BayeSmith: 정적 분석 알람을 위한 확률 모델 학습

김현수¹, Mukund Raghothaman², 허기홍¹

¹KAIST, ²Univ. of Southern California

정적 분석

정적 분석의 한계

---- : 진짜 알람 (버그)

□□: 거짓 알람

베이지안 알람 랭킹 시스템

알람 랭킹 시스템의 성능

① 알람: 891개

☀ 버그: 6개

알람 랭킹 시스템의 성능

① 알람: 891개

☀ 버그: 6개

알람 랭킹 시스템의 한계

wget-1.2 일부

정의-사용 관계 분석


```
1 void ftp_parse_vms_ls (char *file) {
    FILE *fp = fopen(file, 'r');
    char *line, *tok;
    line = read_line(fp);
    tok = strtok(line, "_");
    char *p = tok + strlen(tok);
    while (p > tok) {
    if (!c_isdigit(*p)) break; // false alarm #1
      p--;
10
11
    if (*(p - 1) != "^") // true alarm (buffer underflow)
12
   *p = '\0':
                             // false alarm #2
13 }
```

wget-1.2 일부

```
void ftp_parse_vms_ls (char *file) {
    FILE *fp = fopen(file, 'r');
    char *line, *tok;
    line = read_line(fp);
    tok = strtok(line, "_");
    char *p = tok + strlen(tok);
    while (p > tok) {
8
      if (!c_isdigit(*p)) break;
      p--;
10
11
    if (*(p - 1) != "^")
12
      *p = (0);
13 }
```


논리 표현 (정의-사용 관계)

```
1 void ftp_parse_vms_ls (char *file) {
   FILE *fp = fopen(file, 'r');
   char *line, *tok;
    line = read line(fp);
                                                                  Edge(7,8)
                                                                              Path(6,7)
                                                                                          Edge(7,11)
     tok = strtok(line, "");
Path(x, y) :- Edge(x, y)
                                                         Overflow(8)
                                                                        Path(6,8)
                                                                                    Path(6,11)
                                                                                                 Overflow(11)
Path(x, y) :- Path(x, z) \land Edge(z, y)
Alarm(y) :- Path(x, y) \land Overflow(y)
                                                                  Alarm(8)
                                                                                          Alarm(11)
11 if (*(p - 1) != "^")
12 *p = (0);
13 }
```

논리 표현 (정의-사용 관계)

알람 랭킹 시스템 구성 과정 - 베이지안 네트워크


```
Pr (Alarm(8)) = Pr (Alarm(8) | Path(6, 8), Overflow(8))

× Pr (Path(6, 8) | Path(6, 7), Edge(7, 8))

× Pr (Path(6, 7) | ...)

× Pr (Edge(7, 8))

× Pr (Overflow(8))

비이즈 법칙의
연쇄 적용
```

확률 표현 (베이지안 관계)

베이지안 알람 랭킹 시스템의 한계

거짓 일반화 문제 (False generalization problem)

베이지안 알람 랭킹 시스템의 한계

베이지안 알람 랭킹 시스템 개선 방안

베이지안 알람 랭킹 시스템 개선 방안

새로운 정보를 추가하여 오탐의 비난을 효과적으로 분산!

베이지안 알람 랭킹 시스템 개선 방안

문법 정보를 추가하여 오탐의 비난을 효과적으로 분산!

BayeSmith

베이지안 알람 랭킹 시스템 학

BayeSmith

베이지안 알람 랭킹 시스템 학

BayeSmith

베이지안 알람 랭킹 시스템 학

BayeSmith

P(x, y) := E(x, y)

 $P(x, y) := P(x, z) \land E(z, y)$

Alarm(y) :- $P(x, y) \land Overflow(y)$

P(x, y) := E(x, y) $P(x, y) := P(x, z) \land E(z, y)$ $Alarm(y) := P(x, y) \land Overflow(y)$

Prog	Before	After
1	145	107
2	6	3
3	54	60
4	122	121

26

Prog	Before	After
1	145	176
2	6	5
3	54	89
4	122	127

27

P(x, y) := E(x, y) $P(x, y) := P(x, z) \land E(z, y)$ $Alarm(y) := P(x, y) \land Overflow(y)$

실험 방법

- 1. 벤치마크 구성: 다양한 크기(9~112 KLoc)의 GNU 프로그램들로 구성
 - 인터벌 분석 (11개), 테인트 분석 (9개)

- 2. 학습 방법:
 - 한 프로그램을 테스트 데이터, 나머지를 훈련 데이터

실험 결과 - 인터벌 & 테인트 분석

개발자 피드백 + ?

Conventional Continuous

Drake [PLDI'19]

실행 결과

DynaBoost [FSE'21]

실험 결과 - Drake & DynaBoost

Drake

DynaBoost

감사합니다