

Principal Component Analysis and Exploratory Factor Analysis

Module 1: PCA

Karen Grace-Martin

Workshop Outline

Module 1: Principal Component Analysis Part 1

- 1. Principal Component vs. Exploratory Factor Analysis
- 2. Key Concepts and Aims
- 3. Initial Extraction of the First Component
- 4. Initial Extration of the Other Components
- 5. Determine the Number of Components to Retain
- 6. Example 2: Breastfeeding data

1. Principal Component vs. Exploratory Factor Analysis

Commonly Used Symbols of PCA, FA

Variables

Observed Variable

- Item
- Indicator

Latent Variable

Relationships between Variables

Unidirectional Path

Correlation

Why do...

Principal Component Analysis?

Data Reduction:

Replace a large number of variables with a smaller number that reflect most of the original data

Factor Analysis?

Test and Scale Construction:

Develop a measurement model to create "pure" measures of a construct

Principal Component Analysis

Factor Analysis

$$Y_1 = b_1 * F + u_1$$

 $Y_2 = b_2 * F + u_2$
 $Y_3 = b_3 * F + u_3$
 $Y_4 = b_4 * F + u_4$
Each Y has a unique error term

Principal Component Analysis

Factor Analysis

Principal Component Analysis

Factor Analysis

Steps are mostly the same

- 1. Initial Extraction of the Components/Factors
- 2. Determine the Number of Components/Factors to Retain
- 3. Rotation
- 4. Interpret the Rotated Solution
- 5. Create Component/Factor Scores
- 6. Summarizing the results in a Table
- 7. Preparing a formal description of the results for a paper

Animal Data Set:

- Weight
- Total Sleep
- Predation
- Exposure During Sleep

Breastfeeding Data Set:

- Breastfeeding intention
- Self-Efficacy to Resist Formula

Caregivers:

- Mutual Communal Behavior Scale
- CES-D (Depression Scale)

Psych Data:

- Life Orientation (Optimism)
- Social Anxiety
- Attitude toward counseling

Principal Component Analysis – Example 1

Animal Data Set:

- Weight in kg (weight)
- Total Sleep in hours (totsleep)
- Predation on 1-5 index (predatn)
- Exposure During Sleep on 1-5 index (expos)

as those of clone C. The effectiveness of the clone B type of mechanism for protecting males against cannibalism, therefore, probably depends both on the frequency of encounters with cannibals which do attack them and on the voracity of such cannibals.

Males of clone C are readily attacked by cannibalistic female, especially campanulate, clonemates but have structural adaptations which protect them from being captured. A mechanism by which campanulates avoid attacking male clonemates may not have developed in clone C for several reasons. First, campanulates seem to be rare in this clone (3) and so may co-occur with male clonemates infrequently. Second, the great voracity of clone C campanulates might not be compatible with subtle feeding preferences.

It must be emphasized that male anticannibalism devices have been investigated only in these two quite distinct clones. The extent to which the development of the different protective mechanisms may be typical of, and effective within, the respective taxa-probably races or possibly closely related species (7)-is not known.

- HP-65 Stat Pac I (Hewlett-Packard, Cupertino, Calif., 1974).
 The cruciform morphotype of clone B is un-stable, rapidly transforming to the camparollate morphotype or to cruciform-campanollate inter-modates (J), and was not studied.
 Supported by NSF grant GB-31282, PHS grant 1

R01 HD 08210, and PHS research career devel-opment award K04-GM-70557. I thank M. Bean for expert technical assistance and T. M. Frost, J. R. Litton, Jr., P. L. Starkweather, and W. C. Kerfoot for improving the manuscript.

28 June 1976; revised 13 August 1976

Sleep in Mammals: Ecological and Constitutional Correlates

Abstract. The interrelationships between sleep, ecological, and constitutional variables were assessed statistically for 39 mammalian species. Slow-wave sleep is negatively associated with a factor related to body size, which suggests that large amounts of this sleep phase are disadvantageous in large species. Paradoxical sleep is associated with a factor related to predatory danger, which suggests that large amounts of this sleep phase are disadvantageous in prey species.

