1 Examples of stable ∞ -cagtegories

1.1 dg-Categories

Review, let \mathcal{A} be an abelian cagtegory with enough projectives. Then there is a category $D^{-}(\mathcal{A})$ the derived category of bounded-above.

 $\mathbf{Ch}(()\mathcal{A})$ is naturally a dg-Category meaning it is enriched in $\mathbf{Ch}(()\mathbf{Ab})$. Indeed, if $A, B \in \mathbf{Ch}(()\mathcal{A})$ then we define,

$$\operatorname{Hom} (A_{\bullet}, B_{\bullet})_n = \prod_k \operatorname{Hom} (A_k, B_{k-n})$$

with differential,

$$(\mathrm{d}f)_k = f_{k+1} \circ \mathrm{d}_B + (-1)^{n+1} \mathrm{d}_B \circ f_k$$

Then we check that,

$$H^0(\operatorname{Hom}(A,B)_{\bullet}) = \operatorname{Hom}_{\mathbf{Ch}(A)}(A,B)$$

1.2 Program

Given a dg-category, we get a simplicially enriched category by truncating and then applying Dold-Kan and then apply the homotopy-coherent nerve.

However, this requires checking many steps. We can instead go directly with the following construction.

1.3 Construction

Definition 1.3.1. A dg-category is a category enriched in $\mathbf{Ch}(()\mathcal{A})$. This includes the requirement that,

$$d(g \circ f) = dg \circ f + (-1)^{\deg g} g \circ df$$

which arises from needing to preserve the monoidal structure on $\mathbf{Ch}(()\mathcal{A})$ given by graded tensor $A\otimes B$.

We will define a dg-Nerve which goes directly from dg-categories to ∞ -categories which does not require passing through simplically-enriched categories.

Definition 1.3.2. Let C be a dg-category. Then the dg-Nerve is the simplicial set $N_{\rm dg}(C)$ where $N_{\rm dg}(C)_n$ is the set of objects X_i for $i \in \{0, \ldots, n\}$ and for each ordered set $I = \{i_- < i_m < \cdots < i_1 < i_+\}$ for $m \ge 0$ of elements in $\{0, \ldots, n\}$ we have map,

$$f_I \in \operatorname{Map}\left(X_{i_-}, X_{i_+}\right)$$

such that,

$$df_I = \sum_{1 \le j \le m} (-1)^i (f_{I \setminus \{i_j\}} - f_{\{i_j < \dots < i_+\}} \circ f_{\{i_- < \dots < i_j\}})$$

and the maps work as follow. If $\alpha:[m]\to[n]$ is monotone. Then the induced map α^* is given by,

$$\alpha^*(\{X_i\}, \{f_I\}) = (\{X_{\alpha(i)}\}, \{g_I\})$$

where,

$$g_J = \begin{cases} f_{\alpha(J)} & \alpha|_J \text{ injective} \\ \mathrm{id}_{X_i} & J = \{j, j'\} \text{ and } \alpha(j) = j' \\ 0 & \text{else} \end{cases}$$

Proposition 1.3.3. For any dg-category C the dg-Nerve $N_{\rm dg}(C)$ is an ∞ -category.

Proof. We need to show that inner horns can be filled. However, $\Lambda_i^n \to N_{\text{dg}}(C)$ this is the same data as specifying $\Delta^n \to N_{\text{dg}}(C)$ except we haven't specified all the maps f_I . In fact, this has specified the maps for all I except for I = [n] and $I = [n] \setminus \{i\}$. Then we set $f_{[n]} = 0$ and,

$$f_{[n]\setminus\{i\}} = \sum_{0$$

Remark. $\operatorname{Hom}_{N_{\operatorname{dg}}(C)}(X,Y) = \operatorname{DK}(\tau_{\geq 0}\operatorname{Map}_{C}(X,Y))$ which is the same result we would have gotten from the program applying Dold-Kan to the simplicially-enriched category.

Remark. Under what conditions do we get a stable ∞ -category from $N_{\rm dg}(C)$?

Definition 1.3.4. Let \mathcal{A} be an abelian category with enough projectives, $D^{+}(\mathcal{A}) = N_{dg}((\mathbf{Ch}(()\mathcal{A}_{proj})_{\geq 0}).$

Proposition 1.3.5 (Prop 1.3.2.10). $D^-(A)$ is stable.

Definition 1.3.6. We say that \mathcal{A} is a *Grothendieck abelian category* if A has a generator and small filtered colimits of monomorphisms are monomorphisms.

Example 1.3.7. The category of *R*-modules is Grothendieck.

Theorem 1.3.8. Let \mathcal{A} be Grothendieck. Then $\mathbf{Ch}(()\mathcal{A})$ has a model structure where,

- (a) cofibrations $M \to N$ are those morphisms which are injective termwise
- (b) equivalences $M \to N$ are quasi-isomorphisms
- (c) fibrations are those satisfying the right lifting property wrt the acyclic cofibrations.

Proposition 1.3.9 (1.3.5.6). (a) If M_n is injective for all n and $M_n \cong 0$ for $n \gg 0$ then M_{\bullet} is fibrant.

(b) If M_{\bullet} is fibrant then each M_n is injective.

If MA and M' = M[0] then there is a fibrant replacement $M[0] \to Q$ where the map is a trivial cofibration this proves enough injectives.

Definition 1.3.10. Let $\mathbf{Ch}(()\mathcal{A})^{\circ}$ be the full subcategory of fibrat objects. Let $D(A) = N_{\mathrm{dg}}(\mathbf{Ch}(()\mathcal{A})^{\circ})$.

Proposition 1.3.11. D(A) is stable and is the ∞ unbounded derived category.

1.4 Spectra

Definition 1.4.1. We say an ∞ -category is *pointed* if it admits a zero object.

