#1 Assignment - CMPT 405

Luiz Fernando Peres de Oliveira - 301288301 - lperesde@sfu.ca

September 17, 2018

 $\#\mathbf{1}$ - Let C be the array containing all the possible coins $\{1,\ 5,\ 10,\ 25,\ 100,\ 200\}$. Let V be the total change value.

Algorithm:

```
 \begin{split} \textbf{Input:} & \ C, \ V \\ & \ d \leftarrow \text{sort C such that } d_1 \geq d_2 \geq ... \geq d_n \\ & \ res \leftarrow \emptyset; \ i \leftarrow 1 \\ & \ \textbf{while } V > 0 \ \textbf{do} \\ & \ \textbf{if } V \geq d_i \ \textbf{then} \\ & \ n_{coins} \leftarrow \left\lfloor \frac{V}{d_i} \right\rfloor \\ & \ V \leftarrow V - (n_{coins} * d_i) \\ & \ res \leftarrow res \cup \{(d_i, n_{coins})\} \\ & \ \textbf{end if} \\ & \ i \leftarrow i + 1 \\ & \ \textbf{end while} \\ & \ \textbf{return } res \end{split}
```

Intuition: $\forall (d_i, d_j) \in C$, $1 \leq i < j \leq n$, $d_i \geq 2 * d_j$, meaning that if I the algorithm chooses any d_j over any d_i , it will have to pick at least 2 times more coins for some value V that satisfies both d_i and d_j .

Proof. The only way to give more coins than the smallest possible number of coins for any change would be in a case where the algorithm chooses d_j over a d_i (see *Intuition*). Now, imagine that the algorithm chooses d_j over d_i , then we have two cases:

```
- Case 1. d_i > V:
```

If so, we are done because there are no possible ways of choosing d_i for value V.

- Case 2. $d_i \leq V$:

If that was the case, we would have an optimal set OPT such that $OPT_{i-1} \cup d_j \subseteq OPT$, which is not the case, once the iteration i will happen before the iteration j, causing the algorithm to choose d_i over d_j (and never the opposite) for any value V that satisfies both d_i and d_j .

#2 a)

Greedy approach to the fractional knapsack:

- n objects and a knapsack
- item i weighs $w_i > 0$ and has utility $u_i > 0$
- fill knapsack so as to $\mathbf{maximize}$ total utility/weight, not exceeding total capacity W

Algorithm approach:

- sort items in decreasing order of their utility-to-weight ratio u_i/w_i
- repeatedly add item with max ratio u_i/w_i . If not possible to add the whole object, add a fraction $\alpha \in (0,1)$ of it, if possible.

Proof. Let K_{opt} be the optimal set of items in a knapsack and let K_j be the chosen items after an iteration j, $0 \le j \le n$.

Base case: K_0 : K_0 is promising since the total number of chosen objects, in this case *none*, does not exceed total capacity W, there exists some optimal K_{opt} such that $K_0 \subseteq K_{opt} \subseteq K_0 \cup \{i_1, i_2, ..., i_n\}$.

Induction step: Assume K_{j-1} . Since K_{j-1} is promising for stage j-1, $K_{j-1} \subseteq K_{opt} \subseteq K_{j-1} \cup \{i_j, i_{j+1}, ..., i_n\}$. We want to show K_j . On a stage j we have two cases:

Case 1. i_j is rejected. Then $K_{j-1} \cup \{i_j\}$ or $K_{j-1} \cup \{i_j * \alpha\}$ (any fraction $\alpha \in (0,1)$ of i_j) exceed the capacity W; thus, $K_{j-1} = K_j$. Since $K_{j-1} \subseteq K_{opt}$ and K_{opt} does not exceed the total capacity W, $i_j \notin K_{opt}$. So $K_j \subseteq K_{opt} \subseteq K_j \cup \{i_{j+1}, i_{j+2}, ..., i_n\}$.

Case 2. i_j or $i_j * \alpha$ is added to K_{j-1} . Let item i_{chosen} be i_j or $i_j * \alpha$ (whichever was added to K_{j-1}). Then $K_{j-1} \cup \{i_{chosen}\}$ does not exceed the total capacity W and we have $K_{j-1} \cup \{i_{chosen}\} = K_j$.

Case 2.1. $i_{chosen} \in K_{opt}$. Then we have $K_j \subseteq K_{opt} \subseteq K_j \cup \{i_{j+1}, i_{j+2}, ..., i_n\}$.

Case 2.2. $i_{chosen} \notin K_{opt}$. We show that there is another maximum set of utility-to-weight items K'_{opt} that witnesses the fact that K_j is promising. For example, consider an item i_{chosen} added to K_{opt} . This will exceed the capacity W and the knapsack will contain at least one item of $\{i_{j+1}, i_{j+2}, ..., i_n\}$.

Proof of claim: K_{opt} contains all elements of K_{j-1} and can be obtained from K_{j-1} by adding some items from the set $\{i_j, i_{j+1}, ..., i_n\}$. Adding i_j does not exceed capacity W, so the excess in $K_{opt} \cup \{i_{chosen}\}$ must contain some elements other items in $\{i_{j+1}, i_{j+2}, ..., i_n\}$.

#2 b)

Tr = ~)			
item	utility	weight	
1	2	1	W = 1000
2	1000	1000	

 $K_{opt} = \{i_2\} \text{(utility} = 1000\}, K_{greedy} = \{i_1\} \text{(utility} = 2\}$

#3

The idea here is to use the greedy approach of the **set cover** problem. Let U be the collection with all tiles a_{ij} .

Algorithm:

```
Input: U
for i from 1 to K do
for j from 1 to n_i do
arr[i] \leftarrow sort tiles such that a_{ij} \geq a_{ij+1} \geq ... \geq a_{ini}
end for
end for
S \leftarrow create sets S_1, S_2, ..., S_{max(n_i)} using adjacent tiles in arr.
C \leftarrow 0
while all tiles are not covered do
choose s \in S such that s contains most uncovered tiles.
mark the tiles in s as covered
C \leftarrow C + 1
end while
return C
```