

Tema 3

✓ Estimación puntual

¿Qué es la estadística inferencial?

En la Estadística inferencial se estudian técnicos y procedimientos con el objetivo de extender o generalizar la información de una muestra a la población.

¿Qué es la estimación puntual?

Sea x una v.a. con función de densidad o de probabilidad conocida $f(x, \theta)$, pero dependiente de un parámetro desconocido θ .

Problema: Cómo podemos estimar a partir de, uno serie de observaciones $X_1, ..., X_n$ de la v.a. X?

Ejemplo

X = "Tiempo de, traslado de una persona del trabajo a la Casa"

Supongamos X~exp(θ)

Datos (en minutos)

$$x_1 = 100$$
, $x_2 = 35$, $x_3 = 90$, $x_4 = 35$, $x_5 = 70$, $x_6 = 10$

¿Cómo estimamos θ?

Definición: Al Conjunto de todos los posibles valores de un parámetro de una distribución de probabilidad se le llama **espacio parametral** y se le denota por letra

 Θ (θ mayúscula).

Ejemplos:

- 1) Es espacio parametral de la dist. $Exp(\theta)$:
- $\Theta = (0, \infty)$
- 2) Para la dist. Bin(n, p)
- $\Theta = \{1, 2, ...\}*(0, 1)$
- 3) Para la dist. $N(\mu, \sigma^2)$

$$\Theta = \{-\infty, 0\} * (0, \infty)$$

Muestras aleatorias, estadísticas y estimadores

Definición: Una **muestra aleatoria** (m.a.) es una colección de v.a.s. $X_1, ..., X_n$ que son:

- a) Independientes
- b) Tienen la misma distribución que X.

Definición: Una **estadística** es una función de una muestra aleatoria $X_1,...,X_n$ que no depende de parámetros desconocidos, A tales funciones se les denotara por $T=T(X_1,...,X_n)$.

Muestras aleatorias, estadísticas y estimadores Ejemplos de Estadísticas:

1.
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \text{Media Muestral}$$

2.
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = Varianza Muestral$$

3.
$$T = \frac{1}{n} \sum_{i=1}^{n} x_i^k = k - esimo momuento muestral$$

4.
$$X_{(k)} = k - esimo min\{X_1, ..., X_n\} = k - esimo estadistica de orden$$

5.
$$T = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

No es una estadistica cuando $X_1, ..., X_n \sim N(\mu, \sigma^2)$ con μ desconocida.

Ya que por definición, una estadística no depende de parámetros desconocidos.

Definición: Un **estimador puntual** para un parámetro desconocido θ es una estadística $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ que se propone para estimar θ .

Por ejemplo, la estadística $\hat{\theta} = \hat{\theta}(X_1, ..., X_n) = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ puede ponerse como estimador del parámetro desconocido θ en la distribución de Poisson (θ) .

Nota: Si $X_1, ..., X_n$ son valores de la **estimación** para θ es $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$.

Método de Momentos

Definición: Sea X una v.a. y sea $k\geq 1$ un entero. El **k-esimo momento** de X, si existe, es el numero $E(X^k)$.

A los números $E(X^1)$, $E(X^2)$, ... se les llama también **momentos poblacionales.**

Observación: Sea $X_1, ..., X_n$ una m.a. de la distribución $f(x; \theta)$.

Definición: Sea $X_1, ..., X_n$ una m.a. y sea $k \ge 1$ un entero. El **k-esimo momento** es la v.a. $\frac{1}{n} \sum_{i=1}^n X_i^k$

Método de Momentos

Consiste en igualar los momentos poblacionales con los correspondientes momentos muestrales y resolver esta ecuación (o sistema de ecuaciones) para el parámetro o vector de parámetros.

1er.m. poblacional
$$E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 1er.m. muestral 2do. m. poblacional $E(X^2) = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ 2do. m. muestral \vdots

Ejemplo 1: Sea X una v.a. con función de densidad $f(x;\theta) = \begin{cases} \theta x^{\theta-1} & \text{si } 0 < x < 1 \\ 0 & \text{otro caso} \end{cases}$ en donde $\theta > 0$, estimar el parámetro por el método de momentos.

Entonces $E(X) = \frac{\theta}{1+\theta}$, se calcula el primer momento, respecto a la función de densidad.

Si $X_1, ..., X_n$ es una m.a. de esta distribución, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 1er. m. muestral Entonces por el método de momentos,

$$\frac{\hat{\theta}}{\hat{\theta} + 1} = \bar{X}$$

$$\Rightarrow \hat{\theta} = \frac{\bar{X}}{\bar{X} + 1}$$

 \therefore Este es el estimador para θ .

Ejemplo 2: Sea X una v.a. con distribución de Poisson(θ) en donde $\theta > 0$, estimar el parámetro por el método de momentos.

Entonces
$$E(x) = \theta$$

Si $X_1, ..., X_n$ es una m.a. de esta distribución, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 1er. m. muestral Entonces por el método de momentos,

$$\hat{\theta} = \bar{X}$$

 \therefore Este es el estimador para θ.

Ejemplo 3: Sea X una v.a. con distribución $N(\mu, \sigma^2)$, estimar los parámetros por el método de momentos.

Entonces
$$E(X) = \mu$$
, $E(X^2) = \sigma^2 + \mu^2$

Igualamos con los momentos muestrales, tenemos el sistema de ecuaciones:

$$\hat{\mu} = \bar{X} \dots \dots (1)$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{n}{2}$ $\frac{1}{2}$

Desarrollamos:
$$\sum_{i=1}^{n} (X_i - \bar{X})^2 =$$

$$\hat{\sigma}^2 + \hat{\mu}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \dots (2)$$

$$\sum_{i=1}^{n} (X_i^2 - 2X_i \bar{X} + \bar{X}^2) = \sum_{i=1}^{n} X_i^2 - 2\bar{X} \sum_{i=1}^{n} X_i + n\bar{X}^2 =$$

$$\sum_{i=1}^{n} X_i^2 - 2n\bar{X}^2 + n\bar{X}^2 = \sum_{i=1}^{n} X_i^2 - n\bar{X}^2$$

Sustituimos (1)en (2)

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - n\bar{X})^2$$

$$\hat{\sigma}^2 = \frac{n-1}{n} \sum_{i=1}^n (X_i - n\bar{X})^2$$

$$\therefore Estos son los estimadores.$$

13

Ejercicio: Suponga que tiene la siguiente muestra de tamaño 10:

{1,1,1,2,2,3,5,7,8,10}

Estimar los parámetros μ y σ^2 usando el Método de Momentos si la distribución normal se ajusta a través de los datos de la muestra.

Observaciones de Método de Momentos:

Ley débil de los grandes números:

Sean $(X_1, X_2, ..., X_n)$ n variables aleatorias independientes todas las cuales tienen la misma espe-

ranza
$$\mu = E(X)$$
 y varianza $\sigma^2 = V(X)$. Sea $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Entonces

$$\lim_{n\to\infty} P(|\overline{X}-\mu|\geq\varepsilon)=0$$

Decimos que \overline{X} converge a μ en probabilidad y lo indicamos: $\overline{X} \xrightarrow{p} \mu$.

Observaciones de Método de Momentos:

- 1. El método es razonable ya que por la ley de loa grandes números cuando $n \rightarrow \infty$, los momentos muestras se aproximan a los momentos poblacionales.
- 2. El método puede aplicarse para distribuciones discretas como continuas.
- 3. El método presupone la existencia de los primeros momentos poblacionales, y que estos dependen de los parámetros.
- 4. El método presupone que el sistema de ecuaciones tiene una única solución u esta es sencilla de encontrar.
- 5. El método no garantiza que el estimador tome valores en el espacio parametral.

Método de Máxima Verosimilitud

Supongamos que X es una v.a. discreta con función de distribución de probabilidad $p(x,\theta)$, donde θ es un parámetro desconocido. Sean $x_1, x_2, ..., x_n$ los valores observados de una muestra aleatoria de tamaño n.

Se define la *función de verosimilitud* como la función de distribución conjunta de las observaciones:

$$L(x_1, x_2, ..., x_n, \theta) = P(X_1 = x_1)P(X_2 = x_2)...P(X_n = x_n) = p(x_1, \theta).p(x_2, \theta)....p(x_n, \theta)$$

Notar que la función de verosimilitud es una función de θ .

El estimador de máxima verosimilitud de θ es aquel valor de θ que maximiza la función de verosimilitud

Método de máxima verosimilitud

La interpretación del método sería: el estimador de máxima verosimilitud es aquel valor del parámetro que maximiza la probabilidad de ocurrencia de los valores muestrales La adaptación para el caso en que X es una v.a. continua sería la siguiente:

Supongamos que X es una v.a. continua con función de densidad de probabilidad $f(x,\theta)$, donde θ es un parámetro desconocido. Sean $x_1, x_2, ..., x_n$ los valores observados de una muestra aleatoria de tamaño n.

Se define la *función de verosimilitud* como la función de distribución conjunta de las observaciones:

$$L(x_1, x_2, ..., x_n, \theta) = f(x_1, \theta).f(x_2, \theta)....f(x_n, \theta)$$

La función de verosimilitud es una función de θ .

El estimador de máxima verosimilitud de θ es aquel valor de θ que maximiza la función de verosimilitud

Método de máxima verosimilitud

Consiste en obtener el valor de θ que maximiza a la función de verosimilitud $L(x_1, ..., x_n; \theta) = f(x_1; \theta) ... f(x_n; \theta)$. Al valor de θ en donde $L(x_1, ..., x_n; \theta)$ alcanza su máximo si este existe, se le llama "estimación de máxima verosimilitud" o "estimación máximo verosimilitud".

Esta es la Idea: Se debe de encontrar el valor θ , tal que el valor numérico observado $(x_1, ..., x_n)$ de la m.a. tenga probabilidad máxima.

