Envelope methods

In general, bandwidth is not the same for each row

- In each row of L, fill can occur only between the 1st nonzero in a row and the diagonal.
- To limit the amount of fill, keep the envelope as close to the diagonal as possible.
- Try to number nodes so that graph neighbours have numbers as close together as possible.

e.g.

 $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

max bandwidth = 4, average = 2

<u>Def</u>: Degree of a node = number of nodes adjacent to a given node.

e.g.

Envelope ordering strategies based on level set S_i :

 S_1 -> consists of a single node, the starting node

S₂ -> all (graph) neighbours of the node in S₁

 S_3 -> all neighbours of nodes in S_2 that are not in S_1 , S_2 .

In general, S_i consists of all neighbours of S_{i-1} that are not in $S_1, S_2, ..., S_{i-2}$.

Ordering: nodes in S₁, nodes in S₂, etc.

Cuthill-McKee ordering (1969)

- 1) Determine starting node
- 2) For i = 1, ..., n, find all unnumbered neighbours of node i and number them in order of degree (smallest first)

Surprisingly, the reverse ordering is better, so add 3)

3) Reverse Cuthill-McKee (RCM, 1971, George)

$$node_i^{RCM} = node_{n-i+1}^{CM} \qquad i = 1, 2, ..., n$$

Example 1:

node #	node	unnumbered neighbours
1	g	h, e, b, f
		deg(h)=2, deg(e)=3, deg(b)=4, deg(f)=4
2	h	
3	е	c deg(c) = 3
4	b	j deg(j) = 1
5	f	a, d $deg(a) = 2$, $deg(d) = 4$
6	С	

node #	node	unnumbered neighbours
7	j	
8	a	
9	d	i deg(i) = 1
10	i	

CM ordering

RCM ordering

Example 2

CM ordering

envelope

fills in completely

RCM ordering

much smaller envelope (no fill)

Interesting property of RCM:

If a graph is a tree, then no matter what node you start with, RCM ordering produced no fill (not true for CM)

Example 3

Notes

- 1) RCM does not necessary produce an optimal ordering (i.e. ordering which introduces least amount of fills)
- 2) In general, NP-complete problem to find optimal ordering.

Local strategy (Markowitz 1957)

• min fill-in only for the current step of GE

E.g. after k steps of GE:

Let $r_i^{(k)}$ = number of entries in row i of $A^{(k)}$ $c_j^{(k)}$ = number of entries in col j of $A^{(k)}$

Then the max possible amount of fill = $(r_i^{(k)} - 1)(c_j^{(k)} - 1)$

E.g.

Markowitz strategy: select $a_{ij}^{(k)}$ that min:

$$(r_i^{(k)} - 1)(c_j^{(k)} - 1)$$

Note: different from $r_i^{(k)} c_j^{(k)}$, prefer $r_i = 1$ or $c_j = 1$

For symmetric structure, $\min r_i^{(k)} = \min c_j^{(k)}$.

Thus, we find node i, $k+1 \le i \le n$ such that

min
$$r_i^{(k)}$$
 - 1

Then we use $a_{ii}^{(k)}$ as the pivot.

Minimum degree ordering

- In the matrix graph, choose the node with least edges connected to it.
- A tree graph will be ordered correctly.
- It is a local strategy; no guarantee it will produce the least amount of total fill.

Counter example:

The given order produces no fill.

Minimum degree ordering will start with node 5:

$$5 \quad 6 \quad 4$$

$$5 \quad \times \quad \times \quad \times$$

$$6 \quad \times \quad \times \quad \bullet$$

$$4 \quad \times \quad \bullet \quad \times$$
fill in

Produces fill at the first step -> not optimal

Tie-breaking

- 1) Select the node that had the smallest node number in the original order.
- 2) RCM preordering -> min. deg.

Tie broken by selecting earlier RCM ordered node.

Example

<u>k</u>	Elimination graph G(A(k-1))	<u>node</u>	min deg
1	a b d c	а	1
2	e b g	С	1
3	e b g	d	2
4	e f g	е	2
5	b	b	2
6	f	f	1
7	g	g	0