Naive Bayes

Grzegorz Chrupała @gchrupala

Unsupervised learning Supervised learning Dimensionality reduction Regression Classification Clustering Structured prediction Topic modeling Anomaly detection

Reminder: How does KNN work?

- Remember training examples
- When new example arrives
 - Find nearby points
 - Return their majority class

Naive Bayes classifier

- Estimates probabilities of classes and features from training data
- When new example arrives
 - Computes and the most probable class for its features
 - (while making a naive assumption)

K-NN

NB

Toy example

Shape Color Target Round Lime Green Yellow Round Lemon Round Apple Green Round Red Apple Yellow Banana Long Green Banana Long

New example

Shape Color Round Green

What are the probabilities of the classes, given this information about the fruit?

```
P(Banana | Shape=Round, Color=Green) = ?
P(Apple | Shape=Round, Color=Green) = ?
P(Lemon | Shape=Round, Color=Green) = ?
P(Lime | Shape=Round, Color=Green) = ?
```

If we knew, we could chose the most probable

Estimate probabilities of classes

Our estimates → relative counts

```
P(Lime) = 1/6
P(Lemon) = 1/6
P(Apple) = 1/3
P(Banana) = 1/3
```

Can use counts from the data directly?

- In this toy example, yes
- But what if we had many more features:
 - P(Lime | Shape=Round, Color=Green, Weight=200g, Diameter=7cm, Taste=Sour, Texture=Smooth,)
 - Not many other examples exactly matching these features

Naive Bayes trick

- The NB classifier uses two ideas
 - Invert probabilities using Bayes Law
 - Assume features are independent

Properties of probabilities

Conditional probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Chain rule

$$P(A,B) = P(A|B)P(B)$$

Bayes Law

Combines definition of conditional probability with chain rule to invert direction of conditioning

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Concretely

$$P(\text{Lime}|x_1, x_2) = \frac{P(x_1, x_2|\text{Lime})P(\text{Lime})}{P(x_1, x_2)}$$

Did it help?

 We still need to estimate probabilities of complex things like

$$P(x_1, x_2 | \text{Lime})$$

Let's make a naive assumption

 Two events A and B are conditionally independent if

$$P(A, B|C) = P(A|C)P(B|C)$$

 Let's assume features are independent given the class

$$P(x_1, x_2 | \text{Lime}) = P(x_1 | \text{Lime})P(x_2 | \text{Lime})$$

Putting it together

$$P(\text{Lime}|x_1, x_2) = \frac{P(x_1|\text{Lime})P(x_2|\text{Lime})P(\text{Lime})}{P(x_1)P(x_2)}$$

Simplification

• We can ignore the denominator. Why?

$$P(\text{Lime}|x_1, x_2) = \frac{P(x_1|\text{Lime})P(x_2|\text{Lime})P(\text{Lime})}{P(x_1)P(x_2)}$$

$$P(\text{Lemon}|x_1, x_2) = \frac{P(x_1|\text{Lemon})P(x_2|\text{Lemon})P(\text{Lemon})}{P(x_1)P(x_2)}$$

The denominator is the same in all both cases so it does not affect which class is more probable

Naive Bayes

$$y_{\text{pred}} = \arg\max_{y} P(y) \prod_{j=1}^{J} P(x_j|y)$$

where y is a class and x_j a feature

Toy example

Shape Color Target Round Lime Green Yellow Round Lemon Round Apple Green Round Red Apple Yellow Banana Long Green Banana Long

What are class probabilities for

Shape Color Round Green

P(Lime)P(Round,Green|Lime) =P(Lime)P(Round|Lime)P(Green|Lime)

$$= 1/6 \times 1 \times 1 = 1/6$$

P(Lemon)P(Round,Green|Lemon) =
 P(Lemon)P(Round|Lemon)P(Green|Lemon)

$$= 1/6 \times 1 \times 0 = 0$$

Smoothing

- Using estimates of exact zero
 - too strict
- Smoothing
 - distributing probabilities more evenly
- Simple method
 - add 1 to all counts

• What are the class probabilities for the toy example using add-1 smoothing?

What about continuous features?

- Estimate feature densities
- Parametric
 - Gaussian
- Non-parametric
 - Kernel density

Summary

- Naive Bayes
 - Probabilistic classification
- Bayes Law
- Independence assumption
- Estimating probabilities
 - smoothing