

元素周期律的应用

日期:	时间:	姓名:	
Date:	Time:	Name:	

学习目标 。 党提供执挽帐 一

&

重难点

1、掌握元素周期律的递变规律,学会进行不同元素间的金属性和非金属性的比较。

2、掌握结构推断、元素推断的技巧。

1、元素周期表的结构、元素在周期表中位置的推断。

2、元素周期表中体现出来的规律。

根深蒂固

 元素周其	期表中同周	期、同一	上族 元素	性质说	变规律
 7 7 7 7 7 7	11.00	/// 1 1 1 -	レルノレスト		

元素的性质随着原子序数的递增而呈周期性变化的规律。

元素周期丰的本. 质. 是_____。

内容	同周期(从左到右)	同主族(从上到下)
原子半径		
电子层结构	电子层数相同最外层电子数	电子层数递增 最外层电子数
得电子能力		
失电子能力		
金属性		
非金属性		
主要化合价	最高正价+1→+7(O、F 除外) 最低负价:主族序数-8(H 除 外)	最高正价数=主族序数(O、F 除外)
最高价氧化物对应水化物 的酸碱性	酸性逐渐碱性逐渐	酸性逐渐碱性逐渐
非金属元素气态氢化物的 形成及稳定性	气态氢化物的形成越来越 ,其稳定性逐渐	气态氢化物形成越来越, 其稳定性逐渐

- 二、判断金属性或非金属性强弱的实验
 - 1. 判断金属性强弱的实验有:
 - ①根据金属单质与水(或酸)反应的难易程度: 越易反应,则对应金属元素的金属性越。
 - ②根据金属单质与盐溶液的置换反应:

A置换出 B,则 A对应的金属元素比 B对应的金属元素金属性____。 ③根据金属单质的还原性或对应阳离子的氧化性强弱:

单质的还原性越强,对应阳离子的氧化性越_____,元素的金属性越_____(Fe 对应的是 Fe^{2+} ,而不是 Fe^{3+})。

④根据最高价氧化物对应水化物的碱性强弱:

碱性越强,则对应金属元素的金属性越。

⑤根据电化学原理:

不同金属形成原电池时,作负极的金属_______;在电解池中的惰性电极上,先析出的金属其对应的元素______。

- 2. 判断非金属性强弱的实验有:
- ①根据非金属单质与 H₂ 化合的难易程度: 越易化合则其对应元素的非金属性越______。
- ②根据形成的氢化物的稳定性或还原性: 越稳定或还原性越弱,则其对应元素的非金属性越。
- ③根据非金属之间的相互置换:

A能置换出B,则A对应的非金属元素的非金属性_____于B对应的非金属元素的非金属性。

④根据最高价氧化物对应水化物的酸性强弱:

酸性越强,则对应非金属元素的非金属性越强。

⑤根据非金属单质的氧化性或对应阴离子的还原性强弱:

单质的氧化性越强,其对应阴离子的还原性越 , 元素的非金属性越

【总结】

三、元素周期表和周期律的应用

- 1. 预测元素的性质
- (1) 比较同主族元素的金属性、非金属性、最高价氧化物水化物的酸、碱性、氢化物的稳定性等。
 - (2) 比较同周期元素及其化合物的性质。
 - (3) 比较不同周期、不同主族元素性质时,要找出参照物。
 - (4) 推断一些未学过的元素的某些性质。

【练习】门捷列夫在描述元素周期表时,许多元素尚未发现,但他为第四周期的三种元素留下了空位,并对它们的一些性质做了预测, X 是其中的一种"类硅"元素,后来被德国化学元素家文克勒发现,并证实门捷列夫当时的预测相当准确。根据元素周期律,下列有关 X 性质描述中错误的是()

