



# High-Voltage Electrical

Robot

Transmission Line Inspection

### **Problem Statement**

Design a robotic device that can autonomously inspect high-voltage transmission wires, reducing human intervention and risk. The robot must:

- Traverse wires while smoothly overcoming obstacles like insulators and junctions.
- Engage and disengage wheels mechanism without causing vibrations on the wire.
- Maintain stability with a weight balancing mechanism
- Use sensors to inspect the wire condition.

# Sequential Engagement Mechanism



# Weight Balance Mechanism

To avoid tipping, the battery (CoM) is shifted towards the remaining two arms during the crossing process.



# Mechatronic Architecture



# Detailed CAD Design for 1 arm

- Sliding channel to tilt the motor arm to 45 degree and first lift it above 2 cm above the cable
- Supporter wheel will be placed to grip on the wire which would be controlled using servo











# **Torque Calculation**

Given the following relationships:

1. \*\*Force equation\*\* along the incline:

$$ma = f - mg\sin\theta$$

This describes the net force acting along the incline.

2. \*\*Torque equation\*\*:

$$T = fR$$

This relates the torque to the friction force f and the radius R of the wheel. Step-by-Step Solution:

1. From the \*\*force equation\*\*  $ma = f - mg \sin \theta$ , solve for f:

$$f = ma + mg \sin \theta$$

2. Now, substitute this expression for f into the \*\*torque equation\*\* T = fR:

$$T = (ma + mg\sin\theta)R$$

Thus, the \*\*torque  $T^{**}$  in terms of mass m, acceleration a, gravitational force mg, incline angle  $\theta$ , and the wheel's radius R is:

$$T = R\left(ma + mg\sin\theta\right)$$



## Flow Chart























# **Remaining Work**

- 1. Chassis Designing and fabrication (by this week)
- 2. Weight balance mechanism structure (by next week)
- 3. Electrical connections and automation (parallely by third week)
- 4. Final testing

# FeedBack