

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Minimization subject to equality constraints

Problem statement

• Find a point $\boldsymbol{x} \in \mathbb{R}^N$ that minimizes $f(\boldsymbol{x})$ subject to equality constraints,

$$egin{array}{lll} h_1(oldsymbol{x})&=&0\ h_2(oldsymbol{x})&=&0\ dots\ h_M(oldsymbol{x})&=&0 \end{array}
ight\}$$

where $M \leq N$

Write the above equality constraints in a compact form

$$h(x) = 0$$

where $\boldsymbol{h}: \mathbb{R}^N \to \mathbb{R}^M$

- Surface—the set of points satisfying the above constraints
- The notion of the tangent plane to the surface $S = \{x : h(x) = 0\}$ at a point $x^* \in S$

Regular point of the constraints

- A curve on the surface S as a family of points $x(t) \in S$ continuously parameterized by t for $t \in [a, b]$
- The curve is differentiable if $\dot{x}(t) = dx(t)/dt$ exists
- A curve is said to pass through the point $x^* \in S$ if $x^* = x(t^*)$ for some $t^* \in [a, b]$
- The tangent plane to the surface $S = \{x : h(x) = 0\}$ at x^* is the collection of the derivatives at x^* of all differentiable curves on S that pass through x^*
- A point x^* satisfying the constraints, that is, $h(x^*) = 0$, is a regular point of the constraints if the gradient vectors,

$$\nabla h_1\left(\boldsymbol{x}^*\right),\ldots,\nabla h_M\left(\boldsymbol{x}^*\right)$$

are linearly independent

Tangent space

The tangent space at a regular point x^* , denoted $T(x^*)$, to the surface $\{x : h(x) = 0\}$ at the regular point x^* is

$$T\left(oldsymbol{x}^{*}
ight) = \left\{oldsymbol{y}: \left[egin{array}{c}
abla h_{1}\left(oldsymbol{x}^{*}
ight)^{ op} \ dots h_{M}\left(oldsymbol{x}^{*}
ight)^{ op} \end{array}
ight]oldsymbol{y} = oldsymbol{0}
ight\}$$

The first-order necessary condition (FONC) for function minimization subject to equality constraints

Theorem

Let \mathbf{x}^* be a local minimizer (or maximizer) of f subject to the constraints $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ and let \mathbf{x}^* be a regular point of the constraints. Then there exists a vector λ^* such that

$$\nabla f(\mathbf{x}^*) + [\nabla h_1(\mathbf{x}^*) \cdots \nabla h_M(\mathbf{x}^*)] \lambda^* = \mathbf{0}$$

Proof of FONC

- Let x(t) be a differentiable curve passing through x^* on the surface $S = \{x : h(x) = 0\}$ such that $\dot{x}(t^*) = y$ where $t^* \in [a, b]$
- Note that $\mathbf{v} \in T(\mathbf{x}^*)$
- Since x^* is a local minimizer of f on S, we have

$$\left. \frac{d}{dt} f(\mathbf{x}(t)) \right|_{t=t^*} = 0$$

- Applying the chain rule, gives $\nabla f(\mathbf{x}^*)^{\top} \mathbf{y} = \mathbf{0}$
- Thus $\nabla f(\mathbf{x}^*)$ is orthogonal to the tangent space $T(\mathbf{x}^*)$
- That is, $\nabla f(\mathbf{x}^*)$ is a linear combination of the gradients $\nabla h_1(\mathbf{x}^*), \dots, \nabla h_M(\mathbf{x}^*)$
- This an be expressed as

$$\nabla f(\mathbf{x}^*) + [\nabla h_1(\mathbf{x}^*) \cdots \nabla h_M(\mathbf{x}^*)] \lambda^* = \mathbf{0}$$

for some constant vector $\boldsymbol{\lambda}^* \in \mathbb{R}^M$

The Lagrangian

- The vector λ^* is called the vector of Lagrange multipliers
- The Lagrangian associated with the constrained optimization problem,

$$l(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^{\top} \boldsymbol{h}(\boldsymbol{x})$$

• Then the FONC can be expressed as

$$\nabla_{\mathbf{x}} l(\mathbf{x}, \lambda) = \mathbf{0}$$
$$\nabla_{\mathbf{\lambda}} l(\mathbf{x}, \lambda) = \mathbf{0}$$

• The second of the above condition is equivalent to h(x) = 0, that is,

$$\nabla_{\boldsymbol{\lambda}} l(\boldsymbol{x}, \boldsymbol{\lambda}) = \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0}$$

Equivalently the FONC can be written as

$$\nabla_{\boldsymbol{x}} l(\boldsymbol{x}, \boldsymbol{\lambda}) = \boldsymbol{0}$$
$$\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0}$$

Sequential quadratic programming (SQP)

Apply Newton's method to solve the above system of equations iteratively,

$$\left[egin{array}{c} oldsymbol{x}^{[k+1]} \ oldsymbol{\lambda}^{[k+1]} \end{array}
ight] = \left[egin{array}{c} oldsymbol{x}^{[k]} \ oldsymbol{\lambda}^{[k]} \end{array}
ight] + \left[egin{array}{c} oldsymbol{d}^{[k]} \ oldsymbol{y}^{[k]} \end{array}
ight],$$

where $d^{[k]}$ and $y^{[k]}$ are obtained by solving the matrix equation,

$$\begin{bmatrix} \boldsymbol{L}\left(\boldsymbol{x}^{[k]},\boldsymbol{\lambda}^{[k]}\right) & D\boldsymbol{h}\left(\boldsymbol{x}^{[k]}\right)^{\top} \\ D\boldsymbol{h}\left(\boldsymbol{x}^{[k]}\right) & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{d}^{[k]} \\ \boldsymbol{y}^{[k]} \end{bmatrix} = \begin{bmatrix} -\nabla_{\boldsymbol{X}}l(\boldsymbol{x},\boldsymbol{\lambda}) \\ -\boldsymbol{h}\left(\boldsymbol{x}^{[k]}\right) \end{bmatrix},$$

where $L(x, \lambda)$ is the Hessian of $l(x, \lambda)$ with respect to x, and Dh(x) is the Jacobian matrix of h(x), that is,

$$Doldsymbol{h}(oldsymbol{x}) = \left[egin{array}{c}
abla h_1\left(oldsymbol{x}
ight)^{ op} \ dots
abla h_M\left(oldsymbol{x}
ight)^{ op} \end{array}
ight]$$

The first-order Lagrangian algorithm

• The first-order Lagrangian algorithm for the optimization problem involving minimizing f subject to the equality constraints, h(x) = 0, has the form,

$$\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \alpha_k \left(\nabla f \left(\mathbf{x}^{[k]} \right) + D \mathbf{h} \left(\mathbf{x}^{[k]} \right)^{\top} \boldsymbol{\lambda}^{[k]} \right)$$

$$\boldsymbol{\lambda}^{[k+1]} = \boldsymbol{\lambda}^{[k]} + \beta_k \mathbf{h} \left(\mathbf{x}^{[k]} \right),$$

where α_k and β_k are positive constants

• The update for $\boldsymbol{x}^{[k]}$ is a descent gradient for minimizing the Lagrangian with respect to \boldsymbol{x} , while the update for $\boldsymbol{\lambda}^{[k]}$ is a gradient ascent for maximizing the Lagrangian with respect to $\boldsymbol{\lambda}$