Return_Zero at Bhashabhrom: Bangla Grammatical Error Detection Leveraging Transformer-based Token Classification

Shayekh Bin Islam Ridwanul Hasan Tanvir Sihat Afnan

Department of CSE, BUET

Errors In Bangla Text

 $\begin{array}{c} \text{TABLE I} \\ \text{Types of Spelling Errors} \end{array}$

Error Type	Example
Cognitive Error	পরবাস $ ightarrow$ পরবাশ
Visual Error	দেবতা $ ightarrow$ দেরতা
Typo Insertion	চুল্লি $ ightarrow$ চুলল্লি
Typo Deletion	দুর্বার 🕁 দুর্বর
Typo Transposition	ঘাটতি $ ightarrow$ ঘাতটি
Typo (Avro) Substitution	চেয়ার $ ightarrow$ চেয়াএ
Typo (Bijoy) Substitution	ঘুর্ণি $ ightarrow$ ঘুর্ষি
Run-on Error	ত্রিভুবন → ত্রিভুবনঅষ্টক
Split-word Error (Random)	মিহি $ ightarrow$ মি হি
Split-word Error (Left)	ঘোলাটে $ ightarrow$ ঘোলা টে
Split-word Error (Right)	অশান্তি $ ightarrow$ অ শান্তি
Split-word Error (Both)	শ্রেণিকক্ষ $ ightarrow$ শ্রেণি কক্ষ
Homonym Error	বর্ষা $ ightarrow$ বর্শা

Errors In Bangla Text

 $\begin{array}{c} \text{TABLE I} \\ \text{Types of Spelling Errors} \end{array}$

Error Type	Example
Cognitive Error	পরবাস $ ightarrow$ পরবাশ
Visual Error	দেবতা $ ightarrow$ দেরতা
Typo Insertion	চুল্লি $ ightarrow$ চুলল্লি
Typo Deletion	দুর্বার $ ightarrow$ দুর্বর
Typo Transposition	ঘাটতি $ ightarrow$ ঘাতটি
Typo (Avro) Substitution	চেয়ার $ ightarrow$ চেয়াএ
Typo (Bijoy) Substitution	ঘুর্ণি $ ightarrow$ ঘুর্ষি
Run-on Error	ত্রিভুবন → ত্রিভুবনঅষ্টক
Split-word Error (Random)	মিহি $ ightarrow$ মি হি
Split-word Error (Left)	ঘোলাটে $ ightarrow$ ঘোলা টে
Split-word Error (Right)	অশান্তি $ ightarrow$ অ শান্তি
Split-word Error (Both)	শ্রেণিকক্ষ $ ightarrow$ শ্রেণি কক্ষ
Homonym Error	বর্ষা $ ightarrow$ বর্শা

$\begin{array}{c} {\rm TABLE~II} \\ {\rm Errors~by~ERRANT~Classification} \end{array}$

Error Type	Example
Spelling	পরনির্ভরশীল $ ightarrow$ ফরনির্ভরশীল
Orthography	ব্যবসা প্রতিষ্ঠান $ ightarrow$ ব্যবসাপ্রতিষ্ঠান
Punctuation	$1 \rightarrow 1$
Noun Inflection	অধিবাসীরা $ ightarrow$ অধিবাসী
Pronoun	আমি $ ightarrow$ আমরা
Verb Tense	যাবে $ ightarrow$ যায়
Adjective Form	মৃত (স্ত্রী) → মৃতা (স্ত্রী)
Subject-Verb Agreement	(সে) খায় $ ightarrow$ $(সে)$ খাই
Conjunction	কিন্তু $ ightarrow$ এবং
Literary Register	পড়ে $ ightarrow$ পড়িয়া

► To detect sub-strings of a Bangla text that contain grammatical, punctuation, or spelling errors.

► To detect sub-strings of a Bangla text that contain grammatical, punctuation, or spelling errors.

For example:

Input পুরা মাছ টাই খেলাম

Output \$পুরা\$ \$মাছ টাই\$ খেলাম\$\$

The Task

► To detect sub-strings of a Bangla text that contain grammatical, punctuation, or spelling errors.

For example:

Input পুরা মাছ টাই খেলাম
Output \$পুরা\$ \$মাছ টাই\$ খেলাম\$\$

- Data
 - Training data: Around 20,000 texts with 7500 errors
 - Test data: 5,000 texts

Token Classification Model I: 4 Classes

Token Classification Model II: 3+2 Classes

Token Classification Model III: LSTM-CRF

Token Classification Models

- We observe no performance gain
 - By adding BiLSTM and CRF
 - By modelling missing error separately

Table: Comparison of Token Class. Models on Dev Set

Model	Levenstein Distance
BanglaBERT-base 4 Classes	1.0239
BanglaBERT-base 3+2 Classes	1.0743
BanglaBERT-base+BiLSTM+CRF	1.0534

Pre-Trained Models

▶ We find BanglaBERT-base and BanglaBERT-large to perform best.

Table: Comparison of Transformers Models on Private Test Set

Model	Levenstein Distance
XLM-RoBERTa-base	1.3940
DeBERTa-V3-large	1.3552
BanglaBERT-base	1.2120
BanglaBERT-large	1.1844

Label Smoothing

- Mitigates overfitting and noise-modelling.
- 0.1 for BanglaBERT-base and 0.2 for BanglaBERT-large.

Table: Private test set results for label smoothing

Туре	Levenstein Distance
BanglaBERT-large+standard CE	1.1640
BanglaBERT-large+smoothing factor 0.2	1.1588

Unicode Normazation and De-normalization

Unicode characters may have multiple representations

De-normalized output using minimum edit distance alignment

Table: Results of Unicode normalization on the private test set

Туре	Levenstein Distance
BanglaBERT-large without normalization	1.130
BanglaBERT-large with normalization	1.084

Rule-based Error Detection

- We deterministically fix
 - Extra spaces before punctuation (space fix)
 - Missing punctuation at the end (end fix)

948
46
12
_

- Steps
 - Collect the database of common Bangla Spelling Error from DPCSpell Paper.
 - · Remove error in online Bangla dictionary.
 - Remove Bangla Wikipedia title words.
 - Finally, only apply if the word is not a named-entity as per the BNLP NER model.
- Result: Small gain (0.0008) in performance at Phase 1 test set.

Confidence Thresholding

BanglaBERT-large+threshold 0.0 1.1892 BanglaBERT-large+threshold 0.8 1.1588

Ensemble

14/17

- Type I
 - Union
 - Intersection
- Type II
 - Single-checkpoint
 - Three-checkpoints

Ensemble

Table: Effectiveness of Ensemble I on Private Test Set

Туре	Levenstein Distance
BanglaBERT-large only	1.2212
BanglaBERT-base+large Union	1.2524
BanglaBERT-base+large Intersection	1.144

Table: Effectiveness of Ensemble II on Public Test Set

Model	Levenstein Distance
Single-checkpoint	1.0648
Three-checkpoints	1.0539

Summary of Our Solution

- ▶ Task formalization: Four-class Token Classification
- Models: BanglaBERT-base and BanglaBERT-large
- Ensemble:
 - Union
 - Three-checkpoints
- Loss function: Label Smoothing Cross-Entropy
- Optimizer: AdamW with Linear LR Scheduling
- Preprocessing: Normalization
- Postprocessing:
 - Confidence Thresholding
 - Denormalization
 - Rule-based Fix

Future Works

- ▶ To employ self-training with in-domain unlabeled data.
- ► To combine self-training with feature-based learning to learn a more robust model.
- To use adversarial training strategies.

