Федеральное	агентство	по об	бразованию
- 7 1			

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Матрицы, определители и системы линейных уравнений

Методические указания к решению задач

Санкт-Петербург Издательство СПбГЭТУ «ЛЭТИ» 2006

Матрицы, определители и системы линейных уравнений: Методические указания к решению задач / Сост.: Е. А. Толкачева, М. Н. Абрамова, А. И. Куприянов. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2006. 32 с.

Содержат примеры решения основных типов задач элементарной линейной алгебры. Разобраны различные методы решения этих задач.

Предназначены для студентов-заочников всех специальностей.

Утверждено редакционно-издательским советом университета в качестве методических указаний При изучении курса высшей математики, включающего наряду с другими разделами матрицы, определители и системы линейных уравнений, делается упор на умение студента самостоятельно решать задачи с использованием различных методов. Поэтому настоящие методические указания призваны помочь студентам-заочникам младших курсов в такой самостоятельной работе.

Несмотря на то, что студент может использовать любые источники, содержащие сведения по линейной алгебре (в частности, [1] – [3]), в данных указаниях в качестве основного выбран один из них – «Конспект лекций по высшей математике» Д. Т. Письменного [1] – издание, наиболее доступное, с точки зрения составителей. Поэтому в начале каждой темы дается ссылка на конкретные страницы названного учебного пособия.

Решения каждого примера в предлагаемых указаниях заканчивается ответом, который или подчеркнут, или (при необходимости) выделен отдельно.

1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ

1.1. Алгебра матриц

Определения и утверждения к 1.1 можно найти в [1, ч.1, c.10 - 14].

Матрицу, по главной диагонали которой стоят единицы, а ее остальные элементы — нули, называют единичной и обозначают E.

При решении примеров в 1.1 будем использовать следующие матрицы:

$$A = \begin{pmatrix} 3 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 5 & -3 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & -1 \\ 4 & 3 & 1 \\ -2 & 1 & 7 \end{pmatrix}, C = \begin{pmatrix} 5 & 4 & 1 \\ -3 & 1 & 2 \end{pmatrix}$$
 w $D = \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix}$. (*)

Пример 1. Вычислите A + B для матриц из (*).

Решение. Складывать и вычитать можно только матрицы одинакового размера, результат будет того же размера. Суммой матриц будет матрица, элементы которой получены суммированием элементов слагаемых:

$$A+B=\begin{pmatrix} 3 & 2 & 1 \ -1 & 0 & 2 \ 2 & 5 & -3 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -1 \ 4 & 3 & 1 \ -2 & 1 & 7 \end{pmatrix} = \begin{bmatrix} K \ каждому элементу матрицы $A \$ прибавляем элемент с тем же номером матрицы B . $=\begin{pmatrix} 3+0 & 2+1 & 1+(-1) \ -1+4 & 0+3 & 2+1 \ 2+(-2) & 5+1 & -3+7 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 0 \ 3 & 3 & 3 \ 0 & 6 & 4 \end{pmatrix}$.$$

Пример 2. Вычислите 3A + 2B для матриц из (*).

Pешение. Найдем сначала матрицы 3A и 2B. При умножении матрицы на число необходимо каждый элемент матрицы умножить на это число:

$$3A = 3 \cdot \begin{pmatrix} 3 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 5 & -3 \end{pmatrix} = \begin{bmatrix} \text{Умножаем каждый элемент} \\ \text{матрицы } A \text{ на число } 3. \end{bmatrix} = \begin{pmatrix} 9 & 6 & 3 \\ -3 & 0 & 6 \\ 6 & 15 & -9 \end{pmatrix}.$$

Для матрицы
$$B$$
 аналогично: $2B = 2 \cdot \begin{pmatrix} 0 & 1 & -1 \\ 4 & 3 & 1 \\ -2 & 1 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 2 & -2 \\ 8 & 6 & 2 \\ -4 & 2 & 14 \end{pmatrix}$.

Сложим результаты:
$$3A + 2B = \begin{pmatrix} 9 & 6 & 3 \\ -3 & 0 & 6 \\ 6 & 15 & -9 \end{pmatrix} + \begin{pmatrix} 0 & 2 & -2 \\ 8 & 6 & 2 \\ -4 & 2 & 14 \end{pmatrix} = \begin{pmatrix} 9 & 8 & 1 \\ 5 & 6 & 8 \\ 2 & 17 & 5 \end{pmatrix}.$$

Пример 3. Вычислите $A \cdot B$ и $B \cdot A$ для матриц из (*).

Решение. Перемножить матрицы можно, если количество столбцов первого сомножителя совпадает с количеством строк второго сомножителя. Если умножается матрица размера $m \times k$ на матрицу размера $k \times n$, то в результате получится матрица размера $m \times n$. Для получения ее i, j-го элемента необходимо элементы i-й строки левой матрицы умножить на соответствующие элементы j-го столбца правой матрицы и сложить полученные результаты.

$$A \cdot B = \begin{pmatrix} 3 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 5 & -3 \end{pmatrix}_{3 \times 3} \cdot \begin{pmatrix} 0 & 1 & -1 \\ 4 & 3 & 1 \\ -2 & 1 & 7 \end{pmatrix}_{\underline{3} \times 3} = \begin{bmatrix} \text{Умножим элементы строк левой } \\ \text{матрицы на элементы столбцов } \\ \text{правой, сложим результаты, } \\ \text{запишем эту сумму как элемент.} \end{bmatrix} = \begin{bmatrix} 3 \cdot 0 + 2 \cdot 4 + 1 \cdot (-2) & 3 \cdot 1 + 2 \cdot 3 + 1 \cdot 1 & 3 \cdot (-1) + 2 \cdot 1 + 1 \cdot 7 \\ -1 \cdot 0 + 0 \cdot 4 + 2 \cdot (-2) & -1 \cdot 1 + 0 \cdot 3 + 2 \cdot 1 & -1 \cdot (-1) + 0 \cdot 1 + 2 \cdot 7 \\ 2 \cdot 0 + 5 \cdot 4 + (-3) \cdot (-2) & 2 \cdot 1 + 5 \cdot 3 + (-3) \cdot 1 & 2 \cdot (-1) + 5 \cdot 1 + (-3) \cdot 7 \end{pmatrix}_{3 \times 3} = \begin{bmatrix} 6 & 10 & 6 \\ -4 & 1 & 15 \\ 26 & 14 & -18 \end{bmatrix}; B \cdot A = \begin{pmatrix} 0 & 1 & -1 \\ 4 & 3 & 1 \\ -2 & 1 & 7 \end{pmatrix}_{3 \times \underline{3}} \cdot \begin{pmatrix} 3 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 5 & -3 \end{pmatrix}_{\underline{3} \times 3} = \begin{pmatrix} -3 & -5 & 5 \\ 11 & 13 & 7 \\ 7 & 31 & -21 \end{pmatrix}.$$

Произведение матриц не коммутативно, т. е. для произвольных матриц A и B: $A \cdot B \neq B \cdot A$, что и показывают полученные результаты.

Пример 4. Вычислите A^2 для матрицы из (*).

Решение. Возвести матрицу в n-ю степень, значит, умножить ее на себя n раз, т.е.

$$A^{2} = \begin{pmatrix} 3 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 5 & -3 \end{pmatrix}^{2} = \begin{pmatrix} 9 - 2 + 2 & 6 + 0 + 5 & 3 + 4 - 3 \\ -3 + 0 + 4 & -2 + 0 + 10 & -1 + 0 - 6 \\ 6 - 5 - 6 & 4 + 0 - 15 & 2 + 10 + 9 \end{pmatrix} = \begin{pmatrix} 9 & 11 & 4 \\ 1 & 8 & -7 \\ -5 & -11 & 21 \end{pmatrix}.$$

Пример 5. Вычислите $C \cdot D$ и $D \cdot C$ для матриц из (*).

Решение. Произведение $C \cdot D$ не определено, так как число столбцов матрицы $C = \begin{pmatrix} 5 & 4 & 1 \\ -3 & 1 & 2 \end{pmatrix}_{2 \times 3}$, которых три, не совпадает с числом строк матрицы

$$D = \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix}_{2 \times 2}$$
, которых две. Напоминаем, что перемножить матрицы мож-

но, если количество столбцов первого сомножителя совпадает с количеством строк второго сомножителя.

Если умножается матрица размера 2×2 на матрицу размера 2×3 , то в результате получится матрица размера 2×3 :

$$D \cdot C = \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix}_{2 \times 2} \cdot \begin{pmatrix} 5 & 4 & 1 \\ -3 & 1 & 2 \end{pmatrix}_{2 \times 3} = \begin{pmatrix} 8 \cdot 5 - 3 \cdot (-3) & 8 \cdot 4 - 3 \cdot 1 & 8 \cdot 1 - 3 \cdot 2 \\ 4 \cdot 5 - 1 \cdot (-3) & 4 \cdot 4 - 1 \cdot 1 & 4 \cdot 1 - 1 \cdot 2 \end{pmatrix}_{2 \times 3} = \begin{pmatrix} 49 & 29 & 2 \\ 23 & 15 & 2 \end{pmatrix}.$$

Пример 6. Вычислите $C^{T} \cdot D$ для матриц из (*).

