Common Machine Learning Algorithms

https://www.vpnsrus.com/

CONTENTS

Linear Models

Regularized Linear Models

LINEAR MODELS

LINEAR MODELS – FUNCTIONALITY

SUPERVISED

PARAMETRIC

WHITE-BOX

General idea Represent target as function of linear predictor $\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$

Hypothesis space

$$\mathcal{H} = \{ f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \phi(\boldsymbol{\theta}^{\top}\mathbf{x}) \}, \text{ with suitable transformation } \phi(\cdot), \text{ e.g.,}$$

- Identity $\phi(\theta^{\top} \mathbf{x}) = \theta^{\top} \mathbf{x} \Rightarrow \text{linear regression}$
- Logistic sigmoid function $\phi(\theta^T \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})} =: \pi(\mathbf{x} \mid \theta) \Rightarrow$ (binary) logistic regression
 - ullet Probability $\pi(\mathbf{x} \mid oldsymbol{ heta}) = \mathbb{P}(y = 1 \mid \mathbf{x})$ of belonging to one of two classes
 - Separating hyperplane via decision rule (e.g., $\hat{y} = 1 \Leftrightarrow \pi(\mathbf{x}) > 0.5$)

Linear regression hyperplane

Logistic function for bivariate input

Separating hyperplane for bivariate logistic regression

LINEAR MODELS – FUNCTIONALITY

Empirical risk

- Linear regression
 - Typically, based on **quadratic** loss: $\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} \left(y^{(i)} f\left(\mathbf{x}^{(i)} \mid \theta \right) \right)^2$
 - ⇒ corresponding to ordinary-least-squares (OLS) estimation
 Alternatives: e.g., absolute or Huber loss (both improving robustness)
- Logistic regression: based on Bernoulli/log/cross-entropy loss

$$\Rightarrow \mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)}\right)\right) - (1 - y^{(i)}) \log \left(1 - \pi \left(\mathbf{x}^{(i)}\right)\right)$$

Optimization

- For **OLS**: analytically with $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ (with $\mathbf{X} \in \mathbb{R}^{n \times p}$: matrix of feature vectors)
- For other loss functions: numerical optimization

Hyperparameters None

LINEAR MODELS - PRO'S & CON'S

Advantages

- + simple and fast implementation
- + analytical solution
- + **cheap** computation
- $+\,$ applicable for any **dataset size**, as long as number of observations \gg number of features
- + flexibility **beyond linearity** with polynomials, trigonometric transformations etc.
- + intuitive interpretability via feature effects
- + statistical hypothesis **tests** for effects available

Disadvantages

- nonlinearity of many real-world problems
- further restrictive assumptions: linearly independent features, homoskedastic residuals, normality of conditional response
- sensitivity w.r.t. outliers and noisy data (especially with L2 loss)
- risk of **overfitting** in higher dimensions
- feature interactions must be handcrafted, so higher orders practically infeasible
- no handling of missing data

Simple method with good interpretability for linear problems, but with strong assumptions and limited complexity

LINEAR MODELS – PRACTICAL HINTS

Implementation

- R: mlr3 learner LearnerRegrLM, calling stats::lm() / mlr3 learner LearnerClassifLogReg, calling stats::glm()
- Python: LinearRegression from package sklearn.linear_model, package for advanced statistical parameters statsmodels.api

Regularization

- Quadratic penalty on model coefficients (a.k.a. Ridge regression)
 - ullet Overall smaller, but still dense eta
 - Suitable with many influential features present, handling correlated features by shrinking their coefficients equally
- Absolute penalty on model coefficients (a.k.a. Lasso regression)
 - Actual variable selection
 - Suitable for sparse problems, ineffective with correlated features (randomly selecting one)
- Weighted combination of Ridge and Lasso: elastic net

REGULARIZED LINEAR MODELS

REGULARIZED LM – FUNCTIONALITY

SUPERVISED

PARAMETRIC

WHITE-BOX

General idea

- Unregularized LM: risk of **overfitting** in high-dimensional space with only few observations
- Goal: find compromise between model fit and generalization

Empirical risk

- Empirical risk function **plus complexity penalty** $J(\theta)$, controlled by shrinkage parameter $\lambda > 0$: $\mathcal{R}_{\text{reg}}(\theta) := \mathcal{R}_{\text{emp}}(\theta) + \lambda \cdot J(\theta)$.
- Popular regularizers
 - Ridge regression: L2 penalty $J(\theta) = \|\theta\|_2^2$
 - ullet LASSO regression: L1 penalty $J(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_1$

Optimization

- Ridge: analytically with $\hat{\theta}_{Ridge} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$
- LASSO: numerically with, e.g., (sub-)gradient descent

Hyperparameters Shrinkage parameter λ

REGULARIZED LM – PRACTICAL HINTS

Choice of regularization parameter

- Standard hyperparameter optimization problem
- E.g., choose λ with minimum mean cross-validated error (default in R package glmnet)

Ridge vs. LASSO

- Ridge
 - ullet Overall smaller, but still dense $oldsymbol{ heta}$
 - Suitable with many influential features present, handling correlated features by shrinking their coefficients equally

LASSO

- Actual variable selection
- Suitable for sparse problems, ineffective with correlated features (randomly selecting one)
- Neither overall better best of both worlds: elastic net → weighted combination of Ridge and LASSO regularizers

Implementation

- R: mlr3 learners LearnerClassifGlmnet / LearnerRegrGlmnet, calling glmnet::glmnet()
- Python: LinearRegression from package sklearn.linear_model, package for advanced statistical parameters statsmodels.api