Score-based CRL from Interventions

Burak Varici

Rensselaer Polytechnic Institute

Emre Acartürk (RPI)

Karthikeyan Shanmugam (Google)

Ali Tajer (RPI)

Causal Representation Learning (CRL)

".. learn a representation (partially) exposing the unknown causal structure, e.g., which variables describe the system, and their relations .. " Schölkopf et al., 2021

CRL Objectives

CRL is impossible from only observational data

- **1. Identifiability**: Conditions for uniquely recovering Z and G_Z
- **2.** Achievability: Provably correct algorithms to recover Z and G_Z

Identifiability Results

Parametric Latent Models

	Latent Model	Transform	Int. / node	ID Results
Squires et al. (2023)	Linear + Gaussian	Linear	1 hard (or soft)	✓ (or ancestors)
Buchholz et al. (2023)	Linear + Gaussian	Nonparametric	1 hard	V

Nonparametric Latent Models

	Latent Model	Transform	Int. / node	ID Results	
	Nonparametric	Linear			
Ahuja et al. (2023)	Nonparametric	Polynomial	1 do (or 1 soft with ind. support)	√	
Zhang et al. (2023)	Nonparametric + nonlinear	Polynomial	1 soft	ancestors	
von Kügelgen et al. (2023)	Nonparametric + faithfulness	Nonparametric	2 hard	V	
	Nonparam	etric		4	

Nonparametric Latent – What is Missing?

Provably correct algorithms for nonparametric transform

Identifiability guarantees with 1 intervention/node

Nonparametric Latent Models

	Latent Model	Transform	Int. / node	ID Results	
	Nonparametric	Linear			
Ahuja et al. (2023)	Nonparametric	Polynomial	1 do (or 1 soft with ind. support)	√	
Zhang et al. (2023)	Nonparametric + nonlinear	Polynomial	1 soft	ancestors	
von Kügelgen et al. (2023)	Nonparametric + faithfulness	Nonparametric	2 hard	✓	
	Nonparam	etric		5	

Our Contributions

Latent model		Transform		Interventions		Main results	
Nonparametric	+	Nonparametric	+	Two hard	=	 perfect ID provably correct algo 	CRL@ NeurIPS
Sufficiently nonlinear	+	Linear	+	One hard (soft)	=	 perfect ID perfect DAG + Markov) provably correct algo 	Varıcı et al. 2023
Nonparametric	+	Linear	+	One hard (soft)	=	 perfect ID ID up to ancestors) provably correct algo 	Coming soon

Algorithm Overview

Sufficient Interventional Diversity: 2 different hard interventions per node in the latent space

Observed space

$$\left\| \mathbb{E} \left[\left| \mathsf{Jac}_{\mathsf{dec}}(x)(s^1(x) - s^2(x)) \right| \right] \quad \cdots \quad \mathbb{E} \left[\left| \mathsf{Jac}_{\mathsf{dec}}(x)(s^{2n-1}(x) - s^{2n}(x)) \right| \right] \right\|_0 + \text{ Reconstruction Loss}$$

Provably correct algorithm for unsupervised learning (small variations for each setting)

Empirical Results

Non-linear latent model:
$$Z_i = \sqrt{Z_{\mathrm{pa}(i)}^{\top} A_{p,i} Z_{\mathrm{pa}(i)}} + N_{p,i}$$

n=8 latent variables

Input score differences $(s_X - s_X^m)$: Perfect score oracle or learn from data (Sliced Score Matching)

Non-linear transform: $X = \tanh(T \cdot Z)$

Two hard / node

Obs. Norm. DAG error Norm. DAG error dim Z error (SHD) Z error (SHD) 0.16 1.56 0.70 11.9 8 0.20 1.55 10.5 25 0.68

score oracle noisy scores

1.14

0.71

0.21

40

Linear transform: $X = T \cdot Z$

One hard / node

Obs. dim	Norm. Z error	DAG error (SHD)	Norm. Z error	DAG error (SHD)
8	0.50	5.4	0.75	10.3
25	0.51	6.0	0.78	8.9
40	0.50	5.3	0.61	11.9

score oracle

noisy scores

11.8

Score-based CRL

Observational Env.

Interventional Env.

$$s(z) - s^{m}(z) = \nabla_{z} \log p_{i}(z_{i} \mid z_{\operatorname{pa}(i)}) - \nabla_{z} \log q_{i}(z_{i})$$

Score functions contain all the information about latent DAGs

Applying an Encoder

$$Z \xrightarrow{g} X \xrightarrow{h} \hat{Z}(h)$$

incorrect encoder \to $s_{\hat{Z}}(\hat{z}) - s_{\hat{Z}}^m(\hat{z})$ **not** a function of only $z_{\overline{\mathrm{pa}}(i)}$

estimated score differences cannot be sparser than true score differences

Minimizing Score Differences

Minimize score variations over environment pairs = correct encoder

Only need the score differences in observations space

$$s_{\hat{Z}}(\hat{z}) - s_{\hat{Z}}^m(\hat{z}) = [J_{\mathsf{decoder}}(\hat{z})]^{\top}(s_X(x) - s_X^m(x))$$

