Mathematical Foundations of Computer Science

CS 499, Shanghai Jiao Tong University, Dominik Scheder

Group Name: Mogicians

2 Partial Orderings

2.1 Equivalence Relations as a Partial Ordering

Exercise 2.1. Let E_4 be the set of all equivalence relations on $\{1, 2, 3, 4\}$. Note that E_4 is ordered by set inclusion, i.e.,

$$(E_4, \{(R_1, R_2) \in E_4 \times E_4 | R_1 \subset R_2\})$$
 (1)

is a partial ordering.

- 1. Draw the Hasse diagram of this partial ordering in a nice way.
- 2. What is the size of the largest chain?
- 3. What is the size of the largest antichain?

Proof. 1. The Hasse diagram of this partial ordering. (We use [] to stand for a full relation between the element in it.)

$$R_1 = [[1][2][3][4]], R_2 = [[12][3][4]], R_3 = [[34][1][2]], R_4 = [[13][2][4]], R_5 = [[24][1][3]], R_6 = [[14][2][3]], R_7 = [[23][1][4]], R_8 = [[12][34]], R_9 = [[123][4]], R_{10} = [[134][2]], R_{11} = [[13][24]], R_{12} = [[124][3]], R_{13} = [[14][23]], R_{14} = [[1][234]], R_{15} = [[1234]]$$

- 2. The size of the largest chain is 4.
- 3. The size of the largest antichain is 7.

2.2 Chains and Antichains

Define the partially ordered set (\mathbb{N}_0^n, \leq) as follows: $x \leq y$ if $x_i \leq y_i$ for all $1 \leq i \leq n$. For example, $(2,5,4) \leq (2,6,6)$ but $(2,5,4) \not\leq (3,1,1)$.

Exercise 2.2. Consider the infinite partially ordered set (\mathbb{N}_0^n, \leq) .

- 1. Which elements are minimal? Which are maximal?
- 2. Is there a minimum? A maximum?
- 3. Does it have an infinite chain?
- 4. Does it have arbitrarily large antichains? That is, can you find an antichain A of size |A| = k for every $k \in \mathbb{N}$?

Answer and Proof

1. The minimal element is n-dimension zero vector x = (0, 0, ..., 0). There's no maximal element.

Proof. If $\exists y \in S : y \leq x$, then $\forall i \in [n], 0 \leq y_i \leq x_i = 0$, so y = x. As a result, $\not\exists y \in S : y < x$.

For $\forall y = (y_1, y_2, \dots, y_n) \in S, \exists z = (y_1 + 1, y_2 + 1, \dots, y_n + 1) : y \leq z$, so there's no maximal element.

2. Similarly, the minimum is n-dimension zero vector x = (0, 0, ..., 0). There's no maximum.

Proof. Because of the definition, $\forall y \in S, \forall i \in [n], y_i \geq 0 = x_i$, then $x \leq y$. So x is the minimum.

For $\forall y = (y_1, y_2, \dots, y_n) \in S, \exists z = (y_1 + 1, y_2 + 1, \dots, y_n + 1) : y \leq z$, so there's no maximum.

- 3. Yes. For example, let $a_i = (i, i, ..., i) \in \mathbb{N}_0^n$, then $\{a_1, a_2, ...\}$ is a infinite chain. (Because obviously $a_i \leq a_{i+1}$)
- 4. Yes. For example, let $a_i = (i, k i, 0, 0, \dots, 0) \in \mathbb{N}_0^n$, $i = 1, 2, \dots, k$, then $A = \{a_1, a_2, \dots, a_k\}$ is an antichain of size k. (Because $\forall a_i, a_j \in A$, if i < j, then k i > k j, they're incomparable.)

*Exercise 2.3. Does every infinite subset $S \subseteq \mathbb{N}_0^n$ contain an infinite chain? The answer is yes.

Lemma Let U, V be infinite sets with total ordering relation $(U, \leq), (V, \leq)$. Define $X = U \times V$ and partial ordering $(X, \{((u_1, v_1), (u_2, v_2)) \mid u_1 \leq u_2 \ v1 \leq v2, \ (u_1, v_1), (u_2, v_2) \in X\})$: every infinite subset $S \subseteq X$ contain an infinite chain A.

