Time independent Perturbation

Ananth

January 21, 2022

Consider a Hamiltonian

$$\hat{H} = \hat{H_0} + \lambda \hat{H'} \rightarrow 0$$
(1)

where H_0 is a simple solvable Hamiltonian e.g, harmonic oscillator or H2 atom . H' is a small term added to the main Hamiltonian.

$$\lambda=0 o 1$$

is an on off switch of perturbation *H'*

$$\lambda = 0 \implies H|\chi_n\rangle = H_0|\chi_n\rangle = E_n^0|\chi_n\rangle$$

 $H_0 |\chi_n \rangle = E_n^0 |\chi_n \rangle$ is the energy Eigen-value problem of the undisturbed Hamiltonian with a state vectors $|\chi_n \rangle$. The superscript 0 in the eignen value is just a superficial reminder to us it is an undisturbed Hamiltonian's eigen value Let $|\psi_n \rangle$ be the solution when $\lambda = 1$ or any finite value.

$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$$

upper index order of perturbation. Lower index quantum numbers or state indices of H_0 Where $|\psi_n\rangle$ is the possible exact solution. Since we do not know the exact solution we can write both the state vector $|\psi_n\rangle$ and Energy Eigen value E_N as an expansion in powers of λ

$$\langle \psi_{n} \rangle = |\chi_{n} \rangle + \langle \lambda | \phi_{n}^{1} \rangle + \lambda^{2} | \phi_{n}^{2} \rangle + \lambda^{3} | \phi_{n}^{3} \rangle + \dots \quad (2)$$

$$\langle \psi_{n} \rangle = |\chi_{n} \rangle + \langle \lambda | \phi_{n}^{1} \rangle + \lambda^{2} | \phi_{n}^{2} \rangle + \lambda^{3} | \phi_{n}^{3} \rangle + \dots \quad (2)$$

$$\langle \psi_{n} \rangle = |\chi_{n} \rangle + \langle \lambda | \phi_{n}^{1} \rangle + \lambda^{2} | \phi_{n}^{2} \rangle + \lambda^{3} | \phi_{n}^{3} \rangle + \dots \quad (3)$$

$$\langle \psi_{n} \rangle = |\chi_{n} \rangle + \langle \lambda | \phi_{n}^{1} \rangle + \lambda^{2} | \phi_{n}^{2} \rangle + \lambda^{3} | \phi_{n}^{3} \rangle + \dots \quad (3)$$

$$\lambda \text{ is just an index to the power. } n = 0 \text{ is simply no}$$

 λ is just an index to the power. n=0 is simply no perturbation . The order n=1 implies you take all terms up to 1. The indices in the subscript correspond to quantum number and the superscript to the perturbation order.

$$\hat{H} |\psi_n\rangle = (H + \lambda H')(|\chi_n\rangle + \lambda |\phi_n^1\rangle + \lambda^2 |\phi_n^2\rangle + \lambda^3 |\phi_n^3\rangle + .)$$

Assume there some eigen values for both H and H' some may be trivially zero Group all the terms with

same power of λ e.g $\lambda=0$ is simply $H_0 \ket{\psi_n^0}=E_n^0\ket{\psi_n^0}$ rewrite as Take $\lambda=1$ $H_0 \ket{\psi_n^0}-E_n^0\ket{\psi_n^0}=0$ $H_0 \ket{\phi_n^1}+H'\ket{\chi_n}$

If you multiply thus by a bra-vector $\langle \chi_n |$

$$E_n^0 \langle \chi_n | \phi_n^1 \rangle + \langle \chi_n | H' | \chi_n \rangle$$

you can write

$$\Delta E^1 = \langle \chi_n | H' | \chi_n \rangle$$

the correction to $E_n^0 \stackrel{\cdot}{=}$

$$(H_0 + \lambda H')(|\chi_n^0\rangle + \lambda |\phi_n^1\rangle + \lambda^2 |\phi_n^2\rangle + \lambda^3 |\phi_n^3\rangle - (E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2 +)(|\chi_n\rangle + \lambda |\phi_n^1\rangle + \lambda^2 |\phi_n^2\rangle + \lambda^3 |\phi_n\rangle + \lambda^3 |\phi_n\rangle + \lambda^2 |\phi_n\rangle + \lambda^3 |\phi_n\rangle + \lambda^2 |\phi_n\rangle + \lambda^3 |\phi_n\rangle + \lambda^2 |\phi_n\rangle + \lambda^3 |\phi_n\rangle + \lambda$$

 $(H_0 + \lambda H')(|\chi_n^0\rangle + \lambda |\phi_n^1\rangle + \lambda^2 |\phi_n^2\rangle + \lambda^3 |\phi_n^3\rangle$

Now do a book keeping to keep all similar order

terms in above equation.

 $(H_0 - E_n^0) |\phi_n^2\rangle + E_n^1 |\phi_n^1\rangle + E_n^2 |\chi_n\rangle = \hat{H}' |\phi_n^1\rangle \text{ 2nd order } (1)$

The idea of perturbation is all terms like $|\phi_n^i\rangle$ are all orthogonal to $|\chi_n\rangle$. If $|\chi_n\rangle$ is a solution of H_0 it is a

another state. What does a small perturbation do it

mixes other states e.g $|\chi_{n+1}\rangle$ or $|\chi_m\rangle$ as long as the

subset of all other solutions e.g $|\chi_{n+1}\rangle$ being

 $(H_0 - E_n^0) |\phi_n^1\rangle + E_n^1 |\chi_n\rangle = H' |\chi_n\rangle$ 1st order

 $(H_0 - E_n^0) |\chi_n\rangle = 0$ unperturbed

index is not same as n. If the index is same a n then there is no effect of perturbation. To find the wave function e.g for 1st order take any state $|\chi_m\rangle$ of H_0 where $m \neq n$ and project it on eqn 6 1st order terms

$$\langle \chi_m | H' | \chi_n \rangle = (E_n^0 - E_m^0) \langle \chi_m | | \phi_n^1 \rangle$$

Now sum over all $m \neq n$ states to get the linear combination.