MATHE C KLAUSURZETTEL

HENRI HEYDEN

stu240825

Analysis

Integrierbarkeit

RIEMANN SUMME

Sei $f:[a,b]\to\mathbb{R}$, seien (x,ξ) Partition und Stützstellen aus [a,b].

Dann nennen wir $R(f, x, \xi) := \sum_{i=1}^{n} (x_i - x_{i-1}) \cdot f(\xi_i)$ Riemann Summe.

INTEGRIERBARKEIT

Wir nennen f integrierbar, wenn

$$\begin{split} &\exists R_0 \in \mathbb{R} \forall \epsilon > 0 \\ &\exists \delta > 0 \\ \forall (x,\xi) \in \mathrm{PS}(a,b,\delta) : |R(f,x,\xi) - R_0| < \epsilon \text{ gilt.} \\ &\text{Das Integral ist eindeutig, schreibe} \int_a^b f \text{ oder } \int f \text{ hierfür.} \end{split}$$

Wir schreiben auch $\int f(x)dx := \int f(x)$

Ist f integrierbar, dann kann man das Integral mit einer Beliebigen Folge an $(x_n, \xi_n)_n$ finden wessen Feinheit den Limes 0 hat, sodass die Riemann-Summe konvergiert. f ist genau dann integrierbar, wenn für alle 2 solcher Folgen ihre Differenz immer zu 0 konvergiert.

STETIG UND KOMPAKT

Eine Funktion *f* :

- ... ist stetig in $x \in \text{dom}(f)$, wenn alle Funktionslimetes zu x gleich sind.
- ...ist beschränkt, wenn ihre Domain eine obere und untere Schranke hat.
- ...ist abgeschlossen, wenn das komplement ihrer Domain offen ist.
- ...ist kompakt, wenn sie beschränkt und abgeschlossen ist.

Ist eine Funktion kompakt stetig, dann ist sie gleichmäßig stetig und somit integrierbar.

ABSCHÄTZUNGEN

Für
$$f \le g$$
 gilt: $\int f \le \int g$.

Es gilt:
$$(b-a) \cdot \inf(f) \le \int_a^b f \le (b-a) \cdot \sup(f)$$

Integrationstechniken

HAUPTSATZ DER DIFFERENZIALRECHNUNG

Schreibe
$$[\phi]_u^v := \phi(v) - \phi(u)$$

Sei
$$f, F : \Omega \to \mathbb{R}$$
 so, dass $F' = f$ gilt.

Dann gilt:
$$\int f = F(\sup(\Omega)) - F(\inf(\Omega)) = F(b) - F(a) = [F]_a^b$$
 für $\Omega = [a, b]$.

STAMMFUNKTIONEN

Domain	f(x)	F(x)	args
\mathbb{R}	c	cx	$c \in \mathbb{R}$
\mathbb{R}	$\sum_{k=0}^{n} a_k x^k$ x^{-1}	$\sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1}$	$a_0 \dots a_n \in \mathbb{R}$
$\mathbb{R}_{>0}$	x^{-1}	ln(x)	
\mathbb{R}	b^x	$\frac{b^x}{\ln(b)}$	$b \in \mathbb{R}_{>0} \setminus \{1\}$
$\mathbb{R}_{>0}$	$\log_b(x)$	$\frac{x \ln(x) - x}{\ln(b)}$	$b \in \mathbb{R}_{>0} \setminus \{1\}$
] – 1, 1[$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	
\mathbb{R}	$\frac{1}{1+x^2}$	arctan(x)	

Partielle Integration Für
$$f,g:[a,b]\to\mathbb{R}$$
 gilt: $\int_a^b fg'=[fg]_a^b-\int_a^b f'g$

SUBSTITUTION

Für f stetig reel und ϕ stetig differenzierbar reel mit $u, v \in \text{dom}(\phi)$, sodass $[u, v] \subseteq \text{dom}(\phi)$ und $\phi^{\rightarrow}([u, v]) \subseteq \text{dom}(f)$ ist, gilt:

$$\int_{\phi(u)}^{\phi(v)} f = \int_{u}^{v} (f \circ \phi) \cdot \phi'$$

Analytische Grundstrukturen

Differentation im Mehrdimensionalen

Stochastik