Цуприков Дмитрий, ИУ5-63Б

У меня 21-ый номер по списку, то есть я выполняю 21-ый вариант с заданием номер 3 и с набором данных номер 5. Задача звучит следующим образом: для заданного набора данных произведите масштабирование данных (для одного признака) и преобразование категориальных признаков в количественные двумя способами (label encoding, one hot encoding) для одного признака. Какие методы Вы использовали для решения задачи и почему?

Создадим датафрейм uni в библиотеке Pandas на основе имеющегося csvфайла :

```
import pandas as pd
uni = pd.read_csv("Admission_Predict.csv")
uni
```

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65
395	396	324	110	3	3.5	3.5	9.04	1	0.82
396	397	325	107	3	3.0	3.5	9.11	1	0.84
397	398	330	116	4	5.0	4.5	9.45	1	0.91
398	399	312	103	3	3.5	4.0	8.78	0	0.67
399	400	333	117	4	5.0	4.0	9.66	1	0.95

400 rows × 9 columns

Выполним масштабирование данных для колонки LOR в датасете с помощью метода MinMaxScaler, который приводит значения к десятичному формату в диапазоне от 0 до 1:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(uni[["LOR "]])
uni["LOR "] = scaled_data
uni
```

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	0.875	9.65	1	0.92
1	2	324	107	4	4.0	0.875	8.87	1	0.76
2	3	316	104	3	3.0	0.625	8.00	1	0.72
3	4	322	110	3	3.5	0.375	8.67	1	0.80
4	5	314	103	2	2.0	0.500	8.21	0	0.65
395	396	324	110	3	3.5	0.625	9.04	1	0.82
396	397	325	107	3	3.0	0.625	9.11	1	0.84
397	398	330	116	4	5.0	0.875	9.45	1	0.91
398	399	312	103	3	3.5	0.750	8.78	0	0.67
399	400	333	117	4	5.0	0.750	9.66	1	0.95

400 rows × 9 columns

Так как в исходном датасете отсутствуют категориальные признаки, создадим такой признак на основе числового для набора данных в колонке University Rating:

uni["University Rating"] = uni["University Rating"].replace({1: "xy
uni

	Serial No.		TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	
--	---------------	--	----------------	----------------------	-----	-----	------	----------	--------------------	--

0	1	337	118	хороший	4.5	0.875	9.65	1	0.92
1	2	324	107	хороший	4.0	0.875	8.87	1	0.76
2	3	316	104	средний	3.0	0.625	8.00	1	0.72
3	4	322	110	средний	3.5	0.375	8.67	1	0.80
4	5	314	103	плохой	2.0	0.500	8.21	0	0.65
395	396	324	110	средний	3.5	0.625	9.04	1	0.82
396	397	325	107	средний	3.0	0.625	9.11	1	0.84
397	398	330	116	хороший	5.0	0.875	9.45	1	0.91
398	399	312	103	средний	3.5	0.750	8.78	0	0.67
399	400	333	117	хороший	5.0	0.750	9.66	1	0.95

400 rows × 9 columns

Применим метод кодирования label encoding для преобразования категориального признака University Rating в числовой. Он присваивает уникальное числовое значение каждой категории, в данном случае от 0 до 4 - так как изначально 5 уникальных значений. Уникальные значения признака сортируются в лексикографическом порядке.

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
uni["University Rating (Label Encoded)"] = label_encoder.fit_transf
uni
```

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research		University Rating (Label Encoded)
0	1	337	118	хороший	4.5	0.875	9.65	1	0.92	3
1	2	324	107	хороший	4.0	0.875	8.87	1	0.76	3
2	3	316	104	средний	3.0	0.625	8.00	1	0.72	2
3	4	322	110	средний	3.5	0.375	8.67	1	0.80	2
4	5	314	103	плохой	2.0	0.500	8.21	0	0.65	1
305	306	22/1	110	СББППИЙ	2 5	0 625	Q ∩ /I	1	n 22	2

