Unit Title: Natural Language Processing for the Creative Industries Project Proposal Name: YUYANG MA ID: 22040677

Introduction

Hi, this is Yuyang Ma from Modular.

My ID is 22040677.

I wasn't able to successfully do the project in the Example projects, so I chose a project that I had come across before and was related to this topic, a CNN-based project for 10 types of object recognition. For colorful images, it is more efficient to use CNN. In this project, I used the Cifar 10 dataset.

I actually write my comments, broad framework and logic, and ideas in my code.

Please refer to my code for more details. I think that fits the description better.

Description

Here is my logical framework.

- 1. Import the data, import the Three Musketeers and Tensorflow;
- 2. Load the dataset cifar 10, for training and calibration data, receiving and splitting data
- 3. Split the data and take 5,000 as check data, same with x&y
- 4. Check the shape
- 5. Draw one for checking, and add a title
- 6. Do a pre-processing of the data set

7.	Normalize the data to narrow down the range, into a floating point shape,
	two-dimensional, reduced, receive
8.	Defining Convolutional Neural Networks.
	(1) 2 convolutions, one pooling, three repetitions, total 3 layers of operations
	(2) Flattening
	(3) Fully connected
9.	Configuring the network
10.	Training model
11.	Watch the data trend, draw a picture
12.	Network optimization, output charts
	(1) Add dropout to reduce overfitting.
	(2) 2 convolutions, one pooling, three repetitions, total 3 layers of operations
	(3) Flattening
	(4) Fully connected
Conclusion	

Training data is 83.9% and calibration data is 70.6%

After adding dropout to reduce overfitting