ALGEBRA LINEARE NUMERICA - METODI DIRETTI PER MATRICI SPARSE

METODI DEL CALCOLO SCIENTIFICO - PROGETTO I

Andrea Carubelli 803192 Alessio Abondio 808752

INTRODUZIONE

- A livello aziendale e di ricerca, una delle sfide principali nella risoluzione di problemi dal costo computazionale elevato, è la scelta dello strumento ottimale
- Dal punto di vista informatico la domanda diventa: software «open source» o software «proprietario»?
 - Esistono differenze rilevanti tra le due categorie?
 - Vale la pena pagare per un servizio? Se sì, quando?
- Lo scopo principale di questo progetto è quello di confrontare le prestazioni di software open source e proprietario, al fine di ottenere le informazioni necessarie per decidere consapevolmente quale sia la scelta migliore nella risoluzione di sistemi lineari per matrici sparse

SISTEMI LINEARI

- Un sistema lineare è un sistema composto da più equazioni di primo grado che devono essere verificate tutte contemporaneamente
- Queste strutture sono molto ricorrenti in ambiti ingegneristici e fisici (termodinamica, elettromagnetismo, ingegneria strutturale..), ma anche informatici (grafi, computer graphics/vision, network..)
- Trovare strumenti efficienti per la risoluzione di questo tipo di sistemi, è, quindi, fondamentale

MATRICI SPARSE

- Una matrice si dice sparsa se quasi tutti i suoi elementi sono uguali a zero
- Questa particolarità permette di memorizzare e gestire con metodi efficaci questo tipo di matrici, grazie a strutture dati che ne comprimono la quantità di spazio utilizzato per la memorizzazione
- Questo permette di utilizzare matrici sparse molto più grandi rispetto a quelle dense, creando però grossi problemi computazionali. Per questo motivo, per le finalità di questo lavoro, abbiamo deciso di utilizzare alcune matrici sparse di varie dimensioni relative a problemi reali

DATASET[1]

• In particolare verranno considerate le seguenti matrici:

MATRICI SIMMETRICHE e DEFINITE POSITIVE						
NOME MATRICE	#RIGHE					
ex15	6,867					
shallow water1	81,920					
apache2	715,176					
parabolic fem	525,825					
G3 circuit	1,585,478					
cfd1	70,656					
cfd2	123,440					
StocF-1465	1,465,137					
Flan_1565	1,564,794					

SOFTWARE UTILIZZATI

- I software scelti per il confronto sono Matlab^[2] e GNU Octave^[3]
- Questa scelta è stata presa dopo aver confrontato alcuni software e librerie che implementano diverse strategie risolutive (Lu, Cholesky...) per i sistemi lineari basandoci sul lavoro di analisi comparativa svolto da T. Davis^[4]

- Matlab (Matrix Laboratory) è un ambiente di sviluppo per l'omonimo linguaggio, creato dalla MathWorks nel 1984 disponibile ad oggi per Windows, Mac OS, GNU/Linux e Unix
- Matlab è tuttora mantenuto, aggiornato e documentato dalla MathWorks che ne pubblica una nuova versione due volte all'anno

- GNU Octave è un ambiente di sviluppo open source con un linguaggio di scripting simile a quello di Matlab, nato come strumento di calcolo per l'ingegneria chimica nel 1988
- Octave è stato sviluppato da John Eaton (che è anche il primo manutentore e colui che ne ha scritto la documentazione) e James Rawlings. Ad oggi è disponibile per Windows, Mac OS, GNU/Linux e Unix ed è possibile contribuire al progetto attraverso una repository pubblica su GitHub^[6]

CRITERI DI VALUTAZIONE

- I due software appena descritti sono stati testati in due diversi sistemi operativi (Ubuntu I 8.04 LTS e Windows I 0) sullo stesso PC (8 GB di Ram, Pentium G4560)
- Per ogni matrice usata come test sono riportati:
 - Tempo di esecuzione della risoluzione del sistema lineare associato alla matrice (calcolati, in entrambi i casi con le apposite funzioni di profiling dei software)
 - Spazio occupato in RAM durante l'esecuzione dell'operazione (ovvero l'aumento dell'utilizzo della RAM durante l'esecuzione considerando la differenza tra il picco massimo e la RAM preoperazione.
 Su Windows con gestione risorse e su Linux con psrecord)
 - Errore relativo della soluzione ottenuta (calcolato come $\frac{\|x-xe\|^2}{\|xe\|^2}$)