Every mammalian species studied in ily in the laboratory, and seem to need a yet unknown) biological function, but, if served. These groups seem ecologically the life of mammals.

the laboratory spends at least some time great deal of sleep. Conversely, poor asleep, and some species spend a major sleepers tend to sleep less and require portion of their lives in this state (I). We long periods of adaptation to the laboramay assume that sleep serves some (as tory before stable sleep habits are obso, why do sleep requirements vary so different in two ways. Predators (such as much from species to species? By corre-cats) are good sleepers, whereas species lating sleep habits and other character- subject to heavy predation (such as rabistics of species adapted to a wide vari- bits) are poor sleepers. Second, species ety of ecological niches it may be pos- that sleep in reasonably secure places sible to clarify the significance of sleep in (such as bats) tend to sleep more than species that sleep in the open (such as

Source: Sleep in Mammals: Ecological and Constitutional Correlates" by Allison, T. and Cicchetti, D. (1976), Science, November 12, vol. 194, pp. 732-734.

Includes brain and body weight, life span, gestation time, time sleeping, and predation and danger indices for 62 mammals.

Principal Component Analysis – Example 1 - Descriptives

Variable	М	SD	n	SE _M	Skewness	Kurtosis
Weight	198.79	899.16	62	114.19	6.40	42.04
Totsleep	10.55	4.63	58	0.61	0.17	-0.65
Predatn	2.87	1.48	62	0.19	0.22	-1.32
Expos	2.42	1.60	62	0.20	0.66	-1.20

2. Key Concepts and Aims

Key Concepts

Review of Key General Concepts

- Correlation
- Sums of Squares
- Cross Products
- Covariance
- Variance
- Linear Combinations

Matrix Algebra Concepts in Bonus Video

- Matrix
- Vector
- Eigenvectors
- Eigenvalues

Introduction of Key Concepts in PCA and FA

- Extraction
- Loadings
- Communalities

	weight	totsleep	predatn	expos
weight	1			
totsleep	-0.307	1		
predatn	0.059	-0.396	1	
expos	0.338	-0.642	0.618	1

Aim: rearrange the information in the correlation matrix by creating a set of components that are linear combinations of the original set of items.

Why: These components contain the variance in the original variables, but the variance is concentrated in the first few components.

Covariance, Variance, Correlation

Correlation Matrix	In generic units	(std deviations)
	0	

	weight	totsleep	predatn	expos
weight	1			
totsleep	-0.307	1		
predatn	0.059	-0.396	1	
expos	0.338	-0.642	0.618	1

$$Sorr(X,Y) = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)\sqrt{Var(X)}\sqrt{Var(Y)}}$$

Variance/Covariance Matrix

In original units

	weight	totsleep	predatn	expos
weight	808485.128			_
totsleep	-1313.960	21.222		
predatn	78.981	-2.684	2.180	
expos	488.116	-4.544	1.465	2.575

$$Var(X) = \frac{\sum (X_i - \bar{X})(X_i - \bar{X})}{(n-1)}$$

$$Cov(X,Y) = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

What are Linear Combinations?

$$Z = aX_1 + bX_2 + cX_3 \qquad W = (aX_1 + bX_2 + cX_3)/3$$
 Set of Weights
$$W = \frac{a}{3}X_1 + \frac{b}{3}X_2 + \frac{c}{3}X_3$$
 Linear Combination
$$Variables$$

Rearranging Information Through Linear Combinations Analogy: Egg Timer Puzzle

Goal: Boil an egg for 3 minutes

Tools: Two-minute timer Seven-minute timer

Solution:

1. Start both timers: T=0

2. When two-minute timer ends, restart: T=2

 When two-minute timer ends again, put egg in boiling water. Seven minute timer has 3 minutes left: T=4

4. When 7-minute timer ends, take egg out

S = run time for 7-minute timer

W = run time for 2-minute timer

C = cooking time

C = S - 2WWeights

Linear Combination

The General Process

Linear Combination

Totally dependent on correlations between variables.

