

Motion Class 7

SfM Motion

Structure from Motion (SFM)

- Assumptions:
 - A set of images
 - Uncalibrated
- Applications:
 - Recover the camera locations
 - Photo Tourism
 - Improve robustness

Application: Photo Tourism Overview

Scene reconstruction

Relative camera positions and orientations

Point cloud

Sparse correspondence

Photo Tourism: Exploring Photo Collections in 3D,

Snavely, Seitz, Szeliski

Slide by Seitz

SFM

- Given a set of m images with n corresponding points $\{\tilde{p}_{ij}\}$:
 - $\{M_i\}$ the set of unknown camera projections
 - $\{P_i\}$ the set of unknown 3D points
 - $\tilde{p}_{ij} = M_i \tilde{P}_j$
- Goal: find $\{M_i\}$ and $\{P_j\}$

SFM - Observations

- $\tilde{p}_{ij} = M_i \tilde{P}_j$
- Given $\{P_j\}$ we can compute $\{M_i\}$
- Given $\{M_i\}$ we can compute $\{P_i\}$
- Ambiguity: if $\{P_j\}$ and $\{M_i\}$ is a solution, then for any full rank 4×4 array A, $\{A^{-1}P_j\}$ and $\{M_iA\}$ are also a solution
 - $\tilde{p}_{ij} = M_i \tilde{P}_j = M_i A A^{-1} \tilde{P}_j$

Photo Tourism Overview

Scene reconstruction

Scene Reconstruction

• Estimate $\{M_i\}$ and $\{P_i\}$

Slide by Seitz

Feature Detection

Detect features using SIFT [Lowe, IJCV 2004]

Slide by Seitz

Feature Detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature Detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature Matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987] to estimate fundamental matrices between pairs

Incremental SFM

Trevi Fountain, Rome

Incremental SFM

Perspective Projection: Incremental SFM

Incremental SFM

Given $\{P_i\}$ compute $\{M_i\}$ Siven $\{M_i\}$ compute $\{P_i\}$

Incremental SFM

Given $\{P_i\}$ compute $\{M_i\}$ Siven $\{M_i\}$ compute $\{P_i\}$

Photo Explorer

Challenges & Limitations

- A heuristic algorithm- not necessarily an optimal solution
- Which order to use the images?
- How it affects the results?
- Efficiency

Affine Structure from Motion

The Problem: Reconstruct scene geometry and camera parameters from two or more images

Assumptions:

Known correspondence

Only approximation of perspective

Orthographic projection

Advantage: Closed form solution

Affine SfM

Orthographic Projection

When the object is far relative to its local depth

Orthographic Projection

When the object is far relative to its local depth

Paraperspective Projection

Orthographic + scaling s

$$p_{x} = \mathbf{S}P_{x}$$

$$p_y = \mathbf{S}P_y$$

s is fixed for the whole image

Orthographic+ Scale Projection

- Let P be an object point and p be an image point then p = proj(sR(P T)), where
 - R is a 3x3 rotation matrix
 - s is a scale factor
 - T is a translation vector
 - M = proj(sR)
- In this case p = MP b, where b = proj(RT)
 - *M* is a 2x3 matrix

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \Rightarrow M = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \end{pmatrix}$$

Get Rid from Translation

- Let p_{i0} be the projection of the object point P_0 in image i
- Translate all image points of image i: $q_{ij} \rightarrow p_{ij}$ - p_{i0}
- We now have $q_{ij} = M_j P_j$

Tomasi - Kanade

- A factorization algorithm to solve SFM
- Based on SVD

Reference:

- Forsyth and Ponce book: Section 14.3
- Carlo Tomasi and Takeo Kanade, "Shape and motion from image streams under orthography: a factorization method," *International Journal of Computer Vision*, 9(2):137-154, November 1992.

Reprinted from Tomasi and Kanade 1992

Set Up

- *n* unknown object points, $\{P_j\}$
 - 3n unknowns
- m unknown cameras, $\{M_i\}$
 - 6m unknowns
- mn known images of the object points $p_{ij} = M_i P_j$
 - 2mn equations non-linear!

