Dynamique des fluides et des plasmas

ULB MA | 2023-2024

Chapitre 1: Description d'un fluide

Notes manuscrites (scannées)

Antoine Dierckx • ant.dierckx@gmail.com

Attention: uniquement le chapitre 1 ici. Ce document DocHub contient uniquement le premier chapitre. L'ensemble des chapitres, des notes personnelles, des corrections d'exercices et une liste d'ouvrages de référence se trouvent sur mon site web.

- Tous les chapitres : voir la page du cours
- Corrections d'exercices & travaux personnels : voir la page principale.
- Ouvrages de référence : voir la section bouquin.

Accéder au reste : scannez ou cliquez ici

https://adierckx.github.io/NotesAndSummaries/Master/MA1/PHYS-F-412

Avertissement. Les notes publiées ici sont basées sur ma compréhension des cours et n'ont pas fait l'objet d'un examen ou d'une vérification indépendante. J'espère qu'elles sont utiles, mais il peut y avoir des erreurs ou des inexactitudes. Si vous trouvez des erreurs ou si vous avez des suggestions d'amélioration, n'hésitez pas à me contacter à l'adresse suivante : ant.dierckx@gmail.com. Merci!

DYNAMIQUE DES FLUIDES ET PES PLASMAS PHYS-F412 - Bennand Knaepen DESCRIPTION D'UN FLUIDE 1.1 Introduction on ve assimiler en fluide à un milieu continu. Le milieu est suffisamment deuxe pour que sus propriétés moyennes puixent être correctement définies localement. -> On introduira la notion de particule de fluide 1.2 Definitions et notions préliminaires DEF La viteme du fluide \vec{u} est définie en un point de l'espace à chaque instant solon: [u(x,y,z,t),v(x,y,z,t),w(x,y,z,t)]DEF Un écoulement est dit stationnaire si 2, n =0 (stationnaire (=> indépendent du temps) -> exemple: écoulement stationnaire bi-dimensionnel: $\bar{L} = [u(x,y), v(x,y), o]$ O Deux descriptions possibles: -> Il est possible de traiter le Muide come un champs: V grandeur, I champ (exemple: densité p(x,y,Z,t)). C'est une description Eulerienne. -> Alternativement, on pert traiter le fluide course une collection de particules de Muide (A). La densité de la particule de Muide "A" est alors p (t). C'est une description Lagrangienne

1 Liens entre les 2 descriptions

- → One particule de Mide qui se hour on pait \vec{x}_{A} possède une densité $\rho(t) = \rho(\vec{x}_{A}, t)$
- Que vant Pa(t+dt)?

 Que va = p(xx,t)+{ 2p + (n. +)p} dt

Soit y=y(x,t) un champ tensoriel. On définit sa dénivée DEF materielle D/Dt Mon:

Dy = Dy + (vi.t) y Dt Dt

→ Dérive matérielle de la viteme du fluide:

du = 2ū + (ū. 豆).ū

dt 2t

O Ligne de courant:

On définit un ligne de courant come une courbe qui est partout tangente à la viteme in in (xi,t) in (xi,t) (à un certain instant t.)

Puisque In: In(t), les lignes de courants peuvent varier et m

- correspondent par forcément aux les trajectoires des particules.
- Prop 5: un écontenent est stationnaire, trajectoire = ligne de courant. Preuve: Soit X(1) une lign de courant. Alas $J(\bar{x}+d\bar{x}) \simeq J(\bar{x}) + (d\bar{x}.\bar{\nabla})L \sim SL = (d\bar{x}.\bar{\nabla})L \propto (\bar{x}.\bar{x})L$ L>SI (t. T) 1=0, alors 1=cite sur cette light de courant

