

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

ПРАКТИЧЕСКАЯ РАБОТА №5

по дисциплине «Теория принятия решений» Симплексный метод

гудент группы: <u>ИКБО-42-23</u>	Голев С.С
•	(Ф. И.О. студента)
Преподаватель	Железняк Л.М.
	$(\Phi M O)$ nnenodakame $\pi\pi$

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 СИМПЛЕКСНЫЙ МЕТОД	
1.1 Постановка задачи	4
1.2 Математическая модель задачи	4
1.3 Результат работы программы	11
ЗАКЛЮЧЕНИЕ	12
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	13
ПРИЛОЖЕНИЯ	14

ВВЕДЕНИЕ

Симплексный метод — это один из наиболее распространённых и эффективных алгоритмов решения задач линейного программирования. Он был разработан Джорджем Данцигом в 1947 году и используется для нахождения оптимального решения линейной целевой функции при наличии системы линейных ограничений.

Метод применяется в задачах, где требуется найти наилучшее распределение ограниченных ресурсов (времени, материалов, труда и т.д.) между различными видами деятельности с целью максимизации прибыли или минимизации затрат. Классические примеры применения симплексного метода — это задачи планирования производства, логистики, распределения ресурсов, управления проектами и другие экономико-математические задачи.

Суть метода заключается в последовательном переходе от одной допустимой вершины области решений к другой, улучшая значение целевой функции на каждом шаге, пока не будет достигнут оптимум. Симплексный метод является итерационным и хорошо масштабируется для задач с большим числом переменных и ограничений.

1 СИМПЛЕКСНЫЙ МЕТОД

1.1 Постановка задачи

Задание 8. Решить прямую ЗЛП с помощью симплексного метода и обратную с помощью теорем двойственности. Определить интервалы устойчивости.

Задача. Для изготовления четырех видов продукции A, B, C и D используются три вида ресурсов I, II, III. Дальнейшее условие задачи в таблице П.8.

	Нор	мы расх	Запасы		
Ресурсы	еди	ницу пр	одукции	, ед.	ресурсов, ед.
	A	В	C	D	
I	2	1	0,5	4	3400
II	1	5	3	0	1200
III	3	0	6	1	3000
Прибыль от единицы	7,5	3	6	12	
продукции, ден. ед.					

Таблица П.8. Исходные данные задачи.

Требуется определить план выпуска продукции, при котором прибыль от ее реализации будет максимальной.

1.2 Математическая модель задачи

Пусть x_1 – тип ресурса A, x_2 –тип ресурса B, x_3 –тип ресурса C, x_4 – тип ресурса D. Прибыль от продажи шкафов составит $7.5x_1 + 3x_2 + 6x_3 + 12x_4$, прибыль требуется максимизировать.

Ограничения задачи:

$$\begin{cases} 2x_1 + x_2 + 0.5x_3 + 4x_4 \le 3400 \\ x_1 + 5x_2 + 3x_3 \le 1200 \\ 3x_1 + 6x_3 + x_4 \le 3000 \end{cases}$$

Таким образом, переходим к задаче линейного программирования:

$$f(x) = 7.5x_1 + 3x_2 + 6x_3 + 12x_4 \rightarrow max$$

$$\begin{cases} 2x_1 + x_2 + 0.5x_3 + 4x_4 \le 3400 \\ x_1 + 5x_2 + 3x_3 \le 1200 \\ 3x_1 + 6x_3 + x_4 \le 3000 \\ xi \ge 0, \quad 1 \le i \le 4 \end{cases}$$

Приведем задачу к канонической форме. Для этого в левые части ограничений вводим дополнительные переменные: $x_5 \ge 0, x_6 \ge 0, x_7 \ge 0$. Эти переменные выбираются так, чтобы они обращали неравенства в равенства.

