

CHEMISTRY

7th and 8th class Date: 23-09-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Raman Research Park

Email: ananthak@srmist.edu.in Phone: +91-9840154665

21CYB101J-Chemistry

Page 1

Last class		SRM DISTRICTA HUNCH A HUNCH AND HARD HARD AND HA
☐ CFT - introduction		
21CYB101J-Chemistry	2	Dr K Ananthanarayanan

In this class... Crystal Field Theory – continuation

Orbitals and quantum numbers

Name	Symbol	Allowed Values	Property
principal	n	positive integers (1, 2, 3,)	orbital energy (size)
angular momentum	l	integers from 0 to <i>n</i> -1	orbital shape (<i>I</i> values of 0, 1, 2 and 3 correspond to <i>s</i> , <i>p</i> , <i>d</i> and <i>f</i> orbitals, respectively.)
magnetic	m_{l}	integers from $-l$ to 0 to $+l$	orbital orientation
spin	m_S	+1/2 or -1/2	direction of e ⁻ spin

Each electron in an atom has its own unique set of four (4) quantum numbers.

21CYB101J-Chemistry

5

Or K Ananthanarayanan

Transition metal complex, d orbitals

Crystal field theory, more specifically crystal field splitting, uses the d-orbitals and their degeneracy to describe spectroscopic properties of transition metal complexes. Crystal field theory is a model of the electronic structure of transition-metal complexes that considers how the energies of the d orbitals of a metal ion are affected by the electric field of the ligands CFT was developed by physicists Hans Bethe and John Hasbrouck van Vleck (1930s)

Sa	alient features of CFT	RM OF SCIENCE & TECHNOLOGY Ulterwriting 1/1 2 of 1555 feet, 1980
	Central metal cation is surrounded by ligands w contain one or more lone pairs of electrons	hich
	The ionic ligands (F-, Cl-, CN-) are considered as negative point charges (also called as point charges) and the neuligands considered as point dipoles or simple dipoles	
	The metal and ligand don't mix their orbitals or shelectrons, i.e., it does not consider any orbital overlap	nare
	The interaction between metal cation and ligand is pu electrostatic, i.e., the metal – ligand bond is considere be 100% ionic	•
210	CVR1011 Chamistry Material Technology	

Octahedral complex

Coordination Number	Shape	Examples
6	Octahedral	$\begin{split} &[\mathrm{Ti}(\mathrm{H}_2\mathrm{O})_6]^{3+},[\mathrm{V}(\mathrm{CN})_6]^{4-},\\ &[\mathrm{Cr}(\mathrm{NH}_3)_4\mathrm{Cl}_2]^+,[\mathrm{Mn}((\mathrm{H}_2\mathrm{O}_6]^{2+},\\ \end{split}$
		[FeCl ₆] ³⁻ , [Co(en) ₃] ³⁺

Converget © The McGraw-Hill Companies. Inc. Permission required for reproduction or display.

21CYB101J-Chemistry

9

r K Ananthanarayanan

CFT as applied to octahedral complexes Crystal field splitting of d-orbitals in octahedral complexes

- □ In [ML₆]ⁿ⁺, the central metal cation is placed at the center of the octahedron and is surrounded by six ligands which reside at the six corners of the octahedron as shown in figure.
- ☐ The three axes , viz x-, y- and z-axes which point along the corners have also been shown
- ☐ In case of <u>free metal ion, all the five dorbitals are degenerate</u>, i.e., these have the same energy.
- ☐ The ligands on each of the three axes are allowed to approach towards the metal cation from both the ends of axes.

21CYB101J-Chemistry

10

- ☐ In this process, the electrons in d-orbitals of metal cation are repelled by negative point charge. This repulsion will raise the energy of all the five d-orbitals
- ☐ If all the ligands approaching the central metal are at an equal distance from each of five d-orbitals, the energy of each of the d-orbitals will raise by the same amount, i.e., all the d-orbitals will still remain degenerate, although they will have now higher than before
- □ Since the lobes of the $\frac{d_z^2}{2}$ and $\frac{d_x^2}{2}$ orbitals (e_q orbitals) lie directly in the path of approaching ligands, the electrons in these orbitals experience greater force of repulsion than those in three $\frac{d_{xy}}{dyz}$ and $\frac{d_{xz}}{dyz}$ orbitals ($\frac{d_{yz}}{dz}$ orbitals) whose lobes are directed in the space between the path of the approaching ligands. So the energy of e_g orbitals is increased while that of t_{2q} is decreased

