Document/sentence similarity solution using open source NLP libraries, frameworks and datasets

Pydata 2022

By Ade Idowu Credit Suisse

Agenda

- Introduction
- What is STS Semantic Textual Similarity
- Textural similarity measures
- Sentence pre-processing using NLP
- Feature engineering using Sentence Embedding models
- Visualization/Validation of findings
- Demo Problems & Datasets used in this tutorial
- Q & A

Introduction

- Growing need to develop robust semantic document/text similarity solutions:
 - Recommendation Systems
 - Search Engines
 - News Aggregator Systems
 - Automated Recruitment Systems
 - Biomedical informatics eg. used to compare genes and proteins based on the similarity of their functions
 - And so on...

Introduction (continued..)

It is all about Semantics!!

What is STS - Semantic Textual Similarity

- STS is a solution that deals with determining how similar two pieces of texts (sentences/phrases/paragraphs) are to each other
- According to wikipedia the distance measured in STS is based on the likeness of their meaning or semantic content as opposed to lexicographical similarity
- There a number of active ML/NLP work in the area of STS by developers such as Google, Microsoft, HuggingFace, Ubiquitous Knowledge Processing Lab
- There is the popular SentEval toolkit which is actively used by NLP developers to solve common semantic textual similarity tasks i.e. part of the STS benchmark problem suite.

Demo of Solved Problems

- Simple demo the similarity between book titles
 - Problem: Use the 5 embedding approaches to encode the titles and compute the top k similarities between the titles
 - Data: Goodreads data sourced <u>here</u>
- Demo a simple Search Engine:
 - Problem: User provides a query and it is compared (searched) in a corpus of documents to get the top k matches
 - Data: The classic 20 News Group data sourced from <u>Scikit-Learn dataset module</u>
- Demo the performance of the 5 embedding strategies using labelled sentence pair corpus data:
 - Problem:
 - Embed the sentence pairs from the sentence pair corpus using 5 approaches
 - Compute the similarity between each sentence pair
 - Compute the performance of each approach using Paerson's correlation coefficient i.e.
 computing the predicted similarity versus the actual similarity (label)
 - Data: STS Benchmark Sentence Pair data sourced from here

- There are a number of textural similarity metrics in ML.
- In this workshop I will explore 3 popular metrics, namely:
 - Jaccard
 - Euclidean
 - Cosine

- Jaccard

- The Jaccard similarity index compares members for two sets to see which members are shared and which are distinct.
- It's a measure of similarity for the two sets of data, with a range from 0.0 to 1.0.

Formula

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

J = Jaccard distance

A = set 1

B = set 2

- Jaccard

- Euclidean

- Consider two vectors
 - Nows in the data matrix

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

- Common Distance Measures:
 - Manhattan distance:

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Fuclidean distance:

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Distance can be defined as a dual of a similarity measure

$$sim(X,Y) = 1 - distance$$
 $sim(X,Y) = \frac{1}{dist(X,Y) + \lambda}$

Cosine

$$ext{cosine similarity} = S_C(A,B) := \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

where A_i and B_i are components of vector A and B respectively.

Compare Similarity Measure

Query = "The Hitchhiker's Guide to the Galaxy (Hitchhiker's Guide to the Galaxy #1)"

	-+		++	+
corpus_docs	1	jaccard scores	euclidean_scores	cosine_scores
	-+		++	+
The Hitchhiker's Guide to the Galaxy (Hitchhiker's Guide to the Galaxy #1)	I	1.0	1.0	1.0
The Hitchhiker's Guide to the Galaxy (Hitchhiker's Guide to the Galaxy #1)	1	1.0	1.0	1.0
The Ultimate Hitchhiker's Guide (Hitchhiker's Guide to the Galaxy #1-5)	1	0.7	0.7544	0.9603
The Ultimate Hitchhiker's Guide to the Galaxy	1	0.6667	0.6958	0.9342
e: Five Complete Novels and One Story (Hitchhiker's Guide to the Galaxy #1-5)	1	0.4118	0.5359	0.8054
a Stranger Here Myself: Notes on Returning to America After Twenty Years Away	1	0.0476	0.3068	0.3021
Bryson's Dictionary of Troublesome Words: A Writer's Guide to Getting It Right	1	0.1111	0.2878	0.2245
Bill Bryson's African Diary	1	0.0	0.2838	0.207
Harry Potter Collection (Harry Potter #1-6)	1	0.0	0.2768	0.1749
Harry Potter and the Order of the Phoenix (Harry Potter #5)	1	0.0625	0.2744	0.1636
Harry Potter Boxed Set Books 1-5 (Harry Potter #1-5)		0.0	0.2737	0.1607

Sentence pre-processing using NLP

- Raw documents (sentences) are cleaned using standard NLP techniques
- Most of the pre-processing was done using the NLTK library
- Summary of the pre-processing steps include:
 - Normalising i.e. removing unwanted characters
 - Tokenizing
 - Removing stop words
 - Stemming/lemmatization

Sentence pre-processing using NLP

Feature engineering using Sentence Embedding techniques

Embedding techniques explored include:

- TF-IDF
- Word embedding with averaging
- Word embedding with SIF (Smooth Inverse Frequency)
- Google's USE (Universal Sentence Encoder)
- S-Bert Encoder

Time

Sentence Embedding techniques

- TF-IDF

- TF-IDF (term frequency-inverse document frequency) is a statistical measure that evaluates how relevant a word is to a document in a collection of documents
- tf-idf(t, d) = tf(t, d) * idf<math>(t, d)
 - tf(t, d): Term frequency count of t in d / number of words in d
 - idf(t): Inverse document frequency = log(N/(df + 1))
 - df(t): Number documents containing t

Sentence Embedding techniques

Word Embedding

Word embedding is the representation of words as a real-valued vector that encodes the meaning of the word i.e. words that are closer in the vector space are expected to be similar in meaning

- Word embedding is a shallow neural net prediction-based approach
- Generally provides semantic meaning rather than frequency based approaches such as:
 - Count Vectorizer (bag of words)
 - TFIDF
- Word embedding vectors are low/dense dimensions such as 100, 200, 500, etc
 - Contrast to very large/sparse vectors produced by frequency-based embeddings
- Popular approaches to word embedding are:
 - Word2Vec (Google)
 - GloVe (Stanford Uni)
 - Fasttext (Facebook)

Word Embedding

Word Embedding - Word2Vec

- CBOW Continuous bag of words
- Continuous Skip Gram

Sentence Embedding - by averaging word embeddings

S = "Hello participants of Pydata 2022!!"

$$W_1$$
 = "hello", W_2 = "participants", W_3 = "of", W_4 = "pydata", W_5 = "2022"

Sentence Embedding - by using Smooth Inverse Frequency (SIF)

- SIF was developed by Sanjeev Arora, Yingyu Liang, Tengyu Ma in a seminal paper titled: A Simple but Tough-to-Beat Baseline for Sentence Embeddings
- Sentence is embedded by a weighted average of the word vectors, and then modified a bit using PCA/SVD

Algorithm 1 Sentence Embedding

Input: Word embeddings $\{v_w : w \in \mathcal{V}\}$, a set of sentences \mathcal{S} , parameter a and estimated probabilities $\{p(w) : w \in \mathcal{V}\}$ of the words.

Output: Sentence embeddings $\{v_s : s \in \mathcal{S}\}$

- 1: for all sentence s in S do
- 2: $v_s \leftarrow \frac{1}{|s|} \sum_{w \in s} \frac{a}{a+p(w)} v_w$
- 3: end for
- 4: Form a matrix X whose columns are $\{v_s : s \in \mathcal{S}\}$, and let u be its first singular vector
- 5: for all sentence s in S do
- 6: $v_s \leftarrow v_s uu^\top v_s$
- 7: end for

Sentence Embedding example

Sentence =

"The Hitchhiker\'s Guide to the Galaxy (Hitchhiker\'s Guide to the Galaxy #1)"

Embedding =

```
[-1.8593e-02, -3.0173e-04, 3.1182e-02, -2.5220e-03, -6.8647e-03,-7.5697e-03, -1.9542e-02, 3.5058e-02, 6.2249e-02, 1.7444e-02, 6.2431e-02, 2.9910e-03, 2.3374e-02, -2.0799e-02, -2.2098e-02,-3.1721e-02, -1.6348e-02, -4.7030e-02, 2.5878e-02, -5.6786e-03, -6.3790e-02, 8.3778e-02, -1.8895e-02, 2.1439e-02, 1.6235e-02,-4.9725e-02, 7.4626e-02, 1.9593e-02, -6.2797e-02, -4.6862e-02, -3.8502e-02, 9.1784e-02, -4.3534e-02, 2.2962e-02, -8.6189e-03,-8.3778e-02, 3.5653e-02, -6.1582e-02, 1.2460e-03, -5.9104e-02, .
```

......]

