UNIT IV FILE SYSTEMS
AND I/O SYSTEMS
1. In information is recorded
magnetically on platters.
a) magnetic disks
b) electrical disks
c) assemblies
d) cylinders
Answer: a
Explanation: None.
2. The heads of the magnetic disk are
attached to a that moves all the heads
as a unit.
a) spindle
b) disk arm
c) track
d) none of the mentioned
Answer: b
Explanation: None.
3. The set of tracks that are at one arm
position make up a
a) magnetic disks
b) electrical disks
c) assemblies
d) cylinders
Answer: d
Explanation: None.
4. The time taken to move the disk arm to the
desired cylinder is called the

a) positioning time b) random access time c) seek time d) rotational latency Answer: c Explanation: None. 5. The time taken for the desired sector to rotate to the disk head is called a) positioning time b) random access time c) seek time d) rotational latency Answer: d Explanation: None. 6. When the head damages the magnetic surface, it is known as _____ a) disk crash b) head crash c) magnetic damage d) all of the mentioned Answer: b Explanation: None. 7. A floppy disk is designed to rotate _____ as compared to a hard disk drive. a) faster b) slower c) at the same speed d) none of the mentioned

Answer: b Explanation: None. 8. What is the host controller? a) controller built at the end of each disk b) controller at the computer end of the bus c) all of the mentioned d) none of the mentioned Answer: b Explanation: None. 9. _____ controller sends the command placed into it, via messages to the _____ controller. a) host, host b) disk, disk c) host, disk d) disk, host Answer: c Explanation: None. 10. What is the disk bandwidth? a) the total number of bytes transferred b) total time between the first request for service and the completion on the last transfer c) the total number of bytes transferred divided by the total time between the first request for service and the completion on the last transfer d) none of the mentioned

Answer: c

Explanation: None.

1. Whenever a process needs I/O to or from a

disk it issues a	
a) system call to the CPU	
b) system call to the operating system	
c) a special procedure	
d) all of the mentioned	
Answer: b	
Explanation: None.	
2. If a process needs I/O to or from a disk,	
and if the drive or controller is busy then	
a) the request will be placed in the queue of	
pending requests for that drive	
b) the request will not be processed and will	
be ignored completely	
c) the request will be not be placed	
d) none of the mentioned	
Answer: a	
Explanation: None.	
3. Consider a disk queue with requests for I/	O
to blocks on cylinders.	
98 183 37 122 14 124 65 67	
Considering FCFS (first cum first served)	
scheduling, the total number of head	
movements is, if the disk head is initially at	
53 is?	
a) 600	
b) 620	
c) 630	
d) 640	

Answer: d

Explanation: None.

4. Consider a disk queue with requests for I/O to blocks on cylinders.

98 183 37 122 14 124 65 67

Considering SSTF (shortest seek time first) scheduling, the total number of head movements is, if the disk head is initially at

53 is?

- a) 224
- b) 236
- c) 245
- d) 240

Answer: b

Explanation: None.

5. Random access in magnetic tapes is _____ compared to magnetic disks.

a) fast

- b) very fast
- c) slow
- d) very slow

Answer: d

Explanation: None.

6. Magnetic tape drives can write data at a

speed _____ disk drives.

- a) much lesser than
- b) comparable to
- c) much faster than
- d) none of the mentioned

Answer: b

Explanation: None.

7. On media that use constant linear velocity
(CLV), the is uniform.
a) density of bits on the disk
b) density of bits per sector
c) the density of bits per track
d) none of the mentioned
Answer: c
Explanation: The farther a track is from the
center of the disk.
8. SSTF algorithm, like SJF of
some requests.
a) may cause starvation
b) will cause starvation
c) does not cause starvation
d) causes aging
Answer: a
Explanation: None.
9. In the algorithm, the disk arm starts
at one end of the disk and moves toward the
other end, servicing requests till the other end
of the disk. At the other end, the direction is
reversed and servicing continues.
a) LOOK
b) SCAN
c) C-SCAN
d) C-LOOK
Answer: b
Explanation: None.
10. In the algorithm, the disk head
moves from one end to the other, servicing

requests along the way. When the head reaches the other end, it immediately returns to the beginning of the disk without servicing any requests on the return trip.

- a) LOOK
- b) SCAN
- c) C-SCAN
- d) C-LOOK

Answer: c

Explanation: None.

11. In the _____ algorithm, the disk arm goes as far as the final request in each direction, then reverses direction immediately without going to the end of the disk.

