Vector Integration

Line Integral

Let $\vec{F}(x, y, z)$ be a vector function and a curve AB.

Line Integral of a vector function \vec{F} along the curve AB is defined as integral of the component of \vec{F} along the tangent to the curve AB .

Line Integral =
$$\int_{c}^{\Box} \vec{F} \cdot \overrightarrow{dr}$$

Remark

(1) Work. If \overline{F} represents the variable force acting on a particle along arc AB, then the total work done = $\int_{A}^{B} \vec{F} \cdot \vec{dr}$

(2) Circulation. If \vec{v} represents the velocity of a liquid then $\oint_{\vec{v}} \vec{v} \cdot \vec{dr}$ is called the circulation of V round the closed curve c. If the circulation of V round every closed curve is zero then V is said to be irrotational there.

(3) When the path of integration is a closed curve then notation of integration is ∮ in place of [.

Ex-1 If a force $\vec{F}=2x^2y\hat{\imath}+3xy\hat{\jmath}$ displaces a particle in the xy plane from (0,0) to (1,4)along a curve $y=4x^2$. Find the work done.

Solution

Work done
$$= \int_{c} \vec{F} \cdot d\vec{r}$$
 $\begin{bmatrix} \vec{r} = x\hat{i} + y\hat{j} \\ \vec{d}r = dx\hat{i} + dy\hat{j} \end{bmatrix}$
 $= \int_{c} (2 x^{2} y \, \hat{i} + 3 x y \, \hat{j}) \cdot (dx \, \hat{i} + dy \, \hat{j})$ $\vec{d}r = dx \, \hat{i} + dy \, \hat{j} \end{bmatrix}$
 $= \int_{c} (2 x^{2} y \, dx + 3 x y \, dy)$
Putting the values of y and dy , we get $\begin{bmatrix} y = 4 x^{2} \\ dy = 8 x \, dx \end{bmatrix}$
 $= \int_{0}^{1} \cdot [2 x^{2} (4 x^{2}) \, dx + 3 x (4 x^{2}) \, 8 x \, dx]$
 $= 104 \int_{0}^{1} x^{4} \, dx = 104 \left(\frac{x^{5}}{5}\right)_{0}^{1} = \frac{104}{5}$ Ans.

Ex2-Evaluate $\int_c^{\square} \vec{F} \cdot \overrightarrow{dr}$ where $\vec{F} = x^2 \hat{\imath} + xy \hat{\jmath}$ and c is the boundary of the square in the plane z=0 and bounded by the lines x=0, y=0, $x=a \otimes y=a$

Ex3- If $\vec{A}=(3x^2+6y)\hat{\imath}-14yz\hat{\jmath}+20xz^2\hat{k}$, evaluate $\oint \vec{A}.\overrightarrow{dr}$ from (0,0,0) to (1,1,1) along the curve $\mathbf{x}=t$, $y=t^2$, $z=t^3$

Solution We have,
$$\int_{C} \vec{A} \cdot d\vec{r} = \int_{C} [(3x^{2} + 6y)\hat{i} - 14yz\hat{j} + 20xz^{2}\hat{k}] \cdot [\hat{i} dx + \hat{j} dy + \hat{k} dz]$$

$$= \int_{C} [(3x^{2} + 6y) dx - 14yzdy + 20xz^{2}dz]$$

If x = t, $y = t^2$, $z = t^3$, then points (0, 0, 0) and (1, 1, 1) correspond to t = 0 and t = 1 respectively.

Now,
$$\int_{C} \overrightarrow{A} \cdot d\overrightarrow{r} = \int_{t=0}^{t=1} [(3t^{2} + 6t^{2}) d(t) - 14t^{2} t^{3} d(t^{2}) + 20t (t^{3})^{2} d(t^{3})]$$

$$= \int_{t=0}^{t=1} [9t^{2} dt - 14t^{5} \cdot 2t dt + 20t^{7} \cdot 3t^{2} dt] = \int_{0}^{1} (9t^{2} - 28t^{6} + 60t^{9}) dt$$

$$= \left[9\left(\frac{t^{3}}{3}\right) - 28\left(\frac{t^{7}}{7}\right) + 60\left(\frac{t^{10}}{10}\right)\right]_{0}^{1}$$

$$= 3 - 4 + 6 = 5$$

Ex4- Evaluate $\int_c^{\Box} \vec{F} \cdot \overrightarrow{dr}$ where $\vec{F} = \frac{\hat{\imath}y - \hat{\jmath}x}{x^2 + y^2}$ and c is the circle $x^2 + y^2 = 1$ traversed counter clockwise

