SEMIGROUP NOTES

JS AND JY

1. Definitions

Let E be any set and let $(S_t) := (S_t)_{t \ge 0}$ be a family of self-maps on E with index $t \in \mathbb{R}_+$. The pair $(E, (S_t))$ is called a semidynamical system if S_0 is the idendity and (S_t) has the semigroup property

$$S_{s+t} = S_t \circ S_s$$
 for all $s, t \in \mathbb{R}_+$.

If E is a vector space and each S_t is linear, then $(E, (S_t))$ is called an algebraic operator (AO) semigroup. If, in addition, E is an Banach space and $t \mapsto S_t u$ is continuous for all $u \in E$, then $(E, (S_t))$ is called a C_0 -semigroup. When E is understood, we say that (S_t) is a C_0 -semigroup.

2. Continuity results

In what follows, E is a Banach space and $\mathcal{L}(E)$ is the set of bounded linear operators from E to itself. The symbol $\|\cdot\|$ denotes either the norm on E or the operator norm on $\mathcal{L}(E)$, depending on context.

Let K be a compact subset of \mathbb{R} and let $\{S_t\}_{t\in K}$ be a subset of $\mathcal{L}(E)$. The following result is from Engel and Nagel (2006).

Lemma 2.1. The following statements are equivalent:

- (i) The map $t \mapsto S_t u$ is continuous on K for all $u \in E$.
- (ii) $||S_t||$ is bounded over $t \in K$ and there exists a dense subset D of E such that $t \mapsto S_t u$ is continuous on K for all $u \in D$.
- (iii) For any compact $C \subset E$, the map $(t, u) \mapsto S_t u$ is uniformly continuous on $K \times C$.

Proof. ((i) \Longrightarrow (ii)) By (i), for any $u \in E$, the map $t \mapsto S_t u$ is continuous on a compact set and, therefore, its image is bounded in E. Hence, by the uniform boundedness principle, $||S_t||$ is bounded over $t \in K$. The statement in (ii) regarding continuity is obvious.

Date: February 2, 2024.

2 JS AND JY

 $((ii) \implies (iii))$. Fix compact $C \subset E$ and $\varepsilon > 0$. We metrize $K \times C$ by setting $d((s,u),(t,v)) = ||u-v|| \vee |s-t|$. Choose $M \in \mathbb{N}$ such that $||S_t|| \leq M$ for all $t \in K$. Let D be the dense set in (ii) and observe that the set of open balls $B(u,\varepsilon/M)$ over $u \in D$ provides an open cover of C. As such, we can choose a finite set $D_F \subset D$ such that C is contained in $\bigcup_{u \in D_F} B(u,\varepsilon/M)$. Since, for each $u \in D_F$, the map $t \mapsto S_t u$ is continuous on a compact set, it is also uniformly continuous. As a result, given $u \in D_F$, we can select a $\delta_u > 0$ such that

$$|s-t| < \delta_u \implies ||S_s u - S_t u|| < \varepsilon.$$

Let δ be the minimum of $\{\delta_u\}_{u\in D_F}$ and ε/M . If we take $u,v\in C$ and $s,t\in K$ with $d((s,u),(t,v))<\delta$, then, choosing $w\in D_F$ with $\|u-w\|<\varepsilon/M$, we have

$$||S_{s}u - S_{t}v|| \leq ||S_{s}u - S_{s}w|| + ||S_{s}w - S_{t}w|| + ||S_{t}w - S_{t}v||$$

$$= ||S_{s}(u - w)|| + ||S_{s}w - S_{t}w|| + ||S_{t}(w - v)||$$

$$< M(\varepsilon/M) + \varepsilon + M(2\varepsilon/M) = 4\varepsilon.$$

Hence $(t, u) \mapsto S_t u$ is uniformly continuous on $K \times C$, as claimed.

$$((iii) \implies (i))$$
 This implication is trivial (take C to be a singleton).

 $\mathbf{Lemma\ 2.2.}\ If\ (S_t)_{t\geqslant 0}\ is\ a\ C_0\text{-}semigroup\ on}\ E,\ then\ \sup_{t\leqslant \delta}\|S_t\|<\infty\ for\ all\ \delta>0.$

Proof. We first claim there exists an $\varepsilon > 0$ such that $\sup_{t \leq \varepsilon} \|S_t\| < \infty$. Indeed, if no such ε exists, then there exists a sequence $t_n \to 0$ such that $\|S_{t_n}\|$ is unbounded. But then, by the principle of uniform boundedness, there exists a $u \in E$ such that $\|S_{t_n}u\|$ is unbounded. This contradicts the continuity property of C_0 -semigroups.

