Применение метода суперкомпиляции для специализации реляционных программ

Мария Куклина, М4236

Университет ИТМО Научный руководитель: Близнец Иван Александрович Научный консультант: Вербицкая Екатерина Андреевна 2020

Реляционное программирование

Определение

Вид декларативного программирования, в котором программы представляются как набор отношений между аргументами.

Пример

Пример запросов для отношения умножения $\operatorname{mul}^o \subseteq \operatorname{Int} \times \operatorname{Int} \times \operatorname{Int}$:

- \bullet mul $^{o}(2, 2, 4)$ проверка корректности отношения.
- $mul^{o}(2, 2, C)$ поиск всех C, таких что 2 * 2 = C.
- $mul^{o}(A, 1, 4)$ поиск всех A, таких что A * 1 = 1.
- $\operatorname{mul}^o(A, B, C)$ поиск всех троек A, B, C, таких что A * B = C.

miniKanren

Встраиваемый предметно-ориентированный язык реляционного программирования 1 .

Применение

- Легковесная логическая подсистема проекта.
- Поиск лечения редких генетических заболеваний в точной медицине².
- Генерация программ по спецификации входов и выходов на основе реляционного интерпретатора.
- Порождение решения задач поиска по решению задачи распознавания³.

¹ "Relational Programming in miniKanren: Techniques, Applications, and Implementations", Byrd, 2009

² "The Algorithm for Precision Medicine (Invited Talk)", Might, 2019

³ "Relational Interpreters for Search Problems", Lozov, Verbitskaia и Boulytchev, 2019

Постановка проблемы

- Сложные алгоритмы в miniKanren работают медленно.
- Поиск входов по выходам отношения работает значительно медленнее, чем "прямой" запуск.

Примеры

- Программы, порождённые инструментом по трансляции из функционального языка в miniKanren⁴.
- Порождение решения задач поиска.

^{4 &}quot;Typed Relational Conversion", Lozov P., 2018

Специализация

Определение

Автоматизированная техника оптимизации программ, при которой из программы удаляются избыточные вычисления, зависимые от частично известного входа 5 .

- Частичная дедукция класс методов специализации для логический языков, в частности, для Prolog.⁶
- Специализация miniKanren на основе конъюнктивной частичной дедукции (CPD)⁷.
 - Сложна в поддержке, даёт нестабильные результаты.
 - Однако предоставляет библиотеку для построения специализаторов.

 $^{^{\}mathbf{5}}$ Partial evaluation and automatic program generation, Jones, Gomard и Sestoft, 1993

⁶ Advanced Techniques for Logic Program Specialisation, Leuschel, 1997

⁷ "Relational Interpreters for Search Problems", Lozov, Verbitskaia и Boulytchev, 2019

Суперкомпиляция

Определение

Техника автоматической трансформации и анализа программ, при которой программа символьно исполняется с сохранением истории вычислений, на основе которой принимаются решения о трансформации и оптимизации.

- Суперкомпиляторы применяются во основном для функциональных языков⁸.
- Суперкомпиляция позволяет достичь не более чем линейного ускорения⁹
- ullet Полуавтоматическая суперкомпиляция для Prolog^{10} .
- Теоретические доводы для автоматической суперкомпиляции для Prolog^9 .

⁸ "Introduction to Supercompilation", Sørensen и Glück, 1998

 $^{^{9}}$ Turchin's Supercompiler Revisited - An operational theory of positive information propagation, Sørensen, 1996

¹⁰ A Prolog Positive Supercompiler, Diehl, 1997

Цели и задачи

Цель

Улучшение результатов специализации реляционных программ путём применения метода суперкомпиляции.

Задачи

- Реализовать базовый суперкомпилятор для miniKanren.
- Рассмотреть возможные методы улучшения получившегося суперкомпилятора.
- Протестировать результаты и сравнить их с результатами CPD и с оригинальными программами.

Суперкомпиляция для miniKanren

Рис.: Схема алгоритма суперкомпиляции

— библиотека по специализации miniKanren с дополнениями
— собственная разработка

Особенности шага развёртки для miniKanren

Развёртка определяет шаг символьного вычисления в суперкомпиляторе, на котором порождается множество возможных состояний программы.

Значимые отличия

- Несколько возможных шагов вычисления.
- Допускается переупорядочивание элементов выражения.

