Топологии источников

бесперебойного питания переменного тока (ИБП)

А.А. Портнов (генеральный директор).

В. П. Климов.

к. т. и. (научный руководитель),

В.В. Зуенко

(веду щий протраммист) группы компаний "Штиль"

Источники бесперебойного питания (ИБП) предназначены для защиты электрооборудования пользователя от любых неполадок в сети, включая искажение или пропадание напряжения сети, а также подавления высоковольтным импульсов и высокочастотным помех, поступающих из сети. ИБП переменного тока нашли широкое применение для бесперебойного и резервного питания различного оборудования: компьютеров, серверов, рабочих станций, офисного оборудования, систем охраны, аварийного освещения, типографского оборудования и т.п.

соответствии с международным стандартом IEC 62040-3, современные ИБП разделяются на три основных типа:

- о ИБП резервного типа Passive Standby UPS (ранее назывался Off-Line UPS)
- о ИБП линейно-интерактивного типа -Line-Interactive UPS
- о ИБП с двойным преобразованием энергии Double-Conversion UPS (ранее назывался On-Line UPS).

ИБП резервного типа

Общая структура ИБП резервного типа, представленная на **рисунке 1**, содержит входной фильтр (ВФ), зарядное устройство (ЗУ), инвертор (ИНВ), аккумуляторную батарею (АБ), блок коммутации (БК), регулирующий стабилизатор (СТ).

В наиболее простых и дешевых моделях ИБП резервного типа стабилизатор отсутствует. Инвертор подключен параллельно сетевому источнику и действует как источник резервного питания.

При наличии сетевого напряжения соответствующего

Рис. 1 Общая структура ИБП резервного типа

Рис. 2 Подключение нагрузки к сети через автотрансформатор с переключаемыми отводами обмотки

качества, нагрузка подключается коммутатором к сети через высокочастотный входной фильтр ВФ и стабилизатор СТ. В качестве последнего могут быть использованы феррорезонансный трансформатор или автотрансформатор с переключаемыми отводами обмотки (см. рис. 2), выполняющий функции дискретного регулятора (корректора) напряжения. Данная функция обеспечивает

данная функция ооеспечивает расширение диапазона входного напряжения, при котором не происходит переключение в аккумуляторный режим.

При отклонении входного напряжения более допустимого или пропадании сети происходит переключение нагрузки на инвертор, выходное напряжение которого имеет прямоугольную форму с регулируемы-

ми паузами между положительными и отрицательными импульсами (см. **рис. 3**). Это обеспечивает стабилизацию действующего значения основной гармоники выходного напряжения (50 Гц) при изменении напряжения аккумуляторной батареи. Таким образом, ИБП резервного типа представляют собой комбинацию стабилизатора и инвертора, коммутируемых с помощью автомата ввода резерва (ABP).

Достоинства ИБП резервного типа:

- о простота и дешевизна;
- о высокий КПД в сетевом режиме.

Недостатки:

- о конечное время переключения нагрузки с сети на инвертор и наоборот;
- о несинусоидальное выходное напряжение в автономном режиме;
 - о ИБП не защищает нагрузку от

Рис. 3 Форма выходного напряжения инвертора ИБП резервного типа

недопустимых отклонений частоты и формы напряжения сети:

- о возможно возникновение нежелательных переходных процессов выходного напряжения при переключениях с сети на инвертор и наоборот;
- о нелинейная нагрузка с высоким крест-фактором, вызывающая искажения входного тока от синусоидальной формы и снижающая входной коэффициент мощности.

Наиболее распространенный диапазон мощностей ИБП резервного типа: 250-1500 BA.

В таблице 1 приведены основные технические характеристики некоторых наиболее известных ИБП резервного типа.

ИБП линейно-интерактивного типа

На рисунке 4 приведена структура линейно-интерактивного ИБП. Здесь, в отличие от резервных ИБП, присутствует двунаправленный преобразователь напряжения (ДПН), выполняющий как функцию инвертора, так и функцию зарядного устройства. При наличии сети ДПН работает как выпрямитель и осуществляет заряд АБ. Благодаря двунаправленному действию и синусоидальной форме напряжения, формируемого в режиме инвертора, ДПН взаимо-

действует с сетевым источником, т.е. имеет интерактивное включение.

Как и для резервных ИБП, в данном случае в качестве стабилизирующего узла для расширения диапазона входного напряжения без перехода на автономный режим обычно используется дискретный корректор напряжения. В сетевом режиме ИБП возможна дополнительная стабилизация выходного напряжения путем

Рис. 4 Структура линейно-интерактивного ИБП

ТАБЛИЦА 1. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕЗЕРВНЫХ ИБП

Модель	лик	Black-UPS AVR	SmartLine/ Smart-Vision	Back Pro / BNT
Производитель	Тэнси-Техно	APC	NeuHaus/ N-Power	Powerman/ Powercom
Мощность, кВА	0,5; 0,75; 1,0; 1,5	0,5	0,3; 0,45; 0,7; 1,0; 1,	0,4; 0,5; 0,6; 0,8; 1,0; 1,4
Диапазон входного напряжения, В	220 -27%,+23%	220 ±27%	220 -23%, +30%	220 ±25%
Точность выходного напряжения, В	220 ±7%	220- 10%,+6%	220-14,5%,+10%	220±10%

добавки или вычитания выходного напряжения ДПН. Такой принцип стабилизации получил название "Дельта-преобразование" и используется многими производителями БП.

Достоинства ИБП линейно-интерактивного типа (в отличие от резервных ИБП):

- о синусоидальная форма выходного напряжения в автономном режиме;
 - о совмещение функций ЗУ и ИНВ в одном узле.

Остальные недостатки, присущие резервным ИБП, распространяются и на ИБП линейно-интерактивного типа. На наш взгляд, блок коммутации является наиболее ответственным местом данных ИБП, поскольку именно от его

Спонсор проекта

работы зависит обеспечение надежности всего ИБП. Это связано с тем, что при переходе ИБП в автономный режим этот блок должен обеспечивать четкое рассоединение инвертора и сетевого источника, обладающего малым внутренним сопротивлением. В противном случае инвертор оказывается замкнутым накоротко и выходит из строя.

Наиболее распространенный диапазон мощностей ИБП линейно-интерактивно-

го типа: 500-3000 ВА. В таблице 2 приведены основные технические характеристики некоторых моделей ИБП линейно-интерактивного типа.

ИБП с двойным преобразованием энергии

Топология ИБП с двойным преобразованием энергии в общем виде приведена на рисунке 5. По этой топологии, инвертор включен после-

Рис. 5 Топология ИБП с двойным преобразованием энергии

ТАБЛИЦА 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЛИНЕЙНО-ИНТЕРАКТИВНЫХ

Модель	Smart-UPS	PSI	PW5125	Real Smart/ PC KIN
Производитель	APC	Liebert	Invensys	Powerman/ Powercom
Мощность, кВА	0,42; 0,62; 0,7; 1,0; 1,4; 2,2	0,7; 1,0; 1,4; 2,2	1,0; 1,5; 2,2	0,7; 1,0; 1,5; 2,2
Диапазон входного напряжения, В	220 -28%,+23%	220 -25%, +24%	220 -30%, +20%	220 -30%, +25%
Точность выходного напряжения, В	220 ±10%	220-15%, +12%	220-10%,+6%	220±10%

TNHKO

компания

довательно в цепи "сетевой источник - нагрузка". При наличии сетевого напряжения в допустимых пределах (величина, частота, искажение синусоидальной формы), питание нагрузки происходит по цепи выпрямитель инвертор, где происходит преобразова-

ние напряжения переменного тока в постоянный и наоборот, т.е. двойное преобразование энергии. В режиме перегрузки или выхода из строя какого-либо узла двойного преобразования нагрузка переключается напрямую к сети через блок коммутации цепи автоматического шунтирования (ВУРА55). При пропадании сети или ее недопустимых отклонениях ИБП мгновенно переходит в автономный режим питания нагрузки энергией аккумуляторной батареи. В сетевом режиме выпрямитель выполняет также функцию зарядного устройства батареи. Выпрямитель может выполняться управляемым (на тиристорах или 1СВТ транзисторах) или неуправляемым (на диодах). Инверторы ИБП с двойным преобразованием энергии выполняются на 1СВТ транзисторах, коммутируемых с частотой 10-50 кГц, и формирующих с помощью выходного фильтра синусоидальное напряжение 50 Гц.

ИБП с двойным преобразованием энергии обладает наиболее совершенной технологией по обеспечению качественной электроэнергией без перерывов в питании нагрузки при переходе с сетевого режима (питание нагрузки энергией сети) на автономный режим (питание нагрузки энергией аккумуляторной батареи), и наоборот. Обеспечивая синусоидальную форму выходного напряжения, такие ИБП используются для ответственных потребителей электроэнергии, предъявляющих повышенные требования к качеству электропитания (сетевое оборудование, файловые серверы, рабочие станции, персональные компьютеры, оборудование вычислительных и телекоммуникационных залов, системы управления технологическим процессом и т.д.). Современные ИБП малой и средней мощности, в отличие от классической схемы "выпрямитель - инвертор", содержат в своей структуре корректор коэффициента мощности, обеспечивающий входной коэффициент мощности, близкий к единице, и практически синусоидальную форму тока, потребляемого из сети.

По рассмотренной топологии выполняются ИБП средней и большой мощности (более 30 кВА), имеющие номинальные значения напряжения батареи в пределах 360-384 В. В ИБП меньшей мощности используются определенные разновидности основной топологии двойного преобразования: за счет дополнительных силовых блоков преобразования (см. рис. 6, 7).

