graphs

example graphs

lots of things can be represented as graphs

maps

nodes: intersections

edges: roads?

airline routes

flowcharts

PREDICTION FLOWCHART FOR GEEK GIFTS.

pre-requisite tree

formal definition

```
graph G: G = (V, E)
```

V: set of vertices (possibly empty)

E: set of edges — pairs of vertices (possibly empty) directed graph/digraph — ordered pairs undirected graph — unordered pairs

paths, etc.

vertices v and w adjacent iff $(v, w) \in E$ or $(w, v) \in E$

path: $v_1, v_2, \dots v_n$ such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le n$

length of path: number of edges in path

simple path: path of distinct vertices

weighted graphs

some graphs have **weights** or **costs** associated with edges example motivation:

graph representing roads: weight = travel time

weight or cost of a path = sum of weights of edges in path

weighted graph example

cycles, etc.

cycle: path where length ≥ 1 , $v_1 = v_n$ undirected graph: ...and no repeated edges

loops

$$(v,v)\in E$$

graph terminology is not universal

some sources will use slightly different definitions:

walk instead of path

path instead of simple path

closed walk instead of cycle

cycle instead of cycle that is also a simple path

connectivity

connected graph: for all $x,y\in V$, there exists a path from x to y N.B: includes 0-length paths

a connected graph a non-connected graph

in a directed graph...

DAG — directed acyclic graph no cycles

strongly connected — path from every vertex to every other implies cycles (or digraph of 0 or 1 nodes)

weakly connected — would be connected as undirected graph

strong/weak connected examples

a strongly connected graph drawn in two ways

another strongly connected graph

a weakly connected graph

strong/weak connected examples

a strongly connected graph drawn in two ways

another strongly connected graph

a weakly connected graph

two strongly connected components

trees as graphs

trees are connected, acyclic graphs (with a root chosen)

complete graph

complete graph: graph with edges between every pair of distinct vertices

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{2}{0} \quad \frac{3}{1} \quad \frac{4}{1} \quad \frac{1}{0} \quad \frac{1$$

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{0}{0} \quad \frac{1}{1} \quad \frac{1}{1} \quad \frac{1}{0} \quad \frac{1$$

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{0}{0} \quad \frac{1}{0} \quad \frac{1$$

$$A[u][v] = \begin{cases} weight & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$\frac{1}{2} \quad \frac{2}{0} \quad \frac{3}{1} \quad \frac{4}{1} \quad \frac{1}{1} \quad \frac{1}{1} \quad \frac{1}{2} \quad \frac{3}{4} \quad \frac{4}{1} \quad \frac{9}{0} \quad \frac{17}{0} \quad 0 \quad 0 \quad 0 \quad \frac{3}{0} \quad \frac{3}{1} \quad \frac{3}{1} \quad \frac{9}{0} \quad \frac{17}{0} \quad 0 \quad 0 \quad 0 \quad \frac{13}{0} \quad 0 \quad 0 \quad 10 \quad 0 \quad \frac{13}{0} \quad 0 \quad 0 \quad 10 \quad \frac{10}{0} \quad \frac{16}{0} \quad 18 \quad 0 \quad 0 \quad 0 \quad 16 \quad 18 \quad 0 \end{cases}$$

adjacency lists

adjacency lists

choosing representations

choice:

```
adjacency matrix
adjacency list
more?

issues to consider:
size
ease of listing edges from node
ease of determining if node X has an edge
```

variations and alternate representations

adjacency lists might not use linked lists
adjacency matrix can be stored as hashtable (keys=pair of nodes)

additional information with nodes

often want to store additional information with vertices, edges...

street names, speed limits, ...

