Lab
3 Namita Sharma, Aman Kumar Nayak 5/17/2020

$1. \ \, {\rm Normal\ model},\, {\rm mixture\ of\ normal\ model\ with\ semi-conjugate}$ ${\rm prior}$

- (a) Normal model
- (i) Gibbs sampler

Code in appendix 1 (a)

(ii) Convergence of gibbs sampler

We can see from the traceplots that the gibbs sampler converges for both parameters μ and σ^2 . We set the prior parameter values to $\mu_0 = 1$, $\tau_0^2 = 100$, $\nu 0 = 1$, $\sigma_0^2 = 100$ as we assume an uninformative prior without seeing any data points (only 1 data point) and assume a random variance 100. It can be observed that the gibbs sampler converges approximately to a mean of 32.2 and a variance of 1550.

(b) Mixture normal model

Histogram of x

Mean of comp1

Mean of comp2

SD of comp1

SD of comp2

Probability of comp1

Probability of comp2

We can see from the trace plots, that after about 100 iterations (burn-in), all the parameters of the mixture densities seem to achieve convergence. We can see from the trajectories that the component means converge to values $\mu = [55, 10]$, the component standard deviations converge to approximately $\sigma = [5, 45]$ and the final component probabilities are approximately $\pi = [0.55, 0.45]$

(c) Graphical comparison

Graphical comparison

Graphical comparison

The mixture model does a much better job of capturing the data density than the joint normal posterior density evaluated using the gibbs sampler.

2. Metropolis Random Walk for Poisson regression

(a) MLE estimator of β

```
## Call:
  glm(formula = nBids ~ . - Const, family = "poisson", data = eBayData)
## Deviance Residuals:
##
                      Median
       Min
                 1Q
                                    3Q
                                            Max
  -3.5800
           -0.7222
                    -0.0441
                                0.5269
                                         2.4605
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.07244
                           0.03077
                                    34.848
                                             < 2e-16 ***
## PowerSeller -0.02054
                           0.03678
                                    -0.558
                                              0.5765
## VerifyID
               -0.39452
                           0.09243
                                    -4.268 1.97e-05 ***
## Sealed
                0.44384
                           0.05056
                                      8.778
                                            < 2e-16 ***
## Minblem
               -0.05220
                           0.06020
                                    -0.867
                                              0.3859
## MajBlem
               -0.22087
                           0.09144
                                     -2.416
                                              0.0157 *
## LargNeg
                                      1.255
                0.07067
                           0.05633
                                              0.2096
## LogBook
               -0.12068
                           0.02896
                                    -4.166 3.09e-05 ***
## MinBidShare -1.89410
                           0.07124 -26.588 < 2e-16 ***
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 2151.28
                               on 999
                                        degrees of freedom
                               on 991
## Residual deviance: 867.47
                                       degrees of freedom
  AIC: 3610.3
## Number of Fisher Scoring iterations: 5
```

Looking at pValue we can see that below covariates are most significant:

- 1. VerifyID
- 2. Sealed
- 3. LogBook
- 4. MinBidShare
- 5. MajBlem

(b) Bayesian analysis of the Poisson regression

```
## The posterior mode is:
## 1.069841 -0.02051246 -0.393006 0.4435555 -0.05246627 -0.2212384 0.07069683 -0.1202177 -1.891985
## The posterior variance-covariance matrix is:
```

```
0.0009455
            -0.0007139
                         -0.0002742
                                      -0.0002709
                                                   -0.0004455
                                                                -0.0002772
                                                                             -0.0005128
                                                                                           0.0000644
                                                                                                        0.0011099
                                      -0.0002949
-0.0007139
             0.0013531
                          0.0000402
                                                    0.0001143
                                                                -0.0002083
                                                                              0.0002802
                                                                                           0.0001182
                                                                                                       -0.0005686
-0.0002742
             0.0000402
                          0.0085154
                                      -0.0007825
                                                   -0.0001014
                                                                 0.0002283
                                                                              0.0003314
                                                                                          -0.0003192
                                                                                                       -0.0004293
-0.0002709
            -0.0002949
                         -0.0007825
                                       0.0025578
                                                    0.0003577
                                                                 0.0004532
                                                                              0.0003376
                                                                                          -0.0001311
                                                                                                       -0.0000576
-0.0004455
             0.0001143
                         -0.0001014
                                       0.0003577
                                                    0.0036246
                                                                 0.0003492
                                                                              0.0000584
                                                                                           0.0000585
                                                                                                       -0.0000644
-0.0002772
            -0.0002083
                          0.0002283
                                       0.0004532
                                                    0.0003492
                                                                 0.0083651
                                                                              0.0004049
                                                                                          -0.0000898
                                                                                                        0.0002622
-0.0005128
             0.0002802
                          0.0003314
                                       0.0003376
                                                    0.0000584
                                                                 0.0004049
                                                                              0.0031751
                                                                                          -0.0002542
                                                                                                       -0.0001063
```