Proof. Because U, V are totally ordered, $\forall p_0 = (x_0, y_0) \in S$, we can divide the set S into 4 parts based on p_0 :

$$A^{(1)} = \{(x,y)|x_0 \le x, y_0 \le y\} \cap S$$

$$A^{(2)} = \{(x,y)|x < x_0, y_0 \le y\} \cap S$$

$$A^{(3)} = \{(x,y)|x < x_0, y < y_0\} \cap S$$

$$A^{(4)} = \{(x,y)|x \le x_0, y < y_0\} \cap S$$

To visualize the concept of this division, we take $U=V=\mathbb{N}$ for example (Figure 1)

Note that every element in $A^{(1)}$ is greater than p_0 and every element in $A^{(3)}$ is less than p_0 .

Then we assume that there's no infinite chain in S, then we can find:

1. $|A^{(3)}| < (x_0 - 1)(y_0 - 1)$, so it's an finite set.

Figure 1: The division of S

2. For $A^{(2)}$, define:

$$A_i^{(2)} = \{(x,y) \mid x = i, (x,y) \in A^{(2)}\}, i = 1, 2, \dot{s}, x_0 - 1$$

Because the elements in each $A_i^{(2)}$ is equal on the x-axis, so the all elements in each $A_i^{(2)}$ can form a chain. Considering the assumption that there's no infinite chain in S, $A_i^{(2)}$ are all finite sets. So $A_i^{(2)}$ is finite. Similarly, $A^{(4)}$ is a finite set.

So we have a conclusion that $A^{(1)}$ is an infinite set, i.e. $\forall p \in S, \exists p' \in S, s.t. \ p < p'$. With this conclusion, we can construct an infinite chain (p_0, p_1, p_2, \dots) because you can always find a greater element p_{i+1} in the $A^{(1)}$ set of p_i , which contradicts to the assumption.

So in conclusion, there are always infinite chains in S.

Theorem Every infinite subset $S \subseteq \mathbb{N}_0^n$ contain an infinite chain.

Proof. 1. Let $X = \mathbb{N}_0^2 = \mathbb{N} \times \mathbb{N}$ and directly apply the lemma, we can find the theorem is valid.

2. If the theorem is valid on $X_k = \mathbb{N}_0^k = \mathbb{N}_0 \times \mathbb{N}_0^{k-1}$, i.e. for every infinite subset S of X_k , ther's always an infinite chain A.

Then talk about $X_{k+1} = \mathbb{N}_0^{k+1} = \mathbb{N}_0 \times \mathbb{N}_0^k = \mathbb{N}_0 \times X_k$.

For all infinite set $S \subseteq X_{k+1}$, we assume that there's no infinite chain in S. Define:

$$T = \{y \mid (x, y) \in S\} \subseteq X_k$$

$$T_i = \{(x, y) \mid y = i\}, \forall i \in T$$

$$|S| = \sum_{i \in T} |T_i|$$

 T_i are all finite set, or there would be an infinite chain composed of all elements in T_i which contradicts to the assumption. So T is an infinite set because S is infinite.

Therefore, T has an infinite chain A because it's a subset of X_k . Note that A is total ordered. Define:

$$S' = S \cap (\mathbb{N}_0 \times A) = \bigcup_{i \in A} T_i \subseteq \mathbb{N}_0 \times A$$

S' is infinite because A is infinite too. Considering the linearity of \mathbb{N}_0 and A, with the lemma, we can conclude that S' has an infinite chain A', which is also a chain of S.

By induction, we come to the conclusion that the theorem is valid to all \mathbb{N}_0^n .

Exercise 2.4. Show that (\mathbb{N}_0^n, \leq) has no infinite antichain. **Hint.** Use the previous exercise.

Proof. If there's an infinite antichain A, it is also an infinite subset of \mathbb{N}_0^n , we can conclude that A has an infinite chain using the result of exercise 2.3, which contradicts to the assumption. So (\mathbb{N}_0^n, \leq) has no infinite antichain. \square

Consider the induced ordering on $\{0,1\}^n$. That is, for $x,y \in \{0,1\}^n$ we have $x \leq y$ if $x_i \leq y_i$ for every coordinate $i \in [n]$.

Exercise 2.5. Draw the Hasse diagrams of $(\{0,1\}^n, \leq)$ for n=2,3.

Figure 2: the Hasse diagrams

Exercise 2.6. Determine the maximum, minimum, maximal, and minimal elements of $\{0,1\}^n$.

