BUNDERREPUBLIK DEUTS HLAND 532508

REC O PCI/PTO 25 APR 2005 #2)

PCI/EPO3/14684

sest Available Copy

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 49 957.8

Anmeldetag:

26. Oktober 2002

Anmelder/Inhaber:

ZF Friedrichshafen AG, Friedrichshafen/DE

Bezeichnung:

Vorrichtung und Verfahren zur Bestimmung des Luft-

gehalts und des Luftabscheideverhaltens von Ölen

IPC:

G 01 N 33/28

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 10. Dezember 2002 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Meliner

A 9161 06/00

Vorrichtung und Verfahren zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen

5

Die Erfindung betrifft eine Vorrichtung zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit den Merkmalen des Oberbegriffs des Anspruchs 1 und ein Verfahren zum Betrieb einer Vorrichtung zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit den Merkmalen der Oberbegriffe der Ansprüche 11, 12, 13.

15

Öl-/Luft-Dispersionen in Getriebeöl führen zu verschlechterten Wirkungsgraden von Getrieben und können im Extremfall Ölaustritte zur Folge haben. Die Fähigkeit des Öls, eingearbeitete Luft schnell wieder abzuscheiden, ist daher ein wichtiges Qualitätskriterium und Messsystemen zum Bestimmen des Luftabscheideverhaltens (LAV) von Ölen kommt folglich auch große Bedeutung zu.

20

25

30

Bestimmung des Luftabscheideverhaltens von Ölen mit einem Luft-Öl-Mischer und einem Differenzdruckaufnehmer. Der Luft-Öl-Mischer weist ein teilweise mit Öl zu befüllendes Behältnis mit einer Glasfront auf mit einem Propeller, der nur leicht ins Öl eintaucht. Der Propeller kann bis auf 10 000 U/min hochgefahren werden und verwirbelt so das Öl. Über zwei übereinanderliegende Druckmessstellen werden dann unterschiedliche hydrostatische Drücke und aus deren Differenz der Luftgehalt im Öl bestimmt. Nachteilig bei diesem Stand der Technik ist der wenig praxistaugliche, hohe messtechnische Aufwand, wie exakt gefertigte Druckanschlüsse

15

20

25

30

und sehr fein auflösende Differenzdruckaufnehmer, bedingt durch geringe aufzulösende Druckdifferenzen. Das bei diesem Stand der Technik rotierende Öl übt zusätzlichen Druck auf die Messstellen aus. Somit muss die Probe nach dem Lufteintrag zunächst zur Ruhe gebracht werden, was zu verzögerter Messwerterfassung führt. Solche LAV-Messsysteme korrelieren also nicht vollständig mit der Situation im Getriebe.

Aufgabe der Erfindung ist es, eine Vorrichtung zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, zu schaffen mit früher Messwerterfassung und ein praxisnahes Verfahren zum Betrieb einer Vorrichtung zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit früher Messwerterfassung.

Die Lösung erfolgt mit einer Vorrichtung zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit den Merkmalen des Anspruchs 1 und mit einem Verfahren zum Betrieb einer Vorrichtung zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit den Merkmalen der Ansprüche 11, 12 und 13. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen dargestellt.

Gemäß der Erfindung ist eine Vorrichtung zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit einem Luft-Öl-Mischer und einem Differenzdruckaufnehmer versehen. Eine Fördereinrichtung ist vorgesehen, die das Öl durch Rohrleitungen des Luft-Öl-Mischers fördert. Ein Druckluftanschluss fördert Luft in die Rohrleitungen des Luft-Öl-Mischers. Der