IP addresses, link speeds, ...

topological sort

only defined for directed acyclic graph

order vertices such that if there is a path from v_i to v_j , then v_j is after v_i

topological sorts:

A, F, C, B, D, G, E, H *or* F, A, H, C, G, B, D, E *or*

•••

exercise: topological sort

exercise: topological sort

possible answers: A, B, C, D or A, C, B, D

no topological sort

pre-requisite tree

definition: in-degree

indegree of vertex: number of incoming edges

algorithm (simple)

```
psuedocode:
vector<Vertex> topologicalSort(Graph g) {
    vector<Vertex> result;
    for (int i = 0; i < numVertices; ++i) {</pre>
        Vertex v = g.findVertexOfInDegreeZero();
        if (did not find v) throw CycleFound();
        result.push_back(v);
        for (Vertex w : v.adjacentVertices()) {
            g.deleteEdge(v, w);
        g.deleteVertex(v);
    }
    return result;
```


initial in-degree 0 vertices — two choices

choose one (A — arbitrary), add to result, remove edges result: A,

result: A, F, H,

result: A, F, H,

result: A, F, H, C, B, G,

simple topological sort problems

problem: copying the graph?

problem: finding in-degree 0 vertex?

scan all vertices and all edges???

better pseudocode

```
vector<Vertex> topologicalSort(Graph g) {
    vector<Vertex> result;
    map<Vertex, int> remainingInDegree = g.getInDegrees();
    Queue<Vertex> pending;
    for (Vertex v : g.vertices())
        if (remainingInDegree[v] == 0)
            pending.enqueue(v);
    while (!pending.empty()) {
        Vertex v = pending.dequeue();
        result.push back(v);
        for (Edge e: g.edgesFrom(v)) {
            int newDegree = --remainingInDegree[e.toVertex()];
            if (newDegree == 0) pending.enqueue(e.toVertex());
    return result:
```

psuedocode idea

track in-degree changes instead of full list of edges all we care about is in-degree becoming 0

queue: vertices which have in-degree 0 to process

detect cycles? see if result size == number of vertices

runtime analysis

- assuming |E| edges, |V| vertices, and adjacency lists and in-degree map is constant time (e.g. vertices are 0, 1, 2, ..., so it's an array)
- step 1: get all in-degrees $\Theta(|E|)$ (iterate over edges)
- step 2: find + enqueue in-degree 0 vertices $\Theta(|V|)$ (iterate over vertices)
- step 3: for each vertex, check outgoing edges $\Theta(|V|+|E|)$ (each vertex checked exactly once, each edge checked exactly once)
- overall: $\Theta(|V| + |E|)$

queue: A, D, F, H, E,

result: A, D,

queue: A, D, F, H, E, C,

result: A, D, F,

queue: A_7 , D_7 , F_7 , H_7 , E_7 , C_7

result: A, D, F, H,

queue: A, D, F, H, E, C,

result: A, D, F, H, E,

queue: A, D, F, H, E, C, B,

result: A, D, F, H, E, C,

queue: A_7 , D_7 , F_7 , H_7 , E_7 , C_7 , C_8 , C_9 , C_9 ,

result: A, D, F, H, E, C, B,

queue: A, D, F, H, E, C, B, G,

result: A, D, F, H, E, C, B, G

shortest path

shortest path

lowest $\{\text{weight,number of edges}\}\$ path from vertex i to j

shortest path applications

map routing

N degrees of separation'

Internet routing

puzzle/game analysis (e.g. rubrik's cube solutions, ...)

shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W, path from V to W

all pairs: for each pair of vertices V, W, path from V to W

shortest path algorithm kinds

single pair: path from V to W

single source: for each vertex W, path from V to W

all pairs: for each pair of vertices V, W, path from V to W

more formally

given graph G=(V,E) and a vertex s (the source)...

where an edges (v, w) has weight $w_{v,w}$

for each vertex x find a path $v_1 = s, v_2, \dots, v_n = x$ such that the $\sum w_{v_i,v_{i+1}}$ is minimum

breadth-first search

shortest path special case: weights =1 algorithm is breadth-first search

special case: breadth-first search on trees

can look at breadth-first search as variation on pre-order traversal same idea: parents before children

but whole level at a time...

and need to ignore extra paths

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ...

key idea: track visited nodes so we don't check them again (already found the shortest path)

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ...

