DRS

1.7.0

Generated by Doxygen 1.6.1

Sat Feb 28 16:13:49 2015

Contents

1	Tode	o List			1
2	Nan	nespace	Index		3
	2.1	Names	space List		3
3	Clas	s Index			5
	3.1	Class l	List		5
4	File	Index			7
	4.1	File Li	ist		7
5	Nan	nespace	Documen	utation	9
	5.1	Crank	Nicholson	Namespace Reference	9
		5.1.1	Detailed	Description	10
		5.1.2	Function	Documentation	10
			5.1.2.1	CrankNicholson_init	10
			5.1.2.2	updateCrankNicholson_matrices	10
		5.1.3	Variable	Documentation	10
			5.1.3.1	field_lap_inv_pol	10
			5.1.3.2	field_lap_inv_tor	10
			5.1.3.3	flow_lap_inv_pol	11
			5.1.3.4	flow_lap_inv_tor	11
			5.1.3.5	pinv	11
			5.1.3.6	temp_lap_inv	11
	5.2	drs_Cl	nebyshev N	Namespace Reference	12
		5.2.1	Detailed	Description	12
		5.2.2	Function	Documentation	13
			5.2.2.1	Cheb_compute_dx_ddx_n2x	13
			5.2.2.2	Cheb_compute_dx_ddx_x2x	13
			5 2 2 3	Cheb compute dx n2n	14

ii CONTENTS

		5.2.2.4	Chebyshev_cleanup	14
		5.2.2.5	Chebyshev_init	14
		5.2.2.6	Chebyshev_n2x	15
		5.2.2.7	Chebyshev_x2n	15
	5.2.3	Variable	Documentation	15
		5.2.3.1	Cheb_x	15
		5.2.3.2	Chebyshev	15
		5.2.3.3	Chebyshev_ddx	15
		5.2.3.4	Chebyshev_dx	16
		5.2.3.5	ct_buffer	16
		5.2.3.6	Nx	16
		5.2.3.7	Nx_s	16
		5.2.3.8	pi	16
		5.2.3.9	plan_x	16
5.3	drs_co	mp Name	space Reference	17
	5.3.1	Detailed	Description	17
	5.3.2	Function	Documentation	18
		5.3.2.1	apply_comp_BC	18
		5.3.2.2	calc_comp	18
		5.3.2.3	compProfName	18
		5.3.2.4	drs_comp_allocation	18
		5.3.2.5	drs_comp_init	18
		5.3.2.6	drs_comp_randomize	19
		5.3.2.7	drs_comp_reset	19
	5.3.3	Variable	Documentation	19
		5.3.3.1	comp	19
		5.3.3.2	comp_avg	19
		5.3.3.3	comp_ddr	19
		5.3.3.4	comp_dr	19
		5.3.3.5	comp_dr_avg	19
		5.3.3.6	comp_profile	20
		5.3.3.7	comp_profile_dr	20
5.4	drs_de	bug Name	espace Reference	21
	5.4.1	Detailed	Description	21
	5.4.2	Function	Documentation	21
		5.4.2.1	save_lmr_quantity	21

		5.4.2.2	save_tpr_quantity	21
5.5	drs_di	ms Names	space Reference	22
	5.5.1	Detailed	Description	22
	5.5.2	Function	n Documentation	22
		5.5.2.1	check_dims	22
		5.5.2.2	drs_dims_init	23
	5.5.3	Variable	Documentation	23
		5.5.3.1	lsymm	23
		5.5.3.2	m0	23
		5.5.3.3	Np	23
		5.5.3.4	Np_s	23
		5.5.3.5	Nr	24
		5.5.3.6	Nr_s	24
		5.5.3.7	Nt	24
		5.5.3.8	Nt_s	25
		5.5.3.9	usr_dims	25
5.6	drs_fft	w3 Names	space Reference	26
	5.6.1	Detailed	Description	26
	5.6.2	Function	n Documentation	27
		5.6.2.1	cos_r2r_1_n2r	27
		5.6.2.2	cos_r2r_1_r2n	27
		5.6.2.3	dft_backward	27
		5.6.2.4	dft_forward	27
		5.6.2.5	drs_fftw3_cleanup	27
		5.6.2.6	drs_fftw3_init	27
		5.6.2.7	remesh	28
	5.6.3	Variable	Documentation	28
		5.6.3.1	drs_fftw3_Np	28
		5.6.3.2	drs_fftw3_Nr	28
		5.6.3.3	drs_fftw3_Nt	28
		5.6.3.4	in_p	28
		5.6.3.5	inout_r	28
		5.6.3.6	plan_pb	28
		5.6.3.7	plan_pf	29
		5.6.3.8	plan_r	29
5.7	drs_fie	ld Names	pace Reference	30

iv CONTENTS

	5.7.1	Function	Documentation	30
		5.7.1.1	apply_field_pol_BC	30
		5.7.1.2	apply_field_tor_BC	31
		5.7.1.3	calc_B	31
		5.7.1.4	calc_field	31
		5.7.1.5	calc_field_lspec	32
		5.7.1.6	calc_field_mspec	32
		5.7.1.7	calc_field_nspec	32
		5.7.1.8	calc_rot_field	32
		5.7.1.9	drs_field_allocation	32
		5.7.1.10	drs_field_init	33
		5.7.1.11	drs_field_random_init	33
		5.7.1.12	update_field_pol_lap	33
		5.7.1.13	update_field_tor_lap	33
	5.7.2	Variable	Documentation	33
		5.7.2.1	field_pol	33
		5.7.2.2	field_pol_avg	34
		5.7.2.3	field_pol_ddr	34
		5.7.2.4	field_pol_dr	34
		5.7.2.5	field_pol_lap	34
		5.7.2.6	field_tor	34
		5.7.2.7	field_tor_avg	34
		5.7.2.8	field_tor_ddr	34
		5.7.2.9	field_tor_dr	34
		5.7.2.10	field_tor_lap	35
5.8	drs_flo	w Namesp	pace Reference	36
	5.8.1	Function	Documentation	37
		5.8.1.1	apply_flow_pol_BC	37
		5.8.1.2	apply_flow_tor_BC	37
		5.8.1.3	calc_flow	37
		5.8.1.4	calc_flow_lspec	37
		5.8.1.5	calc_flow_mspec	38
		5.8.1.6	calc_flow_nspec	38
		5.8.1.7	calc_rot_flow	38
		5.8.1.8	calc_u	39
		5.8.1.9	drs_flow_allocation	39

		5.8.1.10	drs_flow_init	39
		5.8.1.11	update_flow_pol_lap	39
		5.8.1.12	update_flow_tor_lap	40
	5.8.2	Variable 1	Documentation	40
		5.8.2.1	flow_pol	40
		5.8.2.2	flow_pol_avg	40
		5.8.2.3	flow_pol_ddr	40
		5.8.2.4	flow_pol_dr	40
		5.8.2.5	flow_pol_lap	40
		5.8.2.6	flow_tor	41
		5.8.2.7	flow_tor_avg	41
		5.8.2.8	flow_tor_ddr	41
		5.8.2.9	flow_tor_dr	41
		5.8.2.10	flow_tor_lap	41
5.9	drs_hy	pDiff Nam	nespace Reference	42
	5.9.1	Function	Documentation	42
		5.9.1.1	drs_hypDiff_init	42
	5.9.2	Variable 1	Documentation	42
		5.9.2.1	drs_want_hypDiff	42
		5.9.2.2	hypDiff	42
5.10	drs_io	Namespac	re Reference	43
	5.10.1	Detailed	Description	43
	5.10.2	Function	Documentation	43
		5.10.2.1	drs_load_state	43
		5.10.2.2	drs_open_output	44
		5.10.2.3	dump_state	44
		5.10.2.4	save_l_spec	45
		5.10.2.5	save_m_spec	46
		5.10.2.6	save_n_spec	46
		5.10.2.7	save_state	46
	5.10.3	Variable 1	Documentation	47
		5.10.3.1	deflate	47
		5.10.3.2	inflate	47
		5.10.3.3	io_calc_file_in	47
		5.10.3.4	io_calc_file_out	47
5.11	drs io	DX Name	espace Reference	48

Vi

5.11.1	Function	Documentation	48
	5.11.1.1	save2DXscalar	48
	5.11.1.2	save2DXvector	49
	5.11.1.3	saveDXmeridional	49
	5.11.1.4	saveDXmeridional3DVec	50
	5.11.1.5	saveDXvolume	50
	5.11.1.6	saveDXvolume3DVec	50
	5.11.1.7	saveDXvolume_v2	51
5.11.2	Variable l	Documentation	51
	5.11.2.1	cut_phi	51
	5.11.2.2	cut_type	51
	5.11.2.3	$cut_z\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	51
	5.11.2.4	where_to_cut	51
5.12 drs_io_	_par Name	space Reference	52
5.12.1	Detailed 1	Description	53
5.12.2	Function	Documentation	53
	5.12.2.1	drs_read_conf	53
	5.12.2.2	drs_read_conf_v2	53
	5.12.2.3	read_input_par	53
	5.12.2.4	write_parp	54
5.12.3	Variable l	Documentation	54
	5.12.3.1	commenti	54
	5.12.3.2	drifti	54
	5.12.3.3	drs_calc_typei	54
	5.12.3.4	etai	54
	5.12.3.5	flowBCi	54
	5.12.3.6	$hi \ldots \ldots$	54
	5.12.3.7	lformi	54
	5.12.3.8	lsymmi	54
	5.12.3.9	$m0i\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	54
	5.12.3.10	magBCi	55
	5.12.3.11	magic	55
	5.12.3.12	MAGICC1	55
	5.12.3.13	MAGICC2	55
	5.12.3.14	MAGICC3	55
	5.12.3.15	MAGICC4	55

CONTENTS vii

5.	.12.3.16 MAGICC5	 55
5.	.12.3.17 MAGICC6	 55
5.	.12.3.18 MAGICC7	 55
5.	.12.3.19 MAGICC9	 55
5.	.12.3.20 magici	 55
5.	.12.3.21 noise	 55
5.	.12.3.22 Npi	 55
5.	.12.3.23 Npi_s	 55
5.	.12.3.24 Nri	 56
5.	.12.3.25 Nri_s	 56
5.	.12.3.26 Nti	 56
5.	.12.3.27 Nti_s	 56
5.	.12.3.28 Pmi	 56
5.	.12.3.29 Pti	 56
5.	.12.3.30 Ra_ti	 56
5.	.12.3.31 sampling_ratei	 56
5.	.12.3.32 stepmaxi	 56
5.	.12.3.33 Tai	 56
5.	.12.3.34 tempBCi	 56
5.	.12.3.35 transienti	 57
5.	.12.3.36 usr_dimsi	 57
5.13 drs_io_un	nits Namespace Reference	 58
5.13.1 D	Detailed Description	 58
5.13.2 V	Variable Documentation	 58
5.	.13.2.1 unit_adv	 58
5.	.13.2.2 unit_am	 58
5.	.13.2.3 unit_cfl	 58
5.	.13.2.4 unit_dissB	 58
5.	.13.2.5 unit_dissu	 59
5.	.13.2.6 unit_eb	 59
5.	.13.2.7 unit_ek	 59
5.	.13.2.8 unit_evp	 59
5.	.13.2.9 unit_evt	 59
5.	.13.2.10 unit_koeb	 59
5.	.13.2.11 unit_koeu	 59
5.	.13.2.12 unit_lspec	 59

viii CONTENTS

	5.13.2.13 unit_mspec	59
	5.13.2.14 unit_nspec	59
	5.13.2.15 unit_nu	59
	5.13.2.16 unit_t	60
	5.13.2.17 unit_u_mid	60
	5.13.2.18 unit_uaz	60
	5.13.2.19 unit_ur	60
	5.13.2.20 unit_uzon	60
5.14 drs_leg	gendre Namespace Reference	61
5.14.1	Function Documentation	62
	5.14.1.1 drs_legendre_allocation	62
	5.14.1.2 drs_legendre_init	62
	5.14.1.3 gauleg	62
	5.14.1.4 initNormalization	62
	5.14.1.5 legendre_init_new	63
5.14.2	Variable Documentation	63
	5.14.2.1 costheta	63
	5.14.2.2 dleg	63
	5.14.2.3 leg_neg	63
	5.14.2.4 leg_sin	63
	5.14.2.5 legendre	64
	5.14.2.6 llp1	64
	5.14.2.7 pi	64
	5.14.2.8 plmfac	64
	5.14.2.9 sintheta	64
	5.14.2.10 w	64
5.15 drs_loc	sk Namespace Reference	65
5.15.1	Detailed Description	65
5.15.2	Function Documentation	65
	5.15.2.1 add_lock	65
	5.15.2.2 drs_lock_init	65
	5.15.2.3 lockExists	66
	5.15.2.4 rm_lock	66
5.15.3	Variable Documentation	66
	5.15.3.1 lockFileName	66
	5.15.3.2 lockFileUnit	66

5.16 drs_mp	i Namespace Reference	67
5.16.1	Detailed Description	69
5.16.2	Function Documentation	69
	5.16.2.1 blk_ts_start_init	69
	5.16.2.2 distribute_in_m	69
	5.16.2.3 drs_abort	69
	5.16.2.4 drs_bcast_dble	69
	5.16.2.5 drs_bcast_dble_scal	70
	5.16.2.6 drs_bcast_int	70
	5.16.2.7 drs_bcast_int_scal	70
	5.16.2.8 drs_bcast_logical_scal	70
	5.16.2.9 drs_gather_vars	70
	5.16.2.10 drs_maximize_dble	70
	5.16.2.11 drs_maximize_dble_scal	70
	5.16.2.12 drs_minimize_dble	70
	5.16.2.13 drs_minimize_dble_scal	70
	5.16.2.14 drs_mpi_init	70
	5.16.2.15 gather_from_m	71
	5.16.2.16 mpi_cleanup	71
	5.16.2.17 mpi_dims_init	71
	5.16.2.18 sum_over_all_cpus_scal	71
	5.16.2.19 sum_over_all_cpus_vect	71
	5.16.2.20 transpos_phi2theta	71
	5.16.2.21 transpos_theta2phi	72
	5.16.2.22 wait_for_everyone	72
5.16.3	Variable Documentation	72
	5.16.3.1 blk_ps_max_size	72
	5.16.3.2 blk_ps_size	72
	5.16.3.3 blk_ps_start	73
	5.16.3.4 blk_t_max_size	73
	5.16.3.5 blk_t_size	73
	5.16.3.6 blk_t_start	73
	5.16.3.7 blk_ts_start	73
	5.16.3.8 mm	73
	5.16.3.9 mpi_rank	74
	5.16.3.10 mpi_size	74

5.17 drs_no	nlinear Namespace Reference	75
5.17.1	Detailed Description	75
5.17.2	Function Documentation	76
	5.17.2.1 drs_nonlinear_init	76
	5.17.2.2 evaluate_real_space	76
	5.17.2.3 rhs	76
	5.17.2.4 save_stuff	77
5.17.3	Variable Documentation	78
	5.17.3.1 cfl	78
	5.17.3.2 field_p_t	78
	5.17.3.3 field_r_t	78
	5.17.3.4 field_t_t	78
	5.17.3.5 flow_p_t	78
	5.17.3.6 flow_r_t	79
	5.17.3.7 flow_t_t	79
	5.17.3.8 ncfl	79
	5.17.3.9 rhs_IE_pol	79
	5.17.3.10 rhs_IE_tor	79
	5.17.3.11 rhs_NS_pol	79
	5.17.3.12 rhs_NS_tor	79
	5.17.3.13 rhs_TE	79
	5.17.3.14 rot_field_p_t	79
	5.17.3.15 rot_field_r_t	79
	5.17.3.16 rot_field_t_t	79
	5.17.3.17 rot_flow_p_t	80
	5.17.3.18 rot_flow_r_t	80
	5.17.3.19 rot_flow_t_t	80
	5.17.3.20 temp_t	80
5.18 drs_pro	obes Namespace Reference	81
5.18.1	Detailed Description	83
5.18.2	Function Documentation	83
	5.18.2.1 average_unnormalised_field_l_spectrum	83
	5.18.2.2 average_unnormalised_flow_l_spectrum	83
	5.18.2.3 average_unnormalised_scalar_l_spectrum	83
	5.18.2.4 c_integrate_r	83
	5.18.2.5 check_resolution_Hartman	84

CONTENTS xi

5.18.2.6	compute_advection		84
5.18.2.7	compute_helicities		84
5.18.2.8	drs_probes_allocation		84
5.18.2.9	drs_probes_init		84
5.18.2.10	energy		85
5.18.2.11	integrate_power_surf		85
5.18.2.12	2 integrate_r		85
5.18.2.13	3 l_spec_of_scalar_field		85
5.18.2.14	m_spec_of_scalar_field		86
5.18.2.15	5 measure		86
5.18.2.16	5 measure_lm		87
5.18.2.17	n_spec_of_scalar_field		87
5.18.2.18	3 nusselt		87
5.18.2.19	save_angular_momentum		88
5.18.2.20	save_field_coeffs		88
5.18.2.21	save_flow_coeffs		88
5.18.2.22	2 save_flow_dissipation		89
5.18.2.23	3 save_magnetic_dissipation		89
3 Variable l	Documentation		89
5.18.3.1	adv_avg		89
5.18.3.2	Bdrkea		90
5.18.3.3	Bdrkes		90
5.18.3.4	Betora		90
5.18.3.5	Betors		90
5.18.3.6	Bmckea		90
5.18.3.7	Bmckes		90
5.18.3.8	Bnkea		90
5.18.3.9	Bnkes		90
5.18.3.10	Brspec_avg		90
5.18.3.11	dOmega		90
5.18.3.12	2 drkea		90
5.18.3.13	drkes		91
5.18.3.14	↓ EB		91
5.18.3.15	Ekin		91
5.18.3.16	o etora		91
5.18.3.17	⁷ etors		91
	5.18.2.7 5.18.2.8 5.18.2.9 5.18.2.10 5.18.2.12 5.18.2.13 5.18.2.15 5.18.2.15 5.18.2.15 5.18.2.16 5.18.2.17 5.18.2.20 5.18.2.21 5.18.2.21 5.18.2.22 5.18.2.23 Variable 5.18.3.1 5.18.3.2 5.18.3.3 5.18.3.4 5.18.3.5 5.18.3.6 5.18.3.10 5.18.3.12 5.18.3.12 5.18.3.12 5.18.3.12 5.18.3.13 5.18.3.14 5.18.3.15 5.18.3.16	5.18.2.7 compute_helicities 5.18.2.8 drs_probes_allocation 5.18.2.9 drs_probes_init 5.18.2.10 energy 5.18.2.11 integrate_power_surf 5.18.2.12 integrate_r 5.18.2.13 l_spec_of_scalar_field 5.18.2.14 m_spec_of_scalar_field 5.18.2.15 measure 5.18.2.16 measure_lm 5.18.2.17 n_spec_of_scalar_field 5.18.2.18 nusselt 5.18.2.19 save_angular_momentum 5.18.2.20 save_field_coeffs 5.18.2.21 save_flow_coeffs 5.18.2.22 save_flow_dissipation 5.18.2.23 save_magnetic_dissipation 3 Variable Documentation 5.18.3.1 adv_avg 5.18.3.2 Bdrkea 5.18.3.3 Bdrkes 5.18.3.4 Betora 5.18.3.5 Betors 5.18.3.6 Bmckea 5.18.3.7 Bmckes 5.18.3.8 Bnkea 5.18.3.9 Bnkes 5.18.3.10 Brspec_avg 5.18.3.11 dOmega 5.18.3.13 drkes 5.18.3.13 drkes 5.18.3.14 EB 5.18.3.15 Ekin 5.18.3.15 Ekin	5.18.2.7 compute_helicities 5.18.2.8 drs_probes_allocation 5.18.2.9 drs_probes_init 5.18.2.10 energy 5.18.2.11 integrate_power_surf 5.18.2.12 integrate_r 5.18.2.13 l_spec_of_scalar_field 5.18.2.14 m_spec_of_scalar_field 5.18.2.15 measure 5.18.2.16 measure_lm 5.18.2.17 n_spec_of_scalar_field 5.18.2.18 nusselt 5.18.2.19 save_angular_momentum 5.18.2.20 save_field_coeffs 5.18.2.21 save_flow_coeffs 5.18.2.22 save_flow_dissipation 5.18.2.23 save_magnetic_dissipation 5.18.2.3 Bdrkea 5.18.3.1 adv_avg 5.18.3.2 Bdrkea 5.18.3.3 Bdrkes 5.18.3.4 Betora 5.18.3.5 Betors 5.18.3.5 Bmckes

xii CONTENTS

5.18.3.18 groth	91
5.18.3.19 mckea	91
5.18.3.20 mckes	91
5.18.3.21 nkea	91
5.18.3.22 nkes	91
5.18.3.23 Rm	91
5.18.3.24 t2_avg	92
5.18.3.25 tspec_avg	92
5.18.3.26 up2	92
5.18.3.27 up_avg	92
5.18.3.28 ur_avg	92
5.18.3.29 urspec_avg	92
5.18.3.30 ut2	92
5.18.3.31 ut_avg	92
5.19 drs_radial Namespace Reference	93
5.19.1 Detailed Description	94
5.19.2 Function Documentation	94
5.19.2.1 drs_radial_init	94
5.19.2.2 radial_derivative_r2r	94
5.19.2.3 radial_dr_ddr_1D_n2r	94
5.19.2.4 radial_dr_ddr_1D_r2r	95
5.19.2.5 radial_dr_ddr_3D_n2r	95
5.19.2.6 radial_dr_ddr_3D_r2r	96
5.19.3 Variable Documentation	96
5.19.3.1 b	96
5.19.3.2 drcoll	97
5.19.3.3 poly	97
5.19.3.4 poly_ddr	97
5.19.3.5 poly_dr	97
5.19.3.6 rcoll	97
5.19.3.7 rcoll2	97
5.20 drs_renderers Namespace Reference	98
5.20.1 Function Documentation	99
5.20.1.1 drs_renderers_allocation	99
5.20.1.2 render	99
5.20.1.3 render_B	100

CONTENTS xiii

	5.20.1.4 render_B_outside	101
	5.20.1.5 render_Bp	101
	5.20.1.6 render_Br	101
	5.20.1.7 render_Bt	101
	5.20.1.8 render_Bz	102
	5.20.1.9 render_helicity	102
	5.20.1.10 render_poloidal_streamlines	102
	5.20.1.11 render_radial_streamfunction	103
	5.20.1.12 render_rotu	103
	5.20.1.13 render_rotu_p	103
	5.20.1.14 render_rotu_r	104
	5.20.1.15 render_rotu_t	104
	5.20.1.16 render_rotu_z	104
	5.20.1.17 render_streamlines_t	104
	5.20.1.18 render_temperature	105
	5.20.1.19 render_temperature_perturbation	105
	5.20.1.20 render_temprature_grad_r	105
	5.20.1.21 render_u	105
	5.20.1.22 render_up	106
	5.20.1.23 render_ur	106
	5.20.1.24 render_ut	106
	5.20.1.25 render_uz	107
5.20.2	Variable Documentation	107
	5.20.2.1 render_out	107
	5.20.2.2 XX	107
	5.20.2.3 YY	107
	5.20.2.4 ZZ	107
5.21 drs_ter	np Namespace Reference	108
5.21.1	Detailed Description	108
5.21.2	Function Documentation	109
	5.21.2.1 apply_temp_BC_RHS	109
	5.21.2.2 calc_temp	109
	5.21.2.3 drs_temp_allocation	109
	5.21.2.4 drs_temp_init	109
	5.21.2.5 drs_temp_randomize	110
	5.21.2.6 drs_temp_reset	110

	5.21.2.7	tempProfName
	5.21.2.8	update_temp_lap
5.21.3	Variable	Documentation
	5.21.3.1	temp
	5.21.3.2	temp_avg
	5.21.3.3	temp_ddr
	5.21.3.4	temp_dr
	5.21.3.5	temp_dr_avg
	5.21.3.6	temp_lap
	5.21.3.7	temp_profile
	5.21.3.8	temp_profile_dr
5.22 drs_tir	ne Namesp	pace Reference
5.22.1	Detailed	Description
5.22.2	Function	Documentation
	5.22.2.1	drs_time_init
	5.22.2.2	drs_time_update
	5.22.2.3	update_time_last_sample
	5.22.2.4	update_timestep
5.22.3	Variable	Documentation
	5.22.3.1	cpu_max_time
	5.22.3.2	cpu_time_first_step
	5.22.3.3	cpu_time_now
	5.22.3.4	cpu_time_start
	5.22.3.5	drift
	5.22.3.6	dtimestep
	5.22.3.7	h
	5.22.3.8	h_old
	5.22.3.9	imeasure
	5.22.3.10) max_time
	5.22.3.11	nsample
	5.22.3.12	2 sampling_rate
	5.22.3.13	8 stepmax
	5.22.3.14	l steps
	5.22.3.15	5 stepstart
	5.22.3.16	5 time
	5.22.3.17	time_last_sample

			5.22.3.18 time_since_last_sample	116
			5.22.3.19 time_start	116
			5.22.3.20 transient	116
			5.22.3.21 variable_h	116
	5.23	drs_tra	nsforms Namespace Reference	118
		5.23.1	Detailed Description	118
		5.23.2	Function Documentation	119
			5.23.2.1 m2phi_2D	119
			5.23.2.2 my_div	119
			5.23.2.3 my_rot	119
			5.23.2.4 my_rotrot	120
			5.23.2.5 PolTor_common2PolTor_field	120
			5.23.2.6 PolTor_common2PolTor_flow	120
			5.23.2.7 vectorField2Divergence	120
			5.23.2.8 vectorField2PolTor_common	121
			5.23.2.9 ylmb	121
			5.23.2.10 ylmt	122
			5.23.2.11 ylmt_3D	122
		5.23.3	Variable Documentation	122
			5.23.3.1 pi	122
	5.24	parser l	Namespace Reference	123
		5.24.1	Detailed Description	123
		5.24.2	Function Documentation	123
			5.24.2.1 parse	123
6	Class	s Doour	nentation 1	125
U	6.1		ii::drs_bcast Interface Reference	
	0.1	6.1.1	Detailed Description	
		6.1.2	Member Function Documentation	
		0.1.2	6.1.2.1 drs bcast dble	
			6.1.2.2 drs_bcast_dble_scal	
			6.1.2.3 drs_bcast_int	
			6.1.2.4 drs_bcast_int_scal	
			6.1.2.5 drs_bcast_logical_scal	
	6.2	drs mr	bi::drs_maximize Interface Reference	
	J.2	6.2.1	Detailed Description	
		6.2.2	Member Function Documentation	
		3.2.2	Themself uneden Documentation	20

			6.2.2.1	drs_maximize_dble	126
			6.2.2.2	drs_maximize_dble_scal	126
	6.3	drs_mp	oi::drs_mir	nimize Interface Reference	127
		6.3.1	Detailed	Description	127
		6.3.2	Member	Function Documentation	127
			6.3.2.1	drs_minimize_dble	127
			6.3.2.2	drs_minimize_dble_scal	127
	6.4	drs_leg	gendre::int	erface Interface Reference	128
		6.4.1	Member	Function Documentation	128
			6.4.1.1	PLegendreA_d1	128
			6.4.1.2	PlmBar_d1	128
			6.4.1.3	PlmIndex	128
	6.5	drs_io_	_DX::save	2DX Interface Reference	129
		6.5.1	Member	Function Documentation	129
			6.5.1.1	save2DXscalar	129
			6.5.1.2	save2DXvector	129
	6.6	drs_mp	oi::sum_ov	rer_all_cpus Interface Reference	130
		6.6.1	Detailed	Description	130
		6.6.2	Member	Function Documentation	130
			6.6.2.1	sum_over_all_cpus_scal	130
			6.6.2.2	sum_over_all_cpus_vect	130
7	File	Docum	entation		131
	7.1	Crankl	Nicholson.	f90 File Reference	131
	7.2	drs.f90	File Refe	rence	133
		7.2.1	Function	Documentation	133
			7.2.1.1	applyGreen	133
			7.2.1.2	drs	134
			7.2.1.3	drs_init	136
			7.2.1.4	kd_grothrate	137
			7.2.1.5	mk_green	138
			7.2.1.6	need_to_step	138
			7.2.1.7	update_field	138
			7.2.1.8	update_flow	139
			7.2.1.9	update_Green_functions	140
			7.2.1.10	update_temp	140
	7.3	drs_Ch	ebyshev.f	90 File Reference	142

CONTENTS

7.4 drs_comp.f90 File Reference1437.5 drs_debug.f90 File Reference1457.6 drs_dims.f90 File Reference146
7.6 drs_dims.f90 File Reference
7.7 drs_fftw3.f90 File Reference
7.8 drs_field.f90 File Reference
7.9 drs_flow.f90 File Reference
7.10 drs_hypDiff.f90 File Reference
7.11 drs_io.f90 File Reference
7.12 drs_io_par.f90 File Reference
7.13 drs_io_units.f90 File Reference
7.14 drs_legendre.f90 File Reference
7.15 drs_lock.f90 File Reference
7.16 drs_mpi.f90 File Reference
7.17 drs_nonlinear.f90 File Reference
7.18 drs_params.f90 File Reference
7.19 drs_probes.f90 File Reference
7.20 drs_radial.f90 File Reference
7.21 drs_temp.f90 File Reference
7.22 drs_time.f90 File Reference
7.23 drs_transforms.f90 File Reference
7.24 parser/parser.f90 File Reference
7.25 SHTOOLS/PLegendreA_d1.f90 File Reference
7.25.1 Function Documentation
7.25.1.1 PLegendreA_d1
7.26 SHTOOLS/PlmBar_d1.f90 File Reference
7.26.1 Function Documentation
7.26.1.1 PlmBar_d1
7.27 SHTOOLS/PlmIndex.f90 File Reference
7.27.1 Function Documentation
7.27.1.1 PlmIndex
7.28 tests/test_drs_Chebyshev.f90 File Reference
7.28.1 Function Documentation
7.28.1.1 test_drs_radial
7.29 tests/test_drs_fftw-r2r.f90 File Reference
7.29.1 Function Documentation
7.29.1.1 test_drs_fftw

xviii CONTENTS

7.30			w.f90 File Reference	
	7.30.1		Documentation	
		7.30.1.1	test_drs_fftw	 . 184
7.31	tests/te	st_drs_rad	lial.f90 File Reference	 . 185
	7.31.1	Function	Documentation	 . 185
		7.31.1.1	test_drs_radial	 . 185
		7.31.1.2	test_radial_colocation_points	 . 185
		7.31.1.3	test_radial_derivative_r2r	 . 185
		7.31.1.4	$test_radial_dr_ddr_1D_r2r $. 186
7.32	tests/te	st_logFeat	rure.f90 File Reference	 . 187
	7.32.1	Function	Documentation	 . 187
		7.32.1.1	testLogFeature	 . 187
7.33	tests/te	st_remesh-	-r2r.f90 File Reference	 . 188
	7.33.1	Function	Documentation	 . 188
		7.33.1.1	test_drs_fftw	 . 188
7.34	tests/te	st_saveDX	Kmeridional.f90 File Reference	 . 189
	7.34.1	Function	Documentation	 . 189
		7.34.1.1	saveDXmeridional	 . 189
		7.34.1.2	test_saveDXMer	 . 189
7.35	tests/te	st_vectorF	Field2Divergence.f90 File Reference	 . 190
	7.35.1	Function	Documentation	 . 190
		7.35.1.1	init	 . 190
		7.35.1.2	test_vectorField2Divergence	 . 190
7.36	utilities	s/Benchma	ark-gen.f90 File Reference	 . 192
	7.36.1	Function	Documentation	 . 192
		7.36.1.1	Benchmarkv1	 . 192
		7.36.1.2	init	 . 192
7.37	utilities	s/Benchma	ark-v2.f90 File Reference	 . 194
	7.37.1	Function	Documentation	 . 194
		7.37.1.1	Benchmarkv2	 . 194
		7.37.1.2	cacheTemperatureProfile	 . 195
		7.37.1.3	init	 . 195
		7.37.1.4	selectEquatorMidShell	 . 196
		7.37.1.5	volume	 . 196
7.38	utilities	s/Benchma	urk.f90 File Reference	 . 197
	7.38.1	Function	Documentation	 . 197

CONTENTS xix

	7.38.1.1	Benchmarkv1	€7
	7.38.1.2	cacheTemperatureProfile	98
	7.38.1.3	init	€
	7.38.1.4	selectEquatorMidShell	99
	7.38.1.5	volume) 9
7.39 utilitie	s/drs-spect	tra.f90 File Reference)()
7.39.1	Function	Documentation)()
	7.39.1.1	init)()
	7.39.1.2	StateAverage)1
7.40 utilitie	s/drs-versi	on.f90 File Reference)3
7.40.1	Function	Documentation)3
	7.40.1.1	drs Version)3
7.41 utilitie	s/drs2dx.f9	90 File Reference)4
7.41.1	Function	Documentation)4
	7.41.1.1	drs2dx)4
	7.41.1.2	init)5
	7.41.1.3	parse_drs2dx)6
	7.41.1.4	redefine_radial_coordinate)6
7.42 utilitie	s/drs_io_D	DX.f90 File Reference)7
7.43 utilitie	s/drs_rend	erers.f90 File Reference)9
7.43.1	Define D	ocumentation	10
	7.43.1.1	ERR_UNSUPPORTED_OPTION	10
7.44 utilitie	s/getProfil	e.f90 File Reference	11
7.44.1	Function	Documentation	11
	7.44.1.1	getProfile	11
	7.44.1.2	init	12
	7.44.1.3	parseConfig	13
	7.44.1.4	setWhatName	13
7.45 utilitie	s/state-ave	rage.f90 File Reference	14
7.45.1	Function	Documentation	14
	7.45.1.1	init	14
	7.45.1.2	StateAverage	15
7.46 utilitie	s/Yokoi-pl	ots-rs.f90 File Reference	16
7.46.1	Function	Documentation	16
	7.46.1.1	computeAlpha	16
	7.46.1.2	computeAndSaveAverage	16

7.46.1.3	computeBeta
7.46.1.4	computeEMF
7.46.1.5	computeGamma
7.46.1.6	init
7.46.1.7	saveIDLmeridional
7.46.1.8	StateAverage
7.47 utilities/Yokoi-pl	ots.f90 File Reference
7.47.1 Function	Documentation
7.47.1.1	computeAlpha
7.47.1.2	computeAndSaveAverage
7.47.1.3	computeBeta
7.47.1.4	computeEMF
7.47.1.5	computeGamma
7.47.1.6	init
7.47.1.7	saveDXmeridional
7.47.1.8	YokoiPlots

Chapter 1

Todo List

Member drs_io::save_state (p. 46)() Describe the format of the following files.

Member drs_io_par::read_input_par (p. 53)(unit_in) Restore read states with other magic numbers.

Member drs_probes::nusselt (p. 87)(r) Ito only works for serial runs. Needs to be parallelized.

Member drs_probes::save_angular_momentum (p. 88)(u_t, u_p) Split the saving part and move it to io.

Member drs_probes::save_field_coeffs (p. 88)() Should take a list of l's and m's and reply with a list of values

Writing should be moved to io.

Member drs_probes::save_flow_coeffs (p. 88)() Should take a list of l's and m's and reply with a list of values

Writing should be moved to io.

Member drs_probes::save_flow_dissipation (p. 89)(mmax) Separate computing from writing.

Member drs_temp::apply_temp_BC_RHS (p. 109)(val) make this value depend on 1 and m when we can specify the full 2D anomaly at the boundaries.

2 Todo List

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

CrankNicholson (Provides routines that compute the Crank-Nicholson in

Crank Nicholson (Provides routines that compute the Crank-Nicholson inverse operators and	
variables to store them)	ç
drs_Chebyshev (Module containing the implementation of the Chebyshev polynomials)	12
drs_comp (Module dealing with the composition)	17
drs_debug (Module with helper subroutines for debug)	21
drs_dims (Provides variables to store the real space and spectral space dimensions of the problem)	22
drs_fftw3 (This module abstracts the computation of Fourier and cosinus transforms)	26
drs_field	30
drs_flow	36
drs_hypDiff	42
drs_io (Deals with input and output of state files and derived quantities)	43
drs_io_DX	48
drs_io_par (Module to read and write parameter and configuration files)	52
drs_io_units (Manages the I/O units of DRS)	58
drs_legendre	61
drs_lock (This module provides a locking mechanism for the dynamo code)	65
drs_mpi (Provides initialisation and variables to be used with the mpi implementation)	67
drs_nonlinear (Takes care of contructing the nonlinear terms of all equations and other quantities	
1 /	75
drs_probes (This module implements some prbing facilities for the running models)	8
drs_radial (This module implements the radial domain and operations in it)	93
-	98
drs_temp (Temperature related operations)	108
drs_time (Module to deal with time. It deals with both wall time and simulation time. It also	
deals wit the time-stepping)	112
	118
parser (This module provides a simple parser (p. 123) for input files of the type 'key = val'	
eventually separated by '[Sections]')	123

Namespace Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

drs_mpi::drs_bcast (Encapsulates broadcast of several types and ranks)	125
drs_mpi::drs_maximize (Encapsulates maximization of several types and ranks)	126
drs_mpi::drs_minimize (Encapsulates minimization of several types and ranks)	127
drs_legendre::interface	128
drs_io_DX::save2DX	129
drs mpi::sum over all cpus (Encapsulates sums of several types and ranks)	130

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

	131
drs.f90	133
drs_Chebyshev.f90	142
drs_comp.f90	143
drs_debug.f90	145
drs_dims.f90	146
drs_fftw3.f90	148
drs_field.f90	149
drs_flow.f90	151
drs_hypDiff.f90	153
	154
drs_io_par.f90	155
drs_io_units.f90	157
drs_legendre.f90	158
	160
	161
	164
-1	166
drs_probes.f90	167
	170
drs_temp.f90	172
drs_time.f90	174
drs_transforms.f90	176
parser/parser.f90	178
SHTOOLS/PLegendreA_d1.f90	179
SHTOOLS/PlmBar_d1.f90	180
SHTOOLS/PlmIndex.f90	181
tests/test_drs_Chebyshev.f90	182
tests/test_drs_fftw-r2r.f90	183
tests/ test_drs_fftw.f90	184
tests/ test_drs_radial.f90	185
	187
tests/test remesh-r2r.f90	188

8 File Index

sts/test_saveDXmeridional.f90	189
sts/test_vectorField2Divergence.f90	
lities/Benchmark-gen.f90	
lities/Benchmark-v2.f90	194
lities/Benchmark.f90	197
lities/drs-spectra.f90	200
lities/drs-version.f90	203
lities/ drs2dx.f90	204
lities/drs_io_DX.f90	207
lities/drs_renderers.f90	209
lities/getProfile.f90	211
lities/state-average.f90	214
lities/Yokoi-plots-rs.f90	216
lities/Yokoi-plots.f90	220

Chapter 5

Namespace Documentation

5.1 CrankNicholson Namespace Reference

Provides routines that compute the Crank-Nicholson inverse operators and variables to store them.

Functions

- subroutine **CrankNicholson_init** ()

 Allocates memory for the Crank-Nicholson inverse operators.
- subroutine **updateCrankNicholson_matrices** (h, Pt, Pm, Pc)

 Convenience subroutine that generates all of the Crank-Nicholson inverse operators.

Variables

- double precision, dimension(:,:,:), allocatable **field_lap_inv_tor**The Crank-Nicholson inverse operator for the toroidal flow.
- double precision, dimension(:,:,:), allocatable field_lap_inv_pol
 The Crank-Nicholson inverse operator for the poloidal flow.
- double precision, dimension(:,:,:), allocatable flow_lap_inv_tor
 The Crank-Nicholson inverse operator for the toroidal field.
- double precision, dimension(:,:,:), allocatable **flow_lap_inv_pol**The Crank-Nicholson inverse operator for the poloidal field.
- double precision, dimension(:,:,:), allocatable temp_lap_inv
 The Crank-Nicholson inverse operator for the temperature.
- double precision, dimension(:,;;), allocatable, target **pinv**The inverse laplacian operator in real space.

5.1.1 Detailed Description

Provides routines that compute the Crank-Nicholson inverse operators and variables to store them.

5.1.2 Function Documentation

5.1.2.1 subroutine CrankNicholson::CrankNicholson_init()

Allocates memory for the Crank-Nicholson inverse operators.

References field_lap_inv_pol, field_lap_inv_tor, flow_lap_inv_pol, flow_lap_inv_tor, drs_dims::Nr, drs_dims::Nt, d

Referenced by drs_init().

5.1.2.2 subroutine CrankNicholson::updateCrankNicholson_matrices (double precision,intent(in) h, double precision,intent(in) Pt, double precision,intent(in) Pm, double precision,intent(in),optional Pc)

Convenience subroutine that generates all of the Crank-Nicholson inverse operators.

Parameters:

h the current time step size.

Pt the thermal Prandtl number.

Pm the magnetic Prandtl number.

Pc the compositional Prandtl number.

References field_lap_inv_pol, field_lap_inv_tor, flow_lap_inv_pol, flow_lap_inv_tor, drs_legendre::gauleg(), drs_legendre::llp1, drs_dims::Nr_s, drs_radial::poly, drs_radial::poly_ddr, drs_radial::radial_dr_ddr_1D_r2r(), drs_radial::rcoll, drs_radial::rcoll2, and temp_lap_inv.

Referenced by drs().

Here is the call graph for this function:

5.1.3 Variable Documentation

5.1.3.1 double precision,dimension(:,;,:),allocatable CrankNicholson::field_lap_inv_pol

The Crank-Nicholson inverse operator for the poloidal flow.

Referenced by CrankNicholson_init(), update_field(), and updateCrankNicholson_matrices().

5.1.3.2 double precision, dimension(:,:,:), allocatable CrankNicholson::field_lap_inv_tor

The Crank-Nicholson inverse operator for the toroidal flow.

Referenced by CrankNicholson_init(), update_field(), and updateCrankNicholson_matrices().

5.1.3.3 double precision,dimension(:,;,:),allocatable CrankNicholson::flow_lap_inv_pol

The Crank-Nicholson inverse operator for the poloidal field.

Referenced by CrankNicholson_init(), mk_green(), update_flow(), and updateCrankNicholson_matrices().

5.1.3.4 double precision, dimension(:,:,:), allocatable CrankNicholson::flow_lap_inv_tor

The Crank-Nicholson inverse operator for the toroidal field.

Referenced by CrankNicholson_init(), update_flow(), and updateCrankNicholson_matrices().

5.1.3.5 double precision, dimension(:,:,:), allocatable, target CrankNicholson::pinv

The inverse laplacian operator in real space.

Referenced by CrankNicholson_init(), mk_green(), and update_flow().

5.1.3.6 double precision,dimension(:,:,:),allocatable CrankNicholson::temp_lap_inv

The Crank-Nicholson inverse operator for the temperature.

Referenced by CrankNicholson_init(), update_temp(), and updateCrankNicholson_matrices().

5.2 drs_Chebyshev Namespace Reference

Module containing the implementation of the Chebyshev polynomials.

Functions

• subroutine **Chebyshev_init** (N, N_s)

Computes the Chebyshev polynomials of order up to N as a function of r.

