NOTES DE COURS

LES RAPPORTS TRIGONOMÉTRIQUES

Soit le triangle *ABC*, rectangle en *C* :

Rappel:

Les angles A et B sont dits ___

car la somme de leurs mesures est de 90°.

Les trois rapports trigonométriques de base sont le sinus, le cosinus et la tangente.

$$sin(A) =$$

$$cos(A) =$$

$$tan(A) =$$

Le rapport tangente n'est pas seulement le rapport entre le côté opposé et le côté adjacent, mais peut aussi être décomposé à l'aide des rapports sinus et cosinus (du même angle) :

$$tan(A) =$$

En inversant chacun de ces rapports, on obtient la cosécante, la sécante et la cotangente.

$$cosec(A) = \frac{1}{sin(A)} =$$
 $sec(A) = \frac{1}{cos(A)} =$ $cotan(A) = \frac{1}{tan(A)} =$

$$\sec(A) = \frac{1}{\cos(A)} =$$

$$\cot(A) = \frac{1}{\tan(A)} =$$

Notation équivalente:

Notation équivalente:

Si
$$tan(A) = \frac{\sin(A)}{\cos(A)}$$
 alors $cotan(A) =$

Notes importantes:

- $\sin^{-1}(R) = \arcsin(R)$ ici, « -1 » signifie _____.
- $(\sin(A))^{-1} = \csc(A) = \frac{1}{\sin(A)}$ ici, « -1 » signifie _____.
- $\sin^2(A) = (\sin(A))^2 \longrightarrow \text{ici, } (2) \text{ sest bien un}$

Rappel sur le concept de « rapport » trigonométrique :

Des figures semblables sont des figures dont les angles homologues sont

Par exemple, dans la figure ci-dessus, $\triangle ABC \sim \triangle ADE \sim \triangle AFG$.

On peut le prouver par le cas de similitude :

Soit les informations suivantes :

$$a = m\overline{BC}$$
, $b = m\overline{AC}$, $c = m\overline{AB}$, $\frac{m\overline{DE}}{m\overline{BC}} = 2$ et $\frac{m\overline{AG}}{m\overline{AC}} = \pi$

Par DÉFINITION : sin(A) =

On voit que pour un angle donné, <u>les **rapports** trigonométriques sont constants</u> et ce, peu importe les dimensions du triangle!

LES TRIANGLES RECTANGLES PARTICULIERS

a) Triangle ayant un angle de 30°

Sic = 2, alors ...

b) Triangle isocèle

Sic = 2, alors ...

Rapports trigonométriques à connaître PAR COEUR :

1.
$$\sin(30^\circ) = \cos(\underline{}) = \underline{}$$

2.
$$\sin(45^\circ) = \cos(\underline{}) = \underline{} \approx \underline{}$$

3.
$$\sin(60^\circ) = \cos(\underline{}) = \underline{} \approx \underline{}$$

EN TOUTES CIRCONSTANCES, LE SINUS D'UN ANGLE EST ÉGAL AU COSINUS DE L'ANGLE QUI LUI EST COMPLÉMENTAIRE (et vice versa bien sûr!)

Exemples: $\sin (70^{\circ}) = \cos (\underline{}) \qquad \cos (x) = \sin (\underline{})$

Exercice: Soit A et B, deux angles complémentaires. Sans calculatrice, compléter les égalités. Faire vos calculs à la page suivante...

a) Si sin (A) =
$$\frac{3}{4}$$
, alors cos (A) = _____

a) Si sin (A) =
$$\frac{3}{4}$$
, alors cos (A) = _____ b) Si sin (A) = $\frac{3}{5}$, alors sec (90° - A) = _____

c) Si cos (A) =
$$\frac{\sqrt{3}}{2}$$
, alors tan (B) = _____

c) Si cos (A) =
$$\frac{\sqrt{3}}{2}$$
, alors tan (B) = _____ d) Si cos (A) = $\frac{\sqrt{3}}{2}$, alors cosec (B) = _____

e) Si sin (A) =
$$\frac{\sqrt{2}}{2}$$
, alors cot (B) = _____ f) Si csc (A) = 2, alors $m \angle A = ____$

f) Si csc (A) = 2, alors
$$m \angle A = \underline{\hspace{1cm}}$$

VRAI OU FAUX ?

a)
$$\cos (45^\circ) = \frac{\sqrt{6}}{3} \sin(60^\circ)$$

b)
$$\cos^{-1}(0,5) = 2\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

c)
$$\tan (45^{\circ}) = \frac{\sqrt{2}}{2}$$

d)
$$tan(A) = \frac{cos (90^{\circ} - A)}{sin (90^{\circ} - A)}$$

e)
$$tan(A) = cot (90^{\circ} - A)$$

f)
$$\cos(A) = \sin(A - 90^\circ)$$

Collège Regina Assumpta Mathématique SN₅ Chapitre 5 Trigonométrie

Calculs...

LE RADIAN

Définition : Mesure de l'angle au centre formé par deux rayons interceptant un arc dont la mesure est égale au ______ du cercle. Son abréviation est _____. Le radian sera très pratique lorsque viendra le moment de déterminer une longueur d'arc.

Note : Nous utiliserons très souvent la lettre grecque *thêta* (θ) pour décrire un angle.

Proportion à retenir :

Exemples:

72° -

Attention! $2\pi r \neq 2\pi \ rad$ car: $2\pi r$ représente la ______ (mesure métrique)

mais 2π rad représente une mesure d'_____

L'ouverture d'un angle au centre d'un radian n'est pas affectée par le rayon du cercle. Autrement dit, un angle de 1 radian est constant d'un cercle à l'autre et ne dépend pas de la mesure du rayon.

rad

LONGUEUR D'ARC

... à partir d'un angle en degrés : L =

... à partir d'un angle en radians : L =

Exercice 1:

Quelle est la mesure, en valeur exacte (puis arrondie au centième près), de l'arc MN d'un cercle si les mesures du rayon et de l'angle au centre sont respectivement :

a) 8 cm et
$$\frac{\pi}{3}$$
 rad

b) 4 dm et 63°

Exercice 2:

Un cercle a 5 cm de rayon. Quelle est la mesure (en radians) de l'angle au centre qui intercepte un arc de :

Exercice 3:

Quelle est la mesure, en valeur exacte (puis arrondie au centième près), du rayon d'un cercle dont la mesure de l'angle au centre et la longueur de l'arc sont respectivement : En valeur exacte, puis arrondie au centième près...

b)
$$\frac{6\pi}{5}$$
 rad et 0,7 cm

Exercice 4:

Complète les égalités suivantes:

a)
$$\pi \operatorname{rad} = \underline{\hspace{1cm}}^{\circ}$$

a)
$$\pi \, \text{rad} = \underline{\hspace{1cm}}^{\circ}$$
 b) $\frac{\pi}{3} \, \text{rad} = \underline{\hspace{1cm}}^{\circ}$

c)
$$\frac{\pi}{4}$$
 rad = _____°

d)
$$\frac{\pi}{6}$$
 rad = _______°

e)
$$\frac{\pi}{2}$$
 rad = ______

d)
$$\frac{\pi}{6}$$
 rad = _____ \circ e) $\frac{\pi}{2}$ rad = ____ \circ f) $\frac{7\pi}{6}$ rad = ____ \circ

g)
$$\frac{11\pi}{6}$$
 rad = _____ ° h) 1 rad = ____ ° i) 5 rad = ____ °

j)
$$90^{\circ} =$$
 _____ rad k) $225^{\circ} =$ ____ rad l) $122^{\circ} =$ ____ rad

k)
$$225^{\circ} =$$
 rad

1)
$$122^{\circ} =$$
____rad

La calculatrice...

Calculons :
$$\sin(1 \text{ rad}) = \underline{\qquad} \sin(1^{\circ}) = \underline{\qquad}$$

À l'aide de votre calculatrice, vérifier la valeur des rapports : $\cos (60^\circ)$ et $\cos \left(\frac{\pi}{3} \text{ rad}\right)$.

ANGLES TRIGONOMÉTRIQUES

Le sommet d'un angle trigonométrique est à l'origine du plan cartésien. L'un des côtés de l'angle, nommé côté initial, se confond avec le demi-axe positif des abscisses et l'autre, nommé côté terminal, est obtenu en appliquant au côté initial <u>une rotation</u> dont le centre est l'origine du plan. Ensemble, ces deux côtés décrivent l'angle de rotation, soit l'angle trigonométrique et peut prendre toute valeur réelle. La mesure d'angle peut être :

- négative (rotation dans le sens horaire) ou
- positive (rotation dans le sens anti-horaire).

Deux angles trigonométriques sont dits co-terminaux s'ils ont le même côté terminal et ce, peu importe le sens de rotation.

Exercice:

Les paires d'angles suivantes représentent-elles des angles co-terminaux?

- a) -200° et 160°
- b) 115° et 475°
- c) -300° et -60°

- d) $-\frac{\pi}{2}$ rad et $\frac{\pi}{2}$ rad et $\frac{\pi}{4}$ rad et $\frac{3\pi}{4}$ rad f) $\frac{-2\pi}{3}$ rad et $\frac{10\pi}{3}$ rad

► En conclusion, pour que deux angles soient *co-terminaux*, il faut que _____

Série d'exercices sur les angles et longueurs d'arc

Exercice 1:

Les angles P et Q sont co-terminaux. Si la mesure de l'angle P est de 100°, déterminer la mesure de l'angle Q pour :

a)
$$-360^{\circ} < Q < 0^{\circ}$$

b)
$$360^{\circ} < Q < 720^{\circ}$$

Exercice 2:

Les angles P et S sont co-terminaux. Si la mesure de l'angle P est de $\frac{2\pi}{3}$ rad, déterminer la mesure de l'angle S pour :

a)
$$-2\pi \operatorname{rad} < S < 0 \operatorname{rad}$$

b)
$$2\pi \text{ rad} < S < 4\pi \text{ rad}$$

Exercice 3:

Quelle est la longueur exacte d'un arc compris entre deux rayons formant un angle de $\frac{\pi}{3}$ rad si le rayon du cercle vaut 15cm?

Exercice 4:

On place une pièce de 10ϕ sur un disque à 12cm du centre. Si on tourne le disque de $\frac{1}{6}$ de tour, quelle est la longueur de l'arc décrit par la pièce de monnaie?

<u>Exercice 5</u>: Dans un cercle dont le rayon est de 6cm, l'angle au centre COD mesure 1 radian.

- a) Quel est le périmètre du secteur COD?
- b) Quelle est l'aire de ce secteur?

<u>Exercice 6</u>: Un angle au centre de 2 radians intercepte un arc de 20cm. Quelle est la circonférence du cercle?

<u>Exercice 7</u>: Un cycliste roule à une vitesse de 36km/h. Sa roue a un rayon de 40cm. De combien de radians sa roue tourne-t-elle chaque seconde?

<u>Exercice 8</u>: De combien de radians tourne l'aiguille des minutes d'une horloge en une minute?

 $P_1(\theta)$

 $P_2(-\theta)$

X

CERCLE TRIGONOMÉTRIQUE

Le *cercle trigonométrique* est un cercle centré à l'origine du plan cartésien et dont le rayon mesure une unité.

utile pour vérifier si un point (x, y) appartient au cercle trigonométrique...

Son équation est :

Soit le point $P(\theta)$, un point du cercle trigonométrique. C'est un *point trigonométrique*.

Ce point $P(\theta)$ correspond à l'extrémité d'un arc dont l'origine est (1, 0) et dont la valeur de la mesure orientée est de θ .

Les coordonnées de tout point trigonométrique sont données par :

0

0

$$P(\theta) = (\qquad , \qquad)$$

Si aucune unité de mesure n'est spécifiée, il s'agit de radians...

<u>Exemple</u>: Positionner les points suivants sur le cercle:

- a) $P_3(90^\circ)$
- b) $P_4(\pi)$
- c) $P_5(2)$
- d) $P_6\left(-\frac{3\pi}{4}\right)$ e) $P_7(-360^\circ)$
- f) $P_8(7)$

h)
$$P_{10}\left(-\frac{5\pi}{2}\right)$$

Exercice 1 : À quel angle de rotation correspond un point trigonométrique de coordonnées $\left(\frac{5}{13}, \frac{12}{13}\right)$?

Exercice 2 : Déterminer si les points suivants sont situés sur le cercle trigonométrique.

a)
$$\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$
 b) $\left(\frac{4}{3}, \frac{3}{4}\right)$

Exercice 3 : Détermine les 2 positions possibles (en valeurs exactes) d'un point trigonométrique $P(\theta)$ sachant que $\cos(\theta) = \frac{1}{4}$.

<u>LE CERCLE TRIGONOMÉTRIQUE</u> (les valeurs des rapports ont été identifiées à la page 3)

Exercices sur le cercle trigonométrique

VRAI OU FAUX ? (Si c'est faux, corriger le membre de droite afin que l'énoncé soit vrai.)

