Math 107 Lecture 21

Eigenvalues and Eigenvectors Continued

by Dr. Kurianski on November 18, 2024

» Announcements

Announcements

- * Skill Check 6 is this Wed (11/20, 110 mins)
- Solutions to Homeworks 1-11 available in Canvas Modules
- Skill Check 2-5 solution videos available
- * Assignments Due Friday (11/22):
 - * HW12 Handwritten Questions
 - * HW12 Coding Problems
 - * HW12 MATLAB File Upload
- * SOQs
- Asynchronous class on Monday (11/25). Office hours virtual.

Objectives

- * Explore properties of eigenvalues and eigenvectors
- * Practice computing eigenvalues and eigenvectors

» Student Opinion Questionnaires

- Anonymous surveys that are used by the department and university to evaluate instructor performance.
- Share your experience in this course with the department and university.
- Access SOQs in your CSUF Student Portal (https://my.fullerton.edu/).
- Available from Nov. 9 until Friday, Nov. 29, 2024.
- * More info on Canvas

» Properties of Eigenvalues and Eigenvectors

Let *A* be an $n \times n$ invertible matrix. The following are true:

- 1. If *A* is triangular, then the diagonal elements of *A* are the eigenvalues of *A*.
- 2. If λ is an eigenvalue of A with eigenvector \vec{v} then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with eigenvector \vec{v} .
- 3. If λ is an eigenvalue of A then λ is an eigenvalue of A^T .
- The sum of the eigenvalues of A is equal to the trace of A (sum of the diagonal elements)
- 5. The product of the eigenvalues of A is equal to det(A)

» Invertible Matrix Theorem

Theorem: Let A be an $n \times n$ matrix. The following statements are equivalent.

- * A is invertible.
- * The reduced row echelon form of A is I.
- * The equation $A\vec{x} = \vec{b}$ has exactly one solution for every $n \times 1$ vector \vec{b} .
- * The equation $A\vec{x} = \vec{0}$ has exactly one solution (namely, $\vec{x} = \vec{0}$).
- * $\det(\mathbf{A}) \neq 0$
- st $m{A}$ does not have an eigenvalue of 0