DroMOOC

Sensor fusion and state estimation Basic Level

Motivations for sensor fusion

Sylvain BERTRAND
ONERA

Motivations for sensor fusion

- Basics on sensors and measurements
- Example of quadrotor pitch angle estimation
 - from measurements by a single sensor
 - from combination of measurements by several sensors

Sensors and measurements

• Simple sensor model:

$$y^{m}(k) = \underline{s}.\underline{y}(k) + \underline{n}(k) + \underline{b}$$

- ▶ k: discrete-time index such that $t = k.T_s$ with sampling period T_s
- ▶ s: scale factor
- \triangleright n(k): measurement noise
- ▶ b: bias

Sensor fusion

Improve estimation process by combining measurements from different (types of) sensors

- compensate for drawbacks of some sensors by advantages of some others
 - noise/bias
 - accuracy/frequency
- improve robustness
 - wrt loss of sensors
 - wrt perturbations (environment)

A simple example

 Estimation of quadrotor pitch angle from IMU measurements (3 axis accelerometer and rate gyro)

- Assumptions: (quasi-stationary flight)
 - ► Small angles and low accelerations
 - ► Accelerometer can be used as inclinometer

A simple example

• Measurements and reference

A simple example (cont'd)

• Estimation of quadrotor pitch angle from rate gyro measurements only

A simple example (cont'd)

• Estimation of quadrotor pitch angle from accelerometer measurements only

A simple example (cont'd)

- Estimation of quadrotor pitch angle by fusing measurements from rate gyro and accelerometer (using a Kalman Filter)
- Bias of rate-gyro is simultaneously estimated