Ambiguity

- Let M_i and P_j be a solution to $q_{ij} = M_i P_j$
- Let A be a non singular 3x3 matrix (affine transformation)
- $M_i A$ and $A^{-1} P_j$ is also a solution $q_{ij} = M_i P_j = (M_i A)(A^{-1} P_j)$

Using Matrix Notation

• Consider the set of projection of a point P_j into m images: $q_{ij} = M_i P_j$

$$Q_j = \widehat{M}P_j$$

Consider *n* points P_i

$$Q_j = \widehat{M}P_j \qquad \longrightarrow \qquad \widehat{Q} = \widehat{M}\widehat{P}$$

where

$$\begin{bmatrix}
Q_1 & Q_2 & \cdots & Q_n \\
Q_1 & Q_2 & \cdots & Q_n
\end{bmatrix} = \widehat{M} \begin{bmatrix}
P_1 & P_2 & \cdots & P_n \\
P_1 & \widehat{P} & \widehat{P} & \cdots & \widehat{P} & \cdots & \widehat{P}
\end{bmatrix}$$

$$2m \times n \qquad 2m \times 3 \qquad 3 \times n$$

Ambiguity
$$\hat{Q} = (\hat{M}A)(A^{-1}\hat{P})$$

SVD: Singular Value Decomposition

Let A be an $k \times l$ matrix with $A = UDV^T$ where:

- U is an $k \times k$ column orthonormal matrix $U^TU=I$
- D is a diagonal matrix, $k \times l$
- V is an $l \times l$ orthonormal matrix $V^T V = I$

SVD: properties

- The columns of U_r are the eigenvectors of AA^T
- The columns of V, are the eigenvectors of A^TA
- The elements of D_r are the square roots of A^TA eigenvalues (singular values)
 - Which are the same as the square roots of and AA^T
- The singular values appear in decreasing order

Now What?

$$\hat{Q} = M\hat{P}$$

- What is the max rank of Q?
- What is the max rank of U, D, V?

$$\left(\boxed{Q_1} \boxed{Q_2} \cdots \boxed{Q_n} \right) = \widehat{M} \left(\boxed{P_1} \boxed{P_2} \cdots \boxed{P_n} \right) = UDV^T$$

$$2m \times n$$

- U col. eig. vec. AA^T
- V col. eig. vec. A^TA
- D: sqrt eig. Val A^TA

The Algorithm

$$\hat{Q} = M\hat{P}$$

- Compute SVD: Q=UDV^T
- Compute U₃, V₃ and D₃
- $M_0 = U_3$ and $P_0 = D_3 V_3^T$
- M₀ is the camera motion estimation (6m parameters)
- P₀ is the 3D point estimation
 (3n parameters)

Questions

- Can we choose a rigid solution?
- What are the assumptions we made about the objects in the scene?
- How can we solve the ambiguity?
- How correspondence outliers expect to affect the algorithm?

Summary - Geometry

- Projection models:
 - Perspective
 - Weak perspective
- Tasks:
 - 3D reconstructions
 - Homography
 - SFM

- Algebra:
 - Projective geometry
 - Homography
 - Epipolar geometry
- Outlier removal:
 - RANSAC

Motion Anlysis

A Sequence of Images

- Tracking
- Ego motion
- Segmentation
- 3D shape
- Object motion:
 - Gesture recognition
 - Action recognition
 - Gait recognition

Possible Setups

- Still Camera
 - Single moving object
 - Several moving object
- Moving Camera:
 - Still scene
 - One or more moving objects
- Many cameras...

Typical Quetions

- Segmentation:
 - The region of each moving object
 - How many moving objects are there?
- Object motion:
 - Direction in 2D/3D
 - Speed
- Ego motion recovery
- Rigidity?

Segmentation

Taken from http://www.cquest.utoronto.ca/psych/psy280f/ch8/rdc.html

http://www.cquest.utoronto.ca/psych/psy280f/ch8/archieMove.html

Feature Correspondence and Perception

Correspondence

- Perceived motion
- Which point in image I_t corresponds to which point in image I_{t+1}?

