Exercice 1 - Rice

Soit l'ensemble *A* défini par :

$$A = \{x, \exists n > 0, \forall y, [x \mid y] = y^n\}$$

1. Exprimez cet ensemble avec des mots en Français.

Réponse : A est l'ensemble des programmes qui calculent une fonction puissance non constante, c'est-à-dire une fonction de la forme $y \mapsto y^n$ pour un certain entier n > 0.

2. Peut-on écrire $A=P_{\mathcal{C}}$ pour une certaine propriété \mathcal{C} où $P_{\mathcal{C}}=\{x,[x\mid\cdot]\in\mathcal{C}\}$? Si oui proposez une telle propriété, sinon faites une preuve

Réponse : Oui, $C = \{monomes\}$.

3. En appliquant proprement le théorème de Rice, montrez que A est indécidable.

Réponse : On sait que $A = \{x \mid [x \mid \cdot] \in \mathcal{C}\}$ donc pour affirmer que A est indécidable avec Rice, il suffit de montrer que \mathcal{C} est non-trivial. Or, $(y \mapsto \bot) \notin \mathcal{C}$ et $(y \mapsto y) \in \mathcal{C}$. Donc \mathcal{C} est indécidable

Exercice 2 - Progressif

Soit *g* une fonction calculable totale qui ne s'annule jamais.

Soit l'ensemble *A* défini par :

$$A = \{x, [x \mid 0] \uparrow \text{ et } [x \mid g(x)] = 1\}$$

On définit le programme p suivant :

$$p: \langle x,y \rangle \mapsto \text{ if } [x\mid x] \downarrow \text{ then } \{\text{if } y=0 \text{ then } \bot \text{ else return } 1\}$$

On définit aussi la fonction f par $f(x) = S_1^1 \langle p, x \rangle$

1. La fonction f est-elle calculable? est-elle totale? Justifier

Réponse : f est calculable et totale par le théorème SNM

2. Soit x tel que $[x \mid x] \downarrow$. Quelle fonction est calculée par $y \mapsto [f(x) \mid y]$?

Réponse : $[f(x) | \cdot]$ la fonction égale à 1 sauf en 0 où elle n'est pas définie

3. Soit x tel que $[x \mid x] \uparrow$. Quelle fonction est calculée par $y \mapsto [f(x) \mid y]$?

Réponse : $[f(x) \mid \cdot] = \bot$ c'est-à-dire la fonction définie nulle part.

4. Montrez que $\mathbb{K} \prec A$.

Réponse : Il faut montrer que $\exists h$ calculable totale telle que $\forall x, x \in \mathbb{K} \Leftrightarrow h(x) \in A$ On prend h = f : f est bien calculable totale

On vérifie que $\forall x, x \in \mathbb{K} \Leftrightarrow f(x) \in A$

Soit $x \in \mathbb{K}$.

- Si $[x \mid x] \downarrow$, d'après la 2.2, $[f(x) \mid \cdot]$ est constante et égale à 1 sauf où $[f(x) \mid b]$, $[f(x) \mid 0] \uparrow$ et $[f(x) \mid g(f(x))] = 1$ car $g(f(x)) \neq 0$. Donc $f(x) \in A$
- Si $[x \mid x] \uparrow$ alors $[f(x) \mid g(f(x))] \uparrow$ (voir 2.3). Donc $f(x) \notin A$

Donc on a bien $\mathbb{K} \prec A$

5. Montrez que l'ensemble A n'est pas récursif

 $Réponse: A n'est pas récursif car <math>\mathbb{K} \prec A$ et \mathbb{K} n'est pas récursif

6. Aurait-on pu montrer que A n'et pas récursif en appliquant le Théorème de Rice?

Réponse : Non, car on ne peut pas exprimer A de la forme $A\{x, [x \mid \cdot] \in \mathcal{C}\}$. On aurait besoin d'exprimer une condition sur l'entrée g(x) mais une fonction ne connaît pas son numéro de programme.

7. Ecrivez un programme q tel que les deux conditions suivantes soit vérifiées :

- $\forall x[q \mid \langle x, 0 \rangle] \downarrow \Leftrightarrow x \in \mathbb{K}$
- $\forall x, y \quad y \neq 0 \Rightarrow [q \mid \langle x, y \rangle] = 1$

Réponse:

```
[q \mid \langle x, y \rangle] :
if y = 0 then
return [x \mid x]
else return 1
```

8. Montrez que $\overline{\mathbb{K}} \prec A$

Réponse : On pose $\forall x, f(x) = S_1^1 \langle x, y \rangle$, f est calculable totale par SNM

- Si $x \in \overline{\mathbb{K}}$ alors $[x \mid x] \uparrow$, donc $[f(x) \mid 0] \uparrow$ et $[f(x) \mid g(f(x))] = 1$ car g ne s'annule jamais. Donc $f(x) \in A$
- Si $x \notin \overline{\mathbb{K}}$ alors $[x \mid x] \downarrow$, donc $[f(x) \mid 0] \downarrow$ donc $f(x) \notin A$

f est bien une fonction calculable totale telle que $\forall x, x \in \overline{\mathbb{K}} \Leftrightarrow f(x) \in A$, donc $\overline{\mathbb{K}} \prec A$

9. Montrez que ni l'ensemble A ni son complémentaire \overline{A} ne sont énumérables

Réponse:

$$\cfrac{\overline{\mathbb{K}} \text{ non énumérable}}{\overline{\mathbb{K}} \prec A} A \text{ non énumérable}$$

Exercice 3 - Énumérabilité

Soit l'ensemble E défini par :

$$E = \{x, \exists y \ [x \mid y] = x\}$$

Rappel: div est la division entière

1. Exprimez cet ensemble avec des mots en Français.

Réponse : E est l'ensemble des programmes pour lesquels il existe une entrée sur laquelle ils renvoient leur numéro.

