Lecture 4: Regression Diagnostics

Modified slides from Prof. Sharyn O'Halloran

Regression Diagnostics

- Unusual and Influential Data
 - □ Outliers
 - Leverage
 - □ Influence
- Heteroscedasticity
 - Non-constant variance
- Multicollinearity
 - Non-independence of x variables

Unusual and Influential Data

Outliers

- □ An observation with large residual.
 - An observation whose dependent-variable value is unusual given its values on the predictor variables.
 - An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Largest positive outliers

Largest negative outliers

reg api00 meals ell emer
rvfplot, yline(0)

Unusual and Influential Data

Outliers

- An observation with large residual.
 - An observation whose dependent-variable value is unusual given its values on the predictor variables.
 - An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Leverage

- An observation with an extreme value on a predictor variable
 - Leverage is a measure of how far an independent variable deviates from its mean.
 - These leverage points can have an effect on the estimate of regression coefficients.

М

Leverage

Unusual and Influential Data

Outliers

- An observation with large residual.
 - An observation whose dependent-variable value is unusual given its values on the predictor variables.
 - An outlier may indicate a sample peculiarity or may indicate a data entry error or other problem.

Leverage

- □ An observation with an extreme value on a predictor variable
 - Leverage is a measure of how far an independent variable deviates from its mean
 - These leverage points can have an effect on the estimate of regression coefficients.

Influence

- Influence can be thought of as the product of leverage and outlierness.
 - Removing the observation substantially changes the estimate of coefficients.

Influence

Introduction

- The problem: least squares is not resistant
 - One or several observations can have undue influence on the results

A quadratic-in-x term is significant here, but not when largest x is removed.

- Why is this a problem?
 - □ Conclusions that hinge on one or two data points must be considered extremely fragile and possibly misleading.

Tools

- Scatterplots
- Residuals plots
- Tentative fits of models with one or more cases set aside
- A strategy for dealing with influential observations
- Tools to help detect outliers and influential cases
 - Cook's distance
 - Leverage
 - Studentized residual

Difficulties to overcome

- Detection of influential observations depends on
 - Having determined a good scale for y (transformation) first
 - □ Having the appropriate x's in the model,
- But assessment of appropriate functional form and x's can be affected by influential observations (see previous page).

Example of Influential Outliers

Log transformation smoothes data and

General strategy

- Start with a fairly rich model;
 - □ Include possible x's even if you're not sure they will appear in the final model
 - Be careful about this with small sample sizes
- Resolve influence and transformation simultaneously, early in the data analysis
- In complicated problems, be prepared for dead ends.

Influence

- By influential observation(s) we mean one or several observations whose removal causes a different conclusion in the analysis.
- Two strategies for dealing with the fact that least squares is not resistant:
 - Use an estimating procedure that is more resistant than least squares (and don't worry about the influence problem)
 - Use least squares with the strategy defined below...

A strategy for dealing with influential cases

Alcohol Metabolism Example

Does the fitted regression model change when the two isolated points are removed?

be.

Example: Alcohol Metabolism

- Step 1: Create indicator variables and Interactive terms.
 - □ STATA commands to generate dummies for male and female:
 - gen female=gender if gender==1 (14 missing values generated)
 - gen male=gender if gender==2 (18 missing values generated)
 - replace female=0 if female!=1 (14 real changes made)
 - replace male=0 if male!=2 (18 real changes made)
 - □ Interactive Term
 - gen femgas=female*gastric

Example: Alcohol Metabolism (cont.)

Step 2: run initial regression model:

. reg metabol female gastric femgas									
Source	88	df	MS		Number of obs				
Model Residual	178.28201 40.8126802		273367 759572		Prob > F R-squared Adj R-squared	= 0.0000 = 0.8137			
Total	219.09469	31 7.06	757066		Root MSE	= 1.2073			
metabol	Coef.	Std. Err.	t	P> t	[95% Conf.	Intervall			
female gastric femgas _cons	.988497 2.343871 -1.506924 -1.185766	1.072391 .280148 .5591376 .7116847	0.92 8.37 -2.70 -1.67	0.365 0.000 0.012 0.107	-1.208197 1.770014 -2.652265 -2.643586	3.18519 2.917729 3615823 .2720539			

Example: Alcohol Metabolism (cont.)

