Machine Learning – Brett Bernstein

Week 1 Lecture: Concept Check Exercises

Starred problems are optional.

Statistical Learning Theory

1. Suppose $\mathcal{A} = \mathcal{Y} = \mathbb{R}$ and \mathcal{X} is some other set. Furthermore, assume $P_{\mathcal{X} \times \mathcal{Y}}$ is a discrete joint distribution. Compute a Bayes decision function when the loss function $\ell : \mathcal{A} \times \mathcal{Y} \to \mathbb{R}$ is given by

$$\ell(a,y) = \mathbf{1}(a \neq y),$$

the 0-1 loss.

- 2. (*) Suppose $\mathcal{A} = \mathcal{Y} = \mathbb{R}$, \mathcal{X} is some other set, and $\ell : \mathcal{A} \times \mathcal{Y} \to \mathbb{R}$ is given by $\ell(a,y) = (a-y)^2$, the square error loss. What is the Bayes risk and how does it compare with the variance of Y?
- 3. Let $\mathcal{X} = \{1, \dots, 10\}$, let $\mathcal{Y} = \{1, \dots, 10\}$, and let $A = \mathcal{Y}$. Suppose the data generating distribution, P, has marginal $X \sim \text{Unif}\{1, \dots, 10\}$ and conditional distribution $Y|X = x \sim \text{Unif}\{1, \dots, x\}$. For each loss function below give a Bayes decision function.
 - (a) $\ell(a, y) = (a y)^2$,
 - (b) $\ell(a, y) = |a y|$,
 - (c) $\ell(a, y) = \mathbf{1}(a \neq y)$.
- 4. Show that the empirical risk is an unbiased and consistent estimator of the Bayes risk. You may assume the Bayes risk is finite.
- 5. Let $\mathcal{X} = [0,1]$ and $\mathcal{Y} = \mathcal{A} = \mathbb{R}$. Suppose you receive the (x,y) data points (0,5), (.2,3), (.37,4.2), (.9,3), (1,5). Throughout assume we are using the 0-1 loss.
 - (a) Suppose we restrict our decision functions to the hypothesis space \mathcal{F}_1 of constant functions. Give a decision function that minimizes the empirical risk over \mathcal{F}_1 and the corresponding empirical risk. Is the empirical risk minimizing function unique?
 - (b) Suppose we restrict our decision functions to the hypothesis space \mathcal{F}_2 of piecewise-constant functions with at most 1 discontinuity. Give a decision function that minimizes the empirical risk over \mathcal{F}_2 and the corresponding empirical risk. Is the empirical risk minimizing function unique?

- 6. (*) Let $\mathcal{X} = [-10, 10]$, $\mathcal{Y} = \mathcal{A} = \mathbb{R}$ and suppose the data generating distribution has marginal distribution $X \sim \text{Unif}[-10, 10]$ and conditional distribution $Y|X = x \sim \mathcal{N}(a+bx,1)$ for some fixed $a,b \in \mathbb{R}$. Suppose you are also given the following data points: (0,1), (0,2), (1,3), (2.5,3.1), (-4,-2.1).
 - (a) Assuming the 0-1 loss, what is the Bayes risk?
 - (b) Assuming the square error loss $\ell(a,y) = (a-y)^2$, what is the Bayes risk?
 - (c) Using the full hypothesis space of all (measurable) functions, what is the minimum achievable empirical risk for the square error loss.
 - (d) Using the hypothesis space of all affine functions (i.e., of the form f(x) = cx + d for some $c, d \in \mathbb{R}$), what is the minimum achievable empirical risk for the square error loss.
 - (e) Using the hypothesis space of all quadratic functions (i.e., of the form $f(x) = cx^2 + dx + e$ for some $c, d, e \in \mathbb{R}$), what is the minimum achievable empirical risk for the square error loss.