- 1. $\sin(\theta) = \sin(\pi \theta)$:
- 2. $\sin(-\theta) = \sin(\theta)$:
- 3. $\cos(\theta) = \sin\left(\frac{\pi}{2} \theta\right)$:
- 4. $\cos(-\theta) = -\cos(\theta)$:

Exercice 1: Si $P(\theta)$ est un point trigonométrique appartenant au II^e quadrant, dans quel quadrant se situe :

a)
$$P\left(\theta + \frac{\pi}{2}\right)$$

b)
$$P(\theta-\pi)$$

a)
$$P(\theta + \frac{\pi}{2})$$
 _____ b) $P(\theta - \pi)$ ____ c) $P(\frac{7\pi}{2} + \theta)$ _____

Exercice 2: Situer (colorier) sur le cercle trigonométrique les intervalles suivants.

a)
$$\frac{3\pi}{4} < \theta < \frac{3\pi}{2}$$

b)
$$\theta \in \left[\frac{-2\pi}{3}, \frac{\pi}{6}\right]$$

c)
$$\theta \in \left[\frac{-7\pi}{6}, \frac{-\pi}{3} \right]$$

d)
$$\theta \in \left[\frac{-7\pi}{4}, \frac{-3\pi}{4} \right]$$

Faites vos calculs à la page suivante...

Exercice 3:

Sans calculatrice, donnez la valeur exacte des rapports suivants :

$$\sin\left(\frac{5\pi}{3}\right) =$$

$$\cos(\pi) = \underline{\hspace{1cm}}$$

$$\sin\left(\frac{5\pi}{3}\right) = \underline{\qquad} \qquad \cos(\pi) = \underline{\qquad} \qquad \sin\left(\frac{-2\pi}{3}\right) = \underline{\qquad} \qquad \cos\left(\frac{-5\pi}{4}\right) = \underline{\qquad}$$

$$\cos\left(\frac{-5\pi}{4}\right) = \underline{\hspace{1cm}}$$

$$\tan\left(\frac{\pi}{6}\right) = \underline{\hspace{1cm}}$$

$$\tan\left(\frac{\pi}{6}\right) = \underline{\qquad} \cot\left(\frac{5\pi}{6}\right) = \underline{\qquad} \sec(0) = \underline{\qquad} \cot(2\pi) = \underline{\qquad}$$

$$\cot(2\pi) = \underline{\hspace{1cm}}$$

$$\csc\left(\frac{-5\pi}{4}\right) = \underline{\hspace{1cm}}$$

$$\cos\left(\frac{-11\pi}{6}\right) = \underline{\hspace{1cm}}$$

$$\tan\left(\frac{-\pi}{2}\right) = \underline{\hspace{1cm}}$$

$$\csc\left(\frac{-5\pi}{4}\right) = \underline{\qquad} \quad \cos\left(\frac{-11\pi}{6}\right) = \underline{\qquad} \quad \tan\left(\frac{-\pi}{2}\right) = \underline{\qquad} \quad \sec\left(\frac{-3\pi}{4}\right) = \underline{\qquad}$$

Exercice 4 : Sans calculatrice, déterminer la valeur du rapport trigonométrique tangente pour chaque angle remarquable et l'inscrire sur le cercle trigonométrique de la page 125.

Exercice 5:

Sans calculatrice, dire si les énoncés suivants sont vrais ou faux.

$$\tan(\theta) > 0 \ \forall \ \theta \in \left] \frac{\pi}{2} \ , \ \pi \right[$$

Réponse : _____

$$\cos\left(\frac{5\pi}{6}\right) = \sin\left(\frac{-5\pi}{3}\right)$$

Réponse : _____

Si $sec(\theta) < 0$ alors $cos(\theta) > 0$

Réponse:

$$\tan\left(\frac{7\pi}{6}\right) = \cot\left(\frac{-2\pi}{3}\right)$$

Réponse : _____

Exercice 6:

Sans calculatrice, donnez la valeur exacte des rapports suivants :

$$\sin\left(\frac{7\pi}{3}\right) = \underline{\hspace{1cm}}$$

$$\cos(6\pi) = \underline{\hspace{1cm}}$$

$$\sin\left(\frac{-8\pi}{3}\right) = \underline{\hspace{1cm}}$$

$$\sin\left(\frac{7\pi}{3}\right) = \underline{\qquad} \qquad \cos(6\pi) = \underline{\qquad} \qquad \sin\left(\frac{-8\pi}{3}\right) = \underline{\qquad} \qquad \cos\left(\frac{-11\pi}{4}\right) = \underline{\qquad}$$

$$\tan\left(\frac{-8\pi}{2}\right) = \underline{\hspace{1cm}}$$

$$\sin\left(\frac{21\pi}{6}\right) = \underline{\hspace{1cm}}$$

$$\cos(100\pi) =$$

$$\tan\left(\frac{-8\pi}{2}\right) = \underline{\qquad} \quad \sin\left(\frac{21\pi}{6}\right) = \underline{\qquad} \quad \cos(100\pi) = \underline{\qquad} \quad \sin\left(-\frac{25\pi}{2}\right) = \underline{\qquad}$$

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

LES ANGLES DE RÉFÉRENCE

Exercice: Donner la valeur d'un angle trigonométrique θ dans l'intervalle $[0, 2\pi \text{ rad}]$ de telle sorte qu'il soit co-terminal avec chacun des angles suivants.

a)
$$\frac{21\pi}{4}$$
 rad

b)
$$146\pi$$
 rad

c)
$$-\frac{71\pi}{6}$$
 rad

d)
$$\frac{745\pi}{3}$$
 rad

e)
$$\frac{-126\pi}{4}$$
 rad

f)
$$\frac{-7\pi}{6}$$
 rad

LE PHÉNOMÈNE PÉRIODIQUE (ou modèle cyclique)

En mathématiques, en sciences et même dans la vie courante, les phénomènes cycliques occupent une place de première importance : l'alternance du jour et de la nuit, les jours de la semaine, l'aller-retour continu d'un pendule, une grande roue dans un parc d'attractions, le phénomène des marées, les ondes sonores, *le cercle trigonométrique*...

Voici le graphique illustrant le pouls d'un individu branché à un électrocardiogramme :

Nommons le début et la fin de 2 cycles différents : de ____ à ___ et de ___ à ___

On observe également qu'il y a _____ cycles entre C et I.

Un peu de vocabulaire...

Cycle: La plus petite portion de la courbe correspondant au motif qui est répété

Note: Aux extrémités d'un cycle, la fonction a la même valeur (ordonnée).

<u>Période</u>: Distance entre les extrémités d'un cycle. On la note p.

<u>Fréquence</u>: Correspond à l'inverse de la période. On la note f. Elle se calcule ainsi : $f = \frac{1}{p}$.

Note : La période nous renseigne sur la durée d'un cycle, alors que la fréquence nous indique le nombre de cycles que l'on peut compter par unité de temps.

<u>L'amplitude</u> (A) est la demi-distance entre le maximum et le minimum de la fonction. On peut la retrouver par la formule :

<u>L'ordonnée moyenne</u> se trouve à <u>une</u> amplitude des extremums. Formule :

Exemple:

Soit la fonction périodique f suivante :

a) Compléter...

Période : _____ Amplitude : _____

Ordonnée moyenne : _____ Valeur de f(28) : _____

- b) Connaissant le point A(1; 2,5), positionner dans le graphique ci-haut le point :
 - 1) B situé à 1,5 cycle « après » A;
 - 2) C situé à 1/4 cycle « avant » A ;
 - 3) D situé à 0,75 cycle « avant » A.

c) Combien y-a-t-il de minimums entre A et E(233,5; 1)?

Exercice:

Le mouvement d'un pendule est modélisé par une fonction périodique. Voici quelques caractéristiques liées au mouvement du pendule.

- On appelle P₀ la position d'équilibre
- On appelle P₁ et P₂ les positions représentant les distances maximales de la masse par rapport à P₀.
- À t = 0, la masse était à la position P_1 .
- Un aller-retour du pendule dure 2 secondes.

Faites un croquis de la fonction donnant la distance de la masse par rapport à sa position initiale en fonction du temps écoulé depuis le début et répondre aux questions.

\mathbf{r}	
1)4	essin

a)	Après combien de temps était-elle de retour à la position P ₁ pour la première fois?
b)	Quelle était la position de la masse à $t = 1 \text{sec } ?$
c)	Quelle était la position après 7,5 sec (et le sens du déplacement)
d)	Quelle est la fréquence ?
e)	Combien de fois la masse est-elle passée par P ₀ après 10,75 sec ?

Exercices sur le modèle cyclique

Faites vos calculs dans le bas de la page suivante.

#1 Soit la table de valeurs d'une fonction périodique f: Sachant que les abscisses 3 et 11 marquent les extrémités d'un même cycle :

x	3	7	9	11	15	23	25
f(x)	5	0	-2	5	0		

- a) Quelle est la période de la fonction f?
- b) Complète la table de valeurs.
- c) Donne 5 valeurs de x telles que f(x) = -2.

#2 L'amplitude d'une fonction périodique f est $\frac{7}{4}$ unité et son maximum est 2. Quel est le codomaine de cette fonction?

#3 La période d'une fonction g est 9. Si g(2) = -1 et g(-3) = 0, évaluer :

- a) g(29) =_____
- b) g(-21) =
- c) g(1176) =_____

#4 La période de la fonction h est 15. Si h(1) = 0 et h(-6) = 3, calcule la valeur de :

- a) h(31) = _____ d) h(249) = _____
- b) h(9) =______ e) h(-6 + 12p) =_____
- c) h(-434) = f) h(1 + 15n) avec $(n \in \mathbb{Z})$:

En bref... Soit $A(x_1, y_1)$ et $B(x_2, y_2)$, deux points appartenant à une fonction périodique. On peut donc déduire que,

si ______, alors $y_1 = y_2$.

Ce qui nous mène à la définition du phénomène cyclique :

Soif une fonction périodique f de période p. $f(x) = f(x + np) \ (n \in Z)$

Calculs...

LA FONCTION SINUS DE BASE $f(x) = \sin(x)$

Graphique de la fonction sinus de base : $f(x) = \sin(x)$

Anal	yse

- 1. Domaine : _____ 2. Codomaine : _____
- 3. Période :____

- 4. Fréquence :_____
- 5. Maximum : _____
- 6. Minimum:
- 7. Positive sur :_____

- 8. Croissante sur : _____

Négative sur : _____

- Décroissante sur :
- 9. Zéros : _____

Exercice 1:

Faire l'analyse complète de la fonction sinusoïdale suivante:

$$f(x) = 3\sin\left(\frac{1}{2}x\right) + 3$$

- 1. Domaine : ______ 2. Codomaine : _____
- 3. Période : _____
- 4. Fréquence : _____ 5. Maximum : _____
- 6. Minimum : _____
- 7. Ordonnée moyenne :_____
- 8. $f(x) \ge 0 \forall x \in$
- 9. Croissante sur :
- 10. Zéros : _____

LA FONCTION COSINUS DE BASE $f(x) = \cos(x)$

Graphique de la fonction cosinus de base : f(x) = cos(x)

Analyse de la fonction

- 1. Domaine : _____ 2. Codomaine : _____ 3. Période : _____
- $4. \ f(x) \ge 0 \forall x \in \underline{\hspace{1cm}}$
- $5. \ f(x) \le 0 \forall x \in \underline{\hspace{1cm}}$
- 6. $\forall x_1, x_2 \in \underline{\hspace{1cm}} : x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- 7. $\forall x_1, x_2 \in \underline{\hspace{1cm}} : x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$
- 8. $f(x) = 0 \forall x \in \underline{\hspace{1cm}}$

Exercice:

Écrire la règle de la fonction illustrée ci-haut (cosinus de base) à l'aide de l'opérateur sinus.

FONCTIONS SINUSOÏDALES TRANSFORMÉES (sinus et cosinus)

La règle d'une fonction sinusoïdale transformée est de la forme :

$$f(x) = a \cdot \sin(b(x-h)) + k$$
 ou $f(x) = a \cdot \cos(b(x-h)) + k$ $(a \ne 0 \text{ et } b > 0)$

DANS LES DEUX CAS

Le paramètre *a* nous renseigne sur

Note: Comme l'amplitude est **une mesure** (nombre strictement positif) : A = _____

Le paramètre *k* positionne

Le **maximum** d'une fonction sinusoïdale est donné par :_____

Le **minimum** d'une fonction sinusoïdale est donné par :_____

En d'autres mots, le codomaine d'une fonction sinusoïdale est : [k-A, k+A]

Le paramètre **b** nous permet de déterminer

Le paramètre *h* indique le _____

Note : le déphasage décrit la position de la fonction transformée par rapport à la fonction de base.