could have list of paths, one per node but more compact idea: store one source edge per node also called *shortest path tree*

start with just source

follow edges to first find vertices at distance 1

then use those to find vertices at distance 2, then distance 3, ...

multiple possible answers!

breadth first search pseudocode

```
void Graph::bfs(Vertex start) {
    for (Vertex v: vertices) {
        v.distance = INFINITY; v.previous = NULL;
    Queue frontier;
    start.distance = 0;
    frontier.enqueue(start);
   while (!frontier.isEmpty()) {
        Vertex v = q.dequeue();
        for (Vertex w : verticesWithEdgeFrom(v)) {
            if (w.distance == INFINITY) {
                w.distance = v.distance + 1;
                w.previous = v;
                frontier.enqueue(w);
```

BFS runtime?

need to initialize distances to infinity: $\Theta(|V|)$ operations need to check every edge: $\Theta(|E|)$ operations runtime $\Theta(|V|+|E|)$

breadth-first search is greedy

greedy algorithms: make the locally optimal choice, never undo

BFS: once one finds a node, one enqueues it once find the node later — skip it

why this is okay: find nodes in order of distance second time 'visiting' a node — won't be a shorter path!

```
void Graph::BROKEN_shortestPaths(Vertex start) {
  . . .
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

```
void Graph::BROKEN_shortestPaths(Vertex start) {
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```



```
previous: A
                                                                     110
void Graph::BROKEN_shortestPaths(Vertex start)
                                                               50
  while (!frontier.isEmpty()) {
                                                     distance \infty
    Vertex v = q.dequeue();
                                                     previous: (none)
    for (Vertex w : verticesWithEdgeFrom(v))
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

50

distance 50

```
previous: A
                                                                     110
void Graph::BROKEN_shortestPaths(Vertex start)
                                                               50
  while (!frontier.isEmpty()) {
                                                       distance 110
    Vertex v = q.dequeue();
                                                       previous: A
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

50

distance 50

```
previous: A
                                                                     110
void Graph::BROKEN_shortestPaths(Vertex start)
                                                               50
  while (!frontier.isEmpty()) {
                                                       distance 110
    Vertex v = q.dequeue();
                                                       previous: A
    for (Vertex w : verticesWithEdgeFrom(v)) {
       // BROKEN!
       if (w.distance == INFINITY) {
          w.distance = v.distance + weight0fEdge(v, w);
          w.previous = v;
          frontier.enqueue(w);
```

50

distance 50

fix part 1: update to smaller distance

```
void Graph::BROKEN shortestPaths(Vertex start) {
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       int newDistance = v.distance + weightOfEdge(v, w);
       if (newDistance < w.distance) {</pre>
          w.distance = newDistance;
          w.previous = v;
          frontier.enqueue(w);
```

fix part 1: update to smaller distance

```
void Graph::BROKEN shortestPaths(Vertex start) {
  while (!frontier.isEmpty()) {
    Vertex v = q.dequeue();
    for (Vertex w : verticesWithEdgeFrom(v)) {
       int newDistance = v.distance + weightOfEdge(v, w);
       if (newDistance < w.distance) {</pre>
          w.distance = newDistance;
          w.previous = v;
          frontier.enqueue(w);
```

problem: now enqueuing nodes multiple times want to only visit node once

fix part 2: visit nodes once, order by distance

```
void Graph::SLOW_shortestPaths(Vertex start) {
    for (Vertex v: vertices) {
        v.distance = INFINITY;
        v.previous = NULL;
        v.visited = false;
    start.distance = 0;
    while (!haveUnvisitedNode()) {
        Vertex v = findUnvisitedNodeWithSmallestDistance();
        v.visited = true;
        for (Vertex w : verticesWithEdgeFrom(v)) {
            int newDistance = v.distance + weightOfEdge(v, w);
            if (newDistance < w.distance) {</pre>
                w.distance = newDistance;
                w.previous = v;
```

visiting by distance?

assumption: no negative weights

given this: distance only decreases

and can't find shorter path from further node!

