nämlich keine Singularität mehr. Zusammen bedeuten die Bedingungen, dass für festes $\vec{y} \in \Omega$ die Funktion $\vec{x} \mapsto G(\vec{x}, \vec{y})$ Lösung des Problems

$$\Delta u = \delta_{\vec{y}}, \qquad u|_{\partial\Omega} = 0,$$

ist.

Erläuterung: Setze $u(\vec{x}) := G(\vec{x}, \vec{y})$, wobei $\vec{y} \in \Omega$ fest ist. Dann ist $u(\vec{x}) = 0$ für $\vec{x} \in \partial \Omega$ klar. Die Gleichung $\Delta u = \delta_{\vec{y}}$ ist distributionell zu verstehen, dh man multipliziert formal mit C^2 -Funktionen $\psi : \mathbb{R}^n \to \mathbb{R}$, für die es eine Menge $B \subseteq \Omega$ mit $\overline{B} \subseteq \Omega$ so gibt, dass $\psi = 0$ außerhalb von B gilt, und integriert über Ω bzgl. \vec{x} . Solche Funktionen ψ und alle ihre Ableitungen verschwinden also am Rand von Ω .

Dabei ist $\delta_{\vec{y}}$ die Dirac
"funktion" für den Punkt $\vec{y},$ die durch

$$\iiint_{\Omega} \delta_{\vec{y}}(\vec{x})\psi(\vec{x}) d\tau(\vec{x}) := \psi(\vec{y})$$

definiert ist. Man schreibt formal mitunter statt der linken Seite auch

$$\iiint_{\Omega} \psi(\vec{x}) \delta(\vec{x} - \vec{y}) d\tau(\vec{x}) \quad \text{oder} \quad \delta_{\vec{y}}(\psi) \quad \text{oder} \quad \langle \delta_{\vec{y}}, \psi \rangle.$$

Die Bedeutung von Δu ist gegeben durch

$$\iiint\limits_{\Omega} (\Delta u)(\vec{x})\psi(\vec{x})\,d\tau(\vec{x}) := \iiint\limits_{\Omega} u(\vec{x})(\Delta\psi)(\vec{x})\,d\tau(\vec{x}),$$

wobei die Idee hierbei eine formale Anwendung der zweiten Greenschen Formel (s.o.) ist, da nach den Voraussetzungen an ψ die Randterme ja verschwinden.

Somit erhalten wir

$$\iiint_{\Omega} \Delta_{\vec{x}} G(\vec{x}, \vec{y}) \psi(\vec{x}) d\tau(\vec{x}) = \iiint_{\Omega} G(\vec{x}, \vec{y}) (\Delta \psi)(\vec{x}) d\tau(\vec{x})$$

$$= \iiint_{\Omega} \Gamma(\vec{x}, \vec{y}) (\Delta \psi)(\vec{x}) d\tau(\vec{x}) + \iiint_{\Omega} h(\vec{x}, \vec{y}) (\Delta \psi)(\vec{x}) d\tau(\vec{x})$$

$$= \psi(\vec{y}) + \iiint_{\Omega} \underbrace{\Delta_{\vec{x}} h(\vec{x}, \vec{y})}_{=0} \psi(\vec{x}) d\tau(\vec{x})$$

$$= \iiint_{\Omega} \delta_{\vec{y}}(\vec{x}) \psi(\vec{x}) d\tau(\vec{x}).$$

Nach 7.5 ist dabei das erste Integral in der zweiten Zeile = $\psi(\vec{y})$, da die Randterme für ψ verschwinden. Für das zweite Integral in der zweiten Zeile verwendet man die zweite Greensche Formel.

Beobachtung: Wendet man (bei genügend glattem Rand $\partial\Omega$) die zweite Greensche Formel an auf $f(\vec{y}) = h(\vec{x}, \vec{y})$ und g = u und addiert das Ergebnis zur Greenschen Darstellungsformel 7.5, so erhält man

$$u(\vec{x}) = \iint_{\partial\Omega} \left(u(\vec{y}) \frac{\partial G}{\partial \vec{N_y}} (\vec{x}, \vec{y}) \right) \, do(\vec{y}) + \iiint_{\Omega} G(\vec{x}, \vec{y}) \Delta u(\vec{y}) \, d\tau(\vec{y}),$$

dh man kann mithilfe der Greenschen Funktion (wenn sie existiert!) eine Lösung $u \in C^2(V)$ des Dirichletproblems

$$\Delta u = f, \qquad u|_{\partial\Omega} = \varphi,$$

im Inneren von Ω aus den Daten f und φ rekonstruieren:

$$u(\vec{x}) = \iint_{\partial\Omega} \left(\varphi(\vec{y}) \frac{\partial G}{\partial \vec{N_y}} (\vec{x}, \vec{y}) \right) \, do(\vec{y}) + \iiint_{\Omega} G(\vec{x}, \vec{y}) f(\vec{y}) \, d\tau(\vec{y}), \quad \vec{x} \in \overline{\Omega}.$$

Bemerkung: Ist Ω beschränkt mit C^2 -Rand, so existiert eine Greensche Funktion für Ω .

