

EXAMEN FINAL

SISTEMAS INTEGRADOS DE INFORMACIÓN

1. (5 puntos) En el archivo mejorRedSUNAT.mat contiene la información sobre el entrenamiento y validación de una Red MLP. Abra el archivo y realice la predicción *multistep* de 12 meses, enseguida calcule el *Mean Square Error* (MSE) y *mean absolute percentage error* (MAPE). Para los cálculos use la función de activación *tansig()* y *p*ara normalizar la función *mapminmax* (matlab). Resuelva paso a paso las operaciones de w⁽¹⁾ y w₍₂₎.

Dato:

- → En mejorRedSUNAT.IW están los pesos en $W_{ji}^{(1)}$
- → En mejorRedSUNAT.LW están los pesos en $W_{ji}^{(2)}$ ← En mejorRedSUNAT.b están los *bias*.

- 2. (5 puntos) En la siguiente Tabla, se muestra un ejemplo de una población de 12 individuos. Se puede observar que la población contiene individuos idénticos (2, 4, 8 y 12). Desarrolle un script para generar una población de individuos válidos y que todos sean diferentes (únicos). El script recibirá como parámetros de entrada, las variables:
 - La cantidad de individuos de la población.
 - Número de variables de entrada de la red MLP.
 - Número de columnas para la cantidad de neuronas en la capa oculta.

FILA	ENTRADAS DE LA RED NEURONAL								NEURONAS		
1	0	1	0	0	0	0	1	1	0	1	
2	0	1	0	0	0	1	0	1	0	1	
3	0	1	0	0	1	1	0	1	1	0	
4	0	1	0	0	0	1	0	1	0	0	
5	0	1	0	1	0	1	1	1	0	0	
6	1	1	0	1	0	0	1	1	0	0	
7	0	1	0	0	0	1	1	1	0	1	
8	0	1	0	0	0	1	0	1	0	1	
9	0	1	0	0	0	1	1	1	0	0	
10	0	1	0	0	0	1	1	1	1	0	
11	1	1	0	1	0	1	1	1	0	0	
12	0	1	0	0	0	1	0	1	0	0	

3. (10 puntos) Calcule las salidas Y₁, Y₂, Y₃ de la Red Neuronal MLP, use la función de activación tansig(). Escriba paso a paso los resultados de las neuronas en W_{ji}(1), W_{ji}(2) y W_{ji}(3). Normalice las entradas de la RNA usando la función mapminmax (software Matlab) y des-normalice (reverse) las salidas Y₁, Y₂, Y₃.

	Neurona	h1	h2	h3	h4	h5	h6	h7	h8	h9
$W_{ji}^{(1)} =$	Bias 0	-0.59	0.16	-0.71	-0.13	0.14	0.27	0.19	0.62	0.494
	x_1	0.26	-0.81	0.60	0.56	0.26	0.31	-0.17	0.49	-0.21
	x_2	0.48	-0.31	0.50	0.35	-0.14	0.20	0.53	0.69	0.43
	x_3	-0.37	0.24	0.34	-0.11	0.93	-0.17	0.17	0.27	0.38
	x_4	0.48	-0.62	0.72	-0.63	0.48	-0.31	0.50	0.17	-0.74
	x ₅	0.16	-0.71	-0.25	0.24	-0.21	0.45	-0.26	-0.36	-0.97
	x ₆	-0.34	0.53	-0.48	-0.79	0.14	-0.34	0.34	0.76	-0.32

	Neurona	11	12	13	14	<i>1</i> 5	16	17
	Bias θ	0.132	-0.713	-0.591	0.431	0.039	0.371	0.137
$W_{ji}^{(2)} =$	h ₁	0.218	0.342	-0.133	-0.141	-0.257	-0.273	-0.318
	h_2	-0.437	0.484	-0.313	0.508	0.478	-0.457	0.345
	h_3	0.584	-0.593	0.167	-0.715	-0.257	-0.473	0.137
	h_4	-0.593	0.267	-0.815	0.608	-0.278	0.094	0.421
	h_5	-0.437	0.484	-0.313	0.508	0.478	-0.457	0.345
	h ₆	-0.157	-0.373	0.218	0.342	-0.133	-0.141	-0.257
	h ₇	-0.437	0.484	-0.313	0.508	0.478	-0.457	0.345
	h ₈	-0.593	0.167	-0.715	-0.257	-0.473	0.137	-0.837
	h ₉	-0.315	-0.346	0.530	-0.488	-0.537	-0.478	-0.313

	Neurona	d1	d2	d3
	Bias 0	0.853	0.442	0.118
$W_{ji}^{(3)} =$	l_1	0.217	0.557	-0.271
	l_2	-0.913	0.752	-0.732
	l_3	0.742	-0.833	0.231
	l_4	0.557	0.378	-0.486
	l_5	0.462	0.676	-0.941
	l_6	0.231	0.757	-0.373
	<i>l</i> ₇	-0.486	-0.863	0.608