ПЛН30

ΕΝΟΤΗΤΑ 5: ΑΠΟΦΑΣΙΣΙΜΕΣ και ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ

Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Δημήτρης Ψούνης

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

 Η μεθοδολογία κατασκευής Μ.Τ. που αποφασίζουν γλώσσες είναι SOS για τις τελικές εξετάσεις

Επίπεδο Β

- Μη Ντετερμινιστικές Μ.Τ.
- > Κλειστότητα Πράξεων στις Αποφασίσιμες Γλώσσες

Επίπεδο Γ

> (-)

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

ΠΕΡΙΕΧΟΜΕΝΑ

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Μηγανές Turing που αποφασίζουν γλώσσες
 - 1. Ορισμός Αποφασίσιμης Γλώσσας
 - 2. Οι μηχανές που γράφουν #Υ# και #Ν#
- 2. Μεθοδολογία Κατασκευής Μ.Τ.
 - 1. Ισότητα 3 πραγμάτων
 - 2. Αναλογία 3 πραγμάτων
 - 3. Ανισότητα
 - 4. Παλινδρομικότητα
 - 5. Κανονικές Γλώσσες
- 3. Μη Ντετερμινιστικές Μ.Τ.
 - 1. Μηχανή Turing για την παράθεση ομοίων
 - 2. Μηχανή Turing που προσομοιώνει ΜΠΑ
- 4. Κλειστότητα στις Αποφασίσιμες Γλώσσες
 - 1. Κλειστότητα στην Ένωση
 - 2. Κλειστότητα στην Τομή
 - 3. Κλειστότητα στο Συμπλήρωμα
 - 4. Κλειστότητα στην Παράθεση
 - 5. Κλειστότητα στο Αστέρι Kleene

Γ.Ασκήσεις

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

- 1. Μηχανές Turing που αποφασίζουν γλώσσες
- 1. Ορισμός Αποφασισιμης Γλώσσας

Μία μηχανή Turing θα λέμε ότι **αποφασίζει** μία γλώσσα αν για κάθε συμβολοσειρά εισόδου w:

- ightharpoonup Τερματίζει με σχηματισμό (h, #Y#) αν $w \in L$
- ightharpoonup Τερματίζει με σχηματισμό (h, #N#) αν $w \notin L$

Αν για μία γλώσσα L υπάρχει μηχανή Turing που την αποφασίζει **λέγεται Turing- Αποφασίσιμη** (ή Αναδρομική ή Επιλύσιμη ή Αποφασίσιμη Γλώσσα)

 Συνεπώς το επόμενο σύνολο γλωσσών που μελετάμε είναι το σύνολο των αποφασίσιμων γλωσσών για τις οποίες υπάρχει μηχανή Turing που τις αποφασίζει.

Ο παραπάνω τυπικός ορισμός εισάγει δύο ειδικά σύμβολα στο αλφάβητο Y,N τα οποία συμβολίζουν αντίστοιχα την απάντηση NAI – $\mathbf{Y}(es)$ και OXI – $\mathbf{N}(o)$.

- Συνεπώς η δουλειά που πρέπει να κάνουμε είναι αφού καταλάβουμε αν η συμβολοσειρά εισόδου ανήκει ή όχι στην γλώσσα.
 - Να σβήνει την ταινία και να γράφει το σύμβολο Υ στην μορφή #Υ<u>#</u> αν η συμβολοσειρά εισόδου ανήκει στην γλώσσα.
 - Να σβήνει την ταινία και να γράφει το σύμβολο Ν στην μορφή #N# αν η συμβολοσειρά εισόδου δεν ανήκει στην γλώσσα.

- 1. Μηχανές Turing που αποφασίζουν γλώσσες
- 2. Οι μηγανές που γράφουν #Υ# και #Ν#

Οι ακόλουθες δύο μηχανές θα φανούν χρήσιμες όταν γράφουμε μηχανές που αποφασίζουν γλώσσες.