12

CFT as applied to octahedral complexes Crystal field splitting of d-orbitals in octahedral complexes			
☐ In an isolated atom, these orbitals have the same energy			
\Box However, in an octahedral complex, the orbitals split into two sets, with the $\underline{d_z}^2$ and $\underline{d_x}^2$ orbitals having higher energy than the other three			
Note that the lobes of the d _z ² and d _{x²-y²} orbitals point toward the ligands (represented here by negative charges), whereas the lobes of the other orbitals point between ligands.			
$\hfill \square$ The repulsion is greater in the case of the $d_z^{\ 2}$ and $d_x^{\ 2}_{\ -y}^{\ 2}$ orbitals.			
21CYB101J-Chemistry 15 Dr K Ananthanarayanan			
SRM SINITI 6 SIGNA TATOROGO Menta ta tamongo a ti fiyot a a no			
□ Under the influence of approaching ligands, the five dorbitals which were originally degenerate in the free metal cation are now split into two levels viz., t _{2g} level which is triply degenerate and is of lower energy and, e _g level which is doubly degenerate and is of higher energy.			
☐ The separation of five d-orbitals of the metal ion into two sets having different energies is called crystal field splitting.			

- \square The energy gap between $\mathbf{t_{2g}}$ and $\mathbf{e_g}$ sets is denoted by Δ_o or 10 \mathbf{Dq} where o in Δ_o indicates an octahedral arrangement of the ligands around the central metal cation.
- □ This energy difference <u>arises because of the difference in electrostatic field exerted by the ligands on t_{2g} and e_g sets of the orbitals of the central metal cation. $\underline{\Delta}_o$ or 10 Dq is called crystal field splitting energy.</u>
- ☐ It is important to note that the splitting of the *d* orbitals in a crystal field *does not change the total energy* of the five *d* orbitals:
- □ The two e_q orbitals increase in energy by $0.6\Delta_{o}$ whereas the three t_{2q} orbitals decrease in energy by $0.4\Delta_{o}$. Thus the total change in energy is $2(0.6\Delta_{o}) + 3(-0.4\Delta_{o}) = 0$.

18

- □ The energy of t_{2g} orbitals is 0.4 Δ_o (=4 Dq) below than that of hypothetical degenerate d-orbitals and the energy of e_g orbitals is 0.6 Δ_o (=6 Dq) above than that of hypothetical degenerate d-orbitals.
- \square So t_{2g} set loses an energy equal to 0.4 Δ_o (=4 Dq) while e_g set gains an energy equal to 0.6 Δ_o (=6 Dq).
- $\hfill\Box$ The loss and gain in energies in t_{2g} and e_g orbitals is shown by - and + signs respectively
- $\square \Delta_0$ is measured in cm⁻¹.

19

d ⁴ system - what	happens ?	SRM NITITY OF SCIENCE & TO CONCOUNT OF THE PROPERTY OF THE PRO	
For d ⁴ -d ⁷ systems (there are two possibilities): Either put the electrons in the t _{2g} set and therefore pair the electrons (low spin case or strong field situation) or put the electrons in the e _g set, which lies higher in energy, but the electrons do not pair (high spin case or weak field situation).			
1	d_{z^2}	$\begin{array}{ c c }\hline\\ d_{x^2-y^2} & d_{z^2}\end{array}$	
$\begin{array}{c c} & & & \\ \hline d_{xy} & & d_{yz} \end{array}$	d_{xz}	$\begin{array}{c cccc} & & & & \\ \hline \downarrow & & & \\ \hline \downarrow & & \\ \hline $	
21CYB101J-Chemistry	23	Dr K Ananthanarayanan	

	SRIV DISTRICT OF SCIENCE AS TOD POLICY OF THE PROPERTY OF THE
0	For d4 ions, two possible patterns of electron distribution arise: (i) the fourth electron could either enter the t_{2g} level and pair with an existing electron, or (ii) it could avoid paying the price of the pairing energy by occupying the e_g level.
	Which of these possibilities occurs, depends on the relative magnitude of the crystal field splitting, ∆o and the pairing energy, P (P represents the energy required for electron pairing in a single orbital).
	The two options are:
21CY	YB101J-Chemistry

