

Exame Final de Álgebra Linear

Ano letivo: 2020/2021

Sem.: 19

Época: Normal

Data: 15/01/2021

Curso: Licenciatura em Economia

Duração: 2h 00m

A integridade académica é um valor fundamental da FEUC. O Regulamento Pedagógico da UC proíbe e sanciona as várias formas de fraude académica. Durante a realização das provas escritas é exigido que: Não usem materiais de consulta, máquinas calculadoras gráficas ou quaisquer outros equipamentos eletrónicos, exceto se tal for explicitamente permitido pelo responsável da unidade curricular em causa; não transmitam as questões da prova a outras pessoas; mantenham desligados quaisquer equipamentos de comunicação; usem exclusivamente as folhas de exame fornecidas pelos vigilantes da prova.

A comprovada fraude académica determina a anulação da prova, a impossibilidade de o/a Estudante concluir a unidade curricular com aproveitamento, a comunicação ao Diretor da FEUC e, eventualmente, a comunicação ao Reitor, para aplicação de sanções disciplinares.

- 1. Considere, em \Re^3 , os vetores $u_1 = (4,4,2)$, $u_2 = (4,-2,-4)$ e $u_3 = (2,-4,4)$.
 - a. Verifique que u_1 não é combinação linear dos vectores u_2 e u_3 .
 - b. Verifique que $\{u_1, u_2, u_3\}$ é um conjunto ortogonal e, a partir deste, escreva um conjunto ortonormal.
 - Considere agora matriz $U \in \Re^{3 \times 3}$, cujas colunas são dadas pelos vectores u_1 , u_2 e u_3 respectivamente. Calcule a matriz U^2 . Use, agora, os cálculos realizados para justificar que U^2 é uma matriz escalar, e para obter a matriz inversa de U (ou seja, U^I).
- 2. Considere o sistema com três (3) equações a três (3) incógnitas, dado por:

$$\begin{cases} x+y-z=\beta\\ x+z=4\\ \alpha x+2y+(4-\beta)z=12 \end{cases}, \quad \alpha,\beta\in\Re.$$

- a. Com base na condensação da matriz ampliada do sistema, determine para que valores de $\alpha, \beta \in \Re$, o sistema é:
 - i. Possível e determinado;
- ii. Possível e indeterminado;
- iii. Impossível.
- b. Determine o conjunto solução para o caso em que $\alpha = 2 e \beta = 6$.
- 3. Considere a matriz $A = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ -1 & 0 & -3 \end{bmatrix}$
 - a. Determine a inversa de A pelo algoritmo de Gauss-Jordan.
 - b. Calcule o determinante da matriz A, e a sua matriz adjunta, adj(A).
 - e. Calcule/identifique os valores próprios e determine os espaços próprios associados aos valores próprios da matriz A.
 - d. Diga, justificando, se a matriz A é diagonalizável, e, em caso afirmativo, encontre S e Λ tal que A=SΛS⁻¹.
- . Mostre que toda a matriz $B \in \Re^{3\times 3}$ que satisfaz a propriedade $B^T = -B$ (isto é, B é anti-simétrica), é uma matriz singular.