CS/DS 541: Class 2

Jacob Whitehill

Linear regression (aka 2-layer NN)

- Let dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n$
- Want to create a neural network which we can also treat as a "machine" — to estimate each y⁽ⁱ⁾ with high accuracy.
- Let us define the machine by a function g (with parameters \mathbf{w}) whose output \hat{y} is linear in its inputs:

$$\hat{y} \doteq g(\mathbf{x}; \mathbf{w}) \doteq \sum_{j=1}^{m} x_j w_j = \mathbf{x}^{\top} \mathbf{w}$$

 Note that this function is equivalent to a 2-layer neural network (with no activation function):

$$\hat{y} \doteq g(\mathbf{x}; \mathbf{w}) \doteq \sum_{j=1}^{m} x_j w_j = \mathbf{x}^{\top} \mathbf{w}$$

Input layer

Output layer

- Given our dataset \mathcal{D} , we want to optimize **w**.
- Let's choose each "weight" w_j to minimize the mean squared error (MSE) of our predictions.
- We can define the **loss** function that we seek to minimize:

$$f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(g(\mathbf{x}^{(i)}; \mathbf{w}) - y^{(i)} \right)^{2}$$
$$= \frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2}$$

- **w** is an unconstrained real-valued vector; hence, we can use differential calculus to find the minimum of f_{MSE} .
- Just derive the gradient of f_{MSE} w.r.t. w, set to 0, and solve.
- Since f_{MSE} is a convex function, we are guaranteed that this critical point is a global minimum.

Solving for w

The gradient of f_{MSE} is thus:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$

Solving for w

 By setting to 0, splitting the sum apart, and solving, we reach the solution:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$

$$0 = \sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} \mathbf{w} - \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$

$$\sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} \mathbf{w} = \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$

$$\mathbf{w} = \left(\sum_{i} \mathbf{x}^{(i)} \mathbf{x}^{(i)^{\top}} \right)^{-1} \sum_{i} \mathbf{x}^{(i)} y^{(i)}$$

Matrix notation

- We can also derive the same solution using matrix notation:
- Let's define a matrix X to contain all the training images:

$$\mathbf{X} = \left[egin{array}{ccccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ & & & \end{array}
ight]$$

- In statistics, X is called the design matrix.*
- Let's define vector y to contain all the training labels:

$$\mathbf{y} = \left[\begin{array}{c} y^{(1)} \\ \vdots \\ y^{(n)} \end{array} \right]$$

^{*} Actually, statistics literature typically defines this as **X**^T.

Matrix notation

Using summation notation, we derived:

$$\mathbf{w} = \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} \mathbf{x}^{(i)}^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} y^{(i)}\right)$$

Using matrix notation, we can write the solution as:

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{X}\mathbf{y}$$

where
$$\mathbf{X} = \left[\begin{array}{cccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ & & \end{array} \right]$$

1-d example

• Linear regression finds the weight vector \mathbf{w} that minimizes the f_{MSE} . Here's an example where each \mathbf{x} is just 1-d...

The best **w** is the one such that $f_{MSE}(\mathbf{y}, \, \hat{\mathbf{y}})$ is as small as possible, where each $\hat{y} = \mathbf{x}^{T}\mathbf{w}$.

Exercise

 Suppose we use linear regression (as defined above) to model the relationship between x and y.

- What will be the sign of the regression weight w that is learned?
 - 1. w is positive
 - 2. w is 0
 - 3. w is negative

Exercise

 Suppose we use linear regression (as defined above) to model the relationship between x and y.

Notice that the model enforces that (x,y)=(0,0) lie in the graph. Because of this constraint, the model learns the wrong slope to minimize the MSE.

- What will be the sign of the regression weight w that is learned?
 - 1. w is positive
 - 2. w is 0
 - 3. w is negative

 In order to account for target values with non-zero mean, we can add a bias term to our model:

$$\hat{y} = \mathbf{x}^{\top} \mathbf{w} + b$$

 In order to account for target values with non-zero mean, we can add a bias term to our model:

$$\hat{y} = \mathbf{x}^{\top} \mathbf{w} + b$$

 We could then compute the gradient w.r.t. both w and b, set to 0, and then solve the resulting system of equations.

