ЛАБОРАТОРНАЯ РАБОТА №2 Неразветвленные цепи синусоидального тока

Новоженов П.А. ЭН-26

Цель работы

Практическое ознакомление с установившимися режимами в последовательных RL-, RC- и RLC-цепях синусоидального тока.

Задание 1. Расчет индуктивного сопротивления

$$L = 85mH \quad C = 160 \ \mu F$$

$$X_L = 2\pi f L$$

$$X_{L30} = 2 \cdot \pi \cdot 30 \cdot 85 \cdot 10^{-3} = 16$$

$$X_{L40} = 2 \cdot \pi \cdot 40 \cdot 85 \cdot 10^{-3} = 21$$

$$X_{L50} = 2 \cdot \pi \cdot 50 \cdot 85 \cdot 10^{-3} = 27$$

$$X_{L60} = 2 \cdot \pi \cdot 60 \cdot 85 \cdot 10^{-3} = 32$$

$$X_{L80} = 2 \cdot \pi \cdot 80 \cdot 85 \cdot 10^{-3} = 43$$

$$X_{L100} = 2 \cdot \pi \cdot 100 \cdot 85 \cdot 10^{-3} = 53$$

$$X_{L120} = 2 \cdot \pi \cdot 120 \cdot 85 \cdot 10^{-3} = 64$$

$$X_C = \frac{1}{2\pi f C}$$

$$X_{C30} = \frac{1}{2\pi \cdot 30 \cdot 160 \cdot 10^{-6}} = 33$$

$$X_{C40} = \frac{1}{2\pi \cdot 40 \cdot 160 \cdot 10^{-6}} = 24$$

$$X_{C50} = \frac{1}{2\pi \cdot 50 \cdot 160 \cdot 10^{-6}} = 19$$

$$X_{C80} = \frac{1}{2\pi \cdot 80 \cdot 160 \cdot 10^{-6}} = 12$$

 $X_{C60} = \frac{1}{2\pi \cdot 60 \cdot 160 \cdot 10^{-6}} = 16$

$$X_{C100} = \frac{1}{2\pi \cdot 100 \cdot 160 \cdot 10^{-6}} = 9$$

$$X_{C120} = \frac{1}{2\pi \cdot 120 \cdot 160 \cdot 10^{-6}} = 8$$

C	v	при частоте f, <u>Г</u> ц							
Сопротивление Х		30	40	50	60	80	100	120	
Рассчитано	X _L ,O _M	16	21	27	32	43	53	64	
	U, B	10	10	10	10	10	10	10	
Измерено	I, A	0,62	0,46	0,37	0,31	0,23	0,19	0,16	
Ι Γ	X _L ,O _M	16,13	21,74	27,03	32,26	43,48	52,63	62,5	
Рассчитано	Хс, Ом	33	24	19	16	12	9	8	
	U, B	10	10	10	10	10	10	10	
Измерено	I, A	0,3	0,4	0,5	0,6	0,8	1	1,21	
	Хс, Ом	33,33	25	20	16,67	12,5	10	8,26	

Задание 2. Настройка схемы

Задание 3. Измерения в цепях с одним элементом

$$I = \frac{U}{R_1} = \frac{9.995}{20} = 0.49975 \approx 0.5 \ A$$

Видим, что ток отстает от напряжения на $\frac{\pi}{2}$.

Видим, что ток опережает по фазе напряжение на $\frac{\pi}{2}$.

Сопрожи	лошио V	при частоте f, Гц							
Сопротивление Х		30	40	50	60	80	100	120	
Рассчитано X _L ,Ом		16	21	27	32	43	53	64	
	U, B	10	10	10	10	10	10	10	
Измерено	I, A	0,62	0,46	0,37	0,31	0,23	0,19	0,16	
	X _L ,O _M	16,13	21,74	27,03	32,26	43,48	52,63	62,5	
Рассчитано	Хс, Ом	33	24	19	16	12	9	8	
	U, B	10	10	10	10	10	10	10	
Измерено	I, A	0,3	0,4	0,5	0,6	0,8	1	1,21	
	Хс, Ом	33,33	25	20	16,67	12,5	10	8,26	

Задание 4. Измерения в RL, RC и RLC ветвях

Для цепи R_4L_4 .

Заметим, что ток отстает от напряжения на величину φ_4 :

$$\varphi_4 = \arctan(\frac{X_4}{R_4}) \approx 53^{\circ}$$

Для цепи R_5C_5 .

Заметим, что ток опережает напряжение на величину φ_5 :

$$\varphi_5 = \arctan(\frac{X_5}{R_5}) \approx 44^{\circ}$$

Для цепи $R_6C_6L_6$.

При частоте 50 Γ ц ток отстает от напряжения. Изменим частоту до 20 Γ ц и ток начнет опережать напряжение.

	Ветвь		Измерено		Рассчитано			
1	ретвр	U, B	I, A	ф, град	$Z = U/I$, O_M	$R = Z\cos(\varphi)$	$X = Z\sin(\varphi)$	
	R_4L_4	0.299	9.998	-53.152	0.0299	0.0178	0.0239	
	R_5C_5	0.355	9.997	44.832	0.0355	0.0252	0.0250	
	$R_6C_6L_6$	0.472	9.996	-18.788	0.0472	0.0447	0.0151	

Вывод

В ходе данной работы я на практике ознакомился с установившимися режимами в последовательных RL, RC, RLC цепях синусоидального тока.