Regresión Logística Múltiple

Regresión Logística (Binaria)

X					
mean radius	mean texture	worst concave points	worst symmetry	worst fractal dimensio	target
17,99	10,38	0,265	0,460	0,11	1
20,57	17,77	0,186	0,275	0,089	1
19,69	21,25	0,243	0,361	0,087	1
11,42	20,38	0,257	0,663	0,173	1
20,29	14,34	0,162	0,236	0,076	1
13,54	14,36	0,128	0,297	0,072	0
13,08	15,71	0,0728	0,318	0,081	0
9,504	12,44	0,0622	0,245	0,077	0
15,34	14,26	0,239	0,4667	0,099	1

Probabilidad de que Y=1
(tumor sea maligno)

Etiqueta predicha por el modelo

¿y si hay más clases?

Regresión Logística Múltiple

Clasificación Multilabel Predicciones independientes

				Υ		
	sepal_ width		petal_ width	setosa	Virginica	Versicolor
5	2	3,5	1	1	1	0
6	2,2	4	1	0	1	1
4,7	3,2	1,3	2	1	0	0
5,1	3,8	1,6	2	1	1	1
4,6	3,2	1,4	0,2	1	0	0
6,2	2,2	4,5	1,5	0	1	1
6	2,2	5	1,5	0	0	1
	3	4	1,3	Q	1	1
pal		4,4	1,3	8	1	0
Pal	Petal	3,3	1	1	1	0

Clases mutuamente exclusivas

=> Problema de clasificación

Х				Υ		
	_	petal_ length	_	Setosa	Virginica	Versicolor
5	2	3,5	1	0	1	0
6	2,2	4	1	0	1	0
4,7	3,2	1,3	0,2	1	0	0
5,1	3,8	1,6	0,2	1	0	0
4,6	3,2	1,4	0,2	1	0	0
6,2	2,2	4,5	1,5	0	1	0
6	2,2	5	1,5	0	0	1
5,5	2,3	4	1,3	0	1	0
6,3	2,3	4,4	1,3	0	1	0
5	2,3	3,3	1	0	1	0

Regresión Logística Múltiple - OVR

One-vs-Rest

Un hiperplano por cada clase

Fronteras de decisión del modelo

Regresión Logística Múltiple - Multinomial

Multinomial

W es una matriz:

- Tantas filas como hiperplanos
- Tantas columnas como variables

Distribución de probabilidades:

- 0
- · La suma da 1.

1= Virginica

Softmax

Función softmax

• Convierte salida de Regresión Lineal en distribución de probabilidades de c/ clase

1- Cálculo del vector E

2- Cálculo del valor N

3- Cálculo del vector P de probabilidades

[4,8,3]

Softmax

[0.018, 0.975, 0.007]

OVR vs Multinomial

Ejemplo: Iris dataset

```
df= pd.read_csv('iris.csv')
x= df.drop('name', axis=1)
y= df['name']
modelo= LogisticRegression()
modelo.fit(x, y)
                                                0.370203
                                                          1.37106
                                                                  -2.20521
                                                                           -1.00335
w= modelo.coef
                                                         -1.50411
                                                                           -1.24418
                                                0.221242
                                                                  0.572713
                                                 -1.50496
                                                                  2.37392
                                                                            2.4321
                                                         -1.36222
b= modelo.intercept -
                                                       0.621432
                                                       1.72006
y_pred= modelo.predict(x)
                                                       -2.30145
y_probs= modelo.predict_proba(x)
Acc= modelo.score(x,y)
```

	Υ				
sepal_ ength	sepal_ width	petal_ length	petal_ width	name	
5	2	3,5	1	1	
6	2,2	4	1	1	
4,7	3,2	1,3	0,2	0	
5,1	3,8	1,6	0,2	0	
4,6	3,2	1,4	0,2	0	
6,2	2,2	4,5	1,5	1	
6	2,2	5	1,5	2	
5,5	2,3	4	1,3	1	
6,3	2,3	4,4	1,3	1	
5	2,3	3,3	1	1	

Ejemplo: Iris dataset

```
df= pd.read_csv('iris.csv')
x= df.drop('name', axis=1)
y= df['name']
modelo= LogisticRegression()
modelo.fit(x, y)
w= modelo.coef
b= modelo.intercept
y_pred= modelo.predict(x)
y_probs= modelo.predict_proba(x)
Acc= modelo.score(x,y)
```

Etiquetas				
0	2			
1	1			
2	2			
3	2			
4	1			
5	2			
6	2			
7	0			
8	0			

Probabilidades						
	0	1	2			
0	0.000203437	0.40739	0.592406			
1	0.0612542	0.661763	0.276983			
2	0.000729856	0.133338	0.865932			
3	0.000786158	0.225037	0.774177			
4	0.012678	0.583475	0.403847			
5	0.00399002	0.324424	0.671586			
6	0.0120004	0.386509	0.60149			
7	0.895409	0.104581	9.96441e-06			
8	0.793618	0.206285	9.67433e-05			

Accuracy

Ejemplo: Iris dataset

```
df2 = pd.DataFrame(w, columns=df.columns[0:-1])
df2.plot(kind='bar'); plt.grid()
```

Coeficientes por cada clase (0,1,2)

Variables normalizadas

Graficar frontera de decisión 2D

Clasificación de imágenes - MNIST

MNIST es una base de datos con decenas de miles de dígitos escritos a mano. El objetivo es entrenar un modelo que clasifique correctamente estos números. Cada dígito está codificado en 28x28 pixeles en escala de grises.

Clasificación de imágenes - MNIST

Aplanamos la imagen en un solo vector y lo alimentamos al Regresor Logístico.

Clasificación de imágenes - MNIST

Vector de pesos aprendidos por cada clase graficados en forma de matriz. ("Regresion_Logistica_MNIST.py")

w_r= np.reshape(w, (10, 28,28))