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}, b) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} + b - y^{(i)} \right)^{2} \right]$$

$$\nabla_{b} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}, b) = \nabla_{b} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} + b - y^{(i)} \right)^{2} \right]$$

 Alternatively, we can implicitly include a bias term by augmenting each input vector x with a 1 at the end:

$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

 Correspondingly, our weight vector w will have an extra component (bias term) at the end.

$$\tilde{\mathbf{w}} = \left[egin{array}{c} \mathbf{w} \\ b \end{array} \right]$$

To see why, notice that:

$$\hat{y} = \tilde{\mathbf{x}}^{\top} \tilde{\mathbf{w}}$$

$$= \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

$$= \mathbf{x}^{\top} \mathbf{w} + b$$

- We can find the optimal w and b based on all the training data using matrix notation.
- First define an augmented design matrix:

$$\tilde{\mathbf{X}} = \begin{bmatrix} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ 1 & \dots & 1 \end{bmatrix}$$

• Then compute:

$$ilde{\mathbf{w}} = \left(ilde{\mathbf{X}} ilde{\mathbf{X}}^ op
ight)^{-1} ilde{\mathbf{X}} \mathbf{y}$$

• With this more powerful model, the regression line is now learned as desired:

Demo

 Linear regression is one of the few ML algorithms that has an analytical solution:

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{X}\mathbf{y}$$

Analytical solution: there is a closed formula for the answer.

- Alternatively, linear regression can be solved numerically using gradient descent.
- Numerical solution: need to iterate (according to some algorithm) many times to approximate the optimal value.
- Gradient descent is more laborious to code than the oneshot solution, but it generalizes to a wide variety of ML models.

Gradient descent is a hill climbing algorithm that uses
the gradient (aka slope) to decide which way to "move" w
to reduce the objective function (e.g., f_{MSE}).

- Suppose we just guess an initial value for w (e.g., -2.1).
- How can we make it better increase it or decrease it?

- Suppose we just guess an initial value for w (e.g., -2.1).
- How can we make it better increase it or decrease it?
 - What does the slope of f_{MSE} tell us to do?

The slope at f_{MSE} (-2.1) is negative, i.e., we can decrease our cost by increasing w.

- Or maybe our initial guess for w was 3.9.
- How can we make it better increase it or decrease it?
 - What does the slope of f_{MSE} tell us to do?

The slope at $f_{MSE}(3.9)$ is positive, i.e., we can decrease our cost by decreasing w.

 How do we know the slope? Compute the gradient of f_{MSE} w.r.t. w:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} - y^{(i)} \right)$$

$$= \frac{1}{n} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{w} - \mathbf{y} \right)$$

 How do we know the slope? Compute the gradient of f_{MSE} w.r.t. w:

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} \left[\left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)^{2} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)} \left(\mathbf{x}^{(i)} \mathbf{w} - y^{(i)} \right)$$

$$= \frac{1}{n} \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{w} - \mathbf{y} \right)$$

Then plug in the current value of w.
 (Note that X and y are computed from the data and are constant.)

- How far do we "move" left or right?
 - Notice that, in the graph below, the magnitude of the slope (aka gradient) gives an indication of how far we need to go to reach the optimal w.

Exercise

 Draw on paper a function (with one local minimum) such that the magnitude of the gradient is NOT an indicator of how far to move w so as to reach the local minimum.

Exercise

Draw on paper a function such that this property is false.

• Set w to random values; call this initial choice w⁽⁰⁾.

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$

- Set w to random values; call this initial choice w⁽⁰⁾.
- ullet Compute the gradient: $abla_{f w} f({f w}^{(0)})$
- Update \mathbf{w} by moving opposite the gradient, multiplied by a learning rate $\mathbf{\epsilon}$. $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update \mathbf{w} by moving opposite the gradient, multiplied by a learning rate $\mathbf{\epsilon}$. $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Repeat...

$$\mathbf{w}^{(2)} \leftarrow \mathbf{w}^{(1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(1)})$$

$$\mathbf{w}^{(3)} \leftarrow \mathbf{w}^{(2)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(2)})$$

...

