Отчёт по лабораторной работе №10

Имитационное моделирование

Ганина Таисия Сергеевна, НФИбд-01-22

Содержание

Сп	исок литературы	20
5	Выводы	19
4	Выполнение лабораторной работы 4.1 Упражнение	8 12
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Граф сети задачи об обедающих мудрецах	9
4.2	Задание деклараций задачи об обедающих мудрецах	10
4.3	Модель задачи об обедающих мудрецах	11
4.4	Запуск модели задачи об обедающих мудрецах	12
4.5	Пространство состояний для модели	17
4.6	Пространство состояний для модели	17

Список таблиц

1 Цель работы

Реализовать модель задачи об обедающих мудрецах в CPN Tools.

2 Задание

- Реализовать модель задачи об обедающих мудрецах в CPN Tools;
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

3 Теоретическое введение

CPN Tools — специальное программное средство, предназначенное для моделирования иерархических временных раскрашенных сетей Петри. Такие сети эквивалентны машине Тьюринга и составляют универсальную алгоритмическую систему, позволяющую описать произвольный объект. CPN Tools позволяет визуализировать модель с помощью графа сети Петри и применить язык программирования CPN ML (Colored Petri Net Markup Language) для формализованного описания модели.

Назначение CPN Tools:

- разработка сложных объектов и моделирование процессов в различных приклад- ных областях, в том числе:
- моделирование производственных и бизнес-процессов;
- моделирование систем управления производственными системами и роботами;
- спецификация и верификация протоколов, оценка пропускной способности сетей и качества обслуживания, проектирование телекоммуникационных устройств и сетей.

Основные функции CPN Tools:

- создание (редактирование) моделей;
- анализ поведения моделей с помощью имитации динамики сети Петри;
- построение и анализ пространства состояний модели.

[1,2].

4 Выполнение лабораторной работы

Пять мудрецов сидят за круглым столом и могут пребывать в двух состояниях – думать и есть. Между соседями лежит одна палочка для еды. Для приёма пищи необходимы две палочки. Палочки – пересекающийся ресурс. Необходимо синхронизировать процесс еды так, чтобы мудрецы не умерли с голода.

Рисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переходы и дуги (рис. 4.1).

Начальные данные:

- позиции: мудрец размышляет (philosopher thinks), мудрец ест (philosopher eats), палочки находятся на столе (sticks on the table)
- переходы: взять палочки (take sticks), положить палочки (put sticks)

Рис. 4.1: Граф сети задачи об обедающих мудрецах

В меню задаём новые декларации модели (рис. 4.2): типы фишек, начальные значения позиций, выражения для дуг:

- n число мудрецов и палочек (n = 5);
- p фишки, обозначающие мудрецов, имеют перечисляемый тип PH от 1 до n;
- s фишки, обозначающие палочки, имеют перечисляемый тип ST от 1 до n;
- функция ChangeS(p) ставит в соответствие мудрецам палочки (возвращает номера палочек, используемых мудрецами); по условию задачи мудрецы сидят по кругу и мудрец p(i) может взять i и i+1 палочки, поэтому функция ChangeS(p) определяется следующим образом:

```
fun ChangeS (ph(i))=
1`st(i)++st(if = n then 1 else i+1)
```

```
► Tool box
► Help
▶ Options
▼wise lab10.cpn
   Step: 0
   Time: 0
  Options
  ▶ History
  ▼ Declarations
    Standard declarations
    ▼val n = 5;
    ▼colset PH = index ph with 1..n;
    ▼colset ST = index st with 1..n;
    ▼var p:PH;
    ▼fun ChangeS(ph(i))=
     1 st(i)++1 st(if i = n then 1 else i+1)
  ▶ Monitors
   philosopher
```

Рис. 4.2: Задание деклараций задачи об обедающих мудрецах

В результате получаем работающую модель (рис. 4.3).

Рис. 4.3: Модель задачи об обедающих мудрецах

После запуска модели наблюдаем, что одновременно палочками могут воспользоваться только два из пяти мудрецов (рис. 4.4).

Рис. 4.4: Запуск модели задачи об обедающих мудрецах

4.1 Упражнение

Вычислим пространство состояний. Прежде, чем пространство состояний может быть вычислено и проанализировано, необходимо сформировать код пространства состояний. Этот код создается, когда используется инструмент Войти в пространство состояний. Вход в пространство состояний занимает некоторое время. Затем, если ожидается, что пространство состояний будет небольшим, можно просто применить инструмент Вычислить пространство состояний к листу, содержащему страницу сети. Сформируем отчёт о пространстве состояний и проанализируем его. Чтобы сохранить отчет, необходимо применить инструмент Сохранить отчет о пространстве состояний к листу, содержащему страницу сети и ввести имя файла отчета.

