

Search History

DATE: Tuesday, February 19, 2002 Printable Copy Create Case

Set Name Query side by side DB=USPT,PGPB,TDBD; PLUR=YES; OP=ADJ 11 and (normaliz\$6) same (interpolation) 11 and (normaliz\$6) same (linear interpolation) L4 11 and (normaliz\$6) same (tetrahedron or tetrahedral) L3 DB=TDBD.PGPB.USPT; PLUR=YES; OP=ADJ L2 11 and normaliz\$6 (CANON-KABUSHIKI-KAISHA..ASN. | CANON-SALES-CO.-AND-SEMICONDUCTOR-PROCESS-LABORATORY-CO.-LTD..ASN | CANON-SALES-CO.-INC..ASN. | "CANONKABUSHIKI".ASN. | "CANON".ASN. | <u>L1</u> CANON-KABUSHIKI-KAISHA..ASN. CANON-SALES-CO.-AND-SEMICONDUCTOR-PROCESS-LABORATORY-CO.-LTD..ASN | CANON-SALES-CO.-INC..ASN. | "CANONDALE".ASN.)!

END OF SEARCH HISTORY

WEST

Search Results - Record(s) 1 through 10 of 11 returned.

Generate Collection

1. Document ID: US 6023351 A

L5: Entry 1 of 11

File: USPT

Feb 8, 2000

US-PAT-NO: 6023351

DOCUMENT-IDENTIFIER: US 6023351 A

TITLE: Regularized printer LUT with improved accuracy

DATE-ISSUED: February 8, 2000

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

Print

COUNTRY

Newman; Todd

Palo Alto

CA

US-CL-CURRENT: 358/524; 358/522, 358/523, 358/530

Full Title Citation Front Review Classification Date Reference Sequences Attachments KWIC |
Draw, Desc Image

2. Document ID: US 6021388 A

L5: Entry 2 of 11

File: USPT

Feb 1, 2000

US-PAT-NO: 6021388

DOCUMENT-IDENTIFIER: US 6021388 A

TITLE: Speech synthesis apparatus and method

DATE-ISSUED: February 1, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY JPX Iwatsuki Otsuka; Mitsuru Yokohama JPX Ohora; Yasunori JPX Aso; Takashi Yokohama JPX Okutani; Yasuo Yokohama

US-CL-CURRENT: 704/268; 704/269

Full Title Citation Front Review Classification Date Reference Sequences Attachments KMC
Draws Desc Image

3. Document ID: US 5809181 A

L5: Entry 3 of 11

File: USPT

Sep 15, 1998

US-PAT-NO: 5809181

DOCUMENT-IDENTIFIER: US 5809181 A

TITLE: Color conversion apparatus

DATE-ISSUED: September 15, 1998

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY

Metcalfe; James Robert

Collarooy Plateau

AUX

US-CL-CURRENT: 382/276; 358/523, 358/525, 382/167

4. Document ID: US 5745650 A

L5: Entry 4 of 11

File: USPT

Apr 28, 1998

US-PAT-NO: 5745650

DOCUMENT-IDENTIFIER: US 5745650 A

TITLE: Speech synthesis apparatus and method for synthesizing speech from a character

series comprising a text and pitch information

DATE-ISSUED: April 28, 1998

INVENTOR-INFORMATION:

ZIP CODE CITY STATE COUNTRY NAME JPX Otsuka; Mitsuru Yokohama Yokohama JPX Ohora; Yasunori JPX Aso; Takashi Yokohama JPX Fukada; Toshiaki Yokohama

US-CL-CURRENT: 704/260; 704/201, 704/205, 704/206, 704/207, 704/211, 704/258, 704/264, 704/267, 704/268

5. Document ID: US 5719789 A

L5: Entry 5 of 11

File: USPT

Feb 17, 1998

US-PAT-NO: 5719789

DOCUMENT-IDENTIFIER: US 5719789 A

TITLE: Method of and apparatus for detecting an amount of displacement

DATE-ISSUED: February 17, 1998

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY

Kawamata; Naoki

Utsunomiya

JPX

US-CL-CURRENT: 702/189; 356/499

Full Title Citation Front Review Classification Date Reference Sequences Attachments Fram Desc Image

6. Document ID: US 5432891 A

L5: Entry 6 of 11

File: USPT

Jul 11, 1995

US-PAT-NO: 5432891

DOCUMENT-IDENTIFIER: US 5432891 A

TITLE: Image processing method and apparatus

DATE-ISSUED: July 11, 1995

INVENTOR-INFORMATION:

NAME

Onodera; Ken

CITY

Yokohama

STATE

ZIP CODE

COUNTRY

JPX

US-CL-CURRENT: 358/1.15; 358/1.16

Full Title Citation Front Review Classification Date Reference Sequences Attachments

Draw Desc Image

KWIC

7. Document ID: US 5351137 A

L5: Entry 7 of 11

File: USPT

Sep 27, 1994

US-PAT-NO: 5351137

DOCUMENT-IDENTIFIER: US 5351137 A

TITLE: Pixel density converting apparatus

DATE-ISSUED: September 27, 1994

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Kato; Masami
Kato; Takao

Sagamihara

JPX JPX

Hashimoto; Yasunori

Yokohama Yokohama

JPX

US-CL-CURRENT: 358/457; 358/456

Full Title Citation Front Review Classification Date Reference Sequences Attachments

Draw, Desc Image

KOMC

8. Document ID: US 5319471 A

L5: Entry 8 of 11

File: USPT

Jun 7, 1994

US-PAT-NO: 5319471

DOCUMENT-IDENTIFIER: US 5319471 A

TITLE: Image transmitting apparatus having improved coding of multi-valued image data

DATE-ISSUED: June 7, 1994

INVENTOR-INFORMATION:

CITY STATE ZIP CODE COUNTRY NAME Tokyo JPX Takei; Masahiro Takayama; Tadashi JPX Tokyo JPX Horii; Hiroyuki Tokyo JPX Kimura; Norio Tokyo

US-CL-CURRENT: 358/451; 358/408, 358/426

9. Document ID: US 5289293 A

L5: Entry 9 of 11

File: USPT

Feb 22, 1994

US-PAT-NO: 5289293

DOCUMENT-IDENTIFIER: US 5289293 A

TITLE: Pixel density conversion and processing

DATE-ISSUED: February 22, 1994

INVENTOR-INFORMATION:

COUNTRY CITY STATE ZIP CODE NAME JPX Sagamihara Kato; Masami Yokohama JPX Kato; Takao JPX

Hashimoto; Yasunori

Yokohama

US-CL-CURRENT: 358/457; 358/456

10. Document ID: US 5220629 A

L5: Entry 10 of 11

File: USPT

Jun 15, 1993

US-PAT-NO: 5220629

DOCUMENT-IDENTIFIER: US 5220629 A

TITLE: Speech synthesis apparatus and method

DATE-ISSUED: June 15, 1993

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP C	CODE	COUNTRY
Kosaka; Tetsuo	Yokohama				JPX
Sakurai; Atsushi	Yokohama				JPX
Tamura; Junichi	Tokyo				JPX
Ohora; Yasunori	Tokyo				JPX
Fujita; Takeshi	Yokohama				JPX
Aso; Takashi	Yokohama				JPX
Kawasaki; Katsuhiko	Machida				JPX

US-CL-CURRENT: <u>704/260</u>

Display Format: Change Format

Previous Page Next Page

WEST

Generate Collection

Print

Search Results - Record(s) 11 through 11 of 11 returned.

☐ 11. Document ID: US 5202670 A

L5: Entry 11 of 11

File: USPT

Apr 13, 1993

US-PAT-NO: 5202670

DOCUMENT-IDENTIFIER: US 5202670 A

TITLE: Image processing apparatus

DATE-ISSUED: April 13, 1993

INVENTOR - INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Oha; Shinichi

Tokyo

JPX

US-CL-CURRENT: 345/671; 345/606, 358/451, 382/299

Full	Title	Citation	Front	Review	Classification	Date	Reference	Sequences	Attachments	KWIC
Draw. D	esc	mage							•	
			•••••		Generate C			Print		
				L	Generate C			FIIII }		
	I				T			}		

Terms Documents

[1] and (normaliz\$6) same (interpolation) 11

Display Format:

Change Format

Previous Page

Next Page

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

eip <u>FAQ Terms IE</u> eview	EE Peer Quick Links v
lelcome to IEEE <i>Xplore</i>	Your search matched 4 of 748173 documents.
O- Home	Results are shown 25 to a page, sorted by publication year in descending order.
O- Log-out	You may refine your search by editing the current search expression or entering a new one the to
ables of Contents	Then click Search Again. normalize and grid points
O- Journals & Magazines	Search Again
O- Conference Proceedings	Results: Journal or Magazine = JNL Conference = CNF Standard = STD
O- Standards	
earch	Fuzzy approximation via grid point sampling and singular value
	decomposition Yeung Yam
O- By Author O- Basic	Systems, Man and Cybernetics, Part B, IEEE Transactions on , Volume: 27 Iss
Advanced	Dec. 1997
ember Services	Page(s): 933 -951
O- Join IEEE	
O- Establish IEEE Web Account	[Abstract] [PDF Full-Text (936 KB)] JNL
_	2 Singular value-based identification of fuzzy system
Print Formal	Yeung Yam
	Decision and Control, 1997., Proceedings of the 36th IEEE Conference on , Vo
	1997
	Page(s): 3341 -3346 vol.4
	[Abstract] [PDF Full-Text (480 KB)] CNF

algorithms

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W. Nuclear Science, IEEE Transactions on , Volume: 43 Issue: 6 Part: 2 , Dec. 19

Page(s): 3370 -3376

[Abstract] [PDF Full-Text (148 KB)] JNL

4 Comparison of rotation-based methods for iterative reconstruction algorithms

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W.

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W. Nuclear Science Symposium and Medical Imaging Conference Record, 1995.,

, Volume: 2 , 1995

Page(s): 1146 -1150 vol.2

[Abstract] [PDF Full-Text (528 KB)] CNF

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright © 2002 IEEE — All rights reserved

Search Results - Record(s) 1 through 1 of 1 returned.

☑ 1. Document ID: US 6295137 B1

L2: Entry 1 of 1

File: USPT

Sep 25, 2001

US-PAT-NO: 6295137

DOCUMENT-IDENTIFIER: US 6295137 B1

TITLE: Method of color correction using multi-level halftoning

DATE-ISSUED: September 25, 2001

INVENTOR-INFORMATION:

CITY

ZIP CODE STATE

COUNTRY

Balasubramanian; Thyagarajan

Webster

NY

US-CL-CURRENT: 358/1.9; 358/456, 358/518, 358/523, 358/534

Display Format: CIT

Change Format

Previous Page

Next Page

Number	L	Hits	Search Text	DB	Time stamp
17:06	Number				_
0	1	471	(data conversion) near (normalization)	USPAT	2002/02/19
					17:06
huge number\$1 near (integer\$1)	3	0		USPAT	2002/02/19
2	;		near (large number\$1 or big number\$1 or		17:07
2			huge number\$1) near (integer\$1)		
near (large number or big number or huge number) (data conversion) near (normalization) 17:10 2002/02/19 17:11 2002/02/19 17:11 17:11 17:23 2002/02/19 17:23 17:25 17:25 17:25 17:25 17:25 17:25 17:25 17:25 17:25 17:25 17:25 17:25 1	2	2	(data conversion) near (normalization)	USPAT	2002/02/19
Number					
near (integer\$1)					
near (integer\$1)	4	0	(data conversion) near (normalization)	USPAT	2002/02/19
12					
17:23 17:23 2002/02/19 17:23 2002/02/19 17:23 2002/02/19 17:23 2002/02/19 17:23 2002/02/19 17:23 2002/02/19	5	12		USPAT	
10	_		, (g-c, -		
17:23 17:23 17:23 17:23 2002/02/19 17:25 2002/02/19 17:25 2002/02/19 17:25 2002/02/19 17:25 2002/02/19 17:25 2002/02/19 2002/02/1	6	69	(normaliz\$5) near (integer\$1)	USPAT	
3	ŭ	, ,	(001111	
Conversion	7	3	(normaliz\$5) near (integer\$1) near (data	USPAT	
(normaliz\$5) near (operation) near (data conversion) 475096 tetrahedral linear interpolation (tetrahedral linear interpolation) (normalization) near (operation) (normalization) near (operation) (tetrahedral linear interpolation) (normalization) (tetrahedral linear interpolation) (normalization) (normalizati	·			331.11	
conversion) tetrahedral linear interpolation (tetrahedral linear interpolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (tetrahedral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (normalization) same (power of (data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (large number))) same (linear interpolation)	8	20		TISDAT	
11	ŭ	20		OSTAL	
11	۵	175006		HEDAT	
11 (tetrahedral linear interpolation) near (normalization) near (operation\$1) 10 (tetrahedral linear interpolation) near (normalization) 11 (tetrahedral linear interpolation) near (normalization) 12 (tetrahedral linear interpolation) near (normalization) near (multiple large integer\$1) 13 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) 14 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (tetrahedral or tetrahedron) 15 (appeared number or big number or huge number)) same (normalization) near (large number or big number or huge number)) same (linear intepolation) 16 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 10 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear intepolation) 10 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear interpolation)	9	4/3090	tetranedral linear interpolation	USPAI	
(normalization) near (operation\$1) (tetrahedral linear interpolation) near (normalization) (tetrahedral linear interpolation) near (normalization) (tetrahedral linear interpolation) near (normalization) near (multiple large integer\$1) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (tetrahedral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (tetrahedral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or huge number))) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or huge number))) same (linear interpolation)	11	1	/totmohodmal linear intermelation) mass	HCDAM	
10	11	1		USPAT	
(normalization) (tetrahedral linear interpolation) near (normalization) near (multiple large integer\$1) (normalization) same (power of ((data conversion) near (normalization) near (large number or huge number)) (normalization) same (power of ((data conversion) near (normalization) near (large number or huge number)) same (tetrahdral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or huge number))) same (tetrahdral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or huge number))) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or huge number))) same (linear interpolation) (large number or big number or huge number))) same (linear interpolation)	10	60		.vanam	
12 0 (tetrahedral linear interpolation) near (normalization) near (multiple large integer\$1) 13 928 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) 14 0 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (tetrahdral or tetrahedron) 15 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 16 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 16 (losse) (10	60		USPAT	
(normalization) near (multiple large integer\$1) 928 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) 14 0 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (tetrahdral or tetrahedron) 15 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 16 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (large number or big number or huge number))) same (linear interpolation)	10				
integer\$1) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (tetrahdral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (large number or big number or huge number))) same (linear interpolation)	12	U		USPAT	•
13 928 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) 14 0 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (tetrahdral or tetrahedron) 15 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 16 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (large number or big number or huge number))) same (linear interpolation)				1	18:24
conversion) near (normalization) near (large number or big number or huge number))) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (tetrahdral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) to near (large number or big number or huge number))) same (linear interpolation) (large number or big number or huge number))) same (linear interpolation)		000			
(large number or big number or huge number)) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (tetrahdral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (power of (data conversion) near (normalization) near (large number or big number or huge number)) same (linear interpolation)	13	928		USPAT	
number))) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (tetrahdral or tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (power of (data conversion) near (normalization) near (large number or big number or huge number)) same (linear interpolation)			conversion) near (normalization) near		18:24
0 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (tetrahdral or tetrahedron) 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear intepolation) 10 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear interpolation)				İ	
conversion) near (normalization) near (large number or big number or huge number)) same (tetrahdral or tetrahedron) 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear intepolation) 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear interpolation)					
(large number or big number or huge number))) same (tetrahdral or tetrahedron) 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation)	14	0		USPAT	
number))) same (tetrahdral or tetrahedron) 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation)					18:25
tetrahedron) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) tetrahedron) USPAT 2002/02/19 USPAT 2002/02/19 18:25					
15 89 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number)) same (linear intepolation) 16 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) 18:25 18:25					
conversion) near (normalization) near (large number or big number or huge number))) same (linear intepolation) 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation)		_ [
(large number or big number or huge number))) same (linear intepolation) 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) (large number or big number or huge number))) same (linear interpolation)	15	89		USPAT	
number))) same (linear intepolation) 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation) Number 100 2002/02/19 18:25					18:25
16 100 (normalization) same (power of ((data conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation)					
conversion) near (normalization) near (large number or big number or huge number))) same (linear interpolation)		_			
(large number or big number or huge number))) same (linear interpolation)	16	100		USPAT	,
number))) same (linear interpolation)					18:25
number))) same (linear interpolation)	-	·	(large number or big number or huge		
			<pre>number))) same (linear interpolation)</pre>		
	17 .	11	(normalization) same (power of ((data	USPAT	2002/02/19
conversion) near (normalization) near 18:26					18:26
(large number or big number or huge					
number))) same (linear interpolation)					
same (grid point\$1)			same (grid point\$1)		

	บ	1	D	ocument	ID	Issue Date	Pages
1			US	6115338	A	20000905	82
2			US	6072761	A	20000606	53
3			US	6021388	A	20000201	53
4			US	5828705	A	19981027	14
5			US	5825579	A	19981020	23
6			US	5732055	A	19980324	80
7			US	5684920	Α	19971104	34
8			US	5248997	A	19930928	7
9			US	4905204	A	19900227	21
10			US	4882713	A	19891121	21
11			US	4719585	A	19880112	14

	Title	Current OR	Current XRef
1	Optical storage apparatus	369/47.52	369/116 ; 369/47.53
2	Optical storage apparatus having an automatic laser power control with light emission fine control	369/116	369/53.26 ; 369/53.27
3	Speech synthesis apparatus and method	704/268	704/269
4	Carrier tracking technique and apparatus having automatic flywheel/tracking/reacquisition control and extended signal to noise	375/326	375/316 ; 375/322 ; 375/324 ; 375/354 ; 375/355
5	Disk drive servo sensing gain normalization and linearization	360/77.08	360/77.02
6	Optical storage apparatus	369/53.26	369/116
7	Acoustic signal transform coding method and decoding method having a high efficiency envelope flattening method therein	704/203	704/201 ; 704/204 ; 704/219 ; 704/220 ; 704/258 ; 704/262
8	Facet reflectance correction in a polygon scanner	347/261	359/217
9	Method of weighting a trace stack from a plurality of input traces	367/62	367/38 ; 702/17
10	Method for noise suppression in the stacking of seismic traces	367/47	367/62 ; 702/17
11	Dividing cubes system and method for the display of surface structures contained within the interior region of a solid body	345/424	345/419 ; 345/426 ; 600/425

	Retrieval Classif	Inventor	s	С	Р	2	3	4	5
1		Masaki, Takashi , et al.	Ø						
2		Tani, Hiroshi	×						
3		Otsuka, Mitsuru , et al.	×						
4		Kroeger, Brian W. , et al.	×						
5		Cheung, Wayne Leung , et al.	⊠						
6		Masaki, Takashi , et al.	⊠						
7		Iwakami, Naoki , et al.	×						
8		Summers, Drew D.	☒						
9		Hughes, Phillip A.	Ø						
10		Hughes, Philip A.	×						
11		Cline, Harvey E. , et al.	⊠						

WEST

Generate Collection

Print

Search Results - Record(s) 1 through 10 of 11 returned.

✓ 1. Document ID: US 6023351 A

L5: Entry 1 of 11

File: USPT

Feb 8, 2000

US-PAT-NO: 6023351

DOCUMENT-IDENTIFIER: US 6023351 A

TITLE: Regularized printer LUT with improved accuracy

DATE-ISSUED: February 8, 2000

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Newman; Todd

Palo Alto

CA

US-CL-CURRENT: 358/524; 358/522, 358/523, 358/530

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KWC Draw Desc Image

2. Document ID: US 6021388 A

L5: Entry 2 of 11

File: USPT

Feb 1, 2000

US-PAT-NO: 6021388

DOCUMENT-IDENTIFIER: US 6021388 A

TITLE: Speech synthesis apparatus and method

DATE-ISSUED: February 1, 2000

INVENTOR-INFORMATION:

CITY STATE ZIP CODE COUNTRY NAME Otsuka; Mitsuru Iwatsuki JPX Ohora; Yasunori Yokohama JPX Aso; Takashi Yokohama JPX JPX Okutani; Yasuo Yokohama

US-CL-CURRENT: 704/268; 704/269

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KWC Draw, Desc Image

3. Document ID: US 5809181 A

L5: Entry 3 of 11

File: USPT

Sep 15, 1998

US-PAT-NO: 5809181

DOCUMENT-IDENTIFIER: US 5809181 A

TITLE: Color conversion apparatus

DATE-ISSUED: September 15, 1998

INVENTOR-INFORMATION:

NAME CITY

STATE ZIP CODE

Metcalfe; James Robert Collarooy Plateau AUX

US-CL-CURRENT: 382/276; 358/523, 358/525, 382/167

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims Draw, Desc Image

4. Document ID: US 5745650 A

L5: Entry 4 of 11

File: USPT

Apr 28, 1998

COUNTRY

US-PAT-NO: 5745650

DOCUMENT-IDENTIFIER: US 5745650 A

TITLE: Speech synthesis apparatus and method for synthesizing speech from a character

series comprising a text and pitch information

DATE-ISSUED: April 28, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Otsuka; Mitsuru Yokohama JPX Ohora; Yasunori Yokohama JPX Yokohama JPX Aso; Takashi Fukada; Toshiaki Yokohama JPX

US-CL-CURRENT: 704/260; 704/201, 704/205, 704/206, 704/207, 704/211, 704/258, 704/264, <u>704/267</u>, <u>704/268</u>

Full Title Citation Front Review Classification Date Reference Sequences Attachments KWAC Draw, Desc - Image

5. Document ID: US 5719789 A

L5: Entry 5 of 11

File: USPT

Feb 17, 1998

US-PAT-NO: 5719789

DOCUMENT-IDENTIFIER: US 5719789 A

TITLE: Method of and apparatus for detecting an amount of displacement

DATE-ISSUED: February 17, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY JPX

Utsunomiya Kawamata; Naoki

US-CL-CURRENT: 702/189; 356/499

Full Title Citation Front Review Classification Date Reference Sequences Attachments

Draw, Desc Image

6. Document ID: US 5432891 A

L5: Entry 6 of 11 File: USPT Jul 11, 1995

US-PAT-NO: 5432891

DOCUMENT-IDENTIFIER: US 5432891 A

TITLE: Image processing method and apparatus

DATE-ISSUED: July 11, 1995

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Onodera; Ken Yokohama JPX

US-CL-CURRENT: 358/1.15; 358/1.16

Full Title Citation Front Review Classification Date Reference Sequences Attachments KMC |
Drawl Desc | Image |

7. Document ID: US 5351137 A

L5: Entry 7 of 11 File: USPT Sep 27, 1994

US-PAT-NO: 5351137

DOCUMENT-IDENTIFIER: US 5351137 A

TITLE: Pixel density converting apparatus

DATE-ISSUED: September 27, 1994

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Kato; MasamiSagamiharaJPXKato; TakaoYokohamaJPXHashimoto; YasunoriYokohamaJPX

US-CL-CURRENT: 358/457; 358/456

Full Title Citation Front Review Classification Date Reference Sequences Attachments KMC Draw, Desc Image

8. Document ID: US 5319471 A

L5: Entry 8 of 11 File: USPT Jun 7, 1994

US-PAT-NO: 5319471

DOCUMENT-IDENTIFIER: US 5319471 A

TITLE: Image transmitting apparatus having improved coding of multi-valued image data

DATE-ISSUED: June 7, 1994

INVENTOR-INFORMATION:

CITY STATE ZIP CODE NAME COUNTRY Takei; Masahiro Tokyo JPX Takayama; Tadashi Tokyo JPX JPX Horii; Hiroyuki Tokyo Kimura; Norio JPX Tokyo

US-CL-CURRENT: 358/451; 358/408, 358/426

9. Document ID: US 5289293 A

L5: Entry 9 of 11

File: USPT

Feb 22, 1994

US-PAT-NO: 5289293

DOCUMENT-IDENTIFIER: US 5289293 A

TITLE: Pixel density conversion and processing

DATE-ISSUED: February 22, 1994

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY
Kato; Masami Sagamihara JPX
Kato; Takao Yokohama JPX
Hashimoto; Yasunori Yokohama JPX

US-CL-CURRENT: 358/457; 358/456

10. Document ID: US 5220629 A

L5: Entry 10 of 11

File: USPT

Jun 15, 1993

US-PAT-NO: 5220629

DOCUMENT-IDENTIFIER: US 5220629 A

TITLE: Speech synthesis apparatus and method

DATE-ISSUED: June 15, 1993

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP	CODE	COUNTRY
Kosaka; Tetsuo	Yokohama				JPX
Sakurai; Atsushi	Yokohama				JPX
Tamura; Junichi	Tokyo				JPX
Ohora; Yasunori	Tokyo				JPX
Fujita; Takeshi	Yokohama				JPX
Aso; Takashi	Yokohama				JPX
Kawasaki; Katsuhiko	Machida				JPX

US-CL-CURRENT: <u>704/260</u>

Display Format: Change Format

Previous Page Next Page

Search Results - Record(s) 11 through 11 of 11 returned.

