```
In [1]: import numpy as np
    import pandas as pd
    import re
    from math import pi

    from bokeh.io import output_file, show
    from bokeh.palettes import Category20c, Plasma256, plasma
    from bokeh.plotting import figure
    from bokeh.transform import cumsum
    from bokeh.models import LogColorMapper
    from bokeh.palettes import Viridis6 as palette
```

```
In [2]: # Load data
    cleaned = pd.read_csv('investments_with_dummies.csv')
    cleaned
```

Out[2]:

	Unnamed: 0	company_permalink	company_name	company_category_list	company_count
0	0	/organization/0-6-com	0-6.com	Curated Web	
1	1	organization/004-technologies	004 Technologies	Software	
2	2	organization/01games- technology	01Games Technology	Games	
3	3	/organization/0xdata	H2O.ai	Analytics	
4	4	/organization/0xdata	H2O.ai	Analytics	
5	5	/organization/0xdata	H2O.ai	Analytics	
6	6	/organization/0xdata	H2O.ai	Analytics	

In [3]: # Beginning of Visualization for Q4

Drop all investments that did not occur in the United States
stateInvestmentCount = cleaned.drop(cleaned[cleaned['company_country_code
stateInvestmentCount = stateInvestmentCount.drop(['Unnamed: 0', 'company_pe
stateInvestmentCount = stateInvestmentCount.groupby('company_state_code').c
stateInvestmentCount.drop('VI', inplace=True)
stateInvestmentCount

Out[3]:

company_name company_category_list investor_name raised_amount_usd So

ompany_state_code				
AK	4	4	4	3
AL	66	66	66	48
AR	90	90	90	75
AZ	477	477	477	427
CA	55620	55620	55619	50568
СО	1912	1912	1912	1754
СТ	661	661	661	620
DC	623	623	623	548
DE	93	93	93	80
FL	1228	1228	1228	1087
GA	1378	1378	1378	1218
н	41	41	41	41
IA	86	86	86	76
ID	59	59	59	52
IL	2311	2311	2311	2065
IN	371	371	371	328
KS	156	156	156	137
KY	117	117	117	94
LA	81	81	81	77
MA	9628	9628	9627	9100
MD	1293	1293	1293	1189
ME	99	99	99	98
МІ	692	692	692	586
MN	637	637	637	595
МО	506	506	505	450

53

53

41

53

MS

company	_state_	_code
---------	---------	-------

=				
MT	35	35	35	33
NC	1331	1331	1331	1276
ND	17	17	17	15
NE	191	191	191	173
NH	300	300	300	276
NJ	1319	1319	1319	1212
NM	213	213	213	201
NV	307	307	307	254
NY	13314	13314	13311	11915
ОН	1160	1160	1160	993
ОК	83	83	83	70
OR	930	931	931	851
PA	1861	1861	1861	1640
RI	289	289	289	268
sc	254	254	254	209
SD	7	7	7	4
TN	960	960	960	883
TX	3902	3902	3902	3547
UT	1032	1032	1032	936
VA	1424	1424	1423	1229
VT	85	85	85	60
WA	3492	3492	3492	3244
WI	395	395	395	374
wv	12	12	12	7
WY	6	6	6	5

51 rows × 55 columns

```
In [4]: # Create bokeh figure
        from bokeh.sampledata.us_states import data as states
        output file("investmentMap.html")
        # Reverse color scheme so darker is greater
        palette.reverse()
        state_tags = stateInvestmentCount.index.values
        # Remove Alaska and Hawaii for better map visualization
        state_tags = np.delete(state_tags, [0, 11])
        state_xs = [states[tag]["lons"] for tag in state_tags]
        state_ys = [states[tag]["lats"] for tag in state_tags]
        state_names = [states[tag]["name"] for tag in state_tags]
        investment counts = stateInvestmentCount.loc[(stateInvestmentCount.index !=
        color_mapper = LogColorMapper(palette=palette)
        data=dict(
            x=state_xs,
            y=state_ys,
            name=state_names,
            rate=investment_counts,
        TOOLS = "pan, wheel zoom, reset, hover, save"
        p = figure(
            title="Distribution of Investments in US", plot width = 1000, tools=TOO
            x_axis_location=None, y_axis_location=None,
            tooltips=[
                 ("Name", "@name"), ("Number of investments", "@rate"), ("(Long, Lat
            ])
        p.grid.grid line color = None
        p.hover.point policy = "follow mouse"
        p.patches('x', 'y', source=data,
                  fill_color={'field': 'rate', 'transform': color_mapper},
                  fill_alpha=0.7, line_color="white", line_width=0.5)
        show(p)
```

