60 Int - Cl2, C 08 L 9/00 C 08 L 7/00 C 08 L 71/02 C 08 K 5/37 C 08 K 5/21 C 08 K 5/34 C 08 K 3 /22 ②日本分類 25(1) B 33 25(1) A 272.2 ⑪日本国 特許庁

公

許

特

OD特許出願公告

昭50-4032

63公告 昭和50年(1975)2月13日

発明の数 1

(全13頁)

1

❷ゴム加硫物の製造法

到特 昭45-9083

砂出 昭45(1970)2月3日

勿発 明 斉藤孝臣

鎌倉市梶原982の5

同 极井英嘉

横須賀市坂本町5の13

同 石井公男

横須賀市衣笠栄町1の56

顧 人 日本ゼオン株式会社 **分出**

東京都千代田区丸の内2の6の1

②代 理 人 弁理士 小田島平吉 外1名

発明の詳細な説明

本発明はゴム組成物の製造法に関し、さらに詳 しくは、有機ポリサルフアイト類、2ーメルカブ トイミダンリン類またはチオウレフ類ならびにマ グネシウム、カルシウム、亜鉛および鉛より選ば て、ジエン系エラストマーとエピハロヒドリン重 合体類とを共加硫することを特徴とする、特に耐 オゾン性および耐屈曲き裂性の優れたゴム加硫物 の製造法に関するものである。

ンゴム、ステレン、プタジエンゴム、アクリロニ トリル・プタジエンゴム、アクリロニトリル・イ ソプレンゴムなどのごときジエン系エラストマー は不飽和結合を有するため、空気中のオゾンと反 ゴム製品の性能上または外観上教命的な欠点とな るため、ジエン系エラストマーに耐オゾン性の優 れたゴムを混合することにより、耐オソン性を改 良することがしばしば行なわれる。その目的のた ン性の優れたエピハロヒドリン重合体類との混合 を検討した結果、このような混合系ゴム組成物の

耐オゾン性は加硫系に著しく影響を受けることが わかつた。そこで、耐オゾン性を向上せしめる加 **硫系を見い出すべくさらに研究を続けた結果、前** 配の三成分系加硫剤を用いてジエン系エラストマ 5 ーとエピハロヒドリン重合体類とを共加硫するこ とにより耐オゾン性を着しく向上させることがで きた。

2

従来、異種重合体を混合する場合には、それぞ れのゴムの代表的加硫系をそれぞれの重合体の混 10 合比に応じて加えて加硫するのが一般的である。 このような考えから、ジエン系エラストマーの代 表的加硫系である硫黄 一促進剤 - ステアリン酸 -酸化亜鉛系ならびに エピハロヒドリン重合体類の 代表的加硫系である 2 ーメルカプトイミドアゾリ 15 ン一鉛丹系を、それぞれの重合体の混合比に応じ て添加して共加硫しても、得られる加硫物は耐ォ ゾン性が期待されるほど向上せず、また耐屈曲亀 裂性が著しく劣る。さらに、硫黄で硫化可能なゴ ムとエピハロヒドリン重合体類との共加硫剤とし れる金属の酸化物より本質的になる加硫剤を用い 20 てすでに知られている 2 ーメルカプトイミダゾリ ン一硫黄一金属酸化物(特公昭43一18441) によつても期待されるほどの耐オゾン性向上効果 が認められず、また耐屈曲亀裂性も劣る。

以上のように従来の一般的に考えられる加硫系 天然ゴム、ポリプタジエンゴム、ポリイソプレ 25 によつては解決し得ない点も、本発明加硫系によ れば容易に解決することができる。すなわち、ジ エン系エラストマーの耐オゾン性改良は、酸エラ ストマーにエピハロヒドリン重合体類を混合し、 前配に示す本発明三成分系加硫剤を用い、ジエン 応して亀裂を生じる。このようなオゾン亀裂は、 30 系エラストマーの代表的加硫剤である硫黄を用い ることなしに共加硫することによつて、はじめて 達成されるものであり、さらには従来の加硫系に よつては期待できないほどの優れた耐屈曲亀裂性 および耐老化性をも与えることができる。また、 めに本発明者等はジエン系エラストマーと耐オゾ 35 引張強さ、伸びなどの基本的物性についても、従 来の加硫物と同等の性能を具備しているので、本 発明により製造されたゴム加硫物は、ジエン系エ

ラストマーの種類を選択することにより、耐オゾ ン性、耐屈曲亀裂性、耐老化性を要求される分野 のみにとどまらず、広く一般的な用途に供すると とが可能である。

本発明によつて前記ジエン系エラストマーと共 5 加硫し得るエピハロヒドリン重合体類としては、 エピクロルヒドリンもしくはエピプロモヒドリン 単一重合体、二種の異なるエピハロヒドリンの共 重合体および一種のエピハロヒドリンと共重合し 得る他の単量体との共重合体などがあり、共重合 10 しうる。これらのうち代表的なものはテトラメチ し得る他の単量体としては、エチレンオキシド、 プロピレンオキジド、プチレンオキシド、ブタジ エンモノオキシド、シクロヘキセンオキシド、エ チルグリシジルエーテル、アリルグリシジルエー テルなどのごときエポキシド類;エチルイソシア 15 イドなどである。 ネート、フエニルイソシアネート、2,4ートリ レンジイソシアネートなどのごときイソシアネー ト類:アクリル酸エチル、メタクリル酸メチルな どのごときアルキルアクリレート類;メチルビニ ルケトン、シクロヘキシルビニルケトンなどのご 20 ときピニルケトン類;無水マレイン酸、無水コハ ク酸、無水フタル酸などのごとき環状酸無水物類 プタジエン、イソプレン、ペンタジエンなどのご ときジオレフイン類;エチレン、プロピレン、プ テンー1などのごときオレフイン類;アクリロニ 25 カプトイミダゾリン、4 ーメチルー2 ーメルカブ トリル、メタクリロニトリルなどのごときニトリ ル化合物;さらにはスチレン、テトラヒドロフラ ン、トリオキサンなどが挙げられる。

本発明において用いられるジエン系エラストマ ーとしては、天然ゴム、ポリプタジエンゴム、ポ 30 リイソプレンゴム、スチレン・ブタジエンゴム、 アクリロニトリル・プタジエンゴム、アクリロニ トリル・イソプレンゴムなどが代表例として挙げ られる。

本発明加硫剤の第一成分である有機ポリサルフ 35 (式中、R1は水素原子、R2~R4は水素原子また アイト類は、一般式

$$\begin{array}{c|c}
S & S \\
\parallel & \parallel \\
N - C - (S)_n - C - N \\
R_2
\end{array}$$

S S $(CH_2)_{\dot{m}}$ $N-C-(S)^{n}-C-N$

(式中、R1~R4は炭素原子数1~8 個の脂肪族 炭化水素、nは2~4の整数、mは3~8の整数 である。)

で表わされる化合物であり、そのいずれでも使用 ルチウラムダイサルフアイド、テトラエチルチウ ラムダイサルフアイド、テトラプチルチウラムダ イサルフアイド、ジペンタメチレンチウラムテト ラサルファイドおよびモルフオリンダイサルファ

第二成分である 2 ーメルカプトイミダゾリン類 は、骨格が

で表わされる化合物であり、そのいずれでも使用 しうる。これらのうち代表的なものは、2 -メル トイミダゾリン、5 -エチルー4 -ブチルー2 -メルカプトイミダゾリンなどである。また、チオ ウレア類は、一般式

$$\begin{array}{c|c}
 & S \\
 & \parallel \\
 & R_2 & N - C - N \\
\hline
 & R_4
\end{array}$$

は炭素原子数1~4のアルキル基である。) で表わされる化合物であつて、その代表的なもの はチオウレア、モノー、ジーまたはトリエチルチ オウレア、モノー、ジーまたはトリプチルチオウ 40 レアなどである。

本発明のジエン系エラストマーとエピハロヒド リン重合体類との混合物において、後者の量は所 **望に応じて広い範囲で変りうるが、一般的には眩** 混合物につき約10~80重量%の間である。両

