2. Describing Univariate Distributions (I)

LPO.8800: Statistical Methods for Education Research

Sean P. Corcoran

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

1/81

Last time

- · Descriptive vs. inferential statistics
- Basic concepts: outcomes, variables, unit of observation, population, sample
- Measurement scales
 - quantitative or categorical
 - ▶ nominal, ordinal, interval, ratio
 - discrete vs. continuous
- Sampling methods

Today

- Stata introduction (in brief—see video for more)
- Describing univariate distributions: categorical and quantitative data
- Choice of statistical tools used to describe a variable depends in part on how it is measured

LDO 9900 (C----)

Locturo

Last update: September 7, 2022

. . .

Today

- Describing categorical variables
 - ► Frequency (and relative frequency) distributions
 - ► Bar graphs
 - ▶ Pie graphs
- Describing quantitative variables
 - Frequency (and relative frequency) distributions, possibly grouped
 - ► Histograms
 - ► Stem-and-leaf plot
 - Measures of central tendency

Stata introduction

Interacting with Stata

- Command window (interactive mode) vs. do-file editor (batch mode)
- Review window
- Variables and properties windows
- Results window
- Menu and task bar commands

LPO.8800 (Corcoran) Lecture 2 Last update: September 7, 2022 5/81

Stata windows

Basic Stata tasks

- Opening and saving data (.dta) files
- · Removing a data file from memory
- Data browser and editor
- Using Stata as a calculator
- Getting help
- Variables vs. cases/observations
- Variable labels vs. value labels

LPO.8800 (Corcoran)

Lecture

ast update: September 7, 2022

7 / 91

Stata command syntax

Example:

summarize varlist [if] [in] [weight] [,options]

- summarize: the command
- varlist: terms in italics are things you provide
- Syntax in brackets [] is optional
- [,options]: Most commands have other options that are specified after a comma, at the very end
- [if]: execute the command only if a certain condition is true
- [in]: execute the command for a certain subset of observation numbers

Importance of descriptive analyses

1 ---- 2

Last update: September 7, 2022

9/81

Importance of descriptive analyses

See the IES report by Loeb et al. (2017), which describes the role of descriptive analysis in education and social science.

Key Themes

- Descriptive analysis characterizes the world or a phenomenon—answering questions about who, what, where, when, and to what extent. Whether the goal is to identify and describe trends and variation in populations, create new measures of key phenomena, or describe samples in studies aimed at identifying causal effects, description plays a critical role in the scientific process in general and education research in particular.
- Descriptive analysis stands on its own as a research product, such as when
 it identifies socially important phenomena that have not previously been recognized. In many instances, description can also point toward causal understanding and to the mechanisms behind causal relationships.
- No matter how significant a researcher's findings might be, they contribute to knowledge and practice only when others read and understand the conclusions. Part of the researcher's job and expertise is to use appropriate analytical, communication, and data visualization methods to translate raw data into reported findings in a format that is useful for each intended audience.

Importance of descriptive analyses

Some examples of excellent, influential descriptive studies in education:

- Arnold et al. (2009) on "summer melt"
- Scott-Clayton (2012) changes over time in undergraduates' propensity to work while in school
- Reardon (2011) on changes in the academic achievement gap between high- and low-income students
- Lankford, Loeb, & Wyckoff (2002) on the distribution of teacher qualities across New York State districts and schools
- Hoxby & Avery (2003) on the "missing one-offs"
- Murnane (2013) on long-run trends in U.S. HS graduation rates

LPO.8800 (Corcoran)

Lecture 2

Last update: September 7, 2022

11/81

Importance of descriptive analyses

- A frequency distribution is a table showing the number (count) of occurrences of each unique outcome in the data.
- The relative frequency of an outcome or category is the proportion or percentage of all observations in that category. (Must sum to one, or 100%).

