UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Tópicos Especiais em Computação: Aprendizado de Máquina

Cap 2: Análise e Pré-processamento de dados

Prof. Jefferson Morais | Email: jmorais@ufpa.br

- Também chamado de diagramas de Box e Whisker
- formado pelo primeiro e terceiro quartil e pela mediana

Limite inferior: $\max \{\min(\text{dados}); Q_1 - 1, 5(Q_3 - Q_1)\}.$

Limite superior: $\min \{ \max(\text{dados}); Q_3 + 1, 5(Q_3 - Q_1) \}.$

Boxplot

ld.	Nome	Idade
4201	João	28
3217	Maria	18
4039	Luiz	49
1920	José	18
4340	Cláudia	21
2301	Ana	22
1322	Marta	19
3027	Paulo	34

ld.	Nome	Idade	Se
4201	João	28	M
3217	Maria	18	F
4039	Luiz	49	M
1920	José	18	M
4340	Cláudia	21	F
2301	Ana	22	F
1322	Marta	19	F
3027	Paulo	34	M

Outlier

4 lm4	E ₀ 4	Diagnástica
# Int.	ESt.	Diagnóstico
2	SP	Doente
4	MG	Doente
2	RS	Saudável
20	MG	Doente
1	PE	Saudável
3	RJ	Doente
6	AM	Doente
2	GO	Saudável

- Ex: conjunto de dados iris
 - □ 150 instâncias
 - □ 4 atributos de entrada (con
 - Tamanho pétala
 - Tamanho sépala
 - Largura pétala
 - Largura sépala
 - □ 3 classes (espécies de íris)
 - Íris vírginica
 - Íris setosa
 - Íris versicolor

Exercicio de fixação

Na Tabela a seguir temos as medidas da altura de 20 hastes. Faça o boxplot correspondente.

Dados da usinagem					
903,88	1036,92	1098,04	1011,26		
1020,70	915,38	1014,53	1097,79		
934,52	1214,08	993,45	1120,19		
860,41	1039,19	950,38	941,83		
936,78	1086,98	1144,94	1066,12		

Exercício de fixação (resposta)

Dados univariados: medidas de espalhamento

- Medem dispersão ou espalhamento de um conjunto de valores
 - ☐ Permitem observar se valores estão
 - Espalhados (dispersos)
 - Concentrados em torno de um valor (ex. Média)
- Medidas comuns
 - □ Intervalo
 - □ Variância
 - □ Desvio padrão

Intervalo

- Mostra a dispersão máxima entre os valores
 - ☐ Medida simples
- Problema: não é uma medida boa se a maioria dos valores estão próximos de um ponto, com um pequeno número de valores extremos

$$intervalo(\mathbf{x}) = max_{i=1,...,n}(x_i) - min_{i=1,...,n}(x_i)$$

Medidas de dispersão

- Considere o exemplo de duas linha de produção de uma peça
- A medida média do comprimento da peça é de 75cm e ambas as linhas estão produzindo peças com médias próximas desse valor
- Podemos considerar que as peças produzidas por ambas as linhas são adequadas?

Medidas de dispersão

- As peças produzidas pela primeira linha de produção são melhores que a segunda
- Isso ocorre porque a dispersão dos elementos em torno da média é menor, ou seja, os elementos estão mais concentrados em torno da média na primeira linha de produção

Medidas de dispersão

 Como queremos avaliar a dispersão dos dados em torno da média, esse valor estará relacionado com a distância dos dados em relação à média.
 Essa distância será chamada de desvio

$$d_i = X_i - \overline{X}$$

No exemplo, temos.

$$d_1 + d_2 + d_3 + d_4 = 0$$

- O qual nos levaria à conclusão errada de que não existe variação entre os dados.
- Dispersão é sinônimo de variação ou variabilidade. Para medir a dispersão, duas medidas são usadas mais frequentemente: a amplitude e o desvio padrão.