fix part 3: a faster search

```
void Graph::shortestPaths(Vertex start) {
    PriorityQueue pq;
    for (Vertex v: vertices) {
        v.distance = INFINITY; v.previous = NULL;
    start.distance = 0; pq.insert(0, start);
    while (!pq.empty()) {
        Vertex v = pq.deleteMin();
        for (Vertex w : verticesWithEdgeFrom(v)) {
            int oldDistance = w.distance;
            int newDistance = v.distance + weightOfEdge(v, w);
            if (newDistance < oldDistance) {</pre>
                w.distance = newDistance; w.previous = v;
                if (oldDistance == INFINITY)
                    pg.insert(newDistance, w);
                else
                    pg.decreaseKey(newDistance, w);
```

a note on names

called Dijkstra's algorithm

	dist	prev	path
	0		A
	∞		

dist	prev	path
0		A
∞	_	
2	А	$A \rightarrow C$
1	А	$A \rightarrow D$
∞		_
∞		
∞		_

Ε

	-	•
0		A
6	D	$A \rightarrow D \rightarrow B$
2	А	$A \rightarrow C$
1	Α	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
7	D	$A \rightarrow D \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

-	
	A
E	$A \rightarrow D \rightarrow E \rightarrow B$
Α	A→C
Α	$A \rightarrow D$
D	$A \rightarrow D \rightarrow E$
С	$A \rightarrow C \rightarrow F$
D	$A \rightarrow D \rightarrow G$
	A A D

	-	-
0		A
3	Е	$A \rightarrow D \rightarrow E \rightarrow B$
2	А	A→C
1	Α	$A{ ightarrow}D$
2	D	$A \rightarrow D \rightarrow E$
4	С	$A \rightarrow C \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

	•	•
0		A
3	E	$A \rightarrow D \rightarrow E \rightarrow B$
2	Α	A→C
1	А	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
4	C	$A \rightarrow C \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

	•	•
0		A
3	E	$A \rightarrow D \rightarrow E \rightarrow B$
2	А	A→C
1	А	$A \rightarrow D$
2	D	$A \rightarrow D \rightarrow E$
4	C	$A \rightarrow C \rightarrow F$
6	D	$A \rightarrow D \rightarrow G$

aist	Picv	patri
0		A
7	Α	A→B
9	А	$A \rightarrow C$
20	С	$A \rightarrow C \rightarrow D$
20	G	$A \rightarrow C \rightarrow G \rightarrow E$
11	С	$A \rightarrow C \rightarrow G$

-		ρ. σ.	Putin
0			A
7		А	A→B
9		А	$A \rightarrow C$
2	0	С	$A \rightarrow C \rightarrow D$
2	0	G	$A \rightarrow C \rightarrow G \rightarrow E$
1	1	С	$A \rightarrow C \rightarrow G$

Dijkstra's algorithm example 2

dist prev path

	1	I' ' '
0		A
7	Α	A→B
9	А	$A{ ightarrow} C$
20	С	$A \rightarrow C \rightarrow D$
20	G	$A \rightarrow C \rightarrow G \rightarrow E$
11	С	$A \rightarrow C \rightarrow G$

Dijkstra's algorithm runtime

for every vertex (worst case):

find unprocessed vertex with smallest distance $\Theta(|V|^2)$ total — if checking every vertex $\Theta(|V|\log |V|)$ total — if removing from heap

scan all edges of vertex, update distances $\Theta(|E|) \text{ total} \longrightarrow \text{if not maintaining priority queue} \\ \Theta(|E|\log|V|) \text{ if updating binary heap}$

total with binary heap: $\Theta((|E|+|V|)\log |V|)$ Fibanocci heap instead: $\Theta(|E|+|V|\log |V|)$

negative weights

example: weight = fuel used; negative weight = refueling

Dijkstra's algorithm doesn't work

assumption: won't update a node's distance after visiting its edges

alternative algorithms do — e.g. Bellman-Ford ($\Theta(|E||V|)$ runtime)

negative cost cycles — infinitely small cost!

