	doc_1		doc_2		decision	id
		Guofei Pang		Guofei Pang Marta D'Elia Michael Parks George E. Karniadakis		
	authors	 Marta D'Elia Michael L. Parks George Em Karniadakis	title	nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications		
			publication_date 2020-04-08 21:48:30+00:00		<u> </u>	
			source	SupportedSources.ARXIV		,
	title	nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications	journal	None		
			volume			
			doi			
cases	source	SupportedSources.OPENALEX	urls	 http://arxiv.org/pdf/2004.04276v1 http://arxiv.org/abs/2004.04276v1 http://arxiv.org/pdf/2004.04276v1 		S 259
Cases	journal	Journal of Computational Physics				
	volume	422				
	doi	10.1016/j.jcp.2020.109760	id	id-3804520965024383986		
	urls	 https://openalex.org/W3048778144 https://doi.org/10.1016/j.jcp.2020.109760 http://arxiv.org/pdf/2004.04276 		Physics-informed neural networks (PINNs) are effective in solving inverse problems based on differential and integral equations with sparse, noisy, unstructured, and multi-fidelity data. PINNs incorporate all available information into a loss function, thus recasting the original problem into an optimization problem. In this paper, we extend PINNs to parameter and function inference for integral equations such as nonlocal Poisson and nonlocal turbulence models, and we refer to them as nonlocal PINNs (nPINNs). The contribution of the paper is three-fold. First, we propose a unified nonlocal operator, which converges to the converges to the convergence of the paper is three-fold.		
	id id5988956131218614485		abstract	operator parameters, the nonlocal interaction radius \$\delta\$ goes to zero, and to the fractional Laplacian as \$\delta\$ goes to infinity. This universal operator forms a super-set of classical Laplacian and fractional Laplacian operators and, thus, has the potential to fit a broad spectrum of data sets. We provide theoretical convergence		
	abstract			rates with respect to \$\delta\$ and verify them via numerical experiments. Second, we use nPINNs to estimate the two parameters, \$\delta\$ and \$\alpha\$. The strong		
	versions			non-convexity of the loss function yielding multiple (good) local minima reveals the occurrence of the operator mimicking phenomenon: different pairs of estimated parameters could produce multiple solutions of comparable accuracy. Third, we propose another nonlocal operator with spatially variable order \$\approx approx below:		
				more suitable for modeling turbulent Couette flow. Our results show that nPINNs can jointly infer this function as well as \$\delta\$. Also, these parameters exhibit a universal behavior with respect to the Reynolds number, a finding that contributes to our understanding of nonlocal interactions in wall-bounded turbulence.		
			versions			