# **TrioCFD Reference Manual V1.9.4**

Support team: trust@cea.fr

June 24, 2024

# **Contents**

| 1 | Synt  | ax to define a mathematical function    | 19 |
|---|-------|-----------------------------------------|----|
| 2 | Exis  | ting & predefined fields names          | 21 |
| 3 | inter | rprete                                  | 22 |
|   | 3.1   | Ale_neumann_bc_for_grid_problem         | 23 |
|   | 3.2   | Bloc_lecture                            | 23 |
|   |       | 3.2.1 Bloc_criteres_convergence         | 24 |
|   | 3.3   | Beam_model                              | 24 |
|   | 3.4   | Bloc_lecture_beam_model                 | 24 |
|   | 5.1   | 3.4.1 Bloc_poutre                       | 24 |
|   |       | 3.4.2 Newmarktimescheme_deriv           | 25 |
|   |       | 3.4.3 Hht                               | 25 |
|   |       | 3.4.4 Ma                                | 26 |
|   |       | 3.4.5 Fd                                | 26 |
|   |       |                                         | 26 |
|   |       |                                         |    |
|   | 2.5   | 3.4.7 Un_point                          | 26 |
|   | 3.5   | Create_domain_from_sub_domain           | 26 |
|   | 3.6   | Debogft                                 | 27 |
|   | 3.7   | Write_med                               | 27 |
|   | 3.8   | Extraire_surface_ale                    | 27 |
|   | 3.9   | Ijk_ft_double                           | 28 |
|   | 3.10  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 34 |
|   |       | Link_cgns_files                         | 34 |
|   | 3.12  | Merge_med                               | 34 |
|   | 3.13  | Multiplefiles                           | 34 |
|   | 3.14  | Op_conv_ef_stab_polymac_face            | 35 |
|   | 3.15  | Op_conv_ef_stab_polymac_p0p1nc_elem     | 35 |
|   | 3.16  | Op_conv_ef_stab_polymac_p0p1nc_face     | 35 |
|   | 3.17  | Op_conv_ef_stab_polymac_p0_face         | 35 |
|   |       | Option_cgns                             | 36 |
|   |       | Option_interpolation                    | 36 |
|   |       | Option_polymac                          | 36 |
|   |       | Option_polymac_p0                       | 37 |
|   |       | Parallel_io_parameters                  | 37 |
|   |       | Projection_ale_boundary                 | 38 |
|   |       | Raffiner_isotrope_parallele             | 38 |
|   |       | Read_med                                | 38 |
|   |       | Solver_moving_mesh_ale                  | 39 |
|   |       | Test_sse_kernels                        | 39 |
|   |       |                                         | 40 |
|   |       | Analyse_angle                           |    |
|   |       | Associate                               | 40 |
|   |       | Associer_algo                           | 40 |
|   |       | Associer_pbmg_pbfin                     | 41 |
|   |       | Associer_pbmg_pbgglobal                 | 41 |
|   |       | Axi                                     | 41 |
|   |       | Bidim_axi                               | 41 |
|   |       | Calculer_moments                        | 42 |
|   | 3.36  | Lecture_bloc_moment_base                | 42 |
|   |       | 3.36.1 Calcul                           | 42 |
|   |       | 3.36.2 Centre_de_gravite                | 42 |
|   | 3.37  | Corriger frontiere periodique           | 42 |

| 3.38 | Create_domain_from_sous_zone | 43       |
|------|------------------------------|----------|
|      | Criteres_convergence         | 43       |
|      | Debog                        | 44       |
|      | {                            | 44       |
|      | Decoupebord                  | 44       |
|      | Decouper_bord_coincident     | 45       |
| 2.43 | Dilata                       | 45       |
|      | Dilate                       |          |
|      | Dimension                    | 46       |
|      | Disable_tu                   | 46       |
|      | Discretiser_domaine          | 46       |
| 3.48 | Discretize                   | 46       |
|      | Distance_paroi               | 47       |
|      | Ecrire_champ_med             | 47       |
|      | Ecrire_fichier_formatte      | 47       |
|      | Ecrire_fichier_xyz_valeur    | 47       |
| 3.53 | Ecriturelecturespecial       | 48       |
| 3.54 | Espece                       | 48       |
|      | Execute_parallel             | 49       |
|      | Export                       | 49       |
|      | Extract_2d_from_3d           | 49       |
|      | Extract_2daxi_from_3d        | 49       |
|      | Extraire_domaine             | 50       |
| 3.60 | Extraire_plan                | 50       |
|      | Extraire_surface             | 51       |
|      | Extrudebord                  | 52       |
|      |                              | 52<br>52 |
|      | Extrudeparoi                 |          |
|      | Extruder                     | 53       |
|      | Troisf                       | 53       |
| 3.66 | Extruder_en20                | 54       |
|      | Extruder_en3                 | 54       |
|      | Facsec                       | 54       |
|      | End                          | 55       |
|      | }                            | 55       |
|      | Imposer_vit_bords_ale        | 56       |
| 3.72 | Imprimer_flux                | 56       |
|      | Imprimer_flux_sum            | 56       |
|      | Integrer_champ_med           | 57       |
|      | Interfaces                   | 57       |
| 3.76 | Interprete_geometrique_base  | 58       |
|      | Lata_2_med                   | 58       |
|      | Format_lata_to_med           | 58       |
|      | Lata_2_other                 | 58       |
|      | Lire ideas                   | 59       |
|      | Lml_2_lata                   | 59       |
|      |                              | 59       |
|      |                              |          |
| 3.03 | List_bloc_mailler            | 60       |
|      | 3.83.1 Mailler_base          | 60       |
|      | 3.83.2 Epsilon               | 60       |
|      | 3.83.3 Domain                | 60       |
|      | 3.83.4 Pave                  | 60       |
|      | 3.83.5 Bloc_pave             | 61       |
|      | 3.83.6 List_bord             | 62       |
|      | 3.83.7 Bord_base             | 62       |
|      | 3.83.8 Rord                  | 62       |

| 3.83.9 Defbord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 3.83.10 Defbord_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63                                                                                                                                     |
| 3.83.11 Defbord_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63                                                                                                                                     |
| 3.83.12 Raccord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63                                                                                                                                     |
| 3.83.13 Internes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64                                                                                                                                     |
| 3.84 Maillerparallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64                                                                                                                                     |
| 3.85 Modif_bord_to_raccord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65                                                                                                                                     |
| 3.86 Modifydomaineaxi1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65                                                                                                                                     |
| 3.87 Moyenne_volumique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66                                                                                                                                     |
| 3.88 Multigrid_solver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67                                                                                                                                     |
| 3.89 Coarsen_operators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68                                                                                                                                     |
| 3.89.1 Coarsen_operator_uniform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68                                                                                                                                     |
| 3.90 Nettoiepasnoeuds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68                                                                                                                                     |
| 3.91 Option_vdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 69                                                                                                                                     |
| 3.92 Orientefacesbord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                                                                                                                                     |
| 3.93 Partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69                                                                                                                                     |
| 3.94 Bloc_decouper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                     |
| 3.95 Partition_multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                                                                                     |
| 3.96 Pilote_icoco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71                                                                                                                                     |
| 3.97 Polyedriser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72                                                                                                                                     |
| 3.98 Postraiter_domaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72                                                                                                                                     |
| 3.99 Precisiongeom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |
| 3.100Raffiner_anisotrope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73                                                                                                                                     |
| 3.101Raffiner_isotrope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |
| 3.102Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |
| 3.103Read_file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |
| 2 104Dand file binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |
| 3.104Read_file_binary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |
| 3.105Lire_tgrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                                                                                                     |
| 3.105Lire_tgrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75                                                                                                                               |
| 3.105Lire_tgrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75<br>76                                                                                                                         |
| 3.105Lire_tgrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75<br>76<br>76                                                                                                                   |
| 3.105Lire_tgrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75<br>76<br>76<br>76                                                                                                             |
| 3.105Lire_tgrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75<br>76<br>76<br>76<br>77                                                                                                       |
| 3.105Lire_tgrid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75<br>75<br>76<br>76<br>76<br>77<br>77                                                                                                 |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem                                                                                                                                                                                                                                                                                                                                        | 75<br>76<br>76<br>76<br>76<br>77<br>77                                                                                                 |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc                                                                                                                                                                                                                                                                                                                  | 75<br>76<br>76<br>76<br>77<br>77<br>78<br>78                                                                                           |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries                                                                                                                                                                                                                                                                          | 75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79                                                                                     |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres                                                                                                                                                                                                                                               | 75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79                                                                                     |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles                                                                                                                                                                                                                     | 75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79                                                                         |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner                                                                                                                                                                                                     | 75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79                                                                         |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals                                                                                                                                                                                      | 75<br>75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79<br>79                                                             |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation                                                                                                                                                                        | 75<br>75<br>76<br>76<br>76<br>77<br>77<br>78<br>79<br>79<br>79<br>80<br>80                                                             |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter                                                                                                                                                           | 75<br>75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>79<br>79<br>79<br>80<br>80<br>80                                                 |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed                                                                                                                                           | 75<br>75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81                                           |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed 3.122Solve                                                                                                                                | 75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81                                           |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed 3.122Solve 3.123Stat_per_proc_perf_log                                                                                                    | 75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81                                     |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed 3.122Solve 3.123Stat_per_proc_perf_log 3.124Supprime_bord                                                                                 | 75<br>75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81<br>81                         |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed 3.122Solve 3.123Stat_per_proc_perf_log 3.124Supprime_bord 3.125List_nom                                                                   | 75<br>75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81<br>81<br>82                         |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed 3.122Solve 3.123Stat_per_proc_perf_log 3.124Supprime_bord 3.125List_nom 3.126System                                                       | 75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81<br>81<br>82<br>82             |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.12Scatter 3.12Scatter 4.3.12Scattermed 3.12Solve 3.12Solve 3.12Solve 3.12Stat_per_proc_perf_log 3.12SList_nom 3.12SList_nom 3.12System 3.12Trest_solveur             | 75<br>75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81<br>82<br>82<br>82             |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed 3.122Solve 3.123Stat_per_proc_perf_log 3.124Supprime_bord 3.125List_nom 3.126System 3.127Test_solveur 3.127Test_solveur 3.127Test_solveur | 75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81<br>81<br>82<br>82<br>82<br>83 |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.12Scatter 3.12Scatter 4.3.12Scattermed 3.12Solve 3.12Solve 3.12Solve 3.12Stat_per_proc_perf_log 3.12SList_nom 3.12SList_nom 3.12System 3.12Trest_solveur             | 75<br>75<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81<br>82<br>82<br>82             |
| 3.105Lire_tgrid 3.106Read_unsupported_ascii_file_from_icem 3.107Orienter_simplexes 3.108Redresser_hexaedres_vdf 3.109Refine_mesh 3.110Regroupebord 3.111Remaillage_ft_ijk 3.112Remove_elem 3.113Remove_elem_bloc 3.114Remove_invalid_internal_boundaries 3.115Reorienter_tetraedres 3.116Reorienter_triangles 3.117Reordonner 3.118Residuals 3.119Rotation 3.120Scatter 3.121Scattermed 3.122Solve 3.123Stat_per_proc_perf_log 3.124Supprime_bord 3.125List_nom 3.126System 3.127Test_solveur 3.127Test_solveur 3.127Test_solveur | 75<br>76<br>76<br>76<br>76<br>77<br>77<br>78<br>78<br>79<br>79<br>79<br>80<br>80<br>80<br>81<br>81<br>81<br>81<br>82<br>82<br>82<br>83 |

|   | 3.132Tet | raed | riser_homogene_compact                 | 84       |
|---|----------|------|----------------------------------------|----------|
|   | 3.133Tet | raed | riser_homogene_fin                     | 85       |
|   | 3.134Tet | raed | riser_par_prisme                       | 86       |
|   |          |      | que_bloc                               | 86       |
|   |          |      | rmer                                   | 87       |
|   |          |      | ller                                   | 87       |
|   |          |      | ıler_fin                               | 88       |
|   |          |      | ller_h                                 | 88       |
|   |          |      |                                        | 89       |
|   |          |      | DM                                     | 89       |
|   |          |      | _simplexes                             | 89       |
|   |          |      | coin                                   | 89       |
|   |          |      | coin_bloc                              | 90       |
|   |          |      |                                        | 90       |
|   |          |      | fichier_bin                            | 90       |
|   | 3.1 TOEC |      | nemer_om                               | 70       |
| 4 | pb_gen_  | base |                                        | 90       |
|   |          |      |                                        | 91       |
|   |          |      | postraitement                          | 92       |
|   | 4.2      |      | Definition_champs                      | 93       |
|   | 4.2      |      | Definition_champ                       | 93       |
|   | 4.2      |      |                                        | 93       |
|   | 4.2      |      | Sondes                                 | 94       |
|   | 4.2      |      | Sonde                                  | 94       |
|   | 4.2      |      | Sonde_base                             | 94       |
|   | 4.2      |      | Points                                 | 95       |
|   | 4.2      |      | Point                                  | 95       |
|   | 4.2      |      | Segmentpoints                          | 95       |
|   |          |      | Numero_elem_sur_maitre                 | 95       |
|   |          |      | Position_like                          | 96       |
|   |          |      | Segment                                | 96       |
|   |          |      | Plan                                   | 96       |
|   |          |      | Volume                                 | 96       |
|   |          |      | Circle                                 | 90       |
|   |          |      | Circle_3                               | 97       |
|   |          |      |                                        | 97       |
|   |          |      |                                        | 98       |
|   |          |      | 8                                      | 98<br>98 |
|   |          |      | Segmentfacesz                          | 98<br>98 |
|   |          |      | Radius                                 |          |
|   | 4.2      |      | Sondes_fichier                         | 98       |
|   |          |      | Champs_posts                           | 99       |
|   |          |      | Champs_a_post                          | 99       |
|   |          |      | Champ_a_post                           | 99       |
|   |          |      | Champs_posts_fichier                   | 99       |
|   |          |      | <u></u> 1                              | 100      |
|   |          |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 101      |
|   |          |      |                                        | 101      |
|   |          |      |                                        | 101      |
|   |          |      | _                                      | 01       |
|   |          |      |                                        | 01       |
|   |          |      |                                        | 02       |
|   |          |      |                                        | 02       |
|   |          |      |                                        | 02       |
|   | 4.2      | .35  | Stats serie posts                      | 03       |

|      | 4.2.36 Stats_serie_posts_fichier                         |
|------|----------------------------------------------------------|
| 4.3  | Post_processings                                         |
|      | 4.3.1 Un_postraitement                                   |
| 4.4  | Liste_post_ok                                            |
|      | 4.4.1 Nom_postraitement                                  |
|      | 4.4.2 Postraitement_base                                 |
|      | 4.4.3 Post_processing                                    |
|      | 4.4.4 Postraitement_ft_lata                              |
| 4.5  | Liste_post                                               |
|      | 4.5.1 Un_postraitement_spec                              |
|      | 4.5.2 Type_un_post                                       |
|      | 4.5.3 Type_postraitement_ft_lata                         |
| 4.6  | Format_file                                              |
| 4.0  |                                                          |
|      | Pb_hydraulique_cloned_concentration                      |
| 4.8  | Pb_hydraulique_cloned_concentration_turbulent            |
| 4.9  | Pb_hydraulique_list_concentration                        |
|      | Listeqn                                                  |
|      | Pb_hydraulique_list_concentration_turbulent              |
|      | Pb_hydraulique_turbulent_ale                             |
|      | Pb_hydraulique_sensibility                               |
| 4.14 | Pb_multiphase                                            |
| 4.15 | Pb_hem                                                   |
| 4.16 | Pb_rayo_conduction                                       |
| 4.17 | Pb_rayo_hydraulique                                      |
|      | Pb_rayo_hydraulique_turbulent                            |
|      | Pb_rayo_thermohydraulique                                |
|      | Pb_rayo_thermohydraulique_qc                             |
|      | Pb_rayo_thermohydraulique_turbulent                      |
|      | Pb_rayo_thermohydraulique_turbulent_qc                   |
|      | Pb_thermohydraulique_cloned_concentration                |
|      | Pb_thermohydraulique_cloned_concentration_turbulent      |
|      | Pb_thermohydraulique_list_concentration                  |
|      | Pb_thermohydraulique_list_concentration_turbulent        |
|      | Pb thermohydraulique sensibility                         |
|      |                                                          |
|      | Pb_base                                                  |
|      | Probleme_couple                                          |
|      | List_list_nom                                            |
|      | Modele_rayo_semi_transp                                  |
| 4.32 | Eq_rayo_semi_transp                                      |
|      | 4.32.1 Condlims                                          |
|      | 4.32.2 Condlimlu                                         |
| 4.33 | Pb_avec_liste_conc                                       |
| 4.34 | Pb_avec_passif                                           |
| 4.35 | Pb_couple_rayo_semi_transp                               |
| 4.36 | Pb_hydraulique                                           |
|      | Pb_hydraulique_ale                                       |
|      | Pb_hydraulique_aposteriori                               |
|      | Pb_hydraulique_concentration                             |
|      | Pb_hydraulique_concentration_scalaires_passifs           |
|      | Pb_hydraulique_concentration_turbulent                   |
|      | Pb_hydraulique_concentration_turbulent_scalaires_passifs |
|      | Pb_hydraulique_melange_binaire_qc                        |
|      | Pb_hydraulique_melange_binaire_wc                        |
|      | Pb hydraulique melange binaire turbulent ac              |

|   | 4.46 | Pb_hydraulique_turbulent                                       |
|---|------|----------------------------------------------------------------|
|   | 4.47 | Pb_mg 153                                                      |
|   | 4.48 | Pb_phase_field                                                 |
|   | 4.49 | Pb_post                                                        |
|   | 4.50 | Pb_thermohydraulique                                           |
|   |      | Pb_thermohydraulique_qc                                        |
|   |      | Pb_thermohydraulique_wc                                        |
|   |      | Pb_thermohydraulique_concentration                             |
|   |      | Pb_thermohydraulique_concentration_scalaires_passifs           |
|   |      | Pb_thermohydraulique_concentration_turbulent                   |
|   |      | Pb_thermohydraulique_concentration_turbulent_scalaires_passifs |
|   |      | Pb_thermohydraulique_especes_qc                                |
|   |      | Pb_thermohydraulique_especes_wc                                |
|   |      | Pb_thermohydraulique_especes_turbulent_qc                      |
|   |      |                                                                |
|   |      | Pb_thermohydraulique_scalaires_passifs                         |
|   |      | Pb_thermohydraulique_turbulent                                 |
|   |      | Pb_thermohydraulique_turbulent_qc                              |
|   |      | Pb_thermohydraulique_turbulent_scalaires_passifs               |
|   |      | Pbc_med                                                        |
|   | 4.65 | List_info_med                                                  |
|   |      | 4.65.1 Info_med                                                |
|   | 4.66 | Problem_read_generic                                           |
|   | 4.67 | Pb_couple_rayonnement                                          |
|   | 4.68 | Probleme_ft_disc_gen                                           |
|   |      |                                                                |
| 5 | mor  |                                                                |
|   | 5.1  | Conduction                                                     |
|   | 5.2  | Bloc_convection                                                |
|   |      | 5.2.1 Convection_deriv                                         |
|   |      | 5.2.2 Amont                                                    |
|   |      | 5.2.3 Amont_old                                                |
|   |      | 5.2.4 Centre                                                   |
|   |      | 5.2.5 Centre4                                                  |
|   |      | 5.2.6 Centre_old                                               |
|   |      | 5.2.7 Di_12                                                    |
|   |      | 5.2.8 Ef                                                       |
|   |      | 5.2.9 Bloc_ef                                                  |
|   |      | 5.2.10 Muscl3                                                  |
|   |      | 5.2.11 Ef_stab                                                 |
|   |      | 5.2.12 Listsous_zone_valeur                                    |
|   |      | 5.2.13 Sous_zone_valeur                                        |
|   |      |                                                                |
|   |      |                                                                |
|   |      | 1                                                              |
|   |      |                                                                |
|   |      | 5.2.17 Muscl_old                                               |
|   |      | 5.2.18 Muscl_new                                               |
|   |      | 5.2.19 Negligeable                                             |
|   |      | 5.2.20 Quick                                                   |
|   |      | 5.2.21 Btd                                                     |
|   |      | 5.2.22 Supg                                                    |
|   |      | 5.2.23 Ale                                                     |
|   |      | 5.2.24 Rt                                                      |
|   |      | 5.2.25 Sensibility                                             |
|   |      | Rloc diffusion 184                                             |

|      | 5.3.1 Diffusion_deriv                                | 184 |
|------|------------------------------------------------------|-----|
|      | 5.3.2 Negligeable                                    | 184 |
|      | 5.3.3 P1b                                            | 184 |
|      | 5.3.4 P1ncp1b                                        | 185 |
|      | 5.3.5 Stab                                           |     |
|      | 5.3.6 Standard                                       |     |
|      | 5.3.7 Bloc_diffusion_standard                        |     |
|      | 5.3.8 Option                                         |     |
|      | 5.3.9 Turbulente                                     |     |
|      | 5.3.10 Type_diffusion_turbulente_multiphase_deriv    |     |
|      | 5.3.11 Prandtl                                       |     |
|      | 5.3.12 Wale                                          |     |
|      |                                                      |     |
|      | 5.3.13 Smago                                         |     |
|      | 5.3.14 Sgdh                                          |     |
|      | 5.3.15 L_melange                                     |     |
|      | 5.3.16 K_tau                                         |     |
|      | 5.3.17 K_omega                                       |     |
|      | 5.3.18 Tenseur_reynolds_externe                      |     |
|      | 5.3.19 Op_implicite                                  |     |
| 5.4  | Condinits                                            | 190 |
|      | 5.4.1 Condinit                                       | 190 |
| 5.5  | Sources                                              | 190 |
| 5.6  | Parametre_equation_base                              | 190 |
|      | 5.6.1 Parametre_implicite                            | 191 |
|      | 5.6.2 Parametre_diffusion_implicite                  |     |
| 5.7  | Convection_diffusion_concentration_turbulent_ft_disc |     |
| 5.8  | Convection_diffusion_espece_binaire_turbulent_qc     |     |
| 5.9  |                                                      |     |
|      | Pp                                                   |     |
| 0    | 5.10.1 Penalisation_12_ftd_lec                       |     |
| 11   | Echelle_temporelle_turbulente                        |     |
|      | Energie_multiphase                                   |     |
|      | Energie_cinetique_turbulente                         |     |
|      |                                                      |     |
|      | Energie_cinetique_turbulente_wit                     |     |
|      | Masse_multiphase                                     |     |
|      | Navier_stokes_aposteriori                            |     |
|      | Deuxmots                                             |     |
|      | Floatfloat                                           |     |
| 5.19 | Traitement_particulier                               |     |
|      | 5.19.1 Traitement_particulier_base                   |     |
|      | 5.19.2 Temperature                                   |     |
|      | 5.19.3 Canal                                         | 204 |
|      | 5.19.4 Ec                                            | 204 |
|      | 5.19.5 Thi                                           | 205 |
|      | 5.19.6 Thi_thermo                                    | 205 |
|      | 5.19.7 Chmoy_faceperio                               | 206 |
|      | 5.19.8 Profils_thermo                                |     |
|      | 5.19.9 Brech                                         |     |
|      | 5.19.10 Ceg                                          |     |
|      | 5.19.11 Ceg_areva                                    |     |
|      | 5.19.12 Ceg_cea_jaea                                 |     |
| 30   | Navier_stokes_turbulent_ale                          |     |
|      |                                                      | 200 |
| 21   |                                                      |     |
| 5.21 | Modele_turbulence_hyd_deriv                          |     |

|      | 5.21.2 Mod_turb_hyd_ss_maille                  |     |
|------|------------------------------------------------|-----|
|      | 5.21.3 Form_a_nb_points                        |     |
|      | 5.21.4 Sous_maille_wale                        |     |
|      | 5.21.5 Sous_maille_smago                       |     |
|      | 5.21.6 Longueur_melange                        |     |
|      | 5.21.7 Sous_maille_selectif_mod                |     |
|      | 5.21.8 Deuxentiers                             |     |
|      | 5.21.9 Floatentier                             |     |
|      | 5.21.10 Sous_maille_selectif                   |     |
|      | 5.21.11 Sous_maille_1elt                       |     |
|      | 5.21.12 Sous_maille_1elt_selectif_mod          |     |
|      | 5.21.13 Sous_maille_axi                        |     |
|      | 5.21.14 Sous_maille_smago_filtre               |     |
|      | 5.21.15 Sous_maille_smago_dyn                  |     |
|      | 5.21.16 Combinaison                            |     |
|      | 5.21.17 Sous_maille                            |     |
|      | 5.21.18 Null                                   |     |
|      | 5.21.19 Mod_turb_hyd_rans                      |     |
|      | 5.21.20 Mod_turb_hyd_rans_bicephale            |     |
|      | 5.21.21 K_epsilon_bicephale                    |     |
|      | 5.21.22 K_epsilon_realisable_bicephale         |     |
|      | 5.21.23 K_omega                                |     |
|      | 5.21.24 K_epsilon                              |     |
|      | 5.21.26 Lam_bremhorst                          |     |
|      | 5.21.27 Easm_baglietto                         |     |
|      | 5.21.28 Standard_keps                          |     |
|      | 5.21.29 Jones_launder                          |     |
|      | 5.21.30 Launder_sharma                         |     |
|      | 5.21.31 Mod_turb_hyd_rans_keps                 |     |
|      | 5.21.32 Mod_turb_hyd_rans_komega               |     |
|      | 5.21.33 K_epsilon_realisable                   |     |
| 5 22 | Navier_stokes_standard_sensibility             |     |
|      | Navier_stokes_std_ale                          |     |
|      | Qdm_multiphase                                 |     |
|      | Taux_dissipation_turbulent                     |     |
|      | Transport_k_eps_realisable                     |     |
|      | Convection_diffusion_chaleur_qc                |     |
|      | Convection_diffusion_chaleur_wc                |     |
|      | Convection_diffusion_chaleur_turbulent_qc      |     |
|      | Convection_diffusion_concentration             |     |
|      | Convection_diffusion_concentration_ft_disc     |     |
|      | Convection_diffusion_concentration_turbulent   |     |
|      | Convection_diffusion_espece_binaire_qc         | 251 |
|      | Convection_diffusion_espece_binaire_wc         | 252 |
|      | Convection_diffusion_espece_multi_qc           | 252 |
|      | Convection_diffusion_espece_multi_wc           |     |
|      | Convection_diffusion_espece_multi_turbulent_qc |     |
|      | Convection_diffusion_phase_field               |     |
|      | Convection_diffusion_temperature               |     |
|      | Convection_diffusion_temperature_ft_disc       |     |
|      | Objet_lecture_maintien_temperature             |     |
|      | Convection_diffusion_temperature_turbulent     |     |
| 5.43 | Eqn_base                                       | 260 |

|    | 5.44   | Navier_stokes_qc               | 260        |
|----|--------|--------------------------------|------------|
|    | 5.45   | Navier_stokes_wc               | 262        |
|    | 5.46   | Navier_stokes_ft_disc          | 264        |
|    | 5.47   | Penalisation_forcage           | 268        |
|    |        | Navier_stokes_phase_field      |            |
|    |        | Approx_boussinesq              |            |
|    |        | 5.49.1 Bloc_boussinesq         |            |
|    |        | 5.49.2 Bloc_rho_fonc_c         |            |
|    | 5.50   | Visco_dyn_cons                 |            |
|    |        | 5.50.1 Bloc_visco2             |            |
|    |        | 5.50.2 Bloc_mu_fonc_c          |            |
|    | 5.51   | Navier_stokes_standard         |            |
|    |        | Navier_stokes_turbulent        |            |
|    |        | Navier_stokes_turbulent_qc     |            |
|    |        | Transport_epsilon              |            |
|    |        | Transport_interfaces_ft_disc   |            |
|    |        | Methode_transport_deriv        |            |
|    | 3.50   | 5.56.1 Loi_horaire             |            |
|    |        | 5.56.2 Vitesse_imposee         |            |
|    |        | 5.56.3 Vitesse_interpolee      |            |
|    | 5 57   | Bloc_lecture_remaillage        |            |
|    |        | Parcours_interface             |            |
|    |        | Interpolation_champ_face_deriv |            |
|    | 3.37   | 5.59.1 Base                    |            |
|    |        | 5.59.2 Lineaire                |            |
|    | 5 60   | Type_indic_faces_deriv         |            |
|    | 3.00   | 5.60.1 Standard                |            |
|    |        | 5.60.2 Modifiee                |            |
|    |        | 5.60.3 Ai_based                |            |
|    | 5.61   | Transport_k                    |            |
|    |        | Transport_k_epsilon            |            |
|    |        | Transport_k_omega              |            |
|    |        | Transport_marqueur_ft          |            |
|    |        | Injection_marqueur             |            |
|    | 5.05   | Injection_marqueur             | 27 I       |
| 6  | ijk_s  | plitting                       | 291        |
|    |        |                                |            |
| 7  |        | <del>-</del>                   | 291        |
|    | 7.1    | _ <del></del>                  | 292        |
|    | 7.2    | <del>-</del>                   | 292        |
|    | 7.3    |                                | 292        |
|    | 7.4    | Saturation_sodium              | 293        |
| 8  | triple | e_line_model_ft_disc           | 293        |
| 9  | alge   | base                           | 295        |
| •  | 9.1    | -                              | 295        |
|    |        |                                |            |
| 10 | /*     |                                | <b>295</b> |

| 11        | champ_generique_base                               | 296   |
|-----------|----------------------------------------------------|-------|
|           | 11.1 Champ_post_de_champs_post                     | 296   |
|           | 11.2 List_nom_virgule                              | 296   |
|           | 11.3 Listchamp_generique                           | 296   |
|           | 11.4 Champ_post_operateur_base                     | 297   |
|           | 11.5 Champ_post_operateur_eqn                      | 297   |
|           | 11.6 Champ_post_statistiques_base                  | 298   |
|           | 11.7 Correlation                                   |       |
|           | 11.8 Champ_post_operateur_divergence               | 299   |
|           | 11.9 Ecart_type                                    |       |
|           | 11.10Champ_post_extraction                         |       |
|           | 11.11Champ_post_operateur_gradient                 |       |
|           | 11.12Champ_post_interpolation                      |       |
|           | 11.13Champ_post_morceau_equation                   |       |
|           | 11.14Moyenne                                       |       |
|           | 11.15Predefini                                     |       |
|           | 11.16Champ_post_reduction_0d                       |       |
|           | 11.17Champ_post_refchamp                           |       |
|           | 11.18Champ_post_tparoi_vef                         |       |
|           | 11.19Champ_post_transformation                     |       |
|           |                                                    | 200   |
| <b>12</b> | chimie                                             | 307   |
|           | 12.1 Reactions                                     | 307   |
|           | 12.1.1 Reaction                                    | 307   |
|           |                                                    | • • • |
| 13        | class_generic                                      | 308   |
|           | 13.1 Modele_fonc_realisable                        |       |
|           | 13.2 Modele_fonc_realisable_base                   |       |
|           | 13.3 Modele_shih_zhu_lumley_vdf                    |       |
|           | 13.4 Shih_zhu_lumley                               |       |
|           | 13.5 Amgx                                          |       |
|           | 13.6 Cholesky                                      |       |
|           | 13.7 Dt_calc                                       |       |
|           | 13.8 Dt_fixe                                       |       |
|           | 13.9 Dt_min                                        | 310   |
|           | 13.10Dt_start                                      | 310   |
|           | 13.11Gcp_ns                                        | 311   |
|           | 13.12Gen                                           | 311   |
|           | 13.13Gmres                                         | 312   |
|           | 13.14Optimal                                       | 313   |
|           | 13.15Petsc                                         | 313   |
|           | 13.16Rocalution                                    | 317   |
|           | 13.17Gcp                                           | 318   |
|           | 13.18Solveur_sys_base                              | 319   |
|           |                                                    |       |
| 14        |                                                    | 319   |
|           | 14.1 #                                             | 319   |
| 15        | condlim_base                                       | 319   |
| 13        | 15.1 Cond_lim_k_complique_transition_flux_nul_demi |       |
|           | 15.2 Cond_lim_k_simple_flux_nul                    |       |
|           | 15.3 Cond_lim_omega_demi                           |       |
|           | 15.4 Cond_lim_omega_dix                            |       |
|           | 15.5 Echange couplage thermique                    |       |

| 15.6 Paroi_echange_interne_global_impose                    | 320 |
|-------------------------------------------------------------|-----|
| 15.7 Paroi_echange_interne_global_parfait                   |     |
| 15.8 Paroi_echange_interne_impose                           |     |
| 15.9 Paroi_echange_interne_parfait                          |     |
| 15.10Neumann_homogene                                       |     |
| 15.11Neumann_paroi                                          |     |
| 15.12Neumann_paroi_adiabatique                              |     |
| 15.13Paroi                                                  |     |
| 15.14Paroi_frottante_loi                                    |     |
| 15.15Paroi_frottante_simple                                 | 322 |
| 15.16Contact_vdf_vef                                        | 322 |
| 15.17Contact_vef_vdf                                        | 323 |
| 15.18Dirichlet                                              |     |
| 15.19Echange_contact_rayo_transp_vdf                        | 323 |
| 15.20Echange_contact_vdf_ft_disc                            | 323 |
| 15.21Echange_contact_vdf_ft_disc_solid                      |     |
| 15.22Entree_temperature_imposee_h                           | 324 |
| 15.23Flux_radiatif                                          | 325 |
| 15.24Flux_radiatif_vdf                                      | 325 |
| 15.25Flux_radiatif_vef                                      | 325 |
| 15.26Frontiere_ouverte                                      | 326 |
| 15.27Frontiere_ouverte_concentration_imposee                | 326 |
| 15.28Frontiere_ouverte_fraction_massique_imposee            | 326 |
| 15.29Frontiere_ouverte_gradient_pression_impose             |     |
| 15.30Frontiere_ouverte_gradient_pression_impose_vefprep1b   | 327 |
| 15.31Frontiere_ouverte_gradient_pression_libre_vef          | 327 |
| 15.32Frontiere_ouverte_gradient_pression_libre_vefprep1b    |     |
| 15.33Frontiere_ouverte_k_eps_impose                         | 327 |
| 15.34Frontiere_ouverte_pression_imposee                     | 327 |
| 15.35Frontiere_ouverte_pression_imposee_orlansky            | 328 |
| 15.36Frontiere_ouverte_pression_moyenne_imposee             |     |
| 15.37Frontiere_ouverte_rayo_semi_transp                     |     |
| 15.38Frontiere_ouverte_rayo_transp                          |     |
| 15.39Frontiere_ouverte_rayo_transp_vdf                      |     |
| 15.40Frontiere_ouverte_rayo_transp_vef                      |     |
| 15.41Frontiere_ouverte_rho_u_impose                         |     |
| 15.42Frontiere_ouverte_temperature_imposee                  |     |
| 15.43Frontiere_ouverte_temperature_imposee_rayo_semi_transp | 330 |
|                                                             | 330 |
|                                                             | 330 |
|                                                             | 331 |
|                                                             | 331 |
|                                                             | 331 |
|                                                             | 331 |
|                                                             | 332 |
|                                                             | 332 |
|                                                             | 333 |
|                                                             | 333 |
|                                                             | 333 |
|                                                             | 333 |
|                                                             | 334 |
|                                                             | 335 |
|                                                             | 336 |
| 15 50Paroi echange contact vdf                              | 336 |

|    | 15.60Paroi_echange_contact_vdf_ft                                  |     |
|----|--------------------------------------------------------------------|-----|
|    | 15.61Paroi_echange_contact_vdf_zoom_fin                            | 337 |
|    | 15.62Paroi_echange_contact_vdf_zoom_grossier                       | 337 |
|    | 15.63Paroi_echange_externe_impose                                  |     |
|    | 15.64Paroi_echange_externe_impose_h                                |     |
|    | 15.65Paroi_echange_externe_impose_rayo_semi_transp                 |     |
|    | 15.66Paroi_echange_externe_impose_rayo_transp                      |     |
|    | 15.67Paroi_echange_global_impose                                   |     |
|    | 15.68Paroi_fixe                                                    |     |
|    | 15.69Paroi fixe iso genepi2 sans contribution aux vitesses sommets |     |
|    |                                                                    |     |
|    | 15.70Paroi_flux_impose                                             |     |
|    | 15.71Paroi_flux_impose_rayo_semi_transp_vdf                        |     |
|    | 15.72Paroi_flux_impose_rayo_semi_transp_vef                        |     |
|    | 15.73Paroi_flux_impose_rayo_transp                                 |     |
|    | 15.74Paroi_ft_disc                                                 |     |
|    | 15.75Paroi_ft_disc_deriv                                           |     |
|    | 15.75.1 Symetrie                                                   |     |
|    | 15.75.2 Constant                                                   |     |
|    | 15.76Paroi_knudsen_non_negligeable                                 | 341 |
|    | 15.77Paroi_rugueuse                                                | 342 |
|    | 15.78Paroi_temperature_imposee                                     |     |
|    | 15.79Paroi_temperature_imposee_rayo_semi_transp                    |     |
|    | 15.80Paroi_temperature_imposee_rayo_transp                         |     |
|    | 15.81Periodique                                                    |     |
|    | 15.82Scalaire_impose_paroi                                         |     |
|    | 15.83Sortie_libre_rho_variable                                     |     |
|    | 15.84Sortie_libre_temperature_imposee_h                            |     |
|    | 15.85Symetrie                                                      |     |
|    |                                                                    |     |
|    | 15.86Temperature_imposee_paroi                                     | 344 |
| 16 | discretisation_base                                                | 344 |
| 10 | 16.1 Ef                                                            |     |
|    |                                                                    |     |
|    | 16.2 Polymac                                                       |     |
|    | 16.3 Polymac_p0p1nc                                                |     |
|    | 16.4 Polymac_p0                                                    |     |
|    | 16.5 Vdf                                                           |     |
|    | 16.6 Vef                                                           | 345 |
| 4. |                                                                    | 246 |
| 17 | domaine                                                            | 346 |
|    | 17.1 Domaineaxi1d                                                  |     |
|    | 17.2 Ijk_grid_geometry                                             |     |
|    | 17.3 Domaine_ale                                                   | 347 |
|    |                                                                    |     |
| 18 | champ_base                                                         | 347 |
|    | 18.1 Champ_base                                                    |     |
|    | 18.2 Champ_fonc_interp                                             |     |
|    | 18.3 Champ_fonc_med_table_temps                                    |     |
|    | 18.4 Champ_fonc_med_tabule                                         | 349 |
|    | 18.5 Champ_tabule_morceaux                                         | 350 |
|    | 18.6 Champ_fonc_tabule_morceaux_interp                             | 350 |
|    | 18.7 Champ_parametrique                                            |     |
|    | 18.8 Champ_composite                                               |     |
|    | 18.9 Champ_don_base                                                |     |
|    | 18.10Champ don lu                                                  |     |
|    |                                                                    |     |

| 18.11Champ_fonc_fonction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 18.12Champ_fonc_fonction_txyz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br>352                                                                                                                           |
| 18.13Champ_fonc_fonction_txyz_morceaux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>352                                                                                                                           |
| 18.14Champ_fonc_med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>352                                                                                                                           |
| 18.15Champ_fonc_reprise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>353                                                                                                                           |
| 18.16Fonction_champ_reprise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>354                                                                                                                           |
| 18.17Champ_fonc_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |
| 18.18Champ_fonc_tabule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |
| 18.19Champ_init_canal_sinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |
| 18.20Bloc_lec_champ_init_canal_sinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |
| 18.21Champ_input_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |
| 18.22Champ_input_p0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |
| 18.23Champ_input_p0_composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                   |
| 18.24Champ_musig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |
| 18.25Champ_ostwald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |
| 18.26Champ_som_lu_vdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |
| 18.27Champ_som_lu_vef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |
| 18.28Champ_tabule_temps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                   |
| 18.29Champ_uniforme_morceaux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                   |
| 18.30Champ_uniforme_morceaux_tabule_temps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |
| 18.31Champ_fonc_txyz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |
| 18.32Champ_fonc_xyz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |
| 18.33Field_uniform_keps_from_ud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |
| 18.34Init_par_partie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |
| 18.35Tayl_green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |
| 18.36Uniform_field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |
| 18.37 Valeur_totale_sur_volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 361                                                                                                                               |
| 10.57 valeur_totale_sur_volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>501                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   |
| 19 champ_front_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 361                                                                                                                               |
| 19 champ_front_base 19.1 Champ_front_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><b>361</b> 361                                                                                                                |
| 19 champ_front_base 19.1 Champ_front_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br><b>361</b> 362                                                                                                                |
| 19 champ_front_base 19.1 Champ_front_base 19.2 Boundary_field_keps_from_ud 19.3 Ch_front_input_ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br><b>361</b> 362 362                                                                                                            |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>361<br>362<br>362<br>362                                                                                                      |
| 19 champ_front_base 19.1 Champ_front_base 19.2 Boundary_field_keps_from_ud 19.3 Ch_front_input_ale 19.4 Champ_front_xyz_tabule 19.5 Champ_front_ale_beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 361<br>362<br>362<br>362<br>362<br>362                                                                                            |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361<br>362<br>362<br>362<br>362<br>363                                                                                            |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 361<br>362<br>362<br>362<br>362<br>363<br>363                                                                                     |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf                                                                                                                                                                                                                                                                                                                                                                                                                                         | 361<br>362<br>362<br>362<br>362<br>363<br>363<br>363                                                                              |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf_fonc_t                                                                                                                                                                                                                                                                                                                                                                                                   | 361<br>362<br>362<br>362<br>362<br>363<br>363<br>363                                                                              |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf                                                                                                                                                                                                                                                                                                                                                                                                                                         | 361<br>362<br>362<br>362<br>362<br>363<br>363<br>363                                                                              |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf_fonc_t                                                                                                                                                                                                                                                                                                                                                                                                   | 361<br>362<br>362<br>362<br>362<br>363<br>363<br>363<br>364                                                                       |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf_fonc_t  19.10Champ_front_synt                                                                                                                                                                                                                                                                                                                                                                            | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364                                                                       |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.11Bloc_lecture_turb_synt                                                                                                                                                                                                                                                                                                                                                      | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>364                                                                |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.10Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud                                                                                                                                                                                                                                                         | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>364<br>365                                                         |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward                                                                                                                                                                                                                                                                                                                          | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>365                                                         |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.10Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme                                                                                                                                                                                              | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>365<br>365                                                  |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.11Bloc_lecture_turb_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_med                                                                                                                                                                          | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>365<br>366<br>366                                           |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.10Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_med  19.17Champ_front_bruite                                                                                                                                                       | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>366<br>366<br>367                                           |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf_fonc_t  19.10Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_med  19.17Champ_front_bruite  19.18Champ_front_calc                                                                                                                                                | 361<br>361<br>362<br>362<br>362<br>363<br>363<br>364<br>364<br>365<br>365<br>367<br>367<br>367<br>367                             |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf_fonc_t  19.10Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_med  19.17Champ_front_bruite  19.18Champ_front_calc  19.19Champ_front_composite                                                                                                                    | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>366<br>367<br>367<br>367<br>367                             |
| 19. champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_med  19.17Champ_front_bruite  19.18Champ_front_calc  19.19Champ_front_composite  19.20Champ_front_contact_rayo_semi_transp_vef                                                                           | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>365<br>365<br>367<br>367<br>367<br>368<br>368                             |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_med  19.17Champ_front_bruite  19.18Champ_front_calc  19.19Champ_front_composite  19.20Champ_front_contact_rayo_semi_transp_vef  19.21Champ_front_contact_rayo_transp_vef                                  | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>366<br>367<br>367<br>368<br>368<br>368<br>368               |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_bruite  19.17Champ_front_bruite  19.18Champ_front_calc  19.19Champ_front_composite  19.20Champ_front_contact_rayo_semi_transp_vef  19.21Champ_front_contact_rayo_transp_vef  19.22Champ_front_contact_vef | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>366<br>367<br>367<br>368<br>368<br>368<br>368<br>368<br>368 |
| 19 champ_front_base  19.1 Champ_front_base  19.2 Boundary_field_keps_from_ud  19.3 Ch_front_input_ale  19.4 Champ_front_xyz_tabule  19.5 Champ_front_ale_beam  19.6 Champ_front_parametrique  19.7 Champ_front_ale  19.8 Champ_front_debit_qc_vdf  19.9 Champ_front_debit_qc_vdf  19.9 Champ_front_synt  19.11Bloc_lecture_turb_synt  19.12Boundary_field_inward  19.13Boundary_field_uniform_keps_from_ud  19.14Ch_front_input  19.15Ch_front_input_uniforme  19.16Champ_front_med  19.17Champ_front_bruite  19.18Champ_front_calc  19.19Champ_front_composite  19.20Champ_front_contact_rayo_semi_transp_vef  19.21Champ_front_contact_rayo_transp_vef                                  | 361<br>362<br>362<br>362<br>363<br>363<br>363<br>364<br>364<br>365<br>366<br>367<br>367<br>368<br>368<br>368<br>368               |

|    | 19.26Champ_front_fonc_pois_tube                |
|----|------------------------------------------------|
|    | 19.27Champ_front_fonc_t                        |
|    | 19.28Champ_front_fonc_txyz                     |
|    | 19.29Champ_front_fonc_xyz                      |
|    | 19.30Champ_front_fonction                      |
|    | 19.31Champ_front_lu                            |
|    | 19.32Champ_front_musig                         |
|    | 19.33Champ_front_normal_vef                    |
|    | 19.34Champ_front_pression_from_u               |
|    | 19.35Champ_front_recyclage                     |
|    | 19.36Champ_front_tabule                        |
|    | 19.37Champ_front_tabule_lu                     |
|    | 19.38Champ_front_tangentiel_vef                |
|    | 19.39Champ_front_uniforme                      |
|    | ·                                              |
|    | 19.40Champ_front_vortex                        |
|    | 19.41Champ_front_xyz_debit                     |
|    | 19.42Champ_front_zoom                          |
| 20 | intermelation than here                        |
|    | interpolation_ibm_base                         |
|    | 20.1 Interpolation_ibm_power_law_tbl_u_star    |
|    | 20.2 Ibm_aucune                                |
|    | 20.3 Ibm_element_fluide                        |
|    | 20.4 Ibm_hybride                               |
|    | 20.5 Ibm_gradient_moyen                        |
|    | 20.6 Ibm_power_law_tbl                         |
|    |                                                |
|    | loi_etat_base                                  |
|    | 21.1 Eos_qc                                    |
|    | 21.2 Eos_wc                                    |
|    | 21.3 Binaire_gaz_parfait_qc                    |
|    | 21.4 Binaire_gaz_parfait_wc                    |
|    | 21.5 Coolprop_qc                               |
|    | 21.6 Coolprop_wc                               |
|    | 21.7 Loi_etat_gaz_parfait_base                 |
|    | 21.8 Loi_etat_gaz_reel_base                    |
|    | 21.9 Loi_etat_tppi_base                        |
|    | 21.10Multi_gaz_parfait_qc                      |
|    | 21.11Multi_gaz_parfait_wc                      |
|    | 21.12Gaz_parfait_qc                            |
|    | 21.13Gaz_parfait_wc                            |
|    | 21.14Rhot_gaz_parfait_qc                       |
|    | 21.15Rhot_gaz_reel_qc                          |
|    | 21.13 Kilot_gub_teel_qe                        |
| 22 | loi_fermeture_base                             |
|    | 22.1 Loi_fermeture_test                        |
|    | 2012 200_10111001100_10100 1 1 1 1 1 1 1 1 1 1 |
| 23 | loi_horaire                                    |
| 24 | milieu base                                    |
|    | 24.1 Constituant                               |
|    | 24.2 Fluide_base                               |
|    | 24.3 Fluide_dilatable_base                     |
|    | 24.4 Fluide_diphasique                         |
|    |                                                |
|    | 24.5 Fluide incompressible                     |

|           | 24.6 Fluide_ostwald                |     |
|-----------|------------------------------------|-----|
|           | 24.7 Fluide_quasi_compressible     | 391 |
|           | 24.8 Bloc_sutherland               | 393 |
|           | 24.9 Fluide_reel_base              | 393 |
|           | 24.10Fluide_sodium_gaz             | 394 |
|           | 24.11Fluide_sodium_liquide         | 394 |
|           | 24.12Fluide_stiffened_gas          | 395 |
|           | 24.13Fluide_weakly_compressible    |     |
|           | 24.14Solide                        |     |
| 25        | milieu_v2_base                     | 398 |
| <b>26</b> | modele_rayonnement_base            | 398 |
|           |                                    | 398 |
| <b>27</b> | modele_turbulence_scal_base        | 399 |
|           | 27.1 Null                          | 400 |
|           | 27.2 Prandtl                       | 400 |
|           | 27.3 Schmidt                       | 401 |
|           | 27.4 Sous_maille_dyn               | 402 |
|           |                                    |     |
| 28        | nom           28.1 Nom_anonyme     | 402 |
|           | 28.1 Nom_anonyme                   | 403 |
| <b>29</b> | partitionneur_deriv                | 403 |
|           | 29.1 Fichier_med                   |     |
|           | 29.2 Fichier_decoupage             |     |
|           | 29.3 Metis                         |     |
|           | 29.4 Partition                     |     |
|           | 29.5 Sous_dom                      | 405 |
|           | 29.6 Partitionneur_sous_zones      | 406 |
|           | 29.7 Sous_zones                    | 406 |
|           | 29.8 Tranche                       | 407 |
|           | 29.9 Union                         | 407 |
| 30        | porosites                          | 407 |
| 50        | •                                  | 408 |
|           | 50.1 Bioc_icciaic_poio             |     |
| 31        | precond_base                       | 408 |
|           | 31.1 Ilu                           | 408 |
|           | 31.2 Precondsolv                   |     |
|           | 31.3 Ssor                          |     |
|           | 31.4 Ssor_bloc                     | 409 |
| 32        | schema_temps_base                  | 410 |
| _         |                                    | 412 |
|           | 32.2 Sch cn ex iteratif            | 414 |
|           | 32.3 Sch_cn_iteratif               | 416 |
|           | 32.4 Scheme_euler_explicit         | 410 |
|           | $=$ $=$ $\mathbf{I}$               |     |
|           |                                    | 420 |
|           |                                    | 422 |
|           |                                    | 424 |
|           |                                    |     |
|           | 32.9 Runge_kutta_ordre_3           |     |
|           | 32.10Runge kutta ordre 3 classique | 430 |

|    | 32.11Runge_kutta_ordre_4_d3p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|    | 32.12Runge_kutta_ordre_4_classique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     |
|    | 32.13Runge_kutta_ordre_4_classique_3_8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                     |
|    | 32.14Runge_kutta_rationnel_ordre_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     |
|    | 32.15Schema_adams_bashforth_order_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |
|    | 32.16Schema_adams_bashforth_order_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 441                                                                                                                 |
|    | 32.17Schema_adams_moulton_order_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 443                                                                                                                 |
|    | 32.18Schema_adams_moulton_order_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 445                                                                                                                 |
|    | 32.19Schema_backward_differentiation_order_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 448                                                                                                                 |
|    | 32.20Schema_backward_differentiation_order_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
|    | 32.21Scheme_euler_implicit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |
|    | 32.22Schema_implicite_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     |
|    | 32.23Schema_phase_field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     |
|    | 32.24Schema_predictor_corrector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |
|    | 32.25Schema_euler_explicite_ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |
|    | 32.235enema_eater_expirete_ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101                                                                                                                 |
| 33 | solveur_implicite_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 463                                                                                                                 |
|    | 33.1 Ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                     |
|    | 33.2 Implicit_steady                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     |
|    | 33.3 Implicite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                     |
|    | 33.4 Implicite_ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     |
|    | 33.5 Piso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |
|    | 33.6 Sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |
|    | 33.7 Simple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |
|    | 33.8 Simpler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |
|    | 33.9 Solveur_lineaire_std                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |
|    | 33.10Solveur_u_p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/1                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |
| 84 | source base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 472                                                                                                                 |
| 34 | source_base 34.1 Correction antal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>472</b>                                                                                                          |
| 34 | 34.1 Correction_antal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 472                                                                                                                 |
| 34 | 34.1 Correction_antal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 472<br>473                                                                                                          |
| 34 | 34.1 Correction_antal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 472<br>473<br>473                                                                                                   |
| 34 | 34.1 Correction_antal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 472<br>473<br>473<br>473                                                                                            |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 472<br>473<br>473<br>473<br>474                                                                                     |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 472<br>473<br>473<br>473<br>474<br>474                                                                              |
| 34 | 34.1 Correction_antal  34.2 Correction_lubchenko  34.3 Dp_impose  34.4 Type_perte_charge_deriv  34.4.1 Dp  34.4.2 Dp_regul  34.5 Diffusion_croisee_echelle_temp_taux_diss_turb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 472<br>473<br>473<br>473<br>474<br>474<br>474                                                                       |
| 34 | 34.1 Correction_antal  34.2 Correction_lubchenko  34.3 Dp_impose  34.4 Type_perte_charge_deriv  34.4.1 Dp  34.4.2 Dp_regul  34.5 Diffusion_croisee_echelle_temp_taux_diss_turb  34.6 Diffusion_supplementaire_echelle_temp_turb                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 472<br>473<br>473<br>474<br>474<br>474<br>475                                                                       |
| 34 | 34.1 Correction_antal  34.2 Correction_lubchenko  34.3 Dp_impose  34.4 Type_perte_charge_deriv  34.4.1 Dp  34.4.2 Dp_regul  34.5 Diffusion_croisee_echelle_temp_taux_diss_turb  34.6 Diffusion_supplementaire_echelle_temp_turb  34.7 Dispersion_bulles                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 472<br>473<br>473<br>473<br>474<br>474<br>474<br>475                                                                |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb                                                                                                                                                                                                                                                                                                                                                                                                              | 472<br>473<br>473<br>473<br>474<br>474<br>475<br>475                                                                |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle                                                                                                                                                                                                                                                                                                                                                                                     | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>475                                                         |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale                                                                                                                                                                                                                                                                                                                                                          | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>475<br>476                                                  |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb                                                                                                                                                                                                                                                                                                              | 472<br>473<br>473<br>473<br>474<br>474<br>475<br>475<br>475<br>476<br>476                                           |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb                                                                                                                                                                                                                                                                             | 472<br>473<br>473<br>473<br>474<br>474<br>475<br>475<br>475<br>476<br>476<br>476                                    |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex                                                                                                                                                                                                                                              | 472<br>473<br>473<br>473<br>474<br>474<br>475<br>475<br>475<br>476<br>476                                           |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb                                                                                                                                                                                          | 472<br>473<br>473<br>473<br>474<br>474<br>475<br>475<br>475<br>476<br>476<br>476                                    |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex                                                                                                                                                                                                                                              | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>475<br>476<br>476<br>476                                    |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb                                                                                                                                                                                          | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>475<br>476<br>476<br>476<br>476                             |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb 34.15Source_transport_k_eps_anisotherme                                                                                                                                                  | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>476<br>476<br>476<br>477<br>477                             |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb 34.15Source_transport_k_eps_anisotherme 34.16Terme_dissipation_energie_cinetique_turbulente                                                                                              | 472<br>473<br>473<br>474<br>474<br>475<br>475<br>475<br>476<br>476<br>476<br>477<br>477                             |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb 34.15Source_transport_k_eps_anisotherme 34.16Terme_dissipation_energie_cinetique_turbulente 34.17Acceleration                                                                            | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>476<br>476<br>476<br>477<br>477<br>477                      |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb 34.15Source_transport_k_eps_anisotherme 34.16Terme_dissipation_energie_cinetique_turbulente 34.17Acceleration 34.18Boussinesq_concentration                                              | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>476<br>476<br>476<br>477<br>477<br>477<br>478<br>478        |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb 34.15Source_transport_k_eps_anisotherme 34.16Terme_dissipation_energie_cinetique_turbulente 34.17Acceleration 34.18Boussinesq_concentration 34.19Boussinesq_temperature 34.20Canal_perio | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>476<br>476<br>476<br>477<br>477<br>478<br>479<br>479        |
| 34 | 34.1 Correction_antal 34.2 Correction_lubchenko 34.3 Dp_impose 34.4 Type_perte_charge_deriv 34.4.1 Dp 34.4.2 Dp_regul 34.5 Diffusion_croisee_echelle_temp_taux_diss_turb 34.6 Diffusion_supplementaire_echelle_temp_turb 34.7 Dispersion_bulles 34.8 Dissipation_echelle_temp_taux_diss_turb 34.9 Injection_qdm_nulle 34.10Portance_interfaciale 34.11Production_echelle_temp_taux_diss_turb 34.12Production_energie_cin_turb 34.13Source_constituant_vortex 34.14Source_dissipation_echelle_temp_taux_diss_turb 34.15Source_transport_k_eps_anisotherme 34.16Terme_dissipation_energie_cinetique_turbulente 34.17Acceleration 34.18Boussinesq_concentration 34.19Boussinesq_temperature                  | 472<br>473<br>473<br>474<br>474<br>474<br>475<br>475<br>476<br>476<br>476<br>477<br>477<br>478<br>479<br>479<br>480 |

|    | 34.24Flux_interfacial            | 481         |
|----|----------------------------------|-------------|
|    | 34.25Forchheimer                 |             |
|    | 34.26Frottement_interfacial      | 481         |
|    | 34.27Perte_charge_anisotrope     | 482         |
|    | 34.28Perte_charge_circulaire     | 482         |
|    | 34.29Perte_charge_directionnelle | 483         |
|    | 34.30Perte_charge_isotrope       | 483         |
|    | 34.31Perte_charge_reguliere      | 484         |
|    | 34.32Spec_pdcr_base              | 484         |
|    | 34.32.1 Longitudinale            |             |
|    | 34.32.2 Transversale             |             |
|    | 34.33Perte_charge_singuliere     |             |
|    | 34.34Puissance_thermique         |             |
|    | 34.35Radioactive_decay           |             |
|    | 34.36Source_con_phase_field      |             |
|    | 34.37Systeme_naire_deriv         |             |
|    | 34.37.1 Non                      |             |
|    | 34.37.2 Bloc_kappa_variable      |             |
|    | 34.37.3 Bloc_potentiel_chim      |             |
| 4  | 34.38Source_constituant          |             |
|    | 84.39Flottabilite                |             |
|    | 34.40Source_generique            |             |
|    | 34.41Masse_ajoutee               |             |
|    | 34.42Source_pdf                  |             |
|    | 34.43Bloc_pdf_model              |             |
|    | 34.43.1 Troismots                |             |
| ,  | 34.44Source_pdf_base             |             |
|    | 34.45Source_qdm                  |             |
|    | 34.46Source_qdm_lambdaup         |             |
|    | 34.47Source_qdm_phase_field      |             |
|    | 34.48Source_rayo_semi_transp     |             |
|    | 34.49Source_robin                |             |
|    | 34.50Source_robin_scalaire       |             |
|    | 34.51Listdeuxmots_sacc           |             |
|    | 34.52Source_th_tdivu             |             |
|    | 34.53Trainee                     |             |
|    | 34.54Source_transport_eps        |             |
|    | 34.55Source_transport_k          |             |
|    | •                                | 494         |
|    |                                  | +94<br>494  |
|    |                                  | 495         |
|    | - 11                             | +9.<br>495  |
|    |                                  | +9.<br>495  |
|    | <u> </u>                         | +93<br>496  |
|    |                                  |             |
|    |                                  | 496         |
| •  | 34.63 Vitesse_relative_base      | 496         |
| 35 | ous_zone                         | 496         |
|    |                                  | 497         |
|    |                                  | 497         |
|    | <del>-</del>                     | +2 /<br>100 |

| <b>36</b> | turbulence_paroi_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 498 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|           | 36.1 Loi_ciofalo_hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 498 |
|           | 36.2 Loi_expert_hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|           | 36.3 Loi_puissance_hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 499 |
|           | 36.4 Loi_standard_hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 499 |
|           | 36.5 Loi_standard_hydr_old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500 |
|           | 36.6 Loi_ww_hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 |
|           | 36.7 Negligeable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500 |
|           | 36.8 Paroi_tble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 |
|           | 36.9 Twofloat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 501 |
|           | 36.10Liste_sonde_tble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 501 |
|           | 36.10.1 Sonde_tble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 501 |
|           | 36.11Entierfloat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 502 |
|           | 36.12Utau_imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 502 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| <b>37</b> | turbulence_paroi_scalaire_base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 502 |
|           | 37.1 Loi_ww_scalaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|           | 37.2 Loi_analytique_scalaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|           | 37.3 Loi_expert_scalaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|           | 37.4 Loi_odvm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|           | 37.5 Loi_paroi_nu_impose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|           | 37.6 Loi_standard_hydr_scalaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|           | 37.7 Negligeable_scalaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|           | 37.8 Paroi_tble_scal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|           | 37.9 Fourfloat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 505 |
| 38        | listobj_impl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 505 |
| 00        | 38.1 Milieu_musig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|           | 38.2 Milieu_composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
|           | 38.3 List_un_pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|           | 38.4 Un_pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|           | 38.5 Listobj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|           | Joseph January Company of the Compan | 500 |
| <b>39</b> | objet_lecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 507 |
|           | 39.1 Bords_ecrire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 40        | index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 507 |
| TU        | HIUCA CONTRACTOR CONTR | 201 |

# 1 Syntax to define a mathematical function

In a mathematical function, used for example in field definition, it's possible to use the predifined function (an object parser is used to evaluate the functions):

ABS : absolute value function

COS : cosine function
SIN : sine function
TAN : tangent function
ATAN : arctangent function
EXP : exponential function
LN : natural logarithm function
SQRT : square root function
INT : integer function
ERF : error function

RND(x): random function (values between 0 and x)

COSH : hyperbolic cosine function

```
SINH: hyperbolic sine function
TANH : hyperbolic tangent function
ACOS : inverse cosine function
ASIN : inverse sine function
ATANH: inverse hyperbolic tangent function
NOT(x): NOT x (returns 1 if x is false, 0 otherwise)
SGN(x) : SGN(x) = S
x AND y : boolean logical operation AND (returns 1 if both x and y are true, else 0)
x OR y: boolean logical operation OR (returns 1 if x or y is true, else 0)
x_GT_y: greater than (returns 1 if x>y, else 0)
x_GE_y: greater than or equal to (returns 1 if x \ge y, else 0)
x_LT_y: less than (returns 1 if x < y, else 0)
x_LE_y: less than or equal to (returns 1 if x \le y, else 0)
x_MIN_y : returns the smallest of x and y
x_MAX_y : returns the largest of x and y
x_MOD_y : modular division of x per y
x_EQ_y
                             : equal to (returns 1 if x==y, else 0)
                           : not equal to (returns 1 if x!=y, else 0)
x_NEQ_y
You can also use the following operations:
+ : addition
- : subtraction
/ : division
*: multiplication
%: modulo
$ : max
• : power
< : less than
> : greater than
[ : less than or equal to
] : greater than or equal to
You can also use the following constants:
Pi : pi value (3,1415...)
The variables which can be used are:
x,y,z : coordinates
t: time
Examples:
Champ_front_fonc_txyz 2 \cos(y+x^2) t+\ln(y)
Champ_fonc_xyz dom 2 \tanh(4*y)*(0.95+0.1*rnd(1)) 0.
Possible errors:
Error 1:
Champ_fonc_txyz 1 \cos(10*t)*(1<x<2)*(1<y<2)
Previous line is wrong. It should be written as:
Champ_fonc_txyz 1 \cos(10^*t)^*(1 < x)^*(x < 2)^*(1 < y)^*(y < 2)
Error 2:
Champ_front_fonc_xyz 1 20*(x<-2)+10*(y]-5)+3*(z>0)
Previous line is wrong because negative values are not written between parentheses. It should be written
```

Champ\_front\_fonc\_xyz 1 20\*(x<(-2))+10\*(y](-5))+3\*(z>0)

# 2 Existing & predefined fields names

Here is a list of post-processable fields, but it is not the only ones.

| Physical values                                                                                  | Keyword for field_name         | Unit                                             |
|--------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|
| Velocity                                                                                         | Vitesse or Velocity            | $m.s^{-1}$                                       |
| Velocity residual                                                                                | Vitesse_residu                 | $m.s^{-2}$                                       |
| Kinetic energy per elements                                                                      |                                |                                                  |
| $(0.5\rho  u_i  ^2)$                                                                             | Energie_cinetique_elem         | $kg.m^{-1}.s^{-2}$                               |
| Total kinetic energy                                                                             |                                |                                                  |
| $\left(\frac{\sum_{i=1}^{nb\_elem} 0.5\rho   u_i  ^2 vol_i}{\sum_{i=1}^{nb\_elem} vol_i}\right)$ | Energie_cinetique_totale       | $kg.m^{-1}.s^{-2}$                               |
| $\sum_{i=1}^{nb\_elem} vol_i$                                                                    |                                |                                                  |
| Vorticity                                                                                        | Vorticite                      | $s^{-1}$                                         |
| Pressure in incompressible flow                                                                  |                                |                                                  |
| $(P/\rho + gz)$                                                                                  | Pression <sup>1</sup>          | $Pa.m^{3}.kg^{-1}$                               |
| For Front Tracking probleme                                                                      |                                | or                                               |
| $(P + \rho gz)$                                                                                  |                                | Pa                                               |
| Pressure in incompressible flow                                                                  |                                |                                                  |
| $(P+\rho gz)$                                                                                    | Pression_pa or Pressure        | Pa                                               |
| Pressure in compressible flow                                                                    | Pression                       | Pa                                               |
| Hydrostatic pressure $(\rho gz)$                                                                 | Pression_hydrostatique         | Pa                                               |
| Totale pressure (when                                                                            | _ ,                            |                                                  |
| quasi compressible model                                                                         |                                |                                                  |
| is used)=Pth+P                                                                                   | Pression_tot                   | Pa                                               |
| Pressure gradient                                                                                | _                              |                                                  |
| $(\nabla(P/\rho+gz))$                                                                            | Gradient_pression              | $m.s^{-2}$                                       |
| Velocity gradient                                                                                | gradient_vitesse               | $m.s^{-2}$ $s^{-1}$                              |
| Temperature                                                                                      | Temperature                    | °C or K                                          |
| Temperature residual                                                                             | Temperature_residu             | ${}^{o}\mathrm{C}.s^{-1}$ or $\mathrm{K}.s^{-1}$ |
| Phase temperature of                                                                             | _                              |                                                  |
| a two phases flow                                                                                | Temperature_EquationName       | °C or K                                          |
| Mass transfer rate                                                                               |                                |                                                  |
| between two phases                                                                               | Temperature_mpoint             | $kq.m^{-2}.s^{-1}$                               |
| Temperature variance                                                                             | Variance_Temperature           | $\frac{kg.m^{-2}.s^{-1}}{K^2}$                   |
| Temperature dissipation rate                                                                     | Taux_Dissipation_Temperature   | $K^2.s^{-1}$                                     |
| Temperature gradient                                                                             | Gradient_temperature           | $K.m^{-1}$                                       |
| Heat exchange coefficient                                                                        | H_echange_Tref <sup>2</sup>    | $W.m^{-2}.K^{-1}$                                |
| Turbulent heat flux                                                                              | Flux_Chaleur_Turbulente        | $m.K.s^{-1}$                                     |
| Turbulent viscosity                                                                              | Viscosite_turbulente           | $m^2.s^{-1}$                                     |
| Turbulent dynamic viscosity                                                                      |                                |                                                  |
| (when quasi compressible                                                                         | Viscosite_dynamique_turbulente | $kg.m.s^{-1}$                                    |
| model is used)                                                                                   |                                |                                                  |
| Turbulent kinetic energy                                                                         | K                              | $m^2.s^{-2}$                                     |
| Turbulent dissipation rate                                                                       | Eps                            | $m^3.s^{-1}$                                     |
| Turbulent quantities                                                                             | F~                             |                                                  |
| K and Epsilon                                                                                    | K_Eps                          | $(m^2.s^{-2}, m^3.s^{-1})$                       |
| Residuals of turbulent quantities                                                                | r~                             | ,,                                               |
|                                                                                                  | continued on next page         | I                                                |
| ···                                                                                              |                                |                                                  |

 $<sup>^1</sup>$ The post-processed pressure is the pressure divided by the fluid's density  $(P/\rho+gz)$  on incompressible laminar calculation. For turbulent, pressure is  $P/\rho+gz+2/3*k$  cause the turbulent kinetic energy is in the pressure gradient.

<sup>&</sup>lt;sup>2</sup>Tref indicates the value of a reference temperature and must be specified by the user. For example, H\_echange\_293 is the keyword to use for Tref=293K.

| Physical values                     | Keyword for field_name        | Unit                       |
|-------------------------------------|-------------------------------|----------------------------|
| K and Epsilon residuals             | K_Eps_residu                  | $(m^2.s^{-3}, m^3.s^{-2})$ |
| Constituent concentration           | Concentration                 |                            |
| Constituent concentration residual  | Concentration_residu          |                            |
| Component velocity along X          | VitesseX                      | $m.s^{-1}$                 |
| Component velocity along Y          | VitesseY                      | $m.s^{-1}$                 |
| Component velocity along Z          | VitesseZ                      | $m.s^{-1}$                 |
| Mass balance on each cell           | Divergence_U                  | $m^3.s^{-1}$               |
| Irradiancy                          | Irradiance                    | $W.m^{-2}$                 |
| Q-criteria                          | Critere_Q                     | $s^{-1}$                   |
| Distance to the wall $Y^+ = yU/\nu$ |                               |                            |
| (only computed on                   | Y_plus                        | dimensionless              |
| boundaries of wall type)            |                               |                            |
| Friction velocity                   | U_star                        | $m.s^{-1}$                 |
| Void fraction                       | alpha                         | dimensionless              |
| Cell volumes                        | Volume_maille                 | $m^3$                      |
| Chemical potential                  | Potentiel_Chimique_Generalise |                            |
| Source term in non                  |                               |                            |
| Galinean referential                | Acceleration_terme_source     | $m.s^{-2}$                 |
| Stability time steps                | Pas_de_temps                  | S                          |
| Listing of boundary fluxes          | Flux_bords                    | cf each *.out file         |
| Volumetric porosity                 | Porosite_volumique            | dimensionless              |
| Distance to the wall                | Distance_Paroi <sup>3</sup>   | m                          |
| Volumic thermal power               | Puissance_volumique           | $W.m^{-3}$                 |
| Local shear strain rate defined as  |                               |                            |
| $\sqrt{(2SijSij)}$                  | Taux_cisaillement             | $s^{-1}$                   |
| Cell Courant number (VDF only)      | Courant_maille                | dimensionless              |
| Cell Reynolds number (VDF only)     | Reynolds_maille               | dimensionless              |
| Viscous force                       | viscous_force                 | $kg.m^2.s^{-1}$            |
| Pressure force                      | pressure_force                | $kg.m^2.s^{-1}$            |
| Total force                         | total_force                   | $kg.m^2.s^{-1}$            |
| Viscous force along X               | viscous_force_x               | $kg.m^2.s^{-1}$            |
| Viscous force along Y               | viscous_force_y               | $kg.m^2.s^{-1}$            |
| Viscous force along Z               | viscous_force_z               | $kg.m^{2}.s^{-1}$          |
| Pressure force along X              | pressure_force_x              | $kg.m^2.s^{-1}$            |
| Pressure force along Y              | pressure_force_y              | $kg.m^2.s^{-1}$            |
| Pressure force along Z              | pressure_force_z              | $kg.m^2.s^{-1}$            |
| Total force along X                 | total_force_x                 | $kg.m^2.s^{-1}$            |
| Total force along Y                 | total_force_y                 | $kg.m^2.s^{-1}$            |
| Total force along Z                 | total_force_z                 | $kg.m^2.s^{-1}$            |

# 3 interprete

Description: Basic class for interpreting a data file. Interpretors allow some operations to be carried out on objects.

See also: objet\_u (40) read (3.102) associate (3.29) discretize (3.48) mailler (3.82) ecrire\_fichier\_bin (3.146) ecrire (3.145) end (3.69) residuals (3.118) ecrire\_fichier\_xyz\_valeur (3.52) testeur (3.128) calculer\_moments (3.35) raffiner\_anisotrope (3.100) raffiner\_isotrope (3.101) trianguler (3.137) tetraedriser (3.130)

<sup>&</sup>lt;sup>3</sup>distance\_paroi is a field which can be used only if the mixing length model (see 2.15.1.2) is used in the data file.

orientefacesbord (3.92) reorienter\_tetraedres (3.115) reorienter\_triangles (3.116) { (3.41) } (3.70) export (3.56) debog (3.40) system (3.126) distance\_paroi (3.49) extruder (3.64) extruder\_en20 (3.66) integrerchamp med (3.74) option vdf (3.91) verifiercoin (3.143) test solveur (3.127) movenne volumique (3.87) imprimer\_flux (3.72) interprete\_geometrique\_base (3.76) extraire\_surface (3.61) polyedriser (3.97) Raffiner-\_isotrope\_parallele (3.24) extract\_2d\_from\_3d (3.57) lire\_tgrid (3.105) refine\_mesh (3.109) redresser-\_hexaedres\_vdf (3.108) extraire\_plan (3.60) scatter (3.120) extraire\_domaine (3.59) remove\_invalid\_internalboundaries (3.114) decoupebord (3.42) nettoiepasnoeuds (3.90) rotation (3.119) dimension (3.45) maillerparallel (3.84) corriger frontiere periodique (3.37) reordonner (3.117) remove elem (3.112) orienter simplexes (3.107) extrudebord (3.62) dilate (3.44) lire ideas (3.80) axi (3.33) decouper bord coincident (3.43) extrudeparoi (3.63) supprime bord (3.124) analyse angle (3.28) modifydomaineAxi1d (3.86) precisiongeom (3.99) modif bord to raccord (3.85) bidim axi (3.34) verifier simplexes (3.142) verifier qualite raffinements (3.140) regroupebord (3.110) discretiser domaine (3.47) transformer (3.136) partition multi (3.95) partition (3.93) lata\_2\_med (3.77) postraiter\_domaine (3.98) lata\_2\_other (3.79) Write\_MED (3.7) Option-\_CGNS (3.18) Merge\_MED (3.12) lml\_2\_lata (3.81) ecrire\_champ\_med (3.50) Link\_CGNS\_Files (3.11) solve (3.122) read\_med (3.25) read\_file (3.103) disable\_TU (3.46) stat\_per\_proc\_perf\_log (3.123) execute-\_parallel (3.55) Option\_Interpolation (3.19) MultipleFiles (3.13) facsec (3.68) testeur\_medcoupling (3.129) pilote\_icoco (3.96) ecriturelecturespecial (3.53) criteres\_convergence (3.39) espece (3.54) Test\_SSE\_Kernels (3.27) multigrid\_solver (3.88) Parallel\_io\_parameters (3.22) Option\_PolyMAC\_P0 (3.21) Option\_PolyMAC (3.20) Op\_Conv\_EF\_Stab\_PolyMAC\_Face (3.14) Op\_Conv\_EF\_Stab\_PolyMAC\_P0P1NC\_Elem (3.15) Op Conv EF Stab PolyMAC P0P1NC Face (3.16) Op Conv EF Stab PolyMAC P0 Face (3.17) Extraire-\_surface\_ALE (3.8) Solver\_moving\_mesh\_ALE (3.26) DebogFT (3.6) remaillage\_ft\_ijk (3.111) Projection-ALE boundary (3.23) ALE Neumann BC for grid problem (3.1) Beam model (3.3) thermique bloc (3.135) interfaces (3.75) imposer\_vit\_bords\_ale (3.71) IJK\_FT\_double (3.9)

Usage:

interprete

# 3.1 Ale\_neumann\_bc\_for\_grid\_problem

Description: block to indicates the names of the boundary with Neumann BC for the grid problem. By default, in the ALE grid problem, we impose a homogeneous Dirichelt-type BC on the fix boundary. This option allows you to impose also Neumann-type BCs on certain boundary.

See also: interprete (3)

Usage:

ALE\_Neumann\_BC\_for\_grid\_problem dom bloc

- dom str: Name of domain.
- **bloc** *bloc\_lecture* (3.2): between the braces, you must specify the numbers of the mobile borders then list these mobile borders.

Example: ALE\_Neumann\_BC\_for\_grid\_problem dom\_name { 1 boundary\_name }

### 3.2 Bloc lecture

Description: to read between two braces

See also: objet\_lecture (39) bloc\_criteres\_convergence (3.2.1)

Usage:

bloc lecture

where

• bloc lecture str

### 3.2.1 Bloc\_criteres\_convergence

```
Description: Not set

See also: (3.2)

Usage: bloc_lecture
where

• bloc_lecture str
```

### 3.3 Beam\_model

Description: Reduced mechanical model: a beam model. Resolution based on a modal analysis. Temporal discretization: Newmark or Hilber-Hughes-Taylor (HHT)

```
See also: interprete (3)
```

Usage:

Beam\_model dom bloc

where

- dom str: domain name
- **bloc** *bloc\_lecture\_beam\_model* (3.4)

#### 3.4 Bloc lecture beam model

```
Description: bloc
```

See also: objet\_lecture (39)

Usage:

aco nb\_beam nb\_beam\_val Name Name\_of\_beam bloc acof where

- aco str into ['{']: Opening curly bracket.
- **nb\_beam** str into ['nb\_beam']: Keyword to specify the number of beams
- **nb beam val** int: Number of beams
- Name str into ['name']: keyword to specify the Name of the beam (the name must match with the name of the edge in the fluid domain)
- Name\_of\_beam str: keyword to specify the Name of the beam (the name must match with the name of the edge in the fluid domain)
- **bloc** *bloc\_poutre* (3.4.1)
- acof str into ['}']: Closing curly bracket.

#### 3.4.1 Bloc\_poutre

```
Description: Read poutre bloc
See also: objet_lecture (39)
Usage:
```

```
nb_modes int
direction int
NewmarkTimeScheme newmarktimescheme_deriv
Mass_and_stiffness_file_name str
Absc_file_name str
Modal_deformation_file_name n word1 word2 ... wordn
[Young_Module float]
[Rho_beam float]
[BaseCenterCoordinates x1 x2 (x3)]
[CI_file_name str]
[Restart_file_name str]
[Output_position_1D n x1 x2 ... xn]
[Output_position_3D listpoints]
}
where
```

- **nb\_modes** *int*: Number of modes
- direction int: x=0, y=1, z=2
- **NewmarkTimeScheme** *newmarktimescheme\_deriv* (3.4.2): Solve the beam dynamics. Time integration scheme: choice between MA (Newmark mean acceleration), FD (Newmark finite differences), and HHT alpha (Hilber-Hughes-Taylor, alpha usually -0.1)
- Mass\_and\_stiffness\_file\_name str: Name of the file containing the diagonal modal mass, stiffness, and damping matrices.
- Absc\_file\_name str: Name of the file containing the coordinates of the Beam
- **Modal\_deformation\_file\_name** *n word1 word2* ... *wordn*: Name of the file containing the modal deformation of the Beam (mandatory if different from 0. 0. 0.)
- Young\_Module *float*: Young Module
- Rho\_beam float: Beam density
- BaseCenterCoordinates x1 x2 (x3): position of the base center coordinates on the Beam
- CI\_file\_name str: Name of the file containing the initial condition of the Beam
- **Restart file name** *str*: SaveBeamForRestart.txt file to restart the calculation
- Output\_position\_1D n x1 x2 ... xn: nb\_points position Post-traitement of specific points on the Beam
- Output\_position\_3D listpoints (3.4.6): nb\_points position Post-traitement of specific points on the 3d FSI boundary

#### 3.4.2 Newmarktimescheme deriv

Description: Solve the beam dynamics. Selection of time integration scheme.

```
See also: objet_lecture (39) HHT (3.4.3) MA (3.4.4) FD (3.4.5)
```

Usage:

#### 3.4.3 Hht

Description: HHT alpha (Hilber-Hughes-Taylor, alpha usually -0.1 ) time integration scheme.

```
See also: NewmarkTimeScheme_deriv (3.4.2)
```

```
Usage:
```

```
HHT [ alpha ] where
```

```
• alpha float: usually, alpha is set to -0.1
```

#### 3.4.4 Ma

Description: MA (Newmark mean acceleration) time integration scheme.

See also: NewmarkTimeScheme\_deriv (3.4.2)

Usage:

MA

#### 3.4.5 Fd

Description: FD (Newmark finite differences) time integration scheme.

See also: NewmarkTimeScheme\_deriv (3.4.2)

Usage:

FD

#### 3.4.6 Listpoints

Description: Points.

See also: listobj (38.5)

Usage:

n object1 object2 .... list of un\_point (3.4.7)

#### 3.4.7 Un\_point

Description: A point.

See also: objet\_lecture (39)

Usage:

pos

where

• pos x1 x2 (x3): Point coordinates.

#### 3.5 Create domain from sub domain

Description: This keyword fills the domain domaine\_final with the subdomaine par\_sous\_zone from the domain domaine\_init. It is very useful when meshing several mediums with Gmsh. Each medium will be defined as a subdomaine into Gmsh. A MED mesh file will be saved from Gmsh and read with Lire\_Med keyword by the TRUST data file. And with this keyword, a domain will be created for each medium in the TRUST data file.

```
See also: interprete_geometrique_base (3.76) create_domain_from_sous_zone (3.38)
```

Usage:

Create\_domain\_from\_sub\_domain {

```
[ domaine_final str]
     [par_sous_zone str]
     domaine_init str
}
where
   • domaine final str: new domain in which faces are stored
   • par sous zone str: a sub-area allowing to choose the elements
   • domaine_init str: initial domain
3.6 Debogft
Description: not_set
See also: interprete (3)
Usage:
DebogFT {
     [ mode str into ['disabled', 'write_pass', 'check_pass']]
     [ filename str]
     [ seuil_absolu float]
     [ seuil_relatif float]
     [ seuil_minimum_relatif float]
}
where
   • mode str into ['disabled', 'write_pass', 'check_pass']
   • filename str
   • seuil absolu float
   • seuil_relatif float
   • seuil_minimum_relatif float
3.7 Write med
Description: Write a domain to MED format into a file.
See also: interprete (3)
Usage:
Write_MED nom_dom file
where
   • nom_dom str: Name of domain.
   • file str: Name of file.
```

# 3.8 Extraire\_surface\_ale

Description: Extraire\_surface\_ALE in order to extract a surface on a mobile boundary (with ALE desciption).

Keyword to specify that the extract surface is done on a mobile domain. The surface mesh is defined

by one or two conditions. The first condition is about elements with Condition\_elements. For example: Condition\_elements x\*x+y\*y+z\*z<1

Will define a surface mesh with external faces of the mesh elements inside the sphere of radius 1 located at (0,0,0). The second condition Condition\_faces is useful to give a restriction.

By default, the faces from the boundaries are not added to the surface mesh excepted if option avec\_les-\_bords is given (all the boundaries are added), or if the option avec\_certains\_bords is used to add only some boundaries.

Keyword Discretize should have already been used to read the object.

```
See also: interprete (3)
Usage:
Extraire_surface_ALE {
     domaine str
     probleme str
     [condition_elements str]
     [condition faces str]
```

} where

• domaine str: Domain in which faces are saved

[ avec\_certains\_bords n word1 word2 ... wordn]

- probleme str: Problem from which faces should be extracted
- condition\_elements str
- condition\_faces str

[avec les bords]

- · avec\_les\_bords
- avec\_certains\_bords n word1 word2 ... wordn

#### 3.9 Ijk\_ft\_double

Description: not\_set

```
See also: interprete (3)
Usage:
IJK_FT_double {
     [ p_seuil_max float]
     [ p seuil min float]
     [ coef_ammortissement float]
     [ coef_immobilisation float]
     [coef_mean_force float]
     [ coef_force_time_n float]
     [coef_rayon_force_rappel float]
     [tinit float]
     ijk_splitting str into ['grid_splitting']
     timestep float
     [ timestep_facsec float]
     [cfl float]
     [ fo float]
     [ oh float]
```

```
nb_pas_dt_max int
[ max_simu_time int]
multigrid_solver multigrid_solver
[ check_divergence ]
mu_liquide float
[ vitesse_entree float]
[vitesse_upstream float]
[ upstream_dir int]
[ expression_vitesse_upstream str]
[ upstream_stencil int]
[ nb_diam_upstream float]
[ nb_diam_ortho_shear_perio str]
rho_liquide float
[ check_stop_file str]
[ dt_sauvegarde int]
[ nom_sauvegarde str]
[ sauvegarder_xyz ]
[ nom_reprise str]
[ gravite n \times 1 \times 2 \dots \times n]
[ expression_vx_init str]
[ expression_vy_init str]
[ expression_vz_init str]
[ expression_derivee_force str]
[ compute_force_init str]
[ terme_force_init str]
[correction_force str]
[vol_bulle_monodisperse str]
[ vol_bulles str]
[ time_scheme str into ['euler_explicit', 'RK3_FT']]
[ expression_variable_source_x str]
[ expression_variable_source_y str]
[ expression_variable_source_z str]
[ facteur_variable_source_init str]
[ expression_derivee_facteur_variable_source str]
[ expression_p_init str]
[ expression_potential_phi str]
[ velocity_convection_op str]
[interfaces interfaces]
[forcage str]
[ corrections_qdm str]
[thermique thermique]
[ energie str]
ijk_splitting_ft_extension int
[ fichier_post str]
[fichier_reprise_vitesse str]
[ timestep_reprise_vitesse str]
boundary_conditions bloc_lecture
[ disable_solveur_poisson ]
[ resolution_fluctuations ]
[ disable_diffusion_qdm ]
[ disable_source_interf ]
[ disable_convection_qdm ]
[ disable_diphasique ]
[ frozen_velocity str]
```

```
[velocity_reset str]
[ improved_initial_pressure_guess str]
[include_pressure_gradient_in_ustar str]
[ use_inv_rho_for_mass_solver_and_calculer_rho_v str]
[use inv rho in poisson solver ]
[ diffusion_alternative str]
[ suppression_rejetons str]
[correction bilan qdm str]
[ refuse_patch_conservation_qdm_rk3_source_interf ]
[test_etapes_et_bilan str]
[ ajout_init_a_reprise str]
[ harmonic_nu_in_diff_operator ]
[ harmonic_nu_in_calc_with_indicatrice ]
[ reprise_vap_velocity_tmoy str]
[ reprise_liq_velocity_tmoy str]
[ sigma float]
[ rho_vapeur float]
[ mu_vapeur float]
[check_stats]
[ dt_post int]
[ dt_post_stats_plans int]
[ dt post stats bulles int]
[ champs_a_postraiter n word1 word2 ... wordn]
[expression_vx_ana str]
[expression vy ana str]
[expression vz ana str]
[ expression_p_ana str]
[ expression_dPdx_ana str]
[ expression_dPdy_ana str]
[ expression_dPdz_ana str]
[ expression_dUdx_ana str]
[ expression_dUdy_ana str]
[expression_dUdz_ana str]
[expression_dVdx_ana str]
[ expression_dVdy_ana str]
[expression_dVdz_ana str]
[expression dWdx ana str]
[ expression_dWdy_ana str]
[expression dWdz ana str]
[ expression_ddPdxdx_ana str]
[expression ddPdydy ana str]
[ expression_ddPdzdz_ana str]
[expression ddPdxdy ana str]
[ expression_ddPdxdz_ana
[ expression ddPdydz ana
[ expression_ddUdxdx_ana
[ expression_ddUdydy_ana
                          str]
[ expression_ddUdzdz_ana str]
[ expression_ddUdxdy_ana str]
[ expression_ddUdxdz_ana str]
[ expression_ddUdydz_ana str]
[ expression_ddVdxdx_ana
[ expression_ddVdydy_ana
[ expression_ddVdzdz_ana str]
```

```
[ expression_ddVdxdy_ana str]
     [expression_ddVdxdz_ana str]
     [expression ddVdvdz ana str]
     [ expression_ddWdxdx_ana str]
     [expression ddWdydy ana str]
     [ expression_ddWdzdz_ana str]
     [expression ddWdxdy ana str]
     [expression ddWdxdz ana str]
     [expression ddWdydz ana str]
     [t debut statistiques float]
     [sondes bloc lecture]
}
where
   • p_seuil_max float: not_set, default 10000000
   • p_seuil_min float: not_set, default -10000000
   • coef_ammortissement float
   • coef_immobilisation float
   • coef_mean_force float
   • coef force time n float
   • coef_rayon_force_rappel float
   • tinit float: initial time
   • ijk_splitting str into ['grid_splitting']: Definition of domain decomposition for parallel computa-
   • timestep float: Upper limit of the timestep
   • timestep facsec float: Security factor on timestep
   • cfl float: To provide a value of the limiting CFL number used for setting the timestep
   • fo float
   • oh float
   • nb_pas_dt_max int: maximum limit for the number of timesteps
   • max_simu_time int: maximum limit for the number of timesteps
   • multigrid solver multigrid solver (3.88)
   • check_divergence: Flag to compute and print the value of div(u) after each pressure-correction
   • mu_liquide float: liquid viscosity
   • vitesse_entree float: Velocity to prescribe at inlet
   • vitesse_upstream float: Velocity to prescribe at 'nb_diam_upstream_' before bubble 0.
   • upstream dir int: Direction to prescribe the velocity
   • expression vitesse upstream str: Analytical expression to set the upstream velocity
   • upstream stencil int: Width on which the velocity is set
   • nb diam upstream float: Number of bubble diameters upstream of bubble 0 to prescribe the ve-
     locity.
   • nb_diam_ortho_shear_perio str
   • rho liquide float: liquid density
   • check stop file str: stop file to check (if 1 inside this file, stop computation)
   • dt sauvegarde int: saving frequency (writing files for computation restart)
   • nom_sauvegarde str: Definition of filename to save the calculation
   • sauvegarder_xyz : save in xyz format
   • nom_reprise str: Enable restart from filename given
   • gravite n x1 x2 ... xn: gravity vector [gx, gy, gz]
   • expression_vx_init str: initial field for x-velocity component (parser of x,y,z)
```

• expression\_derivee\_force str: expression of the time-derivative of the X-component of a source-term (see terme force ini for the initial value), terme force ini : initial value of the X-component

expression\_vy\_init str: initial field for y-velocity component (parser of x,y,z)
 expression\_vz\_init str: initial field for z-velocity component (parser of x,y,z)

- of the source term (see expression\_derivee\_force for time evolution)
- compute\_force\_init str
- terme force init str
- correction\_force str
- vol bulle monodisperse str
- · vol bulles str
- **time\_scheme** *str into ['euler\_explicit', 'RK3\_FT']*: Type of time scheme
- expression\_variable\_source\_x str
- expression\_variable\_source\_y str
- expression\_variable\_source\_z str
- facteur\_variable\_source\_init str
- expression\_derivee\_facteur\_variable\_source str
- **expression\_p\_init** *str*: initial pressure field (optional)
- expression\_potential\_phi str: parser to define phi and make a momentum source Nabla phi.
- velocity\_convection\_op str: Type of velocity convection scheme
- interfaces interfaces (3.75)
- forcage str
- corrections\_qdm str
- thermique (3.10)
- energie str
- ijk\_splitting\_ft\_extension int: Number of element used to extend the computational domain at each side of periodic boundary to accommodate for bubble evolution.
- fichier\_post str: name of the post-processing file (lata file)
- fichier\_reprise\_vitesse str
- timestep reprise vitesse str
- boundary conditions bloc lecture (3.2): BC
- disable\_solveur\_poisson : Disable pressure poisson solver
- resolution\_fluctuations : Disable pressure poisson solver
- disable\_diffusion\_qdm : Disable diffusion operator in momentum
- disable\_source\_interf : Disable computation of the interfacial source term
- disable\_convection\_qdm : Disable convection operator in momentum
- disable\_diphasique : Disable all calculations related to interfaces (phase properties, interfacial force, ... )
- frozen\_velocity str
- velocity\_reset str
- improved\_initial\_pressure\_guess str
- include\_pressure\_gradient\_in\_ustar str
- use inv rho for mass solver and calculer rho v str
- · use inv rho in poisson solver
- diffusion\_alternative str
- suppression\_rejetons str
- correction\_bilan\_qdm str
- refuse\_patch\_conservation\_qdm\_rk3\_source\_interf : experimental Keyword, not for use
- test\_etapes\_et\_bilan str
- ajout init a reprise str
- harmonic\_nu\_in\_diff\_operator : Disable pressure poisson solver
- harmonic\_nu\_in\_calc\_with\_indicatrice : Disable pressure poisson solver
- reprise\_vap\_velocity\_tmoy str
- reprise\_liq\_velocity\_tmoy str
- sigma float: surface tension
- **rho\_vapeur** *float*: vapour density
- mu\_vapeur float: vapour viscosity
- check\_stats: Flag to compute additional (xy)-plane averaged statistics
- **dt\_post** *int*: Post-processing frequency (for lata output)

- **dt\_post\_stats\_plans** *int*: Post-processing frequency for averaged statistical files (txt files containing averaged information on (xy) planes for each z-center) both instantaneous, or cumulated time-integration (see file header for variables list)
- dt\_post\_stats\_bulles int: Post-processing frequency for bubble information (for out files as bubble area, centroid position, etc...)
- champs\_a\_postraiter n word1 word2 ... wordn: List of variables to post-process in lata files.
- expression\_vx\_ana str: Analytical Vx (parser of x,y,z, t) used for post-processing only
- expression\_vy\_ana str: Analytical Vy (parser of x,y,z, t) used for post-processing only
- expression\_vz\_ana str: Analytical Vz (parser of x,y,z, t) used for post-processing only
- expression\_p\_ana str: analytical pressure solution (parser of x,y,z, t) used for post-processing only
- expression\_dPdx\_ana str: analytical expression dP/dx=f(x,y,z,t), for post-processing only
- expression\_dPdy\_ana str: analytical expression dP/dy=f(x,y,z,t), for post-processing only
- expression\_dPdz\_ana str: analytical expression dP/dz=f(x,y,z,t), for post-processing only
- expression\_dUdx\_ana str: analytical expression dU/dx=f(x,y,z,t), for post-processing only
- expression\_dUdy\_ana str: analytical expression dU/dy=f(x,y,z,t), for post-processing only
- expression\_dUdz\_ana str: analytical expression dU/dz=f(x,y,z,t), for post-processing only
- expression\_dVdx\_ana str: analytical expression dV/dx=f(x,y,z,t), for post-processing only
- expression\_dVdy\_ana str: analytical expression dV/dy=f(x,y,z,t), for post-processing only
- expression\_dVdz\_ana str: analytical expression dV/dz=f(x,y,z,t), for post-processing only
- expression\_dWdx\_ana str: analytical expression dW/dx=f(x,y,z,t), for post-processing only
- expression\_dWdy\_ana str: analytical expression dW/dy=f(x,y,z,t), for post-processing only
- expression\_dWdz\_ana str: analytical expression dW/dz=f(x,y,z,t), for post-processing only
- expression\_ddPdxdx\_ana str: analytical expression d2P/dx2=f(x,y,z,t), for post-processing only
- expression\_ddPdydy\_ana str: analytical expression d2P/dy2=f(x,y,z,t), for post-processing only
- expression ddPdzdz ana str: analytical expression d2P/dz2=f(x,y,z,t), for post-processing only
- expression\_ddPdxdy\_ana str: analytical expression d2P/dxdy=f(x,y,z,t), for post-processing only
- expression\_ddPdxdz\_ana str: analytical expression d2P/dxdz=f(x,y,z,t), for post-processing only
- expression\_ddPdydz\_ana str: analytical expression d2P/dydz=f(x,y,z,t), for post-processing only
- expression\_ddUdxdx\_ana str: analytical expression d2U/dx2=f(x,y,z,t), for post-processing only
- expression\_ddUdydy\_ana str: analytical expression d2U/dy2=f(x,y,z,t), for post-processing only
- expression\_ddUdzdz\_ana str: analytical expression d2U/dz2=f(x,y,z,t), for post-processing only
- expression\_ddUdxdy\_ana str: analytical expression d2U/dxdy=f(x,y,z,t), for post-processing only
- expression\_ddUdxdz\_ana str: analytical expression d2U/dxdz=f(x,y,z,t), for post-processing only
- expression\_ddUdydz\_ana str: analytical expression d2U/dydz=f(x,y,z,t), for post-processing only
- expression\_ddVdxdx\_ana str: analytical expression d2V/dx2=f(x,y,z,t), for post-processing only
- expression\_ddVdydy\_ana str: analytical expression d2V/dy2=f(x,y,z,t), for post-processing only
- expression\_ddVdzdz\_ana str: analytical expression d2V/dz2=f(x,y,z,t), for post-processing only
- expression\_ddVdxdy\_ana str: analytical expression d2V/dxdy=f(x,y,z,t), for post-processing only
- expression\_ddVdxdz\_ana str: analytical expression d2V/dxdz=f(x,y,z,t), for post-processing only
- expression\_ddVdydz\_ana str: analytical expression d2V/dydz=f(x,y,z,t), for post-processing only
- expression\_ddWdxdx\_ana str: analytical expression d2W/dx2=f(x,y,z,t), for post-processing only
- expression\_ddWdydy\_ana str: analytical expression d2W/dy2=f(x,y,z,t), for post-processing only
- expression\_ddWdzdz\_ana str: analytical expression d2W/dz2=f(x,y,z,t), for post-processing only
- **expression\_ddWdxdy\_ana** *str*: analytical expression d2W/dxdy=f(x,y,z,t), for post-processing only
- expression\_ddWdxdz\_ana str: analytical expression d2W/dxdz=f(x,y,z,t), for post-processing only
- expression\_ddWdydz\_ana str: analytical expression d2W/dydz=f(x,y,z,t), for post-processing only

- t\_debut\_statistiques float: Initial time for computation, printing and accumulating time-integration
- sondes bloc\_lecture (3.2): probes

# 3.10 Thermique

Description: to add energy equation resolution if needed

See also: listobj (38.5)

Usage:
{ object1, object2 .... }

list of thermique\_bloc (3.135) separeted with,

# 3.11 Link\_cgns\_files

Description: Creates a single CGNS xxxx.cgns file that links to a xxxx.grid.cgns and xxxx.solution.\*.cgns files

See also: interprete (3)

Usage:

Link\_CGNS\_Files base\_name output\_name

where

- base\_name str: Base name of the gid/solution cgns files.
- output\_name str: Name of the output cgns file.

