This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

HEART
LUNG
THYMUS
BRAIN
KIDNEY
SEMINAL VESICLE
PANCREAS
INTESTINE
SPLEEN
TESTIS
FAT
UTERUS
OVARY
LIVER

- 2.9 kb

FIG. 1A

rat human monkey rabbit cow pig dog chick zebrafish monse

12.2 -9.2 -

6.1 -

3.1 -

1.0 -

FIG. 1B

1	TTAAGGTAGGAAGGATTTCAGGCTCTATTTACATAATTGTTCTTTCCTTTTCACACAGAA	60
61	N TCCCTTTTTAGAAGTCAAGGTGACAGACACACCCAAGAGGTCCCGGAGAGACTTTGGGCT	120
01	PFLEVKVTDTPKRSLRRDFGL	
121	TGACTGCGATGAGCACTCCACGGAATCCCGGTGCTGCCGCTACCCCCTCACGGTCGATTT	180
101	D C D E H S T E S R C C R Y P L T V D F IGAGCCTTTGGATGGACTGGATTATCGCACCCAAAAGATATAAGGCCAATTACTGCTC	240
181	E A F G W D W I I A P K R Y K A N Y C S	2.0
241	AGGAGAGTGTGAATTTGTGTTTTTACAAAAATATCCGCATACTCATCTTGTGCACCAAGC	300
704	G E C E F V F L Q K Y P H T H L V H Q A	360
301	AAACCCCAGAGGCTCAGCAGGCCCTTGCTGCACTCCGACAAAAATGTCTCCCATTAATAT N P R G S A G P C C T P T K M S P I N M	300
361	GCTATATTTTAATGGCAAAGAACAAATAATATATGGGAAAATTCCAGCCATGGTAGTAGA	420
	L Y F N G K E Q I I Y G K I P A M V V D	490
421	CCCCTGTGGGTGCTCATGAGCTTTGCATTAGGTTAGAAACTTCCCAAGTCATGGAAGGTC R C G C S *	480
481 ·	R C G C S + TICCCCTCAATTTCGAAACTGTGAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGC	540
541	GGCCGCCACC 550	

FIG. 2A

		_ 1.
1	CAAAAGATCCAGAAGGGATTTTGGTCTTGACTGTGATGAGCACTCAACAGAATCACGAT	60
•	KRSRRDFGLDCDEHSTESRC	
£1	CCTGTCGTTACCCTCTAACTGTCGATTTTGAACCTTTTCGATCCGATTGGATTATCCCTC	120
U i	CRYPLTVDFEAFGWDWIIAP	
21	CTAAAAGATATAAGGCCAATTACTGCTCTGGAGAGTGTGAATTTGTATTTTTACAAAAAT	180
21	KRYKANYCSGECEFVFLQKY	
0.1	ATCCTCATACTCATCTGGTACACCAAGCAAACCCCAGAGGTTCAGCAGGCCCTTGCTGTA	240
٥ı	A ICCICATACTORIO A A A D. D. C. C. A. C. D. C. T.	2.0
	PHTHLVHQANPRGSAGPCCT	ፈ ለሰ
241	CTCCCACAAAGATGTCTCCAATTAATATGCTATATTTTAATGGCAAAGAACAAATAATAT	J00
	PTKMSPINMLYFNGKEQIIY	
301	ATGGGAAAATTCCAGCGATGGTAGTA 326	
	GKIPAMVV	

. . . . ACA CCC AAG AGG TCC T P K R S GAC GTA ACA (AA × GTC V GAA E L T ĒΨ . ည ရ AAT CTG , 999 GAA GAT (E D

ე ე TAC Y ეე გ ည် ည္ ၁ . S S S S 77G S ACG GAA ' 25 S GAA CAC E GAT <u>т</u>бТ eAC D F5 ~ GAC D AGA R AAG K TAT AGA R Α¥ ည္သ ရ ATT GCA (I A ATT I . Dago GGA TGG (G W Eu GCC A GAA E 7 F GAT GTC V CTC ACG (

CAT H ACT T CCG CAT CAA AAA TAT C Q K Y) H . 6TG V GAA TTT (TGT C TCT GGA GAG T S G E TAC TGC 1 Y C GCT AAT ' CCA ACA AAA ATG P T K M ACG (⊤ TGC TGC / CCT AGA GGC TCG GCA GGC R G S A G CAC CAA GCA AAC CCC , H Q A N P GTG (V F5 __ CCA P ATT AA K 999 ATA ATA TAT GI TTT AAT GGC AAA GAA CAA F N G K E 0 ATT AAT ATG CTA TAT
I N M L Y ည္ပ ရ S

SCA) |-AAT GGG TGC TCG TGA GCT TTG CAT TAG CTT TAA G C S CGG TGT (GAC GTA V GTA V ATG M 9 P CGA AAC TGT GAA TTT ATG TAC CAC AGG CTG E CCT CGA CGT GGA AGG TCT TCC AAT