Estimación puntual

3.2 Métodos de construcción de estimadores.

Método de máxima verosimilitud

Ejemplo 1: Sea $X_1, ..., X_n$ una m.a. de la dist. $Exp(\theta)$.

La función de verosimilitud es

$$L(x_1, ..., x_n; \theta) = f(x_1; \theta) ... f(x_n; \theta)$$
$$= \theta e^{-\theta x_1} ... \theta e^{-\theta x_n}$$
$$= \theta^n e^{-\theta n\bar{x}}$$

Observación: $L(\theta)$ es máxima en el mismo punto en donde $\ln L(\theta)$ lo es, ya que esto se debe a las propiedades de continuidad y monotonía de la función ln. $:: \hat{\theta} = \frac{1}{z}$ Es la estimación para θ Entonces, aplicando ln: Estimación es un número

$$\ln L(x_1, ..., x_n; \theta) = n \ln \theta - \theta n \bar{x}$$

$$\therefore \frac{d}{d\theta} \ln L(x_1, ..., x_n; \theta) = \frac{n}{\theta} - n \bar{x}$$

$$\text{Estimacion}$$

$$\therefore \frac{\partial}{\partial \theta} \ln L(x_1, ..., x_n; \theta) = \frac{n}{\theta} - n \bar{x}$$

$$\text{Estimacion}$$

$$\text{Es$$

$$\therefore \hat{\theta} = \frac{1}{\bar{X}} \text{ Es la estimador para } \theta$$

Estimador es una estadística

Método de máxima verosimilitud

Ejemplo 2: Sea
$$X_1, ..., X_n$$
 una m.a. de la distribución $f(x; \theta) = \begin{cases} \theta x^{\theta-1} & \text{si } 0 < x < 1 \\ 0 & \text{otro caso} \end{cases}$

La función de verosimilitud es

$$L(x_1, ..., x_n; \theta) = f(x_1; \theta) ... f(x_n; \theta)$$

$$= \theta^n (x_1 ... x_n)^{\theta - 1}$$

$$\ln L(x_1, ..., x_n; \theta) = n \ln \theta + (\theta - 1) \sum_{i=1}^n \ln x_i$$

$$\therefore \frac{d}{d\theta} \ln L(x_1, ..., x_n; \theta) = \frac{n}{\theta} + \sum_{i=1}^n \ln x_i$$

Esta derivada es cero $\leftrightarrow \theta = {}^{-n}/_{\sum_{i=1}^{n} lnx_i}$

Además
$$\frac{d^2}{d\theta^2} lnL(x_1, ..., x_n; \theta) = -\frac{n}{\theta^2} < 0$$

$$\therefore \hat{\theta} = -n / \sum_{i=1}^n lnx_i$$
 Es **la estimación** para θ

$$\therefore \hat{\theta} = -n / \sum_{i=1}^n lnx_i$$
 Es la **estimador** para θ

$$\therefore \hat{\theta} = {}^{-n}/_{\sum_{i=1}^{n} lnx_i} \text{ Es la estimación para}$$

$$\hat{\theta} = \frac{-n}{\sum_{i=1}^{n} lnX_i}$$
 Es la **estimador** para θ

Método de máxima verosimilitud

Ejemplo 3: Sea $X_1, ..., X_n$ una m.a. de la distribución $N(\mu, \sigma^2)$.

La función de verosimilitud es $f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

$$L(x_{1},...,x_{n};\mu,\sigma^{2}) = f(x_{1};\mu,\sigma^{2}) ... f(x_{n};\mu,\sigma^{2})$$

$$= \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(x_{1}-\mu)^{2}/2\sigma^{2}} ... \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(x_{n}-\mu)^{2}/2\sigma^{2}}$$

$$= (2\pi\sigma^{2})^{-n/2} e^{\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i}-\mu)^{2}\right)}$$

$$\ln L(x_{1},...,x_{n};\mu,\sigma^{2}) = -\frac{n}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n}(x_{i}-\mu)^{2}$$

Derivamos cada variable, lo que tenemos:

$$\frac{\partial}{\partial \mu} L(x_1, ..., x_n; \mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 y$$

$$\frac{\partial}{\partial \sigma^2} L(x_1, ..., x_n; \mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2$$

Método de máxima verosimilitud

Sigue el Ejemplo 3, Igualamos a cero ambas derivadas:

$$\sum_{i=1}^{n} (x_{i} - \mu) = 0 \dots \dots (1)$$

$$-n\sigma^{2} + \sum_{i=1}^{n} (x_{i} - \mu)^{2} = 0 \dots \dots (2)$$
De (1), $\hat{\mu} = \bar{x}$ y substituyendo en (2), $\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$, punto critico.

Para verificar que $(\hat{\mu}, \hat{\sigma}^2)$ es un máximo que se calcula por la matriz hessiana,

$$\mathbf{H}(\mu,\sigma^2) = \begin{pmatrix} \frac{\partial^2}{\partial\mu\partial\mu}L(x_1,\ldots,x_n;\mu,\sigma^2) & \frac{\partial^2}{\partial\mu\partial\sigma^2}L(x_1,\ldots,x_n;\mu,\sigma^2) \\ \frac{\partial^2}{\partial\sigma^2\partial\mu}L(x_1,\ldots,x_n;\mu,\sigma^2) & \frac{\partial^2}{\partial\sigma^2\partial\sigma^2}L(x_1,\ldots,x_n;\mu,\sigma^2) \end{pmatrix}$$

Método de máxima verosimilitud Sigue el Ejemplo 3:

$$H(\mu, \sigma^2) = \begin{pmatrix} -n\sigma^2 & -(\sigma^2)^{-2} \sum_{i=1}^n (x_i - \mu) \\ -(\sigma^2)^{-2} \sum_{i=1}^n (x_i - \mu) & \frac{n}{2} (\sigma^2)^{-2} - (\sigma^2)^{-3} \sum_{i=1}^n (x_i - \mu)^2 \end{pmatrix}$$

Al evaluar en el punto critico y obtenemos la siguiente Matriz de la forma reducida:

$$H(\hat{\mu}, \hat{\sigma}^2) = \begin{pmatrix} -n(\hat{\sigma}^2)^{-1} & 0 \\ 0 & -\frac{n}{2}(\hat{\sigma}^2)^2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

El que esta matriz se definida negativa significa que

- 1. Primer entreda $a_{11} < 0$ y 2. El determinante $|H(\hat{\mu}, \hat{\sigma}^2)| > 0$
- $\hat{\mu} = \bar{x}$ y $\hat{\sigma}^2 = \sum_{i=1}^n (x_i \bar{x})^2$ son las estimaciones por máxima verosimilitud.
- $\hat{\mu} = \bar{X}$ y $\hat{\sigma}^2 = \sum_{i=1}^n (X_i \bar{X})^2$ son los estimadores por máxima verosimilitud.

Observaciones Método de máxima verosimilitud

- 1. El método de máxima verosimilitud puedes aplicarse tanto para distribuciones discretas como continuas.
- 2. El método de máxima verosimilitud no genera necesariamente los mismo estimadores que el método de momentos.
- 3. Cuando existe solución, el método en el máxima verosimilitud siempre produce un valor del parámetro dentro del espacio parametral.
- 4. El estimador máximo verosimil, puede no existir, un ejemplo puede es para la distribución unif $(0, \theta)$.
- 5. Si el espacio parametral se reduce, el punto máximo puede cambiar.

Método de máxima verosimilitud

Ejemplo 4: Sea $X_1, ..., X_n$ una m.a. de la distribución Unif $(0, \theta)$.

La función de verosimilitud es

$$L(x_1, ..., x_n; \theta) = f(x_1; \theta) ... f(x_n; \theta)$$

$$= \frac{1}{\theta} ... \frac{1}{\theta} * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

$$= \left(\frac{1}{\theta}\right)^n * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

$$= \frac{1}{\theta} \cdot ... \frac{1}{\theta} * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

$$= \frac{1}{\theta} \cdot ... \frac{1}{\theta} * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

$$= \frac{1}{\theta} \cdot ... \frac{1}{\theta} * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

$$= \frac{1}{\theta} \cdot ... \frac{1}{\theta} * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

$$= \frac{1}{\theta} \cdot ... \frac{1}{\theta} * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

$$= \frac{1}{\theta} \cdot ... \frac{1}{\theta} * 1_{(0,\theta)}(x_1) ... 1_{(0,\theta)}(x_n)$$

El valores de θ , debe de ser estrictamente mayor a todos los valores observados " x_1 , ..., x_n ", en otras θ debe ser mayor al máximo de los valores observados " x_n ".

No existe un valor Máximo para esta función.

Funciones Parametrales y Máxima Verosimilitud

Definición: Sea θ un parámetro o vector de parámetros de una distribución. A cualquier función $\theta \to \tau(\theta)$ se le llama función parametral.

Ejemplos:

- 1) $\tau(\theta) = \theta^2$
- 2) $\tau(n,p) = np$ "funcion parametral de 2 parametros"
- 3) $\tau(\theta) = E(x)$
- 4) Cuantiles "Los cuantiles suelen usarse por grupos que dividen la distribución en partes iguales"
- 5) $\tau(\theta) = P(X \in A)$ "La prob. de que la v.a., tom algún valor en algún conjunto"

Funciones Parametrales y Máxima Verosimilitud

Definición: La función de verosimilitud asociada a una función parametral $\tau(\theta)$ es la siguiente: para cada posible valor η de $\tau(\theta)$,

$$L^*(\eta) = \sup\{L(\theta): \theta \in \tau^{-1}(\eta)\}\$$

En otras palabras, tomamos un valor η y se calcula su imagen inversa bajo τ , eso es un conjunto y se evalúa L en cada punto de ese conjunto, donde el supremo de estos valores es la función de verosimilitud de $\tau(\theta)$.