Η ακόλουθη μηχανή (θα την συμβολίζουμε με Μ_V) με είσοδο #w# σβήνει την είσοδο της και φέρνει την ταινία στην μορφή #Υ#

Η ακόλουθη μηχανή (θα την συμβολίζουμε με M_N) με είσοδο #w<u>#</u> σβήνει την είσοδο της και φέρνει την ταινία στην μορφή #Ν#

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

- 2. Μεθοδολογία Κατασκευής Μ.Τ.
- 1. Ισότητα 3 πραγμάτων

Άσκηση: Δίδεται η γλώσσα: $L=\{lpha^nb^nc^n|n\geq 0\}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing M, με αλφάβητο Σ={a,b,c,#,\$,Y,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η M με είσοδο $x \in \{a, b, c\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

2. Μεθοδολογία Κατασκευής Μ.Τ.

1. Ισότητα 3 πραγμάτων

Παράδειγμα: Δίδεται η γλώσσα: $L = \{0^n 1^n | n \ge 0\}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing Μ, με αλφάβητο Σ ={0,1,#,\$,Y,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η Μ με είσοδο $x \in \{0,1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

ΑΥΣΗ: 'Ατυπη Περιγραφή της λειτουργίας της Μ.Τ.: Η μηχανή μετακινεί την κεφαλή στην αρχή της ταινίας και έπειτα σαρώνει επαναληπτικά την είσοδο από αριστερά προς τα δεξιά αντικαθιστώντας μία εμφάνιση 0 με \$ και μία εμφάνιση 1 με \$. Όταν όλη η είσοδος γίνει \$, η μηχανή τερματίζει απαντώντας ΥΕS. Σε κάθε άλλη περίπτωση απαντάει ΝΟ.

Το διάγραμμα ροής της μηχανής είναι το ακόλουθο:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

2. Μεθοδολογία Κατασκευής Μ.Τ.

2. Αναλογία 3 πραγμάτων

Παράδειγμα: Δίδεται η γλώσσα: $L = \{0^{2n}1^{3n}|n \ge 0\}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing Μ, με αλφάβητο Σ={0,1,#,\$,Y,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η Μ με είσοδο $x \in \{0,1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

ΑΥΣΗ: 'Ατυπη Περιγραφή της λειτουργίας της Μ.Τ.: Η μηχανή μετακινεί την κεφαλή στην αρχή της ταινίας και έπειτα σαρώνει επαναληπτικά την είσοδο από αριστερά προς τα δεξιά αντικαθιστώντας δύο εμφανίσεις 0 με \$ και τρεις εμφανίσεις 1 με \$. Όταν όλη η είσοδος γίνει \$, η μηχανή τερματίζει απαντώντας YES. Σε κάθε άλλη περίπτωση απαντάει ΝΟ.

Το διάγραμμα ροής της μηχανής είναι το ακόλουθο:

2. Μεθοδολογία Κατασκευής Μ.Τ.

2. Αναλονία 3 πρανμάτων

Άσκηση: Δίδεται η γλώσσα: $L = \{\alpha^n b^{2n} c^{3n} | n \ge 0\}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing Μ, με αλφάβητο Σ={a,b,c,#,\$,Y,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η Μ με είσοδο $x \in \{a, b, c\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

2. Μεθοδολογία Κατασκευής Μ.Τ.

3. Παλινδρομικότητα

Άσκηση: Δίδεται η γλώσσα: $L = \{wcw^R | w \in \{a, b\}^*\}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing Μ, με αλφάβητο Σ ={a,b,c,#,\$,Y,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η Μ με είσοδο $x \in \{a, b, c\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

2. Μεθοδολογία Κατασκευής Μ.Τ.

