HOJA DE EJERCICIOS 9 Análisis Matemático (Grupo 130) CURSO 2021–2022.

<u>Problema</u> 1. Para cada uno de los siguientes campos de velocidades en el plano, halla los caminos integrales y las transformaciones de flujo. Dibuja el retrato de fase.

$$(1,y)$$
 , $(1,x)$, (x,x^2) , (x,y) , $(x,-y)$, $(y,-x)$.

<u>Problema</u> 2. Determina el valor de la constante c para que el campo sea un gradiente. Con ese valor de c, halla un potencial escalar para el campo.

<u>Problema</u> 3. Determina el valor de la constante c para que el siguiente campo en \mathbb{R}^3 sea un rotacional. Con ese valor de c, halla un potencial vector.

$$(y \operatorname{sen}(yz), x^2y + z, 3y^2 + cx^2z)$$
.

Problema 4. Halla un potencial vector para cada uno de los campos siguientes.

$$(2, x - e^x, 3x^2y - 2y)$$
 , (yz, xz, xy) .

Problema 5. Demuestra las siguientes identidades:

$$\begin{array}{rcl} \mathbf{rot} \, \nabla f & \equiv & \mathbf{0} \; , \\ \operatorname{div} \, \mathbf{rot} \, G & \equiv & 0 \; , \\ \operatorname{div} \, (f \, F) & = & \nabla f \cdot F + f \operatorname{div} F \; , \\ \mathbf{rot} \, (f \, F) & = & \nabla f \times F + f \operatorname{rot} F \; , \\ \operatorname{div} \, (F \times G) & = & (\operatorname{rot} F) \cdot G - F \cdot \operatorname{rot} G \; , \\ \mathbf{rot} \, \mathbf{rot} \, F & = & \nabla \operatorname{div} F - \Delta F \; . \end{array}$$

<u>Problema</u> 6. Sea $n \geq 2$. Consideramos el **radio esférico** $\rho \stackrel{\text{def}}{=} \sqrt{x_1^2 + \dots + x_n^2}$. Halla una constante α tal que el siguiente campo en $\mathbb{R}^n \setminus \{\mathbf{0}\}$

$$\rho^{\alpha} \nabla \rho$$
,

tenga divergencia idénticamente nula.

Problema 7. En $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ consideramos el "campo gravitatorio" $F \equiv \rho^{-2} \nabla \rho$.

a) Haz un dibujo de los abiertos siguientes

$$U_1 = \mathbb{R}^3 \setminus (\{(0,0)\} \times [0,+\infty))$$
, $U_2 = \mathbb{R}^3 \setminus (\{(0,0)\} \times (-\infty,0])$.

b) Para j = 1, 2, comprueba que el campo G_j está definido en U_j y es un potencial vector para $F|_{U_i}$:

$$G_1 = \frac{(y, -x, 0)}{\rho(\rho - z)}$$
 , $G_2 = \frac{(-y, x, 0)}{\rho(\rho + z)}$.

¿Coinciden G_1 y G_2 en $U_1 \cap U_2$?