Principal Component Analysis summarizes correlation structure

3. Initial Extraction of the First Component

Principal Component Analysis Steps

- 1. Initial Extraction of the Components
- 2. Determine the Number of Components to Retain
- 3. Rotation
- 4. Interpret the Rotated Solution
- 5. Create Component Scores

For each component, PCA computes two sets of values:

- Vector of correlations between the component and each variable
- Each element of the eigenvector * the square root of the corresponding eigenvalue.

Iterative algorithm designed to:

- Create Components: linear combinations of the original variables.
- Create same number of components as we have variables
- Find the one characteristic vector (eigenvector) that will give us the most variance explained (largest eigenvalue).

What you Get:

Total Variance Explained					
	Initial Eigenvalues				
Component	Total	% of Variance	Cumulative %		
1	2.247	56.180	56.180		
2	.957	23.918	80.098		
3	.524	13.096	93.195		
4	.272	6.805	100.000		

Eigenvalues

Component Loadings

Component Matrix ^a						
	Component					
	1	4				
weight	.490	.816	.287	102		
totsleep	816	052	.540	.198		
predatn	.719	532	.386	228		
expos	.908	066	.025	.413		

Extraction Method: Principal Component Analysis.^a

a. 4 components extracted.

What your software is doing to give you this:

Runs the following algorithm for each component, in order.....

Initial Extraction of the First Component (the Vector V₁)

Start with the correlation matrix:

		weight	sleep	predation	expos_
	weight	1	-0.307	0.052	0.356
R=	sleep	-0.307	1	-0.396	-0.642
	predation	0.052	-0.396	1	0.603
	expos	0.356	-0.642	0.603	1

Step 1: Sum the coefficients in each row to create the first trial characteristic vector U_{a1}

		weight	sleep	predation	expos_	•	_	
	weight	1	-0.307	0.052	0.356		1.101	
R=	sleep	-0.307	1	-0.396	-0.642	U _{a1} =	-0.345	
	predation	0.052	-0.396	1	0.603		1.259	
	expos	0.356	-0.642	0.603	1		1.317	

Step 2: Normalize U_{a1} to create V_{a1} (First Trial Characteristic Vector) by squaring and summing row

totals, then dividing by the square root of the sums of squares

Step 3: Produce the second trial vector, U_{a2} by multiplying R by V_{a1}

weight
 sleep predation
 expos

$$1$$
 -0.307
 0.052
 0.356

 0.511
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807
 0.807

$$\mathbf{U}_{a2} = \begin{bmatrix} 0.807 \\ -0.940 \\ 1.042 \\ 1.247 \end{bmatrix} = \begin{bmatrix} 1*.511 - 307*(-.16) + .052*.584 + .356*.611 \\ = -.307*.511 + 1*(-.16) - .396*.584 - .642*.611 \\ = -.307*.511 - 396*(-.16) + .1*.584 + .603*.611 \\ = .356*.511 - .642*(-.16) + .603*.584 + 1*.611 \end{bmatrix}$$

Step 4: Normalize the second trial vector U_{a2} to create V_{a2}

Step 5: If V_{a2} differs from V_{a1} , create a third trial vector

Repeat these steps until subsequent characteristic vectors don't differ (convergence)

$$V_{a1}$$
 = $\begin{bmatrix} 0.511 \\ -0.160 \\ 0.584 \\ 0.611 \end{bmatrix}$ V_{a2} = $\begin{bmatrix} 0.395 \\ -0.460 \\ 0.510 \\ 0.610 \end{bmatrix}$

PC 1: Iteration 3 -> i

Repeat these steps until subsequent characteristic vectors don't differ (convergence)

The final characteristic vector V_a is the eigenvector for principal component 1

The SS of the final characteristic vector is the eigenvalue for principal component 1

The component loadings are the elements of the eigenvector multiplied by the square root of the eigenvalue for PC 1.

PC 1: Iteration 3 -> i

correlations between the component and the variable.

