

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» Кафедра «Комп'ютерної інженерії та програмування»

Формальні мови, граматики і автомати

Лекція 2. Використання скінчених автоматів. Парсери

Проф. Гавриленко Світлана Юріївна +380664088551 (Viber) +380632864663 (Telegram) <u>Svitlana.Gavrylenko@khpi.edu.ua</u> Вечірній корпус, 306ВК

Застосування скінченних автоматів

Скінченні автомати (Finite State Machines) застосовуються в різних областях, включаючи:

- Розробка компіляторів та інтерпретаторів для мов програмування.
- Синтаксичний аналіз текстових даних, наприклад, для пошуку ключових слів або визначення структури документів.
- Розробка мережевих протоколів та обробка мережевих пакетів.
- Розробка алгоритмів Штучного Інтелекту, таких як алгоритми машинного навчання та розпізнавання образів.
- Розробка систем автоматичного керування, наприклад, систем керування виробничими процесами.
- Реалізація ігрових двигунів для комп'ютерних ігор.
- Розробка пристроїв автоматичного керування, наприклад, для керування роботами.

Парсинг

Термін «парсинг» походить від англійського дієслова to parse, що означає у перекладі з англійської «частинами». Процес є синтаксичним аналізом будь-якого набору пов'язаних один з одним даних. У загальному вигляді парсинг виконується у кілька етапів:

- Сканування вихідного масиву інформації (HTML-коду, тексту, бази даних тощо).
- Відокремлення семантично значущих одиниць за заданими параметрами наприклад, заголовків, посилань, абзаців, виділених жирним шрифтом фрагментів, пунктів меню.
- Конвертація даних у формат, зручний для вивчення, а також їх систематизація у вигляді таблиць або звітів для подальшого використання.

Об'єктом парсингу може бути будь-яка граматично структурована система: інформація, подана природною або штучною мовами.

Чітко визначити межі лексеми, які в початковому тексті явно не задані та виділили лексеми. Прикладом лексем у мові програмування ϵ : ідентифікатори, строкові, символьні і числові константи, ключові (службові) слова вхідного мови, знаки операцій і розлільники.

Приклади використання кінцевих автоматів у парсерах

Компілятори: Кінцеві автомати використовуються для лексичного аналізу і перевірки синтаксису мов програмування.

Парсери XML: Для валідації XML-документів і вилучення даних.

Протоколи мережевої комунікації: Для аналізу пакетів даних і виявлення помилок.

Текстові редактори: Для підсвічування синтаксису і автодоповнення коду.

ТЕРМІНОГОЛІЯ

- Token (умовна окрема одиниця) це найменший (атомарний) елемент із визначеним значенням шаблону.
- Шаблон (Patern) правило, що описує набір рядків.
- Лексема (lexeme) послідовність символів, що відповідє якомусь шаблону.

Examples

Token	Pattern	Sample Lexeme
while	while	while
relation_op	= != < >	<
integer	(0-9)*	42
string	Characters between " "	"hello"

Лексичний аналізатор

Для виділення лексем використовуються лексичні аналізатори. Прикладом лексем у мові програмування ϵ : ідентифікатори, строкові, символьні і числові константи, ключові (службові) слова вхідного мови, знаки операцій і роздільники.

Лексичний аналізатор **СКЛАДАЄТЬСЯ** 3 **ОКРЕМИХ автоматів**, кожен з яких розпізнає одну задану лексему.

Всі автомати мають однакову структуру і відрізняються тільки внутрішніми станами, що пов'язано з відмінностями розпізнаються лексем.

Для більшості текстів межі лексем розпізнаються за заданими символами: пробіли, знаки операцій, символи коментарів, а також роздільники (кома, крапка і т.д.).

Разом із тим такі символи можуть самі бути лексемами і необхідно не пропустити їх при розпізнаванні тексту.