3. Παλινδρομικότητα

Παράδειγμα: Δίδεται η γλώσσα: $L = \{ww^R | w \in \{0,1\}^*\}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing M, με αλφάβητο Σ={0,1,#,\$,Y,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η M με είσοδο $x \in \{0,1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

ΑΥΣΗ: 'Ατυπη Περιγραφή της λειτουργίας της Μ.Τ.: Κάνουμε ταίριασμα του αριστερότερου με το δεξιότερο σύμβολο, μετατρέποντας τα σε \$ εφόσον αυτά είναι ίδια. Αν δεν είναι ίδια τερματίζουμε απαντώντας ΝΟ. Όταν όλη η είσοδος γίνει \$, τερματίζουμε απαντώντας YES. Το διάγραμμα ροής της μηχανής είναι το ακόλουθο:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

2. Μεθοδολογία Κατασκευής Μ.Τ.

4. Κανονικές Γλώσσες

Παράδειγμα: Δίδεται η γλώσσα: $L = \{ w \in \{0,1\}^* | w \pi \epsilon \rho \iota \epsilon \gamma \epsilon \iota \tau o 00 \}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing M, με αλφάβητο Σ={0,1,#,Υ,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η M με είσοδο $x \in \{0,1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

ΛΥΣΗ: Η γλώσσα είναι κανονική και αποφασίζεται από το ακόλουθο ΝΠΑ:

Μεθοδολογία: Προσομοιώνουμε την λειτουργία του ΝΠΑ με μία μηχανή Turing με τους ακόλουθους κανόνες:

- Μετακινούμε την κεφαλή στην αρχή της ταινίας (αν απαιτείται)
- Κάθε κατάσταση νίνεται R
- Βάζουμε μετάβαση με # στην Μ_ν από κάθε τελική κατάσταση.
- Βάζουμε μετάβαση με # στην Μ_N από κάθε μη τελική κατάσταση.

2. Μεθοδολογία Κατασκευής Μ.Τ.

4. Κανονικές Γλώσσες

ΛΥΣΗ (συνέχεια): Η λειτουργία του ΝΠΑ προσομοιώνεται από την ακόλουθη μηχανή Turing:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

www.psounis.gr

Β. Θεωρία

2. Μεθοδολογία Κατασκευής Μ.Τ.

4. Κανονικές Γλώσσες

<u>Άσκηση:</u> Δίδεται η γλώσσα: $L = \{ w \in \{0,1\}^* | w \delta \varepsilon v \tau \varepsilon \lambda \varepsilon \iota \dot w \varepsilon \iota \mu \varepsilon 01 \}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing M, με αλφάβητο $\Sigma = \{0,1,\#,Y,N\}$ που να αποφασίζει την γλώσσα. Θεωρήστε ότι η M με είσοδο $x \in \{0,1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό $\#x \underline{\#}$. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της M.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

3. Μη Ντετερμινιστικές Μηχανές Turing

1. Μη Ντετερμινιστικές Μηχανές Turing

Οι ιδέες του μη ντετερμινισμού μπορούν να επεκταθούν και στις μηχανές Turing. Έτσι μπορούμε να ορίσουμε **μη ντετερμινιστικές μηχανές Turing** οι οποίες:

- Μπορούν να καθορίζονται πολλές μεταβάσεις με το ίδιο σύμβολο
- Ορίζονται ε-κινήσεις (κινήσεις χωρίς διάβασμα συμβόλου)

Μία μη ντετερμινιστική μηχανή Turing:

- Απαντά ΝΑΙ, αν υπάρχει έστω ένα μονοπάτι υπολογισμού που να οδηγεί σε αποδοχή.
- Απαντά ΌΧΙ, αν δεν υπάρχει μονοπάτι υπολογισμού που να οδηγεί σε αποδοχή.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

www.psounis.gr

Β. Θεωρία

3. Μη Ντετερμινιστικές Μηχανές Turing

1. Παραδείγματα

Παράδειγμα: Δίδεται η γλώσσα: $L = \{ww | w \in \{0,1\}^*\}$. Να κατασκευάσετε μη ντετερμινιστική μηχανή Turing M, με αλφάβητο $\Sigma = \{0,1,\#,\$,Y,N\}$ που να αποφασίζει την γλώσσα. Θεωρήστε ότι η M με είσοδο $x \in \{0,1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό $\underline{\#}x\#$. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της M.