high-level view: dealing with negative weights

Bellman-Ford algorithm

for every node: track shortest known path from source initially: "no known paths"

iterate through all edges updating paths

Q: "can this edge be used to make a better path to source?"

repeat |V| times

last time

```
travelling salesperson problem
```

- i.e. min weight Hamiltonian cycle
 - = visit all vertices once and return to start

the branch-and-bound idea

lab preview:

topological sort / naive TSP / report on TSP acceleration techs.

spanning tree — connected graph with no cycles

i.e. no extra edges

application: transport network

minimum spanning tree: spanning tree with least weight

single-source to single-source+destination

what if want to get from A to Z

solution: Dijkstra's algorithm from A but stop early — when we proesss ${\cal Z}$

gaurentee: won't update Z's distance again

heuristic shortest path

road map — still slow!

some ideas for speeding up:

search highways instead of side-roads earlier search edges in correct direction earlier search from both directions, try to meet

..

if you take AI — major topic is *heuristic search* taking advantage of ideas like the above ...and still getting shortest path, if you want it

travelling salesperson problem

```
given cities, costs to travel between, least-cost trip that:
```

visits each city exactly once, and returns to the starting city

as a graph:

cities = vertices costs = edge weights

assume fully connected graph

alternative: first add infinite weight edges between disconnected nodes

TSP difficulty

solving TSP exactly is NP-hard

worst case: essentially need to enumerate all possible tours

but, practically solved up to 10000s of cities on 'real' maps obviously doing something smarter...

diversion: NP-hard

see also Algorithms

idea: efficient solutions to this problem yield efficient solutions to many other problems

 \rightarrow "as hard as" those other problems

other problems \approx problems whose solutions can be verified in polynomial time

some definitions

Hamiltonian path — path that visits every vertex on a graph exactly once

Hamiltonian cycle — Hamiltonian path that where start node = end node

traveling salesperson problem: find least weight Hamiltonian cycle

Hamiltonian cycles and hardness

no known efficient algorithm to detect *whether* a graph has a Hamiltonian cycle

(but easy for complete graphs...)

naive TSP algorithm

```
choose a starting city x_1
for each unused next city x_2: (n-1 possible)
     for each unused next city x_3: (n-2 possible)
           for each unused next city x_4: (n-3 possible)
     see if x_1, x_2, x_3, x_4, \ldots, x_n is shorter than anything else
output shortest seen
```

(N-1)! factorial runtime $=\Theta(N!)$ worse than $\Theta(2^N)$

naive TSP implementation

```
vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {
    if (partial_tour.size() == vertices.size()) {
        partial_tour.push_back(partial_tour[0]);
        if (weightOf(partial_tour) < weightOf(best_tour)) {</pre>
            best tour = partial_tour;
        partial_tour.pop_back();
    } else {
        for (Vertex v : vertices - partial_tour) {
            partial tour.push back(v);
            TestTours();
            partial tour.pop back(v);
    best_tour = ...; partial_tour = {startNode};
    TestTours();
```

naive TSP implementation

```
vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {
    if (partial_tour.size() == vertices.size()) {
        partial tour.push_back(partial_tour[0]);
        if (weightOf(partial_tour) < weightOf(best_tour)) {</pre>
            best tour = partial_tour;
        partial_tour.pop_back();
    } else {
        for (Vertex v : vertices - partial_tour) {
            partial tour.push back(v);
            TestTours();
            partial tour.pop back(v);
    best_tour = ...; partial_tour = {startNode};
    TestTours();
```

naive TSP implementation

```
vector<Vertex> partial_tour; vector<Vertex> best_tour;
void TestTours() {
    if (partial_tour.size() == vertices.size()) {
        partial_tour.push_back(partial_tour[0]);
        if (weightOf(partial_tour) < weightOf(best_tour)) {</pre>
            best tour = partial_tour;
        partial_tour.pop_back();
    } else {
        for (Vertex v : vertices - partial tour) {
            partial tour.push back(v);
            TestTours();
            partial tour.pop back(v);
    best_tour = ...; partial_tour = {startNode};
    TestTours();
```

