Weakest Preconditions 1 & 2; Domain Predicates

CS 536: Science of Programming, Spring 2023 Solution

Class 10: Weakest Preconditions part 1

- 1. If $B_1 \wedge B_2$, then $(B_1 \to w_1) \wedge (B_2 \to w_2)$ implies $w_1 \wedge w_2$, so whichever arm we execute is run with its wp satisfied. On the other hand, $B_1 \wedge B_2$ with $(B_1 \wedge w_1) \vee (B_2 \wedge w_2)$ implies $B_1 \wedge B_2 \wedge (w_1 \vee w_2)$, which leaves open the possibilities of executing S_1 when w_1 isn't satisfied and of executing S_2 when w_2 isn't satisfied.
- 2. $wp(S, p \lor q) \rightarrow wp(S, p) \lor wp(S, q)$ holds if S is deterministic but might not hold if S is nondeterministic. The other three statements (below) hold for both deterministic and nondeterministic programs.
 - $wp(S, p) \vee wp(S, q) \rightarrow wp(S, p \vee q)$
 - $wp(S, p \land q) \rightarrow wp(S, p) \land wp(S, q)$
 - $wp(S, p) \wedge wp(S, q) \rightarrow wp(S, p \wedge q)$
- 3. (Descriptions of wp/wlp properties when σ satisfies the precondition) For all the cases below, we're assuming that σ satisfies the precondition of the correctness triple. (This only affects cases (b), (c), and (e), since (a) and (d) have to have that satisfaction.)
 - a. $\sigma \not\models \{wlp(S,q)\} S \{q\}$ This holds iff $\sigma \models wlp(S,q)$ but $M(S,\sigma)-\bot \not\models q$. But $\sigma \models wlp(S,q)$, so, we're quaranteed $M(S, \sigma) - \bot \models q$. The contradiction tells us that $\sigma \not\models \{w \mid p(S, q)\} \setminus S\{q\}$ can never happen.
 - b. Since $\sigma \models \neg wlp(S,q)$, we know $M(S,\sigma) \not\models q$. Since S is deterministic, we get $M(S,\sigma) = \text{some } \{\tau\}$ where $\tau \not\models q$; hence $\tau = \bot$ or $\tau \models \neg q$. So we have partial correctness: $\sigma \models \{\neg w | p(S, q)\}$ $S \{\neg q\}$. But for $\sigma \vDash_{\text{tot}} \{\neg w | p(S,q) \}$ $S \{\neg q\}$, we need $M(S,\sigma) = \{\tau\} \vDash \neg q$. This is stronger than saying $\tau = \bot$ or $\tau \models \neg q$. So though we know partial correctness (under σ) of $\{\neg w | p(S, q)\}$ $\{\neg q\}$, we don't know total correctness.
 - c. From the definition, $\sigma \vDash_{tot} \{wp(S,q)\}S\{q\}$ iff $M(S,\sigma) \vDash q$ iff for all $\tau \in M(S,\sigma)$, $\tau \vDash q$.

- d. To know $\sigma \not\models_{tot} \{wp(S,q)\}$ $S\{q\}$, we need $\sigma \models wp(S,q)$ and $M(S,\sigma) \not\models q$. But by definition of wp, $\sigma \models wp(S,q)$ implies $M(S,\sigma) \models q$, so this situation can never happen.
- e. To know $\sigma \models \{\neg wp(S,q)\}$ $S \{\neg q\}$, we meed $\sigma \models \neg wp(S,q)$ to imply $M(S,\sigma) \bot \models \neg q$. By definition of wp, $\sigma \models \neg wp(S,q)$ tells us that $M(S,\sigma) \not\models q$. Since S is deterministic, we know $M(S,\sigma) = \text{some } \{\tau\}$, so $M(S,\sigma) \neq q$ tells us $\tau = \bot$ or $\tau \models \neg q$. But then $M(S,\sigma) - \bot$ does $\models \neg q$. So this situation always happens.

Class 11: Weakest Preconditions part 2

- 4. (The wlp of if x < 0 then x := -x fi, $x^2 \ge x$)
- a. The wlp of the true branch is $(x < 0 \rightarrow wlp(x := -x, x^2 \ge x)) = (x < 0 \rightarrow (-x)^2 \ge -x)$.
- b. The w/p of the false branch is $(x \ge 0 \to w/p(skip, x^2 \ge x)) = (x \ge 0 \to x^2 \ge x)$.
- c. The overall wlp is part (a) \wedge part (b): $(x < 0 \rightarrow (-x)^2 \ge -x) \wedge (x \ge 0 \rightarrow x^2 \ge x)$.
- d. The overall wlp simplifies to just true.

Class 11: Domain Predicates [18 points]

- 5. (Calculate wp(S,q) where S = y := y/x and q = sqrt(y) < x.)
 - a. $D(S) = D(y := y/x) = D(y/x) = x \neq 0$
 - b. w = wlp(S,q) = sqrt(y/x) < x
 - c. $D(w) = D(sqrt(y/x)) = D(y/x) \land y/x \ge 0 = x \ne 0 \land y/x \ge 0$
 - d. $wp(S, q) = D(S) \wedge D(w) \wedge w$ $= (x \neq 0) \land (sqrt(y/x) < x) \land (x \neq 0 \land y/x \geq 0)$ $\Leftrightarrow x \neq 0 \land y/x \geq 0 \land sqrt(y/x) < x$ (After some simplification)
- 6. (Calculate wp(S,q) where $S = if y \ge 0$ then x := y/x else x := -x/y fi and $q = r < x \le y$)
 - a. $D(S) = D(if y \ge 0 \text{ then } x := y / x \text{ else } x := -x / y \text{ fi})$ $\equiv D(y \ge 0) \land (y \ge 0 \rightarrow D(x := y / x)) \land (y < 0 \rightarrow D(x := -x / y))$ $\equiv T \land (y \ge 0 \to D(y / x)) \land (y < 0 \to D(-x / y))$ $\equiv (y \ge 0 \to x \ne 0) \land (y < 0 \to y \ne 0)$ $\Leftrightarrow y \ge 0 \rightarrow x \ne 0$ (after some simplification)
 - b. $w = wlp(S, q) = wlp(if y \ge 0 \text{ then } x := y / x \text{ else } x := -x / y \text{ fi, } r < x \le y)$ $\equiv (y \ge 0 \to wlp(x := y \mid x, r < x \le y)) \land (y < 0 \to wlp(x := -x \mid y, r < x \le y))$ $\equiv (y \ge 0 \rightarrow r < y / x \le y) \land (y < 0 \rightarrow r < -x / y \le y)$

c.
$$D(w) = D((y \ge 0 \to r < y / x \le y) \land (y < 0 \to r < -x / y \le y)$$

$$= D(y \ge 0 \to r < y / x \le y) \land D(y < 0 \to r < -x / y \le y)$$

$$= (T \land D(r < y / x \le y)) \land (T \land D(r < -x / y \le y))$$

$$= D(y / x) \land D(-x / y) \qquad \text{(Taking } D \text{ of both implications)}$$

$$= x \ne 0 \land y \ne 0$$
d. $wp(S, q) = D(S) \land D(w) \land w$

$$= ((y \ge 0 \to x \ne 0) \land (y < 0 \to y \ne 0))$$

$$\land (x \ne 0 \land y \ne 0)$$

$$\land ((y \ge 0 \to r < y / x \le y) \land (y < 0 \to r < -x / y \le y)).$$
We can do some simplification to get
$$wp(S, q) \Leftrightarrow x \ne 0 \land y \ne 0$$

$$\land ((y > 0 \to r < y / x \le y) \land (y < 0 \to r < -x / y \le y)).$$