

3A, Radiation Hardened, Positive, Ultra Low Dropout Regulator

ISL75051SEH

The ISL75051SEH is a radiation hardened low-voltage, high-current, single-output LDO specified for up to 3.0A of continuous output current. These devices operate over an input voltage range of 2.2V to 6.0V and are capable of providing output voltages of 0.8V to 5.0V adjustable based on resistor divider setting. Dropout voltages as low as 65mV can be realized using the device.

The OCP pin allows the short circuit output current limit threshold to be programmed by means of a resistor from the OCP pin to GND. The OCP setting range is from 0.5A minimum to 8.5A maximum. The resistor sets the constant current threshold for the output under fault conditions. The thermal shutdown disables the output if the device temperature exceeds the specified value. It subsequently enters an ON/OFF cycle until the fault is removed. The ENABLE feature allows the part to be placed into a low current shutdown mode that typically draws about 1µA. When enabled, the device operates with a typical low ground current of 11mA, which provides for operation with low quiescent power consumption.

The device is optimized for fast transient response and single event effects. This reduces the magnitude of SET seen on the output. Additional protection diodes and filters are not needed. The device is stable with tantalum capacitors as low as $47\mu F$ and provides excellent regulation all the way from no load to full load. Programmable soft-start allows the user to program the in-rush current by means of the decoupling capacitor value used on the BYP pin.

Applications

- · LDO regulator for space application
- DSP, FPGA and µP core power supplies
- · Post-regulation of switched mode power supplies
- · Down-hole drilling

Features

- DLA SMD#5962-11212
- Output current up to 3.0A at T_I = +150°C
- Output accuracy ±1.5% over MIL temp range
- · Ultra low dropout:
 - 65mV (Typ) dropout at 1.0A
 - 225mV (Typ) dropout at 3.0A
- Noise of 100µV_{RMS} from 300Hz to 300kHz
- · SET mitigation with no added filtering/diodes
- · Input supply range: 2.2V to 6.0V
- · Fast load transient response
- Shutdown current of 1μA (Typ)
- · Output adjustable using external resistors
- PSRR 66dB (Typ) at 1kHz
- · Enable and PGood feature
- · Programmable soft-start/in-rush current limiting
- Adjustable overcurrent limit from 0.5A to 8.5A
- · Over-temperature shutdown
- Stable with 47µF min tantalum capacitor
- 18 Ld ceramic flatpack package
- Radiation environment
 - High dose rate (50-300rad(Si)/s) 100krad(Si)
 - Low dose rate (0.01rad(Si)/s) 100krad(Si)*
- *Product capability established by initial characterization. The "EH" version is acceptance tested on a wafer-by-wafer basis to 50 krad(Si) at low dose rate

Related Literature

 AN1947, "Intersil's Radiation Hardened Low Power FPGA Power Solutions"

FIGURE 1. TYPICAL APPLICATION

FIGURE 2. DROPOUT vs I_{OUT}

Block Diagram

Typical Applications

Submit Document Feedback 2 intersil

Pin Configuration

ISL75051SEH (18 LD CDFP) TOP VIEW

NOTE: The ESD triangular mark is indicative of pin #1. It is a part of the device marking and is placed on the lid in the quadrant where pin #1 is located.

Pin Descriptions

PIN NUMBER	PIN NAME	DESCRIPTION
12, 13, 14 15, 16, 17	VIN	Input supply pins.
18	PG	VOUT in regulation signal. Logic low defines when VOUT is not in regulation. Must be grounded if not used.
1	GND	GND pin.
2, 3, 4 5, 6, 7	VOUT	Output voltage pins.
8	VADJ	VADJ pin allows VOUT to be programmed with an external resistor divider.
9	ВҮР	To filter the internal reference, connect a 0.1µF capacitor from BYP pin to GND.
10	EN	VIN independent chip enable. TTL and CMOS compatible.
11	OCP	Allows current limit to be programmed with an external resistor.
Top Lid	GND	The top lid is connected to GND pin of the package.

Ordering Information

ORDERING NUMBER (Notes 1, 2)	PART NUMBER	TEMP RANGE (°C)	PACKAGE (RoHS Compliant)	PKG DWG. #
5962R1121202VXC	ISL75051SEHVF	-55 to +125	18 Ld CDFP	K18.D
5962R1121202V9A	ISL75051SEHVX	-55 to +125	Die	
5962R1121202VYC	ISL75051SEHVFE	-55 to +125	18 Ld CDFP with Bottom Metal	K18.E
ISL75051SEHFE/PROTO	ISL75051SEHFE/PROTO	-55 to +125	18 Ld CDFP with Bottom Metal	K18.E
ISL75051SEHX/SAMPLE	ISL75051SEHX/SAMPLE	-55 to +125	Die	
ISL75051SRHEVAL1Z	Evaluation Board	1	1	1

NOTES:

- 1. These Intersil Pb-free Hermetic packaged products employ 100% Au plate e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.
- 2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed in this "Ordering Information" table must be used when ordering.

Submit Document Feedback 3 FN8294.5 December 15, 2014

Absolute Maximum Ratings

V _{IN} Relative to GND (Note 3)	0.3 to + 6.7V
V _{OUT} Relative to GND (Note 3)	0.3 to + 6.7V
PG, EN, OCP/ADJ Relative to GND (Note 3)	-0.3 to + 6.7VDC
Junction Temperature (T _I)	+175°C
ESD Rating	
Human Body Model (Tested per MIL-PRF-883 3015.7))
Machine Model (Tested per JESD22-A115-A)	250V
Charged Device Model (Tested per JESD22-C101D)	1kV

Recommended Operating Conditions (Note 4)

Ambient Temperature Range (T _A)	-55°C to +125°C
Junction Temperature (T _J) (Note 3)	+150°C
VIN Relative to GND	2.2V to 6.0V
VOUT Range	0.8V to 5.0V
PG, EN, OCP/ADJ Relative to GND	0V to +6.0V

Thermal Information

Thermal Resistance (Typical)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
18 Ld CDFP Package (Notes 7, 8)	28	4
18 Ld CDFP Package with Bottom		
Metal and Solder Mount (Notes 7, 8)	24	3.3
Storage Temperature Range	6!	5°C to +150°C
Pb-Free Reflow Profile		see <u>TB493</u>

Radiation Information

Maximum Total Dose	
Dose Rate = 50-300rad(Si)/s	100krad (Si)
Dose Rate = 0.01rad(Si)/s (Note 5)	100krad (Si)
SEE Performance	
SET (V _{OUT} < ±5% During Events) (<u>Note 6</u>)	86MeV•cm ² /mg
SEL/SEB (No Latchup/Burnout	86MeV • cm ² /mg

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 3. Extended operation at these conditions may compromise reliability. Exceeding these limits will result in damage. Recommended operating conditions define limits where specifications are guaranteed.
- 4. Refer to "Thermal Guidelines" on page 16.
- 5. Product capability established by initial characterization. The "EH" version is acceptance tested on a wafer-by-wafer basis to 50 krad(Si) at low dose rate.
- 6. Specify EVAL test conditions for SET/SEB/SEL here.
- θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief <u>TB379</u>
- 8. For θ_{IC} , the "case temp" location is the center of the package underside.
- 9. The device can work down to V_{OUT} = 0.8V; however, the SET performance of < ±5% at LET = 86MeV cm²/mg is guaranteed at V_{OUT} = >1.5V only. SET tests performed with 220µF 10V 25m Ω and 0.1µF CDR04 capacitor on the input and output.