☑ 11. Document ID: US 5202670 A

L5: Entry 11 of 11

File: USPT

Apr 13, 1993

US-PAT-NO: 5202670

DOCUMENT-IDENTIFIER: US 5202670 A

TITLE: Image processing apparatus

DATE-ISSUED: April 13, 1993

INVENTOR-INFORMATION:

NAME Oha; Shinichi CITY Tokyo STATE

ZIP CODE

COUNTRY

JPX

US-CL-CURRENT: 345/671; 345/606, 358/451, 382/299

Full Draws De	Title Citation esc Image	Front Review	Classification	Date	Reference	Sequences	Attachments	KWC
v		L	Generate C		2 6	Print		
	Terms					Documen	ts	
	11 and (normaliz\$6) same (interpolation)						11	

Display Format: Change Format

Previous Page Next Page

DATE: Tuesday, February 19, 2002 Printable Copy Create Case

Set Name side by sideQuery side by sideHit Count result setSet Name result setDB=USPT,PGPB,TDBD; PLUR=YES; OP=ADJL2tetrahedral interpolation same normaliz\$61L2L1tetrahedral interpolation78L1

END OF SEARCH HISTORY

IEEE HOME ! SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Membership Public	ations/Services Standards Conferences Care	eers/Jobs
	Xplore TM	
Help FAQ Terms II Review	EEE Peer Quick Links	» S
Welcome to IEEE Xplore - Home - Log-out	Your search matched 32 of 748219 documents. Results are shown 15 to a page, sorted by public You may refine your search by editing the current	-
Tables of Contents O- Journals & Magazines	Then click Search Again . normalization and integer Search Again	
Conference Proceedings Conference	Results: Journal or Magazine = JNL Conference = CNF	Standard = STD
Search - By Author - Basic - Advanced	1 Iterative soft decoded partial res recording Hongwei Song; Jingfeng Liu; Kumar, B Magnetics, IEEE Transactions on , Volu Page(s): 676 -681	.V.K.V.; Kurtas, E.
Member Services Join IEEE Establish IEEE Web Account	[Abstract] [PDF Full-Text (144 KB)] J	

resolution image mosaics over large areas

Yong Du; Cihlar, J.; Beaubien, J.; Latifovic, R.

Geoscience and Remote Sensing, IEEE Transactions on , Volume: 39 Issue: 3

2001

Print Format

Page(s): 623 -634

[Abstract] [PDF Full-Text (476 KB)] JNL

3 Phase-jitter dynamics of digital phase-locked loops: Part II

Teplinsky, A.; Feely, O.

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transacti

Volume: 47 Issue: 4, April 2000

Page(s): 458 -473

[Abstract] [PDF Full-Text (800 KB)] JNL

4 An entropy theorem for computing the capacity of weakly (d,k)-con sequences

Janssen, A.J.E.M.; Schouhamer Immink, K.A.

Information Theory, IEEE Transactions on , Volume: 46 Issue: 3 , May 2000

Page(s): 1034 -1038

[Abstract] [PDF Full-Text (192 KB)] JNL

5 Interpolation/decimation scheme applied to size normalization of chimages

de Oliveira, J.J., Jr.; Veloso, L.R.; de Carvalho, J.M.

Pattern Recognition, 2000. Proceedings. 15th International Conference on , Vo $2000\,$

Page(s): 577 -580 vol.2

[Abstract] [PDF Full-Text (280 KB)] CNF

6 Design and properties of step-like weighting windows

Lukin, V.V.; Saramaki, T.

Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on , Volume: 1 , 2000

Page(s): 108 -111 vol.1

[Abstract] [PDF Full-Text (288 KB)] CNF

7 Simulating exponential normalization with weighted k-tournaments Julstrom, B.A.; Robinson, D.H.

Evolutionary Computation, 2000. Proceedings of the 2000 Congress on , Volum $2000\,$

Page(s): 227 -231 vol.1

[Abstract] [PDF Full-Text (372 KB)] CNF

8 Capacity of weakly (d,k)-constrained sequences

Immink, K.A.S.; Janssen, A.J.E.M.

International Symposium on Information Theory, 2000. Proceedings. IEEE , 2

Page(s): 144

[Abstract] [PDF Full-Text (80 KB)] CNF

9 Strict ordering on discrete images and applications

Coltuc, D.; Bolon, P.

Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference

Volume: 3, 1999

Page(s): 150 -153 vol.3

[Abstract] [PDF Full-Text (344 KB)] CNF

10 Design of hybrid filter banks for analog/digital conversion

Velazquez, S.R.; Nguyen, T.Q.; Broadstone, S.R.

Signal Processing, IEEE Transactions on , Volume: 46 Issue: 4 , April 1998

Page(s): 956 -967

[Abstract] [PDF Full-Text (336 KB)] JNL

11 Recognition of printed multifont alphanumeric characters using Wa transform function

Durk Won Park

Signal Processing Proceedings, 1998. ICSP '98. 1998 Fourth International Con

on, Volume: 2, 1998 Page(s): 1233 -1236 vol.2

[Abstract] [PDF Full-Text (332 KB)] CNF

12 Transformation of Shannon's sampling points into Daubechies' way sampling points

Zhang Jiankang; Bao Zheng; Jiao Licheng

Signal Processing Proceedings, 1998. ICSP '98. 1998 Fourth International Con

on , 1998

Page(s): 305 -308 vol.1

[Abstract] [PDF Full-Text (236 KB)] CNF

13 Reversible discrete cosine transform

Komatsu, K.; Sezaki, K.

Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE

International Conference on , Volume: 3 , 1998

Page(s): 1769 -1772 vol.3

[Abstract] [PDF Full-Text (240 KB)] CNF

14 Recognition of printed muti-font alphanumeric characters of multis 3/spl times/3 templates

Durk Won Park; Jong Won Park

Signal Processing, 1996., 3rd International Conference on, Volume: 2, 1996

Page(s): 1320 -1323 vol.2

[Abstract] [PDF Full-Text (344 KB)] CNF

15 Adaptive algorithms for joint time delay estimation and IIR filterin

Teng Joon Lim; Macleod, M.D.

Signal Processing, IEEE Transactions on , Volume: 43 Issue: 4 , April 1995

Page(s): 841 -851

[Abstract] [PDF Full-Text (928 KB)] JNL

1 2 3 [Next]

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright © 2002 IEEE - All rights reserved

Membership Public	ications/Services Standards Conferences Careers/Jobs	
Mara:	Vn/orom	
، کلاگیال ۱		
75. 7	RELEASE 1.4	2.22
<u>Help FAQ Terms II</u> Review	<u>IEEE∮Paer</u> Quick Links ▼	» S
Welcome to IEEE Xplore	4	
O- Home	Your search matched 32 of 749320 documents. Results are shown 15 to a page, sorted by publication year in descending order.	er.
O- Log-out	You may refine your search by editing the current search expression or entering a	a new one the t
~	Then click Search Again .	
Tables of Contents	normalization and integer	
O- Journals & Magazines	Search Again	
O- Conference Proceedings	Results: Journal or Magazine = JNL Conference = CNF Standard = STD	
O- Standards		
	16 Generalized multiway branch unit for VLIW microproces	ssors
Search	Soo-Mook Moon; Carson, S.D.	
O- By Author	Parallel and Distributed Systems, IEEE Transactions on , Volume	: 6 Issue: 8
O- Basic	1995	
O- Advanced	Page(s): 850 -862	
Member Services		
O- Join IEEE	[Abstract] [PDF Full-Text (1068 KB)] JNL	
○ Establish IEEE Web Account	17 Minimum number of adders for implementing a multipli to the design of multiplierless digital filters	er and its a
WILLS 7 4 5 1 5 4 5 1 1 1 2 1	Dongning Li	
	Circuits and Systems II: Analog and Digital Signal Processing, IE	EE Transact
	Volume: 42 Issue: 7, July 1995	
	Page(s): 453 -460	
	[Abstract] [PDF Full-Text (680 KB)] JNL	
	18 Normalization and extensionality	***************************************

Рірегпо, А.

Logic in Computer Science, 1995. LICS '95. Proceedings., Tenth Annual IEEE Symposium on , 1995

Page(s): 300 -310

[Abstract] [PDF Full-Text (708 KB)] CNF

19 Trellis-coded continuous-phase frequency-shift keying with ring convolutional codes

Yang, R.H.-H.; Taylor, D.P.

Information Theory, IEEE Transactions on , Volume: 40 Issue: 4 , July 1994

Page(s): 1057 -1067

[Abstract] [PDF Full-Text (804 KB)] JNL

20 Recurrent Neural Networks And Fibonacci Numeration System

Yacoub, M.; Saoudi, A.

Neural Networks, 1993. IJCNN '93-Nagoya. Proceedings of 1993 Internationa

Conference on , Volume: 3

Page(s): 2331 -2334

[Abstract] [PDF Full-Text (216 KB)] CNF

21 Decidability of the strict reachability problem for TPN's with ration real durations

Ruiz, V.V.; De Frutos Escrig, D.; Gomez, F.C.

Petri Nets and Performance Models, 1993. Proceedings., 5th International Wo , 1993

Page(s): 56 -65

[Abstract] [PDF Full-Text (824 KB)] CNF

22 A Polynomial-time Algorithm For Designing Digital Filters With Power-of-two Coefficients

Dongning Li; Jianjian Song; Yong Ching Lim

Circuits and Systems, 1993., ISCAS '93, 1993 IEEE International Symposium

1993

Page(s): 84 -87

[Abstract] [PDF Full-Text (0 KB)] CNF

23 A polynomial-time algorithm for designing digital filters with powe coefficients

Li, D.; Song, J.; Lim, Y.C.

Circuits and Systems, 1993., ISCAS '93, 1993 IEEE International Symposium 1993

Page(s): 84 -87 vol.1

[Abstract] [PDF Full-Text (352 KB)] CNF

24 Bit-level systolic carry-save array division

Dawid, H.; Fettweis, G.

Global Telecommunications Conference, 1992. Conference Record., GLOBECO Communication for Global Users., IEEE , 1992

Page(s): 484 -488 vol.1

[Abstract] [PDF Full-Text (564 KB)] CNF

25 Fibonacci representations and finite automata

Frougny, C.

Information Theory, IEEE Transactions on, Volume: 37 Issue: 2, March 1991

Page(s): 393 -399

[Abstract] [PDF Full-Text (580 KB)] JNL

26 A redundant binary Euclidean GCD algorithm

Parikh, S.N.; Matula, D.W.

Computer Arithmetic, 1991. Proceedings., 10th IEEE Symposium on , 1991

Page(s): 220 -225

[Abstract] [PDF Full-Text (348 KB)] CNF

27 Representation of numbers in nonclassical numeration systems Frougny, C.

Computer Arithmetic, 1991. Proceedings., 10th IEEE Symposium on , 1991 Page(s): 17 -21

[Abstract] [PDF Full-Text (400 KB)] CNF

28 A systematic method for division with high average bit skipping Mandelbaum, D.M.

Computers, IEEE Transactions on , Volume: 39 Issue: 1 , Jan. 1990

Page(s): 127 -130

[Abstract] [PDF Full-Text (376 KB)] JNL

29 Reduced-rank least squares channel estimation

Barton, M.; Tufts, D.W.

Acoustics, Speech and Signal Processing [see also IEEE Transactions on Signa Processing], IEEE Transactions on , Volume: 38 Issue: 8 , Aug. 1990

Page(s): 1403 -1410

[Abstract] [PDF Full-Text (708 KB)] JNL

30 Some inference rules for integer arithmetic for verification of flowc programs on integers

Sarkar, D.C.; De Sarkar, S.C.

