CALIFORNIA STATE UNIVERSITY, LOS ANGELES PROGFEST 2013

Problem 9

Look-and-Say Sequence

The **look-and-say sequence** is the sequence of integers beginning as follows:

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ...

To generate a member of the sequence from the previous member, read off the digits of the previous member, counting the number of digits in groups of the same digit. For example:

- 1 is read off as "one 1" or 11.
- 11 is read off as "two 1s" or 21.
- 21 is read off as "one 2, then one 1" or 1211.
- 1211 is read off as "one 1, then one 2, then two 1s" or 111221.
- 111221 is read off as "three 1s, then two 2s, then one 1" or 312211.

The idea of the look-and-say sequence is similar to that of run-length encoding that stores runs of data as a value and count.

Write a program that reads two integer values: \mathbf{d} (from 0 to 9) and \mathbf{n} (from 1 to 100). Then, generate a look-and-say sequence starting from \mathbf{d} and ending at the \mathbf{n}^{th} number. For example, if d=4 and n=6, the sequence is

4, 14, 1114, 3114, 132114, 1113122114

After generating the sequence, display the longest palindrome in any number of the sequence.

Input

16

Output

1, 11, 21, 1211, 111221, 312211

Longest palindrome: 1221 found in 5th and 6th numbers