Stochastic Gradient Descent

- 1. When performing mini-batch gradient descent, we often randomly choose the minibatch from the full training set without replacement. Show that the resulting minibatch gradient is an unbiased estimate of the gradient of the full training set. Here we assume each decision function f_w in our hypothesis space is determined by a parameter vector $w \in \mathbb{R}^d$.
- 2. You want to estimate the average age of the people visiting your website. Over a fixed week we will receive a total of N visitors (which we will call our full population). Suppose the population mean μ is unknown but the variance σ^2 is known. Since we don't want to bother every visitor, we will ask a small sample what their ages are. How many visitors must we randomly sample so that our estimator $\hat{\mu}$ has variance at most $\epsilon > 0$?
- 3. (\star) Suppose you have been successfully running mini-batch gradient descent with a full training set size of 10^5 and a mini-batch size of 100. After receiving more data your full training set size increases to 10^9 . Give a heuristic argument as to why the mini-batch size need not increase even though we have 10000 times more data.

Week 1 Lab: Concept Check Exercises

Starred problems are optional.

Multivariable Calculus Exercises

- 1. If f'(x; u) < 0 show that f(x + hu) < f(x) for sufficiently small h > 0.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable, and assume that $\nabla f(x) \neq 0$. Prove

$$\underset{\|u\|_2=1}{\arg\max} f'(x;u) = \frac{\nabla f(x)}{\|\nabla f(x)\|_2} \quad \text{and} \quad \underset{\|u\|_2=1}{\arg\min} f'(x;u) = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}.$$

- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x,y) = x^2 + 4xy + 3y^2$. Compute the gradient $\nabla f(x,y)$.
- 4. Compute the gradient of $f: \mathbb{R}^n \to \mathbb{R}$ where $f(x) = x^T A x$ and $A \in \mathbb{R}^{n \times n}$ is any matrix.
- 5. Compute the gradient of the quadratic function $f: \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = b + c^T x + x^T A x,$$

where $b \in \mathbb{R}$, $c \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$.

- 6. Fix $s \in \mathbb{R}^n$ and consider $f(x) = (x s)^T A(x s)$ where $A \in \mathbb{R}^{n \times n}$. Compute the gradient of f.
- 7. Consider the ridge regression objective function

$$f(w) = ||Aw - y||_2^2 + \lambda ||w||_2^2$$

where $w \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, and $\lambda \in \mathbb{R}_{\geq 0}$.

- (a) Compute the gradient of f.
- (b) Express f in the form $f(w) = ||Bw z||_2^2$ for some choice of B, z.
- (c) Using either of the parts above, compute

$$\underset{w \in \mathbb{R}^n}{\arg\min} f(w).$$

8. Compute the gradient of

$$f(\theta) = \lambda \|\theta\|_2^2 + \sum_{i=1}^n \log(1 + \exp(-y_i \theta^T x_i)),$$

where $y_i \in \mathbb{R}$ and $\theta \in \mathbb{R}^m$ and $x_i \in \mathbb{R}^m$ for $i = 1, \dots, n$.

Linear Algebra Exercises

- 1. When performing linear regression we obtain the normal equations $A^TAx = A^Ty$ where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, and $y \in \mathbb{R}^m$.
 - (a) If rank(A) = n then solve the normal equations for x.
 - (b) (*) What if $rank(A) \neq n$?
- 2. Prove that $A^T A + \lambda \mathbf{I}_{n \times n}$ is invertible if $\lambda > 0$ and $A \in \mathbb{R}^{n \times n}$.
- 3. (\star) Describe the following set geometrically:

$$\left\{ v \in \mathbb{R}^2 \mid v^T \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} v = 4 \right\}.$$

Week 2 Pre-Lecture: Concept Check Exercises

Optimization Prerequisites for Lasso

1. Given $a \in \mathbb{R}$ we define a^+, a^- as follows:

$$a^+ = \begin{cases} a & \text{if } a \ge 0, \\ 0 & \text{otherwise,} \end{cases}$$
 and $a^- = \begin{cases} -a & \text{if } a < 0, \\ 0 & \text{otherwise.} \end{cases}$

We call a^+ the positive part of a and a^- the negative part of a. Note that $a^+, a^- \ge 0$.

