Задача А. Пересечение отрезков

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 512 мегабайт

Дано n пар отрезков на плоскости.

Про каждую пару отрезков необходимо определить, имеют ли они хотя бы одну общую точку.

Эту задачу можно сдавать только на C++. Для сдачи используйте язык «Makefile from zip». В тестирующую систему нужно послать zip архив, содержащий ваше решение. Также, в корне архива должен лежать Makefile с двумя целями: all — компилирует решение, run — запускает решение. На компилирующем сервере доступны библиотека GMP и какое-то подмножество библиотеки boost. По пути /usr/include лежит boost, файл gmpxx.h и файл seg_intersection_tests.h, который вам нужно подключить. А по пути /usr/lib/x86_64-linux-gnu — библиотека GMP.

В тестирующей системе на вкладке «Файлы» выложен пример решения, подключающего все библиотеки.

Формат входных данных

В единственной строке дано одно целое число t — номер теста.

В файле seg_intersection_tests.h есть функция genTest(int). Эта функция принимает в качестве параметра число t и возвращает std::vector<double> размера $8 \cdot n$ ($1 \le n \le 2 \cdot 10^6$).

Данный вектор описывает n тестов, по 8 подряд идущих чисел на каждый тест.

Каждый тест описывается 8 числами a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 .

Необходимо определить, пересекается ли отрезок с концами в точках (a_1, a_2) и (a_3, a_4) с отрезком с концами в точках (a_5, a_6) и (a_7, a_8) .

Формат выходных данных

Выведите строку из n символов, по одному на каждый тест. Если в i-м тесте отрезки пересекаются, i-й символ должен быть равен «Y», иначе «N».

Пример

стандартный ввод	стандартный вывод
1	YYN

Замечание

Пример seg_intersection_tests.h с первым тестом: http://pastebin.com/ajQpDDHP

Задача В. 16

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны 4 точки A, B, C, D.

Посчитайте:

- Расстояние от точки A до точки C.
- Расстояние от точки A до отрезка CD.
- Расстояние от точки A до луча CD.
- Расстояние от точки A до прямой CD.
- Расстояние от отрезка AB до точки C.
- Расстояние от отрезка AB до отрезка CD.
- Расстояние от отрезка AB до луча CD.
- ullet Расстояние от отрезка AB до прямой CD.
- Расстояние от луча AB до точки C.
- Расстояние от луча AB до отрезка CD.
- Расстояние от луча AB до луча CD.
- \bullet Расстояние от луча AB до прямой $C{\rm D}$
- ullet Расстояние от прямой AB до точки C.
- Расстояние от прямой AB до отрезка CD.
- Расстояние от прямой AB до луча CD.
- Расстояние от прямой AB до прямой CD.

Формат входных данных

Даны координаты четырех точек, по одной точке в строке: x_A , y_A , x_B , y_B , x_C , y_C , x_D , y_D . Все числа целые, по модулю не превосходят $10\,000$. Точки A и B не совпадают, точки C и D не совпадают.

Формат выходных данных

Выведите 16 чисел по одному в строке.

Абсолютная или относительная погрешность каждого числа не должна превышать 10^{-9} .

стандартный ввод	стандартный вывод
1 2	5.6568542495
7 1	5.600000000
5 6	5.600000000
8 2	5.600000000
	4.6031716446
	1.4142135624
	1.400000000
	1.400000000
	4.6031716446
	1.1507929111
	0.000000000
	0.000000000
	4.6031716446
	1.1507929111
	0.000000000
	0.000000000

Лабораторная работа по вычислительной геометрии Университет ИТМО, Осень 2022

Задача С. Место встречи изменить нельзя

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны N точек. Найдите такие две из них, что расстояние между ними минимально.

Формат входных данных

Первая строка входного файла содержит целое число N ($2 \le N \le 100\,000$) — количество точек. Каждая из следующих N строк содержит пару целых чисел X и Y, разделённых пробелом, — координаты ($-10^9 \le X, Y \le 10^9$). Все точки различны.

