Niveau	1ère L.I.G	ESSECT
Matière	Algorithme et Structures de Données 2	Semestre 2

TD N°4: Listes Chainées Simples

Pour les exercices suivants on définit la structure suivante :

```
typedef struct
{
    int info;
    struct structNoeud *suivant;
} structNoeud;

//Declaration d'un nouveau type nommé NOEUD
typedef structNoeud *NOEUD;

typedef struct
{
    NOEUD tete;
    int lg;
} structList;

typedef structList *LISTE;
```

Exercice n°1: (Rappel du cours)

Ecrire les fonctions suivantes :

- 1. Une fonction permettant de créer une liste simplement chainée de n entiers.
- 2. Une fonction qui prend en paramètre une liste simplement chaînée et renvoie sa taille.
- 3. Une fonction qui permet d'afficher les valeurs des éléments d'une liste.
- 4. Trois fonctions permettant d'ajouter un élément au début, à la fin et à une position donnée.
- 5. Trois fonctions permettant de supprimer un élément au début, à la fin et à une position donnée.

Exercice n°2

Ecrire une fonction qui permet de retourner la moyenne d'une liste linéaire chaînée simple d'entier.

Exercice n°3

Ecrire une fonction qui permet de retourner le maximum d'une liste linéaire chaînée simple d'entiers ainsi que son ordre dans la liste.

Exercice n°4

1) Ecrire une fonction **RechercheT** qui permet de chercher un entier A et de retourner sa position s'il existe, 0 sinon.

int RechercheT(LISTE L, int A)

Exercice n°5

Écrire une fonction qui permet de supprimer les doublons d'un entier donnée dans une liste simplement chainée triée dans l'ordre croissant.

Rq: Vous devez supprimer tous les doublons et ne laisser qu'un seul exemplaire.

Exercice nº6

Ecrire une fonction qui permet de fusionner deux LSC d'entiers triées par ordre croissant dans une troisième LSC qui doit être triée.

Exercice n°7

Ecrire une fonction qui permet d'inverser une liste linéaire chaînée simple.

Exercice nº8

Un Etudiant est identifié par les informations suivantes :

Numéro

Nom.

Note d'examen

Ecrire les structures de données nécessaires à la définition d'un Etudiant et d'une liste linéaire chaînée simple d'Etudiants.

Ecrire les fonctions suivantes :

- a. Une fonction qui renvoie la meilleure note d'examen.
- b. Une fonction récursive qui recherche et renvoie l'adresse (pointeur) d'un Etudiant dans la liste s'il existe sinon elle renvoie NULL.
- c. Une fonction qui renvoie une liste des étudiants ayant la meilleure note.