Numerical Differentiation

ME 2004

Outline

• 1.1: Numerical Differentiation via Taylor Series

• 1.2: Example

1.1: Numerical Differentiation via Taylor Series

- Given f(x), compute $\frac{d^n x}{dy^n}$ at the point x_i
 - Can be difficult, especially if f(x) is discrete data instead of a mathematical function
- Numerical differentiation suffers from a conflict between truncation errors and computation time/data availability

- The Taylor Series can be used to predict $f(x_{i+1})$ given x_i and $\frac{d^n x}{dy^n}$
- \rightarrow If we have $f(x_{i+1})$ and x_i , we can estimate $\frac{d^n x}{dy^n}$

- Suppose we have N potentially unevenly spaced data points
 - $\Delta x_i \neq \Delta x_{i+1}$ (potentially)

• Taylor Series expansion about $x = x_i$:

$$f(x_{i+1}) = f(x_i) + (\Delta x_{i+1}) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + \left(\frac{(\Delta x_{i+1})^2}{2} \right) \left(\frac{d^2y}{dx^2} \Big|_{x=x_i} \right) + \dots + \left(\frac{(\Delta x_{i+1})^n}{n!} \right) \left(\frac{d^ny}{dx^n} \Big|_{x=x_i} \right)$$

$$f(x_{i+1}) = f(x_i) + (\Delta x_{i+1}) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + \left(\frac{(\Delta x_{i+1})^2}{2} \right) \left(\frac{d^2y}{dx^2} \Big|_{x=x_i} \right) + \dots + \left(\frac{(\Delta x_{i+1})^n}{n!} \right) \left(\frac{d^ny}{dx^n} \Big|_{x=x_i} \right)$$

$$\to f(x_{i+1}) \cong f(x_i) + (\Delta x_{i+1}) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + O\left((\Delta x_{i+1})^2\right)$$

$$\rightarrow \left| \frac{dy}{dx} \right|_{x=x_i} \cong \frac{f(x_{i+1}) - f(x_i)}{\Delta x_{i+1}} + O(\Delta x_{i+1}) \right|$$

Forward Difference

• Taylor Series expansion about $x=x_i$ (backwards):

$$f(x_{i-1}) = f(x_i) - (\Delta x_i) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + \left(\frac{(\Delta x_i)^2}{2} \right) \left(\frac{d^2y}{dx^2} \Big|_{x=x_i} \right) + \dots + \left(\frac{(\Delta x_i)^n}{n!} \right) \left(\frac{d^ny}{dx^n} \Big|_{x=x_i} \right)$$

$$\to f(x_{i-1}) \cong f(x_i) - (\Delta x_i) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + O((\Delta x_i)^2)$$

$$\rightarrow \left| \frac{dy}{dx} \right|_{x=x_i} \cong \frac{f(x_i) - f(x_{i-1})}{\Delta x_i} + O(\Delta x_i) \right|$$

Backward Difference

• We have the forward and the backward differences, but surely there's a middle ground?

$$f(x_{i+1}) \cong f(x_i) + (\Delta x_{i+1}) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + O((\Delta x_{i+1})^2)$$
$$f(x_{i-1}) = f(x_i) - (\Delta x_i) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + O((\Delta x_i)^2)$$

$$\rightarrow f(x_{i+1}) - f(x_{i-1}) \cong (\Delta x_{i+1}) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) - (\Delta x_i) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + O\left((\Delta x_{i+1})^2\right) + O\left((\Delta x_i)^2\right)$$

10

Taylor Series Revisited

$$f(x_{i+1}) - f(x_{i-1}) \cong (\Delta x_{i+1}) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) - (\Delta x_i) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + O((\Delta x_{i+1})^2) + O((\Delta x_i)^2)$$

$$\rightarrow f(x_{i+1}) - f(x_{i-1}) \cong (\Delta x_{i+1} - \Delta x_i) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + O((\Delta x_{i+1})^2) + O((\Delta x_i)^2)$$

$$\rightarrow \left| \frac{dy}{dx} \right|_{x=x_i} \cong \frac{f(x_{i+1}) - f(x_{i-1})}{\Delta x_{i+1} - \Delta x_i} + O((\Delta x_i)^2) \cong \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x_i} + O((\Delta x_i)^2) \right|$$

Central Difference

- Forward difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_{i+1})-f(x_i)}{\Delta x_{i+1}} + O(\Delta x_{i+1})$ Backward difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_i)-f(x_{i-1})}{\Delta x_i} + O(\Delta x_i)$ Central difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_{i+1})-f(x_{i-1})}{\Delta x_{i+1}-\Delta x_i} + O((\Delta x_i)^2)$

 These formulas apply for (un)equally spaced data, although more accurate methods exist for unequally spaced data

Assuming a constant step size, h:

- Forward difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_{i+1})-f(x_i)}{h} + O(h)$ Backward difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_i)-f(x_{i-1})}{h} + O(h)$ Central difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_{i+1})-f(x_{i-1})}{2h} + O(h^2)$

- Big O notation: allows us to compare the truncation errors of numerical methods
- $O(h^n)$: truncation error is proportional to the step size raised to the nth power
- Forward and Backward differences have error $O(\Delta x_{i+1})$ and $O(\Delta x_i)$, so truncation errors are linearly proportional to the step size
 - Halving the step size halves the truncation error
- Central difference has error $O((\Delta x_i)^2)$, so truncation error is quadratically proportional to the step size
 - Halving the step size quarters the truncation error

 To increase the accuracy (decrease truncation error), we could also algebraically combine multiple Taylor Series expansions about other points

$$\frac{dy}{dx}\bigg|_{x=x_{i}} \cong \frac{\left(-\frac{11}{6}\right)f(x_{i}) + 3f(x_{i+1}) - \left(\frac{3}{2}\right)f(x_{i+2}) + \left(\frac{1}{3}\right)f(x_{i+3})}{h} + O\left((\Delta x_{i+1})^{3}\right)$$

Forward difference, 3rd order accuracy (assumes equal step size)

• ...but computation time becomes a concern.

