Étude du temps minimal de contrôlabilité à zéro de l'équation de Grushin contrôlée sur une bande verticale.

En collaboration avec M. Morancey and F. Boyer.

Institut de Mathématiques de Marseille.

Mardi 23 Janvier 2018

Le problème du contrôle à zéro

PROBLÈME PARABOLIQUE

Variable d'espace : $x \in \Omega \subset \mathbb{R}^N$ de classe C^2 .

Variable temporelle : $t \in (0,T), T > 0$ à préciser.

Soient $Q_T = (0, T) \times \Omega$ et l'opérateur elliptique général :

$$L := -\sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} \left(\alpha_{i,j}(x,t) \frac{\partial \bullet}{\partial x_j} \right) + \sum_{i=1}^{N} b_i(x,t) \frac{\partial \bullet}{\partial x_i} + c(x,t) \bullet$$
 avec
$$\alpha_{i,j} \in W^{1,\infty}(Q_T), b_i, c \in L^{\infty}(Q_T), \alpha_{i,j} = \alpha_{i,j}, \text{ vérifiant } :$$

$$\exists \theta > 0, \, \forall \xi \in \mathbb{R}^N, \text{p.s.} \, x \in \Omega, \, \sum_{i,j=1}^N \alpha_{i,j}(x,t) \xi_i \xi_j \geq \theta |\xi|^2.$$

Le problème du contrôle à zéro

PROBLÈME PARABOLIQUE

Variable d'espace : $x \in \Omega \subset \mathbb{R}^N$ de classe C^2 .

Variable temporelle : $t \in (0,T), T > 0$ à préciser.

Soient $Q_T = (0, T) \times \Omega$ et l'opérateur elliptique général :

$$L := -\sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} \left(\alpha_{i,j}(x,t) \frac{\partial \bullet}{\partial x_j} \right) + \sum_{i=1}^{N} b_i(x,t) \frac{\partial \bullet}{\partial x_i} + c(x,t) \bullet$$
 avec

 $\alpha_{i,j} \in W^{1,\infty}(Q_T), b_i, c \in L^{\infty}(Q_T), \alpha_{i,j} = \alpha_{j,i}, \text{ v\'erifiant}:$

$$\exists \theta > 0, \, \forall \xi \in \mathbb{R}^N, \text{p.s.} \, x \in \Omega, \, \sum_{i,j=1}^N \alpha_{i,j}(x,t) \xi_i \xi_j \geq \theta |\xi|^2.$$

$$(G) \begin{cases} \partial_t f + Lf = \mathbf{1}_{\omega} u \text{ sur } Q_T \\ f(0) = f^0 \in L^2(\Omega) \text{ sur } \Omega \\ f = 0 \text{ sur } (0, T) \times \partial \Omega. \end{cases}$$

Domaine de contrôle : ω de mesure non nulle.

Si $f^0 \in L^2(\Omega)$ et $u \in L^2(Q_T)$ alors il existe une unique solution (faible) $f \in C^0([0,T],L^2(\Omega)) \cap L^2(0,T,H^1_0(\Omega))$ au problème (G) stable par rapport aux données (f^0 et u).

LE CONTRÔLE À ZÉRO

$$(G) \begin{cases} \partial_t f + Lf = \mathbf{1}_{\omega} u \operatorname{sur} Q_T \\ f(0) = f^0 \in L^2(\Omega) \operatorname{sur} \Omega \\ f = 0 \operatorname{sur} (0, T) \times \partial \Omega. \end{cases}$$

But : $\forall y^0 \in L^2(\Omega)$, trouver $u \in L^2(Q_T)$ tel que f(T) = 0.

Digression : D'où vient ce problème ?

Question naturelle: Pour tout $y \in \mathbf{E}$, trouver $u \in L^2(Q_T)$ tel que f(T) = y.

- Avec $\mathbf{E} = \mathbf{L}^2(\Omega) \Rightarrow$ Impossible. Exemple : $L = -\Delta$, l'équation de la chaleur régularise les solutions : $f(t) \in C^{\infty}(\Omega)$, pour $t \in (0, T]$.
- \bullet Avec **E** l'espace d'états atteignables pour toute donnée initiale $f^0\in L^2(\Omega)$ et $u\in L^2(Q_T)\Rightarrow$ Trouver **E** : problème ouvert.
 - Dardé, Ervedoza, On the reachable set for the one-dimensional heat equation. Submitted.
 - Martin, Rosier, Rouchon. On the reachable sets for the boundary control of the heat equation. Applied Mathematics Research eXpress, 2016

LE CONTRÔLE À ZÉRO

$$(G) \begin{cases} \partial_t f + Lf = \mathbf{1}_{\omega} u \operatorname{sur} Q_T \\ f(0) = f^0 \in L^2(\Omega) \operatorname{sur} \Omega \\ f = 0 \operatorname{sur} (0, T) \times \partial \Omega. \end{cases}$$

But : $\forall y^0 \in L^2(\Omega)$, trouver $u \in L^2(Q_T)$ tel que f(T) = 0.

Digression : D'où vient ce problème ?

Question naturelle:

$$\forall y_0, \tilde{y_0} \in L^2(\Omega), \forall u \in L^2(Q_T), \exists \tilde{u} \in L^2(Q_t), S(T, y_0, u) = S(T, \tilde{y_0}, \tilde{u})?$$

Contrôle aux trajectoires :

Linérarité de l'EDP ⇒ Contrôle aux trajectoires ⇔ Contrôle à zéro.

LE CONTRÔLE À ZÉRO

$$(G) \begin{cases} \partial_t f + Lf = \mathbf{1}_{\omega} u \operatorname{sur} Q_T \\ f(0) = f^0 \in L^2(\Omega) \operatorname{sur} \Omega \\ f = 0 \operatorname{sur} (0, T) \times \partial \Omega. \end{cases}$$

But : $\forall y^0 \in L^2(\Omega)$, trouver $u \in L^2(Q_T)$ tel que f(T) = 0.

 1971-1974 : Fattorini, Russel $L = -\Delta, \ \Omega = (0, 1).$ Contrôlable $\forall T > 0$.

Outil: Méthode des moments.

2 1995 - 1996 : Lebeau, Robbiano $L = -\Delta, \ \Omega \subset \mathbb{R}^N$. Contrôlable $\forall T > 0$.

Outil: Inégalité spectrale (qui porte leur nom).

- § 1995 1996 : Fursikov, Imanuvilov Opérateur L général. Contrôlable $\forall T > 0$. Outil : Inégalité de Carleman.

(3) se base sur l'équivalence entre contrôlabilité à zéro et inégalité d'observabilité.

LE CONTRÔLE À ZÉRO

But : $\forall y^0 \in L^2(\Omega)$, trouver $u \in L^2(Q_T)$ tel que f(T) = 0. Il existe des problèmes de contrôle à zéro d'équations paraboliques :

- non contrôlables si $T < T^*$.
- controlables si $T > T^*$.

TEMPS MINIMAL

Temps minimal, noté T^* et vérifiant :

$$\forall T \in \mathbb{R}^+ \setminus \{T^*\}, \ [\forall f^0 \in L^2(\Omega), \ \exists u \in L^2(Q_T), \ f(T) = 0] \Leftrightarrow [T > T^*].$$

EXEMPLE

- $\Omega := (0, \pi), A := -\partial_{xx}$, éléments propres notés $(\lambda_k, \phi_k)_{k \geq 1}$.
- $\partial_t f + Lf = \delta_{x_0} u$ où $x_0 \in]0, \pi[.$

$$T_{x_0}^* = \limsup -\frac{\log |\delta_{x_0}(\phi_k)|}{\lambda_k}$$

Et même

$$\{T_{x_0}^*,\,x_0\in]0,\pi[\}=[0,\infty],\,\,\mathrm{mieux}:\,\forall\tau\in[0,\infty],\,\,\overline{\{x_0\in]0,\pi[,T_{x_0}^*=\tau\}}=[0,\pi]$$

▶ Dolecki Observability for the one-dimensional heat equation, 1973

LE CONTRÔLE À ZÉRO

But: $\forall y^0 \in L^2(\Omega)$, trouver $u \in L^2(Q_T)$ tel que f(T) = 0.