Ejemplo: Para la distribución $\exp(\theta)$

$$L(\theta) = \theta^n e^{-\theta n\bar{x}}$$

Sea $\tau(\theta) = \theta^2$, es 1 - 1 en el intervalo $(0, \infty)$.

Entonces
$$L^*(\eta) = L(\sqrt{\eta}) = (\sqrt{\eta})^n e^{-\sqrt{\eta}n\bar{x}}$$

Principio de Invarianza

Teorema: Sea $\hat{\theta}$ el estimador máximo verosímil para un parámetro θ . El estimador máximo verosímil para una función parametral $\tau(\theta)$ es $\tau(\hat{\theta})$.

Demostración:

Sabiendo que $L^*(\eta) = \sup\{L(\theta): \theta \in \tau^{-1}(\eta)\}$.

Sea $\theta \to \tau(\theta)$ uno a uno y sea $\eta = \tau(\theta)$.

Entonces $L^*(\eta) = L(\tau^{-1}(\eta)) = L(\theta)$

 $L^*(\eta)$ es máximo en el valor de $\hat{\eta}$ definido en $\tau(\hat{\theta})$

Es decir $\tau(\hat{\theta})$ es el estimador de maximo verosimil para $\tau(\theta)$.

Principio de Invarianza

Sigue Demostración de Teorema:

Sea $\theta \to \tau(\theta)$ no necesariamente uno a uno.

Entonces
$$\max_{\eta} L^*(\eta) = \max\{L(\theta): \theta \in \Theta\} = L(\hat{\theta})$$

Sea $\hat{\eta}$ definido en $\tau(\hat{\theta})$. Entonces

$$L^*(\eta) = L^*\left(\tau(\hat{\theta})\right) = \sup\{L(\theta): \theta \in \tau^{-1}(\tau(\hat{\theta}))\} = L(\hat{\theta})$$

 $L^*(\hat{\eta})$ es el valor máximo de la función L^*

Es decir $\hat{\eta} = \tau(\hat{\theta})$ es el estimador de maximo verosimil para $\tau(\theta)$.

Ejemplo 1: Para la distribución $\exp(\theta)$ y definida en $\tau(\theta) = \theta^2$

Tenemos que $\widehat{\tau(\theta)} = \tau(\hat{\theta})$ es decir $\hat{\theta}^2 = (\hat{\theta})^2$.

Ejemplo 2: Sea $X_1, ..., X_n$ una m.a. de una población con distribución $N(\theta, 1)$, con θ desconocido. Se busca el estimador máximo verosímil de $\tau(\theta) = \log(\theta)$.

Como $\hat{\theta} = \bar{X}$ es el estimador máximo verosímil θ , entonces por la propiedad de varianza $\log(\bar{X})$ es el estimador máximo verosímil de $\log(\theta)$.

Ejemplo 3: Sea $X_1, ..., X_n$ una m.a. de una población con distribución $N(\theta, \sigma^2)$.

Se sabe que el estimador máximo verosímil $\hat{\theta}$ es \bar{X} . Para encontrar el estimador máximo verosímil $\tau(\theta) = sen(\theta)$.

$$\widehat{\tau(\theta)} = \tau(\widehat{\theta}) = sen(\widehat{\theta}) = sen(\overline{X})$$

Insesgamiento

Definición: Un estimador $\hat{\theta}$ es insesgado para un parámetro θ si $E(\hat{\theta}) = \theta$.

Ejemplo 1: El estimador $\hat{\theta} = \bar{x}$ (media muestral) es insesgado para el parámetro θ de la distribución Poisson(θ) pues

$$E(\hat{\theta}) = E(\bar{x})$$

$$= E\left(\frac{1}{n}\sum_{i=1}^{n} x_i\right) = \frac{1}{n}\sum_{i=1}^{n} E(x_i)$$

$$= \frac{1}{n}\sum_{i=1}^{n} \theta = \theta$$

Al ser = $de \theta$ es un estimador insesgado.

Insesgamiento

Ejemplo 2: El estimador $\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ es insesgado para la varianza de la distribución $N(\mu, \sigma^2)$, en donde

$$E(\hat{\sigma}^2) = E\left(\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2\right)$$

$$= \frac{1}{n-1}\sum_{i=1}^n (x_i - \mu + \mu - \bar{x})^2 = \frac{1}{n-1}\sum_{i=1}^n \left((x_i - \mu) - (\bar{x} - \mu)\right)^2$$
 Se desarrolla al cuadrado
$$= \frac{1}{n-1}\sum_{i=1}^n \left[(x_i - \mu)^2 - (2*(x_i - \mu)*(\bar{x} - \mu)) + (\bar{x} - \mu)^2\right]$$

$$= \frac{1}{n-1}\left[\sum_{i=1}^n (x_i - \mu)^2 + n(\bar{x} - \mu)^2 - 2(\bar{x} - \mu)\sum_{i=1}^n (x_i - \mu)\right]$$

Insesgamiento

Separamos en $\sum_{i=1}^{n}$ y tomamos en cuenta si:

Sigue el Ejemplo 2:

$$\bar{x} = \frac{\sum_{i}^{n} x_{i}}{n} \Rightarrow n\bar{x} = \sum_{i}^{n} x_{i} \text{ y Recíprocamente con } \mu = \frac{\sum_{i}^{n} x_{i}}{n} \Rightarrow n\mu = \sum_{i}^{n} x_{i}$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_{i} - \mu)^{2} + n(\bar{x} - \mu)^{2} - 2(\bar{x} - \mu) \left(\sum_{i=1}^{n} x_{i} - n\mu \right) \right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_{i} - \mu)^{2} + n(\bar{x} - \mu)^{2} - 2(\bar{x} - \mu)(n\bar{x} - n\mu) \right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_{i} - \mu)^{2} + n(\bar{x} - \mu)^{2} - 2n(\bar{x} - \mu)^{2} \right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_{i} - \mu)^{2} - n(\bar{x} - \mu)^{2} \right]$$

Insesgamiento

Sigue el Ejemplo 2:

$$\begin{split} &= \frac{1}{n-1} \left[\sum_{i=1}^{n} (x_i - \mu)^2 - \sum_{i=1}^{n} (\bar{x} - \mu)^2 \right] = \frac{1}{n-1} \sum_{i=1}^{n} [(x_i - \mu)^2 - (\bar{x} - \mu)^2] \\ &\Rightarrow E(\hat{\sigma}^2) = E\left(\frac{1}{n-1} \sum_{i=1}^{n} ((x_i - \mu)^2 - (\bar{x} - \mu)^2)\right) \\ &= \frac{1}{n-1} \sum_{i=1}^{n} [E(x_i - \mu)^2 - E(\bar{x} - \mu)^2] \\ &= \frac{1}{n-1} n \left(\sigma^2 - \frac{\sigma^2}{n}\right) = \frac{n}{n-1} \left(\sigma^2 \left(\frac{n-1}{n}\right)\right) = \sigma^2 = \theta \\ &Al \ ser = de \ \theta \ es \ un \ estimador \ insesgado. \end{split}$$

Insesgamiento

Ejemplo 3: Suponga que los valores x_1 , x_2 , x_3 , representa una muestra simple de tamaño 3 seleccionada en forma aleatoria, donde sus valores siempre son positivos y provienen de una población con media μ y desviación típica σ . Si se tiene como posibles estimadores de μ a los siguientes estadísticos:

$$\hat{\mu}_1 = \frac{1}{5}(x_1 + 2x_2 + x_3)$$

$$\hat{\mu}_2 = \frac{1}{6}(2x_1 + x_2 + 3x_3)$$

¿Cuál de los dos estimadores utilizaría para realizar la estimación?

Solución: Al tener 2 estimadores, se selecciona al que tenga menos sesgo con respecto al parámetro a estimar., en otras palabras, aquel cuyo valor esperado sea igual al valor del parámetro en cuestión.

Insesgamiento

Sigue Ejemplo 3: Se procede a calcular los valores esperados de los estimadores

$$\hat{\mu}_1 = \frac{1}{5}(x_1 + 2x_2 + x_3)$$

$$E(\hat{\mu}_1) = E\left(\frac{1}{5}(x_1 + 2x_2 + x_3)\right) = \frac{1}{5}(E(x_1) + 2E(x_2) + E(x_3))$$

$$Sabiebdo\ queE(x) = \mu$$

$$E(\hat{\mu}_1) = \frac{1}{5}(\mu + 2\mu + \mu)$$

$$\therefore E(\hat{\mu}_1) = \frac{4}{5}\mu = \frac{4}{5}\theta$$

$$Al\ ser \neq de\ \theta\ es\ un\ estimador\ ses\ and\ 0.$$

Al ser \neq de θ es un estimador sesgado.

Insesgamiento

Sigue Ejemplo 3: Se procede a calcular los valores esperados de los estimadores

$$\hat{\mu}_2 = \frac{1}{6}(2x_1 + x_2 + 3x_3)$$

$$E(\hat{\mu}_2) = E\left(\frac{1}{6}(2x_1 + x_2 + 3x_3)\right) = \frac{1}{6}(2E(x_1) + E(x_2) + 3E(x_3))$$

$$Sabiebdo\ queE(x) = \mu$$

$$E(\hat{\mu}_2) = \frac{1}{6}(2\mu + \mu + 3\mu)$$

$$\therefore E(\hat{\mu}_2) = \frac{6}{6}\mu = \mu = \theta$$

$$Al\ ser = de\ \theta\ es\ un\ estimador\ insesgado.$$

Insesgamiento asintótico

Definición: Una estadística $\widehat{\theta_n}$, basada en una muestra aleatoria de tamaño n, es un estimador asintóticamente insesgado para un parámetro θ si

Podemos ver que, todo estimador insesgado es asintóticamente insesgado, pero hay casos donde el estimador es asintóticamente insesgado pero que no es insesgado.