### 3.12 Merge\_med

Description: This keyword allows to merge multiple MED files produced during a parallel computation into a single MED file.

See also: interprete (3)

Usage:

Merge\_MED med\_files\_base\_name time\_iterations

where

- med\_files\_base\_name str: Base name of multiple med files that should appear as base\_name\_xxxxx.med, where xxxxx denotes the MPI rank number. If you specify NOM\_DU\_CAS, it will automatically take the basename from your datafile's name.
- **time\_iterations** *str into ['all\_times', 'last\_time']*: Identifies whether to merge all time iterations present in the MED files or only the last one.

# 3.13 Multiplefiles

Description: Change MPI rank limit for multiple files during I/O

See also: interprete (3)

Usage:

```
where
   • type int: New MPI rank limit
3.14 Op_conv_ef_stab_polymac_face
Description: Class Op_Conv_EF_Stab_PolyMAC_Face_PolyMAC
See also: interprete (3)
Usage:
Op_Conv_EF_Stab_PolyMAC_Face {
     [ alpha float]
}
where
   • alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)
3.15 Op_conv_ef_stab_polymac_p0p1nc_elem
Description: Class Op_Conv_EF_Stab_PolyMAC_P0P1NC_Elem
See also: interprete (3)
Usage:
Op\_Conv\_EF\_Stab\_PolyMAC\_P0P1NC\_Elem~\{
     [ alpha float]
}
where
   • alpha float: parametre ajustant la stabilisation de 0 (schema centre) a 1 (schema amont)
3.16 Op_conv_ef_stab_polymac_p0p1nc_face
Description: Class Op_Conv_EF_Stab_PolyMAC_P0P1NC_Face
See also: interprete (3)
Usage:
3.17 Op_conv_ef_stab_polymac_p0_face
Description: Class Op_Conv_EF_Stab_PolyMAC_P0_Face
See also: interprete (3)
Usage:
```

MultipleFiles type

# 3.18 Option\_cgns

```
Description: Class for CGNS options.

See also: interprete (3)

Usage:
Option_CGNS {
    [ single_precision ]
    [ multiple_files ]
    [ parallel_over_zone ]
    [ use_links ]
}
where
```

- **single\_precision**: If used, data will be written with a single\_precision format inside the CGNS file (it concerns both mesh coordinates and field values).
- multiple\_files: If used, data will be written in separate files (ie: one file per processor).
- **parallel\_over\_zone**: If used, data will be written in separate zones (ie: one zone per processor). This is not so performant but easier to read later ...
- **use\_links**: If used, data will be written in separate files; one file for mesh, and then one file for solution time. Links will be used.

# 3.19 Option\_interpolation

Description: Class for interpolation fields using MEDCoupling.

```
See also: interprete (3)

Usage:
Option_Interpolation {
    [ without_declsans_dec ]
    [ sharing_algo int]
}
where
```

- without\_declsans\_dec : Use remapper even for a parallel calculation
- **sharing\_algo** *int*: Setting the DEC sharing algo: 0,1,2

# 3.20 Option\_polymac

```
Description: Class of PolyMAC options.

See also: interprete (3)

Usage:
Option_PolyMAC {
    [use_osqp]
}
where
```

• use\_osqp: Flag to use the old formulation of the M2 matrix provided by the OSQP library

# 3.21 Option\_polymac\_p0

Description: Class of PolyMAC\_P0 options.

See also: interprete (3)

Usage:
Option\_PolyMAC\_P0 {
 [interp\_ve1]
 [traitement\_axi]
}
where

- **interp\_ve1**: Flag to enable a first order velocity face-to-element interpolation (the default value is 0 which means a second order interpolation)
- traitement\_axi : Flag used to relax the time-step stability criterion in case of a thin slice geometry while modelling an axi-symetrical case

## 3.22 Parallel\_io\_parameters

Description: Object to handle parallel files in IJK discretization

```
See also: interprete (3)

Usage:
Parallel_io_parameters {

    [ block_size_bytes int]
    [ block_size_megabytes int]
    [ writing_processes int]
    [ bench_ijk_splitting_write str]
    [ bench_ijk_splitting_read str]
}
where
```

- **block\_size\_bytes** *int*: File writes will be performed by chunks of this size (in bytes). This parameter will not be taken into account if block\_size\_megabytes has been defined
- **block\_size\_megabytes** *int*: File writes will be performed by chunks of this size (in megabytes). The size should be a multiple of the GPFS block size or lustre stripping size (typically several megabytes)
- writing\_processes *int*: This is the number of processes that will write concurrently to the file system (this must be set according to the capacity of the filesystem, set to 1 on small computers, can be up to 64 or 128 on very large systems).
- **bench\_ijk\_splitting\_write** *str*: Name of the splitting object we want to use to run a parallel write bench (optional parameter)
- **bench\_ijk\_splitting\_read** *str*: Name of the splitting object we want to use to run a parallel read bench (optional parameter)

# 3.23 Projection\_ale\_boundary

Description: block to compute the projection of a modal function on a mobile boundary. Use to compute modal added coefficients in FSI.

See also: interprete (3)
Usage:

Projection\_ALE\_boundary dom bloc where

• **dom** *str*: Name of domain.

• **bloc** *bloc\_lecture* (3.2): between the braces, you must specify the numbers of the mobile borders then list these mobile borders and indicate the modal function which must be projected on these boundaries.

Example: Projection ALE boundary dom name { 1 boundary name 3 0.sin(pi\*x)\*1.e-4 0. }

## 3.24 Raffiner\_isotrope\_parallele

```
Description: Refine parallel mesh in parallel

See also: interprete (3)

Usage:
Raffiner_isotrope_parallele {
    name_of_initial_zones|name_of_initial_domaines str
    name_of_new_zones|name_of_new_domaines str
    [ ascii ]
    [ single_hdf ]
}
where
```

- name\_of\_initial\_zones|name\_of\_initial\_domaines str: name of initial Domaines
- name\_of\_new\_zones|name\_of\_new\_domaines str: name of new Domaines
- ascii : writing Domaines in ascii format
- single hdf: writing Domaines in hdf format

## 3.25 Read med

Synonymous: lire\_med

Description: Keyword to read MED mesh files where 'domain' corresponds to the domain name, 'file' corresponds to the file (written in the MED format) containing the mesh named mesh\_name.

Note about naming boundaries: When reading 'file', TRUST will detect boundaries between domains (Raccord) when the name of the boundary begins by type\_raccord\_. For example, a boundary named type\_raccord\_wall in 'file' will be considered by TRUST as a boundary named 'wall' between two domains.

NB: To read several domains from a mesh issued from a MED file, use Read\_Med to read the mesh then use Create\_domain\_from\_sub\_domain keyword.

NB: If the MED file contains one or several subdomaine defined as a group of volumes, then Read\_MED will read it and will create two files domain\_name\_ssz.geo and domain\_name\_ssz\_par.geo defining the subdomaines for sequential and/or parallel calculations. These subdomaines will be read in sequential in the datafile by including (after Read\_Med keyword) something like:

```
Read_Med ....
Read_file domain_name_ssz.geo;
During the parallel calculation, you will include something:
Scatter { ... }
Read_file domain_name_ssz_par.geo;
See also: interprete (3)
Usage:
read_med {
     [convertalltopoly]
     domaine|domain str
     fichier|file str
     [ maillage|mesh str]
     [ exclure_groupes|exclude_groups n word1 word2 ... wordn]
     [inclure_groupes_faces_additionnelslinclude_additional_face_groups n word1 word2 ... wordn]
}
where
```

- convertalltopoly: Option to convert mesh with mixed cells into polyhedral/polygonal cells
- domaineldomain str: Corresponds to the domain name.
- fichierlfile str: File (written in the MED format, with extension '.med') containing the mesh
- maillagelmesh str: Name of the mesh in med file. If not specified, the first mesh will be read.
- exclure\_groupeslexclude\_groups n word1 word2 ... wordn: List of face groups to skip in the MED file.
- inclure\_groupes\_faces\_additionnelslinclude\_additional\_face\_groups n word1 word2 ... wordn: List of face groups to read and register in the MED file.

## 3.26 Solver\_moving\_mesh\_ale

Description: Solver used to solve the system giving the mesh velocity for the ALE (Arbitrary Lagrangian-Eulerian) framework.

```
See also: interprete (3)

Usage:
Solver_moving_mesh_ALE dom bloc
where

• dom str: Name of domain.
• bloc bloc_lecture (3.2): Example: { PETSC GCP { precond ssor { omega 1.5 } seuil 1e-7 impr } }
```

## 3.27 Test\_sse\_kernels

Description: Object to test the different kernel methods used in the multigrid solver in IJK discretization

```
See also: interprete (3)

Usage:
Test_SSE_Kernels {

[ nmax int]
```

```
}
where
```

• nmax int: Number of tests we want to perform

## 3.28 Analyse\_angle

Description: Keyword Analyse\_angle prints the histogram of the largest angle of each mesh elements of the domain named name\_domain. nb\_histo is the histogram number of bins. It is called by default during the domain discretization with nb\_histo set to 18. Useful to check the number of elements with angles above 90 degrees.

See also: interprete (3)

Usage:
analyse\_angle domain\_name nb\_histo
where

• domain\_name str: Name of domain to resequence.
• nb\_histo int

#### 3.29 Associate

Synonymous: associer

Description: This interpretor allows one object to be associated with another. The order of the two objects in this instruction is not important. The object objet\_2 is associated to objet\_1 if this makes sense; if not either objet\_1 is associated to objet\_2 or the program exits with error because it cannot execute the Associate (Associer) instruction. For example, to calculate water flow in a pipe, a Pb\_Hydraulique type object needs to be defined. But also a Domaine type object to represent the pipe, a Scheme\_euler\_explicit type object for time discretization, a discretization type object (VDF or VEF) and a Fluide\_Incompressible type object which will contain the water properties. These objects must then all be associated with the problem.

See also: interprete (3) associer\_pbmg\_pbgglobal (3.32) associer\_pbmg\_pbfin (3.31) associer\_algo (3.30)

```
Usage:
```

```
associate objet_1 objet_2
where
    objet_1 str: Objet_1
    objet_2 str: Objet_2
```

## 3.30 Associer algo

Description: This interpretor allows an algorithm to be associated with multi-grid problem.

```
See also: associate (3.29)

Usage:
associer_algo objet_1 objet_2
where
```

```
 objet_1 str: Objet_1 objet_2 str: Objet_2
```

## 3.31 Associer\_pbmg\_pbfin

Description: This interpretor allows a local problem to be associated with multi-grid problem.

```
See also: associate (3.29)

Usage:
associer_pbmg_pbfin objet_1 objet_2
where

• objet_1 str: Objet_1

• objet_2 str: Objet_2
```

## 3.32 Associer\_pbmg\_pbgglobal

Description: This interpretor allows a global problem to be associated with multi-grid problem.

```
See also: associate (3.29)

Usage:
associer_pbmg_pbgglobal objet_1 objet_2
where

• objet_1 str: Objet_1
• objet_2 str: Objet_2
```

## 3.33 Axi

Description: This keyword allows a 3D calculation to be executed using cylindrical coordinates  $(R, \theta, Z)$ . If this instruction is not included, calculations are carried out using Cartesian coordinates.

```
See also: interprete (3)
Usage:
axi
```

# 3.34 Bidim\_axi

Description: Keyword allowing a 2D calculation to be executed using axisymetric coordinates (R, Z). If this instruction is not included, calculations are carried out using Cartesian coordinates.

```
See also: interprete (3)
Usage:
bidim_axi
```

## 3.35 Calculer\_moments

See also: interprete (3)

Description: Calculates and prints the torque (moment of force) exerted by the fluid on each boundary in output files (.out) of the domain nom\_dom.

```
Usage:
calculer moments nom dom mot
where
   • nom dom str: Name of domain.
   • mot lecture_bloc_moment_base (3.36): Keyword.
3.36 Lecture_bloc_moment_base
Description: Auxiliary class to compute and print the moments.
See also: objet_lecture (39) calcul (3.36.1) centre_de_gravite (3.36.2)
Usage:
3.36.1 Calcul
Description: The centre of gravity will be calculated.
See also: (3.36)
Usage:
calcul
3.36.2 Centre_de_gravite
Description: To specify the centre of gravity.
See also: (3.36)
Usage:
centre_de_gravite point
where
   • point un point (3.4.7): A centre of gravity.
```

# 3.37 Corriger\_frontiere\_periodique

Description: The Corriger\_frontiere\_periodique keyword is mandatory to first define the periodic boundaries, to reorder the faces and eventually fix unaligned nodes of these boundaries. Faces on one side of the periodic domain are put first, then the faces on the opposite side, in the same order. It must be run in sequential before mesh splitting.

```
See also: interprete (3)

Usage:
corriger_frontiere_periodique {
```

```
domaine str
bord str
[ direction n x1 x2 ... xn]
[ fichier_post str]
}
where
```

- domaine str: Name of domain.
- **bord** *str*: the name of the boundary (which must contain two opposite sides of the domain)
- **direction** *n x1 x2* ... *xn*: defines the periodicity direction vector (a vector that points from one node on one side to the opposite node on the other side). This vector must be given if the automatic algorithm fails, that is:
  - when the node coordinates are not perfectly periodic
  - when the periodic direction is not aligned with the normal vector of the boundary faces
- fichier\_post str: .

#### 3.38 Create domain from sous zone

Synonymous: create\_domain\_from\_sub\_domain

Description: kept for backward compatibility. please use Create\_domain\_from\_sub\_domain

```
See also: Create_domain_from_sub_domain (3.5)

Usage:
create_domain_from_sous_zone {

[domaine_final str]
[par_sous_zone str]
```

} where

- domaine\_final str for inheritance: new domain in which faces are stored
- par\_sous\_zone str for inheritance: a sub-area allowing to choose the elements
- domaine init str for inheritance: initial domain

## 3.39 Criteres\_convergence

domaine\_init str

```
Description: convergence criteria

See also: interprete (3)

Usage:
aco [inco][val] acof
where
```

- aco str into ['{']: Opening curly bracket.
- inco str: Unknown (i.e: alpha, temperature, velocity and pressure)
- val float: Convergence threshold
- acof str into ['}']: Closing curly bracket.

# 3.40 Debog

Description: Class to debug some differences between two TRUST versions on a same data file.

If you want to compare the results of the same code in sequential and parallel calculation, first run (mode=0) in sequential mode (the files fichier1 and fichier2 will be written first) then the second run in parallel calculation (mode=1).

During the first run (mode=0), it prints into the file DEBOG, values at different points of the code thanks to the C++ instruction call. see for example in Kernel/Framework/Resoudre.cpp file the instruction: Debog::verifier(msg,value); Where msg is a string and value may be a double, an integer or an array.

During the second run (mode=1), it prints into a file Err\_Debog.dbg the same messages than in the DEBOG file and checks if the differences between results from both codes are less than a given value (error). If not, it prints Ok else show the differences and the lines where it occured.

See also: interprete (3)

Usage:

debog pb fichier1 fichier2 seuil mode

where

- **pb** *str*: Name of the problem to debug.
- fichier1 str: Name of the file where domain will be written in sequential calculation.
- fichier2 str: Name of the file where faces will be written in sequential calculation.
- seuil *float*: Minimal value (by default 1.e-20) for the differences between the two codes.
- **mode** *int*: By default -1 (nothing is written in the different files), you will set 0 for the sequential run, and 1 for the parallel run.

#### 3.41 {

Description: Block's beginning.

See also: interprete (3)

Usage:

# 3.42 Decoupebord

Synonymous: decoupebord\_pour\_rayonnement

Description: To subdivide the external boundary of a domain into several parts (may be useful for better accuracy when using radiation model in transparent medium). To specify the boundaries of the fine\_domain\_name domain to be splitted. These boundaries will be cut according the coarse mesh defined by either the keyword domaine\_grossier (each boundary face of the coarse mesh coarse\_domain\_name will be used to group boundary faces of the fine mesh to define a new boundary), either by the keyword nb\_parts\_naif (each boundary of the fine mesh is splitted into a partition with nx\*ny\*nz elements), either by a geometric condition given by a formulae with the keyword condition\_geometrique. If used, the coarse\_domain\_name domain should have the same boundaries name of the fine\_domain\_name domain.

A mesh file (ASCII format, except if binaire option is specified) named by default newgeom (or specified by the nom\_fichier\_sortie keyword) will be created and will contain the fine\_domain\_name domain with the splitted boundaries named boundary\_name

See also: interprete (3)
Usage:
decoupebord {

```
domaine str
     [domaine_grossier str]
     [ nb_parts_naif  n n1 n2 ... nn]
     [ nb_parts_geom n n1 n2 ... nn]
     [ condition_geometrique n word1 word2 ... wordn]
     bords_a_decouper n word1 word2 ... wordn
     [ nom_fichier_sortie str]
     [binaire int]
}
where
   • domaine str
   • domaine_grossier str
   • nb_parts_naif n n1 n2 ... nn
   • nb_parts_geom n n1 n2 ... nn
   • condition_geometrique n word1 word2 ... wordn
   • bords_a_decouper n word1 word2 ... wordn
   • nom_fichier_sortie str
   • binaire int
```

## 3.43 Decouper\_bord\_coincident

Description: In case of non-coincident meshes and a paroi\_contact condition, run is stopped and two external files are automatically generated in VEF (connectivity\_failed\_boundary\_name and connectivity\_failed\_pb\_name.med). In 2D, the keyword Decouper\_bord\_coincident associated to the connectivity\_failed\_boundary\_name file allows to generate a new coincident mesh.

```
See also: interprete (3)

Usage:
decouper_bord_coincident domain_name bord
where

• domain_name str: Name of domain.
• bord str: connectivity failed boundary name
```

#### 3.44 Dilate

Description: Keyword to multiply the whole coordinates of the geometry.

```
See also: interprete (3)

Usage:
dilate domain_name alpha
where
```

- domain\_name str: Name of domain.
- alpha float: Value of dilatation coefficient.

## 3.45 Dimension

Description: Keyword allowing calculation dimensions to be set (2D or 3D), where dim is an integer set to 2 or 3. This instruction is mandatory.

See also: interprete (3)

Usage:

dimension dim

where

• dim int into [2, 3]: Number of dimensions.

## 3.46 Disable\_tu

Description: Flag to disable the writing of the .TU files

See also: interprete (3)

Usage:

 $disable_TU$ 

## 3.47 Discretiser\_domaine

Description: Useful to discretize the domain domain\_name (faces will be created) without defining a problem.

See also: interprete (3)

Usage:

discretiser\_domaine domain\_name

where

• **domain\_name** *str*: Name of the domain.

#### 3.48 Discretize

Synonymous: discretiser

Description: Keyword to discretise a problem\_name according to the discretization dis. IMPORTANT: A number of objects must be already associated (a domain, time scheme, central object) prior to invoking the Discretize (Discretiser) keyword. The physical properties of this central object must also have been read.

See also: interprete (3)

Usage:

discretize problem\_name dis

where

- problem\_name str: Name of problem.
- dis str: Name of the discretization object.

# 3.49 Distance\_paroi

Description: Class to generate external file Wall\_length.xyz devoted for instance, for mixing length modelling. In this file, are saved the coordinates of each element (center of gravity) of dom domain and minimum distance between this point and boundaries (specified bords) that user specifies in data file (typically, those associated to walls). A field Distance\_paroi is available to post process the distance to the wall.

See also: interprete (3)

Usage:

distance\_paroi dom bords format

where

- dom str: Name of domain.
- **bords** *n word1 word2* ... *wordn*: Boundaries.
- **format** *str into* ['binaire', 'formatte']: Value for format may be binaire (a binary file Wall\_length.xyz is written) or formatte (moreover, a formatted file Wall\_length\_formatted.xyz is written).

# 3.50 Ecrire\_champ\_med

Description: Keyword to write a field to MED format into a file.

See also: interprete (3)

Usage:

ecrire\_champ\_med nom\_dom nom\_chp file

where

nom\_dom str: domain namenom chp str: field name

• file str: file name

## 3.51 Ecrire fichier formatte

Description: Keyword to write the object of name name\_obj to a file filename in ASCII format.

See also: ecrire\_fichier\_bin (3.146)

Usage:

ecrire\_fichier\_formatte name\_obj filename

where

- name obj str: Name of the object to be written.
- filename str: Name of the file.

## 3.52 Ecrire\_fichier\_xyz\_valeur

Description: This keyword is used to write the values of a field only for some boundaries in a text file with the following format: n\_valeur

```
x_1 y_1 [z_1] val_1
```

...

 $x_n y_n [z_n] val_n$ 

The created files are named: pbname\_fieldname\_[boundaryname]\_time.dat

```
See also: interprete (3)

Usage:
ecrire_fichier_xyz_valeur {

[binary_file]
[dt float]
[fields n word1 word2 ... wordn]
[boundaries n word1 word2 ... wordn]
}
where

• binary_file: To write file in binary format
• dt float: File writing frequency
• fields n word1 word2 ... wordn: Names of the fields we want to write
• boundaries n word1 word2 ... wordn: Names of the boundaries on which to write fields
```

## 3.53 Ecriturelecturespecial

Description: Class to write or not to write a .xyz file on the disk at the end of the calculation.

```
See also: interprete (3)
```

Usage:

## ecriturelecturespecial type

where

• **type** *str*: If set to 0, no xyz file is created. If set to EFichierBin, it uses prior 1.7.0 way of reading xyz files (now LecFicDiffuseBin). If set to EcrFicPartageBin, it uses prior 1.7.0 way of writing xyz files (now EcrFicPartageMPIIO).

# 3.54 Espece

```
Description: not_set

See also: interprete (3)

Usage:
espece {

mu champ_base
cp champ_base
masse_molaire float

}

where

• mu champ_base (18.1): Species dynamic viscosity value (kg.m-1.s-1).
• cp champ_base (18.1): Species specific heat value (J.kg-1.K-1).
• masse_molaire float: Species molar mass.
```

## 3.55 Execute\_parallel

Description: This keyword allows to run several computations in parallel on processors allocated to TRUST. The set of processors is split in N subsets and each subset will read and execute a different data file. Error messages usually written to stderr and stdout are redirected to .log files (journaling must be activated).

```
See also: interprete (3)

Usage:
execute_parallel {

liste_cas n word1 word2 ... wordn

[nb_procs n n1 n2 ... nn]
}
where
```

- **liste\_cas** *n word1 word2 ... wordn*: N datafile1 ... datafileN. datafileX the name of a TRUST data file without the .data extension.
- **nb\_procs** *n n1 n2 ... nn*: nb\_procs is the number of processors needed to run each data file. If not given, TRUST assumes that computations are sequential.

## 3.56 Export

Description: Class to make the object have a global range, if not its range will apply to the block only (the associated object will be destroyed on exiting the block).

```
See also: interprete (3)
Usage:
export
```

#### 3.57 Extract 2d from 3d

Description: Keyword to extract a 2D mesh by selecting a boundary of the 3D mesh. To generate a 2D axisymmetric mesh prefer Extract\_2Daxi\_from\_3D keyword.

```
See also: interprete (3) extract_2daxi_from_3d (3.58)
```

Usage:

```
extract_2d_from_3d dom3D bord dom2D where
```

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

## 3.58 Extract\_2daxi\_from\_3d

Description: Keyword to extract a 2D axisymetric mesh by selecting a boundary of the 3D mesh.

```
See also: extract_2d_from_3d (3.57)
```

```
Usage:
```

```
extract_2daxi_from_3d dom3D bord dom2D where
```

- dom3D str: Domain name of the 3D mesh
- **bord** *str*: Boundary name. This boundary becomes the new 2D mesh and all the boundaries, in 3D, attached to the selected boundary, give their name to the new boundaries, in 2D.
- dom2D str: Domain name of the new 2D mesh

## 3.59 Extraire\_domaine

See also: interprete (3)

Description: Keyword to create a new domain built with the domain elements of the pb\_name problem verifying the two conditions given by Condition\_elements. The problem pb\_name should have been discretized.

Keyword Discretize should have already been used to read the object.

```
Usage:
extraire_domaine {

domaine str
probleme str
[condition_elements str]
[sous_zonelsous_domaine str]
}
where
```

- domaine str: Domain in which faces are saved
- probleme str: Problem from which faces should be extracted
- condition\_elements str
- sous\_zone|sous\_domaine str

## 3.60 Extraire\_plan

Description: This keyword extracts a plane mesh named domain\_name (this domain should have been declared before) from the mesh of the pb\_name problem. The plane can be either a triangle (defined by the keywords Origine, Point1, Point2 and Triangle), either a regular quadrangle (with keywords Origine, Point1 and Point2), or either a generalized quadrangle (with keywords Origine, Point1, Point2, Point3). The keyword Epaisseur specifies the thickness of volume around the plane which contains the faces of the extracted mesh. The keyword via\_extraire\_surface will create a plan and use Extraire\_surface algorithm. Inverse\_condition\_element keyword then will be used in the case where the plane is a boundary not well oriented, and avec\_certains\_bords\_pour\_extraire\_surface is the option related to the Extraire\_surface option named avec\_certains\_bords.

```
Keyword Discretize should have already been used to read the object.
See also: interprete (3)
```

```
Usage:
extraire_plan {
domaine str
```

```
probleme str
      origine n \times 1 \times 2 \dots \times n
      point1 n \times 1 \times 2 \dots \times n
      point2 n \times 1 \times 2 \dots \times n
      [ point3 n \times 1 \times 2 \dots \times n]
      [triangle]
      epaisseur float
      [via extraire surface]
      [inverse condition element]
      [ avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn]
}
where
    • domaine str: domain name
    • probleme str: pb_name
    • origine n x1 x2 ... xn
    • point1 n x1 x2 ... xn
    • point2 n x1 x2 ... xn
    • point3 n x1 x2 ... xn

    triangle

    • epaisseur float: thickness
    · via extraire surface
    • inverse_condition_element
    • avec_certains_bords_pour_extraire_surface n word1 word2 ... wordn: name of boundaries to
```

## 3.61 Extraire\_surface

See also: interprete (3)

where

include when extracting plan

Description: This keyword extracts a surface mesh named domain\_name (this domain should have been declared before) from the mesh of the pb\_name problem. The surface mesh is defined by one or two conditions. The first condition is about elements with Condition\_elements. For example: Condition\_elements x\*x+y\*y+z\*z<1

Will define a surface mesh with external faces of the mesh elements inside the sphere of radius 1 located at (0,0,0). The second condition Condition\_faces is useful to give a restriction.

By default, the faces from the boundaries are not added to the surface mesh excepted if option avec\_les\_bords is given (all the boundaries are added), or if the option avec\_certains\_bords is used to add only some boundaries.

Keyword Discretize should have already been used to read the object.

Usage:
extraire\_surface {

domaine str
probleme str
[condition\_elements str]
[condition\_faces str]
[avec\_les\_bords]
[avec\_certains\_bords n word1 word2 ... wordn]
}

- domaine str: Domain in which faces are saved
- probleme str: Problem from which faces should be extracted
- condition elements str: condition on center of elements
- condition faces str
- · avec les bords
- avec\_certains\_bords n word1 word2 ... wordn

#### 3.62 Extrudebord

Description: Class to generate an extruded mesh from a boundary of a tetrahedral or an hexahedral mesh. Warning: If the initial domain is a tetrahedral mesh, the boundary will be moved in the XY plane then extrusion will be applied (you should maybe use the Transformer keyword on the final domain to have the domain you really want). You can use the keyword Postraiter\_domaine to generate a latalmedl... file to visualize your initial and final meshes.

This keyword can be used for example to create a periodic box extracted from a boundary of a tetrahedral or a hexaedral mesh. This periodic box may be used then to engender turbulent inlet flow condition for the main domain.

Note that ExtrudeBord in VEF generates 3 or 14 tetrahedra from extruded prisms.

```
See also: interprete (3)

Usage:
extrudebord {

    domaine_init str
    direction x1 x2 (x3)
    nb_tranches int
    domaine_final str
    nom_bord str
    [ hexa_old ]
    [ trois_tetra ]
    [ vingt_tetra ]
    [ sans_passer_par_le2d int]
}
where
```

- **domaine init** *str*: Initial domain with hexaedras or tetrahedras.
- **direction**  $x1 \ x2 \ (x3)$ : Directions for the extrusion.
- **nb\_tranches** *int*: Number of elements in the extrusion direction.
- domaine\_final str: Extruded domain.
- nom\_bord str: Name of the boundary of the initial domain where extrusion will be applied.
- hexa old : Old algorithm for boundary extrusion from a hexahedral mesh.
- trois tetra: To extrude in 3 tetrahedras instead of 14 tetrahedras.
- **vingt tetra**: To extrude in 20 tetrahedras instead of 14 tetrahedras.
- sans\_passer\_par\_le2d int: Only for non-regression

## 3.63 Extrudeparoi

Description: Keyword dedicated in 3D (VEF) to create prismatic layer at wall. Each prism is cut into 3 tetraedra.

See also: interprete (3)

```
Usage:
extrudeparoi {

domaine str
nom_bord str
[epaisseur n x1 x2 ... xn]
[critere_absolu int]
[projection_normale_bord]
}
where
```

- domaine str: Name of the domain.
- nom\_bord str: Name of the (no-slip) boundary for creation of prismatic layers.
- epaisseur n x1 x2 ... xn: n r1 r2 .... rn: (relative or absolute) width for each layer.
- **critere\_absolu** *int*: relative (0, the default) or absolute (1) width for each layer.
- **projection\_normale\_bord**: keyword to project layers on the same plane that contiguous boundaries. defaut values are: epaisseur\_relative 1 0.5 projection\_normale\_bord 1

#### 3.64 Extruder

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 14) from a 2D triangular/quadrangular mesh.

```
See also: interprete (3) extruder_en3 (3.67)

Usage:
extruder {

domaine str
direction troisf
nb_tranches int
}
where
```

- domaine str: Name of the domain.
- **direction** troisf(3.65): Direction of the extrude operation.
- **nb\_tranches** *int*: Number of elements in the extrusion direction.

#### 3.65 Troisf

Description: Auxiliary class to extrude.

```
See also: objet_lecture (39)
Usage:
```

lx ly lz where

- lx *float*: X direction of the extrude operation.
- ly *float*: Y direction of the extrude operation.
- Iz *float*: Z direction of the extrude operation.

## 3.66 Extruder\_en20

Description: It does the same task as Extruder except that a prism is cut into 20 tetraedra instead of 3. The name of the boundaries will be devant (front) and derriere (back). But you can change these names with the keyword RegroupeBord.

```
See also: interprete (3)

Usage:
extruder_en20 {

domaine str
[direction troisf]
nb_tranches int
}
where

• domaine str: Name of the domain.
• direction troisf (3.65): 0 Direction of the extrude operation.
• nb_tranches int: Number of elements in the extrusion direction.
```

## 3.67 Extruder\_en3

Description: Class to create a 3D tetrahedral/hexahedral mesh (a prism is cut in 3) from a 2D triangular/quadrangular mesh. The names of the boundaries (by default, devant (front) and derriere (back)) may be edited by the keyword nom\_cl\_devant and nom\_cl\_derriere. If NULL is written for nom\_cl, then no boundary condition is generated at this place.

Recommendation: to ensure conformity between meshes (in case of fluid/solid coupling) it is recommended to extrude all the domains at the same time.

```
See also: extruder (3.64)

Usage:
extruder_en3 {

domaine n word1 word2 ... wordn
 [nom_cl_devant str]
 [nom_cl_derriere str]
 direction troisf
 nb_tranches int
}
where
```

- **domaine** *n word1 word2* ... *wordn*: List of the domains
- nom\_cl\_devant str: New name of the first boundary.
- **nom\_cl\_derriere** *str*: New name of the second boundary.
- **direction** *troisf* (3.65) for inheritance: Direction of the extrude operation.
- **nb\_tranches** *int* for inheritance: Number of elements in the extrusion direction.

#### 3.68 Facsec

Description: To parameter the safety factor for the time step during the simulation.

```
See also: interprete (3)

Usage:
facsec {

    [facsec_ini float]
    [facsec_max float]
    [rapport_residus float]
    [nb_ite_sans_accel_max int]
}
where
```

- facsec\_ini float: Initial facsec taken into account at the beginning of the simulation.
- facsec\_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec\_max value.

Warning: Some implicit schemes do not permit high facsec\_max, example Schema\_Adams\_Moulton\_order\_3 needs facsec=facsec\_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec\_max limit. But the user can also choose to specify a constant facsec (facsec\_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec max limit higher.

- **rapport\_residus** *float*: Ratio between the residual at time n and the residual at time n+1 above which the facsec is increased by multiplying by sqrt(rapport\_residus) (1.2 by default).
- **nb\_ite\_sans\_accel\_max** *int*: Maximum number of iterations without facsec increases (20000 by default): if facsec does not increase with the previous condition (ration between 2 consecutive residuals too high), we increase it by force after nb\_ite\_sans\_accel\_max iterations.

## 3.69 End

Synonymous: fin

Description: Keyword which must complete the data file. The execution of the data file stops when reaching this keyword.

```
See also: interprete (3)

Usage: end

3.70 }

Description: Block's end.

See also: interprete (3)
```

```
Usage: }
```

## 3.71 Imposer\_vit\_bords\_ale

Description: For the Arbitrary Lagrangian-Eulerian framework: block to indicate the number of mobile boundaries of the domain and specify the speed that must be imposed on them.

See also: interprete (3)

Usage:

imposer\_vit\_bords\_ale dom bloc where

• **dom** *str*: Name of domain.

• **bloc** *bloc\_lecture* (3.2): between the braces, you must specify the numbers of the mobile borders of the domain then list these mobile borders and indicate the speed which must be imposed on them Example: Imposer\_vit\_bords\_ALE dom\_name { 1 boundary\_name Champ\_front\_ALE 2 -(y-0.1)\*0.01 (x-0.1)\*0.01 }

## 3.72 Imprimer\_flux

Description: This keyword prints the flux per face at the specified domain boundaries in the data set. The fluxes are written to the .face files at a frequency defined by dt\_impr, the evaluation printing frequency (refer to time scheme keywords). By default, fluxes are incorporated onto the edges before being displayed.

See also: interprete (3) imprimer\_flux\_sum (3.73)

Usage:

imprimer\_flux domain\_name noms\_bord
where

- **domain\_name** *str*: Name of the domain.
- **noms\_bord** *bloc\_lecture* (3.2): List of boundaries, for ex: { Bord1 Bord2 }

## 3.73 Imprimer\_flux\_sum

Description: This keyword prints the sum of the flux per face at the domain boundaries defined by the user in the data set. The fluxes are written into the .out files at a frequency defined by dt\_impr, the evaluation printing frequency (refer to time scheme keywords).

See also: imprimer\_flux (3.72)

Usage:

imprimer\_flux\_sum domain\_name noms\_bord
where

- **domain\_name** *str*: Name of the domain.
- noms\_bord bloc\_lecture (3.2): List of boundaries, for ex: { Bord1 Bord2 }

# 3.74 Integrer\_champ\_med

Description: his keyword is used to calculate a flow rate from a velocity MED field read before. The method is either debit\_total to calculate the flow rate on the whole surface, either integrale\_en\_z to calculate flow rates between z=zmin and z=zmax on nb\_tranche surfaces. The output file indicates first the flow rate for the whole surface and then lists for each tranche: the height z, the surface average value, the surface area and the flow rate. For the debit\_total method, only one tranche is considered. file:z Sum(u.dS)/Sum(dS) Sum(dS) Sum(u.dS)

```
See also: interprete (3)
Usage:
integrer_champ_med {
     champ_med str
     methode str into ['integrale_en_z', 'debit_total']
     [ zmin float]
     [ zmax float]
     [ nb tranche int]
     [fichier_sortie str]
where

    champ_med str

   • methode str into ['integrale_en_z', 'debit_total']: to choose between the integral following z or
     over the entire height (debit_total corresponds to zmin=-DMAXFLOAT, ZMax=DMAXFLOAT, nb-
     _tranche=1)
   • zmin float
   • zmax float
   • nb tranche int
   • fichier_sortie str: name of the output file, by default: integrale.
3.75 Interfaces
```

```
Description: not_set

See also: interprete (3)

Usage:
interfaces {

    fichier_reprise_interface str
    [ timestep_reprise_interface int]
    [ lata_meshname str]
    [ remaillage_ft_ijk remaillage_ft_ijk]
    [ no_octree_method int]
    [ compute_distance_autres_interfaces ]
    [ terme_gravite str into ['rho_g', 'grad_i']]
}
where

• fichier_reprise_interface str
• timestep_reprise_interface int
```

• lata\_meshname str

- remaillage\_ft\_ijk remaillage\_ft\_ijk (3.111)
- **no\_octree\_method** *int*: if the bubbles repel each other, what method should be used to compute relative velocities? Octree method by default, otherwise we used the IJK discretization
- compute\_distance\_autres\_interfaces
- terme\_gravite str into ['rho\_g', 'grad\_i']

## 3.76 Interprete\_geometrique\_base

Description: Class for interpreting a data file

See also: interprete (3) Create\_domain\_from\_sub\_domain (3.5)

Usage:

interprete\_geometrique\_base

## 3.77 Lata\_2\_med

Synonymous: lata\_to\_med

Description: To convert results file written with LATA format to MED file. Warning: Fields located on faces are not supported yet.

See also: interprete (3)

Usage:

lata\_2\_med [format] file file\_med

where

- **format** *format\_lata\_to\_med* (3.78): generated file post\_med.data use format (MED or LATA or LML keyword).
- file str: LATA file to convert to the new format.
- file\_med str: Name of the MED file.

#### 3.78 Format\_lata\_to\_med

Description: not\_set

See also: objet\_lecture (39)

Usage:

mot [format]

where

- mot str into ['format\_post\_sup']
- **format** *str into ['lml', 'lata', 'lata\_v2', 'med']*: generated file post\_med.data use format (MED or LATA or LML keyword).

## **3.79** Lata\_2\_other

Synonymous: lata\_to\_other

Description: To convert results file written with LATA format to MED or LML format. Warning: Fields located at faces are not supported yet.

See also: interprete (3)

Usage:

lata\_2\_other [ format ] file file\_post where

- format str into ['lml', 'lata', 'lata\_v2', 'med']: Results format (MED or LATA or LML keyword).
- file str: LATA file to convert to the new format.
- file\_post str: Name of file post.

## 3.80 Lire\_ideas

Description: Read a geom in a unv file. 3D tetra mesh elements only may be read by TRUST.

See also: interprete (3)

Usage:

lire\_ideas nom\_dom file

where

- nom\_dom str: Name of domain.
- file str: Name of file.

## 3.81 Lml\_2\_lata

Synonymous: lml\_to\_lata

Description: To convert results file written with LML format to a single LATA file.

See also: interprete (3)

Usage:

lml\_2\_lata file\_lml file\_lata

where

- file\_lml str: LML file to convert to the new format.
- file\_lata str: Name of the single LATA file.

## 3.82 Mailler

Description: The Mailler (Mesh) interpretor allows a Domain type object domaine to be meshed with objects objet\_1, objet\_2, etc...

See also: interprete (3)

Usage:

mailler domaine bloc

where

- domaine str: Name of domain.
- **bloc** *list\_bloc\_mailler* (3.83): Instructions to mesh.

# 3.83 List\_bloc\_mailler

```
Description: List of block mesh.
See also: listobj (38.5)
Usage:
{ object1, object2.... }
list of mailler_base (3.83.1) separeted with,
3.83.1 Mailler_base
Description: Basic class to mesh.
See also: objet_lecture (39) epsilon (3.83.2) domain (3.83.3) pave (3.83.4)
Usage:
3.83.2 Epsilon
Description: Two points will be confused if the distance between them is less than eps. By default, eps is
set to 1e-12. The keyword Epsilon allows an alternative value to be assigned to eps.
See also: mailler_base (3.83.1)
Usage:
epsilon eps
where
    • eps float: New value of precision.
3.83.3 Domain
Description: Class to reuse a domain.
See also: mailler_base (3.83.1)
Usage:
domain domain_name
where
    • domain_name str: Name of domain.
3.83.4 Pave
Description: Class to create a pave (block) with boundaries.
See also: mailler_base (3.83.1)
Usage:
pave name bloc list_bord
where
    • name str: Name of the pave (block).
```

bloc bloc\_pave (3.83.5): Definition of the pave (block).
list\_bord list\_bord (3.83.6): Domain boundaries definition.

#### 3.83.5 **Bloc\_pave**

```
Description: Class to create a pave.
See also: objet lecture (39)
Usage:
     [Origine x1 \ x2 \ (x3)]
     [longueurs x1 \ x2 \ (x3)]
     [ nombre_de_noeuds n1 n2 (n3)]
     [ facteurs x1 x2 (x3)]
     [symx]
     [symy]
     [symz]
     [xtanh float]
     [ xtanh dilatation int into [-1, 0, 1]]
     [ xtanh taille premiere maille float]
     [ ytanh float]
     [ ytanh dilatation int into [-1, 0, 1]]
     [ ytanh_taille_premiere_maille float]
      [ztanh float]
     [ ztanh dilatation int into [-1, 0, 1]]
     [ ztanh_taille_premiere_maille | float]
where
```

- **Origine** x1 x2 (x3): Keyword to define the pave (block) origin, that is to say one of the 8 block points (or 4 in a 2D coordinate system).
- **longueurs** x1 x2 (x3): Keyword to define the block dimensions, that is to say knowing the origin, length along the axes.
- nombre\_de\_noeuds n1 n2 (n3): Keyword to define the discretization (nodenumber) in each direction
- **facteurs** *x1 x2 (x3)*: Keyword to define stretching factors for mesh discretization in each direction. This is a real number which must be positive (by default 1.0). A stretching factor other than 1 allows refinement on one edge in one direction.
- **symx**: Keyword to define a block mesh that is symmetrical with respect to the YZ plane (respectively Y-axis in 2D) passing through the block centre.
- **symy**: Keyword to define a block mesh that is symmetrical with respect to the XZ plane (respectively X-axis in 2D) passing through the block centre.
- symz : Keyword defining a block mesh that is symmetrical with respect to the XY plane passing through the block centre.
- xtanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction.
- **xtanh\_dilatation** *int into* [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the X-direction. xtanh\_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the left side of the channel and smaller near the left side of the channel and smaller near the left side of the channel.
- xtanh\_taille\_premiere\_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the X-direction.
- ytanh float: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- ytanh\_dilatation int into [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Y-direction. ytanh\_dilatation: The value may be -1,0,1 (0 by default): 0: coarse

mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the bottom of the channel and smaller near the top 1: coarse mesh at the top of the channel and smaller near the bottom.

- ytanh\_taille\_premiere\_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Y-direction.
- ztanh *float*: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction.
- **ztanh\_dilatation** *int into* [-1, 0, 1]: Keyword to generate mesh with tanh (hyperbolic tangent) variation in the Z-direction. tanh\_dilatation: The value may be -1,0,1 (0 by default): 0: coarse mesh at the middle of the channel and smaller near the walls -1: coarse mesh at the back of the channel and smaller near the front 1: coarse mesh at the front of the channel and smaller near the back.
- ztanh\_taille\_premiere\_maille *float*: Size of the first cell of the mesh with tanh (hyperbolic tangent) variation in the Z-direction.

#### 3.83.6 List\_bord

Description: The block sides.

See also: listobj (38.5)

Usage:

{ object1 object2 .... } list of bord\_base (3.83.7)

#### **3.83.7** Bord\_base

Description: Basic class for block sides. Block sides that are neither edges nor connectors are not specified. The duplicate nodes of two blocks in contact are automatically recognized and deleted.

See also: objet\_lecture (39) bord (3.83.8) raccord (3.83.12) internes (3.83.13)

Usage:

#### 3.83.8 Bord

Description: The block side is not in contact with another block and boundary conditions are applied to it.

See also: bord\_base (3.83.7)

Usage:

## bord nom defbord

where

- nom str: Name of block side.
- **defbord** (3.83.9): Definition of block side.

#### 3.83.9 Defbord

Description: Class to define an edge.

See also: objet\_lecture (39) defbord\_2 (3.83.10) defbord\_3 (3.83.11)

Usage:

#### 3.83.10 Defbord\_2

Description: 1-D edge (straight line) in the 2-D space.

See also: (3.83.9)

Usage:

# dir eq pos pos2\_min inf1 dir2 inf2 pos2\_max where

- **dir** *str into* ['X', 'Y']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- pos float: Position value.
- pos2\_min *float*: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.
- **dir2** *str into* ['X', 'Y']: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2\_max float: Maximal value.

#### 3.83.11 Defbord\_3

Description: 2-D edge (plane) in the 3-D space.

See also: (3.83.9)

Usage:

# dir eq pos pos2\_min inf1 dir2 inf2 pos2\_max pos3\_min inf3 dir3 inf4 pos3\_max where

- **dir** *str into* ['X', 'Y', 'Z']: Edge is perpendicular to this direction.
- eq str into ['=']: Equality sign.
- pos float: Position value.
- pos2\_min float: Minimal value.
- inf1 str into ['<=']: Less than or equal to sign.
- **dir2** *str into ['X', 'Y']*: Edge is parallel to this direction.
- inf2 str into ['<=']: Less than or equal to sign.
- pos2\_max float: Maximal value.
- pos3\_min float: Minimal value.
- inf3 str into ['<=']: Less than or equal to sign.
- dir3 str into ['Y', 'Z']: Edge is parallel to this direction.
- inf4 str into ['<=']: Less than or equal to sign.
- pos3\_max float: Maximal value.

## 3.83.12 Raccord

Description: The block side is in contact with the block of another domain (case of two coupled problems).

See also: bord base (3.83.7)

Usage:

## raccord type1 type2 nom defbord

where

• type1 str into ['local', 'distant']: Contact type.

```
• type2 str into ['homogene']: Contact type.
```

- **nom** *str*: Name of block side.
- **defbord** *defbord* (3.83.9): Definition of block side.

#### **3.83.13** Internes

Description: To indicate that the block has a set of internal faces (these faces will be duplicated automatically by the program and will be processed in a manner similar to edge faces).

Two boundaries with the same boundary conditions may have the same name (whether or not they belong to the same block).

The keyword Internes (Internal) must be used to execute a calculation with plates, followed by the equation of the surface area covered by the plates.

```
See also: bord_base (3.83.7)

Usage:
internes nom defbord
where

• nom str: Name of block side.
• defbord defbord (3.83.9): Definition of block side.
```

# 3.84 Maillerparallel

Description: creates a parallel distributed hexaedral mesh of a parallelipipedic box. It is equivalent to creating a mesh with a single Pave, splitting it with Decouper and reloading it in parallel with Scatter. It only works in 3D at this time. It can also be used for a sequential computation (with all NPARTS=1)}

```
See also: interprete (3)
Usage:
maillerparallel {
     domain str
     nb_nodes n n1 n2 ... nn
     splitting n n1 n2 ... nn
     ghost_thickness int
     [perio_x]
     [perio_y]
     [perio_z]
     [function_coord_x str]
     [function_coord_y str]
     [function coord z str]
     [ file_coord_x str]
     [ file_coord_y str]
     [ file_coord_z str]
     [ boundary_xmin str]
     [boundary_xmax str]
     [boundary ymin str]
     [boundary ymax str]
     [boundary_zmin str]
     [boundary_zmax str]
```

```
}
where
```

- domain str: the name of the domain to mesh (it must be an empty domain object).
- **nb\_nodes** *n n1 n2* ... *nn*: dimension defines the spatial dimension (currently only dimension=3 is supported), and nX, nY and nZ defines the total number of nodes in the mesh in each direction.
- **splitting** *n n n n 2* ... *nn*: dimension is the spatial dimension and npartsX, npartsY and npartsZ are the number of parts created. The product of the number of parts must be equal to the number of processors used for the computation.
- **ghost\_thickness** *int*: the number of ghost cells (equivalent to the epaisseur\_joint parameter of Decouper.
- perio\_x: change the splitting method to provide a valid mesh for periodic boundary conditions.
- perio\_y: change the splitting method to provide a valid mesh for periodic boundary conditions.
- perio\_z : change the splitting method to provide a valid mesh for periodic boundary conditions.
- function\_coord\_x str: By default, the meshing algorithm creates nX nY nZ coordinates ranging between 0 and 1 (eg a unity size box). If function\_coord\_x} is specified, it is used to transform the [0,1] segment to the coordinates of the nodes. funcX must be a function of the x variable only.
- function\_coord\_y str: like function\_coord\_x for y
- function\_coord\_z str: like function\_coord\_x for z
- file\_coord\_x str: Keyword to read the Nx floating point values used as nodes coordinates in the file.
- file\_coord\_y str: idem file\_coord\_x for y
- file\_coord\_z str: idem file\_coord\_x for z
- **boundary\_xmin** *str*: the name of the boundary at the minimum X direction. If it not provided, the default boundary names are xmin, xmax, ymin, ymax, zmin and zmax. If the mesh is periodic in a given direction, only the MIN boundary name is used, for both sides of the box.
- boundary\_xmax str
- boundary ymin str
- boundary\_ymax str
- boundary\_zmin str
- boundary\_zmax str

## 3.85 Modif\_bord\_to\_raccord

Description: Keyword to convert a boundary of domain\_name domain of kind Bord to a boundary of kind Raccord (named boundary\_name). It is useful when using meshes with boundaries of kind Bord defined and to run a coupled calculation.

```
See also: interprete (3)
```

Usage:

modif\_bord\_to\_raccord domaine nom\_bord where

- domaine str: Name of domain
- **nom bord** *str*: Name of the boundary to transform.

#### 3.86 Modifydomaineaxi1d

Description: Convert a 1D mesh to 1D axisymmetric mesh

See also: interprete (3)

```
Usage:
modifydomaineAxi1d dom bloc
where

• dom str
• bloc bloc_lecture (3.2)
```

## 3.87 Moyenne\_volumique

Description: This keyword should be used after Resoudre keyword. It computes the convolution product of one or more fields with a given filtering function.

```
See also: interprete (3)

Usage:
moyenne_volumique {
    nom_pb str
    nom_domaine str
    noms_champs n word1 word2 ... wordn
    [format_post str]
    [nom_fichier_post str]
    fonction_filtre bloc_lecture
    [localisation str into ['elem', 'som']]
}
where
```

- **nom\_pb** *str*: name of the problem where the source fields will be searched.
- **nom\_domaine** *str*: name of the destination domain (for example, it can be a coarser mesh, but for optimal performance in parallel, the domain should be split with the same algorithm as the computation mesh, eg, same tranche parameters for example)
- **noms\_champs** *n word1 word2 ... wordn*: name of the source fields (these fields must be accessible from the postraitement) N source\_field1 source\_field2 ... source\_fieldN
- **format\_post** *str*: gives the fileformat for the result (by default : lata)
- nom\_fichier\_post str: indicates the filename where the result is written
- **fonction\_filtre** *bloc\_lecture* (3.2): to specify the given filter Fonction\_filtre {

```
Fonction_filtre {
type filter_type
demie-largeur l
[ omega w ]
[ expression string ]
}
```

type filter\_type : This parameter specifies the filtering function. Valid filter\_type are: Boite is a box filter,  $f(x, y, z) = (abs(x) < l) * (abs(y) < l) * (abs(z) < l)/(8l^3)$ 

Chapeau is a hat filter (product of hat filters in each direction) centered on the origin, the half-width of the filter being 1 and its integral being 1.

Quadra is a 2nd order filter.

Gaussienne is a normalized gaussian filter of standard deviation sigma in each direction (all field elements outside a cubic box defined by clipping\_half\_width are ignored, hence, taking clipping\_half\_width=2.5\*sigma yields an integral of 0.99 for a uniform unity field).

Parser allows a user defined function of the x,y,z variables. All elements outside a cubic box defined

by clipping\_half\_width are ignored. The parser is much slower than the equivalent c++ coded function...

demie-largeur 1: This parameter specifies the half width of the filter

[ omega w ]: This parameter must be given for the gaussienne filter. It defines the standard deviation of the gaussian filter.

[ expression string]: This parameter must be given for the parser filter type. This expression will be interpreted by the math parser with the predefined variables x, y and z.

• **localisation** *str into ['elem', 'som']*: indicates where the convolution product should be computed: either on the elements or on the nodes of the destination domain.

## 3.88 Multigrid\_solver

Description: Object defining a multigrid solver in IJK discretization

```
See also: interprete (3)
Usage:
multigrid_solver {
      [coarsen_operators coarsen_operators]
      [ghost size int]
      [ relax_jacobi n \times 1 \times 2 \dots \times n]
      [ pre smooth steps n n1 n2 ... nn]
      [ smooth steps n n 1 n 2 \dots n n]
      [ nb full mg steps n n1 n2 ... nn]
      [solveur_grossier solveur_sys_base]
      [ seuil float]
      [impr]
      [ solver_precision str into ['mixed', 'double']]
      [iterations mixed solver int]
}
where
```

- **coarsen\_operators** *coarsen\_operators* (3.89): Definition of the number of grids that will be used, in addition to the finest (original) grid, followed by the list of the coarsen operators that will be applied to get those grids
- ghost\_size int: Number of ghost cells known by each processor in each of the three directions
- **relax\_jacobi** *n x1 x2 ... xn*: Parameter between 0 and 1 that will be used in the Jacobi method to solve equation on each grid. Should be around 0.7
- **pre\_smooth\_steps** *n n1 n2* ... *nn*: First integer of the list indicates the numbers of integers that has to be read next. Following integers define the numbers of iterations done before solving the equation on each grid. For example, 2 7 8 means that we have a list of 2 integers, the first one tells us to perform 7 pre-smooth steps on the first grid, the second one tells us to perform 8 pre-smooth steps on the second grid. If there are more than 2 grids in the solver, then the remaining ones will have as many pre-smooth steps as the last mentionned number (here, 8)
- smooth\_steps n n1 n2 ... nn: First integer of the list indicates the numbers of integers that has to be read next. Following integers define the numbers of iterations done after solving the equation on each grid. Same behavior as pre\_smooth\_steps
- **nb\_full\_mg\_steps** *n n1 n2 ... nn*: Number of multigrid iterations at each level
- **solveur\_grossier** *solveur\_sys\_base* (13.18): Name of the iterative solver that will be used to solve the system on the coarsest grid. This resolution must be more precise than the ones occurring on the fine grids. The threshold of this solver must therefore be lower than seuil defined above.

- **seuil** *float*: Define an upper bound on the norm of the final residue (i.e. the one obtained after applying the multigrid solver). With hybrid precision, as long as we have not obtained a residue whose norm is lower than the imposed threshold, we keep applying the solver
- impr : Flag to display some info on the resolution on eahc grid
- **solver\_precision** *str into ['mixed', 'double']*: Precision with which the variables at stake during the resolution of the system will be stored. We can have a simple or floattant precision or both. In the case of a hybrid precision, the multigrid solver is launched in simple precision, but the residual is calculated in floattant precision.
- iterations\_mixed\_solver int: Define the maximum number of iterations in mixed precision solver

## 3.89 Coarsen\_operators

```
Description: not_set

See also: listobj (38.5)

Usage:
n object1 object2 ....
list of coarsen_operator_uniform (3.89.1)
```

#### 3.89.1 Coarsen\_operator\_uniform

Description: Object defining the uniform coarsening process of the given grid in IJK discretization

```
See also: objet_lecture (39)
```

Usage:

```
[ Coarsen_Operator_Uniform ] aco [ coarsen_i ] [ coarsen_i_val ] [ coarsen_j ] [ coarsen_j_val ] [ coarsen_k ] [ coarsen_k_val ] acof where
```

- Coarsen\_Operator\_Uniform str
- aco str into ['{'}]: opening curly brace
- coarsen\_i str into ['coarsen\_i']
- **coarsen\_i\_val** int: Integer indicating the number by which we will divide the number of elements in the I direction (in order to obtain a coarser grid)
- coarsen\_j str into ['coarsen\_j']
- **coarsen\_j\_val** int: Integer indicating the number by which we will divide the number of elements in the J direction (in order to obtain a coarser grid)
- coarsen\_k str into ['coarsen\_k']
- coarsen\_k\_val int: Integer indicating the number by which we will divide the number of elements in the K direction (in order to obtain a coarser grid)
- acof str into ['}']: closing curly brace

#### 3.90 Nettoiepasnoeuds

Description: Keyword NettoiePasNoeuds does not delete useless nodes (nodes without elements) from a domain.

```
See also: interprete (3)
```

Usage:

# nettoiepasnoeuds domain\_name

where

• domain\_name str: Name of domain.

## 3.91 Option vdf

```
Description: Class of VDF options.

See also: interprete (3)

Usage:
option_vdf {

    [traitement_coins str into ['oui', 'non']]
    [traitement_gradients str into ['oui', 'non']]
    [p_imposee_aux_faces str into ['oui', 'non']]
    [toutes_les_options|all_options]
}
where
```

- **traitement\_coins** *str into ['oui', 'non']*: Treatment of corners (yes or no). This option modifies slightly the calculations at the outlet of the plane channel. It supposes that the boundary continues after channel outlet (i.e. velocity vector remains parallel to the boundary).
- **traitement\_gradients** *str into ['oui', 'non']*: Treatment of gradient calculations (yes or no). This option modifies slightly the gradient calculation at the corners and activates also the corner treatment option.
- p\_imposee\_aux\_faces str into ['oui', 'non']: Pressure imposed at the faces (yes or no).
- toutes\_les\_optionslall\_options : Activates all Option\_VDF options. If used, must be used alone without specifying the other options, nor combinations.

#### 3.92 Orientefacesbord

Description: Keyword to modify the order of the boundary vertices included in a domain, such that the surface normals are outer pointing.

```
See also: interprete (3)

Usage:
orientefacesbord domain_name
where
```

• domain\_name str: Name of domain.

## 3.93 Partition

Synonymous: decouper

Description: Class for parallel calculation to cut a domain for each processor. By default, this keyword is commented in the reference test cases.

```
See also: interprete (3)

Usage:
partition domaine bloc_decouper
where
```

- **domaine** *str*: Name of the domain to be cut.
- bloc\_decouper bloc\_decouper (3.94): Description how to cut a domain.

## 3.94 Bloc\_decouper

```
Description: Auxiliary class to cut a domain.
```

```
See also: objet_lecture (39)
Usage:
{
      [ Partition_tool|partitionneur partitionneur_deriv]
     [larg joint int]
     [ nom_zones str]
      [ ecrire_decoupage str]
     [ecrire_lata str]
     [ ecrire_med str]
     [ nb parts tot int]
     [ periodique n word1 word2 ... wordn]
     [reorder int]
     [single hdf]
     [ print_more_infos int]
}
where
```

- **Partition\_toollpartitionneur** *partitionneur\_deriv* (29): Defines the partitionning algorithm (the effective C++ object used is 'Partitionneur\_ALGORITHM\_NAME').
- larg\_joint int: This keyword specifies the thickness of the virtual ghost domaine (data known by one processor though not owned by it). The default value is 1 and is generally correct for all algorithms except the QUICK convection scheme that require a thickness of 2. Since the 1.5.5 version, the VEF discretization imply also a thickness of 2 (except VEF P0). Any non-zero positive value can be used, but the amount of data to store and exchange between processors grows quickly with the thickness.
- nom\_zones str: Name of the files containing the different partition of the domain. The files will be

```
name_0001.Zones
name_0002.Zones
```

name\_000n.Zones. If this keyword is not specified, the geometry is not written on disk (you might just want to generate a 'ecrire\_decoupage' or 'ecrire\_lata').

- ecrire\_decoupage str: After having called the partitionning algorithm, the resulting partition is written on disk in the specified filename. See also partitionneur Fichier\_Decoupage. This keyword is useful to change the partition numbers: first, you write the partition into a file with the option ecrire\_decoupage. This file contains the domaine number for each element's mesh. Then you can easily permute domaine numbers in this file. Then read the new partition to create the .Zones files with the Fichier\_Decoupage keyword.
- ecrire\_lata str: Save the partition field in a LATA format file for visualization
- ecrire\_med str: Save the partition field in a MED format file for visualization
- **nb\_parts\_tot** *int*: Keyword to generates N .Domaine files, instead of the default number M obtained after the partitionning algorithm. N must be greater or equal to M. This option might be used to perform coupled parallel computations. Supplemental empty domaines from M to N-1 are created. This keyword is used when you want to run a parallel calculation on several domains with for example, 2 processors on a first domain and 10 on the second domain because the first domain is very small

- compare to second one. You will write Nb\_parts 2 and Nb\_parts\_tot 10 for the first domain and Nb\_parts 10 for the second domain.
- **periodique** *n word1 word2* ... *wordn*: N BOUNDARY\_NAME\_1 BOUNDARY\_NAME\_2 ... : N is the number of boundary names given. Periodic boundaries must be declared by this method. The partitionning algorithm will ensure that facing nodes and faces in the periodic boundaries are located on the same processor.
- **reorder** *int*: If this option is set to 1 (0 by default), the partition is renumbered in order that the processes which communicate the most are nearer on the network. This may slighly improves parallel performance.
- **single\_hdf**: Optional keyword to enable you to write the partitioned domaines in a single file in hdf5 format.
- **print\_more\_infos** *int*: If this option is set to 1 (0 by default), print infos about number of remote elements (ghosts) and additional infos about the quality of partitionning. Warning, it slows down the cutting operations.

## 3.95 Partition\_multi

Synonymous: decouper\_multi

Description: allows to partition multiple domains in contact with each other in parallel: necessary for resolution monolithique in implicit schemes and for all coupled problems using PolyMAC\_P0P1NC. By default, this keyword is commented in the reference test cases.

See also: interprete (3)

Usage:

partition\_multi aco domaine1 dom blocdecoupdom1 domaine2 dom2 blocdecoupdom2 acof where

- aco str into ['{'}]: Opening curly bracket.
- domaine1 str into ['domaine']: not set.
- dom str: Name of the first domain to be cut.
- **blocdecoupdom1** *bloc\_decouper* (3.94): *Partition bloc for the first domain.*
- domaine2 str into ['domaine']: not set.
- dom2 str: Name of the second domain to be cut.
- **blocdecoupdom2** *bloc\_decouper* (3.94): *Partition bloc for the second domain.*
- acof str into ['}']: Closing curly bracket.

## 3.96 Pilote\_icoco

```
Description: not_set

See also: interprete (3)

Usage:
pilote_icoco {
    pb_name str
    main str

}
where
    pb_name str
    main str
```

# 3.97 Polyedriser

Description: cast hexahedra into polyhedra so that the indexing of the mesh vertices is compatible with PolyMAC\_P0P1NC discretization. Must be used in PolyMAC\_P0P1NC discretization if a hexahedral mesh has been produced with TRUST's internal mesh generator.

```
See also: interprete (3)

Usage:
polyedriser domain_name
where

• domain_name str: Name of domain.
```

## 3.98 Postraiter\_domaine

Description: To write one or more domains in a file with a specified format (MED,LML,LATA,SINGLE\_LATA,CGNS).

```
See also: interprete (3)

Usage:
postraiter_domaine {
    format    str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'cgns']
    [ binaire    int into [0, 1]]
    [ ecrire_frontiere    int into [0, 1]]
    [ filelfichier    str]
    [ joints_non_postraites    int into [0, 1]]
    [ domain|domaine    str]
    [ domaines    bloc_lecture]
}
where
```

- format str into ['lml', 'lata', 'single\_lata', 'lata\_v2', 'med', 'cgns']: File format.
- **binaire** *int into* [0, 1]: Binary (binaire 1) or ASCII (binaire 0) may be used. By default, it is 0 for LATA and only ASCII is available for LML and only binary is available for MED.
- ecrire\_frontiere int into [0, 1]: This option will write (if set to 1, the default) or not (if set to 0) the boundaries as fields into the file (it is useful to not add the boundaries when writing a domain extracted from another domain)
- **filelfichier** *str*: The file name can be changed with the fichier option.
- joints\_non\_postraites int into [0, 1]: The joints\_non\_postraites (1 by default) will not write the boundaries between the partitioned mesh.
- domainldomaine str: Name of domain
- **domaines** *bloc\_lecture* (3.2): Names of domains : { name1 name2 }

## 3.99 Precisiongeom

Description: Class to change the way floating-point number comparison is done. By default, two numbers are equal if their absolute difference is smaller than 1e-10. The keyword is useful to modify this value. Moreover, nodes coordinates will be written in .geom files with this same precision.

```
See also: interprete (3)
```

Usage:

# precisiongeom precision

where

• precision float: New value of precision.

# 3.100 Raffiner\_anisotrope

Description: Only for VEF discretizations, allows to cut triangle elements in 3, or tetrahedra in 4 parts, by defining a new summit located at the center of the element:





Note that such a cut creates flat elements (anisotropic).

See also: interprete (3)

Usage:

raffiner\_anisotrope domain\_name

where

• domain\_name str: Name of domain.

# 3.101 Raffiner\_isotrope

Synonymous: raffiner\_simplexes

Description: For VDF and VEF discretizations, allows to cut triangles/quadrangles or tetrahedral/hexaedras

elements respectively in 4 or 8 new ones by defining new summits located at the middle of edges (and center of faces and elements for quadrangles and hexaedra). Such a cut preserves the shape of original elements (isotropic). For 2D elements:



For 3D elements:



See also: interprete (3)

Usage:

raffiner\_isotrope domain\_name where

• domain\_name str: Name of domain.

# 3.102 Read

Synonymous: lire

Description: Interpretor to read the a\_object objet defined between the braces.

See also: interprete (3)

Usage:

**read a\_object bloc** where

- **a\_object** *str*: Object to be read.
- bloc str: Definition of the object.

# 3.103 Read\_file

Synonymous: lire\_fichier

Description: Keyword to read the object name\_obj contained in the file filename.

This is notably used when the calculation domain has already been meshed and the mesh contains the file filename, simply write read\_file dom filename (where dom is the name of the meshed domain).

If the filename is ;, is to execute a data set given in the file of name name\_obj (a space must be entered between the semi-colon and the file name).

See also: interprete (3) read\_file\_binary (3.104) read\_unsupported\_ascii\_file\_from\_icem (3.106)

Usage:

read\_file name\_obj filename where

• name\_obj str: Name of the object to be read.

• filename str: Name of the file.

# 3.104 Read\_file\_binary

Synonymous: lire\_fichier\_bin

Description: Keyword to read an object name\_obj in the unformatted type file filename.

See also: read\_file (3.103)

Usage:

read\_file\_binary name\_obj filename

where

- name\_obj str: Name of the object to be read.
- filename str: Name of the file.

## 3.105 Lire\_tgrid

Description: Keyword to reaf Tgrid/Gambit mesh files. 2D (triangles or quadrangles) and 3D (tetra or hexa elements) meshes, may be read by TRUST.

See also: interprete (3)

Usage:

lire\_tgrid dom filename

where

- dom str: Name of domaine.
- **filename** *str*: Name of file containing the mesh.

## 3.106 Read\_unsupported\_ascii\_file\_from\_icem

Description: not\_set

See also: read\_file (3.103)

#### Usage:

read\_unsupported\_ascii\_file\_from\_icem name\_obj filename where

- name\_obj str: Name of the object to be read.
- filename str: Name of the file.

# 3.107 Orienter\_simplexes

Synonymous: rectify\_mesh

Description: Keyword to raffine a mesh

See also: interprete (3)

Usage:

orienter\_simplexes domain\_name

where

• domain\_name str: Name of domain.

# 3.108 Redresser\_hexaedres\_vdf

Description: Keyword to convert a domain (named domain\_name) with quadrilaterals/VEF hexaedras which looks like rectangles/VDF hexaedras into a domain with real rectangles/VDF hexaedras.

See also: interprete (3)

Usage:

redresser\_hexaedres\_vdf domain\_name

where

• **domain\_name** *str*: Name of domain to resequence.

# 3.109 Refine\_mesh

Description: not\_set

See also: interprete (3)

Usage:

refine\_mesh domaine

where

• domaine str

# 3.110 Regroupebord

```
Description: Keyword to build one boundary new_bord with several boundaries of the domain named domaine.
```

```
See also: interprete (3)
Usage:
regroupebord domaine new bord bords
where
   • domaine str: Name of domain
   • new_bord str: Name of the new boundary
   • bords bloc_lecture (3.2): { Bound1 Bound2 }
3.111 Remaillage_ft_ijk
Description: not_set
See also: interprete (3)
Usage:
remaillage_ft_ijk {
     [ pas_remaillage float]
     [ nb_iter_barycentrage int]
     [ relax_barycentrage float]
     [ critere_arete float]
     [ seuil_dvolume_residuel float]
     [ nb_iter_correction_volume int]
     [ nb_iter_remaillage int]
     [facteur longueur ideale float]
     [ equilateral int]
     [ lissage_courbure_coeff float]
     [ lissage_courbure_iterations_systematique int]
     [ lissage_courbure_iterations_si_remaillage int]
}
where
   • pas_remaillage float
   • nb_iter_barycentrage int
   • relax_barycentrage float
   • critere arete float
   • seuil_dvolume_residuel float
   • nb iter correction volume int
   • nb_iter_remaillage int
   • facteur_longueur_ideale float
   • equilateral int
   • lissage courbure coeff float
   • lissage_courbure_iterations_systematique int
   • lissage_courbure_iterations_si_remaillage int
```

# 3.112 Remove\_elem

Description: Keyword to remove element from a VDF mesh (named domaine\_name), either from an explicit list of elements or from a geometric condition defined by a condition f(x,y)>0 in 2D and f(x,y,z)>0 in 3D. All the new borders generated are gathered in one boundary called: newBord (to rename it, use RegroupeBord keyword. To split it to different boundaries, use DecoupeBord\_Pour\_Rayonnement keyword). Example of a removed zone of radius 0.2 centered at (x,y)=(0.5,0.5):

Remove\_elem dom { fonction  $0.2 * 0.2 - (x - 0.5)^2 - (y - 0.5)^2 > 0$  }

Warning: the thickness of removed zone has to be large enough to avoid singular nodes as decribed below:





See also: interprete (3)

Usage:

remove\_elem domaine bloc where

- domaine str: Name of domain
- **bloc** remove\_elem\_bloc (3.113)

# 3.113 Remove\_elem\_bloc

```
Description: not_set

See also: objet_lecture (39)

Usage:
{
    [liste n n1 n2 ... nn]
    [fonction str]
}
where
```

- **liste** *n n1 n2 ... nn*
- fonction str

# 3.114 Remove\_invalid\_internal\_boundaries

Description: Keyword to suppress an internal boundary of the domain\_name domain. Indeed, some mesh tools may define internal boundaries (eg: for post processing task after the calculation) but TRUST does not support it yet.

See also: interprete (3)

Usage:

 $remove\_invalid\_internal\_boundaries \quad domain\_name$ 

where

• domain\_name str: Name of domain.

#### 3.115 Reorienter tetraedres

Description: This keyword is mandatory for front-tracking computations with the VEF discretization. For each tetrahedral element of the domain, it checks if it has a positive volume. If the volume (determinant of the three vectors) is negative, it swaps two nodes to reverse the orientation of this tetrahedron.

See also: interprete (3)

Usage:

reorienter\_tetraedres domain\_name

where

• domain\_name str: Name of domain.

# 3.116 Reorienter\_triangles

Description: not set

See also: interprete (3)

Usage:

reorienter\_triangles domain\_name

where

• domain\_name str: Name of domain.

#### 3.117 Reordonner

Description: The Reordonner interpretor is required sometimes for a VDF mesh which is not produced by the internal mesher. Example where this is used:

Read\_file dom fichier.geom

Reordonner dom

Observations: This keyword is redundant when the mesh that is read is correctly sequenced in the TRUST sense. This significant mesh operation may take some time... The message returned by TRUST is not explicit when the Reordonner (Resequencing) keyword is required but not included in the data set...

See also: interprete (3)

Usage:

#### reordonner domain\_name

where

• domain\_name str: Name of domain to resequence.

#### 3.118 Residuals

Description: To specify how the residuals will be computed.

```
See also: interprete (3)

Usage:
residuals {

    [norm str into ['L2', 'max']]
    [relative str into ['0', '1', '2']]
}
where
```

- **norm** *str into ['L2', 'max']*: allows to choose the norm we want to use (max norm by default). Possible to specify L2-norm.
- **relative** *str into ['0', '1', '2']*: This is the old keyword seuil\_statio\_relatif\_deconseille. If it is set to 1, it will normalize the residuals with the residuals of the first 5 timesteps (default is 0). if set to 2, residual will be computed as R/(max-min).

#### 3.119 Rotation

Description: Keyword to rotate the geometry of an arbitrary angle around an axis aligned with Ox, Oy or Oz axis.

See also: interprete (3)

Usage:

rotation domain\_name dir coord1 coord2 angle where

- domain\_name str: Name of domain to wich the transformation is applied.
- dir str into ['X', 'Y', 'Z']: X, Y or Z to indicate the direction of the rotation axis
- **coord1** *float*: coordinates of the center of rotation in the plane orthogonal to the rotation axis. These coordinates must be specified in the direct triad sense.
- · coord2 float
- angle *float*: angle of rotation (in degrees)

# 3.120 Scatter

where

Description: Class to read a partionned mesh from the files during a parallel calculation. The files are in binary format.

```
See also: interprete (3) scattermed (3.121)
Usage:
scatter file domaine
```

- file str: Name of file.
- domaine str: Name of domain.

# 3.121 Scattermed

Description: This keyword will read the partition of the domain\_name domain into a the MED format files file.med created by Medsplitter.

See also: scatter (3.120)

Usage:

#### scattermed file domaine

where

• file str: Name of file.

• domaine str: Name of domain.

#### **3.122** Solve

Synonymous: resoudre

Description: Interpretor to start calculation with TRUST.

Keyword Discretize should have already been used to read the object.

See also: interprete (3)

Usage:

#### solve pb

where

• **pb** *str*: Name of problem to be solved.

# 3.123 Stat\_per\_proc\_perf\_log

Description: Keyword allowing to activate the detailed statistics per processor (by default this is false, and only the master proc will produce stats).

See also: interprete (3)

Usage:

#### stat\_per\_proc\_perf\_log flg

where

• flg int: A rien that can be either 0 or 1 to turn off (default) or on the detailed stats.

## 3.124 Supprime\_bord

Description: Keyword to remove boundaries (named Boundary\_name1 Boundary\_name2) of the domain named domain\_name.

See also: interprete (3)

```
Usage:
supprime_bord domaine bords
where
   • domaine str: Name of domain
   • bords list_nom (3.125): { Boundary_name1 Boundaray_name2 }
Description: List of name.
See also: listobj (38.5)
Usage:
{ object1 object2 .... }
list of nom_anonyme (28.1)
3.126 System
Description: To run Unix commands from the data file. Example: System 'echo The End | mail trust@cea.fr'
See also: interprete (3)
Usage:
system cmd
where
   • cmd str: command to execute.
3.127
        Test_solveur
Description: To test several solvers
See also: interprete (3)
Usage:
test_solveur {
     [fichier_secmem str]
     [fichier_matrice str]
     [ fichier_solution str]
     [ nb_test int]
     [impr]
     [solveur_sys_base]
     [ fichier_solveur str]
     [ genere_fichier_solveur float]
     [ seuil_verification float]
     [ pas_de_solution_initiale ]
```

[ascii]

} where

- fichier\_secmem str: Filename containing the second member B
- fichier\_matrice str: Filename containing the matrix A
- fichier solution str: Filename containing the solution x
- **nb\_test** *int*: Number of tests to measure the time resolution (one preconditionnement)
- **impr** : To print the convergence solver
- solveur solveur\_sys\_base (13.18): To specify a solver
- fichier\_solveur str: To specify a file containing a list of solvers
- genere\_fichier\_solveur float: To create a file of the solver with a threshold convergence
- seuil verification *float*: Check if the solution satisfy ||Ax-B|| precision
- pas\_de\_solution\_initiale : Resolution isn't initialized with the solution x
- ascii : Ascii files

#### 3.128 Testeur

Description: not\_set

See also: interprete (3)

Usage:

testeur data

where

• data bloc lecture (3.2)

# 3.129 Testeur\_medcoupling

Description: not set

See also: interprete (3)

Usage:

testeur\_medcoupling pb\_name field\_name

where

- **pb\_name** *str*: Name of domain.
- field name str: Name of domain.

#### 3.130 Tetraedriser

Description: To achieve a tetrahedral mesh based on a mesh comprising blocks, the Tetrahedralise) interpretor is used in VEF discretization. Initial block is divided in 6 tetrahedra:

See also: interprete (3) tetraedriser\_homogene (3.131) tetraedriser\_homogene\_fin (3.133) tetraedriser\_homogene\_compact (3.132) tetraedriser\_par\_prisme (3.134)

Usage:

tetraedriser domain\_name

where

• domain\_name str: Name of domain.



# 3.131 Tetraedriser\_homogene

Description: Use the Tetraedriser\_homogene (Homogeneous\_Tetrahedralisation) interpretor in VEF discretization to mesh a block in tetrahedrals. Each block hexahedral is no longer divided into 6 tetrahedrals (keyword Tetraedriser (Tetrahedralise)), it is now broken down into 40 tetrahedrals. Thus a block defined with 11 nodes in each X, Y, Z direction will contain 10\*10\*10\*40=40,000 tetrahedrals. This also allows problems in the mesh corners with the P1NC/P1iso/P1bulle or P1/P1 discretization items to be avoided. Initial block is divided in 40 tetrahedra:



See also: tetraedriser (3.130)

Usage:

**tetraedriser\_homogene domain\_name** where

• domain\_name str: Name of domain.

## 3.132 Tetraedriser\_homogene\_compact

Description: This new discretization generates tetrahedral elements from cartesian or non-cartesian hexahedral elements. The process cut each hexahedral in 6 pyramids, each of them being cut then in 4 tetrahedral. So, in comparison with tetra\_homogene, less elements (\*24 instead of\*40) with more homogeneous volumes are generated. Moreover, this process is done in a faster way. Initial block is divided in 24 tetrahedra:

See also: tetraedriser (3.130)

Usage:



tetraedriser\_homogene\_compact domain\_name where

• domain\_name str: Name of domain.

# 3.133 Tetraedriser\_homogene\_fin

Description: Tetraedriser\_homogene\_fin is the recommended option to tetrahedralise blocks. As an extension (subdivision) of Tetraedriser\_homogene\_compact, this last one cut each initial block in 48 tetrahedra (against 24, previously). This cutting ensures:

- a correct cutting in the corners (in respect to pressure discretization PreP1B),
- a better isotropy of elements than with Tetraedriser\_homogene\_compact,
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness and ii/ by the way, a 3D cartesian grid based on summits can be engendered and used to realise spectral analysis in HIT for instance). Initial block is divided in 48 tetrahedra:



See also: tetraedriser (3.130)

Usage:

**tetraedriser\_homogene\_fin domain\_name** where

• domain\_name str: Name of domain.

# 3.134 Tetraedriser\_par\_prisme

Description: Tetraedriser\_par\_prisme generates 6 iso-volume tetrahedral element from primary hexahedral one (contrarily to the 5 elements ordinarily generated by tetraedriser). This element is suitable for calculation of gradients at the summit (coincident with the gravity centre of the jointed elements related with) and spectra (due to a better alignment of the points).



Initial block is divided in 6 prismes.

See also: tetraedriser (3.130)

Usage:

**tetraedriser\_par\_prisme domain\_name** where

• domain name str: Name of domain.

## 3.135 Thermique\_bloc

• fo float

```
Description: not_set
See also: interprete (3)
Usage:
thermique_bloc {
     [ fo float]
     cp_liquid float
     lambda_liquid float
     [cp_vapour float]
     [lambda_vapour float]
     [ expression_t_init str]
     boundary_conditions bloc_lecture
     [type_t_source str into ['dabiri', 'patch_dabiri', 'unweighted_dabiri']]
     [ expression_source_temperature str]
     [wall_flux]
     [conv_temperature_negligible]
     [ diff_temperature_negligible ]
     [ expression_t_ana str]
}
where
```

- cp\_liquid float: Liquid specific heat at constant pressure
- lambda\_liquid float: Liquid thermal conductivity
- cp\_vapour float: Liquid specific heat at constant pressure
- lambda\_vapour float: Liquid thermal conductivity
- expression\_t\_init str: Expression of initial temperature (parser of x,y,z)
- boundary\_conditions bloc\_lecture (3.2): boundary conditions
- type\_t\_source str into ['dabiri', 'patch\_dabiri', 'unweighted\_dabiri']: source term
- expression\_source\_temperature str: source terms
- wall flux
- conv\_temperature\_negligible : neglect temperature convection
- diff\_temperature\_negligible : neglect temperature diffusion
- expression\_t\_ana str: Analytical expression T=f(x,y,z,t) for post-processing only

## 3.136 Transformer

Description: Keyword to transform the coordinates of the geometry.

Exemple to rotate your mesh by a 90o rotation and to scale the z coordinates by a factor 2: Transformer domain\_name -y -x 2\*z

See also: interprete (3)

Usage:

transformer domain\_name formule

where

- domain\_name str: Name of domain.
- **formule** word1 word2 (word3): Function\_for\_x Function\_for\_y

Function forz

# 3.137 Trianguler

Description: To achieve a triangular mesh from a mesh comprising rectangles (2 triangles per rectangle). Should be used in VEF discretization. Principle:



See also: interprete (3) trianguler\_h (3.139) trianguler\_fin (3.138)

Usage:

trianguler domain\_name

where

• domain\_name str: Name of domain.

# 3.138 Trianguler\_fin

Description: Trianguler\_fin is the recommended option to triangulate rectangles.

As an extension (subdivision) of Triangulate\_h option, this one cut each initial rectangle in 8 triangles (against 4, previously). This cutting ensures :

- a correct cutting in the corners (in respect to pressure discretization PreP1B).
- a better isotropy of elements than with Trianguler\_h option.
- a better alignment of summits (this could have a benefit effect on calculation near walls since first elements in contact with it are all contained in the same constant thickness, and, by this way, a 2D cartesian grid based on summits can be engendered and used to realize statistical analysis in plane channel configuration for instance). Principle:



See also: trianguler (3.137)

Usage:

trianguler\_fin domain\_name

where

• domain\_name str: Name of domain.

# 3.139 Trianguler\_h

Description: To achieve a triangular mesh from a mesh comprising rectangles (4 triangles per rectangle). Should be used in VEF discretization. Principle:



See also: trianguler (3.137)

Usage:

**trianguler\_h domain\_name** where

• domain\_name str: Name of domain.

# 3.140 Verifier\_qualite\_raffinements

```
Description: not_set

See also: interprete (3)

Usage:
verifier_qualite_raffinements domain_names
where
```

• domain\_names vect\_nom (3.141)

# **3.141 Vect\_nom**

```
Description: Vect of name.

See also: listobj (38.5)

Usage:
n object1 object2 ....
list of nom_anonyme (28.1)
```

# 3.142 Verifier\_simplexes

Description: Keyword to raffine a simplexes

See also: interprete (3)

Usage:

verifier\_simplexes domain\_name where

• domain\_name str: Name of domain.

# 3.143 Verifiercoin

Description: This keyword subdivides inconsistent 2D/3D cells used with VEFPreP1B discretization. Must be used before the mesh is discretized. The Read\_file option can be used only if the file.decoupage\_som was previously created by TRUST. This option, only in 2D, reverses the common face at two cells (at least one is inconsistent), through the nodes opposed. In 3D, the option has no effect.

The expert\_only option deactivates, into the VEFPreP1B divergence operator, the test of inconsistent cells.

See also: interprete (3)

Usage:

verifiercoin domain\_name bloc where

- domain\_name str: Name of the domaine
- bloc verifiercoin\_bloc (3.144)

# 3.144 Verifiercoin\_bloc

```
Description: not_set

See also: objet_lecture (39)

Usage:
{
    [Lire_fichier|Read_file str]
    [expert_only]
}
where
```

- Lire\_fichier|Read\_file str: name of the \*.decoupage\_som file
- expert\_only : to not check the mesh

## **3.145** Ecrire

Description: Keyword to write the object of name name\_obj to a standard outlet.

```
See also: interprete (3)
```

Usage:

ecrire name\_obj

where

• name\_obj str: Name of the object to be written.

# 3.146 Ecrire\_fichier\_bin

Synonymous: ecrire\_fichier

Description: Keyword to write the object of name name\_obj to a file filename. Since the v1.6.3, the default format is now binary format file.

```
See also: interprete (3) ecrire_fichier_formatte (3.51)
```

Usage:

```
ecrire_fichier_bin name_obj filename where
```

- name\_obj str: Name of the object to be written.
  - filename str: Name of the file.

# 4 pb\_gen\_base

Description: Basic class for problems.

```
See also: objet_u (40) Pb_base (4.28) probleme_couple (4.29) pbc_med (4.64) pb_mg (4.47)
```

Usage:

# 4.1 Pb\_conduction

} where

Description: Resolution of the heat equation. Keyword Discretize should have already been used to read the object. See also: Pb\_base (4.28) Pb\_Rayo\_Conduction (4.16) Usage: Pb Conduction str Read str { [solide solide] [Conduction conduction] [ milieu milieu\_base] [constituant constituant] [ Post\_processing|postraitement corps\_postraitement] [ Post\_processings|postraitements post\_processings] [liste de postraitements liste post ok] [liste postraitements liste post] [ sauvegarde format\_file] [sauvegarde simple format file] [ reprise format\_file] [resume last time format file]

- solide solide (24.14): The medium associated with the problem.
- **Conduction** *conduction* (5.1): Heat equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.2 Corps\_postraitement

```
Description: not_set
See also: post processing (4.4.3)
Usage:
     [fichier str]
     [format str into ['lml', 'lata', 'single_lata', 'lata_v2', 'med', 'med_major', 'cgns']]
     [domaine str]
     [ sous_zone|sous_domaine str]
     [ parallele str into ['simple', 'multiple', 'mpi-io']]
     [ definition_champs | definition_champs]
     [ definition champs file|definition champs fichier | definition champs fichier]
     [ probes|sondes | sondes]
     [ probes_file|sondes_fichier | sondes_fichier]
     [ mobile_probes|sondes_mobiles sondes]
     [ mobile_probes_file|sondes_mobiles_fichier | sondes_fichier]
     [ deprecatedkeepduplicatedprobes int]
     [ fields|champs champs posts]
     [ fields file|champs fichier champs posts fichier]
     [statistics|statistiques stats posts]
     [statistics_file|statistiques_fichier stats_posts_fichier]
     [serial statistics file|statistiques en serie fichier stats serie posts fichier]
     [ suffix for reset str]
where
```

- fichier str for inheritance: Name of file.
- format str into ['lml', 'lata', 'single\_lata', 'lata\_v2', 'med', 'med\_major', 'cgns'] for inheritance: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml.
- **domaine** *str* for inheritance: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- **sous\_zonelsous\_domaine** *str* for inheritance: This optional parameter specifies the sub\_domaine on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- parallele str into ['simple', 'multiple', 'mpi-io'] for inheritance: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format
- **definition\_champs** *definition\_champs* (4.2.1) for inheritance: Keyword to create new or more complex field for advanced postprocessing.
- **definition\_champs\_fileIdefinition\_champs\_fichier** *definition\_champs\_fichier* (4.2.3) for inheritance: Definition\_champs read from file.
- **probes|sondes** sondes (4.2.4) for inheritance: Probe.

- probes\_file|sondes\_fichier sondes\_fichier (4.2.21) for inheritance: Probe read from a file.
- **mobile\_probes|sondes\_mobiles** *sondes* (4.2.4) for inheritance: Mobile probes useful for ALE, their positions will be updated in the mesh.
- mobile\_probes\_file|sondes\_mobiles\_fichier sondes\_fichier (4.2.21) for inheritance: Mobile probes read in a file
- **deprecatedkeepduplicatedprobes** *int* for inheritance: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- **fieldslchamps** champs posts (4.2.22) for inheritance: Field's write mode.
- fields\_filelchamps\_fichier champs\_posts\_fichier (4.2.25) for inheritance: Fields read from file.
- **statistics**|statistiques stats\_posts (4.2.26) for inheritance: Statistics between two points fixed: start of integration time and end of integration time.
- statistics\_file|statistiques\_fichier stats\_posts\_fichier (4.2.34) for inheritance: Statistics read from file.
- serial\_statistics|statistiques\_en\_serie stats\_serie\_posts (4.2.35) for inheritance: Statistics between two points not fixed: on period of integration.
- serial\_statistics\_filelstatistiques\_en\_serie\_fichier stats\_serie\_posts\_fichier (4.2.36) for inheritance: Serial\_statistics read from a file
- **suffix\_for\_reset** *str* for inheritance: Suffix used to modify the postprocessing file name if the ICoCo resetTime() method is invoked.

## 4.2.1 Definition\_champs

```
Description: List of definition champ

See also: listobj (38.5)

Usage:
{ object1 object2 .... }
list of definition_champ (4.2.2)
```

# 4.2.2 Definition\_champ

Description: Keyword to create new complex field for advanced postprocessing.

```
See also: objet_lecture (39)

Usage:
name champ_generique
where

• name str: The name of the new created field.
• champ_generique champ_generique_base (11)
```

## 4.2.3 Definition\_champs\_fichier

Description: Keyword to read definition\_champs from a file

```
See also: objet_lecture (39)

Usage:
{

fichier str
}
where
```

• fichier str: name of file

#### **4.2.4** Sondes

```
Description: List of probes.

See also: listobj (38.5)

Usage:
{ object1 object2 .... }
```

#### 4.2.5 Sonde

list of sonde (4.2.5)

Description: Keyword is used to define the probes. Observations: the probe coordinates should be given in Cartesian coordinates (X, Y, Z), including axisymmetric.

```
See also: objet_lecture (39)
```

#### Usage:

nom\_sonde [special] nom\_inco mperiode prd type where

- **nom\_sonde** *str*: Name of the file in which the values taken over time will be saved. The complete file name is nom\_sonde.son.
- **special** *str into ['grav', 'som', 'nodes', 'chsom', 'gravcl']*: Option to change the positions of the probes. Several options are available:

grav: each probe is moved to the nearest cell center of the mesh;

som: each probe is moved to the nearest vertex of the mesh

nodes: each probe is moved to the nearest face center of the mesh;

chsom: only available for P1NC sampled field. The values of the probes are calculated according to P1-Conform corresponding field.

gravel: Extend to the domain face boundary a cell-located segment probe in order to have the boundary condition for the field. For this type the extreme probe point has to be on the face center of gravity.

- nom inco str: Name of the sampled field.
- mperiode str into ['periode']: Keyword to set the sampled field measurement frequency.
- **prd** *float*: Period value. Every prd seconds, the field value calculated at the previous time step is written to the nom\_sonde.son file.
- **type** *sonde\_base* (4.2.6): Type of probe.

## 4.2.6 Sonde\_base

Description: Basic probe. Probes refer to sensors that allow a value or several points of the domain to be monitored over time. The probes may be a set of points defined one by one (keyword Points) or a set of points evenly distributed over a straight segment (keyword Segment) or arranged according to a layout (keyword Plan) or according to a parallelepiped (keyword Volume). The fields allow all the values of a physical value on the domain to be known at several moments in time.

```
See also: objet_lecture (39) points (4.2.7) numero_elem_sur_maitre (4.2.10) position_like (4.2.11) segment (4.2.12) plan (4.2.13) volume (4.2.14) circle (4.2.15) circle_3 (4.2.16) segmentfacesx (4.2.17) segmentfacesy (4.2.18) segmentfacesz (4.2.19) radius (4.2.20)
```

Usage:

sonde base

# **4.2.7** Points

Description: Keyword to define the number of probe points. The file is arranged in columns.

See also: sonde\_base (4.2.6) point (4.2.8) segmentpoints (4.2.9)

Usage:

## points points

where

• points listpoints (3.4.6): Probe points.

#### 4.2.8 Point

Description: Point as class-daughter of Points.

See also: points (4.2.7)

Usage:

#### point points

where

• **points** *listpoints* (3.4.6): Probe points.

# 4.2.9 Segmentpoints

Description: This keyword is used to define a probe segment from specifics points. The nom\_champ field is sampled at ns specifics points.

See also: points (4.2.7)

Usage:

#### segmentpoints points

where

• **points** *listpoints* (3.4.6): Probe points.

# 4.2.10 Numero\_elem\_sur\_maitre

Description: Keyword to define a probe at the special element. Useful for min/max sonde.

See also: sonde\_base (4.2.6)

Usage:

numero\_elem\_sur\_maitre numero

where

• **numero** *int*: element number

#### 4.2.11 Position\_like

Description: Keyword to define a probe at the same position of another probe named autre\_sonde.

See also: sonde\_base (4.2.6)

Usage:

position\_like autre\_sonde

where

• autre\_sonde str: Name of the other probe.

# **4.2.12** Segment

Description: Keyword to define the number of probe segment points. The file is arranged in columns.

See also: sonde\_base (4.2.6)

Usage:

segment nbr point\_deb point\_fin

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- **point\_deb** *un\_point* (3.4.7): First outer probe segment point.
- **point\_fin** *un\_point* (3.4.7): Second outer probe segment point.

#### 4.2.13 Plan

Description: Keyword to set the number of probe layout points. The file format is type .lml

See also: sonde base (4.2.6)

Usage:

plan nbr nbr2 point\_deb point\_fin point\_fin\_2
where

- **nbr** *int*: Number of probes in the first direction.
- **nbr2** *int*: Number of probes in the second direction.
- point\_deb un\_point (3.4.7): First point defining the angle. This angle should be positive.
- point\_fin un\_point (3.4.7): Second point defining the angle. This angle should be positive.
- point\_fin\_2 un\_point (3.4.7): Third point defining the angle. This angle should be positive.

#### 4.2.14 Volume

Description: Keyword to define the probe volume in a parallelepiped passing through 4 points and the number of probes in each direction.

See also: sonde\_base (4.2.6)

Usage:

volume nbr nbr2 nbr3 point\_deb point\_fin point\_fin\_2 point\_fin\_3 where

• **nbr** *int*: Number of probes in the first direction.

- **nbr2** *int*: Number of probes in the second direction.
- **nbr3** *int*: Number of probes in the third direction.
- **point\_deb** *un\_point* (3.4.7): Point of origin.
- **point\_fin** *un\_point* (3.4.7): Point defining the first direction (from point of origin).
- point\_fin\_2 un\_point (3.4.7): Point defining the second direction (from point of origin).
- point\_fin\_3 un\_point (3.4.7): Point defining the third direction (from point of origin).

#### 4.2.15 Circle

Description: Keyword to define several probes located on a circle.

See also: sonde\_base (4.2.6)

Usage:

circle nbr point\_deb [direction] radius theta1 theta2 where

- **nbr** *int*: Number of probes between teta1 and teta2 (angles given in degrees).
- **point\_deb** *un\_point* (3.4.7): Center of the circle.
- direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
- radius float: Radius of the circle.
- theta1 float: First angle.
- theta2 float: Second angle.

# 4.2.16 Circle\_3

Description: Keyword to define several probes located on a circle (in 3-D space).

See also: sonde\_base (4.2.6)

Usage:

# circle\_3 nbr point\_deb direction radius theta1 theta2 where

- **nbr** *int*: Number of probes between teta1 and teta2 (angles given in degrees).
- point\_deb un\_point (3.4.7): Center of the circle.
- direction int into [0, 1, 2]: Axis normal to the circle plane (0:x axis, 1:y axis, 2:z axis).
- radius float: Radius of the circle.
- theta1 float: First angle.
- theta2 float: Second angle.

