数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

同步时序逻辑电路设计方法

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征
 無发器特征
 無发器物励(<mark>状态转移真值表</mark>)
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例1: 利用T触发器设计一个同步模8可逆计数器

确定T₃: 看Q₃ⁿ→Q₃ⁿ⁺¹ 确定T₂: 看Q₂ⁿ→Q₂ⁿ⁺¹ 确定T₁: 看Q₁ⁿ→Q₁ⁿ⁺¹

X=0: 加法; X=1: 减法

Z:进位及借位

1. 原始状态图及状态表

需要3个T触发器

T触发器驱动表

输入 端T	次态 Q _{n+1}
0	Q_n
1	$\bar{\mathbf{Q}}_{n}$

2. 状态转换真值表

	输	入	顼	! 态		次态			输入		输出
	X	Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	T_3	T ₂	T ₁	Z
	0	0	0	0	0	0	1	0	0	1	0
	0	0	0	1	0	1	0	0	1	1	0
	0	0	1	0	0	1	1	0	0	1	0
	0	0	1	1	1	0	0	1	1	1	0
	0	1	0	0	1	0	1	0	0	1	0
	0	1	0	1	1	1	0	0	1	1	0
	0	1	1	0	1	1	1	0	0	1	0
	0	1	1	1	0	0	0	1	1	1	1
	1	0	0	0	1	1	1	1	1	1	1
	1	0	0	1	0	0	0	0	0	1	0
	1	0	1	0	0	0	1	0	1	1	0
	1	0	1	1	0	1	0	0	0	1	0
	1	1	0	0	0	1	1	1	1	1	0
	1	1	0	1	1	0	0	0	0	1	0
	1	1	1	0	1	0	1	0	1	1	0
	1	1_	1_	1	1	1	0	0	0	1	0

3. 卡诺图化简

4. 电路实现

$$T_3 = \overline{X} Q_2^n Q_1^n + X \overline{Q_2^n} \overline{Q_1^n}$$

$$T_2 = \overline{X} Q_1^n + X \overline{Q_1^n}$$

$$T_1 = 1$$

$$Z = X \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} + \overline{X} Q_3^n Q_2^n Q_1^n$$

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- ■自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例2: 利用D触发器设计一个自动售卖机

- 只接收硬币: 0.5 ¥ , 1 ¥
- 每次投币只接收一枚硬币
- 机器收到1.5 ¥,给出一瓶饮料
- 机器收到2.0 字, 给出一瓶饮料, 找回0.5 字

 $X_1 X_{0.5} = 00: 0$

 $X_1 X_{0.5} = 01: 0.5 Y$

 $X_1 X_{0.5} = 10: 1 Y$

Y=1/0: 给/不给 饮料

Z=1/0: 找零/不找零

1. 原始状态图及状态表

① 状态设定

 S_0 —初始状态,无投币

S₁—机器收到0.5 ¥

S2—机器收到1.0 ¥ (2个 0.5 ¥, or 1个1.0 ¥)

Solution 1:

Mealy circuit

if (机器又收到1个0.5 Y)

then Y=1,且 Z=0, 回到 S₀

Else If (机器又收到1个1 ¥)

then Y=1, 且Z=1,回到S₀

② 状态转换分析

Solution 1: Mealy circuit

③ Mealy 状态图

④ 状态表

现态				
Sn	$X_1X_{0.5}=00$	$X_1X_{0.5} = 01 X_1X_{0.5} = 0$		X ₁ X _{0.5} =11
S ₀	S ₀ / 00	S ₁ /00	S ₂ / 00	X/ XX
S ₁	S ₁ / 00	S ₂ /00	S ₀ / 10	X/XX
S ₂	S ₂ /00	S ₀ / 10	S ₀ / 11	X/XX

④ 状态表

现态	S ⁿ⁺¹ /Z								
Sn	$X_1X_{0.5}=00$	X ₁ X _{0.5} =01	$X_1X_{0.5}=10$	$X_1X_{0.5}=11$					
S ₀	S ₀ / 00	S ₁ /00	S ₂ / 00	X/ XX					
S ₁	S ₁ / 00	S ₂ /00	S ₀ / 10	X/XX					
S ₂	S ₂ /00	S ₀ /10	S ₀ / 11	X/XX					

