Lecture 1 Outline

Reminders to self:

ECE2060

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone
- Last Lecture
 - More Boolean Algebra
 - Introduction of Design of Switching Circuits
- Today's Lecture
 - Foundations for K-Maps
 - Minterms
 - Maxterms
 - Start K-Maps

Handouts and Announcements

Announcements

ECE2060

- Homework Problems 2-4, 4-1
 - Posted on Carmen this morning
 - Due in Carmen 11:59pm, Thursday 2/2
- Homework Problems 2-2 and 2-3 reminder
 - HW 2-2 due: 11:25am Monday 1/30
 - HW 2-3 due: 11:59pm Tuesday 1/31
- Read for Monday: Pages 108-114, 144-149

Minterms

- A minterm of *n* variables is a product of *n* literals in which each variable
 - appears exactly once
 - in either true or complemented form,
 - but not both

Row No.	ABC	Minterms
0	0 0 0	$A'B'C' = m_0$
1	0 0 1	$A'B'C = m_1$
2	0 1 0	$A'BC' = m_2$
3	0 1 1	$A'BC = m_3$
4	1 0 0	$AB'C' = m_4$
5	1 0 1	$AB'C = m_5$
6	1 1 0	$ABC' = m_6$
7	1 1 1	$ABC = m_7$
•		111/

- Abbreviations for minterms for $1 \ge 3$
- In general, the minterm which corresponds to row i of the truth table is designated m_i
- Index *i* is usually written in decimal

Minterms

Α	В	C	f	f'
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0
	0 0 0 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When a function f is written as a sum of minterms, this is referred to as a

- · Mintern expansion or
- standard <u>Sum Of Products</u>
 (SOP)

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

$$f(A, B, C) =$$

$$f(A, B, C) = \sum m($$

Note that the function is expressed here as a SOP that describes when the function = 1

The Ohio State University

ECE2060

Minterms

COLLEGE OF ENGINEERING

ECE2060

Minterms

Maxterms

Could write f based on the 0's of the function

$$f = (A + B + C)(A + B + C')(A + B' + C)$$

While minterms are based on the SOP form, maxterms are based on the Product Of Sums form ()

Maxterms

- A maxterm of *n* variables is a
- of *n* literals in which each variable

- appears exactly once
- in either true or complemented form,
- but not both
- A maxterm is the (DeMorgan's; e.g. Row #4

of the corresponding minterm

Row No. Minterms Maxterms ABC $A'B'C' = m_0$ $A + B + C = M_0$ 0 0 $A + B + C' = M_1$ $A'B'C = m_1$ $A'BC' = m_2$ $A + B' + C = M_2$ 3 $A'BC = m_3$ $A + B' + C' = M_3$ $AB'C' = m_A$ $A' + B + C = M_A$ 5 $AB'C = m_5 \mid A' + B + C' = M_5$ 6 $ABC' = m_6 \mid A' + B' + C = M_6$ $A' + B' + C' = M_7$ $= m_7$

- Abbreviations for maxterms for
- In general, the maxterm which corresponds to row *i* of the truth table is designated M_i
- Index *i* is usually written in

General Minterems & Maxterms

DESIRED FORM

		Minterm Expansion of F	Maxterm Expansion of F	Minterm Expansion of F'	Maxterm Expansion of F'
GIVEN FORM	Minterm Expansion of F		maxterm nos. are those nos. not on the minterm list for F	list minterms not present in F	maxterm nos. are the same as minterm nos. of F
- رن -	Maxterm Expansion of F	minterm nos. are those nos. not on the maxterm list for F		minterm nos. are the same as maxterm nos. of F	list maxterms not present in F

General Minterems & Maxterms

For our previous function

DESIRED FORM

FORM		Minterm Expansion of <i>f</i>	Maxterm Expansion of <i>f</i>	Minterm Expansion of f'	Maxterm Expansion of f'
IVEN	$f = \Sigma m(3, 4, 5, 6, 7)$		Π M(0, 1, 2)	Σ m(0, 1, 2)	П M(3, 4, 5, 6, 7)
٥	$f = \Pi M(0, 1, 2)$	Σ m(3, 4, 5, 6, 7)		Σ m(0, 1, 2)	П M(3, 4, 5, 6, 7)

Order of Variables

The order of the variables in a function name matters

•
$$F(A, B, C) = \sum m(2,4) = A'BC' + AB'C'$$

•
$$G()$$
 $= \sum m(2,4) =$

m_i	A	B	C	F
m_0	0	0	0	0
m_1	0	0	1	0
m_2	0	1	0	1
m_3	0	1	1	0
m_4	1	0	0	1
m_5	1	0	1	0
m_6	1	1	0	0
m_7	1	1	1	0

 m_2 is symmetric for the orders of variables in F and G

m_i		B		G
m_0	0	0	0	0
m_1	0	0	1	0
m_2	0	1	0	
m_3	0	1	1	0
m_4	1	0	0	
m_5	1	0	1	0
m_6	1	1	0	0
m_7	1	1	1	0

Incompletely Specified Functions

- In some systems, certain combinations of inputs will never occur
- Those combinations of
 - might not be allowed, or
 - might never occur,
 - or the output might be used in such a way that we don't care what it is for some combinations of inputs
- For these combinations, we "don't care" what the value of F is
- The function F is then considered incompletely specified
- Truth table with don't-cares:
- In minterm and maxterm expansions respectively *d*, and *D* specify "don't cares"

$$F = \sum m() + \sum d()$$

$$F = \prod M() \cdot \prod D()$$

Α	В	C	F
0	0	0	1
0	0	1	Х
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	Х
1	1	1	1

Incompletely Specified Functions

- Don't cares may allow you to simplify a logic function
 - Can count it as a 1 in the truth table (
 that will help reduce the expression
 - Or can ignore it (including is optional)
- We will see more about how to do this in K-maps

), if

Summary of where we are

- 1. Build a truth table from a "Design Statement"
 - Such as example from last lecture
 - List all possible input combinations and their outputs
- 2. Minterm expansion to write SOP logic expression for the system
- 3. SOP generates a maximum of two stages of logic
 - First stage: AND (
 - Second stage: OR (
 - Assumes all variables and their complements are available
 - Might need a "zero" stage of inverters to generate complements if they are not already available

Summary of where we are

- 4. "Don't Care" inputs are combinations that are not allowed or are impossible
 - Treat as "Wild Cards"
 - *Can* be used to simplify expression
- 5. Maxterm expansion POS also yields two stages of logic
 - First stage: OR (
 - Second stage: AND (
 - Assumes all variables and their complements are available
 - Might need a "zero" stage of inverters to generate complements if they are not already available

Karnaugh Maps

- Karnaugh Maps () provide a visual way to reduce logic ()
- Plot minterms next to each other so that each term differs by only 1 variable from the minterms around it
- Example: AB'C + ABC = AC() = AC() = AC(
- K-map will guarantee (2-stage logic):
 - Fewest # of gates
 - Fewest # variables per gate
- K-map does not guarantee a unique solution

2-Variable Karnaugh Maps

- Two-variable K-Map
- Fill the map with 1s and Os consistent with the truth table

B^A	0	1	
A=0, B=0	+	*	A = 1, B = 0
A=0, B=1	*	¥	A = 1, B = 1

		B^{A}	0	1
A B	F	0	1	0
00	1			
0 1	1	1	1	0
10	0	1		
1 1	0			
(a	1)		(b)

Minterms in adjacent squares can be combined since they differ by only one variable

3-Variable Karnaugh Maps

- Three-variable K-Map plotted in a similar manner
- The value of one variable, a, is listed on the top and the values of the other two, b and c, are listed on the side
 - Order of variables in the minterms shown here is abc
 - Note: alternative layout with one variable on the side and two on the top is equally valid

FIGURE 5-3 Location of Minterms on a Three-Variable Karnaugh Map

© Cengage Learning 2014

- Note "Gray-codelike" order
- Only one variable changes from rowto-row

(b) Decimal notation

3-Variable Karnaugh Maps

- Minterms in adjacent squares of map differ in only one variable and therefore can be combined using uniting theorem XY + XY' = X
- Do this as an example. Formal algorithm next lecture

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

ECE2060

4-Variable Karnaugh Maps

COLLEGE OF ENGINEERING

ECE2060

K-Map Minimal SOP Algorithm

- 1. Draw the largest rectangular box (squares are a special case of rectangular) that:
 - A. Does not include any 0s
 - B. Has height () that is a power of 2 ()
 - C. Has width () that is a power of 2
- 2. Make sure that every 1 on the map is in the <u>largest</u> possible box
- 3. Reduce the products by looking at boxes
 - A. The reduced expression will be SOP
 - B. The result may not be unique, but will be maximally reduced

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

ECE2060

K-Map Example

$$f(a,b,c) = \sum m(1,3,4,5,7)$$
$$f = a'b'c + a'bc + ab'c'$$
$$+ab'c + abc$$

K-Map Example

Don't Cares in K-maps

- All 1s must be covered
- Xs are used only if they will simplify the resulting expression

Note: Still SOP form

K-Map Amount of Reduction

K-map Boxes that are Groups of:

- $2 \rightarrow$ reduce minterm by variable
- $4 \rightarrow$ reduce minterm by variables
- $8 \rightarrow$ reduce minterm by variables
- $1 \rightarrow$ reduce minterm by variables (full-length minterm)