Hardware Acceleration

Dr. Shubhajit Roy Chowdhury,
Centre for VLSI and Embedded Systems Technology,
IIIT Hyderabad

The Problem

- 1. Verification tools have not kept pace with the incredible rate at which design sizes are growing.
- 2. Each verification stage has its own methodology, tools, models and user inteface.
- 3. Embedded Software debug/integration is started late after first silicon/prototype.

Design complexity

Methodologies

Hardware-Accelerated Simulation

- Simulation performance is improved by moving the time-consuming part of the design to hardware.
- Usually, the software simulation communicates with FPGA-based hardware accelerator.

Hardware-Accelerated Simulation

- Advantages
 - Fast (100K cycles/sec)
 - Cheaper than hardware emulation
 - Debugging is easier as the circuit structure is unchanged.
 - Not an Overhead : Deployed as a step stone in the gradual refinement
- Disadvantages (Obstacles to overcome)
 - Set-up time overhead to map RTL design into the hardware can be substantial.
 - SW-HW communication speed can degrade the performance.
 - Debugging of signals within the hardware can be difficult.

Emulation

- Imitating the function of another system to achieve the same results as the imitated system.
- Usually, the emulation hardware comprises an array of FPGA's (or special-type processors) and interconnection scheme among them.

About 1000 times faster than simulation.

Emulation

- User logic design is mapped to emulation board with multiple FPGA's or special processors.
- The emulation board has external interconnection hardware that emulates the pins of final chip.

Emulation

- Pros
 - Fast (500K cycles/sec)
 - Verification on real target system.
- Cons
 - Setup time overhead to map RTL design into hardware is very high.
 - Many FPGA's + resources for debugging
 → high cost
 - Circuit partitioning algorithm and interconnection architecture limit the usable gate count.

Typical Logic Emulation Environment

Compiler, runtime software

Stimulus generator, logic analyzer

Design Verification Issues

 Simulation-based verification methods have run out of steam when chip complexity grows.

 Emulation is a verification technology that grows along with design size.

Why we need Logic Emulation?

Design verification issues.

Real-time operation.

System-level testing.

Rapid prototyping.

Real-Time Operation

- Simulation requires test vector development which is costly and difficult.
 - Verification depends on test vector correctness.
- Certain applications must be verified in real time
 - human perception: audio and video.
- Emulation connected to actual hardware can run:
 - real diagnostic code,
 - operating systems, and
 - applications.

System-Level Testing

- Often the chip meets its specifications but it fails in the system.
- We have to verify the system-level interactions between the chip and other components. They are hard to formalize.
- Internal probing is impossible when the chip is fabbed and placed in a system
- But it is possible using emulation.

Rapid Prototyping

- Once emulated design is debugged it is available for immediate use by software developers for software debugging.
- Emulated design is available for demo and experiments with architecture on real applications and data.

Considerations for programmable interconnect

 The capacity of logic and interconnection depends on package constraints.

- The interconnect structure must:
 - 1. Provide successful connectivity,
 - 2. Maximize FPGA utilization, and
 - 3. Minimize delay and skew.

Structures of Multi-FPGA Systems

Topologies:

- Mesh nearest neighboring.
- Crossbar full and partial.

Nearest Neighbor Interconnection

Advantages and Disadvantages of Nearest Neighbor Interconnection

Advantages:

- Uniform: all chips the same.
- Easy to lay out on PCB.

Disadvantages:

- Routing is easily blocked.
- The "through pins" limit the logic utilization of FPGAs.
- Long and unpredictable delays.
- No natural hierarchical extension.

Nearest Neighbor Extensions

Advantages and Disadvantages of nearestneighbor extended architectures

Advantages:

 More choices for router by adding diagonal lines & skip lines.

Disadvantages:

- More complex PCB.
- More complex routing software.

Partial Crossbar Interconnect

Partial Crossbar Interconnect

- Partial crossbar consists of a set of small full crossbars,
 - connected to logic blocks
 - but not to each other.
- I/O pins of each FPGA are divided into subsets.
 - Each subset is connected by a full crossbar circuit switch.
- Partial crossbar is a potentially blocking network.

Characteristics of Partial Crossbar Architecture

- Partial crossbar's size is proportional to the number of FPGA pins.
- All interconnections go through one/three crossbar chips for a one-level/two-level partial crossbar interconnect —
 - delays are uniform and bounded.

Mixed Full and Partial Crossbar

Products Cadence - PALLADIUM

- Simulation acceleration and in-circuit emulation in one system
- natively supports Verilog, VHDL, System Verilog, SystemC,
 SystemC Verification Library, OVL, and PSL/Sugar assertions.
- Dynamic probes/events allow interactive debug during run-time
- Comprehensive verification with "live" data
- Support for assertions in hardware with no performance degradation
- High Capacity -
 - Provides up to 100x-10,000x RTL performance (run four days of simulations over lunch at 100x).
 - Compiles up to 30 million gates per hour on a single workstation
 - Maximum capacity of 256 million gates
 - Supports up to 32 users in local or remote access
 - Highest throughput for HW/SW co-verification

Products Mentor - VStationTBX

- Single verification environment for simulation and verification
- High-performance verification accelerator for designs and testbenches
- Built on standard languages: SystemC, SystemVerilog, C/C++
- Behavioral Verilog testbench and memory compiler
- VHDL and Verilog RTL debug
- HDL acceleration 10x-100x faster than co-simulation
- Accelerates the entire design process with advanced techniques, such as assertions and transactions VStationTBX

WORKSTATION System Verilog

Design Flow

Other solution

- Homebrew with FPGAs
 - Partition design to number of FPGAs.
 - Use FPGA on-chip processors or configurable processors to drive testbench.
- Pros
 - Low cost solution.
 - fast
- Cons
 - Most embedded processor compilers supports C/C++ languages.
 - Requires two verification environments.
 - Need to establish debug connection between WS and FPGAs

Conclusions

Hardware Acceleration/Emulation

Simulation Acceleration

Verification Acceleration

Project Acceleration

Thank you