ТЕМА 1. МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Непустое множество X называется метрическим пространством, если любым двум элементам $x, y \in X$ поставлено в соответствии неотрицательное число $\rho(x,y) \in \mathbb{R}$, называемое расстоянием или метрикой, которое удовлетворяет следующим аксиомам:

- 1) $\rho(x,y) \geqslant 0$; $\rho(x,y) = 0$ в том и только том случае, когда x = y;
- $2) \quad \rho(x,y) = \rho(y,x);$
- 3) $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$.

Примеры метрических пространств

1. Пусть на не пустом множестве X определена метрика так

$$\rho(x,y) = \begin{cases} 1, & x \neq y; \\ 0, & x = y. \end{cases}$$

Такое метрическое пространство называется *пространством изолиро-ванных точек*.

2. Множество X всевозможных упорядоченных наборов из m вещественных чисел. Тогда для любых двух элементов $x=(x_1,x_2,\ldots,x_m)$ и $y=(y_1,y_2,\ldots,y_m)$ определим расстояние как

$$\rho_c(x,y) = \left(\sum_{i=1}^m |x_i - y_i|^2\right)^{1/2}.$$

Множество X с такой метрикой порождает евклидово пространство \mathbb{R}^m с евклидовой геометрией.

На этом же множестве определим метрику по-другому:

$$\rho_k(x,y) = \max_{1 \le i \le m} |x_i - y_i|.$$

Эта метрика называется veбышевской или paвномерной метрикой. Если в качестве множества X выбрать множество целых чисел \mathbb{Z} , то полученная метрика называется mempukoй pememku или mempukoй mara kopons.

Пусть на множестве X

$$\rho_0(x,y) = \sum_{i=1}^m |x_i - y_i|.$$

Такая метрика называется *манхэттенской или метрикой городских кварталов*. С этой метрикой связана манхэттеновская геометрия. Манхэттенская метрика не зависит от отражения относительно осей координат, но зависит от вращения.

На множестве X можно расстояние определить и так

$$\rho_p(x,y) = \left(\sum_{i=1}^m |x_i - y_i|^p\right)^{1/p}, p \geqslant 1.$$

3. Множество ℓ_2 , элементами которого являются бесконечные последовательности чисел (действительных или комплексных) $x=(x_1,x_2,\ldots,x_i,\ldots)$, удовлетворяющие условию $\sum\limits_{i=1}^{\infty}|x_i|^2<\infty$. Определим на этом множестве метрику

$$\rho(x,y) = \left(\sum_{i=1}^{\infty} |x_i - y_i|^2\right)^{1/2}.$$

Полученное метрическое пространство называется координатным пространством Гильберта.

4. Непрерывные (действительные или комплексные) функции, заданные на некотором отрезке [a,b], образуют метрическое пространство относительно расстояний

$$\rho(x,y) = \max_{a \le t \le b} |x(t) - y(t)|, \ \rho(x,y) = \left(\int_a^b |x(t) - y(t)|^2 dt\right)^{1/2}.$$

Полученные метрические пространства обозначаются соответственно $C[a,b],\ CL_2[a,b].$ Аналогично, можно рассматривать пространство k раз непрерывно дифференцируемых на отрезке [a,b] функций с метрикой

$$\rho(x,y) = \sum_{i=0}^{k} \max_{a \le t \le b} |x^{(i)}(t) - y^{(i)}(t)|.$$

Полученное пространство обозначается $C^{(k)}[a,b]$.

Метрика, как математическая модель сходства объектов, и ее выбор во многих случаях неоднозначен. Она применяется в задачах кластерного анализа (метрика Маханалобиса), в теории информации и

компьютерной лингвистики (метрика Левенштейна), в теории кодирования изображений (метрика Xеминга), в теории распознавания образов (метрика $Xaycdop \phi a$).

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Задают ли в пространстве \mathbb{R} следующие функции расстояние:

$$\varphi_1(x,y) = |x^2 - y^2|, \quad \varphi_2(x,y) = |e^x - e^y|.$$

Решение. Функция $\varphi_1(x,y)$ не определяет метрику на числовой прямой, так как для несовпадающих точек $x=1,\,y=-1,\,\varphi_1(x,y)=0,$ т. е. не выполняется первая аксиома метрики. Функция $\varphi_2(x,y)$ определяет метрику на числовой прямой. Для нее выполняются все три аксиомы метрики. Выполнение первой аксиомы следует из монотонности функции e^x , а вторая и третья аксиомы выполняются исходя из свойств модуля.

Задача 2. Задает ли в пространстве \mathbb{R}^2 функция расстояние между точками $A=(x_1,y_1)$ и $B=(x_2,y_2)$:

$$\varphi(A, B) = (|x_1 - x_2| + |y_1 - y_2|)^2.$$

Решение. Функция $\varphi(A,B)$ не определяет расстояние на плоскости, поскольку для нее не выполняется неравенство треугольника. Действительно, рассмотрим точки A=(1,0), B=(0,1), C=(1,1). Тогда $\varphi_1(A,B)=4, \ \varphi_1(A,C)=1, \ \varphi_1(C,B)=1.$ Это означает, что $\varphi_1(A,B)>\varphi_1(A,C)+\varphi_1(C,B).$

Задача 3. Пусть (X, ρ) – метрическое пространство. Доказать, что функция $\rho_1(x, y)$ также является метрикой на X.