0.0000644	0.0001182	-0.0003192	-0.0001311	0.0000585	-0.0000898	-0.0002542	0.0008385	0.0010374
0.0011099	-0.0005686	-0.0004293	-0.0000576	-0.0000644	0.0002622	-0.0001063	0.0010374	0.0050548

^{##} The approximate posterior standard deviation is:

(c) Simulate from actual posterior of β using Metropolis Algorithm

##

Acceptance Rate at c = 0.65 is : 0.2561

Since acceptance for c=0.65 as tunning parameter is between 25% - 30% , taking it as tuning parameter.

Constant

^{## 0.03074837 0.03678418 0.09227871 0.05057448 0.0602047 0.0914607 0.05634767 0.02895635 0.07109682}

PowerSeller

VerifyID

Sealed

MinBlem

MajBlem

LargNeg

LogBook

MinBidShare

We can see that it is getting converged after 5000 Samples, so removing first 5000 samples as burn-in period.

(d) Simulate predictive distribution

>>> Note: predDist is from the workspace, not in a data frame (table)

Bids Predictive Distribution


```
## >>> Suggestions
## bin_width: set the width of each bin
## bin_start: set the start of the first bin
## bin_end: set the end of the last bin
## Density(predDist) # smoothed density curves plus histogram
## Plot(predDist) # Violin/Box/Scatterplot (VBS) plot
##
##
  --- predDist ---
##
##
##
              miss
                                  sd
                                          min
                                                   mdn
                                                             max
          n
                       mean
        5000
                        1.03
                                 1.03
                                          0.00
                                                             7.00
##
                  0
                                                    1.00
##
##
## (Box plot) Outliers: 5
##
## Small
              Large
   ----
               7.0
##
##
               7.0
               6.0
##
##
               6.0
##
               6.0
##
##
## Bin Width: 0.5
## Number of Bins: 14
##
##
          Bin Midpnt Count
                              Prop Cumul.c Cumul.p
```

```
0.36
## 0.0 > 0.5
              0.25 1820
                                  1820
                                          0.36
## 0.5 > 1.0 0.75 1802 0.36
                                   3622
                                          0.72
                     0
## 1.0 > 1.5 1.25
                         0.00
                                   3622
                                          0.72
                   936
## 1.5 > 2.0
            1.75
                         0.19
                                  4558
                                          0.91
## 2.0 > 2.5 2.25
                     0.00
                                  4558
                                        0.91
## 2.5 > 3.0 2.75
                     322 0.06
                                 4880
                                       0.98
## 3.0 > 3.5 3.25
                     0.00
                                  4880
                                          0.98
## 3.5 > 4.0
            3.75
                      96 0.02
                                  4976
                                          1.00
## 4.0 > 4.5 4.25
                     0.00
                                  4976
                                         1.00
## 4.5 > 5.0 4.75
                     19 0.00
