Chapter 3

Energy and Angular Momentum

3.1 Energy and Conservative Forces in 3D; Angular Momentum

10/6: • Recap.

- песар.
 - If $F(x, \dot{x}, t) = F(x)$, then we can define V(x).
 - A bit more on kinetic, potential, and total energy in 1D.
- Question: Is $\vec{F}(\vec{r}, \dot{\vec{r}}, t) = F(\vec{r})$ sufficient for the force to be conservative?
 - Answer: No, it is not.
- What is a necessary and sufficient condition, then?
 - If T + V = E, a constant, then we should have d/dt (T + V) = 0.
 - Since

$$\dot{T} = m(\dot{x}\ddot{x} + \dot{y}\ddot{y} + \dot{z}\ddot{z}) = m\dot{\vec{r}} \cdot \ddot{\vec{r}} = \dot{\vec{r}} \cdot \vec{F} \qquad \qquad \dot{V} = \frac{\partial V}{\partial x}\dot{x} + \frac{\partial V}{\partial y}\dot{y} + \frac{\partial V}{\partial z}\dot{z} = \dot{r} \cdot \vec{\nabla}V$$

stating that $\dot{T} + \dot{V} = d/dt$ (T + V) = 0 is equivalent to stating that

$$\dot{\vec{r}}\cdot(\vec{F}+\vec{\nabla}V)$$

- But from here, it follows that we must have $\vec{F} = -\vec{\nabla}V$.
- Takeaway: Conservative forces depend on \vec{r} and can be written as $-\vec{\nabla}V$ for some scalar function V.
- Can we express this condition more nicely? Yes!
 - Claim: curl $(\vec{F}) = \vec{\nabla} \times \vec{F} = 0$ iff $\vec{F} = -\vec{\nabla} V$ for some scalar function V.
 - Suppose $F = -\vec{\nabla}V$ for some scalar function V.
 - Then since the curl of a gradient field is zero,

$$\vec{\nabla} \times \vec{F} = \vec{\nabla} \times \vec{\nabla} V = 0$$

- Suppose $\vec{\nabla} \times \vec{F} = 0$.
 - To prove that $\vec{F} = -\vec{\nabla}V$ for some V, it will suffice to show that

$$V(\vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r'}$$

- In particular, it will suffice to show that the function above is well defined. To do so, we will need to prove that the line integral on the right-hand side above is **path-independent**.
- But then by the equivalent path independence condition below, we need

$$\oint_C \vec{F} \cdot d\vec{r} = 0$$

for all C.

■ Applying **Stokes' theorem**, we obtain the equivalent condition

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} = \iint_S 0 \cdot d\vec{S} = 0$$

as desired.

• Path-independent (line integral): A line integral $\int_{\vec{r}_0}^{\vec{r}_1} \vec{A} \cdot d\vec{r}$ over some vector field \vec{A} such that if C_1, C_2 are any two curves connecting \vec{r}_0 and \vec{r}_1 , then

$$\int_{C_1} \vec{A} \cdot d\vec{r} = \int_{C_2} \vec{A} \cdot d\vec{r}$$

Figure 3.1: Path independent line integral.

- An equivalent path independence condition may be obtained via inspection of Figure 3.1.
- Indeed, saying that the path integral along C_1 (from $\vec{r_0}$ to $\vec{r_1}$) equals that along C_2 (from $\vec{r_0}$ to $\vec{r_1}$) is equivalent to saying that the difference of the path integrals is equal to zero. Equivalently, the path integral along C_1 (from $\vec{r_0}$ to $\vec{r_1}$) plus the path integral along C_2 (from $\vec{r_1}$ to $\vec{r_0}$) equals zero. But this sum of path integrals is just the closed loop integral \oint_C around the oriented curve $C = C_1 C_2$.
- Thus, equivalently,

$$\int_C \vec{A} \cdot d\vec{r} = 0$$

for all C containing $\vec{r_0}$ and $\vec{r_1}$.

- Lastly, note that we do not need to constrain the curves to \vec{r}_0 and \vec{r}_1 but can let them freely range over the whole space. Thus, we can check the closed loop integral over all loops C in the space.
- Stokes' theorem: The following integral equality, where C is a closed curve bounding the curved surface S and \vec{A} is a vector field. Given by

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\vec{\nabla} \times \vec{A}) \cdot d\vec{S}$$

- How do we find V from F?
 - First, we need an integral theorem.