- subroutine Chebyshev_cleanup ()
- subroutine Cheb_compute_dx_ddx_n2x (f, dfdx, d2fdx2)

Returns second radial derivative in d2fdx2, first derivative in dfdx Input f is supposed to be given in Chebychev space, derivatives are returned in direct space.

• subroutine Cheb_compute_dx_ddx_x2x (f, dfdx, d2fdx2)

Returns second radial derivative in d2fdx2, first derivative in dfdx Input f is supposed to be given in real space, derivatives are returned in real space.

• subroutine Cheb_compute_dx_n2n (f, dfdx)

Computes the Chebyshev coefficients of the first derivative of f with respect to x.

• subroutine **Chebyshev_x2n** (input)

The forward real to spectral cosinus transform Since $T_n(\cos(t)) = \cos(nt)$, the forward cosinus transform gives us the coefficients of order n of the expansion of a scalar function f(x) in terms of Chebyshev polynomials.

• subroutine **Chebyshev_n2x** (input)

The backward spectral to real cosinus transform Since $T_n(\cos(t)) = \cos(nt)$, the backward cosinus transform gives us the value of a scalar function f(x) in terms of Chebyshev polynomials.

Variables

- double precision, parameter **pi** = 3.141592653589793d0
 - It makes use of fftw3.
- integer *8 plan_x
- integer Nx
- integer Nx_s
- double precision, dimension(:), allocatable ct_buffer
- double precision, allocatable Cheb_x
- double precision, allocatable, target Chebyshev
- double precision, allocatable, target Chebyshev_dx
- double precision, allocatable, target Chebyshev_ddx

First index is radial point, second index is mode index.

5.2.1 Detailed Description

Module containing the implementation of the Chebyshev polynomials.

5.2.2 Function Documentation

5.2.2.1 subroutine drs_Chebyshev::Cheb_compute_dx_ddx_n2x (double precision,dimension(nx),intent(in) f, double precision,dimension(nx),intent(out) dfdx, double precision,dimension(nx),intent(out) d2fdx2)

Returns second radial derivative in d2fdx2, first derivative in dfdx Input f is supposed to be given in Chebychev space, derivatives are returned in direct space.

Since:

1.6.5

Parameters:

f Chebyshev coefficients of the input function dfdx First derivative of f at points 1..Nx d2fdx2 Second derivative of f at points 1..Nx

References Cheb_compute_dx_n2n(), Chebyshev_n2x(), and Nx_s.

Referenced by Chebyshev_init(), drs_radial::radial_dr_ddr_1D_n2r(), and drs_radial::radial_dr_ddr_3D_n2r().

Here is the call graph for this function:

5.2.2.2 subroutine drs_Chebyshev::Cheb_compute_dx_ddx_x2x (double precision,dimension(nx),intent(in) f, double precision,dimension(nx),intent(out) dfdx, double precision,dimension(nx),intent(out) d2fdx2)

Returns second radial derivative in d2fdx2, first derivative in dfdx Input f is supposed to be given in real space, derivatives are returned in real space.

Since:

1.6.5

Parameters:

f Chebyshev coefficients of the input function dfdx First derivative of f at points 1..Nx d2fdx2 Second derivative of f at points 1..Nx

 $References\ Cheb_compute_dx_n2n(),\ Chebyshev_n2x(),\ Chebyshev_x2n(),\ and\ Nx_s.$

Referenced by drs_radial::radial_dr_ddr_3D_r2r().

Here is the call graph for this function:

5.2.2.3 subroutine drs_Chebyshev::Cheb_compute_dx_n2n (double precision,dimension(nx),intent(in) f, double precision,dimension(nx),intent(out) dfdx)

Computes the Chebyshev coefficients of the first derivative of f with respect to x.

Since:

1.6.5

Parameters:

f Chebyshev coefficients of the input function dfdx Chebyshev coefficients of the derivative.

Referenced by Cheb_compute_dx_ddx_n2x(), Cheb_compute_dx_ddx_x2x(), and drs_radial::drs_radial_init().

5.2.2.4 subroutine drs_Chebyshev::Chebyshev_cleanup ()

References Cheb_x, Chebyshev, Chebyshev_ddx, Chebyshev_dx, ct_buffer, and plan_x.

5.2.2.5 subroutine drs_Chebyshev::Chebyshev_init (integer,intent(in) N, integer,intent(in) N_s)

Computes the Chebyshev polynomials of order up to N as a function of r.

Since:

1.6.5

Parameters:

N Number of points the polynomials

 N_s maximum order of the polynomials

References Cheb_compute_dx_ddx_n2x(), Cheb_x, Chebyshev, Chebyshev_ddx, Chebyshev_n2x(), ct_buffer, Nx, Nx_s, pi, and plan_x.

Referenced by drs_radial::drs_radial_init(), and test_drs_radial().

Here is the call graph for this function:

5.2.2.6 subroutine drs_Chebyshev::Chebyshev_n2x (double precision,dimension(nx),intent(inout) input)

The backward spectral to real cosinus transform Since $T_n(\cos(t)) = \cos(nt)$, the backward cosinus transform gives us the value of a scalar function f(x) in terms of Chebyshev polynomials.

Since:

1.6.5

References Nx_s, and plan_x.

Referenced by Cheb_compute_dx_ddx_n2x(), Cheb_compute_dx_ddx_x2x(), Chebyshev_init(), drs_radial::radial_derivative_r2r(), drs_radial::radial_dr_ddr_1D_n2r(), drs_radial::radial_dr_ddr_3D_n2r(), and test_drs_radial().

5.2.2.7 subroutine drs_Chebyshev::Chebyshev_x2n (double precision,dimension(nx),intent(inout) input)

The forward real to spectral cosinus transform Since $T_n(\cos(t)) = \cos(nt)$, the forward cosinus transform gives us the coefficients of order n of the expansion of a scalar function f(x) in terms of Chebyshev polynomials.

Since:

1.6.5

Parameters:

input

References Nx_s, and plan_x.

Referenced by Cheb_compute_dx_ddx_x2x(), drs_radial::radial_derivative_r2r(), drs_radial::radial_dr_-ddr_1D_r2r(), and test_drs_radial().

5.2.3 Variable Documentation

5.2.3.1 double precision, allocatable drs_Chebyshev::Cheb_x

Referenced by Chebyshev_cleanup(), Chebyshev_init(), and drs_radial::drs_radial_init().

5.2.3.2 double precision, allocatable, target drs_Chebyshev:: Chebyshev

Referenced by Chebyshev_cleanup(), Chebyshev_init(), drs_radial::drs_radial_init(), and test_drs_radial().

5.2.3.3 double precision, allocatable, target drs_Chebyshev::Chebyshev_ddx

First index is radial point, second index is mode index.

Referenced by Chebyshev_cleanup(), Chebyshev_init(), and drs_radial::drs_radial_init().

5.2.3.4 double precision, allocatable, target drs_Chebyshev::Chebyshev_dx

 $Referenced\ by\ Chebyshev_cleanup(),\ Chebyshev_init(),\ drs_radial::drs_radial_init(),\ and\ test_drs_radial().$

5.2.3.5 double precision, dimension(:), allocatable drs_Chebyshev::ct_buffer

Referenced by Chebyshev_cleanup(), and Chebyshev_init().

5.2.3.6 integer drs_Chebyshev::Nx

Referenced by Chebyshev_init().

5.2.3.7 integer drs_Chebyshev::Nx_s

Referenced by Cheb_compute_dx_ddx_n2x(), Cheb_compute_dx_ddx_x2x(), Chebyshev_init(), Chebyshev_n2x(), and Chebyshev_x2n().

5.2.3.8 double precision,parameter drs_Chebyshev::pi = 3.141592653589793d0

It makes use of fftw3.

Referenced by Chebyshev_init().

5.2.3.9 integer*8 drs_Chebyshev::plan_x

Referenced by Chebyshev_cleanup(), Chebyshev_init(), Chebyshev_n2x(), and Chebyshev_x2n().

5.3 drs_comp Namespace Reference

Module dealing with the composition.

Functions

• subroutine **drs_comp_allocation** ()

Allocates the variables required for computations envolving composition.

• subroutine **drs_comp_init** ()

Initialises the composition boundary conditions, derivatives and profiles.

• character(len=16) compProfName ()

Outputs a human readable name for the composition profiles.

• subroutine **drs_comp_reset** ()

Resets the composition and its derivatives to 0.

• subroutine **drs_comp_randomize** (noise)

Computes the laplacian of the composition.

• subroutine apply_comp_BC (comp)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine **calc_comp** (comp_spec, comp_real)

Computes the composition in real space from the composition in spectral space.

Variables

- double precision, dimension(:,:,:), allocatable **comp**
- double precision, dimension(:,:,:), allocatable comp_dr
- double precision, dimension(:,:,:), allocatable comp_ddr
- double precision, dimension(:,:,:), allocatable **comp_avg**
- double precision, dimension(:), allocatable comp_dr_avg
- double precision, dimension(:), allocatable comp_profile
- double precision, dimension(:), allocatable comp_profile_dr

5.3.1 Detailed Description

Module dealing with the composition.

5.3.2 Function Documentation

5.3.2.1 subroutine drs_comp::apply_comp_BC (double precision,dimension(nr),intent(inout) comp)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

Parameters:

comp A pencil with the forces in lmr space.

Referenced by drs(), and update_temp().

5.3.2.2 subroutine drs_comp::calc_comp (double precision,dimension(0:nt_s,1:blk_ps_-size(mpi_rank),intent(in) comp_spec, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) comp_real)

Computes the composition in real space from the composition in spectral space.

Parameters:

```
comp_spec Composition in spectral space.comp_real Composition in real space.
```

Referenced by drs_nonlinear::evaluate_real_space(), and drs_renderers::render_temperature().

5.3.2.3 character(len=16) drs_comp::compProfName ()

Outputs a human readable name for the composition profiles.

Since:

1.6.1

Referenced by drs comp init().

5.3.2.4 subroutine drs_comp::drs_comp_allocation ()

Allocates the variables required for computations envolving composition.

References drs_mpi::blk_ps_size, comp, comp_avg, comp_ddr, comp_dr, comp_dr_avg, comp_profile, comp_profile_dr, drs_mpi::mpi_rank, drs_dims::Nr, and drs_dims::Nt_s.

Referenced by drs_init(), and init().

5.3.2.5 subroutine drs_comp::drs_comp_init ()

Initialises the composition boundary conditions, derivatives and profiles.

References comp, comp_ddr, comp_profile, comp_profile_dr, compProfName(), drs_dims::Nr, drs_radial::radial_dr_ddr_3D_r2r(), drs_radial::rcoll, and drs_radial::rcoll2.

Referenced by drs_init(), getProfile(), and init().

Here is the call graph for this function:

5.3.2.6 subroutine drs comp::drs comp randomize (double precision,intent(in) noise)

Computes the laplacian of the composition.

References comp.

5.3.2.7 subroutine drs_comp::drs_comp_reset ()

Resets the composition and its derivatives to 0.

References comp, comp_ddr, comp_dr, drs_legendre::llp1, drs_radial::rcoll, and drs_radial::rcoll2.

5.3.3 Variable Documentation

5.3.3.1 double precision, dimension(:,:,:), allocatable drs_comp::comp

Referenced by drs(), drs_comp_allocation(), drs_comp_init(), drs_comp_randomize(), drs_comp_reset(), drs_io::drs_load_state(), drs_nonlinear::evaluate_real_space(), getProfile(), drs_renderers::render_temperature(), drs_io::save_l_spec(), drs_io::save_m_spec(), drs_io::save_n_spec(), drs_io::save_state(), drs_nonlinear::save_stuff(), and update_temp().

5.3.3.2 double precision,dimension(:,:,:),allocatable drs_comp::comp_avg

Referenced by drs_comp_allocation().

5.3.3.3 double precision,dimension(:,:,:),allocatable drs_comp::comp_ddr

Referenced by drs(), drs_comp_allocation(), drs_comp_init(), drs_comp_reset(), and update_temp().

5.3.3.4 double precision, dimension(:,:,:), allocatable drs_comp::comp_dr

Referenced by drs(), drs_comp_allocation(), drs_comp_init(), drs_comp_reset(), and update_temp().

5.3.3.5 double precision,dimension(:),allocatable drs_comp::comp_dr_avg

Referenced by drs_comp_allocation().

5.3.3.6 double precision,dimension(:),allocatable drs_comp::comp_profile

 $Referenced \ by \ drs_comp_allocation(), \ drs_comp_init(), \ getProfile(), \ and \ drs_renderers::render_temperature().$

5.3.3.7 double precision,dimension(:),allocatable drs_comp::comp_profile_dr

Referenced by drs_comp_allocation(), drs_comp_init(), and drs_nonlinear::save_stuff().

5.4 drs_debug Namespace Reference

Module with helper subroutines for debug.

Functions

- subroutine **save_lmr_quantity** (t, tname)
- subroutine **save_tpr_quantity** (t, tname)

5.4.1 Detailed Description

Module with helper subroutines for debug.

5.4.2 Function Documentation

5.4.2.1 subroutine drs_debug::save_lmr_quantity (double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(in) t, character(*),intent(in) tname)

Parameters:

t Fragment of the array to be saved held by CPU with mpi_rank.

tname The name of the file that will be saved to disk.

References drs_mpi::blk_ps_start, drs_mpi::mpi_size, and drs_mpi::wait_for_everyone().

Here is the call graph for this function:

5.4.2.2 subroutine drs_debug::save_tpr_quantity (double precision,dimension(0:blk_t_size(mpi_rank),intent(in) t, character(*),intent(in) tname)

References drs_mpi::blk_t_start, drs_mpi::mpi_size, and drs_mpi::wait_for_everyone().

Here is the call graph for this function:

5.5 drs_dims Namespace Reference

Provides variables to store the real space and spectral space dimensions of the problem.

Functions

- subroutine **drs_dims_init** (error)
- subroutine check_dims (error)

Checks consistency of input parameters.

Variables

- integer, dimension(8), target usr_dims
- integer Nr

Number of radial points.

• integer Nt

Number of meridional points.

• integer Np

Number of azimuthal points.

• integer Nr_s

Highest index for the polynomials in the radial direction.

• integer Nt_s

Number of spherical harmonic degrees to use, including 0.

• integer Np_s

Number of spherical harmonic orders (positive, negative and zero) to use.

• integer lsymm

Equatorial symmetry.

• integer m0

Axial symmetry to use.

5.5.1 Detailed Description

Provides variables to store the real space and spectral space dimensions of the problem.

5.5.2 Function Documentation

5.5.2.1 subroutine drs_dims::check_dims (integer,intent(out) error)

Checks consistency of input parameters.

References m0, Np, Np_s, Nr, Nr_s, Nt, and Nt_s.

Referenced by drs_init(), and init().

5.5.2.2 subroutine drs_dims::drs_dims_init (integer,intent(out) error)

References lsymm, m0, Np, Np_s, Nr, Nr_s, Nt, Nt_s, and usr_dims.

Referenced by drs_init(), init(), test_drs_radial(), and test_saveDXMer().

5.5.3 Variable Documentation

5.5.3.1 integer drs_dims::lsymm

Equatorial symmetry.

Referenced by drs_dims_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), init(), and drs_io_par::write_parp().

5.5.3.2 integer drs_dims::m0

Axial symmetry to use.

Referenced by drs probes::average unnormalised field 1 spectrum(), drs probes::average unnormalised flow 1 spectrum(), drs probes::average unnormalised scalar 1 spectrum(), field::calc field lspec(), drs field::calc field nspec(), drs flow::calc flow lspec(), drs flow::calc check_dims(), drs_probes::check_resolution_Hartman(), flow nspec(), drs_dims_init(), drs field::drs_field_random_init(), drs_init(), drs_io::drs_load_state(), drs_io::drs_open_output(), io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_temp::drs_temp_randomize(), kd_grothrate(), drs_probes::l_spec_of_scalar_field(), drs_probes::measure_lm(), drs_probes::n_spec_of_scalar_field(), drs_renderers::render_poloidal_streamlines(), drs_renderers::render_streamlines_t(), drs_probes::save_field_coeffs(), drs_probes::save_angular_momentum(), drs_probes::save_flow_drs_probes::save_flow_dissipation(), drs_probes::save_magnetic_dissipation(), DX::saveDXmeridional(), saveDXmeridional(), drs_io_DX::saveDXmeridional3DVec(), drs_io_-DX::saveDXvolume(), drs_io_DX::saveDXvolume3DVec(), drs_io_DX::saveDXvolume_v2(), saveI-DLmeridional(), test_saveDXMer(), and drs_io_par::write_parp().

5.5.3.3 integer drs_dims::Np

Number of azimuthal points.

Referenced by Benchmarkv1(), Benchmarkv2(), check_dims(), drs_probes::check_resolution_Hartman(), drs_dims_init(), drs_init(), drs_nonlinear::drs_nonlinear_init(), drs_probes::drs_probes_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_renderers::drs_renderers_allocation(), init(), parse_drs2dx(), drs_renderers::render_temperature(), drs_renderers::render_temperature_grad_r(), drs_nonlinear::save_stuff(), StateAverage(), test_drs_radial(), test_saveDXMer(), drs_io_par::write_parp(), and YokoiPlots().

5.5.3.4 integer drs dims::Np s

Number of spherical harmonic orders (positive, negative and zero) to use.

Referenced by drs_probes::average_unnormalised_field_l_spectrum(), drs_probes::average_unnormalised_scalar_l_spectrum(), Benchmarkv1(), Benchmarkv2(), drs_field::calc_field_lspec(), drs_field::calc_field_nspec(), drs_field::calc_field_nspec(), drs_field::calc_field_nspec(), drs_field::calc_field_nspec(), drs_field::calc_field_nspec(), drs_dims_init(), drs_field::drs_field_random_init(), drs_init(), drs_io::drs_open_output(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_temp::drs_temp_randomize(), init(), kd_grothrate(), drs_probes::l_spec_of_scalar_field(), drs_transforms::m2phi_2D(), drs_probes::measure_lm(), drs_probes::n_spec_of_scalar_field(), drs_renderers::render_poloidal_streamlines(), test_saveDXMer(), drs_io_par::write_parp(), drs_transforms::ylmt(), and drs_transforms::ylmt().

5.5.3.5 integer drs_dims::Nr

Number of radial points.

Referenced by applyGreen(), drs probes::average unnormalised field 1 spectrum(), probes::average unnormalised flow 1 spectrum(), Benchmarkv1(), Benchmarkv2(), drs field::calc field_lspec(), drs_field::calc_field_mspec(), drs_flow::calc_flow_lspec(), drs_flow::calc_flow_mspec(), check_dims(), drs_probes::check_resolution_Hartman(), CrankNicholson::CrankNicholson_init(), drs(), drs_comp::drs_comp_allocation(), drs_comp::drs_comp_init(), drs_dims_init(), drs_field::drs_field_allocation(), drs_field::drs_field_random_init(), drs_flow::drs_flow_allocation(), drs_init(), drs_io::drs_load_state(), drs_nonlinear::drs_nonlinear_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_ probes_init(), drs_radial::drs_radial_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_drs_renderers::drs_renderers_allocation(), drs_temp::drs_temp_allocation(), drs_temp::drs_temp_init(), drs_temp::drs_temp_randomize(), getProfile(), init(), kd_grothrate(), parse_drs2dx(), redefine_radial_coordinate(), drs_renderers::render_streamlines_t(), drs_renderers::render_temperature(), drs_renderers::render_temprature_grad_r(), drs_probes::save_field_coeffs(), drs_probes::save_flow_coeffs(), drs nonlinear::save stuff(), StateAverage(), test drs radial(), test radial colocation points(), test_saveDXMer(), test_vectorField2Divergence(), update_field(), drs_field::update_field_pol_lap(), drs_field::update_field_tor_lap(), drs_flow::update_flow_pol_lap(), drs_flow::update_flow_tor_lap(), update_temp(), drs_temp::update_temp_lap(), drs_io_par::write_parp(), and YokoiPlots().

5.5.3.6 integer drs_dims::Nr_s

Highest index for the polynomials in the radial direction.

 $Referenced by check_dims(), drs_dims_init(), drs_init(), drs_radial::drs_radial_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), init(), test_drs_radial(), test_saveDXMer(), CrankNicholson::updateCrankNicholson_matrices(), and drs_io_par::write_parp().$

5.5.3.7 integer drs_dims::Nt

Number of meridional points.

Referenced by Benchmarkv1(), check_dims(), drs_probes::check_resolution_Hartman(), drs_probes::compute_helicities(), computeAlpha(), computeBeta(), computeEMF(), computeGamma(), CrankNicholson::CrankNicholson_init(), drs_dims_init(), drs_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_renderers::drs_renderers_allocation(), init(), drs_legendre::legendre_init_new(), parse_drs2dx(), drs_renderers::render_temperature(), drs_renderers::render_temprature_grad_r(), drs_nonlinear::save_stuff(), drs_io_DX::saveDXmeridional(), saveDXmeridional(), drs_io_DX::saveDXmeridional3DVec(), drs_io_DX::saveDXvolume(), drs_io_DX::saveDXvolume_v2(), saveIDLmeridional(), selectEquatorMidShell(), StateAverage(), test_drs_radial(), test_saveDXMer(), drs_io_par::write_parp(), and YokoiPlots().

5.5.3.8 integer drs_dims::Nt_s

Number of spherical harmonic degrees to use, including 0.

Referenced by Benchmarkv1(), Benchmarkv2(), drs_field::calc_field_mspec(), drs_flow::calc_flow_mspec(), check_dims(), CrankNicholson::CrankNicholson_init(), drs_comp::drs_comp_allocation(), drs_dims_init(), drs_field::drs_field_allocation(), drs_field::drs_field_random_init(), drs_flow::drs_flow_allocation(), drs_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_nonlinear::drs_nonlinear_init(), drs_probes::drs_probes_allocation(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf(), drs_temp::drs_temp_allocation(), drs_temp::drs_temp_randomize(), init(), kd_grothrate(), drs_probes::measure_lm(), drs_renderers::render_B_outside(), drs_renderers::render_poloidal_streamlines(), drs_renderers::render_streamlines_t(), test_saveDXMer(), and drs_io_par::write_parp().

5.5.3.9 integer,dimension(8),target drs_dims::usr_dims

Referenced by drs_dims_init(), and drs_init().

5.6 drs_fftw3 Namespace Reference

This module abstracts the computation of Fourier and cosinus transforms.

Functions

• subroutine **drs_fftw3_init** (Nr, Nt, Np)

Initialises all the fftw3 plans for forward and backward Fourier and cosinus transforms.

• subroutine drs_fftw3_cleanup ()

Destroies the plans.

• subroutine **dft_forward** (input, output)

The forward real to spectral DFT.

• subroutine **dft_backward** (input, output)

The backward, spectral to real DFT.

• subroutine cos r2r 1 r2n (input)

The forward real to spectral cosinus transform.

• subroutine cos_r2r_1_n2r (input)

The backward spectral to real cosinus transform.

• subroutine **remesh** (Nr1, f1, Nr2, f2)

Given a field f1 described at Nr1 points in an interval, remesh outputs the same field, in the same interval at Nr2 points as f2.

Variables

• integer *8 plan_r

It makes use of fftw3.

- integer *8 plan_pf
- integer *8 plan_pb
- double precision, dimension(:,:), allocatable in_p
- double precision, dimension(:), allocatable **inout_r**
- integer drs_fftw3_Nr
- integer drs_fftw3_Np
- integer drs_fftw3_Nt

5.6.1 Detailed Description

This module abstracts the computation of Fourier and cosinus transforms.

5.6.2 Function Documentation

5.6.2.1 subroutine drs_fftw3::cos_r2r_1_n2r (double precision,dimension(drs_fftw3_nr),intent(inout) input)

The backward spectral to real cosinus transform.

References plan_r.

Referenced by test_drs_fftw().

5.6.2.2 subroutine drs_fftw3::cos_r2r_1_r2n (double precision,dimension(drs_fftw3_nr),intent(inout) input)

The forward real to spectral cosinus transform.

References plan_r.

Referenced by test_drs_fftw().

5.6.2.3 subroutine drs_fftw3::dft_backward (double precision,dimension (0:drs_fftw3_nt-1,drs_fftw3_np),intent(in) input, double precision,dimension(0:drs_fftw3_nt-1,drs_fftw3_np),intent(out) output)

The backward, spectral to real DFT.

References in_p, and plan_pb.

Referenced by drs_transforms::m2phi_2D(), and test_drs_fftw().

5.6.2.4 subroutine drs_fftw3::dft_forward (double precision,dimension (0:drs_fftw3_nt-1,drs_fftw3_np),intent(in) input, double precision,dimension(0:drs_fftw3_nt-1,drs_fftw3_np),intent(out) output)

The forward real to spectral DFT.

References in_p, and plan_pf.

Referenced by test_drs_fftw(), drs_transforms::ylmt(), and drs_transforms::ylmt_3D().

5.6.2.5 subroutine drs_fftw3::drs_fftw3_cleanup()

Destroies the plans.

References plan_pb, plan_pf, and plan_r.

Referenced by test_drs_fftw().

5.6.2.6 subroutine drs_fftw3::drs_fftw3_init (integer,intent(in) Nr, integer,intent(in) Np, integer,intent(in) Np)

Initialises all the fftw3 plans for forward and backward Fourier and cosinus transforms.

Parameters:

Nr Number of points in real space for the radial cosinus transforms.

Nt Perform this many azimuthal Fourier transforms at a time.

Np Number of points in real space for the azimuthal Fourier transforms.

References drs_fftw3_Np, drs_fftw3_Nr, drs_fftw3_Nt, in_p, inout_r, plan_pb, plan_pf, and plan_r. Referenced by drs_init(), init(), test_drs_fftw(), test_drs_radial(), and test_saveDXMer().

5.6.2.7 subroutine drs_fftw3::remesh (integer,intent(in) *Nr1*, double precision,dimension(nr1),intent(in) *f1*, integer,intent(in) *Nr2*, double precision,dimension(nr2),intent(out) *f2*)

Given a field f1 described at Nr1 points in an interval, *remesh* outputs the same field, in the same interval at Nr2 points as f2.

Parameters:

f1 The input field.

Nr2 The input and output number of points.

f2 The output field.

Referenced by drs_io::drs_open_output(), and test_drs_fftw().

5.6.3 Variable Documentation

5.6.3.1 integer drs_fftw3::drs_fftw3_Np

Referenced by drs_fftw3_init().

5.6.3.2 integer drs_fftw3::drs_fftw3_Nr

Referenced by drs_fftw3_init().

5.6.3.3 integer drs_fftw3::drs_fftw3_Nt

Referenced by drs_fftw3_init().

5.6.3.4 double precision,dimension(:,:),allocatable drs_fftw3::in_p

Referenced by dft_backward(), dft_forward(), and drs_fftw3_init().

5.6.3.5 double precision,dimension(:),allocatable drs_fftw3::inout_r

Referenced by drs_fftw3_init().

5.6.3.6 integer*8 drs_fftw3::plan_pb

Referenced by dft_backward(), drs_fftw3_cleanup(), and drs_fftw3_init().

5.6.3.7 integer*8 drs_fftw3::plan_pf

Referenced by dft_forward(), drs_fftw3_cleanup(), and drs_fftw3_init().

5.6.3.8 integer*8 drs_fftw3::plan_r

It makes use of fftw3.

 $Referenced\ by\ cos_r2r_1_n2r(),\ cos_r2r_1_r2n(),\ drs_fftw3_cleanup(),\ and\ drs_fftw3_init().$

5.7 drs_field Namespace Reference

Functions

- subroutine drs_field_allocation ()
- subroutine drs_field_init (field_tor_dr, field_tor_ddr, field_pol_dr, field_pol_ddr)
- subroutine **update field tor lap** ()
- subroutine **update_field_pol_lap** ()
- subroutine **drs field random init** (noise)
- subroutine apply_field_pol_BC (pol, l, m)

These lines take care of boundary conditions If the value at a boundary is different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine apply_field_tor_BC (tor, 1, m)

These lines take care of boundary conditions If the value at a boundary is different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

- subroutine calc_B (Br_t, Bt_t, Bp_t, rot_Br_t, rot_Bt_t, rot_Bp_t)
- subroutine calc_field (Br, Bt, Bp)
- subroutine **calc_rot_field** (rotB_r, rotB_t, rotB_p)
- subroutine calc field lspec (Bspec)
- subroutine calc_field_mspec (Bspec)
- subroutine calc_field_nspec (Bspec)

Variables

- double precision, dimension(:,:,:), allocatable **field_pol**
- double precision, dimension(:,:,:), allocatable field_tor
- double precision, dimension(:,:,:), allocatable field_pol_dr
- double precision, dimension(:,:,:), allocatable field_tor_dr
- double precision, dimension(:,:,:), allocatable field_pol_ddr
- double precision, dimension(:,:,:), allocatable field_tor_ddr
- double precision, dimension(:,:,:), allocatable field_pol_lap
- double precision, dimension(:,;;), allocatable field tor lap
- double precision, dimension(:,:,:), allocatable field_pol_avg
- double precision, dimension(:,;,:), allocatable field_tor_avg

5.7.1 Function Documentation

5.7.1.1 subroutine drs_field::apply_field_pol_BC (double precision,dimension(nr),intent(inout) pol, integer,intent(in) l, integer,intent(in) m)

These lines take care of boundary conditions If the value at a boundary is different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

Referenced by drs(), and update_field().

5.7.1.2 subroutine drs_field::apply_field_tor_BC (double precision,dimension(nr),intent(inout) tor, integer,intent(in) l, integer,intent(in) m)

These lines take care of boundary conditions If the value at a boundary is different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

References drs_radial::rcoll.

Referenced by drs(), and update_field().

5.7.1.3 subroutine drs_field::calc_B (double precision,dimension(0:blk_t_size(mpi_rank),intent(out) Br_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) Bt_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) Bp_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rot_Br_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rot_Bt_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rot_Bp_t)

References calc_field(), and calc_rot_field().

Referenced by drs_nonlinear::evaluate_real_space().

Here is the call graph for this function:

5.7.1.4 subroutine drs_field::calc_field (double precision,dimension(0:blk_t_size(mpi_rank),intent(out) Br, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) Bt, double precision,dimension(0:blk t size(mpi rank),intent(out) Bp)

References drs_mpi::blk_ps_start, drs_legendre::dleg, field_pol, field_pol_dr, field_tor, drs_legendre::leg_sin, drs_legendre::legendre::legendre::llp1, drs_transforms::m2phi_2D(), drs_mpi::mm, drs_radial::rcoll, and drs_radial::rcoll2.

Referenced by Benchmarkv1(), Benchmarkv2(), calc_B(), computeAndSaveAverage(), drs_renderers::render_B(), drs_renderers::render_B_outside(), drs_renderers::render_Bp(), drs_renderers::render_Br(), drs_renderers::render_Bz(), StateAverage(), and YokoiPlots().

Here is the call graph for this function:

5.7.1.5 subroutine drs_field::calc_field_lspec (double precision,dimension(0:nt_s),intent(out) bspec)

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_radial::drcoll, field_pol, drs_legendre::llp1, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Np_s, drs_dims::Nr, drs_legendre::plmfac, and drs_radial::rcoll2.

Referenced by drs_io::save_l_spec().

5.7.1.6 subroutine drs_field::calc_field_mspec (double precision,dimension(m0*np_s+1),intent(out) Bspec)

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_radial::drcoll, field_pol, drs_legendre::llp1, drs_mpi::mpi_rank, drs_dims::Nr, drs_dims::Nt_s, drs_legendre::plmfac, and drs_radial::rcoll2.

Referenced by drs_io::save_m_spec().

5.7.1.7 subroutine drs_field::calc_field_nspec (double precision,dimension(nr_s),intent(out) Bspec)

References drs_mpi::blk_ps_start, field_pol, drs_legendre::llp1, drs_dims::m0, drs_dims::Np_s, drs_legendre::plmfac, and drs_radial::rcoll2.

Referenced by drs_io::save_n_spec().

5.7.1.8 subroutine drs_field::calc_rot_field (double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotB_r, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotB_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotB_p)

References drs_mpi::blk_ps_start, drs_legendre::dleg, field_pol_lap, field_tor, field_tor_dr, drs_legendre::leg_sin, drs_legendre::legendre::llp1, drs_transforms::m2phi_2D(), drs_mpi::mm, drs_radial::rcoll, and drs_radial::rcoll2.

Referenced by calc_B(), computeAndSaveAverage(), StateAverage(), and YokoiPlots().

Here is the call graph for this function:

5.7.1.9 subroutine drs field::drs field allocation ()

References drs_mpi::blk_ps_size, field_pol, field_pol_avg, field_pol_ddr, field_pol_dr, field_pol_lap, field_tor, field_tor_avg, field_tor_ddr, field_tor_dr, field_tor_lap, drs_mpi::mpi_rank, drs_dims::Nr, and drs_dims::Nt_s.

Referenced by drs_init(), and init().

5.7.1.10 subroutine drs_field::drs_field_init (double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) field_tor_dr, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) field_tor_ddr, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) field_pol_dr, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) field_pol_ddr)

References field_pol, field_tor, drs_radial::radial_dr_ddr_3D_r2r(), update_field_pol_lap(), and update_field tor lap().

Referenced by computeAndSaveAverage(), drs_init(), init(), StateAverage(), and YokoiPlots().

Here is the call graph for this function:

5.7.1.11 subroutine drs_field::drs_field_random_init (double precision,intent(in) noise)

References drs_mpi::blk_ps_start, field_tor, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nt_s, drs_legendre::pi, drs_legendre::plmfac, and drs_radial::rcoll.

5.7.1.12 subroutine drs_field::update_field_pol_lap()

References field_pol_field_pol_ddr, field_pol_lap, drs_legendre::llp1, drs_dims::Nr, and drs_radial::rcoll2. Referenced by drs_field_init(), and update_field().

5.7.1.13 subroutine drs_field::update_field_tor_lap ()

References field_tor, field_tor_ddr, field_tor_lap, drs_legendre::llp1, drs_dims::Nr, and drs_radial::rcoll2. Referenced by drs_field_init(), and update_field().

5.7.2 Variable Documentation

5.7.2.1 double precision, dimension(:,::;), allocatable drs field:: field pol

Referenced by drs_probes::average_unnormalised_field_l_spectrum(), Benchmarkv1(), calc_field(), calc_field_lspec(), calc_field_mspec(), calc_field_nspec(), computeAndSaveAverage(), drs(), drs_field_allocation(), drs_field_init(), drs_io::drs_load_state(), kd_grothrate(), drs_probes::measure_lm(), drs_renderers::render_B(), drs_renderers::render_B_eoutside(), drs_renderers::render_Bp(), drs_renderers::render_Bz(), drs_probes::save_field_coeffs(), drs_probes::save_magnetic_dissipation(), drs_io::save_state(), StateAverage(), update_field(), update_field_pol_lap(), and YokoiPlots().

5.7.2.2 double precision, dimension(:,:,:), allocatable drs_field::field_pol_avg

Referenced by computeAndSaveAverage(), drs_field_allocation(), StateAverage(), and YokoiPlots().

5.7.2.3 double precision,dimension(:,:,:),allocatable drs_field::field_pol_ddr

Referenced by computeAndSaveAverage(), drs(), drs_field_allocation(), drs_init(), init(), kd_grothrate(), drs_renderers::render_B(), drs_renderers::render_B_outside(), drs_renderers::render_Bp(), drs_renderers::render_Bz(), drs_probes::save_magnetic_dissipation(), StateAverage(), update_field(), update_field_pol_lap(), and YokoiPlots().

5.7.2.4 double precision, dimension(:,:,:), allocatable drs field:: field pol dr

Referenced by calc_field(), computeAndSaveAverage(), drs(), drs_field_allocation(), drs_init(), init(), drs_probes::measure_lm(), drs_renderers::render_B(), drs_renderers::render_B_outside(), drs_renderers::render_Bt(), drs_renderers::render_Bt(), drs_renderers::render_Bt(), drs_renderers::render_Bz(), drs_probes::save_magnetic_dissipation(), StateAverage(), update_field(), and YokoiPlots().

5.7.2.5 double precision,dimension(:,:,:),allocatable drs_field::field_pol_lap

Referenced by calc rot field(), drs field allocation(), update field(), and update field pol lap().

5.7.2.6 double precision,dimension(:,:,:),allocatable drs_field::field_tor

Referenced by Benchmarkv1(), calc_field(), calc_rot_field(), computeAndSaveAverage(), drs(), drs_field_allocation(), drs_field_init(), drs_field_random_init(), drs_io::drs_load_state(), kd_grothrate(), drs_probes::measure_lm(), drs_renderers::render_B(), drs_renderers::render_B_outside(), drs_renderers::render_Br(), drs_renderers::render_Bt(), drs_renderers::render_Bz(), drs_probes::save_field_coeffs(), drs_probes::save_magnetic_dissipation(), drs_io::save_state(), StateAverage(), update_field(), update_field_tor_lap(), and YokoiPlots().

5.7.2.7 double precision, dimension(:,:,:), allocatable drs_field::field_tor_avg

Referenced by computeAndSaveAverage(), drs_field_allocation(), StateAverage(), and YokoiPlots().

5.7.2.8 double precision,dimension(:,:,:),allocatable drs_field::field_tor_ddr

Referenced by computeAndSaveAverage(), drs(), drs_field_allocation(), drs_init(), init(), kd_grothrate(), drs_renderers::render_B(), drs_renderers::render_B_outside(), drs_renderers::render_Bp(), drs_renderers::render_Bt(), drs_renderers::render_Bz(), drs_probes::save_magnetic_dissipation(), StateAverage(), update_field(), update_field_tor_lap(), and YokoiPlots().

5.7.2.9 double precision,dimension(:,:,:),allocatable drs_field::field_tor_dr

Referenced by calc_rot_field(), computeAndSaveAverage(), drs(), drs_field_allocation(), drs_init(), init(), drs_renderers::render_B(), drs_renderers::render_B_outside(), drs_renderers::render_Bp(), drs_renderers::render_Bz(), drs_probes::save_magnetic_dissipation(), StateAverage(), update_field(), and YokoiPlots().

5.7.2.10 double precision,dimension(:,:,:),allocatable drs_field::field_tor_lap

 $Referenced \ by \ drs_field_allocation(), \ drs_probes::save_magnetic_dissipation(), \ update_field(), \ and \ update_field_tor_lap().$

5.8 drs_flow Namespace Reference

Functions

- subroutine drs_flow_allocation ()
- subroutine drs flow init (flow tor dr, flow tor ddr, flow pol dr, flow pol ddr)
- subroutine update_flow_tor_lap()
- subroutine **update_flow_pol_lap** ()
- subroutine apply_flow_pol_BC (pol)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine apply_flow_tor_BC (tor)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine calc_u (ur, ut, up, rotu_r, rotu_t, rotu_p)

Abstracts computing the flow and its curl in real space.

• subroutine calc_flow (ur_t, ut_t, up_t)

This routine computes:.

• subroutine **calc_rot_flow** (rotu_r, rotu_t, rotu_p)

This routine computes:.

• subroutine calc flow lspec (uspec)

Computes the l-spectrum of the radial flow.

• subroutine **calc_flow_mspec** (uspec)

Computes the m-spectrum of the radial flow.

• subroutine **calc_flow_nspec** (uspec)

Computes the n-spectrum of the radial flow.

Variables

- double precision, dimension(:,:,:), allocatable **flow_pol**
- double precision, dimension(:,:,:), allocatable flow_tor
- double precision, dimension(:,:,:), allocatable flow_pol_dr
- double precision, dimension(:,:,:), allocatable flow_tor_dr
- double precision, dimension(:,:,:), allocatable flow_pol_ddr
- double precision, dimension(:,:,:), allocatable flow_tor_ddr
- double precision, dimension(:,:,:), allocatable flow_pol_lap
- double precision, dimension(:,:,:), allocatable **flow_tor_lap**
- double precision, dimension(:,:,:), allocatable flow_pol_avg
- double precision, dimension(:,:,:), allocatable flow_tor_avg

5.8.1 Function Documentation

5.8.1.1 subroutine drs_flow::apply_flow_pol_BC (double precision,dimension(nr),intent(inout) pol)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

Referenced by drs(), and update_flow().

5.8.1.2 subroutine drs_flow::apply_flow_tor_BC (double precision,dimension(nr),intent(inout) tor)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

Referenced by drs(), and update_flow().

5.8.1.3 subroutine drs_flow::calc_flow (double precision,dimension(0:blk_t_size(mpi_rank),intent(out) ur_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) ut_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) up_t)

This routine computes:.

$$\vec{u} = \vec{\nabla} \times (\vec{\nabla} \times (\vec{r}flow_pol)) + \vec{\nabla} \times (\vec{r}rflow_tor)$$

 $\sim\sim\sim\sim\sim$ the fields are defined as: field in program field in equation ------ flow_pol = P flow_tor = T/r P id the poloidal scalar, and T the Toroidal scalar

input: (not modified on output) common /fields/ flow_tor,flow_pol,.. (lmr) common /derivatives/ flow_tor_dr,..,flow_pol_dr,flow_pol_ddr,.. (lmr) output: (theta,phi,r, transposed): ur_t,ut_t,up_t ~~~~~~

References drs_mpi::blk_ps_start, drs_legendre::dleg, flow_pol, flow_pol_dr, flow_tor, drs_legendre::leg_sin, drs_legendre::le

Referenced by Benchmarkv1(), Benchmarkv2(), calc_u(), computeAndSaveAverage(), drs_io::dump_state(), drs_renderers::render_helicity(), drs_renderers::render_u(), drs_renderers::render_up(), drs_renderers::render_up(), drs_renderers::render_uz(), StateAverage(), and YokoiPlots().

Here is the call graph for this function:

5.8.1.4 subroutine drs_flow::calc_flow_lspec (double precision,dimension(0:nt_s),intent(out) uspec)

Computes the 1-spectrum of the radial flow.

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_radial::drcoll, flow_pol, drs_legendre::llp1, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Np_s, drs_dims::Nr, drs_legendre::plmfac, and drs_radial::rcoll.

Referenced by drs_io::save_1_spec().

5.8.1.5 subroutine drs_flow::calc_flow_mspec (double precision,dimension(m0*np_-s+1),intent(out) uspec)

Computes the m-spectrum of the radial flow.

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_radial::drcoll, flow_pol, drs_legendre::llp1, drs_mpi::mpi_rank, drs_dims::Nr, drs_dims::Nt_s, drs_legendre::plmfac, and drs_radial::rcoll.

Referenced by drs_io::save_m_spec().

5.8.1.6 subroutine drs_flow::calc_flow_nspec (double precision,dimension(nr_s),intent(out) uspec)

Computes the n-spectrum of the radial flow.

References drs_mpi::blk_ps_start, flow_pol, drs_legendre::llp1, drs_dims::m0, drs_dims::Np_s, drs_legendre::plmfac, and drs_radial::rcoll.

Referenced by drs_io::save_n_spec().

5.8.1.7 subroutine drs_flow::calc_rot_flow (double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotu_r, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotu_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotu_p)

This routine computes:. rotu = $rot(rotrot(rP) + rot(rT)) \sim \sim \sim \sim$ the fields are defined as: field in program field in equation ------ flow_pol = P flow_tor = T/r P id the poloidal scalar, and T the Toroidal scalar

input: (not modified on output) common /fields/ flow_tor,flow_pol,... (lmr) common /derivatives/ flow_tor_dr,..,flow_pol_dr,flow_pol_ddr,... (lmr) output: (theta,phi,r, transposed): ur_t,ut_t,up_t,rotu_r_t,rotu_t_t,rotu_p_t $\sim \sim \sim \sim \sim$

References drs_mpi::blk_ps_start, drs_legendre::dleg, flow_pol_dr, flow_pol_lap, flow_tor_dr, drs_legendre::leg_sin, drs_legendre::legendre::llp1, drs_transforms::m2phi_2D(), drs_mpi::mm, and drs_radial::rcoll.

