

Análise dos modos, efeitos e criticidade de falhas

Marco Reis <marcoreis@me.com>

Laboratório de Robótica e Sistemas Autônomos, Senai Cimatec

Abril de 2020

Introdução

A técnica é conhecida como FMECA (Failure Mode and Effect Criticality Analysis). A análise dos modos de falhas, efeitos e criticidade é uma técnica que oferece três funções distintas:

- 1. ferramenta para prognóstico de problemas
- procedimento para desenvolvimento e execução de projetos, processos ou serviços (novos ou revisados)
- 3. diário do projeto, processo ou serviço

FMECA

A elaboração da FMECA é muito eficaz quando elaborado em equipe. É um método sistemático para identificar e prevenir problemas potenciais. Inicialmente, é importante detalhar o sistema em análise apontando os seus subsistemas e componentes.

Uma pessoa fazendo o seu melhor, não consegue ser tão eficiente quanto uma equipe trabalhando em conjunto.

Marco Reis

Duas Perguntas

Quando o foco é o desenvolvimento de um projeto, duas perguntas diretivas devem ser realizadas.

- Como esse projeto pode deixar de fazer o que deve fazer?
- O que devemos fazer para prevenir essas falhas potenciais de projeto?

Principais objetivos de uma FMECA:

detalhar sistemas em subconjuntos listar possíveis modos de falhas analisar cada modo de falha, juntamente com suas possíveis causas e sintomas estimar os efeitos de cada modo de falhas estimar a criticidade de cada efeito identificar ações para minimizar falhas

The Matrix

	Modo(s) de falha em potencial	Efeito(s) potencial(is) da falha	s	Causa(s) potencial(is) / mecanismo(s) de falha(s)	o	D	NPR (SxOxD)	Ação(ōes) recomendada(s)	Competência	Resultado das ações				
Função(ões)										Ação(ōes) tomada(s)	s	0	D	Novo NPR
Iransmissäg de diddos em curtissima distincia en en vocadiser puedos em superficie	Não transmissão de dado em curtissima distância	Perda da capacidade de controle remoto	4	Falha de alimentação	7	3	84	(1) Revisão do projeto: (2) Desenvolvimento de fornecedores	Elétrica					
		Deixar de enviar sinals por canal de curtissimo alcance	4	Posicionamento em região de sombra	2	10	80							
				Queima/danificação de componentes	5	7	140	Inspeção períodicas	Elétrica					
				Problemas de contato elétrico (solda fria, ruptura de conexões, etc)	3	4	48	Inspeção períodicas	Elétrica					
		Deixar de enviar sinais por canal de curtíssimo	4	Problemas de contato elétrico (solda fria, ruptura de conexões, etc)	3	4	48	Inspeção períodicas	Elétrica					
		Curussing												

Planejando a FMECA

- O uso da ferramenta busca alcançar o maior potencial de retorno de qualidade e confiabilidade, priorizando sempre os pontos mais críticos.
- Deve-se restringir o uso para conjuntos e subconjuntos e, somente em alguns casos extender para componentes.
- Quando necessário, quebrar as funções do sistema para que os conjuntos ou subconjuntos possam ser analisados.

Como pode falhar? Porque falha? O que acontece quando falha?

Terminologia

- falha é qualquer não-conformidade no produto
- modo da falha é a não-conformidade que o cliente percebe; considerar dois principais modos: o de não funcionamento e o de funcionamento incorreto dos conjuntos e subconjuntos
- causa da falha é a causa fundamental da falha; identificar e listar somente as causas principais de cada modo
- efeito da falha é a consequência da falha para o cliente; um sintoma de falha indica o modo como uma falha irá se tornar evidente, estes sintomas podem se tornar evidentes tanto antes como após a falha realmente ocorrer

Regras básicas

A avaliação da FMECA

Observações importantes

Exemplo

Exercício

Some Equations

Now we introduce an equation.

Theorem

A Turing Machine is a 7-Tuple:

$$M = \langle Q, \Gamma, b, \Sigma, \delta, q_0, F \rangle \tag{1}$$

A Turing Machine is a 7-Tuple even if defined in the text, as in $M=\langle Q,\Gamma,b,\Sigma,\delta,q_0,F\rangle.$

Items and Numbers

- one
- two
- three

- 1. first
- 2. second
- 3. third

Tables

Tables are also interesting.

Title	f	Comments
The chemical basis of morphogenesis	7327	
On computable numbers	6347	Turing Machine
Computing machinery and intelligence	6130	

Speaker Notes

You may turn on the notes and handout option to see the notes to the slides.

Backup

Questions?

marcoreis@me.com