2. 状态化简

3. 状态分配

 $S_0 - 00$ $S_1 - 01$ $S_2 - 10$

需要2个D触发器

4. 状态转换真值

					L						
	辅	<u> </u>	现	态	次	态	输	λ	输	出	
	X ₁	X _{0.5}	$\mathbf{Q_2}^{\mathbf{n}}$	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	D_2	D_1	Υ	Z	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	1	0	1	0	0	
	0	0	1	0	1	0	1	0	0	0	
[0	0	1	1	Х	Χ	X	X	Х	Х	
1	0	1	0	0	0	1	0	1	0	0	Γ
	0	1	0	1	1	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	L
	0	1	1	1	Х	Χ	X	X	Х	Х	
1	1	0	0	0	1	0	1	0	0	0	ſ
	1	0	0	1	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	1	1	
$\left(\right $	1	0	1	1	X	Χ	X	X	X	X	
1	1	1	0	0	Х	Χ	Х	Х	Х	Х	١
	1	1	0	1	X	X	X	X	Х	Х	
	1	1	1	0	X	X	X	X	Х	Х	
U	1	1	1	1	X	X	X	X	X	Х	

确定D₂:看Q₂ⁿ⁺¹确定D₁:看Q₁ⁿ⁺¹

5. 卡诺图化简

$$D_2 = \overline{X}_1 \overline{X}_{0.5} Q_2^n + Q_1^n X_{0.5} + X_1 \overline{Q}_1^n \overline{Q}_2^n$$

$$\mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_1^{\ n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{\ n} \overline{\mathbf{Q}}_2^{\ n}$$

$$Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$$

n Q ₁n				
0Ò	01	11	10	
0	0	Х	0	
0	0	Х	0	
Х	Х	Х	Х	
0	0	Х	1	
	0 0 X	00 01 0 0 0 0 X X	00 01 11 0 0 X 0 0 X X X X	

$$Z = X_1Q_2^n$$

6. 电路实现

电路需要预置

7. 检查无关项

无关状态: Q₂nQ₁n=11 X₁X_{0.5} 分别为 00 ,01,10时,带入计算 $\bigcap_{2} \mathbf{Q}_{2}^{n+1} = \mathbf{D}_{2} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0.5} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{1} \mathbf{X}_{0.5} + \mathbf{X}_{1} \overline{\mathbf{Q}}_{1}^{n} \overline{\mathbf{Q}}_{2}^{n}$ $\begin{cases} \mathbf{Q}_1^{n+1} = \mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n} \end{cases}$ $Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$ $Z = X_1Q_2^n$ $X_1X_{0.5} / YZ$ 01/00 00/00 00 10/10 40/00 01/10 01/00 启动 10/11 01110 00/00 00/00

1. 原始状态图及状态表

① 状态设定(标记收到的钱数)

 S_0 —初始状态,机器收到0 Y

S₁—机器收到0.5 ¥

S。—机器收到1.0 ¥

S3—机器收到1.5 ¥

S₄—机器收到2.0 ¥

Solution 2:

Moor circuit

③ Moor 状态表

现态		输出		
S _n	$X_1 X_2 = 00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	YZ
S ₀	S ₀	S ₁	S ₂	00
S ₁	S ₁	S ₂	S ₃	00
S ₂	S ₂	S ₃	S ₄	00
S ₃	S ₀	S ₁	S ₂	10
S ₄	S ₀	S₁	S ₂	11

② Moor 状态图

2. 状态化简

3. 状态分配

Q_2				
Q_3^n	00	01	11	10
0	S ₀	S ₃		S ₁
1	S ₄			S ₂

需要3个	D触发	器
------	-----	---

S ₀ - S ₁ - S ₂ - S ₃ -	000 010 110 001
S ₄ -	 100

S₂ — 110

 $S_3 - - 001$

S₄ —— 100

4. 状态转换真值表

辅	ì入		现	态		次态		输	λ		输	出
X_1	$X_{0.5}$	Q_3^n	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{n}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	D_3	D_2	D_1	Υ	Ζ
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	0	1	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0	1	1
1	0	0	0	0	1	1	0	1	1	0	0	0
1	0	0	1	0	0	0	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	1	0	1	1
1	1	X	X	X	X	X	X	X	X	X	X	X

