Linear Classification and Regression

- Outline Linear regression
 - Gradient descent
 - Closed form solution
 - Locally weighted regression
 - Probabilistic Interpretation of Linear Regression
 - Maximum Likelihood estimator
 - Logistic regression
 - Perceptron
 - Support Vector Machines (SVM)
 - Maximizing margin
 - Kernel trick
 - Soft margin

Based on a tutorial by Andrew Ng

Supervised Learning

Linear Regression

Notation

- \bullet m: number of training examples
- *n* : number of features
- *x* : input variables/features
- y : output variable/target variable
- $(x^{(i)}, y^{(i)})$: i-th training example

Linear Regression

 We assume that there is a linear relation between the output variable and the input features

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

- $\theta_1, \theta_2, \dots, \theta_n$ define the slope of the line and θ_0 represent the bias.
- We can define $x_0 = 1$ for convenience

$$h_{\theta}(x) = \sum_{i=0}^{\infty} \theta_i x_i = \Theta^T x$$

Linear Regression - Cost Function Least Mean Square Algorithm (Widrow-Hoff)

- How to learn from the training set? How to find the parameters?
- Define the cost/loss function as the sum of squared error of predictions on training data

$$\mathcal{J}(\Theta) = \frac{1}{2} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\mathcal{J}(\Theta) = \frac{1}{2} \sum_{i=1}^{m} \left(\Theta^{T} x^{(i)} - y^{(i)} \right)^{2}$$

Minimize the cost/loss

$$\min_{\Theta} \mathcal{J}(\Theta)$$

Gradient Descent

Linear Regression - Gradient Descent

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} \mathcal{J}(\Theta)$$

$$\frac{\partial}{\partial \theta_{j}} \mathcal{J}(\Theta) = \frac{\partial}{\partial \theta_{j}} \left[\frac{1}{2} \sum_{i=1}^{m} (\Theta^{T} x^{(i)} - y^{(i)})^{2} \right]$$

$$\frac{\partial}{\partial \theta_{j}} \mathcal{J}(\Theta) = \sum_{i=1}^{m} (\Theta^{T} x^{(i)} - y^{(i)}) \frac{\partial}{\partial \theta_{j}} (\theta_{0} + \theta_{1} x_{1}^{(i)} + \dots + \theta_{n} x_{n}^{(i)} - y^{(i)})$$

$$\frac{\partial}{\partial \theta_{j}} \mathcal{J}(\Theta) = \sum_{i=1}^{m} (\Theta^{T} x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

$$\theta_{j} = \theta_{j} - \alpha \sum_{i=1}^{m} (\Theta^{T} x^{(i)} - y^{(i)}) x_{j}^{(i)}$$

Batch Gradient Descent vs. Stochastic Gradient Descent

Batch Gradient Descent

```
Repeat until convergence \{\theta_j=\theta_j-\alpha\sum_{i=1}^m\bigl(\Theta^Tx^{(i)}-y^{(i)}\bigr)x_j^{(i)} \qquad \text{For every example } x_j • Stochastic Gradient Descent
```

there exists a closed form for $J(\theta)$

```
Repeat until convergence  \{ \\  \text{for i =1 to m} \\  \{ \\  \theta_j = \theta_j - \alpha \big(\Theta^T x^{(i)} - y^{(i)}\big) x_j^{(i)} \\  \} \\ \}  For every example x_j
```

Locally Weighted Regression

Sometimes a simple linear model is not a good fit

Locally Weighted Regression

- LR we have seen is parametric (the θ 's; data can be forgotten after training)
- LWR is a non-parametric model (data that needs to be kept to represent the hypothesis is O(m))

Locally Weighted Regression

• For a query point x, fit Θ to minimize

$$\mathcal{J}(\Theta) = \sum_{i=1}^{m} w^{(i)} (\Theta^{T} x^{(i)} - y^{(i)})^{2}$$

Large error – small weight Small error – weight unimportant

$$w^{(i)} = \exp\left(-\frac{\|x^{(i)} - x\|^2}{2\sigma^2}\right)$$

- \bullet σ is the bandwidth parameter
- It is computationally quite expensive if you have large training set
 - Improvements has been done using kd-trees, ...

