Extreme value comparison of climate model simulations and observations

Mickey Warner

27 Feb 2018

Introduction

CanCM4 simulation classes (with R = 10 replicates each):

- 1. Decadal
- 2. Historical
- 3. Control

Observations over U.S. interpolated from weather stations

Factors:

- Variable Total Precipitation (pr) or Average Maximum Temperature (tasmax)
- 2. Season Winter or Summer
- 3. Decade 1962–1971 or 1990–1999
- 4. Region California or USA

Locations

Figure: Left: CanCM4 simulation grid cells. Center: Observation locations. Right: method for computing weighted sum or average for CanCM4 to make values comparable with observations.

Extremes

For r.v. X and large threshold u, the exceedance Y=X-u, for X>u, approximately follows the generalized Pareto distribution (GPD), which has density

$$f_Y(y) = \frac{1}{\sigma} \left(1 + \xi \frac{y}{\sigma} \right)_+^{-1/\xi - 1}$$

Data processing

Two objectives before performing the analysis:

- 1. Make climate simulations comparable to observations
- 2. Get near-independent random variables for model fitting

These are accomplished by

- 1. Taking weighted sums (pr) or weighted averages (tasmax)
- 2. Computing anomalies based on DLMs, and
- 3. Declustering

Weighted sum or average

Figure: Left: CanCM4 simulation grid cells. Center: Observation locations. Right: method for computing weighted sum or average for CanCM4 to make values comparable with observations.

DLM-based anomaly

Extremal index (declustering)

The extremal index θ is the inverse of the limiting mean cluster size

It can be estimated using interexceedance times, $T_i = S_{i+1} - S_i$, with a log-likelihood of

$$l(\theta, p; \mathbf{T}) = m_1 \log(1 - \theta p^{\theta}) + (N - 1 - m_1) \{ \log(\theta) + \log(1 - p^{\theta}) \}$$
$$+ \theta \log(p) \sum_{i=1}^{N-1} (T_i - 1)$$

p is the probability of not exceeding the threshold

Declustering

Likelihood

Replicate i, observation j, exceedances $Y_{ij} = X_{ij} - u$, and keep only those $Y_i > 0$. These have likelihood

$$L(\mathbf{y}; \boldsymbol{\sigma}, \boldsymbol{\xi}, \boldsymbol{\zeta}) = \prod_{i=1}^{R} \left[(1 - \zeta_i)^{n_i - k_i} \zeta_i^{k_i} \prod_{j=1}^{k_i} \frac{1}{\sigma_i} \left(1 + \xi_i \frac{y_{ij}}{\sigma_i} \right)_+^{-1/\xi_i - 1} \right]$$

 n_i is the number of X_{ij} 's k_i is the number of Y_{ij} 's ζ_i is the probability of exceeding the threshold

Priors

These priors complete the hierarchical model formulation. Greek letters are random variables while English letters are fixed.

$$\sigma_{i}|\alpha,\beta \sim Gamma(\alpha,\beta)$$

$$\xi_{i}|\xi,\tau^{2} \sim Normal(\xi,\tau^{2})$$

$$\zeta_{i}|\mu,\eta \sim Beta(\mu\eta,(1-\mu)\eta)$$

$$\alpha_{\sigma} \sim Gamma(a_{\alpha},b_{\alpha}) \qquad \beta_{\sigma} \sim Gamma(a_{\beta},b_{\beta})$$

$$\xi \sim Normal(m,s^{2}) \qquad \tau^{2} \sim Gamma(a_{\tau},b_{\tau})$$

$$\mu \sim Beta(a_{\mu},b_{\mu}) \qquad \eta \sim Gamma(a_{\eta},b_{\eta})$$

Return level

For a distribution G, the return level x_m is the solution to

$$G(x_m) = 1 - \frac{1}{m}.$$

The value x_m is exceeded on average once every m observations.

For the GPD, the return level is given by

$$x_m = u + \frac{\sigma}{\xi} \left[(m\zeta\theta)^{\xi} - 1 \right]$$

Bhattacharyya distance

Bhattacharyya coefficient

$$BC(p,q) = \int_{\mathcal{X}} \sqrt{p(x)q(x)} dx$$

Bhattacharyya distance

$$D_B(p,q) = -\log BC(p,q).$$

 D_B is computed between parameters in the replicates (and observations) and parameters in the hierarchy.

