

Sidorov Nikita

MLE(NLP) in Sber

Lecture content

- 1. What is NLP
- 2. History and tasks
- 3. NLP toolkit
- 4. Words representations
- 5. Word2vec (overview)

NLP

Natural language processing is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. (Wikipedia)

Related fields

Why this is complicated?

Jane went to store.

example from Graham Neubig lectures

Why this is complicated?

Jane went to store.

Store went to Jane.

Why this is complicated?

Jane went to store.

Store went to Jane.

Jane went store.

Why this is complicated?

Jane went to store.

Store went to Jane.

Jane went store.

Jane goed to store.

Why this is complicated?

Jane went to store.

Store went to Jane.

Jane went store.

Jane goed to store.

The store went to store.

Why this is complicated?

Jane went to store.

Store went to Jane.

Jane went store.

Create a grammar of the language

Jane goed to store.

Consider morphology and exceptions

The store went to store.

Semantic categories and exceptions

The food truck went to Jane.

And their exceptions

Stages in NLP

- 1. Rule-based methods (1950-1990s)
- 2. Statistical approaches (1990-2010s)
- 3. Deep Learning approaches (2010s-present)

Tasks in NLP

Common pipeline

Tokenization

Tokenization - splitting text into tokens.

Jane went to store.

Jane

went

to

store.

Properties of word vectors

- fixed size
- contains the meaning of the word
- formed automatically

Bag of Words (BOW)

Cat can meow.

Dog can bark.

	Cat	can	meow	Dog	bark
Sentence 1	1	1	1	0	0
Sentence 2	0	1	0	1	1

Bag of Words (BOW)

Cat can meow.

Dog can bark and can not meow.

	Cat	can	meow	Dog	bark	and	not
Sentenc e 1	1	1	1	0	0	0	0
Sentenc e 2	0	2	0	1	1	1	1

One hot encoding (OHE)

Cat = [1, 0, 0, 0, 0]

can = [0, 1, 0, 0, 0]

Cat can meow.

Dog can bark.

 \rightarrow meow = [0, 0, 1, 0, 0]

Dog = [0, 0, 0, 1, 0]

bark = [0, 0, 0, 0, 1]

Distributional semantics

Do you now word tezgüino?

Count-based methods

- 1. A bottle of ____ is on the table.
- 2. Everybody likes _____.
- 3. Don't have _____ before you drive.
- 4. We make ____ out of corn.

example from <u>Jacob Eisenstein's NLP notes</u>

Distributional semantics

"You shall know a word by the company it keeps."

J.Firth, 1957

Zipf law

A plot of the rank versus frequency for the first 10 million words in 30 Wikipedias (dumps from October 2015) in a log-log scale.

TF-IDF

TF-IDF = Term Frequency (TF) * Inverse Document Frequency (IDF)

- t term (word)
- d document (set of words)
- N count of corpus
- corpus the total document set

TF-IDF

tf(t,d) = count of t in d / number of words in d

TF-IDF

- A) The car is driven on the road.
- B) The truck is driven on the highway.

Word	TF(word,A)	TF(word,B)	IDF	TF*IDF(word, A)	TF*IDF(word,B)
the	1/7	1/7	log(2/2) = 0	0	0
car	1/7	0	log(2/1) = 0.3	0.043	0
is	1/7	1/7	log(2/2) = 0	0	0
driven	1/7	1/7	log(2/2) = 0	0	0
on	1/7	1/7	log(2/2) = 0	0	0
road	1/7	0	log(2/1) = 0.3	0.043	0
truck	0	1/7	log(2/1) = 0.3	0	0.043
highway	0	1/7	log(2/1) = 0.3	0	0.043

IDEA -> Put information about context into vector.