Ya demostramos que $E(s^2)$, que es un estimador insesgado para la varianza.

3.3 Criterios de evaluación de estimadores.

Insesgamiento asintótico

Ejemplo 4: Sea $X_1, ... X_n$ una muestra aleatoria de la dist. $N(\mu, \theta)$, donde el estimador para θ

$$\widehat{\theta_n} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{n-1}{n} s^2$$

$$\Rightarrow E(\widehat{\theta_n}) = E\left(\frac{n-1}{n} s^2\right) = \frac{n-1}{n} E(s^2)$$

$$= \frac{n-1}{n} \theta \to \theta \text{ cuando } n \to \infty$$

Podemos concluir $\widehat{\theta_n}$ no es insesgado, pero es asintóticamente insesgado.

Consistencia

Sea $\widehat{\theta_n}$ un estimador para un parámetro θ , basado en una m.a. $X_1, ... X_n$

Definición:
$$\widehat{\theta_n}$$
 es consistente para θ si $\widehat{\theta_n} \stackrel{p}{\to} \theta$, esto es para cualquier $\epsilon > 0$, $\lim_{n \to \infty} P(|\widehat{\theta_n} - \theta| > \epsilon) = 0$

Ejemplo: Sea X una variable aleatoria con función de probabilidad o densidad $f(x;\theta)$ tal que $E(x) = \theta$. Por ejemplo, las distribuciones $Poisson(\theta)$ ó $N(\theta, \sigma^2)$, satisfacen esta condición. El estimador $\widehat{\theta_n}$ definido como \bar{x} , es consistente para θ pues por la "ley débil de los grandes p números" $\bar{x} \to E(x)$ $p \to \infty$

Consistencia

Proposición: $\widehat{\theta_n}$ es consistente θ si:

a)
$$\lim_{n\to\infty} E(\widehat{\theta_n})^n = \theta$$

b)
$$\lim_{n\to\infty} \operatorname{Var}(\widehat{\theta_n}) = 0$$

$$F(\widehat{A})$$

$$e \theta$$
 si:

$$\widehat{\theta_n} = 0$$

Tenemos:

$$E(\widehat{\theta_n} - E(\widehat{\theta_n}))^2 = Var\widehat{\theta_n}$$

$$(E(\widehat{\theta_n}) - \theta)$$
 es una contante
 $(\widehat{\theta_n} - E(\widehat{\theta_n})) = 0$

Demostración: Chebyshev, para
$$c \in \mathbb{R}, \epsilon > 0$$
, $P(|x-c| > \epsilon) \le \frac{1}{\epsilon^2} E(x-c)^2$

Entonces

$$P(|\widehat{\theta_n} - \theta| > \epsilon) \le \frac{1}{\epsilon^2} E(\widehat{\theta_n} - \theta)^2$$

$$= \frac{1}{\epsilon^2} E[(\widehat{\theta_n} - E(\widehat{\theta_n})) + (E(\widehat{\theta_n}) - \theta)]^2 = \frac{1}{\epsilon^2} [Var(\widehat{\theta_n}) + 0 + (E(\widehat{\theta_n}) - \theta)^2]$$

Podemos ver por con a) y b) $\rightarrow 0$ cuando $n \rightarrow \infty$

∴ Podemos concluir que todo estimador, a) asintóticamente insesgado y b) con varianza convergente a cero es consistente.

Consistencia

Ejemplo 1: Sea $X_1, ... X_n$ una muestra aleatoria de la distribución Bernulli (θ) . Sea z

una distribución Bernulli(1/n) y definida en:
$$\hat{\theta}_n = \begin{cases} \bar{x} & \text{si } z = 0 \\ n & \text{si } z = 1 \end{cases}$$

$$E(\hat{\theta}_n) = E(\hat{\theta}_n/z = 0) \left(1 - \frac{1}{n}\right) + E(\hat{\theta}_n/z = 1) \left(\frac{1}{n}\right)$$
$$= E(\bar{x}) \left(\frac{n-1}{n}\right) + n\frac{1}{n} = \theta\left(\frac{n-1}{n}\right) + 1$$

Como es diferente de θ entonces $\hat{\theta}_n$ no es insesgado y cuando n tiende a infinito es $\theta + 1$ por lo tanto tampoco es asintóticamente insesgado.

Consistencia

Continua Ejemplo 1: Pero es consistente pues para cualquier $\epsilon > 0$,

$$P(|\hat{\theta}_n - \theta| > \epsilon)$$

$$= P(|\hat{\theta}_n - \theta| > \epsilon | z = 0) \left(\frac{n-1}{n}\right) + P(|\hat{\theta}_n - \theta| > \epsilon | z = 1) \left(\frac{1}{n}\right)$$

$$= P(|\bar{x} - \theta| > \epsilon) \left(\frac{n-1}{n}\right) + P(|n - \theta| > \epsilon) \left(\frac{1}{n}\right)$$

Nota: Cuando n tiende ∞ podemos ver que $P(|\bar{x} - \theta| > \epsilon)$ es cero, ya que el estimador \bar{x} es consistente y por otro lado $\left(\frac{1}{n}\right)$ también tiende a cero.

- ∴ Tenemos que esta probabilidad tiende cero cuando n tiende a infinito.
- ∴ El estimador no es insegado ni asintotimante insesgado, pero si es consistente

Consistencia

Ejemplo 2: Sea $\widehat{\theta_n} = \overline{X}$ un estimador consistente para el parámetro μ .

$$E(\widehat{\theta_n}) = E(\bar{X}) = \mu = \theta$$

Al $ser = de \theta$ es un estimador insesgado

Ahora calcular la varianza del estimador

$$V(\widehat{\theta_n}) = V(\overline{X}) = \frac{\sigma^2}{n};$$

$$\lim_{n \to \infty} Var(\widehat{\theta_n}) = \lim_{n \to \infty} \left(\frac{\sigma^2}{n}\right) = 0$$

Como el estimador fue insesgado y la varianza convergente a cero, confirmaos que es \bar{X} es un estimador consistente.

Consistencia

Ejemplo 3: Sea $\widehat{\theta_n} = 3\overline{X}$ un estimador del parámetro θ en una población con función de densidad dada por:

$$f(x;\theta) = \begin{cases} \frac{2}{\theta^2}(\theta - x) & \text{si } 0 < x < \theta \\ 0 & \text{otro caso} \end{cases}$$

Determinar si $\widehat{\theta_n}$ es un estimador consistente de θ .

$$E(\widehat{\theta_n}) = E(3\overline{X}) = 3E(\overline{X}) = 3\mu = 3(\theta/3) = \theta$$

$$ya \ que \ \mu = \int_0^\theta x \frac{2}{\theta^2} (\theta - x) \ dx = \frac{\theta}{3}$$

$$Al \ ser = de \ \theta \ es \ un \ estimador \ insesgado$$

Consistencia

Sigue Ejemplo 3: Calcular la varianza del estimador

$$V(\widehat{\theta_{n}}) = V(3\overline{X}) = 9V(\overline{X}) = 9\left(\frac{\sigma^{2}}{n}\right)$$

$$donde \ \sigma^{2} = \frac{\theta^{2}}{18}$$

$$\lim_{n \to \infty} Var(\widehat{\theta_{n}}) = \lim_{n \to \infty} 9\left(\frac{\sigma^{2}}{n}\right) = \lim_{n \to \infty} 9\left(\frac{\theta^{2}}{18}\right) = \lim_{n \to \infty} \left(\frac{\theta^{2}}{2n}\right) = 0$$

Como el estimador fue insesgado y la varianza convergente a cero, confirmaos que es $3\bar{X}$ es un estimador consistente.

Error Cuadrático Medio y Sesgo

Definición: El sesgo de un estimador $\hat{\theta}$ para un parámetro θ es

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta$$

Definición: El error cuadrático medio $\hat{\theta}$ es

$$ECM(\hat{\theta}) = E(\hat{\theta} - \theta)^2$$

Observación: Si $\hat{\theta}$ es insesgado para θ , entonces $ECM(\hat{\theta}) = Var(\hat{\theta})$

Donde el Error Cuadrático Medio se puede escribir de la siguiente manera:

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + B^2(\hat{\theta})$$

Error Cuadrático Medio y Sesgo

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + B^2(\hat{\theta})$$

Demostración:

$$ECM(\hat{\theta}) = E(\hat{\theta} - \theta)^{2}$$

$$= E(\hat{\theta}^{2} - 2\theta\hat{\theta} + \theta^{2})$$

$$= E(\hat{\theta}^{2}) - 2\theta E(\hat{\theta}) + \theta^{2}$$

$$= E(\hat{\theta}^{2}) - E^{2}(\hat{\theta}) + E^{2}(\hat{\theta}) - 2\theta E(\hat{\theta}) + \theta^{2}$$

$$= Var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^{2}$$

$$= Var(\hat{\theta}) + B^{2}(\hat{\theta}) LQD$$

Error Cuadrático Medio y Sesgo

Ejemplo 1: Sea $X_1, ..., X_n$ una m.a. de la dist. $\text{Exp}(\theta)$ en donde $\theta > 0$ es desconocido. Sea $\hat{\theta} = 1/_{\bar{x}}$

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta = \frac{n}{n-1}\theta - \theta = \frac{\theta}{n-1}$$
$$Var(\hat{\theta}) = E(\hat{\theta}^2) - E^2(\hat{\theta})$$

$$Var(\hat{\theta}) = E(\hat{\theta}^2) - E^2(\hat{\theta})$$

$$= \frac{n^2}{(n-1)(n-2)} \theta^2 - \frac{n^2}{(n-1)^2} \theta^2$$

$$\frac{n^2 + 1}{(n-1)^2} = \frac{(n-1)(n+1)}{(n-1)^2}$$

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + B^2(\hat{\theta})$$

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + B^{2}(\hat{\theta})$$

$$= \frac{n^{2}}{(n-1)(n-2)}\theta^{2} - \frac{n^{2}}{(n-1)^{2}}\theta^{2} + \frac{\theta^{2}}{(n-1)^{2}} = \left[\frac{n^{2}}{(n-1)(n-2)} - \frac{(n-1)(n+1)}{(n-1)^{2}}\right]\theta^{2}$$

$$= \frac{n^{2} - (n+1)(n-2)}{(n-1)(n-2)}\theta^{2} = \frac{n+2}{(n-1)(n-2)}\theta^{2}$$

