From parabolic fixed points to asymptotic enumeration

Thomas Prellberg

thomas.prellberg@qmul.ac.uk

School of Mathematical Sciences

Queen Mary, University of London

Combinatorial Enumeration

Problems in Combinatorial Enumeration

Examples of recursively definable structures:

- Number of partitions of a set into subsets (Bell, 1934)
 - Bell Numbers
- Number of partitions of a set into ordered subsets (Cayley, 1859)
 - ordered Bell Numbers
- Partition lattice chains (Lengyel, 1984)
 - Lengyel's Constant
- Analysis of a recursive Program (Knuth, 1991)
 - $f(x,y,z) = \text{if } x \leq y \text{ then } y \text{ else }$ f(t(x-1,y,z), t(y-1,z,x), t(z-1,x,y))

Bell Numbers

 \blacksquare B_n number of partitions of an n-set into subsets

$$B_3 = \binom{2}{0}B_2 + \binom{2}{1}B_1 + \binom{2}{2}B_0$$

$$\{\{3\},\{1,2\}\} \qquad \{\{3,1\},\{2\}\} \qquad \{\{3,1,2\}\}\}$$

$$\{\{3\},\{1\},\{2\}\} \qquad \{\{3,2\},\{1\}\}$$

Bell Numbers

 \blacksquare B_n number of partitions of an n-set into subsets

$$B_3 = \binom{2}{0}B_2 + \binom{2}{1}B_1 + \binom{2}{2}B_0$$

$$\{\{3\},\{1,2\}\} \quad \{\{3,1\},\{2\}\} \quad \{\{3,1,2\}\}\}$$

$$\{\{3\},\{1\},\{2\}\} \quad \{\{3,2\},\{1\}\}$$

Recurrence:
$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_{n-k}$$
, $B_0 = 1$

Bell Numbers

 \blacksquare B_n number of partitions of an n-set into subsets

$$B_3 = \binom{2}{0}B_2 + \binom{2}{1}B_1 + \binom{2}{2}B_0$$

$$\{\{3\},\{1,2\}\} \qquad \{\{3,1\},\{2\}\} \qquad \{\{3,1,2\}\}\}$$

$$\{\{3\},\{1\},\{2\}\} \qquad \{\{3,2\},\{1\}\}$$

- Recurrence: $B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_{n-k}$, $B_0 = 1$
- **•** Exact expression for B_n from EGF: $b(z) = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!}$

$$b(z) = \exp(e^z - 1)$$
 \Rightarrow $B_n = \frac{1}{e} \sum_{m=0}^{\infty} \frac{m^n}{m!}$

Bell Numbers (ctd.)

Asymptotic growth (from saddle point method):

$$B_n \sim \exp\left(e^w(w^2 - w + 1) - \frac{1}{2}\log(w + 1) - 1\right)$$

Scale: $w \exp(w) = n$ Lambert W-function:

$$w = W(n)$$

Bell Numbers (ctd.)

Asymptotic growth (from saddle point method):

$$B_n \sim \exp\left(e^w(w^2 - w + 1) - \frac{1}{2}\log(w + 1) - 1\right)$$

Scale: $w \exp(w) = n$ Lambert W-function:

$$w = W(n)$$

• Functional equation for OGF: $B(z) = \sum_{n=0}^{\infty} B_n z^n$

$$B(z) = \frac{z}{1-z}B\left(\frac{z}{1-z}\right) + 1$$

Ordered Bell Numbers

• Recurrence:
$$S_{n+1} = \sum_{k=0}^{n} \binom{n+1}{k+1} S_{n-k}, \quad S_0 = 1$$

• Exact expression for S_n from EGF: $s(z) = 1/(2 - e^z)$

$$S_n = \sum_{m=1}^n m! S_{n,m} \;, \quad S_{n,k} \; ext{Stirling numbers 2nd kind}$$

- Asymptotic growth: $S_n \sim \frac{n!}{2} \frac{1}{(\log 2)^{n+1}}$
- Functional equation for OGF (Klazar, private comm.):

$$B(z) = \frac{1}{2} \frac{1}{1-z} B\left(\frac{z}{1-z}\right) + \frac{1}{2}$$

Partition Lattice Chains

Poset of partitions of an n-set

 $oldsymbol{D}$ Z_n number of chains from minimal to maximal element

$$Z_1 = 1$$
, $Z_2 = 1$, $Z_3 = 4$, $Z_4 = 32$, ...

Partition Lattice Chains (ctd.)

