

História da Teoria da Evolução

- □ 1859: Charles Darwin
 - Existe uma diversidade de seres devido aos contingentes da natureza (comida, clima, ...) e é pela lei da Seleção Natural que os seres mais adaptados ao seus ambientes sobrevivem
 Contra lei do uso de desuso
 - Os caracteres adquiridos são herdados pelas gerações seguintes

(DARWIN, 1859)

História da Teoria da Evolução

□ 1865: Gregor Mendel

 Formalizou a "herança de características", com a teoria do DNA (ervilhas)

☐ 1901: Hugo De Vries

- Só a seleção natural não é responsável pela produção de novas (mais adaptadas) espécies. Tem de haver uma mudança genética!
- Formalizou o processo de geração de diversidade: Teoria da Mutação

Surgimento dos Algoritmos Genéticos

- ☐ 1975: Jonh Holland: Idealizou os algoritmos genéticos
- □ Por que a evolução ?
 - Muitos problemas computacionais
 - ☐ envolvem busca através de um grande número de possíveis soluções
 - □ requerem que o programa seja adaptativo, apto a agir em um ambiente dinâmico
 - A evolução biológica
 - □ uma busca paralela em um enorme espaço de problema
 - □ soluções desejadas = organismos mais adaptados

Algoritmos Genéticos: introdução

□ Algoritmos Evolutivos

- Método para resolução de problemas (otimização)
 "inspirado" na teoria da evolução
- Algoritmos Genéticos são Algoritmos Evolutivos

□ Algoritmo Genético

- indivíduo = solução
- provoca mudança nos indivíduos por intermédio de mutação e reprodução
- seleciona indivíduos mais adaptados através de sucessivas gerações
- A aptidão de cada indivíduo é medida pela "função de aptidão" (fitness function)

Ciclo do Algoritmo Genético

Convergência das gerações

Gerando População Inicial

- Dado um problema, precisamos definir como será a representação dos individuos (soluções)
- □ Um individuo é um Cromossomo
 - Os parâmetros do problema de otimização são representados por cadeias de valores.
 - Exemplos:
 - □ Vetores de reais, (2.345, 4.3454, 5.1, 3.4)
 - ☐ Cadeias de bits, (111011011)
 - ☐ Vetores de inteiros, (1,4,2,5,2,8)
 - □ ou outra estrutura de dados (arvores, heaps, etc)

Algoritmos Genéticos

Gerando População Inicial

- □ Qual deve ser a população Inicial ?
 - Deve ser aleatoriamente escolhida
 - Precisamos garantir a variedade da população inicial:
 - □ velocidade de convergência x variedade
 - □ Variedade x solução ótima
 - □ Quanto maior a variedade, menor a velocidade de convergência e vice-versa
 - Quanto maior a variedade, maior a chance de encontrar a solução ótima, porém, menor a velocidade de convergência

Inteligência Artificial e Robótica - CC 7711

Algoritmos Genéticos

Função de Aptidão- Fitness

- ☐ Função de aptidão (avaliação / fitness):
 - □ É feita através de uma função que melhor representa o problema e tem por objetivo fornecer uma medida de aptidão de cada indivíduo na população corrente que irá dirigir o processo de busca.
 - ☐ Aptidão é uma nota associada ao indivíduo que avalia quão boa é a solução por ele representada
- □ Funções de avaliação são específicas de cada problema.
 - Cromossomo

Significado

valor

0011011

Binário p/ Inteiro

x = 27

ADBCE

 $\sum_{\text{dist}=13}^{\text{A}\to\text{D}\to\text{B}\to\text{C}\to\text{E}}$

Criando e Evoluindo Gerações

- Quais são os métodos para criar novos individuos ?
 - Reprodução sexuada (crossover)
 - Reprodução assexuada
 - Mutação
- □ Como garantir encontrar a solução ?
 - Os indivíduos devem ser selecionados (os mais aptos sobrevivem) para garantir a convergência
 - Deve-se evitar a convergência prematura
 - Deve-se estabelecer um critério de parada
- □ Convergência
 - nas últimas k gerações não houve melhora da aptidão