<u>ΛΥΣΗ:</u> 'Ατυπη Περιγραφή της λειτουργίας της Μ.Τ.: Η Μηχανή Turing μη διαβάζει το πρώτο σύμβολο της συμβολοσεριάς εισόδου και μη ντετερμινιστικά επιλέγει το σημείο που αρχίζει η παράθεση της όμοιας συμβολοσειράς. Έπειτα γίνεται ταύτιση των επομένων συμβόλων των δύο όμοιων συμβολοσειρών

3. Μη Ντετερμινιστικές Μηχανές Turing

1. Παραδείνματα

Άσκηση: Δίδεται η γλώσσα: $L = \{uv | u \delta \varepsilon v τελειώνει με 0, v δεν αρχιζει με 1\}$. Να κατασκευάσετε ντετερμινιστική μηχανή Turing M, με αλφάβητο Σ={0,1,#,Υ,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η M με είσοδο $x \in \{0.1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάνραμμα ροής της Μ.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

3. Μη Ντετερμινιστικές Μ.Τ.

2. Μηχανή Turing που προσομοιώνει ΜΠΑ

ΛΥΣΗ (συνέχεια): Η λειτουργία του ΜΠΑ προσομοιώνεται από την ακόλουθη μηχανή Turing:

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

3. Μη Ντετερμινιστικές Μηχανές Turing

2. Μηχανή Turing που προσομοιώνει ΜΠΑ

Παράδειγμα: Δίδεται η γλώσσα: $L = (0+1)^*01(0+1)^*$ Να κατασκευάσετε μη ντετερμινιστική μηχανή Turing M, με αλφάβητο Σ={0,1,#,Y,N} που να αποφασίζει την γλώσσα. Θεωρήστε ότι η M με είσοδο $x \in \{0.1\}^*$ ξεκινά τη λειτουργία της από το σχηματισμό #x#. Δώστε άτυπη περιγραφή της λειτουγίας της μηχανής και το διάγραμμα ροής της Μ.

ΛΥΣΗ: Η γλώσσα είναι κανονική και αποφασίζεται από το ακόλουθο ΜΠΑ:

Μεθοδολογία: Προσομοιώνουμε την λειτουργία του ΝΠΑ με μία μηχανή Turing με τους ακόλουθους

- Μετακινούμε την κεφαλή στην αρχή της ταινίας (αν απαιτείται)
- Κάθε κατάσταση γίνεται R
- Βάζουμε μετάβαση με # στην Μ_ν από κάθε τελική κατάσταση.
- Βάζουμε μετάβαση με # στην Μ_N από κάθε μη τελική κατάσταση.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

4. Κλειστότητα των Αποφασίσιμων Γλωσσών

Έστω δύο αποφασίσιμες γλώσσες

- Η ένωση τους είναι αποφασίσιμη γλώσσα
- Η παράθεση τους είναι αποφασίσιμη γλώσσα
- Η τομή τους είναι αποφασίσιμη γλώσσα
- Το αστέρι Kleene μίας γλώσσας θα είναι αποφασίσιμη γλώσσα
- Το συμπλήρωμα μία γλώσσας θα είναι αποφασίσιμη γλώσσα

Άρα έχουμε κλειστότητα σε όλες τις πράξεις στις αποφασίσιμες γλώσσες.

Όλες οι κλειστότητες θα αποδειχθούν μέσω μηχανών Turing.

