RSA Encryption

Alex Shaffer

RSA encryption

- RSA encryption is very different from anything we have seen so far.
- Involves a public key and a private key.
- You make you public key public so someone can encrypt a message with it that may only be decrypted with the private key.

Key Generation

- Choose two very (very) large prime numbers p and q.
 - These numbers make up your private key.
- Define n = pq
 - · this is part of the public key.
- Compute $\varphi(n) = \varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1)$
 - Keep this private
- Choose a number e where $1 < e < \varphi(n)$ and $gdc(e, \varphi(n)) = 1$
 - · This is part of the public key
- Determine $d=e^{-1} (mod \ \varphi(n))$, that is d is the modular multiplicative inverse of e
 - · This is part of the private key

Key continued

- The private key is made up of p, q, $\varphi(n)$, and d.
- The public key is made up of n, and e.

RSA encryption

- Consider a plaintext message as a number m:
 - The ciphertext is determined by $c \equiv m^e \pmod{n}$
 - Notice that the only thing involved in this calculation is the public key.
- To get the decrypted message back compute it as follows:
 - $m \equiv c^d \pmod{n}$

Justification

- Why does the decryption work?
- $c \equiv m^e \pmod{n} \rightarrow c^d \equiv (m^e)^d \pmod{n}$
- We want to show that $m \equiv m^{ed} \pmod{n}$
- Recall how we chose e and d.
- $ed \equiv 1 \pmod{\varphi(n)}$
- For some natural number h, $ed = 1 + h \varphi(n)$
- $m^{ed} = m^{1+h \varphi(n)} = m (m^{\varphi(n)})^h \equiv m(1)^h \equiv m \pmod{n}$
 - This is just Euler's theorem in disguise

Why is it Secure

- ullet The private key is entirely determined by the prime numbers p and q.
- n is determined by p and q, but n is made public.
- If you can factor n, then you can easily determine all of the private key.
- However, when p and q are chosen well, then n is hard to factor.

Intractable Problems

- Prime factorization of very large numbers is an example of an intractable problem.
- It is technically possible to solve, but with computational capabilities it can be hard in any useful time.

End of Main Notes

 After this there is talk about computation, this is extra material, but you don't necessarily need to worry about it.

Classical Computation

- A classical computer can in some sense be reduced down to something that keeps track of numbers and does a certain number of operations per unit of time.
- If an algorithm with an input of size n is said to run in O(n) then it takes n time some constant number of operations to run.
- Some problems, however, take a greater number of operations to run.
 - For example, $O(n^2)$, or $O(b^n)$
- In general, it is great to find an algorithm that can solve a problem in polynomial runtin $O(n^m)$ where m is some constant power. However, sometimes exponential solutions $O(b^n)$ are the best we can do.

Prime Factorization

- Prime factorization is an example of a problem where different algorithms may be used to solve it.
 - The size of the problem n, is the number that is being factored.
- With a classical computer, there is no known way to factor a number in a polynomial number of operations.
 - You can do it with a quantum computer