Au sujet des signes de a et b...

- a) pour la fonction COSINUS
- b) pour la fonction SINUS

Exemple : Compléter le tableau suivant.

Fonction	$f(x) = -\frac{3}{2}\sin\left(\pi x + \frac{\pi}{2}\right) - 4$	$g(x) = \cos(-x + \pi)$
Règle (forme canonique) avec $b > 0$		
Amplitude		
Période		
Déphasage		

Exercice 1 : Tracer le graphique des fonctions sinusoïdales suivantes.

$$f(x) = 3\sin\left(\frac{x}{2} - \pi\right) + 2$$

$$g(x) = \sin\left(-x - \frac{\pi}{2}\right) - \frac{1}{2}$$

$$h(x) = -\frac{3}{2}\cos(-2x) - 4$$

$$*j(x) = \cos(-(\pi x + 5\pi))$$

Résumé sur le tracé d'un graphique ou d'un croquis

A) Fonction SINUS $f(x) = a \cdot \sin(b(x-h)) + k$ (avec b > 0)

Le paramètre b peut TOUJOURS être ramené supérieur à zéro grâce à la propriété

2 croquis sont alors possibles:

B) Fonction COSINUS $f(x) = a \cdot \cos(b(x-h)) + k$ (avec b > 0)

Le paramètre b peut TOUJOURS être ramené supérieur à zéro grâce à la propriété

2 croquis sont alors possibles:

Amplitude : 3 Période : 4π Maximum : 2 Déphasage : 3π

La fonction est décroissante sur $[4\pi, 6\pi]$

Trace le graphique de cette fonction. Quelle est sa règle?

Exercice 2:

Détermine la règle des trois fonctions sinusoïdales suivantes :

Règle: f(x) =

Règle : g(x) =

A et B sont des extremums :

Règle : h(x) =

Exercice 3 : Donner la règle **en sinus** d'une fonction sinusoïdale f dont les caractéristiques sont :

Une amplitude de 4, une fréquence de 0,5 et un maximum de 3 à x = 1.

RÉSOLUTION D'ÉQUATIONS TRIGONOMÉTRIQUES SIMPLES

A) Équations en SINUS:

Déterminer les zéros de la fonction f suivante :

$$f(x) = 2\sin\left(2\left(x - \frac{3\pi}{2}\right)\right) - \sqrt{3}$$

Rappel...

Comme $y_{P_1} = y_{P_2}$:

Vous avez les deux pages suivantes pour travailler ces exercices.

Exercice 1 : Pour chacune des fonctions suivantes:

- 1 Écrire sa règle sous forme canonique avec b > 0.
- 2 Faire un croquis et indiquer la position du point de départ du premier cycle.
- 3 Déterminer algébriquement la position des zéros et les positionner sur le croquis.

a)
$$f(x) = 2\sin(\pi(-x+1)) + \sqrt{2}$$
 d) $f(x) = -0.5\sin(6\pi - x) + \sqrt{3}$

d)
$$f(x) = -0.5\sin(6\pi - x) + \sqrt{3}$$

b)
$$f(x) = 5\sin(2\pi(3-x)) + 5$$

b)
$$f(x) = 5\sin(2\pi(3-x)) + 5$$
 e) $f(x) = 40\sin(\frac{2\pi}{3}(x+1)) + 35$

c)
$$f(x) = 2\sin(3x) + 1$$
 sur l'intervalle $\left[\frac{-\pi}{2}, \pi\right]$

Exercice 2 : À l'aide d'un croquis et d'une démarche de résolution algébrique adéquate, déterminer l'ensemble solution des inéquations suivantes.

a)
$$4\sin(4x)-3 > -5$$

*b)
$$4\sin\left(-3\left(x-\frac{\pi}{6}\right)\right) - 7 \ge -8$$
 si $x \in \left[\frac{-\pi}{8}, \frac{4\pi}{3}\right]$

Quelques constatations importantes:

- 1- Une équation est sans solution lorsque _____
- 2- Une équation n'admet qu'une solution par cycle lorsque ____

Note : Il en sera de même pour les équations en cosinus.

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

B) Équations en COSINUS:

Détermine les zéros de la fonction f suivante :

$$f(x) = 10\cos(x+4) + 5$$

Rappel...

Comme $x_{P_1} = x_{P_2}$:

Résoudre :

$$f(x) \le 0 \forall x \in \underline{\hspace{1cm}}$$

Vous avez les deux pages suivantes pour travailler ces exercices.

<u>Exercice 1</u>: Pour chacune des fonctions suivantes:

- 1 Écrire sa règle sous forme canonique avec b > 0.
- 2 Faire un croquis et indiquer la position du point de départ du premier cycle.
- 3 Déterminer algébriquement la position des zéros et les positionner sur le croquis.

a)
$$f(x) = -\cos(3x) + 0.5$$

sur l'intervalle $[-\pi, \pi]$

d)
$$f(x) = \cos(3(x-\pi)) - \frac{\sqrt{2}}{2}$$

b)
$$f(x) = -2\cos\left(\frac{1}{3}\left(x + \frac{\pi}{2}\right)\right) - 0.71$$

e)
$$f(x) = 7\cos(-12x-1) - 0.4$$

c)
$$f(x) = -2\cos(-2(x+2,6)) - \sqrt{3}$$

f)
$$f(x) = 8\cos(50x) + 8$$

Exercice 2:

À l'aide d'un croquis et d'une démarche de résolution algébrique adéquate, déterminer l'ensemble solution des inéquations suivantes.

a)
$$-3\cos(\pi(x-0.5))+5 \le 8$$
 si $x \in [0, 4]$

b)
$$1 - \cos(2x + 6) \ge \frac{1}{2}$$

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

RÉSOLUTION DE PROBLÈMES

- **#1)** Au parc d'attraction, il y a une grande roue de 20 m de diamètre. Sachant que la roue effectue un tour complet en 3 minutes, on s'intéresse à la hauteur h (en mètres) du siège no. 1 selon le temps écoulé t (en minutes) depuis la mise en marche du manège. Au départ, le siège no.1 est à son plus bas, soit à une hauteur de 2 m par rapport au sol.
- a) Représenter par une règle la variation de la hauteur du siège no.1 pendant son premier tour.
- b) Pendant combien de temps (en minutes et en secondes) le siège #1 a-t-il été à moins de 6m d'altitude pendant les 3 premiers tours? (arrondir au centième)

- #2) Pour décorer sa maison, Réjean a fixé un jeu de lumières le long d'une corniche de 12,8 m de longueur. Le bas de la corniche est découpé suivant une courbe sinusoïdale dont l'équation est $g(x) = 0.04 \sin (19.6(x 0.08)) + 2.4 \text{ où } x \text{ est la distance horizontale (en mètres) à partir de l'extrémité gauche de la corniche et <math>g(x)$, la hauteur au-dessus du sol.
- a) Combien de lumières rouges Réjean doit-il utiliser s'il en fixe seulement à chaque fois que cette fonction atteint son maximum?
- b) À quelle distance horizontale de l'extrémité gauche de la corniche se trouvera la 10^e lumière rouge?
- c) Déterminer la position des 4 premières lumières situées à 2,41m de hauteur.

- #3) Au cours d'une expérience d'une durée de 2 minutes en laboratoire, les variations de la chaleur d'un corps que l'on chauffe et refroidit successivement suivent un comportement sinusoïdale. 1 minute après le début de l'expérience, le corps avait atteint une température maximale de 120°C et 15 secondes plus tard, sa température avait chutée de 75% pour atteindre son niveau le plus bas.
- a) Détermine la règle représentant la température, en degrés Celsius, de ce corps selon le temps, en minutes, qu'aura duré l'expérience.

b) À quels moments précis la température de ce corps aura-t-elle été de 60 °C (arrondir au centième de minute).

- **#4)** Dans un parc d'amusement, une montagne russe à la forme d'une sinusoïde. 25 secondes après le départ, le train était à une altitude minimale de 12 m. 3 secondes plus tard, le train était deux fois plus haut, soit dans le milieu de la pente descendante suivante.
- a) Détermine par une règle la fonction qui représente la hauteur du train selon le temps écoulé en secondes, depuis le départ.

b) Si le manège a duré 1 minute, combien de fois le train est-il passé à une altitude de 35 m ?

c) Pendant combien de temps le train s'est-il trouvé à une altitude supérieure à 35 m pendant cette minute?

#5) Pour vérifier l'état de la roue de sa bicyclette, Sandra place sa bicyclette sur un support et fait tourner la roue dans le vide, à vitesse constante, de sorte qu'elle fasse 4 tours/min. Le diamètre de la roue est de 60 cm et la hauteur atteinte par la valve permettant de gonfler le pneu est de 18 cm au-dessus du sol lorsqu'elle est à son point le plus bas. Sachant qu'au début de l'expérience, la valve est à 18 cm du sol, déterminer la hauteur de la valve après 2 minutes 5 secondes. Arrondir la réponse au centième près, si nécessaire.

#6) Le centre de rotation des aiguilles d'une horloge grand-père est situé à 120cm du sol. L'aiguille marquant les heures mesure 11cm. Détermine la règle d'une fonction sinusoïdale qui permet de calculer la hauteur de la pointe de l'aiguille par rapport au sol en fonction du temps, en heures, s'il est 9:00 au début de l'observation.

LA FONCTIONS TANGENTE DE BASE

Construction de la fonction tangente de base...

Par le cas de similitude _____

des triangles _____:

Ce qui nous permet d'écrire :

Graphique cartésien de la fonction tangente : $f(x) = \tan(x)$

Domaine : _____

Codom:_____

Période :

Équation des asymptotes : _____

Coordonnées des points d'inflexion :

La fonction tangente peut également être représentée à partir des graphiques cartésiens des fonctions cosinus et sinus

Observations:

1) Les asymptotes de la fonction tangente correspondent

2) Les zéros de la fonction tangente correspondent

Les valeurs exactes des tangentes les plus importantes.

tan (0) =	$\tan\left(-\frac{\pi}{6}\right) =$
$\tan\left(\frac{\pi}{6}\right) =$	$\tan (\pi) =$
$\tan\left(\frac{\pi}{4}\right) =$	$\tan\left(-\frac{\pi}{4}\right) =$
$\tan\left(\frac{\pi}{3}\right) =$	$\tan\left(\frac{5\pi}{6}\right) =$

Exercices sur la fonction tangente de base

#1 Évaluer :

a)
$$\tan (-\pi) =$$
_____ b) $\tan \left(\frac{5\pi}{4}\right) =$ ____ c) $\tan \left(-\frac{8\pi}{6}\right) =$ ____

d)
$$\tan\left(\frac{22\pi}{2}\right) =$$
 _____ e) $\tan\left(\frac{11\pi}{6}\right) =$ ____ f) $\tan\left(\frac{9\pi}{2}\right) =$ ____

#2 a) La tangente est négative dans les quadrants ______du cercle trigonométrique.

a) La tangente est positive dans les quadrants ______du cercle trigonométrique.

#3 VRAI ou FAUX?

a)
$$\tan(\theta) = \tan(\pi + \theta)$$
 _____ b) $-\tan(-\theta) = -\tan(\theta)$ _____

b)
$$-\tan(-\theta) = -\tan(\theta)$$

#4 Détermine les zéros de la fonction tangente de base sur $\left|\frac{\pi}{2}, 4\pi\right|$:_____

LA FONCTIONS TANGENTE TRANSFORMÉE

La règle de la fonction tangente transformée est de la forme :

$$f(x) = a \tan (b(x-h)) + k$$

Comme (0, 0) est un point d'inflexion de la fonction de base, on retrouve un point d'inflexion d'une fonction tangente transformée à

La période d'une fonction tangente transformée est obtenue par :

L'abscisse à laquelle on retrouve une asymptote est toujours obtenue en calculant entre les abscisses de deux points d'inflexion consécutifs.

Une équation du type tan(x) = n $(n \in IR)$ possède solution par cycle (contrairement aux fonctions sinusoïdales qui en possèdent souvent 2).

Une propriété importante de la fonction tangente : $tan(-\theta) =$ car...

Exercice 1:

Faire l'analyse de la fonction $f(x) = \tan(-2x - \pi) + 1$ sur l'intervalle : $[0, 2\pi]$

- 1. Domaine :
- 2. Abscisses qui annulent la fonction :
- 3. $f \ge 0 \forall x \in$
- 4. Équations des asymptotes :_____
- 5. Position des points d'inflexion :

Exercice 2: Déterminer la règle d'une fonction tangente f ayant les caractéristiques suivantes :

- 1. les points d'inflexion ont pour coordonnées $\left(\frac{\pi}{2} + 2\pi n, -2\right)$ $(n \in Z)$
- 2. f(0) = -1.5

Réponse :

Exercise 3: Soit la fonction $f(x) = 3\tan\left(\frac{\pi}{2}x - \pi\right) - \sqrt{3}$

- a) Détermine les équations des asymptotes de f :
- b) Détermine le domaine de f :
- c) Détermine les valeurs de la fonction f pour $x \in \left[0, \frac{1}{2}\right]$
- d) Pour quelles valeurs d'abscisses f(x) = 2?
- e) Quelles valeurs d'abscisses annulent la fonction f?

