Language INFINITE

- $INFINITE = \{w \mid L(\mathcal{M}(w)) \text{ is infinite}\}$
- We will show this is not computable by using INFINITE to compute HALT

 $\mathcal{M}(w)(x)$ Halts? It is infinite $\mathcal{M}(w)(x)$ Doesn't Halt? It isn't infinite Language of M_{wx}

- If $\mathcal{M}(w)(x)$ halts:
 - $-M_{wx}$ always returns 1
 - $-L(M_{wx}) = \Sigma^*$, which is infinite
- If $\mathcal{M}(w)(x)$ doesn't halt:
 - $-M_{wx}$ gets "stuck" in step 1 and never returns
 - $-L(M_{wx}) = \emptyset$, which is finite

Build this machine: M_{wx} :
1) run $\mathcal{M}(w)(x)$

2) return 1

Using INFINITE to build HALT

Assume we have M_{∞} which computes INFINITE:

We could then build M_{HALT} which computes HALT like

 $w \longrightarrow L(\mathcal{M}(w))$ infinite? $L(\mathcal{M}(w))$ is/isn't infinite

Reduction

Problem **know** is impossible

 \overbrace{A}

HALT

Does $\mathcal{M}(w)$ halt on input x?

 M_{HALT} computes HALT

Problem we **think** is impossible

INFINITE solver exists

Using FINITE to build INFINITE

M_{FINITE}

Is $L(\mathcal{M}(w))$ finite?

 $L(\mathcal{M}(w))$ is/isn't

finite

Assume we have M_{FINITE} which computes FINITE:

We could then build M_{∞} which computes INFINITE

Language NonReg

- $NonReg = \{w \mid L(\mathcal{M}(w)) \text{ is non } \text{ regular} \}$
- We will show this is not computable by using NonReg to compute HALT

 $\mathcal{M}(w)(x)$ Halts? It is non-regular $\mathcal{M}(w)(x)$ Doesn't Halt? It isn't non-regular

Language of M_{wx}

- If $\mathcal{M}(w)(x)$ halts:
 - $-M_{wx}$ returns 1 if MAJ(y) = 1
 - $-L(M_{wx}) = MAJ(y)$, which is non-regular
- If $\mathcal{M}(w)(x)$ doesn't halt:
 - $-M_{wx}$ gets "stuck" in step 1 and never returns 1
 - $-L(M_{wx}) = \emptyset$, which isn't non-regular

Build this machine: $M_{wx}(y)$:

- 1) run $\mathcal{M}(w)(x)$
- 2) return MAJ(y)

Using NonReg to build HALT

Assume we have M_{NR} which computes NonReg:

We could then build M_{HALT} which computes HALT like

Reduction

 \overbrace{A}

HALTDoes $\mathcal{M}(w)$ halt on input x?

 M_{HALT} computes HALT

Using Reg to buildNonReg

 M_{Reg}

 $L(\mathcal{M}(w))$ is/isn't

10

Regular

Assume we have M_{Reg} which computes NonReg:

We could then build M_{NR} which computes NonReg like

Language Accept 101

- $Accept101 = \{w \mid \mathcal{M}(w)(101) = 1\}$
- We will show this is not computable by using Accept 101 to compute HALT

 $\mathcal{M}(w)(x)$ Halts? It does accept 101 $\mathcal{M}(w)(x)$ Doesn't Halt? It doesn't accept 101

Building M_{wx}

- If $\mathcal{M}(w)(x)$ halts:
 - $-M_{wx}$ returns 1 if y == 101
 - $-L(M_{wx}) = \{101\}$, so it does accept 101
- If $\mathcal{M}(w)(x)$ doesn't halt:
 - $-M_{wx}$ gets "stuck" in step 1 and never returns 1
 - $-L(M_{wx}) = \emptyset$, so it doesn't accept 101

Build this machine:

 $M_{wx}(y)$:

1) run $\mathcal{M}(w)(x)$

2) return y == 101

Using Accept 101 to build HALT

Assume we have M_{A101} which computes Accept 101:

 $w \longrightarrow M_{A101}$ Does $\mathcal{M}(w)$ accept $\mathcal{M}(w)$ does/doesn't accept 101

