Probability Theory HW4

段奎元 SID: 201821130049 dkuei@outlook.com

October 15, 2018

2. The measure which has finite value on finite interval of $(\mathbb{R}^n, \mathscr{B}^n)$ is called L-S measure. Prove that every L-S measure is a Lebesgue-Stieljes measure generated by some distribution function.

SOLUTION: Set μ an L-S measure and construct the function F on \mathbb{R}^n . Let F(0)=0, $F(x)=\mu([0,x])$ for $x\geq 0$. For other $x=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n$, let $\bar{x}=(|x_1|,|x_2|,\cdots,|x_n|)\geq 0$. Let $F(x)=F(\bar{x})$ and we get a function on \mathbb{R}^n .

F is continue since μ is continue for the endpoints. For $a \leq b, \, \Delta_{b,a}F =$

3. If $F(x) = \mathbb{P}(\xi < x)$ is continue, then $\eta = F(\xi)$ has a uniform distribution on (0,1). Solution:

4. Are the characteristic functions and simple functions measurable? Prove or give counter examples.

Solution: For any characteristic function 1_A where $A \subset \Omega$,

$$\sigma(1_A) = \sigma(\{E(x) = \{1_A(\xi) < x \mid \xi \in \Omega\} \mid x \in \Omega\})$$

= $\sigma(\{\varnothing, A^c, \Omega\}) = \sigma(\{A\}).$

Then $\sigma(1_A) \subset \mathscr{A}$ if and only if $A \in \mathscr{A}$. The characteristic function 1_A is measurable if and only if A is measurable.

For any simple function $f = \sum_{k=1}^{n} a_k 1_{A_k}$, assume $a_1 \le a_2 \le \cdots \le a_n$.

$$\sigma(\sum_{k=1}^{n} a_k 1_{A_k}) = \sigma(\{E(x) = \{\sum_{k=1}^{n} a_k 1_{A_k}(\xi) < x \mid \xi \in \Omega\} \mid x \in \Omega\})$$

$$\subset \sigma(\{\varnothing, A_1, A_1 \cup A_2, \cdots, \sum_{k=1}^{n} A_k\})$$

$$\subset \mathscr{A}.$$

Since every $A_k, k=1,2,\cdots,n$ is in $\mathscr{A}, \sigma(f)\subset \mathscr{A}$ is measurable.