Theia Primer

Optics Group, Virgo

Wednesday, May 10th 2017

Background on astigmatic Gaussian beams

Specif а orthonoi mal basis (e_z, e_1) e_1 and e_2 are princi-

pal

Data structures/algorithm/approximations

Demonstration

- Comparison with OptoCAD for 2D tracing (telescope.py)
- An example in 3D with spherical mirrors (sphere.py)

Benchmarking: time (i7/8GB)

• CPU = 0.47ms \times (# beams) ($R^2 = 99.95\%$)

Benchmarking: space (i7/8GB)

• Mem. = $9.3MB + 3.4kB/beam (R^2 = 99.76\%)$

6 / 8

Next steps

References

Arnaud, Kogelnik: Gaussian Light Beams with General Astigmatism, Applied Optics 8 (1969)