Motivation: stable maps,

$$[X,Y]_s := \underline{\lim}_{n} [\Sigma^n X, \Sigma^n Y]$$

There is a category of topological spaces with stable maps. This gives a triangulated category with Σ acting via shift. Constructing this category "formally" we have some options,

(a) objects are (X, n) with $X \in \mathbf{Top}$ and $n \in \mathbb{Z}$ and morphisms are,

$$\operatorname{Hom}\left((X,n),(Y,m)\right) = \varinjlim_{k} [\Sigma^{k+n}X,\Sigma^{k+m}Y]$$

which works even for negative n, m because we can choose k large enough. This "formally inverts" suspension by giving elemens like (X, -1) which is the de-suspension of X

(b) construting infinite loop spaces: a sequence E_n with maps $E_n \xrightarrow{\sim} \Omega E_{n+1}$ so these are progressive deloopings. These are also giving inverses of Σ .

Definition 1.4.2. Let $F: C \to D$ be a functor of ∞ -categories then,

- (a) F is excisive if psuhout diagrams map to pullback diagrams
- (b) F is reduced if F(*) = *.

Definition 1.4.3. Let \mathcal{C} admit finite limits. A spectrum object is a reduced excisive functor,

$$F: S_*^{\mathrm{fin}} \to \mathcal{C}$$

The ∞ -category of spectra is,

$$\operatorname{Sp}(\mathcal{C}) = \operatorname{Fun}\left(S_*^{\operatorname{fin}}, \mathcal{C}\right)_{\operatorname{exc, red}} \subset \operatorname{Fun}\left(S_*^{\operatorname{fin}}, \mathcal{C}\right)$$

where S_*^{fin} is the pointed category of finite spaces (full subcategory of ∞ -category of pointed spaces).

Proposition 1.4.4 (1.4.2.11). Let C be a pointed ∞ -category with finite limits and colimits then $\Omega: \mathcal{C} \to \mathcal{C}$ is an equivalence then \mathcal{C} is stable.

Proposition 1.4.5. If \mathcal{C} is a pointed ∞ -category with finite limits and colimts then $\operatorname{Sp}(\mathcal{C})$ is stable.

Proposition 1.4.6. Let \mathcal{C} be a pointed ∞ -category with finite limits then there is a tower of ∞ -categories,

$$\cdots \longrightarrow C \stackrel{\Omega}{\longrightarrow} C \stackrel{\Omega}{\longrightarrow} C$$

and $Sp(\mathcal{C})$ is the homotopy limit.

Let \mathcal{A} be an abelian group. Then the Eilenberg-Maclain spaces satisfy $K(A, n-1) \cong \Omega K(A, n)$ and hence defines a spectrum.

Proposition 1.4.7. Let \mathcal{C} be an ∞ -category which admits finite limits. The following are equivalent,

- (a) \mathcal{C} is a stable ∞ -category
- (b) the functor $\Omega^{\infty}: \operatorname{Sp}(\mathcal{C}) \to \mathcal{C}$ is an equivalence of ∞ -categories

where Ω^{∞} is the map sending $F \mapsto F(S^0)$ where $S^0 = * \coprod *$.

$\mathbf{2}$ ∞ -operads

References: Higher Algebra

2.1 Motivations

Want the symmetric monoidal category in the ∞ -setting.

Recall that the definition of a symmetric monidal category is annoying:

Definition 2.1.1. A symmetric monidal category $(\mathcal{C}, \otimes, 1, \alpha, \nu, \beta)$ is,

- (a) a 1-category \mathcal{C}
- (b) a functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$
- (c) a natural isomorphism,

$$\alpha_{X,Y,Z}: X \otimes (Y \otimes Z) \xrightarrow{\sim} (X \otimes Y) \otimes Z$$

- (d) a unit object 1 with a fixed isomorphism $1 \otimes 1 \xrightarrow{\sim} 1$
- (e) a natural isomorphsim,

$$\beta_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$$

(this is the easy part, now the bad part) satisfying,

- (a) $A \mapsto 1 \otimes A$ and $A \mapsto A \otimes 1$ are equivalences of categories (then from $A \otimes 1 \xrightarrow{\sim} A \otimes (1 \otimes 1) \xrightarrow{\sim} (A \otimes 1) \otimes 1$ we see that $A \xrightarrow{\sim} A \otimes 1$ by equivalence)
- (b) unit should be compatible with associativity,

$$X \otimes (1 \otimes Y) \xrightarrow{\alpha_{1,Y}} (X \otimes 1) \otimes Y$$

$$X \otimes Y$$

(c) some huge nasty diagram making associativity compatible for 4-fold products

2.2 Construction

Let (C, \otimes) be a symmetric monoidal category. Then we can construct a new category C^{\otimes} whose objects are $\{[C_1, \ldots, C_n]\}_{C_i \in C}$ with $n \geq 0$. And the morphisms,

$$[C_1,\ldots,C_n] \xrightarrow{(S,\alpha,f)} [C'_1,\ldots,C'_m]$$

for $S \subset \{1, ..., n\}$ and $\alpha : S \to \{1, ..., m\}$ and maps $\{f_j\}_{j=1}^m$ which are maps $f_j : \bigotimes_{i \in \alpha^{-1}(j)} C_i \to C_j$. The composition law is given by $(S, \alpha, f) \circ (S', \alpha', f')$ in the only reasonable way (WRITE DOWN). Remark. Notice that the ordering of the object $[C_1, ..., C_n]$ does not matter.

Definition 2.2.1. New category Fin_{*} whose objects are $\langle n \rangle := \{1, \dots, n\} \sqcup \{*\}$ and the morphisms are $\langle n \rangle \to \langle m \rangle$ with $* \mapsto *$. This is just the category of finite sets with a disjoint basepoint added and the maps must be basepoint preserving.

Remark. Fin_{*} is the category of pointed finite sets and basepoint preserving maps.