Software Engineering, IEEE Transactions on , Volume: 15 Issue: 1 , Jan. 1989

Page(s): 1 -9

[Abstract] [PDF Full-Text (660 KB)] JNL

[Prev] 1 2 3 [Next]

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2002 IEEE — All rights reserved

IEEE HOME ! SEARCH IEEE ! SHOP ! WEB ACCOUNT ! CONTACT IEEE

Membership Publi	cations/Services Standards Conferences Careers/Jobs
	Xplore ^M
Help FAQ Terms Review	IEEE PaerQuick Links▼
Welcome to IEEE Xplore - Home - Log-out Tables of Contents - Journals & Magazines - Conference Proceedings	Your search matched 32 of 749320 documents. Results are shown 15 to a page, sorted by publication year in descending order. You may refine your search by editing the current search expression or entering a new one the te Then click Search Again. normalization and integer Search Again Results: Journal or Magazine = JNL Conference = CNF Standard = STD
Search O- By Author O- Basic O- Advanced	31 The calculation of the probability of detection and the generalized N Q-function Shnidman, D.A. Information Theory, IEEE Transactions on , Volume: 35 Issue: 2 , March 1989 Page(s): 389 -400
Member Services O Join IEEE O Establish IEEE Web Account Print Format	[Abstract] [PDF Full-Text (600 KB)] JNL 32 Beam deviations of large linear arrays due to wavy phase errors Nakatsuka, K. Antennas and Propagation, IEEE Transactions on , Volume: 36 Issue: 7 , July Page(s): 1014 -1018
	[Abstract] [PDF Full-Text (368 KB)] JNL

[Prev] 1 2 3

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Copyright @ 2002 IEEE — All rights reserved

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

TEEL HOME GEARGI	
Membership Public	XOLORE
	RELEASE 1.3
Help FAQ Terms II	<u>EEE:Peer</u> Quick Links ▼
<u>Review</u>	
Welcome to IEEE Xplore	
O- Home	Your search matched 61 of 749320 documents. Results are shown 25 to a page, sorted by publication year in descending order.
O- Log-out	You may refine your search by editing the current search expression or entering a new one the te
	Then click Search Again .
Tables of Contents	normalization and tetrahedral or tetrahedron and integers
O- Journals & Magazines	Search Again
O- Conference Proceedings	Results: Journal or Magazine = JNL Conference = CNF Standard = STD
Standards	
Consult.	Design sensitivities using high-order tetrahedral vector elements
Search	Webb, J.P.
O- By Author	Magnetics, IEEE Transactions on , Volume: 37 Issue: 5 Part: 1 , Sept. 2001
O- Basic	Page(s): 3600 -3603
O- Advanced	
Member Services	[Abstract] [PDF Full-Text (208 KB)] JNL
O- Join IEEE	
C Establish IEEE Web Account	2 3D tetrahedron ray tracing algorithm
VICU ACCUUM	Zhang, Z.; Yun, Z.; Iskander, M.F.
Print Format	Electronics Letters, Volume: 37 Issue: 6, 15 March 2001
	Page(s): 334 -335
	[Abotroct] [DDE Full Toyt (220 KB)] INI
	[Abstract] [PDF Full-Text (220 KB)] JNL
	3 Efficient formulation approach for the forward kinematics of the 3-6 Stewart-Gough Platform Se-Kyong Song; Dong-Soo Kwon
	Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ Internation

Conference on , Volume: 3, 2001

Page(s): 1688 -1693 vol.3

[Abstract] [PDF Full-Text (487 KB)] CNF

4 The electronic application of materials from the B-N-C-Si compositio tetrahedron

Badzian, A.

Wide Bandgap Layers, 2001. Abstract Book. 3rd International Conference on Applications of , 2001

Page(s): 31

[Abstract] [PDF Full-Text (61 KB)] CNF

5 New methodology for the forward kinematics of 6-DOF parallel man using tetrahedron configurations

Se-Kyong Song; Dong-Soo Kwon

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International C

on, Volume: 2, 2001 Page(s): 1307 -1312 vol.2

[Abstract] [PDF Full-Text (496 KB)] CNF

6 Deformation and cutting in virtual surgery

Shi Jiao-Ying; Yan Li-Xia

Medical Imaging and Augmented Reality, 2001. Proceedings. International W

on, 2001

Page(s): 95 -102

[Abstract] [PDF Full-Text (616 KB)] CNF

7 3-D element generation for multi-connected complex dental and ma structure

Jianxin Gao; Zuquan Ding; Guangzhong Yang

Medical Imaging and Augmented Reality, 2001. Proceedings. International W on , 2001

Page(s): 267 -271

[Abstract] [PDF Full-Text (504 KB)] CNF

8 Efficient simplification of polygonal surface models

Hussain, M.; Okada, Y.; Niijima, K.

Information Visualisation, 2001. Proceedings. Fifth International Conference o

Page(s): 464 -469

[Abstract] [PDF Full-Text (496 KB)] CNF

9 Constant-time neighbor finding in hierarchical tetrahedral meshes

Lee, M.; De Floriani, L.; Samet, H.

Shape Modeling and Applications, SMI 2001 International Conference on., 20

Page(s): 286 -295

[Abstract] [PDF Full-Text (784 KB)] CNF

10 Band-structure calculations of SiO/sub 2/ by means of Hartree-Foc density-functional techniques

Gnani, E.; Reggiani, S.; Colle, R.; Rudan, M.

Electron Devices, IEEE Transactions on , Volume: 47 Issue: 10 , Oct. 2000

Page(s): 1795 -1803

[Abstract] [PDF Full-Text (636 KB)] JNL

11 Constructing material interfaces from data sets with volume-fractio information

Bonnell, K.S.; Schikore, D.R.; Joy, K.I.; Duchaineau, M.; Hamann, B.

Visualization 2000. Proceedings, 2000

Page(s): 367 -372, 577

[Abstract] [PDF Full-Text (532 KB)] CNF

12 Tetrahedron based, least squares, progressive volume models with application to freehand ultrasound data

Roxborough, T.; Nielson, G.M.

Visualization 2000. Proceedings, 2000

Page(s): 93 -100

[Abstract] [PDF Full-Text (536 KB)] CNF

13 Fast multiresolution modeling of 3D objects using mesh-based wav analysis

Hongbin Zha; Mitsutomi, T.; Hasegawa, T.

Systems, Man, and Cybernetics, 2000 IEEE International Conference on , Volu $\,$

2000

Page(s): 1394 -1399 vol.2

[Abstract] [PDF Full-Text (480 KB)] CNF

14 Dynamic rolling of modular robots

Woo Ho Lee; Sanderson, A.C.

Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Co

on , Volume: 3 , 2000 Page(s): 2840 -2846 vol.3

[Abstract] [PDF Full-Text (672 KB)] CNF

15 A multilevel fast multipole algorithm for solving 3D volume integra equations of electromagnetic scattering

Lu, C.C.; Song, J.M.; Chew, W.C.

Antennas and Propagation Society International Symposium, 2000. IEEE , Vol

2000

Page(s): 1864 -1867 vol.4

[Abstract] [PDF Full-Text (148 KB)] CNF

16 Analysis of microwave rewarming of cryopreserved tissues

Lu, C.C.; Gao, D.Y.; Li, H.Z.

Antennas and Propagation Society International Symposium, 2000. IEEE , Vol 2000

Page(s): 1068 -1071 vol.2

[Abstract] [PDF Full-Text (200 KB)] CNF

17 Haar-like wavelets defined over tetrahedrical grids

Boscardin, L.; Castro, L.; Castro, S.

Computer Science Society, 2000. SCCC '00. Proceedings. XX International Co

of the Chilean, 2000

Page(s): 117 -125

[Abstract] [PDF Full-Text (472 KB)] CNF

18 Formation flying in elliptical orbits

Schiff, C.; Rohrbaugh, D.; Bristow, J.

Aerospace Conference Proceedings, 2000 IEEE, Volume: 7, 2000

Page(s): 37 -47 vol.7

[Abstract] [PDF Full-Text (1520 KB)] CNF

19 Rapid solution of hybrid surface-volume integral equations for EM scattering by multilevel fast multipole algorithm

Lu, C.C.

Antennas, Propagation and EM Theory, 2000. Proceedings. ISAPE 2000. 5th International Symposium on , 2000

Page(s): 231 -234

[Abstract] [PDF Full-Text (228 KB)] CNF

20 Gram-Schmidt orthogonalization of equine ECG signals

Holcik, J.; Hanak, J.; Vaclavik, V.; Jahn, P.; Sedlinska, M.

Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd A

International Conference of the IEEE, Volume: 2, 2000

Page(s): 908 -911 vol.2

[Abstract] [PDF Full-Text (240 KB)] CNF

21 On a construction of a hierarchy of best linear spline approximation repeated bisection

Hamann, B.; Jordan, B.W.; Wiley, D.F.

Visualization and Computer Graphics, IEEE Transactions on , Volume: 5 Issue

Jan.-March 1999 Page(s): 30 -46

[Abstract] [PDF Full-Text (1236 KB)] JNL

22 Voxelization chip design using FPGAs

Painkras, E.; Chan Chee Lei; Chok Ng Yong Ocean

TENCON 99. Proceedings of the IEEE Region 10 Conference, Volume: 1, 1999

G......

Page(s): 290 -293 vol.1

[Abstract] [PDF Full-Text (348 KB)] CNF

23 Accurate, finite-volume methods for three dimensional magneto-hydrodynamics on Lagrangian meshes

Rousculp, C.L.; Barnes, D.C.

Plasma Science, 1999. ICOPS '99. IEEE Conference Record - Abstracts. 1999

International Conference on , 1999

Page(s): 215

[Abstract] [PDF Full-Text (88 KB)] CNF

24 Tetrahedral mesh compression with the cut-border machine

Gumhold, S.; Guthe, S.; Strasser, W.

Visualization '99. Proceedings, 1999

Page(s): 51 -509

[Abstract] [PDF Full-Text (968 KB)] CNF

25 Closed-form forward position kinematics for a (3-1-1-1)/sup 2/ ful parallel manipulator

Bruyninckx, H.

Robotics and Automation, IEEE Transactions on , Volume: 14 Issue: 2 , April 1

Page(s): 326 -328

[Abstract] [PDF Full-Text (96 KB)] JNL

1 2 3 [Next]

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join | IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Review	EE Peer Quick Links ▼
Welcome to IEEE Xplore	Your search matched 2 of 749320 documents.
O- Home	Results are shown 25 to a page, sorted by publication year in descending order.
O- Log-out	You may refine your search by editing the current search expression or entering a new one the te
Tables of Contages	Then click Search Again .
Tables of Contents	normalization and tetrahedral or tetrahedron and multiple
O- Journals & Magazines	Search Again
O- Conference Proceedings	Results: Journal or Magazine = JNL Conference = CNF Standard = STD
O- Standards	
Search	On a construction of a hierarchy of best linear spline approximations repeated bisection
O- By Author	Hamann, B.; Jordan, B.W.; Wiley, D.F.
O- Basic	Visualization and Computer Graphics, IEEE Transactions on , Volume: 5 Issue
O- Advanced	JanMarch 1999
Member Services	Page(s): 30 -46
O- Join IEEE	[A]
O- Establish IEEE Web Account	[Abstract] [PDF Full-Text (1236 KB)] JNL
Print Format	2 Simplification of tetrahedral meshes
- Pink Polinal	Trotts, I.J.; Hamann, B.; Joy, K.I.; Wiley, D.F.
	Missallandian IOO Duranadiana 4000
	Visualization '98. Proceedings , 1998 Page(s): 287 -295

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Membership Public	ations/Services Standards Conferences	Careers/Jobs					
	Xnlore™					43	
	RELEASE 1.3					(%) ·	
	EE-Peer Quick Links						» S
Review Welcome to IEEE Xplorg							
O- Home	Your search matched 1 of 749320 docume Results are shown 25 to a page, sorted by		ır in d	lescenc	lina or	der	
O- Log-out	You may refine your search by editing the	•			_		one the te
-	Then click Search Again.	***************************************	••••••	***************************************	*******************************	***************************************	
Tables of Contents	normalization and data conversion						
O- Journals & Magazines	Search Again						
O- Conference Proceedings	Results: Journal or Magazine = JNL Conference =	CNF Standard	= STI)			
O- Standards				***************************************	***************************************	***************************************	
Search	1 Dynamic simulation model f machines	or two-phase	e mu	itually	y couj	pled r	eluctan
O- By Author	Reeve, J.M.; Pollock, C.						
O- Basic	Industry Applications Conference		-Sixt	h IAS	Annua	al Mee	ting. Coi
O- Advanced	Record of the 2001 IEEE, Volume Page(s): 40 -47 vol.1	2: 1,2001					
Member Services	1 ugc(3). 40 47 Vol.1						
O- Join IEEE	[Abotement] [DDE Eull Toyt (1400	VD\1 CNE					
O- Establish IEEE Web Account	[Abstract] [PDF Full-Text (1400	KDJĮ CNF		***************************************		***************************************	
Print Format							

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Membership	Publications/Services	Standards	Conferences	Careers/Jobs			
	E Xplore						
<u>Help FAQ T</u> Review	erms <u>IEEE Peer</u> Qu	ick Links	T				
Welcome to IEE	Dynamic s			400 KB)] phase mutual	ly couple	d reluctanc	e machine

O- Log-out

Tables of Contents

- Journals & Magazines
- Conference **Proceedings**
- Standards

Search

- O- By Author
- Basic
- Advanced

Member Services

O- Join IEEE Establish IEEE Web Account

Print Format

- Reeve, J.M.; Pollock, C.

Dept. of Eng., Leicester Univ., UK

This paper appears in: Industry Applications Conference, 2001. Thirty-Sixth IAS

Meeting. Conference Record of the 2001 IEEE

On page(s): 40 - 47 vol.1 30 Sept.-4 Oct. 2001 Chicago, IL, USA

2001 Volume: 1

ISBN: 0-7803-7114-3

IEEE Catalog Number: 01CH37248 Number of Pages: 4 vol.xxxvii+2743

References Cited: 23

INSPEC Accession Number: 7081518

Abstract:

This paper presents a simple yet robust and flexible dynamic simulation model two-phase reluctance type machines. Normalized electromagnetic properties of lamination geometry, the 'flux map', are obtained using nonlinear magnetostat element analysis (FEA). A data conversion algorithm is developed to convert th a form suitable for voltage driven dynamic simulation, i.e. a two-phase coupled flux-MMF-position characterization. System dynamic equations are derived and with the Gauss-Seidel method using the converted data without further need fo Comparison with experimental results for an 8/4 flux switching machine with a shows good agreement. This model can be used to rapidly simulate any windin configuration or excitation scheme based upon the characterized geometry and especially suitable for commercial design.

Index Terms:

reluctance machines; machine theory; electromagnetic fields; laminations; ma iterative methods; finite element analysis; two-phase mutually coupled relucta machines; dynamic simulation model; electromagnetic properties; lamination g flux map; nonlinear magnetostatic finite element analysis; data conversion algo voltage driven dynamic simulation; two-phase coupled flux-MMF-position characterization; dynamic equations; Gauss-Seidel method; winding configurat excitation scheme

[PDF Full-Text (1400 KB)] SEARCH RESULTS

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanc Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | E No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms

	Xplore TM RELEASE 1.3
Help <u>FAQ Terms IE</u> Review	<u>EE Peer</u> Quick Links ▼
Welcome to IEEE Xplore* Home	Your search matched 36 of 749320 documents. Results are shown 25 to a page, sorted by publication year in descending order. You may refine your search by editing the current search expression or entering a new one the te
C- Log-out Tables of Contents	Then click Search Again . normalization and large numbers
O- Journals & Magazines	Search Again
Conference Proceedings	Results: Journal or Magazine = JNL Conference = CNF Standard = STD
Search By Author Basic Advanced	1 Adaptive filtering algorithms with selective partial updates Dogancay, K.; Tanrikulu, O. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transacti Volume: 48 Issue: 8, Aug. 2001 Page(s): 762 -769
Member Services - Join IEEE - Establish IEEE	[Abstract] [PDF Full-Text (224 KB)] JNL
Web Account Print Format	2 Match between normalization schemes and feature sets for handwrite Chinese character recognition Qing Wang; Zheru Chi; Feng, D.D.; Rongchun Zhao Document Analysis and Recognition, 2001. Proceedings. Sixth International Con, 2001 Page(s): 551-555
	[Abstract] [PDF Full-Text (416 KB)] CNF
	3 Classes for fast maximum entropy training Goodman, J. Acquisition Speech, and Signal Processing, 2001, Proceedings, 2001, IEEE

Acoustics, Speech, and Signal Processing, 2001. Proceedings. 2001 IEEE InternationalConference on , Volume: 1, 2001

Page(s): 561 -564 vol.1

[Abstract] [PDF Full-Text (400 KB)] CNF

4 A comprehensive examination of neural network architectures for an fault diagnosis

Aminian, M.; Aminian, F.

Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conferenc

Volume: 3, 2001

Page(s): 2304 -2309 vol.3

[Abstract] [PDF Full-Text (436 KB)] CNF

5 Parametric estimate of intensity inhomogeneities applied to MRI

Styner, M.; Brechbuhler, C.; Szckely, G.; Gerig, G.

Medical Imaging, IEEE Transactions on , Volume: 19 Issue: 3, March 2000

Page(s): 153 -165

[Abstract] [PDF Full-Text (1380 KB)] JNL

6 Constructing chaotic discrete sequences for digital communications correlation analysis

Tao Sang; Ruli Wang; Yixun Yan

Signal Processing, IEEE Transactions on , Volume: 48 Issue: 9 , Sept. 2000

Page(s): 2557 -2565

[Abstract] [PDF Full-Text (420 KB)] JNL

7 Adaptive pole-placement control of MIMO stochastic systems

Wen-Shyong Yu; Hung-Ming Huang

Decision and Control, 2000. Proceedings of the 39th IEEE Conference on , Vol 2000

Page(s): 1121 -1126 vol.2

[Abstract] [PDF Full-Text (504 KB)] CNF

8 Rescaling the energy function in Hopfield networks

Xinchuan Zeng; Martinez, T.R.

Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS Int

Joint Conference on , Volume: 6 , 2000

Page(s): 498 -502 vol.6

[Abstract] [PDF Full-Text (344 KB)] CNF

9 An information system for systematic validation of the software use vehicular microcontrollers

Bhogaraju, S.; Singh, G.B.; Edwards, G.; Limberg, J.; Watson, M.; Gobrogge, Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE, 200 Page(s): 104-109

[Abstract] [PDF Full-Text (452 KB)] CNF

10 Convergence analysis of an oversampled subband adaptive filtering structure using global error

Alves, R.G.; Petraglia, M.R.; Diniz, P.S.R.

Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 20

International Conference on , Volume: 1 , 2000

Page(s): 468 -471 vol.1

[Abstract] [PDF Full-Text (284 KB)] CNF

11 Selective-partial-update NLMS and affine projection algorithms for echo cancellation

Dogancay, K.; Tanrikulu, O.

Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 20

International Conference on , Volume: 1 , 2000

Page(s): 448 -451 vol.1

[Abstract] [PDF Full-Text (288 KB)] CNF

12 Sealing of micromachined cavities using chemical vapor deposition methods: characterization and optimization

Chang Liu; Yu-Chong Tai

Microelectromechanical Systems, Journal of, Volume: 8 Issue: 2, June 1999

Page(s): 135 -145

[Abstract] [PDF Full-Text (528 KB)] JNL

13 Linear theory of the multi-stage Gyro-TWT

Nusinovich, G.; Walter, M.

Plasma Science, 1999. ICOPS '99. IEEE Conference Record - Abstracts. 1999

International Conference on , 1999

Page(s): 226

[Abstract] [PDF Full-Text (92 KB)] CNF

14 Numerical modeling of weakly fused fiber-optic polarization beams

I. Accurate calculation of coupling coefficients and form birefringence

Szu-Wen Yang; Hung-Chun Chang

Lightwave Technology, Journal of, Volume: 16 Issue: 4, April 1998

Page(s): 685 -690

[Abstract] [PDF Full-Text (228 KB)] JNL

15 Fast design of reduced-complexity nearest-neighbor classifiers usin triangular inequality

Eel-Wan Lee; Soo-Ik Chae

Pattern Analysis and Machine Intelligence, IEEE Transactions on , Volume: 20

May 1998

Page(s): 562 -566

[Abstract] [PDF Full-Text (176 KB)] JNL

16 Digital modulation classification using power moment matrices

Hero, A.O., III; Hadinejad-Mahram, H.

Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE

International Conference on , Volume: 6 , 1998

Page(s): 3285 -3288 vol.6

[Abstract] [PDF Full-Text (508 KB)] CNF

17 Exploitation of hyperspectral imagery and lidar for landuse classific

Perry, E.M.; Foote, H.P.; Petrie, G.M.; Steinmaus, K.L.; Irwin, D.E.; Stephan, Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98.

IEEE International , Volume: 2 , 1998

Page(s): 1013 -1015 vol.2

[Abstract] [PDF Full-Text (248 KB)] CNF

18 Enhancements in the determination of ocean surface wave height f grazing incidence microwave backscatter

Buckley, J.R.; Aler, J.

Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98.

IEEE International, Volume: 5, 1998

Page(s): 2487 -2489 vol.5

[Abstract] [PDF Full-Text (260 KB)] CNF

19 Neural network based minutiae filtering in fingerprints

Maio, D.; Maltoni, D.

Pattern Recognition, 1998. Proceedings. Fourteenth International Conference

Volume: 2, 1998

Page(s): 1654 -1658 vol.2

[Abstract] [PDF Full-Text (156 KB)] CNF

20 Accurate frequency-domain modeling and efficient circuit simulatio high-speed packaging interconnects

Beyene, W.T.; Schutt-Aine, J.

Microwave Theory and Techniques, IEEE Transactions on , Volume: 45 Issue:

, Oct. 1997

Page(s): 1941 -1947

[Abstract] [PDF Full-Text (184 KB)] JNL

21 A Fourier descriptor model of hysteresis loops for sinusoidal and di waveforms

Mohammed, I.A.; Al-Hashemy, B.A.R.; Tawfik, M.A.

Magnetics, IEEE Transactions on , Volume: 33 Issue: 1 Part: 2 , Jan. 1997

Page(s): 686 -691

[Abstract] [PDF Full-Text (428 KB)] JNL

22 Probability of error in MMSE multiuser detection

Poor, H.V.; Verdu, S.

Information Theory, IEEE Transactions on , Volume: 43 Issue: 3 , May 1997

Page(s): 858 -871

[Abstract] [PDF Full-Text (596 KB)] JNL

23 A modular analog NLMS structure for system identification

Nino-de-Rivera, L.; Perez-Meana, H.; Sanchez-Sinencio, E.

Circuits and Systems, 1997. Proceedings of the 40th Midwest Symposium on 2, 1998

Page(s): 835 -840 vol.2

[Abstract] [PDF Full-Text (448 KB)] CNF

24 Reduced-complexity sequence detection approaches for PR-shaped linear modulations

Rizos, A.D.; Proakis, J.G.

Global Telecommunications Conference, 1997. GLOBECOM '97., IEEE, Volume

Page(s): 342 -346 vol.1

[Abstract] [PDF Full-Text (608 KB)] CNF

25 Convergence of the delayed normalized LMS algorithm with decrea size

Sang-Sik Ahn; Voltz, P.J.

Signal Processing, IEEE Transactions on , Volume: 44 Issue: 12 , Dec. 1996

Page(s): 3008 -3016

[Abstract] [PDF Full-Text (852 KB)] JNL

1 2 [Next]

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join | IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

	Xplore ^{IM}
<u>Help FAO Terms II</u> Review	<u>FEF Paer</u> Quick Links ▼
Welcome to IEEE Xplore - Home - Log-out	Your search matched 36 of 749320 documents. Results are shown 25 to a page, sorted by publication year in descending order. You may refine your search by editing the current search expression or entering a new one the te Then click Search Again .
Tables of Contents Journals & Magazines	normalization and large numbers Search Again
Conference ProceedingsStandards	Results: Journal or Magazine = JNL Conference = CNF Standard = STD
Search - By Author - Basic - Advanced Member Services	26 SEEMORE: a view-based approach to 3-D object recognition using visual cues Mel, B.W. Pattern Recognition, 1996., Proceedings of the 13th International Conference Volume: 1, 1996 Page(s): 570 -574 vol.1
O- Join IEEE O- Establish IEEE Web Account	[Abstract] [PDF Full-Text (476 KB)] CNF
Print Format	27 Proper prior marginalization of the conditional ML model for combi model selection/source localization Radich, B.M.; Buckley, K.M. Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 Internatio Conference on, Volume: 3, 1995 Page(s): 2084 -2087 vol.3
	[Abstract] [PDF Full-Text (264 KB)] CNF
	28 Accurate 3D detector response compensation in SPECT using multiplicative reconstruction methods Tsui, B.M.W.; Zhao, XD.; Frey, E.C. Nuclear Science Symposium and Medical Imaging Conference Record, 1995.

, Volume: 2, 1995

Page(s): 1151 -1155 vol.2

[Abstract] [PDF Full-Text (636 KB)] CNF

29 Almost-sure convergence of the non-homogeneous DNLMS algorith

decreasing step size

Sang-Sik Ahn; Voltz, P.J.

Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE Inter

Conference on , Volume: iii , 1994 Page(s): III/401 -III/404 vol.3

[Abstract] [PDF Full-Text (208 KB)] CNF

30 Reduced shift invariant second order neural networks using princip component analysis and pixel combinations

Bong-Kyu Lee; Dong-Kyu Kim; Yoo-Kun Cho; Heong-Ho Lee; Hee-Yeung Hwa Neural Networks, 1994. IEEE World Congress on Computational Intelligence., IEEE International Conference on , Volume: 7 , 1994

Page(s): 4283 -4287 vol.7

[Abstract] [PDF Full-Text (348 KB)] CNF

31 CORDIC based pipeline architecture for all-pass filters7

Nikolaidis, S.S.; Metafas, D.E.; Goutis, C.E.

Circuits and Systems, 1993., ISCAS '93, 1993 IEEE International Symposium 1993

Page(s): 1917 -1920 vol.3

[Abstract] [PDF Full-Text (344 KB)] CNF

32 Optimising hidden Markov models using discriminative output distr

Woodland, P.C.; Cole, D.R.

Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 Internatio Conference on , 1991

Page(s): 545 -548 vol.1

[Abstract] [PDF Full-Text (400 KB)] CNF

33 A stochastic Newton algorithm with data-adaptive step size

Davila, C.E.

