SAARBRÜCKEN

6TH SUMMER SCHOOL ON COMPUTATIONAL INTERACTION

INFERENCE, OPTIMIZATION AND MODELING FOR THE ENGINEERING OF INTERACTIVE SYSTEMS | 13 - 18 JUNE 2022

Deep Learning for Human–Computer Interaction Session 3: Unsupervised learning

Luis Leiva & Bereket Yilma
University of Luxembourg

Learning outcomes

After this lecture you will be able to:

- Identify unsupervised problems
- Understand the autoencoder architecture

What is unsupervised learning?

Learn from data (e.g. structure, associations) without human supervision

Labeled data is a luxury!

https://cloud.google.com/products/ai/ml-comic-1/

Definitions

Unsupervised learning No labeled data at all

Semi-supervised learning Small amount of labeled data involved

Self-supervised learning Labels are inferred from data

https://medium.com/intuitionmachine/744a6819ce08 https://www.facebook.com/722677142/posts/10155934004262143/

Some applications

Clustering

Dimensionality Reduction

Information Visualization

Learning Associative Rules

Anomaly Detection

Information Retrieval

Word Embeddings:

- CBOW
- Skip-gram

Image Enhancement:

- Noise removal
- Super-resolution
- Colorization

The autoencoder architecture

Latent variables

Are *implicit* data features

Cannot be observed or measured

Are inferred from observable variables

Examples:

- Intelligence
- Motivation
- Depression

Overcomplete autoencoders

Overcomplete **sparse** autoencoders

Sparse autoencoders

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \left[\mathbf{x} - g(f(\mathbf{x}))\right]^2 + \Omega(\mathbf{z})$$

Undercomplete sparse autoencoders

Deep autoencoders

Application: Dimensionality reduction

Linear vs nonlinear dimensionality reduction

https://www.jeremyjordan.me/autoencoders/

Application: Noise removal

https://iq.opengenus.org/autoencoder/

Application: Image inpainting

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

Application: Image colorization

https://medium.com/@mahmoudeljiddawi/a213b47f7339

Application: Image super-resolution

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

Application: Anomaly detection

https://towardsdatascience.com/ce209a224cfb

Application: Information retrieval

https://towardsdatascience.com/315f374029ea

Application: Recommender systems

recommendations

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.

https://nipunbatra.github.io/blog/ml/2017/12/18/recommend-keras.html