Introduction to IPv6

Structure and function of IPv6 addresses

Network Addresses

Let's look at an address

What is this?

1600 Pennsylvania Ave NW Washington, DC 20500

Private vs. Public Addresses

Public:

1600 Pennsylvania Ave

NW, Washington, DC 20500

Private:

P.O. Box 27624 Washington, D.C. 20500

Sample IPv4 Addresses

192.168.1.1

10.12.15.201

201.23.5.104

Sample IPv6 Addresses

3FFE:52AB:2:ABC:123:56:DE:1

2001::2:ABC:123

FE80::1234:1

FF01::2

• •

Sample Private Addresses

192.168.1.1

•IPv4

Private

FE80::1234:1

- IPv6
- Private (limited)

Sample Public Addresses

201.23.5.104

2001::2:ABC:123

- •IPv4
- •Public

- IPv6
- Public

TCP/IP Network

192.168.1.100

2001:5c0:8fff:3::100

192.168.1.101

2001:5c0:8fff:3::101

192.168.1.102

2001:5c0:8fff:3::102

Addressing Concepts

Decimal notation (IPv4) 1.2.3.4

> Hexadecimal notation (IPv6) 00 - FF

> > Binary
> >
> > 1 byte = 8 bits

IPv6 Address Representation

IPv4 Address: 32 bits - IPv6 address: 128 bits

- IPv6 address: 8 sections of 4 hex digits (16 bits)
 - 1111:2222:3333:4444:5555:6666:7777:8888
- Zero-compression
 - 1111:2222:**0:0**:5555:6666:7777:8888
 - 1111:2222::5555:6666:7777:8888
- Prefix length
 - 1111:2222::5555:6666:7777:8888 /64
- Prefix alone
 - 1111:2222:: /64

/8	11111111xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Important IPv6 Prefix Notations
/16	11111111111111.xxxxxxxxxxxxxxxxxxxxxxx	0000:: FFFF::
/32	111111111111111. 1111111111111. XXXXXXXXXX	0000:0000:: FFFF:FFFF::
/48	111111111111111.1111111111111. 11111111	0000:0000:0000:: FFFF:FFFF:FFFF::
/56	1111111111111111.1111111111111. 11111111	0000:0000:0000:00xx:: FFFF:FFFF:FFF:FFxx::
/64	111111111111111.11111111111111. 11111111	0000:0000:0000:: FFFF:FFFF:FFFF::

Zero Compression

 IPv6 addresses are zero compressed.

 Double colon can appear only once.

Zero compression of special addresses.

```
805B:2D9D:DC28:0:0:FC57:0:0
  805B:2D9D:DC28::FC57:0:0
           or
805B:2D9D:DC28:0:0:FC57::
  FF00:4501:0:0:0:0:0:32
       FF00:4501::32
       0:0:0:0:0:0:0:1
       0:0:0:0:0:0:0:0
```

IPv4 / IPv6 Address Structure

IPv6 Address Types

Anycast addresses appear the same as unicast addresses

Importance of IPv6 Network Prefix

• First part of network prefix important!

• Example: 2001:5c0:8fff:3::3f53

- Learn:
 - Can you go out on the internet with it,
 - What devices can you talk to,
 - Is it for special function.

FE80 = Link Local

FFxx = **Multicast**

2001 = Global Unicast

0000 = Special

Addressing Changes

No broadcast addressing in IPv6 IPv4 Broadcast Addresses

IPv6 multicast addressing used

192.163,17255 255.257.255.255

Addressing Planning

- *IPv6 address planning is different from IPv4
- •IPv4: 0 address is network, .1 address is gateway, 255 is broadcast (generally)
- *IPv4 and IPv6 subnet structure is different
- Basically, you do not lose three addresses per subnet

IPv4 Subnet

192.168.1.1 (network)

192.168.1.255 (broadcast)

Types of Unicast Addresses

Global Unicast Address

2001:5c0:8fff:3::3f53

Types of IPv6 unicast addresses:

- ¬¬ global unicast,
- ¬¬ link-local unicast, and
- ¬¬ site-local unicast.

IPv6 Global Unicast Address

Global unicast address: 48-bit network prefix, 16-bit subnet ID,
 bit interface ID

Router interface: 64 bits

Current global unicast address allocation: 2000::/3 (binary 001)

Global Unicast Address

2001:5c0:8fff:3::1

IPv6 Global Unicast Address

*IPv6 global unicast address (like) IPv4 global unicast address

*Plan network in hierarchy

*Limit routing table entries


```
Ethernet adapter Ethernet:
  Media State . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Local Area Connection* 2:
  Media State . . . . . . . . : Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Local Area Connection* 13:
  Media State . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Wi-Fi:
  Connection-specific DNS Suffix . :
  IPv6 Address. . . . . . . . . . . . 2601:642:c201:bd::478d
  IPv6 Address. . . . . . . . . . . . . . . 2601:642:c201:bd:fced:f576:4c8d:11f7
  Temporary IPv6 Address. . . . . : 2601:642:c201:bd:c5f4:62a3:c9cd:500b
  Link-local IPv6 Address . . . . : fe80::fced:f576:4c8d:11f7%9
  IPv4 Address. . . . . . . . . . . . . . . 10.0.0.118
  Default Gateway . . . . . . . : fe80::5a19:f8ff:fef4:a74e%9
                                    10.0.0.1
Ethernet adapter Bluetooth Network Connection:
```

