EECS240 – Spring 2010

Lecture 22: Offset Cancellation

Elad Alon Dept. of EECS

Offset Cancellation Overview

- Two main ideas/approaches
- Modulate and/or filter offset so that it is outside of signal band
 - CDS (auto-zeroing)
 - Chopping (synch. detection, DEM)
- Inject a DC signal that opposes the offset
 - Trimming
 - Often digitally controlled (especially for comparators)

Filtering/Modulating Offset

- General idea:
 - Put elements around the amplifier that treat offset differently than signal
- CDS:
 - Configure amplifier so that offset is (approx.) differentiated
- Chopping:
 - Modulate offset to frequencies beyond signal band, then filter it out

EECS240 Lecture 22 3

CDS #1: Output Offset Cancellation

Phase 1:

$$V_C = -AV_{os}$$

- Relatively insensitive to switch errors
 - Storing amplified offset
- But, what happens if gain is large?

Phase 2:

$$V_{out} = A(V_{in} - V_{os}) - V_C$$
$$= AV_{in}$$

CDS #2: Input Offset Cancellation

EECS240 Lecture 22

Multistage Cancellation

$$V_{in} \circ \begin{array}{c} S_0 & C_1 \\ \hline \\ V_{os1} & V_{os2} & V_{osN} \\ \hline \end{array}$$

- Open switches left to right
 - Errors from $S_1 \dots S_{N-1}$ cancelled by final stage
- Application: continuous time comparators

Auxiliary Amplifier Offset Cancellation

EECS240 Lecture 22 7

Aux. Amplifier Example

H. Ohara, H. X. Ngo, M. J. Armstrong, C. F. Rahim, and P. R. Gray, "A CMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral," *IEEE Journal of Solid-State Circuits*, vol. 22, pp. 930 - 938, December 1987.

Aux. Amplifier Implementation

Flicker Noise Analysis

$$V_o(kT) = A \left\{ \underbrace{V_i(kT)}_{\text{signal}} + \underbrace{V_{1/f}(kT) - V_{1/f}(kT - \frac{T}{2})}_{\text{input referred error } V_{nieq}} \right\}$$

Laplace Transform

Delay by
$$t_d \rightarrow e^{-st_d}$$

$$V_{nieq}(s) = V_{1/f}(s) \underbrace{\left\{1 - e^{-s\frac{T}{2}}\right\}}_{H_n(s)}$$

EECS240 Lecture 22 11

Flicker Noise Frequency Response

$$H_n(s) = 1 - e^{-s\frac{T}{2}}$$

$$= 1 - e^{-j\omega\frac{T}{2}}$$

$$= 1 - \cos\frac{\omega T}{2} + j\sin\frac{\omega T}{2}$$

$$= 1 - \cos\frac{\omega T}{2} + j\sin\frac{\omega T}{2}$$

$$= 2\left(1 - \cos\frac{\omega T}{2}\right)^2 + \left(\sin\frac{\omega T}{2}\right)^2$$

$$= 1 - 2\cos\frac{\omega T}{2} + \cos^2\frac{\omega T}{2} + \sin^2\frac{\omega T}{2}$$

$$= 2\left(1 - \cos\frac{\omega T}{2}\right)$$

$$= 4\sin^2\frac{\omega T}{4}$$

$$\left| H_n(s) \right|_{s \to j\omega} = \left| 2 \sin \frac{\omega T}{4} \right| = \left| 2 \sin \frac{\pi f}{2 f_s} \right|$$

Flicker Noise Spectrum

- Flicker noise is differentiated
 - As is thermal noise
- Noise removed at low freq.
 - But amplified at "high" freq.
- Noise above f_s/2 folds to baseband

EECS240 Lecture 22 13

Chopping

Nested Chopper Amplifier

- Inner chopper at high freq. to remove 1/f noise
- Outer chopper at low frequency to minimize "spiking" and remove residual offset from inner chopper.

EECS240 Lecture 22 15

Offset Trimming

Digital Trimming EECS240 Lecture 22 17

Comparator Trimming EECS240 Lecture 22 18

Trim Implementation Issues

- Infinite number of ways to introduce digitally controlled offset
 - People have tried just about all of them
- Key issues:
 - Power overhead
 - Circuit Imbalance
 - · Effective resolution
 - Area overhead

EECS240 Lecture 22 19

Comparator Trim Schemes

Pre-Amp Trim EECS240 Lecture 22 21

Pre-Amp Trim EECS240 Lecture 22 22