Eigenvalues, Eigenvectors, and Loadings

4. Initial Extraction of the Other Components

Now: Obtain the second principal component

Steps are the same, but instead of R, use the residual matrix

Initial Extraction of the Other Components

What the heck is the residual matrix?

Definition:

the correlation matrix with the first component partialed out

Computation:

- Create a new 4x4 matrix of Loadings Cross Products: the product of component loadings for each set of two variables
- Subtract those values from the original

Residual Matrix

Component Matrix ^a			
Component			
1			
weight	.490		
totsleep816			
predatn	.719		
expos	.908		

Loadings Cross Products

		0.490	-0.816	0.719	0.908
	1	weight	sleep	predation	expos
0.490	weight	0.240	-0.400	0.352	0.445
-0.816	sleep	-0.400	0.666	-0.587	-0.741
0.719	predation	0.352	-0.587	0.517	0.653
0.908	expos	0.445	-0.741	0.653	0.824

Residual Matrix = R - CP

		weight	sleep	predation	expos
B	weight	<u> </u>	-0.307	0.052	0.356
R	sleep	-0.307	1	-0.396	-0.642
(original correlation matrix)	predation	0.052	-0.396	1	0.603
	expos	0.356	-0.642	0.603	1
		weight	sleep	predation	expos
	weight	0.240	-0.400	0.352	0.445
Loadings Cross Products	sleep	-0.400	0.666	-0.587	-0.741
	predation	0.352	-0.587	0.517	0.653
	expos	0.445	-0.741	0.653	0.824
		weight	sleep	predation	expos
Residual Matrix	weight	0.760	0.093	-0.300	-0.089
Residual Matrix	sleep	0.093	0.334	0.191	0.099
	predation	-0.300	0.191	0.483	-0.050
	expos	-0.089	0.099	-0.050	0.176

Initial Extration of the Other Principal Components

Start with Residual Matrix

Run Interative Steps for each Component until convergence

Result is that component's eigenvector, eigenvalue, and loadings

Number of Components = Number of Variables

Each component extracts the maximum remaining variance from the variables

Total Variance Explained								
	Initial Eigenvalues							
Component	Total	% of Variance	Cumulative %					
1	2.247	56.180	56.180					
2	.957	23.918	80.098					
3 /	.524	13.096	93.195					
4	.272	6.805	100.000					
\ '								
		2.247						
\								
		+ .957						
. 524								
+ .524								
+ .272								
	= 4							

Component Matrix ^a					
		Compon	ent		
	1	2	3	4	
weight	.490	.816	.287	102	
totsleep	816	052	.540	.198	
predatn	.719	532	.386	228	
expos	.908	066	.025	.413	

Extraction Method: Principal Component Analysis.^a

Total Variance Explained						
	Initial Eigenvalues					
Componer	it	Total	% of Variance	Cumulative %		
1		2.247	56.180	56.180		
2	l '	.957	23.918	80.098		
3		.524	13.096	93.195		
4	.272 6.805 100.00					
			·	·		

 $(.490)^{2}$ + $(-.816)^{2}$ + $(.719)^{2}$ + $(.908)^{2}$

	Component Matrix ^a					
	Component					
	1	2	3	4		
weight	.490	.816	.287	102		
totsleep	816	052	.540	.198		
predatn	.719	532	.386	228		
expos	.908	066	.025	.413		

Extraction Method: Principal Component Analysis.^a

Total Variance Explained					
	Initial Eigenvalues				
Component	Total	% of Variance	Cumulative %		
1	2.247	56.180	56.180		
2	.957	23.918	80.098		
3	.524	13.096	93.195		
4	.272	6.805	100.000		

 $(.908)^2$ + $(-.066)^2$ + $(.025)^2$ + $(.413)^2$ = 1.000

Component Matrix ^a					
	Component				
	1	2	3	4	
weight	.490	.816	.287	102	
totsleep	816	052	.540	.198	
predatn	.719	532	.386	228	
expos	.908	066	.025	.413	

Extraction Method: Principal Component Analysis.^a

Communalities

All Four Components

Communalities					
	Initial	Extraction			
weight	1.000	1.000			
totsleep	1.000	1.000			
predatn	1.000	1.000			
expos	1.000	1.000			