Answer The maximum element and the maximal element of $\{0,1\}^n$ are both $\{1,1,\cdots 1\}$.

The minimum element and the minimal element of $\{0,1\}^n$ are both $\{\underbrace{0,0,\cdots 0}_{\text{n ones}}\}$.

Exercise 2.7. What is the longest chain of $\{0,1\}^n$?

Answer The longest chain of $\{0,1\}^n$ is that the beginning of the chain is $\{\underbrace{0,0,\cdots 0}_{\text{n ones}}\}$, the tail of the chain is $\{\underbrace{1,1,\cdots 1}_{\text{n ones}}\}$, every node of the chain will change a 0 into 1 compared with the immediate predecessor. The length of this chain is n+1.

**Exercise 2.8. What is the largest antichain of $\{0,1\}^n$?

Proof. The largest antichain is the set of all the elements with [n/2] 1s. The size is $C_n^{[n/2]}$. The proof is as follows.

Here we introduce some kind of layer structure to the question.

Figure 3: Layer Structure

We define that L_0 is the minimal elements of $\{0,1\}^n$, the all-0 vector. Then L_i is then minimal elements of $\{0,1\}^n - \sum_{j=0}^{i-1} L_j$. Apparently, L_i is the set of vectors containing i 1s. Therefore, $L_{[n/2]}$ is the set of vectors containing [n/2] 1s, which is an antichain, and $|L_{[n/2]}| = C_n^{[n/2]}$.

Then, we will prove $L_{[n/2]}$ is the largest antichain.

Now, we assume that there exists an antichain A, and $|A| > |L_{[n/2]}|$. Apparently, $\exists x \in A, x \notin L_{[n/2]}$.

For $k \leq [n/2]$, we define $A_k = A \cap L_k$ and $B_{k+1} = \{x | x \in L_{k+1}; \exists y \in A_k, x \geq y\}$.

Now we assume |A| = a, and k is the smallest k that $|A_k| \neq 0$. For any element $x \in A_k$, there are n-k elements $y \in B_{k+1}$ and $y \geq x$. For any element $y \in B_{k+1}$, there are k+1 elements $x \in A_k$ and $x \leq y$. Therefore, the least possible $|B_{k+1}| = a * (n-k)/(k+1)$. Because $k \leq [n/2], k+1 \leq n-k$. Therefore, $|B_{k+1}| \geq |A_k|$.

Now we can create a new set $A' = (A - A_k) \cap B_{k+1}$, $|A'| \ge |A|$. Because A is an antichain, $\forall x \in A_k$, $\forall y \ge x$, $y \not\in A$. Therefore, $\forall x \in B_{k+1}$, $\forall y > x$, because $\exists z \in A_k$, z < x < y, $y \not\in A$; $\forall y < x$, because $y \in L_j$ and j < k, since $|A_j| = 0$, $y \not\in A$. So the set A' turns out to be a bigger antichain, and $\forall j \le k$, $|A'_j| = 0$.

The way to create a bigger antichain is also true when $k \ge [n/2]$, and the only thing we need to do is to change k+1 to k-1.

Then we can find an algorithm to create a bigger antichain based on A, which goes as follows:

```
set makeBigger(set X):

for i=1 to [n/2]-1

X = (A - A_k) \cap B_{k+1}

for i=n to [n/2]+1

X = (A - A_k) \cap B_{k-1}

return X
```

According to the description, after every loop, we get a new antichain, with a larger or unchanged cardinality.

Define A'=makeBigger(A). We can see A' is an antichain, $|A'| \ge |A|$, and $A' \subseteq L_{[n/2]}$. Then we find $|A| \le |A'| \le |L_{[n/2]}|$. However, in the assumption, $|A| > |L_{[n/2]}|$). Here comes a contradiction, so the assumption doesn't make sense. In other words, there is no larger antichain than $L_{n/2}$.

In conclusion, the largest antichain is the set of all the elements with [n/2] 1s. The size is $C_n^{[n/2]}$.

2.3 Infinite Sets

In the lecture (and the lecture notes) we have showed that $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$, i.e., there is a bijection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. From this, and by induction, it follows quite easily that $\mathbb{N}^k \cong \mathbb{N}$ for every k.