- É definida como sendo a diferença entre o maior e o menor valor do conjunto de dados
- Denotaremos a amplitude por R ou H
- Portanto, consideremos o conjunto de dados ordenado

$$X_{(1)} \le X_{(2)} \le X_{(3)} \le \cdots \le X_{(n-1)} \le X_{(n)}$$

A amplitude R dos dados é dada por:

$$R = X_{(n)} - X_{(1)}$$

Desvio padrão

Para definirmos desvio padrão é necessário definir variância. A notação mais comumente usada é:

```
s2 - variância amostral.
```

 σ^2 - variância populacional.

s - desvio padrão amostral.

σ - desvio padrão populacional.

Variância populacional

A variância de uma população {x₁,...,x_N} de N elementos é a medida de dispersão definida como a média do quadrado dos desvios dos elementos em relação à média populacional μ.
 Ou seja, a variância populacional é dada por:

$$\sigma^{2} = \sum_{i=1}^{N} \frac{(x_{i} - \mu)^{2}}{N}$$

Variância amostral

 A variância de uma amostra {x₁,...,x_n} de n elementos é definida como a soma ao quadrado dos desvios dos elementos em relação à sua média divido por n-1

$$s^2 = \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n-1}$$

Por que divido por n-1 (vide https://www.ime.usp.br/~belitsky/wiki/lib/exe/fetch.php?me dia=mae121:denominadornoestimadordavariancia.pdf)

Mais utilizados

Valor esperado

$$E[\mathbf{X}] = \mu = \sum_{i=1}^{n} p_i x_i$$

$$Var(\mathbf{X}) = \sigma^2 = E[(\mathbf{X} - \mu)^2]$$
Desvio padrão(\mathbf{X})= $\sigma = \sqrt{\sigma^2}$

Problema: são distorcidas pela presença de outliers

Prove que:

$$Var(\mathbf{X}) = E[X^2] - E[X]^2$$

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp	. # Int.	Est.	Diagnóstico
4201	João	28	М	79	Grandes	38,0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Desvio_padrão= 10,8

Desvio_padrão = 6,3

Outras medidas

Desvio médio absoluto (Average absolute deviation)

$$AAD(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} |x_i - \mu|$$

Desvio mediano absoluto (Median absolute deviation)

$$MAD(\mathbf{X}) = \text{mediana}(\{|x_1 - \mu|, ..., |x_n - \mu|\})$$

Intervalo interquartil (interquartil range)

$$IQR(\mathbf{X}) = P_{75\%} - P_{25\%}$$

Outras medidas de espalhamento

ld.	Nome	Idade	Sexo	Peso	Manchas	Temp	. # Int.	Est.	Diagnóstico
4201	João	28	M	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	M	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	M	43	Inexistentes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PΕ	Saudável
2301	Ana	22	F	72	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	M	67	Uniformes	38,4	2	GO	Saudável

Intervalo = 31
Desvio_padrão= 10,8
AAD = 8,2
MAD = 3,5
IQR = 14,3

Intervalo = 19
Desvio_padrão= 6,3
AAD = 4
MAD = 1
IQR = 3,5

v

Momento

 Medidas em torno da média (média e desvio padrão), são em sua maioria instanciações de medida de momento

$$momento_{k}(\mathbf{X}) = \frac{\sum_{i=1}^{n} (x_{i} - \mu)^{k}}{(n-1)}$$

- Para cada valor de k, uma medida diferente de momento é definida
 - $\square k=1 \implies$ momento central (primeiro momento em torno da origem)
 - \square K=2 \rightarrow variância (segundo momento central)
 - \Box *K*=3 → **obliquidade** (terceiro momento central)
 - \square K=4 \rightarrow curtose(quarto momento central)

Obliquidade e curtose

- São medidas de distribuição, por mostrarem como os valores estão distribuídos
 - □ Obliquidade ou assimetria(skewness)
 - Mede a simetria da distribuição em torno da média
 - ☐ Curtose (Kurtosis)
 - Captura o achatamento da curva da função de distribuição de probabilidade

Representação do conjunto de dados

- Distribuições de freqüência
 - Freqüência relativa
 - Freqüência acumulada

- Representação Gráfica
 - ▶ Histogramas

Organização de dados

- Os métodos utilizados para organizar dados compreendem o arranjo desses dados em subconjuntos que apresentem características similares
 - mesma idade (ou "faixa etária"), mesma finalidade, mesma escola, mesmo bairro, etc
- Os dados agrupados podem ser resumidos em tabelas ou gráficos e, a partir desses, podemos obter as estatísticas descritivas já definidas: média, mediana, desvio, etc.
- Dados organizados em grupos ou categorias/classes são usualmente designados "distribuição de freqüência".

