清华大学

综合论文训练

题目: <u>基于 CUDA 的舰船目标检测</u> 算法设计

系 别:电子工程系

专 业: 电子信息科学与技术

姓 名: 孙天宇

指导教师: 杨健教授

2020年5月15日

关于学位论文使用授权的说明

本人完全了解清华大学有关保留、使用学位论文的规定,即:学校有权保留 学位论文的复印件,允许该论文被查阅和借阅;学校可以公布该论文的全部或 部分内容,可以采用影印、缩印或其他复制手段保存该论文。

(涉密的学位论文在解密后应遵守此规定)

签	名:	导师签名:	日	期:	
---	----	-------	---	----	--

中文摘要

合成孔径雷达 (SAR) 作为一种主动成像的遥感观测手段,可以通过收发电磁波波束来获取地物目标的极化散射信息,生成高分辨率的地物影像。目前 SAR 被广泛应用于海上目标检测与识别。为满足 SAR 系统对海上目标检测的高时效性要求,本文共实现了三种基于 CPU+GPU 异构架构的高效并行舰船目标检测方法,总结如下:

- 1) 对于极化 SAR 图像,以极化白化滤波器 (PWF) 方法为例,实现了多 GPU 协同的并行极化白化滤波器算法,该方法采用滑动窗选取局部海杂波像素计算 极化白化滤波器参数,通过该滤波器融合各个极化通道的散射信息,得到一幅相干斑抑制图像。对重构降斑图像应用 CFAR 检测器进行阈值分割,得到最终的检测结果。实验结果表明,基于 GPU 并行的 PWF 检测方法有效,并在检测时间性能上获得了显著的提升,明显优于传统的 CPU 串行算法。
- 2) 对于单极化 SAR 图像,采用了混合对数正太分布来描述强度图像中的非负海杂波分布。首先采用滑动传选择局部海杂波像素然后采用最大期望 (EM) 方法来估计混合对数正太分布中参数,得到分布后根据给定的虚警率采用牛顿迭代法计算 CFAR 检测器的分割阈值。我们将该算法中参数估计与阈值计算等可并行执行的部分分配到 GPU 上去并行执行。实验结果表明,相比于传统 CPU 串行执行方式,该并行方法在时间性能上获得了数十倍的提升。
- 3) 实现了基于 GPU 的极化协方差差异矩阵极化 SAR 图像舰船目标检测方法。该方法计算了图像中每个像元与其 3x3 邻域极化协方差矩阵的差值,由此得到极化协方差差异矩阵。为了充分利用极化协方差差异矩阵中含有的极化信息,在每个 GPU 线程中,我们提取了极化协方差差异矩阵的 SPAN 值与基座舰船高度 (PSH) 这个极化特征,对这两个特征应用阈值分割,得到最终检测结果。实验结果表明:相较于 PWF 方法,该方法对复杂海况的适应能力更强,算法在检测精度与时间、空间性能上都优于 PWF 方法。

关键词: 舰船检测; 高性能计算; 极化白化滤波器; 极化协方差差异矩阵; 极化 SAR

ABSTRACT

Synthetic aperture radar (SAR) system provides an all-weather remote sensing method that can generate high-resolution ground object images under radar beam irradiation. Now, it has been widely used in Marine target detection and classification. In order to meet the requirement of high timeliness of SAR ship target detection, this paper proposes a method based on CPU+GPU heterogeneous architecture for SAR image ship target detection. In this paper, three kinds of efficient target detection based on CPU+GPU heterogeneous architecture are realized, these are summarized as follows:

1)For polarization SAR images, with polarization whitening filter (PWF) method as an example, this paper implements the GPU collaborative parallel polarization filter algorithm, the method estimates the local sea clutter covariance matrix and combine the polarization scattering channel information to get a pair of coherent spot suppression images. For the reconstruct image, CFAR detector was applied to get the final detection results. The experimental results show that the method is effective and the detection time is improved significantly, which is better than the traditional method CPU platform.

2)For SAR images, the log-mixture gaussian model is used to describe the non-negative sea clutter distribution in amplitude SAR images, and the maximum expectation (EM) method is used to effectively estimate the sea clutter distribution parameters. According to the given false alarm rate in advance, the CAFR detection threshold is obtained by Newton iteration method. The experimental results of this method on NVIDIA TITAN V GPU show that compared with the traditional CPU platform, the detection efficiency of this method is improved by dozens of times

3)A ship detection method based on polarization covariance difference matrix is implemented. This method calculates the polarization covariance matrix difference between each pixel and its surrounding 3x3 neighborhood. The polarization covariance difference matrix improves the ship-sea contrast in the local area. In order to make full use of the polarization and intensity features in the polarization covariance difference matrix, the Shannon entropy of the polarization covariance difference matrix is calculated, and the threshold is used for segmentation to obtain the final detection re-

sult. Experimental results show that, compared with the PWF method, the detection accuracy of this method has been effectively improved.

Keywords: ship detection; CUDA; polarimetric whitening filter; polarimetric covariance difference matrix; polarimetric synthetic aperture radar

目 录

主要符号对照表

HPC 高性能计算 (High Performance Computing)

CUDA 统一计算设备架构 (Compute Unified Device Architecture)

GPU 图形处理器 (Graphics Processing Unit)

SAR 合成孔径雷达 (Synthetic Aperture Radar)

CFAR 恒虚警率 (Constant False Alarm Rate)

SPAN 散射总功率

PWF 极化白化滤波器 (Polarimetric Whitening Filter)

APWF 自适应极化白化滤波器

LMM 混合对数正太模型 (Lognormal Mixture Model)

EM 最大期望算法 (Expectation Maximization algorithm)

PCDM 极化协方差差异矩阵

LBP 局部二值模式 (Local Binary Patterns)
PSH 基座舰船高度 (Pedestal Ship Height)

X^T 矩阵转置

X^H 矩阵共轭转置 Γ Gamma 函数

E(·) 计算期望

|| 矩阵行列式或绝对值

In对数函数exp指数函数

 Σ_c 极化协方差矩阵

第1章 引言

1.1 研究背景与意义

合成孔径雷达 (synthetic aperture radar,SAR)^[1] 以微波遥感的形式进行对地观测,可以不受天气、光照等自然条件的影响,具有全天候、全天时的实时对地观测能力。鉴于 SAR 系统可以提供丰富的地物散射特征等信息,目前其被广泛应用于自然灾害评估,海洋维权,对地侦察,资源勘探等领域^[2]。SAR 技术自从20 世纪 50 年代诞生以来,已经取得了长足的发展。最初其被应用于侦察和检测人造目标等军用领域,进入到七十年代,一些用来探测地表物理特征的民用机载 SAR 系统被相继研发。1978 年,第一颗民用 SAR 卫星 Seasat 发射。二十世纪九十年代欧洲、日本、加拿大分别发射了 ERS-1/2、JERS-1、Radarsar-1 星载 SAR 系统。21 世纪进入 SAR 系统发展的黄金时代,如今在轨运行的星载 SAR 系统超过 20 个,我国于 2016 年发射了高分三号遥感卫星 (GF-3),这是一颗 C波段分辨率达到 1 米的多极化合成孔径雷达卫星。

广泛的应用场景需求在不断推动着 SAR 成像技术的迅猛发展,起初 SAR 系统只能以一种收发电磁波的模式去获取数据,工作频段、角度单一。如今 SAR 系统成像模式日渐多样化,产生了多极化,多角度,多波段,多识相的组合观测模式。相较于单极化 SAR 系统,多极化 SAR 可以采用多种组合观测模式去获得地物目标的完备的散射信息。目前 SAR 成像技术在向高空间,时间分辨率的方向发展,对于高分辨 SAR 影像的后处理以满足各领域应用需求等前沿科学问题正在引发学者广泛关注^[3]。

近几年,图形处理器 (GPU) 因其高效的计算性能引起了科研人员的广泛关注。最初图像处理器作为协处理器仅被用来加速图像处理与实时图像渲染以提供平滑与流畅的屏幕图形显示。如今随着深度学习的快速发展,GPU 因其强大的数据处理能力与高内存带宽已经成为神经网络训练的标配。与此同时,GPU编程接口 CUDA 也一直与时俱进,其提供了一套基于 C/C++ 的 API 以便捷开发人员创建可以在其上运行的软件。

海上舰船目标检测与识别是极化 SAR 重要应用之一。我国海域辽阔,近些年来海上安全形势日趋严峻,海洋管控能力亟待提升。基于极化 SAR 的舰船目标检测与识别对于航线管理,海上救援,航洋权益争端等具有非常重要的意义。

然而传统的极化 SAR 目标识别方法存在着计算复杂度高,耗时长等问题。针对此问题,我们基于 CPU+GPU 的异构架构将 SAR 目标检测算法中可并行的部分附加到高速的 GPU 中去执行,从而全面提升 SAR 系统对目标快速识别与处理的能力。

图 1.1 CPU 和 GPU 浮点运算比较

1.2 研究现状与进展

本节介绍 SAR 图像舰船检测方法研究与进展,包含了单极化 SAR 图像舰船检测与极化 SAR 图像舰船目标检测。

1.2.1 单极化 SAR 图像目标检测

通常星载 SAR 系统可以对大范围海面进行成像,对于原始单通道 SAR 图像数据,舰船目标检测主要包含了以下几个过程:海陆分割,截取含有潜在目标的候选检测区域,使用目标检测算法鉴别候选区域中的舰船像素与杂波像素^[4]。目前大多数检测算法都是依据舰船目标与海面后的向散射特性的差异来进行鉴别。舰船目标包含大量二面角,后向散射系数较高,在强度图像中表现为一块高亮区域,而海杂波则为无规则的灰暗斑点噪声的形态。

在基于幅值的单极化 SAR 图像舰船目标检测方法中,应用最广泛的为基于恒虚警率 (CFAR) 的舰船检测方法。CFAR 检测方法根据滑动窗选择待检测像素周围的海杂波像素,然后按照事先提出的统计分布模型依据选择的海杂波像素去估计杂波分布参数,得到杂波分布后根据恒虚警率 P_{FA} 去计算自适应分割阈值 T,当待检测像素值大于阈值 T 时将该像素判定为舰船像素 [5]。对于恒虚警率舰船检测方法,其检测精度主要受到两个因素的影响,雷达系统本身的参数,