090	330	J24	110	СРЕДПИИ	5.5	0.025	J.∪4	I	0.02	_
396	397	325	107	средний	3.0	0.625	9.11	1	0.84	2
397	398	330	116	хороший	5.0	0.875	9.45	1	0.91	3
398	399	312	103	средний	3.5	0.750	8.78	0	0.67	2
399	400	333	117	хороший	5.0	0.750	9.66	1	0.95	3

400 rows × 10 columns

Применим метод кодирования one hot encoding для преобразования категориального признака University Rating в числовой. В этом случае каждое уникальное значение признака становится новым отдельным признаком. Также мы применяем быстрый вариант one hot кодирования с помощью функции get_dummies из библиотеки Pandas.

one_hot_encoded_uni = pd.get_dummies(uni["University Rating"], pref
uni = pd.concat([uni, one_hot_encoded_uni], axis=1)
uni

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit	University Rating (Label Encoded)	Univer Rating
0	1	337	118	хороший	4.5	0.875	9.65	1	0.92	3	0
1	2	324	107	хороший	4.0	0.875	8.87	1	0.76	3	0
2	3	316	104	средний	3.0	0.625	8.00	1	0.72	2	0
3	4	322	110	средний	3.5	0.375	8.67	1	0.80	2	0
4	5	314	103	плохой	2.0	0.500	8.21	0	0.65	1	0
						•••					
395	396	324	110	средний	3.5	0.625	9.04	1	0.82	2	0
396	397	325	107	средний	3.0	0.625	9.11	1	0.84	2	0
397	398	330	116	хороший	5.0	0.875	9.45	1	0.91	3	0
398	399	312	103	средний	3.5	0.750	8.78	0	0.67	2	0
399	400	333	117	хороший	5.0	0.750	9.66	1	0.95	3	0

400 rows × 15 columns

В качестве задания для студентов ИУ5-63Б построим график Ящик с усами для колонки Chance of Admit. Такой график позволяет компактно изобразить одномерное распределение вероятностей. Границами ящика служат первый и третий квартили (25-й и 75-й процентили соответственно), линия в середине ящика — медиана (50-й процентиль). Концы усов — края статистически значимой выборки (без выбросов).

```
import seaborn as sns
sns.boxplot(x=uni['Chance of Admit '])
```

<Axes: xlabel='Chance of Admit '>

★ Download

Касательно используемого метода масштабирования: преимущество использования MinMaxScaler заключается в том, что он сохраняет относительные пропорции между значениями, что может быть важно для некоторых моделей машинного обучения. Кроме того, масштабирование данных помогает уменьшить влияние выбросов и различных масштабов между признаками, что может улучшить работу модели. Однако следует отметить, что MinMaxScaler не решает проблему выбросов, и если в данных присутствуют выбросы, то может потребоваться использование других методов масштабирования, например, RobustScaler или StandardScaler.

Плюсы метода кодирования label encoding:

- Простота и быстрота применения.
- Позволяет использовать алгоритмы машинного обучения, которые работают только с числовыми данными.

Минусы метода кодирования label encoding:

- Создает неявный порядок между значениями, что может вводить в заблуждение модель и приводить к неправильным выводам.
- Может приводить к некорректным результатам, если модель интерпретирует числовые значения как непрерывные или сравнивает их между собой.

Плюсы метода кодирования one hot encoding:

- Позволяет представить категориальные значения в виде бинарных признаков, что может быть полезно для моделей, которые не учитывают порядок или требуют явного представления категорий.
- Устраняет проблему неявного порядка, характерного для Label Encoding.
- Позволяет моделям учиться на более точных и интерпретируемых данных.

Минусы метода кодирования one hot encoding:

- Может привести к возникновению "проклятия размерности", особенно если есть много уникальных значений в категориальном признаке.
- Увеличивает размерность данных и может потребовать больше ресурсов для обработки и хранения.
- Может усложнить интерпретацию модели из-за большого количества дополнительных признаков.