Формат выходных данных

Единственная строка выходного файла должна содержать координаты двух выбранных точек.

стандартный ввод	стандартный вывод
4	0 0
0 0	0 1
0 1	
1 1	
1 0	

Задача D. Теодор Рузвель

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

«Теодор Рузвельт» — флагман военно-морского флота Кукуляндии. Заклятые враги кукуляндцев, флатландцы, решили уничтожить его. Они узнали, что «Теодор Рузвельт» представляет собой выпуклый многоугольник из n вершин и узнали его координаты. Затем они выпустили m баллистических ракет и определили координаты точек, где эти ракеты взорвались. По расчётам штаба флатландцев, «Теодор Рузвельт» будет уничтожен, если в него попадёт хотя бы k ракет. Вычислите, удалось ли флатландцам уничтожить корабль.

Формат входных данных

В первой строке через пробел записаны целые числа $n, m, k \ (3 \le n \le 10^5, 0 \le k \le m \le 10^5)$. В последующих n строках записаны координаты вершин многоугольника в порядке обхода против часовой стрелки. В следующих m строках записаны координаты точек. Гарантируется, что все координаты — целые числа, не превосходящие по модулю 10^9 .

Формат выходных данных

Выведите «YES», если в многоугольнике или на его границе лежит по крайней мере k точек, и «NO» в противном случае.

стандартный ввод	стандартный вывод
5 4 2	YES
1 -1	
1 2	
0 4	
-1 2	
-1 -1	
-2 -1	
1 -1	
0 1	
2 3	

Лабораторная работа по вычислительной геометрии Университет ИТМО, Осень 2022

Задача Е. Точка в многоугольнике

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Формат входных данных

В первой строке три числа — N ($3 \le N \le 100\,000$) и координаты точки. Далее в N строках по паре чисел — координаты очередной вершины простого многоугольника в порядке обхода по или против часовой стрелки.

Формат выходных данных

Одна строка «YES», если заданная точка содержится в приведённом многоугольнике или на его границе, и «NO» в противном случае.

стандартный ввод	стандартный вывод
3 0 0	NO
1 0	
0 1	
1 1	

Задача F. Выпуклая оболочка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано N точек на плоскости.

Нужно построить их выпуклую оболочку.

Гарантируется, что выпуклая оболочка не вырождена.

Формат входных данных

На первой строке число N ($3 \le N \le 10^5$). Следующие N строк содержат пары целых чисел x и y ($-10^9 \le x, y \le 10^9$) — точки.

Будьте аккуратны! Точки произвольны. Бывают совпадающие, бывают лежащие на одной прямой в большом количестве.

Формат выходных данных

В первой строке выведите N число вершин выпуклой оболочки. Следующие N строк должны содержать координаты вершин в порядке обхода. Никакие три подряд идущие точки не должны лежать на одной прямой. Кроме того, в последней строке выведите площадь получившейся выпуклой оболочки. Площадь необходимо вывести абсолютно точно.

Задача G. Расстояние между многоугольниками

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Нужно найти минимальное расстояние между двумя выпуклыми непересекающимися многоугольниками. То есть минимум среди расстояний между всеми парами точек, одна из которых принадлежит первому многоугольнику, а другая второму.

Формат входных данных

Первый многоугольник задается числом вершин — n ($1 \le n \le 50\,000$). И координатами n вершин. Вершины даны в порядке обхода по часовой стрелке. Координаты целые и не превосходят 10^9 по модулю.

Далее описывается второй многоугольник в аналогичном формате.

В обоих многоугольниках никакие три точки не лежат на одной прямой.

Формат выходных данных

Выведите одно вещественное число — расстояние между многоугольниками. Выводите ответ с максимально возможной точностью. Ваше решение будет считаться верным, если относительная или абсолютная погрешность ответа не превосходит 10^{-9} .