Recurrence (Lengyel):

$$Z_n = \sum_{k=1}^{n-1} S_{n,k} Z_k$$
, $S_{n,k}$ Stirling numbers 2nd kind

Functional equation for EGF (Lengyel):

$$Z(z) = \frac{1}{2}Z(e^z - 1) + \frac{z}{2}$$

Asymptotic growth (Babai, Lengyel):

$$Z_n \sim C_{\text{Lengyel}}(n!)^2 (2\log 2)^{-n} n^{-1-\frac{1}{3}\log 2}$$

▶ Lengyel's Constant (Flajolet, Salvy): $C_{\text{Lengyel}} = 1.0986858055...$

Takeuchi Numbers

Recursive function (Takeuchi):

$$t(x,y,z)=$$
 if $x\leq y$ then y else
$$t(t(x-1,y,z),t(y-1,z,x),t(z-1,x,y))$$

- m T(x,y,z) number of times the else clause is invoked when evaluating t(x,y,z)
- $T_n = T(n, 0, n + 1)$ $T_1 = 1, \quad T_2 = 4, \quad T_3 = 14, \quad T_4 = 53, \quad \dots$
- Actual value of t(x, y, z) is irrelevant

$$t(x,y,z) = \begin{cases} & y & x \leq y \\ & z & y \leq z \\ & x & \text{else} \end{cases}$$

Takeuchi Numbers (ctd.)

Recurrence (Knuth):

$$T_{n+1} = \sum_{k=0}^{n} \left[\binom{n+k}{n} - \binom{n+k}{n+1} \right] T_{n-k} + \sum_{k=1}^{n+1} \binom{2k}{k} \frac{1}{k+1}$$

Functional equation for OGF (Knuth):

$$T(z) = zC(z)T(zC(z)) + \frac{C(z)-1}{1-z}$$
, $C(z) = \sum_{k=0}^{\infty} {2k \choose k} \frac{z^k}{k+1}$

Asymptotic growth (Prellberg):

$$T_n \sim C_{\text{Takeuchi}} B_n \exp \frac{1}{2} W(n)^2 , \quad C_{\text{Takeuchi}} = 2.2394331040 \dots$$

General Setting

Linear recurrences:

$$X_n = \sum_{k=1}^{n} c_{n,k} X_{n-k} + b_n$$

Linear recurrences:

$$X_n = \sum_{k=1}^{n} c_{n,k} X_{n-k} + b_n$$

Functional equations for OGF/EGF:

$$X(z) = a(z)X \circ f(z) + b(z)$$

Linear recurrences:

$$X_n = \sum_{k=1}^{n} c_{n,k} X_{n-k} + b_n$$

Functional equations for OGF/EGF:

$$X(z) = a(z)X \circ f(z) + b(z)$$

Parabolic fixed point:

$$f(z) = z + cz^2 + dz^3 + \dots$$

Linear recurrences:

$$X_n = \sum_{k=1}^{n} c_{n,k} X_{n-k} + b_n$$

Functional equations for OGF/EGF:

$$X(z) = a(z)X \circ f(z) + b(z)$$

Parabolic fixed point:

$$f(z) = z + cz^2 + dz^3 + \dots$$

Caveat: divergence of GF!

Generalization: Recursive Structures

- View combinatorial structures as formed of "atoms"
- Substitution operation $A = B \circ C$:

 "substitute elements of C for atoms of B"

$$\mathcal{B} \circ \mathcal{C} = \sum_{k \geq 0} \mathcal{B}_k imes \overbrace{\mathcal{C} imes \mathcal{C} imes \mathcal{C} imes \mathcal{C}}^k$$

- **●** The associated OGF satisfies A(z) = B(C(z))
- ullet A recursively definable structure ${\mathcal X}$ is defined by

$$\mathcal{X} = \mathcal{A} \times \mathcal{X} \circ \mathcal{F} + \mathcal{B}$$

● The associated OGF satisfies $X(z) = A(z)X \circ F(z) + B(z)$

Ingredients for General Theory

- Formal solution of the functional equation (leads to divergent FPS)
- Cauchy formula
- Analytic iteration theory near parabolic fixed points (Milnor, Beardon)
- Saddle point analysis

Formal Power Series Solution

Let the FPS X(z) satisfy

$$X(z) = a(z)X \circ f(z) + b(z)$$

with a(z), f(z), and b(z) analytic near z=0 and

$$f(z) = z + cz^2 + dz^3 + \dots, \quad c > 0$$

Formal Power Series Solution

Let the FPS X(z) satisfy

$$X(z) = a(z)X \circ f(z) + b(z)$$

with a(z), f(z), and b(z) analytic near z=0 and

$$f(z) = z + cz^2 + dz^3 + \dots, \quad c > 0$$

Then

$$X(z) = \sum_{m=0}^{\infty} \left(\prod_{k=0}^{m-1} a \circ f^k(z) \right) b \circ f^m(z)$$

as FPS (this is a divergent power series!)