An even bigger concern is the lack of available data:

t (s)	0	1	2	3	4	
x (m)	0	2	3	3.1	3.7	

• Central difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_{i+1})-f(x_{i-1})}{\Delta x_{i+1}-\Delta x_i} + O\left((\Delta x_i)^2\right)$

• ...so we can't compute $\frac{dx}{dt}\Big|_{t=4}$ using the central (or forward) difference because the next point does not exist.

• Minimizing error in the dataset is imperative!

• Large variations of $\frac{dy}{dx}$ will be seen from point to point

1.2: Example

Example

• Compute $\frac{dx}{dt}\Big|_{t=1}$ using the forward difference.

t (s)	0	1	2	3	4
x (m)	0	2	3	3.1	3.7

$$\frac{dx}{dt}\bigg|_{t=1} \cong \frac{x(t_{i+1}) - x(t_i)}{\Delta t_{i+1}} = \frac{x(3) - x(2)}{t(3) - t(2)} = \frac{3 - 2}{2 - 1}$$

$$\rightarrow \left| \frac{dx}{dt} \right|_{t=1} \cong 1 \frac{m}{s}$$

MATLAB Notation!!!!!!

Example

• Compute $\frac{dx}{dt}\Big|_{t=1}$ using the backward difference.

t (s)	0	1	2	3	4
x (m)	0	2	2 3		3.7

$$\frac{dx}{dt}\bigg|_{t=1} \cong \frac{x(t_i) - x(t_{i-1})}{\Delta t_i} = \frac{x(2) - x(1)}{t(2) - t(1)} = \frac{2 - 0}{1 - 0}$$

$$\rightarrow \left| \frac{dx}{dt} \right|_{t=1} \cong 2\frac{m}{s}$$

MATLAB Notation!!!!!!

Example

• Compute $\frac{dx}{dt}\Big|_{t=1}$ using the central difference.

t (s)	0	1	2	3	4
x (m)	0	2	2 3		3.7

$$\left. \frac{dx}{dt} \right|_{t=1} \cong \frac{x(t_{i+1}) - x(t_{i-1})}{\Delta t_{i+1} - \Delta t_i} = \frac{x(3) - x(1)}{t(3) - t(1)} = \frac{3 - 0}{2 - 0}$$

$$\rightarrow \left| \frac{dx}{dt} \right|_{t=1} \cong 1.5 \frac{m}{s}$$

MATLAB Notation!!!!!!

Higher-Order Derivatives

• To obtain higher-order derivatives $\left(\frac{d^2y}{dx^2}, etc.\right)$, incorporate more terms of the Taylor Series expansion

$$f(x_{i-1}) = f(x_i) - (\Delta x_i) \left(\frac{dy}{dx} \Big|_{x=x_i} \right) + \left(\frac{(\Delta x_i)^2}{2} \right) \left(\frac{d^2y}{dx^2} \Big|_{x=x_i} \right) + \dots + \left(\frac{(\Delta x_i)^n}{n!} \right) \left(\frac{d^ny}{dx^n} \Big|_{x=x_i} \right)$$

Common assumption is the data are equally spaced (constant step size)

Higher-Order Derivatives

• <u>Finite difference tables</u>: gives coefficients (weights) to various data points to compute high-order and/or high-accuracy derivatives

Central finite difference [edit]

This table contains the coefficients of the **central** differences, for several orders of accuracy and with uniform grid spacing:^[1]

Derivative	Accuracy	-5	-4	-3	-2	-1	0	1	2	3	4	5
1	2					-1/2	0	1/2				
	4				1/12	-2/3	0	2/3	-1/12			
	6			-1/60	3/20	-3/4	0	3/4	-3/20	1/60		
	8		1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280	
2	2					1	-2	1				
	4				-1/12	4/3	-5/2	4/3	-1/12			
	6			1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90		
	8		-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560	

Higher-Order Derivatives

 High-order/high-accuracy schemes are best implemented in MATLAB, especially if the data is unequally spaced (many custom programs treat unequally spaced data with an advanced algorithm)

- diffxy() function: NOT built-in; download from MATLAB's File Exchange
 - Not used in this class, but may want to keep it for later

Summary

- Forward difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_{i+1})-f(x_i)}{\Delta x_{i+1}} + O(\Delta x_{i+1})$
- Backward difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_i)-f(x_{i-1})}{\Delta x_i} + O(\Delta x_i)$
- Central difference: $\frac{dy}{dx}\Big|_{x=x_i} \cong \frac{f(x_{i+1})-f(x_{i-1})}{\Delta x_{i+1}-\Delta x_i} + O((\Delta x_i)^2)$
- Accuracy can be increased by reducing step size and/or combining multiple Taylor Series expansions about other points
- Some schemes cannot be applied at the boundaries of a dataset (forward difference cannot be applied at the last point, etc.)
- Implement high-order/high-accuracy schemes in MATLAB if you ever need them in a future class/research