Universal Bell Correlations Do Not Exist

Cole A. Graham¹ William M. Hoza²

March 2, 2017 CS395T – Quantum Complexity Theory

¹Department of Mathematics, Stanford University

Quantum nonlocality

► Recall Bell's theorem: Entanglement allows interactions that can't be simulated using shared randomness / hidden variables

Quantum nonlocality

- ▶ Recall Bell's theorem: Entanglement allows interactions that can't be simulated using shared randomness / hidden variables
- ► Recall the no-communication theorem: Entanglement can't be used to send signals

Quantum nonlocality

- ► Recall Bell's theorem: Entanglement allows interactions that can't be simulated using shared randomness / hidden variables
- ► Recall the no-communication theorem: Entanglement can't be used to send signals
- Contradictory?

Alice PR Bob

$$(a,b) = \begin{cases} (0,xy) & \text{with probability } 1/2\\ (1,1-xy) & \text{with probability } 1/2 \end{cases}$$

Cannot be used to communicate

$$(a,b) = \begin{cases} (0,xy) & \text{with probability } 1/2\\ (1,1-xy) & \text{with probability } 1/2 \end{cases}$$

- Cannot be used to communicate
- ▶ But can be used to win CHSH game: $a + b = xy \pmod{2}$

A correlation box is a map

 $\mathsf{Cor}: \mathsf{X} \times \mathsf{Y} \to \{\mu : \mu \text{ is a probability distribution over } \mathsf{A} \times \mathsf{B}\}$

A correlation box is a map

 $\mathsf{Cor}: \mathsf{X} \times \mathsf{Y} \to \{\mu : \mu \text{ is a probability distribution over } \mathsf{A} \times \mathsf{B}\}$

 \blacktriangleright Assume X, Y, A, B are countable

A correlation box is a map

 $\mathsf{Cor}: \mathsf{X} \times \mathsf{Y} \to \{\mu : \mu \text{ is a probability distribution over } \mathsf{A} \times \mathsf{B}\}$

- \blacktriangleright Assume X, Y, A, B are countable
- ▶ Abuse notation and write Cor : $X \times Y \rightarrow A \times B$

Distributed sampling problems

► Can think of a correlation box as a distributed sampling problem – the problem of simulating the box

► **SR**: class of correlation boxes that can be simulated using just shared randomness

- ► **SR**: class of correlation boxes that can be simulated using just shared randomness
- ▶ **Q**: class of correlation boxes that can be simulated using shared randomness + arbitrary bipartite quantum state

- ► **SR**: class of correlation boxes that can be simulated using just shared randomness
- ▶ **Q**: class of correlation boxes that can be simulated using shared randomness + arbitrary bipartite quantum state
- ▶ Obviously SR ⊆ Q

- ► **SR**: class of correlation boxes that can be simulated using just shared randomness
- ▶ **Q**: class of correlation boxes that can be simulated using shared randomness + arbitrary bipartite quantum state
- ▶ Obviously SR ⊆ Q
- ▶ Bell's theorem: $SR \neq Q$

▶ **NS**: class of non-signalling correlation boxes

- ▶ **NS**: class of non-signalling correlation boxes
- No-communication theorem: Q ⊆ NS

- ▶ **NS**: class of non-signalling correlation boxes
- No-communication theorem: Q ⊆ NS
- ▶ Tsierelson bound: $PR \notin \mathbf{Q}$, so $\mathbf{Q} \neq \mathbf{NS}$

Bell pair

► Goal: Understand **Q**

Bell pair

- Goal: Understand Q
- ▶ Baby step: Understand **BELL**: class of correlation boxes that can be simulated using shared randomness $+\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
 - + projective measurements

Bell pair

- Goal: Understand Q
- ▶ Baby step: Understand **BELL**: class of correlation boxes that can be simulated using shared randomness $+\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
 - + projective measurements
- ▶ $SR \subsetneq BELL \subsetneq Q$

Toner-Bacon theorem

► Theorem (Toner, Bacon '03): **BELL** can be simulated using shared randomness + 1 bit of communication

Toner-Bacon theorem

- ► Theorem (Toner, Bacon '03): **BELL** can be simulated using shared randomness + 1 bit of communication
- ► This is an upper bound on the power of **BELL**