– Theorem: For all scalar functions $\phi: \mathbb{R}^3 \to \mathbb{R}$ defining conservative forces and all points $\vec{r}_0, \vec{r}_1 \in \mathbb{R}^3$, the **line integral**

$$\int_{\vec{r}_0}^{\vec{r}_1} \vec{\nabla} \phi \cdot d\vec{r} = \phi(\vec{r}_1) - \phi(\vec{r}_0)$$

– It follows that if $F = -\nabla V$, then

$$V(\vec{r}_1) - V(\vec{r}_0) = -\int_{\vec{r}_0}^{\vec{r}_1} \vec{\nabla} V \cdot d\vec{r}$$

- We now move onto rotation.
 - We describe rotation in polar coordinates.
 - Let ℓ_r be the length in the radial direction, and let ℓ_{θ} be the length in the angular direction.
 - Then

$$d\ell_r = dr \qquad \qquad d\ell_\theta = rd\theta$$

where

$$\hat{r} = \hat{\imath}\cos\theta + \hat{\jmath}\sin\theta \qquad \qquad \hat{\theta} = -\hat{\imath}\sin\theta + \hat{\jmath}\cos\theta$$

- Coordinate-wise, we have

$$x = r\cos\theta$$
 $y = r\sin\theta$

- Velocity-wise, we have $\vec{v} = v_x \hat{\imath} + v_y \hat{\jmath}$ where

$$v_x = \dot{r}\cos\theta - r\dot{\theta}\sin\theta$$
 $v_y = \dot{r}\sin\theta + r\dot{\theta}\cos\theta$ $v_r = \vec{v}\cdot\hat{r} = \dot{r} = \frac{\mathrm{d}\ell_r}{\mathrm{d}t}$ $v_\theta = \vec{v}\cdot\hat{\theta} = r\dot{\theta} = \frac{\mathrm{d}\ell_\theta}{\mathrm{d}t}$

- The analogy of force under rotation is **torque**.
- Torque: A twisting force that tends to cause rotation, quantified as follows. Also known as moment of force. Denoted by \vec{g} . Given by

$$\vec{G} = \vec{r} \times \vec{F}$$

- Componentwise, we have

$$G_x = yF_z - zF_y$$
 $G_y = zF_x - xF_z$ $G_z = xF_y - yF_x$

- We also have $\|\vec{G}\| = rF \sin \theta$.
- Momentum under rotation: Angular momentum.
- Angular momentum: The quantity of rotation of a body, quantified as follows. Denoted by \vec{J} . Given by

$$\vec{J} = \vec{r} \times \vec{p} = m\vec{r} \times \vec{r}$$

- Derivative:

$$\dot{\vec{J}} = \vec{G}$$

- Central force: A force that flows toward or away from the origin, i.e., is in the \hat{r} direction.
 - Identify with $\vec{r} \times \vec{F} = 0$.
- Under central forces, angular momentum is conserved.

- We have

$$\vec{J} = mr^2 \dot{\theta} \hat{z}$$

- Sweeping out equal areas (Kepler's 2nd law): We have

$$dA = \frac{1}{2}r^2 d\theta = \pi r^2 \frac{d\theta}{2\pi}$$
$$\frac{dA}{dt} = \frac{1}{2}r^2 \dot{\theta}$$

3.2 Introduction to Variational Calculus and the Lagrangian

• Recap points from last time, then variational calculus (different form of mechanics that is more powerful than Newton's laws, called Lagrangian mechanics).

- One particle feeling external conservative forces.
- We'll revisit this later when we learn Hamiltonian mechanics.
- Suppose we have one particle in three dimensions.
 - Newton tells us that we can get EOM by figuring out all the forces on each particle and setting the net force equal to the mass times acceleration.
 - This is often written componentwise.
 - For the special case of a conservative force (requirement is that the curl vanishes, $\vec{\nabla} \times \vec{F} = 0$), we can find a scalar potential energy function V such that $\vec{F} = -\vec{\nabla}V$.
 - Each

