IN THE CLAIMS

1. (Currently Amended) An amide of the general formula I

$$(R^2)_n \qquad Y \qquad N \qquad R^3 \qquad R^4$$

and its tautomeric and isomeric forms, possible enantiomeric and diastereomeric forms, as well as possible physiologically tolerable salts, in which the variables have the following meanings:

- R¹ is selected from the group consisting of phenyl, naphthyl, quinolyl, pyridyl, pyrimidyl, pyrazyl, pyridazyl, imidazolyl, thiazole, quinazyl, isoquinolyl, quinoxalyl, thienyl, benzothienyl, benzofuranyl, furanyl, and indolyl, where the rings can be additionally substituted by up to 3 radicals R⁵,
- is selected from the group consisting of chlorine, bromine, fluorine, C₁-C₆-alkyl, C₁-C₆-alkenyl, C₁-C₆-alkenyl, C₁-C₆-alkylphenyl, C₁-C₆-alkylphenyl, C₁-C₆-alkynylphenyl, NHCO-C₁-C₄-alkyl, NHSO₂-C₁-C₄-alkyl, -NHCOphenyl, -NHCO-naphthyl, NO₂, -O-C₁-C₄ alkyl and NH₂, where the aromatic rings can additionally carry one or two radicals R⁵ and two radicals R² together can also be a chain CH=CH-CH=CH- and thus form a fused benzo ring, which can be substituted by one R⁵ and
- is -C₁-C₆-alkyl, which is branched or unbranched, and which can additionally carry an S-CH₃ radical or a phenyl, cyclohexyl, cycloheptyl, cyclopentyl, indolyl, pyridyl or naphthyl ring which is substituted by at most two radicals R⁵, where R⁵ is selected from the group consisting of hydrogen, C₁-C₄-alkyl, which is branched or unbranched, O-C₁-C₄ alkyl, OH, Cl, F, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, NHCO-C₁-C₄-alkyl, -NHCO- phenyl, -NHSO₂-C₁-C₄-alkyl, -NHSO₂-phenyl, -SO₂-C₁-C₄-alkyl, -(CH₂)_n-NR¹²R¹³ and -SO₂-phenyl, is selected from the group consisting of a bond, -(CH₂)_n-Q-(C
- X is selected from the group consisting of a bond, $-(CH_2)_{m^-}$, $-(CH_2)_{m^-}$ O- $-(CH_2)_{o^-}$, $-(CH_2)_{o^-}$ S- $-(CH_2)_{m^-}$ [sic], $-(CH_2)_{o^-}$ SO- $-(CH_2)_{m^-}$, $-(CH_2)_{o^-}$ SO₂ (CH₂)_{m-}, $-(CH_2)_{o^-}$ SO₂ (CH₂)_{m-}, $-(CH_2)_{o^-}$ SO₃ (CH₂)_{m-}, $-(CH_2)_{o^-}$ SO₄ (CH₂)_{m-}, $-(CH_2)_{o^-}$ SO₅ (CH₂)_{m-}, $-(CH_2)_{o^-}$ SO₇ (CH₂)_{m-}, $-(CH_2)_{o^-}$ SO₈ (CH₂)_{m-}, $-(CH_2)_{o^-}$ SO₉ (CH₂)_{m-},

-C=C-, -CO-CH=CH-, -(CH2) $_{0}$ -CO-(CH $_{2}$) $_{m}$ -, -(CH $_{2}$) $_{m}$ NHCO-(CH $_{2}$) $_{0}$ -, -(CH $_{2}$) $_{m}$ -CONH-(CH $_{2}$) $_{0}$ -, -(CH $_{2}$) $_{m}$ -NHSO $_{2}$ -(CH $_{2}$) $_{0}$ -, -NH-CO-CH=CH-, -(CH $_{2}$) $_{m}$ -SO $_{2}$ NH-(CH $_{2}$) $_{0}$ -, -CH=CH-CONH- and

and in the case of CH=CH double bonds can be either the E or the Z form and R¹-X together are also

Y is pyridine pyrimidine, and

R4 is selected from the group consisting of hydrogen, COOR⁶, CO-Z, in which Z is NR⁷R⁸

$$-N$$
 $-R^{10}$ $-N$ $-R^{10}$ $-N$

- R^6 is hydrogen or C_1 - C_6 -alkyl, which is linear or branched, and which can be substituted by a phenyl ring which itself can additionally be substituted by one or two radicals R^9 , and
- R⁷ is hydrogen or C₁-C₆-alkyl, which is branched and unbranched, and
- R⁸ is hydrogen or C₁-C₆-alkyl, which is branched or unbranched which can additionally be substituted by a phenyl ring which can additionally carry a radical R⁹, and by

$$R^{10}$$
 , R^{10} ,

and

is selected from the group consisting of hydrogen, C₁-C₄-alkyl, which is branched or unbranched, -O-C₁-C₄ alkyl, OH, Cl, F, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, -NHCO-C₁-C₄-alkyl, -NHCO-phenyl, -NHSO₂-C₁-C₄-alkyl, -NHSO₂-phenyl, -SO₂-C₁-C₄-alkyl and -SO₂-phenyl

