Section 3

Quantifiers (I)

Contents

Basics of Quantifiers

2 Universal and Existential Quantifiers

Notes on Quantifiers

Basics of Quantifiers

Motivation

Let \boldsymbol{x} be a real number. Consider the following sentences.

- A(x): If x > 3, then x > 1.
- B(x): $x^2 4 > 0$.

The truth value of each sentence depends on the value of the variable $\boldsymbol{x}.$

- A(x) is true for all x.
- B(x) is true for x < -2 or x > 2.

In general, they can be rephrased using quantifiers as:

- For all x, A(x) is true.
- For some x, B(x) is true.

If he is drinking beer, then he is over 21.

Quantifiers

The quantifiers \forall and \exists , along with the logical connectives, are main ingredients of modern symbolic logic.

Quantifier	Symbol	Technical Name
"for each"	\forall	universal quantifier
"for some"	3	existential quantifier

Example. Let x be a person in this class room. Let P(x) stands for "x likes ramen." Then

- $(\forall x)P(x)$: "For each x, x likes ramen." or "Everybody likes ramen."
- $(\exists x)P(x)$: "For some x, x likes ramen." or "Somebody likes ramen."

Notes

Alternate ways to read.

$$(\forall x)P(x)$$
:

For each x, P(x).

For all x, P(x).

For every x, P(x).

For any x, P(x).

$(\exists x)P(x)$:

For some x, P(x).

For at least one x, P(x).

There exists x such that P(x).

Universe of Discourse

The collection over which the variable x ranges is called the universe of $(\exists x) \land (\exists x) \land$

$$(\forall x \in U)P(x)$$
 or $(\exists x \in U)P(x)$.

Frequently used collections.

- \mathbb{N} : the set of natural numbers, $\{1, 2, 3, \ldots\}$
- \mathbb{Z} : the set of integers, $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Q: the set of rational numbers
- R: the set of real numbers
- C: the set of complex numbers

(Hor) Proxy,

Free and Bound Variables

- In P(x), x can stand for any particular element of the universe of discourse; it is called a *free variable*.
- In $(\forall x)P(x)$ or $(\exists x)P(x)$, x varies over the universe of discourse, not standing for any particular element; it is called a *bound variable* or a *dummy variable*.

for
$$\dot{t} = 1:10$$

$$3 * \dot{t};$$

Universal and Existential Quantifiers

1, C, 2, B

If a card has B on one side, then it has 2 on the other side.

P .					Q	
	, P	Q	$P \Rightarrow Q$			
Ist 2nd 3nd 4th	? F 2. T	F? T?	T T	?	Know this W/o nueding to flip cards	

Universal Quantifier (

Let U be the universe of discourse.

- $(\forall x)P(x)$ is true when P(x) is true for all values of x in U.
- To show $(\forall x)P(x)$ is false, it suffices to show that P(x) is false for at least one value of x in U; such x is said to be a *counterexample* that disproves the universal sentence.

Universal Quantifier (cont')

Example. State whether each of the following sentences is true or false. From the Jaims.

$$\bullet$$
 $(\forall x \in \mathbb{R})(x-2=5)$ \top / \bigcirc Counterexample: $\chi = 3$

Proof claim the given is false. Assume (tx GIR)(x-z=5) is true.

Since 1 = 3 is a real number, 3 - 2 = 5. But $3 - 2 = 1 \neq 5$. This is a contradiction. Hence, $(4 \times 61R)(1 - 2 = 5)$ is false.

Hence,
$$(\forall x \in \mathbb{R})(\forall x = 10 > 0)$$
 is false $(\forall x \in \mathbb{R})(x^2 + 6x + 10 > 0)$

Proof Let to EIR be arbitrary. Then

Alex: 12+ bil+10 = (1+3)2+1

Since the was chosen arbitrarily, it shows that $(\forall x \in \mathbb{R})(x^2 + 6x + 10 > 0)$.

Existential Quantifier

(三)

Let U be the universe of discourse.

- $(\exists x)P(x)$ is true when P(x) is true for at least one value of x in U; such x is said to be an example that proves the existential sentence.
- To show $(\exists x)P(x)$ is false, it is necessary to show that P(x) is false for all values of x in U.

Existential Quantifier (cont')

Example. State whether each of the following sentences is true or false.

•
$$(\exists x \in \mathbb{R})(x-2=5)$$
 \bigcirc / \bigcirc Proof Let $\alpha=7$, a real number. Then

1 - 2 = 7 - 2 = 5

• $(\exists x \in \mathbb{R})(x^2 + 6x + 10 < 0) \top / ()$ Proof To show that the gaven is talse, we must show that 2+62+10 <0

example: x=7

From prev. work: 12+6x+10 = (x+3)+1

13/17

Notes on Quantifiers

Connections to Logical Connectives

Suppose the universe of discourse consists only of two objects $\{a,b\}$. Note that

- $(\forall x)P(x)$ is true exactly when $P(a) \land P(b)$ is true.
- $(\exists x)P(x)$ is true exactly when $P(a) \vee P(b)$ is true.

In general, when the universe of discourse is a finite set $\{a_1, a_2, \dots, a_n\}$, then

- $(\forall x)P(x)$ has the same truth value as $P(a_1) \wedge P(a_2) \wedge \cdots \wedge P(a_n)$.
- $(\exists x)P(x)$ has the same truth value as $P(a_1) \vee P(a_2) \vee \cdots \vee P(a_n)$.

Notation

Suppose A is a subcollection of the universe of discourse. Then

- $(\forall x \in A)P(x)$ is a shorthand notation for $(\forall x)[(x \in A) \Rightarrow P(x)]$.
- $(\exists x \in A)P(x)$ is a shorthand notation for $(\exists x)[(x \in A) \land P(x)]$.

When the universe of discourse is \mathbb{R} , a subcollection may be characterized by an inequality in which case one may use notations e.g.,

•
$$(\forall x > 0)(2x + 7 = 3)$$

•
$$(\exists x \ge 7)(x^2 - 4x + 3 > 0)$$

Scope of Quantifiers

The scope of a quantifier is specified using appropriate delimiters.

Example. Let n be an element in $\{2,3,5,7\}$ and let

P(n): n is a prime number. Q(n): n is an even number. " Every number in $\{2, 3, 5, 7\}$ is a prime number and M is an even number." (True when n=2) "Every number in {2,3,5,7} is both a prime number and an even number." (False)

Homework (1/21; due Wed 1/26)

Section 3: # 1 (e-1e), 3,4