

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Information Gain: An Attribute Selection Measure

- □ Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3/C4.5)
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

☐ Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_{A}(D)$$

Decision Tree Induction: An Example

□ Decision tree construction:

 A top-down, recursive, divide-andconquer process

Training data set: Who buys computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

$$|h|_{\Omega} (D) = |(0,5)|_{\Omega} = \frac{1}{|h|_{\Omega}} |(0,5)|_{\Omega} =$$

Into age (1) =
$$\frac{5}{12} \frac{1}{123} + \frac{4}{14} \frac{1}{14} \frac$$

an Into income (1)

Info in come (D) =
$$4 \cdot 1 \cdot (2,2) + 4 \cdot 1 \cdot (3,1)$$

$$I(2,2) = -\frac{2}{4} log(2) (\frac{1}{4}) - \frac{2}{4} log(2) (\frac{1}{4}) = 1$$

$$I(3,1) = \frac{-2}{6} h_3(a) \left(\frac{3}{4}\right) - \frac{1}{4} h_3(a) \left(\frac{4}{4}\right) = 0.6M$$

When his more (D) =
$$\frac{4}{14}(1) + \frac{6}{19}(0.916) + \frac{49}{14}(0.811) = 0.911$$

M Gain Cincome

Gain (income) =
$$0.94 - 0.911 - 0.029$$

Un Into student (D)

40

Into squaent (D) =
$$\frac{7}{10}$$
 T(6,1) + $\frac{7}{10}$ T(5,4)

$$I(b_1) = -\frac{b}{7} log(1) (\frac{b}{4}) - \frac{1}{7} log(2) (\frac{1}{7}) = 0.592$$

$$I(3,1) = -\frac{3}{7} h_{03}(2)(\frac{2}{7}) - \frac{4}{7} h_{03}(3)(\frac{4}{7}) = 0.965$$

Morrion Into student (D) =
$$\frac{7}{4}$$
 (0.592) + $\frac{7}{14}$ (0.985) = 0.749

M Gain (student)

Into credit rating (b) =
$$\frac{8}{11}$$
 I ($\frac{1}{6}$, $\frac{1}{2}$) + $\frac{6}{11}$ I ($\frac{1}{6}$, $\frac{1}{2}$)

I ($\frac{1}{6}$, $\frac{1}{2}$) = $-\frac{1}{6}$ And (1) ($\frac{1}{6}$) - $\frac{1}{6}$ And (1) ($\frac{2}{6}$) = 0.9 (1)

I ($\frac{1}{2}$, $\frac{1}{2}$) = $-\frac{2}{6}$ And (2) ($\frac{3}{6}$) - $\frac{2}{6}$ And (1) ($\frac{2}{4}$) = 1

WITHOUT Into credit_rating (D) =
$$\frac{9}{14}$$
 (0.41h) + $\frac{6}{14}$ (1) = 0.492

age =
$$(L=30)$$

and $(nfo LD)$ too age (430)
 $(nfo (D) = T (\frac{7}{2},\frac{7}{2}) = 0.971$

While income (D) too age
$$(c = 90) = \frac{2}{5} T (0, 1) + \frac{2}{5} T (1, 1) + \frac{1}{5} T (1, 0)$$

$$T (0, 1) = -\frac{0}{2} \log (2) (\frac{0}{2}) - \frac{2}{2} \log (1) (\frac{1}{2}) = 0$$

$$T (1, 1) = -\frac{1}{2} \log (2) (\frac{1}{2}) - \frac{1}{2} \log (2) (\frac{1}{2}) = 1$$

$$T (1, 0) = -\frac{1}{1} \log (2) (\frac{1}{1}) - \frac{0}{1} \log (2) (\frac{1}{2}) = 0$$

While Income (D) too age $(c = 30) = \frac{2}{5} (0) + \frac{1}{5} (1) + \frac{1}{5} (0) = 0.4$

In Gain (Income) too age $(c = 30)$

Cazin (income) too age $(c = 30) = 0.971 - 0.0 = 0.571$

Which Into income (D) not age (740) = $\frac{9}{5}$ (0.411) + $\frac{2}{5}$ (1) = 0.951 U) Gain Cinemed not age 1740)

White
$$S_{Lam}(D)$$
 for any (740)

Wes no line $S_{Lam}(D)$ for any $(740) = \frac{2}{5} \cdot 1 \cdot (21) + \frac{2}{5} \cdot 1 \cdot (21)$

I $(21) = -\frac{2}{5} \cdot 1_{1} \cdot 1_{1} \cdot (21) \cdot (21)$