Solution

$$\vec{r} = \hat{i} x + \hat{j} y + \hat{k} z, d \vec{r} = \hat{i} dx + \hat{j} dy + \hat{k} dz$$

$$\int_{c} \vec{F} \cdot d \vec{r} = \int_{c} \frac{\hat{i} y - \hat{j} x}{x^{2} + y^{2}} \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= \int_{c} \frac{y dx - x dy}{x^{2} + y^{2}} = \int_{c} (y dx - x dy) \qquad \dots (1) \left[\because x^{2} + y^{2} = 1 \right]$$

Putting $x = \cos \theta$, $y = \sin \theta$, $dx = -\sin \theta d\theta$, $dy = \cos \theta d\theta$ in (1), we get

$$\int_{C} \vec{F} \, d\vec{r} = \int_{0}^{2\pi} \sin \theta \, (-\sin \theta \, d\theta) - \cos \theta \, (\cos \theta \, d\theta)$$
$$= -\int_{0}^{2\pi} (\sin^{2} \theta + \cos^{2} \theta) \, d\theta = -\int_{0}^{2\pi} d\theta = -(\theta)_{0}^{2\pi} = -2\pi$$

Theorem on Conservative Field

Definition of Conservative Field

Let $\vec{F}(x,y,z)$ be a vector function such that curl $\vec{F}=0$, then \vec{F} is irrotational and \vec{F} is said to be Conservative.

Theorem

If \vec{F} is Conservative, there exists a scalar function (or scalar potential) $\vec{\emptyset}$ such that $\vec{F} = \overrightarrow{\nabla} \vec{\emptyset}$

To find the scalar potential function ϕ

$$\overrightarrow{F} = \overrightarrow{\nabla} \phi$$

$$d \phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz = \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}\right) \cdot \left(\hat{i} dx + \hat{j} dy + \hat{k} dz\right)$$

$$= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \phi \cdot \left(d\overrightarrow{r}\right) = \nabla \phi \cdot d\overrightarrow{r} = \overrightarrow{F} \cdot d\overrightarrow{r}$$

Ex1- Show that the vector field $\vec{F} = 2x(y^2 + z^3)\hat{\imath} + 2x^2y\hat{\jmath} + 3x^2z^2\hat{k}$ is conservative. Find the scalar potential and work done in moving a particle from (-1,2,1) to (2,3,4)

Solution

Step 1– To show that \vec{F} is conservative \Rightarrow TST \vec{F} is irrotational

$$\Rightarrow$$
 TST curl $\vec{F} = 0$

$$\overrightarrow{F} = 2x(y^2 + z^3) \hat{i} + 2x^2y \hat{j} + 3x^2z^2\hat{k}$$

$$\operatorname{Curl} \overrightarrow{F} = \nabla \times \overrightarrow{F}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x(y^2 + z^3) & 2x^2y & 3x^2z^2 \end{vmatrix} = (0 - 0)i - (6xz^2 - 6xz^2)\hat{j} + (4xy - 4xy)\hat{k} = 0$$

Hence, vector field \vec{F} is irrotational.

Since \vec{F} is Conservative, there exists a scalar function (or scalar potential) $\vec{\emptyset}$ such that $\vec{F} = \nabla \vec{\emptyset}$

Step2- To find scalar potential Ø

$$\begin{split} d & \phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz &= \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z} \right) \cdot \left(\hat{i} dx + \hat{j} dy + \hat{k} dz \right) \\ &= \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \phi \cdot \left(d \overrightarrow{r} \right) = \nabla \phi \cdot d \overrightarrow{r} = \overrightarrow{F} \cdot d \overrightarrow{r} \\ &= \left[2x(y^2 + z^3) \hat{i} + 2x^2 y \hat{j} + 3x^2 z^2 \hat{k} \right] (\hat{i} dx + \hat{j} dy + \hat{k} dz) \\ &= 2x(y^2 + z^3) dx + 2x^2 y dy + 3x^2 z^2 dz \end{split}$$

Method 1

$$\phi = \int \left[2x(y^2 + z^3)dx + 2x^2ydy + 3x^2z^2dz \right] + C$$

$$\int (2xy^2dx + 2x^2ydy) + (2xz^3dx + 3x^2z^2dz) + C = x^2y^2 + x^2z^3 + C$$
Hence, the scalar potential is $x^2y^2 + x^2z^3 + C$