Electrical Specifications Unless otherwise noted, all parameters are guaranteed over the following specified conditions: $V_{IN} = V_{OUT} + 0.4V$, $V_{OUT} = 1.8V$, $C_{IN} = C_{OUT} = 220 \mu F$ 25mΩ and 0.1μF X7R, $T_J = +25$ °C, $I_L = 0.4$. Applications must follow thermal guidelines of the package to determine worst-case junction temperature (see Note 13). Boldface limits apply across the operating temperature range, -55°C to +125°C. Pulse load techniques used by ATE to ensure $T_J = T_A$ defines guaranteed limits.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (<u>Note 10</u>)	TYP	MAX (<u>Note 1.0</u>)	UNITS
DC CHARACTERISTICS						
DC Output Voltage Accuracy	V _{OUT}	V _{OUT} resistor adjust to 0.52V, 1.5V and 1.8V				
		2.2V < V _{IN} < 3.6V; 0A < I _{LOAD} < 3.0A	-1.5	0.2	1.5	%
		V _{OUT} resistor adjust to 5.0V				
		V _{OUT} + 0.4V < V _{IN} < 6.0V; 0A < I _{LOAD} < 3.0A	-1.5	0.2	1.5	%
VADJ Pin Voltage	V _{ADJ}	2.2V < V _{IN} < 6.0V; I _{LOAD} = 0A	514.8	520	525.2	mV
BYP Pin	V _{BYP}	2.2V < V _{IN} < 6.0V; I _{LOAD} = 0A		520		mV
DC Input Line Regulation		2.2V < V _{IN} < 3.6V, V _{OUT} = 1.5V, +25°C and -55°C (Note 11)		1.13	3.5	m۷
DC Input Line Regulation		2.2V < V _{IN} < 3.6V, V _{OUT} = 1.5V, +125°C (<u>Note 11</u>)		1.13	8.0	mV
DC Input Line Regulation		2.2V < V _{IN} < 3.6V, V _{OUT} = 1.8V, +25°C and -55°C (Note 11)		1.62	3.5	m۷
DC Input Line Regulation		2.2V < V _{IN} < 3.6V, V _{OUT} = 1.8V, +125°C (<u>Note 11</u>)		1.62	10.5	mV
DC Input Line Regulation		V _{OUT} + 0.4V < V _{IN} < 6.0V, V _{OUT} = 5.0V (<u>Note 11</u>)		12.50	20.0	mV
DC Output Load Regulation		V _{OUT} = 1.5V; 0A < I _{LOAD} < 3.0A, V _{IN} = V _{OUT} + 0.4V (Note 11)	-4.0	-0.8	-0.1	mV

Submit Document Feedback 4 intersil FN8294.5

Electrical Specifications Unless otherwise noted, all parameters are guaranteed over the following specified conditions: $V_{IN} = V_{OUT} + 0.4V$, $V_{OUT} = 1.8V$, $C_{IN} = C_{OUT} = 220 \mu F 25 mΩ$ and $0.1 \mu F X7R$, $T_J = +25 °C$, $I_L = 0.4$. Applications must follow thermal guidelines of the package to determine worst-case junction temperature (see Note 13). Boldface limits apply across the operating temperature range, -55 °C to +125 °C. Pulse load techniques used by ATE to ensure $T_J = T_A$ defines guaranteed limits. (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (<u>Note 10</u>)	TYP	MAX (<u>Note 10</u>)	UNITS
DC Output Load Regulation		V _{OUT} = 1.8V; 0A < I _{LOAD} < 3.0A, V _{IN} = V _{OUT} + 0.4V (Note 11)	-4.0	-1.2	-0.05	mV
DC Output Load Regulation		$V_{OUT} = 5.0V$; 0A < I_{LOAD} < 3.0A, $V_{IN} = V_{OUT} + 0.4V$ (Note 11)	-15.0	-6.0	-0.05	mV
VADJ Input Current		V _{ADJ} = 0.5V			1	μA
Ground Pin Current	IQ	V _{OUT} = 1.5V; I _{LOAD} = 0A, V _{IN} = 2.2V		11	12	mA
Ground Pin Current	ΙQ	V _{OUT} = 5.0V; I _{LOAD} = 0A, V _{IN} = 6.0V		16	18	mA
Ground Pin Current	lQ	V _{OUT} = 1.5V; I _{LOAD} = 3.0A, V _{IN} = 2.2V		11	13	mA
Ground Pin Current	lQ	V _{OUT} = 5.0V; I _{LOAD} = 3.0A, V _{IN} = 6.0V		16	18	mA
Ground Pin Current in Shutdown	I _{SHDN}	ENABLE Pin = 0V, V _{IN} = 6.0V		1	10	μA
Dropout Voltage	V_{DO}	I _{LOAD} = 1.0A, V _{OUT} = 2.5V (<u>Note 12</u>)		65	100	mV
Dropout Voltage	V _{DO}	I _{LOAD} = 2.0A, V _{OUT} = 2.5V (<u>Note 12</u>)		140	200	mV
Dropout Voltage	V _{DO}	I _{LOAD} = 3.0A, V _{OUT} = 2.5V (<u>Note 12</u>)		225	300	mV
Output Short Circuit Current	ISCL	V _{OUT} = 0V, V _{IN} = 2.2V, R _{SET} = 5.11k		1.1		Α
Output Short Circuit Current	ISCL	V _{OUT} = 0V, V _{IN} = 6.0V, R _{SET} = 5.11k		1.2		Α
Output Short Circuit Current	ISCH	$V_{OUT} = 0V, V_{IN} = 2.2V, R_{SET} = 511\Omega$		5.7		Α
Output Short Circuit Current	ISCH	$V_{OUT} = 0V, V_{IN} = 6.0V, R_{SET} = 511\Omega$		6.2		Α
Thermal Shutdown Temperature	TSD	V _{OUT} + 0.4V < V _{IN} < 6.0V		175		°C
Thermal Shutdown Hysteresis (Rising Threshold)	TSDn	V _{OUT} + 0.4V < V _{IN} < 6.0V		25		°C
AC CHARACTERISTICS					II.	
Input Supply Ripple Rejection	PSRR	$V_{P-P} = 300$ mV, f = 1kHz, $I_{LOAD} = 3$ A; $V_{IN} = 2.5$ V, $V_{OUT} = 1.8$ V	42	66		dB
Input Supply Ripple Rejection	PSRR	$V_{P-P} = 300$ mV, f = 100kHz, $I_{LOAD} = 3$ A; $V_{IN} = 2.5$ V, $V_{OUT} = 1.8$ V		30		dB
Phase Margin	PM	V _{OUT} = 1.8V, C _L = 220µF Tantalum		70		dB
Gain Margin	GM	V _{OUT} = 1.8V, C _L = 220µF Tantalum		16		dB
Output Noise Voltage		I _{LOAD} = 10mA, BW = 300Hz < f < 300kHz, BYPASS to GND capacitor = 0.2µF		100		μV _{RMS}
DEVICE START-UP CHARACTERIST	ICS: ENABLE	PIN				
Rising Threshold		2.2V < V _{IN} < 6.0V	0.6	0.9	1.2	٧
Falling Threshold		2.2V < V _{IN} < 6.0V	0.47	0.7	0.9	٧
Enable Pin Leakage Current		V _{IN} = 6.0V, EN = 6.0V			1	μA
Enable Pin Propagation Delay		V _{IN} = 2.2V, EN rise to I _{OUT} rise	225	300	450	μs
Hysteresis		Must be independent of V _{IN} ; 2.2V < V _{IN} < 6.0V	90	200	318	mV
DEVICE START-UP CHARACTERIST	ICS: PG PIN				1	
PG Rising Threshold		2.2V < VIN < 6.0V	85	90	96	%
PG Falling Threshold		2.2V < VIN < 6.0V	82	88	93	%
PG Hysteresis		2.2V < VIN < 6.0V	2.5	3.2	4.0	%V _{OUT}
PG Low Voltage		I _{SINK} = 1mA		35	100	mV
PG Low Voltage		I _{SINK} = 6mA		185	400	m۷

