Connected Sums of Graded Artinian Gorenstein Algebras and the Lefschetz Properties

Alexandra Seceleanu (joint work with A. Iarrobino and C. McDaniel)

Department of Mathematics University of Nebraska–Lincoln

April 6, 2019

Motivation

- Cohomology rings of smooth complex projective varieties have two important properties:
 - Poincare duality ← artinian Gorenstein (AG)
 - Lefschetz hyperplane theorem ← strong Lefschetz property

Motivation

- Cohomology rings of smooth complex projective varieties have two important properties:
 - Poincare duality \iff artinian Gorenstein (AG)
 - Lefschetz hyperplane theorem strong Lefschetz property
- The connected sum is a topological construction
 - Algebraic construction for connected sums due to Ananthnarayan-Avramov-Moore (2012)
 - Preserves the Gorenstein property.
 - Does it preserve the strong Lefschetz property?

Connected Sum of Manifolds

Outline

Algebraic constructions

Fibered product

Setup – we focus on the *graded* setting:

- AG \mathbb{F} -algebras A, B (socle degree d), T (socle degree k)
- $\pi_A: A \to T$, $\pi_B: B \to T$ graded algebra homomorphisms

Fibered product

Setup – we focus on the *graded* setting:

- AG \mathbb{F} -algebras A, B (socle degree d), T (socle degree k)
- $\pi_A: A \to T, \pi_B: B \to T$ graded algebra homomorphisms

• Fibered Product: the pullback in the diagram

$$\begin{array}{ccc}
A \times_T B & \longrightarrow A \\
\downarrow & & \uparrow \\
B & \longrightarrow T
\end{array}$$

given by
$$A \times_T B := \{(a, b) \in A \oplus B \mid \pi_A(a) = \pi_B(b)\}.$$

More maps

The given maps

• Dualize π_A, π_B via $\operatorname{\mathsf{Hom}}_{\mathbb{F}}(T, \mathbb{F}) \xrightarrow{\pi_A^*} \operatorname{\mathsf{Hom}}_{\mathbb{F}}(A, \mathbb{F})$ to give $\cong \uparrow$ $T(k) \xrightarrow{\iota_A(d)} A(d)$

homomorphisms $\iota_A: T(-d+k) \to A, \iota_B: T(-d+k) \to B$

More maps

The given maps

• Dualize π_A, π_B via $\operatorname{\mathsf{Hom}}_{\mathbb{F}}(T,\mathbb{F}) \xrightarrow{\pi_A^*} \operatorname{\mathsf{Hom}}_{\mathbb{F}}(A,\mathbb{F})$ to give

homomorphisms $\iota_A: T(-d+k) \to A, \iota_B: T(-d+k) \to B$

Overall

Connected sum

• The complete diagram

- Connected Sum: $A \#_T B := \frac{A \times_T B}{\{(\iota_A(t), \iota_B(t)) \mid t \in T\}}$
- Fact: $H^*(M_1 \#_N M_2) = H^*(M_1) \#_{\mathbb{F}} H^*(M_2)$.

Example

- $A = \mathbb{F}[x]/(x^5), B = \mathbb{F}[y]/(y^5), T = \mathbb{F}$
- Surjective Maps $A = \mathbb{F}[x]/(x^5) \xrightarrow{\pi_A} \mathbb{F} \xleftarrow{\pi_B} \mathbb{F}[y]/(y^5) = B$
- Fibered Product: $A \times_T B = \mathbb{F}[\underbrace{(x,0)}_{x},\underbrace{(0,y)}_{y}]$

$$A \times_T B \cong \mathbb{F}[x,y]/(x^5,y^5,xy).$$

- Dual maps $\iota_A(1) = x^4, \iota_B(1) = y^4$
- Connected Sum: $(\iota_A(1), \iota_B(1)) = (x^4, y^4) \cong x^4 + y^4$

$$A\#_TB\cong \mathbb{F}[x,y]/(xy,x^4+y^4)$$

The connected sum is standard graded.

More Complicated Example

- $A = \mathbb{F}[x]/(x^5), B = \mathbb{F}[y]/(y^5), T = \mathbb{F}[z]/(z^2)$
- Surjective Maps $A \xrightarrow{\pi_A} T \xleftarrow{\pi_B} B$, $\pi_A(x) = \pi_B(y) = z$
- Fibered Product: $A \times_T B = \mathbb{F}[\underbrace{(x,y)}_t, \underbrace{(x^2,0)}_u, \underbrace{(0,y^2)}_v]$

$$A \times_T B \cong \mathbb{F}[t, u, v]/(t^5, u^3, v^3, t^3u, tu^2, t^3v, tv^2, uv, t^2 - (u + v)).$$

- Dual maps $\iota_A(1) = x^3, \iota_B(1) = y^3$
- Connected Sum: $(\iota_A(1), \iota_B(1)) = (x^3, y^3) \cong t^3$

$$A\#_T B \cong \mathbb{F}[t, u, v]/(t^5, u^3, v^3, t^3u, tu^2, t^3v, tv^2, uv, t^2 - (u + v), t^3)$$

$$\cong \mathbb{F}[t, u]/(t^3, t^2u - u^2)$$

• The connected sum is not standard graded.

