2.1 Ejercicios básicos sobre espacios métricos

En los ejercicios que siguen, (X, ρ) y (Y, σ) denotan espacios métricos.

Ejercicio 2.1. (a) Demostrar que la función f(t) := t/(1+t) es una biyección continua entre $(0, \infty)$ y (0, 1), cuya función inversa también es continua.

(b) Si (X, ρ) es un espacio métrico, defínase

$$\tilde{\rho}(x,y) := \frac{\rho(x,y)}{1 + \rho(x,y)}$$
 para todo $x,y \in X$.

Comprobar que $\tilde{\rho}$ es otra métrica sobre X.

(c) Demostrar que los espacios métricos (X, ρ) y $(X, \tilde{\rho})$ son *equivalentes*, esto es, que poseen los mismos conjuntos abiertos.

Ejercicio 2.2. Si $E \subseteq X$, defínase la métrica inducida $\rho|_E$ sobre E por restricción; es decir, $\rho|_E(x,y) := \rho(x,y)$ cuando $x,y \in E$.

Si $B \subseteq E$, demostrar que B es abierto en $(E, \rho|_E)$ si y solo si $B = E \cap A$ para algún $A \subseteq X$ tal que A es abierto en (X, ρ) .

Ejercicio 2.3. (a) Los límites de sucesiones son únicos: si $\{x_n\}$ es una sucesión en X tal que $x_n \to x$ y también $x_n \to y$ cuando $n \to \infty$, verificar que x = y.

(b) Demostrar que una parte $C \subseteq X$ es cerrado en X si y solo si $x \in C$ toda vez que haya una sucesión $\{x_n\}$ en C tal que $x_n \to x$ en X.

Ejercicio 2.4. Se construye el conjunto de Cantor $C \subset [0,1]$ por el algoritmo siguiente. Sea $C_0 := [0,1]$; y sea $C_1 := [0,\frac{1}{3}] \uplus [\frac{2}{3},1]$. Por inducción sobre k, si $C_k = \bigcup_{j=1}^{2^k} [a_j,b_j]$ se define

$$C_{k+1} := \bigcup_{j=1}^{2^k} \left[a_j, \frac{2a_j + b_j}{3} \right] \uplus \left[\frac{a_j + 2b_j}{3}, b_j \right].$$

Luego se define $C := \bigcap_{k \in \mathbb{N}} C_k$.

Demostrar que el complemento $[0,1] \setminus C$ es abierto y denso en [0,1].

Ejercicio 2.5. Demostrar que las siguientes condiciones sobre $f: X \to Y$ son equivalentes:

- (a) la función f es continua en X;
- (b) $f(x_n) \to f(x)$ en Y toda vez que $x_n \to x$ en X;
- (c) $f(\overline{E}) \subseteq \overline{f(E)}$ para todo $E \subseteq X$.

- **Ejercicio 2.6.** (a) Si $f: X \to Y$ y $g: X \to Y$ son dos funciones continuas, demostrar que el conjunto $\{x \in X : f(x) = g(x)\}$ es cerrado en X.
 - (b) Si E es denso en X y si f(x) = g(x) para $x \in E$, concluir que las funciones f y g coinciden sobre todo X.

Ejercicio 2.7. Si $f: X \to \mathbb{R}$ es una función continua y si $x_0 \in X$ es tal que $f(x_0) > 0$, demostrar que f(x) > 0 para todo x en un vecindario de x_0 en X.

Ejercicio 2.8. Denótese por $M_2(\mathbb{R})$ en espacio de matrices 2×2 con entradas en \mathbb{R} , con la métrica euclidiana obtenida de la identificación usual de $M_2(\mathbb{R})$ con \mathbb{R}^4 .

El grupo de matrices invertibles en $M_2(\mathbb{R})$ se denota por $GL(2,\mathbb{R})$. Demostrar que $GL(2,\mathbb{R})$ es abierto y denso en $M_2(\mathbb{R})$.