Method 2

Compare the expressions of $d\emptyset$ and \vec{F} . \overrightarrow{dr}

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$$
 and $\overrightarrow{F} \cdot \overrightarrow{dr} = 2x(y^2 + z^3) dx + 2x^2 y dy + 3x^2 z^2 dz$
As $d\emptyset = F \cdot dr$ So we have

$$\frac{\partial \emptyset}{\partial x} = 2x(y^2 + z^3)$$
 $\frac{\partial \emptyset}{\partial y} = 2x^2y$ $\frac{\partial \emptyset}{\partial z} = 3x^2z^2$

Integrating above eqns w.r.t. x, y, z respectively partially, we get

$$\emptyset = \int 2x(y^2 + z^3)dx = x^2(y^2 + z^3) + k(y, z)$$

$$\emptyset = \int 2x^2ydy = x^2y^2 + k(x, z)$$

$$\emptyset = \int 3x^2z^2dz = x^2z^3 + k(x, y)$$

Excluding the repeated terms, we get

$$\emptyset = x^2y^2 + x^2z^3 + c$$

Step 3 To find work done

Since the field is conservative, work done does not depend on the path. It depends only on the end points.

Work done =
$$\int_{(-1,2,1)}^{(2,3,4)} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{(-1,2,1)}^{(2,3,4)} d\phi = \left[\phi\right]_{(-1,2,1)}^{(2,3,4)} = \left[x^2y^2 + x^2z^3 + c\right]_{(-1,2,1)}^{(2,3,4)}$$
$$= (36 + 256) - (2 - 1) = 291$$

Ex 2- Determine whether the integral $\int (2xyz^2)dx + (x^2z^2 + z\cos yz)dy + (2x^2yz + y\cos yz)dz$ is independent of path of integration? If so, then evaluate it from (1,0,1) to $(0,\frac{\pi}{2},1)$.

Solution
$$\int_{c} (2xyz^{2}) dx + (x^{2}z^{2} + z \cos yz) dy + (2x^{2}yz + y \cos yz) dz$$

$$= \int_{c} [(2xyz^{2}\hat{i}) + (x^{2}z^{2} + z \cos yz) \hat{j} + (2x^{2}yz + y \cos yz) \hat{k}] \cdot (\hat{i}dx + \hat{j}dy + \hat{k}dz) = \int_{c} \vec{F} \cdot \vec{dr}$$

This integral is independent of path if curl $ec{F}=0$

$$\nabla \times \overline{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xyz^2 & x^2z^2 + z\cos yz & 2x^2yz + y\cos yz \end{vmatrix}$$
$$= (2x^2z + \cos yz - yz\sin yz - 2x^2z - \cos yz + yz\sin yz) = \hat{i} - (4xyz - 4xyz)\hat{j} + (2xz^2 - 2xz^2)\hat{k} = 0$$

Hence the integral is independent of path of integration and therefore there exists a scalar function (or scalar potential) \emptyset such that $\vec{F} = \overrightarrow{\nabla \emptyset}$

Evaluation of integral from (1,0,1) to $(0,\frac{\pi}{2},1)$.

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$$

$$= \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}\right) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz) = \nabla \phi \cdot dr = \overrightarrow{F} \cdot \overrightarrow{d} r$$

$$= \left[(2xyz^2) \hat{i} + (x^2z^2 + z\cos yz) \hat{j} + (2x^2yz + y\cos yz) \hat{k} \right] \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz)$$

$$= 2xyz^2 dx + (x^2z^2 + z\cos yz) dy + (2x^2yz + y\cos yz) dz$$

$$= \left[(2x dx) yz^2 + x^2 (dy) z^2 + x^2 y(2z dz) \right] + \left[(\cos yz dy) z + (\cos yz dz) y \right]$$

$$= d(x^2yz^2) + d(\sin yz)$$

$$\phi = \int d(x^2yz^2) + \int d(\sin yz) = x^2yz^2 + \sin yz$$

The value of integral is

$$[\phi]_A^B = \phi(B) - \phi(A)$$

$$= [x^2 y z^2 + \sin y z]_{(0, \frac{\pi}{2}, 1)} - [x^2 y z^2 + \sin y z]_{(1, 0, 1)} = \left[0 + \sin(\frac{\pi}{2} \times 1)\right] - [0 + 0]$$

$$= 1$$

EX3- A vector field is given by $\vec{A} = (x^2 + xy^2)\hat{\imath} + (y^2 + x^2y)\hat{\jmath}$. Show that the vector field \vec{A} is irrotational and find the scalar potential.

