Computer Vision

Spring 2006 15-385,-685

Instructor: S. Narasimhan

Wean 5403 T-R 3:00pm – 4:20pm

Lecture #15

Binocular Stereo - Calibration

Lecture #15

Binocular Stereo

Stereo Reconstruction - RECAP

- The Stereo Problem
 - Shape from two (or more) images
 - Biological motivation

Disparity and Depth - RECAP

Assume that we know $P_{\scriptscriptstyle L}$ corresponds to $P_{\scriptscriptstyle R}$

From perspective projection (define the coordinate system as shown above)

$$\frac{x_L}{f} = \frac{X + \frac{b}{2}}{Z} \qquad \frac{x_R}{f} = \frac{X - \frac{b}{2}}{Z} \qquad \frac{y_L}{f} = \frac{y_R}{f} = \frac{Y}{Z}$$

Disparity and Depth - RECAP

· inverse proportional to depth

· disparity increases with baseline b

Vergence

- Field of view decreases with increase in baseline and vergence
- Accuracy increases with baseline and vergence

Binocular Stereo Calibration

• RELATIVE ORIENTATION:

We need to know position and orientation of one camera with respect to the other, before computing depth of scene points.

ABSOLUTE ORIENTATION:

We may need to know position and orientation of a stereo system with respect to some external system (for example, a 3D scanner).

Binocular Stereo Calibration - Notation

- We need to transform one coordinate frame to another.
- The transformation includes a rotation and a translation:

$$\overline{r_R} = R \overline{r_L} + \overline{r_0}$$

 \mathcal{V}_0 : Translation of Left frame w.r.t Right

R: Rotation of Left frame w.r.t Right

Binocular Stereo Calibration - Notation

• In matrix notation, we can write $r_R = R r_L + r_0$ as

$$\overline{r_L} = \begin{bmatrix} x_L \\ y_L \\ z_L \end{bmatrix} \qquad \overline{r_R} = \begin{bmatrix} x_R \\ y_R \\ z_R \end{bmatrix}$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \qquad \frac{-}{r_0} = \begin{bmatrix} r_{14} \\ r_{24} \\ r_{34} \end{bmatrix}$$

Binocular Stereo Calibration - Notation

• We can expand $\overline{r_R} = R \overline{r_L} + \overline{r_0}$ as:

$$\begin{aligned} r_{11} & x_L + r_{12} & y_L + r_{13} & z_L + r_{14} &= x_R \\ r_{21} & x_L + r_{22} & y_L + r_{23} & z_L + r_{24} &= y_R \\ r_{31} & x_L + r_{32} & y_L + r_{33} & z_L + r_{34} &= z_R \end{aligned}$$

Orthonormality Constraints $R^T R = I$

(a) Rows of R are perpendicular vectors

$$r_{11} r_{21} + r_{12} r_{22} + r_{13} r_{23} = 0$$

 $r_{21} r_{31} + r_{22} r_{32} + r_{23} r_{33} = 0$
 $r_{11} r_{31} + r_{12} r_{32} + r_{13} r_{33} = 0$

(b) Each row of R is a unit vector

$$r_{11}^{2} + r_{12}^{2} + r_{13}^{2} = 1$$

 $r_{21}^{2} + r_{22}^{2} + r_{23}^{2} = 1$
 $r_{31}^{2} + r_{32}^{2} + r_{33}^{2} = 1$

NOTE: Constraints are NON-LINEAR!

They can only be used once (do not change with scene points).

Absolute Orientation

- We have measured some scene points using Stereo System L and Stereo System R
- Find Orientation (Translation and Rotation) of system L w.r.t system R.
- Useful for merging partial depth information from different views.

• Problem:

Given
$$\overline{r_L} = (x_L, y_L, z_L)$$
 $\overline{r_R} = (x_R, y_R, z_R)$
Find R $\overline{r_0}$ $(r_{11}, r_{12}, ..., r_{34})$

How many scene points are needed?

• Each scene point gives 3 equations:

$$r_{11} x_L + r_{12} y_L + r_{13} z_L + r_{14} = x_R$$

$$r_{21} x_L + r_{22} y_L + r_{23} z_L + r_{24} = y_R$$

$$r_{31} x_L + r_{32} y_L + r_{33} z_L + r_{34} = z_R$$

- Six additional equations from orthonormality of Rotation matrix
- For n scene points, we have (3n + 6) equations and 12 unknowns
- It appears that 2 scene points suffice. But orthonormal constraints are non-linear.

THREE NON-COLLINEAR SCENE POINTS ARE SUFFICIENT (see Horn)

Solving an Over-determined System

- Generally, more than 3 points are used to find the 12 unknowns
- Formulate Error for scene point i as:

$$e_i = (R \ \overline{r_{L_i}} + \overline{r_0}) - \overline{r_{R_i}}$$

• Find R & $\overline{r_0}$ that minimize:

$$E = \sum_{i=1}^{N} |e_i|^2 + \lambda (R^T R - I)$$

Orthonormality Constraint

Relative Orientation

Relative Orientation

- Find Orientation (Translation and Rotation) between two cameras (within the same stereo system).
- We must do this before using the stereo system.

· Problem:

Here, we ${\color{red} {\rm DO\; NOT}}$ know both ${\it r_L}$ ${\it r_R}$

We only know the image coordinates $(x'_L, y'_L) (x'_R, y'_R)$

in the two cameras CORRESPOND to the same scene point!

Relative Orientation

• Again, we start with:
$$r_{\!\scriptscriptstyle R}=R~r_{\!\scriptscriptstyle L}+r_{\!\scriptscriptstyle 0}$$

• OR:
$$r_{11} x_L + r_{12} y_L + r_{13} z_L + r_{14} = x_R$$

$$r_{21} x_L + r_{22} y_L + r_{23} z_L + r_{24} = y_R$$

$$r_{31} x_L + r_{32} y_L + r_{33} z_L + r_{34} = z_R$$

Assume: we know focal length of both cameras

• Then:
$$\frac{x_L^{'}}{f} = \frac{x_L}{z_L} \quad \& \quad \frac{y_L^{'}}{f} = \frac{y_L}{z_L} \quad \text{(same for right camera)}$$

• Hence,
$$\begin{aligned} r_{11} & x'_L + r_{12} & y'_L + r_{13} & f + r_{14} (f/z_L) = x'_R (z_R/z_L) \\ r_{21} & x'_L + r_{22} & y'_L + r_{23} & f + r_{24} (f/z_L) = y'_R (z_R/z_L) \\ r_{31} & x'_L + r_{32} & y'_L + r_{33} & f + r_{34} (f/z_L) = f(z_R/z_L) \end{aligned}$$

Problem Formulation

We know: $(x'_L, y'_L) (x'_R, y'_R) \& f$

Find: $(r_{11}, r_{12}, ..., r_{34})$ (z_L, z_R)

That satisfies:

$$r_{11} x'_{L} + r_{12} y'_{L} + r_{13} f + r_{14} (f/z_{L}) = x'_{R} (z_{R}/z_{L})$$

$$r_{21} x'_{L} + r_{22} y'_{L} + r_{23} f + r_{24} (f/z_{L}) = y'_{R} (z_{R}/z_{L})$$

$$r_{31} x'_{L} + r_{32} y'_{L} + r_{33} f + r_{34} (f/z_{L}) = f(z_{R}/z_{L})$$

And satisfies the 6 orthonormality constraints

Scale Ambiguity

Same image coordinates can be generated by doubling $r_L r_R r_0$

Hence, we can find $\ensuremath{\emph{I}}_0$ only upto a scale factor!

So, fix scale by using constraint: r_0 , $r_0=1$ (1 additional equation)

How many scene points are needed?

If we have n pairs of image coordinates:

Number of equations: 3n + 6 + 1 = 3n + 7

Number of unknowns: 2n + 12

n = 5 points will give us equal number of equations & unknowns.

In theory, 5 points indeed are good enough if chosen carefully.

However, in practice, more points are used and an over-determined system of equations is solved as before.

Eye and the Brain

Next Class

- Optical Flow and Motion
- Reading: Horn, Chapter 12.