CPE201 Digital Design

By Benjamin Haas

Class 24: Counters, Design and Applications

Outline

- Cascading Counters
- Counter Decoding
- Counter Applications

Asynchronous Cascading

- Asynchronous is a simple cascade
 - Be wary of the time for ripple to complete

Synchronous Cascading

- Synchronous uses chip features
 - Count Enable (CTEN)
 - Lets the counter run
 - Terminal Count (TC)
 - A pulse every time the counter rolls over

Synchronous Cascading

- Counter 2 goes up one count every time Counter 1 rolls over
 - Frequency Divider

Cascading

- Multiply the mod counts to get the total
 - Can also make multiple clock frequencies

Truncated Cascading

- Use loading capability to change start value
 - Ex start at 0x63C0 = 25,536 out of

Counter Decoder

- Simple decoder
 - A pulse when the counter has a certain value

• After data bits in a U

Avoid Glitches

 Sample only when the data is ready, not continuously

Strobe Inputs

 Same concept as with MUX/DEMUX

Applications

- Digital Clock
- Car Parking Spot Indicator
- Serial to Parallel Conversion

Digital Clock

Car Parking Spot Indicator

Parallel to Serial

University of Nevada, Reno

Troubleshooting

Normal operation

Count Enable (CTEN) input of second counter open

Troubleshooting

$$f_{\text{out}} = \frac{f_{\text{in}}}{\text{modulus}} = \frac{1 \text{ MHz}}{7232} \cong 138 \text{ Hz}$$

- Open can change the output frequency
 - In this chip, open acts like a high input

Reading

- This lecture
 - Sections 9.6-9.10
- Next lecture
 - 9.5, Ch7 and Ch8 Applied Logic