Exploratory Data Analysis (EDA) Report

1. Project & Data Overview

• Dataset Name: Loan Approval Prediction Dataset

• ML Task: Binary Classification (Predicting Loan_Status).

Total Observations: 614

Total Features): 13

2. Data Quality & Missing Values

• Crucial Finding: There are NO missing values in the dataset.

 Action for ML Engineer: This is ideal. No imputation step is required. The data is clean in terms of completeness.

3. Target Variable Analysis

Target Variable: Loan_Status

Distribution:

Y (Approved): 68.73%

N (Denied): 31.27%

- ML Impact: The target variable exhibits a mild class imbalance (roughly 2:1 ratio).
 - Recommendation:
 - Standard classification algorithms (e.g., Logistic Regression, Tree-based models) should perform reasonably well, but the imbalance must be monitored.
 - Evaluation Metrics must prioritize F1 score and AUC-ROC over simple Accuracy.
 - If initial models struggle, consider techniques like SMOTE (Oversampling) or adjusting class weights (e.g., in XGBoost/Random Forest).

4. Numerical Feature Analysis (Outliers & Skewness)

The summary statistics indicate potential issues with skewness and outliers in the income features, typical for financial data.

Feature	Min	Max	Mean	75th Percentile	Observation
ApplicantIncome	150	10171	4617	5795	High Range/Outliers: Max (10171) is significantly higher than the 75th percentile (5795), suggesting a right skew and potential outliers (high-income applicants).
CoapplicantIncome	0	5743	1420	2297	Zero Values: The 25th percentile is 0.00, indicating a substantial number of applications where the applicant has no co applicant income.
LoanAmount	9	262	137	165	Skewness: The Max (262) is distant from the 75th percentile (165), suggesting some larger loans act as outliers.

ML Preprocessing Recommendation:

- 1. Transformation: Apply a Log Transformation to ApplicantIncome,
 CoapplicantIncome (handle 0.0 values first, e.g., log(1+X), and LoanAmount to
 normalize the distributions and mitigate the impact of outliers.
- 2. Feature Engineering: Create a single, more stable predictor: Total_Income = ApplicantIncome + CoapplicantIncome.

The relationship between Credit_History and Loan_Status is extremely strong and highly critical for modeling.

Credit_History	Denied (N) Rate	Approved (Y) Rate	Observation
0.0 (No/Bad History)	92.13%	7.87%	Almost all applicants with a bad credit history are DENIED the loan.
1.0 (Good History)	20.95%	79.05%	The majority of applicants with a good credit history are APPROVED.

ML Impact: Credit_History is likely the single most predictive feature. Model interpretability (XAI) should validate its high importance. Any model that fails to leverage this feature's power will perform poorly.

6. Summary of ML Preparation Steps

- 1. Data Cleaning: No missing value imputation or duplicate handling is required (data is clean).
- 2. Feature Engineering:
 - Drop the non-predictive Loan_ID.
 - Create Total_Income = ApplicantIncome + CoapplicantIncome.
- 3. Numerical Processing:
 - Apply Log Transformation to Total_Income and LoanAmount.
 - Apply Standard Scaling or MinMaxScaler to the transformed numerical features.
- 4. Categorical Processing:
 - Apply One-Hot Encoding to the remaining categorical features (e.g., Gender, Married, Education, Property_Area, etc.).

5.	Modeling: Start with robust classifiers like Logistic Regression (due to the strong Credit_History factor) and Tree-based models (Random Forest/XGBoost), and focus evaluation on AUC-ROC.						