Solution \overrightarrow{A} is irrotational if curl $\overrightarrow{A} = 0$

Curl
$$\overrightarrow{A} = \nabla \times \overrightarrow{A} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 + xy^2 & y^2 + x^2y & 0 \end{vmatrix} = \overrightarrow{i}(0-0) - \overrightarrow{j}(0-0) + \overrightarrow{k}(2xy - 2xy) = 0$$

Hence, $\stackrel{\rightarrow}{A}$ is irrotational. If ϕ is the scalar potential, then $\stackrel{\rightarrow}{A} = \operatorname{grad} \phi$

$$d \phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$$
 [Total differential coefficient]

$$= \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}\right) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz) = \text{grad } \phi \cdot dr$$

$$= \vec{A} \cdot dr = \left[(x^2 + xy^2) \hat{i} + (y^2 + x^2y) \hat{j} \right] \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz) = (x^2 + xy^2) dx + (y^2 + x^2y) dy$$

To find Ø

So we have,
$$\frac{\partial \emptyset}{\partial x} = (x^2 + xy^2)$$
 $\frac{\partial \emptyset}{\partial y} = (y^2 + x^2y)$

Integrating above eqns w.r.t. x, y, z respectively partially, we get

$$\emptyset = \int (x^2 + xy^2) dx = \frac{x^3}{3} + \frac{x^2y^2}{2} + k(y)$$

$$\emptyset = \int (y^2 + x^2y) dy = \frac{y^3}{3} + \frac{x^2y^2}{2} + k(x)$$

Hence
$$\emptyset = \frac{x^3}{3} + \frac{x^2y^2}{2} + \frac{y^3}{3} + c$$

EX4- A fluid motion is given by $\vec{v} = (y \sin z - \sin x)\hat{\imath} + (x \sin z + 2yz)\hat{\jmath} + (xy \cos z + y^2)\hat{k}$. Is the motion is irrotational and find the velocity potential.

Solution

Curl
$$\overrightarrow{v} = \overrightarrow{\nabla} \times \overrightarrow{v}$$
 = $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k}$
= $\begin{pmatrix} \hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \end{pmatrix} \times (y \sin z - \sin x) \hat{j} + (x \sin z + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} + (x \cos z + 2y + 2yz) \hat{j} +$

Hence, the motion is irrotational.

To find the velocity potential

So,
$$\overline{v} = \overline{\nabla} \phi$$
 where ϕ is called velocity potential.

$$d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz \qquad [Total differential coefficient]$$

$$= \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z}\right) \cdot (\hat{i} dx + \hat{j} dy + \hat{k} dz) = \overline{\nabla} \phi \cdot d \overrightarrow{r} = \overrightarrow{v} \cdot d \overrightarrow{r}$$

$$= \left[(y \sin z - \sin x) \hat{i} + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k} \right] \cdot [\hat{i} dx + \hat{j} dy + \hat{k} dz]$$

$$= (y \sin z - \sin x) dx + (x \sin z + 2yz) \hat{j} + (xy \cos z + y^2) \hat{k} \right] \cdot [\hat{i} dx + \hat{j} dy + \hat{k} dz]$$

$$= (y \sin z - \sin x) dx + (x \sin z + 2yz) dy + (xy \cos z + y^2) dz$$

$$= (y \sin z dx + x dy \sin z + x y \cos z dz) - \sin x dx + (2yz dy + y^2 dz)$$

$$= d(xy \sin z) + d(\cos x) + d(y^2 z)$$

$$\phi = \int d(xy \sin z) + \int d(\cos x) + \int d(y^2 z)$$

$$\phi = xy \sin z + \cos x + y^2z + c$$
Hence, Velocity potential = $xy \sin z + \cos x + y^2z + c$.

