[86.03/66.25] Dispositivos Semiconductores

Diodo de Juntura PN

Modelo de orden 0

Diodo de Juntura PN

Símbolo, referencias, ecuación y curva característica Directa Ánodo (P) 30 Inversa Directa débil Cátodo (N -0.2 0.2 8.0 $V_D[V]$

Diodo de Juntura PN

Símbolo, referencias, ecuación y curva característica

Circuitos con Diodos

¿Qué R debo poner para obtener $I_D = 1$ mA?

Datos:
$$I_0 = 10 \text{ fA}; V_{SUP} = 5 \text{ V}; T = 300 \text{K}$$

$$5V - R \times ID - Vth \ln \left(\frac{ID}{ID} + 1 \right) = 0$$

$$VD = 656 \text{ mV}$$

5V - VR - VD = 0

$$R = 5V - 656mV = 4.34 \text{ kOhm}$$

1 mA

Circuitos con Diodos

¿Cuánto vale I_D si R = 1 k Ω ?

Datos: $I_0 = 10 \text{ fA}$; $V_{SUP} = 5 \text{ V}$; T = 300 K

$$5V - R \times ID - VD = 0$$

$$5V - R \times IO(exp \frac{VD}{Vth}) - 1 - VD = 0$$

El modelo de Orden 0 en directa

•
$$I_D = 0.1 \,\mathrm{mA} \implies V_D \simeq 596 \,\mathrm{mV}$$

•
$$I_D = 1 \,\mathrm{mA} \ \Rightarrow \ V_D \simeq 656 \,\mathrm{mV}$$

■
$$I_D = 1 \,\mathrm{mA} \implies V_D \simeq 656 \,\mathrm{mV}$$

■ $I_D = 10 \,\mathrm{mA} \implies V_D \simeq 716 \,\mathrm{mV}$

•
$$I_D = 100 \,\mathrm{mA} \ \Rightarrow \ V_D \simeq 775 \,\mathrm{mV}$$

$$VD = VD(ON) = 0.7V$$

 $ID > O$

Modelo de orden O 100 80 60 I_D [mA] Modelo fisico

0.2

0.1

0.3

0.5

0.4

 $V_D[V]$

8.0

0.7

El modelo de Orden 0 en inversa

¿Cuánto vale I_D si R = 1 k Ω ?

Datos: $I_0 = 10 \text{ fA}$; $V_{SUP} = 5 \text{ V}$; T = 300 K

$$5V - ID \times R - VD = O$$

Supongo directa: $VD = VD(ON)$
 $5V - ID \times R - VD(ON) = O$

es una constante

$$ID = 5V - 0.7 V = 4.3 \text{ mA}$$
1 k0hm

Repetimos para distintos valores de R

$$I_D = \frac{V_{SUP} - V_{D(ON)}}{R}$$

<i>R</i> [kΩ]	<i>I_D</i> [mA]	I_D [mA] sim	V_D [mV] sim
1	4.3 mA	4.31 mA	693 mV
10	0.43 mA	0.437 mA	634 mV
0.1	43 mA	42.48 mA	752 mV

Circuitos con Diodos

¿Cuánto vale
$$I_D$$
 si $R = 1 k\Omega$? $5V + R \times ID + VD = 0$
Datos: $I_0 = 10 \text{ fA}$; $V_{SUP} = 5 \text{ V}$; $T = 300 \text{K}$

Suponer directa: $VD = VD(ON)$
 $ID > O \times ID > O \times ID = O$
 $ID = -5V - O.7V = -5.7 \text{ mA} < O \times ID = O$

¿Cuánto vale I_D si R = 1 k Ω ?

Datos:
$$I_0 = 10$$
 fA; $V_{SUP} = 5$ V; $T = 300$ K

$$5V + R \times ID + VD = 0$$