Referenced by $calc_u()$, computeAndSaveAverage(), $drs_renderers::render_rotu()$, $drs_renderers::render_rotu_p()$, $drs_renderers::render_rotu_t()$, $drs_renderers::render_rotu_z()$, StateAverage(), and StateAverage(), StateAverage()

Here is the call graph for this function:

5.8.1.8 subroutine drs_flow::calc_u (double precision,dimension(0:blk_t_size(mpi_rank),intent(out) ur, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) ut, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) up, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotu_r, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotu_t, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) rotu_p)

Abstracts computing the flow and its curl in real space.

References calc flow(), and calc rot flow().

Referenced by drs_nonlinear::evaluate_real_space().

Here is the call graph for this function:

5.8.1.9 subroutine drs_flow::drs_flow_allocation ()

References drs_mpi::blk_ps_size, flow_pol, flow_pol_avg, flow_pol_ddr, flow_pol_dr, flow_pol_lap, flow_tor, flow_tor_avg, flow_tor_ddr, flow_tor_dr, flow_tor_lap, drs_mpi::mpi_rank, drs_dims::Nr, and drs_dims::Nt_s.

Referenced by drs_init(), and init().

5.8.1.10 subroutine drs_flow::drs_flow_init (double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) flow_tor_dr, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) flow_tor_ddr, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) flow_pol_dr, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank) flow_pol_ddr)

References flow_pol, flow_tor, drs_radial::radial_dr_ddr_3D_r2r(), update_flow_pol_lap(), and update_flow_tor_lap().

Referenced by computeAndSaveAverage(), drs_init(), init(), StateAverage(), and YokoiPlots().

Here is the call graph for this function:

5.8.1.11 subroutine drs flow::update flow pol lap ()

References flow_pol, flow_pol_ddr, flow_pol_lap, drs_legendre::llp1, drs_dims::Nr, and drs_radial::rcoll2.

Referenced by drs_flow_init(), and update_flow().

5.8.1.12 subroutine drs_flow::update_flow_tor_lap()

References flow_tor, flow_tor_ddr, flow_tor_lap, drs_legendre::llp1, drs_dims::Nr, and drs_radial::rcoll2. Referenced by drs_flow_init(), and update_flow().

5.8.2 Variable Documentation

5.8.2.1 double precision,dimension(:,:,:),allocatable drs_flow::flow_pol

Referenced by applyGreen(), drs_probes::average_unnormalised_flow_l_spectrum(), Benchmarkv1(), calc_flow(), calc_flow_lspec(), calc_flow_mspec(), calc_flow_nspec(), computeAndSaveAverage(), drs(), drs_flow_allocation(), drs_flow_init(), drs_io::drs_load_state(), drs_io::dump_state(), drs_probes::measure_lm(), drs_renderers::render_helicity(), drs_renderers::render_poloidal_streamlines(), drs_renderers::render_rotu(), drs_renderers::render_rotu_p(), drs_renderers::render_rotu_r(), drs_renderers::render_streamlines_t(), drs_renderers::render_u(), drs_render

5.8.2.2 double precision,dimension(:,:,:),allocatable drs_flow::flow_pol_avg

Referenced by computeAndSaveAverage(), drs_flow_allocation(), drs_io::dump_state(), drs_probes::measure_lm(), StateAverage(), and YokoiPlots().

5.8.2.3 double precision,dimension(:,:,:),allocatable drs_flow::flow_pol_ddr

Referenced by applyGreen(), computeAndSaveAverage(), drs(), drs_flow_allocation(), drs_init(), drs_io::dump_state(), init(), drs_renderers::render_helicity(), drs_renderers::render_rotu(), drs_renderers::render_rotu_t(), drs_renderers::render_rotu_t(), drs_renderers::render_rotu_t(), drs_renderers::render_ur(), drs_renderers::render_up(), drs_renderers::render_ur(), drs_renderers::render_uz(), drs_probes::save_flow_dissipation(), StateAverage(), update_flow(), update_flow_pol_lap(), and YokoiPlots().

5.8.2.4 double precision, dimension(:,;;), allocatable drs flow::flow pol dr

Referenced by applyGreen(), calc_flow(), calc_rot_flow(), computeAndSaveAverage(), drs(), drs_flow_allocation(), drs_init(), drs_io::dump_state(), init(), drs_probes::measure_lm(), drs_renderers::render_helicity(), drs_renderers::render_rotu(), drs_renderers::render_rotu_r(), drs_renderers::render_rotu_z(), drs_renderers::render_ur(), d

5.8.2.5 double precision,dimension(:,:,:),allocatable drs_flow::flow_pol_lap

Referenced by calc_rot_flow(), drs_flow_allocation(), update_flow(), and update_flow_pol_lap().

5.8.2.6 double precision, dimension(:,:,:), allocatable drs_flow::flow_tor

Referenced by Benchmarkv1(), calc_flow(), calc_rot_flow(), computeAndSaveAverage(), drs(), drs_flow_-allocation(), drs_flow_init(), drs_io::drs_load_state(), drs_io::dump_state(), drs_probes::measure_lm(), drs_renderers::render_helicity(), drs_renderers::render_radial_streamfunction(), drs_renderers::render_rotu(), drs_renderers::render_rotu_t(), drs_renderers::render_rotu_t(), drs_renderers::render_rotu_t(), drs_renderers::render_up(), drs_rende

5.8.2.7 double precision,dimension(:,:,:),allocatable drs_flow::flow_tor_avg

Referenced by computeAndSaveAverage(), drs_flow_allocation(), drs_io::dump_state(), drs_probes::measure_lm(), StateAverage(), and YokoiPlots().

5.8.2.8 double precision,dimension(:,:,:),allocatable drs_flow::flow_tor_ddr

Referenced by computeAndSaveAverage(), drs(), drs_flow_allocation(), drs_init(), drs_io::dump_state(), init(), drs_renderers::render_helicity(), drs_renderers::render_rotu(), drs_renderers::render_rotu_p(), drs_renderers::render_rotu_t(), drs_renderers::render_rotu_z(), drs_renderers::render_u(), drs_renderers::rende

5.8.2.9 double precision,dimension(:,:,:),allocatable drs_flow::flow_tor_dr

Referenced by calc_rot_flow(), computeAndSaveAverage(), drs(), drs_flow_allocation(), drs_init(), drs_io::dump_state(), init(), drs_renderers::render_helicity(), drs_renderers::render_rotu(), drs_renderers::render_rotu_r(), drs_renderers::render_rotu_t(), drs_renderers::render_rotu_t(), drs_renderers::render_rotu_t(), drs_renderers::render_ur(), drs_renderers::re

5.8.2.10 double precision, dimension(:,;;), allocatable drs flow::flow tor lap

Referenced by drs_flow_allocation(), update_flow(), and update_flow_tor_lap().

5.9 drs_hypDiff Namespace Reference

Classes

• interface drs_apply_hypDiff

Functions

• subroutine **drs_hypDiff_init** (Nt)

Variables

- double precision, allocatable hypDiff
- logical **drs_want_hypDiff** = .FALSE.

5.9.1 Function Documentation

5.9.1.1 subroutine drs_hypDiff::drs_hypDiff_init (integer,intent(in) Nt)

References drs_want_hypDiff, and hypDiff.

Referenced by drs_init(), and init().

5.9.2 Variable Documentation

5.9.2.1 logical drs_hypDiff::drs_want_hypDiff = .FALSE.

Referenced by drs_hypDiff_init(), drs_init(), and init().

5.9.2.2 double precision, allocatable drs_hypDiff::hypDiff

Referenced by drs_hypDiff_init().

5.10 drs_io Namespace Reference

Deals with input and output of state files and derived quantities.

Functions

• subroutine drs load state (error)

Reads a state performing interpolation as needed. The state is stored in the files with name given by io_calc_file_in and are described by the file with extension .par.

• subroutine **drs_open_output** ()

Opens units for regularly probed quantities to be saved.

- subroutine **dump_state** ()
- subroutine save_state ()

Saves the present state to file. At this point all files are saved with the file name given by io_calc_file_out.

• subroutine save_l_spec ()

Saves the normalized power spectra with respect to l.

• subroutine **save_m_spec** ()

Saves the normalized power spectra with respect to m.

• subroutine **save_n_spec** ()

Saves the normalized power spectra of all quantities with respect to n.

Variables

- character(len=60) io_calc_file_in
- character(len=60) io_calc_file_out
- character(len=13), parameter **deflate**
- character(len=15), parameter **inflate**

5.10.1 Detailed Description

Deals with input and output of state files and derived quantities.

5.10.2 Function Documentation

5.10.2.1 subroutine drs_io::drs_load_state (integer,intent(out) error)

Reads a state performing interpolation as needed. The state is stored in the files with name given by $io_calc_file_in$ and are described by the file with extension .par.

References drs_comp::comp, drs_io_par::etai, drs_field::field_pol, drs_field::field_tor, drs_flow::flow_pol, drs_flow::flow_tor, io_calc_file_in, drs_io_par::lformi, drs_io_par::lsymmi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_rank, drs_io_par::Npi, drs_io_par::Npi_s, drs_dims::Nr, drs_io_par::Nri, drs_io_par::Nri_s, drs_io_par::Pti, drs_io_par::Pti, drs_io_par::Ra_ti,

drs_io_par::read_input_par(), drs_time::steps, drs_time::stepstart, drs_io_par::Tai, drs_temp::temp, drs_time::time, drs_time::time_start, and drs_io_par::usr_dimsi.

 $Referenced\ by\ compute And Save Average(),\ drs_init(),\ get Profile(),\ init(),\ State Average(),\ and\ YokoiPlots().$

Here is the call graph for this function:

5.10.2.2 subroutine drs io::drs open output ()

Opens units for regularly probed quantities to be saved.

References drs_mpi::blk_ps_start, drs_mpi::distribute_in_m(), drs_mpi::gather_from_m(), drs_legendre::initNormalization(), io_calc_file_out, drs_io_par::flormi, drs_dims::m0, drs_io_par::m0i, drs_io_par::m0i, drs_io_par::mpi_rank, drs_dims::Np_s, drs_io_par::Npi_s, drs_io_par::Nti_s, drs_fftw3::remesh(), drs_io_units::unit_am, drs_io_units::unit_cfl, drs_io_units::unit_dissB, drs_io_units::unit_eb, drs_io_units::unit_ek, drs_io_units::unit_evp, drs_io_units::unit_evt, drs_io_units::unit_hoeb, drs_io_units::unit_hoeb, drs_io_units::unit_hoeb, drs_io_units::unit_unit.

Referenced by drs_init().

Here is the call graph for this function:

5.10.2.3 subroutine drs_io::dump_state ()

References drs_probes::adv_avg, drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_mpi::blk_t_start, drs_flow::calc_flow(), drs_nonlinear::evaluate_real_space(), drs_flow::flow_pol, drs_flow::flow_pol_avg, drs_flow::flow_pol_dr, drs_flow::flow_pol_dr, drs_flow::flow_tor, drs_flow::flow_tor_avg, drs_flow::flow_tor_dr, io_calc_file_out, drs_time::nsample, save_l_spec(), save_m_spec(), save_n_spec(), save_state(), drs_nonlinear::save_stuff(), drs_time::steps, drs_probes::t2_avg, drs_temp::temp_avg, drs_temp::temp_avg, drs_temp::temp_profile, drs_time::time, drs_time::time_start, drs_probes::up2, drs_probes::up2, drs_probes::ut2, and drs_probes::ut_avg.

Referenced by drs().

Here is the call graph for this function:

5.10.2.4 subroutine drs_io::save_l_spec ()

Saves the normalized power spectra with respect to 1.

References drs_field::calc_field_lspec(), drs_flow::calc_flow_lspec(), drs_comp::comp, io_calc_file_out, drs_probes::l_spec_of_scalar_field(), drs_mpi::mpi_rank, drs_temp::temp, and drs_io_units::unit_lspec.

Referenced by dump_state(), and StateAverage().

Here is the call graph for this function:

5.10.2.5 subroutine drs_io::save_m_spec ()

Saves the normalized power spectra with respect to m.

References drs_field::calc_field_mspec(), drs_flow::calc_flow_mspec(), drs_comp::comp, io_calc_file_out, drs_probes::m_spec_of_scalar_field(), drs_mpi::mpi_rank, drs_temp::temp, and drs_io_units::unit_mspec.

Referenced by dump_state(), and StateAverage().

Here is the call graph for this function:

5.10.2.6 subroutine drs_io::save_n_spec ()

Saves the normalized power spectra of all quantities with respect to n.

References drs_field::calc_field_nspec(), drs_flow::calc_flow_nspec(), drs_comp::comp, io_calc_file_out, drs_mpi::mpi_rank, drs_probes::n_spec_of_scalar_field(), drs_temp::temp, and drs_io_units::unit_nspec.

Referenced by dump_state(), and StateAverage().

Here is the call graph for this function:

5.10.2.7 subroutine drs_io::save_state ()

Saves the present state to file. At this point all files are saved with the file name given by io_calc_file_-out.

Todo

Describe the format of the following files.

References drs_comp::comp, drs_field::field_pol, drs_field::field_tor, drs_flow::flow_pol, drs_flow::flow_tor, io_calc_file_out, drs_mpi::mpi_rank, drs_temp::temp, and drs_io_par::write_parp().

Referenced by Benchmarkv1(), computeAndSaveAverage(), dump_state(), and StateAverage().

Here is the call graph for this function:

5.10.3 Variable Documentation

5.10.3.1 character(len=13),parameter drs_io::deflate

Referenced by computeAndSaveAverage(), getProfile(), init(), StateAverage(), and YokoiPlots().

5.10.3.2 character(len=15),parameter drs_io::inflate

Referenced by computeAndSaveAverage(), getProfile(), init(), StateAverage(), and YokoiPlots().

5.10.3.3 character(len=60) drs_io::io_calc_file_in

Referenced by Benchmarkv1(), Benchmarkv2(), computeAndSaveAverage(), drs2dx(), drs_init(), drs_load_state(), getProfile(), init(), parse_drs2dx(), parseConfig(), StateAverage(), and YokoiPlots().

5.10.3.4 character(len=60) drs_io::io_calc_file_out

Referenced by computeAndSaveAverage(), drs_init(), drs_open_output(), dump_state(), init(), save_l_spec(), save_m_spec(), save_n_spec(), save_state(), and StateAverage().

5.11 drs_io_DX Namespace Reference

Classes

• interface save2DX

Functions

• subroutine save2DXscalar (field, filename)

Saves the contents of a scalar field to file.

• subroutine save2DXvector (XX, YY, ZZ, filename)

Saves the contents of a vector field to file given its three components.

• subroutine saveDXmeridional (field, filename)

Writes a meridional slice of the field.

• subroutine **saveDXmeridional3DVec** (field_x, field_y, field_z, filename)

Writes a meridional slice of the field.

• subroutine **saveDXvolume** (field, filename)

Writes a volume rendeer of the field.

• subroutine saveDXvolume_v2 (field, filename)

Writes a volume rendeer of the field.

• subroutine saveDXvolume3DVec (XX, YY, ZZ, filename)

Writes a volume rendeer of the vector field components.

Variables

• double precision cut_phi

the azimuth to use on meridional cuts

• double precision cut_z

the azimuth to use on equator parallell cuts

- double precision where_to_cut = 0.0d0
- integer cut_type

the type of cut or render to save

5.11.1 Function Documentation

5.11.1.1 subroutine drs_io_DX::save2DXscalar (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, character(len=*),intent(in) filename)

Saves the contents of a scalar field to file.

is a field in real (tpr) space.

filename is the base name for the output files.

References cut_phi, cut_type, saveDXmeridional(), saveDXvolume(), and where_to_cut. Here is the call graph for this function:

5.11.1.2 subroutine drs_io_DX::save2DXvector (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) XX, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) YY, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) ZZ, character(len=*),intent(in) filename)

Saves the contents of a vector field to file given its three components.

XX, YY, ZZ are the real space components of the vector field

filename is the base name for the output files.

References cut_phi, cut_type, saveDXmeridional3DVec(), saveDXvolume3DVec(), and where_to_cut. Here is the call graph for this function:

5.11.1.3 subroutine drs_io_DX::saveDXmeridional (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, character(len=*),intent(in) filename)

Writes a meridional slice of the field.

field

into the files with basename

filename.

References drs_legendre::costheta, cut_phi, drs_probes::dOmega, drs_dims::m0, drs_dims::Nt, drs_legendre::pi, and drs_radial::rcoll.

5.11.1.4 subroutine drs_io_DX::saveDXmeridional3DVec (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field_x, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field_y, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field_z, character(len=*),intent(in) filename)

Writes a meridional slice of the field.

field

into the files with basename

filename.

References drs_legendre::costheta, cut_phi, drs_dims::m0, drs_dims::Nt, drs_legendre::pi, and drs_radial::rcoll.

Referenced by save2DXvector().

5.11.1.5 subroutine drs_io_DX::saveDXvolume (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, character(len=*),intent(in) filename)

Writes a volume rendeer of the field.

field

into the files with basename

filename.

References drs_legendre::costheta, drs_dims::m0, drs_dims::Nt, drs_legendre::pi, and drs_radial::rcoll. Referenced by save2DXscalar().

5.11.1.6 subroutine drs_io_DX::saveDXvolume3DVec (double precision,dimension(0:(blk_-t_size(mpi_rank),intent(in) XX, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) YZ, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) ZZ, character(len=*),intent(in) filename)

Writes a volume rendeer of the vector field components.

XX, YY and ZZ

into the files with basename

filename.

References drs_legendre::costheta, drs_dims::m0, drs_dims::Nt, drs_legendre::pi, and drs_radial::rcoll. Referenced by save2DXvector().

5.11.1.7 subroutine drs_io_DX::saveDXvolume_v2 (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, character(len=*),intent(in) filename)

Writes a volume rendeer of the field.

field

into the files with basename

filename.

References drs_legendre::costheta, drs_dims::m0, drs_dims::Nt, drs_legendre::pi, and drs_radial::rcoll.

5.11.2 Variable Documentation

5.11.2.1 double precision drs_io_DX::cut_phi

the azimuth to use on meridional cuts

 $Referenced\ by\ save 2DX scalar(),\ save 2DX vector(),\ save DX meridional(),\ and\ save DX meridional 3DV ec().$

5.11.2.2 integer drs_io_DX::cut_type

the type of cut or render to save

Referenced by parse_drs2dx(), save2DXscalar(), and save2DXvector().

5.11.2.3 double precision drs_io_DX::cut_z

the azimuth to use on equator parallell cuts

5.11.2.4 double precision drs_io_DX::where_to_cut = 0.0d0

Referenced by parse_drs2dx(), save2DXscalar(), and save2DXvector().

5.12 drs_io_par Namespace Reference

Module to read and write parameter and configuration files.

Functions

- subroutine **drs_read_conf_v2** (io_calc_file_in, io_calc_file_out, comment, error)
- subroutine **drs_read_conf** (io_calc_file_in, io_calc_file_out, comment, error) reads parameters for the calculation from the standard input
- subroutine **read_input_par** (unit_in)
 - reads the parameterfile 'file'.par
- subroutine write_parp (unit_out) writes the parameter file 'file'.par

Variables

- integer, dimension(8), target usr_dimsi
- integer lformi
- integer drs_calc_typei
- integer tempBCi
- integer flowBCi
- integer magBCi
- integer Nri
- integer Nti
- integer Npi
- integer Nri_s
- integer Nti_s
- integer Npi_s
- integer lsymmi
- integer m0i
- double precision etai
- double precision Pti
- double precision Tai
- double precision Ra_ti
- double precision Pmi
- double precision hi
- double precision drifti
- double precision noise
- integer stepmaxi
- integer sampling_ratei
- integer transienti
- character(len=60) commenti
- integer magici
- integer, parameter **magic** = 10205
- integer, parameter **MAGICC1** = 10101
- integer, parameter **MAGICC2** = 10102

- integer, parameter MAGICC3 = 10103
- integer, parameter MAGICC4 = 10104
- integer, parameter **MAGICC5** = 10105
- integer, parameter **MAGICC6** = 10106
- integer, parameter **MAGICC7** = 10107
- integer, parameter **MAGICC9** = 10109

5.12.1 Detailed Description

Module to read and write parameter and configuration files.

5.12.2 Function Documentation

5.12.2.1 subroutine drs_io_par::drs_read_conf (character(len=60),intent(out) io_calc_file_in, character(len=60),intent(out) io_calc_file_out, character(len=60),intent(out) comment, integer,intent(out) error)

reads parameters for the calculation from the standard input

References drs_time::cpu_max_time, drs_time::h, drs_dims::lsymm, drs_dims::m0, magic, MAGICC5, MAGICC9, noise, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nr_s, drs_dims::Nt_s, drs_time::sampling_rate, drs_time::stepmax, and drs_time::transient.

Referenced by drs_init().

5.12.2.2 subroutine drs_io_par::drs_read_conf_v2 (character(len=60),intent(out) io_calc_file_in, character(len=60),intent(out) io_calc_file_out, character(len=60),intent(out) comment, integer,intent(out) error)

References drs_time::cpu_max_time, drs_time::h, drs_dims::lsymm, drs_dims::m0, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nr_s, drs_dims::Nt, drs_dims::Nt_s, parser::parse(), drs_time::sampling_rate, drs_time::stepmax, and drs_time::transient.

Here is the call graph for this function:

5.12.2.3 subroutine drs_io_par::read_input_par (integer,intent(in) unit_in)

reads the parameterfile 'file'.par

Todo

Restore read states with other magic numbers.

References commenti, drifti, drs_calc_typei, etai, flowBCi, hi, lformi, lsymmi, m0i, magBCi, MAGICC4, MAGICC5, MAGICC7, MAGICC9, magici, Npi, Npi_s, Nri, Nri_s, Nti, Nti_s, Pmi, Pti, Ra_ti, sampling_ratei, stepmaxi, drs_time::stepstart, Tai, tempBCi, drs_time::time, and transienti.

Referenced by drs_io::drs_load_state(), and init().

5.12.2.4 subroutine drs_io_par::write_parp (integer,intent(in) unit_out)

writes the parameter file 'file'.par

References drs_time::drift, drs_time::h, drs_dims::lsymm, drs_dims::m0, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr_s, drs_dims::Nt_s, drs_time::sampling_rate, drs_time::stepmax, drs_time::steps, drs_time::time, and drs_time::transient.

Referenced by drs_io::save_state().

5.12.3 Variable Documentation

5.12.3.1 character(len=60) drs_io_par::commenti

Referenced by init(), and read_input_par().

5.12.3.2 double precision drs_io_par::drifti

Referenced by init(), and read_input_par().

5.12.3.3 integer drs_io_par::drs_calc_typei

Referenced by init(), and read_input_par().

5.12.3.4 double precision drs_io_par::etai

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.5 integer drs_io_par::flowBCi

Referenced by read_input_par().

5.12.3.6 double precision drs_io_par::hi

Referenced by drs_init(), and read_input_par().

5.12.3.7 integer drs_io_par::lformi

Referenced by drs_io::drs_load_state(), drs_io::drs_open_output(), init(), and read_input_par().

5.12.3.8 integer drs_io_par::lsymmi

Referenced by drs io::drs load state(), and read input par().

5.12.3.9 integer drs_io_par::m0i

Referenced by drs_io::drs_load_state(), drs_io::drs_open_output(), init(), and read_input_par().

5.12.3.10 integer drs_io_par::magBCi

Referenced by read_input_par().

5.12.3.11 integer,parameter drs_io_par::magic = 10205

Referenced by drs_read_conf().

5.12.3.12 integer,parameter drs_io_par::MAGICC1 = 10101

5.12.3.13 integer,parameter drs_io_par::MAGICC2 = 10102

5.12.3.14 integer,parameter drs_io_par::MAGICC3 = 10103

5.12.3.15 integer,parameter drs_io_par::MAGICC4 = 10104

Referenced by read_input_par().

5.12.3.16 integer,parameter drs_io_par::MAGICC5 = 10105

Referenced by drs_read_conf(), and read_input_par().

5.12.3.17 integer,parameter drs_io_par::MAGICC6 = 10106

5.12.3.18 integer,parameter drs_io_par::MAGICC7 = 10107

Referenced by read_input_par().

5.12.3.19 integer,parameter drs_io_par::MAGICC9 = 10109

Referenced by drs_read_conf(), and read_input_par().

5.12.3.20 integer drs_io_par::magici

Referenced by drs_io::drs_open_output(), and read_input_par().

5.12.3.21 double precision drs_io_par::noise

Referenced by drs_read_conf().

5.12.3.22 integer drs_io_par::Npi

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.23 integer drs io par::Npi s

Referenced by drs_io::drs_load_state(), drs_io::drs_open_output(), init(), and read_input_par().

5.12.3.24 integer drs_io_par::Nri

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.25 integer drs_io_par::Nri_s

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.26 integer drs_io_par::Nti

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.27 integer drs io par::Nti s

Referenced by drs_io::drs_load_state(), drs_io::drs_open_output(), init(), and read_input_par().

5.12.3.28 double precision drs_io_par::Pmi

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.29 double precision drs_io_par::Pti

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.30 double precision drs_io_par::Ra_ti

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.31 integer drs_io_par::sampling_ratei

Referenced by read_input_par().

5.12.3.32 integer drs_io_par::stepmaxi

Referenced by read_input_par().

5.12.3.33 double precision drs_io_par::Tai

Referenced by drs_io::drs_load_state(), init(), and read_input_par().

5.12.3.34 integer drs_io_par::tempBCi

Referenced by read_input_par().

5.12.3.35 integer drs_io_par::transienti

Referenced by read_input_par().

5.12.3.36 integer,dimension(8),target drs_io_par::usr_dimsi

Referenced by drs_io::drs_load_state().

5.13 drs_io_units Namespace Reference

Manages the I/O units of DRS.

Variables

- integer, parameter unit ek = 11
- integer, parameter **unit_ur** = 12
- integer, parameter **unit_uzon** = 13
- integer, parameter **unit koeu** = 14
- integer, parameter unit_uaz = 15
- integer, parameter **unit_u_mid** = 16
- integer, parameter **unit_am** = 17
- integer, parameter unit nu = 21
- integer, parameter **unit_adv** = 22
- integer, parameter **unit_t** = 23
- integer, parameter **unit_eb** = 31
- integer, parameter **unit_koeb** = 32
- integer, parameter **unit_dissu** = 33
- integer, parameter unit_dissB = 34
- integer, parameter **unit_mspec** = 41
- integer, parameter **unit_lspec** = 42
- integer, parameter unit_nspec = 43
- integer, parameter **unit_evp** = 51
- integer, parameter **unit_evt** = 52
- integer, parameter unit_cfl = 99

5.13.1 Detailed Description

Manages the I/O units of DRS.

5.13.2 Variable Documentation

5.13.2.1 integer, parameter drs io units::unit adv = 22

5.13.2.2 integer,parameter drs_io_units::unit_am = 17

Referenced by drs_io::drs_open_output(), and drs_probes::save_angular_momentum().

5.13.2.3 integer,parameter drs_io_units::unit_cfl = 99

Referenced by drs_io::drs_open_output(), and drs_probes::measure().

5.13.2.4 integer,parameter drs_io_units::unit_dissB = 34

Referenced by drs_io::drs_open_output(), and drs_probes::save_magnetic_dissipation().

5.13.2.5 integer,parameter drs_io_units::unit_dissu = 33

Referenced by drs_io::drs_open_output(), and drs_probes::save_flow_dissipation().

5.13.2.6 integer,parameter drs_io_units::unit_eb = 31

Referenced by drs_io::drs_open_output(), and drs_probes::measure().

5.13.2.7 integer,parameter drs_io_units::unit_ek = 11

Referenced by drs_io::drs_open_output(), and drs_probes::measure().

5.13.2.8 integer,parameter drs io units::unit evp = 51

Referenced by drs_io::drs_open_output().

5.13.2.9 integer,parameter drs_io_units::unit_evt = 52

Referenced by drs_io::drs_open_output().

5.13.2.10 integer,parameter drs io units::unit koeb = 32

Referenced by drs_io::drs_open_output(), and drs_probes::save_field_coeffs().

5.13.2.11 integer,parameter drs_io_units::unit_koeu = 14

Referenced by drs_io::drs_open_output(), and drs_probes::save_flow_coeffs().

5.13.2.12 integer,parameter drs_io_units::unit_lspec = 42

Referenced by drs_io::save_l_spec().

5.13.2.13 integer,parameter drs_io_units::unit_mspec = 41

Referenced by drs_io::save_m_spec().

5.13.2.14 integer,parameter drs_io_units::unit_nspec = 43

Referenced by drs_io::save_n_spec().

5.13.2.15 integer,parameter drs_io_units::unit_nu = 21

Referenced by drs_io::drs_open_output(), and drs_probes::measure().

5.13.2.16 integer,parameter drs_io_units::unit_t = 23

5.13.2.17 integer,parameter drs_io_units::unit_u_mid = 16

 $Referenced\ by\ drs_io::drs_open_output(),\ and\ drs_probes::measure().$

- 5.13.2.18 integer,parameter drs_io_units::unit_uaz = 15
- 5.13.2.19 integer,parameter drs_io_units::unit_ur = 12
- 5.13.2.20 integer,parameter drs_io_units::unit_uzon = 13

5.14 drs_legendre Namespace Reference

Classes

• interface interface

Functions

- subroutine drs_legendre_allocation ()
- subroutine **drs_legendre_init** ()

Initialize the Legendre associated Polynomials and the Gauss-Legendre co-location points.

• subroutine **initNormalization** (normType, lmax, norms)

Computes the normalization factors for the the Legendre associated Polynomials.

• subroutine legendre_init_new ()

Initializes the tables of Associated Legendre Polynomials.

• subroutine gauleg (x1, x2, x, w, n)

Computes the Guass-Legendre quadrature points and weights.

Variables

- double precision, dimension(:,:,:), allocatable **legendre**The unnormalised Legendre polynomials.
- double precision, dimension(:,:,:), allocatable **leg_neg**The unnormalised Legendre polynomials for negative m multiplied by the integration factors.
- double precision, dimension(:,:,:), allocatable dleg
 d Plm(cos(theta))/d theta
- double precision, dimension(:,:,:), allocatable **leg_sin** *Plm/sin(theta)*.
- double precision, dimension(:,:), allocatable **plmfac** sqrt((l+m)!/(l-m)!/(2l+1)) = sqrt((l-m+1)*(l-m+2)*...*((l+m)/(2l+1))
- double precision, dimension(:), allocatable, target **costheta** *Gauss-Legendre integration points*.
- double precision, dimension(:), allocatable, target **sintheta**Gauss-Legendre integration points.
- double precision, dimension(:), allocatable w
 Gauss-Legendre integration weights.
- integer, dimension(:), allocatable llp1

Table of l(l+1).

• double precision, parameter **pi** = 3.141592653589793d0

5.14.1 Function Documentation

5.14.1.1 subroutine drs_legendre::drs_legendre_allocation ()

References drs_mpi::blk_ps_size, costheta, dleg, leg_neg, leg_sin, legendre, llp1, drs_mpi::mpi_rank, drs_dims::Nt, drs_dims::Nt_s, plmfac, sintheta, and w.

Referenced by drs_init(), init(), and test_saveDXMer().

5.14.1.2 subroutine drs_legendre::drs_legendre_init ()

Initialize the Legendre associated Polynomials and the Gauss-Legendre co-location points.

References costheta, gauleg(), initNormalization(), legendre_init_new(), llp1, drs_dims::Nt, drs_dims::Nt_s, plmfac, sintheta, and w.

Referenced by drs_init(), init(), and test_saveDXMer().

Here is the call graph for this function:

5.14.1.3 subroutine drs_legendre::gauleg (double precision,intent(in) xI, double precision,intent(in) x2, double precision,dimension(n),intent(out) x, double precision,dimension(n),intent(out) x, integer,intent(in) x

Computes the Guass-Legendre quadrature points and weights.

References pi.

Referenced by drs_legendre_init(), and CrankNicholson::updateCrankNicholson_matrices().

5.14.1.4 subroutine drs_legendre::initNormalization (integer,intent(in) normType, integer,intent(in) lmax, double precision,dimension(0:lmax+2, 0:lmax+2),intent(out) norms)

Computes the normalization factors for the Legendre associated Polynomials.

Parameters:

normType normalization types:

- Normalised for normalization to 2.
- UnNormalized for no normalization, that is, $[(P_1^m)^2 = 2*\{(1+m)!\}\{(1-m)!(2l+1)\}]$.

lmax normalization types:

- Normalised for normalization to 2.
- UnNormalized for no normalization, that is, $[(P_1^m)^2 = 2*\{(1+m)!\}\{(1-m)!(2l+1)\}]$.

Referenced by drs_legendre_init(), and drs_io::drs_open_output().

5.14.1.5 subroutine drs_legendre::legendre_init_new()

Initializes the tables of Associated Legendre Polynomials.

References drs_mpi::blk_ps_size, drs_mpi::blk_ts_start, costheta, dleg, leg_neg, leg_sin, legendre, drs_mpi::mpi_rank, drs_dims::Nt, PlmBar_d1(), plmfac, PlmIndex(), sintheta, and w.

Referenced by drs_legendre_init().

Here is the call graph for this function:

5.14.2 Variable Documentation

5.14.2.1 double precision, dimension(:), allocatable, target drs_legendre::costheta

Gauss-Legendre integration points.

Referenced by Benchmarkv1(), computeEMF(), drs_legendre_allocation(), drs_legendre_init(), legendre_init_new(), drs_renderers::render_Bz(), drs_renderers::render_rotu_z(), drs_renderers::render_streamlines_t(), drs_renderers::render_uz(), drs_io_DX::saveDXmeridional(), saveDXmeridional(), drs_io_DX::saveDXmeridional3DVec(), drs_io_DX::saveDXvolume(), drs_io_DX::saveDXvolume3DVec(), drs_io_DX::saveDXvolume_v2(), saveIDLmeridional(), selectEquatorMidShell(), StateAverage(), and YokoiPlots().

5.14.2.2 double precision, dimension (:,:,:), allocatable drs_legendre::dleg

d Plm(cos(theta))/d theta

Referenced by drs_field::calc_field(), drs_flow::calc_flow(), drs_field::calc_rot_field(), drs_flow::calc_rot_flow(), drs_legendre_allocation(), legendre_init_new(), and drs_renderers::render_streamlines_t().

5.14.2.3 double precision, dimension (:,:,:), allocatable drs_legendre::leg_neg

The unnormalised Legendre polynomials for negative m multiplied by the integration factors.

 $Referenced \ by \ drs_legendre_allocation(), \ legendre_init_new(), \ drs_transforms::ylmt(), \ and \ drs_transforms::ylmt_3D().$

5.14.2.4 double precision, dimension (:,;;;), allocatable drs legendre::leg sin

Plm/sin(theta).

Referenced by drs_field::calc_field(), drs_flow::calc_flow(), drs_field::calc_rot_field(), drs_flow::calc_rot_flow(), drs_legendre_allocation(), and legendre_init_new().

5.14.2.5 double precision,dimension(:,:,:),allocatable drs_legendre::legendre

The unnormalised Legendre polynomials.

Referenced by drs_field::calc_field(), drs_flow::calc_flow(), drs_field::calc_rot_field(), drs_flow::calc_rot_flow(), drs_legendre_allocation(), legendre_init_new(), and drs_transforms::ylmb().

5.14.2.6 integer, dimension(:), allocatable drs legendre::llp1

Table of l(l+1).

Referenced by drs field::calc field(), drs field::calc field lspec(), drs field::calc field mspec(), drs field::calc field nspec(), drs_flow::calc_flow(), drs flow::calc flow lspec(), drs flow::calc drs_flow::calc_flow_nspec(), drs field::calc rot field(), drs flow::calc rot flow(), flow mspec(), drs comp::drs comp reset(), drs legendre allocation(), drs legendre init(), kd grothrate(), drs transforms::my rotrot(), drs transforms::PolTor common2PolTor field(), drs transforms::PolTor common2PolTor_flow(), drs_field::update_field_pol_lap(), drs_field::update_field_tor_lap(), drs_drs_flow::update_flow_tor_lap(), drs_temp::update_temp_lap(), flow::update_flow_pol_lap(), and CrankNicholson::updateCrankNicholson_matrices().

5.14.2.7 double precision,parameter drs_legendre::pi = 3.141592653589793d0

Referenced by Benchmarkv1(), Benchmarkv2(), drs_field::drs_field_random_init(), drs_init(), drs_temp::drs_temp_randomize(), gauleg(), drs_renderers::render_Bz(), drs_renderers::render_rotu_z(), drs_renderers::render_uz(), drs_io_DX::saveDXmeridional(), saveDXmeridional(), drs_io_DX::saveDXmeridional(), drs_io_DX::saveDXvolume(), drs_io_DX::saveDXvolume3DVec(), drs_io_DX::saveDXvolume(), drs_io_DX::saveDXvolume().

5.14.2.8 double precision, dimension (:,:), allocatable drs legendre::plmfac

```
sqrt((l+m)!/(l-m)!/(2l+1)) = sqrt((l-m+1)*(l-m+2)*...*((l+m)/(2l+1))
```

Referenced by drs_field::calc_field_lspec(), drs_field::calc_field_mspec(), drs_field::calc_field_nspec(), drs_field::calc_field_nspec(), drs_field::calc_field_nspec(), drs_field::drs_field_random_init(), drs_legendre_allocation(), drs_legendre_init(), and legendre_init_new().

5.14.2.9 double precision, dimension(:), allocatable, target drs_legendre::sintheta

Gauss-Legendre integration points.

Referenced by Benchmarkv1(), drs_legendre_allocation(), drs_legendre_init(), legendre_init_new(), drs_transforms::vectorField2Divergence(), and drs_transforms::vectorField2PolTor_common().

5.14.2.10 double precision,dimension(:),allocatable drs_legendre::w

Gauss-Legendre integration weights.

Referenced by drs_legendre_allocation(), drs_legendre_init(), and legendre_init_new().

5.15 drs_lock Namespace Reference

This module provides a locking mechanism for the dynamo code.

Functions

• subroutine drs lock init (u, f)

Sets the lock file name to f and manages it on unit u.

• subroutine add_lock (error)

Creates the lock file.

• subroutine **rm_lock** (error)

Removes the lock file.

• logical lockExists ()

Checks whether the lock file exists.

Variables

- character(len=128) lockFileName
- integer lockFileUnit = -1

5.15.1 Detailed Description

This module provides a locking mechanism for the dynamo code.

Since:

1.6.1

5.15.2 Function Documentation

5.15.2.1 subroutine drs_lock::add_lock (integer,intent(inout) error)

Creates the lock file.

References lockFileName, and lockFileUnit.

Referenced by drs_init().

5.15.2.2 subroutine drs_lock::drs_lock_init (integer u, character(len=*) f)

Sets the lock file name to f and manages it on unit u.

Parameters:

u The unit it is going to be openned on.

f The name of the lock file.

References lockFileName, and lockFileUnit.

Referenced by drs_init().

5.15.2.3 logical drs_lock::lockExists ()

Checks whether the lock file exists.

References lockFileName.

Referenced by need_to_step().

5.15.2.4 subroutine drs_lock::rm_lock (integer,intent(inout) error)

Removes the lock file.

References lockFileName, and lockFileUnit.

Referenced by drs().

5.15.3 Variable Documentation

5.15.3.1 character(len=128) drs_lock::lockFileName

Referenced by add_lock(), drs_lock_init(), lockExists(), and rm_lock().

5.15.3.2 integer drs_lock::lockFileUnit = -1

 $Referenced\ by\ add_lock(),\ drs_lock_init(),\ and\ rm_lock().$

5.16 drs_mpi Namespace Reference

Provides initialisation and variables to be used with the mpi implementation.

Classes

• interface sum_over_all_cpus

Encapsulates sums of several types and ranks.

• interface drs_minimize

Encapsulates minimization of several types and ranks.

• interface drs_maximize

Encapsulates maximization of several types and ranks.

• interface drs_bcast

Encapsulates broadcast of several types and ranks.

Functions

• subroutine **drs** mpi init ()

Gets initial values for mpi_size and mpi_rank. Allocates block indices accordingly.

• subroutine **mpi_dims_init** (Nt, Np_s, m0, error)

Initializes mpi variables and sizes.

• subroutine **transpos_phi2theta** (input, Nt, output, Np)

transposition: t distrib(phi) --> tt_t distrib(theta):

• subroutine **transpos** theta2phi (input, Np s, output, Nt)

transposition: tt_t distrib(theta) --> t distrib(phi):

• subroutine **distribute_in_m** (buffer, Nt, Nr)

Performs a one-to-all communication of the contents of buffer. It is essentially a targeted version of mpi_scatter.

• subroutine **gather_from_m** (buffer, Nt, Nr)

Performs an all-to-one communication of the contents of buffer. It is essentially a targeted version of mpi_gather.

• subroutine blk_ts_start_init (m0)

Initialises blk_ts_start.

• subroutine sum_over_all_cpus_scal (val)

Subroutine to encapsulate sums across all the cpu's.

• subroutine sum_over_all_cpus_vect (val)

Subroutine to encapsulate mpi calls that sum arrays over all cpu's.

• subroutine wait_for_everyone ()

Encapsulate mpi barrier.

• subroutine **drs_minimize_dble** (array)

Encapsulate mpi_reduce min.

• subroutine drs_minimize_dble_scal (val)

Encapsulate mpi_reduce min (scalars).

• subroutine **drs_maximize_dble** (array)

Encapsulate mpi_reduce max.

• subroutine drs_maximize_dble_scal (val)

Encapsulate mpi_reduce max (scalars).

- subroutine **drs_gather_vars** (rank, val)
- subroutine **drs_bcast_dble** (array, num)
- subroutine **drs_bcast_int** (array, num)
- subroutine drs_bcast_dble_scal (val)
- subroutine drs_bcast_int_scal (val)
- subroutine **drs bcast logical scal** (val)
- subroutine drs_abort (error)
- subroutine mpi_cleanup ()

Variables

• integer mpi_size

How many CPU's are in use.

• integer mpi_rank

The rank of the present CPU.

- integer, dimension(:), allocatable, target **blk_ps_start**Start index of the blocks in m for each CPU.
- integer, dimension(:), allocatable, target blk_ps_size Size of the blocks in m for each CPU.
- integer, dimension(:), allocatable, target blk_t_start

 Start index of the blocks in theta dor each CPU.
- integer, dimension(:), allocatable, target blk_t_size Size of the blocks in theta for each CPU.
- integer, dimension(:), allocatable, target blk_ts_start
 Stores the index of the first nonzero l value in the block.
- integer, dimension(:), pointer mm

A convinience shorthand for blk_ts_start.

• integer blk_t_max_size

Maximum size of theta block per cpu.

• integer blk_ps_max_size

Maximum size of phi block per cpu.

5.16.1 Detailed Description

Provides initialisation and variables to be used with the mpi implementation.

