Corrigé exercice 53:

$\overrightarrow{u} \cdot \overrightarrow{v}$	$\ \overrightarrow{u}\ $	$\ \overrightarrow{v}\ $	$\ \overrightarrow{u} + \overrightarrow{v}\ $	$\ \overrightarrow{u} - \overrightarrow{v}\ $
$\frac{3}{2}$	3	2	4	$\sqrt{10}$
5	2	3	$\sqrt{23}$	$\sqrt{3}$
8	3	4	$\sqrt{41}$	3

Corrigé exercice 54:

1. On a
$$\overrightarrow{HA} \cdot \overrightarrow{HR} = \frac{1}{2} [HA^2 + HR^2 - AR^2] = \frac{1}{2} (3^2 + 2^2 - 4^2) = -\frac{3}{2}$$
.

2.
$$\cos\left(\widehat{RHA}\right) = \frac{-\frac{3}{2}}{3 \times 2} = -\frac{1}{4} \operatorname{donc} \widehat{RHA} \approx 104,5 \operatorname{degrés}.$$

Corrigé exercice 57:

On a $BR = \frac{1}{2}a$ donc le théorème de Pythagore permet de démontrer que $BE = \frac{\sqrt{3}}{2}a = BT$. Calculons le produit scalaire $\overrightarrow{BT} \cdot \overrightarrow{BE}$ de deux façons différentes.

Première manière :
$$\overrightarrow{BT} \cdot \overrightarrow{BE} = \overrightarrow{BT} \cdot \left(\overrightarrow{BR} + \overrightarrow{RE} \right) = \overrightarrow{BT} \cdot \overrightarrow{BR} + \overrightarrow{BT} \cdot \overrightarrow{RE}$$

Or les triangles sont tous équilatéraux. Ainsi,
$$(BT) \perp (BR)$$
 et $\overrightarrow{BT} \cdot \overrightarrow{BE} = \overrightarrow{BT} \cdot \overrightarrow{RE}$. D'où $\overrightarrow{BT} \cdot \overrightarrow{BE} = \left(\overrightarrow{BR} + \overrightarrow{RT}\right) \cdot \overrightarrow{RE} = -\overrightarrow{RB} \cdot \overrightarrow{RE} + \overrightarrow{RT} \cdot \overrightarrow{RE}$.

D'où
$$\overrightarrow{BT} \cdot \overrightarrow{BE} = \left(\overrightarrow{BR} + \overrightarrow{RT}\right) \cdot \overrightarrow{RE} = -\overrightarrow{RB} \cdot \overrightarrow{RE} + \overrightarrow{RT} \cdot \overrightarrow{RE}$$

En utilisant les propriétés métriques dans le tétraèdre régulier, on obtient
$$\overrightarrow{BT} \cdot \overrightarrow{BE} = -\frac{1}{2}a^2 \cos\left(\frac{\pi}{3}\right) + \frac{1}{2}a^2 \cos\left(\frac{\pi}{3}\right)$$

$$a^2 \cos\left(\frac{\pi}{3}\right) = \frac{1}{4}a^2$$
.
Deuxième manière

$$\overrightarrow{BT} \cdot \overrightarrow{BE} = \frac{\sqrt{3}}{2} a \times \frac{\sqrt{3}}{2} a \times \cos(\alpha) \text{ donc } \frac{3}{4} a^2 \cos(\alpha) = \frac{1}{4} a^2.$$

D'où
$$\cos(\alpha) = \frac{1}{3}$$
 et $\alpha = \cos^{-1}\left(\frac{1}{3}\right) \approx 71^{\circ}$.