

Relaciones binarias de orden.

Cristina Jordán Lluch

Instituto de Matemática Multidisciplinar Departamento.de Matemática Aplicada Universitat Politècnica de València

Definiciones

Sea R una relación binaria en A.

- > Se dice que R es **relación de orden (RO)** si verifica las propiedades:
 - Reflexiva
 - Antisimétrica
 - Transitiva

Si a R b se dice que a es **anterior** a b o que b es **posterior** a a

Ejemplos

- La desigualdad entre números, ≤
- La inclusión entre conjuntos,
- La relación de divisibilidad entre números naturales
- > Se dice que R es relación de orden total (ROT) si
 - R es relación de orden en A, y
 - \forall a, b \in A a R b o b R a (i.e., todo par de elementos de A es **comparable**)
- ➢ Si R es una relación de orden que no es una relación de orden total se dice que es una relación de orden parcial (ROP)

Diagrama de Hasse de una relación binarias de orden.

Cristina Jordán Lluch

Instituto de Matemática Multidisciplinar Departamento de Matemática Aplicada Universitat Politècnica de València

Diagramas de Hasse

Las relaciones de orden en un conjunto finito se pueden representar, debido a sus propiedades, de la siguiente forma

- > Se representan los elementos de A por puntos
- Se suprimen los bucles y todos aquellos arcos cuya existencia pueda deducirse aplicando la propiedad transitiva
- Se sustituye cada arco a →b por a b, escribiendo la línea con una inclinación (entre 0 y 180 grados) y poniendo al elemento a en un nivel inferior al b (lo que indica que la dirección del arco es de a hacia b)

Nota. Las relaciones de orden total también se llaman **lineales**, (como consecuencia de su representación gráfica)

Diagramas de Hasse

Ejemplo: Relación de divisibilidad

Sea $A = \{1, 2, 3, 5, 6, 8, 10, 15, 16, 20, 30\}$ y consideremos en A la relación de divisibilidad (representada por |).

El diagrama de Hasse de esta relación viene representado por la figura siguiente:

Observemos que 2 está relacionado con 30, ya que existe al menos un camino ascendente. En cambio, 2 y 15 no lo están, por no existir un camino ascendente entre estos números.

Elementos notables de una relación de orden (1)

```
Sea A un conjunto dotado de un orden ≼
Decimos que

ightharpoonup m \in A es máximo de A si \forall x \in A x \leq m

ightharpoonup m \in A es mínimo de A si \forall x \in A m \leq x
\triangleright m \in A es maximal de A si \neg(\exists x \in A / x \neq m \land m \leq x)
                                 (i.e. \forall x \in A \quad (m \le x \longrightarrow m = x))
                                 (i.e. Si no existe ningún elemento posterior a m)
\triangleright m \in A es minimal de A si \neg(\exists x \in A / x \neq m \land x \leq m)
                                  (i.e. \forall x \in A \ (x \leq m \longrightarrow m = x))
                                  (i.e. Si no existe ningún elemento anterior a m )
```

Ejemplo: Relación de divisibilidad

Sea $A = \{1, 2, 3, 5, 6, 8, 10, 15, 16, 20, 30\}$ y consideremos en A la relación de divisibilidad (representada por |).

A no tiene máximo

A tiene 3 maximales: el 16, el 20 y el 30

A tiene mínimo: el 1

A tiene un minimal: el 1

Elementos notables de una relación de orden (2)

Sea A un conjunto dotado de un orden ≼.

Sea B \subset A, B \neq \emptyset .

Decimos que :

- a ∈ A es cota superior de B si ∀b ∈ B b ≼ a
 Si B tiene cotas superiores, se dice que B está acotado superiormente.
- a ∈ A es cota inferior de B si ∀b ∈ B a ≼ b
 Si B tiene cotas superiores, se dice que B está acotado inferiormente.
- \triangleright a \in A es **supremo** de B si a es la menor de las cotas superiores de B Se denota sup(B).
- \triangleright a \in A es **infimo** de B si a es la mayor de las cotas inferiores de B Se denota inf(B).

Ejemplo: Relación de divisibilidad

Sea $A = \{1, 2, 3, 5, 6, 8, 10, 15, 16, 20, 30\}$ y consideremos en A la relación de divisibilidad (representada por |).

Sea el subconjunto de A, $B = \{2,10,5\}$.

Las cotas superiores de B en A son 10, 20 y 30 y su supremo es el 10. Las única cota inferior de B en A es el 1 y por consiguiente también será su ínfimo.

El máximo de B es 10 y B no tiene mínimo.

El conjunto B tiene un maximal, el 10 y dos minimales el 2 y el 5.

Ejemplo: Relación de divisibilidad

Sea $A = \{1, 2, 3, 5, 6, 8, 10, 15, 16, 20, 30\}$ y consideremos en A la relación de divisibilidad (representada por |).

Sea el subconjunto de A, $B = \{2, 8, 10, 20\}$.

Ejemplo: Relación de divisibilidad

Sea $A = \{1, 2, 3, 5, 6, 8, 10, 15, 16, 20, 30\}$ y consideremos en A la relación de divisibilidad (representada por |).

Sea el subconjunto de A, $B = \{2, 8, 10, 20\}$.

B no tiene cotas superiores en A y por tanto no tiene supremo. Las cota inferiores de B en A son el 1 y el 2, siendo el 2 su ínfimo.

No existe máximo de B y 2 es el mínimo.

El conjunto B tiene dos maximales, el 20 y el 8 y un minimal, el 2.

Orden topológico

Caracterización

Sea R una relación de orden en el conjunto finito A.

Existe una relación de orden total S que contiene a R (a la que llamamos orden topológico)

si y sólo si

en la representación gráfica de R no existen ciclos de longitud mayor o igual que 2

Algoritmo

Sea R una relación de orden en el conjunto A, con card(A)=n.

Objetivo: Obtener, si existe, una relación de orden total que contenga a R

Para i=1 hasta n

Si existe un elemento x de A que no tiene anterior

 $A := A - \{ x \}$

 $R := R \cap (A \times A)$ (* i.e., considerar una nueva relación R cuyos elementos son todos los pares de R en los que no aparece x *)

Escribir x

En caso contrario

"A no se puede ordenar totalmente a partir de R"

