Siano A, B, C, D, E e F classi polimorfe con definizioni visibili al seguente frammento di codice.

```
template<class T, class Y>
Y* transform(T* p) {
    return dynamic_cast<Y*>(p);
}
int main() {
    A a; B b; C c; D d; E e; F f;
    // Prima parte
    if (transform<A,B>(new C()) == nullptr)
        cout << "Data";</pre>
    // Seconda parte
    if (transform<B,C>(new D()) == nullptr)
        cout << "Structures";</pre>
    // Terza parte
    if (dynamic_cast<D*>(transform<A,B>(new E())) != nullptr)
        cout << " and ";</pre>
    // Quarta parte
    B* pb = transform<A,B>(new F());
    if (pb && dynamic_cast<E*>(pb) == nullptr)
        cout << "Algorithms";</pre>
    return 0;
}
```

Si supponga che:

- 1. Il precedente main() compili correttamente ed esegua senza provocare errori a runtime.
- 2. L'esecuzione del main() provochi su cout la stampa di: "Data Structures and Algorithms".

Determinare per ognuna delle relazioni di sottotipo X≤Y nella tabella seguente se è VERO, FALSO o POSSIBILE:

Relazione	Valore
A≤B	
A≤C	

Relazione	Valore
A≤D	
A≤E	
A≤F	
B≤A	
B≤C	
B≤D	
B≤E	
B≤F	
C≤A	
C≤B	
C≤D	
C≤E	
C≤F	
D≤A	
D≤B	
D≤C	
D≤E	
D≤F	
E≤A	
E≤B	
E≤C	
E≤D	
E≤F	
F≤A	
F≤B	
F≤C	
F≤D	
F≤E	

Disegnare nello spazio sottostante un diagramma di una possibile gerarchia di classi (utilizzando frecce per indicare le relazioni di ereditarietà) che sia compatibile con le condizioni determinate sopra.