Лабораторная работа №7

Решение системы обыкновенных дифференциальных уравнений методом Рунге-Кутты 4 порядка

Цель работы Изучить и применить методы Рунге-Кутты 4 порядка для решения системы обыкновенных дифференциальных уравнений

Теоретическая часть

Рассмотрим задачу Коши для одного дифференциального уравнения первого порядка

$$\frac{du}{dt} = f(t, u(t)), \qquad u\big|_{t=t_0} = u_0.$$

Для численного решения этого уравнения зададим сетку $\{t_k = t_0 + k\tau, \ k = 0,1,...,N\}$ с постоянным шагом τ . На этой сетке определим сеточные функции $y_k = u(t_k), \ f_k = f(t_k,u_k)$.

Метод Рунге-Кутта позволяет строить схемы различного порядка точности. Наиболее известной и широко используемой на практике является схема Рунге-Кутта четвертого порядка точности:

$$k_{1} = f(t_{n}, y_{n})$$

$$k_{2} = f\left(t_{n} + \frac{\tau}{2}, y_{n} + \frac{\tau}{2}k_{1}\right)$$

$$k_{3} = f\left(t_{n} + \frac{\tau}{2}, y_{n} + \frac{\tau}{2}k_{2}\right)$$

$$k_{4} = f\left(t_{n} + \tau, y_{n} + \tau k_{3}\right)$$

$$y_{n+1} = y_{n} + \frac{\tau}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}).$$

Численный метод Эйлера

$$y_{n+1} = y_n + \tau f(t_n, y_n)$$

является частным вариантом метода Рунге-Кутта первого порядка точности.

Метод Рунге-Кутта легко обобщается на системы уравнений путем формальной замены скалярных величин u, f(t,u) на векторы \mathbf{u} , $\mathbf{f}(t,\mathbf{u})$. Для системы уравнений

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}(t)), \quad \mathbf{u} = (u_1, u_2, \dots, u_m)^T, \quad \mathbf{f} = (f_1, f_2, \dots, f_m)^T$$

расчетные формулы имеют вид:

$$\mathbf{k}_{1} = \mathbf{f}(t_{n}, \mathbf{y}_{n})$$

$$\mathbf{k}_{2} = \mathbf{f}\left(t_{n} + \frac{\tau}{2}, \mathbf{y}_{n} + \frac{\tau}{2}\mathbf{k}_{1}\right)$$

$$\mathbf{k}_{3} = \mathbf{f}\left(t_{n} + \frac{\tau}{2}, \mathbf{y}_{n} + \frac{\tau}{2}\mathbf{k}_{2}\right)$$

$$\mathbf{k}_{4} = \mathbf{f}(t_{n} + \tau, \mathbf{y}_{n} + \tau\mathbf{k}_{3})$$

$$\mathbf{y}_{n+1} = \mathbf{y}_{n} + \frac{\tau}{6}(\mathbf{k}_{1} + 2\mathbf{k}_{2} + 2\mathbf{k}_{3} + \mathbf{k}_{4})$$

В частности, для системы двух дифференциальных уравнений

$$\begin{cases} \frac{du}{dt} = f(t, u(t), v(t)) \\ \frac{dv}{dt} = g(t, u(t), v(t)) \end{cases}$$

развернутая запись формул схемы Рунге-Кутта имеет вид:

$$k_{1} = f(t_{n}, y_{n}, z_{n}), \qquad q_{1} = g(t_{n}, y_{n}, z_{n}),$$

$$k_{2} = f\left(t_{n} + \frac{\tau}{2}, y_{n} + \frac{\tau}{2}k_{1}, z_{n} + \frac{\tau}{2}q_{1}\right), \qquad q_{2} = g\left(t_{n} + \frac{\tau}{2}, y_{n} + \frac{\tau}{2}k_{1}, z_{n} + \frac{\tau}{2}q_{1}\right),$$

$$k_{3} = f\left(t_{n} + \frac{\tau}{2}, y_{n} + \frac{\tau}{2}k_{2}, z_{n} + \frac{\tau}{2}q_{2}\right), \qquad q_{3} = g\left(t_{n} + \frac{\tau}{2}, y_{n} + \frac{\tau}{2}k_{2}, z_{n} + \frac{\tau}{2}q_{2}\right),$$

$$k_{4} = f(t_{n} + \tau, y_{n} + \tau k_{3}, z_{n} + \tau q_{3}), \qquad q_{4} = g(t_{n} + \tau, y_{n} + \tau k_{3}, z_{n} + \tau q_{3}),$$

$$y_{n+1} = y_{n} + \frac{\tau}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}), \qquad z_{n+1} = z_{n} + \frac{\tau}{6}(q_{1} + 2q_{2} + 2q_{3} + q_{4})$$

Здесь через y, z обозначены приближенные сеточные функции, соответствующие функциям u(t), v(t) соответственно.

Шаг интегрирования в методах Эйлера и Рунге-Кутта следует выбирать достаточно малым, чтобы обеспечить устойчивость и требуемую точность расчета.

