딥러닝 스터디

밑바닥부터 시작하는 딥러닝2

김제우

딥러닝스터디

딥러닝스터디

1. Word2vec 속도개선

목차

딥러닝스터디

4. word2vec 속도 개선

딥러닝스터디

0

you

CBOW 모델의 추론 처리 - 3장

- 입력: 주변단어

- 출력: 가운데 단어

- 주변단어로 가운데 단어 추론

그림 3-9 CBOW 모델의 신경망 구조

0

0

0

0

Win

you

say

and

goodbye

딥러닝스터디

- 앞에서 배운 것은 word2vec의 구조와 CBOW의 구현!
- word2vec의 문제점
 - 말뭉치가 커지면 계산량도 커진다
 - 어휘 수가 어느 정도를 넘어서면 계산 시간이 너무 오래걸림
- 2가지 방법으로 개선
 - 1. Embedding 이라는 계층 도입
 - 2. 네거티브 샘플링이라는 새로운 손실함수

딥러닝스터디

은닉층

you

goodbye

0

1,000,000 x 100 x 2번

딥러닝스터디

연산량이 너무 많다! 메모리를 한번에 많이 차지함 -> 큰 사이즈의 램을 필요로 함

딥러닝스터디

4.1 word2vec 개선 - 1

딥러닝스터디

딥러닝스터디

딥러닝스터디

4.1.1 Embedding 계층

- 단어와 W를 곱하는 과정은 특정 행을 추출하는 것 뿐이므로 MatMul 연산은 불필요하다!
- 가중치 매개변수로부터 '단어 ID에 해당하는 행'을 추출하는 계층이 필요
- 이 계층을 Embedding 계층이라고 한다!

자연어 처리에서 통계 기반 기법으로 얻은 단어 벡터 신경망 추론을 통한 단어 벡터

distributional representation distributed representation

4.1.2 Embedding 계층 구현

- 구현은 너무 쉬움

```
W = np.arange(21).reshape(7,3)
W

array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9,  10,  11],
       [12,  13,  14],
       [15,  16,  17],
       [18,  19,  20]])
```

```
W[2] : [6 7 8]
W[5] : [15 16 17]
W[[1,0,3,0]] = W[idx] :
  [[ 3     4     5]
  [ 0     1     2]
  [ 9 10 11]
  [ 0     1     2]]
```

4.1.2 Embedding 계층 구현

- forward 구현은 너무 쉬움

```
class Embedding:
    def __init__(self, W):
        self.params = [W]
        self.grads = [np.zeros_like(W)]
        self.idx = None

    def forward(self, idx):
        W, = self.params
        self.idx = idx
        out = W[idx]
        return out
```

W에서 index를 골라주기만 하면 끝

딥러닝스터디

4.1.2 Embedding 계층 구현

- Backward 구현
 - 원래 위치를 찾아주면 된다.
 - 값을 바꾼 건 아니니 값은 그대로

그림 4-4 Embedding 계층의 forward와 backward 처리(Embedding 계층은 Embed로 표기)

딥러닝스터디

4.1.2 Embedding 계층 구현

- Backward 구현
 - 원래 위치를 찾아주면 된다.
 - 값을 바꾼 건 아니니 값은 그대로

```
dW에서 index를
골라주기만 하면 끝
```

```
def backward(self, dout):
    dW, = self.grads
    dW[...] = 0
    dW[self.idx] = dout
    return None
```

4.1.2 Embedding 계층 구현

- Backward 구현

그림 4-5 idx 배열의 원소 중 값(행 번호)이 같은 원소가 있다면, dh를 해당 행에 할당할 때 문제가 생긴다.