5. 卡诺图化简

Q.	n Q 1n	X_1	=0	
$X_{0.5}Q_3$	00	01	11	10
00	0	0	X	0
01	0	X	X	0
11	0	X	X	1
10	0	0	Х	0
$X_{0.5}Q_3$	nQ ₁ n	X 01	∑₁ =1 11	10
00	0	0	x	بِـُـا
01	0	Х	Х	0
11	Х	X	X	Χ
10	X	X	X	X

$$D_3 = \overline{X}_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_{0.5}Q_2^n + X_1\overline{Q}_2^n$$

$$D_2 = \overline{X}_{0.5}Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5}Q_2^n$$

$$D_1 = X_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_1Q_2^n$$

$$Y = \overline{Q}_2^n Q_3^n + Q_1^n$$

$$Z = \overline{Q}_2^n Q_3^n$$

X

X

X

X

11

10

$$\begin{aligned}
& D_3 = \overline{X}_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_{0.5} Q_2^n + X_1 \overline{Q}_2^n \\
& D_2 = \overline{X}_{0.5} Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5} Q_2^n \\
& D_1 = X_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_1 Q_2^n \\
& Y = \overline{Q}_2^n Q_3^n + Q_1^n \\
& Z = \overline{Q}_2^n Q_3^n
\end{aligned}$$

- 6. 电路实现(略)
- 7. 检查无关项(略)

Moor型电路与Mealy型电路比较

- ▶ Moor型电路中的状态总数相对要多 一些,需要使用较多的触发器资源。
- Moor型电路的输出只与状态有关, 输出没有毛刺。

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例3:利用JK触发器设计一个时序锁

- □ 输入: X₁X₂, 输出: Z
- □ 该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11, 时序锁从状态 R→B→C, 并开锁(Z=1)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00,都将返回状态 R

1. 原始状态图及状态表

① 状态设定

R—初始状态,输入00

B—输入00后,再输入01

C-输入00、01后, 再输入11, 且Z=1

E—错误状态

现态	次态 <i>S</i> _{n+1}				
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 11$	$X_1 X_2 = 10$	Z
R	R	В	E	E	0
В	R	E	С	E	0
С	R	E	E	E	1
		_	_	_	

R

现态		次态 <i>S</i> _{n+1}				
S _n	$X_1X_2 = 00$	$X_1 X_2 = 01$	$X_1 X_2 = 11$	$X_1X_2 = 10$	Z	
R	R	В	E	E	0	
В	R	E	С	E	0	
С	R	E	E	E	1	
E	R	E	E	E	0	

2. 状态化简

3. 状态分配

需要2个JK触发器

R: 00, B: 01

E: 10, C: 11

_		•	<u> </u>		**						
	输	λ_	现	<u> </u> 态	次	态		输	<u>λ</u>		输出
	X_1	X_2	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{\mathbf{n}}$	Q_2^{n+1}	$\mathbf{Q_1}^{n+1}$	J ₂	K ₂	J₁	K ₁	Z
	0	0	0	0	0	0	0	Х	0	Х	0
	0	0	0	1	0	0	0	Х	X	1	0
	0	0	1	0	0	0	Х	1	0	X	0
	0	0	1	1	0	0	Х	1	X	1	1
	0	1	0	0	0	1	0	Х	1	X	0
	0	1	0	1	1	0	1	Х	X	1	0
	0	1	1	0	1	0	X	0	0	X	0
	0	1	1	1	1	0	X	0	X	1	1
	1	0	0	0	1	0	1	Х	0	X	0
	1	0	0	1	1	0	1	Х	X	1	0
	1	0	1	0	1	0	X	0	0	X	0
	1	0	1	1	1	0	X	0	X	1	1
	1	1	0	0	1	0	1	Х	0	X	0
	1	1	0	1	1	1	1	Х	X	0	0
	1	1	1	0	1	0	X	0	0	X	0
	1	1	1_	1	1	0	X	0	X	1	1

5. 卡诺图化简

$$J_2 = X_2 Q_1^n + X_1$$

$$K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1$$

$$K_2 = \overline{X}_2 \overline{X}_1$$

Q_2	${}^{n}Q_{1}{}^{n}$			
X_1Q_2	ⁿ Q ₁ ⁿ 00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$Z = Q_2^n Q_1^n$$

$X_1X_2^{Q_2}$	ⁿ Q ₁ ⁿ 00	01	11	10
00	0	X	Х	0
01	٦	X	X	0
11	0	X	X	0
10	0	X	X	0
,				

$$\mathbf{J}_1 = \overline{\mathbf{X}}_1 \mathbf{X}_2 \overline{\mathbf{Q}}_2^{\mathbf{n}}$$

