Rank the speed of convergence:

In this assignment, the purpose is to use fixed-point iteration to compute $21^{1/3}$ and rank the certain sequences in order, based on speed of convergence. According to *Numerical analysis* tenth edition, written by RICHARD L. BURDEN, DOUGLAS J. FAIRES, ANNETTE M. BURDEN, (2014), the algorithm2.2 (page59) was used to iterate values and find the approximated results of $21^{1/3}$ by following

a. $p_n = \frac{20p_{n-1} + 21/p_{n-1}^2}{21/2}$ b. $p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{21/2}$

of 21^{1/3} by following a.
$$p_n = \frac{20p_{n-1} + 21/p_{n-1}^2}{21}$$
 b. $p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2}$ sequences: c. $p_n = p_{n-1} - \frac{p_{n-1}^4 - 21p_{n-1}}{p_{n-1}^2 - 21}$ d. $p_n = \left(\frac{21}{p_{n-1}}\right)^{1/2}$

As been tested before, 15 times of iteration could get almost accurate results of $21^{1/3}$. The results of (a) = 2.7586, (b) = 2.7589, (d) = 2.7589, (c) = invalid because pn will always be 0 and it will never get the solution, so this (c) does NOT converge, and it will NOT be discussed in term of order of convergence. As the graph shows below, <math>(a), (b), (c) are convergence and the order in descending speeds of convergence is (b), (d), (a). The sequence in (c) does NOT converge.

Order of convergence:

By the definition 2.7, α is the order and λ is asymptotic error constant. According to the *proof of theorem 2.8* (page 79), "if g' (p) \neq 0, then $\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|}=|g'(p)|$. ", and the proof of theorem 2.9 (page 80), "if g' (p) = 0, and g"(p) \neq 0, then $\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n|}=\frac{|g''(p)|}{|p_n|}$ ". Therefore, the following table represents the orders of convergence α with asymptotic error constant λ .

Q:	(a): p = 2.7586	(b): p = 2.7589	(d): p = 2.7589
g' (p)	≠0	0	≠0
convergence:	Linearly:	quadratically:	linearly:
α:	1	2	1
λ:	0.8571	0.7249	0.5