Definition 2.2.2. We have special maps $\rho^i: \langle n \rangle \to \langle 1 \rangle$ which sends $i \mapsto 1$ and $k \mapsto *$ for $k \neq i$. Then we write $\langle n \rangle^{\circ} = \{1, \dots, n\} = \langle n \rangle \setminus \{*\}$.

Remark. The data of a symmetric monoidal category is equivalent to a functor $\mathcal{C}^{\otimes} \to \operatorname{Fin}_*$ given by $[C_1, \ldots, C_n] \mapsto \langle n \rangle$ satisfying some properties.

2.3 Colored Operads

Definition 2.3.1. A symmetric monoidal ∞ -category should be a cocartesian fibration $p: \mathcal{C}^{\otimes} \to N(\operatorname{Fin}_*)$ satisfying $\forall n \geq 0$ the collection of $\{\rho^i\}$ induces $\rho^i_*: \mathcal{C}^{\otimes}_{\langle n \rangle} \to \mathcal{C}^{\otimes}_{\langle 1 \rangle}$ determining $\mathcal{C}^{\otimes}_{\langle n \rangle} \cong (\mathcal{C}^{\otimes}_{\langle 1 \rangle})^{\oplus n}$.

Remark. We will come back and motivate this definition. First we discuss operads which are like categories where we have hom spaces have arbitrary arity, they are not just 2-adic.

Definition 2.3.2. A colored operad \mathcal{O} is the following data,

- (a) a collection of objects $Ob(\mathcal{O})$
- (b) Hom spaces: given any finite set I and a list of objects $(\{X_i\}_{i\in I}, Y)$ we get a space $\operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i\in I}, Y)$ if $I = \emptyset$ we get a set $\operatorname{Mult}_{\mathcal{O}}(Y)$ which is a unit (or something)
- (c) a composition law, for any map $I \to J$ we get,

$$\prod_{j \in J} \operatorname{Mult}_{\mathcal{O}} \left(\{X_i\}_{i \in I_j}, Y_j \right) \times \operatorname{Mult}_{\mathcal{O}} \left(\{Y_j\}_{j \in J}, Z \right) \to \operatorname{Mult}_{\mathcal{O}} \left(\{X_i\}_{i \in J}, Z \right)$$

- (d) $id_Y \in Mult_{\mathcal{O}}(\{Y\}, Y)$
- (e) associativity (DO THIS)

Remark. We use the terminology Mult because in the case of a symmetric monoidal category we will get an operad with,

$$\operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i\in I}, Y) = \operatorname{Hom}\left(\bigotimes_{i\in I} X_i, Y\right)$$

Remark. From \mathcal{O} we get a 1-category \mathcal{C} with Objects $\mathrm{Ob}(\mathcal{C}) = \mathrm{Ob}(\mathcal{O})$ and $\mathrm{Hom}(X,Y) = \mathrm{Mult}_{\mathcal{O}}(\{X\},Y)$.

Example 2.3.3. Given any 1-category \mathcal{C} we can produce an operad \mathcal{O} on the same objects with,

$$\operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i\in I}, Y) = \begin{cases} \varnothing & \#I \neq 1\\ \operatorname{Hom}_{\mathcal{C}}(X, Y) & \# = 1 \end{cases}$$

This is left-adjoint to the "underlying category" functor.

Example 2.3.4. Given a symmetric monoidal category (\mathcal{C}, \otimes) we get an operad on the same objects with,

$$\operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i\in I}, Y) = \operatorname{Hom}_{\mathcal{C}}\left(\bigotimes_{i\in I} X_i, Y\right)$$

Example 2.3.5. Given a colored operad \mathcal{O} , we get a new category \mathcal{O}^{\otimes} whose objects are $\{X_i\}_{i\in I}$ and whose mapping sets are,

$$\operatorname{Hom}_{\mathcal{O}^{\otimes}}(\{X_i\}_{i\in I}, \{Y_j\}_{j\in J}) = \prod_{j\in J} \operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i\in I}, Y_j)$$

In fact, \mathcal{O} is equivalent to the data of the fibration,

$$\pi: \mathcal{O}^{\otimes} \to \operatorname{Fin}_*$$

with some requirements on π . Indeed we can recover, $\mathcal{O} = \pi^{-1}(\langle 1 \rangle)$ and we get $\operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i \in I}, Y)$ by considering maps in \mathcal{O}^{\otimes} between the object $\{X_i\}_{i \in I} \in \pi^{-1}(\langle n \rangle)$ and $Y \in \pi^{-1}(\langle n \rangle)$.

2.4 Cocartesian morphisms

Definition 2.4.1. Let $p: \mathcal{C} \to \mathcal{D}$ be a functor of 1-categories. Then $g: X \to Y$ in \mathcal{C} is cocartesian if for all Z,

$$\operatorname{Hom}_{\mathcal{C}}(Y,Z) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X,Z)$$

$$\downarrow \qquad \qquad \downarrow$$
 $\operatorname{Hom}_{\mathcal{D}}(p(Y),p(Z)) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(p(X),p(Z))$

is a pullback.

Definition 2.4.2. Let $p: \mathcal{C} \to \mathcal{D}$ be a functor of ∞ -categories. Then a morpism $g: X \to Y$ in \mathcal{C} is cocartesian if p is an inner fibration and (WHAT)

2.5 ∞ -Operads

Definition 2.5.1. $f: \langle m \rangle \to \langle n \rangle$ in Fin_{*} is *inertia* if for $i \in \langle n \rangle^{\circ}$ then $f^{-1}(i)$ consists of *exactly* one element. This means that two elements can only be mapped to the same place if their image is * and also the map is surjective.

Definition 2.5.2. An ∞ -operad is a functor $p: \mathcal{O}^{\otimes} \to N(\operatorname{Fin}_*)$ from an ∞ -category \mathcal{O}^{\otimes} where we write $\mathcal{O}_{\langle n \rangle}^{\otimes} = \pi^{-1}(\langle n \rangle)$ such that,

- (a) if $f:\langle m\rangle \to \langle n\rangle$ is inertia then every object $C\in \mathcal{O}_{\langle m\rangle}^{\otimes}$ there exists a p-cocartesian morphism $\bar{f}:\mathcal{C}\to\mathcal{C}'$ lifting f
- (b) for $C \in \mathcal{C}_{\langle n \rangle}^{\otimes}$ and $C' \in \mathcal{C}_{\langle m \rangle}^{\otimes}$ and $f : \langle m \rangle \to \langle n \rangle$ in Fin_{*} then,

$$\operatorname{Map}_f(C, C') := (\operatorname{Map}(C, C'))^{\circ}$$

is the connected component lying over f then,

$$\operatorname{Map}_{f}(C, C') \cong \prod_{1 \leq i \leq n}^{f} \operatorname{Map}_{\rho_{i} \circ f}(C, C')$$

(c) $\forall n \geq 0$ the maps $\{\rho_!^i : \mathcal{O}_{\langle n \rangle} \to \mathcal{O}_{\langle 1 \rangle} \text{ induces an equivaence of } \infty\text{-categories},$

$$\mathcal{O}_{\langle n
angle}^{\otimes} \xrightarrow{\sim} \left(\mathcal{O}_{\langle 1
angle}^{\otimes}
ight)^{\oplus n}$$

Remark. We write $\mathcal{O} := \mathcal{O}_{\langle 1 \rangle}^{\otimes}$ which is called the underlying ∞ -category of \mathcal{O}^{\otimes} .

Remark. If \mathcal{O} is a colored (1-categorical) operad then $N(\mathcal{O}^{\otimes}) \to N(\operatorname{Fin}_*)$ is an ∞ -operad.

Example 2.5.3. The trivial operad is on the trivial category,

$$\underline{\text{Triv}} \subset \text{Fin}_*$$

which is the full subcategory on the inertia maps. Then the inclusion map,

$$N(\underline{\text{Triv}}) \to N(\text{Fin}_*)$$

is an ∞ -operad.

2.6 The Associative Operad

Let \mathcal{E}_0^{\otimes} be the operad whose objects are $\langle n \rangle$ and whose morphism $f : \langle m \rangle \to \langle n \rangle$ such that $\#f^{-1}(i) \le 1$ for $1 \le i \le n$ (weaker than inertia since it does not have to be surjective). This is the first of our associative operads.

The commutative operad is supposed to be $N(\operatorname{Fin}_*) \to N(\operatorname{Fin}_*)$.

Definition 2.6.1. A morphism $F: \mathcal{O}_1 \to \mathcal{O}_2$ of operads is a functor $F: \mathcal{O}_1^{\otimes} \to \mathcal{O}_2^{\otimes}$ of ∞ -categories and a homotopy making the diagram,

3 Algebras and Modules

3.1 Operad Review

Perspectives on operads:

- (a) Categories with "many-to-one" structure: meaning there are higher airity maps $Mult(\{X_i\}, Y)$
- (b) For every operad \mathcal{O} get \mathcal{O} -monoidal category
- (c) For every operad \mathcal{O} get \mathcal{O} -algebra object in a symmetric monoidal category
- (d) for $\mathcal{O}' \to \mathcal{O}$ a map of operads get \mathcal{O}' -algebras in \mathcal{O} -monoidal categories.

Motivation: $(\mathbf{Ab}, \otimes_{\mathbb{Z}})$ be the symmetric monoidal category of abelian groups with tensor. A commutative ring is $A \in \mathbf{Ab}$ equipped with maps,

- (a) $e: \mathbb{Z} \to A$
- (b) $m: A \otimes A \to A$

such that some diagrams commute,

$$\begin{array}{cccc} A \otimes A \to A & \longrightarrow & A \otimes A \\ \downarrow & & \downarrow \\ A \otimes A & \longrightarrow & A \end{array}$$

etc. We can package all these together into the following construction.

Definition 3.1.1. A unital commutative ring is,

- (a) an object $A \in \mathbf{Ab}$
- (b) for each finite set I a map $m_I: A^{\otimes I} \to A$

such that,

- (a) if #I = 1 then $m_I = id$
- (b) for $\varphi: I \to J$ then m_I is the composition,

$$A^{\otimes I} = \bigotimes_{i \in J} A^{\otimes \varphi^{-1}(j)} \xrightarrow{\bigotimes_{j \in J} \mathfrak{m}_{\varphi^{-1}(j)}} A^{\otimes J} \xrightarrow{m_J} A$$

Remark. Commutativity arrises from the swapping map $\varphi: \{1,2\} \to \{1,2\}$.

Definition 3.1.2. ord(I) is the set of linear orders on I. There is a "combine orderings" map,

comb : ord
$$(J) \times \prod_{j \in J} \operatorname{ord}(\varphi^{-1}(j)) \to \operatorname{ord}(I)$$

given $\varphi: I \to J$.

Definition 3.1.3. A unital associative ring is,

- (a) an object $A \in \mathbf{Ab}$
- (b) for each finite set I and $o \in \operatorname{ord}(I)$ a map $m_{I,o} : A^{\otimes I} \to A$ such that,
 - (a) if #I = 1 then $m_I = id$
 - (b) for $\varphi: I \to J$ then $m_{I,\text{comb}(o,o_j)}$ is the composition,

$$A^{\otimes I} = \bigotimes_{i \in J} A^{\otimes \varphi^{-1}(j)} \xrightarrow{\bigotimes_{j \in J} \mathfrak{m}_{\varphi^{-1}(j)}, o_j} A^{\otimes J} \xrightarrow{m_J, o} A$$

Remark. What if we want to define a non-unital associative ring? In this case we just require our sets I to be nonempty. Or alternatively, let,

$$\operatorname{ord}'(I) = \begin{cases} \operatorname{ord}(I) & I \neq \emptyset \\ \emptyset & I = \emptyset \end{cases}$$

Replacing ord by ord' gives the definition of a non-unital associative ring.

Definition 3.1.4. For a colored operad \mathcal{O}^{\otimes} which consists of,

- (a) a set of colors \mathcal{O}
- (b) for each collection $\{X_i\}_{i\in i}$ and Y of colors there is a set,

$$\operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i\in I}, Y)$$

satisfying some associativity and unital relations.

and a symmetric monoidal category (\mathcal{C}, \otimes) an \mathcal{O} -algebra object in (\mathcal{C}, \otimes) is the data of,

(a) for each $X \in \mathcal{O}$ an object $A_X \in \mathcal{C}$

(b) for each $m: \{X_i\}_{i\in I} \to Y$ a morphism,

$$f_m: \bigotimes_{i\in I} A_{X_i} \to A_Y$$

satisfying,

- (a) if $m = id_X \in Mult_{\mathcal{O}}(\{X\}, X)$ then $f_m = id_{A_X}$
- (b) if $\varphi: I \to J$ and $m \in \operatorname{Mult}_{\mathcal{O}}(\{Y_j\}_{j \in J}, Z)$ and $m_j \in \operatorname{Mult}_{\mathcal{O}}(\{X_i\}_{i \in \varphi^{-1}(j)}, Y_j)$ then $f_{\operatorname{comp}(m, \{m_j\})}$ equals the composition,

$$\bigotimes_{i \in I} A_{X_i} \xrightarrow{\otimes_{j \in J} f_{m_j}} \bigoplus_{i \in J} A_{Y_j} \xrightarrow{f_m} A_Z$$

Remark. An \mathcal{O} -algebra object in \mathcal{C} is the same as a map of operads $\mathcal{O}^{\otimes} \to \mathcal{C}^{\otimes}$.

Remark. There is a notion of maps of operads,

$$\{\text{symmetric monoidal cat}\} \hookrightarrow \{\text{operads}\}$$

An \mathcal{O}^{\otimes} -algebra object of \mathcal{C}^{\otimes} is a map of operads $\mathcal{O}^{\otimes} \to \mathcal{C}^{\otimes}$. Maps of operads are diagrams,

$$\begin{array}{ccc}
\mathcal{O}^{\otimes} & \longrightarrow & \mathcal{O}^{\otimes'} \\
\downarrow & & \downarrow \\
N(\operatorname{Fin}_{*}) & = = & N(\operatorname{Fin}_{*})
\end{array}$$

that takes cotartesian lifts of inert maps to cocartesian lifts.

3.2 Little Cubes Operad

For $n \geq 0$ construct an ∞ -operad \mathbb{E}_n^{\otimes} . Consider $D^n \subset \mathbb{R}^n$ unit disk. There is a unique color $* \in \mathcal{O}$ and then define (writing I for $\{*\}_I$),

Mult
$$(I, *) = \{\text{embeddings } \coprod_{i \in I} D^n \to D^n \text{ arising from scaling and translation}\}$$

There is a composition map, for $\varphi: I \to J$,

$$\operatorname{Mult}\left(J,*\right)\times\prod_{j\in J}\operatorname{Mult}\left(\varphi^{-1}(j),*\right)\to\operatorname{Mult}\left(I,*\right)$$

which is continuous. Then we can take the topological nerve to get an ∞ -operad \mathbb{E}_n^{\otimes} .

Remark. \mathbb{E}_1^{\otimes} is discrete and $\mathbb{E}_1^{\otimes} \cong \mathrm{Assoc}^{\otimes}$ (defining unital associative algebra) which is the operad of finite sets with orderings.

Then \mathbb{E}_0^{\otimes} is trivial which just imposes the existence of an object $u: \mathbb{Z} \to A$ so we get pointed objects.

Definition 3.2.1. $\mathbb{E}_{\infty}^{\otimes} = [N(\operatorname{Fin}_{*}) \to N(\operatorname{Fin}_{*})]$ as an operad. Meaning $\operatorname{Mult}_{\mathbb{E}_{\infty}^{\otimes}}(I, *) = \{*\}$. This is because as we take the limit of n for the morphism sets of \mathbb{E}_{n}^{\otimes} with fixed I the spaces become weakly contractible.

There are maps of operads $\mathbb{E}_0^{\otimes} \to \mathbb{E}_1^{\otimes} \to \mathbb{E}_2^{\otimes} \to \cdots \to \mathbb{E}_{\infty}^{\otimes}$. Therefore, I can always restrict an \mathbb{E}_n^{\otimes} -algebra to a lower-order algebra.

Remark. Recall that S is the ∞ -category of spaces.

Theorem 3.2.2 (May). Inside the monoidal category (S, \times) . Then there is a functor,

$$\mathcal{S}_* \xrightarrow{\Omega^n} \mathrm{Alg}_{\mathbb{E}_n^{\otimes}}(\mathcal{S})$$

This induces an equivalence for $n \geq 1$,

$$\mathcal{S}_{*,\geq n} \xrightarrow{\sim} \mathrm{Alg}^{\mathrm{gp}}_{\mathbb{R}^{\otimes}_{n}}(\mathcal{S})$$

where $S_{*,\geq n}$ is the ∞ -category of n-connected pointed spaces and $\operatorname{Alg}_{\mathbb{E}_n^{\otimes}}^{\operatorname{sp}}(S)$ is the ∞ -category of grouplike \mathbb{E}_n^{\otimes} -algebras in spaces where we say that an algebra A is grouplike if $\pi_0(A)$ with its induced monoid structure is a group. Furthermore, there is an equivalence,

$$\operatorname{Sp}(\mathcal{S}_*)_{>0} \xrightarrow{\sim} \operatorname{Alg}_{\mathbb{R}^{\otimes}}(\mathcal{S})$$

between connective spectra and $\mathbb{E}_{\infty}^{\otimes}$ -algebras.