VRAI OU FAUX? Soit une fonction f dont la règle est : $f(x) = a \tan(b(x-h)) + k$.

Son domaine est donné par : Dom $f = IR \setminus \left\{ \frac{\pi}{2b} + h + \frac{\pi n}{2b} \right\} \ \left(n \in Z \right)$

Si l'énoncé est faux, corrigez-le de manière à le rendre vrai.

LES IDENTITÉS TRIGONOMÉTRIQUES

Trois identités remarquables :

Exercice 1 : Écrire l'expression $\csc^2(\theta)$ en termes de $\cos^2(\theta)$ seulement.

Exercice 2: Si
$$\cos(\theta) = t$$
 et $\theta \in \left[\frac{3\pi}{2}, 2\pi\right]$, donne la valeur de $\cot(\theta)$

DÉFI : Si $\theta \in \left[\frac{\pi}{2} \right]$, π et $\tan(\theta) = a$, détermine la <u>valeur algébrique</u> des 5 autres rapports trigonométriques.

<u>Exercice 3</u>: Simplifier les expressions suivantes.

a)
$$\frac{\cot(x)}{\tan(x)\cdot\cos^2(x)}$$

a)
$$\frac{\cot(x)}{\tan(x) \cdot \cos^2(x)}$$
 b) $\frac{\left(1 + \tan^2(x)\right) \cdot \cos(x)}{\sec^2(x)}$ c) $\cot^2(x) - \cot^2(x) \cdot \cos^2(x)$

c)
$$\cot^2(x) - \cot^2(x) \cdot \cos^2(x)$$

d)
$$\frac{\sin^2(n) + \cos^2(n)}{1 - \cos^2(n)} + \sqrt{\sec^2(n) - 1\cdot \left(\csc^2(n) - 1\right)}$$
 e) $\frac{\sec^2(t) - \tan^2(t) - \sin^4(t)}{\cos^2(t)}$

e)
$$\frac{\sec^2(t) - \tan^2(t) - \sin^4(t)}{\cos^2(t)}$$

Démontrer une identité trigonométrique consiste à travailler à rendre un des membres de l'égalité (généralement celui de gauche) <u>identique</u> à l'autre.

Voici une démonstration incomplète d'identité trigonométrique. Complétons-la en ajoutant dans les boîtes soit les étapes manquantes de la démonstration, le numéro de la justification appropriée (tiré de la banque de justifications apparaissant au bas de la page) ou les deux.

$$(\sin(x) + \csc(x))^2 + (\cos(x) + \sec(x))^2 = \tan^2(x) + \cot^2(x) + 7$$

Étapes de la preuve	<u>Justifications</u>
$\left(\sin(x) + \frac{1}{\sin(x)}\right)^2 + \left(\cos(x) + \frac{1}{\cos(x)}\right)^2$	Justification numéro :
	4
$\sin^2(x) + \cos^2(x) + \frac{1}{\cos^2(x)} + \frac{1}{\sin^2(x)} + 1 + 1 + 1 + 1$	Justification numéro :
	Justification numéro :
$\sin^2(x) + \cos^2(x) + \left(\tan^2(x) + 1\right) + \left(\cot^2(x) + 1\right) + 1 + 1 + 1 + 1$	Justification numéro : et Justification numéro :
	Justification numéro :
	10

Banque de justifications

1. Dénominateur commun.	6. Identité trigonométrique $\cot^2(\theta) + 1 = \csc^2(\theta)$		
2. Car les angles sont exprimés en radians.	7. Commutativité de l'addition.		
3. Identité trigonométrique $\sin^2(\theta) + \cos^2(\theta) = 1$.	8. Par définition de rapport trigonométrique.		
4. Double distributivité.	9. Identité trigonométrique $\tan^2(\theta) + 1 = \sec^2(\theta)$.		
5. Mise en évidence simple.	10. Par addition.		

<u>Exercice</u>: Démontrer les identités suivantes:

a)
$$\sec^2(a) \cdot \cot^2(a) - 1 = \cot^2(a)$$

b)
$$\frac{1}{\cos^2(t)} - \frac{1}{\cot^2(t)} = 1$$

c)
$$\sec(\theta) - \cos(\theta) \left(\sec^2(\theta) - 1\right) = \cos(\theta)$$

d)
$$\cos^4(r) - \sin^4(r) = (\cos(r) - \sin(r)) \cdot (\cos(r) + \sin(r))$$

e)
$$\frac{\tan(\alpha)}{\sec(\alpha)-1} + \frac{\tan(\alpha)}{\sec(\alpha)+1} = 2\csc(\alpha)$$

FONCTIONS ET RELATIONS TRIGONOMÉTRIQUES RÉCIPROQUES

L'ensemble de départ d'une fonction trigonométrique est composé de mesures d'angles et l'ensemble d'arrivée de rapports. Prenons l'exemple de la fonction sinus de base.

Exercice: Pour cet exercice SEULEMENT, réglez vos calculatrices en mode DEGRÉS. Évaluez :

- a) $\sin^{-1}(-1,2)$
- b) $\sin^{-1}(-1)$ c) $\sin^{-1}(-0.5)$
- d) $\sin^{-1}(0)$

- e) $\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$
- f) $\sin^{-1}(1)$ g) $\sin^{-1}(1,4)$

L'argument de sin ⁻¹ doit donc toujours se retrouver entre _____ et _____. La calculatrice <u>retourne toujours des angles</u> compris entre _____ et ____ en degrés ou entre et en radians

Voici le graphique de la fonction sinus de base avec une limitation sur son domaine :

En limitant le domaine de $f(x) = \sin(x)$ à l'intervalle ______, on peut obtenir sa réciproque, la fonction $f^{-1}(x) = \arcsin(x)$.

On retrouvera alors des mesures d'______ sur l'axe des ordonnées et des sur l'axe des abscisses.

La fonction arcsin : $f(x) = \arcsin(x)$

- 1. Domaine:
- 2. Codomaine :
- 3. Maximum : _____
- 4. Minimum : _____
- 5. Positive sur :
- 6. Zéro : _____

Dans le cercle trigonométrique cidessous, les valeurs d'angles retournées par arcsin seront donc *toujours*:

Exercice : Évaluer...

a)
$$\arcsin\left(\frac{\sqrt{2}}{2}\right)$$

b)
$$\arcsin\left(-\frac{\sqrt{3}}{2}\right)$$

c)
$$\arcsin(x) = -\frac{\pi}{6}$$

La fonction arccos : $f(x) = \arccos(x)$

Dans le cercle trigonométrique cidessous, les valeurs d'angles retournées par arccos seront donc touiours:

La fonction arctan : $f(x) = \arctan(x)$

Dans le cercle trigonométrique cidessous, les valeurs d'angles retournées par arctan seront donc toujours:

Étude de la fonction $f(x) = \arctan(x)$

- 1. Domaine : ______ 2. Codomaine : _____
- 3. Maximum : _____ 4. Minimum : _____
- 5. Équations des asymptotes : _____

RÉSOLUTION D'ÉQUATIONS «EXTRÊMES»

Exercices

1. Si $x \in [-2\pi, 2\pi]$, résoudre :

a)
$$\sin(x) = \cos(x)$$

b)
$$\sin^2(x) = 1$$

- 2. Résoudre les équations suivantes : Référez-vous au tableau des tangentes (p.47) au besoin...

a)
$$\tan(\arcsin(x)) = \frac{\sqrt{3}}{3}$$

a)
$$\tan(\arcsin(x)) = \frac{\sqrt{3}}{3}$$
 b) $\cos(\arctan(x)) = \frac{\sqrt{3}}{2}$ c) $2\sin(\arctan(x)) = \sqrt{3}$

c)
$$2\sin(\arctan(x)) = \sqrt{3}$$

 \bigcirc 3. Résous les équations suivantes si $x \in [0, 2\pi]$

a)
$$\sin^2(x) - \sin(x) = 0$$

b)
$$\cot(x) - \cot^2(x) = 0$$

a)
$$\sin^2(x) - \sin(x) = 0$$
 b) $\cot(x) - \cot^2(x) = 0$ c) $\sec^2(x) + 2\sec(x) = 0$

d)
$$\tan^2(x) + \sec^2(x) = 3$$

4. Résous les équations suivantes.

a)
$$\sin^2(x) - 2\sin(x) = 3$$
 si $x \in [0, 4\pi]$

b)
$$\cos^2(x) - 3\cos(x) + 2 = 0$$
 si $x \in [-2\pi, 2\pi]$

LES RAPPORTS TRIGONOMÉTRIQUES LIÉS À UNE SOMME OU DIFFÉRENCE D'ANGLES

Les sommes et différences d'angles deviennent des outils particulièrement intéressants lorsque vient le moment de donner la position exacte d'un point trigonométrique autre que ceux que nous connaissons déjà bien.

Par exemple, comment déterminer le sinus d'un angle de $\frac{5\pi}{12}$?

Nous allons décomposer l'angle $\frac{5\pi}{12}$ comme la somme (ou la différence) d'angles que

nous connaissons bien. Par exemple : $\frac{5\pi}{12} =$ ______.

Un opérateur trigonométrique peut-il être distribué sur une somme?

La construction suivante se rapporte à une vidéo disponible sur *YouTube* permettant de démontrer la règle $\sin(A+B) = \sin(A) \cdot \cos(B) + \cos(A) \cdot \sin(B)$

LES RAPPORTS LIÉS AUX SOMMES, DIFFÉRENCES ET DOUBLES D'ANGLES...

Les sinus	Les tangentes	
$\sin(A+B) = \sin(A) \cdot \cos(B) + \cos(A) \cdot \sin(B)$	$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A) \cdot \tan(B)}$	
$\sin(A-B) = \sin(A) \cdot \cos(B) - \cos(A) \cdot \sin(B)$	$\tan(A-B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A) \cdot \tan(B)}$	
Les cosinus	Les doubles	
$\cos(A+B) = \cos(A) \cdot \cos(B) - \sin(A) \cdot \sin(B)$ $\cos(A-B) = \cos(A) \cdot \cos(B) + \sin(A) \cdot \sin(B)$	$\sin(2A) = 2\sin(A) \cdot \cos(A)$ $\cos(2A) = \cos^2(A) - \sin^2(A)$ $\tan(2A) = \frac{2\tan(A)}{1 - \tan^2(A)}$	

Exercice 1 : Déterminer la valeur exacte des rapports trigonométriques ci-dessous.

a)
$$\cos\left(\frac{5\pi}{12}\right)$$

b)
$$\tan\left(\frac{11\pi}{12}\right)$$

c)
$$\sin\left(-\frac{\pi}{12}\right)$$

Exercice 2: Soit le point trigonométrique $P\left(\frac{-7\pi}{12}\right)$:

- a) ESTIMER son cosinus :_
- b) ESTIMER son sinus :_____
- c) Déterminer les coordonnées exactes de P.

Exercice 3: P(A) et P(B) sont des points trigonométriques du deuxième quadrant tels que $\cos(A) = \frac{-4}{5}$ et $\sin(B) = \frac{8}{17}$. Détermine la valeur de : a) $\cos(A - B)$ b) $\sin(A + B)$ c) $\sin(2A)$ d) $\cos(2A)$

EXERCICES

Trigonométrie des triangles (au besoin, faites vos calculs sur la page précédente...) Exercice 1:

Dans un triangle ABC rectangle en C, si $0^{\circ} < A < 90^{\circ}$, détermine la valeur exacte de cos(A) sachant que :

a)
$$\sin(A) = 0.75$$

b)
$$tan(A) = 1,2$$

b)
$$tan(A) = 1.2$$
 c) $cos(90^{\circ} - A) = 0.3$

Dans un triangle ABC rectangle en C, donne la valeur exacte de sin(A) si :

a)
$$\cos(B) = \frac{\sqrt{3}}{2}$$

b)
$$tan(B) = 0.25$$
 c) $sec(B) = 2$

c)
$$sec(B) = 2$$

Exercice 3:

Des spectateurs observent des plongeurs s'élancer du haut d'une tour. Lorsqu'elle est située à 10m du pied de la tour, Eugénie en observe le sommet sous un angle d'élévation de 50°. Quelle serait la mesure de l'angle d'élévation si elle se tenait à 10m plus loin?

Exercice 4:

Le triangle POR est équilatéral. Sachant que la hauteur du triangle est de 10cm, détermine la mesure exacte de chacun des côtés.

