الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأوّل: (04.5 نقاط)

نعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس $\left(\overrightarrow{O,i},\overrightarrow{j,k}\right)$ النقط:

. 2y+z+1=0 : المعادلة: P و المستوي D و المستوي D ، C (2;-1;1) ، D ، D (2;0;-1) ، D

ليكن
$$eta$$
 المستقيم الذي تمثيل وسيطي له: $x=-1$ حيث eta وسيط حقيقي. $y=2+eta$ المستقيم الذي تمثيل وسيطي له: $z=1-2eta$

- . (P) اكتب تمثيلا وسيطيا للمستقيم (BC)، ثمّ تحقّق أن المستقيم (BC) محتوى في المستوي (1
 - بيّن أن المستقيمين (Δ) و (BC) ليسا من نفس المستوي.
 - (P) أ) احسب المسافة بين النقطة (P) و المستوي (3
 - بين أن D نقطة من (P)، و أن المثلث BCD قائم.
 - 4) بيّن أن ABCD رباعي وجوه، ثمّ احسب حجمه.

التمرين الثاني: (04 نقاط)

- $V_n = \frac{5^{n+1}}{6^n}$ بالمنتالية (V_n) معرّفة على المنتالية (I
- الأول. متتالية هندسية يطلب تحديد أساسها و حدّها الأول. (1) بيّن أنّ (v_n)
 - $\lim_{n\to+\infty}v_n \pmod{2}$
- $u_{n+1} = \sqrt{5} \, u_n + 6$ ، n عدد طبیعي ، $u_0 = 1$ ، و من أجل كل عدد (u_n) معرّفة بـ (u_n
 - $1 \le u_n \le 6$ ، n برهن بالتراجع أنّه، من أجل كل عدد طبيعي (1
 - $\cdot (u_n)$ ادرس اتجاه تغیّر المتتالیة (2
 - $.6 u_{n+1} \le \frac{5}{6} (6 u_n)$ ، n عدد طبیعي أ عدد أنّه من أجل كل عدد (3)
 - . $\lim_{n\to +\infty} u_n$ استنج من أجل كل عدد طبيعي n ، n عدد طبيعي (ب أنّه ، من أجل كل عدد طبيعي (ب

التمرين الثالث: (05 نقاط)

التالية: Z مجموعة الأعداد المركبة، المعادلة Z ذات المجهول التالية:

. وسيط حقيقي
$$\alpha$$
 حيث $z^2 - (4\cos\alpha)z + 4 = 0$ (I)

.
$$\left(\frac{z_1}{z_2}\right)^{2013} = 1$$
 : نرمز إلى حلي المعادلة (I) بر z_2 و z_1 بين أن $\alpha = \frac{\pi}{3}$ من أجل $\alpha = \frac{\pi}{3}$

نعتبر في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس $(O;\vec{u},\vec{v})$ النقط B ، A و B التي

لاحقاتها:
$$z_C=4+i\sqrt{3}$$
 و $z_B=1-i\sqrt{3}$ ؛ $z_A=1+i\sqrt{3}$ على الترتيب.

C و B ، A و B انشئ النقط

ب) اكتب على الشكل الجبري العدد المركب $\frac{Z_C-Z_A}{Z_B-Z_A}$ ، ثمّ استنتج أنّ C هي صورة B بالتشابه المباشر C الذي مركزه C ويطلب تعيين نسبته و زاويته.

. G مرجح الجملة $\{(A;1), (B;-1), (C;2)\}$ ، ثم أنشئ G مرجح الجملة وين لاحقة النقطة G

د) احسب z_D لاحقة النقطة D ، بحيث يكون الرباعي ABDG متوازي أضلاع.

