Fair Inference on Outcomes

Razieh Nabi

rnabiab1@jhu.edu

Ilya Shpitser

ilyas@cs.jhu.edu

Computer Science Department

AAAI-18: Thirty-Second Conference on Artificial Intelligence

- ML algorithms are making making influential decisions in people's lives
 - Insurance approval, hiring decision, recidivism prediction
 - Based on complicated regression or classification algorithms $\mathbb{E}[Y \mid \mathbf{X}; \alpha]$ or $p(Y \mid \mathbf{X}; \alpha)$, (Y: outcome, $\mathbf{X}:$ features, $\alpha:$ model parameters)
- Algorithms can reinforce human prejudices
 - Data is collected from the "unfair" world
 Example: racial profiling (police officers vs African-Americans)
 - No (default) correction for discriminatory biases in statistical models
 Selection bias is not the same as statistical bias
- How to define and measure discrimination/fairness?
- How to make statistical inference "fair"?

- ML algorithms are making making influential decisions in people's lives
 - Insurance approval, hiring decision, recidivism prediction
 - Based on complicated regression or classification algorithms $\mathbb{E}[Y \mid \mathbf{X}; \alpha]$ or $p(Y \mid \mathbf{X}; \alpha)$, (Y: outcome, $\mathbf{X}:$ features, $\alpha:$ model parameters)
- Algorithms can reinforce human prejudices
 - Data is collected from the "unfair" world
 - Example: racial profiling (police officers vs African-Americans)
 - No (default) correction for discriminatory biases in statistical models
 - Selection bias is not the same as statistical bias
- How to define and measure discrimination/fairness?
- How to make statistical inference "fair"?

- ML algorithms are making making influential decisions in people's lives
 - Insurance approval, hiring decision, recidivism prediction
 - Based on complicated regression or classification algorithms $\mathbb{E}[Y \mid \mathbf{X}; \alpha]$ or $p(Y \mid \mathbf{X}; \alpha)$, (Y: outcome, $\mathbf{X}:$ features, $\alpha:$ model parameters)
- Algorithms can reinforce human prejudices
 - Data is collected from the "unfair" world
 - Example: racial profiling (police officers vs African-Americans)
 - No (default) correction for discriminatory biases in statistical models
 - Selection bias is not the same as statistical bias.
- How to define and measure discrimination/fairness?
- How to make statistical inference "fair"?

- ML algorithms are making making influential decisions in people's lives
 - Insurance approval, hiring decision, recidivism prediction
 - Based on complicated regression or classification algorithms
 E[Y | X; α] or p(Y | X; α), (Y: outcome, X: features, α: model parameters)
- Algorithms can reinforce human prejudices
 - Data is collected from the "unfair" world
 - Example: racial profiling (police officers vs African-Americans)
 - No (default) correction for discriminatory biases in statistical models
 - Selection bias is not the same as statistical bias.
- How to define and measure discrimination/fairness?
- How to make statistical inference "fair"?

- Problem setup:
 - X: a set of covariates, A: sensitive variable, Y: outcome variable
 - Given data on (X, A, Y), are predictions of Y from X and A discriminatory (with respect to A)?
- A mathematical definition + "analytic philosophy" argument
 - Define "discrimination" as X
 - Why is X a good definition?
- Fairness is something rooted in human intuition
- Our approach is inspired by causal inference
 - Causal inference: move from a factual to a counterfactual world
 - Fair inference: move from an "unfair" to a "fair world"
- Discrimination wrt A for Y is the presence of an effect of A on Y along "unfair causal paths."

- Problem setup:
 - X: a set of covariates, A: sensitive variable, Y: outcome variable
 - Given data on (X, A, Y), are predictions of Y from X and A discriminatory (with respect to A)?
- A mathematical definition + "analytic philosophy" argument
 - Define "discrimination" as X
 - Why is X a good definition?
- Fairness is something rooted in human intuition
- Our approach is inspired by causal inference
 - Causal inference: move from a factual to a counterfactual world
 - Fair inference: move from an "unfair" to a "fair world"
- Discrimination wrt A for Y is the presence of an effect of A on Y along "unfair causal paths."

