(befn)

Set: Set S is collection of things. Everything x is either $\times \in S$ or $\times \not \in S$ empty set: empty set is a set that $\forall \times$, $\times \not \in S$ ({3 or ϕ)

set comprehension. A:= { x | property of x } if x \notin A \times \notin B

let equality Γ : two sets A and B are equal if ASB and BCA

: two sets A and B are equal if $\forall x \in A$, $x \in B$ and $\forall x \in B$, $x \in A$: two sets A and B are equal if $\forall x \in A$, iff $x \in B$

functions: two sets A and B, function $f: A \rightarrow B$ is unambiguous. $\forall x \in A$, $\exists y \in B$. (A is domain, y is codomain)

partial function: $f: A \rightarrow B$ is a subset $5 \subseteq A$, along with $\widetilde{f}: S \rightarrow B$ f(x)=y if $\widehat{f}(x)=y$ and f(x) is undefined if $x \notin S$.

total: partial function f is total if s is equal to domain. Le f is a function.

Function equality: two functions f and $g: A \rightarrow B$ are equal if they agreen on every input. I.e., f=g if $\forall x \in A$, f(x)=g(x).

A = universe

S = Union: If A and B are Gets AUB:= $\begin{cases} x \mid x \in A \text{ or } X \in B \end{cases}$

set operations [Maion: If A and B are sets, $A \cup B := \{x \mid x \in A \text{ or } x \in B\}$]

Intersection: If A and B are sets, $A \cap B := \{x \mid x \in A \text{ and } x \in B\}$ Set difference: If A and B are sets, $A \cap B := \{x \mid x \in A \text{ and } x \notin B\}$

power set: 2 is set of all subsets of A. 2 i= {B| B=A}.

 \forall set X, $\exists \phi \in 2^{X}$ and $X \in 2^{X}$

injectivity: $f: A \rightarrow B$ is injective, if $\forall x_1$ and $x_2 \in A$, whenever $f(x_1) = f(x_2)$, we have $x_1 = x_2$

surjectivity: $f: A \rightarrow B$ is surjective, if $\forall y \in B$, $\exists x \in A$ such that f(x) = y

bijectivity: f: A -> B is both injective and surjective

```
Identity function: If A is a set, function id: A \rightarrow A given by id(x) := x
composition: f: A \rightarrow B and g: B \rightarrow C, g \circ f: A \rightarrow C, given by (g \circ f)(a):=g(f(a))
left inverse: f: A > B, left inverse g of f is g. B - A satisfying gof = id
                1.e \forall \times \in A, g(f(x)) = X.
```

right inverse; $f: A \rightarrow B$, a right inverse $g \circ f$ is a $g: B \rightarrow A$ satisfying $f \circ g = id$ 1.e YXEB, F(g(x)) =X two-sided inverse: If f: A > B, g: B + A is a two-sided inverse of f

Cardinality: Size of a Set

If IN/ 2 IX1, then X is countable

if fig = id and gif = idA

Countable: If $|X| \leq |N|$, then a set X is countable 1.8 If \exists a subjection $f: N \rightarrow X$, then X is countable

> equation x ty = 2 means (x,y,z) GR iff x+y=Z

Relation: A relation R on sets A1, A2, A3... An is a subset of A, x A2 ... x A3 Binary relation: A binary relation R on a set A is a subset of AXA

inequalities (<, <, 2) subsets (=, =)

ex) $\times Ry$ means $(x,y) \in R$ $\times \subseteq y$ means $(x,y) \in \subseteq \int f(x) = y$ means $(x,y) \in f$ Reflexity: A binary relation R is retlexive if YXER, XRX

Symmetry' A binary relation R is symmetry if Y pairs of elements X, y &A XRy, 3 yRX _ Transitivity: A binary relation R is transitive if Y X,4,2 ER XRY and YRZ, 3 x RZ

Equivalnce Relation: A binary relation R is equivalence relation if R is reflexive,

symmetry, and transitive

(proof)

casel: Pis true Ris true?

table of proof techniques:

case2: Q is time R is time?

