Dans l'exercice 1, il y avait cette consigne :

Dans l'exercice 1, il y avait cette consigne :

Dans l'exercice 1, il y avait cette consigne :

Déterminer les équations des tangentes aux courbes des fonctions suivantes :

a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)

Dans l'exercice 1, il y avait cette consigne :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)

Dans l'exercice 1, il y avait cette consigne :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)

Dans l'exercice 1, il y avait cette consigne :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x) = x^2 5x + 7$ (au point d'abscisse -2)

Dans l'exercice 1, il y avait cette consigne :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x) = x^2 5x + 7$ (au point d'abscisse -2)

Dans l'exercice 1, il y avait cette consigne :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x)=x^2-5x+7$ (au point d'abscisse -2) Avec le cours précédent,

Dans l'exercice 1, il y avait cette consigne :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x) = x^2 5x + 7$ (au point d'abscisse -2) Avec le cours précédent, nous avons une autre manière de calculer la dérivée d'une fonction.

Dans l'exercice 1, il y avait cette consigne :

Déterminer les équations des tangentes aux courbes des fonctions suivantes :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x) = x^2 5x + 7$ (au point d'abscisse -2) Avec le cours précédent, nous avons une autre manière de calculer la dérivée d'une fonction. Nous n'allons plus nous embêter à

calculer la limite du taux d'accroissement lorsque $h \to 0$.

Dans l'exercice 1, il y avait cette consigne :

Déterminer les équations des tangentes aux courbes des fonctions suivantes :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x) = x^2 5x + 7$ (au point d'abscisse -2)

Avec le cours précédent, nous avons une autre manière de calculer la dérivée d'une fonction. Nous n'allons plus nous embêter à calculer la limite du taux d'accroissement lorsque $h \to 0$. Nous allons directement déterminer la fonction dérivée.

Dans l'exercice 1, il y avait cette consigne :

Déterminer les équations des tangentes aux courbes des fonctions suivantes :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x) = x^2 5x + 7$ (au point d'abscisse -2)

Avec le cours précédent, nous avons une autre manière de calculer la dérivée d'une fonction. Nous n'allons plus nous embêter à calculer la limite du taux d'accroissement lorsque $h \to 0$.

Nous allons directement déterminer la fonction dérivée, grâce aux 3 fonctions usuelles

Dans l'exercice 1, il y avait cette consigne :

Déterminer les équations des tangentes aux courbes des fonctions suivantes :

- a) f définie sur \mathbb{R} par $f(x) = 3x^3$ (au point d'abscisse 2)
- b) g définie sur $[-1; +\infty]$ par $g(x) = \sqrt{x+1}$ (au point d'abscisse 5)
- c) i définie sur $\mathbb{R}^*(]-\infty;0[\cup]0;+\infty[)$ par $i(x)=\frac{1}{x}$ (au point d'abscisse 3)
- d) j définie sur \mathbb{R} par $j(x) = x^2 5x + 7$ (au point d'abscisse -2)

Avec le cours précédent, nous avons une autre manière de calculer la dérivée d'une fonction. Nous n'allons plus nous embêter à calculer la limite du taux d'accroissement lorsque $h \to 0$.

Nous allons directement déterminer la fonction dérivée, grâce aux 3 fonctions usuelles et aux 5 règles de dérivation.

Pour déterminer l'équation de la tangente d'une fonction, vous devez (maintenant) :

Pour déterminer l'équation de la tangente d'une fonction, vous devez (maintenant) :

1. Déterminer la fonction dérivée f'(x) de f(x)

Pour déterminer l'équation de la tangente d'une fonction, vous devez (maintenant) :

- 1. Déterminer la fonction dérivée f'(x) de f(x)
- 2. Calculer f'(a)

Pour déterminer l'équation de la tangente d'une fonction, vous devez (maintenant) :

- 1. Déterminer la fonction dérivée f'(x) de f(x)
- 2. Calculer f'(a)
- 3. Puis finalement, déterminer l'équation de la tangente

1) Déterminer la fonction dérivée f'(x) de f(x)

1) Déterminer la fonction dérivée f'(x) de f(x)

- a) $f(x) = 3x^3$ au point d'abscisse 2
 - 1) Déterminer la fonction dérivée f'(x) de f(x)

 $f(\boldsymbol{x})$ est une fonction polynôme définie sur $\mathbb{R},$

- a) $f(x) = 3x^3$ au point d'abscisse 2
 - 1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R} .

