IMPORTANT: Besides your calculator (cell phones are not allowed, any attempt to use cell phones will be strictly penalized) and the sheets you use for calculations you are only allowed to have an A4 sized "copy sheet" during this exam. Notes, problems and alike are not permitted. Please submit your "copy sheet" along with your solutions. You may get your "copy sheet" back after your solutions have been graded. Do not forget to write down units and convert units carefully!

ELE222E INTRODUCTION TO ELECTRONICS

Final Exam 🖋 25 May 2011 🗟 9.00-11.00 Zümray DOKUR ÖLMEZ, Metin YAZGI, Bülent YAĞCI, Rıza Can TARCAN, Türker KÜYEL, İnci ÇİLESİZ

Student number and name:_____

Mandatory Problem (30 points):

The two BJTs T_1 and T_2 shown in the figure are identical. Their parameters are $h_{FE}=$ $B_F=$ 250, $|\,V_{BE}\,|\,=$ 0,6 V, $V_{CEsat}=$ 0,2 V, $V_T=$ 25 mV and $V_A=$ $^{\infty}$.

- a) The design requires $V_{C3}=6$ V for $V_i=0V$, and $v_o/v_i=100$. Find the resistor value for R_1 and the current I_k .(15 points) Note: R_1 is much larger than r_{e1} and r_{e2} .
- b) Taking into account the saturation and cutoff conditions for T_3 , find the variance of output voltage (V_o) and the corresponding variance of the input voltage (V_i) (15 points)

Mandatory Problem (40 points):

- (A) For the transistors shown below h_{fe} = h_{FE} = 200, V_{BE} =0,6V, V_{CESAT} = 0,2V and V_{T} = 25mV. You can assume $h_{re} \cong 0$ and $h_{oe} \cong 0$. All capacitors are ideal.
- a) Find R_3 , R_4 and R_5 for I_C = 1mA, V_{CE} = 4V and r_i =10k Ω (10 points)
- b) Calculate v_o/v_i . (10 points).

Figure-1

(a)
$$R_3 = R_4 = R_5 = R_5$$

(b)
$$V_0/V_i =$$

- (B) For the MOS shown below V_T = 1V, V_A =100V 0,5 $\mu_n C_{ox}(W/L)$ =2mA/V², and all capacitors are ideal.
- a) Calculate biasing currents and voltages. (10 points)
- b) Calculate input resistance r_i and v_o/v_i . (10 points)

Figure-2

$$I_{D} = mA$$

(b)
$$r_i,=$$
 $v_o/v_i =$

Elective Problem (30 points): The OPAMP and the diode shown in the figure have ideal properties. The OPAMP saturation voltages at the output are V_0^+ =5 V and V_0^- = -5 V.

- a) Find the gain of the circuit for both $V_i{>}0$ and $V_i{<}0$. (15 points)
- b) Find R_2 and R_3 for V_0 = $2\,|\,V_i\,|\,$ ($R_1{=}R_4{=}10k).$ For which values of V_i is $V_0{=}\,2\,|\,V_i\,|\,$ valid?(15 points)

Elective Problem (30 points): The circuit below is used for high gain.

Transistors are all enhancement mode MOS transistors, all MOS transistors operate in SAT,

 $V_{tp} = -0.8V$ for PMOS, $V_{tn} = 0.7V$ for NMOS,

all transistors have $0.5 \mu C_{av} W/L = 500e - 6$ Amp/ V^2 ,

and channel length modulation parameter $\,\lambda = \frac{1}{V_{\scriptscriptstyle A}}\,$ is 5 $\,V^{\scriptscriptstyle -1}$.

a) Notice that V4 sets the Id. Find I_D's for (4 points)

M1, M2, M3, and M4. (Ignore λ for this part)

 $I_D M1 = ____, I_D M2 = ___, I_D M3 = ____, I_D M4 = ____,$

b) Compute DC values for V_{i2} , V_{fp} , V_{gp} , (12 points)

 $V_{\text{gn}},\,V_{\text{fn}}.$ Make reasonable assumptions. What should V1 be to match the bias current set by M4?

 $V_{i2} =$ _____, $V_{fp} =$ _____, $V_{gp} =$ _____, $V_{gn} =$ _____

- c) $V_0 = 2,5V$ is given. Show that all transistors operate in SAT. What happens to M2 if Vo were 1V? (8 points)
- d) Compute the gm and the output resistance (r_{ds}) of M1.

 $g_m = \underline{\qquad} r_{ds} = \underline{\qquad} (6 \text{ points})$

Your answers must be accurate within 1-2%.