EECE 144 Fall 2011

Lab Report #7 Section 4 10/19/2011

Submitted by: Marvanee Johnson

Signature	Printed Name	Date
	Jeremiah Mahler	Oct 19, 2011
	Marvanee Johnson	Oct 19, 2011

Description/Objectives

TODO: What is the objective of this lab? (Equation 1 and 2).

$$J(w, x, y, z) = \sum m(1, 3, 9, 11, 12, 13, 14, 15)$$
(1)

$$J(w, x, y, z) = \sum m(1, 3, 9, 11, 12, 13, 14, 15)$$

$$K(w, x, y, z) = \sum m(0, 1, 3, 12, 14)$$
(2)

$\mathbf{2}$ Procedure

TODO: Describe the procedure used to complete this lab. What analysis techniques are used (e.g. Karnaugh Maps). What was calculated?

(Table 1)

TODO: Describe how the minimal SOP expression for J was found. (Figure 1) (Equation 3).

$$J = wx + x'z \tag{3}$$

TODO: Describe how the minimal SOP expression for K was found. (Figure 2) (Equation 4).

$$K = w'x'y' + w'x'z + wxz' \tag{4}$$

Index	w	\boldsymbol{x}	y	z	J	K
0	0	0	0	0	0	1
1	0	0	0	1	1	1
$\frac{2}{3}$	0	0	1	0	0	0
	0	0	1	1	1	1
4	0	1	0	0	0	0
5	0	1	0	1	0	0
6 7	0	1	1	0	0	0
7	0	1	1	1	0	0
8 9	1	0	0	0	0	0
9	1	0	0	1	1	0
10	1	0	1	0	0	0
11	1	0	1	1	1	0
12	1	1	0	0	1	1
13	1	1	0	1	1	0
14	1	1	1	0	1	1
15	1	1	1	1	1	0

Table 1: Truth table of functions J and K.

Figure 1: Karnaugh map of function J (Equation 1).

TODO: How are the number of gates and gate inputs determined? What are these counts for expression J? (Figure 3)

TODO: Similar to J, how is this done for K? (Figure 4)

TODO: What about the version K limited to 2 input gates? (Figure 5)

Figure 2: Karnaugh map of function K (Equation 2).

Figure 3: Circuit diagram of the minimal SOP solution of J.

Figure 4: Circuit diagram of the minimal SOP solution of K.

Figure 5: Circuit diagram of the minimal SOP solution of K when limited to two input gates.

TODO: What about for the jointly optimized solution of J and K? (Figure 6) (Equation 5)

$$J = w'x'z + wxz' + wz$$

$$K = w'x'z + wxz' + w'x'y'$$
(5)

Figure 6: Jointly optimized Karnaugh maps for J and K.

TODO: How many gates, how many inputs for the joint solution? (Figure 7).

TODO: describe the hardware implementation. (Figure 7

Figure 7: Circuit diagram of the jointly optimized solution of J and K when limited to two input gates.

3 Observations

TODO: How do the counts of various implementations compare? Does the resulting function match the truth table?

J by itself		J and K independently			
gate type	# gates	# inputs	gate type	# gates	# inputs
AND	2	4	AND	8	16
OR	1	2	OR	3	6
NOT	1	1	NOT	5	5
TOTAL	4	7	TOTAL	16	27
K by its	elf, 2 inp	ut gates	J a	$\operatorname{nd} K$ joir	$_{ m ntly}$
K by its			J as gate type	•	v
· ·				•	v
gate type	# gates	# inputs	gate type	# gates	# inputs
gate type AND	# gates 6	# inputs 12	gate type AND	# gates 7	# inputs 14

Table 2: Metrics of gate and input counts for various configurations of J and K.

4 Conclusion

TODO: Was this lab a success in achieving the objective?