WEEK 4: OUTPUT, BUSINESS CYCLES, GROWTH & EMPLOYMENT

MD. NAZMUL AHSAN

Department of Economics Concordia University

mdnazmul.ahsan@concordia.ca

Economics 203: Introduction to Macroeconomics

This Chapter explains:

- 1. Short run aggregate demand & output (real GDP)
- 2. Aggregate expenditure
- 3. Aggregate expenditure & equilibrium real GDP
- 4. The multiplier
- 5. Equilibrium output (real GDP) & aggregate demand

Short run Aggregate Demand and Output

Assume:

- No government sector
- All prices & wages are fixed
- Business produces output demanded
- Labour accepts opportunities to work
- Money supply, interest rates & foreign exchange rates are fixed

AE, AD, & Output with Constant Prices

The equality Y = AE determines the **position of the AD** curve to give planned expenditure = output at P_0Y_0

At E current output Y_0 is equal to planned expenditure AE_0 = output

Aggregate Expenditure (AE)

AE is planned aggregate expenditure

Components of AE:

• From National Accounts (without govt):

$$AE \equiv C + I + X - IM$$

• With P constant:

$$(Y = AE) \rightarrow$$
 equilibrium real GDP

Aggregate Expenditure (AE)

- Two key components of aggregate expenditure:
 - Induced expenditure
 - Autonomous expenditure

- **Induced Expenditure =** *planned expenditure* determined by current income (Y)
 - AE = F(Y,...), AE is a function of Y
 - $\triangle AE/\triangle Y$: a change in Y *causes* a change in AE

Induced Expenditures

1. Part of household consumption expenditure (C)

$$\Delta \mathbf{C}/\Delta \mathbf{Y} \equiv \text{marginal propensity to consume } (\mathbf{mpc} = \mathbf{c})$$

$$0 < \Delta C/\Delta Y < 1$$

2. Part of household expenditure on imports (IM)

$$\Delta IM/\Delta Y \equiv$$
 marginal propensity to import (mpm = m)

$$0 < \Delta IM/\Delta Y < 1$$

Induced Expenditures:

Relationship between GDP, Consumption, Imports & Expenditure

Assume
$$C = 0.8Y$$
, $IM = 0.2Y$

Y	Induced C	Induced IM	Induced Expenditure	
	$= \Delta \mathbf{C}/\Delta \mathbf{Y}$	$= \Delta \mathbf{I} \mathbf{M} / \Delta \mathbf{Y}$	$= (\Delta \mathbf{C} - \Delta \mathbf{I} \mathbf{M})/\Delta \mathbf{Y}$	
0	0	0	0	
50	40	10	30	
100	80	20	60	
75	60	15	45	

• Changes in Y *induce* changes in expenditure in the same direction but of smaller size

The numerical example illustrated in a diagram

Induced Expenditures

- Consumption expenditure is the largest and most stable part of induced expenditure
- Consumption vs Income in Canada

Slope = $\triangle C/\triangle YD = 0.9$

Autonomous Expenditures

Autonomous Expenditure (A) \equiv planned expenditure NOT determined by current income (Y)

Real GDP (Y)

Autonomous Expenditures

Investment Expenditure

- Investment (I) ≡ *planned* business spending on plant, equipment & inventories
- Investment is *autonomous*,
- Based on business expectations of I₀ demand for output & profit
- Δi &/or ΔExpectations → shift I function vertically.

Real GDP Y

Autonomous Expenditures

Exports expenditure

- Exports ≡ spending by residents of foreign countries on domestic output
- Exports are autonomous expenditure: $X = X_0$
- X depends on: foreign Y,
 domestic & foreign P
 foreign exchange rates
 tastes and preferences
 etc.

