Machine Learning

Lecture 3 - Evaluating predictive performance and hyperparameter learning

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

- Loss functions and evaluation metrics
- Evaluating a classifier
- Estimating generalization
- Generalization gap
- Bias-variance trade-off

Loss functions and cost functions

- Parametric model $y|x \sim f_{\theta}(y|x)$.
- Learn the parameters by minimizing a cost function

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{L\left(\hat{\boldsymbol{y}}(\mathbf{x}_i; \boldsymbol{\theta}), y_i\right)}_{\text{cost function}J(\boldsymbol{\theta})}$$

Squared error for regression:

$$L(\hat{y}(x_i; \boldsymbol{\theta}), y_i) = (\hat{y}(x_i; \boldsymbol{\theta}) - y_i)^2$$

Squared error loss = negative Gaussian log-likelihood

$$\log p(y_i|\mathbf{x}_i, \boldsymbol{\beta}) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\left(y_i - \mathbf{x}_i^{\top}\boldsymbol{\beta}\right)^2$$

Loss functions and cost functions

Learn the parameters by minimizing a cost function

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \underbrace{L\left(\hat{\boldsymbol{y}}(\mathbf{x}_i; \boldsymbol{\theta}), y_i\right)}_{\text{cost function}J(\boldsymbol{\theta})}}$$

Cross-entropy for binary classification $y \in \{0, 1\}$

$$L\left(\hat{y}\left(\mathbf{x}_{i};\boldsymbol{\theta}\right),y_{i}\right)=-y_{i}\log\Pr(y_{i}=1|\mathbf{x}_{i},\boldsymbol{\theta})-(1-y_{i})\log\Pr(y_{i}=0|\mathbf{x}_{i},\boldsymbol{\theta})$$

Cross-entropy loss = negative Bernoulli log-likelihood

$$\Pr(Y_i = y_i | \mathbf{x}_i, \boldsymbol{\beta}) = \Pr(y_i = 1 | \mathbf{x}_i, \boldsymbol{\beta})^{y_i} \Pr(y_i = 0 | \mathbf{x}_i, \boldsymbol{\beta})^{1 - y_i}$$

where for logistic regression

$$\Pr(y_i = 1 | x_i, \boldsymbol{\beta}) = \frac{\exp(x_i^T \boldsymbol{\beta})}{1 + \exp(x_i^T \boldsymbol{\beta})}.$$

See Bonus slides for a little more on (cross-)entropy.

Detecting fraudulent banknotes

- Dataset with 1372 photographed banknotes. 610 fake.
- Raw data: $400 \times 400 = 160000$ gray-scale pixels.
- The 160000 pixel variables are condensed to four features:
 - variance of Wavelet Transformed image
 - skewness of Wavelet Transformed image
 - kurtosis of Wavelet Transformed image
 - entropy of image
- Deep learning on raw images (more later!).

Detecting fraudulent banknotes

- 1000 images for training. Predictions on 372 test images.
- Logistic regression

$$\Pr(\text{Fraud} = \text{True}|\text{features}) = \frac{\exp(\mathbf{x}^{\top} \beta_c)}{\sum_{j=1}^{C} \exp(\mathbf{x}^{\top} \beta_j)}$$

- **Decision**: signal fraud if Pr(Fraud = True|Features) > 0.5.
- Confusion matrix

		Truth	
		No fraud	Fraud
Decision	No Fraud	208	1
	Fraud	3	160

Evaluating a classifier - confusion matrix

■ Confusion matrix:

		Truth	
		Positive	Negative
Decision	Positive	tp	fp
	Negative	fn	tn

- tp = true positive, fp = false positive fn = false negative, tn = true negative.
- Example:

		Trutn		
		No Fraud	Fraud	
Decision	No Fraud	208	1	
	Fraud	3	160	

Evaluating a classifier - Accuracy

Accuracy is the proportion of correctly classified items

$$Accuracy = \frac{tp + tn}{tp + tn + fn + fp}$$

Note: evaluation criteria (e.g. accuracy) need not be the same as the training loss function (e.g. cross-entropy).