- Problem setup:
 - X: a set of covariates, A: sensitive variable, Y: outcome variable
 - Given data on (X, A, Y), are predictions of Y from X and A discriminatory (with respect to A)?
- A mathematical definition + "analytic philosophy" argument
 - Define "discrimination" as X
 - Why is X a good definition?
- Fairness is something rooted in human intuition
- Our approach is inspired by causal inference
 - Causal inference: move from a factual to a counterfactual world
 - Fair inference: move from an "unfair" to a "fair world"
- Discrimination wrt A for Y is the presence of an effect of A on Y along "unfair causal paths."

- Problem setup:
 - X: a set of covariates, A: sensitive variable, Y: outcome variable
 - Given data on (X, A, Y), are predictions of Y from X and A discriminatory (with respect to A)?
- A mathematical definition + "analytic philosophy" argument
 - Define "discrimination" as X
 - Why is X a good definition?
- Fairness is something rooted in human intuition
- Our approach is inspired by causal inference
 - Causal inference: move from a factual to a counterfactual world
 - Fair inference: move from an "unfair" to a "fair world"
- Discrimination wrt A for Y is the presence of an effect of A on Y along "unfair causal paths."

- Problem setup:
 - X: a set of covariates, A: sensitive variable, Y: outcome variable
 - Given data on (X, A, Y), are predictions of Y from X and A discriminatory (with respect to A)?
- A mathematical definition + "analytic philosophy" argument
 - Define "discrimination" as X
 - Why is X a good definition?
- Fairness is something rooted in human intuition
- Our approach is inspired by causal inference
 - Causal inference: move from a factual to a counterfactual world
 - Fair inference: move from an "unfair" to a "fair world"
- Discrimination wrt A for Y is the presence of an effect of A on Y along "unfair causal paths."

AAAI 2018

- Problem setup:
 - X: a set of covariates, A: sensitive variable, Y: outcome variable
 - Given data on (X, A, Y), are predictions of Y from X and A discriminatory (with respect to A)?
- A mathematical definition + "analytic philosophy" argument
 - Define "discrimination" as X
 - Why is X a good definition?
- Fairness is something rooted in human intuition
- Our approach is inspired by causal inference
 - Causal inference: move from a factual to a counterfactual world
 - Fair inference: move from an "unfair" to a "fair world"
- Discrimination wrt A for Y is the presence of an effect of A on Y along "unfair causal paths."

- Gender discrimination and hiring:
 - Data: features X (collected from resumes), gender A, hiring decision Y
 - Title VII of the Civil Rights Act of 1964 forbids employment discrimination on the basis of gender, race, national origin, etc
 - Is there hiring discrimination wrt A?
- Intuition: hypothetical experiments

- Gender discrimination and hiring:
 - Data: features X (collected from resumes), gender A, hiring decision Y
 - Title VII of the Civil Rights Act of 1964 forbids employment discrimination on the basis of gender, race, national origin, etc
 - Is there hiring discrimination wrt *A*?
- Intuition: hypothetical experiments

- Gender discrimination and hiring:
 - Data: features X (collected from resumes), gender A, hiring decision Y
 - Title VII of the Civil Rights Act of 1964 forbids employment discrimination on the basis of gender, race, national origin, etc
 - Is there hiring discrimination wrt A?
- Intuition: hypothetical experiments

- Gender discrimination and hiring:
 - Data: features X (collected from resumes), gender A, hiring decision Y
 - Title VII of the Civil Rights Act of 1964 forbids employment discrimination on the basis of gender, race, national origin, etc
 - Is there hiring discrimination wrt A?
- Intuition: hypothetical experiments

- 7th circuit court case (Carson versus Bethlehem Steel Corp, 1996):
 - "The central question in any employment-discrimination case is whether the employer would have taken the same action had the employee been of a different gender (age, race, religion, national origin etc.) and everything else had been the same"
- Intuitive definitions of fairness are counterfactual
 - Causal inference: study of hypothetical experiments and counterfactuals
 - "Fairness" is a causal inference problem
- Mediation analysis: study of causal mechanisms
 - Our approach to fairness uses tools from mediation analysis

• 7th circuit court case (Carson versus Bethlehem Steel Corp, 1996):

"The central question in any employment-discrimination case is whether the employer would have taken the same action had the employee been of a different gender (age, race, religion, national origin etc.) and everything else had been the same"