LPO 8800 (Corcoran)

Lecture 2

Last update: September 7, 2022

12 / 01

Frequency distributions

Example: test scores for 16 students

Table: Classroom test scores

Score	Frequency (Count of students)
Score	(Count or students)
5	2
10	3
12	1
15	4
20	4
25	2
Total	16

Example: test scores for 16 students

Table: Classroom test scores

Score	Frequency (Count of students)	Relative Frequency (Percentage)
5	2	2/16 * 100 = 12.5%
10	3	3/16 * 100 = 18.75%
12	1	1/16 * 100 = 6.25%
15	4	4/16 * 100 = 25.0%
20	4	4/16 * 100 = 25.0%
25	2	2/16 * 100 = 12.5%
Total	16	16/16 * 100 = 100%

LPO.8800 (Corcoran)

Lecture 2

Last update: September 7, 2022

-- /--

Frequency distributions

Side note on terminology:

- The fractions in the above relative frequency distribution: 2/16, 3/16, 1/16—or, 0.125, 0.1875, 0.0625, etc.—are **proportions**: the frequency of cases in a given category divided by the total number of cases in all categories. Ranges between zero and one.
- Multiply by 100 to get percentages (12.5%, 18.75%, 6.25%, etc.)
- Relative frequencies can be expressed either way

Pro tip: see handout on **rounding conventions**. Percentages are typically rounded to one decimal place; proportions typically rounded to three.

- Because frequency distributions list every distinct value in the data, they are only practical for variables with a limited number of unique values
 - Categorical variables
 - Discrete quantitative variables
- It is possible to group variables with many distinct outcomes into smaller categories (shown later)
 - ► Continuous quantitative variables

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

17 / 81

Frequency distributions

Easy to generate in Stata using tabulate

. tabulate regi	ion		
geographic region of school	Freq.	Percent	Cum.
northeast north central south west	106 151 150 93	21.20 30.20 30.00 18.60	21.20 51.40 81.40 100.00
Total	500	100.00	

Note the *cumulative* column is not very meaningful here (a categorical, non-ordered variable).

. tabulate region			
geographic region of school	Freq.	Percent	Cum.
northeast north central south west	106 151 150 93	21.20 30.20 30.00 18.60	21.20 51.40 81.40 100.00
Total	500	100.00	

LPO.8800 (Corcoran) Lecture 2 Last update: September 7, 2022 19/8

Frequency distributions

In SPSS: "valid percent" expresses relative frequency as a percentage of all *non-missing* observations. In this example there is a **missing value code** of 98.

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Divorced	26	5.2	5.5	5.5
	Widowed	6	1.2	1.3	6.7
	Separated	8	1.6	1.7	8.4
	Never Married	5	1.0	1.0	9.4
	Marriage-Like Relationship	5	1.0	1.0	10.5
	Married	427	85.4	89.5	100.0
	Total	477	95.4	100.0	
Missing	98	23	4.6		
Total		500	100.0		

To show the count of missing values in Stata, include the missing option: tabulate *varname*, missing

. tabulate parmarl8, missing	9		
parents' marital status in eighth grade	Freq.	Percent	Cum.
divorced widowed separated never married marriage-like relationship married	26 6 8 5 5 427 23	5.20 1.20 1.60 1.00 1.00 85.40 4.60	5.20 6.40 8.00 9.00 10.00 95.40 100.00
Total	500	100.00	

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

21 / 81

Frequency distributions

Also see the fre command which shows the relative frequency with and without missing values:

. fre parmar

parmarl8 — parents' marital status in eighth grade

		Freq.	Percent	Valid	Cum.
Valid	1 divorced	26	5.20	5.45	5.45
	2 widowed	6	1.20	1.26	6.71
	3 separated	8	1.60	1.68	8.39
	4 never married	5	1.00	1.05	9.43
	5 marriage-like relationship	5	1.00	1.05	10.48
	6 married	427	85.40	89.52	100.00
	Total	477	95.40	100.00	
Missina		23	4.60		
Total		500	100.00		

fre is also nice in that it shows you both variable values and labels.

The table command provides a simpler frequency distribution (without the percent or cumulative percent). This command allows for many options for customizing the contents of the table.

