Вычислительная геометрия, день 2

Борис Золотов Матвей Магин

20 июня 2022 г.

Летняя школа МКН СП6ГУ

Содержание

Выпуклая оболочка в 3D

Gift Wrapping

Divide & Conquer

Lifting

Двойственность точек и прямых

Выпуклая оболочка в 3D

Постановка задачи

Даны точки $p_1, p_2, \ldots, p_n \in \mathbb{R}^3$.

Построить **DCEL,** соответствующий граням выпуклой оболочки множества $S = \{p_1, \dots, p_n\}$, указывая p_i в записях вершин.

Сложность ответа

Граф любого многогранника планарен, поэтому количества рёбер, вершин и граней отличаются не более чем в константу раз. Отсюда количество записей и ссылок в итоговом DCEL будет O(h).

Gift Wrapping

Gift wrapping

Обобщение алгоритма Jarvis march на трёхмерный случай.

Отрезок между самой нижней точкой и другой точкой, который имеет min угол с горизонтальной плоскостью, будет ребром выпуклой оболочки.

Выбор следующей грани

```
while внешняя грань — не треугольник do
   p_i p_b p_l — грань, смежная с внешней
   p_k p_l — ребро внешней грани
   for all p \in S do
      Найти угол \angle ((p_i p_k p_l), (p_p p_k))
   end for
   p^* \in S — точка, для которой угол наибольший
   Добавить грань p^*p_lp_k в DCEL
end while
```

Выбор следующей грани

```
while внешняя грань — не треугольник do
   p_i p_b p_l — грань, смежная с внешней
   p_k p_l — ребро внешней грани
   for all p \in S do
       Найти угол \angle ((p_i p_k p_l), (p_l p_k))
   end for
   p^* \in S — точка, для которой угол наибольший
   Добавить грань p^*p_lp_k в DCEL
end while
                                                \triangleright Время работы — O(n \cdot h)
```

Количество сторон внешней грани

Количество сторон внешней грани может как увеличиться, так и уменьшиться при добавлении очередной грани выпуклой оболочки.

Divide & Conquer

Слияние двух выпуклых оболочек

При слиянии необходимо вычислить цилиндр, состоящий из граней, соединяющих выпуклые оболочки \mathcal{CH}_1 и \mathcal{CH}_2 .

Поиск первой грани

Рассмотрим нижнюю вершину и её соседа в \mathcal{CH}_1 и нижнюю вершину в \mathcal{CH}_2 . Проведём через них плоскость.

Если кто-то из соседей выбранных вершин лежит ниже этой плоскости, заменим одну из вершин на него.

Повторим процесс.

Картинка на доске

Вычисление цилиндра

Заметим, что рёбра, ограничивающие цилиндр, являются рёбрами выпуклых оболочек \mathcal{CH}_1 и \mathcal{CH}_2 .

Cylinder wrapping

Пусть p_i^1 и p_j^2 — последние вершины, добавленные к цилиндру из \mathcal{CH}_1 и \mathcal{CH}_2 соответственно; $p_i^1 p_i^2 p_k^*$ — последняя известная грань цилиндра.

Рассмотрим всех соседей p_i^1 и p_j^2 в их выпуклых оболочках, добавим грань $p_*^*p_j^2p_i^1$, которая образует наибольший угол с $p_i^1p_i^2p_k^*$, в цилиндр.

Повторим, пока не придём к изначальному ребру.

Время работы

Может показаться, что «проверяем всех соседей» — долго.

Однако заметим, что каждое ребро проверялось максимум дважды — при поиске как первой грани, так и каждой из последующих.

Отсюда сложность слияния линейна.

$$T(n) = 2T(\frac{n}{2}) + O(n)$$
 даёт время $O(n \cdot \log n)$.

Сведе́ние \overline{DT} к $\overline{3D}$ - \overline{CH}

Покажем, что задача построения триангуляции Делоне на плоскости сводится к задаче построения выпуклой оболочки в \mathbb{R}^3 за линейное время.

Рассмотрим точки $\{p_1,\ldots,p_n\}=S$ и поднимем их на параболоид:

$$(x,y) \mapsto (x,y,x^2+y^2).$$

Теорема

Проекции граней выпуклой оболочки, нормаль которых направлена вниз, будут областями Делоне.

Пересечения с плоскостями и окружности

Лемма

Проекция пересечения параболоида $z = x^2 + y^2$ и плоскости ax + by + cz = d на плоскость Оху — окружность. Её центр не зависит от d.

Доказательство: раскроем скобки, коэффициенты при x^2 и при y^2 будут одинаковы; выделенные полные квадраты не будут меняться при изменении d.

Почему это работает

Вершина выпуклой оболочки $\mathcal{CH}(S)$ — это первая точка касания S и какой-то плоскости, придвигаемой снаружи.

Ещё о касании

Если касание произошло сразу в трёх точках — значит, плоскость была параллельна грани выпуклой оболочки.

Будем поднимать плоскость, параллельную грани \mathcal{CH} , и одновременно смотреть, что происходит на плоскости Oxy.

Подъём плоскости

Подъём плоскости — обоснование

- Рассмотрим плоскость, которая касается *P* в точке *s'* поднятом центре описанной окружности.
- Начнём поднимать её вверх. Коэффициент *d* растёт.
 Проекция пересечения с *P* окружность с центром в s.
 Радиус увеличивается.
- Первые точки на *P*, которых коснётся плоскость, соответствуют первым точкам на *Оху*, через которые пройдёт расширяющаяся окружность.
- \cdot Треугольники Делоне соответствуют граням \mathcal{CH} .

Диаграмма Вороного за $n \cdot \log n$

- Поднять точки на параболоид,
- Построить выпуклую оболочку,
- Спроецировать, получить триангуляцию Делоне,
- · Перейти к двойственному графу, profit.

Двойственность точек и прямых

Определение

Инцидентность и над / под

Ещё пример

Двойственность задач

Верхнее пересечение полуплоскостей \iff Нижняя \mathcal{CH}

Спасибо за внимание!

Выпуклая оболочка в 3D

Gift Wrapping

Divide & Conquer

Lifting

Двойственность точек и прямых