Friedrichshafen

5

15

20

25

30

Differenzdruckaufnehmer erfasst über mindestens 2 in Förderrichtung des Öls voneinander beabstandete Bohrungen an einem Venturirohr Differenzdrücke im Öl. Das Venturirohr erzeugt Differenzdrücke aufgrund von Querschnittsflächenänderung, die proportional sind zur jeweiligen Dichte des Öls. Wenn die Strömungsgeschwindigkeit im Venturirohr bekannt ist und die Strömung ohne Höhenänderung verläuft, kann aus den gemessenen Differenzdrücken die Dichte des Öls und damit dessen Luftgehalt bestimmt werden. Die Strömungsgeschwindigkeit ergibt sich aus dem eingestellten Volumenstrom an der Fördereinrichtung und den Querschnittsverhältnissen im Venturirohr. Ein Vorteil der erfindungsgemäßen Vorrichtung folgt aus der frühen Meßwerterfassung, mit der die Anreicherung des Öls mit Luft bei kontinuierlicher Durchmischung und damit der Zustand im Getriebe realistisch erfaßbar ist. Je mehr Zeit zwischen Lufteintrag und Messung der Anreicherung des Öls mit Luft vergeht, desto realitätsferner sind die Meßwerte. Ein weiterer Vorteil der erfindungsgemäßen Vorrichtung ist die Erfaßbarkeit von kleinen Meßvolumen, wie sie bei Gebrauchtölproben aus Getriebe- und Feldversuchen üblich sind. Zudem ergibt sich mit der erfindungsgemäßen Vorrichtung ein wesentlich größerer Meßbereich für den Differenzdruck und damit ist die messtechnische Auflösung leichter durchführbar. Mit in zeitlichen Abständen wiederholt gemessenen Differenzdrücken kann die Veränderung der Dichte des Öls, d. h. dessen veränderlicher Luftgehalt und damit das Luftab-scheideverhalten des Öls bestimmt werden.

Gemäß einer bevorzugten Ausgestaltung der Erfindung ist der Druckluftanschluss steuerbar, so daß die Zufuhr von Luft abschaltbar ist. Ein Mischer ist vorgesehen zur inten-

15

20

25

30

siv turbulenten Durchmischung der Luft mit dem Öl in den Rohrleitungen.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung ist mindestens ein Abscheider in Form eines Volumengefäßes in den Rohrleitungen vorgesehen, so daß bei geöffneter Luftzufuhr und hohem Luftüberschuß von ca 6 $1/\min$ Luft in 200 ml öl größere Luftblasen vor der Messstrecke im Venturirohr abscheidbar sind. Insbesondere große Luftblasen mit einem $\Theta > 4$ mm könnten sonst den gemessenen Differenzdruck stark verfälschen, wenn z. B. eine Luftblase gerade die Messtelle im Venturirohr passieren und sich an der Messstelle davor Dispersion befinden würde, was zu großen Differenzdrücken führen würde und auf Dauer stabile Messwerte verhindern könnte.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung weist der Abscheider einen Durchmesser von 20 mm oder vorzugsweise 30 mm auf und ist mit mindestens einem eingebauten Boden versehen, der das Durchschießen von nicht dispergierten Luftblasen in das Venturirohr vermeiden soll.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung sind der Luft-Öl-Mischer teilweise und eine Sichtscheibe aus Glas gefertigt, das im angestrebten Temperaturbereich bis 150° C einsetzbar ist.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung ist der Luft-Öl-Mischer mit einem Einfülltrichter versehen.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung ist für verschiedene Prüftemperaturen ein tempe-

15

20

25

30

rierbarer Behälter mit einer Glasplatte an der Vorderseite vorgesehen und der Luft-Öl-Mischer und die Rohrleitungen können mit dem Venturirohr in dem temperierbaren Behälter so angeordnet werden, daß der Meßkreislauf über ein Ölbad temperiert werden kann.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung ist ein Umwälzthermostat zu dem temperierbaren Behälter vorgesehen, der das Ölbad im Behälter bis auf 200° C aufheizbar macht.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung sind eine A/D-Wandler-Karte und ein Rechner vorgesehen und der Differenzdruckaufnehmer ist über die A/D-Wandler-Karte mit dem Rechner verbunden, so daß die Messungen automatisiert erfolgen können.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung ist die Fördereinrichtung als Zahnradpumpe mit einem maximalen Volumenstrom von 3607 ml/min und thermischer Stabilität bis 130° C ausgebildet.

Gemäß der Erfindung ist ein Verfahren zur Bestimmung des Luftgehalts bei verschiedenen Volumenströmen mit der erfindungsgemäßen Vorrichtung gekennzeichnet durch Einfüllen von 200 ml des zu prüfenden Öls durch den Einfülltrichter in den Luft-Öl-Mischer, Einschalten einer Wasserstrahlpumpe, so daß Öl in Schläuche oberhalb einer Messzelle des Differenzdruckaufnehmers gesaugt wird, Verhindern des Rückfließens des Öls in den Schläuchen oberhalb der Messzelle, Einschalten der Fördereinrichtung, Einfüllen von weiterem zu prüfenden Öl bis die Rohrleitungen des Luft-Öl-Mischers blasenfrei befüllt sind, Einregeln der Luftzufuhr und Stellen der Fördereinrichtung auf maximalen Durchfluss,

15

20

25

30

Umpumpen des zu prüfenden Öls und Messen aller einzustellenden Volumenströme bei jeweils konstantem Volumenstrom.