. table parmar18

parents' marital status in eighth grade	Freq.
divorced	26
widowed	6
separated	8
never married	5
marriage-like relationship	5
married	427

LPO.8800 (Corcoran) Lecture 2 Last update: September 7, 2022 23/81

Frequency distributions

Note the categories used in each of these variables are mutually exclusive and collectively exhaustive:

- mutually exclusive: being in one category precludes being in another
- collectively exhaustive: all possible categories are represented by the defined categories

Bar graphs

- Bar graphs are a visual way to display frequency (or relative frequency) distributions
- In Stata: graph bar can be used for frequency (or relative frequency) distributions. An alternative is histogram with the discrete option.
- Try: region, parmarl8, advmath8

LPO 9900 (Corcoran) Lecture 3

Last update: September 7, 2022

25 / 91

Bar graphs

graph bar (count), over(region)

Bar graphs

graph bar (percent), over(region)

LPO 8800 (Corcoran)

Lecture 2

Last update: September 7, 2022

27 / 01

Bar graphs

graph bar (count), over(parmar18)

Bar graphs

histogram region, discrete percent gap(2) xlabel(, valuelabel)

1.00 0000 (6)

Last update: September 7, 2022

00 / 01

Bar graphs

- Word of caution with bar graphs: always check where vertical axis begins—does it begin at zero? Avoid misleading scales
- Note "bar graphs" (as opposed to histograms) have gaps between the bars, suggestive of distinct categories
- Note The gap(2) option in histogram forces a gap of size 2

Pie graphs

Pie graphs can be used to show the relative frequency of a variable

 These only make sense when the variable has collectively exhaustive (and a limited number of) categories

• In Stata: graph pie

• Try: region, parmarl8

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

31 / 81

Pie graphs

graph pie, over(region)

Pie graphs

LPO.8800 (Corcoran) Lecture 2 Last update: September 7, 2022 3

Pie graphs

Histograms

A **histogram** is a bar graph where the height of each bar represents the count (or percent) of observations within a given *range* of values, called an **interval** or **bin**

- Number of bins determined by default in Stata, but can be adjusted
- Obviously makes sense only for interval (or ratio) measured variables, where a range of values is meaningful
- In Stata: histogram

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

35 / 81

Histograms

histogram achmat08, percent

Histograms

histogram achmat08, percent bin(10)

PO 9900 (Corroran) Lacture 2

Last update: September 7, 2022

-- /--

Stem-and-leaf plot

A **stem-and-leaf** plot is similar to a histogram, but provides a bit more detail on specific values in the data

- Leading digits are called "stems"
- Trailing digits are called "leaves"
- The number of leaves corresponds to the frequency of a particular value

Stem-and-leaf plot

```
Stee-and-last flot for zhout0 (sath zhinewent in sighth grade) zhout0 (sath zhinewent
```

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

39 / 81

Stem-and-leaf plot

- In the above example, Stata rounded to the nearest 0.1
- First two digits used as stem, and final digit used as leaf
- · Leaves correspond to frequency of particular values
- Compare the shape of the stem-and-leaf plot for actmat08 to that of the histogram

Shape of distributions

- The histogram (and stem-and-leaf plots) are revealing about the shape of a distribution—i.e. which values tend to be more or less frequent
- A distribution is symmetric if the distribution of outcomes is identical (or approximately identical) on either side of its central value
- Examples: normal distribution (bell curve), U-shaped distribution, bi-modal distribution, uniform distribution

LPO.8800 (Corcoran)

Lectur

Last update: September 7, 2022

41/81

Shape of distributions

Shape of distributions

- A distribution is skewed left (or negatively skewed) if the distribution has a long tail to the left of its central value
- A distribution is skewed right (or positively skewed) if the distribution has a long tail to the right of its central value

LPO.8800 (Corcoran)

Lecture 2

Last update: September 7, 2022

43 / 81

Left-skewed distributions

Right-skewed distributions

Grouped frequency distributions

- Again, frequency distributions are less useful for variables with many distinct possible values (e.g. continuous variables)
- For continuous variables, one could create a smaller number of equal width groups (bins, or intervals) and then create a frequency distribution for this grouped ("re-coded") variable. (This is what the histogram does behind the scenes).