Reprodução/recombinação

- ☐ Função: combinar e/ou perpetuar material genético dos indivíduos mais adaptados
- ☐ Tipos:
 - assexuada (=duplicação) ou sexuada (crossover)
 - Observação: Existe uma "taxa de crossover" que controla a quantidade de reprodução que será feita

Algoritmos Genéticos

Reprodução

 Quanto mais "estruturada" a representação mais difícil de definir o cruzamento

Inteligência Artificial e Robótica - CC 7711

Algoritmos Genéticos

Mutação

- ☐ Objetivo: gerar diversidade (p/ escapar de ótimos locais)
- ☐ Tipos:
 - generativa
 - destrutiva
 - swap
 - swap de seqüência
- □ Observação: Existe uma "taxa de mutação" que diminui com o tempo (ex. % da população selecionada) para garantir convergência

Reprodução e Mutação

População 1 N indivíduos

Reprodução e Mutação

População 2 M indivíduos

- ☐ Composições possíveis para a População 2:
 - Troca de toda população
 - Isso significa que a população 2 substitui a população 1
 - A cada ciclo, N/2 pares são escolhidos gerando M=N descendentes
 - Elitismo
 - A população 2 substitui a população 1 (M= N-1)
 - Acrescenta-se o mais apto da população 1 na população 2
 - Steady State
 - Gera-se M<N indivíduos e esses M substituem os M piores do conjunto da população 1 – Existe também o Steady state sem duplicados

Algoritmos Genéticos

Seleção de indivíduos para Reprodução

- □ Como selecionar indivíduos para Reprodução ?
- Método da Roleta
 - Selecionar indivíduos aleatoriamente, proporcionando chances de reprodução aos mais aptos.
 - f (cromossomo) = medida numérica de aptidão

Chances de seleção são proporcionais à aptidão

Algoritmos Genéticos

Método da Roleta

 Encontre a soma da aptidão A_τ de todos os indivíduos da população:

$$A_T = \sum_{i=1}^{N} f(i)$$

- Gere um número aleatório $r: 0 \le r \le A_T$
- · Selecione o primeiro indivíduo da população cuja aptidão somada às aptidões dos indivíduos precedentes é >= r: $\sum_{i=1}^{k\leq N} f(i) \geq r$
- Exemplo: r = 30

•											
Cromossomo	1	2	3	4	5	6	7	8	9	10	
Aptidão	8	2	17	7	2	12	11	7	3	7	
$\sum f(i)$	8	10	27	34	36	48	59	66	69	76	

Inteligência Artificial e Robótica - CC 7711

Algoritmos Genéticos

Critérios de parada

- □ Definir um Número Máximo de gerações
- □ Parar quando o sistema encontrar a solução (quando esta é conhecida).
- ☐ Parar quando ocorrer a perda de diversidade (repetição individuos) → Convergir !!!

Convergência Prematura

□ O que é a Convergência Prematura ?

 O sistema não apresenta mais nenhuma melhora e ainda está longe da situação ideal. Não apresenta mais diversidade da população

□ O que pode causar a Convergência Prematura ?

- Vários indivíduos iguais (pouca diversidade)
- Um super-individuo que monopoliza o método da roleta
- Uma baixa taxa de mutação e/ou reprodução

□ O que podemos fazer para evitar ?

- Mexer na função de aptidão (fitness) !!!!!
- Existem técnicas que minimizam a criação de super-indivíduos e que aumentam a pressão seletiva sobre os melhores. São elas:
 - Transformação Exponencial
 - Normalização Linear (NL)

Evitando a Convergência Prematura

Transformação Exponencial:

• O novo valor da Aptidão f' de cada individuo será dado por:

$$f'(i) = \sqrt[2]{f(i) + 1}$$

· Reduz a influência do individuo mais forte

Normalização Linear:

- Ordene todos os N indivíduos em ordem decrescente de avaliação (i = 1 menos apto)
- Crie aptidões partindo de um valor mínimo e crescendo linearmente até o valor máximo para cada um dos N indivíduos

□Idéia: Quanto menor a constante de incremento maior a pressão seletiva sobre os melhores. O valor normalmente usado é (max-min/N-1).