Gemäß der Erfindung ist das Verfahren zur Bestimmung des Luftabscheideverhaltens mit der erfindungsgemäßen Vorrichtung gekennzeichnet durch Einfüllen von 200 ml des zu prüfenden Öls durch den Einfülltrichter in den Luft-Öl-Mischer, Einschalten einer Wasserstrahlpumpe, so daß Öl in Schläuche oberhalb einer Messzelle des Differenzdruckaufnehmers gesaugt wird, Verhindern des Rückfließens des Öls in den Schläuchen oberhalb der Messzelle, Einschalten der Fördereinrichtung, Einfüllen von weiterem zu prüfenden Öl bis die Rohrleitungen des Luft-Öl-Mischers blasenfrei befüllt sind, Stellen der Fördereinrichtung auf einen bestimmten Durchfluss für 7 min mit Luftansaugung, Messen des Differenzdrucks, Stoppen der Luftzufuhr, Zeitnahme und Messen des jeweiligen Differenzdrucks in regelmäßigen Abständen.

Gemäß der Erfindung ist ein Verfahren zur Bestimmung des Luftabscheideverhaltens mit der erfindungsgemäßen Vorrichtung gekennzeichnet durch Einfüllen von 200 ml des zu prüfenden Öls durch den Einfülltrichter in den Luft-Öl-Mischer, Einschalten einer Wasserstrahlpumpe, so daß Öl in Schläuche oberhalb einer Messzelle des Differenzdruckaufnehmers gesaugt wird, Verhindern des Rückfließens des Öls in den Schläuchen oberhalb der Messzelle, Einschalten der Fördereinrichtung, Einfüllen von weiterem zu prüfenden Ölbis die Rohrleitungen des Luft-Öl-Mischers blasenfrei befüllt sind, Einregeln der Luftzufuhr, gegebenenfalls über zwei Nadelventile, Stellen der Fördereinrichtung auf einen bestimmten Durchfluss für 7 min, Messen des Differenz-

drucks, Stoppen der Luftzufuhr, Zeitnahme und Messen des Differenzdrucks in regelmäßigen Abständen.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens wird die erfindungsgemäße Vorrichtung vorzugsweise mit Wasser kalibriert zur Ermittlung einer Fittingfunktion, die auch im Auswerte-Algorithmus einsetzbar ist.

Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird die Temperatur des zu prüfenden Öls über den um etwa 20° C höher eingestellten Thermostaten eingestellt.

Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels dargestellt. Es zeigen:

- Fig. 1 eine Ansicht von vorn der Vorrichtung gemäß der Erfindung und
- Fig. 2 ein Diagramm mit der Vorrichtung gemäß der Erfindung erfaßter Differenzdrücke für ein zu prüfendes Öl.
- 25 Fig. 1:

5

20

30

Eine Vorrichtung 1 zur Bestimmung des Luftabscheideverhaltens von Getriebeölen ist mit einem Luft-Öl-Mischer 2 und einem Differenzdruckaufnehmer 3 versehen. Eine Fördereinrichtung 4 ist als Zahnradpumpe (nicht dargestellt) mit einem maximalen Volumenstrom von 3 607 ml/min und thermischer Stabilität bis 130° C vorgesehen, die das Öl durch Rohrleitungen 5 des Luft-Öl-Mischers 2 saugt.

15

20

25

30

Alle metallgefertigten Teile der Vorrichtung 1 sind in V2A-Edelstahl ausgeführt. Für alle Teile aus Kunststoff, wie Dichtungen, Schläuche, etc., wird PTFE oder FKM verwendet und für diese Teile werden, wie auch im Pumpenkopf der Zahnradpumpe, keine silikonhaltigen Materialien eingesetzt. Bis 150° C beständiges Glas, wie Duranglas, wird im Luft-Öl-Mischer 2 eingesetzt.

Ein Druckluftanschluss 6 fördert über Nadelventile (nicht dargestellt) Luft in die Rohrleitungen 5 des Luft-Öl-Mischers 2. Der Druckluftanschluss 6 ist steuerbar, so daß die Zufuhr von Luft abschaltbar ist. Der Differenz-druckaufnehmer 3 erfaßt Differenzdrücke im Öl über 2 in Förderrichtung des Öls voneinander beabstandete Bohrungen 7, 8 an einem Venturirohr 9 und über Schläuche 12, 13. Ein Mischer (nicht dargestellt) ist vorgesehen zur intensiv turbulenten Durchmischung der Luft mit dem Öl in den Rohrleitungen 5.

