Сэмплирование по важности в оптимизации с вероятностными ограничениями.

Вячеслав Горчаков

Научный руководитель: профессор Ю.В. Максимов

Московский физико-технический институт

Июнь, 2022.

Построение оптимизационного решения задачи.

Цель

Предложить оптимизационный метод решения задачи нахождения оптимального потока мощности постоянного тока с вероятностными ограничениями (CC-DC-OPF).

Проблема

Алгоритма, который позволяет получить решение задачи CC-DC-OPF аналитически, не существует, а известные аппроксимации имеют высокие требования к вычислительным ресурсам.

Метод решения

Предлагается подход с использованием сэмплирования по важности для построения аппроксимации по сценариям (scenario approximation, SC) для решения проблемы CC-DC-OPF

Chance-constrained оптимизация (CC-opt)

Постановка: минимизация функции с набором вероятностных ограничений.

Формулировка проблемы в CC-opt

$$\min_{x} f(x)$$
s. t. : $\mathbb{P}(g(x,\xi) \ge 0) \ge 1 - \eta, 0 < \eta \le 1/2,$

 $1-\eta$ - заданный уровень «уверенности» ограничения (confidence level).

Энергетические системы

Дана энергетическая система G=(V,E), где V - множество вершин размера n (nodes/buses), а E - множество ребер размера m.

Пусть р - вектор подачи электроэнергии

$$p=(p_F,p_R,p_S)^\top,$$

Пусть heta вектор фазовых углов, а $B \in \mathbb{R}^{N \times N}$ матрица узловой проводимости системы, причем p = B heta.

Тогда выражения мощности потока и ограничения энергосистемы:

$$p = B\theta \tag{2}$$

$$p_i^{\min} \le p_i \le p_i^{\max}, i \in V \tag{3}$$

$$|\theta_i - \theta_i| \le \bar{\theta}_{ii}, \ (i, j) \in E$$
 (4)

Постановка проблемы CC-DC-OPF

Предположим, что флуктуации подачи электроэнергии p имеют гауссовское распределение, $p=x+\xi$, где $\xi\sim\mathcal{N}(0,\Sigma)$. Введем множество \mathcal{P} такое, что ограничения (3), (4) выполнены внутри этого множества.

$$\mathcal{P} = \big\{ p : Wp \le b \big\} = \big\{ p : \bigcap_{i=1}^J \omega_i^\top p \le b_i \big\},$$

где $W \in \mathbb{R}^{J \times n}, b \in \mathbb{R}^{n \times 1}, J = 2m + 2n$

Формулировка CC-DC-OPF

$$\min_{x} \mathbb{E}_{\xi \sim \mathcal{N}(0,\Sigma)} \cot(x,\xi) \tag{5}$$

s. t. :
$$\mathbb{P}_{\xi \sim \mathcal{N}(0,\Sigma)}(x + \xi \in \mathcal{P}) \ge 1 - \eta, 0 < \eta \le 1/2,$$

Визуализация сэмплирования

Распределение для ξ можно задавать по-разному. В работе применяется подход сэмплирования по важности (Importance Sampling).

Scenario Approach

В подходе воспроизводятся детерминированные ограничения, каждое из которых означает фиксированную реализацию неопределенности ξ . В совокупности ограничения эквивалентны исходному множеству вероятностных ограничений.

Формулировка scenario approach.

$$\min_{x} \frac{1}{N} \sum_{t=1}^{N} \operatorname{cost}(x, \xi_{t})
s. t. : p_{t}^{\min} \leq x + \xi^{t} \leq p_{t}^{\max}, \ 1 \leq t \leq N
|\theta_{i}(\xi^{t}) - \theta_{j}(\xi^{t})| \leq \bar{\theta}_{ij}, (i, j) \in \mathcal{E}, \ 1 \leq t \leq N
x + \xi^{t} = B\theta(\xi^{t}), \ 1 \leq t \leq N,$$
(6)

N - количество сценариев и $\{\xi^t\}_{i=1}^N$ - серия реализаций неопределенностей

Структура алгоритма.

Внутренняя аппроксимация

По заданному множеству $\mathcal P$ строится множество $\mathcal P_m$ такое, что $\mathbb P(x+\xi\in\mathcal P)\geq 1-\eta$, выполнено для $\xi\sim\mathcal N(0,\Sigma)$.

Сэмплирование вне аппроксимации

Сэмплирование точек происходит в области $\mathcal{P} \setminus \mathcal{P}_m$.