딥러닝스터디

4.1.2 Embedding 계층 구현

- Backward 구현

```
def backward(self, dout):
   dW, = self.grads
   dW[...] = 0
   dW[self.idx] = dout
   return None
```

```
def backward(self, dout):
    dW, = self.grads
    dW[...] = 0

for i, word_id in enumerate(self.idx):
    dW[word_id] += dout[i]
    return None
```

중복되는 dh를 더해주는 형태로 변경

딥러닝스터디

4.2 word2vec 개선 -2

- 네거티브 샘플링(부정적 샘플링)
- 은닉층 이후의 처리 (행렬 곱과 Softmax 계층의 계산)에 적용
- 손실함수의 한 종류!
- Softmax 대신 사용하면 어휘가 아무리 많아져도 계산량을 낮은 수준에서 일정하게 억제할 수 있다.

4.2.1 은닉층 이후 계산의 문제점

- 은닉층이 100
- 출력 뉴런 100만개
- forward & backward 모두에서 연산량이 많아짐 -> 각 100 x 100만
- softmax에서도 마찬가지로 연산량이 많아짐 -> exp 연산을 100만 번;;

$$y_k = \frac{\exp(s_k)}{\sum_{i=1}^{1000000} \exp(s_i)}$$

딥러닝스터디

4.2.2 다중 분류에서 이진 분류로

- 다중 클래스 분류를 이진 분류로 근사하는 것!!
- 지금까지는 맥락이 주어질때 정답이 되는 단어의 확률을 높히도록 학습함.
- 다중 분류 방식 질문
- '맥락이 'you'랑 'goodbye'일 때, 타깃 단어는?'
- 이진 분류 방식 질문
- '맥락이 'you'와 'goodbye'일 때, 타깃 단어는 'say'입니까?'

딥러닝스터디

4.2.2 다중 분류에서 이진 분류로

- 출력층의 뉴런이 하나면 된다.
- 추출된 벡터와 은닉층 뉴런과의 내적을 계산하면 끝

딥러닝스터디

4.2.2 다중 분류에서 이진 분류로

 (1×100)

형상 :

그림 4-8 "say"에 해당하는 열벡터와 은닉층 뉴런의 내적을 계산한다('dot' 노드가 내적을 계산함).

 (100×1000000)

 (1×1)

4.2.3 시그모이드 함수와 교차 엔트로피 오차

4.2.3 시그모이드 함수와 교차 엔트로피 오차

- 시그모이드 함수

0과 1사이의 실수로 변환

0~1이기 때문에 '확률'로 볼 수 있다.

딥러닝스터디

4.2.3 시그모이드 함수와 교차 엔트로피 오차

- 교차 엔트로피 오차

$$L = -(t\log y + (1-t)\log(1-y))$$

- y는 시그모이드의 출력
- t는 정답 레이블
- t가 정답이면 1, 오답이면 0
- -t가 1이면 $-\log y$
- t가 0이면 $\log(1 y)$

4.2.3 시그모이드 함수와 교차 엔트로피 오차

그림 4-10 Sigmoid 계층과 Cross Entropy Error 계층의 계산 그래프(오른쪽은 Sigmoid with Loss 계층으로 통합한 모습)

오차가 크면 크게 학습하고 작으면 작게 학습한다. 26

딥러닝스터디

4.2.4 다중 분류에서 이진 분류로 (구현)

say에 해당하는 것만 고름

딥러닝스터디

4.2.4 다중 분류에서 이진 분류로 (구현)

도식 단순화

그림 4-13 [그림 4-12]의 은닉층 이후 처리(Embedding Dot 계층을 사용하여 Embedding 계층과 내적 계산을 한 번에 수행)


```
class EmbeddingDot:
   def __init__(self, W):
       self.embed = Embedding(W)
       self.params = self.embed.params
       self.grads = self.embed.grads
       self.cache = None
   def forward(self, h, idx):
       target_W = self.embed.forward(idx) --- say의 idx를 W로 만듬
       out = np.sum(target_W * h, axis=1) — W. 입력h dot연산
       self.cache = (h, target_W) _____
                                          →▶ 순전파 결과 저장
       return out
   def backward(self, dout):
       h, target_W = self.cache
       dout = dout.reshape(dout.shape[0], 1)
       dtarget_W = dout * h
       self.embed.backward(dtarget W)
       dh = dout * target_W
       return dh
```

4.2.4 다중 분류에서 이진 분류로 (구현)

그림 4-14 Embedding Dot 계층의 각 변수의 구체적인 값

딥러닝스터디

4.2.5 네거티브 샘플링

- 긍정적인 예에 대해서만 학습했기 때문에 부정적인 예를 입력하면 어떤 결과 가 나오는지 확인해야함.
- 이대로 한다면 정답일 때(say일때)만 학습하고 나머지는 학습하지 못하게된다.
- 부정적인 예를 맞췄을 때도 loss가 낮아져야한다!

4.2.5 네거티브 샘플링

그림 4-16 긍정적 예(정답)를 "say"라고 가정하면, "say"를 입력했을 때의 Sigmoid 계층 출력은 1에 가깝고, "say" 이외의 단어를 입력했을 때의 출력은 0에 가까워야 한다. 이런 결과를 내어주는 가중치가 필요하다.

딥러닝스터디

4.2.5 네거티브 샘플링

- 이렇게 했을때의 문제점
- 정답에 대한 학습은 1단어 오답에 대한 학습은 무수히 많다.
- 전부 오답으로만 예측해도 높은 정답률을 얻을 수 있게 될 수 있음.
- 이걸 해결하기 위해서 부정적인 예를 몇 개를 랜덤하게 선택(샘플링)해서 사용
- 이것 '네거티브 샘플링'이라고 한다.

딥러닝스터디

4.2.5 네거티브 샘플링

정답인 경우 1개와 오답인 경우 몇개를 학습함

4.2.6 네거티브 샘플링의 샘플링 기법

- 부정적 예를 샘플링하는 방식(단순 무작위가 아님)
- 말뭉치 통계 데이터를 기초로 샘플링하는 방식
- 말뭉치에서 자주 등장하는 단어를 많이 추출하고 드물게 등장하는 단어를 적 게 추출함.
- 이를 위해 단어 출현 횟수를 구해서 확률분포로 만들어야한다.

4.2.7 네거티브 샘플링 구현

class NegativeSamplingLoss:

```
def __init__(self, W, corpus, power=0.75, sample_size=5):
    self.sample_size = sample_size
    self.sampler = UnigramSampler(corpus, power, sample_size)
    self.loss_layers = [SigmoidWithLoss() for _ in range(sample_size + 1)]
    self.embed_dot_layers = [EmbeddingDot(W) for _ in range(sample_size + 1)]
    self.params, self.grads = [], []
    for layer in self.embed_dot_layers:
        self.params += layer.params
        self.grads += layer.grads
```

딥러닝스터디

4.2.7 네거티브 샘플링 구현

```
def forward(self, h, target):
    batch size = target.shape[0]
    negative_sample = self.sampler.get_negative_sample(target)
   # 긍정적 예 순전파
    score = self.embed dot layers[0].forward(h, target)
    correct_label = np.ones(batch_size, dtype=np.int32)
    loss = self.loss_layers[0].forward(score, correct_label)
   # 부정적 예 순전파
    negative_label = np.zeros(batch_size, dtype=np.int32)
    for i in range(self.sample_size):
       negative_target = negative_sample[:, i]
       score = self.embed_dot_layers[1 + i].forward(h, negative_target)
       loss += self.loss_layers[1 + i].forward(score, negative_label)
   return loss
```

4.2.7 네거티브 샘플링 구현

```
def backward(self, dout=1):
    dh = 0
    for 10, 11 in zip(self.loss_layers, self.embed_dot_layers):
        dscore = 10.backward(dout)
        dh += 11.backward(dscore)
```

딥러닝스터디

4.3 개선판 word2vec 전체 학습

[query] you

we: 0.610597074032
someone: 0.591710150242
i: 0.554366409779

something: 0.490028560162 anyone: 0.473472118378

[query] year

month: 0.718261063099 week: 0.652263045311 spring: 0.62699586153 summer: 0.625829637051 decade: 0.603022158146

[query] car

luxury: 0.497202396393 arabia: 0.478033810854 auto: 0.471043765545 disk-drive: 0.450782179832 travel: 0.40902107954

[query] toyota

ford: 0.550541639328

instrumentation: 0.510020911694

mazda: 0.49361255765 bethlehem: 0.474817842245 nissan: 0.474622786045

"
$$king - man + woman = queen$$
"

그림 4-20 "man : woman = king : ?" 유추 문제 풀기(단어 벡터 공간에서 각 단어의 관계성) woman

딥러닝스터디

4.3 개선판 word2vec 전체 학습

```
[analogy] king:man = queen:?
```

woman: 5.161407947540283

veto: 4.928170680999756

ounce: 4.689689636230469

earthquake: 4.633471488952637

successor: 4.6089653968811035

[analogy] take:took = go:?

went: 4.548568248748779

points: 4.248863220214844

began: 4.090967178344727

comes: 3.9805688858032227

oct.: 3.9044761657714844

- 4.4 word2vec 남은 주제
- 4.4.1 word2vec을 사용한 애플리케이션의 예
- transfer learning (전이 학습)
- 한 분야에서 배운 지식을 다른 분야에 활용함
- 처음부터 word2vec의 단어 분산 표현을 학습하지는 않는다.
- 대신 초대형 말뭉치(위키백과나 구글 뉴스) 같은 데이터로 학습한 후 분산 표현만을 자신의 작업에 사용함.

그림 4-21 단어의 분산 표현을 이용한 시스템의 처리 흐름

4.4.2 단어 벡터 평가 방법

- 'king : queen = man : ?'와 같은 유추 문제들을 출제하고 정답률 측정
- 이걸 평가하면 단어의 의미나 문법적인 문제를 이해하는지를 볼 수 있음

그림 4-23 유추 문제에 의한 단어 벡터의 평가 결과(논문 [27]에서 발췌)

모델	차수	말뭉치 크기	의미(semantics)	구문(syntax)	종합
CBOW	300	16억	16.1	52.6	36.1
skip_gram	300	10억	61	61	61
CBOW	300	60억	63.6	67.4	65.7
skip_gram	300	60억	73.0	66.0	69.1
CBOW	1000	60억	57.3	68.9	63.7
skip_gram	1000	60억	66.1	65.1	65.6

- 1)모델에 따라 정확도가 다름
 2)말뭉치는 클수록 결과가 좋음
- 3)단어 벡터 차원 수는 적당한 크기가 좋음

딥러닝스터디

4.5 정리

- Embedding 계층은 단어의 분산 표현을 담고 있으며, 순전파 시 지정한 단어 ID의 벡터를 추출한다.
- word2vec은 어휘 수의 증가에 비례하여 계산량도 증가하므로, 근사치로 계산하는 빠른 기법을 사용하면 좋다.
- 네거티브 샘플링은 부정적 예를 몇 개 샘플링하는 기법으로, 이를 이용하면 다중 분류를 이진 분류처럼 취급할 수 있다.
- word2vec으로 얻은 단어의 분산 표현에는 단어의 의미가 녹아들어 있으며, 비슷한 맥락에서 사용되는 단어는 단어 벡터 공간에서 가까이 위치한다.
- word2vec의 단어의 분산 표현을 이용하면 유추 문제를 벡터의 덧셈과 뺄셈으로 풀 수 있게 된다.
- word2vec은 전이 학습 측면에서 특히 중요하며, 그 단어의 분산 표현은 다양한 자연어 처리 작업에 이용할 수 있다.

word2vec은 자연어처리 분야뿐만 아니라 음성, 이미지, 동영상 등에도 응용되고 있다! word2vec을 제대로 이해했다면, 그 지식은 다양한 분야에서 큰 도움이 될 것입니다.

다음 주는 순환 신경망 RNN

참고 논문: Distributed Representations of Words and Phrases and their Compositionality