Лекція. Випадкові величини.

Випадковою називають величину, пов'язану з деяким випадковим експериментом, яка в результаті його проведення набуває певного значення, причому наперед невідомо якого.

Дискретною випадковою величиною (ДВВ) називають таку величину, множина значень якої є скінченою або зліченною. ДВВ може набувати дискретних (ізольованих) значень з відповідними ймовірностями.

Дискретну випадкову величину можна задати її законом розподілу. Нехай випадкова величина X має скінчену множину значень.

Законом (рядом) розподілу дискретної випадкової величини X називають відповідність між можливими значеннями x_i цієї величини та їх ймовірностями $p_i = P(X = x_i)$, $i = \overline{1, n}$.

X	x_1	x_2	•••	χ_n
p_i	p_1	p_2	•••	p_n

причому для ймовірностей різавжди виконується умова

$$\sum_{i=1}^{n} p_i = p_1 + p_2 + \dots + p_n = 1 \tag{1}$$

Приклад 1. Закон розподілу дискретної випадкової величини X задано таблицею:

X	-2	0	1	3	5
p_i	0,15	a	0,3	2 <i>a</i>	0,25

Знайти значення параметра a і записати закон розподілу даної величини.

Розв'язання. Згідно з умовою (1) маємо: 0,15 + a + 0,3 + 2a + 0,25=1, звідки дістаємо: 3a = 1 - 0,7 = 0,3. Отже, a = 0,1. Тоді закон розподілу даної величини має вигляд:

X	-2	0	1	3	5
p_i	0,15	0,1	0,3	0,2	0,25

Ламана з вершинами в точках (x_i ; p_i) називається **многокутником** розподілу ймовірностей випадкової величини X .

Дискретну випадкову величину можна задавати не тільки законом розподілу, а й іншим способом - за допомогою функції розподілу.

Функцією розподілу випадкової величини називають функцію F(x), яка визначає ймовірність того, що величина X набуває значень, менших за x, тобто:

$$F(x) = P(X < x), \qquad x \in X$$

Функція розподілу F(x) має такі властивості:

1)
$$0 \le F(x) \le 1$$
, причому $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$

- 2) F(x) не спадна функція на $(-\infty, +\infty)$;
- 3) F(x) ϵ неперервною зліва на $(-\infty, +\infty)$.

Для ДВВ функція розподілу визначається так:

$$F(x) = P(X < x) = \sum_{x_i < x} p_i \tag{2}$$

тобто F(x) дорівнює сумі ймовірностей тих значень x_i , для яких виконується умова $x_i < x$.

Приклад 2. Для випадкової величини, заданої в **прикладі 1**, записати функцію розподілу.

<u>Розв'язання.</u> Нагадаємо, що закон розподілу даної дискретної випадкової величини має вигляд:

X	-2	0	1	3	5
p_i	0,15	0,1	0,3	0,2	0,25

Розглянемо всі можливі проміжки значень для даної величини.

Нехай $x \le -2$, тоді $F() = p(X \le -2) = 0$, так як немає жодного значення x_i , для якого виконується умова $x_i < x$;

якщо
$$-2 < x \le 0$$
, то $F(x) = p(X = -2) = 0.15$;

якщо
$$0 < x \le 1$$
, то $F(x) = p(X = -2) + p(X = 0) = 0.15 + 0.1 = 0.25;$

якщо
$$1 < x \le 3$$
, то $F(x) = p(X = -2) + p(X = 0) + p(X = 1) = 0,25 + 0,3 = 0,55;$ якщо $3 < x \le 5$, то $F(x) = p(X = -2) + p(X = 0) + p(X = 1) + p(X = 3) = 0,55 + 0,2 = 0,75;$ якщо $x > 5$, то $F(x) = p(X = -2) + p(X = 0) + p(X = 1) + p(X = 3) + p(X = 5) = 0,75 + 0,25 = 1.$

Отже, функція розподілу для даної величини має вигляд:

$$F(x) = \begin{cases} 0, x & \leq -2; \\ 0.15, & -2 < x \leq 0; \\ 0.25, & 0 < x \leq 1; \\ 0.55, & 1 < x \leq 3 \\ 0.75, & 3 < x \leq 5; \\ 1, & x > 5. \end{cases}$$

Зауважимо, що функція розподілу дискретної випадкової величини ϵ стрибковою функцією, точками розриву якої ϵ значення цієї величини, тобто точки x_i .