Il existe des problèmes de contrôle à zéro d'équations paraboliques :

- non contrôlables si $T < T^*$.
- controlables si $T > T^*$.

TEMPS MINIMAL

Temps minimal, noté T^* et vérifiant :

$$\forall T \in \mathbb{R}^+ \setminus \{T^*\}, \ \left[\forall f^0 \in L^2(\Omega), \ \exists u \in L^2(Q_T), \ f(T) = 0 \right] \Leftrightarrow \left[T > T^* \right].$$

EXEMPLE

- $\Omega := (0, \pi), A := -\partial_{xx}$, éléments propres notés $(\lambda_k, \phi_k)_{k \geq 1}$.
- $\partial_t f + Lf = \delta_{x_0} u$ où $x_0 \in]0, \pi[.$

$$T_{x_0}^* = \limsup -\frac{\log |\delta_{x_0}(\phi_k)|}{\lambda_k}$$

Et même

$$\{T_{x_0}^*,\,x_0\in]0,\pi[\}=[0,\infty],\,\,\mathrm{mieux}:\,\forall\tau\in[0,\infty],\,\,\overline{\{x_0\in]0,\pi[,T_{x_0}^*=\tau\}}=[0,\pi]$$

▶ Dolecki Observability for the one-dimensional heat equation, 1973

LE CONTRÔLE À ZÉRO

But : $\forall y^0 \in L^2(\Omega)$, trouver $u \in L^2(Q_T)$ tel que f(T) = 0.

Il existe des problèmes de contrôle à zéro d'équations paraboliques :

- non contrôlables si $T < T^*$.
- controlables si $T > T^*$.

TEMPS MINIMAL

Temps minimal, noté T^* et vérifiant :

$$\forall T \in \mathbb{R}^+ \setminus \{T^*\}, \ \left[\forall f^0 \in L^2(\Omega), \ \exists u \in L^2(Q_T), \ f(T) = 0 \right] \Leftrightarrow \left[T > T^* \right].$$

EXEMPLE

- $\Omega := (0, \pi), A := -\partial_{xx}$, éléments propres notés $(\lambda_k, \phi_k)_{k \geq 1}$.
- $\partial_t f + Lf = \delta_{x_0} u$ où $x_0 \in]0, \pi[.$

$$T_{x_0}^* = \limsup -\frac{\log |\delta_{x_0}(\phi_k)|}{\lambda_k}$$

Et même:

$$\{T_{x_0}^*,\,x_0\in]0,\pi[\}=[0,\infty], \text{ mieux}:\,\forall\tau\in[0,\infty],\,\overline{\{x_0\in]0,\pi[,T_{x_0}^*=\tau\}}=[0,\pi]$$

▶ Dolecki Observability for the one-dimensional heat equation, 1973.

L'ÉQUATION DE GRUSHIN

Opérateur elliptique **dégénéré** : $L := -\partial_{xx} - |x|^{2\gamma} \partial_{yy}$

$$L := -\partial_{xx} - |x|^{2\gamma} \partial_{yy}$$

$$(G) \begin{cases} \partial_t f + Af = \mathbf{1}_{\omega} u \operatorname{sur} (0, T) \times \Omega \\ f(0) = f^0 \in L^2(\Omega) \operatorname{sur} \Omega \\ f = 0 \operatorname{sur} (0, T) \times \partial \Omega. \end{cases}$$

Beauchard, Cannarsa, Guiglielmi, Null controllability of Grushin-type operators in dimension two, 2014.

Temps minimal:

- $\gamma > 1$: $T^* = +\infty$ (dégénérescence trop forte)
- $\gamma = 1 : T^* \ge \frac{a^2}{2}$ (cas intermédiaire)
- $\gamma \in (0,1)$: $T^* \stackrel{?}{=} 0$ (dégénérescence trop faible)

But : montrer que $T^* = \frac{a^2}{2}$ lorsque $\gamma = 1$.

- → Etude du spectre d'une infinité d'équations de Sturm-Liouville.
- \rightarrow Un cas rare où l'on sait établir la contrôlabilité à zéro lorsque $T=T^*$.

L'ÉQUATION DE GRUSHIN

Opérateur elliptique **dégénéré** : $L := -\partial_{xx} - |x|^{2\gamma} \partial_{yy}$

$$L := -\partial_{xx} - |x|^{2\gamma} \partial_{yy}$$

$$(G) \begin{cases} \partial_t f + Af = \mathbf{1}_{\omega} u \operatorname{sur} (0, T) \times \Omega \\ f(0) = f^0 \in L^2(\Omega) \operatorname{sur} \Omega \\ f = 0 \operatorname{sur} (0, T) \times \partial \Omega. \end{cases}$$

Beauchard, Cannarsa, Guiglielmi, Null controllability of Grushin-type operators in dimension two, 2014.

Temps minimal:

• $\gamma > 1$: $T^* = +\infty$ (dégénérescence trop forte)

• $\gamma = 1 : T^* \ge \frac{a^2}{2}$ (cas intermédiaire)

• $\gamma \in (0,1)$: $T^* \stackrel{?}{=} 0$ (dégénérescence trop faible)

But : montrer que $T^* = \frac{a^2}{2}$ lorsque $\gamma = 1$.

→ Outil : inégalité d'observabilité et méthode des moments.

→ Etude du spectre d'une infinité d'équations de Sturm-Liouville.

 \rightarrow Un cas rare où l'on sait établir la contrôlabilité à zéro lorsque $T = T^*$.

Stratégie de la preuve : établir l'inégalité d'observabilité

ÉQUATION DIRECTE

$$(F.Eq) \begin{cases} \partial_t g - \partial_{xx} g - x^2 \partial_{yy} g = \mathbf{0}, & (t, x, y) \in (0, \infty) \times \Omega \\ g(t, x, y) = 0, & (t, x, y) \in (0, \infty) \times \partial \Omega \\ g(0, x, y) = g^0(x, y), & (x, y) \in \Omega, \end{cases}$$

INÉGALITÉ D'OBSERVABILITÉ

 $\underline{\textbf{Contrôler à zéro équivaut à prouver}}:\,\exists C>0,\,\forall g^0\in L^2(\Omega),$

$$\int_{\Omega}g^{2}(T,x,y)dxdy\leq C^{2}\int_{0}^{T}\int_{\omega}g^{2}(t,x,y)dxdydt,\tag{OBS}$$

Idée : la géométrie autorise à décomposer g en séries de Fourier selon Oy :

$$g(t, x, y) = \sum_{n \in \mathbb{N}^*} g_n(t, x) \phi_n(y)$$

, avec
$$\phi_n(y) = \sqrt{2}\sin(n\pi y)$$
 et $g_n(t,x) = \int_0^1 g(t,x,y)\phi_n(y)dy$.

$$\exists c > 0, \forall g^0 \in L^2, \forall n \in \mathbb{N}^*, \int_{-1}^1 g_n^2(T, x) dx \le c^2 \int_0^T \int_a^b g_n^2(t, x) dx dt$$
 (OBS.n)

ALORS (OBS) EST VRAIE

Stratégie de la preuve : établir l'inégalité d'observabilité

ÉQUATION DIRECTE

$$(F.Eq) \begin{cases} \partial_t g - \partial_{xx} g - x^2 \partial_{yy} g = \mathbf{0}, & (t, x, y) \in (0, \infty) \times \Omega \\ g(t, x, y) = 0, & (t, x, y) \in (0, \infty) \times \partial \Omega \\ g(0, x, y) = g^0(x, y), & (x, y) \in \Omega, \end{cases}$$