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R} .

On utilise la fonction usuelle suivante :

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times n$

- a) $f(x) = 3x^3$ au point d'abscisse 2
 - 1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$ Et la règle de dérivation suivante :

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$ Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$ Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

$$f'(x) =$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' =$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3 \times$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3 \times 3$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} =$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times 2^2 =$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times 2^2 = 36$$

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times 2^2 = 36$$

Nous pouvons déterminer l'équation de la tangente : y = f'(a)(x-a) + f(a)y =

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R} .

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times 2^2 = 36$$

Nous pouvons déterminer l'équation de la tangente : y = f'(a)(x-a) + f(a)y = f'(2)(x-2) + f(2) =

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R} .

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times 2^2 = 36$$

Nous pouvons déterminer l'équation de la tangente : y = f'(a)(x-a) + f(a)y = f'(2)(x-2) + f(2) = 36(x-2) + 24 =

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R} .

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times 2^2 = 36$$

Nous pouvons déterminer l'équation de la tangente : y = f'(a)(x-a) + f(a)y = f'(2)(x-2) + f(2) = 36(x-2) + 24 = 36x - 72 + 24

1) Déterminer la fonction dérivée f'(x) de f(x)

f(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur $\mathbb{R}.$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

$$f'(x) = (3x^3)' = 3 \times 3x^{3-1} = 9x^2$$

$$f'(2) = 9 \times 2^2 = 36$$

Nous pouvons déterminer l'équation de la tangente : y = f'(a)(x-a) + f(a)y = f'(2)(x-2) + f(2) = 36(x-2) + 24 = 36x - 72 + 24

$$y = 36x + 48$$

b) $g(x) = \sqrt{x+1}$ au point d'abscisse 5

b) $g(x) = \sqrt{x+1}$ au point d'abscisse 5

Vous ne pouvez pas encore faire cet exemple cette année.

b) $g(x) = \sqrt{x+1}$ au point d'abscisse 5

Vous ne pouvez pas encore faire cet exemple cette année. Vous le verrez l'année prochaine :)

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

$$f(x)$$
 est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que $u(x)=1$ et $v(x)=x$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante : $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante : $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$ On utilise la fonction usuelle suivante :

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\dfrac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante : $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$

On utilise la fonction usuelle suivante : $(x^n)' = n \times n$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que u(x)=1 et v(x) = x

On va utiliser la règle suivante : $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$ On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Notre but est de déterminer u' et v'

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\dfrac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante : $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$ On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$u'(x)=0$$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante :
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$u'(x) = 0$$

 $v'(x) = (x^1)' = 1$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante :
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$
On utilise la fonction usuelle suivante : $(v^n)' = n \times v^{n-1}$

Notre but est de déterminer
$$u'$$
 et v'
 $u'(x) = 0$

$$v'(x) = (x^1)' = 1 \times$$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\dfrac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante : $\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$ On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$ Notre but est de déterminer u' et v' u'(x) = 0

 $v'(x) = (x^1)' = 1 \times x^{1-1} =$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\dfrac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante :
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Notre but est de déterminer u' et v'
$$u'(x) = 0$$

$$v'(x) = (x^1)' = 1 \times x^{1-1} = x^0 = 1$$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\dfrac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante :
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Notre but est de déterminer u' et v' u'(x) = 0 $v'(x) = (x^1)' = 1 \times x^{1-1} = x^0 = 1$

$$v'(x) = (x^1)' = 1 \times x^{1-1} = x^0 = i'(x) = 0$$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\dfrac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante :
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^n$

$$u'(x) = 0$$

 $v'(x) = (x^1)' = 1 \times x^{1-1} = x^0 = 1$
 $i'(x) = \frac{u'v - v'u}{v^2} = 0$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante :
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$u'(x) = 0$$

 $v'(x) = (x^1)' = 1 \times x^{1-1} = x^0 = 1$

$$i'(x) = (x^{2})' = 1 \times x^{2} = x^{3} = 1$$
$$i'(x) = \frac{u'v - v'u}{v^{2}} = \frac{0 \times x - 1 \times 1}{v^{2}} = \frac{1}{v^{2}}$$

c)
$$i(x) = \frac{1}{x}$$
 au point d'abscisse 3

f(x) est une fonction définie sur $\mathbb R$ du type $\frac{u}{v}$ tel que u(x)=1 et v(x)=x

