

Probability Theory and Statistics

24 Summary and Projects

张绍群 2023/12/25

关于成绩评定

□成绩构成

- 40% 平时成绩 + 20% 期中成绩 + 40% 期末成绩
- 平时成绩:每次作业百分制评定,13次作业取均值作为平时成绩
- 期中成绩:笔试
- 期末成绩:笔试

□关于期末考试

- 时间:1月3日上午8:00 10:00
- 地点:西105
- 题型: A/B 卷, 10 道选择题 + 5 道填空题 + 5 道计算题
- 考试范围:11 章所有的内容,包含例题、作业、思考题
- 难度比例:60%:30%:10% = 利用:组合:探索

- □ 第一章 组合计数:古典概型、几何概型、十二重计数
 - [夫妻匹配问题]将n对夫妻任意分成n组,每组一男一女/每组2人,不限男女,问
 - ✔ 所有夫妻都没有分到同一组的概率?
 - ✓ 至少有一对夫妻被分到同一组的概率?
 - ✓ 每一对夫妻都恰好分到同一组的概率?
 - ✓ 用X表示夫妻两人被分到一组的对数, 求X的期望 (期中考试)
 - [生日问题]有K个人(K<365), 每个人的生日等可能地出现于365天中的任意一天.
 - [抽签问题 (是否放回)]袋中有a个不同的白球,b个不同的红球,假设有k个人依次随机有放回地/ 无放回地从袋中取一个球,问第i个人(i≤k) 取出红球的概率?
 - [会面问题]两银行经理约定中午12:00 13:00到某地会面,两人到达时间随机,先到者等另一人 15分钟后离开.求两人见面的概率.
 - [十二重计数]

- □ 第二章 条件概率与独立性:条件概率、全概率公式、贝叶斯公式、独立性
 - 条件概率公式: 缩小了有效样本空间
 - ✓ 容斥原理
 - ✓ 乘法形式
 - 独立性
 - ✓ 独立性 vs 互斥, 如何判断独立性?
 - ✔ 小概率原理
 - **全概率公式**: 若知道各种原因 $P(A_i)$ 、在该原因下事件B 发生的概率 $P(B|A_i)$,此时利用全概率公式计算概率P(B).
 - **贝叶斯公式**: 若知道各种原因 $P(A_i)$ 、在该原因下事件B 发生的概率 $P(B|A_i)$,若结果事件B 已经发生,利用贝叶斯公式探讨是由某原因Ai 导致该结果的概率 $P(A_i|B)$.
 - 典型例题: 相关计算、三囚徒问题、多项式相等、大矩阵乘法

- □ 第三章 离散型随机变量:分布列、数字特征、常用变量
 - 分布列: 随机变量的取值和概率, 可以完全刻画其概率属性
 - 数字特征
 - ▶期望
 - ▶方差

\overline{X}	x_1	x_2	 x_n	
P	p_1	p_2	 p_n	

- 常用的变量
 - ➤ 0-1分布 X~Ber(p)
 - ➤ 二项分布 X~B(n,p)
 - ▶ 泊松分布 X~P(λ)
 - ➤ 几何分布 *X*~G(p): 无记忆性
- 典型案例: 相关计算、估计德国坦克数量、集卡活动、Gambling

- □ 第四章 连续型随机变量:分布函数、密度函数、数字特征、常用变量
 - 分布函数: $F(x) = P(X \le x)$, 单调性、规范性、右连续性
 - 密度函数: 指向连续型随机变量的概率,概率密度f(x)越大,则X在x附近取值的概率越大.
 - 数字特征: 积分中的变量代换、几个重要的不等式估算
 - ▶期望
 - ▶方差
 - 常用的变量
 - ▶均匀分布 X~U(a,b)
 - \triangleright 指数分布 $X \sim e(\lambda)$: 无记忆性,是唯一具有无记忆性的连续型随机变量
 - \triangleright 正态分布 $X \sim N(\mu, \sigma^2)$
 - 典型案例: 相关计算、估计德国坦克数量、集卡活动、Gambling

$$P(|x - \mu| < \sigma) = 0.6826$$

 $P(|x - \mu| < 2\sigma) = 0.9544$
 $P(|x - \mu| < 3\sigma) = 0.9974$

□ 第五/六章 多维随机向量:

- 联合分布函数和边缘分布函数: $F(x,y) = P(X \le x, Y \le y)$, $F_x(x) = P(X \le x, y < +\infty)$
 - ✓ 性质: 单调性、规范性、右连续性、有界概率性 (矩形运算)
 - ✓ 边缘分布和联合分布的计算关系
- 分布列和密度函数:
 - ✔ 分布列: 逐行和逐列的计算、根据独立性有边缘概率乘积构成分布列
 - ✓ 密度函数: 积分中的变量代换、
- 独立性
 - ✓ 性质 $f(x,y) = f_X(x)f_Y(y)$ 和独立性判定f(x,y) = g(x)h(y)
- 数字特征: 期望、协方差、相关系数
- 条件分布和条件期望: 密度函数的贝叶斯公式、全期望公式
- 多维随机变量的运算: 加减乘除 (卷积公式)、最大值和最小值、复合函数
- 典型案例: 相关计算、二维正态分布

X Y	y_1	y_2		y_j		$p_{i.} = \sum_{j} p_{ij}$
x_1	p_{11}	p_{12}	• • • •	p_{1j}		p_1 .
x_2	p_{21}	p_{22}	• • •	p_{2j}		p_2 .
:	:	÷		÷		:
x_i	p_{i1}	p_{i2}		p_{ij}		p_i .
:	:	:		:	٠.	:
$p_{\cdot j} = \sum_{i} p_{ij}$	$p_{\cdot 1}$	$p_{\cdot 2}$		$p_{\cdot j}$		1