INÉGALITÉ D'OBSERVABILITÉ

Contrôler à zéro équivaut à prouver : $\exists C > 0, \forall g^0 \in L^2(\Omega),$

$$\int_{\Omega}g^{2}(T,x,y)dxdy\leq C^{2}\int_{0}^{T}\int_{\omega}g^{2}(t,x,y)dxdydt, \tag{OBS}$$

Idée : la géométrie autorise à décomposer g en séries de Fourier selon Oy :

$$g(t, x, y) = \sum_{n \in \mathbb{N}^*} g_n(t, x) \phi_n(y)$$

, avec
$$\phi_n(y) = \sqrt{2}\sin(n\pi y)$$
 et $g_n(t,x) = \int_0^1 g(t,x,y)\phi_n(y)dy$.

$$\exists c > 0, \forall g^0 \in L^2, \forall n \in \mathbb{N}^*, \int_{-1}^1 g_n^2(T, x) dx \le c^2 \int_0^T \int_a^b g_n^2(t, x) dx dt$$
 (OBS.n)

ALORS (OBS) EST VRAIE

Stratégie de la preuve : établir l'inégalité d'observabilité

ÉQUATION DIRECTE

$$(F.Eq) \begin{cases} \partial_t g - \partial_{xx} g - x^2 \partial_{yy} g = \mathbf{0}, & (t, x, y) \in (0, \infty) \times \Omega \\ g(t, x, y) = 0, & (t, x, y) \in (0, \infty) \times \partial \Omega \\ g(0, x, y) = g^0(x, y), & (x, y) \in \Omega, \end{cases}$$

INÉGALITÉ D'OBSERVABILITÉ

Contrôler à zéro équivaut à prouver : $\exists C > 0, \forall g^0 \in L^2(\Omega),$

$$\int_{\Omega}g^{2}(T,x,y)dxdy\leq C^{2}\int_{0}^{T}\int_{\omega}g^{2}(t,x,y)dxdydt, \tag{OBS}$$

Idée : la géométrie autorise à décomposer g en séries de Fourier selon Oy :

$$g(t, x, y) = \sum_{n \in \mathbb{N}^*} g_n(t, x) \phi_n(y)$$

, avec
$$\phi_n(y) = \sqrt{2}\sin(n\pi y)$$
 et $g_n(t,x) = \int_0^1 g(t,x,y)\phi_n(y)dy$.

$$\exists c > 0, \forall g^0 \in L^2, \forall n \in \mathbb{N}^*, \int_{-1}^1 g_n^2(T, x) dx \le c^2 \int_0^T \int_0^b g_n^2(t, x) dx dt$$

ALORS (OBS) EST VRAIE.

Stratégie de la preuve : établir une infinité d'inégalités d'observabilité

$$\exists c>0,\,\forall g^0\in L^2,\,\forall n\in\mathbb{N}^*,\,\int_{-1}^1g_n^2(T,x)dx\leq c^2\int_0^T\int_a^bg_n^2(t,x)dxdt \quad \text{ (OBS.n)}$$

Si l'on retraduit maintenant (OBS.n) en termes de contrôlabilité, on obtient **LES PROBLÈMES** de contrôle à zéro suivants

 Beauchard, Cannarsa, Guiglielmi, Null controllability of Grushin-type operators in dimension two, 2014.

$$\begin{cases} \partial_{t}g_{n} - \partial_{xx}g_{n} + (n\pi)^{2}x^{2}g_{n} = u_{n}(t,x)1_{(a,b)}(x), & (t,x) \in Q_{T}, \\ g_{n}(t,\pm 1) = 0, & t \in (0,T), \\ g_{n}(0,x) = \int_{0}^{1} g_{0}(x,y)\phi_{n}(y)dy, & x \in \Omega. \end{cases}$$
(1)

SI

$$\exists c > 0, \, \forall n \in \mathbb{N}^*, \, \|u_n\|_{L^2((0,T)\times(a,b))} \le c$$

ALORS LA CONDITION (OBS.n) EST VÉRIFIÉE.

- → Une infinité de problèmes de contrôle
- → Outil : méthodes des moments

Stratégie de la preuve : établir une infinité d'inégalités d'observabilité

$$\exists c > 0, \forall g^0 \in L^2, \forall n \in \mathbb{N}^*, \int_{-1}^1 g_n^2(T, x) dx \le c^2 \int_0^T \int_a^b g_n^2(t, x) dx dt$$
 (OBS.n)

Si l'on retraduit maintenant (OBS.n) en termes de contrôlabilité, on obtient **LES PROBLÈMES** de contrôle à zéro suivants

 Beauchard, Cannarsa, Guiglielmi, Null controllability of Grushin-type operators in dimension two, 2014.

$$\begin{cases} \partial_{t}g_{n} - \partial_{xx}g_{n} + (n\pi)^{2}x^{2}g_{n} = u_{n}(t,x)1_{(a,b)}(x), & (t,x) \in Q_{T}, \\ g_{n}(t,\pm 1) = 0, & t \in (0,T), \\ g_{n}(0,x) = \int_{0}^{1} g_{0}(x,y)\phi_{n}(y)dy, & x \in \Omega. \end{cases}$$
(1)

SI

$$\exists c > 0, \, \forall n \in \mathbb{N}^*, \, \|u_n\|_{L^2((0,T)\times(a,b))} \le c$$

ALORS LA CONDITION (OBS.n) EST VÉRIFIÉE.

- \rightarrow Une infinité de problèmes de contrôle
- → Outil : méthodes des moments

La méthode des moments : l'idée

On note $(\lambda_{j,n}, g_{j,n})$ les éléments propres de l'opérateur $A_n := -\partial_{xx} + n^2 \pi^2 x^2$. Remarquons que la fonction $\varphi: (t,x) \mapsto g_{j,n}(x) e^{-\lambda_{j,n}(T-t)}$ vérifie l'équation :

$$\begin{cases}
-\partial_t \varphi + A_n \varphi = 0 & (t, x) \in Q_T, \\
\varphi(t, x) = 0, & t \in (0, T) \times \partial\Omega, \\
\varphi(T) = g_{j,n}.
\end{cases}$$
(2)

Multiplions (1) par φ et intégrons sur Q_T :

$$\int_{Q_T} (\partial_t g_n) \varphi + (A_n g_n) \varphi dt dx = \int_{Q_T} u_n 1_{(a,b)} \varphi dt dx$$

$$\int_{\Omega} \underbrace{g_n(T)}_{=0} \varphi(T) - g_n(0) \varphi(0) dx + \underbrace{\int_{Q_T} -g_n(\partial_t \varphi) + g_n(A_n \varphi) dt dx}_{=0} = \int_{Q_T} u_n 1_{(a,b)} \varphi dt dx$$

 u_n résout le problème de contrôle SI ET SEULEMENT SI

$$-\int_{\Omega}g_{n}(0)\varphi(0)dx=\int_{a}^{b}g_{j,n}\int_{0}^{T}u_{n}e^{-\lambda_{j,n}(T-t)}dtdx$$

L'idée consiste maintenant à décomposer u_n de façon astucieuse.

Définition: Famille biorthogonale

Soit $\Sigma := (\sigma_k)_{k \ge 1}$ une suite de réels positifs.

On appelle famille biorthogonale de Σ , la suite de fonctions $(q_j^\Sigma)_{j\geq 1}$ vérifiant :

$$\forall k, j \ge 1, \ q_j^{\Sigma} \in L^2(0, T), \quad \int_0^T e^{-\sigma_k(T-t)} q_j^{\Sigma}(t) \mathrm{d}t = \delta_{k, j}.$$

Prenons alors $\Sigma = \Lambda_n := (\lambda_{k,n})_{k \geq 1}$ et u_n sous la forme :

$$u_n(t,x) := \sum_{k \geq 1} \left(\mathbf{1}_{(a,b)}(x) g_{k,n}(x) \right) q_k^{\Lambda_n}(t) \alpha_{k,n},$$

$$-\int_{\Omega} g_n(0)\varphi(0)dx = \int_a^b g_{j,n} \int_0^T u_n e^{-\lambda_{j,n}(T-t)} dt dx$$
$$-\int_{\Omega} g_n(0)\varphi(0)dx = \int_a^b g_{j,n}^2 \alpha_{j,n} dx$$

Rappelons que : $\varphi(t,x) = g_{j,n}(x)e^{-\lambda_{j,n}(T-t)}$. On obtient alors

$$\alpha_{j,n} := -e^{-\lambda_{j,n}T} \times \frac{\displaystyle\int_{\Omega} g_n(0)g_{j,n}dx}{\displaystyle\int_a^b g_{j,n}^2dx}$$

Définition: Famille biorthogonale

Soit $\Sigma := (\sigma_k)_{k \ge 1}$ une suite de réels positifs.