Inversion via Cauchy Formula

From

$$X(z) = \sum_{m=0}^{\infty} \left(\prod_{k=0}^{m-1} a \circ f^k(z) \right) b \circ f^m(z)$$

we compute

$$X_n = [z^n]X(z) = \sum_{m=0}^{\infty} X_{n,m}$$

with

$$X_{n,m} = \frac{1}{2\pi i} \oint \left(\prod_{k=0}^{m-1} a \circ f^k(z) \right) b \circ f^m(z) \frac{dz}{z^{n+1}}$$

Simplification via Homogeneous Eqn.

lacksquare Let Y(z) be a solution of the *homogeneous* equation

$$Y(z) = a(z) Y \circ f(z)$$

Then $X_{n,m}$ simplifies to

$$X_{n,m} = \frac{1}{2\pi i} \oint \frac{b \circ f^m(z)}{Y \circ f^m(z)} Y(z) \frac{dz}{z^{n+1}}$$

Simplification via Homogeneous Eqn.

Period Let Y(z) be a solution of the *homogeneous* equation

$$Y(z) = a(z) Y \circ f(z)$$

Then $X_{n,m}$ simplifies to

$$X_{n,m} = \frac{1}{2\pi i} \oint \frac{b \circ f^m(z)}{Y \circ f^m(z)} Y(z) \frac{dz}{z^{n+1}}$$

- ullet Needed: existence of Y(z) and analyticity properties
 - Analytic iteration theory (Milnor, Beardon)

"Parabolic Linearization Theorem" \Rightarrow conjugacy of f(z) to a shift

"Parabolic Linearization Theorem" \Rightarrow conjugacy of f(z) to a shift

 $f^{-1}(z)$ exists in cardioid domain and maps contractively into it

"Parabolic Linearization Theorem" \Rightarrow conjugacy of f(z) to a shift

 $= f^{-1}(z)$ exists in cardioid domain and maps contractively into it

"Parabolic Linearization Theorem" \Rightarrow conjugacy of f(z) to a shift

 $f^{-1}(z)$ exists in cardioid domain and maps contractively into it

•
$$f^k(z) = \mu \left(\mu^{-1}(z) - k \right)$$
 for z sufficiently small

Analytic Iteration Theory (ctd.)

 $m{P}(s)$ admits a complete asymptotic expansion for $\Re(s) \to \infty$:

$$\mu(s) \sim \frac{1}{cs} \left(1 + \left(1 - \frac{d}{c^2} \right) \frac{\log s}{s} + \sum_{k=2}^{\infty} \sum_{j=0}^{k} \mu_{j,k} \frac{(\log s)^j}{s^k} \right)$$

• $f^{-m} \circ \mu(s) = \mu(s+m)$ admits a complete asymptotic expansion for $m \to \infty$:

$$\mu(s+m) \sim \frac{1}{cm} \left(1 + \left(1 - \frac{d}{c^2} - s \right) \frac{\log m}{m} + \sum_{k=2}^{\infty} \sum_{j=0}^{k} \nu_{j,k}(s) \frac{(\log m)^j}{m^k} \right)$$

Solution of the Homogeneous Eqn.

• Substitute $z = \mu(s)$:

$$Y(z) = a(z)Y \circ f(z) \implies Y \circ \mu(s) = a \circ \mu(s)Y \circ \mu(s-1)$$

Solution is given by

$$Y \circ \mu(s) = \lim_{n \to \infty} \frac{a \circ \mu(1)a \circ \mu(2) \dots a \circ \mu(n) (a \circ \mu(n))^s}{a \circ \mu(s+1)a \circ \mu(s+2) \dots a \circ \mu(s+n)}$$

which defines an analytic function in $\mathcal{D}(\mu)$

• Asymptotics as $n \to \infty$:

$$\frac{Y \circ \mu(s+n)}{Y \circ \mu(n)} \sim (a \circ \mu(n))^{s}$$

The Saddle Point Condition

$$X_n = \sum_{m=0}^{\infty} X_{n,m} , \quad X_{n,m} = \frac{1}{2\pi i} \oint \frac{b \circ f^m(z)}{Y \circ f^m(z)} Y(z) \frac{dz}{z^{n+1}}$$

$$\sim \ldots \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} \left(a \circ \mu(m) e^{\frac{n}{m}} \right)^s ds$$