Probabilistic Interpretation of Linear Regression

• Lets assume

$$y^{(i)} = \Theta^T x^{(i)} + \epsilon^{(i)}$$

- $\epsilon^{(i)}$ is the error, IID
- Unmodeled effects (e.g. additional uncaptured features)
 - Random noise (uncertainty in the data)
- Assume

 $\epsilon^{(i)} {\sim} \mathcal{N}(0, \sigma^2)$ Independently Identically Distributed

$$P(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\right)$$

Probabilistic Interpretation of Linear Regression

$$y^{(i)} = \Theta^T x^{(i)} + \epsilon^{(i)}$$

$$P(y^{(i)}|x^{(i)}; \Theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(i)} - \Theta^T x^{(i)}\right)^2}{2\sigma^2}\right)$$

$$y^{(i)}|x^{(i)}; \Theta \sim \mathcal{N}(\Theta^T x^{(i)}, \sigma^2)$$

Probabilistic Interpretation of Linear Regression (Likelihood)

ullet $\epsilon^{(i)}$ s are Independently Identically Distributed (IID)

$$L(\Theta) = P(Y|X;\Theta)$$
 likelihood

$$L(\Theta) = \prod_{i=1}^{m} P(y^{(i)}|x^{(i)};\Theta)$$

$$L(\Theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(i)} - \Theta^{T} x^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

Maximum Likelihood Estimator

- Choose Θ to maximize $L(\Theta) = P(Y|X;\Theta)$
 - Choose the parameters to make the data as probable as possible

$$\ell(\Theta) = \log L(\Theta)$$

$$\ell(\Theta) = \log \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(i)} - \Theta^{T} x^{(i)}\right)^{2}}{2\sigma^{2}}\right)$$

$$m = \left[-\frac{1}{2\sigma^{2}} \left(-\frac{\left(y^{(i)} - \Theta^{T} x^{(i)}\right)^{2}}{2\sigma^{2}}\right)\right]$$

$$\ell(\Theta) = \sum_{i=1}^{m} \log \left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(i)} - \Theta^{T} x^{(i)}\right)^{2}}{2\sigma^{2}}\right) \right]$$

$$\ell(\Theta) = m \log \frac{1}{\sqrt{2\pi}\sigma} + \left(\sum_{i=1}^{m} -\frac{\left(y^{(i)} - \Theta^T x^{(i)}\right)^2}{2\sigma^2}\right)$$

Maximum Likelihood Estimator

• Maximizing $\ell(\Theta)$ is the same as minimizing

$$\mathcal{J}(\Theta) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \Theta^{T} x^{(i)})^{2}$$

- Note that the value of σ doesn't matter in finding Θ
- The solution of the Least Square method that we used before is exactly the same as the Maximum Likelihood estimation of the parameters in the probabilistic setting assuming Gaussian error.

Linear Classification

Logistic Regression Binary Classification

$$y \in \{0,1\}$$

$$h_{\theta}(x) \in [0,1]$$

$$h_{\theta}(x) = g(\Theta^{T} x) = \frac{1}{1 + e^{-\Theta^{T} x}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid function Logistic function

Logistic Regression Probabilistic Perspective

Lets design parameters
For the model and fit
them with Max
Likelihood

$$P(y = 1|x; \Theta) = h_{\theta}(x)$$

$$P(y = 0|x; \Theta) = 1 - h_{\theta}(x)$$

Write it in a more compact way

$$P(y|x;\Theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

$$L(\Theta) = P(Y|X;\Theta) = \prod_{i=1}^{m} P(y^{(i)}|x^{(i)};\Theta)$$

$$L(\Theta) = \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

Logistic Regression Maximum Likelihood Estimation

$$\ell(\Theta) = \log L(\Theta) = \log \prod_{i=1}^{m} (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

$$\ell(\Theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))$$

Use Gradient Ascent to maximize the log likelihood

$$\Theta = \Theta + \alpha \nabla_{\Theta} \ell(\Theta)$$

Logistic Regression ML – Gradient Ascent

$$\Theta = \Theta + \alpha \nabla_{\Theta} \ell(\Theta)$$

 We will skip the derivation but you will end up with the following

$$\frac{\partial}{\partial \theta_j} \ell(\Theta) = \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

$$\theta_j = \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

$$\theta_j = \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - \frac{1}{1 + e^{-\Theta^T x}}) x_j^{(i)}$$