Принцип роботи лексичних аналізаторів

- з вхідного потоку вибирається черговий символ, в залежності від якого запускається той чи інший сканер (символ може бути також проігноровано або визнано помилковим);
- запущений сканер переглядає вхідний потік символів програми на початковій мові, виділяючи символи, що входять до необхідної лексеми, до виявлення чергового символу, який може обмежувати лексему, або до виявлення помилкового символу;
- при успішному розпізнаванні інформація про виділену лексему заноситься в спеціальну таблицю лексем, алгоритм повертається до першого етапу і продовжує розглядати вхідний потік символів з того місця, на якому зупинився сканер;
- при невдалому розпізнаванні видається повідомлення про помилку, а подальші дії залежать від реалізації аналізатора або його виконання припиняється, або робиться спроба розпізнати наступну лексему (йде повернення до першого етапу алгоритму).

Приклад 1. Частина 1

Постановка проблеми.

 ε список цілих і дійсних чисел, розділених пробілом, наприклад: 0.1045 12.045. 15

Виділити лексеми за рахунок побудови основної таблиці абстрактного автомата і граф-схеми переходів.

Приклад 1. Визначення станів автомату

- Визначимо вхідні стани: $X = \{x_1, x_2, x_3, x_4, x_5\}$, де x_1 поява пробілу, x_2 поява цифри "0", x_3 поява цифри "1,2…9", x_4 поява крапки «.», x_5 поява забороненого символу (всі інші символи).
- Визначимо вихідні стани $Y = \{y_0, y_1, y_2, y_3, y_4, \}$, де y_0 лексема не виділена, y_1 виділено число 0, y_2 помилка зчитування; y_3 виділено дійсне число, y_4 виділено ціле число. (Можливо вихідний стан y_5 виділено крапку).
- Визначимо внутрішні стани $S = \{s_0, s_1, s_2, s_3, s_4\}$: s_0 початковий стан, s_1 сформовано число нуль, s_2 завершено формування цілої частини дійсного числа, s_3 формування дробової частини дійсного числа, s_4 формування цілого числа або цілої частини дійсного числа

 s_0 — початковий стан, s_1 — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування цілого числа або цілої частини дійсного числа.

Вхідний символ	Start	1	2	•	0	4	5	пробіл
Множина	_	х3	х3	x4	x2	х3	х3	x 1
вхідних символів Х		Цифра 19	Цифра 19		Цифра 0	Цифра 19	Цифра 19	
Margarana	~ 0	s.4						
Множина внутрішніх станів автомату S	s0	s4						
Множина вихідних станів Y	_	y0						

 s_0 — початковий стан, s_I — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа.

Вхідний символ	Start	1	2	•	0	4	5	пробіл
Множина вхідних символів Х	_	х3 Цифра 19	х3 Цифра 19	x4	х2 Цифра 0	х3 Цифра 19	х3 Цифра 19	x1
Множина внутрішніх станів автомату S	s0	s4	s4					
Множина вихідних станів Y	_	y0	y0					

 s_0 — початковий стан, s_I — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа.

Вхідний символ	Start	1	2	•	0	4	5	пробіл
Множина вхідних символів Х	_	х3 Цифра 19	х3 Цифра 19	x4	х2 Цифра 0	х3 Цифра 19	х3 Цифра 19	x1
Множина внутрішніх станів автомату S	s0	s4	s4	s2				
Множина вихідних станів Y	_	y0	y0	y0				

 s_0 — початковий стан, s_I — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа.

Вхідний символ	Start	1	2	•	0	4	5	пробіл
Множина вхідних символів	_	х3 Цифра 19	х3 Цифра 19	x4	х2 Цифра 0	х3 Цифра 19	х3 Цифра 19	x1
Margarana	~0	~ A	~ 4	~2	~?			
Множина внутрішніх станів автомату S	s0	s4	s4	s 2	s 3			
Множина вихідних станів Y		y0	y0	y0	y0			

 s_0 — початковий стан, s_I — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа.

Вхідний символ	Start	1	2	•	0	4	5	пробіл
Множина вхідних символів Х	_	х3 Цифра 19	х3 Цифра 19	x4	х2 Цифра 0	х3 Цифра 19	х3 Цифра 19	x1
Множина внутрішніх станів автомату S	s0	s4	s4	s2	s3	s3		
Множина вихідних станів Y	_	y0	y0	y0	y0	y0		

 s_0 — початковий стан, s_I — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа.

Вхідний символ	Start	1	2	•	0	4	5	пробіл
Множина вхідних символів Х	_	х3 Цифра 19	х3 Цифра 19	x4	х2 Цифра 0	х3 Цифра 19	х3 Цифра 19	x1
Множина внутрішніх станів автомату S	s0	s4	s4	s2	s3	s3	s3	
Множина вихідних станів Y	_	y0	y0	y0	y0	y0	y0	

 s_0 — початковий стан, s_I — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа.

Вхідний символ	Start	1	2	•	0	4	5	пробіл
Множина вхідних символів Х	_	х3 Цифра 19	х3 Цифра 19	x4	х2 Цифра 0	х3 Цифра 19	х3 Цифра 19	x1
Множина внутрішніх станів автомату S	s0	s4	s4	s2	s 3	s 3	s 3	s0
Множина вихідних станів Y	_	y0	y0	y0	y0	y0	y0	y3

 s_0 — початковий стан, s_I — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа. y_0 — лексема не виділена, y_I — виділено число 0, y_2 — помилка зчитування; y_3 — виділено дійсне число, y_4 — виділено ціле число.

Вхідний символ	Start	2	2	1	0	4	5	пробіл
Множина вхідних	_	х3	х3	х3	х3	х3	х3	x1
символів Х								
Множина	s0	s4	s4	s4	s4	s4	s4	s0
внутрішніх станів								
автомату S								
Множина	_	y0	y 0	y0	y0	y0	y0	y4
вихідних станів Ү								

 s_0 — початковий стан, s_1 — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа. y_0 — лексема не виділена, y_1 — виділено число 0, y_2 — помилка зчитування; y_3 — виділено дійсне число, y_4 — виділено ціле число. (Після надходження крапки сформовано помилковий стан. Надалі автомат працює некоректно)

Вхідний символ	Start	0	•	1	0	•	5	пробіл
Множина вхідних	_	x2	x4	х3	x2	х3	х3	x1
символів Х								
Множина	s0	s1	s2	s 3	s3	s0	s4	s0
внутрішніх станів						Стан		
автомату S						помилковий		
Множина	_	y0	y 0	y0	y0	y2	y0	y4
вихідних станів Ү								

Приклад 1. Основна таблиця абстрактного автомата

 s_0 — початковий стан, s_1 — сформовано число нуль, s_2 — завершено формування цілої частини дійсного числа, s_3 — формування дробової частини дійсного числа, s_4 — формування цілого числа або цілої частини дійсного числа. y_0 — лексема не виділена, y_1 — виділено число 0, y_2 — помилка зчитування; y_3 — виділено дійсне число, y_4 — виділено ціле число. (можливо інший стан)

			nput Symbols		
Finite set of states	\mathbf{x}_{1t}	\mathbf{x}_{2t}	X_{3t}	X_{4t}	X_{5t}
	space	0	19	•	forbidden
S _{0 t-1} (start state)	s_{0t}/y_{0t}	s_{1t}/y_{0t}	s_{4t}/y_{0t}	S _{0t} /V _{2t}	S _{0t} / <mark>y_{2t}</mark>
$s_{1 t-1}$ $(number = 0)$	S _{0t} /y _{1t}	s_{0t}/v_{2t}	S _{0t} / <mark>y_{2t}</mark>	s_{2t}/y_{0t}	S _{0t} /y _{2t}
$S_{2 t-1}$ (0. or NNN.)	$s_{0t}/\overline{y_{2t}}$	s_{3t}/y_{0t}	s_{3t}/y_{0t}	$s_{0t}/\sqrt{v_{2t}}$	$\mathbf{S}_{0t}/\mathbf{rac{\mathbf{y}_{2t}}{\mathbf{y}_{2t}}}$
S _{3 t-1} (float number 0.NNN)	S _{0t} / y _{3t}	s_{3t}/y_{0t}	s_{3t}/y_{0t}	S _{0t} / <mark>y_{2t}</mark>	S _{0t} / <mark>y_{2t}</mark>
$S_{4 t-1}$ (int number or float NNN)	s_{0t}/y_{4t}	s_{4t}/y_{0t}	s_{4t}/y_{0t}	s_{2t}/y_{0t}	S _{0t} / <mark>y_{2t}</mark>

