Average Variance

J. Poland

Risk Anomal

Data

Variance De composition

Results
In Sample

Out of Sample

,

Conclusions

Don't Throw out the Return with the Risk: Average Variance Portfolio Management

Jeramia Poland

Indian School of Business

March 30, 2018

Risk Anomaly

Data

Variance De composition

Results

Out of Sample

Asset Allocation

Explaination

Conclusion

How Risky is your Aversion?

 Higher Return is better than lower return, lower risk is better than higher risk

Risk Anomaly

Data

Variance De composition

Results In Sample

Asset

Evoluination

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk

Risk Anomaly

Data

Variance D composition

Results
In Sample
Out of Sample

Allocation

Explainatio

Conclusions

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk
- Time leverage on a component which predicts higher risk you can decrease exposure ahead of risky times

How Risky is your Aversion?

- Higher Return is better than lower return, lower risk is better than higher risk
- Leverage access to higher returns at higher risk
- Time leverage on a component which predicts higher risk you can decrease exposure ahead of risky times
- Are you giving up potential returns?

Equity Premium

Equity Premium

- Markowitz (1952) formal portfolio variance, return optimization
- Haugen (1972) low risk portfolios out perform
- Moreira and Muir (2017) portfolios scaled by last months realized volatilty outperform the underlying

Volatiltiy Managed Market Investment

- $W_t R_{st}$ where R_{st} is the monthly return to the CRSP market portfolio in month t.
- $\sigma^2(r_{s,t-1})$ is the variance, where $r_{s,t-1}$ is the series of daily returns of the CRSP market portfolio for month t-1
- $W_t = \frac{1}{\sigma^2(r_{c,t-1})}$ is the investment weight on the CRSP market portfolio for month t 4 D > 4 A > 4 B > 4 B > B

Risk Anomaly

Data

Variance Do

Result

In Sample

Out of Sampl

Asset

Evolpinatio

Conclusion

Moreira and Muir 2017

Figure 3. Cumulative returns to the volatility-managed market return. The top panel plots the cumulative returns to a buy-and-held strategy versus a volatility-managed strategy for the market portfolio from 1926 to 2015. The y-axis is on a log scale and both strategies have the same uncenditional monthly standard deviation. The lower left panel plots relling one-year returns from each strategy and the lower right panel shows the drawdown or onch strategy.

Average Variance

J. Poland

Risk Anomaly

Variance De

Results

In Sample Out of Sampl

.

Explainatio

Conclusions

Market Variance

- Campbell, Lettau, and Xu (2001) variance of individual assets vs market variance and CAPM
- Pollet and Wilson (2010) decompose quarterly variance of market portfolio - Avg cor and Avg var

Avg Var and Avg Cor

$$R_{s,t} = \sum_{1}^{N} w_{n,t} R_{n,t}$$

$$\sigma^{2}(r_{s,t}) = \sum_{n=1}^{N} \sum_{m=1}^{N} w_{n,t} w_{m,t} \sigma_{n,t}^{2} \sigma_{m,t}^{2} \rho_{n,m,t}$$

$$\sigma_{s,t}^{2} = \sum_{n=1}^{N} w_{n,t} \sigma_{n,t}^{2} \times \sum_{n=1}^{N} \sum_{m\neq n}^{N} w_{n,t} w_{m,t} \rho_{n,m,t}$$

$$AV_{t} = \sum_{n=1}^{N} w_{n,t} \sigma_{n,t}^{2} \text{ and } AC_{t} = \sum_{n=1}^{N} \sum_{m\neq n}^{N} w_{n,t} w_{m,t} \rho_{n,m,t}$$