стандартный ввод	стандартный вывод
4	1.00000000000000
0 0	
0 1	
1 1	
1 0	
3	
2 0	
2 2	
4 0	
3	2.00000000000000
0 0	
2 2	
2 -2	
3	
6 2	
6 -2	
4 0	

Задача Н. Не курить!

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вася — хороший парень. Но у него есть плохая привычка — он курит. Все то время, сколько Петя дружит с Васей, он пытается отучить его от этого. Но ему это так и не удалось, потому что Вася не хочет бросать курить.

Недавно Петя придумал способ, как отучить своего друга от курения. Вася — неряха, поэтому его сигареты не лежат в пачке, а разбросаны по огромному столу. Петя хочет брать несколько сигарет в день незаметно для Васи. Вася не заметит пропажи сигарет, если в день будет пропадать не более одной сигареты. Кроме того, Петя должен брать только ту сигарету, которая пересекается с какой-нибудь другой сигаретой на столе. Помогите Пете узнать, сможет ли он начать реализацию своего плана.

Формат входных данных

Сигарета представляется как отрезок прямой. В первой строке входного файла записано число N ($1 \le N \le 125\,000$) — количество сигарет на Васином столе. Следующие N строк содержат описания сигарет: (i+1)-я строка содержит координаты концов i-й сигареты — целые числа x_1, y_1, x_2, y_2 ($-10\,000 \le x_1, y_1, x_2, y_2 \le 10\,000$). Отрезок может быть вырожденным, то есть его концы могут совпадать.

Формат выходных данных

В первой строке выходного файла выведите слово "YES", если Пете удастся начать реализацию своего плана. Вторая строка должна содержать числа i и j: i — номер сигареты, которую должен взять Петя, j — номер сигареты, с которой она пересекается.

Если Петя не сможет взять ни одной сигареты, выведите в единственной строке выходного файла "NO".

стандартный ввод	стандартный вывод
2	YES
0 0 2 2	2 1
0 2 2 0	

Задача І. Триангуляция многоугольника

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан простой невырожденный, возможно невыпуклый, возможно с развернутыми углами, N-угольник. Вам нужно найти его триангуляцию.

Формат входных данных

В первой строке число N ($3 \le N \le 4\,000$) — количество вершин. Далее N строк, содержащие пары целых чисел, — координаты вершин многоугольника. Все координаты целые, по модулю не превосходят 10^4 .

Формат выходных данных

Выведите N-3 диагонали. Каждая задается парой чисел от 0 до N-1 — номера вершин. Отрезок (i,j) считается диагональю, если вся его внутренность лежит строго внутри многоугольника.

стандартный ввод	стандартный вывод
3	
0 0	
1 0	
1 1	
4	3 1
0 0	
1 0	
1 1	
0 1	

Задача Ј. Площади

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны n прямых на плоскости. Они делят плоскость на части, некоторые из которых конечны, некоторые — бесконечны. Найдите площади всех конечных частей.

Формат входных данных

Первая строка содержит n — число прямых ($1 \le n \le 80$). Каждая из следующих n строк содержит четыре целых числа x_1, y_1, x_2 и y_2 — координаты двух различных точек на очередной прямой. Координаты не превышают 100 по абсолютной величине. Прямые попарно различны.

Формат выходных данных

В первой строке выведите k—число конечных частей. В следующих k строках выведите их площади в неубывающем порядке. Точность должна быть не хуже 10^{-4} . Не рассматривайте части, имеющие площадь меньшую 10^{-8} .

стандартный ввод	стандартный вывод
5	2
0 0 1 0	0.500000000
1 0 1 1	0.500000000
1 1 0 1	
0 1 0 0	
0 0 1 1	

Задача К. Диаметр точек

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

На плоскости даны N точек. Вам требуется найти расстояние между двумя самыми удаленными точками.

