

Week 2 - Al Mentorship Program

Introduction to Machine Learning (ML)

Outline

- 1 What is ML?
- (2) ML Algorithm
- (3) Code for ML algoritm
- (4) Next Step

Recap week 1

What is Machine Learning?

Machine Learning is a subset of Al that allows systems to learn and improve from experience without explicit programming.

Supervised vs. Unsupervised Learning

Google Developer Group

Jogjakarta

Feature	Supervised Learning	Unsupervised Learning
Input Data	Labeled (with output)	Unlabeled
Objective	Predict output for new data	Discover hidden patterns
Examples	Classification, Regression	Clustering, Dimensionality Reduction

Basic Algorithms in Machine Learning

Google Developer Group

Jogjakarta

- Linear Regression: Predicts continuous values.
 Example: Predicting house prices based on features like area and location.
- 2. K-Nearest Neighbors (KNN): Classifies data points based on their nearest neighbors.
 - **Example: Identifying spam emails.**
- 3. Decision Tree: Creates a tree structure to make decisions based on input features.

Example: Loan approval predictions.

Code - Clustering

Google Developer Group

Jogjakarta

Dataset: Iris dataset (features: sepal and petal dimensions).

Objective: Objective: A statistical method used for multi-class classification problems in this case.

Steps:

- Load the dataset.
- Preprocess data (e.g., normalization).
- Apply Logistic Regression Algorithm.
- Evaluate classification report.

Code - Clustering

Google Developer Group

Jogjakarta

Dataset: Iris dataset (features: sepal and petal dimensions).

Objective: Group similar data points into clusters.

Steps:

- Load the dataset.
- Preprocess data (e.g., normalization).
- Apply K-Means algorithm.
- Visualize the clusters.

Summary

Google Developer Group

Jogjakarta

- Machine Learning enables systems to learn from data and make decisions.
- Supervised learning uses labeled data; unsupervised learning finds patterns in unlabeled data.
- Algorithms covered: Linear Regression, KNN, Decision Tree.
- Scikit-learn simplifies data preprocessing, training, and evaluation.
- Practices: Built a predictive model with Linear Regression and Grouped data using K-Means Clustering.

Next Step:D

Google Developer Group

Jogjakarta

- Review today's materials and complete the exercises.
- Explore the Scikit-learn documentation for more features.
- Start thinking about a mini-project idea to apply these techniques.

Thank You

See You Next Week!

Google Developer Group

Jogjakarta