Proposition	Symbol	To prove it	To use it	Logical negation
P and Q	(P <u>∧</u> Q)	prove both P and Q	you may <u>use either</u> P or Q	(<u>¬</u> P) <u>∨</u> (<u>¬</u> Q)
P <u>or</u> Q	(P <u>∨</u> Q)	You may either prove P or prove Q	case analysis	(<u>¬</u> P) <u>∧</u> (<u>¬</u> Q)
P is false (or "not P")	<u> </u>	disprove P	contradiction	Р
if P then Q (or "P implies Q")	P ⊇ Q	assume P, then prove Q	if you know P, conclude Q	P <u>∧</u> <u>¬</u> Q
for all x, P	<u>∀x</u> , P	choose an arbitrary value x	apply to a specific x	<u>∃</u> x, <u>¬</u> P
there exists x such that P	<u>∃x,</u> P	give a <u>specific</u> x	use an arbitrary x satisfying P	<u>∀</u> x, <u>¬</u> P

proof: AU(BAC) = (AUB) A (AUC)

- · choose an arb set A, B, and C
- · WTS that LHS = RHS and RHS = LHS
 - · to show LHS ERHS, choose an arb X E LHS
 - · XEA or XE(BAC)
 - · Since XEA, XE (AUB) and XE (AUC)
 - · therefore XE RHS
 - · since $X \in (RAC)$, $X \in (AUB)$ because $X \in B$ and $X \in (AUC)$ because $X \in C$
 - · therefore LHS = RHS
 - · To show RHS 5 LHS, Choose an arb X & PHS
 - · Since XE (AUB) and XE (AUC) , so either XEA or X&A
 - · If X &A , then X & LHS
 - · If X & A, then X must be in B and C. So XE (BNC), XE LHS
 - . therefore RHS = LHS
- · 50 LHS = RHS

proof: If $A = \emptyset$ and $f: A \rightarrow B$ is injective, then f has a left inverse · Assume that f: A>B is injective · (.e $\forall x$, and $\chi_2 \in A$, if $f(x_1) = f(x_2)$, then $\chi_1 = \chi_2$ · with that I left inverse g of f

· le that gof = Td

· (et 9(4):=X

· choose an aub x. EA, let y = f(x.) · By defn of g, q(y) = Xo

· (e q(f(x)) = χ_o

· so q.f = id . A left inverse q

proof: If $f: A \rightarrow B$ has a left inverse $g: B \rightarrow A$, then f is injective

· Assume that $f: A \rightarrow B$ has a left inverse $g: B \rightarrow A$

· le that gof = Td

· so X, = X2, f is injective

· WTS that f is injective.

· I.e WTS that $\forall x$, and x, $\in A$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

· choose an arb X, and X2, assume f(x,) = f(x2). WIS that X, = X2.

· Since $g \circ f = id$, $X_1 = g(f(X_1)) = g(f(X_2)) = X_2$

• choose an arb
$$y$$
, $y=f(x)$
• let $x=g(y)$

$$f(x) = f(y) = f(x) = f(x) = f(x)$$

proof! If f'A > B is a bijection, then f has a two-sided inverse

· I. e Yyer, 3xeA such that f(x)=y

proof: \forall set A, we have |A| = |A| reflexive • choose an arb set A • WTS that \exists f: A \rightarrow A is injective • (.e \forall X₁, X_L \in A, If $f(X_1) = f(X_2)$ then $X_1 = X_2$ • choose an arb X_1 and X_2

* choose on arb X_1 and X_2 * Assume $id(X_1) = id(X_2)$, then $X_1 = id(X_1) = id(X_2) = X_2$