5.16.2 Function Documentation

5.16.2.1 subroutine drs_mpi::blk_ts_start_init (integer,intent(in) *m0*)

Initialises blk_ts_start.

References blk_ps_max_size, blk_ps_start, blk_ts_start, mm, and mpi_rank.

Referenced by mpi_dims_init().

5.16.2.2 subroutine drs_mpi::distribute_in_m (double precision,dimension(:,:,:),intent(inout) buffer, integer,intent(in) Nt, integer,intent(in) Nr)

Performs a one-to-all communication of the contents of buffer. It is essentially a targeted version of mpi_scatter.

References blk_ps_size, blk_ps_start, mpi_rank, and mpi_size.

Referenced by drs_io::drs_open_output().

5.16.2.3 subroutine drs_mpi::drs_abort (integer,intent(in) error)

References mpi_rank.

Referenced by Benchmarkv1(), computeAndSaveAverage(), drs(), drs_init(), drs_mpi_init(), getProfile(), init(), drs_nonlinear::rhs(), StateAverage(), test_saveDXMer(), and YokoiPlots().

5.16.2.4 subroutine drs_mpi::drs_bcast_dble (double precision,dimension(:),intent(inout) array, integer,intent(in) num)

References mpi_size.

- 5.16.2.5 subroutine drs_mpi::drs_bcast_dble_scal (double precision,intent(inout) val)
- 5.16.2.6 subroutine drs_mpi::drs_bcast_int (integer,dimension(:),intent(inout) array, integer,intent(in) num)
- 5.16.2.7 subroutine drs_mpi::drs_bcast_int_scal (integer,intent(inout) val)
- 5.16.2.8 subroutine drs_mpi::drs_bcast_logical_scal (logical,intent(inout) val)
- 5.16.2.9 subroutine drs_mpi::drs_gather_vars (integer,dimension(:),intent(in) rank, double precision,dimension(:),intent(inout) val)

References mpi_rank, and mpi_size.

Referenced by drs_probes::save_field_coeffs(), and drs_probes::save_flow_coeffs().

5.16.2.10 subroutine drs_mpi::drs_maximize_dble (double precision,dimension(:),intent(inout) array)

Encapsulate mpi_reduce max.

References mpi_size.

5.16.2.11 subroutine drs mpi::drs maximize dble scal (double precision,intent(inout) val)

Encapsulate mpi_reduce max (scalars).

References mpi_size.

5.16.2.12 subroutine drs_mpi::drs_minimize_dble (double precision,dimension(:),intent(inout) array)

Encapsulate mpi_reduce min.

References mpi_size.

5.16.2.13 subroutine drs_mpi::drs_minimize_dble_scal (double precision,intent(inout) val)

Encapsulate mpi_reduce min (scalars).

References mpi_size.

5.16.2.14 subroutine drs_mpi::drs_mpi_init()

Gets initial values for mpi_size and mpi_rank. Allocates block indices accordingly.

References blk_ps_size, blk_ps_start, blk_t_size, blk_t_start, drs_abort(), mpi_rank, and mpi_size.

Referenced by drs_init(), init(), and test_saveDXMer().

Here is the call graph for this function:

5.16.2.15 subroutine drs_mpi::gather_from_m (double precision,dimension(:,:,:),intent(inout) buffer, integer,intent(in) Nt, integer,intent(in) Nr)

Performs an all-to-one communication of the contents of buffer. It is essentially a targeted version of mpi_gather.

References blk_ps_size, blk_ps_start, mpi_rank, and mpi_size.

Referenced by drs_io::drs_open_output().

5.16.2.16 subroutine drs_mpi::mpi_cleanup ()

Referenced by drs().

5.16.2.17 subroutine drs_mpi::mpi_dims_init (integer,intent(in) Nt, integer,intent(in) Np_s, integer,intent(in) m0, integer,intent(out) error)

Initializes mpi variables and sizes.

References blk_ps_max_size, blk_ps_size, blk_ps_start, blk_t_max_size, blk_t_size, blk_t_start, blk_ts_start_init(), and mpi_size.

Referenced by drs_init(), init(), and test_saveDXMer().

Here is the call graph for this function:

5.16.2.18 subroutine drs_mpi::sum_over_all_cpus_scal (double precision,intent(inout) val)

Subroutine to encapsulate sums across all the cpu's.

References mpi_size.

5.16.2.19 subroutine drs_mpi::sum_over_all_cpus_vect (double precision,dimension(:),intent(inout) *val*)

Subroutine to encapsulate mpi calls that sum arrays over all cpu's.

References mpi_size.

5.16.2.20 subroutine drs_mpi::transpos_phi2theta (double precision,dimension(0:nt, 1:blk_ps_size(mpi_rank),intent(in) input, integer,intent(in) Nt, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) output, integer,intent(out) Np)

transposition: t distrib(phi) --> tt_t distrib(theta): ~~~~~ input: t(0:Nt,Np_s) in (theta,phi) (distr. in phi) blk_ps_size() (p. 72),blk_ps_start() (p. 73) contain the local input dims in phi for all processors. blk_t_size() (p. 73),blk_t_start() (p. 73) contain the local output dims in theta. blk_ps_max_size,blk_t_max_size: maximum blocksizes in phi, theta. mpi_size,mpi_rank ir,tag: radial index,message-tag

output: tt_t(0:(Ntl-1),mpi_size*blk_ps_max_size) (distr. in theta) tt_t(0:(blk_t_max_size-1),Np) (dynamic physical dims!) ~~~~~ 04.10.96 M.A. original version (blocking).

References blk_ps_start, blk_t_start, and mpi_size.

Referenced by drs_transforms::m2phi_2D().

5.16.2.21 subroutine drs_mpi::transpos_theta2phi (double precision,dimension(0:(blk_-t_size(mpi_rank),intent(in) input, integer,intent(in) Np_s, double precision,dimension(0:nt,blk_ps_size(mpi_rank),intent(out) output, integer,intent(in) Nt)

transposition: tt_t distrib(theta) --> t distrib(phi): $\sim \sim \sim \sim \sim$ input: tt_t(0:Ntl,mpi_size*blk_ps_max_size) (transposed) tt_t(0:(blk_t_max_size-1),Np) (dynamic physical dims!)

blk_ps_size() (p. 72),**blk_ps_start()** (p. 73) contain the local output dims in phi for all pes. **blk_t_size()** (p. 73),**blk_t_start()** (p. 73) contain the local input dims in theta. blk_ps_max_size,blk_t_max_size: maximum blocksizes in phi, theta. mpi_size,mpi_rank ir,tag: radial index,message-tag

output: $t(0:Nt,Np_s)$ in (theta,phi) (distr. in phi) $\sim\sim\sim\sim\sim\sim$

04.10.96 M.A. original version.

References blk_ps_start, blk_t_start, and mpi_size.

Referenced by drs_transforms::ylmt(), and drs_transforms::ylmt_3D().

5.16.2.22 subroutine drs_mpi::wait_for_everyone ()

Encapsulate mpi barrier.

References mpi_size.

Referenced by need_to_step(), drs_debug::save_lmr_quantity(), and drs_debug::save_tpr_quantity().

5.16.3 Variable Documentation

5.16.3.1 integer drs_mpi::blk_ps_max_size

Maximum size of phi block per cpu.

Referenced by blk_ts_start_init(), and mpi_dims_init().

5.16.3.2 integer,dimension(:),allocatable,target drs_mpi::blk_ps_size

Size of the blocks in m for each CPU.

Referenced by drs_probes::average_unnormalised_field_l_spectrum(), drs_probes::average_unnormalised_flow_l_spectrum(), drs_field::calc_field_lspec(), drs_field::calc_field_mspec(), drs_field::calc_field_mspec(), drs_flow::calc_flow_lspec(), drs_flow::calc_flow_mspec(), distribute_in_m(), drs_comp::drs_comp_allocation(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_init(), drs_legendre::drs_legendre_allocation(), drs_mpi_init(), drs_nonlinear::drs_nonlinear_init(), drs_temp::drs_temp_allocation(), drs_io::dump_state(), gather_from_m(), kd_grothrate(), drs_legendre::legendre_init_new(), drs_probes::measure_lm(), mpi_dims_init(), drs_renderers::render_B_outside(), drs_probes::save_field_coeffs(), and drs_probes::save_flow_coeffs().

5.16.3.3 integer,dimension(:),allocatable,target drs_mpi::blk_ps_start

Start index of the blocks in m for each CPU.

Referenced drs probes::average unnormalised field 1 spectrum(), drs probes::average drs_probes::average_unnormalised_scalar_l_spectrum(), unnormalised_flow_l_spectrum(), drs_field::calc_field(), drs_field::calc_field_lspec(), drs_field::calc_field_mspec(), ts_start_init(), drs_field::calc_field_nspec(), drs_flow::calc_flow(), drs_flow::calc_flow_lspec(), drs_flow::calc_flow_mspec(), drs_flow::calc_flow_nspec(), drs_field::calc_rot_field(), drs_flow::calc_rot_flow(), distribute_in_m(), drs_field::drs_field_random_init(), drs_init(), drs_mpi_init(), drs_io::drs_open_output(), drs_temp::drs_temp_randomize(), drs_io::dump_state(), gather_from_m(), kd_grothrate(), drs_probes::l_spec_of_scalar_field(), drs_probes::m_spec_of_scalar_field(), drs_probes::measure_lm(), mpi_dims_init(), drs_transforms::my_div(), drs_transforms::my_rot(), drs_transforms::my_rotrot(), drs_probes::n_spec_of_scalar_field(), drs_probes::save_field_coeffs(), drs_probes::save_flow_coeffs(), drs_debug::save_lmr_quantity(), drs probes::save flow dissipation(), drs_probes::save_magnetic_dissipation(), drs nonlinear::save stuff(), transpos phi2theta(), and transpos theta2phi().

5.16.3.4 integer drs_mpi::blk_t_max_size

Maximum size of theta block per cpu.

Referenced by mpi dims init().

5.16.3.5 integer,dimension(:),allocatable,target drs_mpi::blk_t_size

Size of the blocks in theta for each CPU.

Referenced by drs_init(), drs_mpi_init(), drs_nonlinear::drs_nonlinear_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), init(), mpi_dims_init(), drs_nonlinear::save_stuff(), and test_saveDXMer().

5.16.3.6 integer,dimension(:),allocatable,target drs_mpi::blk_t_start

Start index of the blocks in theta dor each CPU.

Referenced by drs_probes::compute_helicities(), drs_mpi_init(), drs_probes::drs_probes_init(), drs_io::dump_state(), drs_probes::integrate_power_surf(), mpi_dims_init(), drs_probes::save_angular_momentum(), drs_nonlinear::save_stuff(), drs_debug::save_tpr_quantity(), selectEquatorMidShell(), transpos_phi2theta(), transpos_theta2phi(), drs_transforms::vectorField2Divergence(), and drs_transforms::vectorField2PolTor_common().

5.16.3.7 integer,dimension(:),allocatable,target drs_mpi::blk_ts_start

Stores the index of the first nonzero l value in the block.

Referenced by blk_ts_start_init(), drs_legendre::legendre_init_new(), drs_transforms::my_div(), drs_transforms::my_rot(), drs_transforms::my_rotrot(), drs_radial::radial_dr_ddr_3D_n2r(), drs_radial::radial_dr_ddr_3D_r2r(), and drs_nonlinear::save_stuff().

5.16.3.8 integer,dimension(:),pointer drs_mpi::mm

A convinience shorthand for blk_ts_start.

Referenced by $blk_ts_start_init()$, $drs_field::calc_field()$, $drs_flow::calc_flow()$, $drs_field::calc_rot_field()$, $drs_flow::calc_rot_flow()$, $drs_flow::$

5.16.3.9 integer drs_mpi::mpi_rank

The rank of the present CPU.

Referenced by drs_probes::average_unnormalised_field_l_spectrum(), drs_probes::average_unnormalised_flow_l_spectrum(), blk_ts_start_init(), drs_field::calc_field_lspec(), drs_field::calc_field_mspec(), drs_flow::calc_flow_lspec(), drs_flow::calc_flow_mspec(), distribute_in_m(), drs(), drs_abort(), drs_comp::drs_comp_allocation(), drs_field::drs_field_allocation(), drs_field::drs_field_random_init(), drs_flow::drs_flow_allocation(), drs_gather_vars(), drs_init(), drs_legendre::drs_legendre_allocation(), drs_probes::drs_probes::drs_probes_init(), drs_io::drs_open_output(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_temp::drs_temp_allocation(), drs_temp::drs_temp_randomize(), gather_from_m(), init(), kd_grothrate(), drs_legendre::legendre_init_new(), drs_probes::measure_lm(), need_to_step(), drs_renderers::render_B_outside(), drs_nonlinear::rhs(), drs_probes::save_field_coeffs(), drs_probes::save_flow_coeffs(), drs_nonlinear::save_stuff(), and test_saveDXMer().

5.16.3.10 integer drs_mpi::mpi_size

How many CPU's are in use.

Referenced by distribute_in_m(), drs_bcast_dble(), drs_gather_vars(), drs_maximize_dble(), drs_maximize_dble(), drs_minimize_dble_scal(), drs_mpi_init(), gather_from_m(), init(), mpi_dims_init(), drs_debug::save_lmr_quantity(), drs_debug::save_tpr_quantity(), sum_over_all_cpus_scal(), sum_over_all_cpus_vect(), test_saveDXMer(), transpos_phi2theta(), transpos_theta2phi(), and wait_for_everyone().

5.17 drs_nonlinear Namespace Reference

Takes care of contructing the nonlinear terms of all equations and other quantities in real space.

Functions

- subroutine **drs nonlinear init** ()
- subroutine evaluate_real_space ()
- subroutine **rhs** (h_old, h)
- subroutine **save_stuff** (nsample)

Encapsulate saving quantities in real and spectral space.

Variables

- double precision, allocatable rhs_NS_tor NS for Navier-Stokes.
- double precision, allocatable rhs_NS_pol
- double precision, allocatable rhs_IE_tor

IE for Induction Equation.

- double precision, allocatable rhs_IE_pol
- double precision, allocatable rhs_TE

TE for Temperature Equation.

- double precision, dimension(:,;;), allocatable **temp** t
- double precision, dimension(:,:,:), allocatable **flow_r_t**

Quantities in real space.

- double precision, dimension(:,:,:), allocatable flow t t
- double precision, dimension(:,:,:), allocatable flow_p_t
- double precision, dimension(:,:,:), allocatable **field_r_t**
- double precision, dimension(:,:,:), allocatable **field_t_t**
- double precision, dimension(:,:,:), allocatable field_p_t
- double precision, dimension(:,:,:), allocatable rot_flow_r_t
- double precision, dimension(:,:,:), allocatable rot_flow_t_t
- double precision, dimension(:,:,:), allocatable rot_flow_p_t
- double precision, dimension(:,:,:), allocatable $rot_field_r_t$
- double precision, dimension(:,:,:), allocatable $rot_field_t_t$
- double precision, dimension(:,:,:), allocatable rot_field_p_t
- integer, parameter $\mathbf{ncfl} = 5$
- double precision, dimension(ncfl) cfl

5.17.1 Detailed Description

Takes care of contructing the nonlinear terms of all equations and other quantities in real space.

5.17.2 Function Documentation

5.17.2.1 subroutine drs_nonlinear::drs_nonlinear_init ()

References drs_mpi::blk_ps_size, drs_mpi::blk_t_size, field_p_t, field_r_t, field_t_t, flow_p_t, flow_r_t, flow_t_t, drs_mpi::mpi_rank, drs_dims::Np, drs_dims::Nr, drs_dims::Nt_s, rhs_IE_pol, rhs_IE_tor, rhs_NS_pol, rhs_NS_tor, rhs_TE, rot_field_p_t, rot_field_r_t, rot_field_t_t, rot_flow_p_t, rot_flow_r_t, rot_flow_t_t, and temp_t.

Referenced by drs_init().

5.17.2.2 subroutine drs nonlinear::evaluate real space ()

References drs_field::calc_B(), drs_comp::calc_comp(), drs_temp::calc_temp(), drs_flow::calc_u(), drs_comp::comp, field_p_t, field_r_t, field_t_t, flow_p_t, flow_r_t, flow_t_t, rot_field_p_t, rot_field_r_t, rot_field_t_t, rot_flow_p_t, rot_flow_r_t, rot_flow_t_t, and temp_t.

Referenced by drs(), and drs_io::dump_state().

Here is the call graph for this function:

5.17.2.3 subroutine drs_nonlinear::rhs (double precision,intent(out) $h_{-}old$, double precision,intent(inout) h)

 $References\ cfl,\ drs_probes::check_resolution_Hartman(),\ drs_mpi::drs_abort(),\ drs_mpi::mpi_rank,\ drs_time::nsample,\ rhs_IE_pol,\ rhs_IE_tor,\ rhs_NS_pol,\ rhs_NS_tor,\ rhs_TE,\ drs_probes::Rm,\ drs_time::sampling_rate,\ save_stuff(),\ drs_time::steps,\ drs_time::transient,\ and\ drs_time::update_timestep().$

Referenced by drs().

Here is the call graph for this function:

5.17.2.4 subroutine drs_nonlinear::save_stuff (integer,intent(inout) nsample)

Encapsulate saving quantities in real and spectral space.

References drs_mpi::blk_ps_start, drs_mpi::blk_t_size, drs_mpi::blk_t_start, drs_mpi::blk_ts_start, cfl, drs_comp::comp, drs_comp::comp_profile_dr, drs_radial::drcoll, field_p_t, field_r_t, field_t_t, flow_p_t, drs_flow::flow_pol, flow_r_t, flow_t_t, drs_probes::measure(), drs_probes::measure_lm(), drs_mpi::mpi_rank, drs_dims::Np, drs_dims::Nr, drs_dims::Nt, drs_transforms::PolTor_common2PolTor_field(), drs_transforms::PolTor_common2PolTor_flow(), drs_radial::rcoll, rot_field_p_t, rot_field_r_t, rot_field_t_t, rot_flow_p_t, rot_flow_r_t, rot_flow_t_t, drs_temp::temp, drs_temp::temp_profile_dr, temp_t, drs_time::time, drs_time::time_last_sample, drs_time::update_time_last_sample(), drs_transforms::vectorField2PolTor_common().

Referenced by drs_io::dump_state(), and rhs().

5.17.3 Variable Documentation

5.17.3.1 double precision, dimension(ncfl) drs_nonlinear::cfl

Referenced by rhs(), and save_stuff().

5.17.3.2 double precision, dimension(:,:,:), allocatable drs_nonlinear::field_p_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.3 double precision,dimension(:,:,:),allocatable drs_nonlinear::field_r_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.4 double precision,dimension(:,;,:),allocatable drs_nonlinear::field_t_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.5 double precision, dimension(:,:,:), allocatable drs_nonlinear::flow_p_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.6 double precision,dimension(:,:,:),allocatable drs_nonlinear::flow_r_t

Quantities in real space.

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.7 double precision,dimension(:,:,:),allocatable drs_nonlinear::flow_t_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.8 integer,parameter drs_nonlinear::ncfl = 5

5.17.3.9 double precision, allocatable drs_nonlinear::rhs_IE_pol

Referenced by drs_nonlinear_init(), kd_grothrate(), rhs(), and update_field().

5.17.3.10 double precision, allocatable drs_nonlinear::rhs_IE_tor

IE for Induction Equation.

Referenced by drs_nonlinear_init(), kd_grothrate(), rhs(), and update_field().

5.17.3.11 double precision, allocatable drs_nonlinear::rhs_NS_pol

Referenced by drs_nonlinear_init(), rhs(), and update_flow().

5.17.3.12 double precision, allocatable drs_nonlinear::rhs_NS_tor

NS for Navier-Stokes.

Referenced by drs_nonlinear_init(), rhs(), and update_flow().

5.17.3.13 double precision, allocatable drs_nonlinear::rhs_TE

TE for Temperature Equation.

Referenced by drs_nonlinear_init(), rhs(), and update_temp().

5.17.3.14 double precision, dimension(:,;,:), allocatable drs_nonlinear::rot_field_p_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.15 double precision,dimension(:,:,:),allocatable drs_nonlinear::rot_field_r_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.16 double precision, dimension(:,:,:), allocatable drs nonlinear::rot field t t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.17 double precision,dimension(:,:,:),allocatable drs_nonlinear::rot_flow_p_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.18 double precision,dimension(:,:,:),allocatable drs_nonlinear::rot_flow_r_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.19 double precision,dimension(:,:,:),allocatable drs_nonlinear::rot_flow_t_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.17.3.20 double precision,dimension(:,:,:),allocatable drs_nonlinear::temp_t

Referenced by drs_nonlinear_init(), evaluate_real_space(), and save_stuff().

5.18 drs_probes Namespace Reference

This module implements some prbing facilities for the running models.

Functions

- subroutine drs probes allocation ()
- subroutine **drs_probes_init** (time)
- subroutine measure_lm ()
- subroutine average_unnormalised_flow_l_spectrum (urspec_avg)
- subroutine average_unnormalised_field_l_spectrum (Brspec_avg)
- subroutine average_unnormalised_scalar_l_spectrum (scalar, scalar_spec_avg)
- subroutine **l_spec_of_scalar_field** (field, spec)

Calculate the normalized power spectrum with respect to l of a scalar field.

• subroutine m_spec_of_scalar_field (field, spec)

Calculates the normalized power spectrum of a scalar field with respect to m.

• subroutine **n_spec_of_scalar_field** (field, spec)

Calculates the normalized power spectrum of a scalar quantity f with respect to the Chebyshev polynomials.

$$R_n = \sum_{l,m} N_l^m (f_{nl}^m)^2$$

• double precision **integrate_r** (input)

Performs the integration of the 1d real array.

• function **c_integrate_r** (input)

Performs the integration of the 1d complex array.

• subroutine save_magnetic_dissipation (mmax)

Computes the magnetic dissipation truncated up to degree.

• subroutine **save_flow_dissipation** (mmax)

Computes the viscous dissipation.

• subroutine save flow coeffs ()

Saves some flow coefficients at the present instant.

• subroutine save_field_coeffs ()

Saves some field coefficients at the present instant.

- subroutine **check_resolution_Hartman** (**Rm**, error)
- double precision **energy** (vr, vt, vp)

Computes the energy of a vector field based on its components. Only root contains the solution.

• subroutine **measure** (temp2_t, ur_t, utheta_t, uphi_t, rotu_r_t, rotu_theta_t, rotu_phi_t, Br_t, Btheta_t, Bphi_t, cfl)

- subroutine **compute_helicities** (ur, ut, up, rotu_r, rotu_t, rotu_p, helicity_south, helicity_north)
- subroutine compute_advection (ur, temp, advect)

Computes the heat transported by advection. as

$$Q(r) = \int \int u_r(r, \theta, \phi) * (\Theta(r, \theta, \phi) + T_S(r)) \sin \theta d\theta d\phi$$

.

• double precision nusselt (r)

Computes the Nusselt number, that is, the the ratio between the convective and the diffusive heat fluxes.

• subroutine **integrate_power_surf** (f, n, f_int)

Performs the integration in theta and phy of a function f raised to the power n. as

$$F(r) = \int \int f(r, \theta, \phi)^n \sin \theta d\theta d\phi$$

.

• subroutine **save_angular_momentum** (u_t, u_p)

computes and saves the three cartesian components of the total angular momentum

Variables

- double precision, dimension(:), allocatable ur_avg
- double precision, dimension(:), allocatable ut_avg
- double precision, dimension(:), allocatable up_avg
- double precision, dimension(:), allocatable **up2**
- double precision, dimension(:), allocatable ut2
- double precision, dimension(:), allocatable adv_avg
- double precision, dimension(:), allocatable t2_avg
- double precision, dimension(:), allocatable tspec_avg
- double precision, dimension(:), allocatable urspec avg
- double precision, allocatable Brspec_avg
- double precision groth
- double precision Ekin
- double precision EB
- · double precision nkes

energies from measure_lm:

- double precision nkea
- double precision etors
- double precision etora
- double precision drkes
- double precision drkea
- double precision mckes
- double precision mckea
- double precision Bnkes
- double precision **Bnkea**
- double precision Betors
- double precision Betora

- double precision Bdrkes
- double precision Bdrkea
- double precision Bmckes
- double precision Bmckea
- double precision, allocatable dOmega

Weights for volume integration.

• double precision $\mathbf{Rm} = 1.0d0$

5.18.1 Detailed Description

This module implements some prbing facilities for the running models.

5.18.2 Function Documentation

5.18.2.1 subroutine drs_probes::average_unnormalised_field_l_spectrum (double precision,dimension(0:nt_s),intent(inout) Brspec_avg)

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_field::field_pol, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Np_s, drs_dims::Nr, and drs_time::time_since_last_sample.

Referenced by measure_lm().

5.18.2.2 subroutine drs_probes::average_unnormalised_flow_l_spectrum (double precision,dimension(0:nt_s),intent(inout) urspec_avg)

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_flow::flow_pol, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Np_s, drs_dims::Nr, and drs_time::time_since_last_sample.

Referenced by measure_lm().

5.18.2.3 subroutine drs_probes::average_unnormalised_scalar_l_spectrum (double precision,dimension(0:nt_s,1:blk_ps_size(mpi_rank),intent(in) scalar, double precision,dimension(0:nt_s),intent(inout) scalar_spec_avg)

References drs_mpi::blk_ps_start, drs_dims::m0, drs_dims::Np_s, and drs_time::time_since_last_sample. Referenced by measure lm().

5.18.2.4 function drs_probes::c_integrate_r (input)

Performs the integration of the 1d complex array.

input in the radial direction.

Referenced by save_magnetic_dissipation().

5.18.2.5 subroutine drs_probes::check_resolution_Hartman (double precision,intent(in) *Rm*, integer,intent(out) *error*)

References drs_dims::m0, drs_dims::Np, drs_dims::Nr, and drs_dims::Nt.

Referenced by drs_nonlinear::rhs().

5.18.2.6 subroutine drs_probes::compute_advection (double precision,dimension(0:(blk_t_t_size(mpi_rank),intent(in) ur, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) temp, double precision,dimension(nr),intent(out) advect)

Computes the heat transported by advection. as

$$Q(r) = \int \int u_r(r, \theta, \phi) * (\Theta(r, \theta, \phi) + T_S(r)) \sin \theta d\theta d\phi$$

References integrate_power_surf(), and drs_temp::temp_profile.

Referenced by measure().

Here is the call graph for this function:

5.18.2.7 subroutine drs_probes::compute_helicities (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) ur, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) ut, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) up, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) rotu_r, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) rotu_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) rotu_p, double precision,intent(out) helicity_south, double precision,intent(out) helicity_north)

References drs_mpi::blk_t_start, dOmega, and drs_dims::Nt.

Referenced by measure().

5.18.2.8 subroutine drs probes::drs probes allocation ()

References adv_avg, drs_mpi::blk_t_size, Brspec_avg, dOmega, drs_mpi::mpi_rank, drs_dims::Nr, drs_dims::Nt_s, t2_avg, tspec_avg, up2, up_avg, ur_avg, urspec_avg, ut2, and ut_avg.

Referenced by drs_init(), and init().

5.18.2.9 subroutine drs_probes::drs_probes_init (double precision *time*)

References adv_avg, drs_mpi::blk_t_size, drs_mpi::blk_t_start, Brspec_avg, dOmega, drs_mpi::mpi_rank, drs_dims::Np, drs_dims::Nr, t2_avg, tspec_avg, up2, up_avg, drs_time::update_time_last_sample(), ur_avg, urspec_avg, ut2, and ut_avg.

Referenced by drs_init(), and init().

Here is the call graph for this function:

5.18.2.10 double precision drs_probes::energy (double precision,dimension(0:blk_t_size(mpi_rank),intent(in) vr, double precision,dimension(0:blk_t_size(mpi_rank),intent(in) vt, double precision,dimension(0:blk_t_size(mpi_rank),intent(in) vp)

Computes the energy of a vector field based on its components.

Only root contains the solution.

References dOmega.

Referenced by Benchmarkv1(), Benchmarkv2(), and measure().

5.18.2.11 subroutine drs_probes::integrate_power_surf (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) f, integer,intent(in) n, double precision,dimension(nr),intent(out) f_int)

Performs the integration in theta and phy of a function f raised to the power n. as

$$F(r) = \int \int f(r, \theta, \phi)^n \sin \theta d\theta d\phi$$

Parameters:

f The function to be integrated.

n The power it should be raised to.

f_int Integral as a function of r.

References drs mpi::blk t start.

Referenced by compute_advection(), and measure().

5.18.2.12 double precision drs_probes::integrate_r (double precision,dimension(nr),intent(in) input)

Performs the integration of the 1d real array.

input in the radial direction.

Referenced by measure_lm().

5.18.2.13 subroutine drs_probes::l_spec_of_scalar_field (double precision,dimension(0:nt_s,blk_-ps_size(mpi_rank),intent(in) field, double precision,dimension(0:nt_s),intent(out) spec)

Calculate the normalized power spectrum with respect to 1 of a scalar field.

Parameters:

field is in lmr space.

References drs_mpi::blk_ps_start, drs_dims::m0, and drs_dims::Np_s.

Referenced by drs_io::save_l_spec().

5.18.2.14 subroutine drs_probes::m_spec_of_scalar_field (double precision,dimension(0:nt_s,blk_-ps_size(mpi_rank),intent(in) field, double precision,dimension(m0*np_s+1),intent(out) spec)

Calculates the normalized power spectrum of a scalar field with respect to m.

Parameters:

field is in lmr space.

References drs_mpi::blk_ps_start.

Referenced by drs_io::save_m_spec().

5.18.2.15 subroutine drs_probes::measure (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) temp2_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) ur_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) utheta_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) uphi_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) rotu_r_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) rotu_theta_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) Br_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) Btheta_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) Btheta_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) Bphi_t, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) Bphi_t, double precision,dimension(:),intent(in) cfl)

References adv_avg, Bdrkea, Bdrkes, Betora, Betors, Bmckea, Bmckes, Bnkea, Bnkes, compute_advection(), compute_helicities(), drkea, drkes, EB, Ekin, energy(), etora, etors, groth, integrate_power_surf(), mckea, mckes, nkea, nkes, nusselt(), Rm, save_angular_momentum(), drs_time::steps, t2_avg, drs_time::time, drs_time::time_since_last_sample, drs_io_units::unit_cfl, drs_io_units::unit_eb, drs_io_units::unit_ek, drs_io_units::unit_nu, drs_io_units::unit_u_mid, up2, up_avg, ur_avg, ut2, and ut_avg.

Referenced by drs_nonlinear::save_stuff().

Here is the call graph for this function:

5.18.2.16 subroutine drs_probes::measure_lm ()

References average_unnormalised_field_l_spectrum(), average_unnormalised_flow_l_spectrum(), average_unnormalised_scalar_l_spectrum(), Bdrkea, Bdrkes, Betora, Betora, drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, Bmckea, Bmckea, Bnkea, Bnkea, Brspec_avg, drkea, drkea, etora, etora, drs_field::field_pol, drs_field::field_tor, drs_flow::flow_pol, drs_flow::flow_pol_avg, drs_flow::flow_pol_dr, drs_flow::flow_tor, drs_flow::flow_tor_avg, integrate_r(), drs_dims::m0, mckea, mckes, drs_mpi::mpi_rank, nkea, nkea, drs_dims::Np_s, drs_dims::Nt_s, save_field_coeffs(), save_flow_coeffs(), save_flow_dissipation(), save_magnetic_dissipation(), drs_temp::temp, drs_temp::temp_avg, drs_temp::temp_dr, drs_temp::temp_dr_avg, drs_time::time_since_last_sample, tspec_avg, and urspec_avg.

Referenced by drs_nonlinear::save_stuff().

Here is the call graph for this function:

5.18.2.17 subroutine drs_probes::n_spec_of_scalar_field (double precision,dimension(0:nt_-s,blk_ps_size(mpi_rank),intent(in) field, double precision,dimension(nr_s),intent(out) spec)

Calculates the normalized power spectrum of a scalar quantity f with respect to the Chebyshev polynomials.

 $R_n = \sum_{l,m} N_l^m (f_{nl}^m)^2$

Parameters:

field is in lmr space.

References drs_mpi::blk_ps_start, drs_dims::m0, and drs_dims::Np_s.

Referenced by drs_io::save_n_spec().

5.18.2.18 double precision drs_probes::nusselt (integer,intent(in) r)

Computes the Nusselt number, that is, the the ratio between the convective and the diffusive heat fluxes.

$$Nu = \frac{\partial (T+\Theta)/\partial r}{\partial T/\partial r}$$

Todo

Ito only works for serial runs. Needs to be parallelized.

References drs_temp::temp_dr, and drs_temp::temp_profile_dr.

Referenced by measure().

5.18.2.19 subroutine drs_probes::save_angular_momentum (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) u_t , double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) u_p)

computes and saves the three cartesian components of the total angular momentum

Todo

Split the saving part and move it to io.

Parameters:

- u_t Theta component of the flow in real (tpr) space.
- u_p Phi component of the flow in real (tpr) space.

References drs_mpi::blk_t_start, dOmega, drs_dims::m0, drs_time::time, and drs_io_units::unit_am. Referenced by measure().

5.18.2.20 subroutine drs_probes::save_field_coeffs ()

Saves some field coefficients at the present instant.

Todo

Should take a list of l's and m's and reply with a list of values Writing should be moved to io.

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_mpi::drs_gather_vars(), drs_field::field_pol, drs_field::field_tor, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Nr, drs_time::time, and drs_io_units::unit_koeb.

Referenced by measure_lm().

Here is the call graph for this function:

5.18.2.21 subroutine drs_probes::save_flow_coeffs ()

Saves some flow coefficients at the present instant.

Todo

Should take a list of l's and m's and reply with a list of values Writing should be moved to io.

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_mpi::drs_gather_vars(), drs_flow::flow_pol, drs_flow::flow_tor, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Nr, drs_time::time, and drs_io_units::unit koeu.

Referenced by measure_lm().

Here is the call graph for this function:

5.18.2.22 subroutine drs_probes::save_flow_dissipation (integer,intent(in) mmax)

Computes the viscous dissipation.

Todo

Separate computing from writing.

References drs_mpi::blk_ps_start, drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_tor, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, drs_dims::m0, drs_time::time, and drs_io_units::unit_dissu.

Referenced by measure_lm().

5.18.2.23 subroutine drs_probes::save_magnetic_dissipation (integer,intent(in) mmax)

Computes the magnetic dissipation truncated up to degree.

mmax.

References drs_mpi::blk_ps_start, c_integrate_r(), drs_field::field_pol, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor_ddr, drs_field::field_tor_dr, drs_field::field_tor_dr, drs_field::field_tor_lap, drs_dims::m0, drs_time::time, and drs_io_units::unit_dissB.

Referenced by measure_lm().

Here is the call graph for this function:

5.18.3 Variable Documentation

5.18.3.1 double precision, dimension(:), allocatable drs probes::adv avg

Referenced by drs_probes_allocation(), drs_probes_init(), drs_io::dump_state(), and measure().

5.18.3.2 double precision drs_probes::Bdrkea

Referenced by measure(), and measure_lm().

5.18.3.3 double precision drs_probes::Bdrkes

Referenced by measure(), and measure_lm().

5.18.3.4 double precision drs_probes::Betora

Referenced by measure(), and measure_lm().

5.18.3.5 double precision drs_probes::Betors

Referenced by measure(), and measure_lm().

5.18.3.6 double precision drs_probes::Bmckea

Referenced by measure(), and measure_lm().

5.18.3.7 double precision drs_probes::Bmckes

Referenced by measure(), and measure_lm().

5.18.3.8 double precision drs_probes::Bnkea

Referenced by measure(), and measure_lm().

5.18.3.9 double precision drs_probes::Bnkes

Referenced by measure(), and measure_lm().

5.18.3.10 double precision, allocatable drs_probes::Brspec_avg

Referenced by drs_probes_allocation(), drs_probes_init(), and measure_lm().

5.18.3.11 double precision, allocatable drs_probes::dOmega

Weights for volume integration.

 $Referenced\ by\ compute_helicities(),\ drs_probes_allocation(),\ drs_probes_init(),\ energy(),\ save_angular_momentum(),\ saveDXmeridional(),\ drs_io_DX::saveDXmeridional(),\ and\ saveIDLmeridional().$

5.18.3.12 double precision drs_probes::drkea

Referenced by measure(), and measure_lm().

5.18.3.13 double precision drs_probes::drkes

Referenced by measure(), and measure_lm().

5.18.3.14 double precision drs_probes::EB

Referenced by measure().

5.18.3.15 double precision drs_probes::Ekin

Referenced by Benchmarkv1(), Benchmarkv2(), and measure().

5.18.3.16 double precision drs_probes::etora

Referenced by measure(), and measure_lm().

5.18.3.17 double precision drs_probes::etors

Referenced by measure(), and measure_lm().

5.18.3.18 double precision drs_probes::groth

Referenced by measure().

5.18.3.19 double precision drs_probes::mckea

Referenced by measure(), and measure_lm().

5.18.3.20 double precision drs_probes::mckes

Referenced by measure(), and measure_lm().

5.18.3.21 double precision drs_probes::nkea

Referenced by measure(), and measure_lm().

5.18.3.22 double precision drs_probes::nkes

energies from measure_lm:

Referenced by measure(), and measure_lm().

5.18.3.23 double precision drs_probes::Rm = 1.0d0

Referenced by measure(), and drs_nonlinear::rhs().

5.18.3.24 double precision, dimension(:), allocatable drs_probes::t2_avg

Referenced by drs_probes_allocation(), drs_probes_init(), drs_io::dump_state(), and measure().

5.18.3.25 double precision, dimension(:), allocatable drs_probes::tspec_avg

Referenced by drs_probes_allocation(), drs_probes_init(), and measure_lm().

5.18.3.26 double precision, dimension(:), allocatable drs_probes::up2

Referenced by drs_probes_allocation(), drs_probes_init(), drs_io::dump_state(), and measure().

5.18.3.27 double precision, dimension(:), allocatable drs_probes::up_avg

Referenced by drs_probes_allocation(), drs_probes_init(), drs_io::dump_state(), and measure().

5.18.3.28 double precision, dimension(:), allocatable drs probes::ur avg

Referenced by drs_probes_allocation(), drs_probes_init(), drs_io::dump_state(), and measure().

5.18.3.29 double precision, dimension(:), allocatable drs_probes::urspec_avg

Referenced by drs_probes_allocation(), drs_probes_init(), and measure_lm().

5.18.3.30 double precision, dimension(:), allocatable drs_probes::ut2

Referenced by drs_probes_allocation(), drs_probes_init(), drs_io::dump_state(), and measure().

5.18.3.31 double precision, dimension(:), allocatable drs_probes::ut_avg

Referenced by drs_probes_allocation(), drs_probes_init(), drs_io::dump_state(), and measure().

5.19 drs_radial Namespace Reference

This module implements the radial domain and operations in it.

Functions

• subroutine drs_radial_init (riro)

Initializes the radial domain and the Chebyshev polynomials and their derivatives.

double precision, dimension(nr) radial_derivative_r2r (radarr)

Returns the first derivative of radarr. radarr is supposed to be given in direct space, derivative is returned in direct space.

• subroutine radial dr ddr 1D n2r (t, t1, t2)

Returns first radial derivative in t1, second derivative in t2. Input t is supposed to be given in spectral space. On output both t and its derivatives are returned in real space.

• subroutine radial_dr_ddr_1D_r2r (t, t1, t2)

A factor of 2 for each derivative is due to the mapping from the radial coordinate r to the Chebyshev coordinate x, where x runs from -1 to 1. The interrelation is r=eta/(1-eta)+0.5(x+1) see the def. of rcoll in the initialization routine. Obviously, d/dr = 2*d/dx.

• subroutine **radial_dr_ddr_3D_r2r** (t, t1, t2)

Calculates first and second radial derivatives of 3D-array in lmr space. Includes dealiasing in n.

• subroutine radial_dr_ddr_3D_n2r (t0, t1, t2)

Calculates first and second radial derivatives of 3D-array in lmn space. includes dealiasing in n. Transforms the original field to lmr space.

Variables

• double precision, dimension(:), allocatable **rcoll**

Radial collocation points for Chebychev polynomials.

• double precision, dimension(:), allocatable rcoll2

 $Squares\ of\ radial\ collocation\ points\ for\ Chebychev\ polynomials.$

• double precision, dimension(:), allocatable drcoll

Differences for radial collocation points for Chebychev polynomials.

- double precision, dimension(:,:), allocatable **poly**
- double precision, dimension(:,:), allocatable **poly_dr**
- double precision, dimension(:,:), allocatable poly_ddr
- integer, dimension(2) **b**

Index of the boundaries: b(1)=inner boundary; b(2)=outer boundary.

5.19.1 Detailed Description

This module implements the radial domain and operations in it.

5.19.2 Function Documentation

5.19.2.1 subroutine drs_radial::drs_radial_init (double precision,intent(in) riro)

Initializes the radial domain and the Chebyshev polynomials and their derivatives.

References b, drs_Chebyshev::Cheb_compute_dx_n2n(), drs_Chebyshev::Cheb_x, drs_Chebyshev::Chebyshev::Chebyshev::Chebyshev::Chebyshev::Chebyshev::Chebyshev::Chebyshev::Chebyshev::Chebyshev::Chebyshev::Nr_s, poly, poly_ddr, poly_dr, rcoll, and rcoll2.

Referenced by drs_init(), init(), test_drs_radial(), and test_saveDXMer().

Here is the call graph for this function:

5.19.2.2 double precision,dimension(nr) drs_radial::radial_derivative_r2r (double precision,dimension(nr),intent(in) radarr)

Returns the first derivative of *radarr*. *radarr* is supposed to be given in direct space, derivative is returned in direct space.

Since:

1.6.6

References drs_Chebyshev::Chebyshev_n2x(), and drs_Chebyshev::Chebyshev_x2n().

Referenced by drs_transforms::my_div(), drs_transforms::my_rotrot(), and test_radial_derivative_r2r().

Here is the call graph for this function:

5.19.2.3 subroutine drs_radial::radial_dr_ddr_1D_n2r (double precision,dimension(nr),intent(inout) t, double precision,dimension(nr),intent(out) t1, double precision,dimension(nr),intent(out) t2)

Returns first radial derivative in t1, second derivative in t2. Input t is supposed to be given in spectral space. On output both t and its derivatives are returned in real space.

Since:

1.6.6

References drs_Chebyshev::Cheb_compute_dx_ddx_n2x(), and drs_Chebyshev::Chebyshev_n2x(). Referenced by mk_green(), and radial_dr_ddr_1D_r2r().

Here is the call graph for this function:

5.19.2.4 subroutine drs_radial::radial_dr_ddr_1D_r2r (double precision,dimension(nr),intent(in) t, double precision,dimension(nr),intent(out) t1, double precision,dimension(nr),intent(out) t2)

A factor of 2 for each derivative is due to the mapping from the radial coordinate r to the Chebyshev coordinate x, where x runs from -1 to 1. The interrelation is r=eta/(1-eta)+0.5(x+1) see the def. of rcoll in the initialization routine. Obviously, d/dr = 2*d/dx. Returns first radial derivative in t1, second derivative in t2. Input t is supposed to be given in real space. On output both derivatives are returned in real space.

Since:

1.6.6

References drs_Chebyshev::Chebyshev_x2n(), and radial_dr_ddr_1D_n2r().