- (a) Give an expression for a in terms of a^+, a^- .
- (b) Give an expression for |a| in terms of a^+, a^- . For $x \in \mathbb{R}^d$ define $x^+ = (x_1^+, \dots, x_d^+)$ and $x^- = (x_1^-, \dots, x_d^-)$.
- (c) Give an expression for x in terms of x^+, x^- .
- (d) Give an expression for $||x||_1$ without using any summations or absolute values. [Hint: Use x^+, x^- and the vector $\mathbf{1} = (1, 1, \dots, 1) \in \mathbb{R}^d$.]
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ and $S \subseteq \mathbb{R}$. Consider the two optimization problems

minimize_{$$x \in \mathbb{R}$$} $|x|$ minimize _{$a,b \in \mathbb{R}$} $a+b$ subject to $f(x) \in S$ and subject to $f(a-b) \in S$ $a,b \ge 0$.

Solve the following questions.

- (a) If x in the first problem satisfies $f(x) \in S$ show how to quickly compute (a, b) for the second problem with a + b = |x| and $f(a b) \in S$.
- (b) If a, b in the second problem satisfy $f(a b) \in S$, show how to quickly compute an x for the first problem with $|x| \le a + b$ and $f(x) \in S$.

- (c) Assume x is a minimizer for the first problem with minimum value p_1^* and (a, b) is a minimizer for the second problem with minimum p_2^* . Using the previous two parts, conclude that $p_1^* = p_2^*$.
- 3. Let $f: \mathbb{R}^d \to \mathbb{R}$, $S \subseteq \mathbb{R}$ and consider the following optimization problem:

minimize_{$$x \in \mathbb{R}^d$$} $||x||_1$
subject to $f(x) \in S$,

where $||x||_1 = \sum_{i=1}^d |x_i|$. Give a new optimization problem with a linear objective function and the same minimum value. Show how to convert a solution to your new problem into a solution to the given problem. [Hint: Use the previous two problems.]

Week 2 Lecture: Concept Check Exercises

Starred problems are optional.

Excess Risk Decomposition

- 1. Let $\mathcal{X} = \mathcal{Y} = \{1, 2, ..., 10\}$, $\mathcal{A} = \{1, ..., 10, 11\}$ and suppose the data distribution has marginal distribution $X \sim \text{Unif}\{1, ..., 10\}$. Furthermore, assume Y = X (i.e., Y always has the exact same value as X). In the questions below we use square loss function $\ell(a, x) = (a x)^2$.
 - (a) What is the Bayes risk?
 - (b) What is the approximation error when using the hypothesis space of constant functions?
 - (c) Suppose we use the hypothesis space \mathcal{F} of affine functions.
 - i. What is the approximation error?
 - ii. Consider the function $\hat{f}(x) = x + 1$. Compute $R(\hat{f}) R(f_{\mathcal{F}})$.
- 2. (*) Let $\mathcal{X} = [-10, 10]$, $\mathcal{Y} = \mathcal{A} = \mathbb{R}$ and suppose the data distribution has marginal distribution $X \sim \text{Unif}(-10, 10)$ and $Y|X = x \sim \mathcal{N}(a + bx, 1)$. Throughout we assume the square loss function $\ell(a, x) = (a x)^2$.
 - (a) What is the Bayes risk?
 - (b) What is the approximation error when using the hypothesis space of constant functions (in terms of a and b)?
 - (c) Suppose we use the hypothesis space of affine functions.
 - i. What is the approximation error?
 - ii. Suppose you have a fixed data set and compute the empirical risk minimizer $\hat{f}_n(x) = c + dx$. What is the estimation error (int terms of a, b, c, d)?

