Sandpile model: Study of

power laws

Model overview

NxN 2D-lattice

- "Sand" is randomly dropped on a 2D lattice
- We can place sand particle one over another till the critical value (z_c)
- Any sand particle crossing the boundary of NxN lattice is lost
- If at any (x,y) point z_c=4, then the cell collapses and transfer the sand to the adjacent cells (this is known as avalanche, toppling)
- We have to wait till all the avalanche settles down, then drop another

Basic idea of code

Consider a lattice (x,y) and a function z(x,y) which represents the number of grains in the cells.

Starting with a flat surface z(x,y) = 0 for all x and y:

Add a grain of sand: $z(x,y) \rightarrow z(x,y) + 1$ if $z(x,y) > z_c$ then an avalanche occurs

$$z(x,y) \rightarrow z(x,y) - 4$$

$$z(x \pm 1,y) \rightarrow z(x \pm 1,y) + 1$$

$$z(x,y \pm 1) \rightarrow z(x,y \pm 1) + 1$$

if
$$z(x,y\pm 1) = 4$$
 or $z(x\pm 1, y) = 4$
Update z

Toppling (example)

Sand added - 1 Total toppling - 6

And we count the frequency of 6 toppings in the entire grain drop

Graphs for Avalanche Size

Value of alpha

No. of grains		10x10	50x50	100x100
	10k	1.4084	1.2930	2.2451
	30k	1.4086	1.2640	1.2946
	50k	1.4059	1.2595	1.2503
	200k	1.4066	1.2563	1.2296

Power law: $Y = bx^{\alpha}$

frequency \propto (toppling) $^{\alpha}$

toppling ---> s

Result

- Value of alpha for avalanche size from BTW review letter: $\alpha = 0.98$
- Value of alpha from my code: $\alpha = 1.2682$

Graphs for Avalanche Time

Value of alpha

No. of grains		10x10	50x50	100x100
	10k	1.4817	1.3661	2.2275
	30k	1.4760	1.3325	1.3714
	50k	1.4768	1.3290	1.3198

Power law: $Y = bx^{\alpha}$

Result

- Value of alpha for avalanche time from BTW review letter: $\alpha = 0.42$
- Value of alpha from my code: $\alpha = 1.3425$

Simulation video

Reference: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.59.381

Thank You

Instructor: Dr. MK Verma
Department of Physics, IIT
Kanpur

Saroj Anjesh, 170634 Department of Physics, IIT Kanpur