CSCI203

Week 6 – Lecture B

Looking for Text (In all the right places)

- ► Consider the problem of *String Searching*:
 - ▶ Given a text, t, is the subtext, s, present in it?
- ▶ This problem occurs in many real-life applications:
 - > grep;
 - Implies find in a text editor;
 - ► Genome matching;
 - Google search.
- ▶ There are a wide number of techniques to achieve this.
- Let us look at a couple of examples.

Linear Search

The Naïve Approach: Linear Search

- ▶ The simplest possible approach is linear search:
 - ightharpoonup Try to match s starting at each location in t.

```
for i in 0... length(t) - length(s)
j=0
while j < length(s) do
    if (s(j) != t(i+j)) break
    j++
od
if j == length(s) print(" string found starting at location " i)
rof</pre>
```

▶ We can see this with an example.

Linear Search: an Example

- \blacktriangleright Let t be the string "harry happened to have a hard hand".
- \blacktriangleright Let s be the string "hard".
- ▶ The search proceeds as follows:

Linear Search # Linear Time Search

- ▶ The outer loop in our algorithm is repeated |t| |s| times.
 - ▶ Typically the string t is much longer than the string s, so this is $\Theta(t)$.
- ▶ The inner loop is repeated up to |s| times for each time round the outer loop.
 - \triangleright This is $\Theta(s)$
- ▶ The total number of comparisons is $\Theta(|s| \times |t|)$.
- ▶ Is this the best we can do?
- ▶ The best we can possibly do is $\Theta(|s|+|t|)$;
 - we have to at least look at each string!
- Can we actually achieve this goal of a linear time algorithm?

Linear Time Search

Linear Time Search

- ▶ To do this we will use hashing.
- ► We compare the hash of string s with the hash of each substring of t with the same length:

f: rof

Linear Time Search

- ▶ This algorithm takes linear time, provided:
 - The hash function only collides rarely;
 - ▶ The hash function takes constant time to compute;
 - ▶ Independent of the length of string s!
- Surely, the second requirement is impossible.
- ▶ To hash a string of length |s| must take $\Theta(|s|)$ operations.
 - ► Yes?
 - No!
- ▶ Not if we are clever.

Clever Hashing

- ▶ We note that we need $\Theta(|s|)$ time to compute h(s).
- We also need $\Theta(|s|)$ time to compute h(t[0..|s|-1), the initial substring of t.
- ▶ The trick is to compute the hash of each successive substring of *t* in constant time.
- If we look closely at these substrings, we see an interesting feature:
 - Successive substrings differ only by two characters.
- The first character of the first substring;
- h a r r
- The last character of the next substring.
- a r r y

Rolling Hash

- Maybe we can define a hash function which, given h("harr") can compute h("arry") in constant time.
- Let us define a *rolling hash* function, r(), so that:
 - h("arry")=r(h("harr"),"h","y")
 - We compute the hash of the next substring by removing the first and appending the new last characters;
 - ▶ In this case we remove "h" and append "y".
- If we can compute a rolling hash in constant time than we can do string matching in linear time.
- ► Hows

Karp-Rabin String Search

- ▶ The Karp-Rabin algorithm looks like this:

 - The function roll(h,p,s) computes the rolling hash of the next substring given the hash of the existing substring, h, with the prefix p removed and the suffix, s, appended.
 - We need only find a suitable function roll().

How We Roll

- ➤ One popular way to compute roll() is to use something called the Rabin fingerprint.
- ➤ We start by treating each symbol in the alphabet as an integer use the ASCII code for example.
- ➤ We then find a random prime number > the size of the alphabet—let's pick 257.
- ▶ We now compute h("harr") as:
 - $> 257^3.104 + 257^2.97 + 257^1.114 + 257^0.114$
 - **=** 1,771,793,837
 - ► Note: "h" = 104, "a" = 97 and "r" = 114.

The Next Hash

- Ok, so given that h("harr") = 1,771,793,837 how do we get h("arry")?
- ► It's easy:
- ► Simply compute $r(h,p,s) = 257.(h-257^3.p) + s$
- ► 257.(1,771,793,837–257³.104)+121
- In this case the result is 1,654,094,526 which is exactly the same as h("arry")
- > 257³.97+257².114+257¹.114+257⁰.121
- Note: if these values become too large, we can reduce them modulo m, where m is a convenient value—say 2^{15} or 2^{31} .

Efficient?

- ▶ We can compute our hash values for *s* and the initial substring of *t* using *compact evaluation*.
- $\triangleright p^{k-1}.c_1+p^{k-2}.c_2+...+p.c_{k-1}+c_k$
- ▶ This requires a lot of multiplication!
- ► It can be re-written as...
- ► h= c_k +p(c_{k-1} +p(c_{k-2} +...+p(c_3 +p(c_2 +p c_1))..))
- ▶ Where k=|s| and c_i is the t^{th} character of s.
- ▶ This requires |s/-1| multiplications and |s|-1| additions.

Efficiency!

- ▶ If we precompute $q=p^{k-1}$ we can find the next hash value, h' as:
- h'=p.(h-q.c_i)+c_j where we remove character i and add character j.
- ▶ This requires only 1 multiplication and 1 addition.
- ➤ Constant time.
- Thus we have $\Theta(|s|)$ operations to perform the initial hashes and $|t|-|s| * \Theta(1)$ operations to do the rehashing.
- ▶ Overall: our algorithm operates in $\Theta(|s|+|t|)$ time.
- ▶ We win!