Step 3: run initial regression model:

exclude the largest values of gastric, cases 31 and 32

. reg metabol						
Source	SS	df	MS		Number of obs	
Model Residual	41.6100636 20.2236025		700212 830864		F(3, 26) = Prob > F = R-squared = Odi P-squared =	0.0000 0.6729
Total	61.8336661	29 2.13	219538		Adj R-squared = Root MSE =	
metabol	Coef.	Std. Err.	t	P> t	[95% Conf.]	nterval]
female gastric femgas _cons	2667927 1.565434 728486 .0695236	.9932437 .4073902 .5393695 .8019484	-0.27 3.84 -1.35 0.09	0.790 0.001 0.188 0.932		1.774849 2.402836 .380204 1.717952

graph twoway lfit metabol gastric if female==1 & gastric<=3.5 !! lfit metabol gastric if female==0 & gastric<=3.5 !! lfit metabol gastric if female==1 !! lfit metabol gastric if female==1, msymbol(D) mcolor(cranberry) !! scatter metabol gastric if female==0, msymbol(Oh) mcolor(navy) legend(label(1 "female line with gastric<3.5") label(2 "male line with gastric<3.5") label(3 "female line") label(4 "male line") label(5 "female") label(6 "male") ytitle("Methabolism") xtitle("Gastric Activity")

graph twoway lfit metabol gastric if female==1 & gastric<=3.5 ¦¦ lfit metabol ga stric if female==1 ¦¦ scatter metabol gastric if female==1, msymbol(D) mcolor(cr anberry) ¦¦ scatter metabol gastric if female==0, msymbol(Oh) mcolor(navy) legend (label(1 "female line with gastric<3.5") label(2 "female line") label(3 "female") label(4 "male")) ytitle("Methabolism") xtitle("Gastric Activity")

graph twoway lfit metabol gastric if female==0 & gastric<=3.5 ;; lfit metabol gastric if female==1, msymbol(D) mcolor(cranberry) ;; scatter metabol gastric if female==0, msymbol(Oh) mcolor(navy) legend (label(1 "male line with gastric<3.5") label(2 "male line") label(3 "female") label(4 "male")) ytitle("Methabolism") xtitle("Gastric Activity")

M

Case influence statistics

- Introduction
 - These help identify influential observations and help to clarify the course of action.
 - □ Use them when:
 - you suspect influence problems and
 - when graphical displays may not be adequate
- One useful set of case influence statistics:
 - □ D_i: Cook's Distance for measuring influence
 - □ h_i: Leverage for measuring "unusualness" of x's
 - "cutlierness"
 "studentized residual for measuring "outlierness"
 - Note: i = 1,2,..., n
- Sample use of influence statistics...

Cook's Distance: Measure of overall influence

Note: observations 31 and 32 have large cooks distances.

The impact that omitting a case has on the estimated regression coefficients.

D_i: Cook's Distance for identifying influential cases

- One formula is: $D_i = \sum_{j=1}^n \frac{(\hat{y}_{j(i)} \hat{y}_j)^2}{p\hat{\sigma}^2}$
 - Here the distance formula involves the estimated response of y at observation j, based on the reduced data set with observation i deleted and
 - included, and the number of regression coefficients
 - in estimated variance from the fit, based on all observations.
- An equivalent formula (admittedly mysterious) is:

$$D_i = \frac{1}{p} (studres_i)^2 \left(\frac{h_i}{1 - h_i}\right)$$

This term is big if case *i* is unusual in the y-direction

This term is big if case i is unusual in the x-direction

In the homework, you are asked to show the two formulae are equivalent.

Leverage: hi for the single variable case

(also called: diagonal element of the hat matrix)

It measures the multivariate distance between the x's for case i and the average x's, accounting for the correlation structure.

