#### A Proof of the Erdős-Gallai Theorem

#### Stephen G. Hartke

Department of Mathematics
University of Nebraska-Lincoln
www.math.unl.edu/~shartke2
hartke@math.unl.edu

Joint work with Tyler Seacrest

### **Degree Sequences**

**Def.** The degree sequence  $\pi$  of a graph G is a list of its degrees (with multiplicity), usually listed in decreasing order.



Given a list  $\pi$ , when is it the degree sequence of some graph?

Given a list  $\pi$ , when is it the degree sequence of some graph?

We only consider simple graphs: no loops or multiple edges.



Given a list  $\pi$ , when is it the degree sequence of some graph?

We only consider simple graphs: no loops or multiple edges.



**Def.** A list  $\pi$  that is the degree seq of some simple graph is said to be a graphic sequence.

Given a list  $\pi$ , when is it the degree sequence of some graph?

We only consider simple graphs: no loops or multiple edges.



**Def.** A list  $\pi$  that is the degree seq of some simple graph is said to be a graphic sequence.

What lists are graphic?

**Ex.** Is  $\pi = (2, 2, 2, 2, 1, 1)$  graphic?

**Ex.** Is  $\pi = (2, 2, 2, 2, 1, 1)$  graphic? Yes



**Ex.** Is 
$$\pi = (2, 2, 2, 2, 1, 1)$$
 graphic? Yes

**Ex.** Is 
$$\pi = (4, 3, 2, 2, 2, 1, 1)$$
 graphic?

**Ex.** Is 
$$\pi = (2, 2, 2, 2, 1, 1)$$
 graphic? Yes

**Ex.** Is 
$$\pi = (4, 3, 2, 2, 2, 1, 1)$$
 graphic? No

For a simple graph, 
$$\sum_{v \in V(G)} \deg(v) = 2|E(G)|$$
.

Hence, the sum of  $\pi$  must be even.

**Ex.** Is 
$$\pi = (2, 2, 2, 2, 1, 1)$$
 graphic? Yes

**Ex.** Is 
$$\pi = (4, 3, 2, 2, 2, 1, 1)$$
 graphic? No

For a simple graph, 
$$\sum_{v \in V(G)} \deg(v) = 2|E(G)|$$
.

Hence, the sum of  $\pi$  must be even.

**Ex.** Is 
$$\pi = (6, 6, 5, 4, 4, 2, 1)$$
 graphic?

**Ex.** Is 
$$\pi = (2, 2, 2, 2, 1, 1)$$
 graphic? Yes

**Ex.** Is 
$$\pi = (4, 3, 2, 2, 2, 1, 1)$$
 graphic? No

For a simple graph, 
$$\sum_{v \in V(G)} \deg(v) = 2|E(G)|$$
.

Hence, the sum of  $\pi$  must be even.

**Ex.** Is 
$$\pi = (6, 6, 5, 4, 4, 2, 1)$$
 graphic? No ... but why?

#### Thm. [Erdős-Gallai 1960]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a nonneg int list with even sum.

Then  $\pi$  is graphic if and only if

for all 
$$1 \le k \le n$$
,  $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$ .

#### Thm. [Erdős-Gallai 1960]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a nonneg int list with even sum.

Then  $\pi$  is graphic if and only if

for all 
$$1 \le k \le n$$
,  $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$ .

Why is this condition necessary?



#### Thm. [Erdős-Gallai 1960]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a nonneg int list with even sum.

Then  $\pi$  is graphic if and only if

for all 
$$1 \le k \le n$$
,  $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$ .

Why is this condition necessary?



The left side counts degree among the highest k vertices.

#### Thm. [Erdős-Gallai 1960]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a nonneg int list with even sum.

Then  $\pi$  is graphic if and only if

for all 
$$1 \le k \le n$$
,  $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$ .

Why is this condition necessary?



At most k(k-1) can be from edges among the highest k vertices.

#### Thm. [Erdős–Gallai 1960]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a nonneg int list with even sum.

Then  $\pi$  is graphic if and only if

for all 
$$1 \le k \le n$$
,  $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$ .

Why is this condition necessary?



Each remaining vertex can absorb at most k or its degree.