10/9:

$$-\frac{\partial V}{\partial x_i} = F_i = m\vec{\vec{r}}_i = \dot{p}_i$$

- Intro to variational calculus.
 - We're not responsible for doing variational calculations, themselves, but we will use the results.
- The variational problem.
 - Define a family of curves in the space $t \oplus x$ connecting two points (t_0, x_0) and (t_1, x_1) .
 - We have a **functional**

$$\Phi = \int_{t_0}^{t_1} f(x(t), \dot{x}(t), t) \, \mathrm{d}t$$

- The problem: Find the path x(t) that makes Φ into an extremum (i.e., minimum or maximum).
- Example: Find the curve that minimizes the distance between the two points.
- Functional: A function of curves (as opposed to points or values).
- Solving such problems.
 - We want to find a way to differentiate functionals like Φ with respect to curves.
 - Let x(t) be the curve for which Φ is minimal or maximal (aka extremal or **stationary**).
 - Let $\eta(t)$ be any smooth function with $\eta(t_0) = \eta(t_1) = 0$.
 - Define x(t,0) = x(t) and $x(t,\alpha) = x(t,0) + \alpha \eta(t)$.
 - Now, we can write Φ as a function of $\alpha!$

$$\Phi(\alpha) = \int_{t_0}^{t_1} f(x(t, \alpha), \dot{x}(t, \alpha), t) dt$$

- For x(t) to be an extremum, we need

$$\left. \frac{\partial \Phi}{\partial \alpha} \right|_{\alpha=0} = 0$$

for all $\eta(t)$.

- Now we take

$$\begin{split} \frac{\partial \Phi}{\partial \alpha} &= \frac{\partial}{\partial \alpha} \int_{t_0}^{t_1} f(x, \dot{x}, t) \, \mathrm{d}t \\ &= \int_{t_0}^{t_1} \frac{\partial f}{\partial \alpha} \, \mathrm{d}t \\ &= \int_{t_0}^{t_1} \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial \alpha} + \frac{\partial f}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial \alpha} \right) \mathrm{d}t \end{split}$$

- But we have that

$$x(t,\alpha) = x(t) + \alpha \eta(t)$$

$$\dot{x}(t,\alpha) = \dot{x}(t) + \alpha \dot{\eta}(t)$$

SO

$$\frac{\partial x}{\partial \alpha} = \eta(t) \qquad \qquad \frac{\partial \dot{x}}{\partial \alpha} = \dot{\eta}(t)$$

- Thus, continuing from the above,

$$\frac{\partial \Phi}{\partial \alpha} = \int_{t_0}^{t_1} \left(\frac{\partial f}{\partial x} \eta(t) + \frac{\partial f}{\partial \dot{x}} \frac{\partial \eta}{\partial t} \right) dt$$

- We now integrate by parts.

$$\int_{t_0}^{t_1} \frac{\partial f}{\partial \dot{x}} \frac{\mathrm{d}\eta}{\mathrm{d}t} \, \mathrm{d}t = \frac{\partial f}{\partial \dot{x}} [\eta(t_1) - \eta(t_0)] - \int_{t_0}^{t_1} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}} \right) \eta(t) \, \mathrm{d}t$$

- The first term after the equals sign goes to zero by the definition of η .
- Thus, continuing from the above,

$$\frac{\partial \Phi}{\partial \alpha} = \int_{t_0}^{t_1} \left(\frac{\partial f}{\partial x} \eta(t) - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}} \right) \eta(t) \right) \mathrm{d}t$$
$$= \int_{t_0}^{t_1} \left(\frac{\partial f}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}} \right) \right) \eta(t) \, \mathrm{d}t$$

- Thus, since we want $\partial \Phi / \partial \alpha \mid_{\alpha=0} = 0$, our condition that f must satisfy is

$$\int_{t_0}^{t_1} \left(\frac{\partial f}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}} \right) \right) \eta(t) \, \mathrm{d}t = 0$$

for any $\eta(t)$.

- In particular, if this is to be zero for all $\eta(t)$, then we must have

$$\frac{\partial f}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}} \right) = 0$$

- This is called an **Euler Equation** within mathematics, and an **Euler-Lagrange Equation** within physics.
- Variational example: What shape of curve minimizes the distance between two points.

- In the plane, we all know that this is a straight line, and we will prove this now.
 - Aside: The problem is more interesting when applied to curved surfaces, such as geodesics or the sphere (great circle routes).
- Recall that $d\ell = \sqrt{dt^2 + dx^2} = dt \sqrt{1 + \dot{x}^2}$.
- We want to minimize the sum of these distances along the curve (arc length), i.e., we want to minimize

$$\Phi = \int_{t_0}^{t_1} \mathrm{d}t \, \sqrt{1 + \dot{x}^2}$$

- From here, we may define

$$f(x, \dot{x}, t) = \sqrt{1 + \dot{x}^2}$$

for substitution into the Euler-Lagrange equation.