- Intuitive definitions of fairness are counterfactual
 - Causal inference: study of hypothetical experiments and counterfactuals
 - "Fairness" is a causal inference problem
- Mediation analysis: study of causal mechanisms
 - Our approach to fairness uses tools from mediation analysis

• 7th circuit court case (Carson versus Bethlehem Steel Corp, 1996):

"The central question in any employment-discrimination case is whether the employer would have taken the same action had the employee been of a different gender (age, race, religion, national origin etc.) and everything else had been the same"

- Intuitive definitions of fairness are counterfactual
 - Causal inference: study of hypothetical experiments and counterfactuals
 - "Fairness" is a causal inference problem
- Mediation analysis: study of causal mechanisms
 - Our approach to fairness uses tools from mediation analysis

- Data $\mathcal{D} \sim p(\mathbf{X}, A, Y)$, **X** baselines, A treatment, Y outcome
- Y(a): outcome Y had A been assigned to a
- Average causal effect: $ACE = \mathbb{E}[Y(a)] \mathbb{E}[Y(a')]$
 - Randomized experiments: compare cases (A=a) and controls (A=a')
 - Observational data: people choose to smoke
- Consistency (Y(A) = Y) and ignorability $(Y(a) \perp \!\!\! \perp A \mid \mathbf{X}, \forall a)$

- Data $\mathcal{D} \sim p(\mathbf{X}, A, Y)$, **X** baselines, A treatment, Y outcome
- Y(a): outcome Y had A been assigned to a
- Average causal effect: $ACE = \mathbb{E}[Y(a)] \mathbb{E}[Y(a)]$
 - nationalized experiments, compare cases (A=a) and controls (A=a
- Consistency (Y(A) = Y) and ignorability $(Y(a) \perp \!\!\! \perp A \mid \mathbf{X}, \forall a)$

- Data $\mathcal{D} \sim p(\mathbf{X}, A, Y)$, **X** baselines, A treatment, Y outcome
- Y(a): outcome Y had A been assigned to a
- Average causal effect: $ACE = \mathbb{E}[Y(a)] \mathbb{E}[Y(a')]$
 - Randomized experiments: compare cases (A = a) and controls (A = a')
 - Observational data: people choose to smoke
- Consistency (Y(A) = Y) and ignorability $(Y(a) \perp \!\!\! \perp A \mid \mathbf{X}, \forall a)$

- Data $\mathcal{D} \sim p(\mathbf{X}, A, Y)$, **X** baselines, A treatment, Y outcome
- Y(a): outcome Y had A been assigned to a
- Average causal effect: $ACE = \mathbb{E}[Y(a)] \mathbb{E}[Y(a')]$
 - Randomized experiments: compare cases (A = a) and controls (A = a')
 - Observational data: people choose to smoke
- Consistency (Y(A) = Y) and ignorability $(Y(a) \perp \!\!\! \perp A \mid \mathbf{X}, \forall a)$

- Data $\mathcal{D} \sim p(\mathbf{X}, A, Y)$, **X** baselines, A treatment, Y outcome
- Y(a): outcome Y had A been assigned to a
- Average causal effect: $ACE = \mathbb{E}[Y(a)] \mathbb{E}[Y(a')]$
 - Randomized experiments: compare cases (A = a) and controls (A = a')
 - Observational data: people choose to smoke
- Consistency (Y(A) = Y) and ignorability $(Y(a) \perp \!\!\! \perp A \mid \mathbf{X}, \forall a)$

- Data $\mathcal{D} \sim p(\mathbf{X}, A, Y)$, **X** baselines, A treatment, Y outcome
- Y(a): outcome Y had A been assigned to a
- Average causal effect: $ACE = \mathbb{E}[Y(a)] \mathbb{E}[Y(a')]$
 - Randomized experiments: compare cases (A = a) and controls (A = a')
 - Observational data: people choose to smoke
- Consistency (Y(A) = Y) and ignorability $(Y(a) \perp \!\!\! \perp A \mid \mathbf{X}, \forall a)$

$$\mathsf{ACE} = \sum_{\mathbf{X}} \{ \mathbb{E}[Y \mid A = 1, \mathbf{X}] - \mathbb{E}[Y \mid A = 0, \mathbf{X}] \} \rho(\mathbf{X})$$

