Глава 1. Механические колебания и волны

Колебательное движение. Гармонические колебания. Амплитуда, период, частота, фаза колебаний. Уравнение гармонических колебаний

Колебательное движение – это процесс обладающий свойствами повторяемости и возвратности.

Периодическое движение - это движение , при котором все физические величины через равные промежутки времени принимают одни и те же значения.

Характеристики колебательного движения:

• Амплитуда – это наибольшее отклонение от положения равновесия [A]=1м.

Период – это наименьший промежуток времени, за который совершается одно полное колебание [Т]=1с. Колебания, описываемые уравнением(1), являются гармоническими, а система, совершающая колебания, - гармонической колебательной системой

Уравнение (1) описывает гармонические колебания, при которых координата (смещения) тела от времени изменяется по закону косинуса:

$$X(t)=x_{max}\cos(\omega t+)=A\cos(\omega t+\varphi_0)$$
 (2)

Или синуса:

$$X(t)=x_{max}\sin(\omega t+)=A\sin(\omega t+\varphi_0)$$
 (3)

- Частота это число колебаний в единицу времени v=1/T [v]= $1c^{-1}$ = $1\Gamma u$ (Герц)
- Циклическая (круговая) это число колебаний совершаемых за 2π с $\omega = 2\pi T = 2\pi v$

$$A_x(t) + \omega^2 x(t) = 0$$
 (1)

Зависимость координаты от времени x(t) (соотношения(2) и (3)) называется кинематическим законом (или уравнением) гармонических колебаний

 $arphi_0$ — начальная фаза, которая определяет состояние колебательной системы в начальный момент времени, A= x_{max} - амплитуда колебаний

График зависимости смещения от времени

Пружинный и математический маятник

Математический маятник — это система представляющая собой нить закреплённая к точке подвеса и груз масса которого значительно превышает массу нити ,а линейны , а размеры значительно меньше длины нити

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Пружинный маятник - это колебательная система представляющая собой пружину прикреплённую к точке опоры или точке опоры и груз прикреплённый к этой пружине

$$T = 2\pi \sqrt{\frac{m}{\kappa}}$$

Свободные и вынужденные колебания. Резонанс

Незатухающие колебания – это колебания, происходящие с постоянной во времени амплитудой.

Свободные (собственные) колебания – колебания, которые совершает сисетма около положения устойчивого равновесия под действием внутренних сил.

Частота свободных (собственных) колбаний системы – свободные колебания происходят со строго определенной частотой ω.

Колебания тел под действием внешней периодической силы называются **вынужденными.**

Резонанс — это явление резкого возрастания амплитуды вынужденных колебаний при действии на колебательную систему внешней силы с частотой ω .

Распространение колебаний в упругой среде. Продольные и поперечные волны.

Упругая среда — это среда, частицы котрой связаны между собой силами упругости.

Механическая (упругая) волна — это процесс распространения колебаний в упругой среде, который *сопровождается предачей энергии* от одной точки среды к другой.

Волновой фронт — это поверхность, все точки которой колеблются в одинаковых фазах.

Амплитуда (A) — это модуль максимального смещения точек среды из положений равновесия при колебаниях.

Период (Т) – это время поного колебания.

$$T = \frac{t}{N}$$

Частота (V) — это число полных колебаний, совершаемых в данной точке в единицу времкени:

$$\nu = \frac{1}{T}$$

Длина волны — наименьшее расстояние между двумя точками, колебаний в которых происодят в одинаковой фазе.

$$\upsilon = \frac{\lambda}{T} \implies \upsilon = \lambda \cdot \mathbf{v}$$

Скорость распространения волны — это скорость распространения гребня волны или любой другой точки волны с определенной фазой.

Продольная волна — это колебание частиц среды происходит вдоль направления рапространения волны.

Поперечная волна — частицы среды колеблются в плоскости, препендикулярной направлению распространения волны.

Звук

Звук (звуковые волны) — это упругие волны, вызывающие у человека слуховые ощущения.

Акустика — это раздел физики, в котором изучаются хвуковые явления.

Основными физическими характеристиками звука являются интенсивность и спектральный состав (спектр).

Интенсивность волны — это характеристика энергии, переносимой волнами.

Порог слышимости — это минимальная интенсивность, при которой ухо человека перестает воспринимать звук.

Рис. 7.14. Области восприятия звука человеком

Спектор – это набор звуков различных частот, образующих данный звуковой сигнал.

Сплошной спектр – означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.

Дискретный спектр — означает, наличие конечного чила воли с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

Шум — совокупность разнообразных кратковременных звуков.

Музыкальный тон — создается преодическими колебаниями звучащего тела.

Музыкальный звук (созвучие) – результат наложения нескольких одновременных звучащих музыкальных тонов.

Громкость — это степень слышимости звука.

Тембр — зависит от того, сколько обертонов присоединяется к основному мону и какова их инетенсивность и частота.

Единицы основных величин механических колебаний и воли

Наименование	Обользчение	Единицы	Выражение через основные единицы в СИ
Частота	N.	Гери (Пи)	£ 0
Период	T	Секупла (с)	c
Циклическая (кру- говая) частота	ω	Радиан в секунду $\left(\frac{\text{рад}}{c}\right)$	
Амплитуда	A	Метр (м)	M M
Длина волны	λ	Merp (м)	M.
Модуль скорости волны	.01	Метр в секунду $\left(\frac{M}{c}\right)$	<u>м</u> с