1 Récurrence

(tiré de la correction du DL 3)

- **1.** (Démontrer par récurrence que : $\forall n \in \mathbb{N}, 1 \leq u_n \leq e$.)
 - ▶ Hypothèse de récurrence

Pour
$$n \in \mathbb{N}$$
, on considère l'hypothèse de récurrence : $1 \leq u_n \leq e$ (H_n)

► Initialisation On a bien :
$$u_0 = 1 \in [1; e]$$
 (H_0)

▶ Hérédité Soit $n \in \mathbb{N}$ un entier.

On suppose
$$(H_n)$$
 soit : $1 \le u_n \le e$ D'après la question?? avec $x = u_n \in [1; e]$, on a aussi $f(x) = f(u_n) = u_{n+1} \in [1; e]$, soit : $1 \le u_{n+1} \le e$ (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

héréditaire

On a donc bien pour tout
$$n \in \mathbb{N}$$
, $1 \leqslant u_n \leqslant e$ (H_n)

2 Théorème de la bijection

(tiré de la correction du Ds 2)

1. (Prouver que l'équation g(x) = 0 admet une unique solution, notée ℓ , sur $[0; +\infty[]$.)

La fonction g est : \bullet continue sur $[0; +\infty[$

• strictement décroissante sur $[0; +\infty[$

D'après le théorème de la bijection monotone sur $[0; +\infty[$, la fonction g réalise une bijection :

$$g: [0; +\infty[\longrightarrow]\lim_{+\infty} g; g(0)] = \underbrace{]-\infty; 2]}_{=g([0; +\infty[)}.$$

Ainsi $0 \in g([0; +\infty[) =]-\infty; 2]$, et 0 admet donc un unique antécédent ℓ par la fonction g. L'équation g(x) = 0, pour $x \in [0; +\infty[$, admet donc bien une unique solution $\ell \in [0; +\infty[$.

2. (Justifier que : $\alpha \in [1; e]$.)

On a:
$$g(1) = 2 - 2e^{-1} - 1 = 1 - 2e^{-1} \ge 0$$
 $(car e \ge 2, donc \ 2e^{-1} \le 1)$
 $g(2) = 2 - 2 \times e^{-2} - 2 = -2e^{-2} \le 0$

Ainsi g change de signes sur l'intervalle [1;2], donc s'y annule. On a donc bien $\ell \in [1;2]$.

Rédaction alternative (plus élégante?)

Ainsi, on a
$$g(2) \leqslant 0 \leqslant g(1)$$
, donc par décroissance $(de\ g^{-1}): 1 \leqslant g^{-1}(0) = \ell \leqslant 2$.

3 Montrer qu'une fonction est de classe C^2 (ou autre)

Sur l'intervalle [0;1[, on définit les deux fonctions f,g par : $\forall x \in [0;1[$, $f(x)=\frac{\mathrm{e}^{-x}}{1-x},$

$$g(x) = \frac{x}{1 - x}.$$

- **1.** (Montrer que les fonctions f et g sont de classe C^{∞} sur [0;1[.)
 - f de classe \mathcal{C}^{∞} ?

La fonction f est le quotient des fonctions suivantes, qui sont de classe \mathcal{C}^{∞} sur [0;1[:

- $n_f: x \mapsto e^{-x}$ (fonction de référence)
- $d_f: x \mapsto 1 x$ (function polynomiale)

De plus le dénominateur d_f ne s'annule pas sur [0;1[, donc f est bien \mathcal{C}^{∞} sur [0;1[.

• q de classe \mathcal{C}^{∞} ?

La fonction g est une fraction rationnelle (quotient de polynômes), dont le dénominateur $x \mapsto 1 - x$ ne s'annule pas sur [0;1]. Elle est donc de classe \mathcal{C}^{∞} sur [0;1].

4 Trouver une base de Ker(A)

5 Reconnaître la loi de X

- ▶ Pour la loi binomiale
- ▶ Pour la loi exponentielle

6 Appliquer la formule des probabilités totales

7 Intégration par parties

1. (Calculer l'intégrale $I = \int_0^1 (2 - 2x e^{-x}) dx$.)
On a $I = \underbrace{2 \int_0^1 dx}_{=2} - 2 \underbrace{\int_0^1 x e^{-x} dx}_{=J}$. Calculons par parties $J = \int_0^1 x e^{-x} dx$.

Les fonctions u, v définies ci-dessous sont bien de classe C^1 sur [0;1]:

$$\begin{cases} u = x \\ v' = e^{-x} \end{cases} \longrightarrow \begin{cases} u' = 1 \\ v = -e^{-x} \end{cases}$$

Il vient donc:

$$J = \left[-x e^{-x} \right]_0^1 - \int_0^1 -e^{-x} = -e^{-1} - \left[e^{-x} \right]_0^1 = -e^{-1} - (e^{-1} - 1) = 1 - 2e^{-1}$$

Ainsi :
$$I = 2 - 2(\underbrace{1 - 2e^{-1}}_{=.I}) = 4e^{-1}$$
.