1 Bahnintegration

Da dünne Luft in LEO Bereich existiert, bremsen die Objekten sich langsam und sie werden am Ende auf die Erde fallen. Allerdings kommt dann die Frage: wie lang dauert dieser Prozess?

Gleichung 1 beschriebt die atmosphärische Widerstand des Objekts im Raum. A ist die Querschnittfläche entlang Geschwindigkeitsrichtung, m ist die Masse, ρ ist die Atmosphärendichte, \dot{r}_a und \dot{r} sind jeweils die Geschwindigkeit der Atmosphäre und Objekt. C_d beschreibt die Form des Objekts im Raum, typische Werte sind bspw. 1 für Kugel und ca. 2.5 für ISS(Internationale Raum Station).

$$\frac{\mathbf{f}_{atm}}{m} = -\frac{1}{2} \cdot C_d \cdot \rho \cdot \frac{A}{m} \cdot (\dot{\mathbf{r}} - \dot{\mathbf{r}}_a) \cdot |\dot{\mathbf{r}} - \dot{\mathbf{r}}_a|$$
(1)

Das bedeutet, bevor wir die Bahnintegration implementieren, müssen wir zunächst Raumobjekten bzw. Raumatmosphäre untersuchen.

1.1 Atmosphärische Eigenschaft im Raum

2 Atmosphäre Modelle sind untersucht nämlich Harris-Priester Modell Harris & Priester (1963) und MSIS-E-00Picone et al. (2002). Bei Harris-Priester Model ist die Atmosphärische Dicht nur von Höhe abhängen und MSIS-E-00 ist ein viel präziseres Modell, bei dem geographische Ort, Höhe und auch Zeit eine Rolle spielen.

Bei MSIS-E-00 Model ist die Atmosphärische Dichte von mehre Parametern abhängen, bspw. ellipsoidische Höhe, Länge, Breite und Zeit.

Literatur

Harris, I. & Priester, W. (1963), Relation between theoretical and observational models of the upper atmosphere, Technical report.

Picone, J., Hedin, A., Drob, D. P. & Aikin, A. (2002), 'Nrlmsise-00 empirical model of the atmosphere: Statistical comparisons and scientific issues', *Journal of Geophysical Research: Space Physics* **107**(A12), SIA–15.