                                  4995
                                          1.00
## 5.0 > 5.5 5.25
                      0.00
                                  4995
                                          1.00
## 5.5 > 6.0 5.75
                      3
                         0.00
                                  4998
                                          1.00
## 6.0 > 6.5 6.25
                       0.00
                                  4998
                                         1.00
## 6.5 > 7.0
              6.75
                       2
                           0.00
                                  5000
                                          1.00
##
## Probability of no bids is: 0.364
# 1. Normal model, mixture of normal model with semi-conjugate prior
library("geoR")
rainfall <- read.table(</pre>
 file="C:/Users/namit/Downloads/Bayesian Learning/R files/Lab3/rainfall.dat",
 header=FALSE)
# (a) Normal model
## (i) Gibbs sampler
fullCondPostMu <- function(mu0, tausq0, sigsq, y) {</pre>
        <- length(y)
        \leftarrow mean(y)
 ybar
 # Compute mu_n and tausq_n
 tausq_n <- sigsq*tausq0 / (n*tausq0 + sigsq)</pre>
      <- (n/sigsq) / (n/sigsq + 1/tausq0)
 mu n \leftarrow w*ybar + (1-w)*mu0
 # Sample from full conditional posterior of mu
 mu_post <- rnorm(1, mean=mu_n, sd=sqrt(tausq_n))</pre>
 return(mu_post)
fullCondPostSig <- function(nu0, sigsq0, mu_post, y) {</pre>
 n <- length(y)
 # Compute nu_n and siqsq_n
 nu_n
           <- nu0 + n
 sigsq_n
           <- (nu0*sigsq0 + sum((y-mu_post)**2)) / (n+nu0)
 # Sample from full conditional posterior of sigsq
```

```
sigsq_post <- geoR::rinvchisq(1, df=nu_n, scale=sigsq_n)</pre>
 return(sigsq_post)
gibbsSampler <- function(iter=100, mu0, tausq0, nu0, sigsq0, sigsq_init=1, data=rainfall$V1) {
 mu_post
           <- numeric(iter)
  sigsq_post <- numeric(iter)</pre>
  # First iteration of Gibbs sampler - Start with a random value for mu or sigsq
             <- geoR::rinvchisq(1, df=nu0, scale=sigsq0)</pre>
  sigsq init
  sigsq_post[1] <- sigsq_init</pre>
  mu_post[1] <- fullCondPostMu(mu0=mu0, tausq0=tausq0, sigsq=sigsq_post[1], y=data)</pre>
  # Gibbs sampler for remaining iter-1 samples
 for (i in 2:iter) {
   mu_post[i] <- fullCondPostMu(mu0=mu0, tausq0=tausq0, sigsq=sigsq_post[i-1], y=data)</pre>
   sigsq_post[i] <- fullCondPostSig(nu0=nu0, sigsq0=sigsq0, mu_post=mu_post[i], y=data)</pre>
 return(list(mu=mu_post, sigsq=sigsq_post))
## (ii) Convergence of gibbs sampler
iter=1000
# mu0 : Prior mean of Mu
# tausq0 : Prior SD of Mu
# nu0 : Degrees of freedom for prior of Sigsq
# sigsq0 : Best guess of Sigsq
# sigsq : Initial value of Sigsq
# mu0=0, tausq0=1, nu0=1, sigsq0=1 : mu=26.5, sig2=1550
# mu0=10, tausq0=10, nu0=4, siqsq0=10 : mu=31.8, siq2=1550
# mu=1, tausq=100 nu0=1, sigsq=100 : mu=32.3, sig2=1550
gibbSample <- gibbsSampler(iter=iter, mu0=1, tausq0=100, nu0=1, sigsq0=100)
plot(1:iter, gibbSample$mu, type="l", col="blue",
    xlab="Iterations", ylab="Conditional Posterior Mu")
plot(1:iter, gibbSample$sigsq, type="1", col="blue",
    xlab="Iterations", ylab="Conditional Posterior Sigma Square")
# (b) Mixture normal model
## Setting parameters
# Data parameters
x <- as.matrix(rainfall$V1)</pre>
# Model parameters
nComp <- 2
# Prior parameters
```

```
alpha <- rep(10, nComp)
                          # Parameter for Dirichlet