- Substituting, we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}} \right) = \frac{\partial f}{\partial x}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} (1 + \dot{x}^2)^{-1/2} (2\dot{x}) \right) = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\dot{x}}{\sqrt{1 + \dot{x}^2}} \right) = 0$$

$$\frac{\dot{x}}{\sqrt{1 + \dot{x}^2}} = C$$

- If the whole final expression is constant, then it must be that \dot{x} is constant. From here, we can recover x(t) = ct + b.
- Note that we have not proven that this is the minimum (it could be a maximum of Φ !). But if there is a minimum, it is this.
- In 3D, we can consider an equation of the form $f(x_1, x_2, x_3, \dot{x}_1, \dot{x}_2, \dot{x}_3, t)$.
 - Running this back through the procedure, we get an Euler-Lagrange equation for each component.

$$\frac{\partial f}{\partial x_i} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}_i} \right) = 0$$

- We want a variational form of Newton's laws.
 - Compare the Euler-Lagrange equation and an analogous form of Newton's law.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{x}_i} \right) = \frac{\partial f}{\partial x_i} \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}t} (m \dot{x}_i) = -\frac{\partial V}{\partial x_i}$$

- Let

$$f = T - V = \sum_{i} \frac{1}{2} m \dot{x}_{i}^{2} - V(\{x_{i}\})$$

where $V(\lbrace x_i \rbrace)$ denotes $V(x_1, x_2, x_3)$.

• Lagrangian function: The function defined as follows. Denoted by L. Given by

$$L = T - V$$

• Action: The following integral. Also known as action integral. Denoted by S, I. Given by

$$S = \int_{t_0}^{t_1} L(x_i, \dot{x}_i, t) \, \mathrm{d}t$$

- Least action principle: Particle trajectories are those for which S is extremal.
 - Not always needed or necessary.
- Procedure for finding equations of motion.
 - 1. Write down your Lagrangian for the system.
 - 2. Use the componentwise Euler-Lagrange equations to find the EOMs.
- Why do this?
 - 1. We can use any coordinate system to define L.
 - It's often easier to change coordinates at the stage of scalar functions rather than later when you're dealing with multiple derivatives, vectors, etc.
 - 2. Much easier to specify constraints.
 - We can also use this formalism (as we'll see next time) to go backwards and see what the original forces are.
 - 3. Symmetries and conservation laws are often more transparent in this formulation.
- Example.
 - Suppose we have a bead that is constrained to move under gravity along a parabolic wire.
 - Let the equation of the wire be $z = ax^2$.
 - The wire exerts normal forces; it's hard to figure out what these are because the curvature of the wire is constantly changing.
 - Write

$$T = \frac{1}{2}m(\dot{x}^2 + \dot{z}^2) \qquad V = mgz$$

- We also need $\dot{z} = 2ax\dot{x}$.
- Thus,

$$\begin{split} L &= T - V \\ &= \frac{1}{2} m (\dot{x}^2 + (2ax\dot{x})^2) - mgax^2 \\ &= \frac{1}{2} m (\dot{x}^2 + 4a^2x^2\dot{x}^2) - mgax^2 \end{split}$$

- We can now find the equations of motion with the Euler-Lagrange equation.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(m\dot{x} + 4ma^2x^2\dot{x} \right) = 4ma^2x\dot{x}^2 - 2mgax$$

$$m\ddot{x} + 8ma^2x\dot{x}^2 + 4ma^2x^2\ddot{x} = 4ma^2x\dot{x}^2 - 2mgax$$

$$\ddot{x}(1 + 4a^2x^2) + \dot{x}^2(4a^2x) + 2gax = 0$$

- This final expression is pretty complicated! It would have been very complicated (perhaps prohibitively so) to arrive here with kinematics.
- \bullet Imagine now that this wire is rotating at constant angular velocity $\omega.$
 - We can solve this in rotating coordinates just as easily!
 - This time, take

$$T = \frac{1}{2}m(v_r^2 + v_\theta^2 + v_z^2)$$

where

$$v_r = \dot{r}$$
 $v_\theta = r\dot{\theta} = r\omega$ $v_z = \dot{z}$

3.3 Office Hours (Jerison)

• Phase offsets in the driven harmonic oscillator.

3.4 Introduction to the Lagrangian: Examples and the Free Particle

- 10/11: Now that we have the Lagrangian, pretty soon, we will be able to prove why the kinetic energy has the form $mv^2/2$.
 - We won't be required to reproduce this derivation, though.
 - Announcements.
 - Midterm will be on a Wednesday during our section.
 - No pset due Friday of midterm week; a smaller one will be due the following Monday.
 - There will be another small one due that Friday.
 - Some textbook chapters have been posted on Canvas with more background on the Lagrangian; they contain info that may be helpful for our homework.
 - Today: Pendulum and generalized coordinates.
 - Next time: Lagrange multipliers and constraints; start central, conservative forces.
 - Recap.
 - $-L = T V = T(\{q_i\}) V(\{q_i\}).$
 - \blacksquare We use q instead of x because these coordinates don't have to be positions!
 - Lagrange's equations of motion:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}$$

for i = 1, 2, 3 for an unconstrained particle.

