

# Control and Automation IC2122 Robotics Lab with VREP

Instructor: Louis Wong

Industrial Centre

The Hong Kong Polytechnic University

### V-REP Tools

### Object Position:

1. Select the object



3. Position: X, Y, Z



1. Select the object

2. Click



3. Orientation: Alpha ( $\alpha$ ), Beta ( $\beta$ ), Gamma( $\gamma$ )







INDUSTRIAL CENTRE 工業中心



# Task 2: Inverse Kinematics





## Start-up — V-REP

Start the V-REP (Task2\_vrep.bat)





# Start-up – Anaconda Navigator

Start the Anaconda Navigator on Taskbar or search Windows





# Start-up – Spyder

Launch Spyder



# Start-up – Spyder



# Start-up – Spyder

Open Python file at editor



• Run the program at Spyder



### D:\01-Home\IoT\IC2122-Robotics\Task2



# Start-up — Control panel window

- Control panel window will be appeared after running the program
- After switching to the V-REP, the control panel window will be hidden
- Click the Control panel window icon to open it.





## Start-up

V-REP interface:



INDUSTRIAL CENTRE 工業中心

# V-REP Joint Angle - Control Panel

- Target Configuration
  - Set Target (T)
     (Input your value at Console)
    - Set target Position (X, Y, Z)
    - Set target Orientation (Alpha, Beta, Gamma)
  - 2. Set Position (P)(Input your value at Console)
    - Set target Position (X, Y, Z)
  - 3. Set Orientation (O)(Input your value at Console)
    - Set target Orientation (Alpha, Beta, Gamma)

```
Input Position X: 0.4

Input Position Y: 0

Input Position Z: 0.435

Input Orientation Alpha (in degree): 0

Input Orientation Beta (in degree): 90

Input Orientation Gamma (in degree): 180
```

Input Position X: 0.4

Input Position Z: 0.435

Input Orientation Alpha (in degree): 0

Input Orientation Beta (in degree): 90

Input Orientation Gamma (in degree): 180

Input Position Y: 0

Joint Angle configuration disabled

Tolle Position (L)

орен ког (т)

Close Roz (I)

--- End-Effector (Tip) Position and Orientation---

X: -0.0048 m

Y: 0.3887 m

Z: 1.1039 m

50.8909

Alpha: 135.4654

4 B

Beta: -87.2704

Gamma:

Set Target (I)

Set Position

Set Orientation (0)



# V-REP Joint Angle — How to use "Set Target" button?

- How to use the "Set Target" button?
  - Click "Set Target" button





- 2. Switch to the Spyder IPython Console
- 3. Input Position or Orientation value
- 4. Press "Enter" to confirm the inputted value
- Repeat above two steps(X, Y, Z, Alpha, Beta, Gamma)
- 6. The UR3 will be moved based on the setting







### IC2122 – Task 2a

• Task 2a: Move the end-effector to the RED block using Inverse Kinematics and write down the procedure.



(Remark: Adjust the end-effector vertically to the ground)

| Red Block | Position X | Position Y | Position Z |
|-----------|------------|------------|------------|
| Position: | 0.125 m    | -0.35 m    | 0.435 m    |

|                   | Joint Angle       |             |
|-------------------|-------------------|-------------|
| Base (Joint1)     | << (W) < > (Q) >> | +37.65 deg  |
| Shoulder (Joint2) | << (S) < > (A) >> | -70.57 deg  |
| Elbow (Joint3)    | << (X) < > (Z) >> | -0.33 deg   |
| Wrist 1 (Joint4)  | << (R) < > (E) >> | +162.7 deg  |
| Wrist 2 (Joint5)  | << (F) < > (D) >> | -89.42 deg  |
| Wrist 3 (Joint6)  | << (V) < > (C) >> | -142.32 deg |



Final Goal



### IC2122 – Task 2b

• Task 2b: Pick the BLUE block and place it on the table using Inverse Kinematics



(Remark: Make the end-effector vertically to the ground for picking

and horizontally to the table for placing)

| BLUE Block original | Position X | Position Y | Position Z |
|---------------------|------------|------------|------------|
| Position:           | 0.35 m     | 0.0225 m   | 0.435 m    |

| BLUE Block final | Position X | Position Y | Position Z |
|------------------|------------|------------|------------|
| Position:        | ≈ -0.667 m | ≈ 0 m      | 0.846 m    |





and write down the procedure.

### IC2122 – Task 2c

Stop the program by holding "Ctrl" and clicking "C" (IPython console)



Open a new console by holding "Ctrl" and clicking "D" (IPython console)

\_ | 🗸 🔲 <del>-</del> |

- Close the previous V-REP
- Start a new V-REP (Task2c vrep.bat)

Switch to Spyder and open Tack2c.py

(D:\01-Home\IoT\IC2122-Robotics\Task2)

Run the program (Spyder)





IC2122-Robotics

Application Tools

### IC2122 – Task 2c

Task 2c interface



Task 2c: Moving the end-effector to the BLUE block using

Inverse Kinematics often provides different solutions or approaches.

a) Observe and discuss the below 3 solutions.

--- Multiple Inverse Kinematics Solution for arriving blue block---

Solution 1

Solution 2

Solution 3

b) Suggest the method to create the unique solution (e.g. guide)



### Task2 – Troubleshoot

• Step 1: Switch to the Spyder IPython Console



- Step 2: Stop the program by holding "Ctrl" and clicking "C"
- Step 3: Open a new console by holding "Ctrl" and clicking "D"
- Step 4: Stop the V-REP simulation





Step 5: Run the program at Spyder