A. X 单质不易与水反应

- B. XO₂可被碳或氢还原为 X
- C. XCl4的沸点比 SiCl4的高
- D. XH4的稳定性比 SiH4的高
- 2. 启发人们在一定范围内寻找某些物质
 - (1) 在金属元素和非金属元素的交界处寻找半导体材料,如:Si、Ge、Ga等;
 - (2) 农药中常用元素在右上方,如:F、Cl、S、P、As等;
 - (3) 在过渡元素中寻找催化剂。如 Fe、Ni、Rh、Pt、Pd;
 - (4) 在ⅢB 到ⅣB 的过渡元素中寻找耐高温、耐腐蚀的材料,制造火箭、导弹、宇宙飞船;
 - (5) 利用元素周期表,还可寻找合适的超导材料,磁性材料等。

3. 对角线规则的应用

在元素周期表中,某些主族元素与右下方的主族元素的性质有些相似,被称为"对角线规则"。

4. 微粒半径比较

四、元素周期表与元素周期律的推断(周期律的重要应用)

1. 性质与位置的互推

(1)根据元素的性质可以推知元素在周期表中的位置。

如同周期元素 A、B、C 的金属性逐渐增强,则可知 A、B、C 在同周期中按______的顺序从左向右排列。

(2)根据元素在周期表中的位置关系,可以推断元素的性质。

如 $A \times B \times C$ 三元素在同一主族中从上往下排列,则 $A \times B \times C$ 的单质氧化性依次______ 或还原性依次_____。

2. 结构与性质的互推

- (1)若元素的最外层电子数小于 4,则该元素容易失电子;若该元素的最外层电子数大于 4,则该元素容易得电子。
- (2)若某元素容易得电子,则可推知该元素的最外层电子数大于 4; 若某元素容易失电子,则可推知该元素的最外层电子数小于 4。
- 3. 结构与位置的互推

由原子序数确定主族元素位置方法:

只要记住了稀有气体元素的原子序数(He—2、Ne—10、Ar—18、Kr—36、Xe—54、Rn—86), 就可确定主族元素的位置。

(1)若比相应的稀有	气体元素多1	1或2,	则应处在下周期的第	IA	族或第ⅡA	族。
如 88 号元素:	88 - 86 = 2	则应在	<u> </u>	<u>;</u>		

(2)若比相应的稀有气体元素少 1~5 时,则应处在同周期的第ⅢA 族~第ⅢA 族。

如 84 号元素应在;
(3)若预测新元素,可与未发现的稀有气体元素(118号)比较,按上述方法推测知。
如 114 号元素应为。
4. 特殊元素的推断
(1) 最高正价与最低负价代数和为零的短周期元素:;
(2) 最高正价是最低负价绝对值 3 倍的短周期元素:;
(3) 短周期中离子半径最大的元素:;
(4)除 H 外,原子半径最小的元素:;
(5) 形成化合物种类最多的元素、单质是自然界中硬度最大的物质的元素或气态氢化物中
氢的质量分数最高的元素:;
(6) 空气中含量最多的元素或气态氢化物的水溶液呈碱性的元素:;
(7) 地壳中含量最多的元素、氢化物沸点最高的元素或氢化物在通常情况下呈液态的元素:
;
(8) 最高价氧化物及其水化物既能与强酸反应,又能与强碱反应的元素:;
(9) 元素的气态氢化物和它的最高价氧化物水化物能起化合反应的元素:; 能
起氧化还原反应的元素:;
(10) 元素的单质在常温下能与水反应放出气体的短周期元素:。

枝繁叶茂

知识点 1: 元素金属性和非金属性的比较

【例1】下列推断正确的是()

- A. 根据同浓度的两元素含氧酸钠盐(正盐)溶液的碱性强弱,可判断该两元素非金属性的强弱
- B. 根据同主族两非金属元素氢化物沸点高低,可判断该两元素非金属性的强弱
- C. 根据相同条件下两主族金属单质与水反应的难易,可判断两元素金属性的强弱
- D. 根据两主族金属原子最外层电子数的多少,可判断两元素金属性的强弱
- 变式 1: 下列事实不能作为实验判断依据的是()
 - A. 钠和镁分别与冷水反应, 判断金属活动性强弱
 - B. 在 MgCl₂与 AlCl₃溶液中分别加入过量的氨水,判断镁与铝的金属活动性强弱
 - C. 碳酸钠溶液显碱性, 硫酸钠溶液显中性, 判断硫与碳的非金属活动性强弱
 - D. Br₂与 I₂分别与足量的 H₂反应,判断溴与碘的非金属活动性强弱