ЧИСЛОВІ ХАРАКТЕРИСТИКИ ВИПАДКОВОЇ ВЕЛИЧИНИ

Математичним сподіванням дискретної випадкової величини X, яка набуває значень x_i з ймовірностями p_i , називається число

$$M(X) = \sum_{i=1}^{n} x_i p_i \tag{3}$$

Зауваження. Формула (3) має місце для випадкової величини, множина значень якої скінчена. Якщо ж множина значень величини X зліченна, то $M(X) = \sum_{i=1}^{\infty} x_i p_i$, за умови існування скінченої суми $\sum_{i=1}^{\infty} |x_i p_i|$.

Властивості математичного сподівання:

- 1. M(C)=C, $\partial e C=const$;
- 2. M(CX) = CM(X), $\partial e C = const$;
- 3. M(X + Y) = M(X) + M(Y);
- 4. M(XY) = M(X)M(Y), якщо X i Y незалежні величини.

Приклад 3. Обчислити математичне сподівання випадкової величини, заданої законом розподілу:

a)

$X = x_i$	-5	-2	1	4	7
p_i	0,2	0,2	0,2	0,2	0,2

б)

$Y = y_i$	-5	-2	1	4	7
p_i	0,1	0,5	0,2	0,1	0,1

<u>Розв'язання.</u> а) Для даної величини обчислимо математичне сподівання за формулою (3),тобто $M(X) = -5 \cdot 0.2 + (-2) \cdot 0.2 + 1 \cdot 0.2 + 4 \cdot 0.2 + 7 \cdot 0.2 = 1$

б) Аналогічно знаходимо: $M(Y) = -5 \cdot 0.1 + (-2) \cdot 0.5 + 1 \cdot 0.2 + 4 \cdot 0.1 + 7 \cdot 0.1 = -0.2$.

На цьому прикладі ми проілюстрували, що випадкові величини, які набувають однакових значень (але з різними ймовірностями) можуть мати різні математичні сподівання. Розглянемо тепер дві різні випадкові

величини, які мають однакові математичні сподівання.

Приклад 4. Для величин X і Y обчислити математичне сподівання, якщо:

Y =	$= y_i$	-100) -50	$0 \mid 0$	50	100	
1	o_i	0,1	0,	0,2	$2 \mid 0,3$	0,1	
	X =	$= x_i$	-2	-1	0	1	2
•	p	i	0,2	0,1	0,4	0,1	0,2

Дисперсією випадкової величини X називають математичне сподівання квадрата відхилення цієї величини від її математичного сподівання, тобто

$$D(X) = M\left(\left(X - M(X)\right)^{2}\right)$$

$$D(X) = M(X^{2}) - \left(M(X)\right)^{2}$$

$$(5)$$

$$D(X) = M(X^2) - \left(M(X)\right)^2 \tag{5}$$

Зауваження. Дисперсія D(X) випадкової величини характеризує **міру розсіювання** цієї величини відносно її центра розсіювання M(X).

Для ДВВ дисперсію визначають за формулами: для випадкової величини зі скінченою множиною значень

$$D(X) = \sum_{i=1}^{n} (x_i - M(X))^2 p_i$$
 (6)

або
$$D(X) = M(X^2) - (M(X))^2 = \sum_{i=1}^n x_i^2 p_i - (M(X))^2$$
 (7)

для випадкової величини із зліченною множиною значень

$$D(X) = \sum_{i=1}^{\infty} (x_i - M(X))^2 p_i$$
, за умови існування скінченої суми $\sum_{i=1}^{\infty} (x_i - M(X))^2 p_i$.

