

目錄

一、	Image-Segmentation-MaskRCNN-Keras 介紹	4
二、	Image-Segmentation-MaskRCNN-Keras 資料夾介紹	5
三、	準備訓練樣本圖+標記類別	7
四、	執行 1_train.py 開始訓練	13
五、	執行 2_inference.py 看訓練結果	16
六、	参 數介紹	19

圖目錄

啚	1. 標記、訓練、測試樣本的流程	4
圖	2. Image-Segmentation-MaskRCNN-Keras 位置	5
圖	3. 標記網站介面	7
圖	4. 按下 Add Files 新增檔案	8
圖	5. 選擇與開啟要訓練的圖檔	8
圖	6. 使用多邊形框選藥丸	9
圖	7. 使用多邊形框選藥丸	9
圖	8. 使用多邊形框選藥丸	.10
圖	9. 新增名稱	.10
圖	10. 輸入類別名稱	.11
圖	11. 輸出標記 json 檔	.12
置	12. 將輸出標記 json 檔放到 data\pill\train 資料夾	.12
置	13. 開啟 OpenR8 程式	.13
圖	14. 選擇 1_train.py	.14
圖	15. 開啟 1_train.py	.14
圖	16. 設定 dataset_Path	.14
邑	17. 選擇 2_inference.py	16
圖	18. 開啟 2_inference.py.	16
圖	19. 填要測試的樣本路徑	.17
圖	20. 填入要訓練的 h5 樣本路徑	.17
圖	21. 2_inference.py 的測試結果	18
置	22. 在 surgery.py 中更改讀取 h5 檔檔名	.19
置	23. 在 "data\predefined_classes.txt" 中設定類別名稱	.19
圖	24. 在 surgery.py 中更改讀取類別 json 名稱	.20
昌	25. 在 surgerv.pv 中增加 GPU 數量設定	.20

表目錄

表 1. Image-Segmentation-MaskRCNN-Keras 資料夾介紹.......6

一、Image-Segmentation-MaskRCNN-Keras 介紹

Mask R-CNN 為 Faster R-CNN 的延伸應用,比 Faster R-CNN 多增加一個分支,在檢測 目標物的同時,將目標像素分割出來。

此解決方案使用 Mask R-CNN 來判斷藥丸的種類與位置,標記時,目標物使用多邊形描繪出物件輪廓,標上其類別。

圖1. 標記、訓練、測試樣本的流程

二、Image-Segmentation-MaskRCNN-Keras 資料夾介紹

Image-Segmentation-MaskRCNN-Keras 位於 OpenR8 的 solution 資料夾內,其中包含:

- 1. 資料夾:【data 資料夾】、【src 資料夾】、【tool 資料夾】。
- 2. py 檔案:【1_train.py】、【2_inference.py】。
- ※初次使用者,建議先只改動 data 內 pill 資料夾的檔案內容,等熟悉後,再自行更動至想要的位置。

圖2. Image-Segmentation-MaskRCNN-Keras 位置

名稱	用途與功能	內容
data 資料夾	存放訓練樣本圖、類別;測	pill\test \
	試圖、類別;model 檔、存	pill\train \
	放訓練完成後的 model 檔	pill\val \
	案。	mask_rcnn_coco.h5(用來當樣
		本 model 訓練(第一次使用請
		勿刪除))
		mask20181217T0933\
		events.out.tfevents.1545010450.S3
		mask20181217T0933\
		mask_rcnn_mask_0020.h5(訓練
		好的 model 檔案)

src 資料夾	訓練與測試時會用到的 python 檔,其中 surgery.py 主要為訓練與測 試用。	real_time_detection.py split_dataset.py setup.py surgery.py
tool 資料夾	標記圖檔所用的網頁。	via-2.0.2\via.html
1_train.py	訓練樣本的解決方案。	
2_inference.py	測試樣本的解決方案。	

表 1. Image-Segmentation-MaskRCNN-Keras 資料夾介紹

三、準備訓練樣本圖+標記類別

我們要訓練之前時,要先決定好方向,以此文件為例,我們想檢測藥丸種類與所在的位置,所以我們將樣本圖片一一標示它們的類別(藥丸)。

第一步:開啟標記網站介面

開啟 tool 資料夾內 via-2.0.2 資料夾中 via.html 網頁來標記我們想訓練的樣本類別。

圖3. 標記網站介面

第二步:選擇樣本圖片存放資料夾

點選 Open Dir 來開啟圖片樣本所放的資料夾位置,以這裡的解決方案為例,要訓練圖片放在 data\pill\train,於是按下 "Add Files" 來準備標記圖片,如圖 4、圖 5。

圖4. 按下 Add Files 新增檔案

圖5. 選擇與開啟要訓練的圖檔

第三步:框選類別

使用多邊形來描繪想辨識的區域。

圖6. 使用多邊形框選藥丸

如果使用多邊形框完後,雙擊左鍵,即可結束多邊形框選,如圖7、圖8。

圖7. 使用多邊形框選藥丸

圖8. 使用多邊形框選藥丸

第四步:框選樣本圖片並標記類別

如圖 9,在 "Attributes 的 attribute name" 欄位輸入 name,接著如圖 10,根據框的編號 填入該類別名稱,以本文件為例,是判斷藥丸,由於有不同種類藥丸,於是填 "pill1"、"pill2"、"pill3"等等,填完即可按 X 關閉。

繼續框選下一張樣本圖片,直到所有樣本圖片皆標記好類別為止。

圖9. 新增名稱

圖10. 輸入類別名稱

第五步:輸出標記類別檔。

在全部標記完畢後,要輸出標記的檔案,如圖 11,按下在上方 Annotation 中的 Export Annotations (as json) 輸出標記所有圖片類別的 json 檔。

Copyright © 2019 LEADERG INC. All rights reserved.

圖11. 輸出標記 json 檔

第六步:將輸出 json 檔放到 data\pill\train 資料夾內

將剛剛輸出的 json 檔 放到 data\pill\train 資料夾內,並確認檔名是否為

"via_region_data.json",如果不是,請改名成 "via_region_data.json",如圖 12。

圖12. 將輸出標記 json 檔放到 data\pill\train 資料夾

※ 要測試的樣本 data\pill\val 資料夾內,一樣要做第一步到第六步。

四、執行1_train.py 開始訓練

一開始請開啟【OpenR8 程式】,如果電腦有安裝顯示卡,請點選【R8_Python3.6_GPU.bat】執行檔,沒有則點選【R8_Python3.6_CPU.bat】執行檔,如圖 13。開啟完【OpenR8 程式】後,請點選【檔案】=>【開啟】=>【進入到 OpenR8 底下的 solution 資料夾】=>【選擇 Image-Segmentation-MaskRCNN-Keras 資料夾】=>【選擇 1 train.py 開啟】,如圖 14、圖 15。

圖13. 開啟 OpenR8 程式

Copyright © 2019 LEADERG INC. All rights reserved.

圖14. 選擇 1 train.py

圖15. 開啟 1_train.py

※如果樣本圖沒有放在"data\pill\"裡面的話,需額外設定 dataset_Path,如圖 16。

圖16. 設定 dataset_Path

※在運行前,如果沒有要沿用之前的 model ,請刪除所有 h5 檔案(但保留 mask_rcnn_coco.h5),不熟悉者建議都不刪除。

※在執行前,如果想改變"訓練模型名稱"、"訓練次數"、"分類類別"......等參數設定,請看第六章 — 參數介紹。

按下執行開始訓練樣本,直到跳出「Press any key to continue...」。

五、執行 2_inference.py 看訓練結果

在執行完 1_train.py 訓練結束後,開啟 2_inference.py 來測試圖片,如圖 17、圖 18。

圖17. 選擇 2_inference.py

圖18. 開啟 2_inference.py

填入要測試的樣本路徑與訓練完的 h5 檔路徑,如圖 19、圖 20。

※如果有執行過 1_train.py 且成功訓練出 model 者, **務必**確認圖 20 的 h5 檔名稱是否一致。

圖19. 填要測試的樣本路徑

圖20. 填入要訓練的 h5 樣本路徑

按下執行看結果,Mask_R_CNN和其他顯示結果的方式不太一樣,如果有判斷到類別時,那個區域會標記成一種顏色並框起來顯示類別及相似度,反之,如果甚麼都沒抓到就會沒有標記顏色,如圖 21,在藥丸的位置分別標記成不同顏色,代表有被抓出。

圖21. 2_inference.py 的測試結果

六、參數介紹

- ※ 更改讀取 h5 檔檔名:圖 22。
- ※ 在"data\predefined classes.txt"設定類別名稱:圖 23。
- ※ 更改 json 名稱: 圖 24。
- ※ 設置 GPU 數量: 圖 25。

圖22. 在 surgery.py 中更改讀取 h5 檔檔名

圖23. 在"data\predefined_classes.txt"中設定類別名稱

```
📓 C:\Users\ai\Desktop\OpenR8_Windows-19.26-4\OpenR8\solution\Community-Edition\Image-Segmentation-MaskRCNN-Keras\src\surgery.py - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window
 surgery.pv 🖾
                assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
                 # Load annotations
                 # VGG Image Annotator saves each image in the form:
                 # { 'filename': '28503151_5b5b7ec140_b.jpg',
                     'regions': {
 124
                          '0': {
    'region_attributes': {name:'a'},
 125
                              'shape_attributes': {
                                  'all_points_x': [...],
'all_points_y': [...],
'name': 'polygon'}},
 128
 129
130
                         ... more regions ...
 132
133
                    },
'size': 100202
                                                                         類別標記 json 檔檔名
 134
 135
                 \ensuremath{\sharp} We mostly care about the x and y coordinates of each region
 136
137
                 annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
 138
                 annotations = list(annotations.values())  # don't need the dict keys
 139
                 # The VIA tool saves images in the JSON even if they don't have any
 140
                 # annotations. Skip unannotated images.
 141
                 annotations = [a for a in annotations if a['regions']]
 142
143
144
                 # Add images
                 for a in annotations:
                       Get the x, y coordinaets of points of the polygons that make up
                            length: 23,503 lines: 602 Ln:1 Col:1 Sel:0|0
                                                                               Unix (LF)
                                                                                             UTF-8
Python file
                                                                                                            INS
```

圖24. 在 surgery.py 中更改讀取類別 json 名稱

```
📓 C:\Users\ai\Desktop\OpenR8_Windows-19.26-4\OpenR8\solution\Community-Edition\Image-Segmentation-MaskRCNN-Keras\src\surgery.py - Notepad++
                                                                                              X
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?

    surgery.py 

      class SurgeryConfig(Config):
             Configuration for training on the toy dataset.
          Derives from the base Config class and overrides some values.
 73
74
          # Give the configuration a recognizable name
          NAME = "mask"
 76
77
78
          \mbox{\#} We use a GPU with 12GB memory, which can fit two images.
           Adjust down if you use a smaller GPU.
 79
80
          IMAGES_PER_GPU = 2
 81
         GPU_COUNT = 1 GPU 數量設定,使用兩個 GPU 時,設為2
 82
          # Number of classes (including background)
#NUM_CLASSES = 1 + 3  # Background + objects
 83
84
 85
 86
87
          # Number of training steps per epoch
 88
          STEPS_PER_EPOCH = 100
 89
90
91
          # Skip detections with < 90% confidence
          DETECTION MIN CONFIDENCE = 0.9
 92
       length: 23,503 lines: 602
                                             Ln:1 Col:1 Sel:0|0
Python file
                                                                      Unix (LF)
                                                                                 UTF-8
                                                                                             INS
```

圖25. 在 surgery.py 中增加 GPU 數量設定