Acoustics, Speech and Signal Processing [see also IEEE Transactions on Signa Processing], IEEE Transactions on , Volume: 38 Issue: 10 , Oct. 1990 Page(s): 1796 -1798

[Abstract] [PDF Full-Text (232 KB)] JNL

34 Modeling of an RF electron accelerator

Gitomer, S.J.; Jones, M.E.

Plasma Science, 1990. IEEE Conference Record - Abstracts., 1990 IEEE Intern

Conference on , 1990

Page(s): 214

[Abstract] [PDF Full-Text (92 KB)] CNF

35 The design of linear shift-variant digital filters using interpolation t

Hui, Zhang; Wang, Dejung; Zhao, Zhengang

TENCON '89. Fourth IEEE Region 10 International Conference, 1989

Page(s): 263 -265

[Abstract] [PDF Full-Text (208 KB)] CNF

36 Bus load modelling and forecasting

Handschin, E.; Dornemann, C.

Power Systems, IEEE Transactions on , Volume: 3 Issue: 2 , May 1988

Page(s): 627 -633

[Abstract] [PDF Full-Text (400 KB)] JNL

[Prev] 1 2

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Membership Public	cations/Services Standards Conferences Careers/Jobs	
	Xplore TM RELEASE 1.3	
Help FAQ Terms IE Review	IEEE Peer Quick Links ▼	» S
Welcome to IEEE Xplore - Home - Log-out Tables of Contents - Journals & Magazines - Conference - Proceedings - Standards	Your search matched 1 of 749320 documents. Results are shown 25 to a page, sorted by publication year in deserving the current search expression. Then click Search Again. tetrahadral or tetrahedron and normalization Search Again Results: Journal or Magazine = JNL Conference = CNF Standard = STD	n or entering a new one the t
Search - By Author - Basic - Advanced	 Recursive least-squares lattices and trigonom Desbouvries, F. Acoustics, Speech, and Signal Processing, 1993. ICAS Conference on , Volume: 3 , 1993 Page(s): 404 -407 vol.3 	
Member Services - Join IEEE - Establish IEEE Web Account	[Abstract] [PDF Full-Text (304 KB)] CNF	
A Print Format		

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

Membership	Public	ations/Services	Standards	Conferences	Careers/Jobs		
	E)	Xplore RELEASE 1	○ TM 3				
Help FAQ Te	erms IE	EE Peer Qu	ick Links	V			
Welcome to IEEE - Home - Log-out	Xplore	- Desbouv	least-square ries, F.	Full-Text (3 es lattices and nmun., Evry,	d trigonometry	in the spheri	cal triangle

Tables of Contents

- O- Journals & Magazines
- O- Conference Proceedings
- O- Standards

Search

- O- By Author
- O- Basic
- O- Advanced

Member Services

- O- Join IEEE
- O- Establish IEEE
 Web Account
- Print Format

This paper appears in: Acoustics, Speech, and Signal Processing, 1993. ICASSP

IEEE International Conference on

On page(s): 404 - 407 vol.3

27-30 April 1993 Minneapolis, MN, USA 1993

1993 Volume: 3

ISBN: 0-7803-0946-4

Number of Pages: 5 vol. (652+735+606+559+681)

References Cited: 13

INSPEC Accession Number: 4777675

Abstract:

The three fundamental planar biorthogonalization steps which underlie the geo derivation of the fast recursive least squares (FRLS) adaptive lattices are gathe unit-length 3-D tetrahedron. The inverse of Yule's PARCOR Identity (YPII) then nice geometric interpretation in terms of projections into this tetrahedron. Sinc tetrahedrons are closely related to spherical triangles, YPII is recognized as the fundamental 'cosine law' of spherical trigonometry. In that framework, the angle-normalized RLS lattice recursions happen to be one particular solution to six spherical triangle problems. The practical interest of this geometric interpre that one can take advantage of spherical trigonometry to derive unnoticed recu among RLS quantities. This leads, for instance, to an original 'dual' version of Y

Index Terms:

trigonometry; planar biorthogonalization steps; recursive least squares; adapti geometric interpretation; spherical trigonometry; adaptive filters; computation geometry; filtering and prediction theory; least squares approximations

SEARCH RESULTS [PDF Full-Text (304 KB)]

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanc Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | E No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms

RECURSIVE LEAST-SQUARES LATTICES AND TRIGONOMETRY IN THE SPHERICAL TRIANGLE

F. Desbouvries Institut National des Télécommunications, 9 rue Charles Fourier, 91011 Evry, France

ABSTRACT

The 3 fundamental planar biorthogonalization steps which underlie the geometric derivation of the FRLS adaptive lattices are gathered into a unit-length 3D tetrahedron. The inverse of Yule's PARCOR Identity (YPII) then admits a nice geometric interpretation in terms of projections into this tetrahedron. Since tetrahedrons are closely related to spherical triangles, YPII is recognized as the fundamental "cosine law" of spherical trigonometry. In that framework, the angle-normalized RLS lattice recursions happen to be one particular solution to one of the six spherical triangle problems. The practical interest of this brand new geometric interpretation is that we can take advantage of the well-trodden path of spherical trigonometry to derive unoticed recursions among RLS quantities. This leads, for instance, to an original "dual" version of YPII.

1 - INTRODUCTION

Fast Recursive Least-Squares (FRLS) prewindowed (PW) algorithms are well known to exist under three different structures: transversal, lattice, and QRD-based filters. The Recursive Least-Squares Lattice (RLSL) has been known for a long time now [1]. Later on, Lee et al showed that the RLSL basic cell reduces to a recursion among 3 variables only, when appropriate normalization is performed. The incoming entries are the forward and delayed backward "double-" or "angle-" normalized prediction errors, $\bar{\epsilon}_{n-1}^i$ and $\bar{\eta}_{n-1}^{i-1}$, at order n-1, together with the n^{th} order PARCOR ρ_n^{i-1} at time i-1. The algorithm first updates the PARCOR, then computes the forward and backward errors at order n (1-a,b,c):

$$\begin{split} & \rho_{n}^{i} = \hat{\varepsilon}_{n-1}^{i} (\tilde{\eta}_{n-1}^{i-1})^{T} + \left(I - \tilde{\varepsilon}_{n-1}^{i} (\hat{\varepsilon}_{n-1}^{i})^{T}\right)^{\frac{1}{2}} \rho_{n}^{i-1} \left(I - \tilde{\eta}_{n-1}^{i-1} (\tilde{\eta}_{n-1}^{i-1})^{T}\right)^{\frac{1}{2}} \\ & \tilde{\varepsilon}_{n}^{i} = \left(I - \rho_{n}^{i} (\rho_{n}^{i})^{T}\right)^{-\frac{1}{2}} \left(\tilde{\varepsilon}_{n-1}^{i} - \rho_{n}^{i} \ \tilde{\eta}_{n-1}^{i-1}\right) \left(I - (\tilde{\eta}_{n-1}^{i-1})^{T} \tilde{\eta}_{n-1}^{i-1}\right)^{-\frac{T}{2}} \\ & \tilde{\eta}_{n}^{i} = \left(I - (\rho_{n}^{i})^{T} \rho_{n}^{i}\right)^{-\frac{1}{2}} \left(\tilde{\eta}_{n-1}^{i-1} - (\rho_{n}^{i})^{T} \tilde{\varepsilon}_{n-1}^{i}\right) \left(I - (\tilde{\varepsilon}_{n-1}^{i})^{T} \tilde{\varepsilon}_{n-1}^{i}\right)^{-\frac{T}{2}} \end{split}$$

These recursions were derived both algebraically [2] and geometrically [2], [3]. However this first geometric derivation was rather lengthy and presented the disadvantage to make a clear distinction between, on the one hand, the order recursive equations (1-b), (1-c); and on the other hand, the pure time-update (1-a), the derivation of which needed to introduce a complicated decomposition of some orthogonal projection in terms of oblique projections.

Both derivations were reconciled in a most elegant way (4) when it appeared that (1-b), (1-c) as well as a reordering (1-d) of (1-a):

 $\rho_n^{i-1} = \left(I - \tilde{\varepsilon}_{n-1}^i (\tilde{\varepsilon}_{n-1}^i)^T\right)^{-\frac{1}{2}} \left(\rho_n^i - \tilde{\varepsilon}_{n-1}^i (\tilde{\eta}_{n-1}^{i-1})^T\right) \left(I - \tilde{\eta}_{n-1}^{i-1} (\tilde{\eta}_{n-1}^{i-1})^T\right)^{-\frac{1}{2}}$ were 3 particular applications of a general identity among partial correlation coefficients, first discovered (in the scalar case) by Yule [5].

In this paper, we first gather the 3 fundamental planar biorthogonalization steps which underlie the RLS adaptive lattice in a 3D unit-length tetrahedron. YPII then receives a nice new geometric interpretation in terms of projections into this tetrahedron.

Now, tetrahedrons and spherical triangles are closely related figures in the 3D space. Deriving projective identities into tetrahedrons thus amounts to deriving trigonometric relations on the sphere. It then happens that YPII is indeed the fundamental cosine law of spherical trigonometry. In that new geometrical framework, the old, classical angle-normalized RLS lattice algorithm happens to be one particular solution to one of the six spherical triangle problems.

Furthermore, the formulae of spherical trigonometry induce, by analogy, similar recursions among parcors. For instance, the cosine law in the polar triangle leads to an original "dual" version of YPII.

2 - UPDATING OF PROJECTION OPERATORS AND PLANAR BIORTHOGONALIZATION STEPS

The following derivation can be formalized in any Hilbert space (since we are just concerned with projection identities), and more specifically in the space $L^2(\Omega, A, P)$ of square-integrable random variables with inner product $(X,Y) = E(XY^T)$. In this paper, we will adopt the perhaps more familiar alternative viewpoint of deterministic adaptive filtering. The framework is thus the space R^N of N-dimensional vectors. More generally, for reasons to become clear soon, X (and also Y, A, B, C) will denote in the sequel any arbitrary aggregate of n_X $(1 \le n_X \le N) N$ -dimensional vectors (see e.g. [3] for details); the inner product among X and Y is defined as $(X,Y) = X^TY$; X is orthogonal to Y $(X \perp Y)$ if $(X,Y) = 0_{n_X \times n_Y}$. The linear combination \hat{X} of a set of vectors

The linear combination \hat{x} of a set of vectors $Y = \{y_1 \cdots y_{n_T}\}$ that best fits (in a LS sense: $\|x - \hat{x}\| \min$) a vector x is well known to be the projection of x onto the space spanned by the vectors of Y. Thus LS filtering is intimately connected with projecting onto a vector space. Recursive LS filtering is concerned with updating the optimal solution on arrival of new data; it thus amounts to updating projection operators. Let $P_X = X(X^TX)^{-1}X^T$ denote the projection operator onto the space spanned by X, and

III-404

 $P_X^1 = I - X(X^TX)^{-1}X^T$ its orthogonal complement¹. Now, a key tool for updating projection operators is the fact that the projection onto the augmented subspace (X,Y) is equal to the projection onto X, plus the projection onto that part of Y which is orthogonal to X:

$$P_{X,T} = P_X + P_X^{\perp} Y (Y^T P_X^{\perp} Y)^{-1} Y^T P_X^{\perp}$$

$$P_{X,Y}^{\perp} = P_X^{\perp} - P_X^{\perp} Y (Y^T P_X^{\perp} Y)^{-1} Y^T P_X^{\perp}$$
(2-a)
$$(2-b)$$

These identities are of utmost importance in RLS adaptive filtering as well as in Kalman filtering.

Let us now recall some known results [6], [7]. From (2-b), we see that we can go from $P_{Y}^{\perp}A$ to $P_{Y,B}^{\perp}A$ with the help of $P_{T}^{\perp}B$:

$$\underline{P_{Y,B}^{\perp}A} = \underline{P_{Y}^{\perp}A} - \underline{P_{Y}^{\perp}B} \left(B^{T}P_{T}^{\perp}B\right)^{-1} \left(B^{T}P_{T}^{\perp}A\right) \tag{3-a}$$

apart from the obvious orthogonality relationships:

$$P_{YA}^{\perp} \perp Y$$
 , $P_{YB}^{\perp} B \perp Y$, $P_{Y,B}^{\perp} A \perp Y, B$

there appears a new one among the 3 above vectors:

$$P_{Y,B}^{\perp}A \perp P_Y^{\perp}B \tag{3-b}$$

Now, from the 2 elementary residuals $P_{\gamma}^{\perp}A$, $P_{\gamma}^{\perp}B$ used in (3-a), we can construct as well the 2^{ad} augmented residual $P_{\gamma,A}^{\perp}B$. Similarly, $P_{\gamma,A}^{\perp}B \perp P_{\gamma}^{\perp}A$. This leads to fig.1:

The coupled recursions $(P_Y^{\perp}A, P_Y^{\perp}B) \to (P_{Y,A}^{\perp}B, P_{Y,B}^{\perp}A)$ are thus a "planar" biorthogonalization process (4):

$$\begin{bmatrix}
P_{Y,B}^{\perp}A & P_{Y,A}^{\perp}B
\end{bmatrix} = \\
\begin{bmatrix}
P_{Y}^{\perp}A & P_{Y}^{\perp}B
\end{bmatrix}
\begin{bmatrix}
I & -(A^{T}P_{Y}^{\perp}A)^{-1}(A^{T}P_{Y}^{\perp}B) \\
-(B^{T}P_{Y}^{\perp}B)^{-1}(B^{T}P_{Y}^{\perp}A) & I
\end{bmatrix}$$

with $P_{Y,B}^{\perp}A \perp P_Y^{\perp}B$, $P_{Y,A}^{\perp}B \perp P_Y^{\perp}A$.