- 3. Try to best characterize each of the following in terms of one or more of optimization error, approximation error, and estimation error.
 - (a) Overfitting.
 - (b) Underfitting.
 - (c) Precise empirical risk minimization for your hypothesis space is computationally intractable.
 - (d) Not enough data.
- 4. (a) We sometimes look at $R(\hat{f}_n)$ as random, and other times as deterministic. What causes this difference?
 - (b) True or False: Increasing the size of our hypothesis space can shift risk from approximation error to estimation error but always leaves the quantity $R(\hat{f}_n) R(f^*)$ constant.
 - (c) True or False: Assume we treat our data set as a random sample and not a fixed quantity. Then the estimation error and the approximation error are random and not deterministic.
 - (d) True or False: The empirical risk of the ERM, $\hat{R}(\hat{f}_n)$, is an unbiased estimator of the risk of the ERM $R(\hat{f}_n)$.
 - (e) In each of the following situations, there is an implicit sample space in which the given expectation is computed. Give that space.
 - i. When we say the empirical risk $\hat{R}(f)$ is an unbiased estimator of the risk R(f) (where f is independent of the training data used to compute the empirical risk).
 - ii. When we compute the expected empirical risk $\mathbb{E}[R(\hat{f}_n)]$ (i.e., the outer expectation).
 - iii. When we say the minibatch gradient is an unbiased estimator of the full training set gradient.
- 5. For each, use \leq , \geq , or = to determine the relationship between the two quantities, or if the relationship cannot be determined. Throughout assume $\mathcal{F}_1, \mathcal{F}_2$ are hypothesis spaces with $\mathcal{F}_1 \subseteq \mathcal{F}_2$, and assume we are working with a fixed loss function ℓ .
 - (a) The estimation errors of two decision functions f_1 , f_2 that minimize the empirical risk over the same hypothesis space, where f_2 uses 5 extra data points.
 - (b) The approximation errors of the two decision functions f_1 , f_2 that minimize risk with respect to \mathcal{F}_1 , \mathcal{F}_2 , respectively (i.e., $f_1 = f_{\mathcal{F}_1}$ and $f_2 = f_{\mathcal{F}_2}$).
 - (c) The empirical risks of two decision functions f_1, f_2 that minimize the empirical risk over $\mathcal{F}_1, \mathcal{F}_2$, respectively. Both use the same fixed training data.
 - (d) The estimation errors (for $\mathcal{F}_1, \mathcal{F}_2$, respectively) of two decision functions f_1, f_2 that minimize the empirical risk over $\mathcal{F}_1, \mathcal{F}_2$, respectively.

- (e) The risk of two decision functions f_1, f_2 that minimize the empirical risk over $\mathcal{F}_1, \mathcal{F}_2$, respectively.
- 6. In the excess risk decomposition lecture, we introduced the decision tree classifier spaces \mathcal{F} (space of all decision trees) and \mathcal{F}_d (the space of decision trees of depth d) and went through some examples. The following questions are based on those slides. Recall that $P_{\mathcal{X}} = \text{Unif}([0,1]^2)$, $\mathcal{Y} = \{\text{blue}, \text{orange}\}$, orange occurs with .9 probability below the line y = x and blue occurs with .9 probability above the line y = x.
 - (a) Prove that the Bayes error rate is 0.1.
 - (b) Is the Bayes decision function in \mathcal{F} ?
 - (c) For the hypothesis space \mathcal{F}_3 the slide states that $R(\tilde{f}) = 0.176 \pm .004$ for n = 1024. Assuming you had access to the training code that produces \tilde{f} from a set of data points, and random draws from the data generating distribution, give an algorithm (pseudocode) to compute (or estimate) the values 0.176 and .004.

L_1 and L_2 Regularization

1. Consider the following two minimization problems:

$$\underset{w}{\operatorname{arg\,min}} \Omega(w) + \frac{\lambda}{n} \sum_{i=1}^{n} L(f_w(x_i), y_i)$$

and

$$\underset{w}{\operatorname{arg\,min}} C\Omega(w) + \frac{1}{n} \sum_{i=1}^{n} L(f_w(x_i), y_i),$$

where $\Omega(w)$ is the penalty function (for regularization) and L is the loss function. Give sufficient conditions under which these two give the same minimizer.

- 2. (*) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Prove that $\|\nabla f(x)\|_2 \leq L$ if and only if f is Lipschitz with constant L.
- 3. (\star) Let \hat{w} denote the minimizer for

minimize_w
$$||Xw - y||_2^2$$

subject to $||w||_1 \le r$.

Prove that $f(x) = \hat{w}^T x$ is Lipschitz with constant r.

- 4. Two of the plots in the lecture slides use the fact that $\|\hat{\beta}\|/\|\tilde{\beta}\|$ is always between 0 and 1. Here $\hat{\beta}$ is the parameter vector of the linear model resulting from the regularized least squares problem. Analgously, $\tilde{\beta}$ is the parameter vector from the unregularized problem. Why is this true that the quotient lies in [0,1]?
- 5. Explain why feature normalization is important if you are using L_1 or L_2 regularization.

Week 4 Lab: Concept Check Exercises

Subgradients

- 1. (\star) If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and differentiable at x, the $\partial f(x) = {\nabla f(x)}$.
- 2. Fix $f: \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$. Then the subdifferential $\partial f(x)$ is a convex set.
- 3. (a) True or False: A subgradient of $f: \mathbb{R}^n \to \mathbb{R}$ at x is normal to a hyperplane that globally understimates the graph of f.
 - (b) True or False: If $g \in \partial f(x)$ then -g is a descent direction of f.
 - (c) True or False: For $f: \mathbb{R} \to \mathbb{R}$, if $1, -1 \in \partial f(x)$ then x is a global minimizer of f.
 - (d) True or False: Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $g \in \partial f(x)$. Then $\alpha g \in \partial f(x)$ for all $\alpha \in [0,1]$.
 - (e) True or False: If the sublevel sets of a function are convex, then the function is convex.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x_1, x_2) = |x_1| + 2|x_2|$. Compute $\partial f(x_1, x_2)$ for each $x_1, x_2 \in \mathbb{R}^2$.

Week 4 Lecture: Concept Check Exercises

Convexity

- 1. If $A, B \subseteq \mathbb{R}^n$ are convex, then $A \cap B$ is convex.
- 2. Let $f, g : \mathbb{R}^n \to \mathbb{R}$ be convex. Show that af + bg is convex if $a, b \geq 0$.
- 3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Prove that if $\nabla f(x) = 0$ then x is a global minimizer.
- 4. Prove that if $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex and x is a global minimizer, then it is the unique global minimizer.
- 5. Prove that any affine function $f: \mathbb{R}^n \to \mathbb{R}$ is both convex and concave.
- 6. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and let $g: \mathbb{R}^m \to \mathbb{R}^n$ be affine. Then $f \circ g$ is convex.
- 7. $(\star\star)$
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be convex. Show that f has one-sided left and right derivatives at every point.
 - (b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Show that f has one-sided directional derivatives at every point.

(c) Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Show that if x is not a minimizer of f then f has a descent direction at x (i.e., a direction whose corresponding one-sided directional derivative is negative).

Convex Optimization Problems

- 1. Suppose there are mn people forming m rows with n columns. Let a denote the height of the tallest person taken from the shortest people in each column. Let b denote the height of the shortest person taken from the tallest people in each row. What is the relationship between a and b?
- 2. Let $x_1, \ldots, x_n \in \mathbb{R}^d$ be given data. You want to find the center and radius of the smallest sphere that encloses all of the points. Express this problem as a convex optimization problem.
- 3. Suppose $x_1, \ldots, x_n \in \mathbb{R}^d$ and $y_1, \ldots, y_n \in \{-1, 1\}$. Here we look at y_i as the label of x_i . We say the data points are linearly separable if there is a vector $v \in \mathbb{R}^d$ and $a \in \mathbb{R}$ such that $v^T x_i > a$ when $y_i = 1$ and $v^T x_i < a$ for $y_i = -1$. Give a method for determining if the given data points are linearly separable.
- 4. Consider the Ivanov form of ridge regression:

minimize
$$||Ax - y||_2^2$$

subject to $||x||_2^2 \le r^2$,

where r > 0, $y \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ are fixed.

