Unit 3.1Regular Expressions

- Regular Expressions,
- Regular Operators,
- Regular Languages and their applications,
- Algebraic Rules for Regular Expressions

Introduction

- Regular expressions are an algebraic expressions used to describe languages.
- Regular Expressions describe exactly the regular languages only.
- If r is any regular expression, then L(r) is a language that is describes by the RE r
- We will describe RE's and their languages recursively.

Regular Operators

- To study about regular language and regular expression we must know about some regular operators.
- The following operators are called regular operators.
 - 1. Union(\cup): L₁ \cup L₂ ={s | s \in L₁ or s \in L₂}
 - 2. Concatenation (.): $L_1.L_2 = L_1L_2$ = { st | $\mathbf{s} \in L_1$ and $\mathbf{t} \in L_2$ }
 - 3. Kleene closure(*): $L^* = \bigcup_{i=0}^{\infty} L^i$
- ◆NOTE: For regular expression Union operator is replaced by +

Regular Operators: Example

- 1. $L_1 = \{11,00\}$, $L_2 = \{01, 10\}$ then $L_1 \cup L_2 = \{11,00\} \cup \{01,10\} = \{11,00,01,11\}$
- 2. $L_1.L_2 = \{1101, 1110, 0001, 0010\}$
- 3. Let L= $\{0,1\}$ then $L^* = \{0,1\}^* = L^0 \cup L^1 \cup L^2 \cup \dots$ $= \{\epsilon\} \cup \{0,1\} \cup \{00,01,10,11\} \dots$
- If ϵ is excluded from Kleene closure of L then it is termed as positive closure and denoted by L + and L+ = L* $\{\epsilon\}$

Regular Languages

Basic Regular Language:

- The langage L={} or φ , the empty language is basic regular language.
- The language $L=\{\epsilon\}$, the language of empty string is basic regular language.
- For any symbol $a \in \Sigma$, L={a} is a basic regular language.

Recursive Definition of RE:

- If L₁ and L₂ are regular languages then,
 - The Union of two regular languages $L_1 \cup L_2$ is regular.
 - The Concatenation of two regular language L₁.L₂ or L₁L₂ is also regular.
 - The Kleen closure of L₁ i.e. L₁* is also regular

Regular Languages: Example

- Below are the examples of regular languages over the alphabets {0,1}
- Languages
 - 1. { } The empty Language
 - 2. {0} The language for only string 0
 - 3. {1} The language for only string 1
 - 4. {001} Or {{0}{0}{1}} Concatenation of three language 2,2 and 3
 - 5. $\{0,1\}$ or $\{0\} \cup \{1\}$ Union of two languages 2 and 3
 - 6. {0,1,001} Union of languages in 2,3 and 4
 - 7. $\{0,1\}^*$ Kleen closure of language 5
 - 8. $\{0,1\}^*$ $\{001\}$ Concatenation of Languages 7 and 4

Regular Expression: Definition

- ◆Basis 1: If a ∈ Σ is any symbol, then **a** is a RE, representing language L(**a**) = {a}.
 - Note: {a} is the language containing one string, and that string is of length 1.
- ♦ Basis 2: ϵ is a RE, for language $L(\epsilon) = \{\epsilon\}$.
- ♦ Basis 3: \emptyset is a RE, for $L(\emptyset) = \emptyset$.

RE: Definition -(2)

◆Induction:

- 1: If r_1 and r_2 are regular expressions for $L(r_1)$ and $L(r_2)$ respectively then r_1+r_2 is a regular expression for language $L(r_1+r_2) = L(r_1) \cup L(r_2)$.
- 2: If r_1 and r_2 are regular expressions, then r_1r_2 is a regular expression for language $L(r_1r_2) = L(r_1)L(r_2)$.
- 3: If r is a RE, then r^* is a RE, for language $L(r^*) = (L(r))^*$.

Regular Languages: Example

- Below are the examples of regular languages and corresponding RE's over the alphabets {0,1}
- Languages
 - **1.** { }
 - 2. $\{\epsilon\}$
 - **3.** {0}
 - **4.** {1}
 - 5. {001} Or {{0}{0}{1}}
 - **6.** {0,1}
 - **7.** {0,1,001}
 - 8. {0,1}*
 - 9. {0,1}* {001}

- RE
- ф
- ϵ
- 0
- 1
- 001
- 0+1
- 0+1+001
- (0+1)*
- (0+1)*(001)
- 10. All strings of 0's and 1's without two consecutive 1's.

$$(0+10)*(\epsilon+1)$$

11. All strings ending with 00

(0+1)*00

Precedence of Regular Operators

- Among the regular operators described in previous slides,
- The Kleen closure * is given highest precedence.
- Then concatenation (.) has next highest precedence.
- The union operator + lowest precedence.
- Parentheses may be used to change the order of precedence wherever needed to influence the grouping of operators.

