Dynamic Programming and Greedy Search

Leticia Peres & Héctor Palacios

Agenda

- Context: Description of the problem to be solved
- Dynamic Programming (DP)
 - Elements of DP
 - Example: Matrix-chain multiplication
 - Recursive vs. Iterative algorithms
- Greedy Algorithms (GA)
 - General Idea
 - Example: Activity-selection problem
 - Summarizing: Elements to develop a GA
 - Other examples: knapsack problem, minimum spanning tree.

Context of use

- Optimization problems, *i.e.*...
 - -State naming a configuration: $s \in S$
 - Cost asociated to states: $c(s):S \to \mathbb{R}$
- \bullet Some of them are solutions: $Sols \subset S$
- Objetive: find an optimal solution: $S' \in Sols$
- Optimal means minimum cost
- May be that there are many optimal solutions, one is enough

First aproximation: General Idea

- Divide-and-Conquer
 - Decompose the problem into subproblems
 - Merge the solutions of the subproblems into the solution of the big problem
- If there are subproblems that overlap between them: Dynamic Programming

Elements of DP: Optimal Substructure

- Optimal solution to a problem contains optimal solutions to subproblems
- ullet Solve first subproblem and use it to ${f construct}$ the optimal for the problem
- But you have to check all the possible ways of obtain a decomposition into subproblems
- It leads to a recursive algoritm

Elements of DP: Overlapping Subproblem

- Naive recursive solution seems to be exponential
- It is possible solve each subproblem just one time
- Two solutions:
 - -Memoization: Each time you need to solve a problem, look if it was already solved.
 - Iterative version that proceeds bottom-up

Example: Matrix-chain multiplication

• Sequence of *n* matrices to be multiplied:

$$A_1 \times A_2 \times \ldots \times A_n$$

- We can parenthesize in many ways, obtaning very differents number of operations:
 - Ej: $A \times B \times C$ of dimensions $10 \times 100, 100 \times 5, 5 \times 50$
 - Using naive functions for multiplying pairs of matrices:
 - $*((A \times B) \times C)$ takes $10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7,500$
 - * $(A \times (B \times C))$ takes $100 \cdot 5 \cdot 50 + 10 \cdot 100 \cdot 50 = 75,000$
- The order of multiplication does matters
- Our problem: obtain an optimal order (check all possible parenthesizations! $\longrightarrow O(2^n)$)

Matrix-chain Mult: Optimal substructure

- Let $A_{i..i}$, $i \leq j$, the result of $A_i A_{i+1} \dots A_j$
- Any parenthesization must split between A_k and A_{k+1} , $i \leq k < j$. i.e. $A_{i...j}$ is calculated multiplying $A_{i...k}$ and $A_{k+1...j}$
- The cost of this way to calculate, is the cost of both parts.
- \bullet So, if we have an optimal order $O_{i..j}$ for calculate $A_{i..j}$, it split the product at some k
- Then, using that (sub)order for $A_{i..k}$ and $A_{k+1..i}$ must be optimal too
- ullet In other case, it will exists a ${f better}$ order than $O_{i..i}$ (combining the new optimal suborders to construct a new globally optimal order)

Matrix-chain Mult: Recursive solution

- Let m[i,j] the minimum number of multiplications needed to compute $A_{i...j}$
- The cost of the global problem $(A_{1..n})$ is m[1,n]: we want to minimize it (optimization problem)
- Cases on i, j
 - -i=j, no cost
 - -i < j, assuming a split point k, the cost is

$$m[i,k] + m[k+1,j] + p_{i-1} p_k p_j$$

where matrix A_i have dimensions $p_{i-1} \times p_i$

Matrix-chain Mult: Recursive solution

- But we have to choose a k that minimize the cost
- It leads to

$$m[i,k] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} m[i,k] + m[k+1] + p_{i-1} p_k p_j & \text{if } i < j \end{cases}$$