On appelle famille biorthogonale de Σ , la suite de fonctions $(q_i^{\Sigma})_{j\geq 1}$ vérifiant :

$$\forall k,j \geq 1, \, q_j^\Sigma \in L^2(0,T), \quad \int_0^T e^{-\sigma_k(T-t)} q_j^\Sigma(t) \mathrm{d}t = \delta_{k,j}.$$

$$u_n(t,x) := -\sum_{k\geq 1} \left(1_{(a,b)}(x) g_{k,n}(x) \right) q_k^{\Lambda_n}(t) e^{-\lambda_{k,n} T} \times \frac{\int_{\Omega} g_n(0) g_{k,n} dx}{\int_a^b g_{k,n}^2(x) dx},$$

- Existence de $(q_k^{\Lambda_n})_{k\geq 1}$?
- **2** Borne uniforme sur $(u_n)_{n\geq 1}$?

Définition: Famille biorthogonale

Soit $\Sigma := (\sigma_k)_{k \geq 1}$ une suite de réels positifs.

On appelle famille biorthogonale de Σ , la suite de fonctions $(q_i^{\Sigma})_{j\geq 1}$ vérifiant :

$$\forall k,j \geq 1, \, q_j^\Sigma \in L^2(0,T), \quad \int_0^T e^{-\sigma_k(T-t)} q_j^\Sigma(t) \mathrm{d}t = \delta_{k,j}.$$

$$u_n(t,x) := -\sum_{k \ge 1} \left(1_{(a,b)}(x) g_{k,n}(x) \right) q_k^{\Lambda_n}(t) e^{-\lambda_{k,n} T} \times \frac{\int_{\Omega} g_n(0) g_{k,n} dx}{\int_a^b g_{k,n}^2(x) dx},$$

- Existence de $(q_k^{\Lambda_n})_{k\geq 1}$?
- $\|u_n\|_{L^2((0,T)\times(0,1))}^2 \le \sum_{k\ge 1} \|g_{k,n}\|_{L^2(a,b)}^2 \|q_k^{\Lambda_n}\|_{L^2(0,T)}^2 e^{-2\lambda_{k,n}T} \frac{\|g^0\|_{L^2(\Omega)}^2}{\|g_{k,n}\|_{L^2(a,b)}^4}$

Définition: Famille biorthogonale

Soit $\Sigma := (\sigma_k)_{k \geq 1}$ une suite de réels positifs.

On appelle famille biorthogonale de $\Sigma,$ la suite de fonctions $(q_j^\Sigma)_{j\geq 1}$ vérifiant :

$$\forall k,j \geq 1, \, q_j^\Sigma \in L^2(0,T), \quad \int_0^T e^{-\sigma_k(T-t)} q_j^\Sigma(t) \mathrm{d}t = \delta_{k,j}.$$

$$u_n(t,x) := -\sum_{k\geq 1} \left(1_{(a,b)}(x) g_{k,n}(x) \right) q_k^{\Lambda_n}(t) e^{-\lambda_{k,n} T} \times \frac{\int_{\Omega} g_n(0) g_{k,n} dx}{\int_{a}^{b} g_{k,n}^2(x) dx},$$

- Existence de $(q_k^{\Lambda_n})_{k\geq 1}$?
- $\|u_n\|_{L^2((0,T)\times(0,1))}^2 \le \sum_{k\ge 1} \|q_k^{\Lambda_n}\|_{L^2(0,T)}^2 e^{-2\lambda_{k,n}T} \frac{\|g^0\|_{L^2(\Omega)}^2}{\|g_{k,n}\|_{L^2(a,b)}^2}$

Définition: Famille biorthogonale

Soit $\Sigma := (\sigma_k)_{k \geq 1}$ une suite de réels positifs.

On appelle famille biorthogonale de $\Sigma,$ la suite de fonctions $(q_j^\Sigma)_{j\geq 1}$ vérifiant :

$$\forall k,j \geq 1, \, q_j^\Sigma \in L^2(0,T), \quad \int_0^T e^{-\sigma_k(T-t)} q_j^\Sigma(t) \mathrm{d}t = \delta_{k,j}.$$

$$u_n(t,x) := -\sum_{k\geq 1} \left(1_{(a,b)}(x) g_{k,n}(x) \right) q_k^{\Lambda_n}(t) e^{-\lambda_{k,n} T} \times \frac{\int_{\Omega} g_n(0) g_{k,n} dx}{\int_{a}^{b} g_{k,n}^2(x) dx},$$

- Existence de $(q_k^{\Lambda_n})_{k>1}$?
- $\|u_n\|_{L^2((0,T)\times(0,1))}^2 \le \sum_{k\ge 1} \|q_k^{\Lambda_n}\|_{L^2(0,T)}^2 e^{-2\lambda_{k,n}T} \frac{\|g^0\|_{L^2(\Omega)}^2}{\|g_{k,n}\|_{L^2(a,b)}^2}$

Existence et estimation sur les familles biorthogonales

Définition : Ensemble de suites $\mathcal{L}(\rho, \mathcal{N})$

Soient $\rho > 0$ et $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

On définit $\mathcal{L}(\rho, \mathcal{N})$ l'ensemble de suites $\Sigma = (\sigma_k)_{k \geq 1}$ tel que :

- $\forall k \geq 1, \ \sigma_{k+1} \sigma_k \geq \rho,$
- $\bullet \ \forall \delta > 0, \ \sum_{k=\mathcal{N}(\delta)}^{\infty} \frac{1}{\sigma_k} \leq \delta.$

Théorème [Fattorini-Russel, 1974]

Soient $\rho > 0$ et $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

$$\forall \varepsilon > 0, \, \exists K_{\varepsilon} > 0, \, \boxed{\forall \Sigma \in \mathcal{L}(\rho, \mathcal{N})}, \, \exists (q_k^{\Sigma})_{k \geq 1}, \, \forall k \geq 1, \, \|q_k^{\Sigma}\|_{L^2} \leq K_{\varepsilon} \exp(\varepsilon \sigma_k).$$

- \rightarrow La borne de Fattorini-Russel sur la famille biorthogonale suffit.
- \rightarrow Attention : on va chercher ρ et $\mathcal N$ independants de n tels que

$$\forall n \in \mathbb{N}^*, \Lambda_n \in \mathcal{L}(\rho, \mathcal{N})$$

Existence et estimation sur les familles biorthogonales

Définition : Ensemble de suites $\mathcal{L}(\rho, \mathcal{N})$

Soient $\rho > 0$ et $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

On définit $\mathcal{L}(\rho, \mathcal{N})$ l'ensemble de suites $\Sigma = (\sigma_k)_{k>1}$ tel que :

- $\forall k \geq 1, \ \sigma_{k+1} \sigma_k \geq \rho,$
- $\bullet \ \forall \delta > 0, \ \sum_{k=\mathcal{N}(\delta)}^{\infty} \frac{1}{\sigma_k} \leq \delta.$

Théorème [Fattorini-Russel, 1974]

