

Programa para cálculo de parâmetros de sequência em linhas de transmissão subterrâneas

Matheus Garcia Ribeiro m.g.ribeiro@ieee.org

Ferramenta Piloto de Cálculo – Visão Geral

Disponível em https://github.com/mgarciaribeiro/Sispot

Ferramenta Piloto de Cálculo – Visão Geral

- Por que calcular parâmetros de cabos subterrâneos?
 - Cable Constants n\u00e3o fornece diretamente estes valores;
 - CYMCAP é um software caro e não possuímos, além disso, necessário módulo específico;

- Ferramenta desenvolvida em linguagem Python, calculando parâmetros de sequência e decomposição modal (análise qualitativa) para até 2 circuitos.
- Fornece ao final dos cálculos as entradas para inserir no ATP, de modo a obtermos matrizes Z_{serie} e Y_{shunt} compatíveis entre a rotina e Cable Constants do ATP.
- Entradas interativas.

Ferramenta Piloto de Cálculo – Modelo

Princípios da modelagem

Ferramenta Piloto de Cálculo – Fluxo de Informações

• IEC 60287-1-1:2006 [1]

$$R_{ac} = R_{DC} \big(1 + y_s + y_p \big)$$

 R_{AC} : Resistência em corrente alternada;

 R_{DC} : Resistência em corrente contínua na temperatura desejada;

 y_s : Fator de correção para levar em conta o efeito pelicular. É função do formato do núcleo;

 y_p : Fator de correção para levar em conta o efeito de proximidade. É função do formato do núcleo.

IEC 60287-1-1:2006

$$R_{DC} = R_{DC@20} (1 + \alpha_{20} (\theta_c - 20))$$

 $R_{DC@20}$: Tensão em corrente contínua para 20°C. IEC 60228 apresenta valores mínimos de referência em função da seção transversal e material do condutor (cobre ou alumínio);

 α_{20} : Fator de correção da resistência em função da temperatura em 20ºC.

Alumínio: 0,00403 ºC⁻¹

Cobre: 0,00393 º*C*⁻¹

 θ_c : Temperatura desejada para o cálculo em ${}^{\circ}$ C.

IEC 60287-1-1:2006 – Correção com efeito pelicular

Condutor de cobre

Condutor de alumínio

Condutor	ks
Sólido	1
Encordoado	1
Miliken	0,35

Round, solid

Round, stranded

compacted

(Milliken)

4, 5 or 6 equal segments hollow (Milliken) with or without core

Round, with profiled strands

Condutor tubular

$$k_S = \frac{r_1 - r_0}{r_1 + r_0} \times \left(\frac{r_1 + 2r_0}{r_1 + r_0}\right)^2$$

• IEC 60287-1-1:2006 – Correção com efeito pelicular

$$x_S = \sqrt{\frac{8\pi f}{R_{DC}}} \times 10^{-7} \times k_S$$

f: Frequência de cálculo em Hz;

$$y_S = \frac{x_S^4}{192 + 0.8x_S^4}$$
, se $0 < x_S \le 2.8$

$$y_s = -0.136 - 0.0177x_s + 0.0563x_s^2$$
, se 2.8 < $x_s \le 3.8$

$$y_s = 0.354x_s - 0.733$$
, se $x_s > 3.8$

- IEC 60287-1-1:2006 Correção com efeito de proximidade
- Condutor de cobre

Condutor	kp
Sólido	1
Encordoado	1
Miliken	0,2

• Condutor de alumínio

Condutor	kp
Sólido	1
Encordoado	1
Miliken	0,15

• IEC 60287-1-1:2006 – Correção com efeito de proximidade

$$x_p = \sqrt{\frac{8\pi f}{R_{DC}} \times 10^{-7} \times k_p}$$

f: Frequência de cálculo em Hz;

$$y_{p} = \frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} \left(\frac{d_{c}}{s}\right)^{2} \left[0.312 \left(\frac{d_{c}}{s}\right)^{2} + \frac{1.18}{\frac{x_{p}^{4}}{192 + 0.8 x_{p}^{4}} + 0.27}\right]$$

d_c: Diâmetro do condutor;

s: Distância entre dois condutores

- Equações analíticas que constam na literatura técnica não levam em conta o formato do condutor e o efeito de proximidade, porém, consideram efeito pelicular [2]:
- Condutor sólido:

$$Z_c = \frac{\rho_c m_c}{2\pi r_1} \frac{I_0(m_c r_1)}{I_1(m_c r_1)}$$

 ρ_c : Resistividade elétrica do condutor (Ω, m)

 r_1 : Raio externo do condutor (m)

 $I_0(m_c r_1)$: Função de Bessel modificada de primeira espécie e ordem 0;

 $I_1(m_c r_1)$: Função de Bessel modificada de primeira espécie e ordem 1.

$$m_c = \sqrt{\frac{j\omega\mu_c\mu_0}{\rho_c}}$$

 ω : Frequência angular $(2\pi f)$ em rad/s;

 μ_c : Permeabilidade relativa do condutor;

 μ_0 : Permeabilidade magnética do ar $(4\pi 10^{-7} H/m)$

Condutor tubular [3]:

$$Z_c = \frac{\rho_c m_c}{2\pi r_c} \left[\frac{I_0(m_c r_1) K_1(m_c r_0) + K_0(m_c r_1) I_1(m_c r_0)}{I_1(m_c r_1) k_1(m_c r_0) - I_1(m_c r_0) K_0(m_c r_1)} \right]$$

 r_0 : Raio interno do condutor.