# Nongraphic Sequence

**Ex.** Is 
$$\pi = (6, 6, 5, 4, 4, 2, 1)$$
 graphic?

# Nongraphic Sequence

**Ex.** Is 
$$\pi = (6, 6, 5, 4, 4, 2, 1)$$
 graphic?

For k = 2, check

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

$$6+6? 2(1) + (2+2+2+1)$$

$$12 \ge 11$$

# Nongraphic Sequence

**Ex.** Is 
$$\pi = (6, 6, 5, 4, 4, 2, 1)$$
 graphic?

For k = 2, check

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

$$6+6? 2(1) + (2+2+2+1)$$

$$12 \ge 11$$

So  $\pi$  is **not** graphic!

Why are the EG inequalities sufficient?

Why are the EG inequalities sufficient?

**Excursus.** Everything is better in bipartite land!

Why are the EG inequalities sufficient?

**Excursus.** Everything is better in bipartite land!

**Def.** A bilist  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$  is bigraphic if it is the degree sequence of some simple bipartite graph.

Why are the EG inequalities sufficient?

**Excursus.** Everything is better in bipartite land!

**Def.** A bilist  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$  is bigraphic if it is the degree sequence of some simple bipartite graph.



$$\tau = (2, 2, 2, 1; 4, 3, 0)$$

Note that the  $a_i$ s are the degrees in one part, and the  $b_j$ s are the degrees in the other part.

# **Bigraphic Sequences**

A necessary condition:

If a bigraph has degrees  $\tau=(\alpha_1\geq\ldots\geq\alpha_n;b_1\geq\ldots\geq b_m)$ , then any realization has  $\sum_{i=1}^n\alpha_i=|E(G)|$ 

# **Bigraphic Sequences**

#### A necessary condition:

If a bigraph has degrees  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$ , then any realization has  $\sum_{i=1}^n a_i = |E(G)| = \sum_{j=1}^m b_j$ .

# **Bigraphic Sequences**

#### A necessary condition:

If a bigraph has degrees  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$ ,

then any realization has 
$$\sum_{i=1}^{n} a_i = |E(G)| = \sum_{j=1}^{m} b_j$$
.

#### **Thm.** [Gale 1957, Ryser 1957]

Let  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$  be a bilist with  $\sum a_i = \sum b_j$ .

Then au is bigraphic if and only if

for all 
$$1 \le k \le n$$
,  $\sum_{i=1}^{k} a_i \le \sum_{j=1}^{m} \min(b_j, k)$ .

# Necessity of Gale-Ryser Theorem

Let  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$  be a bilist with  $\sum a_i = \sum b_j$ .

Then  $\tau$  bigraphic  $\Leftrightarrow$  for all  $1 \le k \le n$ ,  $\sum_{i=1}^{k} a_i \le \sum_{i=1}^{m} \min(b_i, k)$ .

*a*<sub>1</sub> ●

• b<sub>1</sub>

a<sub>2</sub> ●

b<sub>2</sub>

*a*<sub>3</sub> ●

• *b*<sub>3</sub>

**a**₄ •

• b<sub>4</sub>

a<sub>5</sub>

• b<sub>5</sub>

## Necessity of Gale-Ryser Theorem

Let  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$  be a bilist with  $\sum a_i = \sum b_j$ .

Then  $\tau$  bigraphic  $\Leftrightarrow$  for all  $1 \le k \le n$ ,  $\sum_{i=1}^{k} a_i \le \sum_{i=1}^{m} \min(b_i, k)$ .



Left side counts degree among the highest *k* vertices in *A*.

### Necessity of Gale-Ryser Theorem

Let  $\tau = (a_1 \ge ... \ge a_n; b_1 \ge ... \ge b_m)$  be a bilist with  $\sum a_i = \sum b_j$ .

Then  $\tau$  bigraphic  $\Leftrightarrow$  for all  $1 \le k \le n$ ,  $\sum_{i=1}^{k} a_i \le \sum_{j=1}^{m} \min(b_j, k)$ .



Left side counts degree among the highest *k* vertices in *A*.

Each vertex in B can absorb at most k or its degree.

Many proofs of sufficiency—my favorite uses network flows.

2 ●

• • 3

2 ● 0

1 •

Many proofs of sufficiency—my favorite uses network flows.



Many proofs of sufficiency—my favorite uses network flows.



The middle edges with flow 1 realize the bipartite graph.

Now apply Max Flow–Min Cut Theorem to the previous network.

Thm. [Ford–Fulkerson 1956]

The maximum flow from the source to the sink is equal to the minimum size of a source/sink separating cut.

Now apply Max Flow–Min Cut Theorem to the previous network.

Thm. [Ford–Fulkerson 1956]

The maximum flow from the source to the sink is equal to the minimum size of a source/sink separating cut.