Решение. При выполнении операций над матрицами в первую очередь выполняется транспонирование, затем умножение матриц. Для того чтобы найти транспонированную матрицу, надо строки матрицы записать в столбцы (или, наоборот, столбцы в строки).

$$C^{\mathrm{T}} \cdot D = \begin{pmatrix} 5 & 4 & 1 \\ -3 & 1 & 2 \end{pmatrix}_{2 \times 3}^{\mathrm{T}} \cdot \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix}_{2 \times 2} = \begin{pmatrix} 5 & -3 \\ 4 & 1 \\ 1 & 2 \end{pmatrix}_{3 \times 2} \cdot \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix}_{\underline{2} \times 2} = \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix}_{\underline{2} \times 2} = \begin{pmatrix} 40 - 12 & -15 + 3 \\ 32 + 4 & -12 - 1 \\ 8 + 8 & -3 - 2 \end{pmatrix}_{3 \times 2} = \begin{pmatrix} 28 & -12 \\ 36 & -13 \\ 16 & -5 \end{pmatrix}.$$

Пример 7. Вычислите $D \cdot E$ для матриц из (*).

Pешение. На главной диагонали матрицы E стоят 1, другие элементы равны нулю:

$$D \cdot E = \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 \cdot 1 - 3 \cdot 0 & 8 \cdot 0 - 3 \cdot 1 \\ 4 \cdot 1 - 1 \cdot 0 & 4 \cdot 0 - 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix} = D.$$

Легко проверить, что $E \cdot D = D$. Полученные равенства верны для произвольных матриц. Единичная матрица E при умножении матриц играет рольчисла 1 при умножении чисел.

Пример 8. Найти значение многочлена $f(x) = x^2 + x + 2$ для D из (*).

Решение: Запись $f(D)=D^2+D+2$ будет не корректна: выражение D^2+D есть матрица размера 2×2 , к которой нельзя прибавить число 2. Поэтому $f(D)=D^2+D+2E$, где E – единичная матрица подходящего размера. Подставим

данные:
$$f(D) = \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix}^2 + \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} \text{Возводим матрицу } D \\ \text{в квадрат, умножив} \\ \text{ее саму на себя.} \end{bmatrix} =$$

$$= \begin{pmatrix} 64 - 12 & -24 + 3 \\ 32 - 4 & -12 + 1 \end{pmatrix} + \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 52 & -21 \\ 28 & -11 \end{pmatrix} + \begin{pmatrix} 8 & -3 \\ 4 & -1 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} =$$

$$= \begin{pmatrix} 60 & -24 \\ 32 & -12 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 62 & -24 \\ 32 & -10 \end{pmatrix}.$$

Пример 9. Вычислите:

$$\left(\begin{pmatrix} 1 & 2 & 0 & 7 \\ 7 & 0 & 2 & 1 \end{pmatrix} + 3 \begin{pmatrix} 3 & 2 & 3 & 1 \\ 1 & 4 & 3 & 3 \end{pmatrix} - 10 \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \right) \cdot \begin{pmatrix} 7 \\ 1 \\ -2 \\ 8 \end{pmatrix}.$$

Решение. При вычислениях следует помнить о последовательности выполнения действий, сначала умножение матриц и умножения матрицы на число, потом сложение матриц:

$$\left(\begin{pmatrix} 1 & 2 & 0 & 7 \\ 7 & 0 & 2 & 1 \end{pmatrix} + 3 \begin{pmatrix} 3 & 2 & 3 & 1 \\ 1 & 4 & 3 & 3 \end{pmatrix} - 10 \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \right) \cdot \begin{pmatrix} 7 \\ 1 \\ -2 \\ 8 \end{pmatrix} = \begin{pmatrix} Bыполним \\ умножение \\ матриц на \\ число. \end{pmatrix} =$$

$$= \begin{pmatrix} \begin{pmatrix} 1 & 2 & 0 & 7 \\ 7 & 0 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 9 & 6 & 9 & 3 \\ 3 & 12 & 9 & 9 \end{pmatrix} - \begin{pmatrix} 10 & 10 & 10 & 10 \\ 10 & 10 & 10 & 10 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \\ -2 \\ 8 \end{pmatrix} =$$

$$= \begin{pmatrix} B \text{ыполним сложение } \mathbf{u} \\ \text{вычитание матриц,} \\ \text{находящихся в скобках.} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 10 & 8 & 9 & 10 \\ 10 & 12 & 11 & 10 \end{pmatrix} - \begin{pmatrix} 10 & 10 & 10 & 10 \\ 10 & 10 & 10 & 10 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \\ -2 \\ 8 \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & -2 & -1 & 0 \\ 0 & 2 & 1 & 0 \end{pmatrix}_{2 \times \underline{4}} \cdot \begin{pmatrix} 7 \\ 1 \\ -2 \\ 8 \end{pmatrix} = \begin{pmatrix} \text{Умножим матрицы} \\ \text{размерности } 2 \times 4 \text{ u } 4 \times 1, \\ \text{т. к. количества столбцов 1-й} \\ \text{и строк 2-й совпадают.} \end{pmatrix} = \begin{pmatrix} 0 \\ \underline{0} \end{pmatrix}.$$

1.2. Определители

Основные определения и утверждения, необходимые для решения примеров, можно найти в [1, 4.1, c.14 - 17].

Следует помнить свойства определителей:

- Определитель меняет знак, если какие-либо две строки (столбца) поменять местами.
- Если у определителя есть две равные или пропорциональные строки (столбца), то он равен нулю, так же, как и в том случае, когда он имеет нулевую строку (столбец).
- Если какую-либо строку (столбец) умножить на число, отличное от нуля, то весь определитель умножится на это число.
- Определитель не изменится, если к какой-либо строке (столбцу) прибавить какую-либо другую строку (столбец), умноженную на число, отличное от нуля.

Обозначения определителя (детерминанта) матрицы: $\det A$, или |A|, или

Пример 10. Вычислите определитель матрицы $A = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix}$.

Решение. Воспользуемся правилом вычисления определителя 2-го порядка, который равен разности произведений элементов главной и побочной диагоналей. Тогда $\det A = \det \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix} = \begin{vmatrix} 3 & 1 \\ 4 & 0 \end{vmatrix} = 3 \cdot 0 - 1 \cdot 4 = 0 - 4 = \underline{-4}$.

Пример 11. Вычислите определитель матрицы $A = \begin{pmatrix} 2i & -1+i \\ 1+3i & 5-i \end{pmatrix}$.

Решение:

$$\det\begin{pmatrix} 2i & -1+i \\ 1+3i & 5-i \end{pmatrix} = \begin{vmatrix} 2i & -1+i \\ 1+3i & 5-i \end{vmatrix} = \begin{bmatrix} \text{Определитель порядка 2 равен} \\ \text{разности произведений элементов} \\ \text{главной и побочной диагоналей.} \end{bmatrix} = \\ = 2i \cdot (5-i) - (-1+i) \cdot (1+3i) = 10i - 2i^2 - (-1+i-3i+3i^2) = \begin{bmatrix} i^2 = -1 \end{bmatrix} = \\ = 10i + 2 - (-1+i-3i+3i^2) = 10i + 2+1-i+3i+3 = \underbrace{6+12i}.$$

Пример 12. Вычислите определитель матрицы $A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$.

Решение. Запишем сразу искомый определитель $\begin{vmatrix} a & b \\ b & a \end{vmatrix} = \underline{a^2 - b^2}$.

Пример 13. Вычислите определитель матрицы $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \beta & \cos \beta \end{pmatrix}$.

Решение:

$$\begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \beta & \cos \beta \end{vmatrix} = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta = \begin{bmatrix} \Pi \text{рименим формулу} \\ \text{косинуса суммы} \end{bmatrix} = \underline{\cos(\alpha + \beta)}.$$

Пример 14. Вычислите
$$\begin{vmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 0 \end{vmatrix}$$
.

Решение. При вычислении определителей третьего порядка удобно пользоваться правилом Саррюса (правилом треугольников). Составим произведения элементов по 3, ставя перед ними необходимые знаки «+» или «-»:

$$\begin{vmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 0 \end{vmatrix} = 2 \cdot (-1) \cdot 0 + 1 \cdot 2 \cdot 3 + 2 \cdot 0 \cdot (-1) - 3 \cdot (-1) \cdot (-1) - 1 \cdot 2 \cdot 0 - 2 \cdot 0 \cdot 2 = \underline{3}.$$

Вычислять определители третьего порядка можно и приписыванием строк или столбцов (см. примеры 15 и 16).