If there is only one x:
$$h_i = \frac{1}{(n-1)} \left(\frac{x_i - \overline{x}}{s_x} \right)^2 + \frac{1}{n}$$

Equivalently:

$$h_i = \frac{(x_i - \overline{x})^2}{\sum (x - \overline{x})^2} + \frac{1}{n}$$

Leverage is the proportion of the total sum of squares of the explanatory variable contributed by the ith case.

Ŋ4

Leverage: hi for the multivariate case

For several x's, h_i has a matrix expression

Unusual in explanatory variable values, although not unusual in X_1 or X_2 individually X_1 X_2

M

Studentized residual for detecting outliers (in y direction)

Formula:
$$studres_i = \frac{res_i}{SE(res_i)}$$

■ Fact:
$$SE(res_i) = \hat{\sigma}\sqrt{1-h_i}$$

- □i.e. different residuals have different variances, and since 0 < h_i < 1 those with largest h_i (unusual x's) have the smallest SE(res_i).
- □ For outlier detection use this type of residual (but use ordinary residuals in the standard residual plots).

How to use case influence statistics

- Get the triplet (D_i, h_i, studres_i) for each i from 1 to n
- Look to see whether any D_i's are "large"
 - □ Large D_i's indicate influential observations
 - Note: you ARE allowed to investigate these more closely by manual case deletion.
- h_i and studres_i help explain the reason for influence
 - □ unusual x-value, outlier or both;
 - helps in deciding the course of action outlined in the strategy for dealing with suspected influential cases.

ROUGH guidelines for "large"

(Note emphasis on ROUGH)

- D_i values near or larger than 1 are good indications of influential cases;
 - □ Sometimes a D_i much larger than the others in the data set is worth looking at.
- The average of h_i is always p/n (why?)
 - □ some people suggest using h_i>2p/n as "large"
- Based on normality, |studres_i| > 2 is considered "large"

Sample situation with a single x

STATA commands:

- predict derives statistics from the most recently fitted model.
- Some **predict** options that can be used after anova or regress are:

predict newvariable, cooksd	Cook's distance
predict newvariable, rstudent	Studentized residuals
Predict newvariable, hat	Leverage

Predict newvariable, r

residuals

In each case, you provide name of the newvariable to store the statistic

- 1. predict D, cooksd
- 2. graph twoway scatter D subject, msymbol(i) mlabel(subject
 ytitle("Cooks'D") xlabel(0(5)35) ylabel(0(0.5)1.5)
 title("Cook's Distance by subject")

- 1. predict studres, rstudent
- 2. graph twoway scatter studres subject, msymbol(i)
 mlabel(subject) ytitle("Studentized Residuals")
 title("Studentized Residuals by subject")

- 1. predict leverage, hat
- 2. graph twoway scatter leverage subject, msymbol(i)
 mlabel(subject) ytitle("Leverage") ylabel(0(.1).5)
 xlabel(0(5)35) title("Leverage by subject")

Alternative case influence statistics

- Alternative to D_i: dffits_i (and others)
- Alternative to studresi: externallystudentized residual
 - Suggestion: use whatever is convenient with the statistical computer package you're using.
- Note: D_i only detects influence of single-cases; influential pairs may go undetected.

be.

Partial Residual Plots

- A problem: a scatterplot of y vs x_2 gives information regarding $\mu(y|x_2)$ about
 - \square (a) whether x_2 is a useful predictor of y,
 - \Box (b) nonlinearity in x_2 and
 - □ (c) outliers and influential observations.
- We would like a plot revealing (a), (b), and (c) for µ(y|x₁, x₂, x₃)
 - \square e.g. what is the effect of x_2 , after accounting for x_1 and x_3 ?

Example: SAT Data

- Question:
 - □ Is the distribution of state average SAT scores associated with state expenditure on public education, after accounting for percentage of high school students who take the SAT test?
- We would like to visually explore the function f(expend) in:
 - $\square \mu(SAT|takers,expend) = \beta_0 + \beta_1 takers + f(expend)$
 - □ After controlling for the number of students taking the test, does expenditures impact performance?