SAT GDF-8

FIG. 2C

AAG CAA AAG CAT CAA AAG CAA AAG CAA AAG CAA AAG CAA AAC CAA AAC CAA GGGA AAA ATA ATA ATA ATA ATA ATA ATA gAA **TGT** TGA CAC E TAT 346 ATA I ATC SGT CICIGT 380 TAT AAT AAT AAT AAT AAT AAT AAT AAT ည္တပ AAT AT A AAT A AAT

CHICKEN GDF-

FIG. 2D

s.

zebrafish.nucleotide [Strand]

ATGCATTTTA CACAGGTTTT AATTTCTCTA AGTGTATTAA TTGCATGTGG TCCAGTGGGT TATGGAGATA P V G A C G s v L I I S L QVL TAACGGCGCA CCAGCAGCCT TCCACAGCCA CGGAGGAAAG CGAGCTGTGT TCCACATGTG AGTTCAGACA 71 S T C E E E S E L.C S T A T QQP ACACAGCAAG CTGATGAGAC TGCATGCCAT CAAGTCCCAA ATTCTTAGCA AACTCCGACT CAAGCAGGCT I L S K L R L H A I K S Q L M R L CCAAACATCA GCCGGGACGT GGTCAAGCAG CTGTTACCCA AAGCACCGCC TTTGCAACAA CTTCTGGATC 211 L Q Q L L P K A P P R D V V K Q AGTACGATGT TTTAGGAGAT GACAGTAAGG ATGGAGCTGT GGAAGAGGAC GATGAACATG CCACCACAGA D E H A g A VE E D D S K D L G D GACCATCATG ACCATGGCCA CAGAACCTGA CCCCATTGTT CAAGTAGATC GGAAACCGAA GTGTTGCTTT 351 K P K Q V D R EPDPIV TAMT TTCTCCTTCA GTCCGAAGAT CCAAGCGAAC CGGATCGTAA GAGCGCAGCT CTGGGTTCAT CTGAGACCGG 421 w v H RIVR A Q L Q A N P K I CGGAGGAGGC GACCACCGTC TTCTTACAGA TATCTCGGCT GATGCCCGTT AAGGACGGAG GAAGACACCG 491 M P V K D G G F L Q I S R L T T V AATACGATCC CTGAAAATCG ACGTGAACGC AGGAGTCACG TCTTGGCAGA GTATAGACGT AAAGCAGGTG 561 r b v G V T S W Q S V N A r k i D CTCACGGTGT GGTTAAAACA ACCGGAGACC AACCGAGGCA TCGAGATTAA CGCATATGAC GCGAAGGGAA EIN AYD NRGI P E TLTVW L K Q ACGACTTGGC CGTCACTTCA ACCGAGACTG GGGAGGATGG ACTGCTCCCC TTTATGGAGG TGAAAATATC F M E V L L P E D G T E T G N D L A V T S AGAGGGCCCA AAACGAATCC GGAGGGACTC CGGACTGGAC TGCGATGAGA ATTCCTCAGA GTCTCGCTGC 771 SSE C D E N G L D R D S K R I R TGCAGGTACC CTCTCACTGT GGACTTCGAG GACTTTGGCT GGGACTGGAT TATTGCTCCA AAACGCTATA 841 I A P D F G W D W I D F E L T V C R Y P AGGCGAATTA CTGTTCAGGA GAATGCGACT ACATGTACCT GCAGAAGTAT CCCCACACCC ATCTGGTGAA 911 P H T ·H Q K Y MYL ECDY C S G CAAGGCCAGT CCGAGAGGAA CGGCTGGGCC CTGCTGCACT CCCACCAAGA TGTCTCCCAT CAACATGCTT S P I р т к м A G P C C T PRGT 1051 TACTTTAACG GCAAAGAGCA GATCATCTAC GGCAAGATCC CTTCGATGGT AGTAGACCGC TGTGGCTGCT I I Y G K I P S M V V D R K E Q 1121 CATGA

FIG. 2E

salmon CDF-8.nucleotidel [Strand]

GGCAGCCGGA GACGAATTGG GGGATCGAGA TTAATGCGTT CGACTCGAAG GGAAATGATC TGGCCGTTAC T N W G I E I N A F D S K G N D L 1 CTCAGCAGAA GCGGGAGAAG GACTGCAACC CTTCATGGAG GTGACGATTT CAGAGGGCCC GAAGCGCTCC SAE AGEG LQPFME VTISEGPKRS 71 AGGAGAGACT CGGGCCTGGA CTGTGACGAG AACTCCCCCG AGTCCCGCTG TTGCCGCTAC CCCCTCACGG C R Y RRDSGLDCDENSPESRC TAGACTTTGA AGACTTTGGC TGGGACTGGA TTATTGCCCC CAAGCGCTAC AAGGCCAACT ACTGCTCTGG V D F E D F G W D W I I A P K R Y K A N Y C S G TGAGTGTGAG TACATGCACC TGCAGAAGTA CCCCCACACC CACCTGGTGA ACAAGGCTAA CCCTCGCGGC 281 ECEYMHL QKY PHT HLVN KAN ACCGCAGGGC CCTGCTGCAC CCCCACCAAG ATGTCCCCCA TCAACATGCT CTACTTCAAC CGCAAAGAGC Y F N N M L M S P I T A G P C C T P T K AGATCATCTA CGGCAAGATC CCCTCCATGG TGGTGGACCG TTGCGGATGC:TCGTGA Q I I Y G K I P S M V V D R C G C S

salmon GDF8.nucleotide2 [Strand]

