

CI 06 : ÉTUDE DU COMPORTEMENT STATIQUE DES SYSTÈMES

Chapitre 1 – Modélisation des Actions Mécaniques

EXERCICES D'APPLICATION : GÉOMÉTRIE DES MASSES

Masse d'un solide

Soit un solide de masse volumique μ et de volume \mathcal{V} . Sa masse m est définie par :

$$m = \int_{\mathcal{X}} \mu d\mathcal{Y}$$

Centre d'inertie d'un solide

Soit un point M quelconque et un solide S de masse m. Soit P un point appartenant à S. Le centre d'inertie (ou centre de gravité ou centre de masse) est le point G défini par :

$$\overrightarrow{MG} = \frac{1}{m} \int \overrightarrow{MP} \, dm$$

Centre d'inertie d'un système matériel

Soient un système matériel E de masse m, composé de n solides S_i de masse m_i et de centre d'inertie G inertie G de E est défini par :

$$\overrightarrow{MG} = \frac{1}{m} \sum_{i=1}^{n} m_i \overrightarrow{MG_i}$$

Exercice 1 – Parallélépipède rectangle

Soit un parallélépipède rectangle en matériau de masse volumique μ .

Question 1

Déterminer la masse du solide.

Question 2

Déterminer la position du centre de gravité.

Xavier PESSOLES

Exercice 2 - Cylindre

Soit un volume cylindrique de masse volumique μ .

Question 1

Déterminer la masse du solide.

Question 2

Déterminer la position du centre de gravité.

Exercice 3 - Boule

Soit une boule de masse volumique μ .

Question 1

Déterminer la masse du solide.

Question 2

Déterminer la position du centre de gravité.

Exercice 4 - Portion de cylindre

Soit une portion cylindrique de masse volumique μ et de secteur angulaire 2θ .

Question 1

Déterminer la masse du solide.

Question 2

Déterminer la position du centre de gravité.

Exercice 5 - Portion de cylindre

Soit une portion cylindrique de masse volumique μ , de secteur angulaire 2θ et d'épaisseur e .

Question 1

Déterminer la masse du solide.

Question 2

Déterminer la position du centre de gravité.

Xavier Pessoles 2

Exercice 6 - Prisme

Soit un prisme de masse volumique μ et de profondeur L.

Question 1

Déterminer la masse du solide.

Question 2

Déterminer la position du centre de gravité.

Xavier Pessoles

3