- (a) What is the Lagrangian?
- (b) What do you get when you take the supremum of the Lagrangian over the feasible values for the dual variables?

Week 5 Lab: Concept Check Exercises

Kernels

- 1. Fix n > 0. For $x, y \in \{1, 2, ..., n\}$ define $k(x, y) = \min(x, y)$. Give an explicit feature map $\varphi : \{1, 2, ..., n\}$ to \mathbb{R}^D (for some D) such that $k(x, y) = \varphi(x)^T \varphi(y)$.
- 2. Show that $k(x,y) = (x^T y)^4$ is a positive semidefinite kernel on $\mathbb{R}^d \times \mathbb{R}^d$.
- 3. Let $A \in \mathbb{R}^{d \times d}$ be a positive semidefinite matrix. Prove that $k(x,y) = x^T A y$ is a positive semidefinite kernel.

4. Consider the objective function

$$J(w) = ||Xw - y||_1 + \lambda ||w||_2^2.$$

Assume we have a positive semidefinite kernel k.

- (a) What is the kernelized version of this objective?
- (b) Given a new test point x, find the predicted value.
- 5. Show that the standard 2-norm on \mathbb{R}^n satisfies the parallelogram law.
- 6. Suppose you are given an training set of distinct points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ and labels $y_1, \ldots, y_n \in \{-1, +1\}$. Show that by properly selecting σ you can achieve perfect 0-1 loss on the training data using a linear decision function and the RBF kernel.
- 7. Suppose you are performing standard ridge regression, which you have kernelized using the RBF kernel. Prove that any decision function $f_{\alpha}(x)$ learned on a training set must satisfy $f_{\alpha}(x) \to 0$ as $||x||_2 \to \infty$.
- 8. Consider the standard (unregularized) linear regression problem where we minimize $L(w) = \|Xw y\|_2^2$ for some $X \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^n$. Assume m > n.
 - (a) Let w^* be one minimizer of the loss function L above. Give an infinite set of minimizers of the loss function.
 - (b) What property defines the minimizer given by the representer theorem (in terms of X)?

Week 7 Lecture: Concept Check Exercises

Multiclass

1. Let $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{Y} = \{1, 2, 3, 4\}$, with X uniformly distributed on $\{x \mid ||x||_2 \leq 1\}$. Given X, the value of Y is determined according to the following image, where green is 1, orange is 2, blue is 3, and magenta is 4.

For the problems below we are using the 0-1 loss.

(a) Consider the multiclass linear hypothesis space

$$\mathcal{F} = \{ f \mid f(x) = \underset{i \in \{1, 2, 3, 4\}}{\arg\max} \, w_i^T x \},\,$$

where each f is determined by $w_1, w_2, w_3, w_4 \in \mathbb{R}^2$. Give $f_{\mathcal{F}}$, a decision function minimizing the risk over \mathcal{F} , by specifying the corresponding w_1, w_2, w_3, w_4 . Then give $R(f_{\mathcal{F}})$.

(b) Now consider the restricted hypothesis space

$$\mathcal{F}_1 = \{ f \mid f(x) = \underset{i \in \{1, 2, 3, 4\}}{\arg \max} w_i^T x, ||w_1|| = ||w_2|| = ||w_3|| = ||w_4|| = 1 \}.$$

Consider the decision function $f \in \mathcal{F}_1$ with w_1, w_2, w_3, w_3 set to the angle bisectors of the corresponding regions. Give R(f).