 $Referenced\ by\ test_radial_dr_ddr_1D_r2r(),\ and\ CrankNicholson::updateCrankNicholson_matrices().$

Here is the call graph for this function:

5.19.2.5 subroutine drs_radial::radial_dr_ddr_3D_n2r (double precision,dimension(0:nt_s, blk_ps_size(mpi_rank),intent(inout) t0, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank),intent(out) t1, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank),intent(out) t2)

Calculates first and second radial derivatives of 3D-array in lmn space. includes dealiasing in n. Transforms the original field to lmr space.

Parameters:

- t0 The original field. Imn space on entry, Imr space on exit.
- t1 The first radial drivative in lmr space.
- t2 The second radial drivative in lmr space.

Since:

1.6.6

References $drs_mpi::blk_ts_start$, $drs_Chebyshev::Cheb_compute_dx_ddx_n2x()$, and $drs_Chebyshev::Chebyshev_n2x()$.

Referenced by update_field(), update_flow(), and update_temp().

Here is the call graph for this function:

5.19.2.6 subroutine drs_radial::radial_dr_ddr_3D_r2r (double precision,dimension(0:nt_s, blk_ps_size(mpi_rank),intent(in) t, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank),intent(out) t1, double precision,dimension(0:nt_s, blk_ps_size(mpi_rank),intent(out) t2)

Calculates first and second radial derivatives of 3D-array in lmr space. Includes dealiasing in n.

Parameters:

- t0 The original field in lmr space.
- t1 The first radial drivative in lmr space.
- t2 The second radial drivative in lmr space.

Since:

1.6.6

References drs_mpi::blk_ts_start, and drs_Chebyshev::Cheb_compute_dx_ddx_x2x().

Referenced by drs(), $drs_comp::drs_comp_init()$, $drs_field::drs_field_init()$, $drs_flow::drs_flow_init()$, and $drs_temp_init()$.

Here is the call graph for this function:

5.19.3 Variable Documentation

5.19.3.1 integer,dimension(2) drs_radial::b

Index of the boundaries: b(1)=inner boundary; b(2)=outer boundary.

Referenced by drs_radial_init().

5.19.3.2 double precision, dimension(:), allocatable drs_radial::drcoll

Differences for radial collocation points for Chebychev polynomials.

Referenced by cacheTemperatureProfile(), drs_field::calc_field_lspec(), drs_field::calc_field_mspec(), drs_flow::calc_flow_lspec(), drs_flow::calc_flow_mspec(), drs_radial_init(), redefine_radial_coordinate(), drs_nonlinear::save_stuff(), and selectEquatorMidShell().

5.19.3.3 double precision, dimension(:,:), allocatable drs radial::poly

Referenced by drs_radial_init(), and CrankNicholson::updateCrankNicholson_matrices().

5.19.3.4 double precision, dimension(:,:), allocatable drs_radial::poly_ddr

Referenced by drs_radial_init(), and CrankNicholson::updateCrankNicholson_matrices().

5.19.3.5 double precision, dimension(:,:), allocatable drs radial::poly dr

Referenced by drs_radial_init(), and CrankNicholson::updateCrankNicholson_matrices().

5.19.3.6 double precision, dimension(:), allocatable drs_radial::rcoll

Radial collocation points for Chebychev polynomials.

Referenced by drs_field::apply_field_tor_BC(), Benchmarkv1(), cacheTemperatureProfile(), drs_field::calc_field(), drs_flow::calc_flow(), drs_flow::calc_flow_lspec(), drs_flow::calc_flow_mspec(), drs_flow::calc_flow_nspec(), drs_field::calc_rot_field(), drs_flow::calc_rot_flow(), drs_comp::drs_comp_init(), drs_comp::drs_comp_reset(), drs_field::drs_field_random_init(), drs_radial_init(), drs temp::drs temp init(), drs temp::drs temp randomize(), getProfile(), kd grothrate(), transforms::PolTor_common2PolTor_flow(), redefine_radial_coordinate(), drs_nonlinear::save_stuff(), drs_io_DX::saveDXmeridional(), saveDXmeridional(), drs_io_DX::saveDXmeridional3DVec(), drs_-io_DX::saveDXmeridional3DVec(), drs_-io_DX::saveDXmeridional3DX::saveDXmeridional3DX::saveDXmeridional3DX::saveDXmeridional3DX::saveDXmeridio io DX::saveDXvolume(), drs io DX::saveDXvolume3DVec(), drs io DX::saveDXvolume v2(), saveI-DLmeridional(), selectEquatorMidShell(), test radial colocation points(), test radial derivative r2r(), test_radial_dr_ddr_1D_r2r(), test_vectorField2Divergence(), update_flow(), drs_temp::update_temp_lap(), CrankNicholson::updateCrankNicholson_matrices(), drs_transforms::vectorField2Divergence(), and drs transforms::vectorField2PolTor common().

5.19.3.7 double precision, dimension(:), allocatable drs_radial::rcoll2

Squares of radial collocation points for Chebychev polynomials.

Referenced by drs_field::calc_field(), drs_field::calc_field_lspec(), drs_field::calc_field_mspec(), drs_field::calc_field_mspec(), drs_field::calc_field_mspec(), drs_field::calc_field_mspec(), drs_field::calc_field_mspec(), drs_field::calc_field_mspec(), drs_comp::drs_comp_init(), drs_comp::drs_comp_init(), drs_comp::drs_comp_init(), drs_transforms::my_div(), drs_transforms::my_rotrot(), drs_transforms::PolTor_common2PolTor_field(), redefine_radial_coordinate(), test_radial_derivative_r2r(), test_radial_dr_ddr_1D_r2r(), drs_field::update_field_pol_lap(), drs_field::update_field_tor_lap(), drs_field::update_flow_tor_lap(), drs_temp::update_temp_lap(), CrankNicholson::updateCrankNicholson_matrices(), drs_transforms::vectorField2Divergence(), and drs_transforms::vectorField2PolTor_common().

5.20 drs_renderers Namespace Reference

Functions

- subroutine drs_renderers_allocation (what)
- subroutine render (what)

Makes a decision about what to render.

Numbers are coded as:

 $\sim\sim\sim\sim\sim a$ b c de $|\ |\ |\ |>e$ - component 1, 2 or 3 for vectors, irrelevant for scalars $|\ |\ |>d$ - coordinate system or stream lines $|\ |\ |>c$ - quantity to be ploted $|\ |>b$ - curl, gradient or divergence or $0\ |>a$ - scalar product with selection or 0.

- subroutine render_ur ()
- subroutine render_u ()
- subroutine render_Br ()
- subroutine render_Bt ()
- subroutine render_Bp ()

Renders the azimuthal component of the magnetic field.

• subroutine render_Bz ()

Renders the z component of the magnetic field.

• subroutine **render_B** ()

Render all three spherical components of the magnetic field.

• subroutine render_B_outside ()

Render all three spherical components of the magnetic field outside the outer core.

• subroutine render_rotu_r ()

Renders the radial component of the curl of the flow.

• subroutine render_rotu ()

Renders all three spherical components of the curl of the flow (vorticity).

• subroutine render_up ()

u_phi:

• subroutine render_rotu_p ()

rot(u)_phi:

• subroutine **render_ut** ()

u_theta:

• subroutine render_rotu_t ()

rot(u)_theta:

• subroutine render_uz ()

 u_z

• subroutine render_rotu_z ()

 $rot(u)_z$:

• subroutine render_temperature_perturbation ()

Renders the temperature perturbation.

• subroutine render temperature ()

Renders the total temperature.

• subroutine render_helicity ()

Renders helicity.

- subroutine render_temprature_grad_r ()
- subroutine render_streamlines_t ()
- subroutine render_poloidal_streamlines ()

Renders the poloidal flow streamlines.

• subroutine render radial streamfunction ()

radial stream function for the flow

Variables

- double precision, dimension(:,:,:), allocatable **render_out**
- double precision, allocatable XX
- double precision, allocatable YY
- double precision, allocatable **ZZ**

5.20.1 Function Documentation

5.20.1.1 subroutine drs_renderers::drs_renderers_allocation (integer,intent(in) what)

References drs_dims::Np, drs_dims::Nr, drs_dims::Nt, render_out, XX, YY, and ZZ. Referenced by init().

5.20.1.2 subroutine drs renderers::render (integer,intent(in) what)

Makes a decision about what to render.

Numbers are coded as:

 $\sim\sim\sim\sim\sim$ a b c d e | | | | | > e - component 1, 2 or 3 for vectors, irrelevant for scalars | | | > d - coordinate system or stream lines | | > c - quantity to be ploted | > b - curl, gradient or divergence or 0 > a - scalar product with selection or 0. e = 1, 2 or 3 for first second or third coordinate or meridional, azimuthal and poloidal streamlines 1 or 2 for total or anomaly scalar fiels 4 for all three coordinates d = 1, 2 or 3 for cartesian (x,y,x), spherical (r,t,p) or cyllindrical (s, p, z) components respectively, 4 for streamlines, 0 for none c = 1 for the flow 2 for the magetic field 3 for the temperature field 4 for the composition field 5 for the magetic field outside the core (up to ro+1) b = 1 for the curl 2 for the gradient 3 for the divergence 0 for nothing a = 1 for scalar product with flow 2 for scalar product with field 0 for nothing $\sim\sim\sim\sim\sim\sim$

For example, if I want the meridional (spherical coordinates) component of the curl of the flow, a=0, b=1, c=1, d=2, e=2 so

Parameters:

what = 01122

References render_B(), render_B_outside(), render_Bp(), render_Br(), render_Bt(), render_Bz(), render_helicity(), render_poloidal_streamlines(), render_rotu(), render_rotu_p(), render_rotu_r(), render_rotu_t(), render_rotu_z(), render_streamlines_t(), render_temperature(), render_temperature_perturbation(), render_u(), render_up(), render_ur(), render_ut(), and render_uz().

Referenced by drs2dx().

Here is the call graph for this function:

5.20.1.3 subroutine drs_renderers::render_B ()

Render all three spherical components of the magnetic field.

 $References \ drs_field:: calc_field(), \ drs_field:: field_pol, \ drs_field:: field_pol_ddr, \ drs_field:: field_pol_dr, \ drs_field:: field_tor_ddr, \ drs_field:: field_tor_ddr, \ XX, \ YY, \ and \ ZZ.$

Referenced by render().

Here is the call graph for this function:

5.20.1.4 subroutine drs_renderers::render_B_outside ()

Render all three spherical components of the magnetic field outside the outer core.

References drs_mpi::blk_ps_size, drs_field::calc_field(), drs_field::field_pol, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor_ddr, drs_field::field_tor_dr, drs_mpi::mpi_rank, drs_dims::Nt_s, XX, YY, and ZZ.

Referenced by render().

Here is the call graph for this function:

5.20.1.5 subroutine drs_renderers::render_Bp ()

Renders the azimuthal component of the magnetic field.

References drs_field::calc_field(), drs_field::field_pol, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor_dr, drs_field::field_tor_dr, and render_out.

Referenced by render().

Here is the call graph for this function:

5.20.1.6 subroutine drs_renderers::render_Br ()

References drs_field::calc_field(), drs_field::field_pol, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor_dr, drs_field::field_tor_dr, and render_out.

Referenced by render().

Here is the call graph for this function:

5.20.1.7 subroutine drs_renderers::render_Bt()

 $References \ drs_field:: calc_field(), \ drs_field:: field_pol, \ drs_field:: field_pol_ddr, \ drs_field:: field_pol_dr, \ drs_field:: field_tor_ddr, \ drs_field:: field_tor_dr, \ and \ render_out.$

Referenced by render().

Here is the call graph for this function:

5.20.1.8 subroutine drs_renderers::render_Bz()

Renders the z component of the magnetic field.

References drs_field::calc_field(), drs_legendre::costheta, drs_field::field_pol, drs_field::field_pol_ddr, drs_field::field_tor, drs_field::field_tor_ddr, drs_field::field_tor_dr, drs_field::fiel

Referenced by render().

Here is the call graph for this function:

5.20.1.9 subroutine drs_renderers::render_helicity ()

Renders helicity.

 $References \ drs_flow::calc_flow(), \ drs_flow::flow_pol, \ drs_flow::flow_pol_ddr, \ drs_flow::flow_pol_dr, \ drs_flow::flow_tor, \ drs_flow::flow_tor_ddr, \ drs_flow::flow_tor_dr, \ and \ render_out.$

Referenced by render().

Here is the call graph for this function:

5.20.1.10 subroutine drs_renderers::render_poloidal_streamlines ()

Renders the poloidal flow streamlines.

 $References\ drs_flow::flow_pol,\ drs_dims::m0,\ drs_dims::Np_s,\ drs_dims::Nt_s,\ render_out,\ and\ drs_transforms::ylmb().$

Referenced by render().

Here is the call graph for this function:

5.20.1.11 subroutine drs renderers::render radial streamfunction ()

radial stream function for the flow

References drs_flow::flow_tor, render_out, and drs_transforms::ylmb().

Here is the call graph for this function:

5.20.1.12 subroutine drs_renderers::render_rotu ()

Renders all three spherical components of the curl of the flow (vorticity).

References drs_flow::calc_rot_flow(), drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_tor, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, XX, YY, and ZZ.

Referenced by render().

Here is the call graph for this function:

5.20.1.13 subroutine drs_renderers::render_rotu_p ()

rot(u)_phi:

 $References\ drs_flow:: calc_rot_flow(),\ drs_flow:: flow_pol,\ drs_flow:: flow_pol_ddr,\ drs_flow:: flow_pol_ddr,\ drs_flow:: flow_tor_ddr,\ drs_f$

Referenced by render().

Here is the call graph for this function:

5.20.1.14 subroutine drs_renderers::render_rotu_r ()

Renders the radial component of the curl of the flow.

References drs_flow::calc_rot_flow(), drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow tor, drs_flow::flow tor ddr, drs_flow::flow tor dr, and render out.

Referenced by render().

Here is the call graph for this function:

5.20.1.15 subroutine drs_renderers::render_rotu_t()

rot(u)_theta:

 $References\ drs_flow:: calc_rot_flow(),\ drs_flow:: flow_pol,\ drs_flow:: flow_pol_ddr,\ drs_flow:: flow_pol_ddr,\ drs_flow:: flow_tor_ddr,\ drs_f$

Referenced by render().

Here is the call graph for this function:

5.20.1.16 subroutine drs renderers::render rotu z ()

rot(u)_z:

References drs_flow::calc_rot_flow(), drs_legendre::costheta, drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, drs_flow::flow_tor, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, drs_legendre::pi, and render_out.

Referenced by render().

Here is the call graph for this function:

5.20.1.17 subroutine drs_renderers::render_streamlines_t()

References drs_legendre::costheta, drs_legendre::dleg, drs_flow::flow_pol, drs_dims::m0, drs_dims::Nr, drs_dims::Nt_s, and render_out.

Referenced by render().

5.20.1.18 subroutine drs_renderers::render_temperature ()

Renders the total temperature.

References drs_comp::calc_comp(), drs_comp::comp, drs_comp::comp_profile, drs_dims::Np, drs_dims::Nr, drs_dims::Nt, render_out, render_temperature_perturbation(), and drs_temp::temp_profile.

Referenced by render().

Here is the call graph for this function:

5.20.1.19 subroutine drs_renderers::render_temperature_perturbation ()

Renders the temperature perturbation.

References drs_temp::calc_temp(), and render_out.

Referenced by render(), and render_temperature().

Here is the call graph for this function:

5.20.1.20 subroutine drs_renderers::render_temprature_grad_r()

References drs_dims::Np, drs_dims::Nr, drs_dims::Nt, render_out, drs_temp::temp, and drs_transforms::ylmb().

Here is the call graph for this function:

5.20.1.21 subroutine drs_renderers::render_u ()

 $References \ drs_flow::calc_flow(), \ drs_flow::flow_pol, \ drs_flow::flow_pol_ddr, \ drs_flow::flow_pol_dr, \ drs_flow::flow_tor, \ drs_flow::flow_tor_ddr, \ drs_flow::flow_tor_dr, \ XX, \ YY, \ and \ ZZ.$

Referenced by render().

Here is the call graph for this function:

5.20.1.22 subroutine drs_renderers::render_up ()

u_phi:

References drs_flow::calc_flow(), drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_tor, drs_flow::flow_tor_ddr, drs_flow::flow_tor_ddr, and render_out.

Referenced by render().

Here is the call graph for this function:

5.20.1.23 subroutine drs_renderers::render_ur ()

 $References \ drs_flow::calc_flow(), \ drs_flow::flow_pol, \ drs_flow::flow_pol_ddr, \ drs_flow::flow_pol_dr, \ drs_flow::flow_tor, \ drs_flow::flow_tor_ddr, \ drs_flow::flow_tor_dr, \ and \ render_out.$

Referenced by render().

Here is the call graph for this function:

5.20.1.24 subroutine drs_renderers::render_ut ()

u_theta:

 $References \ drs_flow::calc_flow(), \ drs_flow::flow_pol, \ drs_flow::flow_pol_ddr, \ drs_flow::flow_pol_dr, \ drs_flow::flow_tor, \ drs_flow::flow_tor_ddr, \ drs_flow::flow_tor_dr, \ and \ render_out.$

Referenced by render().

Here is the call graph for this function:

5.20.1.25 subroutine drs_renderers::render_uz()

 u_z

References drs_flow::calc_flow(), drs_legendre::costheta, drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, drs_flow::flow_tor, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, drs_legendre::pi, and render_out.

Referenced by render().

Here is the call graph for this function:

5.20.2 Variable Documentation

5.20.2.1 double precision,dimension(:,:,:),allocatable drs_renderers::render_out

Referenced by drs2dx(), $drs_renderers_allocation()$, $render_Bp()$, $render_Br()$, $render_Bt()$, $render_bz()$, $render_helicity()$, $render_poloidal_streamlines()$, $render_radial_streamfunction()$, $render_rotu_p()$, $render_rotu_r()$, $render_rotu_t()$, $render_rotu_z()$, $render_streamlines_t()$, $render_temperature()$, $render_temperature_perturbation()$, $render_temperature_grad_r()$, $render_up()$, $render_ur()$, $render_ut()$, and $render_uz()$.

5.20.2.2 double precision, allocatable drs renderers::XX

Referenced by drs2dx(), $drs_renderers_allocation()$, $render_B()$, $render_B_outside()$, $render_rotu()$, and $render_u()$.

5.20.2.3 double precision, allocatable drs_renderers::YY

 $Referenced\ by\ drs2dx(),\ drs_renderers_allocation(),\ render_B(),\ render_B_outside(),\ render_rotu(),\ and\ render_u().$

5.20.2.4 double precision, allocatable drs_renderers::ZZ

Referenced by drs2dx(), drs_renderers_allocation(), render_B(), render_B_outside(), render_rotu(), and render_u().

5.21 drs_temp Namespace Reference

Temperature related operations.

Functions

• subroutine **drs_temp_allocation** ()

Allocates the temperature related variables.

• subroutine **drs_temp_init** ()

Precomputes the adimensional radial temperature profile.

• character(len=16) **tempProfName** ()

Outputs a human readable name for the temperature profiles.

• subroutine drs_temp_reset ()

Resets the temperature and its derivatives to zero.

• subroutine update_temp_lap ()

Recomputes and caches the laplacian of the temperature.

- subroutine **drs_temp_randomize** (noise)
- subroutine apply_temp_BC_RHS (val)

Boundary conditions for the temperature. For fixed temperature, the value of the anomaly is set to be zero.

• subroutine calc_temp (temp_t)

Computes the temperature anomaly in real space.

Variables

- double precision, dimension(:,:,:), allocatable temp
- double precision, dimension(:,:,:), allocatable **temp_dr**
- double precision, dimension(:,:,:), allocatable temp_ddr
- double precision, dimension(:,:,:), allocatable **temp_lap**
- double precision, dimension(:,:,:), allocatable $temp_avg$
- double precision, dimension(:), allocatable **temp_dr_avg**
- double precision, dimension(:), allocatable **temp_profile**
- double precision, dimension(:), allocatable **temp_profile_dr**

5.21.1 Detailed Description

Temperature related operations.

5.21.2 Function Documentation

5.21.2.1 subroutine drs_temp::apply_temp_BC_RHS (double precision,dimension(nr),intent(inout) *val*)

Boundary conditions for the temperature. For fixed temperature, the value of the anomaly is set to be zero.

Todo

make this value depend on l and m when we can specify the full 2D anomaly at the boundaries.

Referenced by drs(), and update_temp().

5.21.2.2 subroutine drs_temp::calc_temp (double precision,dimension(0:blk_t_size(mpi_rank),intent(out) temp_t)

Computes the temperature anomaly in real space.

References temp, and drs_transforms::ylmb().

Referenced by Benchmarkv1(), Benchmarkv2(), drs_nonlinear::evaluate_real_space(), and drs_renderers::render_temperature_perturbation().

Here is the call graph for this function:

5.21.2.3 subroutine drs_temp::drs_temp_allocation ()

Allocates the temperature related variables.

References drs_mpi::blk_ps_size, drs_mpi::mpi_rank, drs_dims::Nr, drs_dims::Nt_s, temp, temp_avg, temp_ddr, temp_dr, temp_dr_avg, temp_lap, temp_profile, and temp_profile_dr.

Referenced by drs_init(), and init().

5.21.2.4 subroutine drs_temp::drs_temp_init ()

Precomputes the adimensional radial temperature profile.

 $References\ drs_dims::Nr,\ drs_radial::radial_dr_ddr_3D_r2r(),\ drs_radial::rcoll,\ drs_radial::rcoll2,\ temp_temp_ddr,\ temp_profile,\ temp_profile_dr,\ tempProfName(),\ and\ update_temp_lap().$

Referenced by drs_init(), getProfile(), and init().

Here is the call graph for this function:

5.21.2.5 subroutine drs_temp::drs_temp_randomize (double precision,intent(in) noise)

References drs_mpi::blk_ps_start, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nt_s, drs_legendre::pi, drs_radial::rcoll, and temp.

5.21.2.6 subroutine drs_temp::drs_temp_reset ()

Resets the temperature and its derivatives to zero.

References temp, temp_ddr, and temp_dr.

5.21.2.7 character(len=16) drs_temp::tempProfName ()

Outputs a human readable name for the temperature profiles.

Since:

1.6.1

Referenced by drs_temp_init().

5.21.2.8 subroutine drs_temp::update_temp_lap()

Recomputes and caches the laplacian of the temperature.

References drs_legendre::llp1, drs_dims::Nr, drs_radial::rcoll, drs_radial::rcoll2, temp, temp_ddr, temp_dr, and temp_lap.

Referenced by drs_temp_init(), and update_temp().

5.21.3 Variable Documentation

5.21.3.1 double precision,dimension(:,:,:),allocatable drs_temp::temp

Referenced by Benchmarkv1(), calc_temp(), drs(), drs_io::drs_load_state(), drs_temp_allocation(), drs_temp_init(), drs_temp_randomize(), drs_temp_reset(), getProfile(), drs_probes::measure_lm(), drs_renderers::render_temprature_grad_r(), drs_io::save_l_spec(), drs_io::save_m_spec(), drs_io::save_n_spec(), drs_io::save_state(), drs_nonlinear::save_stuff(), StateAverage(), update_temp(), and update_temp_lap().

5.21.3.2 double precision, dimension(:,:,:), allocatable drs_temp::temp_avg

Referenced by drs_temp_allocation(), drs_io::dump_state(), drs_probes::measure_lm(), and StateAverage().

5.21.3.3 double precision, dimension(:,;,;), allocatable drs_temp::temp_ddr

Referenced by drs(), drs_temp_allocation(), drs_temp_init(), drs_temp_reset(), update_temp(), and update_temp_lap().

5.21.3.4 double precision,dimension(:,:,:),allocatable drs_temp::temp_dr

Referenced by drs(), drs_temp_allocation(), drs_temp_init(), drs_temp_reset(), drs_probes::measure_lm(), drs_probes::nusselt(), update_temp(), and update_temp_lap().

5.21.3.5 double precision, dimension(:), allocatable drs_temp::temp_dr_avg

Referenced by drs_temp_allocation(), drs_io::dump_state(), and drs_probes::measure_lm().

5.21.3.6 double precision, dimension(:,;;:), allocatable drs temp::temp lap

Referenced by drs_temp_allocation(), update_temp(), and update_temp_lap().

5.21.3.7 double precision, dimension(:), allocatable drs_temp::temp_profile

Referenced by cacheTemperatureProfile(), drs_probes::compute_advection(), drs_temp_allocation(), drs_temp_init(), drs_io::dump_state(), getProfile(), and drs_renderers::render_temperature().

5.21.3.8 double precision,dimension(:),allocatable drs_temp::temp_profile_dr

Referenced by drs_temp_allocation(), drs_temp_init(), drs_probes::nusselt(), and drs_nonlinear::save_stuff().

5.22 drs_time Namespace Reference

Module to deal with time. It deals with both wall time and simulation time. It also deals wit the time-stepping.

Functions

- subroutine **drs_time_init** ()
- subroutine drs_time_update ()

Updates the current simulation time and step index.

• subroutine update_timestep (cfl, h, h_old, stat)

Updates the time-step according to the cfl numbers.

• subroutine **update_time_last_sample** (tnew)

Updates the time we last took a sample of some quantities.

Variables

• double precision time_start

The simulation time before the first step.

• double precision time

The simulation time.

• double precision max_time

The maximum simulation time.

• double precision h

The simulation time-step.

• double precision h old

The simulation time step at the previous step.

• double precision **drift**

The drift rate in radians per simulation time unit.

• double precision time_last_sample

Time we last saved the probes values.

• double precision time_since_last_sample

Time since we last saved the probes values.

logical variable_h

Do we have a variable time step?

• real cpu_time_start

Wall time when we started the run in seconds.

• real cpu_time_now

Wall time now, in seconds.

• real cpu_time_first_step

Wall time after we finished the first Newton step, in seconds.

• real cpu_max_time

The maximum wall time in hours.

• integer transient

How many steps to consider as a transient and discard?

• integer sampling_rate

The sampling rate in integer steps.

integer stepmax

The maximum number of steps to take.

• integer nsample

How many samples we took so far.

• integer steps

Steps taken so far in total (includes stepstart).

• integer stepstart

The step count we start the run with.

- double precision, dimension(3), target **dtimestep**
- integer, dimension(5), target **imeasure**

5.22.1 Detailed Description

Module to deal with time. It deals with both wall time and simulation time. It also deals wit the time-stepping.

5.22.2 Function Documentation

5.22.2.1 subroutine drs_time::drs_time_init ()

References drift, dtimestep, h, imeasure, max_time, nsample, sampling_rate, stepmax, steps, time, and transient.

Referenced by drs_init(), and init().

5.22.2.2 subroutine drs_time::drs_time_update ()

Updates the current simulation time and step index.

References h, steps, and time.

Referenced by drs().

5.22.2.3 subroutine drs_time::update_time_last_sample (double precision *tnew*)

Updates the time we last took a sample of some quantities.

References time_last_sample.

Referenced by drs_probes::drs_probes_init(), and drs_nonlinear::save_stuff().

5.22.2.4 subroutine drs_time::update_timestep (double precision,dimension(:),intent(in) cfl, double precision,intent(inout) h, double precision,intent(out) h_old , integer,intent(out) stat)

Updates the time-step according to the cfl numbers.

References variable_h.

Referenced by drs_nonlinear::rhs().

5.22.3 Variable Documentation

5.22.3.1 real drs_time::cpu_max_time

The maximum wall time in hours.

Referenced by drs_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), and need_to_step().

5.22.3.2 real drs_time::cpu_time_first_step

Wall time after we finished the first Newton step, in seconds.

Referenced by drs().

5.22.3.3 real drs_time::cpu_time_now

Wall time now, in seconds.

Referenced by drs().

5.22.3.4 real drs_time::cpu_time_start

Wall time when we started the run in seconds.

Referenced by drs_init(), and need_to_step().

5.22.3.5 double precision drs_time::drift

The drift rate in radians per simulation time unit.

Referenced by drs_init(), drs_time_init(), init(), and drs_io_par::write_parp().

5.22.3.6 double precision, dimension(3), target drs_time::dtimestep

Referenced by drs_init(), and drs_time_init().

5.22.3.7 double precision drs_time::h

The simulation time-step.

Referenced by drs(), drs_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_time_init(), drs_time_update(), and drs_io_par::write_parp().

5.22.3.8 double precision drs_time::h_old

The simulation time step at the previous step.

Referenced by drs(), and drs_init().

5.22.3.9 integer,dimension(5),target drs_time::imeasure

Referenced by drs_init(), and drs_time_init().

5.22.3.10 double precision drs_time::max_time

The maximum simulation time.

Referenced by drs_time_init(), and need_to_step().

5.22.3.11 integer drs_time::nsample

How many samples we took so far.

Referenced by drs_init(), drs_time_init(), drs_io::dump_state(), and drs_nonlinear::rhs().

5.22.3.12 integer drs_time::sampling_rate

The sampling rate in integer steps.

Referenced by drs(), drs_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_time_init(), drs_nonlinear::rhs(), and drs_io_par::write_parp().

5.22.3.13 integer drs_time::stepmax

The maximum number of steps to take.

Referenced by drs_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_time_init(), need_to_step(), and drs_io_par::write_parp().

5.22.3.14 integer drs_time::steps

Steps taken so far in total (includes stepstart).

Referenced by drs(), drs_init(), drs_io::drs_load_state(), drs_time_init(), drs_time_update(), drs_io::dump_state(), kd_grothrate(), drs_probes::measure(), need_to_step(), drs_nonlinear::rhs(), update_flow(), and drs_io_par::write_parp().

5.22.3.15 integer drs_time::stepstart

The step count we start the run with.

Referenced by drs(), drs_init(), drs_io::drs_load_state(), need_to_step(), and drs_io_par::read_input_par().

5.22.3.16 double precision drs_time::time

The simulation time.

Referenced by Benchmarkv1(), Benchmarkv2(), drs(), drs_init(), drs_io::drs_load_state(), drs_time_init(), drs_time_update(), drs_io::dump_state(), init(), drs_probes::measure(), need_to_step(), drs_io_par::read_input_par(), drs_probes::save_angular_momentum(), drs_probes::save_field_coeffs(), drs_probes::save_flow_coeffs(), drs_probes::save_flow_dissipation(), drs_probes::save_magnetic_dissipation(), drs_nonlinear::save_stuff(), and drs_io_par::write_parp().

5.22.3.17 double precision drs_time::time_last_sample

Time we last saved the probes values.

Referenced by drs_nonlinear::save_stuff(), and update_time_last_sample().

5.22.3.18 double precision drs_time::time_since_last_sample

Time since we last saved the probes values.

Referenced by drs_probes::average_unnormalised_field_l_spectrum(), drs_probes::average_unnormalised_flow_l_spectrum(), drs_probes::average_unnormalised_scalar_l_spectrum(), drs_probes::measure(), drs_probes::measure_lm(), and drs_nonlinear::save_stuff().

5.22.3.19 double precision drs time::time start

The simulation time before the first step.

Referenced by drs_io::drs_load_state(), and drs_io::dump_state().

5.22.3.20 integer drs_time::transient

How many steps to consider as a transient and discard?

Referenced by drs_init(), drs_io_par::drs_read_conf(), drs_io_par::drs_read_conf_v2(), drs_time_init(), drs_nonlinear::rhs(), and drs_io_par::write_parp().

5.22.3.21 logical drs_time::variable_h

Do we have a variable time step?

Referenced by drs(), drs_init(), and update_timestep().

5.23 drs_transforms Namespace Reference

Spherical transforms.

Functions

• subroutine **ylmt** (input, output)

This routine performs three steps: $\sim \sim \sim \sim \sim 1$. transformation $tt_t(theta,phi) --> tt_t(theta,m)$ transposed. 2. redistribution dist(theta) --> dist(m) 3. transformation tt(theta,m) --> t(l,m) distrib. in m.

• subroutine ylmt_3D (input, output)

This routine performs three steps: $\sim \sim \sim \sim \sim 1$. transformation $tt_t(theta,phi)$ --> $tt_t(theta,m)$ transposed. 2. redistribution dist(theta) --> dist(m) 3. transformation tt(theta,m) --> t(l,m) distrib. in m.

- subroutine **ylmb** (input, output)
- subroutine **m2phi_2D** (input, output)
- subroutine **my_div** (vec_r, vec_t, vec_p, nonlin)

Computes the spectral coefficients of the divergence of the vector field \vec{u} . On input:.

- subroutine **my_rot** (vec_t, vec_p, nonlin)
- subroutine **my_rotrot** (vec_r, vec_t, vec_p, nonlin)
- subroutine **vectorField2PolTor_common** (vr, vt, vp, pol, tor)

Computes the poloidal and toroidal scalar coefficients of a 3D vector field. This is the part of the calculation that is common to both the flow and magnetic field.

• subroutine PolTor_common2PolTor_flow (pol, tor)

Multiplies the poloidal and toroidal scalar coefficients by the appropriate factors of r and l*(l+1) to make them the poloidal and toroidal scalars of the flow as defined for this program.

• subroutine PolTor_common2PolTor_field (pol, tor)

Multiplies the poloidal and toroidal scalar coefficients by the apropriate factors of r and l*(l+1) to make them the poloidal and toroidal scalars of the magnetic field as defined for this program.

• subroutine **vectorField2Divergence** (ur, ut, up, div)

Computes the spherical harmonic coefficients of the divergence of a 3D vector field in real space.

Variables

• double precision, parameter **pi** = 3.141592653589793d0

5.23.1 Detailed Description

Spherical transforms.

5.23.2 Function Documentation

5.23.2.1 subroutine drs_transforms::m2phi_2D (double precision,dimension(0:nt,blk_ps_size(mpi_rank),intent(in) input, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) output)

References drs_fftw3::dft_backward(), drs_dims::Np_s, and drs_mpi::transpos_phi2theta().

Referenced by $drs_field::calc_field()$, $drs_flow::calc_flow()$, $drs_field::calc_rot_field()$, $drs_flow::calc_rot_flow()$, and ylmb().

Here is the call graph for this function:

5.23.2.2 subroutine drs_transforms::my_div (double precision,dimension(0:nt_s,blk_-ps_size(mpi_rank),intent(in) vec_r, double precision,dimension(0:nt_s,blk_ps_-size(mpi_rank),intent(in) vec_t, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(in) vec_p, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(out) nonlin)

Computes the spectral coefficients of the divergence of the vector field \vec{u} .

On input:.

Parameters:

 $\begin{array}{l} \textit{vec_r} \ \ \text{is} \ u_r * r^2 \ \text{in} \ (l,m,r) \ \text{space}. \\ \textit{vec_t} \ \ \text{is} \ \frac{u_\theta}{r \sin \theta} \ \text{in} \ (l,m,r) \ \text{space}. \\ \textit{vec_p} \ \ \text{is} \ \frac{u_\phi}{r \sin \theta} \ \text{in} \ (l,m,r) \ \text{space}. \ \text{On output:} \end{array}$

nonlin is the divergence in (l,m,r) space.

References drs_mpi::blk_ps_start, drs_mpi::blk_ts_start, drs_radial::radial_derivative_r2r(), and drs_radial::rcoll2.

Referenced by vectorField2Divergence().

Here is the call graph for this function:

5.23.2.3 subroutine drs_transforms::my_rot (double precision,dimension(0:nt_s,blk_-ps_size(mpi_rank),intent(in) vec_t, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(in) vec_p, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(out) nonlin)

References drs_mpi::blk_ps_start, and drs_mpi::blk_ts_start.

Referenced by vectorField2PolTor_common().

5.23.2.4 subroutine drs_transforms::my_rotrot (double precision,dimension(0:nt_s,blk_-ps_size(mpi_rank),intent(in) vec_r, double precision,dimension(0:nt_s,blk_ps_-size(mpi_rank),intent(in) vec_t, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(in) vec_p, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(out) nonlin)

References drs_mpi::blk_ps_start, drs_mpi::blk_ts_start, drs_legendre::llp1, drs_radial::radial_derivative_r2r(), and drs_radial::rcoll2.

Referenced by vectorField2PolTor_common().

Here is the call graph for this function:

5.23.2.5 subroutine drs_transforms::PolTor_common2PolTor_field (double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(inout) pol, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(inout) tor)

Multiplies the poloidal and toroidal scalar coefficients by the apropriate factors of r and l*(l+1) to make them the poloidal and toroidal scalars of the magnetic field as defined for this program.

References drs legendre::llp1, and drs radial::rcoll2.

Referenced by drs_nonlinear::save_stuff().

5.23.2.6 subroutine drs_transforms::PolTor_common2PolTor_flow (double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(inout) pol, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(inout) tor)

Multiplies the poloidal and toroidal scalar coefficients by the apropriate factors of r and l*(l+1) to make them the poloidal and toroidal scalars of the flow as defined for this program.

References drs_legendre::llp1, and drs_radial::rcoll.

Referenced by drs_nonlinear::save_stuff().

5.23.2.7 subroutine drs_transforms::vectorField2Divergence (double precision,dimension(0:blk_t_size(mpi_rank),intent(inout) ur, double precision,dimension(0:blk_t_size(mpi_rank),intent(inout) ut, double precision,dimension(0:blk_t_size(mpi_rank),intent(inout) up, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(out) div)

Computes the spherical harmonic coefficients of the divergence of a 3D vector field in real space.

 $References\ drs_mpi::blk_t_start,\ my_div(),\ drs_radial::rcoll,\ drs_radial::rcoll2,\ drs_legendre::sintheta,\ and\ ylmt_3D().$

Referenced by drs_nonlinear::save_stuff(), and test_vectorField2Divergence().

Here is the call graph for this function:

5.23.2.8 subroutine drs_transforms::vectorField2PolTor_common (double precision,dimension(0:blk_t_size(mpi_rank),intent(inout) vr, double precision,dimension(0:blk_t_size(mpi_rank),intent(inout) vt, double precision,dimension(0:blk_t_size(mpi_rank),intent(inout) vp, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(inout) pol, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(inout) tor)

Computes the poloidal and toroidal scalar coefficients of a 3D vector field.

This is the part of the calculation that is common to both the flow and magnetic field.

References drs_mpi::blk_t_start, my_rot(), my_rotrot(), drs_radial::rcoll, drs_radial::rcoll2, drs_legendre::sintheta, and ylmt_3D().

Referenced by drs_nonlinear::save_stuff().

Here is the call graph for this function:

5.23.2.9 subroutine drs_transforms::ylmb (double precision,dimension(0:nt_s,1:blk_ps_size(mpi_rank),intent(in) input, double precision,dimension(0:blk_t_size(mpi_rank),intent(out) output)

References drs_legendre::legendre, m2phi_2D(), and drs_mpi::mm.

Referenced by drs_temp::calc_temp(), drs_renderers::render_poloidal_streamlines(), drs_renderers::render_radial_streamfunction(), and drs_renderers::render_temprature_grad_r().

Here is the call graph for this function:

5.23.2.10 subroutine drs_transforms::ylmt (double precision,dimension(0:blk_t_size(mpi_rank),intent(in) input, double precision,dimension(0:nt_s,blk_ps_size(mpi_rank),intent(out) output)

This routine performs three steps: $\sim \sim \sim \sim \sim 1$. transformation $tt_t(theta,phi) --> tt_t(theta,m)$ transposed. 2. redistribution dist(theta) --> dist(m) 3. transformation tt(theta,m) --> t(l,m) distrib. in m. input: $tt_t(0:(blk_t_max_size-1),Np)$ (transposed) has to be in direct space, in phi-direction t(:,1:Np) only one period is stored: $tt_t(:,j)$ means position $tt_t(:,j)$ means tt_t

output: $t(0:drs_Nt,drs_Np)$ dims: $(0:Nt_s,Np_s)$ dealiased in (lm)! in m-dir.: real(m=0),real(m=m0),im(m=m0),real(m=2m0),im(m=2*m0),... in l-dir.: includes normalization factors!

~~~~~

References drs\_fftw3::dft\_forward(), drs\_legendre::leg\_neg, drs\_mpi::mm, drs\_dims::Np\_s, and drs\_mpi::transpos\_theta2phi().

Here is the call graph for this function:



### 5.23.2.11 subroutine drs\_transforms::ylmt\_3D (double precision,dimension(0:blk\_t\_size(mpi\_rank),intent(in) input, double precision,dimension(0:nt\_s,blk\_ps\_size(mpi\_rank),intent(out) output)

This routine performs three steps:  $\sim \sim \sim \sim \sim 1$ . transformation  $tt_t(theta,phi) --> tt_t(theta,m)$  transposed. 2. redistribution dist(theta) --> dist(m) 3. transformation tt(theta,m) --> t(l,m) distrib. in m. input:  $tt_t(0:(blk_t_max_size-1),Np)$  (transposed) has to be in direct space, in phi-direction t(:,1:Np) only one period is stored:  $tt_t(:,i)$  means position  $tt_t(i)$ .

output:  $t(0:drs_Nt,drs_Np)$  dims:  $(0:Nt_s,Np_s)$  dealiased in (lm)! in m-dir.: real(m=0),real(m=m0),im(m=m0),real(m=2m0),im(m=2\*m0),... in l-dir.: includes normalization factors!

~~~~~

References drs_fftw3::dft_forward(), drs_legendre::leg_neg, drs_mpi::mm, drs_dims::Np_s, and drs_mpi::transpos_theta2phi().

Referenced by vectorField2Divergence(), and vectorField2PolTor_common().

Here is the call graph for this function:

5.23.3 Variable Documentation

5.23.3.1 double precision,parameter drs_transforms::pi = 3.141592653589793d0

5.24 parser Namespace Reference

This module provides a simple **parser** (p. 123) for input files of the type 'key = val' eventually separated by '[Sections]'.

Classes

• struct parser_vars

A description of the keys we will find and their properties.

• struct parser_section

A description of the sections we will find and their properties.

• interface read_val

Reads a value.

Functions

• subroutine **parse** (unit_in, variable, line, error)

Reads one line from the specified unit and outputs the variable name and possible values as a string.

5.24.1 Detailed Description

This module provides a simple **parser** (p. 123) for input files of the type 'key = val' eventually separated by '[Sections]'. Typical use of this module goes like: $\sim\sim\sim\sim\sim\sim$ open(unit=444, file='myconfig.conf', status='old', iostat=error) if (error.ne.0) return do call parse(444, varname, line, error) select case(varname) case('var1') call read_val(line, var1) case('var2') call read_val(line, var2) case default cycle end select enddo close(444) $\sim\sim\sim\sim\sim\sim$

5.24.2 Function Documentation

5.24.2.1 subroutine parser::parse (integer,intent(in) *unit_in*, character(len=*),intent(out) *variable*, character(len=256),intent(out) *line*, integer,intent(out) *error*)

Reads one line from the specified unit and outputs the variable name and possible values as a string.

variable is the variable name.

line is the rhs of the attribution.

unit_in is the unit to read from

error is an error code.

 $Referenced\ by\ drs_io_par::drs_read_conf_v2(),\ parse_drs2dx(),\ and\ parseConfig().$

Chapter 6

Class Documentation

6.1 drs_mpi::drs_bcast Interface Reference

Encapsulates broadcast of several types and ranks.

Public Member Functions

- subroutine **drs_bcast_int** (array, num)
- subroutine drs_bcast_dble (array, num)
- subroutine drs_bcast_int_scal (val)
- subroutine drs_bcast_dble_scal (val)
- subroutine drs_bcast_logical_scal (val)

6.1.1 Detailed Description

Encapsulates broadcast of several types and ranks.

6.1.2 Member Function Documentation

- 6.1.2.1 subroutine drs_mpi::drs_bcast::drs_bcast_dble (double precision,dimension(:),intent(inout) array, integer,intent(in) num)
- 6.1.2.2 subroutine drs_mpi::drs_bcast::drs_bcast_dble_scal (double precision,intent(inout) val)
- 6.1.2.3 subroutine drs_mpi::drs_bcast::drs_bcast_int (integer,dimension(:),intent(inout) array, integer,intent(in) num)
- 6.1.2.4 subroutine drs_mpi::drs_bcast::drs_bcast_int_scal (integer,intent(inout) val)
- 6.1.2.5 subroutine drs_mpi::drs_bcast::drs_bcast_logical_scal (logical,intent(inout) val)

The documentation for this interface was generated from the following file:

· drs_mpi.f90

126 Class Documentation

6.2 drs_mpi::drs_maximize Interface Reference

Encapsulates maximization of several types and ranks.

Public Member Functions

- subroutine drs_maximize_dble (array)
- subroutine drs_maximize_dble_scal (val)

6.2.1 Detailed Description

Encapsulates maximization of several types and ranks.

6.2.2 Member Function Documentation

- **6.2.2.1 subroutine drs_mpi::drs_maximize::drs_maximize_dble** (**double precision,dimension(:),intent(inout)** *array*)
- 6.2.2.2 subroutine drs_mpi::drs_maximize::drs_maximize_dble_scal (double precision,intent(inout) *val*)

The documentation for this interface was generated from the following file:

• drs_mpi.f90

6.3 drs_mpi::drs_minimize Interface Reference

Encapsulates minimization of several types and ranks.

Public Member Functions

- subroutine drs_minimize_dble (array)
- subroutine drs_minimize_dble_scal (val)

6.3.1 Detailed Description

Encapsulates minimization of several types and ranks.

6.3.2 Member Function Documentation

- 6.3.2.1 subroutine drs_mpi::drs_minimize::drs_minimize_dble (double precision,dimension(:),intent(inout) array)
- **6.3.2.2** subroutine drs_mpi::drs_minimize::drs_minimize_dble_scal (double precision,intent(inout) *val*)

The documentation for this interface was generated from the following file:

· drs_mpi.f90

128 Class Documentation

6.4 drs_legendre::interface Interface Reference

Public Member Functions

- subroutine **PlmBar_d1** (p, dp, lmax, z, csphase, cnorm)
- subroutine **PLegendreA_d1** (p, dp, lmax, z, csphase)
- integer **PlmIndex** (l, m)

6.4.1 Member Function Documentation

- 6.4.1.1 subroutine drs_legendre::interface::PLegendreA_d1 (real*8,dimension(:),intent(out) p, real*8,dimension(:),intent(out) dp, integer,intent(in) lmax, real*8,intent(in) z, integer,intent(in),optional csphase)
- 6.4.1.2 subroutine drs_legendre::interface::PlmBar_d1 (real*8,dimension(:),intent(out) p, real*8,dimension(:),intent(out) dp, integer,intent(in) lmax, real*8,intent(in) z, integer,intent(in),optional csphase, integer,intent(in),optional cnorm)
- 6.4.1.3 integer drs_legendre::interface::PlmIndex (integer,intent(in) l, integer,intent(in) m)

The documentation for this interface was generated from the following file:

· drs_legendre.f90

6.5 drs_io_DX::save2DX Interface Reference

Public Member Functions

- subroutine save2DXscalar (field, filename)
- subroutine **save2DXvector** (XX, YY, ZZ, filename)

6.5.1 Member Function Documentation

- 6.5.1.1 subroutine drs_io_DX::save2DX::save2DXscalar (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, character(len=*),intent(in) filename)
- 6.5.1.2 subroutine drs_io_DX::save2DX::save2DXvector (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) XX, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) YY, double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) ZZ, character(len=*),intent(in) filename)

The documentation for this interface was generated from the following file:

• utilities/drs_io_DX.f90

130 Class Documentation

6.6 drs_mpi::sum_over_all_cpus Interface Reference

Encapsulates sums of several types and ranks.

Public Member Functions

- subroutine sum_over_all_cpus_scal (val)
- subroutine sum_over_all_cpus_vect (val)

6.6.1 Detailed Description

Encapsulates sums of several types and ranks.

6.6.2 Member Function Documentation

- **6.6.2.1** subroutine drs_mpi::sum_over_all_cpus::sum_over_all_cpus_scal (double precision,intent(inout) *val*)
- **6.6.2.2** subroutine drs_mpi::sum_over_all_cpus::sum_over_all_cpus_vect (double precision,dimension(:),intent(inout) *val*)

The documentation for this interface was generated from the following file:

· drs_mpi.f90

Chapter 7

File Documentation

7.1 CrankNicholson.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for CrankNicholson.f90:

Namespaces

• namespace CrankNicholson

Provides routines that compute the Crank-Nicholson inverse operators and variables to store them.

Functions

- subroutine **CrankNicholson::CrankNicholson_init** ()

 Allocates memory for the Crank-Nicholson inverse operators.
- subroutine **CrankNicholson::updateCrankNicholson_matrices** (h, Pt, Pm, Pc)

 Convenience subroutine that generates all of the Crank-Nicholson inverse operators.

- double precision, dimension(:,:,:), allocatable **CrankNicholson::field_lap_inv_tor**The Crank-Nicholson inverse operator for the toroidal flow.
- double precision, dimension(:,:,:), allocatable CrankNicholson::field_lap_inv_pol

The Crank-Nicholson inverse operator for the poloidal flow.

• double precision, dimension(:,:,:), allocatable **CrankNicholson::flow_lap_inv_tor**The Crank-Nicholson inverse operator for the toroidal field.

- double precision, dimension(:,:,:), allocatable **CrankNicholson::flow_lap_inv_pol**The Crank-Nicholson inverse operator for the poloidal field.
- double precision, dimension(:,:,:), allocatable **CrankNicholson::temp_lap_inv**The Crank-Nicholson inverse operator for the temperature.
- double precision, dimension(:,:,:), allocatable, target **CrankNicholson::pinv**The inverse laplacian operator in real space.

7.2 drs.f90 File Reference 133

7.2 drs.f90 File Reference

```
#include "drsDefs.f90"
#include "error_codes.h"
```

Include dependency graph for drs.f90:

Functions

- program drs
- subroutine **drs_init** (error)

Initialize quantities and modules necessary for the program to run.

• subroutine update_Green_functions ()

Encapsulates dealing with the Green's functions.

logical need_to_step ()

This function will determine whether we need to take another time-step or not. There are several stoping conditions:.

- subroutine **mk_green** (ib, ob, green, greenD, greenS)
 - a stopping condition on number of steps;
- subroutine applyGreen ()

Apply Green's functions.

• subroutine kd_grothrate ()

Computes the grothrate of the kinamatic dynamo.

• subroutine **update_flow** (h, h1, h2)

 $\label{thm:condition} \textit{Updates the flow using a hybrid Crank-Nicholson/Addams-Bashford implicit integration scheme}.$

• subroutine **update_temp** (h, h1, h2, Pt)

Updates the temperature using a hybrid Crank-Nicholson/Addams-Bashford implicit integration scheme.

• subroutine **update_field** (h, h1, h2, Pm)

Updates the magnetic field using a hybrid Crank-Nicholson/Addams-Bashford implicit integration scheme.

7.2.1 Function Documentation

7.2.1.1 subroutine drs::applyGreen ()

Apply Green's functions.

References drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, and drs_dims::Nr. Referenced by update_flow().

7.2.1.2 program drs ()

References drs_comp::apply_comp_BC(), drs_field::apply_field_pol_BC(), drs_field::apply_field_tor_BC(), drs_flow::apply_flow_pol_BC(), drs_flow::apply_flow_tor_BC(), drs_temp::apply_temp_BC_-RHS(), drs_comp::comp, drs_comp::comp_dr, drs_comp::comp_dr, drs_time::cpu_time_first_step, drs_time::cpu_time_now, drs_mpi::drs_abort(), drs_init(), drs_time::drs_time_update(), drs_io::dump_state(), drs_nonlinear::evaluate_real_space(), drs_field::field_pol, drs_field::field_pol_dr, drs_field::field_pol_dr, drs_field::field_tor_dr, drs_field::field_pol_dr, drs_field::field_tor_dr, drs_flow::flow_pol, drs_flow::flow_pol_dr, drs_flow::flow_tor_dr, drs_flow::flow_tor_dr, drs_flow::flow_tor_dr, drs_flow::flow_tor_dr, drs_flow::flow_tor_dr, drs_mpi::mpi_cleanup(), drs_mpi::mpi_rank, need_to_step(), drs_dims::Nr, drs_radial::radial_dr_ddr_3D_r2r(), drs_nonlinear::rhs(), drs_temp::temp_lock(), drs_time::steps. drs_time::stepstart, drs_temp::temp, drs_temp::temp_dr, drs_time::time, update_fleld(), update_flow(), update_temp(), CrankNicholson::updateCrankNicholson_matrices(), and drs_time::variable_h.

7.2 drs.f90 File Reference 135

Here is the call graph for this function:

7.2.1.3 subroutine drs::drs_init (integer,intent(inout) error)

Initialize quantities and modules necessary for the program to run.

drs lock::add lock(), drs mpi::blk ps size, References drs mpi::blk ps start, drs_time::cpu_time_start, drs dims::check dims(), drs_time::cpu_max_time, mpi::blk t size, CrankNicholson::CrankNicholson_init(), drs_time::drift, drs_mpi::drs_abort(), drs_comp::drs_comp_allocation(), drs_comp::drs_comp_init(), drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_drs field::drs field allocation(), drs_field::drs_field_init(), drs_flow::drs_flow_allocation(), drs_flow::drs_flow_init(), drs_hypDiff::drs_hypDiff_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_io::drs_load_state(), drs_lock::drs_lock_init(), drs_mpi::drs_mpi_init(), drs_nonlinear::drs_nonlinear_init(), drs_io::drs_open_output(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial_init(), drs_io_par::drs_read_conf(), drs_temp::drs_drs_hypDiff::drs_want temp allocation(), drs_temp::drs_temp_init(), drs_time::drs_time_init(), hypDiff, drs_time::dtimestep, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor_ddr, drs field::field tor dr, drs flow::flow pol ddr, drs flow::flow pol dr, drs flow::flow tor ddr, drs flow::flow_tor_dr, drs_time::h, drs_time::h_old, drs_io_par::hi, drs_time::imeasure, drs_io::io_calc_file_in, drs_io::io_calc_file_out, drs_dims::lsymm, drs_dims::m0, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nr_s, drs_time::nsample, drs_dims::Nt, drs dims::Nt s, drs legendre::pi, drs time::sampling rate, drs time::stepmax, drs time::steps, drs time::stepstart, drs time::time, drs time::transient, drs dims::usr dims, and drs time::variable h.

Referenced by drs().

7.2 drs.f90 File Reference

Here is the call graph for this function:

7.2.1.4 subroutine drs::kd_grothrate()

Computes the grothrate of the kinamatic dynamo.

References drs_mpi::blk_ps_size, drs_mpi::blk_ps_start, drs_field::field_pol, drs_field::field_pol_ddr, drs_field::field_tor, drs_field::field_tor_ddr, drs_legendre::llp1, drs_dims::m0, drs_mpi::mpi_rank, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nt_s, drs_radial::rcoll, drs_nonlinear::rhs_IE_pol, drs_nonlinear::rhs_IE_tor, and drs_time::steps.

Referenced by drs().

7.2.1.5 subroutine drs::mk_green (double precision,intent(in) *ib*, double precision,intent(in) *ob*, double precision,dimension(nr, 0:nt_s),intent(out) *green*, double precision,dimension(nr, 0:nt_s),intent(out) *greenD*, double precision,dimension(nr, 0:nt_s),intent(out) *greenS*)

- a stopping condition on number of steps;
- a stopping condition on cpu time; a stoping condition on the existence of a lock file; a stoping condition on simulation time; Generates the appropriate Green's function for a given boundary value.

References CrankNicholson::flow_lap_inv_pol, CrankNicholson::pinv, and drs_radial::radial_dr_ddr_- $1D_n2r()$.

Referenced by update_Green_functions().

Here is the call graph for this function:

7.2.1.6 logical drs::need_to_step ()

This function will determine whether we need to take another time-step or not. There are several stoping conditions:.

References drs_time::cpu_max_time, drs_time::cpu_time_start, drs_lock::lockExists(), drs_time::max_time, drs_mpi::mpi_rank, drs_time::stepmax, drs_time::steps, drs_time::stepstart, drs_time::time, and drs_mpi::wait_for_everyone().

Referenced by drs().

Here is the call graph for this function:

7.2.1.7 subroutine drs::update_field (double precision,intent(in) h, double precision,intent(in) h1, double precision,intent(in) h2, double precision,intent(in) Pm)

Updates the magnetic field using a hybrid Crank-Nicholson/Addams-Bashford implicit integration scheme.

Parameters:

h is the time step;

h1 and

h2 are the Addams-Bashford weights;

7.2 drs.f90 File Reference

Pm is the magnetic Prandtl number;

References drs_field::apply_field_pol_BC(), drs_field::apply_field_tor_BC(), CrankNicholson::field_lap_inv_pol, CrankNicholson::field_lap_inv_tor, drs_field::field_pol, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor, drs_field::field_tor_ddr, drs_field::field_tor_ddr, drs_field::field_tor_dr, drs_field::field_tor_lap, drs_mpi::mm, drs_dims::Nr, drs_radial::radial_dr_ddr_3D_n2r(), drs_nonlinear::rhs_IE_pol, drs_nonlinear::rhs_IE_tor, drs_field::update_field_pol_lap(), and drs_field::update_field_tor_lap().

Referenced by drs().

Here is the call graph for this function:

7.2.1.8 subroutine drs::update_flow (double precision,intent(in) h, double precision,intent(in) h1, double precision,intent(in) h2)

Updates the flow using a hybrid Crank-Nicholson/Addams-Bashford implicit integration scheme.

Parameters:

h is the time step;

h1 and

h2 are the Addams-Bashford weights

References drs_flow::apply_flow_pol_BC(), drs_flow::apply_flow_tor_BC(), applyGreen(), CrankNicholson::flow_lap_inv_pol, CrankNicholson::flow_lap_inv_tor, drs_flow::flow_pol, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, drs_flow::flow_pol_lap, drs_flow::flow_tor, drs_flow::flow_tor_ddr, drs_flow::flow_tor_lap, drs_mpi::mm, CrankNicholson::pinv, drs_radial::radial_dr_ddr_3D_n2r(), drs_radial::rcoll, drs_nonlinear::rhs_NS_pol, drs_nonlinear::rhs_NS_tor, drs_time::steps, drs_flow::update_flow_pol_lap(), drs_flow::update_flow_tor_lap(), and update_Green_functions().

Referenced by drs().

Here is the call graph for this function:

7.2.1.9 subroutine drs::update_Green_functions()

Encapsulates dealing with the Green's functions.

References mk_green().

Referenced by update_flow().

Here is the call graph for this function:

7.2.1.10 subroutine drs::update_temp (double precision,intent(in) h, double precision,intent(in) h1, double precision,intent(in) h2, double precision,intent(in) Pt)

Updates the temperature using a hybrid Crank-Nicholson/Addams-Bashford implicit integration scheme.

Parameters:

h is the time step;

h1 and

h2 are the Addams-Bashford weights;

Pt is the Thermal Prandtl number;

References drs_comp::apply_comp_BC(), drs_temp::apply_temp_BC_RHS(), drs_comp::comp, drs_comp::comp_dr, drs_dims::Nr, drs_radial::radial_dr_ddr_3D_n2r(), drs_nonlinear::rhs_TE, drs_temp::temp, drs_temp::temp_ddr, drs_temp::temp_dr, drs_temp::temp_lap, CrankNicholson::temp_lap_inv, and drs_temp::update_temp_lap().

Referenced by drs().

Here is the call graph for this function:

7.3 drs_Chebyshev.f90 File Reference

Namespaces

• namespace drs_Chebyshev

Module containing the implementation of the Chebyshev polynomials.

Functions

• subroutine drs_Chebyshev::Chebyshev_init (N, N_s)

Computes the Chebyshev polynomials of order up to N as a function of r.

- subroutine drs Chebyshev::Chebyshev cleanup ()
- subroutine drs_Chebyshev::Cheb_compute_dx_ddx_n2x (f, dfdx, d2fdx2)

Returns second radial derivative in d2fdx2, first derivative in dfdx Input f is supposed to be given in Chebychev space, derivatives are returned in direct space.

• subroutine drs_Chebyshev::Cheb_compute_dx_ddx_x2x (f, dfdx, d2fdx2)

Returns second radial derivative in d2fdx2, first derivative in dfdx Input f is supposed to be given in real space, derivatives are returned in real space.

• subroutine drs_Chebyshev::Cheb_compute_dx_n2n (f, dfdx)

Computes the Chebyshev coefficients of the first derivative of f with respect to x.

• subroutine drs_Chebyshev::Chebyshev_x2n (input)

The forward real to spectral cosinus transform Since $T_n(\cos(t)) = \cos(nt)$, the forward cosinus transform gives us the coefficients of order n of the expansion of a scalar function f(x) in terms of Chebyshev polynomials.

• subroutine drs_Chebyshev::Chebyshev_n2x (input)

The backward spectral to real cosinus transform Since $T_n(\cos(t)) = \cos(nt)$, the backward cosinus transform gives us the value of a scalar function f(x) in terms of Chebyshev polynomials.

Variables

- double precision, parameter **drs_Chebyshev::pi** = 3.141592653589793d0 *It makes use of fftw3*.
- integer *8 drs_Chebyshev::plan_x
- integer drs_Chebyshev::Nx
- integer drs_Chebyshev::Nx_s
- double precision, dimension(:), allocatable drs_Chebyshev::ct_buffer
- double precision, allocatable drs_Chebyshev::Cheb_x
- double precision, allocatable, target drs_Chebyshev::Chebyshev
- double precision, allocatable, target drs_Chebyshev::Chebyshev_dx
- double precision, allocatable, target drs_Chebyshev::Chebyshev_ddx

First index is radial point, second index is mode index.

7.4 drs_comp.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_comp.f90:

Namespaces

• namespace drs_comp

Module dealing with the composition.

Functions

• subroutine drs_comp::drs_comp_allocation ()

Allocates the variables required for computations envolving composition.

• subroutine drs_comp::drs_comp_init ()

Initialises the composition boundary conditions, derivatives and profiles.

 $\bullet \ character(len=16) \ \textbf{drs_comp::compProfName} \ ()$

Outputs a human readable name for the composition profiles.

• subroutine drs_comp::drs_comp_reset ()

Resets the composition and its derivatives to 0.

• subroutine drs_comp::drs_comp_randomize (noise)

Computes the laplacian of the composition.

• subroutine **drs_comp::apply_comp_BC** (comp)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine **drs_comp::calc_comp** (comp_spec, comp_real)

Computes the composition in real space from the composition in spectral space.

- double precision, dimension(:,;,;), allocatable drs_comp::comp
- double precision, dimension(:,:,:), allocatable drs_comp::comp_dr

- double precision, dimension(:,:,:), allocatable drs_comp::comp_ddr
- double precision, dimension(:,;,:), allocatable drs_comp::comp_avg
- double precision, dimension(:), allocatable drs_comp::comp_dr_avg
- double precision, dimension(:), allocatable drs_comp::comp_profile
- double precision, dimension(:), allocatable drs_comp_profile_dr

7.5 drs_debug.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_debug.f90:

Namespaces

• namespace drs_debug

Module with helper subroutines for debug.

Functions

- subroutine **drs_debug::save_lmr_quantity** (t, tname)
- subroutine **drs_debug::save_tpr_quantity** (t, tname)

7.6 drs_dims.f90 File Reference

#include "error_codes.h"

Include dependency graph for drs_dims.f90:

Namespaces

• namespace drs_dims

Provides variables to store the real space and spectral space dimensions of the problem.

Functions

- subroutine drs_dims::drs_dims_init (error)
- subroutine drs_dims::check_dims (error)

Checks consistency of input parameters.

Variables

- integer, dimension(8), target drs_dims::usr_dims
- integer drs_dims::Nr

Number of radial points.

• integer drs_dims::Nt

Number of meridional points.

• integer drs_dims::Np

Number of azimuthal points.

• integer drs_dims::Nr_s

Highest index for the polynomials in the radial direction.

• integer drs_dims::Nt_s

Number of spherical harmonic degrees to use, including 0.

• integer drs_dims::Np_s

Number of spherical harmonic orders (positive, negative and zero) to use.

• integer drs_dims::lsymm

Equatorial symmetry.

• integer drs_dims::m0

Axial symmetry to use.

7.7 drs_fftw3.f90 File Reference

Namespaces

• namespace drs_fftw3

This module abstracts the computation of Fourier and cosinus transforms.

Functions

• subroutine drs_fftw3::drs_fftw3_init (Nr, Nt, Np)

Initialises all the fftw3 plans for forward and backward Fourier and cosinus transforms.

• subroutine drs_fftw3::drs_fftw3_cleanup ()

Destroies the plans.

• subroutine drs_fftw3::dft_forward (input, output)

The forward real to spectral DFT.

• subroutine drs_fftw3::dft_backward (input, output)

The backward, spectral to real DFT.

• subroutine drs_fftw3::cos_r2r_1_r2n (input)

The forward real to spectral cosinus transform.

• subroutine drs_fftw3::cos_r2r_1_n2r (input)

The backward spectral to real cosinus transform.

• subroutine drs fftw3::remesh (Nr1, f1, Nr2, f2)

Given a field f1 described at Nr1 points in an interval, remesh outputs the same field, in the same interval at Nr2 points as f2.

Variables

• integer *8 drs_fftw3::plan_r

It makes use of fftw3.

- integer *8 drs_fftw3::plan_pf
- integer *8 drs fftw3::plan pb
- double precision, dimension(:,:), allocatable drs_fftw3::in_p
- double precision, dimension(:), allocatable drs_fftw3::inout_r
- integer drs_fftw3::drs_fftw3_Nr
- integer drs_fftw3::drs_fftw3_Np
- integer drs_fftw3::drs_fftw3_Nt

7.8 drs_field.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_field.f90:

Namespaces

• namespace drs_field

Functions

- subroutine drs_field::drs_field_allocation ()
- subroutine drs_field::drs_field_init (field_tor_dr, field_tor_ddr, field_pol_dr, field_pol_ddr)
- subroutine drs field::update field tor lap()
- subroutine drs_field::update_field_pol_lap ()
- subroutine drs_field::drs_field_random_init (noise)
- subroutine drs_field::apply_field_pol_BC (pol, l, m)

These lines take care of boundary conditions If the value at a boundary is different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine drs_field::apply_field_tor_BC (tor, 1, m)

These lines take care of boundary conditions If the value at a boundary is different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

- subroutine drs_field::calc_B (Br_t, Bt_t, Bp_t, rot_Br_t, rot_Bt_t, rot_Bp_t)
- subroutine drs_field::calc_field (Br, Bt, Bp)
- subroutine **drs_field::calc_rot_field** (rotB_r, rotB_t, rotB_p)
- subroutine drs_field::calc_field_lspec (Bspec)
- subroutine drs_field::calc_field_mspec (Bspec)
- subroutine drs_field::calc_field_nspec (Bspec)

- double precision, dimension(:,:,:), allocatable drs_field::field_pol
- double precision, dimension(:,:,:), allocatable drs_field::field_tor
- double precision, dimension(:,:,:), allocatable drs_field::field_pol_dr
- double precision, dimension(:,:,:), allocatable drs_field::field_tor_dr
- double precision, dimension(:,:,:), allocatable drs_field::field_pol_ddr

- double precision, dimension(:,;,:), allocatable drs_field::field_tor_ddr
- double precision, dimension(:,:,:), allocatable drs_field::field_pol_lap
- $\bullet \ \ double \ precision, \ dimension(:,:,:), \ allocatable \ \textbf{drs_field::field_tor_lap}$
- double precision, dimension(:,:,:), allocatable drs_field::field_pol_avg
- double precision, dimension(:,:,:), allocatable drs_field::field_tor_avg

7.9 drs_flow.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_flow.f90:

Namespaces

• namespace drs_flow

Functions

- subroutine drs_flow::drs_flow_allocation ()
- subroutine drs_flow::drs_flow_init (flow_tor_dr, flow_tor_ddr, flow_pol_dr, flow_pol_ddr)
- subroutine drs_flow::update_flow_tor_lap ()
- subroutine drs_flow::update_flow_pol_lap()
- subroutine drs_flow::apply_flow_pol_BC (pol)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine drs_flow::apply_flow_tor_BC (tor)

These lines take care of boundary conditions If the value at a boundary is bc different from 0, insert bc/2 because of the factor 2 between Chebychev and radial differentiation If the boundary condition is not on the derivative but the value of the function itself (as is the case for the temperature), no factor of 2 is needed if the boundary value bc is different from 0.

• subroutine **drs_flow::calc_u** (ur, ut, up, rotu_r, rotu_t, rotu_p)

Abstracts computing the flow and its curl in real space.

• subroutine **drs_flow::calc_flow** (ur_t, ut_t, up_t)

This routine computes:.

• subroutine **drs_flow::calc_rot_flow** (rotu_r, rotu_t, rotu_p)

This routine computes:.

• subroutine drs_flow::calc_flow_lspec (uspec)

Computes the l-spectrum of the radial flow.

• subroutine drs_flow::calc_flow_mspec (uspec)

Computes the m-spectrum of the radial flow.

• subroutine drs_flow::calc_flow_nspec (uspec)

Computes the n-spectrum of the radial flow.

- double precision, dimension(:,:,:), allocatable drs_flow::flow_pol
- double precision, dimension(:,:,:), allocatable drs_flow::flow_tor
- double precision, dimension(:,:,:), allocatable drs_flow::flow_pol_dr
- double precision, dimension(:,:,:), allocatable drs_flow::flow_tor_dr
- double precision, dimension(:,:,:), allocatable drs_flow::flow_pol_ddr
- double precision, dimension(:,:,:), allocatable drs_flow::flow_tor_ddr
- double precision, dimension(:,:,:), allocatable drs_flow::flow_pol_lap
- double precision, dimension(:,:,:), allocatable $drs_flow::flow_tor_lap$
- double precision, dimension(:,:,:), allocatable drs_flow::flow_pol_avg
- double precision, dimension(:,:,:), allocatable drs_flow::flow_tor_avg

7.10 drs_hypDiff.f90 File Reference

Classes

• interface drs_hypDiff::drs_apply_hypDiff

Namespaces

• namespace drs_hypDiff

Functions

• subroutine drs_hypDiff::drs_hypDiff_init (Nt)

- double precision, allocatable drs_hypDiff::hypDiff
- logical drs_hypDiff::drs_want_hypDiff = .FALSE.

7.11 drs_io.f90 File Reference

```
#include "error_codes.h"
#include "drsDefs.f90"
```

Include dependency graph for drs_io.f90:

Namespaces

• namespace drs_io

Deals with input and output of state files and derived quantities.

Functions

• subroutine **drs_io::drs_load_state** (error)

Reads a state performing interpolation as needed. The state is stored in the files with name given by io_calc_file_in and are described by the file with extension .par.

• subroutine drs_io::drs_open_output ()

Opens units for regularly probed quantities to be saved.

- subroutine drs_io::dump_state ()
- subroutine drs_io::save_state ()

Saves the present state to file. At this point all files are saved with the file name given by io_calc_file_out.

• subroutine drs_io::save_l_spec ()

Saves the normalized power spectra with respect to l.

• subroutine **drs_io::save_m_spec** ()

Saves the normalized power spectra with respect to m.

• subroutine **drs_io::save_n_spec** ()

Saves the normalized power spectra of all quantities with respect to n.

- character(len=60) drs_io::io_calc_file_in
- character(len=60) drs_io::io_calc_file_out
- character(len=13), parameter drs_io::deflate
- character(len=15), parameter drs_io::inflate

7.12 drs_io_par.f90 File Reference

```
#include "drsDefs.f90"
#include "error_codes.h"
```

Include dependency graph for drs_io_par.f90:

Namespaces

• namespace drs_io_par

Module to read and write parameter and configuration files.

Functions

- subroutine drs_io_par::drs_read_conf_v2 (io_calc_file_in, io_calc_file_out, comment, error)
- subroutine **drs_io_par::drs_read_conf** (io_calc_file_in, io_calc_file_out, comment, error) reads parameters for the calculation from the standard input
- subroutine **drs_io_par::read_input_par** (unit_in) reads the parameterfile 'file'.par
- subroutine **drs_io_par::write_parp** (unit_out) writes the parameter file 'file'.par

- integer, dimension(8), target drs_io_par::usr_dimsi
- integer drs_io_par::lformi
- integer drs_io_par::drs_calc_typei
- integer drs_io_par::tempBCi
- integer drs_io_par::flowBCi
- integer drs_io_par::magBCi
- integer drs_io_par::Nri
- integer drs_io_par::Nti
- integer drs_io_par::Npi
- integer $drs_io_par::Nri_s$
- integer drs_io_par::Nti_s
- integer drs_io_par::Npi_s
- integer drs_io_par::lsymmi
- integer drs_io_par::m0i
- double precision drs_io_par::etai

- double precision drs_io_par::Pti
- double precision drs_io_par::Tai
- double precision drs_io_par::Ra_ti
- double precision drs_io_par::Pmi
- double precision drs_io_par::hi
- double precision drs_io_par::drifti
- double precision drs_io_par::noise
- integer drs_io_par::stepmaxi
- integer drs_io_par::sampling_ratei
- integer drs_io_par::transienti
- character(len=60) drs_io_par::commenti
- integer drs_io_par::magici
- integer, parameter drs_io_par::magic = 10205
- integer, parameter drs_io_par::MAGICC1 = 10101
- integer, parameter drs_io_par::MAGICC2 = 10102
- integer, parameter drs_io_par::MAGICC3 = 10103
- integer, parameter drs_io_par::MAGICC4 = 10104
- integer, parameter drs_io_par::MAGICC5 = 10105
- integer, parameter drs_io_par::MAGICC6 = 10106
- integer, parameter **drs_io_par::MAGICC7** = 10107
- integer, parameter drs_io_par::MAGICC9 = 10109

7.13 drs_io_units.f90 File Reference

Namespaces

• namespace drs_io_units

Manages the I/O units of DRS.

- integer, parameter drs_io_units::unit_ek = 11
- integer, parameter drs_io_units::unit_ur = 12
- integer, parameter **drs_io_units::unit_uzon** = 13
- integer, parameter drs_io_units::unit_koeu = 14
- integer, parameter drs_io_units::unit_uaz = 15
- integer, parameter **drs_io_units::unit_u_mid** = 16
- integer, parameter drs_io_units::unit_am = 17
- integer, parameter drs_io_units::unit_nu = 21
- integer, parameter drs io units::unit adv = 22
- integer, parameter **drs_io_units::unit_t** = 23
- integer, parameter drs_io_units::unit_eb = 31
- integer, parameter **drs_io_units::unit_koeb** = 32
- integer, parameter **drs_io_units::unit_dissu** = 33
- integer, parameter **drs io units::unit dissB** = 34
- integer, parameter drs_io_units::unit_mspec = 41
- integer, parameter **drs_io_units::unit_lspec** = 42
- integer, parameter **drs_io_units::unit_nspec** = 43
- integer, parameter **drs_io_units::unit_evp** = 51
- integer, parameter **drs** io units::unit evt = 52
- integer, parameter drs_io_units::unit_cfl = 99

7.14 drs_legendre.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_legendre.f90:

Classes

• interface drs_legendre::interface

Namespaces

• namespace drs_legendre

Functions

- subroutine drs_legendre::drs_legendre_allocation ()
- subroutine drs_legendre::drs_legendre_init ()

Initialize the Legendre associated Polynomials and the Gauss-Legendre co-location points.

- subroutine **drs_legendre::initNormalization** (normType, lmax, norms)

 Computes the normalization factors for the the Legendre associated Polynomials.
- subroutine **drs_legendre::legendre_init_new** ()

 Initializes the tables of Associated Legendre Polynomials.
- subroutine **drs_legendre::gauleg** (x1, x2, x, w, n)

 Computes the Guass-Legendre quadrature points and weights.

- double precision, dimension(:,;;;), allocatable **drs_legendre::legendre**The unnormalised Legendre polynomials.
- double precision, dimension(:,:,:), allocatable **drs_legendre::leg_neg**The unnormalised Legendre polynomials for negative m multiplied by the integration factors.
- double precision, dimension(:,:,:), allocatable **drs_legendre::dleg**d Plm(cos(theta))/d theta
- double precision, dimension(:,:,:), allocatable drs_legendre::leg_sin

Plm/sin(theta).

- double precision, dimension(:,:), allocatable **drs_legendre::plmfac** sqrt((l+m)!/(l-m)!/(2l+1)) = sqrt((l-m+1)*(l-m+2)*...*((l+m)/(2l+1))
- double precision, dimension(:), allocatable, target **drs_legendre::costheta***Gauss-Legendre integration points.
- double precision, dimension(:), allocatable, target **drs_legendre::sintheta**Gauss-Legendre integration points.
- double precision, dimension(:), allocatable **drs_legendre::w**Gauss-Legendre integration weights.
- integer, dimension(:), allocatable $drs_legendre::llp1$ Table of l(l+1).
- double precision, parameter **drs_legendre::pi** = 3.141592653589793d0

7.15 drs_lock.f90 File Reference

#include "error_codes.h"

Include dependency graph for drs_lock.f90:

Namespaces

• namespace drs_lock

This module provides a locking mechanism for the dynamo code.

Functions

- subroutine **drs_lock::drs_lock_init** (u, f)

 Sets the lock file name to f and manages it on unit u.
- subroutine **drs_lock::add_lock** (error)

 Creates the lock file.
- subroutine drs_lock::rm_lock (error)

Removes the lock file.

• logical drs_lock::lockExists ()

Checks whether the lock file exists.

Variables

- character(len=128) drs_lock::lockFileName
- integer drs_lock::lockFileUnit = -1

7.16 drs_mpi.f90 File Reference

```
#include "error_codes.h"
#include "drsDefs.f90"
```

Include dependency graph for drs_mpi.f90:

Classes

• interface drs_mpi::sum_over_all_cpus

Encapsulates sums of several types and ranks.

• interface drs_mpi::drs_minimize

Encapsulates minimization of several types and ranks.

• interface drs_mpi::drs_maximize

Encapsulates maximization of several types and ranks.

• interface drs_mpi::drs_bcast

Encapsulates broadcast of several types and ranks.

Namespaces

• namespace drs_mpi

Provides initialisation and variables to be used with the mpi implementation.

Functions

• subroutine drs_mpi::drs_mpi_init ()

Gets initial values for mpi_size and mpi_rank. Allocates block indices accordingly.

• subroutine **drs_mpi::mpi_dims_init** (Nt, Np_s, m0, error)

Initializes mpi variables and sizes.

• subroutine drs_mpi::transpos_phi2theta (input, Nt, output, Np)

 $transposition: t \ distrib(phi) --> tt_t \ distrib(theta):$

• subroutine **drs_mpi::transpos_theta2phi** (input, Np_s, output, Nt)

 $transposition:\ tt_t\ distrib(theta) \dashrightarrow t\ distrib(phi):$

• subroutine **drs_mpi::distribute_in_m** (buffer, Nt, Nr)

Performs a one-to-all communication of the contents of buffer. It is essentially a targeted version of mpi_scatter.

• subroutine **drs_mpi::gather_from_m** (buffer, Nt, Nr)

Performs an all-to-one communication of the contents of buffer. It is essentially a targeted version of mpi_gather.

• subroutine drs_mpi::blk_ts_start_init (m0)

Initialises blk_ts_start.

• subroutine drs_mpi::sum_over_all_cpus_scal (val)

Subroutine to encapsulate sums across all the cpu's.

• subroutine drs_mpi::sum_over_all_cpus_vect (val)

Subroutine to encapsulate mpi calls that sum arrays over all cpu's.

• subroutine **drs_mpi::wait_for_everyone** ()

Encapsulate mpi barrier.

• subroutine **drs_mpi::drs_minimize_dble** (array)

Encapsulate mpi_reduce min.

• subroutine drs_mpi::drs_minimize_dble_scal (val)

Encapsulate mpi_reduce min (scalars).

• subroutine drs_mpi::drs_maximize_dble (array)

Encapsulate mpi_reduce max.

• subroutine drs mpi::drs maximize dble scal (val)

Encapsulate mpi_reduce max (scalars).

- subroutine drs_mpi::drs_gather_vars (rank, val)
- subroutine drs_mpi::drs_bcast_dble (array, num)
- subroutine **drs_mpi::drs_bcast_int** (array, num)
- subroutine drs_mpi::drs_bcast_dble_scal (val)
- subroutine drs_mpi::drs_bcast_int_scal (val)
- subroutine drs_mpi::drs_bcast_logical_scal (val)
- subroutine drs_mpi::drs_abort (error)
- subroutine drs_mpi::mpi_cleanup ()

Variables

integer drs_mpi::mpi_size

How many CPU's are in use.

• integer drs_mpi::mpi_rank

The rank of the present CPU.

• integer, dimension(:), allocatable, target drs_mpi::blk_ps_start

Start index of the blocks in m for each CPU.

- integer, dimension(:), allocatable, target drs_mpi::blk_ps_size

 Size of the blocks in m for each CPU.
- integer, dimension(:), allocatable, target drs_mpi::blk_t_start

 Start index of the blocks in theta dor each CPU.
- integer, dimension(:), allocatable, target drs_mpi::blk_t_size

 Size of the blocks in theta for each CPU.
- integer, dimension(:), allocatable, target drs_mpi::blk_ts_start

 Stores the index of the first nonzero l value in the block.
- integer, dimension(:), pointer **drs_mpi::mm**A convinience shorthand for blk_ts_start.
- integer drs_mpi::blk_t_max_size

 Maximum size of theta block per cpu.
- integer drs_mpi::blk_ps_max_size

 Maximum size of phi block per cpu.

7.17 drs_nonlinear.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_nonlinear.f90:

Namespaces

• namespace drs_nonlinear

Takes care of contructing the nonlinear terms of all equations and other quantities in real space.

Functions

- subroutine drs_nonlinear::drs_nonlinear_init ()
- subroutine drs_nonlinear::evaluate_real_space ()
- subroutine drs_nonlinear::rhs (h_old, h)
- subroutine **drs_nonlinear::save_stuff** (nsample)

Encapsulate saving quantities in real and spectral space.

Variables

- double precision, allocatable drs_nonlinear::rhs_NS_tor NS for Navier-Stokes.
- double precision, allocatable drs_nonlinear::rhs_NS_pol
- double precision, allocatable drs_nonlinear::rhs_IE_tor IE for Induction Equation.
- double precision, allocatable drs_nonlinear::rhs_IE_pol
- double precision, allocatable drs_nonlinear::rhs_TE

TE for Temperature Equation.

- double precision, dimension(:,:,:), allocatable drs_nonlinear::temp_t
- double precision, dimension(:,:,:), allocatable drs_nonlinear::flow_r_t
 Quantities in real space.
- double precision, dimension(:,:,:), allocatable drs_nonlinear::flow_t_t
- double precision, dimension(:,:,:), allocatable drs_nonlinear::flow_p_t
- double precision, dimension(:,:,:), allocatable drs_nonlinear::field_r_t
- double precision, dimension(:,:,:), allocatable **drs_nonlinear::field_t_t**
- double precision, dimension(:,:,:), allocatable drs_nonlinear::field_p_t

- double precision, dimension(:,:,:), allocatable drs_nonlinear::rot_flow_r_t
- $\bullet \ \ \text{double precision, dimension} (:,:,:), \ allocatable \ \textbf{drs_nonlinear::rot_flow_t_t}$
- double precision, dimension(:,;,:), allocatable drs_nonlinear::rot_flow_p_t
- double precision, dimension(:,;,:), allocatable drs_nonlinear::rot_field_r_t
- double precision, dimension(:,:,:), allocatable drs_nonlinear::rot_field_t_t
- double precision, dimension(:,:,:), allocatable drs_nonlinear::rot_field_p_t
- integer, parameter **drs_nonlinear::ncfl** = 5
- double precision, dimension(ncfl) drs_nonlinear::cfl

7.18 drs_params.f90 File Reference

#include "drsDefs.f90"
#include "error_codes.h"

Include dependency graph for drs_params.f90:

7.19 drs_probes.f90 File Reference

#include "error_codes.h"
#include "drsDefs.f90"

Include dependency graph for drs_probes.f90:

Namespaces

• namespace drs_probes

This module implements some prbing facilities for the running models.

Functions

- subroutine drs_probes::drs_probes_allocation ()
- subroutine **drs_probes::drs_probes_init** (time)
- subroutine drs_probes::measure_lm ()
- subroutine drs_probes::average_unnormalised_flow_l_spectrum (urspec_avg)
- subroutine **drs_probes::average_unnormalised_field_l_spectrum** (Brspec_avg)
- subroutine drs_probes::average_unnormalised_scalar_l_spectrum (scalar, scalar_spec_avg)
- subroutine drs_probes::l_spec_of_scalar_field (field, spec)

Calculate the normalized power spectrum with respect to l of a scalar field.

• subroutine drs_probes::m_spec_of_scalar_field (field, spec)

Calculates the normalized power spectrum of a scalar field with respect to m.

• subroutine drs_probes::n_spec_of_scalar_field (field, spec)

Calculates the normalized power spectrum of a scalar quantity f with respect to the Chebyshev polynomials.

$$R_n = \sum_{l,m} N_l^m (f_{nl}^m)^2$$

• double precision **drs_probes::integrate_r** (input)

Performs the integration of the 1d real array.

• function drs_probes::c_integrate_r (input)

Performs the integration of the 1d complex array.

• subroutine drs_probes::save_magnetic_dissipation (mmax)

Computes the magnetic dissipation truncated up to degree.

• subroutine drs_probes::save_flow_dissipation (mmax)

Computes the viscous dissipation.

• subroutine drs_probes::save_flow_coeffs ()

Saves some flow coefficients at the present instant.

• subroutine drs_probes::save_field_coeffs ()

Saves some field coefficients at the present instant.

- subroutine drs_probes::check_resolution_Hartman (Rm, error)
- double precision **drs_probes::energy** (vr, vt, vp)

Computes the energy of a vector field based on its components. Only root contains the solution.

- subroutine **drs_probes::measure** (temp2_t, ur_t, utheta_t, uphi_t, rotu_r_t, rotu_theta_t, rotu_phi_t, Br_t, Btheta_t, Bphi_t, cfl)
- subroutine **drs_probes::compute_helicities** (ur, ut, up, rotu_r, rotu_t, rotu_p, helicity_south, helicity_north)
- subroutine drs_probes::compute_advection (ur, temp, advect)

Computes the heat transported by advection. as

$$Q(r) = \int \int u_r(r, \theta, \phi) * (\Theta(r, \theta, \phi) + T_S(r)) \sin \theta d\theta d\phi$$

• double precision **drs probes::nusselt** (r)

Computes the Nusselt number, that is, the the ratio between the convective and the diffusive heat fluxes.