Формат входных данных

Первая строка содержит количество точек N, $(1 \le N \le 10^5)$. Каждая из последующих N строк содержит два целых числа — координаты x_i и y_i . Координаты по модулю не превосходят 10^9 .

Формат выходных данных

Выведите в выходной файл расстояние между двумя наиболее удалёнными точками с максимально возможной точностью.

Ваш ответ будет считаться правильным, если его абсолютная погрешность не будет превышать 10^{-9} . Обратите внимание, что проверяется только абсолютная погрешность (а не относительная). Поэтому, вам нужно позаботиться о том, чтобы первые 9 цифр после запятой всегда были правильными.

стандартный ввод	стандартный вывод
5	2.828427124746190
0 0	
2 2	
1 1	
0 2	
2 0	
7	3.162277660168379
0 0	
1 1	
2 2	
0 2	
1 3	
0 1	
2 0	

Задача L. Евклид

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 512 мегабайт

Царь Александр умер и у него не оказалось наследника. Пришло время разделить империю между его придворными генералами, будучи друзьями они не хотят войны и пытаются придумать способ честно разделить империю.

Империя представляет собой прямоугольник со сторонами параллельными осям координат. Генералы находятся в N различных точках внутри этого прямоугольника. Каждый генерал мог бы получить всю землю, которая ближе к нему, чем к любому другому, но это было бы слишком скучно.

Поэтому они решили, что каждый получит всю землю, которая **дальше** от него, чем от любого другого генерала.

Вычислите, какую часть площади империи получит каждый генерал.

Формат входных данных

Первая строка входных данных содержит две пары чисел, L, D и R, U, нижний левый и верхний правый угол империи. $(0 \le |L|, |R|, |U|, |D| \le 10^6, L < R, D < U)$.

Следующая строка содержит число N — количество генералов ($1 \le N \le 100\,000$).

Следующие N строк содержат по два целых числа x_i и y_i — координаты i-го генерала $(L \leqslant x_i \leqslant R, D \leqslant y_i \leqslant U)$. Все генералы находятся в разных точках.

Формат выходных данных

Выведите N строк, в i-й строке, отношение площади территории, которую получит i-й генерал, к всей территории империи. Ответ считается верным, если абсолютная погрешность не превосходит 10^{-6} .

Примеры

stdin	stdout
0 0 10 10	0.2872953
3	0.2198684
1 1	0.4928363
5 9	
10 0	

Замечание

Задача М. Караваны

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

В этой задаче вам нужно грабить караваны.

В пустыне есть *п* оазисов (пускай они находятся в точках на плоскости). Иногда караваны отправляются от одного оазиса к другому оазису. Чтобы грабить указатели, нужно уметь предсказывать их пути. Но как это сделать? Ответ знает Номад. Скорость караванов постоянна, и они пытаются минимизировать максимальное время вне оазисов. Поэтому можно считать путь караванов ломаной. Вам известны несколько пар оазисов, и вам нужно найти максимальную длину отрезка вне оазисов оптимального пути каравана, который идет от первого оазиса ко второму. Все оазисы находятся в разных точках и никакие три оазиса не лежат на одной прямой.

Формат входных данных

В первой строке дано одно целое число n — количество оазисов ($3 \le n \le 100\,000$).

В следующих n строках даны пары целых чисел x_i, y_i — координаты оазисов ($0 \leqslant x_i, y_i \leqslant 10\,000$).

В следующей строке дано одно целое число q — количество караванов ($1 \le q \le 100\,000$).

В следующих q строках даны пары целых чисел s_i , t_i — стартовый и конечный оазис на пути каравана $(1 \leq s_i, t_i \leq n)$.

Формат выходных данных

Выведите q чисел — длины искомых максимальных отрезков на пути, с относительной или абсолютной погрешностью 10^{-9} .

стандартный ввод	стандартный вывод
3	50.990195135928
0 0	100.498756211209
50 10	100.498756211209
150 0	
3	
1 2	
1 3	
2 3	