Modello per la previsione del valore economico degli acquisti

Saverio Pulizzi, Candidatura Posizione Data Scientist @Team Digitale

Agenda

- Quadro generale del processo di acquisto di beni e/o servizi
- Assunzione base
- La domanda di ricerca
- Preparazione dataset
- Analisi esplorativa
- Il Modello
- Lezioni apprese ed opportunità
- Considerazioni

Quadro generale sul processo di acquisto di beni e/o servizi

Il processo di acquisto

- Al momento esistono 4 distinti canali che permettono l'approvvigionamento di beni e/o servizi ai vari enti della PA: accordi quadro, mercato elettronico PA, convenzioni e sistema dinamico.
- Ogni canale permette una tipologia di acquisto differente sotto forma di ordine diretto o di negoziazione

GLI STRUMENTI DI ACQUISTO

Gli strumenti di acquisto / vendita, attraverso cui le imprese offrono i propri beni e servizi alla P.A. e le Amministrazioni effettuano acquisti, sono le Convenzioni, gli Accordi quadro, il Mercato Elettronico e il Sistema dinamico di acquisizione.

Amministrazioni

PA registrate al programma di razionalizzazione degli acquisti.

- Dal 2018 ad oggi: 26 diverse tipologie amministrative includenti 23,265 enti partecipanti
- Gli enti sono dislocati in 20 regioni, 111 provincie e 8,112 comuni

Fornitori

Imprese partecipanti al programma di razionalizzazione degli acquisti.

- Dal 2018 ad oggi:157,020 imprese partecipanti suddivise in 20 forme societarie diverse
- 798 distinte denominazioni di lotto
- 1.57 Milioni di transazioni

Cataloghi Regionali

Elenco dei beni e servizi offerti dai fornitori abilitati al Mepa o aggiudicatari di Convenzioni e Accordi Quadro

- Dal 2018 ad oggi: 3.5 Milioni di beni e 470 Mila servizi registrati
- 1,622 tipologie distinte di prodotti/servizi offerti
- I tre prodotti/servizi più comunemente disponibili tra i cataloghi sono:
 - servizi di formazione
 - servizi di informazione comunicazione e marketing
 - ferramenta
- Software di gestione ed accessori per alimentazione risultano essere tra i primi beni più comunemente disponibili
- Più del 99% di questi beni/servizi sono disponibili tramite MePa

Cataloghi del Programma

Elenco dei beni, servizi e lavori disponibili tramite le iniziative del programma per la razionalizzazione degli acquisti.

- 1,878 prodotti/servizi diversi offerti appartenenti a 15 categorie merceologiche
- I tre prodotti/servizi più comunemente disponibili tra i cataloghi sono:
 - Servizi opzionali per autoveicoli
 - Multi servizio integrato energia
 - Energia elettrica
- Gli strumenti di acquisto per questa tipologia di beni/servizi sono:
 - MePa ~36%
 - Convenzione ~35%
 - Accordo quadro ~9%
 - SDA ~20%

Bandi & Gare

Iniziative di gara e lotti pubblicati nell'ambito del programma di razionalizzazione degli acquisti.

- Dal 2018 ad oggi: 1,097 bandi unici svolti
- 1,178 Lotti, 3 tipologie di lotto con 14 diverse categorie merceologiche
- Un giro di affari totale di 144 miliardi

Acquisti & Negoziazioni (1)

Acquisti e negoziazioni effettuate dalle PA attraverso le varie piattaforme telematiche

Ministeri ed agenzie fiscali insieme ai comuni sono gli enti amministrativi che hanno registrato il maggior numero di acquisti e/o negoziazioni dal 2018 ad oggi.

Acquisti & Negoziazioni (2)

Acquisti e negoziazioni effettuate dalle PA attraverso le varie piattaforme telematiche

Lombardia e Lazio sono le regioni che hanno registrato il maggior numero di acquisti e/o negoziazioni dal 2018 ad oggi.

