Chapitre 26: Espaces euclidiens

Dans tout le chapitre, le corps des scalaires est $\mathbb R$

1 Généralités

1.1 Produit scalaire

Définition 1.1. Soit *E* un espace vectoriel (réel).

Un produit scalaire sur *E* est une application

$$\langle \cdot \mid \cdot \rangle : \begin{cases} E^2 \to \mathbb{R} \\ (u, v) \to \langle u \mid v \rangle \end{cases}$$

- * linéaire
- * symétrique (càd $\forall u, v \in E, \langle u \mid v \rangle = \langle v \mid u \rangle$)
- * et définie positive (càd $\forall u \in E, \langle u \mid u \rangle \ge 0$ et $\forall u \in E, \langle u \mid u \rangle = 0 \implies u = 0_E$)

Un <u>espace préhibertien</u> (réel) est la donnée d'une ev E et d'un produit scalaire sur E Un espace euclidien est un espace préhibertien de dimension finie.

1.2 Norme euclidienne

Définition 1.2. Soit *E* un espace préhibertien.

- * La norme (euclidienne) de $u \in E$ est $||u|| = \sqrt{\langle u \mid v \rangle}$
- * Le distance de u à $v \in E$ est d(u, v) = ||v u||

Théorème 1.3 (Inégalité de Cauchy-Schwarz). Soit E un espace préhibertien et $u,v\in E$ On a

$$\langle u \mid v \rangle \le |\langle u \mid v \rangle| \le ||u|| \cdot ||v||$$

"Le produit scalaire est inférieur au produit des normes"

Théorème 1.4. La norme $\|\cdot\|$ est une norme, càd qu'on a :

Positivité : $\forall u \in E, ||u|| \ge 0$

Séparation : $\forall u \in E, ||u|| = 0 \implies u = 0_E$

Homogénéité : $\forall u \in E, \forall \lambda \in \mathbb{R}, ||\lambda u|| = |\lambda| \cdot ||u||$

Inégalité triangulaire : $\forall u, v \in E, \|u + v\| \le \|u\| + \|v\|$