Iris Classification - Exercise 1

Goal: predict Species from four numeric features (SepalLength/Width, PetalLength/Width).

Plan: load → EDA → split (60/40, stratified) scale on train only train KNN, GaussianNB,

Logistic Regression evaluate on same test set for a fair comparison.

Note: scaling is fit on **train only** to avoid leakage; same split used for all models.

```
import matplotlib.pylab as plt
import pandas as pd

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.linear_model import LogisticRegression
In [126... import warnings
warnings.filterwarnings('ignore')
```

Data Loading & Quick EDA

- Load Iris.csv, drop the Id column.
- Check shape, dtypes, missing values; quick preview of rows.
- Iris has 150 rows, 4 numeric features, 3 balanced classes, no missing values.

```
In [127... # read the file into a pandas dataframe
    iris_df = pd.read_csv(r"C:\Users\User\Downloads\Iris.csv")
    iris_df.head(10)
```

Out[127 Id	SepalLengthCm	SepalWidthCm	PetalL
------------	---------------	--------------	--------

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

```
In [128...
```

```
#Checking for missing values
print(iris_df.shape)
iris_df.info()
iris_df.isnull().sum()
```

(150, 6)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 150 entries, 0 to 149 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object
dtyp	es: float64(4),	int64(1), object	t(1)

memory usage: 7.2+ KB

Out[128...

Ιd 0 SepalLengthCm SepalWidthCm PetalLengthCm 0 PetalWidthCm 0 Species 0 dtype: int64

In [129... iris_df.describe()

Ο.	-4-	Гα	\neg	$\overline{}$	
UI	ut	ΙТ	Z	y	

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [130... iris_df = iris_df.drop('Id', axis=1) # remove non-predictive Id column
    iris_df.head()
```

Out[130...

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [131...
df = iris_df.copy()
feature_cols = ['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']
target_col = 'Species'
```

K Nearest Neighbors (KNN)

Idea: classify a point by the **majority label of its k nearest neighbors**.

Steps: loop k = 1...15 on the same train/test split, pick the best k by test accuracy.

Expectation: setosa is perfectly separated; small confusion between versicolor & virginica.

Train/Test Split & Scaling

- train_test_split(test_size=0.40, random_state=26, stratify=Species)
- **StandardScaler**: **fit on X_train only**, then transform X_train, X_test, and any new points.
- Reason: KNN uses distances; scaling keeps features comparable and avoids traintest leakage.

Train and Test (filled=Train)

Normalized Train/Test (filled=Train)


```
In [138... # KNN: try k=1..15 on TRAIN, evaluate on TEST; pick best k by test accuracy
Xtr, ytr = train_scaled[feature_cols], train_scaled[target_col]
Xte, yte = test_scaled[feature_cols], test_scaled[target_col]

rows = []
for k in range(1, 16):
    knn = KNeighborsClassifier(n_neighbors=k).fit(Xtr, ytr)
    acc = accuracy_score(yte, knn.predict(Xte))
    rows.append({'k': k, 'accuracy': acc})

results = pd.DataFrame(rows)
results
```

```
Out[138...
                k accuracy
            0
               1 0.950000
            1
                2 0.883333
            2
                3 0.916667
                4 0.916667
            3
                5 0.950000
            4
                6 0.933333
               7 0.950000
            6
            7
                8 0.950000
                9 0.950000
            8
              10 0.950000
           10
              11 0.950000
              12 0.950000
           12 13 0.950000
           13 14 0.933333
           14 15 0.933333
          best_k = int(results.loc[results['accuracy'].idxmax(), 'k'])
In [139...
          best_k
Out[139...
          1
In [140...
          X_all = df_scaled[feature_cols]
          y_all = df_scaled[target_col]
          knn = KNeighborsClassifier(n_neighbors=best_k).fit(X_all, y_all)
          # neighbors + predictions for new points
          distances, indices = knn.kneighbors(predict_scaled)
           preds = knn.predict(predict_scaled)
          for i, pred in enumerate(preds):
              print('-'*64)
              print('Predicted:', pred)
              print('New point:', predict_df.iloc[i])
              print('\nNearest neighbors (original units):')
              print(df.iloc[indices[i], :])
              print('\nNearest neighbors (scaled):')
              print(df_scaled.iloc[indices[i], :])
```

```
Predicted: Iris-setosa
New point: SepalLengthCm 5.1
SepalWidthCm
            3.5
PetalLengthCm 1.4
PetalWidthCm
             0.2
Name: 0, dtype: float64
Nearest neighbors (original units):
  SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
         5.1 3.5 1.4 0.2 Iris-setosa
Nearest neighbors (scaled):
  SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
     -0.904935 1.088035 -1.312174 -1.301965 Iris-setosa
______
Predicted: Iris-versicolor
New point: SepalLengthCm 6.0
SepalWidthCm 2.9
PetalLengthCm 4.5
PetalWidthCm
            1.5
Name: 1, dtype: float64
Nearest neighbors (original units):
   SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                       Species
78
    6.0 2.9 4.5 1.5 Iris-versicolor
Nearest neighbors (scaled):
   SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
      0.118804 -0.352011 0.382718 0.373832 Iris-versicolor
Predicted: Iris-virginica
New point: SepalLengthCm 6.5
SepalWidthCm
            3.0
PetalLengthCm 5.5
PetalWidthCm 2.0
Name: 2, dtype: float64
Nearest neighbors (original units):
    SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                        Species
     6.5 3.0 5.2 2.0 Iris-virginica
147
Nearest neighbors (scaled):
    SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                         Species
147
        0.687549 -0.112004 0.765435 1.018369 Iris-virginica
 KNN Result (this run): Test accuracy \approx 0.95.
```

Naive Bayes (GaussianNB)

Idea: within each class, each numeric feature is modeled as **Gaussian**; features are conditionally independent given the class.

Most errors occur on the **versicolor** ↔ **virginica** boundary; setosa is perfect.

Why Gaussian (not Multinomial): Iris features are continuous (lengths/widths), not counts/dummies.

Procedure: fit on train, predict on test; no tuning needed.

```
In [141...
          # GaussianNB: suitable for continuous features (Iris); fit on TRAIN, evaluate on TE
          nb = GaussianNB()
          nb.fit(Xtr, ytr)
          # predict on TEST split
          y_pred_nb = nb.predict(Xte)
          # metrics
          acc_nb = accuracy_score(yte, y_pred_nb)
          cm_nb = confusion_matrix(yte, y_pred_nb, labels=['Iris-setosa','Iris-versicolor','
          print(f"GaussianNB - Test Accuracy: {acc nb:.3f}\n")
          print(pd.DataFrame(cm_nb,
                  index=['true_setosa','true_versicolor','true_virginica'],
                  columns=['pred_setosa','pred_versicolor','pred_virginica']))
          print("\nClassification Report:")
          print(classification_report(yte, y_pred_nb, digits=3))
        GaussianNB - Test Accuracy: 0.967
                         pred_setosa pred_versicolor pred_virginica
        true_setosa
                                  20
                                                   0
        true_versicolor
                                   0
                                                   20
                                                                   0
        true_virginica
                                                    2
                                                                   18
        Classification Report:
                         precision recall f1-score support
            Iris-setosa
                             1.000
                                     1.000
                                                 1.000
                                                              20
                                      1.000
        Iris-versicolor
                             0.909
                                                 0.952
                                                              20
         Iris-virginica
                            1.000
                                       0.900
                                                 0.947
                                                              20
                                                 0.967
                                                              60
               accuracy
              macro avg
                             0.970
                                       0.967
                                                 0.967
                                                              60
                                                 0.967
           weighted avg
                             0.970
                                       0.967
                                                              60
In [142...
         nb_preds = nb.predict(predict_scaled)
          nb_proba = nb.predict_proba(predict_scaled)
          for i, (label, probs) in enumerate(zip(nb_preds, nb_proba)):
              print(f"Point {i}: predicted = {label}, P(setosa, versicolor, virginica) = {pr
        Point 0: predicted = Iris-setosa, P(setosa, versicolor, virginica) = [1.00000000e+0
        0 1.41308890e-17 2.03424058e-25]
        Point 1: predicted = Iris-versicolor, P(setosa, versicolor, virginica) = [9.0927220
        1e-102 9.93653662e-001 6.34633813e-003]
        Point 2: predicted = Iris-virginica, P(setosa, versicolor, virginica) = [6.24385016
```

e-186 2.00299453e-004 9.99799701e-001]

GaussianNB Result (this run): Test accuracy = 0.967.

Confusion: setosa 20/20, versicolor 20/20, virginica 18/20 (2 misclassified as versicolor).

Logistic Regression (Multinomial)

Idea: learns **softmax probabilities** with a linear decision boundary across all 3 classes.

Settings: multi_class='multinomial', solver='lbfgs', max_iter=1000 (C very large to mirror "no regularization").

Procedure: fit on train, predict on test.

```
In [143...
          # Multinomial logistic regression: fit on TRAIN, evaluate on TEST (same split & sca
          logit = LogisticRegression(
              penalty="12",
              C=1e42,
              solver="lbfgs",
              multi_class="multinomial",
              max_iter=1000
          # fit on TRAIN split
          logit.fit(Xtr, ytr)
          # predict on TEST split
          y_pred_lr = logit.predict(Xte)
          # metrics (same format as KNN/NB)
          acc_lr = accuracy_score(yte, y_pred_lr)
          cm_lr = confusion_matrix(yte, y_pred_lr,
                                     labels=['Iris-setosa','Iris-versicolor','Iris-virginica']
          print(f"Logistic Regression - Test Accuracy: {acc_lr:.3f}\n")
          print(pd.DataFrame(cm_lr,
                  index=['true_setosa','true_versicolor','true_virginica'],
                  columns=['pred_setosa','pred_versicolor','pred_virginica']))
          print("\nClassification Report:")
          print(classification_report(yte, y_pred_lr, digits=3))
```

	pred_setosa	pred_versicolor		<pre>pred_virginica</pre>	
true_setosa	20		0		0
true_versicolor	0		20		0
true_virginica	0		2	1	8
Classification R	eport:				
	precision	recall	f1-score	support	
Iris-setosa	1.000	1.000	1.000	20	
Iris-versicolor	0.909	1.000	0.952	20	
Iris-virginica	1.000	0.900	0.947	20	
accuracy			0.967	60	
macro avg	0.970	0.967	0.967	60	
weighted avg	0.970	0.967	0.967	60	

3e-14 9.98026477e-01 1.97352307e-03]
Point 2: predicted = Iris-virginica, P(setosa, versicolor, virginica) = [2.15243442 e-27 3.60196152e-04 9.99639804e-01]

Logistic Regression Result (this run): Test accuracy = 0.967.

Same pattern as NB: a couple of **virginica** near the boundary.

Conclusion - Ranking (Best to Worst)

- 1. Logistic Regression = Gaussian Naive Bayes (tie, ~ 0.967)
- 2. **KNN** (~0.95)

Why: LR and GaussianNB learn **smooth global boundaries** that match Iris structure; both classify **setosa** perfectly and only miss a couple of **virginica** near the **versicolor** border. KNN is strong but **depends on local neighbors**; borderline points can flip with nearby samples, so it makes a few more boundary errors.

All models used the **same stratified split** and **scaler fit on train only** for a fair comparison.