PRESENTAZIONE DEI RISULTATI

- Questi dati saranno riportati in 4 grafici in cui ognuno mostra i tre parametri (tempo di esecuzione, utilizzo di memoria ed errore relativo) per ogni configurazione software-sistema operativo
- Inoltre verranno riportati alcuni grafici comparativi che andranno ad analizzare ogni singolo parametro sulle diverse configurazioni

RISULTATI MATLAB - WINDOWS

Nome	Exec. Time	RAM(GB)	Rel. Error	
ex15	0.529565	0.0339	6.7151e-07	
shallow water1	0.391215	0.0345	2.3879e-16	
apache2	18.238447	1.9201	4.3926e-11	
parabolic fem	2.646346	2.646346 0.5642		
G3 circuit	21.019834	2.34	3.3708e-12	
cfd1	2.949384	2.949384 0.3943		
cfd2	8.234674	0.7984	3.1342e-13	
StocF-1465	***NC***	***NC***	***NC***	
Flan 1565	***NC***	***NC***	***NC***	

RISULTATI MATLAB - UBUNTU

Nome	Exec. Time	RAM (GB)	Rel. Error	
ex15	0,479011	0,015	6,7151e-07	
shallow water1	0,360389	0,008414	2,3879e-16	
apache2	14,398446	2,2465	4,3926e-11	
parabolic fem	2,048936	0,262109	9,5091e-13	
G3 circuit	16,859821	2,3118	3,3708e-12	
cfd1	2,810823	0,437336	8,9102e-14	
cfd2	6,993227	0,85568	3,1342e-13	
StocF-1465	***NC***	***NC***	***NC***	
Flan 1565	***NC***	***NC***	***NC***	

RISULTATI OCTAVE -WINDOWS

Nome	Exec. Time	RAM (GR)		
ex15	0.121691	0.007	0.0000006265 4	
shallow water1	0.42542	0.053	2.0510e-16	
apache2	16.8544	1.967	0.0000000000 50557	
parabolic fem	3.23734	0.567	7.4476e-13	
G3 circuit	21.44	2.402	4.7877e-12	
cfd1	2.68663	0.4326	4.0033e-14	
cfd2	7.04046	0.812	2.9717e-13	
StocF-1465	**NC**	**NC**	**NC**	
Flan 1565	**NC**	**NC**	**NC**	

RISULTATI OCTAVE - UBUNTU

Nome	Exec. Time	RAM (GB)	Rel. Error
ex15	0,02546	0,0274	5,9092e-07
shallow water1	19,0448	0,0453	2,0177e-16
apache2	17,144	1,408	3,5871e-11
parabolic fem	polic fem 2,72315		6,7209e-13
G3 circuit	18,2035	1,0938	3,7626e-12
cfd1	1,7316	0,1155	3,1552e-14
cfd2	3,5247	0,2668	2,199e-13
StocF-1465	***NC***	***NC***	***NC***
Flan 1565	***NC***	***NC***	***NC***

GRAFICO COMPARATIVO – EXECUTIONTIME

Matrix name	ex15	shallow water1	apache2	parabolicfem	G3 circuit	cfd1	cfd2	StocF-1465	Flan 1565
MATLAB R2019A – WINDOWS 10	0,529565	0,391215	18,23844	2,646346	21,019834	2,949384	8,234674	***NC***	***NC***
OCTAVE 4.2.2 - WINDOWS 10	0,121691	0,42542	16,8544	3,23734	21,44	2,68663	7,04046	***NC***	***NC***
MATLAB R2019A – UBUNTU 18.04 LTS	0,479011	0,360389	14,39844 6	2,048936	16,859821	2,810823	6,993227	***NC***	***NC***
OCTAVE 4.2.2 – UBUNTU 18.04 LTS	0,02546	19,0448	17,144	2,72315	18,2035	1,7316	3,5247	***NC***	***NC***

GRAFICO COMPARATIVO – MEMORY USAGE (GB)

