Introduction to Machine Learning

Lecture 9

Instructor:

Dr. Tom Arodz

Recap: the story so far...

- Ideal way of making predictions:
 - Perfect feature
 - Accurate, efficient simulation
 - Fully-known probability distribution p(y|x) from which data comes from
 - or p(x|y), we can use Bayes theorem to get p(y|x) from it
- Traditional machine learning:
 - heuristics / ad-hoc approaches (e.g. perceptron in HW1)
 - maximum likelihood (or Bayesian learning)
 - pick a distribution shape for p(x|y), based on domain knowledge
 - fit best distribution p(x|y) to each class in training data
 - get p(y|x) from these distributions using Bayes theorem
- "Modern" machine learning:
 - produce numbers that we can treat as p(y|x) from some function f(x) not any specific distribution
 - Tweak the parameters θ of function $f(x; \theta)$ to make predictions better

Towards ML Approach #3

- "Modern" machine learning: probability distrib. governing the problem not known, let's model it using a class of function
 - Predicting: use trained parameters θ_{opt}
 - $p(class|x,S)=some_f(\theta_{opt})(x).to_class_probs()$
 - Training:
 - Search for single value of parameters θ that minimizes:

```
\theta_{opt} = arg min_{\theta} error_metric(
S, some_f(\theta)(x in S).to_class_probs()
)
```

- Compare with maximum likelihood (MLE):
 - Predicting: use trained parameters θ_{opt}
 - $p(class|x,S)=mult_normal(\theta_{class}).pdf(x)*P[class]$
 - Training:
 - $\theta_{class} = arg max_{\theta} mult_normal(\theta).pdf(S_{class})$

Recap: ML Approach #3

"Modern" machine learning:

```
minimize<sub>\theta</sub>: error_metric(S, some_f(\theta)(x in S).to_class_probs())
```

Filling the gaps:

- some $f(\theta)(x)$ **Or** some $f(\theta;x)$
 - Some function that takes two groups of inputs
 - Raw input features x
 - Trainable parameters θ
 - the parameters help us pick a specific function from a family of functions
- to_class_probs()
 - some_f (θ; x) may not return probabilities, how to convert to: ≥0, sum=1
- error metric
 - Classification error? Do we need something more complex?
- minimize_θ
 - how? For Gaussians in MLE, we had analytical solution, that's unlikely for some_f

9.1. Iterative minimization

Modern machine learning:

```
minimize<sub>\theta</sub>: error_metric(
S, some_f(\theta)(x in S).to_class_probs())
```

Minimization:

- minimize_θ
 - how?

Modern machine learning:

```
\label{eq:minimize} \begin{split} &\text{minimize}_{\theta} \colon \text{error\_metric(} \\ &\text{S, some\_f($\theta$) (x in S).to\_class\_probs())} \end{split}
```

Let's simplify the notation:

■ minimize_{θ}: $\Sigma_{(x,y)\in S}$ L(y, model(θ ,x))

Modern machine learning:

- Let's assume that error_metric, some_f, and to_class_probs are smooth functions: they have derivatives (as opposed to e.g. |x| abs. value of x does not have derivative a x=0)
- That means: L and model are smooth functions, too (have derivatives)
 - minimize_{θ}: $\Sigma_{(x,y)\in S}$ L(y, model(θ , x))
 - Note that Σ (sum) is also a smooth function
- Problems to solve: find minimum of a differentiable function
 - minimize $_{\theta}$: function(θ)

- Training:
 - minimize_{θ}: function(θ)
 - More specifically:
 - minimize_{θ}: $\Sigma_{(x,y)\in S}$ L(y, model(θ , x))
- Like Perceptron / HW1

but

we assumed differentiability of **f**

it will help us figure out in which direction we should tweak θ

- Training:
 - minimize $_{\theta}$: function(θ)

- We will change notation to just minimize:
 - minimize_x: f(x)
- For a moment:
 - x will not mean "feature values" of our training set
 - instead, it will mean the parameters we want to find to minimize the value of f()
 - the training data will be "folded in" (hidden inside) the shape of the function f()
 - that means: f(x) is very complex, its shape depends on training set, and difficult to view/analyze "holistically"

- Task
 - minimize_x: f(x)
- Possible ways to find minimum of a function:
 - Analytical: solve for "derivative of f = 0"
 - E.g. $min_x x^2-4x$ is at $d(x^2-4x)/dx = 2x-4=0$, i.e. at x=2
 - We used this approach in Maximum Likelihood Estimation for Gaussians
 - Cons:
 - in ML, f is highly complex, finding the equation to solve and solving it will be computationally hard
 - in ML, f has many points with df/dx=0: maxima, saddle points, many minima

- Task
 - minimize_x: f(x)
- Possible ways to find minimum of a function:
 - Analytical won't work, ultimately because:
 - f(x) is very complex, its shape depends on training set, and difficult to view/analyze "holistically"
 - What is "cheap" is calculating value of the function f(x) for specific x. So, one alternative to "analytical" is:
 - Probing: like constructing the plots in HW1 with meshgrid
 - try f(x) at a large number of possible x
 - pick best, i.e., lowest value of f(x))

- Task
 - minimize_x: f(x)
- Possible ways to find minimum of a function:
 - Probing: like plots in HW1
 - try f(x) at a large number of possible x
 - pick best, i.e., lowest value of f(x))

- p=5,
- If n=2, we need 6²=36 points in the grid
- If n=3, we need 6³=216 points in the grid
- each cell has side length of 1/5
- Won't work, to many points to try!