Electrical Specifications Unless otherwise noted, all parameters are guaranteed over the following specified conditions: V_{IN} = V_{OUT} + 0.4V, $V_{OUT} = 1.8V$, $C_{IN} = C_{OUT} = 220 \mu F 25 m\Omega$ and $0.1 \mu F X7R$, $T_J = +25 \,^{\circ}$ C, $I_L = 0A$. Applications must follow thermal guidelines of the package to determine worst-case junction temperature (see Note 13). Boldface limits apply across the operating temperature range, -55°C to +125°C. Pulse load techniques used by ATE to ensure $T_J = T_A$ defines guaranteed limits. (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (<u>Note 10</u>)	TYP	MAX (<u>Note 10</u>)	UNITS
PG Leakage Current		V _{IN} = 6.0V, PG = 6.0V		0.01	1	μΑ

NOTES:

- 10. Parameters with MIN and/or MAX limits are 100% tested at -55°C, +25°C and +125°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.
- 11. Line and Load Regulation done under pulsed condition for T<10ms.
- 12. Dropout is defined as the difference between the supply V_{IN} and V_{OUT} , when the supply produces a 2% drop in V_{OUT} from its nominal value. Data measured within a 3ms period.
- 13. Please refer to "Applications Information" on page 14 of the datasheet and Tech Brief TB379.

High Dose Rate Post Radiation Characteristics T_A = +25 °C, unless otherwise noted. This data is typical test data post radiation exposure at a rate of 50 to 300rad(Si)/s. This data is intended to show typical parameter shifts due to high dose rate radiation (see Note 14). These are not limits nor are they guaranteed.

ITEM #	DESCRIPTION	CONDITION	Ok RAD	100k RAD	UNITS
1	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 2.2V; I _{OUT} = 0A	0.520575	0.520975	V
2	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 2.2V; I _{OUT} = 3A	0.520000	0.520300	V
3	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 3.6V; I _{OUT} = 0A	0.520650	0.520813	V
4	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 3.6V; I _{OUT} = 3A	0.519963	0.520113	V
5	DC Output Voltage Accuracy	$V_{OUT} = 1.5V; V_{IN} = 2.2V; I_{OUT} = 0A$	1.500813	1.501325	V
6	DC Output Voltage Accuracy	V _{OUT} = 1.5V; V _{IN} = 2.2V; I _{OUT} = 3A	1.499250	1.499800	V
7	DC Output Voltage Accuracy	V _{OUT} = 1.5V; V _{IN} = 3.6V; I _{OUT} = 0A	1.500550	1.500938	V
8	DC Output Voltage Accuracy	V _{OUT} = 1.5V; V _{IN} = 3.6V; I _{OUT} = 3A	1.499075	1.499388	V
9	DC Output Voltage Accuracy	$V_{OUT} = 1.8V; V_{IN} = 2.2V; I_{OUT} = 0A$	1.802288	1.803613	V
10	DC Output Voltage Accuracy	V _{OUT} = 1.8V; V _{IN} = 2.2V; I _{OUT} = 3A	1.800900	1.801825	V
11	DC Output Voltage Accuracy	V _{OUT} = 1.8V; V _{IN} = 3.6V; I _{OUT} = 0A	1.802900	1.803338	V
12	DC Output Voltage Accuracy	V _{OUT} = 1.8V; V _{IN} = 3.6V; I _{OUT} = 3A	1.801175	1.801550	V
13	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 5.4V; I _{OUT} = 0A	5.018250	5.018850	V
14	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 5.4V; I _{OUT} = 3A	5.013050	5.013450	V
15	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 6.0V; I _{OUT} = 0A	5.023838	5.024188	V
16	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 6.0V; I _{OUT} = 3A	5.016550	5.016763	V
17	VADJ Pin Voltage	V _{OUT} = 0.52V; V _{IN} = 2.2V	0.520625	0.521000	V
18	VADJ Pin Voltage	V _{OUT} = 0.52V; V _{IN} = 3.6V	0.520700	0.520863	V
19	VADJ Pin Voltage	V _{OUT} = 0.52V; V _{IN} = 5.5V	0.521125	0.521200	V
20	VADJ Pin Voltage	V _{OUT} = 1.5V; V _{IN} = 2.2V	0.520800	0.521013	V
21	VADJ Pin Voltage	V _{OUT} = 1.5V; V _{IN} = 3.6V	0.520688	0.520838	V
22	VADJ Pin Voltage	V _{OUT} = 1.5V; V _{IN} = 5.5V	0.521025	0.521113	V
23	VADJ Pin Voltage	V _{OUT} = 1.8V; V _{IN} = 2.2V	0.520563	0.520925	V
24	VADJ Pin Voltage	V _{OUT} = 1.8V; V _{IN} = 3.6V	0.520688	0.520838	V
25	VADJ Pin Voltage	V _{OUT} = 1.8V; V _{IN} = 5.5V	0.521038	0.521100	V
26	VADJ Pin Voltage	V _{OUT} = 5.0V; V _{IN} = 5.4V	0.521000	0.521088	V
27	VADJ Pin Voltage	V _{OUT} = 5.0V; V _{IN} = 6.0V	0.521575	0.521625	V

Submit Document Feedback FN8294.5 intersil

High Dose Rate Post Radiation Characteristics $T_A = +25$ °C, unless otherwise noted. This data is typical test data post radiation exposure at a rate of 50 to 300rad(Si)/s. This data is intended to show typical parameter shifts due to high dose rate radiation (see Note 14). These are not limits nor are they guaranteed. (Continued)

ITEM #	DESCRIPTION	CONDITION	Ok RAD	100k RAD	UNITS
28	DC Input Line Regulation	2.2V < V _{IN} < 3.6V, V _{OUT} = 1.5V	-0.257100	-0.408960	тV
29	DC Input Line Regulation	2.2V < V _{IN} < 3.6V, V _{OUT} = 1.8V	0.611613	-0.281990	тV
30	DC Input Line Regulation	V _{OUT} + 0.4V < V _{IN} < 6.0V, V _{OUT} = 5.0V	5.600700	5.313688	mV
31	DC Output Load Regulation	V _{OUT} = 1.5V; OA < I _{LOAD} < 3.0A, V _{IN} = V _{OUT} + 0.4V	-1.559875	-1.549760	тV
32	DC Output Load Regulation	V _{OUT} = 1.8V; 0A < I _{LOAD} < 3.0A, V _{IN} = V _{OUT} + 0.4V	-1.390263	-1.784640	тV
33	DC Output Load Regulation	V _{OUT} = 5.0V; 0A < I _{LOAD} < 3.0A, V _{IN} = V _{OUT} + 0.4V	-5.201513	-5.418710	mV
34	Feedback Input Current	V _{ADJ} = 0.5V	-0.036650	-0.040980	μΑ
35	Ground Pin Current	V _{OUT} = 1.5V; I _{LOAD} = 0A, V _{IN} = 2.2V	10.715763	10.758810	mA
36	Ground Pin Current	V _{OUT} = 1.5V; I _{LOAD} = 3.0A, V _{IN} = 2.2V	12.016163	12.067510	mA
37	Ground Pin Current	V _{OUT} = 5.0V; I _{LOAD} = 0A, V _{IN} = 6.0V	15.796488	15.781190	mA
38	Ground Pin Current	V _{OUT} = 5.0V; I _{LOAD} = 3.0A, V _{IN} = 6.0V	17.178913	17.166440	mA
39	Ground Pin Current in Shutdown	ENABLE Pin = 0V, V _{IN} = 6.0V	0.811625	0.752100	μΑ
40	Dropout Voltage	I _{LOAD} = 1.0A, V _{OUT} = 2.5V	62.588600	63.660340	тV
41	Dropout Voltage	I _{LOAD} = 2.0A, V _{OUT} = 2.5V	134.520040	135.703500	тV
42	Dropout Voltage	I _{LOAD} = 3.0A, V _{OUT} = 2.5V	215.603360	216.651900	тV
43	Output Short Circuit Current	V _{OUT} = 0V, V _{IN} = 2.2V, R _{SET} = 5.11k	1.204063	1.323238	Α
44	Output Short Circuit Current	V _{OUT} = 0V, V _{IN} = 2.2V, R _{SET} = 511Ω	5.903613	6.058613	Α
45	Output Short Circuit Current	V _{OUT} = 0V, V _{IN} = 6.0V, R _{SET} = 5.11k	1.333325	1.439638	Α
46	Output Short Circuit Current	V _{OUT} = 0V, V _{IN} = 6.0V, R _{SET} = 511Ω	6.389913	6.635563	Α
47	PSRR	V _{P-P} = 300mV, f = 1kHz, I _{LOAD} = 3A; V _{IN} = 2.5V, V _{OUT} = 1.8V	65.428638	66.410750	dB
48	Enable Rising Threshold	V _{IN} = 2.2V	0.863700	0.824150	٧
49	Enable Rising Threshold	V _{IN} = 6.0V	0.911300	0.875263	٧
50	Enable Falling Threshold	V _{IN} = 2.2V	0.678400	0.636800	٧
51	Enable Falling Threshold	V _{IN} = 6.0V	0.724475	0.684400	٧
52	Enable Pin Leakage Current	V _{IN} = 6.0V, EN = 0V	-0.028513	-0.029950	μΑ
53	Enable Pin Leakage Current	V _{IN} = 6.0V, EN = 6.0V	-0.030638	-0.038110	μΑ
54	Enable Hysterisis	V _{IN} = 2.2V	185.370000	187.374000	mV
55	Enable Hysterisis	V _{IN} = 6.0V	186.874000	190.881600	mV
56	Enable Pin Propagation Delay	V _{IN} = 2.2V, EN rise to I _{OUT} rise	305.015280	290.839200	μs
57	PG Rising Threshold	V _{IN} = 2.2V	89.542938	88.811230	%
58	PG Rising Threshold	V _{IN} = 6.0V	91.083838	90.396230	%
59	PG Falling Threshold	V _{IN} = 2.2V	86.793125	86.074360	%
60	PG Falling Threshold	V _{IN} = 6.0V	87.840925	87.165790	%
61	PG Hysteresis	V _{IN} = 2.2V	2.749825	2.736875	%
62	PG Hysteresis	V _{IN} = 6.0V	3.242925	3.230450	%
63	PG Low Voltage	I _{SINK} = 1mA	31.426938	31.570940	mV
64	PG Low Voltage	I _{SINK} = 6mA	177.107950	178.578800	mV
65	PG Leakage Current	V _{IN} = 6.0V, PG = 6.0V	-0.001550	-0.001560	μΑ

Low Dose Rate Post Radiation Characteristics $T_A = +25$ °C, unless otherwise noted. This data is typical test data post radiation exposure at a rate of 10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation (see Note 14). These are not limits nor are they guaranteed.

