

**К ИЗУЧЕНИЮ ВЛИЯНИЯ ДИСТРОФИКАЦИИ ОЗЕР
НА ФАУНУ ПАРАЗИТОВ РЫБ**

© Е. А. Румянцев

Изучена фауна паразитов рыб в озерах дистрофного типа. Выявлены некоторые общие аспекты влияния процесса дистрофикации озер на фауну паразитов рыб.

Изучением процесса дистрофикации озер занимались многие исследователи (Герд, 1961; Александров, 1968; Андроникова, 1973, и др.). В большинстве своем дистрофные озера — это небольшие водоемы (ламбы), которые характеризуются темно-коричневым цветом воды, низкими показателями рН, дефицитом кислорода в придонных слоях, крайне низкой продуктивностью. Органические вещества в воде имеют аллохтонное происхождение, донные вещества состоят из остатков болотной растительности. Зоопланктон и зообентос бедны в видовом и количественном отношениях. Средняя биомасса их не превышает соответственно 0.3 г/м³ и 1 г/м². Из рыб сохраняются 2—3 вида, нередко один окунь. Первое исследование паразитофауны рыб дистрофных озер Карелии было проведено Быховской (1936). Позднее сведения такого рода были получены и другими авторами (Рыбак, 1961; Шульман и др., 1974; Румянцев, 1982, 1991). Все же в целом вопрос влияния процесса дистрофикации озер на фауну паразитов рыб остается до сих пор недостаточно изучен. Нами проведен анализ фауны паразитов рыб в озерах дистрофного типа Карелии.

Озера олиготрофного и эвтрофированного типов, подвергаясь дистрофикации болотными водами, постепенно превращаются в дистрофированные водоемы. На первых порах эти водоемы, особенно крупные из них, испытывая определенную депрессию гидрофауны, связанную с этим процессом, сохраняют все основные черты, свойственные своему исходному типу — олиготрофному или эвтрофированному, что и позволяет в общем определить их генетическую принадлежность. Однако при более длительной и повышенной дистрофикации эти озера, в первую очередь сравнительно небольшие по размерам, настолько уклоняются от своего первоначального состояния, что переходят уже в дистрофный тип. Примером служит Салонъярви, расположенный в юго-западной части Карелии (бассейн р. Шуи, впадающей в Онежское оз.). Пока это единственный водоем, из исследованных нами, которыйнесен к классу дистрофированных озер дистрофного типа (Румянцев, 1991). Основное отличие дистрофированных озер от типичных дистрофных водоемов, на наш взгляд, состоит в том, что в первых из них все еще сохраняется значительное разнообразие паразитофауны, в том числе единичные представители арктической пресноводной фауны, которые полностью выпадают в собственно дистрофных озерах. Кроме того, паразитофауна этих водоемов имеет определенное сходство с таковой исходного типа озер, от которого они произошли.

Таблица 1
Фауна паразитов рыб озер дистрофного типа
Table 1. Parasite fauna in fishes from dystrophic type lake

Фаунистический комплекс (группа паразитов)	Дистрофированный класс (Салонъярви)	Дистрофный класс
Арктический пресноводный комплекс	4(7)	0
Бореальный равнинный комплекс	47(85)	11(100)
Виды, связанные в жизненном цикле с:		
окуневыми	8(15)	4(36)
зоопланктоном	8(15)	3(27)
моллюсками	5(9)	3(27)
Виды узкоспецифичные	25(45)	4(36)
Всего видов	55(100)	11(100)

Примечание. В скобках — процент от общего числа видов; перед скобкой — среднее число видов. Приведены средние данные по 13 озерам-ламбам (Кончезерская и Вешкелицкая группы озер).

Фауна паразитов рыб Салонъярви (табл. 1) сильно изменена по сравнению с таковой мезотрофных дистрофирующихся озер — Шотозера и Вагатозера, — к которым этот водоем генетически близок. Бросается в глаза сильное обеднение ее. Общее число видов паразитов оказывается в нем в два раза меньше и составляет 55. Бореальный предгорный комплекс полностью отсутствует. Удельный вес арктического пресноводного комплекса снижен до минимума и составляет всего 7 % от общего числа видов. Из паразитов, специфичных для лососевых, остались лишь цестоды *Diphyllobothrium ditremum*, *Triaenophorus crassus* и *Proteocephalus exiguius*, встречающиеся у ряпушки. У налима выпадает нематода *Comophoronetes oschmarini* и ряд других специфичных для него видов. В то же время усиlena роль бореальной равнинной фауны (85 %) за счет видов паразитов, приуроченных к карповым рыбам. Из моногеней обычны *Diplozoon paradoxum*, *Paradiplozoon homoion*, некоторые виды рода *Dactylogyrus*. Однако из эктопаразитов полностью выпадают паразитические раки *Ergasilus sieboldi* и *Achtheres percarum*. Возможно, лимитирующее влияние оказывает не только сама дистрофикация водоема, но и сравнительно низкая общая минерализация воды в нем.

