Digital technology

Numbering systems Jari Hautamäki

Numbering systems

Binary number conversions

- Big decimal numbers are difficult to present in binary format
 - The number of characters increases significantly E.g. 9765₁₀ in binary format is 10011000100101₂
- Octal and hexadecimal formats are preferred
- Conversion from binary to octal or hexademical system is easy
 - The binary digit's bits, i.e. single characters are grouped into three- (octal system) or fourbit groups (hexadecimal system)
 - These groups are converted into their own characters

OCTAL	HEXA	BINARY	BINARY16
0	0	000	0000
1	1	001	0001
2	2	010	0010
3	3	011	0011
4	4	100	0100
5	5	101	0101
6	6	110	0110
7	7	111	0111
	8		1000
	9		1001
	Α		1010
	В		1011
	С		1100
	D		1101
	E		1110
	F		1111

Numbering systems

Examples of binary number conversions.

Exercises

3. Convert

- a) 101100₂ -->X₈
- b) 010110111010₂ --> X₁₆
- c) 736₈ --> X₂
- d) 634₈ --> X₁₆
- e) 9F7₁₆ --> X₂
- f) $ABC_{16} --> X_8$