变式 2: 有 $X \times Y$ 两种元素,原子序数 ≤ 20 ,X 的原子半径小于 Y 的,且 $X \times Y$ 原子的最外层电子数相同(选项中 $m \times n$ 均为正整数)。下列说法正确的是(

- A. 若 X(OH)。为强碱,则 Y(OH)。也一定为强碱
- B. 若 H_XO __为强酸,则 X 的氢化物溶于水一定显酸性
- C. 若X元素形成的单质是 X_2 ,则Y元素形成的单质一定是 Y_2
- D. 若Y的最高正价为+m,则X的最高正价一定为+m

变式 3: 同周期的 X、Y、Z 三种元素, 其最高价氧化物对应的水化物的酸性由弱到强的顺是 H₃ZO₄<H₂YO₄<HXO₄, 则下列判断不正确的是()

- A. 非金属性 X>Y>Z
- B. 原子的最外层电子数按 X、Y、Z 的顺序由多到少
- C. 原子半径 Z>Y>X
- D. 气态氢化物的稳定性按 X、Y、Z 的顺序由弱到强

【方法提炼】

判断金属性的依据	判断非金属性的依据
①根据金属单质与水(或酸)反应的难易程度;	①根据非金属单质与 H ₂ 化合的难易程度;
②根据金属单质与盐溶液的置换反应;	②根据形成的氢化物的稳定性或还原性;
③根据金属单质的还原性或对应阳离子的氧化性	③根据非金属之间的相互置换;
强弱;	
④根据最高价氧化物对应水化物的碱性强弱;	④根据最高价氧化物对应水化物的酸性强弱;
⑤根据电化学原理。	⑤根据非金属单质的氧化性或对应阴离子的还原
	性强弱。

知识点 2: 根据结构进行的推断

【例 1】短周期元素 X、Y、Z 在元素周期表中的位置如右图所示,下列说法正确的是()

- A. X、Y、Z 三种元素中, X 的非金属性最强
- B. X 的单质的熔点比 Z 的低
- C. Y的最高正化合价为+7
- D. Y 的氢化物的稳定性比 Z 的氢化物的稳定性弱

变式 1: 短周期元素 $X \times Y \times Z \times W$ 在元素周期表中的相对位置如下图所示,其中 Y 原子的最外层电子数是其电子层数的 3 倍。下列说法正确的是(

- A. 元素 Y 和元素 Z 的最高正化合价相同
- B. 单核阴离子半径的大小顺序为: r(W)>r(Y)>r(Z)
- C. 气态氢化物的热稳定性顺序为: X<Y<Z
- D. 元素 W 的最高价氧化物对应水化物的酸性最强

变式 2: 短周期元素甲、乙、丙、丁、戊五种元素在元素周期表中的位置如下图所示,其中戊是同周期中原子半径最小的元素。下列有关判断正确的是()

- A. 最外层电子数: 甲>乙>丙>丁>戊
- B. 简单离子的离子半径: 戊>丁
- C. 含有丁元素的酸有多种
- D. 乙的氢化物多种多样, 丙、丁、戊的氢化物各有一种

变式 3: 短周期元素 X、Y、Z、W、O 在元素周期表中的相对位置如图所示。下列说法正确的是()

- A. 元素 X 与元素 Z 的最高正化合价之和的数值等于 8
- B. 原子半径的大小顺序为: $r_X > r_Y > r_Z > r_W > r_Q$
- C. 离子 Y^2 -和 Z^3 -的核外电子数和电子层数都不相同
- D. 元素 W 的最高价氧化物对应的水化物的酸性比 O 的强

