EC5.102: Information and Communication

(Lec-1)

Source coding-1

(3-March-2025)

Arti D. Yardi

Email address: arti.yardi@iiit.ac.in

Office: A2-204, SPCRC, Vindhya A2, 1st floor

About my teaching style

- I will be using a combination of slides and board.
- Be super interactive.. ask questions..
- Discuss learnings of the class with your friends.
- Refer to the suggested reference books.
- There will be breakout sessions to solve problems (very important).
- There will be self-quizes/surprize-quizes in the class.. :P
- NO LAPTOPS, NO MOBILES in the class!

Calendar

			Mar						Apr		
Mon		3	10	17	24	31		7	14	21	28
Tues		4	11	18	25		1	8	15	22	29
Wed		5	12	19	26		2	9	16	23	30
Thurs		6	13	20	27		3	10	17	24	
Fri		7	14	21	28		4	11	18	25	
Sat	1	8	15	22	29		5	12	19	26	
Sun	2	9	16	23	30		6	13	20	27	

• Note: Quiz-2 on 3-April

No class on 27-March

Make-up class: 5-March (Tutorial slot)

• Note: 9 classes before quiz-2, 5 classses after quiz-2

• Quiz-2 on 31-March, Class on 3-April?

References

- Thomas M. Cover and Joy A. Thomas, "Elements of Information Theory", Wiley India press, Edition 2.
- Raymond Yeung, "A First Course in Information Theory".
- David J. C. MacKay, "Information Theory, Inference and Learning Algorithms", Cambridge university press, 2003.

Recap

- Introduction to random variables
 - Random variable (RV), Joint RVs, Conditional RV
 - pmf, pdf, cdf
 - Mean (or expected value) and variance of a RV
- Introduction to information theory
 - Entropy, Joint entropy, Conditional entropy
 - Relative entropy, mutual information
 - Relation between these basic entities

Next agenda

- Block diagram of a digital communication system
 - Analog to digital converter
 - Source coding
 - ► Channel coding
 - Modulation
 - Communication channel
- Introduction to cryptography
- Introduction to networks

Introduction to source coding (Data compression)

Introduction to data compression

• Suppose you have been given a file with contents:

```
a c b a a a d a a b b a a b c d
```

- To transmit this file, you need to assign a sequence of 0s & 1s to each alphabet.
 - o For example, one possible assignment could be

$$a = 0.0$$
 $b = 0.1$ $c = 1.0$ $d = 1.1$

o The file is then given by

```
0\ 0,\ 1\ 0,\ 0\ 1,\ 0\ 0,\ 0\ 0,\ 1\ 1,\ 0\ 0,\ 0\ 0,\ 0\ 1,\ 0\ 1,\ 0\ 0,\ 0\ 0,\ 0\ 1,\ 1\ 0\ 1
```

- The file has 32 bits
- · Can you represent this file with fewer number of bits? Yes!
- This is data compression!
- The process of converting alphabet of a file into bit-sequence is called as "source encoding".

Definition: Source code

- Example of a source code:
 - ► File: a c b a a a d a a b b a a b c d
 - ▶ To transmit this file, we assign: $a = 0 \ 0$ $b = 0 \ 1$ $c = 1 \ 0$ $d = 1 \ 1$
 - ▶ 0 0 is called as the "codeword" of a.

Definition of a source code:

- ▶ Consider a r.v. X with support set X.
- Let \mathcal{D}^* be the set of finite-length strings of symbols from a D-ary alphabet. We can assume that the D-ary alphabet $\mathcal{D}=\{0,1,\ldots,D-1\}$.
- ▶ A source code C is defined as a mapping from X to D^* .
- ▶ C(x): Codeword of $x \in \mathcal{X}$.
- $\ell(x)$: Length of C(x)
- Encoding and decoding

Expected length of a source code C(x)

- Example continued...
 - File: a c b a a a d a a b b a a b c d
 - Source code: a = 0.0 b = 0.1 c = 1.0 d = 1.1
 - What is pmf of X?
- The expected length L(C) a source code C(x) for a r.v. X with pmf p(x) is defined as

$$L(C) = \mathbb{E}_X \Big[\ell(X) \Big] = \sum_{x \in \mathcal{X}} p(x) \ell(x)$$

- Rate = Number of bits after source encoding / Number of symbols = L(C)
- For "good" compression we wish to have L(C) as low as possible!
 - o Can we choose a source code s.t. length of any codeword is say 1?
 - Will it be a "good source code"?
 - How to define a "good"?

How to define a "good" source code?

- Let X be a discrete RV with support set \mathcal{X} and pmf $\{p(x)\}$ where $x \in \mathcal{X}$.
- Consider a source code $C: \mathcal{X} \to \mathcal{D}^*$ with expected length L(C).
- How to define "good" source code?
 - ▶ *L*(*C*) should be low for good compression.
 - ▶ How much low? Hint: We should not loose "information" contained in rv X!!
- A source code is said to be "optimal" if L(C) = H(X).
- Coding efficiency $\eta := H(X) / L(C)$.
- For "lossless" data compression, $L(C) \ge H(X)$: Source coding theorem (SCT) (Note: This is NOT a formal statement!)

Optimal source code for our example

- pmf of X: $\mathbb{P}[X = a] = 1/2$, $\mathbb{P}[X = b] = 1/4$, $\mathbb{P}[X = c] = 1/8$, $\mathbb{P}[X = d] = 1/d$
- Can you construct an optimal source code?
- Consider the following source code:

$$a = 0$$
 $b = 10$ $c = 110$ $d = 111$

• What is the expected length $L(C) = \sum_{x \in \mathcal{X}} p(x) I(x)$ of this source code?

$$L(C) = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{3} \times 3 = 1.75$$
 bits

• What is entropy $H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$ this pmf?

$$H(X) = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{3} \times 3 = 1.75$$
 bits

- This is an optimal code since L(C) = H(X).
- Note: This optimal code is a "variable-length" code!
- Can you construct an optimal "fixed-length" code? Key idea in SCT!

Source coding: Questions of interest

- Is there an algorithm to design an optimal code systematically?
- Is optimal code unique?
- What if I don't know the pmf of X?
- What is the intuition behind the result that "for lossless source coding, the minimum value of expected length of source code L(C) is equal to entropy H(X)"?
- What will happen if L(C) < H(X)?
- Is it desirable to design a source code with L(C) < H(X)?
- Can I design a "fixed-length" source code which is optimal?

Self-quiz

- What is a source code? Binary vs D-ary source code?
- How to defind expected length L(C) of source code C?
- When a code C is said to be "optimal"?
- Fixed-length vs variable-length source code
- What is (rough) statement of "source coding theorem"?