	et dernières machines dans @ de diffusion du sous réseau		@ de la dernière
			de broadcast. Calcu
2 Calculez le masque	de sous-réseau. (1 pt)		
	ore de bits nécessaires pour		

Exercice 2: (3 pts)

Voici une trame Ethernet capturée par l'analyseur des protocoles wireshark contenant un paquet IP. La trame capturée est sans préambule, sans FCS et sans CRC.

000f 1f13 349a 0001 304a 3800 0800 4500 0054 9c1e 0000 3301 2d8c 8b7c bb04 ac10 cb6d 0000 f72b ea30 0002 c31f 6047 0e37 0200 0809 0a0b 0c0d 0e0f 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 2425 3435 3637

On rappelle le format de l'en-tête Ethernet :

- + +	,	-	,
48bits destination	48bits source	16bits protocol	data

Le format de l'en-tête IP :

Ver	hdri	TOS	length	
	identil	fication	flags	offset
T	ı.	protocol	checksum	
		моци	rec	
		dest	ination	

Institut Supérieur d'Informatique et de Mathématiques de Monastir

MMRI

	Examen principa	al - S2 - 2023/20)24
Filière : Ière L-INFO	Mati Fondements	Enseignante : Ilhem BLEL	
Date: 17/05/2024	Nbr de Crédits : 4 Coefficient : 2		Documents autorisés : Non
Durée de l'examen : 1b30	Régime d'évaluat	Nombre de pages : 06	
Durce de l'examen : 1000	EX (70%) + DS (1		
Nom & Prénom :	Matricule :		
Signature :	Classe: No Place:		

Note /20

Exercice 1:(12.25 pts)

Considérons la maquette donnée ci-dessous où les réseaux sont connectés par 5 routeurs. Les adresses IP des différents réseaux sont indiquées sur la figure.

La machine PC3 désire envoyer un paquet de taille 1400 octets à la machine PC4. Ce paquet arrive sur le réseau 175.110.0.0 ayant une MTU de 620 octets et ensuite sur le réseau 195.199.0.0 ayant une MTU de 1500 octets. On suppose qu'initialement son bit DF est à 0 et son entête est de taille 20 octets et son «ID» yaut 4345.

	7
Ne rien écrire ici	

1 En considérant les MTU indiquées, la fragmentation aura lieu au niveau de quels nœuds ? (0.25 pts)
2 En combien de datagramme ce paquet sera-t-il fragmenté ? (0.25 pts)
3 Que sera la taille en octets du champ "Data" du dernier fragment ? (0.25 pts)
$4\ D\acute{e}terminez\ la\ valeur\ du\ champ\ \textbf{offset},\ du\ bit\ \textbf{MF},\ du\ bit\ \textbf{DF}\ et\ du\ champ\ \textbf{ID}\ de\ chacun\ des\ fragments\ ?$
(0.75 pts)
5 Le réassemblage des paquets sera réalisé au niveau de quel nœud ? (0.25 pts)
$6\ Attribuez\ \grave{a}\ chaque\ station\ \textbf{(PC4, PC5\ et\ PC6)}\ la\ plus\ petite\ adresse\ IP\ disponible\ dans\ son\ r\acute{e}seau.\ \textbf{(0.75)}$
pts)

ttribuez à chaque	interface des route	eurs ne disposant pas	encore d'adresse IP,	la plus grande adr
isponible dans so	on réseau. Si plusie	eurs routeurs sont cor	nnectés à un même r	éseau, attribuer la j
de adresse au rou	teur portant le plus	s grand numéro. (2 pts))	
terminez les tabl	es de routage les n	lus simples des station	ns PC4 et PC5 (1.25	nte)
commez les tabl	es de foulage les p	ius simpres des station	13 1 64 61 1 63. (1.23	pts)
Adresse IP	Masque	Passerelle	Interface	Métrique
Réseau	masque	rasserent	Interface	Metrique
	· · · · · · · · · · · · · · · · · · ·	ole de routage de la m		

Table de routage de la machine PC5

Interface

Passerelle

Adresse IP

Réseau

Masque

9 Donnez la table de routage, avec ses 5 colonnes, de R1 avec des entrées vers tous les réseaux locaux de la maquette. (2 pts)

Adresse IP Réseau	Masque	Passerelle	Interface	Métrique

Table de routage de R I

Le responsable informatique du réseau d'adresse IP 195.199.0.0 désire découper son réseau en sous réseau contenant 30 machines par sous réseau.

Métrique

1 Déterminez les adresses MAC source et destination de la trame ? (1 pt)
2 Déterminez la longueur de l'entête IP et la taille des données utiles en octets? (1 pt)
3 Déterminez les adresses IP source et destination du datagramme? (1 point)

Exercice 3:(4.75 pts)

Soit un réseau local en bus utilisant un protocole de type CSMA/CD et comportant 4 stations notées A, B, C et D. Conformément au standard, les stations écoutent avant d'émettre. A l'instant t=0, la station A commence à transmettre une trame dont le temps d'émission dure 7 slots. A t=5, les stations B, C et D décident chacune de transmettre une trame de durée 6 slots.

L'algorithme pour déterminer le temps d'attente après collision est le suivant :

- Attemps est le nombre de tentatives pour accéder à la voie y compris celle en cours.
- Backofflimit vaut 210
- Int est une fonction qui rend la valeur entière par défaut
- Random est un générateur de nombre aléatoires compris entre 0 et 1.
 On considère que la fonction random rend respectivement et successivement les valeurs données par le tableau suivant :

Stations	В	С	D
1 ^{er} tirage	1/4	1/2	3/4
2 ^{ème} tirage	3/5	1/4	1/4
3 ^{ème} tirage	1/3	1/8	1/2

1.	Compléter	le tableau	et le	diagramme t	emporel	ci-dessous.	(4	points)
----	-----------	------------	-------	-------------	---------	-------------	----	---------

- Un slot occupé par la transmission correcte d'une trame de la station A est notée A
- Un slot occupé par une collision est noté X.
- Un slot non occupé reste vide

N° essai	Nom station	Tirage aléatoire	MaxBackoff	Délai d'attente
				(en time slots)
V.				

			T	Т	Τ					8		Τ	T	T	T	Т	T			T	T			T	T	Т	Т	Т		Т		
Ш								1.	<u> </u>	L		Dia	ıgra	mr	ne T	Cen	mo	re	1											ļ		
		_				•							-				-	лс	1													
	2. Quel est le taux d'efficacité du protocole ? (0.75 pts)																															
		•••					• • • •	••••	••••	• • • • •					••••		• • •	• • •	•••		•••	•••	•••						• • • •		• • • •	• • •

Bon travail