如极化模式、入射角等,另一个是成像区域海况条件如风速风向等。

对于海杂波的统计建模方法,Novak^[6] 提出了双参数 CFAR 检测方法,该方法采用高斯分布对海杂波进行统计建模,实验结果表明在低分辨率匀质杂波的条件下,双参数 CFAR 检测器拥有较好的检测性能。此外研究人员还采用了其他分布模型如瑞利分布、K 分布、对数正太分布、Weibull 分布来描述海杂波分布特性,经实验验证,这些统计模型都可以有效区分 SAR 图像中的舰船目标与背景杂波^[7]。虽然有很多可供选择的统计分布模型,但是在高分辨率的复杂海洋场景中,这些模型对杂波的拟合精度依然不能满足检测要求,于是一些学者提出了非参数化的检测方法。Jiang et al.^[?]提出了概率神经网络 (Probability neural newworks, PNN) 来估计海杂波的概率密度函数。Gao^[?]提出了基于 Parzen-window-kernel的检测方法,该方法利用 Parzen 窗中的核函数去逼近真实 SAR 图像直方图,从而完成对杂波概率密度函数的估计。近些年来一些基于深度学习的方法也被应用到 SAR 图像目标检测中。Kang^[?]将光学图像目标检测网络 Faster-RNN 与CFAR 检测器相结合,将 Faster-RCNN 网络输出的举荐目标区域作为滑动窗的保护区域对 CFAR 算法改进。实验结果表明,该方法对可以有效提升 SAR 图像中尺寸较小舰船目标的检测能力。

1.3 论文内容

这是 ThuThesis^[?] 的示例文档,基本上覆盖了模板中所有格式的设置。建议大家在使用模板之前,除了阅读《ThuThesis 用户手册》,这个示例文档也最好能看一看。

小老鼠偷吃热凉粉;短长虫环绕矮高粱^①。

1.4 封面相关

封面的例子请参看 cover.tex。主要符号表参看 denotation.tex,附录和个人简历分别参看 appendix01.tex 和 resume.tex。里面的命令都很直观,一看即会^②。

① 韩愈(768-824),字退之,河南河阳(今河南孟县)人,自称郡望昌黎,世称韩昌黎。幼孤贫刻苦好学,德宗贞元八年进士。曾任监察御史,因上疏请免关中赋役,贬为阳山县令。后随宰相裴度平定淮西迁刑部侍郎,又因上表谏迎佛骨,贬潮州刺史。做过吏部侍郎,死谥文公,故世称韩吏部、韩文公。是唐代古文运动领袖,与柳宗元合称韩柳。诗力求险怪新奇,雄浑重气势。

② 你说还是看不懂?怎么会呢?

1.5 字体

苏轼(1037-1101),北宋文学家、书画家。字子瞻,号东坡居士,眉州眉山(今属四川)人。苏洵子。嘉佑进士。神宗时曾任祠部员外郎,因反对王安石新法而求外职,任杭州通判,知密州、徐州、湖州。后以作诗"谤讪朝廷"罪贬黄州。哲宗时任翰林学士,曾出知杭州、颖州等,官至礼部尚书。后又贬谪惠州、儋州。北还后第二年病死常州。南宋时追谥文忠。与父洵弟辙,合称"三苏"。在政治上属于旧党,但也有改革弊政的要求。其文汪洋恣肆,明白畅达,为"唐宋八大家"之一。其诗清新豪健,善用夸张比喻,在艺术表现方面独具风格。少数诗篇也能反映民间疾苦,指责统治者的奢侈骄纵。词开豪放一派,对后代很有影响。《念奴娇·赤壁怀古》、《水调歌头·丙辰中秋》传诵甚广。

坡仙擅长行书、楷书,取法李邕、徐浩、颜真卿、杨凝式,而能自创新意。用笔丰腴跌宕,有天真烂漫之趣。与蔡襄、黄庭坚、米芾并称"宋四家"。能画竹,学文同,也喜作枯木怪石。论画主张"神似",认为"论画以形似,见与儿童邻";高度评价"诗中有画,画中有诗"的艺术造诣。诗文有《东坡七集》等。存世书迹有《答谢民师论文帖》、《祭黄几道文》、《前赤壁赋》、《黄州寒食诗帖》等。画迹有《枯木怪石图》、《竹石图》等。

易与天地准,故能弥纶天地之道。仰以观於天文,俯以察於地理,是故知幽明之故。原始反终,故知死生之说。精气为物,游魂为变,是故知鬼神之情状。与天地相似,故不违。知周乎万物,而道济天下,故不过。旁行而不流,乐天知命,故不忧。安土敦乎仁,故能爱。范围天地之化而不过,曲成万物而不遗,通乎昼夜之道而知,故神无方而易无体。

有天地,然后万物生焉。盈天地之间者,唯万物,故受之以屯; 屯者盈也, 屯者物之始生也。物生必蒙,故受之以蒙; 蒙者蒙也,物之穉也。物穉不可不养 也,故受之以需; 需者饮食之道也。饮食必有讼,故受之以讼。讼必有众起,故 受之以师; 师者众也。众必有所比,故受之以比; 比者比也。比必有所畜也,故 受之以小畜。物畜然后有礼,故受之以履。

履而泰,然后安,故受之以泰;泰者通也。物不可以终通,故受之以否。物不可以终否,故受之以同人。与人同者,物必归焉,故受之以大有。有大者不可以盈,故受之以谦。有大而能谦,必豫,故受之以豫。豫必有随,故受之以随。以喜随人者,必有事,故受之以蛊;蛊者事也。

有事而后可大,故受之以临;临者大也。物大然后可观,故受之以观。可观而后有所合,故受之以噬嗑;嗑者合也。物不可以苟合而已,故受之以贲;责者饰也。致饰然后亨,则尽矣,故受之以剥;剥者剥也。物不可以终尽,剥穷上反下,故受之以复。复则不妄矣,故受之以无妄。

有无妄然后可畜,故受之以大畜。物畜然后可养,故受之以颐;颐者养也。 不养则不可动,故受之以大过。物不可以终过,故受之以坎;坎者陷也。陷必有 所丽,故受之以离;离者丽也。

1.6 表格样本

1.6.1 基本表格

模板中关于表格的宏包有三个: booktabs、array 和 longtabular,命令有一个\hlinewd。三线表可以用 booktabs 提供的\toprule、\midrule 和\bottomrule。它们与 longtable 能很好的配合使用。如果表格比较简单的话可以直接用命令\hlinewd {\width\}} 控制。

表 1.1 模板文件。如果表格的标题很长,那么在表格索引中就会很不美观,所以要像 chapter 那样在前面用中括号写一个简短的标题。这个标题会出现在索引中。

文件名	描述				
thuthesis.ins thuthesis.dtx thuthesis.cls thuthesis-numeric.bst thuthesis-author-year.bst thuthesis.sty	IATEX 安装文件,DocStrip ^① 所有的一切都在这里面 ^② 。 模板类文件。 参考文献 BibTEX 样式文件。 参考文献 BibTEX 样式文件。 常用的包和命令写在这里,减轻主文件的				
	负担。				

① 表格中的脚注

首先来看一个最简单的表格。表 2.1 列举了本模板主要文件及其功能。请大家注意三线表中各条线对应的命令。这个例子还展示了如何在表格中正确使用脚注。由于 LATEX 本身不支持在表格中使用\footnote, 所以我们不得不将表格放在小页中, 而且最好将表格的宽度设置为小页的宽度, 这样脚注看起来才更美观。

② 再来一个

1.6.2 复杂表格

我们经常会在表格下方标注数据来源,或者对表格里面的条目进行解释。前面的脚注是一种不错的方法,如果不喜欢脚注,可以在表格后面写注释,比如表 1.2。

у	First	Half	Second Half		
x	1st Qtr	2nd Qtr	3rd Qtr	4th Qtr	
East*	20.4	27.4	90	20.4	
West**	30.6	38.6	34.6	31.6	

表 1.2 复杂表格示例 1。这个引用[?] 不会导致编号混乱。

此外,表 1.2 同时还演示了另外两个功能: 1) 通过 tabularx 的 |X| 扩展实现表格自动放大; 2) 通过命令 \diagbox 在表头部分插入反斜线。

为了使我们的例子更接近实际情况,我会在必要的时候插入一些"无关"文字,以免太多图表同时出现,导致排版效果不太理想。第一个出场的当然是我的最爱:风流潇洒、骏马绝尘、健笔凌云的**李太白**了。

李白,字太白,陇西成纪人。凉武昭王暠九世孙。或曰山东人,或曰蜀人。白少有逸才,志气宏放,飘然有超世之心。初隐岷山,益州长史苏颋见而异之,曰:"是子天才英特,可比相如。"天宝初,至长安,往见贺知章。知章见其文,叹曰:"子谪仙人也。"言于明皇,召见金銮殿,奏颂一篇。帝赐食,亲为调羹,有诏供奉翰林。白犹与酒徒饮于市,帝坐沉香亭子,意有所感,欲得白为乐章,召入,而自己醉。左右以水颒面,稍解,援笔成文,婉丽精切。帝爱其才,数宴见。白常侍帝,醉,使高力士脱靴。力士素贵,耻之,摘其诗以激杨贵妃。帝欲官自,妃辄沮止。白自知不为亲近所容,恳求还山。帝赐金放还。乃浪迹江湖,终日沉饮。永王璘都督江陵,辟为僚佐。璘谋乱,兵败,白坐长流夜郎,会赦得还。族人阳冰为当涂令,白往依之。代宗立,以左拾遗召,而白己卒。文宗时,诏以白歌诗、裴旻剑舞、张旭草书为三绝云。集三十卷。今编诗二十五卷。——《全唐诗》诗人小传

浮动体的并排放置一般有两种情况: 1) 二者没有关系,为两个独立的浮动体; 2) 二者隶属于同一个浮动体。对表格来说并排表格既可以像图 1.3、图 1.4 使用小页环境,也可以如图 1.5 使用子表格来做。图的例子参见第 ?? 节。

注:数据来源《ThuThesis 使用手册》。

^{*:} 东部

^{**:} 西部

表 1.3 第一个并排子表格

111	222
222	333

表 1.4 第二个并排子表格

111	222
222	333

然后就是忧国忧民,诗家楷模杜工部了。杜甫,字子美,其先襄阳人,曾 祖依艺为巩令, 因居巩。甫天宝初应进士, 不第。后献《三大礼赋》, 明皇奇之, 召试文章,授京兆府兵曹参军。安禄山陷京师,肃宗即位灵武,甫自贼中遁赴行 在,拜左拾遗。以论救房琯,出为华州司功参军。关辅饥乱,寓居同州同谷县, 身自负薪采梠, 餔糒不给。久之, 召补京兆府功曹, 道阻不赴。严武镇成都, 奏 为参谋、检校工部员外郎,赐绯。武与甫世旧,待遇甚厚。乃于成都浣花里种竹 植树、枕江结庐、纵酒啸歌其中。武卒、甫无所依、乃之东蜀就高適。既至而適 卒。是岁,蜀帅相攻杀,蜀大扰。甫携家避乱荆楚,扁舟下峡,未维舟而江陵亦 乱。乃溯沿湘流,游衡山,寓居耒阳。卒年五十九。元和中,归葬偃师首阳山, 元稹志其墓。天宝间, 甫与李白齐名, 时称李杜。然元稹之言曰:"李白壮浪纵 恣,摆去拘束,诚亦差肩子美矣。至若铺陈终始,排比声韵,大或千言,次犹数 百,词气豪迈,而风调清深,属对律切,而脱弃凡近,则李尚不能历其藩翰,况 堂奥乎。"白居易亦云:"杜诗贯穿古今,尽工尽善,殆过于李。"元、白之论如 此。盖其出处劳佚,喜乐悲愤,好贤恶恶,一见之于诗。而又以忠君忧国、伤时 念乱为本旨。读其诗可以知其世,故当时谓之"诗史"。旧集诗文共六十卷,今 编诗十九卷。

表 1.5 并排子表格

	(a)	一个丁衣恰	
11		222	

333

222

(4) 第二人乙主物

5二个子表格
5二个子表格

111	222
222	333

不可否认 LAT_EX 的表格功能没有想象中的那么强大,不过只要足够认真,足够细致,同样可以排出来非常复杂非常漂亮的表格。请参看表 1.6。

最后就是清新飘逸、文约意赅、空谷绝响的王大侠了。王维,字摩诘,河东 人。工书画,与弟缙俱有俊才。开元九年,进士擢第,调太乐丞。坐累为济州司 仓参军,历右拾遗、监察御史、左补阙、库部郎中,拜吏部郎中。天宝末,为给 事中。安禄山陷两都,维为贼所得,服药阳喑,拘于菩提寺。禄山宴凝碧池,维

表 1.6 复杂表格示例 2

Net	# of nodes	# of clients		nts	Server		
GT-ITM Waxman Transit-Stub		600	2%	10%	50%	Max. Connectivity	
Inet-2.1		6000	270				
Xue	Rui	Ni	- ThuThesis			hogia	
Aue	ABCDEF					liesis	

潜赋诗悲悼,闻于行在。贼平,陷贼官三等定罪,特原之,责授太子中允,迁中庶子、中书舍人。复拜给事中,转尚书右丞。维以诗名盛于开元、天宝间,宁薛诸王驸马豪贵之门,无不拂席迎之。得宋之问辋川别墅,山水绝胜,与道友裴迪,浮舟往来,弹琴赋诗,啸咏终日。笃于奉佛,晚年长斋禅诵。一日,忽索笔作书数纸,别弟缙及平生亲故,舍笔而卒。赠秘书监。宝应中,代宗问缙:"朕常于诸王坐闻维乐章,今存几何?"缙集诗六卷,文四卷,表上之。敕答云,卿伯氏位列先朝,名高希代。抗行周雅,长揖楚辞。诗家者流,时论归美。克成编录,叹息良深。殷璠谓维诗词秀调雅,意新理惬。在泉成珠,著壁成绘。苏轼亦云:"维诗中有画,画中有诗也。"今编诗四卷。

表 1.7 实验数据

测试程序	正常运行 时间 (s)	同步 时间 (s)	检查点 时间 (s)	卷回恢复 时间 (s)	进程迁移 时间 (s)	检查点 文件(KB)
	22.05	0.002	0.116	0.025	0.500	22401
CG.A.2	23.05	0.002	0.116	0.035	0.589	32491
CG.A.4	15.06	0.003	0.067	0.021	0.351	18211
CG.A.8	13.38	0.004	0.072	0.023	0.210	9890
CG.B.2	867.45	0.002	0.864	0.232	3.256	228562
CG.B.4	501.61	0.003	0.438	0.136	2.075	123862
CG.B.8	384.65	0.004	0.457	0.108	1.235	63777
MG.A.2	112.27	0.002	0.846	0.237	3.930	236473
MG.A.4	59.84	0.003	0.442	0.128	2.070	123875
MG.A.8	31.38	0.003	0.476	0.114	1.041	60627
MG.B.2	526.28	0.002	0.821	0.238	4.176	236635
MG.B.4	280.11	0.003	0.432	0.130	1.706	123793
MG.B.8	148.29	0.003	0.442	0.116	0.893	60600
LU.A.2	2116.54	0.002	0.110	0.030	0.532	28754
LU.A.4	1102.50	0.002	0.069	0.017	0.255	14915
LU.A.8	574.47	0.003	0.067	0.016	0.192	8655
LU.B.2	9712.87	0.002	0.357	0.104	1.734	101975

续下页

续表 1.7 实验数据

测试程序	正常运行 时间 (s)	同步 时间 (s)	检查点 时间 (s)	卷回恢复 时间 (s)	进程迁移 时间 (s)	检查点 文件(KB)
LU.B.4	4757.80	0.003	0.190	0.056	0.808	53522
LU.B.8	2444.05	0.004	0.222	0.057	0.548	30134
EP.A.2	123.81	0.002	0.010	0.003	0.074	1834
EP.A.4	61.92	0.003	0.011	0.004	0.073	1743
EP.A.8	31.06	0.004	0.017	0.005	0.073	1661
EP.B.2	495.49	0.001	0.009	0.003	0.196	2011
EP.B.4	247.69	0.002	0.012	0.004	0.122	1663
EP.B.8	126.74	0.003	0.017	0.005	0.083	1656

要想用好论文模板还是得提前学习一些 T_EX/LAT_EX 的相关知识,具备一些基本能力,掌握一些常见技巧,否则一旦遇到问题还真是比较麻烦。我们见过很多这样的同学,一直以来都是使用 Word 等字处理工具,以为 LAT_EX 模板的用法也应该类似,所以就沿袭同样的思路来对待这种所见非所得的排版工具,结果被折腾的焦头烂额,疲惫不堪。

如果您要排版的表格长度超过一页,那么推荐使用 longtable 或者 supertabular 宏包,模板对 longtable 进行了相应的设置,所以用起来可能简单一些。表 1.7 就是 longtable 的示例。

1.6.3 其它

如果不想让某个表格或者图片出现在索引里面,请使用命令 \cap-tion*。这个命令不会给表格编号,也就是出来的只有标题文字而没有"表 XX","图 XX",否则索引里面序号不连续就显得不伦不类,这也是 LATEX 里星号命令默认的规则。

有这种需求的多是本科同学的英文资料翻译部分,如果觉得附录中英文原文中的表格和图片显示成"表"和"图"不协调的话,一个很好的办法就是用\caption*,参数随便自己写,比如不守规矩的表 1.111 和图 1.111 能满足这种特殊需要(可以参看附录部分)。

如果的确想让它编号,但又不想让它出现在索引中的话,目前模板上不支持。

最后,虽然大家不一定会独立使用小页,但是关于小页中的脚注还是有必要提一下。请看下面的例子。

表 1.111 这是一个手动编号,不出现在索引中的表格。

ThuThesis

11142/116 •

Figure 1.111 这是一个手动编号,不出现在索引中的图。

薛瑞尼

柳宗元,字子厚(773-819),河东(今永济县)人^①,是唐代杰出的文学家,哲学家,同时也是一位政治改革家。与韩愈共同倡导唐代古文运动,并称韩柳^②。

- ① 山西永济水饺。
- ② 唐宋八大家之首二位。

唐朝安史之乱后,宦官专权,藩镇割据,土地兼并日渐严重,社会生产破坏严重,民不聊生。柳宗元对这种社会现实极为不满,他积极参加了王叔文领导的"永济革新",并成为这一运动的中坚人物。他们革除弊政,打击权奸,触犯了宦官和官僚贵族利益,在他们的联合反扑下,改革失败了,柳宗元被贬为永州司马。

1.7 定理环境

给大家演示一下各种和证明有关的环境:

假设 1.1: 待月西厢下,迎风户半开;隔墙花影动,疑是玉人来。

$$c = a^2 - b^2 (1-1)$$

$$= (a+b)(a-b) \tag{1-2}$$

千辛万苦, 历尽艰难, 得有今日。然相从数千里, 未曾哀戚。今将渡江, 方 图百年欢笑, 如何反起悲伤?(引自《杜十娘怒沉百宝箱》)

定义 1.1: 子曰:「道千乘之国,敬事而信,节用而爱人,使民以时。」

千古第一定义!问世间、情为何物,只教生死相许?天南地北双飞客,老翅几回寒暑。欢乐趣,离别苦,就中更有痴儿女。君应有语,渺万里层云,千山暮雪,只影向谁去?