1.3	-> Si $(\bar{n}.\bar{\nabla})f=0$, cela signific qu'elle est constante le long d'un ligre de courant, mais ca ne veut par din qu'elle prend la mi valeur sur toutes les ligres de courant. En effet, $df=0 \Rightarrow \partial_t f + (\bar{n}.\bar{\nabla})f=0$ dt
DEF	Un fluide est dit idéal si
	DII est incompressible (les particules de fluides se changent pas de volum loss de teur déplacement).
9	2) Sa densité ent une constante VX, VE
`	3 La force exercée par le Mide sur son environement est normale
	à le surface: SF = p n SS
	(Fluide non visqueux).
•	Conséquera de l'incompressibilité:
<u></u>	Contrago de la Congressión por l
-	Soit un volum dixe de l'espace V. La quantité de manse qui
	quite ce volum par unité de temps ent
	$\frac{dM}{dt} = \int \rho \vec{u} \cdot \vec{n} dS$
	$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\bar{n}) = -\int_{-\infty}^{\infty} \bar{p} \left(p \bar{q} \bar{u} \right) dV = 0$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\bar{n}) = -\int_{-\infty}^{\infty} \bar{p} \left(p \bar{q} \bar{u} \right) dV = 0$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\bar{n}) = -\int_{-\infty}^{\infty} \bar{p} \left(p \bar{q} \bar{u} \right) dV = 0$
	_
	On prove que V. T. = 0
	→ Mêne dans le car où p varie dan l'espace, avec chape PDF
	pri garde sa densité la de son déplacement, la condition V. Ti=0 reste valable. En effet:
	M=d (pdV=-d 1 dV \$ (pa) 1
	of o
	$\dot{M} = \frac{d}{dt} \int \rho dV = -\frac{d}{dt} \int \frac{dV}{dt} \nabla \left(\rho \bar{u}\right) \int_{\mathcal{L}} \rho + \nabla \left(\rho \bar{u}\right) = 0$ $\dot{M} = \dot{b} = \int \partial_{\mu} \rho dV \qquad \text{Conservation de la marke}$
	Or, i k fluide st ideal, par et, 2p+ (ū, t)p=p=0
A	Done 2p+p(P.a)+(n.t)p=p.(P.a)=0 Din=0

1/2

O Force totale éxercée sur un PDF:

- 1 Soit un PDF délimitée par une surface 5.
 - La force totale vout: Fs = pp. \$5 = f. dv
 - → Si on rajorte les forces de volume (1ci la gravité), on a: $\vec{F} = \int (-\vec{\nabla} P + p\vec{g}) dV$

· Equation d'Eulen:

-> Soit en clément de Maide 20-ale. Alors SF ~ (- Vp + pg) SV

> On applique SF= Sm.ā: PSV dū = (- \(\bar{V}\)p\(\bar{g}\)) SV

→ on part dérelopper: p(2, th + (tr. T). in = -Tp + pg La On peut réécuire le charp de pesenteur cours:

 $\rho.\bar{q} = \overline{\nabla}(\rho\bar{q}\bar{x}) = -\nabla\rho\chi$ où $\chi = -\bar{q}\bar{x}$

On a alos: -
$$\overline{C}p + pg = -\overline{C}p - \overline{C}(-pg.\overline{x})$$
= - $\overline{C}(p)$

are p' = P+px = p-pg.x.

(~ . v) ~ u; 2; u; = (~ x ~) × ~ + ~ (\frac{1}{2} ~ v^2)

En effet: (Fxu) xu+ F(\frac{1}{2} ne)

= E; ([Vx]; nh + D;] m; m;