3.3 Limits and Colimits

Theorem 3.3.1. If \mathcal{C} has all small limits then $\mathrm{Alg}_{\mathcal{O}}(\mathcal{C})$ also has all small limits and limits are computed "objectwise".

Theorem 3.3.2. If \mathcal{C} has all small colimits and $X \otimes -$ preserves them then $\mathrm{Alg}_{\mathbb{E}_{\infty}^{\otimes}}(\mathcal{C})$ has small colimits.

3.4 Modules

If $A \in \operatorname{CAlg}(\mathcal{C})$ then there is a category $\operatorname{\mathbf{Mod}}_A\mathcal{C}$.

Remark. $\operatorname{Mod}_A \mathcal{C}$ does not have a symmetric monoidal structure but only an operad structure.

Theorem 3.4.1. If $A \in CAlg(\mathcal{C})$ then,

$$\operatorname{CAlg}(\mathbf{Mod}_A(\mathcal{C})) \cong \operatorname{CAlg}(\mathcal{C})_{A/}$$

If B is an algebra over $\mathbf{Mod}_A(\mathcal{C})$ corresponding to some $overlineB \in \mathrm{CAlg}(\mathcal{C})_{A/}$ then,

$$\mathbf{Mod}_B(\mathbf{Mod}_A(\mathcal{C})) \cong \mathbf{Mod}_{\overline{B}}(\mathcal{C})$$

Theorem 3.4.2. (a) Limits in $\mathbf{Mod}_A(\mathcal{C})$ can be computed in \mathcal{C}

(b) of \mathcal{C} is presentable and $X \otimes -$ preserves all small colimits then $\mathbf{Mod}_A(\mathcal{C})$ is symmetric monoidal, presentable, and \otimes commutes with colimits.

4 Ring Spectra

Recall a spectrum object in S_* os an ∞ -functor,

$$F: S_*^{\text{fin}} \to S_*$$

such that,

- (a) F sends homotopy pushouts to pullbacks
- (b) F(*) = *.

Remark. For each n there is a pushout square,

$$\begin{array}{ccc}
S^n & \longrightarrow * \\
\downarrow & & \downarrow \\
* & \longrightarrow S^{n+1}
\end{array}$$

which gives a pullback square,

$$F(S^n) \longrightarrow *$$

$$\downarrow \qquad \qquad \downarrow$$

$$* \longrightarrow F(S^{n+1})$$

and thus $F(S^n) = \Omega F(S^{n+1})$. Since every object of S_*^{fin} is a finite colimit of spheres therefore the data of F is equivalent up to homotopy to the sequence $\{F(S^n)\}$ along with the data of equivalence $F(S^n) \xrightarrow{\sim} \Omega F(S^{n+1})$. This is classically what is known as an Ω -spectrum.

Definition 4.0.1. A spectrum is a sequence of pointed spaces $\{X_n\}_{n\geq 0}$ along with maps $\Sigma X_n \to X_{n+1}$ (equivalently $X_n \to \Omega X_{n+1}$).

Example 4.0.2. Some spectra,

- (a) $S = \{S^n\}_{n>0}$ is not an Ω -spectrum
- (b) for $A \in \mathbf{Ab}$ we have $HA = \{K(A, n)\}_{h \geq 0}$ is an Ω -spectrum
- (c) of $\{Y_n\}_{n\geq 0}$ is any sequence of spaces then define $X_0=Y_0$ and $X_{n+1}=\Sigma X_n\vee Y_{n+1}$ and this defines a spectrum.

How do we make this into a category of specta? If X, Y are Ω -spectra then,

$$\operatorname{Hom}_{\operatorname{hSp}}(X,Y) = \left\{ f_n : X_n \to Y_n \middle| \begin{array}{c} X_n & \xrightarrow{f_n} & Y_n \\ \downarrow & & \downarrow \\ \Omega X_{n+1} & \xrightarrow{\Omega f_{n+1}} & \Omega Y_{n+1} \end{array} \right\}$$

If X, Y are not Ω -spectra then,

$$\operatorname{Hom}_{\operatorname{hSp}}(X,Y) = \varinjlim_{X' \subset X} \operatorname{Hom}(X',X)$$

where $X' \subset X$ is a weak homotopy equivalence where we define weak homotopy equivalence using the following notion of homotopy groups.

Definition 4.0.3. if X is spectrum $n \in \mathbb{Z}$ then define,

$$\pi_n(X) = \varinjlim_k \pi_{n+k}(X_k)$$

Example 4.0.4. $\pi_n(\mathcal{S}) = \pi_n^s(\mathcal{S}) = \pi_{2n+2}(S^{n+2})$ by Freudenthal suspension.

Example 4.0.5.

$$\pi_n(HA) = \begin{cases} A & n = 0\\ 0 & \end{cases}$$

Example 4.0.6. Homotopy groups may be supported in negative degrees. Indeed consider,

$$X_n = S^n \vee S^{n-1} \vee \cdots \vee S^1$$

then $\pi_k(X_n) \neq 0$ for all $k \in \mathbb{Z}$ using Hilton-Milnor theorem.

Proposition 4.0.7. The inclusion $N(\mathbf{Ab}) \to \operatorname{Sp}$ sending $A \mapsto HA$ is fully faithful.

Proof. Let's just check this hSp. Point is to compute [K(A, n), K(B, n)]. This is,

$$[K(A, n), K(B, n)] = H^n(K(A, n), B) = \text{Hom}(H_n(A, n), \mathbb{Z}, B) = \text{Hom}(\pi_n(K(A, n)), B) = \text{Hom}(A, B)$$

using Hurewicz's theorem.

Definition 4.0.8. There is a natural t-structure on Sp which is $\mathrm{Sp}^{\geq 0} = \{X \mid \pi_n(X) = 0 \mid n < 0\}$ with $\mathrm{Sp}^{\leq 0}$ defined similarly.