Stata Commands: avplot

- The added variable plot is also known as partial-regression leverage plots, adjusted partial residuals plots or adjusted variable plots.
 - □ The AVPlot depicts the relationship between y and one x variable, adjusting for the effects of other x variables
- Avplots help to uncover observations exerting a disproportionate influence on the regression model.
 - High leverage observations show in added variable plots as points horizontally distant from the rest of the data.

Added variable plots

- Is the state with largest expenditure influential?
- Is there an association of expend and SAT, after accounting for takers?

reg	sat	takers	expend

Source	ss	đf	MS		Number of obs F(2, 47)	
Model Residual	189732.978 56277.8419		866.489 7.40089		Prob > F R-squared Adj R-squared	= 0.0000 = 0.7712 = 0.7615
Total	246010.82	49 502	0.62898		Root MSE	= 34.603
sat	Coef.	Std. Err.	t	P> t	E95% Conf.	Intervall

avplots

After accounting for % of students who take SAT, there is a positive association between expenditure and mean SAT scores.

M

Component plus Residual

We'd like to plot y versus x₂ but with the effect of x₁ subtracted out;

i.e. plot
$$y - \beta_0 + \beta_1 x_1$$
 versus x_2

To approximate this, get the partial residual for x₂:

a. Get
$$\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$$
 in $\mu(y \mid x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

- b. Compute the partial residual as $pres = y \hat{\beta}_0 + \hat{\beta}_1 x_1$
- This is also called a component plus residual; if res is the

residual from 3a:
$$pres = res + \hat{\beta}_2 x_2$$

Stata Commands: cprplot

- The component plus residual plot is also known as partial-regression leverage plots, adjusted partial residuals plots or adjusted variable plots.
- The command "cprplot x" graph each obervation's residual plus its component predicted from x against values of x.
- Cprplots help diagnose non-linearities and suggest alternative functional forms.

Graph cprplot x₁

- Heteroscedasticity is systematic variation in the size of the residuals
- Here, for instance, the variance for smaller fitted values is greater than for larger ones

reg api00 meals ell emer
rvfplot, yline(0)

Hetroskedasticity

reg api00 meals ell emer
rvfplot, yline(0)

- Heteroskastic: Systematic variation in the size of the residuals
- Here, for instance, the variance for smaller fitted values is greater than for larger ones

Hetroskedasticity

reg api00 meals ell emer
rvfplot, yline(0)

- Heteroskastic: Systematic variation in the size of the residuals
- Here, for instance, the variance for smaller fitted values is greater than for larger ones

Tests for Heteroskedasticity

Grabbed whitetst from the web

```
. net install whitetst
checking whitetst consistency and verifying not already installed...
installing into c:\ado\plus\...
installation complete.
. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
    Ho: Constant variance
    Variables: fitted values of api00

    chi2(1) = 8.75
    Prob > chi2 = 0.0031
. whitetst
White's general test statistic : 18.35276 Chi-sq(9) P-value = .0313
```

Fails hettest

Fails whitetst

Another Example

reg api00 enroll

- These error terms are really bad!
- Previous analysis suggested logging enrollment to correct skewness

Another Example

- Much better
- Errors look more-orless normal now

```
gen lenroll = log(enroll)
reg api00 lenroll
rvfplot
```

×

Back To First Example

- Adding enrollment keeps errors normal
- Don't need to take the log of enrollment this time

reg api00 meals ell emer enroll
rvfplot, yline(0)

Weighted regression for certain types of non-constant variance (cont.)

