

Flu Shot Learning

Team 10

Grigoriy Morozov, Iuliia Parshchikova

Goal

is to predict how likely individuals are to receive their H1N1 and seasonal flu vaccines.

respondent_id	h1n1_concern	h1n1_knowledge	behavioral_antiviral_meds	behavioral_avoidance	behavioral_face_mask	behavioral_wash_hands	behavioral_large_gathe
0	1.0	0.0	0.0	0.0	0.0	0.0	
1	3.0	2.0	0.0	1.0	0.0	1.0	
2	1.0	1.0	0.0	1.0	0.0	0.0	

Each row in the dataset represents one person who responded to the National 2009 H1N1 Flu Survey.

The features in the dataset

h1n1 concern

Level of concern about the H1N1 flu. 0 = Not at all concerned; 1 = Not very concerned; 2 = Somewhat concerned: 3 = Very concerned

h1n1 knowledge

Level of knowledge about H1N1 flu. 0 = No knowledge; 1 = A little knowledge; 2 = A lot of knowledge.

behavioral_antiviral_meds Has taken antiviral medications. (binary)

chronic_med_condition

Has any of the following chronic medical conditions: asthma or an other lung condition, diabetes, a heart condition, a kidney condition, sickle cell anemia or other anemia, a neurological or neuromuscular condition, a liver condition, or a weakened immune system caused by a chronic illness or by medicines taken for a chronic illness. (binary)

opinion_seas_sick_from_vacc

Respondent's worry of getting sick from taking seasonal flu vaccine. 1 = Not at all worried; 2 = Not very worried; 3 = Don't know; 4 = Somewhat worried; 5 =

Very worried.

age_group

Age group of respondent.

Labels

	respondent_id	h1n1_vaccine	seasonal_vaccine
0	0	0	0
1	1	0	1
2	2	0	0
3	3	0	1
4	4	0	0

26702	26702	0	0
26703	26703	0	0
26704	26704	0	1
26705	26705	0	0
26706	26706	0	0

2 target variables:

- h1n1_vaccine Whether respondent received H1N1 flu vaccine.
- seasonal_vaccine Whether respondent received seasonal flu vaccine.

Both are binary variables: 0 = No; 1 = Yes. Some respondents didn't get either vaccine, others got only one, and some got both. This is formulated as a multilabel (and not multiclass) problem.

Preprocessing data

drop column with the highest missing rate (% of NaNs)

health_insurance : 45.96% employment_industry: 49.91% employment_occupation: 50.44%

age_group	5
education	4
race	4
sex	2
income_poverty	3
marital_status	2
rent_or_own	2
employment_status	3
hhs_geo_region	10
census_msa	3

- explore columns with unique names (do not drop them)
- use one-hot encoding to remove categorical columns
- apply normalisation to numerical features

divide into train and test sets

Train shape: (15713, 61) Test shape: (3929, 61)

Train target shape: (15713, 2) Test target shape: (3929, 2)

Correlation between numerical and categorical features 👊

- 0.8

- 0.2

0.0

Training models

```
*
```

```
reg = MultiOutputClassifier(LogisticRegression(max_iter=5000))
reg.fit(X train, y train)
y pred = reg.predict(X test)
f1 = f1_score(y_test, y_pred, average='macro')
print(f1.round(3))
0.662
clf = MultiOutputClassifier(KNeighborsClassifier())
clf.fit(X train, y train)
y pred = clf.predict(X test)
f1 = f1_score(y_test, y_pred, average='macro')
print(f1.round(3))
0.613
rf = MultiOutputClassifier(RandomForestClassifier())
rf.fit(X train, y train)
y pred = rf.predict(X test)
f1 = f1_score(y_test, y_pred, average='macro')
print(f1.round(3))
```


GridSearchCV

LogisticRegression. F1 = 0.662 —> F1 = 0.663

```
{'estimator_C': 2.0, 'estimator_max_iter': 5000, 'estimator_penalty': '12'}
```

• KNeighborsClassifier. F1 = 0.613 —> F1 = 0.615

```
{'estimator__n_neighbors': 17,
  'estimator__p': 2,
  'estimator__weights': 'uniform'}
```

• RandomForestClassifier. F1 = 0.640 —> F1 = 0.653

```
{'estimator_max_features': 'sqrt', 'estimator_n_estimators': 500}
```


XGBoost Model

h1n1 vaccine

Overall Accuracy: 0.830 ± 0.006 Overall F1: 0.533 ± 0.013

Overall AUC: 0.842 ± 0.008

XGBoost Model

season vaccine

Overall Accuracy: 0.782 ± 0.005 Overall F1: 0.767 ± 0.006

Overall AUC: 0.858 ± 0.005

ROC Curve — h1n1_vaccine

XGBoost Model

Both vaccines

```
Fold 1: Accuracy = 0.810, F1 = 0.675
Fold 2: Accuracy = 0.805, F1 = 0.672
Fold 3: Accuracy = 0.808, F1 = 0.659
Fold 4: Accuracy = 0.805, F1 = 0.670
Fold 5: Accuracy = 0.798, F1 = 0.663
```

Overall Accuracy: 0.805 ± 0.004 Overall F1-macro: 0.668 ± 0.006

Multi-Layer Perceptron Model

Best param: {'hidden_layers': (128, 64), 'activation': 'relu', 'lr': 0.01, 'weight_decay': 0.001} F1: 0.6969

THANKS!

- That's amazing! How do you get such great results?
- Well, we're calculating it wrong.