Пример 15.
$$\begin{vmatrix} 2 & 1 & 3 \\ 5 & 3 & 2 \\ 1 & 4 & 3 \end{vmatrix} = \begin{bmatrix} \Pi$$
рипишем к определителю снизу сначала 1-ю строку, а потом 2-ю. $\end{bmatrix}$

$$= \begin{bmatrix} 2 & 1 & 3 \\ 5 & 3 & 2 \\ 1 & 4 & 3 \end{bmatrix} = \begin{bmatrix} \text{Со знаком } & \text{***} & \text{$$

Пример 16.
$$\begin{vmatrix} 0 & a & 0 \\ b & c & d \\ 0 & e & 0 \end{vmatrix} = \begin{bmatrix} \Pi$$
рипишем к определителю справа $\\$ сначала 1-й столбец, а потом 2-й. $\end{bmatrix} =$

$$=0\cdot c\cdot 0+a\cdot d\cdot 0+0\cdot b\cdot e-0\cdot c\cdot 0-e\cdot d\cdot 0-0\cdot a\cdot b=\underline{0}\,.$$

Для вычисления определителей высших порядков пользуются возможностями приведения их к определителям меньших порядков. Это можно сделать при помощи разложения определителя по строке или по столбцу.

Пример 17. Разложите определитель
$$\begin{vmatrix} 1 & a & 2 & 5 \\ 3 & b & -3 & 4 \\ -2 & c & -1 & 5 \\ 4 & d & -2 & 4 \end{vmatrix}$$
 по элементам 2-го

столбца, а затем вычислите его.

Решение. Обозначим данный определитель через Δ . Определитель может быть записан в виде суммы произведений всех элементов столбца на соответствующие алгебраические дополнения A_{ii} :

$$\Delta = a \cdot A_{12} + b \cdot A_{22} + c \cdot A_{32} + d \cdot A_{42} =$$

$$= \begin{bmatrix} \text{Алгебраические дополнения могут быть} \\ \text{заменены минорами, умноженными на } (-1)^{i+j}, \\ \text{где } i - \text{ номер строки, } j - \text{ номер столбца.} \end{bmatrix} = a \cdot (-1)^{1+2} \cdot \begin{vmatrix} 3 & -3 & 4 \\ -2 & -1 & 5 \\ 4 & -2 & 4 \end{vmatrix}$$

$$+b \cdot (-1)^{2+2} \cdot \begin{vmatrix} 1 & 2 & 5 \\ -2 & -1 & 5 \\ 4 & -2 & 4 \end{vmatrix} + c \cdot (-1)^{3+2} \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \\ 4 & -2 & 4 \end{vmatrix} + d \cdot (-1)^{4+2} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \\ -2 & -1 & 5 \end{vmatrix} = \begin{vmatrix} 3 & -3 & 4 \\ 2 & -1 & 5 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 2 &$$

$$=-a \cdot \begin{vmatrix} 3 & -3 & 4 \\ -2 & -1 & 5 \\ 4 & -2 & 4 \end{vmatrix} + b \cdot \begin{vmatrix} 1 & 2 & 5 \\ -2 & -1 & 5 \\ 4 & -2 & 4 \end{vmatrix} - c \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \\ 4 & -2 & 4 \end{vmatrix} + d \cdot \begin{vmatrix} 1 & 2 & 5 \\ 3 & -3 & 4 \\ -2 & -1 & 5 \end{vmatrix}.$$

Видим, что вычисление определителя 4-го порядка свелось к вычислению четырех определителей 3-го порядка, которые можно вычислить при помощи одного из правил или разложить по какой-либо строке (столбцу) в сумму определителей 2-го порядка:

$$\Delta = -a \cdot (-12 + 16 - 60 + 16 + 30 - 24) + b \cdot (-4 + 20 + 40 + 20 + 10 + 16) -$$

$$-c \cdot (-12 - 30 + 32 + 60 + 8 - 24) + d \cdot (-15 - 15 - 16 - 30 + 4 - 30) =$$

$$= 34(a - c) + 102(b - d).$$

Пример 18. Вычислите определитель
$$\begin{vmatrix} 2 & -3 & 4 & 1 \\ 4 & -2 & 3 & 2 \\ a & b & c & d \\ 3 & -1 & 4 & 3 \end{vmatrix}$$

Решение. Разложим определитель по элементам 3-й строки, умножив их на миноры с соответствующим знаком:

$$\begin{vmatrix} 2 & -3 & 4 & 1 \\ 4 & -2 & 3 & 2 \\ a & b & c & d \\ 3 & -1 & 4 & 3 \end{vmatrix} = a \cdot (-1)^4 \begin{vmatrix} -3 & 4 & 1 \\ -2 & 3 & 2 \\ -1 & 4 & 3 \end{vmatrix} + b \cdot (-1)^5 \begin{vmatrix} 2 & 4 & 1 \\ 4 & 3 & 2 \\ 3 & 4 & 3 \end{vmatrix} + c \cdot (-1)^6 \begin{vmatrix} 2 & -3 & 1 \\ 4 & -2 & 2 \\ 3 & -1 & 3 \end{vmatrix} + c \cdot (-1)^6 \begin{vmatrix} 2 & -3 & 1 \\ 4 & -2 & 2 \\ 3 & -1 & 3 \end{vmatrix}$$

$$\begin{vmatrix} 2 & -3 & 4 \\ 4 & -2 & 3 \\ 3 & -1 & 4 \end{vmatrix} = a \cdot \begin{vmatrix} -3 & 4 & 1 \\ -2 & 3 & 2 \\ -1 & 4 & 3 \end{vmatrix} - b \cdot \begin{vmatrix} 2 & 4 & 1 \\ 4 & 3 & 2 \\ 3 & 4 & 3 \end{vmatrix} + c \cdot \begin{vmatrix} 2 & -3 & 1 \\ 4 & -2 & 2 \\ 3 & -1 & 3 \end{vmatrix} - d \cdot \begin{vmatrix} 2 & -3 & 4 \\ 4 & -2 & 3 \\ 3 & -1 & 4 \end{vmatrix} = 8a - 15b + 12c - 19d.$$

Пример 19. Вычислите определитель
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$
.

Решение. Разложим определитель по первому столбцу, заметив, что в разложении будет всего одно слагаемое, так как остальные слагаемые равны нулю. Повторим в дальнейшем этот шаг для полученного определителя третьего порядка:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end{vmatrix} = 1 \cdot \begin{vmatrix} 5 & 6 & 7 \\ 0 & 8 & 9 \\ 0 & 0 & 10 \end{vmatrix} = 1 \cdot 5 \cdot \begin{vmatrix} 8 & 9 \\ 0 & 10 \end{vmatrix} = 1 \cdot 5 \cdot 8 \cdot 10 = \underline{400}.$$

Получим, что определитель треугольной матрицы равен произведению диагональных элементов. Этот факт верен для определителей матриц произвольных порядков.

Пример 20. Вычислите определитель
$$\begin{vmatrix} 3 & 1 & 0 & 2 \\ -1 & 2 & 1 & 4 \\ 0 & 1 & 4 & 1 \\ 4 & 7 & -2 & 3 \end{vmatrix}.$$

Решение. Используя свойства определителей, постараемся увеличить число нулей, например в 1-м столбце:

$$\begin{vmatrix} 3 & 1 & 0 & 2 \\ -1 & 2 & 1 & 4 \\ 0 & 1 & 4 & 1 \\ 4 & 7 & -2 & 3 \end{vmatrix} = \begin{bmatrix} \text{Умножим 1-ю строку на (-1),} \\ \text{сложим результат с 4-й строкой,} \\ \text{сумму запишем вместо 4-й строки.} \end{bmatrix} = \begin{vmatrix} 3 & 1 & 0 & 2 \\ -1 & 2 & 1 & 4 \\ 0 & 1 & 4 & 1 \\ 1 & 6 & -2 & 1 \end{vmatrix} =$$

$$= \begin{bmatrix} \Pi \text{рибавим 4-ю строку} \\ \text{ко 2-й. K 1-й строке} \\ \text{прибавим 4-ю,} \\ \text{умноженную на (-3).} \end{bmatrix} = \begin{bmatrix} 0 & -17 & 6 & -1 \\ 0 & 8 & -1 & 5 \\ 0 & 1 & 4 & 1 \\ 1 & 6 & -2 & 1 \end{bmatrix} = \begin{bmatrix} \text{Разложим детерминант} \\ \text{по 1-му столбцу,} \\ \text{первые три слагаемых} \\ \text{при этом равны нулю.} \end{bmatrix} = \\ = 1 \cdot (-1)^5 \cdot \begin{vmatrix} -17 & 6 & -1 \\ 8 & -1 & 5 \\ 1 & 4 & 1 \end{vmatrix} = -\begin{vmatrix} -17 & 6 & -1 \\ 8 & -1 & 5 \\ 1 & 4 & 1 \end{vmatrix} = \begin{vmatrix} B \text{ полученном определителе} \\ \text{сложим 1-ю и 3-ю строки.} \\ \text{К 2-й строке прибавим 3-ю,} \\ \text{умноженную на (-5).} \end{bmatrix} = \\ = -\begin{vmatrix} -16 & 10 & 0 \\ 3 & -21 & 0 \\ 1 & 4 & 1 \end{vmatrix} = \begin{bmatrix} \text{Разложим} \\ \text{определитель по} \\ 3\text{-му столбцу.} \end{bmatrix} = -1 \cdot (-1)^6 \cdot \begin{vmatrix} -16 & 10 \\ 3 & -21 \end{vmatrix} = \\ = \begin{bmatrix} B \text{ вынесем множители:} \\ 2 \text{ из 1-й строки,} \\ 3 \text{ из 2-й строки.} \end{bmatrix} = -2 \cdot 3 \cdot \begin{vmatrix} -8 & 5 \\ 1 & -7 \end{vmatrix} = -6 \cdot (56 - 5) = -306. \end{aligned}$$

Видно, что уменьшение порядка определителя может быть применимо и к определителям 3-го и 2-го порядков.

Пример 21. Решите уравнение
$$\begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & -2 \end{vmatrix} = 0$$
 в комплексных числах.

Решение. Для решения данного уравнения, применив к левой части правило Саррюса для вычисления определителей 3-го порядка, можно найти алгебраическое выражение с переменной и приравнять его к нулю:

$$\begin{vmatrix} 1 & x & x \\ x & 1 & x \\ x & x & -2 \end{vmatrix} = 1 \cdot 1 \cdot (-2) + x \cdot x \cdot x + x \cdot x \cdot x - x \cdot 1 \cdot x - x \cdot x \cdot (-2) - x \cdot x \cdot 1 = -2 + 2x^{3};$$

$$2x^{3} - 2 = 0 \implies x^{3} = 1 \implies x = \sqrt[3]{1}.$$

Применим формулу извлечения корня 3-й степени из комплексного чис-

ла:
$$x = \sqrt[3]{1 + 0 \cdot i} = \sqrt[3]{\cos 0 + i \sin 0} = \cos \frac{0 + 2\pi k}{3} + i \sin \frac{0 + 2\pi k}{3} =$$

$$= \cos \frac{2\pi k}{3} + i \sin \frac{2\pi k}{3}, \text{ где } k = 0, 1, 2.$$

Подставив необходимые значения параметра k, получим:

$$x_{0} = \cos 0 + i \sin 0 = 1, \qquad x_{1} = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i,$$

$$x_{2} = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$$

$$\underline{Other}: \left\{1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i\right\}.$$

1.3. Ранг матрицы

Основные определения и утверждения можно найти в [1, ч.1, c.20 - 21]. Обозначения ранга матрицы A: rang A или r A.

Следует помнить, что ранг матрицы не изменяется при элементарных преобразованиях, к которым относятся:

- перестановки строк (столбцов);
- умножение строки (столбца) на число, не равное нулю;
- сложение строк (столбцов);
- вычеркивание нулевой строки (столбца).

Матрица, полученная при помощи элементарных преобразований, называется подобной данной. Приведем матрицу элементарными преобразованиями к ступенчатому виду с разным числом нулей в строках (в частном случае, к треугольному виду). Ранг такой матрицы равен количеству ненулевых ее строк. Тогда вопрос о ранге матрицы сводится к вопросу о строках подобной ей ступенчатой матрицы.

Пример 22. Сколько миноров второго порядка имеет матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
? Выписать все эти миноры.

Решение. Для того чтобы перечислить все миноры 2-го порядка в данной матрице, будем выделять по две произвольные строки и по два произвольных столбца. Определители 2-го порядка, составленные из элементов матрицы A, расположенных на пересечении выделенных строк и столбцов, будут искомыми минорами 2-го порядка. Напомним, что матрица размера

 $m \times n$ имеет $C_m^k \cdot C_n^k$ миноров k-го порядка, т. е. в рассматриваемом случае $C_3^2 \cdot C_3^2 = 3 \cdot 3 = 9$ миноров 2-го порядка:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}, \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{23} \end{vmatrix}, \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}, \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}.$$

Выделили сначала 1-й и 2-й столбцы (при этом 1-ю и 2-ю строки, затем 1-ю и 3-ю строки, потом 2-ю и 3-ю строки); далее поменяли выбор столбцов и рассмотрели те же наборы строк.

Пример 23. Найти ранг матрицы
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 11 \end{pmatrix}$$
.

Решение. Выбрав 1-ю и 3-ю строки, а так же 1-й и 4-й столбец, составим определитель из элементов матрицы A, расположенных на пересечении выделенных строк и столбцов: $\begin{vmatrix} 2 & 3 \\ 5 & 11 \end{vmatrix} = 22 - 15 = 7 \neq 0$, следовательно, гапд $A \geq 2$. Все миноры данной матрицы 3-го порядка равны нулю, поскольку в составлении минора участвует вторая нулевая строка. Значит, ранг мат-

При решении этой задачи можно использовать и элементарные преобразования. Вычеркнув из матрицы 2-ю строку, а затем 2-й, 3-й и 4-й столбцы, получим матрицу $B = \begin{pmatrix} 2 & 3 \\ 5 & 11 \end{pmatrix}$, имеющую тот же ранг, что и A:

$$|B| = 22 - 15 = 7 \neq 0$$
 \Rightarrow rang $B = 2$ \Rightarrow $\underline{\operatorname{rang} A = 2}$.

Пример 24. Найти ранг матрицы
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \\ 4 & 8 & 12 & 16 \end{pmatrix}$$
.

рицы равен 2.

Решение. Все миноры 2-го, 3-го и 4-го порядков матрицы равны нулю, так как элементы их строк пропорциональны. Миноры же 1-го порядка (сами элементы матрицы) отличны от нуля. Следовательно, $\underline{\operatorname{rang}} A = 1$.

Пример 25. Найти ранг матрицы
$$A = \begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix}$$
.

Решение. Вычислять ранг матрицы будем с помощью метода Гаусса, приводя матрицу элементарными преобразованиями к ступенчатому виду:

$$\operatorname{rang}\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix} = \begin{bmatrix} \operatorname{Bb} \text{чтем} \text{ из 2-й строки удвоенную 1-ю,} \\ \operatorname{результат запишем во 2-ю строку.} \\ \operatorname{Bb} \text{чтем из 3-й строки 1-ю, записав} \\ \operatorname{результат на место 3-й строки.} \end{bmatrix} = \\ = \operatorname{rang}\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 0 & 0 & -1 & 5 & -1 \\ 0 & 0 & -2 & 10 & -2 \end{pmatrix} = \begin{bmatrix} \operatorname{Умножим 2-ю строку на (-2),} \\ \operatorname{сложим c 3-й,} \\ \operatorname{сумму запишем в 3-ю строку.} \end{bmatrix} = \\ = \operatorname{rang}\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 0 & 0 & -1 & 5 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = \begin{bmatrix} \operatorname{Bы черк нем} \\ \operatorname{нулевую} \\ \operatorname{строку.} \end{bmatrix} = \operatorname{rang}\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 0 & 0 & -1 & 5 & -1 \end{pmatrix}.$$

Таким образом, данная матрица приведена к виду, когда ранг равен количеству ненулевых ее строк. Следовательно, $\underline{\operatorname{rang}} A = 2$.

Пример 26. Найти ранг матрицы
$$A = \begin{pmatrix} 2 & 4 & 6 \\ 1 & 5 & 3 \\ 1 & 2 & -2 \end{pmatrix}$$
.

Решение. Приведем данную матрицу к ступенчатому виду элементар-

ными преобразованиями: rang
$$A = \text{rang} \begin{pmatrix} 2 & 4 & 6 \\ 1 & 5 & 3 \\ 1 & 2 & -2 \end{pmatrix} = \begin{bmatrix} \Pi \text{оменяем} \\ \text{местами 1-ю} \\ \text{и 3-ю строки.} \end{bmatrix} =$$

$$=$$
 rang $\begin{pmatrix} 1 & 2 & -2 \\ 1 & 5 & 3 \\ 2 & 4 & 6 \end{pmatrix} = \begin{bmatrix}$ Вычтем из 2-й строки $\\ 1$ -ю, а из 3-й $\\$ строки удвоенную 1-ю. $\end{bmatrix} =$ rang $\begin{pmatrix} 1 & 2 & -2 \\ 0 & 3 & 5 \\ 0 & 0 & 10 \end{pmatrix} = \underline{3}.$

Пример 27. Найти ранг
$$B = \begin{pmatrix} 1 & -1 & a & 1/2 \\ 2 & -1 & 5 & a \\ 1 & 1 & 1 & 6 \end{pmatrix}$$
 при разных значениях a .