Evaluating a classifier - Precision

Precision is the proportion of truly positive items among those signaled as positive:

$$Precision = \frac{tp}{tp + fp}$$

		Iruth		
		Positive	Negative	
Decision	Positive	tp	fp	
	Negative	fn	tn	

- High precision:
 - trustworthy positives
 - people pointed out as fraudulent are almost always frauds.

Evaluating a classifier - Recall

Recall is the proportion of signaled positive items among those that are truly positive:

$$Recall = \frac{tp}{tp + fn}$$

		Truth	
		Positive	Negative
Decision	Positive	tp	fp
	Negative	fn	tn

- High recall:
 - will find the positive items.
 - frauds will be caught.
- Recall is also called True Positive Rate (TPR) or sensitivity.
- There is a trade-off between Precision and Recall.

Evaluating a classifier - False Positive Rate

False Positive Rate (FPR) is the proportion of signaled positive items among those that are truly negative:

$$FPR = \frac{fp}{fp + tn}$$

		Truth		
		Positive	Negative	
Decision	Positive	tp	fp	
	Negative	fn	tn	

- Low FPR:
 - will very rarely signal a positive for a negative item.
 - people will not be falsely accused of fraud.

Evaluating a classifier - ROC curve

- Precision and recall depends on the decision threshold.
- Pr(Spam|text in an email) = 0.9. Do we send it to the spam-box?
- Is Pr(Fraud|features) > 0.5 a good decision threshold?
- Optimal decisions depend on the consequences. Decision theory.
- **ROC-curve**: Receiver Operating Characteristic.
- ROC: Plots the true positive rate (TPR) against the false positive rate (FPR) at various thresholds.
- **AUC** = Area Under Curve. Area under the ROC curve.

Evaluating a classifier - ROC

From Wikipedia.

ROC - Sonar data

- Sonar data
 - Binary response (metal/rock)
 - ▶ 61 covariates (energy within a frequency band from sound impulse).

Predicting firm bankruptcy

- Comparing test AUC for
 - ► logistic reg (LR)
 - logistic reg with additive splines
 - ▶ neural networks (NN) with 2-5 layers, each with 100 nodes.

epochs is number of iterations of the stochastic gradient decent optimization for the neural network, see Lecture 5.

Error function and generalization performance

- **Error function** compares prediction $\hat{y}(x_{\star})$ to actual y
 - ► Squared error for regression:

$$E(\hat{y}, y) = (\hat{y} - y)^2$$

► Misclassification for classification:

$$E(\hat{y}, y) = \mathbb{I} \{\hat{y} \neq y\} = \begin{cases} 0 & \text{if } \hat{y} = y \\ 1 & \text{if } \hat{y} \neq y \end{cases}$$

- Loss function $L(\hat{y}, y)$ need not be the same as error function $E(\hat{y}, y)$ used for performance evaluation.
 - ▶ *k*-NN does not have an explicit loss function.
 - ightharpoonup Misclassification rate is discontinuous in heta. Hard to optimize.
- For all data: mean squared error and misclassification rate.
- Generalization performance: method's average performance on data drawn from a distribution p(x, y).

Generalization and Training-Test splits

- How estimate generalization performance? Training-Test split.
- Partition the data in two parts:
 - ▶ Training data $\mathcal{T} = \{y_i, x_i\}_{i=1}^n$ to estimate parameters.
 - ► Test data (hold-out) to estimate generalization.

- How to make the split:
 - ► Randomly
 - Systematic (time series: most recent data in test set).
- Caret package in R. 75% training, 25% test:

```
library(caret)
library(mlbench)
data(Sonar)
inTrain <- createDataPartition(y = Sonar$Class, p = .75, list = FALSE)
training <- Sonar[ inTrain,]
testing <- Sonar[-inTrain,]</pre>
```

Generalization and Training-Test splits

- Training data $\mathcal{T} = \{y_i, x_i\}_{i=1}^n$ gives estimated/trained model for prediction: $\hat{y}(x_*; \mathcal{T})$.
- Expected new data error

$$E_{\mathrm{new}} \equiv \mathbb{E}_{\star} \left[E \left(\hat{y}(x_{\star}; \mathcal{T}), y_{\star} \right) \right] = \int E \left(\hat{y}(x_{\star}; \mathcal{T}), y_{\star} \right) p(x_{\star}, y_{\star}) dx_{\star} dy_{\star}$$

