CddInterface

Gap interface to Cdd package

0.1

18/11/2015

Kamal Saleh

Kamal Saleh

Email: kamal.saleh@rwth-aachen.de

Homepage:

Address: Templergraben

Contents

1	Fun	Functions and Methods														3					
	1.1	Creating a polyhedra										•					•				3
Inc	lex																				4

Chapter 1

Functions and Methods

1.1 Creating a polyhedra

1.1.1 Cdd_PolyhedraByInequalities

```
▷ Cdd_PolyhedraByInequalities(arg)
    Returns: a CddPolyhedra Object
```

The function takes a list in which every entry represents an inequality(or equality). In case we want some entries to represent equalities we should refer to their indices in a second list.

(function)

```
_ Example
gap> A:= Cdd_PolyhedraByInequalities([[ 0, 1, 3 ], [ 0, 4, 8 ] ] );
< Polyhedra given by its H-representation >
gap> Display( A ) ;
H-representation
Begin
  2 X 3 rational
  0 1 3
  0 4 8
gap> B:= Cdd_PolyhedraByInequalities( [ [ 0, 1, 3 ], [ 0, 4, 8 ] ], [2] );
< Polyhedra given by its H-representation >
gap> Display( B ) ;
H-representation
Linearity 1, [2]
Begin
  2 X 3 rational
  0 1 3
  0 4 8
End
```

Index

CddInterface, 3

 ${\tt Cdd_PolyhedraByInequalities, 3}$