х	f(x)
0,20	0,037
0,21	0,016
0,22	-0,005
0,23	-0,026
0,24	-0,048
0.25	-0.070

التمرين الرابع: (
$$06.5$$
 نقاط) $f(x) = \frac{x}{x-1} + e^{\frac{1}{x-1}}$ بر: $]-\infty;1[$ براهة المعرفة على $f(x)$

 (C, \vec{l}, \vec{j}) و (C) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس

 $-\frac{-0.070}{1}$. (C) احسب f(x) احسب $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to \infty} f(x)$ ، ثمّ استنتج المستقيمين المقاربين للمنحنى $\lim_{x \to \infty} f(x)$

- 2) احسب f'(x) . بين أن الدالة f متناقصة تماما على المجال f(x) . ثمّ شكّل جدول تغيراتها.
- . α بين أن المعادلة f(x)=0 تقبل في $]-\infty;1[$ حلا وحيدا α . باستعمال جدول القيم أعلاه جِد حصرا للعدد (3
 - . f الممثل الدالة f ارسم المستقيمين المقاربين و المنحنى f الممثل الدالة f
- 5) عيّن بيانيا مجموعة قيم الأعداد الحقيقة m التي من أجلها يكون للمعادلة f(x) = m حلان مختلفان في الإشارة.
 - والدالة المعرفة على g(x) غير مطلوبة) . g(x)=f(2x-1) يا الدالة المعرفة على g(x) غير مطلوبة)
 - 1) ادرس تغيرات الدالة g على $]1; \infty [$ ، ثمّ شكّل جدول تغيراتها.

$$g'\left(\frac{\alpha+1}{2}\right) = 2 f'(\alpha)$$
: ثمّ بيّن أن $g\left(\frac{\alpha+1}{2}\right) = 0$: ثمّ بيّن أن (2

 $rac{lpha+1}{2}$ ب استنتج معادلة (T) المماس لمنحنى الدالة g في النقطة ذات الفاصلة

$$(T)$$
 معادلة للمستقيم $y = \frac{2}{(\alpha - 1)^3} x - \frac{\alpha + 1}{(\alpha - 1)^3}$ ج (T) معادلة للمستقيم (T

الموضوع الثاني

التمرين الأول: (04.5 نقاط)

 $z^2+4z+13=0$ (E) نعتبر في مجموعة الأعداد المركبة $\mathbb C$ المعادلة (E) نات المجهول الآتية: . الآخر (E) تحقّق أن العدد المركب 2-3i حل للمعادلة (E)، ثمّ جد الحل الآخر (1

ي التشابه المباشر S . و $Z_B=i$ و $Z_A=-2-3i$ و التشابه المباشر A (2

M'(z) الذي مركزه M(z) ، نسبته $\frac{1}{2}$ و زاويته $\frac{\pi}{2}$ والذي يحوّل كل نقطة M(z) من المستوي إلى النقطة

.
$$z' = \frac{1}{2}iz - \frac{7}{2} - 2i$$
 بین أن: (أ

. S بالتشابه B معلما أن C هي صورة B بالتشابه C

$$.2\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{0}$$
 نتكن النقطة D ، حيث: (3

أ) بيّن أن D هي مرجح النقطتين A و B المرفقتين بمعاملين حقيقيين يطلب تعيينهما .

D احسب Z_D لاحقة النقطة

.
$$ACD$$
 بيّن أن: $\frac{z_D-z_A}{z_C-z_A}=i$ ، ثمّ استنتج طبيعة المثلث (ج

التمرين الثاني: (04 نقاط)

في الشكل المقابل، (C_f) هو التمثيل البياني للدّالة f المعرّفة على ، $f(x) = \frac{2x}{x+1}$ المجال [0;1] العلاقة

$$y = x$$
 و (d) المستقيم ذو المعادلة

$$u_0 = \frac{1}{2}$$
 المنتالية العددية المعرّفة على $\mathbb N$ بحدّها الأوّل، $(u_n)(1)$

 $u_{n+1} = f(u_n)$ ، nعدد طبيعي و من أجل كل عدد طبيعي

، u_1 ، u_0 هذا الشكل في ورقة الإجابة، ثمّ مثّل الحدود أ) أعد رسم هذا الشكل في الما أعد الإجابة أ . و u_3 على محور الفواصل دون حسابها، مبرزا خطوط التمثيل u_2

ب) ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) و تقاربها.