Distribuição de frequência

- Uma distribuição de freqüência é um método de se agrupar dados em classes de modo a fornecer a quantidade (e/ou a percentagem) de dados em cada classe
- Com isso, podemos resumir e visualizar um conjunto de dados sem precisar levar em conta os valores individuais
- Uma distribuição de freqüência (absoluta ou relativa) pode ser apresentada em tabelas ou gráficos

Construindo uma distribuição de

frequência

- Adotemos o conjunto de dados que represente a população
- Ordene em
 ordem
 crescente ou
 decrescente

Eventos	Altura
Aluno 1	1,60
Aluno 2	1,69
Aluno 3	1,72
Aluno 4	1,73
Aluno 5	1,73
Aluno 6	1,74
Aluno 7	1,75
Aluno 8	1,75
Aluno 9	1,75
Aluno 10	1,75
Aluno 11	1,75
Aluno 12	1,76
Aluno 13	1,78
Aluno 14	1,80
Aluno 15	1,82
Aluno 16	1,82
Aluno 17	1,84
Aluno 18	1,88

- Determine a quantidade de classes (k)
 - Regra de Sturges (Regra do logaritmo)
 - \Box k = 1 + 3,3 log(n)
 - Regra da potência de 2
 - \Box k= menor valor inteiro tal que 2^k ≥ n
 - Regra da raiz quadrada
 - \square K = \sqrt{n}
 - Bom senso!!
 - Decida a quantidade de classes que garanta observar como os valores se distribuem

Regra de Sturges (Logaritmo)		
Quantidade de dados (n)	Quantidade de Classes (k)	
1	1	
2	2	
3 a 5	3	
6 a 11	4	
12 a 23	5	
24 a 46	6	
47 a 93	7	
94 a 187	8	
188 a 376	9	
377 a 756	10	

Regra da Potência de 2			
Quantidade de	Quantidade de		
dados (n)	Classes (k)		
1 e 2	1		
3 e 4	2		
5 a 8	3		
9 a 16	4		
17 a 32	5		
33 a 64	6		
65 a 128	7		
129 a 256	8		
257 a 512	9		
513 a 1024	10		

Bom Senso				
Quantidade de dados (n)	Quantidade MÍNIMA de Classes (k)	Quantidade MÁXIMA de Classes (k)		
até 50	5	10		
51 a 100	8	16		
101 a 200	10	20		
201 a 300	12	24		
301 a 500	15	30		
mais de 500	20	40		

- Calcule a amplitude das classes (h)
 - ☐ Calcule a amplitude do conjunto de dados
 - $L = x_{max} x_{min}$
 - ☐ Calcule a amplitude (largura) da classe
 - h = L/k
 - Arredonde convenientemente
 - ☐ Calcule os limites das classes
 - Classe 1: x_{min} até x_{min+h}
 - Classe 2: x_{min+h} até x_{min+2h}
 -
 - Classe k: x_{min+(k-1)h} até x_{min+k,h}

Limite das classes

- Utilize a notação:
 - [x,y) intervalo de entre x (fechado) até y (aberto)
- Freqüentemente temos que "arredondar" a amplitude das classes e, conseqüentemente, arredondar também os limites das classes.
- Como sugestão, podemos tentar, se possível, um ajuste simétrico nos limites das classes das pontas (i.e., primeira e última) nas quais, usualmente, a quantidade de dados é menor.