 K_0 : Função de Bessel modificada de segunda espécie e ordem zero;

 K_1 : Função de Bessel modificada de segunda espécie e ordem 1;

- Ao final dos cálculos, partindo de R_{AC} obtido a partir da norma, recalculamos o valor de p_c para que o valor da resistência conforme equações da literatura técnica seja praticamente igual ao primeiro;
- Para isso, p_c é alterado de forma aleatória dentro de um intervalo pré-especificado até satisfazer a relação $R_{AC}=R_{literatura}$;
- Repete sorteio de p_c enquanto número de iterações for inferior a n_{iter} e $|R_{AC}-R_{literatura}|>erro;$
- Valores default. $n_{iter} = 100000 \text{ e} \ erro = 0.1\%$.

Ferramenta Piloto de Cálculo – Dimensões do Cabo

- Condutor:
 - r_0 : Raio interno (se tubular);
 - r_1 : Raio externo.
- Isolação:
 - r_2 : Raio externo

$$r_2 = r_1 + e_{sc-in} + e_{isol} + e_{sc-ou}$$

- e_{sc-in} : Espessura da primeira camada semi-condutora (blindagem do condutor);
- e_{isol} : Espessura da isolação;
- e_{sc-ou} : Espessura da segunda camada semi-condutora.

Ferramenta Piloto de Cálculo – Tratamento da Blindagem Metálica

- Blindagem metálica pode ter diversas formas construtivas:
 - Fios metálicos;
 - Fitas metálicas;
 - Fios + fitas metálicas.

- Usuário indica formação da blindagem;
- Fitas metálicas → Condutor tubular:

$$r_3 = r_2 + e_{fitas}$$

• e_{fitas} : Espessura das fitas

Ferramenta Piloto de Cálculo – Tratamento da Blindagem Metálica

- Fios metálicos

 Possibilidades:
 - Altera a resistividade do material em função da espessura:

$$r_3 = r_2 + e_{fios}$$

- e_{fios} : Espessura dos fios metálicos
- Calcula raio para mesma área da blindagem [4]:

$$r_3 = \sqrt{\frac{\pi \cdot n_{fios} \cdot \left(\frac{e_{fios}}{2}\right)^2}{\pi} + r_2^2}$$

• n_{fios} : Número de fios

Ferramenta Piloto de Cálculo – Tratamento da Blindagem Metálica

Fios metálicos + Fitas metálicas:

$$R_{bl} = \frac{\frac{\rho_{Al}}{S_{Al}} \times \frac{\rho_{Cu}}{S_{Cu}}}{\frac{\rho_{Al}}{S_{Al}} + \frac{\rho_{Cu}}{S_{Cu}}}$$

$$\rho_{bl} = S_{bl} \times R_{bl}$$

$$\rho_{bl} = S_{bl} \times R_{bl}$$

$$S_{bl} = S_{Al} + S_{Cu}$$

$$r_3 = \sqrt{\frac{S_{bl}}{\pi} + r_2^2}$$

 R_{bl} : Resistência da blindagem

 ho_{Al} : Resistividade das fitas (alumínio)

 ρ_{Cu} : Resistividade dos fios (cobre)

 S_{AI} : Área das fitas (alumínio)

 S_{Cu} : Área dos fios (cobre)

 S_{bl} : Área da blindagem metálica

 ρ_{bl} : Resistividade da blindagem metálica

Ferramenta Piloto de Cálculo – Correção das constantes da Isolação

Capa externa (2º isolação):

$$r_4 = r_3 + e_{capa}$$

• e_{capa} : Espessura da capa protetora

• Correção da permissividade elétrica por causa das camadas semicondutoras [4]

$$\varepsilon_1' = \varepsilon_1 \cdot \frac{\ln\left(\frac{r_2}{r_1}\right)}{\ln\left(\frac{b}{a}\right)}$$

• ε_1 : Permissividade elétrica da isolação

$$a = r_1 + e_{sc-in}$$
$$b = a + e_{isol}$$

Correção é optativa

Ferramenta Piloto de Cálculo – Correção das constantes da Isolação

Correção da permeabilidade magnética por causa da blindagem de fios metálicos (егено solenóide) [5]

$$1 + \left(2 \cdot \left(\frac{1}{l_{lay}}\right)^2 \cdot \pi^2 \cdot (r_2^2 - r_1^2)\right)$$

$$\mu'_{isol} = \mu_{isol} \cdot \frac{ln\left(\frac{r_2}{r_1}\right)}$$

- μ_{isol} : Permeabilidade magnética da camada isolante
- $ullet \ \ l_{lay}$: Comprimento necessário para que a blindagem de uma volta completa em

torno da camada isolante

Correção é optativa

- Z_1 : Impedância interna do condutor
 - Método aproximado [6]

$$Z_1 = \frac{\rho_c \cdot m_c}{2 \cdot \pi \cdot r_1} \cdot \frac{1}{tanh(0,777 \cdot m_c \cdot r_1)} + \frac{0,356 \cdot \rho_c}{\pi \cdot r_1^2}$$

- tanh: Função tangente hiperbólica
- Método completo [3]
 - Equações para condutor tubular ou sólido já apresentadas anteriormente

