# Statistical Methods for Data Science: A Starter Kit

#### Yinan Yu

# Statistical Data Type

Categorical data: labels or tags

- Nominal: unordered labels, e.g. species of ducks
- Ordinal: ordered labels, e.g. {"duckling", "teen duck", "adult duck"}

### Numerical data:

- Discrete (interval): countable, e.g. integers; numbers of ducks
- Continuous (ratio): uncountable, e.g. real values; weights of ducks

### **Data Container**

# Array (tensor):

- Scalar, vector, matrix, higher order array
- Same numerical data type
- Python library: numpy

#### Table:

- Described by columns and rows
- Mixed data types
- Python library: pandas

# Descriptive Statistics: numerical data

Data set (a sample): numerical data  $x_1, \dots, x_N$  Centrality:

- sample mean:  $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- ullet median: sort  $x_i$  and median is the value in the middle
- mode (discrete values): the most frequent value in a sample

# Dispersion:

- min, max, range: min $\{x_i\}$ , max $\{x_i\}$ , max $\{x_i\}$  min $\{x_i\}$
- quantiles/percentiles: given  $p \in (0,1), q$  is a p-quantile of the data if  $p \times 100\%$  of the data are smaller than q

# yinan@chalmers.se/yinan.yu@asymptotic.ai

- sample variance:  $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \bar{x})^2$
- $\bullet$  sample standard deviation: s

**Dependence**: given a data set with two paired values:

$$\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$$

• covariance:

$$cov(x,y) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})$$

• correlation: measures how close data is to a linear relationship

$$corr(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}, -1 \le corr(x,y) \le 1$$

# Descriptive Statistics: categorical data

Data set (a sample): categorical data  $x_1, \dots, x_N$ 

- Count/frequency
- $\bullet$  Transformed into numerical, discrete data

# Visualization: numerical data

- Distribution:
  - Histogram/normalized histogram



- Kernel density estimator
- Box plot
- Dependence (two variables):
  - Scatter plot
  - Heat map for covariance/correlation ■

### Visualization: categorical data

- Distribution
  - Bar chart
  - Pie chart



- Mosaic plot

# Probability distribution

- Experiment, sample space, event, probability distribution (P(event)/PDF/PMF/CDF), random variable (discrete/continuous)
- Quantile function Q: the inverse CDF, i.e.

$$F_X(Q(p)) = p$$
 and  $Q(F_X(q)) = q$ 

- Conditional probability
- Independent and identically distributed (i.i.d.) random variables
- Bernoulli distribution
- Categorical distribution
- Binomial distribution
- Discrete uniform
- Gaussian distribution

#### Bayes' rule

• Parameter estimation:

$$f_{\Theta|data}(\theta \mid data) = \underbrace{\frac{f_{data|\Theta}(data \mid \theta)}{f_{data}(data \mid \theta)}}^{\text{prior}} \frac{f_{\Theta}(\theta)}{f_{\Theta}(\theta)}$$

where  $f(\cdot)$  is the PDF/PMF

• Multinomial naive Bayes classifier:

$$P(Y = y \mid X = x) = \underbrace{\frac{P(X = x \mid Y = y) P(Y = y)}{P(X = x)}}_{\text{likelihood}}$$

• Gaussian naive Bayes classifier/Gaussian mixture models:

$$P(Y = y \mid X = x) = \underbrace{\frac{f_{X|Y=y}(x \mid Y = y)}{f_{X}(x)} \underbrace{P(Y = y)}_{prior}}_{prior}$$

# Q-Q plot

- Use cases:
  - Compare a data distribution to a theoretical distribution (one sample test)
  - Compare two data distributions (two sample test)
- Steps:
  - Choose a set of m probabilities  $p_1, \dots, p_m \in [0, 1]$  (make sure they spread evenly between 0 and 1)
  - For  $i = 1, 2, \dots, m$ :
    - \* Compute the quantile  $q_i^1$  of the first distribution at  $p_i$
    - \* Compute the quantile  $q_i^2$  of the second distribution at  $p_i$
    - \* Make a scatter plot of the pair  $(q_i^1, q_i^2)$
- Interpretation
  - Case 1: if the two distributions are identical, the points in the Q-Q plot should follow a  $45^{\circ}$  straight line y=x
  - Case 2: if the two distributions are linearly related, the points in the Q-Q plot follow a straight line that is not necessarily y = x
  - Case 3: if the two distributions are from different families of distributions, the points in the Q-Q plot are not lying on a straight line.

### Mathematical Modeling

$$y = g(x; \theta \mid h)$$

- 1. What do we want to predict, i.e. what is the target y?
- 2. What are the variables x?
- 3. What is the mathematical function g that relates variables x to the target y?
- 4. Are there any hyperparameters h in the function g? How do we choose them?
- 5. What are the unknown parameters  $\theta$  in g? How do we estimate them from data?

# Parameter estimation for probabilistic models

- Maximum likelihood estimation: frequentist approach
- Maximum A Posteriori estimation: Bayesian approach

### Maximum Likelihood Estimation

Given a model  $y = g(x; \mathcal{O} \mid h)$ , where  $\mathcal{O}$  is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest  $\theta \in \mathcal{O}$
- e) Choose the maximum likelihood estimation as the estimation method:

Given data  $x_1, \dots, x_N$  and assume i.i.d. random variables  $X_i$  with PDF/PMF  $f(x_i)$ ,

$$L(\theta \mid x_1, \cdots, x_N) = \prod_{i=1}^{N} f(x_i; \theta)$$

f) Compute  $\hat{\theta}_{MLE}$  by maximizing the likelihood function:

$$\hat{\theta}_{MLE} = \arg \max_{\theta} L(\theta \mid x_1, \dots, x_N)$$

$$= \arg \max_{\theta} \prod_{i=1}^{N} f(x_i; \theta)$$

or equivalently, minimizing the **negative log likelihood function**:

$$\hat{\theta}_{MLE} = \arg\min_{\theta} - \sum_{i=1}^{N} \log(f(x_i; \theta))$$

- Simple case, e.g. i.i.d. Gaussian, find the closed-form solution by:
  - \* Taking the partial derivative with respect to the parameter
  - \* Setting the derivative to zero
  - \* Solving for the parameter
- In general, the estimate needs to be found by iterative methods, e.g. gradient descent

### Maximum A Posteriori Estimation

Given a model  $y = g(x; \mathcal{O} \mid h)$ , where  $\mathcal{O}$  is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest  $\theta \in \mathcal{O}$
- e) Choose the maximum a posteriori estimation as the estimation method
  - $-\theta$  is assumed to be drawn from a random distribution
  - Choose a prior distribution for  $\theta$  along with the hyperparameters:  $f_{\Theta}(\theta)$ 
    - \* Prior might be known by the problem setup
    - \* If prior unknown, conjugate priors are typically chosen for various reasons
  - Find the likelihood function:  $f_{X|\Theta}(\boldsymbol{x} \mid \theta)$  (same as in MLE)
  - Express the posterior distribution in terms of the prior and the likelihood function

$$f_{\Theta|X}(\boldsymbol{\theta} \mid \boldsymbol{x}) = rac{f_{X|\Theta}(\boldsymbol{x} \mid \boldsymbol{\theta})f_{\Theta}(\boldsymbol{\theta})}{f_{X}(\boldsymbol{x})}$$

f) Compute  $\hat{\theta}_{MAP}$  by maximizing the posterior function (or equivalently, minimizing the negative log posterior function without the normalization constant). The optimal solution can be found by a closed-form expression or using iterative techniques.