PRIMITIVES USUELLES

Dans ce tableau, $n \in \mathbb{N}$, $p \in \mathbb{Z} \setminus \{-1\}$, $q \in \mathbb{R} \setminus \{-1\}$ et $a \in \mathbb{R}_+^*$. Le domaine de validité désigne les intervalles sur lesquels les primitives des fonctions réelles considérées sont valides.

Fonction	Primitive	Domaine de validité
x^n	$x^{n+1}/(n+1)$	\mathbb{R}
x^p	$x^{p+1}/(p+1)$	\mathbb{R}_+^* ou \mathbb{R}^*
x^q	$x^{q+1}/(q+1)$	\mathbb{R}_+^*
1/x	$\ln x $	\mathbb{R}_+^* ou \mathbb{R}^*
e <i>x</i>	e <i>x</i>	\mathbb{R}
$\sin x$	$-\cos x$	\mathbb{R}
$\cos x$	$\sin x$	\mathbb{R}
$\tan x$	$-\ln \cos x $	$] - \pi/2 + k\pi, \pi/2 + k\pi[, k \in \mathbb{Z}]$
$\cot x$	$\ln \sin x $	$]k\pi, (k+1)\pi[, k \in \mathbb{Z}$
$1/\sin x$	$\ln \tan(x/2) $	$]k\pi, (k+1)\pi[, k \in \mathbb{Z}$
$1/\cos x$	$\ln \tan(x/2+\pi/4) $	$]-\pi/2+k\pi,\pi/2+k\pi[,k\in\mathbb{Z}$
$1/\sin^2 x$	$-\cot x$	$]k\pi, (k+1)\pi[, k \in \mathbb{Z}$
$1/\cos^2 x$	$\tan x$	$]-\pi/2+k\pi,\pi/2+k\pi[,k\in\mathbb{Z}$
$\sinh x$	$\operatorname{ch} x$	\mathbb{R}

$\operatorname{ch} x$	$\operatorname{sh} x$	\mathbb{R}
th x	$\ln(\operatorname{ch} x)$	\mathbb{R}
$\coth x$	$\ln \operatorname{sh} x $	\mathbb{R}_+^* ou \mathbb{R}^*
$1/\operatorname{sh} x$	$\ln \operatorname{th} (x/2) $	\mathbb{R}_+^* ou \mathbb{R}^*
$1/\operatorname{ch} x$	$2 \operatorname{Arctan}(e^x)$	\mathbb{R}
$1/\sinh^2 x$	$-\coth x$	\mathbb{R}_+^* ou \mathbb{R}^*
$1/\cosh^2 x$	th x	\mathbb{R}
$1/(a^2-x^2)$	$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $	$]-\infty, -a[\text{ ou }]-a, a[\text{ ou }]a, +\infty[$
$1/(a^2+x^2)$	$\frac{1}{a}\operatorname{Arctan}(x/a)$	\mathbb{R}
$1/\sqrt{a^2 - x^2}$	Arcsin(x/a)]-a,a[
$1/\sqrt{x^2 - a^2}$		$]-\infty,-a[\text{ ou }]a,+\infty[$
$1/\sqrt{a^2 + x^2}$	$\ln\left(x + \sqrt{a^2 + x^2}\right)$	\mathbb{R}

Dans ce tableau, $\alpha \in \mathbb{C}\backslash\mathbb{R}$, $p \in \mathbb{Z}\backslash\{0,-1\}$. Les fonctions complexes suivantes sont définies sur \mathbb{R} et leurs primitives sont valables sur cet intervalle.

Fonction	Primitive
$e^{\alpha x}$	$\frac{1}{\alpha}$.e $^{\alpha x}$
$1/(x-\alpha)$	$\ln x - \alpha + i \cdot Arctan \left(\frac{x - \text{Re } (\alpha)}{\text{Im } (\alpha)} \right)$
$(x-\alpha)^p$	$(x-\alpha)^{p+1}/(p+1)$