Exercice 5:

Soit les rapports suivants :

- 1) $\sin(A) \approx 0.707107...$ 3) $\cos(B) \approx 0.866025...$
- 2) $sec(A) \approx 1,4142135...$
- 4) $\sec(B) \approx 1,1547005...$
- a) Détermine la valeur des angles A et B.
- b) *Détermine la valeur exacte de chacun des 4 rapports trigonométriques précédents.

Exercice 6:

Dans un triangle rectangle ABC rectangle en C, la valeur de tan A est égale à 2. Quelle est la valeur exacte des cinq autres rapports trigonométriques (au sommet A)?

Le radian

Exercice 1:

Détermine la mesure (exacte et approximative) d'un arc AB d'un cercle de centre O si les mesures des rayons et de l'angle au centre sont les suivantes :

a) 2cm et
$$\frac{\pi}{7}$$
 rad

c) 1m et
$$\frac{4\pi}{3}$$
 rad

Exercice 2:

Donne le rayon (mesure exacte et approximative) d'un cercle dont la mesure de l'angle au centre et la longueur de l'arc sont :

a)
$$\pi$$
 rad et 3cm

c)
$$\frac{7\pi}{6}$$
 rad et 1m

Exercice 3:

Exprime en radians, en fractions de π , les mesures des angles qui sont des multiples de 20° compris entre 0° et 180° .

Exercice 4:

À partir de 8h20, la grande aiguille d'une horloge effectue une rotation de $1\frac{3}{4}$ tour, suivie d'une rotation de $\frac{-5\pi}{6}$ rad et d'une dernière rotation de -120° . Quelle heure affichera l'horloge?

Exercice 5:

Compléter le tableau suivant en sachant que r représente le rayon d'un cercle, θ la mesure de l'angle de rotation et S la longueur d'arc intercepté par les côtés de l'angle.

Rayon r	Longueur d'arc S	Mesure de l'angle θ
a)	25 m	180°
b)	30 m	3 rad
c) 15 m	45 m	rad
d) 18 m		270°
e) 22,5 m		5 rad
f) 16 m	96 m	rad ou°

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

Exercice 6:

Une chèvre est attachée à un poteau au moyen d'une corde de 12 m de longueur. Tout en maintenant la corde bien tendue, la chèvre peut parcourir 50 m sur un arc de cercle. Quelle est la mesure en radians de l'arc décrit par la chèvre?

Exercice 7:

Une automobiliste prend une courbe ayant la forme d'un arc de cercle à une vitesse de 60km/h. Le rayon de l'arc représentant la courbe est de 250 m. De combien de radians a tourné l'automobiliste en 30 sec. ?

Exercice 8:

Entre 8h et 11h25, de combien de radians tourne la grande aiguille d'une horloge?

Exercice 9:

Un petit moteur électrique tourne à raison de 2000 tours par minute. Quelle est sa vitesse en radians par seconde ?

Exercice 10:

Un satellite parcourt une orbite circulaire en tournant d'un angle de 0,0015 rad/sec.

- a) Combien lui faudra-t-il de temps, en heures : minutes : secondes, pour parcourir une orbite complète ?
- b) Si l'orbite décrite par le satellite est de 800 km au-dessus de la Terre, quelle est la vitesse du satellite en km/h? (le rayon de la Terre est de 6380 km.)

Exercice 11:

Une roue tourne de 2115° en 5 secondes. De combien de radians a-t-elle tourné en 20 secondes ?

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

Le cercle trigonométrique

Exercice 1:

Sans calculatrice, trouve la valeur exacte de la coordonnée manquante sachant que ces points sont situés sur le cercle trigonométrique.

a)
$$P(\frac{1}{3}, y)$$
 b) $Q(x, \frac{1}{7})$ c) $R(0,3; y)$ d) $S(-0,7; y)$

b)
$$Q\left(x, \frac{1}{7}\right)$$

c)
$$R(0,3; y)$$

d)
$$S(-0.7; y)$$

Exercice 2:

Dans quel quadrant se situe le côté terminal d'un angle de :

c)
$$-715^{\circ}$$

d)
$$-\frac{6\pi}{5}$$
 rad

f)
$$4\pi^2$$
 rad

Exercice 3:

Donner la valeur d'un angle θ co-terminal avec chacun des angles donnés $(0 < \theta < 2\pi)$ puis préciser dans quel quadrant est situé le côté terminal de l'angle.

a)
$$\frac{-17\pi}{4}$$
 rad

a)
$$\frac{-17\pi}{4}$$
 rad b) $\frac{182\pi}{3}$ rad

e)
$$\frac{47 \pi}{4}$$
 rac

e)
$$\frac{47 \,\pi}{4}$$
 rad f) $\frac{-189 \,\pi}{6}$ rad

Exercice 4: Vrai ou faux?

a)
$$\cos(\alpha) = -\cos\left(\frac{\pi}{2} - \alpha\right)$$

d)
$$tan(\gamma) = tan(\gamma + \pi)$$

b)
$$sin(\beta) = -sin(-\beta)$$

e)
$$\sin(-\delta) = \sin(8\pi - \delta)$$

c)
$$\cos(\theta) = \sin\left(\theta + \frac{\pi}{2}\right)$$

f)
$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta)$$

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

Exercice 5:

Déterminer au millième près, la valeur des rapports trigonométriques suivants (utilisez votre calculatrice):

b)
$$\cos\left(\frac{5\pi}{4}\right)$$

c)
$$\sec\left(\frac{6}{\pi}\right)$$

d)
$$\cot\left(-\frac{\pi}{6}\right)$$

a)
$$\sin(2)$$
 b) $\cos\left(\frac{5\pi}{4}\right)$ c) $\sec\left(\frac{6}{\pi}\right)$ d) $\cot\left(-\frac{\pi}{6}\right)$ e) $\sin\left(\sin^{-1}(0,5)\right)$

 $\underline{Exercice\ 6}:$ Voici des informations relatives à trois points trigonométriques.

$$P(\theta) = \left(x, \frac{4}{5}\right)$$

$$Q(\alpha) = \left(\frac{-5}{7}, y\right)$$

$$P(\theta) = \left(x, \frac{4}{5}\right) \qquad Q(\alpha) = \left(\frac{-5}{7}, y\right) \qquad R(\mu) = \left(x, \frac{\sqrt{35}}{6}\right)$$

Sachant que $0 \le \theta \le \frac{\pi}{2}$, $\pi \le \alpha \le \frac{3\pi}{2}$ et $\frac{\pi}{2} \le \mu \le \pi$ donne la valeur exacte de :

a)
$$\sin(\theta)$$

b)
$$cos(\theta)$$

c)
$$tan(\alpha)$$

d)
$$csc(\alpha)$$

e)
$$sec(\mu)$$

f)
$$cot(\mu)$$

Exercice 7:

En vous référant au cercle trigonométrique, déterminer les positions possibles d'un point $P(\theta)$ $(-2\pi \le \theta \le 2\pi)$ pour lesquelles on ne peut calculer :

- a) la sécante
- b) la cosécante
- c) la tangente
- d) la cotangente

$\underline{\Xi}$) Exercice 8:

Donner la valeur exacte de l'expression suivante : $\cos\left(\frac{22\pi}{3}\right) + \tan(135^\circ) - \csc\left(\frac{-4\pi}{3}\right)$

Exercice 9: Si $\cot(\theta) = \frac{-2}{5}$, déterminer $\sec(\pi - \theta)$. (avec la calculatrice, arrondir au centième)

Exercice 10: Vrai ou faux ? $\tan\left(\frac{3\pi}{4}\right) = -\cot\left(\frac{-\pi}{4}\right)$

Exercice 11:

À partir de 8h15, la grande aiguille d'une horloge a tourné d'un angle de $\frac{-41\pi}{2}$ rad, puis elle s'est arrêtée. À quelle heure s'est-elle arrêtée ?

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Calculs...

Exercice 12:

Compléter le tableau suivant :

Mesure de l'arc ou de l'angle en radians	Signe du cosinus et de la sécante	Signe du sinus et de la cosécante	Signe de la tangente et de la cotangente
$0 < \theta < \frac{\pi}{2}$			
$\frac{\pi}{2} < \theta < \pi$			
$\pi < \theta < \frac{3\pi}{2}$			
$\frac{3\pi}{2} < \theta < 2\pi$			

Exercice 13:

Dans quel quadrant se situe chacun des points trigonométriques suivants?

a) P(2)

- b) P(-1)
- c) P(-5)
- d) P(10)

- e) P(-8)
- f) P(12)
- g) $P\left(\frac{5\pi}{6}\right)$
- h) $P\left(\frac{-\pi}{3}\right)$

- i) $P\left(\frac{-9\pi}{8}\right)$
- j) $P\left(\frac{9\pi}{4}\right)$
- k) $P\left(\frac{28\pi}{3}\right)$
- 1) $P\left(\frac{-18\pi}{5}\right)$

Exercice 14:

Sans calculatrice, indiquer par oui ou par non si les paires de points trigonométriques suivants ont les mêmes coordonnées cartésiennes.

a)
$$P\left(\frac{7\pi}{3}\right)$$
 et $Q\left(\frac{\pi}{3}\right)$

d)
$$P\left(\frac{19\pi}{6}\right)$$
 et $Q\left(\frac{-7\pi}{6}\right)$

b)
$$P\left(\frac{-3\pi}{4}\right)$$
 et $Q\left(\frac{5\pi}{4}\right)$

e)
$$P\left(\frac{-7\pi}{2}\right)$$
 et $Q\left(\frac{-\pi}{2}\right)$

c)
$$P\left(\frac{9\pi}{2}\right)$$
 et $Q\left(\frac{11\pi}{2}\right)$

f)
$$P\left(\frac{-13\pi}{3}\right)$$
 et $Q\left(\frac{11\pi}{3}\right)$

Chapitre 5 Trigonométrie

Exercice 15:

Trouver la valeur manquante des couples suivants sachant qu'ils représentent des points trigonométriques.

a)
$$\left(\frac{3}{5}, y\right)$$

b)
$$\left(x, \frac{1}{4}\right)$$

c)
$$\left(\frac{-5}{6}, y\right)$$

Exercice 16:

Soit les couples $A\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$ et $B\left(\frac{-\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ appartenant au cercle trigonométrique.

- a) Quelle est la valeur de l'angle engendré par un rayon se déplaçant du point A vers le point B? (en radians)
- b) Quelle serait la longueur de l'arc intercepté par cet angle si on avait un cercle dont le rayon valait 5 cm?

Exercice 17:

Quelles sont les coordonnées exactes des points trigonométriques suivants ?

$$P\left(\frac{17\pi}{3}\right)$$

$$P\left(\frac{17\pi}{3}\right) \qquad \qquad P\left(\frac{11\pi}{4}\right) \qquad \qquad P\left(\frac{19\pi}{6}\right)$$

$$P\left(\frac{19\pi}{6}\right)$$

$$P\left(\frac{25\pi}{3}\right)$$

$$P\left(\frac{25\pi}{3}\right) \qquad P\left(\frac{-13\pi}{6}\right) \qquad P\left(\frac{7\pi}{2}\right) \qquad P\left(\frac{-19\pi}{4}\right)$$

$$P\left(\frac{7\pi}{2}\right)$$

$$P\left(\frac{-19\pi}{4}\right)$$

Exercice 18:

Pour quelle valeur de t a-t-on :

a)
$$P(t) = \left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right) \text{ et } t \in [2\pi, 4\pi[$$
 c) $P(t) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \text{ et } t \in [-2\pi, 0[$

c)
$$P(t) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \text{ et } t \in [-2\pi, 0[$$

b)
$$P(t) = (0, 1)$$
 et $t \in [4\pi, 6\pi]$

d)
$$P(t) = \left(\frac{-\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$
 et $t \in [4\pi, 6\pi]$

Chapitre 5 Trigonométrie

Exercice 19:

- a) L'abscisse d'un point trigonométrique situé dans le quadrant IV est $\frac{3}{4}$. Quelle est l'ordonnée de ce point ?
- b) Le cosinus d'un angle de $\frac{\pi}{3}$ rad est de $\frac{1}{2}$. Quelle est la valeur du sinus de cet angle ?
- c) L'ordonnée d'un point trigonométrique situé dans le II^e quadrant est $\frac{7}{25}$. Quelle est l'abscisse de ce point ?

<u>Exercice 20</u>: Les points suivants sont des points trigonométriques. Compléter :

	POINT	ANGLE DE RÉFÉRENCE (entre 0 et 2π)	QUADRANT (si applicable)	COORDONNÉES EXACTES
1.	$P\bigg(\frac{23\pi}{6}\bigg)$			
2.	$P\!\!\left(\frac{19\pi}{4}\right)$			
3.	$P\!\!\left(\frac{-7\pi}{2}\right)$			
4.	$P\!\!\left(\frac{8\pi}{3}\right)$			
5.	$P\bigg(\frac{-13\pi}{6}\bigg)$			
6.	$P\!\!\left(\frac{25\pi}{4}\right)$			
7.	$P\left(\frac{-3\pi}{4}\right)$			

Chapitre 5 Trigonométrie

Exercice 21:

Voici le cadran d'un coffre-fort.

Le manuel d'instructions pour ouvrir le coffre se lit comme suit.

- 1) À partir de la position 0, on tourne l'aiguille de $-\frac{3\pi}{4}$ rad.
- 2) À partir de là, on tourne l'aiguille de 2205° dans le sens antihoraire.
- 3) À partir de là, on tourne l'aiguille de $\frac{43\pi}{6}$ rad dans le sens horaire.

La combinaison permettant d'ouvrir le coffre est : _____, ____, ____

Chapitre 5 Trigonométrie

Exercice 22:

Donner les coordonnées cartésiennes des points trigonométriques suivants (arrondir au dixmillième):

a)
$$P\left(\frac{4}{5}\right)$$

a)
$$P\left(\frac{4}{5}\right)$$
 b) $Q\left(\frac{-19}{10}\right)$ c) $R(-12)$ d) $S(89^{\circ})$ e) $T(89541\pi)$

e)
$$T(89.541\pi)$$

Exercice 23:

Démontrer les identités suivantes :

a)
$$sec(T) = csc(T) \cdot tan(T)$$

b)
$$\csc(\theta) = \sec(90^{\circ} - \theta)$$

<u>Exercice 24</u> :

Donner la valeur exacte de :
$$\sin(45^\circ) - 3\tan(-\frac{\pi}{6}) + \sec(60^\circ) + \cot(\frac{20\pi}{3})$$

Exercice 25:

Sachant que $tan(\theta) = 0.12$ déterminer la valeur exacte des 5 autres rapports trigonométriques.

Exercice 26:

Si $P(\theta)$ est un point trigonométrique ayant (a, b) pour coordonnées, quelles sont les coordonnées de $P\left(\frac{7\pi}{2} - \theta\right)$?

Exercice 27:

La valve d'une roulette de trottinette décrit un arc de 32 cm en un tiers de seconde. Détermine le rayon de la roulette sachant que 4 rad est l'angle décrit par le mouvement de cette valve en 0,5 sec?

Exercice 28:

Quel est l'angle formé par l'axe des abscisses et la droite d'équation $y = \frac{7}{8}x + 5$? (en supposant que la graduation est la même sur les deux axes)

Chapitre 5 Trigonométrie

Tracé des fonctions sinusoïdales transformées

Représenter graphiquement les fonctions sinusoïdales suivantes.

$$f(x) = -2\sin\left(\frac{1}{3}\left(x + \frac{\pi}{2}\right)\right) - 1$$

$$g(x) = 3\cos(0.5(x - \pi)) + 1$$

$$h(x) = \frac{-3}{2} \sin\left(\frac{-1}{2}\left(x - \frac{\pi}{2}\right)\right) + \frac{3}{2}$$

$$j(x) = \cos(-2(x-\pi)) + 3$$

Les fonctions sinusoïdales

- #1. Identifier la (ou les) affirmation(s) fausse(s).
 - a) Un cycle d'une fonction sinusoïdale transformée correspond à la portion de la courbe comprise entre deux minimums consécutifs.
 - b) Si 11 et 16 sont deux zéros consécutifs d'une fonction sinusoïdale transformée, alors la période de cette fonction est 10.
 - c) Si 11 et 16 sont deux zéros consécutifs d'une fonction sinusoïdale transformée, alors la période de cette fonction est 5.
 - d) Pour toute fonction sinusoïdale, nous pouvons observer : $n \sin(\theta) = n \sin(\pi \theta)$.
 - e) Pour toute fonction sinusoïdale, l'amplitude est donnée par |a|.

#2. Parmi les graphiques suivants, lequel représente la fonction dont la règle est :

$$f(x) = -2 \sin \left(-\frac{1}{2} \left(\pi x + \frac{\pi}{2}\right)\right) - 1$$
?

GRAPHIQUE B

GRAPHIQUE C

GRAPHIQUE D

Chapitre 5 Trigonométrie

🙀 🕽 #3. Vrai ou faux ?

a) Le sinus de tout angle thêta est un nombre compris entre 0 et 1 (inclusivement).

b)
$$\sec\left(\frac{5\pi}{4}\right) = \csc\left(\frac{-3\pi}{4}\right)$$

- c) $\csc(\theta) = \sin^{-1}(\theta)$
- d) Les zéros de la fonction $f(x) = 3 \sin(\pi x \pi)$ sont tous les nombres de l'ensemble Z.
- #4. Parmi les affirmations suivantes, déterminer celle(s) qui est (sont) vraie(s).
- Un angle de $\frac{27\pi}{12}$ rad correspond à un angle de 405°
- b) $\sin(-2x + \pi) = -\sin\left(2\left(x \frac{\pi}{2}\right)\right)$
- c) $x = \frac{3\pi}{2}$ est une solution de l'équation $-1 = -2\sin\left(-2\left(x \frac{\pi}{2}\right)\right) 1$
- L'intervalle $\left[-\pi, 4\pi\right]$ contient 2,5 cycles de la fonction $f(x) = \frac{1}{2}\sin\left(-x \frac{\pi}{2}\right) 1$

 \bigcirc #5. Écrire la fonction suivante sous sa forme canonique (avec b>0).

$$f(x) = -2 + \frac{1}{3}\cos(2(2\pi - \pi x))$$

#6. Déterminer les coordonnées exactes des points trigonométriques suivants.

a)
$$P\left(\frac{61\pi}{2}\right) = 0$$

) c)
$$P\left(\frac{79\pi}{6}\right) =$$

Chapitre 5 Trigonométrie

(E

#7. Déterminer pour quelles valeurs de θ dans l'intervalle $[0, 4\pi]$:

a) $\sin(\theta) = \frac{1}{2}$

b) $\cos(\theta) = \frac{-\sqrt{3}}{2}$

c) $tan(\theta) = 1$

d) $\tan(\theta) = -1$

e) $\sin(\theta) = -\frac{1}{2}$

f) cosec $(\theta) = 0$

g) sec (θ) est indéterminé

h) $\cot (\theta)$ est indéterminé

i) cosec (θ) est indéterminé

#8. Quel ensemble de caractéristiques engendre la fonction COSINUS suivante ?

- a) a = 2, b > 0, déphasage : $\frac{5}{2}$, période : 4, ordonnée moyenne : -1
- b) a = -2, b > 0, déphasage : $-\frac{1}{2}$, période : 4, ordonnée moyenne : -1
- c) a = 2, b > 0, déphasage : $\frac{7}{2}$, période : 2, ordonnée moyenne : -1
- d) a = -2, b > 0, déphasage : $\frac{3}{2}$, période : 4, ordonnée moyenne : -1

Chapitre 5 Trigonométrie

#9. Parmi les fonctions suivantes, laquelle correspond à une fonction sinus de base ayant subi une translation de $\frac{\pi}{4}$ unité vers la droite, ayant une amplitude de 3 et une période de 4π ?

a)
$$f(x) = -3 \sin\left(\frac{x}{2} - \frac{\pi}{8}\right)$$

b)
$$f(x) = 3 \sin\left(\frac{x}{2} + \frac{\pi}{8}\right)$$

$$c) f(x) = 3 \sin \left(2x - \frac{\pi}{8}\right)$$

d)
$$f(x) = 3 \sin\left(\frac{x}{2} - \frac{\pi}{8}\right)$$

#10. Déterminer la règle de la fonction sinusoïdale représentée...

a) en cosinus :

b) en sinus:

Chapitre 5 Trigonométrie

#11. Déterminer les zéros des fonctions suivantes :

a)
$$f(x) = -7\sin(2\pi - x) + 6$$

b)
$$f(x) = -3\cos(2\pi - x) + \frac{2}{3}$$

#12. Trace le graphique de la fonction suivante : $f(x) = -2\cos\left(\frac{1}{2}(\pi - 2\pi x)\right) + 4$

Chapitre 5 Trigonométrie

#13 Soit la fonction sinus de base $f(x) = \sin(x)$.

Vrai ou faux?

- a) Les zéros de f sont donnés par $x = n\pi$ où $n \in \mathbb{Z}$.
- b) f est décroissante pour $x \in \left[\frac{-7\pi}{2}, \frac{-5\pi}{2} \right]$.
- c) f est négative pour $x \in \left[3\pi, \frac{7\pi}{2} \right]$.

d)
$$f\left(\frac{\pi}{2}\right) = f\left(\frac{5\pi}{2}\right) = f\left(\frac{9\pi}{2}\right) = 1$$
.

#14 Une fonction sinusoïdale a une période de 24 unités. Son maximum est 3 et son amplitude est 2.

Si f(2) = 3, évaluer :

- a) f(8)
- b) f(14)
- c) f(26)
- d) f(50)

Chapitre 5 Trigonométrie

#15 Soit la fonction $f(x) = -3\sin\left(\frac{\pi}{4}x + \frac{5\pi}{4}\right) + 1$.

- a) Réécrire la règle sous la forme canonique, c'est-à-dire la forme : $f(x) = a \cdot \sin(b(x-h)) + k \text{ avec } b > 0.$
- b) Donner la valeur des paramètres a, b, h, k.

a = _____

h =

k = _____

#16 Soit les fonctions :

$$f(x) = 3\sin(x) + 5$$

$$g(x) = -3\sin(x+5)$$

$$h(x) = 3 \sin(-x - 5) - 1$$

$$t(x) = -3 \sin(x+5) + 3$$

- a) Laquelle n'a pas de zéro ? _____
- b) Laquelle ne possède qu'un seul zéro par cycle ? _____

#17 Soit la fonction $f(x) = 5\sin\left(\frac{\pi}{8}(x-2)\right) + 35$ où x est exprimé en minutes.

Combien de fois, pendant la première heure :

- a) le maximum est-il atteint?
- b) le minimum est-il atteint?

#18 À vélo, pour faciliter le départ, on place l'axe du pédalier de sorte qu'il forme un angle de 45° avec l'horizontale. Depuis le départ, le pédalier tourne dans le sens des aiguilles d'une montre au rythme régulier de 15 tours par minute.

La distance d (en centimètres) de la pédale A par rapport au sol peut être calculée à l'aide de la règle :

$$d = 20\sin\left(-\frac{\pi}{2}(t - 0.25)\right) + 30$$

où t est le temps exprimé en secondes depuis le départ.

a) Représenter graphiquement la relation entre d et t.

b) Combien de temps faudra-t-il au cycliste pour faire subir à la pédale une rotation de $-\frac{47\pi}{4}$ radians?

#19 Déterminer la règle de la fonction sinusoïdale f suivante sachant que les points identifiés correspondent à des extremums:

Règle:

#20 Le son est engendré par des vibrations. Il se propage dans l'air sous forme d'ondes sinusoïdales. Plus le son est aigu (haut), plus la période de l'onde est petite. Plus le son est fort, plus l'amplitude de l'onde est élevée. Sur un oscilloscope, la position d'un point sur l'écran est donnée par la règle :

$$f(t) = 20\sin(1382,3(t-25))$$
, où t est le temps en secondes.

a) Quelle est la fréquence du son associé à la fonction f ?

b) Un objet qui vibre deux fois plus rapidement qu'un autre produit un son qui est une octave plus haute. Donner la règle de la fonction *g* qui est associée à un son de <u>deux octaves plus élevées</u> mais <u>quatre fois moins fort</u> que le son associé à la fonction *f*.

Recherche de règle – fonctions sinusoïdales

Situation 1

Le graphique ci-contre représente la tension T d'un courant alternatif selon le temps x. Établissez la règle qui permet de calculer la tension du courant en fonction du temps.

Règle :	

Situation 2

Une bouée munie d'une cloche flotte à la surface de l'océan. La hauteur relative h (en m) de la bouée varie selon la règle $h(x) = 0.5\cos b(x-2) + 2.5$, où x représente le temps (en s). La cloche sonne chaque fois que la bouée se trouve sur la crête d'une vague. Déterminez la valeur du paramètre b sachant que la cloche sonne 12 fois par minute.

La roue à aubes d'un bateau a un diamètre de 4 m et tourne à une vitesse de 10 tours/min. Son centre est situé à 1 m au-dessus de la surface de l'eau. L'une des pales de la roue à aubes est brisée. Au moment de mettre la roue en marche, cette pale se trouve à 3 m au-dessus de la surface de l'eau.

a) Représentez graphiquement la fonction qui permet de déterminer la hauteur (en m) de la pale brisée par rapport à la surface de l'eau selon le temps (en s) sur l'intervalle [0, 15] s.

b) Déterminez la règle de la fonction représentée en a).

L'aube nautique est le moment à partir duquel il y a juste assez de lumière pour distinguer des objets et l'horizon (le soleil se trouve alors à 12° au-dessous de l'horizon). Le tableau suivant indique l'heure de l'aube nautique d'une région à différents moments de l'année.