(0,1) أثبت أنّ الدالة f متزايدة تماما على المجال (0,1)

$$0 < u_n < 1$$
 ، n عدد طبیعی با برهن بالتراجع أنّه، من أجل كل عدد طبیعی

$$\cdot (u_n)$$
 ادرس اتجاه تغیر المتتالیة

.
$$v_n = \frac{u_n - 1}{u_n}$$
: كما يلي: \mathbb{N} كما المتتالية العددية المعرّفة على المتالية العددية المعرّفة على (3

 v_0 أ) برهن أنّ (v_n) متتالية هندسية أساسها أي ، يطلب حساب حدّها الأول

 $\cdot (u_n)$ احسب نهایة (ب

التمرين الثالث: (04.5 نقاط)

، A(2;1;-1) النقط $(O;\vec{i},\vec{j},\vec{k})$ النقط المتعامد المتعامد المتجانس نعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس

.
$$[AB]$$
 و القطعة I و التكن $D\left(\frac{7}{2};-3;0\right)$ و $C\left(-\frac{3}{2};-2;1\right)$ ، $B(1;-1;3)$

I أ) احسب إحداثيات النقطة I

$$[AB]$$
 بيّن أنّ: $2x+4y-8z+5=0$ معادلة ديكارتية لـ (P) ؛ المستوي المحوري لـ

كتب تمثيلا وسيطيا للمستقيم
$$(\Delta)$$
 الذي يشمل النقطة C و $(1;2;-4)$ شعاع توجيه له.

$$(\Delta)$$
 و المستقيم (Δ) و المستقيم (Δ) عقطة تقاطع المستوي (Δ).

بين أنّ
$$(\Delta)$$
 و (AB) من نفس المستوى، ثمّ استنتج أن المثلث (AB) قائم.

$$(IE)$$
 عمودي على كل من المستقيم على و المستقيم ((IE) عمودي على المستقيم ((IE)

ب) أحسب حجم رباعي الوجوه DIEC .

التمرين الرابع: (07 نقاط)

$$g(x) = x^2 + 2x + 4 - 2\ln(x+1)$$
 بادالة المعرّفة على المجال $g(x) = -1; +\infty$ الدالة المعرّفة على المجال $g(x) = -1; +\infty$

ادرس تغیرات الدالة g ، ثمّ شكّل جدول تغیراتها. 1

$$g(x)>0$$
 ، $]-1;+\infty[$ استنتج أنه، من أجل كل X من المجال (2

$$f(x) = x - \frac{1 - 2\ln(x+1)}{x+1}$$
 :ب $f(II) = x - \frac{1 - 2\ln(x+1)}{x+1}$ الدالة المعرّفة على المجال $f(II)$

 $(2\,cm$ وحدة الطول). $\left(\,O; \overrightarrow{i}\,, \overrightarrow{j}\,
ight)$ وحدة الطول). وحدة الطول ($\,C_{r}$

ا أي احسب
$$f(x)$$
 النتيجة بيانيا. $\lim_{x \to -1} f(x)$

 $\lim_{x\to +\infty} f(x)$ بادسب (ب

.
$$f$$
 هي مشتقة الدالة $f'(x) = \frac{g(x)}{(x+1)^2}$ ، $f(x) = 1$ هي مشتقة الدالة $f(x) = \frac{g(x)}{(x+1)^2}$. $f(x) = \frac{g(x)}{(x+1)^2}$

ب) ادرس اتجاه تغيّر الدالة f على المجال $] + (-1; +\infty)$ ، ثمّ شكّل جدول تغيّراتها.

$$0<\alpha<0,5$$
 بيّن أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ في المجال α المجال $f(x)=0$

 $+\infty$ عند (C_f) مند مائل للمنحنى y=x عند (Δ) عند (3) أي بيّن أنّ المستقيم (Δ) عند (Δ)

$$\cdot(\Delta)$$
 بالنسبة إلى المنحنى (C_f) بالنسبة إلى

.
$$X_0$$
 نقبل أن المستقيم (C_f) ذا المعادلة : $y=x+rac{2}{\sqrt{e^3}}$: المعادلة نقطة فاصلتها (4

أ) احسب (أ

$$\cdot (C_f)$$
 ب ارسم المستقيمين المقاربين والمماس (T) ثم المنحنى المقاربين المقاربين والمماس

ج) عين بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة f(x) = x + m حلّين متمايزين.