Exercise 2.9. Consider \mathbb{N}^* , the set of all finite sequences of natural numbers, that is, $\mathbb{N}^* = \{\epsilon\} \cup \mathbb{N} \cup \mathbb{N}^2 \cup \mathbb{N}^3 \cup \dots$ Here, ϵ is the empty sequence. Show that c by defining a bijection $\mathbb{N} \to \mathbb{N}^*$.

Proof. We can sort the elements in \mathbb{N}^* by the sum of value. For example, (1), $(1,1), (2), (1,1,1), (1,2), (2,1), (3), (1,1,1,1), (1,1,2), (1,3), (2,1,1), \cdots$ If two elements have the same sum, we sort them by lexicographic order. In this way, each element in \mathbb{N}^* can be mapped to a unique natural number, and each natural number can be mapped to a unique element in \mathbb{N}^* . So $\mathbb{N} \to \mathbb{N}^*$ is a bijection, $\mathbb{N} \cong \mathbb{N}^*$.

Exercise 2.10. Show that $\mathbb{R} \cong \mathbb{R} \times \mathbb{R}$. Hint: Use the fact that $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$ and thus show that $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

Proof. For every element in $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$, let it be $r_1 \times r_2$, Define: $r_1 = (a_1, a_2, \dots, a_n, \dots), r_2 = (b_1, b_2, \dots, b_n, \dots), a_i, b_i = 0 \text{ or } 1$ $r = (a_1, b_1, a_2, b_2, \cdots, a_n, b_n, \cdots)$

It is easy to proof that each element $r_1 \times r_2$ in $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$ can be mapped to an element r in $\{0,1\}^{\mathbb{N}}$, and different $r_1 \times r_2$ is mapped to different r. So $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$. Combine $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$, we get the conclusion $\mathbb{R} \cong \mathbb{R} \times \mathbb{R}$.

Exercise 2.11. Consider $\mathbb{R}^{\mathbb{N}}$, the set of all infinite sequences (r_1, r_2, r_3, \dots) of real numbers. Show that $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$. Hint: Again, use the fact that $\mathbb{R} \cong$ $\{0,1\}^{\mathbb{N}}$.

Proof. Known that
$$\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$$
, we suppose that $x \in \mathbb{R}^{\mathbb{N}}$, $x \to \begin{bmatrix} r_1 \\ r_2 \\ \cdots \\ r_n \\ \cdots \end{bmatrix}$, where $r_i = (a_{i1}, a_{i2}, \cdots, a_{in}, \cdots)$, $a_{ij} = 0$ or 1. Then $x \to \begin{bmatrix} a_{11}, a_{12}, \cdots, a_{1n}, \cdots \\ a_{21}, a_{22}, \cdots, a_{2n}, \cdots \\ \cdots \\ a_{n1}, a_{n2}, \cdots, a_{nn}, \cdots \end{bmatrix}$.

Define: $r = (a_{11}, a_{21}, a_{12}, a_{31}, a_{22}, a_{13}, \dots, a_{n+1}, a_{nn}, a_{n-1}, a_{nn}, a_{n-1}, \dots)$. It is clear that $x \to r$.

In this way, we can proof that each element in $\mathbb{R}^{\mathbb{N}}$ can be mapped to a unique element r in $\{0,1\}^{\mathbb{N}}$, and the converse is also true. So $\mathbb{R}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}}$. Combine $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$, we get the conclusion $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$.

Next, let us view $\{0,1\}^{\mathbb{N}}$ as a partial ordering: given two elements $\mathbf{a}, \mathbf{b} \in \{0,1\}^{\mathbb{N}}$, that is, sequences $\mathbf{a} = (a_1, a_2, \dots)$ and $\mathbf{b} = (b_1, b_2, \dots)$, we define $\mathbf{a} \leq \mathbf{b}$ if $a_i \leq b_i$ for all $i \in \mathbb{N}$. Clearly, $(0,0,\dots)$ is the minimum element in this ordering and $(1,1,\dots)$ the maximum.

Exercise 2.12. Give a countably infinite chain in $\{0,1\}^{\mathbb{N}}$. Remember that a set A is countably infinite if $A \cong \mathbb{N}$.

Answer Construct a map between \mathbb{N} and $\{0,1\}^{\mathbb{N}}$:

$$f(n) = (\underbrace{1, 1, \dots, 1}_{\text{k ones}}, 0, 0 \dots)$$

We can find that $\forall i < j$, f(i) < f(j). (Equal at the first i positions and after the j^{th} position, less at the i^{th} to j^{th}). So $A = \{f(1), f(2), \dots\}$ is an infinite chain.