Error Cuadrático Medio y Sesgo

Ejemplo 2: Las observaciones X_1 , X_2 y X_3 componen una muestra simple, de valores positivos, procedentes de una población con media θ y desviación típica 6. A partir de los siguientes estimadores de θ :

$$\hat{\theta} = \frac{1}{2}(X_1 + X_2) + \frac{1}{3}X_3$$

Obtener: El Sesgo y el Error Cuadrático Medio.

$$E(\hat{\theta}) = E\left[\frac{1}{2}(X_1 + X_2) + \frac{1}{3}X_3\right] = E\left(\frac{1}{2}(X_1 + X_2)\right) + E\left(\frac{1}{3}X_3\right)$$

$$= \frac{1}{2}(E(X_1) + E(X_2)) + \frac{1}{3}E(X_3) = \frac{1}{2}(\theta + \theta) + \frac{1}{3}\theta = \frac{4}{3}\theta$$

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta = \frac{4}{3}\theta - \theta = \frac{\theta}{3}$$

Error Cuadrático Medio y Sesgo

Sigue Ejemplo 2: Se Calcula la $Var(\hat{\theta})$

$$Var(\hat{\theta}) = Var\left[\frac{1}{2}(X_1 + X_2) + \frac{1}{3}X_3\right] = Var\left(\frac{1}{2}(X_1 + X_2)\right) + Var\left(\frac{1}{3}X_3\right)$$

$$= \left(\frac{1}{2}\right)^2 (Var(X_1) + Var(X_2)) + \left(\frac{1}{3}\right)^2 Var(X_3) = \frac{1}{4}(\sigma^2 + \sigma^2) + \frac{1}{9}\sigma^2 = \frac{11}{18}\sigma^2$$
Sabiendo que $\sigma = 6$, tenemos:

$$Var(\hat{\theta}) = \frac{11}{18}\sigma^2 = \frac{11}{18}(6)^2 = 22$$

$$ECM(\hat{\theta}) = Var(\hat{\theta}) + B^{2}(\hat{\theta}) = 22 + \left(\frac{\theta}{3}\right)^{2}$$
$$ECM(\hat{\theta}) = 22 + \frac{\theta^{2}}{9}$$

Estadísticas Suficientes.

Definición: Una estadististica $T = T(x_1, ... x_n)$ es suficiente para un parámetro θ si la distribución conjunta de $x_1, ..., x_n$ condicionada al evento T = t, no depende de θ , para cualquier valor t de la estadística.

Definición: Un estadístico es suficiente respecto al parámetro θ si la distribución de probabilidad de la muestra aleatoria $X_1, ..., X_n$ condicionada al estadístico $t = T(X_1, ..., X_n)$ no depende del parámetro θ , es decir

$$P((X_1,\ldots,X_n)/T(X_1,\ldots,X_n)=t)=\frac{P\big((X_1,\ldots,X_n)\cap T(X_1,\ldots,X_n)=t\big)}{P(T(X_1,\ldots,X_n)=t)}$$
 No depende de θ

Estadísticas Suficientes.

Ejemplo 1: Sea $x_1, ..., x_n$ una m.a. de la distribución $Ber(\theta)$, comprobar que la estadística T

definida como
$$x_1 + \dots + x_n$$
 es suficientes para θ .
$$P(X_1 = x_1, \dots, X_n = x_n/T = t) = \frac{P(X_1 = x_1, \dots, X_n = x_n \cap T = t)}{P(T = t)}$$
Nota: Función indicadora

$$P(X_1=x_1,\ldots,X_n=x_n/T=t\;)=\frac{P(X_1=x_1,\ldots,X_n=x_n\cap T=t)}{P(T=t)}$$
 Nota: Función indicadora
$$=\frac{P(X_1=x_1,\ldots,X_n=x_n)}{P(T=t)}1_{\{t\}}(x_1+\cdots+x_n) = 1_{\{t\}}=1_{\{0,1\}} \text{ para el caso de la función Bernoulli y tomando an el cuenta que Tassura y a constant que to con$$

$$=\frac{P(X_1=x_1,...,X_n=x_n)}{P(T=t)}1_{\{t\}}(x_1+\cdots+x_n) \\ =\frac{P(X_1=x_1)...P(X_n=x_n)}{P(T=t)}1_{\{t\}}(n\bar{x}) \\ =\frac{P(X_1=x_1)...P(X_n=x_n)}{P(T=t)}1_{\{t\}}(n\bar{x}) \\ =\frac{\theta^{x_1}(1-\theta)^{1-x_1}...\theta^{x_n}(1-\theta)^{1-x_n}}{\binom{n}{t}\theta^t(1-\theta)^{n-t}}1_{\{t\}}(n\bar{x}) \\ =\frac{1}{\binom{n}{t}}1_{\{t\}}(n\bar{x}) \\$$

$$=\frac{\theta^{x_1}(1-\theta)^{1-x_1}\dots\theta^{x_n}(1-\theta)^{1-x_n}}{\binom{n}{t}\theta^t(1-\theta)^{n-t}}1_{\{t\}}(n\bar{x})=\frac{\theta^{n\bar{x}}(1-\theta)^{n-n\bar{x}}}{\binom{n}{t}\theta^t(1-\theta)^{n-t}}1_{\{t\}}(n\bar{x})$$

$$=\frac{1}{t}1_{\{t\}}(n\bar{x})$$

$$=\frac{1}{t}1_{\{t\}}(n\bar{x})$$

$$=\frac{1}{t}1_{\{t\}}(n\bar{x})$$

$$=\frac{1}{t}1_{\{t\}}(n\bar{x})$$

$$=\frac{1}{t}1_{\{t\}}(n\bar{x})$$

Estadísticas Suficientes.

Ejemplo 2: Sea $x_1, ..., x_n$ una m.a. de la distribución $\text{Exp}(\theta)$, comprobar que la estadística T definida como $x_1 + \cdots + x_n$ es suficientes para θ . Donde T tiene dist. Gama de parámetros (n, θ)

$$f(x_{1},...,x_{n}/T = t) = \frac{f(x_{1},...,x_{n} \cap T = t)}{f_{T}(t)}$$

$$= \frac{f(x_{1})...f(x_{n})}{f_{T}(t)} 1_{\{t\}}(x_{1} + ... + x_{n}) = \frac{\theta e^{-\theta x_{1}}...\theta e^{-\theta x_{n}}}{\frac{(\theta t)^{n-1}}{(n-1)!}\theta e^{-\theta t}} 1_{\{t\}}(n\bar{x})$$

$$= \frac{\theta^{n}e^{-\theta n\bar{x}}}{\frac{\theta^{n}t^{n-1}}{(n-1)!}e^{-\theta t}} 1_{\{t\}}(n\bar{x}) = \frac{(n-1)!}{t^{n-1}} 1_{\{t\}}(n\bar{x})$$

 \therefore Como NO depende de θ , concluimos que la estadistica T SI es suficiente para θ ₅₅

Estadísticas Suficientes.

Ejemplo 3: Sea x_1, x_2, x_3 una m.a. de tamaño n=3 de la distribución $Ber(\theta)$, comprobar que la estadística T definida como $x_1 + x_2 + x_3$ no es suficientes para θ . Donde $(x_1, x_2, x_3) = (1,1,0)$ y t = 3.

$$P(X_{1} = 1, X_{2} = 1, X_{3} = 0/T = 3) = \frac{P(X_{1} = 1, X_{2} = 1, X_{3} = 0 \cap T = 3)}{P(T = 3)}$$

$$= \frac{P(X_{1} = 1, X_{2} = 1, X_{3} = 0)}{P(X_{1}, X_{2}, X_{3}) \in \{(1, 1, 0), (0, 0, 1)\}}$$

$$= \frac{\theta(1 - \theta)}{\theta^{2}(1 - \theta) + (1 - \theta)^{2}\theta}$$

$$= \frac{\theta}{\theta + (1 - \theta)} = \theta$$
Si se cumple que $X_{1} = 1, X_{2} = 1, X_{3} = 0$, entonces el evento $T = 3$ se satisface

 \therefore Como SI depende de θ , concluimos que la estadistica T NO es suficiente para θ

(a)

(b)

57

3.4 Suficiencia.

El Teorema de Factorización.

Teorema de Factorización de Fisher-Neyman:

Una estadística $T = T(x_1, ..., x_n)$ es suficiente para θ

$$\Leftrightarrow f(x_1, ..., x_n; \theta) = g(T(x_1, ..., x_n; \theta))h(x_1, ..., x_n)$$

Demostración: Para el Caso Discreto

⇒Supongamos que T es suficiente para θ. Por la definición de Suficiencia podemos escribir:

$$f(x_1, ..., x_n; \theta) = f(x_1, ..., x_n \cap T(x_1, ..., x_n))$$

= $f(x_1, ..., x_n/T(x_1, ..., x_n)) f_T(T(x_1, ..., x_n))$
= $h(x_1, ..., x_n) g(T(x_1, ..., x_n; \theta))$

Como (a) con (b) tenemos que $h(x_1, ..., x_n) = f(x_1, ..., x_n/T(x_1, ..., x_n))$ y g(T(x₁, ..., x_n; θ)) $= f_T(T(x_1, ..., x_n))$. Pero como hemos asumido que T es suficiente para θ , entonces por la definición de suficiencia, $f(x_1, ..., x_n/T(x_1, ..., x_n))$ no puede depender de θ , luego la función $h(x_1, ..., x_n)$ solo depende de $x_1, ..., x_n$.

