The chromatic symmetric class function of a graph

Jacob A. White UTRGV

AMS Special Session: AGT

Chromatic Symmetric Function

 $\chi(G, \mathbf{x}) = \sum_{f} \prod_{v \in V} x_{f(v)}$ where the sum is over proper colorings of G.

$$\chi(\mathsf{UTEP}, \mathbf{x}) = \sum_{i,j,k} x_i^2 x_j x_k + \sum_{i,j,k,l} x_i x_j x_k x_l$$
$$= 2m_{2,1,1} + 24m_{1,1,1,1}$$
$$= 2(F_{1,1,2} + F_{1,2,1} + F_{2,1,1}) + 18F_{1,1,1,1}$$

Orbital Chromatic Symmetric Function

An **automorphism** of G is a bijection $\sigma: G \to G$ that preserves edges. Let \mathfrak{H} be a group of automorphisms of G.

 \mathfrak{H} acts on the set of proper colorings of G. Given $f: V \to \mathbb{N}$, $\mathfrak{g}f = f'$, we have

$$\prod_{v\in V} x_{f(v)} = \prod_{v\in V} x_{f'(v)}.$$

Counting Fixed Points

Let $\chi^O(G, \mathfrak{H}, k) = \sum\limits_O \prod_{x \in V} x_{f(v)}$ where we sum over orbits, and $f \in O$ is arbitrarily chosen. This is the **orbital chromatic symmetric function**. We have

$$\chi^{O}(\mathsf{UTEP}, \mathbb{Z}/2\mathbb{Z}, \mathbf{x}) = 2m_{2,1,1} + 12m_{1,1,1,1}$$

= $2(F_{2,1,1} + F_{1,2,1} + F_{1,1,2}) + 6F_{1,1,1,1}$

Conjecture

We claim that $[F_{\alpha}]\chi^{O}(G,\mathfrak{H},\mathbf{x}) \geq 0$.

Fixed Points

For
$$g \in \mathfrak{H}$$
,

$$\chi(G,\mathfrak{H},\boldsymbol{\mathfrak{X}};\mathfrak{g})=\sum_{f:\mathfrak{g}f=f}\prod_{v\in V}x_{f(v)}.$$

We have

$$\chi(\mathsf{UTEP},\mathbb{Z}/2\mathbb{Z},\boldsymbol{x};(PT)) = m_{2,1,1} = 2F_{2,1,1} + 2F_{1,2,1} + 2F_{1,1,2} - 6F_{1,1,1,1}.$$

Character Table

Let's consider the characters of $\mathbb{Z}/2\mathbb{Z}$.

	$[F_{2,1,1}]$	$[F_{1,1,1,1}]$	χ1	χ2
е	2	18	1	1
(PT)	2	-6	1	-1

We see that $[F_{2,1,1}]\chi(\mathsf{UTEP},\mathbb{Z}/2\mathbb{Z},\mathbf{x})=2\chi_1$ and $[F_{1,1,1,1}]\chi(\mathsf{UTEP},\mathbb{Z}/2\mathbb{Z},\mathbf{x})=6\chi_1+12\chi_2.$

Chromatic Symmetric class function and Conjecture

We can view $\chi(G, \mathfrak{H}, \mathbf{x}, -) : \mathfrak{H} \to Sym$ that is constant on conjugacy classes (hence is a symmetric class function).

 $\chi(G, \mathfrak{H}, \mathbf{x})$ is the chromatic symmetric class function of (G, \mathfrak{H}) .

We can write $\chi(G, \mathfrak{H}, \mathbf{x}) = \sum_{\alpha \models n} c_{\alpha} F_{\alpha}$ where the c_{α} are virtual characters.

$$\chi(UTEP, \mathbb{Z}/2\mathbb{Z}, \mathbf{x}) = 2\chi_1(F_{2,1,1} + F_{1,2,1} + F_{1,1,2}) + (6\chi_1 + 12\chi_2)F_{1,1,1,1}$$

Theorem

We have c_{α} is a character for all α .

Thus $[F_{\alpha}]\chi^{\mathcal{O}}(G,\mathfrak{H},\mathbf{x}) \geq 0$.

