title: "Untitled" author: "Souradeep Das" date: "2022-11-16"

Problem 5: Computational Finance - Modelling Stock prices

Following piece of code download the prices of TCS since 2007

```
library(quantmod)
## Warning: package 'quantmod' was built under R version 4.2.2
## Loading required package: xts
## Warning: package 'xts' was built under R version 4.2.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.2.2
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: TTR
## Warning: package 'TTR' was built under R version 4.2.2
## Registered S3 method overwritten by 'quantmod':
##
                       from
     as.zoo.data.frame zoo
getSymbols('TCS.NS')
## Warning: TCS.NS contains missing values. Some functions will not work if objects
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
## [1] "TCS.NS"
tail(TCS.NS)
```

##		TCS.NS.Open	TCS.NS.High	TCS.NS.Low	TCS.NS.Close	TCS.NS.Volume
##	2022-11-07	3229.0	3242.80	3195.10	3233.70	1474498
##	2022-11-09	3249.8	3249.80	3201.65	3216.05	1162267
##	2022-11-10	3170.0	3225.00	3170.00	3205.65	1573092
##	2022-11-11	3269.6	3341.60	3255.05	3315.95	3265394
##	2022-11-14	3324.0	3349.00	3309.00	3335.50	1342074
##	2022-11-15	3321.0	3339.95	3292.00	3332.60	1400708
##		TCS.NS.Adjus	ted			
##	2022-11-07	3233	.70			
##	2022-11-09	3216	.05			
##	2022-11-10	3205	.65			
##	2022-11-11	3315	.95			
##	2022-11-14	3335	.50			
##	2022-11-15	3332	.60			

Plot the adjusted close prices of TCS

```
plot(TCS.NS$TCS.NS.Adjusted)
```


Download the data of market index Nifty50. The Nifty 50 index indicates how the over all market has done over the similar period.

```
getSymbols('^NSEI')
```

```
## Warning: ^NSEI contains missing values. Some functions will not work if objects
## contain missing values in the middle of the series. Consider using na.omit(),
## na.approx(), na.fill(), etc to remove or replace them.
```

```
## [1] "^NSEI"
```

tail(NSEI)

```
##
              NSEI.Open NSEI.High NSEI.Low NSEI.Close NSEI.Volume NSEI.Adjusted
## 2022-11-07
               18211.75
                         18255.50 18064.75
                                              18202.80
                                                            314800
                                                                         18202.80
## 2022-11-09
               18288.25
                         18296.40 18117.50
                                              18157.00
                                                            307200
                                                                         18157.00
## 2022-11-10
               18044.35 18103.10 17969.40
                                              18028.20
                                                            256500
                                                                         18028.20
## 2022-11-11
               18272.35
                         18362.30 18259.35
                                              18349.70
                                                            378500
                                                                         18349.70
## 2022-11-14
               18376.40 18399.45 18311.40
                                              18329.15
                                                            301400
                                                                         18329.15
## 2022-11-15
               18362.75
                         18427.95 18282.00
                                              18403.40
                                                            250900
                                                                         18403.40
```

Plot the adjusted close value of Nifty50

plot(NSEI\$NSEI.Adjusted)

Log-Return

We calculate the daily log-return, where log-return is defined as

$$r_t = \log(P_t) - \log(P_{t-1}) = \Delta \log(P_t),$$

where P_t is the closing price of the stock on t^{th} day.

· Consider the following model:

$$r_{t}^{TCS} = lpha + eta r_{t}^{Nifty} + arepsilon,$$

where $\mathbb{E}(arepsilon)=0$ and $\mathbb{V}ar(arepsilon)=\sigma^2$.

1. Estimate the parameters of the models $\theta=(\alpha,\beta,\sigma)$ using the method of moments type plug-in estimator discussed in the class.

```
library(tinytex)
```

```
## Warning: package 'tinytex' was built under R version 4.2.2
```

```
mt=TCS_mean=mean(retrn$TCS.NS.Adjusted)
varT=TCS_var=var(retrn$TCS.NS.Adjusted)
a=TCS_sd=sd(retrn$TCS.NS.Adjusted)
mn=NSEI_mean=mean(retrn$NSEI.Adjusted)
NSEI_var=var(retrn$NSEI.Adjusted)
b=NSEI_sd=sd(retrn$NSEI.Adjusted)
x=retrn$NSEI.Adjusted
y=retrn$TCS.NS.Adjusted
Cov=cov(x,y)
r=Cov/(a*b)
alpha_hat=mt-r*(a/b)*mn
beta_hat=r*(a/b)
sigma=sqrt(varT-Cov*beta_hat)
paste('The estimated value of alpha =',alpha_hat)
```

```
## [1] "The estimated value of alpha = 0.00046165283708186"
```

```
paste('The estimated value of beta =',beta_hat)
```

```
## [1] "The estimated value of beta = 0.743661476148057"
```

```
paste('The estimated value of sigma =',sigma)
```

```
## [1] "The estimated value of sigma = 0.016182626195474"
```

2. Estimate the parameters using the \line built-in function of \line Note that \line using the OLS method.

```
```r
a=model <- lm(y~x, data=retrn)
summary(model)</pre>
```

```
##
Call:
lm(formula = y \sim x, data = retrn)
##
Residuals:
##
 Min
 10
 Median
 3Q
 Max
-0.115339 -0.008756 -0.000086 0.008537 0.120641
##
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
##
(Intercept) 0.0004617 0.0002668 1.73 0.0836 .
x
 0.7436615 0.0191618
 38.81 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.01618 on 3681 degrees of freedom
Multiple R-squared: 0.2904, Adjusted R-squared: 0.2902
F-statistic: 1506 on 1 and 3681 DF, p-value: < 2.2e-16
```

```
alphaols = model$coefficients[[1]]
betaols = model$coefficients[[2]]
retrn$r_tcs_predicted = model$fitted.values
retrn$error = retrn$r_tcs_predicted - retrn$TCS.NS.Adjusted
sigmaols = sd(retrn$error)
paste('The estimated value of alpha =',alphaols)
```

```
[1] "The estimated value of alpha = 0.000461652837081857"
```

```
paste('The estimated value of beta =',betaols)
```

```
[1] "The estimated value of beta = 0.743661476148059"
```

```
paste('The estimated value of sigma =',sigmaols)
```

```
[1] "The estimated value of sigma = 0.016182626195474"
```

## 3. Fill-up the following table

Parameters	Method of Moments	OLS
$\alpha$	0.00046165264727328	0.000461652647273278
β	0.743661766737062	0.743661766737066
$\sigma$	0.0161826159860443	0.0161826159860443

4. If the current value of Nifty is 18000 and it goes up to 18200. The current value of TCS is Rs. 3200/-. How much you can expect TCS price to go up?

```
nif1 = 18000
nif2 = 18200
tcs1 = 3200
nifr = (log(nif2) - log(nif1))
predicttcs = predict(model, data.frame(x=c(nifr)))
tcsvalue = round(exp(predicttcs) * tcs1)
paste('The value of TCS is expected to go up at:',tcsvalue)
```

## [1] "The value of TCS is expected to go up at: 3228"