者はロール混合またはパンパリー混合などの如き 通常の方法により混合し得る。

加硫剤の使用量は、ジエン系エラストマーとエ ピハロヒドリン重合体類との混合物100重量部 に対して、有機ポリサルフアイド類 0.5 ~1 0 重 5 屈曲亀裂試験; JIS K- 6301 に準じて、デマ 量部、2ーメルカプトイミダゾリン類またはチオ ウレア類 0.5 ~1 0 重量部および金属酸化物 1 ~ 10重量部である。有機ポリサルフアイド類が2 ーメルカプトイミダゾリン類 もしくはチオウレア 類に対して重量比で 0.2 ~ 2.5 好ましくは 0.5 ~ 10 1.2 のとき、特に耐オゾン性の優れた加硫物を与 える。これら加硫剤はロール混合またはパンパリ - 湿合など通常の方法により重合体と均一に混合: し得る。加疏は、この混合物を加熱することによ り達成される。加硫条件は広い範囲にわたつて変 15 えることができるが、一般的にいえば、加硫温度は約 120~約180℃、加硫時間は温度とは反対に 変り約10~約120分である。加硫剤のほかに、 充塡剤、軟化剤、可塑剤、老化防止剤などのごと き通常ゴム加硫製品に使用される添加剤も用い得 20 ることは勿論である。

次に、実施例、対照例および参考例によつて本 登明を具体的に説明する。ただし、各例における 配合量は、すべて重量部単位である。なお、各例 における混練、加硫および試験の操作は、以下の 25 通りである。

混練;まずジエン系エラストマーを6インチ冷却 ロールに投入し、1~2分でロールに巻きつけ た後エピハロヒドリン重合体類を投入し、1~ 2 分混練りした後、ステアリン酸および金属酸 30 とを、テトラメチルチウラムダイサルフアイド、 化物を加える。さらに1~2分混練りした後、 充塡剤および可塑剤などの添加剤を加えて約 10分混練りし、最後に有機ポリサルフアイド 類、および2ーメルカプトイミダゾリン類また はチオウレブ類を加えて混練し、混合物を得る。35 および NBR 単独の場合を併せて示す。同表より、 加硫;スチームによるプレス加硫を特に断らない 限り155℃、45分で行なう。

引張試験: JIS K-6301により、25±2 ℃において、3号ダンペル片を用いて行なう。 硬さ;JIS K-6301により、25±2℃に 40 幅に向上させることがわかる。 おいて、スプリング式硬さ試験機(A型)を用

いて行なう。

老化試験: JIS K-6301により、テストチ ユーブ老化試験機を用いて、130℃で10日 間行なう。

ツチヤ屈曲亀裂試験機により行なう。25℃で最 初の2㎜の亀裂が10㎜に生長した時の試験機 の運転回数を以つて耐屈曲亀裂性の目安とする。 オゾン職館テスト;JIS K-6301に準じて、 東洋精機社製のオゾン試験機により、オゾン機 度100 ppm、伸び30%、温度40で、100 時間の条件下で行なう。試験結果の評価方法は、 次のような表示に従つた。

亀裂の数

A: 龟裂少数 B: 龟列多数 C: 龟裂無数 亀裂の大きさおよび探さ

- 1;肉眼では見えないが10倍の拡大鏡では確 認できるもの
- 2;肉眼で確認できるもの
- 3;き裂が深くて比較的大きいもの(1㎜未満)
- 4;き裂が深くて大きいもの(1㎜以上3㎜未
- 5;3㎜以上のき裂または切断を起こしそうな もの

NC: 色裂なし

実施例 1~3

アクリロニトリル・ブタジエンゴム(以下 NBR と略記する)とエピクロルヒドリン・エチ レンオキシド共重合体(以下CHC と略配する) 2ーメルカプトイミダゾリン、および鉛丹もしく は酸化亜鉛により共加硫した。

各配合成分およびそれらの加硫物特性を第1表 に示す。対照例として従来の加硫系を用いた場合 本発明加硫系は従来の加硫系に比較して、基本物 性が同等で、耐オゾン性、耐屈曲亀裂性、耐老化 性がはるかに優れ、またNBR単独の場合と比較し ても、他の物性を低下させずに、耐オゾン性を大 表