Властивості дисперсії випадкової величини:

- 1. $D(X) \ge 0$ для будь-якої випадкової величини X;
- 2. D(C) = 0, $\partial e C = const$;
- 3. $D(CX) = C^2 D(X)$, $\partial e C = const$;
- 4. D(X+Y)=D(X)+D(Y), якщо X i Y незалежні величини;
- 5. D(X-Y)=D(X)+D(Y), якщо X i Y незалежні величини.

Дисперсія D (X) характеризує квадрат відхилення величини

від її середнього значення, то одиниця її вимірювання дорівнює квадрату одиниці вимірювання випадкової величини X .

Середнім квадратичним відхиленням величини
$$X$$
 називають число $\sigma(X) = \sqrt{D(X)}$ (8)

 $\sigma(X)$ характеризує відхилення випадкової величини X від її середнього значення і вимірюється в одиницях цієї величини.

Приклад 5. Обчислити дисперсію і середнє квадратичне відхилення випадкової величини, заданої законом розподілу

x_i	-4	-2	1	2	4	6
p_i	0,1	0,2	0,3	0,2	0,1	0,1

Розв'язання. Щоб визначити дисперсію величини, спочатку обчислимо

її математичне сподівання:

$$M(X) = -4 \cdot 0,1 + (-2) \cdot 0,2 + 1 \cdot 0,3 + 2 \cdot 0,2 + 4 \cdot 0,1 + 6 \cdot 0,1 = 0,9.$$
 Дисперсію можна обчислити за формулою (6) або (7).

І спосіб. Для зручності обчислень можна скласти таку таблицю:

x_i	-4	-2	1	2	4	6
$x_i - M(X)$	-4,9	-2,9	0,1	1,1	3,1	5,1
$\left(x_i - M(X)\right)^2$	24,01	8,41	0,01	1,21	9,61	26,01
p_i	0,1	0,2	0,3	0,2	0,1	0,1

Тоді за формулою (6) маємо:

$$D(X) = \sum_{i=1}^{n} (x_i - M(X))^2 p_i$$

$$= 24,01 \cdot 0,1 + 8,41 \cdot 0,2 + 0,01 \cdot 0,3 + 1,21 \cdot 0,2 + 9,61 \cdot 0,1$$

$$+ 26,01 \cdot 0,1 == 2,401 + 1,682 + 0,003 + 0,242 + 0,961 + 2,601$$

$$= 7,89, \text{тоді } \sigma(X) = \sqrt{D(X)} = \sqrt{7,89} = 2,8$$

<u>II спосіб.</u> Визначимо D(X) за формулою (7). Обчисливши $M(X^2)$, дістанемо:

$$M(X^2) = (-4)^2 \cdot 0.1 + (-2)^2 \cdot 0.2 + 1^2 \cdot 0.3 + 2^2 \cdot 0.2 + 4^2 \cdot 0.1 + 6^2 \cdot 0.1$$

= 1.6 + 0.8 + 0.3 + 0.8 + 1.6 + 3.6 = 8.7

$$D(X) = M(X^2) - (M(X))^2 = 8.7 - (0.9)^2 = 7.89 \ \sigma(X) = \sqrt{7.89} = 2.8$$

НЕПЕРЕРВНІ ВИПАДКОВІ ВЕЛИЧИНИ ТА ЇХ ЧИСЛОВІ ХАРАКТЕРИСТИКИ

Неперервною випадковою величиною (НВВ) називають таку величину, яка має неперервну функцію розподілу F(x). Множиною значень неперервної випадкової величини є скінчений або нескінчений проміжок.

Закон розподілу неперервної випадкової величини можна задавати або функцією розподілу F(x) (інтегральною функцією розподілу) або щільністю розподілу (диференціальною функцією розподілу).

Функцією розподілу випадкової величини називають функцію F(x) = P(X < x), яка визначає ймовірність того, що величина X набуває значень, менших за x.

Всі властивості функції розподілу ДВВ виконуються і для функції розподілу НВВ, зокрема

$$0 \le F(x) \le 1$$
, $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$.

Якщо всі можливі значення випадкової величини належать проміжку [a;b], то говорять, що величина X **розподілена на цьому проміжку**. Тоді, F(x) = 0 при x < a і F(x) = 1 при x > b.

$$P(X < b) = P(X < a) + P(a \le X < b),$$

$$P(a \le X < b) = P(X < b) - P(X < a),$$

звідки
$$P(a \le X < b) = F(b) - F(a)$$
.