GGTTACCTCA ACTGAAGCCG GAGAAGGACT GCAACCCTTC ATGGAGGTGA AGATTTCGGA GGGCCCGAAG TEAGEGL QPF MEVK ISE CGCTCCAGGA GAGATTCGGG CCTGGACTGT GATGAGAACT CCCCCGAGTC CCGCTGCTGC CGGTACCCCC L D C D E N S P E S R C C R S R R D S G TCACGGTGGA CTTTGAAGAC TTTGGCTGGG ACTGGATTAT TGCCCCCAAG CGCTACAAGG CCAACTACTG R Y K A F G W D W I I A P K F E D CTCTGGTGAG TGCGAGTACA TGCACCTGCA GAAGTACCCC CACACCCACC TGGTGAACAA GGCTAACCCT C E Y M H L Q K Y P H T H L V N K CGCGGCACCG CGGGGCCCTG CTGCACCCCC ACCAAGATGT CCCCCATCAA CATGCTCTAC TTCAACCGCA PIN T K M S M L Y G P C C T P 351 AAGAGCAGAT CATCTACGGC AAGATCCCCT CCATGGTGGT GGACCGCTGC GGCTGCTCGT GA I Y G K I P S M V V D R C G C S . KEQI

SRIEAIKIOILSKLRLE SRIEAIKIOILSKLRLEI .NEGSEREENVEKEGLCNA(.NEGSEREENVEKEGLCNA(

> human murine chicken

human murine rat chicken

human murine rat chicken

240 TPTTVFVOILRLIKPMKDGTRYTGIRSLKLDMNPGTGIMOSIDVKTVLONWLKOPESNLGIEIKALDENGHDLAV TPTTVFVQILRLIKPMKDGTRYTGIRSLKLDM<mark>S</mark>PGTGIMQSIDVKTVLQNWLKQPESNLGIEIKALDENGHDLAV

VVKAQLWIY

PTESDFLMOVDGKPI PTESDFLMOADGKPI

IDOYDVORDDSSDGSLEDDDY IDQYDVQRDDSSDGSLEDDDY

LR<mark>O</mark>VOKPTTVFVQILRLIKPMKDGTRYTGI<mark>G</mark>SLKLDMNPGTGIWQSIDVKTVLQNWLKQPESNLGIEIKAFDE<mark>TI</mark>GRDLAV

Human murine rat chicken

TFPGPGEDGLNPF TFPGPGEDGLNPF

human murine rat chicken

TFPGPGEDGLNPFLEVKVTDT EDGLNPFLEVKVTDT TFPGPGEDGLNPFLEVKVTDT

)TPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDW)TPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDW)TPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDW

TKMSPI TKMSPI

FIG. 3B

	10	20	30
M M Q K L Q M Y M H F T Q	Y I Y L F M L I A V L I S L S V L I A	AGPVDLNEGSE CGPVGYGDITA	R murine H zebrafish - salmon1 - salmon2
	40	50	60
B1 EENVE 28 QQPSTATE 1	KEGLCNACAW ESELCSTCEF	RONTRYSRIE A ROHSKLMRLHA	I murine I zebrafish - salmon1 - salmon2
	70	80	90
58 KIQILSKL 58 KSQILSKL	PIETAPNISK	DAIRQLLPRAI DVVKQLLPKAI	P murine P zebrafish - salmon1 - salmon2
4. 10 mm	100	110	120
LRELIDOY 88 LOQLLDOY	DVQRDDSSDC		TE murine TE zebrafish salmon1 salmon2
	130	140	150 murine
118 TITMPTE	SDFLMQADG PDPIVOVDR	K P K C C F F K F S S K P K C C F F S F S P	KI mulline KI zebrafish salmon1 salmon2
4: 4! (1 a) (1 a)	160	170	180
148	AQLWIYLRPV	KTPTTVFVQIL EEATTVFLQIS	RL murine RL zebrafish salmon1 *-
	190	200	210
178 I K P M K D G 178 M - P V K D G 1	TRYTGIRSLK	L D M S P G T G I W C	SI murine SI zebrafish salmon1 salmon2
	220	230	240
208 DVKTVLQ 206 DVKQVLT 1	220 NWLKQPESNI VWLKQPETNIQPETNI	GIEIKALDEN GIEINAYDAK	G H D murine G N D zebrafish

Decoration 'Decoration #1': Shade (with solid black) residues that match the Consensus exactly.

