Project Summery

Ilya Schneider

Let's have a look!

Initial Parameters

- Number of Predators
- Number of Preys
- Grid Torus
- Grid Height
- Grid Width
- Immediate Killing
- Aggressiveness
- Average Viability Time

Initial Parameters

- Number of Predators
- Number of Preys
- Grid Torus
- Grid Height
- Grid Width
- Immediate Killing
- Aggressiveness
- Average Viability Time

```
params = {"num_type_a_1": (10, 25, 50),
          "num type a 2": (10, 25, 50),
          "is torus": False,
          "grid_height": 25,
          "grid width": 25,
          "immediate killing": False,
          "aggressiveness": (1, 2.5, 5, 10, 25, 50),
          "avrg viability time type a": (30, 40, 50)}
results = mesa.batch run(
    Microbiome,
    parameters = params,
    iterations = 10,
    \max \text{ steps} = 1500,
    number processes = 1,
    data collection period = 10,
    display progress = True,
```

1620 iterations

Predator Domination (84.75%)

Steady State, Predator Domination (5.86%)

Steady State, Prey Domination (8.70%)

Prey Domination (0.68%)

Initial Condition Quantification

- Predator vs Prey Ratio
- Initial Distance to the Edge for each Species
- Initial Aggressiveness
- Prey Competition Index

Data Analysis Conclusions

- Higher initial viability time ———— higher steady state chances
- Prey survives only in ratios 1:1 and lower
 - Smaller initial competition and the distance to the edge ———— Prey Domination
 But only at the two lowest ratios
- All final states occur with all possible aggressiveness levels ———— less influential than expected

Dimensionality Reduction PCA

Dimensionality Reduction PCA

Dimensionality Reduction UMAP

Applications

- Species Coexistence
- Species Survival
- Coexistence Perturbation

Let's have a look!

Thanks!