العلامة		A de Maria
مجموع	مجزأة	عناصر الإجابة
		الموضوع الأول
01.35		التمرين الأول (04,5 نقط)
01,25	0,75	$(t \in R)z = -1 + 2t$ ؛ $y = -t$ ؛ $x = 1 + t$: (BC) التمثيل الوسيطي للمستقيم (1
	0,5	2 (-t) + (- 1 + 2 t) + 1 = 0 : (P)محتوی في
1	$2 \times 0,5$	و (BC) غير متوازيين وغير متقاطعين إذن (Δ) و (BC) ليسا من نفس المستوي.
	0,5	$d(A;(P)) = \frac{6\sqrt{5}}{5}$ (P) المسافة بين A و
	0,25	2(0)-1+1=0 (P) نقطة من D (ب
02,25	0,5	$CD^2 = 1$ ، $BD^2 = 1$ ، $BC^2 = 6$ مثلث قائم BCD
	0,5	(P) = (ABC) رباعي الوجوه $A\in (P)$ لأن $A\in (P)$ علما أن $ABCD$ (4
	0,5	$V = \frac{1}{3} A_{(BCD)} \times d\left(A;(P)\right) = 1 u v$ $ABCD$ حجم رباعي الوجوه - حجم رباعي الوجوه

		التمرين الثاني (04 نقط)
01	0,75	و حدّها الأول $v_{0}=5$ متتالية هندسية أساسها $q=rac{5}{6}$ و حدّها الأول $v_{0}=5$ سسسسسسس المالية مندسية أساسها و حدّها الأول المالية مندسية أساسها و $q=\frac{5}{6}$
	0,25	$\lim_{n \to +\infty} v_n = 0 $ (2
	1	$1 \leq u_n \leq 6$ ، $\mathbb N$ من أجل كل n من أجل كل n من أجل كل المن n
03	0,5	$u_{n+1} - u_n > 0; u_{n+1} - u_n = \frac{(6 - u_n)(1 + u_n)}{\sqrt{5u_n + 6} + u_n}$ متزایدة تماما $\left(u_n\right)$ (2)
	0,5	$(\frac{1}{6+\sqrt{5u_n+6}}<\frac{1}{6})$ 6 - $u_{n+1}\leq \frac{2}{3}(6-u_n)$ ، $\mathbb N$ من أجل كل n أ) من أجل كل
	0,5	$(u_n \leq v_n \cdot \mathbb{N})$ ب) من أجل كل u من $v_n \in \mathbb{N}$ بيمكن استعمال البرهان بالتراجع
	0,5	$ \lim_{n \to +\infty} u_n = 6 \lim_{n \to +\infty} v_n = 0) \lim_{n \to +\infty} u_n = 6 $

		التمرين الثالث (05 نقط)
0.1	0,5	$\Delta = 4i^2 \sin^2 \alpha \ (1)$
01	0,5	$z'' = 2(\cos\alpha - i\sin\alpha) \cdot z' = 2(\cos\alpha + i\sin\alpha)$
	^ ^-	
	0,25	راو العكس) يحديد $z_1=1-i\sqrt{3}$ ، $z_1=1+i\sqrt{3}$
01, 25	2×0.5	$\left(\frac{z_1}{z_2}\right)^{2013} = +1 \text{o} \frac{z_1}{z_2} = e^{i\left(\frac{2\pi}{3}\right)}$
	0,75	(xx) وفاصلتها B و B نظیرة A بالنسبة A وفاصلتها A وفاصلتها B نظیرة A بالنسبة A
		ه انفس ترتیب A . C و انفس ترتیب C .
02,75	0,5	$\frac{z_C - z_A}{z_B - z_A} = \frac{\sqrt{3}}{2}i (\because)$
	0,5	$rac{\pi}{2}$ صورة B بالتشابه الذي نسبته $rac{\sqrt{3}}{2}$ و زاويته C ، $z_C-z_A=rac{\sqrt{3}}{2}iig(z_B-z_Aig)$
	$ \begin{array}{c c} 2 \times 0.25 \\ 0.5 \end{array} $	G إنشاء $z_G=4+2i\sqrt{3}$ (ج) $z_D=4$ (ع