Ponto médio das classes

Determinação da frequência das classes

Consiste em agrupar os dados em cada classe e contar os totais

Traçar o gráfico

- Dividir o eixo horizontal em tantas partes quanto for o número de classes. <u>Sugestão</u>: deixe espaço entre o eixo vertical e a primeira classe.
- Identifique a maior frequência da classe na tabela e marque esse número (ou outro um pouco maior) na extremidade do eixo vertical; divida esse eixo em algumas partes e marque os valores correspondentes
- Desenhe um retângulo, para cada classe, com largura igual à largura da classe e com altura igual à freqüência da classe

Do nosso exemplo:

- Ordenamos os dados
- ▶ Por Sturges, temos:
 - n=18; k=5 (número de classes)
- Amplitude de classes
 - Amplitude do conjunto de dados: 1,88-1,60=0,28m
 - Amplitude de classes: 0,28/5=0,056
 - Arredondado h = 0,06m

Altura
1,60
1,69
1,72
1,73
1,73
1,74
1,75
1,75
1,75
1,75
1,75
1,76
1,78
1,80
1,82
1,82
1,84
1,88

Construindo uma tabela de freqüência

- Calcule os Limites de Classe
- Arredonde os Limites de Classe nos extremos
 - **▶** 1,9-1,88=0,02
 - Distribua o excesso:
 - 1,60-0,01; 1,88+0,01
 - ► Ajuste todas as classes

Amplitude	0,06
Limites	Limite
inferiores	superior
1,60	1,66
1,66	1,72
1,72	1,78
1,78	1,84 /
1,84	1,90

Aqui "sobra" 0,02m!

Altura			
1,60			
1,69			
1,72			
1,73			
1,73			
1,74			
1,75			
1,75			
1,75			
1,75			
1,75			
1,76			
1,78			
1,80			
1,82			
1,82			
1,84			
1,88			

A 14. ...

Construindo uma tabela de freqüência

- Freqüências absolutas
 - Distribua os eventos ou ocorrência por suas respectivas classes
- Freqüências acumuladas
 - Some as ocorrências de dados cumulativamente às classes
- Observação importante:
 - É muito útil representar as frequências em termos percentuais ao total de amostras

An	plitude	0,06	
Dados	Classe	Frequência	Frequência Açumulada
1,60	1,59-1,65		1
1,69	1,65-1,71	1	2
1,72	1,71-1,77	10	12
1,73	1,77-1,83	4	16
1,73	1,83-1,89	2	18
1,74	Total	18	
1,75			
1,75			
1,75			
1,75			
1,75			
1,76			
1,78			
1,80			
1,82			
1,82			
1,84			
1,88			

Representação gráfica

Histograma

- Na abscissas, distribua as classes
- Na ordenada da esquerda, as freqüências absolutas
- Construa um gráfico de barras para as freqüências
- Construa um gráfico de linha para a freqüência acumulada (utilize a escala da direita)

ld.	Nome	Idade
4201	João	28
3217	Maria	18
4039	Luiz	49
1920	José	18
4340	Cláudia	21
2301	Ana	22
1322	Marta	19
3027	Paulo	34

Histograma

■ Base de dados Iris

10

Obliquidade

■ Equação (*k*=3)

obliquidade(**X**)=momento₃(**X**) =
$$\frac{\sum_{i=1}^{n} (x_i - \mu)^3}{(n-1) \text{desvio_padrao}^3}$$

- Valores de obliquidade
 - □ = 0 (simétrica): distribuição é aproximadamente simétrica
 - □ > 0 (positiva): distribuição concentra-se mais no lado esquerdo
 - < 0 (negativa): distribuição concentra-se mais no lado direito

Curtose

 Verifica se os dados apresentam um pico ou são achatados em relação a uma distribuição normal

$$\sum_{i=1}^{n} (x_i - \mu)^4$$
curtose(**X**)=momento₄(**X**) =
$$\frac{\sum_{i=1}^{n} (x_i - \mu)^4}{(n-1)\text{desvio_padrao}^4}$$

Para uma distribuição normal com média 0 e variância 1 o valor da curtose é igual a 3. Assim, é feita uma correção na equação

$$\sum_{i=1}^{n} (x_i - \mu)^4$$
curtose(**X**)=momento₄(**X**) =
$$\frac{\sum_{i=1}^{n} (x_i - \mu)^4}{(n-1)\text{desvio_padrao}^4} - 3$$

Curtose

- Valores de curtose
 - = 0 (normal): histograma tem achatamento de distribuição normal
 - □ > 0 (positiva): histograma tem distribuição mais alta e concentrada
 - < 0 (negativa): histograma tem distribuição mais achatada</p>