ICF-82	32	28	3	34	36	35	37	25	34	33	37	88	35	32	23	22	37	₹	7	+ 6	울:	'-	
IGF-B1	33	56	36	33	8	36	34	23	X	34	સ્ટ	34	%	32	88	23	41	35	3 5	<u>`</u> `.	1 •		
8 Anididal	35	25	41	33	33	38	42	3	42	42	4	42	33	37	25	22	.63	:C	3	l	.1	1	
Agnididal	33	32	42	\$	₹	4	88	8	42	4	44	43	5	38	24	28	100	: 1		ı	1	1	
Inhibina	23	2	22	24	27	5 6	3 6	27	22	22	22	24	24	23	<u>∞</u>	Ş	ī	-		1	ı	ı	
SIW	34	20	22	27	5 8	22	33	21	27	23	24	27	24	R	9	ı	1	. 1		1	t	ı	
BM b-3	42	₹	42	47	46	46	88	33	2	47	4	42	₹	8	1	1	ı	1	l	t	ı		
S-9MB	46	55	S	25	54	22	42	33	61	83	6	88	<u>.8</u>	ין [1	t	l	1	l	1	ı	1	
1-q0	47	25	22	2	23	23	42	8	8	28	8	 8	.1	: '	ſ	1	ι	~	l	ſ	ı	t	
Vgr-1	46	55	53	5	53	22	45	23	61	8	8	٠.١	. 1	<u> </u>	ι	1	. 1		ı	t	i	1	
4-9W8	43	2	S	57	99	23	88	34	92	8	1	•	1	י ר	ı	1	1		l	1	ı	ı	
BMb-2	42	22	53	23	23	27	4	33	12		l i	ť	ŧ	ı	t	ı	ı		ι.	t	t	1	
CDŁ-9	27	33	33	33	34	33	27	S	ī	ı	١,	1	ı	ı	ı	ı	1		1	1	i	t	
CDF-8	33	2	4	37	8	37	5	1	•	1	1	ι	ı	ı	ι	1	1	l	ι	1	t	ı	
CDŁ-1	8	\$	46	S	8	.8	1	ŧ	•	1	1	1	t	ŧ	ı	t	!	i	ľ	ŧ	•	1	
CDŁ-9	44	: 25	₹	8	E	:1	: •	1	t	1	ı	t	ı	ı	ι	. 1		ι	l	1	l	.	
CDF-5						: 1	۱ [:	1	ŧ	1	. (ŧ	l	1	1	•		l	l	ι	ι	ı	
CDF-3	S.	3 4	; ;	3 1	1	ı	_ ,	ι	í	· t	ı	į	l	1	•	(1	•	l	ı	ŧ	
CDF-2	2	3 5	3 1	ı	ι	ı	ι	1	ι	. •	ı	١		l	1		1	l	1	l	ı	t	
CDF-1	ا ج	3 1	1	l	l	ı	ı	ι	1	•	1	1	1		1 (l	เ ช จี	۱ ا	ا 99	i	ı	l	
	•	- c	, ~	י ע	, «	۰ ر	- œ	o) C	,	F =-	-	Ľ	٦ ~	٠.		וחחוטוחמ • • • • • •	DINBA	ibinß	- 81	- 82	- B3	
	ייני	ו בר ה ה	ל ומס	ו בו בי בי	ו מ נ	ב ה ה	בי ה ה	ון מכול מכול				2. C				MIN T		Ξ	<u>_</u>	55	2 2	5	

FIG. 2

1	GTCTCTCGGACGGTACATGCACTAATATTTCACTTGGCATTACTCAAAAGCAAAAAGAAG	60
61	AAATAAGAACAAGGGAAAAAAAAGATTGTGCTGATTTTTAAAATGATGCAAAAACTGCA	120
	M M Q K L Q	
121	AATGTATGTTTATATTTACCTGTTCATGCTGATTGCTGCTGGCCCAGTGGATCTAAATGA	180
	MYVYIYLFMLIAAGPVDLNE	
181	GGGCAGTGAGAGAAAAATGTGGAAAAAGAGGGGCTGTGTAATGCATGTGCGTGGAG	240
	GSEREENVEKEGLCNACAWR	
241	ACAAAACACGAGGTACTCCAGAATAGAAGCCATAAAAATTCAAATCCTCAGTAAGCTGCG	300
	QNTRYSRIEAIKIQILSKLR	
301	CCTGGAAACAGCTCCTAACATCAGCAAAGATGCTATAAGACAACTTCTGCCAAGAGCGCC	360
	LETAP N. I.S. KDAIRQLLPRAP	
361	TCCACTCCGGGAACTGATCGATCAGTACGACGTCCAGAGGGATGACAGCAGTGATGGCTC	420
	PLRELIDQYDVQRDDSSDGS	
421	TTTGGAAGATGACGATTATCACGCTACCACGGAAACAATCATTACCATGCCTACAGAGTC	480
	LEDDDYHATTETIITMPTES	
481	TGACTTTCTAATGCAAGCGGATGGCAAGCCCAAATGTTGCTTTTTTAAATTTAGCTCTAA	540
	D F- L M Q A D G K P K C C F F K F S S K	
541	AATACAGTACAACAAAGTAGTAAAAGCCCAACTGTGGATATATCTCAGACCCGTCAAGAC	600
	IQYNKVVKAQLWIYLRPVKT	
601	TCCTACAACAGTGTTTGTGCAAATCCTGAGACTCATCAAACCCATGAAAGACGGTACAAG	660
	PTTVFVQILRLIKPMKDGTR	
661	GTATACTGGAATCCGATCTCTGAAACTTGACATGAGCCCAGGCACTGGTATTTGGCAGAG	720
	Y T G I R S L K L D M S P G T G I W Q S	
721	* TATTGATGTGAAGACAGTGTTGCAAAATTGGCTCAAACAGCCTGAATCCAACTTAGGCAT	780
	IDVKTVLQNWLKQPESNLGI	
781	TGAAATCAAAGCTTTGGATGAGAATGGCCATGATCTTGCTGTAACCTTCCCAGGACCAGG	840
	EIKALDENGHDLAVTFPGPG	
841	AGAAGATGGGCTGAATCCCTTTTTAGAAGTCAAGGTGACAGACA	900
	EDGLNPFLEVKVTDTPK <u>RSR</u>	
901	GAGAGACTTTGGGCTTGACTGCGATGAGCACTCCACGGAATCCCGGTGCTGCCGCTACCC	960
	RDFGLDCDEHSTESRCCRYP	4000
961	CCTCACCGTCGATTTTGAAGCCTTTGGATCGGACTGGATTATCGCACCCAAAAGATATAA	1020
•	LTVDFEAFGWDWIIAPKRYK	4000
1021		1080
	ANYCSGECEFVFLQKYPHTH	
1081	TCTTGTGCACCAAGCAAACCCCAGACGCTCAGCAGGCCCTTGCTGCACTCCGACAAAAAT	1140
	LVHQANPRGSAGPCCTPTKM	4000
1141		1200
	SPINMLYFNGKEQIIYGKIP	1000
1201		1260
	A	