Ein Abscheider 15 in Form eines Volumengefäßes ist in den Rohrleitungen 5 vorgesehen, so daß bei geöffneter Luftzufuhr und hohem Luftüberschuß von ca. 6 l/min Luft in 200 ml Öl größere Luftblasen vor der Messstrecke im Venturirohr 9 abscheidbar sind. Der Abscheider 15 weist einen Durchmesser von 30 mm auf. Der Luft-Öl-Mischer 2 ist mit einem Einfülltrichter 14 versehen.

Für verschiedene Prüftemperaturen ist ein temperierbarer Behälter 10 mit einer Glasplatte 11 an der Vorderseite vorgesehen und der Luft-Öl-Mischer 2 und die Rohrleitungen 5 sind mit dem Venturirohr 9 in dem temperierbaren Behälter 10 so angeordnet, daß der Meßkreislauf über ein Ölbad in dem temperierbaren Behälter 10 temperiert werden

Akte 8461 Z 2002-10-22

kann. Ein Umwälzthermostat ist zu dem temperierbaren Behälter 10 vorgesehen, der das Ölbad im Behälter 10 bis auf 200° C aufheizbar macht.

Eine A/D-Wandler-Karte (nicht dargestellt) und ein Rechner 12 sind mit dem Differenzdruckaufnehmer 3 verbunden, so daß die Messungen automatisiert erfolgen können.

Verfahren zum Betrieb der Vorrichtung 1:

Ein Verfahren zur Bestimmung des Luftgehalts bei verschiedenen Volumenströmen mit der Vorrichtung 1 erfolgt durch Einfüllen von 200 ml des zu prüfenden Öls durch den Einfülltrichter 8 in den Luft-Öl-Mischer 2, Einschalten einer Wasserstrahlpumpe (nicht dargestellt), so daß Öl in die Schläuche 12, 13 oberhalb des als Messzelle ausgebildeten Differenzdruckaufnehmers 3 gesaugt wird. Das Rückfließen des Öls in den Schläuchen 12, 13 wird durch Schließen der Kükenhähne verhindert. Dann erfolgt Einschalten der Fördereinrichtung 4, Einfüllen von weiterem zu prüfenden Öl bis die Rohrleitungen des Luft-Öl-Mischers blasenfrei befüllt sind, Einregeln der Luftzufuhr und Stellen der Fördereinrichtung auf maximalen Durchfluss. Umpumpen des zu prüfenden Öls dauert 7 min und dann werden alle einzustellenden Volumenströme bei jeweils konstantem Volumenstrom gemessen.

25

5

15

20

Die Fördereinrichtung 4 saugt das zu prüfende Öl im Uhrzeigersinn durch die Rohrleitungen 5 und kann mit Luftansaugung pumpen, so daß gesondertes Regeln der Luftzufuhr entfallen kann.

30

Insbesondere große Luftblasen werden in dem Abscheider 15 aus dem Volumenstrom des zu prüfenden Öls ausgeschieden zur Verbesserung der Messgenauigkeit.

Vor Auswertung der Messungen ist die Vorrichtung 1 noch vorzugsweise mit Wasser zu kalibrieren, wobei mit mindestens 2 Messreihen eine Fittingfunktion ermittelbar ist, die auf den Auswerte-Algorithmus anwendbar ist. Mit mehr als 2 Messreihen kann die Fittingfunktion verbessert werden.

Zur Bestimmung der Luftgehalte bei verschiedenen Volumenströmen ist das zu prüfende Öl 7 min lang bei dem maximal einzustellenden Volumenstrom bei geöffneter Luftzufuhr umzupumpen und dann erfolgt die erste Messwertaufnahme und anschließend sind alle einzustellenden Volumenströme zügig zu messen, wobei neben den Differenzdrücken auch die Temperatur des zu prüfenden Öls aufzunehmen ist.

Zur Bestimmung der Luftgehalte bei verschiedenen Temperaturen ist der Volumenstrom konstant zu halten. Die Temperatur des zu prüfenden Öls wird über den um etwa 20° C höher eingestellten Thermostaten im Behälter 10 eingestellt.

