Foundations of Physics 2B/3C

2019-2020

Thermodynamics – Lecture 7 Recap

- Finished looking at entropy, including entropy change in various processes and saw how entropy relates to the arrow of time.
- Looked at temperature-entropy diagrams and their uses.
- Considered the thermodynamic identity:

dU = TdS - pdV.

Thermodynamics – Lecture 8 Aims

- To be introduced to the thermodynamic potentials.
- To be introduced to the Maxwell Relations
- To see the TdS and Energy equations.
- To see how problems in thermodynamics can be solved.

Enthalog H = U+pV [Constant pressure processes]

Chainrule

dH = d(U+pV) = dU + pdV + Vdp Subin du=Tds-pdV; dH=Tds-pdV+pdV+Vdp Enthalpy natural variables are H = H(S, p) $dH = \left(\frac{\partial H}{\partial S}\right)dS + \left(\frac{\partial H}{\partial P}\right)dp \qquad T = \left(\frac{\partial H}{\partial S}\right), V = \left(\frac{\partial H}{\partial P}\right)s$ At constart pressure dp=0; ... $dH=TdS=8Q_{rev}$ =CpdT $\Delta H=\int_{A}^{B}dH=H_{B}-H_{A}=\int_{A}^{B}8Q_{rev}=\int_{A}^{B}C_{p}dT$ Heat absorbed/rejected at constant pressure.

DH>O, endothermic, DH<O, exothermic.

dp=0 Lot processes are open to the atmosphere U and H both depend on entropy change - difficult to reasure.

Potentials that entropy free energies don't

Helm holt z F = F(V,T)

Gibbs G = G(p,T) Example 14.1 F= U-TS dF=dU-TdS-SdT = TdS-pdV-TdS-SdT dF = -pdV - sdT $= (\frac{\partial F}{\partial V})dV + (\frac{\partial F}{\partial T})dT$

Jsothermal $dT=0$ so $dF=-pdV=SW$
Helmholtz is revealle work done on surroundings
JI dF>0 Find > Finited > SW>0 Most proude work too the process.
Minimise F For For J JF TO, SW TO Maximum work out of a process.
Gibbs Function G=U+pV-TS (add anything ebe her) = H-TS = F+pV
Please show $dG = Vdp - SdT$ $G = G[p, T]$
Pressure + temperature are easiet variables to vary in the lab. But isothermal $(dT=0)$ and isobane $(dp=0)$ mave $dG=0$. Gibbs function is conserved at a phase charge
DG = Gg - GI Max non-expansion work a process cando. LEnergy stored in an onlerly way and free it to do work)
Maxwell Relation
Some functions of state are related to derivatives $T = (\frac{\partial H}{\partial S})_{p} = (\frac{\partial U}{\partial S})_{v}$
All potentials are functions of state (exact differentials) so order of 2nd derivatives doesn't matter $(\frac{3^2Z}{2\times 3^2}) = (\frac{3^2Z}{3\times 3\times})$

$\overline{}$	Use this to relate change hard to measure to 'nice' ones
	Proof 14.) $U dU = TdS - pdV$ $= (\frac{\partial U}{\partial S})_{V} dS + (\frac{\partial U}{\partial V})_{S}$
	Total diffruntial are egged $T = \begin{pmatrix} \frac{\partial y}{\partial s} \end{pmatrix}_{v}$; $-p = \begin{pmatrix} \frac{\partial y}{\partial v} \end{pmatrix}_{s}$
	U is a funtion of state $\oint dU = O$ $\left(\frac{\partial^2 Y}{\partial V \partial S}\right) = \left(\frac{\partial}{\partial V}\right) \left(\frac{\partial Y}{\partial S}\right) = \left(\frac{\partial}{\partial S}\right) \left(\frac{\partial}{\partial S}\right) \left(\frac{\partial}{\partial S}\right) = \left(\frac{\partial^2 Y}{\partial S}\right)$
	Generaled Quantities. Some partial derivatives correspond to real physical quantities
	Heat Capully DQ = C or Ca = (OQ) ST T is a constant thermo property
	But $dS = SQ_{rw}$ or $SQ_{rw} = TdS$
	$C = \Delta Q = T\Delta S \Longrightarrow C_{\alpha} = T(\frac{\partial S}{\partial T})_{\alpha}$
	Volume expansions: Fractional volume change unto temperature [Coefficient of thermal expansion, or]
	Volume expansions: Fractional volume change cath temperature [Coefficient of thermal expansion, or] [B = DV × 1 Bp = 1 (DV); Bs = 1 DV) [V DT] [Bp > 0 for most materials, but not ice > water.
$\overline{}$	Compressibility: Fractional value change with pressure
sue coefficient	$K = -\Delta V \times \frac{1}{V}$, $K_7 = \frac{1}{V} \left(\frac{\partial V}{\partial p} \right)^T$, $K_5 = \frac{1}{V} \left(\frac{\partial V}{\partial p} \right)^S$

	TdS equations - help us examine material behaviour TdS = 86 rev heat brunger
	Proof 14.2 Consider S= S(V,T)
	Total differential $T ds = T \left(\frac{\partial s}{\partial V} \right) dV + T \left(\frac{\partial s}{\partial T} \right) dT$ Multiply by T
	Heat Capacity $C_V = \left(\frac{1}{2}\right)_V$
	Maxwell Relation (Helmholtz) (35) = (30)
	$TdS = T(\frac{\partial p}{\partial T})_{V} dV + C_{V}dT$
	Two more $S = S(\rho, T)$ on $S = S(\rho, V)$ Example 14.3 A thermally isolated process $SQ = O = TdS$
	- Cvd T = T(2p) dV From our equation af state = R/V [Ideal]
Separte	remarks $-C_V dT = T_R dV$ V
) In the just	$-\frac{Cv \int dT}{R} = \int \frac{dV}{V} - \frac{Cv \ln T}{R} = \ln V + C$ $TV^{8-1} = Const$
	For isothermod $dT = 0$ $T_0 dS = T_0 \left(\frac{\partial p}{\partial T}\right) dV \implies dS = \left(\frac{\partial p}{\partial T}\right) dV$
	$=\frac{R}{V}dV$

Energy Equation: Ist law to comte the change in U in terms of things we can measure and energy dU = TdS - pdV [bt Law] Divide by dp when the temperature is constant $\left(\frac{\partial y}{\partial \rho}\right)_{T} = T\left(\frac{\partial S}{\partial \rho}\right)_{T} - \rho\left(\frac{\partial V}{\partial \rho}\right)_{T}$ Maxwell relation from Gibbs (35) =- (3V) $\left(\frac{\partial Q}{\partial \varphi} \right) = - T \left(\frac{\partial V}{\partial \varphi} \right) - \rho \left(\frac{\partial V}{\partial \varphi} \right)$