Доверительные интервалы для неизвестных параметров нормально распределённой генеральной совокупности

Аннотация

Точечная оценка $\tilde{\theta}_n$ параметра θ является приближенным значением независимо от свойства этой оценки. Чтобы получить представление о точности и надежности оценки $\tilde{\theta}_n$ параметра θ используют интервальную оценку.

Ключевые слова: выборка, квантиль, параметрическая статистическая модель, центральная статистика, выборочное среднее, выборочная дисперсия, нормальное распределение, распределение хи-квадрат, распределение Стьюдента, теорема Фишера.

1 Основные определения

1.1 Теория вероятностей

Определение. Случайной величиной (CB) ξ называется отображение пространства элементарных событий во множество вещественных чисел, т. е. $\xi: \Omega \to \mathbb{R}$.

Определение. Система СВ ξ_1, \dots, ξ_n называется многомерной (п-мерной) СВ или случайным вектором $\xi := (\xi_1, \dots, \xi_n)$.

Определение. Функцию $F(x) = F_{\xi}(x) := P(\xi < x)$ (вероятность того, что CB ξ примет значение, меньшее x) называют функцией распределения (ΦP) CB ξ .

Определение. Функцию $f(x) = f_{\xi}(x) := F'(x) = \frac{d}{dx}F(x)$ называют плотностью распределения (вероятности) непрерывной СВ ξ .

Определение. СВ ξ_1, \dots, ξ_n называются *независимыми*, если для любой группы $\xi_{i_1}, \dots, \xi_{i_k}$ этих величин имеет место равенство

$$P(\xi_{i_1} < x_{i_1}, \dots, \xi_{i_k} < x_{i_k}) = P(\xi_{i_1} < x_{i_1}) \dots P(\xi_{i_k} < x_{i_k})$$

при произвольных x_{i_1}, \dots, x_{i_k} и любом $k, 1 \le k \le n$.

Случайный вектор есть функция элементарных событий ω :

$$f(\omega) = (\xi_1, \dots, \xi_n),$$

то есть каждому ω ставится в соответствие несколько действительных чисел x_1, \ldots, x_n , которые приняли $CB \xi_1, \ldots, \xi_n$ в результате испытания.

В этом случае вектор $x:=(x_1,\ldots,x_n)$ называется реализацией CB ξ . Определение. Начальный момент k-го порядка CB ξ определяется как

$$u_k = \begin{cases} \int_{-\infty}^{+\infty} x^k f(x) dx, & \text{если } \xi \text{ - непрерывная}; \\ \sum_{j=1}^n x_i^k p_i, & \text{если } \xi \text{ - дискретная}. \end{cases}$$

Примечание. Начальный момент 1-го порядка есть математическое ожидание $\nu_1 =: M(\xi)$.

Определение. *Центральный момент k*-го порядка CB ξ определяется как

$$\mu_k = \begin{cases} \int_{-\infty}^{+\infty} (x - M(\xi))^k f(x) dx, \text{ если } \xi \text{ - непрерывная;} \\ \sum_{j=1}^n (x_i - M(\xi))^k p_i, \text{ если } \xi \text{ - дискретная.} \end{cases}$$

Примечание. Центральный момент 2-го порядка есть *дисперсия* $\mu_2 =: D(\xi)$.

Определение. Квантилью уровня p ФР F(x) СВ ξ называется минимальное значение x_p , при котором F(x) не меньше значения $p \in (0,1)$, то есть

$$x_p := min\{x : F(x) \ge p\}, p \in (0, 1).$$

1.2 Математическая статистика

Определение. Однородной выборкой (выборкой) объема n при $n \ge 1$ называется случайный вектор $\zeta_n := (\xi_1, \dots, \xi_n)$, компоненты которого ξ_i , $i = 1, \dots, n$, называемые элементами выборки, являются независимыми СВ с одной и той же $\Phi P(x)$.

Определение. *Реализацией выборки* называется неслучайный вектор $z_n := (x_1, \ldots, x_n)$, компонентами которого являются реализации соответствующих элементов выборки $\xi_i, i = 1, \ldots, n$.

Замечание. Из двух определений вытекает, что реализацию выборки z_n можно также рассматривать как последовательность x_1, \ldots, x_n из n реализаций одной и той же СВ ξ , полученных в серии из n независимых опытов, проводимых в одинаковых условиях. Поэтому можно говорить, что выборка ζ_n порожедена наблюдаемой СВ ξ , имеющей распределение F(x).

Определение. Если компоненты вектора ζ_n независимы, но их распределения $F_1(x_1), \ldots, F_n(x_n)$ различны, то такую выборку называют неоднородной.

Определение. Множество S всех реализаций выборки ζ_n называется выборочным пространством.

Определение. Вся подлежащая изучению совокупность объектов (наблюдений) называется *генеральной совокупностью*.

Определение. Пара (S, \mathcal{F}) , где \mathcal{F} — некоторый класс (семейство) распределений, называется *статистической моделью* описания серии опытов, порождающих выборку ζ_n .

Определение. Если распределения $F_{\zeta_n}(z_n,\theta)$ из класса \mathcal{F} определены с точностью до некоторого векторного параметра $\theta \in \Theta \subset \mathbb{R}^s$, то такая статистическая модель называется *параметрической* и обозначается через $(S_{\theta}, F_{\zeta_n}(z_n, \theta))$.

Определение. СВ $\zeta := \varphi(\zeta_n)$, где $\varphi(\zeta_n)$ — произвольная функция, определенная на выборочном простарнстве S и не зависящая от распределения $F_{\zeta_n}(z_n,\theta)$, называется cmanucmukoù.

Определение. Для выборки $\zeta_n := (\xi_1, \dots, \xi_n)$, порожденной СВ ξ с ФР F(x), выборочным средним СВ ξ является

$$\hat{m}_{\xi} := \frac{1}{n} \sum_{k=1}^{n} \xi_k.$$

Определение. Для выборки $\zeta_n := (\xi_1, \dots, \xi_n)$, порожденной СВ ξ с ФР F(x), выборочной дисперсией СВ ξ является

$$\hat{d}_{\xi} := \frac{1}{n} \sum_{k=1}^{n} (\xi_k - \hat{m}_{\xi})^2.$$

1.3 Распределения

Определение. Непрерывная СВ ξ имеет *нормальный закон распре- деления* с параметрами a и σ^2 , если

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}.$$

Обозначение. СВ ξ , имеющую нормальный закон распределения, обозначим через $\xi \sim N(a, \sigma^2)$.

Свойства. Если $\xi \sim N(a, \sigma^2)$, то $M(\xi) = a$ и $D(\xi) = \sigma^2$, а также

$$F_{\xi}(x) = \Phi\left(\frac{x-a}{\sigma}\right) = 0.5 + \Phi_0\left(\frac{x-a}{\sigma}\right),\tag{1.1}$$

где
$$\Phi_0(x) := \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt - \phi y$$
нкция Лапласа. (1.2)

Определение. Пусть независимые СВ $\xi_k \sim N(0,1), \ k=1,\dots,n.$ Тогда СВ

$$\zeta_n := \sum_{k=1}^n \xi_k^2$$

имеет распределение хи-квадрат (χ^2 -распределение) с n степенями свободы.

Обозначение. $\zeta_n \sim \chi^2(n)$.

Свойства. Если $\zeta_n \sim \chi^2(n)$, то $M(\xi) = n$ и $D(\xi) = 2n$, а также

$$f_{\zeta_n}(x,n) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{(n/2)-1} e^{-x/2}$$
 при $x > 0,$ (1.3)

где
$$\Gamma(m) := \int_0^{+\infty} y^{m-1} e^{-y} dy -$$
гамма-функция. (1.4)

Определение. Пусть $\xi \sim N(0,1)$ и $\zeta_n \sim \chi^2(n)$, где ξ и ζ_n — независимы. Тогда CB

$$\tau_n := \frac{\xi}{\sqrt{\zeta_n/n}}$$

имеет распределение Стьюдента с п степенями свободы.

Обозначение. $\tau_n \sim S(n)$.

Свойства. Если $\tau_n \sim S(n)$, то

$$M(\tau_n) = 0$$
 при $n > 0$,
 $D(\tau_n) = \frac{n}{n-2}$ при $n > 2$,
 $f_{\tau_n}(x,n) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{t^2}{n}\right)$. (1.5)

2 Интервальные оценки

2.1 Основные понятия

Пусть имеется параметрическая статистическая модель $(S_{\theta}, F_{\zeta_n}(z_n, \theta))$, $\theta \in \Theta \subset \mathbb{R}$, и по выборке $\zeta_n = (\xi_1, \dots, \xi_n)$, соответствующей распределению $F(x, \theta)$ наблюдаемой СВ ξ , требуется определить неизвестный параметр θ .

Определение. Интервал $[\theta_1(\zeta_n), \theta_2(\zeta_n)]$ со случайными концами, накрывающий с вероятностью $1-\alpha, \ 0<\alpha<1$, неизвестный параметр θ , то есть

$$P(\theta_1(\zeta_n) \le \theta \le \theta_2(\zeta_n)) = 1 - \alpha,$$

называется доверительным интервалом или интервальной оценкой уровня надежности (доверия) $1-\alpha$ параметра θ .

Определение. Доверительный интервал $[\theta_1(\zeta_n), \theta_2(\zeta_n)]$ называется *центральным*, если

$$P(\theta \le \theta_2(\zeta_n)) = 1 - \frac{\alpha}{2} \text{ if } P(\theta \ge \theta_1(\zeta_n)) = 1 - \frac{\alpha}{2}.$$

Определение. Функция $G(\zeta_n, \theta)$ случайной выборки ζ_n , такая, что ее распределение не зависит от параметра θ и при любом значении z_n функция $G(\zeta_n, \theta)$ является непрерывной и монотонной по θ , называется центральной статистикой для параметра θ .

Зная распределение центральной статистики, можно найти такие числа g_1 и g_2 , удовлетворяющие условию

$$P(g_1 \le G(\zeta_n, \theta) \le g_2) = 1 - \alpha.$$

Тогда границы доверительного интервала могут быть найдены, если разрешить следующие неравенства:

$$g_1 \leq G(\zeta_n, \theta) \leq g_2.$$

Теорема 1 (Теорема Фишера). Пусть $\zeta_n := (\xi_1, \dots, \xi_n)$ — выборка, порожсденная $CB \, \xi \sim N(a, \sigma^2)$, а $\hat{m}_{\xi} \, u \, \hat{d}_{\xi}$ — выборочные среднее и дисперсия. Тогда

- 1. $CB \ \hat{M}_{\xi} := (\hat{m}_{\xi} a)/(\sigma/\sqrt{n})$ имеет распределение N(0,1).
- 2. $CB\ \hat{D}_{\xi} := n\hat{d}_{\xi}/\sigma^2$ имеет распределение $\chi^2(n-1)$.
- 3. CB $\tilde{M}_{\xi}:=(\hat{m}_{\xi}-a)\sqrt{(n-1)/\hat{d}_{\xi}}$ имеет распределение S(n-1).
- 4. $CB \hat{m}_{\xi} u \hat{d}_{\xi}$ независимы.

2.2 Доверительный интервал для неизвестного математического ожидания при известной дисперсии

По выборке ζ_n из нормального распределения требуется построить доверительный интервал для неизвестного a при известной σ^2 .

 \blacktriangleleft Из теоремы Фишера следует, что $\hat{M}_{\xi} \sim N(0,1)$, которое не зависит от a, и

$$G(\zeta_n, a) := \hat{M}_{\xi} = \frac{\hat{m}_{\xi} - a}{\sigma / \sqrt{n}}$$

является непрерывной и убывающей по a. Значит, \hat{M}_{ξ} является центральной статистикой. Поэтому доверительный интервал для a можно найти, если разрешить относительно a двойное неравенство

$$g_1 \le \frac{\hat{m}_{\xi} - a}{\sigma / \sqrt{n}} \le g_2,$$

где величины g_1 и g_2 подобраны таким образом, что это неравенство выполняется с вероятностью $1-\alpha$. Учитывая симметрию относительно оси ординат плотности стандартного нормального распределения, интервал имеет минимальную длину, если $g_1=-g_2$, и при этом он оказывается центральным. Таким образом, получим

$$\hat{m}_{\xi} - \frac{\sigma}{\sqrt{n}} u_{\gamma} \le a \le \hat{m}_{\xi} + \frac{\sigma}{\sqrt{n}} u_{\gamma},$$

где u_{γ} — квантиль уровня $\gamma:=1-\frac{\alpha}{2}$ стандартного нормального распределения. \blacktriangleright

2.3 Доверительный интервал для неизвестного математического ожидания при неизвестной дисперсии

По выборке ζ_n из нормального распределения требуется построить доверительный интервал для неизвестного a при неизвестной σ^2 .

◀ Используем утверждение 3) теоремы Фишера и выберем в качестве центральной статистики \tilde{M}_{ξ} , то есть

$$G(\zeta_n, a) := \tilde{M}_{\xi} = \frac{\hat{m}_{\xi} - a}{\sqrt{\hat{d}_{\xi}/(n-1)}}.$$

Доверительный интервал для a можно найти, если разрешить относительно a двойное неравенство

$$g_1 \le \frac{\hat{m}_{\xi} - a}{\sqrt{\hat{d}_{\xi}/(n-1)}} \le g_2.$$

Получим (учитывая симметрию относительно оси ординат плотности распределения Стьюдента)

$$\hat{m}_{\xi} - \sqrt{\frac{\hat{d}_{\xi}}{n-1}} t_{\gamma} \leq a \leq \hat{m}_{\xi} + \sqrt{\frac{\hat{d}_{\xi}}{n-1}} t_{\gamma},$$

где $t_{\gamma}=t_{\gamma}(n-1)$ — квантиль уровня $\gamma:=1-\frac{\alpha}{2}$ распределения Стьюдента S(n-1). \blacktriangleright

2.4 Доверительный интервал для неизвестной дисперсии при неизвестном математическом ожидании

По выборке ζ_n из нормального распределения требуется построить доверительный интервал для неизвестной σ^2 при неизвестном a.

◀ Используем утверждение 2) теоремы Фишера и выберем в качестве центральной статистики \hat{D}_{ξ} , то есть

$$G(\zeta_n, a) := \hat{D}_{\xi} = \frac{n\hat{d}_{\xi}}{\sigma^2}.$$

Доверительный интервал для σ^2 можно найти, если разрешить относительно σ^2 двойное неравенство

$$g_1 \leq \frac{n\hat{d}_{\xi}}{\sigma^2} \leq g_2.$$

Получим

$$\frac{n\hat{d}_{\xi}}{x_{\gamma}} \le \sigma^2 \le \frac{n\hat{d}_{\xi}}{x_{1-\gamma}},$$

где x_γ и $x_{1-\gamma}$ — квантили уровней $\gamma:=1-\frac{\alpha}{2}$ и $1-\gamma=\frac{\alpha}{2}$ распределения $\chi^2(n-1).$ \blacktriangleright

Адилов Санжар. Ташкент 2018