Volatility of AE Components

- Consumption is the largest & most stable part of AE
- Investment & exports are volatile parts of AE

The Aggregate Expenditure Function

Aggregate expenditure (AE) \equiv the sum of planned autonomous & planned induced expenditure

Planned autonomous expenditure = A_0

Planned induced expenditure = (c - m)Y

Then
$$\mathbf{AE} = \mathbf{A_0} + (\mathbf{c} - \mathbf{m})\mathbf{Y}$$

Suppose:
$$A_0 = 100$$
 and $(c - m)Y = 0.5Y$

$$AE = 100 + 0.5Y$$

The Aggregate Expenditure Function

A numerical example: AE = 100 + 0.5Y

GDP (Y)	Autonomous Expenditure $(A_0 = 100)$		Aggregate Expenditure (AE) = 100 +0.5Y
0	100	0	100
50	100	25	125
100	100	50	150
175	100	87.5	187.5
200	100	100	200
150	100	75	175

The Aggregate Expenditure Function

The numerical example in a diagram:

$$AE = 100 + 0.5Y$$

Aggregate Expenditure and Equilibrium Output

Short-run equilibrium output:

• Aggregate expenditure current output are equal (Y = AE).

$$\bullet \mathbf{Y} = \mathbf{A}\mathbf{E} = \mathbf{A}_0 + (\mathbf{c} - \mathbf{m})\mathbf{Y}$$

- Current output = *planned* expenditure on current output
- •Business revenues cover costs & expected profit
- No unplanned Δ inventories

Equilibrium Output: the 45º Diagram

Equil: Y = AE

45° line plots all Y = AE

$$\mathbf{AE} = \mathbf{A_0} + (\mathbf{c} - \mathbf{m})\mathbf{Y}$$

At intersection AE & 45° line Y = AE

 $Y \neq Y_e \rightarrow unwanted$ $\Delta inventories \rightarrow \Delta Y$

Equilibrium Output: a numerical example

-		*			
GDP(Y)	Autonomous	Induced	Aggregate	Unplanned	
	Expenditure	Expenditure	Expenditure	∆ Inventory	
	$(A_0 = 100)$	(c-m)Y = 0.5Y	(AE) = 100 + 0.5Y	(Y - AE)	
(1)	(2)	(3)	(4)	(5)	
0	100	0	100	- 100	
50	100	25	125	- 75	
100	100	50	150	- 50	
175	100	87.5	187.5	- 12.5	
200	100	100	200	0	
250	100	125	225	+ 25	
300	100	150	250	+ 50	

- Equilibrium Y = 200. Business sector output is just equal to aggregate expenditure.
- At Y = 200 business sector just recovers costs of production including expected profit. There is no *unplanned* change in inventories.

Equilibrium Output:

Adjusting to short-run dis-equilibrium Y:

Suppose $Y \neq AE \rightarrow Unplanned \triangle inventories$

- Y > AE \rightarrow unplanned increase in inventories $\rightarrow \downarrow$ Y \rightarrow Y_e
- Y < AE \rightarrow unplanned decrease inventories $\rightarrow \uparrow$ Y \rightarrow Y_e
- $\Delta Y \rightarrow$ equilibrium with $Y_e = AE$

Equilibrium Output and Employment

- In equilibrium $Y_e = AE$
- However if:
- $(Y_e < Y_P) \equiv Recessionary gap \& high unemployment$
- $(Y_e > Y_P) \equiv Inflationary gap \& low unemployment$
- $(Y_e = Y_p) \equiv 'full \ employment'$
- Fluctuations in Y cause fluctuations in employment and unemployment rates

The Multiplier

Changes in Y_e are caused by ΔA

The Multiplier is a number $\equiv \Delta Y_e/(\Delta A \text{ that caused it})$

- $\Delta A \rightarrow$ parallel *vertical shift* in AE
- $\Delta A \rightarrow \Delta Y \rightarrow induced \Delta AE = (c m)\Delta Y$
- Multiplier $\Delta Y/\Delta A = \frac{1}{1 (c m)} = \frac{1}{1 (slope of AE)}$

The Multiplier: $\Delta Y_e / \Delta A$

The Multiplier:

A Numerical example:

Base Case:

- Autonomous expenditure: $A_0 = 100$
- Induced expenditure: (c m)Y = 0.75Y

Then numerically AE at different levels of Y is:

Equilibrium
$$Y_0 = AE_0 = 400$$

continued.....