, so X'=X5

· I f is Injective

proof: If $|A| \leq |B|$ and $|B| \leq |C|$, then $|A| \leq |C|$ transitive

. Assume $|A| \leq |B|$ and $|B| \leq |C|$

· I.e & f: A+B is injective and & g: B+C is injective

· WTS that IAIEICI

· I.e 3 gof: A→C is Tojective

· I.e $\forall x_1, x_2 \in A_1$ if $f(x_1) = f(x_2)$, then $x_1 = x_2$

· choose arb X_1 and X_2 $\in A$

· assume q·f(x1) = q·f(x2)

· WTS that X1 = X2

· Since q is injective, $f(x_1) = f(x_2)$ and f is injective, $x_1 = x_2$

· so $\times_1 = q(f(x_1)) = g(f(x_2)) = \times_2$

proof: If IAI S | B| and | A| > | B| then | A| = | B|

proof: $|N \cup (-1)| = |N|$, If $f: |N| \rightarrow |N \cup (-1)|$, then f is bijective · Assume f(n):=n-1· WTS that f is bijective · I.e f is injective · choose an arb X_1 and $X_2 \in A$ · assume $f(X_1) = f(X_2)$, then $X_1 = X_2$ · $X_1 = X_1 - 1 = X_2 - 1 = X_2$, so $X_1 = X_2$ · I.e f is surjective

proof: Let $X := \{2n \mid n \in N\}$ be the set of even natural numbers. Then |X| = |N|

• Assume
$$f: N \rightarrow |N \times N|$$
• WTS that f is bijective

· I.e enumerate each pair exactly once

	0 1 2	n	f(n)
0	(5:0) (1:0) (0:2)	0	(010) (110)
1	(1,0) (1,1) (1,2) (2,0) (2,1) (2,2)	2	(*11) (2.0)
:	(2,0) (-1.7)	4 5	(l,1) (0·2)
		:	:

· pattern hits each pair once , so f is bijective

proof: (Diagnolization) 2" is uncountable

· For sake of Contradiction, if 2^{ν} is countable, then \exists surjection $f: N \rightarrow 2^N$

i	f(i)	$0 \in f(i)$?	$1 \in f(i)$?	$2 \in f(i)$?	$3 \in f(i)$?	$4 \in f(i)$?	
0	N	(yes)	yes	yes	yes	yes	
1	Ø	no	(no)	no	no	no	
2	the set of even numbers	yes	no	(yes)	no	yes	
3	the set of odd numbers	no	yes	no	(yes)	no	
4	{1}	yes	no	no	no	(no)	
:		:	:	:	:	:	٠.

* (onstruct a new diabolic set Sp by changing each element on the diagnol

	$0 \in f(i)$?	$1 \in f(i)$?	$2 \in f(i)$?	3 ∈ f(i)?	4 ∈ f(i)?	
S_D	no	yes	no	no	yes	

- · i∈ S, iff i ¢ f(i)
 - I.e Sp := {i/i \(\psi \) t(i)}
- · Since Y K, So differs from f(k) in kth column, So cannot be in the image of f
- · If kef(k) then k\$SD, and k&f(k) then ke SD
 - · 50, S0 \$ FCE)
- · Thus, f is not surjective, a contradiction

proof: (Diagnolization) R is uncountable

- · For sake of (ontradiction, if I is countable, then \exists surjection $f: \mathcal{N} \to \mathcal{I}$
- · Let I = [0,1), IER

						1	
i	f(i)	tenths	hundredths	thousandths			
0	1/2	(5)	0	0	0	0	
1	0	0	(0)	0	0	0	
2	$\pi - 3$	1	4	(1)	5	9	
3	0.8989	8	9	8	(9)	8	
4	1/2	5	0	0	0	(0)	
:	:	:	:	:	;	:	٠.

- * Construct a new diabolic set Sp by adding 5 to each digit, $X_0 = 0.05645$
- · If kef(k) then k&So, and k&f(k) then keSo
 - · 50, S0 + FCH)
 - · Thus, f is not surjective, a contradiction