

Adacanced Electromagnetic

School of engineering September 13, 2024

There are two spherical clouds R1 and R2 on the sky with uniform volume charge density of ρ 1 and ρ 2 (both positive), respectively. Determine the electric field distribution at an arbitrary point A above the ground. Illustrate the electric field lines.

Hints: try establishing a good coordinate system; Treat the ground as a uniform conducting plane; try using numerical tools for the illustration of the electric field lines

The electric field of spherical clouds

Gauss's law

$$\oint \mathbf{E} \cdot d\mathbf{A} = rac{Q_{enc}}{\epsilon_0} \ E \cdot 4\pi r^2 = rac{Q_{enc}}{\epsilon_0}$$

The degree of the electric field of spherical clouds

$$E_{in}(r)=rac{1}{4\pi\epsilon_0}rac{Q_{in}}{r^2}=rac{
ho\,r}{3\epsilon_0}$$

$$E_{out}(r) = rac{1}{4\pi\epsilon_0}rac{Q}{r^2}$$

The electric potential

$$V_{out}(r)=rac{Q}{4\pi\epsilon_0 r}$$

The method of images

$$V=rac{1}{4\pi\epsilon_0}\sum_{i,j}rac{{Q_i}^j}{{r_i}^j}$$

The relationship between electric field and electric potential

$$\mathbf{E} = -\nabla V$$

The solution of the electronic field

$$egin{aligned} r_1 &= \sqrt{\left(x + a/2
ight)^2 + y^2 + \left(z - h_1
ight)^2} \ r_1' &= \sqrt{\left(x + a/2
ight)^2 + y^2 + \left(z - h_1'
ight)^2} \ r_2 &= \sqrt{\left(x - a/2
ight)^2 + y^2 + \left(z - h_2
ight)^2} \ r_2' &= \sqrt{\left(x - a/2
ight)^2 + y^2 + \left(z - h_2'
ight)^2} \end{aligned}$$

a denotes the distance between spherical clouds 1 and spherical clouds 2. We choose the suitable axis to make the distance between origin point \mathcal{O} and spherical clouds is a/2, $h_i = h'_i$.

$$egin{align} Q_1 &=
ho_1 \cdot rac{4}{3} \pi R_1{}^3 & Q_1{}' &= -
ho_1 \cdot rac{4}{3} \pi (R_1{}')^3 \ Q_2 &=
ho_2 \cdot rac{4}{3} \pi R_2{}^3 & Q_2{}' &= -
ho_2 \cdot rac{4}{3} \pi (R_2{}')^3 \ \end{pmatrix}$$

• The numerical simulation of the electronic potential and electronic field

- A capacitor with capacitance C is formed by placing two spherical conductors symmetrically against each other. The potential is V.
 - 1) Calculate the electric field inside the capacitor.
 - 2) Re-calculate the electric field when a conductor sphere of radius r is placed at A and B

▲ 556

1) Calculate the electric field inside the capacitor

According to the formulas:

1.
$$C = \frac{Q}{V}$$

2. $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{enc}}{\varepsilon_0}$

Select Gaussian surface:

$$\Rightarrow A = \pi \left(\sqrt{2}R\right)^2$$

so we get:

$$E(R) = \frac{Q_{enc}}{A \times \varepsilon_0} = \frac{CV}{2\pi R^2 \varepsilon_0}$$

Electric field distribution:

Re-calculate the electric field when a conductor sphere of radius r is placed at A and B

1): In the conductor sphere:

Electrostatic shielding

An induced electric field of equal magnitude and opposite direction is generated inside the conductor

E=0 equipotential body

2): Out the conductor sphere :

$$\mathbf{p} = q_{induced} \cdot 2\mathbf{r}$$

$$\mathbf{E}_{induced} = \frac{1}{4\pi\varepsilon_0} \left(\frac{3(\boldsymbol{p} \cdot \boldsymbol{d}) \, \boldsymbol{d} - \boldsymbol{p}}{d^3} \right)$$

d: The distance between the field point and the center of the electric dipole

$$\mathbf{E_{total}} = \mathbf{E_{original}} + \mathbf{E_{induced}}$$

Re-calculate the electric field when a conductor sphere of radius r is placed at A and B

Electric field distribution

when a conductor sphere is placed at A

when a conductor sphere is placed at B

THANK YOU

School of engineering

September 13, 2024