Data Mining:

Concepts and Techniques

(3rd ed.)

Chapter 9 —
Classification: Advanced Methods

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

Definition

- We are given a set of labeled data as well as unlabeled data
- We want to be able to predict the correct labels of those unlabeled data

- Why unlabeled data?
 - Data label is often expensive to obtain
 - "Fraud or not?", "Cancer or not?", "credit rating"

- An expectation
 - the <u>classification</u> performance better than
 - discarding the unlabeled data and doing supervised learning
 - discarding the labels and doing unsupervised

- Transductive learning
 - is to infer the correct labels for the given unlabeled data only.
- Inductive learning
 - is to infer the correct mapping from x to y.

- Sparsity in data: training examples cannot cover the data space well
- unlabeled data can help to address sparsity

Semi-Supervised Learning Methods

- Many methods exist:
 - self-training,
 - co-training,
 - EM with generative mixture models,
 - data-based methods,
 - transductive SVM,
 - graph-based methods, ...

Semi-Supervised Learning Methods

- Inductive methods and Transductive methods
 - Transductive methods: only label the available unlabeled data – not generating a classifier
 - Inductive methods: not only produce labels for unlabeled data, but also generate a classifier

Semi-Supervised Learning Methods

- Algorithmic methods
 - Classifier-based methods: start from an initial classifier, and iteratively enhance it
 - Data-based methods: find an inherent geometry in the data, and use the geometry to find a good classifier

Self-training

- Build a classifier using the labeled data
- Use it to label the unlabeled data, and those with the most confident label prediction are added to the set of labeled data
- Repeat the above process
- Adv: easy to understand; disadv: may reinforce errors

Co-Training

Co-training

- Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f₁ and f₂.
- Then f₁ and f₂ are used to predict the class label for unlabeled data X

Teach each other: The tuple having the most confident prediction from f₁ is added to the set of labeled data for f₂, & vice versa