20

25

30

15

5

Zur Bestimmung des Luftabscheideverhaltens wird das zu prüfende Öl 7 min lang bei geöffneter Luftzufuhr gemischt und danach der Differenzdruck aufgenommen und die Luftzufuhr gestoppt. Dann beginnt die Zeitnahme und in regelmäßigen Abständen wird der Differenzdruck aufgenommen.

Fig. 2:

In Abhängigkeit vom eingestellten Volumenstrom sind die mit der Vorrichtung 1 erfaßten Differenzdrücke aufgetragen in einer oberen Punktreihe für ein zu prüfendes Öl mit Entschäumer und in einer unteren Punktreihe ohne Entschäumer.

Bezugszeichen

	1	Vorrichtung
5	2	Luft-Öl-Mischer
	3	Differenzdruckaufnehmer
	4	Fördereinrichtung
	5	Rohrleitungen
	6	Druckluftanschluss
	7	Bohrungen
	8	Bohrungen
	9	Venturirohr
	10	Behälter
	11	Glasplatte
15	12	Schläuche
	13	Schläuche

14 Einfülltrichter

15 Abscheider

Patentansprüche

- 1. Vorrichtung (1) zur Bestimmung des Luftgehalts und 5 des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit einem Luft-Öl-Mischer (2) und einem Differenzdruckaufnehmer (3), dadurch gekennzeichn e t , dass eine Fördereinrichtung (4) vorgesehen ist, die das Öl durch Rohrleitungen (5) des Luft-Öl-Mischers (2) fördert, ein Druckluftanschluss (6) vorgesehen ist, der Luft in die Rohrleitungen (5) des Luft-Öl-Mischers (2) fördert, ein Venturirohr (9) in einer der Rohrleitungen (5) vorgesehen ist, und der Differenzdruckaufnehmer (3) über mindestens 2 in Förderrichtung des Öls voneinander beabstandete Bohrungen (7, 8) am Venturirohr (9) Differenz-15 drücke im Öl erfasst.
- Vorrichtung (1) gemäß Anspruch 1, dadurch ge-ke n n ze i ch net, dass der Druckluftanschluss (6)
 steuerbar ist und ein Mischer vorgesehen ist zur intensiv turbulenten Durchmischung der Luft mit dem Öl in den Rohrleitungen (5).
- 3. Vorrichtung (1) gemäß Anspruch 1, dadurch ge25 kennzeich net, dass mindestens ein Abscheider (7) in den Rohrleitungen (5) vorgesehen ist.
- 4. Vorrichtung (1) gemäß Anspruch 3, dadurch gekennzeich net, dass der Abscheider (15) einen

 Durchmesser von 20 oder 30 mm aufweist und mit mindestens
 einem Boden versehen ist.

- 5. Vorrichtung (1) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Luft-Öl-Mischer (2) teilweise aus Glas gefertigt ist.
- 6. Vorrichtung (1) gemäß Anspruch 1, dadurch gekennzeichnet, dass der Luft-Öl-Mischer (2) mit einem Einfülltrichter (14) versehen ist.
 - 7. Vorrichtung (1) gemäß Anspruch 1, dadurch ge-kennzeich net, dass ein temperierbarer Behälter (10) vorgesehen ist und der Luft-Öl-Mischer (2) und die Rohrleitungen mit dem Venturirohr (9) in dem temperierbaren Behälter (10) angeordnet sind.
- 8. Vorrichtung (1) gemäß Anspruch 6, dadurch gekennzeich net, dass ein Umwälzthermostat zu dem temperierbaren Behälter (10) vorgesehen ist.
- 9. Vorrichtung (1) gemäß Anspruch 1, dadurch ge20 kennzeich net, dass eine A/D-Wandler-Karte und
 ein Rechner vorgesehen sind und der Differenzdruckaufnehmer (3) über die A/D-Wandler-Karte mit dem Rechner verbunden ist.
- 25 10. Vorrichtung (1) gemäß Anspruch 1, dadurch ge-kennzeich net, dass die Fördereinrichtung (4) als Zahnradpumpe ausgebildet ist.
- 11. Verfahren zur Bestimmung des Luftgehalts bei ver30 schiedenen Volumenströmen mit der Vorrichtung (1) gemäß
 Anspruch 1, gekennzeichnet durch
 - Einfüllen von 200 ml des zu prüfenden Öls durch den Einfülltrichter (14) in den Luft-Öl-Mischer (2),

