CS 235: Artificial Intelligence

Week 2

Blind (Uninformed) Search

Dr. Moumita Roy CSE Dept., IIITG

Reference: http://ai.stanford.edu/~latombe/cs121/2011/schedule.htm

Simple Problem-Solving-Agent Agent Algorithm

- 1. $s_0 \leftarrow \text{sense/read initial state}$
- 2. GOAL? ← select/read goal test
- 3. Succ ← read successor function
- 4. solution \leftarrow search(s_0 , GOAL?, Succ)
- 5. perform(solution)

Search Tree

Note that some states may be visited multiple times

Search Nodes and States

Search Nodes and States

Data Structure of a Node

Depth of a node N = length of path from root to N

(depth of the root = 0)

Node expansion

The expansion of a node N of the search tree consists of:

- Evaluating the successor function on STATE(N)
- 2) Generating a child of N for each state returned by the function

node generation ≠ node expansion

	8	2
3	4	7
5	1	6

8	4	2
3		7
5	1	6

5	3	8
1	4	
6	7	2

Fringe of Search Tree

 The fringe is the set of all search nodes that haven't been expanded yet

Search Strategy

- The fringe is the set of all search nodes that haven't been expanded yet
- The fringe is implemented as a priority queue FRINGE
 - INSERT(node,FRINGE)
 - REMOVE(FRINGE)
- The ordering of the nodes in FRINGE defines the search strategy

Search Algorithm #1

SEARCH#1

- 1. If GOAL?(initial-state) then return initial-state
- 2. INSERT(initial-node, FRINGE)
- 3. Repeat:
 - a. If empty(FRINGE) then return failure
 - b. $N \leftarrow REMOVE(FRINGE)$

Expansion of N

- c. $s \leftarrow STATE(N)$
- d. For every state s' in SUCCESSORS(s)
 - i. Create a new node N' as a child of N
 - ii. If GOAL?(s') then return path or goal state
 - iii. INSERT(N',FRINGE)

Performance Measures

Completeness

A search algorithm is complete if it finds a solution whenever one exists

[What about the case when no solution exists?]

Optimality

A search algorithm is optimal if it returns a minimum-cost path whenever a solution exists

Complexity

It measures the time and amount of memory required by the algorithm

Blind vs. Heuristic Strategies

- Blind (or un-informed) strategies do not exploit state descriptions to order FRINGE. They only exploit the positions of the nodes in the search tree
- Heuristic (or informed) strategies exploit state descriptions to order FRINGE (the most "promising" nodes are placed at the beginning of FRINGE)

Example

For a blind strategy, N_1 and N_2 are just two nodes (at some position in the search tree)

1	2	3	
4	5		STATE
7	8	6	N_2

1	2	3
4	5	6
7	8	

Goal state

Example

For a heuristic strategy counting the number of misplaced tiles, N_2 is more promising than N_1

1	2	3
4	5	6
7	8	

Goal state

Blind Strategies

- Breadth-first
 - Bidirectional
- Depth-first
 - · Depth-limited
 - · Iterative deepening

• Uniform-Cost $\begin{cases} Arc cost \\ (variant of breadth-first) \end{cases} = c(action) \ge \varepsilon > 0$

New nodes are inserted at the end of FRINGE

FRINGE = (2, 3)

New nodes are inserted at the end of FRINGE

FRINGE = (3, 4, 5)

New nodes are inserted at the end of FRINGE

FRINGE = (4, 5, 6, 7)

Important Parameters

- 1) Maximum number of successors of any state
 - branching factor b of the search tree
- 2) Minimal length (≠ cost) of a path between the initial and a goal state
 - → depth d of the shallowest goal node in the search tree

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete? Not complete?
 - Optimal? Not optimal?

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:???

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
 - Complete
 - Optimal if step cost is 1
- Number of nodes generated:

$$1 + b + b^2 + ... + b^d = ???$$

- b: branching factor
- d: depth of shallowest goal node
- Breadth-first search is:
- Complete
 - Optimal if step cost is 1
- Number of nodes generated: $1 + b + b^2 + ... + b^d = (b^{d+1}-1)/(b-1) = O(b^d)$
- \rightarrow Time and space complexity is $O(b^d)$
- When we can apply goal test? Node generation/Node expansion?

 If goal test is applied during node expansion (rather than node generation)

 In this case, the whole layer at depth d may be expanded before the goal was detected

Time complexity: O(b^{d+1})

Time and Memory Requirements

d	# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	~106	1 sec	100 Mb
8	~108	100 sec	10 Gbytes
10	~1010	2.8 hours	1 Tbyte
12	~1012	11.6 days	100 Tbytes
14	~1014	3.2 years	10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Time and Memory Requirements

d	# Nodes	Time	Memory
2	111	.01 msec	11 Kbytes
4	11,111	1 msec	1 Mbyte
6	~106	1 sec	100 Mb
8	~108	100 sec	10 Gbytes
10	~1010	2.8 hours	1 Tbyte
12	~1012	11.6 days	100 Tbytes
14	~1014	3.2 years	10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Remark

If a problem has no solution, breadth-first may run for ever (if the state space is infinite or states can be revisited arbitrary many times)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity is $O(b^{d/2}) \ll O(b^d)$ if both trees have the same branching factor b

Question: How we can search backward? reverse action is not possible always.

