Sustainable Optimization of the Electricity System

Leibniz Universität Hannover

Jan Malte Töpperwien, Peer Bastian Duensing

Poster Presentation in context of Reinforcement Learning Lecture

1 Summary

- Agent chooses supply technologies
- Model rewarded by minimizing costs (LCOE) and stabilizing system

Currently (2022):

Agent:

3 Approach

Actions

 Building and dismantling production and storage

Observations

- State of production and storage
- Current power consumption

Reward

- Negative balance loss L^b (MSE)
- Cost loss L^C (MSE)
- Carbon cost (€)
- Production cost (€)
- Storage cost (€)

$$L = \alpha \cdot L^b + \beta \cdot L^c$$

$$R_n = L_n - L_{n-1}$$

5 Future Works

- Power control of plants
- Delays for building and controlling
- International power trade
- Locality in electricity grid
- Limits of production per technology

Motivation & Problem Setting

- Current carbon emissions too high
- Electricity supply major contributor to climate change
- Renewable energies fluctuate significantly
- Let RL agent manage power supply composition

Balance of produced and consumed electricity

Storage capacity and utilization

1e6

- Overproduction to compensate renewable fluctuation
- Still power shortages
- Storage is key for a sustainable and reliable system
- Weather conditions across Germany are similar
- Distributed system cannot compensate