- Causal mechanisms: how A causes Y?
- ACE = Direct effect $(A \rightarrow Y)$ + Indirect effect $(A \rightarrow M \rightarrow Y)$
 - $\mathcal{D} = \{X, A, M, Y\}$. M mediates the effect of A on Y
- Nested counterfactuals Y(a, M(a'))
 - Outcome Y had A been assigned to a and M been assigned to whatever value it would have had under a'

- Causal mechanisms: how A causes Y?
- ACE = Direct effect $(A \rightarrow Y)$ + Indirect effect $(A \rightarrow M \rightarrow Y)$
 - $\mathcal{D} = \{X, A, M, Y\}$. M mediates the effect of A on Y
- Nested counterfactuals Y(a, M(a'))
 - Outcome Y had A been assigned to a and M been assigned to whatever value it would have had under a'

- Causal mechanisms: how A causes Y?
- ACE = Direct effect $(A \rightarrow Y)$ + Indirect effect $(A \rightarrow M \rightarrow Y)$
 - $\mathcal{D} = \{X, A, M, Y\}$. M mediates the effect of A on Y
- Nested counterfactuals Y(a, M(a'))
 - Outcome Y had A been assigned to a and M been assigned to whatever value it would have had under a'

- Causal mechanisms: how A causes Y?
- ACE = Direct effect $(A \rightarrow Y)$ + Indirect effect $(A \rightarrow M \rightarrow Y)$
 - $\mathcal{D} = \{X, A, M, Y\}$. M mediates the effect of A on Y
- Nested counterfactuals Y(a, M(a'))
 - Outcome Y had A been assigned to a and M been assigned to whatever value it would have had under a'

- Causal mechanisms: how A causes Y?
- ACE = Direct effect $(A \rightarrow Y)$ + Indirect effect $(A \rightarrow M \rightarrow Y)$
 - $\mathcal{D} = \{X, A, M, Y\}$. M mediates the effect of A on Y
- Nested counterfactuals Y(a, M(a'))
 - Outcome Y had A been assigned to a and M been assigned to whatever value it would have had under a'

- Causal mechanisms: how A causes Y?
- ACE = Direct effect $(A \rightarrow Y)$ + Indirect effect $(A \rightarrow M \rightarrow Y)$
 - $\mathcal{D} = \{X, A, M, Y\}$. M mediates the effect of A on Y
- Nested counterfactuals Y(a, M(a'))
 - Outcome Y had A been assigned to a and M been assigned to whatever value it would have had under a'

	a _Y nicotine	a_M smoke	potential outcome in:
Y(1,M(0))	1	0	nicotine patch

- Direct Effect = $\mathbb{E}[Y(1, M(0))] \mathbb{E}[Y(0)]$ ($A \rightarrow Y$)
- Indirect Effect = $\mathbb{E}[Y(1)] \mathbb{E}[Y(1, M(0))]$ ($A \rightarrow M \rightarrow Y$)

$$Y(a')$$
: $H(G = male, C(G = male)) = H(G = male)$
 $Y(a, M(a'))$: $H(G = female, C(G = male))$

- Path-specific effect (PSE)
 - Along a path, all nodes behave as if A = a,
 - Along all other paths, nodes behave as if A = a'
- Discrimination as the presence of effect along unfair causal pathways
- Fairness is a domain specific issue

$$Y(a')$$
: $H(G = male, C(G = male)) = H(G = male)$
 $Y(a, M(a'))$: $H(G = female, C(G = male))$

- Path-specific effect (PSE)
 - Along a path, all nodes behave as if A = a,
 - Along all other paths, nodes behave as if A = a'
- Oiscrimination as the presence of effect along unfair causal pathways
- Fairness is a domain specific issue!

$$Y(a')$$
: $H(G = male, C(G = male)) = H(G = male)$
 $Y(a, M(a'))$: $H(G = female, C(G = male))$

- Path-specific effect (PSE)
 - Along a path, all nodes behave as if A = a,
 - Along all other paths, nodes behave as if A = a'
- Oiscrimination as the presence of effect along unfair causal pathways
- Fairness is a domain specific issue!

$$Y(a')$$
: $H(G = male, C(G = male)) = H(G = male)$
 $Y(a, M(a'))$: $H(G = female, C(G = male))$

- Path-specific effect (PSE)
 - Along a path, all nodes behave as if A = a,
 - Along all other paths, nodes behave as if A = a'
- Oiscrimination as the presence of effect along unfair causal pathways
- 3 Fairness is a domain specific issue!