We could then build M_{HALT} which computes HALT like

Accept101 Reduction

HALT Does $\mathcal{M}(w)$

 M_{HALT} computes HALT

Using Reject 101 to build Accept 101

Assume we have M_{R101} which computes Reject 101:

 $w \longrightarrow \begin{matrix} M_{R101} \\ \text{Is } 101 \notin L(\mathcal{M}(w))? \end{matrix} \longrightarrow \begin{matrix} 101 \text{ isn't/is in} \\ L(\mathcal{M}(w)) \end{matrix}$

We could then build M_{A101} which computes Accept101

Computability and non-computability closed under complement

• If L is computable, then L^c is computable

Assume we have M_L which computes L:

We could then build M_{L^c} which computes L^c like this:

Complement Reduction

Sematic Property

- Turing machines M, M' are **Functionally Equivalent** if $\forall x \in \Sigma^*, M(x) == M(x')$
 - i.e. they compute the same function/language
- A Semantic Property of a Turing machine is one that depends only on the input/output behavior of the machine
 - Formally, if P is semantic, then for machine M, M' that are functionally equivalent, P(M) == P(M')
 - If M, M' have the same input/output behavior, and P is a semantic property, then either bother M and M' have property P, or neither of them do.

Examples

- These properties are Semantic:
 - Is the language of this machine finite?
 - Is the language of this machine Regular?
 - Does this machine reject 101?
 - Does this machine return 1001 for input 001?
 - Does this machine only ever return odd numbers?
 - Is the language of this machine computable?
- These properties are not Semantic:
 - Does this machine ever overwrite cell 204 of its tape?
 - Does this machine use more than 3102 cells of its tape on input 101?
 - Does this machine take at least 2020 transitions for input ε ?
 - Does this machine ever overwrite the ∇ symbol?

Rice's Theorem

- For any Semantic property P of Turing Machines, either:
 - Every Turing machine has property P P is "trivial"
 - No Turing machines have property P
 - -P is uncomputable
- In other words:
 - If P is semantic, and computable, then one of these two machines computes it:

Return 1

Return 0

Proof of Rice's Theorem

- Let P be a semantic property of a Turing machine
- Assume M_{\emptyset} (a machine whose language is \emptyset) doesn't have property P (otherwise substitute $\neg P$, then answer opposite)
- Let M_P be a machine that does have property P
- Idea:
 - If $\mathcal{M}(w)(x)$ halts, $L(M_{wx}) = L(M_{has P})$
 - If $\mathcal{M}(w)(x)$ doesn't halt, $L(M_{wx}) = L(M_{\emptyset}) = \emptyset$
 - $L(M_{wx})$ has property P if and only if $\mathcal{M}(w)(x)$ halts

```
\mathcal{M}(w)(x) Halts? It has property P
\mathcal{M}(w)(x) Doesn't Halt? It doesn't have property P
```

```
Build this machine:
```

- 1) run $\mathcal{M}(w)(x)$ 2) return $M_{has\ P}(y)$

Using P to build HALT

 M_{P}

Does $\mathcal{M}(w)$ have

property P?

 $\mathcal{M}(w)$ does/doesn't

have property P

Assume we have M_P which computes P:

We could then build M_{HALT} which computes HALT like

this: M_{HALT} Does $\mathcal{M}(w)(x)$ halt? $M_{wx}(y):$ Build this machine: $M_{wx}(y):$ Does $\mathcal{M}(w)$ have $M_{wx}(y):$ does/doesn't have property P? $M_{wx}(y):$ have property P?

What if *P* is "trivial"?

- If P applies to all Turing machines:
 - It applies to M_{\emptyset} , so we'll consider $\neg P$ which applies to no Turing machines
- If *P* applies to no Turing machines:
 - $-M_{Has\,P}$ can't exist

```
Build this machine:
```

- 1) run $\mathcal{M}(w)(x)$ 2) return $M_{Has\ P}(y)$

Using Rice's Theorem

- These properties are Semantic:
 - Is the language of this machine finite?
 - Is the language of this machine Regular?
 - Does this machine reject 101?
 - Does this machine return 1001 for input 001?
 - Does this machine only ever return odd numbers?
 - Is the language of this machine computable?
- These properties are not Semantic:
 - Does this machine ever overwrite cell 204 of its tape?
 - Does this machine use more than 3102 cells of its tape on input 101?
 - Does this machine take at least 2020 transitions for input ε ?
 - Does this machine ever overwrite the ∇ symbol on input ε ?

Steps2020

- Steps2020 = $\{w | \mathcal{M}(w) \text{ takes at least } 2020 \text{ steps}\}$
- Is *Steps*2020 computable?

OverwriteV

- $Overwrite \nabla = \{ w \mid \mathcal{M}(w) \text{ overwrites } \nabla \text{ on input } \epsilon \}$
- Is *Overwrite*∇ computable?

CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

To measure the "cost" of computing something, what would units should we use?

Units

Computing Cost

 What do we actually care about with computing cost?

Notions of function "difficulty"

- Can an algorithm for function *f* be implemented using this computing model?
 - NAND-CIRC: answer is YES iff f is finite
 - FSA: answer is YES if function doesn't require "memory"
 - TM: Answer is NO for $HALT_{TM}$, FINITE, ... (and many other things)
- How efficient is an algorithm for function f implemented using this computing model?
 - NAND-CIRC: How many gates?
 - FSA: (we never talked about this)
 - TM: How many transitions are required (time)? How many tape cells are required (space)?

Larger inputs = More time

- Run time is not measured by a number, but a function.
- Running time: T(n) is a function mapping naturals to naturals. We say $F: \{0,1\}^* \to \{0,1\}^*$ is computable in T(n) time if there exists a TM M s.t. for every large n and ever input $x \in \{0,1\}^n$, M halts after at most T(n) steps and outputs F(x).
- TIME(T(n)) represents the set of boolean functions computable within T(n) time

Examples

- How long will XOR take on a Turing Machine?
 - We have an even state and an odd state
 - For each bit, move right, switch states if 1
 - Halt when you get to end of input
- How long will MAJ take on a Turing Machine?
 - Find a zero, cross it off
 - Go to beginning
 - Find a one, cross it off
 - Go to beginning
 - Halt when no more 0s or no more 1s

More time gives more functions

Different computing Models may have Different Running Times

 So far: a TM uses a tape. Can only visit a neighboring cell from the current one.

1960s

A tape was probably a reasonable memory model

Computer-Science Center University of Virginia

Burroughs 205 Computer 1960-1964

Today

Can look up two locations without visiting all locations between.
"Random" access (RAM)

RAM Machine

- We can go directly to a certain index in the tape
- To transition:
- 1. Have a second tape to keep track of current location (increment each time we move right, decrement for left)
- 2. Have a third tape to record the target location
- 3. Move until the two tapes match
 - 1. Maybe we need another tape to do this?

(details not important, but if you want them, see 7.2 in text) Important observation: Tape-machine takes more steps than a RAM machine (if a RAM-TM computes f in T(n) time, a tape TM can compute f in $\left(T(n)\right)^4$ time, see theorem 12.5 for details)

Finding Running Times

- We will find running times for the following:
 - Shortest Path in a graph
 - Longest Path in a graph
 - 3SAT
 - 2SAT

Graphs

Vertices/Nodes

Definition: G = (V, E)Notice that of edge e

w(e) = weight of edge e

Adjacency List Representation

Tradeoffs

Space: V + E

Time to list neighbors: Degree(A)

Time to check edge (A, B): Degree(A)

Adjacency Matrix Representation

Tradeoffs

Space: V²

Time to list neighbors: V

Time to check edge (A, B):O(1)

Definition: Path

A sequence of nodes $(v_1, v_2, ..., v_k)$

Simple Path:

A path in which each node appears at most once

Cycle:

A path of > 2 nodes in which $v_1 = v_k$

Shortest Path

 Given an unweighted graph, start node s and an end node t, how long is shortest path from s to t?

Shortest path from A to E has length 2

Breadth First Search

Find a path from s to t

```
Keep a queue Q of nodes hops = 0 Q.enqueue((s, hops)) While Q is not empty and v ! = t: v, hops = Q.dequeue() for each "unvisited" u \in V s.t. (v, u) \in E: Q.enqueue((u, hops + 1))
```

Running time: O(|V| + |E|)

Longest Path

 Given a start node s and an end node t, how long is longest path from s to t?

Longest Path

Enumerate all possible sequences of nodes check if it's a path print the length of the longest one

Running time: *n*!