B6A1 Seien X_1, X_2, \ldots *iid* uniform auf [0,1] verteilt. Weiter sei $f \in L^1([0,1])$. Zeigen Sie, dass die Monte-Carlo Simulation $\hat{I}_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$ fast sicher gegen das Integral $\int_0^1 f(x) dx$ konvergiert.

Beispiel 5.21 in [Kle20], funktioniert mit starkem Gesetz der großen Zahlen. Betrachte hierzu die Zufallsvariablen $f(X_i)$. Das Starke Gesetz der großen Zahlen gemäß Theorem 51 lautet hierfür, dass für reellwertige unabhängige und identisch verteilte Zufallsvariablen mit $E[|f(X_1)|] < \infty$ gilt, dass

$$\frac{1}{n} \sum_{i=1}^{n} f(X_i) \to E[f(X_1)] = \int_0^1 f(x) dP = \int_0^1 f(x) dx$$

Nach dem Blockungslemma 30 sind diese ebenfalls unabhängig. Die $f(X_i)$ sind ebenfalls identisch verteilt, denn für alle $i \in \mathbb{N}$ gilt $(f \circ X_i)_{\#}P = P \circ X_i^{-1} \circ f^{-1} = P \circ X_1^{-1} \circ f^{-1}$, weil die X_i identisch verteilt sind. Somit können wir das starke Gesetz der großen Zahlen mit L^1 -Voraussetzung, quasi Theorem 51, benutzen. Nach diesem gilt

$$\lim_{n \to \infty} \hat{I}_N = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n f(X_i) E[f(X_1)].$$

Mit der Definition des Erwartungswertes folgt

$$= \int f \circ X_1 \mathrm{d}P.$$

weil X_1 uniform auf [0,1] verteilt ist, kriegen wir

$$= \int_0^1 f \circ id(x)\lambda(dx) = \int_0^1 f(x)dx.$$

B6A2 Für jedes $n \in \mathbb{N}$ seien $X_1^{(n)}, \dots, X_n^{(n)}$ paarweise unkorrelierte Zufallsvariablen mit endlicher Varianz (also nicht notwendig identisch verteilt) und

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var} \left[X_i^{(n)} \right] = 0.$$

Zeigen Sie, dass die $X_i^{(n)}$ dem schwachen Gesetz der großen Zahlen genügen, d.h. beweisen Sie

$$\frac{1}{n}\sum_{i=1}^{n} \left(X_i^{(n)} - E\left[X_i^{(n)}\right]\right) \xrightarrow{P} 0, \quad n \to \infty.$$

Seien $\varepsilon, \delta > 0$ gegeben und betrachte für jedes $n \in \mathbb{N}$ die Folge $(Y_i)_{i \in \mathbb{N}}$ gegeben durch

$$Y_i = \begin{cases} \frac{X_i^{(n)}}{n} & \text{falls } i \leq n \text{ und} \\ 0 & \text{sonst.} \end{cases}$$

Da $X_i^{(n)} \in L^2$ gilt auch $Y_i \in L^2$. Da nach Aufgabenstellung gilt, dass $\lim_{n\to\infty} \frac{1}{n^2} \sum_{i=1}^n \mathrm{Var}\big[X_i^{(n)}\big] = \lim_{n\to\infty} \sum_{i=1}^n \mathrm{Var}\big[Y_i\big] = 0$, kann ich n_0 so wählen, dass für alle $n \geq n_0$ gilt $\frac{1}{\varepsilon^2} \sum_{i=1}^n \mathrm{Var}(Y_i) < \delta$. Wir haben dann mit der Definition von $(Y_i)_i$

$$P\Big(\frac{1}{n}\sum\nolimits_{i=1}^{n} \left(X_{i}^{(n)} - E[X_{i}^{(n)}]\right) > \varepsilon\Big) = P\Big(\sup_{n \in \mathbb{N}} \left|\sum\nolimits_{i=1}^{n} Y_{i} - E[Y_{i}]\right| > \varepsilon\Big),$$

sowie nach der Maximalungleichung aus Satz 42

$$\leq \frac{\sum_{i=1}^{\infty} \operatorname{Var}(Y_i)}{\varepsilon^2} \,.$$

Nach der Wahl von n_0 gilt für alle $n \ge n_0$, dass $\frac{1}{\varepsilon^2} \sum_{i=1}^n \text{Var}(Y_i) < \delta$. Somit gilt insgesamt schließlich

sodass
$$\frac{1}{n} \sum_{i=1}^{n} (X_i^{(n)} - E[X_i^{(n)}]) \xrightarrow{P} 0.$$

Es sei $(X_n)_{n\geq 2}$ eine Folge unabhängiger Zufallsvariablen mit

$$P(X_n = n) = \frac{1}{n \log n}$$
 und $P(X_n = 0) = 1 - \frac{1}{n \log n}$.