Grouped frequency distributions

- NELS example: unitmath is the number of units of high school math taken, and ranges from 1-6. Includes many fractional units.
- Can set up groups or intervals, for example:
 - ▶ $1 \le x \le 2$
 - ▶ 2 < x < 3
 - ▶ $3 \le x < 4$, and so on
- Lecture 3 will show how to re-code variables in this way (a kind of data transformation)

LPO 8800 (Corcoran)

Lecture 2

ast update: September 7, 2022

47 / 81

Measures of central tendency

Measures of central tendency characterize the "center" or "location" of a distribution, its "typical" or "expected" value. Examples:

- Mean
- Median
- Mode

The **mean** (or *average*) adds all of the observed values and divides by the number of observations n

- Let $x_1, x_2, x_3, ..., x_n$ represent the n values of a variable x (x_i is the ith observation, and i is the index)
- Then the **mean** is: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

100 0000 (6

Lecture

ast update: September 7, 2022

10 / 01

Mean

Example: calculating the mean number of wins for baseball teams

Table 2.2: American League Standings, July 28, 2013

East	W	L	PCT
Tampa Bay	62	42	0.596
Boston	62	43	0.590
Baltimore	58	47	0.552
NY Yankees	54	50	0.519
Toronto	47	56	0.456
Central	W	L	PCT
Detroit	58	45	0.563
Cleveland	55	48	0.534
Kansas City	50	51	0.495
Minnesota	45	56	0.446
Chi White Sox	40	61	0.396
West	W	L	PCT
Oakland	61	43	0.587
Texas	56	48	0.538
Seattle	49	55	0.471
LA Angels	48	54	0.471
Houston	35	68	0.340
$\sum W$	780		

Example: calculating the mean number of wins for baseball teams

$$\overline{W} = \frac{\sum W_i}{n} = \frac{780}{15} = 52$$

Last update: September 7, 2022

51/81

Mean

The mean in Stata can be calculated using several commands, including summarize (or sum).

. sum achmat0	8						
Variable	1 (Obs	Mean	Std.	Dev.	Min	Max
achmat08	!	500 56	.59102	9.339	608	36.61	77.2

. sum expinc variable obs Mean

Std. Dev. Min Max expinc30 459 51574.73 58265.76 0 1000000

The mean of a categorical variable is usually meaningless, except in the case of a *dichotomous* variable coded 0-1, in which case the mean is the proportion equal to 1:

. sum advmath8

Variable	I	0bs	Mean	Std.	Dev.	Min	Max
	+						
advmath8	1	491	4602851	. 4989	9286	0	1

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

53 / 81

Mean

The mean is highly influenced by extreme values or **outliers**: observations that fall well above or well below the bulk of the data.

- Example 1 (n = 15)
 - ▶ 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5
 - ightharpoonup mean = (55/15) = 3.67
- Example 2 (n = 15)
 - ▶ 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5000000
 - ightharpoonup mean = (5000050/15) = 333,336.67

The mean can be characterized as the "center of gravity," or balance point, of the distribution. It is the point at which the sum of the distances to the mean from observations *above* the mean equal the sum of the distances to the mean from observations *below* the mean

LPO 8800 (Corcoran)

Lecture

ast undate: Sentember 7, 2022

Mean

Deviations from the mean:

Table 2.3: Deviations above and below the mean

	W	$W - \bar{W}$	Totals
Tampa Bay	62	10	
Boston	62	10	
Oakland	61	9	
Baltimore	58	6	
Detroit	58	6	
Texas	56	4	
Cleveland	55	3	
NY Yankees	54	2	50
Kansas City	50	-2	
Seattle	49	-3	
LA Angels	48	-4	
Toronto	47	-5	
Minnesota	45	-7	
Chi White Sox	40	-12	
Houston	35	-17	-50

The least squares principle:

- The average deviation of x from its mean will always be zero. That
 is, the sum of negative deviations from the mean will always equal the
 sum of positive deviations from the mean.
- The mean is the point in a distribution around which the variation is minimized (as indicated by the *squared* differences): $\sum (x_i \bar{x})^2$ (proof later)

I DO 9900 (Corcoran)

Lecture

Last update: September 7, 2022

57 / 81

Median

The **median** is the observation that falls in the middle of the data, when the observations are ordered from lowest to highest values.