El Teorema de Factorización.

Demostración: Para el Caso Discreto

$$\text{ For hipótesis } f(x_1, \dots, x_n; \theta) = g\big(T(x_1, \dots, x_n; \theta)\big)h(x_1, \dots, x_n)$$

$$P(X_1 = x_1, \dots, X_n = x_n/T = t) = \frac{P(X_1 = x_1, \dots, X_n = x_n \cap T = t)}{P(T = t)}$$

$$= \frac{P(X_1 = x_1, \dots, X_n = x_n)}{P(T = t)} 1_{\{t\}} (T(x_1 + \dots + x_n))$$

 $\operatorname{Si} T(x_1 + \dots + x_n) \neq t$, la probabilidad condicionada será cero y si $T(x_1 + \dots + x_n) = t$ tenemos que:

$$= \frac{g(T(x_1, ..., x_n; \theta))h(x_1, ..., x_n)}{\sum_{(y_1, ..., y_n): T(y_1, ..., y_n) = t} P(X_1 = y_1, ..., X_n = y_n)} 1_{\{t\}} (T(x_1 + \dots + x_n))$$

Utilizamos la hipótesis para la probabilidad condicional, $P(X_1 = x_1, ..., X_n = x_n)$ admite la 58 factorización de g por h.

El Teorema de Factorización.

Sigue Demostración: Para el Caso Discreto

$$= \frac{g(T(x_1, ..., x_n; \theta))h(x_1, ..., x_n)}{\sum_{(y_1, ..., y_n): T(y_1, ..., y_n) = t} g(T(y_1, ..., y_n; \theta))h(y_1, ..., y_n)} 1_{\{t\}} (T(x_1 + ... + x_n))$$

Sabiendo que $T(x_1, ..., x_n) = t$, nos queda:

$$= \frac{g(t;\theta)h(x_1,...,x_n)}{g(t;\theta)\sum_{(y_1,...,y_n):T(y_1,...,y_n)=t}h(y_1,...,y_n)} 1_{\{t\}}(T(x_1+\cdots+x_n))$$

$$= \frac{h(x_1,...,x_n)}{\sum_{(y_1,...,y_n):T(y_1,...,y_n)=t}h(y_1,...,y_n)} 1_{\{t\}}(T(x_1+\cdots+x_n))$$

Ya que la expresión no depende de θ , podemos concluir que T es suficiente.

El Teorema de Factorización.

Ejemplo 1: La estadística $T = x_1 + \cdots + x_n$ es suficientes para θ de la distribución $Ber(\theta)$.

$$P(X_{1} = x_{1}, ..., X_{n} = x_{n})$$

$$= P(X_{1} = x_{1}) ... P(X_{n} = x_{n})$$

$$= \theta^{x_{1}} (1 - \theta)^{1 - x_{1}} 1_{\{0,1\}} (x_{1}) ... \theta^{x_{n}} (1 - \theta)^{1 - x_{n}} 1_{\{0,1\}} (x_{n})$$

$$= \underbrace{\theta^{x_{1} + \dots + x_{n}} (1 - \theta)^{n - (x_{1} + \dots + x_{n})}}_{g(T(x_{1}, \dots, x_{n}; \theta))} \underbrace{1_{\{0,1\}} (x_{1}) ... 1_{\{0,1\}} (x_{n})}_{h(x_{1}, \dots, x_{n})}$$

Como esta factorización se cumple, podemos concluir que T es suficiente para θ .

El Teorema de Factorización.

Ejemplo 2: La estadística $T = x_1 + \cdots + x_n$ es suficientes para θ de la distribución $\exp(\theta)$.

$$f(x_{1},...,x_{n};\theta) = f(x_{1};\theta) ... f(x_{n};\theta)$$

$$= \theta e^{-\theta x_{1}} 1_{\{0,\infty\}}(x_{1}) ... \theta e^{-\theta x_{n}} 1_{\{0,\infty\}}(x_{n})$$

$$= \underbrace{\theta^{n} e^{-\theta(x_{1} + \cdots + x_{n})}}_{g(T(x_{1},...,x_{n};\theta))} \underbrace{1_{\{0,\infty\}^{n}}(x_{1},...,x_{n})}_{h(x_{1},...,x_{n})}$$

Como esta factorización se cumple, podemos concluir que T es suficiente para θ .

El Teorema de Factorización.

Ejemplo 3: La estadística $T = m \acute{a} x \{x_1 + \dots + x_n\} = X_{(n)}$ es suficientes para θ de la distribución unif $(0, \theta)$.

Como esta factorización se cumple, podemos concluir que T es suficiente para θ .

El Estadísticas Suficientes Minimales.

Sea $x_1, ..., x_n$ una m.a. de una distribución $f(x; \theta)$ y sean S y T dos estadísticas.

Definición: T es función de S si para cualesquiera valores $(x_1, ..., x_n)$ y $(y_1, ..., y_n)$ de la m.a. se cumple:

$$S(x_1, ..., x_n) = S(y_1, ..., y_n)$$

$$\Rightarrow T(x_1, ..., x_n) = T(y_1, ..., y_n)$$

Definición: Un estadística T es suficiente minimal para θ si

- a) Es suficiente
- b) Es minimal, es decir, T es función de cualquier otra estadística suficiente para θ .

El Estadísticas Suficientes Minimales.

Teorema: Sea T una estadística y sean $(x_1, ..., x_n)$ y $(y_1, ..., y_n)$ dos valores cualesquiera de la m.a. si se cumple las dos implicaciones

$$\frac{f(x_1, \dots, x_n; \theta)}{f(y_1, \dots, y_n; \theta)} \text{ no depende de } \theta \text{ si } y \text{ solo si } T(x_1, \dots, x_n) = T(y_1, \dots, y_n)$$

Entones T es suficiente minimal para θ .

El Estadísticas Suficientes Minimales.

Demostración: "T Suficiente"

Sea $(x_1, ..., x_n)$ un valor cualquiera de la m.a., Sea $t = T(x_1, ..., x_n)$ y sea $(y_1, ..., y_n)$ otro valor de la m.a. tal que $T(y_1, ..., y_n) = t$.

Entonces $T(x_1, ..., x_n) = T(y_1, ..., y_n)$ y, por la implicación de derecha a izquierda,

$$\frac{f(x_1,...,x_n;\theta)}{f(y_1,...,y_n;\theta)} \text{ no depende de } \theta$$

$$\Rightarrow \frac{f(x_1,...,x_n;\theta)}{f(y_1,...,y_n;\theta)} = h_0(x_1,...,x_n,y_1,...,y_n;\theta) \qquad h_0 \text{ No depende } \theta$$

$$\Rightarrow f(x_1,...,x_n;\theta) = f(y_1,...,y_n;\theta)h_0(x_1,...,x_n,y_1,...,y_n)$$

$$\Rightarrow f(x_1, ..., x_n; \theta) = g(T(x_1, ..., x_n); \theta) h_0(x_1, ..., x_n, y_1, ..., y_n)$$

Luego de utilizar el Teorema de Fisher-Neyman el estadistico

El Estadísticas Suficientes Minimales.

Demostración: "T Minimal"

Sea S otro estadística suficiente θ . Demostraremos que T es función de S. Sean $(x_1, ..., x_n)$ y sea $(y_1, ..., y_n)$ dos valor de la m.a. tales que $S(x_1, ..., x_n) = S(y_1, ..., y_n)$. Entonces tenemos que:

$$\frac{f(x_1, \dots, x_n; \theta)}{f(y_1, \dots, y_n; \theta)} = \frac{g(S(x_1, \dots, x_n); \theta)h(x_1, \dots, x_n)}{g(S(y_1, \dots, y_n); \theta)h(y_1, \dots, y_n)} \text{ no depende de } \theta$$

$$= \frac{h(x_1, \dots, x_n)}{h(y_1, \dots, y_n)} \text{ no depende de } \theta$$

$$\Rightarrow T(x_1, \dots, x_n) = T(y_1, \dots, y_n)$$

$$\text{esto sifnifica que T es funcion de } S \blacksquare$$

El Estadísticas Suficientes Minimales.

Ejemplo 1: Sea $x_1, ..., x_n$ una m.a. de la distribución $Ber(\theta)$. Demostrar que la estadística $T = x_1 + \cdots + x_n$ es suficiente minimal.

Sean $(x_1, ..., x_n)$ y sea $(y_1, ..., y_n)$ dos valores de la m.a. Entonces:

$$\frac{f(x_1, ..., x_n; \theta)}{f(y_1, ..., y_n; \theta)} = \frac{\theta^{x_1} (1 - \theta)^{1 - x_1} ... \theta^{x_n} (1 - \theta)^{1 - x_n}}{\theta^{y_1} (1 - \theta)^{1 - y_1} ... \theta^{y_n} (1 - \theta)^{1 - y_n}}$$

$$= \frac{\theta^{n\bar{x}} (1 - \theta)^{n - n\bar{x}}}{\theta^{n\bar{y}} (1 - \theta)^{n - ny}} = \theta^{n(\bar{x} - \bar{y})} (1 - \theta)^{n(\bar{y} - \bar{x})}$$

$$= \left(\frac{\theta}{1 - \theta}\right)^{n(\bar{x} - \bar{y})}$$

 $\frac{f(x_1, ..., x_n; \theta)}{f(y_1, ..., y_n; \theta)} \text{ no depende de } \theta \Leftrightarrow n(\bar{x} - \bar{y}) = 0$

es suficiente minimal para θ

∴ el estadístico T

$$\Leftrightarrow T(x_1, \dots, x_n) = T(y_1, \dots, y_n)$$

El Estadísticas Suficientes Minimales.

