

Monistax Risk and Compliance Assessment Report

I. Risk Assessment

1. Operational Risk Scenarios

RISK NO.	KNOWING	ENTERING	FINDING	EXPLOITING
1	SQL Injection	Attackers could craft SQL statements like admin' OR '1'='1' to bypass authentication without a password	Locate valuable information (user records, sensitive configurations) within the database	Use database access to exfiltrate or modify data, compromising CIA. Disclosure of Banking Information
2	Social engineering via phishing	Craft convincing emails that mimic legitimate sources, tricking users into clicking malicious links	Search for sensitive files or emails that store critical business information	Data leakage, use stolen credentials to access & extract confidential information and/or Alteration of payment information
3	Cross Site Scripting XSS	If input fields do not validate input, attackers could use scripts that lead to session hijacking	Collects data from user sessions and cookies	Hijack user sessions or redirect users to phishing sites, risking credential theft
4	Brute Force Attacks	Automated scripts repeatedly make password attempts on user	Guesses weak or default passwords	Unauthorized access to user data & potentially Admin privileges

				MONISTUA
		accounts		
5	Privilege Escalation	Exploits vulnerabilities for admin access, possible via SQL Injection	New privileges enable access to restricted sections	Modifications or actions within pose a risk to data integrity and confidentiality
6	Weak Encryption Practices	If sensitive data is not encrypted, attackers could intercept data in transit and at rest.	Sensitive data, like login credentials, are found in plain text	Access to unencrypted information such as payment information allows for data theft, undermining confidentiality
7	Data Leakage from Misconfigured Access Controls	Exploit overly permissive access controls to view or extract sensitive data	Sensitive files or directories are accessible without proper authentication	Confidential information is extracted, violating data protection policies
8	Distributed Denial of Service DDoS	Attackers can overwhelm the application with traffic	The system is unable to handle the excessive load	Web Server interruption affects availability, damaging reliability, and customer trust
9	Insufficient Logging and Monitoring	Stealthy access methods such as low-volume brute force or data scraping	Probing system components without being flagged	Long term access allows extensive data exfiltration or system manipulation unnoticed
10	Insecure API Endpoints	Exploit unprotected API endpoints or send crafted API request	Navigates through endpoints to locate sensitive resources	Unauthorized data retrieval can lead to Disclosure of banking Information affecting CIA

2. Likelihood of Operational Scenarios

Scenario	Strategic attack path	Overall likelihood
1	Attacker identifies an injectable input field via vulnerability scans and injects SQL commands to bypass authentication	4 – Very Frequent
2	Attackers gather employee information from social media, crafts convincing emails, deceives users into clicking malicious links or entering credentials on a fake page and uses credentials to access the system	3- Frequent
3	Attacker identifies unfiltered input fields and injects malicious scripts to execute in other users browsers to gain access to sensitive information	3- Frequent
4	Attacker identifies login endpoint and uses automated tools to repeatedly attempt passwords until successful & compromises user accounts, particularly those with weak passwords	3- Frequent
5	Attackers gain low-level access through a compromised account and probe for privilege escalation vulnerabilities using SQL injection or misconfigurations to elevate privilege to admin	2- Conceivable
6	Attackers intercept network traffic using packet capture tools to identify unencrypted data in transit to retrieve sensitive information such as credentials or personal data	3- Frequent
7	Attackers navigate to sensitive files or directories and attempt to access resources directly through unprotected paths, retrieving sensitive information due to lack of proper authentication retrictions	2- Conceivable
8	Attackers deploy a botnet and directs a high volume of requests to the target to overwhelm server resources, causing service outage	2- Conceivable
9	Attackers perform low-volume, stealthy action probes for system weaknesses and go undetected due to lack of alerts or monitoring	2- Conceivable
10	Attackers enumerate API endpoints via public documentation or scanning tools and send unauthorized requests to endpoints to retrieve or manipulate data without proper access controls	3- Frequent

3. Impact of Operational Scenario

Scenario	Impact description	Impact score
1	Production Server (Customer & Financial Data). Legal & Financial impact if customer data is disclosed leading to Impacts on image and Trust	4
2	Human Resources Database. Financial impacts due to employee data exposure.	2
3	Customer Interaction Portal (software sales). XSS could result in session hijacking	3
4	Customer login system (software sales). Successful brute force attacks may compromise accounts impacting customer confidence with some financial implications	2
5	Production Server & Admis Access. Could attackers broad control over system data affecting operational integrity and media exposure	4
6	Database (Data in Transit). Weak encryption risks data interception, impacting brand trust & requiring internal corrective actions	2
7	Human Resources. Misconfigures controls could expose sensitive HR & financial data, leading to severe financial and legal consequences	4
8	Software services. Service disruptions due to DDoS attacks could result in customer complaints and limited financial loss due to downtime	2
9	Production & Database. Delayed detection of security breaches may allow data exfiltration & result in increased detection costs & operational impact	3
10	Customer & Accounting Database. Unsecured APIs may lead to unauthorized access & exposure of financial data, causing legal ramifications	3

