

Titanic Data Analysis

SAS - Statistical Analysis Software

SOMMAIRE

Importation des données

Étude des données

Data Processing

Régression Logistique

Importation des données

Importation des données (1/3)

Importation des données (2/3)

Importation des données (3/3)

Étude des données

Étude des données (1/3)

Étude des données – Statistiques (2/3)


```
DBMS=CSV
OUT=Dataset_Titanic;
GETNAMES=YES;
RUN;

PROC CONTENTS DATA=Dataset_Titanic; RUN;

/*First Few Rows of the Dataset*/
proc print data=dataset_titanic (obs=5); /* Display the first 5 r run;

/* Summary Statistics*/
proc means data=dataset_titanic;
var age fare Pclass;
run;
```

La procédure MEANS

Variable	N	Moyenne	Ec-type	Minimum	Maximum
Age	332	30.2725904	14.1812092	0.1700000	76.0000000
Fare	417	35.6271885	55.9075762	0	512.3292000
Pclass	418	2.2655502	0.8418376	1.0000000	3.0000000

Étude des données – Distribution (2/3)

Étude des données - Valeurs manquantes (2/3)

	La procédure f	FREQ	
Fréquence	Pourcentage	Fréquence cumulée	Pourcentage cumulé

0

152

418

36.36

100.00

1 20

Passengerld Pclass

152

266

female

Tic	cket	Fréquence	Pourcentage	Fréquence cumulée	Pourcentage cumulé
11	0469	1	0.24	1	0.24
11	0489	1	0.24	2	0.48
11	0813	1	0.24	3	0.72
111	1163	1	0.24	4	0.96

63.64

Étude des données – Corrélation des variables (3/3)

Statistiques simples						
Variable	N	Moyenne	Ec-type	Somme	Minimum	Maximum
Age	714	29.69912	14.52650	21205	0.42000	80.00000
Fare	891	32.20421	49.69343	28694	0	512.32920
Pclass	891	2.30864	0.83607	2057	1.00000	3.00000
Gender	891	0.35241	0.47799	314.00000	0	1.00000
Survived	891	0.38384	0.48659	342.00000	0	1.00000

Coefficients de corrélation de Pearson Proba > r sous H0: Rho=0 Nombre d'observations						
	Age	Fare	Pclass	Gender	Survived	
Age	1.00000 714	0.09607 0.0102 714	-0.36923 <.0001 714	-0.09325 0.0127 714	-0.07722 0.0391 714	
Fare	0.09607 0.0102 714	1.00000 891	-0.54950 <.0001 891	0.18233 <.0001 891	0.25731 <.0001 891	
Pclass	-0.36923 <.0001 714	-0.54950 <.0001 891	1.00000 891	-0.13190 <.0001 891	-0.33848 <.0001 891	
Gender	-0.09325 0.0127 714	0.18233 <.0001 891	-0.13190 <.0001 891	1.00000 891	0.54335 <.0001 891	
Survived	-0.07722 0.0391 714	0.25731 <.0001 891	-0.33848 <.0001 891	0.54335 <.0001 891	1.00000 891	

Data Processing

Data Processing – Gestion des Valeurs manquantes (méthode de la moyenne)

Data Processing – Gestion des Valeurs (Encodage)

Data Science - Exemple

RÉGRESSION LOGISTIQUE – Implémentation du modèle


```
149
150
151 /* Train a logistic regression model and save it */
152 proc logistic data=train titanic dataset outmodel=your trained model;
       /* Target variable: Survived (1 for survived, 0 for not survived) */
153
154
      /* Definition of predictor variables */
155
       model Survived(event='1') = Age Fare Pclass Gender;
156
157
       /* Specify options (e.g., selection methods, interactions, etc.) */
158
       /* selection=stepwise; */
159
160
       /* Output the results, including parameter estimates and model fit statistics */
161
       ods output ParameterEstimates=LogRegParams FitStatistics=ModelFitStats;
162 run;
163
164
```


RÉGRESSION LOGISTIQUE – Evaluation du modèle


```
179 /* Load the scored dataset (containing predicted probabilities) */
       set scored; /* Replace with the actual name of your scored dataset */
182 run;
183
184 /* Calculate the Mean Squared Error (MSE) */
185 data squared error;
       set scored:
       /* Calculate the squared error for each observation */
187
       squared_error = (Survived - P_1) ** 2;
189 run;
190
    /* Calculate the overall Mean Squared Error (MSE) */
   proc means data=squared error mean;
       var squared error;
       output out=mse results mean=MSE;
194
195 run;
196
```

La procédure MEANS

Variable d'analyse : squared_error

Moyenne

0.1429785