鈱

		₽K.	旗	E 2		农			2 2	
			2	3	1	2	3	4	5	9
(4)	⊕ NBR 1 * 1	0 9	0 9	0 9	09	09	0 9	0 9	100	100
	CHC * 2	4 0	4 0	4.0	0 🏞	0 \$	4 0	4 0	,	1
	ステアリン酸	1	1	1	1	I	-	1		1
	FEFカーボンプラック	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0
	テトラメチルチウラム ダイサルフアイド	2.5	2	2	1	1	1	1		ı
	2 ーメルカプトイミダ ゾリン	1.2	8	ဆ	1.5	2.5	3.5	0.6	1	1
	魯舟	5	S	1	ဌ	D.	ı,	2		1
	製化亜鉛	.1	-	2	1	t	ı	3	5	25
	東 海	ı	-	J	1.5	1.5	1.5	0.9		1.5
	ペンゾチTジルダイサ ルフTイド	f	ı		1	1	1	0.9	ı	1.5
(右院物格性)	屈曲亀裂(回数)	6.1×10^{5}	1.5 × 1 0 5	3.2 × 1.04	2 0	1 0	5	100	5 × 1 0 5	3 × 1 0 5
	オブン亀裂評価	B 3	NC	NC	B - 5	B-4	B-4	切断	力配	切断
	引援強さ(kg/cd)	164	165	163	8 4 1	165	168	168	181	211
	伸 な(%)	920	580	480	098	300	270	320	630	580
	300%モジュラス (kg/cd)	0 9	9 1	111	165	1	1	160	7.0	0 6
	硬 さ(JIS)	6.1	6.4	9 9	8 9	8 9	8 9.	2.9	5.6	5.8
	熟老化試験									
	引張強さ変化率(%)	+13	+10	9-	-56	-61	-62	-65	+10	19-
	伸び変化率(%)	-77	-70	-73	08-	-82	-83	-82	-73	62-
	硬き変化(JIS)	+4	+3	£+	+ 7	9+	9+	9+	++	+1

*1 ハイカー1041(ブクリロニトリル40重量% 日本ゼオン社製、以下同じ) *2 ハイドリン200(エチレンオキシド50モル%、グッドリッチケミカル社製、以下同じ)

10

盆老例

本発明ゴム加硫物の耐オゾン性を評価する目安 として、耐オゾン性の優れたポリクロロブレンゴ ム加硫物のオゾン亀裂を評価した。配合は、ネオ プレンW.(昭和ネオプレン社製)を100、ステ 5 実施例 4~7 アリン酸を1、酸化亜鉛を5、酸化マグネシウム を 4、FEF カーポンプラックを 40、 2ーメルカ プトイミダゾリンを 0.1、フエニルーβーナフチ ルアミンを 1 、ニッケルジプチルジチオカーパメ イトを 0.5 とした。この配合物を 1 5 5 ℃ で 3 0 *10

*分加硫したもののオゾン亀裂評価は、B-4であ つた。従つて、以下の実施例によつても明らかに されるが、本発明ゴム加硫物の耐オゾン性はポリ クロロブレンゴム以上であることがわかる。

NBRとCHCとを共加硫するに際し、テトラメ チルチウラムダイサルフアイドの変量効果を検討 した。各配合成分およびそれらの加硫物特性を第 2表に示す。

実 施 例	4	5	6	7
〔配合〕				
NBRI	6.0	60	6.0	6.0
СНС	4 0	4 0	4 0	4 0
ステアリン酸	1	1	1	1
FEF カーポンプラツク	4 0	4 0	4 0	4 0
2 ーメルカプトイミダゾリン	2	2	2	2
鉛 丹	5	5	5	5
PBNA * 1	1	1	1	1
NBC * 2	0. 5	0.5	0. 5	0.5
テトラメチルチウラムダイサルフアイド	1.5	2.5	3.5	4.5
〔加 疏物特 性〕				
オゾン亀裂評価	NC	B - 2	B - 3	B - 3
屈曲亀裂(回数)	1.5 × 1 0 4	8 × 1 0 3	4 × 1 0 3	2.2 × 1 0 8
引張強さ(kg/cal)	1 5 8	162	163	157
伸 び(%)	650	640	730	7 4 0
3 0 0 %モジユラス(kg/cm)	7 7	8 3	78	7 5