Only One Component

Communalities				
	Initial	Extraction		
weight	1.000	.240		
totsleep	1.000	.666		
predatn	1.000	.516		
expos	1.000	.824		

5. Determine the Number of Components to Retain

Principal Component Analysis Steps

- 1. Initial Extraction of the Components
- 2. Determine the Number of Components to Retain
- 3. Rotation
- 4. Interpret the Rotated Solution
- 5. Create Component Scores

Determine the Number of Components to Retain

	Total Variance Explained					
	Initial Eigenvalues					
Component	Total % of Variance Cumulative %					
1	2.247	56.180	56.180			
2	.957	23.918	80.098			
3	.524	13.096	93.195			
4	.272	6.805	100.000			

Component Matrix ^a						
	Component					
	1 2 3 4					
weight	.490	.816	.287	102		
totsleep	816	052	.540	.198		
predatn	.719	532	.386	228		
expos	.908	066	.025	.413		

Extraction Method: Principal Component Analysis.^a

Determine the Number of Components to Retain

- 1. Kaiser criterion: Eigenvalue > 1
- 2. Percent variance accounted for
- 3. The Scree Test: Keep components before the break
- 4. Parallel Analysis
- 5. MAP Test
- 6. The Interpretability criteria

Total Variance Explained					
	Initial Eigenvalues				
Component	Total	% of Variance	Cumulative %		
1	2.247	56.180	56.180		
2	.957	23.918	80.098		
3	.524	13.096	93.195		
4	.272	6.805	100.000		

- 1. Kaiser criterion: Eigenvalue > 1
- 2. Percent variance accounted for

3. The Scree Test: Keep components *before* the break

4. Parallel Analysis

Steps:

- 1. Conduct a PCA on a random *nxp* data matrix
- 2. Repeat *k* times
- 3. Average the eigenvalues
- 4. Retain components with eigenvalues greater than the mean random eigenvalue

5. MAP Test

Velicer's Minimum Average Partial
 (MAP) Test:

Average Partial Correlations

	squared	power4
.0000	.1927	.0586
1.0000	.1265	.0240
2.0000	.4002	.2525
3.0000	1.0000	1.0000

Steps:

- Conduct a PCA
- 2. Partial the first PC out of the correlations
- 3. Compute the average squared coefficient in the off-diagonals
- 4. Repeat for each subsequent PC
- 5. Optimum number of components is the step with the lowest average squared partial correlation

The Number of Components According to the Original (1976) MAP Test is 1

The Number of Components According to the Revised (2000) MAP Test is 1

Use the Rotated Component Matrix

6. The Interpretability criteria

- 6.1 Minimum of three items with significant loadings on each retained component
- 6.2 The items that load on any component make sense

	Component				
	1	2	3	4	
weight	.490	.816	.287	102	
totsleep	816	052	.540	.198	
predatn	.719	532	.386	228	
expos	.908	066	.025	.413	

Component Matrix^a

Extraction Method: Principal Component Analysis.^a a. 4 components extracted.

- 6.3 Items loading on different components make sense
- 6.4 The rotated factor pattern has simple structure: Each variable has a relatively high loading (> .4) on only one component

Determine the Number of Components to Retain

Criterion	Number of Components Suggested
Kaiser	1
Total Variance Accounted for	2
Scree Plot	1
Parallel Analysis	1
MAP Test	1
Interpretability	1

Principal Component Analysis Steps

- 1. Initial Extraction of the Components
- 2. Determine the Number of Components to Retain
- 3. Rotation **Skip for today!**
- 4. Interpret the Rotated Solution
- 5. Create Component Scores **Skip for today!**

Total Variance Explained					
	Initial Eigenvalues				
Component	Total % of Variance Cumulative %				
1	2.247	56.180	56.180		
2	.957	23.918	80.098		
3	.524	13.096	93.195		
4	.272	6.805	100.000		

A bit low

Component Matrix ^a		
Component		
1		
weight	.490	
totsleep	816	
predatn	.719	
expos .908		

Options:

- 1. Split into two components.
- 2. Remove weight and see how that works.