= Eik Eilm De Mu Mk + Di I Mj Uj Eijk Eilm = Eik; Eilm

= (She sim - She Sie)(De um uk) + 2 ? ujuj

= 2/2 Mi Mp - Di Mp Mp + 2 2; Mini

= mi djuj + mj dj mi -2mj di mj + mj di mj = mj dj mi

On a alm p[2 m+(Fxn)xn+ D(1me)]=-D(p+px) (=) 2 m + (\bar{V} x \bar{n}) x \bar{n} = - \bar{V} \left(\bar{p} + \chi) - \bar{V} \left(\frac{1}{2} m^2) On from l'équation d'Euler (2): $2\bar{u} + (\bar{\nabla} \times \bar{u}) \times \bar{u} = -\bar{\nabla} \left(\frac{P}{\rho} + \chi + \frac{1}{2}\bar{u}^2 \right)$ O Theoreme de Bernoulli: Pour un fluide ioléal indépendant du temps, $H = P + X + \frac{1}{2}n^2 = cste$ $(\bar{u}.\bar{p})H = 0$ ligne de courant Preve S: l'écortement u dépend par du temps, on a: (Fxi)xin = - PH . il (A) (T. F) N=0 4 Pour en fluide idéal stationaire, Hest est le long des lignes de courant. DEF Un fluide est dit irrotationnel si Txn=0 DEF On définit le vorticité par w = Exn Lo On fluide est irrotationnel si sa vorticité est nulle. Thin (Bernovilli pour un fluide irrotationnel). Pour un fluide idéal, stationnaire et irrotationel, on a: Prese Si 2 n = 0 et $\bar{w} = 0$, l'équation d'Euler (2) se réduit à $0 = -\nabla \left(\frac{C}{\rho} + \chi + \frac{1}{2} \bar{u}^2 \right)$

Q X+5

1.4. Vorticité

@ Equation d'évolution (Eulen):

J Par Evler (2), on e!

みれもび×ルニーダH V×・ (=) 2 m + Px(wxū)=0 (m Px(Pp)=0

⇒ 2 = +(n.) = - (= =) = -

On house 2 \$\overline{a} + (\overline{a}.\overline{b}). \$\overline{a} = (\overline{a}.\overline{b}). \$\overline{a}\$

→ Dt = (ω. ∇). ū Version générale

@ Cas d'un fluide à 2-D:

→ Sa vitene est donnée par: ti=[u(x,y,t), v(x,y,t), s]

4 w = [0,0, w(x,y,t)]

Ly (ū. √)ū= w 2, ū= 0

Or from DW=0

10 Décomposition cinématique du champ de viterre.

-> Evalvons la # de vitence de 2 points voisins:

10 ~ 10 p + (5. 5) to

uq = up; + Sj Dj u; Sym antilyn

= up; + s; (\frac{1}{2} (2; n; + 2; n;) + \frac{1}{2} (2; n; -2; n;))

eji Eji = u pi + Sj eji + Sj eji

= MPi + 25: (= 5:5; eij) + 5; eji

Or, 1 (wxs) = 1 Eigh w; Sh = 1 Eigh Eilm De um Sh

= 1 (She dim - die Shom) De um Sh = 1 (Dh M; Sh - Di Mh Sh)

= - Eih Sh = EhiSh

The Top + 1(0 x5) + To (& eig Sis)

notation autour de p matrice symétrique - diagonalisable

- Diagonalisons: Vs (2 e (S:S;) On house Sisjeij = e' (si')2 + ei (si')2 + e' (si')2 Si on place notre système d'axe on point P, on a: πο-πρ. δπ/ = (ei si'). C'est en contraction/difatation eix si') dans les directions si, sz' et si'. - Si l'ecoulement ent incompressible; [e'ii = Tr (e'ij) = Tr (eij) = { [(]; ui + 2; ui) = 0 Davi un fluich incompressible, la trace est nolle. 2 INTRO AUX FLUIDES VISQUEUX 2.1 Introduction → Considérare un écoulement cisaillé simple: 1 u(y)

Ti=[n(y), o, o] DEF Un fluide est dit Newtonien si la force de Inottenut est proportionnelle on gradient de vitere. Jacq par unité de souface dy DEF on appelle vircosité cinématique la géé V = M/P 2.2 Equation de Navier-Stokes -> Calculous la jorce de surface due à la viscosité qui 1'exerce son 55 SF (4+54) SFx (y+sy) = Z(y+sy). SS = n dn (y+sy). SS SFx (y) = -Z (y). SS = -n dn (y). Ss dy dn 4 € SF = 1 SS (n'(y+Sy)-n'(y)) (a) SF = SJ = mss (m'(y+sy)-n'(y)) = n den