- Saddle point at $a \circ \mu(m)e^{\frac{n}{m}} = 1$
- $a(z) = a_k z^k + \dots, \, \mu(s) \sim (cs)^{-1} \Rightarrow a \circ \mu(m) \sim a_k (cm)^{-k}$
- Different behavior according to
 - k = 0:

$$m = -\frac{n}{\log a_0} \qquad 0 < a_0 < 1$$

lacksquare $k \geq 1$:

$$m = \frac{n}{kW(cn/ka_k^{1/k})} \qquad a_k > 0$$

More tedious calculations...

Main Results

RESULT 1: Let the FPS $X(z) = \sum_{n=0}^{\infty} X_n z^n$ satisfy

$$X(z) = a(z)X \circ f(z) + b(z)$$

with $f(z)=z+cz^2+dz^3+\ldots$, $a(z)=a_0+a_1z+\ldots$, and b(z) analytic near zero.

Main Results

RESULT 1: Let the FPS $X(z) = \sum_{n=0}^{\infty} X_n z^n$ satisfy

$$X(z) = a(z)X \circ f(z) + b(z)$$

with $f(z)=z+{\color{red}c}z^2+{\color{red}d}z^3+\dots$, $a(z)={\color{red}a_0}+{\color{red}a_1}z+\dots$, and b(z) analytic near zero.

If c > 0 and $0 < a_0 < 1$ then

$$X_n \sim Dn! \left(-\frac{c}{\log a_0}\right)^n n^{\left(1 - \frac{d}{c^2}\right) \log a_0 - 1 + \frac{a_1}{a_0}}$$

as $n \to \infty$, where

$$D = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} ds \left(-\log a_{\mathbf{0}}\right)^{-\left(1 - \frac{d}{c^{2}}\right) \log a_{\mathbf{0}}}$$

Main Results (ctd.)

RESULT 2: Let the FPS $X(z) = \sum_{n=0}^{\infty} X_n z^n$ satisfy

$$X(z) = a(z)X \circ f(z) + b(z)$$

with $f(z)=z+cz^2+dz^3+\ldots$, $a(z)=a_1z+\ldots$, and b(z) analytic near zero.

Main Results (ctd.)

RESULT 2: Let the FPS $X(z) = \sum_{n=0}^{\infty} X_n z^n$ satisfy

$$X(z) = a(z)X \circ f(z) + b(z)$$

with $f(z)=z+{\color{red}c}z^2+{\color{red}d}z^3+\dots$, $a(z)={\color{red}a_1}z+\dots$, and b(z) analytic near zero.

If c > 0 and $a_1 > 0$ then

$$X_n \sim Dc^n e^{-\frac{1}{2}(1-\frac{d}{c^2})W(\frac{c}{a_1}n)^2} \sum_{m=0}^{\infty} \frac{m^n}{m!} \left(\frac{a_1}{c}\right)^m$$

$$D = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} ds e^{\frac{1}{2}(1 - \frac{d}{c^2})(\log \frac{a_1}{c})^2}$$

Applications

Application: Bell Numbers

Functional equation for OGF:

$$B(z) = \frac{z}{1-z}B\left(\frac{z}{1-z}\right) + 1$$

- $a(z) = \frac{z}{1-z}, f(z) = \frac{z}{1-z}, b(z) = 1$
- $\mu(s) = 1/s, Y \circ \mu(s) = 1/\Gamma(s)$

Application: Bell Numbers

Functional equation for OGF:

$$B(z) = \frac{z}{1-z}B\left(\frac{z}{1-z}\right) + 1$$

- $a(z) = \frac{z}{1-z}, f(z) = \frac{z}{1-z}, b(z) = 1$
- $\mu(s) = 1/s, Y \circ \mu(s) = 1/\Gamma(s)$

insert c = 1, d = 1, $a_1 = 1$ into

$$B_n \sim Dc^n e^{-\frac{1}{2}(1 - \frac{d}{c^2})W(\frac{c}{a_1}n)^2} \sum_{m=0}^{\infty} \frac{m^n}{m!} \left(\frac{a_1}{c}\right)^m$$

with

$$D = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} ds e^{\frac{1}{2}(1 - \frac{d}{c^2})(\log \frac{a_1}{c})^2}$$

