Math 220A - Fall 2020 - Midterm

Name:		
Student ID:		

Instructions:

Please print your name and student ID (if you know it).

You may not use any books, notes or internet.

There are 4 questions which are worth 40 points. You have 60 minutes to complete the test. Please upload your answers in Gradescope at the end of the exam.

Question	Score	Maximum
1		10
2		10
3		10
4		10
Total		40

Problem 1. [10 points.]

Let

$$f(z) = \frac{z}{z^2 - 4}.$$

Expand f into Laurent series around 0 in the two regions |z| < 2 and |z| > 2 respectively.

Problem 2. [10 points; 5, 5.]

Let $U \subset \mathbb{C}$ be a connected open set.

(i) Show that if $h:U\to\mathbb{C}$ is nonconstant and holomorphic, then Re $h:U\to\mathbb{R}$ is an open map.

(ii) Let $f:U\to\mathbb{C}$ be holomorphic with $f'(z)\neq 0$ for all $z\in U.$ Show that $\{{\rm Re}\ f(z)\cdot {\rm Im}\ f(z):z\in U\}$

is an open subset of \mathbb{R} .

Problem 3. [10 points.]

Suppose $f:\Delta(0,1)\to\mathbb{C}$ is holomorphic such that for all $z\neq 0,$ we have $|f(z)|\leq -\log|z|.$

Show that $f \equiv 0$.

Problem 4. [10 points.]

Assume that $f:\overline{\Delta}(0,1)\to\mathbb{C}$ is continuous, and f is holomorphic in $\Delta(0,1)$. Show that if f(z)=0 for all $z=e^{it}$ with $0\leq t<\pi$ then $f\equiv 0$.

Hint: You may wish to work with a convenient auxiliary function.