| TEA010 Matemática Aplicada I               |
|--------------------------------------------|
| Curso de Engenharia Ambiental              |
| Departamento de Engenharia Ambiental, UFPR |
| P03B, 03 jun 2023                          |



## Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: \_\_\_\_\_

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

**1** [25] Resolva o sistema de EDOs

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.$$

## SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

A matriz é simétrica. Existem dois autovalores reais e dois autovetores mutuamente ortogonais. Os autovalores e autovetores associados são

$$\lambda = 0 \Rightarrow \mathbf{v}_1 = (1, 1),$$
  
 $\lambda = 2 \Rightarrow \mathbf{v}_2 = (1, -1).$ 

Na base  $A = (v_1, v_2)$  dos autovetores o sistema fica

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}_A = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}_A.$$

ou

$$\frac{\mathrm{d}u_{1A}}{\mathrm{d}t} = 0u_{1A} \Rightarrow u_{1A}(t) = C_1,$$

$$\frac{\mathrm{d}u_{2A}}{\mathrm{d}t} = 2u_{2A} \Rightarrow u_{2A}(t) = C_2 \mathrm{e}^{2t}.$$

Portanto,

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = u_{1A}v_1 + u_{2A}v_2 = C_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \blacksquare$$

**2** [25] Sabendo que

$$\int \frac{a}{x^2 + a^2} \, \mathrm{d}x = \arctan\left(\frac{x}{a}\right) + C,$$

Calcule a integral

$$I = \iint_{R_{xy}} \frac{x}{x^2 + y^2} \, \mathrm{d}y \mathrm{d}x$$

onde  $R_{xy}$  é a região  $0 \le x \le 1, 0 \le y \le x$ .

## SOLUÇÃO DA QUESTÃO:

$$I = \int_{x=0}^{1} \left[ \int_{y=0}^{x} \frac{x}{x^2 + y^2} \, dy \right] dx$$

$$= \int_{x=0}^{1} \operatorname{arctg}\left(\frac{y}{x}\right) \Big|_{y=0}^{x} dx$$

$$= \int_{x=0}^{1} \left[ \operatorname{arctg}(1) - \operatorname{arctg}(0) \right] dx$$

$$= \int_{x=0}^{1} \frac{\pi}{4} \, dx = \frac{\pi}{4} \blacksquare$$

**3** [25] Se  $F(x,y) = -y\mathbf{i} + x\mathbf{j}$ , sem utilizar os teoremas de Stokes ou de Green, calcule o valor da integral de linha

$$I = \oint \mathbf{F} \cdot d\mathbf{r}$$

ao longo do caminho fechado formado pelos lados do triângulo equilátero da figura (o tamanho dos lados é 1). **Sugestão:** parametrize cada um dos 3 segmentos de reta que formam os lados do triângulo e some as integrais de linha sobre cada trecho.



SOLUÇÃO DA QUESTÃO:

As coordenadas dos pontos são

$$A = \left(0, \operatorname{sen}\left(\frac{\pi}{3}\right)\right) = \left(0, \frac{\sqrt{3}}{2}\right),$$

$$B = \left(-\cos\left(\frac{\pi}{3}\right), 0\right) = \left(-\frac{1}{2}, 0\right),$$

$$C = \left(\cos\left(\frac{\pi}{3}\right), 0\right) = \left(\frac{1}{2}, 0\right).$$

Os segmentos de reta podem ser parametrizados como se segue:

CA:

$$x = at + b,$$

$$y = ct + d;$$

$$x(0) = 1/2 \Rightarrow b = 1/2,$$

$$x(1) = 0 \Rightarrow a = -1/2,$$

$$y(0) = 0 \Rightarrow d = 0,$$

$$y(1) = \frac{\sqrt{3}}{2} \Rightarrow c = \frac{\sqrt{3}}{2};$$

$$x(t) = (-1/2)t + 1/2,$$

$$y(t) = \frac{\sqrt{3}}{2}t.$$

AB:

$$x = at + b,$$

$$y = ct + d;$$

$$x(0) = 0 \Rightarrow b = 0,$$

$$x(1) = -1/2 \Rightarrow a = -1/2,$$

$$y(0) = \frac{\sqrt{3}}{2} \Rightarrow d = \frac{\sqrt{3}}{2},$$

$$y(1) = \frac{\sqrt{3}}{2} \Rightarrow c = -\frac{\sqrt{3}}{2};$$

$$x(t) = (-1/2)t,$$

$$y(t) = \frac{\sqrt{3}}{2} [1 - t].$$

BC:

$$x = at + b,$$

$$y = ct + d;$$

$$x(0) = -1/2 \Rightarrow b = -1/2,$$

$$x(1) = +1/2 \Rightarrow a = +1,$$

$$y(0) = 0 \Rightarrow d = 0,$$

$$y(1) = 0 \Rightarrow c = 0;$$

$$x(t) = t - 1/2,$$

$$y(t) = 0.$$

Sobre CA:

$$d\mathbf{r} = (d\mathbf{x}, d\mathbf{y}) = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) dt,$$

$$\mathbf{F} = (-\mathbf{y}, \mathbf{x}) = \left(-\frac{\sqrt{3}}{2}t, (-1/2)t + 1/2\right),$$

$$\mathbf{F} \cdot d\mathbf{r} = \left[\frac{\sqrt{3}}{4}t + \frac{\sqrt{3}}{4}(1-t)\right] dt = \frac{\sqrt{3}}{4}dt,$$

$$\int_{CA} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \frac{\sqrt{3}}{4} dt = \frac{\sqrt{3}}{4}.$$

Sobre AB:

$$d\mathbf{r} = (dx, dy) = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) dt,$$

$$\mathbf{F} = (-y, x) = \left(-\frac{\sqrt{3}}{2}(1 - t), (-1/2)t\right),$$

$$\mathbf{F} \cdot d\mathbf{r} = \left[\frac{\sqrt{3}}{4}(1 - t) + \frac{\sqrt{3}}{4}t\right] dt = \frac{\sqrt{3}}{4} dt$$

$$\int_{AB} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \frac{\sqrt{3}}{4} dt = \frac{\sqrt{3}}{4}.$$

Sobre BC:

$$\mathbf{d}\boldsymbol{r} = (\mathbf{d}x, \mathbf{d}y) = (1, 0) \, \mathbf{d}t,$$
 
$$F = (-y, x) = (0, t - 1/2),$$
 
$$F \cdot \mathbf{d}\boldsymbol{r} = 0,$$
 
$$\int_{BC} F \cdot \mathbf{d}\boldsymbol{r} = 0.$$

Portanto,

$$\oint F \cdot d\mathbf{r} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x+1} = \cos(x).$$

## SOLUÇÃO DA QUESTÃO:

$$y = uv,$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + \frac{uv}{x+1} = \cos(x),$$

$$u\left[\frac{dv}{dx} + \frac{v}{x+1}\right] + v\frac{du}{dx} = \cos(x),$$

$$\frac{dv}{dx} + \frac{v}{x+1} = 0,$$

$$\frac{dv}{v} + \frac{dx}{x+1} = 0,$$

$$\ln|v| + \ln|x+1| = k_1,$$

$$\ln|v(x+1)| = k_1,$$

$$|v(x+1)| = e^{k_1} = k_2,$$

$$v(x+1) = \pm k_2 = k_3,$$

$$v = \frac{k_3}{x+1};$$

$$\frac{k_3}{x+1}\frac{du}{dx} = \cos(x),$$

$$\frac{du}{dx} = \frac{1}{k_3}(x+1)\cos(x),$$

$$u = \frac{1}{k_3}\left[(x+1)\sin(x) + \cos(x) + k_4\right],$$

$$y = uv = \frac{1}{k_3}\left[(x+1)\sin(x) + \cos(x) + k_4\right]$$

$$= \sin(x) + \frac{\cos(x)}{x+1} + \frac{k_4}{x+1} = \sin(x) + \cos(x) + k_4$$