

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dynamic connectivity

Given a set of N objects.

- Union command: connect two objects.
- Find/connected query: is there a path connecting the two objects?

Connectivity example

Q. Is there a path connecting p and q?

A. Yes.

Modeling the objects

Applications involve manipulating objects of all types.

- Pixels in a digital photo.
- · Computers in a network.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Variable names in Fortran program.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

- Use integers as array index.
- Suppress details not relevant to union-find.

Modeling the connections

We assume "is connected to" is an equivalence relation:

- Reflexive: p is connected to p.
- Symmetric: if p is connected to q, then q is connected to p.
- Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

Implementing the operations

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

Union-find data type (API)

Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

```
public class UF

UF(int N)

void union(int p, int q)

boolean connected(int p, int q)

int find(int p)

int count()

intialize union-find data structure with N objects (0 to N - I)

add connection between p and q

are p and q in the same component?

component identifier for p (0 to N - I)

number of components
```

Dynamic-connectivity client

- Read in number of objects N from standard input.
- Repeat:
 - read in pair of integers from standard input
 - if they are not yet connected, connect them and print out pair

```
% more tinyUF.txt
10
4  3
3  8
6  5
9  4
2  1
8  9
5  0
7  2
6  1
1  0
6  7
```

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-find [eager approach]

Data structure.

- Integer array id[] of length N.
- Interpretation: p and q are connected iff they have the same id.

	0									
id[]	0	1	1	8	8	0	0	1	8	8

0, 5 and 6 are connected 1, 2, and 7 are connected 3, 4, 8, and 9 are connected

if and only if

Quick-find [eager approach]

Data structure.

- Integer array id[] of length N.
- Interpretation: p and q are connected iff they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q, change all entries whose id equals id[p] to id[q].

Quick-find demo

(5)

 $\left(6\right)$

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

Quick-find demo

									8	
id[]	1	1	1	8	8	1	1	1	8	8

Quick-find: Java implementation

```
public class QuickFindUF
   private int[] id;
   public QuickFindUF(int N)
       id = new int[N];
                                                              set id of each object to itself
       for (int i = 0; i < N; i++)
                                                              (N array accesses)
          id[i] = i;
                                                              check whether p and q
   public boolean connected(int p, int q)
                                                              are in the same component
   { return id[p] == id[q]; }
                                                             (2 array accesses)
   public void union(int p, int q)
       int pid = id[p];
       int qid = id[q];
                                                              change all entries with id[p] to id[q]
       for (int i = 0; i < id.length; i++)
                                                              (at most 2N + 2 array accesses)
          if (id[i] == pid) id[i] = gid;
```

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find
quick-find	N	N	1

order of growth of number of array accesses

quadratic

Union is too expensive. It takes N^2 array accesses to process a sequence of N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

- 10⁹ operations per second.
- 109 words of main memory.
- Touch all words in approximately 1 second.
- a truism (roughly) since 1950!

Ex. Huge problem for quick-find.

- 10⁹ union commands on 10⁹ objects.
- Quick-find takes more than 10¹⁸ operations.
- 30+ years of computer time!

Quadratic algorithms don't scale with technology.

- New computer may be 10x as fast.
- But, has 10x as much memory ⇒
 want to solve a problem that is 10x as big.
- With quadratic algorithm, takes 10x as long!

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-union [lazy approach]

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

id[] 0 1 2 3 4 5 6 7 8 9
id[] 0 1 9 4 9 6 6 7 8 9

keep going until it doesn't change (algorithm ensures no cycles)

Quick-union [lazy approach]

Data structure.

- Integer array id[] of length N.
- Interpretation: id[i] is parent of i.
- Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge components containing p and q, set the id of p's root to the id of q's root.

root of 3 is 9
root of 5 is 6
3 and 5 are not connected

0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

Quick-union: Java implementation

```
public class QuickUnionUF
   private int[] id;
   public QuickUnionUF(int N)
                                                                set id of each object to itself
       id = new int[N];
                                                                (N array accesses)
       for (int i = 0; i < N; i++) id[i] = i;
   private int root(int i)
                                                                chase parent pointers until reach root
       while (i != id[i]) i = id[i];
                                                                (depth of i array accesses)
       return i;
   public boolean connected(int p, int q)
                                                                check if p and q have same root
       return root(p) == root(q);
                                                                (depth of p and q array accesses)
   public void union(int p, int q)
       int i = root(p);
                                                                change root of p to point to root of q
       int j = root(q);
                                                                (depth of p and q array accesses)
       id[i] = j;
```

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

algorithm	initialize	union	find	
quick-find	N	N	1	
quick-union	N	N †	N	worst case

† includes cost of finding roots

Quick-find defect.

