DEEP LEARNING AND MACHINE LEARNING IN SCIENCE DEEPLEA17EM

DEEP LEARNING AND MACHINE LEARNING IN SCIENCE - DETAILS

- webpage: https://patbaa.github.io/physdl/
- last year's lecture notes: http://qati.me/dl-class.html
- github: https://github.com/patbaa/physdl
 - questions -> github issues
- 9:00 10:00 at Ortvay room (0.81)
- materials in English lecture notes will be available on the webpage
- lectures are in Hungarian
- for some lectures there will be notebooks provided (optional, just for practice)
- requirements:
 - participation in two Kaggle in-class challenges
 - thresholds will be provided for both of them in advance
 - points (grades) are based on exceeding the thresholds
 - ... but there is always an opportunity to get better grade if you work on some project

DEEP LEARNING AND MACHINE LEARNING IN SCIENCE - TODO

- register to GitHub + 'watch' the course repository to get notifications
- register to Kaggle
- fill the google form: https://goo.gl/forms/pKQeFPfMYoQI4Q5M2
- get access to a computer with
 - jupyter notebooks (python3)
 - keras, tensorflow, sklearn, pandas, numpy, matplotlib installed
 - Google Colab with GPU https://colab.research.google.com/
- expected to have knowledge in:
 - basic python
 - jupyter notebook
 - pandas
 - numpy