Структура на рисунке 6 используется для однофазных ИБП мощностью до 3 кВА

и содержит блок корректора коэффициента мощности, совмещенный с неуправляемым выпрямителем (ККМ-В), блок зарядного устройства (ЗУ), преобразователь постоянного напряжения (ППН). Функциональное назначение этих блоков следующее:

о ККМ-В обеспечивает преобразование напряжения сети переменного тока в стабильное напряжение постоянного тока. Этим достигается практически синусоидальная форма тока, потребляемого из сети, что позволяет иметь входной коэффициент мощности близким к единице;

о ЗУ формирует необходимую величину напряжения заряда аккумуляторной батареи, номинальное значение напряжения которой выбирается, в зависимости от мощности ИБП, от 36 до 96 В;

о ППН обеспечивает согласование напряжения батареи с высоковольтным на-

пряжением питания инвертора и рассчитан на максимальную мощность нагрузки.

Структура на **рисунке 7** используется как для однофазных, так и для трехфазных ИБП мощностью 6-30 кВА. Здесь ППН выполняет как функцию ККМ, так и функцию стабилизатора напряжения питания инвертора. Номинальное значение напряжения батареи выбирается в пределах 120-288 В. Вход ЗУ может питаться как сетевым напряжением, так и стабильным постоянным напряжением с выхода ППН.

Основные достоинства ИБП с двойным преобразованием энергии:

Рис. 6 Структура ИБП с двойным преобразованием и корректором коэффициента мощности для однофазных ИБП малой мощности

Рис. 7 Структура ИБП с двойным преобразованием и корректором коэффициента мощности для однои трехфазных ИБП средней мощности

ТАБЛИЦА З. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТРЕХФАЗНЫХ ИБП

Модель	HL	UPS 7200	Borri 4000	
Производитель	Astrid	Liebert	Invensys	
Мощность, кВА	20, 25, 32,40, 60, 80, 100, 125	30, 40, 60	20, 30,40, 60, 80, 100, 120	
Диапазон входного напряжения, В	380+10% 380- 15%, +10%		380-10%,+15%	
Точность выходного напряжения, В	380 ±1%	380+1%	380±1%	
Коэффициент мощности по входу	0,83	0,8	0,83	
Коэффициент мощности по выходу	0,8	0,8	0,8	

ТАБЛИЦА 4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОДНОФАЗНЫХ ИБП МАЛОЙ МОЩНОСТИ

Модель	дпк	UPStation GXT		PW9120	ULTimate
Производитель	Тэнси-Техно	Liebert		Invensys	Powercom
Мощность, кВА	1,0; 3,0	0,7; 1,0; 1,5	2,0; 3,0	0,7; 1,0; 1,5; 2,0; 3,0	0,7; 1,0; 1,5; 2,0; 3,0
Диапазон входного напряжения, В	220 - 27%,+25%	220 ±27%	220 - 20%,+27%	220 - 27%,+25%	220 - 27%,+25%
Точность выходного напряжения, В	220 ±3%	220 ±3%	220 ±3%	220 ±3%	220 ±32%
Коэффициент мощности по входу	0,95	0,95	0,95	0,97	0,98
Коэффициент мощности по выходу	0,7	0,7	0,7	0,7	0,7

ТАБЛИЦА 5. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОДНОФАЗНЫХ ИБП СРЕДНЕЙ МОЩНОСТИ

Модель	дпк	UPStation GXT	PW9150	ONLine
Производитель	Тэнси-Техно	Liebert	Invensys	Powercom
Мощность, кВА	6,0; 10,0	6,0; 10,0	8,0; 10,0; 12,0	7,5; 10,0; 15,0
Диапазон входного напряжения, В	220-15%,+25%	220 -15%,+25%	220 -15%,+25%	220 +25%
Точность выходного напряжения, В	220 ±3%	220 ±3%	220 ±2%	220 ±1%
Коэффициент мощности по входу	0,98	0,98	0,98	н/д
Коэффициент мощности по выходу	0,7	0,7	0,7	0,8

- о обеспечение высокой точности стабилизации синусоидального выход ного напряжения в сетевом и автоном ном режимах;
- о обеспечение стабильной частоты выходного напряжения при отклонениях частоты сети;
- о отсутствие переходных процессов при переключениях с сетевого режима на автономный и наоборот;
- о возможность исключить влияниенелинейной нагрузки с высоким крестфактором на форму входного тока;
- о повышение надежности системы по обеспечению бесперебойного питания нагрузки за счет автоматического шунтирования.

Среди производителей ИБП с двойным преобразованием энергии получил распространение следующий ряд номинальных мощностей:

- о однофазные ИБП средней мощности: 6, 10, 15, 20кВА;
- о ИБП с трехфазным входом и однофазным выходом средней мощнос тью, 15,20,30 кВА;
- о трехфазные ИБП средней мощности: 10, 15, 20, 30кВА;
- трехфазные ИБП большой мощности: более 30 кВА.
- В таблицах 3-5 приведены основные технические характеристики ряда моделей ИБП с двойным преобразованием энергии.