Catalogue

1 Analyzing <i>Mmeans</i>	
(a)	
(b)	
(c)	
2 Implementing <i>Mmeans</i>	
(a)	
(b)	
Appendix	Ē

Dengke Chen and qvl920

1 Analyzing \mathcal{M}_{means}

(a)

Answer:

To show that \mathcal{M}_{means} satisfies ρ -zCDP given that $\mathcal{M'}_{means}$ does, need to establish that \mathcal{M}_{means} is a post-processing of $\mathcal{M'}_{means}$. According to Lemma 4 (Composition), privacy guarantees are preserved under post-processing; that is, any function applied to the output of a ρ -zCDP mechanism remains ρ -zCDP.

 $\mathcal{M'}_{means}$: Outputs noisy versions of intermediate computations:

$$\{f_{\ell}(X) + z_{\ell}, g_{\ell}(X) + z_{\ell}'\}_{\ell=1}^{t},$$

Here, $f_{\ell}(X)$ and $g_{\ell}(X)$ are functions of the input data X, and z_{ℓ} and z_{ℓ}' are Gaussian noise vectors.

 \mathcal{M}_{means} : Outputs the final cluster centers:

$$\left\{c_i^{(t)}\right\}_{i=1}^k,$$

The $c_i^{(t)}$ are computed using the noisy sums and counts from $\mathcal{M'}_{means}$.

The cluster centers $\left\{c_i^{(t)}\right\}$ in \mathcal{M}_{means} are computed using the noisy outputs from $\mathcal{M'}_{means}$ through deterministic calculations.

Specifically, the update rule for cluster centers in step 2.(a) of \mathcal{M}_{means} is

$$c_i^{(\ell)} = \frac{1}{\max\left(1, n_i^{(\ell-1)}\right)} \left(\mathcal{Z}_{\ell, i} + \sum_{j \in S_i^{(\ell-1)}} x_j\right) = \frac{1}{\max\left(1, n_i^{(\ell-1)}\right)} (f_{\ell}(X)_i + z_{\ell, i})$$

This is a function of $f_\ell(X) + z_\ell$ and $n_i^{(\ell-1)}$ (which depends on $g_{\ell-1}(X) + z_{\ell-1}'$).

Since \mathcal{M}_{means} computes its output by applying deterministic functions to the outputs of $\mathcal{M'}_{means}$, it is a post-processing of $\mathcal{M'}_{means}$.

Lemma 4 (Composition) tells us that post-processing a ρ -zCDP mechanism does not increase the privacy loss.

Therefore, if $\mathcal{M'}_{means}$ satisfies ρ -zCDP, then \mathcal{M}_{means} also satisfies ρ -zCDP.

Since \mathcal{M}_{means} is a deterministic post-processing of $\mathcal{M'}_{means}$, and privacy guarantees are preserved under post-processing, \mathcal{M}_{means} satisfies ρ -zCDP if $\mathcal{M'}_{means}$ does.

(b)

Answer:

X and X' differ in exactly one data point, say at index s.

Since $S_1^{(\ell-1)}$ are fixed and independent of X, the sets remain the same for both X and X'. For each cluster $i \in [k]$:

$$f_{\ell}(X)_{i} = \sum_{j \in S_{i}^{(\ell-1)}} x_{j}$$
$$f_{\ell}(X')_{i} = \sum_{j \in S_{i}^{(\ell-1)}} x'_{j}$$

Since $x_j = x'_j$ for all $j \neq s$, the only potential difference comes from j = s if $s \in S_1^{(\ell-1)}$.

The difference vector $f_{\ell}(X) - f_{\ell}(X')$ has non-zero components only in the cluster iii such that $s \in S_1^{(\ell-1)}$:

$$[f_{\ell}(X) - f_{\ell}(X')]_i = \begin{cases} x_s - {x'}_s, & \text{if } s \in S_1^{(\ell-1)} \\ 0, & \text{otherwise} \end{cases}$$

Since $||x_s||_2$, $||x_s'||_2$ we have:

$$||x_s - x_s'||_2 \le ||x_s||_2 + ||x_s'||_2 \le 2$$

Therefore, the squared ℓ_2 -norm of the difference is:

$$||f_{\ell}(X) - f_{\ell}(X')||_{2}^{2} = \sum_{i=1}^{k} ||[f_{\ell}(X) - f_{\ell}(X')]_{i}||_{2}^{2} \le 4$$

Final, taking the square root, get: $||f_{\ell}(X) - f_{\ell}(X')||_2 \le 2$

By fixing $S_1^{(\ell-1)}$, the difference $f_\ell(X)-f_\ell(X')$ is non-zero only in one cluster iii where s $s\in S_1^{(\ell-1)}$, and this difference has norm at most 2. Therefore, $\|f_\ell(X)-f_\ell(X')\|_2\leq 2$ for neighboring $X\sim X'$.

(C)

Answer:

Privacy Loss per Iteration:

In each iteration ℓ , $\mathcal{M'}_{means}$ releases:

Noisy Sum: $f_{\ell}(X) + z_{\ell}$ where $z_{\ell} \sim \mathcal{N}(0, \sigma^2)^{dk}$

Noisy Counts: $g_{\ell}(X) + z'_{\ell}$ where $z'_{\ell} \sim \mathcal{N}(0, {\sigma'}^2)^k$

Sensitivity Computations:

Sensitivity of $f_{\ell}(X)$:

From Problem (b), $||f_{\ell}(X) - f_{\ell}(X')||_2 \le 2$, So, $\Delta_f = 2$

Sensitivity of $g_{\ell}(X)$:

Changing one data point can affect cluster assignments, changing the counts in up to two clusters by 1 (one increases by 1, another decreases by 1).

The difference vector has +1 and -1 in two components, zeros elsewhere.

$$\begin{split} \|g_\ell(X) - g_\ell(X')\|_2 &= \sqrt{2},\\ \text{So, } \Delta_q &= \sqrt{2} \end{split}$$

Applying the Gaussian Mechanism (Proposition 3):

Privacy Loss for
$$f_\ell(X) + z_\ell$$
: $\rho_f = \frac{{\Delta_f}^2}{2\sigma^2} = \frac{2^2}{2\sigma^2} = \frac{2}{\sigma^2}$

Privacy Loss for
$$g(X) + z'_{\ell}$$
: $\rho_g = \frac{\Delta_g^2}{2{\sigma'}^2} = \frac{\sqrt{2}^2}{2{\sigma'}^2} = \frac{1}{{\sigma'}^2}$

Total Privacy Loss per Iteration: $\rho_{iter} = \rho_f + \rho_g = \frac{2}{\sigma^2} + \frac{1}{{\sigma'}^2}$

Aggregating Over t Iterations:

Using Lemma 4 (Composition), the total privacy loss over t iterations is additive:

$$\rho_{total} = t \cdot \rho_{iter} = t(\rho_f + \rho_g) = (\frac{2t}{\sigma^2} + \frac{t}{\sigma'^2})$$

Therefore $\mathcal{M'}_{means}$ satisfies ρ -zCDP with $\rho = 2t/\sigma^2 + t/{\sigma'}^2$.

2 Implementing \mathcal{M}_{means}

(a)

Answer:

The link to the full code on Colab: my code on Colab

From the previous analysis, the algorithm satisfies $\,
ho$ -zCDP with: $ho = 2t/\sigma^2 + t/{\sigma'}^2$

To allocate the privacy budget optimally between σ and σ' , balance the privacy loss contributed by each. Using the sensitivities of the functions:

Sensitivity of $f_{\ell}(X)$: $\Delta_f = 2$

Sensitivity of $g_{\ell}(X)$: $\Delta_g = \sqrt{2}$

Set:
$$\frac{{\Delta_f}^2}{2\sigma^2} = \frac{{\Delta_g}^2}{2{\sigma'}^2} = \frac{\rho}{2t}$$

Solving for σ^2 and ${\sigma'}^2$: $\sigma^2 = \frac{4t}{\rho}$, ${\sigma'}^2 = \frac{2t}{\rho}$

The modified code section can be found in the file appendix.

Algorithm Steps:

Initialization:

Randomly assigns each data point to one of the k clusters.

Computes the initial noisy cluster counts $n_i^{(0)}$.

Iterative Updates (for $\ell = 1$ to t):

Cluster Center Update [Step 2.(a)]:

Computes the sum of points in each cluster.

Adds Gaussian noise $z_{\ell,i}$ to the sum.

Updates the cluster centers $c_1^{(\ell)}$ using the noisy counts $n_i^{(\ell-1)}$.

Cluster Assignment [Step 2.(b)]:

Assigns each point to the nearest cluster center.

Noisy Count Update [Step 2.(c)]:

Computes the new cluster sizes.

Adds Gaussian noise $Z'_{\ell,i}$ to obtain $n_i^{(\ell)}$.

Final Output [Step 3]:

Returns the cluster centers after t iterations.

(b)

Answer:

Result plot (The modified code section can be found in the file appendix.):

High Privacy (Low ρ): At low values of ρ , the added noise is significant, leading to higher clustering costs.

Low Privacy (High ρ): As ρ increases, less noise is added, resulting in better clustering (lower cost).

Appendix

```
# Differentially Private k-means Algorithm
def M_means(points, k, t, rho):
    n, d = points.shape

# Calculate sigma and sigma_prime based on rho and t
    sigma_squared = (4 * t) / rho
    sigma = np.sqrt(sigma_squared)

sigma_prime_squared = (2 * t) / rho
    sigma_prime = np.sqrt(sigma_prime_squared)

# Step 1: Random initialization of disjoint clusters
```

```
initial assignment = np.random.choice(range(k), n)
   cluster indexes = [ np.where(initial assignment == i)[0] for i in
range(k)]
   n i prev = [ len(cluster indexes[i]) for i in range(k) ] #
n_i^{(0)}
   for 1 in range (1, t + 1):
      # Step 2(a): Update cluster centers with noise
      ci = []
      for i in range(k):
         S i prev = cluster indexes[i]
          # Sum over points in S i^{(1-1)}
         if len(S i prev) > 0:
             f l i = np.sum(points[S i prev], axis=0)
          else:
             f l i = np.zeros(d)
          # Add Gaussian noise
          Z l i = np.random.normal(0, sigma, d)
         denominator = max(1, n i prev[i])
          # Compute c i^{(1)}
         cil=(Zli+fli) / denominator
         c i.append(c i l)
      centers = np.array(c i) # Centers for iteration 1
      # Step 2(b): Assign points to the nearest cluster center
      distances squared = np.sum((points - centers[:,
np.newaxis]) **2, axis=-1)
      assignment = np.argmin(distances squared, axis=0)
      cluster\_indexes = [ np.where(assignment == i)[0] for i in
range(k)]
      # Step 2(c): Update cluster sizes with noise
      n i = []
      for i in range(k):
         cluster size = len(cluster indexes[i])
         z prime l i = np.random.normal(0, sigma prime)
         n i l = cluster size + z prime l i
         n i.append(n i l)
      n i prev = n i # Update for next iteration
   # Step 3: Output the final cluster centers
   return centers # Final cluster centers c i^{(t)}
```

```
"""# Plot cost as function of number of iterations"""
# Parameters
k = 5 # Number of clusters
t = 5 # Number of iterations
rho_values = np.logspace(-3, 0, num=20) # 20 values from 0.001 to 1
costs = []
# Run M means for each rho and compute cost
for rho in rho_values:
   centers = M means(points, k, t, rho)
   cost = compute cost(points, centers)
   costs.append(cost)
   print(f"Rho: {rho:.4f}, Cost: {cost:.4f}")
# Plot the cost as a function of rho
fig, ax = plt.subplots()
ax.set xlabel('ρ')
ax.set_ylabel('Cost')
ax.plot(rho_values, costs, marker='o')
ax.set xscale('log')
ax.set title('Cost vs. \rho')
plt.show()
```