Algorithms for Longest Common Extensions

Jesper Kristensen

DTU Informatics
Technical University of Denmark

August 31, 2011

Contents

Introduction

The DIRECTCOMP algorithm

The LCE Problem

Existing Results

The SUFFIXNCA and LCPRMQ Algorithms

Practical results

The FINGERPRINT_k Algorithm

Data Structure

Query

1/0

Practical Results

LCE on trees

Compression

Constant Time String LCE on Heavy Paths

Summary

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Input

- \triangleright s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

1 match

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Input

- ightharpoonup s = abbababba
- (i,j) = (4,6)

The DIRECTCOMP algorithm

2 matches

Result

$$LCE_s(4,6) = 2$$

The LCE Problem

LCE value $LCE_s(i,j)$ is the length of the longest common prefix of the two suffixes of s starting at index i and j LCE problem Efficiently query multiple LCE values on a static string s and varying pairs (i,j)

Existing Algorithm: DIRECTCOMP

```
Preprocessing O(1)
Space O(1)
Query O(|LCE(i,j)|) = O(n)
Average query O(1)
Query I/O O\left(\frac{|LCE(i,j)|}{B}\right) = O\left(\frac{n}{B}\right)
```

For a string length n and alphabet size σ , the average LCE value over all n^{σ} strings and n^2 query pairs is O(1).

Existing Algorithms: SUFFIXNCA and LCPRMQ

Two algorithms with best known bounds:

```
Preprocessing O(sort(n, \sigma))

Space O(n)

Query O(1)

Average query O(1)

Query I/O O(1)
```

Existing Algorithms: Practical Results

Query times of DIRECTCOMP and LCPRMQ by string length

The FINGERPRINT_k Algorithm: Data Structure

- For a string s[1..n], the t-length fingerprints $F_t[1..n]$ are natural numbers, such that $F_t[i] = F_t[j]$ if and only if s[i..i+t-1] = s[j..j+t-1].
- ▶ k levels, $1 \le k \le \lceil \log n \rceil$
- ▶ For each level, $\ell = 0..k 1$:
 - $t_{\ell} = \Theta(n^{\ell/k}), t_0 = 1$
 - $\blacktriangleright H_{\ell} = F_{t_{\ell}}$

Space $O(k \cdot n)$

The FINGERPRINT_k Algorithm: Query

- 1. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} , increment ℓ by one, and repeat this step unless and $\ell=k-1$.
- 2. As long as $H_{\ell}[i+v] = H_{\ell}[j+v]$, increment v by t_{ℓ} and repeat this step.
- 3. Stop and return v when $\ell=0$, otherwise decrement ℓ by one and go to step two.

$$LCE(3,12)=9$$

Query
$$O(k \cdot n^{1/k})$$

Average query $O(1)$

The FINGERPRINT $_k$ Algorithm: I/O

- Original:
 - ▶ Data structure: $H_{\ell}[i] = F_{t_{\ell}}[i]$
 - ► Size: $|H_{\ell}| = n$ ► I/O: $O(k \cdot n^{1/k})$
- ► Cache optimized:
 - Data structure:

$$H_{\ell}[((i-1) \mod t_{\ell}) \cdot \lceil n/t_{\ell} \rceil + \lfloor (i-1)/t_{\ell} \rfloor + 1] = F_{t_{\ell}}[i]$$

- ▶ Size: $|H_{\ell}| = n + t_{\ell}$
- $I/O: O\left(k \cdot \left(\frac{n^{1/k}}{B} + 1\right)\right)$
 - ▶ Best when k is small $\implies n^{1/k}$ is large.

The FINGERPRINT_k Algorithm

```
Preprocessing O(k \cdot n + sort(n, \sigma))
         Space O(k \cdot n)
         Query O(k \cdot n^{1/k})
Average query O(1)
    Query I/O O(k \cdot (\frac{n^{1/k}}{B} + 1))
                   k = 1
                             k=2
                                                       k = \lceil \log n \rceil
 Preprocessing
                  O(sort(n, \sigma))
                                     O(sort(n, \sigma)) \quad O(n \log n)
                                O(n)
                                                 O(n \log n)
         Space O(n)
         Query O(n)
                                     O(\sqrt{n})
                                                O(\log n)
Average query O(1)
                                     O(1)
                                                       O(1)
                                    O\left(\frac{\sqrt{n}}{R}\right)
    Query I/O O(\frac{n}{B})
                                                       O(\log n)
```