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete?
 - Optimal?

- b: branching factor
- d: depth of shallowest goal node
- m: maximal depth of a leaf node
- Depth-first search is:
 - Complete only for finite search tree
 - Not optimal
- Number of nodes generated (worst case): $1 + b + b^2 + ... + b^m = O(b^m)$
- Time complexity is O(b^m)
- Space complexity is O(bm) [or O(m)]

[Reminder: Breadth-first requires O(bd) time and space]

 Space complexity: it needs to store a single path along with the remaining unexpanded sibling nodes for each node on the path

 DFS requires a storage for only O(bm) nodes

Can we further reduced it to O(m)?

- A variant of DFS: backtracking search
- One successor is generated at a time rather than all successors
- Each partially expanded node remembers which successor to generate next.
- · Here, only O(m) memory is needed.
- We must able to go back to undo each modification when we go back to generate the next successor

Depth-Limited Search

- Depth-first with depth cutoff k (depth at which nodes are not expanded)
- Failure of DFS in infinite state space can be avoided by fixing a predetermined depth limit k
- Three possible outcomes:
 - Solution
 - Failure (no solution)
 - Cutoff (no solution within cutoff)

 Time complexity: O(b^k) and space complexity: O(bk)

 Introduce incompleteness if k<d and the shallowest goal node is not within depth limit

· Non optimal if we choose k>d

Iterative Deepening Search

Provides the best of both breadth-first and depth-first search

```
IDS
For k = 0, 1, 2, ... do:
Perform depth-first search with depth cutoff k
(i.e., only generate nodes with depth \leq k)
```

Iterative Deepening

Iterative Deepening

Iterative Deepening

Performance

- Iterative deepening search is:
 - Complete
 - Optimal if step cost =1
- Time complexity is: $(d+1)(1) + db + (d-1)b^2 + ... + (1) b^d = O(b^d)$
- Space complexity is: O(bd) or O(d)

Number of Generated Nodes (Breadth-First & Iterative Deepening)

$$d = 5$$
 and $b = 2$

BF	ID
1	$1 \times 6 = 6$
2	2 × 5 = 10
4	4 × 4 = 16
8	8 × 3 = 24
16	16 × 2 = 32
32	32 × 1 = 32
63	120

120/63 ~ 2

Number of Generated Nodes (Breadth-First & Iterative Deepening)

d = 5 and b = 10

BF	ID
1	6
10	50
100	400
1,000	3,000
10,000	20,000
100,000	100,000
111,111	123,456

123,456/111,111 ~ 1.111

Comparison of Strategies

- Infinite state space: number of states is potentially high.
 Branching factor (no of actions) may also be infinite (but not common). Here, the search tree is also infinite.
- Finite state space may also lead to the infinite search tree.
- BFS is complete and optimal (same arc cost) for both the cases (if there is a shallowest goal node at depth d, it will eventually find it after expanding all the nodes at the depth shallower than d)
- DFS is likely to stuck into a wrong path. It is not complete and optimal even if the state space is infinite but the shallowest goal sate is in a depth which is much lower than infinity.
- · DFS is complete only if the search tree is finite.

Comparison of Strategies

- Breadth-first is complete and optimal, but has high space complexity
- Depth-first is space efficient, but is neither complete, nor optimal
- Iterative deepening is complete and optimal, with the same space complexity as depth-first and almost the same time complexity as breadth-first

Outline of Search Algorithm(Ver-2)

- 1. Initialize: Set OPEN/FRINGE = $\{s_0\}$
- 2. Fail: If OPEN = { }, Terminate with Fail
- 3. Select: Select a state/node, n, from OPEN
- 4. Terminate: If $n \in G$, terminate with success
- 5. Expand: Generate the successors of n using successor function and insert them in OPEN
- 6. Loop: Go To Step 2.

Revisited States

Outline of Search Algorithm(Ver-3)

- 1. Initialize: Set OPEN = $\{s_0\}$, CLOSED = $\{\}$
- 2. Fail: If OPEN = { }, Terminate with failure
- 3. Select: Select a state, n, from OPEN and save n in CLOSED
- 4. Terminate: If $n \in G$, terminate with success
- 5. Expand: Generate the successors of n using successor function

For each successor, m, insert m in OPEN only if m ∉[OPEN ∪ CLOSED]

6. Loop: Go To Step 2

Uniform-Cost Search (UCS)

- BFS can generate the shallowest goal node.
- However, the shallowest goal node is not necessarily the optimal one.
- BFS is optimal when all actions have the same cost (commonly).
- **Problem:** BFS always expands the shallowest unexpanded node .
- We need a search strategy which is optimal from any cost.
- Instead of expanding the shallowest goal node, **UCS** expands a node n with lowest path cost g(n)

Uniform-Cost Search

- Each arc has some cost $c \ge \varepsilon > 0$
- The cost of the path to each node n is
 - $g(n) = \Sigma$ costs of arcs w(n,m)= arc cost between node n and m

increasing g(n)

- The goal is to generate a solution path of minimal cost
- The nodes n in the queue FRINGE are sorted in