Allocatio

Explaination

Conclusions

Pollet and Wilson 2010 - Risk

Table: 1963Q2:2007Q1

			SV_{t+1}		
AC_t	0.014*** (0.005)		0.005 (0.005)		
AV_t		0.144*** (0.023)	0.136*** (0.024)		0.188*** (0.042)
SV_t				0.310*** (0.072)	-0.156 (0.124)
Constant	0.002 (0.001)	0.002** (0.001)	0.001 (0.001)	0.003*** (0.001)	0.001** (0.001)
Observations R ² Adjusted R ²	176 0.042 0.037	176 0.184 0.179	176 0.096 0.091	176 0.096 0.091	176 0.191 0.182

Note:

p<0.1; **p<0.05; ***p<0.01

Risk Anomaly

Data

Variance Do

Results
In Sample
Out of Sample

Allocatio

Explaination

Conclusions

Pollet and Wilson 2010 - Returns

Table: 1963Q2:2007Q1

			RET_{t+1}		
AC_t	0.215*** (0.068)		0.248*** (0.072)		
AV_t		-0.116 (0.347)	-0.512 (0.356)		-1.746*** (0.615)
SV_t				1.466 (1.026)	5.795*** (1.828)
Constant	-0.038** (0.017)	0.014 (0.010)	-0.034** (0.017)	0.005 (0.008)	0.022** (0.010)
Observations R ² Adjusted R ²	176 0.054 0.049	176 0.001 -0.005	176 0.065 0.054	176 0.012 0.006	176 0.056 0.045

Note:

p<0.1; **p<0.05; ***p<0.01

Risk Anomaly

Data

Variance De composition

Results

Out of Sample

Allocation

Explaination

Conclusion

Average Variance

- Timing leverage by variance generates higher returns
- Market variance contains average correlation
- Average variance is at least unrelated to future returns
- $W_t = \frac{1}{AV_{t-1}}$ is the investment weight on the CRSP market portfolio

Cummulative Excess Log Returns - Monthly

Risk Anomaly

Data

Variance De composition

Results

In Sample Out of Sample

Allocation

Explainatio

Conclusions

CRSP daily returns

- NYSE daily return (1926-2017)
- NYSE-AMEX daily returns (1962-2017)
- NASDAQ daily returns (1974-2017)

Risk Anomaly

Data

Variance Decomposition

In Sample
Out of Sample
Asset

Evolainatio

Conclusion

Summary Stats

Monthly 1962M6:2016M12

Statistic	N	Mean	St. Dev.	Min	Max	Autocorrelation
RET	655	0.410	4.460	-26.134	14.814	0.081
AC	655	0.261	0.129	0.019	0.762	0.620
AV	655	0.770	0.849	0.198	10.416	0.667
SV	655	0.200	0.406	0.006	5.664	0.551

Monthly 1926M7:2016M12

Statistic	N	Mean	St. Dev.	Min	Max	Autocorrelation
RET	1,085	0.495	5.371	-34.523	33.188	0.106
AC	1,085	0.276	0.134	0.019	0.762	0.610
AV	1,085	0.881	1.281	0.154	19.540	0.718
SV	1,085	0.248	0.502	0.006	5.808	0.612

Risk Anomal

Data

Variance Decomposition

Results
In Sample

Out of Samp

Allocation

Explainatio

Conclusion

Time Series

Monthly Measures of Daily Return Statistics

Average Variance J. Poland		Variance Prediction								
Risk Anomaly		Sample 1962M6:2016M12								
Data Variance De-				SV_{t+1}						
Results In Sample	AC_t	0.010*** (0.001)			0.005*** (0.001)					
Out of Sample Asset Allocation Explaination	AV_t		0.261*** (0.016)		0.234*** (0.017)	0.123*** (0.035)				
Conclusions	SV_t			0.551*** (0.033)		0.320*** (0.074)				
	Constant	-0.001** (0.0003)	-0.00001 (0.0002)	0.001*** (0.0001)	-0.001*** (0.0003)	0.0004** (0.0002)				
	Observations	654	654	654	654	654				