- Why use Lagrangian mechanics?
 - 1. Constraints are easy to incorporate, e.g., bead on a quadratic wire.
 - 2. We can choose any generalized coordinates in which to express T, V.
 - 3. Symmetries are often more transparent.
- We talked about 1 last time; we'll talk about 2-3 today.
- Generalized coordinates.
- Example (use of different coordinates): Simple pendulum.

Figure 3.2: Simple pendulum.

- A rigid, massless rod of length ℓ pinned at the top and connected to a bob of mass m that makes angle θ with the vertical.
- EOM with Newton's laws.
 - $\blacksquare \vec{F} = m\ddot{\vec{r}}.$
 - This system has a plane polar symmetry, so we want an expression in plane polar coordinates.
 - In particular, in these coordinates, $\ddot{\vec{r}} = (\ddot{r} r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$.
 - Using this acceleration vector, the EOMs are as follows:

$$F_{T,\text{rod}} + mg\cos\theta = F_r = m(\ddot{r} - r\dot{\theta}^2)$$
 $-mg\sin\theta = F_\theta = m(r\ddot{\theta} + 2\dot{r}\dot{\theta})$

■ We know by inspection of Figure 3.2 that $\ddot{r} = \dot{r} = 0$ and $r = \ell$, so the above becomes

$$F_r = -m\ell\dot{\theta}^2 \qquad \qquad F_\theta = m\ell\dot{\theta}$$

■ Since the radial forces are balanced, we only need to worry about the angular ones going forward. In particular, by transitivity, the final EOM is

$$m\ell\ddot{\theta} = -mg\sin\theta$$
$$\ddot{\theta} = -\frac{g}{\ell}\sin\theta$$

as desired.

- EOM with the Lagrangian.
 - $\blacksquare L = T V$, where

$$T = \frac{1}{2}m(v_r^2 + v_\theta^2) = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) = \frac{1}{2}m\ell^2\dot{\theta}^2 \qquad V = -mg\ell\cos\theta$$

- Note that we can define the potential energy function as such instead of as $mg(\ell \ell \cos \theta)$ since we may choose the zero of potential energy to be $mg\ell$!
- Thus, the complete Lagrangian is

$$L = \frac{1}{2}m\ell^2\dot{\theta}^2 + mg\ell\cos\theta$$

■ With only one of the two coordinates remaining (that is, θ not r), we only need an Euler-Lagrange equation in this one component to find the complete EOM:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{\theta}} \right) &= \frac{\partial L}{\partial \theta} \\ \frac{\mathrm{d}}{\mathrm{d}t} \left(m\ell^2 \dot{\theta} \right) &= -mg\ell \sin \theta \\ m\ell^2 \ddot{\theta} &= -mg\ell \sin \theta \\ \ddot{\theta} &= -\frac{g}{\ell} \sin \theta \end{split}$$

- Thus, we got the same result without having to derive the complicated transformation between Cartesian and polar coordinates!
- The θ above is the first example we've seen thus far of a **generalized coordinate** (we'll see further examples later).
- $\partial L/\partial \dot{q}_i$ is often referred to as a **generalized momentum** and $\partial L/\partial q_i$ is often referred to as a **generalized force**.
 - If we're in Cartesian coordinates, these things are actual momenta and forces since...

$$\frac{\partial L}{\partial \dot{x}_i} = m\dot{x}_i = p_i \qquad \qquad \frac{\partial L}{\partial x_i} = -\frac{\mathrm{d}V}{\mathrm{d}x_i} = F_i$$

- In the case of the pendulum, recall that we have

$$\frac{\partial L}{\partial \dot{\theta}} = m\ell^2 \dot{\theta} \qquad \qquad \frac{\partial L}{\partial \theta} = -mg\ell \sin \theta$$

- The left one can be recognized as the angular momentum $\vec{r} \times \vec{p}$.
- The right one can be recognized as the torque $\vec{r} \times \vec{F}$.
- If L is independent of q_i for some q_i , then $\partial L/\partial \dot{q}_i$ is constant in time and hence we have a conserved force (in some sense).
 - In particular, if L is independent of some q_i , then $0 = \partial L/\partial q_i = d/dt (\partial L/\partial \dot{q}_i)$, so $\partial L/\partial \dot{q}_i$ is constant in time.
- One last thing to keep in mind about coordinate systems.
- Cylindrical and spherical coordinates.
 - Cylindrical:

$$x = r \cos \phi$$
 $y = r \sin \phi$ $z = z$

- Spherical:

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$

- In this case, θ comes down from the vertical, and ϕ sweeps around the xy-plane.
- Thus, $\theta = [0, \pi]$ and $\phi = [0, 2\pi]$.
- Moving on: Symmetries.
- Why is $T = mv^2/2$? Let's look at the Lagrangian of a free particle.
 - No external forces means that V=0 and thus L=T-0=T.
 - If we believe Galileo's relativity principle, then the EOMs must be the same in any inertial reference frame.
 - This is *almost* the same as saying that the Lagrangian must be the same in any inertial reference frame, but not quite!
 - In particular, if $L' = L + d/dt f(q_i, t)$, then L' and L give the same EOMs, that is, they are equivalent.
 - Note: We have just defined a notion of *equivalence* for Lagrangians!
 - To see that they do give the same EOMs, start by expanding the definition of L' above.

$$L' = L + \sum_{i} \frac{\partial f}{\partial q_i} \dot{q}_i + \frac{\partial f}{\partial t}$$

- Next, observe that

$$\frac{\partial L'}{\partial \dot{q}_i} = \frac{\partial L}{\partial \dot{q}_i} + \frac{\partial f}{\partial q_i} \qquad \qquad \frac{\partial L'}{\partial q_i} = \frac{\partial L}{\partial q_i} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial q_i} \right)$$

- For the left equation above, we use the facts that L may have a \dot{q}_i term, $\partial f/\partial q_i$ \dot{q}_i does have a \dot{q}_i , and every other term does not contain a \dot{q}_i . This allows us to compute the partial derivative as written.
- For the right equation above, note that the partial and total derivatives $\partial/\partial q_i$ and d/dt do not commute in general. However, in this case, we know that

$$\frac{\partial}{\partial q_i} \left(\sum_j \frac{\partial f}{\partial q_j} \dot{q}_j + \frac{\partial f}{\partial t} \right) = \sum_i \dot{q}_j \cdot \frac{\partial}{\partial j} \frac{\partial f}{\partial q_i} + \frac{\partial}{\partial t} \frac{\partial f}{\partial q_i} = \operatorname{dt} \left(\frac{\partial f}{\partial q_i} \right)$$

But how come $\frac{\partial}{\partial q_i} \frac{\partial f}{\partial q_j} \dot{q}_j = \dot{q}_j \cdot \frac{\partial}{\partial j} \frac{\partial f}{\partial q_i}$?? How do we know that \dot{q}_j does not depend on q_i ?

- Last, it follows that the EOMs from L' are

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} + \frac{\partial f}{\partial q_i} \right) = \frac{\partial L}{\partial q_i} + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial f}{\partial q_i}$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}$$

i.e., are the same as those from L, as desired.

- Free particle: A particle moving with some velocity v in a reference frame K under the influence of no external forces.
- A teaser for next time.
 - Suppose we have a free particle moving with velocity \vec{v} so that L = T.
 - What form can this take such that L either doesn't change or changes by $d/dt f(q_i, t)$ when we perform a Galilean transformation (that is, go to a new inertial reference frame)?
 - What we'll see next time is that this constrains T to be $\propto v^2$.

3.5 Problem Session

• An integral of the form $\int_{\vec{r}_1}^{\vec{r}_2} \vec{F} \cdot d\vec{r}$ is still a *path* integral, and thus although it *can* be evaluated componentwise, special care is needed.

Figure 3.3: Componentwise evaluation of a path integral.

- In particular, if we integrate componentwise, we can integrate along the x-axis, then the y-axis, then the z-axis. Importantly, however, we need to integrate along the path

$$(x_1, y_1, z_1) \to (x_2, y_1, z_1) \to (x_2, y_2, z_1) \to (x_2, y_2, z_2)$$

- This means that, for instance, it is not enough to plug the x-component of \vec{F} into $\int_{x_1}^{x_2} F_x dx$; rather, we must plug in the x-component evaluated at all $F(x', y_1, z_1)$ along the path.
- Thus, with some modification of the components, we *can* use definite integrals to evaluate a path integral.
- An alternative method of evaluating path integrals.
 - From Hugh; they did this in the 10/11 discussion section.
 - See p. 70-71 of CAAGThomasNotes.
 - Essentially, we take an indefinite integral in one dimension, then differentiate in another to solve for the function-esque constant of integration.
- Be sure to check my work with sanity checks.
 - For example, I should take the negative gradient of my potential functions to confirm that their equal to the force components.
- I checked my answers with Ian, Hugh, Zach, and Enoch today.