Решение. Следует обратить внимание, что применяя элементарные преобразования получим подобные матрицы, а не равные. Поэтому между ними ставить знак равенства нельзя, а можно использовать знак подобия «~».

При помощи элементарных преобразований приведем данную матрицу к ступенчатому виду:

$$B = \begin{pmatrix} 1 & -1 & a & 1/2 \\ 2 & -1 & 5 & a \\ 1 & 1 & 1 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & a & 1/2 \\ 0 & 1 & -2a+5 & -1+a \\ 0 & 2 & 1-a & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & a & 1/2 \\ 0 & 1 & 5-2a & a-1 \\ 0 & 0 & 3a-9 & 6-2a \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & a & 1/2 \\ 0 & 1 & 5-2a & a-1 \\ 0 & 0 & 3(a-3) & 2(3-a) \end{pmatrix}.$$

Поясним выполненные действия:

- 1) вычтем из 2-й строки удвоенную 1-ю строку, вычтем из 3-й строки 1-ю;
- 2) вычтем из 3-й строки удвоенную 2-ю строку.

Видим, что в полученной ступенчатой матрице при a=3 последняя строка становится нулевой, в остальных случаях это не так.

<u>Ответ:</u> rang B = 2 при a = 3, rang B = 3 при $a \ne 3$.

1.4. Обратная матрица

Основные определения можно прочесть в [1, ч.1, с. 18 – 20]. Следует помнить, что только невырожденная матрица обратима.

Рассмотрим два основных метода поиска матрицы, обратной данной:

- Метод Гаусса. Процесс поиска обратной матрицы состоит в выполнении элементарных преобразований со строками расширенной матрицы (A|E), переводящих данную матрицу в матрицу $(E|A^{-1})$. Причем при этом преобразуются строки расширенной матрицы, т. е. строки длинной 2n.
- Метод союзной матрицы. Применяется формула $A^{-1} = \frac{1}{\det A} A^*$, где матрица A^* союзная (присоединенная) к матрице A.

Пример 28. Существует ли
$$A^{-1}$$
, если $A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 0 & 4 \\ -1 & 0 & 4 \end{pmatrix}$?

Pешение. Матрица A вырождена (2-й столбец нулевой) и не обратима, т.е. не имеет обратной.

Пример 29. Обратима ли матрица
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
?

Решение. Матрица <u>обратима</u>, т. е. имеет обратную. Так как det $A = 1 \neq 0$.

Пример 30. Найдите матрицу, обратную к
$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
.

Решение. Матрица обратима, так как $\det A = -2 + 6 - 3 - 2 = -1 \neq 0$.

Воспользуемся методом Гаусса для поиска обратной матрицы. Запишем расширенную матрицу, состоящую из двух частей: слева запишем данную матрицу, справа единичную соответствующего порядка. С помощью элементарных преобразований над строками всей расширенной матрицы приведем эту матрицу к виду, когда слева будет стоять единичная матрица. Тогда матрица, которая получится справа, будет искомой обратной матрицей:

$$\begin{pmatrix} 2 & 2 & 3 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ -1 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 2 & 2 & 3 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 4 & 3 & 1 & -2 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 4 & 3 & 1 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 & -6 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & -4 & -3 \\ 0 & 1 & 0 & 1 & -5 & -3 \\ 0 & 0 & 1 & -1 & 6 & 4 \end{pmatrix}.$$

Для проверки воспользуемся равенством $A \cdot A^{-1} = A^{-1} \cdot A = E$ из определения обратной матрицы:

$$A \cdot A^{-1} = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$A^{-1} \cdot A = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad A^{-1} = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix}.$$

Пример 31. Найдите матрицу, обратную к матрице $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$.

Решение. Данная матрица обратима, так как
$$\det \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} = 24 \neq 0$$
. Заме-

тим, что она уже имеет треугольный вид, т.е. задача облегчается и необходимо провести только «обратный ход» метода Гаусса:

$$\sim \begin{pmatrix} 12 & 0 & 0 & 12 & -6 & -1 \\ 0 & -24 & 0 & 0 & -6 & 5 \\ 0 & 0 & 6 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 & -1/2 & -1/12 \\ 0 & 1 & 0 & 0 & 1/4 & -5/24 \\ 0 & 0 & 1 & 0 & 0 & 1/6 \end{pmatrix}.$$

Проверка:

$$\begin{pmatrix} 1 & -1/2 & -1/12 \\ 0 & 1/4 & -5/24 \\ 0 & 0 & 1/6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1/2 & -1/12 \\ 0 & 1/4 & -5/24 \\ 0 & 0 & 1/6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Пример 32. Найдите
$$A^{-1}$$
, если $A = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix}$.

Решение. Покажем применение метода союзной матрицы:

$$\det A = \begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{vmatrix} = 4 + 8 - 27 - 12 - 3 + 24 = -6 \neq 0, \text{ т. е. матрица } A \text{ обратима.}$$

Найдем алгебраические дополнения A_{ij} , используя равенство

$$A_{ij} = (-1)^{i+j} \cdot M_{ij}$$
, связывающее их с минорами M_{ij} : $A_{11} = \begin{vmatrix} 2 & -3 \\ 4 & 1 \end{vmatrix} = 14$,

$$A_{21} = -\begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix} = 5, \quad A_{31} = \begin{vmatrix} 3 & 2 \\ 2 & -3 \end{vmatrix} = -13, \quad A_{12} = -\begin{vmatrix} 1 & -3 \\ 3 & 1 \end{vmatrix} = -10, \quad A_{22} = \begin{vmatrix} 2 & 2 \\ 3 & 1 \end{vmatrix} = -4,$$

$$A_{32} = -\begin{vmatrix} 2 & 2 \\ 1 & -3 \end{vmatrix} = 8$$
, $A_{13} = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2$, $A_{23} = -\begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = 1$, $A_{33} = \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = 1$.

Составим из этих алгебраических дополнений матрицу, союзную к A:

$$A^* = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 14 & -10 & -2 \\ 5 & -4 & 1 \\ -13 & 8 & 1 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 14 & 5 & -13 \\ -10 & -4 & 8 \\ -2 & 1 & 1 \end{pmatrix}.$$
Следовательно, $A^{-1} = \frac{1}{\det A}A^* = \frac{1}{6}\begin{pmatrix} 14 & 5 & -13 \\ -10 & -4 & 8 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -7/3 & -5/6 & 13/6 \\ 5/3 & 2/3 & -4/3 \\ 1/2 & 1/6 & 1/6 \end{pmatrix}.$

Заметим, что если в дальнейшем необходимо использовать обратную матрицу для каких-либо вычислений, то лучше не вносить числовой множитель, а записывать его перед всей матрицей.

Проверка:

$$A \cdot A^{-1} = \begin{pmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{6} \end{pmatrix} \cdot \begin{pmatrix} 14 & 5 & -13 \\ -10 & -4 & 8 \\ -2 & 1 & 1 \end{pmatrix} = -\frac{1}{6} \begin{pmatrix} 2 & 3 & 2 \\ 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 14 & 5 & -13 \\ -10 & -4 & 8 \\ -2 & 1 & 1 \end{pmatrix} = -\frac{1}{6} \begin{pmatrix} -6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$
 Аналогично, $A^1 \cdot A = E$.

Пример 33. При каких
$$a$$
 и b матрица $\begin{pmatrix} b & a & a \\ a & b & a \\ a & a & b \end{pmatrix}$ обратима?

Pешение. Матрица обратима, если ее определитель не равен нулю. Найдем условия, накладываемые на a и b, при которых это не так, т.е.

$$\begin{vmatrix} b & a & a \\ a & b & a \\ a & a & b \end{vmatrix} = b^3 + 2a^3 - 3a^2b = 0$$
. Для этого разложим левую часть полученного

равенства на множители:

$$b^{3} + 2a^{3} - 3a^{2}b = b^{3} - a^{2}b - 2a^{2}b + 2a^{3} = b(b^{2} - a^{2}) - 2a^{2}(a+b) =$$

$$= b(b-a)(a+b) - 2a^{2}(a+b) = (a+b)(b^{2} - ab - 2a^{2}) = (a+b)(b^{2} - a^{2} - ab - a^{2}) =$$

$$= (a+b)((b-a)(b+a) - a(b+a)) = (a+b)^{2}(b-2a) = 0.$$

Итак, если b=a или b=2a, то определитель равен нулю и, следовательно, обратной матрицы не существует.

<u>Ответ</u>: обратная матрица существует, если $b \neq \begin{cases} -a, \\ 2a. \end{cases}$

2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Основные определения и утверждения содержатся в [1, ч. 1, c. 22 - 30].

2.1. Исследование на разрешимость систем линейных уравнений

Системы линейных уравнений (СЛУ) могут быть совместными, то есть разрешимыми, и несовместными, т. е. не иметь решений.

Для совместности СЛУ необходимо и достаточно, чтобы ранги основной и расширенной матриц совпадали (теорема Кронекера – Капелли).

