

《线性代数》

4-向量空间 (Vector Space)

杨启哲

上海师范大学信机学院计算机系

2024年3月10日

复习-逆矩阵

定义 1

[可逆矩阵 (Invertible Matrix)].

称一个方阵 A(A 是一个 $n \times n$ 的矩阵)是可逆的 (invertbile),如果存在一个矩阵 A^{-1} ,使得:

$$AA^{-1} = A^{-1}A = I$$

复习-逆矩阵

定义 1

[可逆矩阵 (Invertible Matrix)].

称一个方阵 $A(A \ 是$ 一个 $n \times n$ 的矩阵)是可逆的 (invertbile),如果存在一个矩阵 A^{-1} ,使得:

$$AA^{-1} = A^{-1}A = I$$

引理 2.

如果方阵 A 是可逆的, 那么其逆矩阵是唯一的。

复习-逆矩阵

定义 1

[可逆矩阵 (Invertible Matrix)].

$$AA^{-1} = A^{-1}A = I$$

引理 2.

如果方阵 A 是可逆的, 那么其逆矩阵是唯一的。

引理 3.

如果方阵 A 是可逆的,则对于任意的 b,方程 Ax = b 有唯一解。

定义 1

[可逆矩阵 (Invertible Matrix)].

$$AA^{-1} = A^{-1}A = I$$

引理 2.

如果方阵 A 是可逆的,那么其逆矩阵是唯一的。

引理 3.

如果方阵 A 是可逆的,则对于任意的 b,方程 Ax = b 有唯一解。

推论 4.

如果 Ax = 0 存在一个非零解,那么 A 不是可逆的。

定义 5

[转置矩阵 (Tranpose Matrix)].

给定一个 $m \times n$ 的矩阵 A, 其转置矩阵 A^T 是一个 $n \times m$ 的矩阵, 其满足:

$$(A^\mathsf{T})(\mathfrak{i},\mathfrak{j})=A_(\mathfrak{j},\mathfrak{i})$$

复习-转置矩阵

定义 5

[转置矩阵 (Tranpose Matrix)].

给定一个 $m \times n$ 的矩阵 A,其转置矩阵 A^T 是一个 $n \times m$ 的矩阵,其满足:

$$(A^{\mathsf{T}})(\mathfrak{i},\mathfrak{j})=A_(\mathfrak{j},\mathfrak{i})$$

定义 6.

置换矩阵 P 是将单位矩阵 I 的行重排列得到的矩阵。

复习-转置矩阵

定义 5

[转置矩阵 (Tranpose Matrix)].

给定一个 $m \times n$ 的矩阵 A, 其转置矩阵 A^T 是一个 $n \times m$ 的矩阵, 其满足:

$$(A^{\mathsf{T}})(\mathfrak{i},\mathfrak{j})=A_{\mathfrak{j}},\mathfrak{i})$$

定义 6.

置换矩阵 P 是将单位矩阵 I 的行重排列得到的矩阵。

引理 7.

$$P^{-1} = P^{\mathsf{T}}$$

主要内容

> 向量空间

> 子空间

· 第6章6.1

特殊的向量空间

特殊的向量空间

定义 8.

空间 \mathbb{R}^n 包含了所有如下的 n 维列向量 v:

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix}$$

其中对于任意的 $\mathfrak{i}\in[\mathfrak{n}],\ \nu_{\mathfrak{i}}\in\mathbb{R},\$ 这里的 \mathbb{R} 是实数集。

特殊的向量空间

定义 8.

空间 \mathbb{R}^n 包含了所有如下的 n 维列向量 v:

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix}$$

其中对于任意的 $i \in [n], \ \nu_i \in \mathbb{R}, \$ 这里的 \mathbb{R} 是实数集。

定义 9.