Now let ε be as above and choose $M \in \mathbb{N}$ with $||S_t|| \leq M$ whenever $t \leq \varepsilon$. Fix $k \in \mathbb{N}$ and $t \leq k\varepsilon$. Since S_t is k compositions of $S_{t/k}$, and since $t/k < \varepsilon$, the semigroup property yields $||S_t|| \leq kM$. Hence $t \mapsto S_t$ is bounded on $[0, k\varepsilon]$. Since k was an arbitrary element of \mathbb{N} , this proves the claim in Lemma 2.2.

Lemma 2.3. An AO semigroup $(S_t)_{t\geqslant 0}$ on E is a C_0 -semigroup on E if and only if $\lim_{t\downarrow 0} S_t u = u$ for all $u \in E$.

Proof. Sufficiency is obvious. Regarding necessity, fix $u \in E$ and t > 0. We need to show that $||S_{t+h}u - S_tu|| \to 0$ as $h \to 0$. Suppose first that $h \downarrow 0$. Then

$$||S_{t+h}u - S_tu|| = ||S_tS_hu - S_tu|| \le ||S_t|| ||S_hu - u|| \to 0.$$

If, on the other hand $h \uparrow 0$, then

$$||S_{t+h}u - S_tu|| = ||S_{t+h}u - S_{t+h}S_{-h}u|| \le ||S_{t+h}|| ||u - S_{-h}u|| \to 0.$$

In the last step we used the fact that $||S_{t+h}||$ is bounded over h by Lemma 2.2.

Lemma 2.4. Let $(S_t)_{t\geqslant 0}$ be an AO semigroup on E. If there exists a dense subset D of E such that $\lim_{t\downarrow 0} S_t u = u$ for all $u \in D$ and, in addition, $\sup_{t\leqslant \delta} \|S_t\| < \infty$ for some $\delta > 0$, then $(S_t)_{t\geqslant 0}$ is a C_0 -semigroup.

Proof. Fix $u \in E$. By Lemma 2.3 it suffices to show that, for a given sequence $t_n \downarrow 0$, we have $S_{t_n}u \to u$ as $n \to 0$. To see that this holds, fix $t_n \downarrow 0$ and choose a compact subset K of \mathbb{R}_+ such that $\{t_n\} \subset K$. Since K is compact, $K \ni t \mapsto S_t w$ is continuous when $w \in D$, and $||S_t||$ is bounded over $t \in K$, Lemma 2.1 implies that $K \ni t \mapsto S_t u$ is continuous. In particular, $S_{t_n}u \to u$ as $n \to 0$.

3. Examples

3.1. **Left-shift semigroups.** Let $C_0(\mathbb{R}_+)$ be the set of all continuous real-valued functions f on \mathbb{R}_+ with $f(x) \to 0$ as $x \to \infty$. The set $C_0(\mathbb{R}_+)$ is paired with the supremum norm. Consider the left translation semigroup given by $(S_t^{\ell}f)(x) = f(x+t)$.

Lemma 3.1. (S_t^{ℓ}) is a C_0 -semigroup on $C_0(\mathbb{R}_+)$.

Proof. Evidently $S_0^{\ell}f=f$. The semigroup property holds because, for $s,t\geq 0$, we have

$$(S_{s+t}^{\ell}f)(x) = f(x+s+t) = (S_t^{\ell}(S_s^{\ell}f))(x).$$

Regarding continuity, fix $f \in C_0(\mathbb{R}_+)$ and let (t_n) be a real sequence with $t_n \downarrow 0$. Fix $\varepsilon > 0$. Since f is uniformly continuous, we can select a $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \delta$. Let $N \in \mathbb{N}$ be such that $t_n < \delta$ when $n \ge N$. Then, for $n \ge N$,

$$||S_{t_n}^{\ell}f-f||=\sup_{x}|f(x+t_n)-f(x)|<\varepsilon.$$

Hence $S_t^\ell f \downarrow f$ and (S_t^ℓ) is a C_0 -semigroup.

Let $C_0^1(\mathbb{R}_+)$ be the set of all continuously differentiable $f \in C_0(\mathbb{R}_+)$ with $f' \in C_0(\mathbb{R}_+)$. The set $C_0^1(\mathbb{R}_+)$ is paired with the norm $||f|| = \sup_x |f(x)| + \sup_x |f'(x)|$.

Lemma 3.2. (S_t^{ℓ}) is a C_0 -semigroup on $C_0^1(\mathbb{R}_+)$.

4 JS AND JY

Proof. In view of Lemma 3.1, we only need to check continuity. Fixing $f \in C_0^1(\mathbb{R}_+)$, we have

$$\|S_t^\ell f - f\| = \sup_x |f(x+t) - f(x)| + \sup_x |f'(x+t) - f'(x)|$$

Since f and f' are both in $C_0(\mathbb{R}_+)$, the proof of Lemma 3.1 implies that both terms on the right hand side converge to zero as $t \downarrow 0$. Hence continuity holds.