Решение. Проверим выполнение аксиом метрики для $\rho_1(x,y)$. Очевидно, что $\rho_1(x,y) \geqslant 0$. Пусть $\rho_1(x,y) = 0$, тогда $\rho(x,y) = 0$, следовательно, x = y. Обратно, если x = y, то $\rho(x,y) = 0$, и $\rho_1(x,y) = 0$. Нетрудно заметить, что $\rho_1(x,y) = \rho_1(y,x)$. Покажем, что справедливо неравенство треугольника для ρ_1 , если оно выполнено для ρ , т. е.

$$\frac{\rho(x,y)}{1 + \rho(x,y)} \le \frac{\rho(x,z)}{1 + \rho(x,z)} + \frac{\rho(z,y)}{1 + \rho(z,y)}.$$

Данное неравенство равносильно верному неравенству вида

$$(\rho(x,z) + \rho(z,y) - \rho(x,y) + \rho(x,z)\rho(z,y) + \rho(z,y)\rho(x,z) + \rho(x,y)\rho(y,z)\rho(z,x) \ge 0.$$

Задача 4. Найти расстояние между функциями $x(t) = t^3$ и y(t) = 3t + 4 в пространствах $C[0,2], C^{(1)}[0,2], CL_1[0,2], CL_2[0,2].$

Решение. По определению расстояние в пространстве C[0,2] вычисляется по формуле

$$\rho(x,y) = \max_{0 \le t \le 2} |t^3 - 3t - 4|.$$

Предварительно вычислим максимум функции $f(t) = t^3 - 3t - 4$ на отрезке [0,2], используя производную $f'(t) = 3t^2 - 3$. Откуда точками, подозрительными на экстремум, являются три точки $t_1 = 0, t_2 = 1$ и $t_3 = 2$. Тогда |f(0)| = 4, |f(1)| = 6, |f(2)| = 2. Следовательно, в пространстве C[0,2] расстояние $\rho(x,y) = 6$.

Аналогично, вычислим расстояние в пространстве $C^{(1)}[0,2]$:

$$\rho(x,y) = \max_{0 \le t \le 2} |t^3 - 3t - 4| + \max_{0 \le t \le 2} |3t^2 - 3| = 6 + 9 = 15.$$

Рассмотрим вычисление расстояния в пространстве $CL_1[0,2]$

$$\rho(x,y) = \int_{0}^{2} |t^{3} - 3t - 4| \, dt.$$

Заметим, что на отрезке [0,2] функция $t^3-3t-4<0$, поэтому

$$\int_{0}^{2} |t^{3} - 3t - 4| \, dt = -\int_{0}^{2} (t^{3} - 3t - 4) \, dt = 10.$$

Итак, $\rho(x,y)=10$ в $CL_1[0,2]$. А в пространстве $CL_2[0,2]$

$$\rho(x,y) = \left(\int_{0}^{2} |t^3 - 3t - 4|^2 dt\right)^{1/2} = 2\sqrt{\frac{454}{35}}.$$

ЗАДАНИЯ

Задание 1. Задает ли данная функция расстояние в пространстве \mathbb{R}^n при заданном n.

1.1.
$$\rho(x,y) = ||x| - |y||, \quad n = 1;$$

1.2.
$$\rho(x,y) = (x^2 + 2y^2)|x - y|, \quad n = 1;$$

1.3.
$$\rho(x,y) = \sqrt{|x-y|}, \quad n=1;$$

1.4.
$$\rho(x,y) = \sin|x-y|, \quad n=1;$$

1.5.
$$\rho(x,y) = (|x_1 - x_2|^2 + |y_1 - y_2|^4)^{1/4}, \quad n = 2;$$

1.6.
$$\rho(x,y) = (|x_1 - x_2|^2 + |y_1^3 - y_2^3|^2)^{1/2}, \quad n = 2;$$

1.7.
$$\rho(x,y) = |x_1 - x_2| + \operatorname{tg}|y_1 - y_2|, \quad n = 2;$$

1.8.
$$\rho(x,y) = |x_1^3 - x_2^3|^2 + |\operatorname{arctg} y_1 - \operatorname{arctg} y_2|, \quad n = 2;$$

1.9.
$$\rho(x,y) = \max |x_1 - x_2|, |y_1^5 - y_2^5|, \quad n = 2;$$

1.10.
$$\rho(x,y) = \max |x_1^2 - x_2^2|, |y_1^2 - y_2^2|, \quad n = 2;$$

1.11.
$$\rho(x,y) = (x_1^2 + x_2^2)|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|, \quad n = 3;$$

1.12.
$$\rho(x,y) = \max |x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|, n = 3;$$

1.13.
$$\rho(x,y) = (|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|)^{1/2}, \quad n = 3;$$