3.6 Chapter 3: Energy and Angular Momentum

From Kibble and Berkshire (2004).

- Focus of this chapter: Generalize Chapter 2 to 2-3 dimensions.
 - We will investigate the problem of a particle moving under known external force \vec{F} .

Section 3.1: Energy; Conservative Forces

• **Kinetic energy** (of a particle of mass m moving in three dimensions): The following expression.

Denoted by T. Given by

$$T = \frac{1}{2}m\dot{\bar{r}}^2 = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2)$$

• Rate of change of the kinetic energy:

$$\dot{T} = m(\dot{x}\ddot{x} + \dot{y}\ddot{y} + \dot{z}\ddot{z}) = m\dot{\vec{r}} \cdot \ddot{\vec{r}} = \dot{\vec{r}} \cdot \vec{F}$$

• Work (in 3D): The following expression. Denoted by dW. Given by

$$dW = \vec{F} \cdot d\vec{r} = F_x dx + F_y dy + F_z dz$$

• Rate of change of the potential energy.

$$\dot{V} = \frac{\partial V}{\partial x}\dot{x} + \frac{\partial V}{\partial y}\dot{y} + \frac{\partial V}{\partial z}\dot{z} = \dot{r} \cdot \vec{\nabla}V$$

- A condition for $\vec{F}(\vec{r},\dot{\vec{r}},t)$ to be conservative.
 - First off, we must have $\vec{F}(\vec{r},\dot{\vec{r}},t)=\vec{F}(\vec{r})$, analogous to before.
 - However, this time, we need more.
 - In particular, we want T+V=E= constant. Differentiating, we obtain the following constraint.

$$\begin{split} \dot{T} + \dot{V} &= 0 \\ \vec{r} \cdot \vec{F} + \dot{r} \cdot \vec{\nabla} V &= 0 \\ \vec{r} \cdot (\vec{F} + \vec{\nabla} V) &= 0 \end{split}$$

- But since the above must hold for any \vec{r} , the zero product property implies that we must have

$$\vec{F} + \vec{\nabla}V = 0$$

$$\vec{F} = -\vec{\nabla}V$$

$$(F_x, F_y, F_z) = \left(-\frac{\partial V}{\partial x}, -\frac{\partial V}{\partial y}, -\frac{\partial V}{\partial z}\right)$$

- How can we express this constraint purely in terms of properties of \vec{F} ?
- A necessary condition for $\vec{F}(\vec{r})$ to be conservative.
 - Since the curl of a gradient field is zero (that is, $\vec{\nabla} \times \vec{\nabla} \phi = 0$), it follows that if $\vec{F} = -\vec{\nabla} V$, then we must have

$$\vec{\nabla} \times \vec{F} = 0$$

That is to say, the curl of \vec{F} must necessarily vanishes.

- Componentwise, this constraint means that

$$\left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}, \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}, \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) = (0, 0, 0)$$

– Sanity check: If $\vec{F} = -\vec{\nabla}V$, does the curl vanish in, for example, the z-direction? Yes:

$$\begin{split} \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} &= \frac{\partial}{\partial x} \left(-\frac{\partial V}{\partial y} \right) - \frac{\partial}{\partial y} \left(-\frac{\partial V}{\partial x} \right) \\ &= -\frac{\partial^2 V}{\partial x \partial y} + \frac{\partial^2 V}{\partial y \partial x} \\ &= -\frac{\partial^2 V}{\partial x \partial y} + \frac{\partial^2 V}{\partial x \partial y} \\ &= 0 \end{split}$$

- Demonstrating that $\vec{\nabla} \times \vec{F} = 0$ is sufficient to prove that $\vec{F} = -\vec{\nabla}V$.
 - See class notes.

Section 3.2: Projectiles

- The case of a projectile with no drag (review from AP Physics).
- The case of a projectile with drag (new, but not covered in class).

Section 3.3: Moments; Angular Momentum

• Moment about the origin (of \vec{F} acting on a particle at position \vec{r}): The vector product defined as follows. Denoted by \vec{G} . Given by $\vec{G} = \vec{r} \times \vec{F}$

Figure 3.4: Moments.