Proposition 4.0.9. $(\operatorname{Sp}^{\geq 0}, \operatorname{Sp}^{\leq 0})$ is a t-structure and its heart $\operatorname{Sp}^{\heartsuit} = N(\mathbf{Ab})$ meaning $X \in \operatorname{Sp}^{\heartsuit}$ satisfies $X \cong H\pi_0(X)$.

Proof. This is just because its heart is objects with trivial higher homotopy groups (setlike). \Box

4.1 Smash Product

For $X, Y \in \mathbf{Top}_*$ then $X \wedge Y = (X \times Y)/(X \vee Y)$.

Example 4.1.1. $S^0 \wedge X \cong X$ and $S^1 \wedge X \cong \Sigma X$ (by definition). Then $S^m \wedge S^n \cong S^{m+n}$ because $(\mathbb{R}^m)_{\infty} \wedge (\mathbb{R}^n)_{\infty} \cong (\mathbb{R}^{m+n})_{\infty}$.

Example 4.1.2. There is a weird sign,

$$S^{1} \wedge S^{1} \xrightarrow{\text{flip}} S^{1} \wedge S^{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$S^{2} \xrightarrow{-1} S^{2}$$

because it is orientation reversing.

Proposition 4.1.3. Some properties,

(a)
$$\operatorname{Hom}_{\mathbf{Top}_{*}}(X \wedge Y, Z) \cong \operatorname{Hom}_{\mathbf{Top}_{*}}(X, \operatorname{Hom}_{\mathbf{Top}_{*}}(Y, Z))$$

- (b) $X \wedge Y \cong Y \wedge X$
- (c) $(X \wedge Y) \wedge Z \cong X \wedge (Y \wedge Z)$.

Theorem 4.1.4 (HA, 4.8.2.19). There exists a symmetric monoidal structure \otimes : Sp \times Sp \to Sp with unit \mathcal{S} which commutes with small colimits in both variables. If \mathcal{C} is a symmetric monoidal ∞ -cat, stable and presentable and \otimes : $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$ preserves small colimits in each variable then there exists a unique up to homotopy symmetric monoidal functor $F: \operatorname{Sp}^{\otimes} \to \mathcal{C}^{\otimes}$ such that the underlying $\operatorname{Sp} \to \mathcal{C}$ preserves small colimits.

Remark. Note that $HA \otimes HB \ncong H(A \otimes B)$ this acts more like a derived tensor product.

Example 4.1.5. $S \wedge S \to S$ is an isomorphism and gives the trivial ring spectrum.

If R is an \mathbb{E}_1 -ring then,

$$\pi_* R = \bigoplus_{n \in \mathbb{Z}} \pi_* R$$

is a graded ring. Then $\pi_n R = [\mathcal{S}[n], R]$ with $\mathcal{S}[n]_k = \mathcal{S}_{n+k}$ and we have,

$$[S[n], R] \times [S[m], R] \to [S[n] \otimes S[m], R \otimes R] \to [S[n+m], R] = \pi_{n+m}(R)$$

a multiplication map.

Remark. Note that if R is an \mathbb{E}_{∞} -ring then π_*R is graded commutative from the fact that $\mathcal{S}[n]\otimes\mathcal{S}[m]$ is antisymmetric.

Notions of left (right) module. All certain algebra objects in Sp. The left-module operad \underline{LM} has two colors A, M and,

$$\operatorname{Mult}_{\operatorname{LM}}(\{X_i\}_{i\in I}, A) = \begin{cases} \operatorname{ord}(I) & X_i = A \text{ for all } i \\ \emptyset & \text{else} \end{cases}$$

and likewise,

$$\operatorname{Mult}_{\operatorname{LM}}\left(\{X_i\}_{i\in I}, M\right) = \begin{cases} \operatorname{ord}(I) & M \text{ is largest if all but exactly one are } M \\ \varnothing & \text{else} \end{cases}$$

A left module is an LM-algebra object of Sp,

$$\downarrow^{R} \longrightarrow \downarrow \\
\{R\} \longleftrightarrow \operatorname{Alg}_{\mathbb{E}_{1}}(\operatorname{Sp})$$

Proposition 4.1.6. We have,

- (a) $_R$ is stable
- (b) natural t-structure (connective and anti-connected)
- (c) if $\pi_n R = 0$ for $n \neq 0$ then $R \cong \mathcal{D}(\mathbf{Mod}_{\pi_0(R)})$ preserving t-structures.

Let R be a discrete commutative ring then $Alg^{dg}(R)$ has a model structure with,

- (a) weak equivalences are quasi-isomorphisms
- (b) fibrations are levelwise surjective

Proposition 4.1.7. $N(\operatorname{Alg}^{\operatorname{dg}}(R)^c][W^{-1}] \cong \operatorname{Alg}_{\mathbb{E}_1}(R)$ where c means the category of cofibrant objects. If $\mathbb{Q} \subset R$ then,

$$N(\operatorname{CAlg}(R)^c)[W^{-1}] \cong \operatorname{Alg}_{\mathbb{E}_{\infty}}(R)$$

with graded commutative on the left.

5 Feb. 23

Definition 5.0.1. Let R be connecteive then $P \in_R$ is *projective* if $\operatorname{Hom}(P, -) :_R^{\rightarrow} \mathcal{S}$ preserve gemoetric realization.

Remark. (a) in classical setting geometric realization is coequalizer so this recoveres the usual definition of preserving colimits

(b) _R of all not necessarily connective objects has no nonzero projective objects.

Proposition 5.0.2. The following are equivalent,

- (a) P is projective
- (b) for all $Q \in_R$ and i > 0 we have $\operatorname{Ext}^i_R(P,Q) := \pi_0(\operatorname{Hom}(P,Q[i])) = 0$
- (c) Given fiber sequence,

$$N' \to N \to N''$$

the map $\operatorname{Ext}_{R}^{0}\left(P,N\right) \to \operatorname{Ext}_{R}^{0}\left(P,N''\right)$ is surjective.

