Equation assignment sequence for variable μ

no	var	equ	quations	token
62	95	-	$P_{NS,KS}$:: port variable	
61	40	_	$\lambda_S::$ port variable	
60	15	_	r_{xN} :: port variable	
59	101	_	$A^{v}{}_{N}::$ port variable	
58	20	_	S_N :: port variable	
57	105	_	$K^{o}_{K}::$ port variable	
56	17	_	r_{zN} :: port variable	
55	16	_	r_{y_N} :: port variable	
54	13	_	$P_{N,NK}$:: port variable	
53	98	_	$N_{S,K}$:: port variable	
52	9	_	$P_{NS,AS}$:: port variable	
51	1	_	$F_{N,A}$:: port variable	
50	12	_	$P_{S,NS}$:: port variable	
49	11	_	$P_{K,NK}$:: port variable	
48	14	_	$P_{NK,KS}$:: port variable	
47	21	_	$V_N::\operatorname{port} \ \operatorname{variable}$	
46	3	_	# :: port variable	
45	2	_	t:: port variable	
44	19	_	$U_N::$ port variable	

Continued on next page

no	var	equ	quations	token
43	61	44	$\lambda_S := \lambda_S$	
42	96	78	$c_{KS} := c_{NS} \overset{NS}{\star} P_{NS,KS}$	
41	27	11	$B_N := Set(S_N, \#)$	
40	81	64	$m_N := \lambda_S \overset{S \in NS}{\star} n_{NS}$	
39	49	32	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	
38	36	20	$v_{xN} := rac{\partial r_{xN}}{\partial t}$	
37	97	79	$c_{KS} := c_{KS}$	
36	108	87	$c^{o}_{KS} := Set(c_{KS}, \#)$	
35	94	77	$T_{NK} := T_{NK}$	
34	104	84	$E_{aNK} := Set(P_{N,NK} \stackrel{N}{\star} R_N . T_{NK}, \#)$	
33	103	83	$P_{N,NK} := P_{N,NK}$	
32	102	82	$R_N := A^v_N \cdot B_N$	
31	79	62	$c_{NS} := (V_N)^{-1} \odot n_{NS}$	
30	78	61	$d_A := \operatorname{sign}\left(F_{N,A} \stackrel{N}{\star} p_N\right)$	
29	6	3	1/2 := Set(#, #)	
28	82	65	$\rho_N := (V_N)^{-1} \cdot m_N$	
27	66	49	$k_{xN}^c := k_{xN}^c$	
26	22	7	$p_N := \frac{\partial U_N}{\partial V_N}$	
25	53	36	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	
24	23	8	$T_N := \frac{\partial U_N}{\partial S_N}$	

Continued on next page

no	var	equ	quations	token
23	109	88	$\phi_{KS} := \prod \left(c_{KS} \cdot \left(c^o_{KS} \right)^{-1} \right)$	
22	106	85	$K_{NK} := K^o{}_K \odot exp((-E_{aNK}) \cdot \left(R_N \stackrel{N}{\star} P_{N,NK} \cdot T_{NK}\right)^{-1})$	
21	84	67	$c_{AS} := (1/2 \cdot (F_{NS,AS} - d_A \odot F_{NS,AS})) \stackrel{NS}{\star} c_{NS}$	
20	83	66	$\hat{V}_A := (\rho_N)^{-1} \cdot k_{xN}^c \cdot A_{y,z_N} \cdot F_{N,A} \stackrel{N}{\star} p_N$	
19	80	63	$A_{y,z_N} := r_{y_N} \cdot r_{z_N}$	
18	70	53	$k_{xNS}^d := k_{xNS}^d$	
17	91	74	$T_{NK} := P_{N,NK} \stackrel{N}{\star} T_N$	
16	111	90	$N_{S,K} := N_{S,K}$	
15	110	89	$\phi_{KS} := \phi_{KS}$	
14	107	86	$K_{NK} := K_{NK}$	
13	85	68	$\hat{n}_{AS}^c := \hat{V}_A \odot c_{AS}$	
12	128	107	$\hat{n}_{AS}^d := A_{y,z_N} \odot \left(-k_{xNS}^d \right) \cdot F_{NS,AS} \overset{NS}{\star} \mu_{NS}$	
11	10	6	$F_{NS,AS} := F_{N,A} \odot P_{NS,AS}$	
10	113	92	$N_{NS,NK} := P_{S,NS} \stackrel{S}{\star} \left(\left(P_{K,NK} . T_{NK} . \left(T_{NK} \right)^{-1} \right) \stackrel{K}{\star} N_{S,K} \right)$	
9	112	91	$\xi_{NK} := K_{NK} \cdot P_{NK,KS} \overset{KS}{\star} \phi_{KS}$	
8	86	69	$\hat{n}_{NS}^c := F_{NS,AS} \stackrel{AS}{\star} \hat{n}_{AS}^c$	
7	129	108	$\hat{n}_{NS}^d := F_{NS,AS} \stackrel{AS}{\star} \hat{n}_{AS}^d$	
6	114	93	$ ilde{n}_{NS} := V_N \odot \left(N_{NS,NK} \stackrel{NK}{\star} \xi_{NK} \right)$	
5	59	42	$t^e := Set(t,t)$	
4	58	41	$t^o := Set(t, t)$	

Continued on next page

no	var	equ	quations	token
3	137	118	$n^o_{NS} := Set(n_{NS}, \#)$	
2	132	111	$\dot{n}_{NS} := \hat{n}_{NS}^c + \hat{n}_{NS}^d + \tilde{n}_{NS}$	
1	18	119	$n_{NS} := \int_{t^o}^{t^e} \dot{n}_{NS} \ dt + n^o_{NS}$	
0	24	9	$\mu_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	