Приклад 1. Діаграма переходів автомата

		Inp	ut Symb	ols	
Finite set of	X_{1t}	X _{2t}	X_{3t}	X_{4t}	X _{5t}
states	space	0	19		stop
s _{0 t-1} (start state)	s_{0t}/y_{0t}	s_{1t}/y_{0t}	s_{4t}/y_{0t}	S_{0t}/V_{2t}	s_{0t}/v_2
$s_{1 t-1}$ (number =0)	s_{0t}/y_{1t}	s_{0t}/v_{2t}	s_{0t}/v_{2t}	s _{2t} /y _{0t}	S _{0t} /V _{2t}
s _{2 t-1} 1. N.)	s_{0t}/v_{2t}	S_{3t}/y_{0t}	s_{3t}/y_{0t}	s_{0t}/v_{2t}	S _{0t} / y _{2t}
S _{3 t-1} (float number)	s_{0t}/y_{3t}	s_{3t}/y_{0t}	s_{3t}/y_{0t}	s_{0t}/v_{2t}	S _{0t} /V _{2t}
s _{4 t-1} (int number)	S_{0t}/y_{4t}	s_{4t}/y_{0t}	S_{4t}/y_{3t}	S _{2t} /y _{0t}	S _{0t/} V _{2t}

Приклад 2

Постановка проблеми.

Опис масиву (списку) чисел містить: змінну (у вигляді послідовності літер англійського алфавіту та цифр за умови, що першим символом може бути літера), знак присвоювання «=», дужки «[,]», десяткові цифри та кому «,». Допускається також, що вираз може містити пробіл. Наприклад: ident = [1, 2, 34]

= ident [, 12, 34] с точки зору сканера це не помилка (усі лексеми є допустимими)

Приклад 2. Визначення станів автомату

- Визначимо вхідні стани: $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$, де x_1 поява пробілу, x_2 поява будь-якої англійської літери, x_3 поява цифри, x_4 знаку присвоювання «=», x_5 поява дужки «[», x_6 поява коми «,», x_7 поява дужки «]», x_8 поява забороненого символу (всі інші символи).
- Визначимо вихідні стани $Y = \{y_0, y_1, y_2, y_3, y_4, \}$, де y_0 лексема не виділена, y_1 виділена одна лексема, y_2 виділено дві лексеми (при появі на вході знаків : «=,], [, , » які одночасно є межею між лексемами і лексемами), y_3 помилка зчитування; y_4 виділена одна лексема і помилка.
- Визначимо внутрішні стани $S = \{s_0, s_1, s_2\}$: s_0 початковий стан, s_1 формування ідентифікатора, s_2 формування числа.

Приклад 2. Таблиця роботи автомату

		Вхідні стани									
	Вихід	Вихідні стани: y_0 – лексема не виділена, y_I – виділена одна лексема, y_2 – виділено дві									
Внутрішні		лексеми, <mark>у₃ – помилка зчитування, у₄ – виділена одна лексема і помилка</mark>									
стани											
	X _{1t} пробіл										
S _{0 t-1} очікування	S _{0t} /y _{0t}	S_{1t}/y_{0t}	S _{2t} /y _{0t}	S_{0t}/y_{1t}	S _{0t} /y _{1t}	S_{0t}/y_{1t}	S_{0t}/y_{1t}	S_{0t}/y_{3t}			
S _{1 t-1} формування ідентифікатора	S _{0t} /y _{1t}	S _{1t} /y _{0t}	S _{1t} /y _{0t}	S _{0t} /y _{2t}	S _{0t/} y _{4t}						
S _{2 t-1} формування числа	S _{0t} /y _{1t}	S _{0t} /y _{4t}	S _{2t} /y _{0t}	S _{0t} /y _{2t}	S _{0t/} y _{4t}						