表 5.1 二维随机向量的概率分布表

□ 第八章 大数定律及中心极限定理:

• 四种收敛方式

收敛方式小结 (思考题)

考虑 $X_n = f_n : \mathcal{X} \to \mathcal{Y}$, 有如下四种收敛方式

- 一致收敛: $f_n \to f$
- 点态收敛: $f_n \longrightarrow f$
- •依概率收敛: $X_n \stackrel{P}{\longrightarrow} X$
- 依分布收敛: $X_n \stackrel{d}{\longrightarrow} X$
- 大数定律: $X_n \stackrel{P}{\rightarrow} a$
 - ✓ 大数定律基本式 $\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}[X_{i}]$
 - ✓ 大数定律小结
 - Markov 大数定律: 若随机变量序列 $\{X_i\}$ 满足 $\frac{\mathbb{VAR}(\sum_{i=1}^n X_i)}{n^2} \to 0$, 则满足大数定律.
 - Chebyshev 大数定律: 若独立随机变量序列 $\{X_i\}$ 满足 $\mathbb{VAR}(X_i) \leq c$, 则满足大数定律.
 - Khintchine 大数定律: 若独立同分布随机变量序列 $\{X_i\}$ 期望存在,则满足大数定律.
 - Bernoulli 大数定律: 对二项分布 $X_n \sim \operatorname{Ber}(n,p)$, 有 $\frac{X_n}{n} \stackrel{P}{\longrightarrow} p$.

- 中心极限定理: $\frac{\sum_{i=1}^{n} X_i n\mu}{\sigma\sqrt{n}} \stackrel{d}{\to} N(0,1)$
 - 棣莫弗-拉普拉斯中心极限定理: 随机变量独立且同伯努利/二项分布. 若 $X_n \sim B(n,p)$, 则

$$X_n \stackrel{d}{\longrightarrow} \mathcal{N}(np, np(1-p))$$

• 林德贝格-勒维中心极限定理: 随机变量独立同分布. 若 $\mathbb{E}[X_k] = \mu$ 和 $\mathbb{VAR}(X_k) = \mathbb{VAR}^2$, 则

$$\sum_{k=1}^{n} X_i \xrightarrow{d} \mathcal{N}(n\mu, n\mathbb{V}\mathbb{A}\mathbb{R}^2)$$

•李雅普诺夫定理: 随机变量独立不同分布.

京重计章

□ 第九/十/十一章 数理统计:

- 常用统计量: 样本均值、样本方差 (无偏)、样本矩 (原点矩、中心矩)、次序统计量
- 三大抽样分布: 来源 (统计量构造)、数字特征、上侧分位数 (正态分布、三大抽样分布)
- 参数估计 点估计
 - ✓ 矩估计 (总体分布形式未知的情况) 和极大似然估计 (总体分布形式已知、需要假设)
 - ✔如何评价估计?无偏性 (原点矩、中心矩)、有效性 (有效估计量)、一致性 (判别定理)

• 参数估计 — 区间估计

- ✓ 置信区间、置信度 (双侧和单侧的计算区别)
- ✓ 总体为正态分布下的区间估计 (μ 和 σ 分别已知和未知的情况)
- ✓ 总体为二维正态分布下的均值之差、方差之比的区间估计 (μ 和 σ 分别已知和未知的情况)
- ✓ 非正态的区间估计:集中不等式和中心极限定理

• 假设检验:

- ✓ 建立假设 给出拒绝域 由样本统计量做判断
- ✓ 检验的两类错误
- ✓ 非参假设检验 分布的 χ² 拟合优度检验

关于期末考试

□考试内容及分值比例

- 第 1-4 章: 20 分左右
- 第 5-6 章: 30 ~ 40 分
- 第 8 章: 10 分左右
- 第 9-11 章: 30 ~ 40 分

□倒计时还有10天

• 12.25 - 01.03

关于这门课的一些想法

这门课试图传递什么? —— 我们在尝试系统性地了解、学习"人工智能"

- □ 知识要点
 - 如何通过组合计数计算概率?
 - 设立目标变量和参数, 灵活运用贝叶斯公式、全概率公式
 - 大数定律和中心极限定理
 - 采样对总体状态进行估计和假设检验
- □ 概统的建模思维 (聊聊?)
 - 分布驱动 / 采样驱动
 - 先验和似然
 - 工具可能落后 (表示能力弱)

统计学习目前仍是 data-driven learning 的核心理论, 即使在深度学习、大模型时代仍不可丢失.

一些建议

- □ 关于学业.
 - 专业体系方面没有什么可说的
 - 掌握自学能力、实践能力(比如自学《概率论与数理统计》等, 自学编程等)
 - 大量地阅读, 做好通识教育, …
 - 锻炼好身体 (一把辛酸泪)
- □ 关于思维.
 - 保持好奇. 感兴趣的事情要尽快去了解、尝试
 - 不要被课堂束缚, 不要被校区束缚, 不要被南大束缚, 不要被专业束缚
 - 要敢想敢做 …
- □ 关于心态. 任何时候不要自我放弃!

写在最后

课题发布

- □ 关于神经网络学习和高斯过程等价性的理论分析及其应用
- □ 知识与数据双驱动的棋牌策略
- □ 面向基因组序列信息编码、识别和预测任务的机器学习算法研究
- □ 面向无线话务预测的时空序列预测算法研究