Исследовать СЛУ – это значит решить вопрос совместности, и если она совместна, то указать число ее решений.

Известно:

- если ранг совместной системы равен числу неизвестных, то система имеет одно решение;
- если ранг совместной системы меньше числа неизвестных, то она имеет бесконечное множество решений.

Пример 34. Запишите основную и расширенную матрицы для $\begin{cases} 2x_1 + x_2 - 3x_3 = 1, \\ x_1 - x_2 + 4x_3 = 2, \end{cases}$ Запишите данную СЛУ в виде матричного уравнения. $-3x_1 + 2x_2 - x_3 = 3.$

Решение. Основной матрицей СЛУ называется матрица коэффициентов

при неизвестных, т. е. $\begin{pmatrix} 2 & 1 & -3 \\ 1 & -1 & 4 \\ -3 & 2 & -1 \end{pmatrix}$. Расширенная матрица СЛУ — матрица

вида (A|b), где A — основная матрица системы, b — столбец свободных членов СЛУ. Вертикальная черта проводится для визуального отделения левой и правой частей.

В рассматриваемом случае расширенная матрица: $\begin{pmatrix} 2 & 1 & -3 & 1 \\ 1 & -1 & 4 & 2 \\ -3 & 2 & -1 & 3 \end{pmatrix}.$

Левые части равенств СЛУ представляют собой суммы произведений элементов строк основной матрицы на неизвестные x_1 , x_2 , x_3 . Следовательно, по определению произведения матриц левую часть СЛУ можно записать в виде произведения основной матрицы на столбец, состоящий из неизвест-

ных: $\begin{pmatrix} 2 & 1 & -3 \\ 1 & -1 & 4 \\ -3 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. При умножении этих матриц получим столбец,

состоящий из трех элементов. По определению равенства матриц исходная

СЛУ равносильна матричному уравнению
$$\begin{pmatrix} 2 & 1 & -3 \\ 1 & -1 & 4 \\ -3 & 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
.

Пример 35. Запишите основную и расширенную матрицы для системы $\begin{cases} x_1 + x_2 - x_3 = 0, \\ x_1 + x_2 = 2, \\ x_1 + x_2 + x_3 = 1. \end{cases}$ Запишите данную СЛУ в виде матричного уравнения.

Решение. Если в каком-либо уравнении не участвует некоторая неизвестная, то соответствующий элемент в основной матрице будет равен нулю.

Расширенной матрицей рассматриваемой СЛУ будет матрица $\begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix}$.

Пример 36. Исследовать на разрешимость систему
$$\begin{cases} x_1 + x_2 - 2x_3 = 1, \\ x_1 - x_2 + 2x_3 = 2, \\ x_1 + 2x_2 - x_3 = 3. \end{cases}$$

Решение. По теореме Кронекера — Капелли СЛУ совместна, если ранги ее основной и расширенной матриц равны. Для сравнения рангов СЛУ удобно пользоваться методом Гаусса приведения матриц к ступенчатому виду (подробно этот процесс рассматривался при поиске рангов матриц). При этом возможно появление строк вида $\begin{pmatrix} 0 & 0 & 0 & \dots & 0 | 1 \end{pmatrix}$. Если хотя бы одна такая строка появилась, то СЛУ несовместна. Это значит, что ранг расширенной

матрицы больше ранга основной. Запишем расширенную матрицу СЛУ и приведем ее к ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -1 & 2 & 2 \\ 1 & 2 & -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -2 & 4 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -2 & 4 & 1 \\ 0 & 0 & 6 & 5 \end{pmatrix}.$$

Видим, что ранг основной матрицы равен рангу расширенной и равен 3, следовательно, система совместна. При этом ранг совпадает с числом неизвестных, т. е. СЛУ <u>имеет единственное решение</u>.

Пример 37. Исследовать на совместность систему
$$\begin{cases} x_1 + x_2 = 1, \\ x_1 + 2x_3 = 0, \\ x_2 - 2x_3 = 2. \end{cases}$$

Решение. Запишем расширенную матрицу СЛУ и приведем ее к ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & -2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 1 & -2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Ранг расширенной матрицы равен 3, а ранг основной матрицы равен 2, т.е. <u>СЛУ</u> несовместна.

Пример 38. Исследовать на совместность СЛУ
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 0, \\ x_1 - x_2 + x_3 + x_4 = 0, \\ x_1 - x_2 - x_3 + 3x_4 = 0, \\ x_1 + 3x_2 - 4x_3 = 0. \end{cases}$$

Решение. Система линейных уравнений, все свободные коэффициенты которой равны нулю, называется системой однородных линейных уравнений, или однородной СЛУ. Однородные системы всегда разрешимы, так как имеют нулевое решение $(x_1 = x_2 = ... = x_n = 0)$. Однако существуют решения, отличные от нулевого решения, которые называются нетривиальными.

Проверим, сколько решений имеет рассматриваемая система линейных уравнений. Для этого ранг ее системы сравним с числом неизвестных:

$$\begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 3 \\ 1 & 3 & -4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 0 \\ 0 & 2 & -1 & -2 \\ 0 & 2 & -2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & -1 \end{pmatrix} .$$

Ранг матрицы равен 3, и он меньше числа неизвестных, которых 4, следовательно, система имеет бесконечное множество решений.

Пример 39. Исследовать систему
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 1, \\ x_1 - 3x_2 + x_3 + x_4 = 0, \\ 4x_1 - x_2 - x_3 - x_4 = 1, \\ 4x_1 + 3x_2 - 4x_3 - x_4 = 2. \end{cases}$$

Решение. Запишем расширенную матрицу СЛУ и приведем ее к ступенчатому виду при помощи элементарных преобразований:

$$\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
1 & -3 & 1 & 1 & | & 0 \\
4 & -1 & -1 & -1 & | & 1 \\
4 & 3 & -4 & -1 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & 4 & -3 & 0 & | & 1 \\
0 & -5 & 7 & -5 & | & -3 \\
0 & -1 & 4 & -5 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & -1 & 4 & -5 & | & 2 \\
0 & 0 & 13 & -20 & | & 7
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & -1 & 4 & -5 & | & 2 \\
0 & 0 & 13 & -20 & | & 7
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & -1 & 4 & -5 & | & 2 \\
0 & 0 & 13 & -20 & | & 7
\end{pmatrix}.$$

Ранг основной матрицы равен рангу расширенной и равен 3, т. е. система совместна. При этом в системе 4 неизвестных, следовательно, ранг меньше числа неизвестных, и система имеет бесконечное множество решений.

2.2. Решение систем линейных уравнений методом Гаусса

Подробное описание метода Гаусса решения систем линейных уравнений можно найти в [1, 4, 1, c, 26 - 29].

Метод Гаусса заключается в приведении системы линейных уравнений к ступенчатому (в частности, к треугольному) виду при помощи элементарных преобразований над уравнениями системы. Например, если в системе менять местами уравнения, складывать их, умножать на не равные нулю числа, то в результате получим равносильную СЛУ. Приведение системы линейных уравнений к ступенчатому виду называют «прямым ходом» метода Гаусса. «Обратным ходом» метода Гаусса называют последовательное определение неизвестных из этой ступенчатой системы. Все эти преобразования можно проводить как с уравнениями, записанными в СЛУ, так и с расширенной матрицей системы.

В качестве примеров рассмотрим некоторые разрешимые системы линейных уравнений из 2.1.

Пример 40. Исследовать и решить СЛУ
$$\begin{cases} 2x_1 + x_2 - 3x_3 = 1, \\ x_1 - x_2 + 4x_3 = 2, \\ -3x_1 + 2x_2 - x_3 = 3. \end{cases}$$

Решение. К ступенчатому виду удобно приводить не саму систему уравнений, а ее расширенную матрицу, поскольку попутно решается вопрос о совместности системы уравнений. В рассматриваемом случае

$$\begin{pmatrix} 2 & 1 & -3 & 1 \\ 1 & -1 & 4 & 2 \\ -3 & 2 & -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 4 & 2 \\ 2 & 1 & -3 & 1 \\ -3 & 2 & -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 4 & 2 \\ 0 & 3 & -11 & -3 \\ 0 & -1 & 11 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 4 & 2 \\ 0 & -1 & 11 & 9 \\ 0 & 0 & 22 & 24 \end{pmatrix}.$$

Ранг основной матрицы равен рангу расширенной матрицы и равен 3, следовательно, система совместна. При этом ранг совпадает с числом неизвестных, т. е. СЛУ имеет единственное решение.

Исходная СЛУ равносильна системе
$$\begin{cases} x_1-x_2+4x_3=2,\\ -x_2+11x_3=9,\\ 22x_3=24, \end{cases}$$

из которой следует система $\begin{cases} x_1 = x_2 - 4x_3 + 2 = 5 - \frac{48}{11} = \frac{7}{11}, \\ x_2 = 11x_3 - 9 = 11 \cdot \frac{12}{11} - 9 = 3, \\ x_3 = \frac{12}{11}. \end{cases}$

$$\underline{\text{Ответ:}} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7/11 \\ 3 \\ 12/11 \end{pmatrix}.$$

Пример 41. Исследовать и решить СЛУ
$$\begin{cases} x_1 + x_2 - x_3 = 0, \\ x_1 + x_2 = 2, \\ x_1 + x_2 + x_3 = 1. \end{cases}$$

Решение. Запишем расширенную матрицу СЛУ и приведем ее к ступен-

чатому виду:
$$\begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$
.

Ранг расширенной матрицы системы равен 3, а ранг основной матрицы равен 2, следовательно, система уравнений несовместна. Это же показывает и

последняя строка расширенной матрицы (0 0 0 \mid –3), которой соответствует уравнение $0 \cdot x^1 + 0 \cdot x^2 + 0 \cdot x^3 = -3$, или 0 = -3.

Пример 42. Решить систему
$$\begin{cases} x_1 + x_2 - 2x_3 = 1, \\ x_1 - x_2 + 2x_3 = 2, \\ x_1 + 2x_2 - x_3 = 3. \end{cases}$$

Решение. Выполним «прямой ход» метода Гаусса, т. е. приведем расширенную матрицу к ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -1 & 2 & 2 \\ 1 & 2 & -1 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -2 & 4 & 1 \\ 0 & 1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -2 & 4 & 1 \\ 0 & 0 & 6 & 5 \end{pmatrix}.$$

Ранги основной и расширенной матриц равны 3 и совпадают с числом неизвестных, т. е. система совместна и имеет единственное решение.

«Обратный ход» метода Гаусса можно выполнить, используя получен-

ную уже ступенчатую матрицу:
$$\begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -2 & 4 & 1 \\ 0 & 0 & 6 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -2 & 4 & 1 \\ 0 & 0 & 1 & 5/6 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 1 & 0 & 8/3 \\ 0 & -2 & 0 & -7/3 \\ 0 & 0 & 1 & 5/6 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 8/3 \\ 0 & 1 & 0 & 7/6 \\ 0 & 0 & 1 & 5/6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 3/2 \\ 0 & 1 & 0 & 7/6 \\ 0 & 0 & 1 & 5/6 \end{pmatrix}.$$

Для записи ответа можно использовать одну из следующих форм:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 7/6 \\ 5/6 \end{pmatrix}, \text{ или } \begin{cases} x_1 = 3/2, \\ x_2 = 7/6, \\ x_3 = 5/6. \end{cases}$$

Пример 43. Решить систему
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 0, \\ x_1 - x_2 + x_3 + x_4 = 0, \\ x_1 - x_2 - x_3 + 3x_4 = 0, \\ x_1 + 3x_2 - 4x_3 = 0. \end{cases}$$

Решение. Данная СЛУ однородна, т. е. всегда имеет, по крайней мере, тривиальное решение. При помощи элементарных преобразований приведем основную матрицу СЛУ к ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 3 \\ 1 & 3 & -4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 0 \\ 0 & 2 & -1 & -2 \\ 0 & 2 & -2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -3 & 0 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 1 & -1 \end{pmatrix} .$$

В результате преобразований получим матрицу размера 3×4, которая

равносильна СЛУ
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 0, \\ 2x_2 - 3x_3 = 0, & \text{и имеет бесконечное множество} \\ x_3 - x_4 = 0 \end{cases}$$

решений (ранг системы меньше числа неизвестных). Ранг системы 3, значит, можно выразить три неизвестные переменные через оставшуюся одну.

Обозначим x_4 через параметр α и выразим остальные неизвестные через него (для удобства начнем записывать систему с последней строки):

$$\begin{cases} x_1 = -x_2 + 2x_3 - x_4 = -\frac{1}{2}\alpha, \\ x_2 = \frac{3}{2}x_3 = \frac{3}{2}\alpha, \\ x_3 = x_4 = \alpha, \\ x_4 = \alpha \end{cases} \Rightarrow \begin{cases} x_1 = -\frac{1}{2}\alpha, \\ x_2 = \frac{3}{2}\alpha, \\ x_3 = \alpha, \\ x_4 = \alpha. \end{cases}$$

Запишем столбец неизвестных в виде $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 3/2 \\ 1 \\ 1 \end{bmatrix} \alpha$, где α – некоторое

действительное число ($\alpha \in \mathbf{R}$).

Обе записи равноправны и называются общим решением данной однородной системы. Для того чтобы получить какое-либо частное ее решение, достаточно подставить вместо параметра конкретное значение. Например, $(-10\ 15\ 5)^{\text{T}}$ — частное решение при $\alpha = 5$.

$$\underline{\text{OTBET:}} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 3/2 \\ 1 \\ 1 \end{pmatrix} \alpha, \alpha \in \mathbf{R}.$$

Пример 44. Найти общее решение и какое-нибудь частное решение

СЛУ
$$\begin{cases} 2x_1 - 9x_2 - 4x_3 - 4x_4 = -5, \\ x_1 - 6x_2 - 5x_3 - 2x_4 = -4, \\ x_1 - 3x_2 + x_3 - 2x_4 = -1, \\ 3x_1 - 8x_2 + 5x_3 - 6x_4 = -2. \end{cases}$$

Решение. Выполним «прямой ход» метода Гаусса для расширенной матрицы рассматриваемой системы линейных уравнений:

$$\begin{pmatrix} 2 & -9 & -4 & -4 & | & -5 \\ 1 & -6 & -5 & -2 & | & -4 \\ 1 & -3 & 1 & -2 & | & -1 \\ 3 & -8 & 5 & -6 & | & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 1 & -2 & | & -1 \\ 0 & 3 & 6 & 0 & | & 3 \\ 0 & 1 & 2 & 0 & | & 1 \\ 0 & -3 & -6 & 0 & | & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 1 & -2 & | & -1 \\ 0 & 1 & 2 & 0 & | & 1 \end{pmatrix}.$$

Ранг основной матрицы равен рангу расширенной и равен 2, следовательно, система совместна. При этом в системе 4 неизвестных, следовательно, ранг меньше числа неизвестных, и система имеет бесконечное множество

решений. Полученная матрица равносильна СЛУ
$$\begin{cases} x_1 - 3x_2 + x_3 - 2x_4 = -1, \\ x_2 + 2x_3 = 1. \end{cases}$$

Выполним «обратный ход» метода Гаусса. Ранг матрицы СЛУ равен 2, следовательно, две неизвестные можно выразить через остальные. Будем выражать x_1 и x_2 через x_3 , x_2 (которые в этом случае называются свободными переменными). Обозначим x_3 через параметр α , x_4 через параметр β :

$$\begin{cases} x_{1} - 3x_{2} + x_{3} - 2x_{4} = -1, \\ x_{2} + 2x_{3} = 1, \\ x_{3} = \alpha, \end{cases} \Rightarrow \begin{cases} x_{1} = -1 + 3(1 - 2\alpha) - \alpha + 2\beta = 2 - 7\alpha + 2\beta, \\ x_{2} = 1 - 2\alpha, \\ x_{3} = \alpha, \\ x_{4} = \beta. \end{cases} \Rightarrow \begin{cases} x_{1} = -1 + 3(1 - 2\alpha) - \alpha + 2\beta = 2 - 7\alpha + 2\beta, \\ x_{2} = 1 - 2\alpha, \\ x_{3} = \alpha, \\ x_{4} = \beta. \end{cases}$$

$$\Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -7 \\ -2 \\ 1 \\ 0 \end{pmatrix} \alpha + \begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} \beta; \ \alpha, \beta \in \mathbf{R} - \text{общее решение.}$$

Запишем одно из частных решений при значениях параметров $\alpha = 1$, $\beta = 2$:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -7 \\ -2 \\ 1 \\ 0 \end{pmatrix} \cdot 1 + \begin{pmatrix} 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} \cdot 2 = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 2 \end{pmatrix}.$$

Пример 45. Найти общее решение и какое-нибудь частное решение

СЛУ
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1, \\ x_1 - 2x_2 + x_3 - x_4 = -1, \\ x_1 - 2x_2 + x_3 + 5x_4 = 5. \end{cases}$$

Решение. Выполним «прямой ход» метода Гаусса:

$$\begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 1 & -2 & 1 & -1 & -1 \\ 1 & -2 & 1 & 5 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$$

Исходная СЛУ равносильна системе уравнений $\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1, \\ x_4 = 1. \end{cases}$

Ранг системы равен 2, значение одной из переменных известно, осталось выразить одну неизвестную.

Общее решение СЛУ:
$$\begin{cases} x_1 = 2\alpha - \beta, & \\ x_2 = \alpha, & \\ x_3 = \beta, & \\ x_4 = 1, & \end{cases}$$
 или
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} \alpha + \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \beta + \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \ \alpha, \ \beta \in \textbf{\textit{R}}.$$

Частное решение при
$$\alpha = 3$$
, $\beta = 2$: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} \cdot 3 + \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \cdot 2 + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}.$

Пример 46. Решить систему линейных уравнений
$$\begin{cases} x_1+x_2-2x_3+x_4=1,\\ x_1-3x_2+x_3+x_4=0,\\ 4x_1-x_2-x_3-x_4=1,\\ 4x_1+3x_2-4x_3-x_4=2, \end{cases}$$

сравнить ее решение с решением соответствующей ей однородной системы.

Решение. Однородная система, соответствующая данной, получается из неоднородной системы заменой в ней свободных коэффициентов нулями. Решим сначала неоднородную СЛУ:

$$\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
1 & -3 & 1 & 1 & | & 0 \\
4 & -1 & -1 & -1 & | & 1 \\
4 & 3 & -4 & -1 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & 4 & -3 & 0 & | & 1 \\
0 & -5 & 7 & -5 & | & -3 \\
0 & -1 & 4 & -5 & | & 2
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & -1 & 4 & -5 & | & 2 \\
0 & 0 & 13 & -20 & | & 7
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & -1 & 4 & -5 & | & 2 \\
0 & 0 & 13 & -20 & | & 7
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 1 & -2 & 1 & | & 1 \\
0 & -1 & 4 & -5 & | & 2 \\
0 & 0 & 13 & -20 & | & 7
\end{pmatrix}$$

Исходная СЛУ имеет бесконечное множество решений и равносильна

системе
$$\begin{cases} x_1 + x_2 - 2x_3 + x_4 = 1, \\ -x_2 + 4x_3 - 5x_4 = 2, \\ 13x_3 - 20x_4 = -7 \end{cases}$$

Обозначим x_4 через параметр α и выразим все остальные неизвестные через него:

$$\begin{cases} x_1 = -x_2 + \frac{2}{13}(20\alpha - 7) - \alpha + 1, \\ x_2 = \frac{4}{13}(20\alpha - 7) - 5\alpha - 2, \\ x_3 = \frac{1}{13}(20\alpha - 7), \\ x_4 = \alpha \end{cases} \Rightarrow \begin{cases} x_1 = -\frac{15}{13}\alpha + \frac{54}{13} + \frac{2}{13}(20\alpha - 7) - \alpha + 1, \\ x_2 = \frac{15}{13}\alpha - \frac{54}{13}, \\ x_3 = \frac{20}{13}\alpha - \frac{7}{13}, \\ x_4 = \alpha \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} x_1 = \frac{12}{13}\alpha + \frac{53}{13}, \\ x_2 = \frac{15}{13}\alpha - \frac{54}{13}, \\ x_3 = \frac{20}{13}\alpha - \frac{7}{13}, \\ x_4 = \alpha. \end{cases} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12/13 \\ 15/13 \\ 20/13 \\ 1 \end{pmatrix} \alpha + \begin{pmatrix} 53/13 \\ -54/13 \\ 0 \end{pmatrix}, \alpha \in \mathbf{R} - \text{ это общее решение рас-}$$

сматриваемой неоднородной системы линейных уравнений.

Система
$$\begin{cases} x_1+x_2-2x_3+x_4=0,\\ x_1-3x_2+x_3+x_4=0,\\ 4x_1-x_2-x_3-x_4=0,\\ 4x_1+3x_2-4x_3-x_4=0. \end{cases}$$
 будет решаться так же, как и неодно-

родная, но свободные члены при преобразованиях так и останутся нулями.

Общее решение однородной системы:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 12/13 \\ 15/13 \\ 20/13 \\ 1 \end{pmatrix} \alpha$$
; $\alpha \in \mathbf{R}$.

Решения неоднородной и соответствующей ей однородной систем отличаются только наличием столбца свободных членов, который является частным решением неоднородной системы.

2.3. Решение невырожденных систем линейных уравнений

Подробное описание методов решения невырожденных СЛУ можно найти в [1, ч. 1, с. 26 – 29]. Невырожденными системами являются системы, основная матрица которых невырожденна. Такие системы могут быть решены уже разобранным методом Гаусса. Рассмотрим на примерах те методы, которые применимы только к невырожденным системам.

Пример 47. Решить СЛУ
$$\begin{cases} x_2 + 3x_3 = 9, \\ x_1 + x_2 - x_3 = 27, \\ -2x_1 - x_3 = 3. \end{cases}$$

 Решение. Рассмотрим матрицы: $A = \begin{pmatrix} 0 & 1 & 3 \\ 1 & 1 & -1 \\ -2 & 0 & -1 \end{pmatrix}$ — основная матрица

СЛУ,
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 — столбец неизвестных СЛУ, $B = \begin{pmatrix} 9 \\ 27 \\ 3 \end{pmatrix}$ — столбец свободных

членов уравнений системы.

Основная матрица СЛУ невырождена, так как
$$\det A = \begin{vmatrix} 0 & 1 & 3 \\ 1 & 1 & -1 \\ -2 & 0 & -1 \end{vmatrix} = 9 \neq 0$$
,

следовательно, существует A^{-1} .

Запишем СЛУ в виде равносильного ей матричного уравнения

$$\begin{pmatrix} 0 & 1 & 3 \\ 1 & 1 & -1 \\ -2 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 9 \\ 27 \\ 3 \end{pmatrix} \Rightarrow A \cdot X = B.$$

Домножим равенство $A \cdot X = B$ на A^{-1} слева:

$$A \cdot X = B \Rightarrow A^{-1} \cdot A \cdot X = A^{-1} \cdot B \Rightarrow E \cdot X = A^{-1} \cdot B \Rightarrow X = A^{-1} \cdot B.$$

Столбец неизвестных может быть найден как произведение матриц A^{-1} и B.

Вычислим A^{-1} любым из разобранных нами ранее способов:

$$A^{-1} = \frac{1}{9} \begin{pmatrix} -1 & 1 & -4 \\ 3 & 6 & 3 \\ 2 & -2 & -1 \end{pmatrix}.$$

Найдем решение данной системы уравнений: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} -1 & 1 & -4 \\ 3 & 6 & 3 \\ 2 & -2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 27 \\ 3 \end{pmatrix} = \frac{1}{9} \cdot \begin{pmatrix} 6 \\ 198 \\ -39 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 22 \\ -13/3 \end{pmatrix}.$

Пример 48. Решить СЛУ
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 1, \\ -x_1 + 3x_2 - x_3 = 2, \\ x_1 + 3x_3 = 3. \end{cases}$$

Решение. Применим к решению рассматриваемой системы метод Крамера, основанный на следующей теореме. Если СЛУ невырожденна, то она имеет единственное решение, вычисляемое по формулам \forall i=1,..., n: $x_i = \frac{\Delta_i}{\Delta}$ (формулы Крамера). В этих формулах Δ — определитель основной матрицы СЛУ; Δ_i — определитель, полученный из Δ заменой i-го столбца на столбец свободных членов.

Для данной системы
$$\Delta = \begin{vmatrix} 2 & 3 & -1 \\ -1 & 3 & -1 \\ 1 & 0 & 3 \end{vmatrix} = 27$$
, следовательно, она невырож-

денна и имеет единственное решение. Применим формулы Крамера:

$$\Delta_{1} = \begin{vmatrix} 1 & 3 & -1 \\ 2 & 3 & -1 \\ 3 & 0 & 3 \end{vmatrix} = -9 \Rightarrow x_{1} = \frac{-9}{27} = -\frac{1}{3}; \ \Delta_{2} = \begin{vmatrix} 2 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & 3 & 3 \end{vmatrix} = 25 \Rightarrow x_{2} = \frac{25}{27};$$

$$\Delta_{3} = \begin{vmatrix} 2 & 3 & 1 \\ -1 & 3 & 2 \\ 1 & 0 & 3 \end{vmatrix} = 30 \Rightarrow x_{3} = \frac{30}{27} = \frac{10}{9}.$$

$$\underline{OTBET:} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} -1/3 \\ 25/27 \\ 10/9 \end{pmatrix}.$$

Список литературы

- 1. Письменный Д. Т. Конспект лекций по высшей математике: В 2 ч. М.: Айрис Пресс, 2004.
- 2. Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах: В 2 ч. М.: Высш. шк., 1996.
- 3. Куликов Л. Я., Москаленко А. И., Фомин А. А. Сборник задач по алгебре и теории чисел. М.: Просвещение, 1993.

Оглавление

1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ	
1.1. Алгебра матриц	3
1.2. Определители	7
1.3. Ранг матрицы	13
1.4. Обратная матрица	16
2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ	20
2.1. Исследование на разрешимость систем линейных уравнений	20
2.2. Решение систем линейных уравнений методом Гаусса	23
2.3. Решение невырожденных систем линейных уравнений	30
Список литературы	32

Редактор И. Б. Синишева

Издательство СПбГЭТУ «ЛЭТИ» 197376, С.-Петербург, ул. Проф. Попова, 5