Лабораторная работа №2

Сетевые технологии

Бансимба Клодели Дьегра 1032215651

НПИбд02-22

25 сентября 2024

ЦЕЛЬ РАБОТЫ

Изучить принципы технологий Ethernet и Fast Ethernet и практически освоить методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

ЗАДАНИЕ

Оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-TX,96 м	100BASE-TX,92 м	100BASE-TX,80 м	100BASE-TX,5 м	100BASE-TX,97 м	100BASE-TX,97 м
2.	100BASE-TX,95 м	100BASE-TX,85 м	100BASE-TX,85 м	100BASE-TX,90 м	100BASE-TX,90 м	100BASE-TX,98 м
3.	100BASE-TX,60 м	100BASE-TX,95 м	100BASE-TX,10 м	100BASE-TX,5 M	100BASE-TX,90 м	100BASE-TX,100 м
4.	100BASE-TX,70 м	100BASE-TX,65 м	100BASE-TX,10 м	100BASE-TX,4 M	100BASE-TX,90 м	100BASE-TX,80 м
5.	100BASE-TX,60 м	100BASE-TX,95 м	100BASE-TX,10 м	100BASE-TX,15 м	100BASE-TX,90 м	100BASE-TX,100 м
6.	100BASE-TX,70 м	100BASE-TX,98 м	100BASE-TX,10 м	100BASE-TX,9 M	100BASE-TX,70 м	100BASE-TX,100 м

ЗАДАНИЕ

- Оценим работоспособность сети в соответствии с первой моделью.
- Для этого нам необходимо посчитать диаметр домена коллизий и сравнить его с предельно допустимым значением для нашей конфигурации сети (205м).

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5		Диаметр домена коллизий
1.	96			5	97	97	198
2.	95	85	85	90	90	98	283
3.	60	95	10	5	90	100	200
4.	70	65	10	4	90	80	170
5.	60	95	10	15	90	100	210
6.	70	98	10	9	70	100	207

- Оценим работоспособность сети в соответствии со второй моделью.
- Для этого нам надо вычислить время двойного оборота.
- Время двойного оборота рассчитывается для наихудшего пути между двумя узлами домена коллизий. Расчёт выполняется путём суммирования временных задержек в сегментах, повторителях и терминалах.
- Для вычисления времени двойного оборота нужно умножить длину сегмента на величину удельного времени двойного оборота соответствующего сегмента (для витой пары категории 5: 1,112 би/м).
- Сравнить результат с 512 би.

Компонент пути	Время двойного оборота, би
Пара терминалов с интерфейсами TX	100
Сегмент на витой паре категории 5 (100 м)	111,2
Сегмент на витой паре категории 5 (100 м)	111,2
Сегмент на витой паре категории 5 (5 м)	5,56
Повторитель класса II	92
Повторитель класса II	92

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	96	92	80	5	97	97
2.	95	85	85	90	90	98
3.	60	95	10	5	90	100
4.	70	65	10	4	90	80
5.	60	95	10	15	90	100
6.	70	98	10	9	70	100

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	ppenm geemiere eeepera	+ запасные биты
1.	106,752			5,56		107,864	504,176	508,176
2.	105,64			100,08		108,976	598,696	602,696
3.		105,64		5,56		111,2	506,4	510,4
4.					100,08	88,96	381,04	385,04
5.		105,64		16,68		111,2	517,52	521,52
6.		108,976		10,008		111,2	514,184	518,184

ВЫВОДЫ

В процессе выполнения данной лабораторной работы я изучила принципы технологий Ethernet и Fast Ethernet, а также освоила методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.