4. Κλειστότητα των Αποφασίσιμων Γλωσσών

1. Κλειστότητα στην Ένωση

Θεώρημα (Κλειστότητα των Αποφασίσιμων Γλωσσών στην Ένωση)

Αν η L_1 είναι Αποφασίσιμη Γλώσσα και η L_2 είναι Αποφασίσιμη Γλώσσα τότε και η L_1 U L_2 είναι Αποφασίσιμη Γλώσσα

Απόδειξη

 $H L_1$ είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M_1 $H L_2$ είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M_2

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Τρέχει την Μ, με είσοδο w. Αν η Μ, απαντήσει ΝΑΙ, τότε η Μ' απαντά ΝΑΙ και τερματίζει. Αν η Μ, απαντήσει ΌΧΙ προχωράει στο βήμα 2:
- 2. Τρέχει την Μ₂ με είσοδο w. Αν η η Μ₂ απαντήσει ΝΑΙ, τότε η Μ' απαντά ΝΑΙ και τερματίζει. Αν η Μο απαντήσει ΌΧΙ τότε απαντά ΌΧΙ και τερματίζει.

Β. Θεωρία

4. Κλειστότητα των Αποφασίσιμων Γλωσσών

2. Κλειστότητα στην Τομή

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Θεώρημα (Κλειστότητα των Αποφασίσιμων Γλωσσών στην Τομή)

Αν η L_1 είναι Αποφασίσιμη Γλώσσα και η L_2 είναι Αποφασίσιμη Γλώσσα τότε και η $L_1 \cap L_2$ είναι Αποφασίσιμη Γλώσσα

Απόδειξη

 $H L_1$ είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M_1 $H L_2$ είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M_2

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Τρέχει την Μ₁ με είσοδο w. Αν η Μ₁ απαντήσει ΟΧΙ, τότε η Μ' απαντά ΟΧΙ και τερματίζει. Αν η Μ₁ απαντήσει ΝΑΙ προχωρά στο βήμα 2:
- 2. Τρέχει την M_2 με είσοδο w. Αν η η M2 απαντήσει ΟΧΙ, τότε η M' απαντά ΟΧΙ και τερματίζει. Αν η Μο απαντήσει ΝΑΙ τότε η Μ' απαντά ΝΑΙ και τερματίζει.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

- 4. Κλειστότητα των Αποφασίσιμων Γλωσσών
- 3. Κλειστότητα στο Συμπλήρωμα

Θεώρημα (Κλειστότητα των Αποφασίσιμων Γλωσσών στο Συμπλήρωμα)

Αν η L είναι Αποφασίσιμη Γλώσσα η \bar{L} είναι Αποφασίσιμη Γλώσσα

Απόδειξη

Η L είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω Μ

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Τρέχει την Μ με είσοδο w.
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντά NAI και τερματίζει.
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντάει ΌΧΙ και τερματίζει.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Β. Θεωρία

- 4. Κλειστότητα των Αποφασίσιμων Γλωσσών
- 4. Κλειστότητα στην Παράθεση

Θεώρημα (Κλειστότητα των Αποφασίσιμων Γλωσσών στην Παράθεση)

Αν η L_1 είναι Αποφασίσιμη Γλώσσα και η L_2 είναι Αποφασίσιμη Γλώσσα τότε και η L_1L_2 είναι Αποφασίσιμη Γλώσσα

 $H L_1$ είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M_1 Η L_2 είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω M_2

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w1 και w2 (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w₄w₂.)
- 2. Για κάθε δυνατό διαχωρισμό:
 - 1. Τρέχει την Μ₁ με είσοδο w₁ και την Μ₂ με είσοδο w₂. Αν και οι δύο μηχανές απαντήσουν ΝΑΙ, τότε η Μ' τερματίζει απαντώντας ΝΑΙ

Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ' τερματίζει απαντώντας ΌΧΙ.

4. Κλειστότητα των Αποφασίσιμων Γλωσσών

5. Κλειστότητα στο Αστέρι Kleene

Θεώρημα (Κλειστότητα των Αποφασίσιμων Γλωσσών στο Αστέρι Kleene)

Αν η L είναι Αποφασίσιμη Γλώσσα η L* είναι Αποφασίσιμη Γλώσσα

Απόδειξη

Η L είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω Μ

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

- 1. Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1..|w| συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως $w_1w_2...w_k$ με k=1,2,...|w|)
- 2. Για κάθε δυνατό διαχωρισμό:
 - 1. Τρέχει την Μ διαδοχικά με εισόδους w_1, w_2, \ldots, w_k . Αν η Μ απαντήσει NAI για όλες τις συμβολοσειρές τότε η Μ' τερματίζει απαντώντας ΝΑΙ.

Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ' τερματίζει απαντώντας ΌΧΙ.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Γ. Ασκήσεις Εφαρμονή 1

(2009Α) Εστω αλφάβητο Σ = {0,1} και η γλώσσα:

 $L = \{w \in \Sigma^* : \text{το } w \text{ περιέχει τουλάχιστον δύο 0 (συνεχόμενα ή όχι)}\}.$

Να κατασκευάσετε μηχανή Turing T με αλφάβητο $\Sigma_0 = \{0, 1, \#, Y, N\}$ που θα αποφασίζει την γλώσσα L. Η μηχανή θα ξεκινά με σχηματισμό: #w# για κάποιο $w \in \Sigma^*$.

Δώστε άτυπη περιγραφή της παραπάνω μηχανής Turina (τον αλνόριθμο διαχείρισης της ταινίας) και στη συνέχεια τυπική περιγραφή μέσω γραφήματος ροής.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

<u>Γ. Ασκήσεις</u> Εφαρμονή 2

(2009Β) Έστω αλφάβητο Σ = {0,1} και η γλώσσα:

L = {w $\in \Sigma^*$: το w περιέχει τουλάχιστον δύο συνεχόμενα 0 (δηλαδή: 00)}.

Να κατασκευάσετε μηχανή Turing T με αλφάβητο Σ_0 = {0, 1, #, Y, N} που θα αποφασίζει την γλώσσα L. Η μηχανή θα ξεκινά με σχηματισμό: #w# για κάποιο $w \in \Sigma^*$.

Δώστε άτυπη περιγραφή της παραπάνω μηχανής Turing (τον αλγόριθμο διαχείρισης της ταινίας) και στη συνέχεια τυπική περιγραφή μέσω γραφήματος ροής.

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Γ. Ασκήσεις Εφαρμογή 3

(2010A) Εξηγήστε γιατί το πρόβλημα του κατά πόσον μια συμβολοσειρά στο αλφάβητο {0,1} περιέχει τον ίδιο αριθμό 0 και 1 είναι επιλύσιμο (αποφασίσιμο).

Γ. Ασκήσεις Εφαρμογή 4

(2011A) Να κατασκευάσετε ντετερμινιστική μηχανή Turing Μ, με αλφάβητο Σ = {0, 1, #, Y, N}, που να αποφασίζει την γλώσσα L = $\{x \in \{0,1\}^* \mid \eta x είναι παλίνδρομο \}$. Παλίνδρομα είναι οι συμβολοσειρές που διαβάζονται το ίδιο και από δεξιά και από αριστερά.

Θεωρήστε ότι η M με είσοδο $x \in \{0,1\}^*$ ξεκινά την λειτουργία της από τον σχηματισμό #x#. Οι χαρακτήρες Υ (YES) και Ν (NO) χρησιμοποιούνται αποκλειστικά για την σηματοδότηση της αποδοχής ή της απόρριψη της εισόδου, αντίστοιχα.

(1) Δώστε μια άτυπη περιγραφή της λειτουργίας της Μ (έναν αλγόριθμο διαχείρισης της ταινίας της).

Δημήτρης Ψούνης, ΠΛΗ30, Μάθημα 5.2: Αποφασίσιμες Γλώσσες

Γ. Ασκήσεις Εφαρμογή 4

(2) Δώστε το γράφημα ροής της Μ (σχηματική αναπαράσταση με χρήση γνωστών μηχανών).

(3) Δώστε τον υπολογισμό της Μ για τους παρακάτω αρχικούς μετασχηματισμούς:

- (i) #01010#
- (ii) #1001#
- (iii) #1101#
- και (iv) ##