

UN ACERCAMIENTO A LA FPGA

PASOS ANTES DE APLICARLO EN XILINX

- Realizar el esquema lógico de medio sumador de bits en papel
- El esquema debe satisfacer lo siguiente:
 - Sume A y B
 - Exista un CARRY

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

LA TABLA DE VERDAD Y SU ESQUEMA

CREAR NUEVO PROYECTO EN XILINX

I. Creen una carpeta para guardar los trabajos

2. En el equipo del laboratorio encontraran esta aplicación

- 3.Despues de abrir el program
- dan click en File -> New Project... para crear un nuevo proyecto

CREANDO UN NUEVO PROYECTO

IMPORTANTE

En este curso estaremos trabajando Con la FPGA SPARTAN 3E STARTED BOARD y El lenguaje VHDL

GENERARÁ UN RESUMEN DEL PROYECTO

EMPEZANDO A DISEÑAR EN XILINX

Una vez ya creado el área de trabajo vamos al apartado de "DESING" y creamos el esquema donde dice **New Source**

EMPEZANDO A DISEÑAR EN XILINX

GENERARÁ UN RESUMEN DE QUE SCHEMATIC ESTA CREADO

Damos click en **SCHEMATIC**, le definimos un nombre Y verificar que se agregue al proyecto

La mejor forma de buscar el símbolo que necesitas es por **Symbol name filter**

Para empezar a diseñar buscamos los símbolos en add symbol

El numero al lado del símbolo significa la cantidad de entradas que tendrá la compuerta y la letra después del numero significa la cantidad de entradas negadas

Para conectarlos damos click en **Add Wire**

NOTA:

Analizar y estar seguro donde será la conexión De lo contrario, al querer quitar una conexión Puede eliminar cualquier conexión conectada A cada elemento

Una vez conectados definimos la entrada y salida Con **Add I/O Marker**

Posterior a ello damos doble click a una entrada/salida para definirle un nombre y direccion

NOTA:

Es recomendable dejar los nombres en minúscula, sin espacios y sin ningún carácter diferente a las letras ya que estos nombres serán usados para programar

CREEMOS UN ARCHIVO UCF

Después de crear el esquemático, es necesario asociarlo con la FPGA. Para ello es necesario crear un archivo **UCF**

Después de crear el UCF se abrirá una Notepad para ingresar los comandos para asignar las entradas físicas de la FPGA

NOTA:

En intu, el profesor les brindará los comandos de asignación de pines,

ASIGNANDO PINES

DOS FORMAS DE SOLUCION

Solución I CLICK AQUI Solución 2 CLICK AQUI

SOLUCIÓN I CON SWITCHES

Vamos a asignar estos switches como entradas

Recordemos:

Los switches están organizado de derecha a izquierda y se cuentan desde 0 a 3 y cada switch tiene su localización en paréntesis,

En este caso el switch 0 es el L13

ASIGNANDO PINES DE ENTRADA

Usaremos estos dos switches para simular las entradas a y b

Recordemos:

La FPGA internamente esta interconectada con miles de circuitos, pero la mayoría de ellos están en un estado de "apagado" y la finalidad del UCF es activar el circuito especifico para cumplir con las condiciones dadas el SCHEMATIC

ASIGNANDO PINES DE ENTRADA

En este caso estamos declarando en la FPGA los switches L13 y L14 como entrada a y b

ASIGNANDO PINES DE SALIDA

Usaremos, los leds discretos para mostrar la solución

ASIGNANDO PINES DE SALIDA

```
1  #pines de entrada (switch)
2  NET "a" LOC = "L13" | IOSTANDARD = LVTTL | PULLUP
3  NET "b" LOC = "L14" | IOSTANDARD = LVTTL | PULLUP
4  # pines de salida (leds discretos)
5  NET "suma" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
6  NET "carry" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
7  8
```

En este caso estamos declarando en la FPGA los leds F12y E12 como salida SUMA y CARRY

NET "carry" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;

SOLUCIÓN 2 CON BOTONES

Vamos a asignar dos de estos botones como entradas

ASIGNANDO PINES DE ENTRADA/SALIDA

```
NET "a" LOC = "H13" | IOSTANDARD = LVTTL | PULLDOWN;
NET "b" LOC = "K17" | IOSTANDARD = LVTTL | PULLDOWN;
# pines de salida (leds discretos)
NET "suma" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
NET "carry" LOC = "E12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
```

En este caso estamos declarando en la FPGA los pushbottons H13 y K17 como entrada a y b

Para ejecutar el Schematic en la FPGA, vamos al apartado de DESING y damos doble click en Configure Target Device

Internamente está validando la informacion y creando el archive binario

Si les sale este warning, no se preocupen, solo denle OK y se abrirá este programa

Damos click en **Boundary Scan**

Despues de darle click se abrirá este recuadro

Dentro del cuadro, damos click derecho y le damos click en **Iniciate Chain**

Al darle click se abrirá este cuadro, esto muestra los nucleos de procesamiento,

Le damos doble click al primer nucleo y se abrira un panel de archivos, **Abrimos el archivo.bit**

Le damos click a **NO** y luego en **CANCEL ALL**

Le damos click en **OK**

Finalmente le damos click derecho y le damos en **PROGRAM** y listo ya se puede ver en la FPGA el funcionamineto

TALLER