On va utiliser la règle suivante :
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$u'(x) = 0$$

 $v'(x) = (x^1)' = 1 \times x^{1-1} = x^0 = 1$

$$v'(x) = (x^{1})' = 1 \times x^{1-1} = x^{0} = 1$$
$$i'(x) = \frac{u'v - v'u}{v^{2}} = \frac{0 \times x - 1 \times 1}{x^{2}} = \frac{-1}{x^{2}}$$

d) $j(x) = x^2 - 5x + 7$ au point d'abscisse -2

1) Déterminer la fonction dérivée j'(x) de j(x)

- d) $j(x) = x^2 5x + 7$ au point d'abscisse -2
 - 1) Déterminer la fonction dérivée j'(x) de j(x) j(x) est une fonction polynôme définie sur \mathbb{R} ,

- d) $j(x) = x^2 5x + 7$ au point d'abscisse -2
 - 1) Déterminer la fonction dérivée j'(x) de j(x) j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

- d) $j(x) = x^2 5x + 7$ au point d'abscisse -2
 - 1) Déterminer la fonction dérivée j'(x) de j(x)

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante :

- d) $j(x) = x^2 5x + 7$ au point d'abscisse -2
 - 1) Déterminer la fonction dérivée j'(x) de j(x)

j(x) est une fonction polynôme définie sur $\mathbb R,$ donc elle est dérivable sur $\mathbb R$

On utilise la fonction usuelle suivante : $(x^n)' = n \times n$

- d) $j(x) = x^2 5x + 7$ au point d'abscisse -2
 - 1) Déterminer la fonction dérivée j'(x) de j(x)

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

- d) $j(x) = x^2 5x + 7$ au point d'abscisse -2
 - 1) Déterminer la fonction dérivée j'(x) de j(x)

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$ Et la règle de dérivation suivante : d) $j(x) = x^2 - 5x + 7$ au point d'abscisse -2

1) Déterminer la fonction dérivée j'(x) de j(x)

Et la règle de dérivation suivante : $(\lambda u)' = \lambda u'$

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) =$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) = 2 \times$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) = 2 \times x$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$i'(x) = 2 \times x^2$$

d) $j(x) = x^2 - 5x + 7$ au point d'abscisse -2

1) Déterminer la fonction dérivée j'(x) de j(x)

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) = 2 \times x^{2-1}$$

d) $j(x) = x^2 - 5x + 7$ au point d'abscisse -2

1) Déterminer la fonction dérivée j'(x) de j(x)

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) = 2 \times x^{2-1} - 5$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$i'(x) = 2 \times x^{2-1} - 5 \times$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) = 2 \times x^{2-1} - 5 \times 1$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur $\mathbb R,$ donc elle est dérivable sur $\mathbb R$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$i'(x) = 2 \times x^{2-1} - 5 \times 1 \times 1$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) = 2 \times x^{2-1} - 5 \times 1 \times x$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$j'(x) = 2 \times x^{2-1} - 5 \times 1 \times x^1$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur $\mathbb R,$ donc elle est dérivable sur $\mathbb R$

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$i'(x) = 2 \times x^{2-1} - 5 \times 1 \times x^{1-1}$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur $\mathbb{R},$ donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

$$i'(x) = 2 \times x^{2-1} - 5 \times 1 \times x^{1-1} + 0$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Et la regle de derivation suivante :
$$(\lambda u)' = \lambda u$$

$$j'(x) = 2 \times x^{2-1} - 5 \times 1 \times x^{1-1} + 0$$

 $j'(x) =$

$$f(x) =$$

d)
$$j(x) = x^2 - 5x + 7$$
 au point d'abscisse -2

j(x) est une fonction polynôme définie sur \mathbb{R} , donc elle est dérivable sur \mathbb{R}

On utilise la fonction usuelle suivante : $(x^n)' = n \times x^{n-1}$

Et la regie de derivation suivante :
$$(\lambda u) = \lambda u$$

$$j'(x) = 2 \times x^{2-1} - 5 \times 1 \times x^{1-1} + 0$$
$$i'(x) = 2x - 5$$

$$J(x) - 2x - 3$$