M3/4/5N9 Computational Linear Algebra Project 2 (20% of the final mark) Due December 3rd 2019 (must submit on Blackboard)

Prof Colin Cotter

Autumn Term 2019

Reminders

- 1. Be sure to follow all project guidelines (separate document on Blackboard).
- 2. Write your code in Python. You may use the numpy, scipy and matplotlib Python modules to complete the tasks unless otherwise indicated.
- 3. In terms of code, marks will be given for: clear, accessible, readable, re-useable code that makes sensible use of numpy array operations, and is well-organised into suitable files.
- 4. In terms of reporting, marks will be given for: clear, appropriate description that demonstrates understanding of the material.

1 Conditioning and stability

- 1. Randomly generate an orthogonal matrix Q and and a triangular matrix R by:
 - (a) Randomly generating a 20×20 matrix B with independent normally distributed entries, computing the QR factorisation of B and keeping the Q matrix (throw the R matrix away).
 - (b) Independently generating another 20×20 matrix C with independent normally distributed entries, and extracting the upper triangular part as R.

Now form A = QR. We now have a matrix A for which we know the exact QR factorisation (up to small rounding errors in computing the product QR. Use the built in numpy.linalg.qr function to compute the QR factorisation of A using the Householder algorithm, returning Q_2 , R_2 . Compute the following quantities:

- (a) $||Q_2 Q||$,
- (b) $||R_2 R||$,
- (c) $||Q_2R_2 A||$.

Explain your results using what you know about the backward stability of the Householder algorithm.

[15 marks]

2. Repeat this exercise for the Singular Value Decomposition, which writes $A = U\Sigma V^T$ where U and V are orthogonal matrices and Σ is diagonal with non-negative entries. In other words, randomly generate U, V and Σ with these properties, form the corresponding A, and then use the built in numpy.linalg.svd function to compute the QR factorisation, returning U_2 , V_2 , Σ_2 . Making similar comparisons to the above, what do your results suggest?

[15 marks]

Hints: the functions numpy.triu, numpy.linalg.norm, numpy.random.randn will all be useful for this section.

2 LU factorisation of banded matrices

Banded matrices are an example of sparse matrices, which contain many zeros. The Compressed Sparse Row (CSR) format is a method of storing sparse matrices that only stores the non-zero entries (plus their locations). This is implemented by scipy.sparse.csr_matrix from the scipy Python module.

- 1. Using what you have learned about banded matrices from lectures, write a function L, U = bandedLU(M, ml, mu) that takes a CSR matrix M, plus the lower and upper bandwidths m_l and m_u , and returns the LU factorisation as CSR matrices, computed from your implementation of Gaussian elimination. Your implementation should:
 - Make use of numpy vector array operations where possible,
 - · Avoid unnecessarily computing zeros,
 - · Work for complex data types (we'll be using them in the project).

It is not necessary to implement pivoting.

[15 marks]

2. Provide some tests that demonstrate that the LU factorisation has worked.

[15 marks]

3 Exponential integrators

In this section we will focus on the wave equation

$$u_{tt} - u_{xx} = 0, \quad u(0) = u(H) = 0,$$
 (1)

in the domain [0, H]. We approximate this equation with a finite difference approximation,

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}u_k - \frac{u_{k-1} - 2u_k + u_{k+1}}{\Delta x^2} = 0, \ k = 1, \dots, N, \quad u_0 = u_{N+1} = 0,$$

where $\Delta x = H/(N+1)$, and u_k is our approximation to $u(k\Delta x)$.

1. Writing $v = (u_1, \dots, u_N)^T \in \mathbb{R}^N$, obtain the matrix K such that

$$\frac{\mathrm{d}^2}{\mathrm{d}\,t^2}v + Kv = 0. \tag{3}$$

[2 marks]

2. Introducing $w = \frac{d v}{d t}$, show that

$$\frac{\mathrm{d}\,U}{\mathrm{d}\,t} = LU,\tag{4}$$

where $U = (v^T, w^T)^T$, and

$$L = \begin{pmatrix} 0 & I \\ -K & 0 \end{pmatrix}. \tag{5}$$

[2 marks]

3. It is known that K is a positive-definite matrix. Show that all of the eigenvalues of L are imaginary.

[2 marks]

4. The exact solution to Equation (4) satisfies

$$U(T) = \exp(TL)U(0),\tag{6}$$

where $\exp(TL)$ is the matrix exponential of TL. For matrices L with imaginary eigenvalues $\lambda_k = i\mu_k$, k = 1, ..., N, the action $\exp(TL)U(0)$ of the matrix exponential $\exp(TL)$ on U(0) can be computed from

$$U(T) \approx \sum_{j=1}^{J} \beta_j U_j, \tag{7}$$

where U_j is the solution of

$$(\alpha_j I + TL)U_j = U(0), \tag{8}$$

and where α_j and β_j are some known complex coefficients for $j=1,\ldots,J$, provided by the function rexi_coefficients. RexiCoefficients in the supplied file. This function returns arrays of α and β coefficients given $h \in \mathbb{R}^+$, $M \in \mathbb{N}^+$, where $hM = 1.1T|\mu_{\max}|$ and μ_{\max} is the eigenvalue of L with maximum magnitude. The approximation converges as M goes to infinity with hM fixed.

Remark: the advantage of this formulation is that the Equation (8) can be solved in parallel over all the values of j = 1, ..., J. This means that parallel computation can be used to take a much larger T in a shorter time than is possible with standard timestepping methods. However, we shall not explore any parallel aspects in this project.

Writing $U_j = (v_j^T, w_j^T)^T$, show that w_j can be eliminated from Equation (8) to produce a banded matrix system for v_j , and give the upper and lower bandwidths.

[5 marks]

5. Given the initial condition $u(x,0) = \exp(-(x-5)^2/0.2) - \exp(-125)$, $u_t(x,0) = 0$, and taking H = 10, use this method to compute the solution at time T = 2.5, using your banded solver to obtain the values of u on the grid.

[20 marks]

6. Verify that your code works by comparing the solution with standard explicit second-order Runge Kutta timestepping with several steps sufficiently small Δt , exploring the dependence on h and M.

[9 marks]