- When n is odd: a single value will fall in the middle
- When n is even: the median is the midpoint of the two middle values
- Alternatively, index the ordered n values from 1 to n. The median will be the value with index (n+1)/2

Median

- Example 1 (n = 15):
 - ▶ 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5
 - ▶ median = 4
- Example 2 (n = 6):
 - 0, 1000, 1000, 5000, 6000, 8000
 - ightharpoonup median = (1000 + 5000)/2 = 3000

LPO 8800 (Corcoran)

Lecture

ast undate: September 7, 2022

Median

The median in Stata can be calculated using several commands, including summarize (or sum) with the detail option:

. sum achmat08, detail

	math			
	Percentiles	Smallest		
1%	38.55	36.61		
5%	41.89	37.14		
10%	44.185	37.2	obs	500
25%	49.42	37.24	Sum of Wgt.	500
			_	
50%	56.18		Mean	56. 59102
_		Largest	Std. Dev.	9.339608
75%	63.74	77.2		
90%	68.935	77.2	Variance	87.22827
95%	73.33	77.2	Skewness	.1133238
99%	77.2	77.2	Kurtosis	2.242742

Median

Because the median is simply the middle value, it is insensitive ("robust") to extreme values or outliers in the distribution

- Example 1 (n = 15):
 - 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5000000
 - ► median = 4

I DO 9900 (Corcoran)

Lecture

Last update: September 7, 2022

61/81

Mode

The mode is the outcome that occurs most often in a distribution

- Most appropriate for highly discrete variables, such as categorical variables
- Variables with lots of unique values (such as continuous variables)
 tend to have few repeats, and thus the mode is not that meaningful
- There is no command in Stata specifically for obtaining the mode.
 However, can use a frequency distribution or other combinations of commands (like egen).

Mode

** Find mode using tabulate with sort (for descending sort)

tabulate famsize sort

family size	Freq.	Percent	Cum.
4	199	39.80	39.80
5	142	28.40	68.20
6 3	55	11.00	79.20
3	52	10.40	89.60
7	21	4.20	93.80
9	13	2.60	96.40
2	9	1.80	98.20
8	9	1.80	100.00
Total	500	100.00	

- . ** Find mode using egen (note you will get a message if >1 mode)
- . egen mode=mode(famsize)
- . table mode

Freq.	mode	
500	4	

LDO 9900 (C-----)

Lecture 2

.....

Mode

"Married" is the modal parents' marital status. One might say the "typical" 8th grade student in the NELS has married parents.

Mode

North Central is (technically) the modal region. But region here is more accurately described as *bimodal*—it has a distribution with two values that occur most often (North Central and South).

. tabulate region			
geographic region of school	Freq.	Percent	Cum.
northeast north central south west	106 151 150 93	21.20 30.20 30.00 18.60	21.20 51.40 81.40 100.00
Total	500	100.00	

I PO 9900 (Corcoran)

Lecture

Last update: September 7, 2022

65 / 81

Mode

Another bimodal distribution

Mode

Some problems with using the mode:

- It is not very useful for "flat" distributions (e.g. the uniform distribution)
- Example 1: 1, 1, 2, 2, 3, 3, 4, 4, 5, 5
- Example 2:

LPO 9900 (Corcoran)

Lecture 2

ast undate: Sentember 7 2022

67 / 81

Comparing measures of central tendency

How will the mode, median, and mean usually compare? It depends on the shape of the distribution.

- ullet For symmetric distributions the median pprox mean
- If symmetric and unimodal, median ≈ mean ≈ mode (when the mode is meaningful, distributions with a limited number of unique values)

Comparing measures of central tendency

Example: note the mode of this distribution is 72 (not shown). Illustrates the problem of using the mode with a continuous variable.

Comparing measures of central tendency

How will the mode, median, and mean usually compare? It depends on the shape of the distribution.

