Théorie des langages : THL CM 7

Uli Fahrenberg

EPITA Rennes

S5 2023

Aperçu

Aperçu •00000

Parsage SLR(1)

Programme du cours

- Langages rationnels, automates finis
- Langages algébriques, grammaires hors-contexte, automates à pile
 - TP 1: flex
 - QCM 1 : langages rationnels
- Parsage LL
- Parsage LR, partie 1
 - TP 2 : parsage LL
- Parsage LR, partie 2
 - QCM 2 : parsage LL
- Parsage LR, partie 3
- Introduction flex & bison
- TP 3. 4 : flex & bison

```
function BULRP(\alpha)
    if \alpha = S then
         return True
    for i \leftarrow 1 to |\alpha| do
         for i \leftarrow i to |\alpha| do
                                                             for A \in N do
                  if A \to \alpha_i \dots \alpha_i then \triangleright réduction / REDUCE
                       return BULRP(\alpha_1 \dots \alpha_{i-1} A \alpha_{i+1} \dots \alpha_n)
    return False
```

Définition (8.8)

Apercu

Soit G une grammaire hors-contexte. Une production pointée de G est une paire $(A, \alpha \bullet \beta)$ telle que $A \to \alpha \beta$ est une production de G.

> Uli Fahrenberg Théorie des langages : THL 4/38

Re : automate de parsage LR(0)

Définition (8.10)

Soit G une grammaire hc et \mathcal{I} un ensemble de productions pointées de G. La clôture de \mathcal{I} est le plus petit ensemble cl (\mathcal{I}) t.g. $\mathcal{I} \subseteq \text{cl}(\mathcal{I})$ et

• si $(A, \alpha \bullet B\beta) \in cl(\mathcal{I})$ et $B \to \gamma$ est une production de G, alors $(B, \bullet \gamma) \in \mathcal{I}$.

Définition

L'automate de parsage LR(0) d'une grammaire hors-contexte G est l'automate fini déterministe (Q, q_0, F, δ) avec

- $Q = \{ \operatorname{cl}(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de productions pointées de } G \}$;
- $q_0 = \operatorname{cl}(\{(Z, \bullet S\$)\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ t.q. } (X, w \bullet) \in q \}$
- ullet et $\delta: Q imes V o Q$ donnée par

$$\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta\bullet\gamma) \mid (X,\alpha\bullet\beta\gamma)\in q\}).$$

Re: exemple

Aperçu 0000●0

$$X \rightarrow aYc$$
 (1)

$$Y \rightarrow b$$
 (2)

Aperçu 00000

_		_	
	Langages	rationne	ŀ

2.1, 2.2, 2.3.1, 2.4, 3.1.1, 3.1.2, 3.2

Automates finis

4.1. 4.2.2

Langages algébriques, grammaires hors-contexte, automates à pile 5.1, 5.2.3, 5.2.4, 5.3.6, 6.2, plus Sipser 2.2

Parsage LL

7, 8.1

Parsage LR

8.2

Parsage LR(0)

Algorithme de parsage

- \bigcirc empiler q_0
- 2 repeat
 - $oldsymbol{g} q \leftarrow$ état en haut de la pile
 - ② si q =état final $X \rightarrow w \bullet$:
 - o dépiler |w| états
 - $g' \leftarrow \text{ état en haut de la pile}$
 - \circ empiler $\delta(q', X)$
 - sinon:
 - $a \leftarrow \text{next(input)}$
 - \circ empiler $\delta(q, a)$
- \bullet until $q = \text{\'etat final } Z \to S \bullet (\checkmark) \text{ ou \'echec } (\checkmark)$

REDUCE

SHIFT

Algorithme de parsage

- \bigcirc empiler q_0
- 2 repeat
 - $oldsymbol{g} q \leftarrow$ état en haut de la pile
 - 2 si $q = \text{\'etat final } X \to w \bullet$:
 - dépiler |w| états
 - $g' \leftarrow \text{ \'etat en haut de la pile}$
 - \circ empiler $\delta(q', X)$
 - sinon:
 - $a \leftarrow \text{next(input)}$
 - \circ empiler $\delta(q, a)$

REDUCE

10/38

- ← possible 🗡
 - SHIFT
- ← possible 🗡
- ← possible X
- lacktriangledown until q= état final Z o S\$ullet $({oldsymbol{\checkmark}})$ ou échec $({oldsymbol{x}})$

Exemple

$$S \rightarrow (S)$$
 (1) $\mid n \mid (2)$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)

$$| n$$
 (2)

$$\longrightarrow$$
 $Z \rightarrow \bullet S$

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

$$\longrightarrow \begin{array}{c}
Z \to \bullet S\$ \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

$$\longrightarrow \begin{array}{c}
Z \to \bullet S\$ \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$(S \to (\bullet S))$$

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

$$\longrightarrow \begin{array}{c}
Z \to \bullet S\$ \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$(S \to (\bullet S) \\
S \to \bullet (S) \\
S \to \bullet n$$

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow (S) \qquad (1)$$

$$\mid n \qquad (2)$$

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $| n$ (2)

