Proof. We prove the lemma by the principle of mathematical induction. We put

```
p_1 = q_1

p_k = q_1 and q_2 and \cdots and q_k (for all k \in \mathbb{N}, k \ge 2).

Now induction.
```

- I. p_1 is true (by the hypothesis i.)
- II. Make the inductive hypothesis that p_k is true. Then q_1 and q_2 and \cdots and q_k is true. (definition of p_k)

```
q_1, q_2, \dots, q_k are all true. (truth value of conjunction) q_{k+1} is true. (by the hypothesis ii.)
```

 $q_1, q_2, \cdots, q_k, q_{k+1}$ are all true.

 q_1 and q_2 and \cdots and q_k and q_{k+1} is true.

 p_{k+1} is true.

Hence, for all $k \in \mathbb{N}$, if p_k is true, then p_{k+1} is true. By the principal of mathematical induction, p_n is true for all $n \in \mathbb{N}$. So q_1 and q_2 and \cdots and q_n is true for all $n \in \mathbb{N}$. In particular, q_n is true for all $n \in \mathbb{N}$. This completes the proof.

We can now formulate a new form of the principle of mathematical induction. This form will be used many times in the sequel.

0.1 Principle of mathematical induction:

Let q_n be a statement-involving a natural number n. We can prove the proposition for all $n \in \mathbb{N}, q_n$ by establishing that

- i. q_1 is true
- ii. for all $k \in \mathbb{N}$, if q_1, q_2, \dots, q_k are true then, q_{k+1} is true.

The statement $2^n \ge n^2$ is not true for all natural numbers n, but true for all natural numbers $n \ge 5$. The principal of mathematical induction can be used to prove this and similar propositions. Let a be a fixed integer (positive, negative or zero) and let p_n be a statement involving an integer $n \ge a$. We prove the truth of p_n for all $n \ge a$ by showing that