     <- rep(10, nComp)
                              # Prior mean of Mu
tau2_0 <- rep(10, nComp)
                              # Prior SD of Mu
                           # Degrees of freedom for prior of Sig2
    <- rep(4, nComp)
sig2_0 <- rep(var(x), nComp) # Best guess of Sig2</pre>
# MCMC parameters
nIter <- 1000 # Number of gibbs sampling draws
# Plotting parameters
plotFit
          <- TRUE
                                  # Flag to set/unset plot display in each iteration
           <- c("blue", "green") # Colours to plot
lcol
sleepTime <- 0.1</pre>
                                 # Time between iterations to plot graph
## Defining functions
# Function to simulate from Inv-Chisq distribution
rScaledInvChi2 <- function(n, df, scale){
  return((df*scale)/rchisq(n, df=df))
}
# Function to simulate from Dirichlet distribution
rDirichlet <- function(param){</pre>
         <- length(param)
                                   # Number of categories
  piDraws <- matrix(NA, nCat, 1) # Mixing coefficients of components in the model
  for (j in 1:nCat){
    piDraws[j] <- rgamma(1, param[j], 1)</pre>
 piDraws = piDraws / sum(piDraws) # Dividing every column of piDraws by the sum of the elements in tha
 return(piDraws)
# Simple function that converts between two different representations of the mixture component allocati
S2alloc <- function(S){
        <- dim(S)[1] # Number of data points
  alloc \leftarrow rep(0, n)
                        # Vector to hold the component number to which each data point belongs
  for (i in 1:n){
    alloc[i] <- which(S[i,] == 1) # The component number to which the data point is assigned
  }
  return(alloc)
}
## Initialize MCMC
nObs <- length(x)
                                                                # Number of observations
    <- t(rmultinom(nObs, size=1 , prob=rep(1/nComp, nComp))) # nObs-by-nComp matrix with component all</pre>
probObsInComp <- rep(NA, nComp)</pre>
                                                                # Probability of a data point belonging t
       <- quantile(x, probs = seq(0, 1, length=nComp))
sig2 <- rep(var(x), nComp)</pre>
## Initialize plot
iterCount <- 0
            \leftarrow \text{seq}(\min(x)-1*\text{sd}(x), \max(x)+1*\text{sd}(x), \text{length}=100) \# x-values to plot the density}
mixDensMean <- rep(0, length(xGrid))</pre>
                                                                 # Mean of mixture densities
```

```
<- c(min(xGrid), max(xGrid))
xlim
ylim
            \leftarrow c(0, 2*max(hist(x, breaks=100)\$density))
# Mixture component parameters
mu_collect <- matrix(NA, nIter, nComp)</pre>
sig2_collect <- matrix(NA, nIter, nComp)</pre>
pi_collect <- matrix(NA, nIter, nComp)</pre>
## EM algorithm
for (k in 1:nIter) {
  #print(paste('Iteration number:', k))
 alloc <- S2alloc(S) # Just a function that converts between different representations of the group a
 nAlloc <- colSums(S)</pre>
  #print(nAlloc)
  # Update Pi's -components probabilities (Using full conditional posterior of pi)
  pi <- rDirichlet(alpha + nAlloc)</pre>
  \# Collect the component probabilities in each iteration
  pi_collect[k, ] <- pi</pre>
  # Update mu's -components means (using full conditional posterior of mu)
  for (j in 1:nComp){
    tau2_n <- 1 / ((nAlloc[j]/sig2[j]) + (1/tau2_0[j])) # Posterior SD of Mu
