Elementy Algebry Liniowej

1 Przestrzenie liniowe

- 1. Przestrzenią liniową nad ciałem \mathbb{K} nazywamy zbiór V, którego elementy nazywamy wektorami. Na zbiorze tym określamy działania:
 - dodawania $(V \times V \to V)$: $\mathbf{u} = \mathbf{v} + \mathbf{w}$
 - oraz mnożenia przez skalar ($\mathbb{K} \times V \to V$): $\mathbf{u} = a\mathbf{v}$.

Działania te spełniają następujące warunki:

- przemienność dodawania: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$,
- łączność dodawania: $(\mathbf{v} + \mathbf{w}) + \mathbf{u} = \mathbf{v} + (\mathbf{w} + \mathbf{u})$ (czyli jest sens pisać $\mathbf{v} + \mathbf{w} + \mathbf{u}$),
- element neutralny dodawania: istnieje taki $0 \in V$, że dla każdego $\mathbf{v} \in V$, $\mathbf{v} + \mathbf{0} = \mathbf{v}$,
- elementy przeciwne dodawania: dla każdego $\mathbf{v} \in V$ istnieje taki $\mathbf{w} \in V$, że $\mathbf{v} + \mathbf{w} = \mathbf{0}$ (wektor \mathbf{w} oznaczamy $-\mathbf{v}$),
- rozdzielność mnożenia przez skalar względem dodawania wektorów: $a(\mathbf{v} + \mathbf{w}) = a\mathbf{v} + a\mathbf{w}$,
- rozdzielność mnożenia przez skalar względem dodawania skalarów: $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$,
- zgodność mnożenia przez skalar z mnożeniem skalarów: $(ab)\mathbf{v} = a(b\mathbf{v})$ (można więc pisać $ab\mathbf{v}$),
- mnożenie przez $1 \in \mathbb{K}$ jest identycznością: $1\mathbf{v} = \mathbf{v}$.

(Intuicyjnie: możemy wektory dodawać i mnożyć przez skalary i działania te zachowują się tak jak byśmy chcieli)

2. Pzykłady przestrzeni liniowych:

- \mathbb{R}^2 , \mathbb{R}^3 , ogólnie \mathbb{R}^n nad \mathbb{R} ,
- K^n nad K,
- K[x] wielomiany nad K,
- zbiór funkcji o wartościach rzeczywistych określonych na dowolnym zbiorze nad R,
- funkcje ciągłe,
- \mathbb{R} nad \mathbb{Q} .
- 3. Warto tu rozważyć parę prostych ćwiczeń, pokazać że istnieje dokładnie jeden element zerowy, że jeśli $0 \in \mathbb{K}$ jest elementem zerowym ciała, to $0\mathbf{v} = \mathbf{0}$, podobnie $-1\mathbf{v} = -\mathbf{v}$.

2 Liniowa niezależność, rozpinanie, wymiar

- 1. Kombinacją liniową wektorów $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ nazywamy wektor $\mathbf{x} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + ... + a_n \mathbf{v}_n$.
- 2. Przestrzenią rozpiętą (generowaną) przez zbiór wektorów X nazywam zbiór kombinacji liniowych wektorów z X. (Ćwiczenie: sprawdzić że jest to przestrzeń liniowa). Oznaczamy ten zbiór lin(X), span(X). Jeśli span(X) = V, to mówimy że zbiór X rozpina przestrzeń V.

3. Zbiór wektorów nazywamy liniowo niezależnym jeśli dla każdego jego skończonego podzbioru $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ zachodzi wynikanie:

Jeśli
$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n = \mathbf{0}$$
, to $a_1 = a_2 = \dots = a_n = 0$.

4. Jeśli liniowo niezależny zbiór X rozpina przestrzeń V, to nazywamy ten zbiór **bazą** przestrzeni V.

Twierdzenie. Niech $B = \{v_1, ..., v_n\} \subset V$. Następujące warunki są równoważne:

- 1. B jest baza,
- 2. Każdy wektor z V ma **jednoznaczne** przedstawienie jako kombinacja liniowa wektorów z B,
- 3. B jest minimalnym układem rozpinającym V,
- 4. B jest maksymalnym układem liniowo niezależnym w V.

Twierdzenie (bez dowodu): Wszystkie bazy danej przestrzeni są równoliczne.