Practical Results

Query times of DIRECTCOMP, FINGERPRINT₂ (cache opt.), FINGERPRINT₃ (not cache opt.), FINGERPRINT_{$\lceil \log n \rceil$} (not cache opt.) and LCPRMQ by string length

Practical Results

Query times of DIRECTCOMP, FINGERPRINT₂ (cache opt.), FINGERPRINT₃ (not cache opt.), FINGERPRINT_{$\lceil \log n \rceil$} (not cache opt.) and LCPRMQ by string length

Cache Optimization, Practical Results

Is I/O optimization good in practice?

- Pro: better cache efficiency
 - ▶ Best for small k, no change for $k = \lceil \log n \rceil$
- Con: Calculating memory addresses is more complicated
 - $((i-1) \mod t_\ell) \cdot \lceil n/t_\ell \rceil + \lfloor (i-1)/t_\ell \rfloor + 1 \text{ vs. } i$

The FINGERPRINT_k Algorithm: Practical Results, I/O

Query times of FINGERPRINT₂ without cache optimization and with cache optimization using shift operations vs. multiplication, division and modulo

The FINGERPRINT_k Algorithm: Practical Results, I/O

Query times of FINGERPRINT₃ without cache optimization and with cache optimization using shift operations vs. multiplication, division and modulo

The FINGERPRINT_k Algorithm: Practical Results, I/O

Query times of DIRECTCOMP, FINGERPRINT₂ (cache opt.), FINGERPRINT₃ (not cache opt.), FINGERPRINT_{$\lceil \log n \rceil$} (not cache opt.) and LCPRMQ by string length

LCE on Compressed Strings

Goal

- Allow LCE queries without decompressing the string
- Using Ziv-Lempel compression (LZ)

How

- ▶ LZ compression represents the string as a tree
- ➤ An LCE query on a LZ compressed string is a number of LCE queries on a tree

LCE on Trees

- ► Trees:
 - One character on each edge
 - ► LCE is the length of the longest common prefix of two strings along two paths
- ▶ $p_i = bbc$ and $p_j = bbba$ gives $LCE(p_i, p_j) = 2$

Constant Time String LCE on Heavy Paths

Data structure:

- Construct a heavy path decomposition
- For each heavy path, store characters as a substring of s
- Query:
 - ► Use constant time string LCE on *s* for each heavy path

Preprocessing $O(sort(n, \sigma))$ Space O(n)Query $O(\log n)$

Constant Time String LCE on Heavy Paths

- ► How to find the indexes (*i*, *j*) in the string:
 - Store an index at each node
- How to know then the heavy path splits from the queried path:
 - Store a pointer to the end of the heavy path at each node
 - ► Find NCA of the end of the heavy path and the end of the queried path
- ▶ How to find a node on the gueried path:
 - Use level ancestor

Summary

	Direct-	LcpRmq /	
	Comp	SuffixNca	$FINGERPRINT_k$
Preprocessing	O(1)	$O(\mathit{sort}(n,\sigma))$	$O(k \cdot n + sort(n, \sigma))$
Space	O(1)	O(n)	$O(k \cdot n)$
Query	O(n)	O(1)	$O(k \cdot n^{1/k})$
Average query	O(1)	O(1)	O(1)
Query I/O	$O(\frac{n}{B})$	O(1)	$O\left(k\cdot\left(\frac{n^{1/k}}{B}+1\right)\right)$

- ▶ In practice, the FINGERPRINT_k algorithm is...
 - \blacktriangleright ...almost as good as DIRECTCOMP and significantly better than LCPRMQ in average case
 - ...significantly better than DIRECTCOMP but worse than LCPRMQ in worst case
- ▶ Cache optimization of $FINGERPRINT_k$ improves query times at k = 2 and worsens query times at $k \ge 3$

Kommentarer og rettelser til rapporten

▶ Hvor kommer $r = 0.73 n^{0.42}$ fra?

► Afsnit 4.5.3 Cache Optimization: FINGERPRINT₃ skal være FINGERPRINT₂