Q1:

- (a) No. Because a record can be covered by more than one rule, for example a record can satisfy Mileage=Low and Air Conditioner=Broken at the same time.
- (b) Yes. Because for every possible attribute value, we have at least one rule (Air Conditioner = Broken; Air Conditioner= Working, Engine = Good/Bad) to cover.
- (c) Yes. Because the attributes have Mileage = Low together with Air Conditioner = Broken. According to the second rule the value should be High (Mileage=Low), but the fifth rule defines the value to be Low (Air Conditioner = Broken). If we do not set the order of the rules, the classifier will contain paradox.
- (d) No. Because our rule-based classifier is exhaustive. Every record will trigger at least one rule and be classified. We do not need to set a default class to avoid the case that a record not triggering any rule.

Q2.

(a)
$$P(A=1|+) = 3/5=0.6$$
 $P(A=0|+) = 0.4$ $P(B=1|+) = 1/5=0.2$ $P(B=0|+) = 0.8$ $P(C=1|+) = 4/5=0.8$ $P(C=0|+) = 0.2$ $P(A=1|-) = 2/5=0.4$ $P(A=0|-) = 0.6$ $P(B=1|-) = 5/5=1$ $P(C=0|-) = 0$

(b) P(+|A=0,B=1,C=0)=

$$P(+|A=0,B=1,C=0) = \frac{P(A=0,B=1,C=0|+)P(+)}{P(A=0,B=1,C=0)}$$

$$= \frac{P(A=0|+)P(B=1|+)P(C=0|+)P(+)}{P(A=0,B=1,C=0|-)}$$

$$= \frac{P(A=0|+)P(B=1|+)P(C=0|+)P(+)}{P(A=0|+)P(B=1|+)P(C=0|+)P(+)}$$

$$= \frac{P(A=0|+)P(B=1|+)P(C=0|+)P(B=1|-)P(C=0|-)}{P(A=0|+)P(B=1|+)P(C=0|+)P(B=1|-)P(C=0|-)}$$

$$= \frac{0.4*0.2*0.2*0.5}{0.4*0.2*0.2*0.5+0.6*0.4*0*0.5} = 1$$

So the label for the test sample (A=0,B=1,C=0) is "+".

(c)
$$P = \frac{n_c + mp}{n+m}$$

 $P(A=1|+) = (3+2)/(5+4) = 0.556$ $P(A=0|+) = 0.444$
 $P(B=1|+) = (1+2)/(5+4) = 0.333$ $P(B=0|+) = 0.666$

$$P(C=1|+) = (4+2)/(5+4) = 0.666$$
 $P(C=0|+) = 0.333$ $P(A=1|-) = (2+2)/(5+4) = 0.444$ $P(A=0|-) = 0.556$ $P(B=1|-) = (2+2)/(5+4) = 0.444$ $P(B=0|-) = 0.556$ $P(C=1|-) = (5+2)/(5+4) = 0.778$ $P(C=0|-) = 0.222$

(d)
$$P(+|A=0,B=1,C=0) = \frac{P(A=0,B=1,C=0|+)P(+)}{P(A=0,B=1,C=0)} = \frac{P(A=0|+)P(B=1|+)P(C=0|+)P(+)}{P(A=0,B=1,C=0)} = \frac{P(A=0|+)P(B=1|+)P(C=0|+)P(+)}{P(A=0|+)P(B=1|+)P(C=0|+)P(+)} = \frac{P(A=0|+)P(B=1|+)P(C=0|+)P(+)}{P(A=0|+)P(B=1|+)P(C=0|+)P(A=0|-)P(B=1|-)P(C=0|-)} = \frac{0.444*0.333*0.333*0.5}{0.444*0.333*0.333*0.5+0.556*0.444*0.222*0.5} = 0.47324$$

$$P(-|A=0,B=1,C=0) = 1 - P(+|A=0,B=1,C=0) = 1 - 0.47324 = 0.52676$$

So, P(-|A=0,B=1,C=0) is larger than P(+|A=0,B=1,C=0), so the label should be "—" given the condition (A=0,B=1,C=0)

(e) m-estimate approach is better.

Because the original approach has the problem of zero probability. (We have P(C=0|-)=0.) It is unreasonable to have P(A=0,B=1,C=0|-)=0 just because we do not observe P(C=0|-). The m-estimator can handle the zero-probability problem by adding mp to Nc and m to N.