Soient $\rho > 0$ et $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

$$\forall \varepsilon > 0, \, \exists K_{\varepsilon} > 0, \, \boxed{\forall \Sigma \in \mathcal{L}(\rho, \mathcal{N})}, \, \exists (q_k^{\Sigma})_{k \geq 1}, \, \forall k \geq 1, \, \|q_k^{\Sigma}\|_{L^2} \leq K_{\varepsilon} \exp(\varepsilon \sigma_k).$$

- → La borne de Fattorini-Russel sur la famille biorthogonale suffit.
- \rightarrow Attention : on va chercher ρ et \mathcal{N} independents de n tels que

$$\forall n \in \mathbb{N}^*, \Lambda_n \in \mathcal{L}(\rho, \mathcal{N})$$

Existence et estimation sur les familles biorthogonales

Définition : Ensemble de suites $\mathcal{L}(\rho, \mathcal{N})$

Soient $\rho > 0$ et $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

On définit $\mathcal{L}(\rho, \mathcal{N})$ l'ensemble de suites $\Sigma = (\sigma_k)_{k>1}$ tel que :

- $\forall k \geq 1, \ \sigma_{k+1} \sigma_k \geq \rho,$
- $\bullet \ \forall \delta > 0, \ \sum_{k=\mathcal{N}(\delta)}^{\infty} \frac{1}{\sigma_k} \leq \delta.$

Théorème [Fattorini-Russel, 1974]

Soient $\rho > 0$ et $\mathcal{N} : \mathbb{R}^+ \to \mathbb{N}$.

$$\forall \varepsilon > 0, \, \exists K_{\varepsilon} > 0, \, \boxed{\forall \Sigma \in \mathcal{L}(\rho, \mathcal{N})}, \, \exists (q_k^{\Sigma})_{k \geq 1}, \, \forall k \geq 1, \, \|q_k^{\Sigma}\|_{L^2} \leq K_{\varepsilon} \exp(\varepsilon \sigma_k).$$

- \rightarrow La borne de Fattorini-Russel sur la famille biorthogonale suffit.
- \rightarrow Attention : on va chercher ρ et ${\mathcal N}$ indpendants de n tels que

$$\forall n \in \mathbb{N}^*, \Lambda_n \in \mathcal{L}(\rho, \mathcal{N})$$

En collaboration avec M. Morancey and F. Bover.

Recapitulatif: Ce qu'il suffit de faire

- **1** Minorant de $||g_{j,n}||_{L^2(a,b)}^2$.
- ② Existence de \mathcal{N} telle que : $\forall \delta > 0, \forall n \in \mathbb{N}^*, \sum_{k=\mathcal{N}(\delta)}^{\infty} \frac{1}{\lambda_{k,n}} \leq \delta$.
- 3 Condition de gap UNIFORME (!) :

$$\exists c > 0, \, \forall n \in \mathbb{N}^*, \, \forall k \in \mathbb{N}^*, \lambda_{k+1,n} - \lambda_{k,n} \ge c$$

2. et 3. $\Rightarrow \forall n \in \mathbb{N}^*, \, \Lambda_n \in \mathcal{L}(\rho, \mathcal{N}) \Rightarrow$ existence + borne uniforme sur $(q_j^{\Lambda_n})_{j \geq 1}$.

1. Borne uniforme sur les fonctions propres

Proposition 4.5 de l'article :

Beauchard, Miller, Morancey, 2D Grushin-type equations: minimal time and null controllable data. J. Differential equations, 259(11): 5813-5845, 2015.

Proposition

Soient L > 1 et $\delta \in (0, a)$ tels que $a + 3\delta < 1$. Il existe C > 0 telle que pour tout $\tilde{\delta} > 0$, $q \in C^1([-1, 1], \mathbb{R}^+) \setminus \{0\}$, $(w_0, w_1) \in H_0^1 \times L^2(-1, 1)$, nous avons :

$$\|\mathbf{w}_0\|_{H_0^1}^2 + \|\mathbf{w}_1\|_{L^2}^2 \le C(1 + \|\tilde{q}\|_{L^{\infty}(-1,1)})O_W(\mathbf{a}, q, \tilde{\delta}, \delta) \int_{-L}^L \int_{\omega_{a,1}} (\mathbf{w}_s^2 + \mathbf{w}^2)(s, x) dx ds,$$
(3)

où:

- $\tilde{q} : x \in (-1,1) \mapsto q(x) + \tilde{\delta}^2 ||q||_{L^{\infty}(-1,1)},$
- $\begin{aligned} & \bullet \quad O_W(a,q,\tilde{\delta},\delta) = \max\left(e^{\int_0^{a+2\delta}[M(y)+2\sqrt{\tilde{q}(y)}]dy},e^{\int_{-a-2\delta}^0[M(y)+2\sqrt{\tilde{q}(y)}]dy}\right) \text{ avec} \\ & M: x \in (-1,1) \mapsto \frac{|\tilde{q}'(x)|}{\tilde{a}(x)}, \, \omega_{a,1} = (-1,-a) \cup (a,1), \end{aligned}$
- \odot et finalement w et la solution de l'équation des ondes :

$$\begin{cases} w_{ss} - w_{xx} + q(x)w = 0, & (s, x) \in (-L, L) \times (-1, 1), \\ w(s, \pm 1) = 0, & s \in (-L, L), \\ (w, w_s)(0, x) = (w_0, w_1)(x), & x \in (-1, 1). \end{cases}$$

$$(4)$$

1. Borne uniforme sur les fonctions propres

Prenons $q = (n\pi)^2 x^2$, $w_0 = 0$ et $w_1 = \sqrt{\lambda_{k,n}} g_{k,n}$. Alors la fonction w est :

$$w(s,x) = \sin(\sqrt{\lambda_{k,n}}s)g_{k,n}(x).$$

et nous obtenons la borne :

$$\frac{Ce^{-n\pi(a+2\delta)^2}}{n^2\pi^2} \le \int_a^1 g_{k,n}^2(x)dx \tag{3}$$

Argument de scaling, cut-off pour passer du contrôle sur $(a,1)\times(0,1)$ au contrôle sur ω .

▶ Beauchard, Miller, Morancey, 2D Grushin-type equations: minimal time and null controllable data. J. Differential equations, 259(11): 5813-5845, 2015.

2. Existence de la fonction \mathcal{N}

Théorème

Il existe une fonction $\mathcal{N}: \mathbb{R}_+^* \to \mathbb{N}^*$ telle que pour tout $\delta > 0$,

$$\sum_{k \ge \mathcal{N}(\delta)} \frac{1}{\lambda_{k,n}} \le \delta$$

On étudie la série $\sum \frac{1}{\lambda_{k,n}}$. En considérant le potentiel $n^2\pi^2x^2$ comme une perturbation du laplacien, on a :

$$\lambda_{k,n} = \frac{k^2 \pi^2}{4} + r_{k,n}$$

avec $|r_{k,n}| \leq n^2 \pi^2$ pour tout $n,k \in \mathbb{N}^*.$ On va considérer deux régimes :

- **9** Si $k \geq 3n$ alors $\lambda_{k,n} \geq \frac{k^2 \pi^2}{4} n^2 \pi^2 \geq ck^2$
- ${\color{red} \bullet}$ Si k < 3n alors $\lambda_{k,n} \geq (2k-1)n\pi \geq kn$ (voir plus loin la preuve)

On fixe $\varepsilon > 0$. On choisit $\mathcal{N}(\varepsilon) \in \mathbb{N}$ tel que

$$3\frac{\ln(\mathcal{N}(\varepsilon))}{\mathcal{N}(\varepsilon)} + \frac{1}{c} \sum_{k \ge \mathcal{N}(\varepsilon)} \frac{1}{k^2} \le \varepsilon.$$

On va montrer que $\sum_{k>\mathcal{N}(\varepsilon)} \frac{1}{\lambda_{k,n}} \leq \varepsilon$.