In [5]: # Beginning of visualizations for Q1 # Get possible sector tags from dataframe tags = cleaned.columns.values[-51:] investmentSums = [] # For each tag, go through the dataframe of investments and add that invest # Then append that sum to a list of the investment sums for each of the sec for tag in tags: investmentSum = cleaned.loc[cleaned[tag] == 1, 'raised_amount_usd'].sum investmentSums.append(investmentSum) sectorInvestments = pd.Series({tag:total for (tag, total) in zip(tags, invested sectorInvestments = sectorInvestments.reset_index() sectorInvestments = sectorInvestments.reset_index() sectorInvestments = sectorInvestments.rename(columns={'index': 'Sectors', 0 sectorInvestments = sectorInvestments.sort_values(by=['Total_Amount_Investe sectorInvestments

Out[5]:

	Sectors	Total_Amount_Invested
50	Other	1.201234e+12
2	Biotechnology	3.004740e+11
0	Software	2.542332e+11
3	E-Commerce	2.012236e+11
1	Mobile	1.876358e+11
4	Enterprise Software	1.449233e+11
7	Health Care	1.378122e+11
12	Internet	1.118102e+11
18	Clean Technology	1.060021e+11
13	Technology	9.471280e+10
6	Advertising	8.465768e+10
11	Finance	8.389714e+10
24	Semiconductors	7.666543e+10
9	Analytics	7.307581e+10
8	Social Media	7.053171e+10
5	Curated Web	6.568438e+10
10	SaaS	6.190084e+10
17	Hardware + Software	5.991142e+10
31	Web Hosting	5.419738e+10
32	Travel	5.005604e+10
20	Security	4.898736e+10

	Sectors	Total_Amount_Invested
23	Cloud Computing	4.897144e+10
19	Health and Wellness	4.727097e+10
14	Games	4.391113e+10
26	FinTech	4.302462e+10
30	Manufacturing	4.237196e+10
27	Services	4.226308e+10
15	Education	4.138003e+10
16	Apps	4.086637e+10
37	Retail	3.851323e+10
21	Big Data	3.717598e+10
34	Medical	3.478517e+10
43	Financial Services	3.343858e+10
28	Fashion	3.156079e+10
36	Networking	3.116324e+10
25	Video	3.073173e+10
22	Marketplaces	2.713639e+10
49	Entertainment	2.378811e+10
35	Messaging	2.237762e+10
42	Music	2.151589e+10
29	Search	2.131100e+10
48	Hospitality	2.058525e+10
45	Information Technology	1.853824e+10
33	Sales and Marketing	1.765681e+10
41	News	1.749029e+10
40	Digital Media	1.544376e+10
39	Media	1.458644e+10
44	Android	1.263644e+10
38	Startups	1.131488e+10
47	iPhone	1.047545e+10
46	Social Network Media	8.716398e+09

```
Sectors Total Amount Invested
                                                  angle
                                                           color
50
                                 1.201234e+12 2.206482 #3182bd
                 Other
2
         Biotechnology
                                 3.004740e+11 0.551924 #6baed6
                                 2.542332e+11 0.466987 #9ecae1
0
              Software
3
            E-Commerce
                                 2.012236e+11 0.369617 #c6dbef
1
                                 1.876358e+11 0.344658 #e6550d
                Mobile
                                 1.449233e+11 0.266202 #fd8d3c
4
   Enterprise Software
7
                                 1.378122e+11 0.253140 #fdae6b
           Health Care
                                 1.118102e+11 0.205378 #fdd0a2
12
              Internet
18
      Clean Technology
                                 1.060021e+11 0.194710 #31a354
13
            Technology
                                 9.471280e+10 0.173973 #74c476
6
           Advertising
                                 8.465768e+10 0.155503 #ald99b
11
               Finance
                                 8.389714e+10 0.154106 #c7e9c0
24
        Semiconductors
                                 7.666543e+10 0.140823 #756bb1
             Analytics
                                 7.307581e+10 0.134229 #9e9ac8
9
8
          Social Media
                                 7.053171e+10 0.129556 #bcbddc
5
           Curated Web
                                 6.568438e+10 0.120652 #dadaeb
10
                                 6.190084e+10 0.113702 #636363
                  SaaS
17
   Hardware + Software
                                 5.991142e+10 0.110048 #969696
31
           Web Hosting
                                5.419738e+10 0.099552 #bdbdbd
32
                Travel
                                5.005604e+10 0.091945 #d9d9d9
```

```
In [7]: # Sort investors by amount invested
    ventureInvestments = cleaned.groupby(['investor_name']).sum()
    ventureInvestments = ventureInvestments.drop(columns=['Unnamed: 0'])
    topFifty = list(ventureInvestments.sort_values(by=['raised_amount_usd']).ta
    topFifty
    ventureInvestments.sort_values(by=['raised_amount_usd'])
```