• subroutine drs probes::integrate power surf (f, n, f int)

Performs the integration in theta and phy of a function f raised to the power n. as

$$F(r) = \int \int f(r, \theta, \phi)^n \sin \theta d\theta d\phi$$

• subroutine drs_probes::save_angular_momentum (u_t, u_p)

computes and saves the three cartesian components of the total angular momentum

Variables

- double precision, dimension(:), allocatable drs probes::ur avg
- double precision, dimension(:), allocatable drs_probes::ut_avg
- double precision, dimension(:), allocatable drs_probes::up_avg
- double precision, dimension(:), allocatable drs_probes::up2
- double precision, dimension(:), allocatable drs_probes::ut2
- double precision, dimension(:), allocatable drs_probes::adv_avg
- double precision, dimension(:), allocatable drs_probes::t2_avg
- double precision, dimension(:), allocatable drs_probes::tspec_avg
- double precision, dimension(:), allocatable drs_probes::urspec_avg
- double precision, allocatable drs_probes::Brspec_avg
- double precision drs_probes::groth

Generated on Sat Feb 28 16:13:49 2015 for DRS by Doxygen

- double precision drs_probes::Ekin
- double precision drs_probes::EB
- double precision drs_probes::nkes

energies from measure_lm:

- double precision drs_probes::nkea
- double precision drs_probes::etors
- double precision drs_probes::etora
- double precision drs_probes::drkes
- double precision drs_probes::drkea
- double precision drs_probes::mckes
- double precision drs_probes::mckea
- double precision drs_probes::Bnkes
- double precision drs_probes::Bnkea
- double precision drs_probes::Betors
- double precision dis_probes::Detois
- double precision drs_probes::Betora
- $\bullet \ \ double \ precision \ \ drs_probes::Bdrkes$
- double precision drs_probes::Bdrkea
- double precision drs_probes::Bmckes
- double precision drs_probes::Bmckea
- double precision, allocatable drs_probes::dOmega

Weights for volume integration.

• double precision **drs_probes::Rm** = 1.0d0

7.20 drs_radial.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_radial.f90:

Namespaces

• namespace drs_radial

This module implements the radial domain and operations in it.

Functions

• subroutine drs_radial::drs_radial_init (riro)

Initializes the radial domain and the Chebyshev polynomials and their derivatives.

• double precision, dimension(nr) drs_radial::radial_derivative_r2r (radarr)

Returns the first derivative of radarr. radarr is supposed to be given in direct space, derivative is returned in direct space.

• subroutine drs_radial::radial_dr_ddr_1D_n2r (t, t1, t2)

Returns first radial derivative in t1, second derivative in t2. Input t is supposed to be given in spectral space. On output both t and its derivatives are returned in real space.

• subroutine drs_radial::radial_dr_ddr_1D_r2r (t, t1, t2)

A factor of 2 for each derivative is due to the mapping from the radial coordinate r to the Chebyshev coordinate x, where x runs from -1 to 1. The interrelation is r=eta/(1-eta)+0.5(x+1) see the def. of rcoll in the initialization routine. Obviously, d/dr = 2*d/dx.

• subroutine drs_radial::radial_dr_ddr_3D_r2r (t, t1, t2)

Calculates first and second radial derivatives of 3D-array in lmr space. Includes dealiasing in n.

• subroutine drs_radial::radial_dr_ddr_3D_n2r (t0, t1, t2)

Calculates first and second radial derivatives of 3D-array in lmn space. includes dealiasing in n. Transforms the original field to lmr space.

Variables

• double precision, dimension(:), allocatable drs_radial::rcoll

Radial collocation points for Chebychev polynomials.

- double precision, dimension(:), allocatable **drs_radial::rcoll2**Squares of radial collocation points for Chebychev polynomials.
- double precision, dimension(:), allocatable drs_radial::drcoll

 Differences for radial collocation points for Chebychev polynomials.
- double precision, dimension(:,:), allocatable drs_radial::poly
- double precision, dimension(:,:), allocatable **drs_radial::poly_dr**
- double precision, dimension(:,:), allocatable drs_radial::poly_ddr
- integer, dimension(2) drs_radial::b

Index of the boundaries: b(1)=inner boundary; b(2)=outer boundary.

7.21 drs_temp.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_temp.f90:

Namespaces

• namespace drs_temp

Temperature related operations.

Functions

• subroutine drs_temp::drs_temp_allocation ()

Allocates the temperature related variables.

• subroutine drs_temp::drs_temp_init ()

Precomputes the adimensional radial temperature profile.

• character(len=16) drs_temp::tempProfName ()

 $Outputs\ a\ human\ readable\ name\ for\ the\ temperature\ profiles.$

• subroutine drs_temp::drs_temp_reset ()

Resets the temperature and its derivatives to zero.

• subroutine drs_temp::update_temp_lap ()

Recomputes and caches the laplacian of the temperature.

- subroutine drs_temp::drs_temp_randomize (noise)
- subroutine drs_temp::apply_temp_BC_RHS (val)

Boundary conditions for the temperature. For fixed temperature, the value of the anomaly is set to be zero.

• subroutine $drs_temp::calc_temp$ (temp_t)

Computes the temperature anomaly in real space.

Variables

- double precision, dimension(:,:,:), allocatable drs_temp::temp
- double precision, dimension(:,:,:), allocatable drs_temp::temp_dr
- double precision, dimension(:,:,:), allocatable drs_temp::temp_ddr

- double precision, dimension(:,:,:), allocatable drs_temp::temp_lap
- double precision, dimension(:,:,:), allocatable drs_temp::temp_avg
- double precision, dimension(:), allocatable drs_temp::temp_dr_avg
- double precision, dimension(:), allocatable drs_temp::temp_profile
- double precision, dimension(:), allocatable drs_temp::temp_profile_dr

7.22 drs_time.f90 File Reference

#include "error_codes.h"

Include dependency graph for drs_time.f90:

Namespaces

• namespace drs_time

Module to deal with time. It deals with both wall time and simulation time. It also deals wit the time-stepping.

Functions

- subroutine drs_time::drs_time_init ()
- subroutine drs_time::drs_time_update ()

Updates the current simulation time and step index.

• subroutine drs_time::update_timestep (cfl, h, h_old, stat)

Updates the time-step according to the cfl numbers.

• subroutine **drs_time::update_time_last_sample** (tnew)

Updates the time we last took a sample of some quantities.

Variables

• double precision drs_time::time_start

The simulation time before the first step.

• double precision drs_time::time

The simulation time.

• double precision drs_time::max_time

The maximum simulation time.

• double precision drs_time::h

The simulation time-step.

• double precision drs_time::h_old

The simulation time step at the previous step.

• double precision drs_time::drift

The drift rate in radians per simulation time unit.

• double precision drs_time::time_last_sample

Time we last saved the probes values.

• double precision drs_time::time_since_last_sample

Time since we last saved the probes values.

• logical drs_time::variable_h

Do we have a variable time step?

• real drs_time::cpu_time_start

Wall time when we started the run in seconds.

• real drs_time::cpu_time_now

Wall time now, in seconds.

• real drs_time::cpu_time_first_step

Wall time after we finished the first Newton step, in seconds.

• real drs_time::cpu_max_time

The maximum wall time in hours.

• integer drs_time::transient

How many steps to consider as a transient and discard?

• integer drs_time::sampling_rate

The sampling rate in integer steps.

• integer drs time::stepmax

The maximum number of steps to take.

• integer drs_time::nsample

How many samples we took so far.

• integer drs_time::steps

 $Steps\ taken\ so\ far\ in\ total\ (includes\ stepstart).$

• integer drs_time::stepstart

The step count we start the run with.

• double precision, dimension(3), target drs_time::dtimestep

• integer, dimension(5), target drs_time::imeasure

7.23 drs_transforms.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs transforms.f90:

Namespaces

• namespace drs_transforms

Spherical transforms.

Functions

• subroutine **drs_transforms::ylmt** (input, output)

This routine performs three steps: $\sim \sim \sim \sim \sim 1$. transformation $tt_t(theta,phi)$ --> $tt_t(theta,m)$ transposed. 2. redistribution dist(theta) --> dist(m) 3. transformation tt(theta,m) --> t(l,m) distrib. in m.

• subroutine **drs_transforms::ylmt_3D** (input, output)

This routine performs three steps: $\sim \sim \sim \sim \sim 1$. transformation $tt_t(theta,phi)$ --> $tt_t(theta,m)$ transposed. 2. redistribution dist(theta) --> dist(m) 3. transformation tt(theta,m) --> t(l,m) distrib. in m.

- subroutine drs_transforms::ylmb (input, output)
- subroutine drs_transforms::m2phi_2D (input, output)
- subroutine drs_transforms::my_div (vec_r, vec_t, vec_p, nonlin)

Computes the spectral coefficients of the divergence of the vector field \vec{u} . On input:.

- subroutine **drs_transforms::my_rot** (vec_t, vec_p, nonlin)
- subroutine **drs_transforms::my_rotrot** (vec_r, vec_t, vec_p, nonlin)
- subroutine drs_transforms::vectorField2PolTor_common (vr, vt, vp, pol, tor)

Computes the poloidal and toroidal scalar coefficients of a 3D vector field. This is the part of the calculation that is common to both the flow and magnetic field.

• subroutine drs_transforms::PolTor_common2PolTor_flow (pol, tor)

Multiplies the poloidal and toroidal scalar coefficients by the appropriate factors of r and l*(l+1) to make them the poloidal and toroidal scalars of the flow as defined for this program.

• subroutine drs_transforms::PolTor_common2PolTor_field (pol, tor)

Multiplies the poloidal and toroidal scalar coefficients by the apropriate factors of r and l*(l+1) to make them the poloidal and toroidal scalars of the magnetic field as defined for this program.

• subroutine drs_transforms::vectorField2Divergence (ur, ut, up, div)

Computes the spherical harmonic coefficients of the divergence of a 3D vector field in real space.

Variables

• double precision, parameter **drs_transforms::pi** = 3.141592653589793d0

7.24 parser/parser.f90 File Reference

#include "parser_error_codes.h"

Include dependency graph for parser.f90:

Classes

• struct parser::parser_vars

A description of the keys we will find and their properties.

• struct parser::parser_section

A description of the sections we will find and their properties.

• interface parser::read_val

Reads a value.

Namespaces

• namespace parser

This module provides a simple **parser** (p. 123) for input files of the type 'key = val' eventually separated by '[Sections]'.

Functions

• subroutine **parser::parse** (unit_in, variable, line, error)

Reads one line from the specified unit and outputs the variable name and possible values as a string.

7.25 SHTOOLS/PLegendreA_d1.f90 File Reference

Functions

• subroutine **PLegendreA_d1** (p, dp, lmax, z, csphase)

7.25.1 Function Documentation

7.25.1.1 subroutine PLegendreA_d1 (real*8,dimension(:),intent(out) p, real*8,dimension(:),intent(out) dp, integer,intent(in) lmax, real*8,intent(in) z, integer,intent(in),optional csphase)

7.26 SHTOOLS/PlmBar_d1.f90 File Reference

Functions

• subroutine PlmBar_d1 (p, dp, lmax, z, csphase, cnorm)

7.26.1 Function Documentation

7.26.1.1 subroutine PlmBar_d1 (real*8,dimension(:),intent(out) p, real*8,dimension(:),intent(out) dp, integer,intent(in) lmax, real*8,intent(in) z, integer,intent(in),optional csphase, integer,intent(in),optional cnorm)

Referenced by drs_legendre::legendre_init_new().

7.27 SHTOOLS/PlmIndex.f90 File Reference

Functions

• integer **PlmIndex** (l, m)

7.27.1 Function Documentation

7.27.1.1 integer PlmIndex (integer,intent(in) l, integer,intent(in) m)

Parameters:

l This function will return the index corresponding to a given 1 and m in the arrays of Legendre Polynomials generated by routines such as PlmBar and PlmSchmidt.

Calling Parameters: 1 Spherical harmonic angular degree. m Spherical harmonic angular order.

Dependencies: None

Written by Mark Wieczorek (May 2004)

Copyright (c) 2005, Mark A. Wieczorek All rights reserved.

Parameters:

m This function will return the index corresponding to a given 1 and m in the arrays of Legendre Polynomials generated by routines such as PlmBar and PlmSchmidt.

Calling Parameters: 1 Spherical harmonic angular degree. m Spherical harmonic angular order.

Dependencies: None

Written by Mark Wieczorek (May 2004)

Copyright (c) 2005, Mark A. Wieczorek All rights reserved.

Referenced by drs_legendre::legendre_init_new().

7.28 tests/test_drs_Chebyshev.f90 File Reference

Functions

• program test_drs_radial

7.28.1 Function Documentation

7.28.1.1 program test_drs_radial ()

 $References \ drs_Chebyshev::Che$

7.29 tests/test_drs_fftw-r2r.f90 File Reference

Functions

• program test_drs_fftw

7.29.1 Function Documentation

$\textbf{7.29.1.1} \quad program\ test_drs_fftw\ ()$

References drs_fftw3:: $cos_r2r_1_n2r()$, drs_fftw3:: $cos_r2r_1_r2n()$, and drs_fftw3:: drs_fftw3 :init(). Here is the call graph for this function:

7.30 tests/test_drs_fftw.f90 File Reference

Functions

• program test_drs_fftw

7.30.1 Function Documentation

7.30.1.1 program test_drs_fftw ()

 $References \ drs_fftw3::dft_backward(), \ drs_fftw3::dft_forward(), \ drs_fftw3::drs_fftw3::drs_fftw3_cleanup(), \ and \ drs_fftw3::drs_fftw3_init().$

7.31 tests/test_drs_radial.f90 File Reference

Functions

- program test_drs_radial
- logical test_radial_colocation_points ()

Tests the correctnes of the collocation points.

• logical test_radial_derivative_r2r ()

Tests if the derivative of r**2 is 2*r.

logical test_radial_dr_ddr_1D_r2r ()

Tests if the first derivative of r**2 is 2*r and the second is 2.

7.31.1 Function Documentation

7.31.1.1 program test_drs_radial ()

References drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_init(), drs_radial::drs_radial_init(), drs_dims::Np, drs_dims::Nr, drs_dims::Nr_s, drs_dims::Nt, test_radial_colocation_points(), test_radial_derivative_r2r(), and test_radial_dr_ddr_1D_r2r().

Here is the call graph for this function:

7.31.1.2 logical test_drs_radial::test_radial_colocation_points ()

Tests the correctnes of the collocation points.

References drs_dims::Nr, and drs_radial::rcoll.

Referenced by test_drs_radial().

7.31.1.3 logical test_drs_radial::test_radial_derivative_r2r ()

Tests if the derivative of r**2 is 2*r.

References drs_radial::radial_derivative_r2r(), drs_radial::rcoll, and drs_radial::rcoll2.

Referenced by test_drs_radial().

Here is the call graph for this function:

7.31.1.4 logical test_drs_radial::test_radial_dr_ddr_1D_r2r ()

Tests if the first derivative of r**2 is 2*r and the second is 2.

References drs_radial::radial_dr_ddr_1D_r2r(), drs_radial::rcoll, and drs_radial::rcoll2.

Referenced by test_drs_radial().

7.32 tests/test_logFeature.f90 File Reference

Functions

• program testLogFeature

7.32.1 Function Documentation

7.32.1.1 program testLogFeature ()

7.33 tests/test_remesh-r2r.f90 File Reference

Functions

• program test_drs_fftw

7.33.1 Function Documentation

$\textbf{7.33.1.1} \quad program\ test_drs_fftw\ ()$

References drs_fftw3::remesh().

7.34 tests/test_saveDXmeridional.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for test_saveDXmeridional.f90:

Functions

- program test_saveDXMer
- subroutine **saveDXmeridional** (field, phi, filename)

7.34.1 Function Documentation

7.34.1.1 subroutine test_saveDXMer::saveDXmeridional (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, double precision,intent(in) phi, character(len=*),intent(in) filename)

References drs_legendre::costheta, drs_dims::m0, drs_dims::Nt, drs_legendre::pi, and drs_radial::rcoll. Referenced by drs_io_DX::save2DXscalar(), test_saveDXMer(), and YokoiPlots().

7.34.1.2 program test_saveDXMer ()

References drs_mpi::blk_t_size, drs_mpi::drs_abort(), drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_-init(), drs_legendre::drs_legendre::drs_legendre::drs_legendre_init(), drs_mpi::drs_mpi_-init(), drs_radial::drs_radial_init(), drs_dims::m0, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nr_s, drs_dims::Nt, drs_dims::Nt_s, drs_legendre::pi, and saveDXmeridional().

7.35 tests/test_vectorField2Divergence.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for test_vectorField2Divergence.f90:

Functions

- program test_vectorField2Divergence
- subroutine init ()

7.35.1 Function Documentation

7.35.1.1 subroutine test_vectorField2Divergence::init ()

References drs_mpi::blk_t_size, drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_mpi::drs_mpi_init(), drs_radial::drs_radial_init(), drs_dims::lsymm, drs_dims::m0, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nr_s, drs_dims::Nt, and drs_dims::Nt_s.

 $Referenced \ by \ Benchmarkv1(), \ Benchmarkv2(), \ drs2dx(), \ getProfile(), \ StateAverage(), \ test_vectorField2Divergence(), and YokoiPlots().$

Here is the call graph for this function:

7.35.1.2 program test_vectorField2Divergence ()

References init(), drs_dims::Nr, drs_radial::rcoll, and drs_transforms::vectorField2Divergence().

7.36 utilities/Benchmark-gen.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for Benchmark-gen.f90:

Functions

• program Benchmarkv1

Generate the initial conditions relevant to the 1st benchmark exercise based on a given state.

• subroutine **init** (error)

7.36.1 Function Documentation

7.36.1.1 program Benchmarkv1 ()

Generate the initial conditions relevant to the 1st benchmark exercise based on a given state.

References drs_legendre::costheta, drs_mpi::drs_abort(), drs_field::field_pol, drs_field::field_tor, drs_flow::flow_pol, drs_flow::flow_tor, init(), drs_dims::Np, drs_dims::Nr, drs_dims::Nt, drs_legendre::pi, drs_radial::rcoll, drs_io::save_state(), drs_legendre::sintheta, and drs_temp::temp.

Here is the call graph for this function:

7.36.1.2 subroutine Benchmarkv1::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_mpi::drs_abort(), drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_-init(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_mpi::drs_mpi_init(), drs_radial::drs_radial_init(), drs_temp::drs_temp_allocation(), drs_io::io_calc_file_out, drs_dims::m0, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nr_s, drs_dims::Nt_s.

7.37 utilities/Benchmark-v2.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for Benchmark-v2.f90:

Functions

• program Benchmarkv2

Computes quantities relevant to the 2nd benchmark exercise based on a given state.

• subroutine cacheTemperatureProfile (rcut, T)

Cache the temperature from the profile.

- subroutine **selectEquatorMidShell** (field, line, rcut)
- double precision volume (eta)
- subroutine init (error)

7.37.1 Function Documentation

7.37.1.1 program Benchmarkv2 ()

Computes quantities relevant to the 2nd benchmark exercise based on a given state.

 $References\ cache Temperature Profile(),\ drs_field::calc_field(),\ drs_flow::calc_flow(),\ drs_temp::calc_temp(),\ drs_probes::Ekin,\ drs_probes::energy(),\ init(),\ drs_io::io_calc_file_in,\ drs_dims::Np,\ drs_dims::Np,\ drs_dims::Np_s,\ drs_dims::Nr,\ drs_dims::Nt_s,\ drs_legendre::pi,\ select Equator MidShell(),\ drs_time::time,\ and\ volume().$

7.37.1.2 subroutine Benchmarkv2::cacheTemperatureProfile (integer,intent(in) *rcut*, double precision,intent(out) *T*)

Cache the temperature from the profile.

References drs_radial::drcoll, drs_radial::rcoll, and drs_temp::temp_profile.

Referenced by Benchmarkv1(), and Benchmarkv2().

7.37.1.3 subroutine Benchmarkv2::init (integer,intent(inout) *error*)

References drs mpi::blk t size, drs io par::commenti, drs time::drift, drs io par::drifti, drs mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_init(), drs_field::drs_field_allocation(), drs_field::drs_field_init(), drs_flow::drs_flow_allocation(), flow::drs flow init(), drs hypDiff::drs hypDiff init(), drs legendre::drs legendre allocation(), drs legendre::drs_legendre_init(), drs_io::drs_load_state(), drs mpi::drs mpi init(), drs probes::drs probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial_init(), drs_temp::drs_temp_drs_temp::drs_temp_init(), drs_time::drs_time_init(), drs_hypDiff::drs_want_hypDiff, allocation(), drs_io_par::etai, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor_ddr, drs_field::field_tor_dr, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, drs_io::io_calc_file_in, drs_io_par::lformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Npi, drs_io_par::Npi_s, drs_dims::Nr, drs_dims::Nr_s, drs_io_par::Nri, drs_io_par::Nri_s, drs_dims::Nt, drs_ $dims::Nt_s, \quad drs_io_par::Nti_, \quad drs_io_par::Pti, \quad drs_io_par::Pti, \quad drs_io_par::Pti, \quad drs_io_par::Ra_ti, \\$ drs_io_par::read_input_par(), drs_io_par::Tai, and drs_time::time.

Here is the call graph for this function:

7.37.1.4 subroutine Benchmarkv2::selectEquatorMidShell (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, double precision,dimension(np),intent(out) line, integer,intent(out) rcut)

 $References \ drs_mpi::blk_t_start, \ drs_legendre::costheta, \ drs_radial::drcoll, \ drs_dims::Nt, \ and \ drs_radial::rcoll.$

Referenced by Benchmarkv1(), and Benchmarkv2().

7.37.1.5 double precision Benchmarkv2::volume (double precision,intent(in) eta)

References drs_legendre::pi.

Referenced by Benchmarkv1(), Benchmarkv2(), and volume().

7.38 utilities/Benchmark.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for Benchmark.f90:

Functions

• program Benchmarkv1

Computes quantities relevant to the 1st benchmark exercise based on a given state.

• subroutine cacheTemperatureProfile (rcut, T)

Cache the temperature from the profile.

- subroutine **selectEquatorMidShell** (field, line, rcut)
- double precision volume (eta)
- subroutine init (error)

7.38.1 Function Documentation

7.38.1.1 program Benchmarkv1 ()

Computes quantities relevant to the 1st benchmark exercise based on a given state.

References cacheTemperatureProfile(), drs_field::calc_field(), drs_flow::calc_flow(), drs_temp::calc_temp(), drs_probes::Ekin, drs_probes::energy(), init(), drs_io::io_calc_file_in, drs_dims::Np, drs_dims::Np_s, drs_dims::Nr, drs_dims::Nt_s, drs_legendre::pi, selectEquatorMidShell(), drs_time::time, and volume().

Here is the call graph for this function:

7.38.1.2 subroutine Benchmarkv1::cacheTemperatureProfile (integer,intent(in) *rcut*, double precision,intent(out) *T*)

Cache the temperature from the profile.

References drs_radial::drcoll, drs_radial::rcoll, and drs_temp::temp_profile.

7.38.1.3 subroutine Benchmarkv1::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_io_par::commenti, drs_time::drift, drs_io_par::drifti, drs_mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_init(), drs_field::drs_field_allocation(), drs_field::drs_field_init(), drs_flow::drs_flow_allocation(), drs_flow::drs_flow_init(), drs_hypDiff::drs_hypDiff_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_io::drs_load_state(), drs_mpi::drs_mpi_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial_init(), drs_temp::drs_temp_allocation(), drs_temp::drs_temp_init(), drs_time::drs_time_init(), drs_hypDiff::drs_want_hypDiff, drs_io_par::etai, drs_field::field_pol_ddr, drs_field::field_pol_dr, drs_field::field_tor_ddr, drs_field::field_tor_dr, drs_field::field_pol_dr, drs_field::field_tor_ddr, drs_flow::flow_tor_dr, drs_io::io_calc_file_in, drs_io_par::lformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Npi, drs_io_par::Npi, drs_io_par::Npi, drs_io_par::Pti, drs_io_par::Ra_ti, drs_io_par::read_input_par(), drs_io_par::Tai, and drs_time::time.

drs_mpi::drs_abort drs_mpi::drs_mpi_init drs_dims::drs_dims_init drs_Chebyshev::Cheb_compute_dx_n2n drs_Chebyshev::Chebyshev_init drs_fftw3::drs_fftw3_init drs_field::drs_field_allocation drs_field::update_field_pol_lap drs_Chebyshev::Chebyshev_n2x drs_radial::drs_radial_init drs_field::update_field_tor_lap drs_Chebyshev::Cheb_compute_dx_ddx_x2x drs_Chebyshev::Chebyshev_x2n drs_field::drs_field_init drs_radial::radial_dr_ddr_3D_r2r drs_flow::drs_flow_init drs_flow::update_flow_tor_lap drs_temp::drs_temp_init drs_flow::update_flow_pol_lap drs_flow::drs_flow_allocation drs_temp::tempProfName drs_hypDiff::drs_hypDiff_init drs_temp::update_temp_lap drs_legendre::drs_legendre_allocation drs_legendre::gauleg drs_legendre::initNormalization drs_legendre::drs_legendre_init PlmBar_d1 drs_legendre::legendre_init_new PlmIndex drs_io::drs_load_state drs_io_par::read_input_par drs_probes::drs_probes_allocation drs_probes::drs_probes_init drs_time::update_time_last_sample

Here is the call graph for this function:

7.38.1.4 subroutine Benchmarkv1::selectEquatorMidShell (double precision,dimension(0:(blk_t_size(mpi_rank),intent(in) field, double precision,dimension(np),intent(out) line, integer,intent(out) rcut)

 $References \ drs_mpi::blk_t_start, \ drs_legendre::costheta, \ drs_radial::drcoll, \ drs_dims::Nt, \ and \ drs_radial::rcoll.$

7.38.1.5 double precision Benchmarkv1::volume (double precision,intent(in) eta)

drs_mpi::blk_ts_start_init

References drs_legendre::pi, and volume().

Here is the call graph for this function:

drs_temp::drs_temp_allocation

drs_time::drs_time_init

drs_mpi::mpi_dims_init

7.39 utilities/drs-spectra.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs-spectra.f90:

Functions

• program StateAverage

Computes the spectra of all quantities for a speciffic state.

• subroutine init (error)

7.39.1 Function Documentation

7.39.1.1 subroutine StateAverage::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_io_par::commenti, drs_time::drift, drs_io_par::drifti, drs_mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_init(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_hypDiff::drs_hypDiff_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_mpi::drs_mpi_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial_init(), drs_temp::drs_temp_allocation(), drs_time::drs_time_init(), drs_hypDiff::drs_want_hypDiff, drs_io_par::etai, drs_io::io_calc_file_in, drs_io_par::lformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Npi, drs_io_par::Npi_s, drs_dims::Nt, drs_dims::Nt_s, drs_io_par::Nti_s, drs_io_par::Pti, drs_io_par::Ra_ti, drs_io_par::read_input_par(), drs_io_par::Tai, and drs_time::time.

Here is the call graph for this function:

7.39.1.2 program StateAverage ()

Computes the spectra of all quantities for a speciffic state.

References drs_io::deflate, drs_mpi::drs_abort(), drs_io::drs_load_state(), drs_io::inflate, init(), drs_io::io_calc_file_in, drs_io::save_l_spec(), drs_io::save_m_spec(), and drs_io::save_n_spec().

Here is the call graph for this function:

7.40 utilities/drs-version.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs-version.f90:

Functions

• program drsVersion

7.40.1 Function Documentation

7.40.1.1 program drsVersion ()

7.41 utilities/drs2dx.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs2dx.f90:

Functions

• program drs2dx

Computes the plots require for the Yokoi paper.

- subroutine init (error)
- subroutine parse_drs2dx ()
- subroutine redefine_radial_coordinate ()

7.41.1 Function Documentation

7.41.1.1 program drs2dx ()

Computes the plots require for the Yokoi paper.

References init(), drs_io::io_calc_file_in, redefine_radial_coordinate(), drs_renderers::render(), drs_renderers::render(), drs_renderers::XX, drs_renderers::YY, and drs_renderers::ZZ.

Here is the call graph for this function:

7.41.1.2 subroutine drs2dx::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_dims::check_dims(), drs_io::deflate, drs_time::drift, drs_io_par::drifti, drs_mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_comp::drs_comp_allocation(), drs_comp::drs_comp_init(), drs_dims::drs_dims_init(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_io::drs_load_state(), drs_mpi::drs_mpi_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial_init(), drs_renderers::drs_renderers_allocation(), drs_temp::drs_temp_allocation(), drs_temp::drs_temp_init(), drs_time::drs_time_init(), drs_io_par::etai, drs_io::inflate, drs_io::o_calc_file_in, drs_io_par::lformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Npi_s, drs_dims::Nr, drs_dims::Nr_s, drs_io_par::Nti_s, parse_drs2dx(), drs_io_par::Pmi, drs_io_par::Pti, drs_io_par::Ra_ti, drs_io_par::read_input_par(), drs_io_par::Tai, and drs_time::time.

Here is the call graph for this function:

7.41.1.3 subroutine drs2dx::parse_drs2dx()

References $drs_io_DX::cut_type, drs_io::io_calc_file_in, drs_dims::Np, drs_dims::Nr, drs_dims::Nt, parser::parse(), and <math>drs_io_DX::where_to_cut.$

Referenced by init().

Here is the call graph for this function:

7.41.1.4 subroutine drs2dx::redefine_radial_coordinate ()

 $References\ drs_radial::drcoll,\ drs_dims::Nr,\ drs_radial::rcoll,\ and\ drs_radial::rcoll2.$

Referenced by drs2dx().

7.42 utilities/drs_io_DX.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_io_DX.f90:

Classes

• interface drs_io_DX::save2DX

Namespaces

• namespace drs_io_DX

Functions

- subroutine **drs_io_DX::save2DXscalar** (field, filename)

 Saves the contents of a scalar field to file.
- subroutine drs_io_DX::save2DXvector (XX, YY, ZZ, filename)

 Saves the contents of a vector field to file given its three components.
- subroutine **drs_io_DX::saveDXmeridional** (field, filename) Writes a meridional slice of the field.
- subroutine **drs_io_DX::saveDXmeridional3DVec** (field_x, field_y, field_z, filename) Writes a meridional slice of the field.
- subroutine **drs_io_DX::saveDXvolume** (field, filename) Writes a volume rendeer of the field.
- $\bullet \ \ \text{subroutine} \ \ drs_io_DX{::}saveDXvolume_v2 \ (\text{field, filename}) \\$
- subroutine drs_io_DX::saveDXvolume3DVec (XX, YY, ZZ, filename)

Writes a volume rendeer of the vector field components.

Variables

• double precision drs_io_DX::cut_phi

the azimuth to use on meridional cuts

Writes a volume rendeer of the field.

- double precision drs_io_DX::cut_z
 - the azimuth to use on equator parallell cuts
- double precision **drs_io_DX::where_to_cut** = 0.0d0
- integer drs_io_DX::cut_type

the type of cut or render to save

7.43 utilities/drs_renderers.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for drs_renderers.f90:

Namespaces

• namespace drs_renderers

Defines

• #define ERR_UNSUPPORTED_OPTION 33

Functions

- subroutine drs_renderers::drs_renderers_allocation (what)
- subroutine **drs_renderers::render** (what)

Makes a decision about what to render.

Numbers are coded as:

 $\sim\sim\sim\sim\sim a$ b c de $|\ |\ |\ |>e$ - component 1, 2 or 3 for vectors, irrelevant for scalars $|\ |\ |>d$ - coordinate system or stream lines $|\ |\ |>c$ - quantity to be ploted $|\ |>b$ - curl, gradient or divergence or $0\ |>a$ - scalar product with selection or 0.

- subroutine drs_renderers::render_ur ()
- subroutine drs_renderers::render_u ()
- subroutine drs_renderers::render_Br ()
- subroutine drs_renderers::render_Bt ()
- subroutine drs_renderers::render_Bp ()

Renders the azimuthal component of the magnetic field.

• subroutine drs_renderers::render_Bz ()

Renders the z component of the magnetic field.

• subroutine drs_renderers::render_B ()

Render all three spherical components of the magnetic field.

• subroutine drs_renderers::render_B_outside ()

Render all three spherical components of the magnetic field outside the outer core.

• subroutine drs_renderers::render_rotu_r ()

Renders the radial component of the curl of the flow.

```
• subroutine drs_renderers::render_rotu ()
     Renders all three spherical components of the curl of the flow (vorticity).
• subroutine drs_renderers::render_up ()
     u_phi:
• subroutine drs_renderers::render_rotu_p ()
     rot(u)_phi:
• subroutine drs_renderers::render_ut ()
     u theta:
• subroutine drs_renderers::render_rotu_t ()
     rot(u)_theta:
• subroutine drs_renderers::render_uz ()
     u_z
• subroutine drs_renderers::render_rotu_z ()
     rot(u)_z:
• subroutine drs_renderers::render_temperature_perturbation ()
     Renders the temperature perturbation.
• subroutine drs_renderers::render_temperature ()
     Renders the total temperature.
• subroutine drs_renderers::render_helicity ()
     Renders helicity.
• subroutine drs_renderers::render_temprature_grad_r ()
• subroutine drs_renderers::render_streamlines_t ()
• subroutine drs_renderers::render_poloidal_streamlines ()
     Renders the poloidal flow streamlines.
• subroutine drs_renderers::render_radial_streamfunction ()
     radial stream function for the flow
```

Variables

- double precision, dimension(:,:,:), allocatable drs_renderers::render_out
- double precision, allocatable drs_renderers::XX
- double precision, allocatable drs_renderers::YY
- double precision, allocatable drs_renderers::ZZ

7.43.1 Define Documentation

7.43.1.1 #define ERR_UNSUPPORTED_OPTION 33

7.44 utilities/getProfile.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for getProfile.f90:

Functions

• program getProfile

Computes the horizontally integrated radial profile for the given quantity.

- subroutine init (error)
- subroutine parseConfig (error)

Parses the configuration file $\sim\sim\sim\sim\sim$ state = <state base="" name>=""> what = quantity to generate a profile for $\sim\sim\sim\sim\sim$.

• subroutine **setWhatName** ()

Sets a whuman readable name for what is being computed.

7.44.1 Function Documentation

7.44.1.1 program getProfile ()

Computes the horizontally integrated radial profile for the given quantity.

References drs_comp::comp, drs_comp::comp_profile, drs_io::deflate, drs_mpi::drs_abort(), drs_comp::drs_comp_init(), drs_io::drs_load_state(), drs_temp::drs_temp_init(), drs_io::inflate, init(), drs_io::io_calc_file_in, drs_dims::Nr, drs_radial::rcoll, drs_temp::temp, and drs_temp::temp_profile.

Here is the call graph for this function:

7.44.1.2 subroutine getProfile::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_io_par::commenti, drs_time::drift, drs_io_par::drifti, drs_mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_comp::drs_comp_allocation(), drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3_init(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_hypDiff::drs_hypDiff_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_mpi::drs_mpi_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial_init(), drs_temp::drs_temp_allocation(), drs_time::drs_time_init(), drs_hypDiff::drs_want_hypDiff, drs_io_par::etai, drs_io::io_calc_file_in, drs_io_par::lformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Nri, drs_io_par::Nri, drs_io_par::Nri, drs_io_par::Nri, drs_io_par::Nri, drs_io_par::Pti, drs_io_par::Ra_ti, drs_io_par::read_input_par(), setWhatName(), drs_io_par::Tai, and drs_time::time.

Here is the call graph for this function:

7.44.1.3 subroutine getProfile::parseConfig (integer *error*)

Parses the configuration file $\sim\sim\sim\sim\sim$ state = <state base="" name>=""> what = quantity to generate a profile for $\sim\sim\sim\sim\sim$.

References drs_io::io_calc_file_in, and parser::parse().

Referenced by init().

Here is the call graph for this function:

7.44.1.4 subroutine getProfile::setWhatName ()

Sets a whuman readable name for what is being computed.

Referenced by init().

7.45 utilities/state-average.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for state-average.f90:

Functions

• program StateAverage

Takes an Average in time of all fields.

• subroutine init (error)

7.45.1 Function Documentation

7.45.1.1 subroutine StateAverage::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_io_par::commenti, drs_time::drift, drs_io_par::drifti, drs_mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3:init(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_hypDiff::drs_hypDiff_init(), drs_legendre::drs_legendre::drs_legendre::init(), drs_mpi::drs_mpi_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial_init(), drs_temp::drs_temp_allocation(), drs_time::drs_time_init(), drs_hypDiff::drs_want_hypDiff, drs_io_par::etai, drs_io::io_calc_file_in, drs_io_par::Iformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Npi, drs_io_par::Npi_s, drs_dims::Nt, drs_io_par::Nti_s, drs_io_par::Nti_s, drs_io_par::Pti, drs_io_par::Ra_ti, drs_io_par::read_input_par(), drs_io_par::Tai, and drs_time::time.

drs_dims::drs_dims_init drs_fftw3::drs_fftw3_init drs_mpi::drs_abort drs_field::drs_field_allocation drs_flow::drs_flow_allocation drs_hypDiff::drs_hypDiff_init drs_legendre::drs_legendre_allocation drs_mpi::drs_mpi_init drs_legendre::gauleg drs_legendre::drs_legendre_init drs_legendre::initNormalization PlmBar_d1 drs_probes::drs_probes_allocation drs_legendre::legendre_init_new PlmIndex drs_time::update_time_last_sample drs_probes::drs_probes_init drs_radial::drs_radial_init drs_Chebyshev::Cheb_compute_dx_n2n drs_temp::drs_temp_allocation drs_Chebyshev::Chebyshev_init drs_Chebyshev::Cheb_compute_dx_ddx_n2x drs_Chebyshev::Chebyshev_n2x drs_time::drs_time_init

drs_mpi::blk_ts_start_init

Here is the call graph for this function:

7.45.1.2 program StateAverage ()

Takes an Average in time of all fields.

References drs_io::deflate, drs_mpi::drs_abort(), drs_io::drs_load_state(), drs_field::field_pol, drs_field::field_pol_avg, drs_field::field_tor, drs_field::field_tor_avg, drs_flow::flow_pol, drs_flow::flow_pol_avg, drs_flow::flow_tor, drs_flow::flow_tor_avg, drs_io::inflate, init(), drs_io::io_calc_file_in, drs_io::io_calc_file_out, drs_io::save_state(), drs_temp::temp, and drs_temp::temp_avg.

Here is the call graph for this function:

7.46 utilities/Yokoi-plots-rs.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for Yokoi-plots-rs.f90:

Functions

• program StateAverage

Computes the plots require for the Yokoi paper.

- subroutine init (error)
- subroutine computeAndSaveAverage (nstates)
- subroutine computeEMF (EMF)
- subroutine computeAlpha (alpha)
- subroutine computeBeta (beta)
- subroutine computeGamma (gamma)
- subroutine saveIDLmeridional (field, phi, filename)

Save the requested meridional cut in a format compatible with Radostin's IDL scripts.

7.46.1 Function Documentation

7.46.1.1 subroutine StateAverage::computeAlpha (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) alpha)

References drs_dims::Nt.

Referenced by StateAverage(), and YokoiPlots().

7.46.1.2 subroutine StateAverage::computeAndSaveAverage (integer,intent(out) nstates)

References drs_field::calc_field(), drs_flow::calc_flow(), drs_field::calc_rot_field(), drs_flow::calc_rot_flow(), drs_io::deflate, drs_mpi::drs_abort(), drs_field::drs_field_init(), drs_flow::drs_flow_init(), drs_io::drs_load_state(), drs_field::field_pol, drs_field::field_pol_avg, drs_field::field_pol_ddr, drs_field::field_tor_avg, drs_field::field_tor_ddr, drs_field::field_tor_avg, drs_flow::flow_pol_ddr, drs_field::field_tor_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, drs_flow::flow_tor_avg, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, drs_io::inflate, drs_io::io_calc_file_in, drs_io::io_calc_file_out, drs_dims::Np_s, and drs_io::save_state().

Referenced by StateAverage(), and YokoiPlots().

Here is the call graph for this function:

7.46.1.3 subroutine StateAverage::computeBeta (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) beta)

References drs dims::Nt.

Referenced by StateAverage(), and YokoiPlots().

7.46.1.4 subroutine StateAverage::computeEMF (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) EMF)

References drs_legendre::costheta, and drs_dims::Nt.

Referenced by StateAverage(), and YokoiPlots().

7.46.1.5 subroutine StateAverage::computeGamma (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) gamma)

References drs_dims::Nt.

Referenced by StateAverage(), and YokoiPlots().

7.46.1.6 subroutine StateAverage::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_dims::check_dims(), drs_io_par::commenti, drs_time::drift, drs_io_par::drifti, drs_mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3::drs_init(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_hypDiff::drs_hypDiff_init(), drs_legendre::drs_legendre_init(), drs_mpi::drs_mpi_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial:init(), drs_temp::drs_temp_allocation(), drs_time::drs_time_init(), drs_hypDiff::drs_want_hypDiff, drs_io_par::etai, drs_io::io_calc_file_in, drs_io_par::lformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Npi, drs_io_par::Npi_s, drs_dims::Nt, drs_io_par::Nti_s, drs_io_par::Nti_s, drs_io_par::Pti, drs_io_par::Ra_ti, drs_io_par::read_input_par(), drs_io_par::Tai, and drs_time::time.

Here is the call graph for this function:

7.46.1.7 subroutine StateAverage::saveIDLmeridional (double precision,dimension(0:(blk_t_-size(mpi_rank),intent(in) field, double precision,intent(in) phi, character(len=*),intent(in) filename)

Save the requested meridional cut in a format compatible with Radostin's IDL scripts.

 $References\ drs_legendre::costheta,\ drs_probes::dOmega,\ drs_dims::m0,\ drs_dims::Nt,\ drs_legendre::pi,\ and\ drs_radial::rcoll.$

Referenced by StateAverage().

7.46.1.8 program StateAverage ()

Computes the plots require for the Yokoi paper.

References drs_field::calc_field(), drs_flow::calc_flow(), drs_field::calc_rot_flow(), drs_flow::calc_rot_flow(), computeAlpha(), computeAndSaveAverage(), computeBeta(), computeEMF(), computeGamma(), drs_legendre::costheta, drs_io::deflate, drs_mpi::drs_abort(), drs_field::drs_field_init(), drs_flow::drs_flow_init(), drs_io::drs_load_state(), drs_field::field_pol, drs_field::field_pol_avg, drs_field::field_pol_dr, drs_field::field_pol_avg, drs_field::field_tor_ddr, drs_field::field_tor_dr, drs_field::field_tor_avg, drs_field::field_tor_ddr, drs_flow::flow_pol_dr, drs_flow::flow_pol_avg, drs_flow::flow_pol_ddr, drs_flow::flow_tor_dr, dr

Here is the call graph for this function:

7.47 utilities/Yokoi-plots.f90 File Reference

#include "drsDefs.f90"

Include dependency graph for Yokoi-plots.f90:

Functions

· program YokoiPlots

Computes the plots require for the Yokoi paper.

