

Permutation-Based Residential Short-term Load Forecasting in the Context of Energy Management Optimization Objectives

Marcus Voß, Technische Universität Berlin (DAI-Labor)

A household-level electric load profile in higher resolutions

15-minute resolution

1-minute resolution

1-second resolution

A household-level electric load profile in lower resolutions

15-minute resolution

30-minute resolution

60-minute resolution

A household-level electric load profile in higher aggregations

1 household

20 households

1000 households

Data: [CER2012]

Euclidean distance:

$$d(f,x) = ||f - x||_2 = \sqrt{\sum_{i=1}^n (f_i - x_i)^2} \qquad RMSE = \sqrt{\frac{\sum_{i=1}^n (f_i - x_i)^2}{n}} \qquad d(x_1, x_2): 668,7 \text{ W}$$

Forecast Error:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n}(f_i - x_i)^2}{n}}$$
 d(x_1 ,

Euclidean distance:

$$d(f,x) = ||f - x||_2 = \sqrt{\sum_{i=1}^{n} (f_i - x_i)^2} \qquad RMSE = \sqrt{\frac{\sum_{i=1}^{n} (f_i - x_i)^2}{n}}$$

Forecast Error:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (f_i - x_i)^2}{n}}$$

 $d(x_1, x_2)$: 668,7 W $d(x_2, x_3)$: 549,6 W

LPI-Distance (based on Adjusted Error of [Haben2014]):

$$LPI(\mathbf{f}, \mathbf{x}; \omega) = \min_{P \in \mathcal{L}_n^{\omega}} ||P\mathbf{f} - \mathbf{x}||_2$$

Forecast Error

$$\varepsilon_{\omega} = \frac{1}{\sqrt{n}} LPI(\mathbf{y}, \mathbf{x}; \omega)$$

 ω Bandwidth parameter.

 \mathcal{L}_n^{ω} Set of by ω restricted permutation

matrices of size n.

P p-norm minimizing permutation

matrix.

 $d(x_1, x_2)$: 668,7 W

 $d(x_2, x_3)$: 549,6 W

 $LPI(x_1, x_2; \omega = 5)$: 308,3 W

 $LPI(x_2, x_3; \omega = 5)$: 549,6 W

What is a good average of household load profiles?

- ightharpoonup The sample mean \bar{x} of a set of n profiles is a profile with minimal distance to each of the profiles.
- ▶ The arithmetic mean minimizes the Euclidean distance.

What is a good average of household load profiles?

The LPI mean is the a sample mean under the Local Permutation Invariant (LPI) distance.

Comparison of forecasts by RMSE-minimizing KNN and ϵ_{5} minimizing LPI-KNN

Example traces of a household from the CER dataset [CER2012].

Comparison of configurations of RMSE-minimizing KNN and \mathcal{E}_5 minimizing LPI-KNN

Distribution of the best configurations for the 100 households of the CER dataset [CER2012].

How to establish ground truth in load forecasting?

Objective 1 Minimize Cost:

$$O_{Cost}$$
: min $\sum_{t=1}^{H} c_{Utility}(t) \cdot P_{Utility}(t) \cdot \tau - p_{Feedin}(t) \cdot P_{Feedin}(t) \cdot \tau$

Objective 2 Max. Autarky:

$$O_{Autarky}$$
: min $\sum_{t=1}^{H} P_{Utility}(t)$

Objective 3 Min. Peak

$$O_{Peak}$$
: $\min \sum_{t=1}^{H} \varepsilon$

s.t.
$$\varepsilon \ge P_{Utility}(t) - P_{Bill}$$

 ε is the amout that the peak demand within the horizon H is expected to exceed the highest peak of the current billing period P_{Bill} .

15

 $E_{Battery}$

Comparison of configurations of respective objective-minimizing KNN

Distribution of the best configurations for the 100 households of the CER dataset [CER2012].

Conclusion

- Low aggregated load profiles at high resolutions and low aggregations are intermittent and have few structure to be exploited by data mining.
- ► The LPI distance and adjusted error measure can be alternatives to the standard Euclidean distance and RMSE for comparing low-voltage load profiles.
- We showed how this can be done by establishing a ground truth, by considering the forecast error in the context of the energy management optimization goal (here: minimum cost, minimum longterm peak load, maximum autarky).
- ▶ Peak reduction by average of 22.5% using optimal configuration over RMSE-minimizing forecasting model.

Current Work/Future Work:

- ► Analyze the choice of distances for clustering and other data analytics tasks on smart meter data.
- Compare the LPI distance (adjusted error) more thoroughly to DTW.
- ► Standard LAP scales in O(n³) and the choice of the implementation makes a big different. Currently, I develop a heuristic with good accuracy on minute resolution.

Get In Touch

Comparison of forecasts by RMSE-minimizing KNN and \mathcal{E}_5 minimizing LPI-KNN

Results for 100 households of the CER dataset [CER2012].

Comparison of forecasts by respective objective-minimizing KNN

Results for 100 households of the CER dataset [CER2012].