$$\begin{cases} 2x_1 + x_2 + 0.5x_3 + 4x_4 + x_5 = 3400 \\ x_1 + 5x_2 + 3x_3 + x_6 = 1200 \\ 3x_1 + 6x_3 + x_4 + x_7 = 3000 \\ xi \ge 0, \quad 1 \le i \le 7 \end{cases}$$

$$f(x) = 7.5x_1 + 3x_2 + 6x_3 + 12x_4 + 0x_5 + 0x_6 + 0x_7$$

Построим начальную симплекс-таблицу. Запишем систему в векторной форме:

$$\begin{split} A_1x_1 \ + \ A_2x_2 \ + A_3x_3 \ + \ A_4x_4 \ + \ A_5x_5 \ + \ A_6x_6 + A_7x_7 &= \ A_0, \\ A_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, A_2 = \begin{pmatrix} 1 \\ 5 \\ 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0.5 \\ 3 \\ 6 \end{pmatrix}, A_4 = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}, A_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, A_7 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \\ A_7 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, A_0 = \begin{pmatrix} 3400 \\ 1200 \\ 3000 \end{pmatrix} \end{split}$$

Векторы A_5 , A_6 , A_7 являются линейно независимыми единичными векторами 3x-мерного пространства и образуют базис этого пространства.

Поэтому за базисные переменные выбираем переменные x5, x6, x7. Небазисными переменными являются x_1 , x_2 , x_3 , x_4 . Разложение позволяет найти первое базисное допустимое решение.

Для этого свободные переменные x_1 , x_2 , x_3 , x_4 приравниваем нулю. В результате получим разложение

$$A_5x_5 + A_6x_6 + A_7x_7 = A_0$$

Которому соответствует первоначальный опорный план

$$\mathbf{x}^{(0)} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_6, \mathbf{x}_6, \mathbf{x}_7) = (0,0,0,0,3400,1200,3000),$$

$$f(\mathbf{x}^{(0)}) = 0.$$

Для проверки плана $x^{(0)}$ на оптимальность построим первую симплекстаблицу. Введем в рассмотрение вектор коэффициентов целевой функции при базисных переменных.

$$\overline{C_B} = (c4, c5, c6)^T = (0,0,0)^T.$$

В левый столбец Таблицы 5.2 запишем переменные x_5 , x_6 , x_7 образующие базис, в верхней строке — небазисные переменные x_1 , x_2 , x_3 , x_4 . В строке c_1 запишем коэффициенты целевой функции, соответствующие небазисным переменным $c_1 = 9$, $c_2 = 3$, $c_3 = 6$, $c_4 = 12$. В столбце $\overline{C_B}$ запишем коэффициенты целевой функции, соответствующие базисным переменным Столбец, определяемый переменной x_1 , состоит из коэффициентов вектора $\overline{A_1}$. Аналогично, столбец, определяемый переменной x_2 , состоит из коэффициентов вектора $\overline{A_2}$. Аналогично, столбец, определяемый переменной x_3 , состоит из коэффициентов вектора $\overline{A_3}$. И столбец, определяемый переменной x_4 состоит из коэффициентов вектора $\overline{A_3}$. И столбец, определяемый переменной x_4 состоит из коэффициентов вектора $\overline{A_4}$ Крайний правый столбец заполняется элементами столбца $\overline{A_0}$, в нем же в результате вычислений получаем оптимальный план.

Заполнение f-строки (Таблица 1.3). Найдем относительные оценки Δ_1 , Δ_2 , Δ_3 , Δ_4 и значение целевой функции Q.

$$\Delta_1 = (\overline{C_B} * \overline{A_1}) - c_1 = 0 * 2 + 0 * 1 + 0 * 3 - 7.5 = -7.5;$$

$$\Delta_{2} = (\overline{C_{B}} * \overline{A_{2}}) - c_{2} = 0 * 1 + 0 * 5 + 0 * 0 - 3 = -3;$$

$$\Delta_{3} = (\overline{C_{B}} * \overline{A_{3}}) - c_{3} = 0 * 0.5 + 0 * 3 + 0 * 6 - 6 = -6;$$

$$\Delta_{4} = (\overline{C_{B}} * \overline{A_{4}}) - c_{4} = 0 * 4 + 0 * 0 + 0 * 1 - 12 = -12;$$

$$Q = (\overline{C_{B}} * \overline{A_{0}}) = 0 * 3400 + 0 * 1200 + 0 * 3000 = 0.$$