- Keep records of choices to recover the solution: s[i,j]=k choosed to minimize in previous equation
- \bullet Easy to implement as a naive recursive algorithm, but $O(2^n)$

Matrix-chain Mult: Overlapping structure

- The naive recursive algorithm is $O(2^n)$
- Number of subproblems: choice i and j s.t. $1 \le i \le j \le n$ which is $\approx \binom{n}{2} \approx \Theta(n^2)$
- Executing the naive recursive algorithm, it will find each subproblem many times
- ullet Idea: Remember the solution to each new subproblem we find (Memoization)

Matrix-chain Mult: Memoized version

```
MATRIX-CHAIN-ORDER(p)
     n \leftarrow \operatorname{length}[p] - 1
     for i \leftarrow 1 to n
       do for j \leftarrow i to n
          do m[i,j] \leftarrow \infty (initialize to "undefined" table entries)
     return Lookup-Chain(p, 1, n)
LOOKUP-CHAIN(p, i, j)
     if m[i,j] < \infty (see if we know or not)
       then return m[i,j]
     if i = j
       then m[i,j] = 0
       else for k \leftarrow i to j-1
              \mathbf{do} \neq \mathsf{Lookup\text{-}Chain}(p,\,i,\,k) \ +
                       LOOKUP-CHAIN(p, k + 1, j) + p_{i-1} p_k p_j
                  if q < m[i,j]
                     then m[i,j] \leftarrow q
     return m[i,j]
```

Matrix-chain Mult: Memoized version

- Each subproblem is computed just one time: $O(n^2)$
- \bullet Each time a subproblem is calculated, it requires O(n) calls
- So, it is $O(n^3)$
- We can also give a iterative version, without memoization
- It is useful when you have to calculate all the subproblems
- Or make optimizations on time or space
- (Literature uses to present DP going directly to iterative or tabular version)

Matrix-chain Mult: Iterative version

```
MATRIX-CHAIN-ORDER(p)
   n \leftarrow \operatorname{length}[p]
    for i \leftarrow 1 to n
          do m[i,i] \leftarrow 0
    for l \leftarrow 2 to n
          do for i \leftarrow 1 to n - l + 1
                     do j \leftarrow i + l - 1
                          m[i,j] \leftarrow \infty
                          for k \leftarrow i to j-1
                                      \mathbf{do} \ q \leftarrow m[i,k] + m[k+1,j] + p_{i-1} \ p_k \ p_j
                                      if q < m[i,j]
                                          then m[i,j] \leftarrow q
                                                   s[i,j] \leftarrow k
    return m and s
```

• Note the filling of s[i, j]

Context of use GA

- Optimization problems, i.e....
 - -State naming a configuration: $s \in S$
 - Cost associated to states: $c(s): S \to \mathbb{R}$
- Some of them are solutions: $Sols \subset S$
- Objetive: find an optimal solution: $S' \in Sols$
- Optimal means minimum cost
- May be that there are many optimal solutions, one is enough

First aproximation: General Idea

- If there are subproblems that overlap between them: maybe there is a Greedy Algorithm (GA)
- GA decides for the solution that seems better at the moment (local decision)
- GA will work when this decision reaches to the globally optimal solution

Using the initial idea of GA: An Example

- Problem: scheduling of several competing activities that require exclusive use of a common resource (ex scheduling many activities that can be conduced in a lecture hall, but only one at a time)
- Goal: to select a maximum-size set of mutually compatible activities

An activity-selection problem (ASP)

- Suppose we have a set
 - $S = \{a_1, a_2, ..., a_n\}$ of activities that wish use a resource.
- Each activity a_i has
 - a start time s_i
 - a finish time f_i
 - where $0 \le s_i < f_i < \infty$
- Activities a_i and a_j are compatible if $s_i \geq f_j$ or $s_j \geq f_i$