Acquisti & Negoziazioni (3)

Acquisti e negoziazioni effettuate dalle PA attraverso le varie piattaforme telematiche

Dal 2018 ad oggi: Lazio, Trentino Alto Adige e Veneto le regioni con maggiore spesa pubblica

Assunzione base

 Le PA non hanno al momento uno strumento che gli permetta di adottare un benchmark di riferimento nella valutazione del prezzo degli acquisti

Domanda di ricerca

È possibile prevedere il valore economico di un acquisto?

Obiettivo

 Creare un modello di previsione del valore economico di ogni acquisto.

Preparazione dataset

 Dopo aver eseguito le necessarie operazioni di pulizia dei dati, i file dei dati di acquisto e negoziazione sono stati combinati creando tra loro un dataset unico con 33 colonne e 473 mila righe.

<pre>df_finale.sample(2)</pre>										
	Anno_Riferimento	Tipologia_Amministrazione	Regione_PA	Regione_Fornitore	Accordo_Quadro	Lotto	Bene_Servizio	Codice_CPV	Descrizione_C	
43270	2019	AZIENDE ED ENTI TERRITORIALI DI SERVIZI PUBBLICI	TRENTINO ALTO ADIGE	LAZIO	non applicabile	FORNITURA DI LICENZE D USO IBM PASSPORT, DEL R	SERVIZI DI MANUTENZIONE SOFTWARE	72267100-0	MANUTENZIC DI SOFTWARE TECNOLO DELL'I	
3916	2020	AZIENDE ED ENTI DI SERVIZI SOCIO ASSISTENZIALI	EMILIA ROMAGNA	EMILIA ROMAGNA	non applicabile	non applicabile	CARTUCCE E TONER INK- LASER ORIGINALI	30125100-2	CARTUCCE Ton	

Analisi Esplorativa (1)

- Il dataset creato è rappresentativo di tutti e quattro gli strumenti di acquisto.
- AQ e SDA sono categorie sotto rappresentate.

Strumento_Acquisto

AQ	2512
Convenzioni	65995
MEPA	401165
SDA	302

Analisi Esplorativa (2)

 E' stata effettuata un'analisi di correlazione tra le variabili numeriche, dando particolare rilievo alla variabile target: Valore_Economico

- 0.25

Analisi Esplorativa (3)

La media della distribuzione è
di ~€29,000, presentando una
deviazione standard
relativamente alta >€284,000
per il valore in oggetto. Questo
a causa di alcuni acquisti con
valori relativamente alti
rispetto alla media
(>€1Miliardo), che fanno
scostare la curva verso destra.

 I valori fuori rango rappresentano acquisti effettuati tramite SDA.

Train & Test

- Dopo aver convertito le variabili categoriche in numeriche ed aver standardizzato le stesse, il dataset finale risulta comprensivo di 2869 features
- Il dataset di riferimento è stato suddiviso per l'80% in training e per il 20% in test set.

Training del modello

- Per motivi di memoria e capacità computazionale si è estratto un campione random comprensivo del 10% del dataset in oggetto.
- Il fit dei dati è stato eseguito comparando una regressione lineare ed un random forest regressor, con parametri di default.

Model Selection

 Analizzando le performance a livello di root mean squared error si evince come il modello di random forest si presta molto meglio per questa task rispetto alla regressione lineare.

Regressione Lineare

Mean Absolute Error: 231941269558784384.000000

Mean Squared Error: 14928419974937522399136464246881124352.000000

Root Mean Squared Error: 3863731353877689344.000000

Random Forest

Mean Absolute Error: 32807.336143
Mean Squared Error: 43677962562.051163
Root Mean Squared Error: 208992.733276

