Lab 6: Non-Ideal Sources

Team: Joshua Ortiz, James Robinson

ECEN 214-502

TA: Yichi Zhang

Date Performed: 03/26/19

Date Report Due: 04/02/19

Procedure

Task 1:

 Create the circuit below with the resistor and capacitor values chosen from the prelab.

Figure 6.5 - A Flashing LED Circuit

- 2. Make sure the LEDs are switching off by flashing on and off by one second. If not, the component values are not correct and must be recalculated.
- 3. Use your oscilloscope on your AD2 to display both $V_1(t)$ and $V_2(t)$.
- 4. Adjust your vertical scale so that the waveforms occupy about 70% scale so that approximately two periods of the waveforms are shown.
- 5. Take a screenshot of the waveform.
- 6. Use the scope to measure
 - a. Actual frequency of oscillation.
 - b. Peak-to-peak voltage.
 - c. Root-Mean-Square (RMS) Voltage.

Task 2:

1. Replace the two resistors R_1 and R_2 with a $10k\Omega$ potentiometer. The circuit should look the one below (a diagram of the potentiometer is also given).

Figure 6.7 - Modified Flashing LED Circuit for Task 2.

Figure 6.6 – (a) A typical potentiometer, (b) its schematic, and (c) an equivalent circuit.

- 2. Use your oscilloscope on your AD2 to display both $V_1(t)$ and $V_2(t)$.
- 3. Adjust the potentiometer until the circuit oscillates at a frequency of 2Hz.
- 4. Take a screenshot of the waveform.
- 5. Shut the circuit of and measure the corresponding R_1 and R_2 values of the potentiometer.

- 6. Record this data and calculate the voltage division ratio, γ .
- 7. Replace resistor R with one at half its value.
- 8. Measure and record the new frequency of oscillation.
- 9. Take a screenshot of the waveform.
- 10. Last repeat steps 3-6 with the new resistor value.

Data Tables

Task 1: Circuit Component and Measured Values

R_1	$2.5k\Omega$
R_2	$2.5k\Omega$
С	$10 \mu F$
R	$100k\Omega$
Peak2Peak	1.79 <i>V</i>
f	1.026 <i>Hz</i>
$V_1 RMS$	888 mV
$V_2 RMS$	520 mV

Task 2A: Potentiometer Measurements

R_1	8.37Ω
R_2	$1.4k\Omega$
С	10μF
R	$100k\Omega$
Peak2Peak	1.04V
f	1.95 <i>Hz</i>
$V_1 RMS$	521 mV
$V_2 RMS$	304 mV
R_2	0.143
$\gamma - \frac{1}{R_1 + R_2}$	

Task 2B: Potentiometer Measurements

R_1	8.37Ω
R_2	$1.4k\Omega$
С	$10\mu F$
R	$100k\Omega$
Peak2Peak	1.06V
f	3.8 <i>Hz</i>
$V_1 RMS$	527 <i>mV</i>
$V_2 RMS$	309 mV
R_2	0.143
$\gamma = \frac{1}{R_1 + R_2}$	

Task 2C: Potentiometer Measurements

R_1	7.31Ω
R_2	2.37Ω
С	$10\mu F$
R	$50k\Omega$
Peak2Peak	1.86 <i>V</i>
f	2.05 <i>Hz</i>
$V_1 RMS$	930 mV
$V_2 RMS$	543 mV
R_2	0.244
$\gamma - \frac{1}{R_1 + R_2}$	

Sample Calculations:

$$\gamma = \frac{R_2}{R_1 + R_2}$$

$$\%Error_1 = \left| \frac{Actual - Experimental}{Actual} \right| \times 100$$

Screenshot

Task 1:

Task2A:

Task2B:

Task2C:

