Assignment 7 Problem Two

Michael Cai

March 19, 2016

2. A Bundt cake, well known for having a ringed shape, is formed by revolving around the y-axis the region bounded by the graph of $y = sin(x^2 - 1)$ and around the x-axis over the interval $1 \le x \le \sqrt{1 + \pi}$. Find the volume of the cake.

As shown by the graph provided on the problem sheet, the most practical way to find the volume of a bundt cake would be to use the shell method for the solid of revolution created by the function $y = sin(x^2 - 1)$ on the interval $1 \le x \le \sqrt{1+\pi}$.

The formula for shell method is given by the following: $V = \int 2\pi r h dx$, where r is the radius and h is the height of the cylindrical shells that are formed.

The rin this case is the distance measured in x from the y-axis, where x = 0to the function, so thus the r=x.

The h in this case is the distance between the x-axis and the height of the function, which is just $y = sin(x^2 - 1) = h$

$$V = \int_{1}^{\sqrt{1+\pi}} 2\pi x \sin(x^2 - 1) dx = 2\pi \int_{1}^{\sqrt{1+\pi}} x \sin(x^2 - 1) dx$$

Thus the volume is: $V = \int_{1}^{\sqrt{1+\pi}} 2\pi x sin(x^2 - 1) dx = 2\pi \int_{1}^{\sqrt{1+\pi}} x sin(x^2 - 1) dx$ Let $u = x^2 - 1$, thus du = 2x dx, and the limits are $ulim = \pi$ and llim = 0. $V = \pi \int_{0}^{\pi} sin(u) du$

$$V = \pi[-\cos(u)]\Big|_{0}^{\pi} = \pi[\cos(u)]_{\pi}^{0} = \pi[\cos(0) - \cos(\pi)] = 2\pi$$