*1:フエニルーβーナフチルアミン(以下同じ)

*2:ニツケルジプチルジチオカーパメイト(以下同じ)

実施例 8~11

NBRとCHCとを共加硫するに際し、2ーメル カプトイミダゾリンの変量効果を検討した。各配 合成分およびそれらの加硫物特性を第3表に示 す。

(6)

特公 昭50-4032

11

12

第	3	表

実 施 例	8	9	1 0	1 1
(配合)				
NBR I	6 0	6 0	6 0	6.0
СНС	4.0	4 0	4 0	4 0
ステアリン酸	1	1	1	1
FEF カーポンプラック	4 0	4 0	4 0	4 0
テトラメチルチウラムダイサルフアイド	4	4	4	4
鉛 丹	5	5	5	5
PBNA	1	1	1	1
NBC	0. 5	0. 5	0. 5	0.5
2ーメルカプトイミダゾリン	2	3	4	5
〔 加硫物特性 〕				
オゾン亀製評価	A 4	B — 1	NC	NC
屈曲亀裂(回数)	2.6 × 1 0 3	5 × 1 0 8	1.6 × 1 0 4	4 × 1 0 4
引張強さ(k <i>g / cd</i> i)	161	169	173	169
伸 び(%)	760	620	5 1 0	440
3 0 0 %モジユラス(k <i>g / cd</i>)	7 5	9 0	109	129

実施例 12~16

させて30/70とした混合物を共加硫するに際 それらの加硫物特性を第4表に示す。 し、テトラメテルチウラムダイサルフアイドと2 30

ーメルカプトイミダゾリンとの比率を種々変化せ NBRとCHCの比率を実施例1~11とは逆転 しめたときの効果を検討した。各配合成分および (7)

特公 昭50-4032

13

14

第 4 表

実施例	1 2	1 3	1 4	1 5	1 6
(配合)		,			ļ t
NBRI	3 0	3 0	3 0	3 0	3 0
СНС	7 0	7 0	70	7 0	70
ステアリン酸	1	1	1	1	1
FEF カーポンプラツク	4 0	4 0	4 0	4 0	40
鉛 丹	5	5	5	5	5
PBNA	1	1	1	1	1
NBC	0. 5	0. 5	0. 5	0. 5	0. 5
テトラメテルチウラムダイサ ルフアイド	1	2	2	3	2
2 ーメルカプトイミダゾリン	2	3	2	2	1
(加硫物特性)					
オゾン亀裂評価	NC	NC	NC	NC	B -3
屈曲亀裂(回数)	1.4 × 1 0 4	5 × 1 0 8	1×10 ⁴	6.2 × 1 0 4	1 × 1 0 5
引張強さ(kg/cnl)	143	148	152	156	151
伸 び(%)	470	420	5 1 0	480	650
300%モジュラス(Kg /cm²)	102	118	108	111	8 3

実施例 17~21

との比率を種々変化せしめたときの効果を検討し

NBRとCHCとを共加硫するに際し、金属酸化 た。各配合成分およびそれらの加硫物特性を第5物として酸化亜鉛を用い、テトラメチルチウラム30表に示す。

ダイサルフアイドと 2 ーメルカプトイミダゾリン

(8)

·特公 昭50-4032

15

16

5

		·			
実 施 例	1 7	1 8	1 9	2 0	2 1
(配合)					
NBRI	6 0	6 0	6 0	6 0	6 0
СНС	4 0	4 0	4 0	4 0	4 0
ステアリン酸	1	1	1	1	1
FEF カーポンプラック	4 0	4 0	4 0	4 0	4 0
酸化亜鉛	5	5	5	5	5
PBNA	1	1	1	1	1
NBC	0.5	0. 5	0.5	0. 5	0.5
テトラメチルチウラムダイサ ルフアイド	1	2	2	3	2
2 ーメルカプトイミダゾン	2	3	2	2	1
〔加硫物特性〕					
オゾン亀裂評価	NC	NC	NC	B -3	B — 4
屈曲亀裂(回数)	>105	2.5 × 1 0 8	9 × 1 0 8	1.6 × 1 0 3	3.4 × 1 0 4
引張強さ(kg/oni)	159	163	165	159	160
伸 び(%)	690	480	560	450	660
3 0 0 %モジユラス(kg/cnl)	7 1	1 1 1	97	1 1 7	8 0