Because f is a bijection between \mathbb{N} and A, so A is countable.

Exercise 2.13. Find a countably infinite antichain in $\{0,1\}^{\mathbb{N}}$.

Answer Construct a map between \mathbb{N} and $\{0,1\}^{\mathbb{N}}$:

$$f(n) = (0, 0, \dots, 0, \underbrace{1}_{k^{th} \text{ position}}, 0, 0 \dots)$$

We can find that $\forall i \neq j$, f(i) and f(j) are incomparable. (Greater at the i^{th} position and less at the j^{th}). So $A = \{f(1), f(2), \ldots\}$ is an infinite antichain.

Similarly, because f is a bijection between \mathbb{N} and A, so A is countable.

Exercise 2.14. Find an uncountable antichain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.

Answer First, we find a function F(x) whose definition domain is $\{0,1\}^{\mathbb{N}}$. To describe the function, we make $x_{i,j}$ denote the ith and jth bits of infinite bit sequence x. Then F(x) can be described as follows.

$$F(x)_{2i-1,2i} = \begin{cases} 01 & x_i = 0, i \ge 1\\ 10 & x_i = 1, i \ge 1 \end{cases}$$
 (2)

Let set A be the value domain of F(x). Since the function above is a bijection obviously, we can say $A \cong \{0,1\}^{\mathbb{N}}$. And according to the definition, all the elements of A share the same number of 1s, which means they can't compare with each other. In other words, A is an uncountable antichain.

**Exercise 2.15. Find an uncountable chain in $\{0,1\}^{\mathbb{N}}$. That is, an antichain A with $A \cong \mathbb{R}$.

Answer First, we construct a function G(x) whose definition domain is $\{0,1\}^{\mathbb{N}}$.

To describe the function, we make $x_{(i,j)}$ denote the ith to the jth bits of infinite bit sequence x. Define ToTen(y) is a function to transfer a binary number y to decimal. Then G(x) can be described as follows.

$$G(x)_{(2^{i},2^{i+1}-1)} = \underbrace{1,1,1,1,\dots,1,1}_{ToTen(x_{(1,i)})} \underbrace{0,0,0,0,\dots,0,0}_{(2^{i}-ToTen(x_{(1,i)}))} \underbrace{0}_{0s}$$
(3)

Let set A be the value domain of G(x).

Obviously, G(x) is a bijective function from $\{0,1\}^{\mathbb{N}}$ to A. Therefore, $A \cong \{0,1\}^{\mathbb{N}} \cong \mathbb{R}$. In other words, A is uncountable.

Given two bit sequences a and b, define $a \leq b$ if $a \leq b$ as binary numbers. For $(\{0,1\}^{\mathbb{N}}, \leq), \{0,1\}^{\mathbb{N}}$ is obviously a chain.

Given two elements $x1, x2 \in \{0, 1\}^{\mathbb{N}}$. If $x1 \leq x2$, $\forall i \in \mathbb{N}_0^n, x1_{(1,i)} \leq x2_{(1,i)}$. According to the definition of G(x), if $x1_{(1,i)} \leq x2_{(1,i)}$, $G(x1)_{(2^i,2^{i+1}-1)} \leq G(x2)_{(2^i,2^{i+1}-1)}$. This means when $x1 \leq x2$, $G(x1) \leq G(x2)$.

So $\forall x 1, x 2 \in \{0, 1\}^{\mathbb{N}}$, because x1 and x2 are comparable for \leq , G(x1) and G(x2) are comparable for \leq . Due to the fact that G(x) is a bijective function, A is a chain for \leq .

In conclusion, A is an uncountable chain.

3 Questions

3.1

We have almost no idea on exercise 2.15,

3.2

(A generalization of exercise 2.1 2.3)

Let E_4 be the set of all equivalence relations on $\{1, 2, ..., n\}$. Note that E_4 is ordered by set inclusion, i.e.,

$$(E_4, \{(R_1, R_2) \in E_4 \times E_4 | R_1 \subset R_2\})$$
 (4)

is a partial ordering.

Q1 What's the size of the largest chain?

Conjecture n

*Q2 What's the size of the largest anti-chain?