LAPORAN TUGAS 3 PENGANTAR KECERDASAN BUATAN

Nama: Mohammad Dwiantara Mahardhika

NIM: 1301184467

Kelas : IF-42-03

1. Deskripsi Masalah

Implementasi *k-nearest neigbor* (*kNN*) yang mencari nilai k terbaik untuk dataset (himpunan data) Pima India Diabetes Dataset (PIDD) pada file "Diabetes.csv" dengan skema validasi model 5-fold cross validation.

2. Strategi Penyelesaian Masalah

2.1. Spesifikasi

Program dibangun dengan Bahasa Python. Library yang digunakan antara lain csv untuk membaca file Diabetes.csv, math untuk menggunakan fungsi sqrt, dan pandas untuk visualisasi akurasi dalam scatter plot.

2.2. Perhitungan Ukuran Jarak

Semua atribut pada dataset Diabetes.csv berbentuk atribut numerik sehingga perhitungan ukuran jarak menggunakan formula Euclidean Distance.

$$d(i, j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{ip})^2}$$

2.3. Prapemrosesan Data

Dilakukan normalisasi terhadap dataset dengan menggunakan *min-max scaling*.

$$x_i' = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

Normalisasi ini menskalakan semua nilai pada dataset ke dalam interval [0,1].

2.4. Klasifikasi KNN

Klasifikasi dilakukan dengan mencari k data latih terdekat untuk setiap data uji. Kelas prediksi model ditentukan dari kelas yang paling banyak di antara k *neighbors* tersebut. Kemudian dilakukan pengecekan kelas actual dan kelas prediksi model.

2.5. 5-fold cross-validation

Dataset yang diberikan dibagi menjadi 5 bagian yang masing-masing berisi satu per lima (20%) data. Setiap bagian atau *fold* akan menjadi data uji secara bergantian untuk dihitung akurasinya. Setelah itu dilakukan perhitungan rerata akurasi.

3. Fungsi dan Prosedur

• Load csv()

Membaca file csv untuk dipindahkan ke dalam list.

• Split(a, n)

Membagi list a menjadi n bagian.

• Euclidean distance(x1, x2)

Fungsi untuk melakukan perhitungan jarak numerik antara data x1 dengan x2.

• Normalization(dataset)

Melakukan normalisasi dengan menggunakan *min-max scaling* untuk mengubah nilai dataset kedalam interval [0,1]

- **Get_neighbors** (**train**, **test_row**, **k**)
 Fungsi yang mengembalikan sejumlah *k* data latih pada *training* yang paling dekat dengan data uji *testing_row*.
- Classification(train, test_row, k)
 Fungsi untuk melakukan klasifikasi
 untuk satu data uji test_row.
- K_nearest_neighbors(data_test, data_train, k)

 Melakukan klasifikasi untuk semua data yang ada pada data test.
- Accuracy(testing_set_outcome, prediction)

Melakukan perhitungan akurasi prediksi model terhadap nilai aktual data uji.

4. Hasil Observasi

Dilakukan observasi dengan mencari rerata akurasi untuk nilai k (k -nearest neighbors) = 1 sampai k = 30. Hasil rerata akurasi kemudian divisualisasikan dalam bentuk *Scatter Plot*.

Dari hasil observasi didapatkan rerata akurasi tertinggi didapatkan saat k = 13

yaitu 76,3%. Kemudian dilakukan pengecekan standar deviasi untuk memastikan bahwa k=13 adalah nilai k terbaik.

```
75.32467532467533, 79.08496732026144, 73.8562091503268]
Accuracy Mean: 74.87394957983193

K: 12
Accuracy List: [75.32467532467533, 69.48051948051948, 75.97402597402598, 78.43137254901961, 73.8562091503268]
Accuracy Mean: 74.61336049571344

EX: 13
Accuracy List: [76.62337662337663, 70.77922077922078, 76.62337662337663, 81.04575163398692, 76.47058823529412]
Accuracy Mean: 76.30846277905103

K: 14
Accuracy List: [76.62337662337663, 68.181818181817, 75.97402597402598, 79.08496732026144, 74.50980392156863]
Accuracy Mean: 74.87479840421017

EX: 15
Accuracy List: [76.62337662337663, 68.83116883116884, 76.62337662337663, 81.69934640522875, 77.12418300653596]
Accuracy Mean: 76.18029029793736
```

Dari hasil pengecekan standar deviasi nilai k = 13 mempunyai akurasi yang cukup stabil.

5. Output Program

Output program adalah rerata akurasi kNN untuk nilai k = 1 sampai k = 30 yang juga divisualisasikan dalam bentuk *Scatter plot* dan menampilkan nilai k terbaik beserta rerata akurasinya.

```
Accuracy Mean: 75.00721500721502

K: 26
Accuracy Mean: 75.13623631270691

K: 27
Accuracy Mean: 75.65741448094388

K: 28
Accuracy Mean: 75.39767422120363

K: 29
Accuracy Mean: 75.00721500721502

K: 30
Accuracy Mean: 74.61845344198287

Best K Value: 13
Accuracy Mean: 76.30846277905103

In [11]:
```