Distance

Global movement

Taken from http://www-psy.ucsd.edu/~sanstis/motion.html

Shape similarity

Taken from http://www.cquest.utoronto.ca/psych/psy280f/ch8/amTiming.html

Motion Estimation Direction

Where are the moving regions moving to?

Existing Approaches for Motion Estimation

- Correlation based
- Feature based
- Gradient based

We focus here

Optical Flow

- Pixel motion between consecutive frames:
 - Caused by camera or object motion
- Introduced by <u>James J. Gibson</u> 1940

Optical Flow

For each pixel, a velocity vector (u,v)

Forward Translation & Focus of Expansion [Gibson, 1950]

What is Moving and How?

Barber Pole

demo

Optical Flow: Gradient Based

Assumptions:

- The movement is small
- Brightness constancy assumption (BCA):
 - The intensity of a given object point does not change between frames
 - I(x + dx, y + dy, t + dt) = I(x, y, t)

Ambiguity

- I(x + dx, y + dy, t + dt) = I(x, y, t)
- Brightness constancy assumption: insufficient!

Resolve Ambiguity

Local constraint

Assume constant motion in a small local

Global constraints - later today

Solution of Ambiguity

Local constraint

Assume constant motion in a small local

window

- How to use local constraint?
 - Naïve search: expensive!

Next

Gradient Based method

Gradient Based Method

- Relates spatial and temporal gradients
- Assumptions:
 - First order approximation of the flow: u(p) and v(p) are small
 - u(p) and v(p) are constant (or smooth) in a small neighborhood of p

An under-determined problem (aperture Problem)

Optical Flow Equation

Which assumption we used?

• Taylor Series for a pixel $p = (p_x, p_y)$

$$\begin{split} &I\big(p_x + dx, p_y + dy, t + dt\big) \\ &= I\big(p_x, p_y, t\big) + \frac{\partial I}{\partial x}(p)dx + \frac{\partial I}{\partial y}(p)dy + \frac{\partial I}{\partial t}(p)dt + \dots \end{split}$$

Brightness constancy assumption:

$$I(p_x + dx, p_y + dy, t + dt) = I(p_x, p_y, t)$$

$$\frac{\partial I}{\partial x}(p)dx + \frac{\partial I}{\partial y}(p)dy + \frac{\partial I}{\partial t}(p)dt = 0$$

• Notation:
$$I_x(p)dx + I_y(p)dy = -I_t(p)dt$$

Lucas-Kanade Algorithm

- Optical flow computation
- Gradient based algorithm

Optical Flow Equation

- We can compute: $I_x(p)$, $I_y(p)$, $I_t(p)$
 - $I_x(p)dx + I_y(p)dy = -I_t(p)dt$
- Divide by dt
 - $I_{x}(p)\frac{dx}{dt} + I_{y}(p)\frac{dy}{dt} = -I_{t}(p)$
- Matrix notation: $\left(I_x(p), I_y(p)\right) {u(p) \choose v(p)} = -I_t(p)$
- We search for (v(p), u(p))

Local Constant Flow

• For each p_i we have:

$$\left(I_x(p_i), I_y(p_i)\right) \binom{u(p_i)}{v(p_i)} = -I_t(p_i)$$

- Let $w(p_0)$ be a small patch around p_0
- Assume constant motion $\forall p_i \in w(p_0)$:

$$\begin{pmatrix} I_{x}(p_{1}), I_{y}(p_{1}) \\ I_{x}(p_{2}), I_{y}(p_{2}) \\ I_{x}(p_{3}), I_{y}(p_{3}) \end{pmatrix} \begin{pmatrix} u(p_{0}) \\ v(p_{0}) \end{pmatrix} = - \begin{pmatrix} I_{t}(p_{1}) \\ I_{t}(p_{2}) \\ \vdots \\ I_{t}(p_{k}) \end{pmatrix}$$

Local Constant Flow

Let $p_1 ... p_k \in w(p_0)$:

$$\begin{pmatrix} I_{x}(p_{1}) & I_{y}(p_{1}) \\ I_{x}(p_{2}) & I_{y}(p_{2}) \\ I_{x}(p_{k}) & I_{y}(p_{k}) \end{pmatrix} \begin{pmatrix} u(p_{0}) \\ v(p_{0}) \end{pmatrix} = -\begin{pmatrix} I_{t}(p_{1}) \\ I_{t}(p_{2}) \\ I_{t}(p_{k}) \end{pmatrix}$$
Is there a problem?