Ejemplo 2: Sea $x_1, ..., x_n$ una m.a. de la distribución $N(\mu, \sigma^2)$. Demostrar que la estadística $T = (T_1, T_2) = (x_1 + \cdots + x_n, x_1^2 + \cdots + x_n^2)$ es suficiente minimal para $\theta = (\mu, \sigma^2)$. Sean $(x_1, ..., x_n)$ y sea $(y_1, ..., y_n)$ dos valores de la m.a. Entonces:

$$\frac{f(x_1, \dots, x_n; \theta)}{f(y_1, \dots, y_n; \theta)} = \frac{(2\pi\sigma^2)^{-n/2} e^{\left(-\sum_{i=1}^n (x_i - \mu)^2 / 2\sigma^2\right)}}{(2\pi\sigma^2)^{-n/2} e^{\left(-\sum_{i=1}^n (y - \mu)^2 / 2\sigma^2\right)}} e^{\left(-\sum_{i=1}^n (x_i^2 - 2\mu n\bar{x} + n\mu) / 2\sigma^2\right)} e^{\left(-\sum_{i=1}^n (x_i^2 - 2\mu n\bar{x} + n\mu) / 2\sigma^2\right)}$$

$$= \frac{e^{\left(-\sum_{i=1}^{n} (y_{i}^{2} - 2\mu n\bar{y} + n\mu)/2\sigma^{2}\right)}}{e^{\left(-\sum_{i=1}^{n} (y_{i}^{2} - 2\mu n\bar{y} + n\mu)/2\sigma^{2}\right)}}$$

$$= e^{\left(-\frac{1}{2\sigma^{2}}(\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} y_{i}^{2}) + \frac{n\mu}{\sigma^{2}}(\bar{x} - \bar{y})\right)}$$

Desarrollamos los cuadrados, se cancela $(2\pi\sigma^2)^{-n/2}$ y también $n\mu$

El Estadísticas Suficientes Minimales.

Continúa Ejemplo 2: Sea $x_1, ..., x_n$ una m.a. de la distribución $N(\mu, \sigma^2)$. Demostrar que la estadística $T = (T_1, T_2) = (x_1 + \cdots + x_n, x_1^2 + \cdots + x_n^2)$ es suficiente minimal para $\theta = (\mu, \sigma^2)$. Sean $(x_1, ..., x_n)$ y sea $(y_1, ..., y_n)$ dos valores de la m.a. Entonces:

$$\frac{f(x_1, ..., x_n; \theta)}{f(y_1, ..., y_n; \theta)} \text{ no depende de } \theta \Leftrightarrow \begin{pmatrix} Exponete \ es \ cero \end{pmatrix}$$

$$\Leftrightarrow \left(\bar{x} = \bar{y} \ y \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2 \right)$$

$$\Leftrightarrow \begin{pmatrix} T_1(x_1, ..., x_n) = T_1(y_1, ..., y_n) \\ T_2(x_1, ..., x_n) = T_2(y_1, ..., y_n) \end{pmatrix}$$

 $Trianglerightarrow (T_1, T_2)$ es sucieciente minimal para (μ, σ^2)

3.5 Estimación insesgada.

Cota inferior de Crámer-Rao.

Sea $x_1, ..., x_n$ una m.a. de una distribución con función de probilidad o función de densidad $f(x; \theta)$, dependiente de un parámetro desconocido θ . Sea T un estimador insesgado para una función parametral $\tau(\theta)$.

Teorema de Cota inferior de Crámer-Rao (CICR).

Si $T = T(X_1, ..., X_n)$ es un estimador insesgado para la función parametral $\tau(\theta)$. Entonces:

$$Var(T) \ge \frac{\left(\tau'(\theta)\right)^2}{nE\left[\left(\frac{\partial}{\partial \theta}lnf(X;\theta)\right)^2\right]} \qquad \theta \in \Theta \qquad \Rightarrow nE\left[\left(\frac{\partial}{\partial \theta}lnf(X;\theta)\right)^2\right] = -nE\left(\frac{\partial^2}{\partial \theta^2}lnf(X;\theta)\right)$$

Observación:

 $T(x_1, \dots, x_n) = T(\underline{x})$

 $x_1, \dots, x_n = x$

3.5 Estimación insesgada.

Cota inferior de Crámer-Rao.

Teorema de Cota inferior de Crámer-Rao (CICR).

Suponiendo que $f(x; \theta)$ cumple las condiciones de regularidad:

- 1) El soporte de $f(x; \theta)$ dado el conjunto $\{x: f(x; \theta) > 0\}$ no depende de θ .
- 2) Para toda x en el soporte de $f(x;\theta)$, la función $\ln f(x;\theta)$ es diferenciable respecto de θ .
- 3) Es valido el siguiente intercambio de derivada e integral:

$$0 = \frac{d}{d\theta} \int_{\mathbb{R}} f(x; \theta) dx = \int_{\mathbb{R}} \frac{\partial}{\partial \theta} f(x; \theta) dx$$

- 4) $0 < nE\left[\left(\frac{\partial}{\partial \theta} lnf(x; \theta)\right)^2\right] < \infty$
- 5) Es valido el siguiente intercambio de derivada e integral:

$$\frac{d}{d\theta} \int_{\mathbb{D}^n} T(\underline{x}) f(x; \theta) \, d\underline{x} = \int_{\mathbb{D}^n} \frac{\partial}{\partial \theta} T(\underline{x}) f(x; \theta) \, d\underline{x}$$

3.5 Estimación insesgada.

Demostración Teorema de Cota inferior de Crámer-Rao (CICR). Supongamos el Caso Continuo:

$$Como \frac{d}{d\theta} \int_{\mathbb{R}} f(x;\theta) dx = 1,$$

$$0 = \frac{d}{d\theta} \int_{\mathbb{R}} f(x;\theta) dx = \int_{\mathbb{R}} \frac{\partial}{\partial \theta} f(x;\theta) dx$$

$$= \int_{\mathbb{R}} \frac{\partial}{\partial \theta} e^{\ln f(x;\theta)} dx$$

$$= \int_{\mathbb{R}} f(x;\theta) \frac{\partial}{\partial \theta} \ln f(x;\theta) dx$$

$$= E \left[\frac{\partial}{\partial \theta} \ln f(X;\theta) \right]$$

Sigue Demostración Teorema de Cota inferior de Crámer-Rao (CICR).

Como
$$E(T) = \tau(\theta)$$
.

Utilizando lo siguiente:

$$\tau'(\theta) = \frac{d}{d\theta} E(T) \qquad T(x_1, \dots, x_n) = T(\underline{x})$$

$$= \frac{d}{d\theta} \int_{\mathbb{R}^n} T(x_1, \dots, x_n) f(x_1, \dots, x_n; \theta) dx_1 \dots dx_n = \frac{d}{d\theta} \int_{\mathbb{R}^n} T(\underline{x}) f(\underline{x}; \theta) d\underline{x}$$

$$= \int_{\mathbb{R}^n} T(\underline{x}) \frac{\partial}{\partial \theta} f(\underline{x}; \theta) d\underline{x} = \int_{\mathbb{R}^n} T(\underline{x}) \frac{\partial}{\partial \theta} e^{\ln f(\underline{x}; \theta)} d\underline{x}$$

$$= E\left[T\sum_{i=1}^{n} \frac{\partial}{\partial \theta} lnf(X_i; \theta)\right]$$

 $= \int_{\mathbb{R}^n} T(\underline{x}) f(\underline{x}; \theta) \frac{\partial}{\partial \theta} \ln f(\underline{x}; \theta) d\underline{x} = \int_{\mathbb{R}^n} T(\underline{x}) f(\underline{x}; \theta) \sum_{i=1}^n \frac{\partial}{\partial \theta} \ln f(X_i; \theta) d\underline{x}$

Sigue Demostración Teorema de Cota inferior de Crámer-Rao (CICR).

Utilizando la
$$COV(X, Y) = E(XY) - E(X)E(Y) \le \sqrt{Var(X)}\sqrt{Var(Y)}$$

$$(\tau'(\theta))^2 = \left(\text{COV}\left(T, \sum_{i=1}^n \frac{\partial}{\partial \theta} lnf(X_i; \theta)\right)\right)^2$$

$$= Var(T)Var\left(\sum_{i=1}^{n} \frac{\partial}{\partial \theta} lnf(X_i; \theta)\right) = Var(T)\sum_{i=1}^{n} Var\left(\frac{\partial}{\partial \theta} lnf(X_i; \theta)\right)$$

$$= Var(T)nVar\left(\frac{\partial}{\partial \theta}lnf(X_i;\theta)\right) = Var(T)nE\left[\left(\frac{\partial}{\partial \theta}lnf(X_i;\theta)\right)^2\right]$$

$$\therefore Var(T) \ge \frac{\left(\tau'(\theta)\right)^2}{nE\left[\left(\frac{\partial}{\partial \theta}lnf(X;\theta)\right)^2\right]}$$

Usando la hipótesis de muestra aleatoria tenemos que $f(x_1,...,x_n;\theta) =$ $(f(x;\theta))^n$

Sabiendo que: $E\left[\frac{\partial}{\partial \theta} lnf(X_i; \theta)\right] = 0$

Teorema de Cota inferior de Crámer-Rao (CICR).

Observaciones:

- 1. El resultado es valido bajo las "condiciones de regularidad", que se consideraron.
- 2. $f(X; \theta)$ es la función de densidad o de probabilidad $f(x; \theta)$ evaluada en la v.a.x. la expresión $f(X; \theta)$ es una v.a.
- 3. Cuando la función parametral $\tau(\theta) = \theta$, su derivada es 1, entonces:

$$Var(T) \ge \frac{1}{nE\left[\left(\frac{\partial}{\partial \theta}lnf(X;\theta)\right)^{2}\right]}$$

4. Si T es insegado para $\tau(\theta)$ y $Var(T) = CICR(\theta)$, $\theta \in \Theta$, entonces T es un UMVUE (Estimador Insesgado de Mínima Varianza), en ingles (Uniformly Minimum Variance Unbiased Estimator)

Cota inferior de Crámer-Rao (CICR).