空间 \mathbb{C}^n 包含了所有如下的 n 维列向量 v:

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \end{bmatrix}$$

其中对于任意的 $i \in [n]$, $v_i \in \mathbb{C}$, 这里的 \mathbb{C} 是复数集。

一个向量空间 V 是一个非空集合,其中的元素称之为向量,并且其满足以下两种运算:

一个向量空间 V 是一个非空集合,其中的元素称之为向量,并且其满足以下两种运算:

• 向量加法: 对于任意的 $u, v \in V$, $u + v \in V$ 。

- 一个向量空间 V 是一个非空集合,其中的元素称之为向量,并且其满足以下两种运算:
 - 向量加法: 对于任意的 $u, v \in V$, $u + v \in V$ 。
 - 数与向量的乘法(数乘): 对于任意的 $u \in V$ 和任意的实数 $c \in \mathbb{R}$, $cu \in V$ 。

其中的加法满足如下的性质:

其中的加法满足如下的性质:

1. 加法满足交换律:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

其中的加法满足如下的性质:

1. 加法满足交换律:

$$u + v = v + u$$

2. 加法满足结合律:

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

其中的加法满足如下的性质:

1. 加法满足交换律:

$$u + v = v + u$$

2. 加法满足结合律:

$$u + (v + w) = (u + v) + w$$

3. 加法存在一个零元素(唯一的) $\mathbf{0}$,其满足 $\mathbf{u} + \mathbf{0} = \mathbf{u}$ 对任意的 $\mathbf{u} \in \mathbf{V}$ 。

其中的加法满足如下的性质:

1. 加法满足交换律:

$$u + v = v + u$$

2. 加法满足结合律:

$$u + (v + w) = (u + v) + w$$

- 3. 加法存在一个零元素(唯一的) $\mathbf{0}$, 其满足 $\mathbf{u} + \mathbf{0} = \mathbf{u}$ 对任意的 $\mathbf{u} \in \mathbf{V}$ 。
- 4. 加法存在一个负元素(逆元),即对于任意的 $\mathbf{u} \in \mathbf{V}$,存在一个 $\mathbf{v} \in \mathbf{V}$,使得 $\mathbf{u} + \mathbf{v} = \mathbf{0}$,特别的,将 \mathbf{v} 记为 $-\mathbf{u}$ 。

向量空间的形式化定义(Ⅲ)

其中的数乘满足如下的性质:

其中的数乘满足如下的性质:

5. 数乘存在单位元 1,使得 1u = u 对于任意的 $u \in V$ 。

其中的数乘满足如下的性质:

- 5. 数乘存在单位元 1,使得 1u = u 对于任意的 $u \in V$ 。
- 6. 数乘满足结合律:

$$\mathbf{c}_1(\mathbf{c}_2\mathbf{u}) = (\mathbf{c}_1\mathbf{c}_2)\mathbf{u}$$

其中的数乘满足如下的性质:

- 5. 数乘存在单位元 1, 使得 1u = u 对于任意的 $u \in V$ 。
- 6. 数乘满足结合律:

$$\mathbf{c}_1(\mathbf{c}_2\mathbf{u}) = (\mathbf{c}_1\mathbf{c}_2)\mathbf{u}$$

7. 数乘是线性的,即对于任意的 $c \in \mathbb{R}$ 和 $u, v \in V$ 均有:

$$c(u+v) = cu + cv$$

其中的数乘满足如下的性质:

- 5. 数乘存在单位元 1, 使得 1u = u 对于任意的 $u \in V$ 。
- 6. 数乘满足结合律:

$$\mathbf{c}_1(\mathbf{c}_2\mathbf{u}) = (\mathbf{c}_1\mathbf{c}_2)\mathbf{u}$$

7. 数乘是线性的,即对于任意的 $c \in \mathbb{R}$ 和 $u, v \in V$ 均有:

$$c(u+v) = cu + cv$$

8. 数乘对于加法满足分配律,即对于任意的 $c_1, c_2 \in \mathbb{R}$ 和 $u \in V$ 均有:

$$(c_1 + c_2)u = c_1u + c_2u$$

对于 $m, n \ge 1$, 令 $M_{m \times n}(\mathbb{R})$ 表示所有的 $m \times n$ 的实数矩阵的集合:

- 其中的加法就定义成矩阵的加法。
- 其中的数乘就定义成矩阵的数乘。

对于 $m, n \ge 1$, 令 $M_{m \times n}(\mathbb{R})$ 表示所有的 $m \times n$ 的实数矩阵的集合:

- 其中的加法就定义成矩阵的加法。
- 其中的数乘就定义成矩阵的数乘。

可以验证, $M_{m\times n}(\mathbb{R})$ 是一个向量空间。

• 矩阵的加法满足交换律和结合律。

- 矩阵的加法满足交换律和结合律。
- 其零元为全零矩阵 $\mathbf{0}_{m\times n}$, 即所有的入口都是 0。

- 矩阵的加法满足交换律和结合律。
- 其零元为全零矩阵 $\mathbf{0}_{m\times n}$, 即所有的入口都是 0。
- 对于任意的 $M \in M_{m \times n}(\mathbb{R})$, 其负元 -M 为: -M = (-1)M.

- 矩阵的加法满足交换律和结合律。
- 其零元为全零矩阵 $\mathbf{0}_{m\times n}$, 即所有的入口都是 0。
- 对于任意的 M ∈ M_{m×n}(ℝ), 其负元 –M 为: –M = (-1)M.
- 数乘的单位元就是 $1 \in \mathbb{R}$.

- 矩阵的加法满足交换律和结合律。
- 其零元为全零矩阵 $\mathbf{0}_{m\times n}$, 即所有的入口都是 0。
- 对于任意的 $M \in M_{m \times n}(\mathbb{R})$, 其负元 -M 为: -M = (-1)M.
- 数乘的单位元就是 1 ∈ ℝ.
- 数乘满足结合律和分配律。

- 矩阵的加法满足交换律和结合律。
- 其零元为全零矩阵 $\mathbf{0}_{m\times n}$, 即所有的入口都是 0。
- 对于任意的 $M \in M_{m \times n}(\mathbb{R})$,其负元 -M 为: -M = (-1)M.
- 数乘的单位元就是 $1 \in \mathbb{R}$.
- 数乘满足结合律和分配律。
- 数乘满足线性性质。

例子-只有一个向量的向量空间

有没有只有一个向量的向量空间呢?

例子-只有一个向量的向量空间

有没有只有一个向量的向量空间呢?

有。

例子-只有一个向量的向量空间

有没有只有一个向量的向量空间呢?

有。

只有一个元素的向量空间

$$Z = \{0\}$$

是一个向量空间。可以认为 ℝº 是 Z 的一个特殊情况。

通过前面所叙述的向量加法和数乘,可以验证 Rn 是一个向量空间。

例子 \mathbb{R}^2 , \mathbb{R}^3 , · · ·

通过前面所叙述的向量加法和数乘,可以验证 ℝn 是一个向量空间。

• 所有
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 组成的集合 \mathbb{R}^2 。

例子 \mathbb{R}^2 , \mathbb{R}^3 , ...

通过前面所叙述的向量加法和数乘,可以验证 ℝn 是一个向量空间。

• 所有
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 组成的集合 \mathbb{R}^2 。

• 所有
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 组成的集合 \mathbb{R}^3 。

例子 \mathbb{R}^2 , \mathbb{R}^3 , \cdots

通过前面所叙述的向量加法和数乘,可以验证 Rn 是一个向量空间。

• 所有
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 组成的集合 \mathbb{R}^2 。

• 所有
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 组成的集合 \mathbb{R}^3 。

• ..

例子 \mathbb{R}^2 , \mathbb{R}^3 , ...

通过前面所叙述的向量加法和数乘,可以验证 Rn 是一个向量空间。

• 所有
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 组成的集合 \mathbb{R}^2 。

• 所有
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 组成的集合 \mathbb{R}^3 。

• ..