          <- tau2_n * nAlloc[j]/sig2[j]</pre>
    mu n \leftarrow w*mean(x[alloc==j]) + (1-w)*mu0
                                                        # Posterior mean of Mu
    mu[j] <- rnorm(1, mean=mu_n, sd=sqrt(tau2_n)) # Component means</pre>
  }
  # Collect the component means in each iteration
  mu_collect[k, ] <- mu</pre>
  # Update sigma2's -component variances (Using full conditional posterior of sigma)
  for (j in 1:nComp){
          <- nu0[j] + nAlloc[j]
    nu_n
    sig2_n \leftarrow (nu0[j]*sig2_0[j] + sum((x[alloc==j]-mu[j])^2)) / (nu0[j]+nAlloc[j])
    sig2[j] <- rScaledInvChi2(1, df=nu_n, scale=sig2_n) # Components variances</pre>
  }
  # Collect the component variances in each iteration
  sig2_collect[k, ] <- sig2
  # Update allocation using new component means and variances
  for (i in 1:n0bs){
    for (j in 1:nComp){
      prob0bsInComp[j] <- pi[j]*dnorm(x[i], mean=mu[j], sd=sqrt(sig2[j]))</pre>
    S[i, ] <- t(rmultinom(n=1, size=1, prob=prob0bsInComp/sum(prob0bsInComp)))
  # Printing the fitted density against data histogram
  if (plotFit && k%1==0){
    iterCount <- iterCount + 1</pre>
```

```
#hist(x, breaks=20, freq=FALSE, xlim=xlim, main=paste("Iteration number", k), ylim=ylim)
              <- rep(0, length(xGrid))
   mixDens
    components <- c()
   for (j in 1:nComp){
     compDens <- dnorm(xGrid, mu[j], sd=sqrt(sig2[j])) # Component density</pre>
     mixDens <- mixDens + pi[j]*compDens</pre>
                                                           # Mixture density
     #lines(xGrid, compDens, type="l", lwd=2, col=lcol[j])
      #components[j] <- paste("Component ", j)</pre>
   mixDensMean <- ((iterCount-1)*mixDensMean + mixDens)/iterCount # Mean mixture density
    #lines(xGrid, mixDens, type="l", lty=2, lwd=3, col='red')
    #legend("topright", box.lty=1, legend=c("Data histogram", components, 'Mixture'),
           col=c("black", lcol[1:nComp], 'red'), lw=2)
   #Sys.sleep(sleepTime)
 }
}
# Plots of posterior trajectories and means to evaluate convergence
plot(mu_collect[, 1], type="1", ylab="Mu1", main="Mean of comp1", col="red")
plot(mu_collect[, 2], type="l", ylab="Mu1", main="Mean of comp2", col="blue")
plot(sqrt(sig2_collect[, 1]), type="l", ylab="Sigma1", main="SD of comp1", col="red")
plot(sqrt(sig2_collect[, 2]), type="l", ylab="Sigma2", main="SD of comp2", col="blue")
plot(pi_collect[, 1], type="l", ylab="Pi1", main="Probability of comp1", col="red")
plot(pi_collect[, 2], type="l", ylab="Pi2", main="Probability of comp2", col="blue")
                               _____
# (c) Graphical comparison
# Kernel density estimate of the data
kernelDensData = density(rainfall$V1)
# Mean of Gibbs full conditional posterior of Mu and Sigma2
meanPostMu = mean(gibbSample$mu)
meanPostsig2 = mean(gibbSample$sigsq)
# Mean of posterior draws of mixture component parameters
meanPostMuMix <- apply(mu_collect, 2, mean)</pre>
meanPostSig2Mix <- apply(sig2_collect, 2, mean)</pre>
meanPostPiMix <- apply(pi_collect, 2, mean)</pre>
# Mean mixed density
meanMixDens <- rep(0, length(xGrid))</pre>
for (j in 1:nComp){
 compDens <- dnorm(xGrid, meanPostMuMix[j], sd=sqrt(meanPostSig2Mix[j])) # Component density
 meanMixDens <- meanMixDens + meanPostPiMix[j]*compDens</pre>
                                                                          # Mixture density
