

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Giancarlo Urzúa – Estudiante: Benjamín Mateluna

Geometría Algebraica - MAT2824 Apuntes 06 de Marzo de 2025

Índice

In	ntroducción	3
1.	. Conjuntos Algebraicos afines	4
	1.1. Preliminares algebraicos	. 4
	1.2. Espacio Afín y Conjuntos Algebraicos	. 4
	1.3. Ideal de un conjunto	. 5
	1.4. El Teorema de la Base de Hilbert	. 5
	1.5. Componentes Irreducibles en un Conjunto Algebraico	
	1.6. Conjuntos Algebraicos del Plano	. 7
	1.7. Nullstellensatz de Hilbert	. 8
	1.8. Modulos y Condiciones de Finitud	. 11
	1.9. Elementos Integrales	. 11
2 .	. Variedades Afines	13

Introducción

Habrán tres evaluaciones (I1, I2, I3) cada una vale un $20\,\%$ y un examen (EX) que vale un $40\,\%$. Las fechas son, 9 de abril, 14 de Mayo, 11 de Junio y 1 de Julio respectivamente.

1. Conjuntos Algebraicos afines

1.1. Preliminares algebraicos

Sea R un anillo conmutativo con +, \cdot y con $1 \neq 0$. Si R, R' son anillos, un morfismo de anillos es una función $f: R \to R'$ que respeta +, \cdot y $f(1_R) = 1_{R'}$. Un dominio R es un anillo en donde xy = xz implica que y = z para todo $x \neq 0$.

Ejemplo \mathbb{Z} es dominio, pero $\mathbb{Z}/6$ no lo es.

Un cuerpo es un dominio donde todo $x \neq 0$ tiene un inverso. Dado R dominio, existe el cuerpo de fracciones K tal que $R \subseteq K$. Dado R anillo, sea R[x] el anillo de polinomios con coeficientes en R, sus elementos tienen la forma

$$f(x) = a_0 + a_1 x + \dots + a_d x^d$$
, $a_d \neq 0$

y decimos que f tiene grado d denotado por gr(f). Se define de manera recursiva $R[x_1, \cdots, x_n] = R[x_1, \cdots, x_{n-1}][x_n]$ el anillo de polinomios en n variables. Dado $f = \alpha \cdot x_1^{\lambda_1} \cdots x_n^{\lambda_n}$ su grado se define como $gr(f) = \sum_{i=1}^n \lambda_i$, para f en general, definimos su grado como $gr(f) := max\{grados de monomios\}$. Dado $f \in R[x_1, \cdots, x_n]$ y d = gr(f) entonces

$$f = F_0 + F_1 + \dots + F_d$$
, con F_i homogeneos, esto es, $F_i(\lambda x_{x_1}, \dots, \lambda x_n) = \lambda^i F(x_1, \dots, x_n)$

Si $f \in R[x]$ una raíz (cero) de f es un $r \in R$ tal que f(r) = 0.

Teorema 1. Se tiene que r es cero si y solo si f(x) = (x - r)g(x) para algún $g \in R[x]$.

Un cero de $f(x_1, \dots, x_n)$ es un $(a_1, \dots, a_n) \in \mathbb{R}^n$ tal que $f(a_1, \dots, a_n) = 0$.

Decimos que $r \in R$ es irreductible si toda descomposición r = ab con $a, b \in R$ se tiene que a o b es una unidad. Un anillo R se dice dominio de factorización unica si todo elemento no nulo se puede factorizar de manera esencialmente unica en producto de irreductibles.

Lema 1.1. Si R es dominio de factorización unica entonces R[x] es dominio de factorización unica.

Lema 1.2. Si R es un dominio de factorización unica y K su cuerpo de fracciones. Dado $f \in R[x]$ irreductible entonces f es irreductible en K[x].

Sea R un anillo. Un ideal $I \subset R$ es tal que si $a, b \in I$ entonces $a + b \in I$ y si $r \in R$ entonces $ra \in I$. Consideramos la función $\pi : R \to R/I$ donde R/I es el anillo cociente que es conmutativo. Un ideal es maximal si y solo si R/I es cuerpo.

Teorema 2. Sea R un dominio euclideano (se cumple algoritmo de la división) y $a, b \in R$, consideremos mcd(a, b) = d. Entonces existen $c, e \in R$ tales que ac + be = d.

Teorema 3. Si F es un polinomio homogeneo de grado d, entonces

$$dF = x_1 F_{x_1} + \dots + x_n F_{x_n}$$

donde F_{x_i} es la derivada formal con respecto a x_i .

1.2. Espacio Afín y Conjuntos Algebraicos

Definición 3.1. Sea k un cuerpo. El espacio afín de dim n es $\mathbb{A}^n_k := k^n$ (generalmente se supondra que $k = \overline{k}$).

Definición 3.2. Una hipersuperficie de \mathbb{A}^n_k es $V(F) = \{ p \in \mathbb{A}^n_k : F(p) = 0 \}$ para un $F \in k[x_1, \dots, x_n]$.