- a) LOOK
- b) SCAN
- c) C-SCAN
- d) C-LOOK

Answer: a

Explanation: None.

1. The process of dividing a disk into sectors that the disk controller can read and write, before a disk can store data is known as

Answer: c

Explanation: None.

a) partitioning

b) swap space creation

c) low-level formatting

d) none of the mentioned

2. The data structure for a sector typically
contains
a) header
b) data area
c) trailer
d) all of the mentioned
Answer: d
Explanation: None.
3. The header and trailer of a sector contain
information used by the disk controller such
as and
a) main section & disk identifier
b) error correcting codes (ECC) & sector
number
c) sector number & main section
d) disk identifier & sector number
Answer: b
Explanation: None.
4. The two steps the operating system takes to
use a disk to hold its files are
a) partitioning & logical formatting
b) swap space creation & caching
c) caching & logical formatting
d) logical formatting & swap space creation
Answer: a
Explanation: None.
5. The program initializes all aspects
of the system, from CPU registers to device
controllers and the contents of main memory,

and then starts the operating system.
a) main
b) bootloader
c) bootstrap
d) rom
Answer: c
Explanation: None.
6. For most computers, the bootstrap is stored
in
a) RAM
b) ROM
c) Cache
d) Tertiary storage
Answer: b
Explanation: None.
7. A disk that has a boot partition is called a
a) start disk
b) end disk
c) boot disk
d) all of the mentioned
Answer: c
Explanation: None.
8. Defective sectors on disks are often known
as
a) good blocks
b) destroyed blocks
c) bad blocks
d) none of the mentioned
Answer: c

Explanation: None.
9. In SCSI disks used in high end PCs, the
controller maintains a list of on
the disk. The disk is initialized during
formatting which sets aside spare
sectors not visible to the operating system.
a) destroyed blocks, high level formatting
b) bad blocks, partitioning
c) bad blocks, low level formatting
d) destroyed blocks, partitioning
Answer: c
Explanation: None.
10. The scheme used in the above question is
known as or
a) sector sparing & forwarding
b) forwarding & sector utilization
c) backwarding & forwarding
d) sector utilization & backwarding
Answer: a
Explanation: None.
11. An unrecoverable error is known as
a) hard error
b) tough error
c) soft error
d) none of the mentioned
Answer: a
Explanation: None.
1. If one or more devices use a common set of
wires to communicate with the computer

system, the connection is called
a) CPU
b) Monitor
c) Wirefull
d) Bus
Answer: d
Explanation: None.
2. A a set of wires and a rigidly defined
protocol that specifies a set of messages that
can be sent on the wires.
a) port
b) node
c) bus
d) none of the mentioned
Answer: c
Explanation: None.
3. When device A has a cable that plugs into
device B, and device B has a cable that plugs
into device C and device C plugs into a port
on the computer, this arrangement is called a
a) port
b) daisy chain
c) bus
d) cable
Answer: b
Explanation: None.
4. The present a uniform device-
access interface to the I/O subsystem, much

as system calls provide a standard interface
between the application and the operating
system.
a) Devices
b) Buses
c) Device drivers
d) I/O systems
Answer: c
Explanation: None.
5. A is a collection of electronics
that can operate a port, a bus, or a device.
a) controller
b) driver
c) host
d) bus
Answer: a
Explanation: None.
6. An I/O port typically consists of four
registers status, control, and
registers.
a) system in, system out
b) data in, data out
c) flow in, flow out
d) input, output
Answer: b
Explanation: None.
7. The register is read by the host to
get input.
a) flow in
b) flow out

c) data in
d) data out
Answer: c
Explanation: None.
8. The register is written by the host
to send output.
a) status
b) control
c) data in
d) data out
Answer: d
Explanation: None.
9. The hardware mechanism that allows a
device to notify the CPU is called
a) polling
b) interrupt
c) driver
d) controlling
Answer: b
Explanation: None.
10. The CPU hardware has a wire called
that the CPU senses after
executing every instruction.
a) interrupt request line
b) interrupt bus
c) interrupt receive line
d) interrupt sense line
Answer: a

Explanation: None.

