Phylogenetic and phylogeographic meta-analysis of African arthropod cytochrome c oxidase 1 barcode sequences submitted into the Barcode of Life Database

Gilbert Kibet-Rono*

Caleb Kibet, Jean-Baka Domelevo Entfellner, Steven Nyanjom, Daniel Masiga, Scott Miller, Jandouwe Villinger

Evolution and population dynamics of arthropods

Phylogeography: Studies evolutionary and population dynamics and processes behind them

Population dynamics: migration, range separation, gene flow, population size

- → biotic factors predation
- → abiotic factors climate oscillation

Phylogenetics: Population structure
Understanding population dynamics
of arthropods (Insects) lead to better
pest and vector management

Maresova et al. (2019) www.icipe.org

Background

Mitochondrial cytochrome c oxidase subunit 1 gene (**COI**), ~658 base-pair, is used for molecular identification of most animal phyla

The Consortium for the Barcode of Life (CBOL), May 2004: Rapid and inexpensive identification of species using standard DNA barcodes

- International Nucleotide Sequence Database Collaborative (INSDC)
- Barcode of Life Database (BOLD)

Over 320,000 African COI arthropod sequences published in BOLD

43,245 unpublished records from Kenya

Rationale

Problem statement:

- Few studies exists on African insects
 - lack of comprehensively sampled data and
 - a well-developed/documented bioinformatics workflow

Objectives:

- Develop a well documented bioinformatics workflow for phylogenetic and phylogeographic analysis of Insects sequences
- Implement the use of COI barcode sequences retrieved from BOLD.

Methodology

DATA RETRIEVAL

BOLD Public Data API wget > XML

2. DATA MINING

A. Data transformation:

BeautifulSoup4, pandas > TSV

B. Data analysis, cleaning & sorting:

R tidyverse package > TSV files & statistics

3. Bioinformatics Pipeline

A. Data Preprocessing:AWK/sed/egrep > FASTA

B. Sequence classification RDPClassifier & BLAST

C. Multiple Sequence Alignment MSA MAFFT, PASTA, MUSCLE, OPAL T-COFFEE > FASTA/Phylip/clw

D. Phylogenetic Inference:

FastTree & RAxML >

Newick/PhyloXML/NEXUS

E. Population Structure:

POPART, GENELAND, ARLEQUIN

F. Phylogeography:

BEAST2/BASTA

Others: Biopython, PGDspider

Results: data

323,034 "arthropod" COI sequences from Africa, 81,328 are from East Africa, 76.3% are arthropoda, 60% are Insecta

Class Insecta orders	Frequency
Lepidoptera (80 families)	76275
Diptera (61 families)	48137
Hymenoptera	40902
Coleoptera	12323
Hemiptera	8116
Orthoptera	1890
Odonata	1571
Psocodea, Blattodea, Mantodea, Trichoptera,	
Thysanoptera, Neuroptera, Ephemeroptera,	
Ephemeroptera, Dermaptera	3557
Embioptera, Phasmatodea, Plecoptera,	
Strepsiptera, Mecoptera, Zygentoma	69
Undefined	11

Data Retrieval, Transformation and sorting

Data Retrieval:

Application Programming Interface (API) - XML files

Data Transformation:

A pandas dataframe of 84 columns and as many rows as records

Classification metadata

African Arthropoda phylum;

- 11 classes
- 61 orders
- 562 families
- 3374 genera
- 9829 species

Data set	All Seqs	Seq.len over 500	Species labeled (Sp)	Sp labeled & Seq.len over 500
All Diptera	48137	47507	6629	6125
BS = 0.70	11337	10957	5124	4802
BS = 0.95	9244	8883	4785	4479
BS = 1.00	8049	7717	4407	4122

Ribosomal Database Project (RDP) classifier:

Porter and Hajibabaei (2018)

Results: workflow

MSA:

 PASTA - Practical Alignment using Sate and TrAnsitivity

Phylogenetics:

BMGE - Block Mapping and Gathering with Entropy

RAxML:

- Tree inference GTRCAT
- Bootstrapping
- Rooting Evolutionary Placement Algorithm (EPA)

Results: workflow

Population Genetic Structure:

Haplotype networks - POPART, DNASP

Phylogeographic differentiation

- diveRsity R (Jost's D and F_{ST})
- PERMUT CPSSR (G_{ST} and N_{ST})

Population spatial clusters (k) - GENELAND or SAMOVA

Mantel test - significance of correlation between genetic and geographical distances

Phylogeography:

BEAST 2.5 (BASTA)

Bayesian Structured Coalescent Approximation

Preliminary conclusions

Key challenges are:

- Missing/Inaccurate metadata-
 - taxonomic classification,
 - GPS, and
 - elevation data
- Resulting phylogenies are gene trees, limit their accuracy as species trees

Preliminary conclusions

BOLD COI data can be used in a number of population biology studies within different elevation spectrum, localities or clades:

- Phylogenetic diversity and gene flow
- Population dynamics
- Integrative taxonomy
- Biomonitoring: Invasive species and potential pests and vectors

Thank you

International Centre of Insect Physiology and Ecology

P.O. Box 30772-00100, Nairobi, Kenya

Tel: +254 (20) 8632000

E-mail: icipe@icipe.org

Website: <u>www.icipe.org</u>

Support *icipe*: www.icipe.org/support-icipe

facebook.com/icipe.insects/icipe

twitter.com/icipe

in linkedin.com/company/icipe