Out[7]:

	raised_amount_usd	Software	Mobile	Biotechnology	E- Commerce	Enterprise Software	Curated Web
investor_name							
The Florida Technology Seed Capital Fund	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0
Dato Dr Maimunah	0.000000e+00	0.0	1.0	0.0	0.0	0.0	0.0
Dato Sharil Tarmizi	0.000000e+00	0.0	1.0	0.0	0.0	0.0	0.0
Dato Syed Budriz Putra	0.000000e+00	0.0	1.0	0.0	0.0	0.0	0.0
Bharat Banka	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0

```
In [8]: # Isolate investments from top 50 VCs
mask = []

for row in cleaned['investor_name']:
    if row in topFifty:
        mask.append(True)
    else:
        mask.append(False)

topFiftyInvestments = cleaned[mask]
topFiftyCleanedInvestments = topFiftyInvestments.drop(['Unnamed: 0', 'compatopFiftyCleanedInvestments)
```

Out[8]:

company_name		company_category_list	investor_name	raised_amount_usd
20	One Inc.	Mobile	General Catalyst Partners	1000050.0
44	1000memories	Curated Web	Greylock Partners	2520000.0
91	1006.tv	Games Media	Sequoia Capital	10000000.0
104	100Plus	Analytics	Founders Fund	500000.0
105	100Plus	Analytics	Greylock Partners	750000.0
106	1010data	Software	Norwest Venture Partners - NVP	35000000.0

In [9]: # Get possible sector tags from dataframe tags = cleaned.columns.values[-51:] investmentSums = [] # For each tag, go through the dataframe of investments and add that invest # Then append that sum to a list of the investment sums for each of the sec for tag in tags: investmentSum = topFiftyCleanedInvestments.loc[topFiftyCleanedInvestment investmentSums.append(investmentSum) topFiftySectorInvestments = pd.Series({tag:total for (tag, total) in zip(tatopFiftySectorInvestments = topFiftySectorInvestments.reset_index() topFiftySectorInvestments = topFiftySectorInvestments.rename(columns={'indetopFiftySectorInvestments = topFiftySectorInvestments.sort_values(by=['TotatopFiftySectorInvestments]

Out[9]:

	Sectors	Total_Amount_Invested
50	Other	3.087448e+11
3	E-Commerce	5.781430e+10
0	Software	5.644804e+10
1	Mobile	5.156748e+10
12	Internet	4.386083e+10
4	Enterprise Software	3.898545e+10
13	Technology	2.843817e+10
24	Semiconductors	2.783208e+10
8	Social Media	2.608196e+10
6	Advertising	2.338961e+10
32	Travel	2.236253e+10
2	Biotechnology	2.042152e+10
11	Finance	1.967413e+10
9	Analytics	1.733629e+10
18	Clean Technology	1.732045e+10
5	Curated Web	1.708335e+10
20	Security	1.463007e+10
37	Retail	1.457577e+10
7	Health Care	1.377232e+10
10	SaaS	1.240407e+10
23	Cloud Computing	1.221800e+10
31	Web Hosting	1.110889e+10
14	Games	1.078425e+10

	Sectors	Total_Amount_Invested
30	Manufacturing	1.025086e+10
36	Networking	9.543591e+09
17	Hardware + Software	9.475200e+09
21	Big Data	9.300562e+09
15	Education	9.037512e+09
27	Services	8.415351e+09
16	Apps	8.385514e+09
19	Health and Wellness	8.096119e+09
26	FinTech	7.956654e+09
43	Financial Services	7.431280e+09
25	Video	6.928288e+09
35	Messaging	6.621850e+09
29	Search	6.293049e+09
28	Fashion	5.705732e+09
22	Marketplaces	5.298052e+09
49	Entertainment	4.903007e+09
45	Information Technology	4.468364e+09
41	News	4.009735e+09
42	Music	3.775806e+09
48	Hospitality	3.602285e+09
34	Medical	2.759994e+09
44	Android	2.701994e+09
40	Digital Media	2.671570e+09
33	Sales and Marketing	2.590871e+09
39	Media	2.491870e+09
46	Social Network Media	2.461864e+09
47	iPhone	2.104161e+09
38	Startups	2.010191e+09

```
Sectors Total Amount Invested
                                                 angle
                                                           color
50
                                 3.087448e+11
                                               2.329531 #3182bd
                 Other
3
                                 5.781430e+10 0.436218 #6baed6
            E-Commerce
0
                                 5.644804e+10 0.425910 #9ecae1
              Software
1
                Mobile
                                 5.156748e+10 0.389085 #c6dbef
12
                                 4.386083e+10 0.330937 #e6550d
              Internet
4
   Enterprise Software
                                 3.898545e+10 0.294152 #fd8d3c
                                 2.843817e+10 0.214571 #fdae6b
13
            Technology
24
        Semiconductors
                                 2.783208e+10 0.209998 #fdd0a2
8
          Social Media
                                 2.608196e+10 0.196793 #31a354
6
           Advertising
                                 2.338961e+10 0.176479 #74c476
32
                Travel
                                 2.236253e+10 0.168729 #ald99b
2
         Biotechnology
                                 2.042152e+10 0.154084 #c7e9c0
                                 1.967413e+10 0.148445 #756bb1
11
               Finance
9
             Analytics
                                 1.733629e+10 0.130805 #9e9ac8
                                 1.732045e+10 0.130686 #bcbddc
18
      Clean Technology
5
           Curated Web
                                 1.708335e+10 0.128897 #dadaeb
20
              Security
                                 1.463007e+10 0.110386 #636363
37
                Retail
                                 1.457577e+10 0.109977
                                                        #969696
7
           Health Care
                                1.377232e+10 0.103914 #bdbdbd
10
                                1.240407e+10 0.093591 #d9d9d9
                  SaaS
```

```
In [11]: # Beginning of Visualizations for Q5
         # Change all of the dates that the investments occured on to just the year
         def dateToYear(s):
              return s[0:4]
          cleanedYears = cleaned.copy()
         cleanedYears.loc[:, 'funded_at'] = cleanedYears['funded_at'].map(dateToYear
         cleanedYears = cleanedYears[(cleanedYears['funded_at'] != '1977') & (cleane
          years = sorted(cleanedYears['funded_at'].unique())
         years
Out[11]: ['1985',
          '1986',
          '1987',
           '1988',
           '1989',
           '1990',
           '1991',
           '1992',
           '1993',
           '1994',
           '1995',
           '1996',
           '1997',
           '1998',
           '1999',
           '2000',
           '2001',
           '2002',
           '2003',
           '2004',
           '2005',
           '2006',
           '2007',
           '2008',
           '2009',
           '2010',
           '2011',
           '2012',
           '2013',
           '2014',
           '2015']
```

```
In [12]:
        tags = cleanedYears.columns.values[-51:]
         investmentSums = []
         yearlyInvestments = pd.DataFrame({tag: [] for tag in sorted(tags)})
         for year in years[10:]:
             print(year)
             for tag in tags:
                 investmentSum = cleanedYears.loc[(cleanedYears[tag] == 1) & (cleanedYears
                 investmentSums.append(investmentSum)
             investmentPercentages = investmentSums
             sectorInvestmentsForYear = pd.Series({tag:total for (tag, total) in zip
             sectorInvestmentsForYear = sectorInvestmentsForYear.to frame()
             sectorInvestmentsForYear = sectorInvestmentsForYear.reset index()
             sectorInvestmentsForYear = sectorInvestmentsForYear.rename(columns={'in
             sectorInvestmentsForYear = sectorInvestmentsForYear.sort values(by=['Se
             print(list(sectorInvestmentsForYear['Total Amount Invested']))
             yearlyInvestment = pd.DataFrame({sector:[investment] for (sector, investment)
             print(yearlyInvestment)
             yearlyInvestments = yearlyInvestments.append(yearlyInvestment)
             investmentSums = []
         yearlyInvestments[['Other', 'Semiconductors']]
         000.0, 15000000.0, 28000000.0, 14500000.0, 412834231.0, 24160000.0, 54800
         0000.0, 0.0, 4780731266.417585, 125300000.0, 240000000.0, 0.0, 168000000.
         0, 0.0, 19500000.0, 1196000000.0, 65000000.0, 0.0, 1852326056.417585, 0.
         0, 271162868.417585, 2708000.0, 38470000.0, 1624600000.0, 0.0]
            Advertising Analytics Android
                                                Apps Big Data Biotechnology \
         0 240000000.0 7529046.0
                                       0.0 500000.0
                                                           0.0
                                                                   45408740.0
           Clean Technology Cloud Computing Curated Web Digital Media ...
         0
                         0.0
                                  80000000.0 797018000.0
                                                             144000000.0
                Services Social Media Social Network Media
                                                                  Software Startu
         ps \
         0 1.196000e+09
                           65000000.0
                                                         0.0 1.852326e+09
         0.0
              Technology
                             Travel
                                         Video
                                                Web Hosting iPhone
         0 2.711629e+08 2708000.0 38470000.0 1.624600e+09
                                                                  0.0
         [1 rows x 51 columns]
```

In [13]: yearlyInvestments.index = years[10:]
 yearlyInvestments.loc[:,:] = yearlyInvestments.loc[:,:].div(yearlyInvestment
 yearlyInvestments = yearlyInvestments * 100
 yearlyInvestments

Out[13]:

	Advertising	Analytics	Android	Apps	Big Data	Biotechnology	Clean Technology	Cloud Computing
1995	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1996	1.570722	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1997	2.996105	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1998	1.065583	0.000000	0.000000	9.412651	0.000000	0.568311	0.000000	0.000000
1999	1.431877	0.044919	0.000000	0.002983	0.000000	0.270916	0.000000	0.477292
2000	1.390537	0.017385	0.102778	1.912413	0.000000	1.266142	0.660719	0.358791
2001	0.714918	0.424854	0.058544	0.069603	0.000000	2.171440	0.100827	0.067243
2002	0.288719	0.492345	0.045687	0.047872	1.676500	7.410608	0.385754	1.605984
2003	11.010607	0.449859	0.000576	0.350107	0.115280	9.451693	0.025463	0.089665
2004	0.387829	0.206826	0.130883	0.214835	0.000000	16.772073	0.559932	0.182448
2005	1.161029	1.138177	0.314560	0.048188	0.081962	10.868195	0.777441	0.508497
2006	2.386618	1.107727	0.113898	0.344760	0.272258	10.596486	2.027198	0.336554
2007	2.401473	1.476678	0.137857	0.297570	0.194560	14.151119	4.021017	0.874870
2008	2.421692	1.407794	0.138225	0.272626	0.388453	6.945444	9.155554	0.623789
2009	1.767986	0.981466	0.101222	0.359827	0.213211	14.000923	5.152028	0.522079
2010	3.099854	1.851699	0.177446	0.391639	0.440720	12.928977	6.942664	0.760069
2011	4.650398	1.397023	0.459500	0.783893	0.528806	5.597586	3.678688	1.047500
2012	2.472634	2.530945	0.288681	1.163726	1.030487	7.089195	2.994726	2.061224
2013	1.644857	2.443368	0.497404	1.144384	1.376225	6.428236	2.240725	1.726551
2014	1.074226	2.081659	0.433307	1.192155	1.418563	4.346664	1.462547	1.151702
2015	0.875664	1.786742	0.270793	1.493163	1.105047	4.585618	0.670686	1.416817

