

Session: NUCLEAR RENAISSANCE AND THE ROLE OF SMR IN NET ZERO **POWER SYSTEM**

Chair's Opening Remarks

Ganapati Myneni, President & CEO, BSCE Systems, Inc., Yorktown, VA, USA

Driver for Nuclear in Asia: Deadly PM 2.5 Pollution

Comparison of annual average PM, concentrations in 2015 with WHO Air Quality Guidelines.

Could Advanced Reactors bolster Desalination in large volumes for Cities?

WRI: Global Water Stress – and National Security

WRI: Water stress is not just a Developing World problem. Western USA.
WHO: Impact of urbanization -- "By 2025, half of the world's population will be living in water-stressed areas." Could Nuclear boost fresh water supply?

Projected Water Stress in 2030

Battle for Nile River Resources Mediterranean Sea

Business as usual scenario aqueduct.wri.org

Global SMRs in "Discussion" now > \$70 Billion in total value, 2023

		Stage of					_			
	China or Russia	Development			Chir	na &	Russi	a leac	d deplo	ymeni
	Fuel load / Ops	5							•	•
	Under Constr	4		Standard LWR	Wh	at wi	II USA	\ and	Europe	e do to
	Financing signed Siting selected	3 2		Advanced unit					•	
П	JV formed	1			Operating by	MWs	Reactors	Total	SBillions	SMillions
ľ			Projects		Average	Average	Units	MWs	Total Cost	Cost per MW
			22		2029	190	60	9,168	\$85.60 B	\$9.3 M
		Expected			Operating	Size	Number		Project Cost	Cost per MW
Ŀ	ocale	SMR Project	SMR Site	Reactor	Date	(MWs)	(Reactors)	Total MWs	(SBillion)	(SMII)
	Mary Wash		1100	Made and Allen	2030	77	6	462	\$8.00 B	\$17.3 M
Ų	ISA, several	NUCOR EAFs	Several: KY, WV	NuScale LWR	2030	77	12	924	\$12.00 B	\$13.0 M
¢	'AN, Ontario	OPG	Darlington, ON	GELWR	2028	300	1	300	\$1.80 8	\$6.0 M
Į	JK Site	RRSMR	Wales, UK TBD	Rolls Royce	2030	470	3	1410	\$9.00 B	\$6.4 M
Į	JK Site	RR SMR	Moreside, UK	Rolls Royce	2032	470	2	940	\$6.00 8	\$6.4 M
(AN, NB	NB SMR	Pt. LePreau, NB	Moltex AMR	2029	300	1	300	\$2.50 B	\$8.3 M
('AN, Ontario	ONL	Chalk River, ON	USNC Micro	2027	5	1	5	\$0.40 B	\$80.0 M
Į	ISA, Alaska	US Air Force SMR	Elelson base, AK	AMR Micro	2027	5	1	5	\$0.50 B	\$100.0 M
Į	ISA DOE ARDP	TerraPower	Kemmerer, WY	Natrium AMR	2032	345	1	345	\$3.50 8	\$10.1 M
	ISA DOE ARDP	DOW Chem	Freemont, TX	X-e 100	2032	80	4	320	\$4.20 8	\$13.1 M
ı	ISA DOE ARDP	X-energy	Hanford, WA	X-e 100	2032	80	2	160	\$2.40 B	\$15.0 M
ı	bland	PKN Orlen	Multiple sites	GE-BWRX	2030	300	4	1200	\$8.00 8	\$6.7 M
į	foland	SYNTHOS	Oświęcim, PL	LWR SMR	2030	300	1	300	\$2.50 8	\$8.3 M
ı	Sulgaria	Industrial AMR	Maritsa Iztok, BG	AMR	2028	80	6	480	\$7.20 B	\$15.0 M
3	lovenia	Krško-2	Krško site, SLO	LWR SMR	2030	300	2	600	\$4.00 B	\$6.7 M
i	lomania	Cemavoda SMR	Cemavoda, ROM	NuScale LWR	2028	77	6	462	\$6.00 B	\$13.0 M
ď	H, Shanghai	China NNC AMR	Shandong AMR	HTB-PM	2024	210	1	210	\$1.40 B	\$6.7 M
	tU, Sberia	Seversk Chemical + Rosatom MOX	Seversk, RU	TVEL BREST Lead-cooled	2027	300	1	300	\$2.00 B	\$6.7 M
	IU, Arctic Orde	Arctic Port	Pevek, RU	2 x KLT-40C	2020	35	2	70	\$0.50 B	\$7.1 M
ı	H, Hainan	CNINC	Changliang	ACP100 PWR	2026	125	1	125	\$1.50 B	\$12.0 M
ď	H, Floating	ONNC	Floating SMR	ACP100 PWR	2028	125	1	125	\$1.20 B	\$9.6 M