横汾路,寂寞当年箫鼓,荒烟依旧平楚。招魂楚些何嗟及,山鬼暗谛风雨。 天也妒,未信与,莺儿燕子俱黄土。千秋万古,为留待骚人,狂歌痛饮,来访雁 丘处。 **命题 1.1:** 曾子曰:「吾日三省吾身——为人谋而不忠乎?与朋友交而不信乎? 传不习乎?」

多么凄美的命题啊!其日牛马嘶,新妇入青庐,奄奄黄昏后,寂寂人定初, 我命绝今日,魂去尸长留,揽裙脱丝履,举身赴清池,府吏闻此事,心知长别离, 徘徊庭树下,自挂东南枝。

注释 1.1: 天不言自高,水不言自流。

$$\varphi(x, z) = z - \gamma_{10}x - \gamma_{mn}x^m z^n$$
$$= z - Mr^{-1}x - Mr^{-(m+n)}x^m z^n$$

$$\zeta^0 = (\xi^0)^2, \tag{1-3}$$

$$\zeta^1 = \xi^0 \xi^1, \tag{1-4}$$

$$\zeta^2 = (\xi^1)^2, \tag{1-5}$$

天尊地卑,乾坤定矣。卑高以陈,贵贱位矣。动静有常,刚柔断矣。方以类聚,物以群分,吉凶生矣。在天成象,在地成形,变化见矣。鼓之以雷霆,润之以风雨,日月运行,一寒一暑,乾道成男,坤道成女。乾知大始,坤作成物。乾以易知,坤以简能。易则易知,简则易从。易知则有亲,易从则有功。有亲则可久,有功则可大。可久则贤人之德,可大则贤人之业。易简,而天下矣之理矣;天下之理得,而成位乎其中矣。

公理 1.1: 两点间直线段距离最短。

$$x \equiv y + 1 \pmod{m^2} \tag{1-6}$$

$$x \equiv y + 1 \mod m^2 \tag{1-7}$$

$$x \equiv y + 1 \quad (m^2) \tag{1-8}$$

《彖曰》:大哉乾元,万物资始,乃统天。云行雨施,品物流形。大明始终, 六位时成,时乘六龙以御天。乾道变化,各正性命,保合大和,乃利贞。首出庶物,万国咸宁。

《象曰》:天行健,君子以自强不息。潜龙勿用,阳在下也。见龙再田,德施普也。终日乾乾,反复道也。或跃在渊,进无咎也。飞龙在天,大人造也。亢龙有悔,盈不可久也。用九,天德不可为首也。

引理 1.1:《猫和老鼠》是我最爱看的动画片。

$$\int_{a}^{b} \left\{ \int_{a}^{b} [f(x)^{2}g(y)^{2} + f(y)^{2}g(x)^{2}] - 2f(x)g(x)f(y)g(y) dx \right\} dy$$

$$= \int_{a}^{b} \left\{ g(y)^{2} \int_{a}^{b} f^{2} + f(y)^{2} \int_{a}^{b} g^{2} - 2f(y)g(y) \int_{a}^{b} fg \right\} dy$$

行行重行行,与君生别离。相去万余里,各在天一涯。道路阻且长,会面安可知。胡马依北风,越鸟巢南枝。相去日已远,衣带日已缓。浮云蔽白日,游子不顾返。思君令人老,岁月忽已晚。弃捐勿复道,努力加餐饭。

定理 1.1: 犯我强汉者,虽远必诛

$$y = 1 \tag{1-9a}$$

$$y = 0 \tag{1-9b}$$

道可道,非常道。名可名,非常名。无名天地之始;有名万物之母。故常无,欲以观其妙;常有,欲以观其徼。此两者,同出而异名,同谓之玄。玄之又玄,众妙之门。上善若水。水善利万物而不争,处众人之所恶,故几于道。曲则全,枉则直,洼则盈,敝则新,少则多,多则惑。人法地,地法天,天法道,道法自然。知人者智,自知者明。胜人者有力,自胜者强。知足者富。强行者有志。不失其所者久。死而不亡者寿。

证明 燕赵古称多感慨悲歌之士。董生举进士,连不得志于有司,怀抱利器,郁郁适兹土,吾知其必有合也。董生勉乎哉?

夫以子之不遇时, 苟慕义强仁者, 皆爱惜焉, 矧燕、赵之士出乎其性者哉! 然吾尝闻风俗与化移易, 吾恶知其今不异于古所云邪?聊以吾子之行卜之也。董 生勉乎哉?

吾因子有所感矣。为我吊望诸君之墓,而观于其市,复有昔时屠狗者乎?为 我谢曰:"明天子在上,可以出而仕矣!" ──韩愈《送董邵南序》 □

推论 1.1: 四川话配音的《猫和老鼠》是世界上最好看最好听最有趣的动画片。

$$V_i = v_i - q_i v_i, X_i = x_i - q_i x_i, U_i = u_i, \text{for } i \neq j;$$
 (1-10)

$$V_j = v_j,$$
 $X_j = x_j,$ $U_j u_j + \sum_{i \neq j} q_i u_i.$ (1-11)

迢迢牵牛星,皎皎河汉女。纤纤擢素手,札札弄机杼。终日不成章,泣涕零 如雨。河汉清且浅,相去复几许。盈盈一水间,脉脉不得语。

例 1.1: 大家来看这个例子。

$$\begin{cases} \nabla f(\mathbf{x}^*) - \sum_{j=1}^p \lambda_j \nabla g_j(\mathbf{x}^*) = 0 \\ \lambda_j g_j(\mathbf{x}^*) = 0, \quad j = 1, 2, \dots, p \\ \lambda_j \geqslant 0, \quad j = 1, 2, \dots, p. \end{cases}$$

$$(1-12)$$

练习 1.1: 请列出 Andrew S. Tanenbaum 和 W. Richard Stevens 的所有著作。

猜想 1.1: *Poincare Conjecture* If in a closed three-dimensional space, any closed curves can shrink to a point continuously, this space can be deformed to a sphere.

问题 1.1: 回答还是不回答,是个问题。

如何引用定理 1.1 呢?加上\label 使用\ref 即可。妾发初覆额,折花门前剧。郎骑竹马来,绕床弄青梅。同居长干里,两小无嫌猜。十四为君妇,羞颜未尝开。低头向暗壁,千唤不一回。十五始展眉,愿同尘与灰。常存抱柱信,岂上望夫台。十六君远行,瞿塘滟滪堆。五月不可触,猿声天上哀。门前迟行迹,一一生绿苔。苔深不能扫,落叶秋风早。八月蝴蝶来,双飞西园草。感此伤妾心,坐愁红颜老。

1.8 参考文献

当然参考文献可以直接写\bibitem,虽然费点功夫,但是好控制,各种格式可以自己随意改写。

本模板推荐使用 BIBT_EX,分别提供数字引用(thuthesis-numeric.bst)和作者年份引用(thuthesis-author-year.bst)样式,基本符合学校的参考文献格式(如专利等引用未加详细测试)。看看这个例子,关于书的^[???],还有这些^[???],关于杂志的^[???],硕士论文^[??],博士论文^[??],标准文件^[?],会议论文^[??],技术报告^[?],电子文献^[??]。若使用著者-出版年制,中文参考文献^[?] 应增加 key={pinyin} 字段,以便正确进行排序^[?]。另外,如果对参考文献有不如意的地方,请手动修改 bbl 文件。

有时候不想要上标,那么可以这样[?],这个非常重要。

有时候一些参考文献没有纸质出处,需要标注 URL。缺省情况下,URL不会在连字符处断行,这可能使得用连字符代替空格的网址分行很难看。如果需要,可以将模板类文件中

\RequirePackage{hyperref}

一行改为:

\PassOptionsToPackage{hyphens}{url}

\RequirePackage{hyperref}

使得连字符处可以断行。更多设置可以参考 url 宏包文档。

1.9 公式

贝叶斯公式如式 (1-13), 其中 p(y|x) 为后验; p(x) 为先验; 分母 p(x) 为归一化因子。

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$
(1-13)

论文里面公式越多,TFX 就越 happy。再看一个 amsmath 的例子:

$$\det \boldsymbol{K}(t=1,t_1,\cdots,t_n) = \sum_{I \in \boldsymbol{n}} (-1)^{|I|} \prod_{i \in I} t_i \prod_{j \in I} (D_j + \lambda_j t_j) \det \boldsymbol{A}^{(\lambda)}(\overline{I}|\overline{I}) = 0. \quad (1\text{-}14)$$

前面定理示例部分列举了很多公式环境,可以说把常见的情况都覆盖了,大家在写公式的时候一定要好好看 amsmath 的文档,并参考模板中的用法:

$$\int_{a}^{b} \left\{ \int_{a}^{b} [f(x)^{2}g(y)^{2} + f(y)^{2}g(x)^{2}] - 2f(x)g(x)f(y)g(y) dx \right\} dy$$

$$= \int_{a}^{b} \left\{ g(y)^{2} \int_{a}^{b} f^{2} + f(y)^{2} \int_{a}^{b} g^{2} - 2f(y)g(y) \int_{a}^{b} fg \right\} dy$$

其实还可以看看这个多级规划:

$$\begin{cases} \max_{\boldsymbol{x}} F(\boldsymbol{x}, y_1^*, y_2^*, \cdots, y_m^*) \\ \text{subject to:} \\ G(\boldsymbol{x}) \leqslant 0 \\ (y_1^*, y_2^*, \cdots, y_m^*) \text{ solves problems } (i = 1, 2, \cdots, m) \\ \begin{cases} \max_{\boldsymbol{x}} f_i(\boldsymbol{x}, y_1, y_2, \cdots, y_m) \\ \text{subject to:} \\ g_i(\boldsymbol{x}, y_1, y_2, \cdots, y_m) \leqslant 0. \end{cases} \end{cases}$$
(1-15)

这些跟规划相关的公式都来自于刘宝碇老师《不确定规划》的课件。

第2章 基于 PWF 的极化 SAR 图像舰船目标检测

2.1 引言

在 SAR 图像中,斑点噪声是影响图像品质的主要因素之一。通常其由一个分辨单元内多个散射体的回波相干叠加形成。相干斑的存在导致舰船目标检测中的虚警、漏报率提升,从而影响舰船目标检测的性能,因此相干斑噪声的处理一直被认为是 SAR 图像处理中最重要的问题。在拥有多极化的 SAR 数据后,通过将散射矩阵各个通道信息进行融合,提取极化特征,可以获取相干斑抑制的重构图像。通常图像 SPAN 即散射总功率为最基本的极化特征,相较于单通道 SAR 图像,其可以显著的减少 SAR 图像中的相干斑噪声。在本章中采用了重构图像的标准差 s 与均值 m 比进行相干斑噪声的衡量,并证明了极化白化滤波器可以使该比值达到最小,从而得到最优的重构图像。最后我们采用 PWF 方法与恒虚警率检测器对极化 SAR 图像进行处理,结果表明基于极化白化滤波器的 CFAR 方法可以有效鉴别海上舰船目标。

