MỘT SỐ CÂU BỔ SUNG

- 15) Đặt n=63. Xét vành \mathbb{Z}_n với phép cộng và nhân modulo. Gọi $U(\mathbb{Z}_n)$ là tập các phần tử đơn vị (phần tử khả nghịch với phép nhân) của \mathbb{Z}_n .
 - a) Điều kiện cần và đủ mà a phải thỏa mãn để $a \in U(\mathbb{Z}_n)$?
 - b) $U(\mathbb{Z}_n)$ có bao nhiêu phần tử?
 - c) Tìm điều kiện cho hai số nguyên dương K1, K2 để ta có $(x^{K1})^{K2} = x$ với mọi $x \in U(\mathbb{Z}_n)$. Nhờ đó ta có thể mã hóa các phần tử trong $U(\mathbb{Z}_n)$ bằng K1 và giải mã bằng K2.
 - d) Liệt kê tất cả các cặp khóa (K1, K2) để mã hóa, giải mã các phần tử của $U(\mathbb{Z}_n)$.
 - e) Các phần tử nào trong $\mathbb{Z}_n \setminus U(\mathbb{Z}_n)$ mà có thể mã hóa và giải mã như trên? Có bao nhiều phần tử như vậy?
- a) Điều kiện cần, đủ là gcd(a,63)=1.
- b) U(Z63)=phi(63)=phi(7).phi(9)=6.6=36.
- c) Điều kiện K1, K2 là K1.K2=1 mod phi(63)=1 mod 36.
- d) Các cặp đó thỏa mãn $1 < \mathrm{K2} < \mathrm{K1} < 36$ và tích K1. K2 chia 36 dư 1. Liệt kê ra được

5	7	11	13
29	31	23	25

- e) Có 63-36=27 phần tử trong $\mathbb{Z}_n \setminus U(\mathbb{Z}_n)$. Gọi x là phần tử mã hóa được như vậy thì $x^{\kappa_1 \kappa_2} = x \pmod{63}$ hay $x \left(x^{\kappa_1 \kappa_2} 1 \right) = 0 \pmod{63}$. Do $\gcd(x,63) > 1$ nên có 3 khả năng sau:
- * Nếu gcd(x,63)=7, nghĩa là x chia hết cho 7. Chọn được K1.K2 để có $x^{(K1.K2)}=1 \mod 9$ nên các số này thỏa.
- * Nếu gcd(x,63)=9 thì thỏa, tương tự trên.
- * Nếu gcd(x,63)=3 hoặc gcd(x,63)=21 thì không thỏa vì x chỉ chia hết cho 3 mà không chia hết cho 9, nên tích $x(x^{(K1.K2)-1})$ không thể chia hết cho 63.

Đến đây liệt kê ra được các số thỏa mãn là: 7, 9, 14, 18, 27, 28, 35, 36, 45, 49, 54, 56.

Ghi chú. Bài này nếu thay 63 bởi số nguyên tố hoặc tích các số nguyên tố thì mọi phần tử trong $\mathbb{Z}_n \setminus U(\mathbb{Z}_n)$ đều thỏa. Còn nếu nó có dạng $p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ thì các số $x \in \mathbb{Z}_n \setminus U(\mathbb{Z}_n)$ thỏa mãn câu e) phải có dạng: nếu x,n cùng chia hết cho p thì số mũ của p trong chúng là bằng nhau.

VD. Đổi $63 \rightarrow 45 = 5 \cdot 3^2$ thì đáp số câu e sẽ là 5, 9, 10, 18, 20, 25, 27, 35, 36, 40.

Phân biệt nhóm, vành, trường: chú ý quan hệ giữa giữa các khái niệm: X là nhóm thì chưa chắc là vành, còn X là vành thì chưa chắc là trường; ngược lại: X là trường thì chắc chắn là vành, X là vành thì chắc chắn là nhóm.

