## 本节内容 冬 基本操作 王道考研/CSKAOYAN.COM

#### 知识总览

#### 图的基本操作:

- Adjacent(G,x,y): 判断图G是否存在边<x, y>或(x, y)。
- Neighbors(G,x):列出图G中与结点x邻接的边。
- InsertVertex(G,x): 在图G中插入顶点x。
- DeleteVertex(G,x): 从图G中删除顶点x。
- AddEdge(G,x,y): 若无向边(x, y)或有向边<x, y>不存在,则向图G中添加该边。
- RemoveEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图G中删除该边。
- FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。
- NextNeighbor(G,x,y): 假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。
- Get\_edge\_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set\_edge\_value(G,x,y,v):设置图*G*中边(x, y)或<x, y>对应的权值为v。



• Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。





data

Α

В

D

#### 邻接矩阵

|   | Α | В | С | D | E | F |
|---|---|---|---|---|---|---|
| Α | 0 | 1 | 1 | 1 | 0 | 0 |
| В | 1 | 0 | 0 | 0 | 1 | 1 |
| С | 1 | 0 | 0 | 0 | 1 | 0 |
| D | 1 | 0 | 0 | 0 | 0 | 1 |
| E | 0 | 1 | 1 | 0 | 0 | 0 |
| F | 0 | 1 | 0 | 1 | 0 | 0 |



• Adjacent(G,x,y): 判断图G是否存在边<x, y>或(x, y)。









• Neighbors(G,x):列出图G中与结点x邻接的边。



|   | data |
|---|------|
| 0 | Α    |
| 1 | В    |
| 2 | С    |
| 3 | D    |
| 4 | Е    |
| 5 | F    |
|   |      |

#### 邻接矩阵

O(|V|)





#### 邻接表

O(1)~O(|V|)

|   | data | *first              |                   |   | 7/ |                   |   |   |                   | Ž |   |
|---|------|---------------------|-------------------|---|----|-------------------|---|---|-------------------|---|---|
| 0 | Α    | _                   | $\rightarrow$     | 1 |    | $\longrightarrow$ | 2 |   | $\rightarrow$     | 3 | ٨ |
| 1 | В    |                     | $\longrightarrow$ | 0 |    | <b></b>           | 4 |   | $\longrightarrow$ | 5 | ٨ |
| 2 | С    | \(\sigma^{\sigma}\) | $\longrightarrow$ | 0 |    |                   | 4 | ٨ |                   |   |   |
| 3 | D    |                     | $\rightarrow$     | 0 |    |                   | 5 | ٨ |                   |   |   |
| 4 | E    | _                   | $\longrightarrow$ | 1 |    | $\longrightarrow$ | 2 | ٨ |                   |   |   |
| 5 | F    | _                   | $\longrightarrow$ | 1 |    | $\longrightarrow$ | 3 | ٨ |                   |   |   |

• Neighbors(G,x): 列出图*G*中与结点*x*邻接的边。



#### 邻接矩阵

O(|V|)



|   | data |
|---|------|
| 0 | Α    |
| 1 | В    |
| 2 | С    |
| 3 | D    |
| 4 | E    |
| 5 | F    |
|   |      |

|   | Α | В | С | D | Ε | F |
|---|---|---|---|---|---|---|
| Α | 0 | 1 | 0 | 0 | 0 | 0 |
| В | 0 | 0 | 0 | 0 | 0 | 0 |
| C | 1 | 0 | 0 | 0 | 0 | 0 |
| D | 1 | 0 | 0 | 0 | 0 | 0 |
| Ε | 0 | 1 | 1 | 0 | 0 | 0 |
| F | 0 | 1 | 0 | 1 | 0 | 0 |
|   |   |   |   |   |   |   |

### 万一是个稀疏图呢?

邻接表

出边: O(1)~O(|V|)

入边: O(|E|)

| <u> </u> | data | *first |                   |    |   |                   |   |   |
|----------|------|--------|-------------------|----|---|-------------------|---|---|
| 0        | Α    | _      | $\longrightarrow$ | 1  | ٨ |                   |   |   |
| 1        | В    | ٨      |                   |    |   |                   |   |   |
| 2        | С    |        | 10                | 0  | ٨ |                   |   |   |
| 3        | D    |        |                   | 0  | ٨ |                   |   |   |
| 4        | Ε    | × '    | <b></b>           | 1  |   | $\rightarrow$     | 2 | ٨ |
| 5        | F    | _      | $\rightarrow$     | _1 |   | $\longrightarrow$ | 3 | ٨ |

• InsertVertex(G,x): 在图G中插入顶点x。







# A B C D E F X A 0 1 1 1 0 0 0 B 1 0 0 0 1 1 0 C 1 0 0 0 1 0 0 D 1 0 0 0 1 0 E 0 1 1 0 0 0 0 F 0 1 0 1 0 0 0 X 0 0 0 0 0 0

O(1)