Green's Theorem

If P and Q are two functions of x and y such that their partial derivatives $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ are continuous single valued functions over the closed region R bounded by a curve c, then

$$\int_{c}^{\square} P dx + Q dy = \iint_{R}^{\square} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Type 1- Verification of Green's Theorem

Ex-1 Verify Green's Theorem for $\int_c^{\Box}[(xy+y^2)dx+x^2dy]$ where c is bounded by y=x and $y=x^2$

Solution Here
$$P = xy + y^2$$
 and $Q = x^2$

$$\int_{c}^{c} Pdx + Qdy = \int_{c1}^{c} || || + \int_{c2}^{c} || || ||$$

Along C_1 , $y = x^2$ and x varies from 0 to 1

$$\int_{C_1} = \int_0^1 \left[\left\{ x(x)^2 + (x^2)^2 \right\} \right] dx + x^2 d(x^2) \right]$$

$$= \int_0^1 (3x^3 + x^4) dx = \frac{19}{20}$$

Along C_2 , y = x and x varies from 1 to 0.

$$\int_{C_2} = \int_1^0 \left[\left\{ x(x) + (x)^2 \right\} \frac{dx}{dx} + \frac{x^2}{x^2} \frac{d(x)}{dx} \right] = \int_1^0 3x^2 dx = -1.$$

$$\int_{c}^{\square} P dx + Q dy = \int_{c1}^{\square} \square + \int_{c2}^{\square} \square = \frac{19}{20} - 1 = -\frac{1}{20}$$

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} (xy + y^2) = x + 2y$$

$$\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} (x^2) = 2x$$

$$\iint_{R}^{\square} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$
(i)

$$= \int_0^1 \int_{x^2}^x (2x - x - 2y) \, dy dx = \int_0^1 \left[xy - y^2 \right]_{x^2}^x \, dx = \int_0^1 \left(x^4 - x^3 \right) dx = -\frac{1}{20}$$
 (ii)

Hence, Green theorem is verified from the equality of (i) and (ii).

Ex 2- Verify Green's Theorem for $\int_c^{||\cdot||} \left[\frac{1}{y} dx + \frac{1}{x} dy \right]$ where c is bounded by x=1, x=4, y=1 and $y=\sqrt{x}$

Solution Here
$$P = \frac{1}{y}$$
 and $Q = \frac{1}{x}$,
$$\int_{c}^{c} P dx + Q dy = \int_{c1}^{c} \frac{1}{1} + \int_{c2}^{c} \frac{1}{1} + \int_{c3}^{c} \frac{1}{1} +$$

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left(\frac{1}{y}\right) = -\frac{1}{y^2} \qquad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{x}\right) = -\frac{1}{x^2}$$

$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{1}^{4} \int_{1}^{\sqrt{x}} \left(-\frac{1}{x^2} + \frac{1}{y^2}\right) dx dy = \int_{1}^{4} \left[-\frac{y}{x^2} - \frac{1}{y}\right]_{1}^{\sqrt{x}}$$

$$= \int_{1}^{4} \left[-\frac{1}{\frac{3}{x^2}} - \frac{1}{\sqrt{x}} + \frac{1}{x^2} + 1\right] dx$$

$$= \left[2x^{-1/2} - 2\sqrt{x} - \frac{1}{x} + x\right]_{1}^{4} = \frac{3}{4}$$
(ii)

Hence, Green theorem is verified from the equality of (i) and (ii).

Type 2- Evaluation

Ex 1-Apply Greens Theorem to Evaluate $\int_c^{\square} [(2x^2-y^2)dx + (x^2+y^2)dy]$ where c is boundary of the area enclosed by the x-axis and the upper half of the circle $x^2+y^2=a^2$

Solution By Greens Theorem $\int_{c}^{\Box} P dx + Q dy = \iint_{R}^{\Box} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$

Here
$$P = 2x^2 - y^2$$
 and $Q = x^2 + y^2$

$$\frac{\partial P}{\partial y_{\text{imp}}} = -2y \text{ and } \frac{\partial Q}{\partial x} = 2x$$

$$\int_{a}^{b...} [(2x^2 - y^2)dx + (x^2 + y^2)dy] =$$

=
$$2\iint_A (x+y) dxdy$$
, where A is the region

$$1 = 120 \int_0^a \int_0^{\pi} r (\cos \theta + \sin \theta) \cdot r d\theta dr = 2 \int_0^a r \int_0^{\pi} r (\cos \theta + \sin \theta) d\theta = 2 \cdot \frac{a^3}{3} \cdot (1+1) = \frac{4a^3}{3}.$$

Ex 2 Apply Greens Theorem to Evaluate $\int_c^{\square}[(y-\sin x)dx+\cos x\,dy]$ where c is the plane of the triangle enclosed by the lines y=0, $x=\pi/2$ and $y=\frac{2}{\pi}x$