ITEM #	DESCRIPTION	CONDITION	0k RAD	50k RAD	100k RAD	UNITS
1	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 2.2V; I _{OUT} = 0A	0.521050	0.521150	0.521600	٧
2	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 2.2V; I _{OUT} = 3A	0.520500	0.520600	0.520950	٧
3	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 3.6V; I _{OUT} = 0A	0.521050	0.521350	0.521750	٧
4	DC Output Voltage Accuracy	V _{OUT} = 0.52V; V _{IN} = 3.6V; I _{OUT} = 3A	0.520450	0.520600	0.521000	٧
5	DC Output Voltage Accuracy	V _{OUT} = 1.5V; V _{IN} = 2.2V; I _{OUT} = 0A	1.502450	1.503050	1.503200	٧
6	DC Output Voltage Accuracy	V _{OUT} = 1.5V; V _{IN} = 2.2V; I _{OUT} = 3A	1.500950	1.501400	1.502100	٧
7	DC Output Voltage Accuracy	V _{OUT} = 1.5V; V _{IN} = 3.6V; I _{OUT} = 0A	1.501950	1.502900	1.503650	٧
8	DC Output Voltage Accuracy	V _{OUT} = 1.5V; V _{IN} = 3.6V; I _{OUT} = 3A	1.500500	1.501400	1.502150	٧
9	DC Output Voltage Accuracy	V _{OUT} = 1.8V; V _{IN} = 2.2V; I _{OUT} = 0A	1.804150	1.805050	1.806100	٧
10	DC Output Voltage Accuracy	V _{OUT} = 1.8V; V _{IN} = 2.2V; I _{OUT} = 3A	1.802850	1.803650	1.804800	٧
11	DC Output Voltage Accuracy	V _{OUT} = 1.8V; V _{IN} = 3.6V; I _{OUT} = 0A	1.804450	1.805850	1.806600	٧
12	DC Output Voltage Accuracy	V _{OUT} = 1.8V; V _{IN} = 3.6V; I _{OUT} = 3A	1.802850	1.804100	1.804900	٧
13	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 5.4V; I _{OUT} = 0A	5.022600	5.027250	5.028500	٧
14	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 5.4V; I _{OUT} = 3A	5.017200	5.022200	5.023350	٧
15	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 6.0V; I _{OUT} = 0A	5.028050	5.032500	5.034350	٧
16	DC Output Voltage Accuracy	V _{OUT} = 5.0V; V _{IN} = 6.0V; I _{OUT} = 3A	5.020950	5.025500	5.027050	٧
17	VADJ Pin Voltage	V _{OUT} = 0.52V; V _{IN} = 2.2V	0.521150	0.521300	0.521600	٧
18	VADJ Pin Voltage	V _{OUT} = 0.52V; V _{IN} = 3.6V	0.521150	0.521400	0.521700	٧
19	VADJ Pin Voltage	V _{OUT} = 0.52V; V _{IN} = 5.5V	0.521550	0.521800	0.522150	٧
20	VADJ Pin Voltage	V _{OUT} = 1.5V; V _{IN} = 2.2V	0.521400	0.521500	0.521550	V
21	VADJ Pin Voltage	V _{OUT} = 1.5V; V _{IN} = 3.6V	0.521150	0.521400	0.521700	٧
22	VADJ Pin Voltage	V _{OUT} = 1.5V; V _{IN} = 5.5V	0.521450	0.521800	0.522050	V
23	VADJ Pin Voltage	V _{OUT} = 1.8V; V _{IN} = 2.2V	0.521050	0.521200	0.521550	٧
24	VADJ Pin Voltage	V _{OUT} = 1.8V; V _{IN} = 3.6V	0.521150	0.521400	0.521750	٧
25	VADJ Pin Voltage	V _{OUT} = 1.8V; V _{IN} = 5.5V	0.521450	0.521800	0.522000	٧
26	VADJ Pin Voltage	V _{OUT} = 5.0V; V _{IN} = 5.4V	0.521400	0.521800	0.521950	٧
27	VADJ Pin Voltage	V _{OUT} = 5.0V; V _{IN} = 6.0V	0.522000	0.522250	0.522600	٧
28	DC Input Line Regulation	2.2V < V _{IN} < 3.6V, V _{OUT} = 1.5V	-0.284500	-0.176150	0.158400	mV
29	DC Input Line Regulation	2.2V < V _{IN} < 3.6V, V _{OUT} = 1.8V	0.520000	0.551100	0.356200	m۷
30	DC Input Line Regulation	$V_{OUT} + 0.4V < V_{IN} < 6.0V, V_{OUT} = 5.0V$	5.792850	5.296750	5.315300	m۷
31	DC Output Load Regulation	V _{OUT} = 1.5V; 0A < I _{LOAD} < 3.0A, V _{IN} = V _{OUT} + 0.4V	-1.525700	-1.571300	-1.219950	mV
32	DC Output Load Regulation	V _{OUT} = 1.8V; 0A < I _{LOAD} < 3.0A, V _{IN} = V _{OUT} + 0.4V	-1.314200	-1.447200	-1.372050	mV
33	DC Output Load Regulation	$V_{OUT} = 5.0V$; 0A < I_{LOAD} < 3.0A, $V_{IN} = V_{OUT} + 0.4V$	-5.026850	-5.007050	-4.816750	m۷
34	Feedback Input Current	V _{ADJ} = 0.5V	-0.011650	-0.030300	-0.036550	μΑ
35	Ground Pin Current	V _{OUT} = 1.5V; I _{LOAD} = 0A, V _{IN} = 2.2V	10.665000	10.658900	10.621750	mA
36	Ground Pin Current	V _{OUT} = 1.5V; I _{LOAD} = 3.0A, V _{IN} = 2.2V	11.977100	12.015600	11.948450	mA
37	Ground Pin Current	V _{OUT} = 5.0V; I _{LOAD} = 0A, V _{IN} = 6.0V	15.814550	15.840150	15.771750	mA
38	Ground Pin Current	V _{OUT} = 5.0V; I _{LOAD} = 3.0A, V _{IN} = 6.0V	17.223200	17.224650	17.189200	mA

Submit Document Feedback 8 Intersil* FN8294.5
December 15, 2014

Low Dose Rate Post Radiation Characteristics $T_A = +25$ °C, unless otherwise noted. This data is typical test data post radiation exposure at a rate of 10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation (see Note 14). These are not limits nor are they guaranteed. (Continued)