Априорные оценки точности для выбора шага τ на деле не используются по следующим причинам. Во-первых, они чрезвычайно громоздки и включают производные, которые до начала расчета не известны, во- вторых, эти оценки являются мажорантными и могут во много раз превосходить фактическую ошибку расчета.

Поэтому основным практическим приемом является апостериорная оценка точности. Для ее получения расчет проводят на двух сетках с шагом τ и $k\tau$, k > 1, затем применяют правило Рунге. Если численные решения на двух сетках обозначить через $y(t;\tau)$ и $y(t;k\tau)$, то погрешность решения на сетке с меньшим шагом оценивается по формуле

$$\delta(t;\tau) \approx \frac{y(t;\tau) - y(t;k\tau)}{k^p - 1}$$
,

где p - порядок точности схемы.

Задание

- 1. Согласно своему варианту (приложение 1) решить систему дифференциальных уравнений методом Рунге-Кутты четвёртого порядка и методом Эйлера. Требуемая точность 0,001.
- 2. Определите функции, входящие в правую часть системы уравнений.
- 3. Задайте исходные данные для решения задачи Коши.
- 4. Используя ранжированные переменные, составьте программу численного решения задачи Коши методом Рунге-Кутта и методом Эйлера.
- 5. Вычислите решение методами Рунге-Кутта и Эйлера.
- 6. Сравните полученные решения, изобразив их на одном графике.

Приложение 1.

приложение 1.	
Вариант 1	Вариант 2
$y' - \frac{y}{x+1} = e^x(x+1), y(0) = 1,$	$xy'-2y=x^3$, $y(1)=1$, $x \in [1;1,6]$.
$x \in [0;1,8].$	
Вариант 3	Вариант 4
$(1+x^2)y'-y=1, y(0)=1,$	$y'-y=e^{2x}, y(0)=0,$
$x \in [0;0,55].$	$x \in [0;0,55].$
Вариант 5	Вариант 6
$y' + y\cos x = \sin x\cos x,$	$y' = e^{2x} + y, y(0) = 0,$
$y(0)=1, x \in [0;0,6].$	$x \in [0;1,2]$.
Вариант 7	Вариант 8
xy' + y = 3, y(1) = 0,	y' + y = 3x - 2, $y(1) = 1$,
$x \in [1;1,55]$.	$x \in [1;1,65]$.
Вариант 9	Вариант 10
_	
$y' + \frac{y}{x} = \frac{\cos x}{x}, y\left(\frac{\pi}{2}\right) = 1,$	$y' + y \operatorname{tg} x = \cos^2 x, \ y \left(\frac{\pi}{4}\right) = \frac{1}{2},$
$x \in \left[\frac{\pi}{2}; \pi\right].$	$x \in \left[\frac{\pi}{4}; \frac{5\pi}{6}\right].$
Вариант 11	Вариант 12
$xy' + y = \sqrt{x}, y(1) = 1,$	$y' + 2xy = xe^{-x^2}, y(0) = 1,$
$x \in [1;1,7]$.	$x \in [0;0,6].$

Вариант 13	Вариант 14
$y' - y$ ctg $x = 2x \sin x$, $y\left(\frac{\pi}{2}\right) = 0$,	$y' + \frac{y}{x} = \sin x, \ y(\pi) = \frac{1}{\pi},$
$x \in \left[\frac{\pi}{2}; \frac{3\pi}{4}\right].$	$x \in \left[\pi; \frac{3\pi}{2}\right].$
Вариант 15	Вариант 16
$y' + y = 3\left(x - \frac{2}{3}\right), y(1) = 1,$	$y' - \frac{y}{x} = x^2$, $y(1) = 0$, $x \in [1;1,55]$.
$x \in [1;1,6].$	
Вариант 17	Вариант18
$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, y(0) = \frac{2}{3}$	$y' + \frac{y}{2x} = x^2, y(1) = 1, x \in [1; 2, 5].$
$x \in [0;1,6].$	
Вариант 19	Вариант 20
$(x+2)y'+y=x^3, y(1)=2,$	$y' + 3x^2y = x^3e^{-x^3}, y(0) = 1,$
$x \in [1;2,3].$	$x \in [0;0,7].$
Вариант 21	Вариант 22
$y' - \frac{y}{x+2} = x^2 + 2x, y(-1) = \frac{3}{2}$	$y'-y=1-e^x$, $y(1)=1$,
	$x \in [1;1,6].$
$x \in [-1;0].$	
Вариант 23	Вариант 24
$xy'=e^x-y, y(1)=e,$	$xy' + (x+1)y = 3x^2e^{-x}, y(1) = 0,$
$x \in [1;2,3].$	$x \in [1;1,8]$.
Вариант 25	Вариант 26
$y' + \frac{y}{x} = \frac{\sin 2x}{x}, y(1) = 0,$	$y' - \frac{2y}{x} = 1 + \frac{1}{x}, y(1) = 1,$
$x \in [1;1,55]$.	$x \in [1; 2, 4]$.