R¹⁰ is hydrogen or C₁-C₆-alkyl, which is linear or branched, and which can be substituted by a phenyl ring which itself can additionally be substituted by one or two radicals R⁹, and

R¹¹ is hydrogen or C₁-C₆-alkyl, which is linear or branched, and which can be substituted by a phenyl ring which itself can additionally be substituted by one or two radicals R⁹, and

n is a number 0, 1 or 2, and

m and o independently of one another are each a numeral 0, 1, 2, 3 or 4.

- 2. (Currently Amended) An amide of the formula I as claimed in claim 1, where
- R³ is benzyl, CH₂CH₂CH₂CH₃, or CH₂CH₂CH₂CH₂CH₃ and
- Y is pyridine pyrimidine and
- R⁴ is CO-NR'NR⁸ and
- R⁷ is hydrogen
- R⁸ is CH₂CH₂, CH₂CH₂CH₂, or CH₂CH₂CH₂CH₂ and
- R⁹ is hydrogen and
- n is 0 or 1 and

all remaining variables have the same meanings as in claim 1.

- 3. (Currently Amended) An amide of the formula I as claimed in claim 1, where
- R³ is benzyl, CH₂CH₂CH₂CH₃, or CH₂CH₂CH₂CH₂CH₃ and
- Y is pyridine pyrimidine and
- R⁴ is hydrogen and
- R⁹ is hydrogen
- n is 0 or 1 and all remaining variables have the same meanings as in claim 1.
- 4. (Cancelled)
- 5. (Cancelled
- 6. (Cancelled)
- 7. (Previously Presented) A method of inhibiting cysteine proteases in a patient in need of such treatment comprising administering an effective amount of a compound of claim 1 to a patient in need of such treatment.
- 8. (Previously Presented) The method of claim 7 wherein the cysteine proteases are selected from the group consisting of calpains I and II and cathepsins B and L.
- 9. (Cancelled)
- 10. (Currently Amended) The use of amides of the formula I as claimed in claim [sie]
 1-5 for the production of pharmaceuticals for the treatment of A method of treating
 neurodegenerative diseases and neuronal damage in a patient in need of such treatment
 comprising administering an effective amount of a compound of claim 1 to a patient in need
 of such treatment.
- 11. (Currently Amended) The use as claimed in claim 9 for the treatment of those

 The method of claim 10 where the neurodegenerative diseases and that neuronal damage which is caused by ischemia, trauma or mass hemorrhages.

- 12. (Currently Amended) The use as claimed in The method of claim 10 for the treatment of cerebral stroke and craniocerebral trauma.
- 13. (Currently Amended) The use as claimed in The method of claim 10 for the treatment of wherein the disease is Alzheimer's disease or Huntington's disease.
- 14. (Currently Amended) The use as claimed in The method of claim 10 for the treatment of wherein the disease is epilepsy.
- 15. (Currently Amended) The use of the compounds of the formula I as claimed in claim [sie] 1-5 for the production of pharmaceuticals and treatment of A method of treating damage to the heart after cardiac ischemias, reperfusion damage after vascular occlusion, damage to the kidneys after renal ischemias, skeletal muscular damage, muscular dystrophies, damage which results due to proliferation of the smooth muscle cells, coronary vasospasm, cerebral vasospasm, cataracts of the eyes or restenosis of the blood vessels after angioplasty comprising administering an effective amount of a compound of claim 1 to a patient in need of such treatment.
- 16. (Currently Amended) The use of the amides of the formula I as claimed in claim [sie] 1 5 for the production of pharmaceuticals for A method of treating tumors and metastasis thereof comprising administering an effective amount of a compound of claim 1 to a patient in need of such treatment.
- 17. (Currently Amended) The use of the amides of the formula I as claimed in claim [sic] 1-5 for the production of pharmaceuticals for A method of treating diseases in which increased interleukin-1 levels occur comprising administering an effective amount of a compound of claim 1 to a patient in need of such treatment.
- 18. (Currently Amended) The use of the amides as claimed in claim [sic] 1-5 for A method of treating inflammation and rheumatic disorders comprising administering an effective amount of a compound of claim 1 to a patient in need of such treatment.

19. (Currently Amended) A pharmaceutical preparation composition for oral, parenteral and intraperitoneal use, comprising per individual dose, in addition to the customary pharmaceutical auxiliaries, at least of [sie] one amide 1 as claimed in claim [sie] 1-5 a compound of claim 1 and a pharmaceutically acceptable carrier.