Basics on Metabolic network analysis

Marko Budinich, Jérémie Bourdon and Damien Eveillard LINA, Université de Nantes

Not as simple...
transcription controlled by
transcription factors

gene y

gene x DNA

gene z

Major issue #1:

How to detect efficiently some potential and relevant targets patterns of TF on biological sequences ?

Genomics / metagenomic studies....

DN

Major issue #2:

How to model a living system using (I) biological expert intuitions (individual level) and (2) experimental observations (population level)?

Systems Biology: Regulatory Networks & data integration

Creatine kinase catabolyzes the chemical reaction

Creatine kinase catabolyzes the chemical reaction

Major issue #3:

How to understand/predict/enhance the biochemical functioning/ productions of a cell/tissue/organism?

Systems Biology: Metabolic network analysis

Creatine kinase catabolyzes the chemical reaction

Mathematical modeling a very simple task!

Hypothesis 0: from now, we consider the metabolic network composed by (and only by) the possible biochemical reactions (the enzyme is present or it is not required).

R1: GLC + ATP <--> G6P

R2: ATP + G6P -> 2 * G3P

R3: ATP + GLC + G6P -> lactose

.

	R1	R2	R3
GLC	-1	0	-1
ATP	-1	-1	-1
G6P	+1	-1	-1
G3P	0	+2	0
lactose	0	0	+1

Stoichiometric matrix S

Mathematical modeling a very simple task!

R1: GLC + ATP <--> G6P

 $R2 : ATP + G6P \longrightarrow 2 * G3P$

R3: ATP + GLC + G6P -> lactose

.

	R1	R2	R3
GLC	-1	0	-1
ATP	-1	-1	-1
G6P	+1	-1	-1
G3P	0	+2	0
lactose	0	0	+1

Stoichiometric matrix S

The evolution of G6P concentration can be deduced by the speeds of reactions (i.e., fluxes) R1, R2 and R3 $d[G6P](t)/dt = +1*V_{R1}-1*V_{R2}-1*V_{R3}$

Hypothesis 1: The metabolites can't accumulate in the cell.

$$0 = d[G6P](t)/dt = +1 * V_{R1} -1 * V_{R2} -1 * V_{R3}$$

i.e.,: $V_{R1} = V_{R2} + V_{R3}$

Mathematical modeling a very simple task!

R1: GLC + ATP <--> G6P

 $R2 : ATP + G6P \longrightarrow 2 * G3P$

R3: ATP + GLC + G6P -> lactose

.

	R1	R2	R3
GLC	-1	0	-1
ATP	-1	-1	-1
G6P	+1	-1	-1
G3P	0	+2	0
lactose	0	0	+1

Stoichiometric matrix S

ls of

The ev

Finding appropriate fluxes ≈ solving systems of linear equations !!!
—> quite easy !

Hypothesis 1: The metabolites can't accumulate in the cell.

$$0 = d[G6P](t)/dt = +1 * V_{R1} -1 * V_{R2} -1 * V_{R3}$$

i.e.,: $V_{R1} = V_{R2} + V_{R3}$

Example

 $R1: 2A + B \longrightarrow C$

R2: B + C --> D + 2E

R3:4A -> D

R4: —> A

R5: —> B

R6: D ->

R7:E->

Question 1: Write the stoichiometric matrix

Question 2: Write the linear system that has to be solved

Question 3: Suppose that we observe V4 = 1 and V7 = 1 and solve the system

Question 4: Suppose that we observe V4 = 1 and V7 = 2 and solve the system

Question 5 : All the reactions are irreversible. Plot the solution set. Suppose now that V4>1 and V7>1.

Question 6 : One has V4 < 6 and V7<4. What is the solution that maximizes V4+V7?

Example

R1:2A + B -> C

R2:B+C->D+2E

R3:4A -> D

R4: —> A

R5: —> B

R6: D ->

R7:E->

Question 1: Write the stoichiometric matrix

	R1	R2	R3	R4	R5	R6	R7
Α	-2	0	-4	1	0	0	0
В	-1	-1	0	0	1	0	0
С	+1	-1	0	0	0	0	0
D	0	+1	1	0	0	-1	0
Е	0	+2	0	0	0	0	-1

	R1	R2	R3	R4	R5	R6	R7
A	-2	0	-4	1	0	0	0
В	-1	-1	0	0	1	0	0
С	+1	-1	0	0	0	0	0
D	0	+1	1	0	0	-1	0
E	0	+2	0	0	0	0	-1
R6 : D —> R7 : E —>		•	-1	►R —	<i></i>		上十

Question 1: Write the stoichiometric matrix

Question 2: Write the linear system that has to be solved

Question 3: Suppose that we observe V4 = 1 and V7 = 1 and solve the system

Question 4: Suppose that we observe V4 = 1 and V7 = 2 and solve the system

Question 5 : All the reactions are irreversible. Plot the solution set. Suppose now that V4>1 and V7>1.

Question 6: One has V4 < 6 and V7<4. What is the solution that maximizes V4+V7?