The Multiplier:

The Numerical example continued:

Case 2: Oil producers cut investment spending by 25 as oil price falls:

$$\Delta A = -25$$

- Autonomous expenditure: $A_1 = 75$
- Induced expenditure: (c m)Y = 0.75Y

Then numerically AE at different levels of Y is:

\mathbf{Y}	$A_1 = 75$	0.75Y	$AE_1 = 75 + 0.75Y$
100	75	75	150
200	75	150	225
300	75	225	300
400	75	300	375

Equilibrium
$$Y_1 = AE_1 = 300$$

The Multiplier:

The Numerical example summarized:

Base case
$$A_0=100$$
, Induced expend = 0.75Y
Equil $Y_0=400$
Then $\Delta A=\Delta I=-25 \Rightarrow A_1=75$
Equil $Y_1=300$
Multiplier = $\Delta Y/\Delta A$
= -100/-25
= 4
Multiplier = 1/(1-slope AE)
= 1/(1-0.75)
= 1/0.25
= 4
Multiplier as a forecasting tool predicts effect of ΔA on Y_e

The Multiplier

In basic algebra: Effect of a $\Delta A > 0$ on Y_e

Induced expenditure = 0.6Y

$$\Delta AE/\Delta Y = 0.6$$

Equilibrium:
$$Y = A_0 + 0.6Y$$

 $Y = 90 + 0.6Y$
 $Y = 90/(1 - 0.6)$
 $Y = 90 \times 2.5$
 $Y = 110 + 0.6Y$
 $Y = 110/(1 - 0.6)$
 $Y = 110 \times 2.5$
 $Y = 275$

Multiplier defined as the predictor of $\Delta Y/\Delta A$

$$\Delta Y/\Delta A = 50/20 = 2.5 = 1/(1 - 0.6) = 1/(1 - \text{slope AE})$$

Equilibrium Output & Aggregate Demand

Key model concepts:

Autonomous expenditure:

• Independent of current income

Induced expenditure:

- Spending decisions based on current income
- MPC & MPM \rightarrow (c m)Y, $0 < (\Delta AE/\Delta Y) < 1$

Equilibrium Output & Aggregate Demand

Key model concepts:

- **Equilibrium** $Y = A_0 x$ multiplier
- **Induced expenditure** → multiplier
- $\Delta A \times multiplier \rightarrow \Delta Y > \Delta A$
- Volatility in A → Business cycles in Y

Equilibrium Output & Aggregate Demand

The AD function:

- Y_e from Y = AE positions the AD curve
- $\Delta A \rightarrow \Delta Y_e \rightarrow horizontal \ shift \ in \ AD = \Delta A \ x \ multiplier$
- Fluctuations in AD from fluctuations in A → business cycles in Y_e
- A diagram to illustrate

Aggregate Expenditure, Equilibrium Output & Aggregate Demand

Chapter Summary

- Aggregate demand determines Y at constant P
- Equilibrium Y = AE positions **AD**
- $AE \equiv planned aggregate expenditure$
- AE = autonomous expenditure + induced expenditure
- **Autonomous** expenditure is independent of current Y: $\Delta A/\Delta Y = 0$
- Induced expenditure (c m)Y is determined by Y: 0 < (c - m) < 1

Chapter Summary

- Equilibrium Y = AE
- **AE** > **Y** \rightarrow unplanned fall in inventories $\rightarrow \uparrow$ Y
- **AE** < **Y** \rightarrow *unplanned rise* in inventories \rightarrow \downarrow **Y**
- The multiplier $\equiv \Delta Y_e / \Delta A = 1/(1 slope AE)$
- $\Delta A \rightarrow \Delta Y \rightarrow shift AD \rightarrow \Delta Y_e \text{ in AD/AS}$
- $\triangle A \rightarrow \triangle AD \rightarrow business \ cycles \ in \ Y$

Copyright

Instructor-generated course materials (e.g., handouts, notes, summaries, exam questions, etc.) are protected by law and may not be copied or distributed in any form or in any medium without explicit permission of the instructor. Note that infringements of copyright can be subject to follow up by the University under the Code of Student Conduct and Disciplinary Procedures.