Kegel

DoppelteHöhe

 $V_1 = \frac{1}{3} G \cdot h$

DoppeltesVolumen

$$V_2 = \frac{1}{3} G \cdot \frac{2}{3} h$$

$$= \frac{2}{3} \cdot \frac{1}{3} G \cdot h$$

$$= \frac{2}{3} V_1$$

DreifachesVolumen

$$v_{3} = \frac{1}{3} G \cdot 2h$$

$$v_{3} = \frac{1}{3} G \cdot 3h$$

Wie berechnet man die Oberfläche des Kegels?

Wie berechnet man die Oberfläche des Kegels?

$$O = G + M$$

Herleitung Mantelfläche/Oberfläche:

https://youtu.be/xZ2yF3HTr4s

Pythagoras im rechtwinkligen Dreieck aus s , h_k und r:

$$s^2 = h_k^2 + r^2$$

Herleitung Mantelfläche:

Fläche Kreisausschnitt mit Radius s:

$$M = \pi \cdot s^2 \cdot \frac{\alpha}{360^{\circ}}$$

Umfang Grundfläche = Bogenlänge:

$$2\pi r = 2\pi s \cdot \frac{\alpha}{360^{\circ}} \quad |: 2\pi s$$

$$\frac{2\pi r}{2\pi s} = \frac{\alpha}{360^{\circ}} \Rightarrow \frac{r}{s} = \frac{\alpha}{360^{\circ}}$$

$$\Rightarrow$$
 M = $\pi \cdot s^2 \cdot \frac{r}{s}$

$$\Rightarrow$$
 M = $\pi \cdot r \cdot s$

Kegel

Mantelfläche:

$$M = \pi \cdot r \cdot s$$

Oberfläche:

$$O = G + M$$

$$0 = \pi r^2 + \pi rs$$

Volumen:

$$V = \frac{1}{3} G \cdot h_k$$

$$V = \frac{1}{3} G \cdot h_k$$

$$V = \frac{1}{3} \pi r^2 \cdot h_k$$

Wie berechnet man die Oberfläche der Pyramide?

Berechne die Oberfläche

Wie berechnet man das Volumen der Pyramide?

Volumen einer Pyramide

Das Volumen einer Pyramide mit der Grundfläche G und der Pyramidenhöhe h berechnet sich mit der Formel:

$$Volumen\ V = \frac{1}{3} \cdot G \cdot h$$

Berechne das Volumen

quadratische Pyramide I

Pythagoras auf der Seitenfläche: $s^2 = h_a^2 + (\frac{a}{2})^2$

Mantelfläche:

$$M = 4 \cdot \frac{1}{2} a \cdot h_a$$

$$M = 2a \cdot h_a$$

Oberfläche:

$$O = G + M$$

$$0 = a^2 + 2a \cdot h_a$$

Volumen:

$$V = \frac{1}{3} G \cdot h_k$$

$$V = \frac{1}{3} G \cdot h_k$$

$$V = \frac{1}{3} a^2 \cdot h_k$$

$$a h_a^2 = h_k^2 + (\frac{a}{2})^2$$

Pythagoras diagonal nach innen:

$$a$$

$$s^2 = h_k^2 + (\frac{d}{2})^2$$

Kugel berechnen: Oberfläche und Volumen

Oberfläche
$$O = 4 \cdot \pi \cdot r^2 = \pi \cdot d^2$$

Volumen
$$V = \frac{4}{3} \cdot \pi \cdot r^3 = \pi \cdot \frac{d^3}{6}$$

Herleitung Kugel

https://youtu.be/EBdPcRfXru0