Среди паразитов, развивающихся при участии бентосных организмов, сохраняются немногие виды, а именно цестоды *Caryophyllaeides fennica* и *Caryophyllaeus laticeps*, скребни *Acanthocephalus lucii* и *A. anguillae*, нематода *Raphidascaris acus*. Их промежуточными хозяевами являются олигохеты и водяные ослики, которые более выносливы к дистрофикации. Из паразитов, связанных в своем развитии с моллюсками, сохранились лишь те из них (*Bunodera luciopercae*, *Allocreadium isoporum*), промежуточными хозяевами которых служат моллюски пизидиум, также устойчивые к дистрофикации. Трематода *Rhipidocotyle campanula* отсутствует, поскольку нет крупных двустворчатых моллюсков беззубок — их промежуточных хозяев. Очень характерной особенностью фауны данного водоема является почти полное выпадение целых систематических групп паразитов, таких как трематоды родов *Diplostomum*, *Tylodelphys* и *Ichthyocotylurus*. Это явление связано с тем, что исчезают брюхоногие моллюски лимнеиды, служащие их промежуточными хозяевами.

Количественные показатели инвазированности рыб Салонъярви некоторыми видами паразитов оказываются достаточно высокими (Шульман и др., 1974). В первую очередь наблюдается высокая зараженность рыб теми паразитами, которые в своем развитии связаны с зоопланктоном. Это цестоды *Triaenophorus nodulosus*,

Proteocephalus percae, *P. torulosus*. Зараженность ими рыб в этом водоеме оказывается намного выше, чем в тех мезотрофных озерах, где число промежуточных хозяев этих паразитов — копепод несравненно больше. Хотя рыбы — планктофаги (ряпушка), проявляя известную элективность, и предпочитают питаться кладоцерами, но в условиях Салонъярви их настолько мало, что они вынуждены потреблять и копепод. Это соответственно и обуславливает сравнительно высокую зараженность рыб паразитами, связанными с зоопланктоном.

Анализ паразитологических данных свидетельствует о том, что Салонъярви под влиянием процесса дистрофикации настолько сильно уклонился от своего первоначального мезотрофного состояния, что его уже следует рассматривать в классе дистрофированных озер, т. е. относить к дистрофному типу. Нет сомнений, что число дистрофированных озер не ограничивается только Салонъярви. Но в нашем распоряжении пока имеются лишь данные только по этому водоему. В то же время необходимо подчеркнуть, что дистрофированные озера значительно отличаются и от собственно дистрофных озер, поскольку обычно имеют сравнительно крупные размеры, более богатую фауну и все еще обнаруживают родство с исходным типом озер, от которого произошли.

При длительной прогрессирующей дистрофикации озера такого класса, как Салонъярви, и особенно малые по размерам водоемы, превращаются постепенно в типичный дистрофический класс, чаще мезо- и полигумозный. При этом происходит депрессия в них гидрофауны, что установлено многочисленными исследованиями (Герд, 1961; Андроникова, 1973, и др.). Донная фауна состоит в основном из хирономид и хаоборуса, в составе зоопланктона более половины составляют кладоцеры, из рыб сохраняются 2—3 вида (окунь, плотва, щука), нередко один окунь (Александров, 1968). Фауна паразитов сильно обеднена и насчитывает в среднем 10—12 видов. В озерах дистрофного класса в отличие от дистрофированных полностью отсутствуют виды паразитов арктического пресноводного комплекса. Остаются представители лишь одного бореального равнинного комплекса, а именно более эврибионтные представители палеарктической группировки. Среди паразитов со сложным циклом развития выделяются виды, связанные с зоопланктоном. Снижается роль паразитов, которые приурочены в своем развитии к карповым рыбам. Наряду с резким обеднением видового разнообразия паразитофауны происходит также снижение количественных показателей зараженности рыб большинством видов паразитов. Интенсивность инвазии многими из них значительно уступает таковой озер других типов. Паразитофауна рыб в дистрофных ламбах отличается не только своей бедностью, но и своим случайным характером, как это было показано еще Быховской (1936). Паразиты, весьма обычные для окуня в одной ламбе, могут отсутствовать у него в другой. Так, нематода *Camallanus lacustris* широко распространена у окуня в Круглой ламбе, но отсутствует у него в Кийламбе и Видаламбе (Кончезерская группа озер).

В фауне паразитов выделяются несколько видов, которые составляют основное ядро. К ним относятся *Trichodina nigra*, *Apiosoma piscicolum*, *Argulus foliaceus*, *Diplostomum spathaceum*, *Bunodera luciopercae*, *Ichthyocotylurus pileatus*, *Proteocephalus percae*, *Camallanus lacustris*, *Acanthocephalus lucii*. При 2 и 3 видах рыб в ихтиоценозе (прибавляются плотва и щука) фауна паразитов рыб естественно обогащается за счет ряда видов паразитов, специфичных для этих рыб. Среди них такие виды, как *Myxidium rhodei*, *M. lieberkuchni*, *Myxobolus muelleri*, *Myxosoma anurum*, *Dactylogyrus crucifer*, *Tetraonchus monenteron*, *Azygia lucii* и др.