Application: Bell Numbers

Functional equation for OGF:

$$B(z) = \frac{z}{1-z}B\left(\frac{z}{1-z}\right) + 1$$

- $a(z) = \frac{z}{1-z}, f(z) = \frac{z}{1-z}, b(z) = 1$
- $\mu(s) = 1/s, Y \circ \mu(s) = 1/\Gamma(s)$
- Asymptotics:

$$B_{\mathbf{n}} \sim D \sum_{m=0}^{\infty} \frac{m^{\mathbf{n}}}{m!}$$

$$D = \frac{1}{2\pi i} \int_{\mathcal{C}} \Gamma(s) ds = \frac{1}{e} \quad \text{(sum of residues)}$$

Application: Ordered Bell Numbers

Functional equation for OGF:

$$S(z) = \frac{1}{2} \frac{1}{1-z} S\left(\frac{z}{1-z}\right) + \frac{1}{2}$$

$$\bullet$$
 $a(z) = \frac{1}{2} \frac{1}{1-z}, f(z) = \frac{z}{1-z}, b(z) = \frac{1}{2}$

Application: Ordered Bell Numbers

Functional equation for OGF:

$$S(z) = \frac{1}{2} \frac{1}{1-z} S\left(\frac{z}{1-z}\right) + \frac{1}{2}$$

$$a(z) = \frac{1}{2} \frac{1}{1-z}, f(z) = \frac{z}{1-z}, b(z) = \frac{1}{2}$$

insert
$$c=1,\, d=1,\, a_0={1\over 2}\,\, a_1={1\over 2}$$
 into

$$S_n \sim Dn! \left(-c/\log a_0\right)^n n^{\left(1-\frac{d}{c^2}\right)\log a_0-1+\frac{a_1}{a_0}}$$

$$D = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} ds \left(-\log a_0\right)^{-\left(1 - \frac{d}{c^2}\right) \log a_0}$$

Application: Ordered Bell Numbers

Functional equation for OGF:

$$S(z) = \frac{1}{2} \frac{1}{1-z} S\left(\frac{z}{1-z}\right) + \frac{1}{2}$$

- $a(z) = \frac{1}{2} \frac{1}{1-z}, f(z) = \frac{z}{1-z}, b(z) = \frac{1}{2}$
- Asymptotics:

$$S_n \sim Dn! \frac{1}{(\log 2)^n}$$

$$D = \frac{1}{2\log 2}$$

Application: Partition Lattice Chains

Functional equation for EGF:

$$Z(z) = \frac{1}{2}Z(e^z - 1) + \frac{z}{2}$$

- $a(z) = \frac{1}{2}, f(z) = e^z 1, b(z) = \frac{z}{2}$
- $\mu(s) \sim \frac{2}{s}(1 \frac{\log s}{3s} + \ldots), Y \circ \mu(s) = 2^s$

Application: Partition Lattice Chains

Functional equation for EGF:

$$Z(z) = \frac{1}{2}Z(e^z - 1) + \frac{z}{2}$$

$$a(z) = \frac{1}{2}, f(z) = e^z - 1, b(z) = \frac{z}{2}$$

•
$$\mu(s) \sim \frac{2}{s}(1 - \frac{\log s}{3s} + \ldots), Y \circ \mu(s) = 2^s$$

insert
$$c=\frac{1}{2}$$
, $d=\frac{1}{6}$, $a_0=\frac{1}{2}$, $a_1=0$ into

$$\frac{Z_n}{n!} \sim Dn! \left(-c/\log a_0\right)^n n^{\left(1-\frac{d}{c^2}\right)\log a_0-1+\frac{a_1}{a_0}}$$

$$D = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} ds \left(-\log a_0\right)^{-\left(1 - \frac{d}{c^2}\right) \log a_0}$$

Application: Partition Lattice Chains

Functional equation for EGF:

$$Z(z) = \frac{1}{2}Z(e^z - 1) + \frac{z}{2}$$

- $a(z) = \frac{1}{2}, f(z) = e^z 1, b(z) = \frac{z}{2}$
- $\mu(s) \sim \frac{2}{s}(1 \frac{\log s}{3s} + \ldots), Y \circ \mu(s) = 2^s$
- Asymptotics:

$$Z_n \sim D(n!)^2 (2\log 2)^{-n} n^{-1-\frac{1}{3}\log 2}$$

$$D = \frac{1}{2} (\log 2)^{\frac{1}{3} \log 2} \frac{1}{2\pi i} \int_{\mathcal{C}} 2^{s} \mu(s) ds = 1.0986858055 \dots$$