		التمرين الرابع: (06,5 نقط)
01	0,5	$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = 2 (1 (I)$
	0,5	معاداتا مستقيمين مقاربين $x=1$ ، $y=2$
01	0,5	$f'(x) = \frac{-1}{(x-1)^2} (1 + e^{\frac{1}{x-1}})$ $x \in]-\infty;1[$ من أجل (2)
	0, 25 0, 25	بما أنّ $f'(x) < 0$ من أجل كل $f(x) = -\infty$ فإنّ f متناقصة تماما على $f'(x) < 0$ جدول التغيّرات
0.5	0,25	للمعادلة $f(x)=0$ حل وحيد $lpha$ من $-\infty;1$ (مبرهنة القيم المتوسطة)
0,5	0,25	$0,21 < \alpha < 0,22$
	0,5	4) إنشاء المستقيمين المقاربين لـ (C)
01,25	0,5	إنشاء المنحنى (C)
	0,25	f الممثل للدالة $ f $ الممثل للدالة المثل الدالة $ f $
0.25	0,25	$m \in \left[\frac{1}{e}; 2\right]$ للمعادلة $m \in \left[\frac{1}{e}; 2\right]$ حلين مختلفين في الإشارة من أجل $\left f(x)\right = m$
	0,25×2	f'(2x-1) وعليه $g'(x)=f'(2x-1)$ وازا كان $x<1$ فإن $x<1$ وعليه $g'(x)=f'(2x-1)$ (1 (II
01,5	0,25	g متناقصة تماما على $-\infty;1$ متناقصة تماما على g

	0,5 0,25	$\lim_{x \to -\infty} g(x) = -\infty$ ، $\lim_{x \to -\infty} g(x) = 2$ $\lim_{x \to -\infty} g(x) = 2$ $\lim_{x \to \infty} g(x) = 2$
	2×0.25	$g'\left(\frac{\alpha+1}{2}\right) = 2f'(\alpha)$, $g\left(\frac{\alpha+1}{2}\right) = f(\alpha) = 0$ (§ (2)
1	0,25	$y=2 f'(\alpha) \left(x-\frac{\alpha+1}{2}\right)$ ب) (ب) معادلة له: (T)
	0,25	$(e^{\frac{1}{\alpha-1}} = -\frac{\alpha}{\alpha-1}) (T): y = \left(\frac{2}{(\alpha-1)^3}x - \frac{\alpha+1}{(\alpha-1)^3}\right) (\xi)$

		الموضوع الثاتي التمرين الأول: (04,5 نقط)
1	0,5	($-2-3i$) ² + 4($-2-3i$) + 13 = 0 (E) حل للمعادلة $-2-3i$ (1)
	0,5	استنتاج الحل الآخر للمعادلة $\overline{-2-3i}$. (E)
	1	$z'-z_A=rac{1}{2}e^{i(rac{\pi}{2})}ig(z-z_Aig)$ الكتابة المركبة للتشابه S (2)
01,5	1	2
	0,5	$z_C = -4 - 2i \ (\cdot \cdot)$
	0,5	اً) D مرجح النقطتين A و B مرفقين بالمعاملين B و D على الترتيب D
	0,5	$z_D = -3 - 5i$ ب) لاحقة D هي $z_D = -3 - 5i$
02	0,5	$\frac{z_D - z_A}{z_C - z_A} = i \ (\varepsilon$
	0,5	$((\overrightarrow{AC};\overrightarrow{AD}) = rac{\pi}{2}$ و متساوي الساقين $ACD = AC$ و ACD

	0,50	التمرين الثاني: (04 نقط)
	0,30	u_3 و u_2 ، u_1 ، u_0 نمثیل الحدود (1) أي تمثیل الحدود الم
	0,25	ب) التخمين: (u_n) متزايدة تماما و متقاربة.
	0,50	. [0;1] متزایدة تماما علی المجال f ، $f'(x) = \frac{2}{(x+1)^2}$ (أ (2
	0,50	ب) البرهان بالتراجع أنّ من أجل كل عدد طبيعي n فإنّ: $0 < u_n < 1$
04	0,75	$u_{n+1}-u_n=rac{u_n\left(1-u_n ight)}{u_n+1}$:ج n من أجل كل n من n لدينا u_n+1 من أجل كل u_n+1 من أجل u_n+1 متزايدة تماما.
	0,75	$v_0=-1$: الحد الأول $v_{n+1}=rac{1}{2}$ ، n من n من أجل كل n من أجل كل أ) من أجل كل
	0,50	$u_n = \frac{1}{1 + \left(\frac{1}{2}\right)^n}$ ؛ $v_n = -\left(\frac{1}{2}\right)^n$ ، $\mathbb N$ من أجل كل n من أجل كل n
	0,25	$\cdot \left(\lim_{n \to +\infty} v_n = 0\right) \cdot \lim_{n \to +\infty} u_n = 1$

