Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales **Álgebra Lineal**

Examen Final - 01/07/2024

Apellido y nombre:

Legajo: Carrera:

Parte práctica regulares

1. Considere la función $T: \mathbb{R}_1[x] \to \mathbb{R}^{2\times 2}$ definida por

$$T(p(x)) = \begin{pmatrix} p(0) & 2p(1) \\ p(1) & p(1) - p(0) \end{pmatrix}.$$

- (a) Pruebe que T es una transformación lineal.
- (b) Calcule una base y la dimensión de ker(T) y Im(T).
- (c) Determine si T es un monomorfismo, epimorfismo o isomorfismo. Justifique su respuesta.
- (d) Calcule la matriz de la transformación T en las bases $\mathfrak{B}_1 = \{1, 1-x\}$ de $\mathbb{R}_1[x]$ y $\mathfrak{B}_2 = \{E_{11}, E_{22}, 2E_{12}, E_{21}\}$ de $\mathbb{R}^{2\times 2}$.
- (e) Calcule $[T(2x)]_{\mathfrak{B}_2}$.
- 2. En \mathbb{R}^3 , considere la función $\langle \cdot, \cdot \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$\langle x, y \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2 + x_3y_3$$

- (a) Pruebe que $\langle \cdot, \cdot \rangle$ define un producto interno en \mathbb{R}^3 .
- (b) Sea $W = span(\{e_1\})$. Aplique el proceso de Gram-Schmidt para obtener bases ortonormales de W y W^{\perp} .
- (c) Sea v = (1, 2, 3). Calcule $\operatorname{proy}_{W^{\perp}} v$.
- 3. Considere la matriz

$$A = \begin{pmatrix} -1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) Calcule los autovalores y autovectores de A.
- (b) Utilice el hecho de que el polinomio minimal de A es $m_A(x) = x(x-1)^2$ (no hace falta calcularlo), para justificar que A no es diagonalizable.
- (c) Halle una matriz invertible P y una forma de Jordan J_A tal que $A = PJ_AP^{-1}$. Dé explícitamente la base de Jordan
- 4. Determine si las siguiente afirmaciones son verdaderas o falsas. Justifique su respuesta.
 - (a) El conjunto $V = \{A \in \mathbb{R}^{2 \times 2}: A 2A^t = 0\}$ es un espacio vectorial con la suma y el producto por escalar usuales de matrices.
 - (b) Sea V un **F**-espacio vectorial y sean $S_1, S_2 \subset V$ dos subconjuntos linealmente independientes tales que $S_1 \cap S_2 = \emptyset$. Entonces $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \{0\}$.
 - (c) Sea $A \in \mathbb{R}^{n \times n}$. Si $\lambda = 0$ es autovalor de A, entonces A no es invertible.
 - (d) La transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (-z, y, -x) define una simetría (respecto de un plano).

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales **Álgebra Lineal**

Examen Final - 01/07/2024

Apellido y nombre:	
Legajo:	Carrera:

Parte práctica complemento libres

- 5. Considere el subconjunto de \mathbb{R}^3 dado por $\mathfrak{B} = \{(1,0,0), (-1,1,1), (0,1,-1)\}.$
 - (a) Explique brevemente por qué $\mathfrak B$ es una base de $\mathbb R^3.$
 - (b) Halle la base dual \mathfrak{B}^* de \mathfrak{B} .
 - (c) Calcule $[(1,1,1)]_{\mathfrak{B}}$.
 - (d) Sea $f \in (\mathbb{R}^3)^*$ definido por f(x, y, z) = 2x + 3y z. Calcule $[f]_{\mathfrak{B}^*}$.
 - (e) Calcule una base de W^0 donde $W = \operatorname{span}\{(1,0,0),(0,1,1)\}.$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales **Álgebra Lineal**

Examen Final - 01/07/2024

Apellido y nombre:	
Legajo:	Carrera:

Parte teórica

1. **Indique** si la siguiente proposición es verdadera o falsa. Si es verdadera, **de** una prueba. Si es falsa, **de** un contrajemplo y luego **corrija** el enunciado para que sea verdadero y **demuéstrelo**.

Sea V un \mathbb{F} -ev y sean $U_1, U_2 \subset V$ sev finito dimensionales. Entonces

$$dim (U_1 \cup U_2) = dim U_1 + dim U_2 - dim (U_1 \cap U_2).$$

- 2. Sean V y W dos \mathbb{F} -ev finito dimensionales. De un isomorfismo entre los espacios $F^{m \times n}$ y L(V, W), donde $n = \dim V$ y $m = \dim w$. Explicite el isomorfismo para un subespacio de matrices V y un subespacio de polinomios W (elija los espacios y sus dimensiones).
- 3. Enuncie y demuestre el teorema que describe el algoritmo de ortonormalización de Gram-Schmidt.
- 4. Sea V un espacio vectorial y sea $v \in V$. Entonces v induce una aplicación $L_v : V^* \to F$ definida por

$$L_v(f) = f(v)$$
, para $f \in V^*$.

- (a) Mostrar que L_v es lineal.
- (b) Probar que si V es de dimensión finita y $v \neq \overline{0}$, entonces existe $f \in V^*$ tal que $f(v) \neq 0$.
- (c) Probar que si V es de dimensión finita, la aplicación $\Omega: V \to (V^*)^*$ definida por $\Omega(v) = L_v$ es un isomorfismo de V en $(V^*)^*$. El espacio $V^{**} = (V^*)^*$ se conoce como el **doble dual** de V.
- (d) Probar que si V es dimensión finita y $L \in V^{**}$, entonces existe un único vector $v \in V$ tal que L(f) = f(v) para todo $f \in V^*$.
- 5. Complete los siguientes enunciados para obtener una afirmación correcta, y de una prueba.
 - (a) Sea $A \in \mathbb{F}^{n \times n}$ y sea $\lambda \in \mathbb{F}$ un de A. Entonces λ es de m_A .
 - (b) Sean $A, B \in \mathbb{F}^{n \times n}$ tales que para todo $x \in \mathbb{F}^n$ se tiene que Entonces A = B.
 - (c) Sean $A, C \in \mathbb{F}^{n \times n}$, con C Entonces $\chi_{CAC^{-1}}(x) = \dots$
 - (d) Sea $A \in \mathbb{R}^{\dots \times \dots \times}$ una matriz. Entonces $N(\dots) \stackrel{\perp}{\oplus} C(\dots) = \mathbb{R}^{\dots \times}$.
 - (e) Sea V un \mathbb{F} -ev y sea $U \subset V$ un subespacio. El **anulador** de $U = \{\dots, \}$ y es un de V^* .
 - (f) Sea $(V, \langle \cdot, \cdot \rangle)$ un F-espacio vectorial de dimensión con producto interno. Sea $U \subset V$ Entonces $p_U + p_{U^{\perp}} = \dots$
 - (g) Sea V un \mathbb{C} -ev con producto interno $\langle \cdot, \cdot \rangle$ y sea T un endomorfismo unitario, esto es $T \circ T^* = \dots = \dots$ Entonces T preserva el producto interno, esto es, $\langle Tu, Tv \rangle = \dots$ para todo $u, v \in V$.