Zeigen Sie, dass die Folge dem schwachen Gesetz der großen Zahlen genügt, in dem Sinne, dass

$$\frac{1}{n}\sum_{i=2}^{n}(X_i-E[X_i])\stackrel{P}{\longrightarrow} 0.$$

Wir wollen für ein festes $n \in \mathbb{N}$ die Tschebyscheff-Ungleichung für die Zufallsvariable $\frac{1}{n} \sum_{i=2}^{n} X_i$ verwenden. Hierfür brauchen wir die Varianz von $\frac{1}{n} \sum_{i=2}^{n} X_i$. Da die X_i unabhängig sind, gilt für diese

$$\operatorname{Var}\left(\frac{1}{n}\sum\nolimits_{i=2}^{n}X_{i}\right)=\frac{1}{n^{2}}\sum\nolimits_{i=2}^{n}\operatorname{Var}(X_{i})\,.$$

Nach den Rechenregeln für die Varianz können wir schreiben

$$= \frac{1}{n^2} \sum_{i=2}^{n} \left(E[X_i^2] - X[X_i]^2 \right).$$

Für den Erwartungswert sind nur die Wahrscheinlichkeiten mit $X_i=i$ zu betrachten, sodass sich ergibt

$$= \frac{1}{n^2} \sum\nolimits_{i=2}^n \left(\frac{i}{\log i} - \frac{1}{\log i} \right) = \frac{1}{n^2} \sum\nolimits_{i=1}^n \frac{i}{\log (i+1)} \, .$$

Nun gilt für $i \ge 1$, dass $i > \log(i+1)$. Deshalb gilt auch $\frac{n}{\log(n)} \ge \frac{i}{\log(i+1)}$ und ich kann abschätzen

$$\leq \frac{1}{n^2} \sum\nolimits_{i=1}^n \frac{n}{\log n} = \frac{1}{n^2} \cdot n \cdot \frac{n}{\log n} = \frac{1}{\log n} \, .$$

Nach der Tschebyscheff-Ungleichung gilt damit für jedes $\varepsilon > 0$ und jedes $n \in \mathbb{N}$, dass $P\left(\frac{1}{n}\sum_{i=2}^{n}(X_i - E[X_i]) > \varepsilon\right) \leq \frac{1}{n^2}\frac{1}{\varepsilon^2}\operatorname{Var}(X_i) \xrightarrow{n \to \infty} 0$.

Zeigen Sie weiter, dass die obige Folge nicht fast sicher konvergiert und sie somit nicht dem Gesetz der großen Zahlen genügt. Verwenden Sie dazu das Lemma von Borel-Cantelli.

Wir nutzen den Tipp und betrachten $\sum_{n=2}^{\infty} P(X_n = n) = \sum_{n=2}^{\infty} \frac{1}{n \log n}$. Nach dem Integraltest divergiert die Reihe, wenn das dazugehörige Integral $\int_2^{\infty} \frac{1}{x \log x} dx$ konvergiert. Durch Substituieren mit $z = \log(x)$, sodass $\frac{dz}{dx} = \frac{1}{x}$ und somit $dz = \frac{dx}{x}$ gilt, $dass \int_2^{\infty} \frac{1}{x \log x} dx = \int_{\log 2}^{\infty} \frac{dz}{z} = \log \log x \Big|_2^{\infty}$, sodass insgesamt $\sum_{n=2}^{\infty} P(X_n = n) = \infty$. Mit dem Lemma von Borel-Cantelli gilt dann $P(\limsup\{X_n = n\}) = P() = 1$. Hier fehlt noch irgendeine Überlegung, vermutlich unter Verwendung von einer Abschätzung für die Summe. Was gilt für die Summe, wenn $X_n = n$? Insgesamt erhalten wir, dass $P(\lim_{n\to\infty} \frac{1}{n} \sum_{i=2}^{n} (X_i - E[X_i]) = 0) < 1$.