15

30

- Einschalten einer Wasserstrahlpumpe, so daß Öl in Schläuche (12, 13) oberhalb einer Messzelle des Differenzdruckaufnehmers (3) gesaugt wird,
- Verhindern des Rückfließens des Öls in den Schläuchen (12 13) oberhalb der Messzelle,
- Einschalten der Fördereinrichtung (4),
- Einfüllen von weiterem zu prüfenden Öl bis die Rohrleitungen (5) des Luft-Öl-Mischers (2) blasenfrei befüllt sind,
- Einregeln der Luftzufuhr und
- Stellen der Fördereinrichtung (4) auf maximalen Durch-fluss,
- 12. Verfahren zur Bestimmung des Luftabscheideverhaltens mit der Vorrichtung (1) gemäß Anspruch 1, ge-kennzeichnet durch
- 20 Einfüllen von 200 ml des zu prüfenden Öls durch den Einfülltrichter (14) in den Luft-Öl-Mischer (2),
 - Einschalten einer Wasserstrahlpumpe, so daß Öl in Schläuche (12, 13) oberhalb einer Messzelle des Differenzdruckaufnehmers (3) gesaugt wird,
- 25 Verhindern des Rückfließens des Öls in den Schläuchen (12, 13) oberhalb der Messzelle,
 - Einschalten der Fördereinrichtung (4),
 - Einfüllen von weiterem zu prüfenden Öl bis die Rohrleitungen (5) des Luft-Öl-Mischers (2) blasenfrei befüllt sind,
 - Stellen der Fördereinrichtung (4) auf einen bestimmten Durchfluss mit Luftansaugung,

- Messen des Differenzdrucks, Stoppen der Luftzufuhr, Zeitnahme und Messen des jeweiligen Differenzdrucks in regelmäßigen Abständen.
- 13. Verfahren zur Bestimmung des Luftabscheideverhaltens mit der Vorrichtung (1) gemäß Anspruch 1, ge-kennzeichnet durch
 - Einfüllen von 200 ml des zu prüfenden Öls durch den Einfülltrichter (14) in den Luft-Öl-Mischer (2),
 - Einschalten einer Wasserstrahlpumpe, so daß Öl in Schläuche (12, 13) oberhalb einer Messzelle des Differenzdruckaufnehmers (4) gesaugt wird,
 - Verhindern des Rückfließens des Öls in den Schläuchen (12, 13) oberhalb der Messzelle,
- 15 Einschalten der Fördereinrichtung (4),
 - Einfüllen von weiterem zu prüfenden Öl bis die Rohrleitungen (5) des Luft-Öl-Mischers (2) blasenfrei befüllt sind,
 - Einregeln der Luftzufuhr,

- 20 Stellen der Fördereinrichtung (4) auf einen bestimmten Durchfluss,
 - Messen des Differenzdrucks, Stoppen der Luftzufuhr, Zeitnahme und Messen des Differenzdrucks in regelmäßigen Abständen.
 - 14. Verfahren gemäß Anspruch 13, gekennzeichnet durch Kalibrieren der Vorrichtung (1) vorzugsweise mit Wasser.
- 15. Verfahren gemäß Anspruch 13, gekennzeichnet durch Einstellen der Temperatur des zu
 prüfenden Öls über einen Thermostaten in Behälter (10).

Zusammenfassung

Vorrichtung und Verfahren zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen

Die Erfindung betrifft eine Vorrichtung (1) zur Bestimmung des Luftgehalts und des Luftabscheideverhaltens von Ölen, insbesondere von Getriebeölen, mit einem Luft-Öl-Mischer (2) und einem Differenzdruckaufnehmer (3). Eine Fördereinrichtung (4) fördert das Öl durch Rohrleitungen (5) des Luft-Öl-Mischers (2). Ein Druckluftanschluss (6) ist vorgesehen, der Luft in die Rohrleitungen (5) des Luft-Öl-Mischers (2) fördert. Ein Venturirohr (9) ist in einer der Rohrleitungen (5) vorgesehen, und der Differenzdruckaufnehmer (3) erfasst über mindestens zwei in Förderrichtung des Öls voneinander beabstandete Bohrungen (7, 8) am Venturirohr (9) Differenzdrücke im Öl.

20

15

5

Fig. 1

Fig. 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
	☐ BLACK BORDERS	
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
	☐ FADED TEXT OR DRAWING	
	BLURRED OR ILLEGIBLE TEXT OR DRAWING	
	☐ SKEWED/SLANTED IMAGES	
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
	☐ GRAY SCALE DOCUMENTS	
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.