Our Approach

Predict Y from X, A, M in a fair way:

- Consider all causal paths from A to Y
- Mark "unfair" causal paths and
- Compute PSE along those paths: $g(\mathcal{D})$
- If there is PSE, then p(X, A, M, Y) is "unfair"
- Find a "fair world" p* close to p where there is no PSE
 - Close in Kullback-Leibler divergence sense (use data as well as possible while remaining fair)
 - $(\epsilon_l; \epsilon_u)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

Our Approach

- Predict Y from X, A, M in a fair way:
 - Consider all causal paths from A to Y
 - Mark "unfair" causal paths and
 - Compute PSE along those paths: $g(\mathcal{D})$
 - If there is PSE, then p(X, A, M, Y) is "unfair"
 - Find a "fair world" p* close to p where there is no PSE
 - Close in Kullback-Leibler divergence sense (use data as well as possible while remaining fair)
 - $(\epsilon_l; \epsilon_u)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

9/16

- Predict Y from **X**, A, **M** in a fair way:
 - Consider all causal paths from A to Y
 - Mark "unfair" causal paths and
 - Compute PSE along those paths: $g(\mathcal{D})$
 - If there is PSE, then p(X, A, M, Y) is "unfair"
 - Find a "fair world" p* close to p where there is no PSE
 - Close in Kullback-Leibler divergence sense (use data as well as possible while remaining fair)
 - $(\epsilon_l; \epsilon_u)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

- Predict Y from X, A, M in a fair way:
 - Consider all causal paths from A to Y
 - · Mark "unfair" causal paths and
 - Compute PSE along those paths: $g(\mathcal{D})$
 - If there is PSE, then $p(\mathbf{X}, A, \mathbf{M}, Y)$ is "unfair"
 - Find a "fair world" p* close to p where there is no PSE
 - (use data as well as possible while remaining fair)
 - $(\epsilon_l; \epsilon_u)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

- Predict Y from X, A, M in a fair way:
 - Consider all causal paths from A to Y
 - · Mark "unfair" causal paths and
 - Compute PSE along those paths: $g(\mathcal{D})$
 - If there is PSE, then p(X, A, M, Y) is "unfair"
 - Find a "fair world" p* close to p where there is no PSE
 - Close in Kullback-Leibler divergence sense (use data as well as possible while remaining fair)
 - $(\epsilon_I; \epsilon_U)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

- Predict Y from X, A, M in a fair way:
 - Consider all causal paths from A to Y
 - · Mark "unfair" causal paths and
 - Compute PSE along those paths: $g(\mathcal{D})$
 - If there is PSE, then p(X, A, M, Y) is "unfair"
 - Find a "fair world" p* close to p where there is no PSE
 - Close in Kullback-Leibler divergence sense (use data as well as possible while remaining fair)
 - $(\epsilon_I; \epsilon_U)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

- Predict Y from X, A, M in a fair way:
 - Consider all causal paths from A to Y
 - · Mark "unfair" causal paths and
 - Compute PSE along those paths: $g(\mathcal{D})$
 - If there is PSE, then p(X, A, M, Y) is "unfair"
 - Find a "fair world" p* close to p where there is no PSE
 - Close in Kullback-Leibler divergence sense (use data as well as possible while remaining fair)
 - $(\epsilon_I; \epsilon_U)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

- Predict Y from X, A, M in a fair way:
 - Consider all causal paths from A to Y
 - Mark "unfair" causal paths and
 - Compute PSE along those paths: $g(\mathcal{D})$
 - If there is PSE, then $p(\mathbf{X}, A, \mathbf{M}, Y)$ is "unfair"
 - Find a "fair world" p* close to p where there is no PSE
 - Close in Kullback-Leibler divergence sense (use data as well as possible while remaining fair)
 - $(\epsilon_I; \epsilon_u)$: discrimination tolerance
- Approximate "Fair World" p*:
 - Likelihood function: $\mathcal{L}(\mathcal{D}; \alpha)$

$$\hat{lpha} = rg\max_{lpha} \ \mathcal{L}(\mathcal{D}; lpha)$$
 subject to $\ \epsilon_l \leq g(\mathcal{D}) \leq \epsilon_u.$