Basic Properties

Theorem (Ananthnarayan-Avramov-Moore '12)

If A, B are AG algebras of socle degree d and T is also AG then

 A ×_T B is graded Artinian level algebra of socle degree d and socle dimension 2.

$$H(A \times_T B) = H(A) + H(B) - H(T)$$

 A#_TB is a graded Artinian Gorenstein algebra of socle degree d.

$$H(A\#_T B) = H(A) + H(B) - H(T) - H(T)(d - k)$$

Pictures of Hilbert Functions

Outline

- Algebraic constructions
- 2 The Lefschetz properties

Strong Lefschetz Properties

Definition

 $A = \bigoplus_{i=0}^{d} A_i$ has the strong Lefschetz property if there exists

$$\ell \in A_1 \text{ such that } \times \ell^{d-2i} \colon A_i \stackrel{\cong}{\longrightarrow} A_{d-i}, \ \ 0 \le i \le \left\lfloor \frac{d}{2} \right\rfloor.$$

Hard Lefschetz Theorem

If M is a complex projective variety of (complex) dimension d, and $[\omega] \in H^2(M,\mathbb{C})$ is the class of a hyperplane section $H \cap M$, then

$$\smile [\omega]^{d-2i} \colon H^{2i}(M,\mathbb{C}) \stackrel{\cong}{\longrightarrow} H^{2d-2i}(M,\mathbb{C}).$$

In particular, the (even) cohomology ring $H^{2*}(M, \mathbb{C})$ has the strong Lefschetz property.

Strong Lefschetz Property and Connected Sum

Question

If A, B, and T satisfy SLP, must their connected sum $A\#_TB$ also satisfy SLP??

Strong Lefschetz Property and Connected Sum

Question

If A, B, and T satisfy SLP, must their connected sum $A\#_TB$ also satisfy SLP?? Not always!!

- $A = \mathbb{F}[x]/(x^5), B = \mathbb{F}[y]/(y^5), T = \mathbb{F}[z]/(z^2)$
- Surjective Maps $A \xrightarrow{\pi_A} T \xleftarrow{\pi_B} B$, $\pi_A(x) = \pi_B(y) = z$
- Connected Sum:

$$t = (x, y), \deg(t) = 1, u = (x^2, 0), \deg(u) = 2$$

$$A\#_T B \cong \mathbb{F}[t,u]/(t^3,t^2u-u^2)$$

$$\times t^4$$
: $(A \#_T B)_0 \to (A \#_T B)_4$ (zero map).

SLP for Connected Sum over $T = \mathbb{F}$

Theorem (Babson-Nevo '10, Watanabe et al. '13, Iarrobino-McDaniel-S. '19)

If A and B have the SLP, then $A\#_{\mathbb{F}}B$ also has the SLP. If A and B have the standard grading, then the converse holds too.

Conjecture (larrobino-McDaniel-S. '19)

Suppose that A, B, and $C = A \#_T B$ have the standard grading. Then A and B have SLP \Rightarrow C has SLP.

Weak Lefschetz Properties

Definition

 $A = \bigoplus_{i=0}^{d} A_i$ has the weak Lefschetz property if there exists $\ell \in A_1$ such that the following maps are all either injective or surjective

$$\times \ell : A_i \longrightarrow A_{i+1}, \ 0 \le i \le d.$$

Theorem (larrobino-McDaniel-S. '19)

If A, B have SLP and the standard grading and if soc. $deg(T) < \frac{1}{2} soc. deg(A, B)$ then $C = A \#_T B$ has WLP.

WLP example

Hilbert function of $A \#_T B$, d = 8

Example

- $A = \mathbb{F}[x]/(x^d), B = \mathbb{F}[y]/(y^d),$ $T = \mathbb{F}[z]/(z^t)$
- $A = \mathbb{F}[x]/(x^d) \xrightarrow{\pi_A} T = \mathbb{F}[z]/(z^t), x \mapsto z$ $B = \mathbb{F}[y]/(y^d) \xrightarrow{\pi_B} T = \mathbb{F}[z]/(z^t), y \mapsto z$
- Connected Sum:

$$A \#_T B = \mathbb{F}[u, v]/(u^{d-t}, v^2 - u^t v)$$

where

$$u = (x, y), \deg(u) = 1,$$

 $v = (x^t, 0), \deg(v) = t.$

• $A \#_T B$ has WLP $\iff t \neq d/2$.

Thank you!