例子 \mathbb{R}^2 , \mathbb{R}^3 , \cdots

通过前面所叙述的向量加法和数乘,可以验证 Rn 是一个向量空间。

- 所有 $\begin{vmatrix} x \\ y \end{vmatrix}$ 组成的集合 \mathbb{R}^2 。
- 所有 $\begin{bmatrix} x \\ y \end{bmatrix}$ 组成的集合 \mathbb{R}^3 。

问题 10. 能否将 ℝⁿ 中推广到 ℝ[∞] 中?

假设我们遵循着 \mathbb{R}^n 的例子推广,则 \mathbb{R}^∞ 应该是这样的:

• $\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) \mid$ 对所有的 $i, x_i \in \mathbb{R}\}.$

- $\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) \mid$ 对所有的 $i, x_i \in \mathbb{R}\}$ 。
- $c(x_1, x_2, \cdots) = (cx_1, cx_2, \cdots)$.

- $\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) \mid$ 对所有的 $i, x_i \in \mathbb{R}\}$ 。
- $c(x_1, x_2, \cdots) = (cx_1, cx_2, \cdots)_{\circ}$
- $(x_1, x_2, \cdots) + (y_1, y_2, \cdots) = (x_1 + y_1, x_2 + y_2, \cdots)_{\circ}$

- $\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) \mid$ 对所有的 $i, x_i \in \mathbb{R}\}$ 。
- $c(x_1, x_2, \cdots) = (cx_1, cx_2, \cdots)_{\circ}$
- $(x_1, x_2, \cdots) + (y_1, y_2, \cdots) = (x_1 + y_1, x_2 + y_2, \cdots)_{\circ}$

假设我们遵循着 \mathbb{R}^n 的例子推广,则 \mathbb{R}^∞ 应该是这样的:

- $\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) \mid$ 对所有的 $i, x_i \in \mathbb{R}\}$ 。
- $c(x_1, x_2, \cdots) = (cx_1, cx_2, \cdots)_{\circ}$
- $(x_1, x_2, \cdots) + (y_1, y_2, \cdots) = (x_1 + y_1, x_2 + y_2, \cdots)_{\circ}$

但问题是:

$$(x_1, x_2, \cdots)$$

是什么?

例子 $-\mathbb{R}^{\infty}(I)$

假设我们遵循着 \mathbb{R}^n 的例子推广,则 \mathbb{R}^∞ 应该是这样的:

- $\mathbb{R}^{\infty} = \{(x_1, x_2, \cdots) \mid$ 对所有的 $i, x_i \in \mathbb{R}\}$ 。
- $c(x_1, x_2, \cdots) = (cx_1, cx_2, \cdots)_{\circ}$
- $(x_1, x_2, \cdots) + (y_1, y_2, \cdots) = (x_1 + y_1, x_2 + y_2, \cdots)_{\circ}$

但问题是:

$$(x_1, x_2, \cdots)$$

是什么? 函数!

定义集合F:

$$F = F(\mathbb{N} \to R) = \{f \mid f : \mathbb{N} \to \mathbb{R}\}\$$

• 给定 $f_1, f_2 \in F$, 定义函数 $f_1 + f_2 : \mathbb{F} \to \mathbb{R}$ 为:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

• 对于任意的 $f \in F$ 和 $c \in \mathbb{R}$, 定义函数 $cf : \mathbb{N} \to \mathbb{R}$ 为:

$$(cf)(x) = cf(x)$$

定义集合F:

$$F = F(\mathbb{N} \to R) = \{f \mid f : \mathbb{N} \to \mathbb{R}\}\$$

• 给定 $f_1, f_2 \in \mathbb{F}$, 定义函数 $f_1 + f_2 : \mathbb{F} \to \mathbb{R}$ 为:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