(n-1)! is big

20 cities — $> 10^{16}$ tours to check

30 cities — $> 10^{30}$ tours to check

...

best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution

```
best general algorithm: \Theta(N^2 2^N)
20 cities — > 10^8 operations
30 cities — > 10^{11} operations
```

uses dynamic programming — covered in 4102

best gaurenteed TSP algorithm

TSP is NP-hard — no known subexponetial solution

```
best general algorithm: \Theta(N^2 2^N)
20 cities — > 10^8 operations
30 cities — > 10^{11} operations
```

uses dynamic programming — covered in 4102

```
solve subproblems: best way to visit cities 1,2,3,4 starting at 1 ending at 4
```

know: if 1,3,2,4 is best for above subproblem, then 1,3,2,4,5,1 is shorter than 1,2,3,4,5,1

can avoid checking 1, 2, 3, 4, 5, 1...

TSP heuristics

one idea: branch and bound

still: construct lots and lots of possible tours keep adding cities

but maintain track extra numbers:

the best cost found so far lower bound on the tours we could find with chosen nodes

stop enumerating (return from FindTour early) if lower bound is too low

4

a lower bound

example lower bound:

if I've chosen cities 1, 2, 4, 3 in that order

minimum cost =
$$w(1,2) + w(2,4) + w(4,3) + \sum_{i=3}^{n} \min \text{ edge from i}$$

if min possible cost > best known cost: stop!

other TSP ideas

TSP on real maps — take advantage of geometry

try cities close to each other first

use map distances to compute minimum costs quickly

sometimes can use approximation algorithms

assumption: sufficiently 'normal' weights — e.g. A-B shorter than A-C-B gaurenteed within a certain factor of best solution good for pruning very bad solutions quickly

TSP records

2006: 85,900 'cities'

distances, etc. from real circuit production problem from the 1980s

lab 11

pre-lab: topological sort

in-lab: naive travelling salesperson (map = Tolkein's middle earth)

post-lab: some acceleration techniques

spanning tree definition

given a connected undirected graph G, a spanning tree G'=(V,E') is a subgraph such that:

its edges are a subset of the original graph's (what *subgraph* means)

it has the same vertices

it is connected

it has no cycles — i.e. it is a tree

spanning tree construction

take a connected graph

repeatedly: remove an edge that does not disconnect the graph

can't remove any more:

now have a spanning tree — same vertices, but is a tree

spanning tree examples

original graph

spanning trees of graph

minimum spanning tree

A minimum spanning tree T=(V,E') of a weighted graph G is a spanning tree such that $\sum_{e\in E'} \operatorname{weight}(e)$ is smallest.

NB: can be multiple minimum spanning trees

minimum spanning tree algorithms

two main algorithms

both greedy — choose edges, then never take that back tricky part: figuring out what order to choose them in

...and (not this class) proving that's optimal

MST example

Prim's greedy MST algorithm

track: vertices in spanning tree, edges in spanning tree add a vertex to the spanning tree (arbitrarily)

while not all vertices are in the spanning tree:

pick an edge (u,v) such that u is already in the spanning tree v is not already in the spanning tree (u,v) has the smallest weight of all possible edges

add the edge and \boldsymbol{v} to the spanning tree

D) 82

(A D) (A B) (C D)

82

Prim's algorithm example

Prim's algorithm example

(A, D), (A, B), (C, D), (D, G), (F, G)

82

Prim's algorithm example

(A D) (A B) (C D) (D G) (F G) (F G)

82

Prim's algorithm runtime

```
spanning tree will have |V|-1 edges each edge added connects a new vertex
```

choosing each edge

```
naive — scan all edges each time \left|E\right| work
```

better — maintain priority queue of vertices, priority=cost of best edge

up to $\lvert E \rvert$ inserts or decreaseKeys (update best edge for vertex)

max size of priority queue: |V|-1

$$\Theta(|E|\log |V|)$$
 time with binary heap $\Theta(|E|+|V|\log |V|)$ time with Fibanocci heap

