

Welcome To The Course

Is Investing Monkey-Business?

Who am 1?

Professor of Finance

Who am 1?

Advisor to investment companies about risk optimized investment:
 Winning by losing less.

Diversify To Avoid Losses

Simple Tricks

Simple Tricks

- To avoid large losses:
 - Carefully select diversified portfolios
 - Use backtesting and online performance monitoring

Course Overview

Chapter 1: Portfolio Weights & Returns

Chapter 2: Portfolio Performance Evaluation

Chapter 3: Drivers of Performance

Chapter 4: Portfolio Optimization

Let's practice!

The Portfolio Weights

Investment Decision Choices

- There are two similar companies:
 - Do you invest in either of them based on a coin toss?

Investment Decision Choices

compute portfolio weights

Asset Weighting

Investment	Value Invested	Weight
1	V_1	$w_1 = \frac{V_1}{V_1 + \ldots + V_N}$
2	V ₂	$w_2 = \frac{V_2}{V_1 + \dots + V_N}$
•	•	•
	V _N	$w_N = \frac{V_N}{V_1 + \dots + V_N}$

Calculating Weight

```
values <- c(500000, 200000, 100000, 20000)
names(values) <- c("Inv 1", "Inv 2", "Inv 3", "Inv 4")
weights <- values/sum(values)
barplot(weights)</pre>
```


Calculating Weight

Allocation Strategies

Let's practice!

The Portfolio Return

Portfolio Returns: Relative Value

- Weights reveal active investment bets
- Returns are the relative changes in value:

Initial Value	100
Final Value	120

$$\frac{120 - 100}{100} = 20\%$$

Three Steps

Asset 1	•••	Asset _N
InValue.Asset₁	•••	InValue.Asset _N
FinValue.Asset₁	•••	FinValue.Asset _N

InValue.Portfolio = InValue.Asset₁ + ... + InValue.Asset_N

FinValue.Portfolio = FinValue.Asset₁ + ... + FinValue.Asset_N

 $Portfolio\ Return = \frac{FinValue.Portfolio-InValue.Portfolio}{InValue.Portfolio}$

Example: Two Assets

Asset 1	Asset ₂
InValue.Asset₁ = \$200	InValue.Asset ₂ = \$300
FinValue.Asset₁= \$180	FinValue.Asset ₂ = \$330

$$Portfolio\ Return = \frac{\textit{FinValue.Portfolio-InValue.Portfolio}}{\textit{InValue.Portfolio}} = \frac{510 - 500}{500} = 2\%$$

Portfolio Returns: Weighted Average Return

$$Portfolio\ Return = w_1 R_1 + w_2 R_2 + \dots + w_n R_n$$

Where:
$$w_i = \frac{InValue. Asset_i}{\sum_{j=1}^{N} InValue. Asset_j}$$

$$R_i = \frac{FinValue.Asset_i - InValue.Asset_i}{InValue.Asset_i}$$

Three Steps

Asset 1	•••	Asset _N
InValue.Asset₁	•••	InValue.Asset _N
FinValue.Asset₁	•••	FinValue.Asset _N

Asset ₁	Asset _N
$w_1 = \frac{InValue.Asset_1}{InValue.Portfolio}$	$w_n = \frac{InValue.Asset_n}{InValue.Portfolio}$
$R_1 = \frac{FinValue. Asset_1 - InValue. Asset_1}{InValue. Asset_1}$	$R_n = \frac{FinValue. Asset_n - InValue. Asset_n}{InValue. Asset_n}$

Portfolio Return = $w_1R_1 + w_2R_2 + \ldots + w_nR_n$

Example: Two Assets

Asset ₁	Asset ₂
InValue.Asset _{1 = \$200}	InValue.Asset _{2 = \$300}
FinValue.Asset _{1 = \$180}	FinValue.Asset _{2 = \$300}

Asset ₁	Asset ₂
$w_1 = \frac{200}{500} = 40\%$	$w_2 = \frac{300}{500} = 60\%$
$R_1 = \frac{180 - 200}{200} = -10\%$	$R_2 = \frac{330 - 300}{300} = 10\%$

Portfolio Return = 0.4*(-10%) + 0.6*(10%) = 2%

Let's practice!

PerformanceAnalytics

The Practitioner's Challenge

- In practice, time series of portfolio returns
- Longer history —> more info on portfolio
- Good package = PerformanceAnalytics

The Creators

 PerformanceAnalytics is the go-to package for portfolio return analysis in R

Peter Carl

Brian Peterson

Calculating Returns

Calculating Returns

- Return.calculate: to compute the asset returns
- Return.portfolio: to compute the portfolio return
- Return.calculate(prices)

Dates structure: YYYY-MM-DD

Calculating Returns

Return.calculate

In: Prices

Out: Returns

```
> returns <- Return.calculate(prices)</pre>
```

```
> returns <- returns[(-1),]</pre>
```

```
> head(returns)
> AAPL MSFT
> 2006 01 03 NA NA
> 2006-01-04 0.002943090 0.0048434670
> 2006-01-05 -0.007869842 0.0007415934
> 2006-01-06 0.025813404 -0.0029640809
> 2006-01-09 -0.003276594 -0.0018579752
> 2006-01-10 0.063247901 0.0052121756
```


Dynamics of Portfolio Weights

Set Initial Weights & Do Not Intervene

Example: Initial 50/50 weight

Actively Change Portfolio Weights

Example: 50/50 Weight With Rebalance

Portfolio Returns

```
> Return.portfolio <- function(R, weights = NULL,
    rebalance_on = c(NA, "years", "quarters", "months", "weeks", "days"))</pre>
```


Let's practice!