2. Existence de la fonction \mathcal{N}

Théorème

Il existe une fonction $\mathcal{N}: \mathbb{R}_+^* \to \mathbb{N}^*$ telle que pour tout $\delta > 0$,

$$\sum_{k \ge \mathcal{N}(\delta)} \frac{1}{\lambda_{k,n}} \le \delta$$

- $\begin{array}{l} \bullet \ \ \mathrm{Si} \ k \geq 3n \ \ \mathrm{alors} \ \lambda_{k,n} \geq \frac{k^2\pi^2}{4} n^2\pi^2 \geq ck^2 \\ \bullet \ \ \mathrm{Si} \ k < 3n \ \ \mathrm{alors} \ \lambda_{k,n} \geq (2k-1)n\pi \geq kn \end{array}$

D'abord, si $\mathcal{N}(\varepsilon) < 3n$,

$$\sum_{k \ge \mathcal{N}(\varepsilon)} \frac{1}{\lambda_{k,n}} \le \frac{1}{n} \sum_{k=\mathcal{N}(\varepsilon)}^{3n} \frac{1}{k} + \frac{1}{c} \sum_{k \ge 3n} \frac{1}{k^2}$$

$$\le \frac{1}{n} \sum_{k=\mathcal{N}(\varepsilon)}^{3n} \frac{1}{k} + \frac{1}{c} \sum_{k \ge \mathcal{N}(\varepsilon)} \frac{1}{k^2}$$

$$\le 3 \frac{\ln(3n)}{3n} + \frac{1}{c} \sum_{k \ge \mathcal{N}(\varepsilon)} \frac{1}{k^2}.$$

La fonction $x \mapsto \frac{\ln(x)}{x}$ est décroissante sur $[e, +\infty[$, donc

$$\sum_{k > \mathcal{N}(\varepsilon)} \frac{1}{\lambda_{k,n}} \leq 3 \frac{\ln(\mathcal{N}(\varepsilon))}{\mathcal{N}(\varepsilon)} + \frac{1}{c} \sum_{k > \mathcal{N}(\varepsilon)} \frac{1}{k^2} \leq \varepsilon$$

2. Existence de la fonction \mathcal{N}

Théorème

Il existe une fonction $\mathcal{N}: \mathbb{R}_+^* \to \mathbb{N}^*$ telle que pour tout $\delta > 0$,

$$\sum_{k \geq \mathcal{N}(\delta)} \frac{1}{\lambda_{k,n}} \leq \delta$$

- $\bullet \text{ Si } k \geq 3n \text{ alors } \lambda_{k,n} \geq \frac{k^2\pi^2}{4} n^2\pi^2 \geq ck^2$
- ${\color{red} 2}{\color{black} 3}$ Si k<3n alors $\lambda_{k,n}\geq (2k-1)n\pi\geq kn$

Ensuite, si $\mathcal{N}(\varepsilon) \geq 3n$,

$$\sum_{k \geq \mathcal{N}(\varepsilon)} \frac{1}{\lambda_{k,n}} \leq \frac{1}{c} \sum_{k \geq \mathcal{N}(\varepsilon)} \frac{1}{k^2} \leq \varepsilon$$

NUMERIQUEMENT

- Les 350 premières valeurs propres (divisées par $n\pi$) avec maillage N=7200
- \bigcirc Les 350 premières valeurs du GAP (divisées par $n\pi$) avec maillage N=7200
- 3 Indices auxquels le spectre change de régime et y = 1.5736x 14.4090.

OBSERVATIONS NUMERIQUES

On observe que:

- $\frac{\lambda_{k+1,n}}{n\pi} \frac{\lambda_{k,n}}{n\pi} \approx 2$ dans une première zone.
- $\frac{\lambda_{k+1,n}}{n\pi} \frac{\lambda_{k,n}}{n\pi} \approx ak + b$ dans une seconde zone.
- \bullet Le passage d'une zone à une autre s'effectue vers $k=\frac{\pi}{2}n.$
- Le gap est croissant.

INTUITION Le problème aux valeurs propres s'écrit (fonctions propres normalises):

$$\begin{cases} -g_{k,n}^{\prime\prime} + n^2\pi^2x^2g_{k,n} = \lambda_{k,n}g_{k,n} \text{ sur } (-1,1) \\ g_{k,n}(\pm 1) = 0 \end{cases}$$

Changement de variable : $\widetilde{g_{k,n}}(x) = \frac{g_{k,n}(\frac{x}{\sqrt{n\pi}})}{(n\pi)^{1/4}}$,

$$\begin{cases} -\widetilde{g_{k,n}}'' + x^2 \widetilde{g_{k,n}} = \frac{\lambda_{k,n}}{n\pi} \widetilde{g_{k,n}} \text{ sur } (-\sqrt{n\pi}, \sqrt{n\pi}) \\ \widetilde{g_{k,n}}(\pm 1) = 0 \end{cases}$$

A mesure que n croît, ce problème ressemble à :

$$\begin{cases} -G_k'' + x^2 G_k = \mu_k G_k \text{ sur } \mathbb{R} \\ \int_{\mathbb{R}} G_k^2 = 1 \end{cases}$$

Or on connaît très bien les solutions de ce problème aux valeurs propres ! (Oscillateur harmonique quantique)

$$\left\{ \begin{array}{l} -G_k^{\prime\prime} + x^2 G_k = \mu_k G_k \text{ sur } \mathbb{R} \\ \\ \int_{\mathbb{R}} G_k^2 = 1 \end{array} \right.$$

Solutions:

$$\mu_k = 2k - 1, \quad G_k = \frac{e^{-x^2/2}H_k(x)}{\pi^{1/4}2^{\frac{k-1}{2}}\sqrt{(k-1)!}}$$

où H_k est le k^{ime} polynôme de Hermite sous forme physique, c'est-à-dire défini par :

$$H_k(x) = (-1)^{k-1} e^{x^2} \frac{d^{k-1}}{dx^{k-1}} e^{-x^2}, \forall k \ge 1.$$

Ces polynômes sont orthogonaux pour le produit scalaire $(f,g)=\int_{\mathbb{R}}f(x)g(x)e^{-x^2}dx$ et ne sont pas unitaires.

- Comportement oscillant pour $x < \sqrt{\mu_k}$. Correspond à : $-G_k'' = \alpha G_k$ où $\alpha > 0$.
- Décroissance exponentielle pour $x > \sqrt{\mu_k}$. Correspond à : $-G_k'' = \alpha G_k$ où $\alpha < 0$.
- Comportement intermédiaire : ?

 \bullet Les 5 premiers modes

• Les premiers modes et le cinquantième mode

UNE INÉGALITÉ GÉNÉRALE

$$\begin{cases} -\widetilde{g_{k,n}}'' + x^2 \widetilde{g_{k,n}} = \frac{\lambda_{k,n}}{n\pi} \widetilde{g_{k,n}} \text{ sur } (-\sqrt{n\pi}, \sqrt{n\pi}) \\ \widetilde{g_{k,n}}(\pm 1) = 0 \end{cases} VS \begin{cases} -G_k'' + x^2 G_k = \mu_k G_k \text{ sur } \mathbb{R} \\ \int_{\mathbb{R}} G_k^2 = 1 \end{cases}$$

Équations semblables \Rightarrow valeurs propres semblables ? \rightarrow Quotient de Rayleigh. On pose $\Omega_n = (-\sqrt{n\pi}, \sqrt{n\pi})$.

$$\frac{\lambda_{k,n}}{n\pi} = \max_{\phi_1,\phi_2,\dots,\phi_{k-1} \in H_0^1(\Omega_n)} \left(\min_{u \in H_0^1(\Omega_n) \cap \text{span}(\phi_1,\dots,\phi_{k-1})^{\perp} L^2(\Omega_n), \|u\|_{L^2(\Omega_n)} = 1} a_n(u,u) \right)$$
avec $a_n(u,u) = \frac{\int_{\Omega_n} (u')^2 + x^2 u^2}{\int_{\Omega_n} u^2}$.

$$\mu_k = \max_{\phi_1, \phi_2, \dots, \phi_{k-1} \in V} \left(\min_{u \in L^2(\mathbb{R}) \cap \text{span}(\phi_1, \dots, \phi_{k-1})^{\perp} L^2(\mathbb{R}), \|u\|_{L^2(\mathbb{R})} = 1} a_{\mathbb{R}}(u, u) \right)$$

avec $a_{\mathbb{R}}(u,u)=\frac{\int_{\mathbb{R}}(u')^2+x^2u^2}{\int_{\mathbb{R}}u^2}$ et $V=\overline{\mathcal{D}(\mathbb{R})}^a$, le complété de $\mathcal{D}(\mathbb{R})$ pour la norme $a_{\mathbb{R}}(u,u)^{1/2}$.

