1 Introduction

We present results from a femtoscopic analysis of ΛK and Ξ^-K^\pm correlations in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV by the ALICE experiment at the LHC. All pair combinations of Λ and $\bar{\Lambda}$ with K^+ , K^- and K_S^0 are analyzed. The femtoscopic correlations are the result of strong final-state interactions, and are fit with a parametrization based on a model by R. Lednicky and V. L. Lyuboshitz [?]. This allows us to both characterize the emission source and measure the scattering parameters for the particle pairs. We observe a large difference in the $\Lambda K^+(\bar{\Lambda}K^-)$ and $\Lambda K^-(\bar{\Lambda}K^+)$ correlations in pairs with low relative momenta ($k^*\lesssim 100$ MeV). The results suggest an effect arising from different quark-antiquark interactions in the pairs, i.e. $s\bar{s}$ in $\Lambda K^+(\bar{\Lambda}K^-)$ and $u\bar{u}$ in $\Lambda K^-(\bar{\Lambda}K^+)$, or from different net strangeness for each system. To gain further insight into this hypothesis, we currently are conducting a ΞK femtoscopic analysis.