Starting with a dynamic-programming solution

- We start developing a dynamic-programming solution to the ASP
 - 1. to find the optimal substructure
 - 2. to use it to construct an optimal solution to the problem from optimal solutions to subproblems

To find the optimal substructure

• Define an appropriate space of subproblems

$$S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le s_j \}$$

 S_{ij} is the subset of all compatible activities in S that can start after activity a_i finishes and finish before activity a_j starts

• In order to represent the entire problem, we adopt:

$$a_0$$
 and a_{n+1} , $f_0=0$ and $s_{n+1}=\infty$

Then

$$S = S_{0,n+1} \text{ and } 0 \le i, j \le n+1$$

Space of subproblems

 Let us assume that we have sorted the activities in monotonically increasing order of finish time:

$$f_0 \le f_1 \le f_2 \le \dots \le f_n \le f_{n+1}$$
 ($S_{ij} = \{\}$ whenever $i \ge j$)

ullet We can conclude that our space of subproblems is to select a $\operatorname{maximum}$ size subset of mutually compatible activities from S_{ij} , for $0 \le i < j$ $j \leq n+1$ knowing that all other S_{ij} are empty.

... to see the substructure of the ASP

- Subset S_{ij} can be seen like a subproblem
- ullet Consider now some non-empty S_{ij} a
- ullet Suppose that a solution to S_{ij} includes some activity a_k so that $f_i \leq s_k < f_k \leq s_i$
- Activity a_k generates two subproblems: S_{ik} and S_{kj} , s.t. S_{ik} , $S_{kj} \in$ S_{ij}
- ullet Our solution to S_{ij} is the union of the solutions to S_{ik} and S_{kj} , along with the activity a_k
- The size of solution $S_{ij} =$ size of solution to S_{ik} + size of solution to S_{kj} + one (a_k)

At least, the optimal substructure!

Suppose,

 A_{ij} is an optimal solution to S_{ij}

 A_{ij} includes activity a_k

- ullet Then the solutions A_{ik} to S_{ik} and A_{kj} to S_{kj} used within this optimal solution to S_{ij} must be optimal as well.
- In other case, we will have a solution better than A_{ik} , named A'_{ik} . We can construct A'_{ij} combining A'_{ik} with A_{kj} that will be a better solution than A_{ij} which is a contradiction.
- ullet Similarly with A_{kj} and A'_{kj} to S_{kj} and A_{ij}

Constructing an optimal solution

- We see that
 - Any solution to a nonempty subproblem S_{ij} includes some activity a_k ,
 - Any optimal solution contains optimal solutions to subproblem instances S_{ik} and S_{kj} .
- It is possible to build a maximum-size subset of mutually compatible activities in S_{ij} by:
 - 1. splitting the problem into two subproblems S_{ik} and S_{kj}
 - 2. finding maximum-size subsets A_{ik} and A_{kj} of mutually compatible activities for these problems, and
 - **3**. forming our maximum-size subset A_{ij} of mutually compatible activities as

$$A_{ij} = A_{ik} \cup a_k \cup A_{kj}$$

4. An optimal solution to the entire problem is a solution to $S_0, n+1$

Now, a recursive solution...

The second step in developing a dynamic-programming solution is to recursively define the value of an optimal solution,

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \{ \} \\ \max_{i < k < j, a_k \in S_{ij}} c[i,k] + c[k,j] + 1 \text{ if } S_{ij} \neq \{ \} \end{cases}$$

Finally a greedy solution!

ullet Consider any nonempty subproblem S_{ij} , and let a_m be the activity in S_{ij} with the earliest finish time:

$$f_m = min\{f_k : a_k \in S_{ij}\}$$

- Then
 - 1. Activity a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}
 - **2**. The subproblem S_{im} is empty, so that choosing a_m leaves the subproblem S_{mj} as the only one that may be nonempty.