- \square If $\triangle o < P$, the fourth electron enters one of the e_g orbitals giving the configuration $t_{2g}{}^3e_g{}^1$
- □ Ligands for which $\Delta o < P$ are known as <u>weak field ligands</u> and form <u>high spin complexes</u>.
- ☐ If $\Delta o > P$, it becomes more energetically favourable for the fourth electron to occupy a t_{2g} orbital with configuration $t_{2g}^4 e_g^{\ 0}$.
- ☐ Ligands which produce this effect are known as **strong field ligands** and form **low spin complexes**.

$d^8 - d^{10}$ system - what happens?

☐ The number of unpaired electrons in d8-d10 is same in case of both low or high spin (similar to as in d1-d3).

Spectrochemical series

The common ligands can be arranged in the order of their increasing splitting power to cause d-orbitals splitting. This series is called as spectrochemical series and is given below:

Ligand effect on $\underline{\Delta}_o$:

Small $\underline{\underline{A}}_{\underline{o}}$ |- < Br- < S²⁻ < Cl- < NO³⁻ < F- < OH- < H₂O < CH₃CN < NH_3 < en < bpy < phen < NO^{2-} < PPh_3 < CN^- < COLarge Δ_o

$\frac{Or \ more \ simply :}{X < O < N < C}$

21CYB101J-Chemistry

Electronic configuration

Filling up t_{2g} and e_g orbitals with electrons in octahedral complexes: High spin and low spin octahedral complexes:

1. When the ligands are weaker:

- \blacksquare The energy difference, Δ_o between t_{2g} and e_g is relatively small and the energy of all five d-orbitals is supposed to be the same.
- lacktriangledown The filling of $\underline{t_{2g}}$ and $\underline{e_g}$ orbitals takes place according to Hund's rule, i.e., electrons pair up only when each of the five d-orbitals is at least singly filled.

- $d^{2}=t_{2g}^{2}e_{g}^{0}$ $d^{4}=t_{2g}^{3}e_{g}^{1}$ $d^{6}=t_{2g}^{4}e_{g}^{2}$ $d^{8}=t_{2g}^{6}e_{g}^{2}$ $d^{10}=t_{2g}^{6}e_{g}^{4}$ • $d^1 = t_{2g}^{-1} e_g^{-0}$ • $d^3 = t_{2g}^{-3} e_g^{-0}$ • $d^5 = t_{2g}^{-3} e_g^{-2}$ • $d^7 = t_{2g}^{-5} e_g^{-2}$ • $d^9 = t_{2g}^{-6} e_g^{-3}$

21CYB101J-Chemistry

2. When the ligands are stronger:

The energy difference, Δ_{o} between t_{2g} and e_{g} is relatively large and the filling of t_{2g} and e_g orbitals <u>does not obey Hund's rule</u>, so all three t_{2q} set are filled up first and then two e_q sets are filled.

- $\begin{array}{llll} \bullet & d^1 \!\!= t_{2g}^{1} e_g^{0} \\ \bullet & d^2 \!\!= t_{2g}^{2} e_g^{0} & d^3 \!\!= t_{2g}^{3} e_g^{0} \\ \bullet & d^4 \!\!= t_{2g}^{4} e_g^{0} & d^5 \!\!= t_{2g}^{5} e_g^{0} \\ \bullet & d^6 \!\!= t_{2g}^{6} e_g^{0} & d^7 \!\!= t_{2g}^{6} e_g^{1} \\ \bullet & d^8 \!\!= t_{2g}^{6} e_g^{2} & d^9 \!\!= t_{2g}^{6} e_g^{3} \\ \bullet & d^{10} \!\!= t_{2g}^{6} e_g^{4} \end{array}$

21CYB101J-Chemistry

Charge on the metal ion

- ☐ Increasing the charge on a metal ion has two effects: the radius of the metal ion decreases, and negatively charged ligands are more strongly attracted to it.
- Both factors decrease the metal-ligand distance, which in turn causes the negatively charged ligands to interact more strongly with the d orbitals.
- □ Consequently, the magnitude of Δ_o increases as the charge on the metal ion increases.
- Typically, $\underline{\Delta_o}$ for a tripositive ion is about 50% greater than for the dipositive ion of the same metal; for example, for $[V(H_2O)_6]^{2^+}$, $\Delta_o = 11,800$ cm⁻¹; for $[V(H_2O)_6]^{3^+}$, $\Delta_o = 17,850$ cm⁻¹.

