

3

【復習】 基本的な恒等式(2)

- 5. 交換律
 - $x \lor y = y \lor x, \quad x \cdot y = y \cdot x$
- 6. 結合律
 - $(x \lor y) \lor z = x \lor (y \lor z), \quad (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- 7. 分配律

4/17/2023

1

【復習】 基本的な恒等式(3)

- 8. 第1吸収律
 - $-x \cdot (x \lor y) = x, \quad x \lor x \cdot y = x$
- 9. 第2吸収律
 - $\mathbf{x} \cdot (\bar{x} \vee y) = x \cdot y, \quad x \vee \bar{x} \cdot y = x \vee y$
- 10. 第3吸収律

 - $(x \lor y) \cdot (\bar{x} \lor z) \cdot (y \lor z) = (x \lor y) \cdot (\bar{x} \lor z)$
- 11. ドモルガンの法則
 - $\overline{x \vee y} = \overline{x} \cdot \overline{y}, \quad \overline{x \cdot y} = \overline{x} \vee \overline{y}$

代入法則

 \mathbf{P} φ , ψ , χ を論理関数とする. φ と ψ に現れる命題変数 χ すべてに χ を代入して得られる論理関数をそれぞれ φ' , ψ' とするとき, $\varphi = \psi$ ならば $\varphi' = \psi'$ である. ただし逆は必ずしも成立しない.

例1)
$$\varphi = x \cdot (x \vee y)$$

 $\psi = x$ $\varphi = \psi$ (第1吸収律)
 $\chi = a \vee b$
 $\varphi' = (a \vee b) \cdot (a \vee b \vee y)$
 $\psi' = a \vee b$
よって $(a \vee b) \cdot (a \vee b \vee y) = a \vee b$

7

代入法則

 \mathbf{P} φ , ψ , χ を論理関数とする. φ と ψ に現れる命題変数 χ すべてに χ を代入して得られる論理関数をそれぞれ φ' , ψ' とするとき, $\varphi = \psi$ ならば $\varphi' = \psi'$ である. ただし逆は必ずしも成立しない.

例2)
$$\varphi = x \cdot \bar{x}$$
 $\psi = x$
 $\chi = 0$
 $\varphi' = 0 \cdot \bar{0} = 0$
 $\psi' = 0$
となり $\varphi' = \psi'$ であるが $\varphi = \psi$ は成り立たない

Q

置換法則

 $lackbox \varphi$, ψ , χ をブール形式とし, ψ は φ の部分ブール形式とする. φ の中の ψ を χ で置き換えて得られる ブール形式を φ' とするとき, $\psi = \chi$ ならば $\varphi = \varphi'$ である.

例)
$$\varphi = x \cdot (x \vee y)$$

$$\psi = x \vee y$$

$$\chi = x \vee \bar{x} \cdot y \qquad \psi = \chi \quad (第2吸収律)$$

$$\varphi' = x \cdot (x \vee \bar{x} \cdot y)$$

$$x \cdot (x \vee y) = x \cdot (x \vee \bar{x} \cdot y)$$

■ 置換法則と代入法則を用いた第1吸収律の証明

■ 第1吸収律の二つ目 x ∨ x · y = x を示す.

まず、恒等式5より 1 · x = x · 1 · · · · (1)
恒等式1より 1 · x = x なので、(1)より x = x · 1 · · · · (2)

x ∨ x · y = x · 1 ∨ x · y ((2)より)
= x · (1 ∨ y) (恒等式7より)
= x · 1 (恒等式1より)
= x ((2)より)

置換法則と代入法則を用いた第1吸収律の証明 ● 第1吸収律の一つ目 x · (x ∨ y) = x を示す. まず、恒等式5より 0 ∨ x = x ∨ 0 · · · (1) 恒等式1より 0 ∨ x = x なので、(1)より x = x ∨ 0 · · · · (2) x · (x ∨ y) = (x ∨ 0) · (x ∨ y) ((2)より) = x ∨ 0 · y (恒等式7より) = x ∨ 0 (恒等式1より) = x ∨ 0 ((2)より)

11

重要な性質(1)

- 1. $x \lor y = \overline{x \lor y} = \overline{x \cdot y}$ (恒等式3, 恒等式11) 論理和は否定と論理積で表すことができる.
- 2. $x \cdot y = \overline{x \cdot y} = \overline{x} \vee \overline{y}$ (恒等式3, 恒等式11) 論理積は否定と論理和で表すことができる.

否定+(論理和もしくは<mark>論理積</mark>)で 任意の論理関数を表すことができる.

4/17/2023

12

重要な性質(2)

●否定の対象を命題変数のみに限定するよう式変形できる. (ドモルガンの法則を何度も適用する)

例)
$$\overline{(x \lor \overline{y}) \cdot z} = \overline{(x \lor \overline{y})} \lor \overline{z}$$

 $= \overline{x} \cdot \overline{\overline{y}} \lor \overline{z}$
 $= \overline{x} \cdot \overline{y} \lor \overline{z}$

出題予定の演習課題

- ▶置換法則と代入法則を用いた恒等式の証明
- ■置換法則と代入法則を用いた式変形(式の簡略化)

9枚目,10枚目のスライド等を見て予習しておいてく ださい