Our Contributions

Latent model		Transform		Interventions		Main results	
Nonparametric	+	Nonparametric	+	Two hard	=	 perfect ID provably correct algo 	CRL@ NeurIPS
Sufficiently nonlinear	+	Linear	+	One hard (soft)	=	 perfect ID perfect DAG + Markov) provably correct algo 	Varıcı et al. 2023
Nonparametric	+	Linear	+	One hard (soft)	=	 perfect ID ID up to ancestors) provably correct algo 	Coming

Nonparametric transform + two hard

Interventional discrepancy:
$$\frac{\partial}{\partial z_i} \frac{q_i(z_i)}{\tilde{q}_i(z_i)} \neq 0$$
 almost everywhere

Theorem: Observational data and **two hard** interventions/node = **Perfect ID**

von Kügelgen et al. (2023): Coupled two hard + faithfulness (for all candidates) = Perfect ID

Linear transform + nonlinear latents + one hard/soft

Theorem : Linear transform + sufficiently nonlinear latent model + **one hard**/node

$$X = T \cdot Z$$

Perfect ID

Theorem : Linear transform + sufficiently nonlinear latent model + **one soft**/node

- 1. Perfect DAG recovery
- 2. Estimated latents have Markov property

Going beyond mixing with ancestors (nonlinear models = up to ancestors in Zhang'23)

$$\hat{Z}_1 = Z_1$$

$$\hat{Z}_2 = Z_2$$

$$\hat{Z}_3 = \lim(Z_2, Z_3)$$

Linear transform + any latents + one hard/soft

Theorem : Linear transform + **one hard**/node = **Perfect ID**

No parametric restrictions on latents (linear models on Squires'23, Buchholz'23)

Negative results for linear latents + soft (Squires'23): ID up to ancestors is the best one can hope.

Theorem: Linear transform + one soft/node = ID up to ancestors

$$\hat{Z}_i = \text{lin}(Z_{\text{anc}(i)})$$
 and $\text{tr-closure}(\hat{\mathcal{G}}_Z) = \text{tr-closure}(\mathcal{G}_Z)$

Summary

- Score functions contain all the information about latent DAG
- Minimizing score variations = constructive proof = provably correct algorithms
- Non-parametric transform with 2 interventions/node: https://arxiv.org/abs/2310.15450
- Liner transform with 1 intervention/node: https://arxiv.org/abs/2301.08230

References

- B. Varıcı, E. Acartürk, K. Shanmugam, and A. Tajer. "Score-based causal representation learning from interventions: Nonparametric identifiability". Causal Representation Learning Workshop at NeurIPS 2023.
- B. Varıcı, E. Acartürk, K. Shanmugam, A. Kumar, and A. Tajer. "Score-based causal representation with interventions". arXiv: 2301.08230
- K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio. "Interventional causal representation learning". ICML 2023
- C. Squires, A. Seigal, S. S. Bhate, and C. Uhler. "Linear causal disentanglement via interventions". ICML 2023
- J. von Kügelgen, M. Besserve, W. Liang, L. Gresele, A. Kekić, E. Bareinboim, D. M. Blei, and B. Schölkopf. "Nonparametric identifiability of causal representations from unknown interventions". NeurlPS 2023
- S. Buchholz, G. Rajendran, E. Rosenfeld, B. Aragam, B. Schölkopf, and P. Ravikumar. "Learning linear causal representations from interventions under general nonlinear mixing". NeurIPS 2023
- J. Zhang, C. Squires, K. Greenewald, A. Srivastava, K. Shanmugam, and C. Uhler. "Identifiability guarantees for causal disentanglement from soft interventions". NeurIPS 2023
- W. Liang, A. Kekić, J. von Kügelgen, S. Buchholz, M. Besserve, L. Gresele, and B. Schölkopf. "Causal component analysis". NeurIPS 2023
- Y. Jiang and B. Aragam. "Learning nonparametric latent causal graphs with unknown interventions". NeurIPS 2023
- S. Bing, U. Ninad, J. Wahl, and J. Runge. "Identifying Linearly-Mixed Causal Representation Learning from Multi-Node Interventions", arXiv:2311.02695, 2023
- J. Jin and V. Syrgkanis. "Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity." arXiv:2311.12267, 2023.
- P. Sanchez, X. Liu, A. Q. O'Neil, and S. A. Tsaftaris. "Diffusion models for causal discovery via topological ordering". ICLR 2023
- P. Rolland, V. Cevher, M. Kleindessner, C. Russell, D. Janzing, B. Schölkopf, and F. Locatello. "Score matching enables causal discovery of nonlinear additive noise models". ICML 2022
- F. Montagna, N. Noceti, L. Rosasco, K. Zhang, and F. Locatello. "Scalable causal discovery with score matching". CLeaR 2023