Proposition 5.0.3. TFAE:

- (a) P is projective
- (b) there exists a free module R-module M with P a retract of M meaning $P \to M \to P$ with $P \to P$ an equivalence.

Proof. First show (a) \Longrightarrow (b). There exists $R^{\oplus I} \to P$ such that $\pi_0(R^{\oplus n}) \twoheadrightarrow \pi_0(P)$ is a surjection. Consider the fiber sequence,

$$N \to R^{\oplus I} \to P$$

then N is connective by the surjection of π_0 . Consider $\operatorname{Hom}_R(P,-)$ applied to the fiber sequence, by surjection on $\operatorname{Ext}_R^0(P,-)$ we get $P\to R^{\oplus I}$ satisfying the required properties.

For (b) \implies (a) we have projectivity is preserved by retract. For,

$$P \to S \to P$$

then $\operatorname{Ext}^i_R(P,Q)$ is a retract of $\operatorname{Ext}^i_R(S,Q)$ then STP free module are projective.

Remark. What are the examples of ring spectra:

(a) K(A) for A a discrete ring

- (b) S
- (c) simplicial commutative rings.

Remark. In the followign definition we don't need any connectivity assumptions.

Definition 5.0.4. M is flat over R if,

- (a) $\pi_0(M)$ is a flat $\pi_0(N)$ -module
- (b) $\pi_m(R) \otimes_{\pi_0(R)} \pi_0(M) \xrightarrow{\sim} \pi_n(M)$ for all n.

Remark. Flatness is closed under coproduct, retract, filtered colimits. If R is connective then projective implies flat.

Proposition 5.0.5. Let N, R be connective. The following are equivalent,

- (a) N is flat
- (b) if M is a discrete right R-module then $M \otimes_R N$ is discrete.

Proof. Spectral sequence,

$$\operatorname{Tor}_{p}^{\pi_{*}R}(\pi_{*}M, \pi_{*}N)_{q} = \pi_{p+q}(M \otimes_{R} N)$$

Then (a) \implies (b) because LHS = 0 if $p \neq 0$ and thus,

$$\pi_p(M \otimes_R N) = (\pi_* M \otimes_{\pi_* R} \pi_* N)_p = \cong (\pi_* M \otimes_{\pi_0(R)} \pi_0(N))_p$$

For (b) \implies (a) we use $-\otimes_R N :_R \to \mathcal{S}$ and that $\stackrel{\heartsuit}{R} = \mathbf{Mod}_{\pi_0(R)}$. Then (b) says that we restrict to,

$$-\otimes_R N: \mathbf{Mod}_{\pi_0(R) \to}$$

which in particular is a map to . However, $-\otimes_R N$ is exact (preserves fiber sequences) and hence is exact on the heart. Then $-\otimes_R N = -\otimes_{\pi_0(R)} \pi_0(N)$ (using the spectral sequence and the fact that $M\otimes_R N$ is discrete for M discrete) and thus is exact meaning $\pi_0(N)$ is flat over $\pi_0(R)$. The rest uses the spectral sequence.

Lemma 5.0.6. A map $f: M \to N$ of flat R-modules is an equivalence iff $\pi_0(f): \pi_0(M) \to \pi_0(N)$ is an isomorphism.

Proposition 5.0.7. Let R be connective and M/R is flat then,

M is projective
$$\iff \pi_0(M)$$
 is projective over $\pi_0(R)$

Proof. We show a weaker version. If $\pi_0(M)$ is free over $\pi_0(R)$ then can find a free module $R^{\oplus n} \to M$ which is an isomorphism on π_0 . Then apply lemma to conclude.

5.1 Localization

Let R be an \mathbb{E}_{∞} -ring then $\pi_*(R)$ is graded-commutative. Consider $S \subset \pi_*(R)$ set of homog. elements closed under multiplication and containing 1. Then,

- (a) M is S-nilp if all $x \in \pi_m(M)$ are killed by some $s \in S$
- (b) M is S-local if for each $s \in S$ the map $\pi_* M \xrightarrow{s} \pi_* M$ is an isomorphism (not necessarily a graded map)

This produces two subcategories R^{S-nilp} and R^{S-Loc} . We want some adjoints which will be localizations.

(a) S-nilp is stable ∞ -category, closed under small colimits generated under colimits by R/Rs[n] for $s \in S$. If $s \in \pi_d(R)$ then this arises from,

$$R[d] \xrightarrow{s} R \to R/Rs$$

- (b) $M \in_R^{\text{S-loc}} \iff$ for all $s \in S$ and $n \in \mathbb{Z}$ then $\text{Hom } (R/R_s[n], N)$ is contactible iff $\forall M \in \text{S-nilp}$ we have $\text{Hom}_R(M, N)$ contractible.
 - (1) gives a right adjoint $G:_R \to_R^{S-\text{nilp}}$ to the inclusion. Then we take a fiber sequence,

$$G(M) \to M \to S^{-1}M$$

defining $S^{-1}M$ and,

$$\operatorname{Hom}\left(N,G(M)\right)\xrightarrow{\sim}\operatorname{Hom}\left(N,M\right)\to\operatorname{Hom}\left(N,S^{-1}M\right)$$

so the last term is contractible proving that $S^{-1}M \in \mathbf{Mod}_{\mathbb{R}^{S-loc}}$.

Remark. The functor $S^{-1}(-)$ gives a left adjoint to the inclusion.

Proposition 5.1.1. $\binom{S-\text{nilp}, S-\text{loc}}{R}$ gives a *t*-structure on R with trivial heart.

Remark. $\pi_*(S^{-1}M) = S^{-1}\pi_*(M)$.