Exercises Set 3

Paul Dubois

September 15, 2023

Abstract

Only the questions with a * are compulsory (but do all of them!).

1 Fundamental Theorem of Calculus

Statement Let f be a continuous real-valued function defined on a closed interval [a,b]. Let F be the function defined, for all $x \in [a,b]$, by $F(x) = \int_a^b f(t)dt$.

Then F is uniformly continuous on [a,b] and differentiable on the open interval (a,b), and F'(x)=f(x) for all xin(a,b) so F is an anti-derivative of f.

Generalization / Corollary Let f(x) be a continuous function on the closed interval [a, b], and let F(x) be an anti-derivative of f(x). Prove that

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Application Evaluate the following definite integral using the Fundamental Theorem of Calculus:

$$\int_0^{\pi/2} \sin(x) \, dx$$

Evaluate the following definite integral using the Fundamental Theorem of Calculus:

$$\int_1^4 \frac{1}{x^2} \, dx$$

2 Integration techniques

Substitution Exercise 1: Evaluate the following integral using the method of substitution:

$$\int e^{2x} \cos(2x) \, dx$$

Hint: Let $u=e^{2x}$ and then find du to perform the substitution. **Exercise 2:** Evaluate the following integral using the method of substitution:

 $\int \frac{2x}{(x^2+1)^2} \, dx$

Hint: Let $u = x^2 + 1$ and then find du to perform the substitution.

Integration by Parts