Predicting House Prices: A Machine Learning Project

Sale Price Of Houses in Ames, Iowa

Data Cleanup:

Interpreting 'NA' Values

Two Types of 'NA' Values

NA Values With Meaning

- NA has been encoded to mean 'other' or 'none' for multiple features
- Replace NAs with appropriate values

NA Values With No Meaning

- Interpolate all other values
- MSZoning Correlated with Neighborhood
- Utilities Feature has 2 NA values, all of other observations are 'AllPub'
- Kitchen Quality and Overall Quality are highly correlated
- Functional feature is very highly skewed to 'Typical' (over 95%)
- Garage Cars and Garage Area NA value should correspond to their being no Garage

Lot Frontage: A Highly Spurious Feature

- Lot frontage is described as "Linear feet of street connected to property"
- Approximately 15% of observations have 'NA' recorded for this variable
- High correlation with another feature 'Lot Area' (~0.65 Pearson)
- Compute mean ratio of Lot Area and Lot Frontage for entire dataset
- For incomplete observations, multiply ratio by recorded Lot Area to impute Lot Frontage

Feature Engineering

The Process of Dimensionality Reduction

Low Count Categorical Values

- Choosing what data gets fed to training model is extremely important
- For select features there is only one observation of a particular class
 - For Example: 'Roof Material' has only one observation for class 'Metal'
- Training Model will learn no real information for this feature, but it may affect overall predictions
- Drop values from training dataset that meet this criteria

Distribution of Target Variable

Not Normally Distributed

Target Variable Transformed with Box Cox

Distribution of Log Sale Price After BoxCox Transform

Much closer to normal distribution

Correlation of Numerical Features to Sale Price

Correlation of Numerical Variables With Sales Price

Combining Area Features

- Correlation data shows high importance with multiple features concerning area
- Some area features contain redundant information
 - Above ground living area would be highly correlated with first and second floor area
- Investigate linear relationship between sale price and size variables
- Combine where possible and see if relationship is maintained

Indoor Area

Sale Price Versus Indoor Square Footage Feature

Combined Indoor Area

Outdoor Attached Area

Sale Price Versus Outdoor Square Footage Feature

Outdoor Attached Features Combined

Sale Price Versus Total Outdoor Square Footage

Bathrooms and Sale Price

Total Number of Bathrooms

Sale Price Versus Total Number of Bathrooms

Total Living Area

Comparing Total Square Footage and Above Ground Living Area

Correlation between these two variables is 0.87

Quality and Condition Variables

Potential Problems

- There are 12 variables related to quality and condition.
- All nominally encoded
- Possibly subjective in nature
- Are there strong relationships between these variables and sale price?

Possible Solutions

- Encode values to ordinal with a replacement dictionary
- Could combine variables in a weighted manor
- Look at individual relationships and drop uncorrelated features

Usefulness of Quality Variables

	Feature	Correlation
0	OverallQual	0.792129
1	ExterQual	0.684333
3	KitchenQual	0.660592
2	BsmtQual	0.586866
4	FireplaceQu	0.518023
5	GarageQual	0.268863
6	PoolQC	0.122663

Sale Price Versus Quality of Feature

Usefulness of Condition Variables

	Feature	Correlation
4	GarageCond	0.257851
3	BsmtCond	0.206717
2	ExterCond	0.004743
1	OverallCond	-0.088405

Sale Price Versus Condition of Feature

Eliminating More Not Useful Features

	Feature	Correlation
0	GarageYrBlt	0.259369
1	BsmtUnfSF	0.217009
2	BedroomAbvGr	0.168823
3	PoolArea	0.098241
4	MoSold	0.049140
5	BsmtFinSF2	-0.014524
6	LowQualFinSF	-0.026075
7	KitchenAbvGr	-0.134535

- Number Of Bedrooms
- Number Of Kitchens
- Finished Square Feet
- Garage Year Built
- Month Sold
- Lot Frontage
- Pool Area

A Variance Inflation Factor Mystery

- Age related Variables have an extremely high VIF
- This level of information redundancy is very suspicious

Histogram of Year House Built and Year House Remodeled

	Feature	VIF
4	YearBuilt	11648.194337
5	YearRemodAdd	19672.494145
20	YrSold	22378.343953

House Remodeling Feature Solution

Sale Price vs Year Remodeled by Remodeled Status

- Create binary identifier if house was remodeled
- Drop year house was built

Garage Size Redundancy

- Two variables exist describing garage size; 'Garage Area' and Number of Cars
- These variables are using different metrics to measure the same thing
- VIF data confirms

Feature		VIF	
14	GarageCars	36.230931	
15	GarageArea	30.655436	

Which variable to keep?

Does it Matter?

R-squared:	0.392
Adj. R-squared:	0.392
F-statistic:	929.2
Prob (F-statistic):	6.90e-158
Log-Likelihood:	-17956.
AIC:	3.592e+04
BIC:	3.593e+04

R-squared:	0.409
Adj. R-squared:	0.409
F-statistic:	997.3
Prob (F-statistic):	9.21e-167
Log-Likelihood:	-17935.
AIC:	3.587e+04
BIC:	3.589e+04

Eliminating Even More Not Useful Features

	Feature	VIF	P-Value
5	MasVnrArea	1.767059	0.011679
20	TotBr	21.467268	0.013739
11	KitchenQual	76.701825	0.019655
2	LotArea	5.232557	0.022662
17	YrSold	17209.731119	0.324359
18	TotSq	43.581884	0.343021
0	MSSubClass	3.593098	0.515769

- Lot Area
- Year Sold
- MS Sub Class
- Total Indoor Square Footage?

How to Find Usefulness of Categorical Features

- Temporarily encode all features to ordinal
- Use Chi-Squared measurements to find useful features

Features With Lowest Chi Squared

Modeling

Data Preparation

- 1. Use Standard Scaler to scale all numerical values to a normal distribution
- 2. Create a train test split (70/30)
- 3. Create two copies of Data
 - a. Numerically encode nominal categories for tree based models
 - b. Dummify nominal and ordinal categories for penalized linear regression models

Using Lasso for Dimensionality Reduction

Lasso Regression coefficients can be used to eliminate non useful features

- Masonry Type
- Heating Quality Index
- Remodeled Status
- Secondary Exterior Material
- Roofstyle
- Basement Quality
- Pool Area
- Utilities
- Alley
- MS Zoning
- Miscellaneous Feature

Lasso Feature Importance: Numerical

Numerical Feature Importance

Lasso Feature Importance: Categorical

Categorical Feature Importance

Lasso Validation Predictions

Actual Sale Price Versus Lasso Predictions

R Squared = 0.921 Mean Average Error = \$15,710

ElasticNet Validation Predictions

Actual Sale Price Versus Elastic Net Predictions

R Squared = 0.926 Mean Average Error = \$15,268

Random Forest Validation Predictions

Actual Sale Price Versus RandomForest Predictions

R Squared = 0.914 Mean Average Error = \$16,418

Random Forest Model Feature Importance

Random Forest Model Categorical Feature Importance

Random Forest Model Feature Importance

Random Forest Model Numerical Feature Importance

XGBoost Validation Predictions

Actual Sale Price Versus XGBoost Predictions

R Squared = 0.928 Mean Average Error = \$15,015

Comparing Feature Importance

Comparing RandomForest and XGBoost Categorical Feature Importance

Comparing Feature Importance

Comparing RandomForest and XGBoost Numerical Feature Importance

Ensembling With Averaging Models

Difference Between 4 Predictive Models

50-50 XGBoost and Elastic Net Ensemble

Distribution of Predicted and Disclosed Sale Prices

Ensembling: Meta Modeling With Elastic Net

Actual Sale Price Versus Elastic Net Ensemble

Sale Price - ElasticNet Ensemble(\$)

R Squared = 0.962Mean Average Error = \$13,661

Elastic Net Ensemble Distribution Comparison

Test Data Set Ensemble Prediction Distribution vs Train Data Set

With More Time

- Look into algorithmic imputation methods and feature selection
- Try other models like Pytorch or other boosting methods
- Try Different ensembling methods
- Dip deeper into differences between models
- Restyle my Matplotlib graphs
- Find methods for validating final 96% R Squared