Ejemplos:

- Sea $k = \mathbb{R}$ consideramos la hipersuperficie $V(y^2 x^2(x+1)) \subseteq \mathbb{A}^2_{\mathbb{R}}$ (foto) El punto (0,0) se llama nodo.
- Veamos la hipersuperficie $V((x^3-y^3)(y^3-1)(x^3-1))\subseteq \mathbb{A}^2_{\mathbb{C}}$.
- La hipersuperficie $V(x^2 + y^2 z^2) \subseteq \mathbb{A}^3_{\mathbb{R}}$ es conocida como cono (foto) Como en el primer ejemplo, el punto (0,0) se llama nodo
- Consideremos $V(y^2 x^3) \subseteq \mathbb{A}^2_{\mathbb{R}}$ (foto) En este caso, el punto (0,0) no es un nodo, en este caso se llama cuspide.
- Veamos el caso de una hipersuperficie no parametrizable, esta es $V(y^2 x(x+1)(x+\lambda))$.

Definición 3.3. Sea $S \subseteq k[x_1, \dots, x_n]$ un conjunto arbitrario, se define

$$V(S) := \{ p \in \mathbb{A}^n_k : F(p) = 0 \quad \forall F \in S \} = \bigcap_{F \in S} V(F)$$

y se dice que es un conjunto algebraico afín.

Propiedades de un conjunto algebraico afín:

a) Sea
$$I = \langle S \rangle = \left\{ \sum_{i=1}^{n} a_i s_i, a_i \in k \right\}$$
, entonces $V(I) = V(S)$.

Demostración. Veamos que $V(I) \subseteq V(S)$, si $p \in V(I)$, como $S \subseteq I$ se sigue que $p \in V(S)$. Para $V(S) \subseteq V(I)$ notemos que dado $f \in I$ se tiene que $f = \sum a_i s_i$, luego si $p \in V(S)$ vemos que $f(p) = \sum a_i s_i(p) = 0$.

- b) Sea $\{I_{\alpha}\}$ una colección de ideales, entonces $V(\bigcup_{\alpha}I_{\alpha})=\bigcap_{\alpha}V(I_{\alpha})$.
- c) Si $I \subseteq J$ se sigue que $V(J) \subseteq V(I)$.
- d) Sean $F, G \in k[x_1, \dots, x_n]$, se tiene que $V(FG) = V(F) \cup V(G)$.
- e) Tenemos las siguientes dos identidades $V(1) = \emptyset$ y $V(0) = \mathbb{A}_k^n$. **observación:** Lo anterior es valido si k es algebraicamente cerrado, de lo contrario, si consideramos $\mathbb{A}_{\mathbb{R}}^1$ vemos que $V(x^2 + 1) = \emptyset$.

1.3. Ideal de un conjunto

Definición 3.4. Sea $X \subseteq \mathbb{A}^n_k$ un conjunto arbitrario. Se define el ideal de X como

$$I(X) := \{ F \in k[x_1, \cdots, x_n] : F(p) = 0 \quad \forall p \in X \}$$

observación: Notemos que si $F^m \in I(X)$ entonces $F \in I(X)$. Un ideal con esta propiedad se dice radical.

Propiedades del ideal de un conjunto:

- a) Si $X \subseteq Y$ se tiene que $I(Y) \subseteq I(X)$.
- b) Se tiene lo siguiente $I(\emptyset)=k[x_1,\cdots,x_n]$ y $I(\mathbb{A}^n_k)=\{0\}$. Además, si k es un cuerpo infinito, se tiene que $I(\{a_1,\cdots,a_n\})=(x_1-a_1,\cdots,x_n-a_n)$.

1.4. El Teorema de la Base de Hilbert

Teorema 4. Todo conjunto algebraico corresponde a la intersección finita de hipersuperficies.

Demostración. Sea V(I) el conjunto algebraico para algún ideal $I \subseteq k[x_1, \dots, x_n]$. Basta con probar que I es finitamente generado, en tal caso $I = (F_1, \dots, F_r)$, entonces $V(I) = V(F_1, \dots, F_r) = V(F_1) \cap \dots \cap V(F_r)$.

Teorema 5. Si R es un anillo Noetheriano, entonces R[X] es un anillo Noetheriano.

Demostración. Sea $I \subseteq R[X]$ un ideal. Dado $F = a_0 + a_1x + \cdots + a_dx^d$ con $a_d \neq 0$ decimos que a_d es el término líder de F denotado por l(F). Sea

$$\mathcal{J} := \{ r \in R : r \text{ es término líder de algún } F \in I \} \cup \{ 0 \}$$

Afirmamos que \mathcal{J} es ideal, en efecto, sean $l(F), l(G) \in \mathcal{J}$, supongamos sin perdida de generalidad que $gr(F) \leq gr(G)$, luego

$$Fx^{gr(G)-deg(F)} + G = H$$

donde l(H) = l(F) + l(G). Es claro que $r \cdot l(F) \in \mathcal{J}$ con $r \in R$. Por hipotesis existen $F_1, \dots, F_r \in I$ tales que $\mathcal{J} = (l(F_1), \dots, l(F_r))$. Sea $N > gr(F_i)$ para todo $1 \le i \le r$. Para cada $m \le N$ definimos

$$\mathcal{J}_m := \{ r \in R : r \text{ es término líder de } F \in I \text{ } y \text{ } gr(F) \leq m \}$$

Notemos que los \mathcal{J}_m son ideales en R, por ende, son finitamente generados, es decir $\mathcal{J}_m = (l(F_{m,j}))$. Consideremos el ideal $I' = \langle F_{m,j}, F_i \rangle$, afirmamos que I' = I. Claramente se tiene que $I' \subset I$. Supongamos, por contradicción, que $I' \neq I$, sea $G \in I' \setminus I$ de menor grado. Tenemos dos consideramos

- a) Veamos cuando gr(G) > N, existen polinomios $Q_i \in R[X]$ tal que G y $\sum Q_i F_i$ tienen el mismo coeficiente líder. Luego $G \sum Q_i F_i \in I'$ pues tiene menor grado que G, se sigue que $G \in I'$.
- b) El resultado para $gr(G) \leq N$ se obtiene del mismo modo, usando esta vez los $F_{m,j}$.

Ejemplo: Sea $(0,0) \in \mathbb{A}^2_{\mathbb{R}}$, entonces $\{(0,0)\} = V(x^2 + y^2)$. Pero en \mathbb{C} tenemos que $\{(0,0)\} \neq V(F)$ para ningún $F \in k[x,y]$.

1.5. Componentes Irreducibles en un Conjunto Algebraico

Definición 5.1. Un conjunto algebraico V se dice reducible si $V = V_1 \cup V_2$ con V_i conjunto conjunto algebraico V distinto de V.

Observación: Un punto es un conjunto algebraico irreducible, lo que implica que cualquier conjunto finito es algebraico y reducible.

Ejemplos:

- Notemos que $V(xy) = V(x) \cup V(y)$, es decir V(xy) es reducible.
- Consideremos el espacio afín $\mathbb{A}^1_{\mathbb{R}}$, entonces el conjunto algebraico $V((x^2+1)x)=\{0\}$ es irrducible.

Proposición 5.1. Un conjunto algebraico V es irrducible si y solo si el ideal I(V) es primo.

Demostración.

- ⇒ | Supongamos que I(V) no es primo, entonces existen F_1, F_2 polinomios tales que $F_1 \cdot F_2 \in I(V)$ y $F_1, F_2 \notin I(V)$. Afirmamos que $V = (V \cap V(F_1)) \cup (V \cap V(F_2))$. Sea $p \in V$, entonces $F_1(p) \cdot F_2(p) = 0$ lo que implica que $p \in (V \cap V(F_1)) \cup (V \cap V(F_2))$, además $V \cap V(F_i) \neq V$ ya que existe q_i tal que $F_i(q_i) \neq 0$.
- $\Leftarrow \mid Supongamos \ que \ V \ es \ reducible. \ Luego \ V = V_1 \cup V_2 \ con \ V_i \neq V. \ Entonces \ existe \ un \ polinomio \ F_i \ tal \ que \ F_i(p) = 0 \ para \ todo \ p \in V_i, \ pero \ no \ para \ todo \ punto \ en \ V. \ Notemos \ que \ F_1 \cdot F_2 \in I(V), \ sin \ embargo, \ F_i \notin I(V).$

Definición 5.2. Una variedad afín V es un conjunto algebraico afín irreducible.

Lema 5.1. Sea R un anillo, las siguientes afirmaciones son equivalentes:

- a) R es Noetheriano.
- b) Si C es una colección no vacía de ideales en R, entonces C tiene un elemento maximal, es decir, existe $I \in C$ que no está contenido en otro ideal de C.

c) Toda cadena ascendente de ideales en R se estabiliza.

Demostración.

 (a) ⇒(b) | Necesitamos usar el axioma de elección. Sea C una colección de ideales en R, para cada subconjunto no vacío de C elegimos un ideal. Sea I₀ el ideal escogido para C, definimos el conjunto

$$\mathcal{C}_1 := \{ I \in \mathcal{C} : I_0 \subset I \}$$

Si $C_1 = \emptyset$ entonces I_0 es el ideal maximal. Si no, repetimos el proceso. Sea $I \in C_1$ el escogido, definimos

$$\mathcal{C}_2 := \{ I \in \mathcal{C}_2 : I_1 \subset I \}$$

Es suficiente demostrar que existe n tal que $C_n = \emptyset$. Sea $I = \bigcup_{n=0}^{\infty} I_n$ es ideal, además, notemos que $I_n \subset I_{n+1}$. Como R es Noetheriano, entonces $I = (f_1, \dots, f_m)$, luego existe r tal que $f_1, \dots, f_m \in I_r$, lo que implica que $I \subseteq I_r$ y por lo tanto $I = I_r$ se sigue que $I_r = I_s$ para todo s > r, lo cual es una contradicción.

- $(b) \Rightarrow (c) \mid Basta\ tomar\ C\ como\ nuestra\ colección\ de\ ideales\ en\ R,\ luego,\ existe\ un\ elemento\ maximal.$
- $(c) \Rightarrow (a) \mid Sea \ I \subseteq R \ un \ ideal. \ Si \ I = (0) \ estamos \ listos, \ de \ lo \ contrario, \ sea \ f_1 \in I, \ entonces \ (f_1) \subseteq I.$ Supongamos que $I \setminus (f_1) \neq \emptyset$, sea $f_2 \in I \setminus (f_1)$, de esta manera construimos una cadena ascendente de ideales

$$(f_1) \subset (f_1, f_2) \subset \cdots \subset (f_1, \cdots, f_n) \subset \cdots$$

para algun N la cadena se estabiliza y por ende $(f_1, \dots, f_N) = I$.

Proposición 5.2. Cualquier colección de conjuntos algebraicos $\{V_i\}_{i\in I}$ en \mathbb{A}^n_k tiene un elemento minimal.

Demostración. Dada $\{V_i\}_{i\in I}$ obtenemos una colección $\mathcal{C} = \{I(V_i)\}_{i\in I}$ de ideales en $k[x_1, \dots, x_n]$, el cual es Noetheriano. Luego \mathcal{C} tiene un elemento maximal, digamos $I(V_*)$, afirmamos que V_* es el elemento minimal, de lo contrario, existe $V_i \subseteq V_*$ entonces $I(V_*) \subseteq I(V_i)$.

Teorema 6. Sea $V \subseteq \mathbb{A}^n_k$ un conjunto algebraico. Entonces existen unicos conjuntos algebraicos irreducibles V_1, \dots, V_m tales que

$$V = \bigcup_{i=0}^{m} V_{i} \quad y \quad V_{i} \not\subset V_{j} \quad \forall i \neq j$$

Demostración. Sea $C = \{V \subseteq \mathbb{A}^n_k \text{ conjunto algebraico} : V \text{ no es unión finita de irreducibles}\}$. Si C es vacío estamos listos. Si no lo es, sea $V \in C$ minimal. Tenemos que V no es irreducible, entonces $V = V_1 \cup V_2$ con $V_i \subset V$, lo que implica que algún $V_i \in C$ lo cual es una contradicción.

Sea $V = \bigcup_{i=1}^m V_i$ con V_i irreducibles, asumir que $V_i \not\subset V_j$ para todo $i \neq j$. Digamos que

$$\bigcup_{i=1}^m V_i = \bigcup_{j=1}^s W_j \quad con \quad V_i \not\subset V_j \quad y \quad W_i \not\subset W_j \quad y \quad V_i, W_j \neq \emptyset$$

Notemos que $V_1 = V_1 \cap V = \bigcup_{j=1}^s (V_1 \cap W_j)$, como V_1 es irreducible, existe unico j tal que $V_1 = V_1 \cap W_j$, es decir, $V_1 \subseteq W_j$. Por otro lado, existe unico i tal que $W_j \subseteq V_i$, lo que implica que $V_1 \subseteq V_i$ entonces i = 1 y así $V_1 = W_j$.

1.6. Conjuntos Algebraicos del Plano

Lema 6.1. Si $f,g \in k[x,y]$ no tienen factores en común, entonces V(f,g) es un conjunto finito.

Demostración. Recordemos que k(x)[y] es dominio euclideano. Por lema de gauss, f, g no tienen factores en común en k(x)[y], entonces existen $a, b \in k(x)[y]$ tal que af + bg = 1. Existe r(x) tal que

$$raf + rbq = r$$

es una ecuación en k[x,y]. Sea $(p,q) \in V(f,g)$, evaluando en la ecuación anterior vemos que

$$0 = raf(p,q) + rbg(p,q) = r(p)$$

por lo tanto la cantidad de valores posibles de p es finita. Haciendo lo mismo para y obtenemos que q solo puede tomar una cantidad finita de valores.

Corolario 6.1. Si $f \in k[x,y]$ es irreducible con $|V(f)| = \infty$ entonces I(V(f)) = (f) y V(f) es irreducible.

Demostración. Si $g \in I(V(f))$, entonces $|V(f,g)| = \infty$, luego, f y g tienen factores en común, como f es irreducible, entonces f divide a g lo que implica que $g \in (f)$. La otra contención es directa.

Por otro lado, notemos que (f) es primo, pues f es irreducible, así, V(f) es irreducible.

Corolario 6.2. Supongamos que k es infinito, entonces los conjuntos algebraicos irreducibles de \mathbb{A}^2_k son: \emptyset , \mathbb{A}^2_k , un punto y los conjuntos V(f) con f irreducible y $|V(f)| = \infty$.

Demostración. Sea V un conjunto algebraico irreducible. Si $|V| < \infty$ entonces $V = \emptyset$ o V es un punto. Si I(V) = (0) entonces $V = \mathbb{A}^2_k$. Supongamos que $|V| = \infty$ y que $(0) \subset I(V) \subset k[x,y]$. Como I(V) es primo, existe un polinomio no constante e irreducible tal que $f \in I(V)$.

 $Si\ g\in I(V)\ y\ g\not\in (f)$, entonces $V\subset V(f,g)$, por la proposición, esto es una contradicción. De este modo, I(V)=(f). Afirmamos que V(f)=V, en efecto, tenemos que V=V(I(V))=V(f).

Corolario 6.3. Supongamos que $k = \overline{k}$. Sea $f \in k[x,y]$ y sea $f = \prod_{i=1}^m f_i^{\alpha_i}$ con f_i irreducible. Entonces

$$V(f) = \bigcup_{i=1}^{m} V(f_i)$$

es su descomposición en irreducibles y además $I(V(f)) = (f_1, \dots, f_m)$.

Demostración. Como f_i, f_j son coprimos no hay inclusiones entre $V(f_i)$ y $V(f_j)$, de lo contrario si existen $i \neq j$ tales que $V(f_i) \subset V(f_j)$, entonces

$$(f_i) = I(V(f_i)) \supset I(V(f_i)) = (f_i)$$

lo cual es una contradicción. Luego,

$$I(V(f)) = I\left(\bigcup V(f_i)\right) = \bigcap I(V(f_i)) = \bigcap (f_i) = (f_1 \cdots f_m)$$

1.7. Nullstellensatz de Hilbert

En general supondremos que $k = \overline{k}$, a no ser que se diga lo contrario.

Teorema 7. Sea $I \subset k[x_1, \dots, x_n]$ un ideal, entonces $V(I) \neq \emptyset$.

Demostración. Podemos suponer que I es maximal. En efecto, recordemos que todo ideal esta contenido en un ideal maximal, digamos M, entonces $V(M) \subseteq V(I)$. {} Como I es maximal, esto equivale a que $k[x_1, \dots, x_n]/I \supset k$ es cuerpo. Como k es algebraicamente cerrado, podemos asumir que $k[x_1, \dots, x_n]/I = k$.

Así, cada variable x_i puede ser identificada por un elemento en k digamos a_i , lo que implica que $x_i - a_i$ es igual 0 bajo el cociente, se sigue que $x_i - a_i \in I$, luego $I = (x_1 - a_1, \dots, x_n - a_n)$. (Mejorar escritura)

De la demostración surge una pregunta, ¿Por que $k[x_1, \cdots, x_n]/I = k$? El siguiente lema lo responde

Lema 7.1. (Lema de Zariski) Sea $K \subset L$ una extensión de cuerpo tal que L es finitamente generado como k-algebra. Entonces L es finitamente generado como k-módulo.

Exploraremos una demostración menos general del teorema anterior, pero sin usar lema de Zariski. Para ello supongamos que $k = \mathbb{C}$.

Demostración. Del mismo modo, supongamos que $I \subset k[x_1, \dots, x_n]$ es un ideal maximal, luego $L := k[x_1, \dots, x_n]/I$ es cuerpo, consideramos el morfismo canónico

Afirmamos que $ker(\pi_i) = (0)$ o $ker(\pi_i) = (x_i - a_i)$ para algún $a_i \in \mathbb{C}$. En efecto, si $ker(\pi_i) \neq (0)$, entonces $(0) \subset ker(\pi_i) \subset \mathbb{C}[x_i]$, donde la segunda contención es estricta, de lo contrario, $1 \in I$ y entonces $I = k[x_1, \dots, x_n]$. Sea $f \in ker(\pi_i)$, entonces como \mathbb{C} es algebraicamente cerrado, existe $(x_i - a_i)$ factor de f tal que $\pi_i(x_i - a_i) = 0$.

Volviendo a la demostración del teorema. Tenemos dos consideramos

- $ker(\pi_i) = (x_i a_i)$ para todo i. Entonces $(x_1 a_i, \dots, x_n a_n) \subseteq I$. Como $(x_1 a_i, \dots, x_n a_n)$ es ideal maximal e I es propio se obtiene el resultado.
- Existe i tal que $ker(\pi_i) = (0)$, entonces π_i es inyectiva, como L es cuerpo $\mathbb{C}(x_i)$ se incrusta en L.

$$\mathbb{C}[x_i] \xrightarrow{\pi_i} L$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

Es decir $\mathbb{C}(x_i) \subseteq L$. Notemos que L es un espacio vectorial numerable, a saber, la base corresponde a todos los monomios. Notemos que el siguiente conjunto es linealmente independiente

$$S := \left\{ \frac{1}{x_i - a_i} : a \in \mathbb{C} \right\}$$

Notemos que si $\sum_{j=1}^{m} \frac{\lambda_j}{x_i - a_j} = 0$ entonces multiplicando por $(x_i - a_1) \cdots (x_i - a_m)$ y evaluando se tiene que $\lambda_j = 0$ para todo j. Esto es una contradicción pues S es no numerable.

Teorema 8. (Teorema de Nullstellensatz) Sea $I \subset k[x_1, \dots, x_n]$, entonces $I(V(I)) = \sqrt{I}$.

Demostración.

- \supseteq | Sea $f \in \sqrt{I}$, entonces $f^n \in I$ para algún n. Luego $f^n(p) = 0$ para todo $p \in V(I)$, entonces f(p) = 0 para todo $p \in V(I)$ lo que implica que $f \in I(V(I))$.
- ⊆ | (Truco de Rabinowitsch) Sea $f \in I(V(I))$ y digamos que $I = (f_1, \dots, f_m)$. Definimos el ideal $J := (f_1, \dots, f_m, x_{n+1}f 1) \subseteq k[x_1, \dots, x_{n+1}]$. Supongamos que $(a_1, \dots, a_n, a_{n+1}) \in V(J)$, entonces $(a_1, \dots, a_n) \in V(I)$ se sigue que $f(a_1, \dots, a_n) = 0$, esto resulta en una contradicción. Concluimos que $V(J) = \emptyset$.

Por el teorema anterior y como k es algebraicamente cerrado tenemos que $J=k[x_1,\cdots,x_{n+1}]$, entonces existen $\{g_i\}_{i=1}^{m+1}\subseteq k[x_1,\cdots,x_n]$ tales que

$$q_1 f_1 + \dots + q_m f_m + q_{m+1} (x_{m+1} f_{m+1} - 1) = 1$$

tomando $x_{n+1} = 1/f$ obtenemos

$$g_1(x_1,\dots,x_n,1/f)f_1+\dots+g_m(x_1,\dots,x_n,1/f)f_m=1$$

existe $n \in \mathbb{N}$ tal que $f^n \in I$.

Corolario 8.1. Hay una correspondecia uno a uno entre puntos en \mathbb{A}_k^n e ideales maximales.

Corolario 8.2. Las variedades afines en \mathbb{A}^n_k estan en correspondecia uno a uno con los ideales primos.

Corolario 8.3. Las hipersuperficies irreducibles en \mathbb{A}^n_k se corresponden uno a uno con polinomios irreducibles en $k[x_1, \dots, x_n]$.

Corolario 8.4. Sea $I \subseteq k[x_1, \dots, x_n]$ un ideal. Entonces V(I) es un conjunto finito de puntos si y solo si como k-espacio vectorial $k[x_1, \dots, x_n]/I$ tiene dimensión finita.

Demostración.

• $\Leftarrow | Sean \ p_1, \cdots, p_r \in V(I) \subseteq \mathbb{A}^n_k$. Consideramos $F_1, \cdots, F_r \in k[x_1, \cdots, x_n]$ tales que $F_i(p_j) = 0$ para todo $i \neq j \ y \ F_i(p_i) = 1$. Sea $\overline{F_i}$ la imagen de F_i en el cociente $k[x_1, \cdots, x_n]/I = R$.

Afirmamos que el conjunto $\{F_1, \dots, F_r\}$ es linealmente independiente en R. En efecto, si

$$\sum_{i=1}^{r} \lambda_i \overline{F_i} = 0 \quad con \quad \lambda_i \in k$$

entonces $\sum \lambda_i \overline{F_i} \in I$, evaluando en p_i vemos que $\lambda_i = 0$ para todo i, lo que prueba la afirmación. Así, $r \leq dim_k R$.

 \blacksquare \Rightarrow | Digamos que $V(I) = \{p_1, \dots, p_r\}$ y $p_i = (a_{i1}, \dots, a_{in})$. Definimos

$$F_j := \prod_{i=1}^r (x_j - a_{ij})$$

Luego $F_j \in I(V(I))$, por Nullstellensatz, se tiene que F_j^N para algún N, así, $\overline{F_j}^N = 0$ en R, es decir, $p(x_j) + x_j^{rN} = 0$, con $gr(p_j) < rN$ entonces $dim_k R < \infty$.

Ejemplos:

 \blacksquare Consideremos los polinomios $x-y,y-x^2\in k[x,y],$ se sigue $V((x-y,y-x^2))=\{(0,0),(1,1)\}$

$$dim_k\left(k[x,y]\middle/(x-y,y-x^2)\right)=dim_k\left(k[x]\middle/(x-x^2)\right)=dim_k\left(k\oplus kx\right)=2$$

 \blacksquare Notemos que $V(x-y-1,x-y)=\emptyset$ y por otro lado

$$k[x,y]/(x-y,x-y-1) = k[x,y]/(1) = (0)$$

así $dim_k R = 0$.

• Veamos que $V(y, x - y^3) = \{(0, 0)\}$, entonces

$$dim_k \left(k[x,y] \middle/ (y,x^3 - y) \right) = dim_k \left(k[x] \middle/ (x^3) \right) = 3$$

■ El conjunto $V(my - x, y - x^2)$ tiene dos puntos de intersección para todo $m \neq 0$,

$$dim_k \left(k[x,y] / (my - x, y - x^2) \right) = dim_k \left(k[x] / (mx^2 - x) \right) = 2$$

pero si m=0, vemos que $dim_k R=1$.

1.8. Modulos y Condiciones de Finitud

Sea R un anillo, se dice que M es un R-módulo, si M es un grupo conmutativo y si viene con producto escalar, es decir, una función de $R \times M$ a M, se denota por $a \cdot m$ que satisface lo siguiente

- (a+b)m = am + bm para todo $a, b \in R$ y $m \in M$.
- a(m+n) = am + an para todo $a \in R$ y $m, n \in M$.
- (ab)m = a(bm) para todo $a, b \in R$ y $m \in M$.
- $1_R \cdot m = m$ para todo $m \in M$

Un subgrupo de N de un R-módulo M se dice un submodulo si N es un R-módulo con el mismo producto escalar. Dado $S \subseteq M$, definimos el generado de S por

$$\langle S \rangle := \left\{ \sum r_i s_i \mid r_i \in R, s_i \in S \right\}$$

de hecho corresponde al submódulo de M mas pequeño que contiene a S. Decimos que M es finitamente generado si existe $S \subseteq M$ tal que $\langle S \rangle = M$.

Sea $R \subseteq S$ anillos. Decimos que S es modulo finito sobre R, si es finitamente generado como R-módulo.

Sean $v_1, \dots, v_n \in S$. Sea $\varphi: R[x_1, \dots, x_n] \to S$ el morfismo de anillo que manda x_i a v_i . La imagen de φ se denota por $R[v_1, \dots, v_n]$ y corresponde a un subanillo de S que contiene a R y v_1, \dots, v_n , además, es el subanillo mas pequeño con esta propiedad. Decimos que S es un algebra finita sobre R si $S = R[v_1, \dots, v_n]$ para algunos $v_1, \dots, v_n \in S$.

Sean $K \subset L$ cuerpos. Sean $v_1, \dots, v_n \in L$ y consideremos $K(v_1, \dots, v_n)$ el cuerpo de fracciones de $K[v_1, \dots, v_n]$. Al igual que antes, corresponde al menor subcuerpo de L que contiene a K y v_1, \dots, v_n . El cuerpo L se dice una extensión finitamente generada de K si $L = K(v_1, \dots, v_n)$ para algunos $v_1, \dots, v_n \in L$.

1.9. Elementos Integrales

Definición 8.1. Sean $R \subset S$ dominios enteros. Decimos que un elemento $v \in S$ es integral sobre R si

$$v^{n} + r_{n-1}v^{n-1} + \dots + r_{1}v + r_{0} = 0$$

para algunos $r_i \in R$ y $n \in \mathbb{N}$.

Proposición 8.1. Sean $R \subset S$ dominios enteros, $v \in S$. Son equivalentes las siguientes afirmaciones

- a) v es integral sobre R.
- b) R[v] es un R-modulo finitamente generado.
- c) Existe un subanillo $R' \subset S$ con $R[v] \subset R'$ y R' un R-modulo finitamente generado sobre R.

Demostración.

- $(a) \Rightarrow (b) \mid \text{Existe un polinomio monico } f \in R[x] \text{ tal que } f(v) = 0, \text{ luego el } R[v] \text{ se puede generar por finitos elementos.}$
- $(b) \Rightarrow (c) \mid Basta\ tomar\ R' = R[v].$
- $(c) \Rightarrow (a) \mid Existe \ R' \ tal \ que \ R \subset R[v] \subset R' \subset S$. Con R, R[v], R' finitamente generados como R-modulos. Sean w_1, \dots, w_n generadores de R'. Sabemos que

$$v \cdot w_i = a_{i1}w_1 + \cdots + a_{in}w_n$$

luego tenemos el sistema

$$(a_{11} - v)w_1 + a_{12}w_2 + \dots + a_{1n}w_n = 0$$

$$a_{21}w_1 + (a_{22} - v)w_2 + \dots + a_{2n}w_n = 0$$

$$\vdots$$

$$a_{n1}w_1 + a_{n2}w_2 + \dots + (a_{nn} - v)w_n = 0$$

Como $R \subset S$ son dominios, podemos verlo dentro del cuerpo de fracciones, entonces tiene sentido calcular el determinante de la matriz asociada al sistema de ecuaciones. Por otro lado, (w_1, \dots, w_n) es una solución no trivial del sistema y por lo tanto el determinante de la matriz asociada es 0, lo que implica que v es integral sobre R.

Corolario 8.5. Sean $R \subseteq S$ dominios. Entonces los elementos integrales sobre R forman un anillo.

Demostración. Sean $a, b \in S$ elementos integrales sobre R. Notemos que

$$R \subseteq R[a+b] \subseteq R[a,b]$$
 y $R \subseteq R[ab] \subseteq R[a,b]$

Como a y b son elementos integrales sobre R, R[a] y R[b] son finitamente generados por $\{1, a, a^2, \dots, a^{n-1}\}$ y $\{1, b, b^2, \dots, b^{n-1}\}$. Es claro que R[a, b] es generado por $\{a^i b^j : 0 \le i \le n-1, 0 \le j \le m-1\}$. Por la proposición se sique que a + b y ab son elementos integrales sobre R.

Definición 8.2. Sean $R \subseteq S$ dominios. Decimos que S es integral sobre R si todo $s \in S$ es integral sobre R.

Además, R es un dominio integralmente cerrado si ningún $z \in Frac(R) \setminus R$ es integral.

Ejemplos:

• Consideremos $\mathbb{Z} \subseteq \mathbb{Q}$, sea $p/q \in \mathbb{Q}$ con $p \neq q$ coprimos. Si tenemos la expresión

$$\left(\frac{p}{q}\right)^n + a_{n-1}\left(\frac{p}{q}\right)^{n-1} + \dots + a_1\left(\frac{p}{q}\right) + a_0 = 0$$

Por teorema de la raiz racional, q debe dividir a 1, luego q = 1 lo que implica que $p/q \in \mathbb{Z}$. Concluimos que Z es integralmente cerrado.

• Veamos el conjunto algebraico $V(y^2-x^3)\subseteq \mathbb{A}^2_k$ con $k=\overline{k}$. Vemos el anillo

$$R = \frac{k[x,y]}{(y^2 - x^3)}$$

que es un dominio, pues $(y^2 - x^3)$ es irreductible. Dentro de $R \subseteq Frac(R)$, vemos que se cumple la relación $y^2 = x^3$, que dentro del cuerpo de fracciones es equivalente a

$$\left(\frac{y}{x}\right)^2 - x = 0$$

notemos que $\frac{y}{x} \notin R$ y que $x \in R$. Por lo tanto R no es integralmente cerrado.

■ Sea $V(y-x^2) \subseteq \mathbb{A}^2_k$. Vemos el anillo

$$R = \frac{k[x,y]}{(y-x^2)}$$

por demostrar, R es integralmente cerrado. Consideremos la función $\varphi: \mathbb{A}^1_k \to \mathbb{A}^2_k$ dada por $\varphi(t) = (t, t^2)$. Notemos que $Im(\varphi) = V(y - x^2)$. La función φ induce el isomorfismo

$$\frac{k[x,y]}{(y-x^2)} \to k[t]$$
$$x \to t$$
$$y^2 \to t^2$$

Como k[t] es DFU, se sigue que R es integralmente cerrado.

Vamos a estudiar un caso particular del lema de Zariski. Sea k un cuerpo e $I \subseteq k[x]$ un ideal maximal, entonces k[x]/I = L es un cuerpo. Tenemos dos casos, I = (0) ó I = (f(x)). Si I = (0) entonces k[x] es cuerpo, esto es una contradicción. Por otro lado escribimos

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

pero en L se tiene que f(x)=0, luego, L es generado como k módulo por $\{1,x,\cdots,x^{n-1}\}$.

Veamos cuando k[x,y]/I = L donde k es un cuerpo e $I \subseteq k[x,y]$ es un ideal maximal. Si $x \in I$ o $y \in I$ podemos reducir al caso anterior. Entonces L es finitamente generado por potencias de x e y.

Pensaremos en k(x) como los cocientes de polinomios en una variable modulo I, luego

$$k \subset k(x) \subset k(x)[y] = L$$

donde la igualdad k(x)[y] = L se debe a que la inversa de un polinomio en k(x) en realidad se escribe como combinación de potencias de x e y. Además, por el caso anterior, k(x)[y] es finitamente generado como k(x) módulo.

Tenemos dos casos:

- Caso 1: La extensión $k \subset k(x)$ es finita. Esto implica que la extensión $k \subseteq L$ es finita, basta tomar el producto de los generadores.
- Caso 2: Se tiene la siguiente igualdad

$$k(x) = \left\{ \text{cocientes } \frac{p(x)}{q(x)} \right\}$$

En L se debe cumplir la relación $y^m = a_{m-1}y^{m-1} + \cdots + a_1y + a_0$ con $a_i \in k(x)$. Tomar $a \in k[x]$ tal que a^m limpie los denominadores, luego

$$(ay)^m = b_{m-1}(ay)^{m-1} + \dots + b_1(ay) + b_0$$

con $b_i \in k[x]$. Se sigue que ay es integral sobre k[x]. Sea $z \in L$, luego para N suficientemente grande $a^N z$ es integral sobre k[x], ya que

$$a^{N}z = a^{N} f(x, y)$$

$$= a^{N} (c_{0} + c_{1}y + \dots + c_{M}y^{M})$$

$$= c'_{0} + c'_{1}(ya) + \dots + c'_{M}(ya)^{M}$$

donde $c_i' \in k[x]$. Como k[x] es DFU, $a=p_1\cdots p_s$ su factorización en irreducibles, sea p_{s+1} un irreductible distinto de p_i , tomando $z=\frac{1}{p_{s+1}}$ resulta que a^Nz es integral, lo cual es una contradicción.

Lema 8.1. (Lema de Zariski) Sean $K \subseteq L$ y L es finitamente generado como K algebra, entonces L es finitamente generado como K modulo, es decir, como espacio vectorial.

2. Variedades Afines

En general supondremos que $k = \overline{k}$.

Definición 8.3. Una variedad afín es un conjunto algebraico $V \subseteq \mathbb{A}^n_k$ irreducible.

Recordemos que V es irreducible si y solo si I(V) es primmo. Entonces definimos el dominio

$$\Gamma(V) := \frac{k[x_1, \cdots, x_n]}{I(V)}$$

y lo llamamos anillo de coordenadas de V.

Definición 8.4. Sean $V\subseteq \mathbb{A}^n_k$ y $W\subseteq \mathbb{A}^m_k$ variedades afines. Una aplicación polinomial es una función

$$\varphi: V \to W$$

$$a: (a_1, \dots, a_n) \to (f_1(a), \dots, f_m(a))$$

donde $f_i \in k[x_1, \cdots, x_n]$.