Ejemplo 1: Sea X una v.a. con distribución $Ber(\theta)$, con $\theta \in (0,1)$ desconocido. Sea $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ cualquier estimador insesgado para $\tau(\theta) = \theta$, Calcular CICR (θ) :

Recordando: $f(x; \theta) = \theta^x (1 - \theta)^{1-x}$, con x = 0, 1. Tenemos que CIRC:

$$\Rightarrow \frac{\partial}{\partial \theta} \ln f(X; \theta) = \frac{\partial}{\partial \theta} \ln \theta^{x} (1 - \theta)^{1 - x}$$

$$= [x \ln \theta + (1 - x) \ln(1 - \theta)] = \frac{x}{\theta} - \frac{1 - x}{1 - \theta}$$

Ahora calculamos,

$$CIRC = \frac{\left(\tau'(\theta)\right)^2}{nE\left[\left(\frac{\partial}{\partial \theta}lnf(X;\theta)\right)^2\right]}$$
$$= \frac{\theta(1-\theta)}{\pi} \ 0 < \theta < 1$$

$$E\left[\left(\frac{\partial}{\partial \theta} \ln f(X;\theta)\right)^{2}\right] = E\left[\left(\frac{x}{\theta} - \frac{1-x}{1-\theta}\right)^{2}\right] = E\left(\left(\frac{x}{\theta}\right)^{2} - 2\left(\frac{x}{\theta}\right)\left(\frac{1-x}{1-\theta}\right) + \left(\frac{1-x}{1-\theta}\right)^{2}\right)$$

$$= \frac{\theta}{\theta^{2}} - \frac{2E(x(1-x))}{\theta(1-\theta)} + \frac{1-\theta}{(1-\theta)^{2}} = \frac{1}{\theta} + \frac{1}{1-\theta} = \frac{1}{\theta(1-\theta)}$$

Cota inferior de Crámer-Rao (CICR).

Ejemplo 2: Sea X una v.a. con distribución $\exp(\theta)$, con $\theta \epsilon(0, \infty)$ desconocido. Sea $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ cualquier estimador insesgado para $\tau(\theta) = \theta$, Calcular CICR(θ):

Recordando:
$$f(x; \theta) = \theta e^{-\theta x} para x > 0$$

$$\Rightarrow \frac{\partial}{\partial \theta} \ln f(X; \theta) = \frac{\partial}{\partial \theta} \ln \theta e^{-\theta x} = \frac{\partial}{\partial \theta} (\ln \theta - \theta x) = \frac{1}{\theta} - x$$

Ahora calculamos,

$$E\left[\left(\frac{\partial}{\partial \theta} \ln f(X;\theta)\right)^{2}\right] = E\left(\frac{1}{\theta} - x\right)^{2} = Var(x) = \frac{1}{\theta^{2}}$$

$$\Rightarrow CIRC = \frac{\left(\tau'(\theta)\right)^{2}}{nE\left[\left(\frac{\partial}{\partial \theta} \ln f(X;\theta)\right)^{2}\right]} = \frac{\theta^{2}}{n} \ donde \ \theta > 0$$

Cota inferior de Crámer-Rao (CICR).

Ejemplo 3: Sea $X_1, ..., X_n$ una muestra aleatoria con distribución $N(0, \sigma^2)$. Calcular CICR (σ^2) :

$$\Rightarrow \frac{\partial}{\partial \sigma^2} \ln f(X; \sigma^2) = \frac{\partial}{\partial \sigma^2} \ln \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} x^2} \right) = \frac{\partial}{\partial \sigma^2} \left(-\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} x^2 \right)$$

$$= -\frac{1}{2\sigma^2} + \frac{x^2}{2(\sigma^2)^2}$$
 Calculamos: $\frac{\partial^2}{\partial (\sigma^2)^2} lnf(X; \sigma^2) = \frac{1}{2(\sigma^2)^2} - \frac{x^2}{(\sigma^2)^3}$

Ahora calculamos,

$$E\left[\frac{\partial^{2}}{\partial(\sigma^{2})^{2}}lnf(X;\sigma^{2})\right] = E\left(\frac{1}{2(\sigma^{2})^{2}} - \frac{x^{2}}{(\sigma^{2})^{3}}\right) = \frac{1}{2\sigma^{4}} - \frac{E(X^{2})}{\sigma^{6}} = \frac{1}{2\sigma^{4}} - \frac{\sigma^{2}}{\sigma^{6}} = -\frac{1}{2\sigma^{4}}$$

$$\Rightarrow CIRC = \frac{\left(\tau'(\theta)\right)^{2}}{-nE\left[\frac{\partial^{2}}{\partial(\sigma^{2})^{2}}lnf(X;\sigma^{2})\right]} = \frac{n}{2\sigma^{4}}$$

Eficiencia.

Definición: Un estimador insesgado $\hat{\theta}_1$ es relativamente más eficiente que otro estimador insesgado $\hat{\theta}_2$ si $Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$

Definición: Un estimador insesgado es eficiente si su varianza alcanza la CICR.

Definición: La eficiencia estimador insesgado $\hat{\theta}$ es

$$Efi(\hat{\theta}) = \frac{CIRC(\theta)}{Var(\hat{\theta})} \le 1$$

Definición: Un estimador insesgado $\hat{\theta}_n = \hat{\theta}(X_1, ..., X_n)$ es asintóticamente eficiente si $\lim_{n \to \infty} Efi(\hat{\theta}_n) = 1$

Eficiencia.

Ejemplo 1: Sea $X_1, ..., X_n$ una m.a. de la distribución $Ber(\theta)$, con $0 < \theta < 1$ desconocido. Recordemos que:

$$CIRC(\theta) = \frac{\theta(1-\theta)}{n}$$

a) El estimador insesgado $\hat{\theta}_n$ definido como $(X_1 + \cdots + X_{n-1})/(n-1)$ tiene varianza

$$Var(\hat{\theta}_n) = \frac{\theta(1-\theta)}{n-1}$$

Podemos ver que NO es eficiente porque:

$$Efi(\hat{\theta}) = \frac{CIRC(\theta)}{Var(\hat{\theta})} = \frac{n-1}{n} < 1$$

Pero SI es asintóticamente eficiente, ya que:

$$\lim_{n\to\infty} Efi(\hat{\theta}_n) = 1$$

Eficiencia.

b) El estimador insesgado $\hat{\theta}_n$ definido como $2(X_1 + 2X_2 + \dots + nX_{n-1})/n(n-1)$ tiene varianza

$$Var(\hat{\theta}_n) = \frac{2(2n+1)}{3(n+1)} \frac{\theta(1+\theta)}{n}$$

Podemos ver que NO es eficiente porque:

$$Efi(\hat{\theta}) = \frac{CIRC(\theta)}{Var(\hat{\theta})} = \frac{3(n+1)}{2(2n+1)} < 1$$

Y NO es asintóticamente eficiente, ya que:

$$\lim_{n\to\infty} Efi(\hat{\theta}_n) = \frac{3}{4} < 1$$

Eficiencia.

Ejemplo 2: Las observaciones X_1 y X_2 componen una muestra aleatoria de tamaño 2 extraída de una población exponencial con paremtero θ , Determinar cual de los siguientes estimadores insesgados es más eficiente para θ .

$$\hat{\theta}_1 = \frac{X_1 + X_2}{2}$$
 Y $\hat{\theta}_2 = \frac{X_1 + 2X_2}{2}$

Primero hay que demostrar que son estimadores insesgados:

$$E(\hat{\theta}_1) = E\left(\frac{X_1 + X_2}{2}\right) = E(\bar{x}) = \theta \text{ por lo tanto es insegado}$$

$$E(\hat{\theta}_2) = E\left(\frac{X_1 + 2X_2}{3}\right) = \frac{1}{3}E(x_1) + \frac{2}{3}E(x_2) = \frac{1}{3}\theta + \frac{2}{3}\theta = \theta \text{ por lo tanto es insegado}$$

Podemos ver que
$$\frac{X_1+X_2}{2}$$
 es la media muestral

Eficiencia.

Sigue Ejemplo 2: Ahora hay que calcular sus Varianzas:

$$Var(\hat{\theta}_{1}) = Var\left(\frac{X_{1} + X_{2}}{2}\right) = Var\left(\frac{1}{2}(X_{1} + X_{2})\right) = \left(\frac{1}{2}\right)^{2} (Var(X_{1}) + Var(X_{2}))$$

$$= \frac{1}{4}(\sigma^{2} + \sigma^{2}) = \frac{1}{4}(2\sigma^{2}) = \frac{\sigma^{2}}{2}$$

$$Var(\hat{\theta}_{2}) = Var\left(\frac{X_{1} + 2X_{2}}{3}\right) = \left(\frac{1}{3}\right)^{2} Var(X_{1}) + \left(\frac{2}{3}\right)^{2} Var(X_{2}) = \frac{1}{9}\sigma^{2} + \frac{4}{9}\sigma^{2} = \frac{5\sigma^{2}}{9}$$

Recordando la Definición: Un estimador insesgado
$$\hat{\theta}_1$$
es relativamente más eficiente que otro estimador insesgado $\hat{\theta}_2$ si $Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$

$$\Rightarrow Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2) = \frac{\sigma^2}{2} \leq \frac{5\sigma^2}{9} : \hat{\theta}_1 \text{ es más eficiente}$$

Bibliografía

Ipiña, S. L. (2008). Inferencia Estadística y Análisis de Datos. Madrid: PEARSON Prentice-Hall.

Vazquez, J. (2017). Estimación Puntual. México: Proyecto PAIME UNAM.