Приклад 2. Діаграма станів

	Вхідні стани											
	Вихідні стани: y_0 – лексема не виділена, y_I – виділена одна											
	лексе	лексема, y_2 – виділено дві лексеми, у4 – виділена одна лексема і										
		помилка.										
Внутрішні стани												
Стани	X _{1t}	\mathbf{x}_{2t}	X _{3t}	X _{4t}	X _{5t}	X _{6t}	X _{7t}	\mathbf{x}_{8t}				
	пробі	будь-	,	знак	дужка	Кома	Дужка	Забор				
	Л	яка англій	цифр	присв	«[»	«,»	«]»	0-				
		ська		ою- вання				нений симво				
		літера вання симво л										
S _{0 t-1}	S_{0t}/y_{0t}	S_{1t}/y_{0t}	S_{2t}/y_{0t}	S_{0t}/y_{1t}	S_{0t}/y_{1t}	S_{0t}/y_{1t}	S_{0t}/y_{1t}	S_{0t}/y_{3t}				
очікування												
S _{1 t-1}	S_{0t}/y_{1t}	S_{1t}/y_{0t}	S_{1t}/y_{0t}	S_{0t}/y_{2t}	S_{0t}/y_{2t}	S_{0t}/y_{2t}	S_{0t}/y_{2t}	S _{0t/} y _{4t}				
формуванн												
Я												
ідентифіка												
тора												
$S_{2 t-1}$	S_{0t}/y_{1t}	S_{0t}/y_{4t}	S_{2t}/y_{0t}	S_{0t}/y_{2t}	S_{0t}/y_{2t}	S_{0t}/y_{2t}	S_{0t}/y_{2t}	S _{0t/} y _{4t}				
формуванн												
я числа												

Приклад 3

Постановка проблеми. Виділити лексеми, що представляють собою цілочисельні константи в форматі мови С. Відповідно до вимог мови, константи можуть бути десятковими, восьмирічними такі шістнадцятирічними. Восьмирічною константою вважається число, що починається з 0 і містить цифри від 0 до 7; шістнадцятирічна константа повинна починатися з послідовності символів 0х і може містити цифри і букви від *а* до *f*. Решта чисел вважаються десятковими. Константа може починатися також з одного із знаків + або -. Для уникнення плутанини і скорочення обсягу інформації в прикладі будемо вважати, що всі допустимі літери є малими.

Приклад 3. Визначення станів автомату

Визначимо вхідні стани: $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$ де $x_1 - "+, -", x_2 - "0", x_3 - "x", x_4 - "1...7", x_5 - "8,9", x_6 - "a...f", x_7 - "пробіл або кінець рядка - <math>\perp$ ", x_8 - "інші символи"

Визначимо вихідні стани $Y = \{y_0, y_1, y_2\}$, де y_0 – цифра не виділена, y_1 – цифра виділена, y_2 - помилка.

Визначимо внутрішні стани $S = \{s_0, s_1, s_2, s_3, s_4, \}$, де s_0 — початковий стан; s_1 — поява знаку, s_2 — формування восьмирічної або шістнадцятирічної цифри числа «0», s_3 — формування десяткового числа, s_4 —формування шістнадцятирічного числа, s_5 — формування восьмирічного цифра.

Приклад 3. Таблиця роботи автомату

				Е				
Стани	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
	+,-	0	X	17	8,9	af	Пробіл,	Інші
								символи
S _{0 t-1 (п. стан)}	S_{1t}/Y_{0t}	S_{2t}/Y_{0t}	S_{0t}/Y_{2t}	S_{3t}/Y_{0t}	S_{3t}/Y_{0t}	S_{0t}/Y_{2t}	S _{0t} /Y _{0t}	S _{0t} /Y _{2t}
S _{1 t-1(знак)}	S_{0t}/Y_{2t}	S _{2t} /Y _{0t}	S_{0t}/Y_{2t}	S_{3t}/Y_{0t}	S_{3t}/Y_{0t}	S_{0t}/Y_{2t}	S_{0t}/Y_{2t}	S_{0t}/Y_{2t}
$S_{2 \text{ t-1}(Ah,8,0)}$	S_{0t}/Y_{2t}	S_{0t}/Y_{2t}	S_{4t}/Y_{0t}	S_{5t}/Y_{0t}	S_{0t}/Y_{2t}	S_{0t}/Y_{2t}	S_{0t}/Y_{1t}	S_{0t}/Y_{2t}
S _{3 t-1(A10)}	S_{0t}/Y_{2t}	S_{3t}/Y_{0t}	S_{0t}/Y_{2t}	S_{3t}/Y_{0t}	S_{3t}/Y_{0t}	S_{0t}/Y_{2t}	S _{0t} /Y _{1t}	S_{0t}/Y_{2t}
S _{4 t-1(Ah)}	S _{0t} /Y _{2t}	S _{4t} /Y _{0t}	S_{0t}/Y_{2t}	S _{4t} /Y _{0t}	S _{4t} /Y _{0t}	S _{4t} /Y _{0t}	S _{0t} /Y _{1t}	S _{0t} /Y _{2t}
S _{5 t-1(A8)}	S_{0t}/Y_{2t}	S _{5t} /Y _{0t}	S_{0t}/Y_{2t}	S _{5t} /Y _{0t}	S_{0t}/Y_{2t}	S_{0t}/Y_{2t}	S_{0t}/Y_{1t}	S _{0t} /Y _{2t}

