Théorie des langages II - TD1

Wassim SAIDANE

Question 1

Montrer que le langage a^nb^n (pour $n \ge 1$) n'est pas rationnel. Concevoir un automate à pile qui reconnît ce langage.

Langage rationnel 1 :

- Ce sont les langages décrits par les expressions régulières ou rationnelles, d'où le nom de langages réguliers.
- Ce sont les langages obtenus, à partir des lettres et de l'ensemble vide, par les opérations rationnelles, à savoir l'union, le produit et l'étoile de Kleene, d'où le nom de langages rationnels.
- ce sont les langages reconnus par des automates finis, d'où le nom de langages reconnaissables.

Soit le langage $L = \{a^nb^n \mid n \geq 0\}$ sur l'alphabet $A = \{A, B\}$. Supposons par l'absurde que L est rationnel.

Par le lemme d'itération, $\{\exists x, y, z \mid w=xyz\}$, $|xy| \le p$, $|y| \ge 1$ et $\forall i \ge 0, xy'z \in L$.

Comme $\mid xy \mid \supseteq p$, alors $w = a^l a^{l'} a^{l''} b^p$ où $x = a^l, \ y = a^{l'}, \ z = a^l b^p \ l' \ge 1$. Si on applique la proposition $4 \ (\forall i \ge 0, xy^iz \in L \)$ du lemme d'itération avec i = 0 on obtient $a^l a^{l''} b^p \in L$, or l + l'' < P. $(l + l' + l'' = p, l' \ge 1)$

CONTRADICTION.

L n'est donc pas un langage rationnel.

https://fr.wikipedia.org/wiki/Automate_à_pile#Un_exemple

Pour définir l'automate à pile, nous allons définir des règles de transition (q, y, z, p, h) où :

- q est l'état de départ
- y est la lettre utilisée
- z est le symbole qu'on dépile
- p est l'état d'arrivé
- h est le symbole qu'on empile

Par exemple, soit les 4 règles suivantes :

- 1. (q, a, ω, q, A)
- 1. D'après wikepedia

- 2. (q, a, A, q, AA)
- 3. (q, ϵ, A, p, A)
- 4. (p, n, A, p, ϵ)

La première règle nous dit qu'en prenant 'a' à partir de l'état 'q', on reste en 'q' en n'ayant rien dépilé mais en ayant empilé 'A'. Il n'y a pas d'état final, la reconnaissance du mot se fait par pile vide (sauf le mot vide car $n \geq 0$)

Voici la représentation de l'automate à pile (MERCI WIKIPEDIA) :