- \blacktriangleright $E(\hat{y}(x_{\star}; \mathcal{T}), y_{\star})$ is prediction error when training on **fixed** \mathcal{T} .
- ▶ \mathbb{E}_{\star} is the expectation wrt **test data** from $(x_{\star}, y_{\star}) \sim \rho(x, y)$.
- E_{new} measures how a trained model generalizes to new data from p(x, y).
- Goal of ML: minimize E_{new} . But E_{new} is unknown!

Training error

The training error is computed from $\mathcal{T} = \{y_i, x_i\}_{i=1}^n$

$$E_{\text{train}} \equiv \frac{1}{n} \sum_{i=1}^{n} E(\hat{y}(x_i; \mathcal{T}), y_i)$$

- \blacksquare Typically $E_{ ext{train}} < E_{ ext{new}}$, due to overfitting the training data.
- Error on hold-out validation data $\{y'_i, x'_i\}_{i=1}^{n_v}$:

$$E_{\text{hold-out}} \equiv \frac{1}{n_{\text{v}}} \sum_{j=1}^{n_{\text{v}}} E\left(\hat{y}(\mathbf{x}_{j}^{'}; \mathcal{T}), \mathbf{y}_{j}^{'}\right)$$

- If $(y'_i, x'_i) \sim p(x, y)$, $E_{hold-out}$ is an unbiased estimate of E_{new} .
- Problem:
 - \triangleright small variance of $E_{\text{hold-out}}$ requires large n_v ...
 - but large n_V means less training data ...
 - less training data means larger $E_{
 m new}$.

k-fold cross-validation

- Split the data in k folds or batches: B_1, \ldots, B_k .
- For each batch $\ell = 1, 2, \ldots, k$:
 - lacksquare train the model on $B_{-\ell} \equiv \{B_1, \ldots, B_{\ell-1}, B_{\ell+1}, \ldots, B_k\}$.
 - ightharpoonup predict the data in B_ℓ and compute error function $E_{
 m hold-out}^{(\ell)}$
- Compute the crossvalidation estimate of E_{new}

$$E_{\text{hold-out}} = \frac{1}{k} \sum_{\ell=1}^{k} E_{\text{hold-out}}^{(\ell)}$$

- $E_{ ext{hold-out}}^{(\ell)}$ unbiased for $E_{ ext{new}}$ with $\mathcal{T} = B_{-\ell}$ for each ℓ . $E_{ ext{hold-out}}$ (slightly) biased for $E_{ ext{new}}$ with $\mathcal{T} = \{ \text{all data} \}$.
- **Leave-one-out** cross-validation: k = n. Requires n re-fits.

Cross-validation for hyperparameter learning

- Cross-validation is often used to estimate hyperparameters:
 - number of neighbors, k, in k-NN
 - tree depth in regression trees
- k-NN: $\hat{k}_{cv} = \arg\min_{k} E_{hold-out}(k)$.
- $E_{
 m hold-out}(\hat{k}_{
 m cv})$ typically underestimates $E_{
 m new}$, because we are optimizing over k when finding $\hat{k}_{
 m cv}$.
- Solution: set aside clean test data to estimate E_{new} .

Cross-validation learning of Lasso shrinkage

One-standard deviation rule for CV-estimation: the least complex model within one-standard error of the best model is chosen.