- Inference on new instances (**x**, a, **m**):
 - New instances are drawn from unfair p
 - Cannot classify/regress new instances using $p^*(Y \mid \mathbf{x}, a, \mathbf{m}, \hat{\alpha})$
 - Use only shared information between p and p*
 - If $p^*(\mathbf{X}, A, \mathbf{M}, Y) = p(\mathbf{X})p^*(A, \mathbf{M}, Y \mid \mathbf{X})$, use $\mathbb{E}[Y \mid \mathbf{X}; \hat{\alpha}]$.
 - Depends on $g(\mathcal{D})$: inverse weighting, g-formula, semi-parametrida,

- Inference on new instances (**x**, a, **m**):
 - New instances are drawn from unfair p
 - Cannot classify/regress new instances using $p^*(Y \mid \mathbf{x}, a, \mathbf{m}, \hat{\alpha})$
 - Use only shared information between p and p*
 - If $p^*(\mathbf{X}, A, \mathbf{M}, Y) = p(\mathbf{X})p^*(A, \mathbf{M}, Y \mid \mathbf{X})$, use $\mathbb{E}[Y \mid \mathbf{X}; \hat{\alpha}]$
 - Depends on $g(\mathcal{D})$: inverse weighting, g-formula, semi-parametric

- Inference on new instances (x, a, m):
 - New instances are drawn from unfair p
 - Cannot classify/regress new instances using $p^*(Y \mid \mathbf{x}, a, \mathbf{m}, \hat{\alpha})$
 - Use only shared information between p and p*
 - If $p^*(\mathbf{X}, A, \mathbf{M}, Y) = p(\mathbf{X})p^*(A, \mathbf{M}, Y \mid \mathbf{X})$, use $\mathbb{E}[Y \mid \mathbf{X}; \hat{\alpha}]$.
 - Depends on $g(\mathcal{D})$: inverse weighting, g-formula, semi-parametric

- Inference on new instances (**x**, a, **m**):
 - New instances are drawn from unfair p
 - Cannot classify/regress new instances using $p^*(Y \mid \mathbf{x}, a, \mathbf{m}, \hat{\alpha})$
 - Use only shared information between p and p*
 - If $p^*(\mathbf{X}, A, \mathbf{M}, Y) = p(\mathbf{X})p^*(A, \mathbf{M}, Y \mid \mathbf{X})$, use $\mathbb{E}[Y \mid \mathbf{X}; \hat{\alpha}]$.
 - Depends on $g(\mathcal{D})$: inverse weighting, g-formula, semi-parametric

Application: COMPAS

Machine Bias (ProPublica)

BERNARD PARKER

Prior Offense 1 resisting arrest without violence

Subsequent Offenses None

HIGH RISK 10

DYLAN FUGETT

Prior Offence 1 attempted burglary

Subsequent Offenses 3 drug possessions

LOW RISK

COMPAS: risk assessments in criminal sentencing (developed by Northpointe)

Is there any bias in the data wrt race in predicting recidivism?

Y: recidivism

A: race

X: demographics

- Discriminatory path: $A \rightarrow Y$
- Constrained MCMC and Bayesian random forests to obtain "fair world"
- No hope to beat the MLE, by definition. Do as well as possible while remaining fair.

Is there any bias in the data wrt race in predicting recidivism?

Y: recidivism

A: race

X: demographics

- Discriminatory path: A → Y
- Constrained MCMC and Bayesian random forests to obtain "fair world"
- No hope to beat the MLE, by definition. Do as well as possible while remaining fair.

Is there any bias in the data wrt race in predicting recidivism?

Y: recidivism

A: race

X: demographics

- Discriminatory path: $A \rightarrow Y$
- Constrained MCMC and Bayesian random forests to obtain "fair world"
- No hope to beat the MLE, by definition. Do as well as possible while remaining fair.

Is there any bias in the data wrt race in predicting recidivism?

Y: recidivism

A: race

X: demographics

M: criminal record

- Discriminatory path: A → Y
- Constrained MCMC and Bayesian random forests to obtain "fair world"

	Direct Effect (odds ratio scale, null = 1)	
$\mathbb{E}[Y \mid A, M, \mathbf{X}]$	1.3	

Is there any bias in the data wrt race in predicting recidivism?

Y: recidivism

A: race

X: demographics

M: criminal record

- Discriminatory path: A → Y
- Constrained MCMC and Bayesian random forests to obtain "fair world"

	Direct Effect (odds ratio scale, null = 1)	
$\mathbb{E}[Y \mid A, M, X]$	1.3	
(our method) $\mathbb{E}^*[Y \mid \mathbf{X}]$	$0.95 \leq PSE \leq 1.05$	

Is there any bias in the data wrt race in predicting recidivism?

Y: recidivism

A: race

X: demographics

M: criminal record

- Discriminatory path: A → Y
- Constrained MCMC and Bayesian random forests to obtain "fair world"

	Direct Effect (odds ratio scale, null = 1)	Accuracy %
$\mathbb{E}[Y \mid A, M, X]$	1.3	67.8
(our method) $\mathbb{E}^*[Y \mid \mathbf{X}]$	$0.95 \leq PSE \leq 1.05$	66.4

Is there any bias in the data wrt race in predicting recidivism?

Y: recidivism

A: race

X: demographics

M: criminal record

Discriminatory path: A → Y

Constrained MCMC and Bayesian random forests to obtain "fair world"

	Direct Effect (odds ratio scale, null = 1)	Accuracy %
$\mathbb{E}[Y \mid A, M, \mathbf{X}]$	1.3	67.8
(our method) $\mathbb{E}^*[Y \mid \mathbf{X}]$	0.95 ≤ PSE ≤ 1.05	66.4

- Is there any bias in the algorithm that generates COMPAS scores?
- Northpointe claims they do not use race in generating COMPAS scores.
 Therefore, they are fair.
- Do not have access to Northpointe's model
- Best we can do:
 - Try to learn $\tilde{\mathbb{E}}[Y \mid M, \mathbf{X}]$ with what we have
 - Check for PSE of A on Y in the model for $p(Y, A, M, \mathbf{X})$ where $\mathbb{E}[Y \mid M, \mathbf{X}]$ is constrained to be $\tilde{\mathbb{E}}$.
- PSE (direct effect) is 2.1

There's something wrong with Northpinte's claim.

- Is there any bias in the algorithm that generates COMPAS scores?
- Northpointe claims they do not use race in generating COMPAS scores.
 Therefore, they are fair.
- Do not have access to Northpointe's model
- Best we can do:
 - Try to learn $\tilde{\mathbb{E}}[Y \mid M, \mathbf{X}]$ with what we have
 - Check for PSE of A on Y in the model for $p(Y, A, M, \mathbf{X})$ where $\mathbb{E}[Y \mid M, \mathbf{X}]$ is constrained to be $\tilde{\mathbb{E}}$.
- PSE (direct effect) is 2.1

There's something wrong with Northpinte's claim

- Is there any bias in the algorithm that generates COMPAS scores?
- Northpointe claims they do not use race in generating COMPAS scores.
 Therefore, they are fair.

Y: COMPAS score

A: race

X: demographics

M: criminal record

- Do not have access to Northpointe's model
- Best we can do:
 - Try to learn $\tilde{\mathbb{E}}[Y \mid M, \mathbf{X}]$ with what we have
 - Check for PSE of A on Y in the model for $p(Y, A, M, \mathbf{X})$ where $\mathbb{E}[Y \mid M, \mathbf{X}]$ is constrained to be $\tilde{\mathbb{E}}$.
- PSE (direct effect) is 2.1

There's something wrong with Northpinte's claim.

- Is there any bias in the algorithm that generates COMPAS scores?
- Northpointe claims they do not use race in generating COMPAS scores.
 Therefore, they are fair.

Y: COMPAS score

A: race

X: demographics

M: criminal record

- Do not have access to Northpointe's model
- Best we can do:
 - Try to learn $\tilde{\mathbb{E}}[Y \mid M, \mathbf{X}]$ with what we have
 - Check for PSE of A on Y in the model for $p(Y, A, M, \mathbf{X})$ where $\mathbb{E}[Y \mid M, \mathbf{X}]$ is constrained to be $\tilde{\mathbb{E}}$.
- PSE (direct effect) is 2.1

There's something wrong with Northpinte's claim.

- Is there any bias in the algorithm that generates COMPAS scores?
- Northpointe claims they do not use race in generating COMPAS scores.
 Therefore, they are fair.

