Formal Languages and Abstract Machines Take Home Exam 2

Mert AKÇA 2171163

1 Context-Free Grammars

(10 pts)

a) Give the rules of the Context-Free Grammars to recognize strings in the given languages where $\Sigma = \{a, b\}$ and S is the start symbol.

$$L(G) = \{ w \mid w \in \Sigma^*; \ |w| \ge 3;$$
 the first and the second from the last symbols of w are the same \} (2/10 \text{ pts})

 $S \rightarrow Aaa,$ $S \rightarrow Abb,$ $A \rightarrow Ba,$ $A \rightarrow Bb,$

 $B \to Bb \mid Ba \mid e$

$$L(G) = \{ w \mid w \in \Sigma^*; \text{ the length of w is odd} \}$$
 (2/10 pts)

 $\begin{array}{l} S \rightarrow AaA \mid AbA \\ A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid e \end{array}$

$$L(G) = \{w \mid w \in \Sigma^*; \ n(w, a) = 2 \cdot n(w, b)\}$$
 where $n(w, x)$ is the number of x symbols in w (3/10 pts)

 $\begin{array}{l} S \rightarrow A \mid e \\ A \rightarrow aAaAb \mid aAbAa \mid bAaAa \mid e \end{array}$

b) Find the set of strings recognized by the CFG rules given below: (3/10 pts)

$$\begin{split} S &\to X \mid Y \\ X &\to aXb \mid A \mid B \\ A &\to aA \mid a \\ B &\to Bb \mid b \\ Y &\to CbaC \\ C &\to CC \mid a \mid b \mid \varepsilon \end{split}$$

$$L(G) = \{a^n(a^+ \cup b^+)b^n, (a \cup b)^*ba(a \cup b)^*\}$$

2 Parse Trees and Derivations

(20 pts)

Given the CFG below, provide parse trees for given sentences in ${\bf a}$ and ${\bf b}$.

```
S \rightarrow NP VP  
VP \rightarrow V NP | V NP PP  
PP \rightarrow P NP  
NP \rightarrow N | D N | NP PP  
V \rightarrow wrote | built | constructed  
D \rightarrow a | an | the | my  
N \rightarrow John | Mary | Jane | man | book | automata | pen | class  
P \rightarrow in | on | by | with
```

a) Jane constructed automata with a pen

(4/20 pts)

b) my book in the man built a Jane by a pen

(4/20 pts)

Given the CFG below, answer \mathbf{c} , \mathbf{d} and \mathbf{e}

c) Provide the left-most derivation of 7 - 4 * 3 step-by-step and plot the final parse $\,$ (4/20 pts) tree matching that derivation

$$D = S \rightarrow E \rightarrow E - T \rightarrow T - T \rightarrow I - T \rightarrow 7 - T * I \rightarrow 7 - I * I \rightarrow 7 - 4 * I \rightarrow 7 - 4 * 3$$

$$\begin{array}{c|c}
S \\
\downarrow \\
E \\
\hline
T & T & * I \\
\downarrow & \downarrow \\
I & I & 3 \\
\downarrow & \downarrow \\
7 & 4 \\
\end{array}$$

d) Provide the right-most derivation of 7 - 4 * 3 step-by-step and plot the final parse (4/20 pts) tree matching that derivation

e)	Are the derivations in ${\bf c}$ and ${\bf d}$ in the same similarity class?	(4/20 pts)
	Yes, their final parse trees are the same	

3 Pushdown Automata

(30 pts)

a) Find the language recognized by the PDA given below

(5/30 pts)

where the transition $((q_i, \alpha, \beta), (q_j, \gamma))$ is represented as:

 $\mathcal{L} = x^n y^n z^*$ or $x^n y^* z^n$, where $n \in \mathbb{N}$

b) Design a PDA to recognize language $L = \{x^n y^{m+n} x^m \mid n, m \ge 0; n, m \in \mathbb{N}\}$ (5/30 pts)

c) Design a PDA to recognize language $L = \{x^n y^m \mid n < m \le 2n; n, m \in \mathbb{N}^+\}$ (10/30 pts) Do not use multi-symbol push/pop operations in your transitions. Simulate the PDA on strings xxy (with only one rejecting derivation) and xxyyyyy (accepting derivation) with transition tables.

Table 1: Transition Table for xxy

State	Unread Input	Stack	Transition
q_0	xxy	e	=
q_1	xxy	β	1
q_1	ху	$x\beta$	2
q_1	У	$xx\beta$	2
q_2	У	$\alpha x x \beta$	3
q_3	e	$xx\beta$	9

 β is not top of the stack so we cannot move final state

Table 2: Transition table for xxyyyy
State Unread Input Stack Transition

State	Unread Input	Stack	Transition
q_0	xxyyyy	e	_
q_1	xxyyyy	β	1
q_1	хуууу	$x\beta$	2
q_1	уууу	$xx\beta$	2
q_2	уууу	$\alpha xx\beta$	3
q_4	ууу	$xx\beta$	9
q_3	уу	$x\beta$	6
q_2	уу	$x\beta$	7
q_4	У	$x\beta$	5
q_3	e	β	6
q_5	e	e	8

d) Given two languages L' and L as $L' = \{w \mid w \in L; |w| = 4n + 2 \text{ for } n \in \mathbb{N}\}$ (10/30 pts) If L is a CFL, show that L' is also a CFL by constructing an automaton for L' in terms of another automaton that recognizes L.

Let L'' be a regular language $L'' = \{w \mid |w| = 4n + 2 \text{ for } n \in N\}$. This language has a deterministic automaton $M_1 = (K_1, \sum, \delta, s_1, F_1)$

As we can see L'' is an regular language because it's accepted by an finite automaton.

Intersection of language L and L'' (strings with length of 4n+2) is L'. L is a CFL and L" is a regular language, so L' must be also a CFL by Theorem 3.5.2 (textbook, p.144).

4 Closure Properties

(20 pts)

Let L_1 and L_2 be context-free languages which are not regular, and let L_3 be a regular language. Determine whether the following languages are necessarily CFLs or not. If they need to be context-free, explain your reasoning. If not, give one example where the language is a CFL and a counter example where the language is not a CFL.

a)
$$L_4 = L_1 \cap (L_2 \setminus L_3)$$
 (10/20 pts)

 $L_4 = L_1 \cap (L_2 \cap L_3')$

 L_2 is a CFL and L_3' is a regular language (Complement of a regular language is also regular) so $(L_2 \cap L_3')$ is CFL

Therefore, L_4 is intersection of two CFL's, so we cannot decide whether it's a CFL or not.

b)
$$L_5 = (L_1 \cap L_3)^*$$
 (10/20 pts)

 $(L_1 \cap L_3)$ is intersection of a regular language and context-free lang. so we can say that $(L_1 \cap L_3)$ is CFL.

Because CFL's are closed under kleene star property $(L_1 \cap L_3)^*$ is also a CFL.

5 Pumping Theorem

(20 pts)

a) Show that $L = \{a^n m^n t^i \mid n \le i \le 2n\}$ is not a Context Free Language (10/20 pts) using Pumping Theorem for CFLs.

```
Let pumping length = 4, |vxy| \le 4 S = aaaammmmtttt(tttt)

Case 1: |vxy| is in the first boundary aa aamm mmtttt(tttt) for i=2; vxy aaaaaammmmmtttt(tttt): number of a's is not equal to number of m's.

Case 2: |vxy| is not in boundary it's in a's or m's aaaa mmmmtttt(tttt) for i=2; vxy aaaaaammmmtttt(tttt): number of a's is not equal to number of m's.

Also: aaaa \underbrace{mmmm}_{vxy} ttt(tttt) for i=2; vxy aaaaammmmmtttt(tttt): number of a's is not equal to number of m's.

Case 3: |vxy| is in t's vxy aaaammmmmtttt(tttt) for vxy is in t's vxy aaaammmmmtttt(tttt) for vxy aaaammmmmtttt(tttt): the minimum number of t's is greater than 2n.

Therefore, the rule is not met in all cases for every vxy vxy aaaammmmtttttttttt(tttt): the minimum number of t's is greater than 2n.
```

b) Show that $L = \{a^n b^{2n} a^n \mid n \in \mathbb{N}+\}$ is not a Context Free Language (10/20 pts) using Pumping Theorem for CFLs.

```
Let pumping length = 3, |vxy| \le 3

S = aaabbbbbbaaa

Case 1: |vxy| is in the boundaries a \underbrace{aab \ bbbbbaaa} for i = 2; \underbrace{vxy} aaaabbbbbbbbaaa : the number of a's is not equal. Also: \underbrace{aaabbbb \ bba}_{vxy} aaabbbbbbbbaaaa : the number of a's is not equal.
```

```
Case 2: |vxy| is not in the boundaries aaa \underbrace{bbb}_{VXY} bbbaaa for i=2; aaabbbbbbbbbaaaa: the number of b's is not double of number of a's. Also: aaabbbbbb \underbrace{aaa}_{VXY} for i=2; aaabbbbbbbbaaaaa: the number of a's is not equal.
```

Therefore, the rule is not met in all cases for every $i \geq 0$, this language is not context-free language.

6 CNF and CYK

(not graded)

a) Convert the given context-free grammar to Chomsky Normal Form.

$$\begin{split} S &\to XSX \mid xY \\ X &\to Y \mid S \\ Y &\to z \mid \varepsilon \end{split}$$

answer here	

b) Use the grammar below to parse the given sentence using Cocke–Younger–Kasami algorithm. Plot the parse trees.

 $S \to NP\ VP$ $VP \rightarrow book \mid include \mid prefer$ $S \rightarrow X1 VP$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $X2 \rightarrow Verb NP$ $S \to Verb\ NP$ $VP \rightarrow Verb PP$ $VP \rightarrow VP PP$ $S \rightarrow X2 PP$ $S \to Verb PP$ $PP \rightarrow Prep NP$ $S \to VP PP$ $Det \rightarrow that \mid this \mid the \mid a$ $NP \rightarrow I \mid she \mid me \mid Houston$ Noun \rightarrow book | flight | meal | money $\mathrm{NP} \to \mathrm{Det}\ \mathrm{Nom}$ $Verb \rightarrow book \mid include \mid prefer$ $Nom \rightarrow book \mid flight \mid meal \mid money$ $Aux \rightarrow does$ $Nom \rightarrow Nom Noun$ $\operatorname{Prep} \to \operatorname{from} \mid \operatorname{to} \mid \operatorname{on} \mid \operatorname{near} \mid \operatorname{through}$ $Nom \rightarrow Nom PP$

book the flight through Houston

7 Deterministic Pushdown Automata

(not graded)

Provide a DPDA to recognize the given languages, the DPDA must read its entire input and finish with an empty stack.

\mathbf{a}	$a^*bc \cup a^nb^nc$
u.	

answer here		

answer here			