MUSINGS OF AN IDIOT

Adrian Jackson

a.jackson@epcc.ed.ac.uk

@adrianjhpc

BE NICE

BE KIND
FIND A TEAM
FIND A BALANCE

- Be wrong
- Ask questions
- Work on things you enjoy
- Work in public
- Seniority or money isn't everything

PARALLEL COMPUTING

Adrian Jackson

adrianj@epcc.ed.ac.uk

@adrianjhpc

HPC - Parallelism

- Simulation science drives computing power
 - Consistently more computation power needed than available
 - Runtime of months on a single processor not uncommon
 - Parallel programs often start out as serial programs
- Why not just make a faster chip?
 - Theoretical problems
 - Physical limitations to size and speed of a single chip
 - Speed of light, size of atoms, dissipation of heat
 - Voltage reduction versus clock speed for power requirements
 - Voltages becomes too small for "digital" differences
 - Practical problems
 - Developing new chips is incredibly expensive
 - Must make maximum use of existing technology
- Solution
 - Use many CPUs cooperatively on the same problem
 - HPC computing synonymous with parallelism

Building Blocks of Parallel Machines

Four principal technologies which make up computers

- Processors
 - to calculate
- Memory
 - for temporary storage of data
- Interconnect
 - so processors can talk to each other (and the outside world)
- Storage
 - disks for storing input/output data and tapes for long term archiving of data

Performance Trend

Memory hierarchy

Types of HPC systems

- Shared-memory: OpenMP
 - Multiple processors share a single memory space
 - Simple to program for many problems
 - Scaling is problematic
- Distributed memory: MPI
 - Each processing unit has its own memory space
 - Excellent scaling properties
 - Can be more complex to program due to explicit communications
- Accelerators (GPU, Intel MIC)
 - Specialist processing units attached to main CPU
 - Can be difficult to extract good performance
 - (Conceptually similar to old vector architectures.)

Memory

Distributed Shared Memory (clusters)

- Dominant architecture is a hybrid of these two approaches: Distributed Shared Memory.
 - Due to most HPC systems being built from commodity hardware trend to multicore processors.
 - Each Shared memory block is known as a node.
 - Usually 16-64 processors per node.
 - Nodes can also contain accelerators.
- Majority of users try to exploit in the same way as for a purely distributed machine
 - As the number of cores per node increases this can become increasingly inefficient...
 - ...and programming for these machines can become increasingly complex

Differences from Cloud computing

Performance

- Clouds usually use virtual machines which add an extra layer of software.
- In cloud you often share hardware resource with other users HPC access is usually exclusive.

Tight-coupling

- HPC parallel programming usually assumes that the separate processes are tightly coupled
- Requires a low-latency, high-bandwidth communication system between tasks
- Cloud usually does not usually have this

Programming models

- HPC use high-level compiled languages with extensive optimisation.
- Cloud often based on interpreted/JIT.

New hardware trends

- Many-core
 - Intel KNL processors
 - 72 cores, 288 threads
 - Nvidia Pascal
 - Large scale GPU
- Memory and I/O becoming more complex
 - Different levels of memory
 - Stacked, DRAM, NVRAM
 - Different levels of I/O
 - NVRAM, SSDs, Lustre, /tmp
- More heterogeneity in both processing and memory systems
 - Applications are likely to have to adapt to get best performance

Usage by codes

What is it used for?

Institutional use

Machine Usage

What is a software developer?

- Coder
 - Writes code that compiles and runs
 - Inefficient, full of bugs, difficult to understand, fix and extend
- Programmer
 - Uses tools to develop correct code more easily, in less time, with less pain
 - Efficient, correct, modular, easy to understand, fix and extend
- Software developer
 - Gathers requirements
 - Creates designs and assesses alternatives
 - Writes, fixes, improves and extends programs
 - Writes user doc
 - Prepares releases
 - Trains users and provides support
- But what if my goal is to become a good researcher?

Programming skills and research

- Good programming skills are good research skills
- Record which version of your software produced the data you used in a paper, presentation, poster or thesis
 - Version control
- Help others to validate what you did by peer review, and to replicate, reproduce and reuse what you did
 - Good programming practice
- Ensure that your algorithms, implementation and data are correct and so that your research is correct
 - Unit testing, debugging, profiling
- Free up time for research
 - Automation and build tools, test frameworks

Programming Language is irrelevant

Learn at least 2 languages

Fully science workflow is important

Fully science workflow is important

Improved workflow

- 256 block grid, high load imbalance
 - 90% difference in grid points between largest and smallest blocks

Summary

- Programs run on computers (doh!)
- Understanding computers helps understanding programs
 - Running and writing
- Programming takes effort
 - Learn more than one programming language
 - The more perspectives you have the better you'll be

What now?

- You can attempt the ARCHER driving test
 - www.archer.ac.uk/training/course-material/online/driving_test.php
- On successful completion, eligible users can apply for
 - account on ARCHER
 - 1,200 kAUs of time (80,000 core-hours) over 12 months
- Further information
 - Helpdesk: support@archer.ac.uk
 - Training: http://www.archer.ac.uk/training/.
- IPCC
 - https://www.epcc.ed.ac.uk/research/computing/intel-parallel-computing-centre

Women in HPC

http://www.womeninhpc.org.uk

Working towards equal representation in HPC

Software sustainability institute

http://www.software.ac.uk/

Software Sustainability Institute

