FLOOR SYSTEMS FOR STEEL FRAMED STRUCTURES

FLOOR TYPES

COMMON TYPES INCLUDE:

- PRECAST CONCRETE FLOORS
- IN-SITU CONCRETE FLOORS CAST ON CONVENTIONAL REMOVABLE SHUTTERING
- IN-SITU CONCRETE FLOORS CAST ONTO PERMANENT METAL DECKING

PRECAST CONCRETE FLOOR

IN-SITU CONCRETE FLOOR CAST ONTO PERMANENT METAL DECKING

IN-SITU CONCRETE FLOOR CAST ON CONVENTIONAL REMOVAL SHUTTERING

STEEL-CONCRETE COMPOSITE BRIDGE DECK

COMPOSITE CONSTRUCTION

STRENGTH

FROM BEAM THEORY

$$M = \sigma Z \Rightarrow M \propto Z$$

$$Z_A = 2\left(\frac{I}{y}\right) = 2\left(\frac{\frac{bd^3}{12}}{\frac{d}{2}}\right) = \frac{bd^3}{3}$$

$$Z_B = \frac{I}{y} = \frac{\frac{b(2d)^3}{12}}{d} = 2\left(\frac{bd^3}{3}\right)$$

$$\Rightarrow \frac{M_B}{M_A} = 2$$

STIFFNESS

$$\delta_A = rac{5\omega L^4}{384EI_A}$$
 $\delta_B = rac{5\omega L^4}{384EI_B}$

$$\Rightarrow \frac{\delta_A}{\delta_B} = \frac{\frac{5\omega L^4}{384EI_A}}{\frac{5\omega L^4}{384EI_B}} = 4$$

ADVANTAGES

- SAVINGS IN STEEL WEIGHT
- POSSIBLE TO USE SHALLOWER MEMBERS

DESIGN OF COMPOSITE ELEMENT

COMPOSITE SLABS

- EC4
- BS 5950: PART 4
- MANUFACTURER'S LITERATURE

COMPOSITE BEAMS

- EC4
- BS5950: PART 3.1

DESIGN OF COMPOSITE BEAMS

THE FOLLOWING SHOULD BE CHECKED AND SATISFIED

- MOMENT CAPACITY
- SHEAR
- SHEAR CONNECTORS
- LONGITUDINAL SHEAR
- DEFLECTION

BEHAVIOUR OF COMPOSITE BEAMS IS SIMILAR TO THAT OF REINFORCED CONCRETE BEAMS EXCEPT THAT

- STEEL BEAMS CAN SUPPORT SIGNIFICANT LOADS IN THEIR OWN RIGHTS
- IN COMPOSTE BEAMSTHERE IS INSUFFICIENT BOND WITH THE CONCRETE
- THE SECOND MOMENT OF AREA OF THE STEEL SECTION CANNOT BE IGNORED

EFFECTIVE WIDTH OF CONCRETE FLANGE

For simply supported beams (and assuming a single row of shear studs):

$$b_{eff} \leq \frac{L_e}{4} \leq b_i$$

where

L_e - Distance between points of zero moment

 b_i – Distance between adjacent webs

MOMENT CAPACITY

CALCULATED USING PLASTIC THEORY ASSUMING RECTANGULAR STRESS BLOCKS

TWO CASES MAY ARISE:

- •NEUTRAL AXIS OCCURS IN THE SLAB
- •NEUTRAL AXIS OCCURS IN THE STEEL SECTION

NEUTRAL AXIS IN SLAB

$$M_{Rd} = Af_y \left(\frac{h}{2} + h_f - \frac{x}{2} \right)$$

NEUTRAL AXIS IN STEEL SECTION

$$Af_{y} = \left(\frac{0.85f_{ck}}{\gamma_{c}}\right)b_{eff}h_{f} + 2A_{comp}f_{y}$$

$$M_{Rd} = Af_{y}\left(\frac{h}{2} + \frac{h_{f}}{2}\right) - 2A_{comp}f_{y}\left(h_{comp} - \frac{h_{f}}{2}\right)$$

EXAMPLE: MOMENT CAPACITY

Determine the moment capacity of the beam shown below for the following slab depths: (a) 175 mm (b) 100mm

SHEAR CAPACITY

THE SHEAR CAPACITY OF A COMPOSITE BEAMS, V_{pl,Rd}, IS GIVEN BY

$$V_{\text{pl},Rd} = \frac{A_{\text{v}f_y}}{\gamma_{MO}\sqrt{3}}$$

WHERE
$$A_v = A - 2bt_f + (t_w + 2r)t_f < \eta h_w t_w$$

SHEAR CONNECTORS

PURPOSE

- PREVENT SLIP BETWEEN STEEL
 BEAMS AND CONCRETE SLAB
- CARRY TESION BETWEEN STEEL
 AND CONCRETE AND CONTROL
 SEPARATION

DESIGN OF CONNECTORS

NUMBER OF STUDS, N

$$N = \frac{R}{P_{Rd}}$$

WHERE R – RESISTANCE FORCE AT CONCRETE/STEEL INTERFACE

WHEN $x \le h_s$

$$R_C = \left(\frac{0.85f_{ck}}{\gamma_C}\right)b_{eff}x$$

WHEN $x > h_s$

$$R_S = \left(\frac{0.85f_{ck}}{\gamma_C}\right)b_{eff}h_s$$

HEADED STUDS

THE DESIGN RESISTANCE OF HEADED STUDS SHOULD BE DETERMINED FROM

$$P_{Rd} = rac{0.8 f_u \pi d^2/4}{\gamma_v}$$
 OR $P_{Rd} = rac{0.29 d^2 \sqrt{f_{ck} E_{cm}}}{\gamma_v}$

WHICHEVER IS SMALLER, WITH
$$lpha=0.2\left(rac{h_{sc}}{d}+1
ight)$$
 $for 3 \leq rac{h_{sc}}{d} \leq 4$

$$\alpha = 1$$
 for $\frac{h_{sc}}{d} > 4$

WHERE

- γ_{v} PARTIAL FACTOR = 1.25
- d DIAMETER OF SHANK OF STUD, $16mm \le d \le 25mm$
- f_u ULTIMATE TENSILE STRENGTH OF MATERIAL OF THE STUD ≤ 500 N/mm²
- f_{ck} CYLINDER STRENGTH OF CONCRETE
- h_{sc} NOMINAL HEIGHT OF STUD

EXAMPLE: SHEAR CONNECTOR DESIGN