AAGTCATGGAAGGTCTTCCCCTCAATTTCGAAACTGTGAATTCAAGCACCACAGGCTGTA 1320 1261 GCCCTTGAGTATGCTCTAGTAACGTAAGCACAAGCTACAGTGTATGAACTAAAAGAGAGA 1380 1321 ATAGATGCAATGGTTGGCATTCAACCACCAAAATAAACCATACTATAGGATGTTGTATGA 1440 1381 TTTCCAGAGTTTTTGAAATAGATGGAGATCAAATTACATTTATGTCCATATATGTATATT 1500 1441 ACAACTACAATCTAGGCAAGGAAGTGAGAGCACATCTTGTGGTCTGCTGAGTTAGGAGGG 1560 1501 TATGATTAAAAGGTAAAGTCTTATTTCCTAACAGTTTCACTTAATATTTACAGAAGAATC 1620 1561 TATATGTAGCCTTTGTAAAGTGTAGGATTGTTATCATTTAAAAAACATCATGTACACTTAT 1680 1621 ATTIGTATIGTATACTIGGTAAGATAAAATTCCACAAAGTAGGAATGGGGCCTCACATAC 1740 1681 ACATTGCCATTCCTATTATAATTGGACAATCCACCACCGTGCTAATGCAGTGCTGAATGG 1800 1741 1860 1801 GTGCATCTCCACACACACACACCACTAAGTGTTCAATGCATTTTCTTTAAGGAAAGAAGAAT 1920 1861 CTTTTTTTCTAGAGGTCAACTTTCAGTCAACTCTAGCACAGCGGGAGTGACTGCTGCATC 1980 1921 TTAAAAGGCAGCCAAACAGTATTCATTTTTTAATCTAAATTTCAAAATCACTGTCTGCCT 2040 1981 TTATCACATGGCAATTTTGTGGTAAAATAATGGAAATGACTGGTTCTATCAATATTGTAT 2100 2041 AAAAGACTCTGAAACAATTACATTTATATAATATGTATACAATATTGTTTTGTAAATAAG 2160 2101 TGTCTCCTTTTATATTTACTTTGGTATATTTTTACACTAATGAAATTTCAAATCATTAAA 2220 2161 GTACAAAGACATGTCATGTATCACAAAAAAGGTGACTGCTTCTATTTCAGAGTGAATTAG 2280 2221 CAGATTCAATAGTGGTCTTAAAACTCTGTATGTTAAGATTAGAACGTTATATTACAATCA 2340 2281 ATTTATGTATTTTTTACATTATCAACTTATGGTTTCATGGTGGCTGTATCTATGAATGTG 2400 2341 GCTCCCAGTCAAATTTCAATGCCCCACCATTTTAAAAATTACAAGCATTACTAAACATAC 2460 2401 CAACATGTATCTAAAGAAATACAAATATGGTATCTCAATAACAGCTACTTTTTTATTTTA 2520 2461 TAATTTGACAATGAATACATTTCTTTTATTTACTTCAGTTTTATAAATTGGAACTTTGTT 2580 2521 TATCAAATGTATTGTACTCATAGCTAAATGAAATTATTTCTTACATAAAAATGTGTAGAA 2640 2581 ACTATAAATTAAAGTGTTTTCACATTTTTGAAAGGC 2676 2641

