FROBENIUS DISTRIBUTIONS (SATO-TATE DISTRIBUTIONS)

COURSE: KIRAN KEDLAYA AND ANDREW SUTHERLAND NOTES: ROSS PATERSON

DISCLAIMER. These notes were taken live during lectures. Any errors are the fault of the transcriber and not of the lecturer.

LECTURE 1 (KEDLAYA)

For $f \in \mathbb{Z}[X]$ squarefree of degree d, define

$$N_f(p) = \# \{x \in \mathbb{F}_p : f(x) \equiv 1 \mod p \}.$$

Note that clearly $0 \le N_f(p) \le d$.

Example 1 ([Sut, §1.1]).

Definition 2. Let

$$c_i(B) := \frac{\# \{ p \le B : N_f(p) = i \}}{\# \{ p \le B \}}$$

Claim: We can describe limiting values of $c_i(B)$ for all i.

Let $L = \mathbb{Q}(\alpha_1, \dots, \alpha_d)$ be the splitting field of f over \mathbb{Q} , where $f = \prod_{i=1}^d (x - \alpha_i)$, and $G = \operatorname{Gal}(L/\mathbb{Q})$ which acts transitively on this set of roots. Then we let

$$\rho: G \to \mathrm{GL}_d(\mathbb{C})$$

be the associated permutation representation. For p prime we have an exact sequence given as follows. Choose a prime $\mathfrak{p} \mid p$ of \mathcal{O}_L , and let:

- $D_{\mathfrak{p}}$ be the associated decomposition group (i.e. the stabiliser of \mathfrak{p} under the action of G on the set of primes above p);
- $I_{\mathfrak{p}}$ be the ineria subgroup of $D_{\mathfrak{p}}$.

Then we have

$$1 \longrightarrow I_{\mathfrak{p}} \longrightarrow D_{\mathfrak{p}} \longrightarrow \operatorname{Gal}\left(\frac{\mathcal{O}_{L}}{\mathfrak{p}}/\mathbb{F}_{p}\right) \longrightarrow 1.$$

Note that $\operatorname{Gal}\left(\frac{\mathcal{O}_L}{\mathfrak{p}}/\mathbb{F}_p\right)$ has a canonical generator, $x \mapsto x^p$, and so we denote by $\operatorname{Frob}_{\mathfrak{p}}$ a choice of lift of this in $D_{\mathfrak{p}}$. if p is unramified (which is true of all but finitely many p) then $\operatorname{Frob}_{\mathfrak{p}}$ is a well defined element of $D_{\mathfrak{p}}$. As \mathfrak{p} varies amongst primes above p, $\operatorname{Frob}_{\mathfrak{p}}$ traces out a conjugacy class in G, which we denote by Frob_p .

For unramified p, $N_f(p)$ is counting fixed points of Frob_p on $\{\alpha_1, \ldots, \alpha_d\}$. That is,

$$N_f(p) = \operatorname{tr}(\rho(\operatorname{Frob}_{\mathfrak{p}})).$$

Applying Chebotaryov density theorem, we see that the conjugacy class of Frob_p is uniformly distributed in the set of conjugacy classes of G, denoted $\operatorname{conj}(G)$, with

respect to the measure which weights a conjugacy class C proportionately to its size #C.

Example 3. For $f(x) = x^3 - x + 1$ we have $G = S_3$, so

$$\lim_{B \to \infty} c_i(B) = \begin{cases} \frac{2}{6} & \text{if } i = 0\\ \frac{3}{6} & \text{if } i = 1\\ \frac{1}{6} & \text{if } i = 3. \end{cases}$$

Aside. If G is abelian then $L \subseteq \mathbb{Q}(\zeta_n)$ for some n, and then $\operatorname{Frob}_{\mathfrak{p}}$ is determined by $p \mod n$.

Think now of G as a discrete topological group, note that this means that it is compact (also Hausdorff). Any compact topological group has a unique left- and right- invariant probability measure in the Radon sense (i.e. continuous functions $G \to \mathbb{R}$ can be integrated) known as the Haar measure, which we denote by μ_G .

I can then take the pushforward measure on the set of conjugacy classes of G. That is, I evaluate the functional on class functions.

Example 4. Consider
$$\mathrm{SU}(2) = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{C}) \ : \ ad - bc = 1, \ A^{-1} = A^* = \overline{A}^T \right\}.$$

Via the trace map, we have a bijection between the conjugacy classes of conj(SU(2)) and the set [-2, 2].

Definition 5. Let X be some probability space, and $t: X \to \mathbb{R}$ be a random variable. Then the moment sequence of t is $(\mathbb{E}(t^n))_{n \in \mathbb{Z}_{\geq 0}}$, where we always take $t^0 = 1$.

Here is a comment that we won't expand on for now.

• We could also look at

$$N_f(p^k) = \# \{ x \in \mathbb{F}_{p^k} : f(x) = 0 \},$$

and for fixed p we could package this collection (indexed by k) into a local zeta function (see later in the course). Then

$$N_f(p^k) = \operatorname{tr}(\rho(\operatorname{Frob}_{\mathfrak{p}}^k))$$

1. Arithmetic Schemes

Definition 6. Let X be a scheme of finite type over \mathbb{Z} . For each prime number p we define

$$N_X(p) := \#X(\mathbb{F}_p).$$

Question 7. How does this depend on p?

Elliptic Curves. Consider $E \subseteq \mathbb{P}^2_{\mathbb{Z}}$ cut out by the affine model $y^2 = x^3 + Ax + B$. Assume that $x^3 + Ax + B$ is squarefree (so the generic fibre $E_{\mathbb{Q}}$ is an elliptic curve), and that $E_{\mathbb{Q}}$ does not have complex multiplication.

Theorem 8 (Hasse). For each prime number p, write

$$#E(\mathbb{F}_p) = p + 1 - t_p.$$

Then, so long as $E_{\mathbb{F}_p}$ is smooth, $|t_p| \leq 2\sqrt{p}$.

This suggests we should look at $\frac{t_p}{\sqrt{p}} \in [-2,2]$. Looking at these numbers experimentally, there appears to be a clear pattern in their distribution, which is explained by the following theorem.

Theorem 9. The values $\frac{t_p}{\sqrt{p}}$ are equidistributed for the pushforward of the Haar measure on conj(SU(2)) on [-2,2].

REFERENCES

[Sut] A. Sutherland, $Sato-tate\ distributions.\ \uparrow 1$