Solution By Greens Theorem
$$\int_{c}^{\Box} P dx + Q dy = \iint_{R}^{\Box} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Here
$$P = y - \sin x$$
 and $Q = \cos x \frac{\partial P}{\partial y} = 1 - \cos x$ and $\frac{\partial Q}{\partial x} = 2x$

$$\int_{c}^{\ldots} [(y - \sin x) dx + \cos x \, dy]$$

$$= \int_{x=0}^{x=\pi/2} \int_{y=0}^{y=2x/\pi} (-\sin x - 1) \, dy \, dx = -\int_{0}^{\pi/2} (\sin x + 1) \left| y \right|_{0}^{2x/\pi} \, dx$$

$$= -\frac{2}{\pi} \int_0^{\pi/2} x(\sin x + 1) \, dx = -\frac{2}{\pi} \left\{ \left| x \left(-\cos x + x \right) \right|_0^{\pi/2} - \int_0^{\pi/2} 1 \cdot \left(-\cos x + x \right) \, dx \right\} \quad 0$$

$$= -\frac{2}{\pi} \left\{ \frac{\pi^2}{4} - \left| -\sin x + \frac{x^2}{2} \right|_0^{\pi/2} \right\} = -\frac{\pi}{2} + \frac{2}{\pi} \left(-1 + \frac{\pi^2}{8} \right) = -\left(\frac{\pi}{4} + \frac{2}{\pi} \right)$$

Type 3- Work done

Ex 1- Find the work done in moving a particle once round the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ in the plane z=0 in the force field given by

 $\vec{F} = (3x - 2y)\hat{\imath} + (2x + 3y)\hat{\jmath} + y^2\hat{k}$ by using Greens Theorem.

Work done
$$=\int_c^{\square} \vec{F} \cdot \overrightarrow{dr} = \int_c^{\square} (3x - 2y) dx + (2x + 3y) dy + y^2 dz$$

 $=\int_c^{\square} (3x - 2y) dx + (2x + 3y) dy$ as $z = 0$, $dz = 0$
Here $P = (3x - 2y)$ and $Q = (2x + 3y)$ $\frac{\partial P}{\partial y} = -2$ and $\frac{\partial Q}{\partial x} = 2$
By Greens Theorem $\int_c^{\square} P dx + Q dy = \iint_R^{\square} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy$

Work done = $\int_{c}^{\square} \vec{F} \cdot \vec{dr}$ $= \iint_{-\infty}^{\infty} (2+2)dxd = 4 \iint_{-\infty}^{\infty} dxdy = 4 \text{ Area of ellipse} = 4\pi ab = 4\pi 4.3 = 48\pi$

Ex 2-Evaluate by Greens Theorem $\int_c^\square \vec{f} \cdot \vec{dr}$ where $\vec{F} = -xy(x\hat{\imath} - y\hat{\jmath})$ and c is $r = a(1 + \cos \theta)$

Solution By Greens Theorem $\int_{c}^{\Box} P dx + Q dy = \iint_{R}^{\Box} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$

And
$$\int_c^\square \vec{F} \cdot \overrightarrow{dr} = \int_c^\square \left(-xy(x\hat{\imath} - y\hat{\jmath}) \right) \cdot (dx\hat{\imath} + dy\hat{\jmath})$$

$$= \int_c^\square -x^2ydx + xy^2dy$$
By comparison, $P = -x^2y$ and $Q = xy^2$ $\frac{\partial P}{\partial y} = -x^2$ and $\frac{\partial Q}{\partial x} = y^2$

 $\int_{c}^{\Box} \vec{F} \cdot \overrightarrow{dr} = \iint_{R}^{\Box} (y^{2} + x^{2}) dx dy$

Change to Polar Coordinates, $x = r \cos \theta$, $y = r \sin \theta$, $dxdy = rd\theta dr$ $\int_{c}^{\square} \vec{F} \cdot \vec{dr} = \iint_{R}^{\square} r^{3} d\theta dr = 2 \int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^{3} d\theta dr = 2 \int_{0}^{\pi} \left[\frac{r^{4}}{4} \right]_{0}^{a(1+\cos\theta)} d\theta$ $\frac{1}{2} \int_{0}^{\pi} a^{4} (1+\cos\theta)^{4} d\theta = 8 a^{4} \int_{0}^{\pi} \cos^{8} \left(\frac{\theta}{2} \right) d\theta = 16 a^{4} \int_{0}^{\pi/2} \cos^{8} (t) dt \text{ (put } \frac{\theta}{2} = t \text{)}$ $=\frac{35\pi}{16}a^4$ (using formula of Beta function)