#### 4.2.17 Segmentfacesx

Description: Segment probe where points are moved to the nearest x faces

See also: sonde base (4.2.6)

Usage:

 $segment facesx \ nbr \ point\_deb \ point\_fin$ 

where

- **nbr** *int*: Number of probe points of the segment, evenly distributed.
- **point\_deb** *un\_point* (3.4.7): First outer probe segment point.
- **point\_fin** *un\_point* (3.4.7): Second outer probe segment point.

```
4.2.18 Segmentfacesy
```

fichier str

```
Description: Segment probe where points are moved to the nearest y faces
See also: sonde_base (4.2.6)
Usage:
segmentfacesy nbr point_deb point_fin
where
   • nbr int: Number of probe points of the segment, evenly distributed.
   • point_deb un_point (3.4.7): First outer probe segment point.
   • point_fin un_point (3.4.7): Second outer probe segment point.
4.2.19 Segmentfacesz
Description: Segment probe where points are moved to the nearest z faces
See also: sonde_base (4.2.6)
Usage:
segmentfacesz nbr point_deb point_fin
where
   • nbr int: Number of probe points of the segment, evenly distributed.
   • point_deb un_point (3.4.7): First outer probe segment point.
   • point_fin un_point (3.4.7): Second outer probe segment point.
4.2.20 Radius
Description: not set
See also: sonde_base (4.2.6)
Usage:
radius nbr point_deb radius teta1 teta2
where
   • nbr int: Number of probe points of the segment, evenly distributed.
   • point_deb un_point (3.4.7): First outer probe segment point.
   · radius float
   • teta1 float
   • teta2 float
4.2.21 Sondes_fichier
Description: Keyword to read probes from a file
See also: objet_lecture (39)
Usage:
```

```
}
where
   • fichier str: name of file
4.2.22 Champs posts
Description: Field's write mode.
See also: objet_lecture (39)
Usage:
[format] mot period fields|champs
```

• format str into ['binaire', 'formatte']: Type of file.

- mot str into ['dt\_post', 'nb\_pas\_dt\_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.\*t).
- **fieldslchamps** *champs\_a\_post* (4.2.23): Post-processed fields.

#### 4.2.23 Champs\_a\_post

Description: Fields to be post-processed.

```
See also: listobj (38.5)
Usage:
{ object1 object2 .... }
list of champ_a_post (4.2.24)
```

#### 4.2.24 Champ a post

Description: Field to be post-processed.

See also: objet\_lecture (39)

Usage:

champ [localisation]

where

- **champ** *str*: Name of the post-processed field.
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field values: The two available values are elem, som, or faces (LATA format only) used respectively to select field values at mesh centres (CHAMPMAILLE type field in the lml file) or at mesh nodes (CHAMPPOINT type field in the lml file). If no selection is made, localisation is set to som by default.

# 4.2.25 Champs\_posts\_fichier

```
Description: Field's write mode.
See also: objet_lecture (39)
Usage:
[format] mot period fichier
where
```

• format str into ['binaire', 'formatte']: Type of file.

• mot str into ['dt\_post', 'nb\_pas\_dt\_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.

• **period** str: Value of the period which can be like (2.\*t).

• fichier str: name of file

#### 4.2.26 Stats\_posts

Description: Field's write mode.

**Dt\_post**: This keyword is used to set the calculated statistics write period.

dts: frequency value.

**t\_deb** value: Start of integration time **t\_fin** value: End of integration time

stat: Set to Moyenne (average) to calculate the average of the field nom\_champ (field name) over time or Ecart\_type (std\_deviation) to calculate the standard deviation (statistic rms) of the field nom\_champ (field\_name) or Correlation to calculate the correlation between the two fields nom\_champ and second\_nom\_champ.

*nom\_champ:* name of the field on which statistical analysis will be performed. Possible keywords are **Vitesse (velocity)**, **Pression (pressure)**, **Temperature**, **Concentration**,...

localisation: localisation of post-processed field values (elem or som).

Example:

It will write every **dt\_post** the mean, standard deviation and correlation value:

$$\begin{split} t <& = t_{\text{deb}} \text{ or } t > = t_{\text{fin}} : \\ \text{average: } \overline{P(t)} &= 0 \\ \text{std\_deviation: } &< P(t) > = 0 \\ \text{correlation: } &< U(t).V(t) > = 0 \\ \end{split}$$
 
$$t > t_{\text{deb}} \text{ and } t < t_{\text{fin}} : \\ \text{average: } \overline{P(t)} &= \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} P(s) \mathrm{ds} \\ \text{std\_deviation: } &< P(t) > = \sqrt{\frac{1}{t - t_{\text{deb}}}} \int\limits_{t_{\text{deb}}}^{t} \left[ P(s) - \overline{P(t)} \right]^2 \mathrm{ds} \\ \text{correlation: } &< U(t).V(t) > = \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[ U(s) - \overline{U(t)} \right]. \left[ V(s) - \overline{V(t)} \right] \mathrm{ds} \\ \end{split}$$

See also: objet\_lecture (39)

Usage:

mot period fields|champs

where

• mot str into ['dt\_post', 'nb\_pas\_dt\_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.

```
4.2.27 List_stat_post
Description: Post-processing for statistics
See also: listobj (38.5)
Usage:
{ object1 object2 .... }
list of stat_post_deriv (4.2.28)
4.2.28 Stat_post_deriv
Description: not_set
See also: objet_lecture (39) t_deb (4.2.29) t_fin (4.2.30) moyenne (4.2.31) ecart_type (4.2.32) correla-
tion (4.2.33)
Usage:
stat_post_deriv
4.2.29 T_deb
Description: not_set
See also: stat_post_deriv (4.2.28)
Usage:
t_deb val
where
    • val float
4.2.30 T_fin
Description: not_set
See also: stat_post_deriv (4.2.28)
Usage:
t_fin val
where
    • val float
4.2.31 Moyenne
Synonymous: champ_post_statistiques_moyenne
Description: not_set
See also: stat_post_deriv (4.2.28)
```

period str: Value of the period which can be like (2.\*t).
fieldslchamps list\_stat\_post (4.2.27): Post-processed fields.

#### Usage:

moyenne field [localisation]

where

- field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

## 4.2.32 Ecart\_type

Synonymous: champ\_post\_statistiques\_ecart\_type

Description: not\_set

See also: stat\_post\_deriv (4.2.28)

Usage:

ecart\_type field [localisation]

where

- field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

#### 4.2.33 Correlation

Synonymous: champ\_post\_statistiques\_correlation

Description: not\_set

See also: stat\_post\_deriv (4.2.28)

Usage:

correlation first\_field second\_field [localisation]

where

- first field str
- second\_field str
- localisation str into ['elem', 'som', 'faces']: Localisation of post-processed field value

#### 4.2.34 Stats\_posts\_fichier

Description: Field's write mode.

**Dt\_post**: This keyword is used to set the calculated statistics write period.

dts: frequency value.

t\_deb value: Start of integration timet\_fin value: End of integration time

stat: Set to Moyenne (average) to calculate the average of the field nom\_champ (field name) over time or Ecart\_type (std\_deviation) to calculate the standard deviation (statistic rms) of the field nom\_champ (field\_name) or Correlation to calculate the correlation between the two fields nom\_champ and second\_nom\_champ.

*nom\_champ:* name of the field on which statistical analysis will be performed. Possible keywords are **Vitesse (velocity), Pression (pressure), Temperature, Concentration,...** 

localisation: localisation of post-processed field values (elem or som).

Example:

Statistiques Dt\_post dtst {
 t deb 0.1 t fin 0.12

Moyenne Pression

Ecart\_type Pression

**Correlation** Vitesse Vitesse }

It will write every **dt\_post** the mean, standard deviation and correlation value:

 $t <= t_{\rm deb}$  or  $t >= t_{\rm fin}$ : average:  $\overline{P(t)} = 0$ std\_deviation: < P(t) >= 0

std\_deviation:  $\langle P(t) \rangle = 0$ correlation:  $\langle U(t), V(t) \rangle = 0$ 

 $t > t_{\rm deb}$  and  $t < t_{\rm fin}$  :

average:  $\overline{P(t)} = \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} P(s) \mathrm{d}s$ 

 $\begin{array}{l} \mathrm{std\_deviation:} \ < P(t) > = \sqrt{\frac{1}{t - t_{\mathrm{deb}}} \int\limits_{t_{\mathrm{deb}}}^{t} \left[ P(s) - \overline{P(t)} \right]^2 \mathrm{ds} } \\ \end{array}$ 

 $\text{correlation: } < U(t).V(t) > = \frac{1}{t - t_{\text{deb}}} \int\limits_{t_{\text{deb}}}^{t} \left[ U(s) - \overline{U(t)} \right]. \left[ V(s) - \overline{V(t)} \right] \text{ds}$ 

See also: objet\_lecture (39)

Usage:

mot period fichier

where

- **mot** *str into* ['dt\_post', 'nb\_pas\_dt\_post']: Keyword to set the kind of the field's write frequency. Either a time period or a time step period.
- **period** *str*: Value of the period which can be like (2.\*t).
- fichier str: name of file

#### 4.2.35 Stats\_serie\_posts

Description: Post-processing for statistics.

**Statistiques\_en\_serie**: This keyword is used to set the statistics. Average on **dt\_integr** time interval is post-processed every **dt integr** seconds

dt\_integr value : Period of integration and write period.

stat: Set to Moyenne (average) to calculate the average of the field nom\_champ (field name) over time or Ecart\_type (std\_deviation) to calculate the standard deviation (statistic rms) of the field nom\_champ (field\_name).

*nom\_champ:* name of the field on which statistical analysis will be performed. Possible keywords are **Vitesse (velocity)**, **Pression (pressure)**, **Temperature**, **Concentration**,...

localisation: localisation of post-processed field values (elem or som).

Example:

Statistiques\_en\_serie Dt\_integr dtst {
Moyenne Pression

Will calculate and write every dtst seconds the mean value:

$$(n+1) \text{dt\_integr} > t > n * \text{dt\_integr}, \\ \overline{P(t)} = \frac{1}{t-n* \text{dt\_integr}} \int\limits_{t_n* \text{dt\_integr}}^t P(t) \text{dt}$$

See also: objet\_lecture (39)

Usage:

mot dt\_integr stat

where

- mot str into ['dt integr']: Keyword is used to set the statistics period of integration and write period.
- dt\_integr float: Average on dt\_integr time interval is post-processed every dt\_integr seconds.
- **stat** *list\_stat\_post* (4.2.27)

## 4.2.36 Stats\_serie\_posts\_fichier

Description: Post-processing for statistics.

**Statistiques\_en\_serie**: This keyword is used to set the statistics. Average on **dt\_integr** time interval is post-processed every **dt\_integr** seconds

**dt\_integr** value : Period of integration and write period.

stat: Set to Moyenne (average) to calculate the average of the field nom\_champ (field name) over time or Ecart\_type (std\_deviation) to calculate the standard deviation (statistic rms) of the field nom\_champ (field\_name).

*nom\_champ:* name of the field on which statistical analysis will be performed. Possible keywords are **Vitesse (velocity)**, **Pression (pressure)**, **Temperature**, **Concentration**,...

localisation: localisation of post-processed field values (elem or som).

Example:

Statistiques\_en\_serie Dt\_integr dtst {

**Moyenne** Pression

Will calculate and write every dtst seconds the mean value:

$$(n+1) \text{dt\_integr} > t > n * \text{dt\_integr}, \overline{P(t)} = \frac{1}{t-n*\text{dt\_integr}} \int\limits_{t_n*\text{dt\_integr}}^t P(t) \text{dt}$$

See also: objet\_lecture (39)

Usage:

mot dt\_integr fichier

where

- mot str into ['dt\_integr']: Keyword is used to set the statistics period of integration and write period.
- dt\_integr float: Average on dt\_integr time interval is post-processed every dt\_integr seconds.
- fichier str: name of file

# 4.3 Post\_processings

Synonymous: postraitements

Description: Keyword to use several results files. List of objects of post-processing (with name).

```
See also: listobj (38.5)

Usage: { object1 object2 .... } list of un_postraitement (4.3.1)
```

## 4.3.1 Un\_postraitement

Description: An object of post-processing (with name).

See also: objet\_lecture (39)

# Usage: nom post

where

- nom *str*: Name of the post-processing.
- **post** *corps\_postraitement* (4.2): Definition of the post-processing.

# 4.4 Liste\_post\_ok

Description: Keyword to use several results files. List of objects of post-processing (with name)

```
See also: listobj (38.5)

Usage: { object1 object2 .... } list of nom_postraitement (4.4.1)
```

# 4.4.1 Nom\_postraitement

```
Description: not_set

See also: objet_lecture (39)

Usage:
nom post
where
```

- nom *str*: Name of the post-processing.
- **post** *postraitement\_base* (4.4.2): the post

#### 4.4.2 Postraitement\_base

```
Description: not set
See also: objet lecture (39) post processing (4.4.3) postraitement ft lata (4.4.4)
Usage:
4.4.3 Post_processing
Synonymous: postraitement
Description: An object of post-processing (without name).
See also: postraitement_base (4.4.2) corps_postraitement (4.2)
Usage:
post processing {
      [fichier str]
      [format str into ['lml', 'lata', 'single lata', 'lata v2', 'med', 'med major', 'cgns']]
      [domaine str]
      [ sous zone|sous domaine str]
      [ parallele str into ['simple', 'multiple', 'mpi-io']]
      [ definition champs definition champs]
      [ definition champs file|definition champs fichier | definition champs fichier]
      [ probes|sondes | sondes]
      [ probes file|sondes fichier | sondes fichier]
      [ mobile probes|sondes mobiles sondes]
      [ mobile_probes_file|sondes_mobiles_fichier | sondes_fichier]
      [ deprecatedkeepduplicatedprobes int]
      [ fields|champs champs posts]
      [fields_file|champs_fichier champs_posts_fichier]
      [ statistics|statistiques stats_posts]
      [statistics_file|statistiques_fichier stats_posts_fichier]
      [serial_statistics|statistiques_en_serie stats_serie_posts]
      [serial_statistics_file|statistiques_en_serie_fichier stats_serie_posts_fichier]
      [ suffix for reset str]
}
where
```

- fichier str: Name of file.
- format str into ['lml', 'lata', 'single\_lata', 'lata\_v2', 'med', 'med\_major', 'cgns']: This optional parameter specifies the format of the output file. The basename used for the output file is the basename of the data file. For the fmt parameter, choices are lml or lata. A short description of each format can be found below. The default value is lml.
- **domaine** *str*: This optional parameter specifies the domain on which the data should be interpolated before it is written in the output file. The default is to write the data on the domain of the current problem (no interpolation).
- **sous\_zonelsous\_domaine** *str*: This optional parameter specifies the sub\_domaine on which the data should be interpolated before it is written in the output file. It is only available for sequential computation.
- **parallele** *str into ['simple', 'multiple', 'mpi-io']*: Select simple (single file, sequential write), multiple (several files, parallel write), or mpi-io (single file, parallel write) for LATA format

- **definition\_champs** definition\_champs (4.2.1): Keyword to create new or more complex field for advanced postprocessing.
- definition\_champs\_file|definition\_champs\_fichier definition\_champs\_fichier (4.2.3): Definition-\_champs read from file.
- probes|sondes sondes (4.2.4): Probe.
- probes\_filelsondes\_fichier sondes\_fichier (4.2.21): Probe read from a file.
- mobile\_probes|sondes\_mobiles sondes (4.2.4): Mobile probes useful for ALE, their positions will be updated in the mesh.
- mobile probes file|sondes mobiles fichier sondes fichier (4.2.21): Mobile probes read in a file
- deprecatedkeepduplicatedprobes int: Flag to not remove duplicated probes in .son files (1: keep duplicate probes, 0: remove duplicate probes)
- **fieldslchamps** *champs\_posts* (4.2.22): Field's write mode.
- fields\_filelchamps\_fichier champs\_posts\_fichier (4.2.25): Fields read from file.
- statistics|statistiques stats\_posts (4.2.26): Statistics between two points fixed : start of integration time and end of integration time.
- statistics\_file|statistiques\_fichier stats\_posts\_fichier (4.2.34): Statistics read from file.
- serial\_statisticslstatistiques\_en\_serie stats\_serie\_posts (4.2.35): Statistics between two points not fixed: on period of integration.
- serial\_statistics\_file|statistiques\_en\_serie\_fichier stats\_serie\_posts\_fichier (4.2.36): Serial\_statistics read from a file
- suffix\_for\_reset str: Suffix used to modify the postprocessing file name if the ICoCo resetTime() method is invoked.

#### 4.4.4 Postraitement ft lata

```
Description: not_set
See also: postraitement base (4.4.2)
Usage:
postraitement ft lata bloc
where
    • bloc str
```

#### 4.5 Liste\_post

Description: Keyword to use several results files. List of objects of post-processing (with name)

```
See also: listobj (38.5)
Usage:
{ object1 object2 .... }
list of un_postraitement_spec (4.5.1)
```

#### 4.5.1 Un\_postraitement\_spec

```
Description: An object of post-processing (with type +name).
```

```
See also: objet_lecture (39)
```

Usage:

```
[ type_un_post ] [ type_postraitement_ft_lata ]
where
```

```
• type_un_post type_un_post (4.5.2)
   • type_postraitement_ft_lata type_postraitement_ft_lata (4.5.3)
4.5.2 Type_un_post
Description: not_set
See also: objet_lecture (39)
Usage:
type post
where
   • type str into ['postraitement', 'post_processing']
   • post un postraitement (4.3.1)
4.5.3 Type_postraitement_ft_lata
Description: not_set
See also: objet_lecture (39)
Usage:
type nom bloc
where
   • type str into ['postraitement_ft_lata', 'postraitement_lata']
   • nom str: Name of the post-processing.
   • bloc str
4.6 Format_file
Description: File formatted.
See also: objet_lecture (39)
Usage:
[format] name_file
where
   • format str into ['binaire', 'formatte', 'xyz', 'single_hdf']: Type of file (the file format).
   • name_file str: Name of file.
4.7 Pb_hydraulique_cloned_concentration
Description: Resolution of Navier-Stokes/multiple constituent transport equations.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.28)
Usage:
Pb_Hydraulique_Cloned_Concentration str
Read str {
```

fluide\_incompressible fluide\_incompressible

```
[ constituant constituant]
[ navier_stokes_standard navier_stokes_standard]
[ convection_diffusion_concentration convection_diffusion_concentration]
[ milieu milieu_base]
[ Post_processinglpostraitement corps_postraitement]
[ Post_processingslpostraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_de_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
]

where
```

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem
- constituent constituent (24.1): Constituents.
- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_concentration** *convection\_diffusion\_concentration* (5.30): Constituent transport vectorial equation (concentration diffusion convection).
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.8 Pb\_hydraulique\_cloned\_concentration\_turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.28)
Usage:
Pb_Hydraulique_Cloned_Concentration_Turbulent str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_turbulent navier_stokes_turbulent]
     [convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent]
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_concentration\_turbulent** *convection\_diffusion\_concentration\_turbulent* (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the

name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.9 Pb\_hydraulique\_list\_concentration

Description: Resolution of Navier-Stokes/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object. See also: pb avec liste conc (4.33)

```
Usage:
```

```
Pb_Hydraulique_List_Concentration str Read str {
```

```
fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_standard navier_stokes_standard]

list_equations listeqn

[ milieu milieu_base]

[ Post_processing|postraitement corps_postraitement]

[ Post_processings|postraitements post_processings]

[ liste_de_postraitements liste_post_ok]

[ liste_postraitements liste_post]

[ sauvegarde format_file]

[ sauvegarde_simple format_file]

[ reprise format_file]

[ resume_last_time format_file]

}

where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **list\_equations** *listeqn* (4.10) for inheritance: convection\_diffusion\_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processingslpostraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde simple format file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file (see the class format file). If format reprise is xyz, the name file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- resume\_last\_time format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.10 Listegn

```
Description: List of equations.
See also: listobj (38.5)
Usage:
{ object1 object2 .... }
list of eqn base (5.43)
```

## Pb\_hydraulique\_list\_concentration\_turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: pb avec liste conc (4.33)
```

#### Usage:

}

```
Pb_Hydraulique_List_Concentration_Turbulent str
Read str {
```

```
fluide incompressible fluide incompressible
     [constituant constituant]
     [ navier stokes turbulent navier stokes turbulent]
     list_equations listeqn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **list\_equations** *listeqn* (4.10) for inheritance: convection\_diffusion\_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processinglpostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.12 Pb\_hydraulique\_turbulent\_ale

[ milieu milieu\_base]
[ constituant constituant]

Description: Resolution of hydraulic turbulent problems for ALE

Keyword Discretize should have already been used to read the object.

See also: Pb\_base (4.28)

Usage:

Pb\_Hydraulique\_Turbulent\_ALE str

Read str {

fluide\_incompressible fluide\_incompressible

Navier\_Stokes\_Turbulent\_ALE navier\_stokes\_turbulent\_ale

```
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem.
- Navier\_Stokes\_Turbulent\_ALE navier\_stokes\_turbulent\_ale (5.20): Navier-Stokes\_ALE equations as well as the associated turbulence model equations on mobile domain (ALE)
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.13 Pb hydraulique sensibility

Description: Resolution of hydraulic sensibility problems

Keyword Discretize should have already been used to read the object.

See also: Pb\_base (4.28)

Usage:

```
Pb_Hydraulique_sensibility str
Read str {
     fluide incompressible fluide incompressible
     Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem.
- Navier\_Stokes\_standard\_sensibility navier\_stokes\_standard\_sensibility (5.22): Navier-Stokes sensibility equations
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.14 Pb\_multiphase

where

Description: A problem that allows the resolution of N-phases with 3\*N equations

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.28) Pb_HEM (4.15)
Usage:
Pb Multiphase str
Read str {
     [milieu composite bloc lecture]
     [ Milieu_MUSIG bloc_lecture]
     [correlations bloc lecture]
     QDM_Multiphase qdm_multiphase
     Masse_Multiphase masse_multiphase
     Energie_Multiphase energie_multiphase
     [ Echelle temporelle turbulente echelle temporelle turbulente]
     [Energie cinetique turbulente energie cinetique turbulente]
     [ Energie_cinetique_turbulente_WIT energie_cinetique_turbulente_wit]
     [ Taux dissipation turbulent taux dissipation turbulent]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume_last_time format_file]
}
```

- milieu\_composite bloc\_lecture (3.2): The composite medium associated with the problem.
- Milieu MUSIG bloc lecture (3.2): The composite medium associated with the problem.
- **correlations** *bloc\_lecture* (3.2): List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **QDM\_Multiphase** *qdm\_multiphase* (5.24): Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse\_Multiphase masse\_multiphase (5.15): Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- Energie\_Multiphase energie\_multiphase (5.12): Internal energy conservation equation for a multiphase problem where the unknown is the temperature
- Echelle\_temporelle\_turbulente echelle\_temporelle\_turbulente (5.11): Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie\_cinetique\_turbulente energie\_cinetique\_turbulente (5.13): Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie\_cinetique\_turbulente\_WIT energie\_cinetique\_turbulente\_wit (5.14): Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- **Taux\_dissipation\_turbulent** *taux\_dissipation\_turbulent* (5.25): Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.

- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processingslpostraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

#### 4.15 Pb hem

Description: A problem that allows the resolution of 2-phases mechanicaly and thermally coupled with 3 equations

```
Keyword Discretize should have already been used to read the object. See also: Pb Multiphase (4.14)
```

```
Usage:
Pb_HEM str
Read str {
     [ milieu_composite bloc_lecture]
     [Milieu MUSIG bloc lecture]
     [correlations bloc_lecture]
     QDM Multiphase qdm multiphase
     Masse Multiphase masse multiphase
     Energie Multiphase energie multiphase
     [ Echelle_temporelle_turbulente echelle_temporelle_turbulente]
     [ Energie_cinetique_turbulente energie_cinetique_turbulente]
     [Energie cinetique turbulente WIT energie cinetique turbulente wit]
     [ Taux_dissipation_turbulent taux_dissipation_turbulent]
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
```

```
[ liste_de_postraitements liste_post_ok]
    [ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- milieu\_composite bloc\_lecture (3.2) for inheritance: The composite medium associated with the problem.
- Milieu\_MUSIG bloc\_lecture (3.2) for inheritance: The composite medium associated with the problem.
- **correlations** *bloc\_lecture* (3.2) for inheritance: List of correlations used in specific source terms (i.e. interfacial flux, interfacial friction, ...)
- **QDM\_Multiphase** *qdm\_multiphase* (5.24) for inheritance: Momentum conservation equation for a multi-phase problem where the unknown is the velocity
- Masse\_Multiphase masse\_multiphase (5.15) for inheritance: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)
- Energie\_Multiphase energie\_multiphase (5.12) for inheritance: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature
- Echelle\_temporelle\_turbulente echelle\_temporelle\_turbulente (5.11) for inheritance: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie\_cinetique\_turbulente energie\_cinetique\_turbulente (5.13) for inheritance: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- Energie\_cinetique\_turbulente\_WIT energie\_cinetique\_turbulente\_wit (5.14) for inheritance: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)
- **Taux\_dissipation\_turbulent** *taux\_dissipation\_turbulent* (5.25) for inheritance: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the

name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.16 Pb\_rayo\_conduction

Description: Resolution of the heat equation with rayonnement.

Keyword Discretize should have already been used to read the object.

```
See also: Pb_Conduction (4.1)
```

[ sauvegarde format\_file]
[ sauvegarde simple format file]

[reprise format file]

```
Usage: Pb_Rayo_Conduction str
```

```
Read str {

[ Conduction conduction]
[ milieu milieu_base]
[ constituant constituant]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
```

[ resume\_last\_time format\_file]
}
where

- **Conduction** *conduction* (5.1) for inheritance: Heat equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processinglpostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on

P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.17 Pb\_rayo\_hydraulique

Description: Resolution of the Navier-Stokes equations with rayonnement.

Keyword Discretize should have already been used to read the object.

```
See also: pb_hydraulique (4.36)
```

```
Usage:
Pb Rayo Hydraulique str
Read str {
     navier stokes standard navier stokes standard
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- navier\_stokes\_standard navier\_stokes\_standard (5.51) for inheritance: Navier-Stokes equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processinglpostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings**|**postraitements**| post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.

- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.18 Pb\_rayo\_hydraulique\_turbulent

Description: Resolution of pb\_hydraulique\_turbulent with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb\_hydraulique\_turbulent (4.46)

Usage:

```
Pb_Rayo_Hydraulique_Turbulent str

Read str {

    navier_stokes_turbulent navier_stokes_turbulent
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post_ok]
    [liste_postraitements liste_post]
    [sauvegarde format_file]
    [sauvegarde_simple format_file]
    [reprise format_file]
    [resume_last_time format_file]
}
where
```

- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52) for inheritance: Navier-Stokes equations as well as the associated turbulence model equations.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processingslpostraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.19 Pb\_rayo\_thermohydraulique

[ resume\_last\_time format\_file]

Description: Resolution of pb\_thermohydraulique with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb thermohydraulique (4.50)

```
Usage:
```

} where

```
Pb_Rayo_Thermohydraulique str
Read str {
     [fluide ostwald]
     [fluide sodium liquide fluide sodium liquide]
     [fluide sodium gaz fluide sodium gaz]
     [ navier stokes standard navier stokes standard]
     [ \  \, \textbf{convection\_diffusion\_temperature} \quad \, \textit{convection\_diffusion\_temperature} ]
     [ milieu milieu base]
      [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
      [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
      [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [ reprise format_file]
```

- **fluide\_ostwald** *fluide\_ostwald* (24.6) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide\_sodium\_liquide** *fluide\_sodium\_liquide* (24.11) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide\_sodium\_gaz** *fluide\_sodium\_gaz* (24.10) for inheritance: The fluid medium associated with the problem (only one possibility).
- navier\_stokes\_standard navier\_stokes\_standard (5.51) for inheritance: Navier-Stokes equations.
- **convection\_diffusion\_temperature** *convection\_diffusion\_temperature* (5.39) for inheritance: Energy equation (temperature diffusion convection).
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.

- Post\_processing|postraitement corps\_postraitement (4.2) for inheritance: One post-processing (without name).
- Post processings|postraitements post processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- liste\_postraitements liste\_post (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name file file. If there is no backup corresponding to this time in the name file, TRUST exits in
- resume last time format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

#### Pb rayo thermohydraulique qc

```
Description: Resolution of pb_thermohydraulique_QC with rayonnement.
Keyword Discretize should have already been used to read the object.
See also: pb thermohydraulique QC (4.51)
Usage:
Pb Rayo Thermohydraulique QC str
Read str {
     navier stokes QC navier stokes qc
     convection_diffusion_chaleur_QC convection_diffusion_chaleur_qc
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
```

[ Post processings|postraitements post processings]

[liste de postraitements liste post ok] [liste postraitements liste post] [ sauvegarde format\_file] [sauvegarde simple format file]

[reprise format file]

[ resume\_last\_time format\_file]

where

}

- navier\_stokes\_QC navier\_stokes\_qc (5.44) for inheritance: Navier-Stokes equation for a quasi-compressible fluid.
- **convection\_diffusion\_chaleur\_QC** *convection\_diffusion\_chaleur\_qc* (5.27) for inheritance: Temperature equation for a quasi-compressible fluid.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.21 Pb rayo thermohydraulique turbulent

Pb\_Rayo\_Thermohydraulique\_Turbulent str

[ sauvegarde format\_file]

Description: Resolution of pb thermohydraulique turbulent with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb\_thermohydraulique\_turbulent (4.61)

```
Usage:
```

```
Read str {
    navier_stokes_turbulent navier_stokes_turbulent
    convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent
    [ milieu milieu_base ]
    [ constituant constituant ]
    [ Post_processing|postraitement corps_postraitement ]
    [ Post_processings|postraitements post_processings ]
    [ liste_de_postraitements liste_post_ok ]
    [ liste_postraitements liste_post ]
```

```
[ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52) for inheritance: Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_temperature\_turbulent** *convection\_diffusion\_temperature\_turbulent* (5.42) for inheritance: Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processinglyostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.22 Pb\_rayo\_thermohydraulique\_turbulent\_qc

Description: Resolution of pb\_thermohydraulique\_turbulent\_qc with rayonnement.

Keyword Discretize should have already been used to read the object. See also: pb\_thermohydraulique\_turbulent\_qc (4.62)

#### Usage:

```
Pb_Rayo_Thermohydraulique_Turbulent_QC str

Read str {

    navier_stokes_turbulent_qc navier_stokes_turbulent_qc
    convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc
```

```
[ milieu milieu_base]
  [ constituant constituant]
  [ Post_processinglpostraitement corps_postraitement]
  [ Post_processingslpostraitements post_processings]
  [ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
```

- navier\_stokes\_turbulent\_qc navier\_stokes\_turbulent\_qc (5.53) for inheritance: Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- **convection\_diffusion\_chaleur\_turbulent\_qc** *convection\_diffusion\_chaleur\_turbulent\_qc* (5.29) for inheritance: Energy equation under low Mach number as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.23 Pb\_thermohydraulique\_cloned\_concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.28)
Usage:
Pb_Thermohydraulique_Cloned_Concentration str
Read str {
     fluide incompressible fluide incompressible
     [constituant constituant]
     [ navier_stokes_standard navier_stokes_standard]
     [convection_diffusion_concentration convection_diffusion_concentration]
     [ convection_diffusion_temperature | convection_diffusion_temperature]
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [ reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_concentration** *convection\_diffusion\_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- convection\_diffusion\_temperature convection\_diffusion\_temperature (5.39): Energy equation (temperature diffusion convection).
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings**|**postraitements**| post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the

name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.24 Pb\_thermohydraulique\_cloned\_concentration\_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: Pb base (4.28)

#### Usage:

```
Pb_Thermohydraulique_Cloned_Concentration_Turbulent str Read str {
```

```
fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_turbulent navier_stokes_turbulent]
     [convection_diffusion_concentration_turbulent] convection_diffusion_concentration_turbulent]
     [convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [liste de postraitements liste post ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_concentration\_turbulent** *convection\_diffusion\_concentration\_turbulent* (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection\_diffusion\_temperature\_turbulent** *convection\_diffusion\_temperature\_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This

- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.25 Pb\_thermohydraulique\_list\_concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb_avec_liste_conc (4.33)
Usage:
Pb_Thermohydraulique_List_Concentration str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_standard navier_stokes_standard]
     [convection diffusion temperature]
     list_equations listeqn
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume_last_time format_file]
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.

- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_temperature** *convection\_diffusion\_temperature* (5.39): Energy equation (temperature diffusion convection).
- **list\_equations** *listeqn* (4.10) for inheritance: convection\_diffusion\_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processinglyostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings**|**postraitements**| post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.26 Pb\_thermohydraulique\_list\_concentration\_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: pb\_avec\_liste\_conc (4.33)

Usage:

```
Pb_Thermohydraulique_List_Concentration_Turbulent str
Read str {
```

```
fluide_incompressible fluide_incompressible
[ constituant constituant]
[ navier_stokes_turbulent navier_stokes_turbulent]
[ convection_diffusion_temperature_turbulent convection_diffusion_temperature_turbulent]
list_equations listegn
```

```
[ milieu milieu_base]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the prob-
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_temperature\_turbulent** *convection\_diffusion\_temperature\_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- **list\_equations** *listeqn* (4.10) for inheritance: convection\_diffusion\_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.27 Pb\_thermohydraulique\_sensibility

Description: Resolution of Resolution of thermohydraulic sensitivity problem

```
Keyword Discretize should have already been used to read the object. See also: pb_thermohydraulique (4.50)
```

```
Usage:
```

```
Pb_Thermohydraulique_sensibility str Read str {
```

```
fluide_incompressible fluide_incompressible
     Convection_Diffusion_Temperature_Sensibility convection_diffusion_temperature_sensibility
     Navier_Stokes_standard_sensibility navier_stokes_standard_sensibility
     [fluide_ostwald]
     [ fluide_sodium_liquide | fluide_sodium_liquide]
     [ fluide_sodium_gaz | fluide_sodium_gaz]
     [ navier stokes standard navier stokes standard]
     [milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **Convection\_Diffusion\_Temperature\_Sensibility** *convection\_diffusion\_temperature\_sensibility* (5.9): Convection diffusion temperature sensitivity equation
- Navier\_Stokes\_standard\_sensibility navier\_stokes\_standard\_sensibility (5.22): Navier Stokes sensitivity equation
- **fluide\_ostwald** *fluide\_ostwald* (24.6) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide\_sodium\_liquide** *fluide\_sodium\_liquide* (24.11) for inheritance: The fluid medium associated with the problem (only one possibility).
- **fluide\_sodium\_gaz** *fluide\_sodium\_gaz* (24.10) for inheritance: The fluid medium associated with the problem (only one possibility).
- navier\_stokes\_standard navier\_stokes\_standard (5.51) for inheritance: Navier-Stokes equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processinglyostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and

in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- sauvegarde format file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- resume\_last\_time format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.28 Pb\_base

}

Description: Resolution of equations on a domain. A problem is defined by creating an object and assigning the problem type that the user wishes to resolve. To enter values for the problem objects created, the Lire (Read) interpretor is used with a data block.

```
See also: pb_gen_base (4) problem_read_generic (4.66) pb_post (4.49) Pb_Multiphase (4.14) pb_thermohydraulique-
QC (4.51) pb_hydraulique_melange_binaire_QC (4.43) pb_avec_passif (4.34) pb_thermohydraulique-
_WC (4.52) pb_hydraulique_melange_binaire_WC (4.44) pb_hydraulique_concentration (4.39) pb_thermohydraulique
(4.50) pb_hydraulique (4.36) pb_thermohydraulique_concentration (4.53) pb_avec_liste_conc (4.33) Pb-
_Thermohydraulique_Cloned_Concentration (4.23) Pb_Hydraulique_Cloned_Concentration (4.7) pb_hydraulique-
_melange_binaire_turbulent_qc (4.45) pb_thermohydraulique_turbulent (4.61) pb_hydraulique_concentration-
_turbulent (4.41) pb_thermohydraulique_concentration_turbulent (4.55) pb_hydraulique_turbulent (4.46)
pb_thermohydraulique_turbulent_qc (4.62) Pb_Thermohydraulique_Cloned_Concentration_Turbulent (4.24)
Pb Hydraulique Cloned Concentration Turbulent (4.8) Pb Conduction (4.1) modele rayo semi transp
```

```
(4.31) pb_hydraulique_ALE (4.37) Pb_Hydraulique_sensibility (4.13) pb_hydraulique_aposteriori (4.38)
pb phase field (4.48) Pb Hydraulique Turbulent ALE (4.12)
```

Keyword Discretize should have already been used to read the object.

```
Usage:
Pb base str
Read str {
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
```

where

- milieu milieu\_base (24): The medium associated with the problem.
- constituant constituant (24.1): Constituent.
- Post processing postraitement corps postraitement (4.2): One post-processing (without name).
- Post\_processings|postraitements post\_processings (4.3): List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4): This
- **liste\_postraitements** *liste\_post* (4.5): This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6): Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6): The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6): Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6): Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.29 Probleme\_couple

Description: This instruction causes a probleme\_couple type object to be created. This type of object has an associated problem list, that is, the coupling of n problems among them may be processed. Coupling between these problems is carried out explicitly via conditions at particular contact limits. Each problem may be associated either with the Associate keyword or with the Read/groupes keywords. The difference is that in the first case, the four problems exchange values then calculate their timestep, rather in the second case, the same strategy is used for all the problems listed inside one group, but the second group of problem exchange values with the first group of problems after the first group did its timestep. So, the first case may then also be written like this:

Probleme\_Couple pbc

Read pbc { groupes { { pb1 , pb2 , pb3 , pb4 } } }

There is a physical environment per problem (however, the same physical environment could be common to several problems).

Each problem is resolved in a domain.

Warning: Presently, coupling requires coincident meshes. In case of non-coincident meshes, boundary condition 'paroi\_contact' in VEF returns error message (see paroi\_contact for correcting procedure).

See also: pb\_gen\_base (4) pb\_couple\_rayonnement (4.67) pb\_couple\_rayo\_semi\_transp (4.35)

```
Usage:
probleme_couple str
Read str {
    [groupes list_list_nom]
```

```
where
    • groupes list_list_nom (4.30): { groupes { { pb1 , pb2 } , { pb3 , pb4 } } }

4.30 List_list_nom

Description: pour les groupes

See also: listobj (38.5)

Usage:
{ object1 , object2 .... }
list of list_un_pb (38.3) separeted with ,
```

# 4.31 Modele\_rayo\_semi\_transp

Description: Radiation model for semi transparent gas. The model should be associated to the coupling problem BEFORE the time scheme.

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.28)
Usage:
```

modele rayo semi transp str

```
Read str {
     [ eq_rayo_semi_transp eq_rayo_semi_transp]
     [ milieu milieu_base]
     [ constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- eq\_rayo\_semi\_transp eq\_rayo\_semi\_transp (4.32): Irradiancy G equation. Radiative flux equals -grad(G)/3/kappa.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.

- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.32 Eq\_rayo\_semi\_transp

```
Description: Irradiancy equation.

See also: objet_lecture (39)

Usage:
{

    solveur solveur_sys_base
    [boundary_conditions|conditions_limites condlims]
}
where
```

- **solveur** *solveur\_sys\_base* (13.18): Solver of the irradiancy equation.
- boundary\_conditions|conditions\_limites condlims (4.32.1): Boundary conditions.

#### 4.32.1 Condlims

where

```
Description: Boundary conditions.

See also: listobj (38.5)

Usage:
{ object1 object2 .... }
list of condlimlu (4.32.2)

4.32.2 Condlimlu

Description: Boundary condition specified.

See also: objet_lecture (39)

Usage:
bord cl
```

- **bord** *str*: Name of the edge where the boundary condition applies.
- cl condlim\_base (15): Boundary condition at the boundary called bord (edge).

### 4.33 Pb\_avec\_liste\_conc

Description: Class to create a classical problem with a list of scalar concentration equations.

Keyword Discretize should have already been used to read the object.

See also: Pb\_base (4.28) Pb\_Thermohydraulique\_List\_Concentration (4.25) Pb\_Hydraulique\_List\_Concentration (4.9) Pb\_Thermohydraulique\_List\_Concentration\_Turbulent (4.26) Pb\_Hydraulique\_List\_Concentration\_Turbulent (4.11)

```
Usage:
pb_avec_liste_conc str
Read str {
     list_equations listeqn
     [ milieu milieu_base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **list\_equations** *listeqn* (4.10): convection\_diffusion\_concentration equations. The unknown of the concentration equation number N is named concentrationN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processingslpostraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.

- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.34 Pb\_avec\_passif

Description: Class to create a classical problem with a scalar transport equation (e.g. temperature or concentration) and an additional set of passive scalars (e.g. temperature or concentration) equations.

Keyword Discretize should have already been used to read the object.

See also: Pb\_base (4.28) pb\_thermohydraulique\_especes\_QC (4.57) pb\_thermohydraulique\_especes\_WC (4.58) pb\_thermohydraulique\_concentration\_scalaires\_passifs (4.54) pb\_thermohydraulique\_scalaires\_passifs (4.60) pb\_hydraulique\_concentration\_scalaires\_passifs (4.40) pb\_thermohydraulique\_turbulent\_scalaires\_passifs (4.63) pb\_thermohydraulique\_especes\_turbulent\_qc (4.59) pb\_hydraulique\_concentration\_turbulent\_scalaires\_passifs (4.42) pb\_thermohydraulique\_concentration\_turbulent\_scalaires\_passifs (4.56)

```
pb_avec_passif str
Read str {
```

Usage:

```
equations_scalaires_passifs listeqn
[milieu milieu_base]
[constituant constituant]
[Post_processinglpostraitement corps_postraitement]
[Post_processingslpostraitements post_processings]
[liste_de_postraitements liste_post_ok]
[liste_postraitements liste_post]
[sauvegarde format_file]
[sauvegarde_simple format_file]
[reprise format_file]
[resume_last_time format_file]
}
where
```

- equations\_scalaires\_passifs listeqn (4.10): Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This

- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.35 Pb\_couple\_rayo\_semi\_transp

Description: Problem coupling several other problems to which radiation coupling is added (for semi transparent gas).

You have to associate a modele\_rayo\_semi\_transp

You have to add a radiative term source in energy equation

Warning: Calculation with semi transparent gas model may lead to divergence when high temperature differences are used. Indeed, the calculation of the stability time step of the equation does not take in account the source term. In semi transparent gas model, energy equation source term depends strongly of temperature via irradiance and stability is not guaranteed by the calculated time step. Reducing the facsec of the time scheme is a good tip to reach convergence when divergence is encountered.

```
See also: probleme_couple (4.29)
Usage:
pb_couple_rayo_semi_transp str
Read str {
      [groupes list_list_nom]
}
where
• groupes list_list_nom (4.30) for inheritance: { groupes { pb1 , pb2 } , { pb3 , pb4 } } }
```

#### 4.36 Pb hydraulique

Description: Resolution of the Navier-Stokes equations.

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.28) Pb_Rayo_Hydraulique (4.17)
Usage:
pb_hydraulique str
Read str {
     fluide incompressible fluide incompressible
     navier stokes standard navier stokes standard
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [resume last time format file]
}
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.37 Pb\_hydraulique\_ale

where

Description: Resolution of hydraulic problems for ALE Keyword Discretize should have already been used to read the object. See also: Pb base (4.28) Usage: pb hydraulique ALE str Read str { fluide incompressible fluide incompressible navier\_stokes\_standard\_ALE navier\_stokes\_standard [ milieu milieu base] [constituant constituant] [ Post\_processing|postraitement corps\_postraitement] [ Post\_processings|postraitements post\_processings] [ liste\_de\_postraitements liste\_post\_ok] [liste\_postraitements liste\_post] [ sauvegarde format\_file] [ sauvegarde\_simple format\_file] [reprise format\_file] [ resume\_last\_time format\_file] }

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- navier\_stokes\_standard\_ALE navier\_stokes\_standard (5.51): Navier-Stokes equations for ALE problems
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• resume\_last\_time format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

#### 4.38 Pb\_hydraulique\_aposteriori

Description: Modification of the pb\_hydraulique problem in order to accept the estimateur\_aposteriori post-processing.

Keyword Discretize should have already been used to read the object. See also: Pb\_base (4.28)

```
Usage:
```

where

```
pb_hydraulique_aposteriori str
Read str {
     fluide_incompressible fluide_incompressible
     Navier_Stokes_Aposteriori navier_stokes_aposteriori
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [reprise format file]
     [ resume last time format file]
}
```

- fluide incompressible fluide\_incompressible (24.5): The fluid medium associated with the prob-
- Navier\_Stokes\_Aposteriori navier\_stokes\_aposteriori (5.16): Modification of the Navier\_Stokes-\_standard class in order to accept the estimateur\_aposteriori post-processing. To post-process estimateur-\_aposteriori, add this keyword into the list of fields to be post-processed. This estimator whill generate a map of aposteriori error estimators; it is defined on each mesh cell and is a measure of the local discretisation error. This will serve for adaptive mesh refinement
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- Post processing postraitement corps postraitement (4.2) for inheritance: One post-processing (without name).
- Post processings|postraitements post processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- liste\_postraitements liste\_post (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.39 Pb\_hydraulique\_concentration

Description: Resolution of Navier-Stokes/multiple constituent transport equations.

Keyword Discretize should have already been used to read the object.

```
See also: Pb base (4.28)
Usage:
pb_hydraulique_concentration str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier stokes standard navier stokes standard]
     [convection diffusion concentration convection diffusion concentration]
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- constituant constituant (24.1): Constituents.

where

- navier stokes standard navier stokes standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_concentration** *convection\_diffusion\_concentration* (5.30): Constituent transport vectorial equation (concentration diffusion convection).
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This

- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.40 Pb\_hydraulique\_concentration\_scalaires\_passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb avec passif (4.34)
pb_hydraulique_concentration_scalaires_passifs str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier stokes standard navier stokes standard]
     [convection_diffusion_concentration convection_diffusion_concentration]
     equations_scalaires_passifs listeqn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
      [ liste de postraitements liste post ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume last time format file]
}
```

where

• fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem.

- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_concentration** *convection\_diffusion\_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.41 Pb\_hydraulique\_concentration\_turbulent

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.

See also: Pb_base (4.28)

Usage:

pb_hydraulique_concentration_turbulent str

Read str {

fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_turbulent navier_stokes_turbulent]

[ convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent]
```

```
[ milieu milieu_base]
[ Post_processing|postraitement corps_postraitement]
[ Post_processings|postraitements post_processings]
[ liste_de_postraitements liste_post_ok]
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the prob-
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_concentration\_turbulent** *convection\_diffusion\_concentration\_turbulent* (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.42 Pb\_hydraulique\_concentration\_turbulent\_scalaires\_passifs

Description: Resolution of Navier-Stokes/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object.
See also: pb avec passif (4.34)
Usage:
pb_hydraulique_concentration_turbulent_scalaires_passifs str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_turbulent navier_stokes_turbulent]
     [convection_diffusion_concentration_turbulent convection_diffusion_concentration_turbulent]
     equations_scalaires_passifs listeqn
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_concentration\_turbulent** *convection\_diffusion\_concentration\_turbulent* (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format file (4.6) for inheritance: Keyword to resume a calculation based on the name file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema temps base) time fields are taken from the name file file. If there is no backup corresponding to this time in the name file, TRUST exits in
- resume\_last\_time format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# Pb\_hydraulique\_melange\_binaire\_qc

Description: Resolution of a binary mixture problem for a quasi-compressible fluid with an iso-thermal condition.

Keywords for the unknowns other than pressure, velocity, fraction massique are:

```
masse volumique: density
pression: reduced pressure
pression_tot: total pressure.
```

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.28)
```

```
Usage:
```

```
pb hydraulique melange binaire OC str
Read str {
```

```
fluide_quasi_compressible fluide_quasi_compressible
     [constituant constituant]
     navier_stokes_QC navier_stokes_qc
     convection_diffusion_espece_binaire_QC convection_diffusion_espece_binaire_qc
     [ milieu milieu_base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
     [ liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
}
where
```

- fluide quasi compressible fluide quasi compressible (24.7): The fluid medium associated with the problem.
- constituant constituant (24.1): The various constituants associated to the problem.
- navier\_stokes\_QC navier\_stokes\_qc (5.44): Navier-Stokes equation for a quasi-compressible fluid.
- convection\_diffusion\_espece\_binaire\_QC convection\_diffusion\_espece\_binaire\_qc (5.33): Species conservation equation for a binary quasi-compressible fluid.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.

- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings**|**postraitements**| post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

#### 4.44 Pb hydraulique melange binaire wc

Description: Resolution of a binary mixture problem for a weakly-compressible fluid with an iso-thermal condition.

```
Keywords for the unknowns other than pressure, velocity, fraction_massique are : masse_volumique : density pression : reduced pressure pression tot : total pressure
```

pression\_hydro: hydro-static pressure pression\_eos: pressure used in state equation.

pb\_hydraulique\_melange\_binaire\_WC str

Keyword Discretize should have already been used to read the object.

```
See also: Pb base (4.28)
```

```
Usage:
```

```
Read str {

fluide_weakly_compressible fluide_weakly_compressible
navier_stokes_WC navier_stokes_wc
convection_diffusion_espece_binaire_WC convection_diffusion_espece_binaire_wc
```

```
[ milieu milieu_base]
[ constituant constituant]
```

[ Post\_processing|postraitement corps\_postraitement]

[ Post\_processings|postraitements post\_processings]

[ liste\_de\_postraitements liste\_post\_ok]

```
[ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide\_weakly\_compressible** *fluide\_weakly\_compressible* (24.13): The fluid medium associated with the problem.
- navier\_stokes\_WC navier\_stokes\_wc (5.45): Navier-Stokes equation for a weakly-compressible fluid.
- **convection\_diffusion\_espece\_binaire\_WC** *convection\_diffusion\_espece\_binaire\_wc* (5.34): Species conservation equation for a binary weakly-compressible fluid.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.45 Pb\_hydraulique\_melange\_binaire\_turbulent\_qc

Description: Resolution of a turbulent binary mixture problem for a quasi-compressible fluid with an isothermal condition.

Keyword Discretize should have already been used to read the object. See also: Pb base (4.28)

Usage:

```
pb_hydraulique_melange_binaire_turbulent_qc str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier stokes turbulent qc navier stokes turbulent qc
     Convection_Diffusion_Espece_Binaire_Turbulent_QC convection_diffusion_espece_binaire_turbulent-
     [ milieu milieu base]
     [constituant constituant]
     [ Post processing|postraitement corps postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide\_quasi\_compressible** *fluide\_quasi\_compressible* (24.7): The fluid medium associated with the problem.
- navier\_stokes\_turbulent\_qc navier\_stokes\_turbulent\_qc (5.53): Navier-Stokes equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- Convection\_Diffusion\_Espece\_Binaire\_Turbulent\_QC convection\_diffusion\_espece\_binaire\_turbulent\_qc (5.8): Species conservation equation for a quasi-compressible fluid as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name file file, resume the calculation at the last time found in the file (tinit is set to last time of saved

files).

where

## 4.46 Pb\_hydraulique\_turbulent

Description: Resolution of Navier-Stokes equations with turbulence modelling.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.28) Pb_Rayo_Hydraulique_Turbulent (4.18)
Usage:
pb_hydraulique_turbulent str
Read str {
     fluide incompressible fluide incompressible
     navier stokes turbulent navier stokes turbulent
     [ milieu milieu_base]
     [constituant constituant]
      [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
      [ liste de postraitements liste post ok]
     [ liste_postraitements liste_post]
     [sauvegarde format file]
      [ sauvegarde_simple format_file]
      [ reprise format_file]
     [ resume_last_time format_file]
}
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- liste\_postraitements liste\_post (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on

P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.47 Pb\_mg

Description: Multi-grid problem.

Keyword Discretize should have already been used to read the object.

See also: pb\_gen\_base (4)

Usage:

pb\_mg

# 4.48 Pb\_phase\_field

Description: Problem to solve local instantaneous incompressible-two-phase-flows. Complete description of the Phase Field model for incompressible and immiscible fluids can be found into this PDF: TRUST\_ROOT/doc/TRUST/phase\_field\_non\_miscible\_manuel.pdf

Keyword Discretize should have already been used to read the object.

```
See also: Pb_base (4.28)
```

```
pb_phase_field str
Read str {
```

Usage:

```
fluide_incompressible fluide_incompressible

[ constituant constituant]

[ navier_stokes_phase_field navier_stokes_phase_field]

[ convection_diffusion_phase_field convection_diffusion_phase_field]

[ milieu milieu_base]

[ Post_processinglpostraitement corps_postraitement]

[ Post_processingslpostraitements post_processings]

[ liste_de_postraitements liste_post_ok]

[ liste_postraitements liste_post]

[ sauvegarde format_file]

[ sauvegarde_simple format_file]

[ reprise format_file]

[ resume_last_time format_file]

}

where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_phase\_field navier\_stokes\_phase\_field (5.48): Navier Stokes equation for the Phase Field problem.

- **convection\_diffusion\_phase\_field** *convection\_diffusion\_phase\_field* (5.38): Cahn-Hilliard equation of the Phase Field problem. The unknown of this equation is the concentration C.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processinglyostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings**|**postraitements**| post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste de postraitements liste post ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.49 Pb\_post

```
Description: not_set
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.28)
Usage:
pb_post str
Read str {
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [ sauvegarde_simple format_file]
     [reprise format_file]
     [ resume_last_time format_file]
where
```

- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.50 Pb\_thermohydraulique

Description: Resolution of thermohydraulic problem.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.28) Pb_Thermohydraulique_sensibility (4.27) Pb_Rayo_Thermohydraulique (4.19)
```

Usage:

```
pb_thermohydraulique str

Read str {

    [fluide_incompressible fluide_incompressible]
    [fluide_ostwald fluide_ostwald]
    [fluide_sodium_liquide fluide_sodium_liquide]
    [fluide_sodium_gaz fluide_sodium_gaz]
    [navier_stokes_standard navier_stokes_standard]
    [convection_diffusion_temperature convection_diffusion_temperature]
    [milieu milieu_base]
    [constituant constituant]
    [Post_processing|postraitement corps_postraitement]
    [Post_processings|postraitements post_processings]
    [liste_de_postraitements liste_post]
    [sauvegarde format_file]
```

```
[ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem (only one possibility).
- **fluide\_ostwald** *fluide\_ostwald* (24.6): The fluid medium associated with the problem (only one possibility).
- **fluide\_sodium\_liquide** *fluide\_sodium\_liquide* (24.11): The fluid medium associated with the problem (only one possibility).
- **fluide\_sodium\_gaz** *fluide\_sodium\_gaz* (24.10): The fluid medium associated with the problem (only one possibility).
- navier stokes standard navier stokes standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_temperature** *convection\_diffusion\_temperature* (5.39): Energy equation (temperature diffusion convection).
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.51 Pb\_thermohydraulique\_qc

Description: Resolution of thermo-hydraulic problem for a quasi-compressible fluid.

Keywords for the unknowns other than pressure, velocity, temperature are :

masse\_volumique : density

enthalpie : enthalpy pression : reduced pressure

```
pression_tot: total pressure.
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.28) Pb_Rayo_Thermohydraulique_QC (4.20)
Usage:
pb_thermohydraulique_QC str
Read str {
     fluide quasi compressible fluide quasi compressible
     navier_stokes_QC navier_stokes_qc
     convection_diffusion_chaleur_QC convection_diffusion_chaleur_qc
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [sauvegarde format file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide\_quasi\_compressible** *fluide\_quasi\_compressible* (24.7): The fluid medium associated with the problem.
- navier\_stokes\_QC navier\_stokes\_qc (5.44): Navier-Stokes equation for a quasi-compressible fluid.
- **convection\_diffusion\_chaleur\_QC** *convection\_diffusion\_chaleur\_qc* (5.27): Temperature equation for a quasi-compressible fluid.
- milieu milieu base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the

name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.52 Pb\_thermohydraulique\_wc

```
Description: Resolution of thermo-hydraulic problem for a weakly-compressible fluid.
Keywords for the unknowns other than pressure, velocity, temperature are:
masse_volumique : density
pression: reduced pressure
pression_tot: total pressure
pression_hydro: hydro-static pressure
pression_eos: pressure used in state equation.
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.28)
Usage:
pb_thermohydraulique_WC str
Read str {
     fluide_weakly_compressible fluide_weakly_compressible
     navier_stokes_WC navier_stokes_wc
     convection diffusion chaleur WC convection diffusion chaleur wc
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [liste de postraitements liste post ok]
      [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
      [reprise format_file]
     [ resume_last_time format_file]
where
```

- fluide\_weakly\_compressible fluide\_weakly\_compressible (24.13): The fluid medium associated with the problem.
- navier\_stokes\_WC navier\_stokes\_wc (5.45): Navier-Stokes equation for a weakly-compressible fluid.
- **convection\_diffusion\_chaleur\_WC** *convection\_diffusion\_chaleur\_wc* (5.28): Temperature equation for a weakly-compressible fluid.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This

- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.53 Pb\_thermohydraulique\_concentration

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations.

```
Keyword Discretize should have already been used to read the object.
See also: Pb_base (4.28)
Usage:
pb_thermohydraulique_concentration str
Read str {
     fluide_incompressible fluide_incompressible
     [constituant constituant]
     [ navier_stokes_standard navier_stokes_standard]
     [convection diffusion concentration]
     [convection_diffusion_temperature convection_diffusion_temperature]
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [sauvegarde simple format file]
     [ reprise format_file]
     [ resume_last_time format_file]
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.

- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_concentration** *convection\_diffusion\_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- convection\_diffusion\_temperature convection\_diffusion\_temperature (5.39): Energy equation (temperature diffusion convection).
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.54 Pb thermohydraulique concentration scalaires passifs

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object.

See also: pb\_avec\_passif (4.34)

Usage:
pb\_thermohydraulique\_concentration\_scalaires\_passifs str

Read str {

fluide\_incompressible fluide\_incompressible
 [ constituant constituant]
 [ navier\_stokes\_standard navier\_stokes\_standard]
 [ convection\_diffusion\_concentration convection\_diffusion\_concentration]
 [ convection\_diffusion\_temperature convection\_diffusion\_temperature]
 equations\_scalaires\_passifs listeqn
 [ milieu milieu\_base]
 [ Post\_processing|postraitement corps\_postraitement]

```
[ Post_processings|postraitements post_processings]
  [ liste_de_postraitements liste_post_ok]
  [ liste_postraitements liste_post]
  [ sauvegarde format_file]
  [ sauvegarde_simple format_file]
  [ reprise format_file]
  [ resume_last_time format_file]
}
where
```

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- constituant constituant (24.1): Constituents.
- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_concentration** *convection\_diffusion\_concentration* (5.30): Constituent transport equations (concentration diffusion convection).
- **convection\_diffusion\_temperature** *convection\_diffusion\_temperature* (5.39): Energy equations (temperature diffusion convection).
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processingslpostraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.55 Pb\_thermohydraulique\_concentration\_turbulent

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling.

Keyword Discretize should have already been used to read the object. See also: Pb base (4.28) Usage: pb\_thermohydraulique\_concentration\_turbulent str Read str { fluide\_incompressible fluide\_incompressible [constituant constituant] [ navier\_stokes\_turbulent navier\_stokes\_turbulent] [convection\_diffusion\_concentration\_turbulent] convection\_diffusion\_concentration\_turbulent] [convection\_diffusion\_temperature\_turbulent convection\_diffusion\_temperature\_turbulent] [ milieu milieu\_base] [ **Post\_processing|postraitement** corps\_postraitement] [ Post\_processings|postraitements post\_processings] [liste de postraitements liste post ok] [ liste\_postraitements liste\_post] [sauvegarde format file] [ sauvegarde\_simple format\_file] [ reprise format\_file] [resume last time format file] } where

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_concentration\_turbulent** *convection\_diffusion\_concentration\_turbulent* (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection\_diffusion\_temperature\_turbulent** *convection\_diffusion\_temperature\_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.56 Pb\_thermohydraulique\_concentration\_turbulent\_scalaires\_passifs

Description: Resolution of Navier-Stokes/energy/multiple constituent transport equations, with turbulence modelling and with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb avec passif (4.34) Usage: pb\_thermohydraulique\_concentration\_turbulent\_scalaires\_passifs str Read str { fluide incompressible fluide incompressible [constituant constituant] [ navier stokes turbulent navier stokes turbulent] [ convection\_diffusion\_concentration\_turbulent convection\_diffusion\_concentration\_turbulent] [convection diffusion temperature turbulent convection diffusion temperature turbulent] equations\_scalaires\_passifs listeqn [ milieu milieu base] [ Post\_processing|postraitement corps\_postraitement] [ Post\_processings|postraitements post\_processings] [ liste\_de\_postraitements liste\_post\_ok] [liste\_postraitements liste\_post] [ sauvegarde format\_file] [sauvegarde simple format file] [ reprise format\_file] [ resume\_last\_time format\_file] } where

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_concentration\_turbulent** *convection\_diffusion\_concentration\_turbulent* (5.32): Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.
- **convection\_diffusion\_temperature\_turbulent** *convection\_diffusion\_temperature\_turbulent* (5.42): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.

- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- sauvegarde format\_file (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

### 4.57 Pb thermohydraulique especes qc

[ liste\_de\_postraitements liste\_post\_ok]

Description: Resolution of thermo-hydraulic problem for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object.

See also: pb\_avec\_passif (4.34)

Usage:
pb\_thermohydraulique\_especes\_QC str

Read str {

fluide\_quasi\_compressible fluide\_quasi\_compressible
 navier\_stokes\_QC navier\_stokes\_qc
 convection\_diffusion\_chaleur\_QC convection\_diffusion\_chaleur\_qc
 equations\_scalaires\_passifs listeqn
 [milieu milieu\_base]
 [constituant constituant]
 [Post\_processing|postraitement corps\_postraitement]
 [Post\_processings|postraitements post\_processings]

```
[ liste_postraitements liste_post]
    [ sauvegarde format_file]
    [ sauvegarde_simple format_file]
    [ reprise format_file]
    [ resume_last_time format_file]
}
where
```

- **fluide\_quasi\_compressible** *fluide\_quasi\_compressible* (24.7): The fluid medium associated with the problem.
- navier\_stokes\_QC navier\_stokes\_qc (5.44): Navier-Stokes equation for a quasi-compressible fluid.
- **convection\_diffusion\_chaleur\_QC** *convection\_diffusion\_chaleur\_qc* (5.27): Temperature equation for a quasi-compressible fluid.
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processinglyostraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.58 Pb\_thermohydraulique\_especes\_wc

Description: Resolution of thermo-hydraulic problem for a multi-species weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: pb_avec_passif (4.34)
Usage:
pb_thermohydraulique_especes_WC str
Read str {
     fluide weakly compressible fluide weakly compressible
     navier stokes WC navier stokes wc
     convection_diffusion_chaleur_WC convection_diffusion_chaleur_wc
     equations scalaires passifs listegn
     [ milieu milieu_base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post processings|postraitements post processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format file]
     [resume last time format file]
}
where
```

- **fluide\_weakly\_compressible** *fluide\_weakly\_compressible* (24.13): The fluid medium associated with the problem.
- navier\_stokes\_WC navier\_stokes\_wc (5.45): Navier-Stokes equation for a weakly-compressible fluid.
- **convection\_diffusion\_chaleur\_WC** *convection\_diffusion\_chaleur\_wc* (5.28): Temperature equation for a weakly-compressible fluid.
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file

created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.59 Pb\_thermohydraulique\_especes\_turbulent\_qc

Description: Resolution of turbulent thermohydraulic problem under low Mach number with passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb avec passif (4.34) Usage: pb thermohydraulique especes turbulent qc str Read str { fluide\_quasi\_compressible fluide\_quasi\_compressible navier\_stokes\_turbulent\_qc navier\_stokes\_turbulent\_qc **convection\_diffusion\_chaleur\_turbulent\_qc** convection\_diffusion\_chaleur\_turbulent\_qc equations\_scalaires\_passifs listeqn [ milieu milieu base] [constituant constituant] [ Post\_processing|postraitement corps\_postraitement] [ Post\_processings|postraitements post\_processings] [ liste\_de\_postraitements liste\_post\_ok] [liste postraitements liste post] [ sauvegarde format\_file] [ sauvegarde\_simple format\_file] [reprise format\_file] [ resume\_last\_time format\_file] } where

- **fluide\_quasi\_compressible** *fluide\_quasi\_compressible* (24.7): The fluid medium associated with the problem.
- navier\_stokes\_turbulent\_qc navier\_stokes\_turbulent\_qc (5.53): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- convection\_diffusion\_chaleur\_turbulent\_qc convection\_diffusion\_chaleur\_turbulent\_qc (5.29): Energy equation under low Mach number as well as the associated turbulence model equations.
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.

- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings**|**postraitements**| post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.60 Pb\_thermohydraulique\_scalaires\_passifs

Description: Resolution of thermohydraulic problem, with the additional passive scalar equations.

```
Keyword Discretize should have already been used to read the object. See also: pb_avec_passif (4.34)
```

```
Usage:
```

}

```
pb thermohydraulique scalaires passifs str
Read str {
     fluide incompressible fluide incompressible
     [constituant constituant]
     [ navier_stokes_standard navier_stokes_standard]
     [ convection_diffusion_temperature | convection_diffusion_temperature]
     equations_scalaires_passifs listeqn
     [ milieu milieu base]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste_postraitements liste_post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [reprise format file]
     [ resume_last_time format_file]
```

#### where

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem
- **constituant** *constituant* (24.1): Constituents.
- navier\_stokes\_standard navier\_stokes\_standard (5.51): Navier-Stokes equations.
- **convection\_diffusion\_temperature** *convection\_diffusion\_temperature* (5.39): Energy equations (temperature diffusion convection).
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings post\_processings** (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.61 Pb\_thermohydraulique\_turbulent

Description: Resolution of thermohydraulic problem, with turbulence modelling.

```
Keyword Discretize should have already been used to read the object. See also: Pb_base (4.28) Pb_Rayo_Thermohydraulique_Turbulent (4.21)

Usage:
pb_thermohydraulique_turbulent str
Read str {
```

fluide\_incompressible fluide\_incompressible navier\_stokes\_turbulent navier\_stokes\_turbulent

- **fluide\_incompressible** *fluide\_incompressible* (24.5): The fluid medium associated with the problem.
- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_temperature\_turbulent** *convection\_diffusion\_temperature\_turbulent* (5.42): Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processingslpostraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.62 Pb\_thermohydraulique\_turbulent\_qc

```
Description: Resolution of turbulent thermohydraulic problem under low Mach number.
Warning: Available for VDF and VEF P0/P1NC discretization only.
Keyword Discretize should have already been used to read the object.
See also: Pb base (4.28) Pb Rayo Thermohydraulique Turbulent QC (4.22)
pb thermohydraulique turbulent qc str
Read str {
     fluide_quasi_compressible fluide_quasi_compressible
     navier stokes turbulent qc navier stokes turbulent qc
     convection_diffusion_chaleur_turbulent_qc convection_diffusion_chaleur_turbulent_qc
     [ milieu milieu base]
     [constituant constituant]
     [ Post_processing|postraitement corps_postraitement]
     [ Post_processings|postraitements post_processings]
     [ liste_de_postraitements liste_post_ok]
     [liste postraitements liste post]
     [ sauvegarde format_file]
     [ sauvegarde_simple format_file]
     [ reprise format_file]
     [ resume_last_time format_file]
}
where
```

- **fluide\_quasi\_compressible** *fluide\_quasi\_compressible* (24.7): The fluid medium associated with the problem.
- navier\_stokes\_turbulent\_qc navier\_stokes\_turbulent\_qc (5.53): Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.
- **convection\_diffusion\_chaleur\_turbulent\_qc** convection\_diffusion\_chaleur\_turbulent\_qc (5.29): Energy equation under low Mach number as well as the associated turbulence model equations.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- constituant constituant (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** corps\_postraitement (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** post\_processings (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- **reprise** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file

created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.

• **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 4.63 Pb\_thermohydraulique\_turbulent\_scalaires\_passifs

Description: Resolution of thermohydraulic problem, with turbulence modelling and with the additional passive scalar equations.

Keyword Discretize should have already been used to read the object. See also: pb avec passif (4.34) Usage: pb thermohydraulique turbulent scalaires passifs str Read str { **fluide\_incompressible** *fluide\_incompressible* [constituant constituant] [ navier stokes turbulent navier stokes turbulent] [convection diffusion temperature turbulent convection diffusion temperature turbulent] equations scalaires passifs listegn [ milieu milieu base] [ Post\_processing|postraitement corps\_postraitement] [ Post\_processings|postraitements post\_processings] [ liste\_de\_postraitements liste\_post\_ok] [liste postraitements liste post] [ sauvegarde format\_file] [ sauvegarde\_simple format\_file] [reprise format\_file] [ resume\_last\_time format\_file] }

- fluide\_incompressible fluide\_incompressible (24.5): The fluid medium associated with the problem.
- constituant constituant (24.1): Constituents.

where

- navier\_stokes\_turbulent navier\_stokes\_turbulent (5.52): Navier-Stokes equations as well as the associated turbulence model equations.
- **convection\_diffusion\_temperature\_turbulent** *convection\_diffusion\_temperature\_turbulent* (5.42): Energy equations (temperature diffusion convection) as well as the associated turbulence model equations.
- equations\_scalaires\_passifs listeqn (4.10) for inheritance: Passive scalar equations. The unknowns of the passive scalar equation number N are named temperatureN or concentrationN or fraction\_massiqueN. This keyword is used to define initial conditions and the post processing fields. This kind of problem is very useful to test in only one data file (and then only one calculation) different schemes or different boundary conditions for the scalar transport equation.
- milieu milieu\_base (24) for inheritance: The medium associated with the problem.

- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processingslpostraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- **liste\_de\_postraitements** *liste\_post\_ok* (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- **sauvegarde\_simple** *format\_file* (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

#### **4.64** Pbc med

Description: Allows to read med files and post-process them.

```
See also: pb_gen_base (4)

Usage:
pbc_med list_info_med
where

• list_info_med list_info_med (4.65)
```

# 4.65 List info med

```
Description: not_set

See also: listobj (38.5)

Usage:
{ object1 , object2 .... }
list of info_med (4.65.1) separeted with ,
```

### 4.65.1 Info\_med

Description: not\_set

```
See also: objet_lecture (39)

Usage:
file_med domaine pb_post
where

• file_med str: Name of the MED file.
• domaine str: Name of domain.
• pb_post pb_post (4.49)
```

# 4.66 Problem\_read\_generic

Description: The probleme\_read\_generic differs rom the rest of the TRUST code: The problem does not state the number of equations that are enclosed in the problem. As the list of equations to be solved in the generic read problem is declared in the data file and not pre-defined in the structure of the problem, each equation has to be distinctively associated with the problem with the Associate keyword.

Keyword Discretize should have already been used to read the object. See also: Pb base (4.28) probleme ft disc gen (4.68)Usage: problem\_read\_generic str Read str { [ milieu milieu\_base] [constituant constituant] [ Post\_processing|postraitement corps\_postraitement] [ Post\_processings|postraitements post\_processings] [ liste de postraitements liste post ok] [liste\_postraitements liste\_post] [sauvegarde format file] [ sauvegarde\_simple format\_file] [reprise format file] [resume last time format file] } where

- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **constituant** *constituant* (24.1) for inheritance: Constituent.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.

- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

## 4.67 Pb\_couple\_rayonnement

Description: This keyword is used to define a problem coupling several other problems to which radiation coupling is added.

```
See also: probleme_couple (4.29)

Usage:
pb_couple_rayonnement str
Read str {
      [groupes list_list_nom]
}
where
• groupes list_list_nom (4.30) for inheritance: { groupes { pb1 , pb2 } , { pb3 , pb4 } } }
```

## 4.68 Probleme\_ft\_disc\_gen

Description: The generic Front-Tracking problem in the discontinuous version. It differs from the rest of the TRUST code: The problem does not state the number of equations that are enclosed in the problem. Two equations are compulsory: a momentum balance equation (alias Navier-Stokes equation) and an interface tracking equation. The list of equations to be solved is declared in the beginning of the data file. Another difference with more classical TRUST data file, lies in the fluids definition. The two-phase fluid (Fluide\_Diphasique) is made with two usual single-phase fluids (Fluide\_Incompressible). As the list of equations to be solved in the generic Front-Tracking problem is declared in the data file and not predefined in the structure of the problem, each equation has to be distinctively associated with the problem with the Associer keyword.

Keyword Discretize should have already been used to read the object. See also: problem\_read\_generic (4.66)

Usage: probleme\_ft\_disc\_gen str

```
probleme_ft_disc_gen str
Read str {
    [ milieu milieu_base]
    [ Post_processing|postraitement corps_postraitement]
    [ Post_processings|postraitements post_processings]
    [ liste_de_postraitements liste_post_ok]
```

```
[ liste_postraitements liste_post]
[ sauvegarde format_file]
[ sauvegarde_simple format_file]
[ reprise format_file]
[ resume_last_time format_file]
}
where
```

- milieu milieu\_base (24) for inheritance: The medium associated with the problem.
- **Post\_processing|postraitement** *corps\_postraitement* (4.2) for inheritance: One post-processing (without name).
- **Post\_processings|postraitements** *post\_processings* (4.3) for inheritance: List of Postraitement objects (with name).
- liste\_de\_postraitements liste\_post\_ok (4.4) for inheritance: This
- **liste\_postraitements** *liste\_post* (4.5) for inheritance: This block defines the output files to be written during the computation. The output format is lata in order to use OpenDX to draw the results. This block can be divided in one or several sub-blocks that can be written at different frequencies and in different directories. Attention. The directory lata used in this example should be created before running the computation or the lata files will be lost.
- **sauvegarde** *format\_file* (4.6) for inheritance: Keyword used when calculation results are to be backed up. When a coupling is performed, the backup-recovery file name must be well specified for each problem. In this case, you must save to different files and correctly specify these files when resuming the calculation.
- sauvegarde\_simple format\_file (4.6) for inheritance: The same keyword than Sauvegarde except, the last time step only is saved.
- reprise format\_file (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file (see the class format\_file). If format\_reprise is xyz, the name\_file file should be the .xyz file created by the previous calculation. With this file, it is possible to resume a parallel calculation on P processors, whereas the previous calculation has been run on N (N<>P) processors. Should the calculation be resumed, values for the tinit (see schema\_temps\_base) time fields are taken from the name\_file file. If there is no backup corresponding to this time in the name\_file, TRUST exits in error.
- **resume\_last\_time** *format\_file* (4.6) for inheritance: Keyword to resume a calculation based on the name\_file file, resume the calculation at the last time found in the file (tinit is set to last time of saved files).

# 5 mor\_eqn

Description: Class of equation pieces (morceaux d'equation).

See also: objet\_u (40) eqn\_base (5.43)

Usage:

## 5.1 Conduction

Description: Heat equation.

Keyword Discretize should have already been used to read the object.

See also: eqn\_base (5.43)

Usage:

```
Conduction str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

## 5.2 Bloc convection

```
Description: not_set

See also: objet_lecture (39)

Usage:
aco operateur acof
where

• aco str into ['{'}: Opening curly bracket.
• operateur convection_deriv (5.2.1)
• acof str into ['}']: Closing curly bracket.
```

## 5.2.1 Convection\_deriv

Description: not\_set

See also: objet\_lecture (39) amont (5.2.2) amont\_old (5.2.3) centre (5.2.4) centre4 (5.2.5) centre\_old (5.2.6) di\_12 (5.2.7) ef (5.2.8) muscl3 (5.2.10) ef\_stab (5.2.11) generic (5.2.14) kquick (5.2.15) muscl (5.2.16) muscl\_old (5.2.17) muscl\_new (5.2.18) negligeable (5.2.19) quick (5.2.20) btd (5.2.21) supg (5.2.22) ale (5.2.23) RT (5.2.24) sensibility (5.2.25)

Usage:

convection\_deriv

#### **5.2.2** Amont

Description: Keyword for upwind scheme for VDF or VEF discretizations. In VEF discretization equivalent to generic amont for TRUST version 1.5 or later. The previous upwind scheme can be used with the obsolete in future amont\_old keyword.

See also: convection\_deriv (5.2.1)

Usage:

amont

#### 5.2.3 Amont old

Description: Only for VEF discretization, obsolete keyword, see amont.

See also: convection\_deriv (5.2.1)

Usage:

amont\_old

# **5.2.4** Centre

Description: For VDF and VEF discretizations.

See also: convection\_deriv (5.2.1)

Usage:

centre

# 5.2.5 Centre4

Description: For VDF and VEF discretizations.

See also: convection\_deriv (5.2.1)

Usage:

centre4

#### 5.2.6 Centre old

Description: Only for VEF discretization.

See also: convection\_deriv (5.2.1)

Usage:

centre old

#### 5.2.7 Di\_l2

Description: Only for VEF discretization.

See also: convection deriv (5.2.1)

Usage:

di 12

#### 5.2.8 Ef

Description: For VEF calculations, a centred convective scheme based on Finite Elements formulation can be called through the following data:

Convection { EF transportant\_bar val transporte\_bar val antisym val filtrer\_resu val }

This scheme is 2nd order accuracy (and get better the property of kinetic energy conservation). Due to possible problems of instabilities phenomena, this scheme has to be coupled with stabilisation process (see Source\_Qdm\_lambdaup). These two last data are equivalent from a theoretical point of view in variationnal writing to: div(( u. grad ub , vb) - (u. grad vb, ub)), where vb corresponds to the filtered reference test functions.

#### Remark:

This class requires to define a filtering operator: see solveur\_bar

```
See also: convection_deriv (5.2.1)
```

```
Usage:
```

```
ef [ mot1 ] [ bloc_ef ] where
```

- mot1 str into ['defaut\_bar']: equivalent to transportant\_bar 0 transporte\_bar 1 filtrer\_resu 1 antisym
- **bloc\_ef** *bloc\_ef* (5.2.9)

# **5.2.9** Bloc\_ef

Description: not\_set

See also: objet\_lecture (39)

#### Usage:

mot1 val1 mot2 val2 mot3 val3 mot4 val4 where

- mot1 str into ['transportant\_bar', 'transporte\_bar', 'filtrer\_resu', 'antisym']
- **val1** int into [0, 1]
- mot2 str into ['transportant\_bar', 'transporte\_bar', 'filtrer\_resu', 'antisym']
- val2 int into [0, 1]
- mot3 str into ['transportant\_bar', 'transporte\_bar', 'filtrer\_resu', 'antisym']
- val3 int into [0, 1]
- mot4 str into ['transportant\_bar', 'transporte\_bar', 'filtrer\_resu', 'antisym']
- val4 int into [0, 1]

#### 5.2.10 Muscl3

Description: Keyword for a scheme using a ponderation between muscl and center schemes in VEF.

```
See also: convection_deriv (5.2.1)

Usage:
muscl3 {
    [alpha float]
}
where
```

• **alpha** *float*: To weight the scheme centering with the factor double (between 0 (full centered) and 1 (muscl), by default 1).

#### 5.2.11 Ef stab

Description: Keyword for a VEF convective scheme.

```
See also: convection_deriv (5.2.1)

Usage:
ef_stab {

    [alpha float]
    [test int]
    [tdivu]
    [old]
    [volumes_etendus]
    [volumes_non_etendus]
    [amont_sous_zone str]
    [alpha_sous_zone listsous_zone_valeur]
}

where
```

- **alpha** *float*: To weight the scheme centering with the factor double (between 0 (full centered) and 1 (mix between upwind and centered), by default 1). For scalar equation, it is adviced to use alpha=1 and for the momentum equation, alpha=0.2 is adviced.
- test int: Developer option to compare old and new version of EF\_stab
- tdivu: To have the convective operator calculated as div(TU)-TdivU(=UgradT).
- old : To use old version of EF\_stab scheme (default no).
- volumes etendus: Option for the scheme to use the extended volumes (default, yes).
- volumes\_non\_etendus: Option for the scheme to not use the extended volumes (default, no).
- **amont\_sous\_zone** *str*: Option to degenerate EF\_stab scheme into Amont (upwind) scheme in the sub zone of name sz\_name. The sub zone may be located arbitrarily in the domain but the more often this option will be activated in a zone where EF\_stab scheme generates instabilities as for free outlet for example.
- alpha\_sous\_zone listsous\_zone\_valeur (5.2.12): Option to change locally the alpha value on N subzones named sub\_zone\_name\_I. Generally, it is used to prevent from a local divergence by increasing locally the alpha parameter.

## 5.2.12 Listsous\_zone\_valeur

```
Description: List of groups of two words.

See also: listobj (38.5)

Usage:
n object1 object2 ....
list of sous_zone_valeur (5.2.13)

5.2.13 Sous_zone_valeur

Description: Two words.

See also: objet_lecture (39)

Usage:
sous_zone_valeur
```

sous\_zone str: sous zonevaleur float: value

#### **5.2.14** Generic

where

Description: Keyword for generic calling of upwind and muscl convective scheme in VEF discretization. For muscl scheme, limiters and order for fluxes calculations have to be specified. The available limiters are: minmod - vanleer -vanalbada - chakravarthy - superbee, and the order of accuracy is 1 or 2. Note that chakravarthy is a non-symmetric limiter and superbee may engender results out of physical limits. By consequence, these two limiters are not recommended.

```
Examples:
convection { generic amont }
convection { generic muscl minmod 1 }
convection { generic muscl vanleer 2 }
```

In case of results out of physical limits with muscl scheme (due for instance to strong non-conformal velocity flow field), user can redefine in data file a lower order and a smoother limiter, as : convection  $\{$  generic muscl minmod 1  $\}$ 

```
See also: convection_deriv (5.2.1)
Usage:
```

```
generic type [limiteur][ordre][alpha]
where
```

- type str into ['amont', 'muscl', 'centre']: type of scheme
- limiteur str into ['minmod', 'vanleer', 'vanalbada', 'chakravarthy', 'superbee']: type of limiter
- ordre int into [1, 2, 3]: order of accuracy
- alpha float: alpha

# **5.2.15** Kquick

Description: Only for VEF discretization.

See also: convection\_deriv (5.2.1)

Usage: **kquick** 

# 5.2.16 Muscl

Description: Keyword for muscl scheme in VEF discretization equivalent to generic muscl vanleer 2 for the 1.5 version or later. The previous muscl scheme can be used with the obsolete in future muscl\_old keyword.

See also: convection\_deriv (5.2.1)

Usage:

muscl

## 5.2.17 Muscl\_old

Description: Only for VEF discretization.

See also: convection\_deriv (5.2.1)

Usage: muscl\_old

# 5.2.18 Muscl\_new

Description: Only for VEF discretization.

See also: convection\_deriv (5.2.1)

Usage:

muscl\_new

# 5.2.19 Negligeable

Description: For VDF and VEF discretizations. Suppresses the convection operator.

See also: convection\_deriv (5.2.1)

Usage:

negligeable

# 5.2.20 Quick

Description: Only for VDF discretization.

See also: convection\_deriv (5.2.1)

Usage:

quick

```
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
btd {
     btd float
     facteur float
}
where
   • btd float
   • facteur float
5.2.22 Supg
Description: Only for EF discretization.
See also: convection_deriv (5.2.1)
Usage:
supg {
     facteur float
where
   • facteur float
5.2.23 Ale
Description: A convective scheme for ALE (Arbitrary Lagrangian-Eulerian) framework.
See also: convection_deriv (5.2.1)
Usage:
ale opconv
where
   • opconv bloc_convection (5.2): Choice between: amont and muscl
     Example: convection { ALE { amont } }
5.2.24 Rt
Description: Keyword to use RT projection for P1NCP0RT discretization
See also: convection_deriv (5.2.1)
Usage:
RT
```

5.2.21 Btd

## 5.2.25 Sensibility

Description: A convective scheme for the sensibility problem.

See also: convection\_deriv (5.2.1)

Usage:

# sensibility opconv

where

• **opconv** *bloc\_convection* (5.2): Choice between: amont and muscl Example: convection { Sensibility { amont } }

# 5.3 Bloc\_diffusion

Description: not\_set

See also: objet\_lecture (39)

Usage:

aco [ operateur ] [ op\_implicite ] acof

where

- aco str into ['{'}]: Opening curly bracket.
- **operateur** diffusion\_deriv (5.3.1): if none is specified, the diffusive scheme used is a 2nd-order scheme.
- **op\_implicite** op\_implicite (5.3.19): To have diffusive implicitation, it use Uzawa algorithm. Very useful when viscosity has large variations.
- acof str into ['}']: Closing curly bracket.

## 5.3.1 Diffusion\_deriv

Description: not\_set

See also: objet\_lecture (39) negligeable (5.3.2) p1b (5.3.3) p1ncp1b (5.3.4) stab (5.3.5) standard (5.3.6) option (5.3.8) turbulente (5.3.9) tenseur\_Reynolds\_externe (5.3.18)

Usage:

diffusion\_deriv

## 5.3.2 Negligeable

Description: the diffusivity will not taken in count

See also: diffusion\_deriv (5.3.1)

Usage:

negligeable

# 5.3.3 P1b

Description: not\_set

See also: diffusion\_deriv (5.3.1)

```
Usage: p1b
```

## 5.3.4 P1ncp1b

```
Description: not_set

See also: diffusion_deriv (5.3.1)
```

Usage:

### 5.3.5 Stab

Description: keyword allowing consistent and stable calculations even in case of obtuse angle meshes.

```
See also: diffusion_deriv (5.3.1)

Usage:
stab {

    [ standard int]
    [ info int]
    [ new_jacobian int]
    [ nu int]
    [ nut int]
    [ nu_transp int]
    [ nut_transp int]
}
where
```

- **standard** *int*: to recover the same results as calculations made by standard laminar diffusion operator. However, no stabilization technique is used and calculations may be unstable when working with obtuse angle meshes (by default 0)
- **info** *int*: developer option to get the stabilizing ratio (by default 0)
- **new\_jacobian** *int*: when implicit time schemes are used, this option defines a new jacobian that may be more suitable to get stationary solutions (by default 0)
- **nu** *int*: (respectively nut 1) takes the molecular viscosity (resp. eddy viscosity) into account in the velocity gradient part of the diffusion expression (by default nu=1 and nut=1)
- nut int
- nu\_transp int: (respectively nut\_transp 1) takes the molecular viscosity (resp. eddy viscosity) into account in the transposed velocity gradient part of the diffusion expression (by default nu\_transp=0 and nut\_transp=1)
- nut\_transp int

# 5.3.6 Standard

Description: A new keyword, intended for LES calculations, has been developed to optimise and parameterise each term of the diffusion operator. Remark:

- 1. This class requires to define a filtering operator : see solveur\_bar
- 2. The former (original) version: diffusion { } -which omitted some of the term of the diffusion operatorcan be recovered by using the following parameters in the new class : diffusion { standard grad\_Ubar 0 nu 1 nut 1 nu\_transp 0 nut\_transp 1 filtrer\_resu 0}.

```
See also: diffusion_deriv (5.3.1)
Usage:
standard [mot1][bloc diffusion standard]
where
    • mot1 str into ['defaut_bar']: equivalent to grad_Ubar 1 nu 1 nut 1 nu_transp 1 nut_transp 1 filtrer-
    • bloc diffusion standard bloc diffusion standard (5.3.7)
5.3.7 Bloc_diffusion_standard
Description: grad_Ubar 1 makes the gradient calculated through the filtered values of velocity (P1-conform).
nu 1 (respectively nut 1) takes the molecular viscosity (eddy viscosity) into account in the velocity gradient
part of the diffusion expression.
nu_transp 1 (respectively nut_transp 1) takes the molecular viscosity (eddy viscosity) into account accord-
ing in the TRANSPOSED velocity gradient part of the diffusion expression.
filtrer_resu 1 allows to filter the resulting diffusive fluxes contribution.
See also: objet_lecture (39)
Usage:
mot1 val1 mot2 val2 mot3 val3 mot4 val4 mot5 val5 mot6 val6
where
    • mot1 str into ['grad Ubar', 'nu', 'nut', 'nu transp', 'nut transp', 'filtrer resu']
    • val1 int into [0, 1]
    • mot2 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
    • val2 int into [0, 1]
    • mot3 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
    • val3 int into [0, 1]
    • mot4 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
    • val4 int into [0, 1]
    • mot5 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
    • val5 int into [0, 1]
    • mot6 str into ['grad_Ubar', 'nu', 'nut', 'nu_transp', 'nut_transp', 'filtrer_resu']
    • val6 int into [0, 1]
5.3.8 Option
Description: not set
See also: diffusion deriv (5.3.1)
```

Usage:

where

option bloc\_lecture

• bloc\_lecture bloc\_lecture (3.2)

```
5.3.9 Turbulente
Description: Turbulent diffusion operator for multiphase problem
See also: diffusion_deriv (5.3.1)
Usage:
turbulente [type]
where
   • type type_diffusion_turbulente_multiphase_deriv (5.3.10): Turbulence model for multiphase prob-
     lem
5.3.10 Type_diffusion_turbulente_multiphase_deriv
Description: not_set
See also: objet_lecture (39) Prandtl (5.3.11) wale (5.3.12) smago (5.3.13) SGDH (5.3.14) l_melange
(5.3.15) k_tau (5.3.16) k_omega (5.3.17)
Usage:
5.3.11 Prandtl
Description: Scalar Prandtl model.
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
Prandtl {
     [ prandtl_turbulent|pr_t float]
}
where
   • prandtl_turbulentlpr_t float: Prandtl's model constant. By default it is se to 0.9.
5.3.12 Wale
Description: LES WALE type.
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
wale {
     [ cw float]
```

• cw float: WALE's model constant. By default it is se to 0.5.

where

```
5.3.13 Smago
Description: LES Smagorinsky type.
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
smago {
     [cs float]
}
where
   • cs float: Smagorinsky's model constant. By default it is se to 0.18.
5.3.14 Sgdh
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
SGDH {
     [ Pr_t float]
     [ sigma_turbulent|sigma float]
     [no_alpha]
     [gas_turb]
where
    • Pr_t float
    • sigma_turbulent|sigma float
   • no_alpha
    • gas_turb
5.3.15 L_melange
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
l_melange {
     l_melange float
}
where
    • l_melange float
```

```
5.3.16 K_tau
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
k_tau {
     [limiteur|limiter str]
     [ sigma float]
     [ beta_k float]
}
where
    • limiteur|limiter str
    • sigma float
   • beta_k float
5.3.17 K_omega
Description: not_set
See also: type_diffusion_turbulente_multiphase_deriv (5.3.10)
Usage:
k_omega {
     [ limiteur|limiter str]
     [ sigma float]
     [ beta_k float]
     [gas_turb]
}
where
   • limiteur|limiter str
    • sigma float
    • beta_k float
   • gas_turb
5.3.18 Tenseur_reynolds_externe
Description: Estimate the values of the Reynolds tensor.
See also: diffusion_deriv (5.3.1)
Usage:
tenseur_Reynolds_externe
```

```
5.3.19 Op_implicite
Description: not_set
See also: objet_lecture (39)
Usage:
implicite mot solveur
where
    • implicite str into ['implicite']
    • mot str into ['solveur']
    • solveur_sys_base (13.18)
5.4 Condinits
Description: Initial conditions.
See also: listobj (38.5)
Usage:
{ object1 object2 .... }
list of condinit (5.4.1)
5.4.1 Condinit
Description: Initial condition.
See also: objet_lecture (39)
Usage:
nom ch
where
    • nom str: Name of initial condition field.
    • ch champ_base (18.1): Type field and the initial values.
5.5 Sources
Description: The sources.
See also: listobj (38.5)
Usage:
{ object1 , object2 .... }
list of source_base (34) separeted with,
5.6 Parametre_equation_base
Description: Basic class for parametre_equation
See also: objet_lecture (39) parametre_implicite (5.6.1) parametre_diffusion_implicite (5.6.2)
Usage:
```

## 5.6.1 Parametre\_implicite

Description: Keyword to change for this equation only the parameter of the implicit scheme used to solve the problem.

```
See also: parametre_equation_base (5.6)

Usage:
parametre_implicite {

    [ seuil_convergence_implicite float]
    [ seuil_convergence_solveur float]
    [ solveur solveur_sys_base]
    [ resolution_explicite ]
    [ equation_non_resolue ]
    [ equation_frequence_resolue str]
}

where
```

- **seuil\_convergence\_implicite** *float*: Keyword to change for this equation only the value of seuil\_convergence\_implicite used in the implicit scheme.
- seuil\_convergence\_solveur *float*: Keyword to change for this equation only the value of seuil\_convergence\_solveur used in the implicit scheme
- **solveur** *solveur\_sys\_base* (13.18): Keyword to change for this equation only the solver used in the implicit scheme
- resolution\_explicite: To solve explicitly the equation whereas the scheme is an implicit scheme.
- equation\_non\_resolue : Keyword to specify that the equation is not solved.
- equation\_frequence\_resolue *str*: Keyword to specify that the equation is solved only every n time steps (n is an integer or given by a time-dependent function f(t)).

# 5.6.2 Parametre\_diffusion\_implicite

Description: To specify additional parameters for the equation when using impliciting diffusion

```
See also: parametre_equation_base (5.6)

Usage:
parametre_diffusion_implicite {

    [ crank int into [0, 1]]
    [ preconditionnement_diag int into [0, 1]]
    [ niter_max_diffusion_implicite int]
    [ seuil_diffusion_implicite float]
    [ solveur solveur_sys_base]
}

where
```

- **crank** *int into* [0, 1]: Use (1) or not (0, default) a Crank Nicholson method for the diffusion implicitation algorithm. Setting crank to 1 increases the order of the algorithm from 1 to 2.
- **preconditionnement\_diag** *int into* [0, 1]: The CG used to solve the implicitation of the equation diffusion operator is not preconditioned by default. If this option is set to 1, a diagonal preconditionning is used. Warning: this option is not necessarily more efficient, depending on the treated case.

- **niter\_max\_diffusion\_implicite** *int*: Change the maximum number of iterations for the CG (Conjugate Gradient) algorithm when solving the diffusion implicitation of the equation.
- **seuil\_diffusion\_implicite** *float*: Change the threshold convergence value used by default for the CG resolution for the diffusion implicitation of this equation.
- **solveur** *solveur\_sys\_base* (13.18): Method (different from the default one, Conjugate Gradient) to solve the linear system.

# 5.7 Convection\_diffusion\_concentration\_turbulent\_ft\_disc

Description: equation\_non\_resolue

Keyword Discretize should have already been used to read the object.

See also: convection\_diffusion\_concentration\_turbulent (5.32)

## Usage:

```
Convection_Diffusion_Concentration_Turbulent_FT_Disc str
Read str {
```

```
[ equation_interface str]
     phase int into [0, 1]
     [ option str]
     [ equations_source_chimie n word1 word2 ... wordn]
     [ modele_cinetique int]
     [ equation_nu_t str]
     [ constante_cinetique | float]
     [ modele turbulence modele turbulence scal base]
     [ nom inconnue str]
     [alias str]
     [ masse_molaire float]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- equation\_interface *str*: his is the name of the interface tracking equation to watch. The scalar will not diffuse through the interface of this equation.
- phase int into [0, 1]: tells whether the scalar must be confined in phase 0 or in phase 1
- **option** *str*: Experimental features used to prevent the concentration to leak through the interface between phases due to numerical diffusion.

RIEN: do nothing

RAMASSE\_MIETTES\_SIMPLE: at each timestep, this algorithm takes all the mass located in the opposite phase and spreads it uniformly in the given phase.

• equations\_source\_chimie *n word1 word2 ... wordn*: This term specifies the name of the concentration equation of the reagents. It should be specified only in the bloc that concerns the convection/diffusion equation of the product.

- modele\_cinetique *int*: This is the keyword that the user defines for the reaction model that he wants to use. Four reaction models are currently offered (1 to 4). Model 1 is the default one and is based on the laminar rate formulation. Model 2 employs an LES diffusive EDC formulation. Model 3 defines an LES variance formulation. Model 4 is a mix between models 2 and 3.
- equation\_nu\_t str: This specifies the name of the hydraulic equation used which defines the turbulent (basically SGS) viscosity.
- **constante\_cinetique** *float*: This is the constant kinetic rate of the reaction and is used for the laminar model 1 only.
- modele\_turbulence modele\_turbulence\_scal\_base (27) for inheritance: Turbulence model to be used in the constituent transport equations. The only model currently available is Schmidt.
- **nom\_inconnue** *str* for inheritance: Keyword Nom\_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str for inheritance
- masse\_molaire *float* for inheritance
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- **parametre\_equation** *parametre\_equation\_base* (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.8 Convection\_diffusion\_espece\_binaire\_turbulent\_qc

Description: Species conservation equation for a binary quasi-compressible fluid as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object. See also: convection_diffusion_espece_binaire_QC (5.33)
```

#### Usage:

```
Convection_Diffusion_Espece_Binaire_Turbulent_QC str

Read str {

    [ modele_turbulence modele_turbulence_scal_base]

    [ disable_equation_residual str]

    [ convection bloc_convection]

    [ diffusion bloc_diffusion]
```

[boundary\_conditions|conditions\_limites condlims]

```
[ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- modele\_turbulence modele\_turbulence\_scal\_base (27): Turbulence model for the species conservation equation.
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.9 Convection\_diffusion\_temperature\_sensibility

```
Description: Energy sensitivity equation (temperature diffusion convection)
```

Keyword Discretize should have already been used to read the object. See also: convection diffusion temperature (5.39)

### Usage:

Convection\_Diffusion\_Temperature\_sensibility str Read str {

```
velocity_state bloc_lecture
temperature_state bloc_lecture
uncertain_variable bloc_lecture
[ convection_sensibility convection_deriv]
[ penalisation_l2_ftd pp]
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
```

```
[ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

• **velocity\_state** *bloc\_lecture* (3.2): Block to indicate the state problem. Between the braces, you must specify the key word 'pb\_champ\_evaluateur' then the name of the state problem and the velocity unknown

Example: velocity\_state { pb\_champ\_evaluateur pb\_state velocity }

• **temperature\_state** *bloc\_lecture* (3.2): Block to indicate the state problem. Between the braces, you must specify the key word 'pb\_champ\_evaluateur' then the name of the state problem and the temperature unknown

Example: velocity\_state { pb\_champ\_evaluateur pb\_state temperature }

• uncertain\_variable *bloc\_lecture* (3.2): Block to indicate the name of the uncertain variable. Between the braces, you must specify the name of the unknown variable (choice between: temperature, beta\_th, boussinesq\_temperature, Cp and lambda.

Example: uncertain\_variable { temperature }

- **convection\_sensibility** *convection\_deriv* (5.2.1): Choice between: amont and muscl Example: convection { Sensibility { amont } }
- **penalisation\_12\_ftd** *pp* (5.10) for inheritance: to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.10 Pp

```
Description: not_set

See also: listobj (38.5)

Usage:
{ object1 object2 .... }
list of penalisation_l2_ftd_lec (5.10.1)
```

## 5.10.1 Penalisation\_l2\_ftd\_lec

```
Description: not_set

See also: objet_lecture (39)
```

Usage:

[ postraiter\_gradient\_pression\_sans\_masse ] [ correction\_matrice\_projection\_initiale ] [ correction\_calcul\_pression\_initiale ] [ correction\_vitesse\_projection\_initiale ] [ correction\_matrice\_pression ] [ matrice\_pression\_penalisee\_H1 ] [ correction\_vitesse\_modifie ] [ correction\_pression\_modifie ] [ gradient\_pression\_qdm\_modifie ] bord val where

- **postraiter\_gradient\_pression\_sans\_masse** *int*: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- correction\_matrice\_projection\_initiale int: (IBM advanced) fix matrix of initial projection for PDF
- correction\_calcul\_pression\_initiale int: (IBM advanced) fix initial pressure computation for PDF
- correction\_vitesse\_projection\_initiale int: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int: (IBM advanced) fix pressure matrix for PDF
- matrice\_pression\_penalisee\_H1 int: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int: (IBM advanced) fix velocity for PDF
- **correction\_pression\_modifie** *int*: (IBM advanced) fix pressure for PDF
- gradient\_pression\_qdm\_modifie int: (IBM advanced) fix pressure gradient
- bord str
- val n x1 x2 ... xn

# 5.11 Echelle\_temporelle\_turbulente

Description: Turbulent Dissipation time scale equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43)

Usage:

} where

```
Echelle_temporelle_turbulente str
Read str {
```

```
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
```

• **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step

- **convection** bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.12 Energie\_multiphase

Description: Internal energy conservation equation for a multi-phase problem where the unknown is the temperature

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43)

```
Usage:
Energie_Multiphase str
Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)

- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.13 Energie\_cinetique\_turbulente

Description: Turbulent kinetic Energy conservation equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.43)
```

```
Usage:
```

```
Energie_cinetique_turbulente str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.14 Energie\_cinetique\_turbulente\_wit

Description: Bubble Induced Turbulent kinetic Energy equation for a turbulent multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43)

Usage:
Energie\_cinetique\_turbulente\_WIT str
Read str {

 [ disable\_equation\_residual str]
 [ convection bloc\_convection]
 [ diffusion bloc\_diffusion]
 [ boundary\_conditions|conditions\_limites condlims]
 [ initial\_conditions|conditions\_initiales condinits]
 [ sources sources]
 [ ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur]
 [ parametre\_equation parametre\_equation\_base]
 [ equation\_non\_resolue str]

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

## 5.15 Masse multiphase

Description: Mass consevation equation for a multi-phase problem where the unknown is the alpha (void fraction)

```
Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)
```

Usage:

} where

```
Masse_Multiphase str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.16 Navier\_stokes\_aposteriori

Description: Modification of the Navier\_Stokes\_standard class in order to accept the estimateur\_aposteriori post-processing. To post-process estimateur\_aposteriori, add this keyword into the list of fields to be post-processed. This estimator whill generate a map of aposteriori error estimators; it is defined on each mesh cell and is a measure of the local discretisation error. This will serve for adaptive mesh refinement

```
Keyword Discretize should have already been used to read the object.

See also: navier_stokes_standard (5.51)

Usage:

Navier_Stokes_Aposteriori str

Read str {

[ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-_operateurs', 'sans_rien']]

[ projection_initiale int]

[ solveur pression solveur sys base]
```

```
[solveur_bar solveur_sys_base]
     [dt_projection deuxmots]
     [ seuil divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction matrice projection initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction vitesse projection initiale int]
     [correction matrice pression int]
     [ correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [ postraiter gradient pression sans masse ]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre equation parametre equation base]
     [ equation non resolue str]
}
where
```

- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( lmax(DivU)*dtl<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient\_pression\_qdm\_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- **parametre\_equation** *parametre\_equation\_base* (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.17 Deuxmots

```
Description: Two words.

See also: objet_lecture (39)

Usage:
mot_1 mot_2
where

• mot_1 str: First word.
• mot_2 str: Second word.
```

#### 5.18 Floatfloat

Description: Two reals.

See also: objet\_lecture (39)

```
Usage:
a b
where
    • a float: First real.
    • b float: Second real.
5.19
       Traitement_particulier
Description: Auxiliary class to post-process particular values.
See also: objet_lecture (39)
Usage:
aco trait_part acof
where
    • aco str into ['{'}]: Opening curly bracket.
    • trait_part traitement_particulier_base (5.19.1): Type of traitement_particulier.
    • acof str into ['}']: Closing curly bracket.
5.19.1 Traitement_particulier_base
Description: Basic class to post-process particular values.
See also: objet_lecture (39) temperature (5.19.2) canal (5.19.3) ec (5.19.4) thi (5.19.5) chmoy_faceperio
(5.19.7) profils_thermo (5.19.8) brech (5.19.9) ceg (5.19.10)
Usage:
5.19.2 Temperature
Description: not_set
See also: traitement_particulier_base (5.19.1)
Usage:
temperature {
      bord str
      direction int
where
    • bord str
    • direction int
```

#### 5.19.3 Canal

Description: Keyword for statistics on a periodic plane channel.

```
See also: traitement_particulier_base (5.19.1)

Usage:
canal {

    [dt_impr_moy_spat float]
    [dt_impr_moy_temp float]
    [debut_stat float]
    [fin_stat float]
    [pulsation_w float]
    [nb_points_par_phase int]
    [reprise str]
}

where
```

- **dt\_impr\_moy\_spat** *float*: Period to print the spatial average (default value is 1e6).
- dt impr moy temp float: Period to print the temporal average (default value is 1e6).
- **debut\_stat** *float*: Time to start the temporal averaging (default value is 1e6).
- fin\_stat float: Time to end the temporal averaging (default value is 1e6).
- **pulsation\_w** *float*: Pulsation for phase averaging (in case of pulsating forcing term) (no default value).
- **nb\_points\_par\_phase** *int*: Number of samples to represent phase average all along a period (no default value).
- **reprise** *str*: val\_moy\_temp\_xxxxxx.sauv : Keyword to resume a calculation with previous averaged quantities.

Note that for thermal and turbulent problems, averages on temperature and turbulent viscosity are automatically calculated. To resume a calculation with phase averaging, val\_moy\_temp\_xxxxxx.sauv\_phase file is required on the directory where the job is submitted (this last file will be then automatically loaded by TRUST).

### 5.19.4 Ec

Description: Keyword to print total kinetic energy into the referential linked to the domain (keyword Ec). In the case where the domain is moving into a Galilean referential, the keyword Ec\_dans\_repere\_fixe will print total kinetic energy in the Galilean referential whereas Ec will print the value calculated into the moving referential linked to the domain

See also: traitement\_particulier\_base (5.19.1)

Usage:
ec {

 [Ec]
 [Ec\_dans\_repere\_fixe]
 [periode float]
}

where

• Ec

- Ec\_dans\_repere\_fixe
- **periode** *float*: periode is the keyword to set the period of printing into the file datafile\_Ec.son or datafile\_Ec\_dans\_repere\_fixe.son.

#### 5.19.5 Thi

Description: Keyword for a THI (Homogeneous Isotropic Turbulence) calculation.

See also: traitement\_particulier\_base (5.19.1) thi\_thermo (5.19.6)

```
Usage:
thi {

    init_Ec int
    [val_Ec float]
    [facon_init int into [0, 1]]
    [calc_spectre int into [0, 1]]
    [periode_calc_spectre float]
    [spectre_3D int into [0, 1]]
    [spectre_1D int into [0, 1]]
    [conservation_Ec]
    [longueur_boite float]
}
where
```

- init\_Ec int: Keyword to renormalize initial velocity so that kinetic energy equals to the value given by keyword val\_Ec.
- val\_Ec float: Keyword to impose a value for kinetic energy by velocity renormalizated if init\_Ec value is 1.
- facon\_init int into [0, 1]: Keyword to specify how kinetic energy is computed (0 or 1).
- calc spectre int into [0, 1]: Calculate or not the spectrum of kinetic energy.

Files called Sorties\_THI are written with inside four columns:

time:t global kinetic energy:Ec enstrophy:D skewness:S

If calc\_spectre is set to 1, a file Sorties\_THI2\_2 is written with three columns :

time:t kinetic\_energy\_at\_kc=32 enstrophy\_at\_kc=32

If calc\_spectre is set to 1, a file spectre\_xxxxx is written with two columns at each time xxxxx : frequency:k energy:E(k).

- periode\_calc\_spectre float: Period for calculating spectrum of kinetic energy
- spectre 3D int into [0, 1]: Calculate or not the 3D spectrum
- spectre\_1D int into [0, 1]: Calculate or not the 1D spectrum
- **conservation\_Ec**: If set to 1, velocity field will be changed as to have a constant kinetic energy (default 0)
- longueur\_boite float: Length of the calculation domain

# 5.19.6 Thi\_thermo

Description: Treatment for the temperature field.

It offers the possibility to:

- evaluate the probability density function on temperature field,
- give in a file the temperature field for a future spectral analysis,
- monitor the evolution of the max and min temperature on the whole domain.

See also: thi (5.19.5)

```
Usage:
thi_thermo {

    init_Ec int
    [val_Ec float]
    [facon_init int into [0, 1]]
    [calc_spectre int into [0, 1]]
    [periode_calc_spectre float]
    [spectre_3D int into [0, 1]]
    [spectre_1D int into [0, 1]]
    [conservation_Ec]
    [longueur_boite float]
}
where
```

- init\_Ec int for inheritance: Keyword to renormalize initial velocity so that kinetic energy equals to the value given by keyword val\_Ec.
- val\_Ec *float* for inheritance: Keyword to impose a value for kinetic energy by velocity renormalizated if init Ec value is 1.
- **facon\_init** *int into* [0, 1] for inheritance: Keyword to specify how kinetic energy is computed (0 or 1).
- calc\_spectre int into [0, 1] for inheritance: Calculate or not the spectrum of kinetic energy.

Files called Sorties\_THI are written with inside four columns :

time:t global kinetic energy:Ec enstrophy:D skewness:S

If calc\_spectre is set to 1, a file Sorties\_THI2\_2 is written with three columns:

time:t kinetic energy at kc=32 enstrophy at kc=32

If calc\_spectre is set to 1, a file spectre\_xxxxx is written with two columns at each time xxxxx : frequency:k energy:E(k).

- periode\_calc\_spectre float for inheritance: Period for calculating spectrum of kinetic energy
- spectre\_3D int into [0, 1] for inheritance: Calculate or not the 3D spectrum
- spectre\_1D int into [0, 1] for inheritance: Calculate or not the 1D spectrum
- **conservation\_Ec** for inheritance: If set to 1, velocity field will be changed as to have a constant kinetic energy (default 0)
- longueur\_boite float for inheritance: Length of the calculation domain

# 5.19.7 Chmoy\_faceperio

```
Description: non documente
```

See also: traitement particulier base (5.19.1)

Usage:

# chmoy\_faceperio bloc

where

• bloc bloc\_lecture (3.2)

## 5.19.8 Profils\_thermo

Description: non documente

See also: traitement\_particulier\_base (5.19.1)

```
Usage:
profils_thermo bloc
where

• bloc bloc_lecture (3.2)

5.19.9 Brech

Description: non documente

See also: traitement_particulier_base (5.19.1)

Usage:
brech bloc
where

• bloc bloc_lecture (3.2)
```

## 5.19.10 Ceg

Description: Keyword for a CEG (Gas Entrainment Criteria) calculation. An objective is deepening gas entrainment on the free surface. Numerical analysis can be performed to predict the hydraulic and geometric conditions that can handle gas entrainment from the free surface.

```
See also: traitement_particulier_base (5.19.1)

Usage:
ceg {

frontiere str
t_deb float
[t_fin float]
[dt_post float]
haspi float
[debug int]
[areva ceg_areva]
[cea_jaea ceg_cea_jaea]
}

where
```

- frontiere str: To specify the boundaries conditions representing the free surfaces
- **t\_deb** *float*: value of the CEG's initial calculation time
- t\_fin float: not\_set time during which the CEG's calculation was stopped
- dt\_post float: periode refers to the printing period, this value is expressed in seconds
- haspi float: The suction height required to calculate AREVA's criterion
- debug int
- areva ceg\_areva (5.19.11): AREVA's criterion
- cea\_jaea ceg\_cea\_jaea (5.19.12): CEA\_JAEA's criterion

```
5.19.11 Ceg_areva
Description: not_set
See also: objet_lecture (39)
Usage:
     [ c float]
}
where
   • c float
5.19.12 Ceg_cea_jaea
Description: not_set
See also: objet_lecture (39)
Usage:
     [ normalise int]
     [ nb mailles mini int]
     [ min_critere_q_sur_max_critere_q float]
}
where
   • normalise int: renormalize (1) or not (0) values alpha and gamma
   • nb_mailles_mini int: Sets the minimum number of cells for the detection of a vortex.
   • min_critere_q_sur_max_critere_q float: Is an optional keyword used to correct the minimum
     values of Q's criterion taken into account in the detection of a vortex
5.20
      Navier_stokes_turbulent_ale
Description: Resolution of hydraulic turbulent Navier-Stokes eq. on mobile domain (ALE)
Keyword Discretize should have already been used to read the object.
See also: Navier_Stokes_std_ALE (5.23)
Usage:
Navier_Stokes_Turbulent_ALE str
Read str {
     [ modele_turbulence modele_turbulence_hyd_deriv]
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
```

[ dt\_projection deuxmots] [ seuil\_divU floatfloat]

```
[traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [ correction_vitesse_modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [ postraiter gradient pression sans masse ]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- **modele\_turbulence** *modele\_turbulence\_hyd\_deriv* (5.21): Turbulence model for Navier-Stokes equations.
- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction matrice pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient\_pression\_qdm\_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.21 Modele\_turbulence\_hyd\_deriv

[ dt impr ustar float]

[ nut max float]

Description: Basic class for turbulence model for Navier-Stokes equations.

[ dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only]

```
See also: objet_lecture (39) mod_turb_hyd_ss_maille (5.21.2) null (5.21.18) mod_turb_hyd_rans (5.21.19)

Usage:
modele_turbulence_hyd_deriv {

    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
```

} where

• correction\_visco\_turb\_pour\_controle\_pas\_de\_temps: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that

diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.

- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre *float*: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36): Keyword to set the wall law.
- dt\_impr\_ustar float: This keyword is used to print the values (U +, d+, u★) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1): This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float: Upper limitation of turbulent viscosity (default value 1.e8).

# 5.21.1 Dt\_impr\_ustar\_mean\_only

```
Description: not_set

See also: objet_lecture (39)

Usage:
{
    dt_impr float
    [boundaries n word1 word2 ... wordn]
}
where
    • dt_impr float
    • boundaries n word1 word2 ... wordn
```

### 5.21.2 Mod turb hyd ss maille

Description: Class for sub-grid turbulence model for Navier-Stokes equations.

```
See also: modele_turbulence_hyd_deriv (5.21) sous_maille_wale (5.21.4) sous_maille_smago (5.21.5) longueur_melange (5.21.6) sous_maille_selectif_mod (5.21.7) sous_maille_selectif (5.21.10) sous_maille-_lelt (5.21.11) sous_maille_axi (5.21.13) sous_maille_smago_filtre (5.21.14) sous_maille_smago_dyn (5.21.15) combinaison (5.21.16) sous_maille (5.21.17)
```

## Usage:

```
mod_turb_hyd_ss_maille {
    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
```

```
[ dt_impr_ustar float]
    [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [ nut_max float]
}
where
```

- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3): The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']*: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete : For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.3 Form a nb points

Description: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.

```
See also: objet_lecture (39)

Usage:
nb dir1 dir2
where

• nb int into [4]: Number of points.
```

- dir1 int: First direction.
- dir2 int: Second direction.

## 5.21.4 Sous maille wale

Description: This is the WALE-model. It is a new sub-grid scale model for eddy-viscosity in LES that has the following properties:

- it goes naturally to 0 at the wall (it doesn't need any information on the wall position or geometry)
- it has the proper wall scaling in o(y3) in the vicinity of the wall
- it reproduces correctly the laminar to turbulent transition.

```
Usage:
sous_maille_wale {

[ cw float]

[ formulation_a_nb_points form_a_nb_points]

[ longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[ correction_visco_turb_pour_controle_pas_de_temps ]

[ correction_visco_turb_pour_controle_pas_de_temps_parametre float]

[ turbulence_paroi turbulence_paroi_base]

[ dt_impr_ustar_float]

[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[ nut_max float]

}

where
```

- cw float: The unique parameter (constant) of the WALE-model (by default value 0.5).
- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume'*, *'volume\_sans\_lissage'*, *'scotti'*, *'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete : For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre** *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

### 5.21.5 Sous maille smago

```
Description: Smagorinsky sub-grid turbulence model.
Nut=Cs1*Cs1*l*l*sqrt(2*S*S)
K=Cs2*Cs2*1*1*2*S
See also: mod turb hyd ss maille (5.21.2)
Usage:
sous_maille_smago {
     [cs float]
     [formulation_a_nb_points form_a_nb_points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence paroi turbulence paroi base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut_max float]
}
where
```

- **cs** *float*: This is an optional keyword and the value is used to set the constant used in the Smagorinsky model (This is currently only valid for Smagorinsky models and it is set to 0.18 by default).
- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur\_maille str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete'] for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete : For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is

calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.

- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

# 5.21.6 Longueur\_melange

Description: This model is based on mixing length modelling. For a non academic configuration, formulation used in the code can be expressed basically as:

```
nu\_t = (Kappa.y)^2.dU/dy
```

Till a maximum distance (dmax) set by the user in the data file, y is set equal to the distance from the wall (dist\_w) calculated previously and saved in file Wall\_length.xyz. [see Distance\_paroi keyword]
Then (from y=dmax), y decreases as an exponential function: y=dmax\*exp[-2.\*(dist\_w-dmax)/dmax]

See also: mod turb hyd ss maille (5.21.2)

```
Usage:
```

```
longueur_melange {
     [canalx float]
     [tuyauz float]
     [verif dparoi str]
     [ dmax float]
     [fichier str]
     [fichier_ecriture_K_Eps str]
     [ formulation_a_nb_points form_a_nb_points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence_paroi_base]
     [ dt impr ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut max float]
}
where
```

• **canalx** *float*: [height]: plane channel according to Ox direction (for the moment, formulation in the code relies on fixed heigh: H=2).

- **tuyauz** *float*: [diameter] : pipe according to Oz direction (for the moment, formulation in the code relies on fixed diameter : D=2).
- verif dparoi str
- dmax float: Maximum distance.
- fichier str
- fichier\_ecriture\_K\_Eps str: When a resume with k-epsilon model is envisaged, this keyword allows to generate external MED-format file with evaluation of k and epsilon quantities (based on eddy turbulent viscosity and turbulent characteristic length returned by mixing length model). The frequency of the MED file print is set equal to dt\_impr\_ustar. Moreover, k-eps MED field is automatically saved at the last time step. MED file is then used for resuming a K-Epsilon calculation with the Champ Fonc Med keyword.
- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre** *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.7 Sous\_maille\_selectif\_mod

Description: Selective structure sub-grid function model (modified).

See also: mod\_turb\_hyd\_ss\_maille (5.21.2)

```
Usage:
sous_maille_selectif_mod {

[thi deuxentiers]
[canal floatentier]
[formulation_a_nb_points form_a_nb_points]
[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
[correction_visco_turb_pour_controle_pas_de_temps]
[correction_visco_turb_pour_controle_pas_de_temps_parametre float]
[turbulence_paroi turbulence_paroi_base]
[dt_impr_ustar float]
[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
[nut_max float]
}
where
```

- **thi** *deuxentiers* (5.21.8): For homogeneous isotropic turbulence (THI), two integers ki and kc are needed in VDF (not in VEF).
- **canal** *floatentier* (5.21.9): h dir\_faces\_paroi: For a channel flow, the half width h and the orientation of the wall dir\_faces\_paroi are needed.
- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur\_maille str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete'] for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps** for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence paroi turbulence paroi base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.

• nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

5.21.8 Deuxentiers

```
Description: Two integers.
See also: objet_lecture (39)
Usage:
int1 int2
where
   • int1 int: First integer.
   • int2 int: Second integer.
5.21.9 Floatentier
Description: A real and an integer.
See also: objet_lecture (39)
Usage:
the_float the_int
where
   • the_float float: Real.
   • the_int int: Integer.
5.21.10 Sous maille selectif
Description: Selective structure sub-grid function model (a filter is applied to the structure function).
See also: mod turb hyd ss maille (5.21.2)
Usage:
sous_maille_selectif {
     [ formulation_a_nb_points form_a_nb_points]
     [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [dt impr ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut max float]
}
where
```

• **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.

- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre** *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.11 Sous\_maille\_1elt

```
Description: Turbulence model sous_maille_1elt.

See also: mod_turb_hyd_ss_maille (5.21.2) sous_maille_1elt_selectif_mod (5.21.12)

Usage:
sous_maille_1elt {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
}
where
```

- formulation\_a\_nb\_points form\_a\_nb\_points (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage: For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence paroi turbulence paroi base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

### 5.21.12 Sous maille 1elt selectif mod

```
Description: Turbulence model sous_maille_1elt_selectif_mod.

See also: sous_maille_1elt (5.21.11)

Usage:
sous_maille_1elt_selectif_mod {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max_float]
```

```
}
where
```

- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:

volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.

volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps** for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained
  with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the
  printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- **nut\_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.13 Sous maille axi

Description: Structure sub-grid function turbulence model available in cylindrical co-ordinates.

```
Usage:
sous_maille_axi {

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[correction_visco_turb_pour_controle_pas_de_temps]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

[turbulence_paroi turbulence_paroi_base]

[dt impr_ustar_float]
```

```
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
        [ nut_max float]
}
where
```

- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti: Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi\_turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar *float* for inheritance: This keyword is used to print the values (U +, d+, u★) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.14 Sous\_maille\_smago\_filtre

Description: Smagorinsky sub-grid turbulence model should be used with low-filter.

```
See also: mod_turb_hyd_ss_maille (5.21.2)

Usage:
sous_maille_smago_filtre {

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[correction visco turb pour controle pas de temps]
```

```
[ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [ turbulence_paroi turbulence_paroi_base]
    [ dt_impr_ustar float]
    [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [ nut_max float]
}
where
```

- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:

volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.

volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).

scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.

arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.

- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.15 Sous\_maille\_smago\_dyn

Description: Dynamic Smagorinsky sub-grid turbulence model (available in VDF discretization only).

```
See also: mod_turb_hyd_ss_maille (5.21.2)

Usage:
sous_maille_smago_dyn {

[ stabilise str into ['6_points', 'moy_euler', 'plans_paralleles']]
```

```
[ nb_points int]
  [ formulation_a_nb_points form_a_nb_points]
  [ longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
  [ correction_visco_turb_pour_controle_pas_de_temps ]
  [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
  [ turbulence_paroi turbulence_paroi_base]
  [ dt_impr_ustar float]
  [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
  [ nut_max float]
}
where
```

- **stabilise** str into ['6\_points', 'moy\_euler', 'plans\_paralleles']
- nb\_points int
- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume'*, *'volume\_sans\_lissage'*, *'scotti'*, *'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

## 5.21.16 Combinaison

Description: This keyword specifies a turbulent viscosity model where the turbulent viscosity is user-defined.

```
Usage:

combinaison {

[nb_var n word1 word2 ... wordn]

[fonction str]

[formulation_a_nb_points form_a_nb_points]

[longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]

[correction_visco_turb_pour_controle_pas_de_temps]

[correction_visco_turb_pour_controle_pas_de_temps_parametre float]

[turbulence_paroi turbulence_paroi_base]

[dt_impr_ustar_float]

[dt_impr_ustar_mean_only dt_impr_ustar_mean_only]

[nut_max float]

}

where
```

- **nb\_var** *n word1 word2 ... wordn*: Number and names of variables which will be used in the turbulent viscosity definition (by default 0)
- fonction str: Fonction for turbulent viscosity. X,Y,Z and variables defined previously can be used.
- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure function is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- **longueur\_maille** *str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete']* for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another
  - volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete : For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will

be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.

• **nut max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### **5.21.17** Sous maille

```
Description: Structure sub-grid function model.

See also: mod_turb_hyd_ss_maille (5.21.2)

Usage:
sous_maille {

    [formulation_a_nb_points form_a_nb_points]
    [longueur_maille str into ['volume', 'volume_sans_lissage', 'scotti', 'arrete']]
    [correction_visco_turb_pour_controle_pas_de_temps]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar_float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
}
where
```

- **formulation\_a\_nb\_points** *form\_a\_nb\_points* (5.21.3) for inheritance: The structure fonction is calculated on nb points and we should add the 2 directions (0:OX, 1:OY, 2:OZ) constituting the homegeneity planes. Example for channel flows, planes parallel to the walls.
- longueur\_maille str into ['volume', 'volume\_sans\_lissage', 'scotti', 'arrete'] for inheritance: Different ways to calculate the characteristic length may be specified:
  - volume: It is the default option. Characteristic length is based on the cubic root of the volume cells. A smoothing procedure is applied to avoid discontinuities of this quantity in VEF from a cell to another.
  - volume\_sans\_lissage : For VEF only. Characteristic length is based on the cubic root of the volume cells (without smoothing procedure).
  - scotti : Characteristic length is based on the cubic root of the volume cells and the Scotti correction is applied to take into account the stretching of the cell in the case of anisotropic meshes.
  - arete: For VEF only. Characteristic length relies on the max edge (+ smoothing procedure) is taken into account.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.

- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.18 Null

Description: Null turbulence model (turbulent viscosity = 0) which can be used with a turbulent problem.

```
See also: modele_turbulence_hyd_deriv (5.21)

Usage:
null {
        [ correction_visco_turb_pour_controle_pas_de_temps ]
        [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
        [ turbulence_paroi turbulence_paroi_base]
        [ dt_impr_ustar float]
        [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
        [ nut_max float]
}
where
```

- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.19 Mod\_turb\_hyd\_rans

Description: Class for RANS turbulence model for Navier-Stokes equations.

```
See also: modele_turbulence_hyd_deriv (5.21) mod_turb_hyd_rans_bicephale (5.21.20) K_Epsilon_Realisable_Bicephale (5.21.22) k_omega (5.21.23) k_epsilon (5.21.24) mod_turb_hyd_rans_keps (5.21.31) mod_turb_hyd_rans_komega (5.21.32) K_Epsilon_Realisable (5.21.33)
```

Usage:

```
mod_turb_hyd_rans {
    [eps_min float]
    [eps_max float]
    [k_min float]
    [quiet ]
    [correction_visco_turb_pour_controle_pas_de_temps ]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
    [dt_impr_ustar float]
    [dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
    [nut_max float]
}
where
```

- eps\_min *float*: Lower limitation of epsilon (default value 1.e-10).
- eps\_max *float*: Upper limitation of epsilon (default value 1.e+10).
- **k\_min** *float*: Lower limitation of k (default value 1.e-10).
- quiet: To disable printing of information about k and epsilon.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

## 5.21.20 Mod\_turb\_hyd\_rans\_bicephale

Description: Class for RANS turbulence model for Navier-Stokes equations.

```
See also: mod_turb_hyd_rans (5.21.19) K_Epsilon_Bicephale (5.21.21)
Usage:
mod_turb_hyd_rans_bicephale {
```

```
[ eps_min float]
  [ eps_max float]
  [ prandtl_k float]
  [ prandtl_eps float]
  [ k_min float]
  [ quiet ]
  [ correction_visco_turb_pour_controle_pas_de_temps ]
  [ correction_visco_turb_pour_controle_pas_de_temps_parametre float]
  [ turbulence_paroi turbulence_paroi_base]
  [ dt_impr_ustar float]
  [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
  [ nut_max float]
}
where
```

- **eps\_min** *float*: Lower limitation of epsilon (default value 1.e-10).
- eps\_max float: Upper limitation of epsilon (default value 1.e+10).
- **prandtl\_k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl\_eps** *float*: Keyword to change the Pre value (default 1.3)
- **k\_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- **nut\_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

## 5.21.21 K\_epsilon\_bicephale

Description: Turbulence model (k-eps) en formalisation bicephale.

See also: mod\_turb\_hyd\_rans\_bicephale (5.21.20)

```
Usage:
K_Epsilon_Bicephale {
    transport_k str
```

```
transport_epsilon str
     [ modele_fonc_bas_reynolds modele_fonc_realisable_base]
     [cmu float]
     [eps_min float]
     [eps max float]
     [ prandtl_k float]
     [ prandtl_eps float]
     [k min float]
     [quiet]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut max float]
}
where
```

- transport\_k str: Keyword to define the realisable (k) transportation equation.
- **transport epsilon** *str*: Keyword to define the realisable (eps) transportation equation.
- modele\_fonc\_bas\_reynolds modele\_fonc\_realisable\_base (13.2): This keyword is used to set the model used
- cmu float: Keyword to modify the Cmu constant of k-eps model: Nut=Cmu\*k\*k/eps Default value is 0.09
- eps min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps\_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **prandtl\_k** *float* for inheritance: Keyword to change the Prk value (default 1.0).
- prandtl\_eps float for inheritance: Keyword to change the Pre value (default 1.3)
- **k\_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps** for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi\_turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

## 5.21.22 K\_epsilon\_realisable\_bicephale

} where

Description: Realizable Two-headed K-Epsilon Turbulence Model

```
See also: mod turb hyd rans (5.21.19)
Usage:
K Epsilon Realisable Bicephale {
     transport_k str
     transport_epsilon str
     modele_fonc_realisable modele_fonc_realisable_base
     prandtl_k float
     prandtl_eps float
     [ eps_min float]
     [ eps_max float]
     [ k_min float]
     [quiet ]
     [ correction visco turb pour controle pas de temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence paroi turbulence paroi base]
     [ dt_impr_ustar float]
     [ dt impr ustar mean only dt impr ustar mean only]
     [ nut max float]
```

- **transport\_k** *str*: Keyword to define the realisable (k) transportation equation.
- transport\_epsilon str: Keyword to define the realisable (eps) transportation equation.
- modele\_fonc\_realisable modele\_fonc\_realisable\_base (13.2): This keyword is used to set the model used
- **prandtl\_k** *float*: Keyword to change the Prk value (default 1.0).
- prandtl\_eps float: Keyword to change the Pre value (default 1.3)
- eps\_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps\_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- k min *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value

is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.

• nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

# 5.21.23 K\_omega

```
Description: Turbulence model (k-omega).
See also: mod_turb_hyd_rans (5.21.19)
Usage:
k omega {
     transport_k_omega transport_k_omega
     [ model variant str]
     [eps min float]
     [eps max float]
     [ k_min float]
     [quiet]
     [correction_visco_turb_pour_controle_pas_de_temps]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut_max float]
where
```

- **transport\_k\_omega** *transport\_k\_omega* (5.63): Keyword to define the (k-omega) transportation equation.
- model\_variant str: Model variant for k-omega (default value STD)
- eps min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps\_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k\_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile ProblemName Ustar mean only.out. periode refers to the printing period, this value

is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.

• nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.24 **K\_epsilon**

```
Description: Turbulence model (k-eps).
See also: mod turb hyd rans (5.21.19)
Usage:
k_epsilon {
     transport_k_epsilon transport_k_epsilon
     [ modele_fonc_bas_reynolds modele_fonction_bas_reynolds_base]
     [ cmu float]
     [ prandtl_k float]
     [ prandtl_eps float]
     [ eps_min float]
     [eps max float]
     [ k_min float]
     [quiet]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction visco turb pour controle pas de temps parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt impr ustar float]
     [ dt impr ustar mean only dt impr ustar mean only]
     [ nut_max float]
}
where
```

- **transport\_k\_epsilon** *transport\_k\_epsilon* (5.62): Keyword to define the (k-eps) transportation equation.
- modele\_fonc\_bas\_reynolds modele\_fonction\_bas\_reynolds\_base (5.21.25): This keyword is used to set the bas Reynolds model used.
- cmu float: Keyword to modify the Cmu constant of k-eps model: Nut=Cmu\*k\*k/eps Default value is 0.09
- **prandtl k** *float*: Keyword to change the Prk value (default 1.0).
- **prandtl\_eps** *float*: Keyword to change the Pre value (default 1.3).
- eps\_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps\_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k\_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps** for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre** *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]

- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.25 Modele\_fonction\_bas\_reynolds\_base

```
Description: not set
```

See also: objet\_lecture (39) Lam\_Bremhorst (5.21.26) Jones\_Launder (5.21.29) Launder\_Sharma (5.21.30)

Usage:

#### 5.21.26 Lam bremhorst

Description: Model described in 'C.K.G.Lam and K.Bremhorst, A modified form of the k- epsilon model for predicting wall turbulence, ASME J. Fluids Engng., Vol.103, p456, (1981)'. Only in VEF.

See also: modele\_fonction\_bas\_reynolds\_base (5.21.25) EASM\_Baglietto (5.21.27) standard\_KEps (5.21.28)

#### Usage:

```
Lam_Bremhorst {
        [fichier_distance_paroi str]
        [reynolds_stress_isotrope int]
}
where
```

- fichier\_distance\_paroi str: refer to distance\_paroi keyword
- reynolds\_stress\_isotrope int: keyword for isotropic Reynolds stress

## 5.21.27 Easm\_baglietto

Description: Model described in 'E. Baglietto and H. Ninokata, A turbulence model study for simulating flow inside tight lattice rod bundles, Nuclear Engineering and Design, 773–784 (235), 2005. '

```
See also: Lam_Bremhorst (5.21.26)

Usage:
EASM_Baglietto {
    [fichier_distance_paroi str]
    [reynolds_stress_isotrope int]
}
where
```

- fichier\_distance\_paroi str for inheritance: refer to distance\_paroi keyword
- reynolds\_stress\_isotrope int for inheritance: keyword for isotropic Reynolds stress

#### 5.21.28 Standard\_keps

Description: Model described in 'E. Baglietto, CFD and DNS methodologies development for fuel bundle simulaions, Nuclear Engineering and Design, 1503–1510 (236), 2006. '

```
See also: Lam_Bremhorst (5.21.26)

Usage:
standard_KEps {

    [fichier_distance_paroi str]
        [reynolds_stress_isotrope int]
}
where
```

- fichier\_distance\_paroi str for inheritance: refer to distance\_paroi keyword
- reynolds stress isotrope int for inheritance: keyword for isotropic Reynolds stress

#### 5.21.29 Jones launder

Description: Model described in 'Jones, W. P. and Launder, B. E. (1972), The prediction of laminarization with a two-equation model of turbulence, Int. J. of Heat and Mass transfer, Vol. 15, pp. 301-314.'

See also: modele\_fonction\_bas\_reynolds\_base (5.21.25)

Usage:

#### 5.21.30 Launder\_sharma

Description: Model described in 'Launder, B. E. and Sharma, B. I. (1974), Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letters in Heat and Mass Transfer, Vol. 1, No. 2, pp. 131-138.'

```
See also: modele_fonction_bas_reynolds_base (5.21.25)
```

Usage:

## 5.21.31 Mod\_turb\_hyd\_rans\_keps

Description: Class for RANS turbulence model for Navier-Stokes equations.

```
See also: mod_turb_hyd_rans (5.21.19)
```

[dt\_impr\_ustar float]

Usage:

```
mod_turb_hyd_rans_keps {
    [eps_min float]
    [eps_max float]
    [k_min float]
    [quiet ]
    [correction_visco_turb_pour_controle_pas_de_temps ]
    [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
    [turbulence_paroi turbulence_paroi_base]
```

```
[ dt_impr_ustar_mean_only dt_impr_ustar_mean_only] [ nut_max float] } where
```

- eps\_min *float*: Lower limitation of epsilon (default value 1.e-10).
- **eps\_max** *float*: Upper limitation of epsilon (default value 1.e+10).
- **k\_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps** for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.32 Mod\_turb\_hyd\_rans\_komega

Description: Class for RANS turbulence model for Navier-Stokes equations.

```
}
where
```

- omega\_min *float*: Lower limitation of omega (default value 1.e-10).
- omega\_max float: Upper limitation of omega (default value 1.e+10).
- eps min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps\_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k\_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- **correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre** *float* for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence\_paroi turbulence\_paroi\_base (36) for inheritance: Keyword to set the wall law.
- dt\_impr\_ustar float for inheritance: This keyword is used to print the values (U +, d+, u⋆) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- dt\_impr\_ustar\_mean\_only dt\_impr\_ustar\_mean\_only (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- nut\_max float for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

#### 5.21.33 K\_epsilon\_realisable

```
Description: Realizable K-Epsilon Turbulence Model.
See also: mod turb hyd rans (5.21.19)
Usage:
K Epsilon Realisable {
     transport k epsilon realisable str
     modele_fonc_realisable modele_fonc_realisable_base
     prandtl k float
     prandtl eps float
     [eps min float]
     [eps_max float]
     [k_min float]
     [quiet]
     [ correction_visco_turb_pour_controle_pas_de_temps ]
     [correction_visco_turb_pour_controle_pas_de_temps_parametre float]
     [turbulence_paroi turbulence_paroi_base]
     [ dt_impr_ustar float]
     [ dt_impr_ustar_mean_only dt_impr_ustar_mean_only]
     [ nut max float]
```

```
}
where
```

- transport\_k\_epsilon\_realisable str: Keyword to define the realisable (k-eps) transportation equation.
- modele\_fonc\_realisable modele\_fonc\_realisable\_base (13.2): This keyword is used to set the
  model used
- prandtl\_k float: Keyword to change the Prk value (default 1.0).
- prandtl\_eps float: Keyword to change the Pre value (default 1.3)
- eps\_min *float* for inheritance: Lower limitation of epsilon (default value 1.e-10).
- eps\_max float for inheritance: Upper limitation of epsilon (default value 1.e+10).
- **k\_min** *float* for inheritance: Lower limitation of k (default value 1.e-10).
- quiet for inheritance: To disable printing of information about k and epsilon.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is calculated so that diffusive time-step is equal or higher than convective time-step. For a stationary flow, the correction for turbulent viscosity should apply only during the first time steps and not when permanent state is reached. To check that, we could post process the corr\_visco\_turb field which is the correction of turbulent viscosity: it should be 1. on the whole domain.
- correction\_visco\_turb\_pour\_controle\_pas\_de\_temps\_parametre float for inheritance: Keyword to set a limitation to low time steps due to high values of turbulent viscosity. The limit for turbulent viscosity is the ratio between diffusive time-step and convective time-step is higher or equal to the given value [0-1]
- turbulence paroi turbulence paroi base (36) for inheritance: Keyword to set the wall law.
- **dt\_impr\_ustar** *float* for inheritance: This keyword is used to print the values (U +, d+, u\*) obtained with the wall laws into a file named datafile\_ProblemName\_Ustar.face and periode refers to the printing period, this value is expressed in seconds.
- **dt\_impr\_ustar\_mean\_only** *dt\_impr\_ustar\_mean\_only* (5.21.1) for inheritance: This keyword is used to print the mean values of u\* ( obtained with the wall laws) on each boundary, into a file named datafile\_ProblemName\_Ustar\_mean\_only.out. periode refers to the printing period, this value is expressed in seconds. If you don't use the optional keyword boundaries, all the boundaries will be considered. If you use it, you must specify nb\_boundaries which is the number of boundaries on which you want to calculate the mean values of u\*, then you have to specify their names.
- **nut\_max** *float* for inheritance: Upper limitation of turbulent viscosity (default value 1.e8).

## 5.22 Navier\_stokes\_standard\_sensibility

Navier\_Stokes\_standard\_sensibility str

[ dt projection deuxmots]

Description: Resolution of Navier-Stokes sensitivity problem

Keyword Discretize should have already been used to read the object. See also: navier\_stokes\_standard (5.51)

#### Usage

```
Read str {
    state bloc_lecture
    uncertain_variable bloc_lecture
    [ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
    _operateurs', 'sans_rien']]
    [ projection_initiale int]
    [ solveur_pression solveur_sys_base]
    [ solveur_bar solveur_sys_base]
```

```
[ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction matrice projection initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction_matrice_pression int]
     [correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- **state** *bloc\_lecture* (3.2): Block to indicate the state problem. Between the braces, you must specify the key word 'pb\_champ\_evaluateur' then the name of the state problem and the velocity unknown Example: state { pb\_champ\_evaluateur pb\_state velocity }
- uncertain\_variable *bloc\_lecture* (3.2): Block to indicate the name of the uncertain variable. Between the braces, you must specify the name of the unknown variable. Choice between velocity and

Example: uncertain\_variable { velocity }

- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If ( |max(DivU)\*dt|<value )

```
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- traitement\_particulier traitement\_particulier (5.19) for inheritance: Keyword to post-process particular values.
- correction matrice projection initiale int for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- correction calcul pression initiale int for inheritance: (IBM advanced) fix initial pressure computation for PDF
- correction\_vitesse\_projection\_initiale int for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient\_pression\_qdm\_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- postraiter\_gradient\_pression\_sans\_masse for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier Sokes Standard
{ equation non resolue (t>t0)*(t<t1) }
```

# 5.23 Navier\_stokes\_std\_ale

Description: Resolution of hydraulic Navier-Stokes eq. on mobile domain (ALE)

```
Keyword Discretize should have already been used to read the object.
See also: navier stokes standard (5.51) Navier Stokes Turbulent ALE (5.20)
```

```
Usage:
```

```
Navier_Stokes_std_ALE str
Read str {
     [ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
     _operateurs', 'sans_rien']]
```

```
[ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur bar solveur sys base]
     [ dt_projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction vitesse projection initiale int]
     [correction matrice pression int]
     [correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [ correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre equation parametre equation base]
     [ equation_non_resolue str]
}
where
```

- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur pression solveur sys base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
```

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- correction\_vitesse\_projection\_initiale int for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient\_pression\_qdm\_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

## 5.24 Qdm\_multiphase

Description: Momentum conservation equation for a multi-phase problem where the unknown is the velocity

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43)

Usage:

QDM\_Multiphase str

Read str {

```
[ solveur_pression solveur_sys_base] [ evanescence bloc_lecture] [ disable_equation_residual str] [ convection bloc_convection]
```

```
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- solveur\_pression solveur\_sys\_base (13.18): Linear pressure system resolution method.
- evanescence bloc\_lecture (3.2): Management of the vanishing phase (when alpha tends to 0 or 1)
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

## 5.25 Taux dissipation turbulent

Description: Turbulent Dissipation frequency equation for a turbulent mono/multi-phase problem (available in TrioCFD)

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43)

```
Hsage.
```

Read str {

Taux\_dissipation\_turbulent str

```
[ disable_equation_residual str]
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
```

```
}
where
```

- disable\_equation\_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre equation parametre equation base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation non resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation non resolue (t>t0)*(t<t1) }
```

#### 5.26 Transport k eps realisable

Description: Realizable K-Epsilon Turbulence Model Transport Equations for K and Epsilon.

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43)

```
Usage:
```

```
Transport_K_Eps_Realisable str
Read str {
     [disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- disable\_equation\_residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.

- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.27 Convection\_diffusion\_chaleur\_qc

Description: Temperature equation for a quasi-compressible fluid.

Keyword Discretize should have already been used to read the object. See also: eqn base (5.43) convection diffusion chaleur turbulent qc (5.29)

```
Usage:
```

```
 \begin{array}{l} \textbf{convection\_diffusion\_chaleur\_QC} \ \ \textit{str} \\ \textbf{Read} \ \ \textit{str} \ \{ \end{array}
```

```
[ mode_calcul_convection str into ['ancien', 'divuT_moins_Tdivu', 'divrhouT_moins_Tdivrhou']]
    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
```

- mode\_calcul\_convection str into ['ancien', 'divuT\_moins\_Tdivu', 'divrhouT\_moins\_Tdivrhou']: Option to set the form of the convective operator divrhouT\_moins\_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T) Tdiv(rho.u.1) ancien: u.gradT = div(u.T) T.div(u) divuT\_moins\_Tdivu: u.gradT = div(u.T) Tdiv(u.1)
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)

- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

## 5.28 Convection\_diffusion\_chaleur\_wc

Description: Temperature equation for a weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.43)
```

```
Usage:
```

```
convection_diffusion_chaleur_WC str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.29 Convection\_diffusion\_chaleur\_turbulent\_qc

Description: Temperature equation for a quasi-compressible fluid as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: convection diffusion chaleur QC (5.27) Usage: convection\_diffusion\_chaleur\_turbulent\_qc str Read str { [ modele\_turbulence modele\_turbulence\_scal\_base] [ mode\_calcul\_convection str into ['ancien', 'divuT\_moins\_Tdivu', 'divrhouT\_moins\_Tdivrhou']] [ disable\_equation\_residual str] [convection bloc convection] [ **diffusion** bloc\_diffusion] [boundary conditions|conditions limites condlims] [initial conditions|conditions initiales condinits] [sources sources] [ ecrire fichier xyz valeur ecrire fichier xyz valeur] [ parametre\_equation parametre\_equation\_base] [ equation non resolue str]

- **modele\_turbulence** *modele\_turbulence\_scal\_base* (27): Turbulence model for the temperature (energy) conservation equation.
- mode\_calcul\_convection str into ['ancien', 'divuT\_moins\_Tdivu', 'divrhouT\_moins\_Tdivrhou'] for inheritance: Option to set the form of the convective operator divrhouT\_moins\_Tdivrhou (the default since 1.6.8): rho.u.gradT = div(rho.u.T) Tdiv(rho.u.1) ancien: u.gradT = div(u.T) T.div(u) divuT\_moins\_Tdivu: u.gradT = div(u.T) Tdiv(u.1)
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites conditions (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation non resolue (t>t0)*(t<t1) }
```

where

# 5.30 Convection\_diffusion\_concentration

Description: Constituent transport vectorial equation (concentration diffusion convection).

Keyword Discretize should have already been used to read the object.

See also: eqn\_base (5.43) convection\_diffusion\_concentration\_turbulent (5.32) convection\_diffusion\_concentration\_ft\_disc (5.31) convection\_diffusion\_phase\_field (5.38)

```
Usage:
```

```
convection_diffusion_concentration str
Read str {
     [ nom_inconnue str]
     [alias str]
     [ masse_molaire float]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre equation parametre equation base]
     [ equation non resolue str]
}
where
```

- **nom\_inconnue** *str*: Keyword Nom\_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str
- masse\_molaire float
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.31 Convection\_diffusion\_concentration\_ft\_disc

```
Description: not set
Keyword Discretize should have already been used to read the object.
See also: convection_diffusion_concentration (5.30)
Usage:
convection diffusion concentration ft disc str
Read str {
     [ equation interface str]
     phase int into [0, 1]
     [ option str]
      [ nom_inconnue str]
     [alias str]
      [ masse_molaire float]
      [ disable_equation_residual str]
      [ convection bloc_convection]
      [ diffusion bloc_diffusion]
      [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
      [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
```

- equation\_interface *str*: his is the name of the interface tracking equation to watch. The scalar will not diffuse through the interface of this equation.
- phase int into [0, 1]: tells whether the scalar must be confined in phase 0 or in phase 1
- **option** *str*: Experimental features used to prevent the concentration to leak through the interface between phases due to numerical diffusion.

RIEN: do nothing

where

RAMASSE\_MIETTES\_SIMPLE: at each timestep, this algorithm takes all the mass located in the opposite phase and spreads it uniformly in the given phase.

- **nom\_inconnue** *str* for inheritance: Keyword Nom\_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str for inheritance
- masse\_molaire *float* for inheritance
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file

- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.32 Convection\_diffusion\_concentration\_turbulent

Description: Constituent transport equations (concentration diffusion convection) as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object.

See also: convection\_diffusion\_concentration (5.30) Convection\_Diffusion\_Concentration\_Turbulent\_FT-Disc (5.7)

Usage:

```
 \begin{array}{ll} \textbf{convection\_diffusion\_concentration\_turbulent} & \textit{str} \\ \textbf{Read} & \textit{str} \end{array} \}
```

```
[ modele_turbulence modele_turbulence_scal_base]
        [ nom_inconnue str]
        [ alias str]
        [ masse_molaire float]
        [ disable_equation_residual str]
        [ convection bloc_convection]
        [ diffusion bloc_diffusion]
        [ boundary_conditions|conditions_limites condlims]
        [ initial_conditions|conditions_initiales condinits]
        [ sources sources]
        [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
        [ parametre_equation parametre_equation_base]
        [ equation_non_resolue str]
}
where
```

- modele\_turbulence modele\_turbulence\_scal\_base (27): Turbulence model to be used in the constituent transport equations. The only model currently available is Schmidt.
- **nom\_inconnue** *str* for inheritance: Keyword Nom\_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str for inheritance
- masse molaire *float* for inheritance
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.

- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.33 Convection\_diffusion\_espece\_binaire\_qc

Description: Species conservation equation for a binary quasi-compressible fluid.

```
Keyword Discretize should have already been used to read the object.
See also: eqn base (5.43) Convection Diffusion Espece Binaire Turbulent QC (5.8)
```

```
Usage:
```

```
convection_diffusion_espece_binaire_QC str
Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
{ equation_non_resolue (t>t0)*(t<t1) }
```

# 5.34 Convection\_diffusion\_espece\_binaire\_wc

Description: Species conservation equation for a binary weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.43)
```

```
Usage:
```

```
convection diffusion espece binaire WC str
Read str {
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

- disable equation residual str for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue str for inheritance: The equation will not be solved while condition(t) is verified if equation non resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier Sokes Standard
{ equation non resolue (t>t0)*(t<t1) }
```

#### 5.35 Convection diffusion espece multi qc

Description: Species conservation equation for a multi-species quasi-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
Usage:
convection_diffusion_espece_multi_QC str
Read str {

[espece espece]
[disable_equation_residual str]
[convection bloc_convection]
[diffusion bloc_diffusion]
[boundary_conditions|conditions_limites condlims]
[initial_conditions|conditions_initiales condinits]
[sources sources]
[ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[parametre_equation parametre_equation_base]
[equation_non_resolue str]
}
where
```

- espece espece (3.54): Assosciate a species (with its properties) to the equation
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

[convection bloc convection]

#### 5.36 Convection\_diffusion\_espece\_multi\_wc

Description: Species conservation equation for a multi-species weakly-compressible fluid.

```
Keyword Discretize should have already been used to read the object. See also: eqn_base (5.43)

Usage:
convection_diffusion_espece_multi_WC str

Read str {

[ disable equation residual str]
```

```
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

### 5.37 Convection\_diffusion\_espece\_multi\_turbulent\_qc

```
Description: not set
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.43)
Usage:
convection_diffusion_espece_multi_turbulent_qc str
Read str {
     [ modele turbulence modele turbulence scal base]
     espece espece
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
```

```
}
where
```

- modele\_turbulence modele\_turbulence\_scal\_base (27): Turbulence model to be used.
- **espece** *espece* (3.54)
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.38 Convection\_diffusion\_phase\_field

Description: Cahn-Hilliard equation of the Phase Field problem. The unknown of this equation is the concentration C.

Keyword Discretize should have already been used to read the object.

See also: convection\_diffusion\_concentration (5.30)

#### Usage:

```
convection_diffusion_phase_field str
Read str {
     [ mu_1 float]
     [ mu_2 float]
     [ rho_1 float]
     [ rho 2 float]
     potentiel_chimique_generalise str into ['avec_energie_cinetique', 'sans_energie_cinetique']
     [ nom inconnue str]
     [alias str]
     [ masse molaire float]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
```

```
}
where
```

- mu\_1 float: Dynamic viscosity of the first phase.
- mu\_2 float: Dynamic viscosity of the second phase.
- **rho\_1** *float*: Density of the first phase.
- **rho\_2** *float*: Density of the second phase.
- potentiel\_chimique\_generalise str into ['avec\_energie\_cinetique', 'sans\_energie\_cinetique']: To define (chaine set to avec\_energie\_cinetique) or not (chaine set to sans\_energie\_cinetique) if the Cahn-Hilliard equation contains the cinetic energy term.
- **nom\_inconnue** *str* for inheritance: Keyword Nom\_inconnue will rename the unknown of this equation with the given name. In the postprocessing part, the concentration field will be accessible with this name. This is usefull if you want to track more than one concentration (otherwise, only the concentration field in the first concentration equation can be accessed).
- alias str for inheritance
- masse\_molaire float for inheritance
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

## 5.39 Convection\_diffusion\_temperature

convection\_diffusion\_temperature str

Description: Energy equation (temperature diffusion convection).

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43) convection\_diffusion\_temperature\_ft\_disc (5.40) Convection\_Diffusion\_Temperature\_sensibility (5.9)

#### Usage:

```
Read str {

[ penalisation_12_ftd pp]

[ disable_equation_residual str]

[ convection bloc_convection]

[ diffusion bloc_diffusion]

[ boundary_conditions|conditions_limites condlims]

[ initial conditions|conditions initiales condinits]
```

```
[ sources sources]
  [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
  [ parametre_equation parametre_equation_base]
  [ equation_non_resolue str]
}
where
```

- **penalisation\_12\_ftd** *pp* (5.10): to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.40 Convection\_diffusion\_temperature\_ft\_disc

```
Description: not set
Keyword Discretize should have already been used to read the object.
See also: convection_diffusion_temperature (5.39)
Usage:
convection_diffusion_temperature_ft_disc str
Read str {
     [ equation interface str]
     phase int into [0, 1]
     [ equation navier stokes str]
     [ stencil width int]
     [ maintien_temperature objet_lecture_maintien_temperature]
      [ prescribed mpoint float]
     [ penalisation_l2_ftd pp]
     [ disable equation residual str]
     [convection bloc_convection]
      [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
```

```
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- equation\_interface str: The name of the interface equation should be given.
- phase int into [0, 1]: Phase in which the temperature equation will be solved. The temperature, which may be postprocessed with the keyword temperature\_EquationName, in the orther phase may be negative: the code only computes the temperature field in the specified phase. The other phase is supposed to physically stay at saturation temperature. The code uses a ghost fluid numerical method to work on a smooth temperature field at the interface. In the opposite phase (1-X) the temperature will therefore be extrapolated in the vicinity of the interface and have the opposite sign, saturation temperature is zero by convention).
- equation\_navier\_stokes str: The name of the Navier Stokes equation of the problem should be given.
- **stencil\_width** *int*: distance in mesh elements over which the temperature field should be extrapolated in the opposite phase.
- maintien\_temperature objet\_lecture\_maintien\_temperature (5.41): maintien\_temperature SOUS\_ZONE\_NAME VALUE: experimental, this acts as a dynamic source term that heats or cools the fluid to maintain the average temperature to VALUE within the specified region. At this time, this is done by multiplying the temperature within the SOUS\_ZONE by an appropriate uniform value at each timestep. This feature might be implemented in a separate source term in the future.
- **prescribed\_mpoint** *float*: User defined value of the phase-change rate (override the value computed based on the temperature field)
- penalisation\_12\_ftd pp (5.10) for inheritance: to activate or not (the default is Direct Forcing method) the Penalized Direct Forcing method to impose the specified temperature on the solid-fluid interface.
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.41 Objet lecture maintien temperature

```
Description: not_set

See also: objet_lecture (39)
```

```
Usage:
sous_zone temperature_moyenne
where
• sous_zone str
• temperature_moyenne float
```

#### 5.42 Convection\_diffusion\_temperature\_turbulent

Description: Energy equation (temperature diffusion convection) as well as the associated turbulence model equations.

Keyword Discretize should have already been used to read the object. See also: eqn base (5.43)

```
Usage:
```

```
convection_diffusion_temperature_turbulent str

Read str {

        [ modele_turbulence modele_turbulence_scal_base] |
            [ disable_equation_residual str] |
            [ convection bloc_convection] |
            [ diffusion bloc_diffusion] |
            [ boundary_conditions|conditions_limites condlims] |
            [ initial_conditions|conditions_initiales condinits] |
            [ sources sources] |
            [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur] |
            [ parametre_equation parametre_equation_base] |
            [ equation_non_resolue str] |
}
where
```

- modele turbulence modele turbulence scal base (27): Turbulence model for the energy equation.
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary conditions limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.43 Eqn\_base

Description: Basic class for equations.

Keyword Discretize should have already been used to read the object.

See also: mor\_eqn (5) navier\_stokes\_standard (5.51) convection\_diffusion\_temperature (5.39) QDM\_Multiphase (5.24) Masse\_Multiphase (5.15) Energie\_Multiphase (5.12) Echelle\_temporelle\_turbulente (5.11) Energie\_cinetique\_turbulente (5.13) Energie\_cinetique\_turbulente\_WIT (5.14) Taux\_dissipation\_turbulent (5.25) convection\_diffusion\_chaleur\_QC (5.27) convection\_diffusion\_espece\_binaire\_QC (5.33) convection\_diffusion\_espece\_multi\_QC (5.35) convection\_diffusion\_chaleur\_WC (5.28) convection\_diffusion\_espece\_binaire\_WC (5.34) convection\_diffusion\_espece\_multi\_WC (5.36) convection\_diffusion\_concentration (5.30) convection\_diffusion\_temperature\_turbulent (5.42) convection\_diffusion\_espece\_multi\_turbulent\_qc (5.37) Conduction (5.1) transport\_k\_epsilon (5.62) transport\_k (5.61) transport\_epsilon (5.54) transport\_interfaces\_ft\_disc (5.55) transport\_marqueur\_ft (5.64) transport\_k\_omega (5.63) Transport\_K\_Eps\_Realisable (5.26)

```
Usage:
eqn_base str

Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str*: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2): Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3): Keyword to specify the diffusion operator.
- **boundary\_conditions|conditions\_limites** *condlims* (4.32.1): Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4): Initial conditions.
- **sources** *sources* (5.5): To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52): This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6): Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str*: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.44 Navier\_stokes\_qc

Description: Navier-Stokes equation for a quasi-compressible fluid.

Keyword Discretize should have already been used to read the object.

```
Usage:
navier_stokes_QC str
Read str {
     methode calcul pression initiale str into ['avec les cl', 'avec sources', 'avec sources et-
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [ solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [dt projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [ correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

See also: navier\_stokes\_standard (5.51)

- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.

• seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If ( |max(DivU)\*dt|<value )

Seuil(tn+1)= Seuil(tn)\*factor

Else

Seuil(tn+1) = Seuil(tn)\*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient\_pression\_qdm\_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction pression modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

Navier\_Sokes\_Standard { equation\_non\_resolue (t>t0)\*(t<t1) }

#### 5.45 Navier\_stokes\_wc

Description: Navier-Stokes equation for a weakly-compressible fluid.

Keyword Discretize should have already been used to read the object.

See also: navier\_stokes\_standard (5.51)

```
navier_stokes_WC str
Read str {
     _operateurs', 'sans_rien']]
     [ projection initiale int]
     [solveur pression solveur sys base]
     [solveur_bar solveur_sys_base]
     [dt projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction_matrice_pression int]
     [correction_vitesse_modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction pression modifie int]
     [postraiter gradient pression sans masse]
     [ disable equation residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions limites condlims]
     [initial conditions|conditions initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
where
```

Usage:

- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- **seuil\_divU** *floatfloat* (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur pression) is dynamically adapted according to the mass conservation. At tn, the

linear system Ax=B is considered as solved if the residual ||Ax-B|| < seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If ( |max(DivU)\*dt|<value )</pre>

Seuil(tn+1)= Seuil(tn)\*factor

Else

Seuil(tn+1) = Seuil(tn)\*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- correction\_calcul\_pression\_initiale int for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient pression qdm modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.46 Navier\_stokes\_ft\_disc

Description: Two-phase momentum balance equation.

Keyword Discretize should have already been used to read the object. See also: navier\_stokes\_turbulent (5.52)

```
Usage:
```

```
navier_stokes_ft_disc str
Read str {
```

```
[ equation_interfaces_vitesse_imposee str]
     [ equations interfaces vitesse imposee n word1 word2 ... wordn]
     [ clipping_courbure_interface int]
     [ terme_gravite str into ['rho_g', 'grad_i']]
     [ equation_temperature_mpoint str]
     [ matrice pression invariante ]
     [penalisation forcage penalisation forcage]
     [ equation temperature mpoint vapeur str]
     [mpoint inactif sur qdm]
     [mpoint vapeur inactif sur qdm]
     [ new mass source ]
     [interpol_indic_pour_dI_dt str into ['interp_ai_based', 'interp_standard', 'interp_modifiee']]
     [ OutletCorrection_pour_dI_dt str into ['CORRECTION_GHOST_INDIC']]
     [ modele turbulence modele_turbulence_hyd_deriv]
     [ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur bar solveur sys base]
     [dt projection deuxmots]
     [ seuil divU floatfloat]
     [traitement_particulier traitement_particulier]
     [correction matrice projection initiale int]
     [correction calcul pression initiale int]
     [ correction vitesse projection initiale int]
     [correction matrice pression int]
     [correction vitesse modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable equation residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire fichier xyz valeur ecrire fichier xyz valeur]
     [ parametre equation parametre equation base]
     [ equation_non_resolue str]
}
where
```

[ equation\_interfaces\_proprietes\_fluide str]

- equation\_interfaces\_proprietes\_fluide *str*: This keyword is used for liquid-gas, liquid-vapor and fluid-fluid deformable interface, which transported at the Eulerian velocity. When this case is selected, the keyword sequence Methode\_transport vitesse\_interpolee is used in the block Transport\_Interfaces\_FT\_Disc to define the velocity field for the displacement of the interface.
- equation\_interfaces\_vitesse\_imposee str: This keyword is used to specify the velocity field to be used when using an interface that mimics a solid interface moving with a given solid speed of displacement. When this case is selected, the keyword sequence Methode\_transport vitesse\_imposee in the Transport\_Interfaces\_FT\_Disc block will define the velocity field for the displacement of the interface.
- equations\_interfaces\_vitesse\_imposee n word1 word2 ... wordn: This keyword is used to specify the velocity field to be used when using an interface that mimics a solid interface moving with a

- given solid speed of displacement. When this case is selected, the keyword sequence Methode\_transport vitesse\_imposee in the Transport\_Interfaces\_FT\_Disc block will define the velocity field for the displacement of the interface. If two or more solid interfaces are defined, then the keyword equations\_interfaces\_vitesse\_imposee should be used.
- clipping\_courbure\_interface *int*: This keyword is used to numerically limit the values of curvature used in the momentum balance equation. Curvature is computed as usual, but values exceeding the clipping value are replaced by this threshold, before using the clipped curvature in the momentum balance. Each time a curvature value is clipped, a counter is increased by one unity and the value of the counter is written in the .err file at the end of the time step. This clipping allows not reducing drastically the time stepping when a geometrical singularity occurs in the interface mesh. However, physical phenomena may be concealed with the use of such a clipping.
- **terme\_gravite** *str into* ['rho\_g', 'grad\_i']: The Terme\_gravite keyword changes the numerical scheme used for the gravity source term. The default is grad\_i, which is designed to remove spurious currents around the interface. In this case, the pressure field does not contain the hydrostatic part but only a jump across the interface. This scheme seems not to work very well in vef. The rho\_g option uses the more traditional source term, equal to rho\*g in the volume. In this case, the hydrostatic pressure is visible in the pressure field and the boundary conditions in pressure must be set accordingly. This model produces spurious currents in the vicinity of the fluid-fluid interfaces and with the immersed boundary conditions.
- equation\_temperature\_mpoint str: The equation\_temperature\_mpoint should be used in the case of liquid-vapor flow with phase-change (see the TRUST\_ROOT/doc/TRUST/ft\_chgt\_phase.pdf written in French for more information about the model). The name of the temperature equation, defined with the convection\_diffusion\_temperature\_ft\_disc keyword, should be given.
- matrice\_pression\_invariante: This keyword is a shortcut to be used only when the flow is a single-phase one, with interface tracking only used for solid-fluid interfaces. In this peculiar case, the density of the fluid does not evolve during the computation and the pressure matrix does not need to be actuated at each time step.
- **penalisation\_forcage** *penalisation\_forcage* (5.47): This keyword is used to specify a strong formulation (value set to 0) or a weak formulation (value set to 1) for an imposed pressure boundary condition. The first formulation converges quicker and is stable in general cases except some rare cases (see Ecoulement\_Neumann test case for example) where the second one should be used despite of its slow convergence.
- equation\_temperature\_mpoint\_vapeur str
- mpoint\_inactif\_sur\_qdm
- mpoint\_vapeur\_inactif\_sur\_qdm
- **new\_mass\_source** : Flag for localised computation of velocity jump based on interfacial area AI (advanced option)
- interpol\_indic\_pour\_dI\_dt str into ['interp\_ai\_based', 'interp\_standard', 'interp\_modifiee']: Specific interpolation of phase indicator function in VoF mass-preserving method (advanced option)
- OutletCorrection\_pour\_dI\_dt str into ['CORRECTION\_GHOST\_INDIC']
- modele\_turbulence modele\_turbulence\_hyd\_deriv (5.21) for inheritance: Turbulence model for Navier-Stokes equations.
- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.

- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If ( |max(DivU)\*dt|<value )

Seuil(tn+1)= Seuil(tn)\*factor

Else

Seuil(tn+1) = Seuil(tn)\*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient\_pression\_qdm\_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- diffusion bloc diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard
```

{ equation\_non\_resolue (t>t0)\*(t<t1) }

# **5.47 Penalisation\_forcage** Description: penalisation\_forcage

```
See also: objet lecture (39)
Usage:
     [ pression reference float]
     [ domaine_flottant_fluide x1 x2 (x3)]
}
where
   • pression_reference float
   • domaine_flottant_fluide x1 x2 (x3)
5.48
       Navier_stokes_phase_field
Description: Navier Stokes equation for the Phase Field problem.
Keyword Discretize should have already been used to read the object.
See also: navier stokes standard (5.51)
Usage:
navier_stokes_phase_field str
Read str {
     approximation_de_boussinesq approx_boussinesq
     [ viscosite_dynamique_constante visco_dyn_cons]
     [ gravite n \times 1 \times 2 \dots \times n]
     _operateurs', 'sans_rien']
     [ projection_initiale int]
     [solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [dt projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement particulier traitement particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [ correction_vitesse_modifie int]
     [gradient pression qdm modifie int]
     [ correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
```

```
[ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- approximation\_de\_boussinesq approx\_boussinesq (5.49): To use or not the Boussinesq approximation.
- viscosite\_dynamique\_constante visco\_dyn\_cons (5.50): To use or not a viscosity which will depends on concentration C (in fact, C is the unknown of Cahn-Hilliard equation).
- gravite n x1 x2 ... xn: Keyword to define gravity in the case Boussinesq approximation is not used.
- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient\_pression\_qdm\_modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int for inheritance: (IBM advanced) fix pressure for PDF

- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.49 Approx\_boussinesq

• **probleme** *str*: Name of problem.

• rho\_1 float: value of rho

} where

Description: different mass density formulation are available depending if the Boussinesq approximation is made or not

```
See also: objet_lecture (39)
Usage:
yes_or_no bloc_bouss
where

• yes_or_no str into ['oui', 'non']: To use or not the Boussinesq approximation.
• bloc_bouss bloc_boussinesq (5.49.1): to choose the rho formulation

5.49.1 Bloc_boussinesq

Description: choice of rho formulation

See also: objet_lecture (39)

Usage:
{
    [probleme str]
    [rho_1 float]
    [rho_2 float]
    [rho_fonc_c bloc_rho_fonc_c]
```

```
• rho_2 float: value of rho
```

• **rho\_fonc\_c** *bloc\_rho\_fonc\_c* (5.49.2): to use for define a general form for rho

#### 5.49.2 Bloc\_rho\_fonc\_c

Description: if rho has a general form

See also: objet\_lecture (39)

Usage:

```
[ Champ_Fonc_Fonction ] [ problem_name ] [ concentration ] [ dim ] [ val ] [ Champ_Uniforme ] [ fielddim ] [ val2 ]
```

where

- Champ Fonc Fonction str into ['Champ Fonc Fonction']: Champ Fonc Fonction
- problem\_name str: Name of problem.
- concentration str into ['concentration']: concentration
- dim int: dimension of the problem
- val str: function of rho
- Champ Uniforme str into ['Champ Uniforme']: Champ Uniforme
- **fielddim** *int*: dimension of the problem
- val2 str: function of rho

#### 5.50 Visco\_dyn\_cons

Description: different treatment of the kinematic viscosity could be done depending of the use of the Boussinesq approximation or the constant dynamic viscosity approximation

```
See also: objet_lecture (39)
Usage:
yes or no bloc visco
```

yes\_or\_no bloc\_viseo

where

- yes\_or\_no str into ['oui', 'non']: To use or not the constant dynamic viscosity
- **bloc\_visco** *bloc\_visco2* (5.50.1): to choose the mu formulation

#### **5.50.1** Bloc visco2

Description: choice of mu formulation

- probleme str: Name of problem.
- mu\_1 float: value of mu

```
• mu_2 float: value of mu
   • mu_fonc_c bloc_mu_fonc_c (5.50.2): to use for define a general form for mu
5.50.2 Bloc_mu_fonc_c
Description: if mu has a general form
See also: objet_lecture (39)
Usage:
[ Champ_Fonc_Fonction ] [ problem_name ] [ concentration ] [ dim ] [ val ]
   • Champ Fonc Fonction str into ['Champ Fonc Fonction']: Champ Fonc Fonction
   • problem_name str: Name of problem.
   • concentration str into ['concentration']: concentration
   • dim int: dimension of the problem
   • val str: function of mu
5.51 Navier_stokes_standard
Description: Navier-Stokes equations.
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.43) navier_stokes_QC (5.44) navier_stokes_WC (5.45) navier_stokes_turbulent
(5.52) Navier_Stokes_standard_sensibility (5.22) Navier_Stokes_Aposteriori (5.16) navier_stokes_phase-
_field (5.48) Navier_Stokes_std_ALE (5.23)
Usage:
navier_stokes_standard str
Read str {
     [ methode_calcul_pression_initiale str into ['avec_les_cl', 'avec_sources', 'avec_sources_et-
     _operateurs', 'sans_rien']]
     [ projection_initiale int]
     [ solveur_pression solveur_sys_base]
     [solveur bar solveur sys base]
     [dt_projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement_particulier traitement_particulier]
     [ correction_matrice_projection_initiale int]
     [ correction_calcul_pression_initiale int]
     [ correction vitesse projection initiale int]
     [correction_matrice_pression int]
     [correction vitesse modifie int]
     [ gradient_pression_qdm_modifie int]
     [correction_pression_modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable_equation_residual str]
```

[ **convection** bloc\_convection] [ **diffusion** bloc\_diffusion]

[sources sources]

[ boundary\_conditions|conditions\_limites condlims] [ initial\_conditions|conditions\_initiales condinits]

```
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien']: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int*: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18): Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18): This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17): nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18): value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

```
If ( |max(DivU)*dt|<value )
Seuil(tn+1)= Seuil(tn)*factor
Else
Seuil(tn+1)= Seuil(tn)*factor
Endif
```

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- traitement particulier traitement particulier (5.19): Keyword to post-process particular values.
- correction\_matrice\_projection\_initiale int: (IBM advanced) fix matrix of initial projection for PDF
- correction\_calcul\_pression\_initiale int: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int*: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int: (IBM advanced) fix velocity for PDF
- gradient pression qdm modifie int: (IBM advanced) fix pressure gradient
- correction\_pression\_modifie int: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** : (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.

- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.52 Navier\_stokes\_turbulent

where

Description: Navier-Stokes equations as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object.
See also: navier_stokes_standard (5.51) navier_stokes_turbulent_qc (5.53) navier_stokes_ft_disc (5.46)
Usage:
navier stokes turbulent str
Read str {
     [ modele turbulence modele turbulence hyd deriv]
     _operateurs', 'sans_rien']
     [ projection_initiale int]
     [ solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [dt_projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement particulier traitement particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
```

- modele\_turbulence modele\_turbulence\_hyd\_deriv (5.21): Turbulence model for Navier-Stokes equations.
- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If ( lmax(DivU)\*dtl<value )</pre>

Seuil(tn+1) = Seuil(tn)\*factor

Else

Seuil(tn+1)= Seuil(tn)\*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient pression qdm modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction pression modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.

- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.53 Navier\_stokes\_turbulent\_qc

where

Description: Navier-Stokes equations under low Mach number as well as the associated turbulence model equations.

```
Keyword Discretize should have already been used to read the object.
See also: navier stokes turbulent (5.52)
Usage:
navier stokes turbulent qc str
Read str {
     [ modele turbulence modele turbulence hyd deriv]
     _operateurs', 'sans_rien']
     [ projection_initiale int]
     [ solveur_pression solveur_sys_base]
     [solveur_bar solveur_sys_base]
     [dt_projection deuxmots]
     [ seuil_divU floatfloat]
     [traitement particulier traitement particulier]
     [ correction_matrice_projection_initiale int]
     [ correction calcul pression initiale int]
     [ correction_vitesse_projection_initiale int]
     [correction matrice pression int]
     [correction vitesse modifie int]
     [gradient pression qdm modifie int]
     [correction pression modifie int]
     [ postraiter_gradient_pression_sans_masse ]
     [ disable_equation_residual str]
     [convection bloc_convection]
     [ diffusion bloc_diffusion]
     [boundary_conditions|conditions_limites condlims]
     [initial_conditions|conditions_initiales condinits]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
}
```

- modele\_turbulence modele\_turbulence\_hyd\_deriv (5.21) for inheritance: Turbulence model for Navier-Stokes equations.
- methode\_calcul\_pression\_initiale str into ['avec\_les\_cl', 'avec\_sources', 'avec\_sources\_et\_operateurs', 'sans\_rien'] for inheritance: Keyword to select an option for the pressure calculation before the fist time step. Options are: avec\_les\_cl (default option lapP=0 is solved with Neuman boundary conditions on pressure if any), avec\_sources (lapP=f is solved with Neuman boundaries conditions and f integrating the source terms of the Navier-Stokes equations) and avec\_sources\_et\_operateurs (lapP=f is solved as with the previous option avec\_sources but f integrating also some operators of the Navier-Stokes equations). The two last options are useful and sometime necessary when source terms are implicited when using an implicit time scheme to solve the Navier-Stokes equations.
- **projection\_initiale** *int* for inheritance: Keyword to suppress, if boolean equals 0, the initial projection which checks DivU=0. By default, boolean equals 1.
- solveur\_pression solveur\_sys\_base (13.18) for inheritance: Linear pressure system resolution method.
- **solveur\_bar** *solveur\_sys\_base* (13.18) for inheritance: This keyword is used to define when filtering operation is called (typically for EF convective scheme, standard diffusion operator and Source\_Qdm\_lambdaup). A file (solveur.bar) is then created and used for inversion procedure. Syntax is the same then for pressure solver (GCP is required for multi-processor calculations and, in a general way, for big meshes).
- **dt\_projection** *deuxmots* (5.17) for inheritance: nb value: This keyword checks every nb time-steps the equality of velocity divergence to zero. value is the criteria convergency for the solver used.
- seuil\_divU floatfloat (5.18) for inheritance: value factor: this keyword is intended to minimise the number of iterations during the pressure system resolution. The convergence criteria during this step ('seuil' in solveur\_pression) is dynamically adapted according to the mass conservation. At tn, the linear system Ax=B is considered as solved if the residual ||Ax-B||<seuil(tn). For tn+1, the threshold value seuil(tn+1) will be evualated as:

If ( |max(DivU)\*dt|<value )

Seuil(tn+1) = Seuil(tn)\*factor

Else

Seuil(tn+1)= Seuil(tn)\*factor

Endif

The first parameter (value) is the mass evolution the user is ready to accept per timestep, and the second one (factor) is the factor of evolution for 'seuil' (for example 1.1, so 10

- **traitement\_particulier** *traitement\_particulier* (5.19) for inheritance: Keyword to post-process particular values.
- **correction\_matrice\_projection\_initiale** *int* for inheritance: (IBM advanced) fix matrix of initial projection for PDF
- **correction\_calcul\_pression\_initiale** *int* for inheritance: (IBM advanced) fix initial pressure computation for PDF
- **correction\_vitesse\_projection\_initiale** *int* for inheritance: (IBM advanced) fix initial velocity computation for PDF
- correction\_matrice\_pression int for inheritance: (IBM advanced) fix pressure matrix for PDF
- correction\_vitesse\_modifie int for inheritance: (IBM advanced) fix velocity for PDF
- gradient pression qdm modifie int for inheritance: (IBM advanced) fix pressure gradient
- correction pression modifie int for inheritance: (IBM advanced) fix pressure for PDF
- **postraiter\_gradient\_pression\_sans\_masse** for inheritance: (IBM advanced) avoid mass matrix multiplication for the gradient postprocessing
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.

- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.54 Transport\_epsilon

Description: The eps transport equation in bicephale (standard or realisable) k-eps model.

Keyword Discretize should have already been used to read the object. See also: eqn base (5.43)

```
Usage:
transport_epsilon str
Read str {

    [ disable_equation_residual str]
    [ convection bloc_convection]
    [ diffusion bloc_diffusion]
    [ boundary_conditions|conditions_limites condlims]
    [ initial_conditions|conditions_initiales condinits]
    [ sources sources]
    [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
    [ parametre_equation parametre_equation_base]
    [ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions|conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.55 Transport\_interfaces\_ft\_disc

where

Description: Interface tracking equation for Front-Tracking problem in the discontinuous version.

```
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.43)
Usage:
transport interfaces ft disc str
Read str {
     [initial conditions|conditions initiales bloc lecture]
     [ methode_transport methode_transport_deriv]
     [iterations_correction_volume int]
     [ n_iterations_distance int]
     [ maillage str]
     [ remaillage bloc_lecture_remaillage]
     [ collisions str]
     [ methode_interpolation_v str into ['valeur_a_elem', 'vdf_lineaire']]
     [volume_impose_phase_1 float]
     [ parcours_interface parcours_interface]
     [interpolation repere local ]
     [interpolation_champ_face_interpolation_champ_face_deriv]
     [ n iterations interpolation ibc int]
     [type vitesse imposee str into ['uniforme', 'analytique']]
     [ nombre_facettes_retenues_par_cellule int]
     [ seuil_convergence_uzawa float]
     [ nb iteration max uzawa int]
     [injecteur_interfaces str]
     [vitesse_imposee_regularisee int]
     [indic_faces_modifiee bloc_lecture]
     [ distance_projete_faces str into ['simplifiee', 'initiale', 'modifiee']]
     [ voflike_correction_volume int]
     [ nb lissage correction volume int]
     [ nb_iterations_correction_volume int]
     [type_indic_faces type_indic_faces_deriv]
     [ disable_equation_residual str]
     [convection bloc convection]
     [ diffusion bloc_diffusion]
     [boundary conditions|conditions limites condlims]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation_non_resolue str]
```

• initial\_conditions|conditions\_initiales bloc\_lecture (3.2): The keyword conditions\_initiales is used to define the shape of the initial interfaces through the zero level-set of a function, or through a mesh fichier\_geom. Indicator function is set to 0, that is fluide0, where the function is negative; indicator

function is set to 1, that is fluide1, where the function is positive; the interfaces are the level-set 0 of that function:

```
conditions_initiales { fonction (-((x-0.002)^2+(y-0.002)^2+z^2-(0.00125)^2))*((x-0.005)^2+(y-0.007)^2+z^2(0.00150)^2))*((0.020-z)) }
```

In the above example, there are three interfaces: two bubbles in a liquid with a free surface. One bubble has a radius of 0.00125, i.e. 1.25 mm, and its center is  $\{0.002, 0.002, 0.000\}$ . The other bubble has a radius of 0.00150, i.e. 1.5 mm, and its center is  $\{0.005, 0.007, 0.000\}$ . The free surface is above the two bubble, at a level z=0.02.

Additional feature in this block concerns the keywords ajout\_phase0 and ajout\_phase1. They can be used to simplify the composition of different interfaces. When using these keywords, the initial function defines the indicator function; ajout\_phase0 and ajout\_phase1 are used to modify this initial field. Each time ajout\_phase0 is used, the field is untouched where the function is positive whereas the indicator field is set to 0 where the function is negative. The keyword ajout\_phase1 has the symmetrical use, keeping the field value where the function is negative and setting the indicator field to 1 where the function is positive. The previous example can also be written:

```
conditions_initiales { fonction z-0.020 , NL fonction ajout_phase1 (x-0.002)^2+(y-0.002)^2+z^2-(0.00125)^2 , fonction ajout_phase1 (x-0.005)^2+(y-0.007)^2+z^2-(0.00150)^2 }
```

- methode transport methode transport deriv (5.56): Method of transport of interface.
- iterations\_correction\_volume int: Keyword to specify the number or iterations requested for the correction process that can be used to keep the volume of the phases constant during the transport process.
- n\_iterations\_distance int: Keyword to specify the number or iterations requested for the smoothing process of computing the field corresponding to the signed distance to the interfaces and located at the center of the Eulerian elements. This smoothing is necessary when there are more Lagrangian nodes than Eulerian two-phase cells.
- maillage str: This optional block is used to specify that we want a Gnuplot drawing of the initial mesh. There is only one keyword, niveau\_plot, that is used only to define if a Gnuplot drawing is active (value 1) or not active (value -1). By default, skipping the block will produce non Gnuplot drawing. This option is to be used only in a debug process.
- **remaillage** *bloc\_lecture\_remaillage* (5.57): This block is used to specify the operations that are used to keep the solid interfaces in a proper condition. The remaillage block only contains parameter's values.
- **collisions** *str*: This block is used to specify the operations that are used when a collision occurs between two parts of interfaces. When this occurs, it is necessary to build a new mesh that has locally a clear definition of what is inside and what is outside of the mesh. The collisions can either be active or inactive. If the collisions are active (highly recommended), the keyword juric\_pour\_tout indicates that the Juric level-set reconstruction method will be used to re-create the new mesh after each coalescence or breakup. The next line (type\_remaillage) is used to state whose field will be used for the level-set computation. Main option is Juric, a remeshing that is compatible with parallel computing. When using Juric level-set remeshing, the source field (source\_isovaleur) that is used to compute the level-sets is then defined. It can be either the indicator function (indicatrice), a choice which is the default one and the most robust, or a geometrical distance computed from the mesh at the beginning of the time step (fonction\_distance), a choice that may be more accurate in specific situations.

Type\_remaillage Thomas is an enhancement of the Juric global remeshing algorithm designed to compensate for mass loss during remeshing. The mesh is always reconstructed with the indicator

function (not with the distance function). After having reconstructed the mesh with the Juric algorithm, the difference between the old indicator function (before remeshing) and the new indicator function is computed. The differences occurring at a distance below or equal to N elements from the interface are summed up and used to move the interface in the normal direction. The displacement of the interface is such that the volume of each phase after displacement is equal to the volume of the phase before remeshing. N (default value 1) must be smaller than n\_iterations\_distance (suggested value: 2).

An alternate choice for the remeshing type (type\_remaillage) is collision\_seq, which is more complex and tries to sew the two meshes that have collided, once the collision zone has been removed. This algorithm does not work in parallel computation.

- **methode\_interpolation\_v** *str into ['valeur\_a\_elem', 'vdf\_lineaire']*: In this block, two keywords are possible for method to select the way the interpolation is performed. With the choice valeur\_a\_elem the speed of displacement of the nodes of the interfaces is the velocity at the center of the Eulerian element in which each node is located at the beginning of the time step. This choice is the default interpolation method. The choice VDF\_lineaire is only available with a VDF discretization (VDF). In this case, the speed of displacement of the nodes of the interfaces is linearly interpolated on the 4 (in 2D) or the 6 (in 3D) Eulerian velocities closest the location of each node at the beginning of the time step. In peculiar situation, this choice may provide a better interpolated value. Of course, this choice is not available with a VEF discretization (VEFPreP1B).
- **volume\_impose\_phase\_1** *float*: this keyword is used to specify the volume of one phase to keep the volume of the phases constant during the remeshing process. It is an alternate solution to trouble in mass conservation. This option is mainly realistic when only one inclusion of phase 1 is present in the domain. In most other situations, the iterations\_correction\_volume keyword seems easier to justify. The volume to be keep is in m3 and should agree with initial condition.
- parcours\_interface parcours\_interface (5.58): Parcours\_interface allows you to configure the algorithm that computes the surface mesh to volume mesh intersection. This algorithm has some serious trouble when the surface mesh points coincide with some faces of the volume mesh. Effects are visible on the indicator function, in VDF when a plane interface coincides with a volume mesh surface. To overcome these problems, the keyword correction\_parcours\_thomas keyword can be used: it allows the algorithm to slightly move some mesh points. This algorithm is experimental and is NOT activated by default.
- interpolation\_repere\_local: Triggers a new transport algorithm for the interface: the velocity vector of lagrangian nodes is computed in the moving frame of reference of the center of each connex component, in such a way that relative displacements of nodes within a connex component of the lagrangian mesh are minimized, hence reducing the necessity of barycentering, smooting and local remeshing. Very efficient for bubbly flows.
- interpolation\_champ\_face interpolation\_champ\_face\_deriv (5.59): It is possible to compute the imposed velocity for the solid-fluid interface by direct affectation (interpolation\_scheme would be set to base) or by multi-linear interpolation (interpolation\_scheme would be set to lineaire). The default value is base.
- n\_iterations\_interpolation\_ibc int: Useful only with interpolation\_champ\_face positioned to lineaire. Set the value concerning the width of the region of the linear interpolation. For the Penalized Direct Forcing model, a value equals to 1 is enough.
- type\_vitesse\_imposee str into ['uniforme', 'analytique']: Useful only with interpolation\_champ\_face positioned to lineaire. Value of the keyword is uniforme (for an uniform solid-fluide interface's velocity, i.e. zero for instance) or analytique (for an analytic expression of the solid-fluide interface's velocity depending on the spatial coordinates). The default value is uniforme.
- nombre\_facettes\_retenues\_par\_cellule int: Keyword to specify the default number (3) of facets per cell used to describe the geometry of the solid-solid interface. This number should be increased if the geometry of the solid-solid interface is complex in each cell (eulerian mesh too coarse for example).
- seuil\_convergence\_uzawa float: Optional option to change the default value (10-8) of the threshold convergence for the Uzawa algorithm if used in the Penalized Direct Forcing model. Sometime, the value should be decreased to insure a better convergence to force equality between sequential and

parallel results.

- nb\_iteration\_max\_uzawa int: Optional option to change the default value (10-8) of the threshold convergence for the Uzawa algorithm if used in the Penalized Direct Forcing model. Sometime, the value should be decreased to insure a better convergence to force equality between sequential and parallel results.
- injecteur\_interfaces str
- vitesse\_imposee\_regularisee int
- indic faces modifiee bloc lecture (3.2)
- distance\_projete\_faces str into ['simplifiee', 'initiale', 'modifiee']
- voflike correction volume int
- nb lissage correction volume int
- nb\_iterations\_correction\_volume int
- **type\_indic\_faces** *type\_indic\_faces\_deriv* (5.60): kind of interpolation to compute the face value of the phase indicator function (advanced option). Could be STANDARD, MODIFIEE or AI\_BASED
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.56 Methode\_transport\_deriv

Description: Basic class for method of transport of interface.

```
See also: objet_lecture (39) loi_horaire (5.56.1) vitesse_imposee (5.56.2) vitesse_interpolee (5.56.3)
```

Usage:

methode\_transport\_deriv

```
5.56.1 Loi_horaire
```

Description: not\_set

See also: methode\_transport\_deriv (5.56)

Usage:

loi\_horaire nom\_loi

where

nom\_loi str

#### 5.56.2 Vitesse\_imposee

Description: Class to specify that the speed of displacement of the nodes of the interfaces is imposed with an analytical formula.

```
See also: methode_transport_deriv (5.56)

Usage:
vitesse_imposee val
where

• val word1 word2 (word3): Analytical formula.
```

#### 5.56.3 Vitesse interpolee

Description: Class to specify that the interpolation will use the velocity field of the Navier-Stokes equation named val to compute the speed of displacement of the nodes of the interfaces.

```
See also: methode_transport_deriv (5.56)

Usage: vitesse_interpolee val
where

• val str: Navier-Stokes equation.
```

# 5.57 Bloc\_lecture\_remaillage

```
Description: Parameters for remeshing.
See also: objet_lecture (39)
Usage:
{
     [pas float]
     [ pas_lissage float]
     [ nb iter remaillage int]
     [ nb_iter_barycentrage int]
     [ relax_barycentrage float]
     [ critere_arete float]
     [ critere_remaillage float]
     [impr float]
     [ facteur_longueur_ideale float]
     [ nb_iter_correction_volume int]
     [ seuil_dvolume_residuel float]
     [ lissage_courbure_coeff float]
     [lissage_courbure_iterations int]
     [lissage courbure iterations systematique int]
     [ lissage_courbure_iterations_si_remaillage int]
     [ critere_longueur_fixe float]
}
where
```

- **pas** *float*: This keyword has default value -1.; when it is set to a negative value there is no remeshing. It is the time step in second (physical time) between two operations of remeshing.
- pas\_lissage *float*: This keyword has default value -1.; when it is set to a negative value there is no smoothing of mesh. It is the time step in second (physical time) between two operations of smoothing of the mesh.
- **nb\_iter\_remaillage** *int*: This keyword has default value 0; when it is set to the zero value there is no remeshing. It is the number of iterations performed during a remeshing process.
- **nb\_iter\_barycentrage** *int*: This keyword has default value 0; when it is set to the zero value there is no operation of barycentrage. The barycentrage operation consists in moving each node of the mesh tangentially to the mesh surface and in a direction that let it closer the center of gravity of its neighbors. If relax\_barycentrage is set to 1, the node is move to the center of gravity. For values lower than unity, the motion is limited to the corresponding fraction. The parameter nb\_iter\_barycentrage is the number of iteration of these node displacements.
- relax\_barycentrage float: This keyword has default value 0; when it is set to the zero value there is no motion of the nodes. When 0 < relax\_barycentrage <= 1, this parameter provides the relaxation ratio to be used in the barycentrage operation described for the keyword nb\_iter\_barycentrage.
- **critere\_arete** *float*: This keyword is used to compute two sub-criteria: the minimum and the maximum edge length ratios used in the process of obtaining edges of length close to critere\_longueur\_fixe. Their respective values are set to (1-critere\_arete)\*\*2 and (1+critere\_arete)\*\*2. The default values of the minimum and the maximum are set respectively to 0.5 and 1.5. When an edge is longer than critere\_longueur\_fixe\*(1+critere\_arete)\*\*2, the edge is cut into two pieces; when its length is smaller than critere\_longueur\_fixe\*(1-critere\_arete)\*\*2, this edge has to be suppressed.
- **critere\_remaillage** *float*: This keyword was previously used to compute two sub-criteria: the minimum and the maximum length used in the process of remeshing. Their respective values are set to (1-critere\_remaillage)\*\*2 and (1+critere\_remaillage)\*\*2. The default values of the minimum and the maximum are set respectively to 0.2 and 1.7. There are currently not used in data files.
- **impr** *float*: This keyword is followed by a value that specify the printing time period given. The default value is -1, which means no printing.
- **facteur\_longueur\_ideale** *float*: This keyword is used to set a ratio between edge length and the cube root of volume cell for the remeshing process. The default value is 1.0.
- **nb\_iter\_correction\_volume** *int*: This keyword give the maximum number of iterations to be performed trying to satisfy the criterion seuil\_dvolume\_residuel. The default value is 0, which means no iteration.
- **seuil\_dvolume\_residuel** *float*: This keyword give the error volume (in m3) that is accepted to stop the iterations performed to keep the volume constant during the remeshing process. The default value is 0.0.
- **lissage\_courbure\_coeff** *float*: This keyword is used to specify the diffusion coefficient used in the diffusion process of the curvature in the curvature smoothing process with a time step. The default value is 0.05. That value usually provides a stable process. Too small values do not stabilize enough the interface, especially with several Lagrangian nodes per Eulerian cell. Too high values induce an additional macroscopic smoothing of the interface that should physically come from the surface tension and not from this numerical smoothing.
- **lissage\_courbure\_iterations** *int*: This keyword is used to specify the number of iterations to perform the curvature smoothing process. The default value is 1.
- **lissage\_courbure\_iterations\_systematique** *int*: These keywords allow a finer control than the previous lissage\_courbure\_iterations keyword. N1 iterations are applied systematically at each timestep. For proper DNS computation, N1 should be set to 0.
- lissage\_courbure\_iterations\_si\_remaillage int: N2 iterations are applied only if the local or the global remeshing effectively changes the lagrangian mesh connectivity.
- **critere\_longueur\_fixe** *float*: This keyword is used to specify the ideal edge length for a remeshing process. The default value is -1., which means that the remeshing does not try to have all edge lengths to tend towards a given value.

## 5.58 Parcours\_interface

See also: objet\_lecture (39)

Description: allows you to configure the algorithm that computes the surface mesh to volume mesh intersection. This algorithm has some serious trouble when the surface mesh points coincide with some faces of the volume mesh. Effects are visible on the indicator function, in VDF when a plane interface coincides with a volume mesh surface.

To overcome these problems, the keyword correction\_parcours\_thomas keyword can be used: it allows the algorithm to slightly move some mesh points. This algorithm, which is experimental and is NOT activated by default, triggers a correction that avoids some errors in the computation of the indicator function for surface meshes that exactly cross some eulerian mesh edges (strongly suggested!).

```
Usage:
{
     [correction_parcours_thomas]
}
where
   correction_parcours_thomas
       Interpolation_champ_face_deriv
Description: not_set
See also: objet_lecture (39) base (5.59.1) lineaire (5.59.2)
Usage:
5.59.1 Base
Description: not_set
See also: interpolation_champ_face_deriv (5.59)
Usage:
base
5.59.2 Lineaire
Description: not_set
See also: interpolation_champ_face_deriv (5.59)
Usage:
lineaire {
     [vitesse_fluide_explicite]
}
where
   · vitesse_fluide_explicite
```

```
5.60
        Type_indic_faces_deriv
Description: not_set
See also: objet_lecture (39) standard (5.60.1) modifiee (5.60.2) ai_based (5.60.3)
Usage:
5.60.1 Standard
Description: not_set
See also: type_indic_faces_deriv (5.60)
Usage:
standard
5.60.2 Modifiee
Description: not_set
See also: type_indic_faces_deriv (5.60)
Usage:
modifiee {
      [ position float]
      [thickness float]
}
where
    • position float
    · thickness float
5.60.3 Ai_based
Description: not_set
See also: type_indic_faces_deriv (5.60)
Usage:
ai_based
5.61
        Transport_k
Description: The k transport equation in bicephale (standard or realisable) k-eps model.
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.43)
Usage:
transport_k str
Read str {
      [ disable_equation_residual str]
```

```
[ convection bloc_convection]
[ diffusion bloc_diffusion]
[ boundary_conditions|conditions_limites condlims]
[ initial_conditions|conditions_initiales condinits]
[ sources sources]
[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
[ parametre_equation parametre_equation_base]
[ equation_non_resolue str]
}
where
```

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- convection bloc\_convection (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial\_conditions|conditions\_initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.62 Transport\_k\_epsilon

Description: The (k-eps) transport equation. To resume from a previous mixing length calculation, an external MED-format file containing reconstructed K and Epsilon quantities can be read (see fichier\_ecriture\_k\_eps) thanks to the Champ\_fonc\_MED keyword.

Warning, When used with the Quasi-compressible model, k and eps should be viewed as rho k and rho epsilon when defining initial and boundary conditions or when visualizing values for k and eps. This bug will be fixed in a future version.

Keyword Discretize should have already been used to read the object. See also: eqn\_base (5.43)

```
Usage:
transport_k_epsilon str

Read str {

[ with_nu str into ['yes', 'no']]

[ disable_equation_residual str]

[ convection bloc_convection]

[ diffusion bloc_diffusion]

[ boundary_conditions|conditions_limites condlims]

[ initial_conditions|conditions_initiales condinits]
```

```
[ sources sources]
  [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
  [ parametre_equation parametre_equation_base]
  [ equation_non_resolue str]
}
where
```

- with\_nu str into ['yes', 'no']: yes/no
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

#### 5.63 Transport\_k\_omega

```
Description: The (k-omega) transport equation.
```

Keyword Discretize should have already been used to read the object.

```
See also: eqn_base (5.43)
```

```
Usage:
```

```
transport_k_omega str

Read str {

[ with_nu str into ['yes', 'no']]

[ disable_equation_residual str]

[ convection bloc_convection]

[ diffusion bloc_diffusion]

[ boundary_conditions|conditions_limites condlims]

[ initial_conditions|conditions_initiales condinits]

[ sources sources]

[ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]

[ parametre_equation parametre_equation_base]

[ equation_non_resolue str]

}

where
```

• with\_nu str into ['yes', 'no']: yes/no (default no)

- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** bloc\_diffusion (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- initial conditions conditions initiales condinits (5.4) for inheritance: Initial conditions.
- **sources** *sources* (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.64 Transport\_marqueur\_ft

```
Description: not set
Keyword Discretize should have already been used to read the object.
See also: eqn_base (5.43)
Usage:
transport marqueur ft str
Read str {
      [initial conditions|conditions initiales bloc lecture]
     [injection injection_marqueur]
     [transformation_bulles bloc_lecture]
      [ phase_marquee int]
      [ methode_transport str into ['vitesse_interpolee', 'vitesse_particules']]
      [ methode_couplage str into ['suivi', 'one_way_coupling', 'two_way_coupling']]
     [ nb_iterations int]
      [ contribution_one_way int into [0, 1]]
     [ implicite int into [0, 1]]
     [ disable equation residual str]
     [convection bloc_convection]
      [ diffusion bloc diffusion]
     [boundary conditions|conditions limites condlims]
     [sources sources]
     [ ecrire_fichier_xyz_valeur ecrire_fichier_xyz_valeur]
     [ parametre_equation parametre_equation_base]
     [ equation non resolue str]
}
where
```

• initial\_conditions|conditions\_initiales bloc\_lecture (3.2): ne semble pas standard

- **injection** *injection\_marqueur* (5.65): The keyword injection can be used to inject periodically during the calculation some other particles. The syntax for ensemble\_points and proprietes\_particles is the same than the initial conditions for the particles. The keyword t\_debut\_injection give the injection initial time (by default, given by t\_debut\_integration) and dt\_injection gives the injection time period (by default given by dt\_min).
- transformation\_bulles bloc\_lecture (3.2): This keyword will activate the transformation of an inclusion (small bubbles) into a particle. localisation gives the sub-zones (N number of sub-zones and their names) where the transformation may happen. The diameter size for the inclusion transformation is given by either diameter\_min option, in this case the inclusion will be suppressed for a diameter less than diameter\_size, either by the beta\_transfo option, in this case the inclusion will be suppressed for a diameter less than diameter\_size\*cell\_volume (cell\_volume is the volume of the cell containing the inclusion). interface specifies the name of the inclusion interface and t\_debut\_transfo is the beginning time for the inclusion transformation operation (by default, it is t\_debut\_integr value) and dt\_transfo is the period transformation (by default, it is dt\_min value). In a two phase flow calculation, the particles will be suppressed when entring into the non marked phase
- **phase\_marquee** *int*: Phase number giving the marked phase, where the particles are located (when they leave this phase, they are suppressed). By default, for a the two phase fluide, the particles are supposed to be into the phase 0 (liquid).
- **methode\_transport** *str into ['vitesse\_interpolee', 'vitesse\_particules']*: Kind of transport method for the particles. With vitesse\_interpolee, the velocity of the particles is the velocity a fluid interpolation velocity (option by default). With vitesse\_particules, the velocity of the particules is governed by the resolution of a momentum equation for the particles.
- methode\_couplage str into ['suivi', 'one\_way\_coupling', 'two\_way\_coupling']: Way of coupling between the fluid and the particles. By default, (keyword suivi), there is no interaction between both. With one\_way\_coupling keyword, the fluid act on the particles. With two\_way\_coupling keyword, besides, particles act on the fluid.
- **nb\_iterations** *int*: Number of sub-timesteps to solve the momentum equation for the particles (1 per default).
- **contribution\_one\_way** *int into* [0, 1]: Activate (1, default) or not (0) the fluid forces on the particles when one\_way\_coupling or two\_way\_coupling coupling method is used.
- **implicite** *int into* [0, 1]: Impliciting (1) or not (0) the time scheme when weight added source term is used in the momentum equation
- **disable\_equation\_residual** *str* for inheritance: The equation residual will not be used for the problem residual used when checking time convergence or computing dynamic time-step
- **convection** *bloc\_convection* (5.2) for inheritance: Keyword to alter the convection scheme.
- **diffusion** *bloc\_diffusion* (5.3) for inheritance: Keyword to specify the diffusion operator.
- boundary\_conditions|conditions\_limites condlims (4.32.1) for inheritance: Boundary conditions.
- sources sources (5.5) for inheritance: To introduce a source term into an equation (in case of several source terms into the same equation, the blocks corresponding to the various terms need to be separated by a comma)
- ecrire\_fichier\_xyz\_valeur ecrire\_fichier\_xyz\_valeur (3.52) for inheritance: This keyword is used to write the values of a field only for some boundaries in a text file
- parametre\_equation parametre\_equation\_base (5.6) for inheritance: Keyword used to specify additional parameters for the equation
- equation\_non\_resolue *str* for inheritance: The equation will not be solved while condition(t) is verified if equation\_non\_resolue keyword is used. Exemple: The Navier-Stokes equations are not solved between time t0 and t1.

```
Navier_Sokes_Standard { equation_non_resolue (t>t0)*(t<t1) }
```

# 5.65 Injection\_marqueur

```
Description: not_set

See also: objet_lecture (39)

Usage:
{

    ensemble_points bloc_lecture
    proprietes_particules bloc_lecture
    [t_debut_injection float]
    [dt_injection float]
}
where

    ensemble_points bloc_lecture (3.2)
    proprietes_particules bloc_lecture (3.2)
    t_debut_injection float
    dt_injection float
```

# 6 ijk\_splitting

Description: Object to specify how the domain will be divided between processors in IJK discretization

```
See also: objet_u (40)

Usage:
IJK_Splitting str

Read str {

    ijk_grid_geometry str
    nproc_i int
    nproc_j int
    nproc_k int
}
where
```

- ijk\_grid\_geometry str: the grid that will be splitted
- nproc\_i int: the number of processors into which we will divide the grid following the I direction
- nproc\_j int: the number of processors into which we will divide the grid following the J direction
- **nproc** k int: the number of processors into which we will divide the grid following the K direction

# 7 interface\_base

```
Description: Basic class for a liquid-gas interface (used in pb_multiphase)

See also: objet_u (40) saturation_base (7.2) Interface_sigma_constant (7.1)

Usage:
Interface_base str
Read str {
```

```
[ surface_tension|tension_superficielle float]
}
where
   • surface_tension|tension_superficielle float: surface tension
7.1 Interface_sigma_constant
Description: Liquid-gas interface with a constant surface tension sigma
See also: Interface_base (7)
Usage:
Interface_sigma_constant str
Read str {
     [ surface_tension|tension_superficielle float]
}
where
   • surface_tension|tension_superficielle float for inheritance: surface tension
7.2
     Saturation base
Description: fluide-gas interface with phase change (used in pb_multiphase)
See also: Interface_base (7) saturation_sodium (7.4) saturation_constant (7.3)
Usage:
saturation_base str
Read str {
     [ p_ref float]
     [t_ref float]
     [ surface_tension|tension_superficielle | float]
}
where
   • p_ref float
   • t_ref float
   • surface_tension|tension_superficielle float for inheritance: surface tension
7.3 Saturation_constant
Description: Class for saturation constant
See also: saturation_base (7.2)
Usage:
saturation_constant str
Read str {
```

```
[P_sat float]
      [T_sat float]
      [Lvap float]
      [ Hlsat float]
      [ Hvsat float]
      [ p_ref float]
      [t_ref float]
      [ surface tension|tension superficielle |float]
}
where
    • P_sat float: Define the saturation pressure value (this is a required parameter)
    • T_sat float: Define the saturation temperature value (this is a required parameter)
    • Lvap float: Latent heat of vaporization
    • Hisat float: Liquid saturation enthalpy
    • Hvsat float: Vapor saturation enthalpy
    • p_ref float for inheritance
    • t_ref float for inheritance
```

• surface\_tension|tension\_superficielle float for inheritance: surface tension

#### 7.4 Saturation\_sodium

```
Description: Class for saturation sodium

See also: saturation_base (7.2)

Usage:
saturation_sodium str

Read str {

    [P_ref float]
    [T_ref float]
    [p_ref float]
    [t_ref float]
    [surface_tension|tension_superficielle float]
}

where
```

- **P\_ref** *float*: Use to fix the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T\_ref** *float*: Use to fix the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- **p\_ref** *float* for inheritance
- t ref float for inheritance
- surface\_tension|tension\_superficielle float for inheritance: surface tension

# 8 triple\_line\_model\_ft\_disc

```
Description: Triple Line Model (TCL)
See also: objet_u (40)
```

```
Usage:
Triple Line Model FT Disc str
Read str {
      [qtcl float]
      [ lv float]
      [coeffa float]
      [ coeffb float]
      [theta app float]
      [ ylim float]
      [ym float]
      sm float
      [vmeso float]
      [ n_extend_meso int]
      [initial_cl_xcoord float]
      [rc_tcl_gridn float]
      [thetac_tcl float]
      [reinjection tcl]
      [distri first facette]
      [ file_name float]
      [ deactivate ]
      [inout_method str into ['exact', 'approx', 'both']]
}
where
    • qtcl float: Heat flux contribution to micro-region [W/m]
    • Iv float: Slip length (unused)
    · coeffa float

    coeffb float

    • theta_app float: Apparent contact angle (Cox-Voinov)
    • vlim float
    • ym float: Wall distance of the point M delimiting micro/meso transition [m]
    • sm float: Curvilinear abscissa of the point M delimiting micro/meso transition [m]
    • ymeso float: Meso region extension in wall-normal direction [m]
    • n_extend_meso int: Meso region extension in number of cells [-]
    • initial cl xcoord float: Initial interface position (unused)
    • rc tcl gridn float: Radius of nucleate site; [in number of grids]
```

- **thetac\_tcl** *float*: imposed contact angle [in degree] to force bubble pinching / necking once TCL entre nucleate site
- reinjection\_tcl: This rien activates the automatic injection of a new nucleate seed with a specified shape when the temperature in the nucleation site becomes higher than a certain threshold (tempC\_tcl). The shape of the seed is determined by the radius Rc\_tcl\_GridN and the contact angle thetaC\_tcl. The nucleation site is considered free when there are no bubbles present. The site size is defined by Rc\_tcl\_GridN. This temperature threshold, termed tempC\_tcl, is the activation temperature. Setting this temperature implies a wall temperature, therefore, activating reinjection\_tcl is ONLY possible for a simulation coupled with solid conduction.

When reinjection\_tcl is activated, the values of tempC\_tcl (default 10K), Rc\_tcl\_GridN (default 4 grid sizes), and thetaC\_tcl (default 150 degrees) should be provided. Unless (STRONGLY not recommended), the default values (indicated in parentheses) will be used.

If reinjection\_tcl is not activated (by default), the mechanism of Numerically forcing bubble pinching/necking will be used for multi-cycle simulation. Once the Triple Contact Line (TCL) enters the nucleation site, a big contact angle thetaC\_tcl is imposed to initiate bubble pinching/necking. After the bubble pinching ends, the large bubble above will depart, leaving the remaining part to serve as

the nucleate seed. This process is equivalent to immediately inserting a new seed with a prescribed shape (determined by the nucleation site size and contact angle) once a bubble departs. Site size is defined by Rc\_tcl\_GridN (default 4 grid sizes). Contact angle thetaC\_tcl (default 150 degrees). Useful for a standalone (not coupling with solid conduction) simulation.

- distri\_first\_facette: This rien determines whether to distribute the Qtcl into all grids occupied by the first facette according to their area proportions. When set, the flux is redistributed into all grids occupied by the first facette based on their area proportions. Default value is 0, the flux is distributed differently: similar to the Meso zone, it is only distributed to grids within the Micro-zone (where the height of the front y is smaller than the size of Micro ym). The distribution of this flux is logarithmically proportional to y between 5.6nm (here interpreted as the value 0 in logarithm) and ym. In practice, in most cases, it will distribute all the flux locally in the first grid.
- file\_name float: Input file to set TCL model
- deactivate : Simple way to disable completely the TCL model contribution
- inout\_method str into ['exact', 'approx', 'both']: Type of method for in out calc. By defautl, exact method is used

# 9 algo\_base

```
Description: Basic class for multi-grid algorithms.
See also: objet_u (40) algo_couple_1 (9.1)
Usage:
9.1 Algo_couple_1
Description: not_set
See also: algo_base (9)
Usage:
algo_couple_1 str
Read str {
     [ dt uniforme ]
}
where
   • dt_uniforme
10
10.1 /*
Description: bloc of Comment in a data file.
See also: objet_u (40)
Usage:
/* comm
where
```

• **comm** *str*: Text to be commented.

# 11 champ\_generique\_base

```
Description: not_set
See also: objet_u (40) champ_post_de_champs_post (11.1) champ_post_refchamp (11.17) predefini (11.15)
Usage:
11.1
       Champ_post_de_champs_post
Description: not_set
See also: champ_generique_base (11) champ_post_operateur_base (11.4) champ_post_statistiques_base
(11.6) champ_post_extraction (11.10) champ_post_tparoi_vef (11.18) champ_post_operateur_eqn (11.5)
champ_post_morceau_equation (11.13) champ_post_reduction_0d (11.16) champ_post_interpolation (11.12)
champ_post_transformation (11.19)
champ_post_de_champs_post str
Read str {
     [ source champ_generique_base]
     [ nom source str]
     [source reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (11): the source field.
   • nom_source str: To name a source field with the nom_source keyword
   • source reference str
   • sources_reference list_nom_virgule (11.2)
   • sources listchamp_generique (11.3): sources { Champ_Post.... { ... } Champ_Post... { ... }}
11.2 List_nom_virgule
Description: List of name.
See also: listobj (38.5)
Usage:
{ object1, object2.... }
list of nom_anonyme (28.1) separeted with,
11.3 Listchamp_generique
Description: XXX
See also: listobj (38.5)
Usage:
{ object1, object2....}
```

list of champ\_generique\_base (11) separeted with,

# 11.4 Champ\_post\_operateur\_base

```
Description: not_set
See also: champ_post_de_champs_post (11.1) champ_post_operateur_gradient (11.11) champ_post_operateur-
_divergence (11.8)
Usage:
champ_post_operateur_base str
Read str {
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (11) for inheritance: the source field.
   • nom source str for inheritance: To name a source field with the nom source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (11.2) for inheritance
   • sources listchamp_generique (11.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
11.5
       Champ_post_operateur_eqn
Synonymous: operateur_eqn
Description: Post-process equation operators/sources
See also: champ_post_de_champs_post (11.1)
Usage:
champ_post_operateur_eqn str
Read str {
     [ numero_source int]
     [ numero op int]
     [ numero masse int]
     [ sans_solveur_masse ]
     [compo int]
     [ source champ_generique_base]
     [ nom_source str]
     [source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
```

• **numero\_source** *int*: the source to be post-processed (its number). If you have only one source term, numero\_source will correspond to 0 if you want to post-process that unique source

- **numero\_op** *int*: numero\_op will be 0 (diffusive operator) or 1 (convective operator) or 2 (gradient operator) or 3 (divergence operator).
- numero\_masse int: numero\_masse will be 0 for the mass equation operator in Pb\_multiphase.
- · sans\_solveur\_masse
- **compo** *int*: If you want to post-process only one component of a vector field, you can specify the number of the component after compo keyword. By default, it is set to -1 which means that all the components will be post-processed. This feature is not available in VDF disretization.
- source champ generique base (11) for inheritance: the source field.
- nom\_source str for inheritance: To name a source field with the nom\_source keyword
- source reference str for inheritance
- sources\_reference list\_nom\_virgule (11.2) for inheritance
- **sources** *listchamp\_generique* (11.3) for inheritance: sources { Champ\_Post.... { ... } Champ\_Post... { ... }}

# 11.6 Champ\_post\_statistiques\_base

```
Description: not set
See also: champ_post_de_champs_post (11.1) correlation (11.7) moyenne (11.14) ecart_type (11.9)
Usage:
champ_post_statistiques_base str
Read str {
     t_deb float
     t fin float
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp generique]
}
where
   • t_deb float: Start of integration time
   • t_fin float: End of integration time
   • source champ_generique_base (11) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (11.2) for inheritance
   • sources listchamp_generique (11.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
      { ... }}
```

#### 11.7 Correlation

Synonymous: champ\_post\_statistiques\_correlation

Description: to calculate the correlation between the two fields.

```
See also: champ_post_statistiques_base (11.6)
```

Usage:

```
Read str {
     t_deb float
     t_fin float
     [ source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • t_deb float for inheritance: Start of integration time
   • t_fin float for inheritance: End of integration time
   • source champ_generique_base (11) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources reference list nom virgule (11.2) for inheritance
   • sources listchamp_generique (11.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
11.8
       Champ_post_operateur_divergence
Synonymous: divergence
Description: To calculate divergency of a given field.
See also: champ_post_operateur_base (11.4)
Usage:
champ_post_operateur_divergence str
Read str {
     [source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (11) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (11.2) for inheritance
   • sources listchamp_generique (11.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
```

correlation str

# 11.9 Ecart\_type

where

```
Synonymous: champ_post_statistiques_ecart_type
Description: to calculate the standard deviation (statistic rms) of the field nom champ.
See also: champ_post_statistiques_base (11.6)
Usage:
ecart_type str
Read str {
     t_deb float
     t_fin float
     [ source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
   • t deb float for inheritance: Start of integration time
   • t_fin float for inheritance: End of integration time
   • source champ_generique_base (11) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source_reference str for inheritance
   • sources_reference list_nom_virgule (11.2) for inheritance
   • sources listchamp_generique (11.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
11.10 Champ_post_extraction
Synonymous: extraction
Description: To create a surface field (values at the boundary) of a volume field
See also: champ_post_de_champs_post (11.1)
Usage:
champ_post_extraction str
Read str {
     domaine str
     nom_frontiere str
     [ methode str into ['trace', 'champ_frontiere']]
     [source champ_generique_base]
     [ nom_source str]
     [source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
```

- domaine str: name of the volume field
- nom\_frontiere str: boundary name where the values of the volume field will be picked
- **methode** *str into ['trace', 'champ\_frontiere']*: name of the extraction method (trace by\_default or champ\_frontiere)
- source champ\_generique\_base (11) for inheritance: the source field.
- nom\_source str for inheritance: To name a source field with the nom\_source keyword
- source reference str for inheritance
- sources reference list nom virgule (11.2) for inheritance
- **sources** *listchamp\_generique* (11.3) for inheritance: sources { Champ\_Post.... { ... } Champ\_Post... { ... }}

### 11.11 Champ\_post\_operateur\_gradient

```
Synonymous: gradient
Description: To calculate gradient of a given field.
See also: champ_post_operateur_base (11.4)
Usage:
champ_post_operateur_gradient str
Read str {
     [ source champ_generique_base]
     [ nom source str]
     [ source_reference str]
     [sources reference list nom virgule]
     [sources listchamp_generique]
}
where
   • source champ_generique_base (11) for inheritance: the source field.
   • nom_source str for inheritance: To name a source field with the nom_source keyword
   • source reference str for inheritance
   • sources_reference list_nom_virgule (11.2) for inheritance
   • sources listchamp_generique (11.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post...
     { ... }}
```

#### 11.12 Champ\_post\_interpolation

```
Synonymous: interpolation
```

[domaine str]

Description: To create a field which is an interpolation of the field given by the keyword source.

```
See also: champ_post_de_champs_post (11.1)

Usage:
champ_post_interpolation str

Read str {

localisation str

[ methode str]
```

```
[ optimisation_sous_maillage str into ['default', 'yes', 'no']]
    [ source champ_generique_base]
    [ nom_source str]
    [ source_reference str]
    [ sources_reference list_nom_virgule]
    [ sources listchamp_generique]
}
```

- localisation str: type\_loc indicate where is done the interpolation (elem for element or som for node).
- methode str: The optional keyword methode is limited to calculer\_champ\_post for the moment.
- domaine str: the domain name where the interpolation is done (by default, the calculation domain)
- optimisation\_sous\_maillage str into ['default', 'yes', 'no']
- source champ\_generique\_base (11) for inheritance: the source field.
- nom\_source str for inheritance: To name a source field with the nom\_source keyword
- source\_reference str for inheritance
- sources\_reference list\_nom\_virgule (11.2) for inheritance
- **sources** *listchamp\_generique* (11.3) for inheritance: sources { Champ\_Post.... { ... } Champ\_Post... { ... }}

# 11.13 Champ\_post\_morceau\_equation

Synonymous: morceau\_equation

Description: To calculate a field related to a piece of equation. For the moment, the field which can be calculated is the stability time step of an operator equation. The problem name and the unknown of the equation should be given by Source refChamp { Pb\_Champ problem\_name unknown\_field\_of\_equation }

```
See also: champ_post_de_champs_post (11.1)
```

```
Usage:
```

```
champ_post_morceau_equation str
Read str {

    type str
    [numero int]
    [unite str]
    option str into ['stabilite', 'flux_bords', 'flux_surfacique_bords']
    [compo int]
    [source champ_generique_base]
    [nom_source str]
    [source_reference str]
    [sources_reference list_nom_virgule]
    [sources listchamp_generique]
}
where
```

- **type** *str*: can only be operateur for equation operators.
- **numero** *int*: numero will be 0 (diffusive operator) or 1 (convective operator) or 2 (gradient operator) or 3 (divergence operator).
- unite str: will specify the field unit

- **option** *str into* ['stabilite', 'flux\_bords', 'flux\_surfacique\_bords']: option is stability for time steps or flux\_bords for boundary fluxes or flux\_surfacique\_bords for boundary surfacic fluxes
- **compo** *int*: compo will specify the number component of the boundary flux (for boundary fluxes, in this case compo permits to specify the number component of the boundary flux choosen).
- **source** *champ\_generique\_base* (11) for inheritance: the source field.
- nom\_source str for inheritance: To name a source field with the nom\_source keyword
- source reference str for inheritance
- sources reference list nom virgule (11.2) for inheritance
- sources listchamp\_generique (11.3) for inheritance: sources { Champ\_Post.... { ... } Champ\_Post... { ... }}

### 11.14 Moyenne

Synonymous: champ\_post\_statistiques\_moyenne

Description: to calculate the average of the field over time

```
See also: champ_post_statistiques_base (11.6)
```

- moyenne\_convergee champ\_base (18.1): This option allows to read a converged time averaged field in a .xyz file in order to calculate, when resuming the calculation, the statistics fields (rms, correlation) which depend on this average. In that case, the time averaged field is not updated during the resume of calculation. In this case, the time averaged field must be fully converged to avoid errors when calculating high order statistics.
- t\_deb float for inheritance: Start of integration time
- t\_fin float for inheritance: End of integration time
- source champ generique base (11) for inheritance: the source field.
- nom source str for inheritance: To name a source field with the nom source keyword
- source reference str for inheritance
- sources\_reference list\_nom\_virgule (11.2) for inheritance
- **sources** *listchamp\_generique* (11.3) for inheritance: sources { Champ\_Post.... { ... } Champ\_Post... { ... }}

#### 11.15 Predefini

Description: This keyword is used to post process predefined postprocessing fields.

```
See also: champ_generique_base (11)

Usage:
predefini str
Read str {
    pb_champ deuxmots
}
where
```

• **pb\_champ** *deuxmots* (5.17): { Pb\_champ nom\_pb nom\_champ } : nom\_pb is the problem name and nom\_champ is the selected field name. The available keywords for the field name are: energie\_cinetique\_totale, energie\_cinetique\_elem, viscosite\_turbulente, viscous\_force\_x, viscous\_force\_y, viscous\_force\_z, pressure\_force\_x, pressure\_force\_y, pressure\_force\_z, total\_force\_x, total\_force\_y, total\_force\_z, viscous\_force, pressure\_force, total\_force

# 11.16 Champ\_post\_reduction\_0d

Synonymous: reduction\_0d

Description: To calculate the min, max, sum, average, weighted sum, weighted average, weighted sum by porosity, weighted average by porosity, euclidian norm, normalized euclidian norm, L1 norm, L2 norm of a field.

```
See also: champ_post_de_champs_post (11.1)

Usage:
champ_post_reduction_0d str

Read str {

    methode str into ['min', 'max', 'moyenne', 'average', 'moyenne_ponderee', 'weighted_average', 'somme', 'sum', 'somme_ponderee', 'weighted_sum', 'somme_ponderee_porosite', 'weighted_sum-_porosity', 'euclidian_norm', 'normalized_euclidian_norm', 'L1_norm', 'L2_norm', 'valeur_a_gauche', 'left_value']
    [ source champ_generique_base]
    [ nom_source str]
    [ source_reference str]
    [ sources_reference list_nom_virgule]
    [ sources listchamp_generique]
}
```

- methode str into ['min', 'max', 'moyenne', 'average', 'moyenne\_ponderee', 'weighted\_average', 'somme', 'sum', 'somme\_ponderee', 'weighted\_sum', 'somme\_ponderee\_porosite', 'weighted\_sum-porosity', 'euclidian\_norm', 'normalized\_euclidian\_norm', 'L1\_norm', 'L2\_norm', 'valeur\_a\_gauche', 'left\_value']: name of the reduction method:
  - min for the minimum value,
  - max for the maximum value,
  - average (or moyenne) for a mean,
  - weighted\_average (or moyenne\_ponderee) for a mean ponderated by integration volumes, e.g. cell volumes for temperature and pressure in VDF, volumes around faces for velocity and temperature in VEF,
  - sum (or somme) for the sum of all the values of the field,

- weighted\_sum (or somme\_ponderee) for a weighted sum (integral),
- weighted\_average\_porosity (or moyenne\_ponderee\_porosite) and weighted\_sum\_porosity (or somme\_ponderee\_porosite) for the mean and sum weighted by the volumes of the elements, only for ELEM localisation,
- euclidian norm for the euclidian norm,
- normalized\_euclidian\_norm for the euclidian norm normalized,
- L1 norm for norm L1,
- L2 norm for norm L2
- **source** *champ\_generique\_base* (11) for inheritance: the source field.
- nom source str for inheritance: To name a source field with the nom source keyword
- source reference str for inheritance
- sources\_reference list\_nom\_virgule (11.2) for inheritance
- **sources** *listchamp\_generique* (11.3) for inheritance: sources { Champ\_Post.... { ... } Champ\_Post... { ... }}

# 11.17 Champ\_post\_refchamp

```
Synonymous: refchamp

Description: Field of prolem

See also: champ_generique_base (11)

Usage:
champ_post_refchamp str

Read str {

    pb_champ deuxmots
    [nom_source str]
}

where
```

- **pb\_champ** *deuxmots* (5.17): { Pb\_champ nom\_pb nom\_champ } : nom\_pb is the problem name and nom\_champ is the selected field name.
- nom source str: The alias name for the field

# 11.18 Champ\_post\_tparoi\_vef

Synonymous: tparoi\_vef

Description: This keyword is used to post process (only for VEF discretization) the temperature field with a slight difference on boundaries with Neumann condition where law of the wall is applied on the temperature field. nom\_pb is the problem name and field\_name is the selected field name. A keyword (temperature physique) is available to post process this field without using Definition champs.

```
See also: champ_post_de_champs_post (11.1)

Usage:
champ_post_tparoi_vef str

Read str {

  [source champ_generique_base]
  [nom source str]
```

```
[ source_reference str]
    [ sources_reference list_nom_virgule]
    [ sources listchamp_generique]
}
where

• source champ_generique_base (11) for inheritance: the source field.
• nom_source str for inheritance: To name a source field with the nom_source keyword
• source_reference str for inheritance
• sources_reference list_nom_virgule (11.2) for inheritance
• sources listchamp_generique (11.3) for inheritance: sources { Champ_Post.... { ... } Champ_Post... { ... } }
```

#### 11.19 Champ\_post\_transformation

Synonymous: transformation

Description: To create a field with a transformation using source fields and x, y, z, t. If you use in your datafile source refChamp { Pb\_champ pb pression }, the field pression may be used in the expression with the name pression\_natif\_dom; this latter is the same as pression. If you specify nom\_source in refChamp bloc, you should use the alias given to pressure field. This is avail for all equations unknowns in transformation.

```
See also: champ_post_de_champs_post (11.1)
Usage:
champ_post_transformation str
Read str {
     methode str into ['produit scalaire', 'norme', 'vecteur', 'formule', 'composante']
     [unite str]
     [ expression n word1 word2 ... wordn]
     [ numero int]
     [localisation str]
     [source champ_generique_base]
     [ nom_source str]
     [ source_reference str]
     [ sources_reference list_nom_virgule]
     [sources listchamp_generique]
}
where
```

- methode str into ['produit\_scalaire', 'norme', 'vecteur', 'formule', 'composante']: methode 0 methode norme: will calculate the norm of a vector given by a source field methode produit\_scalaire: will calculate the dot product of two vectors given by two sources fields methode composante numero integer: will create a field by extracting the integer component of a field given by a source field methode formule expression 1: will create a scalar field located to elements using expressions with x,y,z,t parameters and field names given by a source field or several sources fields. methode vecteur expression N f1(x,y,z,t) fN(x,y,z,t): will create a vector field located to elements by defining its N components with N expressions with x,y,z,t parameters and field names given by a source field or several sources fields.
- unite str: will specify the field unit

- expression n word1 word2 ... wordn: expression 1 see methodes formule and vecteur
- **numero** *int*: numero 1 see methode composante
- localisation str: localisation 1 type loc indicate where is done the interpolation (elem for element or som for node). The optional keyword methode is limited to calculer\_champ\_post for the moment
- **source** *champ\_generique\_base* (11) for inheritance: the source field.
- nom\_source str for inheritance: To name a source field with the nom\_source keyword
- source reference str for inheritance
- sources reference list nom virgule (11.2) for inheritance
- sources listchamp generique (11.3) for inheritance: sources { Champ Post.... { ... } Champ Post...

#### 12 chimie

```
Description: Keyword to describe the chmical reactions
```

```
See also: objet_u (40)
Usage:
chimie str
Read str {
     reactions reactions
     [ modele_micro_melange int]
     [ constante_modele_micro_melange float]
     [ espece_en_competition_micro_melange str]
}
where
```

- reactions reactions (12.1): list of reactions
- modele\_micro\_melange int: modele\_micro\_melange (0 by default)
- constante\_modele\_micro\_melange float: constante of modele (1 by default)
- espece en competition micro melange str: espece in competition in reactions

```
12.1 Reactions
Description: list of reactions
See also: listobj (38.5)
Usage:
{ object1, object2 .... }
list of reaction (12.1.1) separeted with,
12.1.1 Reaction
Description: Keyword to describe reaction:
w = K pow(T,beta) \exp(-Ea/(RT)) \prod pow(Reactif_i,activitivity_i).
If K_{inv} > 0,
w= K pow(T,beta) exp(-Ea/( R T)) ( \Pi pow(Reactif_i,activitivity_i) - Kinv/exp(-c_r_Ea/(R T)) \Pi pow(Produit-
_i,activitivity_i ))
See also: objet_lecture (39)
Usage:
```

```
{
     reactifs str
     produits str
     [constante_taux_reaction float]
     [coefficients activites bloc lecture]
     enthalpie reaction float
     energie_activation float
     exposant_beta float
     [contre_reaction float]
     [contre_energie_activation float]
}
where
   • reactifs str: LHS of equation (ex CH4+2*O2)
   • produits str: RHS of equation (ex CO2+2*H20)
   • constante_taux_reaction float: constante of cinetic K
   • coefficients_activites bloc_lecture (3.2): coefficients od ativity (exemple { CH4 1 O2 2 })
   • enthalpie reaction float: DH
   • energie_activation float: Ea
   • exposant_beta float: Beta
   • contre_reaction float: K_inv
   • contre_energie_activation float: c_r_Ea
13
      class_generic
Description: not_set
See also: objet_u (40) dt_start (13.10) solveur_sys_base (13.18) Modele_Fonc_Realisable_base (13.2)
Usage:
      Modele fonc realisable
Description: Deriv for instanciation of functions necessary to Realizable K-Epsilon Turbulence Model
See also: Modele_Fonc_Realisable_base (13.2)
Usage:
13.2
       Modele fonc realisable base
Description: Base class for Functions necessary to Realizable K-Epsilon Turbulence Model
See also: class_generic (13) Modele_Fonc_Realisable (13.1) Shih_Zhu_Lumley (13.4) Modele_Shih_Zhu-
_Lumley_VDF (13.3)
Usage:
```

#### 13.3 Modele\_shih\_zhu\_lumley\_vdf

Description: Functions necessary to Realizable K-Epsilon Turbulence Model in VDF

```
See also: Modele_Fonc_Realisable_base (13.2)
Usage:
Modele_Shih_Zhu_Lumley_VDF str
Read str {
     [ a0 float]
}
where
   • a0 float: value of parameter A0 in U* formula
13.4 Shih_zhu_lumley
Description: Functions necessary to Realizable K-Epsilon Turbulence Model in VEF
See also: Modele_Fonc_Realisable_base (13.2)
Usage:
Shih_Zhu_Lumley str
Read str {
     [ a0 float]
}
where
   • a0 float: value of parameter A0 in U* formula
13.5 Amgx
Description: Solver via AmgX API
See also: petsc (13.15)
Usage:
amgx solveur option_solveur [ atol ] [ rtol ]
where
   • solveur str
   • option_solveur bloc_lecture (3.2)
   • atol float: Absolute threshold for convergence (same as seuil option)
   • rtol float: Relative threshold for convergence
13.6
       Cholesky
Description: Cholesky direct method.
See also: solveur_sys_base (13.18)
Usage:
cholesky str
Read str {
```

```
[impr]
     [quiet]
}
where
   • impr : Keyword which may be used to print the resolution time.
   • quiet : To disable printing of information
13.7 Dt_calc
Description: The time step at first iteration is calculated in agreement with CFL condition.
See also: dt_start (13.10)
Usage:
dt_calc
13.8 Dt_fixe
Description: The first time step is fixed by the user (recommended when resuming calculation with Crank
Nicholson temporal scheme to ensure continuity).
See also: dt_start (13.10)
Usage:
dt_fixe value
where
   • value float: first time step.
13.9 Dt_min
Description: The first iteration is based on dt_min.
See also: dt_start (13.10)
Usage:
dt_min
13.10 Dt_start
Description: not_set
See also: class_generic (13) dt_calc (13.7) dt_min (13.9) dt_fixe (13.8)
Usage:
```

 $dt_start$ 

# 13.11 Gcp\_ns

```
Description: not_set
See also: gcp (13.17)
Usage:
gcp ns str
Read str {
     solveur0 solveur_sys_base
     solveur1 solveur_sys_base
     [ precond precond_base]
     [ precond_nul ]
     seuil float
     [impr]
     [quiet]
     [ save matrix|save matrice ]
     [ optimized ]
     [ nb it max int]
}
where
```

- solveur0 solveur\_sys\_base (13.18): Solver type.
- solveur1 solveur\_sys\_base (13.18): Solver type.
- **precond** *precond\_base* (31) for inheritance: Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:
  - when the solver does not converge during initial projection,
  - when comparing sequential and parallel computations.

With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.

- **precond nul** for inheritance: Keyword to not use a preconditioning method.
- seuil *float* for inheritance: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **impr** for inheritance: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet for inheritance: To not displaying any outputs of the solver.
- save matrix|save matrice for inheritance: to save the matrix in a file.
- **optimized** for inheritance: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged.

Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.

• **nb\_it\_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gcp.

#### 13.12 Gen

Description: not\_set

```
See also: solveur_sys_base (13.18)

Usage:
gen str
Read str {

    solv_elem str
    precond precond_base
    [seuil float]
    [impr ]
    [save_matrix|save_matrice ]
    [quiet ]
    [nb_it_max int]
    [force ]

}
where
```

- solv\_elem str: To specify a solver among gmres or bicgstab.
- **precond** *precond\_base* (31): The only preconditionner that we can specify is ilu.
- **seuil** *float*: Value of the final residue. The solver ceases iterations when the Euclidean residue standard ||Ax-B|| is less than this value. default value 1e-12.
- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- save\_matrix|save\_matrice : To save the matrix in a file.
- quiet : To not displaying any outputs of the solver.
- **nb\_it\_max** *int*: Keyword to set the maximum iterations number for the GEN solver.
- **force**: Keyword to set ipar[5]=-1 in the GEN solver. This is helpful if you notice that the solver does not perform more than 100 iterations. If this keyword is specified in the datafile, you should provide nb\_it\_max.

#### **13.13** Gmres

```
Description: Gmres method (for non symetric matrix).
```

```
See also: solveur_sys_base (13.18)

Usage:
gmres str
Read str {

    [impr]
    [quiet]
    [seuil float]
    [diag]
    [nb_it_max int]
    [controle_residu int into [0, 1]]
    [save_matrix|save_matrice]
    [dim_espace_krilov int]
}

where
```

- **impr** : Keyword which may be used to print the convergence.
- quiet : To disable printing of information

- seuil float: Convergence value.
- diag: Keyword to use diagonal preconditionner (in place of pilut that is not parallel).
- **nb** it **max** int: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** *int into* [0, 1]: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.
- save\_matrix|save\_matrice : to save the matrix in a file.
- dim\_espace\_krilov int

# 13.14 Optimal

Description: Optimal is a solver which tests several solvers of the previous list to choose the fastest one for the considered linear system.

```
See also: solveur_sys_base (13.18)

Usage:
optimal str
Read str {

    seuil float
    [impr]
    [quiet]
    [save_matrix|save_matrice]
    [frequence_recalc int]
    [nom_fichier_solveur str]
    [fichier_solveur_non_recree]
}
where
```

- seuil float: Convergence threshold
- **impr** : To print the convergency of the fastest solver
- quiet : To disable printing of information
- save\_matrix|save\_matrice : To save the linear system (A, x, B) into a file
- frequence\_recalc int: To set a time step period (by default, 100) for re-checking the fatest solver
- nom\_fichier\_solveur str: To specify the file containing the list of the tested solvers
- fichier\_solveur\_non\_recree : To avoid the creation of the file containing the list

#### 13.15 Petsc

Description: Solver via Petsc API

Usage:

```
Solveur_pression Petsc Solver { precond Precond [ seuil seuil | nb_it_max integer ] [ impr | quiet ] [ save_matrix | read_matrix] }
```

Solver: Several solvers through PETSc API are available:

GCP: Conjugate Gradient

**PIPECG:** Pipelined Conjugate Gradient (possible reduced CPU cost during massive parallel calculation due to a single non-blocking reduction per iteration, if TRUST is built with a MPI-3 implementation).

**GMRES**: Generalized Minimal Residual

**BICGSTAB**: Stabilized Bi-Conjugate Gradient

**IBICGSTAB**: Improved version of previous one for massive parallel computations (only a single global reduction operation instead of the usual 3 or 4).

**CHOLESKY**: Parallelized version of Cholesky from MUMPS library. This solver accepts since the 1.6.7 version an option to select a different ordering than the automatic selected one by MUMPS (and printed by using the **impr** option). The possible choices are **Metis** | **Scotch** | **PT-Scotch** | **Parmetis**. The two last options can only be used during a parallel calculation, whereas the two first are available for sequential or parallel calculations. It seems that the CPU cost of A=LU factorization but also of the backward/forward elimination steps may sometimes be reduced by selecting a different ordering (Scotch seems often the best for b/f elimination) than the default one. Notice that this solver requires a huge amont of memory compared to iterative methods. To know how many RAM you will need by core, then use the **impr** option to have detailled informations during the analysis phase and before the factorisation phase (in the following output, you will learn that the largest memory is taken by the 0<sup>th</sup> CPU with 108MB):

•••

- \*\* Rank of proc needing largest memory in IC facto : 0
- \*\* Estimated corresponding MBYTES for IC facto : 108

•••

Thanks to the following graph, you read that in order to solve for instance a flow on a mesh with 2.6e6 cells, you will need to run a parallel calculation on 32 CPUs if you have cluster nodes with only 4GB/core (6.2GB\*0.42~2.6GB):

# Relative evolution compare to a 16 CPUs parallel calculation on a 2.6e6 cells mesh (163000 cells/CPU) where:

# Peak RAM/CPU is 6.2GB A=LU in factorization in 206 s x=A-1.B solve in 0.83 s



**CHOLESKY\_OUT\_OF\_CORE**: Same as the previous one but with a written LU decomposition of disk (save RAM memory but add an extra CPU cost during Ax=B solve)

**CHOLESKY\_SUPERLU**: Parallelized Cholesky from SUPERLU\_DIST library (less CPU and RAM efficient than the previous one)

CHOLESKY\_PASTIX: Parallelized Cholesky from PASTIX library

CHOLESKY\_UMFPACK: Sequential Cholesky from UMFPACK library (seems fast).

 $\pmb{CLI} \ \{ \ string \ \} : Command \ Line \ Interface. \ Should be used only by advanced users, \ to access the whole solver/preconditioners from the PETSC API. To find all the available options, run your calculation with the -ksp_view -help options:$ 

trust datafile [N] -ksp\_view -help

. . .

#### Preconditioner (PC) Options -----

-pc\_type Preconditioner:(one of) none jacobi pbjacobi bjacobi sor lu shell mg

eisenstat ilu icc cholesky asm ksp composite redundant nn mat fieldsplit galerkin openmp spai hypre tfs (PCSetType)

HYPRE preconditioner options

-pc\_hypre\_type <pilut> (choose one of) pilut parasails boomeramg

**HYPRE ParaSails Options** 

- -pc\_hypre\_parasails\_nlevels <1>: Number of number of levels (None)
- -pc\_hypre\_parasails\_thresh <0.1>: Threshold (None)
- -pc\_hypre\_parasails\_filter <0.1>: filter (None)
- -pc\_hypre\_parasails\_loadbal <0>: Load balance (None)
- -pc\_hypre\_parasails\_logging: <FALSE> Print info to screen (None)

-pc\_hypre\_parasails\_reuse: <FALSE> Reuse nonzero pattern in preconditioner (None)

-pc\_hypre\_parasails\_sym <nonsymmetric> (choose one of) nonsymmetric SPD nonsymmetric,SPD

#### Krylov Method (KSP) Options -----

- -ksp\_type Krylov method:(one of) cg cgne stcg gltr richardson chebychev gmres tcqmr bcgs bcgsl cgs tfqmr cr lsqr preonly qcg bicg fgmres minres symmlq lgmres lcd (KSPSetType)
- -ksp\_max\_it <10000>: Maximum number of iterations (KSPSetTolerances)
- -ksp\_rtol <0>: Relative decrease in residual norm (KSPSetTolerances)
- -ksp atol <1e-12>: Absolute value of residual norm (KSPSetTolerances)
- -ksp divtol <10000>: Residual norm increase cause divergence (KSPSetTolerances)
- -ksp\_converged\_use\_initial\_residual\_norm: Use initial residual residual norm for computing relative convergence
- -ksp\_monitor\_singular\_value <stdout>: Monitor singular values (KSPMonitorSet)
- -ksp\_monitor\_short <stdout>: Monitor preconditioned residual norm with fewer digits (KSPMonitorSet)
- -ksp\_monitor\_draw: Monitor graphically preconditioned residual norm (KSPMonitorSet)
- -ksp\_monitor\_draw\_true\_residual: Monitor graphically true residual norm (KSPMonitorSet)

Example to use the multigrid method as a solver, not only as a preconditioner:

**Solveur\_pression Petsc CLI** { -ksp\_type richardson -pc\_type hypre -pc\_hypre\_type boomeramg -ksp\_atol 1.e-7 }

Precond: Several preconditioners are available:

NULL { }: No preconditioner used

**BLOCK\_JACOBI\_ICC** { level k ordering natural | rcm } : Incomplete Cholesky factorization for symmetric matrix with the PETSc implementation. The integer k is the factorization level (default value, 1). In parallel, the factorization is done by block (one per processor by default). The ordering of the local matrix is **natural** by default, but **rcm** ordering, which reduces the bandwith of the local matrix, may interestingly improves the quality of the decomposition and reduces the number of iterations.

**SSOR** { **omega** double } : Symmetric Successive Over Relaxation algorithm. **omega** (default value, 1.5) defines the relaxation factor.

**EISENTAT** { **omega** double } : SSOR version with Eisenstat trick which reduces the number of computations and thus CPU cost

**SPAI** { **level** nlevels **epsilon** thresh } : Spai Approximate Inverse algorithm from Parasails Hypre library. Two parameters are available, nlevels and thresh.

**PILUT** { **level** k **epsilon** thresh }: Dual Threashold Incomplete LU factorization. The integer k is the factorization level and **epsilon** is the drop tolerance.

**DIAG** { }: Diagonal (Jacobi) preconditioner.

**BOOMERAMG** { }: Multigrid preconditioner (no option is available yet, look at CLI command and Petsc documentation to try other options).

**seuil** corresponds to the iterative solver convergence value. The iterative solver converges when the Euclidean residue standard ||Ax-B|| is less than the value *seuil*.

**nb\_it\_max** integer: In order to specify a given number of iterations instead of a condition on the residue with the keyword **seuil**. May be useful when defining a PETSc solver for the implicit time scheme where convergence is very fast: 5 or less iterations seems enough.

**impr** is the keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).

**quiet** is a keyword which is used to not displaying any outputs of the solver.

**save\_matrix** are the keywords to savelread into a file the constant matrix A of the linear system Ax=B solved (eg: matrix from the pressure linear system for an incompressible flow). It is useful

when you want to minimize the MPI communications on massive parallel calculation. Indeed, in VEF discretization, the overlapping width (generaly 2, specified with the **largeur\_joint** option in the partition keyword **partition**) can be reduced to 1, once the matrix has been properly assembled and saved. The cost of the MPI communications in TRUST itself (not in PETSc) will be reduced with length messages divided by 2. So the strategy is:

I) Partition your VEF mesh with a **largeur\_joint** value of 2

II) Run your parallel calculation on 0 time step, to build and save the matrix with the **save\_matrix** option. A file named *Matrix\_NBROWS\_rows\_NCPUS\_cpus.petsc* will be saved to the disk (where NBROWS is the number of rows of the matrix and NCPUS the number of CPUs used).

III) Partition your VEF mesh with a largeur joint value of 1

IV) Run your parallel calculation completly now and substitute the **save\_matrix** option by the **read\_matrix** option. Some interesting gains have been noticed when the cost of linear system solve with PETSc is small compared to all the other operations.

#### TIPS:

A) Solver for symmetric linear systems (e.g. Pressure system from Navier-Stokes equations):

- -The **CHOLESKY** parallel solver is from MUMPS library. It offers better performance than all others solvers if you have enough RAM for your calculation. A parallel calculation on a cluster with 4GBytes on each processor, 40000 cells/processor seems the upper limit. Seems to be very slow to initialize above 500 cpus/cores.
- -When running a parallel calculation with a high number of cpus/cores (typically more than 500) where preconditioner scalability is the key for CPU performance, consider **BICGSTAB** with **BLOCK\_JACOBI\_ICC(1)** as preconditioner or if not converges, **GCP** with **BLOCK\_JACOBI\_ICC(1)** as preconditioner.
- -For other situations, the first choice should be **GCP/SSOR**. In order to fine tune the solver choice, each one of the previous list should be considered. Indeed, the CPU speed of a solver depends of a lot of parameters. You may give a try to the **OPTIMAL** solver to help you to find the fastest solver on your study.
- B) Solver for non symmetric linear systems (e.g.: Implicit schemes): The **BICGSTAB/DIAG** solver seems to offer the best performances.

Additional information is available into the PETSC documentation available on:

\$TRUST\_ROOT/lib/src/LIBPETSC/petsc/\*/docs/manual.pdf

See also: solveur\_sys\_base (13.18) amgx (13.5) rocalution (13.16)

#### Usage:

petsc solveur option\_solveur [ atol ] [ rtol ]
where

- solveur str
- option\_solveur bloc\_lecture (3.2)
- atol float: Absolute threshold for convergence (same as seuil option)
- rtol float: Relative threshold for convergence

#### 13.16 Rocalution

Description: Solver via rocALUTION API

See also: petsc (13.15)

Usage:

```
rocalution solveur option_solveur [ atol ] [ rtol ] where
solveur str
option_solveur bloc_lecture (3.2)
atol float: Absolute threshold for convergence (same as seuil option)
rtol float: Relative threshold for convergence
```

#### 13.17 Gcp

Description: Preconditioned conjugated gradient.

```
See also: solveur_sys_base (13.18) gcp_ns (13.11)

Usage:
gcp str
Read str {

    [precond precond_base]
    [precond_nul]
    seuil float
    [impr]
    [quiet]
    [save_matrix|save_matrice]
    [optimized]
    [nb_it_max int]

}

where
```

- **precond** *precond\_base* (31): Keyword to define system preconditioning in order to accelerate resolution by the conjugated gradient. Many parallel preconditioning methods are not equivalent to their sequential counterpart, and you should therefore expect differences, especially when you select a high value of the final residue (seuil). The result depends on the number of processors and on the mesh splitting. It is sometimes useful to run the solver with no preconditioning at all. In particular:
  - when the solver does not converge during initial projection,
  - when comparing sequential and parallel computations.

With no preconditioning, except in some particular cases (no open boundary), the sequential and the parallel computations should provide exactly the same results within fpu accuracy. If not, there might be a coding error or the system of equations is singular.

- **precond nul**: Keyword to not use a preconditioning method.
- **seuil** *float*: Value of the final residue. The gradient ceases iteration when the Euclidean residue standard ||Ax-B|| is less than this value.
- **impr**: Keyword which is used to request display of the Euclidean residue standard each time this iterates through the conjugated gradient (display to the standard outlet).
- quiet: To not displaying any outputs of the solver.
- save matrix|save matrice: to save the matrix in a file.
- **optimized**: This keyword triggers a memory and network optimized algorithms useful for strong scaling (when computing less than 100 000 elements per processor). The matrix and the vectors are duplicated, common items removed and only virtual items really used in the matrix are exchanged. Warning: this is experimental and known to fail in some VEF computations (L2 projection step will not converge). Works well in VDF.
- nb\_it\_max int: Keyword to set the maximum iterations number for the Gcp.

#### 13.18 Solveur\_sys\_base

Description: Basic class to solve the linear system.

See also: class\_generic (13) gen (13.12) petsc (13.15) gcp (13.17) cholesky (13.6) gmres (13.13) optimal (13.14)

Usage:

### 14 #

#### 14.1 #

Description: Comments in a data file.

See also: objet u (40)

Usage: # comm where

• comm str: Text to be commented.

# 15 condlim base

Description: Basic class of boundary conditions.

See also: objet\_u (40) paroi\_fixe (15.68) symetrie (15.85) periodique (15.81) paroi\_adiabatique (15.49) dirichlet (15.18) neumann (15.48) paroi\_contact (15.50) paroi\_contact\_fictif (15.51) paroi\_echange\_contact\_vdf (15.59) paroi\_echange\_externe\_impose (15.63) paroi\_echange\_global\_impose (15.67) Paroi (15.13) paroi\_flux\_impose (15.70) frontiere\_ouverte\_fraction\_massique\_imposee (15.28) Paroi\_echange\_interne\_parfait (15.9) paroi\_echange\_contact\_correlation\_vdf (15.55) Paroi\_echange\_interne\_impose (15.8) paroi\_echange\_contact\_correlation\_vef (15.56) Neumann\_homogene (15.10) Neumann\_paroi (15.11) paroi\_decalee\_robin (15.53) Paroi\_echange\_interne\_global\_impose (15.6) Paroi\_echange\_interne\_global\_parfait (15.7) frontiere\_ouverte\_k\_eps\_impose (15.33) paroi\_ft\_disc (15.74) sortie\_libre\_rho\_variable (15.83) flux\_radiatif (15.23) paroi\_contact\_rayo (15.52) contact\_vdf\_vef (15.16) contact\_vef\_vdf (15.17) Cond\_lim\_k\_complique\_transition\_flux\_nul\_demi (15.1) Paroi\_frottante\_simple (15.15) echange\_contact\_vdf\_ft\_disc\_solid (15.21) Cond\_lim\_omega\_dix (15.4) Cond\_lim\_k\_simple\_flux\_nul (15.2) Paroi\_frottante\_loi (15.14) echange\_contact\_vdf\_ft\_disc (15.20) Cond\_lim\_omega\_demi (15.3)

Usage:

condlim\_base

# 15.1 Cond\_lim\_k\_complique\_transition\_flux\_nul\_demi

Description: Adaptive wall law boundary condition for turbulent kinetic energy

See also: condlim\_base (15)

Usage:

Cond lim k complique transition flux nul demi

```
15.2 Cond_lim_k_simple_flux_nul
```

```
Description: Adaptive wall law boundary condition for turbulent kinetic energy

See also: condlim_base (15)
```

Usage:

Cond\_lim\_k\_simple\_flux\_nul

# 15.3 Cond\_lim\_omega\_demi

Description: Adaptive wall law boundary condition for turbulent dissipation rate

```
See also: condlim_base (15)
```

Usage:

# 15.4 Cond\_lim\_omega\_dix

Description: Adaptive wall law boundary condition for turbulent dissipation rate

```
See also: condlim_base (15)
```

Usage:

# 15.5 Echange\_couplage\_thermique

```
Description: Thermal coupling boundary condition

See also: paroi_echange_global_impose (15.67)
```

Usage:

```
Echange_couplage_thermique str
Read str {
     [ temperature_paroi champ_base]
     [ flux_paroi champ_base]
}
where
```

- temperature\_paroi champ\_base (18.1): Temperature
- flux\_paroi champ\_base (18.1): Wall heat flux

# 15.6 Paroi\_echange\_interne\_global\_impose

Description: Internal heat exchange boundary condition with global exchange coefficient.

```
See also: condlim_base (15)
```

Usage:

Paroi\_echange\_interne\_global\_impose h\_imp ch where

- **h\_imp** *str*: Global exchange coefficient value. The global exchange coefficient value is expressed in W.m-2.K-1.
- **ch** *champ\_front\_base* (19.1): Boundary field type.

#### 15.7 Paroi\_echange\_interne\_global\_parfait

Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.

See also: condlim\_base (15)

Usage:

Paroi\_echange\_interne\_global\_parfait

# 15.8 Paroi\_echange\_interne\_impose

Description: Internal heat exchange boundary condition with exchange coefficient.

See also: condlim\_base (15)

Usage:

Paroi\_echange\_interne\_impose h\_imp ch

where

- **h\_imp** *str*: Exchange coefficient value expressed in W.m-2.K-1.
- ch champ\_front\_base (19.1): Boundary field type.

# 15.9 Paroi\_echange\_interne\_parfait

Description: Internal heat exchange boundary condition with perfect (infinite) exchange coefficient.

See also: condlim\_base (15)

Usage:

Paroi\_echange\_interne\_parfait

# 15.10 Neumann\_homogene

Description: Homogeneous neumann boundary condition

See also: condlim\_base (15) Neumann\_paroi\_adiabatique (15.12)

Usage:

Neumann\_homogene

#### 15.11 Neumann\_paroi

Description: Neumann boundary condition for mass equation (multiphase problem)

See also: condlim\_base (15)

Usage:

Neumann\_paroi ch

where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.12 Neumann\_paroi\_adiabatique

Description: Adiabatic wall neumann boundary condition

See also: Neumann\_homogene (15.10)

Usage:

Neumann\_paroi\_adiabatique

#### 15.13 Paroi

Description: Impermeability condition at a wall called bord (edge) (standard flux zero). This condition must be associated with a wall type hydraulic condition.

See also: condlim\_base (15)

Usage:

Paroi

# 15.14 Paroi\_frottante\_loi

Description: Adaptive wall-law boundary condition for velocity

See also: condlim\_base (15)

Usage:

#### 15.15 Paroi\_frottante\_simple

Description: Adaptive wall-law boundary condition for velocity

See also: condlim\_base (15)

Usage:

#### 15.16 Contact\_vdf\_vef

Description: Boundary condition in the case of two problems (VDF -> VEF).

See also: condlim\_base (15)

Usage:

contact\_vdf\_vef champ

where

• champ champ\_front\_base (19.1): Boundary field type.

#### 15.17 Contact\_vef\_vdf

Description: Boundary condition in the case of two problems (VEF -> VDF).

See also: condlim\_base (15)

Usage:

contact\_vef\_vdf champ

where

• **champ** *champ\_front\_base* (19.1): Boundary field type.

#### 15.18 Dirichlet

Description: Dirichlet condition at the boundary called bord (edge): 1). For Navier-Stokes equations, velocity imposed at the boundary; 2). For scalar transport equation, scalar imposed at the boundary.

See also: condlim\_base (15) paroi\_defilante (15.54) paroi\_knudsen\_non\_negligeable (15.76) frontiere\_ouverte\_vitesse\_imposee (15.45) frontiere\_ouverte\_temperature\_imposee (15.42) frontiere\_ouverte\_concentration\_imposee (15.27) paroi\_temperature\_imposee (15.78) scalaire\_impose\_paroi (15.82) paroi\_rugueuse (15.77) Frontiere\_ouverte\_vitesse\_imposee\_ALE (15.46)

Usage:

dirichlet

#### 15.19 Echange\_contact\_rayo\_transp\_vdf

Description: Exchange boundary condition in VDF between the transparent fluid and the solid for a problem coupled with radiation. Without radiation, it is the equivalent of the Paroi\_Echange\_contact\_VDF exchange condition.

See also: paroi\_echange\_contact\_vdf (15.59)

Usage:

echange\_contact\_rayo\_transp\_vdf autrepb nameb temp h where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- **temp** *str*: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where 1/h = d1/lambda1 + 1/val h contact + d2/lambda2

where di: distance between the node where Ti and the wall is found.

# 15.20 Echange\_contact\_vdf\_ft\_disc

Description: echange\_conatct\_vdf en prescisant la phase

See also: condlim base (15)

```
Usage:
echange_contact_vdf_ft_disc str
Read str {
     autre_probleme str
     autre_bord str
     autre_champ_temperature str
     nom mon indicatrice str
     phase int
}
where
   • autre_probleme str: name of other problem
   • autre_bord str: name of other boundary
   • autre_champ_temperature str: name of other field
   • nom_mon_indicatrice str: name of indicatrice
   • phase int: phase
        Echange_contact_vdf_ft_disc_solid
Description: echange_conatct_vdf en prescisant la phase
See also: condlim_base (15)
Usage:
echange_contact_vdf_ft_disc_solid str
Read str {
     autre_probleme str
     autre_bord str
     autre_champ_temperature_indic1 str
     autre_champ_temperature_indic0 str
     autre_champ_indicatrice str
}
where
   • autre_probleme str: name of other problem
   • autre_bord str: name of other boundary
   • autre_champ_temperature_indic1 str: name of temperature indic 1
   • autre_champ_temperature_indic0 str: name of temperature indic 0
   • autre_champ_indicatrice str: name of indicatrice
15.22
        Entree_temperature_imposee_h
Description: Particular case of class frontiere_ouverte_temperature_imposee for enthalpy equation.
See also: frontiere_ouverte_temperature_imposee (15.42)
Usage:
entree_temperature_imposee_h ch
where
```

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.23 Flux\_radiatif

Description: Boundary condition for radiation equation.

See also: condlim\_base (15) flux\_radiatif\_vdf (15.24) flux\_radiatif\_vef (15.25)

Usage:

#### flux\_radiatif na a ne emissivite

where

- na str into ['A']: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- ne str into ['emissivite']: Keyword for wall emissivity.
- emissivite champ\_front\_base (19.1): Wall emissivity, value between 0 and 1.

#### 15.24 Flux radiatif vdf

Description: Boundary condition for radiation equation in VDF.

See also: flux\_radiatif (15.23)

Usage:

#### flux\_radiatif\_vdf na a ne emissivite

where

- na *str into ['A']*: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- **ne** str into ['emissivite']: Keyword for wall emissivity.
- emissivite champ\_front\_base (19.1): Wall emissivity, value between 0 and 1.

#### 15.25 Flux radiatif vef

Description: Boundary condition for radiation equation in VEF.

See also: flux\_radiatif (15.23)

Usage:

#### flux\_radiatif\_vef na a ne emissivite

where

- na str into ['A']: Keyword for constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- a *float*: Value of constant in boundary condition for irradiancy (sqrt(3) for half-infinite domain or 2 in closed domain).
- **ne** *str into ['emissivite']*: Keyword for wall emissivity.
- emissivite champ\_front\_base (19.1): Wall emissivity, value between 0 and 1.

# 15.26 Frontiere\_ouverte

Description: Boundary outlet condition on the boundary called bord (edge) (diffusion flux zero). This condition must be associated with a boundary outlet hydraulic condition.

See also: neumann (15.48) frontiere\_ouverte\_rayo\_transp (15.38) frontiere\_ouverte\_rayo\_semi\_transp (15.37)

Usage:

frontiere\_ouverte var\_name ch where

- var\_name str into ['T\_ext', 'C\_ext', 'Y\_ext', 'K\_Eps\_ext', 'Fluctu\_Temperature\_ext', 'Flux\_Chaleur\_Turb\_ext', 'V2\_ext', 'a\_ext', 'tau\_ext', 'k\_ext', 'omega\_ext']: Field name.
- ch champ\_front\_base (19.1): Boundary field type.

# 15.27 Frontiere ouverte concentration imposee

Description: Imposed concentration condition at an open boundary called bord (edge) (situation corresponding to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: dirichlet (15.18)

Usage:

 $\label{lem:concentration_imposee} \textbf{ch} \\ \text{where} \\$ 

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.28 Frontiere\_ouverte\_fraction\_massique\_imposee

Description: not\_set

See also: condlim\_base (15)

Usage:

frontiere\_ouverte\_fraction\_massique\_imposee ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

#### 15.29 Frontiere\_ouverte\_gradient\_pression\_impose

Description: Normal imposed pressure gradient condition on the open boundary called bord (edge). This boundary condition may be only used in VDF discretization. The imposed  $\partial P/\partial n$  value is expressed in Pa.m-1.

See also: neumann (15.48) frontiere\_ouverte\_gradient\_pression\_impose\_vefprep1b (15.30)

Usage:

frontiere\_ouverte\_gradient\_pression\_impose ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.30 Frontiere\_ouverte\_gradient\_pression\_impose\_vefprep1b

Description: Keyword for an outlet boundary condition in VEF P1B/P1NC on the gradient of the pressure.

See also: frontiere\_ouverte\_gradient\_pression\_impose (15.29)

Usage:

frontiere\_ouverte\_gradient\_pression\_impose\_vefprep1b ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.31 Frontiere\_ouverte\_gradient\_pression\_libre\_vef

Description: Class for outlet boundary condition in VEF like Orlansky. There is no reference for pressure for theses boundary conditions so it is better to add pressure condition (with Frontiere\_ouverte\_pression\_imposee) on one or two cells (for symmetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (15.48)

Usage:

frontiere\_ouverte\_gradient\_pression\_libre\_vef

#### 15.32 Frontiere ouverte gradient pression libre vefprep1b

Description: Class for outlet boundary condition in VEF P1B/P1NC like Orlansky.

See also: neumann (15.48)

Usage:

frontiere\_ouverte\_gradient\_pression\_libre\_vefprep1b

# 15.33 Frontiere\_ouverte\_k\_eps\_impose

Description: Turbulence condition imposed on an open boundary called bord (edge) (this situation corresponds to a fluid inlet). This condition must be associated with an imposed inlet velocity condition.

See also: condlim\_base (15)

Usage:

frontiere\_ouverte\_k\_eps\_impose ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

#### 15.34 Frontiere\_ouverte\_pression\_imposee

Description: Imposed pressure condition at the open boundary called bord (edge). The imposed pressure field is expressed in Pa.

See also: neumann (15.48)

Usage:

frontiere\_ouverte\_pression\_imposee ch where

• ch champ\_front\_base (19.1): Boundary field type.

# 15.35 Frontiere\_ouverte\_pression\_imposee\_orlansky

Description: This boundary condition may only be used with VDF discretization. There is no reference for pressure for this boundary condition so it is better to add pressure condition (with Frontiere\_ouverte\_pression\_imposee) on one or two cells (for symetry in a channel) of the boundary where Orlansky conditions are imposed.

See also: neumann (15.48)

Usage:

frontiere\_ouverte\_pression\_imposee\_orlansky

# 15.36 Frontiere\_ouverte\_pression\_moyenne\_imposee

Description: Class for open boundary with pressure mean level imposed.

See also: neumann (15.48)

Usage:

frontiere\_ouverte\_pression\_moyenne\_imposee pext where

• pext float: Mean pressure.

#### 15.37 Frontiere ouverte rayo semi transp

Description: Keyword to set a boundary outlet temperature condition on the boundary called bord (edge) (diffusion flux zero) for a radiation problem with semi transparent gas.

See also: frontiere\_ouverte (15.26)

Usage:

frontiere\_ouverte\_rayo\_semi\_transp var\_name ch

- var\_name str into ['T\_ext', 'C\_ext', 'Y\_ext', 'K\_Eps\_ext', 'Fluctu\_Temperature\_ext', 'Flux\_Chaleur\_Turb\_ext', 'V2\_ext', 'a\_ext', 'tau\_ext', 'k\_ext', 'omega\_ext']: Field name.
- **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.38 Frontiere\_ouverte\_rayo\_transp

Description: Keyword to set a boundary outlet temperature condition on the boundary called bord (edge) (diffusion flux zero) for a radiation problem with transparent gas.

See also: frontiere\_ouverte (15.26) frontiere\_ouverte\_rayo\_transp\_vdf (15.39) frontiere\_ouverte\_rayo\_transp\_vef (15.40)

#### Usage:

frontiere\_ouverte\_rayo\_transp var\_name ch where

- var\_name str into ['T\_ext', 'C\_ext', 'Y\_ext', 'K\_Eps\_ext', 'Fluctu\_Temperature\_ext', 'Flux\_Chaleur\_Turb\_ext', 'V2\_ext', 'a\_ext', 'tau\_ext', 'k\_ext', 'omega\_ext']: Field name.
- ch champ\_front\_base (19.1): Boundary field type.

# 15.39 Frontiere\_ouverte\_rayo\_transp\_vdf

Description: doit disparaitre

See also: frontiere\_ouverte\_rayo\_transp (15.38)

Usage:

 $\label{lem:continuous} \textbf{frontiere\_ouverte\_rayo\_transp\_vdf} \quad \textbf{var\_name} \quad \textbf{ch} \\ \text{where} \\$ 

- var\_name str into ['T\_ext', 'C\_ext', 'Y\_ext', 'K\_Eps\_ext', 'Fluctu\_Temperature\_ext', 'Flux\_Chaleur\_Turb\_ext', 'V2\_ext', 'a\_ext', 'tau\_ext', 'k\_ext', 'omega\_ext']: Field name.
- **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.40 Frontiere\_ouverte\_rayo\_transp\_vef

Description: doit disparaitre

See also: frontiere\_ouverte\_rayo\_transp (15.38)

Usage:

frontiere\_ouverte\_rayo\_transp\_vef var\_name ch where

- var\_name str into ['T\_ext', 'C\_ext', 'Y\_ext', 'K\_Eps\_ext', 'Fluctu\_Temperature\_ext', 'Flux\_Chaleur\_Turb\_ext', 'V2\_ext', 'a\_ext', 'tau\_ext', 'k\_ext', 'omega\_ext']: Field name.
- **ch** *champ\_front\_base* (19.1): Boundary field type.

#### 15.41 Frontiere\_ouverte\_rho\_u\_impose

Description: This keyword is used to designate a condition of imposed mass rate at an open boundary called bord (edge). The imposed mass rate field at the inlet is vectorial and the imposed velocity values are expressed in kg.s-1. This boundary condition can be used only with the Quasi compressible model.

See also: frontiere\_ouverte\_vitesse\_imposee\_sortie (15.47)

Usage:

frontiere\_ouverte\_rho\_u\_impose ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.42 Frontiere\_ouverte\_temperature\_imposee

Description: Imposed temperature condition at the open boundary called bord (edge) (in the case of fluid inlet). This condition must be associated with an imposed inlet velocity condition. The imposed temperature value is expressed in oC or K.

See also: dirichlet (15.18) entree\_temperature\_imposee\_h (15.22) frontiere\_ouverte\_temperature\_imposee\_rayo\_transp (15.44) frontiere\_ouverte\_temperature\_imposee\_rayo\_semi\_transp (15.43)

#### Usage:

 $\label{lem:continuous} \textbf{frontiere\_ouverte\_temperature\_imposee} \quad \textbf{ch} \\ \text{where} \\$ 

• ch champ\_front\_base (19.1): Boundary field type.

# 15.43 Frontiere\_ouverte\_temperature\_imposee\_rayo\_semi\_transp

Description: Imposed temperature condition for a radiation problem with semi transparent gas.

See also: frontiere\_ouverte\_temperature\_imposee (15.42)

Usage:

 ${\bf frontiere\_ouverte\_temperature\_imposee\_rayo\_semi\_transp\ \ ch} \\ {\bf where}$ 

• ch champ front base (19.1): Boundary field type.

#### 15.44 Frontiere\_ouverte\_temperature\_imposee\_rayo\_transp

Description: Imposed temperature condition for a radiation problem with transparent gas.

See also: frontiere\_ouverte\_temperature\_imposee (15.42)

Usage:

frontiere\_ouverte\_temperature\_imposee\_rayo\_transp ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

#### 15.45 Frontiere\_ouverte\_vitesse\_imposee

Description: Class for velocity-inlet boundary condition. The imposed velocity field at the inlet is vectorial and the imposed velocity values are expressed in m.s-1.

See also: dirichlet (15.18) frontiere\_ouverte\_vitesse\_imposee\_sortie (15.47)

Usage:

frontiere\_ouverte\_vitesse\_imposee ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.46 Frontiere\_ouverte\_vitesse\_imposee\_ale

Description: Class for velocity boundary condition on a mobile boundary (ALE framework). The imposed velocity field is vectorial of type Ch\_front\_input\_ALE, Champ\_front\_ALE or Champ\_front\_ALE\_Beam.

Example: frontiere\_ouverte\_vitesse\_imposee\_ALE Champ\_front\_ALE 2 0.5\*cos(0.5\*t) 0.0

See also: dirichlet (15.18)

Usage:

Frontiere\_ouverte\_vitesse\_imposee\_ALE ch where

• ch champ front base (19.1): Boundary field type.

# 15.47 Frontiere\_ouverte\_vitesse\_imposee\_sortie

Description: Sub-class for velocity boundary condition. The imposed velocity field at the open boundary is vectorial and the imposed velocity values are expressed in m.s-1.

See also: frontiere\_ouverte\_vitesse\_imposee (15.45) frontiere\_ouverte\_rho\_u\_impose (15.41)

Usage:

frontiere\_ouverte\_vitesse\_imposee\_sortie ch where

• ch champ\_front\_base (19.1): Boundary field type.

#### 15.48 Neumann

Description: Neumann condition at the boundary called bord (edge): 1). For Navier-Stokes equations, constraint imposed at the boundary; 2). For scalar transport equation, flux imposed at the boundary.

See also: condlim\_base (15) frontiere\_ouverte\_gradient\_pression\_libre\_vef (15.31) frontiere\_ouverte\_gradient\_pression\_libre\_vefprep1b (15.32) frontiere\_ouverte\_gradient\_pression\_impose (15.29) frontiere\_ouverte\_pression\_imposee (15.34) frontiere\_ouverte\_pression\_imposee\_orlansky (15.35) frontiere\_ouverte\_pression\_movenne\_imposee (15.36) frontiere\_ouverte (15.26) sortie\_libre\_temperature\_imposee\_h (15.84)

Usage:

neumann

#### 15.49 Paroi\_adiabatique

Description: Normal zero flux condition at the wall called bord (edge).

See also: condlim base (15)

Usage:

paroi\_adiabatique

# 15.50 Paroi\_contact

Description: Thermal condition between two domains. Important: the name of the boundaries in the two domains should be the same. (Warning: there is also an old limitation not yet fixed on the sequential algorithm in VDF to detect the matching faces on the two boundaries: faces should be ordered in the same way). The kind of condition depends on the discretization. In VDF, it is a heat exchange condition, and in VEF, a temperature condition.

Such a coupling requires coincident meshes for the moment. In case of non-coincident meshes, run is stopped and two external files are automatically generated in VEF (connectivity\_failed\_boundary\_name and connectivity\_failed\_pb\_name.med). In 2D, the keyword Decouper\_bord\_coincident associated to the connectivity\_failed\_boundary\_name file allows to generate a new coincident mesh.

In 3D, for a first preliminary cut domain with HOMARD (fluid for instance), the second problem associated to pb\_name (solide in a fluid/solid coupling problem) has to be submitted to HOMARD cutting procedure with connectivity\_failed\_pb\_name.med.

Such a procedure works as while the primary refined mesh (fluid in our example) impacts the fluid/solid interface with a compact shape as described below (values 2 or 4 indicates the number of division from primary faces obtained in fluid domain at the interface after HOMARD cutting):

2-2-2-2-2 2-4-4-4-4-2 2-2-2 2-4-4-4-4-2 2-4-2 2-2-2-2-2 2-2 OK 2-2 2-2-2 2-4-2 2-2 NOT OK

See also: condlim\_base (15)

Usage:

paroi\_contact autrepb nameb

where

- autrepb str: Name of other problem.
- nameb str: boundary name of the remote problem which should be the same than the local name

#### 15.51 Paroi\_contact\_fictif

Description: This keyword is derivated from paroi\_contact and is especially dedicated to compute coupled fluid/solid/fluid problem in case of thin material. Thanks to this option, solid is considered as a fictitious media (no mesh, no domain associated), and coupling is performed by considering instantaneous thermal equilibrium in it (for the moment).

See also: condlim\_base (15)

Usage:

paroi\_contact\_fictif autrepb nameb conduct\_fictif ep\_fictive where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- conduct fictif float: thermal conductivity
- ep fictive float: thickness of the fictitious media

# 15.52 Paroi\_contact\_rayo

Description: Thermal condition between two domains.

```
See also: condlim_base (15)

Usage: paroi_contact_rayo autrepb nameb type where
```

- autrepb str: Name of other problem.
- nameb str: boundary name of the remote problem which should be the same than the local name
- type str into ['TRANSP', 'SEMI\_TRANSP']

#### 15.53 Paroi\_decalee\_robin

Description: This keyword is used to designate a Robin boundary condition (a.u+b.du/dn=c) associated with the Pironneau methodology for the wall laws. The value of given by the delta option is the distance between the mesh (where symmetry boundary condition is applied) and the fictious wall. This boundary condition needs the definition of the dedicated source terms (Source\_Robin or Source\_Robin\_Scalaire) according the equations used.

```
See also: condlim_base (15)

Usage:
paroi_decalee_robin str
Read str {
    delta float
}
where
• delta float
```

#### 15.54 Paroi defilante

Description: Keyword to designate a condition where tangential velocity is imposed on the wall called bord (edge). If the velocity components set by the user is not tangential, projection is used.

```
See also: dirichlet (15.18)

Usage:
paroi_defilante ch
where

• ch champ_front_base (19.1): Boundary field type.
```

#### 15.55 Paroi\_echange\_contact\_correlation\_vdf

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with

```
the keyword Tranche.
See also: condlim_base (15)
Usage:
paroi_echange_contact_correlation_vdf str
Read str {
      \begin{bmatrix} \mathbf{dir} & int \end{bmatrix}
      [tinf float]
      [tsup float]
      [lambda str]
      [ rho str]
      [ dt_impr float]
      [cp float]
      [\mathbf{mu} \ str]
      [ debit float]
      [dh float]
      [volume str]
      [ nu str]
      [reprise_correlation]
}
where
```

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- **tinf** *float*: Inlet fluid temperature of the 1D model (oC or K).
- tsup *float*: Outlet fluid temperature of the 1D model (oC or K).
- lambda str: Thermal conductivity of the fluid (W.m-1.K-1).
- rho str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- **dt\_impr** *float*: Printing period in name\_of\_data\_file\_time.dat files of the 1D model results.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- **debit** *float*: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **dh** *float*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **volume** *str*: Exact volume of the 1D domain (m3) which may be a function of the hydraulic diameter (Dh) and the lateral surface (S) of the meshed boundary.
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- reprise\_correlation : Keyword in the case of a resuming calculation with this correlation.

#### 15.56 Paroi\_echange\_contact\_correlation\_vef

Description: Class to define a thermohydraulic 1D model which will apply to a boundary of 2D or 3D domain.

Warning: For parallel calculation, the only possible partition will be according the axis of the model with the keyword Tranche\_geom.

```
See also: condlim_base (15)

Usage:
paroi_echange_contact_correlation_vef str
Read str {
```

```
[dir int]
       [tinf float]
       [tsup float]
       [lambda str]
       [ rho str]
       [ dt_impr float]
       [cp float]
       \begin{bmatrix} \mathbf{mu} & str \end{bmatrix}
       [ debit float]
       [\mathbf{n} \ int]
       [ dh str]
       [surface str]
       [ xinf float]
       [xsup float]
       \begin{bmatrix} \mathbf{nu} & str \end{bmatrix}
       [ emissivite_pour_rayonnement_entre_deux_plaques_quasi_infinies | float]
       [reprise_correlation]
}
where
```

- dir int: Direction (0 : axis X, 1 : axis Y, 2 : axis Z) of the 1D model.
- **tinf** *float*: Inlet fluid temperature of the 1D model (oC or K).
- tsup *float*: Outlet fluid temperature of the 1D model (oC or K).
- **lambda** *str*: Thermal conductivity of the fluid (W.m-1.K-1).
- rho str: Mass density of the fluid (kg.m-3) which may be a function of the temperature T.
- **dt\_impr** *float*: Printing period in name\_of\_data\_file\_time.dat files of the 1D model results.
- cp float: Calorific capacity value at a constant pressure of the fluid (J.kg-1.K-1).
- mu str: Dynamic viscosity of the fluid (kg.m-1.s-1) which may be a function of the temperature T.
- **debit** *float*: Surface flow rate (kg.s-1.m-2) of the fluid into the channel.
- **n** *int*: Number of 1D cells of the 1D mesh.
- **dh** *str*: Hydraulic diameter may be a function f(x) with x position along the 1D axis (xinf <= x <= xsup)
- **surface** *str*: Section surface of the channel which may be function f(Dh,x) of the hydraulic diameter (Dh) and x position along the 1D axis (xinf <= x <= xsup)
- xinf float: Position of the inlet of the 1D mesh on the axis direction.
- **xsup** *float*: Position of the outlet of the 1D mesh on the axis direction.
- **nu** *str*: Nusselt number which may be a function of the Reynolds number (Re) and the Prandtl number (Pr).
- emissivite\_pour\_rayonnement\_entre\_deux\_plaques\_quasi\_infinies float: Coefficient of emissivity for radiation between two quasi infinite plates.
- reprise\_correlation : Keyword in the case of a resuming calculation with this correlation.

#### 15.57 Paroi\_echange\_contact\_odvm\_vdf

```
Description: not_set

See also: paroi_echange_contact_vdf (15.59)

Usage:
paroi_echange_contact_odvm_vdf autrepb nameb temp h
where
```

• autrepb str: Name of other problem.

- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where  $1/h = d1/lambda1 + 1/val_h_contact + d2/lambda2$ 

where di: distance between the node where Ti and the wall is found.

# 15.58 Paroi\_echange\_contact\_rayo\_semi\_transp\_vdf

Description: Exchange boundary condition in VDF between the semi transparent fluid and the solid for a problem coupled with radiation.

See also: paroi\_echange\_contact\_vdf (15.59)

#### Usage

paroi\_echange\_contact\_rayo\_semi\_transp\_vdf autrepb nameb temp h
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where  $1/h = d1/lambda1 + 1/val_h\_contact + d2/lambda2$ 

where di: distance between the node where Ti and the wall is found.

# 15.59 Paroi\_echange\_contact\_vdf

Description: Boundary condition type to model the heat flux between two problems. Important: the name of the boundaries in the two problems should be the same.

See also: condlim\_base (15) paroi\_echange\_contact\_odvm\_vdf (15.57) paroi\_echange\_contact\_vdf\_ft (15.60) echange\_contact\_rayo\_transp\_vdf (15.19) paroi\_echange\_contact\_rayo\_semi\_transp\_vdf (15.58)

#### Usage:

paroi\_echange\_contact\_vdf autrepb nameb temp h
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where 1/h = d1/lambda1 + 1/val h contact + d2/lambda2

where di : distance between the node where Ti and the wall is found.

# 15.60 Paroi\_echange\_contact\_vdf\_ft

Description: This boundary condition is used between a conduction problem and a thermohydraulic problem with two phases flow (Front-Tracking method) to modelize heat exchange.

See also: paroi\_echange\_contact\_vdf (15.59)

Usage:

paroi\_echange\_contact\_vdf\_ft autrepb nameb temp h
where

- autrepb str: Name of other problem.
- nameb str: Name of bord.
- temp str: Name of field.
- h *float*: Value assigned to a coefficient (expressed in W.K-1m-2) that characterises the contact between the two mediums. In order to model perfect contact, h must be taken to be infinite. This value must obviously be the same in both the two problems blocks.

The surface thermal flux exchanged between the two mediums is represented by:

fi = h (T1-T2) where  $1/h = d1/lambda1 + 1/val_h\_contact + d2/lambda2$ 

where di: distance between the node where Ti and the wall is found.

# 15.61 Paroi\_echange\_contact\_vdf\_zoom\_fin

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature in the case of zoom (fine).

See also: paroi\_echange\_externe\_impose (15.63)

Usage:

- **h\_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ\_front\_base (19.1): Boundary field type.
- text str: External temperature value (expressed in oC or K).
- **ch** *champ\_front\_base* (19.1): Boundary field type.

#### 15.62 Paroi\_echange\_contact\_vdf\_zoom\_grossier

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature in the case of zoom (coarse).

See also: paroi\_echange\_externe\_impose (15.63)

Usage:

paroi\_echange\_contact\_vdf\_zoom\_grossier h\_imp himpc text ch
where

- **h\_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ\_front\_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ\_front\_base (19.1): Boundary field type.

# 15.63 Paroi\_echange\_externe\_impose

Description: External type exchange condition with a heat exchange coefficient and an imposed external temperature.

See also: condlim\_base (15) paroi\_echange\_externe\_impose\_h (15.64) paroi\_echange\_externe\_impose\_rayo\_transp (15.66) paroi\_echange\_externe\_impose\_rayo\_semi\_transp (15.65) paroi\_echange\_contact\_vdf\_zoom\_grossier (15.62) paroi\_echange\_contact\_vdf\_zoom\_fin (15.61)

#### Usage:

paroi\_echange\_externe\_impose h\_imp himpc text ch
where

- h imp str: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ\_front\_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ\_front\_base (19.1): Boundary field type.

# 15.64 Paroi\_echange\_externe\_impose\_h

Description: Particular case of class paroi\_echange\_externe\_impose for enthalpy equation.

See also: paroi\_echange\_externe\_impose (15.63)

#### Usage:

 $\begin{tabular}{lllll} \textbf{paroi\_echange\_externe\_impose\_h} & \textbf{h\_imp} & \textbf{himpc} & \textbf{text} & \textbf{ch} \\ \textbf{where} & \end{tabular}$ 

- **h\_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ\_front\_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ\_front\_base (19.1): Boundary field type.

# 15.65 Paroi\_echange\_externe\_impose\_rayo\_semi\_transp

Description: External type exchange condition for a coupled problem with radiation in semi transparent gas.

See also: paroi\_echange\_externe\_impose (15.63)

#### Usage:

paroi\_echange\_externe\_impose\_rayo\_semi\_transp h\_imp himpc text ch
where

- **h\_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ\_front\_base (19.1): Boundary field type.
- **text** *str*: External temperature value (expressed in oC or K).
- ch champ\_front\_base (19.1): Boundary field type.

# 15.66 Paroi\_echange\_externe\_impose\_rayo\_transp

Description: External type exchange condition for a coupled problem with radiation in transparent gas.

See also: paroi\_echange\_externe\_impose (15.63)

Usage:

paroi\_echange\_externe\_impose\_rayo\_transp h\_imp himpc text ch where

- **h\_imp** *str*: Heat exchange coefficient value (expressed in W.m-2.K-1).
- himpc champ\_front\_base (19.1): Boundary field type.
- text str: External temperature value (expressed in oC or K).
- ch champ\_front\_base (19.1): Boundary field type.

# 15.67 Paroi\_echange\_global\_impose

Description: Global type exchange condition (internal) that is to say that diffusion on the first fluid mesh is not taken into consideration.

See also: condlim\_base (15) Echange\_couplage\_thermique (15.5)

Usage:

paroi\_echange\_global\_impose h\_imp himpc text ch where

- **h\_imp** *str*: Global exchange coefficient value. The global exchange coefficient value is expressed in W.m-2.K-1.
- himpc champ\_front\_base (19.1): Boundary field type.
- text str: External temperature value. The external temperature value is expressed in oC or K.
- ch champ\_front\_base (19.1): Boundary field type.

#### 15.68 Paroi fixe

Description: Keyword to designate a situation of adherence to the wall called bord (edge) (normal and tangential velocity at the edge is zero).

See also: condlim\_base (15) paroi\_fixe\_iso\_Genepi2\_sans\_contribution\_aux\_vitesses\_sommets (15.69)

Usage:

paroi\_fixe

#### 15.69 Paroi fixe iso genepi2 sans contribution aux vitesses sommets

Description: Boundary condition to obtain iso Geneppi2, without interest

See also: paroi\_fixe (15.68)

Usage:

paroi\_fixe\_iso\_Genepi2\_sans\_contribution\_aux\_vitesses\_sommets

# 15.70 Paroi\_flux\_impose

Description: Normal flux condition at the wall called bord (edge). The surface area of the flux (W.m-1 in 2D or W.m-2 in 3D) is imposed at the boundary according to the following convention: a positive flux is a flux that enters into the domain according to convention.

See also: condlim\_base (15) paroi\_flux\_impose\_rayo\_transp (15.73) paroi\_flux\_impose\_rayo\_semi\_transp\_vdf (15.71) paroi\_flux\_impose\_rayo\_semi\_transp\_vef (15.72)

#### Usage:

# paroi\_flux\_impose ch

where

• ch champ\_front\_base (19.1): Boundary field type.

# 15.71 Paroi\_flux\_impose\_rayo\_semi\_transp\_vdf

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in semi transparent gas (in VDF).

See also: paroi flux impose (15.70)

#### Usage:

paroi\_flux\_impose\_rayo\_semi\_transp\_vdf ch
where

• ch champ\_front\_base (19.1): Boundary field type.

# 15.72 Paroi\_flux\_impose\_rayo\_semi\_transp\_vef

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in semi transparent gas (in VEF).

See also: paroi flux impose (15.70)

#### Usage:

paroi\_flux\_impose\_rayo\_semi\_transp\_vef ch
where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

#### 15.73 Paroi\_flux\_impose\_rayo\_transp

Description: Normal flux condition at the wall called bord (edge) for a radiation problem in transparent gas.

See also: paroi\_flux\_impose (15.70)

#### Usage:

# paroi\_flux\_impose\_rayo\_transp ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.74 Paroi\_ft\_disc

Description: Boundary condition for Front-Tracking problem in the discontinuous version.

See also: condlim\_base (15)

Usage:
paroi\_ft\_disc type
where

• **type** *paroi\_ft\_disc\_deriv* (15.75): Symetrie condition.

# 15.75 Paroi\_ft\_disc\_deriv

Description: not\_set

See also: objet\_lecture (39) symetrie (15.75.1) constant (15.75.2)

Usage:

paroi\_ft\_disc\_deriv

#### 15.75.1 Symetrie

Description: Symetrie condition in the case of two-phase flows

See also: paroi\_ft\_disc\_deriv (15.75)

Usage: symetrie

#### 15.75.2 Constant

Description: condition contact angle fidex. The angle is measured between the wall and the interface in the phase 0.

See also: paroi\_ft\_disc\_deriv (15.75)

Usage:

#### constant ch

where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.76 Paroi\_knudsen\_non\_negligeable

Description: Boundary condition for number of Knudsen (Kn) above 0.001 where slip-flow condition appears: the velocity near the wall depends on the shear stress: Kn=l/L with l is the mean-free-path of the molecules and L a characteristic length scale.

U(y=0)-Uwall=k(dU/dY)

Where k is a coefficient given by several laws:

Mawxell: k=(2-s)\*1/s

Bestok&Karniadakis:k=(2-s)/s\*L\*Kn/(1+Kn)

Xue&Fan : k=(2-s)/s\*L\*tanh(Kn)

```
s is a value between 0 and 2 named accommodation coefficient. s=1 seems a good value.
Warning: The keyword is available for VDF calculation only for the moment.
See also: dirichlet (15.18)
Usage:
paroi_knudsen_non_negligeable name_champ_1 champ_1 name_champ_2 champ_2
   • name_champ_1 str into ['vitesse_paroi', 'k']: Field name.
   • champ_f champ_front_base (19.1): Boundary field type.
   • name_champ_2 str into ['vitesse_paroi', 'k']: Field name.
   • champ_front_base (19.1): Boundary field type.
15.77 Paroi_rugueuse
```

```
Description: Rough wall boundary
See also: dirichlet (15.18)
Usage:
paroi_rugueuse str
Read str {
     erugu float
}
where
```

• erugu float: Constant value for roughness

#### 15.78 Paroi temperature imposee

Description: Imposed temperature condition at the wall called bord (edge).

```
See also: dirichlet (15.18) temperature_imposee_paroi (15.86) paroi_temperature_imposee_rayo_transp
(15.80) paroi_temperature_imposee_rayo_semi_transp (15.79)
```

Usage:

```
paroi_temperature_imposee ch
where
```

• ch champ\_front\_base (19.1): Boundary field type.

#### 15.79 Paroi\_temperature\_imposee\_rayo\_semi\_transp

Description: Imposed temperature condition at the wall called bord (edge) for a radiation problem in semi transparent gas.

```
See also: paroi_temperature_imposee (15.78)
```

Usage:

```
paroi_temperature_imposee_rayo_semi_transp ch
where
```

• ch champ\_front\_base (19.1): Boundary field type.

# 15.80 Paroi\_temperature\_imposee\_rayo\_transp

Description: Imposed temperature condition at the wall called bord (edge) for a radiation problem in transparent gas.

See also: paroi\_temperature\_imposee (15.78)

Usage:

paroi\_temperature\_imposee\_rayo\_transp ch where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.81 Periodique

Description: 1). For Navier-Stokes equations, this keyword is used to indicate that the horizontal inlet velocity values are the same as the outlet velocity values, at every moment. As regards meshing, the inlet and outlet edges bear the same name.; 2). For scalar transport equation, this keyword is used to set a periodic condition on scalar. The two edges dealing with this periodic condition bear the same name.

See also: condlim\_base (15)

Usage:

periodique

#### 15.82 Scalaire\_impose\_paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: dirichlet (15.18)

Usage:

scalaire\_impose\_paroi ch

where

• ch champ\_front\_base (19.1): Boundary field type.

# 15.83 Sortie\_libre\_rho\_variable

Description: Class to define an outlet boundary condition at which the pressure is defined through the given field, whereas the density of the two-phase flow may varies (value of P/rho given in Pa/kg.m-3).

See also: condlim\_base (15)

Usage:

sortie\_libre\_rho\_variable ch

where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.84 Sortie\_libre\_temperature\_imposee\_h

Description: Open boundary for heat equation with enthalpy as unknown.

See also: neumann (15.48)

Usage:

 $sortie\_libre\_temperature\_imposee\_h \ ch$ 

where

• **ch** *champ\_front\_base* (19.1): Boundary field type.

# 15.85 Symetrie

Description: 1). For Navier-Stokes equations, this keyword is used to designate a symmetry condition concerning the velocity at the boundary called bord (edge) (normal velocity at the edge equal to zero and tangential velocity gradient at the edge equal to zero); 2). For scalar transport equation, this keyword is used to set a symmetry condition on scalar on the boundary named bord (edge).

See also: condlim\_base (15)

Usage:

symetrie

#### 15.86 Temperature\_imposee\_paroi

Description: Imposed temperature condition at the wall called bord (edge).

See also: paroi\_temperature\_imposee (15.78)

Usage:

temperature\_imposee\_paroi ch

where

• ch champ\_front\_base (19.1): Boundary field type.

# 16 discretisation\_base

Description: Basic class for space discretization of thermohydraulic turbulent problems.

See also: objet\_u (40) vdf (16.5) polymac (16.2) polymac\_P0P1NC (16.3) polymac\_p0 (16.4) ef (16.1) vef (16.6)

Usage:

#### 16.1 Ef

Description: Element Finite discretization.

See also: discretisation\_base (16)

Usage:

# 16.2 Polymac

Description: polymac discretization (polymac discretization that is not compatible with pb\_multi).

```
See also: discretisation_base (16)
```

Usage:

# 16.3 Polymac\_p0p1nc

Description: polymac\_P0P1NC discretization (previously polymac discretization compatible with pb\_multi).

```
See also: discretisation_base (16)
```

Usage:

# 16.4 Polymac\_p0

Description: polymac\_p0 discretization (previously covimac discretization compatible with pb\_multi).

```
See also: discretisation_base (16)
```

Usage:

#### 16.5 Vdf

Description: Finite difference volume discretization.

```
See also: discretisation base (16)
```

Usage:

#### 16.6 Vef

Synonymous: vefprep1b

Description: Finite element volume discretization (P1NC/P1-bubble element). Since the 1.5.5 version, several new discretizations are available thanks to the optional keyword Read. By default, the VEFPreP1B keyword is equivalent to the former VEFPreP1B formulation (v1.5.4 and sooner). P0P1 (if used with the strong formulation for imposed pressure boundary) is equivalent to VEFPreP1B but the convergence is slower. VEFPreP1B dis is equivalent to VEFPreP1B dis Read dis { P0 P1 Changement\_de\_base\_P1Bulle 1 Cl\_pression\_sommet\_faible 0 }

```
See also: discretisation_base (16)
```

```
Usage:
vef str

Read str {

[ changement_de_base_p1bulle int into [0, 1]]
        [ p0 ]
        [ p1 ]
        [ pa ]
        [ rt ]
        [ modif_div_face_dirichlet int into [0, 1]]
```

```
[ cl_pression_sommet_faible int into [0, 1]]
} where
```

- **changement\_de\_base\_p1bulle** *int into* [0, 1]: changement\_de\_base\_p1bulle 1 This option may be used to have the P1NC/P0P1 formulation (value set to 0) or the P1NC/P1Bulle formulation (value set to 1, the default).
- **p0** : Pressure nodes are added on element centres
- p1 : Pressure nodes are added on vertices
- pa : Only available in 3D, pressure nodes are added on bones
- **rt**: For P1NCP1B (in TrioCFD)
- modif\_div\_face\_dirichlet int into [0, 1]: This option (by default 0) is used to extend control volumes for the momentum equation.
- cl\_pression\_sommet\_faible int into [0, 1]: This option is used to specify a strong formulation (value set to 0, the default) or a weak formulation (value set to 1) for an imposed pressure boundary condition. The first formulation converges quicker and is stable in general cases. The second formulation should be used if there are several outlet boundaries with Neumann condition (see Ecoulement\_Neumann test case for example).

# 17 domaine

```
Description: Keyword to create a domain.
```

```
See also: objet_u (40) DomaineAxi1d (17.1) IJK_Grid_Geometry (17.2) domaine_ale (17.3)
```

Usage:

Usage:

#### 17.1 Domaineaxi1d

```
Description: 1D domain
See also: domaine (17)
```

See also: domaine (17)

#### 17.2 Ijk\_grid\_geometry

Description: Object to define the grid that will represent the domain of the simulation in IJK discretization

```
Usage:

IJK_Grid_Geometry str

Read str {

    [ perio_i ]
    [ perio_j ]
    [ perio_k ]
    [ nbelem_i int]
    [ nbelem_j int]
    [ nbelem_k int]
    [ uniform_domain_size_i float]
    [ uniform_domain_size_j float]
```

```
[uniform_domain_size_k float]
      [ origin_i float]
      [ origin_j float]
      [ origin_k float]
}
where
    • perio_i: rien to specify the border along the I direction is periodic
    • perio j: rien to specify the border along the J direction is periodic
    • perio k: rien to specify the border along the K direction is periodic
    • nbelem_i int: the number of elements of the grid in the I direction
    • nbelem_j int: the number of elements of the grid in the J direction
    • nbelem_k int: the number of elements of the grid in the K direction
    • uniform_domain_size_i float: the size of the elements along the I direction
    • uniform domain size i float: the size of the elements along the J direction
    • uniform_domain_size_k float: the size of the elements along the K direction
    • origin_i float: I-coordinate of the origin of the grid
    • origin_j float: J-coordinate of the origin of the grid
    • origin_k float: K-coordinate of the origin of the grid
```

# 17.3 Domaine\_ale

Description: Domain with nodes at the interior of the domain which are displaced in an arbitrarily prescribed way thanks to ALE (Arbitrary Lagrangian-Eulerian) description.

Keyword to specify that the domain is mobile following the displacement of some of its boundaries.

```
See also: domaine (17)
Usage:
```

# 18 champ\_base

#### 18.1 Champ\_base

Description: Basic class of fields.

```
See also: objet_u (40) champ_don_base (18.9) champ_ostwald (18.25) champ_input_base (18.21) champ_fonc_med (18.14) field_uniform_keps_from_ud (18.33)
```

Usage:

# 18.2 Champ\_fonc\_interp

Description: Field that is interpolated from a distant domain via MEDCoupling (remapper).

```
See also: champ_don_base (18.9)

Usage:
Champ_Fonc_Interp str

Read str {

nom_champ str

pb loc str
```

```
pb_dist str
  [dom_loc str]
  [dom_dist str]
  [default_value str]
  nature str
  [use_overlapdec str]
}
where
```

- **nom champ** *str*: Name of the field (for example: temperature).
- **pb\_loc** *str*: Name of the local problem.
- **pb\_dist** *str*: Name of the distant problem.
- dom\_loc str: Name of the local domain.
- dom dist str: Name of the distant domain.
- **default\_value** *str*: Name of the distant domain.
- **nature** *str*: Nature of the field (knowledge from MEDCoupling is required; IntensiveMaximum, IntensiveConservation, ...).
- **use\_overlapdec** *str*: Nature of the field (knowledge from MEDCoupling is required; IntensiveMaximum, IntensiveConservation, ...).

# 18.3 Champ\_fonc\_med\_table\_temps

Description: Field defined as a fixed spatial shape scaled by a temporal coefficient

```
See also: champ_fonc_med (18.14)
Usage:
Champ Fonc MED Table Temps str
Read str {
     [table temps str]
     [table_temps_lue str]
     [use_existing_domain ]
     [ last_time ]
     [ decoup str]
     [ mesh str]
     domain str
     file str
     field str
     [loc str into ['som', 'elem']]
     [ time float]
}
where
```

- table\_temps str: Table containing the temporal coefficient used to scale the field
- **table\_temps\_lue** *str*: Name of the file containing the values of the temporal coefficient used to scale the field
- **use\_existing\_domain** for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- **last\_time** for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str* for inheritance: specify a partition file.

- mesh *str* for inheritance: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use\_existing\_domain'.
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use\_existing\_domain'.
- file str for inheritance: Name of the .med file.
- field str for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last\_time' flag.

# 18.4 Champ\_fonc\_med\_tabule

```
Description: not set
See also: champ_fonc_med (18.14)
Usage:
Champ_Fonc_MED_Tabule str
Read str {
     [ use_existing_domain ]
     [ last_time ]
     [decoup str]
     [ mesh str]
     domain str
     file str
     field str
     [loc str into ['som', 'elem']]
     [time float]
}
where
```

- **use\_existing\_domain** for inheritance: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- last\_time for inheritance: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** *str* for inheritance: specify a partition file.
- mesh *str* for inheritance: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use\_existing\_domain'.
- **domain** *str* for inheritance: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use\_existing\_domain'.
- file str for inheritance: Name of the .med file.
- field str for inheritance: Name of field to load.
- loc str into ['som', 'elem'] for inheritance: To indicate where the field is localised. Default to 'elem'.
- **time** *float* for inheritance: Timestep to load from the MED file. Mutually exclusive with 'last\_time' flag.

# 18.5 Champ\_tabule\_morceaux

Description: Field defined by tabulated data in each sub-domaine. It makes possible the definition of a field which is a function of other fields.

See also: champ\_don\_base (18.9) Champ\_Fonc\_Tabule\_Morceaux\_Interp (18.6)

Usage:

Champ\_Tabule\_Morceaux domain\_name nb\_comp data where

- domain name str: Name of the domain.
- **nb\_comp** *int*: Number of field components.
- data bloc\_lecture (3.2): { Defaut val\_def sous\_domaine\_1 val\_1 ... sous\_domaine\_i val\_i } By default, the value val\_def is assigned to the field. It takes the sous\_domaine\_i identifier Sous\_Domaine (sub\_area) type object function, val\_i. Sous\_Domaine (sub\_area) type objects must have been previously defined if the operator wishes to use a champ\_fonc\_tabule\_morceaux type object.

# 18.6 Champ\_fonc\_tabule\_morceaux\_interp

Description: Field defined by tabulated data in each sub-domaine. It makes possible the definition of a field which is a function of other fields. Here we use MEDCoupling to interpolate fields between the two domains.

See also: Champ\_Tabule\_Morceaux (18.5)

Usage:

Champ\_Fonc\_Tabule\_Morceaux\_Interp problem\_name nb\_comp data where

- **problem name** *str*: Name of the problem.
- **nb\_comp** *int*: Number of field components.
- data bloc\_lecture (3.2): { Defaut val\_def sous\_domaine\_1 val\_1 ... sous\_domaine\_i val\_i } By default, the value val\_def is assigned to the field. It takes the sous\_domaine\_i identifier Sous\_Domaine (sub\_area) type object function, val\_i. Sous\_Domaine (sub\_area) type objects must have been previously defined if the operator wishes to use a champ\_fonc\_tabule\_morceaux type object.

#### 18.7 Champ\_parametrique

Description: Parametric field

See also: champ\_don\_base (18.9)

Usage:

Champ\_Parametrique fichier

where

• fichier str: Filename where fields are read

# 18.8 Champ\_composite

Description: Composite field. Used in multiphase problems to associate data to each phase.

See also: champ\_don\_base (18.9) champ\_musig (18.24)

Usage:

# champ\_composite dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc\_lecture* (3.2): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

# 18.9 Champ\_don\_base

Description: Basic class for data fields (not calculated), p.e. physics properties.

See also: champ\_base (18.1) uniform\_field (18.36) champ\_uniforme\_morceaux (18.29) champ\_fonc\_xyz (18.32) champ\_fonc\_txyz (18.31) champ\_don\_lu (18.10) init\_par\_partie (18.34) champ\_tabule\_temps (18.28) champ\_fonc\_t (18.17) champ\_init\_canal\_sinal (18.19) champ\_som\_lu\_vdf (18.26) champ\_som\_lu\_vef (18.27) tayl\_green (18.35) Champ\_Fonc\_Interp (18.2) Champ\_Parametrique (18.7) champ\_fonc\_reprise (18.15) champ\_fonc\_tabule (18.18) Champ\_Tabule\_Morceaux (18.5) champ\_fonc\_fonction\_txyz\_morceaux (18.13) champ\_composite (18.8)

Usage:

# 18.10 Champ\_don\_lu

Description: Field to read a data field (values located at the center of the cells) in a file.

See also: champ\_don\_base (18.9)

Usage:

#### champ\_don\_lu dom nb\_comp file

where

- dom str: Name of the domain.
- **nb comp** *int*: Number of field components.
- file str: Name of the file.

This file has the following format:

nb\_val\_lues -> Number of values readen in th file

Xi Yi Zi -> Coordinates readen in the file

Ui Vi Wi -> Value of the field

# 18.11 Champ\_fonc\_fonction

Description: Field that is a function of another field.

See also: champ\_fonc\_tabule (18.18) champ\_fonc\_fonction\_txyz (18.12)

Usage:

champ\_fonc\_fonction problem\_name inco expression

where

- **problem\_name** *str*: Name of problem.
- inco str: Name of the field (for example: temperature).
- **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

# 18.12 Champ\_fonc\_fonction\_txyz

Description: this refers to a field that is a function of another field and time and/or space coordinates

See also: champ\_fonc\_fonction (18.11)

Usage:

champ\_fonc\_fonction\_txyz problem\_name inco expression
where

- **problem\_name** *str*: Name of problem.
- **inco** *str*: Name of the field (for example: temperature).
- **expression** *n word1 word2* ... *wordn*: Number of field components followed by the analytical expression for each field component.

# 18.13 Champ\_fonc\_fonction\_txyz\_morceaux

Description: Field defined by analytical functions in each sub-domaine. On each zone, the value is defined as a function of x,y,z,t and of scalar value taken from a parameter field. This values is associated to the variable 'val' in the expression.

See also: champ\_don\_base (18.9)

Usage:

champ\_fonc\_fonction\_txyz\_morceaux problem\_name inco nb\_comp data where

- problem\_name str: Name of the problem.
- inco str: Name of the field (for example: temperature).
- **nb\_comp** *int*: Number of field components.
- data bloc\_lecture (3.2): { Defaut val\_def sous\_domaine\_1 val\_1 ... sous\_domaine\_i val\_i } By default, the value val\_def is assigned to the field. It takes the sous\_domaine\_i identifier Sous\_Domaine (sub\_area) type object function, val\_i. Sous\_Domaine (sub\_area) type objects must have been previously defined if the operator wishes to use a champ\_fonc\_fonction\_txyz\_morceaux type object.

# 18.14 Champ\_fonc\_med

Description: Field to read a data field in a MED-format file .med at a specified time. It is very useful, for example, to resume a calculation with a new or refined geometry. The field post-processed on the new geometry at med format is used as initial condition for the resume.

See also: champ\_base (18.1) Champ\_Fonc\_MED\_Table\_Temps (18.3) Champ\_Fonc\_MED\_Tabule (18.4)

Usage:

```
champ_fonc_med str
Read str {
    [use_existing_domain]
```

```
[ last_time ]
  [ decoup str]
  [ mesh str]
  domain str
  file str
  field str
  [ loc str into ['som', 'elem']]
  [ time float]
}
where
```

- **use\_existing\_domain**: whether to optimize the field loading by indicating that the field is supported by the same mesh that was initially loaded as the domain
- last\_time: to use the last time of the MED file instead of the specified time. Mutually exclusive with 'time' parameter.
- **decoup** str: specify a partition file.
- mesh *str*: Name of the mesh supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use\_existing\_domain'.
- **domain** *str*: Name of the domain supporting the field. This is the name of the mesh in the MED file, and if this mesh was also used to create the TRUST domain, loading can be optimized with option 'use\_existing\_domain'.
- file str: Name of the .med file.
- field str: Name of field to load.
- loc str into ['som', 'elem']: To indicate where the field is localised. Default to 'elem'.
- time float: Timestep to load from the MED file. Mutually exclusive with 'last\_time' flag.

#### 18.15 Champ\_fonc\_reprise

Description: This field is used to read a data field in a save file (.xyz or .sauv) at a specified time. It is very useful, for example, to run a thermohydraulic calculation with velocity initial condition read into a save file from a previous hydraulic calculation.

```
See also: champ_don_base (18.9)

Usage:
champ_fonc_reprise [ format ] filename pb_name champ [ fonction ] temps where
```

- **format** *str into* ['binaire', 'formatte', 'xyz', 'single\_hdf']: Type of file (the file format). If xyz format is activated, the .xyz file from the previous calculation will be given for filename, and if formatte or binaire is choosen, the .sauv file of the previous calculation will be specified for filename. In the case of a parallel calculation, if the mesh partition does not changed between the previous calculation and the next one, the binaire format should be preferred, because is faster than the xyz format. If single\_hdf is used, the same constraints/advantages as binaire apply, but a single (HDF5) file is produced on the filesystem instead of having one file per processor.
- filename str: Name of the save file.
- **pb\_name** *str*: Name of the problem.
- **champ** *str*: Name of the problem unknown. It may also be the temporal average of a problem unknown (like moyenne\_vitesse, moyenne\_temperature,...)
- **fonction** *fonction\_champ\_reprise* (18.16): Optional keyword to apply a function on the field being read in the save file (e.g. to read a temperature field in Celsius units and convert it for the calculation on Kelvin units, you will use: fonction 1 273.+val)

• **temps** *str*: Time of the saved field in the save file or last\_time. If you give the keyword last\_time instead, the last time saved in the save file will be used.

# 18.16 Fonction\_champ\_reprise

```
See also: objet_lecture (39)
```

Description: not\_set

Usage:

# mot fonction

where

- mot str into ['fonction']
- **fonction** *n word1 word2 ... wordn*: n f1(val) f2(val) ... fn(val)] time

# 18.17 Champ\_fonc\_t

Description: Field that is constant in space and is a function of time.

```
See also: champ don base (18.9)
```

Usage:

#### champ\_fonc\_t val

where

• val n word1 word2 ... wordn: Values of field components (time dependant functions).

#### 18.18 Champ\_fonc\_tabule

Description: Field that is tabulated as a function of another field.

```
See also: champ_don_base (18.9) champ_fonc_fonction (18.11)
```

Usage:

# champ\_fonc\_tabule pb\_field dim bloc

where

- **pb\_field** bloc\_lecture (3.2): block similar to { pb1 field1 } or { pb1 field1 ... pbN fieldN }
- dim int: Number of field components.
- **bloc** *bloc\_lecture* (3.2): Values (the table (the value of the field at any time is calculated by linear interpolation from this table) or the analytical expression (with keyword expression to use an analytical expression)).

#### 18.19 Champ init canal sinal

Description: For a parabolic profile on U velocity with an unpredictable disturbance on V and W and a sinusoidal disturbance on V velocity.

```
See also: champ_don_base (18.9)
```

Usage:

# champ\_init\_canal\_sinal dim bloc

where

- dim int: Number of field components.
- bloc bloc\_lec\_champ\_init\_canal\_sinal (18.20): Parameters for the class champ\_init\_canal\_sinal.

# 18.20 Bloc\_lec\_champ\_init\_canal\_sinal

```
Description: Parameters for the class champ_init_canal_sinal.
in 2D:
U=ucent*y(2h-y)/h/h
V=ampli bruit*rand+ampli sin*sin(omega*x)
rand: unpredictable value between -1 and 1.
in 3D:
U=ucent*y(2h-y)/h/h
V=ampli_bruit*rand1+ampli_sin*sin(omega*x)
W=ampli bruit*rand2
rand1 and rand2: unpredictables values between -1 and 1.
See also: objet_lecture (39)
Usage:
      ucent float
      h float
      ampli bruit float
      [ ampli sin float]
      omega float
      [ dir_flow int into [0, 1, 2]]
      [ dir_wall int into [0, 1, 2]]
      [ min_dir_flow float]
      [ min_dir_wall float]
}
where
    • ucent float: Velocity value at the center of the channel.
    • h float: Half hength of the channel.
    • ampli bruit float: Amplitude for the disturbance.
    • ampli sin float: Amplitude for the sinusoidal disturbance (by default equals to ucent/10).
    • omega float: Value of pulsation for the of the sinusoidal disturbance.
    • dir_flow int into [0, 1, 2]: Flow direction for the initialization of the flow in a channel.
      - if dir flow=0, the flow direction is X
      - if dir flow=1, the flow direction is Y
      - if dir flow=2, the flow direction is Z
      Default value for dir_flow is 0
    • dir_wall int into [0, 1, 2]: Wall direction for the initialization of the flow in a channel.
      - if dir_wall=0, the normal to the wall is in X direction
      - if dir_wall=1, the normal to the wall is in Y direction
      - if dir_wall=2, the normal to the wall is in Z direction
      Default value for dir_flow is 1
    • min_dir_flow float: Value of the minimum coordinate in the flow direction for the initialization of
```

- min\_dir\_flow float: Value of the minimum coordinate in the flow direction for the initialization of the flow in a channel. Default value for dir\_flow is 0.
- min\_dir\_wall *float*: Value of the minimum coordinate in the wall direction for the initialization of the flow in a channel. Default value for dir\_flow is 0.

# 18.21 Champ\_input\_base

```
Description: not_set
See also: champ_base (18.1) champ_input_p0 (18.22) champ_input_p0_composite (18.23)
Usage:
champ_input_base str
Read str {
     nb_comp int
     nom str
     [ initial_value n \times 1 \times 2 \dots \times n]
     probleme str
     [ sous_zone str]
}
where
    • nb_comp int
    • nom str
    • initial_value n x1 x2 ... xn
    • probleme str
    • sous_zone str
18.22
        Champ_input_p0
Description: not_set
See also: champ_input_base (18.21)
Usage:
champ_input_p0 str
Read str {
     nb_comp int
     nom str
     [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
     [ sous_zone str]
}
where
    • nb_comp int for inheritance
    • nom str for inheritance
    • initial_value n x1 x2 ... xn for inheritance
    • probleme str for inheritance
    • sous_zone str for inheritance
```

# 18.23 Champ\_input\_p0\_composite

Description: Field used to define a classical champ input p0 field (for ICoCo), but with a predefined field for the initial state.

```
See also: champ_input_base (18.21)
Usage:
champ_input_p0_composite str
Read str {
     [initial_field champ_base]
     [input_field champ_input_p0]
     nb_comp int
     nom str
     [ initial_value n \times 1 \times 2 \dots \times n]
     probleme str
     [ sous_zone str]
where
   • initial_field champ_base (18.1): The field used for initialization
   • input_field champ_input_p0 (18.22): The input field for ICoCo
   • nb_comp int for inheritance
   • nom str for inheritance
   • initial_value n x1 x2 ... xn for inheritance
   • probleme str for inheritance
   • sous_zone str for inheritance
18.24 Champ_musig
Description: MUSIG field. Used in multiphase problems to associate data to each phase.
See also: champ_composite (18.8)
Usage:
champ_musig bloc
where
   • bloc bloc_lecture (3.2): Not set
18.25 Champ_ostwald
Description: This keyword is used to define the viscosity variation law:
Mu(T) = K(T)*(D:D/2)**((n-1)/2)
See also: champ_base (18.1)
Usage:
champ_ostwald
        Champ_som_lu_vdf
18.26
Description: Keyword to read in a file values located at the nodes of a mesh in VDF discretization.
See also: champ_don_base (18.9)
Usage:
```

# $champ\_som\_lu\_vdf \ \ domain\_name \ \ dim \ \ tolerance \ \ file$

where

- domain\_name str: Name of the domain.
- dim int: Value of the dimension of the field.
- tolerance float: Value of the tolerance to check the coordinates of the nodes.
- file str: name of the file

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

# 18.27 Champ\_som\_lu\_vef

Description: Keyword to read in a file values located at the nodes of a mesh in VEF discretization.

See also: champ\_don\_base (18.9)

Usage:

# champ\_som\_lu\_vef domain\_name dim tolerance file

where

- domain\_name str: Name of the domain.
- dim int: Value of the dimension of the field.
- tolerance *float*: Value of the tolerance to check the coordinates of the nodes.
- file str: Name of the file.

This file has the following format:

Xi Yi Zi -> Coordinates of the node

Ui Vi Wi -> Value of the field on this node

Xi+1 Yi+1 Zi+1 -> Next point

Ui+1 Vi+1 Zi+1 -> Next value ...

#### 18.28 Champ tabule temps

Description: Field that is constant in space and tabulated as a function of time.

See also: champ\_don\_base (18.9)

Usage:

# champ\_tabule\_temps dim bloc

where

- dim int: Number of field components.
- **bloc** *bloc\_lecture* (3.2): Values as a table. The value of the field at any time is calculated by linear interpolation from this table.

#### 18.29 Champ\_uniforme\_morceaux

Description: Field which is partly constant in space and stationary.

See also: champ\_don\_base (18.9) champ\_uniforme\_morceaux\_tabule\_temps (18.30) valeur\_totale\_sur\_volume (18.37)

Usage:

champ\_uniforme\_morceaux nom\_dom nb\_comp data where

- **nom\_dom** *str*: Name of the domain to which the sub-areas belong.
- **nb\_comp** *int*: Number of field components.
- data bloc\_lecture (3.2): { Defaut val\_def sous\_zone\_1 val\_1 ... sous\_zone\_i val\_i } By default, the value val\_def is assigned to the field. It takes the sous\_zone\_i identifier Sous\_Zone (sub\_area) type object value, val\_i. Sous\_Zone (sub\_area) type objects must have been previously defined if the operator wishes to use a Champ\_Uniforme\_Morceaux(partly\_uniform\_field) type object.

# 18.30 Champ\_uniforme\_morceaux\_tabule\_temps

Description: this type of field is constant in space on one or several sub\_zones and tabulated as a function of time.

See also: champ\_uniforme\_morceaux (18.29)

Usage:

 ${\bf champ\_uniforme\_morceaux\_tabule\_temps} \quad {\bf nom\_dom} \quad {\bf nb\_comp} \quad {\bf data} \\ \quad {\bf where} \quad$ 

- **nom\_dom** *str*: Name of the domain to which the sub-areas belong.
- **nb\_comp** *int*: Number of field components.
- data bloc\_lecture (3.2): { Defaut val\_def sous\_zone\_1 val\_1 ... sous\_zone\_i val\_i } By default, the value val\_def is assigned to the field. It takes the sous\_zone\_i identifier Sous\_Zone (sub\_area) type object value, val\_i. Sous\_Zone (sub\_area) type objects must have been previously defined if the operator wishes to use a Champ Uniforme Morceaux(partly uniform field) type object.

#### 18.31 Champ fonc txyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on the time and the space.

See also: champ\_don\_base (18.9)

Usage:

champ\_fonc\_txyz dom val
where

- dom str: Name of domain of calculation.
- val n word1 word2 ... wordn: List of functions on (t,x,y,z).

# 18.32 Champ\_fonc\_xyz

Description: Field defined by analytical functions. It makes it possible the definition of a field that depends on (x,y,z).

See also: champ\_don\_base (18.9)

```
Usage:
champ_fonc_xyz dom val
where
   • dom str: Name of domain of calculation.
   • val n word1 word2 ... wordn: List of functions on (x,y,z).
18.33
        Field_uniform_keps_from_ud
Description: field which allows to impose on a domain K and EPS values derived from U velocity and D
hydraulic diameter
See also: champ_base (18.1)
Usage:
field_uniform_keps_from_ud str
Read str {
     u float
     d float
}
where
   • u float: value of velocity specified in boundary condition.
   • d float: value of hydraulic diameter specified in boundary condition
18.34 Init_par_partie
Description: ne marche que pour n_comp=1
See also: champ_don_base (18.9)
Usage:
init_par_partie n_comp val1 val2 val3
where
   • n_comp int into [1]
   • val1 float
   • val2 float
   • val3 float
18.35
        Tayl_green
Description: Class Tayl_green.
See also: champ_don_base (18.9)
Usage:
```

tayl\_green dim

• dim int: Dimension.

where

#### 18.36 Uniform field

Synonymous: champ\_uniforme

Description: Field that is constant in space and stationary.

See also: champ\_don\_base (18.9)

Usage:

uniform field val

where

• val n x1 x2 ... xn: Values of field components.

#### 18.37 Valeur\_totale\_sur\_volume

Description: Similar as Champ\_Uniforme\_Morceaux with the same syntax. Used for source terms when we want to specify a source term with a value given for the volume (eg: heat in Watts) and not a value per volume unit (eg: heat in Watts/m3).

See also: champ\_uniforme\_morceaux (18.29)

Usage:

valeur\_totale\_sur\_volume nom\_dom nb\_comp data where

- **nom\_dom** *str*: Name of the domain to which the sub-areas belong.
- **nb\_comp** *int*: Number of field components.
- data bloc\_lecture (3.2): { Defaut val\_def sous\_zone\_1 val\_1 ... sous\_zone\_i val\_i } By default, the value val\_def is assigned to the field. It takes the sous\_zone\_i identifier Sous\_Zone (sub\_area) type object value, val\_i. Sous\_Zone (sub\_area) type objects must have been previously defined if the operator wishes to use a Champ\_Uniforme\_Morceaux(partly\_uniform\_field) type object.

## 19 champ\_front\_base

#### 19.1 Champ\_front\_base

Description: Basic class for fields at domain boundaries.

See also: objet\_u (40) champ\_front\_uniforme (19.39) champ\_front\_fonc\_pois\_ipsn (19.25) champ\_front\_fonc\_pois\_tube (19.26) champ\_front\_tangentiel\_vef (19.38) champ\_front\_lu (19.31) boundary\_field\_inward (19.12) champ\_front\_pression\_from\_u (19.34) champ\_front\_contact\_vef (19.22) champ\_front\_calc (19.18) champ\_front\_recyclage (19.35) champ\_front\_normal\_vef (19.33) Champ\_front\_debit\_QC\_VDF (19.8) Champ\_front\_debit\_QC\_VDF\_fonc\_t (19.9) Champ\_front\_Parametrique (19.6) champ\_front\_MED (19.16) champ\_front\_fonc\_xyz (19.29) champ\_front\_fonc\_t (19.27) champ\_front\_fonction (19.30) champ\_front\_debit\_massique (19.24) champ\_front\_bruite (19.17) champ\_front\_tabule (19.36) champ\_front\_composite (19.19) ch\_front\_input (19.14) champ\_front\_debit (19.23) champ\_front\_fonc\_txyz (19.28) champ\_front\_xyz\_debit (19.41) champ\_front\_vortex (19.40) boundary\_field\_uniform\_keps\_from\_ud (19.13) Champ\_front\_synt (19.10) champ\_front\_zoom (19.42) Champ\_front\_ale (19.7) Ch\_front\_input\_ALE (19.3) Champ\_front\_ALE\_Beam (19.5) Boundary\_field\_keps\_from\_ud (19.2)

Usage:

### 19.2 Boundary\_field\_keps\_from\_ud

Description: To specify a K-Eps inlet field with hydraulic diameter, speed, and turbulence intensity (VDF only)

```
See also: champ_front_base (19.1)

Usage:

Boundary_field_keps_from_ud str

Read str {

    u champ_front_base
    d float
    i float
}

where

• u champ_front_base (19.1): U 0 Initial velocity magnitude
• d float: Hydraulic diameter
• i float: Turbulence intensity [
```

#### 19.3 Ch\_front\_input\_ale

Description: Class to define a boundary condition on a moving boundary of a mesh (only for the Arbitrary Lagrangian-Eulerian framework).

Example: Ch\_front\_input\_ALE { nb\_comp 3 nom VITESSE\_IN\_ALE probleme pb initial\_value 3 1. 0. 0. }

See also: champ\_front\_base (19.1)

Usage:

#### 19.4 Champ\_front\_xyz\_tabule

Description: Space dependent field on the boundary, tabulated as a function of time.

```
See also: champ front fonc txyz (19.28)
```

Usage:

#### Champ\_Front\_xyz\_Tabule val bloc

where

- val n word1 word2 ... wordn: Values of field components (mathematical expressions).
- **bloc** *bloc\_lecture* (3.2): {nt1 t2 t3 ....tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...] }

Values are entered into a table based on n couples (ti, ui) if nb\_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

#### 19.5 Champ\_front\_ale\_beam

Description: Class to define a Beam on a FSI boundary.

```
See also: champ_front_base (19.1)
```

#### Usage:

#### Champ\_front\_ALE\_Beam val

where

• val n word1 word2 ... wordn: Example: 3 0 0 0

#### 19.6 Champ\_front\_parametrique

Description: Parametric boundary field

See also: champ\_front\_base (19.1)

Usage:

#### Champ\_front\_Parametrique fichier

where

• fichier str: Filename where boundary fields are read

#### 19.7 Champ\_front\_ale

Description: Class to define a boundary condition on a moving boundary of a mesh (only for the Arbitrary Lagrangian-Eulerian framework).

See also: champ\_front\_base (19.1)

Usage:

#### Champ\_front\_ale val

where

• **val** *n word1 word2* ... *wordn*: Example: 2 -y\*0.01 x\*0.01

#### 19.8 Champ\_front\_debit\_qc\_vdf

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate is kept constant during a transient.

See also: champ\_front\_base (19.1)

Usage:

# Champ\_front\_debit\_QC\_VDF dimension liste [ moyen ] pb\_name where

- dimension int: Problem dimension
- **liste** *bloc\_lecture* (3.2): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim }
- moyen str: Option to use rho mean value
- **pb\_name** *str*: Problem name

### 19.9 Champ\_front\_debit\_qc\_vdf\_fonc\_t

Description: This keyword is used to define a flow rate field for quasi-compressible fluids in VDF discretization. The flow rate could be constant or time-dependent.

```
See also: champ_front_base (19.1)
```

Usage:

 $\label{lem:cont_debit_QC_VDF_fonc_t} \begin{tabular}{ll} Champ\_front\_debit\_QC\_VDF\_fonc\_t & dimension & liste [moyen] pb\_name where \end{tabular}$ 

- dimension int: Problem dimension
- **liste** *bloc\_lecture* (3.2): List of the mass flow rate values [kg/s/m2] with the following syntaxe: { val1 ... valdim } where val1 ... valdim are constant or function of time.
- moyen str: Option to use rho mean value
- **pb\_name** *str*: Problem name

#### 19.10 Champ\_front\_synt

Description: Boundary condition to create the synthetic fluctuations as inlet boundary. Available only for 3D configurations.

```
See also: champ_front_base (19.1)
```

Usage:

#### Champ\_front\_synt dim bloc

where

- dim int: Number of field components. It should be 3!
- bloc bloc\_lecture\_turb\_synt (19.11): bloc containing the parameters of the synthetic turbulence

#### 19.11 Bloc lecture turb synt

Description: bloc containing parameters of the synthetic turbulence

```
See also: objet_lecture (39)

Usage:
{

moyenne x1 x2 (x3)
lenghtScale float
nbModes int
turbKinEn float
turbDissRate float
ratioCutoffWavenumber float
KeOverKmin float
timeScale float
dir_fluct x1 x2 (x3)
}
where
```

- moyenne x1 x2 (x3): components of the average velocity fields
- lenghtScale float: turbulent length scale

- **nbModes** *int*: number of Fourier modes
- turbKinEn float: turbulent kinetic energy (k)
- turbDissRate *float*: turbulent dissipation rate (epsilon)
- ratioCutoffWavenumber float: ratio between the cut-off wavenumber and pi/delta
- **KeOverKmin** *float*: ratio of the most energetic wavenumber Ke over the minimum wavenumber Kmin representing the largest turbulent eddies
- timeScale *float*: turbulent time scale
- **dir\_fluct** x1 x2 (x3): directions for the velocity fluctations (e.g 1 0 0 generates velocity fluctuations in the x-direction only)

#### 19.12 Boundary\_field\_inward

Description: this field is used to define the normal vector field standard at the boundary in VDF or VEF discretization.

```
See also: champ_front_base (19.1)

Usage:
boundary_field_inward str

Read str {

    normal_value str
}
where
```

• **normal\_value** *str*: normal vector value (positive value for a vector oriented outside to inside) which can depend of the time.

#### 19.13 Boundary\_field\_uniform\_keps\_from\_ud

Description: field which allows to impose on a boundary K and EPS values derived from U velocity and D hydraulic diameter

```
See also: champ_front_base (19.1)

Usage:
boundary_field_uniform_keps_from_ud str

Read str {
    u float
    d float
}
where

• u float: value of velocity
```

• d float: value of hydraulic diameter

### 19.14 Ch\_front\_input

```
Description: not_set
See also: champ_front_base (19.1) ch_front_input_uniforme (19.15)
Usage:
ch_front_input str
Read str {
     nb_comp int
     nom str
     [initial_value n \times 1 \times 2 \dots \times n]
     probleme str
      [ sous_zone str]
}
where
   • nb comp int
    • nom str
    • initial_value n x1 x2 ... xn
    • probleme str
    • sous_zone str
```

#### 19.15 Ch front input uniforme

Description: for coupling, you can use ch\_front\_input\_uniforme which is a champ\_front\_uniforme, which use an external value. It must be used with Problem.setInputField.

```
See also: ch_front_input (19.14)
Usage:
ch_front_input_uniforme str
Read str {
      nb_comp int
      nom str
      [ initial_value n \times 1 \times 2 \dots \times n]
      probleme str
      [ sous_zone str]
}
where
    • nb_comp int for inheritance
    • nom str for inheritance
   • initial_value n x1 x2 ... xn for inheritance
    • probleme str for inheritance
    • sous_zone str for inheritance
```

#### 19.16 Champ\_front\_med

Description: Field allowing the loading of a boundary condition from a MED file using Champ\_fonc\_med

See also: champ\_front\_base (19.1)

Usage:

 $champ\_front\_MED \quad champ\_fonc\_med$ 

where

• **champ\_fonc\_med** *champ\_base* (18.1): a champ\_fonc\_med loading the values of the unknown on a domain boundary

#### 19.17 Champ\_front\_bruite

Description: Field which is variable in time and space in a random manner.

See also: champ front base (19.1)

Usage:

champ\_front\_bruite nb\_comp bloc

where

- **nb comp** *int*: Number of field components.
- bloc bloc\_lecture (3.2): { [N val L val ] Moyenne m\_1....[m\_i ] Amplitude A\_1....[A\_i ]}: Random nois: If N and L are not defined, the ith component of the field varies randomly around an average value m\_i with a maximum amplitude A\_i.

White noise: If N and L are defined, these two additional parameters correspond to L, the domain length and N, the number of nodes in the domain. Noise frequency will be between 2\*Pi/L and 2\*Pi\*N/(4\*L).

For example, formula for velocity: u=U0(t) v=U1(t)Uj(t)=Mj+2\*Aj\*bruit\_blanc where bruit\_blanc (white\_noise) is the formula given in the mettre\_a\_jour (update) method of the Champ\_front\_bruite (noise\_boundary\_field) (Refer to the Champ\_front\_bruite.cpp file).

#### 19.18 Champ\_front\_calc

Description: This keyword is used on a boundary to get a field from another boundary. The local and remote boundaries should have the same mesh. If not, the Champ\_front\_recyclage keyword could be used instead. It is used in the condition block at the limits of equation which itself refers to a problem called pb1. We are working under the supposition that pb1 is coupled to another problem.

See also: champ\_front\_base (19.1)

Usage:

champ\_front\_calc problem\_name bord field\_name
where

- **problem\_name** *str*: Name of the other problem to which pb1 is coupled.
- **bord** *str*: Name of the side which is the boundary between the 2 domains in the domain object description associated with the problem\_name object.
- **field\_name** *str*: Name of the field containing the value that the user wishes to use at the boundary. The field\_name object must be recognized by the problem\_name object.

#### 19.19 Champ\_front\_composite

Description: Composite front field. Used in multiphase problems to associate data to each phase.

See also: champ\_front\_base (19.1) champ\_front\_musig (19.32)

Usage:

#### champ\_front\_composite dim bloc

where

- **dim** *int*: Number of field components.
- **bloc** *bloc\_lecture* (3.2): Values Various pieces of the field, defined per phase. Part 1 goes to phase 1, etc...

#### 19.20 Champ\_front\_contact\_rayo\_semi\_transp\_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems with radiation in semi transparent fluid.

See also: champ\_front\_contact\_vef (19.22)

Usage:

champ\_front\_contact\_rayo\_semi\_transp\_vef local\_pb local\_boundary remote\_pb remote-\_boundary

where

- local\_pb str: Name of the problem.
- local\_boundary str: Name of the boundary.
- **remote\_pb** *str*: Name of the second problem.
- remote\_boundary str: Name of the boundary in the second problem.

#### 19.21 Champ\_front\_contact\_rayo\_transp\_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems with radiation in transparent fluid.

See also: champ\_front\_contact\_vef (19.22)

Usage:

champ\_front\_contact\_rayo\_transp\_vef local\_pb local\_boundary remote\_pb remote\_boundary where

- local\_pb str: Name of the problem.
- local\_boundary str: Name of the boundary.
- remote\_pb str: Name of the second problem.
- remote\_boundary str: Name of the boundary in the second problem.

#### 19.22 Champ\_front\_contact\_vef

Description: This field is used on a boundary between a solid and fluid domain to exchange a calculated temperature at the contact face of the two domains according to the flux of the two problems.

See also: champ\_front\_base (19.1) champ\_front\_contact\_rayo\_transp\_vef (19.21) champ\_front\_contact\_rayo\_semi\_transp\_vef (19.20)

#### Usage:

champ\_front\_contact\_vef local\_pb local\_boundary remote\_pb remote\_boundary where

- local pb str: Name of the problem.
- local\_boundary str: Name of the boundary.
- remote\_pb str: Name of the second problem.
- remote boundary str: Name of the boundary in the second problem.

#### 19.23 Champ\_front\_debit

Description: This field is used to define a flow rate field instead of a velocity field for a Dirichlet boundary condition on Navier-Stokes equations.

See also: champ\_front\_base (19.1)

Usage:

#### champ\_front\_debit ch

where

• **ch** *champ\_front\_base* (19.1): uniform field in space to define the flow rate. It could be, for example, champ\_front\_uniforme, ch\_front\_input\_uniform or champ\_front\_fonc\_txyz that depends only on time.

#### 19.24 Champ\_front\_debit\_massique

Description: This field is used to define a flow rate field using the density

See also: champ\_front\_base (19.1)

Usage:

#### champ\_front\_debit\_massique ch

where

• **ch** *champ\_front\_base* (19.1): uniform field in space to define the flow rate. It could be, for example, champ\_front\_uniforme, ch\_front\_input\_uniform or champ\_front\_fonc\_txyz that depends only on time.

#### 19.25 Champ\_front\_fonc\_pois\_ipsn

Description: Boundary field champ\_front\_fonc\_pois\_ipsn.

See also: champ\_front\_base (19.1)

Usage:

```
champ_front_fonc_pois_ipsn r_tube umoy r_loc
where
   • r_tube float
   • umoy n x1 x2 ... xn
   • r_{loc} x1 x2 (x3)
19.26 Champ_front_fonc_pois_tube
Description: Boundary field champ_front_fonc_pois_tube.
See also: champ_front_base (19.1)
Usage:
champ_front_fonc_pois_tube r_tube umoy r_loc r_loc_mult
where
   • r_tube float
   • umoy n x1 x2 ... xn
   • r_{loc} x1 x2 (x3)
   • r_loc_mult n1 n2 (n3)
19.27
       Champ_front_fonc_t
Description: Boundary field that depends only on time.
See also: champ_front_base (19.1)
Usage:
champ_front_fonc_t val
where
   • val n word1 word2 ... wordn: Values of field components (mathematical expressions).
19.28
       Champ_front_fonc_txyz
Description: Boundary field which is not constant in space and in time.
See also: champ_front_base (19.1) Champ_Front_xyz_Tabule (19.4)
Usage:
champ_front_fonc_txyz val
where
```

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

#### 19.29 Champ\_front\_fonc\_xyz

Description: Boundary field which is not constant in space.

See also: champ front base (19.1)

Usage:

champ\_front\_fonc\_xyz val

where

• val n word1 word2 ... wordn: Values of field components (mathematical expressions).

#### 19.30 Champ\_front\_fonction

Description: boundary field that is function of another field

See also: champ\_front\_base (19.1)

Usage:

champ\_front\_fonction dim inco expression

where

- **dim** *int*: Number of field components.
- inco str: Name of the field (for example: temperature).
- **expression** *str*: keyword to use a analytical expression like 10.\*EXP(-0.1\*val) where val be the keyword for the field.

#### 19.31 Champ\_front\_lu

Description: boundary field which is given from data issued from a read file. The format of this file has to be the same that the one generated by Ecrire fichier xyz valeur

Example for K and epsilon quantities to be defined for inlet condition in a boundary named 'entree': entree frontiere\_ouverte\_K\_Eps\_impose Champ\_Front\_lu dom 2pb\_K\_EPS\_PERIO\_1006.306198.dat

See also: champ\_front\_base (19.1)

Usage:

champ\_front\_lu domaine dim file

where

- domaine str: Name of domain
- dim int: number of components
- file str: path for the read file

#### 19.32 Champ front musig

Description: MUSIG front field. Used in multiphase problems to associate data to each phase.

See also: champ\_front\_composite (19.19)

Usage:

champ\_front\_musig bloc

where

• bloc bloc\_lecture (3.2): Not set

#### 19.33 Champ\_front\_normal\_vef

Description: Field to define the normal vector field standard at the boundary in VEF discretization.

```
See also: champ_front_base (19.1)

Usage: champ_front_normal_vef mot vit_tan where
```

- mot str into ['valeur normale']: Name of vector field.
- vit\_tan *float*: normal vector value (positive value for a vector oriented outside to inside).

#### 19.34 Champ\_front\_pression\_from\_u

Description: this field is used to define a pressure field depending of a velocity field.

```
See also: champ_front_base (19.1)

Usage:
champ_front_pression_from_u expression
where
```

• **expression** *str*: value depending of a velocity (like  $2 * u\_moy^2$ ).

#### 19.35 Champ\_front\_recyclage

Description: This keyword is used on a boundary to get a field from another boundary. New keyword since the 1.6.1 version which replaces and generalizes several obsolete ones:

```
Champ_front_calc_intern
Champ_front_calc_recycl_fluct_pbperio
Champ_front_calc_recycl_champ
Champ_front_calc_intern_2pbs
Champ_front_calc_recycl_fluct
```

It is to use, in a general way, on a boundary of a local\_pb problem, a field calculated from a linear combination of an imposed field g(x,y,z,t) with an instantaneous f(x,y,z,t) and a spatial mean field f(x,y,z) extracted from a plane of a problem named pb (pb may be local\_pb itself): For each component i, the field F applied on the boundary will be:

```
F_{-}i(x,y,z,t) = alpha_{-}i*g_{-}i(x,y,z,t) + xsi_{-}i*[f_{-}i(x,y,z,t) - beta_{-}i*<fi>]
```

Usage:

```
Champ_front_recyclage {
```

```
pb_champ_evaluateur problem_name field nb_comp
[ distance_plan x1 x2 (x3) ]
[ moyenne_imposee methode_moy [fichier file [second_file]] ]
[ moyenne_recyclee methode_recyc [fichier file [second_file]] ]
[ direction_anisotrope int ]
[ ampli_moyenne_imposee n x1 x2 ... xn ]
[ ampli_moyenne_recyclee n x1 x2 ... xn ]
[ ampli_fluctuation n x1 x2 ... xn ]
}
where:
```

- **pb\_champ\_evaluateur** *problem\_name field nb\_comp*: To give the name of the problem, the name of the field of the problem and its number of components nb\_comp.
- **distance\_plan** x1 x2 (x3): Vector which gives the distance between the boundary and the plane from where the field F will be extracted. By default, the vector is zero, that should imply the two domains have coincident boundaries.
- ampli\_moyenne\_imposee 2|3 alpha(0) alpha(1) [alpha(2)]: alpha\_i coefficients (by default =1)
- ampli\_moyenne\_recyclee 2|3 beta(0) beta(1) [beta(2)]: beta\_i coefficients (by default =1)
- ampli\_fluctuation 2|3 gamma(0) gamma(1) [gamma(2)]: gamma\_i coefficients (by default =1)
- **direction\_anisotrope** *int into* [1,2,3]: If an integer is given for direction (X:1, Y:2, Z:3, by default, direction is negative), the imposed field g will be 0 for the 2 other directions.
- moyenne\_imposee methode\_moy: Value of the imposed g field. The methode\_moy option can be:

**profil** [2|3] valx(x,y,z,t) valy(x,y,z,t) [valz(x,y,z,t)]: To specify analytic profile for the imposed g field.

**interpolation fichier** *file*: To create an imposed field built by interpolation of values read from a file. The imposed field is applied on the direction given by the keyword direction\_anisotrope (the field is zero for the other directions). The format of the file is:

```
pos(1) val(1)
pos(2) val(2)
...
pos(N) val(N)
```

If direction given by direction\_anisotrope is 1 (or 2 or 3), then pos will be X (or Y or Z) coordinate and val will be X value (or Y value, or Z value) of the imposed field.

**connexion\_approchee fichier** *file*: To read the imposed field from a file where positions and values are given (it is not necessary that the coordinates of points match the coordinates of the boundary faces, indeed, the nearest point of each face of the boundary will be used). The format of the file is:

```
N
x(1) y(1) [z(1)] valx(1) valy(1) [valz(1)]
x(2) y(2) [z(2)] valx(2) valy(2) [valz(2)]
...
x(N) y(N) [z(N)] valx(N) valy(N) [valz(N)]
```

**connection\_exacte fichier** *file second\_file*: To read the imposed field from two files. The first file contains the points coordinates (which should be the same as the coordinates of the boundary faces) and the second\_file contains the mean values. The format of the first file is:

```
N

1 x(1) y(1) [z(1)]

2 x(2) y(2) [z(2)]

...

N x(N) y(N) [z(N)]
```

while the format of the second file is:

```
N
1 valx(1) valy(1) [valz(1)]
2 valx(2) valy(2) [valz(2)]
...
N valx(N) valy(N) [valz(N)]
```

```
logarithmique diametre float u_tau float visco_cin float direction int: To specify the imposed field (in this case, velocity) by an analytical logarithmic law of the wall: g(x,y,z) = u_tau * (log(0.5*diametre*u_tau/visco_cin)/Kappa + 5.1) with g(x,y,z)=u(x,y,z) if direction is set to 1 (g=v(x,y,z) if direction is set to 2, and g=w(w,y,z) if it is set to 3)
```

• moyenne\_recylee methode\_recyc: Method used to perform a spatial or a temporal averaging of f field to specify <f>. <f> can be the surface mean of f on the plane (surface option, see below) or it can be read from several files (for example generated by the chmoy\_faceperio option of the Traitement\_particulier keyword to obtain a temporal mean field). The option methode\_recyc can be:

surfacique: Surface mean for <f> from f values on the plane

Or one of the following  $methode\_moy$  options applied to read a temporal mean field < f > (x,y,z):

interpolation

connexion\_approchee

connexion\_exacte

See also: champ\_front\_base (19.1)

Usage:

champ\_front\_recyclage bloc
where

• bloc str

#### 19.36 Champ\_front\_tabule

Description: Constant field on the boundary, tabulated as a function of time.

See also: champ\_front\_base (19.1) champ\_front\_tabule\_lu (19.37)

Usage:

champ\_front\_tabule nb\_comp bloc
where

- **nb\_comp** *int*: Number of field components.
- bloc bloc\_lecture (3.2): {nt1 t2 t3 ....tn u1 [v1 w1 ...] u2 [v2 w2 ...] u3 [v3 w3 ...] ... un [vn wn ...]

Values are entered into a table based on n couples (ti, ui) if nb\_comp value is 1. The value of a field at a given time is calculated by linear interpolation from this table.

#### 19.37 Champ\_front\_tabule\_lu

Description: Constant field on the boundary, tabulated from a specified column file. Lines starting with # are ignored.

See also: champ\_front\_tabule (19.36)

Usage:

champ\_front\_tabule\_lu nb\_comp column\_file

where

- **nb\_comp** *int*: Number of field components.
- column\_file str: Name of the column file.

#### 19.38 Champ\_front\_tangentiel\_vef

Description: Field to define the tangential velocity vector field standard at the boundary in VEF discretization.

See also: champ\_front\_base (19.1)

Usage:

champ\_front\_tangentiel\_vef mot vit\_tan

where

- mot str into ['vitesse\_tangentielle']: Name of vector field.
- vit\_tan float: Vector field standard [m/s].

#### 19.39 Champ\_front\_uniforme

Description: Boundary field which is constant in space and stationary.

See also: champ\_front\_base (19.1)

Usage:

champ\_front\_uniforme val

where

• val n x1 x2 ... xn: Values of field components.

#### 19.40 Champ\_front\_vortex

Description: not\_set

See also: champ\_front\_base (19.1)

Usage:

champ\_front\_vortex dom geom nu utau

where

- dom str: Name of domain.
- geom str
- nu float
- utau float

#### 19.41 Champ\_front\_xyz\_debit

Description: This field is used to define a flow rate field with a velocity profil which will be normalized to match the flow rate chosen.

See also: champ\_front\_base (19.1)

Usage:

```
champ_front_xyz_debit str
Read str {
     [velocity_profil champ_front_base]
     flow_rate champ_front_base
}
where
```

- **velocity\_profil** *champ\_front\_base* (19.1): velocity\_profil 0 velocity field to define the profil of velocity.
- flow\_rate champ\_front\_base (19.1): flow\_rate 1 uniform field in space to define the flow rate. It could be, for example, champ\_front\_uniforme, ch\_front\_input\_uniform or champ\_front\_fonc\_t

#### 19.42 Champ\_front\_zoom

Description: Basic class for fields at boundaries of two problems (global problem and local problem).

See also: champ\_front\_base (19.1)

Usage:

```
champ_front_zoom pbMg pb_1 pb_2 bord inco
where
```

- **pbMg** *str*: Name of multi-grid problem.
- **pb\_1** *str*: Name of first problem.
- pb\_2 str: Name of second problem.
- bord str: Name of bord.
- inco str: Name of field.

### 20 interpolation\_ibm\_base

Description: Base class for all the interpolation methods available in the Immersed Boundary Method (IBM).

See also: objet\_u (40) ibm\_aucune (20.2) ibm\_element\_fluide (20.3) ibm\_gradient\_moyen (20.5)

Usage:

```
interpolation\_ibm\_base~[~impr~]~[~nb\_histo\_boxes\_impr~] where
```

- impr: To print IBM-related data
- nb\_histo\_boxes\_impr int: number of histogram boxes for printed data

#### 20.1 Interpolation\_ibm\_power\_law\_tbl\_u\_star

Description: Immersed Boundary Method (IBM): law u star.

See also: ibm\_gradient\_moyen (20.5)

Usage:

```
Interpolation_IBM_power_law_tbl_u_star str
Read str {
```

```
points_solides champ_base
  est_dirichlet champ_base
  correspondance_elements champ_base
  elements_solides champ_base
  [ impr ]
    [ nb_histo_boxes_impr int]
}
where
```

- **points\_solides** *champ\_base* (18.1): Node field giving the projection of the node on the immersed boundary
- **est\_dirichlet** *champ\_base* (18.1): Node field of booleans indicating whether the node belong to an element where the interface is
- correspondance\_elements champ\_base (18.1): Cell field giving the SALOME cell number
- **elements\_solides** *champ\_base* (18.1): Node field giving the element number containing the solid point
- impr for inheritance: To print IBM-related data
- nb\_histo\_boxes\_impr int for inheritance: number of histogram boxes for printed data

#### 20.2 Ibm\_aucune

```
Synonymous: interpolation_ibm_aucune

Description: Immersed Boundary Method (IBM): no interpolation.

See also: interpolation_ibm_base (20)

Usage:
ibm_aucune [ impr ] [ nb_histo_boxes_impr ]
where

• impr : To print IBM-related data
• nb_histo_boxes_impr int: number of histogram boxes for printed data
```

#### 20.3 Ibm\_element\_fluide

```
Synonymous: interpolation_ibm_element_fluide

Description: Immersed Boundary Method (IBM): fluid element interpolation.

See also: interpolation_ibm_base (20) ibm_hybride (20.4) ibm_power_law_tbl (20.6)

Usage:
ibm_element_fluide str
Read str {

    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
```

```
}
where
```

where

- **points\_fluides** *champ\_base* (18.1): Node field giving the projection of the point below (points\_solides) falling into the pure cell fluid
- **points\_solides** *champ\_base* (18.1): Node field giving the projection of the node on the immersed boundary
- **elements\_fluides** *champ\_base* (18.1): Node field giving the number of the element (cell) containing the pure fluid point
- correspondance\_elements champ\_base (18.1): Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- **nb histo boxes impr** *int* for inheritance: number of histogram boxes for printed data

#### 20.4 Ibm\_hybride

Synonymous: interpolation\_ibm\_hybride

Description: Immersed Boundary Method (IBM): hybrid (fluid/mean gradient) interpolation.

```
See also: ibm_element_fluide (20.3)

Usage:
ibm_hybride str

Read str {

    est_dirichlet champ_base
    elements_solides champ_base
    points_fluides champ_base
    points_solides champ_base
    elements_fluides champ_base
    correspondance_elements champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]
}
```

- **est\_dirichlet** *champ\_base* (18.1): Node field of booleans indicating whether the node belong to an element where the interface is
- **elements\_solides** *champ\_base* (18.1): Node field giving the element number containing the solid point
- **points\_fluides** *champ\_base* (18.1) for inheritance: Node field giving the projection of the point below (points\_solides) falling into the pure cell fluid
- **points\_solides** *champ\_base* (18.1) for inheritance: Node field giving the projection of the node on the immersed boundary
- **elements\_fluides** *champ\_base* (18.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance\_elements** *champ\_base* (18.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- nb\_histo\_boxes\_impr int for inheritance: number of histogram boxes for printed data

#### 20.5 Ibm\_gradient\_moyen

```
Synonymous: interpolation_ibm_gradient_moyen

Description: Immersed Boundary Method (IBM): mean gradient interpolation.

See also: interpolation_ibm_base (20) Interpolation_IBM_power_law_tbl_u_star (20.1)

Usage:
ibm_gradient_moyen str

Read str {

    points_solides champ_base
    est_dirichlet champ_base
    correspondance_elements champ_base
    elements_solides champ_base
    [ impr ]
    [ nb_histo_boxes_impr int]

}

where
```

- points\_solides *champ\_base* (18.1): Node field giving the projection of the node on the immersed boundary
- **est\_dirichlet** *champ\_base* (18.1): Node field of booleans indicating whether the node belong to an element where the interface is
- correspondance\_elements champ\_base (18.1): Cell field giving the SALOME cell number
- **elements\_solides** *champ\_base* (18.1): Node field giving the element number containing the solid point
- impr for inheritance: To print IBM-related data
- nb\_histo\_boxes\_impr int for inheritance: number of histogram boxes for printed data

```
20.6
      Ibm_power_law_tbl
Synonymous: interpolation_ibm_power_law_tbl
Description: Immersed Boundary Method (IBM): power law interpolation.
See also: ibm element fluide (20.3)
Usage:
ibm power law tbl str
Read str {
     [formulation_linear_pwl int]
     points_fluides champ_base
     points solides champ base
     elements fluides champ base
     correspondance_elements champ_base
     [impr]
     [ nb_histo_boxes_impr int]
}
```

• formulation linear pwl int: Choix formulation lineaire ou non

where

- **points\_fluides** *champ\_base* (18.1) for inheritance: Node field giving the projection of the point below (points\_solides) falling into the pure cell fluid
- **points\_solides** *champ\_base* (18.1) for inheritance: Node field giving the projection of the node on the immersed boundary
- **elements\_fluides** *champ\_base* (18.1) for inheritance: Node field giving the number of the element (cell) containing the pure fluid point
- **correspondance\_elements** *champ\_base* (18.1) for inheritance: Cell field giving the SALOME cell number
- impr for inheritance: To print IBM-related data
- nb\_histo\_boxes\_impr int for inheritance: number of histogram boxes for printed data

### 21 loi\_etat\_base

Description: Basic class for state laws used with a dilatable fluid.

```
See also: objet_u (40) loi_etat_gaz_parfait_base (21.7) loi_etat_tppi_base (21.9) loi_etat_gaz_reel_base (21.8)
```

Usage:

#### 21.1 **Eos\_qc**

```
Description: Class for using EOS with QC problem
```

```
See also: loi_etat_tppi_base (21.9)
```

```
Usage: EOS_QC str
```

```
Read str {
    Cp float fluid str model str
```

} where

- Cp *float*: Specific heat at constant pressure (J/kg/K).
- fluid str: Fluid name in the EOS model
- model str: EOS model name

#### 21.2 **Eos\_wc**

```
Description: Class for using EOS with WC problem
```

```
See also: loi_etat_tppi_base (21.9)
```

```
Usage:
```

```
EOS_WC str
Read str {

Cp float
fluid str
```

model str

```
}
where
   • Cp float: Specific heat at constant pressure (J/kg/K).
   • fluid str: Fluid name in the EOS model
   • model str: EOS model name
```

#### 21.3 Binaire\_gaz\_parfait\_qc

Description: Class for perfect gas binary mixtures state law used with a quasi-compressible fluid under the iso-thermal and iso-bar assumptions.

```
See also: loi_etat_gaz_parfait_base (21.7)
Usage:
binaire_gaz_parfait_QC str
Read str {
     molar_mass1 float
     molar_mass2 float
     mu1 float
     mu2 float
     temperature float
     diffusion_coeff float
}
where
   • molar_mass1 float: Molar mass of species 1 (in kg/mol).
   • molar_mass2 float: Molar mass of species 2 (in kg/mol).
   • mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
```

- mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
- temperature float: Temperature (in Kelvin) which will be constant during the simulation since this state law only works for iso-thermal conditions.
- **diffusion coeff** *float*: Diffusion coefficient assumed the same for both species (in m2/s).

#### 21.4 Binaire\_gaz\_parfait\_wc

Description: Class for perfect gas binary mixtures state law used with a weakly-compressible fluid under the iso-thermal and iso-bar assumptions.

```
See also: loi etat gaz parfait base (21.7)
Usage:
binaire_gaz_parfait_WC str
Read str {
     molar_mass1 float
     molar_mass2 float
     mu1 float
     mu2 float
     temperature float
     diffusion_coeff float
```

```
}
where
   • molar_mass1 float: Molar mass of species 1 (in kg/mol).
   • molar_mass2 float: Molar mass of species 2 (in kg/mol).
   • mu1 float: Dynamic viscosity of species 1 (in kg/m.s).
   • mu2 float: Dynamic viscosity of species 2 (in kg/m.s).
   • temperature float: Temperature (in Kelvin) which will be constant during the simulation since this
     state law only works for iso-thermal conditions.
   • diffusion coeff float: Diffusion coefficient assumed the same for both species (in m2/s).
21.5
       Coolprop_qc
Description: Class for using CoolProp with QC problem
See also: loi_etat_tppi_base (21.9)
Usage:
coolprop_QC str
Read str {
     Cp float
     fluid str
     model str
}
where
   • Cp float: Specific heat at constant pressure (J/kg/K).
   • fluid str: Fluid name in the CoolProp model
   • model str: CoolProp model name
21.6
       Coolprop_wc
Description: Class for using CoolProp with WC problem
See also: loi_etat_tppi_base (21.9)
Usage:
coolprop_WC str
Read str {
     Cp float
     fluid str
     model str
```

• fluid str: Fluid name in the CoolProp model

• Cp float: Specific heat at constant pressure (J/kg/K).

• model str: CoolProp model name

where

#### 21.7 Loi\_etat\_gaz\_parfait\_base

Description: Basic class for perfect gases state laws used with a dilatable fluid.

```
See also: loi_etat_base (21) multi_gaz_parfait_QC (21.10) rhoT_gaz_parfait_QC (21.14) binaire_gaz_parfait_QC (21.3) gaz_parfait_QC (21.12) binaire_gaz_parfait_WC (21.4) multi_gaz_parfait_WC (21.11) gaz_parfait_WC (21.13)
```

Usage:

#### 21.8 Loi etat gaz reel base

Description: Basic class for real gases state laws used with a dilatable fluid.

```
See also: loi etat base (21) rhoT gaz reel QC (21.15)
```

Usage:

#### 21.9 Loi\_etat\_tppi\_base

Description: Basic class for thermo-physical properties interface (TPPI) used for dilatable problems

```
See also: loi_etat_base (21) EOS_QC (21.1) coolprop_QC (21.5) coolprop_WC (21.6) EOS_WC (21.2)
```

Usage:

#### 21.10 Multi\_gaz\_parfait\_qc

Description: Class for perfect gas multi-species mixtures state law used with a quasi-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (21.7)
```

```
Usage:
```

```
multi_gaz_parfait_QC str

Read str {

sc float
prandtl float
[cp float]
[dtol_fraction float]
[correction_fraction]
[ignore_check_fraction]
}
where
```

- sc float: Schmidt number of the gas Sc=nu/D (D: diffusion coefficient of the mixing).
- prandtl float: Prandtl number of the gas Pr=mu\*Cp/lambda
- cp *float*: Specific heat at constant pressure of the gas Cp.
- dtol fraction float: Delta tolerance on mass fractions for check testing (default value 1.e-6).
- **correction\_fraction**: To force mass fractions between 0. and 1.
- **ignore\_check\_fraction**: Not to check if mass fractions between 0. and 1.

#### 21.11 Multi\_gaz\_parfait\_wc

Description: Class for perfect gas multi-species mixtures state law used with a weakly-compressible fluid.

```
See also: loi_etat_gaz_parfait_base (21.7)

Usage:
multi_gaz_parfait_WC str

Read str {

    species_number int
    diffusion_coeff champ_base
    molar_mass champ_base
    mu champ_base
    cp champ_base
    prandtl float

}

where
```

- species\_number int: Number of species you are considering in your problem.
- **diffusion\_coeff** *champ\_base* (18.1): Diffusion coefficient of each species, defined with a Champ\_uniforme of dimension equals to the species\_number.
- molar\_mass champ\_base (18.1): Molar mass of each species, defined with a Champ\_uniforme of dimension equals to the species\_number.
- mu champ\_base (18.1): Dynamic viscosity of each species, defined with a Champ\_uniforme of dimension equals to the species\_number.
- **cp** *champ\_base* (18.1): Specific heat at constant pressure of the gas Cp, defined with a Champ\_uniforme of dimension equals to the species\_number..
- **prandtl** *float*: Prandtl number of the gas Pr=mu\*Cp/lambda.

#### 21.12 Gaz\_parfait\_qc

See also: loi etat gaz parfait base (21.7)

Description: Class for perfect gas state law used with a quasi-compressible fluid.

- Cp float: Specific heat at constant pressure (J/kg/K).
- Cv *float*: Specific heat at constant volume (J/kg/K).
- gamma float: Cp/Cv
- **Prandtl** *float*: Prandtl number of the gas Pr=mu\*Cp/lambda
- **rho\_constant\_pour\_debug** *champ\_base* (18.1): For developers to debug the code with a constant rho.

### 21.13 Gaz\_parfait\_wc

Description: Class for perfect gas state law used with a weakly-compressible fluid.

#### 21.14 Rhot\_gaz\_parfait\_qc

Description: Class for perfect gas used with a quasi-compressible fluid where the state equation is defined as rho = f(T).

```
See also: loi_etat_gaz_parfait_base (21.7)

Usage:
rhoT_gaz_parfait_QC str

Read str {

    cp float
    [prandtl float]
    [rho_xyz champ_base]
    [rho_t str]
    [t_min float]
}

where
```

- cp float: Specific heat at constant pressure of the gas Cp.
- **prandtl** *float*: Prandtl number of the gas Pr=mu\*Cp/lambda
- **rho\_xyz** *champ\_base* (18.1): Defined with a Champ\_Fonc\_xyz to define a constant rho with time (space dependent)
- **rho\_t** *str*: Expression of T used to calculate rho. This can lead to a variable rho, both in space and in time.
- t\_min *float*: Temperature may, in some cases, locally and temporarily be very small (and negative) even though computation converges. T\_min keyword allows to set a lower limit of temperature (in Kelvin, -1000 by default). WARNING: DO NOT USE THIS KEYWORD WITHOUT CHECKING CAREFULY YOUR RESULTS!

#### 21.15 Rhot\_gaz\_reel\_qc

```
Description: Class for real gas state law used with a quasi-compressible fluid.
```

```
See also: loi_etat_gaz_reel_base (21.8)

Usage:
rhoT_gaz_reel_QC bloc
where

• bloc bloc_lecture (3.2): Description.
```

### 22 loi\_fermeture\_base

Description: Class for appends fermeture to problem

Keyword Discretize should have already been used to read the object. See also: objet\_u (40) loi\_fermeture\_test (22.1)

Usage:

#### 22.1 Loi\_fermeture\_test

```
Description: Loi for test only
```

Keyword Discretize should have already been used to read the object.

See also: loi\_fermeture\_base (22)

```
Usage:
```

```
loi_fermeture_test str
Read str {
     [ coef float]
}
where
```

• coef float: coefficient

## 23 loi\_horaire

Description: to define the movement with a time-dependant law for the solid interface.

```
See also: objet_u (40)

Usage:
loi_horaire str
Read str {

    position n word1 word2 ... wordn
    vitesse n word1 word2 ... wordn
    [rotation n word1 word2 ... wordn]
    [derivee_rotation n word1 word2 ... wordn]
```

```
}
where
   • position n word1 word2 ... wordn
   • vitesse n word1 word2 ... wordn
   • rotation n word1 word2 ... wordn
   • derivee rotation n word1 word2 ... wordn
24
      milieu_base
Description: Basic class for medium (physics properties of medium).
See also: objet_u (40) constituant (24.1) fluide_base (24.2) solide (24.14) fluide_diphasique (24.4)
Usage:
milieu_base str
Read str {
     [gravite champ_base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
```

- gravite champ\_base (18.1): Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1): The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1): Hydraulic diameter field (optional).
- porosites porosites (30): Porosities.

[ porosites porosites]

#### 24.1 Constituant

} where

```
Description: Constituent.

See also: milieu_base (24)

Usage:
constituant str

Read str {

    [rho champ_base]
    [cp champ_base]
    [lambda champ_base]
    [coefficient_diffusion champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}

where
```

• **rho** champ\_base (18.1): Density (kg.m-3).

- **cp** *champ\_base* (18.1): Specific heat (J.kg-1.K-1).
- lambda champ\_base (18.1): Conductivity (W.m-1.K-1).
- **coefficient\_diffusion** *champ\_base* (18.1): Constituent diffusion coefficient value (m2.s-1). If a multi-constituent problem is being processed, the diffusivite will be a vectorial and each components will be the diffusion of the constituent.
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (30) for inheritance: Porosities.

#### 24.2 Fluide base

Description: Basic class for fluids.

Keyword Discretize should have already been used to read the object.

See also: milieu\_base (24) fluide\_reel\_base (24.9) fluide\_dilatable\_base (24.3) fluide\_incompressible (24.5)

```
Usage:
fluide_base str

Read str {

    [indice champ_base]
    [kappa champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}
where
```

- **indice** *champ\_base* (18.1): Refractivity of fluid.
- **kappa** *champ\_base* (18.1): Absorptivity of fluid (m-1).
- gravite champ\_base (18.1) for inheritance: Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (30) for inheritance: Porosities.

#### 24.3 Fluide\_dilatable\_base

Description: Basic class for dilatable fluids.

Keyword Discretize should have already been used to read the object.

See also: fluide\_base (24.2) fluide\_quasi\_compressible (24.7) fluide\_weakly\_compressible (24.13)

```
Usage:
```

```
fluide_dilatable_base str
Read str {
```

```
[ indice champ_base]
  [ kappa champ_base]
  [ gravite champ_base]
  [ porosites_champ champ_base]
  [ diametre_hyd_champ champ_base]
  [ porosites porosites]
}
where
```

- indice champ\_base (18.1) for inheritance: Refractivity of fluid.
- **kappa** champ base (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ\_base (18.1) for inheritance: Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (30) for inheritance: Porosities.

#### 24.4 Fluide\_diphasique

```
Description: Two-phase fluid.
See also: milieu base (24)
Usage:
fluide_diphasique str
Read str {
     sigma champ_don_base
     fluide0 str
     fluide1 str
     [ chaleur_latente champ_don_base]
     [ formule_mu str]
     [porosites champ champ base]
     [ diametre_hyd_champ champ_base]
     [porosites porosites]
}
where
   • sigma champ don base (18.9): surfacic tension (J/m2)
   • fluide0 str: first phase fluid
   • fluide1 str: second phase fluid
   • chaleur_latente champ_don_base (18.9): phase changement enthalpy h(phase1_) - h(phase0_)
     (J/kg/K)
   • formule_mu str: (into=[standard,arithmetic,harmonic]) formula used to calculate average
```

• diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).

• **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.

• porosites porosites (30) for inheritance: Porosities.

#### 24.5 Fluide\_incompressible

```
Description: Class for non-compressible fluids.
Keyword Discretize should have already been used to read the object.
See also: fluide_base (24.2) fluide_ostwald (24.6)
Usage:
fluide incompressible str
Read str {
     [beta_th champ_base]
     [ mu champ_base]
     [beta_co champ_base]
      [rho champ_base]
     [ cp champ_base]
     [lambda champ_base]
     [porosites bloc lecture]
     [indice champ base]
     [kappa champ_base]
     [gravite champ base]
     [porosites_champ champ_base]
      [diametre hyd champ champ base]
}
where
   • beta_th champ_base (18.1): Thermal expansion (K-1).
   • mu champ_base (18.1): Dynamic viscosity (kg.m-1.s-1).
   • beta_co champ_base (18.1): Volume expansion coefficient values in concentration.
   • rho champ base (18.1): Density (kg.m-3).
   • cp champ_base (18.1): Specific heat (J.kg-1.K-1).
   • lambda champ_base (18.1): Conductivity (W.m-1.K-1).
   • porosites bloc_lecture (3.2): Porosity (optional)
   • indice champ_base (18.1) for inheritance: Refractivity of fluid.
   • kappa champ base (18.1) for inheritance: Absorptivity of fluid (m-1).
   • gravite champ base (18.1) for inheritance: Gravity field (optional).
    • porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
```

#### • diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).

#### 24.6 Fluide ostwald

Description: Non-Newtonian fluids governed by Ostwald's law. The law applicable to stress tensor is: tau=K(T)\*(D:D/2)\*\*((n-1)/2)\*D Where:

D refers to the deformation tensor

K refers to fluid consistency (may be a function of the temperature T)

n refers to the fluid structure index n=1 for a Newtonian fluid, n<1 for a rheofluidifier fluid, n>1 for a rheothickening fluid.

Keyword Discretize should have already been used to read the object.

```
See also: fluide_incompressible (24.5)
Usage:
fluide_ostwald str
Read str {
     [k champ base]
     [n champ base]
     [beta th champ base]
     [ mu champ_base]
     [beta co champ base]
     [rho champ_base]
     [cp champ_base]
     [lambda champ_base]
     [porosites bloc_lecture]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
}
where
   • k champ base (18.1): Fluid consistency.
   • n champ_base (18.1): Fluid structure index.
   • beta_th champ_base (18.1) for inheritance: Thermal expansion (K-1).
   • mu champ_base (18.1) for inheritance: Dynamic viscosity (kg.m-1.s-1).
   • beta co champ base (18.1) for inheritance: Volume expansion coefficient values in concentration.
   • rho champ base (18.1) for inheritance: Density (kg.m-3).
   • cp champ base (18.1) for inheritance: Specific heat (J.kg-1.K-1).
   • lambda champ_base (18.1) for inheritance: Conductivity (W.m-1.K-1).
   • porosites bloc_lecture (3.2) for inheritance: Porosity (optional)
   • indice champ_base (18.1) for inheritance: Refractivity of fluid.
   • kappa champ_base (18.1) for inheritance: Absorptivity of fluid (m-1).
   • gravite champ_base (18.1) for inheritance: Gravity field (optional).
   • porosites_champ champ_base (18.1) for inheritance: The porosity is given at each element and the
     porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour el-
     ements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
   • diametre hyd champ champ base (18.1) for inheritance: Hydraulic diameter field (optional).
```

#### 24.7 Fluide\_quasi\_compressible

[sutherland bloc sutherland]

Description: Quasi-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) is uniform in space.

```
Keyword Discretize should have already been used to read the object. See also: fluide_dilatable_base (24.3)

Usage: fluide_quasi_compressible str
Read str {
```

```
[ pression float]
     [loi_etat loi_etat_base]
     [ traitement pth str into ['edo', 'constant', 'conservation masse']]
     [ traitement_rho_gravite str into ['standard', 'moins_rho_moyen']]
     [temps debut prise en compte drho dt float]
     [ omega_relaxation_drho_dt float]
     [lambda champ base]
     [mu champ base]
     [indice champ base]
     [kappa champ_base]
     [gravite champ base]
     [ porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
where
```

- sutherland bloc\_sutherland (24.8): Sutherland law for viscosity and for conductivity.
- **pression** *float*: Initial thermo-dynamic pressure used in the assosciated state law.
- loi etat loi etat base (21): The state law that will be associated to the Quasi-compressible fluid.
- **traitement\_pth** *str into ['edo', 'constant', 'conservation\_masse']*: Particular treatment for the thermodynamic pressure Pth; there are three possibilities:
  - 1) with the keyword 'edo' the code computes Pth solving an O.D.E.; in this case, the mass is not strictly conserved (it is the default case for quasi compressible computation):
  - 2) the keyword 'conservation\_masse' forces the conservation of the mass (closed geometry or with periodic boundaries condition)
  - 3) the keyword 'constant' makes it possible to have a constant Pth; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
  - It is possible to monitor the volume averaged value for temperature and density, plus Pth evolution in the .evol\_glob file.
- traitement\_rho\_gravite str into ['standard', 'moins\_rho\_moyen']: It may be :1) standard: the gravity term is evaluated with rho\*g (It is the default). 2) moins\_rho\_moyen: the gravity term is evaluated with (rho-rhomoy) \*g. Unknown pressure is then P\*=P+rhomoy\*g\*z. It is useful when you apply uniforme pressure boundary condition like P\*=0.
- temps\_debut\_prise\_en\_compte\_drho\_dt float: While time<value, dRho/dt is set to zero (Rho, volumic mass). Useful for some calculation during the first time steps with big variation of temperature and volumic mass.
- omega\_relaxation\_drho\_dt *float*: Optional option to have a relaxed algorithm to solve the mass equation, value is used (1 per default) to specify omega.
- lambda champ\_base (18.1): Conductivity (W.m-1.K-1).
- mu champ\_base (18.1): Dynamic viscosity (kg.m-1.s-1).
- **indice** *champ\_base* (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ\_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- **gravite** *champ\_base* (18.1) for inheritance: Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- **porosites** *porosites* (30) for inheritance: Porosities.

#### 24.8 Bloc\_sutherland

```
Description: Sutherland law for viscosity mu(T)=mu0*((T0+C)/(T+C))*(T/T0)**1.5 and (optional) for conductivity lambda(T)=mu0*Cp/Prandtl*((T0+Slambda)/(T+Slambda))*(T/T0)**1.5
```

```
See also: objet_lecture (39)
Usage:
problem name mu0 mu0 val t0 t0 val [Slambda][s] C c val
where
   • problem name str: Name of problem.
   • mu0 str into ['mu0']
   • mu0 val float
   • t0 str into ['T0']
   • t0 val float
   • Slambda str into ['Slambda']
   • s float
   • C str into ['C']
   • c_val float
24.9
       Fluide_reel_base
Description: Class for real fluids.
Keyword Discretize should have already been used to read the object.
See also: fluide_base (24.2) fluide_sodium_liquide (24.11) fluide_sodium_gaz (24.10) fluide_stiffened-
_gas (24.12)
Usage:
fluide_reel_base str
Read str {
     [indice champ_base]
     [kappa champ base]
     [gravite champ_base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [ porosites porosites]
}
```

- **indice** *champ\_base* (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ\_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ\_base (18.1) for inheritance: Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre hyd champ champ base (18.1) for inheritance: Hydraulic diameter field (optional).
- **porosites** *porosites* (30) for inheritance: Porosities.

where

#### 24.10 Fluide\_sodium\_gaz

where

Description: Class for Fluide\_sodium\_liquide

Keyword Discretize should have already been used to read the object. See also: fluide\_reel\_base (24.9)

Usage: fluide\_sodium\_gaz str

Read str {

 [P\_ref float]
 [T\_ref float]
 [indice champ\_base]
 [kappa champ\_base]
 [gravite champ\_base]
 [porosites\_champ champ\_base]
 [diametre\_hyd\_champ champ\_base]
 [porosites porosites]
}

- **P\_ref** *float*: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T\_ref** *float*: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- indice champ base (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ\_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ\_base (18.1) for inheritance: Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (30) for inheritance: Porosities.

#### 24.11 Fluide\_sodium\_liquide

```
Description: Class for Fluide_sodium_liquide

Keyword Discretize should have already been used to read the object. See also: fluide_reel_base (24.9)

Usage: fluide_sodium_liquide str

Read str {

    [P_ref float]
    [ indice champ_base]
    [ kappa champ_base]
    [ gravite champ_base]
    [ porosites_champ champ_base]
```

[diametre hvd champ champ base]

```
[ porosites porosites] } where
```

- **P\_ref** *float*: Use to set the pressure value in the closure law. If not specified, the value of the pressure unknown will be used
- **T\_ref** *float*: Use to set the temperature value in the closure law. If not specified, the value of the temperature unknown will be used
- **indice** *champ\_base* (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ\_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ\_base (18.1) for inheritance: Gravity field (optional).
- porosites\_champ champ\_base (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (30) for inheritance: Porosities.

#### 24.12 Fluide\_stiffened\_gas

```
Description: Class for Stiffened Gas
Keyword Discretize should have already been used to read the object.
See also: fluide reel base (24.9)
Usage:
fluide_stiffened_gas str
Read str {
     [gamma float]
     [ pinf float]
     [ mu float]
     [lambda float]
     [ Cv float]
     [ q float]
     [q_prim float]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [porosites_champ champ_base]
     [ diametre_hyd_champ champ_base]
     [porosites porosites]
}
```

- gamma *float*: Heat capacity ratio (Cp/Cv)
- **pinf** *float*: Stiffened gas pressure constant (if set to zero, the state law becomes identical to that of perfect gases)
- mu float: Dynamic viscosity

where

- lambda float: Thermal conductivity
- Cv float: Thermal capacity at constant volume
- q float: Reference energy
- q\_prim float: Model constant

- indice champ\_base (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ\_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ base (18.1) for inheritance: Gravity field (optional).
- porosites\_champ champ\_base (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre hyd champ champ base (18.1) for inheritance: Hydraulic diameter field (optional).
- **porosites** porosites (30) for inheritance: Porosities.

#### 24.13 Fluide\_weakly\_compressible

Description: Weakly-compressible flow with a low mach number assumption; this means that the thermodynamic pressure (used in state law) can vary in space.

Keyword Discretize should have already been used to read the object. See also: fluide dilatable base (24.3)

```
Usage:
```

where

```
fluide_weakly_compressible str
Read str {
     [loi_etat loi_etat_base]
     [sutherland bloc sutherland]
     [traitement_pth str into ['constant']]
     [lambda champ base]
     [mu champ base]
     [ pression thermo float]
     [ pression_xyz champ_base]
     [ use_total_pressure int]
     [use hydrostatic pressure int]
     [ use_grad_pression_eos int]
     [time_activate_ptot float]
     [indice champ_base]
     [kappa champ_base]
     [gravite champ_base]
     [porosites champ champ base]
     [ diametre_hyd_champ champ_base]
     [porosites porosites]
}
```

- loi etat loi etat base (21): The state law that will be associated to the Weakly-compressible fluid.
- sutherland bloc sutherland (24.8): Sutherland law for viscosity and for conductivity.
- traitement pth str into ['constant']: Particular treatment for the thermodynamic pressure Pth; there is currently one possibility:
  - 1) the keyword 'constant' makes it possible to have a constant Pth but not uniform in space; it's the good choice when the flow is open (e.g. with pressure boundary conditions).
- lambda champ\_base (18.1): Conductivity (W.m-1.K-1).
- **mu** champ\_base (18.1): Dynamic viscosity (kg.m-1.s-1).
- pression\_thermo float: Initial thermo-dynamic pressure used in the assosciated state law.
- pression\_xyz champ\_base (18.1): Initial thermo-dynamic pressure used in the assosciated state law. It should be defined with as a Champ\_Fonc\_xyz.

- **use\_total\_pressure** *int*: Flag (0 or 1) used to activate and use the total pressure in the assosciated state law. The default value of this Flag is 0.
- use\_hydrostatic\_pressure int: Flag (0 or 1) used to activate and use the hydro-static pressure in the assosciated state law. The default value of this Flag is 0.
- use\_grad\_pression\_eos *int*: Flag (0 or 1) used to specify whether or not the gradient of the thermodynamic pressure will be taken into account in the source term of the temperature equation (case of a non-uniform pressure). The default value of this Flag is 1 which means that the gradient is used in the source.
- time\_activate\_ptot float: Time (in seconds) at which the total pressure will be used in the assosciated state law.
- **indice** *champ\_base* (18.1) for inheritance: Refractivity of fluid.
- **kappa** *champ\_base* (18.1) for inheritance: Absorptivity of fluid (m-1).
- gravite champ\_base (18.1) for inheritance: Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (30) for inheritance: Porosities.

#### **24.14** Solide

Description: Solid with cp and/or rho non-uniform.

```
See also: milieu_base (24)

Usage:
solide str
Read str {

    [rho champ_base]
    [cp champ_base]
    [lambda champ_base]
    [user_field champ_base]
    [gravite champ_base]
    [porosites_champ champ_base]
    [diametre_hyd_champ champ_base]
    [porosites porosites]
}
where
```

- **rho** *champ\_base* (18.1): Density (kg.m-3).
- cp champ\_base (18.1): Specific heat (J.kg-1.K-1).
- lambda champ base (18.1): Conductivity (W.m-1.K-1).
- user\_field champ\_base (18.1): user defined field.
- gravite champ\_base (18.1) for inheritance: Gravity field (optional).
- **porosites\_champ** *champ\_base* (18.1) for inheritance: The porosity is given at each element and the porosity at each face, Psi(face), is calculated by the average of the porosities of the two neighbour elements Psi(elem1), Psi(elem2): Psi(face)=2/(1/Psi(elem1)+1/Psi(elem2)). This keyword is optional.
- diametre\_hyd\_champ champ\_base (18.1) for inheritance: Hydraulic diameter field (optional).
- porosites porosites (30) for inheritance: Porosities.

## 25 milieu v2 base

Description: Basic class for medium (physics properties of medium) composed of constituents (fluids and solids).

```
See also: objet_u (40)
Usage:
```

## 26 modele\_rayonnement\_base

Description: Basic class for wall thermal radiation model.

```
See also: objet u (40) modele rayonnement milieu transparent (26.1)
```

Usage:

### 26.1 Modele\_rayonnement\_milieu\_transparent

Description: Wall thermal radiation model for a transparent gas and resolving a radiation-conduction-thermohydraulics coupled problem in VDF or VEF.

```
Modele_Rayonnement_Milieu_Transparent mod Read mod {
```

```
nom_pb_rayonnant
problem_name
fichier_fij
file_name
```

fichier\_face\_rayo

file\_name

[fichier\_matrice | fichier\_matrice\_binaire file\_name]

nom\_pb\_rayonnant problem\_name : problem\_name is the name of the radiating fluid problem

fichier\_fij file\_name : file\_name is the name of the file which contains the shape factor matrix between all the faces.

fichier\_face\_rayo file\_name : file\_name is the name of the file which contains the radiating faces characteristics (area, emission value ...)

fichier\_matricelfichier\_matrice\_binaire file\_name : file\_name is the name of the ASCII (or binary) file which contains the inverted shape factor matrix. It is an optional keyword, if not defined, the inverted shape factor matrix will be calculated and written in a file.

The two first files can be generated by a preprocessor, they allow the radiating face characteristics to be entered (set of faces considered to be uniform with respect to radiation for emission value, flux, etc.) and the form factors for these various faces. These files have the following format:

File on radiating faces:

```
N M -> N nombre de faces rayonnantes (=bords) et
```

(N is the number of radiating faces (=edges) and

-> M nombre de faces rayonnantes a emissivitee non nulle

M equals the number of non-zero emission radiating faces

Nom(i) S(i) E(i) -> Nom du bord i, surface du bord i, valeur de

(Name of the edge i, surface area of the edge i)

-> l'emissivite (comprise entre 0 et 1) (emission value (between 0 an 1))

Exemple:

13 4

Gauche 50.0 0.0

```
Droit1 50.0 0.5
Bas 10.0 0.0
Haut 10.0 0.0
Arriere 5.0 0.0
Avant 5.0 0.0
Droit2 30.0 0.5
Bas1 40.0 0.0
Haut1 20.0 0.0
Avant1 20.0 0.0
Arriere1 20.0 0.0
Entree 20.0 0.5
```

File on form factors:

Sortie 20.0 0.5

N -> Nombre de faces rayonnantes (Number of radiating faces)

Fij -> Matrice des facteurs de formes avec i,j entre 1 et N (Matrix of form factors where i, j between 1 and N)

#### Example:

13

Caution:

- a) The radiation model's precision is decided by the user when he/she names the domain edges. In fact, a radiating face is recognised by the preprocessor as the set of domain edges faces bearing the same name. Thus, if the user subdivides the edge into two edges which are named differently, he/she thus creates two radiating faces instead of one.
- b) The form factors are entered by the user, the preprocessor carries out no calculations other than checking preservation relationships on form factors.
- c) The fluid is considered to be a transparent gas.

Keyword Discretize should have already been used to read the object.

See also: modele\_rayonnement\_base (26)

#### Usage:

# modele\_rayonnement\_milieu\_transparent bloc where

• **bloc** *bloc\_lecture* (3.2): See description.

## 27 modele\_turbulence\_scal\_base

Description: Basic class for turbulence model for energy equation.

```
See also: objet_u (40) schmidt (27.3) null (27.1) prandtl (27.2) sous_maille_dyn (27.4)

Usage:
modele_turbulence_scal_base str

Read str {
    [dt_impr_nusselt float]
    [turbulence_paroi turbulence_paroi_scalaire_base]
}

where
```

dt\_impr\_nusselt float: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the \_Nusselt.face file each dt\_impr\_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda\_t)/lambda)\*d\_wall/d\_eq where d\_wall is the distance from the first mesh to the wall and d\_eq is given by the wall law. This option also gives the value of d\_eq and h = (lambda+lambda\_t)/d\_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux\_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

• **turbulence\_paroi** *turbulence\_paroi\_scalaire\_base* (37): Keyword to set the wall law.

#### 27.1 Null

Description: Null scalar turbulence model (turbulent diffusivity = 0) which can be used with a turbulent problem.

```
See also: modele_turbulence_scal_base (27)

Usage:
null str
Read str {
    [dt_impr_nusselt float]
}
where
```

• dt\_impr\_nusselt float for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the \_Nusselt.face file each dt\_impr\_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda\_t)/lambda)\*d\_wall/d\_eq where d\_wall is the distance from the first mesh to the wall and d\_eq is given by the wall law. This option also gives the value of d\_eq and h = (lambda+lambda\_t)/d\_eq and the fluid temperature of the first mesh near the wall.

For the Neumann boundary conditions (flux\_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».

#### 27.2 Prandtl

Description: The Prandtl model. For the scalar equations, only the model based on Reynolds analogy is available. If K\_Epsilon was selected in the hydraulic equation, Prandtl must be selected for the convection-diffusion temperature equation coupled to the hydraulic equation and Schmidt for the concentration equations.

```
See also: modele_turbulence_scal_base (27)

Usage:
prandtl str
Read str {

    [prdt str]
    [prandt_turbulent_fonction_nu_t_alpha str]
    [dt_impr_nusselt float]
    [turbulence_paroi turbulence_paroi_scalaire_base]
}
where
```

- **prdt** *str*: Keyword to modify the constant (Prdt) of Prandtl model : Alphat=Nut/Prdt Default value is 0.9
- **prandt\_turbulent\_fonction\_nu\_t\_alpha** *str*: Optional keyword to specify turbulent diffusivity (by default, alpha\_t=nu\_t/Prt) with another formulae, for example: alpha\_t=nu\_t2/(0,7\*alpha+0,85\*nu\_t) with the string nu\_t\*nu\_t/(0,7\*alpha+0,85\*nu\_t) where alpha is the thermal diffusivity.
- **dt\_impr\_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the \_Nusselt.face file each dt\_impr\_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda\_t)/lambda)\*d\_wall/d\_eq where d\_wall is the distance from the first mesh to the wall and d\_eq is given by the wall law. This option also gives the value of d\_eq and h = (lambda+lambda\_t)/d\_eq and the fluid temperature of the first mesh near the wall.
  - For the Neumann boundary conditions (flux\_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».
- turbulence\_paroi turbulence\_paroi\_scalaire\_base (37) for inheritance: Keyword to set the wall law.

#### 27.3 Schmidt

Description: The Schmidt model. For the scalar equations, only the model based on Reynolds analogy is available. If K\_Epsilon was selected in the hydraulic equation, Schmidt must be selected for the convection-diffusion temperature equation coupled to the hydraulic equation and Schmidt for the concentration equations.

```
See also: modele_turbulence_scal_base (27)

Usage:
schmidt str

Read str {

    [scturb float]
    [dt_impr_nusselt float]
    [turbulence_paroi turbulence_paroi_scalaire_base]
}
where
```

• **scturb** *float*: Keyword to modify the constant (Sct) of Schmlidt model : Dt=Nut/Sct Default value is 0.7.

- **dt\_impr\_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the \_Nusselt.face file each dt\_impr\_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda\_t)/lambda)\*d\_wall/d\_eq where d\_wall is the distance from the first mesh to the wall and d\_eq is given by the wall law. This option also gives the value of d\_eq and h = (lambda+lambda\_t)/d\_eq and the fluid temperature of the first mesh near the wall.
  - For the Neumann boundary conditions (flux\_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».
- **turbulence\_paroi** *turbulence\_paroi\_scalaire\_base* (37) for inheritance: Keyword to set the wall law.

### 27.4 Sous maille dyn

```
Description: Dynamic sub-grid turbulence modele.

Warning: Available in VDF only. Not coded in VEF yet.

See also: modele_turbulence_scal_base (27)

Usage:
sous_maille_dyn str

Read str {

[stabilise str into ['6_points', 'moy_euler', 'plans_paralleles']]
[nb_points int]
[dt_impr_nusselt float]
[turbulence_paroi turbulence_paroi_scalaire_base]
}
where
```

- **stabilise** *str into* ['6\_points', 'moy\_euler', 'plans\_paralleles']
- nb\_points int
- **dt\_impr\_nusselt** *float* for inheritance: Keyword to print local values of Nusselt number and temperature near a wall during a turbulent calculation. The values will be printed in the \_Nusselt.face file each dt\_impr\_nusselt time period. The local Nusselt expression is as follows: Nu = ((lambda+lambda\_t)/lambda)\*d\_wall/d\_eq where d\_wall is the distance from the first mesh to the wall and d\_eq is given by the wall law. This option also gives the value of d\_eq and h = (lambda+lambda\_t)/d\_eq and the fluid temperature of the first mesh near the wall.
  - For the Neumann boundary conditions (flux\_impose), the «equivalent» wall temperature given by the wall law is also printed (Tparoi equiv.) preceded for VEF calculation by the edge temperature «T face de bord».
- **turbulence\_paroi** *turbulence\_paroi\_scalaire\_base* (37) for inheritance: Keyword to set the wall law.

#### 28 nom

```
Description: Class to name the TRUST objects.

See also: objet_u (40) nom_anonyme (28.1)

Usage:
nom [ mot ]
where
```

• mot str: Chain of characters.

#### 28.1 Nom\_anonyme

```
Description: not_set

See also: nom (28)

Usage:
[ mot ]
where

• mot str: Chain of characters.
```

## 29 partitionneur\_deriv

```
Description: not_set

See also: objet_u (40) metis (29.3) sous_zones (29.7) tranche (29.8) partition (29.4) fichier_decoupage (29.2) union (29.9) partitionneur_sous_zones (29.6) fichier_med (29.1) sous_dom (29.5)

Usage: partitionneur_deriv str

Read str {
    [nb_parts int]
```

• **nb\_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### 29.1 Fichier\_med

} where

Description: Partitioning a domain using a MED file containing an integer field providing for each element the processor number on which the element should be located.

```
See also: partitionneur_deriv (29)

Usage:
fichier_med str

Read str {

file str

[field str]

[nb_parts int]
}

where
```

- file str: file name of the MED file to load
- field str: field name of the integer (or double) field to load
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

## 29.2 Fichier\_decoupage

Description: This algorithm reads an array of integer values on the disc, one value for each mesh element. Each value is interpreted as the target part number n>=0 for this element. The number of parts created is the highest value in the array plus one. Empty parts can be created if some values are not present in the array.

The file format is ASCII, and contains space, tab or carriage-return separated integer values. The first value is the number nb\_elem of elements in the domain, followed by nb\_elem integer values (positive or zero). This algorithm has been designed to work together with the 'ecrire\_decoupage' option. You can generate a partition with any other algorithm, write it to disc, modify it, and read it again to generate the .Zone files. Contrary to other partitioning algorithms, no correction is applied by default to the partition (eg. element 0 on processor 0 and corrections for periodic boundaries). If 'corriger\_partition' is specified, these corrections are applied.

See also: partitionneur\_deriv (29)

```
Usage:
fichier_decoupage str

Read str {

fichier str

[ corriger_partition ]

[ nb_parts int]
}
where
```

- fichier str: FILENAME
- corriger\_partition
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### **29.3** Metis

Description: Metis is an external partitionning library. It is a general algorithm that will generate a partition of the domain.

See also: partitionneur\_deriv (29)

Usage:
metis str

Read str {
 [kmetis]
 [use weights]

[ nb\_parts int]

} where

• **kmetis**: The default values are pmetis, default parameters are automatically chosen by Metis. 'kmetis' is faster than pmetis option but the last option produces better partitioning quality. In both cases, the partitioning quality may be slightly improved by increasing the nb\_essais option (by default N=1). It will compute N partitions and will keep the best one (smallest edge cut number). But this option is CPU expensive, taking N=10 will multiply the CPU cost of partitioning by 10. Experiments show that only marginal improvements can be obtained with non default parameters.

- use\_weights: If use\_weights is specified, weighting of the element-element links in the graph is used to force metis to keep opposite periodic elements on the same processor. This option can slightly improve the partitionning quality but it consumes more memory and takes more time. It is not mandatory since a correction algorithm is always applied afterwards to ensure a correct partitionning for periodic boundaries.
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### 29.4 Partition

Synonymous: decouper

Description: This algorithm re-use the partition of the domain named DOMAINE\_NAME. It is useful to partition for example a post processing domain. The partition should match with the calculation domain.

See also: partitionneur\_deriv (29)

Usage:
partition str

Read str {
 domaine str
 [nb\_parts int]
}
where

- domaine str: domain name
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### 29.5 Sous\_dom

Description: Given a global partition of a global domain, 'sous-domaine' allows to produce a conform partition of a sub-domain generated from the bigger one using the keyword create\_domain\_from\_sous\_domaine. The sub-domain will be partitionned in a conform fashion with the global domain.

See also: partitionneur\_deriv (29)

```
Usage:
sous_dom str
Read str {
fichier str
fichier_ssz str
[nb_parts int]
}
where
```

- fichier str: fichier
- fichier\_ssz str: fichier sous zonne
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### 29.6 Partitionneur\_sous\_zones

Synonymous: partitionneur sous domaines

Description: This algorithm will create one part for each specified subdomaine/domain. All elements contained in the first subdomaine/domain are put in the first part, all remaining elements contained in the second subdomaine/domain in the second part, etc...

If all elements of the current domain are contained in the specified subdomaines/domain, then N parts are created, otherwise, a supplemental part is created with the remaining elements.

If no subdomaine is specified, all subdomaines defined in the domain are used to split the mesh.

```
See also: partitionneur_deriv (29)

Usage:
partitionneur_sous_zones str

Read str {

    [sous_zones n word1 word2 ... wordn]
    [domaines n word1 word2 ... wordn]
    [nb_parts int]
}

where
```

- sous\_zones n word1 word2 ... wordn: N SUBZONE\_NAME\_1 SUBZONE\_NAME\_2 ...
- **domaines** *n word1 word2 ... wordn*: N DOMAIN\_NAME\_1 DOMAIN\_NAME\_2 ...
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### 29.7 Sous zones

Description: This algorithm will create one part for each specified subzone. All elements contained in the first subzone are put in the first part, all remaining elements contained in the second subzone in the second part, etc...

If all elements of the domain are contained in the specified subzones, then N parts are created, otherwise, a supplemental part is created with the remaining elements.

If no subzone is specified, all subzones defined in the domain are used to split the mesh.

```
See also: partitionneur_deriv (29)

Usage:
sous_zones str

Read str {

sous_zones n word1 word2 ... wordn
[nb_parts int]
}
where
```

- sous\_zones n word1 word2 ... wordn: N SUBZONE\_NAME\_1 SUBZONE\_NAME\_2 ...
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### 29.8 Tranche

Description: This algorithm will create a geometrical partitionning by slicing the mesh in the two or three axis directions, based on the geometric center of each mesh element. nz must be given if dimension=3. Each slice contains the same number of elements (slices don't have the same geometrical width, and for VDF meshes, slice boundaries are generally not flat except if the number of mesh elements in each direction is an exact multiple of the number of slices). First, nx slices in the X direction are created, then each slice is split in ny slices in the Y direction, and finally, each part is split in nz slices in the Z direction. The resulting number of parts is nx\*ny\*nz. If one particular direction has been declared periodic, the default slicing (0, 1, 2, ..., n-1) is replaced by (0, 1, 2, ... n-1, 0), each of the two '0' slices having twice less elements than the other slices.

```
See also: partitionneur_deriv (29)

Usage:
tranche str
Read str {

[tranches n1 n2 (n3)]
[nb_parts int]
}
where
```

- **tranches** *n1 n2 (n3)*: Partitioned by nx in the X direction, ny in the Y direction, nz in the Z direction. Works only for structured meshes. No warranty for unstructured meshes.
- **nb\_parts** *int* for inheritance: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

#### 29.9 Union

Description: Let several local domains be generated from a bigger one using the keyword create\_domain\_from\_sous\_domaine, and let their partitions be generated in the usual way. Provided the list of partition files for each small domain, the keyword 'union' will partition the global domain in a conform fashion with the smaller domains.

```
See also: partitionneur_deriv (29)

Usage:
union liste [ nb_parts ]
where
```

- **liste** *bloc\_lecture* (3.2): List of the partition files with the following syntaxe: {sous\_domaine1 decoupage1 ... sous\_domaineim decoupageim } where sous\_domaine1 ... sous\_zomeim are small domains names and decoupage1 ... decoupageim are partition files.
- **nb\_parts** *int*: The number of non empty parts that must be generated (generally equal to the number of processors in the parallel run).

## 30 porosites

Description: To define the volume porosity and surface porosity that are uniform in every direction in space on a sub-area.

Porosity was only usable in VDF discretization, and now available for VEF P1NC/P0.

Observations:

```
- Surface porosity values must be given in every direction in space (set this value to 1 if there is no poros-
```

- Prior to defining porosity, the problem must have been discretized.

```
Can 't be used in VEF discretization, use Porosites_champ instead.
See also: objet_u (40)
Usage:
porosites aco sous zone1|sous zone bloc [sous zone2][bloc2] acof
where
   • aco str into ['{'}]: Opening curly bracket.
   • sous_zone1|sous_zone str: Name of the sub-area to which porosity are allocated.
   • bloc bloc_lecture_poro (30.1): Surface and volume porosity values.
   • sous_zone2 str: Name of the 2nd sub-area to which porosity are allocated.
   • bloc2 bloc_lecture_poro (30.1): Surface and volume porosity values.
   • acof str into ['}']: Closing curly bracket.
30.1 Bloc lecture poro
Description: Surface and volume porosity values.
```

```
See also: objet_lecture (39)
Usage:
      volumique float
      surfacique n x1 x2 ... xn
}
where
```

- volumique *float*: Volume porosity value.
- surfacique n x1 x2 ... xn: Surface porosity values (in X, Y, Z directions).

#### 31 precond\_base

```
Description: Basic class for preconditioning.
```

```
See also: objet_u (40) ssor (31.3) ssor_bloc (31.4) precondsolv (31.2) ilu (31.1)
```

Usage:

#### 31.1 Ilu

Description: This preconditionner can be only used with the generic GEN solver.

```
See also: precond_base (31)
Usage:
ilu str
Read str {
      [type int]
```

```
[ filling int]
}
where
   • type int: values can be 0|1|2|3 for null|left|right|left-and-right preconditionning (default value = 2)
   • filling int: default value = 1.
31.2 Precondsolv
Description: not_set
See also: precond_base (31)
Usage:
precondsolv solveur
where
   • solveur solveur_sys_base (13.18): Solver type.
31.3 Ssor
Description: Symmetric successive over-relaxation algorithm.
See also: precond_base (31)
Usage:
ssor str
Read str {
     [ omega float]
}
where
   • omega float: Over-relaxation facteur (between 1 and 2, default value 1.6).
31.4 Ssor_bloc
Description: not_set
See also: precond_base (31)
Usage:
ssor_bloc str
Read str {
     [ alpha_0 float]
     [ precond0 precond_base]
     [ alpha_1 float]
     [ precond1 precond_base]
     [ alpha_a float]
```

[ preconda precond\_base]

```
} where

• alpha_0 float
• precond0 precond_base (31)
• alpha_1 float
• precond1 precond_base (31)
• alpha_a float
• preconda precond_base (31)
```

## 32 schema\_temps\_base

Description: Basic class for time schemes. This scheme will be associated with a problem and the equations of this problem.

See also: objet\_u (40) scheme\_euler\_explicit (32.4) schema\_predictor\_corrector (32.24) Sch\_CN\_iteratif (32.3) leap\_frog (32.5) schema\_implicite\_base (32.22) schema\_adams\_bashforth\_order\_2 (32.15) schema\_adams\_bashforth\_order\_3 (32.16) runge\_kutta\_ordre\_2 (32.7) runge\_kutta\_ordre\_3 (32.9) runge\_kutta\_ordre\_4\_d3p (32.11) runge\_kutta\_ordre\_2\_classique (32.8) runge\_kutta\_ordre\_3\_classique (32.10) runge\_kutta\_ordre\_4\_classique (32.12) runge\_kutta\_ordre\_4\_classique\_3\_8 (32.13) runge\_kutta\_rationnel\_ordre\_2 (32.14) schema\_euler\_explicite\_ALE (32.25) schema\_phase\_field (32.23)

```
Usage:
schema_temps_base str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [facsec str]
      [ seuil statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil_diffusion_implicite float]
      [ impr_diffusion_implicite int]
      [impr extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
      [ no_check_disk_space ]
      [ disable_progress ]
      [ disable_dt_ev ]
      [ gnuplot_header int]
```

where

- tinit *float*: Value of initial calculation time (0 by default).
- tmax *float*: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float*: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float*: Minimum calculation time step (1e-16s by default).
- dt\_max str: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float*: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float*: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str*: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5. Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- seuil\_statio float: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118): To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int*: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float*: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int*: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int
- no\_conv\_subiteration\_diffusion\_implicite int
- dt\_start dt\_start (13.10): dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- **nb\_pas\_dt\_max** *int*: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int*: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int*: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float*: To change the default period (23 hours) between the save of the fields in .sauv file.
- no\_check\_disk\_space: To disable the check of the available amount of disk space during the calculation.
- disable\_progress: To disable the writing of the .progress file.
- disable dt ev : To disable the writing of the .dt ev file.

• **gnuplot\_header** *int*: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.1 Implicit\_euler\_steady\_scheme

Synonymous: schema\_euler\_implicite\_stationnaire

Description: This is the Implicit Euler scheme using a dual time step procedure (using local and global dt) for steady problems. Remark: the only possible solver choice for this scheme is the implicit\_steady solver.

```
See also: schema_implicite_base (32.22)
Usage:
implicit_euler_steady_scheme str
Read str {
     [ max_iter_implicite int]
     [steady_security_facteur float]
     [steady_global_dt float]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [ facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [ disable dt ev ]
     [ gnuplot_header int]
}
```

where

- max\_iter\_implicite int: Maximum number of iterations allowed for the solver (by default 200)
- **steady\_security\_facteur** *float*: Parameter used in the local time step calculation procedure in order to increase or decrease the local dt value (by default 0.5). We expect a strictly positive value

- **steady\_global\_dt** *float*: This is the global time step used in the dual time step algorithm (by default 100). We expect a strictly positive value
- **solveur** *solveur\_implicite\_base* (33) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB\_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance

- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.2 Sch\_cn\_ex\_iteratif

Description: This keyword also describes a Crank-Nicholson method of second order accuracy but here, for scalars, because of instablities encountered when dt>dt\_CFL, the Crank Nicholson scheme is not applied to scalar quantities. Scalars are treated according to Euler-Explicite scheme at the end of the CN treatment for velocity flow fields (by doing p Euler explicite under-iterations at dt<=dt\_CFL). Parameters are the sames (but default values may change) compare to the Sch\_CN\_iterative scheme plus a relaxation keyword: niter\_min (2 by default), niter\_max (6 by default), niter\_avg (3 by default), facsec\_max (20 by default), seuil (0.05 by default)

```
See also: Sch_CN_iteratif (32.3)
Usage:
Sch_CN_EX_iteratif str
Read str {
     [ omega float]
      [ niter min int]
     [ niter_max int]
     [ niter avg int]
     [ facsec_max float]
     [seuil float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
      [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
```

```
[ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

- **omega** *float*: relaxation factor (0.1 by default)
- **niter\_min** *int* for inheritance: minimal number of p-iterations to satisfy convergence criteria (2 by default)
- **niter\_max** *int* for inheritance: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter\_avg** *int* for inheritance: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter\_avg, facsec is reduced, if lesser than niter\_avg, facsec is increased (but limited by the facsec\_max value).
- facsec\_max *float* for inheritance: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).
- **seuil** *float* for inheritance: criteria for ending iterative process (Max( || u(p) u(p-1)||/Max || u(p) ||) < seuil) (0.001 by default)
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt\_sauv float for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- seuil\_statio *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.

- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr\_extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable\_progress** for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.3 Sch\_cn\_iteratif

Description: The Crank-Nicholson method of second order accuracy. A mid-point rule formulation is used (Euler-centered scheme). The basic scheme is:

$$u(t+1) = u(t) + \frac{du}{dt}(t+1/2) * dt$$

The estimation of the time derivative du/dt at the level (t+1/2) is obtained either by iterative process. The time derivative du/dt at the level (t+1/2) is calculated iteratively with a simple under-relaxations method. Since the method is implicit, neither the cfl nor the fourier stability criteria must be respected. The time step is calculated in a way that the iterative procedure converges with the less iterations as possible.

Remark: for stationary or RANS calculations, no limitation can be given for time step through high value of facsec\_max parameter (for instance: facsec\_max 1000). In counterpart, for LES calculations, high values of facsec\_max may engender numerical instabilities.

See also: schema\_temps\_base (32) Sch\_CN\_EX\_iteratif (32.2)

```
Usage:
Sch_CN_iteratif str
Read str {
     [ niter_min int]
     [ niter max int]
     [ niter avg int]
     [ facsec_max float]
     [ seuil float]
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
     [ dt_impr float]
     [ facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
      [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- niter min int: minimal number of p-iterations to satisfy convergence criteria (2 by default)
- **niter\_max** *int*: number of maximum p-iterations allowed to satisfy convergence criteria (6 by default)
- **niter\_avg** *int*: threshold of p-iterations (3 by default). If the number of p-iterations is greater than niter\_avg, facsec is reduced, if lesser than niter\_avg, facsec is increased (but limited by the facsec\_max value).
- **facsec\_max** *float*: maximum ratio allowed between dynamical time step returned by iterative process and stability time returned by CFL condition (2 by default).
- seuil *float*: criteria for ending iterative process (Max( $\| u(p) u(p-1)\|$ /Max  $\| u(p) \|$ ) < seuil) (0.001 by default)
- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).

- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable\_progress** for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

## 32.4 Scheme\_euler\_explicit

```
Synonymous: schema euler explicite
Description: This is the Euler explicit scheme.
See also: schema temps base (32)
Usage:
scheme_euler_explicit str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      [\mathbf{dt}_{\mathbf{max}} \ str]
      [ dt_sauv float]
      [ dt_impr float]
      [ facsec str]
      [ seuil statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil_diffusion_implicite float]
      [impr diffusion implicite int]
      [impr extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt start dt start]
      [ nb_pas_dt_max int]
      [ niter max diffusion implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures | float]
      [ no_check_disk_space ]
      [ disable_progress ]
      [ disable_dt_ev ]
      [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- facsec str for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing

to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no conv subiteration diffusion implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no\_check\_disk\_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable\_progress** for inheritance: To disable the writing of the .progress file.
- **disable\_dt\_ev** for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.5 Leap\_frog

Description: This is the leap-frog scheme.

See also: schema\_temps\_base (32)

Usage:

```
leap_frog str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [dt max str]
     [ dt_sauv float]
     [dt impr float]
     [ facsec str]
     [ seuil_statio float]
     [ residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode sauvegarde securite en heures float]
     [ no check disk space ]
     [disable progress]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.

- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr\_extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no\_check\_disk\_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable\_progress** for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.6 Rk3\_ft

Description: Keyword for Runge Kutta time scheme for Front\_Tracking calculation.

```
See also: runge_kutta_ordre_3 (32.9)

Usage:
rk3_ft str

Read str {

    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
    [dt_sauv float]
```

```
[ dt_impr float]
     [ facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- seuil\_statio *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually

if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.

- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode\_sauvegarde\_securite\_en\_heures *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.7 Runge kutta ordre 2

Description: This is a low-storage Runge-Kutta scheme of second order that uses 2 integration points. The method is presented by Williamson (case 1) in https://www.sciencedirect.com/science/article/pii/0021999180900339

See also: schema\_temps\_base (32) Usage: runge\_kutta\_ordre\_2 str Read str { [tinit float] [tmax float] [tcpumax float] [ **dt\_min** float]  $\begin{bmatrix} dt max str \end{bmatrix}$ [ dt\_sauv float] [ dt\_impr float] [facsec str] [ seuil\_statio float] [ residuals residuals] [ diffusion\_implicite int] [ seuil\_diffusion\_implicite float] [ impr\_diffusion\_implicite int]

```
[ impr_extremums int]
    [ no_error_if_not_converged_diffusion_implicite int]
    [ no_conv_subiteration_diffusion_implicite int]
    [ dt_start dt_start]
    [ nb_pas_dt_max int]
    [ niter_max_diffusion_implicite int]
    [ precision_impr int]
    [ periode_sauvegarde_securite_en_heures float]
    [ no_check_disk_space ]
    [ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance

- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.8 Runge\_kutta\_ordre\_2\_classique

Description: This is a classical Runge-Kutta scheme of second order that uses 2 integration points.

See also: schema\_temps\_base (32) Usage: runge kutta ordre 2 classique str Read str { [tinit float] [tmax float] [tcpumax float] [ dt\_min float] [ dt\_max str] [ dt sauv float] [ dt\_impr float] [facsec str] [ seuil\_statio float] [residuals residuals] [ diffusion\_implicite int] [ seuil diffusion implicite float] [impr diffusion implicite int] [impr extremums int] [ no\_error\_if\_not\_converged\_diffusion\_implicite int]  $[ \ \textbf{no\_conv\_subiteration\_diffusion\_implicite} \quad int]$ [ dt start dt start] [ nb\_pas\_dt\_max int] [ niter\_max\_diffusion\_implicite int] [ precision\_impr int] [ periode\_sauvegarde\_securite\_en\_heures float] [ no\_check\_disk\_space ]

```
[ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- **no\_conv\_subiteration\_diffusion\_implicite** *int* for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for im-

plicit diffusion.

- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable progress for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.9 Runge kutta ordre 3

See also: schema\_temps\_base (32) rk3\_ft (32.6)

Description: This is a low-storage Runge-Kutta scheme of third order that uses 3 integration points. The method is presented by Williamson (case 7) in https://www.sciencedirect.com/science/article/pii/0021999180900339

Usage: runge\_kutta\_ordre\_3 str Read str { [tinit float] [tmax float] [tcpumax float] [ dt\_min float] [ dt\_max str] [ dt\_sauv float] [ dt\_impr float] [facsec str] [ seuil\_statio float] [residuals residuals] [ diffusion\_implicite int] [ seuil\_diffusion\_implicite float] [ impr\_diffusion\_implicite int] [impr extremums int] [ no\_error\_if\_not\_converged\_diffusion\_implicite int] [ no\_conv\_subiteration\_diffusion\_implicite int] [ **dt\_start** dt\_start] [ nb\_pas\_dt\_max int] [ niter\_max\_diffusion\_implicite int] [ precision impr int] [ periode\_sauvegarde\_securite\_en\_heures float] [ no\_check\_disk\_space ] [ disable\_progress ] [ disable\_dt\_ev ] [gnuplot header int] } where

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).

- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.

- **disable\_dt\_ev** for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.10 Runge\_kutta\_ordre\_3\_classique

Description: This is a classical Runge-Kutta scheme of third order that uses 3 integration points.

```
See also: schema_temps_base (32)
Usage:
runge_kutta_ordre_3_classique str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [disable progress]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt\_sauv float for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).

- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

## 32.11 Runge\_kutta\_ordre\_4\_d3p

Synonymous: runge\_kutta\_ordre\_4

Description: This is a low-storage Runge-Kutta scheme of fourth order that uses 3 integration points. The method is presented by Williamson (case 17) in https://www.sciencedirect.com/science/article/pii/0021999180900339

```
See also: schema temps base (32)
Usage:
runge_kutta_ordre_4_d3p str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [disable progress]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.

- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no error if not converged diffusion implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.12 Runge\_kutta\_ordre\_4\_classique

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points.

See also: schema\_temps\_base (32)

```
Usage:
runge_kutta_ordre_4_classique str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     \begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
      [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [impr extremums int]
      [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
      [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- tinit float for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported

- values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- $\bullet \ \, no\_error\_if\_not\_converged\_diffusion\_implicite \ \, int \ \, for \ \, inheritance \\$
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- **nb pas dt max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- gnuplot\_header int for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.13 Runge\_kutta\_ordre\_4\_classique\_3\_8

Description: This is a classical Runge-Kutta scheme of fourth order that uses 4 integration points and the 3/8 rule.

```
See also: schema_temps_base (32)

Usage:
runge_kutta_ordre_4_classique_3_8 str

Read str {

[ tinit float]
  [ tmax float]
  [ tcpumax float]
```

```
[ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot header int]
}
where
```

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened

meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.

- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no\_check\_disk\_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- **disable\_dt\_ev** for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.14 Runge\_kutta\_rationnel\_ordre\_2

Description: This is the Runge-Kutta rational scheme of second order. The method is described in the note: Wambeck - Rational Runge-Kutta methods for solving systems of ordinary differential equations, at the link: https://link.springer.com/article/10.1007/BF02252381. Although rational methods require more computational work than linear ones, they can have some other properties, such as a stable behaviour with explicitness, which make them preferable. The CFD application of this RRK2 scheme is described in the note: https://link.springer.com/content/pdf/10.1007%2F3-540-13917-6\_112.pdf.

```
See also: schema_temps_base (32)

Usage:
runge_kutta_rationnel_ordre_2 str

Read str {

    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
    [dt_sauv float]
    [dt_impr float]
```

```
[facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
     [impr_diffusion_implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- dt\_sauv float for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.

- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- gnuplot\_header int for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

## 32.15 Schema adams bashforth order 2

```
Description: not_set
See also: schema_temps_base (32)
Usage:
schema adams bashforth order 2 str
Read str {
     [tinit float]
      [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
      [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
```

```
[ dt_start dt_start]
    [ nb_pas_dt_max int]
    [ niter_max_diffusion_implicite int]
    [ precision_impr int]
    [ periode_sauvegarde_securite_en_heures float]
    [ no_check_disk_space ]
    [ disable_progress ]
    [ disable_dt_ev ]
    [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr\_extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.

dt\_start dt\_fixe value : the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).

By default, the first iteration is based on dt\_calc.

- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable\_progress** for inheritance: To disable the writing of the .progress file.
- **disable\_dt\_ev** for inheritance: To disable the writing of the .dt\_ev file.
- gnuplot\_header int for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

### 32.16 Schema\_adams\_bashforth\_order\_3

```
Description: not_set
See also: schema_temps_base (32)
Usage:
schema_adams_bashforth_order_3 str
Read str {
      [tinit float]
      [tmax float]
      [tcpumax float]
      [ dt_min float]
      \begin{bmatrix} dt_{max} & str \end{bmatrix}
      [ dt_sauv float]
      [ dt_impr float]
      [ facsec str]
      [ seuil statio float]
      [residuals residuals]
      [ diffusion implicite int]
      [ seuil_diffusion_implicite float]
      [impr diffusion implicite int]
      [ impr_extremums int]
      [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
      [ dt start dt start]
      [ nb_pas_dt_max int]
      [ niter_max_diffusion_implicite int]
      [ precision impr int]
      [ periode_sauvegarde_securite_en_heures | float]
      [ no_check_disk_space ]
      [ disable_progress ]
      [ disable_dt_ev ]
```

[ gnuplot\_header int]

} where

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- dt\_impr float for inheritance: Scheme parameter printing time step in time (1e30s by default). The
  time steps and the flux balances are printed (incorporated onto every side of processed domains) into
  the out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).

- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- gnuplot\_header int for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.17 Schema\_adams\_moulton\_order\_2

```
Description: not set
See also: schema_implicite_base (32.22)
Usage:
schema adams moulton order 2 str
Read str {
     [facsec max float]
     [ max_iter_implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt min float]
     [ dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode sauvegarde securite en heures float]
     [ no_check_disk_space ]
     [disable progress]
     [ disable_dt_ev ]
     [ gnuplot_header int]
where
```

• facsec\_max float: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec\_max value.

Warning: Some implicit schemes do not permit high facsec\_max, example Schema\_Adams\_Moulton\_order\_3 needs facsec=facsec\_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec\_max limit. But the user can also choose to specify a constant facsec (facsec\_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec\_max limit higher.

- max\_iter\_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur\_implicite\_base* (33) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB\_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- seuil\_statio *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).

- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.18 Schema adams moulton order 3

```
Description: not_set

See also: schema_implicite_base (32.22)

Usage:
schema_adams_moulton_order_3 str

Read str {

    [facsec_max float]
    [max_iter_implicite int]
    solveur solveur_implicite_base
    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
```

```
[ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

• facsec\_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec\_max value.

Warning: Some implicit schemes do not permit high facsec\_max, example Schema\_Adams\_Moulton\_order\_3 needs facsec=facsec\_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec\_max limit. But the user can also choose to specify a constant facsec (facsec\_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec\_max limit higher.

- max\_iter\_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur\_implicite\_base* (33) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB\_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than

the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- seuil\_diffusion\_implicite *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode sauvegarde securite en heures float for inheritance: To change the default period (23)

hours) between the save of the fields in .sauv file.

- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.19 Schema\_backward\_differentiation\_order\_2

```
Description: not_set
See also: schema_implicite_base (32.22)
schema_backward_differentiation_order_2 str
Read str {
     [ facsec_max float]
     [ max iter implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [dt max str]
     [ dt_sauv float]
     [ dt_impr float]
     [ facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [ impr_diffusion_implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no check disk space ]
     [ disable_progress ]
     [disable dt ev ]
     [ gnuplot_header int]
}
where
```

• facsec\_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec\_max value.

Warning: Some implicit schemes do not permit high facsec\_max, example Schema\_Adams\_Moulton\_order\_3 needs facsec=facsec\_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec\_max limit. But the user can also choose to specify a constant facsec (facsec\_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec\_max limit higher.

- max\_iter\_implicite *int* for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur\_implicite\_base* (33) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB\_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).

- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr\_extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

#### 32.20 Schema backward differentiation order 3

```
Description: not_set

See also: schema_implicite_base (32.22)

Usage:
schema_backward_differentiation_order_3 str

Read str {

    [facsec_max float]
    [max_iter_implicite int]
    solveur solveur_implicite_base
    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
```

```
[ dt_sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil diffusion implicite float]
     [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
     [ no conv subiteration diffusion implicite int]
     [ dt start dt start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
     [ precision_impr int]
     [ periode_sauvegarde_securite_en_heures | float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [ disable_dt_ev ]
     [gnuplot header int]
}
where
```

• facsec\_max *float*: Maximum ratio allowed between time step and stability time returned by CFL condition. The initial ratio given by facsec keyword is changed during the calculation with the implicit scheme but it couldn't be higher than facsec\_max value.

Warning: Some implicit schemes do not permit high facsec\_max, example Schema\_Adams\_Moulton\_order\_3 needs facsec=facsec\_max=1.

Advice:

The calculation may start with a facsec specified by the user and increased by the algorithm up to the facsec\_max limit. But the user can also choose to specify a constant facsec (facsec\_max will be set to facsec value then). Faster convergence has been seen and depends on the kind of calculation:

- -Hydraulic only or thermal hydraulic with forced convection and low coupling between velocity and temperature (Boussinesq value beta low), facsec between 20-30
- -Thermal hydraulic with forced convection and strong coupling between velocity and temperature (Boussinesq value beta high), facsec between 90-100
- -Thermohydralic with natural convection, facsec around 300
- -Conduction only, facsec can be set to a very high value (1e8) as if the scheme was unconditionally stable

These values can also be used as rule of thumb for initial facsec with a facsec\_max limit higher.

- max\_iter\_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur\_implicite\_base* (33) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB\_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than

the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- tinit *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode sauvegarde securite en heures float for inheritance: To change the default period (23)

hours) between the save of the fields in .sauv file.

- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.21 Scheme\_euler\_implicit

```
Synonymous: schema_euler_implicite
Description: This is the Euler implicit scheme.
See also: schema_implicite_base (32.22)
scheme_euler_implicit str
Read str {
     [ facsec_max float]
     [ resolution_monolithique bloc_lecture]
     [ max_iter_implicite int]
     solveur solveur_implicite_base
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt_sauv float]
     [dt impr float]
     [facsec str]
     [ seuil_statio float]
     [residuals residuals]
     [ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

• facsec\_max float: For old syntax, see the complete parameters of facsec for details

- resolution\_monolithique bloc\_lecture (3.2): Activate monolithic resolution for coupled problems. Solves together the equations corresponding to the application domains in the given order. All aplication domains of the coupled equations must be given to determine the order of resolution. If the monolithic solving is not wanted for a specific application domain, an underscore can be added as prefix. For example, resolution\_monolithique { dom1 { dom2 dom3 } \_dom4 } will solve in a single matrix the equations having dom1 as application domain, then the equations having dom2 or dom3 as application domain in a single matrix, then the equations having dom4 as application domain in a sequential way (not in a single matrix).
- max\_iter\_implicite int for inheritance: Maximum number of iterations allowed for the solver (by default 200).
- **solveur** *solveur\_implicite\_base* (33) for inheritance: This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB\_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- seuil\_statio *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually

if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.

- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode\_sauvegarde\_securite\_en\_heures *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable progress** for inheritance: To disable the writing of the .progress file.
- disable dt ev for inheritance: To disable the writing of the .dt ev file.
- gnuplot\_header int for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

## 32.22 Schema\_implicite\_base

Description: Basic class for implicite time scheme.

See also: schema\_temps\_base (32) schema\_adams\_moulton\_order\_2 (32.17) schema\_adams\_moulton\_order\_3 (32.18) schema\_backward\_differentiation\_order\_2 (32.19) schema\_backward\_differentiation\_order\_3 (32.20) scheme\_euler\_implicit (32.21) implicit\_euler\_steady\_scheme (32.1)

#### Usage

```
schema_implicite_base str

Read str {

[ max_iter_implicite int]
    solveur solveur_implicite_base
[ tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
    [dt_max str]
    [dt_sauv float]
    [dt_impr float]
    [facsec str]
    [seuil_statio float]
    [residuals residuals]
```

```
[ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

- max\_iter\_implicite int: Maximum number of iterations allowed for the solver (by default 200).
- solveur solveur\_implicite\_base (33): This keyword is used to designate the solver selected in the situation where the time scheme is an implicit scheme. solver is the name of the solver that allows equation diffusion and convection operators to be set as implicit terms. Keywords corresponding to this functionality are Simple (SIMPLE type algorithm), Simpler (SIMPLER type algorithm) for incompressible systems, Piso (Pressure Implicit with Split Operator), and Implicite (similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps, and ICE (for PB\_multiphase). But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains. Advice: Since the 1.6.0 version, we recommend to use first the Implicite or Simple, then Piso, and at least Simpler. Because the two first give a fastest convergence (several times) than Piso and the Simpler has not been validated. It seems also than Implicite and Piso schemes give better results than the Simple scheme when the flow is not fully stationary. Thus, if the solution obtained with Simple is not stationary, it is recommended to switch to Piso or Implicite scheme.
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- **dt\_min** *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.

- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr\_extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- no\_check\_disk\_space for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable\_progress** for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

## 32.23 Schema\_phase\_field

Description: Keyword for the only available Scheme for time discretization of the Phase Field problem.

```
See also: schema_temps_base (32)

Usage:
schema_phase_field str

Read str {

    [schema_ch schema_temps_base]
    [schema_ns schema_temps_base]
    [tinit float]
    [tmax float]
    [tcpumax float]
    [dt_min float]
```

```
\begin{bmatrix} dt_{max} & str \end{bmatrix}
     [ dt_sauv float]
      [ dt impr float]
     [facsec str]
      [seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil diffusion implicite float]
      [impr diffusion implicite int]
     [impr extremums int]
     [ no error if not converged diffusion implicite int]
      [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
     [ niter_max_diffusion_implicite int]
      [ precision_impr int]
      [ periode_sauvegarde_securite_en_heures | float]
      [ no_check_disk_space ]
     [ disable_progress ]
      [disable dt ev ]
     [ gnuplot_header int]
}
where
```

- schema ch schema temps base (32): Time scheme for the Cahn-Hilliard equation.
- schema ns schema temps base (32): Time scheme for the Navier-Stokes equation.
- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min *float* for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.

Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.

- **seuil\_statio** *float* for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- **diffusion\_implicite** *int* for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important

gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.

- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- impr extremums int for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- **no\_conv\_subiteration\_diffusion\_implicite** *int* for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- periode\_sauvegarde\_securite\_en\_heures *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- **disable\_dt\_ev** for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.24 Schema\_predictor\_corrector

Description: This is the predictor-corrector scheme (second order). It is more accurate and economic than MacCormack scheme. It gives best results with a second ordre convective scheme like quick, centre (VDF).

```
See also: schema_temps_base (32)

Usage:
schema_predictor_corrector str

Read str {

    [ tinit float]
    [ tepumax float]
    [ tepumax float]
    [ dt_min float]
    [ dt_max str]
    [ dt_sauv float]
    [ dt_impr float]
    [ facsec str]
    [ seuil_statio float]
    [ residuals residuals]
```

```
[ diffusion_implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no error if not converged diffusion implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt start dt start]
     [ nb pas dt max int]
     [ niter max diffusion implicite int]
     [ precision impr int]
     [ periode_sauvegarde_securite_en_heures float]
     [ no_check_disk_space ]
     [ disable_progress ]
     [disable dt ev ]
     [gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax float for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- dt\_impr float for inheritance: Scheme parameter printing time step in time (1e30s by default). The
  time steps and the flux balances are printed (incorporated onto every side of processed domains) into
  the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema-Adams Bashforth order 3.
- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt\_max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.

- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr** extremums *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- dt\_start dt\_start (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min.
   dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition.
   dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculation with Crank Nicholson temporal scheme to ensure continuity).
   By default, the first iteration is based on dt\_calc.
- nb\_pas\_dt\_max int for inheritance: Maximum number of calculation time steps (1e9 by default).
- **niter\_max\_diffusion\_implicite** *int* for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- **disable\_progress** for inheritance: To disable the writing of the .progress file.
- **disable\_dt\_ev** for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 32.25 Schema\_euler\_explicite\_ale

Description: This is the Euler explicit scheme used for ALE problems.

```
See also: schema_temps_base (32)
Usage:
schema euler explicite ALE str
Read str {
     [tinit float]
     [tmax float]
     [tcpumax float]
     [ dt_min float]
     [ dt_max str]
     [ dt sauv float]
     [ dt_impr float]
     [facsec str]
     [ seuil statio float]
     [residuals residuals]
     [ diffusion implicite int]
     [ seuil_diffusion_implicite float]
     [impr diffusion implicite int]
     [ impr_extremums int]
     [ no_error_if_not_converged_diffusion_implicite int]
     [ no_conv_subiteration_diffusion_implicite int]
     [ dt_start dt_start]
     [ nb_pas_dt_max int]
```

```
[ niter_max_diffusion_implicite int]
  [ precision_impr int]
  [ periode_sauvegarde_securite_en_heures float]
  [ no_check_disk_space ]
  [ disable_progress ]
  [ disable_dt_ev ]
  [ gnuplot_header int]
}
where
```

- **tinit** *float* for inheritance: Value of initial calculation time (0 by default).
- tmax *float* for inheritance: Time during which the calculation will be stopped (1e30s by default).
- **tcpumax** *float* for inheritance: CPU time limit (must be specified in hours) for which the calculation is stopped (1e30s by default).
- dt\_min float for inheritance: Minimum calculation time step (1e-16s by default).
- dt\_max str for inheritance: Maximum calculation time step as function of time (1e30s by default).
- **dt\_sauv** *float* for inheritance: Save time step value (1e30s by default). Every dt\_sauv, fields are saved in the .sauv file. The file contains all the information saved over time. If this instruction is not entered, results are saved only upon calculation completion. To disable the writing of the .sauv files, you must specify 0. Note that dt\_sauv is in terms of physical time (not cpu time).
- **dt\_impr** *float* for inheritance: Scheme parameter printing time step in time (1e30s by default). The time steps and the flux balances are printed (incorporated onto every side of processed domains) into the .out file.
- **facsec** *str* for inheritance: Value assigned to the safety factor for the time step (1. by default). It can also be a function of time. The time step calculated is multiplied by the safety factor. The first thing to try when a calculation does not converge with an explicit time scheme is to reduce the facsec to 0.5.
  - Warning: Some schemes needs a facsec lower than 1 (0.5 is a good start), for example Schema\_Adams\_Bashforth\_order\_3.
- seuil\_statio float for inheritance: Value of the convergence threshold (1e-12 by default). Problems using this type of time scheme converge when the derivatives dGi/dt of all the unknown transported values Gi have a combined absolute value less than this value. This is the keyword used to set the permanent rating threshold.
- **residuals** *residuals* (3.118) for inheritance: To specify how the residuals will be computed (default max norm, possible to choose L2-norm instead).
- diffusion\_implicite int for inheritance: Keyword to make the diffusive term in the Navier-Stokes equations implicit (in this case, it should be set to 1). The stability time step is then only based on the convection time step (dt=facsec\*dt\_convection). Thus, in some circumstances, an important gain is achieved with respect to the time step (large diffusion with respect to convection on tightened meshes). Caution: It is however recommended that the user avoids exceeding the convection time step by selecting a too large facsec value. Start with a facsec value of 1 and then increase it gradually if you wish to accelerate calculation. In addition, for a natural convection calculation with a zero initial velocity, in the first time step, the convection time is infinite and therefore dt=facsec\*dt max.
- **seuil\_diffusion\_implicite** *float* for inheritance: This keyword changes the default value (1e-6) of convergency criteria for the resolution by conjugate gradient used for implicit diffusion.
- **impr\_diffusion\_implicite** *int* for inheritance: Unactivate (default) or not the printing of the convergence during the resolution of the conjugate gradient.
- **impr\_extremums** *int* for inheritance: Print unknowns extremas
- no\_error\_if\_not\_converged\_diffusion\_implicite int for inheritance
- no\_conv\_subiteration\_diffusion\_implicite int for inheritance
- **dt\_start** *dt\_start* (13.10) for inheritance: dt\_start dt\_min: the first iteration is based on dt\_min. dt\_start dt\_calc: the time step at first iteration is calculated in agreement with CFL condition. dt\_start dt\_fixe value: the first time step is fixed by the user (recommended when resuming calculated in agreement with CFL condition.

tion with Crank Nicholson temporal scheme to ensure continuity). By default, the first iteration is based on dt\_calc.

- **nb pas dt max** *int* for inheritance: Maximum number of calculation time steps (1e9 by default).
- niter\_max\_diffusion\_implicite int for inheritance: This keyword changes the default value (number of unknowns) of the maximal iterations number in the conjugate gradient method used for implicit diffusion.
- **precision\_impr** *int* for inheritance: Optional keyword to define the digit number for flux values printed into .out files (by default 3).
- **periode\_sauvegarde\_securite\_en\_heures** *float* for inheritance: To change the default period (23 hours) between the save of the fields in .sauv file.
- **no\_check\_disk\_space** for inheritance: To disable the check of the available amount of disk space during the calculation.
- disable\_progress for inheritance: To disable the writing of the .progress file.
- disable\_dt\_ev for inheritance: To disable the writing of the .dt\_ev file.
- **gnuplot\_header** *int* for inheritance: Optional keyword to modify the header of the .out files. Allows to use the column title instead of columns number.

# 33 solveur\_implicite\_base

Description: Class for solver in the situation where the time scheme is the implicit scheme. Solver allows equation diffusion and convection operators to be set as implicit terms.

```
See also: objet_u (40) solveur_lineaire_std (33.9) simpler (33.8)
Usage:
```

#### **33.1** Ice

Description: Implicit Continuous-fluid Eulerian solver which is useful for a multiphase problem. Robust pressure reduction resolution.

```
See also: sets (33.6)
Usage:
ice str
Read str {
     [ pression_degeneree int]
     [ pressure reduction|reduction pression int]
     [criteres_convergence bloc_criteres_convergence]
     [iter_min int]
     [ seuil_convergence_implicite | float]
     [ nb_corrections_max int]
     [ facsec_diffusion_for_sets float]
     [ seuil_convergence_solveur | float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur | float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no qdm]
     [ nb it max int]
     [controle residu]
}
```

#### where

- **pression\_degeneree** *int*: Set to 1 if the pressure field is degenerate (ex. : incompressible fluid with no imposed-pressure BCs). Default: autodetected
- **pressure\_reduction|reduction\_pression** *int*: Set to 1 if the user wants a resolution with a pressure reduction. Otherwise, the rien is to be set to 0 so that the complete matrix is considered. The default value of this rien is 1.
- **criteres\_convergence** *bloc\_criteres\_convergence* (3.2.1) for inheritance: Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter\_min int for inheritance: Number of minimum iterations
- seuil\_convergence\_implicite float for inheritance: Convergence criteria.
- **nb\_corrections\_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).
- facsec\_diffusion\_for\_sets *float* for inheritance: facsec to impose on the diffusion time step in sets while the total time step stays smaller than the convection time step.
- seuil\_convergence\_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil\_generation\_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil\_verification\_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- seuil\_test\_preliminaire\_solveur *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb\_it\_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

# 33.2 Implicit\_steady

Description: this is the implicit solver using a dual time step. Remark: this solver can be used only with the Implicit\_Euler\_Steady\_Scheme time scheme.

```
See also: implicite (33.3)

Usage:
implicit_steady str

Read str {

    [ seuil_convergence_implicite float]
    [ nb_corrections_max int]
    [ seuil_convergence_solveur float]
    [ seuil_generation_solveur float]
    [ seuil_verification_solveur float]
    [ seuil_test preliminaire solveur float]
```

```
[ solveur solveur_sys_base]
  [ no_qdm ]
  [ nb_it_max int]
  [ controle_residu ]
}
where
```

- seuil convergence implicite float for inheritance: Convergence criteria.
- **nb\_corrections\_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).
- seuil\_convergence\_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil\_generation\_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil\_verification\_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- seuil\_test\_preliminaire\_solveur *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb\_it\_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

# 33.3 Implicite

[ nb\_it\_max int] [ controle\_residu ]

Description: similar to PISO, but as it looks like a simplified solver, it will use fewer timesteps. But it may run faster because the pressure matrix is not re-assembled and thus provides CPU gains.

See also: piso (33.5) implicite\_ALE (33.4) implicit\_steady (33.2)

Usage:
implicite str

Read str {

 [ seuil\_convergence\_implicite float]
 [ nb\_corrections\_max int]
 [ seuil\_convergence\_solveur float]
 [ seuil\_generation\_solveur float]
 [ seuil\_verification\_solveur float]
 [ seuil\_test\_preliminaire\_solveur float]
 [ solveur solveur\_sys\_base]
 [ no\_qdm ]

} where

- seuil\_convergence\_implicite float for inheritance: Convergence criteria.
- nb\_corrections\_max *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).
- seuil\_convergence\_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil\_generation\_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil\_verification\_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil\_test\_preliminaire\_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb\_it\_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

# 33.4 Implicite\_ale

Description: Implicite solver used for ALE problem

```
See also: implicite (33.3)
Usage:
implicite ALE str
Read str {
     [ seuil_convergence_implicite | float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no qdm]
     [ nb it max int]
     [ controle_residu ]
}
where
```

- seuil\_convergence\_implicite float for inheritance: Convergence criteria.
- **nb\_corrections\_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections

then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).

- seuil\_convergence\_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil\_generation\_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil\_verification\_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil\_test\_preliminaire\_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb\_it\_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

#### 33.5 **Piso**

Description: Piso (Pressure Implicit with Split Operator) - method to solve N\_S.

```
Usage:
piso str
Read str {

[ seuil_convergence_implicite float]
        [ nb_corrections_max int]
        [ seuil_convergence_solveur float]
        [ seuil_generation_solveur float]
        [ seuil_verification_solveur float]
        [ seuil_test_preliminaire_solveur float]
        [ solveur solveur_sys_base]
        [ no_qdm ]
        [ nb_it_max int]
        [ controle_residu ]
}
where
```

See also: simpler (33.8) implicite (33.3) simple (33.7)

- seuil\_convergence\_implicite float: Convergence criteria.
- **nb\_corrections\_max** *int*: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).
- seuil\_convergence\_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).

- seuil\_generation\_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil\_verification\_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil\_test\_preliminaire\_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb\_it\_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

#### 33.6 Sets

Description: Stability-Enhancing Two-Step solver which is useful for a multiphase problem. Ref: J. H. MAHAFFY, A stability-enhancing two-step method for fluid flow calculations, Journal of Computational Physics, 46, 3, 329 (1982).

```
See also: simpler (33.8) ice (33.1)
Usage:
sets str
Read str {
     [criteres_convergence]
     [iter min int]
     [ seuil_convergence_implicite float]
     [ nb_corrections_max int]
     [ facsec_diffusion_for_sets float]
     [ seuil_convergence_solveur float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur solveur sys base]
     [no_qdm]
     [ nb it max int]
     [ controle_residu ]
}
where
```

- **criteres\_convergence** *bloc\_criteres\_convergence* (3.2.1): Set the convergence thresholds for each unknown (i.e. alpha, temperature, velocity and pressure). The default values are respectively 0.01, 0.1, 0.01 and 100
- iter\_min int: Number of minimum iterations
- seuil\_convergence\_implicite float: Convergence criteria.
- nb\_corrections\_max *int*: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).

- facsec\_diffusion\_for\_sets *float*: facsec to impose on the diffusion time step in sets while the total time step stays smaller than the convection time step.
- **seuil\_convergence\_solveur** *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- **seuil\_generation\_solveur** *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- seuil\_verification\_solveur *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil\_test\_preliminaire\_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb\_it\_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

### **33.7 Simple**

```
Description: SIMPLE type algorithm
See also: piso (33.5) solveur_u_p (33.10)
Usage:
simple str
Read str {
     [relax_pression float]
     [ seuil_convergence_implicite | float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur float]
     [ seuil_generation_solveur float]
     [ seuil verification solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur_sys_base]
     [no_qdm]
     [ nb it max int]
     [ controle_residu ]
}
where
```

- **relax\_pression** *float*: Value between 0 and 1 (by default 1), this keyword is used only by the SIM-PLE algorithm for relaxing the increment of pressure.
- seuil\_convergence\_implicite float for inheritance: Convergence criteria.
- **nb\_corrections\_max** *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).

- seuil\_convergence\_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil\_generation\_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil\_verification\_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- seuil\_test\_preliminaire\_solveur *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- nb\_it\_max int for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

### 33.8 Simpler

Description: Simpler method for incompressible systems.

```
See also: solveur_implicite_base (33) piso (33.5) sets (33.6)

Usage:
simpler str

Read str {

seuil_convergence_implicite float
[seuil_convergence_solveur float]
[seuil_generation_solveur float]
[seuil_verification_solveur float]
[seuil_test_preliminaire_solveur float]
[solveur solveur_sys_base]
[no_qdm]
[nb_it_max int]
[controle_residu]
}

where
```

- seuil\_convergence\_implicite *float*: Keyword to set the value of the convergence criteria for the resolution of the implicit system build to solve either the Navier\_Stokes equation (only for Simple and Simpler algorithms) or a scalar equation. It is adviced to use the default value (1e6) to solve the implicit system only once by time step. This value must be decreased when a coupling between problems is considered.
- seuil\_convergence\_solveur *float*: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil\_generation\_solveur *float*: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).

- **seuil\_verification\_solveur** *float*: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil\_test\_preliminaire\_solveur** *float*: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18): Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- no\_qdm: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb it max** *int*: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu**: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

#### 33.9 Solveur lineaire std

Description: not\_set

```
See also: solveur_implicite_base (33)
Usage:
solveur_lineaire_std str
Read str {
     [solveur_sys_base]
}
where
   • solveur_sys_base (13.18)
33.10 Solveur_u_p
Description: similar to simple.
See also: simple (33.7)
Usage:
solveur_u_p str
Read str {
     [relax_pression float]
     [ seuil_convergence_implicite float]
     [ nb_corrections_max int]
     [ seuil_convergence_solveur float]
     [ seuil_generation_solveur float]
     [ seuil_verification_solveur float]
     [ seuil_test_preliminaire_solveur float]
     [solveur solveur sys base]
     [no qdm]
     [ nb_it_max int]
     [controle residu]
}
where
```

• relax\_pression *float* for inheritance: Value between 0 and 1 (by default 1), this keyword is used only by the SIMPLE algorithm for relaxing the increment of pressure.

- seuil\_convergence\_implicite float for inheritance: Convergence criteria.
- nb\_corrections\_max *int* for inheritance: Maximum number of corrections performed by the PISO algorithm to achieve the projection of the velocity field. The algorithm may perform less corrections then nb\_corrections\_max if the accuracy of the projection is sufficient. (By default nb\_corrections\_max is set to 21).
- seuil\_convergence\_solveur *float* for inheritance: value of the convergence criteria for the resolution of the implicit system build by solving several times per time step the Navier\_Stokes equation and the scalar equations if any. This value MUST be used when a coupling between problems is considered (should be set to a value typically of 0.1 or 0.01).
- seuil\_generation\_solveur *float* for inheritance: Option to create a GMRES solver and use vrel as the convergence threshold (implicit linear system Ax=B will be solved if residual error ||Ax-B|| is lesser than vrel).
- **seuil\_verification\_solveur** *float* for inheritance: Option to check if residual error ||Ax-B|| is lesser than vrel after the implicit linear system Ax=B has been solved.
- **seuil\_test\_preliminaire\_solveur** *float* for inheritance: Option to decide if the implicit linear system Ax=B should be solved by checking if the residual error ||Ax-B|| is bigger than vrel.
- **solveur** *solveur\_sys\_base* (13.18) for inheritance: Method (different from the default one, Gmres with diagonal preconditioning) to solve the linear system.
- **no\_qdm** for inheritance: Keyword to not solve qdm equation (and turbulence models of these equation).
- **nb\_it\_max** *int* for inheritance: Keyword to set the maximum iterations number for the Gmres.
- **controle\_residu** for inheritance: Keyword of Boolean type (by default 0). If set to 1, the convergence occurs if the residu suddenly increases.

## 34 source\_base

Description: Basic class of source terms introduced in the equation.

See also: objet\_u (40) boussinesq\_temperature (34.19) boussinesq\_concentration (34.18) dirac (34.23) puissance\_thermique (34.34) source\_qdm\_lambdaup (34.46) source\_th\_tdivu (34.52) source\_robin (34.49) source\_robin\_scalaire (34.50) canal\_perio (34.20) source\_constituant (34.38) radioactive\_decay (34.35) acceleration (34.17) coriolis (34.21) source\_qdm (34.45) perte\_charge\_singuliere (34.33) perte\_charge-\_directionnelle (34.29) perte\_charge\_isotrope (34.30) perte\_charge\_anisotrope (34.27) perte\_charge\_circulaire (34.28) darcy (34.22) forchheimer (34.25) perte\_charge\_reguliere (34.31) source\_pdf\_base (34.44) sourcegenerique (34.40) flux interfacial (34.24) vitesse relative base (34.63) frottement interfacial (34.26) Dispersion-\_bulles (34.7) Portance\_interfaciale (34.10) travail\_pression (34.61) DP\_Impose (34.3) terme\_puissancethermique echange impose (34.60) Correction Antal (34.1) source transport eps (34.54) source transport \_k (34.55) source\_transport\_k\_eps (34.56) Source\_Constituant\_Vortex (34.13) trainee (34.53) flottabilite (34.39) masse ajoutee (34.41) source rayo semi transp (34.48) source con phase field (34.36) Termedissipation energie cinetique turbulente (34.16) Production echelle temp taux diss turb (34.11) Dissipationechelle temp taux diss turb (34.8) Diffusion croisee echelle temp taux diss turb (34.5) Correction-\_Lubchenko (34.2) Diffusion\_supplementaire\_echelle\_temp\_turb (34.6) source\_qdm\_phase\_field (34.47) Injection\_QDM\_nulle (34.9) Production\_energie\_cin\_turb (34.12) Source\_Dissipation\_echelle\_temp\_taux-\_diss\_turb (34.14) tenseur\_Reynolds\_externe (34.59)

Usage:

#### 34.1 Correction antal

Description: Antal correction source term for multiphase problem

See also: source\_base (34)

```
Usage:
```

### 34.2 Correction\_lubchenko

```
Description: not_set
See also: source_base (34)
Usage:
Correction_Lubchenko str
Read str {
     [ beta_lift float]
     [ beta_disp float]
}
where
   • beta lift float
   • beta_disp float
34.3
      Dp_impose
Description: Source term to impose a pressure difference according to the formula : DP = dp + dDP/dQ *
(Q - Q0)
See also: source_base (34)
Usage:
DP_Impose aco dp_type surface bloc_surface acof
where
   • aco str into ['{'}]: Opening curly bracket.
   • dp_type type_perte_charge_deriv (34.4): mass flow rate (kg/s).
   • surface str into ['surface']
   • bloc_surface bloc_lecture (3.2): Three syntaxes are possible for the surface definition block:
     For VDF and VEF: \{X|Y|Z = location \ subzone\_name \}
     Only for VEF: { Surface surface_name }.
     For polymac { Surface surface_name Orientation champ_uniforme }.
   • acof str into ['}']: Closing curly bracket.
34.4 Type_perte_charge_deriv
Description: not_set
See also: objet_lecture (39) dp (34.4.1) dp_regul (34.4.2)
Usage:
```

#### 34.4.1 Dp

Description: DP field should have 3 components defining dp, dDP/dQ, Q0

```
See also: type_perte_charge_deriv (34.4)
```

Usage:

#### dp dp\_field

where

• **dp\_field** *champ\_base* (18.1): the parameters of the previous formula (DP = dp + dDP/dQ \* (Q - Q0)): uniform\_field 3 dp dDP/dQ Q0 where Q0 is a mass flow rate (kg/s).

#### 34.4.2 Dp\_regul

Description: Keyword used to regulate the DP value in order to match a target flow rate. Syntax : dp\_regul { DP0 d deb d eps e }

```
See also: type_perte_charge_deriv (34.4)
```

```
Usage:
```

where

```
dp_regul {
     DP0 float
     deb str
     eps str
}
where
```

- **DP0** *float*: initial value of DP
- **deb** str: target flow rate in kg/s
- **eps** *str*: strength of the regulation (low values might be slow to find the target flow rate, high values might oscillate around the target value)

### 34.5 Diffusion\_croisee\_echelle\_temp\_taux\_diss\_turb

Description: Cross-diffusion source term used in the tau and omega equations

```
See also: source_base (34)

Usage:
Diffusion_croisee_echelle_temp_taux_diss_turb str
Read str {
    [ sigma_d float]
```

• sigma\_d float: Constant for the used model

### 34.6 Diffusion\_supplementaire\_echelle\_temp\_turb

```
Description: not_set

See also: source_base (34)

Usage:
Diffusion_supplementaire_echelle_temp_turb
```

### 34.7 Dispersion\_bulles

Description: Base class for source terms of bubble dispersion in momentum equation.

```
See also: source_base (34)

Usage:
Dispersion_bulles str
Read str {
    [beta float]
}
where
```

• beta float: Mutliplying factor for the output of the bubble dispersion source term.

### 34.8 Dissipation\_echelle\_temp\_taux\_diss\_turb

Description: Dissipation source term used in the tau and omega equations

```
See also: source_base (34)

Usage:
Dissipation_echelle_temp_taux_diss_turb str
Read str {
    [beta_omega float]
}
where
```

• beta\_omega float: Constant for the used model

### 34.9 Injection\_qdm\_nulle

```
Description: not_set

See also: source_base (34)

Usage:
```

### 34.10 Portance\_interfaciale

Description: Base class for source term of lift force in momentum equation.

```
See also: source_base (34)

Usage:
Portance_interfaciale str
Read str {
    [beta float]
}
where
```

• beta *float*: Multiplying factor for the bubble lift force source term.

### 34.11 Production\_echelle\_temp\_taux\_diss\_turb

Description: Production source term used in the tau and omega equations

```
See also: source_base (34)

Usage:

Production_echelle_temp_taux_diss_turb str

Read str {

[alpha_omega float]
}
where
```

• alpha\_omega float: Constant for the used model

### 34.12 Production\_energie\_cin\_turb

Description: Production source term for the TKE equation

```
See also: source_base (34)
```

Usage:

#### 34.13 Source\_constituant\_vortex

Description: Special treatment for the reactor of vortex effect where reagents are injected just below the free surface in the liquid phase

```
See also: source_base (34)

Usage:
Source_Constituant_Vortex str

Read str {

[ senseur_interface bloc_lecture]
        [ rayon_spot float]
```

```
[ delta_spot n x1 x2 ... xn]
[ integrale float]
[ debit float]
}
where
```

- senseur\_interface bloc\_lecture (3.2): This is to be defined for the concentration equation of the reagents only and in the bloc of the sources. Here the user defines the position of the reagents injection.
- rayon\_spot float: defines the radius of the concentration spot (tracer) injected in the fluid
- delta\_spot n x1 x2 ... xn: dimensions of the injection (segment). the syntax is dim val1 val2 [val3]
- integrale *float*: the molar flowrate of injection
- debit float: a normalization of the molar flow rate. Advice: keep this value to 1.

### 34.14 Source\_dissipation\_echelle\_temp\_taux\_diss\_turb

Description: Source term which corresponds to the dissipation source term that appears in the transport equation for tau (in the k-tau turbulence model)

```
See also: source_base (34)
Usage:
```

 $Source\_Dissipation\_echelle\_temp\_taux\_diss\_turb$ 

### **34.15** Source\_transport\_k\_eps\_anisotherme

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1\_eps=1.44 C2\_eps=1.92 C3\_eps=1.0

```
See also: source_transport_k_eps (34.56)

Usage:
Source_Transport_K_Eps_anisotherme str

Read str {
    [c3_eps float]
    [c1_eps float]
    [c2_eps float]
}
where

• c3_eps float: Third constant.
• c1_eps float for inheritance: First constant.
• c2_eps float for inheritance: Second constant.
```

#### 34.16 Terme\_dissipation\_energie\_cinetique\_turbulente

```
Description: Dissipation source term used in the TKE equation
```

```
See also: source_base (34)

Usage:
Terme_dissipation_energie_cinetique_turbulente str
Read str {
```

```
[ beta_k float]
}
where
• beta k float: Constant for the used model
```

#### 34.17 Acceleration

Description: Momentum source term to take in account the forces due to rotation or translation of a non Galilean referential R' (centre 0') into the Galilean referential R (centre 0).

```
See also: source_base (34)

Usage:
acceleration str

Read str {

    [vitesse champ_base]
    [acceleration champ_base]
    [omega champ_base]
    [domegadt champ_base]
    [centre_rotation champ_base]
    [option str into ['terme_complet', 'coriolis_seul', 'entrainement_seul']]
}
where
```

- vitesse champ\_base (18.1): Keyword for the velocity of the referential R' into the R referential (dOO'/dt term [m.s-1]). The velocity is mandatory when you want to print the total cinetic energy into the non-mobile Galilean referential R (see Ec\_dans\_repere\_fixe keyword).
- acceleration *champ\_base* (18.1): Keyword for the acceleration of the referential R' into the R referential (d2OO'/dt2 term [m.s-2]). field\_base is a time dependant field (eg: Champ\_Fonc\_t).
- omega *champ\_base* (18.1): Keyword for a rotation of the referential R' into the R referential [rad.s-1]. field\_base is a 3D time dependant field specified for example by a Champ\_Fonc\_t keyword. The time\_field field should have 3 components even in 2D (In 2D: 0 0 omega).
- **domegadt** *champ\_base* (18.1): Keyword to define the time derivative of the previous rotation [rad.s-2]. Should be zero if the rotation is constant. The time\_field field should have 3 components even in 2D (In 2D: 0 0 domegadt).
- **centre\_rotation** *champ\_base* (18.1): Keyword to specify the centre of rotation (expressed in R' coordinates) of R' into R (if the domain rotates with the R' referential, the centre of rotation is 0'=(0,0,0)). The time\_field should have 2 or 3 components according the dimension 2 or 3.
- option str into ['terme\_complet', 'coriolis\_seul', 'entrainement\_seul']: Keyword to specify the kind of calculation: terme\_complet (default option) will calculate both the Coriolis and centrifugal forces, coriolis\_seul will calculate the first one only, entrainement\_seul will calculate the second one only.

#### 34.18 Boussinesq\_concentration

Description: Class to describe a source term that couples the movement quantity equation and constituent transport equation with the Boussinesq hypothesis.

```
See also: source base (34)
```

```
Usage:
boussinesq_concentration str
Read str {
    c0 n x1 x2 ... xn
    [verif_boussinesq int]
}
where
```

- **c0** *n x1 x2 ... xn*: Reference concentration field type. The only field type currently available is Champ\_Uniforme (Uniform field).
- **verif\_boussinesq** *int*: Keyword to check (1) or not (0) the reference concentration in comparison with the mean concentration value in the domain. It is set to 1 by default.

### 34.19 Boussinesq\_temperature

Description: Class to describe a source term that couples the movement quantity equation and energy equation with the Boussinesq hypothesis.

```
See also: source_base (34)

Usage:
boussinesq_temperature str
Read str {

t0 str
[verif_boussinesq int]
}
where
```

- **t0** *str*: Reference temperature value (oC or K). It can also be a time dependant function since the 1.6.6 version.
- **verif\_boussinesq** *int*: Keyword to check (1) or not (0) the reference temperature in comparison with the mean temperature value in the domain. It is set to 1 by default.

#### 34.20 Canal\_perio

Description: Momentum source term to maintain flow rate. The expression of the source term is: S(t) = (2\*(Q(0) - Q(t))-(Q(0)-Q(t-dt))/(coeff\*dt\*area)

#### Where:

coeff=damping coefficient area=area of the periodic boundary Q(t)=flow rate at time t dt=time step

Three files will be created during calculation on a datafile named DataFile.data. The first file contains the flow rate evolution. The second file is useful for resuming a calculation with the flow rate of the previous stopped calculation, and the last one contains the pressure gradient evolution:

```
-DataFile_Channel_Flow_Rate_ProblemName_BoundaryName
```

-DataFile\_Channel\_Flow\_Rate\_repr\_ProblemName\_BoundaryName

-DataFile\_Pressure\_Gradient\_ProblemName\_BoundaryName

```
See also: source_base (34)

Usage:
canal_perio str

Read str {

bord str

[h float]

[coeff float]

[debit_impose float]
}

where
```

- **bord** *str*: The name of the (periodic) boundary normal to the flow direction.
- h float: Half heigth of the channel.
- **coeff** *float*: Damping coefficient (optional, default value is 10).
- **debit\_impose** *float*: Optional option to specify the aimed flow rate Q(0). If not used, Q(0) is computed by the code after the projection phase, where velocity initial conditions are slightly changed to verify incompressibility.

### 34.21 Coriolis

Description: Keyword for a Coriolis term in hydraulic equation. Warning: Only available in VDF.

```
See also: source_base (34)

Usage:
coriolis omega
where

• omega str: Value of omega.
```

#### **34.22** Darcy

Description: Class for calculation in a porous media with source term of Darcy -nu/K\*V. This keyword must be used with a permeability model. For the moment there are two models: permeability constant or Ergun's law. Darcy source term is available for quasi compressible calculation. A new keyword is aded for porosity (porosite).

```
See also: source_base (34)

Usage:
darcy bloc
where

• bloc bloc lecture (3.2): Description.
```

#### 34.23 Dirac

Description: Class to define a source term corresponding to a volume power release in the energy equation.

See also: source\_base (34)

Usage:
dirac position ch
where

- **position** *n x1 x2 ... xn*
- **ch** *champ\_base* (18.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ\_Uniforme\_Morceaux (partly\_uniform\_field) type must be used.

Warning: The volume thermal power is expressed in W.m-3.

### 34.24 Flux\_interfacial

Description: Source term of mass transfer between phases connected by the saturation object defined in saturation\_xxxx

See also: source\_base (34)

Usage:

flux\_interfacial

#### 34.25 Forchheimer

Description: Class to add the source term of Forchheimer -Cf/sqrt(K)\*V2 in the Navier-Stokes equations. We must precise a permeability model: constant or Ergun's law. Moreover we can give the constant Cf: by default its value is 1. Forchheimer source term is available also for quasi compressible calculation. A new keyword is aded for porosity (porosite).

See also: source\_base (34)

Usage:

forchheimer bloc

where

• **bloc** *bloc\_lecture* (3.2): Description.

#### 34.26 Frottement\_interfacial

Description: Source term which corresponds to the phases friction at the interface

See also: source\_base (34)

Usage:
frottement\_interfacial str
Read str {
 [a\_res float]

[ dv\_min float] [ exp\_res int]

```
}
where
```

- a\_res *float*: void fraction at which the gas velocity is forced to approach liquid velocity (default alpha\_evanescence\*100)
- dv\_min float: minimal relative velocity used to linearize interfacial friction at low velocities
- exp res int: exponent that callibrates intensity of velocity convergence (default 2)

### 34.27 Perte\_charge\_anisotrope

```
Description: Anisotropic pressure loss.

See also: source_base (34)

Usage:
perte_charge_anisotrope str
Read str {
    lambda str
    lambda_ortho str
    diam_hydr champ_don_base
    direction champ_don_base
    [sous_zone str]
}

where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- **lambda\_ortho** *str*: Function for loss coefficient in transverse direction which may be Reynolds dependant (Ex: 64/Re).
- diam\_hydr champ\_don\_base (18.9): Hydraulic diameter value.
- direction champ\_don\_base (18.9): Field which indicates the direction of the pressure loss.
- sous\_zone str: Optional sub-area where pressure loss applies.

### 34.28 Perte\_charge\_circulaire

```
Description: New pressure loss.

See also: source_base (34)

Usage:
perte_charge_circulaire str
Read str {
    lambda str
    lambda_ortho str
    diam_hydr champ_don_base
    diam_hydr_ortho champ_don_base
    direction champ_don_base
    [sous_zone str]
}

where
```

• lambda str: Function f(Re\_tot, Re\_long, t, x, y, z) for loss coefficient in the longitudinal direction

- lambda\_ortho str: function: Function f(Re\_tot, Re\_ortho, t, x, y, z) for loss coefficient in transverse direction
- diam\_hydr champ\_don\_base (18.9): Hydraulic diameter value.
- diam\_hydr\_ortho champ\_don\_base (18.9): Transverse hydraulic diameter value.
- **direction** *champ\_don\_base* (18.9): Field which indicates the direction of the pressure loss.
- sous\_zone str: Optional sub-area where pressure loss applies.

### 34.29 Perte\_charge\_directionnelle

```
Description: Directional pressure loss.

See also: source_base (34)

Usage:
perte_charge_directionnelle str
Read str {
    lambda str
    diam_hydr champ_don_base
    direction champ_don_base
    [ sous_zone str]
}
where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- diam\_hydr champ\_don\_base (18.9): Hydraulic diameter value.
- direction champ don base (18.9): Field which indicates the direction of the pressure loss.
- sous\_zone str: Optional sub-area where pressure loss applies.

### 34.30 Perte\_charge\_isotrope

```
Description: Isotropic pressure loss.

See also: source_base (34)

Usage:
perte_charge_isotrope str
Read str {
    lambda str
    diam_hydr champ_don_base
    [ sous_zone str]
}
where
```

- lambda str: Function for loss coefficient which may be Reynolds dependant (Ex: 64/Re).
- diam\_hydr champ\_don\_base (18.9): Hydraulic diameter value.
- sous\_zone str: Optional sub-area where pressure loss applies.

### 34.31 Perte\_charge\_reguliere

Description: Source term modelling the presence of a bundle of tubes in a flow.

See also: source\_base (34)

Usage:

perte\_charge\_reguliere spec zone\_name
where

- **spec** *spec\_pdcr\_base* (34.32): Description of longitudinale or transversale type.
- **zone\_name** *str*: Name of the sub-area occupied by the tube bundle. A Sous\_Zone (Sub-area) type object called zone\_name should have been previously created.

### 34.32 Spec\_pdcr\_base

Description: Class to read the source term modelling the presence of a bundle of tubes in a flow. Cf=A Re-B.

See also: objet\_lecture (39) longitudinale (34.32.1) transversale (34.32.2)

Usage:

```
spec_pdcr_base ch_a a [ ch_b ] [ b ]
where
```

- **ch\_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch\_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

#### 34.32.1 Longitudinale

Description: Class to define the pressure loss in the direction of the tube bundle.

See also: spec\_pdcr\_base (34.32)

Usage:

```
longitudinale dir dd ch_a a [ch_b][b] where
```

- **dir** *str into* ['x', 'y', 'z']: Direction.
- dd float: Tube bundle hydraulic diameter value. This value is expressed in m.
- **ch\_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch\_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

#### 34.32.2 Transversale

Description: Class to define the pressure loss in the direction perpendicular to the tube bundle.

```
See also: spec_pdcr_base (34.32)

Usage: transversale dir dd chaine_d d ch_a a [ch_b][b] where
```

- dir str into ['x', 'y', 'z']: Direction.
- **dd** *float*: Value of the tube bundle step.
- **chaine\_d** *str into* ['d']: Keyword to be used to set the value of the tube external diameter.
- **d** *float*: Value of the tube external diameter.
- **ch\_a** *str into ['a', 'cf']*: Keyword to be used to set law coefficient values for the coefficient of regular pressure losses.
- a float: Value of a law coefficient for regular pressure losses.
- ch\_b str into ['b']: Keyword to be used to set law coefficient values for regular pressure losses.
- **b** *float*: Value of a law coefficient for regular pressure losses.

### 34.33 Perte\_charge\_singuliere

Description: Source term that is used to model a pressure loss over a surface area (transition through a grid, sudden enlargement) defined by the faces of elements located on the intersection of a subzone named subzone\_name and a X,Y, or Z plane located at X,Y or Z = location.

```
See also: source_base (34)

Usage:
perte_charge_singuliere str

Read str {

    dir str into ['kx', 'ky', 'kz', 'K']
    [coeff float]
    [regul bloc_lecture]
    surface bloc_lecture
}

where
```

- dir str into ['kx', 'ky', 'kz', 'K']: KX, KY or KZ designate directional pressure loss coefficients for respectively X, Y or Z direction. Or in the case where you chose a target flow rate with regul. Use K for isotropic pressure loss coefficient
- coeff float: Value (float) of friction coefficient (KX, KY, KZ).
- **regul** *bloc\_lecture* (3.2): option to have adjustable K with flowrate target { K0 valeur\_initiale\_de\_k deb debit\_cible eps intervalle\_variation\_mutiplicatif}.
- **surface** *bloc\_lecture* (3.2): Three syntaxes are possible for the surface definition block: For VDF and VEF: { X|Y|Z = location subzone\_name } Only for VEF: { Surface surface name }.

For polymac { Surface surface\_name Orientation champ\_uniforme }

### 34.34 Puissance\_thermique

Description: Class to define a source term corresponding to a volume power release in the energy equation.

```
See also: source_base (34)
Usage:
puissance_thermique ch
where
```

• **ch** *champ\_base* (18.1): Thermal power field type. To impose a volume power on a domain sub-area, the Champ\_Uniforme\_Morceaux (partly\_uniform\_field) type must be used.

Warning: The volume thermal power is expressed in W.m-3 in 3D (in W.m-2 in 2D). It is a power per volume unit (in a porous media, it is a power per fluid volume unit).

### 34.35 Radioactive\_decay

Description: Radioactive decay source term of the form  $-\lambda_{i}c_{i}$ , where  $0 \le i \le N$ , N is the number of component of the constituent,  $c_{i}$  and  $\lambda_{i}$  are the concentration and the decay constant of the i-th component of the constituent.

```
See also: source_base (34)

Usage:
radioactive_decay val
where
```

• val n x1 x2 ... xn: n is the number of decay constants to read (int), and val1, val2... are the decay constants (double)

#### 34.36 Source\_con\_phase\_field

Description: Keyword to define the source term of the Cahn-Hilliard equation.

```
See also: source_base (34)
Usage:
source con phase field str
Read str {
     [ systeme_naire systeme_naire_deriv]
     temps_d_affichage int
     moyenne de kappa str
     multiplicateur_de_kappa float
     couplage NS CH str
     implicitation_CH str into ['oui', 'non']
     gmres_non_lineaire str into ['oui', 'non']
     seuil cv iterations ptfixe float
     seuil residu ptfixe float
     seuil residu gmresnl float
     dimension_espace_de_krylov int
     nb_iterations_gmresnl int
     residu_min_gmresnl float
```

```
residu_max_gmresnl float
}
where
```

- systeme naire systeme naire deriv (34.37)
- temps\_d\_affichage int: Time during the caracteristics of the problem are shown before calculation.
- **moyenne\_de\_kappa** *str*: To define how mobility kappa is calculated on faces of the mesh according to cell-centered values (chaine is arithmetique/harmonique/geometrique).
- multiplicateur\_de\_kappa float: To define the parameter of the mobility expression when mobility depends on C.
- **couplage\_NS\_CH** *str*: Evaluating time choosen for the term source calculation into the Navier Stokes equation (chaine is mutilde(n+1/2)/mutilde(n), in order to be conservative, the first choice seems better).
- implicitation\_CH str into ['oui', 'non']: To define if the Cahn-Hilliard will be solved using a implicit algorithm or not.
- gmres\_non\_lineaire str into ['oui', 'non']: To define the algorithm to solve Cahn-Hilliard equation (oui: Newton-Krylov method, non: fixed point method).
- seuil\_cv\_iterations\_ptfixe *float*: Convergence threshold (an option of the fixed point method).
- **seuil\_residu\_ptfixe** *float*: Threshold for the matrix inversion used in the method (an option of the fixed point method).
- seuil\_residu\_gmresnl float: Convergence threshold (an option of the Newton-Krylov method).
- **dimension\_espace\_de\_krylov** *int*: Vector numbers used in the method (an option of the Newton-Krylov method).
- **nb** iterations gmresnl int: Maximal iteration (an option of the Newton-Krylov method).
- residu\_min\_gmresnl float: Minimal convergence threshold (an option of the Newton-Krylov method).
- **residu\_max\_gmresnl** *float*: Maximal convergence threshold (an option of the Newton-Krylov method).

### 34.37 Systeme\_naire\_deriv

```
Description: not_set

See also: objet_lecture (39) non (34.37.1)

Usage:

34.37.1 Non

Description: not_set

See also: systeme_naire_deriv (34.37)

Usage:
non {

alpha float
beta float
kappa float
kappa variable bloc_kappa_variable
[potentiel chimique bloc potentiel chim]
```

```
}
where
   • alpha float: Internal capillary coefficient alfa.
   • beta float: Parameter beta of the model.
   • kappa float: Mobility coefficient kappa0.
   • kappa_variable bloc_kappa_variable (34.37.2): To define a mobility which depends on concentra-
     tion C.
   • potentiel_chimique bloc_potentiel_chim (34.37.3): chemical potential function
34.37.2 Bloc_kappa_variable
Description: if the parameter of the mobility, kappa, depends on C
See also: objet_lecture (39)
Usage:
expr
where
   • expr bloc_lecture (3.2): choice for kappa_variable
34.37.3 Bloc_potentiel_chim
Description: if the chemical potential function is an univariate function
See also: objet_lecture (39)
Usage:
expr
where
   • expr bloc_lecture (3.2): choice for potentiel_chimique
34.38
        Source constituant
Description: Keyword to specify source rates, in [[C]/s], for each one of the nb constituents. [C] is the
concentration unit.
See also: source_base (34)
Usage:
source_constituant ch
where
   • ch champ_base (18.1): Field type.
34.39
        Flottabilite
Description: buoyancy effect
See also: source_base (34)
Usage:
```

flottabilite

## 34.40 Source\_generique

See also: source\_base (34)

Description: to define a source term depending on some discrete fields of the problem and (or) analytic expression. It is expressed by the way of a generic field usually used for post-processing.

```
Usage:
source_generique_champ
where
• champ champ_generique_base (11): the source field
```

### 34.41 Masse\_ajoutee

```
Description: weight added effect
See also: source_base (34)
Usage:
masse_ajoutee
```

### 34.42 Source\_pdf

Description: Source term for Penalised Direct Forcing (PDF) method.

```
See also: source_pdf_base (34.44)

Usage:
source_pdf str

Read str {

    aire champ_base
    rotation champ_base
    [transpose_rotation]
    modele bloc_pdf_model
    [interpolation interpolation_ibm_base]
}

where
```

- aire *champ\_base* (18.1) for inheritance: volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- **rotation** *champ\_base* (18.1) for inheritance: volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- transpose\_rotation for inheritance: whether to transpose the basis change matrix.
- modele bloc\_pdf\_model (34.43) for inheritance: model used for the Penalized Direct Forcing
- interpolation interpolation\_ibm\_base (20) for inheritance: interpolation method

### 34.43 Bloc\_pdf\_model

```
Description: not_set

See also: objet_lecture (39)
```

```
Usage:
     eta float
     [temps relaxation coefficient pdf float]
     [ echelle_relaxation_coefficient_pdf float]
     [local]
     [ vitesse_imposee_data champ_base]
     [ vitesse_imposee_fonction troismots]
}
where
   • eta float: penalization coefficient
   • temps_relaxation_coefficient_pdf float: time relaxation on the forcing term to help
   • echelle_relaxation_coefficient_pdf float: time relaxation on the forcing term to help convergence
   • local: whether the prescribed velocity is expressed in the global or local basis
   • vitesse_imposee_data champ_base (18.1): Prescribed velocity as a field
   • vitesse_imposee_fonction troismots (34.43.1): Prescribed velocity as a set of ananlytical compo-
     nent
34.43.1 Troismots
Description: Three words.
See also: objet lecture (39)
Usage:
mot_1 \quad mot_2 \quad mot_3
where
   • mot 1 str: First word.
   • mot_2 str: Snd word.
   • mot_3 str: Third word.
34.44
        Source_pdf_base
Description: Base class of the source term for the Immersed Boundary Penalized Direct Forcing method
(PDF)
See also: source_base (34) source_pdf (34.42)
Usage:
source_pdf_base str
Read str {
     aire champ_base
     rotation champ_base
```

[ transpose\_rotation ] modele bloc\_pdf\_model

} where

[interpolation\_interpolation\_ibm\_base]

- aire champ\_base (18.1): volumic field: a boolean for the cell (0 or 1) indicating if the obstacle is in the cell
- rotation champ\_base (18.1): volumic field with 9 components representing the change of basis on cells (local to global). Used for rotating cases for example.
- transpose rotation : whether to transpose the basis change matrix.
- modele bloc\_pdf\_model (34.43): model used for the Penalized Direct Forcing
- interpolation interpolation\_ibm\_base (20): interpolation method

#### 34.45 Source\_qdm

Description: Momentum source term in the Navier-Stokes equations.

```
See also: source_base (34)
Usage:
source qdm ch
where
   • ch champ_base (18.1): Field type.
```

#### 34.46 Source qdm lambdaup

Description: This source term is a dissipative term which is intended to minimise the energy associated to non-conformscales u' (responsible for spurious oscillations in some cases). The equation for these scales can be seen as: du'/dt= -lambda. u' + grad P' where -lambda. u' represents the dissipative term, with lambda = a/Delta t For Crank-Nicholson temporal scheme, recommended value for a is 2.

Remark: This method requires to define a filtering operator.

```
See also: source_base (34)
Usage:
source_qdm_lambdaup str
Read str {
     lambda float
     [ lambda_min float]
     [ lambda_max float]
     [ubar umprim cible float]
}
where
   • lambda float: value of lambda
```

- lambda\_min float: value of lambda\_min
- lambda max float: value of lambda max
- **ubar umprim cible** *float*: value of ubar umprim cible

#### Source\_qdm\_phase\_field

Description: Keyword to define the capillary force into the Navier Stokes equation for the Phase Field problem.

```
See also: source base (34)
```

```
Usage:
source_qdm_phase_field str
Read str {
    forme_du_terme_source int
}
where
• forme_du_terme_source int: Kind of the source term (1, 2, 3 or 4).
```

### 34.48 Source\_rayo\_semi\_transp

Description: Radiative term source in energy equation.

See also: source\_base (34)

Usage:

source\_rayo\_semi\_transp

#### 34.49 Source\_robin

Description: This source term should be used when a Paroi\_decalee\_Robin boundary condition is set in a hydraulic equation. The source term will be applied on the N specified boundaries. To post-process the values of tauw, u\_tau and Reynolds\_tau into the files tauw\_robin.dat, reynolds\_tau\_robin.dat and u\_tau\_robin.dat, you must add a block Traitement\_particulier { canal { } }

```
See also: source_base (34)

Usage:
source_robin bords
where

• bords vect_nom (3.141)
```

#### 34.50 Source\_robin\_scalaire

Description: This source term should be used when a Paroi\_decalee\_Robin boundary condition is set in a an energy equation. The source term will be applied on the N specified boundaries. The values temp\_wall\_valueI are the temperature specified on the Ith boundary. The last value dt\_impr is a printing period which is mandatory to specify in the data file but has no effect yet.

```
See also: source_base (34)

Usage:
source_robin_scalaire bords
where

• bords listdeuxmots_sacc (34.51)
```

### 34.51 Listdeuxmots\_sacc

Description: List of groups of two words (without curly brackets).

```
See also: listobj (38.5)

Usage:
n object1 object2 ....
list of deuxmots (5.17)
```

#### 34.52 Source\_th\_tdivu

Description: This term source is dedicated for any scalar (called T) transport. Coupled with upwind (amont) or muscl scheme, this term gives for final expression of convection: div(U.T)-T.div(U)=U.grad(T) This ensures, in incompressible flow when divergence free is badly resolved, to stay in a better way in the physical boundaries.

Warning: Only available in VEF discretization.

```
See also: source_base (34)
Usage:
source_th_tdivu
```

#### **34.53** Trainee

```
Description: drag effect
See also: source_base (34)
Usage:
trainee
```

#### 34.54 Source transport eps

Description: Keyword to alter the source term constants for eps in the bicephale k-eps model epsilon transport equation. By default, these constants are set to: C1\_eps=1.44 C2\_eps=1.92

```
See also: source_base (34)

Usage:
source_transport_eps str

Read str {

    [c1_eps float]
    [c2_eps float]
}
where
```

- c1\_eps float: First constant.
- c2\_eps float: Second constant.

### 34.55 Source\_transport\_k

Description: Keyword to alter the source term constants for k in the bicephale k-eps model epsilon transport equation.

```
See also: source_base (34)
Usage:
```

### 34.56 Source\_transport\_k\_eps

Description: Keyword to alter the source term constants in the standard k-eps model epsilon transport equation. By default, these constants are set to: C1\_eps=1.44 C2\_eps=1.92

See also: source\_base (34) Source\_Transport\_K\_Eps\_anisotherme (34.15) source\_transport\_k\_eps\_aniso\_concen (34.57) source\_transport\_k\_eps\_aniso\_therm\_concen (34.58)

```
Usage:
```

```
source_transport_k_eps str
Read str {
     [ c1_eps float]
     [ c2_eps float]
}
where
```

- c1\_eps float: First constant.
- c2\_eps float: Second constant.

### 34.57 Source\_transport\_k\_eps\_aniso\_concen

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1\_eps=1.44 C2\_eps=1.92 C3\_eps=1.0

```
See also: source_transport_k_eps (34.56)

Usage:
source_transport_k_eps_aniso_concen str

Read str {

    [c3_eps float]
    [c1_eps float]
    [c2_eps float]
}
where

• c3 eps float: Third constant.
```

- cs\_eps jioui. Tilliu constant.
- c1\_eps float for inheritance: First constant.
- c2\_eps *float* for inheritance: Second constant.

## 34.58 Source\_transport\_k\_eps\_aniso\_therm\_concen

Description: Keywords to modify the source term constants in the anisotherm standard k-eps model epsilon transport equation. By default, these constants are set to: C1\_eps=1.44 C2\_eps=1.92 C3\_eps=1.0

```
See also: source_transport_k_eps (34.56)

Usage:
source_transport_k_eps_aniso_therm_concen str

Read str {

    [ c3_eps float]
    [ c1_eps float]
    [ c2_eps float]
}

where

• c3_eps float: Third constant.
• c1_eps float for inheritance: First constant.
• c2_eps float for inheritance: Second constant.
```

### 34.59 Tenseur\_reynolds\_externe

Description: Use a neural network to estimate the values of the Reynolds tensor. The structure of the neural networks is stored in a file located in the share/reseaux\_neurones directory.

```
See also: source_base (34)

Usage:
tenseur_Reynolds_externe str
Read str {
    nom_fichier str
}
where
```

• nom\_fichier str: The base name of the file.

#### 34.60 Terme\_puissance\_thermique\_echange\_impose

Description: Source term to impose thermal power according to formula: P = himp \* (T - Text). Where T is the Trust temperature, Text is the outside temperature with which energy is exchanged via an exchange coefficient himp

```
See also: source_base (34)

Usage:
terme_puissance_thermique_echange_impose str

Read str {
    himp champ_base
    Text champ_base
    [PID_controler_on_targer_power bloc_lecture]
```

```
}
where
```

- himp champ\_base (18.1): the exchange coefficient
- **Text** champ\_base (18.1): the outside temperature
- PID\_controler\_on\_targer\_power bloc\_lecture (3.2): PID\_controler\_on\_targer\_power bloc with parameters target\_power (required), Kp, Ki and Kd (at least one of them should be provided)

### 34.61 Travail\_pression

Description: Source term which corresponds to the additional pressure work term that appears when dealing with compressible multiphase fluids

See also: source\_base (34)

Usage:

travail\_pression

### 34.62 Vitesse\_derive\_base

Description: Source term which corresponds to the drift-velocity between a liquid and a gas phase

See also: vitesse\_relative\_base (34.63)

Usage:

vitesse\_derive\_base

#### 34.63 Vitesse relative base

Description: Basic class for drift-velocity source term between a liquid and a gas phase

See also: source\_base (34) vitesse\_derive\_base (34.62)

Usage:

vitesse\_relative\_base

### 35 sous zone

Synonymous: sous\_domaine

Description: It is an object type describing a domain sub-set.

A Sous\_Zone (Sub-area) type object must be associated with a Domaine type object. The Read (Lire) interpretor is used to define the items comprising the sub-area.

Caution: The Domain type object nom\_domaine must have been meshed (and triangulated or tetrahedralised in VEF) prior to carrying out the Associate (Associer) nom\_sous\_zone nom\_domaine instruction; this instruction must always be preceded by the read instruction.

See also: objet\_u (40)
Usage:

sous\_zone str
Read str {

```
[rectangle bloc_origine_cotes]
[segment bloc_origine_cotes]
[boite bloc_origine_cotes]
[liste n n1 n2 ... nn]
[fichier str]
[intervalle deuxentiers]
[polynomes bloc_lecture]
[couronne bloc_couronne]
[tube bloc_tube]
[fonction_sous_zone str]
[union str]
}
where
```

- **restriction** *str*: The elements of the sub-area nom\_sous\_zone must be included into the other sub-area named nom\_sous\_zone2. This keyword should be used first in the Read keyword.
- **rectangle** *bloc\_origine\_cotes* (35.1): The sub-area will include all the domain elements whose centre of gravity is within the Rectangle (in dimension 2).
- segment bloc\_origine\_cotes (35.1)
- **boite** *bloc\_origine\_cotes* (35.1): The sub-area will include all the domain elements whose centre of gravity is within the Box (in dimension 3).
- liste n n1 n2 ... nn: The sub-area will include n domain items, numbers No. 1 No. i No. n.
- fichier str: The sub-area is read into the file filename.
- **intervalle** *deuxentiers* (5.21.8): The sub-area will include domain items whose number is between n1 and n2 (where n1<=n2).
- polynomes bloc lecture (3.2): A REPRENDRE
- **couronne** *bloc\_couronne* (35.2): In 2D case, to create a couronne.
- **tube** *bloc\_tube* (35.3): In 3D case, to create a tube.
- **fonction\_sous\_zone** *str*: Keyword to build a sub-area with the elements included into the area defined by fonction>0.
- **union** *str*: The elements of the sub-area nom\_sous\_zone3 will be added to the sub-area nom\_sous\_zone. This keyword should be used last in the Read keyword.

#### 35.1 Bloc origine cotes

```
Description: Class to create a rectangle (or a box).

See also: objet_lecture (39)

Usage:
name origin name2 cotes
where

• name str into ['Origine']: Keyword to define the origin of the rectangle (or the box).

• origin x1 x2 (x3): Coordinates of the origin of the rectangle (or the box).

• name2 str into ['Cotes']: Keyword to define the length along the axes.

• cotes x1 x2 (x3): Length along the axes.
```

#### 35.2 Bloc\_couronne

```
Description: Class to create a couronne (2D).

See also: objet lecture (39)
```

#### Usage:

name origin name3 ri name4 re where

- name str into ['Origine']: Keyword to define the center of the circle.
- **origin**  $x1 \ x2 \ (x3)$ : Center of the circle.
- name3 str into ['ri']: Keyword to define the interior radius.
- ri float: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- re float: Exterior radius.

#### 35.3 Bloc\_tube

Description: Class to create a tube (3D).

See also: objet\_lecture (39)

Usage:

name origin name2 direction name3 ri name4 re name5 h where

- name str into ['Origine']: Keyword to define the center of the tube.
- origin x1 x2 (x3): Center of the tube.
- name2 str into ['dir']: Keyword to define the direction of the main axis.
- direction str into ['X', 'Y', 'Z']: direction of the main axis X, Y or Z
- name3 str into ['ri']: Keyword to define the interior radius.
- ri float: Interior radius.
- name4 str into ['re']: Keyword to define the exterior radius.
- re float: Exterior radius.
- name5 str into ['hauteur']: Keyword to define the heigth of the tube.
- h float: Heigth of the tube.

# 36 turbulence\_paroi\_base

Description: Basic class for wall laws for Navier-Stokes equations.

See also: objet\_u (40) negligeable (36.7) loi\_puissance\_hydr (36.3) loi\_standard\_hydr (36.4) loi\_standard\_hydr\_old (36.5) paroi\_tble (36.8) utau\_imp (36.12)

Usage:

#### 36.1 Loi\_ciofalo\_hydr

Description: A Loi\_ciofalo\_hydr law for wall turbulence for NAVIER STOKES equations.

See also: loi\_standard\_hydr (36.4)

Usage:

loi\_ciofalo\_hydr

### 36.2 Loi\_expert\_hydr

Description: This keyword is similar to the previous keyword Loi\_standard\_hydr but has several additional options into brackets.

```
See also: loi_standard_hydr (36.4)

Usage:
loi_expert_hydr str

Read str {

    [u_star_impose float]
    [methode_calcul_face_keps_impose str into ['toutes_les_faces_accrochees', 'que_les_faces_des_elts_dirichlet']]
    [kappa float]
    [Erugu float]
    [A_plus float]
}

where
```

- u\_star\_impose float: The value of the friction velocity (u\*) is not calculated but given by the user.
- methode\_calcul\_face\_keps\_impose str into ['toutes\_les\_faces\_accrochees', 'que\_les\_faces\_des\_elts\_dirichlet']: The available options select the algorithm to apply K and Eps boundaries condition (the algorithms differ according to the faces).

toutes\_les\_faces\_accrochees: Default option in 2D (the algorithm is the same than the algorithm used in Loi\_standard\_hydr)

que\_les\_faces\_des\_elts\_dirichlet : Default option in 3D (another algorithm where less faces are concerned when applying K-Eps boundary condition).

- **kappa** *float*: The value can be changed from the default one (0.415)
- **Erugu** *float*: The value of E can be changed from the default one for a smooth wall (9.11). It is also possible to change the value for one boundary wall only with paroi\_rugueuse keyword/
- **A\_plus** *float*: The value can can be changed from the default one (26.0)

### 36.3 Loi\_puissance\_hydr

Description: A Loi\_puissance\_hydr law for wall turbulence for NAVIER STOKES equations.

See also: turbulence\_paroi\_base (36)

Usage:

#### 36.4 Loi\_standard\_hydr

Description: Keyword for the logarithmic wall law for a hydraulic problem. Loi\_standard\_hydr refers to first cell rank eddy-viscosity defined from continuous analytical functions, whereas Loi\_standard\_hydr\_3couches from functions separataly defined for each sub-layer

See also: turbulence\_paroi\_base (36) loi\_ww\_hydr (36.6) loi\_ciofalo\_hydr (36.1) loi\_expert\_hydr (36.2)

Usage:

loi\_standard\_hydr

### 36.5 Loi\_standard\_hydr\_old

```
Description: not_set

See also: turbulence_paroi_base (36)

Usage:
loi_standard_hydr_old
```

### 36.6 Loi\_ww\_hydr

Description: laws have been qualified on channel calculation

```
See also: loi_standard_hydr (36.4)
```

Usage:

### 36.7 Negligeable

Description: Keyword to suppress the calculation of a law of the wall with a turbulence model. The wall stress is directly calculated with the derivative of the velocity, in the direction perpendicular to the wall (tau\_tan /rho= nu dU/dy).

Warning: This keyword is not available for k-epsilon models. In that case you must choose a wall law.

```
See also: turbulence_paroi_base (36)
```

Usage:

negligeable

#### 36.8 Paroi tble

Description: Keyword for the Thin Boundary Layer Equation wall-model (a more complete description of the model can be found into this PDF file). The wall shear stress is evaluated thanks to boundary layer equations applied in a one-dimensional fine grid in the near-wall region.

```
See also: turbulence_paroi_base (36)
Usage:
paroi_tble str
Read str {
      [ n int]
      [facteur float]
      [ modele_visco str]
      [stats twofloat]
      [ sonde_tble liste_sonde_tble]
      [restart]
      [stationnaire entierfloat]
      [lambda str]
      \begin{bmatrix} \mathbf{mu} & str \end{bmatrix}
      [ sans_source_boussinesq ]
      [ alpha float]
      [kappa float]
```

```
where
    • n int: Number of nodes in the TBLE grid (mandatory option).
    • facteur float: Stretching ratio for the TBLE grid (to refine, the TBLE facteur must be greater than
      1).
    • modele_visco str: File name containing the description of the eddy viscosity model.
    • stats twofloat (36.9): Statistics of the TBLE velocity and turbulent viscosity profiles. 2 values are
      required: the starting time and ending time of the statistics computation.
    • sonde tble liste sonde tble (36.10)

    restart

    • stationnaire entierfloat (36.11)
    • lambda str
    • mu str
    • sans_source_boussinesq
    • alpha float
    • kappa float
36.9 Twofloat
Description: two reals.
See also: objet_lecture (39)
Usage:
a b
where
    • a float: First real.
    • b float: Second real.
36.10 Liste_sonde_tble
Description: not_set
See also: listobj (38.5)
Usage:
n object1 object2 ....
list of sonde_tble (36.10.1)
36.10.1 Sonde_tble
Description: not_set
See also: objet_lecture (39)
Usage:
name point
where
    • name str
    • point un_point (3.4.7)
```

}

#### 36.11 Entierfloat

```
Description: An integer and a real.

See also: objet_lecture (39)

Usage:
the_int the_float
where

the_int int: Integer.
the_float float: Real.
```

### **36.12** Utau\_imp

Description: Keyword to impose the friction velocity on the wall with a turbulence model for thermohydraulic problems. There are two possibilities to use this keyword:

1 - we can impose directly the value of the friction velocity u\_star.

2 - we can also give the friction coefficient and hydraulic diameter. So, TRUST determines the friction velocity by :  $u_star = U*sqrt(lambda_c/8)$ .

```
See also: turbulence_paroi_base (36)

Usage:
utau_imp str
Read str {

    [u_tau champ_base]
    [lambda_c str]
    [diam_hydr champ_base]
}

where
```

- **u\_tau** *champ\_base* (18.1): Field type.
- lambda\_c str: The friction coefficient. It can be function of the spatial coordinates x,y,z, the Reynolds number Re, and the hydraulic diameter.
- diam\_hydr champ\_base (18.1): The hydraulic diameter.

# 37 turbulence\_paroi\_scalaire\_base

Description: Basic class for wall laws for energy equation.

```
See also: objet_u (40) negligeable_scalaire (37.7) loi_odvm (37.4) loi_WW_scalaire (37.1) loi_standard_hydr_scalaire (37.6) loi_analytique_scalaire (37.2) paroi_tble_scal (37.8) loi_paroi_nu_impose (37.5)
```

Usage:

### 37.1 Loi\_ww\_scalaire

```
Description: not_set

See also: turbulence_paroi_scalaire_base (37)

Usage:
loi WW scalaire
```

### 37.2 Loi\_analytique\_scalaire

```
Description: not_set

See also: turbulence_paroi_scalaire_base (37)

Usage:
loi_analytique_scalaire
```

### 37.3 Loi\_expert\_scalaire

Description: Keyword similar to keyword Loi\_standard\_hydr\_scalaire but with additional option.

```
See also: loi_standard_hydr_scalaire (37.6)

Usage:
loi_expert_scalaire str

Read str {
    [prdt_sur_kappa float]
    [calcul_ldp_en_flux_impose int into [0, 1]]
}
where
```

- **prdt\_sur\_kappa** *float*: This option is to change the default value of 2.12 in the scalable wall function.
- calcul\_ldp\_en\_flux\_impose int into [0, 1]: By default (value set to 0), the law of the wall is not applied for a wall with a Neumann condition. With value set to 1, the law is applied even on a wall with Neumann condition.

#### 37.4 Loi odvm

[check\_files]

} where

Description: Thermal wall-function based on the simultaneous 1D resolution of a turbulent thermal boundary-layer and a variance transport equation, adapted to conjugate heat-transfer problems with fluid/solid thermal interaction (where a specific boundary condition should be used: Paroi\_Echange\_Contact\_OVDM\_VDF). This law is also available with isothermal walls.

```
See also: turbulence_paroi_scalaire_base (37)

Usage:
loi_odvm str

Read str {
    n int
    gamma float
    [ stats floatfloat]
```

- **n** *int*: Number of points per face in the 1D uniform meshes. n should be choosen in order to have the first point situated near  $\Delta$  y+=1/3.
- **gamma** *float*: Smoothing parameter of the signal between 10e-5 (no smoothing) and 10e-1 (high averaging).

- stats floatfloat (5.18): value\_t0 value\_dt: Only for plane channel flow, it gives mean and root mean square profiles in the fine meshes, since value\_t0 and every value\_dt seconds. The values are printed into files named ODVM fields\*.dat.
- **check\_files**: It gives for one boundary face a historical view of local instantaneous and filtered values, as well as the calculated variance profiles from the resolution of the equation. The printed values are into the file Suivi\_ndeb.dat.

### 37.5 Loi\_paroi\_nu\_impose

Description: Keyword to impose Nusselt numbers on the wall for the thermohydraulic problems. To use this option, it is necessary to give in the data file the value of the hydraulic diameter and the expression of the Nusselt number.

```
See also: turbulence_paroi_scalaire_base (37)

Usage:
loi_paroi_nu_impose str

Read str {

    nusselt str
    diam_hydr champ_base
}
where

• nusselt str: The Nusselt number. This expression can be a function of x, y, z, Re (Reynolds number), Pr (Prandtl number).
```

### 37.6 Loi\_standard\_hydr\_scalaire

Description: Keyword for the law of the wall.

See also: turbulence\_paroi\_scalaire\_base (37) loi\_expert\_scalaire (37.3)

• diam hydr champ base (18.1): The hydraulic diameter.

Usage:

loi\_standard\_hydr\_scalaire

#### 37.7 Negligeable\_scalaire

Description: Keyword to suppress the calculation of a law of the wall with a turbulence model for thermohydraulic problems. The wall stress is directly calculated with the derivative of the velocity, in the direction perpendicular to the wall.

See also: turbulence\_paroi\_scalaire\_base (37)
Usage:
negligeable\_scalaire

#### 37.8 Paroi\_tble\_scal

Description: Keyword for the Thin Boundary Layer Equation thermal wall-model.

```
See also: turbulence_paroi_scalaire_base (37)

Usage:
paroi_tble_scal str

Read str {

        [ n int]
        [ facteur float]
        [ modele_visco str]
        [ nb_comp int]
        [ stats fourfloat]
        [ sonde_tble liste_sonde_tble]
        [ prandtl float]
}

where
```

- n int: Number of nodes in the TBLE grid (mandatory option).
- **facteur** *float*: Stretching ratio for the TBLE grid (to refine, the TBLE facteur must be greater than 1).
- modele\_visco str: File name containing the description of the eddy viscosity model.
- **nb\_comp** *int*: Number of component to solve in the fine grid (1 if 2D simulation (2D not available yet), 2 if 3D simulation).
- **stats** *fourfloat* (37.9): Statistics of the TBLE velocity and turbulent viscosity profiles. 4 values are required: the starting time of velocity averaging, the starting time of the RMS fluctuations, the ending time of the statistics computation and finally the print time period for the statistics.
- sonde\_tble liste\_sonde\_tble (36.10)
- prandtl float

#### 37.9 Fourfloat

```
Description: Four reals.

See also: objet_lecture (39)

Usage:
a b c d
where

a float: First real.
b float: Second real.
c float: Third real.
d float: Fourth real.
```

# 38 listobj\_impl

```
Description: not_set

See also: objet_u (40) listobj (38.5)

Usage:
```

# 38.1 Milieu\_musig

```
Description: MUSIG medium made of several sub mediums.
```

```
See also: listobj (38.5)

Usage:
{ object1 object2 .... }
list of milieu_base (24)
```

### 38.2 Milieu\_composite

Description: Composite medium made of several sub mediums.

```
See also: listobj (38.5)

Usage:
{ object1 object2 .... }
list of milieu_base (24)
```

## 38.3 List\_un\_pb

```
Description: pour les groupes
```

```
See also: listobj (38.5)

Usage: { object1 , object2 .... } list of un\_pb (38.4) separeted with ,
```

#### 38.4 Un\_pb

```
Description: pour les groupes
```

See also: objet\_lecture (39)

Usage: **mot** where

• mot str: the string

## 38.5 Listobj

Description: List of objects.

See also: listobj\_impl (38) champs\_a\_post (4.2.23) list\_stat\_post (4.2.27) listpoints (3.4.6) sondes (4.2.4) listchamp\_generique (11.3) list\_nom\_virgule (11.2) definition\_champs (4.2.1) post\_processings (4.3) liste\_post (4.5) liste\_post\_ok (4.4) condinits (5.4) vect\_nom (3.141) list\_nom (3.125) list\_bloc\_mailler (3.83) list\_un\_pb (38.3) list\_list\_nom (4.30) condlims (4.32.1) sources (5.5) pp (5.10) listdeuxmots\_sacc (34.51) liste\_sonde\_tble (36.10) listsous\_zone\_valeur (5.2.12) reactions (12.1) list\_bord (3.83.6) list\_info\_med (4.65) Milieu\_composite (38.2) Milieu\_MUSIG (38.1) listeqn (4.10) coarsen\_operators (3.89) thermique (3.10)

Usage:

# 39 objet\_lecture

Description: Auxiliary class for reading.

See also: objet u (40) bloc lecture (3.2) deuxmots (5.17) troismots (34.43.1) format file (4.6) deuxentiers (5.21.8) floatfloat (5.18) entierfloat (36.11) champ a post (4.2.24) champs posts (4.2.22) stat post deriv (4.2.28) stats\_posts (4.2.26) stats\_serie\_posts (4.2.35) sonde\_base (4.2.6) un\_point (3.4.7) sonde (4.2.5) definition champ (4.2.2) postraitement base (4.4.2) definition champs fichier (4.2.3) sondes fichier (4.2.21) champs posts fichier (4.2.25) stats posts fichier (4.2.34) stats serie posts fichier (4.2.36) un postraitement (4.3.1) type\_un\_post (4.5.2) type\_postraitement\_ft\_lata (4.5.3) un\_postraitement\_spec (4.5.1) nom\_postraitement (4.4.1) condinit (5.4.1) mailler\_base (3.83.1) defbord (3.83.9) bord\_base (3.83.7) bloc\_lecture\_poro (30.1) un\_pb (38.4) bords\_ecrire (39.1) convection\_deriv (5.2.1) bloc\_convection (5.2) diffusion\_deriv (5.3.1) op-\_implicite (5.3.19) bloc\_diffusion (5.3) traitement\_particulier\_base (5.19.1) traitement\_particulier (5.19) condlimlu (4.32.2) parametre\_equation\_base (5.6) penalisation\_12\_ftd\_lec (5.10.1) dt\_impr\_ustar\_mean-\_only (5.21.1) modele\_turbulence\_hyd\_deriv (5.21) form\_a\_nb\_points (5.21.3) fourfloat (37.9) twofloat (36.9) sonde\_tble (36.10.1) lecture\_bloc\_moment\_base (3.36) bloc\_origine\_cotes (35.1) bloc\_couronne (35.2) bloc\_tube (35.3) bloc\_lec\_champ\_init\_canal\_sinal (18.20) fonction\_champ\_reprise (18.16) troisf (3.65) spec\_pdcr\_base (34.32) methode\_transport\_deriv (5.56) bloc\_ef (5.2.9) sous\_zone\_valeur (5.2.13) bloc\_diffusion\_standard (5.3.7) reaction (12.1.1) bloc\_pdf\_model (34.43) verifiercoin\_bloc (3.144) bloc-\_pave (3.83.5) remove\_elem\_bloc (3.113) bloc\_decouper (3.94) format\_lata\_to\_med (3.78) info\_med (4.65.1) type diffusion turbulente multiphase deriv (5.3.10) bloc sutherland (24.8) type perte charge deriv (34.4) Coarsen Operator Uniform (3.89.1) floatentier (5.21.9) modele fonction bas reynolds base (5.21.25) bloclecture turb synt (19.11) paroi ft disc deriv (15.75) bloc lecture remaillage (5.57) objet lecture maintien-\_temperature (5.41) interpolation\_champ\_face\_deriv (5.59) type\_indic\_faces\_deriv (5.60) parcours\_interface (5.58) injection marqueur (5.65) penalisation forcage (5.47) eq rayo semi transp (4.32) systeme naire-\_deriv (34.37) bloc\_kappa\_variable (34.37.2) bloc\_potentiel\_chim (34.37.3) ceg\_areva (5.19.11) ceg\_ceajaea (5.19.12) bloc\_rho\_fonc\_c (5.49.2) bloc\_boussinesq (5.49.1) approx\_boussinesq (5.49) bloc\_mu-\_fonc\_c (5.50.2) bloc\_visco2 (5.50.1) visco\_dyn\_cons (5.50) NewmarkTimeScheme\_deriv (3.4.2) bloc-\_poutre (3.4.1) bloc\_lecture\_beam\_model (3.4)

Usage:

#### 39.1 Bords\_ecrire

Description: not\_set

See also: objet\_lecture (39)

Usage:
chaine bords
where

- chaine str into ['bords']
- **bords** *n word1 word2* ... *wordn*: Keyword to post-process only on some boundaries : bords nb\_bords boundary1 ... boundaryn where nb\_bords : number of boundaries boundary1 ... boundaryn : name of the boundaries.

#### 40 index

# Index

| /*, 295                                       | 1,80                                            |
|-----------------------------------------------|-------------------------------------------------|
| #, 319                                        | 2,80                                            |
| ,                                             | 6_points, 223, 224, 402                         |
| , 24, 43, 68, 71, 177, 184, 203, 408, 473     | <=, 63                                          |
| associer, 40                                  | = , 63                                          |
| champ_post_statistiques_correlation, 102, 298 | A, 325                                          |
| champ_post_statistiques_ecart_type, 102, 300  | a, 484, 485                                     |
| champ_post_statistiques_moyenne, 101, 303     | a_ext, 326, 328, 329                            |
| champ_uniforme, 361                           | all_times, 34                                   |
| create_domain_from_sub_domain, 43             | amont, 181                                      |
| decoupebord_pour_rayonnement, 44              | analytique , 279, 281                           |
| decouper, 69, 405                             | ancien, 245, 247                                |
| decouper_multi, 71                            | antisym, 179                                    |
| discretiser, 46                               | approx , 294, 295                               |
| divergence, 299                               | arrete, 211–226                                 |
| ecrire_fichier, 90                            | avec_energie_cinetique, 255, 256                |
| extraction, 300                               | avec_les_cl , 200, 201, 208, 209, 238–241, 261, |
| fin , 55                                      | 263, 265, 266, 268, 269, 272–277                |
| gradient, 301                                 | avec_sources, 200, 201, 208, 209, 238–241, 261, |
| interpolation, 301                            | 263, 265, 266, 268, 269, 272–277                |
| interpolation_ibm_aucune, 377                 | avec_sources_et_operateurs, 200, 201, 208, 209, |
| interpolation_ibm_element_fluide, 377         | 238–241, 261, 263, 265, 266, 268, 269,          |
| interpolation_ibm_gradient_moyen, 379         | 272–277                                         |
| interpolation_ibm_hybride, 378                | average, 304                                    |
| interpolation_ibm_power_law_tbl , 379         | b, 484, 485                                     |
| lata_to_med, 58                               | binaire, 47, 99, 100, 108, 353                  |
| lata_to_other, 58                             | bords, 507                                      |
| lire, 74                                      | both, 294, 295                                  |
| lire_fichier, 75                              |                                                 |
| lire_fichier_bin, 75                          | C , 393                                         |
| lire_med, 38                                  | C_ext, 326, 328, 329                            |
| lml_to_lata , 59                              | centre, 181                                     |
| morceau_equation, 302                         | cf, 484, 485                                    |
| operateur_eqn , 297                           | cgns, 72, 92, 106                               |
| partitionneur_sous_domaines, 406              | chakravarthy, 181                               |
| postraitement, 106                            | Champ_Fonc_Fonction, 271, 272                   |
| postraitements, 105                           | champ_frontiere, 300, 301                       |
| raffiner_simplexes, 73                        | Champ_Uniforme, 271                             |
| rectify_mesh, 76                              | check_pass, 27                                  |
| reduction_0d, 304                             | chsom, 94<br>coarsen_i, 68                      |
| refchamp, 305                                 |                                                 |
| resoudre, 81                                  | coarsen_j, 68                                   |
| runge_kutta_ordre_4 , 432                     | coarsen_k, 68                                   |
| schema_euler_explicite, 419                   | composante, 306                                 |
| schema_euler_implicite, 453                   | concentration, 271, 272                         |
| schema_euler_implicite_stationnaire, 412      | conservation_masse, 392                         |
| sous_domaine, 496                             | constant, 392, 396                              |
| tparoi_vef, 305                               | coriolis_seul , 478                             |
| transformation, 306                           | CORRECTION_GHOST_INDIC , 265, 266               |
| vefprep1b , 345                               | Cotes , 497                                     |
| 0,80                                          | d, 485                                          |
| 0,00                                          |                                                 |

| dobini 06 07                          | loto 59 50 72 02 106                              |
|---------------------------------------|---------------------------------------------------|
| dabiri, 86, 87                        | lata, 58, 59, 72, 92, 106                         |
| debit_total, 57                       | lata_v2, 58, 59, 72, 92, 106                      |
| default, 302                          | left_value, 304                                   |
| defaut_bar, 179, 186                  | lml, 58, 59, 72, 92, 106                          |
| dir, 498                              | local, 63                                         |
| disabled, 27                          | max, 80, 304                                      |
| distant, 63                           | med, 58, 59, 72, 92, 106                          |
| divrhouT_moins_Tdivrhou, 245, 247     | med_major, 92, 106                                |
| divuT_moins_Tdivu, 245, 247           | min, 304                                          |
| domaine, 71                           | minmod, 181                                       |
| double, 67, 68                        | mixed, 67, 68                                     |
| dt_integr, 104, 105                   | modifiee, 279, 282                                |
| dt_post, 99, 100, 103                 | moins_rho_moyen, 392                              |
| edo, 392                              | moy_euler, 223, 224, 402                          |
| elem, 66, 67, 99, 102, 348, 349, 353  | moyenne, 304                                      |
| emissivite, 325                       | moyenne_ponderee , 304                            |
| entrainement_seul , 478               | mpi-io, 92, 106                                   |
| euclidian_norm, 304                   | mu0, 393                                          |
|                                       |                                                   |
| euler_explicit, 29, 32                | multiple , 92, 106                                |
| exact, 294, 295                       | muscl, 181                                        |
| faces, 99, 102                        | name, 24                                          |
| filtrer_resu , 179, 186               | nb_beam, 24                                       |
| Fluctu_Temperature_ext, 326, 328, 329 | nb_pas_dt_post , 99, 100, 103                     |
| flux_bords , 302, 303                 | no , 287, 288, 302                                |
| Flux_Chaleur_Turb_ext, 326, 328, 329  | nodes, 94                                         |
| flux_surfacique_bords, 302, 303       | non, 69, 270, 271, 486, 487                       |
| fonction, 354                         | normalized_euclidian_norm, 304                    |
| format_post_sup, 58                   | norme, 306                                        |
| formatte, 47, 99, 100, 108, 353       | nu, 186                                           |
| formule, 306                          | nu_transp, 186                                    |
| grad_i, 57, 58, 265, 266              | nut, 186                                          |
| grad_Ubar, 186                        | nut_transp, 186                                   |
| grav , 94                             | omega_ext, 326, 328, 329                          |
| gravel, 94                            | one_way_coupling, 289, 290                        |
| grid_splitting, 28, 31                | Origine, 497, 498                                 |
| hauteur, 498                          | oui , 69, 270, 271, 486, 487                      |
| homogene, 64                          | patch_dabiri, 86, 87                              |
| implicite, 190                        | periode, 94                                       |
| initiale , 279, 282                   | plans_paralleles, 223, 224, 402                   |
|                                       | • •                                               |
| integrale_en_z, 57                    | post_processing, 108                              |
| interp_ai_based, 265, 266             | postraitement, 108                                |
| interp_modifiee , 265, 266            | postraitement_ft_lata, 108                        |
| interp_standard, 265, 266             | postraitement_lata, 108                           |
| K, 485                                | produit_scalaire, 306                             |
| k, 342                                | que_les_faces_des_elts_dirichlet, 499             |
| K_Eps_ext, 326, 328, 329              | re, 498                                           |
| k_ext, 326, 328, 329                  | rho_g, 57, 58, 265, 266                           |
| kx, 485                               | ri, 498                                           |
| ky, 485                               | RK3_FT, 29, 32                                    |
| kz, 485                               | sans_energie_cinetique, 255, 256                  |
| L1_norm, 304                          | sans_rien, 200, 201, 208, 209, 238–241, 261, 263, |
| L2,80                                 | 265, 266, 268, 269, 272–277                       |
| L2_norm, 304                          | scotti, 211–226                                   |
| last_time, 34                         | SEMI_TRANSP, 333                                  |
| ·····                                 |                                                   |

| simple, 92, 106                         | z, 484, 485                                        |
|-----------------------------------------|----------------------------------------------------|
| simplifiee, 279, 282                    | , 24, 43, 68, 71, 177, 184, 203, 408, 473          |
| single_hdf, 108, 353                    | all_options, 69                                    |
| single_lata, 72, 92, 106                | champs , 93, 107                                   |
| Slambda, 393                            | champs_fichier , 93, 107                           |
| solveur, 190                            | conditions_initiales , 177, 193–195, 197–200, 202, |
| som, 66, 67, 94, 99, 102, 348, 349, 353 | 210, 240, 242–260, 262, 264, 267, 270,             |
| somme, 304                              | 273, 275, 277–279, 287–289                         |
| somme_ponderee, 304                     | conditions_limites , 136, 177, 193–195, 197–200,   |
| somme_ponderee_porosite, 304            | 202, 210, 240, 242–260, 262, 264, 267,             |
| stabilite, 302, 303                     | 270, 273, 275, 277, 278, 282, 287–290              |
| standard, 392                           | definition_champs_fichier , 92, 107                |
| suivi , 289, 290                        | domain, 39                                         |
| sum, 304                                | domaine , 72                                       |
| superbee, 181                           | exclude_groups , 39                                |
| surface, 473                            | fichier, 72                                        |
| T0, 393                                 | file , 39                                          |
| T_ext, 326, 328, 329                    | include_additional_face_groups , 39                |
| tau_ext, 326, 328, 329                  | limiter, 189                                       |
| terme_complet , 478                     | mesh, 39                                           |
| toutes_les_faces_accrochees, 499        | name_of_initial_domaines , 38                      |
| trace, 300, 301                         | name_of_new_domaines , 38                          |
| TRANSP, 333                             | partitionneur, 70                                  |
| transportant_bar, 179                   | postraitement , 91, 109–111, 113–116, 118–122,     |
| transporte_bar, 179                     | 124–128, 130–132, 134, 135, 137, 138,              |
| two_way_coupling, 289, 290              | 140–143, 145–148, 150–152, 154–158, 160–           |
|                                         | 162, 164–167, 169–172, 174, 176                    |
| uniforme, 279, 281                      |                                                    |
| unweighted_dabiri, 86, 87               | postraitements , 91, 109–111, 113–115, 117–121,    |
| V2_ext , 326, 328, 329                  | 123–128, 130–132, 134, 135, 137, 138,              |
| valeur_a_elem , 279, 281                | 140–143, 145–147, 149–152, 154–158, 160–           |
| valeur_a_gauche, 304                    | 162, 164–166, 168–171, 173, 174, 176               |
| valeur_normale , 372                    | pr_t , 187                                         |
| vanalbada , 181                         | Read_file, 90                                      |
| vanleer, 181                            | reduction_pression , 464                           |
| vdf_lineaire , 279, 281                 | sans_dec , 36                                      |
| vecteur, 306                            | save_matrice , 311–313, 318                        |
| vitesse_interpolee, 289, 290            | sigma , 188                                        |
| vitesse_paroi , 342                     | sondes , 92, 107                                   |
| vitesse_particules , 289, 290           | sondes_fichier , 92, 107                           |
| vitesse_tangentielle, 375               | sondes_mobiles , 93, 107                           |
| volume , 211–226                        | sondes_mobiles_fichier , 93, 107                   |
| volume_sans_lissage , 211–226           | sous_domaine , 50, 92, 106                         |
| weighted_average, 304                   | statistiques, 93, 107                              |
| weighted_sum, 304                       | statistiques_en_serie , 93, 107                    |
| weighted_sum_porosity, 304              | statistiques_en_serie_fichier , 93, 107            |
| write_pass , 27                         | statistiques_fichier , 93, 107                     |
| X, 63, 80, 498                          | tension_superficielle, 292, 293                    |
| x, 484, 485                             | <b>a0</b> ,309                                     |
| xyz , 108, 353                          | <b>A_plus</b> , 499                                |
| Y, 63, 80, 498                          | a_res , 482                                        |
| y, 484, 485                             | Absc_file_name , 25                                |
| Y_ext, 326, 328, 329                    | acceleration, 478                                  |
| yes , 287, 288, 302                     | aire , 489, 490                                    |
| Z, 63, 80, 498                          | ajout_init_a_reprise , 32                          |

| alias , 193, 248–250, 256                        | c2_eps , 477, 493–495                                      |
|--------------------------------------------------|------------------------------------------------------------|
| <b>alpha</b> , 35, 180, 488, 501                 | <b>c3_eps</b> , 477, 494, 495                              |
| alpha_0 , 410                                    | calc_spectre , 205, 206                                    |
| alpha_1 , 410                                    | calcul_ldp_en_flux_impose , 503                            |
| alpha_a ,410                                     | canal , 217                                                |
| alpha_omega , 476                                | canalx, 215                                                |
| alpha_sous_zone , 180                            | cea_jaea , 207                                             |
| amont_sous_zone , 180                            | centre_rotation , 478                                      |
| ampli_bruit , 355                                | cfl , 31                                                   |
| ampli_sin , 355                                  | chaleur_latente , 389                                      |
| approximation_de_boussinesq , 269                | champ_med , 57                                             |
| areva, 207                                       | champs_a_postraiter , 33                                   |
| ascii , 38, 83                                   | changement_de_base_p1bulle , 346                           |
| autre_bord , 324                                 | check_divergence , 31                                      |
| autre_champ_indicatrice , 324                    | check_files , 504                                          |
| autre_champ_temperature , 324                    | check_stats , 32                                           |
| autre_champ_temperature_indic0 , 324             | check_stop_file , 31                                       |
| autre_champ_temperature_indic1, 324              | CI_file_name , 25                                          |
| autre_probleme , 324                             | cl_pression_sommet_faible , 346                            |
| avec_certains_bords , 28, 52                     | clipping_courbure_interface , 266                          |
| avec_certains_bords_pour_extraire_surface , 51   | cmu, 230, 233                                              |
| avec_les_bords , 28, 52                          | coarsen_operators, 67                                      |
| BaseCenterCoordinates , 25                       | coef , 386                                                 |
| bench_ijk_splitting_read , 37                    | coef_ammortissement , 31                                   |
| bench_ijk_splitting_write , 37                   | coef_force_time_n , 31                                     |
| beta , 475, 476, 488                             | coef_immobilisation , 31                                   |
| beta_co , 390, 391                               | coef_mean_force , 31                                       |
| beta_disp , 473                                  | coef_rayon_force_rappel , 31                               |
| beta_k , 189, 478                                | coeff , 480, 485                                           |
| beta_lift , 473                                  | coeffa , 294                                               |
| beta_omega , 475                                 | coeffb , 294                                               |
| beta_th , 390, 391                               | coefficient_diffusion , 388                                |
| binaire , 45, 72                                 | coefficients_activites , 308                               |
| binary_file , 48                                 | collisions , 280                                           |
| block_size_bytes , 37                            | compo , 298, 303                                           |
| block_size_megabytes , 37                        | compute_distance_autres_interfaces , 58                    |
| boite , 497<br>bord , 43, 203, 480               | compute_force_init , 32<br>condition elements , 28, 50, 52 |
| bords_a_decouper , 45                            | condition_faces , 28, 52                                   |
| boundaries , 48, 211                             | condition_geometrique , 45                                 |
| boundary_conditions , 32, 87, 136, 177, 193–195, | Conduction , 91, 119                                       |
| 197–200, 202, 210, 240, 242–260, 262,            | conservation_Ec , 205, 206                                 |
| 264, 267, 270, 273, 275, 277, 278, 282,          | constante_cinetique , 193                                  |
| 287–290                                          | constante_modele_micro_melange , 307                       |
| boundary_xmax , 65                               | constante_taux_reaction , 308                              |
| boundary_xmin , 65                               | constituent , 91, 109–111, 113–116, 118–122, 124-          |
| boundary_ymax , 65                               | 129, 131, 132, 134, 135, 137, 138, 140-                    |
| boundary_ymin , 65                               | 144, 146–148, 150–153, 155–159, 161–                       |
| boundary_zmax , 65                               | 163, 165–167, 169–172, 174                                 |
| boundary_zmin , 65                               | contre_energie_activation , 308                            |
| btd , 183                                        | contre_reaction , 308                                      |
| c , 208                                          | contribution_one_way , 290                                 |
| <b>co</b> , 479                                  | controle_residu , 313, 464–472                             |
| c1_eps , 477, 493–495                            | conv_temperature_negligible , 87                           |
|                                                  |                                                            |

```
convection , 177, 193–200, 202, 210, 240, 242– Cp , 380–382, 384, 385
         260, 262, 264, 267, 270, 273, 275, 277,
                                                 cp , 48, 334, 335, 383–385, 387, 390, 391, 397
         278, 282, 287–290
                                                  cp liquid, 86
convection_diffusion_chaleur_QC , 124, 157, 165
                                                 cp_vapour, 87
convection diffusion chaleur turbulent qc, 126, crank, 191
         167, 171
                                                  critere_absolu, 53
convection diffusion chaleur WC , 158, 166
                                                  critere arete, 77, 284
convection diffusion concentration , 109, 127,
                                                 critere longueur fixe, 284
         143, 145, 160, 161
                                                  critere remaillage . 284
convection diffusion concentration turbulent,
                                                 criteres convergence, 464, 468
         110, 128, 146, 147, 162, 163
                                                  cs, 188, 214
convection\_diffusion\_espece\_binaire\_QC \ \ , 148
                                                  Cv, 384, 385, 395
Convection_Diffusion_Espece_Binaire_Turbulent- cw , 187, 213
         OC . 151
                                                  d , 360, 362, 365
convection_diffusion_espece_binaire_WC , 150
                                                 deactivate, 295
convection_diffusion_phase_field , 153
                                                  deb , 474
convection_diffusion_temperature, 122, 127, 130, debit, 334, 335, 477
                                                  debit_impose, 480
         156, 160, 161, 169
Convection_Diffusion_Temperature_Sensibility ,
                                                 debug, 207
                                                  debut stat, 204
convection_diffusion_temperature_turbulent , 125,decoup , 348, 349, 353
         128, 131, 162, 163, 170, 172
                                                  default value, 348
convection sensibility, 195
                                                  definition champs, 92, 106
convertalltopoly, 39
                                                  definition champs file, 92, 107
correction bilan qdm, 32
                                                  delta, 333
correction calcul pression initiale . 202, 210, 240, delta spot . 477
         242, 262, 264, 267, 269, 273, 275, 277
                                                  deprecatedkeepduplicatedprobes, 93, 107
correction force, 32
                                                  derivee rotation, 387
                                                  dh, 334, 335
correction fraction, 383
correction_matrice_pression, 202, 210, 240, 242,
                                                 diag , 313
         262, 264, 267, 269, 273, 275, 277
                                                  diam_hydr , 482, 483, 502, 504
correction_matrice_projection_initiale, 202, 210, diam_hydr_ortho, 483
         240, 242, 262, 264, 267, 269, 273, 275,
                                                 diametre_hyd_champ , 387-397
         277
                                                  diff_temperature_negligible, 87
correction_parcours_thomas, 285
                                                  diffusion, 177, 193–195, 197–200, 202, 210, 240,
                                                           242-260, 262, 264, 267, 270, 273, 275,
correction_pression_modifie, 202, 210, 240, 242,
         262, 264, 267, 269, 273, 275, 277
                                                           277, 278, 282, 287–290
correction visco turb pour controle pas de tempkiffusion alternative, 32
         , 210, 212–214, 216, 217, 219–233, 236–
                                                 diffusion coeff , 381, 382, 384
                                                  diffusion_implicite, 411, 413, 416, 418, 420, 422,
correction visco turb pour controle pas de temps-
                                                           423, 425, 427, 429, 431, 433, 435, 436,
         _parametre , 211–213, 215–217, 219–
                                                           438, 440, 442, 444, 447, 449, 452, 454,
         233, 236-238
                                                           457, 458, 460, 462
correction_vitesse_modifie , 202, 210, 240, 242,
                                                 dim espace krilov, 313
         262, 264, 267, 269, 273, 275, 277
                                                  dimension espace de krylov, 487
correction_vitesse_projection_initiale , 202, 210,
                                                 dir, 334, 335, 485
         240, 242, 262, 264, 267, 269, 273, 275,
                                                 dir_flow, 355
         277
                                                  dir_fluct, 365
corrections_qdm , 32
                                                  dir wall, 355
                                                  direction, 25, 43, 52–54, 203, 482, 483
correlations, 116, 118
correspondance_elements, 377-380
                                                  disable_convection_qdm , 32
corriger_partition, 404
                                                  disable_diffusion_qdm , 32
couplage_NS_CH , 487
                                                  disable_diphasique, 32
couronne, 497
```

```
disable_dt_ev , 411, 414, 416, 418, 420, 422, 424, dt_sauv , 411, 413, 415, 417, 419, 421, 423, 425,
         426, 428, 429, 431, 433, 435, 437, 439,
                                                          427, 429, 430, 432, 434, 436, 438, 440,
         441, 443, 445, 448, 450, 453, 455, 457,
                                                          442, 444, 447, 449, 452, 454, 456, 458,
                                                          460, 462
         459, 461, 463
disable_equation_residual , 177, 193-200, 202,
                                                 dt sauvegarde, 31
         210, 240, 242–260, 262, 264, 267, 270,
                                                 dt_start , 411, 414, 416, 418, 420, 422, 424, 426,
         273, 275, 277, 278, 282, 287, 288, 290
                                                          427, 429, 431, 433, 435, 437, 439, 440,
                                                          442, 445, 447, 450, 452, 455, 457, 459,
disable progress, 411, 414, 416, 418, 420, 422,
         424, 426, 428, 429, 431, 433, 435, 437,
                                                          461, 462
        439, 441, 443, 445, 448, 450, 453, 455,
                                                 dt uniforme, 295
         457, 459, 461, 463
                                                 dtol fraction, 383
disable_solveur_poisson, 32
                                                 dv min, 482
disable_source_interf, 32
                                                 Ec , 204
distance_projete_faces, 282
                                                 Ec_dans_repere_fixe , 204
distri_first_facette , 295
                                                 echelle relaxation coefficient pdf , 490
dmax , 216
                                                 Echelle_temporelle_turbulente , 116, 118
dom_dist, 348
                                                 ecrire_decoupage, 70
dom_loc , 348
                                                 ecrire_fichier_xyz_valeur , 177, 193–195, 197–
domain, 65, 72, 349, 353
                                                           200, 202, 210, 240, 242-249, 251-260,
domaine , 28, 39, 43, 45, 50, 51, 53, 54, 92, 106,
                                                           262, 264, 267, 270, 274, 276, 278, 282,
         300, 302, 405
                                                           287-290
domaine final , 27, 43, 52
                                                 ecrire frontiere, 72
domaine_flottant_fluide, 268
                                                 ecrire lata, 70
domaine grossier, 45
                                                 ecrire med, 70
domaine init , 27, 43, 52
                                                 elements fluides , 378, 380
domaines . 72, 406
                                                 elements solides . 377–379
domegadt, 478
                                                 emissivite pour rayonnement entre deux plaques-
                                                           _quasi_infinies , 335
DPO, 474
dt, 48
                                                 energie, 32
dt_impr , 211, 334, 335, 411, 413, 415, 418, 419,
                                                 energie_activation, 308
        421, 423, 425, 427, 429, 430, 432, 434,
                                                 Energie_cinetique_turbulente , 116, 118
        436, 438, 440, 442, 444, 447, 449, 452,
                                                 Energie_cinetique_turbulente_WIT , 116, 118
        454, 456, 458, 460, 462
                                                 Energie_Multiphase , 116, 118
dt_impr_moy_spat , 204
                                                 ensemble_points, 291
dt_impr_moy_temp, 204
                                                 enthalpie_reaction, 308
dt_impr_nusselt, 400-402
                                                 epaisseur, 51, 53
dt impr ustar , 211, 212, 214–217, 219–232, 234,
                                                 eps , 474
         236-238
                                                 eps max, 228–233, 236–238
dt impr ustar mean only , 211, 212, 214–217,
                                                 eps min , 228–233, 236–238
         219-232, 234, 236-238
                                                 eq_rayo_semi_transp , 135
dt injection, 291
                                                 equation frequence resolue, 191
dt_max , 411, 413, 415, 417, 419, 421, 423, 425,
                                                 equation_interface , 192, 249, 258
         427, 429, 430, 432, 434, 436, 438, 440,
                                                 equation interfaces proprietes fluide, 265
        442, 444, 447, 449, 452, 454, 456, 458,
                                                 equation interfaces vitesse imposee, 265
        460, 462
                                                 equation navier stokes, 258
dt_min , 411, 413, 415, 417, 419, 421, 423, 425,
                                                 equation_non_resolue , 177, 191, 193-195, 197-
         427, 429, 430, 432, 434, 436, 438, 440,
                                                           200, 202, 210, 240, 242-248, 250-260,
         442, 444, 447, 449, 452, 454, 456, 458,
                                                          262, 264, 267, 270, 274, 276, 278, 282,
         460, 462
                                                          287-290
dt_post, 32, 207
                                                 equation_nu_t , 193
                                                 equation_temperature_mpoint, 266
dt_post_stats_bulles, 33
dt_post_stats_plans, 32
                                                 equation_temperature_mpoint_vapeur, 266
                                                 equations_interfaces_vitesse_imposee , 265
dt_projection, 201, 209, 239, 241, 261, 263, 267,
         269, 273, 275, 277
```

```
equations_scalaires_passifs , 138, 145, 147, 161, expression_p_ana , 33
         163, 165–167, 169, 172
                                                expression_p_init, 32
equations source chimie, 192
                                                expression potential phi, 32
equilateral, 77
                                                expression_source_temperature, 87
Erugu, 499
                                                expression t ana, 87
erugu, 342
                                                expression_t_init , 87
espece, 253, 255
                                                expression variable source x, 32
espece en competition micro melange, 307
                                                expression variable source y, 32
est dirichlet . 377-379
                                                expression variable source z , 32
eta, 490
                                                expression vitesse upstream, 31
evanescence, 243
                                                expression vx ana, 33
exclure_groupes, 39
                                                expression_vx_init, 31
exp_res , 482
                                                expression_vy_ana, 33
expert_only, 90
                                                expression_vy_init, 31
exposant_beta, 308
                                                expression vz ana , 33
expression, 306
                                                expression_vz_init, 31
expression_ddPdxdx_ana, 33
                                                facon_init , 205, 206
expression_ddPdxdy_ana , 33
                                                facsec , 411, 413, 415, 418, 419, 421, 423, 425,
expression_ddPdxdz_ana, 33
                                                         427, 429, 431, 432, 434, 436, 438, 440,
expression ddPdvdv ana , 33
                                                         442, 444, 447, 449, 452, 454, 456, 458,
expression\_ddPdydz\_ana, 33
                                                         460, 462
expression ddPdzdz ana , 33
                                                facsec diffusion for sets, 464, 468
expression_ddUdxdx_ana , 33
                                                facsec ini, 55
expression ddUdxdy ana, 33
                                                facsec_max , 55, 415, 417, 443, 446, 448, 451, 453
expression ddUdxdz ana , 33
                                                facteur, 183, 501, 505
expression ddUdvdv ana . 33
                                                facteur longueur ideale . 77, 284
expression ddUdydz ana , 33
                                                facteur variable source init, 32
expression ddUdzdz ana , 33
                                                facteurs . 61
                                                fichier, 39, 92, 93, 99, 106, 216, 404, 405, 497
expression_ddVdxdx_ana , 33
expression_ddVdxdy_ana , 33
                                                fichier_distance_paroi , 234, 235
expression_ddVdxdz_ana , 33
                                                fichier_ecriture_K_Eps, 216
expression ddVdvdv ana , 33
                                                fichier_matrice, 83
expression_ddVdydz_ana , 33
                                                fichier_post, 32, 43
expression_ddVdzdz_ana , 33
                                                fichier_reprise_interface, 57
expression_ddWdxdx_ana , 33
                                                fichier_reprise_vitesse, 32
expression_ddWdxdy_ana, 33
                                                fichier_secmem, 82
expression ddWdxdz ana , 33
                                                fichier solution, 83
expression_ddWdydy_ana , 33
                                                fichier solveur, 83
expression ddWdydz ana , 33
                                                fichier solveur non recree, 313
expression_ddWdzdz_ana , 33
                                                fichier sortie, 57
expression derivee facteur variable source, 32
                                                fichier ssz, 405
                                                field, 349, 353, 403
expression_derivee_force , 31
expression dPdx ana , 33
                                                fields . 48, 93, 107
expression dPdy ana , 33
                                                fields file, 93, 107
expression dPdz ana , 33
                                                file, 72, 349, 353, 403
expression_dUdx_ana, 33
                                                file_coord_x, 65
expression_dUdy_ana, 33
                                                file_coord_y, 65
expression_dUdz_ana , 33
                                                file_coord_z, 65
expression dVdx ana , 33
                                                file name, 295
                                                filename, 27
expression_dVdy_ana, 33
expression_dVdz_ana , 33
                                                filling, 409
expression_dWdx_ana, 33
                                                fin_stat, 204
expression_dWdy_ana, 33
                                                flow_rate, 376
expression dWdz ana , 33
                                                fluid, 380-382
```

| fluide0 , 389                                    | ignore_check_fraction, 383                         |
|--------------------------------------------------|----------------------------------------------------|
| fluide1, 389                                     | ijk_grid_geometry, 291                             |
| fluide_incompressible , 109–112, 114, 115, 127–  | ijk_splitting, 31                                  |
| 129, 131, 132, 140–144, 146, 147, 152,           | ijk_splitting_ft_extension, 32                     |
| 153, 156, 159, 161–163, 169, 170, 172            | implicitation_CH , 487                             |
| fluide_ostwald , 122, 132, 156                   | implicite, 290                                     |
| fluide_quasi_compressible , 148, 151, 157, 165,  | <b>impr</b> , 68, 83, 284, 310–313, 318, 377–380   |
| 167, 171                                         | impr_diffusion_implicite, 411, 413, 416, 418, 420, |
| fluide_sodium_gaz , 122, 132, 156                | 422, 424, 425, 427, 429, 431, 433, 435,            |
| fluide_sodium_liquide , 122, 132, 156            | 437, 439, 440, 442, 445, 447, 450, 452,            |
| fluide_weakly_compressible , 150, 158, 166       | 455, 457, 459, 460, 462                            |
| flux_paroi , 320                                 | impr_extremums , 411, 413, 416, 418, 420, 422,     |
| <b>fo</b> , 31, 86                               | 424, 425, 427, 429, 431, 433, 435, 437,            |
| fonction , 78, 225                               | 439, 440, 442, 445, 447, 450, 452, 455,            |
| fonction_filtre , 66                             | 457, 459, 461, 462                                 |
| fonction_sous_zone , 497                         | improved_initial_pressure_guess , 32               |
| forcage , 32                                     | include_pressure_gradient_in_ustar , 32            |
| force, 312                                       | inclure_groupes_faces_additionnels , 39            |
| format , 72, 92, 106                             | indic_faces_modifiee , 282                         |
| format_post , 66                                 | indice , 388–395, 397                              |
| forme_du_terme_source , 492                      | info , 185                                         |
| formulation_a_nb_points , 212-214, 216-219, 221- |                                                    |
| 226                                              | initial_cl_xcoord , 294                            |
| formulation_linear_pwl , 379                     | initial_conditions , 177, 193–195, 197–200, 202,   |
| formule_mu , 389                                 | 210, 240, 242–260, 262, 264, 267, 270,             |
| frequence_recalc , 313                           | 273, 275, 277–279, 287–289                         |
| frontiere, 207                                   | initial_field , 357                                |
| frozen_velocity , 32                             | initial_value , 356, 357, 366                      |
| function_coord_x , 65                            | injecteur_interfaces , 282                         |
| function_coord_y , 65                            | injection, 289                                     |
| function_coord_z , 65                            | inout_method , 295                                 |
| gamma, 384, 385, 395, 503                        | input_field , 357                                  |
| gas_turb , 188, 189                              | integrale, 477                                     |
| genere_fichier_solveur , 83                      | interfaces , 32                                    |
| ghost_size , 67                                  | interp_vel, 37                                     |
| ghost_thickness, 65                              | interpol_indic_pour_dI_dt , 266                    |
| gmres_non_lineaire , 487                         | interpolation , 489, 491                           |
| gnuplot_header , 411, 414, 416, 418, 420, 422,   | interpolation_champ_face , 281                     |
| 424, 426, 428, 430, 431, 433, 435, 437,          | interpolation_repere_local , 281                   |
| 439, 441, 443, 445, 448, 450, 453, 455,          | intervalle, 497                                    |
| 457, 459, 461, 463                               | inverse_condition_element , 51                     |
| gradient_pression_qdm_modifie , 202, 210, 240,   | iter_min , 464, 468                                |
| 242, 262, 264, 267, 269, 273, 275, 277           | iterations_correction_volume , 280                 |
| gravite, 31, 269, 387–397                        | iterations_mixed_solver , 68                       |
| <b>groupes</b> , 135, 139, 175                   | joints_non_postraites , 72                         |
| <b>h</b> , 355, 480                              | k , 391                                            |
| harmonic_nu_in_calc_with_indicatrice , 32        | <b>k_min</b> , 228–233, 236–238                    |
| harmonic_nu_in_diff_operator , 32                | <b>kappa</b> , 388–397, 488, 499, 501              |
| haspi , 207                                      | kappa_variable , 488                               |
| hexa_old , 52                                    | KeOverKmin, 365                                    |
| himp , 496                                       | kmetis, 404                                        |
| Hlsat , 293                                      | l_melange , 188                                    |
| Hvsat , 293                                      | lambda , 334, 335, 388, 390–392, 395–397, 482,     |
| i , 362                                          | 483, 491, 501                                      |

| lambda_c , 502                                     | methode_couplage , 290                                  |
|----------------------------------------------------|---------------------------------------------------------|
| lambda_liquid , 87                                 | methode_interpolation_v , 281                           |
| lambda_max , 491                                   | methode_transport , 280, 290                            |
| lambda_min , 491                                   | milieu , 91, 109–111, 113–116, 118–122, 124–128         |
| lambda_ortho , 482                                 | 130–132, 134, 135, 137, 138, 140–143                    |
| lambda_vapour , 87                                 | 145–148, 150–152, 154, 156–158, 160–                    |
| larg_joint, 70                                     | 162, 164–167, 169–172, 174, 176                         |
| last_time , 348, 349, 353                          | milieu_composite , 116, 118                             |
| lata_meshname , 57                                 | Milieu_MUSIG , 116, 118                                 |
| lenghtScale , 364                                  | min_critere_q_sur_max_critere_q, 208                    |
| limiteur, 189                                      | min_dir_flow , 355                                      |
| Lire_fichier , 90                                  | min dir wall , 355                                      |
| lissage_courbure_coeff , 77, 284                   | mobile_probes , 93, 107                                 |
| lissage_courbure_iterations , 284                  | mobile_probes_file , 93, 107                            |
| lissage_courbure_iterations_si_remaillage , 77,    | Modal_deformation_file_name , 25                        |
| nssage_courbure_iterations_si_remainage , //, 284  |                                                         |
|                                                    | mode , 27                                               |
| lissage_courbure_iterations_systematique , 77, 284 |                                                         |
| list_equations , 111, 113, 130, 131, 137           | model , 380–382                                         |
| liste , 78, 497                                    | model_variant, 232                                      |
| liste_cas , 49                                     | modele , 489, 491                                       |
| liste_de_postraitements , 91, 109–111, 113–115,    | <u>-</u>                                                |
| 117–121, 123–128, 130–132, 134, 135, 137           |                                                         |
| 138, 140–143, 145–147, 149–152, 154–               |                                                         |
| 158, 160–162, 164–166, 168–171, 173, 174           |                                                         |
| 176                                                | <b>modele_turbulence</b> , 193, 194, 209, 247, 250, 255 |
| liste_postraitements , 91, 109–111, 113–115, 117–  | 259, 266, 274, 276                                      |
| 121, 123–128, 130–132, 134, 135, 137,              | modele_visco, 501, 505                                  |
| 138, 140–143, 145–147, 149–152, 154–               | modif_div_face_dirichlet , 346                          |
| 158, 160–162, 164–166, 168–171, 173, 174           | , molar_mass , 384                                      |
| 176                                                | molar_mass1 , 381, 382                                  |
| loc , 349, 353                                     | molar_mass2 , 381, 382                                  |
| local , 490                                        | moyenne, 364                                            |
| localisation , 67, 302, 307                        | moyenne_convergee , 303                                 |
| loi_etat , 392, 396                                | moyenne_de_kappa , 487                                  |
| longueur_boite, 205, 206                           | mpoint_inactif_sur_qdm , 266                            |
| longueur_maille , 212–214, 216–218, 220–226        | mpoint_vapeur_inactif_sur_qdm , 266                     |
| longueurs , 61                                     | mu , 48, 334, 335, 384, 390–392, 395, 396, 501          |
| ly , 294                                           | mu1, 381, 382                                           |
| Lvap , 293                                         | mu2, 381, 382                                           |
| =                                                  |                                                         |
| maillage , 39, 280                                 | mu_1 , 256, 271                                         |
| main , 71                                          | mu_2 , 256, 271                                         |
| maintien_temperature , 258                         | mu_fonc_c , 272                                         |
| Mass_and_stiffness_file_name , 25                  | mu_liquide , 31                                         |
| masse_molaire , 48, 193, 248–250, 256              | mu_vapeur , 32                                          |
| Masse_Multiphase , 116, 118                        | multigrid_solver , 31                                   |
| matrice_pression_invariante , 266                  | multiple_files , 36                                     |
| max_iter_implicite , 412, 444, 446, 449, 451, 454, | multiplicateur_de_kappa , 487                           |
| 456                                                | <b>n</b> , 335, 391, 501, 503, 505                      |
| max_simu_time , 31                                 | n_extend_meso , 294                                     |
| mesh , 348, 349, 353                               | n_iterations_distance , 280                             |
| methode , 57, 301, 302, 304, 306                   | n_iterations_interpolation_ibc , 281                    |
| methode_calcul_face_keps_impose , 499              | name_of_initial_zones , 38                              |
| methode_calcul_pression_initiale , 201, 209, 239,  | name_of_new_zones , 38                                  |
| 241, 261, 263, 266, 269, 273, 275, 277             | nature, 348                                             |
| , - ,,,,, <del>-</del> , -                         | ,                                                       |

```
Navier_Stokes_Aposteriori, 142
                                                niter_avg , 415, 417
navier_stokes_phase_field, 153
                                                niter_max , 415, 417
navier stokes OC , 123, 148, 157, 165
                                                niter max diffusion implicite, 191, 411, 414, 416,
navier_stokes_standard , 109, 111, 120, 122, 127,
                                                         418, 420, 422, 424, 426, 427, 429, 431,
         129, 132, 140, 143, 145, 156, 159, 161,
                                                         433, 435, 437, 439, 441, 442, 445, 447,
         169
                                                         450, 452, 455, 457, 459, 461, 463
navier stokes standard ALE, 141
                                                niter min , 415, 417
Navier Stokes standard sensibility, 115, 132
                                                nmax , 40
navier stokes turbulent, 110, 113, 121, 125, 128,
                                                no alpha, 188
         131, 146, 147, 152, 162, 163, 170, 172
                                                no_check_disk_space , 411, 414, 416, 418, 420,
Navier Stokes Turbulent ALE, 114
                                                         422, 424, 426, 428, 429, 431, 433, 435,
navier\_stokes\_turbulent\_qc \ , 126, 151, 167, 171
                                                         437, 439, 441, 443, 445, 448, 450, 453,
                                                         455, 457, 459, 461, 463
navier_stokes_WC , 150, 158, 166
nb_comp , 356, 357, 366, 505
                                                no_conv_subiteration_diffusion_implicite , 411,
nb corrections max , 464–469, 472
                                                         413, 416, 418, 420, 422, 424, 425, 427,
                                                         429, 431, 433, 435, 437, 439, 440, 442,
nb_diam_ortho_shear_perio, 31
nb_diam_upstream, 31
                                                         445, 447, 450, 452, 455, 457, 459, 461,
nb_full_mg_steps, 67
                                                         462
nb_histo_boxes_impr , 377-380
                                                no_error_if_not_converged_diffusion_implicite,
nb it max , 311–313, 318, 464–472
                                                         411, 413, 416, 418, 420, 422, 424, 425,
nb_ite_sans_accel_max , 55
                                                         427, 429, 431, 433, 435, 437, 439, 440,
nb iter barycentrage, 77, 284
                                                         442, 445, 447, 450, 452, 455, 457, 459,
nb_iter_correction_volume , 77, 284
                                                         461, 462
nb iter remaillage, 77, 284
                                                no octree method, 58
nb iteration max uzawa, 282
                                                no qdm , 464-472
nb iterations . 290
                                                nom . 356, 357, 366
nb iterations correction volume, 282
                                                nom bord, 52, 53
nb iterations gmresnl, 487
                                                nom champ, 348
nb_lissage_correction_volume , 282
                                                nom cl derriere, 54
nb_mailles_mini, 208
                                                nom_cl_devant, 54
nb modes, 25
                                                nom_domaine, 66
nb nodes, 65
                                                nom fichier, 495
nb_parts , 403-407
                                                nom_fichier_post, 66
nb_parts_geom , 45
                                                nom_fichier_solveur, 313
nb_parts_naif, 45
                                                nom_fichier_sortie , 45
                                                nom_frontiere, 301
nb_parts_tot, 70
nb pas dt max , 31, 411, 414, 416, 418, 420, 422,
                                                nom inconnue, 193, 248–250, 256
        424, 426, 427, 429, 431, 433, 435, 437,
                                                nom mon indicatrice, 324
        439, 441, 442, 445, 447, 450, 452, 455,
                                                nom_pb , 66
        457, 459, 461, 463
                                                nom_reprise, 31
nb points, 224, 402
                                                nom sauvegarde, 31
nb_points_par_phase, 204
                                                nom_source , 296-303, 305-307
                                                nom zones, 70
nb procs, 49
nb test, 83
                                                nombre de noeuds, 61
nb tranche, 57
                                                nombre_facettes_retenues_par_cellule , 281
nb_tranches, 52-54
                                                noms_champs, 66
nb_var , 225
                                                norm , 80
nbelem_i , 347
                                                normal_value, 365
nbelem i , 347
                                                normalise, 208
nbelem_k, 347
                                                nproc_i , 291
nbModes, 364
                                                nproc_j , 291
new_jacobian, 185
                                                nproc_k, 291
                                                nu, 185, 334, 335
new_mass_source, 266
NewmarkTimeScheme , 25
                                                nu transp, 185
```

```
numero, 302, 307
                                                 perio_j , 347
numero_masse, 298
                                                 perio_k, 347
numero op , 297
                                                 perio x, 65
numero_source, 297
                                                 perio_y , 65
nusselt, 504
                                                 perio z, 65
nut, 185
                                                 periode, 205
nut max, 211, 212, 214–217, 219–224, 226–230,
                                                periode calc spectre, 205, 206
                                                 periode sauvegarde securite en heures, 411, 414,
        232-234, 236-238
nut transp, 185
                                                          416, 418, 420, 422, 424, 426, 428, 429,
                                                          431, 433, 435, 437, 439, 441, 442, 445,
oh , 31
old, 180
                                                          447, 450, 452, 455, 457, 459, 461, 463
omega, 355, 409, 415, 478
                                                 periodique, 71
                                                 phase, 192, 249, 258, 324
omega_max, 237
omega_min, 237
                                                 phase_marquee, 290
omega_relaxation_drho_dt , 392
                                                 PID_controler_on_targer_power , 496
optimisation_sous_maillage , 302
                                                 pinf , 395
optimized , 311, 318
                                                 point1, 51
option, 192, 249, 302, 478
                                                 point2, 51
origin_i , 347
                                                 point3, 51
                                                 points fluides, 378, 379
origin_j , 347
origin_k , 347
                                                 points_solides , 377–380
Origine, 61
                                                 polynomes, 497
origine, 51
                                                 porosites , 387–397
OutletCorrection_pour_dI_dt , 266
                                                 porosites_champ , 387-397
Output position 1D, 25
                                                 position, 286, 387
Output position 3D, 25
                                                 Post processing, 91, 109–111, 113–116, 118–122,
p0, 346
                                                          124–128, 130–132, 134, 135, 137, 138,
p1,346
                                                          140–143, 145–148, 150–152, 154–158, 160–
p_imposee_aux_faces, 69
                                                          162, 164–167, 169–172, 174, 176
                                                 Post_processings , 91, 109–111, 113–115, 117–
P_ref , 293, 394, 395
p ref, 292, 293
                                                          121, 123–128, 130–132, 134, 135, 137,
P sat, 293
                                                          138, 140–143, 145–147, 149–152, 154–
p_seuil_max , 31
                                                          158, 160–162, 164–166, 168–171, 173, 174,
p_seuil_min, 31
                                                          176
pa , 346
                                                 postraiter_gradient_pression_sans_masse , 202,
par_sous_zone , 27, 43
                                                          210, 240, 242, 262, 264, 267, 269, 273,
parallel over zone, 36
                                                          275, 277
parallele , 92, 106
                                                 potentiel chimique, 488
parametre equation, 177, 193–195, 197–200, 202, potential chimique generalise, 256
         210, 240, 242–249, 251–260, 262, 264,
                                                Pr t, 188
         267, 270, 274, 276, 278, 282, 287–290
                                                 prandt turbulent fonction nu t alpha, 401
                                                 Prandtl , 384, 385
parcours_interface, 281
Partition tool . 70
                                                 prandtl , 383–385, 505
pas, 283
                                                 prandtl_eps , 229-231, 233, 238
                                                 prandtl k , 229–231, 233, 238
pas de solution initiale, 83
pas_lissage, 284
                                                 prandtl_turbulent, 187
pas_remaillage , 77
                                                 prdt , 401
                                                 prdt_sur_kappa, 503
pb_champ , 304, 305
pb_dist, 348
                                                 pre_smooth_steps, 67
pb_loc , 348
                                                 precision_impr , 411, 414, 416, 418, 420, 422,
pb_name , 71
                                                          424, 426, 428, 429, 431, 433, 435, 437,
                                                          439, 441, 442, 445, 447, 450, 452, 455,
penalisation_forcage , 266
penalisation_12_ftd , 195, 257, 258
                                                          457, 459, 461, 463
perio i , 347
                                                 precond, 311, 312, 318
```

```
precond0, 410
                                                 residu_min_gmresnl, 487
precond1, 410
                                                 residuals , 411, 413, 415, 418, 420, 421, 423, 425,
precond nul , 311, 318
                                                          427, 429, 431, 433, 435, 436, 438, 440,
                                                          442, 444, 447, 449, 452, 454, 456, 458,
preconda, 410
preconditionnement diag, 191
                                                          460, 462
                                                 resolution_explicite , 191
prescribed_mpoint , 258
pression, 392
                                                 resolution fluctuations, 32
pression degeneree, 464
                                                 resolution monolithique, 453
pression reference, 268
                                                 restart . 501
pression thermo, 396
                                                 Restart file name, 25
pression xyz, 396
                                                 restriction, 497
pressure_reduction, 464
                                                 resume_last_time , 91, 109, 111–115, 117, 119–
print_more_infos , 71
                                                          126, 128-131, 133, 134, 136, 138-141,
probes , 92, 107
                                                          143–146, 148–151, 153–156, 158–161, 163–
probes file , 92, 107
                                                          165, 167–170, 172, 173, 175, 176
probleme , 28, 50–52, 270, 271, 356, 357, 366
                                                 reynolds_stress_isotrope , 234, 235
produits, 308
                                                 rho, 334, 335, 387, 390, 391, 397
                                                 rho_1, 256, 270
projection_initiale , 201, 209, 239, 241, 261, 263,
         266, 269, 273, 275, 277
                                                 rho_2, 256, 270
projection normale bord, 53
                                                 Rho beam, 25
proprietes_particules, 291
                                                 rho_constant_pour_debug, 384
pulsation w, 204
                                                 rho fonc c, 271
q, 395
                                                 rho_liquide, 31
q_prim , 395
                                                 rho t, 385
QDM Multiphase, 116, 118
                                                 rho vapeur, 32
atcl . 294
                                                 rho xvz . 385
quiet, 228–233, 236–238, 310–313, 318
                                                 rotation, 387, 489, 491
rapport residus, 55
                                                 rt, 346
ratioCutoffWavenumber, 365
                                                 sans_passer_par_le2d , 52
                                                 sans_solveur_masse, 298
rayon_spot, 477
                                                 sans source boussinesq, 501
rc_tcl_gridn, 294
reactifs, 308
                                                 sauvegarde, 91, 109–111, 113–115, 117–121, 123–
reactions, 307
                                                          127, 129–131, 133–135, 137, 139–142, 144–
rectangle, 497
                                                          147, 149-152, 154-157, 159-162, 164-
refuse_patch_conservation_qdm_rk3_source_interf
                                                          166, 168–171, 173, 174, 176
                                                 sauvegarde_simple , 91, 109, 110, 112–115, 117–
        , 32
regul, 485
                                                          121, 123–127, 129–131, 133, 134, 136,
reinjection tcl, 294
                                                          137, 139–142, 144–147, 149–152, 154–
relative, 80
                                                          157, 159–162, 164–166, 168–171, 173, 174,
relax_barycentrage, 77, 284
                                                          176
relax jacobi, 67
                                                 sauvegarder xyz, 31
                                                 save_matrix , 311-313, 318
relax_pression, 469, 471
remaillage . 280
                                                 sc, 383
remaillage ft ijk , 57
                                                 schema ch , 458
reorder . 71
                                                 schema ns, 458
reprise , 91, 109, 110, 112–115, 117–120, 122–
                                                 scturb, 401
         127, 129–131, 133, 134, 136, 137, 139–
                                                 segment, 497
         141, 143–146, 148–152, 154–157, 159–
                                                 senseur_interface, 477
         161, 163–166, 168–171, 173, 175, 176,
                                                 serial_statistics, 93, 107
         204
                                                 serial_statistics_file, 93, 107
reprise_correlation, 334, 335
                                                 seuil , 67, 311–313, 318, 415, 417
reprise_liq_velocity_tmoy , 32
                                                 seuil_absolu, 27
reprise_vap_velocity_tmoy, 32
                                                 seuil_convergence_implicite, 191, 464-471
residu max gmresnl, 487
```

```
seuil_convergence_solveur , 191, 464–467, 469,
                                                  species_number, 384
         470, 472
                                                  spectre_1D , 205, 206
seuil convergence uzawa , 281
                                                  spectre 3D, 205, 206
seuil_cv_iterations_ptfixe , 487
                                                  splitting, 65
seuil diffusion implicite, 192, 411, 413, 416, 418,
                                                  stabilise , 224, 402
         420, 422, 424, 425, 427, 429, 431, 433,
                                                  standard, 185
         435, 437, 438, 440, 442, 445, 447, 450,
                                                  state , 239
         452, 455, 457, 459, 460, 462
                                                  stationnaire, 501
seuil divU , 201, 209, 239, 241, 261, 263, 267,
                                                  statistics . 93, 107
         269, 273, 275, 277
                                                  statistics file, 93, 107
                                                  stats, 501, 503, 505
seuil dvolume residuel, 77, 284
seuil_generation_solveur , 464-467, 469, 470, 472
                                                  steady_global_dt , 412
seuil_minimum_relatif, 27
                                                  steady_security_facteur, 412
seuil relatif, 27
                                                  stencil width, 258
seuil residu gmresnl, 487
                                                  suffix for reset, 93, 107
seuil_residu_ptfixe , 487
                                                  suppression_rejetons, 32
seuil_statio , 411, 413, 415, 418, 420, 421, 423,
                                                  surface, 335, 485
                                                  surface_tension, 292, 293
         425, 427, 429, 431, 433, 434, 436, 438,
         440, 442, 444, 447, 449, 452, 454, 456,
                                                  surfacique, 408
         458, 460, 462
                                                  sutherland , 392, 396
seuil test preliminaire solveur, 464–472
                                                  symx , 61
seuil verification, 83
                                                  symy , 61
seuil_verification_solveur , 464-470, 472
                                                  symz , 61
sharing algo, 36
                                                  systeme naire, 487
                                                  t0,479
sigma, 32, 189, 389
sigma d . 474
                                                  t deb . 207, 298–300, 303
sigma turbulent, 188
                                                  t debut injection, 291
single hdf , 38, 71
                                                  t debut statistiques, 33
single_precision, 36
                                                  t_fin , 207, 298–300, 303
sm, 294
                                                  t_min , 385
                                                  T_ref, 293, 394, 395
smooth_steps, 67
solide, 91
                                                  t_ref , 292, 293
solv elem , 312
                                                  T_sat , 293
solver_precision, 68
                                                  table_temps, 348
solveur, 83, 136, 191, 192, 413, 444, 446, 449,
                                                  table_temps_lue, 348
                                                  Taux_dissipation_turbulent , 116, 118
         451, 454, 456, 464-472
solveur0, 311
                                                  tcpumax , 411, 413, 415, 417, 419, 421, 423, 425,
solveur1, 311
                                                           427, 428, 430, 432, 434, 436, 438, 440,
                                                           442, 444, 447, 449, 452, 454, 456, 458,
solveur bar , 201, 209, 239, 241, 261, 263, 266,
         269, 273, 275, 277
                                                           460, 462
solveur grossier, 67
                                                  tdivu, 180
solveur_pression , 201, 209, 239, 241, 243, 261,
                                                  temperature, 381, 382
         263, 266, 269, 273, 275, 277
                                                  temperature paroi, 320
sonde tble , 501, 505
                                                  temperature state, 195
sondes, 34
                                                  temps d affichage, 487
source, 296–303, 305–307
                                                  temps_debut_prise_en_compte_drho_dt , 392
source_reference , 296-303, 305-307
                                                  temps_relaxation_coefficient_pdf , 490
sources , 177, 193–195, 197–200, 202, 210, 240,
                                                  terme_force_init, 32
         242–260, 262, 264, 267, 270, 274, 275,
                                                  terme gravite, 58, 266
         277, 278, 282, 287–290, 296–303, 305–
                                                  test , 180
                                                  test_etapes_et_bilan, 32
         307
sources_reference , 296-303, 305-307
                                                  Text , 496
sous_zone , 50, 92, 106, 356, 357, 366, 482, 483
                                                  thermique, 32
sous zones, 406
                                                  theta app, 294
```

| thetac_tcl , 294                                    | uncertain_variable , 195, 239                 |
|-----------------------------------------------------|-----------------------------------------------|
| thi , 217                                           | uniform_domain_size_i , 347                   |
| thickness, 286                                      | uniform_domain_size_j , 347                   |
| time, 349, 353                                      | uniform_domain_size_k , 347                   |
| time_activate_ptot , 397                            | union , 497                                   |
| time_scheme , 32                                    | unite, 302, 306                               |
| timeScale, 365                                      | upstream_dir , 31                             |
| timestep, 31                                        | upstream_stencil, 31                          |
| timestep_facsec , 31                                | use_existing_domain , 348, 349, 353           |
| timestep_reprise_interface , 57                     | use_grad_pression_eos , 397                   |
| timestep_reprise_vitesse , 32                       | use_hydrostatic_pressure , 397                |
| tinf, 334, 335                                      | use_inv_rho_for_mass_solver_and_calculer_rho- |
| tinit, 31, 410, 413, 415, 417, 419, 421, 423, 425,  | _v , 32                                       |
| 427, 428, 430, 432, 434, 436, 438, 440,             | use_inv_rho_in_poisson_solver , 32            |
| 442, 444, 447, 449, 452, 454, 456, 458,             | use_links , 36                                |
| 460, 462                                            | use_osqp , 36                                 |
| tmax , 411, 413, 415, 417, 419, 421, 423, 425, 427, | use_overlapdec , 348                          |
| 428, 430, 432, 434, 436, 438, 440, 442,             | use_total_pressure, 396                       |
| 444, 447, 449, 452, 454, 456, 458, 460,             | use_weights , 404                             |
| 462                                                 | user_field , 397                              |
| toutes_les_options , 69                             | val_Ec , 205, 206                             |
| traitement_axi , 37                                 | velocity_convection_op , 32                   |
|                                                     |                                               |
| traitement_coins , 69                               | velocity_profil , 376                         |
| traitement_gradients , 69                           | velocity_reset , 32                           |
| traitement_particulier , 202, 209, 240, 242, 262,   | velocity_state , 195                          |
| 264, 267, 269, 273, 275, 277                        | verif_boussinesq , 479                        |
| traitement_pth , 392, 396                           | verif_dparoi , 216                            |
| traitement_rho_gravite , 392                        | via_extraire_surface ,51                      |
| tranches, 407                                       | vingt_tetra, 52                               |
| transformation_bulles , 290                         | viscosite_dynamique_constante , 269           |
| transport_epsilon, 230, 231                         | vitesse, 387, 478                             |
| transport_k , 230, 231                              | vitesse_entree , 31                           |
| transport_k_epsilon , 233                           | vitesse_fluide_explicite , 285                |
| transport_k_epsilon_realisable , 238                | vitesse_imposee_data , 490                    |
| transport_k_omega , 232                             | vitesse_imposee_fonction , 490                |
| transpose_rotation , 489, 491                       | vitesse_imposee_regularisee , 282             |
| triangle, 51                                        | vitesse_upstream , 31                         |
| trois_tetra, 52                                     | voflike_correction_volume , 282               |
| tsup , 334, 335                                     | vol_bulle_monodisperse , 32                   |
| tube , 497                                          | vol_bulles , 32                               |
| turbDissRate, 365                                   | volume, 334                                   |
| turbKinEn, 365                                      | volume_impose_phase_1 , 281                   |
| turbulence_paroi , 211-213, 215-217, 219-233,       | volumes_etendus , 180                         |
| 236–238, 400–402                                    | volumes_non_etendus , 180                     |
| tuyauz, 215                                         | volumique, 408                                |
| type, 302, 409                                      | wall_flux, 87                                 |
| type_indic_faces , 282                              | with_nu , 288                                 |
| type_t_source , 87                                  | without_dec , 36                              |
| type_vitesse_imposee , 281                          | writing_processes , 37                        |
| u, 360, 362, 365                                    | xinf, 335                                     |
| u_star_impose, 499                                  | xsup , 335                                    |
| u_tau , 502                                         | xtanh, 61                                     |
| ubar_umprim_cible , 491                             | xtanh_dilatation , 61                         |
| ucent , 355                                         | xtanh_taille_premiere_maille , 61             |
| ,                                                   | ,                                             |

| ylim , 294                               | Ch_front_input_ale, 362                       |
|------------------------------------------|-----------------------------------------------|
| <b>ym</b> , 294                          | Ch_front_input_uniforme, 366                  |
| ymeso , 294                              | Champ_base, 347                               |
| Young_Module , 25                        | Champ_composite, 350                          |
| ytanh, 61                                | Champ_don_base, 351                           |
| ytanh_dilatation , 61                    | Champ_don_lu, 351                             |
| ytanh_taille_premiere_maille , 62        | Champ_fonc_fonction, 351                      |
| zmax , 57                                | Champ_fonc_fonction_txyz, 352                 |
| <b>zmin</b> , 57                         | Champ_fonc_fonction_txyz_morceaux, 352        |
| ztanh , 62                               | Champ_fonc_interp, 347                        |
| ztanh_dilatation, 62                     | Champ_fonc_med, 352                           |
| ztanh_taille_premiere_maille , 62        | Champ_fonc_med_table_temps, 348               |
|                                          | Champ_fonc_med_tabule, 349                    |
| Acceleration, 478                        | Champ_fonc_reprise, 353                       |
| Ai_based, 286                            | Champ_fonc_t, 354                             |
| Ale, 183                                 | Champ_fonc_tabule, 354                        |
| Ale_neumann_bc_for_grid_problem, 23      | Champ_fonc_tabule_morceaux_interp, 350        |
| Algo_base, 295                           | Champ_fonc_txyz, 359                          |
| Algo_couple_1, 295                       | Champ_fonc_xyz, 359                           |
| Amgx, 309                                | Champ_front_ale, 363                          |
| Amont, 178                               | -                                             |
| Amont_old, 178                           | Champ_front_ale_beam, 362                     |
| Analyse_angle, 40                        | Champ_front_base, 361                         |
| Associate, 40                            | Champ_front_bruite, 367                       |
| Associate, 40 Associer_algo, 40          | Champ_front_calc, 367                         |
| Associer_pbmg_pbfin, 41                  | Champ_front_composite, 367                    |
| Associer_pbmg_pbgglobal, 41              | Champ_front_contact_rayo_semi_transp_vef, 368 |
|                                          | Champ_front_contact_rayo_transp_vef, 368      |
| Axi, 41                                  | Champ_front_contact_vef, 368                  |
| Base, 285                                | Champ_front_debit, 369                        |
| Beam_model, 24                           | Champ_front_debit_massique, 369               |
| Bidim_axi, 41                            | Champ_front_debit_qc_vdf, 363                 |
| Binaire_gaz_parfait_qc, 381              | Champ_front_debit_qc_vdf_fonc_t, 363          |
| Binaire_gaz_parfait_wc, 381              | Champ_front_fonc_pois_ipsn, 369               |
| Bord, 62                                 | Champ_front_fonc_pois_tube, 370               |
|                                          | Champ_front_fonc_t, 370                       |
| Bord_base, 62                            | Champ_front_fonc_txyz, 370                    |
| Boundary_field_inward, 365               | Champ_front_fonc_xyz, 370                     |
| Boundary_field_keps_from_ud, 361         | Champ_front_fonction, 371                     |
| Boundary_field_uniform_keps_from_ud, 365 | Champ_front_lu, 371                           |
| Boussinesq_concentration, 478            | Champ_front_med, 366                          |
| Boussinesq_temperature, 479              | Champ_front_musig, 371                        |
| Brech, 207                               | Champ_front_normal_vef, 371                   |
| Btd, 182                                 | Champ_front_parametrique, 363                 |
| Coloul 42                                | Champ_front_pression_from_u, 372              |
| Calcul, 42                               | Champ_front_recyclage, 372                    |
| Calculer_moments, 41                     | Champ_front_synt, 364                         |
| Canal, 203                               | Champ_front_tabule, 374                       |
| Canal_perio, 479                         | Champ_front_tabule_lu, 374                    |
| Ceg, 207                                 | Champ_front_tangentiel_vef, 375               |
| Centre, 178                              | Champ_front_uniforme, 375                     |
| Centre4, 178                             | Champ_front_vortex, 375                       |
| Centre_de_gravite, 42                    | Champ_front_xyz_debit, 375                    |
| Centre_old, 178                          | Champ_front_xyz_tabule, 362                   |
| Ch_front_input, 365                      | Champ_front_zoom, 376                         |

| Champ_generique_base, 296                        | Convection_diffusion_concentration_turbulent, 250    |
|--------------------------------------------------|------------------------------------------------------|
| Champ_init_canal_sinal, 354                      | Convection_diffusion_concentration_turbulent_ft_disc |
| Champ_input_base, 355                            | 192                                                  |
| Champ_input_p0, 356                              | Convection_diffusion_espece_binaire_qc, 251          |
| Champ_input_p0_composite, 356                    | Convection_diffusion_espece_binaire_turbulent_qc,    |
| Champ_musig, 357                                 | 193                                                  |
| Champ_ostwald, 357                               | Convection_diffusion_espece_binaire_wc, 252          |
| Champ_parametrique, 350                          | Convection_diffusion_espece_multi_qc, 252            |
| Champ_post_de_champs_post, 296                   | Convection_diffusion_espece_multi_turbulent_qc, 254  |
| Champ_post_extraction, 300                       | Convection_diffusion_espece_multi_wc, 253            |
| Champ_post_interpolation, 301                    | Convection_diffusion_phase_field, 255                |
| Champ_post_morceau_equation, 302                 | Convection_diffusion_temperature, 256                |
| Champ_post_operateur_base, 296                   | Convection_diffusion_temperature_ft_disc, 257        |
| Champ_post_operateur_divergence, 299             | Convection_diffusion_temperature_sensibility, 194    |
| Champ_post_operateur_eqn, 297                    | Convection_diffusion_temperature_turbulent, 259      |
| Champ_post_operateur_gradient, 301               | Coolprop_qc, 382                                     |
| Champ_post_reduction_0d, 304                     | Coolprop_wc, 382                                     |
| Champ_post_refchamp, 305                         | Coriolis, 480                                        |
| Champ_post_statistiques_base, 298                | Correction_antal, 472                                |
| Champ_post_tparoi_vef, 305                       | Correction_lubchenko, 473                            |
| Champ_post_transformation, 306                   | Correlation, 100, 102, 103, 298                      |
| Champ_som_lu_vdf, 357                            | Corriger_frontiere_periodique, 42                    |
| Champ_som_lu_vef, 358                            | Create_domain_from_sous_zone, 43                     |
| Champ_tabule_morceaux, 349                       | Create_domain_from_sub_domain, 26                    |
| Champ_tabule_temps, 358                          |                                                      |
| Champ_uniforme_morceaux, 358                     | Darcy, 480                                           |
| Champ_uniforme_morceaux_tabule_temps, 359        | Debog, 43                                            |
| Champ_front_fonc_txyz, 20                        | Debogft, 27                                          |
| Chimie, 307                                      | Decoupebord, 44                                      |
| Chmoy_faceperio, 206                             | Decouper_bord_coincident, 45                         |
| Cholesky, 309, 314–316                           | Di_12, 178                                           |
| Circle, 97                                       | Diffusion_croisee_echelle_temp_taux_diss_turb, 474   |
| Circle_3, 97                                     | Diffusion_deriv, 184                                 |
| Class_generic, 308                               | Diffusion_supplementaire_echelle_temp_turb, 474      |
| Combinaison, 224                                 | Dilate, 45                                           |
| Concentration, 100, 102–104                      | Dimension, 45                                        |
| Cond_lim_k_complique_transition_flux_nul_demi, 3 | 1Dirac, 480                                          |
| Cond_lim_k_simple_flux_nul, 319                  | Dirichlet, 323                                       |
| Cond_lim_omega_demi, 320                         | Disable_tu, 46                                       |
| Cond_lim_omega_dix, 320                          | Discretisation_base, 344                             |
| Condinits, 190                                   | Discretiser_domaine, 46                              |
| Condlim_base, 319                                | Discretize, 46                                       |
| Condlims, 136                                    | Dispersion_bulles, 475                               |
| Conduction, 176                                  | Dissipation_echelle_temp_taux_diss_turb, 475         |
| Constant, 341                                    | Distance_paroi, 46                                   |
| Constituant, 387                                 | Domain, 60                                           |
| Contact_vdf_vef, 322                             | Domaine, 346                                         |
| Contact_vef_vdf, 322                             | Domaine_ale, 347                                     |
| Convection_deriv, 177                            | Domaineaxi1d, 346                                    |
| Convection_diffusion_chaleur_qc, 245             | Dp, 473                                              |
| Convection_diffusion_chaleur_turbulent_qc, 246   | Dp_impose, 473                                       |
| Convection_diffusion_chaleur_wc, 246             | Dp_regul, 474                                        |
| Convection_diffusion_concentration, 247          | Dt_calc, 310                                         |
| Convection_diffusion_concentration_ft_disc, 248  | Dt_fixe, 310                                         |

| Dt_min, 310                            | Fluide_reel_base, 393                                 |
|----------------------------------------|-------------------------------------------------------|
| Dt_start, 310                          | Fluide_sodium_gaz, 393                                |
| Dt_post, 100, 102, 103                 | Fluide_sodium_liquide, 394                            |
| T                                      | Fluide_stiffened_gas, 395                             |
| Easm_baglietto, 234                    | Fluide_weakly_compressible, 396                       |
| Ec, 204                                | Flux_interfacial, 481                                 |
| Ecart_type, 102, 299                   | Flux_radiatif, 324                                    |
| Ecart_type, 100, 102–104               | Flux_radiatif_vdf, 325                                |
| Echange_contact_rayo_transp_vdf, 323   | Flux_radiatif_vef, 325                                |
| Echange_contact_vdf_ft_disc, 323       | Forchheimer, 481                                      |
| Echange_contact_vdf_ft_disc_solid, 324 | Frontiere_ouverte, 325                                |
| Echange_couplage_thermique, 320        | Frontiere_ouverte_concentration_imposee, 326          |
| Echelle_temporelle_turbulente, 196     | Frontiere_ouverte_fraction_massique_imposee, 326      |
| Ecrire, 90                             | Frontiere_ouverte_gradient_pression_impose, 326       |
| Ecrire_champ_med, 47                   | Frontiere_ouverte_gradient_pression_impose_vefprep1b, |
| Ecrire_fichier_bin, 90                 | 326                                                   |
| Ecrire_fichier_formatte, 47            | Frontiere_ouverte_gradient_pression_libre_vef, 327    |
| Ecriturelecturespecial, 48             | Frontiere_ouverte_gradient_pression_libre_vefprep1b,  |
| Ef, 179, 344                           | 327                                                   |
| Ef_stab, 180                           | Frontiere_ouverte_k_eps_impose, 327                   |
| End, 55                                | Frontiere_ouverte_pression_imposee, 327               |
| Energie_cinetique_turbulente, 198      | Frontiere_ouverte_pression_imposee_orlansky, 328      |
| Energie_cinetique_turbulente_wit, 198  | Frontiere_ouverte_pression_moyenne_imposee, 328       |
| Energie_multiphase, 197                | Frontiere_ouverte_rayo_semi_transp, 328               |
| Entree_temperature_imposee_h, 324      | Frontiere_ouverte_rayo_transp, 328                    |
| Eos_qc, 380                            | Frontiere_ouverte_rayo_transp_vdf, 329                |
| Eos_wc, 380                            | Frontiere_ouverte_rayo_transp_vef, 329                |
| Epsilon, 60                            | Frontiere_ouverte_rho_u_impose, 329                   |
| Eqn_base, 259                          | Frontiere_ouverte_temperature_imposee, 329            |
| Execute_parallel, 48                   | Frontiere_ouverte_temperature_imposee_rayo_semi-      |
| Export, 49                             | transp, 330                                           |
| Extract_2d_from_3d, 49                 | Frontiere_ouverte_temperature_imposee_rayo_transp,    |
| Extract_2daxi_from_3d, 49              | 330                                                   |
| Extraire_domaine, 50                   | Frontiere_ouverte_vitesse_imposee, 330                |
| Extraire_plan, 50                      | Frontiere_ouverte_vitesse_imposee_ale, 330            |
| Extraire_surface, 51                   | Frontiere_ouverte_vitesse_imposee_sortie, 331         |
| Extraire_surface_ale, 27               | Frottement_interfacial, 481                           |
| Extrudebord, 52                        | _                                                     |
| Extrudeparoi, 52                       | Gaz_parfait_qc, 384                                   |
| Extruder, 53                           | Gaz_parfait_wc, 384                                   |
| Extruder_en20, 53                      | GCP, 313, 317                                         |
| Extruder_en3, 54                       | Gcp, 318                                              |
|                                        | Gcp_ns, 310                                           |
| Fd, 26                                 | Gen, 311                                              |
| Fichier_decoupage, 403                 | Generic, 181                                          |
| Fichier_med, 403                       | Gmres, 312                                            |
| Field_uniform_keps_from_ud, 360        | Gradient, 314                                         |
| Flottabilite, 488                      |                                                       |
| Fluide_base, 388                       | Hht, 25                                               |
| Fluide_dilatable_base, 388             |                                                       |
| Fluide_diphasique, 389                 | IBICGSTAB, 314                                        |
| Fluide_incompressible, 389             | Ibm_aucune, 377                                       |
| Fluide_ostwald, 390                    | Ibm_element_fluide, 377                               |
| Fluide quasi compressible 301          | Ibm gradient moyen, 378                               |

| Ibm_hybride, 378                            | Listobj_impl, 505                          |
|---------------------------------------------|--------------------------------------------|
| Ibm_power_law_tbl, 379                      | Lml_2_lata, 59                             |
| Ice, 463                                    | local, 316                                 |
| Ijk_ft_double, 28                           | Loi_analytique_scalaire, 502               |
| Ijk_grid_geometry, 346                      | Loi_ciofalo_hydr, 498                      |
| Ijk_splitting, 291                          | Loi_etat_base, 380                         |
| J = 1                                       | Loi_etat_gaz_parfait_base, 382             |
| Implicit_euler_steady_scheme, 412           | Loi_etat_gaz_reel_base, 383                |
| Implicit_steady, 464                        | Loi_etat_tppi_base, 383                    |
| Implicite, 465                              | Loi_expert_hydr, 498                       |
| Implicite_ale, 466                          | Loi_expert_scalaire, 503                   |
| Imposer_vit_bords_ale, 56                   | Loi_fermeture_base, 386                    |
| Imprimer_flux, 56                           | Loi_fermeture_test, 386                    |
| Imprimer_flux_sum, 56                       | Loi_horaire, 282, 386                      |
| Init_par_partie, 360                        | Loi_odvm, 503                              |
| Injection_qdm_nulle, 475                    | Loi_paroi_nu_impose, 504                   |
| Integrer_champ_med, 56                      | Loi_puissance_hydr, 499                    |
| Interface, 315                              | Loi_standard_hydr, 499                     |
| Interface_base, 291                         | Loi_standard_hydr_old, 499                 |
| Interface_sigma_constant, 292               | Loi_standard_hydr_scalaire, 504            |
| Internes, 64                                | Loi_ww_hydr, 500                           |
| Interpolation_champ_face_deriv, 285         | Loi_ww_scalaire, 502                       |
| Interpolation_ibm_base, 376                 | Longitudinale, 484                         |
| Interpolation_ibm_power_law_tbl_u_star, 376 | Longueur_melange, 215                      |
| Interprete, 22                              | Longueur_merange, 213                      |
| Interprete_geometrique_base, 58             | Ma, 26                                     |
| merprete_geometrique_ouse, so               | Mailler, 59                                |
| Jones_launder, 235                          | Mailler_base, 60                           |
|                                             | Maillerparallel, 64                        |
| K_epsilon, 233                              | Masse_ajoutee, 489                         |
| K_epsilon_bicephale, 229                    | Masse_multiphase, 199                      |
| K_epsilon_realisable, 237                   | Merge_med, 34                              |
| K_epsilon_realisable_bicephale, 230         | Methode_transport_deriv, 282               |
| K_omega, 189, 232                           | Metis, 404                                 |
| K_tau, 188                                  | Milieu_base, 387                           |
| Kquick, 181                                 | Milieu_composite, 506                      |
| •                                           | Milieu_musig, 505                          |
| L_melange, 188                              | Milieu_v2_base, 398                        |
| Lam_bremhorst, 234                          | Mod_turb_hyd_rans, 227                     |
| Lata_2_med, 58                              | Mod_turb_hyd_rans_bicephale, 228           |
| Lata_2_other, 58                            | Mod_turb_hyd_rans_keps, 235                |
| Launder_sharma, 235                         | Mod_turb_hyd_rans_komega, 236              |
| Leap_frog, 420                              | Mod_turb_hyd_ss_maille, 211                |
| Lineaire, 285                               | Modele_fonc_realisable, 308                |
| Link_cgns_files, 34                         | Modele_fonc_realisable_base, 308           |
| Lire_ideas, 59                              | Modele_fonction_bas_reynolds_base, 234     |
| Lire_tgrid, 75                              | Modele_rayo_semi_transp, 135               |
| List_bloc_mailler, 59                       | Modele_rayonnement_base, 398               |
| List_bord, 62                               | Modele_rayonnement_milieu_transparent, 398 |
| List_nom, 82                                | Modele_shih_zhu_lumley_vdf, 308            |
| List_nom_virgule, 296                       | Modele_turbulence_hyd_deriv, 210           |
| Liste_post, 107                             | Modele_turbulence_scal_base, 399           |
| Liste_post_ok, 105                          | Modif_bord_to_raccord, 65                  |
| Listobj, 506                                | Modifiee. 286                              |

| Modifydomaineaxi1d, 65                  | P1ncp1b, 185                                           |
|-----------------------------------------|--------------------------------------------------------|
| Mor_eqn, 176                            | Parallel_io_parameters, 37                             |
| Moyenne, 100–104, 303                   | Parametre_diffusion_implicite, 191                     |
| Moyenne_volumique, 66                   | Parametre_equation_base, 190                           |
| Multi_gaz_parfait_qc, 383               | Parametre_implicite, 190                               |
| Multi_gaz_parfait_wc, 383               | Paroi, 322                                             |
| Multiplefiles, 34                       | Paroi_adiabatique, 331                                 |
| Muscl, 182                              | Paroi_contact, 331                                     |
| Muscl3, 179                             | Paroi_contact_fictif, 332                              |
| Muscl_new, 182                          | Paroi_contact_rayo, 332                                |
| Muscl_old, 182                          | Paroi_decalee_robin, 333                               |
|                                         | Paroi_defilante, 333                                   |
| N, 315                                  | Paroi_echange_contact_correlation_vdf, 333             |
| Navier_stokes_aposteriori, 200          | Paroi_echange_contact_correlation_vef, 334             |
| Navier_stokes_ft_disc, 264              | Paroi_echange_contact_odvm_vdf, 335                    |
| Navier_stokes_phase_field, 268          | Paroi_echange_contact_rayo_semi_transp_vdf, 336        |
| Navier_stokes_qc, 260                   | Paroi_echange_contact_vdf, 336                         |
| Navier_stokes_standard, 272             | Paroi_echange_contact_vdf_ft, 336                      |
| Navier_stokes_standard_sensibility, 238 | Paroi_echange_contact_vdf_zoom_fin, 337                |
| Navier_stokes_std_ale, 240              | Paroi_echange_contact_vdf_zoom_grossier, 337           |
| Navier_stokes_turbulent, 274            | Paroi_echange_externe_impose, 337                      |
| Navier_stokes_turbulent_ale, 208        | Paroi_echange_externe_impose_h, 338                    |
| Navier_stokes_turbulent_qc, 276         | Paroi_echange_externe_impose_rayo_semi_transp, 338     |
| Navier_stokes_wc, 262                   | Paroi_echange_externe_impose_rayo_transp, 338          |
| Negligeable, 182, 184, 500              | Paroi_echange_global_impose, 339                       |
| Negligeable_scalaire, 504               |                                                        |
| Nettoiepasnoeuds, 68                    | Paroi_echange_interne_global_impose, 320               |
| Neumann, 331                            | Paroi_echange_interne_global_parfait, 321              |
| Neumann_homogene, 321                   | Paroi_echange_interne_impose, 321                      |
| Neumann_paroi, 321                      | Paroi_echange_interne_parfait, 321                     |
| Neumann_paroi_adiabatique, 322          | Paroi_fixe, 339                                        |
| Newmarktimescheme_deriv, 25             | Paroi_fixe_iso_genepi2_sans_contribution_aux_vitesses- |
| Nom, 402                                | _sommets, 339                                          |
|                                         | Paroi_flux_impose, 339                                 |
| Non, 487                                | Paroi_flux_impose_rayo_semi_transp_vdf, 340            |
| NULL, 316                               | Paroi_flux_impose_rayo_semi_transp_vef, 340            |
| Null, 227, 400                          | Paroi_flux_impose_rayo_transp, 340                     |
| Numero_elem_sur_maitre, 95              | Paroi_frottante_loi, 322                               |
| Objet_lecture, 507                      | Paroi_frottante_simple, 322                            |
| Op_conv_ef_stab_polymac_face, 35        | Paroi_ft_disc, 340                                     |
| Op_conv_ef_stab_polymac_p0_face, 35     | Paroi_ft_disc_deriv, 341                               |
|                                         | Paroi_knudsen_non_negligeable, 341                     |
| Op_conv_ef_stab_polymac_p0p1nc_elem, 35 | Paroi_rugueuse, 342                                    |
| Op_conv_ef_stab_polymac_p0p1nc_face, 35 | Paroi_tble, 500                                        |
| Optimal, 313                            | Paroi_tble_scal, 504                                   |
| Option, 186                             | Paroi_temperature_imposee, 342                         |
| Option_cgns, 35                         | Paroi_temperature_imposee_rayo_semi_transp, 342        |
| Option_interpolation, 36                | Paroi_temperature_imposee_rayo_transp, 342             |
| Option_polymac, 36                      | Partition, 69, 405                                     |
| Option_polymac_p0, 36                   | Partition_multi, 71                                    |
| Option_vdf, 69                          | Partitionneur_deriv, 403                               |
| Orientefacesbord, 69                    | Partitionneur_sous_zones, 405                          |
| Orienter_simplexes, 76                  | Pave, 60                                               |
| D1b 104                                 | Pb_avec_liste_conc, 137                                |
| P1b, 184                                | Pb_avec_passif, 138                                    |

```
Pb_base, 133
                                                   Pb_thermohydraulique_turbulent_qc, 170
Pb_conduction, 90
                                                   Pb_thermohydraulique_turbulent_scalaires_passifs, 172
Pb couple rayo semi transp, 139
                                                   Pb thermohydraulique wc, 158
Pb_couple_rayonnement, 175
                                                   Pbc_med, 173
Pb gen base, 90
                                                   Periodique, 343
Pb_hem, 117
                                                   Perte_charge_anisotrope, 482
Pb hydraulique, 139
                                                   Perte charge circulaire, 482
Pb hydraulique ale, 140
                                                   Perte charge directionnelle, 483
Pb hydraulique aposteriori, 142
                                                   Perte charge isotrope, 483
Pb hydraulique cloned concentration, 108
                                                   Perte_charge_reguliere, 483
Pb hydraulique cloned concentration turbulent, 109 Perte charge singuliere, 485
Pb hydraulique concentration, 143
                                                   Petsc, 313, 316
Pb_hydraulique_concentration_scalaires_passifs, 144 Pilote_icoco, 71
Pb_hydraulique_concentration_turbulent, 145
                                                   Piso, 467
Pb hydraulique concentration turbulent scalaires pallifis, 96
                                                   Point, 95
         146
Pb_hydraulique_list_concentration, 111
                                                   Points, 94
Pb_hydraulique_list_concentration_turbulent, 112
                                                   Polyedriser, 71
Pb_hydraulique_melange_binaire_qc, 148
                                                   Polymac, 344
Pb hydraulique melange binaire turbulent qc, 150
                                                   Polymac p0, 345
Pb_hydraulique_melange_binaire_wc, 149
                                                   Polymac_p0p1nc, 345
Pb hydraulique sensibility, 114
                                                   Porosites, 407
Pb_hydraulique_turbulent, 152
                                                   Portance_interfaciale, 475
Pb hydraulique turbulent ale, 113
                                                   Position like, 95
Pb mg, 153
                                                   Post processing, 106
Pb multiphase, 115
                                                   Post processings, 105
Pb phase field, 153
                                                   Postraitement base, 105
Pb rayo conduction, 119
                                                   Postraitement ft lata, 107
Pb_rayo_hydraulique, 120
                                                   Postraiter domaine, 72
Pb_rayo_hydraulique_turbulent, 121
                                                   Pp, 195
Pb_rayo_thermohydraulique, 122
                                                   Prandtl, 187, 400
Pb rayo thermohydraulique qc, 123
                                                   Precisiongeom, 72
Pb_rayo_thermohydraulique_turbulent, 124
                                                   Precond, 313, 316
Pb_rayo_thermohydraulique_turbulent_qc, 125
                                                   Precond_base, 408
Pb_thermohydraulique, 155
                                                   Precondsolv, 409
Pb_thermohydraulique_cloned_concentration, 126
                                                   Predefini, 303
Pb thermohydraulique cloned concentration turbulen ression, 100, 102–104
                                                   Print, 315
Pb thermohydraulique concentration, 159
                                                   Problem read generic, 174
Pb_thermohydraulique_concentration_scalaires_passif&robleme_couple, 134
                                                   Probleme ft disc gen, 175
Pb_thermohydraulique_concentration_turbulent, 161 Production_echelle_temp_taux_diss_turb, 476
Pb thermohydraulique concentration turbulent scala Presduction energie cin turb, 476
         passifs, 163
                                                   Profils thermo, 206
Pb thermohydraulique especes qc, 164
                                                   Projection ale boundary, 37
Pb_thermohydraulique_especes_turbulent_qc, 167
                                                   Puissance_thermique, 485
Pb_thermohydraulique_especes_wc, 165
                                                   Qdm multiphase, 242
Pb_thermohydraulique_list_concentration, 129
Pb_thermohydraulique_list_concentration_turbulent, Quick, 182
         130
                                                   Raccord, 63
Pb_thermohydraulique_qc, 156
                                                   Radioactive_decay, 486
Pb_thermohydraulique_scalaires_passifs, 168
                                                   Radius, 98
Pb_thermohydraulique_sensibility, 131
                                                   Raffiner anisotrope, 73
Pb thermohydraulique turbulent, 169
```

| Raffiner_isotrope, 73                           | Segmentfacesy, 97                                   |
|-------------------------------------------------|-----------------------------------------------------|
| Raffiner_isotrope_parallele, 38                 | Segmentfacesz, 98                                   |
| Read, 74                                        | Segmentpoints, 95                                   |
| Read_file, 74                                   | Sensibility, 183                                    |
| Read_file_binary, 75                            | Sets, 468                                           |
| Read_med, 38                                    | Sgdh, 188                                           |
| Read_unsupported_ascii_file_from_icem, 75       | Shih_zhu_lumley, 309                                |
| Redresser_hexaedres_vdf, 76                     | Simple, 469                                         |
| Refine_mesh, 76                                 | Simpler, 470                                        |
| Regroupebord, 76                                | Smago, 187                                          |
| Remove elem, 77                                 | Solide, 397                                         |
| Remove_invalid_internal_boundaries, 78          | Solve, 81                                           |
| Reordonner, 79                                  | Solver, 313, 317                                    |
| Reorienter_tetraedres, 79                       | Solver_moving_mesh_ale, 39                          |
| Reorienter_triangles, 79                        | Solveur, 313, 316                                   |
| Rhot_gaz_parfait_qc, 385                        | Solveur_implicite_base, 463                         |
| Rhot_gaz_reel_qc, 385                           | Solveur_lineaire_std, 471                           |
| Rk3_ft, 422                                     | Solveur_sys_base, 318                               |
| Rocalution, 317                                 | Solveur_u_p, 471                                    |
| Rotation, 80                                    | Solveur_pression, 313, 316                          |
| Rt, 183                                         | Sonde_base, 94                                      |
| Runge_kutta_ordre_2, 424                        | Sortie_libre_rho_variable, 343                      |
| Runge_kutta_ordre_2_classique, 426              | Sortie_libre_temperature_imposee_h, 343             |
| Runge_kutta_ordre_3, 428                        | Source_base, 472                                    |
| Runge_kutta_ordre_3_classique, 430              | Source_con_phase_field, 486                         |
| Runge_kutta_ordre_4_classique, 433              | Source_constituant, 488                             |
| •                                               |                                                     |
| Runge_kutta_ordre_4_classique_3_8, 435          | Source_constituant_vortex, 476                      |
| Runge_kutta_ordre_4_d3p, 431                    | Source_dissipation_echelle_temp_taux_diss_turb, 477 |
| Runge_kutta_rationnel_ordre_2, 437              | Source_generique, 488                               |
| Saturation_base, 292                            | Source_pdf, 489                                     |
| Saturation_constant, 292                        | Source_pdf_base, 490                                |
| Saturation_constant, 292 Saturation_sodium, 293 | Source_qdm, 491                                     |
|                                                 | Source_qdm_lambdaup, 491                            |
| Scalaire_impose_paroi, 343                      | Source_qdm_phase_field, 491                         |
| Scatter, 80                                     | Source_rayo_semi_transp, 492                        |
| Scattermed, 81                                  | Source_robin, 492                                   |
| Sch_cn_ex_iteratif, 414                         | Source_robin_scalaire, 492                          |
| Sch_cn_iteratif, 416                            | Source_th_tdivu, 493                                |
| Schema_adams_bashforth_order_2, 439             | Source_transport_eps, 493                           |
| Schema_adams_bashforth_order_3, 441             | Source_transport_k, 493                             |
| Schema_adams_moulton_order_2, 443               | Source_transport_k_eps, 494                         |
| Schema_adams_moulton_order_3, 445               | Source_transport_k_eps_aniso_concen, 494            |
| Schema_backward_differentiation_order_2, 448    | Source_transport_k_eps_aniso_therm_concen, 494      |
| Schema_backward_differentiation_order_3, 450    | Source_transport_k_eps_anisotherme, 477             |
| Schema_euler_explicite_ale, 461                 | Sources, 190                                        |
| Schema_implicite_base, 455                      | Sous_dom, 405                                       |
| Schema_phase_field, 457                         | Sous_maille, 226                                    |
| Schema_predictor_corrector, 459                 | Sous_maille_1elt, 219                               |
| Schema_temps_base, 410                          | Sous_maille_1elt_selectif_mod, 220                  |
| Scheme_euler_explicit, 418                      | Sous_maille_axi, 221                                |
| Scheme_euler_implicit, 453                      | Sous_maille_dyn, 402                                |
| Schmidt, 401                                    | Sous_maille_selectif, 218                           |
| Segment, 96                                     | Sous_maille_selectif_mod, 216                       |
| Segmentfacesx, 97                               | Sous_maille_smago, 214                              |

| Sous_maille_smago_dyn, 223                          | Transport_marqueur_ft, 289                      |
|-----------------------------------------------------|-------------------------------------------------|
| Sous_maille_smago_filtre, 222                       | Transversale, 484                               |
| Sous_maille_wale, 213                               | Travail_pression, 496                           |
| Sous_zone, 496                                      | Trianguler, 87                                  |
| Sous_zones, 406                                     | Trianguler_fin, 87                              |
| Spai, 316                                           | Trianguler_h, 88                                |
| Spec_pdcr_base, 484                                 | Triple_line_model_ft_disc, 293                  |
| SSOR, 316, 317                                      | Turbulence_paroi_base, 498                      |
| Ssor, 409                                           | Turbulence_paroi_scalaire_base, 502             |
| Ssor_bloc, 409                                      | Turbulente, 186                                 |
| Stab, 185                                           | type, 100, 102–104, 315, 316                    |
| Standard, 185, 286                                  | Type_diffusion_turbulente_multiphase_deriv, 187 |
| Standard_keps, 234                                  | Type_indic_faces_deriv, 285                     |
| Stat_per_proc_perf_log, 81                          | Type_perte_charge_deriv, 473                    |
| Stat_post_deriv, 101                                | Type_perte_enarge_derry, 775                    |
| Statistiques, 100, 103, 104                         | Uniform_field, 360                              |
| Statistiques_en_serie, 103, 104                     | Union, 407                                      |
| Supg, 183                                           | Utau_imp, 502                                   |
| Supprime_bord, 81                                   |                                                 |
| Symetrie, 341, 344                                  | Valeur_totale_sur_volume, 361                   |
| System, 82                                          | Vdf, 345                                        |
| Systeme_naire_deriv, 487                            | Vect_nom, 89                                    |
| Systeme_name_denv, 467                              | Vef, 345                                        |
| T_deb, 101                                          | Verifier_qualite_raffinements, 88               |
| T_fin, 101                                          | Verifier_simplexes, 89                          |
| Taux_dissipation_turbulent, 243                     | Verifiercoin, 89                                |
| Tayl_green, 360                                     | Vitesse, 100, 102–104                           |
| Temperature, 100, 102–104, 203                      | Vitesse_derive_base, 496                        |
| Temperature_imposee_paroi, 344                      | Vitesse_imposee, 282                            |
| Tenseur_reynolds_externe, 189, 495                  | Vitesse_interpolee, 283                         |
| Terme_dissipation_energie_cinetique_turbulente, 477 |                                                 |
|                                                     | Volume, 96                                      |
| Terme_puissance_thermique_echange_impose, 495       | volume, 70                                      |
| Test_solveur, 82                                    | Wale, 187                                       |
| Test_sse_kernels, 39                                | Write_med, 27                                   |
| Testeur, 83                                         |                                                 |
| Testeur_medcoupling, 83                             | xyz, 20                                         |
| Tetraedriser, 83                                    | • /                                             |
| Tetraedriser_homogene, 83                           |                                                 |
| Tetraedriser_homogene_compact, 84                   |                                                 |
| Tetraedriser_homogene_fin, 85                       |                                                 |
| Tetraedriser_par_prisme, 85                         |                                                 |
| Thermique, 34                                       |                                                 |
| Thi, 205                                            |                                                 |
| Thi_thermo, 205                                     |                                                 |
| Trainee, 493                                        |                                                 |
| Traitement_particulier_base, 203                    |                                                 |
| Tranche, 406                                        |                                                 |
| Transformer, 87                                     |                                                 |
| Transport_epsilon, 278                              |                                                 |
| Transport_interfaces_ft_disc, 279                   |                                                 |
| Transport_k, 286                                    |                                                 |
| Transport_k_eps_realisable, 244                     |                                                 |
| Transport_k_epsilon, 287                            |                                                 |
| Transport_k_omega, 288                              |                                                 |