Income_Prediction_Project

January 26, 2021

[1]: import pandas as pd import numpy as np

df.head()

age

39

50

38

53

28

workclass fnlwgt

Private 215646

Private 234721

State-gov

Private

Self-emp-not-inc

marital-status

Married-civ-spouse

Never-married

77516

83311

338409

[4]:

0

1

2

3

0

1

import matplotlib.pyplot as plt

```
import seaborn as sns
     from sklearn.model_selection import train_test_split,KFold
     from sklearn.preprocessing import StandardScaler
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.linear_model import_
      \rightarrow Logistic Regression, Logistic Regression CV, Elastic Net CV, Lasso CV, Ridge CV
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.ensemble import RandomForestClassifier
[2]: import warnings
     warnings.filterwarnings(action='ignore')
[3]: #Loading data in pandas
     df=pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
      →adult.data',
     names =
      →['age','workclass','fnlwgt','education','education-num','marital-status','occupation','rela
    0.0.1 Basic dataframe details and stats
```

education education-num

relationship

Husband

Not-in-family

13

13

9

7

13

race

White

White

sex \

Male

Male

Bachelors

Bachelors

Bachelors

occupation

Adm-clerical

Exec-managerial

HS-grad

11th

```
2
                   Divorced
                              Handlers-cleaners
                                                   Not-in-family
                                                                    White
                                                                              Male
     3
                              Handlers-cleaners
                                                         Husband
                                                                    Black
                                                                              Male
         Married-civ-spouse
     4
         Married-civ-spouse
                                 Prof-specialty
                                                            Wife
                                                                    Black
                                                                            Female
        capital-gain capital-loss
                                    hours-per-week
                                                     native-country
                                                                      salary
                                                      United-States
                2174
                                                                       <=50K
     0
                                                 40
     1
                   0
                                 0
                                                 13
                                                      United-States
                                                                       <=50K
     2
                   0
                                 0
                                                 40
                                                      United-States
                                                                       <=50K
                                                      United-States
     3
                                 0
                   0
                                                 40
                                                                       <=50K
     4
                   0
                                 0
                                                 40
                                                               Cuba
                                                                       <=50K
[5]: #Getting an idea of total records and feature in dataframe
```

- df.shape
- [5]: (32561, 15)
- [6]: #Checking datatypes and no of null values in df df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education-num	32561 non-null	int64
5	marital-status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital-gain	32561 non-null	int64
11	capital-loss	32561 non-null	int64
12	hours-per-week	32561 non-null	int64
13	native-country	32561 non-null	object
14	salary	32561 non-null	object

dtypes: int64(6), object(9) memory usage: 3.7+ MB

- [7]: #Getting basic stats for numerical feature df.describe().T
- [7]: count mean std min 25% \ 17.0 32561.0 38.581647 13.640433 28.0 age

```
fnlwgt
                32561.0
                         189778.366512 105549.977697
                                                         12285.0
                                                                 117827.0
                                                             1.0
                                                                       9.0
education-num
                32561.0
                              10.080679
                                              2.572720
capital-gain
                32561.0
                            1077.648844
                                           7385.292085
                                                             0.0
                                                                       0.0
                                                             0.0
capital-loss
                32561.0
                              87.303830
                                            402.960219
                                                                       0.0
hours-per-week 32561.0
                              40.437456
                                             12.347429
                                                             1.0
                                                                      40.0
                     50%
                                75%
                                           max
age
                    37.0
                               48.0
                                          90.0
                178356.0 237051.0 1484705.0
fnlwgt
education-num
                    10.0
                               12.0
                                          16.0
                     0.0
                                0.0
                                       99999.0
capital-gain
capital-loss
                     0.0
                                0.0
                                        4356.0
hours-per-week
                    40.0
                               45.0
                                          99.0
```

```
[8]: #Checking if any null values are present per column/feature df.isna().sum()
```

```
[8]: age
                        0
                        0
     workclass
                        0
     fnlwgt
     education
                        0
     education-num
                        0
     marital-status
                        0
                        0
     occupation
     relationship
                        0
                        0
     race
                        0
     sex
     capital-gain
                        0
     capital-loss
                        0
                        0
     hours-per-week
     native-country
                        0
     salary
                        0
     dtype: int64
```

NULL values are not present in this data, hence no need for imputation techniques.

