Introduction to Machine Learning

Lecture 10: Decision Tree

Nov 11, 2019

Jie Wang

Machine Intelligence Research and Applications Lab

Department of Electronic Engineering and Information Science (EEIS)

http://staff.ustc.edu.cn/~jwangx/

jiewangx@ustc.edu.cn

Example

Example

Example

 $\{Outlook = Sunny, \ Temperature = Hot, \ Humidity = High, \ Wind = Strong\}$

Contents

- Example
- ID3
- Extensions of ID3

Chapter 3

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example

{Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong}

Example

 $\{ Out look=Sunny, Temperature=Hot, Humidity=High, Wind=Strong \}$

Example

{Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong}

ID3

ID3

Which Attribute is the best classifier?

Entropy

 $Entropy(S) := -p_+ \log_2 p_+ - p_- \log_2 p_-$

$$\begin{split} Entropy([9+,5-]) &= -\left(9/14\right)\log_2(9/14) - \left(5/14\right)\log_2(5/14) \\ &= 0.94 \end{split}$$

Appropriate Problems

- · Each attribute takes on a small number of disjoint possible values.
- The target function has discrete output values (classification).
- The training data may contain missing attribute values.
-

ID3

Which Attribute is the best classifier?

ID3

· Which Attribute is the best classifier?

Entropy

- The entropy is 0 if all members of S belong to the same class.
- The entropy is 1 when S contains an equal number of positive and negative examples.

https://bricaud.github.io/personal-blog/entropy-in-decision-trees/

Information Gain

$\sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} Entropy(S_v)$ Gain(S, A) := Entropy(S) -

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Information Gain

$$Gain(S,A) := Entropy(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$Values(Wind) = \{Weak, Strong\}$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Gain(S, Wind)$$

$$= Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak}) \\ - (6/14) Entropy(S_{Strong}) \\ = 0.940 - (8/14) 0.811 - (6/14) 1.00 \\ = 0.048$$

Information Gain

ID3(Examples, Target attribute, Attributes)

Examples are the training examples. Target attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- Create a Root node for the tree
- \bullet If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples Target_attribute in Examples
 Otherwise Begin

 A ← the attribute from Attributes that best* classifies Examples
 The decision attribute for Root ← A

 For each possible value, v_i, of A,
 Add a new tree branch below Root, corresponding to the test A = v_i
 Let Examples_n be the subset of Examples that have value v_i for A
 If Examples_n, to empty
 Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 Else below this new branch add the subtree
 ID3(Examples_{ni}, Target_attribute, Attributes – (A)

- Return Root

Pruning

- Post-pruning
 - Split the data into a training set and a validation set
 - Train the decision tree on the training set
 - While pruning improves the accuracy of the tree on the validation set
 - Scan the nodes one by one

 If removing the nodes (and all its descendants) improves the accuracy of the
 - tree on the validation set

 Remove the node and all its descendants
 - Endif

Information Gain

$$Gain(S, A) := Entropy(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Day	Outlock	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High Weak		No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Cool Normal		No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$\begin{split} Values(Wind) = & \{Weak, Strong\} \\ S = & [9+, 5-] \\ S_{Weak} \leftarrow & [6+, 2-] \\ S_{Strong} \leftarrow & [3+, 3-] \end{split}$$

Information Gain

Which Attribute is the best classifier?

Pruning

Overfitting

Extensions of ID3

Continuous-Valued Attributes

48 80

Continuous-Valued Attributes

Missing Attribute Values

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	?	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- Approach 1
 - Assign the common value to the missing attribute value

Temperature

Missing Attribute Values

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	?	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- Approach 1
- Assign the common value to the missing attribute value
- Approach 2
 Weight the instance by the frequencies of the attribute values

Missing Attribute Values

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	?	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- Approach 1
 - Assign the common value to the missing attribute value
- Approach 2
 - Weight the instance by the frequencies of the attribute values

Missing Attribute Values

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	?	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- Approach 1
 - Assign the common value to the missing attribute value
- Approach 2
 - Weight the instance by the frequencies of the attribute values

	Do	7	COOL	Normal	Strong	INO			
•									
5/13	D6-1	Sunny	Coo	l Norm	nal Stro	ng No			
4/13	D6-2	Overcast	Coo	l Norm	nal Stro	ng No			
4/13	D6-3	Rain	Coo	Norm	nal Stro	ng No			

Questions