Algoritmos Genéticos

Comparativo

Exemplo Comparativo:

Rank Aptidão Transf. Exponencial NL (incremento 20)

6	5	4	3	2	1
200	50	25	15	10	2
14	7	5	4	3	1
101	81	61	41	21	1

Inteligência Artificial e Robótica - CC 7711

Algoritmos Genéticos

Algoritmos de AG mais usual

☐ Possui as seguintes características:

- Cromossomo: Representação binária em um vetor
- · Reprodução: Crossover de 1 ponto
- Nova geração: Reprodução (seleção) com substituição da população por Elitismo
- Convergência Prematura: Normalização Linear
- Outros detalhes: usa-se Mutação

Apresenta bom desempenho em diversas aplicações (é um bom algoritmo de partida).

Algoritmos Genéticos

Um exemplo simples

O problema do Caixeiro Viajante:

Encontre um caminho entre as cidades de modo que:

- Cada cidade seja visitada apenas uma vez
- A distância total de viagem seja minimizada
- Para um problema com 30 cidades, teremos algo como 30! (fatorial) possibilidades de caminhos
- □ 30! ≈ 10³²

Inteligência Artificial e Robótica - CC 7711

Algoritmos Genéticos

Representação

Iremos considerar um modo simples de representação:

- Lista ordenada de cidades visitadas
- Cada cidade será representada por um número
- 1) São Paulo 3) SBCampo 5) Diadema 7) Guarulhos 2) Campinas 4) Sto André 6) Osasco 8) SCSul

CityList1 (3 5 7 2 1 6 4 8)

CityList2 (2 5 7 6 8 1 3 4)

Definindo o Crossover

Iremos usar um Crossover de reprodução de ponto duplo

Definindo a Mutação

Mutação envolve reordenação de lista:

Exemplo: 30 Cidades

Solução parcial (Distância = 941)

Solução parcial (Distância = 800)

Solução parcial (Distância = 652)

Solução parcial (Distância = 420)

Gráfico da evolução do AG

Balanço

Vantagens

- Simples (várias representações, 1 algoritmo) e pouco sensível a pequenas variações
- Vasto campo de aplicações
- Ainda custa caro mas pode ser paralelizado facilmente

Desvantagens

- Como o método é basicamente numérico nem sempre é fácil introduzir conhecimento do domínio
- Se não for paralelizado, pode demorar muito tempo para achar uma solução

Aplicação prática (CMU robots)

http://www-math.uni-paderborn.de/~junge/images/aibos.jpg

- ☐ Fazer o AIBO andar mais rápido
- Aprendeu com Algoritmos Genéticos
- Deixaram alguns AIBOs andando de um lado para outro por dias.
- Eles andavam por x segundos e avaliavam o quanto haviam andado por posicionamento em campo
- Ele se localizava por LANDMARKS nos extremos do campo

Ensinar um quadrúpede andar

☐ Milton Heinen – Mestrado – 2007 - UNISINOS

- ☐ Fitness: Ir mais longe, estável e mais rápido
- ☐ Ambiente e sensores Simulados.

Bibliografia de Algoritmos Genéticos

aprofundamento nos assuntos desta aula, segue a seguinte referência bibliográfica

- □ Solange Rezende (Sistemas Inteligentes)
 - Capítulo 9
- ☐ Alguns slides desta aula foram baseados no slides:
- ☐ Geber Ramalho: "Algoritmos Evolutivos", UFPE.
- ☐ Wendy Willians. Genetic Algorithms: A tutorial.
- ☐ A.E. Eiben e J.E. Smith, Introduction to Evolutionary Computing Genetic Algorithms.
- Luis R. M. Lopes. Fundamentos dos Algoritmos Genéticos.
- ☐ Jennifer Pittman. Genetic Algorithm for Variable Selection. Duke University
- ☐ Carlos Eduardo Thomaz: Aulas do mestrado em RN. FEI 2010
- ☐ Grupo ICA PUC-Rio