- For right-skewed distributions the mean > median
- For left-skewed distributions the mean < median

Comparing measures of central tendency

A right-skewed variable with some large positive outliers:

LPO.8800 (Corcoran)

Last update: September 7, 2022

71 / 81

Comparing measures of central tendency

A left-skewed variable with some low-value outliers:

Measuring the Black-white wealth gap

The True Cost of Closing the Racial Wealth Gap https://www.nytimes.com/2021/04/30/business/racial-wealth-gap.html

Using data from the 2019 Survey of Consumer Finances:

Median Black household wealth: \$24,100
Median white household wealth: \$188.200

• Gap: \$164,100

Mean Black household wealth: \$142,500

Mean white household wealth: \$983,400

• Gap: \$840,000

 97% of white households' total wealth is held by households above the median

LPO.8800 (Corcoran)

Lecture

Last update: September 7, 2022

73 / 81

Alternative command

An alternative command in Stata for measures of central tendency (and other statistics):

- tabstat achrdg*, stat(mean p50 n)
- tabstat achrdg*, stat(mean p50 n) col(stat)
 - . tabstat achrdg* , stat(mean p50 n)

tats	achrdg08	achrdg10	achrdg12
	56.04906	56.11404	55.60188
		57.545	57.005
N	500	500	500
	mean pso N	mean 56.04906 ps0 56.445	mean 56.04906 56.11404 p50 56.445 57.545

, tabstat achrdo" , stat(mean p50 n) col(stat)

variable	mean	p50	N
achrdg08 achrdg10 achrdg12	56.04906 56.11404 55.60188	56.445 57.545 57.005	500 500 500

A bit more on the summation operator

The mean is written as: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

- ullet \sum is the summation operator
- i is the index of summation
- 1 and n are the lower and upper limit of the summation (i.e., summing the numbers x_i for all values of i from 1 to n)

LPO 8800 (Corcoran)

Lecture

ast update: September 7, 2022

75 / 83

Three properties of the summation operator

The summation operator has three properties:

- For any constant c: $\sum_{i=1}^{n} c = nc$
- For any constant c: $\sum_{i=1}^{n} cx_i = c \sum_{i=1}^{n} x_i$
- For any constants a and b: $\sum_{i=1}^{n} (ax_i + by_i) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i$

Example: \bar{x} is least squares

Given $x_1, x_2, ..., x_n$, what value a minimizes the sum of squared differences between the x_i and a?

$$\min_{a} \sum_{i=1}^{n} (x_i - a)^2$$

$$\min_{a} \sum_{i=1}^{n} (x_i^2 - 2ax_i + a^2)$$

$$\min_{a} \left(\sum_{i=1}^{n} x_i^2 - 2a \sum_{i=1}^{n} x_i + na^2 \right)$$

LPO 8800 (Corcoran)

Lecture 2

Last update: September 7, 2022

77 / 91

Example: \bar{x} is least squares

Take the derivative with respect to a and solve for a:

First order condition:

$$-2\sum_{i=1}^{n} x_i + 2na = 0$$

$$2na = 2\sum_{i=1}^{n} x_i$$

$$a = \frac{1}{n}\sum_{i=1}^{n} x_i = \bar{x}$$

What not to do with the summation operator

Note the following, which are **not** properties of the summation operator:

$$\sum_{i=1}^{n} \frac{x_{i}}{y_{i}} \neq \frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} y_{i}}$$

$$\sum_{i=1}^{n} x_i^2 \neq \left(\sum_{i=1}^{n} x_i\right)^2$$

LPO.8800 (Corcoran)

Lecture 2

Last update: September 7, 2022

. . . .

Example of a double summation

Consider two sets of numbers $x_1, ..., x_n$ and $y_1, ..., y_n$. Use the index of summation i for x and the index j for y. The following is an example of a double summation:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j$$

This can be written:

$$\sum_{i=1}^{n} x_i \sum_{j=1}^{n} y_j = x_1(y_1 + \dots + y_n) + x_2(y_1 + \dots + y_n) + \dots$$

Or:

$$x_1y_1 + x_1y_2 + x_1y_3 + ... + x_2y_1 + x_2y_2 + x_2y_3 + ...$$

Next lecture

- Univariate descriptive statistics, continued: measures of variability/dispersion, and skewness
- Measures of position in a distribution (e.g., quantiles, z-scores)
- Data transformations, and effects on descriptive statistics