# Graphical comparison with data histogram
hist(x, breaks=20, freq=FALSE, xlim=xlim, main="Graphical comparison")
lines(xGrid, dnorm(xGrid, mean=mean(meanPostMu), sd=sqrt(meanPostsig2)), type="1", lwd=2, col="blue")
lines(xGrid, meanMixDens, type="1", lwd=2, lty=4, col="red") # (Same as mixDensMean)
```

```
legend("topright", box.lty=1, legend=c("Data histogram", "Mixture density", "Normal density"), col=c("bla
# Graphical comparison with data kernel
plot(kernelDensData$x, kernelDensData$y, type="1", lwd=2, lty=4, col="black",
    main="Graphical comparison", xlab="Density", ylab="x")
lines(xGrid, dnorm(xGrid, mean=meanPostMu, sd=sqrt(meanPostsig2)), type="1", lwd=2, col="blue")
lines(xGrid, meanMixDens, type="1", lwd=2, col="red")
legend("topright", box.lty=1, legend=c("Data Kernel Density", "Normal density", "Mixture density"), col=
# 2. Metropolis Random Walk for Poisson regression
# (a) MLE estimator of beta
#library(glmnet)
eBayData = read.delim("C:/Users/namit/Downloads/Bayesian Learning/R files/Lab3/eBayNumberOfBidderData.d
                   header=TRUE, sep="")
glmModel = glm(formula = nBids ~ . - Const , data = eBayData , family = "poisson")
summary(glmModel)
#-----
# (b) Bayesian analysis of the Poisson regression
# Log likelihood Estimation:
library(mvtnorm)
# Function that returns log posterior of beta
llk = function(beta, X , Y , mu, sigma){
 ncovariates = length(beta)
 x = X %*% beta
 logLikli = sum(Y * x - exp(x))
 prior = dmvnorm(beta, mu, sigma, log=TRUE)
 post = logLikli + prior
 return(post)
}
\# Predictors and response variables
Y = eBayData[,1]
X = as.matrix(eBayData[,-1])
# Covariates
ncovariates = ncol(X)
covNames = names(eBayData)[-1]
# Set up prior parameters
mu_0 =as.vector(rep(0, ncovariates))
Sigma_0 = 100 * solve(t(X)%*% X)
# Find the optimum beta that maximizes the log posterior of beta
beta_init = as.vector(rep(0, ncovariates))
```

```
optimBeta = optim(par = beta_init , fn = llk ,
                  X = X, Y = Y, mu = mu_0, sigma = Sigma_0,
                  method=c("BFGS"), control=list(fnscale=-1), hessian=TRUE)
postMode = optimBeta$par # Posterior mode=Optimum beta that maximizes the log posterior
postCov = -solve(optimBeta$hessian) # Posterior covariance matrix is -inv(Hessian)
PostStd = sqrt(diag(postCov)) # Computing approximate standard deviations.
cat("The posterior mode is: " , "\n" , postMode , "\n")
cat("\n")
cat("The posterior variance-covariance matrix is: " , "\n")
knitr::kable(postCov)
cat("\n")
#optimBeta
cat("The approximate posterior standard deviation is: " , "\n" , PostStd , "\n")
cat("\n")
# (c) Simulate from actual posterior of beta using Metropolis Algorithm
fnMetropolish = function(nSample , theta , fnPoste , c , ...)
 {
    #Intialize
   theta current = theta
   Sigma_current = c * postCov
   nAccepted = 0
   ntheta = matrix(nrow= nSample , ncol = length(theta))
   ntheta[1,] = theta_current
   #j = 1
   for(i in 2:nSample)
      #proposal
      thetaProp = as.vector(rmvnorm(1 , mean = theta_current , sigma =Sigma_current))
      #Posterior in log order
     poste_current = fnPoste(theta_current , ...)
     poste_propsal = fnPoste(thetaProp , ...)
      #acceptance propbability
      alpha = min(1 , exp(poste_propsal - poste_current))
      #check proposal acceptance
     u = runif(1, 0, 1)
     if(u < alpha){</pre>
       theta_current = thetaProp