6. 电路实现

$$\begin{cases}
J_2 = X_2 Q_1^n + X_1 \\
K_2 = \overline{X}_2 \overline{X}_1 \\
J_1 = \overline{X}_1 X_2 \overline{Q}_2^n \\
K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1 \\
Z = Q_2^n Q_1^n
\end{cases}$$

密码锁

- ■一维开锁:密码正确
- ■二维开锁:有限时间+密码正确
- ■三维开锁:

有限时间+有限按键次数+密码正确

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例4:利用JK触发器设计一个同步二进制串行加法器

- 1. 原始状态图及状态表
 - ① 设加法器内部状态

a---- 无进位

b---- 有进位

② Mealy 状态图

③ Mealy 状态表

现态	Q ⁿ⁺¹ / Z				
Qn	$X_1X_2 = 00$	$X_1X_2 = 01$	$X_1X_2=10$	$X_1X_2=11$	
а	a/ 0	a/1	a/1	b/0	
b	a/1	b/0	b/0	b/1	

- 2. 状态化简 3. 状态分配 a=0, b=1
- 4. 状态转换真值表

辅	入:	现态	次态	输	入	输出
X ₁	X ₂	Qn	Qn+1	J	K	Ζ
0	0	0	0	0	X	0
0	0	1	0	X	1	1
0	1	0	0	0	X	1
0	1	1	1	X	0	0
1	0	0	0	0	X	1
1	0	1	1	X	0	0
1	1	0	1	1	X	0
1	1	1	1	X	0	1

5. 卡诺图化简

6. 电路实现

方案2: 如何用一位全加器实现?

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例5: 用D触发器设计一个串行输入的8421BCD码误码检测器要求:

- 8421BCD码低位在前、高位在后串行地加到检测器的输入端。
- 电路每接收一组代码,即在收到第4位代码时判断。若是错误代码,则 输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码。

1. 原始状态图及状态表

现态	Qn+	⁻¹ / Z	
Qn	X=0	X=1	
Α	B/0	C/0	
В	D/0	E/0	
C	F/0	G / 0	
D	H/0	1/0	
Е	J/0	K/0	
F	L/0	M / 0	
G	N/0	P/0	
<u>{</u>	A/0	A/0	
	A/0	A/1	L
	A/ 0	A/4	L
K	A/0	A/1	
	A/0	A/0	
- M-	A/0-	A/1	
Ņ_	A/Q_	A/1	L
P.	A/0-	- A / 1	

2. 状态化简

	现态	Qn+		
	Qn	X=0	X=1	
>	Α	B/0	C/0	
	В	D/0	E/0	
	С	F/0	G / 0	
_	D	-H/0-	- I/ 0	
		1/0	1/0	
	F-	- H / O-	- I/ 0 -	
	G	1/0	2	
	Н	A/0	A/0	
	I	A/0	A / 1	
		•		

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
Α	B/0	C/0	
В	D/0	E/0	
С	D/0	E/0	
D	H/0	1/0	
E	1/0	1/0	
Н	A/0	A/0	
Ī	A / 0	A / 1	