0.0.2 Exploratory Data Analysis

1. Exploring categorical features and checking how can same be converted to numrical features

```
[9]: #Custom Function for one hot encoding and after operations
def custom_encoding(df,col):
    dummies=pd.get_dummies(df[col],drop_first=True)
    df=df.drop(col,axis=1)
    df=pd.concat([df,dummies],axis=1)
    return df
```

```
[10]: #Feature: workclass
[11]: df['workclass'].value_counts()
[11]: Private
                           22696
       Self-emp-not-inc
                            2541
      Local-gov
                            2093
                            1836
       State-gov
                            1298
       Self-emp-inc
                            1116
      Federal-gov
                             960
      Without-pay
                              14
       Never-worked
      Name: workclass, dtype: int64
[12]: df.workclass=df.workclass.str.strip()
     Found? in many rows hence replacing the same with NaN for now.
[13]: for x in_
       →['workclass','education','marital-status','occupation','relationship','race','sex','native-
          df[x]=df[x].str.strip()
          df[x]=df[x].replace(' ','')
[14]: df=df.replace('?',np.nan).dropna()
[15]: df.shape
[15]: (30162, 15)
[16]: df['workclass'].isna().sum()
[16]: 0
[17]: plt.figure(figsize=(12,6))
      sns.countplot('workclass',data=df,hue='salary')
[17]: <AxesSubplot:xlabel='workclass', ylabel='count'>
```



```
[18]: df=custom_encoding(df,'workclass')
[19]: df.columns
[19]: Index(['age', 'fnlwgt', 'education', 'education-num', 'marital-status',
             'occupation', 'relationship', 'race', 'sex', 'capital-gain',
             'capital-loss', 'hours-per-week', 'native-country', 'salary',
             'Local-gov', 'Private', 'Self-emp-inc', 'Self-emp-not-inc', 'State-gov',
             'Without-pay'],
            dtype='object')
[20]: # Dependent Feature: salary
[21]: df['salary'].value_counts()
[21]: <=50K
               22654
                7508
      >50K
      Name: salary, dtype: int64
[22]: sns.countplot('salary',data=df)
[22]: <AxesSubplot:xlabel='salary', ylabel='count'>
```


Seems like the dataset is imbalanced.

```
[23]: #df.to_csv('tmp.csv',index=False)
[24]: df['salary']=df['salary'].map({'<=50K':1,'>50K':0})
[25]:
      # Feature: education & education-num
[26]: df['education'].value_counts()
[26]: HS-grad
                       9840
      Some-college
                       6678
      Bachelors
                       5044
      Masters
                       1627
      Assoc-voc
                       1307
      11th
                       1048
      Assoc-acdm
                       1008
      10th
                       820
      7th-8th
                       557
      Prof-school
                       542
      9th
                       455
      12th
                       377
      Doctorate
                       375
      5th-6th
                       288
      1st-4th
                        151
```

Preschool 45

Name: education, dtype: int64

```
[27]: df['education-num'].value_counts()
```

[27]: 9

Name: education-num, dtype: int64

Features education and education-num seems to be same dropping education column

```
[28]: plt.figure(figsize=(16,6))
sns.countplot('education',data=df,hue='salary')
```

[28]: <AxesSubplot:xlabel='education', ylabel='count'>


```
[29]: df=df.drop(columns=['education'])
```

```
[30]: #Feature: marital-status
```

```
[31]: df['marital-status'].value_counts()
```

[31]: Married-civ-spouse 14065

Never-married 9726

Divorced 4214

Separated 939

Widowed 827

Married-spouse-absent 370

Married-AF-spouse 21

Name: marital-status, dtype: int64

[32]: plt.figure(figsize=(16,6)) sns.countplot('marital-status',data=df,hue='salary')

[32]: <AxesSubplot:xlabel='marital-status', ylabel='count'>

[33]: df=custom_encoding(df,'marital-status')

[34]: # Feature:occupation

[35]: df['occupation'].value_counts()