• Z_2 : Impedância devido a variação do campo magnético na isolação principal [6]

$$Z_2 = \frac{j\omega\mu'_{isol}}{2\pi} \cdot ln\left(\frac{r_2}{r_1}\right)$$

• Z_6 : Impedância devido a variação do campo magnético na capa externa [6]

$$Z_6 = \frac{j\omega\mu_{capa}}{2\pi} \cdot ln\left(\frac{r_4}{r_3}\right)$$

- Z_3 : Impedância dada pela queda de tensão na superfície interna da blindagem devido a corrente no condutor
 - Método aproximado [6]

$$Z_{3} = \frac{\rho_{s}.m_{s}}{2\pi.r_{2}}.\frac{1}{tanh(m_{s}.\Delta) - \frac{\rho_{s}}{2\pi.r_{2}(r_{2} + r_{3})}}$$

$$m_{S} = \sqrt{j \frac{\omega \cdot \mu_{S}}{\rho_{S}}}$$

$$\Delta = r_3 - r_2$$

- ρ_s : Resistividade da blindagem metálica
- μ_s : Permeabilidade magnética da blindagem metálica

- Z_3 : Impedância dada pela queda de tensão na superfície interna da blindagem devido a corrente no condutor
 - Método completo [3]

$$Z_3 = \frac{\rho_s m_s}{2\pi r_2} \frac{I_0(m_s r_2) K_1(m_s r_3) + K_0(m_s r_2) I_1(m_s r_3)}{I_1(m_s r_3) K_1(m_s r_2) - I_1(m_s r_2) K_1(m_s r_3)}$$

- Z₄
 - Método aproximado [6]

$$Z_4 = \frac{\rho_s. m_s}{2\pi. (r_2 + r_3)} \cdot \frac{1}{senh(m_s. \Delta)}$$

• Método completo [3]

$$Z_4 = \frac{\rho_s}{2\pi \cdot r_2 \cdot r_3} \cdot \frac{1}{I_1(m_s \cdot r_3) \cdot K_1(m_s \cdot r_2) - I_1(m_s \cdot r_2) \cdot K_1(m_s \cdot r_3)}$$

- Z_5 : Impedância dada pela queda de tensão na superfície externa da blindagem devido a corrente pelo solo
 - Método aproximado [6]

$$Z_5 = \frac{\rho_s \cdot m_s}{2\pi \cdot r_3} \cdot \frac{1}{tanh(m_s \cdot \Delta)} + \frac{\rho_s}{2\pi \cdot r_3 \cdot (r_2 + r_3)}$$

Método completo [3]

$$Z_5 = \frac{\rho_s.m_s}{2\pi.r_3} \cdot \frac{I_0(m_s.r_3).K_1(m_s.r_2) + K_0(m_s.r_3).I_1(m_s.r_2)}{I_1(m_s.r_3).K_1(m_s.r_2) - I_1(m_s.r_2).K_1(m_s.r_3)}$$

• Matriz de impedâncias "internas" do cabo. Para sistema com *m* cabos:

$$Z_{n\acute{u}cleo-n\acute{u}cleo} \\ [Z_{int}]_{m\times m} \\ = \begin{bmatrix} Z_{11} & 0 & \cdots & 0 & & & Z_{1(m+1)} & 0 & \dots & 0 \\ 0 & Z_{22} & \cdots & 0 & & & 0 & Z_{2(m+2)} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & Z_{mm} & & & 0 & 0 & \cdots & Z_{m(m+m)} \\ \hline Z_{1(m+1)} & 0 & \dots & 0 & & & Z_{m(m+1)} & 0 & \dots & 0 \\ 0 & Z_{2(m+2)} & \dots & 0 & & & 0 & Z_{m(m+1)(m+1)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & Z_{m(m+m)} & & 0 & 0 & \dots & Z_{m(m+m)} \\ \hline Z_{blindagem-n\acute{u}cleo} & & & & Z_{blindagem-blindagem} \\ \hline \\ Z_{n\acute{u}cleo-n\acute{u}cleo} = Z_1 + Z_2 + Z_3 + Z_5 + Z_6 - 2Z_4 \\ \hline$$

$$\begin{split} Z_{n\'ucleo-n\'ucleo} &= Z_1 + Z_2 + Z_3 + Z_5 + Z_6 - 2Z_4 \\ Z_{n\'ucleo-blindagem} &= Z_5 + Z_6 - Z_4 = Z_{blindagem-n\'ucleo} \\ Z_{blindagem-blindagem} &= Z_5 + Z_6 \end{split}$$

- Matriz de impedâncias de retorno pelo solo. Ordem da matriz análogo ao caso da impedância interna:
 - Método aproximado [6]:

$$Z_{ii}^{solo} = \frac{j\omega\mu_{solo}}{2\pi} \left(-ln\left(\frac{\gamma.m_{solo}.r_4}{2}\right) + \frac{1}{2} - \frac{4}{3}m_{solo}Y_i \right)$$

• Z_{ii}^{solo} : Impedância própria de retorno pelo solo do cabo i, da blindagem do cabo i e entre núcleo e blindagem do mesmo cabo;

$$m_{solo} = \sqrt{\frac{j\omega\mu_{solo}}{\rho_{solo}}}$$

- γ: 0,5772156649 (Constante de Euler);
- Y_i : Profundidade do cabo i em relação a superfície do solo;
- r_4 : Raio externo do cabo.