UNE INÉGALITÉ GÉNÉRALE

$$\begin{cases} -\widetilde{g_{k,n}}'' + x^2 \widetilde{g_{k,n}} = \frac{\lambda_{k,n}}{n\pi} \widetilde{g_{k,n}} \text{ sur } (-\sqrt{n\pi}, \sqrt{n\pi}) \\ \widetilde{g_{k,n}}(\pm 1) = 0 \end{cases} VS \begin{cases} -G_k'' + x^2 G_k = \mu_k G_k \text{ sur } \mathbb{R} \\ \int_{\mathbb{R}} G_k^2 = 1 \end{cases}$$

Équations semblables \Rightarrow valeurs propres semblables ? \rightarrow Quotient de Rayleigh. On pose $\Omega_n = (-\sqrt{n\pi}, \sqrt{n\pi})$.

$$\frac{\lambda_{k,n}}{n\pi} = \max_{\phi_1,\phi_2,\dots,\phi_{k-1} \in H_0^1(\Omega_n)} \left(\min_{u \in H_0^1(\Omega_n) \cap \operatorname{span}(\phi_1,\dots,\phi_{k-1})^{\perp} L^2(\Omega_n), \|u\|_{L^2(\Omega_n)} = 1} a_n(u,u) \right)$$

avec
$$a_n(u, u) = \frac{\int_{\Omega_n} (u')^2 + x^2 u^2}{\int_{\Omega_n} u^2}$$
.

$$\mu_k = \max_{\phi_1, \phi_2, \dots, \phi_{k-1} \in V} \left(\min_{u \in L^2(\mathbb{R}) \cap \text{span}(\phi_1, \dots, \phi_{k-1})^{\perp} L^2(\mathbb{R}), \|u\|_{L^2(\mathbb{R})} = 1} a_{\mathbb{R}}(u, u) \right)$$

avec $a_{\mathbb{R}}(u,u)=\frac{\int_{\mathbb{R}}(u')^2+x^2u^2}{\int_{\mathbb{R}}u^2}$ et $V=\overline{\mathcal{D}(\mathbb{R})}^a$, le complété de $\mathcal{D}(\mathbb{R})$ pour la norme $a_{\mathbb{R}}(u,u)^{1/2}$.

$$H_0^1(\Omega_n) \subset L^2(\mathbb{R}) \Rightarrow \frac{\lambda_{k,n}}{n\pi} \ge \mu_k$$

UNE INÉGALITÉ GÉNÉRALE

$$\begin{cases} -\widetilde{g_{k,n}}'' + x^2 \widetilde{g_{k,n}} = \frac{\lambda_{k,n}}{n\pi} \widetilde{g_{k,n}} \text{ sur } (-\sqrt{n\pi}, \sqrt{n\pi}) \\ \widetilde{g_{k,n}}(\pm 1) = 0 \end{cases} VS \begin{cases} -G_k'' + x^2 G_k = \mu_k G_k \text{ sur } \mathbb{R} \\ \int_{\mathbb{R}} G_k^2 = 1 \end{cases}$$

Équations semblables \Rightarrow valeurs propres semblables ? \rightarrow Quotient de Rayleigh. On pose $\Omega_n = (-\sqrt{n\pi}, \sqrt{n\pi})$.

$$\frac{\lambda_{k,n}}{n\pi} = \max_{\phi_1,\phi_2,...,\phi_{k-1} \in H_0^1(\Omega_n)} \left(\min_{u \in H_0^1(\Omega_n) \cap \text{span}(\phi_1,...,\phi_{k-1})^{\perp} L^2(\Omega_n), \|u\|_{L^2(\Omega_n)} = 1} a_n(u,u) \right)$$

avec
$$a_n(u, u) = \frac{\int_{\Omega_n} (u')^2 + x^2 u^2}{\int_{\Omega_n} u^2}$$
.

$$\mu_k = \max_{\phi_1, \phi_2, \dots, \phi_{k-1} \in V} \left(\min_{u \in L^2(\mathbb{R}) \cap \operatorname{span}(\phi_1, \dots, \phi_{k-1})^{\perp} L^2(\mathbb{R}), \|u\|_{L^2(\mathbb{R})} = 1} a_{\mathbb{R}}(u, u) \right)$$

avec $a_{\mathbb{R}}(u,u)=\frac{\int_{\mathbb{R}}(u')^2+x^2u^2}{\int_{\mathbb{R}}u^2}$ et $V=\overline{\mathcal{D}(\mathbb{R})}^a$, le complété de $\mathcal{D}(\mathbb{R})$ pour la norme $a_{\mathbb{R}}(u,u)^{1/2}$.

$$H_0^1(\Omega_n) \subset L^2(\mathbb{R}) \Rightarrow \frac{\lambda_{k,n}}{n\pi} \ge \mu_k.$$

RESULTAT BASSES FRÉQUENCES

Première fréquence (k = 1):

 Beauchard, Cannarsa, Guiglielmi, Null controllability of Grushin-type operators in dimension two, 2014.

Si on pose:

$$\tilde{G}_k(x) = (G_k(x) - G_k(\sqrt{n\pi})) - \sum_{p=1}^{k-1} \widetilde{g_{p,n}} (G_k - G_k(\sqrt{n\pi}), \widetilde{g_{p,n}}),$$

On a bien $\tilde{G}_k \in H^1_0(\Omega_n)$ et $G_k \in \operatorname{span}^{\perp}(\widetilde{g_{1,n}},\widetilde{g_{2,n}},\ldots,\widetilde{g_{k-1,n}})$ et le quotient de Rayleigh devient :

$$\frac{\int_{\Omega_n} (\tilde{G}_k')^2 + x^2 \tilde{G}_k^2}{\int_{\Omega_n} \tilde{G}_k^2} \le \mu_k + C \frac{G_k(\sqrt{n\pi}) n^{5/4}}{\left(\int_{\Omega_n} \tilde{G}_k^2\right)^{1/2}}.$$

Passage au max min:

$$\frac{\lambda_{k,n}}{n\pi} \le \mu_k + CG_k(\sqrt{n\pi})n^{5/4}.$$

Inégalité intéressante que si $G_k(\sqrt{n\pi})n^{5/4} << 1$. Par exemple lorsque $\sqrt{\tau n\pi} > \sqrt{\mu_k} \Leftrightarrow k < \tau \frac{n\pi+1}{2}$, avec $\tau \in (0,1)$, décroissance exponentielle des G_k .