That is: $A \begin{pmatrix} u(p_0) \\ v(p_0) \end{pmatrix} = b$ $\longrightarrow \begin{pmatrix} u(p_0) \\ v(p_0) \end{pmatrix} = A^+b$

$$\qquad \qquad \begin{pmatrix} u(p_0) \\ v(p_0) \end{pmatrix} = A^+ b$$

$$A^{+} = (A^{T}A)^{-1}A^{T}$$

Cases

$$A \begin{pmatrix} u(\boldsymbol{p_0}) \\ v(\boldsymbol{p_0}) \end{pmatrix} = b \qquad \longrightarrow \qquad A^T A \begin{pmatrix} u(\boldsymbol{p_0}) \\ v(\boldsymbol{p_0}) \end{pmatrix} = A^T b$$

Let
$$C = A^T A = \begin{pmatrix} \sum I_x^2(p_i) & \sum I_x(p_i)I_y(p_i) \\ \sum I_x(p_i)I_y(p_i) & \sum I_y^2(p_i) \end{pmatrix}$$

- rank(C) = 0 blank wall problem
- rank(C) = 1 aperture problem
- rank(C) = 2 enough texture

ı

Algebra: definition of C

•
$$A = \begin{pmatrix} I_x(p_1) & I_y(p_1) \\ I_x(p_2) & I_y(p_2) \\ \vdots \\ I_x(p_k) & I_y(p_k) \end{pmatrix}$$

$$A^T A = \begin{pmatrix} I_x(p_1) & I_x(p_2) \dots I_x(p_k) \\ I_y(p_1) & I_y(p_2) \dots I_y(p_k) \end{pmatrix} \begin{pmatrix} I_x(p_1) & I_y(p_1) \\ I_x(p_2) & I_y(p_2) \\ \vdots \\ I_x(p_k) & I_y(p_k) \end{pmatrix}$$

$$= \begin{pmatrix} \sum I_x^2(p_i) & \sum I_x(p_i)I_y(p_i) \\ \sum I_x(p_i)I_y(p_i) & \sum I_x^2(p_i) \end{pmatrix}$$

The Algorithm

- Smooth the image in the special domain
- Smooth the image in the temporal domain (not always necessary)
- For each pixel, p_0 :
 - Compute $A(p_0)$, $b(p_0)$, and $C(p_0)$
 - If $rank(C(p_0)) = 2$, compute $u(p_0)$ and $v(p_0)$ by: $\binom{u(p_0)}{v(p_0)} = A^+b$

Modification

• Replace Σ in $C(p_0) = \begin{pmatrix} \sum I_x^2(p_i) & \sum I_x(p_i)I_y(p_i) \\ \sum I_x(p_i)I_y(p_i) & \sum I_y^2(p_i) \end{pmatrix}$ $p_i \in w(p_0)$

by Convolution with Gaussian:

•
$$E.g.$$
, $\sum I_x^2(p_i) \longrightarrow (G * I_x^2)(p_0)$

 $(G * I_x^2)$ is a matrix

$$C(p_0) = \begin{pmatrix} (G * I_x^2)(p_0) & (G * I_x I_y)(p_0) \\ (G * I_x I_y)(p_0) & (G * I_y^2)(p_0) \end{pmatrix}$$

What can go wrong?

- Brightness constancy is **not** satisfied
- The motion is **not** small
- The motion is **not** translation
- A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Next

- Dealing with large motion
 - Use a pyramid of OF
- More general motion:
 - Affine rather than just translation
- Global solutions