Зазначимо, що ймовірність кожного конкретного значення HBB дорівнює нулю, тобто P(X=a)=0. Тому, розглядаючи HBB на деякому проміжку, не має значення, чи належать кінці цьому проміжку. Таким чином,

$$P(a \le X < b) = P(a < X < b) = P(a < X \le b) = P(a \le X \le b) = F(b) - F(a)$$
 (2)

Щільністю або *диференціальною функцією розподілу* неперервної випадкової величини X називають таку функцію f(x), для якої виконується рівність

$$F(x) = \int_{-\infty}^{x} f(t)dt \tag{3}$$

де F(x) - функція розподілу величини X . Отже, щільність розподілу дорівнює першій похідній від функції розподілу випадкової величини у

кожній точці, в якій f(x) є неперервною, тобто

$$f(x) = F'(x) \tag{4}$$

Очевидно, що щільність розподілу розглядають тільки для неперервних величин. Графік щільності f(x) називають *кривою розподілу*.

Розглянемо властивості щільності розподілу величини X.

- 1) Щільність розподілу є невід'ємною функцією: $f(x) \ge 0$.
- 2) Якщо величина X розподілена на проміжку [a;b] , то f(x) = 0 при x < a і x > b .
- 3) Для довільної неперервної випадкової величини виконується рівність

$$\int_{-\infty}^{+\infty} f(x)dx = 1 \tag{5}$$

зокрема для розподіленої на проміжку [a; b] величини X має місце рівність:

$$\int_{a}^{b} f(x)dx = 1 \tag{5'}$$

Якщо задано щільність розподілу випадкової величини, то ймовірність попадання її значень в проміжок [a;b] визначається рівністю:

$$P(a \le X \le b) = \int_a^b f(x)dx \tag{6}$$

3 геометричної точки зору ймовірність попадання випадкової величини у проміжок [a; b) дорівнює площі криволінійної трапеції, обмеженої графіком функції y = f(x), віссю Ox і прямими x = a, x = b.

Приклад 1. Функція розподілу неперервної випадкової величини має вигляд:

$$F(x) = \begin{cases} 0, & x < 0; \\ cx^2, & 0 \le x \le 3; \\ 1, & x > 3. \end{cases}$$

Визначити невідомий параметр c та обчислити ймовірність $P(X \in [1;3))$. Записати щільність розподілу цієї величини.

<u>Розв'язання.</u> Оскільки для неперервної випадкової величини функція розподілу є неперервною, то параметр c визначаємо з умови $\lim_{x\to 3-0} F(x) =$

$$F(3)$$
, тобто $c \cdot 3^2 = 9c = 1$, звідки дістаємо: $c = \frac{1}{9}$.

Отже, функція розподілу має вигляд:

$$F(x) = \begin{cases} 0, & x < 0; \\ \frac{x^2}{9}, & 0 \le x \le 3; \\ 1, & x > 3. \end{cases}$$

Ймовірність $P(X \in [1;3))$ обчислимо за формулою (1). Дістанемо:

$$P(X\epsilon[1;3)) = P(1 \le X < 3) = F(3) - F(1) = 1 - \frac{1^2}{9} = \frac{8}{9}$$

Нагадаємо, що так само ми б визначали, наприклад, ймовірність $P(X \in (1;3))$. Щільність розподілу даної величини визначимо за формулою (4). Оскільки похідна $\left(\frac{x^2}{9}\right)' = \frac{2x}{9}$, 0' = 1' = 0 (див. таблицю похідних та правила диференціювання), то

$$F(x) = \begin{cases} 0, & x < 0; \\ \frac{2x}{9}, & 0 \le x \le 3; \\ 0, & x > 3 \end{cases} \quad \text{afo} \qquad F(x) = \begin{cases} \frac{2x}{9}, & x \in [0; 3]; \\ 0, & x \notin [0; 3]. \end{cases}$$

Приклад 2. Неперервну випадкову величину задано щільністю:

$$F(x) = \begin{cases} 0, & x < 0; \\ \frac{1}{2}sinx, & 0 \le x < \pi; \\ 0, & x \ge \pi. \end{cases}$$

Обчислити ймовірність $P\left(\frac{\pi}{6} < X < \frac{\pi}{2}\right)$ та записати функцію розподілу F(x).

<u>Розв'язання.</u> За формулою (6) обчислимо ймовірність $P\left(\frac{\pi}{6} < X < \frac{\pi}{2}\right)$. Маємо:

$$P\left(\frac{\pi}{6} < X < \frac{\pi}{2}\right)$$

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \, dx$$

$$= -\frac{1}{2} \cos x \left| \frac{\pi}{2} \right| = -\frac{1}{2} \left(\cos \frac{\pi}{2} - \cos \frac{\pi}{6} \right) = -\frac{1}{2} \left(-\frac{\sqrt{3}}{2} \right) = \frac{\sqrt{3}}{2}$$

Оскільки задана величина розподілена на проміжку $[0; \pi)$, то F(x) = 0 при x < 0 і F(x) = 1 при $x \ge \pi$. За допомогою рівності (3) визначимо вираз функції розподілу F(x) на проміжку $[0; \pi)$, дістанемо:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$= \int_{-\infty}^{0} 0 \cdot dt + \frac{1}{2} \int_{0}^{x} \sin t dt = \frac{1}{2} \left(-\cos t \Big|_{0}^{x} \right) = \frac{1}{2} (1 - \cos x)$$

Отже, функція розподілу даної величини має вигляд:

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}(1 - \cos x), & 0 \le x < \pi, \\ 1, & x \ge \pi. \end{cases}$$

Числові характеристики неперервної випадкової величини

Неперервна випадкова величина має ті самі числові характеристики, що й дискретна: *математичне сподівання, дисперсію та середнє квадратичне відхилення*. Властивості цих характеристик ми розглядали на занятті 5.

Mатематичне сподівання неперервної величини X визначають за формулою:

$$M(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Зокрема, якщо випадкова величина X розподілена на проміжку [a;b], то

$$= \int_{a}^{b} x \cdot f(x) dx. \tag{7}$$

Дисперсія неперервної випадкової величини визначається так:

$$D(X) = \int_{-\infty}^{+\infty} (x - M(X))^2 f(x) dx \quad \text{afo} \quad D(X)$$
$$= \int_{-\infty}^{+\infty} x^2 f(x) dx - (M(X))^2.$$

Зокрема, якщо величина $X \in [a; b]$, то має місце формула:

$$D(X) = M(X^{2}) - (M(X))^{2} = {}^{b}\int x^{2} f(x) dx - (M(X))^{2}$$
 (8)

Середнє квадратичне відхилення неперервної випадкової величини визначається так само, як і для дискретної. Отже,

$$\sigma(X) = \sqrt{D(X)}$$

Приклад 3. Закон розподілу НВВ задано щільністю:

$$f(x) = \begin{cases} 0, & x < -1, \\ c(x+1), & -1 \le x \le 1 \\ 0, & x > 1. \end{cases}$$

Обчислити невідомий параметр c і визначити числові характеристики M(X), D(X), $\sigma(X)$ заданої величини.

<u>Розв'язання.</u> Параметр c можна знайти, користуючись властивістю щільності. Оскільки величина розподілена на відрізку [-1;1], то c обчислимо за формулою (5'). Скориставшись таблицею інтегралів та правилами інтегрування, дістанемо:

$$1 = \int_{-1}^{1} f(x)dx$$

$$= \int_{-1}^{1} c(x+1)dx = c\left(\int_{-1}^{1} xdx + \int_{-1}^{1} dx\right)$$

$$= c\left(\frac{x^{2}}{2} + x\right) \begin{vmatrix} 1 \\ -1 \end{vmatrix} = c\left(\frac{1^{2}}{2} + 1 - \frac{(-1)^{2}}{2} - (-1)\right) = 2c,$$

звідки $c = \frac{1}{2}$. Отже, щільність має вигляд:

$$f(x) = \begin{cases} 0, & x < -1, \\ \frac{1}{2}(x+1), & -1 \le x \le 1, \\ 0, & x \ge 1. \end{cases}$$