Gráfico de pizza

- Outro gráfico muito utilizado para ilustrar a distribuição de um conjunto de valores
- Indicado para valores quantitativos
 - □ Para quantitativos, deve agrupar valores em cestas
- Cada valor ocupa fatia com área proporcional ao número de vezes que aparece no conjunto de dados

Dados multivariados

- São aqueles que possuem mais de uma atributo
 - □ Ex: conjunto de dados da Iris e do hospital
- Medidas de localidade podem ser obtidas calculando a medida de localidade de cada atributo separadamente
 - □ Ex: Média para um conjunto de dados com *d* atributos

$$\overline{\mathbf{X}} = \left(\overline{\mathbf{X}}^1, \dots, \overline{\mathbf{X}}^d\right)$$

Dados multivariados

- Permitem ainda análises da relação entre dois ou mais atributos
 - Para atributos quantitativos, o espalhamento de um conjunto de dados é melhor capturado por uma matriz de covariância
 - Cada elemento é a covariância entre dois atributos

MATRIZ COVARIÂNCIA

A matriz covariância $\mathbf{K}_{\mathbf{X}}$ associada com um vetor aleatório $\mathbf{X} = [x_1, x_2, ..., x_N]^T$ real é expressa como:

$$\mathbf{K}_{\mathbf{X}} = E[(\mathbf{X} - \mathbf{m}_{\mathbf{X}})(\mathbf{X} - \mathbf{m}_{\mathbf{X}})^{T}]$$

$$\mathbf{K}_{\mathbf{X}} = E \begin{cases} \begin{bmatrix} (X_1 - m_1) \\ (X_2 - m_2) \\ \dots \\ (X_n - m_n) \end{bmatrix} [(X_1 - m_1) \quad (X_2 - m_2) \quad \dots \quad (X_n - m_n) \end{bmatrix}$$

$$K_{ij} = E[(X_i - m_i)(X_j - m_j)]$$

= $E[(X_j - m_j)(X_i - m_i)] = K_{ji}; \quad i, j = 1,...,n$

$$\mathbf{K}_{\mathbf{X}} = E[(\mathbf{X} - \mathbf{m}_{\mathbf{X}})(\mathbf{X} - \mathbf{m}_{\mathbf{X}})^{T}] = E \left\{ \begin{bmatrix} (X_{1} - m_{1}) \\ (X_{2} - m_{2}) \\ (X_{n} - m_{n}) \end{bmatrix} [(X_{1} - m_{1}) \quad (X_{2} - m_{2}) \quad \dots \quad (X_{n} - m_{n}) \right\}$$

$$\mathbf{K}_{\mathbf{X}} = \begin{bmatrix} E[(X_1 - m_1)(X_1 - m_1)] & E[(X_1 - m_1)(X_2 - m_2)] & \dots & E[(X_1 - m_1)(X_n - m_n)] \\ E[(X_2 - m_2)(X_1 - m_1)] & E[(X_2 - m_2)(X_2 - m_2)] & \dots & E[(X_2 - m_2)(X_n - m_n)] \\ & \dots & \dots & \dots & \dots \\ E[(X_n - m_n)(X_1 - m_1)] & E[(X_n - m_n)(X_2 - m_2)] & \dots & E[(X_n - m_n)(X_n - m_n)] \end{bmatrix}$$

$$\mathbf{K}_{\mathbf{X}} = \begin{bmatrix} E[X_1^2] - m_1^2 & E[X_1X_2] - m_1m_2 & \dots & E[X_1X_n] - m_1m_n \\ E[X_2X_1] - m_2m_1 & E[X_2^2] - m_2^2 & \dots & E[X_2X_n] - m_2m_n \\ \dots & \dots & \dots & \dots \\ E[X_nX_1] - m_nm_1 & E[X_nX_2] - m_nm_2 & E[X_n^2] - m_n^2 \end{bmatrix}$$

$$\mathbf{K}_{\mathbf{X}} = \begin{bmatrix} \sigma_{X_1}^{2} & K_{12} & \dots & K_{1n} \\ K_{21} & \sigma_{X_2}^{2} & \dots & K_{2n} \\ \dots & \dots & \dots & \dots \\ K_{n1} & K_{n2} & \sigma_{X_n}^{2} \end{bmatrix}$$

MATRIZ COVARIÂNCIA

- 1 − Se X é real, todos os elementos de K são reais.
- 2- Como $K_{ij}=K_{ji}$, a matriz covariância pertence à classe das matrizes simétricas.
- 3- Os elementos da diagonal da matriz covariância são as variâncias das variáveis aleatórias, que formam componentes dos vetores.