0.297

0.296

0.304

0.303

*p<0.1; **p<0.05; ***p<0.01

0.320

0.318

0.317

0.315

12 / 27

0.110

0.109

 R^2

Note:

Adjusted R^2

Average Variance **AV** Prediction J. Poland Sample 1962M6:2016M12 AV_{t+1} 0.014*** AC_t -0.001Results (0.003)(0.002)In Sample AV_t 0.667*** 0 674*** 1.030*** (0.029)(0.031)(0.065) SV_t 1.092*** -0.844***(0.070)(0.135)Constant 0.004***0.003*** 0.006***0.003*** 0.001***(0.001)(0.0003)(0.0003)(0.001)(0.0004)Observations 654 654 654 654 654 R^2 0.048 0 445 0.273 0 446 0.477 Adjusted R² 0.046 0.445 0.272 0.4440.475 Note: *p<0.1; **p<0.05; ***p<0.0199.0

13 / 27

Average Variance Return Prediction J. Poland Sample 1962M6:2016M12 RET_{t+1} AC_t 0.017 0.037*** Results (0.013)(0.014)In Sample AV_t -0.678***-0.877***-0.905*(0.203)(0.216)(0.463) SV_t -1.174***0.526 (0.426)(0.969)0.010*** Constant -0.00010.009*** 0.007*** 0.001 (0.004)(0.002)(0.002)(0.004)(0.003)

Observations 655 655 655 655 655 R^2 0.002 0.017 0.012 0.0270.017 Adjusted R² 0.001 0.015 0.010 0.024 0.014

*p < 0.1; **p < 0.05; ***p < 0.01 =

14 / 27

Note:

Average Variance

J. Poland

Risk Anomal

IXISK AIIOIIIa

Data

Variance De composition

Results

In Sample
Out of Sample

Allocation

_

Conclusion

Out-of-Sample Tests

• Divide the sample 1962:06 - 2016:12 into 15% training 85% prediction

Risk Anomaly

Variance De

Results

In Sample
Out of Sample

Asset Allocation

Explaination

Conclusion

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.

Risk Anomal

.

Variance De composition

Results

In Sample
Out of Sample

Asset

Evolainatio

Conclusion

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.

Results In Sample

Out of Sample

Allocation

Explaination

Conclusions

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period

Conclusions

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{s=1}^{t-1}$

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = q + 1, q + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = a + 1, a + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction
 - $\hat{r}_{t+1} = \hat{\alpha}_t + \hat{\beta}_t x_t$

- Divide the sample 1962:06 2016:12 into 15% training 85% prediction
 - Initial training period t = q months. First 8 years.
 - Remaining period t = a + 1, a + 2, ..., T for out-of-sample forecast evaluation.
- Regression model is "trained" over initial period
 - Estimate $\hat{\alpha}_t$ and $\hat{\beta}_t$ by regressing $\{r_{s+1}\}_{s=1}^{t-1}$ on a constant and $\{x\}_{c=1}^{t-1}$
- Generate one period ahead prediction
 - $\hat{r}_{t+1} = \hat{\alpha}_t + \hat{\beta}_t x_t$
- Each following month the "training" window expands by one month

Out of Sample Stats

- $y_t \hat{y}_{x,t} = e_{x,t}$: forecast error of preditor x
- $\frac{1}{T}\sum_{1}^{T}(e_{x,t})^2 = MSFE_x$: mean squared forecast error based on predictor x

R_{oos}^2 Campbell and Thompson 2007

- $R_{os}^2 = 1 \frac{MSFE_x}{MSFF_x}$
- R_{os}^2 = proportional reduction in MSFE

MSE-F Mcracken 2004

- MSE-F = $T imes rac{\frac{1}{T} \sum_{1}^{T} (e_{b,t}^2 e_{x,t}^2)}{MSEF}$
- MSE-F = F-type test for significance in squared residual (like in sample regression)

