KNOWLEDGE DISCOVERY AND DATA MINING

HEART DISEASE PREDICTION USING SEVERAL CLASSIFICATION MODELS

GROUP 4

TEAM MEMBERS

ROUSHAN KUMAR | CWID: 20009314

ISHAN ARYENDU | CWID: 10474734

SABAH AHMED | CWID : 10478272

ZHU LI | CWID: 10454296

INTRODUCTION AND PROBLEM OVERVIEW

- 12 million deaths occur worldwide, every year due to Heart diseases.
- Half of the deaths in the United States and other developed countries are due to cardiovascular diseases.
- Early prognosis of cardiovascular diseases can aid in making decisions on lifestyle changes in high-risk patients and in turn reduce complications.

GOAL & OBJECTIVE

- Our classification goal is to determine whether the patient has a 10-year risk of developing/future coronary heart disease (CHD) using several Machine Learning/Data Mining methods from an ongoing cardiovascular study on people of Framingham,
 Massachusetts.
- Build a predictive model that predicts the patient has a 10-year risk of future coronary heart disease (CHD) or not based on their potential risk factor/ patients' information and compare the ML models
- Predict and Classify what predictors/features might be of importance for the risk of CHD.

ABOUT THE DATASET

Dataset statistics		Variable types				
Number of variables	16	Categorical	8			
Number of observations	4238	Numeric	8			
Missing cells	645					
Missing cells (%)	1.0%					
Duplicate rows	0					
Duplicate rows (%)	0.0%					
Total size in memory	529.9 KiB					
Average record size in memory	128.0 B					

<u>Data Source References:</u> https://www.kaggle.com/datasets/dileep070/heart-disease-prediction-using-logistic-regression

DATA FIELDS

- The dataset provides the patients' information
- Each attribute is a potential risk factor. There are both demographic, behavioral and medical risk factors.

Demographic	Behavioral	Medical(history)	Medical(current)
Male: Whether the patient is male or female	Current Smoker: whether or not the patient is a current smoker	BP Meds: whether or not the patient was on blood pressure medication	Tot Chol: total cholesterol level
Age: Age of the patient	Cigs Per Day: the number of cigarettes that the person smoked on average in one day	Prevalent Stroke: whether or not the patient had previously had a stroke	Sys BP: systolic blood pressure
Education: 1- Primary education 2- Secondary education 3- Postsecondary education 4- Graduate and above		Prevalent Hyp: whether or not the patient was hypertensive	Dia BP: diastolic blood pressure
		Diabetes: whether or not the patient had diabetes	BMI: Body Mass Index
			Heart Rate: heart rate
			Glucose: glucose level

Predict variable (desired target): 10 year risk of coronary heart disease CHD (binary: "1", means "Yes", "0" means "No")

ORIGINAL DATASET

	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р
1			education a	<mark>currentSmoker</mark>	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	TenYearCHD
2	1	39	4	0	0	0	0	0	0	195	106	70	26.97	80	77	0
3	0	46	2	0	0	0	0	0	0	250	121	81	28.73	95	76	0
4	1	48	1	1	20	0	0	0	0	245	127.5	80	25.34	75	70	0
5	0	61	3	1	30	0	0	1	0	225	150	95	28.58	65	103	1
6	0	46	3	1	23	0	0	0	0	285	130	84	23.1	85	85	0
7	0	43	2	0	0	0	0	1	0	228	180	110	30.3	77	99	0
8	0	63	1	0	0	0	0	0	0	205	138	71	33.11	60	85	1
9	0	45	2	1	20	0	0	0	0	313	100	71	21.68	79	78	0
10	1	52	1	0	0	0	0	1	0	260	141.5	89	26.36	76	79	0
11	1	43	1	1	30	0	0	1	0	225	162	107	23.61	93	88	0
12	0	50	1	0	0	0	0	0	0	254	133	76	22.91	75	76	0
13	0	43	2	0	0	0	0	0	0	247	131	88	27.64	72	61	0
14	1	46	1	1	15	0	0	1	0	294	142	94	26.31	98	64	0
15	0	41	3	0	0	1	0	1	0	332	124	88	31.31	65	84	0
16	0	39	2	1	9	0	0	0	0	226	114	64	22.35	85	NA	0
17	0	38	2	1	20	0	0	1	0	221	140	90	21.35	95	70	1
18	1	48	3	1	10	0	0	1	0	232	138	90	22.37	64	72	0

MISSING VALUES

CORRELATIONS HEATMAP

ALERTS ON FEATURES

cigsPerDay is highly overall correlated with currentSmoker	High correlation
sysBP is highly overall correlated with prevalentHyp and 1 other fields	High correlation
diaBP is highly overall correlated with prevalentHyp and 1 other fields	High correlation
glucose is highly overall correlated with diabetes	High correlation
currentSmoker is highly overall correlated with cigsPerDay	High correlation
prevalentHyp is highly overall correlated with sysBP and 1 other fields	High correlation
diabetes is highly overall correlated with glucose	High correlation
diabetes is highly overall correlated with glucose education has 105 (2.5%) missing values	High correlation Missing
education has 105 (2.5%) missing values	Missing
education has 105 (2.5%) missing values BPMeds has 53 (1.3%) missing values	Missing Missing

PREPROCESSING

- The feature prevalentHyp was removed from the training and testing datasets because it had a high correlation with the sysBP and diaBP feature
- Because currentSmoker had a strong correlation with the cigsPerDay feature, they were taken out of the training and testing datasets.
- The missing values were replaced with the mode of the feature set and min-max scaler was used to normalize the rest of the features in the dataset.
- The dataset contained bias. So, to balance the training dataset we used SMOTETomek.