(c) Next consider the class-sensitive version of \mathcal{F} :

$$\mathcal{F}_2 = \{ f \mid f(x) = \arg\max_{i \in \{1,2,3,4\}} w^T \Psi(x,i) \},\$$

where $w \in \mathbb{R}^D$ and $\Psi : \mathbb{R}^2 \times \{1, 2, 3, 4\} \to \mathbb{R}^D$. Give w, Ψ corresponding to $f_{\mathcal{F}_2}$, the decision function minimizing the risk over \mathcal{F}_2 .

2. Recall that the standard (featurized) SVM objective is given by

$$J_1(w) = \frac{1}{2} ||w||_2^2 + \frac{C}{n} \sum_{i=1}^n [1 - y_i w^T \varphi(x_i)]_+.$$

The 2-class multiclass SVM objective is given by

$$J_2(w) = \frac{1}{2} \|w\|_2^2 + \frac{C}{n} \sum_{i=1}^n \max_{y \neq y_i} [1 - m_{i,y}(w)]_+,$$

where $m_{i,y}(w) = w^T \Psi(x_i, y_i) - w^T \Psi(x_i, y)$. Give a Ψ (in terms of φ) so that multiclass with 2 classes $\{-1, +1\}$ is equivalent to our standard SVM objective.

3. Suppose you trained a decision function f from the hypothesis space \mathcal{F} given by

$$\mathcal{F} = \{ f \mid f(x) = \underset{i \in \{1, \dots, k\}}{\arg \max} w^T \psi(x, i) \}.$$

Give pseudocode showing how you would use f to forecast the class of a new data point x.

4. Consider a multiclass SVM with objective

$$J(w) = \frac{1}{2} \|w\|_{2}^{2} + \frac{C}{n} \sum_{i=1}^{n} \max_{y \neq y_{i}} [1 - m_{i,y}(w)]_{+},$$

where $m_{i,y}(w) = w^T \Psi(x_i, y_i) - w^T \Psi(x_i, y)$. Assume $\mathcal{Y} = \{1, \dots, k\}, \ \mathcal{X} = \mathbb{R}^d, \ w \in \mathbb{R}^D$ and $\psi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^D$. Give a kernelized version of the objective.

Week 9 Lecture: Concept Check Exercises

Trees

- 1. (a) How many regions (leaves) will a tree with k node splits have?
 - (b) What is the maximum number of regions a tree of height k can have? Recall that the height of a tree is the number of edges in the longest path from the root to any leaf.
 - (c) Give an upper bound on the depth needed to exactly classify n distinct points in \mathbb{R}^d . [Hint: In the worst case each leaf will have a single training point.]
- 2. This question involves fitting a regression tree using the square loss. Assume the n data points for the current node are sorted by the first feature. Give pseudocode with O(n) runtime for optimally splitting the current node with respect to the first feature.

3. Suppose we are looking at a fixed node of a classification tree, and the class labels are, sorted by the first feature values,

We are currently testing splitting the node into a left node containing 4, 1, 0, 0, 1, 0 and a right node containing 2, 3, 3. For each of the following impurity measures, give the value for the left and right parts, along with the total score for the split.

- (a) Misclassification error.
- (b) Gini index.
- (c) Entropy.

Bagging

- 1. Let X_1, \ldots, X_n be an i.i.d. sample from a distribution with mean μ and variance σ^2 . How large must n be so that the sample mean has standard error smaller than .01?
- 2. Let X_1, \ldots, X_{2n+1} be an i.i.d. sample from a distribution. To estimate the median of the distribution, you can compute the sample median of the data.
 - (a) Give pseudocode that computes an estimate of the variance of the sample median.
 - (b) Give pseudocode that computes an estimate of a 95% confidence interval for the sample median.

Boosting

- 1. (\star) Show the exponential margin loss is a convex upper bound for the 0-1 loss.
- 2. Show how to perform gradient boosting with the hinge loss.
- 3. Suppose we are using gradient boosting. On each step we can do a better job of fitting the pseudoresiduals if we allow for deeper trees. Why might deep trees be discouraged while gradient boosting?