Задача 9.3. Попади «в яблочко!»

Во всех частях задачи сопротивлением воздуха следует пренебречь. Ось Y вертикальна, а ось X горизонтальна.

Ускорение свободного падения считать равным $g = 10 \frac{M}{c}$

Часть 1 «Пристрелка»

Тело брошено под углом α к горизонту с некоторой высоты h над поверхностью земли. Модуль начальной скорости тела равен v_1 . Ось X расположена на поверхности земли.

1.1 Запишите закон движения тела, то есть зависимость координат тела от времени $x_1(t), y_1(t)$.

1.2 Пусть
$$v_1 = 20 \frac{M}{c}$$
, $h = 10 M$, $\alpha = 30 ^{\circ}$. Рассчитайте

горизонтальную дальность полета тела, т.е. координату x в момент его падения на поверхность земли.

Часть 2. «Стрельба по движущимся мишеням»

Первое тело бросают так, как описано в Части 1, а второе с поверхности земли из точки, находящейся на расстоянии S_0 от начала координат. Модуль скорости второго тела равен v_2 , вектор скорости направлен под углом β к горизонту, как показано на рисунке. Тела бросают одновременно.

- 2.1 Запишите закон движения второго тела $x_2(t)$, $y_2(t)$.
- 2.2 Запишите выражения для зависимостей разностей координат тел $(x_1 x_2)$ и $(y_1 y_2)$ от времени.
- 2.3 Как зависит расстояние между телами S(t) от времени?
- 2.4 Пусть первое тело начинает падать без начальной скорости ($v_1 = 0$).Под каким углом к горизонту β надо бросить первое тело, чтобы оно попало в первое? При какой минимальной начальной скорости второго тела v_2 столкновение произойдет до падения первого тела на землю?

Достаточно найти любую тригонометрическую функцию (синус, косинус, тангенс...) угла β .

2.5 Первое тело бросают с поверхности земли (h=0) углом α к горизонту с начальной скоростью v_1 . Второе тело бросают под углом β . С какой начальной скоростью v_2 надо бросить второе тело, чтобы оно столкнулось с первым в полете? При какой минимальной скорости v_2 возможно столкновение в полете?

8