21 rows × 51 columns

```
In [14]: # Making Bokeh figure of Percentage Bar Graph of the top 50 Sectors in term
         from bokeh.core.properties import value
         from bokeh.io import show, output_file
         from bokeh.plotting import figure
         output_file("percentageBarGraphTop50.html")
         colors = Category20c[20]*3
         colors = colors[:51]
         data = yearlyInvestments
         p = figure(x range=data.index.values, plot height=1000, plot width=1500, ti
                    toolbar_location=None, tools="hover", tooltips="$name: @$name %"
         p.vbar_stack(tags, x='index', width=0.9, color=colors, source=data)
         p.y_range.start = 0
         p.x_range.range_padding = 0.1
         p.xgrid.grid_line_color = None
         p.axis.minor_tick_line_color = None
         p.outline_line_color = None
         show(p)
```

```
In [15]: tags = cleanedYears.drop(columns = ['Other']).columns.values[-50:]
        investmentSums = []
        yearlyInvestments = pd.DataFrame({tag: [] for tag in sorted(tags)})
        for year in years[10:]:
           print(year)
           for tag in tags:
              investmentSum = cleanedYears.loc[(cleanedYears[tag] == 1) & (cleanedYears)
              investmentSums.append(investmentSum)
           investmentPercentages = investmentSums
           sectorInvestmentsForYear = pd.Series({tag:total for (tag, total) in zir
           sectorInvestmentsForYear = sectorInvestmentsForYear.to frame()
           sectorInvestmentsForYear = sectorInvestmentsForYear.reset index()
           sectorInvestmentsForYear = sectorInvestmentsForYear.rename(columns={'in
           sectorInvestmentsForYear = sectorInvestmentsForYear.sort values(by=['Se
           print(list(sectorInvestmentsForYear['Total Amount Invested']))
           yearlyInvestment = pd.DataFrame({sector:[investment] for (sector, investment)
           print(yearlyInvestment)
           yearlyInvestments = yearlyInvestments.append(yearlyInvestment)
           investmentSums = []
        yearlyInvestments
        yearlyInvestments.index = years[10:]
        yearlyInvestments.loc[:,:] = yearlyInvestments.loc[:,:].div(yearlyInvestment)
        yearlyInvestments = yearlyInvestments * 100
        yearlyInvestments
        1995
        0.01
          Advertising Analytics Android Apps Big Data Biotechnology \
        0
                 0.0
                          0.0
                                  0.0
                                       0.0
                                               0.0
                                                            0.0
          Clean Technology Cloud Computing Curated Web Digital Media ...
        0
                     0.0
                                   0.0
                                               0.0
                                                           0.0
          Services Social Media Social Network Media
                                                  Software
                                                          Startups \
              0.0
                                             0.0 8000000.0
        0
                          0.0
                                                               0.0
          Technology Travel Video Web Hosting iPhone
        0 16400000.0
                       0.0
                             0.0
                                   2000000.0
                                               0.0
        [1 rows x 50 columns]
```

```
In [16]: # Making Bokeh figure of Percentage Bar Graph of the top 50 Sectors (without
         from bokeh.core.properties import value
         from bokeh.io import show, output_file
         from bokeh.plotting import figure
         output_file("percentageBarGraphTop50WithoutOther.html")
         colors = Category20c[20]*3
         colors = colors[:50]
         data = yearlyInvestments
         p = figure(x range=data.index.values, plot height=1000, plot width=1500, ti
                    toolbar_location=None, tools="hover", tooltips="$name: @$name %"
         p.vbar_stack(tags, x='index', width=0.9, color=colors, source=data)
         p.y_range.start = 0
         p.x_range.range_padding = 0.1
         p.xgrid.grid_line_color = None
         p.axis.minor_tick_line_color = None
         p.outline_line_color = None
         show(p)
```

In []: