INTEGRATED AIRFRAME DEMONSTRATIONS

David E. Glass and J. Wayne Sawyer NASA Langley Research Center

Tel: (757) 864-5423 d.e.glass@larc.nasa.gov

Space Transportation Technology Workshop

Evolution of technology

- Increase heat flux/ temperature capability
- Decrease cost, complexity and weight
 - Increase size

- Control surfaces
- Accomplishments and status
- C/C elevon (NASP)
- Ruddervator and flaperon (X-37)
- Next step
- Full size orbiter body flap

Space Transportation Technology Workshop

HOT STRUCTURE COMPONENTS FOR POTENTIAL FLIGHT DEMO

Objective

Develop and verify the technology required for application of minimal weight control surfaces that meet NASP vehicle requirements

Approach

- Develop design and fabrication concepts
- Verify concept design through sub-component fabrication and tests
- Design and fabricate full-scale segment of C/C control surface
- Verify design and fabrication technology by thermal/structural tests

Payoff

- Vehicle enabling
- Reduced structural weight

Space Transportation Technology Workshop

CONTROL SURFACES C/C CONTROL SURFACE FOR NASP

Objectives

- Develop and validate C/SiC control surfaces for the X-37
- Deliver 2 flight approved flaperons and 2 moveable ruddervators for installation on the flight vehicle

Space Transportation Technology Workshop
CONTROL SURFACES
X-37 FLIGHT COMPONENTS

Material property and sub-element (RT - 2800°F)

- Subcomponent (RT)
- Full scale thermal/structural test component
- Proof test of flight article (RT)

Schematic diagram of ruddervator thermal/structural test at AFRL

Space Transportation Technology Workshop

CONTROL SURFACES

X-37 FLAPERON AND RUDDERVATOR VALIDATION

Space Transportation Technology Workshop CONTROL SURFACES STATUS & ISSUES

Status

- tests and analysis of large full-scale segment of C/C control surface for Design, analysis, and fabrication validated through thermal/structural
- scale flaperons and ruddervators for the NASA/Boeing X-37 vehicle thermal/structural tests and analysis and through flight of small full-Design, analysis, and fabrication will be validated through and small full-scale body flap for the X-38 vehicle

Issues

- Validation of major load bearing structural joints in C/C or CMC structures
- Technology required for the fabrication of large multi-part components using C/C or CMC materials
- Life cycle performance of large hot structures components

Hot Structures Control Surfaces Mask

C/C control surface for NASP

Phase I

- Design concepts developed

Fabrication plan developed

· Sub-component test articles designed

Phase II

· Sub-component test articles fabricated

- Design/fabrication validated through sub-component analysis and tests

- Full-scale component (shuttle or RLV size) design developed

Phase III

- Full-scale control surface fabricated

- Design/fabrication validated through thermal/structural analysis and tests

Flight test

Ceramic matrix

composite flap for X-37

 Aluminum or low-temperature composite structure with ceramic tile TDS

Performance Metrics

 Reduced weight, more durable and less maintenance and operating costs than current Space Shuttle control surfaces

Potential risks

Higher initial cost

Participants

- LaRC, DFRC, industry

design validation

Flight test

 Design and fabricate large full-scale C/C or CMC control surface component for Space Shuttle or RLV size vehicle

through static thermal/structural tests and analysis Validate the design and fabrication procedure

Evaluate life-cycle performance through simulated mul reentry thermal/structural load cycles

Flight test on Space Shuttle or RLV size vehicle

Space Transportation Technology Workshop

CONTROL SURFACES POTENTIAL TASKS FOR FLIGHT DEMO

(C)
V Airframe
RLV
K
Gen
n 2nd
Introduction
00
7
12:45 -

1:00 - 1:20 Airframe Design and Integration

1:20 - 1:40 Aerothermodynamics

1:40 - 2:00 Structures and Materials

2:00 - 2:20 Tanks

2:20 - 2:40 Thermal Protection Systems

2:40 - 3:00 Integrated Airframe Demonstrations

S. Welch

S. Scotti C. Miller

T. Johnson D. Smith

M. Rezin

D. Glass

3:00 - 3:05 BREAK

3:05 - 3:30 Introduction 3rd Gen RLV Airframe

3:30 - 3:55 Integrated Design and Analysis

3:55 - 4:20 Integrated Thermal Str. & Materials

4:20 - 4:45 Thermal Protection Systems

D. Bowles

B. Jensen T. Gates

S. Johnson

3rd Generation Agenda