Proof

- ullet (2) Suppose that S_{im} is nonempty, so that there is some activity a_k such that $f_i \leq s_k < f_k \leq s_m < f_m$.
- ullet Then a_k is also S_{ij} and it has an earlier finish time than a_m , which contradicts our choice of a_m . We conclude that S_{im} is empty.

Proof

- ullet (1) Suppose that A_{ij} is a maximum-size subset of mutually compatible activities of S_{ij} , and the activities in A_{ij} are monotonically increasing ordered by finish time.
- Let a_k be the first activity in A_{ij} .
- If $a_k = a_m$, a_m is used in A_{ij} .
- If $a_k \neq a_m$, we construct the subset $A'_i j = A_{ij} a_k \cup a_m$.
 - 1. The activities in A'_{ij} are disjoint, since the activities in A_{ij} are. a_k is the first activity in A_{ij} to finish. $f_m \leq f_k$.
 - **2**. Noting that A'_{ij} has the same number of activities as A_{ij} , we see that $A'_{i,i}$ is a maximum-size subset of mutually compatible activities of S_{ij} that includes a_m .

Importance of this theorem

- Reduces to only one subproblem to be used in an optimal solution of the example
- \bullet To solve the subproblem S_{ij} , we need consider only one choice: the one with the earliest finish time in S_{ij} .
- Yet, we can solve each subproblem in a top-down fashion:
 - To solve S_{ij}
 - **1**. Choose a_m in S_{ij} with the earliest finish time
 - **2**. Let S_{mj} the set of activities used in an optimal solution to the subproblem A_{mj}
 - **3**. Add A_{mj} to S_{ij}
 - Having chosen a_m , we will use a solution to S_{mj} in our optimal solution to S_{ij}
 - So, we do not need to solve S_{mj} before solving S_{ij}
 - To solve S_{ij} , we can first choose a_m as the activity in S_{ij} with the earliest finish time and then solve S_{mj} .

A recursive greedy algorithm

```
RECURSIVE-ACTIVITY-SELECTOR(s, f, i, n)
  m \leftarrow i + 1
  while m \leq n and s_m \leq f_i
      do m \leftarrow m + 1
  if m \leq n
     then return
              \{a_m\} \cup RECURSIVE-ACTIVITY-SELECTOR(s, f, m, n)
     else return { }
```

A iterative greedy algorithm

```
GREEDY-ACTIVITY-SELECTOR(s, f)
    n \leftarrow \operatorname{length}[S]
    A \leftarrow \{a_1\}
    i \leftarrow 1
    for m \leftarrow 2 to n
           do if s_m \geq f_i
                     then A \leftarrow A \cup \{a_m\}
                              i \leftarrow m
    return A
```

Patterns in subproblems and activities

- Note that there is a pattern to the subproblems that we solve.
 - -Our original problem is $S = S_{0,n+1}$. Suppose that we choose a_{m_1} as the activity in $S_{0,n+1}$ with the earliest finish time. Our next subproblem is $S_{m_1,n+1}$.
 - -Now suppose that we choose a_{m_2} as as the activity in $S_{m_1,n+1}$ with the earliest finish time. Our next subproblem is in $S_{m_2,n+1}$. and continuing... Each subproblem will be of the form $S_{m_i,n+1}$, for some activity number m_i .

Patterns in subproblems and activities

- There is also a pattern to the activities that we choose:
 - Because we always choose the activity with the earliest finish time in $S_{m_i,n+1}$, the finish times of the activities chosen over all subproblems will be strictly increasing over time.
 - The activity a_m that we choose when solving a subproblem is always the one with the earliest finish time that can be legally scheduled.
 - The activity picked is thus a "greedy" choice: one that maximizes the amount of unscheduled time remaining.