Generalization gap

- lacksquare $E_{
 m new}$ depends on a specific ${\mathcal T}$. Better notation: $E_{
 m new}({\mathcal T})$.
- Training-averaged generalization error:

$$\bar{\textit{E}}_{new} \equiv \mathbb{E}_{\mathcal{T}}\left[\textit{E}_{new}(\mathcal{T})\right]$$

- \bar{E}_{new} is average E_{new} over all possible training data of size n.
- Training-averaged training error:

$$\bar{\textit{E}}_{train} \equiv \mathbb{E}_{\mathcal{T}}\left[\textit{E}_{train}(\mathcal{T})\right]$$

Generalization gap

generalization gap
$$= \bar{E}_{new} - \bar{E}_{train}$$

Training error-generalization gap decomposition

$$ar{\it E}_{
m new} = ar{\it E}_{
m train} + {
m generalization gap}$$

Generalization gap

- If $E_{\text{hold-out}} \approx E_{\text{train}}$: Underfitting? Try increasing complexity.
- If $E_{\rm train} \approx 0$ and $E_{\rm hold-out}$ sizeable: Overfitting? Try decreasing complexity.

Generalization gap - five models example

Bias and Variance

True relationship

$$y = f_0(x) + \varepsilon$$
, $V(\varepsilon) = \sigma^2$.

- **E**stimated model $\hat{y}(\mathsf{x};\mathcal{T})$ (linear regression $\hat{y}(\mathsf{x};\mathcal{T}) = \mathsf{x}^{\mathcal{T}}\hat{\boldsymbol{\beta}}$).
- Average trained model

$$\bar{f}(x) \equiv \mathbb{E}_{\mathcal{T}}[\hat{y}(x;\mathcal{T})]$$

Bias

Bias
$$(\hat{y}(x; \mathcal{T})) = \bar{f}(x) - f_0(x)$$

Variance

$$\mathbb{V}_{\mathcal{T}}\left[\hat{y}(\mathsf{x};\mathcal{T})\right] = \mathbb{E}_{\mathcal{T}}\left[\left(\hat{y}(\mathsf{x};\mathcal{T}) - \bar{f}(\mathsf{x})\right)^{2}\right].$$

■ Mean Squared Error (MSE)

$$\text{MSE}\left(\hat{y}(x;\mathcal{T})\right) = \mathbb{E}_{\mathcal{T}}\left[\left(\hat{y}(x;\mathcal{T}) - f_{0}(x)\right)^{2}\right] = \mathbb{V}_{\mathcal{T}}\left[\hat{y}(x;\mathcal{T})\right] + \text{Bias}\left(\hat{y}(x;\mathcal{T})\right)^{2}$$

Bias-Variance trade-off polynomials

Bias-Variance trade-off polynomials

Bias-Variance trade-off

Bias-variance decomposition of

$$E_{\mathrm{new}} \equiv \mathbb{E}_{\mathcal{T}} \left[\mathbb{E}_{\star} \left(\hat{y}(\mathsf{x}_{\star}; \mathcal{T}) - \mathsf{y}_{\star} \right)^{2} \right]$$

Change order of the expectations and insert true model:

$$\bar{E}_{\text{new}} = \mathbb{E}_{\mathcal{T}}\left[\mathbb{E}_{\star}\left(\hat{y}(x_{\star}; \mathcal{T}) - y_{\star}\right)^{2}\right] = \mathbb{E}_{\star}\left[\mathbb{E}_{\mathcal{T}}\left(\hat{y}(x_{\star}; \mathcal{T}) - f_{0}(x_{\star}) - \epsilon\right)^{2}\right]$$

- Add and subtract $\bar{f}(x_{\star})$ and expand the square to get ...
- Bias-variance decomposition

$$\bar{\textit{E}}_{\text{new}} = \underbrace{\mathbb{E}_{\star} \left[\left(\bar{\textit{f}} \left(\textbf{x}_{\star} \right) - \textit{f}_{0} (\textbf{x}_{\star}) \right)^{2} \right]}_{\text{Bias}^{2}} + \underbrace{\mathbb{E}_{\star} \left[\mathbb{E}_{\mathcal{T}} \left(\hat{\textit{y}} \left(\textbf{x}_{\star}; \mathcal{T} \right) - \bar{\textit{f}} \left(\textbf{x}_{\star} \right) \right)^{2} \right]}_{\text{Variance}} + \underbrace{\sigma^{2}}_{\text{Irreducible error}}$$

Bias-Variance trade-off

Mattias Villani

Machine Learning

Bias-variance - five models example

Bias-variance - five models example

Bias-Variance trade-off classification

Mattias Villani

Machine Learning