1. Постановка задачи и построение математической модели

1.1. Постановка задачи на содержательном уровне

Рассмотрим систему массового обслуживания следующего вида (Рис. 1).

Рис. 1. Структурная схема системы обслуживания

Пусть в систему с одним обслуживающим устройством поступают потоки Π_1 , Π_2 , Π_3 и Π_4 . Требования по потоку Π_j становятся в соответствующую очередь O_j неограниченной вместимостью, $j \in \{1,2,3,4\}$. Для $j \in \{1,2,3\}$ дисциплина очереди O_j , поддерживаемая устройством δ_j , имеет тип FIFO (First In First Out). Таким образом, для обслуживания из соответствующей очереди выбирается то требование, которое пришло раньше. Дисциплина очереди O_4 будет описана ниже. Входные потоки Π_1 и Π_3 формируются внешней средой, которая, будем предполагать, имеет только одно состояние, то есть вероятностная структура потоков не меняется с течением времени. Требования потоков Π_1 и Π_3 формируют независимые между собой неординарные пуассоновские потоки, то есть стационарные, без последействия и ординарные потоки групп требований. Интенсивности соответствующих простейших потоков для Π_1 и Π_3 будем обозначать λ_1 и λ_3 , а распределение числа заявок в группе по потоку Π_j

будем описывать производящей функцией

$$f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu} \tag{1}$$

для $|z|<(1+\varepsilon), \varepsilon>0$ и $p_{\nu}^{(j)}>0$. Величина $p_{\nu}^{(j)}$ определяет вероятность того, что по потоку Π_j число требований в группе равно ν , $j\in\{1,3\}$. Обслуженные требования потока Π_1 поступают на повторное обслуживание, формируя при этом поток Π_4 (т.е. $\Pi_1^{\text{вых}}=\Pi_4$). Далее, каждое требование из очереди O_4 с вероятностью p_r и независимо от других завершает обслуживание и отправляется в очередь O_2 потока Π_2 , где r — номер состояния обслуживающего устройства на соответствующем такте обслуживания ($\Pi_4^{\text{вых}}=\Pi_2$). С вероятностью $1-p_r$ требование очереди O_4 остается в ней до следующего такта. Потоки Π_2 и Π_3 являются конфликтными, что означает запрет на одновременное обслуживание требований этих потоков и, следовательно, исследование системы не может быть сведено к задаче с меньшим числом потоков.

В каждый момент времени обслуживающее устройство находится в одном из конечного множества состояний $\Gamma = \left\{\Gamma^{(1)}, \Gamma^{(2)}, \dots, \Gamma^{(n)}\right\}$. В каждом состоянии $\Gamma^{(r)}$ обслуживающее устройство находится в течение времени $T^{(r)}$. Множество Γ представим в виде суммы четырех непересекающихся подмножеств: $\Gamma = \Gamma^{\rm I} + \Gamma^{\rm II} + \Gamma^{\rm III} + \Gamma^{\rm IV}$, — которые определим ниже.

В состоянии $\Gamma^{(r)} \in \Gamma^{\mathrm{I}}$ обслуживаются только требования из очередей $O_1,\,O_2$ и $O_4.$

В состоянии $\Gamma^{(r)} \in \Gamma^{\mathrm{II}}$ обслуживаются только требования из очередей O_2 и O_4 .

В состоянии $\Gamma^{(r)} \in \Gamma^{\mathrm{III}}$ обслуживаются только требования из очередей $O_1,\,O_3$ и $O_4.$

В состоянии $\Gamma^{(r)} \in \Gamma^{\text{IV}}$ обслуживаются только требования из очередей O_3 и O_4 .

Поскольку законы распределения выходных потоков, как правило, имеют сложный вид и часто не поддаются аналитическому выражению, вместо них будем использовать потоки насыщения $\Pi_j^{\text{нас}}$, $j \in \{1,2,3,4\}$. Потоки насыщения $\Pi_j^{\text{нас}}$, $j \in \{1,2,3,4\}$, представляют собой виртуальные выходные потоки при условии максимального использования ресурсов обслуживающего устройства, а для $j \in \{1,2,3\}$ еще и при условии максимальной загрузки соответствующих очередей. Пусть

$$^{1}\Gamma = \Gamma^{\text{I}} \bigcup \Gamma^{\text{III}}, \quad ^{2}\Gamma = \Gamma^{\text{I}} \bigcup \Gamma^{\text{II}}, \quad ^{3}\Gamma = \Gamma^{\text{III}} \bigcup \Gamma^{\text{IV}}.$$
 (2)

Тогда поток насыщения $\Pi_j^{\text{нас}}$, $j \in \{1,2,3\}$, будет содержать неслучайное число $\ell_{r,j}$ требований, обслуженных в течение времени $T^{(r)}$, если $\Gamma^{(r)} \in {}^j\Gamma$, и будет содержать 0 требований в противном случае: $\Gamma^{(r)} \notin {}^j\Gamma$. При условии, что в очереди O_4 находится $x \in Z_+$ требований, поток насыщения $\Pi_4^{\text{нас}}$ определим как поток, содержащий все x требований.

1.2. Пример: тандем из двух перекрестков

В качестве приложения рассматриваемой в работе модели приведем тандем из двух последовательных перекрестков (Рис. 2).

Рис. 2. Пример: тандем перекрестков

В качестве потоков требований, формируемых внешней средой, выступают потоки прибывающих на перекрестки машин: потоки Π_1 , Π' на первом перекрестке, а также поток Π_3 на втором. Каждая машина из потока Π_1 , проезжая первый перекресток, становится в очередь O_4 потока Π_4 и затем с некой вероятностью (p_r для состояния $\Gamma^{(r)}$ обслуживающего устройства) доезжает до следующего перекрестка, или же не успевает это сделать и остается в очереди O_4 до следующего такта обслуживания. В случае, если машина из очереди O_4 успевает доехать до второго перекрестка, она становится в очередь O_2 и ждет своей очереди для его прохождения.

Предполагается, что светофор на первом перекрестке имеет лишь два состояния: в первом состоянии машины потока Π_1 пропускаются фиксированное количество времени $T^{(1,1)}$ («зеленый» свет для Π_1); во втором — простаивают в течение времени $T^{(1,2)}$ («красный» свет для Π_1). Светофор на втором перекрестке имеет более сложный механизм обслуживания: кроме состояний, в которых он обслуживает в штатном режиме потоки Π_2 и Π_3 , есть также третье состояние, состояние продления. В этом особом состоянии продления светофор продолжает пропускать машины потока Π_3 в течение фиксированного количества времени, вообще говоря, отличного от времени обслуживания в штатном режиме. В режим продления светофор переходит в случае, когда штатное обслуживание требований потока Π_3 закончено, однако количество требований (машин) в очереди O_3 еще превышает некий заданный порог g. В случае, если по истечении периода продления в очереди O_3 еще будет находиться достаточное число требований (превышающее заданный порог g), светофор проводит столько тактов продления дополнительно, сколько будет нужно для снижения

количества машин в очереди O_3 до порога g.

Рассматривая тандем из двух перекрестков как единую систему массового обслуживания и предполагая наблюдение за ней только в (дискретные) моменты переключения состояния хотя бы одного из светофоров, может быть показано, что количество различных состояний у полученной системы конечно. Действительно, положим, например, за состояние объединенной системы вектор $\left(g^{(1)},g^{(2)},f,t\right)$, где $g^{(j)}$ — состояние j—го перекрестка, f — номер сменившего состояние перекрестка (принимает значение 0 в случае, если сменили состояние оба перекрестка) и t — количество времени, оставшееся у продолжающего обслуживание с прошлого такта перекрестка. Тогда количество различных состояний не будет превышать величины $2\times3\times3\times T$, где T — максимальная длительность нахождения каждого из светофоров в одном состоянии, поскольку первый перекресток может находиться только в одном из двух состояний, а второй — в одном из трех.

В завершение построения примера отметим, что при прохождении перекрестков машины предполагаются движущимися только в прямом направлении, то есть перемешивания конфликтных потоков не допускается. Таким образом, поток П' не представляет интереса для дальнейшего исследования системы и может быть отброшен и, следовательно, построенный пример целиком удовлетворяет структурной схеме на рис. 1.

1.3. Кибернетический подход к изучению систем массового обслуживания с управлением

Теперь перейдем к описанию основного метода, используемого в данной работе для исследования построенной модели. Не вдаваясь в данном разделе в математические детали, сформулируем основную задачу теории массового обслуживания и некоторые наиболее известные подходы к ее решению.

Математической моделью системы обслуживания, как правило, является случайный процесс $\{\xi(t):t\in T\}$ такой, что случайная величина $\xi(t)$ задает состояние системы в момент $t\in T$. Задача исследовтеля заключается в том, чтобы восстановить по физическому описанию системы вероятностное распределение этого процесса и изучить свойства распределения. Обозримость решения этой задачи во многом зависит от выбора описания состояния системы. В классических работах по данной тематике, например, изучались длина очереди, время ожидания начала обслуживания произвольного требования, число занятых линий. В связи с созданием и развитием А.А. Боровковым асимптотических методов анализа в теории массового обслуживания в его работах система описывается трехмерным случайным процессом $\{\eta(t), \nu(t), \zeta(t): t \geqslant 0\}$, в котором компоненты $\eta(t), \nu(t)$ и $\zeta(t)$ соответственно опреде-

ляют число поступивших, число получивших отказ и число обслуженных требований за промежуток [0;t).

Далее, кроме процесса $\{\xi(t): t\in T\}$ рассматривают также процесс $\{u(t): t\in T\}$, интерпретируемый как управление системой обслуживания. Управление может быть и случайным элементом, и детерменированной величиной. Ограничения на множество всех допустимых управлений имеют различную природу: математическую (например, измеримость), физическую (например, непрерывность), специфика задачи (например, в задачах о назначении приоритетов при обслуживании разнотипных требований).

Таким образом, математик — исследователь управляемой системы массового обслуживания должен решать непростую задачу по описанию управляемого случайного процесса $\{(\xi(t),u(t)):t\in T\}$. Упомянутые подходы обладают тем недостатком, существенно затрудняющими их применение для реальных систем, что достигаемая ими математическая общность не дает возможности принять в расчет многие физические особенности конкретных систем и построить конечномерные распределения рассматриваемого случайного процесса $\{(\xi(t),u(t)):t\in T\}$.

В связи с вышесказанным, в данной работе будет применен другой подход, который с единых позиций рассматривает любую управляемую систему. Этот подход называется кибернетическим. Он базируется на трех постулатах. Во-первых, система массового обслуживания, как и многие другие кибернетические системы, функционирует в дискретном времени. Действительно, моменты поступления требований, моменты окончания обслуживания и другие события образуют дискретную совокупность точек на временной оси. Поэтому следует в первую очередь выбрать дискретную временную шкалу $T = \{\tau_0, \tau_1, \ldots\}$ и привязывать к ней все другие рассматриваемые величины и объекты.

Во-вторых, описание состояния элементов системы в любой момент времени $t\geqslant 0$ даже для простых законов распределения входных потоков и длительностей обслуживания приводит к сложным математическим проблемам. Локальный принцип не учитывает в полной мере физическую природу процесса обслуживания и такие важные возможности и особенности действующих систем, как функции ориентации и переналадок, неоднородность требований, изменчивость с течением времени вероятностной структуры входных потоков и длительностей обслуживания, адаптивность логической структуры обслуживающего устройства, наконец, конфликтность ситуаций в управлении и обслуживании. Итак, описание поэлементного строения системы должно быть нелокальным.

В-третьих, следует выбрать уровень детализации, на котором рассматривается система. Исторически первым был метод анализа и синтеза. Сложная система мысленно расчленялась на свои составляющие и каждая часть изучалась отдельно во

всей своей полноте. Затем знание обо всех частях соединялось, синтезировалось в знание обо всей совокупности, объединенной в систему. Проблемы, возникающие при таком подходе, уже обсуждались выше. Это и огромное число составляющих, и невозможность полного описания одной части без учета ее взаимодействия с другими частями. Другой подход, появившийся лишь в XX веке, носит название «черный ящик». Исследователь вовсе не интересуется устройством системы, а пытается лишь подобрать зависимость «выхода» системы от ее «входа». Напротив, кибернетический подход отдает дань умеренности. Считается, что каждая управляемая система обладает схемой, на которой присутствуют элементы небольшого числа типов: 1) внешняя среда, 2) полюса — точки взаимодействия системы со средой, 3) внешняя и внутренняя память, 4) устройства по переработке информации во внешней и внутренней памяти. Память состоит из ячеек с дискретным множеством состояний. Информацией является совокупность состояний всех ячеек памяти в данный момент времени. Расположение элементов на схеме описывают координаты. Благодаря им система может воздействовать на саму себя в соответствии со своими функциональными свойствами. Функция системы определяет поведение системы массового обслуживания. Она указывает то действие, которое система может совершать, переходя к следующему моменту времени. Таким образом, под состоянием $\xi(\tau)$ системы можно понимать состояния указанных элементов в момент времени $\tau \in T$, и требуется формализовать функцию системы путем совместного рассмотрения поэлементного строения системы и ее функционирования во времени.

Более подробно и применительно к рассматриваемой задаче кибернетический подход будет описан в следующих разделах. Будет построена математическая модель управляемой системы массового обслуживания в виде счетных управляемых марковских цепей.

1.4. Допустимые графы переходов состояний ОУ

В соответствии с кибернетическим подходом будем предполагать, что наблюдение за системой осуществляется в дискретные моменты времени $\tau_0=0,\ \tau_1,\ \ldots$, совпадающие с моментами переключения состояния обслуживающего устройства. Будем считать, что функция перехода из состояния Γ_i в момент τ_i в состояние Γ_{i+1} в момент τ_{i+1} известна и задается функцией $h(\Gamma_i,x_i)$ от предыдущего состояния Γ_i и величины x_i очереди O_3 в момент τ_i . Таким образом, обслуживающее устройство, в зависимости от объема очереди O_3 , может переходить в разные состояния, что влечет за собой особый класс рассматриваемых графов переходов. Опишем сейчас общую структуру класса $\mathcal K$ рассматриваемых графов переходов между состояниями обслуживающего устройства (ОУ).

Первое и самое очевидное требование, которое мы наложим на рассматриваемый класс графов, — это ориентированность и связность. Порядок прохождения состояний ОУ имеет значение и рассматривать недостижимые состояния (которые делают граф несвязным) не имеет смысла.

Далее, будем предполагать, что каждый граф G из класса $\mathcal K$ может быть построен по следующему алгоритму.

1) Выделить из множества всех вершин графа d непересекающихся кластеров вершин C_1, C_2, \ldots, C_d таким образом, чтобы вершины внутри кластеров были соединены в цикл. Каждый кластер C_j в свою очередь разделить на три непересекающихся множества вершин $C_j = C_j^{\rm I} + C_j^{\rm O} + C_j^{\rm N}$. Множество $C_j^{\rm I}$ будем называть множеством входных вершин, $C_j^{\rm O}$ — множеством выходных вершин и $C_j^{\rm N}$ — множеством нейтральных вершин. (Рис. 3).

Рис. 3. Класс графов переходов (Шаг 1). Незакрашенные вершины — выходные вершины, красным отмечены входные вершины, черным — нейтральные

- 2) Каждое выходное состояние c_1 некоего кластера C_j может быть соединено с входным состоянием того же или другого кластера C_k постредством сторонней вершины c, не принадлежащей никакому из кластеров C_1, C_2, \ldots, C_d , и двух соединящих ребер (Рис. 4).
- 3) Каждая сторонняя вершина, получаемая на шаге 2, может быть соединена похожим образом с входной вершиной некоего кластера C_j : то есть посредством новой (еще не учавствовавшей в построении графа) сторонней вершины и двух новых ребер, или же посредством уже существующей сторонней (не входящей ни в один из кластеров) вершины и всего одного нового ребра (Рис. 5).

Стоит отметить, что шаг 3 может повторяться неоднократно, но конечное число раз.

Рис. 4. Класс графов переходов (Шаг 2). Слева — шаблон соединения выходной и входной вершин. Справа — пример получаемого графа после шага 2. Полузакрашенные вершины — сторонние вершины, не принадлежащие ни одному кластеру $C_1,\,C_2,\,\ldots\,C_d$

Рис. 5. Класс графов переходов (Шаг 3)

Последнее требование, которое будет наложено заключается в следующем. Изо всех выходных вершин кластеров должны выходить ровно два ребра, ровно как во входные вершины кластеров должно входить также ровно два ребра; что касается сторонних вершин, то и из любой сторонней вершины должны выходить также по два ребра.

1.5. Свойства условных распределений

Все рассматриваемые в этой работе случайные элементы определяются на общем вероятностном пространстве (Ω, \mathcal{F}, P) элементарных исходов $\omega \in \Omega$ с вероятностной мерой $P(A), A \in \mathcal{F}$, на σ -алгебре \mathcal{F} .

Введем следующие случайные величины и элементы, $j \in \{1, 2, 3, 4\}$:

- ullet количество $arkappa_{j,i} \in Z_+$ требований в очереди O_j в момент времени $au_i;$
- состояние обслуживающего устройства $\Gamma_i \in \Gamma = \left\{ \Gamma^{(1)}, \Gamma^{(2)}, \dots, \Gamma^{(n)} \right\}$ в течение времени $(\tau_{i-1}; \tau_i];$
- количество $\eta_{j,i}$ требований, поступивших в очередь O_j по потоку Π_j в течение времени $(\tau_i; \tau_{i+1}];$
- количество $\xi_{j,i}$ требований по потоку насыщения Π_j^{sat} в течение времени $(\tau_i; \tau_{i+1}];$
- количество $\overline{\xi}_{j,i}$ реально обслуженных требований по потоку Π_j в течение времени $(\tau_i; \tau_{i+1}]$.

Тогда для $j \in \{1, 2, 3\}$ имеем

$$\Gamma_{i+1} = h(\Gamma_i, \varkappa_{3,i}), \quad \varkappa_{j,i+1} = \max\{0, \varkappa_{j,i} + \eta_{j,i} - \xi_{j,i}\}, \quad \overline{\xi}_{j,i} = \min\{\xi_{j,i}, \varkappa_{j,i} + \eta_{j,i}\}$$
 (3)

И

$$\eta_{2,i} = \overline{\xi}_{4,i}, \quad \eta_{4,i} = \overline{\xi}_{1,i}, \quad \varkappa_{4,i+1} = \varkappa_{4,i} + \overline{\xi}_{1,i} - \overline{\xi}_{4,i}$$
(4)

Также для определения длительности T_i состояния обслуживающего устройства в течение $(\tau_{i-1}; \tau_i]$, удобно ввести функцию $h_T(\cdot, \cdot)$:

$$T_{i+1} = h_T(\Gamma_i, \varkappa_{3,i}) = T^{(r')}, \quad \text{где } \Gamma^{(r')} = h(\Gamma_i, \varkappa_{3,i}).$$
 (5)

Обозначим через $\varphi_j(x,t)$, $j \in \{1,3\}$, условную вероятность того, что за время t > 0 по потоку Π_j поступит ровно $b \in Z_+$ требований:

$$P\left(\eta_{j,i} = b \middle| \Gamma_i = \Gamma^{(r)}, \varkappa_{3,i} = x\right) = \varphi_j(b, h_T(\Gamma^{(r)}, x)). \tag{6}$$

Учитывая закон распределения процесса Пуассона и количества требований в пачках, величины $\varphi_j(x,t)$ могут быть найдены из соотношений

$$\sum_{x=0}^{\infty} z^x \varphi_j(x,t) = \exp\left\{\lambda_j t \left(\sum_{b=1}^{\infty} z^b \pi(b,j) - 1\right)\right\}.$$
 (7)

Для потоков насыщения имеем следующие соотношения:

$$P\left(\xi_{j,i} = 0 \middle| \Gamma_i = \Gamma^{(r)}, \varkappa_{3,i} = x\right) = 1, \quad \Gamma_{i+1} \notin {}^{j}\Gamma, \tag{8}$$

$$P\left(\xi_{j,i} = \ell_{r',j} \middle| \Gamma_i = \Gamma^{(r)}, \varkappa_{3,i} = x\right) = 1, \quad \Gamma_{i+1} = \Gamma^{(r')} \in {}^{j}\Gamma, \tag{9}$$

где $j \in \{1, 2, 3\}, x \in \mathbb{Z}_+.$

Введем для $0 < u \leqslant 1$ и $0 \leqslant k \leqslant x$ величину

$$\psi(k, x, u) = C_x^k u^k (1 - u)^{x - k}. \tag{10}$$

Поскольку требования из очереди O_4 независимо друг от друга с вероятностью p_r на выходе системы поступают в очередь O_2 , то количество требований в выходном потоке $\Pi_4^{\text{вых}}$ определяется по биномиальному закону распределения:

$$P\left(\overline{\xi}_{4,i} = b \middle| \Gamma_i = \Gamma^{(r)}, \varkappa_{4,i} = x, \varkappa_{3,i} = \tilde{x}\right) = \psi\left(b, x, p_{r'}\right), \quad \Gamma_{i+1} = \Gamma^{(r')}, \quad 0 \leqslant b \leqslant x.$$
(11)

Введем следующие события:

$$A_{i}(r; x_{1}; x_{2}; x_{3}; x_{4}) = \left\{ \Gamma_{i} = \Gamma^{(r)}, \varkappa_{3,i} = x_{3} \right\} \bigcap \left\{ \varkappa_{1,i} = x_{1}, \varkappa_{2,i} = x_{2}, \varkappa_{4,i} = x_{4} \right\}$$
(12)
$$B_{i}(b_{1}; b_{3}; y_{1}; y_{2}; y_{3}; y_{4}) = \left\{ \eta_{1,i} = b_{1}, \eta_{3,i} = b_{3} \right\} \bigcap \left\{ \xi_{1,i} = y_{1}, \xi_{2,i} = y_{2}, \xi_{3,i} = y_{3}, \overline{\xi}_{4,i} = y_{4} \right\}$$
(13)

В соответствии с описанной структурой системы, количество требований пришедших по потокам Π_1 , Π_3 , Π_1^{Hac} , Π_2^{Hac} , Π_3^{Hac} и Π_4^{Bbix} за (i+1)-ый такт зависит только от состояния обслуживающего устройства и размера очередей в момент τ_i . Поэтому условные распределения рассматриваемых в системе потоков, учитывая все «прошлое» системы удовлетворяют соотношениям

$$P\left(B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) = P\left(B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right)$$
(14)

Далее, в силу того, что потоки насыщения $\Pi_1^{\text{нас}}$, $\Pi_2^{\text{нас}}$, $\Pi_3^{\text{нас}}$, входные потоки Π_1 , Π_3 , а также выходной поток $\Pi_4^{\text{вых}}$ условно независимы между собой, верно следующее

соотношение:

$$P\left(B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$=P\left(\eta_{1,i}=b_{1}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times P\left(\eta_{3,i}=b_{3}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times$$

$$P\left(\xi_{1,i}=y_{1}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times P\left(\xi_{2,i}=y_{2}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times$$

$$P\left(\xi_{3,i}=y_{3};\overline{\xi}_{4,i}=y_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times P\left(\overline{\xi}_{4,i}=y_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{4,i}=x_{4,i}\right)$$

$$(15)$$

Сформулируем и докажем теорему о марковости последовательности $\left\{ \left(\Gamma_{i},\varkappa_{1,i},\varkappa_{2,i},\varkappa_{3,i},\varkappa_{4,i}\right),i\right\}$

Теорема 1.1. При заданном распределении начального вектора $\left(\Gamma_0, \varkappa_{1,0}, \varkappa_{2,0}, \varkappa_{3,0}, \varkappa_{4,0}\right)$ последовательность $\left\{\left(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i}\right), i \geqslant 0\right\}$ является цепью Маркова.

Доказательство. Для доказательства достаточно показать, что

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) = P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right)$$
(16)

Распишем сначала левую часть равенства (16). Учитывая то, что сумма непересекающихся событий B_i ($b_1; b_3; y_1; y_2; y_3; y_4$) есть достоверное событие, $\bigcup_{b,y} B_i$ ($b_1; b_3; y_1; y_2; y_3; y_4$) = Ω получим

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$=\sum_{b,y}P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\bigcap_{t=0}B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$=\sum_{b,y}P\left(B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\middle|\bigcap_{t=0}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right)\times$$

$$\times P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap_{t=0}B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\right)$$

$$(17)$$

Беря во внимание (3) и (4), найдем второй множитель:

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\right)=$$

$$=P\left(\Gamma_{i+1}=\Gamma^{(r)},\varkappa_{1,i+1}=x_{1},\varkappa_{2,i+1}=x_{2},\varkappa_{3,i+1}=x_{3},\varkappa_{4,i+1}=x_{4}\middle|\bigcap_{t=0}^{i-1}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\bigcap\right)$$

$$\bigcap\left\{\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{1,i}=x_{1,i},\varkappa_{2,i}=x_{2,i},\varkappa_{3,i}=x_{3,i},\varkappa_{4,i}=x_{4,i}\right\}\bigcap\right\}$$

$$\bigcap\left\{\eta_{1,i}=b_{1},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3};\overline{\xi}_{4,i}=y_{4}\right\}\right)=$$

$$=P\left(h\left(\Gamma^{(r_{i})},x_{3,i}\right)=\Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\}=x_{1},$$

$$\max\left\{0,x_{2,i}+y_{4}-y_{2}\right\}=x_{2},\max\left\{0,x_{3,i}+b_{3}-y_{3}\right\}=x_{3},x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-\overline{\xi}_{4,i}=x_{4}\right\}\bigcap\right\}$$

$$\bigcap\left\{\eta_{1,i}=b_{1},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3};\overline{\xi}_{4,i}=y_{4}\right\}\right)=$$

$$=P\left(h\left(\Gamma^{(r_{i})},x_{3,i}\right)=\Gamma^{(r)},\max\left\{0,x_{1,i}+b_{1}-y_{1}\right\}=x_{1},$$

$$\max\left\{0,x_{2,i}+y_{4}-y_{2}\right\}=x_{2},\max\left\{0,x_{3,i}+b_{3}-y_{3}\right\}=x_{3},x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-\overline{\xi}_{4,i}=x_{4}\right\},$$

$$\max\left\{0,x_{2,i}+y_{4}-y_{2}\right\}=x_{2},\max\left\{0,x_{3,i}+b_{3}-y_{3}\right\}=x_{3},x_{4,i}+\min\left\{y_{1},x_{1,i}+b_{1}\right\}-\overline{\xi}_{4,i}=x_{4}\right\},$$

$$(18)$$

где последнее равенство верно, поскольку оставшаяся под знаком вероятности величина уже не является случайной. Из (15), (17) и (18) получаем выражение для левой части равенства (16):

$$P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|\bigcap_{t=0}^{i}A_{t}\left(r_{t};x_{1,t};x_{2,t};x_{3,t};x_{4,t}\right)\right) =$$

$$= \sum_{b,y} P\left(\eta_{1,i} = b_{1},\eta_{3,i} = b_{3},\xi_{1,i} = y_{1},\xi_{2,i} = y_{2},\xi_{3,i} = y_{3};\overline{\xi}_{4,i} = y_{4}\middle|\Gamma_{i} = \Gamma^{(r_{i})},\varkappa_{3,i} = x_{3,i}\right) \times$$

$$\times P\left(h\left(\Gamma^{(r_{i})},x_{3,i}\right) = \Gamma^{(r)},\max\left\{0,x_{1,i} + b_{1} - y_{1}\right\} = x_{1},$$

$$\max\left\{0,x_{2,i} + y_{4} - y_{2}\right\} = x_{2},\max\left\{0,x_{3,i} + b_{3} - y_{3}\right\} = x_{3},x_{4,i} + \min\left\{y_{1},x_{1,i} + b_{1}\right\} - \overline{\xi}_{4,i} = x_{4}\right)$$

$$(19)$$

Заметим, что в наших рассуждениях мы нигде не использовали информацию о событиях

 $\bigcap_{t=0}^{i-1} A_t \left(r_t; x_{1,t}; x_{2,t}; x_{3,t}; x_{4,t} \right)$, поэтому рассуждения для правой части (16) будут

аналогичными:

$$\begin{split} P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right) &=\\ &=\sum_{b,y}P\left(B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\right)\times\\ &\times P\left(A_{i+1}\left(r;x_{1};x_{2};x_{3};x_{4}\right)\middle|A_{i}\left(r_{i};x_{1,i};x_{2,i};x_{3,i};x_{4,i}\right)\bigcap B_{i}\left(b_{1};b_{3};y_{1};y_{2};y_{3};y_{4}\right)\right) &=\\ &=\sum_{b,y}P\left(\eta_{1,i}=b_{1},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3};\overline{\xi}_{4,i}=y_{4}\middle|\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{3,i}=x_{3,i}\right)\times\\ &\times P\left(\Gamma_{i+1}=\Gamma^{(r)},\varkappa_{1,i+1}=x_{1},\varkappa_{2,i+1}=x_{2},\varkappa_{3,i+1}=x_{3},\varkappa_{4,i+1}=x_{4}\middle|\right.\\ &\left.\left.\left\{\Gamma_{i}=\Gamma^{(r_{i})},\varkappa_{1,i}=x_{1,i},\varkappa_{2,i}=x_{2,i},\varkappa_{3,i}=x_{3,i},\varkappa_{4,i}=x_{4,i}\right\}\bigcap\right.\right.\\ &\left.\left.\left\{\eta_{1,i}=b_{1},\eta_{3,i}=b_{3},\xi_{1,i}=y_{1},\xi_{2,i}=y_{2},\xi_{2,i}=y_{2},\xi_{3,i}=y_{3};\overline{\xi}_{4,i}=y_{4}\right\}\right)=\end{split}$$

откуда опять в силу (3) и (4) получаем

$$\begin{split} &= \sum_{b,y} P\left(\left.\eta_{1,i} = b_1, \eta_{3,i} = b_3, \xi_{1,i} = y_1, \xi_{2,i} = y_2, \xi_{3,i} = y_3; \overline{\xi}_{4,i} = y_4 \right| \Gamma_i = \Gamma^{(r_i)}, \varkappa_{3,i} = x_{3,i} \right) \times \\ &\qquad \times P\left(h\left(\Gamma^{(r_i)}, x_{3,i}\right) = \Gamma^{(r)}, \max\left\{0, x_{1,i} + b_1 - y_1\right\} = x_1, \right. \\ &\qquad \qquad \left.\left\{0, x_{2,i} + y_4 - y_2\right\} = x_2, \max\left\{0, x_{3,i} + b_3 - y_3\right\} = x_3, x_{4,i} + \min\left\{y_1, x_{1,i} + b_1\right\} - \overline{\xi}_{4,i} = x_4 \right). \end{split}$$

Таким образом, выражения для левой и правой частей (16) совпадают, следовательно равенство верно и последовательность $\left\{ \left(\Gamma_i, \varkappa_{1,i}, \varkappa_{2,i}, \varkappa_{3,i}, \varkappa_{4,i} \right), i \geqslant 0 \right\}$ является цепью Маркова.