Beispiel: Die Greensche Funktion für die Kugel $B(\vec{0}, R)$ ist gegeben durch:

$$G(\vec{x}, \vec{y}) = \begin{cases} \Gamma(\vec{x}, \vec{y}) - \Gamma(\frac{\|\vec{y}\|}{R} \vec{x}, \frac{R}{\|\vec{y}\|} \vec{y}) & , \vec{y} \neq \vec{0} \\ \Gamma(\vec{x}) - \Gamma(\frac{R}{\|\vec{x}\|} \vec{x}) & , \vec{y} = \vec{0} \end{cases}.$$

Beachte dazu, dass für $\vec{y} \neq \vec{0}$ gilt

$$\left\| \frac{\|\vec{y}\|}{R} \vec{x} - \frac{R}{\|\vec{y}\|} \vec{y} \right\|^2 = \frac{\|\vec{y}\|^2 \|\vec{x}\|^2}{R^2} - 2\vec{x} \cdot \vec{y} + R^2$$

und dass der rechte Ausdruck symmetrisch in \vec{x} und \vec{y} ist. Außerdem ist $G(\vec{x}, \vec{y}) = 0$ für $\|\vec{y}\| = R$. Für festes $\vec{y} \in B(\vec{0}, R) \setminus \{\vec{0}\}$ ist die Singularität von $G(\vec{x}, \vec{y}) - \Gamma(\vec{x}, \vec{y})$ in $\vec{x} = \frac{R^2}{\|\vec{y}\|^2} \vec{y}$ und liegt außerhalb von $B(\vec{0}, R)$.

Einschub: Separationsansatz für ein verwandtes Problem (nicht in der Vorlesung am 22.01.15): Wir betrachten für n=2 und $R, \lambda>0$ in $B_R:=\{(x,y)\in\mathbb{R}^2: x^2+y^2< R^2\}$ das Problem

$$\Delta v + \lambda v = 0$$
 in B_R , $v = 0$ auf ∂B_R

und fragen uns, für welche λ es Lösungen $v \not\equiv 0$ gibt und wie diese aussehen (Eigenwertgleichung für den Laplaceoperator). Auf eine solche Frage stßt man z.B. bei der Untersuchung von kreisförmigen Hohlleitern für elektromagnetische Wellen. Nach Einführung von Polarkoordinaten lautet die Gleichung für $V(r,\varphi) := v(r\cos\varphi,r\sin\varphi)$:

$$V_{rr} + \frac{1}{r}V_r + \frac{1}{r^2}V_{\varphi\varphi} + \lambda V = 0.$$

Der Separationsansatz $V(r,\varphi) = f(r)g(\varphi)$ führt auf

$$r^{2}\frac{f''(r) + f'(r)/r + \lambda f(r)}{f(r)} = -\frac{g''(\varphi)}{g(\varphi)}.$$

Da die linke Seite unabhängig von φ und die rechte Seite unabhängig von r ist, müssen beide Seiten gleich einer Konstanten μ sein, und wir erhalten

$$r^2 f'' + r f' + (\lambda r^2 - \mu) f = 0, \quad g'' + \mu g = 0.$$

Hierbei muss g nach Ansatz 2π -periodisch sein, und wegen 1.7 erhalten wir $\mu = \nu^2$, wobei $\nu \in \mathbb{N}_0$. In der ersten Differentialgleichung setzen wir $r = \xi/\sqrt{\lambda}$, $h(\xi) := f(\xi/\sqrt{\lambda})$ und erhalten die Besselsche Differentialgleichung der Ordnung $\nu \geq 0$

$$\xi^2 h''(\xi) + \xi h'(\xi) + (\xi^2 - \nu^2)h(\xi) = 0.$$

Für allgemeines $\nu \geq 0$ ist die determinierende Gleichung (vgl. 1.10) hier

$$\rho^2 - \nu^2 = 0$$
, Nullstellen $\rho_{1/2} = \pm \nu$.

Für $\rho_1 = \nu$ führt der abgewandelte Potenzreihenansatz aus 1.10 auf die Besselfunktion erster Art der Ordnung ν

$$J_{\nu}(\xi) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\nu+1)} \left(\frac{\xi}{2}\right)^{2k+\nu}$$

(hierbei ist Γ die Gamma-Funktion). Ist $\nu > 0$ mit $\nu \notin \mathbb{N}$, so erhält man eine zweite linear unabhängige Lösung $J_{-\nu}$, indem man in dieser Formel ν durch $-\nu$ ersetzt. Ist hingegen $\nu \in \mathbb{N}_0$, so kann man den logarithmischen Term in der Formel aus 1.10 nicht vermeiden.