Matrix name	ex15	shallow water1	apache2	parabolic fem	G3 circuit	cfd1	cfd2	StocF- 1465	Flan 1565
MATLAB R2019A – WINDOWS 10	0,0339	0,0345	1,9201	0,5642	2,34	0,3943	0,7984	***NC***	***NC***
OCTAVE 4.2.2 - WINDOWS 10	0,007	0,053	1,967	0,567	2,402	0,4326	0,812	***NC***	***NC***
MATLAB R2019A – UBUNTU 18.04 LTS	0,015	0,008414	2,2465	0,262109	2,3118	0,437336	0,85568	***NC***	***NC***
OCTAVE 4.2.2 – UBUNTU 18.04 LTS	0,0274	0,0453	1,408	0,2139	1,0938	0,1155	0,2668	***NC***	***NC**

GRAFICO COMPARATIVO – RELATIVE ERROR

Matrix name	ex15	shallow water1	apache2	parabolic fem	G3 circuit	cfd1	cfd2	StocF-1465	Flan 1565
MATLAB R2019A – WINDOWS 10	6,7151e- 07	2,3879e-16	4,3926e-11	9,5091e-13	3,3708e-12	8,9102e-14	3,1342e- 13	***NC***	***NC***
OCTAVE 4.2.2 - WINDOWS 10	0,0000006 2654	2,0510e-16	0,00000000 0050557	7,4476e-13	4,7877e-12	4,0033e-14	2,9717e- 13	***NC***	***NC***
MATLAB R2019A – UBUNTU 18.04 LTS	6,7151e- 07	2,3879e-16	4,3926e-11	9,5091e-13	3,3708e-12	8,9102e-14	3,1342e- 13	***NC***	***NC***
OCTAVE 4.2.2 – UBUNTU 18.04 LTS	5,9092e- 07	2,0177e-16	3,5871e-11	6,7209e-13	3,7626e-12	3,1552e-14	2,199e-13	***NC***	***NC***

ANALISI DEI RISULTATI – OSSERVAZIONI GENERALI

	Matlab	Octave
Software gratuito?	×	
La documentazione è esaustiva?		
La documentazione è ben strutturata?		8
Tutorial ed esempi online?		
Tutorial ed esempi online sufficienti?		

ANALISI DEI RISULTATI – SW & OS

Mat	tlab		Oct	ave
Windows	Ubuntu		Windows	Ubuntu
		Il software permette di calcolare tutte le matrici senza problemi?		
3°	1°	Miglior tempo di esecuzione?	2°	4°
2°	3°	Miglior utilizzo memoria?	4°	1°
3	0	Errore relativo?	2°	1 °

CONCLUSIONI

- Dai test eseguiti entrambi i software risultano validi.
 Il più veloce risulta Matlab su Ubuntu, mentre il software che utilizza meno memoria RAM risulta Octave su Ubuntu.
 - Se si cercano prestazioni migliori in fattore di tempo di esecuzione, la scelta migliore ricade su Matlab, principalmente su piattaforma Ubuntu, in altri casi, si potrebbe optare per la piattaforma Octave. La configurazione più accurata si è dimostrata essere Octave su Ubuntu, che però risulta la peggiore in termini di tempo di calcolo.
- Purtroppo, non si è potuto analizzare due matrici, poiché il livello computazionale della macchina sui cui sono stati
 effettuati i test, non era abbastanza sufficiente.
- Sostanzialmente, la scelta del software (e relativa configurazione) da utilizzare, dipende molto da che cosa si cerca in fattore di performance e che problema bisogna affrontare.
 Inoltre dipende anche dalla propria disponibilità economica.

BIBLIOGRAFIA - I

- [1] Timothy A. Davis, Yifan Hu, "The university of Florida sparse matrix collection", ACM Trans. Math. Softw. 38, 1, Article 1, 25 pages (2011)
- [2] MATLAB and Statistics Toolbox Release 2017b The MathWorks, Inc., Natick, Massachusetts, United States, https://it.mathworks.com/help/matlab/
- [3] John W. Eaton, David Bateman, Søren Hauberg, RikWehbring (2017) GNU Octave version 4.4.0 manual: a high-level interactive language for numerical computations, https://www.gnu.org/software/octave/doc/v4.4.0/
- [4] Davis, Timothy A. Direct methods for sparse linear systems. Vol. 2, pp. 141-143, Siam, 2006
- [5] https://it.mathworks.com/help/matlab/ref/mldivide.html, 29/05/2018

BIBLIOGRAFIA – II

- [6] https://github.com/NexMirror/Octave, 29/05/2018
- [7] https://octave.org/doc/v4.0.0/Sparse-Linear-Algebra.html, 29/05/2018