Приклад 3. Процес сканування вхідного рядка

Вхідний символ	Start	+	0	X	a	4	5	пробіл
Множина вхідних	_	x1	x2	х3	x6	x4	x4	x7
символів Х								
Множина	s0	s1	s2	s4	s4	s4	s4	s0
внутрішніх станів								
автомату S								
Множина	_	y0	y0	y0	y0	y0	y0	y1
вихідних станів Ү								

Приклад 3.Граф-схема роботи аналогічного автомату зі станом «помилка»

Приклад 4

Постановка проблеми. Виділити лексеми в математичному виразі, який містить змінні (у вигляді послідовності літер англійського алфавіту та цифр за умови, що першим символом може бути літера), математичні знаки («+», «-», «*», «/»), знак присвоювання «=», дужки «(,)» та знак «;». Допускається також, що математичний вираз може містить пробіл.

Прикладом математичного виразу може бути наступний рядок:

$$a1 = fg2 + (d - cde);$$

При виділенні лексем необхідно врахувати наступні ситуації. Межею лексеми можуть бути математичні знаки («+», «-», «*», «/»), знак присвоювання «=», дужки «(,)», знак «;» та пробіл, при цьому усі перераховані символи, окрім пробілу, також являються лексемами.

Приклад 4. Визначення станів автомату

Закодуємо вхідні стани: x_1 — поява знаку, x_2 — поява будь-якої англійської літери, x_3 — поява цифри, x_4 — поява забороненого символу. x_5 — поява знаку присвоювання «=», x_6 — поява дужки «(», x_7 — поява дужки «)», x_8 — поява знаку «;».

Таким чином, множина вхідних станів $X = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$.

Визначимо вихідні стани $Y = \{y_0, y_1, y_2, y_4, \}$, де y_0 – лексема не виділена, y_1 – виділена одна лексема, y_2 - виділено дві лексеми (при появі на вході знаків : +, -, *, /,), (, ; які самі є межею між лексемами і одночасно самі є лексемами), y_3 – помилка.

Визначимо внутрішні стани: s_{θ} — початковий стан автомату, s_{I} — стан формування лексеми ідентифікатор.

Приклад 4. Таблиця роботи автомату

Внутрішні		Вхідні стани							
стани									
	X_{1t}	X_{2t}	X_{3t}	X_{4t}	X_{5t}	X_{6t}	X_{7t}	X_{8t}	
	+,-	az	09	???	=	()	;	
S _{0 t-1}	S_{0t}/y_{1t}	S_{1t}/y_{0t}	S_{0t}/y_{3t}	S_{0t}/y_{3t}	S_{0t}/y_{1t}	S_{0t}/y_{1t}	S_{0t}/y_{1t}	S_{0t}/y_{1t}	
S _{1 t-1}	S _{0t} /y _{2t}	S_{1t}/y_{0t}	S_{1t}/y_{0t}	S_{0t}/y_{3t}	S _{0t} /y _{2t}				

Розглянемо роботу автомата. Якщо автомат знаходився в стані $s_0(t-1)$ і на його вхід було подано знак (стан x_1), то він виділить цей знак як лексему, залишиться в стані s_0t і видасть на виході стан y_{It} . Якщо автомат знаходився в стані $s_0(t-1)$ і на його вхід була подана буква (стан x_2), то він перейде в стан s_{It} . Поява на вході будь-якої іншої букви або цифри залишить його в стані s_{It} , оскільки проходить процес визначення лексеми. Якщо автомат знаходився в стані $s_1(t-1)$ і на його вхід був поданий знак (стан x_1), то він перейде в стан s_0t і на виході сигнал y_2 , тобто буде виділено дві лексеми: ідентифікатор (змінна) та знак. Якщо автомат знаходився в стані $s_0(t-1)$, то поява на вході будь-якої цифри переведе його в стан s_2t – помилка, так як згідно умови змінна не може починатися з цифри.

