Challenges of Physics-Based Approaches

- Computational Intensity: Demanding molecular dynamics simulations.
- Incomplete Modeling: Often neglects complex environmental interactions.

L

Nature's Blueprint

- Evolutionary optimization: Natural proteins are optimized to the physical diffusion limits.
- Homology Modeling: Borrowing structures from evolutionarily related proteins.
- Evolutionary Couplings: Pinpointing residues crucial for function.
- Advantages:
 - Sidestep computational hurdles.
 - Tap into nature's tried-and-tested designs.

How to extract these fined-tuend proteins, and what to do?

Given a target natural function, search for natural counterparts

Typical approach

- Search natural counterparts for a targeted function.
- Extract statistical signature from the collection of natural sequences.
- Use the statistical signature to sample novel sequences.

1

Multiple Sequence Alignments (MSAs) - the data

- Definition: Aligning multiple sequences to identify regions of similarity.
- Importance in bioinformatics:
 - Studying phylogenetics and evolutionary processes.
 - Identifying protein domains.

- Information extraction from MSAs:
 - Phylogenetic trees: Tracing evolutionary pathways.
 - Functional domains & conserved motifs: Identifying patterns.
 - Critical residues for protein function or stability.
- Popular tools & databases for MSAs:
 - Clustal: Widely used for sequence alignment.
 - Pfam: Database of protein families based on MSAs.
 - Uniprot: Comprehensive protein database.

MSA is discrete qualitative data type

How to use them?

Encoding

• One-hot:

$$A \to \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \\ 0 \end{pmatrix}, C \to \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \\ 0 \end{pmatrix}, \dots G \to \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \\ 0 \end{pmatrix}, U \to \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{pmatrix}.$$

- Random projection
- Deep learning embeddings

7

Let's look at the distribution of sequences

Since we have numerical data, we can also use dimensionality reduction techniques

Singular Value Decomposition (SVD) for Protein Data

- Application: Extracting meaningful patterns from vast protein datasets.
- Dimensionality Reduction: Simplifies complex data, retaining essential information.
- Pattern Recognition: Reveals underlying structures and relationships in protein data.

Mathematics behind SVD

Introduction

- Fundamental technique in linear algebra.
- Decomposes a matrix into three other matrices.
- Widely used in data compression, noise reduction, and more.

Mathematical Representation

• Given a matrix MSA:

$$MSA = U\Sigma V^T$$

Where:

- *U* Left singular vectors (orthogonal matrix).
- Σ Diagonal matrix of singular values.
- V^T Transpose of right singular vectors (orthogonal matrix).

What's in those singular vectors ?

• The right singular vectors correspond to compositional motifs (in terms of sequences).

Sample compositional motifs

Sample the compositional motifs observed in the MSA to form novel sequences

Sequence Generation using SVD

 Concept of reverse mapping: Generating functional sequences from reduced-dimensional data.

Introduce a Gaussian blank noise to sample the PCs:

$$ilde{U} = U + \mathcal{N}(0, 1) \ ilde{MSA} = ilde{U} \Sigma V^T$$

13

A pairwise model borrowed from statistical physics

Direct coupling analysis

F. Morcos et al, PNAS 2011

Markov Random Field for Protein Analysis

- Parametrize a probability distribution describing the distribution of sequences.
- Decompose the complex distribution of sequences into a pairwise potential — the Potts model.

Mathematics behind Random Markov Fields

MSA probabilistic model [Morcos et al, PNAS, 2011]

• Probability associated to a Sequence given a MSA:

$$P_{\mathcal{H}}(S) \propto \exp\{-\beta \times \mathcal{H}(S)\}$$

• Energy of a sequence (Potts models):

$$\mathcal{H}(S) = \sum_{i} h_i(S_i) + \sum_{i < j} J_{ij}(S_i, S_j)$$

- Energy parameters:
 - $\mathcal{H} = \{h_i; J_{ij}\}$ (lookup table)
 - Parameter space: $5 \times L + 5^2 \times \frac{L \times (L-1)}{2} = 464165$

Initial applications of DCA

Contact predictions based on coupling terms J_{ij} :

$$F_{ij} = \sqrt{\sum J_{ij}(A,B)^2} \quad \rightarrow \quad F_{ij}^{APC} = F_{ij} - rac{F_{i.}F_{.j}}{F_{..}}$$

DCA learning technique

Turn into an optimization procedure

• Fit low-order statistics such as f_i and f_{ij} : Find \mathcal{H} such that:

$$\hat{f}_i(A) = f_i(A)$$
 ; $\hat{f}_{ij}(A, B) = f_{ij}(A, B)$

Boltzmann machine learning [Figliuzzi et al, Mol. Biol Ev., 2018; Cuturello et al, RNA, 2020]

Initialize with a guess for \mathcal{H} (could be zeros)

- $oldsymbol{1}$ Generate a sample given \mathcal{H} (MCMC) and compute \hat{f}_i,\hat{f}_{ij}
- ${f 2}$ ${\cal H}$ parameters are updated following the log-likelihood

$$h_i(A) \leftarrow h_i(A) + \eta(\hat{f}_i(A) - f_i(A))$$

Sequence Generation using Random Markov Field

- Sampling sequences: Predicting the rise of new protein variants or potential drug targets.
- Ensuring biological relevance: Validation against known structures in PDB.

Perform mutations:

Select using the parametrized distribution:

$$P_{\mathcal{H}}(S) \propto \exp\{-\beta \times \mathcal{H}(S)\}$$