1.14.
$$\rho(x,y) = (|x_1 - x_2|^2 + |y_1 - y_2| + |z_1 - z_2|^2)^{1/2}, \quad n = 3.$$

Задание 2. Вычислить расстояние между функциями x(t) и y(t) в пространствах а) $C[a,b], C^{(1)}[a,b],$ б) $CL_1[a,b], CL_2[a,b].$

2.1. a)
$$x(t) = 5$$
, $y(t) = \sqrt{3(t+1)(2-t)}$, $t \in [-3, 1]$,

6)
$$x(t) = t$$
, $y(t) = (t+1)^{-1/3}$, $t \in [0,1]$;

2.2. a)
$$x(t) = t + 1$$
, $y(t) = 2\sqrt{t+1}$, $t \in [-2, 4]$,

6)
$$x(t) = t$$
, $y(t) = \sqrt{2 - t^2}$, $t \in [-1, 1]$;

2.3. a)
$$x(t) = (t^2 - t)\sin t$$
, $y(t) = 2t^2 - 1$, $t \in [-\pi/2, \pi]$,

6)
$$x(t) = \cos t$$
, $y(t) = \cos t^2$, $t \in [0, \pi/2]$;

2.4. a)
$$x(t) = \frac{4}{t+1}$$
, $y(t) = t^2 + t - 2$, $t \in [2, 4]$,

6)
$$x(t) = \frac{1}{1-t}$$
, $y(t) = \frac{1}{1+t}$, $t \in [0, 1/2]$;

2.5. a)
$$x(t) = t$$
, $y(t) = \sin 2t$, $t \in [-\pi/2, \pi/2]$,

6)
$$x(t) = t$$
, $y(t) = \cos^2 t$, $t \in [0, \pi]$;

2.6. a)
$$x(t) = \frac{4}{t} + 1$$
, $y(t) = t^2 + t - 1$, $t \in [-7, 4]$,

6)
$$x(t) = \sin^2 t$$
, $y(t) = \cos^2 t$, $t \in [0, \pi/2]$;

2.7. a)
$$x(t) = (t^2 - t)\sin 2t$$
, $y(t) = t$, $t \in [-\pi/2, \pi, 1]$,

6)
$$x(t) = \frac{1}{\sqrt{t}}, \quad y(t) = \sqrt{t}, \quad t \in [1, 2];$$

2.8. a)
$$x(t) = e^t$$
, $y(t) = t$, $t \in [-1, 4]$,
6) $x(t) = \sin t$, $y(t) = \sin 2t$, $t \in [0, \pi]$;

2.9. a)
$$x(t) = 2t^2 + 1$$
, $y(t) = t^4$, $t \in [0, 4]$,

6)
$$x(t) = e^t$$
, $y(t) = te^t$, $t \in [0, 1]$;

2.10. a)
$$x(t) = \frac{1}{t^2 + 1}$$
, $y(t) = \frac{2t}{t^2 + 1}$, $t \in [-5, 5]$,

6)
$$x(t) = t$$
, $y(t) = \frac{1}{\sqrt[3]{t}}$, $t \in [1, 2]$;

2.11. a)
$$x(t) = t^5 + 5t^3$$
, $y(t) = 5t^4 - 1$, $t \in [-1, 2]$,
6) $x(t) = e^t$, $y(t) = e^{-t}$, $t \in [0, 1]$;

2.12. a)
$$x(t) = 2t^2 + 5$$
, $y(t) = 3t^4 + t^2 - 2$, $t \in [-1, 7]$,
 6) $x(t) = t$, $y(t) = \sin 2t$, $t \in [0, \pi/2]$;

2.13. a)
$$x(t) = 3 - t$$
, $y(t) = \frac{2}{t+2}$, $t \in [-1, 4]$,

6)
$$x(t) = \sqrt{\frac{t+2}{t-2}}, \quad y(t) = \sqrt{\frac{t-2}{t+2}}, \quad t \in [4, 6];$$

2.14. a)
$$x(t) = 2\sin t$$
, $y(t) = \cos 2t$, $t \in [0, \pi]$,

6)
$$x(t) = 2 \ln t$$
, $y(t) = 1$, $t \in [2, 4]$;

2.15. a)
$$x(t) = 2t^3 + 7$$
, $y(t) = 6t^2 + 18t$, $t \in [-2, 4]$,

6)
$$x(t) = e^{2t}$$
, $y(t) = 2e^{1-t}$, $t \in [0, 1]$;

2.16. a)
$$x(t) = 2\sin t$$
, $y(t) = \cos 2t$, $t \in [0, 3\pi/2]$,

6)
$$x(t) = t$$
, $y(t) = \frac{1}{\sqrt{1+t^2}}$, $t \in [0,1]$;

2.17. a)
$$x(t) = \frac{16}{t-1}$$
, $y(t) = -t^2 + 2t + 15$, $t \in [2, 4]$,

6)
$$x(t) = \frac{1}{\sqrt{4-t^2}}, \quad y(t) = t, \quad t \in [-1, 1].$$