Параллельные вычисления на основе технологии OpenCL Лекция 1

Силаков Роман Дмитриевич

Краткое содержание лекции

- Что и зачем изучаем?
- «Hello World!» для GPU
- Архитектура и модель программирования
 - Пример: умножение матриц
- Иерархия памяти
 - Пример: ускоряем умножение матриц
- Простые алгоритмы и паттерны
 - Паттерны: Мар, Gather, Scatter
 - Редукция
 - Свертка
 - Гистограмма

Вычисления на GPU

GPGPU - General-purpose graphics processing units.

Идея: Использовать GPU для общих вычислений, а не только для компьютерной графики.

GPU vs. CPU

	Nvidia Titan RXT	AMD Ryzen 3970X
Число ядер	4608	32
Производительность, GFLOPS	≈12000	≈2000
Архитектура (грубо)	SIMD*	SISD*
Сложность программирования (субъективно)	Сложно	Просто

^{*}SIMD - single instruction, multiple data

SISD - single instruction, single data

Области применения

- Машинное обучение
- Математические пакеты
- Компьютерная графика
- Физические движки
- Обработка видео
- Математическое моделирование

Еще примеры:

http://www.nvidia.ru/object/gpu-applications-ru.html

OpenCL

OpenCL(Open Computing **L**anguage) — стандарт для написания программ, связанных с параллельными вычислениями

- Для разработки используются язык программирования, который базируется на стандарте С99 (С++14 для OpenCL >= 2.1)
- Поддерживается большинством современных CPU/GPU

CUDA

CUDA (Compute Unified Device Architecture) - архитектура параллельных вычислений от компании NVIDIA.

- Для разработки используются языки
 программирования CUDA C/C++, Fortran и др.
- Поддерживается только видеокартами NVidia

Сложение двух массивов, CPU

```
void main()
  static const int n = 1024;
  int a[n], b[n], c[n];
 fill arrays(a, b); //заполнение массивов
 for (int i = 0; i < n; ++i)
    c[i] = a[i] + b[i];
```

Сложение двух массивов, GPU

См. пример vector_add

Архитектура и модель программирования

Work items (Потоки)

Для выполнения параллельных вычислений запускается ядро вычислений (kernel) состоящее из множества потоков (threads)

- Все потоки выполняют один и тот же код
- Каждый поток имеет уникальный идентификатор

Проблема: Как организовать взаимодействие потоков?

Взаимодействие потоков внутри одного массива потоков не масштабируемо

Решение: Разобьём массив потоков на блоки (work group).

Взаимодействие между небольшими группами потоков масштабируемо

Взаимодействие потоков в блоке

- Локальная память (local memory) быстрая память доступная всем потокам одного блока
- Команда барьера barrier()
 - Любой поток блока дойдя до барьера будет ждать пока остальные потоки не дойдут до этого же барьера

```
__kernel void foo()
{
int id = get_local_id();
load_data_to_local_memory(id);
barrier(CLK_LOCAL_MEM_FENCE);
use_data_from_local_memory();
barrier(CLK_LOCAL_MEM_FENCE);
}
```

```
Листинг 1. Пример использования команды barrier
```

```
__kernel void foo()
{
if (condition)
  barrier(CLK_LOCAL_MEM_FENCE);
else
  barrier(CLK_LOCAL_MEM_FENCE);
}
```

Листинг 2. Классическая ошибка в использовании barrier

Вычислительная сетка (ND-Range) (1)

Вычислительная сетка – многомерный массив потоков разбитый на блоки (work-groups)

- Все блоки в сетке имеют одинаковые размеры
- Взаимодействие потоков происходит внутри блоков

Вычислительная сетка (ND-Range) (2)

- Размерность сетки ограничена (3 для OpenCL 2.0)
- Размер сетки ограничен
- Размер блока ограничен
- Для каждого потока доступны
 - Индекс потока в сетке: get_global_id(uint dimension_idx)
 - Индекс потока в блоке: get_local_id(uint dimension_idx)
 - Размер блока: get_local_size(uint dimension_idx)
 - Индекс блока: get_group_id(uint dimension_idx)
 - Количество блоков: get_num_groups(uint dimension_idx)
 - Количество потоков: get_global_size(uint dimension_idx)

Количество потоков в сетке и размер блока задают конфигурацию ядра.

Пример: умножение матриц

Ищем $C = A \cdot B$. Будем умножать матрицы размером $N \times N$.

Запустим ядро вычислений для сетки размером $N \times N$. Поток с индексом (i,j) будет считать $\mathcal{C}[i][j]$

Исходный код - см. пример matrix_mult

Архитектура (NVidia Fermi)

CUDA Core

Operand Collector

Result Queue

FP Unit

• 16 потоковых мультипроцессоров (Streaming Multiprocessor, SM)

Особенности SM:

- Содержит 32 CUDA ядер, 64 КВ разделяемой памяти / L1 кэша, 16 Load/Store units (LD/ST), 4 Special Function Units (SFUs)
- Выполняет вычислительные блоки,
 блок целиком выполняется на одном SM,
 одновременно не более 8 блоков и не
 более 1536 потоков
- При выполнение блок разбивается на warp-ы (warp – 32 подряд идущих потока)

Планировщик warp-ов (Fermi)

- Каждый SM содержит два планировщика warp-oв
- Инструкция warp-а назначается группе из 16 ядер, 16 LD/ST юнитов или 4 SFUs (в зависимости от типа инструкции)
- Разделение на warp-ы позволяет скрывать задержки
 - Пока один warp работает с памятью, будут выполнятся инструкции других warp-ов

Планировщик warp-ов

Архитектура Nvidia Kepler

Появился DP Unit - ядро для работы с 64 битными числами с плавающей запятой.

Выбор размера блока

Перемножаем две матрицы размером 1024х1024.

Вопрос: Каким выбрать размер блока?

Решение: Необходимо максимизировать число потоков на SM

Характеристики GPU:

Максимальное число блоков на SM: 8

• Максимальное число потоков в одном блоке: 1024

Максимальное число поток в одном SM: 1536

Варианты ответа:

- 1. 8x8
- 2. 16x16
- 3. 32x32
- 4. 64x64

Архитектура AMD Graphics Core Next

Вместо понятия warp используется понятие wavefront. Wavefront состоит из 64 потоков.

Подробнее, например, по ссылке:

http://developer.amd.com/wordpress/media/20 13/06/2620_final.pdf

Иерархия памяти

Типы памяти

• Приватная и регистровая

```
float3 arr[4];
• Локальная
local float s[128];
```

int i;

• Глобальная

```
__global int *p;
```

• Константная

```
__constant int i = 5;
```


Сравнение типов памяти (на основе NVIDIA GeForce 580 GTX)

Тип	Размер	Задержка	Пропускная способность	Применение
Регистровая	Ограниченный размер (оценка сверху: 32768 * 4 / 1536 ~= 85 байт на поток)	~1 такт	Очень высокая (~ 2-3 регистра за такт = 8-12B / такт)	
Локальная	Ограниченный размер (48КВ на мультипроцессор)	~5 тактов	Высокая (~ 4B / такт)	Кэш, контроллируемый программистом
Глобальная	Большой (гигабайты)	~500 тактов	Низкая (~ 4B / 10 тактов)	
Константная	Ограниченный размер (64КВ, кэш мультипроцессора – 8КВ)	~5 тактов (при попадании в кэш)	Высокая (~ 4В / такт, при попадании в кэш)	Broadcast данных

Объединение запросов к глобальной памяти (coalescing)

- Размер линии кэша L1 128 байт, L2 32 байта
- Линии отображены в участки глобальной памяти, выровненные по 128 байт
- Доступ к памяти обслуживается транзакциями по 128 байт (для L1)
- Правило объединения: запросы к памяти потоков в warp'е объединятся в транзакции, число которых равно кол-ву обновлений линий кэша, необходимых для данного запроса

Пример: умножение матриц с использованием локальной памяти (1)

Ищем $C=A\cdot B$; $c_{ij}=\sum_{r=1}^{A.width}a_{ir}b_{rj}$

- 1. Разобьем матрицу С на блоки (тайлы)
- 2. Заметим, что одни и те же значения из А или В используются много раз при вычислении блока С_{sub}
- 3. Разобьем необходимые элементы в А и В на блоки и будем вычислять С_{sub} последовательно
- 4. Разместим элементы из A и B в разделяемой памяти

Исходный код - см. пример matrix_mult

Атомарные операции (1)

• Зачем? Для операций Read-Modify-Write

Примеры:

```
int atomic_add( volatile __global int * address, int val );
A также Sub, Xchg, Min, Max, Inc, Dec, Cmpxchg, And, Or, Xor
```

• Атомарные операции медленные (доступ к памяти сериализуется)

Простые алгоритмы и паттерны

Map

Операция **Мар** - применение оператора f() к элементам массива. Типичная реализация на GPU — один поток обрабатывает один элемента массива.

Gather

Операция **Gather** - «сбор» данных из нескольких элементов массива.

Один поток обращается к нескольким элементам массива, обрабатывает полученные данные и записывает результат.

Пример – арифметическое среднее трех подряд идущих элементов:

Scatter

Операция Gather – «разброс» данных массива.

Один поток считывает данные из элемента массива и записывает результат в несколько различных элементов.

Основная идея – поток сам считает куда записывать данные.

Пример – сумма трех подряд идущих элементов:

Редукция

Задача: Применить оператор редукции к массиву.

Оператор редукции: бинарный и ассоциативный

- Сложение, умножение
- Максимум, Минимум
- Логическое и/или

Пример:

Дано: Массив A=(10, 20, 5, 15). Оператор «+». Результат: 50

```
int reduce( int * A, int A_size )
{
   int res = 0;
   for (int i = 0; i < A_size; ++i)
      res += A[i];
   return res;
}</pre>
```

Листинг 1. Последовательная редукция

Параллельная редукция, идея

Рис. 1. Идея параллельной редукции

На вход поступает N элементов.

Step complexity: O(log N)

Work complexity: O(N)

Исходный код - см. пример reduce.

Параллельная редукция, синхронизация

Проблема: Отсутствует механизм синхронизации между блоками.

Решение: Последовательный запуск нескольких ядер вычисления.

Рис. 1. Редукция, синхронизация между блоками с помощью запуска нескольких ядер

Свертка

Рассмотрим одномерный случай:

Вход: Массив A из N элементов; Маска M из L элементов.

Выход: Массив В из N элементов. $B[i] = \sum_{j=-L/2}^{L/2} A[i+j] \cdot M[j]$.

Примечание: A[k] = 0, если k < 0 или $k \ge N$.

Пример:

Пусть A=(4, 2, 3, 5, 6, 8); M=(2, -2, 1).

Тогда В=(-6, 7, 3, 2, 6, -4).

B[0] = 0.2 + 4.(-2) + 2.1 = -6

 $B[1] = 4 \cdot 2 + 2 \cdot (-2) + 3 \cdot 1 = 7$

• • •

Исходный код: см. пример convolution

Гистограмма

Вход: Массив A из N элементов; число корзин M; функция calcbin считает номер корзины для элементов массива A: $\forall i \ calcbin(A[i]) \rightarrow [0; M-1]$.

Выход: Массив B из M элементов. B[i] — число элементов массива A попадающих в i -ую корзину.

Пример:

```
Пусть A=(5, 6, 2, 4, 5, 9, 0, 10); M=2; calcbin(x) = x % 2.
Тогда B[0] = 5; B[1]=3.
```

В 0-ую корзину попадают элементы 6, 2, 4, 0, 10.

В 1-ую корзину попадают элементы 5, 5, 9.

```
void calc_histogram_cpu(int * A, int N, int * B)
{
   for (size_t i = 0; i < N; ++i)
      B[calcbin(A[i])]++;
}</pre>
```

Листинг 1. Последовательное построение гистограммы

Гистограмма, наивный подход

Важно: Данная программа работает неправильно!

Гистограмма, простой алгоритм

Проблема: atomic_inc это медленно. Количество параллельно выполняемых потоков для одного compute unit-а не превысит количество корзин.

Гистограмма, алгоритм без атомарных операций

Каждый поток посчитает свои локальные корзины. Итоговый результат получим с помощью редукции.

Пример: Элементов N=128; Корзин M=3. Запустим 8 потоков.

Каждый поток возьмет по 128/8=16 элементов и посчитает для них локальную гистограмму. При подсчете локальных корзин можно не использовать атомарные операции.

Затем запустим редукцию для посчитанных локальных корзин:

Литература

Книги

- Heterogeneous Computing with OpenCL, Second Edition.
 Benedict Gaster
- OpenCL in Action: How to Accelerate Graphics and Computations. Matthew Scarpino

Интернет-курсы (на основе технологии CUDA):

- www.coursera.org Heterogeneous Parallel Programming
- www.udacity.com Introduction to Parallel Programming

Спецификация

https://www.khronos.org/opencl/