知识点 3: 元素的推断

【例 2】 X、Y、Z、M 是 4 种短周期元素,其中 X、Y 位于同一主族,Y与 M、X 与 Z 位于同一周期。X 原子最外层电子数是其电子层数的 3 倍。Z 原子的核外电子数比 X 原子少 1。M 是同周期中半径最大的元素(除稀有气体元素)。下列说法正确的是()

- A. Y元素最高价氧化物对应水化物的化学式可表示为 HYO3
- B. Z和M组成的化合物为离子化合物,它与盐酸反应可以生成两种盐
- C. X、Y、Z元素的气态氢化物中,Y的沸点最高
- D. 四种元素简单离子的半径由大到小依次为 Y>X>Z>M

变式 $1: X \times Y \times Z \times M$ 是元素周期表中前 20 号元素,其原子序数依次增大,且 $X \times Y \times Z$ 相邻。X 的核电荷数是 Y 的核外电子数的一半,Y 与 M 可形成化合物 M_2Y 。下列说法正确的是(

- A. 还原性: X 的氢化物>Y 的氢化物>Z 的氢化物
- B. 简单离子的半径: M 的离子>Z 的离子>Y 的离子>X 的离子
- C. YX2、M2Y 都是含有极性键的极性分子
- D. Z元素的最高价氧化物的水化物的化学式为 HZO4

变式 2: 短周期元素 W、X、Y、Z 的原子序数依次增大,其中 W 的阴离子的核外电子数与 X、Y、Z 原子的核外内层电子数相同。X 的一种核素在考古时常用来鉴定一些文物的年代,工业上采用液态空气分馏方法来生产 Y 的单质,而 Z 不能形成双原子分子。根据以上叙述,下列说法中正确的是

- A. 上述四种元素的原子半径大小为 W<X<Y<Z
- B. W、X、Y、Z原子的核外最外层电子数的总和为 20
- C. W 与 Y 可形成既含极性共价键又含非极性共价键的化合物
- D. 由 W 与 X 组成的化合物的沸点总低于由 W 与 Y 组成的化合物的沸点

变式 3: 现有部分元素的性质与原子(或分子)结构如下表:

元素编号	元素性质与原子(或分子)结构
T	最外层电子数是次外层电子数的 3 倍
X	常温下单质为双原子分子,分子中含有3对共用电子对
Y	M 层比 K 层少 1 个电子
Z	第三周期元素的简单离子中半径最小

	(1))写	出す	亡素	T	的几	京于	结	构え	下意	图_					
	(2))元	素	Y ±	元	素	Z	目目	٤,	金属	性生	交强的	的是_		(用元素符号表示),下列表述中能证明这一	÷
事多	(的	是				()(填戶	号)。							
	a.	Y	单	质白	り熔	点	比	Z 单	质	低			b.		Y的化合价比Z低	
	c.	Y	单	质占	亦	反	应比	ŁZ	单	质周	烈		d.		Y最高价氧化物的水化物的碱性比Z强	
	(3)	T,	X	, Y	`,	Z	中有	两	种ラ	亡素	能形	成即	无有离		另子键又有非极性共价键的化合物,写出该化合物的	ij
电子	式	: _										- 5 - 15-			°	
	(4))元	素 '	Γ利	氢	元	素じ	人原	子	个数	比1	: 1	化合	形	形成化合物 Q ,元素 X 与氢元素以原子个数比 $1:2$	2
化台	形	成	常月]作	火行			的	化台	物	W,	Q ±	y W	发	发生氧化还原反应, 生成 X 单质和 T 的另一种氢化	1
物,	写	出	该质	应	的作	七号	台方	程	式:						•	