21CYB101J-Chemistry

Predict and rank in decreasing λ

 $[Cr(H_2O)_6]^{3+}$ $[Cr(CN)_6]^{3-}$ $[CrCI_6]^{3-}$

 $[CrCl_6]^{3-}$ $\Delta_0 = 13640 \text{ cm}^{-1}$

 $[Cr(H_2O)_6]^{3+}$ $\Delta_o = 17830 \text{ cm}^{-1}$

 $[Cr(NH_3)_6]^{3+}$ $\Delta_o = 21680 \text{ cm}^{-1}$

 $[Cr(CN)_6]^{3-}$ $\Delta_0 = 26280 \text{ cm}^{-1}$

$\underline{\Delta_o}$ increases with increase of ligand field strength so wavelength decreases

21CYB101.I-Chemistry

41

Configuration, Spin state, Δ_0 ??			
	Complex		
	[Fe(OH ₂) ₆] ²⁺ [Fe(CN) ₆] ⁴⁻		
	[CoF ₆] ³⁻ [Co(NH ₃) ₆] ³⁻		
Complex Co	onfig. $\Delta_{\rm o}$, cm- ¹	spin-state	
2762	d ⁶ 10,400	high-spin	
[Fe(CN) ₆] ⁴⁻	d ⁶ 32,850	low-spin	
[CoF ₆] ³⁻	d ⁷ 13,000	high-spin	
[Co(NH ₃) ₆] ³ -	d ⁷ 23,000	low-spin	
21CYB101J-Chemistry	43	Dr K Ananthanarayanan	

Which of the following complexes of Ti^{3+} exhibits the shortest wavelength absorption in the visible spectrum: $[Ti(H_2O)_6]^{3+}$; $[Ti(en)_3]^{3+}$; $[TiCl_6]^{3-}$?

- ☐ The wavelength of the absorption is determined by the magnitude of the splitting between the *d*-orbital energies in the field of the surrounding ligands.
- ☐ The larger the splitting, the shorter the wavelength of the absorption corresponding to the transition of the electron from the lower- to the higher-energy orbital.
- ☐ The splitting will be largest for ethylenediamine, en, the ligand that is highest in the spectrochemical series.
- \square Thus, the complex with the shortest wavelength absorption is $[Ti(en)_3]^{3+}$.

21CYB101J-Chemistry

44

Magnetic moment values of complex compositions

- □ CFT can be used to find out the number of unpaired electrons (n) in a given complexes.
- □ Paramagnetic compounds (and atoms) are attracted to magnetic fields while diamagnetic compounds (and atoms) are repelled from magnetic fields.
- □ Paramagnetic compounds have unpaired electrons while in diamagnetic compounds the electrons all have paired spins.

21CYB101J-Chemistry

45

Dr K Ananthanarayanan

Spin only magnetic moment

- □ The substitution of n value in the spin-only formula, $\mu = \sqrt{(n(n+2))}$ B.M gives the value of magnetic moment of the given complex
- \Box From the knowledge of μ value the valence state of the central metal cation and the nature of bonding in the complex (whether the complex is high spin or low spin) can be known

$$\mu_{so}=\sqrt{n(n+2)}$$

$$\mu_{so}=\sqrt{4S(S+1)}$$

21CYB101J-Chemistry

46

What is the magnetic moment of [CoCl₆]³⁻

- \square [CoCl₆]³⁻ is high spin Co(III). High-spin Co(III) is d⁶ with four unpaired electrons, so n = 4.
- \Box We have μ eff = $\sqrt{n(n+2)}$

 $\stackrel{\mathsf{energy}}{\bigsqcup} \; e_g$

Approx. 4.9 BM

21CYB101J-Chemistry

47

Or K Ananthanarayanan

Thank you all for your attention

Information presented here were collected from various sources – textbooks, articles, manuscripts, internet and newsletters. All the researchers and authors of the above mentioned sources are greatly acknowledged.

21CYB101J-Chemistry

Page 48