Якщо на вхід подається стан x_4 , то незалежно від стану автомату перейде до стану S_2 , тобто визначить помилку.

Приклад 4. Граф-схема лексичного аналізатора

Приклад 5

Діаграма станів-переходів для десяткових констант, ідентифікаторів (у тому числі, що містять не менше 2 символів a), коментарів, окремих символів / та *, а також рядкових констант (виду "...").

Регулярні вирази

Регулярний вираз — це набір правил для опису текстових рядків у вигляді послідовності звичайних символів і метасимволів (будь-який одиночний символ), який потім в якості зразка використовується в операціях пошуку і заміни тексту.

Метасимвол [використовується в конструкції [...] для подання будь-якого одиночного символу з числа взятих в дужки, тобто він представляє клас символів. Два символи, з'єднані знаком мінус, задають діапазон значень, наприклад [A-Za-z] задає всі великі та малі літери англійського алфавіту. Якщо першим символом в дужках є символ ^, вся конструкція позначає будь-який символ, який не входить в число перерахованих в дужках. Наприклад, [^0-9] позначає усі нецифрові символи.

Метасимволи [^] і \$ використовується для завдання прив'язки до певного місця рядка. Метасимвол [^] як перший символ регулярного виразу позначає початок рядка. Метасимвол \$ в якості останнього символу регулярного виразу позначає кінець рядка. Наприклад:

/^\$/ — порожній рядок (початок і кінець, між якими порожньо);

/^Perl/ — слово Perl на початку рядка;

/Perl\$/ — слово Perl в кінці рядка.

Метасимвол | можна розглядати як символ операції, яка задає вибір з кількох варіантів (подібно логічної операції АБО).

Коефіцієнти, або множники метасимволів

Л (+/ № послідовність, що складається з будь-якого числа символів [.

```
г*  Ф нуль і більш повторень г;
г +  Ф одне і більш повторень г;
г ?  Ф нуль або одне повторення г;
г {n}  Ф рівно п повторень г;
г {n} +  Ф п і більше повторень г;
г {n, m}  Ф мінімум п, максимум т повторень г.

Наприклад:
/.*/  Ф будь-який рядок;
```

/.+/ Ф будь-яка непорожній рядок;

Приклади роботи жадібних та лінивих алгоритмів

Наприклад, в рядку "1234567" буде знайдено:

```
для зразку \landd*/ або [0-9] * \  \Box максимальний фрагмент "1234567"; для зразку \landd*/ або [0-9] + \  \Box максимальний фрагмент "1234567"; для зразку а\landd?/ \  \Box максимальний фрагмент "1"; для зразку а \landd\{2,5\}/ \  \Box максимальний фрагмент "12345"; для зразку а \landd*?/ \  \Box мінімальний фрагмент ""; для зразку а \landd*?/ \  \Box мінімальний фрагмент "1"; для зразку а \landd\{2,5\}?/ \  \Box мінімальний фрагмент "12".
```

• \d — клас цифрових символів, однаково, що і [0-9].

Приклади лексем, заданих регулярними виразами

- Ціле число: [+, -]? [1-9] [0-9]*
- Дійсне число: [+, -]? [0 {1} | [1-9] + . [0-9]+
- Ідентифікатор: [A-Za-z _] [A-Za-z_0-9]*
- Ключове слово if: if
- Ключове слово while: while
- Знак операції + : \+
- Знак операції ++ : \++

Дійсно, легко виписати, наприклад, праволінійну граматику для розпізнавання ідентифікаторів:

```
letter -> 'a' .. 'z' | 'A' .. 'Z' | '_'
digit -> '0' .. '9'
ident -> letter | letter tail
tail -> letter | digit | letter tail | digit tail
```

ДЯКУЮ ЗА УВАГУ