Prim's algorithm pseudocode

```
set<Edge> used_edges; // where result goes
priority_queue<Vertex> pending_vertices;
map<Vertex, Edge> best_edge_to;
for (Vertex v : vertices) {
    pending_vertices.insert(INFINITY, v);
pending_vertices.decreaseKey(0, start_vertex);
while (used vertices != vertices) {
    Vertex v = pending_vertices.deleteMin();
    used edges.insert(best edge to[v]);
    for (Edge e : edgesFrom(v)) {
        if (e.cost < best edge to[e.to].cost) {</pre>
            best edge to[e.to] = e;
            // assuming decreaseKey ignored if e.to not in gueue
            pending_vertices.decreaseKey(e.cost, e.to);
```

Kruskall's greedy MST algorithm

track: edges in spanning tree

while spanning tree has less than |V|-1 edges:

pick a $\it minimum~weight~edge~(u,v)$ such that adding it to the spanning tree would not create a cycle

add the edge to the spanning tree

D) 86

86

A. D). (F. G). (A. B). (C. D)

A. D). (F. G). (A. B). (C. D). (D. G)

86

A D) (F G) (A B) (C D) (D G) (F G)

Kruskal: tracking sets (1)

track sets of edges same set — already connected goal: add edges that connect distinct

Kruskal: tracking sets (2)

Kruskal pseudocode

return result:

```
SetTracker setTracker;
for (Vertex v : vertices) {
    setTracker.createNewSetFor(v);
vector<Edge> result;
for (Edge e : sortByWeight(edges)) {
   // check if adding edge would connect unconnected sets
    if (setTracker.setIdOf(e.from) != setTracker.setIdOf(e.to)
        result.push back(e);
        setTracker.mergeSets(
            setTracker.setIdOf(e.from),
            setTracker.setIdOf(e.to)
```

Kruskal runtime

```
need to sort all edges (|E|\log |E| time) for each edge: (|E| times) two "find the set something is in" operations for each edge added: (|V|-1 times) one "merge two sets" operations
```

union-find data structure

SetTracker called a "union-find datastructure" or "disjoin-set datastructure"

best implementation: slightly worse than amortized constant time per operation

amortized $O(\alpha(n))$ time where $\alpha(n)$ is the inverse of the Ackermann function

 $\alpha(n)$ is asymptotically smaller than $\log(n)$

Kruskal runtime

```
need to sort all edges (|E|\log |E| time) for each edge: (|E| times) \text{O}(|\mathbf{E}|\alpha(|\mathbf{V}|)) two "find the set something is in" operations for each edge added: (|V|-1 times) \text{O}(|\mathbf{E}|\alpha(|\mathbf{V}|)) one "merge two sets" operations
```

overall:
$$\Theta(|E|\log|E|) = \Theta(|E|\log|V|)$$
 time aside: $\log|V| \in \Theta(\log|E|)$ since $|V|^2 \ge |E| \ge |V| - 1$

implementing union-find: naive/slow

```
map<Vertex, Vertex> parentOf;
MakeInitialSets() {
    for (Vertex v : vertices)
        parentOf[v] = v;
// Each set represented by its "root" vertex
Vertex FindSetOf(Vertex v) {
    if (v == parent0f[v]) {
        return v;
    } else {
        return FindSetOf(parentOf[v]);
UnionSets(Vertex u, Vertex v) {
    parentOf[v] = u;
```

implementing union-find: path compression

```
FindSetOf(Vertex v) {
    if (v == parentOf[v]) {
        return v;
    } else {
        parentOf[v] = FindSetOf(parentOf[v]);
        return parentOf[v];
    }
}
```

implementing union-find: union by size

```
map<Vertex, int> sizeOf;
MakeInitialSets() {
        sizeOf[v] = 1;
UnionOf(Vertex u, Vertex v) {
    if (sizeOf[u] > sizeOf[v]) {
        (u,v) = (v,u);
    // attach lower size to higher size
    parentOf[u] = v;
    // update size
    sizeOf[v] += sizeOf[u]:
```