Assignment 6

Madiba Hudson-Quansah

February 2024

Question 1

- 1. $A \cup \emptyset = A$
- 2. $A \cap U = A$

Solution:

1.

$$A \cup \emptyset = \{x \mid x \in A \lor x \in \emptyset\}$$

$$= \{x \mid x \in A \lor \emptyset\}$$

$$= \{x \mid x \in A \cup \emptyset\}$$

$$= \{x \mid x \in A\}$$

$$= A$$

Definition of Union
Definition of empty set
Definition of Union
By Second Identity Law
Defintion of the set A

2.

$$A \cap U = \{x \mid x \in A \land x \in U\}$$

$$= \{x \mid x \in A \land U\}$$

$$= \{x \mid x \in A \cap U\}$$

$$= \{x \mid x \in A\}$$

$$= A$$

Definition of Intersection Definition of Universal Set Definition of Intersection By First Identity Law Definition of the set A

Question 2

- 1. $(A \cup B) \subseteq (A \cup B \cup C)$
- 2. $(A \cap B \cap C) \subseteq (A \cap B)$

Solution:

1. $(A \cup B) \subseteq (A \cup B \cup C)$ means $\forall x (x \in (A \cup B) \rightarrow x \in (A \cup B \cup C))$

	Steps	Reasons
1	$x \in A \cup B$	Premise
2	$x \in A \lor x \in B$	Definition of Union
3	$x \in A \lor x \in B \lor x \in C$	By Addition on 2
4	$x \in A \cup B \cup C$	Definition of Union

 $\therefore x \in (A \cup B) \to x \in (A \cup B \cup C)$ Hence $(A \cup B) \subseteq (A \cup B \cup C)$

2. $(A \cap B \cap C) \subseteq (A \cap B)$ means $\forall x (x \in (A \cap B \cap C) \rightarrow x \in (A \cap B))$

	Steps	Reasons
1	$x \in A \cap B \cap C$	Premise
2	$x \in A \land x \in B \land x \in C$	Definition of Intersection
3	$x \in A \land x \in B$	By Simplification on 2
4	$x \in A \cap B$	Definition of Intersection

 $\therefore \ x \in (A \cap B \cap C) \longrightarrow x \in (A \cap B)$ Hence $(A \cap B \cap C) \subseteq (A \cap B)$

Question 3

- 1. $x \cdot 1 = 0$
- 2. x + x = 0
- 3. $x \cdot 1 = x$
- 4. $x \cdot \overline{x} = 1$

Solution:

- 1. 0
- 2. 0
- 3. 0 and 1
- 4. 0 and 1