The checking of the Gale–Ryser conditions is straightforward, but involves some cases.

## Nonbipartite?

How to relate the nonbipartite world to bipartite land?

# Durfee square

**Def.** Given a partition  $d_1 \ge d_2 \ge ... \ge d_n$ , the Durfee square number m is the largest i such that  $d_i \ge i$ .

$$d_1 = 4$$
  $\bullet$   $\bullet$   $\bullet$   $\bullet$   $d_2 = 2$   $\bullet$   $d_3 = 2$   $\bullet$   $\bullet$   $d_4 = 1$   $\bullet$ 

## Durfee square

**Def.** Given a partition  $d_1 \ge d_2 \ge ... \ge d_n$ , the Durfee square number m is the largest i such that  $d_i \ge i$ .

#### Thm. [Ryser 1957?]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a list with Durfee square m.

Let 
$$\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$$
 where  $\tilde{d}_i = \begin{cases} d_i + 1 & \text{if } d_i \leq m, \\ d_i & \text{if } d_i > m. \end{cases}$ 

#### Thm. [Ryser 1957?]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a list with Durfee square m.

Let 
$$\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$$
 where  $\tilde{d}_i = \begin{cases} d_i + 1 & \text{if } d_i \leq m, \\ d_i & \text{if } d_i > m. \end{cases}$ 



#### **Thm.** [Ryser 1957?]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a list with Durfee square m.

Let 
$$\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$$
 where  $\tilde{d}_i = \begin{cases} d_i + 1 & \text{if } d_i \leq m, \\ d_i & \text{if } d_i > m. \end{cases}$ 



#### Thm. [Ryser 1957?]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a list with Durfee square m.

Let 
$$\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$$
 where  $\tilde{d}_i = \begin{cases} d_i + 1 & \text{if } d_i \leq m, \\ d_i & \text{if } d_i > m. \end{cases}$ 



#### **Thm.** [Ryser 1957?]

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a list with Durfee square m.

Let 
$$\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$$
 where  $\tilde{d}_i = \begin{cases} d_i + 1 & \text{if } d_i \leq m, \\ d_i & \text{if } d_i > m. \end{cases}$ 



Proof that  $\tau$  bigraphic implies  $\pi$  is graphic:



Proof that  $\tau$  bigraphic implies  $\pi$  is graphic:

Case 1

All the instances of Case 1 can be handled similarly.

All instances of Case 1 are handled, and then Cases 2 and 3.









Cases 2 and 3: all instances of Case 1 handled.

By parity, there are an even number of bad edges.



Cases 2 and 3: all instances of Case 1 handled.

By parity, there are an even number of bad edges.



Case C: i, j > m

We can find k < mso that  $v_i \leftrightarrow v_k$ .

Now proceed with Case A.

Cases 2 and 3: all instances of Case 1 handled. By parity, there are an even number of bad edges.



Case C: i, j > m

We can find k < mso that  $v_i \nleftrightarrow v_k$ .

Now proceed with Case A.

## Strengthened Erdős-Gallai

#### Thm. [Zverovich–Zverovich 1992]

It is sufficient to check the first m EG inequalities, where m is the Durfee square number.

That is,

Let  $\pi = (d_1 \ge d_2 \ge ... \ge d_n)$  be a nonneg int list with even sum.

Then  $\pi$  is graphic if and only if

for all 
$$1 \le k \le m$$
,  $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$ .

Key point: for k > m, we have  $\min(d_i, k) = d_i$ .

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ . Then

$$\sum_{i=1}^k \tilde{d}_i \leq \sum_{i=1}^n \min(\tilde{d}_i, k) \text{ iff } \sum_{i=1}^k \max(k, \tilde{d}_i) \leq k^2 + \sum_{i=k+1}^n \min(\tilde{d}_i, k).$$

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ . Then

$$\sum_{i=1}^k \tilde{d}_i \leq \sum_{i=1}^n \min(\tilde{d}_i, k) \text{ iff } \sum_{i=1}^k \max(k, \tilde{d}_i) \leq k^2 + \sum_{i=k+1}^n \min(\tilde{d}_i, k).$$

#### Proof.

Subtract first *k* terms from right side:

$$\sum_{i=1}^{k} \tilde{d}_i - \min(\tilde{d}_i, k) \le \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$$

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ . Then

$$\sum_{i=1}^k \tilde{d}_i \leq \sum_{i=1}^n \min(\tilde{d}_i, k) \text{ iff } \sum_{i=1}^k \max(k, \tilde{d}_i) \leq k^2 + \sum_{i=k+1}^n \min(\tilde{d}_i, k).$$

#### Proof.

Subtract first *k* terms from right side:

$$\sum_{i=1}^{k} \tilde{d}_i - \min(\tilde{d}_i, k) \le \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$$

$$\sum_{i=1}^{k} \max(\tilde{d}_i - k, 0) \le \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$$

**Lem.** Let 
$$\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$$
. Then

$$\sum_{i=1}^k \tilde{a}_i \leq \sum_{i=1}^n \min(\tilde{a}_i, k) \text{ iff } \sum_{i=1}^k \max(k, \tilde{a}_i) \leq k^2 + \sum_{i=k+1}^n \min(\tilde{a}_i, k).$$

#### Proof.

Subtract first *k* terms from right side:

$$\sum_{i=1}^{k} \tilde{d}_i - \min(\tilde{d}_i, k) \le \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$$

$$\sum_{i=1}^{k} \max(\tilde{d}_i - k, 0) \le \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$$

$$\sum_{i=1}^{k} \max(\tilde{d}_i, k) \le k^2 + \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$$

## Strengthened Gale–Ryser Inequalities

#### Lem.

It is sufficient to check the first m GR inequalities for  $\tau$ , where m is the Durfee square number for  $\pi$ .

That is, Let 
$$\tau = (\tilde{a}_1, \dots, \tilde{a}_n; \tilde{a}_1, \dots, \tilde{a}_n)$$
. Then  $\tau$  is bigraphic if and only if for all  $1 \le k \le m$ ,  $\sum_{i=1}^k \tilde{d}_i \le \sum_{i=k+1}^n \min(\tilde{d}_i, k)$ .

This is more complicated than for the ER inequalities.

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ . Then  $\tau$  bigraphic iff  $\forall \ 1 \le k \le m, \sum_{i=1}^k \tilde{d}_i \le \sum_{i=k+1}^n \min(\tilde{d}_i, k)$ .

**Proof.** ( $\Leftarrow$ ) We induct on k to show the remaining GR ineq.

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ . Then  $\tau$  bigraphic iff  $\forall \ 1 \le k \le m, \sum_{i=1}^k \tilde{d}_i \le \sum_{i=k+1}^n \min(\tilde{d}_i, k)$ .

**Proof.** ( $\Leftarrow$ ) We induct on k to show the remaining GR ineq. Let k > m (so  $d_k < k$ ). Let  $\ell$  be largest so that  $d_\ell \ge k$  (note  $\ell < k$ ).

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ . Then  $\tau$  bigraphic iff  $\forall \ 1 \le k \le m, \sum_{i=1}^k \tilde{d}_i \le \sum_{i=k+1}^n \min(\tilde{d}_i, k)$ .

**Proof.** ( $\Leftarrow$ ) We induct on k to show the remaining GR ineq. Let k > m (so  $d_k < k$ ). Let  $\ell$  be largest so that  $d_\ell \ge k$  (note  $\ell < k$ ).

$$\sum_{i=1}^{K} \max(\tilde{d}_i, k) = \sum_{i=1}^{L} \tilde{d}_i + k(k-\ell)$$

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ . Then  $\tau$  bigraphic iff  $\forall \ 1 \le k \le m, \sum_{i=1}^k \tilde{d}_i \le \sum_{i=k+1}^n \min(\tilde{d}_i, k)$ .

**Proof.** ( $\Leftarrow$ ) We induct on k to show the remaining GR ineq. Let k > m (so  $d_k < k$ ). Let  $\ell$  be largest so that  $d_\ell \ge k$  (note  $\ell < k$ ).

$$\sum_{i=1}^{k} \max(\tilde{d}_i, k) = \sum_{i=1}^{\ell} \tilde{d}_i + k(k - \ell)$$

$$\leq \sum_{i=1}^{n} \min(\tilde{d}_i, \ell) + k(k - \ell) \quad \text{by induction}$$

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ .

Then  $\tau$  bigraphic iff  $\forall \ 1 \le k \le m$ ,  $\sum_{i=1}^{k} \tilde{d}_i \le \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$ .

**Proof.** ( $\Leftarrow$ ) We induct on k to show the remaining GR ineq. Let k > m (so  $d_k < k$ ). Let  $\ell$  be largest so that  $d_{\ell} \ge k$  (note  $\ell < k$ ).

$$\sum_{i=1}^{k} \max(\tilde{d}_i, k) = \sum_{i=1}^{\ell} \tilde{d}_i + k(k - \ell)$$

$$\leq \sum_{i=1}^{n} \min(\tilde{d}_i, \ell) + k(k - \ell) \quad \text{by induction}$$

$$= k^2 - k\ell + \sum_{i=1}^{k} \min(\tilde{d}_i, \ell) + \sum_{i=k+1}^{n} \min(\tilde{d}_i, \ell)$$

**Lem.** Let  $\tau = (\tilde{d}_1, \dots, \tilde{d}_n; \tilde{d}_1, \dots, \tilde{d}_n)$ .

Then  $\tau$  bigraphic iff  $\forall \ 1 \le k \le m$ ,  $\sum_{i=1}^{k} \tilde{d}_i \le \sum_{i=k+1}^{n} \min(\tilde{d}_i, k)$ .

**Proof.** ( $\Leftarrow$ ) We induct on k to show the remaining GR ineq. Let k > m (so  $d_k < k$ ). Let  $\ell$  be largest so that  $d_{\ell} \ge k$  (note  $\ell < k$ ).

$$\begin{split} \sum_{i=1}^k \max(\tilde{d}_i, k) &= \sum_{i=1}^l \tilde{d}_i + k(k - \ell) \\ &\leq \sum_{i=1}^n \min(\tilde{d}_i, \ell) + k(k - \ell) \quad \text{by induction} \\ &= k^2 - k\ell + \sum_{i=1}^k \min(\tilde{d}_i, \ell) + \sum_{i=k+1}^n \min(\tilde{d}_i, \ell) \\ &\leq k^2 + \sum_{i=k+1}^n \min(\tilde{d}_i, \ell) \leq k^2 + \sum_{i=k+1}^n \min(\tilde{d}_i, k) \end{split}$$

Sufficiency: We need to verify the first m GR ineq for  $\tau$ .

Sufficiency: We need to verify the first m GR ineq for  $\tau$ .

Let 
$$1 \le k \le m$$
.

$$\sum_{i=1}^{k} \tilde{d}_i = \sum_{i=1}^{k} d_i + k$$

Sufficiency: We need to verify the first m GR ineq for  $\tau$ .

$$\sum_{i=1}^{k} \tilde{d}_i = \sum_{i=1}^{k} d_i + k \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k) + k$$

Sufficiency: We need to verify the first m GR ineq for  $\tau$ .

$$\sum_{i=1}^{k} \tilde{d}_{i} = \sum_{i=1}^{k} d_{i} + k \le k(k-1) + \sum_{i=k+1}^{n} \min(d_{i}, k) + k$$

$$\le k^{2} + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

Sufficiency: We need to verify the first m GR ineq for  $\tau$ .

$$\sum_{i=1}^{k} \tilde{d}_{i} = \sum_{i=1}^{k} d_{i} + k \le k(k-1) + \sum_{i=k+1}^{n} \min(d_{i}, k) + k$$

$$\le k^{2} + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

$$\le \sum_{i=1}^{k} k + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

Sufficiency: We need to verify the first m GR ineq for  $\tau$ .

$$\sum_{i=1}^{k} \tilde{d}_{i} = \sum_{i=1}^{k} d_{i} + k \le k(k-1) + \sum_{i=k+1}^{n} \min(d_{i}, k) + k$$

$$\le k^{2} + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

$$\le \sum_{i=1}^{k} k + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

$$\le \sum_{i=1}^{n} \min(d_{i}, k)$$

Sufficiency: We need to verify the first m GR ineq for  $\tau$ .

Let  $1 \le k \le m$ .

$$\sum_{i=1}^{k} \tilde{d}_{i} = \sum_{i=1}^{k} d_{i} + k \le k(k-1) + \sum_{i=k+1}^{n} \min(d_{i}, k) + k$$

$$\le k^{2} + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

$$\le \sum_{i=1}^{k} k + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

$$\le \sum_{i=1}^{n} \min(d_{i}, k) \le \sum_{i=1}^{n} \min(\tilde{d}_{i}, k).$$

This completes the proof of the Erdős–Gallai Theorem!

#### A Proof of the Erdős-Gallai Theorem

#### Stephen G. Hartke

Department of Mathematics
University of Nebraska-Lincoln
www.math.unl.edu/~shartke2
hartke@math.unl.edu

Joint work with Tyler Seacrest