a) MoM and MLE Estimation	
$f(x) = \begin{cases} 0 \times \theta^{-1}, & 0 < x < 0 \end{cases}$	$X = \{0, 3, 0, 6, 0, 8, 0, 9\}$
MOM Estimation	
$\int_{0}^{1} (x) dx = m$	mean of given sample is $0,65$ $M = 0,65$
$= \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array}$	$\frac{\theta}{\theta+1} = 0,65$ $\theta = 1,8571$
MLE Estimation	
$f(0,3) \times f(0,6) \times f(0,8) \times f(0,9)$ $= \theta^{4} \cdot (0,3 \times 0,6 \times 0,8 \times 0,9)^{9-1}$ $= \theta^{4} \cdot (0,1296)^{9-1}$	
$\frac{d}{d\theta} \ln \left(\theta^{4} \cdot (0, 1296)^{\theta-1} \right) = 0$	
$\frac{\ln(0,1296)\theta + 4}{\theta} = 0$ $\theta = 1.9576$	