Random Forest

- L'analisi del R^2 mostra come il primo modello creato riesce ad ottenere il fit del ~35% dei dati sul test set e >60% sul training set, mostrando dei possibili segni di overfitting.
- In questo caso l'overfitting potrebbe essere ottimizzato utilizzando più dati e/o regolarizzando i parametri utilizzati.
- Date le limitate capacita computazionali a disposizione, è stato utilizzato il sistema di cross validation per la ricerca dei parametri ideali.

```
Parameters currently in use:
{'bootstrap': True,
 'ccp alpha': 0.0,
 'criterion': 'mse',
 'max depth': 5,
 'max features': 'auto',
 'max leaf nodes': None,
 'max samples': None,
 'min_impurity_decrease': 0.0,
 'min impurity split': None,
 'min samples leaf': 1,
 'min samples split': 2,
 'min_weight_fraction_leaf': 0.0,
 'n estimators': 100,
 'n jobs': -1,
 'oob score': False,
 'random state': 1,
 'verbose': 0,
 'warm start': False}
```

Regolarizzazione dei parametri del modello

- Il metodo di cross validation è stato applicato utilizzando l'applicativo GridSearchCV.
- Questo ci ha permesso di analizzare le performance di 98 modelli diversi di random forest
- Si è constatato un miglioramento di R^2 pari al 6%

train R squared score 0.854, forest R squared test score: 0.412

```
[CV] bootstrap=True, max depth=13, min samples leaf=1, min samples split=2, n estimators=20, oob score=False, score=
0.401, total= 3.6min
[CV] bootstrap=True, max depth=13, min samples leaf=1, min samples split=2, n estimators=20, oob score=False
[CV] bootstrap=True, max depth=13, min samples leaf=1, min samples split=2, n estimators=20, oob score=False, score=
0.367, total= 3.5min
[CV] bootstrap=True, max depth=13, min samples leaf=1, min samples split=2, n estimators=20, oob score=False, score=
0.538, total= 3.2min
[CV] DOOUSTIAP-IIUE, MAX_QEPTH-I3, MIH_SAMPIES_IEAI-I, MIH_SAMPIES_SPIIT-2, H_ESTIMATOIS-20, OOD_SCOIE-FAIST
[CV] bootstrap=True, max_depth=13, min_samples_leaf=1, min_samples_split=2, n_estimators=20, oob_score=False, score=
0.395, total= 3.9min
[CV] bootstrap=True, max depth=13, min samples leaf=3, min samples split=2, n estimators=20, oob score=False
[CV] bootstrap=True, max depth=13, min samples leaf=3, min samples split=2, n estimators=20, oob score=False, score=
0.358, total= 3.0min
[CV] bootstrap=True, max depth=13, min samples leaf=3, min samples split=2, n estimators=20, oob score=False
[CV] bootstrap=True, max depth=13, min samples leaf=3, min samples split=2, n estimators=20, oob score=False, score=
0.428, total= 3.3min
[CV] bootstrap=True, max depth=13, min samples leaf=3, min samples split=2, n estimators=20, oob score=False
[CV] bootstrap=True, max depth=13, min samples leaf=3, min samples split=2, n estimators=20, oob score=False, score=
0.418, total= 3.3min
```

Lezioni apprese ed opportunità

- La corretta preparazione del dataset rappresenta uno dei core dello studio in oggetto, richiede tempo e precisione di analisi.
- Una conoscenza più approfondita del settore delle PA e dei processi sottostanti, avrebbe sicuramente permesso di ottenere degli output più efficaci.
- Si potrebbero combinare altre sorgenti dati presenti in indice PA e ANAC.
- Support vector regressor e modelli di deep learning andrebbero applicati per compararne le performance rispetto a quelli utilizzati.
- Maggiori capacità computazionali consentirebbero di eseguire il training sull'intero dataset al posto di un sample.
- Source bias è un problema da approfondire. Infatti, per una accuratezza maggiore potrebbero essere creati 4 modelli diversi, uno per ogni strumento di acquisto (MePa, AQ, CON, SDA).

Considerazioni

 Il valore economico totale di ogni acquisto effettuato dalla PA dipende da numerose variabili tra cui il numero di ordini, il tipo di bene o servizio ordinato, la regione dove risiede la PA, ecc. Poter prevedere il valore economico di ogni acquisto potrebbe permettere alle varie amministrazioni di prevedere la spesa da affrontare in anticipo e quindi di poter pianificare e programmare il proprio budget in modo più efficiente.