B6A3 Seien X_1, X_2, \ldots unabhängige Zufallsvariablen mit $E[X_n] = 0$ für jedes $n \in \mathbb{N}$ und $V := \sup\{\operatorname{Var}[X_n] : n \in \mathbb{N}\} < \infty$. Definiere $S_n = X_1 + \cdots + X_n$. Dann gilt für jedes $\varepsilon > 0$

$$\limsup_{n \to \infty} \frac{|S_n|}{n^{1/2}(\log(n))^{1/2+\varepsilon}} = 0 \quad \text{fast sicher.}$$

Hinweis: Definieren Sie $k_n = 2^n$ und $l(n) = n^{1/2}(\log(n))^{1/2+\varepsilon}$ für $n \in \mathbb{N}$ und betrachten Sie $l(k_{n+1})/l(k_n)$. Zeigen Sie, dass für hinreichend großes n und für $k \in \mathbb{N}$ mit $k_{n-1} \le k \le k_n$ gilt $\frac{|S_k|}{l(k)} \le \frac{2|S_k|}{l(k_n)}$. Verwenden Sie nun die Kolmogorov'sche Ungleichung und Borel-Cantelli, um zu zeigen, dass für beliebiges $\delta > 0$ gilt, dass $\limsup_{n \to \infty} l(k_n)^{-1} \max\{|S_k| : k \le k_n\} \le \delta$ fast sicher.

Das ist Satz 5.29 in [Kle20]. Zu $l(k_{n+1})/l(k_n)$ ist zu sagen, dass $l(k_{n+1})/l(k_n) > 1$, denn log und $n \mapsto 2^n$ sind monoton steigend. Genauer gilt,

$$\lim_{n \to \infty} l(k_{n+1})/l(k_n) = \lim_{n \to \infty} \frac{(2^{n+1})^{1/2}}{(2^n)^{1/2}} \frac{\left(\log(2^{n+1})\right)^{1/2+\varepsilon}}{\left(\log(2^n)\right)^{1/2+\varepsilon}}.$$

Durch Kürzen, sowie mit den Rechenregeln für den Logarithmus ergibt sich

$$= \lim_{n \to \infty} 2^{1/2} \left(\frac{\log(2^n) + \log(2)}{\log(2^n)} \right)^{1/2 + \varepsilon}.$$

Da $\lim_{n} \log(2)/\log(2^n) = 0$ erhalten wir

$$=\sqrt{2}$$
.

wobei die Folge von oben gegen den Limes strebt. Damit gilt für ein hinreichend großes $n \in \mathbb{N}$ sicher, dass $l(k_n)/l(k_{n-1}) \leq 2$ und entsprechend auch für alle $k \in \mathbb{N}$ so, dass $k_{n-1} \leq k \leq k_n$, dass $l(k_n)/l(k) \leq 2$. Umgestellt und mit $|S_k|$ multipliziert können wir schreiben $|S_k|/l(k) \leq 2|S_k|/l(k_n)$.

B6A4 Beweisen Sie folgende Aussagen

- 1. Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_n \geq 0$ und $\sum_{n=1}^{\infty} a_n < \infty$, dann folgt $\lim_{k\to\infty} \sum_{n=k}^{\infty} a_n = 0$.
- 2. Sei $(a_n)_{n\in\mathbb{N}}$ eine monotone Folge und es gebe eine Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$, sodass $a_{n_k} \to a$, dann folgt $a_n \to a$.

Hinweis: Diese zwei Aussagen wurden im Beweis von Lemma 43 verwendet. Es ist sinnvoll, diesen nach dem Bearbeiten der Übungsaufgabe zu wiederholen.

Zu Punkt 1, es gilt für alle $k \in \mathbb{N}$, dass $\sum_{n=k}^{\infty} a_n = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{k-1} a_n$. Somit können wir, um zu zeigen, dass $\lim_{k \to \infty} \sum_{n=k}^{\infty} a_n = 0$, genauso gut zeigen, dass $\lim_{k \to \infty} \sum_{n=1}^{k-1} a_n = \sum_{n=1}^{\infty} a_n$. Dies gilt aber aufgrund der Eindeutigkeit des Grenzwertes $\sum_{n=1}^{\infty} a_n < \infty$. Hier wird allerdings nicht klar, warum $a_n \geq 0$ vorausgesetzt werden muss.

Zu Punkt 2, sei $\varepsilon > 0$ gegeben, dann existiert ein $k \in \mathbb{N}$, sodass $|a_{n_k} - a| < \varepsilon$. Da die Folge monoton ist, gilt für alle $n \in \mathbb{N}$, dass $|a_{n+1} - a| < |a_n - a|$. Hiermit gilt auch für alle $n \ge k$, dass $|a_n - a| < \varepsilon$, sodass $(a_n) \to a$. Zu Lemma 43, hier wird behauptet, dass für unabhängige $X_1, X_2, \dots \in L^2$ mit $\sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty$ gilt $\sum_{k=1}^{n} (X_k - E[X_k]) \xrightarrow{\text{f.s.}} 0$.

Zum Beweis betrachten wir ohne Einschränkung zentrierte Zufallsvariablen, also $E[X_k]=0$, nutzen also quasi das Blockungslemma.

Literatur

[Kle20] Klenke, Achim: Wahrscheinlichkeitstheorie. Springer Spektrum, 2020 (Masterclass)