       nAccepted = nAccepted + 1
     }
      #update theta matrix
     ntheta[i,] = theta_current
```

```
#j = j + 1
   #Acceptance rate AR
   AR = 0
   if(nAccepted > 0) AR = nAccepted / (nSample)
   return(list("AcceptanceRate" = AR , "Theta" = ntheta))
 }
#intialize Simulation parameter
c = 0.65
nSample = 10000
#initBurn = 500
theta_init = c(1.1, -0.4, 0.1, 0.3, -0.1, -0.4, 0.2, -0.1, -2)
#Generate Sample from above function
metroSample_0.65 = fnMetropolish(nSample = nSample,
                            theta = theta_init ,
                            fnPoste = 11k, c = 0.65,
                            X = X
                            Y = Y , mu = mu_0, sigma = Sigma_0)
acceptRate 0.65 = metroSample 0.65$AcceptanceRate
cat("\n" , "Acceptance Rate at c = 0.65 is :" , acceptRate_0.65 , "\n" )
# MC beta
posteriorBeta = metroSample_0.65$Theta
#For MCMC Convergence
beta1CumMean = cumsum(posteriorBeta[,1])/seq(1 , 10000 , 1)
beta2CumMean = cumsum(posteriorBeta[,2])/seq(1 , 10000 , 1)
beta3CumMean = cumsum(posteriorBeta[,3])/seq(1 , 10000 , 1)
beta4CumMean = cumsum(posteriorBeta[,4])/seq(1 , 10000 , 1)
beta5CumMean = cumsum(posteriorBeta[,5])/seq(1 , 10000 , 1)
beta6CumMean = cumsum(posteriorBeta[,6])/seq(1 , 10000 , 1)
beta7CumMean = cumsum(posteriorBeta[,7])/seq(1 , 10000 , 1)
beta8CumMean = cumsum(posteriorBeta[,8])/seq(1 , 10000 , 1)
beta9CumMean = cumsum(posteriorBeta[,9])/seq(1, 10000, 1)
plot(posteriorBeta[,1] , xlab = "Beta 1" , main = "Constant" , type = "l")
points(beta1CumMean , type = "l" , col = "blue")
abline(h = postMode[1] , col = "red")
plot(posteriorBeta[,2] , xlab = "Beta 2" , main = "PowerSeller" , type = "l")
points(beta2CumMean , type = "1" , col = "blue")
abline(h = postMode[2] , col = "red")
plot(posteriorBeta[,3] , xlab = "Beta 3" , main = "VerifyID" , type = "1")
points(beta3CumMean , type = "l" , col = "blue")
abline(h = postMode[3] , col = "red")
```

```
plot(posteriorBeta[,4] , xlab = "Beta 4" , main = "Sealed" , type = "1")
points(beta4CumMean , type = "1" , col = "blue")
abline(h = postMode[4], col = "red")
plot(posteriorBeta[,5] , xlab = "Beta 5" , main = "MinBlem" , type = "l")
points(beta5CumMean , type = "l" , col = "blue")
abline(h = postMode[5] , col = "red")
plot(posteriorBeta[,6] , xlab = "Beta 6" , main = "MajBlem" , type = "1")
points(beta6CumMean , type = "l" , col = "blue")
abline(h = postMode[6] , col = "red")
plot(posteriorBeta[,7] , xlab = "Beta 7" , main = "LargNeg" , type = "l")
points(beta7CumMean , type = "l" , col = "blue")
abline(h = postMode[7] , col = "red")
plot(posteriorBeta[,8] , xlab = "Beta 8" , main = "LogBook" , type = "1")
points(beta8CumMean , type = "1" , col = "blue")
abline(h = postMode[8] , col = "red")
plot(posteriorBeta[,9] , xlab = "Beta 9" , main = "MinBidShare" , type = "l")
points(beta9CumMean , type = "1" , col = "blue")
abline(h = postMode[9] , col = "red")
# (d) Simulate predictive distribution
Xpred = c(1,1,1,1,0,0,0,1,0.5)
posteriorBeta = posteriorBeta[5001:10000 , ]
n = NROW(posteriorBeta)
predDist = numeric(length = n)
for(i in 1:n){
  predDist[i] = rpois(1 , lambda = exp(Xpred %*% posteriorBeta[i,]))
library(lessR)
hs(predDist , xlab = "Number of Bids" , main = "Bids Predictive Distribution")
#probability of no bidders
probNoBids = length(which(predDist == 0)) / n
cat("\n" , "Probability of no bids is: " , probNoBids)
```