Y: COMPAS score

A: race

X: demographics

- Do not have access to Northpointe's model
- Best we can do:
 - Try to learn $\tilde{\mathbb{E}}[Y \mid M, \mathbf{X}]$ with what we have
 - Check for PSE of A on Y in the model for $p(Y, A, M, \mathbf{X})$ where $\mathbb{E}[Y \mid M, \mathbf{X}]$ is constrained to be $\tilde{\mathbb{E}}$.
- PSE (direct effect) is 2.1
 There's something wrong with Northpinte's claim.

- An approach to fair inference based on mediation analysis.
- Argued approach isn't arbitrary, but rooted in human intuition on what is fair in practice.
- Fairness may be characterized as the absence (or dampening) of a path-specific effect (PSE).
- Restriction of a PSE is expressed as a likelihood maximization problem that features constraining the magnitude of the undesirable PSE.
- Extensions (not covered):
 - What if the path-specific effect is not identified?
 - Easy ways to do constrained MLE.
- Evidence existing prediction models may be quite discriminatory.

- An approach to fair inference based on mediation analysis.
- Argued approach isn't arbitrary, but rooted in human intuition on what is fair in practice.
- Fairness may be characterized as the absence (or dampening) of a path-specific effect (PSE).
- Restriction of a PSE is expressed as a likelihood maximization problem that features constraining the magnitude of the undesirable PSE.
- Extensions (not covered):
 - What if the path-specific effect is not identified?
 - Easy ways to do constrained MLE.
- Evidence existing prediction models may be quite discriminatory.

- An approach to fair inference based on mediation analysis.
- Argued approach isn't arbitrary, but rooted in human intuition on what is fair in practice.
- Fairness may be characterized as the absence (or dampening) of a path-specific effect (PSE).
- Restriction of a PSE is expressed as a likelihood maximization problem that features constraining the magnitude of the undesirable PSE.
- Extensions (not covered):
 - What if the path-specific effect is not identified?
 - Easy ways to do constrained MLE.
- Evidence existing prediction models may be quite discriminatory.

14 / 16

- An approach to fair inference based on mediation analysis.
- Argued approach isn't arbitrary, but rooted in human intuition on what is fair in practice.
- Fairness may be characterized as the absence (or dampening) of a path-specific effect (PSE).
- Restriction of a PSE is expressed as a likelihood maximization problem that features constraining the magnitude of the undesirable PSE.
- Extensions (not covered):
 - What if the path-specific effect is not identified?
 - Easy ways to do constrained MLE.
- Evidence existing prediction models may be quite discriminatory.

- An approach to fair inference based on mediation analysis.
- Argued approach isn't arbitrary, but rooted in human intuition on what is fair in practice.
- Fairness may be characterized as the absence (or dampening) of a path-specific effect (PSE).
- Restriction of a PSE is expressed as a likelihood maximization problem that features constraining the magnitude of the undesirable PSE.
- Extensions (not covered):
 - What if the path-specific effect is not identified?
 - Easy ways to do constrained MLE.
- Evidence existing prediction models may be quite discriminatory.

- An approach to fair inference based on mediation analysis.
- Argued approach isn't arbitrary, but rooted in human intuition on what is fair in practice.
- Fairness may be characterized as the absence (or dampening) of a path-specific effect (PSE).
- Restriction of a PSE is expressed as a likelihood maximization problem that features constraining the magnitude of the undesirable PSE.
- Extensions (not covered):
 - What if the path-specific effect is not identified?
 - Easy ways to do constrained MLE.
- Evidence existing prediction models may be quite discriminatory.

References

R. Nabi and I. Shpitser

Fair Inference on Outcomes.

n Proceedings of the Thirty-Second Conference on AAAI, 2018.

J. Pearl

Causality: Models, Reasoning, and Inference, Cambridge University Press 2009.

J. Pearl

Direct and indirect effects.

In Proceedings of the Seventeenth Conference on UAI, 411-420, 2001.

I. Shpitser and J. Pearl

Complete identification methods for the causal hierarchy. JMLR 9(Sep):1941-1979, 2008.

I. Shpitser

Counterfactual graphical models for longitudinal mediation analysis with unobserved confounding.

Cognitive Science (Rumelhart special issue) 37:1011-1035, 2013.

Thank you for listening.

Razieh Nabi, rnabi@jhu.edu Ilya Shpitser, ilyas@cs.jhu.edu

16 / 16