

Theme 5. Interpolation of Rotations SLERP

Julen Cayero, Cecilio Angulo

Bachelor's Degree in Video Game Design and Development

- 1 Motivation
- 2 Definition
- 3 Properties
- 4 Practical use
- 5 Visalization
- 6 Homeworks

Outline

- 1 Motivation
- 2 Definition
- 3 Properties
- 4 Practical use
- 5 Visalization
- 6 Homeworks

SLERP vs LERP

- Angular velocity should be constant when moving from a rotation to another one.
- Angular velocity behaviour for LERP is easily illustrate in this video.
- Quaternion linear interpolation on the unit sphere (SLERP) is preferable since angular velocity will be constant.

- 1 Motivation
- 2 Definition
- 3 Properties
- 4 Practical use
- 5 Visalization
- 6 Homeworks

Definition

The spherical linear interpolation curve between two quaternions can be defined as follows:

SLERP between two quaternions

Given two quaternions \mathring{p} , $\mathring{q} \in \mathbb{H}$ parametrised by $h \in [0,1]$, the following five functions are equivalent expressions for spherical linear interpolation:

$$Slerp(\mathring{p}, \mathring{q}, h) = \mathring{p}(\tilde{\tilde{p}}\mathring{q})^{h}$$

$$= (\mathring{p}\tilde{\tilde{q}})^{1-h}\mathring{q}$$

$$= (\mathring{q}\tilde{\tilde{p}})^{h}\mathring{p}$$

$$= \mathring{q}(\tilde{\tilde{q}}\mathring{p})^{1-h}$$

$$= \mathring{p}^{1-h}\mathring{q}^{h}$$

- 1 Motivation
- 2 Definition
- 3 Properties
- 4 Practical use
- 5 Visalization
- 6 Homeworks

Properties

SLERP Properties

Symmetry in definitions is due to

$$Slerp(\mathring{p},\mathring{q},h) = Slerp(\mathring{q},\mathring{p},1-h)$$

- It can be proven that the curvature equals one throughout the entire interpolation curve.
- Quaternions \mathring{q} and $-\mathring{q}$ give the same rotation. Hence, there are two SLERP choices, pick the shortest.

Outline

- 1 Motivation
- 2 Definition
- 3 Properties
- 4 Practical use
- 5 Visalization
- 6 Homeworks

Practical use

Alternative SLERP Definition

Given two quaternions \mathring{p} , $\mathring{q} \in \mathbb{H}$ parametrised by $h \in [0,1]$, the following expression is also valid for spherical linear interpolation:

$$Slerp(\mathring{p},\mathring{q},h) = \frac{\sin((1-h)\Omega)}{\sin(\Omega)}\mathring{p} + \frac{\sin(h\Omega)}{\sin(\Omega)}\mathring{q}$$

with

$$\cos(\Omega) = \mathring{p} \cdot \mathring{q} = p_0 q_0 + p_1 q_1 + p_2 q_2 + p_3 q_3$$

This formula does not produce a unit quaternion and must be normalized.

- 1 Motivation
- 2 Definition
- 3 Properties
- 4 Practical use
- 5 Visalization
- 6 Homeworks

Visualization Applied / Sphere / Angular velocity

SLERP quaternions interpolation of rotations

I Visualization of rotations as applied on an object, like in motion capture. See video

Visualization Applied / Sphere / Angular velocity

SLERP quaternions interpolation of rotations

- Visualization on the unit sphere.
- Visualization of the smoothness of interpolation curves using angular velocity.

Figure: Interpolation curve and velocity graph for Slerp.

Outline

- 1 Motivation
- 2 Definition
- 3 Properties
- 4 Practical use
- 5 Visalization
- 6 Homeworks

Homeworks

Homeworks

For a quaternion \mathring{r} in the unit sphere \mathbb{S} representing a rotation of angle θ and axis \boldsymbol{u} , and a number h,

$$\mathring{r}^h = \begin{pmatrix} \cos\left(\frac{h\theta}{2}\right) \\ u\sin\left(\frac{h\theta}{2}\right) \end{pmatrix}$$

Calculate $Slerp(\mathring{p}, \mathring{q}, h)$ for $\mathring{p}, \mathring{q} \in \mathbb{S}$

Hint: For $\mathring{r} \in \mathbb{S}$, $\tilde{\mathring{r}} = \mathring{r}^{-1}$