RESULTAT HAUTES FRÉQUENCES Méthode de tir en remplaçant $\lambda_{k,n}$ par une variable t.

$$\begin{cases} -\partial_{xx}g_n(t,x) + n^2\pi^2x^2g_n(t,x) = tg_n(t,x) \\ g_n(t,-1) = 0 \\ \partial_xg_n(t,-1) = 1. \end{cases}$$

$$t \in \Lambda_n \Leftrightarrow g_n(t,1) = 0.$$

Changement de variable de Prufer (impose : $\lambda_{k,n} > n^2 \pi^2 x^2$)

$$\begin{cases} g_{k,n}(x) = r_{k,n}(x)\cos(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{-1/4}, \\ \partial_x g_{k,n}(x) = r_{k,n}(x)\sin(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{1/4}. \end{cases}$$

 $\phi_{k,n}$ est solution de :

$$\partial_x \phi_{k,n}(x) = -\sqrt{\lambda_{k,n} - n^2 \pi^2 x^2} + \frac{2xn^2 \pi^2}{4(\lambda_{k,n} - n^2 \pi^2 x^2)} \sin(2\phi_{k,n}(x)).$$
$$\phi_{k,n}(-1) = -\frac{\pi}{2} \text{ et } \phi_{k,n}(1) = -\frac{\pi}{2} - k\pi.$$

Done

$$-\pi = \int_{\lambda_{k,n}}^{\lambda_{k+1,n}} \partial_t \phi(t,1) dt$$

RESULTAT HAUTES FRÉQUENCES Méthode de tir en remplaçant $\lambda_{k,n}$ par une variable t.

$$\begin{cases} -\partial_{xx}g_n(t,x) + n^2\pi^2x^2g_n(t,x) = tg_n(t,x) \\ g_n(t,-1) = 0 \\ \partial_xg_n(t,-1) = 1. \end{cases}$$

$$t \in \Lambda_n \Leftrightarrow g_n(t,1) = 0.$$

Changement de variable de Prufer (impose : $\lambda_{k,n} > n^2 \pi^2 x^2$)

$$\begin{cases} g_{k,n}(x) = r_{k,n}(x)\cos(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{-1/4}, \\ \partial_x g_{k,n}(x) = r_{k,n}(x)\sin(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{1/4}. \end{cases}$$

 $\phi_{k,n}$ est solution de :

$$\partial_x \phi_{k,n}(x) = -\sqrt{\lambda_{k,n} - n^2 \pi^2 x^2} + \frac{2xn^2 \pi^2}{4(\lambda_{k,n} - n^2 \pi^2 x^2)} \sin(2\phi_{k,n}(x)).$$
$$\phi_{k,n}(-1) = -\frac{\pi}{2} \text{ et } \phi_{k,n}(1) = -\frac{\pi}{2} - k\pi.$$

Donc

$$-\pi = \int_{\lambda_{k,n}}^{\lambda_{k+1,n}} \partial_t \phi(t,1) dt$$

RESULTAT HAUTES FRÉQUENCES Méthode de tir en remplaçant $\lambda_{k,n}$ par une variable t.

$$\begin{cases}
-\partial_{xx}g_n(t,x) + n^2\pi^2x^2g_n(t,x) = tg_n(t,x) \\
g_n(t,-1) = 0 \\
\partial_xg_n(t,-1) = 1.
\end{cases}$$

$$t \in \Lambda_n \Leftrightarrow g_n(t,1) = 0.$$

Changement de variable de Prufer (impose : $\lambda_{k,n} > n^2 \pi^2 x^2$)

$$\begin{cases} g_{k,n}(x) = r_{k,n}(x)\cos(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{-1/4}, \\ \partial_x g_{k,n}(x) = r_{k,n}(x)\sin(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{1/4}. \end{cases}$$

 $\phi_{k,n}$ est solution de :

$$\partial_x \phi_{k,n}(x) = -\sqrt{\lambda_{k,n} - n^2 \pi^2 x^2} + \frac{2xn^2 \pi^2}{4(\lambda_{k,n} - n^2 \pi^2 x^2)} \sin(2\phi_{k,n}(x)).$$

$$\phi_{k,n}(-1) = -\frac{\pi}{2} \text{ et } \phi_{k,n}(1) = -\frac{\pi}{2} - k\pi.$$

Donc

$$-\pi = \int_{\lambda_{k,n}}^{\lambda_{k+1,n}} \partial_t \phi(t,1) dt$$

RESULTAT HAUTES FRÉQUENCES Méthode de tir en remplaçant $\lambda_{k,n}$ par une variable t.

$$\begin{cases} -\partial_{xx}g_n(t,x) + n^2\pi^2x^2g_n(t,x) = tg_n(t,x) \\ g_n(t,-1) = 0 \\ \partial_xg_n(t,-1) = 1. \end{cases}$$

$$t \in \Lambda_n \Leftrightarrow g_n(t,1) = 0.$$

Changement de variable de Prufer (impose : $\lambda_{k,n} > n^2 \pi^2 x^2$)

$$\begin{cases} g_{k,n}(x) = r_{k,n}(x)\cos(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{-1/4}, \\ \partial_x g_{k,n}(x) = r_{k,n}(x)\sin(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{1/4}. \end{cases}$$

 $\phi_{k,n}$ est solution de :

$$\begin{split} \partial_x \phi_{k,n}(x) &= -\sqrt{\lambda_{k,n} - n^2 \pi^2 x^2} + \frac{2x n^2 \pi^2}{4(\lambda_{k,n} - n^2 \pi^2 x^2)} \sin(2\phi_{k,n}(x)). \\ \phi_{k,n}(-1) &= -\frac{\pi}{2} \text{ et } \phi_{k,n}(1) = -\frac{\pi}{2} - k\pi. \end{split}$$

Donc

$$-\pi = \int_{\lambda_{k,n}}^{\lambda_{k+1,n}} \partial_t \phi(t,1) dt$$

Il suffit alors de majorer $\partial_t \phi(t,1)$ uniformément pour obtenir une minoration de $\lambda_{k+1,n} - \lambda_{k,n}$.

RESULTAT HAUTES FRÉQUENCES Méthode de tir en remplaçant $\lambda_{k,n}$ par une variable t.

$$\begin{cases}
-\partial_{xx}g_n(t,x) + n^2\pi^2x^2g_n(t,x) = tg_n(t,x) \\
g_n(t,-1) = 0 \\
\partial_x g_n(t,-1) = 1.
\end{cases}$$

$$t \in \Lambda_n \Leftrightarrow g_n(t,1) = 0.$$

Changement de variable de Prufer (impose : $\lambda_{k,n} > n^2 \pi^2 x^2$)

$$\begin{cases} g_{k,n}(x) = r_{k,n}(x)\cos(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{-1/4}, \\ \partial_x g_{k,n}(x) = r_{k,n}(x)\sin(\phi_{k,n}(x))(\lambda_{k,n} - n^2\pi^2x^2)^{1/4}. \end{cases}$$

 $\phi_{k,n}$ est solution de :

$$\begin{split} \partial_x \phi_{k,n}(x) &= -\sqrt{\lambda_{k,n} - n^2 \pi^2 x^2} + \frac{2xn^2 \pi^2}{4(\lambda_{k,n} - n^2 \pi^2 x^2)} \sin(2\phi_{k,n}(x)). \\ \phi_{k,n}(-1) &= -\frac{\pi}{2} \text{ et } \phi_{k,n}(1) = -\frac{\pi}{2} - k\pi. \\ &-\pi = \int_{\lambda_{k,n}}^{\lambda_{k+1,n}} \partial_t \phi(t,1) dt \end{split}$$

Donc

RÉSUMÉ DES RÉSULTATS

Nous définissons $\mu_k := 2k - 1$.

Une inégalité générale

$$\forall k, n \ge 1, \quad \lambda_{k,n} \ge n\pi\mu_k$$

Basses fréquences

Soit $\tau \in (0, \frac{\pi}{2})$. Il existe $n_0 \in \mathbb{N}^*$, $c_1 > 0$ et $c_2 > 0$, trois réels qui ne dépendent que de τ , tels que pour tout $n \geq n_0$ et $k \leq \tau n$,

$$\mu_k \le \frac{\lambda_{k,n}}{n\pi} \le \mu_k + c_1 n^{5/4} e^{-c2n},$$

d'où:

$$\lambda_{k+1,n} - \lambda_{k,n} \ge 2n\pi - c_1 n^{5/4} e^{-c2n}$$

Hautes fréquences Quand $k \ge \frac{\pi}{2}n + 1$,

$$\lambda_{k+1,n} - \lambda_{k,n} \ge \pi$$

Fréquences intermédiaires

Quand $\frac{\pi}{2}n \le k \le \frac{\pi}{2}n$: ???