1. Suppose:
$$\mu(y \mid x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

 $\text{var}(y \mid x_1, x_2) = \sigma^2 / \omega_i$

and the wis are known

2. Weighted least squares is the appropriate tool for this model; it minimizes the weighted sum of squared residuals

$$\sum_{i=1}^{n} \omega_{i} (y_{i} - \hat{\beta}_{1} x_{1i} - \hat{\beta}_{2} x_{2i})^{2}$$

3. In statistical computer programs: use linear regression in the usual way, specify the column *w* as a *weight*, read the output in the usual way

Weighted regression for certain types of non-constant variance

- 4. Important special cases where this is useful:
- a. y_i is an average based on a sample of size m_i In this case, the weights are $w_i = 1/m_i$
- b. the variance is proportional to x; so $w_i = 1/x_i$

Multicollinearity

- This means that two or more regressors are highly correlated with each other.
- Doesn't bias the estimates of the dependent variable
 - So not a problem if all you care about is the predictive accuracy of the model
- But it <u>does</u> affect the inferences about the significance of the collinear variables
 - □ To understand why, go back to Venn diagrams

M

Multicollinearity

- Variable X explains Blue + Red
- Variable W explains Green + Red
- So how should Red be allocated?

Multicollinearity

We could:

- 1. Allocate Red to both X and W
- 2. Split Red between X and W (using some formula)
- Ignore Red entirely

Multicollinearity

- In fact, only the information in the Blue and Green areas is used to predict Y.
- Red area is ignored when estimating β_x and β_w

Venn Diagrams and Estimation of Regression Model

Venn Diagrams and Collinearity

This is the usual situation: some overlap between regressors, but not too much.

Venn Diagrams and Collinearity

Now the overlap is so big, there's hardly any information left over to use when estimating β_x and β_w .

These variables "interfere" with each other.

Venn Diagrams and Collinearity

M

Testing for Collinearity

"quietly" suppresses all output

- . quietly regress api00 meals ell emer
- . vif

Variable	VIF	1/VIF
meals ell emer	2.73 2.51 1.41	0.366965 0.398325 0.706805
Mean VIF	2.22	

VIF = variance inflation factor
Any value over 10 is worrisome

M

Testing for Collinearity

"quietly" suppresses all output

- . quietly regress api00 meals ell emer
- . vif

These results are not too bad

VIF = variance inflation factor
Any value over 10 is worrisome

м

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
avg_ed grad_sch	43.57 14.86	0.022951
col_grad some_col acs_k3	14.78 4.07 1.03	0.067664 0.245993 0.971867
Mean VIF	1.03 15.66	0.971807

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable VIF 1/VIF 0.022951 avg_ed 0.067274 grad_sch 14.86 14.78 0.067664 col_grad 4.07 0.245993 some_col acs k3 1.03 0.971867 Mean VIF 15.66

Much worse.

M

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
avg_ed grad_sch col_grad some_col acs_k3	+	0.022951 0.067274 0.067664 0.245993 0.971867
Mean VIF	15.66	

Much worse.

Problem:
education
variables are
highly correlated

Testing for Collinearity

Now add different regressors

- . qui regress api00 acs_k3 avg_ed grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
avg_ed grad_sch col_grad	43.57 14.86 14.78	0.022951 0.067274 0.067664
some_col acs_k3	4.07 1.03	0.245993 0.971867
Mean VIF	15.66	

Much worse.

Problem:
education
variables are
highly correlated

Solution: delete collinear factors.

м

Testing for Collinearity

Delete average parent education

- . qui regress api00 acs_k3 grad_sch col_grad some_col
- . vif

Variable	VIF	1/VIF
	1 00	
col_grad	1.28	0.782726 0.792131
grad_sch some_col	1.26 1.03	0.792131
acs_k3	1.02	0.976666
+		
Mean VIF	1.15	

This solves the problem.

Measurement errors in x's

 Fact: least squares estimates are biased and inferences about

$$\mu(y|x1, x2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

can be misleading if the available data for estimating the regression are observations y, x_1 , x_2^* , where x_2^* is an imprecise measurement of x_2 (even though it may be an unbiased measurement)

- This is an important problem to be aware of; general purpose solutions do not exist in standard statistical programs
- Exception: if the purpose of the regression is to predict future y's from future values of x₁ and x₂* then there is no need to worry about x₂* being a measurement of x₂