		التمرين الثالث (04,5 نقط)
01	0,25	$I\left(\frac{3}{2};0;1\right) (^{\dagger}(1))$
	0,25	ب) التُحقق أنّ I نقطة من P (تقبل كل طريقة سليمة) بيد التُحقق أنّ P بيد التُحقق أنّ P بيد التُحقق أنّ P
	0,5	ناظمي لـ (P) ناظمي لـ \overrightarrow{AB}
0,5	0,5	$x=k-rac{3}{2}$ يقبل أي تمثيل وسيطي له $y=2k-2$ $(k\in\mathbb{R})$ يقبل أي تمثيل وسيطي آخر) (Δ) (2 $z=-4k+1$
01	$2 \times 0,5$	$E\left(-\frac{7}{6}; -\frac{4}{3}; -\frac{1}{3}\right)$ و $t = \frac{1}{3}: (\Delta)$ و (P) و (3)
01	0,5	ب) (AB) و \overrightarrow{u} مرتبطان خطیا
	0,5	$(EC^2 + IE^2 = IC^2)$ (يقبل أي تبرير) E قائم في E قائم في
	$2 \times 0,25$	$(ID) \perp (AB)$ (أ (4 (AB)) (أ (4
01	0,5	$V=rac{28}{9}uv$ DIEC ب $V=rac{28}{9}uv$

		التمرين الرابع (07 نقط)
		$g(x) = x^2 + 2x + 4 - 2\ln(x+1)$ (I
0,75	0,25	$\lim_{x \to -1} g(x) = +\infty $ (1
	0,5	$\lim_{x \to +\infty} g(x) = +\infty$
	0,5	$g'(x) = \frac{2x^2 + 4x}{x+1}$ ، $x \in]-1; +\infty[$ من أجل
01, 25	0,5	x+1
01,23	0,25	$g'(x) \le 0$ فإن $-1 < x \le 0$ الشارة $g'(x) \ge g'(x)$ فإن $-1 < x \le 0$
		$g'(x) \geq 0$ فإن $x \geq 0$ و إذا كان $x \geq 0$
	0,25	جدول التغيرات
and the last the last the street of the entire translation of the	0,25	$g(x) > 0$ ومنه $g(x) \ge 4$ (2
	0,25	$\lim_{x \to -1} f(x) = -\infty \left(\int \left(1 \right) \left(I \right) \right)$
0.75	0,25	معادلة مستقيم مقارب $x=-1$
0,73	0,25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x - \frac{1}{x+1} + 2 \frac{\ln(x+1)}{x+1} \right] = +\infty (-1)$

	0,5	$f'(x) = \frac{g(x)}{(x+1)^2} \left(\int_{-\infty}^{\infty} (x-1)^2 dx \right) dx$
01,5	0,25	$]-1;+\infty$ دالة متز ايدة تماما على $]-1;+\infty$
01,5	0,25	جدول تغيّر ات f
	0,25	ج) للمعادلة $f(x)=0$ حلا وحيدا في $-1;+\infty$ (مبرهنة القيم المتوسطة)
	0,25	$0 < \alpha < 0.5$. $f(0.5) \approx 0.37$ e $f(0) = -1$
	0,25	$\lim_{x\to +\infty} \left[f\left(x\right) - x \right] = 0 +\infty$ بجوار $\left(C_f\right)$ بجوار مستقیم مقارب مائل لـ $\left(C_f\right)$ بجوار $\left(\Delta\right)$: $y=x$
01	0,25	x -1 $-1+\sqrt{e}$ $+\infty$ -1 $-1+\sqrt{e}$ $+\infty$ -1 $-1+\sqrt{e}$ $+\infty$ -1 $-1+\sqrt{e}$ $+\infty$ -1 $-1+\sqrt{e}$
	0,5	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
0,5	0,5	$x_0 = -1 + \sqrt{e^3}$ († (4)
	1	(C_f) و (T) المقاربين، المماس (T) و المستقيمين المقاربين، المماس
1,25	0,25	$0 < m < \frac{2}{\sqrt{e^3}} (\varepsilon)$

