Nejistota měření

Jak sloučit nejistoty u_A a u_B :

 \rightarrow kombinovaná standardní nejistota: $u_C^2 = u_A^2 + u_B^2$

$$u_C^2 = u_A^2 + u_B^2$$

Nejistotu lze vyjádřit:

- v jednotkách (měřené) veličiny **absolutní** standardní nejistota
- v poměru k hodnotě veličiny **relativní** standardní nejistota

$$\eta_{\chi} = \frac{u_{C,\chi}}{\tilde{\mu}_{\chi}} \times 100\%$$

 \rightarrow maximální nejistota: $u_C = u_A + u_B$

- pro <u>plánování</u> experimentu, <u>ne</u> pro <u>zpracování</u> výsledků

Maximální nejistota

- hrubý (řádový) odhad nejistoty měření
 - pro plánování experimentu, ne pro zpracování výsledků

$$a = \hat{\mu}_a \pm \varepsilon_a$$
 $b = \hat{\mu}_b \pm \varepsilon_b$

- součet: $S = a + b = (\hat{\mu}_a + \hat{\mu}_b) \pm (\varepsilon_a + \varepsilon_b)$
 - absolutní maximální chyba: $\varepsilon_S = (\varepsilon_a + \varepsilon_b)$
 - relativní maximální chyba: $\eta_S = rac{arepsilon_a + arepsilon_b}{\hat{\mu}_a + \hat{\mu}_b}$
- rozdíl: $R = a b = (\hat{\mu}_a \hat{\mu}_b) \pm (\varepsilon_a + \varepsilon_b)$
 - absolutní maximální chyba: $\varepsilon_R = (\varepsilon_a + \varepsilon_b)$
 - relativní maximální chyba: $\eta_R = rac{arepsilon_a + arepsilon_b}{\hat{\mu}_a \hat{\mu}_b}$

Maximální nejistota

• součin:
$$N = ab = (\hat{\mu}_a \hat{\mu}_b) \pm (\varepsilon_a \hat{\mu}_b + \varepsilon_b \hat{\mu}_a)$$

- absolutní maximální chyba:
$$\, arepsilon_N = arepsilon_a \hat{\mu}_b + arepsilon_b \hat{\mu}_a \,$$

- relativní maximální chyba:
$$\eta_N = \frac{\varepsilon_a \hat{\mu}_b + \varepsilon_b \hat{\mu}_a}{\hat{\mu}_a \hat{\mu}_b} = \eta_a + \eta_b$$

• podíl:
$$P = \frac{a}{b} = \left(\frac{\hat{\mu}_a}{\hat{\mu}_b}\right) \pm \left(\frac{\varepsilon_a}{\hat{\mu}_b} + \varepsilon_b \frac{\hat{\mu}_a}{\hat{\mu}_b^2}\right)^{-\hat{\mu}_a \hat{\mu}_b}$$

- absolutní maximální chyba:
$$\varepsilon_P=rac{arepsilon_a}{\hat{\mu}_b}+arepsilon_brac{\mu_a}{\hat{\mu}_b^2}$$

- relativní maximální chyba:
$$\eta_p = \left(\frac{\varepsilon_a}{\hat{\mu}_b} + \varepsilon_b \frac{\hat{\mu}_a}{\hat{\mu}_b^2}\right) \frac{\hat{\mu}_b}{\hat{\mu}_a} = \eta_a + \eta_b$$

• mocnina:
$$M = a^n = \hat{\mu}_a^n \pm n\hat{\mu}_a^{n-1}\varepsilon_a$$

- absolutní maximální chyba:
$$arepsilon_M = n \hat{\mu}_a^{n-1} arepsilon_a$$

- relativní maximální chyba:
$$\eta_M = n\eta_a$$

Nejistota měření

• kombinovaná standardní nejistota:

statistické (typ A) data z opakovaného měření → výpočet odhadů parametrů (metody matematické statistiky)

ostatní (typ B) "odhad" přesnosti metody, nejistota přístrojů

Nejistota metody a měřidel

Nejistota metody

- obvykle systematická chyba
- je-li to možné, nejistotu posoudit a kvantifikovat → korekce
- stanovení odhadem

Příklad:

měření odporu nepřímou metodou

korekce na vnitřní odpor přístrojů (voltmetr)

Třída přesnosti měřících přístrojů

- statistické šetření (výrobcem) na sérii vyrobených měřících přístrojů
 - X_0 = nominální hodnota získaná měřením přístrojem s podstatně vyšší přesností
 - Δ_i = odchylka *i*-tého přístroje: $\Delta_i = |X_i X_0|$
 - třída přesnosti: $P = \frac{\Delta_{i,\text{max}}}{R} 100\%$ R = rozsah stupnice

řada P = 0.1, 0.2, 0.5, 1, 1.5, 2.5

- chyba naměřené veličiny: $u_B = \frac{PR}{\sqrt{3}} 10^{-2}$
- rovnoměrné rozdělení v intervalu (-a, a): $\sigma^2 = u_B^2 = \frac{(2a)^2}{12} = \frac{a^2}{3} = \frac{\Delta_{i,\text{max}}^2}{3}$

V intervalu $(-u_B, u_B)$ kolem odhadnuté hodnoty měřené veličiny se skutečná (správná) hodnota měřené veličiny nachází s pravděpodobností $P \cong 0.58$