2. 状态化简

现态	Qn+1/ Z	
Qn	X=0	X=1
Α	B/0	B/0
В	D/0	E/0
D	H/0	1/0
E	1/0	1/0
Н	A/0	A/0
Ī	A / 0	A / 1

3. 状态分配

'规则1:次态相同,现态编码应相邻

HI, DE 应相邻

规则2: 同一现态对应的次态应给予相邻编码

DE, HI 应相邻

规则3:输出相同,现态编码应相邻

ABDEH应相邻

A: 000; B: 001 D: 011; I: 010 E: 111; H: 110

4. 状态转换真值表

确定D₃: 看Q₃ⁿ⁺¹ 确定D₂: 看Q₂ⁿ⁺¹

0

朋 疋V2:	有以 ₂ ''''
确定D₁:	看Q ₁ n+1

	T- 1/	(确定D ₁ : 有Q ₁ "")									
输入及现态						次态		<i>\</i>	输入	输	出
	X	Q_3^n	$\mathbf{Q_2}^{\mathbf{n}}$	$\mathbf{Q_1}^{\mathrm{n}}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	D_3	D ₂	D_1	Z
	0	0	0	0	0	0	1	0	0	1	0
	0	0	0	1	0	1	1	0	1	1	0
	0	0	1	0	0	0	0	0	0	0	0
	0	0	1	1	1	1	0	1	1	0	0
	0	1	0	0	X	X	X	X	X	X	X
	0	1	0	1	X	X	X	X	Х	X	X
	0	1	1	0	0	0	0	0	0	0	0
	0	1	1	1	0	1	0	0	1	0	0
	1	0	0	0	0	0	1	0	0	1	0
	1	0	0	1	1	1	1	1	1	1	0
	1	0	1	0	0	0	0	0	0	0	1
	1	0	1	1	0	1	0	0	1	0	0
	1	1	0	0	X	X	X	X	X	X	X
	1	1	0	1	X	X	X	X	Х	X	X
	1	1	1	0	0	0	0	0	0	0	0
ı	_	_	_	_	_		_	l _	l _	l _	_

0

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
Α	B/0	B/0			
В	D/0	E/0			
D	H/0	1/0			
E	1/0	1/0			
Н	A/0	A/0			
	A / 0	A / 1			

5. 卡诺图化简

$$\mathbf{D}_3 = \mathbf{Q}_3^n \mathbf{Q}_2^n \mathbf{Q}_I^n \overline{X} + X \mathbf{Q}_2^n \mathbf{Q}_I^n$$

$$D_2 = Q_1^n$$

$$D_1 = \overline{Q_2^n}$$

 $Z = X Q_3^n Q_2^n Q_1^n$

6. 电路实现

7. 无关项检查

将无关状态 $Q_3^nQ_2^nQ_1^n=100和101$ 分别代入次态方程和输出方程计算

电路可以自启动

利用触发器设计时序逻辑——实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

例6: 利用T触发器设计一个串行输入的奇校验检测器

② Moor 状态图

③状态表

现态	次态	输出	
Qn	X=0	X=1	Z
So	S ₀	S ₁	0
S ₁	S ₁	S ₀	1

1. 原始状态图及状态表

① 状态设定

S₀——表示收到偶数个"1",初始为0个"1"

S₁──表示收到奇数个"1"

2. 状态化简

3. 状态分配 S₀: 0; S₁: 1

4. 状态转换真值表

输入	现态	次态	输入	输出
X	Qn	Q _{n+1}	Т	Z
0	0	0	0	0
0	1	1	0	1
1	0	1	1	0
1	1	0	1	1

5. 卡诺图化简

 $T=X; Z=Q^n$

6. 电路实现

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- ※更复杂的同步时序逻辑设计

更复杂的同步时序设计_例7

例7:利用D触发器设计一个同步时序的码制转换器,将串行输入的8421BCD码转换为余3码。

■ 转换器的输入和输出都是最低位优先

		X nput BCD)			<i>Z</i> Outp		
t_3	t_2	t ₁	t_0	t_3	t_2	t ₁	t_0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0
			0				1
			1				0

更复杂的同步时序设计_例7

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

t ₁ t ₀ 时刻 输入	t ₁ t ₀ 时刻 输出
00	1 1
01	00
10	01
11	1 0

t ₂ t ₁ t ₀ 时刻 输入	t ₂ t ₁ t ₀ 时刻 输出
000	011
001	100
010	101
011	110
100	111
101	000
110	001
111	010

t ₃ t ₂ t ₁ t ₀ 时刻 输入	t ₃ t ₂ t ₁ t ₀ 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100

		X				Z		
Input					Output			
		BCD)					ss-3)	
t_3	t_2	t_1	t_0		t_3	t_2	t_1	t_0
0	0	0	0		0	0	1	1
0	0	0	1		0	1	0	0
0	0	1	0		0	1	0	1
0	0	1	1		0	1	1	0
0	1	0	0		0	1	1	1
0	1	0	1		1	0	0	0
0	1	1	0		1	0	0	1
0	1	1	1		1	0	1	0
1	0	0	0		1	0	1	1
1	0	0	1		1	1	0	0

更复杂的同步时序设计_例7

1. 原始状态图及状态表

 t_3

- □ t₀时刻: 输入为0, 输出为1;输入为1, 输出为0
- $t_1 \sim t_3$ 时刻: 单纯看没有规律,要联合前一时刻的输入一同来看

<i>t</i> ₁ <i>t</i> ₀ 时刻 输入	<i>t₁ t₀时刻</i> 输出
00	1 1
01	00
10	0 1
11	1 0

t ₂ t ₁ t ₀ 输。		<i>t₂t₁t₀时刻</i> 输出
00	0	011
00	1	100
01	0	10 1
01	1	110
10	0	111
10	1	000
11	0	001
11	1	010