- Matriz de impedâncias de retorno pelo solo. Ordem da matriz análogo ao caso da impedância interna:
 - Método aproximado [6]:

$$Z_{ij}^{solo} = \frac{j\omega\mu_{solo}}{2\pi} \left(-ln\left(\frac{\gamma.m_{solo}.D_{ij}}{2}\right) + \frac{1}{2} - \frac{2}{3}m_{solo}(Y_i + Y_j) \right)$$

- Z_{ij}^{solo} : Impedância mútua de retorno pelo solo entre condutor (núcleo ou blindagem) do cabo i e entre condutor (núcleo ou blindagem) do cabo j;
- D_{ij} : Distância entre condutor do cabo i e condutor do cabo j (distância entre cabos).

- Matriz de impedâncias de retorno pelo solo. Ordem da matriz análogo ao caso da impedância interna:
 - Método quase-completo [7]:

$$Z_{ii}^{solo} = \frac{\rho_{solo} m_{solo}^2}{2\pi} \left(K_0(m_{solo}, r_4) + \frac{2}{4 + m_{solo}^2 r_4^2} e^{-2Y_i m_{solo}} \right)$$

$$Z_{ij}^{solo} = \frac{\rho_{solo} m_{solo}^2}{2\pi} \left(K_0(m_{solo}.D_{ij}) + \frac{2}{4 + m_{solo}^2 x_{ij}^2} e^{-y_{ij} m_{solo}} \right)$$

- x_{ij} : Distância entre as abscissas dos condutores i e j;
- y_{ij} : Soma das ordenadas dos condutores i e j.

Matriz de impedâncias série:

$$Z_{serie} = Z_{int} + Z_{solo}$$

- As capacitâncias existentes em um sistema contendo cabos isolados são dadas apenas pelas:
 - Capacitância núcleo-blindagem;
 - Capacitância blindagem-terra.
- Matriz de admitâncias shunt é montada de forma semelhante à matriz de admitâncias nodais:
 - Y_{nn} : Admitância própria do núcleo, dada pela capacitância entre núcleo e blindagem: $Y_{nn} = j\omega \frac{\varepsilon_1'}{ln(\frac{r_2}{r_1})}$
 - Y_{nb} : Admitância entre núcleo e blindagem: $Y_{nb} = -Y_{nn}$
 - Y_{bb} : Admitância própria da blindagem, dada pela soma de Y_{nn} com a capacitância entre blindagem e terra: $Y_{bb} = Y_{nn} + j\omega \frac{\varepsilon_2}{ln(\frac{r_4}{n})}$

Ferramenta Piloto de Cálculo – Transposições

Condutores de fase trocando de posição e respectivas blindagens mantendo as posições

$$[R] = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{array}{c} c1 \\ c2 \\ c3 \\ s1 \\ s2 \\ s3 \end{array}$$

Após um ciclo completo e considerando seções iguais [8]:

$$[Z_{eq}] = \frac{1}{3}([Z_{serie}] + [R][Z_{serie}][R]^{-1} + [R]^{-1}[Z_{serie}][R])$$

No CYMCAP, Z_{eq} é a matriz "bonding"

Ferramenta Piloto de Cálculo – Transposições

Blindagens trocando de posição e respectivos condutores de fase mantendo as posições

$$[R] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Após um ciclo completo e considerando seções iguais [8]:

$$[Z_{eq}] = \frac{1}{3}([Z_{serie}] + [R][Z_{serie}][R]^{-1} + [R]^{-1}[Z_{serie}][R])$$

No CYMCAP, Z_{eq} é a matriz "bonding"

Procedimento para cálculos dos parâmetros de sequência

Após um ciclo completo e considerando seções menores iguais:

$$[Z_{eq}] = \frac{1}{3}([Z] + [R][Z][R]^{-1} + [R]^{-1}[Z][R])$$

No CYMCAP, Z_{eq} é a matriz "bonding"

$$\begin{bmatrix} Z_{eq} \end{bmatrix} = \begin{bmatrix} [Z_{cc}] & [Z_{cs}] \\ [Z_{sc}] & [Z_{ss}] \end{bmatrix}$$

Redução de Kron:

$$[Z_{red}] = \{ [Z_{cc}] - [Z_{cs}][Z_{ss}]^{-1}[Z_{sc}] \}$$

No CYMCAP, $\left[Z_{red}\right]$ é a matriz "phase" ou "circuit"

Impedâncias de sequência (mesmo raciocínio é aplicado para matriz de admitâncias)

$$[Z_{012}] = [T]^{-1}[Z_{red}][T]$$

$$[T] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha^2 & \alpha \\ 1 & \alpha & \alpha^2 \end{bmatrix}$$

$$\alpha = 1 < 120^{\circ}$$

Circuito simples, 1200 mm² com formação horizontal

Dados do cabo (1200 mm²)								
Condutor	(Núcleo) - 90°C							
Material	Alumínio							
Diâmetro Interno	0,0	mm						
Diâmetro Externo	41,5	mm						
Resistividade elétrica	2,8264E-8	ρ.m						
Coef. de temperatura a 20°C	0,00403	1/K						
Construção	4 Segmentos							
ks	0,25							
kp	0,15							
Blindagem do conduto	or (1ª cam. Sem	i-condutora)						
Espessura	2,22	mm						
Is	olação							
Material	XLPE							
Espessura	26,5	mm						
Perm. Elétrica relativa	2,5							
Blindagem da isolação	o (2ª cam. Semi	i-condutora)						
Espessura	2,4	mm						
Blindagem I	Metálica - 77,2 º	S						
Construção	Fios de Cobre							
Resistividade elétrica	1,7241E-8	ρ.m						
Coef. de temperatura a 20°C	0,00393	1/K						
Número de fios	56							
Espessura dos fios	2,6	mm						
Length of Lay	850	mm						
Сара	a externa							
Material	Polietileno							
Espessura	6,45	mm						
Perm. Elétrica relativa	2,5							