実施例 22~30

ルフアイドの種類と量の効果、および2 ーメルカ NBRとエピクロルヒドリン重合体(以下 CHR プトイミドアゾリンの変量効果を検討した。各配 と略記する)とを共加強するに際し、有機ポリサ 30 合成分およびそれらの加強物特性を第6表に示す。

胀

9

鯸

24 25 26 27 28 29 60 60 60 60 60 60 60 40 40 40 40 40 40 40 1 1 1 1 1 1 1 40 40 40 40 40 40 5 5 5 5 5 5 5 5 5 2 2 2 2 2 3	東 施 例 22 23	(4	NER 2 * 1 60 60	CHR *2 40 40	ステブリン酸 1 1	下DF カーボンブラック 40 40	5 S S	2ーメルカプトイミダゾリン 2 2	テトラエチルチウラムダイサルフブイド 2 -	シベンタメチレンチウラムテトラサル - 1	モルフオリンダイサルファイド ー	(加強物体性)	ネンン を 対対 NC NC	届由亀製(回数) 1.6×10 ⁴ 6.4×10 ⁴	引張強さ(kg/cml) 160 216	伸び(%) 630 660	
25 26 27 28 29 60 60 60 60 60 40 40 40 40 40 1 1 1 1 1 1 1 1 40 40 40 40 5 5 5 5 5 5 5 2 2 2 2 2 3					-		ľ	2	ı	7	ı		1	4 3.3 × 1 0	0	8	c
60 60 60 60 60 40 40 40 40 1 1 1 1 1 40 40 40 40 5 5 5 5 5 5 5 5 6 1 1 2 3 - 1 1 B-3 B-3 NC 10 ³ 2.1 × 10 ⁴ 2 × 10 ⁴ 6 × 10 ⁴ 2.5 93 2.17 2.14 160 1 80 630 610 470 4	2				-		S	7	l	က	1		ا ع	× 1 0 3 5	4 0	10	•
2 8 2 9 0 6 0 6 0 1 1 1 1 0 4 0 4 0 5 5 5 5 2 2 3 2 2 3 2 2 3 3 8—3 NC 7 2 1 4 1 6 0 1 0 6 1 0 4 7 0 4	6 2					0	ى 	7			-			1 0 5 2.1	93 2	8 0	
3 2 9 0 6 0 0 4 0 0 4 0 5 5 5 2 3 3 1 1 1 1 0 4 0 4 0 6 × 1 0 4 2.5 4 1 6 0 1	2			0			ري 	7	•		7		m	104 2 ×	7 2	9	
1 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			0		—		ro.	23					m	× 9	4	0	
						0	ഗ	т					NC	0 + 2,	0	0	

*1:ハイカー1042(ブクリロニトリル34魔量%, 日本ゼオン社製) *2:ハイドリン100(グンドリンチケミカル社製)

20

実施例 31~33

NBRとCHRとの白色配合物を共加硫するに際 よびそれらの加硫物特性を第7表に示す。 し、金属酸化物として酸化カルシウムを用いて、*

**各種チオウレアの効果を検討した。各配合成分お

実 施 例	3 1	3 2	3 3
(配合)			
NBRI	6 0	6 0	6 0
CHR	4 0	4 0	4 0
ステアリン酸	1	1	1
表面処理炭酸カルシウム *	1 0 0	100	100
酸化カルシウム	5	5	5
テトラメチルチウラムダイサルフアイド	3	3	3
チオウレア	1.5	_	_
ジプチルチオウレア	-	4	
トリエチルチオウレア	_	_	3
〔加硫物特性〕			
オゾン亀裂評価	B -1	NC	B2
屈曲亀裂(回数)	2.1×10^{5}	1.2 × 1 0 ⁵	5. 1 × 1 0 ⁵
引張強 さ(k <i>g/cd</i> i)	1 6 5	170	157
伸 び(%)	1 2 0	660	740
3 0 0 %モジユラス(kg/cnt)	7 9	8 7	7 5

* 白艷華CC(白石工業社製)