This is maybe best visualized by fig.2, drawn out of fig.1 (for the 2 right triangles lie in parallel planes):

It will soon be necessary to manipulate normalized residuals, defined as³:

$$\overline{P_{Y}^{\perp}A} \stackrel{\triangle}{=} P_{Y}^{\perp}A \left(A^{T}P_{Y}^{\perp}A\right)^{-\frac{1}{2}} \tag{5-a}$$

in which $M^{1/2}$ denotes any square-root of the positive definite matrix M, i.e., $M^{\dagger}(M^{\dagger})^T = M^{\dagger}M^{\dagger} = M$. Then we have:

$$\left(\overline{P_{Y}^{\perp}A}\right)^{T}\overline{P_{Y}^{\perp}A} = I_{n_{A}\times n_{A}}, \quad P_{\overline{P_{Y}^{\perp}A}} = \overline{P_{Y}^{\perp}A}\left(\overline{P_{Y}^{\perp}A}\right)^{T} = P_{\overline{P_{Y}^{\perp}A}} \quad (5-b,c)$$

(4) admits the normalized version (6-a,b):

in which $\rho = \rho_r(A, B)$ is the PARCOR (7)

$$\rho_{Y}(A,B) \stackrel{\Delta}{=} \left(\overline{P_{Y}^{\perp} A} \cdot \overline{P_{Y}^{\perp} B} \right)$$

$$= \left(A^T P_Y^{\perp} A\right)^{-\frac{1}{2}} \left(A^T P_Y^{\perp} B\right) \left(B^T P_Y^{\perp} B\right)^{-\frac{7}{4}} = \rho_Y^T (B, A)$$

and we used the identity (B):

$$\left(B^T P_T^{\perp} B\right)^{-\frac{1}{2}} \left(B^T P_{Y,A}^{\perp} B\right)^{\frac{1}{2}} = \left(I - \rho_Y(B, A) \rho_Y(A, B)\right)^{\frac{1}{2}}$$
which is soon derived from (2-b).

3 - YULE'S PARCOR IDENTITY IN THE UNIT-LENGTH 3D TETRAHEDRON

Yule's PARCOR Identity is a formula that expresses the augmented parcor $\rho_{Y,A}(C,B)$, say, in terms of the elementary ones $\rho_{Y}(A,C)$, $\rho_{Y}(B,A)$ and $\rho_{Y}(C,B)$. It is simply derived by pre- (post-) multiplying (2-b) by $\left(C^{T}P_{Y}^{\perp}C\right)^{-\frac{1}{2}}C^{T}$ (by $B\left(B^{T}P_{Y}^{\perp}B\right)^{-\frac{1}{2}}$), and by using (7), (8) (see [8], Annex A, for details):

$$\rho_{Y,A}(C,B) = (I - \rho_Y(C,A)\rho_Y(A,C))^{-\frac{1}{2}} \times (9)$$

$$(\rho_Y(C,B) - \rho_Y(C,A)\rho_Y(A,B)) \times (I - \rho_Y(B,A)\rho_Y(A,B))^{-\frac{7}{2}}$$
(9) admits the reordered (sometimes called "inverse") version:

$$\rho_{Y}(C,B) = \rho_{Y}(C,A)\rho_{Y}(A,B) + (I - \rho_{Y}(C,A)\rho_{Y}(A,C))^{\frac{1}{2}} \times \rho_{Y,A}(C,B) \times (I - \rho_{Y}(B,A)\rho_{Y}(A,B))^{\frac{T}{2}}$$
(10)

(9) and (10) are fundamental in RLS lattice filtering, since the angle-normalized lattice recursions (1) are nothing but particular applications of (9) (or (10)). More precisely, let $\{y_i\}$ be a m-dimensional process. Define the (t+1)xm matrix $y_{t-p} = \{0 \cdots 0y_0 \cdots y_{t-p}\}^T$ (the p first rows are zeros), and the (t+1)x1 vector $\sigma = [0 \cdots 01]^T$ (the "pinning vector"). Then (1) is

whatever the projection operator considered, we suppose that X^TX is invertible (otherwise we can take generalized inverses [8])

² Since Y, A and B lie in 3 disjoint subspaces of R^N (the null vector is the only vector commun to any two out of these three subspaces), they are visualized by non-coplanar vectors in fig.1 which, necessarily, is 3-dimensional. On the other hand, both $P_{T,B}^{+}A$ and $P_{T,A}^{+}B$ lie in the space spanned by the 2 "vectors" $P_{T,A}^{+}A$ and $P_{T,B}^{+}B$ (actually a N_{MA} and a N_{MB} matrix, respectively); whence the (improper) use of the term "planar".

³ we assume that A^TP_TA is positive definite. The positive semi-definite case is treated in (8).

obtained from (9) by setting $Y = [y_{i-1} \cdots y_{i-n+1}]$, and by replacing (A,B,C) by the following permutations of $\{y_i,y_{i-n},\sigma\}$ [4], [9]:

	A	В	С
(1-b)	y ₁₋₀	σ	y,
(1-c)	y,	σ	y1-4
(1-d)	σ	y,	y,

Now, transformations among residual vectors induce transformations among the filters which produced these residuals. Consequently, the FRLS transversal filter recursions are derived by considering the 3 particular applications of (6), when we take for A and B any 2 aggregates out of the set (y_i, y_{i-n}, σ) [9], [7]. On the other hand, the FRLS angle-normalized lattice recursions are the 3 particular applications of (9) or (10), obtained by taking the inner product of (6-a), written for 2 particular aggregates taken out of the same set (y_i, y_{i-n}, σ) , by that same formula, written for another 2 aggregates [9] (3 possibilities: $(P_{Y,y}^{-1}, y_{i-n}, P_{Y,g}^{-1}, \sigma)$; $(P_{Y,g}^{-1}, y_{i-n}, P_{Y,g}^{-1}, \sigma)$.) Note that a similar approach was used in [6].

This suggests that the geometric figure that best represents the FRLS problem, in both transversal and lattice structures. might be the 3D unit-length tetrahedron $(P_Y^{\perp}y_1, P_Y^{\perp}y_{1-n}, P_Y^{\perp}\sigma)$ - or, more generally, $(P_Y^{\perp}A, P_T^{\perp}B, P_Y^{\perp}C)$ of fig.3⁴. In general, one cannot visualize more than three disjoint subspaces of R^N . However, in view of fig.2 (or recursions (6)), the 6 augmented residuals $P_{Y,A}^{\perp}B$, $P_{Y,B}^{\perp}A$, $P_{Y,C}^{\perp}A$, $P_{Y,C}^{\perp}A$, $P_{Y,C}^{\perp}A$ and $P_{Y,C}^{\perp}B$ take place in the same figure too³.

In the annex, we rederive (10) (i.e., YPII) in terms of projections inside this tetrahedron. More precisely, we show that the "length" of \overrightarrow{OQ} , where Q is the orthogonal projection of B onto A, is equal to $\rho_X(C,B)$, the l.h.s. of (10). Now, B can be first projected onto \overrightarrow{OA} , resulting in H, and H can again be projected onto \overrightarrow{OC} , which gives P. This results in decomposing \overrightarrow{OQ} as $\overrightarrow{OP} + \overrightarrow{PQ}$. This decomposition corresponds exactly to the two-terms sum of the r.h.s. of (10), i.e., the length OP of \overrightarrow{OP} is equal to $\rho_Y(C,A)\rho_Y(A,B)$, while the 2^{nd} term of the r.h.s. of (10) is equal to the length of \overrightarrow{PQ} .

4 - CONNECTIONS WITH SPHERICAL TRIGONOMETRY

Tetrahedrons (and thus spherical trigonometry) play the same fundamental role in solid geometry as triangles (and thus classical trigonometry) in planar geometry [10]. Spherical trigonometry is a tool of outstanding importance in astronomy and navigation on ships or airplanes (however, connections with RLS adaptive filtering had never been made so far!). To see how things are related, notice (see fig.4) that any 3 points on the 3D unit sphere determine: either the unilength tetrahedron OABC (i.e., length(OA) = length(OB) = length(OC) = 1) - and thus our projection (RLSL) problem; or the spherical triangle ABC - and thus spherical trigonometry.

- figure 4 -

By definition, the spherical triangle ABC consists of the 3 arcs AB, AC and BC of "great circles" obtained by intersecting the 3 planes OAB, OAC, OBC (i.e., which pass through the center O of the sphere) and the sphere. The angle BOC is equal to the length of arc BC and is denoted by a. We call A the dihedral angle between planes OAB and OAC, defined as the plane angle between 2 straight lines orthogonal to OA, and belonging respectively to OAB and OAC. Note that A is equal to the plane angle formed by tangents to the side of the angle at vertex A, and similarly for the remaining angles.

There are 3 degrees of freedom in a spherical triangle: any 3 angles (out of 6) perfectly determine the 3 remaining ones. Consequently, there cannot be more than 3 distinct relationships among the 6 angles. To get one such set, let us now revisit the derivation of (10) as given in the annex (which actually was inspired by [11]), but now considering fig.4 as well as fig.3. $OQ = \cos a$, $OP = \cos b \cos c$, and $(\overrightarrow{HB}, \overrightarrow{OC}) = (\overrightarrow{HB}, \overrightarrow{OI} + \overrightarrow{IC}) = (\overrightarrow{HB}, \overrightarrow{IC}) = \sin b \sin c \cos A$. We just derived the fundamental "law of cosines" of spherical trigonometry:

 $\cos a = \cos b \cos c + \sin b \cos A \sin c$ (11-a) which thus happens to be equal to the YPII (in the scalar case), through the identification⁶ (12):

⁴ as far as notations are concerned, the same letter A is used for an aggregate of vectors; for the extremity of \(\frac{P}{P+A}\) in the representation of fig.3; and, in the following, for a point on the sphere as well as for an angle, in fig.4. The true meaning should be clear from the context.

⁵ in order to maintain clarity, we just represented the direction of those 6 vectors (they are actually of length one).

^{6 ∀} YA,B, the spectral norm of ρ_Y(A,B) is inferior or equal to 1 [8].

since (11-a) remains valid under permutation of the variables, we get7:

$$\cos b = \cos a \cos c + \sin a \cos B \sin c$$
 (11-b)
 $\cos c = \cos a \cos b + \sin a \cos C \sin b$ (11-c)

In that framework, the angle-normalized RLSL is one particular solution to one of the six "spherical triangle problems" (i.e., determining any 3 angles from the 3 other angles) [12], [13]: "given 2 arcs b and c, plus an angle inbetween A, find the third arc a and the two remaining dihedral angles B and C*. To see this, set as above $Y = [y_{t-1} \cdots y_{t-n+1}]$, and $(A,B,C) = (\sigma,y_{t-n},y_t)$. At time t-1, we know the angles b, c and A (actually their cosines):

$$\cos b = \tilde{\varepsilon}_{n-1}^{l} \quad , \quad \cos c = \tilde{\eta}_{n-1}^{l-1} \quad , \quad \cos A = \rho_n^{l-1}$$
We first compute $\cos a = \rho_n^{l}$ through (11-a) = (1-a), then $\cos B = \tilde{\varepsilon}_n^{l}$ and $\cos C = \tilde{\eta}_n^{l}$ via (11-b) = (1-b) and (11-c) = (1-c), respectively.