Таблица 1.2 – Начальная симплекс-таблица задачи о максимальном доходе

	c_{j}	7.5	3	6	12	
$\overline{C_B}$		X_1	X_2	X_3	X_4	$\overline{A_0}$
0	X ₅	2	1	0.5	4	3400
0	X_6	1	5	3	0	1200
0	X ₇	3	0	6	1	3000
	f					
	,	Δ_1	Δ_2	Δ_3	Δ_4	Q

Таблица 1.3 – Заполнение f-строки

11.0 30,110	3111011110	j empe.					
	c_{j}	7.5	3	6	12		
$\overline{C_B}$		X_1	X_2	X ₃	X_4	$\overline{A_0}$	
0	X_5	2	1	0.5	4	3400	3400 / 4 = 850 min
0	X_6	1	5	3	0	1200	не имеет смысла
0	X ₇	3	0	6	1	3000	3000 / 1 = 3000
	f	-7.5	-3	-6	-12	0	
		Δ_1	Δ_2	Δ_3	Δ_4	Q	

Для оптимальности опорного решения в задаче на максимум требуется выполнение неотрицательности всех относительных оценок $\Delta i \geq 0$. Так как оценки $\Delta_1 = -9$, $\Delta_2 = -11$, $\Delta_3 = -15$ и $\Delta_4 = -12$ в f-строке отрицательны, то это свидетельствуют о возможности улучшения полученного решения. Наибольшая по модулю отрицательная оценка $\Delta_4 = -12$. В базис будет включена соответствующая ей небазисная переменная x_4 . Составим отношения свободных членов к положительным элементам разрешающего столбца. Данные отношения приведены справа от таблицы. Наименьшему частному соответствует строка с переменной x_5 . Эта переменная исключается из базиса. В Таблице 1.3

разрешающий столбец и разрешающая строка выделены. Разрешающим элементом является число $a_{14}=4$.

Далее построим новую симплекс-таблицу. Ниже поэтапно демонстрируется процесс заполнения новой симплекс-таблицы (Таблицы 1.4).

Таблица 1.4 – Новая симплекс-таблица

	c_{j}	7.5	3	6	0	
$\overline{C_B}$		X_1	X_2	X_3	X_5	$\overline{A_0}$
12	X4				1/4	
0	X_6					
0	X ₇					
	f					
		Δ_1	Δ_2	Δ_3	Δ_4	Q

В Таблице 1.4 переменные x_4 и x_5 меняются местами вместе с коэффициентами cj. Разрешающий элемент заменяется на обратный. В Таблице 1.5 элементы разрешающей строки делятся на разрешающий элемент. Элементы разрешающего столбца делятся на разрешающий элемент и меняют знак.

Таблица 1.5 – Симплекс преобразования

ene npeoor						
	c_{j}	7.5	3	6	0	
$\overline{\mathcal{C}_B}$		X_1	X_2	X_3	X_5	$\overline{A_0}$
12	X_4	1/2	1/4	1/8	1/4	850
0	X_6				0	
0	X ₇				-1/4	
	f				3	
		Δ_1	Δ_2	Δ_3	Δ_4	Q

Таблица 1.6 – Итерация 0

,	c_j	7.5	3	6	0		
$\overline{C_B}$		X_1	X_2	X_3	X_5	$\overline{A_0}$	
12	X_4	1/2	1/4	1/8	1/4	850	850 / 1/8 = 6800
0	X ₆	1	5	3	0	1200	1200 / 3 = 400
0	X ₇	2.5	-0.25	5.875	-1/4	2150	2150 / 5.875 = 365 <i>min</i>
	f	-1.5	0	-4.5	3	10200	
		Δ_1	Δ_2	Δ_3	Δ_4	Q	

Остальные элементы (Таблица 1.6) рассчитываются по «правилу прямоугольника».