Google's USE embedding

Google's Universal Sentence Encoder provides a very easy solution to convert/encode sentences to embedding vectors

USE architecture

USE is provided in 2 variant architectures:

- Transformer
- DAN Deep Averaging Network

USE architecture

Deep Averaging Network

USE library/API details

```
import tensorflow as tf
import tensorflow hub as hub
USE MODEL URL =
"https://tfhub.dev/google/universal-sentence-encoder/4
def embed(input):
  return model (input)
sentence = "I am a sentence for which I would like to get
its embedding."
sentence embeddings = embed(sentence)
```

S-Bert Encoder

- <u>SBert.Net</u> developed a very robust sentence encoder that utilizes a Siamese BERT-Networks
- Details of this solution can be found in the paper titled: <u>Sentence-BERT: Sentence-Embeddings using Siamese BERT-Networks</u>

S-BERT library/API details

```
from sentence_transformers import SentenceTransformer

model = SentenceTransformer('all-MiniLM-L6-v2')

sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.']

sentence embeddings = model.encode(sentences)
```

Visualizing Sentence embeddings

- 2-D Visualization of the sentence embeddings will provide an insight to the STS of the processed sentences
- Scatter plots of the embeddings and heatmaps of similarity matrix can be very useful
- But we will need to reduce the embedding dimensions to 2-D
- There are number of techniques to reduce the dimensions:
 - o PCA Principal Component Analysis
 - t-SNE t-distributed Stochastic Nearest Embedding
 - MDS- MultiDimensional Scaling
 - UMAP Uniform Manifold Approximation & Projection

Dimension Reduction library/API details

- PCA:
 - sklearn.decomposition.PCA
 - sklearn.decomposition.PCA(n_components=2)
- t-SNE:
 - sklearn.manifold.TSNE
 - sklearn.manifold.TSNE(n_components=2)
- MDS:
 - sklearn.manifold.MDS
 - sklearn.manifold.MDS(n_components=2)
- UMAP
 - o umap
 - umap.UMAP(n_components=2)
- All four models use fit/transform api call:
 - <model>.fit_transform(<embedding>)

Example of PCA Visualization (tf-idf)

Example of t-SNE Visualization (sif)

Example of MDS Visualization (use)

Example of UMAP Visualization (s-bert)

Heatmap of TF-IDF computed similarity

Heatmap of SIF Word Embedding computed similarity

Heatmap of USE computed similarity

Heatmap of S-BERT computed similarity

Validation of Similarity Results

- The similarity results for the embedding methods were validation using Pearson Correlation metric
- Pearson correlation metric computes the linear correlation between two sets of data.
- This metric was used to compute the correlation between the 'actual' similarity (label) against the predicted similarity using any 1 of the 5 embedding approaches

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$

where:

- cov is the covariance
- \bullet σ_X is the standard deviation of X
- ullet σ_Y is the standard deviation of Y

Comparison of Embedding approachs

+	-+		+
Embedding type	Pearson	correlation	p-value
+	-+		+
sbert	1	0.851	0.0
use	1	0.7912	0.0
sif_word_embedding	1	0.7145	0.0
average_word_embedding	Ţ	0.6431	0.0
tfidf	1	0.6273	0.0
+	-+		+

Demo of Solved Problems

- Simple demo the similarity between book titles
 - Problem: Use the 5 embedding approaches to encode the titles and compute the top k similarities between the titles
 - Data: Goodreads data sourced <u>here</u>
- Demo a simple Search Engine:
 - Problem: User provides a query and it is compared (searched) in a corpus of documents to get the top k matches
 - Data: The classic 20 News Group data sourced from <u>Scikit-Learn dataset module</u>
- Demo the performance of the 5 embedding strategies using labelled sentence pair corpus data:
 - Problem:
 - Embed the sentence pairs from the sentence pair corpus using 5 approaches
 - Compute the similarity between each sentence pair
 - Compute the performance of each approach using Paerson's correlation coefficient i.e.
 computing the predicted similarity versus the actual similarity (label)
 - o Data: STS Benchmark Sentence Pair data sourced from here

Program Library requirements

```
fse == 1.0.0, gensim == 4.2.0
matplotlib == 3.3.4, nltk == 3.7
numpy == 1.22.3, pandas == 1.2.4
scipy == 1.6.2, seaborn == 0.11.2
sentence_transformers == 2.2.0, sklearn == 0.0
tensorflow == 2.4.0, tensorflow_hub == 0.12.0
torch == 1.11.0, tgdm == 4.59.0
umap_learn == 0.5.3
```

Demos with Q & A