2.2 海杂波统计特性

此节采用复高斯模型来描述海杂波的数学统计特性,包含三个通道的极化 散射矢量描述如下

$$\mathbf{X} = \begin{bmatrix} \mathbf{S}_{hh} \\ \mathbf{S}_{hv} \\ \mathbf{S}_{vv} \end{bmatrix}$$
 (2-1)

极化散射矢量中的 HH, HV, VV 通道满足联合复高斯分布, 因此极化散射矢量满足如下的概率密度分布

$$f(\mathbf{X}) = \frac{1}{\Pi^3 \left| \Sigma_c \right|} \exp(-\mathbf{X}^H \Sigma_c^{-1} \mathbf{X})$$
 (2-2)

其中 $\Sigma_c = E(\mathbf{X}\mathbf{X}^H)$ 是极化散射矢量的协方差,H 代表共轭转置, $E(\cdot)$ 代表求期望。通常假设海杂波散射矢量具有零均值即 $E(\mathbf{X}) = 0$,当同极化矢量 \mathbf{S}_{hh} 与交

叉极化矢量 \mathbf{S}_{hv} 间存在耦合时,海杂波极化协方差可以描述为以下的形式:

$$\Sigma_{c} = \sigma_{hh} \begin{bmatrix} 1 & 0 & \rho \sqrt{\gamma} \\ 0 & \varepsilon & 0 \\ \rho^{*} \sqrt{\gamma} & 0 & \gamma \end{bmatrix}$$
 (2-3)

在上式中*代表共轭转置

$$\sigma_{hh} = E(|S_{hh}|^{2})$$

$$\varepsilon = \frac{E(|S_{hv}|^{2})}{E(|S_{hh}|^{2})}$$

$$\gamma = \frac{E(|S_{vv}|^{2})}{E(|S_{hh}|^{2})}$$

$$\rho = \frac{E(S_{hh} \cdot S_{vv})}{\sqrt{E(|S_{hh}|^{2})E(|S_{vv}|^{2})}}$$
(2-4)

2.3 极化白化滤波器

利用 HH,HV,VV 三个通道的极化信息构建最优图像,采用重构图像的标准差 s 与均值 m 之比进行斑点噪声的度量。下面将证明极化白化滤波器可以使得标准差与均值的比值达到最小。

$$\frac{s}{m} = \frac{\sigma(y)}{E(y)} \tag{2-5}$$

上式中随机变量 y 代表重构的图像像素,当给定 SAR 图像 HH、HV、VV 通道极化信息后,通过下式来重建斑点抑制图像

$$y = \mathbf{X}^H A \mathbf{X} \tag{2-6}$$

在式2-6中,权重矩阵 A 为厄米共轭且正定,为了找到最优权重矩阵 A^* ,将式2-5做如下变换,式2-7中, $\lambda_1,\lambda_2,\lambda_3$ 为矩阵 $\Sigma_c A$ 的特征值,因此寻找最优权重矩阵的问题被转化为寻找特征值 $\lambda_1,\lambda_2,\lambda_3$ 使得 s/m 比值达到最小。显然当矩阵 $\Sigma_c A$ 为单位阵特征值 $\lambda_1 = \lambda_2 = \lambda_3$ 时,该比值达到最小。因此 $A^* = \Sigma_c^{-1}$ 被称作极化白化滤波器。

$$\sigma(y) = tr(\Sigma_c A)^2 = \sqrt{\sum_{i=1}^{3} \lambda_i^2}$$

$$E(y) = tr(\Sigma_c A) = \sum_{i=1}^{3} \lambda_i$$

$$\frac{s}{m} = \frac{\sqrt{\sum_{i=1}^{3} \lambda_i^2}}{\sum_{i=1}^{3} \lambda_i}$$
(2-7)

获得极化白化滤波器后,通过式2-8得到最小化相干斑重构图像。从式2-8可以看出相干斑抑制图像是对 $|S_{hh}|^2$, $|S_{hv}|^2$, $|S_{vv}|^2$ 三个通道进行优化权重求和得到的强度图像。相较于单极化强度图像,极化白化滤波器提供了 4.8dB 的相干斑噪声抑制。

$$y = \frac{|S_{hh}|^2}{\sigma_{hh}(1 - |\rho|^2)} + \frac{|S_{vv}|^2}{\sigma_{hh}(1 - |\rho|^2)\gamma} + \frac{|S_{hv}|^2}{\sigma_{hh}\varepsilon} - \frac{2\text{Re}(\rho \cdot S_{hh}^* \cdot S_{vv})}{\sigma_{hh}(1 - |\rho|^2)\sqrt{\gamma}}$$
(2-8)

采用实验数据来验证 PWF 相干斑抑制效果,实验数据选择的是 C 波段多极 化大连港的原始图像数据,所截取图像为 1000x1000 的海洋场景,在自适应极 化白化滤波器方法中,使用大小为 31x31 的滑动窗选择海杂波像素来计算协方 差矩阵,下表为原图像 SPAN 方法,PWF 方法与 APWF(自适应极化白化滤波器)方法处理后图像的标准差与均值比

表 2.1 HH、SPAN与 APWF 强度图像标准差与均值比

滤波方法	HH 强度图像	SPAN 强度图像	APWF 强度图像
s/m	2.02	2.25	11.24

不同强度图像如图2.1所示,从图像结果中可以看到,SPAN 强度图像与APWF 强度图像对相干斑都有抑制效果,并且增强了船-海之间的对比对,可以对重构强度图像进行统计分析来进一步实施舰船检测。

2.4 自适应 PWF 舰船检测算法

不同天气条件下的海况不同,因此在 SAR 图像不同区域的杂波表现差别也很大,为了让算法具有更好的普适性,采用自适应极化白化滤波器 (Adaptive

(a) HH 强度图

(b) SPAN 强度图

(c) APWF 强度图

图 2.1 HH,SPAN 与 APWF 强度图像

PWF) 舰船检测方法。在本章前三节描述了当海杂波散射矢量满足复高斯分布时,可以采用滑动窗选择局部海杂波散射矢量计算极化白化滤波器参数,并使用该滤波器生成相干斑抑制图像,在文献[3]中表明,使用自适应极化白化滤波器生成的重构强度图像值满足如下分布:

$$f_{y}(y) = (N)^{N-\rho+1} \frac{y^{(\rho-1)}}{(y+N)^{N+1}} \frac{\Gamma(N+1)}{\Gamma(\rho)\Gamma(N-\rho+1)}$$
(2-9)

式2-9中, ρ 为极化散射矢量的维度,N 为滑动窗内极化散射矢量的个数。当给定恒虚警率时我们可以轻松的检测阈值,当 N 很大时检测阈值与恒虚警率近似有以下的关系。式2-10中,T 代表检测阈值, P_{FA} 为恒虚警率。

$$P_{FA} = \exp(-T) \sum_{k=0}^{\rho-1} \frac{T^k}{k!}$$
 (2-10)

整个算法流程如 Alogrithm 1所示,在该算法中要对图像中的所有像素值进行判断,所以使用的滑动窗的个数等于图像的像素数量。对于大小为 N 的滑动窗,每一个滑动窗内算法时间复杂度为 O(N),整个算法的时间复杂度为 $O(n^3)$,因此使用滑动窗检测运行时间与滑动窗和原始 SAR 图像大小有关。当图像或滑动窗尺寸较大时,整个算法的时效性差不能满足实时检测的要求,所以要在时间方面进行优化。此算法各个滑动窗所对应的自适应极化白化滤波器参数估计

Algorithm 1: 自适应极化白化滤波器舰船检测算法

Input: 极化 SAR 数据, S_{hh} , S_{hv} , S_{vv}

- 1 对原始图像边缘根据所选择的滑动窗大小做镜像延拓。
- 2 foreach 图像中的像素 do
- 3 从原始 SAR 图像中根据滑动窗选择海杂波散射矢量 X
- 4 | 计算自适应极化白化滤波器参数 Σ_c
- 5 根据自适应极化白化滤波器生成重构强度图像值 y
- 6 依据式2-10, 采用牛顿迭代法得到检测阈值 T
- 8 end

Output: 二值舰船检测结果图像 result

相互独立,因此可以采用并行计算的方式来提高算法的运行效率。

2.5 基于 GPU 的 PWF 算法实现

2.5.1 GPU 算法设计与优化

对于 APWF 舰船检测方法,不同像素对应的自适应极化白化滤波器参数计算过程完全相同,只是通过滑动窗选取的海杂波数据不同,因此我们将可并行且计算密集的滤波器参数计算部分放到 GPU 上去执行。在 GPU 编程模型中,线程有两个并行的层次分别是网格层次和线程块层次,一个线程块中的线程会作为一个整体被调度到流多处理器上去执行。为充分利用 GPU 硬件资源,将线程块大小设计为 32x32 即每个线程块中包含 1024 个线程,网格大小设计为 16x16。实验中使用的图像大小为 1000x1000,故让一个线程块中共 1024 个线程对应处理 SAR 图像一行的数据,每个线程通过自身的二维索引和 SAR 图像中的像素一一对应。

将线程索引与像素索引对应后,从 GPU 全局内存 (Global Memory) 中读取该像素邻域的海杂波数据。在一个线程块内,数据的读取是以线程束的方式进行的。一个线程束中包含 32 个线程,当线程束中线程访问的数据地址在 128 字节范围内时,该访问可以进行合并。合并访问可以大大加快内存访问的速度,提升总线利用效率。因此在算法设计过程中,将全局数据复制到线程私有空间采用行访问的形式可以保证线程束中线程访问的地址空间位于 128 字节段范围内。

图 2.2 CUDA 执行流程

核函数的设计,在 GPU 上所有的线程按照单指令多线程的方式去执行。不同的线程在私有数据空间上去执行相同的指令。对于 APWF 方法,核函数数的主要任务是计算极化白化滤波器参数即海杂波散射矢量的协方差矩阵,协方差矩阵计算主要涉及一个 3xN 与一个 Nx3 的矩阵相乘,对于该矩阵乘法,采用了动态并行的方式进行了进一步的优化,从当前核函数中创建新的核函数来完并行完成矩阵乘法运算。得到滤波器参数后,按照式2-6生成重构强度值,并与牛顿迭代法获得的阈值做分割,输出二值检测结果图像。