Definicja: Moc bazy przestrzeni V nazywamy **wymiarem** przestrzeni V, ozn. dim(V)

Twierdzenie (bez dowodu): Każda przestrzeń liniowa ma bazę. Dowód jest dość łatwy ale techniczny dla skończonego wymiaru, wymaga aksjomatu wyboru dla wymiaru nieskończonego. W tym wypadku twierdzenie ma też ciekawe konsekwencje jak istnienie bazy \mathbb{R} nad \mathbb{Q} .

Przykłady, fakciki:

- W \mathbb{K}^n układ $e_1, ..., e_n$, gdzie $e_i = (0, 0, ..., 0, 1, 0, ..., 0)$ (1 na i-tej współrzędnej) jest bazą. Bazę tę nazywamy bazą kanoniczną lub standardową.
- \bullet Układ $1,x,x^2,\dots$ jest bazą $\mathbb{K}[x].$ Układ x,x^2,x^3,\dots mimo równoliczności z bazą i liniowej niezależności nie jest bazą.
- Dla przestrzeni skończenie wymiarowej każdy układ liniowo niezależny równoliczny z bazą jest bazą.
- Liniowa zależność układu $v_1, ..., v_n$ jest równoważna temu, że dla pewnego i wektor v_i jest kombinacją liniowa pozostałych wektorów.
- Każdy układ co najmniej n+1 wektorów w \mathbb{R}^n jest liniowo zależny.

3 Iloczyny skalarne, ortogonalność

Funkcja $f:V\to W$ jest liniowa, jeśli $f(c\mathbf{v})=cf(\mathbf{v})$ oraz $f(\mathbf{v}+\mathbf{W})=f(\mathbf{v}+\mathbf{w})$. Obserwacja: funkcja liniowa jest wyznaczona jednoznacznie wyznaczona przez zadanie jej wartości na bazie przestrzeni. Szczególnym rodzajem funkcji liniowych są funkcjonały. Jeśli V jest przestrzenią liniową nad \mathbb{K} , to funkcjonałem liniowym jest funkcja $f:V\to K$. Formą dwuliniową nazwiemy funkcję B, która jest funkcjonałem liniowym względem obu zmiennych, tzn. przy ustalonym $y\in V$, B(x,y) jest funkcjonałem liniowym zmiennej x i podobnie przy ustalonym $x,\in V$ B(x,y) jest funkcjonałem liniowym zmiennej y. Powiemy, że forma dwuliniowa jest symetryczna jeśli B(x,y)=B(y,x). Dalej rozpatrujemy przestrzenie nad \mathbb{R} . Powiemy o formie, że jest dodatnio określona, jeśli dla $V\ni x\neq 0$, B(x,x)>0. Dodatnio określoną i symetryczną formę dwuliniową nazwiemy iloczynem skalarnym. Najczęściej oznaczamy iloczyn skalarny x,y przez $\langle x,y\rangle$, definiujemy normę jako $||x||=\sqrt{\langle x,x\rangle}$.

Przykłady:

- Standardowy iloczyn skalarny: Jeśli $V = \mathbb{R}^n$, $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$, to $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + ... + x_n y_n$. Wtedy norma jest normą euklidesową, jeśli kąt między wektorami wynosi α , to $\langle x, y \rangle = ||x|| \cdot ||y|| \cos(\alpha)$. Jeśli nie jest powiedziane inaczej, to przez iloczyn skalarany rozumiemy standardowy iloczyn skalarny.
- W przestrzeni funkcji ciągłych na przedziale [0,1] iloczyn skalarny zadany przez całkę: $\langle f,g\rangle=\int_0^1 fg.$

Jeśli $\langle x, y \rangle = 0$, to wektory x, y nazwiemy ortogonalnymi (ozn. $x \perp y$). Ogólnie, układ $x_1, ..., x_n$ nazwiemy ortogonalnym jeśli wektory w nim są ortogonalne.

Twierdzenie: Wektory ortogonalne są liniowo niezależne.

Nierówność Cauchy'ego-Schwartza: Jeśli $\langle \cdot, \cdot \rangle$ jest iloczynem skalarnym, a $||\cdot||$ zadaną przez niego normą, to:

$$\langle x, y \rangle^2 \le ||x|| \cdot ||y||,$$

przy czym równość zachodzi tylko jeśli x, y liniowo zależne. Zauważmy, że dobrze znana forma nierówności C-S to przypadek dla standardowego iloczynu skalarnego w \mathbb{R}^n .

