Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №3

з дисципліни «Вступ до Data Science»

МАКЕТ ІНТЕЛЕКТУАЛЬНОЇ ERP СИСТЕМИ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ

Виконав:

Селютін Євген Олександрович Група IO-15 Залікова книжка №1519

Перевірив:

Професор кафедри ОТ ФІОТ

Писарчук О. О.

Мета: Виявити дослідити та узагальнити принципи формалізації задач, синтезу математичних моделей для автоматизації процесів підтримки прийняття рішень в інтелектуальних ERP системах: програмування обмежень — CP-SAT; багатокритеріальні задачі — Multicriteria decision analysis.

Завдання: Для визначення можливості автоматизації бізнес процесів, що реалізовані в компанії замовника Вам пропонується розробити макет програмної реалізації мовою Python обчислювального алгоритму ERP системи підтримки прийняття рішень за умов:

-	
6	Розробити програмний скрипт, що реалізує оцінювання ефективності впровадження нового
	товару на ринку продукції. Вихідні дані містять 12 критеріїв, з яких 7 – максимізованих,
	решта – мінімізованих. Кількість аналогічних товарів – 8. Вхідні дані занесені у файл. Формат
	файлу, тип товару, зміст показників та критеріїв ефективності та їх значення обрати
	самостійно.

Виконання:

1. Я вирішив обрати смартфони та склав такі критерії:

Критерії	Ефективність
Ціна	min (чим менше тим краще)
Продуктивність процесора	тах (чим більше тим краще)
Обсяг пам'яті	тах (чим більше тим краще)
Товщина	min (чим менше тим краще)
Час роботи від акумулятора	тах (чим більше тим краще)
Роздільна здатність екрану	тах (чим більше тим краще)
Вага	min (чим менше тим краще)
Якість камери	тах (чим більше тим краще)
Кількість особливостей	тах (чим більше тим краще)

Час зарядки	min (чим менше тим краще)
Ступінь водостійкості	тах (чим більше тим краще)
Габарити екрану	min (чим менше тим краще)

2. Далі я створив табличку XLSX. В котру вніс всі дані:

Α	В	C	D	E	F	G	Н	l i	J
Product	Smartphone_1	Smartphone_2	Smartphone_3	Smartphone_4	Smartphone_5	Smartphone_6	Smartphone_7	Smartphone_8	Criteria
Price	400	450	350	500	300	550	400	600	min
Processor_Performance	8	9	7	10	8	10	7	9	max
Memory_Capacity	64	128	32	256	128	192	64	256	max
Thickness	6.5	7.2	6	7.8	6.2	7.5	6.3	7.9	min
Battery_Life	12	14	11	15	13	14	12	16	max
Screen_Resolution	1080	1200	1000	1440	1080	1320	1100	1500	max
Weight	150	160	140	170	155	175	145	180	min
Camera_Quality	8	9	7	10	8	10	7	9	max
Function_Count	20	22	18	25	20	24	19	26	max
Charging_Time	1.5	1.8	1.3	2	1.5	1.9	1.4	2.2	min
Water_Resistance_Rati									
ng	IP67	IP68	IP65	IP69	IP68	IP67	IP66	IP69	max
Screen_Size	5.5	6	5.2	6.3	5.7	6.2	5.5	6.4	min

3. Далі було створено скрипт, який зчитує ці данні з таблички. Я намагався зробити універсальний скрит для того, щоб його можно було використовувати при будь-яких критеріях, але іноді поля можуть бути строковими, наприклад як у мене з захистом від води, тому вийшло не зовсім універсально.

```
def parse_table_data(url: str):
    file_path = url
    workbook = openpyxl.load_workbook(file_path)

sheet = workbook.active

data = {}
    for row in sheet.iter_rows(min_row=1, values_only=True):
        key = row[0]
        data[key] = list(row[1:-1])
        data['Water_Resistance_Rating'] = [int(val[2:]) for val in data['Water_Resistance_Rating']]

parsed_weights = {}
    for cell_A, cell_J in zip(sheet['A'][1:], sheet['J'][1:]):
    parsed_weights[cell_A.value] = 1 if cell_J.value == 'max' else -1

return pd.DataFrame(data), parsed_weights
```

4. Цей код виконує кілька операцій з датафреймом df, який містить інформацію про різні товари. У циклі, для кожного стовпця, крім 'Product',

виконується нормалізація даних шляхом поділу значень у кожному стовпці на максимальне значення в цьому стовпці. Створюється новий стовпець 'Score', який обчислюється як сума добутків значень кожного критерію (з урахуванням ваги) для кожного товару. Датафрейм сортується за значенням 'Score' в порядку спадання. Виводиться відсортований датафрейм, включаючи тільки стовпці 'Product' і 'Score'. Отже подивимось результати.

5. Я вирішив перевірити правильність виконання коду таким чином. Я присвоїв останньому смартфону найцінніші значення. Результати:

Α	В	c	D	E	F	G	н	1	J
Product	Smartphone_1	Smartphone_2	Smartphone_3	Smartphone_4	Smartphone_5	Smartphone_6	Smartphone_7	Smartphone_8	Criteria
Price	400	450	350	500	300	550	400	200	min
Processor_Performance	8	9	7	10	8	10	7	11	max
Memory_Capacity	64	128	32	256	128	192	64	1024	max
Thickness	6.5	7.2	6	7.8	6.2	7.5	6.3	2.8	min
Battery_Life	12	14	11	15	13	14	12	20	max
Screen_Resolution	1080	1200	1000	1440	1080	1320	1100	2024	max
Weight	150	160	140	170	155	175	145	20	min
Camera_Quality	8	9	7	10	8	10	7	64	max
Function_Count	20	22	18	25	20	24	19	30	max
Charging_Time	1.5	1.8	1.3	2	1.5	1.9	1.4	1.1	min
Water_Resistance_Rati									
ng	IP67	IP68	IP65	IP69	IP68	IP67	IP66	IP90	max
Screen_Size	5.5	6	5.2	6.3	5.7	6.2	5.5	2.8	min

Як бачимо скрипт працює коректно та вибирає правильний товар.

Висновки: була розроблена програма, яка робить оцінку товаров базуючись на певних критеріях з певною вагою. Скрипт працює коректно, результати перевірені. Тепер можна буде застосовувати цей скрипт наприклад для оцінки інтернет товарів, що дозволяє обрати найефективніший товар