Media State Media disconnected

Connection-specific DNS Suffix .:

Global Unicast Network Prefix

Global Unicast Address

2001:5c0:8fff:3::3f53

- *Network Prefix: First part of an IPv6 address.
- *Best practices: 48 bits

Global Unicast Subnet Prefix

- Subnet prefix: standard is 16 bits
- 65,535 subnets

Global Unicast Address

2001:5c0:8fff:0003::35f3

Global Unicast Interface ID (IID)

Global Unicast Address

2001:5c0:8fff:3::3f53

IPv6 Private Addresses

*Link-local or site-local

*Never routed outside a company or link

Start with hex FE then 8 to F (1111 1110 1)

Most common: FE80 (link-local)

FE8n – FEFn = Private Addresses

Link-Local Unicast Address

*IPv6 devices always have linklocal address

*IPv6 devices use link-local to communicate with 'on-link' devices

*IPv6 routers must not forward link-local packets

10 Bits	54 Bits	64 Bits
1111111010	zeroes	Interface ID

Sample Link-Local Address

fe80::211:d8ff:fe39:292b

Link-Local Address Explained

*Why do you need link-local addresses?

*How do you get a linklocal address? Who am I? IPv6 Stateless autoconfiguration

FE8n - FEBn = Link Local

Site-Local Unicast Addresses

*IPv4 site-local private addresses = 10.0.0.0/80.0/12 or 192.168.0.0/16

Site-local address + NAT used for topology hiding

•IPv6 site-local unicast deprecated

*Site scope multicast still available

FECn - FEFn = Site Local

IPv6 Reserved Addresses

*Defined by the IETF

Includes:

- Unspecified,
- Loopback and
- IPv4 Embedded addresses

See:

http://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xml

:: /8 = Reserved

IPv6 Unspecified Address

*Who am I?

*IPv6 unspecified address.

Stateless Autoconfiguration

Represented as ::

164 ADCD PACKET 00000004 08:14:04.416323 Packet Trace

From Interface : ETH1 Device: LCS Ethernet Full=342
Tod Clock : 2006/01/06 08:14:04.416317 Intfx: 4

Sequence # : 0 Flags: Pkt

IpHeader: Version: 4 Header Length: 20

Tos : 00 QOS: Routine Normal Service

Packet Length: 342 ID Number: 0000

Fragment : Offset: 0

Source : 0.0.0.0

Destination : 255.255.255

UDP

Source Port : 68 (bootpc) Destination Port: 67 (bootps)

Datagram Length : 322 CheckSum: 93B0 FFFF

Client IP : 0.0.0.0 Your IP: 0.0.0.0 Server IP : 0.0.0.0 Gateway: 0.0.0.0

Client HW Addr : 0013D38D61FB0000000000000000000 Flags: 0

Server Host Name: Boot FileName :

Vendor Info : 638253633501033D07010013D38D61FB3204C0A801650C0C42617272792D636F Vendor Info : 6D706171511000000042617272792D636F6D7061712E3C084D53465420352E30

DHCPMSG : DhcpREQUEST

CLIENTID : 7 010013D38D61FB

REQIPADDR : 192.168.1.101

HOSTNAME : Barry-compaq

DHCPDDNS : 16 00000042617272792D636F6D7061712E

CLASSID : MSFT 5.0 PARMLIST : 11 options

IPv6 Stateless Autoconfiguration

Loopback Address

•IPv6 loopback address is 0:0:0:0:0:0:0:1 (::1)

- *Acts like IPv4 loopback.
 - Can't be assigned to physical interface.
 - Used by local applications
 - Can't travel outside node
 - Can't be forwarded by router

IPv4 Addresses in IPv6

- ¬¬¬ From reserved space (0000::/8)
- ¬¬ IPv4 Mapped (Embedded) IPv6 Addresses.
- ¬¬ Last 32 bits = IPv4 address
- ¬ Shown in IPv4 notation
- A May see on IBM mainframe applications

IPv4 Mapped IPv6 Address

::ffff:192.168.0.1

IPv4 Compatible IPv6 Address
::197 16 0.1

IPv6 Multicast

In IPv6, multicasting used widely

•Multicast is like a newsletter subscription.

Devices belong to a multicast group

•IPv4 multicast uses Class D range: (224.xx.xx.xx - 239.xx.xx.xx)

IPv6 Multicast Scope

*IPv6 multicast addresses start with FF.

Last 4 bits is scope. (Ex. FF01, FF02, etc).

*FF01:: means on same interface

*FF02:: means on same link

*FF05:: means in the same site

*FF0E:: means in the Internet.

(From RFC 4291)

Common IPv6 Multicast Groups

•Multicast addresses are registered with the Internet Assigned Numbers Authority (IANA).

See:

http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xml

<u>IPv6 multicast address</u> <u>Description</u>

FF02::1 The all-nodes address

FF02::2 The all-routers address

FF02::5 The all-Open Shortest Path First (OSPF) routers address

FF02::6 The all-OSPF designated routers address

IPv6 Address Summary

2001:5c0:8fff:fffe::1

*IPv6 is more than a bigger address!

Many changes to protocol.

2001::11:22:33:44

ff02::1

fe80::211:d8ff:fe39:292b

fe80::192:168:1:100

fe80::169.254.1.100

Questions?