Toner-Bacon theorem

- ► Theorem (Toner, Bacon '03): **BELL** can be simulated using shared randomness + 1 bit of communication
- ► This is an upper bound on the power of **BELL**
- ▶ Loose upper bound, since BELL ⊆ NS

PR box is **BELL**-hard

► Theorem (Cerf et al. '05): **BELL** can be simulated using shared randomness + 1 PR box

PR box is **BELL**-hard

- ► Theorem (Cerf et al. '05): **BELL** can be simulated using shared randomness + 1 PR box
- ► In other words, PR is **BELL**-hard with respect to 1-query reductions

Distributed sampling complexity zoo

► Theorem: There does not exist a finite-alphabet **BELL**-complete correlation box

► Theorem: There does not exist a finite-alphabet **BELL**-complete correlation box

- ► Theorem: There does not exist a finite-alphabet **BELL**-complete correlation box
- ▶ Theorem:

- ► Theorem: There does not exist a finite-alphabet **BELL**-complete correlation box
- **(**:
- ▶ Theorem:
 - Suppose Cor : X × Y → A × B is in Q; X, Y countable; A, B finite

- ► Theorem: There does not exist a finite-alphabet **BELL**-complete correlation box
- **.** (E)
- ▶ Theorem:
 - Suppose Cor : X × Y → A × B is in Q; X, Y countable; A, B finite
 - ► Then there exists a binary correlation box in **BELL** that does not reduce to Cor

► Theorem: There does not exist a finite-alphabet **BELL**-complete correlation box

- ▶ Theorem:
 - Suppose Cor : X × Y → A × B is in Q; X, Y countable; A, B finite
 - ► Then there exists a binary correlation box in **BELL** that does not reduce to Cor

Distributed sampling complexity zoo (2)

• Goal: $a + b = xy \pmod{2}$

- Goal: $a + b = xy \pmod{2}$
- ► Inputs *x*, *y* are chosen independently at random

- Goal: $a + b = xy \pmod{2}$
- ▶ Inputs *x*, *y* are chosen independently at random
- ▶ *y* is uniform, *x* is biased: $Pr[x = 1] = p \in [1/2, 1]$

- Goal: $a + b = xy \pmod{2}$
- ▶ Inputs *x*, *y* are chosen independently at random
- ▶ y is uniform, x is biased: $Pr[x = 1] = p \in [1/2, 1]$
- ► Theorem (Lawson, Linden, Popescu '10): Optimal quantum strategy can be implemented in **BELL**, wins with probability

$$f(p) \stackrel{\text{def}}{=} \frac{1}{2} + \frac{1}{2} \sqrt{p^2 + (1-p)^2}$$

Quantum value of biased CHSH game

▶ Let $S_p \in \mathbf{BELL}$ be optimal quantum strategy

- ▶ Let $S_p \in \mathbf{BELL}$ be optimal quantum strategy
- ightharpoonup Assume there is a reduction from S_p to Cor

- ▶ Let $S_p \in \mathbf{BELL}$ be optimal quantum strategy
- ightharpoonup Assume there is a reduction from S_p to Cor
- Probability that reduction wins biased CHSH game is of form

$$\frac{1-p}{2}P_{00} + \frac{p}{2}P_{10} + \frac{1-p}{2}P_{01} + \frac{p}{2}P_{11}$$

- ▶ Let $S_p \in \mathbf{BELL}$ be optimal quantum strategy
- \triangleright Assume there is a reduction from S_p to Cor
- Probability that reduction wins biased CHSH game is of form

$$\frac{1-p}{2}P_{00} + \frac{p}{2}P_{10} + \frac{1-p}{2}P_{01} + \frac{p}{2}P_{11}$$

Affine function of p, for fixed reduction

► Fix shared randomness without decreasing win probability

- ► Fix shared randomness without decreasing win probability
- ▶ Recall Cor ∈ Q

- ► Fix shared randomness without decreasing win probability
- ► Recall Cor ∈ **Q**
- ▶ Win probability still exactly f(p) (**Q** is closed under reductions)

- ► Fix shared randomness without decreasing win probability
- ▶ Recall Cor ∈ Q
- ▶ Win probability still exactly f(p) (**Q** is closed under reductions)
- ▶ Recall Cor : $X \times Y \rightarrow A \times B$ with X, Y countable, A, B finite

- ► Fix shared randomness without decreasing win probability
- ▶ Recall Cor ∈ Q
- ▶ Win probability still exactly f(p) (**Q** is closed under reductions)
- ▶ Recall Cor : $X \times Y \rightarrow A \times B$ with X, Y countable, A, B finite
- Only countably many deterministic reductions!