	Posição dos cabos (ρ solo = 100 ρ.m)									
Cal	Cabo 1 Cabo 2 Cabo 3									
x (m)	y (m)	x (m)	y (m)	x (m)	y (m)					
-0,4	-0,4 1,5 0 1,5 0,4 1,5									

Valores calculados										
Método	$ \mathbf{r}$ 1 (Ω /km) $ \mathbf{x}$ 1 (Ω /km) $ \mathbf{b}$ 1 (μ S/km) $ \mathbf{r}$ 0 (Ω /km) $ \mathbf{x}$ 0 (Ω /km) $ \mathbf{b}$ 0 (μ S/km									
Python	0,0319	0,2581	68,31	0,1026	0,0898	68,31				
Cigré	0,0319	0,2593	68,31	0,0943	0,0834	68,31				
			Diferenças							
	r1 (%)									
	0	-0,46	8,80	7,67						

Cálculos "Cigré" conforme TB 531.

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP Comparações entre resultados: Z_{serie} e Y_{shunt} (Python x ATP)

Diferenças percentuais entre matrizes Zserie: Python x ATP

	ioronigao p				y and in X 7	
			∆ Real (%)			
	c1	c2	с3	s1	s2	s3
c1	0,44	0,67	0,67	0,67	0,67	0,67
c2	0,67	0,44	0,67	0,67	0,67	0,67
с3	0,67	0,67	0,44	0,67	0,67	0,67
s1	0,67	0,67	0,67	0,04	0,67	0,67
s2	0,67	0,67	0,67	0,67	0,04	0,67
s3	0,67	0,67	0,67	0,67	0,67	0,04
		Δ	Imaginário	(%)		
	c1	c2	с3	s1	s2	s3
c1	-0,05	-0,07	-0,08	-0,06	-0,07	-0,08
c2	-0,07	-0,05	-0,07	-0,07	-0,06	-0,07
с3	-0,08	-0,07	-0,05	-0,08	-0,07	-0,06
s1	-0,06	-0,07	-0,08	-0,06	-0,07	-0,08
s2	-0,07	-0,06	-0,07	-0,07	-0,06	-0,07
s3	-0,08	-0,07	-0,06	-0,08	-0,07	-0,06

$$Dif = \frac{Valor_{Python} - Valor_{ATP}}{Valor_{ATP}} \times 100\%$$

Diferenças percentuais entre matrizes Yshunt: Python x ATP

	∆ Imaginário (%)								
	с1	c2	с3	s1	s2	s3			
c1	-0,19	0,00	0,00	-0,19	0,00	0,00			
c2	0,00	-0,19	0,00	0,00	-0,19	0,00			
c3	0,00	0,00	-0,19	0,00	0,00	-0,19			
s1	-0,19	0,00	0,00	-0,06	0,00	0,00			
s2	0,00	-0,19	0,00	0,00	-0,06	0,00			
s3	0,00	0,00	-0,19	0,00	0,00	-0,06			

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP Comparações entre impedâncias e admitâncias de sequência (Python x Linecheck ATP)

$$Dif = \frac{Valor_{Python} - Valor_{ATP}}{Valor_{ATP}} \times 100\%$$

Método	r1 (Ω/km)	x1 (Ω/km)	b1 (μS/km)	r0 (Ω/km)	x0 (Ω/km)	b0 (Ω/km)
Linecheck	0.0319	0.2581	68.45	0.1029	0.0898	68.45
Python	0.0319	0.2581	68.31	0.1026	0.0898	68.31
			Diferenças	5		
	r1 (%)	x1 (%)	b1 (%)	r0 (%)	x0 (%)	b0 (%)
	0	0	-0.20	-0.29	0	-0.20

Cable <u>n</u> umber: 1	▼	Paste	Сору	Delete		
	CORE		SHEATH			
Rin [m]	0		0.05187			
Rout [m]	0.02075		0.05277			
Rho [ohm*m]	3.8051109	225E-8	2.11167078	336E-8		
mu	1		1			
mu (ins)	1		1			
eps (ins)	2.99		2.5			