ITEM #	DESCRIPTION	CONDITION	0k RAD	50k RAD	100k RAD	UNITS
39	Ground Pin Current in Shutdown	ENABLE Pin = 0V, V _{IN} = 6.0V	0.430300	0.601500	0.707900	μΑ
40	Dropout Voltage	I _{LOAD} = 1.0A, V _{OUT} = 2.5V	62.801250	62.431600	65.466000	mV
41	Dropout Voltage	I _{LOAD} = 2.0A, V _{OUT} = 2.5V	132.799650	133.294300	138.742500	m۷
42	Dropout Voltage	I _{LOAD} = 3.0A, V _{OUT} = 2.5V	214.477050	213.033000	221.517950	m۷
43	Output Short Circuit Current	V _{OUT} = 0V, V _{IN} = 2.2V, R _{SET} = 5.11k	1.178050	1.199850	1.224300	Α
44	Output Short Circuit Current	$V_{OUT} = 0V, V_{IN} = 2.2V, R_{SET} = 511\Omega$	5.838350	5.898050	5.750950	Α
45	Output Short Circuit Current	V _{OUT} = 0V, V _{IN} = 6.0V, R _{SET} = 5.11k	1.317450	1.338450	1.361150	Α
46	Output Short Circuit Current	$V_{OUT} = 0V, V_{IN} = 6.0V, R_{SET} = 511\Omega$	6.375650	6.464150	6.539300	Α
47	PSRR	$V_{P-P} = 300$ mV, $f = 1$ kHz, $I_{LOAD} = 3$ A; $V_{IN} = 2.5$ V, $V_{OUT} = 1.8$ V	64.103100	67.373400	65.407000	dB
48	Enable Rising Threshold	V _{IN} = 2.2V	0.867700	0.835700	0.827700	V
49	Enable Rising Threshold	V _{IN} = 6.0V	0.915800	0.905800	0.893800	V
50	Enable Falling Threshold	V _{IN} = 2.2V	0.681400	0.671300	0.661300	V
51	Enable Falling Threshold	V _{IN} = 6.0V	0.727500	0.715400	0.707400	V
52	Enable Pin Leakage Current	V _{IN} = 6.0V, EN = 0V	-0.004900	-0.025200	-0.030100	μΑ
53	Enable Pin Leakage Current	V _{IN} = 6.0V, EN = 6.0V	-0.009750	-0.024850	-0.029650	μA
54	Enable Hysterisis	V _{IN} = 2.2V	184.368000	166.332000	168.336000	m۷
55	Enable Hysterisis	V _{IN} = 6.0V	188.377000	190.381000	188.377000	m۷
56	Enable Pin Propagation Delay	V _{IN} = 2.2V, EN rise to I _{OUT} rise	304.015700	299.771700	296.604250	μs
57	PG Rising Threshold	V _{IN} = 2.2V	88.455750	88.057850	88.741300	%
58	PG Rising Threshold	V _{IN} = 6.0V	89.994350	89.499600	90.142250	%
59	PG Falling Threshold	V _{IN} = 2.2V	85.755650	85.356800	85.996150	%
60	PG Falling Threshold	V _{IN} = 6.0V	86.812350	86.316300	86.870500	%
61	PG Hysteresis	V _{IN} = 2.2V	2.701500	2.699650	2.745150	%
62	PG Hysteresis	V _{IN} = 6.0V	3.182050	3.183350	3.271700	%
63	PG Low Voltage	I _{SINK} = 1mA	31.560800	31.295600	31.212750	mV
64	PG Low Voltage	I _{SINK} = 6mA	177.500500	177.572900	175.997050	m۷
65	PG Leakage Current	V _{IN} = 6.0V, PG = 6.0V	0.017550	-0.000750	-0.002400	μA

NOTE:

14. See the Radiation report.

Post Radiation Characteristics for High Dose and Low Dose $T_A = +25$ °C, unless otherwise noted. This data is typical test data post radiation exposure at a rate of 10 mrad(Si)/s for low dose rate and 50-300 rad(Si)/s for high dose rate. This data is intended to show typical parameter shifts due to HDR (High Dose Rate) or LDR (Low Dose Rate) radiation. These are not limits nor are they guaranteed.

FIGURE 3. DC OUTPUT VOLTAGE, 1.5V_{OUT}, 3.6V_{IN} NO LOAD

FIGURE 4. DC OUTPUT VOLTAGE, 1.5V_{OUT}, 3.6V_{IN}, 3A LOAD

FIGURE 5. GROUND PIN CURRENT, 5.0V_{OUT}, 5.5V_{IN}, NO LOAD

FIGURE 6. DROPOUT VOLTAGE, 2.5V_{OUT}, 3A LOAD CURRENT

FIGURE 7. OUTPUT SHORT CIRCUIT CURRENT, $R_{SET} = 511\Omega$, 2.2 V_{IN}

FIGURE 8. OUTPUT SHORT CIRCUIT CURRENT, $R_{SET} = 5.11 k\Omega$, $5.5 V_{IN}$

Typical Operating Performance

FIGURE 9. LOAD REGULATION, V_{OUT} vs I_{OUT}

FIGURE 10. LOAD REGULATION, V_{ADJ} vs I_{OUT}

FIGURE 11. LOAD REGULATION, V_{OUT} vs I_{OUT}

FIGURE 12. LOAD REGULATION, V_{ADJ} vs I_{OUT}

FIGURE 13. LOAD REGULATION, V_{OUT} vs I_{OUT}

FIGURE 14. LOAD REGULATION, $V_{\mbox{\scriptsize ADJ}}$ vs $I_{\mbox{\scriptsize OUT}}$

Typical Operating Performance (Continued)

FIGURE 15. V_{IN} vs V_{ADJ} OVER-TEMPERATURE

FIGURE 16. R_{OCP} vs OCP AT +25°C, V_{OUT} = 1.5V

FIGURE 17. R_{OCP} vs OCP AT +128°C, V_{OUT} = 1.5V

FIGURE 18. R_{OCP} vs OCP AT -58°C, V_{OUT} = 1.5V

FIGURE 19. TRANSIENT LOAD RESPONSE, $V_{\mbox{\footnotesize IN}}$ = 3.3V, $V_{\mbox{\footnotesize OUT}}$ = 2.5V, $C_{OUT} = 47 \mu F$, $35 m\Omega$

FIGURE 20. TRANSIENT LOAD RESPONSE, $V_{IN} = 3.3V$, $V_{OUT} = 2.5V$, $C_{OUT} = 220\mu F$, $25m\Omega$

Typical Operating Performance (Continued)

FIGURE 21. POWER-ON AND POWER-OFF, EN = 0 TO 1, +25°C, V_{IN} = 6V, V_{OUT} = 0.8V, I_{OUT} = 0.5A, PGOOD TURN-ON

FIGURE 22. POWER-ON AND POWER-OFF, EN = 0 TO 1, +25 $^{\circ}$ C, V_{IN} = 2.2V, V_{OUT} = 0.8V, I_{OUT} = 0.5A, PGOOD TURN-ON

FIGURE 23. POWER-ON AND POWER-OFF, EN = 1 TO 0, +25 $^{\circ}$ C, V_{IN} = 6V, V_{OUT} = 0.8V, I_{OUT} = 0.5A, PGOOD TURN-OFF

FIGURE 24. POWER-ON AND POWER-OFF, EN = $1\,\text{TO}$ 0, $+25\,^{\circ}$ C, $V_{\text{IN}} = 2.2V$, $V_{\text{OUT}} = 0.8V$, $I_{\text{OUT}} = 0.5A$, PGOOD TURN-OFF

FIGURE 25. NOISE ($\mu V/\sqrt{Hz}$)

FIGURE 26. PSRR

Applications Information

Input Voltage Requirements

This RH LDO will work from a V_{IN} in the range of 2.2V to 6.0V. The input supply can have a tolerance of as much as $\pm 10\%$ for conditions noted in the "Electrical Specifications". The minimum guaranteed input voltage is 2.2V. However, due to the nature of an LDO, V_{IN} must be some margin higher than the output voltage, plus dropout at the maximum rated current of the application, if active filtering (PSRR) is expected from V_{IN} to V_{OUT} . The dropout spec of this family of LDOs has been generously specified to allow applications to design for efficient operation.

