Problem 1

Suppose users share a 3 Mbps link. Also suppose each user requires 150 Kbps when transmitting, but each user transmits only 20 percent of the time.

- (a) When circuit switching is used, how many users can be supported?
- (b) For the remainder of the problem, suppose packet switching is used. Find the probability that a given user is transmitting.
- (c) Suppose there are 100 users. Find the probability that at any given time, exactly n users are transmitting simultaneously. (Hint: Use the binomial distribution)
- (d) Find the probability that there are 21 or more users transmitting simultaneously.

Write your solution to Problem 1 in this box
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Problem 2

Queuing delay.

(a)	Suppose N	packet	s arrive	simul	taneou	ısly t	o a li	nk at	whicl	h no j	packets a	are cu	rren	tly bein	g tran	smitted
	or queued.	Each	packet	is of l	length	L as	nd th	e link	has	tran	smission	rate	R.	What i	s the	average
	queuing de	lay for	the N p	packet	s?											

delay of a packet?							
		Write your solution to	Problem 2 in this				

Problem 3

Review the car-caravan analogy in lecture #1 slides 49–50 (for Chapter 1). Assume a propagation speed of 100 km/h.

- (a) Suppose the caravan (10 cars) travels 150 km, beginning in front of one tollbooth, passing through a second tollbooth, and finishing just after a third tollbooth. Each car takes 12 sec to serve. What is the end-to-end delay?
- (b) Repeat (a), now assuming that there are 8 cars in the caravan instead of 10.

With a probability of Doubles 2 to this ha
Write your solution to Problem 3 in this box

Suppose you would like to urgently deliver 50 terabytes data from Boston to Los Angeles. You have available a 1 Gbps dedicated link for date transfer. Would you prefer to transmit the data via this link or to use

Problem 4

	Write your	solution to Problem 4 in this b