- $-\vec{G}$ points in the direction of the axis about which the force tends to rotate the particle, i.e., normal to the plane formed by \vec{r} and \vec{F} .
- The magnitude of \vec{G} :

$$|\vec{G}| = G = rF\sin\theta = bF$$

• Moment about the x-axis: The following quantity. Denoted by G_x . Given by

$$G_x = yF_z - zF_y$$

• Moment about the y-axis: The following quantity. Denoted by G_y . Given by

$$G_y = zF_x - xF_z$$

• Moment about the z-axis: The following quantity. Denoted by G_z . Given by

$$G_z = xF_y - yF_x$$

- Moments play an important role in rigid body dynamics (see Chapters 8-9).
- Angular momentum about the origin (of a particle at position \vec{r} with momentum \vec{p}): The vector product defined as follows. Also known as moment of momentum about the origin Denoted by \vec{J} . Given by

$$\vec{J} = \vec{r} \times \vec{p}$$

- Alternate form:

$$\vec{J} = m\vec{r} \times \dot{\vec{r}}$$

• Angular momentum about the x-axis: The following quantity. Denoted by J_x . Given by

$$J_x = m(y\dot{z} - z\dot{y})$$

ullet Angular momentum about the y-axis: The following quantity. Denoted by J_u . Given by

$$J_y = m(z\dot{x} - x\dot{z})$$

• Angular momentum about the z-axis: The following quantity. Denoted by J_z . Given by

$$J_z = m(x\dot{y} - y\dot{x})$$

• Momentum: A quantitative measure of the motion of a moving body. Also known as linear momentum. Denoted by \vec{p} . Given by

$$\vec{p} = m\vec{v}$$

• The rate of change of the angular momentum is equal to the moment of the applied force:

$$\dot{\vec{J}} = m(\dot{\vec{r}} \times \dot{\vec{r}} + \vec{r} \times \ddot{\vec{r}}) = 0 + \vec{r} \times m \ddot{\vec{r}} = \vec{r} \times \vec{F} = \vec{G}$$

- This is analogous to the result that

$$\dot{\vec{p}}=\vec{F}$$

- Axial (vector): A vector whose direction depends on the choice of a right-hand screw convention.
- **Polar** (vector): A vector whose direction does not depend on the choice of a right-hand screw convention.

Section 3.4: Central Forces; Conservation of Angular Momentum

- Central (external force): An external force that is always directed toward or away from a fixed point.
- Center of force: The fixed point toward or away from which a central force is always pointed.
- Whenever possible, we pick the origin as our center of force.
 - In this case, $\vec{r} \parallel \vec{F}$, so

$$\vec{G} = \vec{r} \times \vec{F} = 0$$

- The above is a good condition for \vec{F} to be central.
- Consequence: Since $0 = \vec{G} = \vec{J}$ for a central force, \vec{J} is constant under central forces! This observation can be formalized as follows.

Figure 3.5: The law of conservation of angular momentum.

- Law of conservtion of angular momentum: As long as a particle is subject only to central forces, its angular momentum does not change.
 - Note that this implies that both the *direction* and *magnitude* of the angular momentum are conserved in such a situation!
- Implications of the conservation of the direction of \vec{J} .
 - The motion is always confined to a plane, i.e., the plane to which \vec{J} is normal and in which \vec{r}, \vec{p} lie.
 - This is obvious physically (see Figure 3.5).
- Implications of the conservation of the magnitude of \vec{J} .
 - Since $v_r = \dot{r}$, $v_\theta = r\dot{\theta}$, and $J = mrv_\theta$, [1] we have that

$$J = mr^2 \dot{\theta}$$

- That is, as the radius shrinks, the angular velocity increases and vice versa.
- A note on **Kepler's second law** and sweeping out equal areas during similar time intervals.

Section 3.5: Polar Coordinates

- Works out a lot of relevant formulas.
- A better way to work all these out is with Lagrangian mechanics!
- Variational principle: A principle which states that some quantity has a minimum value or, more generally, a stationary value.

Section 3.6: The Calculus of Variations

• Goes through the shortest distance example.

Section 3.7: Hamilton's Principle; Lagrange's Equations

- Hamilton's principle: The action integral I is stationary under arbitrary variations δx , δy , δz which vanish at the limits of integration t_0 , t_1 .
- Lagrange's equations: The equations given as follows for i = 1, ..., n. Given by

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = \frac{\partial L}{\partial q_i}$$

• Conversion factors to other coordinate systems given, e.g., $\partial T/\partial \dot{\rho}$ from cylindrical.

¹Why is v_r not included here??

Section 3.8: Summary

• Some good ideas.