Чтобы более отчетливо показать степень обеднения фауны паразитов дистрофных озер, нами проведено сравнение ее с таковой водоемов эвтрофированного типа, имеющих сходные размеры, исследованных примерно в одно время и по одинаковой методике (табл. 2). Как видно, различия между разными типами озер оказываются весьма существенными и в общем соответствуют тем величинам, которые получены нами на основе средних значений по ряду озер (Румянцев, 1991).

Таблица 2
Соотношение числа видов паразитов рыб в озерах различного типа
Table 2. Ratio of parasite species number in fishes from different type lakes

Фаунистический комплекс (группа паразитов)	Мезотрофный класс Маткъярви (18 га)	Эвтрофированный класс Линдальамба (8.6 га)	Дистрофный класс Карьерная ламба (8 га)
Арктический пресновод- ный комплекс	6(7)	0	0
Виды с прямым циклом развития	59(74)	17(52)	4(40)
Виды узкоспецифичные	27(34)	10(30)	2(20)
Вид паразитов, связанный в жизненном цикле с:			
зоопланктоном	8(10)	6(18)	3(30)
зообентосом	14(18)	11(33)	4(40)
Всего видов	80	33	10

Таким образом, дистрофный полигумозный тип экосистемы, складывающийся в малых озерах с окуневым ихтиоценозом, характеризуется резким сокращением видового разнообразия фауны паразитов, падением их численности и наличием представителей лишь одного бореального равнинного фаунистического комплекса, а именно палеарктической экологической группы.

Малые озера, известные под названием ацидотрофных, или ацидных (Александров, 1968), которые иногда сближают с дистрофными, нами здесь не рассматриваются. Специфические условия их (малые размеры, замкнутость, слабая минерализация, отсутствие поступления биогенов) приводят к тому, что в них исключается возможность увеличения трофности естественным путем. Фауна, в том числе паразитов рыб, крайне обеднена. В среднем в них насчитывается по 2—3 вида паразитов, выпадают даже такие банальные представители, как *Diplostomum*, так как в этих озерах отсутствуют их промежуточные хозяева — моллюски лимнеиды. Эти озера отличаются от дистрофных водоемов прежде всего тем, что их низкотрофность является результатом исходного состояния. На основании анализа паразитологических данных и сравнения их с гидробиологическими ацидотрофными озера выделяются нами в самостоятельный тип (Румянцев, 1991).

Список литературы

Александров Б. М. К познанию малых озер южной Карелии в типологическом и гидробиологическом отношениях // Тр. Карел. отд. ГосНИОРХ. Петрозаводск. 1968. Т. 5, вып. 1. С. 246—256.

Андроникова И. Н. Биолимнологические черты гумифицированных озер умеренной зоны СССР // Вопр. соврем. лимнолог. Л.: Наука, 1973. С. 159—182.

Быховская И. Е. Материалы по паразитологии рыб Карелии. Паразитофауна рыб малых водоемов — «ламб» // Тр. Бородин. биол. ст. 1936. Т. 8, вып. 2. С. 123—138.

Герд С. В. Влияние болотных вод на фауну и флору озер // Уч. зап. Карел. пед. ин-та. Петрозаводск. 1961. Т. 11, вып. 2. С. 3—14.

Румянцев Е. А. Паразиты рыб Вешкелицких озер // Экология паразитических организмов в биогеоценозах Севера. Петрозаводск, 1982. С. 39—50.

Румянцев Е. А. Становление фауны паразитов рыб в озерах Карело-Кольской лимнологической области // Эколог.-популяцион. анализ паразитов и кровосос. членистоног. Петрозаводск, 1991. С. 130—150.

Рыбак В. Ф. Паразитофауна рыб Салонъярви // Тез. докл. сессии уч. сов. по пробл. «Теорет. основ. рац. использ. рес. Белого моря и внутрен. водоем. Карелии». Петрозаводск, 1961.

Шульман С. С., Малахова Р. П., Рыбак В. Ф. Сравнительно-экологический анализ паразитов рыб озер Карелии. Л.: Наука, 1974. 108 с.

Институт биологии КНЦ РАН,
Петрозаводск, 185610

Поступила 21.05.1997

TO THE STUDY OF LAKE DISTROPHICATION INFLUENCE ON THE PARASITE
FAUNA OF FISHES

E. A. Rumiantsev

Key words: parasite fauna, fishes, infection, distrophication, lake.

SUMMARY

A parasite fauna of fishes in lakes of dystrophic type was studied. Some general aspects of a lake dystrophication influence on a parasite fauna are discussed.