Uli Fahrenberg

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow (S) \qquad (1)$$

$$\mid n \qquad (2)$$

Uli Fahrenberg

Théorie des langages : THL

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Uli Fahrenberg

Théorie des langages : THL

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow (S)$ (1)
 $\mid n$ (2)

Exemple : table de parsage

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow S - n \qquad (1)$$

$$\mid n \qquad (2)$$

état	action	n	_	\$	S
0	décaler	1			2
1	réduire 2				
2	décaler		4	3	
3	accepter				
4	décaler	5			
5	réduire 1				

Uli Fahrenberg Théorie des langages : THL 25/ 38

$$Z \rightarrow S$$
 (0)

$$S \rightarrow S - n$$
 (1)

$$\mid n$$
 (2)

<i>/</i>	ı .•	ı		Φ.	
état	action	n	_	\$	5
0	décaler	1			2
1	réduire 2				
2	décaler		4	3	
3	accepter				
4	décaler	5			
5	réduire 1				

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow S - n \qquad (1)$$

$$\mid n \qquad (2)$$

parser n - n:

entrée	pile	action
n-n\$	⊥0	décaler
<i>−n</i> \$	⊥01	réduire 2
<i>−n</i> \$	⊥02	décaler
n\$	⊥024	décaler
\$	⊥0245	réduire 1
\$	⊥02	décaler
	1023	1

état	action	n	_	\$	5
0	décaler	1			2
1	réduire 2				
2	décaler		4	3	
3	accepter				
4	décaler	5			
5	réduire 1				

Uli Fahrenberg

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow S - n$ (1)
 $\mid n$ (2)

parser
$$n - n$$
:

entrée	pile	action
n-n\$	⊥0	décaler
<i>−n</i> \$	⊥01	réduire 2
<i>−n</i> \$	⊥02	décaler
n\$	⊥024	décaler
\$	⊥0245	réduire 1
\$	⊥02	décaler
	⊥023	✓

état	action	n	_	\$	S
0	décaler	1			2
1	réduire 2				
2	décaler		4	3	
3	accepter				
4	décaler	5			
5	réduire 1				

$$S \rightarrow n$$

$$S \rightarrow S-n$$

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow S - n$ (1)

parser n - n:

entrée	pile	action
n - n\$	⊥0	décaler
<i>−n</i> \$	⊥01	réduire 2
<i>−n</i> \$	⊥02	décaler
n\$	⊥024	décaler
\$	⊥0245	réduire 1
\$	⊥02	décaler
	⊥023	✓

$$S \rightarrow n$$

Parsage LR(0) 000000●0

$$S \rightarrow S-n$$

Uli Fahrenberg

Parsage LR(0)

- lire l'entrée de gauche à droite (L)
- approche ascendant
- construire une dérivation droite (R)
- pas de regard avant (0)

Parsage SLR(1)

Encore un exemple

$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow n-S$ (1)
 $\mid n$ (2)

état	action		_	\$	S
0	décaler				1
1	décaler			4	
2	réduire 2, décaler		3		
3	décaler	2			5
4	accepter				
5	réduire 1				

Uli Fahrenberg

Théorie des langages : THL

Encore un exemple

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow n-S \qquad (1)$$

$$\mid n \qquad (2)$$

état	action	n	_	\$	S
0	décaler	2			1
1	décaler			4	
2	réduire 2, décaler		3		conflit SHIFT/REDUCE
3	décaler	2			5
4	accepter				
5	réduire 1				

Uli Fahrenberg

Théorie des langages : THL

Conflits

SHIFT/REDUCE

 $X \rightarrow u \bullet v$

• faut réduire avec $Y \rightarrow u$

 $Y \rightarrow u \bullet$

- ou décaler en attendant v?
- REDUCE/REDUCE

 $X \rightarrow u$

• faut réduire avec $X \rightarrow u$

 $Y \rightarrow \mu$

- ou réduire avec $Y \to u$?
- utiliser FOLLOW pour résoudre
- (et pourquoi des conflits SHIFT/SHIFT n'existent pas?)

Re: FOLLOW

Calculer des terminaux qui peuvent suivre un symbole dans une dérivation :

Définition

```
Soit x \in V, alors FOLLOW(x) \subseteq \Sigma est défini par FOLLOW(x) = \{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha x a \beta\}.
```

Algorithme:

- pour chaque $x \in V$: FOLLOW(x) = \emptyset
- répéter jusqu'au point fixe :
 - pour chaque $B \to \alpha x \beta \gamma$ avec $\beta \in \text{NULL}^*$:
 - si $\gamma \notin \text{NULL}^* : \text{FOLLOW}(x) += \text{FIRST}(\gamma)$
 - \circ si $\gamma \in \text{NULL}^* : \text{FOLLOW}(x) += \text{FOLLOW}(B)$

Uli Fahrenberg Théorie des langages : THL 35/38

36/38

Simple LR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW

Exemple:
$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow n-S$ (1)
 $\mid n$ (2)

Uli Fahrenberg Théorie des langages : THL

Simple LR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW

