clase 22 de agosto 2023

Susana Hernández

Invalid Date

Table of contents

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

2 Summary

In summary, this book has no content whatsoever.

3 Tarea 1

 ${f Listing}$ 3.1 Exploring functions to generate random variables with a Bernoulli distribution.py

Figure 3.1: Figura 3

Listing 3.2 Exploring functions to generate random variables with a Gaussian distribution.py

```
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
from scipy.stats import multivariate_normal
x = np.linspace(0, 5, 100, endpoint=False)
y = multivariate_normal.pdf(x, mean=2.5, cov=0.5);
fig1 = plt.figure()
ax = fig1.add_subplot(111)
ax.plot(x, y)
# plt.show()
x, y = np.mgrid[-5:5:.1, -5:5:.1]
pos = np.dstack((x, y))
rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
ax2.contourf(x, y, rv.pdf(pos))
# plt.show()
ax = plt.figure().add_subplot(projection='3d')
ax.plot_surface(
    x,
    у,
    rv.pdf(pos),
    edgecolor='royalblue',
    1w=0.5,
    rstride=8,
    cstride=8,
    alpha=0.4
ax.contour(x, y, rv.pdf(pos), zdir='z', offset=-.2, cmap='coolwarm')
ax.contour(x, y, rv.pdf(pos), zdir='x', offset=-5, cmap='coolwarm')
ax.contour(x, y, rv.pdf(pos), zdir='y', offset=5, cmap='coolwarm')
ax.set(
    xlim=(-5, 5),
    ylim=(-5, 5),
    zlim=(-0.2, 0.2),
    xlabel='X',
    ylabel='Y',
                                    13
    zlabel='Z'
)
plt.show()
```

4 Tarea 2

Sea $Y_{\delta,h}(t)$ una caminata aleatoria. Demuestre que para δ y h pequeño tenemos

$$E\exp[i\lambda Y_{\delta,h}(t)]\approx \exp\left[-\frac{t\lambda^2h^2}{2\delta}-\frac{t\lambda^4h^4}{12\delta}\right]$$

Considere una caminata aleatoria que comienza en 0 con saltos h y -h igualmente probables en los momentos δ , 2 δ ,..., donde h y δ son números positivos. Más precisamente, sea $\{X_n\}_{n=1}^{\infty}$ una sucesión de elementos aleatorios independientes e idénticamente distribuidos. variables con

$$P\left[X_{i}=h\right]=P\left[X_{i}=-h\right]=\frac{1}{2},\forall i,$$

Sea $Y_{\delta,h}(0) = 0$ y pongamos

$$Y_{\delta,h}(n\delta) = X_1 + X_2 + \dots + X_n.$$

Para t>0, defina $Y_{\delta,h}(t)$ mediante linealización, es decir, para $n\delta < t < (n+1)\delta$, defina

$$Y_{\delta,h}(t) = \frac{(n+1)\delta - t}{\delta} Y_{\delta,h}(n\delta) + \frac{t - n\delta}{\delta} Y_{\delta,h}((n+1)\delta).$$

Calculemos la función característica de $Y_{\delta,h}(t)$, donde $\lambda \in \mathbb{R}$ fijo y sea $t=n\delta$ así, $n=t/\delta$. Entonces se tiene que

$$\begin{split} E \exp\left[i\lambda Y_{n,\delta}\left(t\right)\right] &= \prod_{j=1}^{n} E e^{i\lambda X_{j}}, \text{ por ser variables independientes,} \\ &= (E e^{i\lambda X_{j}})^{n}, \text{ por ser idénticamente distribuidas,} \\ &= \frac{1}{2}(e^{i\lambda h} + e^{-i\lambda h})^{n}, \\ &= (\cos(\lambda h))^{n}, \\ &= (\cos(\lambda h))^{t/\delta}, \end{split} \tag{4.1}$$

Por otro lado, sea $u = \left[\cos\left(\lambda h\right)\right]^{1/\delta} \Rightarrow \ln\left(u\right) = \frac{1}{\delta}\ln\left[\cos\left(\lambda h\right)\right].$

Usando la expansión de Taylor de $\cos(x)$ se tiene que

$$\cos(\lambda h) \approx 1 - \frac{(\lambda h)^2}{2!} + \frac{(\lambda h)^4}{4!},$$

entonces

$$\ln(\cos(\lambda h)) \approx \ln\left[1 - \frac{(\lambda h)^2}{2} + \frac{(\lambda h)^4}{4!}\right]$$

$$\approx -\frac{(\lambda h)^2}{2!} + \frac{(\lambda h)^4}{4!} - \frac{1}{2}\left(-\frac{\lambda^2 h^2}{2!} + \frac{\lambda^4 h^4}{4!}\right)^2$$

$$= -\frac{\lambda^2 h^2}{2!} + \frac{\lambda^4 h^4}{4!} - \frac{1}{2}\left(\frac{\lambda^4 h^4}{4} - \frac{\lambda^6 h^6}{24^2} + \frac{\lambda^8 h^8}{24}\right)$$

$$= -\frac{\lambda^2 h^2}{2} + \frac{\lambda^4 h^4}{24} - \frac{\lambda^4 h^4}{8} - \frac{\lambda^6 h^6}{(2)24^2} + \frac{\lambda^8 h^8}{48}$$

$$= -\frac{\lambda^2 h^2}{2} - \frac{\lambda^4 h^4}{12} - \frac{\lambda^6 h^6}{(2)24^2} + \frac{\lambda^8 h^8}{48}$$
(4.2)

para una h pequeña, se satisface que,

$$-\frac{\lambda^6 h^6}{(2)24^2} + \frac{\lambda^8 h^8}{48} \approx 0$$

Por lo tanto, $\ln\left(\cos\left(\lambda h\right)\right)\approx-\frac{\lambda^2h^2}{2}-\frac{\lambda^4h^4}{12}.\setminus$ Así, para δ y h pequeña, se tiene que $\ln u\approx\frac{1}{\delta}\left(-\frac{\lambda^2h^2}{2}-\frac{\lambda^4h^4}{12}\right).\setminus$ Entonces

$$u \approx \exp\left[\frac{1}{\delta}\left(-\frac{\lambda^2 h^2}{2} - \frac{\lambda^4 h^4}{12}\right)\right]$$
 (4.3)

Entonces por la ecuación (??)

$$E \exp\left[i\lambda Y_{n,\delta}(t)\right] \approx \exp\left[-\frac{t\lambda^2 h^2}{2\delta} - \frac{t\lambda^4 h^4}{12\delta}\right]$$
 (4.4)

Calculando el limite

$$\lim_{\delta \to 0} E\left[\exp\left(i\lambda Y_{n,\delta}\left(t\right)\right)\right] = \lim_{\delta \to 0} \exp\left[-t\left(\left\lceil\frac{h^2}{\delta}\right\rceil\left(\frac{\lambda^2}{2} - \frac{\lambda^4 h^2}{24}\right)\right)\right],$$

Asumamos que $\delta \to 0$, $h \to 0$ pero $h^2/\delta \to \infty$. Entonces $\lim_{\delta \to 0} Y_{\delta,h}(t)$ no existe. Por otro lado, consideremos la siguiente renormalización,

$$E \exp \left[i\lambda Y_{n,\delta}(t) + \frac{th^2 \lambda^2}{2\delta} \right] = E \left[\exp(i\lambda Y_{n,\delta}(t)) \exp\left(\frac{th^2 \lambda^2}{2\delta}\right) \right]$$

$$= \exp\left(\frac{th^2 \lambda^2}{2\delta}\right) E \exp\left[i\lambda Y_{n,\delta}(t)\right]$$

$$\approx \exp\left(\frac{th^2 \lambda^2}{2\delta}\right) \exp\left[-\frac{t\lambda^2 h^2}{2\delta} - \frac{t\lambda^4 h^4}{12\delta}\right]$$

$$= \exp\left(-\frac{t\lambda^4 h^4}{12\delta}\right)$$
(4.5)

Así, si $\delta,h\to 0$ de tal manera que $h^2/\delta\to \infty$ y $h^4/\delta\to 0,$ entonces

$$\lim_{\delta \to 0} E\left[\exp\left(i\lambda Y_{n,\delta}\left(t\right) + \frac{th^2\lambda^2}{2}\right)\right] = \lim_{\delta \to 0} \exp\left(\frac{\left(\lambda h\right)^4}{24\delta}\right) = 1$$