【方法提炼】

- 1. 结构与位置互推问题是解题的基础
 - (1)掌握四个关系式:
 - ①电子层数=周期序数
 - ②质子数=原子序数
 - ③最外层电子数=主族序数
 - ④主族元素的最高正价=主族序数,最低负价=主族序数-8
 - (2)熟练掌握周期表中的一些特殊规律
 - ①各周期元素种数;
 - ②稀有气体的原子序数及在周期表中的位置:
 - ③同族上下相邻元素原子序数的关系等。
 - ④主族序数与原子序数、化合价的关系。
- 2. 性质与位置互推问题是解题的关键

熟悉元素周期表中同周期、同主族元素性质的递变规律,主要包括:

- (1)元素的金属性、非金属性。
- (2)气态氢化物的稳定性。
- (3)最高价氧化物对应水化物的酸碱性。
- 3. 结构和性质的互推问题是解题的要素
 - (1)最外层电子数决定元素原子的氧化性和还原性。
 - (2)同主族元素最外层电子数相同,性质相似。

瓜熟蒂落

1.	1. 下列排列顺序正确的是()	
	①热稳定性: H ₂ O>HF>H ₂ S ②原子	半径: Na>Mg>O
	③酸性: H ₃ PO ₄ >H ₂ SO ₄ >HClO ₄	质子能力: OH⁻>CH₃COO⁻>Cl⁻
	A. ①③ B. ②④	C. ①④ D. ②③
2.	2. 同一周期的 X、Y、Z 三种元素,已知最高价氧化物	物对应水化物的酸性顺序为HXO4>H2YO4>H3ZO4,
	则下列判断错误的是 ()	
	A. 原子半径: X>Y>Z B.	. 气态氢化物的稳定性: HX>H ₂ Y>ZH ₃
	C. 元素原子得电子能力: X>Y>Z D	. 阴离子的还原性: Z ³ >Y ² >X
3.	3. 下列各组物质的性质比较,正确的是()	
	A. 酸性: HClO ₄ >H ₃ PO ₄ >H ₂ SO ₄ B.	. 氢化物稳定性: H ₂ S>HF>H ₂ O
	C. 碱性: NaOH>Mg(OH)2>Ca(OH)2 D	. 氧化性: F ₂ >Cl ₂ >Br ₂ >I ₂
4.	4. 右图是元素周期表的一部分,下列说法中正确的]是()
	A. 元素①位于第二周期第IVA族	0 2 3
	B. 气态氢化物的稳定性: ④>②	(4) (5)
	C. 最高价氧化物对应水化物的酸性: ⑤>④	
	D. 元素的最高正化合价: ③=⑤	
5.	5. $A \times B \times C \times D$ 四种非金属元素, $A \times B$ 在反应中各	结合 1 个电子形成稳定结构,放出能量 B <a;< th=""></a;<>
	氢化物稳定性 HD>HA;原子序数 C <b,其稳< th=""><th>定结构的核外电子数相等。则四种元素非金属</th></b,其稳<>	定结构的核外电子数相等。则四种元素非金属
	性由强到弱的顺序正确的是(
	A. A. B. C. D	B. B. A. C. D
	C. D. A. B. C	D. B. A. D. C
6.	5. X、Y、Z、W 均为短周期元素,它们在周期表中	相对位置如右图所示。若Y原子的最外层电子
	数是内层电子数的 3 倍,下列说法中正确的是(
	A. 原子半径: W>Z>Y>X	X Y Z W
	B. 最高价氧化物对应水化物的酸性 W 比 Z 弱	- 1 4
	C.Y的气态氢化物的稳定性较 Z 的弱	
	D. 四种元素的单质中, Z 的熔、沸点最高	

