Assignment 1

79546 - Stephen K. Ng'etich

Contents

P	re-re	quisite	2
	0.1	Load packages	2
1	$\mathbf{Q}1$		3
	1.1	Generate the transition probabilities	3
	1.2	Draw the transition states with their respective probabilities	3
	1.3	Find the probability that the grandson of a man from Harvard went to Harvard	4
	1.4	Modify the above by assuming that the son of a Harvard man always went to Harvard	5
	1.5	Determine the steady-state probabilities	5
2	$\mathbf{Q2}$		5
	2.1	Set up the matrix of the transistion probabilities	5
	2.2	Draw the transition states with their respective probabilities	5
	2.3	Determine the steady-state probabilities	7
3	$\mathbf{Q3}$		7
	3.1	Is this chain irreducible?	7
	3.2	Is this chain aperiodic?	7
	3.3	Find the stationary distribution for this chain	7
	3.4	Is the stationary distribution a limiting distribution for the chain?	8
4	$\mathbf{Q4}$		8
	4.1	Stock market price data	8
	4.2	Appraisal of a Secondary school mathematics teacher	8
	4.3	Collaborative filtering on a database of movie reviews: for example, Netflix challenge: predict about how much someone is going to enjoy a movie based on their and other users' movie preferences	8
	4.4	Daily weather forecast in Nairobi	8
	4.5	Optical character recognition	8
	4.6	Cost of gemstones in Bangladesh	8

 $5 \quad \mathbf{Q5} \\ \phantom{\mathbf{Q5}}$

Pre-requisite

0.1 Load packages

Clear variables
rm(list=ls())
library(markovchain)
library(diagram)
library(castor)

1 Q1

1.1 Generate the transition probabilities

the Markov chain state space S = H, D, Y where H represents Harvard, D for Dartmouth and y for Yale

1.2 Draw the transition states with their respective probabilities

1.3 Find the probability that the grandson of a man from Harvard went to Harvard

```
trans_mat2 = trans_mat1 %*% trans_mat1
trans_mat2
```

H D Y ## H 0.50 0.14 0.36 ## D 0.40 0.32 0.28 ## Y 0.42 0.28 0.30

The probability that the grandson of a man from havard went to have is 0.5

1.4 Modify the above by assuming that the son of a Harvard man always went to Harvard.

1.5 Determine the steady-state probabilities

```
steadyStates(mk_chain1)

## H D Y

## [1,] 0.4516129 0.2258065 0.3225806
```

2 Q2

2.1 Set up the matrix of the transistion probabilities

```
## professional skilled labourer unskilled labourer ## professional 0.70 0.25 0.05 ## skilled labourer 0.22 0.58 0.20 ## unskilled labourer 0.15 0.15 0.70
```

2.2 Draw the transition states with their respective probabilities

```
plotmat(trans_mat3,relsize = .75,box.cex = 0.54,cex = 0.7)
```


##

Find the probability that a randomly chosen grandson of an unskilled labourer is a professional man.

```
trans_mat4 = trans_mat3 %*% trans_mat3
print(trans_mat4)
```

7	# #	professional	skilled	labourer	unskilled	labourer
7	## professional	0.5525		0.3275		0.1200
7	## skilled labourer	0.3116		0.4214		0.2670
7	## unskilled labourer	0.2430		0.2295		0.5275

The probability is 0.243

2.3 Determine the steady-state probabilities

```
## professional skilled labourer unskilled labourer
## [1,] 0.3847695 0.3306613 0.2845691
```

3 Q3

3.1 Is this chain irreducible?

Yes, since one chain can get from one state to any other state in the chain

3.2 Is this chain aperiodic?

Yes, the greatest common divisor when moving from state 1 and back is one

3.3 Find the stationary distribution for this chain.

[1] 0.0000000 0.4615385 0.5384615

max(abs(steady states* trasnsition matrix)) = 0.457143

```
#Check if it is a limiting distribution
apply(steadyStates(mk_chain3),1,sum)
```

[1] 1

steadyStates(mk_chain3)

```
## 1 2 3
## [1,] 0.4571429 0.2571429 0.2857143
```

3.4 Is the stationary distribution a limiting distribution for the chain?

Yes, since the chain is irreducible and aperiodic

4 Q4

4.1 Stock market price data

Yes, Stock Market price is highly volatile

4.2 Appraisal of a Secondary school mathematics teacher

Yes, The outcome of the appraisal is dependent on past performances

4.3 Collaborative filtering on a database of movie reviews: for example, Netflix challenge: predict about how much someone is going to enjoy a movie based on their and other users' movie preferences

No, User rarely change their movie preferences

4.4 Daily weather forecast in Nairobi

Yes, the daily weather

4.5 Optical character recognition

Yes, combination of characters have different generate different meanings.

4.6 Cost of gemstones in Bangladesh

Yes, cost of gemstone change over time due to demand on the local market and international market.

5 Q5

 π and A updated based on the following update rules

$$\pi_k = \frac{\gamma(z_{1k})}{\sum_{j=1}^K \gamma(Z_{1j})}$$

$$A_{jk} = \frac{\sum_{j=1}^K \xi(z_{t-1,j} z_{tk})}{\sum_{m=1}^K \sum_{t=2}^K \xi(z_{t-1,j} z_{tm})}$$

given

$$\xi(z_{t-1}, j z_t) == \frac{\alpha(z_{t-1})P(x_t|z_t)P(z_t|z_{t-1}\beta(z_t))}{P(X)}$$

if A_{jk} is 0, then $\xi(z_{t-1}, j|z_t)$ is also 0, which makes the subsequent updates in the EM algorithm 0