

Advanced Data Science Capstone Project by IBM

CAO CHÁNH TRÍ

- Dataset Overview
- Technology applied
- Descriptive and Exploratory Analysis
- Modeling
- Evaluating
- Deployment

Dataset Overview

THIS DATASET IS FICTIONAL AND IS
TRYING TO SIMULATE REAL LIFE DETAILS.
ANY SIMILARITY TO REAL LIFE CASES IS
PURELY COINCIDENTAL.

The data is separated into 2 csv files:

- fraudTrain with 1296675 records
- fraudTest with 555719 records

Dataset Overview

Originaly, the data comes with 22 columns:

- trans_date_trans_time: The date and time of the transaction.
- cc_num: credit card number.
- merchant: Merchant who was getting paid.
- category: In what area does that merchant deal.
- amt: Amount of money in American Dollars.
- first: first name of the card holder.
- last: last name of the card holder.
- gender: Male or Female

Dataset Overview

- street: Street of card holder residence
- city: city of card holder residence
- state: state of card holder residence
- zip: ZIP code of card holder residence
- lat: latitude of card holder
- long: longitude of card holder
- city_pop: Population of the city
- job: trade of the card holder

Dataset Overview

- dob: Date of birth of the card holder
- trans_num: Transaction ID
- unix_time: Unix time which is the time calculated since 1970
- merch_lat: latitude of the merchant
- merch_long:longitude of the merchant
- is_fraud (target): is fraud(1) or not(0)

Technology Applied

- Auto Descriptive Statistic: pandas profiling
- Visualization: Seaborn, Folium
- Model Creation: Pycarret, Xgboost, Tensorflow
- Deploy with Streamlit

Descriptive and Exploratory Analysis

Dataset statistics				
	Train	Test		
Number of variables	22	22		
Number of observations	1296675	555719		
Missing cells	0	0		
Missing cells (%)	0.0%	0.0%		
Duplicate rows	0	0		
Duplicate rows (%)	0.0%	0.0%		
Total size in memory	217.6 MiB	93.3 MiB		
Average record size in memory	176.0 B	176.0 B		

Variable types					
	Train	Test			
DateTime	2	2			
Numeric	9	9			
Categorical	11	11			

Descriptive and Exploratory Analysis

Descriptive and Exploratory Analysis

- 0.8

- 0.6

- 0.2

- 0.0

Descriptive and Exploratory Analysis

Feature Engineering

- Subset the meaningful columns:

 'category', 'amt', 'gender', 'city_pop',

 'lat', 'long'
- Introduce 'late_hour' and 'early_hour'
 - Late_hour: transaction after 10pm
 - Early_hour: transaction before 3am
- Introduce 'elderly' and 'young'
 - Elderly: whose dob before 1960
 - Young: whose dob after 1990

Modeling

AutoML with Pycarret for model suggestions

[5]	best_m	<pre>best_model = compare_models(n_select=3, sort='f1')</pre>								
		Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
	gbc	Gradient Boosting Classifier	0.9968	0.9227	0.6521	0.7564	0.6969	0.6953	0.6990	0.4490
	xgboost	Extreme Gradient Boosting	0.9969	0.9690	0.5933	0.8401	0.6785	0.6770	0.6950	0.4670
	dt	Decision Tree Classifier	0.9958	0.8149	0.6321	0.6488	0.6296	0.6276	0.6329	0.0680
	lightgbm	Light Gradient Boosting Machine	0.9951	0.9360	0.5396	0.6664	0.5754	0.5731	0.5866	0.1240
	rf	Random Forest Classifier	0.9963	0.9550	0.4150	0.9000	0.5515	0.5500	0.5981	0.2790
	svm	SVM - Linear Kernel	0.9958	0.0000	0.4079	0.7685	0.5235	0.5216	0.5522	0.0700
	knn	K Neighbors Classifier	0.9959	0.7738	0.3683	0.8519	0.5008	0.4991	0.5494	0.6680
	et	Extra Trees Classifier	0.9958	0.9400	0.3479	0.8629	0.4842	0.4825	0.5381	0.2550
	ada	Ada Boost Classifier	0.9953	0.9540	0.3429	0.6900	0.4500	0.4480	0.4797	0.2090
	lda	Linear Discriminant Analysis	0.9880	0.9126	0.4867	0.2411	0.3216	0.3163	0.3367	0.0850
	lr	Logistic Regression	0.9946	0.9209	0.1962	0.6296	0.2875	0.2856	0.3372	1.0120
	qda	Quadratic Discriminant Analysis	0.7712	0.8811	0.8350	0.0362	0.0687	0.0581	0.1438	0.0720

Modeling

Build my own preprocess pipeline


```
ColumnTransformer

numeric

categorical

SimpleImputer
SimpleImputer (strategy='median')

SimpleImputer (strategy='most_frequent')

StandardScaler
StandardScaler
OneHotEncoder (drop='if_binary', handle_unknown='ignore')
```

Modeling

Light Gradient Boosting Classifier

Modeling

XGBoost Classifier

Modeling

Random Forrest Classifier

Modeling

Quadratic Discriminant Analysis

Modeling

Basic ML Models

Modeling

Shallow Neural Net (289 params)

Modeling

Shallow Neural Net (289 params)

Modeling

Bigger Neural Net (6,721 params)

Modeling

Bigger Neural Net (6,721 params)

Modeling

Deeper Neural Net (1,249 params)

Modeling

Deeper Neural Net (1,249 params)

Modeling

Neural Networks

Tuning and Evaluating

Tuning and Evaluating

DeepNN:

insignifficant improvement

Search

Tuning and Evaluating

XGBoost:

Avoiding overfitting

Tuning and Evaluating

MACRO AVG	Precision	Recall	F1 score
DeepNN	0.95	0.84	0.89
XGBoost	0.94	0.86	0.90

Deployment with Streamlit

