

ENONCE DE MATHEMATIQUE ENSP YAOUNDE 2000

Niveau 1

ETUDE LIBRE www.etudelibre.com

Durée 4h

EXERCICE 1

Déterminer toutes les isométries du plan qui laissent invariant l'ensemble \mathbf{F} des points de coordonnées (n,0), $n \in \mathbf{Z}$, dans un repère orthonormé (0,i,j).

EXERCICE 2

- I- On pose $\Phi(a,b)=(1/a-b)\ln(b/a)$ et $\Psi(a,b)=(1/a-b)\ln(b^2/a^2)$, avec a et b réels.
- 1°) A tout couple (a, b), on associe le point M de coordonnées a et b dans un plan rapporté à un repère orthonormé. Représenter les ensembles suivants, en hachurant à chaque fois soigneusement leur complémentaire :

 E_1 , ensemble des points M tels que Φ (a, b) est défini ;

 E_2 , ensemble des points M tels que $\Psi(a, b)$ est défini;

E'₁ ensemble des points M tels que Φ (a, b) \geq 0;

E'₂ ensemble des points M tels que Ψ (a, b) \geq 0;

- 2°) Quelle est la limite de (ln (1+x))/x lorsque x \rightarrow 0 ? Justifiez votre réponse. Calculer alors la limite de Φ (a, b) lorsque b \rightarrow a, puis la limite Φ (a, b) de lorsque a \rightarrow e et b \rightarrow e.
- II- 1°) Résoudre chacune des équations suivantes, où l'inconnue est x :

$$ae^{ax} = be^{bx}$$
 et $ae^{ax} = be^{bx}$.

- 2°) Soit $f_{(a, b)}$ la fonction de \mathbf{R} vers \mathbf{R} , telle que $f_{(a, b)}(t) = e^{at} e^{bt}$. Comparer les représentations dans un repère orthonormé, de $f_{(a, b)}$, $f_{(b, a)}$ et $f_{(-b, -a)}$
 - 3°) Représenter graphiquement les fonctions f_(a, 0) et f_(0, b)
 - 4°) Dans le cas, où 0<b<a, étudier et représenter graphiquement la fonction f(a, b)

EXERCICE 3

P désigne le plan affine euclidien muni d'un repère orthonormé (0, i, j).

- I- Soit f la fonction définie par $f(x) = x + (1-e^x)/(1+e^x)$.
- 1°) Montrer que f est impairs, étudier ses variations et construire, dans P sa courbe représentative, notée C
- 2°) Vérifier, pour tout x réel, la relation $2f'(x) -1 = (f(x)-x^2)$.
- 3°) Déterminer les primitives de la fonction h : $x \rightarrow 1/(1+e^x)$ (on pourra remarquer que $1/(1+e^x)$ = $e^{-x}/(e^{-x}+1)$). Si λ est un réel positif, calculer l'aire A (λ) du domaine délimité par la courbe

1

C et les droites d'équations respectives y = x-1, x = 0 et $x = \lambda$. Quelle est la limite de A (λ) lorsque $\lambda \to +\infty$?

- II- Pour tout réel a, on définit les applications S_a et T_a de P vers P comme suit : à un point M de coordonnées (x, y) on associe les points S_a (M) de coordonnées (-x + 2a, -y+2a) et $T_a(M)$ de coordonnées (x+a, y+a). On note G l'ensemble des applications S_a et T_a , pour tout a réel.
- 1°) Déterminer la nature géométrique des applications S_a et T_a
- 2°) Montrer que pour tout couple (a , b) de réels, les applications composées $S_a \circ S_b$, $T_a \circ T_b$, $S_a \circ T_b$, et $T_a \circ S_b$ appartiennent à G et que G est un sous–groupe du groupe des bijections affines de P. Est-il commutatif ?
- 3°) Montrer que pour tout réel a, on a la relation suivante $S_a = T_a \circ S_0 \circ T_a^{-1}$ (1)
- 4°) Si C est la courbe construite dans la partie I, on note $C_a = T_a(C)$. Montrer, à l'aide de la relation (1), que le point I de coordonnées (a, a) est centre de symétrie de C_a .
- 5°) Montrer qu'il existe une fonction f_a telle que l'équation de C_a soit $y = f_a(x)$