1	AAGAAAAGTAAAAGGAAGAAACAAGAACAAGAAAAAAAGATTATATTGATTTTAAAATCAT	60
61	GCAAAAACTGCAACTCTGTTTTATATTTACCTGTTTATGCTGATTGTTGCTGGTCCAGT	120
01	OKLOLCVY I Y L F M L I V A G P V	
121	GGATCTAAATGAGAACAGTGAGCAAAAAGAAAATGTGGAAAAAGAGGGGGCTGTGTAATGC	180
	DLNENSEQKENVEKEGLCNA	
181	ATGTACTTGGAGACAAAACACTAAATCTTCAAGAATAGAAGCCATTAAGATACAAATCCT	240
	CTWRQNTKSSRIEAIKIQIL	
241	CAGTAAACTTCGTCTGGAAACAGCTCCTAACATCAGCAAAGATGTTATAAGACAACTTTT	300
	SKLRLETAP N. M. S. KDVIRQLL	
301	ACCCAAAGCTCCTCCACTCCGGAACTGATTGATCAGTATGATGTCCAGAGGGATGACAG	360
	PKAPPLRELIDQYDVQRDDS	
361	CAGCGATGGCTCTTTGGAAGATGACGATTATCACGCTACAACGGAAACAATCATTACCAT	420
	SDGSLEDDDYHATTETIITM	
421	GCCTACAGAGTCTGATTTTCTAATGCAAGTGGATGGAAAACCCAAATGTTGCTTCTTTAA	480
	PTESDFLMQVDGKPKCCFFK	5.40
481	ATTTAGCTCTAAAATACAATACAATAAAGTAGTAAAGGCCCAACTATGGATATATTTGAG	540
	F S S K I Q Y N K V V K A Q L W I Y L R	000
541	ACCCGTCGAGACTCCTACAACAGTGTTTGTGCAAATCCTGAGACTCATCAAACCTATGAA	600
	PVETPTTVFVQILRLIKPMK	cco
601	AGACCGTACAACGTATACTGGAATCCGATCTCTGAAACTTGACATGAACCCAGGCACTGG	660
	D G T R Y T G I R S L K L D M N P G T G	720
661	TATTTGGCAGAGCATTGATGTGAAGACAGTGTTGCAAAATTGGCTCAAACAACCTGAATC	120
	1 11 0 2 1 0 4 1/1 4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	780
721	CAACTTAGGCATTGAAATAAAAGCTTTAGATGAGAATGGTCATGATCTTGCTGTAACCTT	700
704		840
781	CCCACGACCACGACAAGATGGGCTGAATCCGTTTTTAGAGGTCAAGGTAACAGACACACCC	040
044	P G P G E D G L N P F L E V K V T D 1 P AAAAAGATCCAGAAGGGATTTTGGTCTTGACTGTGATGAGCACTCAACAGAATCACGATG	900
841		300
001	K R S R R D F G L D C D E H S I E S R C CTGTCGTTACCCTCTAACTGTGGATTTTGAAGCTTTTGGATGGGATTGGATTATCGCTCC	960
901	CRYPLTVDFEAFGWDWIIAP	
961		1020
901	KRYKANYCSGECEFVFLQKY	
1021		1080
1021	PHTHLVHQANPRGSAGPCCT	
1081	TCCCACAAGATGTCTCCAATTAATATGCTATATTTTAATGGCAAAGAACAAATAATATA	1140
	PIKMSPINMLYFNGKEQIIY	
1141		1200
	CKIDAHVVDRCGCS+	

GTTCATAACTTCCTAAAACATGGAAGGTTTTCCCCTCAACAATTTTGAAGCTGTGAAATT AAGTACCACAGGCTATAGGCCTAGAGTATGCTACAGTCACTTAAGCATAAGCTACAGTAT AAGAAAGTTTTATGATTTCCAGAGTTTTTGAGCTAGAAGGAGATCAAATTACATTTATGT TCCTATATATTACAACATCGCGAGGAAATGAAAGCGATTCTCCTTGAGTTCTGATGAAT TAAAGGAGTATGCTTTAAAGTCTATTTCTTTAAAGTTTTGTTTAATATTTACAGAAAAAT CCACATACAGTATIGGTAAAATGCAGGATTGTTATATACCATCATTCGAATCATCCTTAA ACACTTGAATTTATATTGTATGGTAGTATACTTGGTAAGATAAAATTCCACAAAAATAGG GATGGTGCAGCATATGCAATTTCCATTCCTATTATAATTGACACAGTACATTAACAATCC ATGCCAACGGTGCTAATACGATAGGCTGAATGTCTGAGGCTACCAGGTTTATCACATAAA AAACATTCAGTAAAATAGTAAGTTTCTCTTTTCTTCAGGTGCATTTTCCTACACCTCCAA ATGAGGAATGGATTTTCTTTAATGTAAGAAGAATCATTTTTCTAGAGGTTGGCTTTCAAT TATCAAAATGTCAAAATAACATACTTGGAGAAGTATGTAATTTTGTCTTTGGAAAATTAC AACACTGCCTTTGCAACACTGCAGTTTTTATGGTAAAATAATAGAAATGATCGACTCTAT CAATATTGTATAAAAAGACTGAAACAATGCATTTATATAATATGTATACAATATTGTTTT GTAAATAAGTGTCTCCTTTTTTATTTACTTTGGTATATTTTTACACTAAGGACATTTCAA ATTAAGTACTAAGGCACAAAGACATGTCATGCATCACAGAAAAGCAACTACTTATATTTC AGAGCAAATTAGCAGATTAAATAGTGGTCTTAAAACTCCATATGTTAATGATTAGATGGT TATATTACAATCATTTTATATTTTTTTACATGATTAACATTCACTTATGGATTCATGATG GCTGTATAAAGTGAATTTGAAATTTCAATGGTTTACTGTCATTGTGTTTAAATCTCAACG TICCATTATTTTAATACTIGCAAAAACATTACTAAGTATACCAAAATAATTGACTCTATT ATCTGAAATGAAGAATAAACTGATGCTATCTCAACAATAACTGTTACTTTTATTTTATAA TTTGATAATGAATATTTCTGCATTTATTTACTTCTGTTTTGTAAATTGGGATTTTGTT 2641 - AATCAAATTTATTGTACTATGACTAAATGAAATTATTTCTTACATCTAATTTGTAGAAAC AGTATAAGTTATATAAAGTGTTTTCACATTTTTTTGAAAGAC 2743

