

escaping batpigday

Charles T. Gray¹

¹Department of Mathematics and Statistics, La Trobe University, Victoria, Australia

batpigday

batpigday noun The coding equivalent of groundhogday.

the problem

Simulating data is a bitch.

Debugging frequently dominates the time of students in mathematical science. These students know how to solve equations, and next to nothing about code.

New tools[1] are emerging daily to enable researchers to avoid these timesink pitfalls.

These tools have lowered the programmatic barrier for researchers, but it still a learning curve.

We consider a case study in meta-analysis.

meta-analysis Statistical methodology for combining the results of several studies.

meta-analysis of medians

Conventional meta-analytic tools, such as metafor::rma[2], require an effect and a variance of that effect.

But what if the reported statistics are **median** and **interquartile** range? Existing estimators, such as [3], estimate a mean and standard deviation.

To test our proposed estimator for the variance of the sample median, I found myself repeating tasks and checks in the algorithms.

I tried to find a better way of debugging and writing simulations. This lead to:

- 1. a packaged analysis[4], varameta::*, which is built on
- 2. the simulation package for meta-analysis data, metasim::*.

(*in development)

coding is the easiest part of coding

- Modular code with functions rather than script
- Reproducibility is more than set.seed()
- Versioning and collaboration via Git
- Packaged analyses

escaping batpigday

Generate sample sizes for *k* studies.

```
library(tidyverse)
library(metasim)
```

```
# simulate 2 studies where most have at most 25
sim_n(k = 2, min_n = 10, max_n = 25) %>% output_table()
```

Table 1:						
study	group	n				
study_1 study_2 study_1 study_2	control control intervention intervention	18 15 14 15				

```
# generate simulation dataframe
sim_df() %>% head(2) %>% select(-n) %>% output_table()
```

			Ta	ble 2:			
k	tau2_true	median_ratio	prop	rdist	parameters	id	true_effect
3	0	1	0.3	norm	list(mean = 67, sd = 0.3)	sim_1	67.0
3	0	1	0.3	exp	list(rate =	sim_2	0.3

Each **row** of this dataframe represents a set of **simulation** parameters. Each simulation runs a **trial** function.

```
metatrial() %>% output_table()
```

				Table 3:				
conf_low	conf_high	tau_sq	k	effect	measure	true_effe	ctcoverage	bias
19.1 -1.3	95.9 1.2	238.9 0.3	3 3	57.5 -0.1	m lr	50.0 0.2	TRUE TRUE	7.5 -0.2

Each **simulation** reruns the trial function a given number of times.

```
metasim() %>% pluck("results") %>%
  select(-coverage_count) %>% output_table()
```

Table 4:							
measure	tau_sq	ci_width	bias	successful_	_trial s overage	id	
lr m	0.5 388.9	3.6 94.1	0.0 3.4	4	1	simulation1 simulation1	
m	300.9	7 4. 1	3.4	4	1	Simulation	

For all **simulations**, run metasim over each row of the dataframe.

```
# plot
sims %>%

ggplot(aes(x = rdist, y = coverage)) +
geom_point(aes(colour = rdist), alpha = 0.4, position = ":
facet_grid(k ~ tau2_true) + theme(
    axis.text.x = element_text(angle = 35, hjust = 1),
    legend.position = "none",
    plot.caption = element_text(hjust = 0)
) +
    hrbrthemes::scale_colour_ipsum() +
labs(x = "Distribution",
    y = "Coverage")
```


This poster was created with posterdown:: Thorne [5].

References

- [1] Hadley Wickham. tidyverse: Easily Install and Load the 'Tidyverse'. 2017. URL: https://CRAN.R-project.org/package=tidyverse.
- Wolfgang Viechtbauer. "Conducting meta-analyses in R with the metafor package". In: *Journal of Statistical Software* 36.3 (2010), pp. 1–48. URL: http://www.jstatsoft.org/v36/i03/.
- Xiang Wan et al. "Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range". In: *BMC Medical Research Methodology* 14.1 (Dec. 19, 2014), p. 135. ISSN: 1471-2288. DOI: 10.1186/1471-2288-14-135. URL: https://doi.org/10.1186/1471-2288-14-135 (visited on 02/10/2019).
- [4] Ben Marwick, Carl Boettiger, and Lincoln Mullen. "Packaging Data Analytical Work Reproducibly Using R (and Friends)". In: *The American Statistician* 72.1 (Jan. 2, 2018), pp. 80–88. ISSN: 0003-1305. DOI: 10.1080/00031305.2017.1375986. URL: https://doi.org/10.1080/00031305.2017.1375986 (visited on 11/24/2018).
- W. Brent Thorne. posterdown: An R Package. 2019. URL: https://github.com/brentthorne/posterdown.