4. Risk Severity and Acceptance

Scenario	Severity (matrix score)	Risk acceptance level
1	4 x 4 = Matrix score 16	High - Unacceptable
2	3 x 2 = Matrix score 6	Average - Tolerable under control
3	3 x 3 = Matrix score 9	Average - Tolerable under control
4	3 x 2 = Matrix score 6	Average - Tolerable under control
5	2 x 4 = Matrix score 8	Average - Tolerable under control
6	3 x 2 = Matrix score 6	Average - Tolerable under control
7	2 x 4 = Matrix score 8	Average - Tolerable under control
8	2 x 2 = Matrix score 4	Average - Tolerable under control
9	2 x 3 = Matrix score 6	Average - Tolerable under control
10	3 x 3 = Matrix score 9	Average - Tolerable under control

5. Risk Prioritization

Scenarios in order of priority (highest -> lowest priority)
SQL Injection
Insecure API Endpoints
Cross-Site Scripting (XSS)
Data Leakage from Misconfigured Access Controls
Privilege Escalation
Brute Force Attacks
Weak Encryption Practices
Insufficient Logging
Social Engineering
Distributed Denial of Service (DDoS)

6. Recommended Actions

Risk scenario	Security measure	Difficulties for implementation	Timeframe (choose one: short-term, mid-term, long-term)
1	Implement parameterized SQL statements & input validation on all user inputs. Conduct routine security audits for SQL vulnerabilities.	Significant development resources required for code review and refactoring. Testing is essential but time intensive.	Short-term (Immediate priority)
2	Secure API endpoints with authentication, rate limiting, and logging. Use an API gateway for control over API access and security checks.	May require reconfiguration of existing APIs. Integration of gateway may need additional development and testing	Short-term
3	Apply input sanitization and content security policy (CSP) to prevent script execution. Regularly scan for XSS vulnerabilities.	Legacy code updates can be challenging and time consuming. Requires developer commitment to test sanitization thoroughly.	Short-term
4	Enforce least privilege access controls and conduct regular access reviews to ensure permissions are correctly configured.	Access control reviews require coordination across departments. Audits need consistent scheduling and follow up.	Short-term
5	Implement Role-Based access (RBAC) to limit access based on roles, and monitor privilege changes. Regularly audit permissions.	Requires thorough review of current permissions and potential restructuring of access hierarchy. RBAC setup may require custom configuration.	Short-term
6	Enforce rate limiting, account lockout	Balancing security with user convenience is	Mid-term

	mechanisms, and strong password policies. Monitor for unusual login attempts to detect brute force activity.	challenging, and overly strict settings can disrupt user experience.	
7	Enforce strong encryption protocols for data in transit (TLS 1.2 or higher) and at rest (AES- 256). Regularly review encryption standards for compliance.	Updating encryption can impact system performance. It may also require hardware upgrades if legacy systems are incompatible.	Mid-term
8	Implement centralized logging and monitoring with SIEM (Security Information and Event management) integration. Set up alerts for unusual activity patterns.	SIEM setup is costly and requires skilled personnel to manage and avoid alert fatigue. Tuning may be complex.	Mid-term
9	Conduct security awareness training focused on phishing recognition and reporting. Implement multi-factor authentication (MFA) to reduce credential theft risks.	Security awareness training must be ongoing for maximum effectiveness. MFA setup may temporarily disrupt workflows.	Mid-term
10	Deploy a web application firewall (WAF) and DDoS protection service. Implement load balancing and monitor for traffic anomalies.	DDoS mitigation services can be costly. Ensuring security without affecting performance is challenging.	Mid-term

7. Conclusion

After conducting a thorough risk assessment of the software solution, we identified several critical vulnerabilities, including SQL Injection, Insecure API Endpoints, and Privilege Escalation. Each of these poses a significant risk to Monistax's core mission of ensuring data confidentiality, integrity, and availability, especially given the high potential for exploitation and the critical impact on customer data. Additional vulnerabilities, such as Cross-Site Scripting (XSS) and Weak Encryption Practices, are also present and require structured controls to mitigate. Overall, these risks are manageable but will require proactive and consistent security measures.

