Ch 3 : Trigonométrie : exercices

A l'issue de ce travail je dois être capable de :

- · convertir des degrés aux radians et des radians aux degrés
- · déterminer une mesure d'angle orienté, sa mesure principale
- connaître les définitions, propriétés et valeurs remarquables des fonctions sinus et cosinus, résoudre des équations cos(x)=a et sin(x)=a
- connaître et utiliser les relations entre les cosinus et sinus d'un angle et d'un angle associé
- reconnaître des fonctions sinusoïdales, déterminer graphiquement leur amplitude et leur période, utiliser le vocabulaire « phase instantanée », « phase à l'origine »

Les exercices sont à réaliser dans l'ordre que vous voulez partie exercice en indiquant bien le chapitre sur lequel vous travaillez, vous pourrez éventuellement poursuivre votre travail chez vous.

A traiter obligatoirement :

exercice 1:

Indiquer si les affirmations suivantes sont vraies ou fausses.

	V	E
Si un angle géométrique mesure 105° alors sa mesure en radians est $\frac{7\pi}{12}$.		
73 Si un angle géométrique mesure $\frac{2\pi}{9}$ rad alors sa mesure en degrés est 38°.		
$-\frac{3\pi}{5}$ et $\frac{27\pi}{5}$ sont des mesures en radians d'un même angle orienté.		
$-\frac{8\pi}{7}$ est la mesure principale d'un angle orienté ayant pour mesure $\frac{20\pi}{7}$ rad.		
$\frac{76}{2} = \text{est la valeur de sin } \frac{2\pi}{3}.$		
$\cos\frac{8\pi}{9} = -\cos\frac{\pi}{9}.$		
$\frac{17\pi}{6} \text{ est une solution de l'équation } \sin x = -\frac{\sqrt{3}}{2}.$		
La fonction définie sur $[0; +\infty[$ par $f(t)=2\sin\left(100\pi t + \frac{\pi}{3}\right)]$ est périodique de période 0,02.		

Indiquer dans chaque cas la bonne réponse.

Sur le cercle trigonométrique ci-contre, le point associé au nombre réel $-\frac{13\pi}{4}$ est :

a. A

b. B

81 La mesure principale de $\frac{146\pi}{3}$ est :

sin $\left(-\frac{\pi}{6}\right)$ est égal à :

a. $\sin \frac{\pi}{6}$

b. $\sin \frac{5\pi}{6}$

Pour tout nombre réel x, $\cos(x + 7\pi)$ est égal à :

b. $-\cos x$

c. sinx

Si $x \in [-\pi; 0]$ et si $\cos x = 0.8$ alors $\sin x$ est égal à :

c. 0,2

Les solutions de l'équation $\sin x = -\frac{\sqrt{2}}{2}$ dans l'intervalle $]-\pi$; π] sont :

a. $-\frac{3\pi}{4}$ et $-\frac{\pi}{4}$

b. $-\frac{\pi}{4}$ et $\frac{5\pi}{4}$

c. $-\frac{3\pi}{4}$ et $\frac{3\pi}{4}$

exercice 3:

La tension (en Volts) du courant délivré par un générateur très basse fréquence est définie par : $U(t) = 3\cos\left(\frac{\pi}{15}t\right)$ où t est le temps exprimé en secondes.

1. Déterminer la tension du courant à l'instant t = 0. 2. a. On donne la courbe représentant la tension U:

Lire graphiquement la période T.

b. Justifier par un calcul la valeur de *T* lue précédemment.

exercice 4:

Dans un circuit électrique, l'intensité du courant est $i(t) = A \sin(200\pi t + \phi)$ où t est le temps exprimé en secondes et φ, la phase à l'origine exprimée en radians. On donne ci-dessous la courbe représentative de i.

O

1. À l'aide de la courbe, déterminer A.

2. À l'aide de la courbe, déterminer i(0) et en déduire la valeur exacte de φ.

3. Déterminer alors l'expression de i(t).

Pour encore s'exercer :

exercice 5:

Donner la mesure en degrés des angles géométriques dont la mesure en radians est : **a.** $\frac{5\pi}{6}$ **b.** $\frac{7\pi}{12}$ **c.** $\frac{9\pi}{5}$ **d.** $\frac{5\pi}{4}$ **e.** $\frac{14\pi}{9}$ **f.** $\frac{68\pi}{45}$

a.
$$\frac{5\pi}{6}$$

b.
$$\frac{7\pi}{12}$$

c.
$$\frac{9\pi}{5}$$

$$\mathbf{d} \cdot \frac{5\pi}{4}$$

$$e.\frac{14\pi}{9}$$

f.
$$\frac{68\pi}{45}$$

exercice 6:

Donner la mesure en radians des angles géométriques dont la mesure en degrés est :

exercice 7:

IAJBKCLD est un octogone régulier.

1. Déterminer la mesure principale des angles orientés $(\vec{OI}, \vec{OA}), (\vec{OI}, \vec{OB}), (\vec{OI}, \vec{OC})$ et

2. Déterminer une mesure des angles orientés précédents dans l'intervalle $]0; 2\pi]$.

exercice 8:

a.
$$sin(-\pi)$$

b.
$$\cos \frac{7\pi}{3}$$

b.
$$\cos \frac{7\pi}{3}$$
 c. $\cos \frac{5\pi}{2}$

exercice 9:

Déterminer une valeur possible du nombre réel x tel que $\cos x = \frac{1}{2}$ et $\sin x = -\frac{\sqrt{3}}{2}$.

exercice 10:

On donne
$$\cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}$$
 et $\sin \frac{2\pi}{5} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}$.

À l'aide des propriétés des cosinus et des sinus, en déduire les valeurs exactes de $\cos\frac{3\pi}{5}$, $\sin\frac{3\pi}{5}$, $\cos\frac{12\pi}{5}$, $\sin\frac{12\pi}{5}$, $\cos\frac{\pi}{10}$, $\sin\frac{\pi}{10}$, $\cos\frac{9\pi}{10}$ et $\sin\frac{9\pi}{10}$.

exercice 11:

En s'aidant du cercle trigonométrique, résoudre dans \mathbb{R} les équations :

a.
$$\cos x = 0$$

b.
$$\sin x = -\frac{\sqrt{2}}{2}$$
 c. $\sin x = \frac{1}{2}$.

c.
$$\sin x = \frac{1}{2}$$

exercice 12:

Lors de l'émission d'un son pur, la pression de l'air (en mP) est donnée par : $f(t) = 250\sin(100\pi t)$ où t est le temps exprimé en secondes.

On donne la courbe représentant la fonction f: 1. Lire graphiquement la période T. 2. Justifier par un calcul la valeur de T lue précédem-

ment.