7.	元素周期律和元素周期表是学习化学的重要工具,下列说法不正确的()
	A. 同周期的主族元素中,WIA 族元素的原子半径最小
	B. 元素周期表中从ⅢB 族到 Ⅱ B 族十个纵列的元素都是金属元素
	C. VIA 族元素的原子,其半径越大,气态氢化物越稳定
	D. 室温下, 0 族元素的单质都是气体
8.	"类推"是一种重要的学习方法,但有时会产生错误,下列类推结论正确的是 ()
	A. 第二周期元素氢化物的稳定性顺序是: $HF>H_2O>NH_3$; 则第三周期元素氢化物的稳定性顺序
	也是: HCl>H ₂ S>PH ₃
	B. IVA 族元素氢化物沸点顺序是: GeH ₄ >SiH ₄ >CH ₄ ; 则VA 族元素氢化物沸点顺序也是:
	AsH ₃ >PH ₃ >NH ₃
	C. 晶体中有阴离子, 必有阳离子; 则晶体中有阳离子, 必有阴离子
	D. 干冰是分子晶体,则 SiO ₂ 也是分子晶体
9.	己知 W、X、Y、Z 四种短周期主族元素在周期表中的相对位置右图所示,下列有关说法正确的
	是()
	A. Y的化学活泼性一定比 W 强
	B. Y元素的原子半径可能比 X 元素的小
	C. Z的气态氢化物的稳定性一定比 X 的强
	D. Z的原子序数可能是 X 的原子序数的 2 倍
10.	将甲、乙两种金属的性质相比较,已知: ①甲与 H_2O 反应比乙与 H_2O 反应剧烈; ②甲单质能从
	乙的盐溶液中置换出单质乙; ③甲的最高价氧化物对应水化物的碱性比乙的最高价氧化物对应
	水化物的碱性强; ④与非金属单质反应时, 甲原子失电子数目比乙原子失电子数目多; ⑤甲单
	质的熔、沸点比乙的低。能说明甲的金属性比乙强的是()
	A. 114 B. 1123 C. 315 D. 112345
11.	$A \times B \times C \times D \times E$ 是同一周期的五种主族元素, $A \times B$ 的最高价氧化物对应的水化物显碱性,
	且碱性 $B>A$; C 和 D 两种元素对应的气态氢化物的稳定性 $C>D$, E 是这五种元素中原子半径
	最小的,则它们的原子序数由小到大的顺序为()
	A. $B < A < C < D < E$ B. $A < E < B < C < D$
	C. $E < B < A < C < D$ D. $B < A < D < C < E$

和等于 B 原子的质子数。B 原子核内质子数和中子数相等。			
A C B			
(1)写出 A、B、C 三种元素的名称、、;			
(2)B 位于元素周期表中第周期,族;			
(3)C 的原子结构示意图为, C 的单质与水反应的化学方程	式为		
;			
(4)比较 B、C 的原子半径: BC, 写出 A 的气态氢化物与	B的最高	价氧化	物对应
水化物反应的化学方程式		0	
13. A、B、C、D 四种元素在周期表中分别处于元素 X 的四周(如图)已知	_		
元素 X 最高价氧化物的化学式为 X_2O_5 ,且五种元素中有一种元素的原		В	
子半径是它们所处的同族元素中最小的。	A	X	C
回答下列各题:			
		D	
(1) 写出各元素的名称: ABC			
DX。			
(2) 写出 C、D、X 气态氢化物最高价氧化物对应水化物的化学式,其面	<u>後性由强</u> 3	到弱的师	原为
°			
(3) 写出 A、B、X 气态氢化物的化学式, 其稳定性由强到弱的顺序为_			0
14. A、B、C、D、E 都是短周期元素,原子序数依次增大,A、B 处于同一			
一周期。C、B 可按原子个数比 2 和11 分别 1 形成两种离子化合物	加甲和乙。	A 原子	的最外層
电子数比次外层电子层多3个。E是地壳中含量最高的金属元素。			
根据以上信息回答下列问题:			
(1) D 元素在周期表中的位置是, 乙物质的化学式是		0	
(2) A、B、C、D、E 五种元素的原子半径由小到大的顺序是(用元素?	符号填写		
•			
(3) E 的单质加入到 C 的最高价氧化物对应的水化物的溶液中,发生质	反应的离子	子方程式	t是
(4) 简述比较 D 与 E 金属性强弱的实验方法:			
•			

12. A、B、C 为短周期元素,在周期表中所处的位置如图所示。A、C 两元素的原子核外电子数之