Результаты задачи

- Реализован базовый алгоритм суперкомпиляции.
 - Развёртка рассматривает все возможные состояния.
 - Используемый алгоритм обобщения основан на алгоритме для конъюнктивной частичной дедукции, для которого доказана терминируемость.
- Разработан и реализован алгоритм построения оптимизированной программы по графу суперкомпиляции.

Улучшение суперкомпиляции для miniKanren

Проблемы

- Повторение символьных вычислений из-за стратегии свёртки.
- Классическое использование обобщения может приводить к избыточным вычислениям.
 - Существует техника обобщения, описанная в статья x^{11} .
 - Придумана специфичная для miniKanren техника обощения.
- Тривиальная стратегия вычисления порождает слишком много ветвей исполнения.
- В используемой реализации miniKanren нет способа эффективно сообщить, что можно прервать вычисление.

¹¹ "Introduction to Supercompilation", Sørensen и Glück, 1998

Результаты задачи

- Применены подходы по улучшению алгоритма суперкомпиляции.
 - Добавлено кэширование.
 - Реализованы модификации обобщения.
 - Проанализированы и реализованы допустимые стратегии вычисления.
- Расширение библиотеки для специализации неравенствами.
- Расширение суперкомпилятора, при котором учитывается "негативная" информация.

Тестирование

Реализация miniKanren: проект OCanren¹²

Реализация CPD для miniKanren: проект uKanren_transformations¹³

Реализация CPD для Prolog: проект ECCE¹⁴

Платформа: Intel Core i5-6200U CPU, 2.30GHz, DDR4, 12GiB.

Сценарий тестирования:

- Суперкомпиляция тестовой программы.
- Трансляция остаточной программы в OCanren.
- 3 Замер времени исполенения.
- Сравнение времени исполнения с оригинальной программой и реализациями CPD.

 $^{^{\}bf 12} {\tt https://github.com/JetBrains-Research/OCanren}$

¹³ https://github.com/kajigor/uKanren_transformations/

¹⁴https://github.com/leuschel/ecce

Тестирование

Программы для тестирования

- sort Алгоритм реляционной сортировки.

 Запрос : сортировка случайного списка длины 50
- isPath Проверка принадлежности пути графу. Запрос: поиск произвольного пути длины 10, принадлежащих графу с 21 вершиной и 50 рёбрами.
- logint Реляционный интерпретатор формул логики высказываний.

 Запрос: поиск 1000 истинных формул в данной
 - запрос: поиск 1000 истинных формул в даннои подстановке.
 - lam Реляционный интерпретатор лямбда-выражений. Запрос: поиск n термов, сводящихся к указаной форме.

Результаты тестирования

Базовый суперкомпилятор

Параметр	Оригинал	ECCE	CPD	Суперкомп.		
sort	случайный список длины 50					
	8.42	12.28	13.2	0.28		
isPath	произвольный путь длины 10					
граф 1	> 300	9	10	0.25		
граф 2		2.7	2.8	0.1		
logint	размер подстановки					
0	> 300	0.17	2.7	0.09*		
1		0.09	1.7	0.07*		
lam	редуцируются					
10 термов к себе	0.17	0.001	0.008	0.002		
50 термов к себе	> 300	2.98	4.32	1.89		
1000 термов к const	1.01	0.126	0.263	0.274		

Рис.: Тестовые результаты, секунды

Результаты тестирования

Улучшения

Программа: генерация все пар термов и типов, соответствующие заданной спецификации.

Оригинал: 4.10s

Ecce: 0.28s

Стратегия	Базовый	M.1	M.2	M.3
Full	-	0.72	1.44	1.38
Seq	0.11	0.14	0.08	0.08
Non-rec	0.07	0.08	0.07	0.07
Rec	0.15	0.13	0.11	0.11
Min	0.20	0.12	0.12	0.11
Max	0.09	0.14	0.10	0.12

Рис.: Сравнение модификаций, секунды

Результаты работы

- Реализован и протестирован суперкомпилятор для задачи специализации.
- Применены подходы по улучшению качества суперкомпиляции для задачи специализации.
- Добавлены ограничения неравенства в библиотеку по специализации.
- Исправление багов библиотеки для специализации.

Спасибо за внимание!

- Работа будет представлена во второй половине мая на воркшопе по трендам логического программирования TEASE-LP.
- Ссылка на репозиторий: https://github.com/RehMaar/uKanren-spec