Из отчета можем узнать, что:

- есть 11 состояний и 30 переходов между ними;
- Границы значений:
 - Одновременно едят от 0 до 2 мудрецов (максимум при использовании 4 палочек из 5);
 - Размышляют от 3 до 5 мудрецов;
 - На столе остаётся от 1 до 5 палочек;
- указаны границы в виде мультимножеств;
- маркировка home для всех состояний, что означает возможность возврата в любое состояние;
- маркировка dead равна None;
- события «взять/положить палочки» происходят бесконечно часто с равной вероятностью (impartial);
- максимальное число одновременно используемых палочек 4 (при двух едящих мудрецах);

Эта модель показывает, как пять мудрецов могут делить пять палочек так, чтобы никто не остался голодным и система работала без остановок. Одновременно едят только два человека — остальные размышляют. Палочки распределяются справедливо, а действия происходят циклично: взял палочки - поел - положил палочки - подумал - снова взял палочки.

Отчёт:

CPN Tools state space report for:

/home/openmodelica/wise_lab10.cpn

Report generated: Sat Mar 29 15:17:55 2025

Statistics

State Space

Nodes: 11

Arcs: 30

Secs: 0

Status: Full

Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

Boundedness Properties

1

Best Integer Bounds

Upper Lower

philosopher'philosopher_eats 1
2 0

philosopher'philosopher_thinks 1
5 3

philosopher'stiks_on_the_table 1

Best Upper Multi-set Bounds

philosopher'philosopher_eats 1

1`ph(1)++

5

1 ph(2)++

1 ph(3)++

```
1 ph(4)++
1`ph(5)
     philosopher'philosopher_thinks 1
                           1`ph(1)++
1 ph(2)++
1 ph(3)++
1 ph(4)++
1`ph(5)
     philosopher'stiks_on_the_table 1
                           1`st(1)++
1'st(2)++
1 \text{`st}(3) ++
1 \text{`st}(4) ++
1`st(5)
  Best Lower Multi-set Bounds
     philosopher'philosopher_eats 1
                           empty
     philosopher'philosopher_thinks 1
                           empty
     philosopher'stiks_on_the_table 1
                           empty
Home Properties
  Home Markings
```

All

Построим граф пространства состояний (рис. 4.5, 4.6):

Рис. 4.5: Пространство состояний для модели

Рис. 4.6: Пространство состояний для модели

На представленном изображении показан граф пространства состояний для задачи об обедающих мудрецах.

Общая структура пространства состояний: - Количество состояний: 11 узлов (пронумерованы от 1 до 11); - У нас всего 15 стрелок, но так как они двунаправленные, получается в итоге 30 переходов. Они представляют собой переходы между состояниями, вызванные срабатыванием переходов take_stiks и put_stiks.

- **Состояние 1 (5:5)**: Начальное состояние, в котором все мудрецы размышляют, а все палочки находятся на столе.
 - philosopher_thinks: 1`ph(1)++1`ph(2)++1`ph(3)++1`ph(4)++1`ph(5)

```
- philosopher_eats: пуст- stiks_on_the_table: 1`st(1)++1`st(2)++1`st(3)++1`st(4)++1`st(5)
```

• Состояние 2 (3:3): Мудрец 3 ест, остальные думают, три палочки лежат на столе.

```
- philosopher_thinks: 1`ph(1)++1`ph(2)++1`ph(4)++1`ph(5)
- philosopher_eats: 1`ph(3)
- stiks_on_the_table: 1`st(1)++1`st(4)++1`st(5)
```

• Состояние 6 (3:3): Мудрец 2 ест, остальные думают, три палочки лежат на столе.

```
- philosopher_thinks: 1`ph(1)++1`ph(3)++1`ph(4)++1`ph(5)
- philosopher_eats: 1`ph(2)
- stiks_on_the_table: 1`st(1)++1`st(4)++1`st(5)
```

• Состояние 7 (3:3): Два мудреца едят, три думают, одна палочка на столе.

```
- philosopher_thinks: 1`ph(1)++1`ph(4)++1`ph(5)
- philosopher_eats: 1`ph(2)++1`ph(3)
- stiks_on_the_table: 1`st(1)
```

И так далее. Состояния 2-6 описывают моменты, когда есть один мудрец, состояния 7-11 перебирают "комбинации мудрецов", когда едят одновременно два мудреца.

5 Выводы

В ходе 10 лабораторной работы была реализована модель задачи об обедающих мудрецах в CPN Tools, вычислено пространство состояний, сформирован отчет о нем и построен граф.

Список литературы

- 1. Цветные сети Петри и язык распределенного программирования UPL: их сравнение и перевод, Аркадий Валентинович Климов [Электронный ресурс]. URL: https://psta.psiras.ru/read/psta2023_4_91-122.pdf.
- 2. CPN Tools, Michael Westergaard, August 2010, Eindhoven, Netherlands [Электронный ресурс]. URL: https://westergaard.eu/wp-content/uploads/2010/09/CPN-Tools.pdf.