Coloring Complex

Coloring Complex

Coloring Complex

Balanced Relative Simplicial Complex

We define $f: 2^{V(G)} \setminus \{\emptyset, V\}$ by f(S) = |S|. Thus we have $\Phi(G) = (\Delta, \Gamma)$, which is a balanced relative simplicial complex:

- **①** For every $\rho \subseteq \sigma \subseteq \tau$, if $\rho, \tau \in \Phi(G)$, then $\sigma \in \Phi(G)$.
- ② $f: 2^{V(G)} \setminus \{\emptyset, V\} \rightarrow [|V|-1]$, such that $f(\sigma) = [|V|-1]$ for every facet of $\Phi(G)$.

Given
$$S = \{s_1, \dots, s_k\}$$
 with $s_1 < \dots < s_k$, we let $\alpha(S) = (s_1, s_2 - s_1, \dots, s_k - s_{k-1}, |V| - s_k)$.
We let $f_S(\Phi) = \#\{\sigma \in \Phi : f(\sigma) = S\}$.
Then $[M_{\alpha(S)}]\chi(G, \mathbf{x}) = f_S(\Phi(G))$.

Equivariant flag *f*-vector

We have \mathfrak{H} acts on $\Phi(G)$.

For $\mathfrak{g} \in \mathfrak{H}$, we let $f_{\mathcal{S}}(\Phi, \mathfrak{H}, \mathfrak{g}) = \#\{\sigma \in \Phi : f(\sigma) = \mathcal{S}, \mathfrak{g}\sigma = \sigma\}.$

We define $h_{\mathcal{S}}(\Phi, \mathfrak{H}, \mathfrak{g}) = \sum_{T \supset \mathcal{S}} (-1)^{|T \setminus S|} f_T(G, \mathfrak{H}, \mathfrak{g}).$

Theorem

Let \mathfrak{H} act on G. Then $[M_{\alpha(S)}]\chi(G,\mathfrak{H},\mathbf{x}) = f_S(\Phi(G),\mathfrak{H},\mathfrak{g})$.

We have $[F_{\alpha}]\chi(G,\mathfrak{H},\mathbf{x}) = h_{\mathcal{S}}(\Phi(G),\mathfrak{H},\mathbf{x})$.

Relatively Cohen Macaulay

We say Φ is relatively Cohen-Macaulay if

$$\widetilde{H}_i(\operatorname{link}_{\Delta}(\sigma),\operatorname{link}_{\Gamma}(\sigma))=0$$

for $i < \dim \operatorname{link}_{\Delta}(\sigma)$ and $\sigma \in \Delta$. For $S \subseteq [n-1]$, we let $\Phi|_{S} = \{\sigma \in \Phi : f(\sigma) \subseteq S\}$.

Theorem

If $\mathfrak H$ acts on a balanced, relatively Cohen-Macaulay complex Φ , then $\widetilde{H}_{|S|-1}(\Phi|_S)$ is an $\mathfrak H$ -module with character $h_S(\Phi,\mathfrak H)$.

Main Theorem

 $\Phi(G)$ is relatively Cohen-Macaulay.

Theorem

If \mathfrak{H} acts on a graph G, then $\widetilde{H}_{|S|-1}(\Phi(G)|_S)$ is an \mathfrak{H} -module with character $[F_{\alpha(S)}]\chi(G,\mathfrak{H},\mathbf{x})$ is a character.

Moreover, $[F_{\alpha(S)}]\chi^{O}(G,\mathfrak{H},\mathbf{x}) \geq 0$.

Coming soon

Eventually will be posted:

Equivariant flag f-vectors of balanced simplicial complexes Other results: Study mixed graphs G and mixed graph coloring. Main change: $\Phi(G)$ is no longer relatively Cohen-Macaulay, but satisfies Serre's condition $(S_{\ell(G)})$ for some $\ell(G)$. This implies $[F_{\alpha}]\chi(G,\mathfrak{H},\mathbf{x})$ is a character for $|S| \leq \ell(G)$.

Thank You

Thank You