Modelo sugerido para os relatórios e obrigatório para a documentação do projeto final

Gabriel de Castro Dias *

Andressa de Araujo Pereira †

Mirella Gomes Silva Nascimento ‡

Joao Pedro Felicio Pereira §

Universidade de Brasília, 19 de fevereiro de 2025

Figura 1: Logo UnB

RESUMO

Faça aqui uma breve descrição do que foi feito em cada seção e como elas se relacionam. Uma seção pode ser referenciada automaticamente usando o comando \ref{sec:label da seção}, como mostra o texto abaixo. Esse comando é usado de maneira geral para referenciar a equações, figuras, tabelas e códigos.

"Uma dificuldade desnecessária dos alunos de OAC é o template de relatório/documentação obscuro ou altamente técnico. É o objetivo deste novo template criar um modelo mais legível e prático, e para tanto foram dedicadas três seções; na Seção 1, explica-se como usar o básico das fórmulas matemáticas em ETFX e como inserir figuras, tabelas e código RISC-V; na Seção 2, apresenta-se rapidamente como criar URLs, hyperlinks e citações a referências clicáveis; finalmente, na Seção 3, são oferecidas algumas sugestões de como incluir tabelas ou figuras grandes."

Palavras-chave: OAC · Assembly IRSC-V · Template

1 FÓRMULAS MATEMÁTICAS

Uma nova seção pode ser feita simplesmente digitando \section{Nome da seção}. Esta simplicidade reaparece nas subseções e subsubseções, como veremos. Entretanto, antes disso, apresentemos como colocar fórmulas matemáticas; basta usar o ambiente equation

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \tag{1}$$

para escrever uma equação enumerada, ou o ambiente align para múltiplas equações numeradas:

$$\tan(1/x) = \frac{1}{\tan(x)} \tag{2}$$

$$=\cot(x)\tag{3}$$

$$= \tan\left(\frac{\pi}{2} - x\right) \tag{4}$$

$$\implies 1/x = \frac{\pi}{2} - x + 2k\pi, \quad k \in \mathbb{Z}.$$
 (5)

Repare no uso do & e \\ dentro do código para alinhar as equações. Elas também podem ser referenciadas pelo comando \ref{} assim como as seções, desde que você tenha criado uma label antes. Exemplo:

"A equação 1 é uma famosa descoberta de Leonhard Euler."

Particularmente, equações também podem ser referenciadas por eqref{}:

"A equação (1) é uma famosa descoberta de Leonhard Euler."
Para o caso do align, é necessário criar uma \label{} para cada equação citada.

"(2) parece um problema difícil até chegarmos em (4)."

Caso a numeração das equações não seja desejada, coloque equation* e ailgn* no lugar de equation e align, respectivamente. Finalmente, se não for desejado iniciar a fórmula em nova linha, use \$\$ ou \(\\) no lugar dos ambientes.

Por exemplo, $x + y = 2 e \sin^2 \theta + \cos^2 \theta = 1 \forall \theta \in \mathbb{R}$.

1.1 INSERÇÃO DE FIGURA, TABELA E CÓDIGO

Uma nova seção pode ser feita simplesmente digitando \subsection{Nome da seção}.

Anteriormente, mostrou-se o básico do uso de matemática no LAT_EX, mas em OAC o interesse maior está em exibir figuras, tabelas, e, eventualmente, códigos RISC-V.

1.1.1 FIGURA

Colocar uma figura é bem simples: use o comando

\includegraphics[width=comprimento]{dir/nome} dentro do ambiente figure. Por exemplo,

^{*}freire.eduardo@aluno.unb.br

[†]rodrigo.zedes@aluno.unb.br

[‡]thiago.tomas@aluno.unb.br

[§]victor.lisboa@aluno.unb.br

Figura 2: legenda

O [H] e \centering no código servem para fixar a posição da figura e centralizá-la, nessa ordem. Repare também na facilidade em escrever uma legenda através do comando \caption{}. Os tipos de arquivos de imagem aceitos vão de .png's a .pdf's.

1.1.2 TABELA

O código de criação da tabela se torna tão complicada quando mais complexa for o design desejado da tabela. A tabela abaixo é simples

ISA	ALMs	Regs	MEM	DSPs
RV32I	3271	1616	0	0
RV32IM	8070	1616	0	12
RV32IMF	11341	4126	47616	18

Tabela 1: Exemplo de tabela simples. Repare nos símbolos dentro do código usados para alinhar as células.

enquanto a tabela abaixo já é mais complicada.

n	I_1			
n	teórico	real		
40	14256	14256		
50	22316	22316		
60	32176	32176		
70	43836	43836		
80	57296	57296		
90	72556	72556		
100	89616	89616		

Tabela 2: Exemplo de tabela mais complexa.

Tanto a tabela 1 quanto a 2 foram criadas usando o ambiente tabular dentro do ambiente table, e em seguida definindo através de c's quantas colunas existem na tabela e quais delas devem ter uma linha vertical. Ao final, os comandos de mescla de células \multirow e \multicolumn foram usados para melhorar a estética do todo.

1.1.3 CÓDIGO RISC-V

Embora o grosso dos códigos relevantes aos relatórios e trabalho seja entregues em .s ou .asm à parte, as vezes é necessário fazer um comentário sobre um pequeno trecho, e nessa ocasião é cômodo ter o devido suporte no LATEX.

Podemos inserir um código Assembly RISC-V no texto de duas formas: (i) escrevendo o código linha a linha ou (ii) importanto o arquivo com o código. Para o primeiro caso, usa-se o ambiente lstlisting.

Listing 1: Trecho de código Assembly RISC-V

```
.text

GameLoop:
la a0, personagem
call Animacao
j GameLoop

.include "Animacao.s"
```

Para o segundo, usa-se o comando \lstinputlisting{dir/nome.s}.

Listing 2: Código importado da pasta listings

```
Sleep:
    csrr t0, time
    add t1, t0, a0
SleepLoop:
    csrr t0, time
    sltu t2, t0, t1
    bne t2, zero, SleepLoop
    ret
```

Assim como o resto das referências até agora, você pode referenciar um listing dando \ref{} na label apropriada.

"O listing 2 é uma função de sleep."

2 HYPERLINKS, URLS E CITAÇÕES

Até aqui, criamos hyperlinks apenas para objetos internos ao arquivo pdf. Em geral, podemos criar hyperlinks para páginas na web escondidos em palavras/strings ou importar URLs inteiras, assim como fazer citações do campo de bibliografia.

Para introduzir uma URL, basta usar o comando \url{}. Por exempolo,

```
https://www.youtube.com
```

o levará para o Youtube. Alternativamente, você também pode utilizar o comando \href{url}{string} para esconder o texto da URL numa palavra ou frase.

"Clique aqui para entrar no aprender3."

Por último, a listagem da sua bibliografia é convenientemente citada através do comando \cite{}.

"Já foi demonstrado [2] que o erro..."

"[1] é um excelente livro de Física."

REFERÊNCIAS

- Mosca, Gene e Tipler, Paul A. Física Volume 2, 5ªEdição. LTC-Livros Técnicos e Científicos Editora S.A., Rio de Janeiro, 2006.
- [2] Taylor, John R. An Introduction to Error Analysis, Second Edition. University Science Books, Sausalito (CA), 1997.

3 CASOS ESPECIAIS

Nem sempre é possível inserir a imagem no tamanho desejado, especialmente quando o documento se encontra, como agora, em forma de coluna dupla. É claro, a mesma situação se estende para as tabelas. Nesses casos, considere colocar o arquivo em formato de coluna única através do comando \onecolumn, para aí colocar a(s) figura(s)/tabela(s) desejadas. Feito isso, retorne ao modo coluna dupla com \twocolumn.

Obs.: ambos os comandos iniciam uma página em branco.

Se uma imagem ou tabela ocupa toda uma página, considere utilizar o ambiente sidewaysfigure ou sidewaystable após \onecolumn, respectivamente.

Imagens longas como a de baixo são melhor posicionadas em coluna única.

Figura 3: Figura comprida

Tabelas grandes também se beneficiam da coluna única.

Operação	Funcionalidade	Código		
OPAND	Faz a operação lógica AND entre dois números de 32 bits			
OPOR	Faz a operação lógica OR entre dois números de 32 bits	00001		
OPXOR	Faz a operação lógica XOR entre dois números de 32 bits	00010		
OPADD	Faz a operação de soma entre dois números de 32 bits	00011		
OPSUB	Faz a operação de subtração entre dois números de 32 bits	00100		
OPSLT	Põe o resultado com o valor lógico da expressão $iA < iB$,			
	isto é, se a expressão for verdadeira o resultado é um	00101		
	se for falsa o resultado é zero			
OPSLTU	seta o resultado com o valor logico da expressão $iA < iB$, isto é, se a expresão	00110		
	for verdadeira o resultado é um se for falsa o resultado é zero,			
	mas desconsidera o sinal dos números iA e iB			
OPSLL	Desloca os bits de iA para a esquerda em até 31 posições	00111		
	colocando zeros nos bits novos resultantes do deslocamento			
OPSRL	Desloca os bits de iA para a direita em até 31 posições	01000		
	colocando zeros nos bits novos resultantes do deslocamento			
OPSRA	desloca os bits de iA para a direita em até 31 posições	01001		
OI SICI	conservando o sinal do número que foi deslocado			
OPLUI	carrega como resultado os 32 bits de iB	01010		
OPMUL	Faz a operação de multiplicação entre dois números de 32bits	01011		
OI WEL	e pega os 32 primeiros bits resultantes da multiplicação [31:0]			
OPMULH	Faz a operação de multiplicação entre dois números de 32bits	01100		
	e pega os 32 últimos bits resultantes da multiplicação [63:32]			
OPMULHU	Faz a operação de multiplicação entre dois números de 32bits	01101		
	sem sinal e pega os 32 últimos bits resultantes da multiplicação [63:32]	01101		
OPMULHSU	Faz a operação de multiplicação entre dois números de 32bits			
	um deles com sinal e o outro sem sinal e pega os	01110		
	32 últimos bits resultantes da multiplicação [63:32]			
OPDIV	Faz a operação de divisão entre dois números de 32 bits	01111		
OPDIVU	Faz a operação de divisão entre dois números de 32 bits sem sinal	10000		
OPREM	Faz a operação de resto da divisão entre dois números de 32 bits	10001		
OPREMU	Faz a operação de resto da divisão entre dois números de 32 bits sem sinal	10010		
OPNULL	Retorna como resultado o número zero com 32 bits	11111		

Tabela 3: Tabela grande.

Em sequência, será colocada na próxima página uma figura deitada. Para iniciar nova página em branco, escreva \newpage ou \clearpage.

Figura 4: Figura grande. Note a mudança de width=Xcm para paperwidth.