2.5.2 多 GPU 协同算法设计

多 GPU 协同 APWF 方法实现,当多个 GPU 通过 PCIe 总线连接时,不同 GPU 设备之间可以进行通信与同步。多 GPU 编程中要首先确定系统中可用的 GPU 数量,之后将计算任务合理的分配到各个 GPU 上。在 APWF 算法设计中,首先为各个 GPU 设备分配设备内存,流和事件并将 SAR 图像数据从主机内存 拷贝至设备内存。然后依据系统的 GPU 数量,将原 SAR 图像进行按行划分并 将计算任务分配到不同的 GPU 流上。当流中的核函数执行完成后,将不同 GPU 上的检测结果复制到主机内存中,作为最终的检测结果。在多 GPU 编程实现过程中,为了便于多 GPU 之间进行通信,采用了同一虚拟寻址的技术,将所有变量映射到相同的虚拟地址空间中,方便主机和设备进行访问。

2.6 实验结果与加速比测试

本次实验在 NVDIA TIATN V 平台上对 APWF 舰船检测方法进行测试,图2.3为海洋 SAR 图像检测结果,为了衡量 SAR 图像的检测效果,定义 $F_1 = \frac{N_{tt}}{N_{fa}+N_{gt}}$ 作为评价指标,其中 N_{tt} 为正确检测舰船目标个数, N_{fa} 为虚警的数量,

N_{gt} 为数据船只的真实数量。

本次实验采用的 GPU 平台为 NVIDIA TiTan V, 相对比的 CPU 平台为 (Intel(R) Core(TM) i9-7920X CPU) 处理器,实验所用 SAR 图像大小为 1000x1000,滑动的大小为 31,经过多次测试,不同算法消耗时间如表3.1所示。由测试结果可知对于 GPU 多线程 PWF 检测方法在检测效率上提升了近 32 倍,而在多卡的条件下提升了 53 倍。

图 2.3 PWF 图像检测结果

表 2.2 SAR 图像极化白化滤波器检测结果

检测方法	船只总数	总检测数 量	正确检测 数量	虚警数量	漏报数量	F_1
PWF	118	123	117	6	1	0.943

表 2.3 不同平台 PWF 算法运行时间

检测算法	运行平台	运行时间/s
PWF	(Intel(R) i9-7920X CPU)	67.4
GPU 多线程 PWF	GPU(Titan V)	2.1
多卡协同 PWF	2 GPU(Titan V)	1.27

2.7 小结

在本章中,我实现了基于 GPU 的高性能并行极化白化滤波器 SAR 图像舰船目标检测算法,本章首先对自适应极化白化滤波器检测算法原理进行分析,然后结合 GPU 架构特点,将计算密集且可并行的滤波器参数计算部分放到 GPU 上去并行执行,并进一步将数据和计算任务分配到多 GPU 上去执行,对原算法在时间性能上进行优化。实验结果表明,相比于串行基于 CPU 的检测方法,基于 GPU 的并行检测算法在时间性能上获得了数十倍的提升。

第 3 章 基于混合对数正太模型 SAR 图像目标检测

3.1 引言

在使用恒虚警率的 SAR 图像目标检测方法中,对海杂波的精准建模是其中至关重要的问题。目前可以有效对海杂波建模的分布模型有锐利分布,K 分布,威布尔分布,对数高斯分布等。在本章中我采用混合对数正太模型对强度 SAR 图像中的海杂波进行建模,实质上对数混合正太模型 (lognormal mixture model)等价于强度 SAR 图像在对数域上的混合高斯模型,因此可以采用 EM 方法估计分布参数,得到海杂波概率密度分布后应用牛顿迭代法计算分割阈值输出检测的结果图像

3.2 混合对数正太模型

定义强度 SAR 图像中的像素值 x 为一随机变量,当其满足式3-1中的分布时,我们称随机变量 x 服从包含 K 个成分的混合对数正太分布。

$$f_{x}(x) = \sum_{i=1}^{K} \alpha_{i} \cdot \frac{1}{\sqrt{2\pi}\sigma_{i}x} \exp(-\frac{(\ln x - \mu_{i})^{2}}{2\sigma^{2}}), x > 0$$
 (3-1)

在式3-1中, α_i , μ_i , σ_i (i=1,2,...,K) 为混合对数正太分布参数其中 α_i 权重系数满足式3-2所示关系。混合对数正太分布为 K 个对数正太分布加权求和。 μ_i , σ_i 为各独立的对数正太分布参数。

$$\sum_{i=1}^{K} \alpha_i = 1, \alpha_i \geqslant 0 \tag{3-2}$$

对随机变量 \mathbf{x} 做形式变换,另 $Y = \mathbf{x}$,我们可以推导出对于随机变量 Y,其满足的概率密度函数如式3-3所示,显然随机变量 Y 满足含有 K 个分量的混合高斯分布,等价来讲对于强度 \mathbf{SAR} 图像采用混合对数正太模型对海杂波进行建模等价于在 \mathbf{SAR} 图像对数强度域上应用混合高斯模型,因此在该建模方法中,首

先对强度 SAR 图像取对数变换到对数域,然后应用混合高斯模型描述海杂波的分布。

$$f_Y(y) = \sum_{i=1}^K \alpha_i \cdot \frac{1}{\sqrt{2\pi\sigma_i}} \exp(-\frac{(y-\mu_i)^2}{2\sigma^2})$$
 (3-3)

3.3 海杂波分布参数估计

在3.2节表明,混合对数正太分布在强度域与混合高斯分布在对数域上等价,因此混合正太分布中的参数计算可以采用目前现有的混合高斯模型参数计算方法。在文献 [4] 中表明了对于混合高斯模型,最大期望算法是一种高效的估计混合高斯分布参数的方法。因此在参数估计中,应用 EM 算法计算海杂波分布参数。参数迭代更新如式3-4 所示。在该式中 $\phi(y|\mu_k,\sigma_k)$ 为均值为 μ_k , 标准差为 σ_k 的高斯分布,n 为参与估计的杂波像素数量,v 为取对数后的图像强度值。

$$\mu_{k}^{i+1} = \frac{\sum_{j=1}^{n} \gamma_{jk} y_{j}}{\sum_{j}^{n} \gamma_{jk}}$$

$$\sigma_{k}^{i+1} = \sqrt{\frac{\sum_{j=1}^{n} \gamma_{jk} (y_{j} - \mu_{k}^{i+1})}{\sum_{j}^{n} \gamma_{jk}}}$$

$$\alpha_{k}^{i+1} = \frac{\sum_{j}^{n} \gamma_{jk}}{\sum_{k=1}^{n} \gamma_{jk}}$$

$$\gamma_{jk} = \frac{\alpha_{k}^{i} \phi(y_{j} | u_{k}^{i}, \sigma_{k}^{i})}{\sum_{k=1}^{K} \alpha_{k}^{i} \phi(y_{j} | u_{k}^{i}, \sigma_{k}^{i})}$$
(3-4)

受自然条件风速、风向的影响,同一 SAR 图像不同区域的杂波分布不尽相同,因此采用图3.3所示的滑动窗进行局部杂波像素的选取,该滑动窗分为三个区域分别为检测像素区域,保护区域,杂波区域。合适大小的保护区域可以减少舰船目标像素对杂波统计分布参数估计的干扰。选定杂波像素值后,将其代入到式3-4中进行海杂波分布参数的迭代估计。

图 3.1 采用滑动窗进行自适应杂波参数估计, 阴影所示像素用于杂波估计

3.4 应用 LMM 模型进行 CFAR 舰船检测

当采用混合对数正太模型对海杂波分布进行建模后,根据给定的恒虚警率来实现 CFAR 方法检测。检测阈值通过式3-5来得到,该式中 T 为恒虚警率所对应的检测阈值,f(x) 为采用局部海杂波像素估计得到的混合对数正太分布,F(x) 为 f(x) 对应的累积密度分布函数。我们采用牛顿迭代法来解决这个非线性的等式方程,迭代更新公式如式3-6所示,迭代停止的条件为 $\left|T_{i+1}-T_{i}\right|<\delta$ 当满足迭代精度要求后,最终的检测阈值为 $T^{*}=T_{i+1}$ 。

$$P_{FA} = \int_{T}^{+\infty} f(x)dx = 1 - F(x)$$
 (3-5)

$$T_{i+1} = T_i - \frac{F(T_i) + P_{FA} - 1}{f(T_i)}$$
(3-6)

在3.2节,我们证明 LMM 模型等价于对数域的混合高斯模型,f(x) 的概率密度函数在对数变换后可表示为式3-3 的形式。混合高斯分布的累积概率密度函数可以表示为式3-7。其中 erf(x) 为误差函数,可以通过查表的方法来得到误差函数的值从而减少计算量。

Algorithm 2: 基于 LMM 分布的 CFAR 舰船检测算法

Input: HH 通道强度 SAR 图像

1 初始化,将强度图像做对数变换得到对数域强度图像,设置滑动窗的参数。

2 foreach 图像中的像素 do

- 3 从对数强度图像中根据滑动窗选择海杂波像素值 y
- 4 | 采用 EM 迭代算法计算 LMM 分布参数 μ_i , α_i 与 σ_i
- 5 根据式3-6计算检测阈值 T
- 6 如果 y(i,j) > T 则该像素点为舰船目标像素点,否则为背景杂波像素点。
- 7 end

Output: 二值舰船检测结果图像 result

$$F(x) = \frac{1}{2} \sum_{i=1}^{K} \lambda_k [1 + erf(\frac{x - u_i}{\sqrt{2}\sigma_i})]$$
 (3-7)

综合前几节所述,使用混合对数正太模型的 CFAR 舰船目标检测流程如算 法2所示

3.5 GPU 算法优化

通常应用滑动窗的 SAR 图像目标检测方法都面临着计算复杂度高,时间效率低等问题。而滑动窗参数估计是一类典型的可以采用并行方式去计算的问题,不同滑动窗之间所用数据和输出结果是相互独立的,没有依赖与调用关系,因此可以将滑动穿参数估计部分在 GPU 多线程上去执行。

