Órgãos de Máquinas Dimensionamento à Fadiga – Exercícios

Carlos M. C. G. Fernandes

Exercício 1 1

Fazer a verificação à fadiga do veio representado na Figura 1, de aço maquinado ($E=210\,\mathrm{GPa}$) com uma tensão de rotura $\sigma_r=670\,\mathrm{MPa}$, tensão de cedência $\sigma_{ced}=410\,\mathrm{MPa}$ e dureza Brinell HBN=210. O veio está animado de uma velocidade angular ω e é simplesmente apoiado nas extremidades através de rolamentos e sujeito a uma carga constante de $F=10\,000\,\mathrm{N}$ a meio vão. Considere uma concordância $r=0.1\cdot d_2$

Figura 1: Veio rotativo sujeito à flexão.

Pretende-se o dimensionamento estático impondo:

- 1. 1 mm de flecha máxima
- 2. $d_2 = \frac{3}{4} \cdot d_1$

¹Castro, Paulo M.S.T., "Dimensionamento à Fadiga", FEUP, 2017

Exercício 2

A Figura 2 representa uma transmissão por engrenagem normal com arquitetura "power split" que é acionada por um motor elétrico com uma potência nominal de 40 kW que roda à velocidade angular de 2500 rpm.

O pinhão z_1 está montado na extremidade do veio do motor. A rodas z_2 e z_3 estão montadas a meio-vão dos veios 2 e 3, respetivamente, fabricados em aço de construção Ck 45. A transmissão de momento torsor é assegurada através de um sistema escatelchaveta em cada um dos veios. O fator de concentração de tensões prático devido ao escatel do veio é $K_f = 1.6$ para solicitações de flexão.

Cada um dos veios (2 e 3) está apoiado em dois rolamentos de esferas 6006 que distam entre si de 0.4 m.

Cada ponta de veio está sujeita a um momento torsor constante correspondente à utilização de 50% da potência nominal do motor.

Figura 2: Transmissão por engrenagem.

Estime o coeficiente de segurança do veio 3 para o dimensionamento à fadiga. Apresente todos os cálculos que efetuar. Comente o resultado obtido.

Exercício 3

Na Figura 3 está representada, sob a forma esquemática, a transmissão redutora principal de um trator elétrico. A transmissão é acionada por um motor elétrico eficiente de alta velocidade e dupla saída. Devido às restrições de projeto, a transmissão mecânica que existe entre o motor e as rodas do veículo é composta por vários andares. A lubrificação é assegurada por injeção nas engrenagens e rolamentos, assumindo-se temperaturas de injeção idênticas. O mesmo sistema alimenta as chumaceiras radiais hidrodinâmicas.

O veio 1 está apoiado em 4 chumaceiras radiais hidrodinâmicas igualmente espaçadas duas a duas, que suportam a totalidade do esforço radial transmitido pelos pinhões z_1 e z_3 . O veio 2 está apoiado em 4 rolamentos rígidos de esferas (61805). O veio 3 está apoiado em dois rolamentos de rolos cónicos (32307). Os veios são fabricados em aço de alta resistência 34CrNiMo6.

A transmissão é sempre acionada a 20 000 rpm, sendo que em condições nominais de funcionamento o motor pode disponibilizar 125 kW de potência.

	chumaceira	radial	hidrodinâr	nica
--	------------	--------	------------	------

Engrenagens
Geometria:
$z_1 = z_3 = z_5 = 17$
$z_2 = z_4 = z_6 = 68$
$\alpha = 20^{\circ}$
$\beta = 0^{\circ}$
$h_a = m$
$h_f = 1.25m$
z_1/z_2 e z_3/z_4 :
$b = 15 \mathrm{mm}$
z_5/z_6 :
$b = 30 \mathrm{mm}$
$m = 4 \mathrm{mm}$

_	
	Veios
(Geometria:
C	$l_1 = 15 \mathrm{mm}$
C	$l_2 = 25 \mathrm{mm}$
C	$l_3 = 37 \mathrm{mm}$
N	Material:
A	Aço 34CrNiMo6
Ι	Oureza Brinell: 270
C	$\sigma_R = 1300 \mathrm{MPa}$
C	$\sigma_{ced} = 900 \mathrm{MPa}$
A	Acabamento:
N	Maquinagem

Figura 3: Transmissão por engrenagem.

Figura 4: Veio 3.

Dimensionar o raio de concordância r do veio 3 na zona de acoplamento à roda dentada z_6 (Figura 1) de modo a que o veio tenha vida infinita. Considere D/d=1.1 e um coeficiente de segurança de 3.