

Applications of Deep Learning in Medical Genetics

Simon Liu^{1*}, Suzanna Ledgister Hanchard^{1*}, Michelle C. Dwyer^{1*}, Ping Hu¹, Cedrik Tekendo-Ngongang¹, Rebekah L. Waikel¹, Dat Duong¹, Benjamin D. Solomon¹

¹ Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, *co-first authors

Introduction

- Artificial intelligence (AI) is increasingly studied and applied in a variety of biomedical contexts.
 Among AI, deep learning (DL) has shown strong potential in recent breakthroughs.
- Unlike other machine learning (ML) subbranches,
 DL does not require domain experts to generate features.
- Medical genetic conditions are complex
 esoteric, rare, and often less-well studied.
 However, with the advancement of computational
 technology, we expect DL to become an
 increasingly important tool in analyzing
 medical genetics datasets.
- We present a DL classifier to automatically identify DL publications in medical genetics with minimal manual curation, which can be further adapted to other text-based analyses.

Data Curation

- Of the 14,002 article PMIDs collected in our initial scoping analysis, 306 were excluded due to unavailability (295), corrections (6), and duplicates from preprint servers (5).
- Abstracts for the remaining 13,696 articles were downloaded using the eDirect CLI Utility.¹

Methods

- Two models used for classification: random forest (**RF**) and Bidirectional Encoder Representations from Transformers (**BERT, Fig. 1**)
- We are primarily interested in the binary classification of category 1
 (DL in medical genetics) versus the other categories.
- Data split 8-1-1 for 9-fold cross validation for both models, yielding 9 RF models, 9 BERT models, and 15 string-search labeling functions.
- Snorkel² used to aggregate classifier and labeling function predictions

Pre-training
Figure 1: BERT architecture during pretraining and fine tuning.³

Results

Snorkel Model	TPR	FPR	FNR	TNR
LFs only	0.143	0.378	0.571	0.469
RFs only	0.214	0.000	0.786	1.000
BERTs only	1.000	0.055	0.000	0.945
LFs + RFs	0.143	0.378	0.643	0.469
LFs + BERTs	0.143	0.378	0.857	0.622
RFs + BERTs	1.000	0.055	0.000	0.945
LFs + RFs + BERTs	0.143	0.378	0.857	0.622

Table 1: labeling functions (**LFs**), random forests (**RFs**), true positive rate (**TPR**), false positive rate (**FPR**), false negative rate (**FNR**), true negative rate (**TNR**)

Discussion

- With a 100% TPR and 5.5% FPR, our approach can be very useful in automatically reducing a large set of papers that need to be manually assessed for relevance.
- Manual review of the 76 false positives did identify one article that was initially incorrectly categorized as category 4 and should have been category 1.
- Future applications include generating a "likelihood of diagnosis" from Undiagnosed Diseases Program notes, an ongoing project analyzing diagnostic trends.

References

- 1. Kans, J. (2013, April 23). Entrez Direct: E-utilities on the Unix Command Line. National Center for
- Biotechnology Information. Retrieved April 26, 2022, from https://www.ncbi.nlm.nih.gov/books/NBK179288/

 2. Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S., & Ré, C. (2017, November 28).. arXiv.org. Retrieved April 26, 2022, from https://arxiv.org/abs/1711.10160 Snorkel: Rapid Training Data Creation with weak supervision.
- 3. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- 4. Ghelani, S. (2019, June 2). Snorkel-a weak supervision system. Medium. Retrieved April 25, 2022, from https://towardsdatascience.com/snorkel-a-weak-supervision-system-a8943c9b639f

All relevant data and code can be found via the QR code or at https://github.com/simonliu99/classify-medical-genetics-abstracts.