Total Variance Explained					
	Initial Eigenvalues				
Component	Total	% of Variance	Cumulative %		
1	2.247	56.180	56.180		
2	.957	23.918	80.098		
3	.524	13.096	93.195		
4	.272	6.805	100.000		

Total Variance Explained						
	Initial Eigenvalues					
Component	Total % of Variance Cumulative %					
1	2.101	70.026	70.026			
2	.605	20.182	90.208			
3	.294	9.792	100.000			

Component Matrix		
Component		
	1	
weight	.490	
totsleep	816	
predatn	.719	
expos	.908	

Component Matrix ^a		
	Component	
	1	
totsleep	812	
predatn	.788	
expos	.906	

6. Example: Intent to Breastfeed Scale

The Variables

- HospBf Likely to breastfeed in the hospital
- HospF Likely to give formula in the hospital
- ONEmosBf Likely to breastfeed @ 1-mos
- ONEmosF Likely to give formula @ 1-mos
- FIVEmosBf Likely to breastfeed @ 5-mos
- FIVEmosF Likely to give formula @ 5-mos

Scaling

- -2 extremely unlikely
- -1 unlikely
- 0 neutral
- 1 likely
- 2 extremely likely

- 1. Initial Extraction of the Components
- 2. Determine the Number of Components to Retain
- 3. Rotation **Skip for today!**
- 4. Interpret the Rotated Solution
- Create Component Scores Skip for today!

Correlation Matrix						
	HospBf	HospF	ONEmosBf	ONEmosF	FIVEmosBf	FIVEmosF
HospBf	1.000	.305	.713	.085	.370	.080
HospF	.305	1.000	.331	.752	.259	.553
ONEmosBf	.713	.331	1.000	.159	.490	.172
ONEmosF	.085	.752	.159	1.000	.164	.665
FIVEmosBf	.370	.259	.490	.164	1.000	.470
FIVEmosF	.080	.553	.172	.665	.470	1.000

Total Variance Explained			
	Initial Eigenvalues		
		% of	Cumulative
Component	Total	Variance	%
1	2.876	47.926	47.926
2	1.568	26.128	74.054
3	.803	13.375	87.430
4	.293	4.889	92.319
5	.277	4.622	96.941
6	.184	3.059	100.000

Extraction Method: Principal Component Analysis.

Initial Extraction of the Components

Determine the Number of Components to Retain

The Interpretability criteria

- 1. Minimum of three items with high loadings on each retained component
- 2. The items that load on any component make sense
- 3. Items loading on different components make sense
- 4. The **rotated** factor pattern has simple structure: Each variable has a relatively high loading (> .4) on only one component

Rotated Component Matrix ^a			
	Component		
	1	2	
HospBf	.012	.882	
HospF	.823	.265	
ONEmosBf	.105	.903	
ONEmosF	.920	.017	
FIVEmosBf	.301	.645	
FIVEmosF	.850	.128	

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.^a

a. Rotation converged in 3 iterations.

Determine the Number of Components to Retain

Criterion	Number of Components Suggested
Kaiser	2
Total Variance Accounted for	2
Scree Plot	3
Parallel Analysis	2
MAP Test	2
Interpretability	2

Total Variance Explained				
	Initial Eigenvalues			
		% of	Cumulative	
Component	Total	Variance	%	
1	2.876	47.926	47.926	
2	1.568	26.128	74.054	
3	.803	13.375	87.430	
4	.293	4.889	92.319	
5	.277	4.622	96.941	
6	.184	3.059	100.000	
Extraction Method: Principal Component Analysis.				

Component Matrix ^a			
	Component		
	1		
HospBf	.570		
HospF	.803		
ONEmosBf	.655		
ONEmosF	.721		
FIVEmosBf	.642		
FIVEmosF	.738		

Extraction Method: Principal Component Analysis.

In Module 2:

More about PCA:

- 1. Rotation for more than one component
- 2. Saving Component Scores