在估计 LMM 分布参数的过程中,要进行多次迭代并访问杂波像素值来更新分布参数,因此减少此部分数据访存时间可以大幅提升算法的运行效率,对于 GPU 而言总主要有以下几种存储类型,一、二级缓存,寄存器,全局内存,共享内存,纹理内存,常量内存。其中一二级缓存为不可编程的存储介质,系统运行时环境会自动分配数据在其上的位置以获得更加优良的性能。对于可编程存储介质,通常每个线程的寄存器数量非常有限,因此不适合存储海杂波像素值。而全局内存、常量内存与纹理内存是板上内存,访问延迟相较于片上的共享内

存要高 20 30 倍。因此我们选择片上的共享内存作为海杂波像素的高速暂存存储器,通过访问共享内存上的杂波像素,可以优化全局内存访问的模式,从而提升核函数的执行速度。

图 3.2 CUDA 内存模型

共享内存得容量有限,通常为 64KB。该存储空间位于流多处理器上类似于 CPU 的一级缓存,此内存空间被一个线程块中的所有线程共享。要合理的设置 线程块的大小,避免因共享内存空间过度使用导致活跃线程束减少从而影响程序的执行效率。结合滑动窗的大小,我们最终将线程块的大小设置为 8x8,将线程网格的大小设置为 $\left(\left\lfloor \frac{w+1}{8}\right\rfloor, \left\lfloor \frac{h+1}{8}\right\rfloor\right)$ 。其中 [] 代表向下取整,w 代表 SAR 图像的宽度,h 代表 SAR 图像的高度。

在分配好线程块与线程网格大小后,每个线程与 SAR 图像像素索引对应关系为: row = threadIdx.x + blockDim.x * blockIdx.x; column = threadIdx.y + blockDim.y * blockIdx.y; 之后根据滑动窗,将检测像素所对应的海杂波像素复制到该线程所对应的共享内存内存空间,在 EM 算法过程中在共享内存中读取杂波像素值进行分布的参数更新,当满足参数迭代停止条件后得到 LMM 分布参数,然后应用牛顿迭代法计算检测阈值 T,当检测像素值大于阈值 T 时,该像素被标记

为舰船目标像素。当所有线程执行完毕后,将检测结果从设备内存拷贝至主机内存,进行进一步的分析与处理。

图 3.3 CUDA 线程与检测像素映射关系

3.6 LMM 实验结果

本次实验中我们使用的是由星载成像雷达系统 (SIR-C/X) 拍摄的香港维多利亚港的 SAR 图像数据。SAR 图像部分 HH 通道强度图像如图3.4所示

图 3.4 四张 SIR-C/XSAR 强度图像

在检测中我们设置恒虚警为 1x10⁻⁵,检测结果如图3.5所示,其中白色区域代表舰船目标像素区域,黑色区域代表背景杂波区域,从结果可以看出在给定的虚警率下 LMM 算法对目标像素与舰船像素作做出了正确的分割。本次实验使用的 GPU 为 NVIDIA TITAN V,经过多次实验验证,相较于使用单线程 CPU 的检测方法,程序运行的时间效率提升了近 21 倍,不同平台运行时间如表所示,原始 SAR 图像中的舰船数量较少,检测结果中虚警漏报的数量均为 0,准确率达到了 100%。

图 3.5 LMM 检测结果

表 3.1 串行与并行 LMM 算法运行时间对比

检测算法	运行平台	运行时间/s
LMM-CFAR(Matlab 单线程)	(Intel(R) i7-9750H CPU)	15.1
LMM-CFAR(GPU 多线程)	GPU(Titan V)	0.73

3.7 小结

本章我们实现了基于混合对数正太分布的恒虚警率 SAR 图像舰船检测方法,在本质上混合对数分布等价于强度 SAR 图像在对数域上的混合高斯分布,因此采用了 EM 算法与牛顿迭代法得到分布参数与检测阈值。对于滑动窗参数估计的部分,我们将其放置在 GPU 上进行并行计算,并使用延迟更低的共享内存来加快访存速度。相较于传统的串行解决方案,本章基于 GPU 的 LMM 方法不仅在时间性能获得了显著的提升同时还保证了检测效果的有效性。

第 4 章 基于 PCDM 的极化 SAR 图像舰船目标检测

4.1 引言

在第2章与第3章,我们实现了基于PWF与LMM模型的舰船检测算法,这两种方法都是基于图像强度信息进行统计建模以区分舰船目标与背景杂波。然而基于强度或幅值的方法易受海况的影响从而对海杂波的统计建模不够精确,使得检测性能下降。在本章中我们实现了基于极化协方差差异矩阵的极化 SAR 舰船目标检测方法。在极化 SAR 图像目标检测中,舰船目标点的邻域像素提供了丰富的空间相干信息,极化协方差矩阵主要度量了待检测像素与其 3x3 邻域像素的协方差矩阵的差异,基于该极化差异矩阵,我们应用了 SPAN 检测器得到了粗略的舰船检测结果。同时我们将 PCDM 矩阵进行分解提取了新的极化特征基础船高 (PSH),通过此极化特征结合 SPAN 检测器的初步结果得到最终的检测二值图像。

4.2 PCDM 理论背景

4.2.1 极化 SAR 散射表征与 SPAN 理论

通常散射矩阵被用来描述目标散射体的极化信息。在使用水平与垂直极化基的典型极化 SAR 系统中,复散射矩阵定义为如下的形式,其中 S_{HH} 代表了水平发射水平接收的极化信息,当满足互易性的条件时, $S_{HV}=S_{VH}$ 此时复散射矩阵可用三维的复散射矢量 k 式4-2来表示。

$$S = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix} \tag{4-1}$$

$$k = [S_{HH}, \sqrt{2}S_{HV}, S_{VV}] \tag{4-2}$$

将散射矩阵进行变换可以得到更多散射体的极化信息,如式4-3为散射矢量对应的 3x3 极化协防差矩阵。在该式中 〈〉 代表在空间域上求平均, || 代表幅度值, *H* 代表共轭转置。

$$[C] = \langle k \cdot k^H \rangle = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$$
(4-3)

在极化协方差矩阵 C 中,将对角线元素之和定义为为后向散射总功率即 SPAN,如式4-4所示。还可以对极化协方差矩阵进行分解如式4-5所示,其中 λ_i 为极化协方差矩阵特征值, v_i 为 λ_i 对应的特征向量。

$$SPAN = C_{11} + C_{22} + C_{33} (4-4)$$

$$C = \sum_{i=1}^{3} \lambda_i (v_i \cdot v_i^H)$$
(4-5)

4.2.2 极化协方差差异矩阵

在计算机视觉领域,LBP 特征 (局部二值模式) 用来描述光学图像中的纹理特征,被广泛应用于人脸检测与目标识别。LBP 特征是将一个 3x3 区域内的中心像素值与邻域像素值做比较,并将得到的八位二进制结果重新排列构成一新二进制数值,该数值作为此区域中心像素的 LBP 特征值,如式4-6所示,其中 g_i 表示邻域内第 i 个像素的灰度值 g_c 为中心像素灰度值。 x_c, y_c 表示中心图像坐标。

$$[LBP_{(x_c, y_c)} = \sum_{i=0}^{n-1} 2^{is(g_i - g_c)}, s(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$
 (4-6)

类比光学图像中的 LBP 特征,在极化 SAR 图像中,采用极化协方差矩阵来描述图像的极化信息。在光学图像中像素的灰度值可以通过 R、G 和 B 三个通道进行计算得到,而极化协防差矩阵也包含了极化 SAR 图像的 HH、HV 和 VV 通道的信息,但区别是灰度值只含有图像的一个特征,而极化协防差矩阵包含了九个极化特征,因此对此模型改进引入极化协方差差异矩阵 (PCDM)

定义 $C^{(x,y)}$ 为极化 SAR 图像索引为 x,y 像素处的极化协防差矩阵,接下来计算其 3x3 邻域上的协方差累积差异 $P^{(x,y)}$,称 $P^{(x,y)}$ 为极化 SAR 图像 x,y 处的极化协方差差异矩阵,如式4-7所示,其中 $C^{(i,j)}_{m,n}$ 为图像索引 i,j 处协方差矩阵的第 (m,n) 个元素。

图 4.1 PCDM 矩阵计算示意图

4.3 基于 PCDM 的舰船目标检测算法

前三节我们描述了 PCDM 可以综合利用待检测像素与其邻域的像素的相干信息,在此基础上我们提出了基于极化协方差差异矩阵的舰船检测方法。对于输入的原始极化 SAR 图像数据,我们首先计算每个像素的极化协防差矩阵,然后按照式4-7计算每个像素对应的极化协方差差异矩阵。得到极化协方差差异矩阵 P后,首先对 P矩阵应用 SPAN 检测器,即当 $SPAN_P > T_{SPAN}$ 时,认定该检测像素为舰船目标像素。

对 PCDM 矩阵应用 SPAN 检测器后输出初步检测结果,为了提升检测的精度,我们进一步提取极化协方差差异矩阵的极化特征来区分舰船目标与背景杂波。通常 SAR 图像目标散射特性可以用极化特征来描述,例如极化分解,极化反对称性等极化特征。在文献??中提出了 pedestal height 特征来描述目标的散射特性,该极化特征实质上等价于极化协方差矩阵最小特征值与最大特征值的比值。实验表明低海况的背景杂波与方位向模糊像素的 pedestal height 极化特征值比真实的舰船像素要低很多。

$$PSH = \frac{|\lambda_3|}{|\lambda_1| + |\lambda_2|} \tag{4-8}$$

基于极化协方差差异矩阵我们重新计算这些极化特征,并将第二特征值考

Algorithm 3: 基于 PCDM 的舰船检测算法

Input: 原始极化 SAR 图像数据

- 1 初始化, 计算每个像素的协防差矩阵。
- 2 foreach 图像中的像素 do
- 3 根据协方差矩阵计算该像素对应的极化协方差差异矩阵
- 4 计算该极化协方差差异矩阵的 SPAN 值
- 5 计算极化协方差差异矩阵的基础船高 (PSH) 极化特征
- 将差异矩阵 SPAN 值与经验阈值作比较,如果 $SPAN_{PCDM} > T_{SPAN}$,则将该像素为舰船像素。
- 7 将极化特征 PSH 与经验阈值作比较,如果 $PSH_{P(x,y)} > T_{PSH}$,则该像素为舰船像素

8 end

Output: 最终舰船检测结果 result

虑在内,新的极化特征命名为 pedestal ship height(PSH)。对于提取的 PSH 极化特征,应用适当的检测阈值,来区分舰船目标与背景杂波像素。整个算法的流程如图4.2所示,算法描述如算法3所示