2. Soit le programme $tata: y \mapsto \text{ return } (y \ div \ 2)$. A-t-on $tata \in E$? A-t-on $tata \in \overline{E}$? $R\acute{e}ponse: tata \in E \text{ car } [tata \mid 2tata] = tata, \text{ donc } tata \notin \overline{E}$

3. Montrez que E est énumérable

Réponse : Pour cela, on définit le programme q tel que $\forall x \ [q \mid x] \downarrow \Leftrightarrow x \in E$

```
[q | x]

z = 0

while step < x, \pi_1(z), \pi_2(z) > \neq 1

z = z + 1

return 5
```

On a bien $\forall x, [q \mid x] \downarrow \Leftrightarrow x \in E \iff \text{si } x \in E \text{ alors } \exists y \ [x \mid y] = x$

En particulier $[x \mid y] \downarrow$ donc $\exists t$ tel que $step\langle x, y, t \rangle \neq 0$ et même $step\langle x, y, t \rangle = x + 1$ donc lorsque $z = \langle y, t \rangle$ la boucle while s'arrête et le programme converge

Soit x tel que $[q \mid x] \downarrow$

Il existe z tel que $step\langle x, \pi_1(z), \pi_2(z) \rangle = x + 1$.

Cela signifie que $[x \mid \pi_1(z)] = x$, donc $x \in E$

4. Rappelez la définition d'un programme auto-reproducteur. Fixons un tel programme (qu'on notera α) et montrez que $\alpha \in E$. Soit $\beta \neq \alpha$ tel que $[\beta \mid \cdot] = [\alpha \mid \cdot]$. Est-ce que $\beta \in E$?

Réponse : x est auto-reproducteur si $\forall y \ [x \mid y] = x$

Soit α un programme auto-reproducteur, $\alpha \in E$ car $\forall y \ [\alpha \mid y] = \alpha$ donc $[\alpha \mid 5] = \alpha$

Soit
$$\beta \neq \alpha$$
 mais $[\beta \mid \cdot] = [\alpha \mid \cdot]$ $\forall y \ [\beta \mid y] = [\alpha \mid y] = \alpha \neq \beta$ donc $\beta \notin E7$

5. Aurait-on pu montrer que E n'est pas récursif en appliquant le Théorème de Rice?

Réponse : Non, voir 2.6

6. Montrez que $\mathbb{K} \prec E$ et en déduire que E n'est pas récursif

Réponse : On définit :

$$\begin{array}{ccc}
1 & [p & | \langle x, y \rangle] \\
2 & \text{if } [x & | x] \downarrow \text{ return } y
\end{array}$$

On définit $\forall x \ f(x) = S_1^1 \langle p, x \rangle$. f est calculable totale par SNM

Soit $x \in \mathbb{K}, [f(x) \mid x] = [S_1^1 \langle p, x \rangle \mid y] = [p \mid \langle x, y \rangle] = y$

Donc lorsque y = f(x), on a bien $[f(x) \mid f(x)] = f(x)$ donc $f(x) \in E$

Si $x \notin \mathbb{K}$ alors $\forall y \ [f(x) \mid y] = \bot$ donc en particulier $f(x) \notin E$

On a donc montré que $\forall x,x\in\mathbb{K}\Leftrightarrow f(x)\in E$, donc $\mathbb{K}\prec E$

E n'est donc pas récursif sinon \mathbb{K} le serait aussi

Exercice 4 - Points fixes

Soit $F: x \mapsto a$ où a est un entier fixé. Notons n_0 un point fixe de F.

1. Que calcule le programme n_0 ?

Réponse : $\forall y \ [n_0 \mid y] = [F(n_0) \mid y] = [a \mid y]$

Complément d'énoncé

Soit b tel que $[b\mid\cdot]\neq[a\mid\cdot]$ et considérons la fonction F_1 suivante :

$$F_1 \begin{cases} \{a, n_0\} \to b \\ _ \to a \end{cases}$$

$$\forall y, [n_1 \mid y] = [F_1(n_1) \mid y]$$

3. Peut-on avoir $n_1 = a$? $n_1 = n_0$? Que calcule n_1 ?

Réponse:

Si $n_1 = a$, $[F_1(n_1) \mid y] = [b \mid y]$ mais aussi $= [n_1 \mid y] = [a \mid y]$ Bzzzzzzt contradiction $[n_1 \mid y] = [F_1(n_1) \mid y] = [a \mid y] \ n_1 \text{ calcule la même chose que } a$