Zauważmy, że pojęcie ortogonalności ma sens dla dowolnej formy dwuliniowej, tzn $x \perp y$ jeśli B(x,y). Dla przestrzeni liniowej $V \subset W$ niech $V^{\perp} \subset W$ oznacza zbiór wektorów prostopadłych do wszystkich wektorów z V, nazywamy go przestrzenią prostopadłą (ćwiczenie: sprawdzić że jest to przestrzeń liniowa). Powiemy o fromie B że jest niezdegenerowana, jeśli dla każdego niezerowego wektora x istnieje taki wektor y, że $B(x,y) \neq 0$. Prawdziwe jest następujące ważne twierdzenie (dowód jeśli wystarczy czasu):

Twierdzenie: jeśli $V \subset W$ są skończenie wymiarowymi przestrzeniami liniowymi, a B niezdegenorawaną formą dwuliniową, to $dim(V) + dim(V^{\perp}) = dim(W)$.

4 Algebra liniowa a kombinatoryka

Okazuje się, że algebra liniowa jest użytecznym narzędziem w kombinatoryce. Jeśli poruszamy się w zbiorze n-elementowym (bez straty ogólności jest to $\{1,...,n\}$, to wektorem charakterystycznym jego podzbiou S nazwiemy wektor x_S , który ma 1 na i-tej współrzędnej jeśli $i \in S$ oraz 0 w przeciwnym wypadku. Na szczególną uwagę zasługują dwa proste stwierdzenia:

- 1. Jeśli potraktujemy wektory charakterystyczne jako wektory nad \mathbb{R} , to $\langle x_A, x_B \rangle = |A \cap B|$.
- 2. Jeśli potraktujemy wektory charakterystyczne jako wektory nad \mathbb{Z}_p i użyjemy formy liniowej zadanej tak samo jak iloczyn standardowy nad \mathbb{R} , to $\langle x_A, x_B \rangle = |A \cap B| \mod p$ (najczęściej używane dla p = 2).

Najczęściej więc algebra liniowa przydaje nam się w problemach kombinatorycznych dotyczących podzbiorów jakiegoś skończonego zbioru. Częstą strategią będzie używanie powyższych obserwacji by pokazać, że wektory charakterystyczne pewnej rodziny są liniowo niezależne i tym samym ograniczyć jej wielkość.

Zadania:

- 1. Niech $A_1, ..., A_m$ będą podzbiorami zbioru n-elementowego, takimi że każdy z nich jest nieparzystej mocy, ale przecięcie każdych dwóch różnych jest parzystej mocy. Ile co najwyżej może być równe m?
- 2. Niech $1 \le k \le n$. Niech $A_1, ..., A_m$ będą podzbiorami pewnego zbioru n-elementowego takimi, że $|A_i \cap A_j| = k$ dla $i \ne j$. Udowodnij, że $m \le n$.
- 3. Niech X będzie zbiorem n-elementowym. \mathcal{F} jest taką rodziną podzbiorów X, że każdy podzbiór z \mathcal{F} ma parzystą liczbę elementów i przecięcie każdych dwóch podzbiorów z \mathcal{F} ma parzystą liczbę elementów. Udowodnij, że $|\mathcal{F}| = 2^{\left\lfloor \frac{n}{2} \right\rfloor}$

- 4. Niech $A_1, ..., A_m$ będą podzbiorami zbioru n-elementowego, takimi że każdy z nich jest parzystej mocy, ale przecięcie dowolnych dwóch jest nieparzystej mocy. Udowodnij, że $m \leq n-1$.
- 5. (LXVI OM, Finał, Zadanie 3.) Znaleźć największą liczbę naturalną m o następującej własności: wśród pięciu dowolnie wybranych podzbiorów 500-elementowych zbioru $\{1,2,...,1000\}$ istnieją dwa zbiory, których część wspólna liczy co najmniej m elementów.
- 6. Niech f(n) będzie równe $2^{\left\lfloor \frac{n}{2} \right\rfloor}$ jeśli n jest parzyste i $2^{\left\lfloor \frac{n}{2} \right\rfloor} + 1$ w przeciwnym wypadku. Niech $A_1, ..., A_m$ będą takimi podzbiorami zbioru n-elementowego, że jeśli $i \neq j$, to $2 \nmid |A_i \cap A_j|$. Udowodnij, że $m \leq \max(f(n), n+1)$.