Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Отчёт

"Методы машинного обучения"

Лабораторная работа № 6

"Ансамбли моделей машинного обучения"

исполнитель:
Студент группы ИУ5-21М
Коростелёв В. М.
ПРЕПОДАВАТЕЛЬ:
Гапанюк Ю. Е.

Москва – 2019

Ансамбли моделей машинного обучения

Цель лабораторной работы: изучение ансамблей моделей машинного обучения. Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train test split разделите выборку на обучающую и тестовую.
- 4. Обучите две ансамблевые модели. Оцените качество моделей с помощью одной из подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор значений одного гиперпараметра. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
data = pd.read_csv('heart.csv',sep=",")
data.head(5)
```

Out[1]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	-
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	_
4													•	

In [2]:

```
data.shape
```

Out[2]:

(303, 14)

```
In [3]:
```

```
# Проверка на пустые значения data.isnull().sum()
```

Out[3]:

0 age a sex 0 ср trestbps 0 chol 0 fbs 0 restecg 0 thalach 0 0 exang oldpeak 0 slope a ca thal a target dtype: int64

In [4]:

```
from sklearn.import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, auc
import pylab as pl
from sklearn.preprocessing import MinMaxScaler
import warnings
warnings.filterwarnings('ignore')
```

In [5]:

```
# Пустых значений нет
# Перейдем к разделению выборки на обучающую и тестовую.
X = data.drop('target',axis = 1).values
y = data['target'].values
```

Ансамблевые модели

In [6]:

```
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import balanced_accuracy_score from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.model_selection import train_test_split # Функция train_test_split разделила исходную выборку таким образом, #чтобы в обучающей и тестовой частях сохранились пропорции классов.
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.35, random_state=1)
```

"Случайный лес"

0.7289719626168224

```
In [7]:
# n_estimators = 10 (default)
rfc = RandomForestClassifier().fit(X_train, y_train)
predicted_rfc = rfc.predict(X_test)
In [8]:
accuracy_score(y_test, predicted_rfc)
Out[8]:
0.719626168224299
In [9]:
balanced_accuracy_score(y_test, predicted_rfc)
Out[9]:
0.7233333333333334
In [10]:
(precision_score(y_test, predicted_rfc, average='weighted'),
 recall_score(y_test, predicted_rfc, average='weighted'))
Out[10]:
(0.7273343111011726, 0.719626168224299)
In [11]:
f1_score(y_test, predicted_rfc, average='weighted')
Out[11]:
0.7194302396206822
Алгоритм AdaBoost
In [12]:
# n_estimators = 50 (default)
abc = AdaBoostClassifier().fit(X_train, y_train)
predicted_abc = abc.predict(X_test)
In [13]:
accuracy_score(y_test, predicted_abc)
Out[13]:
```

```
In [14]:
balanced_accuracy_score(y_test, predicted_abc)
Out[14]:
0.7284210526315789
In [15]:
(precision_score(y_test, predicted_abc, average='weighted'),
    recall_score(y_test, predicted_abc, average='weighted'))
Out[15]:
(0.7293842770753162, 0.7289719626168224)
In [16]:
f1_score(y_test, predicted_abc, average='weighted')
Out[16]:
0.7291144464706996
```

Из двух представленных ансамблевых моделей с параметрами по умолчанию с задачей классификации на выбранном датасете лучше справляется модель "AdaBoost"

Подбор гиперпараметров

"Случайный лес"

```
In [17]:
```

```
rfc_n_range = np.array(range(5,100,5))
rfc_tuned_parameters = [{'n_estimators': rfc_n_range}]
rfc_tuned_parameters
Out[17]:
```

```
[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 6 5, 70, 75, 80, 85, 90, 95])}]
```

```
In [18]:
```

In [19]:

```
gs_rfc.best_params_
```

Out[19]:

{'n_estimators': 85}

In [20]:

```
plt.plot(rfc_n_range, gs_rfc.cv_results_['mean_test_score'])
```

Out[20]:

[<matplotlib.lines.Line2D at 0x25c344a6898>]

Алгоритм AdaBoost

```
In [21]:
abc_n_range = np.array(range(5,100,5))
abc_tuned_parameters = [{'n_estimators': abc_n_range}]
abc_tuned_parameters
Out[21]:
[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 6
5, 70, 75, 80, 85,
         90, 95])}]
In [22]:
gs_abc = GridSearchCV(AdaBoostClassifier(), abc_tuned_parameters, cv=5,
                      scoring='accuracy')
gs_abc.fit(X_train, y_train)
Out[22]:
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=AdaBoostClassifier(algorithm='SAMME.R', base_estimator=No
ne,
          learning_rate=1.0, n_estimators=50, random_state=None),
       fit_params=None, iid='warn', n_jobs=None,
       param_grid=[{'n_estimators': array([ 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60, 65, 70, 75, 80, 85,
       90, 95])}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring='accuracy', verbose=0)
In [23]:
gs_abc.best_params_
Out[23]:
{'n estimators': 25}
```

In [24]:

```
plt.plot(abc_n_range, gs_abc.cv_results_['mean_test_score'])
```

Out[24]:

[<matplotlib.lines.Line2D at 0x25c3453ecf8>]

Сравнение моделей после подбора гиперпараметров

"Случайный лес"

In [25]:

```
rfc_optimized = RandomForestClassifier(n_estimators=gs_rfc.best_params_['n_estimators'
]).fit(X_train, y_train)
predicted_rfc_opt = rfc_optimized.predict(X_test)
```

In [26]:

```
accuracy_score(y_test, predicted_rfc_opt)
```

Out[26]:

0.7476635514018691

```
In [27]:
balanced_accuracy_score(y_test, predicted_rfc_opt)
Out[27]:
0.7471929824561403
In [28]:
(precision_score(y_test, predicted_rfc_opt, average='weighted'),
 recall_score(y_test, predicted_rfc_opt, average='weighted'))
Out[28]:
(0.748059504175502, 0.7476635514018691)
In [29]:
f1_score(y_test, predicted_rfc_opt, average='weighted')
Out[29]:
0.7477962087830651
Алгоритм AdaBoost
In [30]:
abc_optimized = RandomForestClassifier(n_estimators=gs_abc.best_params_['n_estimators'
]).fit(X_train, y_train)
predicted_abc_opt = abc_optimized.predict(X_test)
In [31]:
accuracy_score(y_test, predicted_abc_opt)
Out[31]:
0.7383177570093458
In [32]:
balanced_accuracy_score(y_test, predicted_abc_opt)
Out[32]:
0.7347368421052631
In [33]:
(precision_score(y_test, predicted_abc_opt, average='weighted'),
 recall_score(y_test, predicted_abc_opt, average='weighted'))
Out[33]:
(0.7383710473551335, 0.7383177570093458)
```

In [34]:

```
f1_score(y_test, predicted_abc_opt, average='weighted')
```

Out[34]:

0.7373013358677862

Подбор гиперпараметра n_estimators для моделей "Случайный лес" и "Алгоритм AdaBoost" позволил увеличить точность классификации.