Adjustable Output Voltage

The output voltage of the RH LDO can be set to any user programmable level between 0.8V to 5.0V. This is achieved with a resistor divider connected between the OUT, ADJ and GND pins. With the internal reference at 0.52V, the divider ratio should be fixed such that when the desired VOUT level is reached, the voltage presented to the ADJ pin is 0.52V. Resistor values for typical voltages are shown in Table 1.

TABLE 1. RESISTOR VALUES FOR TYPICAL VOLTAGES

V _{OUT} (V)	R _{ВОТТОМ}	R _{TOP} (k)
0.8	7.87k	4.32
1.5	2.26k	4.32
1.8	1.74k	4.32
2.5	1.13k	4.32
4.0	634	4.32
5.0	499	4.32

$$BOTTOM = \frac{R_{TOP}}{\left(\frac{V_{OUT}}{V_{ADI}}\right) - 1}$$
(EQ. 1)

Input and Output Capacitor Selection

The RH operation requires the use of a combination of tantalum and ceramic capacitors to achieve a good volume-to-capacitance ratio. The recommended combination is a $220\mu F$, 10V, $25m\Omega$ rated DSSC 04051-032 series tantalum capacitor, in parallel with a $0.1\mu F$ MIL-PRF-49470 CDR04 ceramic capacitor to be connected between VIN to GND pins and VOUT to GND pins of the LD0, with PCB traces no longer than 0.5cm.

The stability of the device depends on the capacitance and ESR of the output capacitor. The usable ESR range for the device is $6m\Omega$ to $100m\Omega$. At the lower limit of ESR = $6m\Omega$, the phase margin is about $51^{\circ}C$. On the high-side, an ESR of $100m\Omega$ is found to limit the gain margin at around 10dB. The typical GM/PM seen with capacitors are shown in Table 2.

TABLE 2. TYPICAL GM/PM WITH VARIOUS CAPACITORS

CAPACITANCE (µF)	ESR (mΩ)	GAIN MARGIN (dB)	PHASE MARGIN (°)
47	35	14	55
100	25	16	57
220	6	19	51
220	25	16	69
100	100	10	62

Type numbers of KEMET capacitors used in the device are shown in Table 3.

TABLE 3. KEMET CAPACITORS USED IN DEVICE

KEMET TYPE NUMBER	CAPACITOR DETAILS
T525D476M016ATE035	47μF, 10V, 35mΩ
T525D107M010ATE025	100μF, 10V, 25mΩ
T530D227M010ATE006	220μF, 10V, 6mΩ
T525D227M010ATE025	220μF, 10V, 25mΩ
T495X107K016ATE100	100μF, 16V, 100mΩ

A typical gain phase plot measured on the ISL75051SRHEVAL1Z evaluation board for V_{IN} = 3.3V, V_{OUT} = 1.8V and I_{OUT} = 3A with a 220µF, 10V, 25m Ω capacitor is shown in Figure 27 and is measured at GM = 16.3dB and PM = 69.16°.

FIGURE 27. TYPICAL GAIN PHASE PLOT

Enable

The device can be enabled by applying a logic high on the EN pin. The enable threshold is typically 0.9V. A soft-start cycle is initiated when the device is enabled using this pin. Taking this pin to logic low disables the device.

The EN can be driven from either an open drain or a totem pole logic drive between EN pin and GND. Assuming an open-drain configuration, M1 will actively pull-down the EN line, as shown in Figure 28, and thereby discharge the input capacitance, shutting off the device immediately.

Submit Document Feedback 14 intersil FN8294.5

FIGURE 28. ENABLE

Power-Good

The Power-Good pin is asserted high when the voltage on the ADJ pin crosses the rising threshold of 0.9 x V_{ADJ} (typ). On the falling threshold, Power-Good is asserted low when the voltage on the ADJ pin crosses the falling threshold of 0.88 x V_{ADJ} . The power-good output is an open-drain output rated for a continuous sink current of 1mA.

Soft-start

Soft-start is achieved by means of the charging time constant of the BYP pin. The capacitor value on the pin determines the time constant and can be calculated using <u>Equations 2</u> through $\underline{4}$ based on V_{IN} range:

If V_{IN} range is 2.2V ≤ V_{IN} < 2.7V:

$$\mathbf{t_{SS}} = (-4.8376 \bullet \mathbf{V_{IN}}) + (0.0254 \bullet \mathbf{T_{A}}) + (0.0522 \bullet \mathbf{C_{BYP}}) + \mathbf{11.8526}$$
 (EQ. 2)

If V_{IN} range is $2.7V \le V_{IN} < 4.0V$:

$$t_{\text{SS}} = (-\text{1.4711} \bullet \text{V}_{\text{IN}}) + (0.0179 \bullet \text{T}_{\text{A}}) + (0.0377 \bullet \text{C}_{\text{BYP}}) + 4.7430 \tag{EQ. 3}$$

If V_{IN} range is $4.0V \le V_{IN} < 6.0V$:

$$t_{SS} = (-0.4458 \bullet V_{IN}) + (0.0130 \bullet T_{A}) + (0.0295 \bullet C_{BYP}) + 1.8527$$
 (EQ. 4)

where t_{SS} = soft-start time (ms), V_{IN} = Input supply (V), T_A = Ambient Temperature and C_{BYP} = BYPASS capacitor (nF).

The BYPASS capacitor, C_1 , charges with a current source and provides an EA reference, -IN, with an SS ramp. V_{OUT} , in turn, follows this ramp. The ramp rate can be calculated based on the C_1 value. For conditions in which C_1 is opened, or for small values of C_1 , the ramp is provided by C_2 = 50pF, with a source of 0.5 μ A. Connecting C_1 min = 0.1 μ F to the BYPASS pin is recommended for normal operation.

FIGURE 29. SOFT-START

Current Limit Protection

The RH LDO incorporates protection against overcurrent due to any short or overload condition applied to the output pin. The current limit circuit becomes a constant current source when the output current exceeds the current limit threshold, which can be adjusted by means of a resistor connected between the OCP pin and GND. If the short or overload condition is removed from $\rm V_{OUT}$, then the output returns to normal voltage mode regulation. The OCP can be calculated with Equation 5:

$$OCP = 4.1115 \times ROCP^{-0.75}$$
 (EQ. 5)

where OCP = Overcurrent Threshold in amps, and ROCP = OCP resistor in $k\Omega$.