FIG. 6A

FIG. 6B

1	MAQKLOMYVYIYLFMLIAAGPVDLNEGSEREENVEKEGLCNACAWRQNTR	50
1		49
51	YSRIEAIKIQILSKLRLETAPNISKDAIRQLLPRAPPLRELIDQYDVQRD	100
50	SSRIEAIKIQILSKLRLETAPNISKDVIRQLLPKAPPLRELIDQYDVQRD	99
01	DSSDGSLEDDDYHATTETIITMPTESDFLMQADGKPKCCFFKFSSKIQYN	150
00	DSSDGSLEDDDYHATTETIITMPTESDFLMQVDGKPKCCFFKFSSKIQYN	149
51	KVVKAQLWIYLRPVKTPTTVFVQILRLIKPMKDGTRYTGIRSLKLDMSPG	200
150	KVVKAQLWIYLRPVETPTTVFVQILRLIKPMKDGTRYTGIRSLKLDMNPG	199
201	TG1WQS1DVKTVLQNWLKQPESNLG1E1KALDENGHDLAVTFPGPGEDGL	250
200	TG I WQS I DVKTVLQNWLKQPESNLG I E I KALDENGHDLAVTFPGPGEDGL	249
251	NPFLEVKVTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWII	300
250	NPFLEVKYTDTPKRSRRDFGLDCDEHSTESRCCRYPLTVDFEAFGWDWII	299
301	APKRYKANYCSGECEFVFLQKYPHTHLVHQANPRGSAGPCCTPTKMSPIN	350
300	APKRYKANYCSGECEFVFLQKYPHTHLVHQANPRGSAGPCCTPTKMSPIN	349
351	MLYFNGKEQIIYGKIPAMVVDRCGCS 376	
350		

ERACTION 6

FRACTION 5

FRACTION 4

FRACTION 3

ERACTION 2

FLOW-THROUGH

PELLET

(LOAD) INSOLUBLE

SOLUBLE

JATOT

pH5.9

⁷IG. 8

FIG. 9

HEART

LUNG

THYMUS

BRAIN

KIDNEY

SEMINAL VESICLE

PANCREAS

INTESTINE

SPLEEN

TESTIS

MUSCLE

LIVER

OVARY

FAT

UTERUS

-2.9 kb

FIG. 10B

FIG. 11

11.2 kb - --

FIG. 12B

- ACTOCCCCGAGTOCCCGGTGCTGCCGCTACCCCTCACAGTGGACTTTGAAGACTTTGGAGCTGGGACTGGGTGATCGCGCCCAAGCG A P D W V I 3 ტ Ľ O, ſΞ ш T V D ь R ပ ຜ
- ATACAAGGCCAACTATTGCTCCGGGGAGTGTGAGTACATGTACCTGCAGAAGTACCCCCACACACCTGGTGCACAAGGCCAAG H L V H K A H Ħ Д Q K Y EYMYL о Б ഗ ANYC Y 98
- CCCCGGGGCAACGCTGGGGCCCTGCTGCCACCCAAGATGTCCCCCATCAACATGCTCTACTTCAACCGCAAGGAGCAGATCA × æ r Z r I N Н Д ഗ T K M Д O Д R G N A G 171
- TCTACGGCAAGCTGCCCTCTATGGTCGTA Σ ഗ ഗ 256

Sea Bass

[Strand]

D W I I A P K R Y K A N Y ß છ ſτι Ω 臼

GCTCCGGGGAGTGTGAATGCACTTGCAGAAGTATCCGCACACCCCACTGGTGAACAAAGCCAAACCCAGAGGGAACCGCGGG T H L V N K A N P R окурн EYMHL s വ വ 98

TCCCTGCTGCACCCGACCAAGATGTCGCCCATNAACATGCTCTACTTTAACCGAAAAGAGCAGATAATCTACGGCAAGATCCCT G K I ĸ æ z [14 N M L Y ۰. Д ഗ T K M Д 171

