Abstract Algebra Homework 11

Michael Nelson

Problem 1

Proposition 0.1. Let A be a domain and let K be its quotient field. The following conditions are equivalent

- 1. For all nonzero $a, b \in A$, either $a \mid b$ or $b \mid a$;
- 2. For all nonzero $x \in K$, either x or x^{-1} is in A;
- 3. There is a valuation v on K such that $A = \{x \in K \mid v(x) \geq 0\} \cup \{0\}$.

Proof. (1 \Longrightarrow 2): Let $x \in K^{\times}$. Write x = a/b where $a, b \in A \setminus \{0\}$. Then either $a \mid b$ or $b \mid a$. If $b \mid a$, then we can write a = bc for some nonzero $c \in A$. In this case, we have

$$x = a/b$$

$$= bc/b$$

$$= c,$$

and hence $x \in A$. On the other hand, if $a \mid b$, then we can write b = ad for some nonzero $d \in A$. In this case, we have

$$x^{-1} = b/a$$
$$= ad/a$$
$$= d,$$

and hence $x^{-1} \in A$.

(2 \Longrightarrow 3): Let $\Gamma = K^{\times}/A^{\times}$. We define a total ordering on Γ as follows: Let $\overline{x}, \overline{y} \in \Gamma$. We say

$$\overline{x} \ge \overline{y}$$
 if and only if $xy^{-1} \in A$. (1)

Let us check that (1) is well-defined. Suppose xa and yb are two different representatives of the cosets \overline{x} and \overline{y} respectively, where $a,b \in A^{\times}$. Then

$$(xa)(yb)^{-1} = (xa)(b^{-1}y^{-1})$$

= $(xy^{-1})(ab^{-1})$
 $\in A$

implies $\overline{xa} \ge \overline{yb}$. Thus (1) is well-defined. Next, observe that the relation given in (1) is antisymmetric: if $\overline{x} \ge \overline{y}$ and $\overline{y} \ge \overline{x}$, then $xy^{-1} \in A$ and $yx^{-1} \in A$, which implies $xy^{-1} \in A^{\times}$, and hence

$$\overline{x} = \overline{x(yy^{-1})}$$

$$= \overline{(xy^{-1})y}$$

$$= \overline{y}.$$

It is also transitive: if $\overline{x} \ge \overline{y}$ and $\overline{y} \ge \overline{z}$, then

$$xz^{-1} = x(y^{-1}y)z^{-1}$$

= $(xy^{-1})(yz^{-1})$
 $\in A$,

which implies $\overline{x} \ge \overline{z}$. It is also a total relation since either $\overline{x} \ge \overline{y}$ or $\overline{y} \ge \overline{x}$ (since either $xy^{-1} \in A$ or $yx^{-1} \in A$ by our assumption). Thus (1) gives us a total ordering on Γ .

Now we define $v: K^{\times} \to \Gamma$ to be the natural quotient map. Clearly v is a surjective homomorphism. We also have

$$v(x + y) \ge \min\{v(x), v(y)\}$$
 with equality if $v(x) \ne v(y)$.

Indeed, assume without loss of generality that $v(y) \ge v(x)$, so $v(x) = \min\{v(x), v(y)\}$. Then $(x+y)x^{-1} = 1 + yx^{-1} \in A$ implies $v(x+y) \ge v(x)$. Now assume $v(x) \ne v(y)$, so $yx^{-1} \notin A$. Then $x^{-1}(x+y) = 1 + yx^{-1} \notin A$. This implies $x(x+y)^{-1} \in A$ (by our assumption). Thus $v(x) \ge v(x+y)$, which implies v(x) = v(x+y) by antisymmetry of $x \ge 0$. Finally, we observe that

$$A^{\times} = \{ x \in K \mid v(x) = 0 \}$$

by construction. Moreover, we have

$$A = \{ x \in K \mid v(x) \ge 0 \} \cup \{ 0 \},$$

since $v(x) \ge 0$ if and only if $v(x) \ge v(1)$ if and only if $x \in A$.

 $(3 \Longrightarrow 1)$: Let (Γ, \geq) be a totally ordered abelian group and let $v: K^{\times} \to \Gamma$ be such a valuation. Suppose $a, b \in A \setminus \{0\}$, and without loss of generality, assume that $v(b) \geq v(a)$. Then

$$v(ba^{-1}) = v(b) - v(a)$$
$$\ge 0$$

implies $ba^{-1} \in A$. In particular, this implies $a \mid b$.

Problem 3

Proposition 0.2. Let A be an integral domain, let K be its quotient field, and let \overline{A} be the integral closure of A in K. Then

- 1. \overline{A} is integrally closed in K.
- 2. $\overline{A} \subseteq \bigcap_{A \subseteq B \subseteq K} B$ where the intersection runs over all valuation overrings B of A.
- 3. $\overline{A} = \bigcap_{A \subseteq B \subseteq K} B$ where the intersection runs over all valuation overrings B of A.

Proof. 1. This follows from transitivity of integral extensions (see Appendix for proof of this). Indeed, let $x \in K$ be integral over \overline{A} . Then since $\overline{A}[x]$ is integral over \overline{A} and since \overline{A} is integral over A, we see that $\overline{A}[x]$ is integral over A. In particular, x is integral over A. This implies $x \in \overline{A}$ (by definition of integral closure). Thus \overline{A} is integrally closed in K.

- 2. This follows from the fact the every valuation ring is integrally closed (see Appendix for proof of this). Indeed, let B be a valuation overring of A. Then since B is integrally closed and $A \subseteq B$, it follows that $\overline{A} \subseteq B$. Since B was arbitrary, we see that $\overline{A} = \bigcap_{A \subseteq B \subseteq K} B$ where the intersection runs over all valuation overrings B of A.
- 3. Let $x \in \bigcap_{A \subseteq B \subseteq K} B$ and assume for a contradiction that x is not integral over A. Observe that $x^{-1}A[x^{-1}]$ is a proper ideal in A[x]. Indeed, if $x^{-1}A[x^{-1}] = A[x^{-1}]$, then there exists $n \ge 0$ and $a_1, \ldots, a_{n-1}, a_n \in A$ such that

$$a_n x^{-n} + a_{n-1} x^{-n+1} + \dots + a_1 x^{-1} = 1.$$
 (2)

Multiplying both sides of (2) by x^n and rearranging terms gives us

$$x^{n} - a_{1}x^{n-1} - \cdots - a_{n-1}x - a_{n} = 0,$$

which contradicts the fact that x is not integral over A. Thus $x^{-1}A[x^{-1}]$ is a proper ideal in $A[x^{-1}]$. In particular, it is contained some maximal ideal, say \mathfrak{m} . Then there is a valuation ring (B,\mathfrak{n}) that dominates $(A[x^{-1}]_{\mathfrak{m}},\mathfrak{m}A[x^{-1}]_{\mathfrak{m}})$ (see Appendix for proof of this). Since $x^{-1} \in \mathfrak{m} \subseteq \mathfrak{n}$, we see that $x \notin B$ (we can't have $x \in B$ and $x^{-1} \in \mathfrak{n}$ since \mathfrak{n} does not contain any units). This contradicts our assumption that $x \in \bigcap_{A \subseteq B \subseteq K} B$.

Problem 4

Exercise 1. Let A be a domain and let K be its fraction field. An element $x \in K$ is said to be **almost integral** if there is a nonzero $a \in A$ such that $ax^n \in A$ for all $n \in \mathbb{N}$. We say that a domain is **completely integrally closed** if it contains all of its almost integral elements.

- 1. Give an example of an element that is almost integral, but not integral.
- 2. Show that if $x \in K$ is integral over A, then x is almost integral over A;
- 3. Show that if A is Noetherian, then any almost integral element over A is integral over A;
- 4. Let *A* be a valuation domain that is not a field. Show that *A* is completely integrally closed if and only if *A* is one-dimensional (that is, every nonzero prime ideal is maximal).

Solution 1. 1. Consider ring $A = K[y, \{x/y^n \mid n \in \mathbb{N}\}]$. We have a strict inclusion of rings

$$K[x,y] \subset A \subset K[x,y,1/y].$$

In particular, A is a domain with fraction field K(x,y). Note that $1/y \in K(x,y)$ is almost integral over A since $1/y \notin A$ and $x/y^n \in A$ for all $n \in \mathbb{N}$. On the other hand, 1/y is not integral over A. Indeed, if it were, then there would exists $m \in \mathbb{N}$ and $f_0, \ldots, f_{m-1} \in A$ such that

$$\frac{1}{y^m} = \frac{f_{m-1}}{y^{m-1}} + \dots + \frac{f_1}{y} + f_0. \tag{3}$$

Multilpying y^m on both sides of (3) gives us

$$1 = (f_{m-1} + \dots + f_1 y^{m-2} + f_0 y^{m-1}) y.$$
(4)

Evaluating x = 0 to both sides of (4) gives us

$$1 = (\widetilde{f}_{m-1} + \dots + \widetilde{f}_1 y^{m-2} + \widetilde{f}_0 y^{m-1}) y.$$

$$(5)$$

where $\tilde{f}_0, \tilde{f}_1, \dots, \tilde{f}_{m-1}$ are polynomials over K in the variable y. Evaluating y = 0 to both sides of (5) gives us 1 = 0, which is a contradiction.

2. Let $x \in K$ be integral over A. Write x = a/b and choose $n \ge 1$ minimal and $a_0, a_1, \ldots, a_{n-1} \in A$ such that

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0.$$
(6)

We claim that for any for any $k \ge 0$, we have $b^n x^k \in A$. Indeed, first note that if k > n, then we can use the fact that x is integral (so $A[x] = \sum_{i=0}^{n-1} Ax^i$) to write

$$x^{k} = a_{n-1,k}x^{n-1} + \dots + a_{1,k}x + a_{0,k}$$

for some $a_{0,k}, a_{1,k}, \ldots, a_{n-1,k} \in A$. So it suffices to show that $b^n x^k \in A$ when $k \leq n$. This is clear though since

$$b^n x^k = b^n \frac{a^k}{b^k}$$
$$= b^{n-k} a^k$$
$$\in A$$

It follows that x is almost integral over A.

3. Suppose *A* is a Noetherian domain and let $x \in K$ be almost integral over *A*. Choose $a \in A$ such that $ax^n \in A$ for all $n \in \mathbb{N}$. Consider the ascending chain of ideals, given by

$$I_{0} = \langle a \rangle$$

$$I_{1} = \langle a, ax \rangle$$

$$\vdots$$

$$I_{n} = \langle a, ax, \dots, ax^{n} \rangle$$

for all $n \in \mathbb{N}$. The ascending chain of ideals (I_n) must terminate since A is Noetherian, say at $m \in \mathbb{N}$. It follows that $ax^{m+1} \in I_m$, which implies

$$ax^{m+1} = a_m ax^m + \dots + a_1 ax + a_0 a \tag{7}$$

for some $a_0, a_1, ..., a_m \in A$. Canceling a from both sides of (7) (we can do this since A is a domain) and rearranging terms gives us

$$x^{m+1} - a_m x^m - \dots - a_1 x - a_0 = 0.$$

This implies x is integral over A.

4. First suppose (A, \mathfrak{m}) is one-dimensional valuation domain. Let $x \in K$ be almost integral over A and assume for a contradiction that $x \notin A$. Then $x^{-1} \in A$ since A is a valuation domain. Choose a nonzero $a \in A$ such that $ax^n \in A$ for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, choose $a_n \in A$ such that $ax^n = a_n$. If a is a unit in A, then clearly $x \in A$, which is a contradiction, thus a is not a unit in A. Similarly, if x^{-1} is a unit in A, then again $x \in A$, which is a contradiction. Thus x^{-1} is also not a unit in A. We claim that $a \mid x^{-n}$ for some $n \in \mathbb{N}$. To see this, suppose that $a \nmid x^{-n}$ for all $n \in \mathbb{N}$. Then

$$x^{-1} \notin \operatorname{rad}\langle a \rangle$$

$$= \bigcap_{\substack{a \in \mathfrak{p} \\ \mathfrak{p} \text{ prime}}} \mathfrak{p}$$

$$= \mathfrak{m}.$$

where the last equality follows from the fact that (A, \mathfrak{m}) is one-dimensional local ring. Thus $x^{-1} \notin \mathfrak{m}$ which implies x^{-1} is a unit in A, a contradiction. Thus $a \mid x^{-n}$ for some $n \in \mathbb{N}$. Choose such an $n \in \mathbb{N}$ and choose $b \in A$ such that $ab = x^{-n}$. Then

$$a = a_n x^{-n}$$
$$= a_n b a,$$

which implies $a_n b = 1$. That is, a_n is a unit in A, but this implies $ax^n a_n^{-1} = 1$, which implies a is unit in A, a contradiction.

Conversely, suppose (A, \mathfrak{m}) is completely integrally closed valuation domain and let \mathfrak{p} be a prime ideal in A. We will show that \mathfrak{p} must be the maximal ideal in A. Choose $a \in A \setminus \mathfrak{p}$. Then observe that since \mathfrak{p} is a prime ideal, we must have $a^n \notin \mathfrak{p}$ for all $n \in \mathbb{N}$. Furthemore, since A is a valuation domain and since $a^n \notin \mathfrak{p}$ for all $n \in \mathbb{N}$, we see that $a^n \mid b$ for all $b \in \mathfrak{p}$ for all $n \in \mathbb{N}$. In particular, we have $\langle a^n \rangle \supset \mathfrak{p}$ for all $n \in \mathbb{N}$. In other words, we have $A \supset a^{-n}\mathfrak{p}$ for all $n \in \mathbb{N}$. So for any $b \in \mathfrak{p}$, we have $a^{-n}b \in A$ for all $n \in \mathbb{N}$. Thus a^{-1} is almost integral over a. Since a is integrally closed, we see that $a^{-1} \in A$. Thus a is a unit in a, which implies $a \in A \setminus \mathfrak{p}$ consists of units of a. Thus a must be the maximal ideal a.

Appendix

Problem 3

Transitivity of Integral Extensions

Proposition 0.3. Let $A \subseteq B$ be a finite extension of rings. Then $A \subseteq B$ is an integral extension of rings.

Proof. Let $b \in B$, let $m_b \colon B \to B$ be the "multiplication by b" map, given by $m_b(x) = bx$ for all $x \in B$, and suppose b_1, \ldots, b_n are generators for B as an A-module. Then for each $1 \le i \le n$, there exists (not necessarily unique) $a_{ji} \in A$ for all $1 \le j \le n$, such that

$$bb_i = \sum_{j=1}^n a_{ji}b_j.$$

Let $[m_b] = (a_{ij})$ be there corresponding matrix representation. By the Cayley-Hamiltonian Theorem (over any commutative ring), the matrix $[m_b]$ satisfies it's own characteristic polynomial, which is a monic polynomial $\chi_{[m_b]}(T) \in A[T]$. In particular, this implies $\chi_{[m_b]}(m_b) = 0$. Note that the map $m_{(-)} \colon B \to \operatorname{End}_A(B)$, given by $m_{(-)}(b) = m_b$ for all $b \in B$, is an injective A-algebra homomorphism. Thus $\chi_{[m_b]}(m_b) = 0$ implies $\chi_{[m_b]}(b) = 0$. Hence b integral, and since b was arbitary, this implies $A \subseteq B$ is an integral extension.

Corollary 1. Let $A \subset B$ be a ring extension. Then an element $b \in B$ is integral over A if and only if A[b] is a finitely generated A-module.

Proof. If b is integral over A, then there is a monic polynomial $f(T) \in A[T]$ satisfying f(b) = 0. Then $A[b] \cong A[T]/\langle f(T) \rangle$ as A-modules, and $A[T]/\langle f(T) \rangle$ is generated by $\overline{1}, \overline{T}, \ldots, \overline{T}^{n-1}$ as an A-module, where $n = \deg f$. The converse direction follows from Proposition (0.3)

Corollary 2. (Transitivity of Integral Extensions) Let $A \subseteq B$ and $B \subseteq C$ be integral extensions. Then $A \subseteq C$ is an integral extension.

Proof. Let $c \in C$. Since c is integral over B, there exists $b_0, \ldots, b_{n-1} \in B$ such that

$$c^{n} + b_{n-1}c^{n-1} + \cdots + b_{0} = 0.$$

Then

$$A \subset A[b_0,\ldots,b_{n-1}] \subset A[b_0,\ldots,b_{n-1}][c]$$

is a composition of finite extensions. Thus, $A \subset A[b_0, \ldots, b_{n-1}, c]$ is a finite extension, and hence an integral extension by Proposition (??). Therefore c is integral over A, which implies $A \subseteq C$ is an integral extension since c was arbitrary.

Every Valuation Ring is Integrally Closed

Proposition o.4. Every Valuation Ring is Integrally Closed.

Proof. Let A be a valuation ring with fraction field K and let $x \in K$ be integral over A. Then there exists $n \ge 1$ and $a_{n-1}, \ldots, a_0 \in A$ such that

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$$

If $x \in A$ we are done, so assume $x \notin A$. Then $x^{-1} \in A$, since A is a valuation ring. Multiplying the equation above by $x^{-(n-1)} \in A$ and moving all but the first term on the lefthand side to the righthand side yields

$$x = -a_{n-1} - \dots - a_0 x^{-(n-1)} \in A$$

contradicting our assumption that $x \notin A$. It follows that $x \in A$, and hence A is integrally closed.

Domination

Definition 0.1. Let K be a field. We define a preordered set (\mathcal{D}_K, \geq_d) as follows: the underlying set is defined to be

$$\mathcal{D}_K := \{A \mid A \text{ is a local domain such that } A \subseteq K\}.$$

The preorder \leq_d is defined as follows: let $A, B \in \mathcal{D}_K$. We write $B \geq_d A$ if $B \supseteq A$ and $\mathfrak{m}_A = A \cap \mathfrak{m}_B$. In this case, we also say B **dominates** A. More generally, if R is a subring of K (so necessarily a domain), then we define a preordered set $(\mathcal{D}_{K/R}, \geq_d)$ as follows: the underlying set is defined to be

$$\mathcal{D}_{K/R} := \{A \mid A \text{ is a local domain such that } R \subseteq A \subseteq K\}.$$

The preorder \leq_d is defined as above. If $A \in \mathcal{D}_{K/R}$, then we say A is **centered** on R.

Proposition 0.5. Let K be a field and let $A \in \mathcal{D}_K$. A maximal element in $(\mathcal{D}_{K/A}, \geq_d)$ exists. Furthemore, any such maximal element is a valuation ring with K as its fraction field.

Proof. We appeal to Zorn's Lemma. First note that $(\mathcal{D}_{K/A}, \geq_{\operatorname{d}})$ is nonempty since $A \in (\mathcal{D}_{K/A}, \geq_{\operatorname{d}})$. Let $(A_{\lambda})_{\lambda \in \Lambda}$ be a totally ordered collection of local subrings of K (so $A_{\mu} \geq_{\operatorname{d}} A_{\lambda}$ for each $\mu \geq \lambda$, which means $A_{\mu} \supseteq A_{\lambda}$ and $\mathfrak{m}_{\lambda} = A_{\lambda} \cap \mathfrak{m}_{\mu}$ for each $\mu \geq \lambda$). Then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is a local subring of K which dominates all of the A_{λ} . Indeed, it is straightforward to check that $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is a subring of K and $\bigcup_{\lambda \in \Lambda} \mathfrak{m}_{\lambda}$ is an ideal in $\bigcup_{\lambda \in \Lambda} A_{\lambda}$. To see that $\bigcup_{\lambda \in \Lambda} \mathfrak{m}_{\lambda}$ is the unique maximal ideal in $\bigcup_{\lambda \in \Lambda} A_{\lambda}$, we will show that its complement consists of units. Let $X \in \bigcup_{\lambda \in \Lambda} A_{\lambda}$ and suppose $X \notin \bigcup_{\lambda \in \Lambda} \mathfrak{m}_{\lambda}$. Since $X \notin \bigcup_{\lambda \in \Lambda} \mathfrak{m}_{\lambda}$, there exists some $X \in \mathbb{C}$ such that $X \in \mathbb{C}$ since $X \notin \mathbb{C}$ s

Now we prove the latter part of the proposition. Let (B,\mathfrak{m}) be a maximal element in $(\mathcal{D}_{K/A},\geq_{\operatorname{d}})$. First we show B has K as its fraction field. Assume for a contradiction that K is not the fraction field of B. Choose $x \in K$ which is not in the fraction field of B. If x is transcendental over B, then $B[x]_{(x,\mathfrak{m})} \in (\mathcal{D}_{K/A},\geq_{\operatorname{d}})$, which contradicts maximality of B. If x is algebraic over B, then for some $b \in B$, the element bx is integral over B. In this case, the subring $B' \subseteq K$ generated by B and bx is finite over B. In particular, there exists a prime ideal $\mathfrak{m}' \subseteq B'$ lying over \mathfrak{m} . Then $B'_{\mathfrak{m}'}$ dominates B. In particular, this implies $B = B'_{\mathfrak{m}'}$ by maximality of B, and then x is in the fraction field of B which is a contradiction.

Finally, we show that B is a valuation ring. Let $x \in K$ and assume that $x \notin B$. Let B' denote the subring of K generated by B and x. Since B is maximal in $(\mathcal{D}_{K/A}, \geq_{\operatorname{d}})$, there is no prime of B' lying over \mathfrak{m} . Since \mathfrak{m} is maximal we see that $V(\mathfrak{m}B') = \emptyset$. Then $\mathfrak{m}B' = B'$, hence we can write

$$1 = \sum_{i=0}^{d} t_i x^i$$

with $t_i \in \mathfrak{m}$. This implies

$$(1-t_0)(x^{-1})^d - \sum_{i=1}^d t_i(x^{-1})^{d-i} = 0.$$

In particular we see that x^{-1} is integral over B. Thus the subring B'' of K generated by B and x^{-1} is finite over B and we see that there exists a prime ideal $\mathfrak{m}'' \subseteq B''$ lying over \mathfrak{m} . By maximality of B, we conclude that $B = (B'')_{\mathfrak{m}''}$, and hence $x^{-1} \in B$.