Stage of

China & Russia lead deployment of SMRs ... Industrial and Arctic applications

What will USA and Europe do to recover leadership?

SMR Projects in the Global "Arena" top \$70 billion in estimated project value (20+ projects)

At various stages of development, SMR projects announced by vendors, engineering partners and governments (for siting or investment) have reached over \$70 billion in projected capital investment – more than 20 projects including at least 40 reactors for a combined total topping 8-9 GWs. Most of that capital investment lies in the future, as projects are still at various stages of development: from 1) Announced plan and JV by a Government; 2) Selected site with permits in view; 3) Financing signed – the biggest hurdle it seems; 4) Under construction; 5) Fuel loading and operation in a few cases. Each of these five stages represent a significant milestone with multiple stakeholders and a clear decision point.

Cost estimates are still moving around due to the earlier stage of projects; some estimates are high and some are low, so the combined list should be near an expected value.

The table notes the Stage of Development of a project and highlights China & Russia versus allied actors. Also, whether the reactor design is a conventional LWR (either a BWR or PWR, Gen III) vs a more advanced "AMR" reactor with designer shown. Micro-reactors (sub-20 MWs) are for specialty applications and remote facilities (e.g., Arctic ports and stations).

© ADPaterson (from PhD work)

500 MW ThorCon Molten Salt Reactor Power Plant

Demonstration Plant to Be Tested for Licensing in Indonesia

Built in shipyard, towed to site, ballasted down onto seabed.

Nuclear Module is replaced every 8 years

Subcritical Nuclear Reactor – 10 MWt/5 Mwe Low Cost, Incremental Power Route to a Zero Carbon Future

ANSI/ANS-20.2-2023

Nuclear Safety Design Criteria and Functional Performance Requirements for Liquid-Fuel Molten Salt Reactor Nuclear Power Plants

An American National Standard

Underwriter Certification of Nuclear Power

First Edition

Jack Devanney

Sisyphus Beach

Tavernier, Florida

2024

"About the Conference"

Hydrogen has an important role to play in the decarbonization of industry and transport sector.

While hydrogen produced from renewable electricity is an important part of the low carbon future, nuclear hydrogen is also equally clean and has considerably higher potential to contribute to future energy scenario for deep decarbonization.

Various hydrogen production technologies which can be coupled with nuclear energy include electrolysis, high temperature steam electrolysis and thermochemical processes. Nuclear power here is produced through a variety of nuclear reactors, which includes small modular reactors, high temperature reactors and innovative accelerator based nuclear technologies.

INHC is aimed at bringing together all stake holders on one platform to discuss the opportunity and challenges in nuclear hydrogen and arrive at a road map for future hydrogen economy in India.

Register https://events.ntpc.co.in/inhc

INTERNATIONAL NUCLEAR HYDROGEN CONFERENCE (INHC-2024) August 19-20th, 2024

Theme: Integration of Nuclear & Hydrogen for **Energy Transition**

> Venue: Power Management Institute, NTPC Limited, Film City, Sector-16A, Noida (Uttar Pradesh), India-201301

CONTACT: inhc@ntpc.co.in

+91-9424140785

INHC-2024 **Organizing Committee**

Gurdeep Singh CMD, NTPC Ltd. Patron

K Shanmugha Sundaram Director (Projects) NTPC Ltd. Conference Co-chair

Ganpati Myneni Director VT-India **Nuclear Energy Partnership** Conference chair

J Miller, Deputy Division Director, ANL Conference Member

DMR Panda General Manager, RE Hydrogen.

A P Samal General Manager, Nuclear Cell. NTPC Ltd. Conference Member Conference Member