• 对于任意的 $f \in F$ 和 $c \in \mathbb{R}$, 定义函数 $cf : \mathbb{N} \to \mathbb{R}$ 为:

$$(cf)(x) = cf(x)$$

可以验证,F是一个向量空间。

我们再来看一个例子, 考虑如下的集合:

$$V=\mathbb{R}^+=\{x\mid x\in\mathbb{R} \text{ and } x>0\}$$

我们再来看一个例子, 考虑如下的集合:

$$V = \mathbb{R}^+ = \{x \mid x \in \mathbb{R} \text{ and } x > 0\}$$

• 对于任意的 $x,y \in V$,定义加法运算 \oplus : $x \oplus y$ 为 $x \oplus y = xy$ 。

我们再来看一个例子, 考虑如下的集合:

$$V = \mathbb{R}^+ = \{x \mid x \in \mathbb{R} \text{ and } x > 0\}$$

- 对于任意的 $x, y \in V$,定义加法运算 \oplus : $x \oplus y 为 x \oplus y = xy$ 。
- 对于任意的 $x \in V$ 和 $c \in \mathbb{R}$,定义数乘运算 \otimes : $c \otimes x$ 为 $c \otimes x = x^c$ 。

我们再来看一个例子, 考虑如下的集合:

$$V = \mathbb{R}^+ = \{x \mid x \in \mathbb{R} \text{ and } x > 0\}$$

- 对于任意的 $x, y \in V$,定义加法运算 \oplus : $x \oplus y 为 x \oplus y = xy$ 。
- 对于任意的 $x \in V$ 和 $c \in \mathbb{R}$,定义数乘运算 \otimes : $c \otimes x$ 为 $c \otimes x = x^c$ 。

我们再来看一个例子, 考虑如下的集合:

$$V = \mathbb{R}^+ = \{ x \mid x \in \mathbb{R} \text{ and } x > 0 \}$$

- 对于任意的 $x, y \in V$,定义加法运算 \oplus : $x \oplus y 为 x \oplus y = xy$ 。
- 对于任意的 $x \in V$ 和 $c \in \mathbb{R}$,定义数乘运算⊗: $c \otimes x$ 为 $c \otimes x = x^c$ 。

可以验证, V是一个向量空间。

引理 11.

零向量 0 是唯一的。

引理 11.

零向量 0 是唯一的。

证明. 反设存在两个零向量 $\mathbf{0}_1, \mathbf{0}_2$,则有:

$$\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1 = \mathbf{0}_2$$

引理 11.

零向量 0 是唯一的。

证明. 反设存在两个零向量 $\mathbf{0}_1, \mathbf{0}_2$,则有:

$$\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1 = \mathbf{0}_2$$

引理 12.

对于任何向量 v,其负向量是唯一的。

引理 11.

零向量 0 是唯一的。

证明. 反设存在两个零向量 $\mathbf{0}_1, \mathbf{0}_2$,则有:

$$\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2 + \mathbf{0}_1 = \mathbf{0}_2$$

引理 12.

对于任何向量 v, 其负向量是唯一的。

证明. 反设存在两个负向量 v_1, v_2 ,则有:

$$v_1 = v_1 + \mathbf{0} = v_1 + (v + v_2) = (v_1 + v) + v_2 = \mathbf{0} + v_2 = v_2$$

引理 13

[向量的消去律 (Cancellation Law)].

如果 u+v=u+w,则 v=w。

-些性质 (11)

引理 13

[向量的消去律 (Cancellation Law)].

如果 u + v = u + w, 则 v = w。

引理 14.

- 1. 0v = 0.
- 2. c0 = 0.

- 4. -(u + v) = (-u) + (-v). 5. c(-u) = (-c)u = -(cu).