Circuito duplo, 1200 mm² com formação vertical

Dados do	cabo (1200 mn	Dados do cabo (1200 mm²)								
Conduto	r (Núcleo) - 90º	C -								
Material	Alumínio									
Diâmetro Interno	0,0	mm -								
Diâmetro Externo	41,5	mm								
Resistividade elétrica	2,8264E-8	ρ.m								
Coef. de temperatura a 20°C	0,00403	1/K								
Construção	4 Segmentos									
ks	0,25									
kp	0,15									
Blindagem do condu	tor (1ª cam. Se	mi-condutora)								
Espessura	2,22	mm								
	Isolação									
Material	XLPE									
Espessura	26,5	mm								
Perm. Elétrica relativa	2,5									
Blindagem da isolaç	ão (2ª cam. Ser	mi-condutora)								
Espessura	2,4	mm								
Blindagem	Metálica - 77,2	2 °C								
Construção	Fios de Cobre									
Resistividade elétrica	1,7241E-8	ρ.m								
Coef. de temperatura	0,00393	1/K								
Número de fios	56									
Espessura dos fios	2,6	mm								
Length of Lay	850	mm								
Ca	pa externa									
Material	Polietileno									
Espessura	6,45	mm								
Perm. Elétrica relativa	2,5									

	Posição dos cabos (ρ solo = 100 ρ.m)										
Cabo 1 Cabo 2 Cabo 3 Cabo 4 Cabo 5 Cabo 6								00 6			
x (m)	y (m)	x (m)	y (m)	x (m)	y (m)	x (m)	y (m)	x (m)	y (m)	x (m)	y (m)
-0,35	2,1	-0,35	2,45	-0,35	2,8	0,35	2,1	0,35	2,45	0,35	2,8

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP Comparações entre resultados: Z_{serie} (Python x ATP)

Diferenças percentuais entre matrizes Zserie: Python x ATP

			Dite	renças per	centuais e	ntre matri	zes zserie	: Python x	AIP			
						∆ Real (%)						
	c1	c2	c3	c4	c5	с6	s1	s2	s3	s4	s5	s6
c1	0,56	1,02	1,09	0,94	1,02	1,09	0,94	1,02	1,09	0,94	1,02	1,09
c2	1,02	0,66	1,17	1,02	1,09	1,17	1,02	1,09	1,17	1,02	1,09	1,17
с3	1,09	1,17	0,75	1,09	1,17	1,24	1,09	1,17	1,24	1,09	1,17	1,24
c4	0,94	1,02	1,09	0,56	1,02	1,09	0,94	1,02	1,09	0,94	1,02	1,09
c5	1,02	1,09	1,17	1,02	0,66	1,17	1,02	1,09	1,17	1,02	1,09	1,17
c6	1,09	1,17	1,24	1,09	1,17	0,75	1,09	1,17	1,24	1,09	1,17	1,24
s1	0,94	1,02	1,09	0,94	1,02	1,09	0,16	1,02	1,09	0,94	1,02	1,09
s2	1,02	1,09	1,17	1,02	1,09	1,17	1,02	0,22	1,17	1,02	1,09	1,17
s3	1,09	1,17	1,24	1,09	1,17	1,24	1,09	1,17	0,29	1,09	1,17	1,24
s4	0,94	1,02	1,09	0,94	1,02	1,09	0,94	1,02	1,09	0,16	1,02	1,09
s5	1,02	1,09	1,17	1,02	1,09	1,17	1,02	1,09	1,17	1,02	0,22	1,17
s6	1,09	1,17	1,24	1,09	1,17	1,24	1,09	1,17	1,24	1,09	1,17	0,29
						maginário						
	c1	c2	c3	c4	c5	с6	s1	s2	s3	s4	s5	s6
c1	-0,07	-0,10	-0,12	-0,11	-0,12	-0,13	-0,08	-0,10	-0,12	-0,11	-0,12	-0,13
c2	-0,10	-0,08	-0,12	-0,12	-0,12	-0,13	-0,10	-0,09	-0,12	-0,12	-0,12	-0,13
c3	-0,12	-0,12	-0,09	-0,13	-0,13	-0,14	-0,12	-0,12	-0,10	-0,13	-0,13	-0,14
c4	-0,11	-0,12	-0,13	-0,07	-0,10	-0,12	-0,11	-0,12	-0,13	-0,08	-0,10	-0,12
c5	-0,12	-0,12	-0,13	-0,10	-0,08	-0,12	-0,12	-0,12	-0,13	-0,10	-0,09	-0,12
c6	-0,13	-0,13	-0,14	-0,12	-0,12	-0,09	-0,13	-0,13	-0,14	-0,12	-0,12	-0,10
s1	-0,08	-0,10	-0,12	-0,11	-0,12	-0,13	-0,08	-0,10	-0,12	-0,11	-0,12	-0,13
s2	-0,10	-0,09	-0,12	-0,12	-0,12	-0,13	-0,10	-0,09	-0,12	-0,12	-0,12	-0,13
s3	-0,12	-0,12	-0,10	-0,13	-0,13	-0,14	-0,12	-0,12	-0,10	-0,13	-0,13	-0,14
s4	-0,11	-0,12	-0,13	-0,08	-0,10	-0,12	-0,11	-0,12	-0,13	-0,08	-0,10	-0,12
s5	-0,12	-0,12	-0,13	-0,10	-0,09	-0,12	-0,12	-0,12	-0,13	-0,10	-0,09	-0,12
s6	-0,13	-0,13	-0,14	-0,12	-0,12	-0,10	-0,13	-0,13	-0,14	-0,12	-0,12	-0,10

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP Comparações entre resultados: Y_{shunt} (Python x ATP)