Date	Heure	Date	Heure
21 janvier	6 h 05	21 juillet	2 h 53
21 février	5 h 24	21 août	3 h 33
21 mars	4 h 29	21 septembre	4 h 29
21 avril	3 h 33	21 octobre	5 h 24
21 mai	2 h 53	21 novembre	6 h 05
21 juin	2 h 38	21 décembre	6 h 20

a) Représentez graphiquement l'heure de l'aube nautique de cette région selon le temps écoulé (en mois) depuis le 21 janvier.

b) Établissez la règle de la fonction associée à cette situation.

Le nombre de taches solaires qui sont observées sur la surface du Soleil en une journée varie selon un modèle périodique. Voici quelques renseignements à ce sujet :

- Le nombre maximal de taches solaires observées en une journée est 90 et ce maximum est atteint tous les 11 ans.
- Le nombre minimal de taches solaires observées en une journée est 0.
- Au début des observations, on ne voit aucune tache solaire.

Établissez la règle d'une fonction sinusoïdale qui permet de calculer le nombre de taches solaires observées en une journée en fonction du temps (en années).

Situation 6

Les récoltes effectuées par un trappeur de 1990 à 2010 ont permis de vérifier que la population de lièvres varie approximativement selon une fonction sinusoïdale dont la période est de 10 ans. La récolte de 183 lièvres en 1990 correspond au maximum de la fonction. La population minimale au cours de ces années a été de 68.

a) Déterminez la règle de cette fonction.

b) En supposant que le modèle s'appliquait jusqu'en 2016, quelle était la population de lièvres à ce moment-là ?

Situation 7

Le Sahara est le plus grand désert du monde (environ 9 000 000 km²). On présente ci-contre des données recueillies pendant une journée dans une région du Sahara.

Heure de la journée	Température (°C)	
6 h	12	
8 h	24	
10 h	36	
14 h	48	
18 h	36	

Selon des météorologues, la température selon l'heure de la journée peut être modélisée à l'aide d'une fonction sinusoïdale dont la période est de 24 h.

- a) Établissez la règle de la fonction associée à cette situation.
- b) Déterminez la température maximale et la température minimale.

- c) À quel moment la température minimale est-elle atteinte?
- d) Quelle est la température dans cette région à :
 - 1) minuit?
 - 2) midi?
 - 3) 17 h?
 - 4) 21 h?

Soit une fonction dont la règle est $f(x) = 2\sin\left(\frac{\pi}{2}(x-1)\right) + 1$.

Établissez la règle d'une fonction g dans laquelle la valeur du paramètre h est 0 et dont la représentation graphique est la même que celle de la fonction f.

Situation 9

Tel que le montre l'illustration ci-contre, une montre à cadran est munie d'un boîtier carré de 36 mm de côté. L'aiguille des minutes a une longueur de 13 mm et l'aiguille des heures a une longueur de 8 mm. Quelle est la règle de la fonction qui représente, à partir de midi, la distance :

a) entre la pointe de l'aiguille des minutes et le dessus du boîtier ?

b) entre la pointe de l'aiguille des heures et le dessus du boîtier ?

Le graphique ci-dessous représente la valeur d'une nouvelle action depuis son introduction à la Bourse de Toronto.

ÉVOLUTION DU COURS DE L'ACTION

- a) Sachant que les valeurs moyenne et maximale de l'action sont respectivement de 35\$ et 50\$, quelle était sa valeur au moment de son introduction à la Bourse ?
- b) La première année, pendant combien de temps le cours de l'action fut-il inférieur à 37\$?

Fonction tangente transformée

Exercice

Déterminer la règle d'une fonction tangente f sachant que ses points d'inflexion ont pour coordonnées (-2+6n, 5), $n \in \mathbb{Z}$ et que f(3) = 7.

Les identités trigonométriques

Exercice 1 : Simplifie les expressions suivantes :

a)
$$1 - \cos^2(t)$$

b)
$$\sec^{2}(a) - 1$$

c)
$$1 - \sin^2(t)$$

d)
$$1 - \csc^2(r)$$

e)
$$\csc^2(t) - \cot^2(t)$$

e)
$$\csc^{2}(t) - \cot^{2}(t)$$
 f) $\cos^{2}(a) + \sin^{2}(a)$

g)
$$(1-\cos^2(r))\cdot\cot^2(r)$$
 h) $(\tan^2(a)+1)\cdot\cos^2(a)$ i) $\tan^2(x)\cdot\csc^2(x)\cdot\cos(x)$

h)
$$(\tan^2(a)+1)\cdot\cos^2(a)$$

i)
$$tan^2(x) \cdot csc^2(x) \cdot cos(x)$$

j)
$$\csc(t) \cdot \sqrt{\sec^2(t) - 1}$$
 k) $\left(1 + \cot^2(x)\right) \cdot \sin(x)$ l) $\left(1 - \sin^2(a)\right) \cdot \csc^2(a)$

k)
$$(1+\cot^2(x))\cdot\sin(x)$$

1)
$$\left(1-\sin^2(a)\right)\cdot\csc^2(a)$$

m)
$$\sqrt{\tan^2(n)+1} \cdot \cot(n)$$

n)
$$\left(\sec^2(r) - \tan^2(r)\right) - \sin^2(r)$$

o)
$$\frac{\cos^2(\theta) \cdot \tan(\theta)}{\cot(\theta)}$$

p)
$$\cot^2(a) \cdot \sec^2(a) \cdot \sqrt{1 - \cos^2(a)}$$

Exercice 2 : Effectuer les opérations et simplifier le résultat.

a)
$$(1+\cos(x))\cdot(1-\cos(x))$$

b)
$$(1+\csc(r))\cdot(-1+\csc(r))$$

c)
$$\sin(a) \cdot (\csc(a) - \sin(a))$$

Exercice 3 : Compléter par le symbole qui convient.

- a) Si $t \in [0, \pi[$ alors $\sin(t) _ 0$
- d) Si $t \in [\pi, 2\pi]$ alors $\sin(t) = 0$
- b) Si $t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ alors $\sec(t) = 0$ e) Si $t \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ alors $\cos(t) = 0$
- c) Si $t \in [0, \pi]$ alors cosec(t) ______0
- f) Si $t \in \left| \pi, \frac{3\pi}{2} \right|$ alors $\tan(t) = 0$

Exercice $\underline{4}$: Dans quel quadrant se retrouve t sachant:

- a) $\cos(t) < 0 \text{ et } t \in [0, \pi]$
- d) $\sec(t) > 0$ et $t \in [\pi, 2\pi]$
- b) $\sin(t) > 0$ et $t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ e) $\csc(t) > 0$ et $t \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

c)
$$\tan(t) > 0$$
 et $t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ _____ f) $\cot(t) < 0$ et $t \in \left[\pi, 2\pi\right[$ _____

Exercice 5: Si $\sin(t) = \frac{3}{4}$ et $t \in \left[0, \frac{\pi}{2}\right]$, donne la valeur exacte de :

a) cos(t)

b) tan(*t*)

Exercice 6: Si $\cos(t) = -\frac{12}{13}$ et $t \in [\pi, 2\pi]$, donne la valeur exacte de :

a) sin(t)

b) tan(t)

Exercice 7: Si $\sin(t) = \frac{3}{5}$ et $t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, donne la valeur exacte de :

a) cos(t)

b) $\cot(t)$

Exercice 8: Si $\sin(t) = \frac{-1}{2}$ et $t \in [0, 2\pi[$, donne la valeur exacte de :

a) csc(t)

b) cos(t)

Exercice 9: Détermine la valeur exacte de sec(t) si $tan(t) = \frac{4}{3}$ et $\frac{\pi}{2} < t < \frac{3\pi}{2}$.

Exercice 10: Si $\tan(a) = \frac{1}{2}$ et $\pi \le a \le 2\pi$, donne la valeur de $\sin(a)$.

Exercice 11: Si $\csc(x) = -2$ et $x \in \left[\frac{3\pi}{2}, 2\pi \right]$, que vaut $\cot(x)$?

Exercice 12: $\cos(a) = \frac{-3}{4}$ et $0 \le a \le \pi$, donne la valeur de $\csc(a)$.

Exercice 13: Que vaut $sin(\theta)$ sachant que $sec(\theta) = 3$ et $0 \le \theta \le \pi$?

Exercice 14: Donne la valeur de $\sec(t)$ sachant que $\csc(t) = -4$ et $t \in \left[\pi, \frac{3\pi}{2}\right]$.

Exercice 15 : Écris chacun des rapports suivants en termes de cos(t) (en prenant soin de rationaliser les dénominateurs irrationnels).

- a) sin(t)
- b) csc(t)
- c) sec(t)
- d) tan(t)
- e) $\cot(t)$

Exercice 16: Écris chacun des rapports suivants en termes de tan(a) (en prenant soin de rationaliser les dénominateurs présentant des radicaux).

- a) $\cot(a)$
- b) sec(a)
- c) cos(a)
- d) csc(a)
- e) sin(a)

Exercice 17 : Si cos(t) = a, exprime en termes de a :

a) sec(t)

b) sin(t)

Exercice 18: Si tan(r) = b et $r \in \left[0, \frac{\pi}{2}\right]$, trouve la valeur de :

a) cot(r) b) csc(r) c) sin(r)

Démonstrations d'identités

Exercices: Démontrer que les identités suivantes sont vraies.

1.
$$1 - \sin(\theta) \cdot \cos(\theta) \cdot \tan(\theta) = \cos^2(\theta)$$

2. $\sin(\theta) \cdot \sec(\theta) \cdot \tan(\theta) + 1 = \sec^2(\theta)$

Collège Regina Assumpta
Mathématique SN ₅

Chapitre 5 Trigonométrie

- 3. $\cos(\theta) \cdot (\sec(\theta) \sin(\theta)) \cdot \cot(\theta) = \sin^2(\theta)$
- 4. $\csc(\alpha) \cos(\alpha) \cdot \cot(\alpha) = \sin(\alpha)$
- 5. $\sin^2(t) + \tan^2(t) = \sec^2(t) \cos^2(t)$
- 6. $\frac{\sin(\beta)}{\tan(\beta)} + \frac{\cos(\beta)}{\cot(\beta)} = \sin(\beta) + \cos(\beta)$
- 7. $\frac{\cot^2(\delta) \cos^2(\delta)}{\cos^2(\delta)} = \cot^2(\delta)$
- 8. $\sec^2(A) + \csc^2(A) = \sec^2(A) \cdot \csc^2(A)$
- 9. $\sec(\sigma) \cos(\sigma) = \sin(\sigma) \cdot \tan(\sigma)$
- 10. $\frac{\sin{(\alpha)} + \sin{(\alpha)} \cdot \tan^2{(\alpha)}}{\sec{(\alpha)}} = \tan{(\alpha)}$
- 11. $\frac{(\sin(\theta) + 1)(\csc(\theta) 1)}{\sin(\theta)} = \cot^2(\theta)$
- 12. $(\tan(\beta) + \cot(\beta)) (\sin(\beta) + \cos(\beta)) = \sec(\beta) + \csc(\beta)$

13.
$$(\tan(\alpha) + \cot(\alpha))^2 = \sec^2(\alpha) \cdot \csc^2(\alpha)$$

14.
$$\frac{1}{1 + \tan^2(\theta)} + \frac{1}{1 + \cot^2(\theta)} = 1$$

$$\frac{15.*}{1-\cos(\beta)} = \frac{1+\cos(\beta)}{\sin(\beta)}$$

16.
$$\frac{\sin(\theta)}{1-\cos(\theta)} - \frac{\sin(\theta)}{1+\cos(\theta)} = 2 \cot(\theta)$$

17.
$$\frac{\cos^2(\mu)}{1-\sin(\mu)} = 1+\sin(\mu)$$

18.
$$(\tan(x) - \cot(x))\sin(x) \cdot \cos(x) = (\sin(x) + \cos(x))(\sin(x) - \cos(x))$$

19.
$$\frac{\tan^2(\gamma)}{1+\tan^2(\gamma)} \cdot \frac{1+\cot^2(\gamma)}{\cot^2(\gamma)} = \tan^2(\gamma)$$

20.
$$\frac{1}{1-\cos(b)} + \frac{1}{1+\cos(b)} = 2\csc^2(b)$$

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Les réciproques

- 1. Évaluer les expressions suivantes.
 - a) $\arcsin\left(\frac{1}{2}\right)$

b) $\arccos\left(\frac{1}{2}\right)$

c) arctan (1)

d) $\arcsin\left(\frac{\sqrt{2}}{2}\right)$

e) $\arccos\left(\frac{\sqrt{2}}{2}\right)$

- f) $\arctan(\sqrt{3})$
- 2. Indiquer si chacune des affirmations est vraie ou fausse?
 - a) Le codomaine de la fonction arctan est $\left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$.
 - b) La fonction arctan est décroissante sur son domaine.
 - c) La fonction arcsin admet $\frac{\pi}{2}$ comme maximum.
 - d) La fonction arccos n'est jamais nulle.
 - e) Les fonctions arcsin et arccos ont le même domaine.
- 3. Indiquer si chacune des affirmations est vraie ou fausse?
 - a) Le domaine de la fonction arctan est IR.
 - b) Les fonctions arcsin, arccos et arctan admettent chacune un seul zéro.
 - c) Les fonctions arcsin et arccos ont les mêmes extremums.
 - d) La fonction arccos est décroissante sur son domaine.
 - e) Lorsque x est positif, $\arcsin x$, $\arccos x$ et $\arctan x$ sont positifs.

- Trouver la valeur exacte des expressions suivantes.
 - a) cos (arctan (1))

b) $\sin \left(\arccos \left(\frac{1}{2} \right) \right)$

c) $\cos \left(\arccos \left(\frac{-\sqrt{3}}{2} \right) \right)$

d) $\sin \left(\arcsin \left(\frac{-1}{2} \right) \right)$

e) $\tan \left(\arcsin \left(\frac{-\sqrt{2}}{2} \right) \right)$

f) tan (arccos (0))

g) sin (arctan (0))

- h) tan (arctan $(\sqrt{3})$)
- 5. Évaluer chacune des expressions suivantes.
 - a) cos (4 arctan (1))

- b) $\sin \left(\arcsin (1) \arccos \left(\frac{\sqrt{3}}{2} \right) \right)$
- c) $\cos\left(\arctan\left(\sqrt{3}\right) + \arcsin\left(\frac{-1}{2}\right)\right)$ d) $\sin\left(\arctan\left(-1\right) + \arccos\left(\frac{-\sqrt{2}}{2}\right)\right)$

- 6. Quelle est la valeur exacte des expressions suivantes?
 - a) $2 \cos(\arcsin(-1)) + 1$

b) 2 arctan $\left(\tan\left(\frac{5\pi}{4}\right)\right) + \frac{3\pi}{2}$

- Déterminer la valeur exacte des expressions suivantes.
 - a) $\arcsin\left(\frac{\sqrt{3}}{2}\right)$ b) $\arccos\left(-1\right)$ c) $\arcsin\left(\frac{1}{2}\right)$ d) $\cos\left(\arccos(1)\right)$

- e) $\arcsin\left(\sin\left(\frac{\pi}{2}\right)\right)$ f) $\sin\left(\arcsin\left(\frac{\sqrt{2}}{2}\right)\right)$ g) $\sin\left(\arccos\left(\frac{\sqrt{3}}{2}\right)\right)$ *h) $\sin\left(\arccos\left(\frac{3}{5}\right)\right)$
- 8. À l'aide de la calculatrice, déterminer la valeur des expressions suivantes :
 - a) $\sin^{-1}(0.5432)$
- b) tan⁻¹ (-3,3198)
- c) $\sin(\cos^{-1}(-0.6149))$

- d) $\cos^{-1}(2,7655)$ e) $\tan(\sin^{-1}(0,1544))$ f) $\sin(\sin^{-1}(-0,2311))$
- g) $2 \tan (\cos^{-1} (-0.6543))$ h) $\sin (\sin^{-1} (0.3211))$ i) $\sin^{-1} (0.6) + \cos^{-1} (0.6)$

- Indiquer à quels quadrants du plan cartésien (en référence au cercle trigonométrique) se réfère la calculatrice pour donner la valeur de :

 - a) $f(x) = \arcsin(x)$ b) $f(x) = \arccos(x)$
 - c) $f(x) = \arctan(x)$

- 10. Soit la fonction f définie par la règle $f(x) = \arcsin(x)$. Donner :
 - a) dom f

b) $\operatorname{codom} f$

c) le signe de f

- d) la variation de f
- e) le minimum de f
- f) le maximum de f

- 11. Dans chaque cas, déterminer le signe de l'expression.
 - a) $arccos(x) \cdot arcsin(x)$, où $x \in [-1, 0]$
 - b) $\arctan(x) \cdot \arcsin(x)$, où $x \in [-1, 0]$
 - c) $\frac{\arccos(x) \cdot \arcsin(x)}{\arctan(x)}$, où $x \in [-1, 0[$

- 12. Déterminer la valeur des expressions suivantes :

 - a) $\sin\left(\arccos\left(\frac{\sqrt{3}}{2}\right)\right)$ b) $\sin\left(\arccos\left(\frac{-1}{2}\right)\right)$ c) $\sin\left(\arctan(-1)\right)$

- 13. Déterminer la coordonnée manquante pour chacun des points trigonométriques donnés ci-dessous.
 - a) P(a; 0,6542)
- b) Q(-0,1233; b) c) R(c; -0,4386) d) S(0,5491; d)

- 14. Pour obtenir la fonction arccos, on a limité le domaine de la fonction cosinus à $[0, \pi]$. Pourrait-on définir arccos en limitant le domaine de la fonction cosinus à $\left\lceil \frac{-\pi}{2}, \frac{\pi}{2} \right\rceil$? Justifier.
- 15. Soit le point trigonométrique P(t) tel que $t = \tan^{-1}(-0.7813)$.
 - a) Quelle est la valeur de *t*?
 - b) Donner les coordonnées cartésiennes du point P(t).
 - c) Donner la mesure de l'arc $s \in [0, 2\pi]$ tel que $\tan(s) = \tan(t)$ et $P(s) \neq P(t)$.

16. En appliquant les définitions des fonctions trigonométriques réciproques, déterminer la valeur de x dans chacune de ces équations.

a)
$$\arcsin\left(\frac{2x+1}{4}\right) = \frac{\pi}{2}$$
 b) $\arctan(x-1) = \frac{\pi}{4}$ c) $3\arccos(3-3x) = \frac{\pi}{2}$

b)
$$\arctan(x-1) = \frac{\pi}{4}$$

c)
$$3\arccos(3-3x) = \frac{\pi}{2}$$

- 17. Soit le cercle de centre O(0, 0) ci-contre. Les coordonnées du point A sont (1, 0). L'aire du triangle AOB est de 0,341 m². Déterminer :
 - a) la mesure en degrés de l'angle θ ;

b) les coordonnées du point B.

Résolution d'équations «extrêmes» (vous avez les 2 pages suivantes pour faire vos démarches...)

Résoudre les équations suivantes si $x \in [0, 2\pi]$.

a)
$$2\sin(x) + 1 = 0$$

b)
$$\tan\left(x + \frac{\pi}{2}\right) = 0$$

c)
$$2\cos(x+\pi)-1=0$$

Déterminer les valeurs de x qui vérifient les équations suivantes si $x \in [0, 2\pi]$.

a)
$$\cos\left(\frac{x}{2}\right) = \frac{\sqrt{2}}{2}$$

b)
$$tan(2x) = 1$$

c)
$$\sin\left(\frac{x}{3}\right) + 1 = 0$$

3. Pour quelles valeurs de x, si $x \in [0, 2\pi]$, les équations suivantes deviennent-elles vraies?

a)
$$2\cos^2(x) = 1$$

b)
$$\sin^2(2x) = 1$$

c)
$$\tan^2(x) - 3 = 0$$

4. Trouve l'ensemble solution des équations suivantes.

a)
$$tan(x) = \sqrt{3}$$

b)
$$\cos(x) = \frac{-1}{2}$$

c)
$$\sin(x) = -1$$

5. Quel est l'ensemble solution des équations suivantes?

a)
$$\cos^2\left(x - \frac{\pi}{4}\right) = 1$$

b)
$$\tan\left(x - \frac{\pi}{3}\right) = 1$$

c)
$$2\sin\left(\frac{x}{2}\right) = \sqrt{3}$$

6. Trouver les valeurs de x qui vérifient les équations suivantes, si $x \in [0, 2\pi]$.

a)
$$cosec(x) = 2$$

b)
$$\cot(x) = \sqrt{3}$$

c)
$$sec(x) = -1$$

d)
$$cosec(x) = 0$$

7. Résoudre les équations suivantes.

a)
$$sec(arcsin(x)) = 2$$

b)
$$\operatorname{cosec}(\arctan(x)) = 1$$

c)
$$\cot(\arccos(x)) = 0$$

d)
$$sec(arccos(x)) = -1$$

e)
$$\cot(\arctan(x)) = 1$$

f)
$$cosec(arcsin(x)) = -2$$

Résoudre les équations suivantes si $x \in [0, 2\pi]$.

$$a) \sin^2(x) + \sin(x) = 0$$

b)
$$2\cos^2(x) + \cos(x) = 1$$

$$c) \cot(x) - \cot^2(x) = 0$$

Déterminer l'ensemble solution des équations suivantes.

a)
$$\cos^2(x) \cdot \tan(x) - \tan(x) = 0$$
 b) $\sin^2(x) + 1 = 2\sin(x)$

b)
$$\sin^2(x) + 1 = 2\sin(x)$$

c)
$$\sec^2(x) + 2\sec(x) = 0$$

10. Résoudre les équations suivantes si $x \in [0, 2\pi]$.

$$a) 3 \sin(x) = 2 \cos^2(x)$$

b)
$$\cos(x) - \sin^2(x) = 1$$

c)
$$\tan^2(x) + \sec^2(x) = 3$$

d)
$$cos(x) - sec(x) = 0$$

e)
$$2\sin(x)\cdot\cos(x) = \tan(x)$$

f)
$$\csc^2(x) + \cot(x) = 1$$

11. Déterminer l'ensemble solution des équations suivantes.

a)
$$\sin(t) - \tan(t) = 0$$

b)
$$cos(t) + 2 sin(t) \cdot cos(t) = 0$$

12. Résoudre les équations suivantes et donner l'ensemble solution dans l'intervalle donné.

a)
$$\tan^2(r) + \tan(r) = 0$$
 et $r \in [-2\pi, 0]$ b) $\cot^2(r) - 3 = 0$ et $r \in [-\pi, \pi]$

b)
$$\cot^2(r) - 3 = 0$$
 et $r \in [-\pi, \pi]$

c)
$$\sin^2(t) - \cos(t) = 1$$
 et $t \in [-2\pi, \pi]$

d)
$$2\cos^2(t)\cdot\sin(t) + \cos^2(t) = 0$$
 et $t \in [-\pi, \pi]$

13. Trouver l'ensemble solution des équations suivantes.

a)
$$2 \tan(t) \cdot \cos(t) - \tan(t) = 0$$

b)
$$\sin(t) + \cos^2(t) = 1$$

c)
$$\sin(t) = \cos t$$

d)
$$2 \tan^2(t) - \sec(t) + 1 = 0$$

e)
$$\cot^2(t) + \csc(t) = 1$$

f)
$$4 \sin^2(t) - 3 = 0$$

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Collège Regina Assumpta Mathématique SN_5

Chapitre 5 Trigonométrie

Les derniers exercices du chapitre!

1. Démontrer les identités suivantes.

a)
$$\frac{1}{\sec^2(\theta)} + \frac{1}{\csc^2(\theta)} = 1$$

b)
$$\tan^2(x) - \sin^2(x) = \sin^2(x) \cdot \tan^2(x)$$

c)
$$\frac{2\cos^2(\theta) - \cos(\theta) - 1}{\cos(\theta) - 1} = \frac{\sec(\theta) + 2}{\sec(\theta)}$$

2. Résoudre les équations suivantes :

a)
$$\tan\left(\frac{4\pi}{3}\right) = 2\sin(x+1)$$

b)
$$5 \arctan\left(t + \frac{1}{3}\right) = -\frac{5}{3} \arccos\left(-1\right)$$

Cercle trigonométrique

Formules d'addition et de soustraction d'angles

Opération Rapport	Somme de deux angles	Différence de deux angles
Sinus	$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha)$	$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \sin(\beta)\cos(\alpha)$
Cosinus	$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$	$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$
Tangente	$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$	$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

Formules dites « du double »

$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$cos(2\theta) = cos^{2}(\theta) - sin^{2}(\theta)$ $cos(2\theta) = 2 cos^{2}(\theta) - 1$ $cos(2\theta) = 1 - 2 sin^{2}(\theta)$	$\tan(2\theta) = \frac{2 \tan(\theta)}{1 - \tan^2(\theta)}$
---	--	---

Identités remarquables

$\sin^2(\theta) + \cos^2(\theta) = 1 \qquad \tan^2(\theta) + 1 = \sec^2(\theta) \qquad \cot^2(\theta) + 1 = \csc^2(\theta)$	$\sin^2(\theta) + \cos^2(\theta) = 1$	$\tan^2(\theta) + 1 = \sec^2(\theta)$	$\cot^2(\theta) + 1 = \csc^2(\theta)$
---	---------------------------------------	---------------------------------------	---------------------------------------