Results

In Sample
Out of Sample

Asset Allocatio

Explainatio

Conclusion

Out of Sample Stats

- R_{oos}^2 and MSE-F test improvement in forecast accuracy relative to a benchmark
- Encompassing tests impose the greater requirement that the benchmark have no valuable forecasting information

ENC-NEW Mcracken and Clark 2009

- ENC-NEW = $T imes rac{rac{1}{T} \sum_{1}^{T} (e_{b,t}^2 e_{b,t} e_{x,t})}{\textit{MSFE}_x}$
- ENC-NEW = F-type statistic on the imporvement of including the benchmark

ENC-HLN Harvey, Lebourne and Newbold 1998

- Optimal forecast $= \hat{y}_t^* = (1 \lambda)\hat{y}_{b,t} + \lambda\hat{y}_{x,t}$
- $\lambda =$ measure of the optimal combination of forecasts from x and the benchmark

Results

Out of Sample

Out of Sample Results

Table: 1970M7:2017M12

Benchmark: Historical Average

	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	25.414*	189.790***	160.994**	1***
AV_{t+1}	Monthly	38.11**	342.979***	355.228**	0.967***
RET_{t+1}	Monthly	-0.059	-0.328	3.493**	0.478

Benchmark: SV_t

	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	4.041	23.454***	25.409**	0.929*
AV_{t+1}	Monthly	26.853	204.485***	135.494**	1***
RET_{t+1}	Monthly	2.116	12.043***	8.2**	1

Results

Out of Sample

Out of Sample Results

Table: 1926M7:1962M6

Benchmark: Historical Average

	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	49.972***	367.592***	397.183**	0.931***
AV_{t+1}	Monthly	50.747**	379.160***	409.061**	0.932***
RET_{t+1}	, , ,		-29.479	-9.96	0
		Bend	chmark: SV _t		
	Sample	R_{oos}^2	MSE-F	ENC-NEW	ENC-HLN
SV_{t+1}	Monthly	-1.289	-4.682	76.562**	0.485*
AV_{t+1}	Monthly	11.328	47.013***	121.513**	0.62**
RET_{t+1}	Monthly	-6.098	-21.152	-6.192	0

Conclusions

Investment Weight

$$w_{AV,t} = \frac{c_{AV}}{AV_{t-1}}$$
 and $w_{SV,t} = \frac{c_{SV}}{SV_{t-1}}$ c is a constant used to equalize the standard deviation of

c is a constant used to equalize the standard deviation strategies to the buy and hold

Strategy Investment Weight

1927 1932 1937 1942 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2013

Statistic	N	Mean	St. Dev.	Min	Max
$W_{SV,t}$	1,085	1.290	1.412	0.017	16.193
$W_{AV,t}$	1,085	1.301	0.710	0.033	4.253

Results
In Sample
Out of Sample

Asset Allocation

Explainatio

Conclusion

Performance Measures

- RET = annualized average log excess return
- Sharpe $= \frac{\mathbb{E}[R_{\mathsf{x}}]}{\sigma(R_{\mathsf{x}})}$, dollar of returns for dollar of variance
- Sortino = $\frac{\mathbb{E}[R_x 0]}{\sqrt{\int_{-\infty}^0 (0 R_x)^2 f(R_x) dR}}$, return for downside
- Kappa(n) = $\frac{\mathbb{E}[R_x-0]}{\sqrt[n]{LPM_n}}$, where LPM is lower partial moment Kappa[2] = Sortino
- UpsidePotential $=\frac{\mathbb{E}[(R_{x}-0)_{+}]}{\sqrt{\mathbb{E}[(R_{x}-0)_{-}^{2}]}}$, dollar of average gain for downside risk
- Rachev = $\frac{ETL_{\alpha}(r_f x'r)}{ETL_{\beta}(x'r r_f)}$ where $ETL_{\alpha} = \frac{1}{\alpha} \int_{0}^{\alpha} VaR_{q}(X) dq$, dollar of possible extreme gain for dollar of possible extreme loss

Variance De composition

In Sample
Out of Sample

Asset Allocation

Explaination

Conclusions

Performance

1926M7:2016M12

Strategy	RET	Sharpe	Sortino	Kappa	UpsidePotential	Rachev
ВН	5.932	0.319	0.447	0.082	0.584	0.841
SV	8.598	0.462	0.722	0.132	0.650	1.151
AV	9.677	0.520	0.778	0.150	0.706	0.972

1962M6:2016M12

Strategy	RET	Sharpe	Sortino	Карра	${\sf UpsidePotential}$	Rachev
ВН	5.112	0.332	0.463	0.089	0.635	0.826
SV	7.311	0.406	0.647	0.122	0.663	1.212
AV	7.857	0.470	0.702	0.139	0.719	0.987

Asset Allocation

Drawdowns

Strategy	N	Max DD	Avg DD	Max Length	Avg Length	Max Recovery	Avg Recovery
ВН	82	-84.803	-8.069	188	11.549	154	7.207
SV	65	-63.508	-11.162	246	14.954	135	7.446
AV	87	-60.208	-9.014	205	10.851	135	5.034

Results In Sample

Out of Sample Asset

Allocation

Explaination

Conclusion

Risk over Reward

- The higher excess returns of low-risk strategies (assets) comes from a preference for the lottery like extreme returns possible from higher risk investments - Barberis and Huang (2008); Brunnermeier, Gollier, and Parker (2007)
- Leverage constraints prevent investors from taking the low-risk position - Black (1972)

Asset Allocatio

Explaination

Conclusion

Lottery

- For lotter preferences to explain the higher returns of either SV or AV, the Buy and Hold strategy must be more lottery-like than either
- It is not

		MAX1				SMAX1			
Strategy	Mean	Median	Sd	KS	Mean	Median	Sd	KS	
ВН	1.776	1.422	1.398		2.186	1.971	1.046		
SV	1.569	1.258	1.243	0.539	3.229	2.167	4.661	0	
AV	1.796	1.650	0.960	0	2.884	1.691	4.992	0	

		MAX	X5		SMAX5			
Strategy	Mean	Median	Sd	KS	Mean	Median	Sd	KS
ВН	1.134	0.922	0.774		1.410	1.341	0.540	
SV	1.023	0.842	0.787	0.393	2.084	1.377	2.765	0
AV	1.164	1.088	0.534	0	1.827	1.121	2.833	0

Risk Anomaly

Data

Variance Decomposition

Recult

In Sample

Asset

Allocation

Explaination

$$R_t^{AV} = \alpha_t + \beta_t^1 R_t^M + \beta_t \chi_t \tag{1}$$

Average Variance

J. Poland

Risk Anoma

Variance De composition

Results

Out of Sample

Allocation

Conclusions

Conclusions

 There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.

Risk Anomaly

.

Variance De composition

In Sample

Asset

E. ... Latina et a

.

Conclusions

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.

Conclusions

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.

Conclusions

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.
- The theory is not testable without correct specification of the true market portfolio of all assets.

Out of Sample

Explaination

Conclusions

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.
- The theory is not testable without correct specification of the true market portfolio of all assets.
- Testing market proxies gives no insight into the falsity of the theory.

In Sample
Out of Sampl

Allocation

Explainatio

Conclusions

- There is only one testable hypothesis associated with the generalized two-parameter asset pricing model of BJS, FM, BF, and others - (H2) The market portfolio is mean-variance efficient.
- No other implication is independently testable, e.g. linearity, they are all in an if and only if relationship with m-v efficiency.
- For any sample of observed individual returns there is an infinite number of ex-post mean-variance efficient portfolios.
- The theory is not testable without correct specification of the true market portfolio of all assets.
- Testing market proxies gives no insight into the falsity of the theory.
- The results of BJS, FM, BF and others are consistent with the S-L theory.