Користуючись формулами (7) - (9), знайдемо числові характеристики даної величини.

$$M(X) = \int_{-1}^{1} x \cdot \frac{1}{2} (x+1) dx$$

$$= \frac{1}{2} \int_{-1}^{1} (x^2 + x) dx = \frac{1}{2} \left(\frac{x^3}{3} + \frac{x^2}{2} \right) \Big|_{-1}^{1} = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} \right) = \frac{1}{3}.$$

Оскільки $D(X) = M(X^2) - (M(X))^2$, то спочатку визначимо $M(X^2)$:

$$M(X^2) = \int_{-1}^{1} x^2 \cdot \frac{1}{2}(x+1) dx$$

$$= \frac{1}{2} \int_{-1}^{1} (x^3 + x^2) dx = \frac{1}{2} \left(\frac{x^4}{4} + \frac{x^3}{3} \right) \Big|_{-1}^{1} = \frac{1}{2} \left(\frac{1}{4} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} \right) = \frac{1}{3}.$$
Тоді $D(X) = \frac{1}{3} - \frac{1}{3^2} = \frac{2}{9}$, звідки $\sigma(X) = \sqrt{\frac{2}{9}} = \frac{\sqrt{2}}{3}$.

Найпоширеніші закони розподілу випадкових величин.

План

- 1. Основні закони розподілу дискретної випадкової величини (ДВВ).
 - (а) Рівномірний закон розподілу;
 - (b) Біноміальний закон розподілу;
 - (с) Закон розподілу Пуассона;
 - (d) Геометричний розподіл;
 - (е) Гіпергеометричний розподіл.

2. Основні закони розподілу неперервної випадкової величини

- (а) Рівномірний закон розподілу;
- (b) Показниковий закон розподілу;
- (с) Нормальний закон розподілу.

1. Основні закони розподілу ДВВ.

а) Рівномірний закон розподілу. Якщо випадкова величина X набуває n різних значень з однаковими ймовірностями $p(X=x_i)=\frac{1}{n}$, то вона має рівномірний закон розподілу. Наприклад, при однократному підкиданні грального кубика ймовірність випадання будь-якої кількості очок від 1 до 6 однакова і дорівнює $\frac{1}{6}$. У цьому випадку величина X (кількість очок, що випали) має рівномірний розподіл.

Якщо випадкова величина X набуває значень 1, 2, ..., n з ймовірностями $p(X=m)=\frac{1}{n}, m=\overline{1,n},$ то її числові характеристики можна обчислити так:

$$M(X) = \frac{n+1}{2}, \qquad D(X) = \frac{n^2-1}{12}$$

b) Біноміальний закон розподілу. Нехай проводиться n незалежних випробувань, у кожному з яких ймовірність появи події A дорівнює p (схема Бернуллі). Розглянемо випадкову величину X, яка визначає *число появ події* A (число успіхів) у цій серії випробувань. Отже, величина X

може набувати значень 0,1,2,...,n з ймовірностями, які обчислюють за формулою Бернуллі:

$$P(X = m) = C_n^m p^m q^{n-m}, \ q = 1 - p, \ m = 0, 1, 2, ..., n$$
(9)

У цьому випадку величина X має біноміальний закон розподілу, який характеризується двома параметрами n і p.

Для випадкової величини, яка має біноміальний закон розподілу, числові характеристики визначають за формулами:

$$M(X) = np, \ D(X) = npq, \ \sigma(X) = \sqrt{npq}$$
 (10)

с) Закон розподілу Пуассона (закон рідкісних подій). Розглянемо схему Бернуллі, в якій кількість випробувань $n \in$ великим числом, а ймовірність p події $A \in$ малим числом (p < 0,1). Тоді випадкова величина (число появ події A) набуває значень 0,1,2,...,n з ймовірностями, які обчислюють за формулою Пуассона:

$$P(X = m) = \frac{\lambda^m}{m!} e^{-\lambda}, \ \lambda = \text{np, m} = 0,1,2,...,\text{n}$$
 (11)

У цьому випадку величина X має *розподіл Пуассона* (з параметром λ = np), для якого числові характеристики визначаються так:

$$M(X) = D(X) = \lambda, \ \sigma(X) = \sqrt{\lambda}$$
 (12)

Цей розподіл використовується у задачах статистичного контролю якості виробів, у теорії надійності, у теорії масового обслуговування, у страховій справі.

Зокрема, ймовірність того, що подія A відбудеться m разів за час t, визначають за формулою $P(X=m)=\frac{(\lambda t)^m}{m!}e^{-\lambda}$, де $\lambda=np$ - середнє число появи події A за одиницю часу. За цією формулою можна обчислювати ймовірність кількості телефонних дзвінків за час t, ймовірність числа лампочок, що перегорять за час t.

d) Геометричний розподіл. Нехай проводиться серія незалежних випробувань, у кожному з яких ймовірність появи події A дорівнює p, при цьому $q = p(\bar{A}) = 1 - p$. Розглянемо випадкову величину X, яка дорівнює кількості випробувань до першої появи події A. Отже, величина X може набувати значень 1,2,... з ймовірностями:

$$P(X = m) = pq^{m-1}, m = 1,2,...$$
 (13)

У цьому випадку випадкова величина має геометричний закон

розподілу, а числові характеристики обчислюють за фор-мулами:

$$M(X) = \frac{1}{p}, \qquad D(X) = \frac{q}{p^2}, \qquad \sigma(X) = \frac{\sqrt{q}}{p}$$
 (14)

Зауважимо, що в цьому розподілі множина значень випадкової величини може бути як скінченою, так і нескінченою. Якщо ϵ певні обмеження для величини X, то вона ма ϵ скінчену множину значень 1,2,..., n . Тоді при обчисленні ймовірності P (X=n) враховується можливість того, що подія A так і не відбудеться.

е) *Гіпергеометричний розподіл.* Розглянемо множину, яка містить N елементів, серед яких M елементів володіють певною властивістю. Із цієї множини навмання вибирають n елементів. Тоді випадкова величина X (кількість вибраних елементів із вказаною властивістю) може набувати значень 0,1,2,...,n з ймовірностями

$$P(X=m) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}, \ m = 0, 1, ..., n.$$
 (15)

Така випадкова величина має *гіпергеометричний розподіл*, причому числові характеристики обчислюють за формулами:

$$M(X) = \frac{M_n}{N}, \ D(X) = \frac{M_n(N-M)}{N^2} \cdot \frac{N-n}{N-1}$$
 (16)

1.Основні закони розподілу НВВ.

а) Рівномірний закон розподілу

Неперервна випадкова величина, розподілена на проміжку [a, b], має рівномірний розподіл, якщо її щільність є сталою на цьому проміжку, тобто:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a;b], \\ 0, & x \notin [a;b]. \end{cases}$$
 (17)

У цьому випадку функція розподілу величини X має вигляд:

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b, \\ 1, & x > b. \end{cases}$$
 (18)

Для рівномірно розподіленої неперервної випадкової величини

ймовірність попадання її значень у проміжок $(\alpha, \beta) \subset [a; b]$ визначається за формулою:

$$P(\alpha < X < \beta) = \frac{\beta - \alpha}{b - a}.$$
 (19)

У цьому випадку числові характеристики величини X обчислюють так:

$$M(X) = \frac{a+b}{2}, \qquad D(X) = \frac{(b-a)^2}{12}, \qquad \sigma(X) = \frac{b-a}{\sqrt{12}}.$$
 (20)

Прикладом рівномірно розподіленої випадкової величини може бути час очікування транспорту на зупинці, час очікування телефонного дзвінка, похибка при зважуванні предметів.