MODEL BUILDING

- We used the features ['male', 'age', 'education', 'cigsPerDay', 'BPMeds', 'prevalentStroke', 'diabetes', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose', 'TenYearCHD'] for training the model.
- Our target feature is 'TenYearCHD'.
- The training and testing datasets were divided 80:20 from the normalized and imputed data.
- We used k-fold cross validation to validate the model against the validation dataset.

CLASSIFICATION ALGORITHMS

- Logistic Regression
- Naive Bayes
- Random Forest
- Extreme Gradient Boost

- KNeighbors
- Decision Tree
- Support Vector Classifier

LOGISTIC REGRESSION

	Accuracy of Logistic Regression: 65.68396226415094									
			precision	recall	f1-score	support				
		0.0 1.0	0.92 0.20	0.67 0.58	0.77 0.30	741 107				
	accur macro weighted	avg	0.56 0.83	0.62 0.66	0.66 0.54 0.71	848 848 848				
]		_	val_score(lr, k-fold cross	_	_		nean()}")			
	After k-fold cross validation score is 0.8738375350140057									

Confusion Matrix

NAIVE BAYES

```
Accuracy of Naive Bayes model: 83.49056603773585
              precision
                           recall f1-score
                                              support
                                       0.91
         0.0
                   0.89
                             0.92
                                                  741
                             0.22
                                       0.26
         1.0
                   0.30
                                                  107
                                       0.83
                                                  848
    accuracy
                                       0.58
                             0.57
                                                  848
  macro avg
                   0.59
weighted avg
                   0.82
                             0.83
                                       0.82
                                                  848
score2=cross val score(nb,X valid,y valid,cv=10)
print(f"After k-fold cross validation score is {score2.mean()}")
After k-fold cross validation score is 0.7643697478991596
```


Confusion Matrix

RANDOM FOREST

```
Accuracy of Random Forest: 80.18867924528303
                           recall f1-score
              precision
                                              support
         0.0
                   0.90
                             0.87
                                       0.89
                                                  741
        1.0
                   0.26
                             0.30
                                       0.28
                                                  107
                                       0.80
                                                  848
    accuracy
                             0.59
                                       0.58
                                                  848
                   0.58
   macro avg
weighted avg
                   0.82
                             0.80
                                       0.81
                                                  848
score3=cross val score(rf,X valid,y valid,cv=10)
print(f"After k-fold cross validation score is {score3.mean()}")
After k-fold cross validation score is 0.8679411764705882
```


Confusion Matrix

EXTREME GRADIENT BOOST

```
Accuracy of Extreme Gradient Boost: 74.1745283018868
              precision
                           recall f1-score
                                               support
         0.0
                   0.90
                             0.79
                                       0.84
                                                   741
         1.0
                   0.22
                             0.40
                                       0.28
                                                   107
                                       0.74
                                                   848
    accuracy
                                       0.56
                                                   848
                   0.56
                             0.60
   macro avg
                   0.82
                                                   848
weighted avg
                             0.74
                                       0.77
```

```
[ ] score4=cross_val_score(xgb,X_valid,y_valid,cv=10)
    print(f"After k-fold cross validation score is {score4.mean()}")
```

After k-fold cross validation score is 0.8773669467787114

Confusion Matrix

KNEIGHBORS

Error Rate Accuracy Rate

KNEIGHBORS

```
Accuracy of K-NeighborsClassifier: 70.04716981132076
              precision
                           recall f1-score
                                               support
                   0.88
                             0.76
                                       0.82
         0.0
                                                   741
                                       0.21
         1.0
                   0.15
                             0.31
                                                   107
                                       0.70
                                                   848
    accuracy
                             0.53
                                       0.51
                                                   848
   macro avg
                   0.52
weighted avg
                   0.79
                             0.70
                                       0.74
                                                   848
score5=cross val score(knn, X valid, y valid, cv=10)
print(f"After k-fold cross validation score is {score5.mean()}")
After k-fold cross validation score is 0.8714705882352941
```


Confusion Matrix

DECISION TREE

```
Accuracy of DecisionTreeClassifier: 71.34433962264151
              precision
                           recall f1-score
                                              support
         0.0
                             0.77
                                       0.82
                   0.89
                                                  741
                                       0.22
         1.0
                   0.17
                             0.33
                                                  107
                                       0.71
                                                  848
    accuracy
                                       0.52
   macro avg
                   0.53
                             0.55
                                                  848
weighted avg
                   0.80
                             0.71
                                       0.75
                                                  848
score6=cross val score(dt,X valid,y valid,cv=10)
print(f"After k-fold cross validation score is {score6.mean()}")
After k-fold cross validation score is 0.7936554621848739
```


Confusion Matrix

SUPPORT VECTOR CLASSIFIER

	Accuracy of Support Vector Classifier: 70.28301886792453								
			precision	recall	f1-score	support			
		0.0 1.0	0.89 0.18	0.75 0.37	0.82 0.24	741 107			
	accu macro weighted	avg	0.54 0.80	0.56 0.70	0.70 0.53 0.74	848 848 848			
[]		_	val_score(svc, k-fold cross	_	-	•	an()}")		
	After k-	fold	cross validati	ion score	e is 0.8750	14005602241			

Confusion Matrix

ACCURACY COMPARISON

As we can see,

Extreme Gradient Boost
algorithm is most accurate
for this dataset.

AUC COMPARISON

As we can see,

Logistic Regression
algorithm has most AUC
for this dataset.

IMPORTANT FEATURES OF EXTREME GRADIENT BOOST CLASSIFIER

IMPORTANT FEATURES OF EXTREME LOGISTIC REGRESSION CLASSIFIER

Prof. Khashayar Dehnad

THANK YOU