MATRIZ CORRELAÇÃO R_x

 Indicação mais clara da força da relação linear entre dois atributos

$$\mathbf{R}_{\mathbf{X}} = E[\mathbf{X}\mathbf{X}^{T}] = \begin{bmatrix} E[x_{1}^{2}] & E[x_{1}x_{2}] & \dots & E[x_{1}x_{N}] \\ E[x_{2}x_{1}] & E[x_{2}^{2}] & \dots & E[x_{2}x_{N}] \\ \dots & \dots & \dots & \dots \\ E[x_{N}x_{1}] & E[x_{N}x_{2}] & \dots & E[x_{N}^{2}] \end{bmatrix}$$

Covariância e correlação

- Ex: Conjunto de dados iris
- Matriz de covariância

	Tamanho_sépala	Largura_sépala	Tamanho_pétala	Largura_pétala
Tamanho_sépala	0,68569	-0,03927	1,27368	0,51690
Largura_sépala	-0,03927	0,18800	-0,32171	-0,11798
Tamanho_pétala	1,27368	-0,32171	3,11318	1,29639
Largura_pétala	0,51690	-0,11798	1,29639	0,58241

Matriz de correlação

	Tamanho_sépala	Largura_sépala	Tamanho_pétala	Largura_pétala
Tamanho_sépala	1,00000	-0,10937	0,87175	0,81795
Largura_sépala	-0,10937	1,00000	-0,42052	-0,35654
Tamanho_pétala	0,87175	-0,42052	1,00000	0,96276
Largura_pétala	0,81795	-0,35654	0,96276	1,00000

Dados multivariados: visualização

- Diagramas para visualizar dados multivariados
 - □ Em particular, relação entre diferentes atributos
 - ☐ Alguns tipos de gráficos:
 - Scatter plot
 - Bags plot
 - Faces de *Chernoff*
 - Star plots
 - Heatmaps

Scatter plot

- Ilustra a correlação linear entre dois atributos
 - Cada objeto, considerando apenas dois de seus atributos, é associado a uma posição em um plano
 - Valores dos atributos definem a sua posição
 - Valores são inteiros ou reais
 - Matrizes de scatter plot: relacionamento de vários atributos

Scatter plot

Ex: conjunto de dados da iris

Bagplot

- Generalização bivariada do boxplot
 - Apresenta, em uma mesma figura, o boxplot de dois atributos
 - Cada eixo pode ser considerado um boxplot de um dos atributos
 - □ Ex: conjunto de dados iris

Diagrama de Chernoff

- Mapeia valores dos atributos para imagens mais familiares: faces
 - □ Cada objeto (dado) é representado por uma face
 - Cada atributo é associado a uma ou mais características da face
 - Ex: altura e largura da cabeça, da boca, etc
- Baseia-se na habilidade humana de distinguir faces

Diagrama de Chernoff

Ex: base de dados iris

Tamanho da sépala representado por altura da face, largura da boca, altura do cabelo e largura do nariz

Star plot

- Desenha uma figura geométrica para cada objeto
 - □ Normalmente um polígono
 - □ Cada linha do polígono corresponde a um dos atributos
 - Tamanho da linha é proporcional ao valor do atributo
 - Quanto mais atributos, mais o polígono se assemelha a estrela
 - Valores de atributos semelhantes deformam a estrela

Star plot

Ex: conjunto de dados da iris

Heatmap

- Representa a relação entre exemplos e as classes
 - Agrupamento hierárquico (dendograma)
 - Auxilia a verificar tendências nos dados
 - Ex: conjunto de dados iris

Referências

Material de aula da profa. Dra. Ana Carolina Lorena e o Livro Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina