TD nº 4: Intégrales de Riemann

Organisation: les exercices sont divisés en trois catégories: * correspond aux exercices de base, à maîtriser impérativement, ** correspond aux exercices de difficulté moyenne, c'est en gros le niveau requis pour valider l'UE, *** correspond aux exercices plus avancés.

Cette feuille est en grande partie des révisions de L1. Il peut être utile de faire un tableau des primitives usuelles.

* Définitions à connaître par cœur

somme de Riemann

* Propriétés à connaître par cœur

- linéarité, positivité de l'intégrale
- lien entre intégration et primitive
- formule d'intégration par parties
- formule de changement de variable

Exercice 1. *Des sommes de Riemann

1. Montrer que la suite

$$u_n = \sum_{k=1}^{n} \frac{n+k}{n^2 + k^2}$$

est une suite de sommes de Riemann convergente et déterminer sa limite.

- 2. Déterminer la limite quand n tend vers $+\infty$ de $\sum_{k=n+1}^{2n} \frac{1}{k}$.
- 3. Pour quelle valeur du réel α la suite

$$v_n = \frac{1}{n^2} \sum_{k=1}^n k^\alpha \sin \frac{k}{n}$$

est-elle une suite de sommes de Riemann? Que vaut alors sa limite? Que se passe-t-il pour les autres valeurs de α dans $]-1,+\infty[$?

4. A l'aide des sommes de Riemann, montrer les équivalents

$$\sum_{k=1}^{n} k^{\alpha} \sim \frac{1}{\alpha + 1} n^{\alpha + 1} \quad (\alpha > 0) \qquad \sum_{k=n+1}^{2n} \ln k \sim n \ln n.$$

Exercice 2. *Rappel de primitives

Pour chacune des intégrales suivantes,

- déterminer les intervalles [a, b] tels que la fonction soit Riemann intégrable sur [a, b],
- calculer alors la valeur de l'intégrale :

1.
$$\int_a^b t^n dt$$
 avec $n \in \mathbb{N}$ 3. $\int_a^b \sqrt{t} dt$

3.
$$\int_{a}^{b} \sqrt{t} \ dt$$

$$5. \int_a^b t^{1/3} dt$$

2.
$$\int_a^b e^{\alpha t} dt$$
 avec $\alpha \in \mathbb{C}$ 4. $\int_a^b \frac{1}{\sqrt{t}} dt$

$$4. \int_a^b \frac{1}{\sqrt{t}} dt$$

6.
$$\int_a^b \frac{1}{1+t^2} dt$$
.

Exercice 3. *Calcul de primitives de fractions rationnelles

Déterminer des intervalles sur lesquels les fractions rationnelles suivantes sont définies et donner leurs primitives sur ces intervalles:

a)
$$\frac{x^3}{x^2+1}$$
, b) $\frac{1}{x(1+x)^2}$, c) $\frac{1}{4x^2-3x+2}$, d) $\frac{x^2}{x^4-1}$, e) $\frac{1}{49-4x^2}$, f) $\frac{5x-12}{x(x-4)}$, g) $\frac{x-1}{x^2+x+1}$.

Exercice 4. *Calcul de primitives par changement de variable

Donner des primitives de $x \mapsto \sqrt{x^2+1}$, $x \mapsto \sqrt{x^2-1}$, $x \mapsto \sqrt{1-x^2}$ sur des intervalles sur lesquels ces fonctions sont définies (utiliser les changements de variable $x = \sinh u$ ou $x = \cosh u$ ou $x = \sin u$).

Exercice 5. *Linéarisation de polynômes en sin, cos

Linéariser les polynômes trigonométriques suivants de la variable x, puis en donner des primitives : $\sin^2 x$, $\cos^4 x$, $\sin^2 x \cos^4 x$, $\sin^5 x$.

Exercice 6. **Calcul de primitives de fonctions en sin, cos

Calculer les primitives des fonctions suivantes définies sur \mathbb{R} :

$$x \mapsto (\sin x)^3, \qquad x \mapsto \frac{\sin x}{(2 + \cos x)^2}, \qquad x \mapsto \sin \frac{x}{2} \cos \frac{x}{3}, \qquad x \mapsto \sin^2 x \cos^3 x,$$

 $x \mapsto \frac{1}{1 + \sin^2 r}$ (attention au domaine de définition du changement de variable).

Exercice 7. **Calcul de primitives

Calculer les primitives des fonctions suivantes sur leur domaine de définition :

$$x \mapsto x^3 \ln x, \qquad x \mapsto e^{-x} \cos x.$$

Exercice 8. *Intégration et dérivation

Soit f une fonction de \mathbb{R} dans \mathbb{R} continue.

Montrer que la fonction g définie sur \mathbb{R} par $g(x) = \int_{2x}^{x^2} f(t)dt$ est dérivable et calculer sa dérivée.

Exercice 9. ** Cas d'égalité

- 1. Soit $f:[a,b]\to\mathbb{R}$ continue. Donner une CNS sur f pour que $|\int_a^b f(x)dx|=\int_a^b |f(x)|dx$.
- 2. Même question si f est à valeurs dans \mathbb{C} .

Exercice 10. ** Primitive avec fonction exponentielle

- 1. Montrer qu'une primitive de $x \mapsto P(x)e^{ax}$ où P est un polynôme et a un réel est de la forme $x \mapsto Q(x)e^{ax} + C$ où Q est un polynôme et C une constante.
- 2. Montrer qu'une primitive de $x \mapsto P(x) \cos \alpha x$ où P est un polynôme et α un réel est de la forme $x \mapsto Q_1(x)\cos\alpha x + Q_2(x)\sin\alpha x + C$ où Q_1, Q_2 sont des polynômes et C une constante.