Diferenças percentuais entre matrizes Yshunt: Python x ATP

					<u>Δ</u> I ι	maginário	(%)	•				
	c1	c2	c3	c4	c5	с6	s1	s2	s3	s4	s5	s6
c1	-0,19	0,00	0,00	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00
c2	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00
с3	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,19	0,00	0,00	0,00
c4	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,19	0,00	0,00
c5	0,00	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,19	0,00
c6	0,00	0,00	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,19
s1	-0,19	0,00	0,00	0,00	0,00	0,00	-0,06	0,00	0,00	0,00	0,00	0,00
s2	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,06	0,00	0,00	0,00	0,00
s3	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,06	0,00	0,00	0,00
s4	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,06	0,00	0,00
s5	0,00	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,06	0,00
s6	0,00	0,00	0,00	0,00	0,00	-0,19	0,00	0,00	0,00	0,00	0,00	-0,06

$$Dif = \frac{Valor_{Python} - Valor_{ATP}}{Valor_{ATP}} \times 100\%$$

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP Comparações entre impedâncias e admitâncias de sequência (Python x Linecheck ATP)

	r1 (Ω/km)	x1 (Ω/km	b1 (μS/km)	r0 (Ω/km) x0 (Ω/km)	b0 (Ω/km)			
Linecheck	0.0319	0.2481	68.45	0.1012	0.0961	68.45			
Python	0.0319	0.2481	68.3122	0.1009	0.096	68.3122			
	r1 (%)	x1 (%)	b1 (%)	r0 (%)	x0 (%)	b0 (%)			
	0	0	-0.19	-0.30	-0.10	-0.19			
0	Cable <u>n</u> umb	er: 1	P	aste	Сору	elete			
		[0	CORE	SH	HEATH				
	Rin [m]	()	0.0	05187				
	Rout [m]	(0.02075	0.0	05277				

3.8051109225E-8

2.99

Rho [ohm*m]

mu

mu (ins)

eps (ins)

2.1116707836E-8

2.5

Circuito duplo, 2500 mm² com formação horizontal (EPE-DEE-RE-047_2019)

<u> </u>										
Dados do cabo (2500 mm²)										
Conduto	r (Núcleo) - 50º0									
Material	Alumínio									
Diâmetro Interno	0,0	mm								
Diâmetro Externo	63,5	mm								
Resistividade elétrica	2,8264E-8	ρ. m								
Coef. de temperatura	0,00403	1/K								
Construção	4 Segmentos									
ks	0,25									
kp	0,15									
Blindagem do condu	tor (1ª cam. Sei	mi-condutora)								
Espessura	1,6	mm								
	solação									
Material	XLPE									
Espessura	25,0	mm								
Perm. Elétrica relativa	2,5									
Blindagem da isolaçã	ão (2ª cam. Ser	ni-condutora)								
Espessura	1,9	mm								
Blindagen	n Metálica - 50	oC								
Construção	Fios de Cobre									
Construção	+ Fitas									
Resistividade elétrica fios	1,7241E-8	ρ. m								
Coef. de temperatura a 20°C fios	0,00393	1/K								
Número de fios	108									
Espessura dos fios	1,4	mm								
Espessura das fitas	0,3	mm								
Resistividade elétrica das fitas	2,8264E-8	ρ. m								
Coef. de temperatura a 20°C fitas	0,00403	1/K								
Cap	oa externa									
Material	Polietileno									
Espessura	4,5	mm								
Perm. Elétrica relativa	2,5									

Circuito duplo, 2500 mm² com formação horizontal (EPE-DEE-RE-047_2019)

	Posição dos cabos (ρ solo = 100 ρ.m)											
Ca	Cabo 1 Cabo 2 Cabo 3 Cabo 4 Cabo 5 Cabo 6										0 6	
x (m)	y (m)	x (m)	y (m)	x (m)	y (m)	x (m)	y (m)	x (m)	y (m)	x (m)	y (m)	
-1	1,5	-0,6	1,5	-0,2	1,5	0,2	1,5	0,6	1,5	1	1,5	

Valores calculados											
Método	\mathbf{r} 1 (Ω /km) x1 (Ω /km) b1 (μ S/km) r0 (Ω /km) x0 (Ω /km) b0 (μ S/km										
Python	0,0148	0,2207	93,69	0,0928	0,0717	93,69					
R1	0,0158	0,2226	93,69	0,1006	0,0804	93,69					
	Diferenças										
r1 (%) x1 (%) r0 (%) x0 (%)											
	-6,33	-0,85	-7,75	-10,82							

Cálculo apresentado no estudo (R1) foi feito com o software CYMCAP.

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP

	r1 (Ω/km)	x1 (Ω/km)	b1 (μS/km)	r0 (Ω/km)	x0 (Ω/km)	b0 (Ω/km)	
Linecheck	0.0148	0.2207	93.63	0.0931	0.0717	93.63	
Python	ython 0.0148 0.2207		93.69	0.0928	0.0717	93.69	
	r1 (%)	x1 (%)	b1 (%)	r0 (%)	x0 (%)	b0 (%)	
	0	0	0.06	-0.32	0.00	0.06	

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP Comparações entre resultados: Z_{serie} (Python x ATP)

