Interpolação Polinomial

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Interpolação

Suponha que se tenha um conjunto de n+1 pontos distintos $x_0, x_1, ..., x_n$, chamados **nós da interpolação**, e seus respectivos valores em relação a uma função $f: f(x_0), f(x_1), ..., f(x_n)$.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Interpolação

• Interpolar os pontos $(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$ consiste em obter uma função g tal que

$$g(x_0) = f(x_0), g(x_1) = f(x_1), ..., g(x_n) = f(x_n).$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Interpolação Polinomial

- Polinômios serão adotados aqui como interpoladores.
 - São computados facilmente;
 - Suas derivadas e integrais também são polinômios.
- A interpolação polinomial é utilizada principalmente quando:
 - A expressão de f não é conhecida;
 - A função f é complexa.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Interpolação Polinomial - Definição

 \bullet O problema geral da interpolação por meio de polinômios consiste em, dados n+1 pontos distintos

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n),$$

determinar um polinômio $P_n(x)$ de grau menor ou igual a n tal que:

$$P_n(x_0) = y_0, P_n(x_1) = y_1, \dots, P_n(x_n) = y_n.$$

• Em geral, $y_i = f(x_i)$.

Curso: Bacharelado em Engenharia Elétrica
Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Queremos obter um polinômio na forma

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

tal que $P_n(x_i) = y_i$, para todo i = 0,1,...,n.

• Para esse fim, temos que determinar os coeficientes $a_0, a_1, ..., a_n$, de modo que:

$$P_n(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = y_0$$

$$P_n(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = y_1$$

$$\vdots$$

$$P_n(x_n) = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = y_n$$

Assim, verifica-se que uma forma de determinar o polinômio interpolador é resolvendo um sistema de equações lineares com n+1 incógnitas.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

• Em forma matricial, o sistema linear fica como

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

- A matriz dos coeficientes A é chamada de Matriz de Vandermonde.
- Sabe-se que $\det(A) \neq 0$, desde que os pontos $x_0, x_1, ..., x_n$ sejam distintos.

Teorema: Dados n+1 pontos distintos $x_0, x_1, ..., x_n$ e seus respectivos valores $y_0, y_1, ..., y_n$, então existe um **único** polinômio $P_n(x)$, de grau menor ou igual a n, tal que

$$P_n(x_i) = y_i, i = 0, 1, ..., n.$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Exemplo: Encontre o polinômio de grau menor ou igual a 2 que interpola os pontos a seguir.

$$R: P_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Observação: Em muitos casos a matriz de Vandermonde costuma ser mal condicionada, levando à perda de precisão do polinômio interpolador.

• Veremos a seguir outros modos de obter o polinômio interpolador, sem a necessidade de resolver um sistema de equações lineares.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Forma de Lagrange

Dados n+1 pontos distintos, $(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$, queremos obter um polinômio P_n , de grau no máximo n, tal que

$$P_n(x_i) = y_i$$
, para todo $i = 0,1,...,n$.

Suponha que P_n seja dado por:

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x).$$

A forma mais simples de que a condição $P_n(x_i) = y_i$ seja satisfeita, para todo i = 0,1,...,n, é considerar:

$$L_k(x_i) = \begin{cases} 0, \text{ se } k \neq i \\ 1, \text{ se } k = i \end{cases}$$

com

$$L_k(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0)(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}.$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Observe que cada $L_k(x)$ possui grau n e, consequentemente, P_n possui grau menor ou igual a n.

Além disso, é fácil ver que o polinômio com esse formato, interpola os pontos dados:

$$P_{n}(x_{1}) = y_{0}L_{0}(x_{1}) + y_{1}L_{1}(x_{1}) + \dots + y_{n}L_{n}(x_{1}) = y_{1}$$

$$P_{n}(x_{2}) = y_{0}L_{0}(x_{2}) + y_{1}L_{1}(x_{2}) + \dots + y_{n}L_{n}(x_{2}) = y_{2}$$

$$\vdots$$

$$P_{n}(x_{n}) = y_{0}L_{0}(x_{n}) + y_{1}L_{1}(x_{n}) + \dots + y_{n}L_{n}(x_{n}) = y_{n}$$

Os polinômios $L_k(x)$ são chamados de funções de base de Lagrange.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Forma de Lagrange - Definição

Dados n+1 pontos distintos $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$. O **polinômio interpolador na forma de Lagrange** é dado por:

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x),$$

onde

$$L_k(x) = \prod_{\substack{j=0 \ j \neq k}}^n \frac{(x - x_j)}{(x_k - x_j)}$$

$$= \frac{(x - x_0)(x - x_1) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0)(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Exemplo: Encontre o polinômio de grau menor ou igual a 2 na Forma de Lagrange que interpola os pontos a seguir.

$$R: P_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

Note que o polinômio é o mesmo obtido no exemplo anterior, pois, como foi visto, o polinômio interpolador é único.

Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Forma de Newton

Diferenças Divididas

Seja f(x) uma função tabelada em n+1 pontos distintos $x_0, x_1, ..., x_n$.

• A diferença dividida de ordem zero é o valor de f(x) no ponto x_i :

$$f[x_i] = f(x_i).$$

• A diferença dividida de ordem 1 sobre x_0 e x_1 é dada por:

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

• A diferença dividida de ordem 2 sobre x_0 , x_1 e x_2 é dada por:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

• A diferença dividida de ordem 3 sobre x_0, x_1, x_2 e x_3 é dada por:

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$

Seguindo, tem-se que:

■ A diferença dividida de ordem n sobre os n+1 pontos $x_0, x_1, ..., x_n$ é dada por:

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

Observe que a definição de diferenças divididas é recursiva.

Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Tabela das Diferenças Divididas

Para determinar as diferenças divididas de uma função f(x) sobre os pontos $x_0, x_1, ..., x_n$ podemos usar a seguinte tabela.

x_i	$f[x_i]$	$f[x_i, x_j]$	$f[x_i, x_j, x_k]$	
x_0	$f[x_0] = f(x_0)$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	
x_1	$f[x_1] = f(x_1)$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	÷:	
x_2	$f[x_2] = f(x_2)$	i :	: :	
:	:	i :	i :	

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Exemplo: Considere a função $f(x) = \cos(x)$ e os pontos $x_0 = 0.2, x_1 = 0.3$ e $x_2 = 0.4$. Encontre $f[x_0, x_1, x_2]$.

Solução:

x_i	$f[x_i]$	$f[x_i, x_j]$	$f[x_0, x_1, x_2]$
0,2	0,980	$\frac{0,955 - 0,980}{0,3 - 0,2} = -0,247$	$\frac{-0,342 - (-0,247)}{0,4 - 0,2} = -0,475$
0,3	0,955	$\frac{0.3 - 0.2}{0.921 - 0.955} = -0.342$	
0,4	0,921	, , ,	

Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Propriedade das Diferenças Divididas

As diferenças divididas de ordem n de uma função independem da ordem dos argumentos $[x_0, x_1, ..., x_n]$.

Logo,

$$f[x_0, x_1, ..., x_n] = f[x_{i_0}, x_{i_1}, ..., x_{i_n}],$$

para qualquer permutação $(i_0, i_1, ..., i_n)$ de (0,1, ..., n).

Por exemplo,

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f[x_0] - f[x_1]}{x_0 - x_1} = f[x_1, x_0].$$

Para n = 2, temos que:

$$f[x_0, x_1, x_2] = f[x_0, x_2, x_1] = f[x_1, x_0, x_2] = f[x_1, x_2, x_0] = f[x_2, x_0, x_1] = f[x_2, x_1, x_0].$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Forma de Newton

Seja f(x) contínua e com derivadas contínuas em [a,b] e considere os n+1 pontos distintos $x_0, x_1, ..., x_n$ em [a,b].

Vamos obter o polinômio $P_n(x)$ que interpola f(x) nesses pontos. Construiremos, inicialmente, $P_0(x)$ que interpola f(x) em x_0 . Depois, vamos construir $P_1(x)$ que interpola f(x) em x_0 e x_1 , e assim, sucessivamente.

• Construção de $P_0(x)$, que interpola f(x) em x_0

$$f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow$$

$$\Rightarrow (x - x_0)f[x_0, x] = f(x) - f(x_0) \Rightarrow$$

$$\Rightarrow f(x) = \underbrace{f(x_0) + (x - x_0) f[x_0, x]}_{p_0(x)} \xrightarrow{E_0(x)}$$

Observe que, de fato, $P_0(x)$ interpola f(x) em x_0 , pois $P_0(x_0) = f(x_0)$.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

• Construção de $P_1(x)$, que interpola f(x) em x_0 e x_1

$$f[x_0, x_1, x] = f[x_1, x_0, x] = \frac{f[x_0, x] - f[x_1, x_0]}{x - x_1} = \frac{f(x) - f(x_0)}{x - x_0} - f[x_1, x_0] = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0]}{(x - x_1)} = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0]}{(x - x_1)(x - x_0)}$$

$$\Rightarrow f[x_0, x_1, x] = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0]}{(x - x_0)(x - x_1)} \Rightarrow$$

$$\Rightarrow f(x) = \underbrace{f(x_0) + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_0, x_1, x]}_{E_1(x)}.$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Observe que, de fato, $P_1(x)$ interpola f(x) em x_0 e x_1 , pois:

$$p_1(x_0) = f(x_0)$$

$$p_1(x_1) = f(x_0) + (x_1 - x_0) \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_1).$$

• Continuando esse procedimento, podemos construir $P_n(x)$, que interpola f(x) nos pontos $x_0, x_1, ..., x_n$, e obtemos:

$$P_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \dots + (x - x_0)(x - x_1) \dots (x - x_{n-1})f[x_0, x_1, \dots, x_n]$$

com erro dado por

$$E_n(x) = (x - x_0)(x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x].$$

O polinômio $P_n(x)$ acima é chamado de **polinômio interpolador na Forma** de Newton.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Exemplo: Encontre o polinômio de grau menor ou igual a 2 na Forma de Newton que interpola os pontos a seguir.

$$R: P_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

Note que o polinômio é o mesmo obtido nos exemplos anteriores, pois, como foi visto, o polinômio interpolador é único.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Observações:

- (i) O polinômio interpolador na Forma de Newton utiliza o resultado da primeira linha de cada coluna da tabela de diferenças divididas.
- (ii) Observe que

$$P_n(x) = P_{n-1}(x) + (x - x_0)(x - x_1) \dots (x - x_{n-1}) f[x_0, \dots, x_n],$$

ou seja, tendo um polinômio de grau $\leq n-1$ sobre n pontos, pode-se obter $P_n(x)$ apenas definindo o último termo associado ao operador de diferença dividida de ordem n.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Erro na interpolação polinomial

• f é conhecida:

Teorema: Seja f(x) com derivadas contínuas até a ordem n+1. Sejam $x_0 < x_1 < \dots < x_n, n+1$ pontos distintos de f(x). Seja $P_n(x)$ o polinômio que interpola f(x) nesses pontos. Então, para todo $x \in [x_0, x_n]$, o erro de truncamento da interpolação polinomial vale:

$$E_n(x) = f(x) - P_n(x)$$

$$= (x - x_0)(x - x_1) \dots (x - x_n) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}, \xi(x) \in [x_0, x_n]$$

$$= (x - x_0)(x - x_1) \dots (x - x_n) f[x_0, x_1, \dots, x_n, x]$$

• $f^{(n+1)}$ é a derivada de ordem n+1 de f

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Erro na interpolação polinomial

• f é desconhecida:

Caso a expressão da função f não seja conhecida ou seja muito complexa, então podemos utilizar apenas a tabela de diferenças divididas para obter uma estimativa do erro de interpolação. Neste caso, vale a seguinte estimativa:

$$|E_n(x)| \cong |(x - x_0)(x - x_1) \dots (x - x_n)| \cdot \max\{|DD_{n+1}|\}$$

onde $|DD_{n+1}|$ é o valor absoluto de uma diferença dividida de f de ordem n+1.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Exemplos:

(1) Seja f(x) = e^x + x − 1 tabelada abaixo. Obter f(0.7) por interpolação linear e fazer uma análise do erro cometido.

$$p_1(x) = f(x_0) + (x - x_0)f[x_0, x_1].$$

$$x = 0.7 \in (0.5, 1)$$
, então $x_0 = 0.5$ e $x_1 = 1$

$$p_1(x) = 1.1487 + (x - 0.5) \left(\frac{2.7183 - 1.1487}{1 - 0.5} \right) = 1.1487 + (x-0.5)3.1392$$

$$p_1(0.7) = 1.7765.$$

Neste caso, temos condição de calcular o verdadeiro erro, dado por

$$|E_1(0.7)| = |f(0.7) - p_1(0.7)| = |1.7137 - 1.7765| = |-0.0628| = 0.0628.$$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

(2) Seja f(x) dada na forma:

X	0.2	0.34	0.4	0.52	0.6	0.72
f(x)	0.16	0.22	0.27	0.29	0.32	0.37

- a) Obter f(0.47) usando um polinômio de grau 2.
- b) Dar uma estimativa para o erro.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Solução: A tabela de diferenças divididas é:

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0.2	0.16			
		0.4286		
0.34	0.22		2.0235	
		0.8333		-17.8963
$_{0} = 0.4$	0.27		-3.7033	
		0.1667		18.2494
1 = 0.52	0.29		1.0415	
		0.375		-2.6031
$_2 = 0.6$	0.32		0.2085	
		0.4167		
0.72	0.37			

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Deve-se escolher três pontos de interpolação. Como $0.47 \in (0.4, 0.52)$, dois pontos deverão ser 0.4 e 0.52. O outro tanto pode ser 0.34 como 0.6. Escolheremos $x_0 = 0.4$, $x_1 = 0.52$ e $x_2 = 0.6$.

$$p_2(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2]$$

= 0.27 + (x - 0.4)0.1667 + (x-0.4) (x - 0.52) (1.0415).

a)
$$p_2(0.47) = 0.2780 \approx f(0.47)$$

b)
$$|E(0.47)| \approx |(0.47 - 0.4)(0.47 - 0.52)(0.47 - 0.6)| |18.2492|$$

 $\approx 8.303 \times 10^{-3}$.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Exercício:

Considere os pontos da tabela abaixo.

$$\begin{array}{c|cccc} x_{\rm i} & 0.0 & 0.2 & 0.4 \\ \hline f(x_{\rm i}) & 4.00 & 3.84 & 3.76 \\ \end{array}$$

- (a) Obtenha o polinômio que interpola f nesses pontos, utilizando:
 - i. A resolução de um sistema linear;
 - ii. A forma de Lagrange;
 - iii. A forma de Newton.
- (b) Obtenha o valor aproximado de f(0.3).

R: (a)
$$P_2(x) = x^2 - x + 4$$
, (b) $f(0.3) \cong 3.79$

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Interpolação Inversa

- Em determinados problemas, precisamos usar um polinômio interpolador para aproximar a inversa de uma dada função.
- Acontece que, em muitos casos, a função pode ser dada por meio de uma tabela. Assim, como saber se a função representada por uma tabela possui inversa?
- É simples. Basta supor que a função tabelada seja contínua e considerar apenas os pontos da tabela nos quais podemos afirmar que a função é monótona (crescente ou decrescente).
- A interpolação inversa só terá validade no intervalo onde a função é estritamente crescente ou estritamente decrescente.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

Exemplo: Dada a tabela

X	1	2	3	4	5	6
y = f(x)	0.841	0.909	0.141	-0. <i>757</i>	-0.959	- 0.279

Obtenha x^* tal que $f(x^*) = 0$. Use um polinômio de grau 2 e apresente uma estimativa do erro.

Solução:

(i) Escolha dos pontos da interpolação inversa.

Como o problema exige que seja feita uma estimativa do erro de interpolação então o polinômio interpolador deve ser o de Newton. A análise do erro vai precisar das diferenças divididas de ordem 3, pois será utilizado um polinômio interpolador de grau 2. Assim, os pontos escolhidos para a interpolação inversa são: 0.909; 0.141; – 0.7570 e – 0.959, correspondentes a valores decrescentes da função tabelada.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

(ii) Construção da Tabela de Diferenças Divididas.

Tabela de diferenças divididas ($g = f^{-1}(y)$)

у	x = g(y): DD0	DD1	DD2	DD3
$y_0 = 0.909$	$g[y_0] = 2$	-1.3020833	- 0.113143809	- 1.927860373
$y_1 = 0.141$	$g[y_1] = 3$	- 1.113585746	3.488099367 ->	
$y_2 = -0.757$	$g[y_2] = 4$	- 4.95049505		
$y_3 = -0.959$	$g[y_3] = 5$			

(iii) Escolha dos pontos que serão utilizados na construção do polinômio de grau 2.

Dado $y^* = 0$, a melhor escolha dos pontos é aquela que fornecerá o menor valor para $|N(y^*)| = |y^* - y_0| |y^* - y_1| |y^* - y_2|$. Neste caso, os pontos escolhidos são: $y_0 = 0.909$; $y_1 = 0.141$ e $y_2 = -0.757$.

Curso: Bacharelado em Engenharia Elétrica Disciplina: Cálculo Numérico Computacional

Professor: Fabricio Alves Oliveira

(iv) Construção do polinômio de grau 2.

$$p_2(y) = d_0 + d_1(y - y_0) + d_2(y - y_0)(y - y_1);$$

onde

$$y_0 = 0.909$$
; $y_1 = 0.141$; $y_2 = -0.757$; $d_0 = 2$; $d_1 = -1.3020833...$; $d_2 = -0.113143809$.

(v) Cálculo do valor numérico do polinômio de grau 2.

$$p_2(0) = 3.169092221 = x^*$$
.

(vi) Estimativa do erro.

$$|E^{(2)}(0)| \approx |0 - y_0| |0 - y_1| |0 - y_2| m dx \{|DD3|\} = 0.909 \times 0.141 \times 0.757 \times 1.927860373.$$

Portanto, $|E^{(2)}(0)| \approx 0.187048595.$