$t_0 = 0$ Reset $t_0 = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
% 1/1 1% 1% 1% 1% 1% 1% 1%

t ₃ t ₂ t ₁ t ₀ 时刻 输入	t ₃ t ₂ t ₁ t ₀ 时刻 输出
0000	0011
0001	0100
0010	0101
0011	0110
0100	0111
0101	1000
0110	1001
0111	1010
1000	1 011
1001	<mark>1</mark> 100

2. 状态化简

			·			
l	Input Sequence				_	_
	Received				Preser	
	(Least Significant	Present	Next Sta	ate	Output	(Z)
Time	Bit First)	State	X = 0	1	X = 0	1
$\overline{t_0}$	reset	A	В	\sim	1	0
_	0	В	D	F	1	0
<i>t</i> ₁	1	С	E	G	0	1
	00	D	Н	L	0	1
	01	E	/	M	1	0
t_2	10	F	J	N	1	0
	11	G	K	Ρ	1	0
	000	Н	A	Α	0	1
l	001	1	A	A	0	1
l	010	J	A	_	0	_
_	011	K	A	_	0	_
t_3	100	L	A	_	0	_
I	101	M	A	_	1	_
I	110	N	A	_	1	_
	111	P	Α	_	1	

		Next		Present	
	Present	State		Output	(Z)
Time	State	X = 0	1	X = 0	1
t_0	Α	В	С	1	0
$\overline{t_1}$	В	D	Ε	1	0
	С	Ε	Ε	0	1
$\overline{t_2}$	D	Н	Н	0	1
	Ε	Н	Μ	1	0
$\overline{t_3}$	Н	Α	Α	0	1
	М	Α	_	1	_

3. 状态分配

		Next		Present	
	Present	Stat	e	Output (2	
Time	State	X = 0	1	X = 0	1
t_0	Α	В	С	1	0
t_1	В	D	Ε	1	0
	С	Ε	Ε	0	1
$\overline{t_2}$	D	Н	Н	0	1
	Ε	Н	Μ	1	0
t ₃	Н	Α	Α	0	1
	М	Α	_	1	_

4. 状态转换真值表

		$Q_1^+Q_2^+Q_3^+$		Z	
	$Q_1Q_2Q_3$	X = 0	X = 1	X = 0	<i>X</i> = 1
A	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	1 1 0	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Η	0 1 1	000	000	0	1
Μ	010	000	X X X	1	Х
_	0 0 1	XXX	XXX	Х	Х

4. 状态转换真值表

		$Q_1^+Q_2^+Q_3^+$		Z	
	$Q_1Q_2Q_3$	<i>X</i> = 0	X = 1	X = 0	<i>X</i> = 1
Α	000	100	101	1	0
В	100	1 1 1	110	1	0
C	101	110	110	0	1
D	111	0 1 1	0 1 1	0	1
Ε	110	0 1 1	010	1	0
Н	0 1 1	000	000	0	1
Μ	010	000	X X X	1	Х
_	0 0 1	XXX	XXX	Х	Х

5. 卡诺图化简

 $D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2'$

 $Z = X'Q'_3 + XQ_3$

6. 电路实现

7. 无关项检查

将无关状态 $Q_3Q_2Q_1=100$ 代入次态方程和输出方程计算

$$\begin{cases} D_1 = Q_1^+ = Q_2' \\ D_2 = Q_2^+ = Q_1 \\ D_3 = Q_3^+ = Q_1 Q_2 Q_3 + X' Q_1 Q_3' + X Q_1' Q_2' \\ Z = X' Q_3' + X Q_3 \end{cases}$$

电路可以自启动

例8: 迭代电路设计——利用D触发器设计一个比较器,能对两个n位

1. 原始状态图及状态表

对于第 i 个单元,设状态——

 $S_0: X = Y$ 时

S₁: X > Y 时

S₂: X < Y 时

Z₂、Z₃、Z₃分别取值为1

- □由n个比较子单元(cell)构成
- □ 从高位到低位,逐位对应比较,并将前一位比 较的结果传送给下一位
- □ 第i个单元的比较结果: X = Y, X > Y, or X < Y.