Application: Takeuchi Numbers

Functional equation for OGF:

$$T(z) = zC(z)T(zC(z)) + \frac{C(z)-1}{1-z}$$
, $C(z) = \sum_{k=0}^{\infty} {2k \choose k} \frac{z^k}{k+1}$

- $a(z) = zC(z), f(z) = zC(z), b(z) = \frac{C(z)-1}{1-z}$
- $\mu(s) \sim \frac{1}{s} (1 \frac{\log s}{s} + \dots), Y \circ \mu(s) \sim e^{-\frac{1}{2} (\log s)^2} / \Gamma(s)$

Application: Takeuchi Numbers

Functional equation for OGF:

$$T(z) = zC(z)T(zC(z)) + \frac{C(z)-1}{1-z}$$
, $C(z) = \sum_{k=0}^{\infty} {2k \choose k} \frac{z^k}{k+1}$

•
$$a(z) = zC(z), f(z) = zC(z), b(z) = \frac{C(z)-1}{1-z}$$

•
$$\mu(s) \sim \frac{1}{s} (1 - \frac{\log s}{s} + \ldots), Y \circ \mu(s) \sim e^{-\frac{1}{2} (\log s)^2} / \Gamma(s)$$

insert c = 1, d = 2, $a_1 = 1$ into

$$T_n \sim Dc^n e^{-\frac{1}{2}(1 - \frac{d}{c^2})W(\frac{c}{a_1}n)^2} \sum_{m=0}^{\infty} \frac{m^n}{m!} \left(\frac{a_1}{c}\right)^m$$

with

$$D = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} ds e^{\frac{1}{2}(1 - \frac{d}{c^2})(\log \frac{a_1}{c})^2}$$

Application: Takeuchi Numbers

Functional equation for OGF:

$$T(z) = zC(z)T(zC(z)) + \frac{C(z)-1}{1-z}$$
, $C(z) = \sum_{k=0}^{\infty} {2k \choose k} \frac{z^k}{k+1}$

- $a(z) = zC(z), f(z) = zC(z), b(z) = \frac{C(z)-1}{1-z}$
- $\mu(s) \sim \frac{1}{s} (1 \frac{\log s}{s} + \ldots), Y \circ \mu(s) \sim e^{-\frac{1}{2} (\log s)^2} / \Gamma(s)$
- Asymptotics:

$$T_n \sim D \sum_{m=0}^{\infty} \frac{m^n}{m!} e^{\frac{1}{2}W(n)^2} = D' B_n e^{\frac{1}{2}W(n)^2}$$

$$D' = \frac{e}{2\pi i} \int_{\mathcal{C}} \frac{b \circ \mu(s)}{Y \circ \mu(s)} ds = 2.2394331040\dots$$

Interesting application of analytic iteration theory and classical complex analysis in the services of asymptotic enumeration

- Interesting application of analytic iteration theory and classical complex analysis in the services of asymptotic enumeration
- A large class of linear recurrences corresponding to recursively definable structures can be treated asymptotically

- Interesting application of analytic iteration theory and classical complex analysis in the services of asymptotic enumeration
- A large class of linear recurrences corresponding to recursively definable structures can be treated asymptotically
- Further applications?

- Interesting application of analytic iteration theory and classical complex analysis in the services of asymptotic enumeration
- A large class of linear recurrences corresponding to recursively definable structures can be treated asymptotically
- Further applications?

Other results:

Numerical evaluation of the constants to about 50 decimal places

- Interesting application of analytic iteration theory and classical complex analysis in the services of asymptotic enumeration
- A large class of linear recurrences corresponding to recursively definable structures can be treated asymptotically
- Further applications?

Other results:

- Numerical evaluation of the constants to about 50 decimal places
- Computation of the next terms in the asymptotic expansion (by a different, non-rigorous method)

- Interesting application of analytic iteration theory and classical complex analysis in the services of asymptotic enumeration
- A large class of linear recurrences corresponding to recursively definable structures can be treated asymptotically
- Further applications?

Other results:

- Numerical evaluation of the constants to about 50 decimal places
- Computation of the next terms in the asymptotic expansion (by a different, non-rigorous method)

To be done:

Computation of the contour integrals determining the constants

The End