3.2. Right-shift semigroups. Here we discuss right-shift semigroups. We will embed them in a space of integrable functions. Below λ denotes Lebesgue measure.

Let $C_c(\mathbb{R})$ be the set of all continuous real-valued functions f on \mathbb{R} that vanish off a compact set. Let $L_1(\mathbb{R})$ be the set of Borel measurable real-valued functions on \mathbb{R} with $||f|| := \int |f| \, \mathrm{d}\lambda < \infty$. Let S_t be the linear operator on $L_1(\mathbb{R})$ defined by

$$(S_t f)(x) = f(x+t) \qquad (x \in \mathbb{R}, \ t \ge 0).$$

Lemma 3.3. (S_t^{ℓ}) is a C_0 -semigroup on $L_1(\mathbb{R})$.

Proof. It is simple to confirm that (S_t) is an AO semigroup on $L_1(\mathbb{R})$. Regarding continuity, note that $||S_t f|| = \int |f(x-t)| dx = ||f||$, so $||S_t||$ is bounded in t. Since $C_c(\mathbb{R})$ is dense in $L_1(\mathbb{R})$ under this norm, Lemma 2.4 implies that, to show (S_t) is a C_0 -semigroup on $L_1(\mathbb{R})$, it suffices to show that $||S_t f - f|| \to 0$ for any $f \in C_c(\mathbb{R})$.

To this end, fix $f \in C_c(\mathbb{R})$ and let K be a compact set such that f vanishes off K. Fix $\varepsilon > 0$. By uniform continuity, we can take a $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon/\lambda(K)$. If $t < \delta$, then

$$||S_t f - f|| = \int |f(x - t) - f(x)| dx \le \lambda(K) \frac{\varepsilon}{\lambda(K)} = \varepsilon.$$

This completes the proof of C_0 -continuity of (S_t) on $L_1(\mathbb{R})$.

3.3. Multiplication semigroups. Let (X, \mathcal{B}, μ) be a σ -finite measure space and let φ be a measurable map from X to \mathbb{R}_+ . Define

$$S_t f = \exp(-t\varphi(x))f(x) \qquad (x \in \mathsf{X}, \ t \ge 0).$$

The family (S_t) is called a multiplication semigroup.

Lemma 3.4. (S_t) is a C_0 -semigroup on $L_1(X, \mathcal{B}, \mu)$.

Proof. It is simple to confirm that (S_t) is an AO semigroup on $L_1(\mathbb{R})$. Regarding continuity, fix $f \in L_1(X, \mathcal{B}, \mu)$ and observe that

$$||S_t f - f|| = \int |f(x)|| \exp(-t\varphi(x)) - 1|\mu(\mathrm{d}x).$$

It follows from the dominated convergence theorem that this integral converges to zero as $t \downarrow 0$. Hence (S_t) is a C_0 -semigroup on $L_1(X, \mathcal{B}, \mu)$.

3.4. Uniformly continuous semigroups. Let E be a Banach space and let $\mathcal{L}(E)$ be the bounded linear operators on E. Recall that the exponential of $A \in \mathcal{L}(E)$ is given by

$$\exp(A) := \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

Fixing $A \in \mathcal{L}(E)$, consider the family of linear operators on E given by

$$S_t u = \exp(tA)u \qquad (u \in E, t \ge 0)$$

We recall that the exponential function $\varphi(t) := \exp(tA)$

- (i) obeys $\varphi(0) = I$ and $\varphi(s+t) = \varphi(t)\varphi(s)$ for all $s, t \in \mathbb{R}$; and
- (ii) is continuous as a map from \mathbb{R} to $\mathcal{L}(E)$.

From (i) we can easily confirm that (S_t) is an algebraic operator semigroup on E. Regarding continuity, (i) and (ii) imply that

$$\lim_{t \downarrow 0} \|S_t - I\| = 0. \tag{1}$$

It follows from (1) that (S_t) is a C_0 -semigroup on E.

Any operator semigroup (S_t) on E obeying (1) is called a uniformly continuous semigroup. In fact no other examples exist:

Theorem 3.5. If (S_t) is a uniformly continuous semigroup on E, then there exists an $A \in \mathcal{L}(E)$ such that $S_t u = \exp(tA)u$ for all $u \in E$ and $t \ge 0$.

The proof of Theorem 3.5 can be found 2(b) of Engel and Nagel (2006).

References

Engel, K.-J. and Nagel, R. (2006). A Short Course on Operator Semigroups. Springer Science & Business Media.