Statistics & Probability for Machine Learning

Statistics and Probability form the mathematical foundation for many machine learning algorithms.
They help describe, understand, and make predictions from data.
* Statistics in Machine Learning
Statistics is the study of data collecting, summarizing, and interpreting data.
-> Descriptive Statistics:
- Mean: Average value
- Median: Middle value
- Mode: Most frequent value
- Standard Deviation (SD): Measure of how spread out values are
- Variance: Square of SD
-> Inferential Statistics:
Used to make predictions or inferences about a population based on a sample.
Examples in ML:
- Mean squared error (MSE)
- Confidence intervals in A/B testing
- Statistical hypothesis testing (p-value, t-test)

-> Distribution:

- Normal Distribution. Bell-curve, used in Gaussian Naive Bayes, regressio
- Skewness & Kurtosis: Used for understanding feature behavior
* Probability in Machine Learning
Probability measures how likely an event is to occur.
-> Key Concepts:
- Random Variables
- Probability Distribution: e.g., Bernoulli, Binomial, Normal
- Conditional Probability: P(A B)
- Bayes Theorem: Core of Naive Bayes classifier
-> Use Cases in ML:
- Naive Bayes classification
- Predictive modeling
- Bayesian inference
- Hidden Markov Models (HMMs)
Bayes Theorem:
P(A B) = [P(B A) * P(A)] / P(B)
* Applications in ML Algorithms
Naive Bayes: Based on probability and Bayes theorem

Logistic Regression: Uses Bernoulli probability distribution
Clustering: Often assumes data distributions (e.g., Gaussian Mixture Models)
Random Forest: Uses statistical measures like Gini Impurity and Entropy
* Summary

Understanding statistics and probability allows you to:

- Choose the right model
- Evaluate results with confidence
- Interpret outputs of algorithms