- subroutine **init** (error)
- subroutine computeAndSaveAverage (nstates)
- subroutine computeEMF (EMF)
- subroutine computeAlpha (alpha)
- subroutine computeBeta (beta)
- subroutine computeGamma (gamma)
- subroutine saveDXmeridional (field, phi, filename)

7.47.1 Function Documentation

7.47.1.1 subroutine YokoiPlots::computeAlpha (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) alpha)

References drs_dims::Nt.

7.47.1.2 subroutine YokoiPlots::computeAndSaveAverage (integer,intent(out) nstates)

References drs_field::calc_field(), drs_flow::calc_flow(), drs_field::calc_rot_field(), drs_flow::calc_rot_flow(), drs_io::deflate, drs_mpi::drs_abort(), drs_field::drs_field_init(), drs_flow::drs_flow_init(), drs_io::drs_load_state(), drs_field::field_pol, drs_field::field_pol_avg, drs_field::field_pol_ddr, drs_field::field_tor_avg, drs_field::field_tor_ddr, drs_field::field_tor_avg, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, drs_flow::flow_tor_avg, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, drs_io::io_calc_file_in, drs_io::io_calc_file_out, drs_dims::Np_s, and drs_io::save_state().

drs_field::calc_field drs_flow::calc_flow drs_fftw3::dft_backward drs_transforms::m2phi_2D drs_field::calc_rot_field drs_mpi::transpos_phi2theta drs_flow::calc_rot_flow drs_field::update_field_pol_lap drs_mpi::drs_abort drs_field::update_field_tor_lap drs_Chebyshev::Cheb_compute_dx_n2n drs field::drs field init drs Chebyshev::Cheb compute dx ddx x2x drs_radial::radial_dr_ddr_3D_r2r drs_Chebyshev::Chebyshev_n2x drs flow::drs flow init drs_Chebyshev::Chebyshev_x2n drs_flow::update_flow_pol_lap drs_flow::update_flow_tor_lap drs_io::drs_load_state drs_io_par::read_input_par

Here is the call graph for this function:

7.47.1.3 subroutine YokoiPlots::computeBeta (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) beta)

drs_io_par::write_parp

References drs dims::Nt.

7.47.1.4 subroutine YokoiPlots::computeEMF (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) EMF)

References drs_legendre::costheta, and drs_dims::Nt.

drs_io::save_state

7.47.1.5 subroutine YokoiPlots::computeGamma (double precision,dimension(0:(blk_t_size(mpi_rank),intent(inout) gamma)

References drs_dims::Nt.

7.47.1.6 subroutine YokoiPlots::init (integer,intent(inout) error)

References drs_mpi::blk_t_size, drs_dims::check_dims(), drs_io_par::commenti, drs_time::drift, drs_io_par::drifti, drs_mpi::drs_abort(), drs_io_par::drs_calc_typei, drs_dims::drs_dims_init(), drs_fftw3::drs_fftw3::init(), drs_field::drs_field_allocation(), drs_flow::drs_flow_allocation(), drs_hypDiff::drs_hypDiff_init(), drs_legendre::drs_legendre_allocation(), drs_legendre::drs_legendre_init(), drs_mpi::drs_mpi_init(), drs_probes::drs_probes_allocation(), drs_probes::drs_probes_init(), drs_radial::drs_radial:init(), drs_temp::drs_temp_allocation(), drs_time::drs_time_init(), drs_hypDiff::drs_want_hypDiff, drs_io_par::etai, drs_io::io_calc_file_in, drs_io_par::lformi, drs_dims::m0, drs_io_par::m0i, drs_mpi::mpi_dims_init(), drs_mpi::mpi_rank, drs_mpi::mpi_size, drs_dims::Np, drs_dims::Np_s, drs_io_par::Npi, drs_io_par::Npi_s, drs_dims::Nt, drs_io_par::Nti_s, drs_io_par::Nti_s, drs_io_par::Pti, drs_io_par::Ra_ti, drs_io_par::read_input_par(), drs_io_par::Tai, and drs_time::time.

Here is the call graph for this function:

7.47.1.7 subroutine YokoiPlots::saveDXmeridional (double precision,dimension(0:(blk_t_-size(mpi_rank),intent(in) field, double precision,intent(in) phi, character(len=*),intent(in) filename)

References drs_legendre::costheta, drs_probes::dOmega, drs_dims::m0, drs_dims::Nt, drs_legendre::pi, and drs_radial::rcoll.

7.47.1.8 program YokoiPlots ()

Computes the plots require for the Yokoi paper.

References drs_field::calc_field(), drs_flow::calc_flow(), drs_field::calc_rot_flow(), drs_flow::calc_rot_flow(), computeAlpha(), computeAndSaveAverage(), computeBeta(), computeEMF(), computeGamma(), drs_legendre::costheta, drs_io::deflate, drs_mpi::drs_abort(), drs_field::drs_field_init(), drs_flow::drs_flow_init(), drs_io::drs_load_state(), drs_field::field_pol, drs_field::field_pol_avg, drs_field::field_pol_dr, drs_field::field_tor_avg, drs_field::field_tor_ddr, drs_field::field_tor_drs_flow::flow_pol_avg, drs_flow::flow_pol_ddr, drs_flow::flow_pol_dr, drs_flow::flow_tor_avg, drs_flow::flow_tor_ddr, drs_flow::flow_tor_dr, drs_io::inflate, init(), drs_io::io_calc_file_in, drs_dims::Np, drs_dims::Nr, drs_dims::Nt, and saveDXmerid-ional().

Here is the call graph for this function:

Index

add_lock	volume, 199
drs_lock, 65	Benchmarkv1
adv_avg	Benchmark-gen.f90, 192
drs_probes, 89	Benchmark.f90, 197
-	Benchmarkv2
apply_comp_BC	
drs_comp, 18	Benchmark-v2.f90, 194
apply_field_pol_BC	Betora
drs_field, 30	drs_probes, 90
apply_field_tor_BC	Betors
drs_field, 30	drs_probes, 90
apply_flow_pol_BC	blk_ps_max_size
drs_flow, 37	drs_mpi, 72
apply_flow_tor_BC	blk_ps_size
drs_flow, 37	drs_mpi, 72
apply_temp_BC_RHS	blk_ps_start
drs_temp, 109	drs_mpi, 72
applyGreen	blk_t_max_size
drs.f90, 133	drs_mpi, 73
average_unnormalised_field_l_spectrum	blk_t_size
drs_probes, 83	drs_mpi, 73
average_unnormalised_flow_l_spectrum	blk_t_start
drs_probes, 83	drs_mpi, 73
average_unnormalised_scalar_l_spectrum	blk_ts_start
drs_probes, 83	drs_mpi, 73
– 1	blk_ts_start_init
b	drs_mpi, 69
drs_radial, 96	Bmckea
Bdrkea	drs_probes, 90
drs_probes, 89	Bmckes
Bdrkes	drs_probes, 90
drs_probes, 90	Bnkea
Benchmark-gen.f90	drs_probes, 90
Benchmarkv1, 192	Bnkes
init, 192	drs_probes, 90
Benchmark-v2.f90	-
Benchmarkv2, 194	Brspec_avg
cacheTemperatureProfile, 194	drs_probes, 90
init, 195	a integrata r
	c_integrate_r
selectEquatorMidShell, 196	drs_probes, 83
volume, 196	cacheTemperatureProfile
Benchmark.f90	Benchmark-v2.f90, 194
Benchmarkv1, 197	Benchmark.f90, 197
cacheTemperatureProfile, 197	calc_B
init, 198	drs_field, 31
selectEquatorMidShell, 199	calc_comp

drs_comp, 18	drs_io_par, 54
calc_field	comp
drs_field, 31	drs_comp, 19
calc_field_lspec	comp_avg
drs_field, 31	drs_comp, 19
calc_field_mspec	comp_ddr
drs_field, 32	drs_comp, 19
calc_field_nspec	comp_dr
drs_field, 32	drs_comp, 19
calc_flow	comp_dr_avg
drs_flow, 37	drs_comp, 19
calc_flow_lspec	comp_profile
drs_flow, 37	drs_comp, 19
calc_flow_mspec	comp_profile_dr
drs_flow, 38	drs_comp, 20
calc_flow_nspec	compProfName
drs_flow, 38	drs_comp, 18
calc_rot_field	compute_advection
drs_field, 32	drs_probes, 84
calc_rot_flow	compute_helicities
drs_flow, 38	drs_probes, 84
calc_temp	computeAlpha
drs_temp, 109	Yokoi-plots-rs.f90, 216
calc u	Yokoi-plots.f90, 220
drs_flow, 38	computeAndSaveAverage
cfl	Yokoi-plots-rs.f90, 216
drs_nonlinear, 78	Yokoi-plots.f90, 220
Cheb_compute_dx_ddx_n2x	computeBeta
drs_Chebyshev, 13	Yokoi-plots-rs.f90, 217
Cheb_compute_dx_ddx_x2x	Yokoi-plots.f90, 221
drs_Chebyshev, 13	computeEMF
Cheb_compute_dx_n2n	Yokoi-plots-rs.f90, 217
drs_Chebyshev, 14	Yokoi-plots.f90, 221
Cheb_x	computeGamma
drs_Chebyshev, 15	Yokoi-plots-rs.f90, 217
Chebyshev	Yokoi-plots.f90, 221
drs_Chebyshev, 15	cos_r2r_1_n2r
Chebyshev_cleanup	drs_fftw3, 27
drs_Chebyshev, 14	cos_r2r_1_r2n
Chebyshev_ddx	drs_fftw3, 27
drs_Chebyshev, 15	costheta
Chebyshev_dx	drs_legendre, 63
drs_Chebyshev, 15	cpu_max_time
Chebyshev_init	drs_time, 114
drs_Chebyshev, 14	cpu_time_first_step
Chebyshev_n2x	drs_time, 114
drs_Chebyshev, 14	cpu_time_now
Chebyshev_x2n	drs_time, 114
drs_Chebyshev, 15	cpu_time_start
check_dims	drs_time, 114
drs_dims, 22	CrankNicholson, 9
check_resolution_Hartman	CrankNicholson_init, 10
drs_probes, 83 commenti	field_lap_inv_pol, 10 field_lap_inv_tor, 10

0 1 1 10	1
flow_lap_inv_pol, 10	update_flow, 139
flow_lap_inv_tor, 11	update_Green_functions, 140
pinv, 11	update_temp, 140
temp_lap_inv, 11	drs2dx
updateCrankNicholson_matrices, 10	drs2dx.f90, 204
CrankNicholson.f90, 131	drs2dx.f90
CrankNicholson_init	drs2dx, 204
CrankNicholson, 10	init, 205
ct_buffer	parse_drs2dx, 206
drs_Chebyshev, 16	redefine_radial_coordinate, 206
cut_phi	drs_abort
drs_io_DX, 51	drs_mpi, 69
cut_type	drs_bcast_dble
drs_io_DX, 51	drs_mpi, 69
cut_z	drs_mpi::drs_bcast, 125
drs_io_DX, 51	drs_bcast_dble_scal
uis_10_DA, 31	drs_mpi, 69
deflate	drs_mpi::drs_bcast, 125
drs_io, 47	drs_hprdrs_beast, 123 drs_beast_int
dft_backward	drs_mpi, 70
drs_fftw3, 27	<u>*</u>
dft forward	drs_mpi::drs_bcast, 125
-	drs_bcast_int_scal
drs_fftw3, 27	drs_mpi, 70
distribute_in_m	drs_mpi::drs_bcast, 125
drs_mpi, 69	drs_bcast_logical_scal
dleg	drs_mpi, 70
drs_legendre, 63	drs_mpi::drs_bcast, 125
dOmega	drs_calc_typei
drs_probes, 90	drs_io_par, 54
drcoll	drs_Chebyshev, 12
drs_radial, 96	Cheb_compute_dx_ddx_n2x, 13
drift	Cheb_compute_dx_ddx_x2x, 13
drs_time, 114	Cheb_compute_dx_n2n, 14
drifti	Cheb_x, 15
drs_io_par, 54	Chebyshev, 15
drkea	Chebyshev_cleanup, 14
drs_probes, 90	Chebyshev_ddx, 15
drkes	Chebyshev_dx, 15
drs_probes, 90	Chebyshev_init, 14
drs	Chebyshev_n2x, 14
drs.f90, 134	Chebyshev_x2n, 15
drs-spectra.f90	ct_buffer, 16
init, 200	Nx, 16
State Average, 201	Nx_s, 16
drs-version.f90	pi, 16
drs Version, 203	plan_x, 16
drs.f90, 133	drs_Chebyshev.f90, 142
applyGreen, 133	drs_comp, 17
drs, 134	apply_comp_BC, 18
drs_init, 136	calc_comp, 18
kd_grothrate, 137	comp, 19
mk_green, 138	comp_avg, 19
•	
need_to_step, 138	comp_ddr, 19
update_field, 138	comp_dr, 19

comp_dr_avg, 19	drs_fftw3, 27
comp_profile, 19	drs_fftw3_init
comp_profile_dr, 20	drs_fftw3, 27
compProfName, 18	drs_fftw3_Np
drs_comp_allocation, 18	drs_fftw3, 28
drs_comp_init, 18	drs_fftw3_Nr
drs_comp_randomize, 19	drs_fftw3, 28
drs_comp_reset, 19	drs_fftw3_Nt
drs_comp.f90, 143	drs_fftw3, 28
drs_comp_allocation	drs_field, 30
drs_comp, 18	apply_field_pol_BC, 30
drs_comp_init	apply_field_tor_BC, 30
drs_comp, 18	calc_B, 31
drs_comp_randomize	calc_field, 31
drs_comp, 19	calc_field_lspec, 31
drs_comp_reset	calc_field_mspec, 32
drs_comp, 19	calc_field_nspec, 32
<u>*</u> ·	calc_rot_field, 32
drs_debug, 21	
save_lmr_quantity, 21	drs_field_allocation, 32
save_tpr_quantity, 21	drs_field_init, 32
drs_debug.f90, 145	drs_field_random_init, 33
drs_dims, 22	field_pol, 33
check_dims, 22	field_pol_avg, 33
drs_dims_init, 23	field_pol_ddr, 34
lsymm, 23	field_pol_dr, 34
m0, 23	field_pol_lap, 34
Np, 23	field_tor, 34
Np_s, 23	field_tor_avg, 34
Nr, 24	field_tor_ddr, 34
Nr_s, 24	field_tor_dr, 34
Nt, 24	field_tor_lap, 34
Nt_s, 24	update_field_pol_lap, 33
usr_dims, 25	update_field_tor_lap, 33
drs_dims.f90, 146	drs_field.f90, 149
drs_dims_init	drs_field_allocation
drs_dims, 23	drs_field, 32
drs_fftw3, 26	drs_field_init
cos_r2r_1_n2r, 27	drs_field, 32
cos_r2r_1_r2n, 27	drs_field_random_init
dft_backward, 27	drs_field, 33
dft_forward, 27	drs_flow, 36
drs_fftw3_cleanup, 27	apply_flow_pol_BC, 37
drs_fftw3_init, 27	apply_flow_tor_BC, 37
drs_fftw3_Np, 28	calc_flow, 37
drs_fftw3_Nr, 28	calc_flow_lspec, 37
drs_fftw3_Nt, 28	calc_flow_mspec, 38
in_p, 28	calc_flow_nspec, 38
inout_r, 28	calc_rot_flow, 38
plan_pb, 28	calc_u, 38
plan_pf, 28	drs_flow_allocation, 39
plan_r, 29	drs_flow_init, 39
remesh, 28	flow_pol, 40
drs_fftw3.f90, 148	flow_pol_avg, 40
drs_fftw3_cleanup	flow_pol_ddr, 40
•	· ·

flow_pol_dr, 40	commenti, 54
flow_pol_lap, 40	drifti, 54
flow_tor, 40	drs_calc_typei, 54
flow_tor_avg, 41	drs_read_conf, 53
flow_tor_ddr, 41	drs_read_conf_v2, 53
flow_tor_dr, 41	etai, 54
flow_tor_lap, 41	flowBCi, 54
update_flow_pol_lap, 39	hi, 54
update_flow_tor_lap, 40	lformi, 54
drs_flow.f90, 151	lsymmi, 54
drs_flow_allocation	m0i, 54
drs_flow, 39	magBCi, 54
drs_flow_init	magic, 55
drs_flow, 39	MAGICC1, 55
drs_gather_vars	MAGICC2, 55
drs_mpi, 70	MAGICC3, 55
drs_hypDiff, 42	MAGICC4, 55
drs_hypDiff_init, 42	MAGICC5, 55
drs_want_hypDiff, 42	MAGICC6, 55
hypDiff, 42	MAGICC7, 55
drs_hypDiff.f90, 153	MAGICC9, 55
drs_hypDiff_init	magici, 55
drs_hypDiff, 42	noise, 55
drs_init	Npi, 55
drs.f90, 136	Npi_s, 55
drs_io, 43	Nri, 55
deflate, 47	Nri_s, 56
drs_load_state, 43	Nti, 56
drs_open_output, 44	Nti_s, 56
dump_state, 44	Pmi, 56
inflate, 47	Pti, 56
io_calc_file_in, 47	Ra_ti, 56
io_calc_file_out, 47	read_input_par, 53
save_1_spec, 45	sampling_ratei, 56
save_m_spec, 45	stepmaxi, 56
save_n_spec, 46	Tai, 56
save_state, 46	tempBCi, 56
drs_io.f90, 154	transienti, 56
drs_io_DX, 48	usr_dimsi, 57
cut_phi, 51	write_parp, 53
cut_type, 51	drs_io_par.f90, 155
cut_z, 51	drs_io_units, 58
save2DXscalar, 48	unit_adv, 58
save2DXvector, 49	unit_am, 58
saveDXmeridional, 49	unit_cfl, 58
saveDXmeridional3DVec, 49	unit_dissB, 58
saveDXvolume, 50	unit_dissu, 58
saveDXvolume3DVec, 50	unit_eb, 59
saveDXvolume_v2, 50	unit_ek, 59
where_to_cut, 51	unit_evp, 59
drs_io_DX::save2DX, 129	unit_evt, 59
save2DXscalar, 129	unit_koeb, 59
save2DXvector, 129	unit_koeu, 59
drs_io_par, 52	unit_lspec, 59

unit_mspec, 59	drs_mpi::drs_minimize, 127
unit_nspec, 59	drs_minimize_dble_scal
unit_nu, 59	drs_mpi, 70
unit_t, 59	drs_mpi::drs_minimize, 127
unit_u_mid, 60	drs_mpi, 67
unit_uaz, 60	blk_ps_max_size, 72
unit_ur, 60	blk_ps_size, 72
unit_uzon, 60	blk_ps_start, 72
drs_io_units.f90, 157	blk_t_max_size, 73
drs_legendre, 61	blk_t_size, 73
costheta, 63	blk_t_start, 73
dleg, 63	blk_ts_start, 73
drs_legendre_allocation, 62	blk_ts_start_init, 69
drs_legendre_init, 62	distribute_in_m, 69
gauleg, 62	drs_abort, 69
initNormalization, 62	drs_bcast_dble, 69
leg_neg, 63	drs_bcast_dble_scal, 69
E	
leg_sin, 63	drs_bcast_int, 70
legendre, 64	drs_bcast_int_scal, 70
legendre_init_new, 63	drs_bcast_logical_scal, 70
llp1, 64	drs_gather_vars, 70
pi, 64	drs_maximize_dble, 70
plmfac, 64	drs_maximize_dble_scal, 70
sintheta, 64	drs_minimize_dble, 70
w, 64	drs_minimize_dble_scal, 70
drs_legendre.f90, 158	drs_mpi_init, 70
drs_legendre::interface, 128	gather_from_m, 71
PLegendreA_d1, 128	mm, 73
PlmBar_d1, 128	mpi_cleanup, 71
PlmIndex, 128	mpi_dims_init, 71
drs_legendre_allocation	mpi_rank, 74
drs_legendre, 62	mpi_size, 74
drs_legendre_init	sum_over_all_cpus_scal, 71
drs_legendre, 62	sum_over_all_cpus_vect, 71
drs_load_state	transpos_phi2theta, 71
drs_io, 43	transpos_theta2phi, 72
drs_lock, 65	wait_for_everyone, 72
add_lock, 65	drs_mpi.f90, 161
drs_lock_init, 65	drs_mpi::drs_bcast, 125
lockExists, 66	drs_bcast_dble, 125
lockFileName, 66	drs_bcast_dble_scal, 125
lockFileUnit, 66	drs_bcast_int, 125
rm_lock, 66	drs_bcast_int_scal, 125
drs_lock.f90, 160	drs_bcast_logical_scal, 125
drs_lock_init	drs_mpi::drs_maximize, 126
drs_lock, 65	drs_maximize_dble, 126
drs_nock, 05 drs_maximize_dble	drs_maximize_dble_scal, 126
drs_mpi, 70	drs_mpi::drs_minimize, 127
drs_mpi::drs_maximize, 126	drs_minimize_dble, 127
drs_maximize_dble_scal	drs_minimize_dble_scal, 127
drs_mpi, 70	drs_mpi::sum_over_all_cpus, 130
drs_mpi::drs_maximize, 126	sum_over_all_cpus_scal, 130
drs_minimize_dble	sum_over_all_cpus_vect, 130
drs_mpi, 70	drs_mpi_init

drs_mpi, 70	drs_probes_init, 84
drs_nonlinear, 75	EB, 91
cfl, 78	Ekin, 91
drs_nonlinear_init, 76	energy, 85
evaluate_real_space, 76	etora, 91
field_p_t, 78	etors, 91
field_r_t, 78	groth, 91
field_t_t, 78	integrate_power_surf, 85
flow_p_t, 78	integrate_r, 85
flow_r_t, 78	l_spec_of_scalar_field, 85
flow_t_t, 79	m_spec_of_scalar_field, 86
ncfl, 79	mckea, 91
rhs, 76	mckes, 91
rhs_IE_pol, 79	measure, 86
rhs_IE_tor, 79	measure_lm, 86
rhs_NS_pol, 79	n_spec_of_scalar_field, 87
rhs_NS_tor, 79	nkea, 91
rhs_TE, 79	nkes, 91
rot_field_p_t, 79	nusselt, 87
rot_field_r_t, 79	Rm, 91
rot_field_t_t, 79	save_angular_momentum, 88
rot_flow_p_t, 79	save_field_coeffs, 88
rot_flow_r_t, 80	save_flow_coeffs, 88
rot_flow_t_t, 80	save_flow_dissipation, 89
save_stuff, 77	save_magnetic_dissipation, 89
temp_t, 80	t2_avg, 91
drs_nonlinear.f90, 164	tspec_avg, 92
drs_nonlinear_init	up2, 92
drs_nonlinear, 76	up_avg, 92
drs_open_output	ur_avg, 92
drs_io, 44	urspec_avg, 92
drs_params.f90, 166	ut2, 92
drs_probes, 81	ut_avg, 92
adv_avg, 89	drs_probes.f90, 167
average_unnormalised_field_l_spectrum, 83	drs_probes_allocation
average_unnormalised_flow_l_spectrum, 83	drs_probes, 84
average_unnormalised_scalar_1_spectrum, 83	drs_probes_init
Bdrkea, 89	drs_probes, 84
Bdrkes, 90	drs_radial, 93
Betora, 90	b, 96
Betors, 90	drcoll, 96
Bmckea, 90	drs_radial_init, 94
Bmckes, 90	poly, 97
Bnkea, 90	poly_ddr, 97
Bnkes, 90	poly_dr, 97
Brspec_avg, 90	radial_derivative_r2r, 94
c_integrate_r, 83	radial_dr_ddr_1D_n2r, 94
check_resolution_Hartman, 83	radial_dr_ddr_1D_r2r, 95
compute_advection, 84	radial_dr_ddr_3D_n2r, 95
compute_helicities, 84	radial_dr_ddr_3D_r2r, 96
dOmega, 90	rcoll, 97
drkea, 90	rcoll2, 97
drkes, 90	drs_radial.f90, 170
drs_probes_allocation, 84	drs_radial_init
•	

	D 01 110
drs_radial, 94	tempProfName, 110
drs_read_conf	update_temp_lap, 110
drs_io_par, 53	drs_temp.f90, 172
drs_read_conf_v2	drs_temp_allocation
drs_io_par, 53	drs_temp, 109
drs_renderers, 98	drs_temp_init
drs_renderers_allocation, 99	drs_temp, 109
render, 99	drs_temp_randomize
render_B, 100	drs_temp, 110
render_B_outside, 100	drs_temp_reset
render_Bp, 101	drs_temp, 110
render_Br, 101	drs_time, 112
render_Bt, 101	cpu_max_time, 114
render_Bz, 102	cpu_time_first_step, 114
render_helicity, 102	cpu_time_now, 114
render_out, 107	cpu_time_start, 114
render_poloidal_streamlines, 102	drift, 114
render_radial_streamfunction, 103	drs_time_init, 113
render_rotu, 103	drs_time_update, 113
render_rotu_p, 103	dtimestep, 114
render_rotu_r, 103	h, 115
render_rotu_t, 104	h_old, 115
render_rotu_z, 104	imeasure, 115
render_streamlines_t, 104	max_time, 115
render_temperature, 105	nsample, 115
render_temperature_perturbation, 105	sampling_rate, 115
render_temprature_grad_r, 105	stepmax, 115
render_u, 105	steps, 115
render_up, 106	stepstart, 116
render_ur, 106	time, 116
render_ut, 106	time_last_sample, 116
render_uz, 106	time_since_last_sample, 116
XX, 107	time_start, 116
YY, 107	transient, 116
ZZ, 107	update_time_last_sample, 113
drs_renderers.f90	update_timestep, 114
ERR_UNSUPPORTED_OPTION, 210	variable_h, 116
drs_renderers_allocation	drs_time.f90, 174
drs_renderers, 99	drs_time_init
drs_temp, 108	drs_time, 113
apply_temp_BC_RHS, 109	drs_time_update
calc_temp, 109	drs_time, 113
drs_temp_allocation, 109	drs_transforms, 118
drs_temp_init, 109	m2phi_2D, 119
drs_temp_randomize, 110	my_div, 119
drs_temp_reset, 110	my_rot, 119
temp, 110	my_rotrot, 120
temp_avg, 110	pi, 122
temp_ddr, 111	PolTor_common2PolTor_field, 120
temp_dr, 111	PolTor_common2PolTor_flow, 120
temp_dr_avg, 111	vectorField2Divergence, 120
temp_lap, 111	vectorField2PolTor_common, 121
temp_profile, 111	ylmb, 121
temp_profile_dr, 111	ylmt, 121

ylmt_3D, 122	field_tor_dr
drs_transforms.f90, 176	drs_field, 34
drs_want_hypDiff	field_tor_lap
drs_hypDiff, 42	drs_field, 34
drsVersion	flow_lap_inv_pol
drs-version.f90, 203	CrankNicholson, 10
dtimestep	flow_lap_inv_tor
drs_time, 114	CrankNicholson, 11
dump_state	flow_p_t
drs_io, 44	drs_nonlinear, 78
	flow_pol
EB	drs_flow, 40
drs_probes, 91	flow_pol_avg
Ekin	drs_flow, 40
drs_probes, 91	flow_pol_ddr
energy	drs_flow, 40
drs_probes, 85	flow_pol_dr
ERR_UNSUPPORTED_OPTION	drs_flow, 40
drs_renderers.f90, 210	flow_pol_lap
etai	drs_flow, 40
drs_io_par, 54	flow_r_t
etora	drs_nonlinear, 78
drs_probes, 91	flow_t_t
etors	drs_nonlinear, 79
drs_probes, 91	flow_tor
evaluate_real_space	drs_flow, 40
drs_nonlinear, 76	flow_tor_avg
, , ,	drs_flow, 41
field_lap_inv_pol	flow_tor_ddr
CrankNicholson, 10	drs_flow, 41
field_lap_inv_tor	flow_tor_dr
CrankNicholson, 10	drs_flow, 41
field_p_t	flow_tor_lap
drs_nonlinear, 78	drs_flow, 41
field_pol	flowBCi
drs_field, 33	
field_pol_avg	drs_io_par, 54
drs_field, 33	gather from m
field_pol_ddr	gather_from_m
drs_field, 34	drs_mpi, 71
field_pol_dr	gauleg
drs_field, 34	drs_legendre, 62
	getProfile
field_pol_lap drs_field, 34	getProfile.f90, 211
	getProfile.f90
field_r_t	getProfile, 211
drs_nonlinear, 78	init, 212
field_t_t	parseConfig, 213
drs_nonlinear, 78	setWhatName, 213
field_tor	groth
drs_field, 34	drs_probes, 91
field_tor_avg	
drs_field, 34	h
field_tor_ddr	drs_time, 115
drs_field, 34	h_old

drs_time, 115	drs_lock, 66
hi	lockFileName
drs_io_par, 54	drs_lock, 66
hypDiff	lockFileUnit
* *	
drs_hypDiff, 42	drs_lock, 66
	lsymm
imeasure	drs_dims, 23
drs_time, 115	lsymmi
in_p	drs_io_par, 54
drs_fftw3, 28	
inflate	m0
drs_io, 47	drs_dims, 23
init	m0i
Benchmark-gen.f90, 192	drs_io_par, 54
Benchmark-v2.f90, 195	m2phi_2D
Benchmark (21790, 198	drs_transforms, 119
	m_spec_of_scalar_field
drs-spectra.f90, 200	-
drs2dx.f90, 205	drs_probes, 86
getProfile.f90, 212	magBCi
state-average.f90, 214	drs_io_par, 54
test_vectorField2Divergence.f90, 190	magic
Yokoi-plots-rs.f90, 217	drs_io_par, 55
Yokoi-plots.f90, 221	MAGICC1
initNormalization	drs_io_par, 55
drs_legendre, 62	MAGICC2
inout_r	drs_io_par, 55
	MAGICC3
drs_fftw3, 28	
integrate_power_surf	drs_io_par, 55
drs_probes, 85	MAGICC4
integrate_r	drs_io_par, 55
drs_probes, 85	MAGICC5
io_calc_file_in	drs_io_par, 55
drs_io, 47	MAGICC6
io_calc_file_out	drs_io_par, 55
drs io, 47	MAGICC7
010_10, 17	drs_io_par, 55
kd_grothrate	MAGICC9
drs.f90, 137	drs_io_par, 55
uis.170, 137	magici
1 appear of scalar field	•
l_spec_of_scalar_field	drs_io_par, 55
drs_probes, 85	max_time
leg_neg	drs_time, 115
drs_legendre, 63	mckea
leg_sin	drs_probes, 91
drs_legendre, 63	mckes
legendre	drs_probes, 91
drs_legendre, 64	measure
legendre_init_new	drs_probes, 86
drs_legendre, 63	measure_lm
lformi	
	drs_probes, 86
drs_io_par, 54	mk_green
llp1	drs.f90, 138
drs_legendre, 64	mm
lockExists	drs_mpi, 73

mni alaanun	dra probas 97
mpi_cleanup drs_mpi, 71	drs_probes, 87 Nx
mpi_dims_init	drs_Chebyshev, 16
drs_mpi, 71	Nx_s
mpi_rank	drs_Chebyshev, 16
drs_mpi, 74	,
mpi_size	parse
drs_mpi, 74	parser, 123
my_div	parse_drs2dx
drs_transforms, 119	drs2dx.f90, 206
my_rot	parseConfig
drs_transforms, 119	getProfile.f90, 213
my_rotrot	parser, 123
drs_transforms, 120	parse, 123
6 1 6 11	parser/parser.f90, 178
n_spec_of_scalar_field	pi
drs_probes, 87	drs_Chebyshev, 16
nefl	drs_legendre, 64
drs_nonlinear, 79	drs_transforms, 122
need_to_step drs.f90, 138	pinv CrankNicholson, 11
nkea	plan_pb
drs_probes, 91	drs_fftw3, 28
nkes	plan_pf
drs_probes, 91	drs_fftw3, 28
noise	plan_r
drs_io_par, 55	drs_fftw3, 29
Np	plan_x
drs_dims, 23	drs_Chebyshev, 16
Np_s	PLegendreA_d1
drs_dims, 23	drs_legendre::interface, 128
Npi	PLegendreA_d1.f90, 179
drs_io_par, 55	PLegendreA_d1.f90
Npi_s	PLegendreA_d1, 179
drs_io_par, 55	PlmBar_d1
Nr	drs_legendre::interface, 128
drs_dims, 24	PlmBar_d1.f90, 180
Nr_s	PlmBar_d1.f90
drs_dims, 24	PlmBar_d1, 180
Nri	plmfac drs_legendre, 64
drs_io_par, 55 Nri_s	PlmIndex
drs_io_par, 56	drs_legendre::interface, 128
nsample	PlmIndex.f90, 181
drs_time, 115	PlmIndex.f90
Nt	PlmIndex, 181
drs_dims, 24	Pmi
Nt_s	drs_io_par, 56
drs_dims, 24	PolTor_common2PolTor_field
Nti	drs_transforms, 120
drs_io_par, 56	PolTor_common2PolTor_flow
Nti_s	drs_transforms, 120
drs_io_par, 56	poly
nusselt	drs_radial, 97

poly_ddr	drs_renderers, 103
drs_radial, 97	render_rotu_r
poly_dr	drs_renderers, 103
drs_radial, 97	render_rotu_t
Pti	drs_renderers, 104
drs_io_par, 56	render_rotu_z
<u>F</u> , • •	drs_renderers, 104
Ra_ti	render_streamlines_t
drs_io_par, 56	drs_renderers, 104
radial_derivative_r2r	
drs radial, 94	render_temperature
radial_dr_ddr_1D_n2r	drs_renderers, 105
drs_radial, 94	render_temperature_perturbation
radial_dr_ddr_1D_r2r	drs_renderers, 105
drs_radial, 95	render_temprature_grad_r
radial_dr_ddr_3D_n2r	drs_renderers, 105
drs_radial, 95	render_u
	drs_renderers, 105
radial_dr_ddr_3D_r2r	render_up
drs_radial, 96	drs_renderers, 106
rcoll	render_ur
drs_radial, 97	drs renderers, 106
rcoll2	render_ut
drs_radial, 97	drs_renderers, 106
read_input_par	render_uz
drs_io_par, 53	drs_renderers, 106
redefine_radial_coordinate	rhs
drs2dx.f90, 206	drs_nonlinear, 76
remesh	rhs_IE_pol
drs_fftw3, 28	drs_nonlinear, 79
render	rhs_IE_tor
drs_renderers, 99	
render_B	drs_nonlinear, 79
drs_renderers, 100	rhs_NS_pol
render_B_outside	drs_nonlinear, 79
drs_renderers, 100	rhs_NS_tor
render_Bp	drs_nonlinear, 79
drs_renderers, 101	rhs_TE
render_Br	drs_nonlinear, 79
drs_renderers, 101	Rm
render_Bt	drs_probes, 91
drs_renderers, 101	rm_lock
render_Bz	drs_lock, 66
drs renderers, 102	rot_field_p_t
render_helicity	drs_nonlinear, 79
drs_renderers, 102	rot_field_r_t
render_out	drs_nonlinear, 79
drs renderers, 107	rot_field_t_t
render_poloidal_streamlines	drs_nonlinear, 79
drs_renderers, 102	rot_flow_p_t
render_radial_streamfunction	drs_nonlinear, 79
drs_renderers, 103	rot_flow_r_t
render_rotu	drs_nonlinear, 80
drs_renderers, 103	rot_flow_t_t
render_rotu_p	drs_nonlinear, 80
1011dc1_10tu_p	dis_nonnicai, 60

	CLITOOL C/Dl., D 11 (00, 100
sampling_rate	SHTOOLS/PlmBar_d1.f90, 180
drs_time, 115	SHTOOLS/PlmIndex.f90, 181
sampling_ratei	sintheta
drs_io_par, 56	drs_legendre, 64
save2DXscalar	state-average.f90
drs_io_DX, 48	init, 214
drs_io_DX::save2DX, 129	StateAverage, 215
save2DXvector	StateAverage
drs_io_DX, 49	drs-spectra.f90, 201
drs_io_DX::save2DX, 129	state-average.f90, 215
save_angular_momentum	Yokoi-plots-rs.f90, 218
drs_probes, 88	stepmax
save_field_coeffs	drs_time, 115
drs_probes, 88	stepmaxi
save_flow_coeffs	drs_io_par, 56
drs_probes, 88	steps
save_flow_dissipation	drs_time, 115
drs_probes, 89	
	stepstart
save_l_spec	drs_time, 116
drs_io, 45	sum_over_all_cpus_scal
save_lmr_quantity	drs_mpi, 71
drs_debug, 21	drs_mpi::sum_over_all_cpus, 130
save_m_spec	sum_over_all_cpus_vect
drs_io, 45	drs_mpi, 71
save_magnetic_dissipation	drs_mpi::sum_over_all_cpus, 130
drs_probes, 89	
save_n_spec	t2_avg
drs_io, 46	drs_probes, 91
save_state	Tai
drs_io, 46	drs_io_par, 56
save_stuff	temp
drs_nonlinear, 77	drs_temp, 110
save_tpr_quantity	temp_avg
drs_debug, 21	drs_temp, 110
saveDXmeridional	temp_ddr
drs_io_DX, 49	drs_temp, 111
test_saveDXmeridional.f90, 189	temp_dr
Yokoi-plots.f90, 222	drs_temp, 111
saveDXmeridional3DVec	temp_dr_avg
	drs_temp, 111
drs_io_DX, 49	-
saveDXvolume	temp_lap
drs_io_DX, 50	drs_temp, 111
saveDXvolume3DVec	temp_lap_inv
drs_io_DX, 50	CrankNicholson, 11
saveDXvolume_v2	temp_profile
drs_io_DX, 50	drs_temp, 111
saveIDLmeridional	temp_profile_dr
Yokoi-plots-rs.f90, 218	drs_temp, 111
selectEquatorMidShell	temp_t
Benchmark-v2.f90, 196	drs_nonlinear, 80
Benchmark.f90, 199	tempBCi
setWhatName	drs_io_par, 56
getProfile.f90, 213	tempProfName
SHTOOLS/PLegendreA_d1.f90, 179	drs_temp, 110
	•

test_drs_Chebyshev.f90	time_start
test_drs_radial, 182	drs_time, 116
test_drs_fftw	transient
test_drs_fftw-r2r.f90, 183	drs_time, 116
test_drs_fftw.f90, 184	transienti
test_remesh-r2r.f90, 188	drs_io_par, 56
test_drs_fftw-r2r.f90	transpos_phi2theta
test_drs_fftw, 183	drs_mpi, 71
test_drs_fftw.f90	transpos_theta2phi
test_drs_fftw, 184	drs_mpi, 72
test_drs_radial	tspec_avg
test_drs_Chebyshev.f90, 182	drs_probes, 92
test_drs_radial.f90, 185	
test_drs_radial.f90	unit_adv
test_drs_radial, 185	drs_io_units, 58
test_radial_colocation_points, 185	unit_am
test_radial_derivative_r2r, 185	drs_io_units, 58
test_radial_dr_ddr_1D_r2r, 186	unit_cfl
test_logFeature.f90	drs_io_units, 58
testLogFeature, 187	unit_dissB
test_radial_colocation_points	drs_io_units, 58
test_drs_radial.f90, 185	unit_dissu
test_radial_derivative_r2r	drs_io_units, 58
test_drs_radial.f90, 185	unit_eb
test_radial_dr_ddr_1D_r2r	drs_io_units, 59
test_drs_radial.f90, 186	unit_ek
test_remesh-r2r.f90	drs_io_units, 59
	unit_evp
test_drs_fftw, 188	-
test_saveDXMer	drs_io_units, 59
test_saveDXmeridional.f90, 189	unit_evt
test_saveDXmeridional.f90	drs_io_units, 59
saveDXmeridional, 189	unit_koeb
test_saveDXMer, 189	drs_io_units, 59
test_vectorField2Divergence	unit_koeu
test_vectorField2Divergence.f90, 190	drs_io_units, 59
test_vectorField2Divergence.f90	unit_lspec
init, 190	drs_io_units, 59
test_vectorField2Divergence, 190	unit_mspec
testLogFeature	drs_io_units, 59
test_logFeature.f90, 187	unit_nspec
tests/test_drs_Chebyshev.f90, 182	drs_io_units, 59
tests/test_drs_fftw-r2r.f90, 183	unit_nu
tests/test_drs_fftw.f90, 184	drs_io_units, 59
tests/test_drs_radial.f90, 185	unit_t
tests/test_logFeature.f90, 187	drs_io_units, 59
tests/test_remesh-r2r.f90, 188	unit_u_mid
tests/test_saveDXmeridional.f90, 189	drs_io_units, 60
tests/test_vectorField2Divergence.f90, 190	unit_uaz
time	drs_io_units, 60
drs_time, 116	unit_ur
time_last_sample	drs_io_units, 60
drs_time, 116	unit_uzon
time_since_last_sample	drs_io_units, 60
drs_time, 116	up2
<u>-</u>	r-

1	E' 110D'
drs_probes, 92	vectorField2Divergence
up_avg	drs_transforms, 120
drs_probes, 92	vectorField2PolTor_common
update_field	drs_transforms, 121
drs.f90, 138	volume
update_field_pol_lap	Benchmark-v2.f90, 196
drs_field, 33	Benchmark.f90, 199
update_field_tor_lap	
drs_field, 33	W
update_flow	drs_legendre, 64
drs.f90, 139	wait_for_everyone
update_flow_pol_lap	drs_mpi, 72
drs_flow, 39	where_to_cut
update_flow_tor_lap	drs_io_DX, 51
drs_flow, 40	write_parp
update_Green_functions	drs_io_par, 53
drs.f90, 140	urs_rs_pur, ee
•	XX
update_temp	drs_renderers, 107
drs.f90, 140	<u> </u>
update_temp_lap	ylmb
drs_temp, 110	drs_transforms, 121
update_time_last_sample	ylmt
drs_time, 113	drs_transforms, 121
update_timestep	ylmt_3D
drs_time, 114	drs_transforms, 122
updateCrankNicholson_matrices	
CrankNicholson, 10	Yokoi-plots-rs.f90
ur_avg	computeAlpha, 216
drs_probes, 92	computeAndSaveAverage, 216
urspec_avg	computeBeta, 217
drs_probes, 92	computeEMF, 217
usr_dims	computeGamma, 217
drs dims, 25	init, 217
usr_dimsi	saveIDLmeridional, 218
drs_io_par, 57	StateAverage, 218
•	Yokoi-plots.f90
ut2	computeAlpha, 220
drs_probes, 92	computeAndSaveAverage, 220
ut_avg	computeBeta, 221
drs_probes, 92	computeEMF, 221
utilities/Benchmark-gen.f90, 192	computeGamma, 221
utilities/Benchmark-v2.f90, 194	init, 221
utilities/Benchmark.f90, 197	saveDXmeridional, 222
utilities/drs-spectra.f90, 200	YokoiPlots, 222
utilities/drs-version.f90, 203	YokoiPlots
utilities/drs2dx.f90, 204	Yokoi-plots.f90, 222
utilities/drs_io_DX.f90, 207	YY
utilities/drs_renderers.f90, 209	drs_renderers, 107
utilities/getProfile.f90, 211	dis_ichderers, 107
utilities/state-average.f90, 214	ZZ
utilities/Yokoi-plots-rs.f90, 216	drs_renderers, 107
utilities/Yokoi-plots.f90, 220	aro_renacrors, 107
1 ,	
variable_h	
drs_time, 116	
- ,	