Precedence of Regular Operators

In regular expressions below:

- ◆ 10* is equivalent to 1(0)* since * has precedence over .
- ◆ 10* is different from (10)*
- ◆ 1+01+10*, (1+0)(1+(10)*) 1+01+(10)*
 are different regular expressions
- ◆01* +1 and (01)*+1 represent two different RE
- 0(1 + 10*) = 0(1 + 1(0)*) and not equal to 0(1+(10)*)

Some Examples of RE

- All strings from {0,1}
 (0+1)*
- All strings ending with 01(0+1)*01
- All strings starting with 00 and ending with 1100(0+1)*11
- All strings starting or ending with 00
 - Starting with 00 00(0+1)*
 - Ending with 00 (0+1)*00
 - Finally starting or ending with 00: 00(0+1)*+(0+1)*00
- All strings having 000 as substring (0+1)*000(0+1)*

Some Examples of RE

 All strings containing 0 or more no of 1's followed by at least one 0

```
e.g. { 0, 10,110, 100, 00000,11110000.....}
```

- ◆ All strings on {0,1} such that 0's if any must occur before 1's if any
 - 0*1*

e.g. :
$$\{\epsilon,0,1,01,00,11,001,011,0011 \dots \}$$

Strings over {0,1} that start with 0 and end with 1 and all 0's are to the left of 1's.

Denotes the set { 01,001,0011,011,.....}

Strings with length exactly 2 (00+01+10+11) or (0+1)(0+1)

Some Examples of RE

- \bullet Let $\Sigma = \{0,1\}$ and Le Σ^* then
 - R.E. of language L containing even length of strings.
 - Since 0 is even , ε belongs to L
 - Any string of even length can be obtained by concatenating zero or more strings of length 2.
 - i.e. $L = \{00,01,10,11\}$ *
 - The corresponding R.E. is (00+01+10+11)*
 - Equivalent RE is ((0+1)(0+1))*

- ◆Commutativity: The Union of two R.E. is commutative. i.e. if r and s are two REs representing languages R and S, then
 r+s = s+r representing language R∪S or S∪R
- ◆ Associativity: The Union and concatenation operation of RE are associative i.e.
 If I, r,s are REs representing languages L, R, and S respectively then L∪(R∪S) = (L∪R)∪S and corresponding RE is I+(r+s) = (I+r)+s
- ◆Similarly, L(RS) = (LR)S and RE is I(rs) = (Ir)s

Identities:

- ϕ is the identity for Union operation i.e. $\phi + r = r + \phi = r$ for any RE r
- ϵ is identity for concatenation i.e. $\epsilon \mathbf{r} = \mathbf{r} \epsilon = \mathbf{r}$ for any RE r
- Annihilator: An annihilator for an operator is a value such that when operator is applied with that value and another value, the result of operation is the annihilator. φ is an annihilator for concatenation
 - i.e. $\phi r = r\phi = \phi$ for any RE r.
- Idempotent Law for Union: This law states that Union of two same expression can be replaced by the same single expression.
 - i.e. r + r = r for any RE r.

- Laws of closures: There are different rules involving closure:
 - Kleene Closure of the Kleene closure of a RE is Kleene closure of the RE itself.

i.e.
$$(r^*)^* = r^*$$

- Kleene closure of ϕ is i.e. $\phi^* = \epsilon$
- Kleene closure of ϵ is i.e. $\epsilon^* = \epsilon$
- The positive closure of RE r is concatenation of r with its Kleene closure
 - i.e. r⁺ = rr^{*} ₌r* r
- The union of positive closure with ϵ is Kleen closure i.e. $\mathbf{r}^* = \mathbf{r}^+ + \epsilon$

- ◆ The Distributive Law: Regular Expressions follow distributive law of concatenation over union.
 - Let I, m and n are REs representing languages
 L,M, and N respectively then
 - $L(M \cup N) = LM \cup LN$ which is left distributive rule
 - $(L \cup M)N = LN \cup MN$ which is right distributive rule.
- ◆ The algebraic rules described above are very useful for the simplification of the regular expressions.

Proof of Distributive Rules

- **Theorem**: if L,M, N are any languages then $L(M \cup N) = LM \cup LN$
- **Proof:** Let w is a string such that w = xy. We have to show that $w = (M \cup N)$ iff $w = M \cup M$.
- \bullet (if): $w \in LM \cup LN \Rightarrow xy \in LM \text{ or } xy \in LN \text{ (by union rule)}$
 - $xy \in LM \Rightarrow x \in L$ and $y \in M$ (by concatenation rule)
 - $xy \in LN \Rightarrow x \in L$ and $y \in N$ (by concatenation rule)
 - This implies $x \in L$ and $y \in M \cup N$ i.e. $xy \in L(M \cup N)$.

(concatenation of above)

- lacktriangle Hence w \in L(M \cup N).
- \bullet (Only if): $W \in L(M \cup N) \Rightarrow xy \in L(M \cup N)$
 - i.e. $x \in L$ and $y \in M$ or $y \in N$ (By the Union rule)
 - if $y \in M$ then $xy \in LM$ (by concatenation rule)
 - if $y \in N$ then $xy \in LN$ (by concatenation rule)
 - This implies $xy \in LM \cup LN$ (Union of above)
- ♦ Hence w ∈ LM ∪ LN
- This completes the proof.