4.5 The Dimension of a Vector Space

THEOREM 9

If a vector space V has a basis $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Suppose $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is a set of vectors in V where p > n. Then the coordinate vectors $\{[\mathbf{u}_1]_{\beta}, \dots, [\mathbf{u}_p]_{\beta}\}$ are in \mathbf{R}^n . Since p > n, $\{[\mathbf{u}_1]_{\beta}, \dots, [\mathbf{u}_p]_{\beta}\}$ are linearly dependent and therefore $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ are linearly dependent. \blacksquare

THEOREM 10

If a vector space *V* has a basis of *n* vectors, then every basis of *V* must consist of *n* vectors.

Proof: Suppose β_1 is a basis for V consisting of exactly n vectors. Now suppose β_2 is any other basis for V. By the definition of a basis, we know that β_1 and β_2 are both linearly independent sets.

By Theorem 9, if β_1 has more vectors than β_2 , then ____ is a linearly dependent set (which cannot be the case).

Again by Theorem 9, if β_2 has more vectors than β_1 , then _____ is a linearly dependent set (which cannot be the case).

Therefore β_2 has exactly n vectors also. \blacksquare

DEFINITION

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be 0. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

EXAMPLE: The standard basis for P_3 is $\{$ $\}$. So dim $P_3 =$ ____.

In general, dim $\mathbf{P}_n = n + 1$.

EXAMPLE: The standard basis for \mathbb{R}^n is $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ where $\mathbf{e}_1, \dots, \mathbf{e}_n$ are the columns of I_n . So, for example, dim $\mathbb{R}^3 = 3$.

EXAMPLE: Find a basis and the dimension of the subspace

$$W = \left\{ \begin{bmatrix} a+b+2c\\ 2a+2b+4c+d\\ b+c+d\\ 3a+3c+d \end{bmatrix} : a,b,c,d \text{ are real} \right\}.$$

Solution: Since

$$\begin{bmatrix} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix},$$

$$\mathsf{where}\; \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

- Note that \mathbf{v}_3 is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 , so by the Spanning Set Theorem, we may discard \mathbf{v}_3 .
- \mathbf{v}_4 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . So $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a basis for W. Also, dim W =____.

EXAMPLE: Dimensions of subspaces of R³

0-dimensional subspace contains only the zero vector

1-dimensional subspaces. Span $\{v\}$ where $v \neq 0$ is in \mathbb{R}^3 .

These subspaces are _____ through the origin.

2-dimensional subspaces. Span $\{u, v\}$ where u and v are in R^3 and are not multiples of each other.

These subspaces are _____ through the origin.

3-dimensional subspaces. Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbf{R}^3 . This subspace is \mathbf{R}^3 itself because the columns of $A = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{bmatrix}$ span \mathbf{R}^3 according to the IMT.

THEOREM 11

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

$$\dim H \leq \dim V$$
.

EXAMPLE: Let
$$H = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$$
. Then H is a

subspace of \mathbf{R}^3 and $\dim H < \dim \mathbf{R}^3$.

We could expand the spanning set $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix}\right\}$ to $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}1\\1\\0\end{bmatrix}\right\}$ to form a basis for \mathbf{R}^3 .

THEOREM 12 THE BASIS THEOREM

Let V be a p – dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p vectors in V is automatically a basis for V. Any set of exactly p vectors that spans V is automatically a basis for V.

EXAMPLE: Show that $\{t, 1-t, 1+t-t^2\}$ is a basis for \mathbf{P}_2 .

Solution: Let $\mathbf{v}_1 = t$, $\mathbf{v}_2 = 1 - t$, $\mathbf{v}_3 = 1 + t - t^2$ and $\beta = \{1, t, t^2\}$.

Corresponding coordinate vectors

$$[\mathbf{v}_1]_{\beta} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, [\mathbf{v}_2]_{\beta} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, [\mathbf{v}_3]_{\beta} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

 $[\mathbf{v}_2]_{\beta}$ is not a multiple of $[\mathbf{v}_1]_{\beta}$

 $[\mathbf{v}_3]_{\beta}$ is not a linear combination of $[\mathbf{v}_1]_{\beta}$ and $[\mathbf{v}_2]_{\beta}$

 \Rightarrow $\{[\mathbf{v}_1]_{\beta}, [\mathbf{v}_2]_{\beta}, [\mathbf{v}_3]_{\beta}\}$ is linearly independent and therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent.

Since dim $P_2 = 3$, $\{v_1, v_2, v_3\}$ is a basis for P_2 according to The Basis Theorem.

Dimensions of Col A and Nul A

Recall our techniques to find basis sets for column spaces and null spaces.

EXAMPLE: Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix}$. Find dim Col A and dim Nul A.

Solution

$$\left[\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{array}\right] \sim \left[\begin{array}{cccccc} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \end{array}\right]$$

So
$$\left\{ \begin{bmatrix} \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \end{bmatrix} \right\}$$
 is a basis for Col A and dim Col $A=2$.

Now solve $A\mathbf{x} = \mathbf{0}$ by row-reducing the corresponding augmented matrix. Then we arrive at

$$x_1 = -2x_2 - 4x_4$$
$$x_3 = 0$$

and

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

So
$$\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -4 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 is a basis for Nul A and

 $\dim \operatorname{Nul} A = 2.$

Note

 $dim\ Col\ A = number\ of\ pivot\ columns\ of\ A$

 $dim \ Nul \ A = number \ of \ free \ variables \ of \ A$