TensorFlow and you

A very incomplete intro to neural networks

Carlos de Lannoy - TechTalk - March 21st 2018

Overview

- The what, why and how
- Simple to intricate networks
- Tensorflow: a short intro and building your first NN
- Other flavors of NN

In short: the what, why and how

In short: the what, why and how

WHAT

A universal approximator

WHY

- You have (a lot of) data and a problem
- Relationship exists but is unclear
- You just want something that works

HOW

Weighted linear combinations, non-linear transformations (and some tricks...)

The why not

- You don't have heaps of well-annotated data
- You want an easily understandable model
- You want a one-button solution

Stochastic = choose a random (subset of) example(s) each training step

Gradient = determine the behavior of the quality measure around current value

Descent = move in the direction that will net the most improvement

www.bogotobogo.com/python/scikit-learn/images/Batch-vs-Stochastic-Gradient-Descent/

playground.tensorflow.org

3 + 1 neurons

3 + 1 neurons

8 + 8 + 8 + 8 + 8 + 8 neurons

Library	Compile (s)	Train (µs)	Forward only (µs)
Theano	4.36	275.2	102.2
Torch	0.05	288.2	114.6
TensorFlow	1.62	349.7	218.4

RNN benchmark:

https://github.com/glample/rnn-benchmarks

Batch size 32 - Hidden Size 512

An NN in TensorFlow

- 1. Define placeholders for things that go in and out
- 2. Define variables for things that should vary
- 3. Define what to optimize and how
- 4. Start a session

To the notebook!

Chair, bed, wardrobe: different flavors of NNs

- Convolutional Neural Networks
 - o tf.nn.conv2d
- Recurrent Neural Networks
 - tf.contrib.rnn.BasicLSTMCell + tf.contrib.rnn.MultiRNNCell

Convolutional Neural Networks

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

	50.0	
30		100
30		100

1	0	1
0	1	0
1	0	1

Image

Convolved Feature

http://cs231n.github.io/understanding-cnn/

Protein-protein interaction prediction

Filter Interpretation

0.3

Both Motifs present max pool layer output

Single case motifs:

IRECF + VGVAP

Ronald de Jongh

Recurrent Neural Networks

Recurrent neural networks

An example: MinION signal classification