11. The determines the cause of
the interrupt, performs the necessary
processing and executes a return from the
interrupt instruction to return the CPU to the
execution state prior to the interrupt.
a) interrupt request line
b) device driver
c) interrupt handler
d) all of the mentioned
Answer: c
Explanation: None.
12. In general the two interrupt request lines
are
a) maskable & non maskable interrupts
b) blocked & non maskable interrupts
c) maskable & blocked interrupts
d) none of the mentioned
Answer: a
Explanation: None.
13. The are reserved for events
such as unrecoverable memory errors.
a) non maskable interrupts
b) blocked interrupts
c) maskable interrupts
d) none of the mentioned
Answer: a
Explanation: None.
1. The can be turned off by the
CPU before the execution of critical
instruction sequences that must not be

interrupted.
a) nonmaskable interrupt
b) blocked interrupt
c) maskable interrupt
d) none of the mentioned
Answer: c
Explanation: None.
2. The is used by device
controllers to request service.
a) nonmaskable interrupt
b) blocked interrupt
c) maskable interrupt
d) none of the mentioned
Answer: c
Explanation: None.
3. The interrupt vector contains
a) the interrupts
b) the memory addresses of specialized
interrupt handlers
c) the identifiers of interrupts
d) the device addresses
Answer: b
Explanation: None.
4. Division by zero, accessing a protected or
non existent memory address, or attempting
to execute a privileged instruction from user
mode are all categorized as
a) errors
b) exceptions

c) interrupt handlers
d) all of the mentioned
Answer: b
Explanation: None.
5. For large data transfers, is used.
a) dma
b) programmed I/O
c) controller register
d) none of the mentioned
Answer: a
Explanation: None.
6. A character stream device transfers
a) bytes one by one
b) block of bytes as a unit
c) with unpredictable response times
d) none of the mentioned
Answer: a
Explanation: None.
7. A block device transfers
a) bytes one by one
b) block of bytes as a unit
c) with unpredictable response times
d) none of the mentioned
Answer: b
Explanation: None.
8. What is a dedicated device?
a) opposite to a sharable device
b) same as a sharable device
c) can be used concurrently by several

processes
d) none of the mentioned
Answer: a
Explanation: None.
9. A keyboard is an example of a device that
is accessed through a interface.
a) block stream
b) set of blocks
c) character stream
d) none of the mentioned
Answer: c
Explanation: None.
10. In polling
a) busy – wait cycles wait for I/O from device
b) interrupt handler receives interrupts
c) interrupt-request line is triggered by I/O
device
d) all of the mentioned
Answer: a
Explanation: None.
11. A non blocking system call
a) halts the execution of the application for an
extended time
b) does not halt the execution of the
application
c) does not block the interrupts
d) none of the mentioned
Answer: b
Explanation: None.

12. An asynchronous call
a) returns immediately, without waiting for
the I/O to complete
b) does not return immediately and waits for
the I/O to complete
c) consumes a lot of time
d) is too slow
Answer: a
Explanation: None.
1. Buffering is done to
a) cope with device speed mismatch
b) cope with device transfer size mismatch
c) maintain copy semantics
d) all of the mentioned
Answer: d
Explanation: None.
2. Caching is spooling.
a) same as
b) not the same as
c) all of the mentioned
d) none of the mentioned
Answer: b
Explanation: None.
3. Caching
a) holds a copy of the data
b) is fast memory
c) holds the only copy of the data
d) holds output for a device
Answer: a
Explanation: None.

4. Spooling
a) holds a copy of the data
b) is fast memory
c) holds the only copy of the data
d) holds output for a device
Answer: c
Explanation: None.
5. The keeps state information
about the use of I/O components.
a) CPU
b) OS
c) kernel
d) shell
Answer: c
Explanation: None.
6. The kernel data structures include
a) process table
b) open file table
c) close file table
d) all of the mentioned
Answer: b
Explanation: None.
7. Windows NT uses a
implementation for I/O.
a) message – passing
b) draft – passing
c) secondary memory
d) cache

Answer: a
Explanation: None.
8. A is a full duplex connection
between a device driver and a user level
process.
a) Bus
b) I/O operation
c) Stream
d) Flow
Answer: c
Explanation: None.
9. I/O is a in system performance.
a) major factor
b) minor factor
c) does not matter
d) none of the mentioned
Answer: a
Explanation: None.
10. If the number of cycles spent busy –
waiting is not excessive, then
a) interrupt driven I/O is more efficient than
programmed I/O
b) programmed I/O is more efficient than
interrupt driven I/O
c) both programmed and interrupt driven I/O
are equally efficient
d) none of the mentioned
Answer: b
Explanation: None.