- 1.1. (i) f er definert på $\mathbb{R} \setminus \{2\}$, og setter vig(x) = x + 2 utvider denne funksjonen f til hele \mathbb{R} .
- (ii) f er definert på $\mathbb{R} \setminus \{0\}$, men kan ikke utvides til hele \mathbb{R} da vi ikke kan velge noen verdi i 0. Dette da $\lim_{x\to 0^+} f(x) = 1$ mens $\lim_{x\to 0^-} f(x) = -1$.
 - (iii) f er definert på \mathbb{Q} , og har en utvidelse gitt ved $g(x) \equiv 1$.
- (iv) f er definert på $\mathbb{R} \setminus \{0\}$, og kan ikke utvides til en kontinuerlig funksjon på \mathbb{R} , da $\lim_{x\to 0^+} f(x)$ og $\lim_{x\to 0^-} f(x)$ ikke finnes.
- (v) f er definert på $\mathbb{R} \setminus \{-a\}$, men kan ikke utvides til hele \mathbb{R} da $\lim_{x \to -a^+} f(x)$ og $\lim_{x \to -a^-} f(x)$ ikke finnes.
- 1.2. (i) Hvis $\epsilon > 0$ er gitt, velg $\delta \le \epsilon$. Hvis $|x 0| < \delta$ er da

$$|f(x) - f(0)| = |f(x)| \le |x| < \delta \le \epsilon,$$

og f er kontinuerlig i 0.

(ii) Definer for eksempel

$$f(x) = \begin{cases} x & \text{for } x \in \mathbb{Q}, \\ -x & \text{for } x \notin \mathbb{Q}. \end{cases}$$

1.3. La for eksempel

$$f(x) = \begin{cases} 1 & \text{for } x \in \mathbb{Q}, \\ -1 & \text{for } x \notin \mathbb{Q}. \end{cases}$$

1.4. La $a \in \mathbb{R}$ og $\epsilon > 0$ være gitt. De kan vi (siden f er kontinuerlig i 0) finne $\delta > 0$ slik at $|f(y) - f(0)| < \epsilon$ for alle y som oppfyller $|y - 0| < \delta$.

Hvis nå $x \in \mathbb{R}$ er slik at $|x - a| < \delta$ har vi at

$$|f(x) - f(a)| = |f(x - a) + f(a) - f(a)| = |f(x - a) - f(0)| < \epsilon$$

der den siste ulikheten følger når vi setter y=x-a over. Altså er f kontinuerlig i a.

- 1.5. (i) Vi må se på tre tilfeller, ettersom a og b ligger (a) på samme side av 0; (b) på hver sin side av 0, eller (c) a = 0 eller b = 0.
- For (a) vet vi at f er kontinuerlig på [a,b], og den vanlige skjæringssetningen viser resultatet.
- For (b) kan vi finne et heltall k slik at $\frac{2}{(4k+1)\pi} < b$. Sett $a_1 = \frac{2}{(4k+3)\pi}$ og $b_1 = \frac{2}{(4k+1)\pi}$. Da er $a < a_1 < b_1 < b$, funksjonen f er kontinuerlig på $[a_1,b_1]$ og $f(a_1) < d < f(b_1)$, så det finnes en slik c ved skjæringssetningen.
- For (c) kan vi bruke metoden over hvis a=0. Hvis b=0 kan vi gjøre det samme bare på den andre siden av null.
- (ii) La $x \in \mathbb{R}$ og $\epsilon > 0$ være gitt. La a = x 1 og b = x + 1. Anta at $f(a) \leq f(b)$. Hvis $|f(a) f(x)| > \epsilon$, la $c \in (a, x)$ være punktet slik at $f(c) = f(x) \epsilon$. Vi påstår at $|f(y) f(x)| < \epsilon$ for $y \in (c, x)$.

Anta at dette ikke er tilfelle. Da finnes $y \in (c, x)$ slik at f(y) > f(c), og ved egenskapen finnes $c' \in (y, x)$ slik at f(c') = f(c). Men siden c var entydig må vi ha c = c', som er en motsigelse.

Altså er $|f(y) - f(x)| < \epsilon$ for $y \in (c, x)$. La $\delta_1 = |c - x|$. Hvis vi gjør det samme på siden som tilhører b, og finner en d slik at $|f(x) - f(y)| < \epsilon$ for $y \in (x, d)$, og tilhørende $\delta_2 = |d - x|$, kan vi sette $\delta = \min(\delta_1, \delta_2)$. Da er f kontinuerlig.

Vi har glemt å si hva som skjer hvis $|f(a) - f(x)| < \epsilon$, men da kan vi bare velge $\delta_1 = 1$, siden ingen punkter $y \in (a,x)$ kan ha $|f(y) - f(x)| > \epsilon$.

(iii) Dette argumentet er det samme som over, bortsett fra at vi velger c til å være det punktet i (a,x) som tilfredsstiller $f(c)=f(x)+\epsilon$ som ligger nærmest x. Da vil eksistensen av en c' motsi valget av c som nærmeste punkt, og resten av argumentet fungerer helt fint.