Given the identified risks, I recommend adopting the software only if Monistax implements a robust security plan to address the high priority vulnerabilities. Essential actions include securing API endpoints, enforcing strong input validation, implementing parameterized queries to prevent SQL Injection, applying centralized logging and monitoring, and conducting regular security training. Monistax should also allocate resources for continuous security audits, particularly around access control and logging. These actions will help mitigate immediate risks and sustain secure operations. Implementing these security controls may incur costs and require initial adjustments in workflow but is essential for ensuring long term, secure usage of the solution.

II. Compliance Assessment

1. Discrepancies

The security scan revealed a SQL injection vulnerability that allowed administrative access without credentials, which conflicts with Monistax's requirement for secure, limited access to data and prevention of unauthorized database interactions.

While Monistax's policy requires strong encryption there is no evidence from the PeoplePro documentation confirming adherence to these encryption standards.

Monistax's policy mandates a logging mechanism to track access and events for auditability, but the documentation lacks detail on whether PeoplePro Suite logs user activities or maintains detailed access logs.

Monistax's policy recommends strong authentication, ideally multi-factor authentication, but the PeoplePro Suite appears to rely solely on basic username and password authentication.

Monistax requires that SaaS providers store customer data within the EEA, but there is no information in the PeoplePro documentation specifying data storage location compliance.

Monistax's policies emphasize strict access control and role-based permissions. PeoplePro's documentation does not clearly outline any role-based access control (RBAC) system or other permission structures to restrict access based on user roles.

2. Source of Discrepancies

Discrepancy	Source: solution or policy?
12.2 Vulnerability Prevention	Missing Section in Monistax Policy
Information Security Policy	Missing Section in Monistax Policy
SQL Injection	Automated Security Scan
Lack of Strong Encryption	Appendix to Monistax Third-Party Supplier Security Policy: SaaS
Insufficient Logging & Monitoring	Monistax Third-Party Supplier Security Policy
No Multi Factor Authentication	Monistax Third-Party Supplier Security Policy
Data Location Unclear	Monistax Third-Party Supplier Security

	Policy
Access Control & Role Bases Permissions	PeoplePro Suite: Description and Terms & Conditions

3. Recommendations: Solution

Flaw	Action	Justification
Information Security Policy Requirement	Require third-party providers to submit a comprehensive Information Security Policy	An Information security Policy demonstrates commitment to security standard
SQL Injection	Use parameterized SQL queries & input validation	Prevents Injection attacks & ensures secure database interactions
Lack of Strong Encryption	Enforce TLS 1.2+ for data in transit & AES-256 for data at rest	Protects data confidentiality and meets Monistax's encryption standards
Insufficient Logging & Monitoring	Implement centralized logging for access and event tracking	Enhances traceability and supports incident response
No Multi Factor Authentication	Add MFA for all accounts especially admin users	Strengthens authentication, reducing risk of unauthorized access
Data Location Unclear	Specify data storage locations in compliance with EEA requirements	Ensures data residency compliance and regulatory alignment
Access Control & Role Bases Permissions	Implement RBAC and regularly review permissions	Limits access based on role, enhancing data security

4. Recommendations: Updates or Corrections to Policy

Section of policy or document to be modified	Suggested Modification	Justification
Third-Party Supplier	Require all third-party	Ensures baseline security

Security Policy - Documentation Requirements	providers to submit an Information Security Policy covering core areas like data protection, access control & incident response	practices, addressing a key gap found in PeoplePro Suite.
Third-Party Supplier Security Policy - Encryption Requirements	Specify minimum encryption standards	Clear standards prevent uncertainty and ensure all suppliers meet Monistax's encryption requirements consistently
Third-Party Supplier Security Policy - Access Controls	Require role-based access control as a standard for all third-party solutions	RBAC ensures that only authorized users access sensitive data, supporting the principle of least privilege
Appendix - Data Residency	Include specific guidelines on approved data residency locations beyond the EEA, if any, and clarify requirements for location disclosure	Clear location requirements reduce uncertainty and help ensure data compliance with Monistax's regulatory obligations
Third-Party Supplier Security Policy - Authentication Standards	Add a requirement for multi- factor authentication for high-privilege accounts	MFA strengthens authentication security, reducing the risk of unauthorized access through compromised credentials
Appendix - Logging and Monitoring	Specify that third-party solutions must have centralized logging with event tracking for access and security incidents	This requirement enhances visibility and supports Monistax's auditing and incident response capabilities

These modifications help ensure that Monistax's policies clearly define security requirements, reducing ambiguity and improving third-party compliance with critical security practices.