Q3

(a)

P(Mileage)=Hi	P(Mileage)=Lo
0.5	0.5

P(Air Conditioner)=Working	P(Air Conditioner)=Broken
0.625	0.375

P(Engine Mileage)	Engine=Good	Engine=Bad
Mileage=Hi	0.5	0.5
Mileage=Lo	0.75	0.25

P(Car Value)	Car Value=Hi	Car Value=Lo
Air Conditioner,Engine)		
Engine=Good	0.75	0.25

Air Conditioner=Working		
Engine=Good	0.666	0.333
Air Conditioner=Broken		
Engine=Bad	0.222	0.778
Air Conditioner=Working		
Engine=Bad	0	1
Air Conditioner=Broken		

(b)

$$\begin{split} P(Engine = Bad, AirConditioner = Broken) \\ &= P(Engine = Bad)P(AirConditioner = Broken) \\ &= \left(P(Engine = Bad|Mileage = Hi)P(Mileage = Hi) \\ &+ P(Engine = Bad|Mileage = Lo)P(Mileage = Lo)\right)P(AirConditioner \\ &= Broken) = (0.5*0.5+0.25*0.5)*0.375 = 0.140625 \end{split}$$

Q4

(a)

1 nearest neighbor: 4.9 (+) \rightarrow x=5.0 classified as +

3 nearest neighbors:4.9(+),5.2(-),5.3(-) \rightarrow x=5.0 classified as -

5 nearest neighbors: 4.9(+),5.2(-),5.3(-),4.6(+),4.5(+) or 4.9(+),5.2(-),5.3(-),4.6(+),5.5(+)

→x=5.0 classified as +

9 nearest neighbors: 4.9(+),5.2(-),5.3(-),4.6(+),4.5(+),5.5(+),3.0(-),7.0(-),0.5(-) or

$$4.9(+),5.2(-),5.3(-),4.6(+),4.5(+),5.5(+),3.0(-),7.0(-),9.5(-)$$
 x=5.0 classified as -

(b)

1-nearest neighbor: 4.9 (+)

→ +vote =
$$1 \times \frac{1}{0.1 \times 0.1} = 100$$
 -vote = 0

→label=+

3 nearest neighbors:4.9(+),5.2(-),5.3(-)

→ +vote =
$$1 \times \frac{1}{0.1 \times 0.1} = 100$$
 -vote = $1 \times \frac{1}{0.2 \times 0.2} + 1 \times \frac{1}{0.3 \times 0.3} = 36.11$

→label=+

5 nearest neighbors: 4.9(+),5.2(-),5.3(-),4.6(+),4.5(+) or 4.9(+),5.2(-),5.3(-),4.6(+),5.5(+)

$$\rightarrow$$
+vote = $1 \times \frac{1}{0.1 \times 0.1} + 1 \times \frac{1}{0.4 \times 0.4} + 1 \times \frac{1}{0.5 \times 0.5} = 110.25$

-
$$vote = 1 \times \frac{1}{0.2 \times 0.2} + 1 \times \frac{1}{0.3 \times 0.3} = 36.11$$

→label=+

9 nearest neighbors:
$$4.9(+),5.2(-),5.3(-),4.6(+),4.5(+),5.5(+),3.0(-),7.0(-),0.5(-)$$
 or $4.9(+),5.2(-),5.3(-),4.6(+),4.5(+),5.5(+),3.0(-),7.0(-),9.5(-)$ ×=5.0 classified as –

→+vote =
$$1 \times \frac{1}{0.1 \times 0.1} + 1 \times \frac{1}{0.4 \times 0.4} + 1 \times \frac{1}{0.5 \times 0.5} + 1 \times \frac{1}{0.5 \times 0.5} = 114.25$$

-vote = $1 \times \frac{1}{0.2 \times 0.2} + 1 \times \frac{1}{0.3 \times 0.3} + 1 \times \frac{1}{2 \times 2} + 1 \times \frac{1}{2 \times 2} + 1 \times \frac{1}{4.5 \times 4.5} = 36.659$

| abel = +

Q5.

(a) The second function

(b)

$$\widehat{y} = x^{w}$$

$$E = \sum_{i=1}^{N} (y_{i} - \widehat{y}_{i})^{2} = \sum_{i=1}^{N} (y_{i} - x_{i}^{w})^{2}$$

(c)

$$\frac{dE}{dw} = \sum_{i=1}^{N} (-w) (x_i^{w-1}) (2) (y_i - x_i^w)$$

$$w \leftarrow w - \alpha(-2w) (y_i x_i^{w-1} - x_i)$$