	R1	R2	R3	R4	R5	R6	R7	
A	-2	0	-4	1	0	0	0	
В	-1	-1	0	0	1	0	0	
C	+1	-1	0	0	0	0	0	<u>}</u>
D	0	+1	1	0	0	-1	0	
E	0	+2	0	0	0	0	-1	,
R6 : D —>)		▶B —			`L - ! -	

for A : V4 = 2V1 + 4V3

for B : V5 = V1 + V2

for C : V1 = V2

for D : V2 + V3 = V6

for E : 2 V2 = V7

V1 = V2, V5 = V7 = 2 V2, V6 = V2 + V3 and V4 = 2 V2 + 4 V3

only 2 unknowns but we must observe one of V4 or V6 and one of V5 or V7.

Example

R3

R2

R1

R6

⁾bservations Outputs

R1 : $2A + B \longrightarrow C$ R2 : $B + C \longrightarrow D + 2E$

R3:4A -> D

R4: —> A

R5: —> B

R6: D ->

for A: V4 = 2V1 + 4V3

for B : V5 = V1 + V2

for C : V1 = V2

for D: V2 + V3 = V6

for E : 2 V2 = V7

V1 = V2, V5 = V7 = 2 V2, V6 = V2 + V3 and V4 = 2 V2 + 4 V3

observations

inputs

R4

only 2 unknowns but we must observe one of V4 or V6 and one of V5 or V7.

for A : V4 = 2V1 + 4V3

for B : V5 = V1 + V2

for C : V1 = V2

for D : V2 + V3 = V6

for E : 2 V2 = V7

V1 = V2, V5 = V7 = 2 V2, V6 = V2 + V3 and V4 = 2 V2 + 4 V3

only 2 unknowns but we must observe one of V4 or V6 and one of V5 or V7.

Question 1: Write the stoichiometric matrix

Question 2: Write the linear system that has to be solved

Question 3: Suppose that we observe V4 = 1 and V7 = 1 and solve the system

Question 4: Suppose that we observe V4 = 1 and V7 = 2 and solve the system

Question 5 : All the reactions are irreversible. Plot the solution set. Suppose now that V4>1 and V7>1.

Question 6: One has V4 < 6 and V7<4. What is the solution that maximizes V4+V7?

for A: V4 = 2V1 + 4V3

for B : V5 = V1 + V2

for C : V1 = V2

for D : V2 + V3 = V6

for E : 2 V2 = V7

V1 = V2, V5 = V7 = 2 V2, V6 = V2 + V3 and V4 = 2 V2 + 4 V3

only 2 unknowns but we must observe one of V4 or V6 and one of V5 or V7.

Question 1: Write the stoichiometric matrix

Question 2: Write the linear system that has to be solved

Question 3: Suppose that we observe V4 = 1 and V7 = 1 and solve the system

Question 4: Suppose that we observe V4 = 1 and V7 = 2 and solve the system

Question 5 : All the reactions are irreversible. Plot the solution set. Suppose now that V4>1 and V7>1.

Question 6: One has V4 < 6 and V7<4. What is the solution that maximizes V4+V7?

V1 = V2 = 0.5, V3 = 0, V4 = 1, V5 = 1, V6 = 0.5, V7 = 1

for A : V4 = 2V1 + 4V3

for B : V5 = V1 + V2

for C : V1 = V2

for D : V2 + V3 = V6

for E : 2 V2 = V7

V1 = V2, V5 = V7 = 2 V2, V6 = V2 + V3 and V4 = 2 V2 + 4 V3

only 2 unknowns but we must observe one of V4 or V6 and one of V5 or V7.

Question 1: Write the stoichiometric matrix

Question 2: Write the linear system that has to be solved

Question 3: Suppose that we observe V4 = 1 and V7 = 1 and solve the system

Question 4: Suppose that we observe V4 = 1 and V7 = 2 and solve the system

Question 5 : All the reactions are irreversible. Plot the solution set. Suppose now that V4>1 and V7>1.

Question 6: One has V4 < 6 and V7<4. What is the solution that maximizes V4+V7?

$$V1 = V2 = 0.5$$
, $V3 = 0$, $V4 = 1$, $V5 = 1$, $V6 = 0.5$, $V7 = 1$

$$V1 = V2 = 1$$
, $V3 = -0.25$, $V4 = 1$, $V5 = 2$, $V6 = 0.75$, $V7 = 1$

The flux of an irreversible reaction is necessarily positive!!

In higher dimensions,

- 1. The figure defined by inequalities on linear expressions is always convex (it is a convex polyedra also known as a simplex)
- 2. The optimal value of a linear expression is always on a vertex of the simplex (or on a face for very particular objectives)
- 3. Very efficient algorithms (such as the simplex algorithm) can find these optima

Why do we need a computer?

- Current human metabolism has
 - 1,789 enzyme-encoding genes,
 - 7,440 reactions
 - 2,626 unique metabolites
- Study of the flux variations => 7440 * 2 * FBA
- Study of single gene knock out => 1789 * FBA
- Study of double gene knock out => 1789² * FBA
- Many other kind of analysis => A. Bockmayr on friday!

Many tools

Many tools