- Task
 - minimize_x: f(x)
- Possible ways to find minimum of a function:
 - Iterative minimization
 - Like training in HW1

 Relies on "local" rules to find how to update in position (x here, w in HW1)

- Task
 - minimize_x: f(x)
- Possible ways to find minimum of a function:
 - Iterative minimization

- Relies on "local" rules to find how to update in position
 - Heuristic rules like in HW1
 - Rules based on value of f(x) for neighboring x
 - Rules based on derivatives (gradient) of f at x

ML overwhelmingly uses this approach: "gradient descent"

X

Gradient descent

First derivative or gradient: denoted ∇f or f'

gradient of a n-dimensional function $f:R^n \rightarrow R$ is a generalization of derivative of a single-dimensional

function $f:R \rightarrow R$

Gradient descent

gradient of a n-dimensional function $f:R^n \rightarrow R$ is:

an n-dimensional **vector** of partial derivatives,

pointing (for a given z) in direction of steepest slope of f at that z

Pointing always in the direction in which the function grows (locally)

positive value in a vector = f grows (vector points) towards $+\infty$; negative value = f grows towards $-\infty$, vector points towards $-\infty$

Defines a line or plane or hyperplane tangent to f

Tangent_hyperplane(x) = $f(z) + \nabla f(z)^T (x-z)$ = $\nabla f(z)^T x + f(z) - \nabla f(z)^T z$

$$\nabla f(\mathbf{z}) = \left(\frac{\partial}{\partial x_1} f(\mathbf{x})|_{\mathbf{x} = \mathbf{z}}, \dots, \frac{\partial}{\partial x_n} f(\mathbf{x})|_{\mathbf{x} = \mathbf{z}}\right)$$

4

Gradient descent

Gradient descent (with learning rate *c*):

We start from x_0

We calculate $x_1 = x_0 - c \nabla f(x_0)$

We calculate $x_2=x_1-c \nabla f(x_1)$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{c} \, \nabla \mathbf{f}(\mathbf{x}_n)$$

If we choose L large enough grad.desc. goes down in each step, converging towards local minimum of function f

Recap: Gradient descent

Gradient of f(x) at z:

vector of partial derivatives of **f** w.r.t. **x** at the current point **z** pointing towards the direction of steepest increase of function locally at point z

Gradient descent (with learning rate c):

We start from x₀

We calculate $x_1 = x_0 - c \nabla f(x_0)$

We calculate $x_2=x_1-c \nabla f(x_1)$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{c} \, \nabla \mathbf{f}(\mathbf{x}_n)$$

Note: we don't need full formula of ∇f as function of x, just the code to get its value for specific $x_0 x_1 \dots$

In ML, we apply grad. desc. to find minimum of a function of parameters θ , (e.g. θ =(w,b)), instead of function of x

Recap

Modern machine learning:

```
minimize<sub>\theta</sub>: error_metric(
S, some f(\theta)(x in S).to class probs())
```

Filling the gaps:

- some $f(\theta)(x)$ **or** some $f(\theta;x)$
 - Some function (a "model") that takes two groups of inputs
 - Raw input features x
 - Trainable parameters ⊖
- to class probs()
 - some_f (θ ; x) may not return probabilities, how to convert to: ≥0, sum=1
- error metric
 - Classification error? Do we need something more complex?
- minimize₀
 - How? Gradient descent, over parameters θ of the model some $f(\theta; x)$
 - $\theta_{n+1} = \theta_n c \nabla_{\theta} error_metric(S, model(\theta_n, S))$

4

9.2. Correct/incorrect as the *error metric*

```
minimize_{\theta}: error_metric(S, model(\theta, S))
```

 Assume "model" return raw predictions from some_f, or predictions converted to class probabilities

Filling the gaps:

- error_metric
 - Classification error (error rate or error count) is the most natural metric of classifier performance
 - error_rate(training_set S) = error_count(training_set S) / |S|
 - error_count(training_set S) = $\Sigma_{(x,y) \in S}$ is_incorrect(y, predicted_y(x))
 - is_incorrect returns 1 (incorrect) or 0 (correct)
 - With gradient descent as the minimization method,
 the update of the parameters θ would be (c=learning rate):
 - new θ = old θ c ∇_{θ} error_count(S, model(θ , S))

 or, equivalently
 - new θ = old θ c $\Sigma_{(x,y)\in S}$ ∇_{θ} is_incorrect $(y, \text{model}(\theta, x))$

for y=+1

is_incorrect

Choosing the error metric

error metric

- Classification error (error rate or error count) is the most natural metric of classifier performance
 - error_rate(training_set S) = error_count(training_set S) / |S|
 - error_count(training_set S) = $\Sigma_{(x,y) \in S}$ is_incorrect(y, predicted_y(x))
 - is_incorrect returns 1 (incorrect) or 0 (correct)
 - We can also use:

is_incorrect(y, predicted_y(x)) = is_negative(y * predicted_y(x))

- is_negative(u) returns 1 for u<=0, and returns 0 otherwise</p>
- can be codes as sign(1+sign(-1 * y * predicted_y(x)))

when using the two-part term $y_k f(w; x_k) = y_{true}^* y_{pred}$ there's just one common plot

```
minimize<sub>\theta</sub>: error_metric(
S, some f(\theta)(x in S).to class probs())
```

Filling the gaps:

- minimize₀
 - how? Gradient descent!
- error_metric
 - Classification error is the most natural metric of classifier performance

How to use it with gradient descent?

∇error_count = ?

 ∇ is_incorrect = ?

 ∇_{w} is _negative(yw^Tx) = ?

```
minimize<sub>\theta</sub>: error_metric(
S, some f(\theta)(x in S).to class probs())
```

Filling the gaps:

- minimize_θ
 - how? Gradient descent!
- error_metric

Classification error is the most natural metric of classifier performance

 ∇ error_count = 0

 ∇ is_incorrect = 0

 ∇_{w} is_negative(yw^Tx) = 0

Flat everywhere (∇=0) except when is_incorrect changes from 1 to 0, error_count drops by 1 (sudden drops: derivative not defined)

- $\mathsf{minimize}_{\scriptscriptstyle{ heta}}$
 - how? Gradient descent!
- error metric
 - Classification error is the most natural metric of classifier performance

∇error_count

∇is_incorrect

Non-differentiable

Not continuous

Flat!

• We don't know in which direction to move to get a (even slightly) better solution!

0 if yh(x)>0,
1 otherwise

```
minimize<sub>\theta</sub>: error_metric(
S, some_f(\theta)(x in S).to_class_probs())
```

- Filling the gaps:
 - error metric
 - Classification error is the most natural metric of classifier performance

- But will not work with gradient-based (or other local) optimization approaches
- We will need a different error metric
 - One that has no flat regions!

9.3. Mean squared error

Towards ML Approach #3

```
minimize<sub>\theta</sub>: error_metric(S, model(\theta, S))
```

- Filling the gaps:
 - minimize₀
 - how? Gradient descent!
 - error metric
 - Mean square error is a well-known error metric:
 - MSE(training_set S) = $\Sigma_{(x,y)\in S}$ (y predicted_y(x))² / |S|
 - We assume that true y is +1 or -1,
 - With gradient descent as the minimization method, the update of the parameters θ would be (c=learning rate):
 - new θ = old θ c ∇_{θ} MSE(S, model(θ , S))

 or, equivalently
 - new $\theta = \text{old } \theta \text{c/|S|} \Sigma_{(x,y)\in S} \nabla_{\theta} (y \text{model}(\theta,x))^2$

Is MSE a good choice for classification?

MSE for classification: $loss(w,x,y) = (y-w^Tx)^2 \neq (1-yw^Tx)^2$

MSE is:

- Differentiable (gradient exists everywhere)
- Not flat (we will get non-zero gradient)
- Nonnegative

Is MSE a good choice for classification?

MSE for classification:

$$loss(w,x,y) = (y-w^Tx)^2 \neq (1-yw^Tx)^2$$

MSE:

- Has some relationship to 0/1 loss (is-incorrect)
 - If MSE =0 then 0/1_loss = 0
 - Upper-bounds 0/1 loss:

MSE
$$(w,x,y) >= 0/1$$
_ loss (w,x,y)

0/1 loss

Problem with MSE for classification

MSE is:

- Not flat
- Upper-bounds 0/1 loss
- Non-monotonic:
 - decreases, then increases, as yw^Tx increases
 - E.g. for class +1, prediction +4 (correct)
 has same MSE as prediction -2 (incorrect)
 - this makes it an ok, but not the best choice for classification

We get large loss (penalty) not only for incorrect, but for correct predictions too!

- If data is Gaussian, very few points should be that far from decision boundary.
- But what if data is not Gaussian? BAD!
 - non-monotonic loss is suspicious for classification (but ok for regression)

Updated schedule

- Test 1 will be on Wednesday, 10/9
 - Test will be done via Canvas, online (from home)

- Study problems will be posted in Canvas on Friday, 9/27
- We will discuss the study problems during our Monday, 10/7 class

HW2 is due next Tuesday, 10/1, at 5pm