Diferenças percentuais entre matrizes Zserie: Python x ATP

			ווט	erenças pe	rcentuais	entre matriz	es zserie:	Python x A	AIP			
						∆ Real (%)						
	c1	c2	c3	c4	c5	c6	s1	s2	s3	s4	s5	s6
c1	0,48	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67
c2	0,67	0,48	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67
с3	0,67	0,67	0,48	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67
c4	0,67	0,67	0,67	0,48	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67
c5	0,67	0,67	0,67	0,67	0,48	0,67	0,67	0,67	0,67	0,67	0,67	0,67
с6	0,67	0,67	0,67	0,67	0,67	0,48	0,67	0,67	0,67	0,67	0,67	0,67
s1	0,67	0,67	0,67	0,67	0,67	0,67	0,10	0,67	0,67	0,67	0,67	0,67
s2	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,10	0,67	0,67	0,67	0,67
s3	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,10	0,67	0,67	0,67
s4	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,10	0,67	0,67
s5	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,10	0,67
s6	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,67	0,10
					ΔΙ	maginário ((%)					
	c1	c2	с3	c4	c5	с6	s1	s2	s3	s4	s5	s6
c1	-0,05	-0,07	-0,08	-0,08	-0,09	-0,09	-0,06	-0,07	-0,08	-0,08	-0,09	-0,09
c2	-0,07	-0,05	-0,07	-0,08	-0,08	-0,09	-0,07	-0,06	-0,07	-0,08	-0,08	-0,09
с3	-0,08	-0,07	-0,05	-0,07	-0,08	-0,08	-0,08	-0,07	-0,06	-0,07	-0,08	-0,08
c4	-0,08	-0,08	-0,07	-0,05	-0,07	-0,08	-0,08	-0,08	-0,07	-0,06	-0,07	-0,08
c5	-0,09	-0,08	-0,08	-0,07	-0,05	-0,07	-0,09	-0,08	-0,08	-0,07	-0,06	-0,07
с6	-0,09	-0,09	-0,08	-0,08	-0,07	-0,05	-0,09	-0,09	-0,08	-0,08	-0,07	-0,06
s1	-0,06	-0,07	-0,08	-0,08	-0,09	-0,09	-0,06	-0,07	-0,08	-0,08	-0,09	-0,09
s2	-0,07	-0,06	-0,07	-0,08	-0,08	-0,09	-0,07	-0,06	-0,07	-0,08	-0,08	-0,09
s3	-0,08	-0,07	-0,06	-0,07	-0,08	-0,08	-0,08	-0,07	-0,06	-0,07	-0,08	-0,08
s4	-0,08	-0,08	-0,07	-0,06	-0,07	-0,08	-0,08	-0,08	-0,07	-0,06	-0,07	-0,08
s5	-0,09	-0,08	-0,08	-0,07	-0,06	-0,07	-0,09	-0,08	-0,08	-0,07	-0,06	-0,07
s6	-0,09	-0,09	-0,08	-0,08	-0,07	-0,06	-0,09	-0,09	-0,08	-0,08	-0,07	-0,06

Utilização dos dados de saída para entrada na rotina Cable Constants no ATP Comparações entre resultados: Y_{shunt} (Python x ATP)

Diferenças percentuais entre matrizes Yshunt: Python x ATP

	Δ Imaginário (%)											
	c1	c2	с3	c4	с5	с6	s1	s2	s3	s4	s5	s6
c1	0,05	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00
c2	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00
сЗ	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00
c4	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00
с5	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,05	0,00
c6	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,05
s1	0,05	0,00	0,00	0,00	0,00	0,00	-0,03	0,00	0,00	0,00	0,00	0,00
s2	0,00	0,05	0,00	0,00	0,00	0,00	0,00	-0,03	0,00	0,00	0,00	0,00
s3	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	-0,03	0,00	0,00	0,00
s4	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	-0,03	0,00	0,00
s5	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	-0,03	0,00
s6	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00	0,00	0,00	0,00	-0,03

$$Dif = \frac{Valor_{Python} - Valor_{ATP}}{Valor_{ATP}} \times 100\%$$

Referências

- [1] IEC 60287-1-1: Electric cables Calculation of the current rating Part 1-1: Current rating equations (100% load fator) and calculation of losses General
- [2] Timaná Eraso, Luis Carlos (2019), "Análise de modelos de linhas de transmissão com parâmetros variantes com a frequência". Dissertação de Mestrado. Escola Politécnica da USP
- [3] A. Ametani, "A General Formulation of Impedance and Admittance of Cables," in *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-99, no. 3, pp. 902-910, May 1980
- [4] B. Gustavsen, "Panel session on data for modeling system transients insulated cables," 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), Columbus, OH, USA, 2001, pp. 718-723 vol.2
- [5] Cigré WG B1.30: TB 531 Cable Systems Electrical Characteristics.
- [6] L. M. Wedepohl and D. J. Wilcox, "Transient analysis of underground power-transmission systems. System-model and wave-propagation characteristics," in *Proceedings of the Institution of Electrical Engineers*, vol. 120, no. 2, pp. 253-260, February 1973.
- [7] O. Saad, G. Gaba and M. Giroux, "A closed-form approximation for ground return impedance of underground cables," in *IEEE Transactions on Power Delivery*, vol. 11, no. 3, pp. 1536-1545, July 1996;
- [8] N. Nagaoka and A. Ametani, "Transient Calculations on Crossbonded Cables," in *IEEE Transactions on Power Apparatus and Systems*, vol. PAS-102, no. 4, pp. 779-787, April 1983.

Referências

[9] Fumitaka Nishimura (1973), "Cálculo de Parâmetros Elétricos de Cabos Subterrâneos". Dissertação de Mestrado. Escola Politécnica da USP.