图 4.2 PCDM 检测流程示意图

4.4 基于 GPU 的 PCDM 算法设计

前几节描述了基于极化协方差差异矩阵的舰船目标检测算法,在该方法中需要对计算 SAR 图像每一个像素对应的协方差差异矩阵与其极化特征 PSH。在该方法中不同像素对应的极化协方差差异矩阵不同,且极化特征估计相互独立,因此将对每个像素的检测操作——对应到 GPU 上的每个线程。

线程模块大小设计,本次实验的原始 SAR 图像数据大小为 1000x1000,线程块中的线程以 32 个为一组进行调度,为充分利用流多处理器资源,将线程块大小设计为 32x32。考虑到 GPU 同时并发线程数量的限制与全局内存空间容量,将线程网格大小设计为 16x16,对于线程块中的线程通过其二维线程索引 (threadIDx)与原始 SAR 图像上的列一一对应,使用线程块索引 (blockIDx)与原始 SAR 图像的行数,因此对 SAR 图像的检测操作将被分配到四个内核中去执行。内核中的线程通过内核序号来找到自己对应的 SAR 图像行索引,四个内核被装载到同一 CUDA 流中在 GPU 上被顺序调度。线程内存空间设计,在 CUDA 架构中不能在核函数中去动态声明较大的内存区域,因此需要在内核执行前由主机分配好线程内存池,然后线程根据自身索引与给定的线程空间大小去找到本线程私有内存空间的起始地址。线程内存空间分析,对于 PCDM 方法,要存储九个像元的散射矩阵信息、协方差矩阵信息与中心像元的极化协方差差异矩阵,综合考虑 PCDM 矩阵计算特征值等其他计算开销,最终我们一个线程所占有的内存空间设置为 8192B。

内核函数的设计,首先计算本线程所对应的二维索引,将该二维索引与其3x3 邻域对应的 SAR 图像数据从全局内存复制到线程私有的内存空间中,之后计算这九个像元所对应的协方差矩阵并调整为 9x9 大小,该矩阵每一列代表各像元的协方差矩阵元素。将该矩阵的第五列即中心像素的协方差矩阵与其他列依次做差求绝对和得到极化协方差差异矩阵。得到 PCDM 矩阵后,首先对该矩阵应用 SPAN 检测器,即计算矩阵对角线元素之和并与经验阈值做比较,当该 SPAN 值大于经验阈值时,将该像素判别为舰船像素。接下来计算极化协方差差异矩阵的 PSH 极化特征,该特征为 PCDM 矩阵最小特征值与其他两个特征值绝对值之比,因此问题转化为计算极化协方差差异矩阵特征值的问题。PCDM 矩阵为实对称矩阵,计算其特征值采用雅克比迭代的方式,迭代过程的矩阵更新公式如式4-9所示,其中 φ 通过选择矩阵非对角绝对值最大元素计算得到。具体的算法流程为算法4所示。得到矩阵的特征值后计算 PSH 极化特征的大小并与经

验阈值做比较,如果 PSH 值大于经验阈值,则判断该像素为舰船目标像素。当 GPU 上所有线程核函数执行结束后,主机将检测结果从设备内存拷贝至主机内存,结合 OpenCV 进行图像显示,并保存检测结果。

$$\begin{cases} a_{pp}^{i+1} = a_{pp}^{i} \cos^{2}\varphi + a_{qq}^{i} \sin^{2}\varphi + 2a_{pq}^{i} \cos\varphi\sin\varphi \\ a_{qq}^{i+1} = a_{pp}^{i} \cos^{2}\varphi + a_{qq}^{i} \sin^{2}\varphi - 2a_{pq}^{i} \cos\varphi\sin\varphi \\ a_{pq}^{i+1} = a_{qp}^{i+1} = \frac{1}{2}(a_{qq}^{i} - a_{pp}^{i})\sin2\varphi + a_{pq}^{i} \cos2\varphi \end{cases}$$

$$\begin{pmatrix} a_{pq}^{i+1} \\ a_{qn}^{i+1} \end{pmatrix} = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} a_{pp}^{i} \\ a_{qn}^{i} \end{pmatrix}, n \neq p, q$$

$$\begin{pmatrix} a_{pq}^{i+1} \\ a_{pq}^{i+1} \\ a_{pq}^{i+1} \end{pmatrix} = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} a_{pp}^{i} \\ a_{pp}^{i} \\ a_{pq}^{i} \end{pmatrix}, m \neq p, q$$

$$a_{pq}^{i+1} = a_{pq}^{i+1} = a_{pq}^{i}, m \neq p, q; n \neq p, q$$

$$(4-9)$$

$$\tan 2\varphi = \frac{-2a_{pq}}{a_{qq} - a_{pp}} \tag{4-10}$$

Algorithm 4: 雅克比迭代计算矩阵特征值

Input: 实对称矩阵 A

- 1 初始化特征向量为单位阵。
- 2 while A 非主对角元素绝对值 < 给定阈值 do
- $\mathbf{a} \mid \mathbf{a} \mathbf{A}$ 的非主对角元素中找到最大元素值为 a_{na}
- 4 用式4-10计算旋转角度 φ
- 5 用式4-9来对矩阵 A 中的元素进行更新
- 6 end
- 7 将矩阵特征值按照从大到小的顺序进行排序 Output: 矩阵 A 的特征值

4.5 PCDM 算法检测结果

在本次实验中我们使用的是 Radarsat-2 拍摄的远洋极化 SAR 数据,通常舰船目标相对于海平面的后向散射系数更高,具有更高的散射回波功率,因此舰船 SAPN 强度像素值要高于海杂波像素。在 PCDM 方法中充分利用了检测像素与

其邻域像素的空间相干关系,因此基于 PCDM 的 SPAN 图像可以提升船海之间的差异度,有着更强的舰船与海杂波的区分能力,图4.1所示的为 SAR 局部图像切片的 SPAN 图像与 PCDM SPAN 图像的对比。从实验结果上表明,基于 PCDM 的舰船像素与海杂波像素 SPAN 值的对比度相较于基于协方差矩阵的 SPAN 值的对比度更加明显。因此我们选取 PCDM SPAN 最大值与最小值差的千分之五作为分割阈值,从而区分舰船目标与背景杂波。

图 4.3 PCDNSPAN 图像与 SPAN 图像对比

图像检测结果,本次实验所使用的 GPU 为 TiTAN V,运行显存内存为 12G。基于 MATLAB 的串行算法运行的 CPU 为 Intel(R) i7-9750H,系统内存为 16G。为了验证检测结果的有效性,我们将 PCDM 方法与第二章实现的 PWF 方法进行对比如图4.4所示,从左到右依次为 SPAN 图像,PWF 检测结果,PCDM 检测结

果。从检测结果上来看,PCDM 得到的舰船检测结果与 Pauli 图像更加吻合,舰船边缘相较于 PWF 方法检测结果更加精确。算法的检测性能使用第二章定义的品质因数 F_1 来表示即正确检测数量与虚警数量和船只真实数量之和的比值。检测结果如表4.1所示,PCDM 的检测的品质因数高于 PWF 检测方法,可以得出结论 PCDM 算法对于复杂海况的适应能力比 PWF 强,即使面对不同海况依然可以保持高检测精度。

在 PCDM 方法中不需要使用大量的海杂波像素去估计滤波器参数,该算法主要是计算大小为 3x3 的极化协方差差异矩阵及其特征值,因此算法在时间与空间性能上都优于极化白化滤波器方法。CPU 串行与 GPU 并行的 PCDM 算法时间如表所示,因为 GPU 设备初始化开销代价所占比重较大,且 CPU 与 GPU 之间需要进行数据拷贝、通信与同步,所以本身在 CPU 上运行时间较短的程序在 GPU 上的加速比会降低。对于大小为 1000x1000 的 SAR 图像,经过多次实验测试,并行 PCDM 算法在 Titan V 上的运行的平均时间为 0.69s,串行 MATLAB 方法在 CPU 上的运行时间为 11.37 秒,在时间性能上获得了近 17 倍的提升。

表 4.1 SAR 图像检测结果对比

检测方法	船只数量	总检测数 量	正确检测 数量	虚警数量	漏报数量	F_1
PCDM	118	120	117	3	1	0.967
PWF	118	123	117	6		0.943

表 4.2 不同平台算法运行时间对比

检测算法	运行平台	运行时间/s
PCDM	(Intel(R) i7-9750H CPU)	11.4
GPU 并行 PCDM	GPU(Titan V)	0.67
PWF	(Intel(R) i9-7920X CPU)	67.4
GPU 多线程 PWF	GPU(Titan V)	2.1
多卡协同 PWF	2 GPU(Titan V)	1.27

(a) SPAN 图

(b) PWF 检测结果

(c) PCDM 检测结果

图 4.4 舰船检测结果 (a)SPAN 图像;(b)PWF;(c)PCDM

4.6 小结

对于极化 SAR 图像中的舰船目标检测,在本章我们实现了基于极化协方差差异矩阵的舰船检测方法。在该方法中,类比于光学图像检测中的 LBP 特征,我们引出了极化 SAR 图像的极化协方差差异矩阵 (PCDM) 的概念,PCDM 矩阵计算了待检测像素与邻域像素的协防差矩阵差异,充分利用了空间相干信息,提高了舰船目标与背景杂波之间的对比度。接下来我们将 PCDM 矩阵应用于舰船检测,首先使用 PCDM 矩阵的 SPAN 值对船海像素做了一个粗略的划分,然后提取了 PCDM 矩阵的 PSH 极化特征,将该特征用于舰船目标检测,最后联合 SPAN

检测器得到的初步检测结果得到了最终的检测结果。实验结果表明 PCDM 方法可以有效的适应不同的复杂海况,相较于 PWF 算法,在检测精度、时间与空间消耗上都优于 PWF 算法。最后我们实现了基于 GPU 的并行 PCDM 方法,将图像像素对应的 PCDM 矩阵与 PSH 极化特征计算对应到每一个 GPU 线程中去并发执行。相比于串行执行的方式,并行的方法在时间性能上提升了近 20 倍,可以满足实时检测的要求

插图索引

表格索引

公式索引