

H.T No

Sreenidhi Institute of Science and Technology

Regulations:

вс

CO(s)

Marks

(An Autonomous Institution)

Code No: 7HC16 Date: 30-Aug-2021(FN)

B.Tech II-Year II- Semester External Examination, Aug/Sept-2021 (Regular)
MATHEMATICS-II (Differential Calculus) - (CSE, IT and ECM)

Time: 3 Hours Max.Marks:70

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

ANSWER ANY 5 OUT OF 8 QUESTIONS, EACH QUESTION CARRIES 14 MARKS.

Bloom's Cognitive Levels of Learning (BCLL)

Remember	L1	Apply	L3	Evaluate	L5
Understand	L2	Analyze	L4	Create	L6

- 1. a) Show that u=x+y+z, v=xy+yz+zx, $w=x^2+y^2+z^2$ are functionally dependent L3 CO1 [7M] and hence find the relation between them.
 - b) A rectangular box open at the top is to have volume of 32 cubic feet. Find the L5 CO1 [7M] dimensions of the box requiring least material for its construction.
- 2. a) Solve $\left(1+e^{\frac{x}{y}}\right)dx+\left(1-\frac{x}{y}\right)e^{\frac{x}{y}}dy=0$
 - b) A body is originally at $80^{\circ}c$ and cools down to $60^{\circ}c$ in 20 minutes. If the ^{L4 CO2} [7M] temperature of the air is $40^{\circ}c$, find the temperature of the body after 40 minutes.
- 3. a) Solve the differential equation $(D^2 5D + 6) = e^x sinx$ b) Solve $(D \dot{c} \dot{c} 2 + 4) y = \tan 2x \dot{c}$ by the method of variation of parameters

 L3 CO3 [7M]
- 4. a) Find root of the equation $f(x) = e^x 3x$ using Newton Raphson method that L3 CO4 [7M] lies between 0 and 1.
 - b) Find the polynomial f(x) by using Lagrange's formulae and hence find f(3) L3 CO4 [7M] x: 0 1 2 3 y: 2 3 12 147
- 5. a) Using Taylor's series method, find an approximate value of y at x=0.2 for the L4 CO5 [7M] differential equation $y'-2y=3e^x$ for y (0) = 0.
 - b) Find y (0.1) using Runge- Kutta fourth order formula , given that $y' = x + x^2 y$ L4 CO5 [7M]

and
$$y(0) = 1$$

6. a)
$$L^{-1}\left\{\frac{1}{s(s+2)^3}\right\}$$

b) State Convolution theorem on Laplace Transform and hence find the Inverse CO6 Laplace Transform of $\frac{1}{s(s^2+a^2)}$

7. a) If
$$u = log \left(\frac{x^2 + y^2}{x + y} \right)$$
, prove that $xu_x + yu_y = 1$

b) Solve
$$x \frac{dy}{dx} + y = \log x$$

c) Solve
$$(D^3+1)_{y=\cos 2x}$$

- a) If $x^3-x-4=0$, then by Bisection method find first two approximations $x_0 \wedge x_1$ CO4 [5M]
 - If $\frac{dy}{dx} = x y$, y (0) = 1 find y (0.1) by Euler's method. CO₅ [5M]
 - Find the Laplace Transform of $\left(\frac{sint}{t}\right)$ L3 CO6 [4M]