In the event of an overload condition based on the set OCP limit, the die temperature may exceed the internal over-temperature limit, and the LDO begins to cycle on and off due to the fault condition (Figure 30). However, thermal cycling may never occur if the heatsink used for the package can keep the die temperature below the limits specified for thermal shutdown.

FIGURE 30. OCP vs ROCP

Thermal Guidelines

If the die temperature exceeds typically +175°C, then the LDO output shuts down to zero until the die temperature cools to typically +155°C. The level of power combined with the thermal impedance of the package (θ_{JC} of 4°C/W for the 18 Ld CDFP package) determines whether the junction temperature exceeds the thermal shutdown temperature specified in the "Electrical Specifications" table on page 5.

The device should be mounted on a high effective thermal conductivity PCB with thermal vias, per JESD51-7 and JESD51-5. Place a silpad between package base and PCB copper plane. The V_{IN} and V_{OUT} ratios should be selected to ensure that dissipation for the selected V_{IN} range keeps T_J within the recommended operating level of +150 $^{\circ}$ C for normal operation.

Submit Document Feedback 16 FN8294.5
December 15, 2014

Weight Characteristics

Weight of Packaged Device

K18.D: 1.07 Grams typical with leads clipped K18.E: 1.07 Grams typical with leads clipped

Die Characteristics

Die Dimensions

4555μm x 4555μm (179.3 mils x 179.3 mils) Thickness: $304.8 \mu m \pm 25.4 \mu m$ (12.0 mils ± 1 mil)

Interface Materials

GLASSIVATION

Type: Silicon Oxide and Silicon Nitride

Thickness: $0.3 \mu m \pm 0.03 \mu m$ to $1.2 \mu m \pm 0.12 \mu m$

TOP METALLIZATION

Type: AICu (99.5%/0.5%) Thickness: 2.7µm ±0.4µm

BACKSIDE METALLIZATION

None

Metallization Mask Layout

PAD X Y COORDINATES			
NAME	χ (μm)	Y (µm)	
GND	0	0	
GND	-393	0	
VOUT	-711	-710	
VOUT	-711	-1858	
VOUT	-711	-2964	
ADJ	-1680	-3070	
BYP	-1621	-3879	
EN	2164	-3879	
OCP	2222	-3131	
VIN	1078	-2965	
VIN	1078	-1853	
VIN	1078	-711	
PG	420	-25	
	NAME GND GND VOUT VOUT ADJ BYP EN OCP VIN VIN	NAME (μm) GND 0 GND -393 VOUT -711 VOUT -711 VOUT -711 ADJ -1680 BYP -1621 EN 2164 OCP 2222 VIN 1078 VIN 1078 VIN 1078	

SUBSTRATE

Type: Silicon

BACKSIDE FINISH

Silicon

PROCESS

0.6µM BiCMOS Junction Isolated

ASSEMBLY RELATED INFORMATION

Substrate Potential

Unbiased

ADDITIONAL INFORMATION

Worst Case Current Density

 $< 2 \times 10^5 \, \text{A/cm}^2$

Transistor Count

2932

Layout Characteristics

Step and Repeat

4555µm x 4555µm

intersil

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision.

DATE	REVISION	CHANGE	
December 15, 2014 FN8294.5		Made correction to Charged Device Model testing information from Tested per CDM-22CIOID to JESD22-C10	
October 27, 2014		Added Related Literature section on page 1. Added ESD ratings under the Abs Max section on page 4. Human Body Model (Tested per MIL-PRF-883 3015.7)2.5kV Machine Model (Tested per JESD22-A115-A)250V Charged Device Model (Tested per CDM-22CIOID)	
September 15, 2014	FN8294.4	Replaced Equation 2 and added Equations 3 and 4 on page 15. Removed second line of Yaxis title for Figures 3, 4, 5,7 and 8 as it was redudant information that was already in the Figure titles.	
March 28, 2014	FN8294.3	Thermal Information, page 4: Updated θ_{JC} (°C/W) for the 18 Ld CDFP Package with Bottom Metal and Solder Mount from "4" to "3.3". Removed both "Enable Pin Turn-on Delay" rows from "Electrical Specifications" on page 5. Added EQ1 to page 14.	
February 11, 2014	FN8294.2	Soft-Start section, page 15: 1) EQ1 Changed From: Trise (ms)=0.00577xCss (nF) To: Trise (ms)=0.0326xCss (nF) 2) Changed From: "a 90µA source current " To: " a current source"	
September 12, 2013	FN8294.1	Updated Equation 2 on page 15.	
September 6, 2013		Weight Characteristics on page 17: Added K18.E: 1.07 Grams typical with leads clipped. Updated Equation 2 on page 15.	
August 30, 2013		Added a note to the pin configuration figure on page 3. Ordering information table on page 3: Added part number ISL75051SRHX/SAMPLE. Updated Equation 2 on page 15.	
August 27, 2013		Added part numbers ISL75051SEHVFE and ISL75051SEHFE/PROTO (18 Ld CDFP with bottom metal) to ordering information table on page 3. Added 18 Ld CDFP Package theta ja= 28 and theta jc = 4 to thermal information table on page 4. Updated POD for k18.D from Rev3 to Rev5: Added bottom of lead to bottom of package. Added POD k18.E: 18 Ld ceramic metal seal flatpack package with bottom metal.	
August 28, 2012	FN8294.0	Initial Release.	

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.

You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.

Reliability reports are also available from our website at www.intersil.com/support

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

18 intersil FN8294 5 December 15, 2014

Package Outline Drawing K18.D

18 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE Rev 5, 3/13

NOTES:

- 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab may be used to identify pin one.
- 2. If a pin one identification mark is used in addition to a tab, the limits of the tab dimension do not apply.
- 3. The maximum limits of lead dimensions (section A-A) shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 4. Measure dimension at all four corners.
- 5. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.
- 6. Dimension shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder dip lead finish is applied.
- 7. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 8. Dimensions = INCH (mm). Controlling dimension: INCH.

Package Outline Drawing K18.E

18 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE WITH BOTTOM METAL Rev 1, 3/13

NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark. Alternately, a tab may be used to identify pin one.

2. If a pin one identification mark is used in addition to a tab, the limits of the tab dimension do not apply.

3. The maximum limits of lead dimensions (section A-A) shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.

4. Measure dimension at all four corners.

5. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads.

6. Dimension shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder dip lead finish is applied.

7. The bottom of the package is a solderable metal surface.

8. Dimensioning and tolerancing per ANSI Y14.5M - 1982.

9. Dimensions = INCH (mm). Controlling dimension: INCH.

Submit Document Feedback 20 intersil*