A "dual" version of YPII

Now, the formulae of spherical trigonometry [10-13] induce, by analogy, similar formulaes among parcors. For instance, consider the 2 great circles having as poles B and C. They intersect in 2 points A' and A''. Let A' be the point on the same side as A (and similarly for B' and C'). We just defined the so-called "polar triangle" A'B'C' of ABC. In this triangle, the angles a' and A' are equal to $\pi - A$ and $\pi - a$, respectively (and similarly for the other angles); the cosine law reads:

$$\cos A = -\cos B \cos C + \sin B \cos a \sin C \qquad (12)$$

This suggests the following formula among parcors (13):
$$\rho_{\Upsilon,A}(C,B) = -\rho_{\Upsilon,B}(C,A)\rho_{\Upsilon,C}(A,B) + \left(I - \rho_{\Upsilon,B}(C,A)\rho_{\Upsilon,B}(A,C)\right)^{\frac{T}{2}} \times$$

$$\rho_{\Upsilon}(C,B)\times (I-\rho_{\Upsilon,C}(B,A)\rho_{\Upsilon,C}(A,B))^{\frac{1}{2}}$$

indeed, (13) does hold for scalar parcors (A, B and C are Nx1). It is derived by considering once again the proof given in the annex, but now in the "polar tetrahedron" $P_{Y,B,C}A$, $P_{Y,C,A}B$, $\overline{P_{Y,A,B}C}$. Notice that :

$$\left(\overline{P_{\Upsilon,A,B}^{\perp}C},\overline{P_{\Upsilon,C,A}^{\perp}B}\right) = \left(I - \rho_{\Upsilon,A}(C,B)\rho_{\Upsilon,A}(B,C)\right)^{-\frac{1}{2}} \times$$

$$(-\rho_{\Upsilon,A}(C,B))(I-\rho_{\Upsilon,A}(B,C)\rho_{\Upsilon,A}(C,B))^{\frac{1}{2}}$$

which reduces to $-\rho_{Y,A}(C,B)$ in the scalar case, whence (13).

REFERENCES

- [1] M.Morf, A. Vieira & D.Lee, Ladder forms for identification and speech processing, Proc. 1977 IEEE Conf. D&C, pp. 1074-78, New Orleans, LA, 1977
- [2] D.Lee, Canonical ladder form realizations and fast estimation algorithms, PhD thesis, Stanford university, 1980 [3] D.Lee, M.Morf & B.Friedlander, Recursive least squares ladder estimation algorithms, IEEE tr. ASSP, v. 29-3, June 81 [4] T.Kailath, Time-variant and time-invariant lattice filters for non-stationnary processes, in : Outils et modèles

traitement du signal, pp. 417-464, Paris, Eds du CNRS, 1982 [5] G.Yule, On the theory of correlation for any number of variables, treated by a new system of notations, Proc. Roy. Soc., vol. 79A, pp. 182-193, 1907 [6] C.Muravchik, M.Morf & D.Lee, Hilbert space array methods for finite rank process estimation and ladder realizations for adaptive signal processing, ICASSP 81, Atlanta [7] D.Slock, Fast algorithms for fixed-order recursive leastsquares parameter estimation, PhD diss., Stanford univ., 1989 [8] B.Porat, B.Friedlander & M.Morf, Square-root covariance ladder algorithms, IEEE tr. AC, vol. 27-4, August 1982 [9] H.Lev-Ari, T.Knilath & J.Cioffi, Least-squares adaptive lattice and transversal filters: a unified geometric theory, IEEE tr. IT, vol. 30-2, pp. 222-236, March 1984 [10] E.G.Kogbeliantz, Fundamentals of mathematics from an advanced viewpoint, Vol 4: solid geometry and spherical

mathématiques pour l'automatique, l'analyse de systèmes et le

trigonometry, Gordon and Breach, New York, 1969 [11] G.Papelier, Eléments de trigonométrie sphérique, 3ème éd., Vuibert, Paris, 1956 (in French)

[12] F.Ayres Jr., Theory and problems of plane and spherical trigonometry, McGraw-Hill, New-York, 1954

[13] L.M.Kells, W.F.Kerns & J.R.Bland, Plane and spherical trigonometry, McGraw-Hill, New York 1951

ANNEX

Let H be the orthogonal projection of B onto \overrightarrow{OA} . With the help of fig.2, $\overrightarrow{OB} = \overrightarrow{OH} + \overrightarrow{HB}$ reads (A1):

$$\begin{array}{l} \overrightarrow{P_T^{\perp}B} = P_{\overrightarrow{P_T^{\perp}A}}\Big(\overrightarrow{P_T^{\perp}B}\Big) + P_{\overrightarrow{P_T^{\perp}A}}\Big(\overrightarrow{P_T^{\perp}B}\Big) = P_{\overrightarrow{P_T^{\perp}A}}\Big(\overrightarrow{P_T^{\perp}B}\Big) + P_{\overrightarrow{P_T^{\perp}A}}\Big(\overrightarrow{P_T^{\perp}B}\Big) \\ \text{Let us project this decomposition } \overrightarrow{OB} = \overrightarrow{OH} + \overrightarrow{HB} \text{ onto} \end{array}$$

the third vector \overrightarrow{oc} of the tetrahedron:

$$P_{\overrightarrow{P_{Y}^{\perp}C}}\left(\overrightarrow{P_{Y}^{\perp}B}\right) = P_{\overrightarrow{P_{Y}^{\perp}C}}\left(P_{\overrightarrow{P_{Y}^{\perp}A}}\left(\overrightarrow{P_{Y}^{\perp}B}\right)\right) + P_{\overrightarrow{P_{Y}^{\perp}C}}\left(P_{\overrightarrow{P_{Y}^{\perp}A}B}\left(\overrightarrow{P_{Y}^{\perp}B}\right)\right) \tag{A2}$$

Now, we would like to express the fact that the relationship (A2) among vectors remains valid when considering their length, since \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{PQ} are colinear: OQ = OP + PQ (the sum is algebraic). To that end, let us premultiply (A2) by $(\overline{P_r^{\perp}C})'$. We get (A3-a):

$$\left(\overline{P_{Y}^{\perp}C}\right)^{T}\left\{\left(\overline{P_{Y}^{\perp}B}\right) = \left(\overline{P_{Y}^{\perp}A}\right)\left(\overline{P_{Y}^{\perp}A}\right)^{T}\left(\overline{P_{Y}^{\perp}B}\right) + P_{\overline{P_{Y}^{\perp}A}B}\left(\overline{P_{Y}^{\perp}B}\right)\right\}$$

Introducing the parcors via (7), (A3-a) becomes (A3-b):

$$\rho_{\Upsilon}(C,B) = \rho_{\Upsilon}(C,A)\rho_{\Upsilon}(A,B) + \left(\overline{P_{\Upsilon}^{\perp}C}\right)^{T}P_{\overline{P_{T,A}B}}\left(\overline{P_{\Upsilon}^{\perp}B}\right)$$

To get further, let us consider the orthogonal decomposition $\overrightarrow{OC} = \overrightarrow{OJ} + \overrightarrow{JC}$. The second term of the r.h.s. of (A3-b) can be rewritten as (A4):

$$\left(C^T P_Y^{\perp} C\right)^{-\frac{1}{2}} \left[\underbrace{C^T P_{Y,A}^{\perp} + C^T P_Y^{\perp} A \left(A^T P_Y^{\perp} A\right)^{-1} A^T P_Y^{\perp}}_{C^T P_Z^{\perp}} \right] P_{P_{Y,A}^{\perp} B} \left(\underbrace{P_Y^{\perp} B} \right)$$

Since $\overrightarrow{HB} \perp \overrightarrow{OI}$, the second term in the above inner-product is zero. Thus (A4) reduces to (A5):

$$(C^T P_Y^{\perp} C)^{-\frac{1}{2}} C^T P_{Y,A}^{\perp} \times P_{Y,A}^{\perp} B (B^T P_Y^{\perp} B)^{-\frac{T}{2}}$$

where we used fig.2. Using (8), (A5) is rewritten as (A6): $(I - \rho_{\gamma}(C, A)\rho_{\gamma}(A, C))^{\frac{1}{2}}\rho_{\gamma, A}(C, B)(I - \rho_{\gamma}(B, A)\rho_{\gamma}(A, B))^{\frac{1}{2}}$ Gathering (A3-b) and (A6) results in (10).

due to the above remark, any other formula can be deduced from (11a,b,c). For this reason (11-a,b,c) are often called the fundamental laws of spherical trigonometry.

IEEE Xplore Citation

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE Careers/Jobs Conferences Standards Publications/Services Membership » Se ∇ Quick Links IEEE Peer FAQ Terms <u>Help</u> Review Welcome to IEEE Xplore Results are shown 25 to a page, sorted by publication year in descending order. Your search matched 4 of 748173 documents. You may refine your search by editing the current search expression or entering a new one the te O- Home O- Log-out Then click Search Again. normalization and grid points Tables of Contents Search Again O- Journals & Magazines Journal or Magazine = JNL Conference = CNF Standard = STD O- Conference **Proceedings** $_{
m 1}$ Fuzzy approximation via grid point sampling and singular value O- Standards decomposition Search Systems, Man and Cybernetics, Part B, IEEE Transactions on , Volume: 27 Iss O- By Author O- Basic Dec. 1997 Page(s): 933 -951 Advanced Member Services [Abstract] [PDF Full-Text (936 KB)] JNL O- Join IEEE Establish IEEE 2 Singular value-based identification of fuzzy system Web Account Decision and Control, 1997., Proceedings of the 36th IEEE Conference on , Vo Print Format 1997 Page(s): 3341 -3346 vol.4 [Abstract] [PDF Full-Text (480 KB)] CNF

3 A comparison of rotation-based methods for iterative reconstruction algorithms

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W.

Nuclear Science, IEEE Transactions on , Volume: 43 Issue: 6 Part: 2 , Dec. 19

Page(s): 3370 -3376

[Abstract] [PDF Full-Text (148 KB)] JNL

4 Comparison of rotation-based methods for iterative reconstruction algorithms

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W.

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W.

Nuclear Science Symposium and Medical Imaging Conference Record, 1995.,

, Volume: 2, 1995

Page(s): 1146 -1150 vol.2

[Abstract] [PDF Full-Text (528 KB)] CNF

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top

IEEE HOME SEARCH	IEEE SHOP WEB ACCOUNT CONTACT SEE
Membership Publica	tions/Services Standards Conferences Careers/Jobs OLOCETM RELEASE 1:3 >> Se
Help <u>FAQ Terms IE</u>	EE:Peer Quick Links ▼
Review	
Welcome to IEEE Xplore* O- Home	Your search matched 6 of 748219 documents. Results are shown 25 to a page, sorted by publication year in descending order.
O- Log-out	Results are shown 25 to a page, sorted by publication year. You may refine your search by editing the current search expression or entering a new one the te
	Then click Search Again . normalization and linear interpolation
Tables of Contents	
O- Journals & Magazines	Search Again Search Again
O- Conference Proceedings	Results: Journal or Magazine = JNL Conference = CNF Standard = STD
O- Standards	. The standard speaker identification
	1 Feature windowing-based Thai text-dependent speaker identification
Search	MLP with backpropagation algorithm
O- By Author	Sutat Sae-Tang; Tanprasert, C. Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE
O- Basic	International Symposium on , Volume: 3 , 2000
O- Advanced	Page(s): 579 -582 vol.3
Member Services	
O- Join IEEE	[Abstract] [PDF Full-Text (352 KB)] CNF
O- Establish IEEE Web Account	
TOUR PLANTS	2 Evaluation of polynomial image deformation using anatomical landm
Print Formal	matching of 3D-abdominal MR-images and for atlas constituction
	Winited C. Not M. Jonsson F.: Crafoord, J.; Maguire, G.Q., Ji.
	Nuclear Science, IEEE Transactions on , Volume: 46 Issue: 4 Part: 2 , Aug. 19
	Page(s): 1110 -1113
	[Abstract] [PDF Full-Text (288 KB)] JNL
	3 Nonlinear shape normalization methods for gray-scale handwritten
	recognition
	Sang-Yup Kim; Seong-Whan Lee Document Analysis and Recognition, 1997., Proceedings of the Fourth Interna
	Conference on , Volume: 2 , 1997
	Page(s): 479 -482 vol.2

[Abstract] [PDF Full-Text (372 KB)] CNF

4 A comparison of rotation-based methods for iterative reconstruction algorithms

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W.

Nuclear Science, IEEE Transactions on , Volume: 43 Issue: 6 Part: 2 , Dec. 19

Page(s): 3370 -3376

[Abstract] [PDF Full-Text (148 KB)] JNL

5 Comparison of rotation-based methods for iterative reconstruction algorithms

Di Bella, E.V.R.; Barclay, A.B.; Eisner, R.L.; Schafer, R.W.

Nuclear Science Symposium and Medical Imaging Conference Record, 1995.,

, Volume: 2, 1995

Page(s): 1146 -1150 vol.2

[Abstract] [PDF Full-Text (528 KB)] CNF

6 Multiscale image texture analysis in wavelet spaces

Gross, M.H.; Koch, R.; Lippert, L.; Dreger, A.

Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference

Volume: 3, 1994

Page(s): 412 -416 vol.3

[Abstract] [PDF Full-Text (488 KB)] CNF

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ | Terms | Back to Top