[35]: Prof-specialty 4038 4030 Craft-repair Exec-managerial 3992 Adm-clerical 3721 Sales 3584 Other-service 3212 Machine-op-inspct 1966 Transport-moving 1572

Handlers-cleaners 1350
Farming-fishing 989
Tech-support 912
Protective-serv 644
Priv-house-serv 143
Armed-Forces 9

Name: occupation, dtype: int64

```
[36]: plt.figure(figsize=(16,6))
    sns.countplot('occupation', data=df, hue='salary')
    plt.xticks(rotation=45)
    plt.show()
```



```
[37]: df=custom_encoding(df, 'occupation')
[38]:
      # Feature: relationship
[39]: df['relationship'].value_counts()
[39]: Husband
                        12463
      Not-in-family
                         7726
      Own-child
                         4466
      Unmarried
                         3212
      Wife
                         1406
      Other-relative
                          889
      Name: relationship, dtype: int64
[40]: plt.figure(figsize=(16,6))
      sns.countplot('relationship',data=df,hue='salary')
      plt.xticks(rotation=45)
```

plt.show()


```
[41]: df=custom_encoding(df,'relationship')
[42]:
     # Feature:race
[43]: df['race'].value_counts()
[43]: White
                            25933
      Black
                             2817
      Asian-Pac-Islander
                              895
      Amer-Indian-Eskimo
                              286
      Other
                              231
     Name: race, dtype: int64
[44]: plt.figure(figsize=(10,4))
      sns.countplot('race',data=df,hue='salary')
      plt.xticks(rotation=45)
      plt.show()
```



```
[45]: df=custom_encoding(df, 'race')
[46]:
      #Feature: sex
[47]: plt.figure(figsize=(10,4))
      sns.countplot('sex',data=df,hue='salary')
      plt.xticks(rotation=45)
      plt.show()
             14000
             12000
             10000
              8000
              6000
              4000
              2000
                0
                                  Male
                                                     sex
```

```
[48]: df['sex']=df['sex'].map({'Male':0,'Female':1})
```

[49]: #Feature: native-country

[50]: df['native-country'].value_counts()

[50]:	United-States	27504
	Mexico	610
	Philippines	188
	Germany	128
	Puerto-Rico	109
	Canada	107
	India	100
	El-Salvador	100
	Cuba	92
	England	86
	Jamaica	80
	South	71
	Italy	68
	China	68
	Dominican-Republic	67
	Vietnam	64
	Guatemala	63
	Japan	59
	Poland	56
	Columbia	56
	Taiwan	42
	Iran	42
	Haiti	42
	Portugal	34
	Nicaragua	33
	Peru	30
	Greece	29
	Ecuador	27
	France	27
	Ireland	24
	Hong	19
	Trinadad&Tobago	18
	Cambodia	18
	Laos	17
	Thailand	17
	Yugoslavia	16
	Outlying-US(Guam-USVI-etc)	14
	Hungary	13
	Honduras	12
	Scotland	11
	Holand-Netherlands	1
	Name: native-country, dtype:	int64

```
[51]: | df['native-country'] = df['native-country'].apply(lambda x:'US'__
       →if('United-States' in x) else 'Non-US')
[52]: df['native-country'].value_counts()
[52]: US
                27504
      Non-US
                 2658
      Name: native-country, dtype: int64
[53]: plt.figure(figsize=(7,5))
      sns.countplot('native-country',data=df,hue='salary')
      plt.xticks(rotation=45)
      plt.show()
                                                                              salary
             20000
             17500
             15000
             12500
          5
10000
              7500
```

native-country

Ś

5000

2500

0

```
'Married-AF-spouse', 'Married-civ-spouse', 'Married-spouse-absent',
 'Never-married', 'Separated', 'Widowed', 'Armed-Forces', 'Craft-repair',
 'Exec-managerial', 'Farming-fishing', 'Handlers-cleaners',
 'Machine-op-inspct', 'Other-service', 'Priv-house-serv',
 'Prof-specialty', 'Protective-serv', 'Sales', 'Tech-support',
 'Transport-moving', 'Not-in-family', 'Other-relative', 'Own-child',
 'Unmarried', 'Wife', 'Asian-Pac-Islander', 'Black', 'Other', 'White'],
dtype='object')
```

[56]: df.dtypes

[56]: age int64 int64 fnlwgt education-num int64 sex int64 int64 capital-gain capital-loss int64 hours-per-week int64 native-country int64 salary int64 Local-gov uint8 Private uint8 Self-emp-inc uint8 Self-emp-not-inc uint8 State-gov uint8 Without-pay uint8 Married-AF-spouse uint8 Married-civ-spouse uint8 Married-spouse-absent uint8 Never-married uint8 Separated uint8 Widowed uint8 Armed-Forces uint8 Craft-repair uint8 Exec-managerial uint8 Farming-fishing uint8 Handlers-cleaners uint8 Machine-op-inspct uint8 Other-service uint8 Priv-house-serv uint8 Prof-specialty uint8 Protective-serv uint8 Sales uint8 Tech-support uint8 Transport-moving uint8 Not-in-family uint8 Other-relative

uint8

```
Own-child uint8
Unmarried uint8
Wife uint8
Asian-Pac-Islander uint8
Black uint8
Other uint8
White uint8
dtype: object
```

0.0.3 Column Standardization

```
[57]: X=df.drop('salary',axis=1)
      y=df['salary']
[58]: sc=StandardScaler()
[59]: tmp_scaled=sc.
       →fit_transform(X[['age','fnlwgt','capital-gain','capital-loss','hours-per-week']])
[60]: X_tmp=X.copy()
[61]: X_tmp[['age', 'fnlwgt', 'capital-gain', 'capital-loss', 'hours-per-week']]=tmp_scaled
[62]: X_scaled=X_tmp.copy()
[63]: X_scaled.to_csv('scaled_tmp.csv',index=False)
[64]: from sklearn.decomposition import PCA
      pca=PCA()
      pca.fit(X_scaled)
      #Plotting to get an idea regarding the count of components required to expained
      → the variance
      plt.grid()
      plt.plot(np.cumsum(pca.explained_variance_ratio_ * 100))
      plt.xlabel('number of components')
      plt.ylabel('cumulative explained variance');
```


0.0.4 Splitting data using train_test_split

[70]: print('Coeff Values: ',regression.coef_)

print('Intercept Value: ',regression.intercept_)

```
[65]: x_train,x_test,y_train,y_test = train_test_split(X_scaled,y,test_size=0.

-25,random_state=365)

[66]: x_train.shape

[66]: (22621, 42)

[67]: x_test.shape

[67]: (7541, 42)

0.0.5 Logistic Regression

[68]: regression=LogisticRegression()

[69]: LogisticRegression()
```

```
Coeff Values: [[-0.32529997 -0.067151 -0.27930344 0.89672472 -2.41812277
     -0.24229805
                   -0.3465811
       0.73915593  0.30617891 -0.48539628 -1.02065423 -0.01866667  0.49389899
       0.07115522 - 0.13471943 \ 0.08696393 \ 0.04624239 - 0.74155424 \ 1.16522722
       0.85339304 0.37650996 0.81813632 0.57071986 -0.53904173 -0.57245545
       -0.21069211 -0.69867144 0.15929075 0.6336106
                                                      1.18483874 1.63672013
        0.85199352 - 1.30371899 \ 0.14029241 \ 0.32592346 \ 0.63169834 \ 0.14946232]
     Intercept Value: [3.61952956]
[71]: regression.score(x_train,y_train)
[71]: 0.8479731223199681
[72]: regression.score(x_test,y_test)
[72]: 0.8510807585200901
[73]: y_pred=regression.predict(x_test)
[74]: y_test
[74]: 31565
     15326
              1
     23763
              0
     31941
     14139
     16378
              1
     27319
     7502
     16579
              1
     30689
     Name: salary, Length: 7541, dtype: int64
[75]: y_pred
[75]: array([0, 0, 1, ..., 1, 1, 0], dtype=int64)
     Model does not seems to be overfitting
[76]: from sklearn.metrics import classification_report,log_loss,confusion_matrix
[77]: print(classification_report(y_test,y_pred))
                  precision
                               recall f1-score
                                                 support
                       0.73
                                0.62
                                          0.67
                                                    1834
```

```
0.88
                1
                                  0.92
                                            0.90
                                                      5707
                                            0.85
                                                      7541
         accuracy
        macro avg
                        0.81
                                  0.77
                                            0.79
                                                      7541
     weighted avg
                        0.85
                                  0.85
                                            0.85
                                                      7541
[78]: print(log_loss(y_test,y_pred))
     5.143561863480152
[79]: print(confusion_matrix(y_test,y_pred))
     [[1141 693]
      [ 430 5277]]
[80]: from sklearn.linear_model import SGDClassifier
      sgdmodel=SGDClassifier(random_state=365)
[81]: regression.fit(x_train,y_train)
[81]: LogisticRegression()
[82]: print(regression.score(x_train,y_train))
      print(regression.score(x_test,y_test))
     0.8479731223199681
     0.8510807585200901
[83]: #Hypertuning SGD Classifier
[84]: alpha = [10 ** x for x in range(-5, 2)] # hyperparam for SGD classifier.
      for x in alpha:
          sgdmodel=SGDClassifier(alpha=x,random_state=365)
          sgdmodel.fit(x_train,y_train)
          print(x,': ',sgdmodel.score(x_train,y_train))
          print(x,': ',sgdmodel.score(x_test,y_test))
     1e-05 : 0.6719420007957208
     1e-05 : 0.66184856119878
     0.0001 : 0.8477962954776536
     0.0001 : 0.8494894576316139
     0.001: 0.8416957694177977
     0.001 : 0.845245988595677
     0.01 : 0.840855841916803
     0.01 : 0.845245988595677
     0.1 : 0.8297157508509792
     0.1: 0.8331786235247315
```

```
10: 0.7567961808778677
     0.0.6 Decision Tree
[85]: clf=DecisionTreeClassifier()
[86]: clf.fit(x train,y train)
[86]: DecisionTreeClassifier()
[87]: print('Train Data Score: ',clf.score(x_train,y_train))
      print('Test Data Score: ',clf.score(x_test,y_test))
     Train Data Score: 1.0
     Test Data Score: 0.8055960747911417
[88]: #Model is getting overfitted
[89]: grid_param = {
          'criterion': ['gini', 'entropy'],
          'max_depth' : range(2,20,2),
          'min_samples_leaf' : range(1,10,1),
          'min_samples_split': range(2,10,1),
          'splitter' : ['best', 'random']
      }
[90]: from sklearn.model selection import GridSearchCV
[91]: grid search = GridSearchCV(clf,param_grid=grid_param,cv=5,verbose=5,n_jobs=-1)
      grid_search.fit(x_train,y_train)
     Fitting 5 folds for each of 2592 candidates, totalling 12960 fits
[91]: GridSearchCV(cv=5, estimator=DecisionTreeClassifier(), n_jobs=-1,
                   param_grid={'criterion': ['gini', 'entropy'],
                               'max_depth': range(2, 20, 2),
                               'min_samples_leaf': range(1, 10),
                               'min_samples_split': range(2, 10),
                               'splitter': ['best', 'random']},
                   verbose=5)
[92]: best_dict=grid_search.best_params_
      print(best_dict)
```

1 : 0.7539896556297246 1 : 0.7619679087654158 10 : 0.74917112417665

```
{'criterion': 'entropy', 'max_depth': 10, 'min_samples_leaf': 9,
      'min_samples_split': 5, 'splitter': 'best'}
 [93]: clf1=DecisionTreeClassifier(criterion=best_dict['criterion'], max_depth=best_dict['max_depth'],
[94]: clf1.fit(x_train,y_train)
[94]: DecisionTreeClassifier(criterion='entropy', max_depth=10, min_samples_leaf=9,
                              min_samples_split=5)
[95]: print(clf1.score(x train,y train))
       print(clf1.score(x_test,y_test))
      0.8595994872021573
      0.8566503116297574
      0.0.7 RandomForest Classifier
[96]: from sklearn.ensemble import RandomForestClassifier
[97]: rf_clf=RandomForestClassifier()
[98]: rf_clf.fit(x_train,y_train)
[98]: RandomForestClassifier()
[99]: print(rf_clf.score(x_train,y_train))
       print(rf_clf.score(x_test,y_test))
      0.9999557932894213
      0.8492242408168678
[100]: grid_params = {"n_estimators" : [30,70,110,150,190,230],
                     "max_depth" : range(1,10,2),
                     "min_samples_leaf" : range(1,10,1),
                     "min_samples_split" : range(2,10,1)
                     }
[101]: grid_search =
       GridSearchCV(rf_clf,param_grid=grid_params,cv=5,verbose=5,n_jobs=-1)
       grid_search.fit(x_train,y_train)
      Fitting 5 folds for each of 2160 candidates, totalling 10800 fits
[101]: GridSearchCV(cv=5, estimator=RandomForestClassifier(), n_jobs=-1,
                    param_grid={'max_depth': range(1, 10, 2),
```

```
'min_samples_leaf': range(1, 10),
                                'min_samples_split': range(2, 10),
                                'n_estimators': [30, 70, 110, 150, 190, 230]},
                    verbose=5)
[102]: grid_search.best_params_
[102]: {'max_depth': 9,
        'min_samples_leaf': 3,
        'min_samples_split': 6,
        'n estimators': 70}
[103]: rf_clf1=RandomForestClassifier(max_depth=9,max_features='auto',min_samples_leaf=3,min_samples
[104]: rf_clf1.fit(x_train,y_train)
[104]: RandomForestClassifier(max_depth=9, min_samples_leaf=3, min_samples_split=6,
                              n_estimators=70)
[105]: print(rf_clf1.score(x_train,y_train))
       print(rf_clf1.score(x_test,y_test))
      0.8588921798328987
      0.8574459620739955
[107]: import xgboost as xgb
[110]: xgb_model=xgb.XGBClassifier()
[111]: xgb_model.fit(x_train,y_train)
      [13:17:43] WARNING: C:/Users/Administrator/workspace/xgboost-
      win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default
      evaluation metric used with the objective 'binary:logistic' was changed from
      'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the
      old behavior.
[111]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                     colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
                     importance_type='gain', interaction_constraints='',
                     learning_rate=0.300000012, max_delta_step=0, max_depth=6,
                     min_child_weight=1, missing=nan, monotone_constraints='()',
                     n_estimators=100, n_jobs=8, num_parallel_tree=1, random_state=0,
                     reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
                     tree_method='exact', validate_parameters=1, verbosity=None)
[112]: xgb_model.score(x_train,y_train)
```

```
[112]: 0.9050881923876044
[113]: xgb_model.score(x_test,y_test)
[113]: 0.8656676833311232
[115]: grid_params={
               'n_estimators': [70,90,110,130,150,190],
               'min_child_weight': [1, 5, 10],
               'gamma': [0.5, 1, 1.5, 2, 5],
               'subsample': [0.6, 0.8, 1.0],
               'colsample_bytree': [0.6, 0.8, 1.0],
               'max_depth': [3, 4, 5]
[116]: grid_search =
        →GridSearchCV(xgb_model,param_grid=grid_params,cv=5,verbose=5,n_jobs=-1)
       grid_search.fit(x_train,y_train)
      Fitting 5 folds for each of 2430 candidates, totalling 12150 fits
      [16:25:16] WARNING: C:/Users/Administrator/workspace/xgboost-
      win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default
      evaluation metric used with the objective 'binary:logistic' was changed from
      'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the
      old behavior.
[116]: GridSearchCV(cv=5,
                    estimator=XGBClassifier(base_score=0.5, booster='gbtree',
                                             colsample_bylevel=1, colsample_bynode=1,
                                             colsample_bytree=1, gamma=0, gpu_id=-1,
                                             importance_type='gain',
                                             interaction_constraints='',
                                             learning_rate=0.300000012,
                                            max delta step=0, max depth=6,
                                            min_child_weight=1, missing=nan,
                                            monotone constraints='()',
                                            n_estimators=100, n_jobs=8,
                                            num_parallel_tree=1, random_state=0,
                                            reg_alpha=0, reg_lambda=1,
                                             scale_pos_weight=1, subsample=1,
                                             tree_method='exact', validate_parameters=1,
                                             verbosity=None),
                    n_{jobs}=-1,
                    param_grid={'colsample_bytree': [0.6, 0.8, 1.0],
                                 'gamma': [0.5, 1, 1.5, 2, 5], 'max_depth': [3, 4, 5],
                                 'min_child_weight': [1, 5, 10],
                                 'n_estimators': [70, 90, 110, 130, 150, 190],
```

```
verbose=5)
[117]: grid_search.best_params_
[117]: {'colsample_bytree': 1.0,
        'gamma': 5,
        'max_depth': 4,
        'min_child_weight': 1,
        'n_estimators': 90,
        'subsample': 0.8}
[119]: | xgb_model1=xgb.XGBClassifier(colsample_bytree=1.
        →0,gamma=5,max_depth=4,min_child_weight=1,n_estimators=90,subsample=0.8)
[120]: xgb_model1.fit(x_train,y_train)
      [17:29:25] WARNING: C:/Users/Administrator/workspace/xgboost-
      win64 release 1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default
      evaluation metric used with the objective 'binary:logistic' was changed from
      'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the
      old behavior.
[120]: XGBClassifier(base score=0.5, booster='gbtree', colsample_bylevel=1,
                     colsample_bynode=1, colsample_bytree=1.0, gamma=5, gpu_id=-1,
                     importance_type='gain', interaction_constraints='',
                     learning_rate=0.300000012, max_delta_step=0, max_depth=4,
                     min child weight=1, missing=nan, monotone constraints='()',
                     n_estimators=90, n_jobs=8, num_parallel_tree=1, random_state=0,
                     reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=0.8,
                     tree_method='exact', validate_parameters=1, verbosity=None)
[121]: xgb_model1.score(x_train,y_train)
[121]: 0.878829406303877
[122]: xgb_model1.score(x_test,y_test)
[122]: 0.8669937674048535
[124]: xgb model1.feature importances
[124]: array([0.02251758, 0.00618192, 0.07329854, 0.01521296, 0.05028777,
              0.02037739, 0.02191892, 0.00789305, 0.00910249, 0.00637499,
              0.00584003, 0.00935466, 0.00622282, 0.
                                                            , 0.01247821,
              0.44706067, 0.00600868, 0.01045888, 0.
                                                             , 0.0072003 ,
                        , 0.00603016, 0.03890924, 0.02940442, 0.01283982,
              0.
```

'subsample': [0.6, 0.8, 1.0]},

```
0.01106759, 0.02547816, 0.00295946, 0.03034731, 0.00796404, 0.00588381, 0.01266422, 0.00504442, 0.01078747, 0.0090984, 0.01600897, 0.00662604, 0.01259239, 0.00557794, 0.00523698, 0. , 0.00768929], dtype=float32)
```

```
[132]: #Features with importance are plotted
plt.figure(figsize=(12,10))
plt.barh(X_scaled.columns, xgb_model1.feature_importances_)
```

[132]: <BarContainer object of 42 artists>


```
[129]: y_pred=xgb_model1.predict(x_test)
```

[130]: print(classification_report(y_test,y_pred))

support	f1-score	recall	precision	
1834	0.71	0.66	0.76	0
5707	0.91	0.93	0.90	1
7541	0.87			accuracy
7541	0.81	0.80	0.83	macro avg

```
[131]: print(confusion_matrix(y_test,y_pred))
      [[1211 623]
       [ 380 5327]]
[133]: from tabulate import tabulate
[134]: df_model=pd.DataFrame({'Model_Name':['LogisticRegression','SGDClassfier(Hinge_
       →Loss)','DecisionTree','RandomForestClassifier','XGBoost'],
                           'Test Performance': [0.8510807585200901,0.
       →8494894576316139,0.8566503116297574,0.8574459620739955,0.8669937674048535]})
[136]: print(tabulate(df_model, headers='keys', tablefmt='psql'))
           | Model_Name
                                        Test Performance |
      |----<del>-</del>
      | 0 | LogisticRegression
                                                0.851081 |
       1 | SGDClassfier(Hinge Loss) |
                                                0.849489 |
      | 2 | DecisionTree
                                               0.85665
      | 3 | RandomForestClassifier
                                                0.857446 |
      | 4 | XGBoost
                                                0.866994 |
```

7541

weighted avg

0.86

0.87

0.86