• 向量空间的概念。一些例子。

阶段总结

- 向量空间的概念。一些例子。
- 向量空间的性质。

阶段总结

- 向量空间的概念。一些例子。
- 向量空间的性质。

阶段总结

- 向量空间的概念。一些例子。
- 向量空间的性质。

接下来我们来关注向量空间的一类特殊子集。

子空间

\mathbb{R}^2 中的例子

让我们从一个简单的例子看起。考察 №2 中的子集:

让我们从一个简单的例子看起。考察 №2 中的子集:

• $L_1 = \{(x,0) \mid x \in \mathbb{R}\}$ 也是一个向量空间。

\mathbb{R}^2 中的例子

让我们从一个简单的例子看起。考察 №2 中的子集:

- $L_1 = \{(x,0) \mid x \in \mathbb{R}\}$ 也是一个向量空间。
- $L_2 = \{(x, x+1) \mid x \in \mathbb{R}\}$ 不是一个向量空间。

\mathbb{R}^2 中的例子

让我们从一个简单的例子看起。考察 №2 中的子集:

- $L_1 = \{(x,0) \mid x \in \mathbb{R}\}$ 也是一个向量空间。
- $L_2 = \{(x, x+1) \mid x \in \mathbb{R}\}$ 不是一个向量空间。

\mathbb{R}^2 中的例子

让我们从一个简单的例子看起。考察 ℝ² 中的子集:

- $L_1 = \{(x,0) \mid x \in \mathbb{R}\}$ 也是一个向量空间。
- $L_2 = \{(x, x+1) \mid x \in \mathbb{R}\}$ 不是一个向量空间。

显然并不是所有的子集都是向量空间。我们称这样的子集为子空间。

子空间的定义

定义 15

[子空间 (Subspace)].

给定一个向量空间 V, 如果 W 是 V 的一个非空子集, 并且 W 满足如下两个条件:

- 1. 对于任意的 $u, v \in W$, $u + v \in W$ 。
- 2. 对于任意的 $c \in \mathbb{R}$ 和 $u \in W$, $cu \in W$ 。

则称 $W \in V$ 的一个子空间。

子空间的定义

定义 15

[子空间 (Subspace)].

给定一个向量空间 V, 如果 W 是 V 的一个非空子集, 并且 W 满足如下两个条件:

- 1. 对于任意的 $u, v \in W$, $u + v \in W$ 。
- 2. 对于任意的 $c \in \mathbb{R}$ 和 $u \in W$, $cu \in W$ 。

则称 $W \in V$ 的一个子空间。

定理 16.

如果 W 是向量空间 V 的一个子空间,则 W 对于 V 上定义的加法和数乘运算构成一个向量空间。

考察如下集合:

$$V = \mathbb{R}^3$$

$$W = \{(x, y, 0) \mid x, y \in \mathbb{R}\}$$

考察如下集合:

$$V = \mathbb{R}^3$$

$$W = \{(x, y, 0) \mid x, y \in \mathbb{R}\}$$

则 $W \in V$ 的一个子空间,原因在于:

考察如下集合:

$$V = \mathbb{R}^3$$

$$W = \{(x, y, 0) \mid x, y \in \mathbb{R}\}$$

则 $W \in V$ 的一个子空间,原因在于:

• 对于任意的
$$\mathbf{u}=(\mathbf{x}_1,\mathbf{y}_1,0), \mathbf{v}=(\mathbf{x}_2,\mathbf{y}_2,0)\in \mathbf{W},\ \mathbf{u}+\mathbf{v}=(\mathbf{x}_1+\mathbf{x}_2,\mathbf{y}_1+\mathbf{y}_2,0)\in \mathbf{W}.$$

考察如下集合:

$$V = \mathbb{R}^3$$
$$W = \{(x, y, 0) \mid x, y \in \mathbb{R}\}$$

则 $W \neq V$ 的一个子空间,原因在于:

- 对于任意的 $\mathbf{u}=(\mathbf{x}_1,\mathbf{y}_1,0), \mathbf{v}=(\mathbf{x}_2,\mathbf{y}_2,0)\in \mathbf{W},\ \mathbf{u}+\mathbf{v}=(\mathbf{x}_1+\mathbf{x}_2,\mathbf{y}_1+\mathbf{y}_2,0)\in \mathbf{W}.$
- 对于任意的 $c \in \mathbb{R}$ 和 $u = (x, y, 0) \in W$, $cu = (cx, cy, 0) \in W$ 。

定义对角矩阵为:

定义 17

[对角矩阵 (Diagonal Matrix)].

令 $\mathfrak{n}\geqslant 1,\ A\in \mathbb{M}_{\mathfrak{n}\times\mathfrak{n}}(\mathbb{R}),\$ 如果对于任意的 $\mathfrak{i}\neq \mathfrak{j}$ 均有:

$$A(i,j)=0$$

则称 A 是一个对角矩阵。

定义对角矩阵为:

定义 17

[对角矩阵 (Diagonal Matrix)].

令 $n \geqslant 1$, $A \in M_{n \times n}(\mathbb{R})$, 如果对于任意的 $i \neq j$ 均有:

$$A(i,j) = 0$$

则称 A 是一个对角矩阵。

考虑如下集合:

$$D_n(\mathbb{R}) = \{A \in \mathbb{M}_{n \times n}(\mathbb{R}) \mid A$$
是对角矩阵。}

定义对角矩阵为:

定义 17

[对角矩阵 (Diagonal Matrix)].

令 $n \ge 1$, $A \in M_{n \times n}(\mathbb{R})$, 如果对于任意的 $i \ne j$ 均有:

$$A(i,j) = 0$$

则称 A 是一个对角矩阵。

考虑如下集合:

$$D_n(\mathbb{R}) = \{A \in \mathbb{M}_{n \times n}(\mathbb{R}) \mid A$$
是对角矩阵。}

则 $D_n(\mathbb{R})$ 是 $\mathbb{M}_{n\times n}(\mathbb{R})$ 的一个子空间。

子空间的性质(I)

引理 18.

如果 W 是向量空间 V 的一个子空间,则 $\mathbf{0} \in W$.

子空间的性质(I)

引理 18.

如果 W 是向量空间 V 的一个子空间,则 $\mathbf{0} \in W$.

证明.
$$\mathbb{R} \mathbf{w} \in W$$
, $0\mathbf{w} = \mathbf{0} \in W$.

子空间的性质(II)

引理 19.

令 $\mathbf{u}, \mathbf{v} \in W$,则所有 \mathbf{u}, \mathbf{v} 的线性组合 $\mathbf{c}\mathbf{u} + \mathbf{d}\mathbf{v}$ 均在 W 中。

子空间的性质(Ⅱ)

引理 19.

令 $\mathbf{u}, \mathbf{v} \in W$,则所有 \mathbf{u}, \mathbf{v} 的线性组合 $\mathbf{c}\mathbf{u} + \mathbf{d}\mathbf{v}$ 均在 W 中。

证明. 由子空间的定义,对于任意的 $c,d \in \mathbb{R}$,均有:

$$c\mathrm{u},d\mathrm{v}\in W$$

子空间的性质(Ⅱ)

引理 19.

令 $\mathbf{u},\mathbf{v}\in W$,则所有 \mathbf{u},\mathbf{v} 的线性组合 $\mathbf{c}\mathbf{u}+\mathbf{d}\mathbf{v}$ 均在 W 中。

证明. 由子空间的定义,对于任意的 $c,d \in \mathbb{R}$,均有:

 $cu, dv \in W$

从而:

 $cu + dv \in W$

子空间的性质(III)

引理 20.

令 V 是一个向量空间,W 是 V 的一个子集。则 W 是 V 的一个子空间当且仅当:对于任意的 $k \ge 0, c_1, \cdots, c_k \in \mathbb{R}$ 和 $v_1, \ldots, v_k \in W$ 均有:

$$c_1v_1 + \cdots + c_kv_k \in W$$

特别的,当 k=0 时我们令上述和为 $\mathbf{0}$.

让我们回到矩阵里看看矩阵里的向量空间。

矩阵 A 的列空间

定义 21

[列空间 (Column Space)].

给定一个 $m \times n$ 的矩阵 A, 定义其列空间 C(A) 为:

$$\mathrm{C}(A) = \{A\mathrm{x} \mid \mathrm{x} \in \mathbb{R}^n\}$$

即 C(A) 是所有由 A 的列向量线性组合而成的集合。

定义 21

[列空间 (Column Space)].

给定一个 $m \times n$ 的矩阵 A, 定义其列空间 C(A) 为:

$$\mathrm{C}(A) = \{A\mathrm{x} \mid \mathrm{x} \in \mathbb{R}^n\}$$

即 C(A) 是所有由 A 的列向量线性组合而成的集合。

定理 22.

列空间 C(A) 是 \mathbb{R}^m 的一个子空间。

列空间与解的关系

引理 23.

Ax = b 有解当且仅当 $b \in C(A)$ 。

矩阵 A 的行空间

我们可以利用转置矩阵来定义 A 的行空间。

定义 24

[行空间 (Row Space)].

给定一个 $\mathfrak{m} \times \mathfrak{n}$ 的矩阵 A,定义其行空间为矩阵 A^{T} 的列空间 $C(A^{\mathsf{T}})$ 。

矩阵 A 的行空间

我们可以利用转置矩阵来定义 A 的行空间。

定义 24

[行空间 (Row Space)].

给定一个 $\mathfrak{m} \times \mathfrak{n}$ 的矩阵 A,定义其行空间为矩阵 A^{T} 的列空间 $C(A^{\mathsf{T}})$ 。

引理 25.

矩阵 A 的行空间 $C(A^T)$ 是 \mathbb{R}^n 的一个子空间。

矩阵 A 的零空间

定义 26

[零空间 (Null Space)].

给定一个 $\mathfrak{m} \times \mathfrak{n}$ 的矩阵 A,定义其零空间 $\mathrm{N}(A)$ 为:

$$\mathrm{N}(A) = \{\mathrm{x} \mid A\mathrm{x} = \mathbf{0}\}$$

即 N(A) 是所有满足 Ax = 0 的 x 的集合。

矩阵 A 的零空间

定义 26

[零空间 (Null Space)].

给定一个 $m \times n$ 的矩阵 A, 定义其零空间 N(A) 为:

$$N(A) = \{x \mid Ax = 0\}$$

即 N(A) 是所有满足 Ax = 0 的 x 的集合。

定理 27.

零空间 N(A) 是 \mathbb{R}^n 的一个子空间。

生成一个子空间(I)

令 $S \subseteq V$,显然我们知道:

- **S** 不一定是一个子空间。
- S 可能为空。

生成一个子空间(I)

令 $S \subseteq V$,显然我们知道:

- *S* 不一定是一个子空间。
- *S* 可能为空。

如何取构造一个包含S的子空间?

生成一个子空间(1)

令 $S \subseteq V$,显然我们知道:

- S 不一定是一个子空间。
- · S 可能为空。

如何取构造一个包含 S 的子空间?

$$span(S) = \{c_1v_1 + \dots + c_kv_k \mid k \ge 0, c_1, \dots, c_k \in \mathbb{R}, v_1, \dots, v_k \in S\}$$

生成一个子空间(II)

定理 28.

令 $S \subseteq V$, 则 span(S) 是 V 的包含 S 的最小子空间,即:

- 1. span(S) 是 V 的子空间。
- 2. 令 $W \subseteq V$ 是一个 V 的子空间,且 $S \subseteq W$,则 $span(S) \subseteq W$ 。

• 子空间的概念、例子以及性质。

阶段总结

- 子空间的概念、例子以及性质。
- 矩阵的列空间和零空间。

阶段总结

- 子空间的概念、例子以及性质。
- 矩阵的列空间和零空间。
- 生成一个子空间。