1. 原始状态图及状态表

			S_{i+}	1		
	S_i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
X = Y	S_0	<i>S</i> ₀	S ₂	S ₀	S ₁	0 1 0
X > Y	S_1	S ₁	S_1	S_1	S_1	0 0 1
X < Y	S_2	S_2	S_2	S_2	S_2	1 0 0

在第i 个(前一个)单元 有比较结果的前提下,根 据输入取值,可以确定第 i+1个单元的比较结果

对于第 i 个单元, 设状态-

 $S_0: X = Y$ 时 $S_1: X > Y$ 时 $S_2: X < Y$ 时

Z, 、Z, 、Z, 分别取值为1

2. 状态化简

3. 状态分配

 $S_0: 00$

S₁: 01

需要两个触发器, 用 a,b来表示

 $S_2: 10$

4. 状态转换真值表

	а				
a _i b _i	$x_i y_i = 00$	01	11	10	$Z_1 Z_2 Z_3$
0 0	00	10	00	01	0 1 0
0 1	01	01	01	01	0 0 1
10	10	10	10	10	1 0 0

5. 卡诺图化简

第 i 个子单元的电路实现

6. 电路实现

7. 无关项检查 (略)

例9:利用D触发器设计一个同步时序电路,当输入序列以010或1001 结尾时(允许重叠检测),输出Z为1,否则Z=0.

1. Mealy型原始状态图构建

(1) 子序列010检测的状态设定

 S_0 —初始复位状态,表示没有任何输入

S₁──表示序列以"0"结束

S₂——表示序列以"01"结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

(1) 010检测的局部状态图

(2) 子序列1001检测的状态设定

 S_0 —初始复位状态,表示没有任何输入

S₁──表示序列以 "0" 结束

S。——表示序列以"01"结束

S₃——表示序列以"010"结束,此时输出标志 Z=1。

S。——表示接收到1001序列的第一个"**1"**

S₅——表示序列以"100"结束。

重叠检测: 010中的10

可以被1001检测重用

重叠检测: 010中的10

可以被1001检测重用

(2) 子序列1001检测的状态设定

 S_0 —初始复位状态,表示没有任何输入

S₁──表示序列以 "0" 结束

S。——表示序列以"01"结束

S。——表示序列以"010"结束,此时输出标志 Z=1。

S₄——表示接收到1001序列的第一个"**1"**

S₅——表示序列以"100"结束。

- 2. 状态化简(略)
- 3.状态分配(略)
- 4.状态转换真值表(略)
- 5.卡诺图化简(略)
- 6. 电路实现(略)

重叠检测: 1001中的 01可以被010检测重用

(3)010及1001检测的完整状态图

例10:某同步时序电路如下所示,按图接线后,试验得到如下的循环状态。经检查:触发器工作正常,试分析故障所在。

1. 获得正确状态图

① 输入方程

$$J_0 = \overline{Q_2}^n$$
, $K_0 = 1$
 $J_1 = K_1 = Q_0^n$
 $J_2 = Q_0^n Q_1^n$, $K_2 = 1$

② 次态方程

$$Q_0^{n+1} = \overline{Q}_0^n \overline{Q}_2^n$$

$$Q_1^{n+1} = Q_1^n \oplus Q_0^n$$

$$Q_2^{n+1} = Q_0^n Q_1^n \overline{Q}_2^n$$

③ 正确的状态转换图

④ 电路功能:模5加法计数器,可自启动

2. 故障分析

① 触发器工作正常: 说明——电源和地线接触良好、时钟信号CP正常送入 故障只可能在进位链或驱动回路中

② 分析各触发器状态: 次态方程 $Q_0^{n+1} = \overline{Q_0}^n \overline{Q_2}^n$ 触发器FF1 $Q_1^{n+1} = Q_1^n \oplus Q_0^n$ 没有问题 $Q_2^{n+1} = Q_0^n Q_1^n \overline{Q_2}^n$ 100 — 011

2. 故障分析

② 分析各触发器状态:

结论:

接入,

2. 故障分析

③ 针对触发器0分析:

?

K₀接触不良?

J₀接触不良?

TTL电路管脚悬空 等效为高电平1

 \overline{Q}_2 没有接入, J_0 悬 空等效为高电平1 ⇒ K₀没问题

触发器变成T', 符合故障现象

Q₂没有

J₀悬空

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- ■奇偶校验器
- 更复杂的同步时序逻辑设计