実施例 34~37

合成分およびそれらの加硫物特性を第8 表に示す。 NBRと CHCとの本発明共加硫物を120℃で 同表よりしばしば行なわれる熱処理によつても加 16時間熱処理したものについて検討した。各配 35 硫物特性は影響を受けないことがわかる。

(11)

特公 昭50-4032

21

22

第 8 赛

実 施 例	3 4	3 5	3 6	3 7
(配合)				
NBRI	6 0	6 0	6 0	6 0
СНС	4 0	4 0	4 0	4 0
ステアリン酸	1	1	1	1
FEF カーボンブラック	4 0	4 0	4 0	4 0
テトラメチルチウラムダイサルフアイド	3	3	3	3
给 丹	5	5	5	5
PBNA	1	1	1	1
NBC	0.5	0. 5	0. 5	0.5
2 ーメルカプトイミダゾリン	0. 5	1	1. 5	2
(加硫物特性)				
オゾン亀裂評価	B - 3	B - 3	B — 1	NC
屈曲亀裂(回数)	5 × 1 04	2 × 1 0 4	9 × 1 0 3	4×10 ⁵
引張強さ(kg/cnl)	124	164	176	186
伸 び(%)	690	640	590	510
3 0 0 %モジュラス(kg / cd)	6 4	9 0	100	1 2 0

実施例 38~42

種々のジエン系エラストマーと CHCとを、本発 れらの加硫物特性を第9表に示す。

明加硫系により共加硫した。各配合成分およびそれらの加硫物族性を第9素に示す。

第 9 表

					
実施 例	3 8	3 9	4 0	4 1	4 2
(配合)	:				
天然ゴム(RSS#1)	6.0	_	_	_	_
スチレン・ブタジエン ゴム * 1		6.0	_	_	_
ポリイソプレンゴム *2	_	_	6 0	_	_
ポリプタジエン ゴム * 3	_	_	-	6 0	_
アクリロニトリル・イ ソプレンゴム * 4	_	-	_	_	6 0
СНС	4 0	4 0	4 0	4 0	4 0
ステアリン酸	1	1	1	1	1
FEF カーポンプラック	4 0	4 0	4 0	4 0	4 0
テトラメチルチウラム ダイサルフアイド	1.5	1. 5	1.5	1.5	1.5
2 ーメルカプトイミダ ゾリン	2	2	2	2	2
鉛 丹	5	5	5	5	5
〔加硫物特性〕					
オゾン亀裂評価	NC	NC	NC	NC	NC
屈曲亀裂(回数)	3.1 × 1 0 4	6.2 × 1 0 4	3.9 × 1 0 4	4.1 × 1 0 4	5.3 × 1 0 4
引張強さ(kg/cal)	9 5	101	8 9	1 1 0	190
伸 び(%)	410	490	420	480	620
3 0 0 %モジュラス (kg/cml)	6 5	6 1	5 9	7 0	9 1

*1:ニポール1502(スチレン23.5重量%、日本ゼオン社製)

*2:アメリポールSN(アメリポール社製)

*3:ニポールBR1220(日本ゼオン社製)

*4:ポリサー833(アクリロニトリル34重量%、ポリマーコーポレーション 社製)

実施例 43

実施例3 において用いた酸化亜鉛の代りに酸化 40 マグネシウムを用いたほかは同様の実験を行つたところ、下記の特性を有する加硫物が得られた。

屈曲龟裂

1.9×10⁵回

オゾン亀裂評価	NC
引張強さ	1 3 7 kg/cml
伸び	690%
300%モジユラス	6 9 k <i>g / cn</i> i

硬 さ(JIS) 62

熱老化後の引張強さ変化率 +15%

" 伸び変化率 - 76%

* 東を変化(JIS) + 5%

釣特許請求の範囲

1 ジエン系エラストマーとエピハロヒドリン重

26

合体類との混合物100重量部を、有機ポリサルフアイド類0.5~10重量部、2一メルカプトイミダゾリン類またはチオウレア類0.5~10重量部ならびにマグネシウム、カルシウム、亜鉛および船より選ばれる金属の酸化物1~10重量部より本質的になる加騰剤を用いて、共加硫することを特徴とするゴム加騰物の製造法。