ا ما	Pr		Tasmax		
log o	Vinter	Summer	Winter	Summer	
	0 1 2 3 4	5	0 1 2 3 4	5	
1962 CA	0	0 0 1	•	•	- Obs. - Hist. - Dec. - Cont.
1990	0	0	0	0	- Obs Hist Dec Cont.
1962 USA	0	0	0	1 0	- Obs. - Hist. - Dec. - Cont.
1990	1	1	0	0	- Obs Hist Dec Cont.
		0 1 2 3 4	5	0 1 2 3 4	5

Bivariate analysis

The univariate analysis allows us to make comparisons between simulations and observations, but not to model their extremal relationship.

A key concept in multivariate extreme value analysis is asymptotic tail dependence, described by the following quantity

$$\chi = \lim_{z \to z^*} P(X > z | Y > z)$$

where X and Y share a common marginal distribution and z^* is the (possibly infinite) right end-point of X and Y.

Note: even for normal distributions with correlation $\rho < 1$, $\chi = 0$.

Simple Pareto process

For stochastic process X, define

$$T_t X = \left(1 + \xi \frac{X - u_t}{\sigma_t}\right)_+^{1/\xi}.$$

Under certain conditions,

$$\lim_{t \to \infty} P\left(T_t X \in A \middle| \sup_{s \in S} T_t X(s) > 1\right) = P(W \in A)$$

where W is a simple Pareto process (SPP).

Note: for SPP, we cannot have $\chi = 0$.

Simple Pareto process, continued

Climate simulations and observations are transformed with

$$W_i(s_j) = T_t X_i(s_j) = \left(1 + \xi(s_j) \frac{X_i(s_j) - u_t(s_j)}{\sigma_t(s_j)}\right)_+^{1/\xi(s_j)}.$$

using posterior means for ξ and σ , where s_j denotes the data source and i denotes individual observations.

Let $\mathbf{W}(s) = (W_1(s), \dots, W_{n(s)}(s))^{\top}$, and form the bivariate vector $\mathbf{W}_{12} = (\mathbf{W}(s_1), \mathbf{W}(s_2))$ for some s_1, s_2 pair.

Rows of \mathbf{W}_{12} are considered samples from a simple Pareto process.

Bivariate data

Figure: Untransformed data for CA winter precipitation, observations against the first control replicate. Dashed lines mark the thresholds.

Bivariate data

Figure: Data transformed to have Pareto marginals in the exceedances. Red dots mark the points that are kept after declustering.

Asymptotic tail dependence for SPP

Each row of W_{12} can be written as

$$(Y_iV_i(s_1), Y_iV_i(s_2)),$$

where Y_i is a standard Pareto random variable and $V_i(s_j) \ge 0$ with $V_i(s_1) \lor V_i(s_2) = 1$, for all i.

It can be shown that

$$\chi = E\left(\frac{V(s_1)}{E(V(s_1))} \wedge \frac{V(s_2)}{E(V(s_2))}\right)$$

Bivariate data

Figure: The red dots mark the points $(V_i(s_1),V_i(s_2).$ These are constrained to lie on the unit supremum cone.

Asymptotic tail dependence for SPP, continued

Given the supremum constraint for $V_i(s_1)$ and $V_i(s_2)$, we can write rows of \mathbf{W}_{12} in terms of Y_i and the angle

$$\phi_i = \frac{2}{\pi} \arctan\left(\frac{V_i(s_2)}{V_i(s_1)}\right) \in [0, 1].$$

The angles ϕ_1, \ldots, ϕ_n are modeled with a Bernstein-Dirichlet prior (BDP), a flexible model for density estimation.

Posterior samples for ϕ are back-transformed to $(V(s_1),V(s_2))$ and χ is estimated.

Bivariate data

Figure: $(V_i(s_1), V_i(s_2))$ transformed to ϕ_i .

χ		F	Pr	Tasmax		
		Winter	Summer	Winter	Summer	
		0.2 0.3 0.4 0.5		0.2 0.3 0.4 0.5		
CA	1962	×	-×	·×· ·-	· ×	- Hist.
		×- ·	*-	· X	* ··-	- Dec.
		× -	** ·	•ו••	· ×· ··	- Cont.
	1990	-×	* ·	×	*• •	- Hist.
		× -	· ×	*	×	- Dec.
		·×	***	*****	·×	- Cont.
USA	1962	×·	•×	·×-··	· ×··· ·	- Hist.
		·×···	-×	* •	-× ·	- Dec.
		×-	*- -	·×-··	· *- ··	- Cont.
	1990	** ·	×	•×	· ×	- Hist.
		·×··	×	×	×	- Dec.
		* ··	· ×-	· ·×	×	- Cont.
			0.2 0.3 0.4 0.5		0.2 0.3 0.4 0.5	_