Třída přesnosti měřících přístrojů

• třída přesnosti:
$$P = \frac{\Delta_{i,\text{max}}}{R} 100\%$$
 $R = \text{rozsah stupnice}$

$$R =$$
rozsah stupnice

• přístroje dělíme podle třídy přesnosti:

P	Kategorie		
0.1	etalony, normály		
0.2	cejchovní		
0.5	laboratorní		
1	laboratorní		
1.5	provozní		
2.5	provozní		

• příklad:

- rozsah ampérmetru: R = 3 A

$$R = 3 A$$

- třída přesnosti: P = 1.5

$$P = 1.5$$

Absolutní nejistota (chyba) měření proudu na tomto rozsahu je:

$$u_B = \frac{PR}{\sqrt{3}}10^{-2} = \frac{1.5 \times 3}{\sqrt{3}}10^{-2} \text{ A} = 0.026 \text{ A}$$

Pozn.: je tedy vhodné měřit v horní části stupnice ručkového měřícího přístroje.

Třída přesnosti - zobecnění

- třída přesnosti: $P = \frac{\Delta_{i,\text{max}}}{R} 100\%$
- Pojem třídy přesnosti můžeme zobecnit i na další měřicí přístroje
- Absolutní chybu měřidla lze **odhadnout** z dělení stupnice:
 - předpokládáme rovnoměrné dělení stupnice v intervalu (-a, a)
 - volíme $a = \Delta$ = nejjemnější dílek stupnice

$$\rightarrow u_B = \frac{\Delta}{\sqrt{3}} \cong 0.58 \Delta$$

Příklad:

Při měření posuvným měřidlem je $\Delta = 0.1$ mm. Chybu měření pak odhadneme jako:

$$u_B = \frac{\Delta}{\sqrt{3}} = \frac{0.1}{\sqrt{3}} \text{ mm} \approx 0.05 \text{ mm}$$

Třída přesnosti - zobecnění

• princip nonia

$$\Delta = \frac{9}{10}$$

$$\delta + k\Delta = l$$

Značení elektrických měřících přístrojů

Brož J., a kol.: Základy fyzikálních měření I, SPN Praha 1967, tab. 1.1 a tab. 1.2 str. 208

Digitální měřící přístroje

Maximální chyba se vyjadřuje většinou v procentech **naměřené** hodnoty + násobek **řádu** poslední platné číslice zobrazené na displeji

Specifikace:

Základní funkce	Rozsah	Přesnost
Měření DC napětí	600mV / 6V / 60V / 600V /1000V	+/- (0,3% + 2)
Měření AC napětí	600mV / 6V / 60V / 600V /1000V	+/- (0,6% + 5)
Měření DC proudu	600μA / 6000μA / 60mA / 600mA / 10A	+/- (0,5% + 3)
Měření AC proudu	600μA / 6000μA / 60mA / 600mA / 10A	+/- (1% + 5)
Měření odporu	600Ω / $6k\Omega$ / $60k\Omega$ / $600k\Omega$ / $6M\Omega$ / $60M\Omega$	+/- (0,5% + 2)
Měření kapacity	6nF / 60nF / 600nF / 6mF / 60mF / 600mF / 6mF	+/- (2% + 5)
Měření teploty ve °C	- 40°C až do + 1000°C	+/- (1% + 3)
Měření teploty ve °F	- 40°F až do + 1832°F	+/- (1,5% + 5)
Měření kmitočtu	60Hz / 60kHz / 600kHz / 6MHz / 60MHz	+/- (0,1% + 3)

Digitální měřící přístroje

Příklad:

Metex M-3850D

Měříme odpor.

Přístroj má 4-místný displej. Podle údajů výrobce je chyba:
0.5% naměřené hodnoty plus $2x0,010 \Omega$,

tj.
$$\Delta = 0.005 \times 51.37 + 2 \times 0.01 \Omega = 0.27685 \Omega$$

$$u_B = \Delta/\sqrt{3} = 0.1598\Omega$$

Výsledek měření je tedy $R = (51,37 \pm 0,16) \Omega$.

	Rozsah	Přesnost	Subdisplej	
DC napětí	400 mV a 1000 V	±0,5 % ±1 dgt	100 μV	
AC napětí	4 V a 750 V	±0,8 % ±1 dgt	1 mV	
		40 Hz a 400 Hz		
DC proud	400 μA a 400 mA	±1,0 % ±2 dgts	0,2 μΑ	
	20 A	±1,5 % ±5 dgts	20 mA	
AC proud	400 μA a 400 mA	±1,5 % ±4 dgts 40 Hz a 400 Hz	0,2 μΑ	
	20 A	±2,0 % ±5 dgts 40 Hz a 400 Hz	20 mA	
Odpor	400 Ω a 40 Μ Ω	±0,5 % ±2 dgt	20 m Ω	
Kapacita	4nF a 400 nF	±2,0 % ±3 dgts	1 pF	
	4μF a 200 μF	±3,0 % ±5 dgts	1 nF	
Frekvence	4 kHz a 400 MHz	±0,1 % ±1 dgts	1 Hz	
Teplota	–40 °C a 200 °C	±3,0 % ±5 dgts	1 °C	
	200 °C a 1200 °C	±3,0 % ±2 dgts		
Logické úrovně	DC 40 V	±0,5 % ±2 dgt	10 mV	
Prozvánění	při hodnotě odporu < 80 Ω			
Test diod	testovací proud 1,5 mA při 1 k Ω			
hFE	testovací proud max. 1000 μA			
Generátor signálu	1Hz a 10 kHz (13 kroků)			