Scenario approach подход

Peшeниe Scenario Approximation проблемы с набором сценариев. Сценарии сэмплируются с помощью метода сэмплирования по важности.

Scenario Approximation с сэмплированием по важности

$$\min_{x} \cos(x, \xi_{t})$$
(7)
$$s. t.: p_{t}^{\min} \leq x + \xi^{t} \leq p_{t}^{\max}, \ 1 \leq t \leq N$$

$$|\theta_{i}(\xi^{t}) - \theta_{j}(\xi^{t})| \leq \bar{\theta}_{ij}, (i, j) \in \mathcal{E}, \ 1 \leq t \leq N$$

$$x + \xi^{t} = B\theta(\xi^{t}), \ 1 \leq t \leq N,$$

$$x \in \mathcal{P}_{m},$$

$$\xi^{1}, \xi^{2}, \dots, \xi^{N} \sim D,$$

где D - распределение, определяемое как:

$$D = \sum_{i=1}^{J} \alpha_i D_i, \, \alpha_i \ge 0, \sum_{i=1}^{J} \alpha_i = 1,$$

$$\alpha_i \propto \Phi(-\Delta_i / \|\Sigma^{1/2} \omega_i\|_2), \tag{8}$$

Сэмплирование по важности и Monte-Carlo

Теоретическая оценка

Theorem

Пусть \bar{x}_N есть решение проблемы (7) с N i.i.d. сэмплами такое, что никакие из сэмплов не лежат внутри \mathcal{P}_m . Предположим, что для любого N для любых реализаций ξ^1,\ldots,ξ^N , оптимизационная проблема (7) имеет единственное решение или не имеет его. Тогда для любого $\delta \in (0,1)$ и любой $\eta \in (0,1/2]$, \bar{x}_N является также решением оптимизационной задачи с вероятностными ограничениями (5) с вероятностью $1-\delta$ если

$$N \geq \left\lceil 2 rac{(1-\pi) \ln rac{1}{\delta}}{\eta} + 2d + 2d(1-\pi) rac{\ln rac{2(1-\pi)}{\eta}}{\eta}
ight
ceil,$$

где d есть размерность пространства управляемых генераторов, а π - вероятность того, что произвольный сценарий ξ принадлежит \mathcal{P}_m , $\pi < 1$.

Вычислительный эксперимент

- Энергетические сети IEEE 30, IEEE 57, IEEE 118 и IEEE 300 с 30, 57, 118 и 300 вершин соответственно. Флуктуация уровня потребления имеет среднеквадратичное отклонение 0.07 от номинального своего значения для всех примеров.
- Сравниваются два алгоритма: SA алгоритм scenarion approximation и SAIS - алгоритм scenario approximation с сэмплированием по важности.
- Эмпирический уровень надежности $1-\delta$ определяется как усредненное по L=100 запускам сэмплирований по методу Монте-Карло значение доли выполненных с уверенностью $1-\eta$ ограничений.

Сравнение числа необходимых сэмплов и значений целевой функции

Сравнение числа необходимых сэмплов для достижения эмпирического уровня надежности $1-\delta=0.99$ при двух заданных $\eta=0.05$ и $\eta=0.01$.

Case	η	SA No	SA Cost	IS-SA No	IS-SA Cost
grid30	0.05	160	5.89e+03	60	5.87e+03
grid57	0.05	210	2.52e+04	160	2.52e+04
grid118	0.05	1300	8.72e+04	1050	8.72e+04
grid300	0.05	1550	4.72e+05	1250	4.72e+05
grid30	0.01	800	5.94e+03	300	5.96e+03
grid57	0.01	1300	2.52e+04	300	2.53e+04
grid118	0.01	6000	8.74e+04	3600	8.74e+04
grid300	0.01	9000	4.72e+05	4500	4.72e+05

Сравнительный анализ алгоритмов SA и SAIS

SAO - исходный алгоритм scenario аппроксимаций, но вектор р имеет вид $p = (p_F, p_R)^{\top}$ (не учитываются балансирующие значения p_S).

Выносится на защиту

- Исследован алгоритм сэмплирования по важности для задачи нахождения оптимального потока мощности постоянного тока с вероятностными ограничениями (CC-DC-OPF).
- Показано, что алгоритм scenario approximation с применением сэмплирования по важности требует меньшее количество сценариев для достижения заданного уровня уверенности.
- Данный подход может быть распространен на автоматизированную систему для контроля в реальном времени объемных энергосистем.