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(t-1)})$$

Gradient descent algorithm

- Set w to random values; call this initial choice w⁽⁰⁾.
- Compute the gradient: $\nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Update \mathbf{w} by moving opposite the gradient, multiplied by a learning rate $\mathbf{\epsilon}$. $\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(0)})$
- Repeat...

$$\mathbf{w}^{(2)} \leftarrow \mathbf{w}^{(1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(1)})$$

$$\mathbf{w}^{(3)} \leftarrow \mathbf{w}^{(2)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(2)})$$

...

$$\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} - \epsilon \nabla_{\mathbf{w}} f(\mathbf{w}^{(t-1)})$$

 ...until some convergence condition (e.g., #iterations, tolerance in function value diff, tolerance in weight diff, etc.).

Gradient descent demos

Demo video.

Exercise

Gradient descent

- For the 2-layer NN below, let m=2 and $\mathbf{w}^{(0)}=[1\ 0]^{\mathsf{T}}$.
- Compute the updated weight vector **w**⁽¹⁾ after one iteration of gradient descent using (1/2) MSE loss, a single training example $(\mathbf{x}, \mathbf{y}) = ([2, 3]^T, 4)$, and learning rate $\epsilon = 0.1$.

• Recall:
$$\nabla_{\mathbf{w}} f_{\mathrm{MSE}}(\mathbf{w}) = \frac{1}{n} \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})$$

Input layer

Output layer

Solution

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w}) = \frac{1}{n} \mathbf{X} (\mathbf{X}^{\top} \mathbf{w} - \mathbf{y})$$

$$\mathbf{w}^{(1)} \leftarrow \mathbf{w}^{(0)} - \epsilon \nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{w})$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 0.1 \begin{bmatrix} 2 \\ 3 \end{bmatrix} \left(\begin{bmatrix} 2 \\ 3 \end{bmatrix}^{\top} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 4 \end{bmatrix} \right)$$

$$= \begin{bmatrix} 1 + 0.1 * 2 * 2 \\ 0 + 0.1 * 3 * 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1.4 \\ 0.6 \end{bmatrix}$$

- The values we optimize when training a machine learning model — e.g., w and b for linear regression — are the parameters of the model.
- There are also values related to the training process itself e.g., learning rate ε , batch size \tilde{n} , regularization strength α which are the **hyperparameters** of training.

- Both the parameters and hyperparameters can have a huge impact on model performance on test data.
- Ideally, we would hope that the accuracy of the system varies smoothly with each hyper parameter value, e.g.:

 However, in the real world, the hyperparameter landscape can be quite erratic, e.g.:

- If you choose hyperparameters on the test set, you are likely deceiving yourself about how good your model is.
- This is a subtle but very dangerous form of ML cheating.

- Instead, you should use a separate dataset that is not part of the test set to choose hyperparameters.
- Two commonly used (and rigorous) approaches:
 - Training/validation/testing sets
 - Double cross-validation

Training/validation/testing sets

- In an application domain with a large dataset (e.g., 100K examples), it is common to partition it into three subsets:
 - Training (typically 70-80%): optimization of parameters
 - Validation (typically 5-10%): tuning of hyperparameters
 - Testing (typically 5-10%): evaluation of the final model
- For comparison with other researchers' methods, this partition should be fixed.

Training/validation/testing sets

- Hyperparameter tuning works as follows:
 - 1.For each hyperparameter configuration h:
 - Train the parameters on the training set using h.
 - Evaluate the model on the validation set.
 - If performance is better than what we got with the best h so far (h*), then save h as h*.
 - 2. Train a model with h^* , and evaluate its accuracy A on the **testing** set. (You can train either on training data, or on training+validation data).

Exercise (from d2l.ai)

 Your manager gives you a difficult dataset on which your current algorithm doesn't perform so well. How would you justify to them that you need more data? Hint: you cannot increase the data but you can decrease it.