Worksheet #5 PHYS 4C: Waves and Thermodynamics

Donald Aingworth IV

September 22, 2025

1 Problem

(20 points) A Carnot heat engine operates on a four step cycle as follows:

- 1. Isothermal expansion at temperature T_3 , where heat Q_H flows into the system from an external temperature reservoir T_4 ($T_4 \ge T_3$). This step is reversible if $T_4 = T_3$.
- 2. Adiabatic expansion (no heat flow), where the temperature drops from T_3 to T_2 ($T_2 < T_3$). This step is always reversible (as long as it is quasi-static).
- 3. Isothermal compression at temperature T_2 , where heat Q_C flows out of the system to an external temperature reservoir T_1 ($T_1 \leq T_2$). This step is reversible if $T_1 = T_2$.
- 4. Adiabatic compression (no heat flow), where the temperature rises from T_2 back up to T_3 . This step is always reversible.

The efficiency of this cycle is given by $e = 1 - T_2/T_3$, and is maximized when $T_3 = T_4$ and $T_2 = T_1$ (reversible), although the work output rate in that case is zero (heat flowrates are zero for steps 1 and 3). Allowing $T_1 < T_2 < T_3 < T_4$ enables us to consider a real heat engine that would run at a finite rate.

Consider such a heat engine with $T_4 = 600 \text{ K}$, $T_3 = 500 \text{ K}$, $T_2 = 400 \text{ K}$, and $T_1 = 300 \text{ K}$. Suppose also that the heat conductance for the rods connecting the system to T_4 during step 1 and to T_1 during step 3 are each 10 W/K,

and that the adiabatic steps (2 and 4) are both very rapid (essentially zero time).

- (a) (6 points) Calculate the efficiency of this heat engine. If $Q_H = 100 \text{ J}$ for one cycle of this heat engine, how much heat flows into the cold reservoir (Q_C) and how much work is output (W) for each cycle?
- (b) (6 points) Calculate the net change in entropy during one cycle. During which steps does the positive entropy change occur?
- (c) (8 points) Determine the rate of work production for this engine (work/time). (Hint: calculate the total time for one cycle).

1.1 Solution (a)

It is given that the heat engine would have the starting temperature of $T_3 = 500 \text{K}$ and an ending temperature of $T_3 = 400 \text{K}$. The