2. Показниковий (експоненціальний) закон розподілу

Неперервна випадкова величина має *показниковий розподіл* з параметром $\lambda > 0$, якщо її щільність має вигляд:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$
 (21)

Функцію розподілу величини X з показниковим розподілом визначають так:

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$
 (22)

У цьому випадку ймовірність попадання випадкової величини у проміжок (α, β) , де $\alpha > 0$, $\beta > 0$, обчислюють за формулою:

$$P(\alpha < X < \beta) = e^{-\lambda \alpha} - e^{-\lambda \beta}$$
 (23)

Числові характеристики величини з показниковим розподілом визначають так:

$$M(X) = \frac{1}{\lambda}, \qquad D(X) = \frac{1}{\lambda^2}, \qquad \sigma(X) = \frac{1}{\lambda}.$$

Показниковий розподіл НВВ розглядають в теорії масового обслуговування, зокрема для визначення кількості дзвінків на телефонну станцію, заявок в системі обслуговування, часу неперервної роботи приладів.

3. Нормальний закон розподілу

Неперервна випадкова величина має *нормальний розподіл* (розподіл Гауса) з параметрами a і σ (σ >0), якщо її щільність має вигляд:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-a)^2}{2\sigma^2}}.$$
 (24)

Зауважимо, що параметри нормального розподілу визначають *числові* характеристики випадкової величини, а саме:

$$M(X) = a,$$
 $D(X) = \sigma^2,$ $\sigma(X) = \sigma.$ (25)

Графік щільності нормально розподіленої випадкової величини називають *кривою нормального розподілу*, причому параметри a і σ визначають положення і форму цієї кривої. У точці x=a функція f(x) має максимум $f(a)=\frac{1}{a\sqrt{2\pi}}$. Графік цієї функції симетричний відносно прямої x=a, причому на проміжку $(-\infty;a)$ функція зростає, а на проміжку $(a;+\infty)$ спадає. Форма кривої залежить від параметра σ , а саме: при збільшенні σ графік щільності стає більш розтягнутим вздовж осі Ox (горизонтальної асимптоти кривої). Зауважимо, що з властивості щільності (5) випливає: площа фігури, обмеженої кривою розподілу і віссю Ox, дорівнює 1.

При $a=0,\ \sigma=1$ нормальний розподіл називають *нормованим* або *стандартним*. У цьому випадку щільність $f(x)=\frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}}$ є функцією

Гауса (див. заняття 4).

Функція розподілу нормально розподіленої випадкової величини має вигляд:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{(t-a)^2}{2\sigma^2}} dt.$$
 (26)

Оскільки ця функція не є елементарною, то для зручності розглядають функцію Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{t^2}{2}} dt$ (див. заняття 4), для якої має місце співвідношення $F(x) = \frac{1}{2} + \Phi\left(\frac{x-a}{\sigma}\right)$.

Нагадаємо, що значення функції Лапласа наведено в таблиці (додаток 1), крім того для $\Phi(x)$ мають місце такі властивості:

$$\Phi(-x) = -\Phi(x)$$
, $\Phi(0) = 0$, $\Phi(x) = 0.5$ для всіх $x \ge 5$.

Для нормально розподіленої випадкової величини ймовірність попадання її значень у проміжок (α, β) визначається за формулою:

$$P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right). \tag{27}$$

3 формули (19) випливає, що для $X \in (a - \delta, a + \delta)$ має місце рівність:

$$P(|X - a| < \delta) = P(a - \delta < X < a + \delta) = 2\Phi\left(\frac{\delta}{\sigma}\right). \tag{28}$$

Звідси випливає, що ймовірність попадання в проміжок (a–3 σ , a+3 σ):

$$P(|X - a| < 3\sigma) = P(X\epsilon(a - 3\sigma, a + 3\sigma)) = 2\Phi\left(\frac{3\sigma}{\sigma}\right) = 2\Phi(3) \approx 0.9973.$$

Отже, нормально розподілена випадкова величина попадає у проміжок $(a-3\sigma, a+3\sigma)$ з ймовірністю, близькою до одиниці, тобто подія $X \in (a-3\sigma, a+3\sigma)$ є практично достовірною $(npaвило\ mpьох\ curm)$. Нормальний розподіл розглядають при систематичних відхиленнях випадкової величини від свого середнього значення, тобто у тих випадках, коли на величину впливає багато випадкових факторів. Наприклад, нормальний розподіл має випадкова похибка вимірювання або відхилення під час стрільби по мішені.