TCCATGGTGGTG 256

SMVV

Sea Bream DNA [Strand]

- TCTCAGAGTCCCGGTGCCGCTACCGGTCACGGTGGACTTCGAAGACTTTGGCTGGGACTGGATTATTGCCCCAAAGCGCTA Ω ы T V D F
- CAAGGCCAACTATTGCTCCGGGGAGTGTGTACATGCACTTGCAGAAGTACCGGCACCACCACCTGGTGAACAAAGCCAACCCC EYMHLQKYPHTHLVNKANP о В S S K A N Y 98
- AGAGGGTCCGCGGGCCCCTGCTGTACCCCCACCAAGATGTCGCCCATCAACATGCTCTACTTTAACCGAAAGGAGCAGATCATCT нα 저 퍼 Z × L Z z വ ß Σ Д ပ ပ 171
- 256 ACGCCAAGATCCCGTCCATGGTGGTA Y G K I P S M V V

FIG. 1

Tautog DNA [Strand]

- CTCAGAGTCCCGGTGCTGCCGCTACCCACTCACAGTGGACTTTGAAGACTTTGGCTGGGACTGGATTATTGCTCCAAAGCGCTAC G W D W I SESRCCRYPLTVDFEDF
- AAGGCCAACTATTGCTCCGGGGAGTGTGAGTACATGCACCTGCAGAAGTACCCGCACCACCTCGTGAACAAAGCCAACCCCA CEYMHLQKYPHTHLVNKAN ល 98
- GAGGGACTGCAGGCCCCTGCTGCACCCCCACCAAGATGTCGCCCATCAACATGCTCTATAACCGAAAGGAGCAGATCATCTA RKEQIIY RGTAGPCCTPTKMSPINMLY 171
- 256 CGGCAAGATCCCCTCCATGGTGGTG

GKIPSMVV

FIG. 1.

X. laevis T7 [Strand]

H д × ĮΤΙ G I V ပ ы PKRYKANY E N Z Ŀ PINMLY Ø X E-EH C) ບ S A G P Ö ĸ a N 98

171 AACAAATCATATATGGAAAAATTCCAGCTATGGTGGTG

FIG. 1

. 444 30 30 344 10	63 74 74 65 60 64 64	92 103 94 93 93
30 X K A N Y C S Y K A N Y C S	60 61 A G P C C 6 T A G P C C 6 S A G P C C 6 S A G P C C 6 S A G P C C	1 P S M V V I P S M V V V I P S M V V V I P S M V V V I P S M V V V I P S M V V V I P S M V V V I P A M V V V V I P A M V V V V I P A M V V V V I P A M V V V V I P A M V V V V I P A M V V V V I P A M V V V V V V V V V V V V V V V V V V
20 10 W I I A P K R 10 W I I A P K R 10 W V I A P K R 10 W I I A P K R 10 W I I A P K R 10 W I I A P K R	50 L V H Q A N P R L V N K A S P R L V N K A N P R L V O Q A N P R	REQIIYGK KEQIIYGK KEQIIYGK KEQIIYGK KEQIIYGK KEQIIYGK KEQIIYGK
V D F E A F G W V D F E D F G W W V D F E D F G W V D F E D F F E D F G W V D F E D F	LOKYPHTH COKYPHTH COKYPHTH COKYPHTH COKYPHTH COKYPHTH COKYPHTH	INMLYFNGINMLYFNGINMLYFNRINMLYFNRXINMLYFNRINMLYFNRINMLYFNRINMLYFNRINMLYFNRINMLYFNRINMLYFNRINMLYFNRI
	GECEYMY GECEYMY GECEYMY GECEYMY GECEYMH GECEYMH	70
humanMSTN Zebrafish Salmon Cod Sea Bass Sea Bream Tautog X. laevis	humanMSTN Zebrafish Salmon Cod Sea Bass Sea Bream Tautog X. laevis	humanMSTN Zebrafish Salmon Cod Sea Bass Sea Bream Tautog

Decoration 'Decoration #1': Shade (with solid black) residues that match humanMSTN exactly.

				Pe	rcent S	Similari	ty			
1		1	2	3	4	5	6	7	8	
	1		88.8	89.9	87.6	88.8	91.0	88.8	92.8	1
do .	2	11.2		95.5	93.3	94.4	94.4	94.4	84.1	2
Percent Divergence	3	10.1	4.5		93.3	98.9	98.9	98.9	85.5	3
erg	4	12.4	6.7	6.7		92.1	93.3	92.1	82.6	4
Ö	5	10.2	4.5	0.0	6.8		97.8	97.8	84.1	5
ent	6	9.0	5.6	1.1	6.7	1.1		97.8	87.0	6
Perc	7	11.2	5.6	1.1	7.9	1.1	2.2		85.5	7
_	8	7.2	15.9	14.5	17.4	14.7	13.0	14.5		8
		1	2	3	4	5	6	7	8	

FIG. 20

humanMSTN Zebrafish Salmon Cod

Sea Bass Sea Bream Tautog X. Iaevis

FIG. 21