Departamento de Ingeniería en Matemática

MA4801-1 - Ecuaciones en Derivadas Parciales, Primavera 2024

Profesores: Rayssa Caju y Claudio Muñoz

Auxiliares: Benjamin Borquez, Vicente Salinas y Jessica Trespalacios

Guia 1 - Introdución a distribuciones

- P1. (Convergencia de funciones test) Sea $\phi \in C_0^{\infty}(\mathbf{R}), \phi \neq 0, y \in \text{supp } \phi$. Decida cuando la sucesión $(\phi_j)_{j \in \mathbf{N}}$ converge a 0 en $C_0^{\infty}(\mathbf{R})$:
 - (i) $\phi_i(x) = j^{-1}\phi(x-j)$.
 - (ii) $\phi_j(x) = j^{-p}\phi(jx)$. Aqui p es un número intero positivo fijo.
 - (iii) $\phi_j(x) = e^{-j}\phi(jx)$.

En cada uno de estos casos, verifica que para todo $x \in \mathbb{R}$ y todo $k \in \mathbb{Z}_+$, la secuencia $\left(\phi_j^{(k)}(x)\right)_{j \in \mathbb{N}}$ converge a 0, y además, que en el caso (i) la convergencia es incluso uniforme en \mathbb{R} .

- **P2.** (Ejemplos de Distribuciones) Verifica que u, v y w a continuación son distribuciones en \mathbb{R}^2 :
 - (i) $u(\phi) = \partial^{\alpha} \phi(x)$, donde α es el multiíndice (1,1) y x es el punto (1,1).
 - (ii) $v(\phi) = \int_{\mathbf{R}} \phi(t, 0) dt$.
 - (iii) $w(\phi) = \int_{\mathbf{R}^2} e^{\|x\|^2} \phi(x) dx$.
- P3. (Rotación) Sea

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

una rotación en el plano por un ángulo θ . Define $\langle f \circ R_{\theta}, \varphi \rangle = \langle f, \varphi \circ R_{-\theta} \rangle$. Demuestra que esto es consistente con la definición de $f \circ R_{\theta}$ para funciones. Si $\langle f, \varphi \rangle = \int_{-\infty}^{\infty} \varphi(x,0) \, dx$, ¿cuál es $f \circ R_{\pi/2}$?

- **P4.** Se dice que f es radial si $f \circ R_{\theta} = f$ para todo θ . ¿Es δ_0 radial? Demuestra que $\langle f_R, \varphi \rangle = \frac{1}{2\pi} \int_0^{2\pi} \langle f \circ R_{\theta}, \varphi \rangle d\theta$ define una distribución radial. Demuestra que f es radial si y solo si $f = f_R$.
- **P5.** En \mathbb{R}^2 defina $\langle f, \varphi \rangle = \int_0^\infty \int_0^\infty \varphi(x, y) dx dy$. Compute $\partial^2 f / \partial x \partial y$.
- **P6.** Demuestra que cada función de prueba $\varphi \in \mathcal{D}\left(\mathbb{R}^1\right)$ se puede escribir como $\varphi = \psi' + c\varphi_0$, donde φ_0 es una función de prueba fija (con $\int_{-\infty}^{\infty} \varphi_0(x) \, dx \neq 0$), $\psi \in \mathcal{D}$ y c es una constante. (Sugerencia: Elige $\psi(x) = \int_{-\infty}^{x} (\varphi(t) c\varphi_0(t)) \, dt$ para la elección apropiada de c). Usa esto para probar: Si f es una distribución en \mathbb{R} que satisface f' = 0, entonces f es una constante.
- **P7.** (Representación distribucional de saltos). Sea f continuamente diferenciable excepto en los puntos x_1, \ldots, x_m donde posée discontinuidades de salto, y que su derivada puntual $\frac{\mathrm{d}f}{\mathrm{d}x}$ (definida de forma clásica excepto en x_1, \ldots, x_m) está en $L^1_{\mathrm{loc}}(\mathbb{R})$. Muestre que existe la derivada distribucional de f y es dada por

$$f' = \frac{\mathrm{d}f}{\mathrm{d}x} + \sum_{i=1}^{m} \left[f\left(x_i^+\right) - f\left(x_i^-\right) \right] \delta_{x_i}$$

P8. (Distribuciones temperadas). Considere la clase de Schwartz

$$\mathcal{S}\left(\mathbb{R}^{n}\right)=\left\{ f\in C^{\infty}\left(\mathbb{R}^{n}\right):\rho_{\alpha,\beta}(f)=\sup_{x\in\mathbb{R}^{n}}\left|x^{\alpha}\partial^{\beta}f(x)\right|<\infty \text{ para cualesquiera }\alpha,\beta \text{ multi-\'indices },\right\}$$

su dual $S'(\mathbb{R}^n)$, y denote $||f||_{l,j} = \sum_{|\alpha| < l, |\beta| < j} \rho_{\alpha,\beta}(f)$ para $f \in \mathcal{S}$.

- (i) Sea T un funcional lineal definido sobre \mathcal{S} . Muestre que T es continuo si y solo si existe una constante C > 0 y $l, j \in \mathbb{N} \cup \{0\}$ tales que $|\langle T, \varphi \rangle| \leq C ||\varphi||_{l,j}$ para toda $\varphi \in \mathcal{S}$.
- (ii) Dado $T \in S'(\mathbb{R}^n)$, verifique que la restricción de T a $\mathcal{D}(\mathbb{R}^n)$ es una distribución.