Elements of Greedy Strategy

- What have we done on activity-selection example?
 - Determined the optimal substructure
 - Developed a recursive version
 - Shown that always one of the optimal choices is the greedy choice
 - Shown that just left one non-empty subproblem
 - Given the recursive and iterative algorithm (it doesn't matter so much in greedy search)
- It is necessary to follow all these steps?
- If we are focused on a greedy solution
 - See the optimization problem as make a greedy choice and solve the subproblem
 - Show that there is always an optimal solution that makes the greedy choice
 - Prove that combining the solution to the subproblem with the greedy choice, we obtain an globally optimal solution

Elements of GS: Greedy-choice property

- Greedy choice property: An optimal solution can be obtained by making locally optimal choice
- Note that in DP we make also a choice, but it depends on the solutions to subproblems
- We must prove that a greedy choice at each step yields a globally optimal solution
 - It usually involve examine the solution to a problem
 - Then show that it can be modified to use the greedy choice
 - It will left just one and simpler subproblem
- It is common to make some preprocessing on data: order data, etc.

Elements of GS: Optimal substructure

• Instead of think the optimal substructure in general (DP) It is enough show that an optimal solution to the subproblem, combined with the greedy choice, yields a globally optimal solution

- A thief has a knapsack that holds at most W pounds
- 0 1 knapsack problem:
 - Each item must be taken or left (0-1)
 - thief must choose items to maximize the value stolen and still fit into the knapsack
 - For each item i: (v_i , w_i) (v = value, w = weight)
- Fractional knapsack problem:

takes parts, as well as wholes

 Both the 0 - 1 and fractional problems have the optimal substructure property

• 0 - 1 knapsack problem:

- -Consider the most valuable load that weights at most Wpounds
- -Removing item j from the load, the remaining load must be the most valuable load weighing at most $W-w_i$ that the thief can take (excluding item j)

• Fractional knapsack problem:

- Removing a weight w of one item j, the remaining load must be the most valuable load weighting at most W-w that the thief can take (including $w_j - w$ for item j)

- But Fractional can be solved by a GA, and 0-1 can't
- Fractional knapsack problem:
 - Greedy choice: Take as much as possible of the item with the greatest value per pound

• 0 - 1 knapsack problem:

Figure 17.2 The greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

Minimun Spanning Tree (MST)

- ullet Having a graph G with a weight w(e) associated to each edge e
- ullet Problem: obtain a tree T covering G with minimun cost

$$\sum_{e \in Edges(T)} w(e)$$

- Start from a vertex (a simple partial MST)
- Greedy Choice: grown from the current spanning tree by adding the nearest vertex. (Prim's algorithm)
- The nearest vertex will be going througt the edge with minimum cost

Finally

- ullet When solving optimization problems it is useful study the structure of the space
- Becasu some structures suggest some kinds of algorithms
- Be sure that the problem have optimal substructure
- Sometimes it will have a greedy choice
- Greedy search is also useful to obtain sub-optimal solutions
- It is related with other local search algorithms: simulated annealing, tabu search, genetic algorithms, etc.

Finished

• Thank you!

• Questions? Comments?

Credits

- Introduction to Algorithms (2nd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein.
- Many sources on Internet
- Andreas Kaltenbrunnner and Dani Martí for provide us the Latex format and even posterior support

Prim Algorithm

Prim(G) Select an arbitrary vertex to start While (there are vertices dont cover by the tree) select minimum-weight edge between tree and fringe add the selected edge and vertex to the tree

Why is Prim's algorithm correct?

Theorem: Let G be a connected, weighted graph and let be a subset of the edges in a MST .

Let V' be the vertices incident with edges in E'. If (x,y) is an edge of minimum weight such that and y is not in V', then is a subset of a minimum spanning tree.

Proof: If the edge is in T, this is trivial.

Suppose (x,y) is not in T Then there must be a path in T from x to y since T is connected.

If (v,w) is the first edge on this path with one edge in V',

if we delete it and replace it with (x, y) we get a spanning tree.

This tree must have smaller weight than T, since $W(v,w) \geq W(x,y)$.

Thus T could not have been the MST.