- Union too expensive (*N* array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be *N* array accesses).

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking root of smaller tree to root of larger tree.

Weighted quick-union demo

 $\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{pmatrix}$

id[] 0 1 2 3 4 5 6 7 8 9

id[] 0 1 2 3 4 5 6 7 8 9

id[]

Quick-union and weighted quick-union example

quick-union average distance to root: 5.11 weighted average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

```
return root(p) == root(q);
```

Union. Modify quick-union to:

- Link root of smaller tree to root of larger tree.
- Update the sz[] array.

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of *p* and *q*.
- Union: takes constant time, given roots.

lg = base-2 logarithm

Proposition. Depth of any node x is at most $\lg N$.

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

Pf. When does depth of *x* increase?

Increases by 1 when tree T_1 containing x is merged into another tree T_2 .

- The size of the tree containing x at least doubles since $|T_2| \ge |T_1|$.
- Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of *p* and *q*.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

algorithm	initialize	union	connected
quick-find	N	N	1
quick-union	N	N †	N
weighted QU	N	lg N †	lg N

† includes cost of finding roots

- Q. Stop at guaranteed acceptable performance?
- A. No, easy to improve further.

Path compression: Java implementation

Two-pass implementation: add second loop to root() to set the id[] of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its grandparent (thereby halving path length).

```
private int root(int i)
{
    while (i != id[i])
    id[i] = id[id[i]];
    i = id[i];
}
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression: amortized analysis

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of M union–find ops on N objects makes $\leq c(N+M\lg^*N)$ array accesses.

- Analysis can be improved to $N + M \alpha(M, N)$.
- Simple algorithm with fascinating mathematics.

N	lg* N
1	0
2	1
4	2
16	3
65536	4
265536	5

iterate log function

Linear-time algorithm for *M* union-find ops on *N* objects?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. [Fredman-Saks] No linear-time algorithm exists.

Summary

Bottom line. Weighted quick union (with path compression) makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time		
quick-find	MN		
quick-union	MN		
weighted QU	N + M log N		
QU + path compression	N + M log N		
weighted QU + path compression	N + M lg* N		

M union-find operations on a set of N objects

Ex. [109 unions and finds with 109 objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- > improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Union-find applications

- Percolation.
- Games (Go, Hex).
- ✓ Dynamic connectivity.
 - Least common ancestor.
 - Equivalence of finite state automata.
 - Hoshen-Kopelman algorithm in physics.
 - Hinley-Milner polymorphic type inference.
 - Kruskal's minimum spanning tree algorithm.
 - Compiling equivalence statements in Fortran.
 - Morphological attribute openings and closings.
 - Matlab's bwlabel() function in image processing.

Percolation

A model for many physical systems:

- *N*-by-*N* grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates iff top and bottom are connected by open sites.

Percolation

A model for many physical systems:

- *N*-by-*N* grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates iff top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Likelihood of percolation

Depends on site vacancy probability p.

Percolation phase transition

When N is large, theory guarantees a sharp threshold p^* .

- $p > p^*$: almost certainly percolates.
- $p < p^*$: almost certainly does not percolate.
- Q. What is the value of p^* ?

Monte Carlo simulation

- Initialize *N*-by-*N* whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p*.

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

N = 20

Q. How to check whether an *N*-by-*N* system percolates?

- Q. How to check whether an *N*-by-*N* system percolates?
 - Create an object for each site and name them 0 to $N^2 1$.

- Q. How to check whether an *N*-by-*N* system percolates?
 - Create an object for each site and name them 0 to N^2-1 .
 - · Sites are in same component if connected by open sites.

- Q. How to check whether an *N*-by-*N* system percolates?
 - Create an object for each site and name them 0 to $N^2 1$.
 - Sites are in same component if connected by open sites.
 - Percolates iff any site on bottom row is connected to site on top row.

brute-force algorithm: N 2 calls to connected()

Clever trick. Introduce 2 virtual sites (and connections to top and bottom).

Percolates iff virtual top site is connected to virtual bottom site.

efficient algorithm: only 1 call to connected()

Q. How to model opening a new site?

- Q. How to model opening a new site?
- A. Mark new site as open; connect it to all of its adjacent open sites.

up to 4 calls to union()

Percolation threshold

- Q. What is percolation threshold p^* ?
- A. About 0.592746 for large square lattices.

constant known only via simulation

Fast algorithm enables accurate answer to scientific question.

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- > improvements
- applications

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

1.5 UNION-FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications