Háromfázisú inverterek szabályozása

Témalabor beszámoló BME V1323, 2019.12.20.

Sövény Gergely Máté, Friedreich Bálint

Mai témák

- Inverterek típusai és feladata
- Szabályozási megfontolások
- Forgó referenciarendszer
- HMKE-k terjedése 10kW Modell
- Mögöttes hálózat hatása

Releváns irodalom

- Voltage-Sourced Converters in Power Systems (Yazdani, Iravan)
- Control of Power Converters in AC Microgrids (IEEE)
- TIDA-01606 10kW 3ph Reference Design (Texas Instruments)

Inverter feladatai

- Hálózat állapotának figyelése
- Hálózati szinkronizáció
- Teljesítmény alapjelek követése
 - Hatásos és meddő (P, Q)
- Teljesítményfokozat vezérlése

Áramköri modell (Grid-feeding)

Áramköri modell (Félhíd)

Zárt szabályzási kör

Inverter szabályozás (PI)

Inverter szabályozás (PI)

FIGURE 3.15 Steady-state error in phase and amplitude of the current when PI compensator is employed; Example 3.5.

dq forgó referencia

dq referencia szerinti szabályozás

Specifikáció

- 3ph 400 VAC Cstalakozás
- 600-1000 VDC Input
- Max. 10kVA (PF>0.7) [18 A]

Újonnan csatlakozó HMKE-k

Szimulációs eredmények

Szimulációs eredmények

Szimulációs eredmények

Szabályzási feladat blokkvázlata

Texas Instruments (10kW 3PH)

Inverter Hatásfok

Háromfázisú inverterek szabályozása

Köszönjük a figyelmet!

Sövény Gergely Máté, Friedreich Bálint