邻接矩阵



• DeleteVertex(G,x): 从图*G*中删除顶点*x*。





• DeleteVertex(G,x): 从图G中删除顶点x。





• DeleteVertex(G,x): 从图*G*中删除顶点*x*。



#### 邻接矩阵 O(|V|)

data

Α

D

| (2) | Α | В | C | D | Ε | F |
|-----|---|---|---|---|---|---|
| Α   | 0 | 1 | 0 | 0 | 0 | 0 |
| В   | 0 | 0 | 0 | 0 | 0 | 0 |
| C   | 1 | 0 | 0 | 0 | 0 | 0 |
| D   | 1 | 0 | 0 | 0 | 0 | 0 |
| Е   | 0 | 1 | 1 | 0 | 0 | 0 |
| F   | 0 | 1 | 0 | 1 | 0 | 0 |

删出边: O(1)~O(|V|)

删入边: O(|E|)

邻接表

| 7/// |      |         |               |       |   |               |   |   |   |
|------|------|---------|---------------|-------|---|---------------|---|---|---|
|      | data | *first  | _             |       |   |               |   |   |   |
| 0    | Α    | _       |               | 1     | ٨ |               |   |   |   |
| 1    | В    | ٨       |               |       |   |               |   |   |   |
| 2    | С    | <u></u> | 40            | 0     | ٨ |               |   |   |   |
| 3    | D    |         |               | 0     | ٨ |               |   |   |   |
| 4    | Е    | — —     |               | 1     |   | $\rightarrow$ | 2 | ٨ |   |
| 5    | F    | _       | $\rightarrow$ | 1     |   | $\rightarrow$ | 3 | ٨ |   |
| 4    | Е    |         | →<br>→        | 0 1 1 | ^ | →<br> <br>    |   | 1 | \ |

AddEdge(G,x,y): 若无向边(x,y)或有向边<x,y>不存在,则向图G中添加该边。

邻接矩阵





|   | data |
|---|------|
| 0 | Α    |
| 1 | В    |
| 2 | C    |
| 3 | D    |
| 4 | E    |
| 5 | F    |
|   |      |



RemoveEdge(G,x,y): 若无向边(x,y)或有向边<x,y>存在,则从图G中删除该边。

邻接矩阵





|   |      |   | 7// |
|---|------|---|-----|
|   | data |   | Α   |
| 0 | Α    | Α | 0   |
| 1 | В    | В | 1   |
| 2 | С    | С | 1   |
| 3 | D    | D | 1   |
| 4 | Е    | E | 0   |
| 5 | Œ    | F | 0   |
|   |      |   |     |



• FirstNeighbor(G,x):求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。



FirstNeighbor(G,x):求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点 或图中不存在x,则返回-1。



#### 邻接矩阵

data

0

找出边邻接点: O(1)



NextNeighbor(G,x,y):假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。



- Get\_edge\_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set\_edge\_value(G,x,y,v): 设置图G中边(x, y)或<x, y>对应的权值为v。
- Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。

雷同,核心在于找到边





data

Α

В

C

D

Ε

F

#### 邻接矩阵

|   | Α | В | С | D | Ε | F |
|---|---|---|---|---|---|---|
| Α | 0 | 1 | 1 | 1 | 0 | 0 |
| В | 1 | 0 | 0 | 0 | 1 | 1 |
| С | 1 | 0 | 0 | 0 | 1 | 0 |
| D | 1 | 0 | 0 | 0 | 0 | 1 |
| Ε | 0 | 1 | 1 | 0 | 0 | 0 |
| F | 0 | 1 | 0 | 1 | 0 | 0 |



#### 知识回顾与重要考点

- Adjacent(G,x,y): 判断图*G*是否存在边<*x*, *y*>或(*x*, *y*)。
- Neighbors(G,x):列出图G中与结点x邻接的边。
- InsertVertex(G,x): 在图G中插入顶点x。
- DeleteVertex(G,x): 从图*G*中删除顶点*x*。
- AddEdge(G,x,y): 若无向边(x, y)或有向边<x, y>不存在,则向图G中添加该边。
- RemoveEdge(G,x,y): 若无向边(x, y)或有向边<x, y>存在,则从图G中删除该边。
- FirstNeighbor(G,x): 求图G中顶点x的第一个邻接点,若有则返回顶点号。若x没有邻接点或图中不存在x,则返回-1。
- NextNeighbor(G,x,y): 假设图G中顶点y是顶点x的一个邻接点,返回除y之外顶点x的下一个邻接点的顶点号,若y是x的最后一个邻接点,则返回-1。
- Get\_edge\_value(G,x,y): 获取图*G*中边(x, y)或<x, y>对应的权值。
- Set\_edge\_value(G,x,y,v): 设置图*G*中边(x, y)或<x, y>对应的权值为v。

此外,还有图的遍历算法,包括深度优先遍历和广度优先遍历。

#### 欢迎大家对本节视频进行评价~



学员评分: 6.2.5 图的基本操作





△ 公众号:王道在线



i b站: 王道计算机教育



→ 抖音:王道计算机考研