Nhóm (Group)

Nhóm là một tập hợp G và một phép toán 2 ngôi \bullet , (G, \bullet) phải thỏa các tính chất sau:

- ullet Tính đóng (Closure): Với mọi $a,b\in G$, ta có $aullet b\in G$
- ullet Tính kết hợp (Associativity): Với mọi $a,b,c\in G$, ta có: (aullet b)ullet c=aullet (bullet c)
- Phần tử đơn vị (Identity element): Tồn tại một phần tử đơn vị $e \in G$ thỏa $e \bullet a = a \bullet e = a$, với mọi $a \in G$. Nếu tồn tại, phần tử đơn vị là duy nhất.
- Phần tử nghịch đảo (Inverse element): với mỗi $a \in G$, tồn tại $b \in G$ thỏa $a \bullet b = b \bullet a = e$, với e là phần tử đơn vị của nhóm. Phần tử nghịch đảo của a thường được kí hiệu là a^{-1} hoặc -a, tùy theo phép toán đang sử dụng.

Ví dụ:

- ullet Nhóm: Tập hợp số nguyên $\mathbb Z$ với phép toán cộng. Phần tử đơn vị là 0.
- Không phải nhóm: Tập \mathbb{Z} với phép toán nhân (không có phần tử nghịch đảo).

Vành (Ring)

Xét tập hợp R với 2 phép toán + và ·, R được gọi là một vành nếu ta có các tính chất sau:

- · Cộng và nhân có tính đóng
- Cộng và nhân có tính kết hợp:

$$\forall a,b,c \in R, (a+b)+c=a+(b+c), (a\cdot b)\cdot c=a\cdot (b\cdot c)$$

- Tồn tại phần tử đơn vị cho phép cộng và nhân, ta kí hiệu 0 và 1 lần lượt là phần tử đơn vị của phép cộng và nhân: $\forall a \in R, a+0=0+a=a, a\cdot 1=1\cdot a=a$
- ullet Phép cộng có tính giao hoán: $a+b=b+a, orall a, b\in R$
- ullet Tồn tại phần tử nghịch đảo cho phép cộng, $orall a \in R, \exists b \in R, a+b=0$
- Tính phân phối của phép nhân đối với phép cộng:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot b)$$
$$(b+c) \cdot a = (b \cdot a) + (c \cdot a)$$

Lưu ý là phép nhân không cần có tính giao hoán và không cần phải có phần tử nghịch đảo.

Trường (Field)

Xét tập hợp F với 2 phép toán + và ·. F được gọi là một trường nếu nó thòa các tính chất sau:

- Cộng và nhân có tính đóng
- Cộng và nhân có tính giao hoán
- Tồn tại phần tử đơn vị cho cộng và nhân, kí hiệu lần lượt là 0 và 1.
- ullet Tồn tại phần tử nghịch đảo -a với $orall a \in F$, thỏa a+(-a)=0
- ullet Với orall a
 eq 0, tồn tại a^{-1} thỏa $a \cdot a^{-1} = 1$
- ullet Tính phân phối của phép nhân đối với phép cộng: $a\cdot(b+c)=(a\cdot b)+(a\cdot b)$

Trường hữu hạn là một trường có số phần tử là hữu hạn. Một trường hữu hạn thường gặp là \mathbb{Z}_p với p nguyên tố.

- 1) Tập hợp $\mathbb{Z}_{41}\setminus\{\ \overline{0}\ \}$ có tạo thành nhóm với phép nhân hay không? Tại sao?
- 2) Tập hợp $\mathbb{Z}_{1024} \setminus \{\overline{0}\}$ có tạo thành nhóm với phép nhân hay không? Tại sao?
- 3) Chứng đa thức $f(x) = \overline{2x} + \overline{3}$ không thuộc về $U(\mathbb{Z}_6[x])$.
- 4) Chứng đa thức f(x) = x không bất khả quy trong $\mathbb{Z}_6[x]$, nghĩa là f(x) có cách rút gọn không tầm thường trong $\mathbb{Z}_6[x]$.
- 5) Phương trình bậc hai $\overline{3}x^2 + \overline{3}x = 0$ có bao nhiều nghiệm trong \mathbb{Z}_6 ?
- 6) Giả sử $a, b \in \mathbb{Z}_6$. Phương trình $\overline{5}x^2 + \overline{4}ax + \overline{5}a^2 + \overline{3}b^2 \overline{1} = 0$ có nghiệm trong \mathbb{Z}_6 hay không?
- 7) Tìm tất cả các đa thức bậc hai bất khả quy trong $\mathbb{Z}_2[x]$.
- 8) Tìm tất cả các đa thức bậc bốn vô nghiệm nhưng không bất khả quy trong $\mathbb{Z}_2[x]$.
- 9) Tìm tất cả các đa thức bậc hai bất khả quy trong $\mathbb{Z}_3[x]$.
- 10) Chứng minh $i\sqrt{3}$ là nguyên tố trong miền nguyên ($\mathbb{Z}[i\sqrt{3}], +, \cdot$).
- 11) Chứng minh 2 là KTRG nhưng không nguyên tố trong miền nguyên ($\mathbb{Z}[i\sqrt{3}], +, \cdot$).
- 1) Có vì tích của hai số trong Z41\{0} thì không thể ra 0 nên nó đóng với phép nhân. Xem lại định nghĩa nhóm.
- 2) Không, chẳng hạn lấy x = 64, y = 32 thuộc $Z[1024]\setminus\{0\}$ thì tích của nó chia hết cho 1024, tức là ra 0, nhưng tập trên không lấy số 0.
- 3) Cần chứng tỏ rằng không tồn tại đa thức trong $\mathbb{Z}_6[x]$ mà

$$(2x+3) f(x) = 1 \pmod{6}$$
.

Gọi a là hệ số tự do của f(x) thì hệ số tự do của tích trên là $3a \equiv 1 \pmod{6}$, vô lý.

- 4) Ta có $(2x+3)(3x+2) = 6x^2 + 7x + 6 = x \text{ trong } \mathbb{Z}_6[x].$
- 5) $3x^2 + 3x = 3x(x+1)$. Thế x = 0,1,...,5 vào thử là được.
- 6) Thử các số vào để kiểm tra.
- 7) Chỉ có duy nhất đa thức $x^2 + x + 1$.
- 8) Chỉ có duy nhất $(x^2 + x + 1)^2$.
- 9) Có 6 đa thức: x^2+x+2, x^2+2x+2, 2x^2+2x+1, 2x^2+x+1, x^2+1 và 2x^2+2.
- 10) Miền $\mathbb{Z}[i\sqrt{3}]$ có dạng $x+i\cdot y\sqrt{3}$ với $x,y\in\mathbb{Z}$. Chú ý rằng $i^2=-1$.

Giả sử $i\sqrt{3} = (x_1 + iy_1\sqrt{3})(x_2 + iy_2\sqrt{3})$, khai triển vế phải ra, ta có

$$x_1x_2 - 3y_1y_2 = 0$$
 và $x_1y_2 + x_2y_1 = 1$.

Từ $x_1y_2 + x_2y_1 = 1$, suy ra $gcd(x_1, y_1) = gcd(x_2, y_2) = 1$, vì nếu không thì giả sử chúng có gcd = d > 1 thì 1 chia hết cho d, mâu thuẫn.

Từ $x_1x_2 = 3y_1y_2$, mà x_1, y_1 không có ước chung nên x_2 chia hết cho y_2 , đặt $x_2 = ay_2$. Tương tự đặt $x_1 = by_1$, thay vào có ab = 3 và $y_1y_2(a+b) = 1$.

Đến đây dễ thấy a,b cùng lẻ, kéo theo a+b chẵn, vô lý, vì 1 lẻ.

11) Không rõ chữ KTRG viết tắt của gì.

Còn để chứng minh 2 không nguyên tố trong miền $\mathbb{Z}[i\sqrt{3}]$, ta chỉ ra có

$$(a+i\cdot b\sqrt{3})(c+i\cdot d\sqrt{3})=2$$
 có nghiệm $a,b,c,d\in\mathbb{Z}$.

hay ac - 3bd = 2, ad + bc = 0. Chọn b = d = 0, a = 1, c = 2 là được.