- ► Fix shared randomness without decreasing win probability
- ▶ Recall Cor ∈ Q
- ▶ Win probability still exactly f(p) (**Q** is closed under reductions)
- ▶ Recall Cor : $X \times Y \rightarrow A \times B$ with X, Y countable, A, B finite
- Only countably many deterministic reductions!
- ▶ Countably many affine functions, so $\exists p$ where all the affine functions disagree with f(p)

► Theorem:

- ► Theorem:
 - ▶ Suppose $Cor_2 : X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite

- Theorem:
 - ▶ Suppose $Cor_2 : X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
 - $\,\blacktriangleright\,$ Then \exists binary correlation box $\mathsf{Cor}_1 \in \textbf{BELL}$ such that

- ▶ Theorem:
 - ▶ Suppose $Cor_2 : X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
 - ▶ Then \exists binary correlation box $Cor_1 \in \mathbf{BELL}$ such that
 - ▶ If there is a k-query ε -error reduction from Cor_1 to Cor_2 , then

$$k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)$$

- ► Theorem:
 - ▶ Suppose $Cor_2 : X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
 - ▶ Then \exists binary correlation box $Cor_1 \in \mathbf{BELL}$ such that
 - ▶ If there is a k-query ε -error reduction from Cor_1 to Cor_2 , then

$$k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)$$

▶ Upper bound: $\forall \varepsilon > 0, \exists \mathsf{Cor}_2 : [T] \times [T] \to \{0,1\} \times \{0,1\}$ such that

- ► Theorem:
 - ▶ Suppose $Cor_2 : X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
 - ▶ Then \exists binary correlation box $Cor_1 \in \mathbf{BELL}$ such that
 - ▶ If there is a k-query ε -error reduction from Cor_1 to Cor_2 , then

$$k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)$$

- ▶ Upper bound: $\forall \varepsilon > 0, \exists \mathsf{Cor}_2 : [T] \times [T] \to \{0,1\} \times \{0,1\}$ such that
 - $T \leq O(1/\varepsilon^4)$

- ▶ Theorem:
 - ▶ Suppose $Cor_2 : X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
 - ▶ Then \exists binary correlation box $Cor_1 \in \textbf{BELL}$ such that
 - ▶ If there is a k-query ε -error reduction from Cor_1 to Cor_2 , then

$$k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)$$

- ▶ Upper bound: $\forall \varepsilon > 0, \exists \mathsf{Cor}_2 : [T] \times [T] \to \{0,1\} \times \{0,1\}$ such that
 - $T \leq O(1/\varepsilon^4)$
 - ▶ Cor₂ ∈ BELL

- ▶ Theorem:
 - ▶ Suppose $Cor_2 : X \times Y \rightarrow A \times B$ is in **Q**; X, Y, A, B finite
 - ▶ Then \exists binary correlation box $Cor_1 \in \mathbf{BELL}$ such that
 - ▶ If there is a k-query ε -error reduction from Cor_1 to Cor_2 , then

$$k^4 \cdot (2|X|)^{2|A|^k} \cdot (2|Y|)^{2|B|^k} \ge \Omega(1/\varepsilon)$$

- ▶ Upper bound: $\forall \varepsilon > 0, \exists \mathsf{Cor}_2 : [T] \times [T] \to \{0,1\} \times \{0,1\}$ such that
 - $T \leq O(1/\varepsilon^4)$
 - ► Cor₂ ∈ **BELL**
 - ▶ For every $Cor_1 \in \mathbf{BELL}$, there is a 1-query ε -error reduction from Cor_1 to Cor_2

Conclusions

▶ Is there a countable-alphabet **BELL**-complete correlation box?

Conclusions

- ▶ Is there a countable-alphabet **BELL**-complete correlation box?
- ▶ What is the right relationship between $|X|, |Y|, |A|, |B|, k, \varepsilon$?

Conclusions

- Is there a countable-alphabet BELL-complete correlation box?
- ▶ What is the right relationship between $|X|, |Y|, |A|, |B|, k, \varepsilon$?
- Thanks for listening! Questions?
- ► This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1610403.
- Cole Graham gratefully acknowledges the support of the Fannie and John Hertz Foundation.