In Anwendungen sollte $h(\xi)$ für $\xi \to 0$ beschränkt bleiben. Wegen $\nu \in \mathbb{N}_0$ ist h somit ein Vielfaches von J_{ν} , also

 $f(r) = h(\sqrt{\lambda}r) = cJ_{\nu}(\sqrt{\lambda}r).$

Die oben genannte Randbedingung für v bedeutet f(R) = 0, dh $J_{\nu}(\sqrt{\lambda}R) = 0$. Man hat also Nullstellen der Besselfunktionen J_{ν} zu finden, die dann (da R ja fest ist) die zulässigen Werte für λ bestimmen (\rightarrow Heuser, Gewöhnliche Differentialgleichungen, Abschnitte 28, 32, 33) **Ende des Einschubs**.

7.7 Dirichletproblem auf der Kugel

Betrachte die Kugel $B(\vec{0}, R) \subseteq \mathbb{R}^3$. Sei $\varphi : \partial B(\vec{0}, R) \to \mathbb{R}$ stetig. Dann ist die Funktion $u : \overline{B(\vec{0}, R)} \to \mathbb{R}$, definiert durch

$$u(\vec{x}) := \begin{cases} \frac{R^2 - \|\vec{x}\|^2}{4\pi R} \iint_{\partial B(\vec{0}, R)} \frac{\varphi(\vec{y})}{\|\vec{x} - \vec{y}\|^3} do(\vec{y}) & \text{für } \vec{x} \in B(\vec{0}, R) \\ \varphi(\vec{x}) & \text{für } \vec{x} \in \partial B(\vec{0}, R) \end{cases}, \tag{PF}$$

harmonisch in $B(\vec{0}, R)$ und stetig in $B(\vec{0}, R)$. Dies ist die Poissonsche Darstellungsformel für die nach 7.3 eindeutige Lösung des Dirichletproblems

$$\Delta u = 0$$
 in $B(\vec{0}, R)$, $u|_{\partial B(\vec{0}, R)} = \varphi$.

Beachte, dass man die Formel (PF) aus 7.6 erhält, wenn man für die Greensche Funktion der Kugel $B(\vec{0}, R)$ den Ausdruck

$$\frac{\partial G}{\partial \vec{N}_{u}}(\vec{x}, \vec{y}) = \nabla_{\vec{y}} G(\vec{x}, \vec{y}) \cdot \vec{N}(\vec{y}), \quad \vec{y} \in \partial B(\vec{0}, R),$$

unter Berücksichtigung von $\vec{N}(\vec{y}) = \frac{\vec{y}}{R}$ berechnet.

7.8 Die Poissongleichung

Sei $\Omega \subseteq \mathbb{R}^3$ ein beschränktes Gebiet und $f \in C(\overline{\Omega})$. Eine Lösung der Poissongleichung

$$(\Delta u)(\vec{x}) = f(\vec{x}), \quad \vec{x} \in \Omega,$$
 (P)

ist gegeben durch das Newton-Potential von f, dh durch

$$w(\vec{x}) := \iiint_{\Omega} \Gamma(\vec{x}, \vec{y}) f(\vec{y}) d\tau(\vec{y}), \quad \vec{x} \in \overline{\Omega}.$$

Warnung: Es gilt $w \in C^1(\Omega)$. Im allgemeinen ist jedoch w keine C^2 -Funktion in Ω . Gilt zusätzlich

$$|f(\vec{x}) - f(\vec{y})| \le C ||\vec{x} - \vec{y}||^{\alpha}, \quad \vec{x}, \vec{y} \in \Omega,$$

wobei C > 0 und $\alpha \in (0,1)$ Konstanten sind, so ist $w \in C^2(\Omega)$ und eine solche Abschätzung (mit demselben α aber anderen Konstanten C) gilt für alle zweiten Ableitungen von w.

Bemerkung: Will man die Poissongleichung mit Randwerten lösen, also etwa

$$\Delta u = f \text{ in } \Omega, \qquad u|_{\partial\Omega} = \varphi,$$
 (P_D)

wobei $\varphi:\partial\Omega\to\mathbb{R}$ stetig ist, so erhält man die Lösung als u=w+z, wobei w das Newton-Potential von f ist und $z:\Omega\to\mathbb{R}$ eine Lösung von

$$\Delta z = 0 \text{ in } \Omega, \qquad z|_{\partial\Omega} = \varphi - (w|_{\partial\Omega}).$$

Bemerkung: Ist $G(\vec{x}, \vec{y})$ eine Greensche Funktion für Ω , so ist auch durch

$$v(\vec{x}) = \iiint\limits_{\Omega} G(\vec{x}, \vec{y}) f(\vec{y}) \, d\tau(\vec{y}), \quad \vec{x} \in \overline{\Omega},$$

eine Lösung von (P) gegeben und zwar die
jenige, die außerdem $v|_{\partial\Omega}=0$ genügt. Eine Lösung von (P_D) erhält man dann durch

$$u(\vec{x}) = \iiint\limits_{\Omega} G(\vec{x}, \vec{y}) f(\vec{y}) \, d\tau(\vec{y}) + \iint\limits_{\partial\Omega} \frac{\partial G}{\partial \vec{N}_y} (\vec{x}, \vec{y}) \varphi(\vec{y}) \, do(\vec{y}), \quad \vec{x} \in \overline{\Omega},$$

vergleiche Bemerkung in 7.6.