$$a_{21} = \frac{(1*4) - (2*0)}{4} = 1; \ a_{22} = \frac{(5*4) - (1*0)}{4} = 5;$$

$$a_{23} = \frac{(3*4) - (0.5*0)}{4} = 3; \ a_{31} = \frac{(3*4) - (2*1)}{4} = 2.5;$$

$$a_{32} = \frac{(0*4) - (1*1)}{4} = -0.25; \ a_{33} = \frac{(6*4) - (0.5*1)}{4} = 5.875;$$

$$a_{25} = \frac{(1200*4) - (3400*0)}{4} = 1200; \ a_{35} = \frac{(3000*4) - (1*3400)}{4} = 2150;$$

$$\Delta_1 = \frac{(-7.5 * 4) - (-12 * 2)}{4} = -1.5;$$

$$\Delta_2 = \frac{(-3 * 4) - (-12 * 1)}{4} = 0;$$

$$\Delta_3 = \frac{(-6 * 4) - (-12 * 0.5)}{4} = -4.5;$$

Базисное решение, которое дает последняя таблица

$$\mathbf{x}^{(1)} = (\mathbf{x}1, \mathbf{x}2, \mathbf{x}3, \mathbf{x}4, \mathbf{x}5, \mathbf{x}6, \mathbf{x}7) = (0, 0, 0, 850, 0, 1200, 2150),$$

 $f(\mathbf{x}^{(1)}) = (\overline{C_B} * \overline{A_0}) = 850 * 12 + 0 * 1200 + 0 * 2150 = 10200.$

Это решение не является оптимальным, так как в f-строке имеются отрицательные оценки $\Delta_1,\,\Delta_3.$

Таблица 5.7 – Итерация 1

icjei 5.7		eparçust 1					_
	c_{j}	7.5	3	0	0		
$\overline{C_B}$		X_1	X_2	X_7	X_5	$\overline{A_0}$	
12	X_4	0,45	0,25	-0,02	0,25	804	804/0.25 = 3654
0	X_6	-0,28	5,13	-0,51	0,126	102	102/5 = 51 min
6	X ₃	0,42	-0,042	0,17	-0,042	365	-1
	f	0,41	-0,19	0,77	2,811	11847	
		Δ_1	Δ_2	Δ_3	Δ_4	Q	

Таблица 5.7 – Итерация 4

<i>F</i> ,	c_{j}	7.5	3	0	0	
$\overline{C_B}$		X_1	X_6	X ₇	X_5	$\overline{A_0}$
12	X_4	0,45	-0.05	0	0,25	799
3	X_2	-0,05	0.2	-0,1	0,02	20
6	X_3	0,42	0	0,17	-0,04	367
	f	0,40	0.04	0,75	2,81	11851
		Δ_1	Δ_2	Δ_3	Δ_4	Q

Если в последней таблице f-строке не содержит отрицательных оценок, то это свидетельствует об оптимальности полученного решения:

Подставляем базисное решение, которое дает последняя таблица

$$x^{(4)} = (x1, x2, x3, x4, x5, x6, x7) = (0, 20, 367, 799, 0, 0, 0),$$

Где п – количество итераций

$$f(x^{(4)}) = (\overline{C_B} * \overline{A_0}) = 12 * 799 + 3 * 20 + 367 * 6 = 11851.$$

Проверим решение по «правилу прямоугольника».

$$f_{max} = Q = (\overline{C_B} * \overline{A_0}) = \frac{(11847 * 5.13) - ((-0.19) * 102)}{5.13} = 11851.$$

Таким образом, фабрика должна выпускать в течении недели $x_4 = 800$ шт. шкафов продукции D, $x_2 = 20$ шт. шкафов продукции B, и $x_3 = 367$ шт. продукции типа C. Тогда фабрика получит максимальный доход от продажи

1.3 Результат работы программы

Вводимая пер									
Итерация 1									
base x4 x6 x7 f	x1 0.50 1.00 2.50 -1.50	x2 0.25 5.00 -0.25 0.00	x3 0.12 3.00 5.88 -4.50	x4 1.00 0.00 0.00 0.00	x5 0.25 0.00 -0.25 3.00	x6 0.00 1.00 0.00 0.00	x7 0.00 0.00 1.00 0.00	A 850.00 1200.00 2150.00 10200.00	
Вводимая первыводимая пе									
base x4 x6 x3 f	x1 0.45 -0.28 0.43 0.41	x2 0.26 5.13 -0.04 -0.19	x3 0.00 0.00 1.00 0.00	x4 1.00 0.00 0.00 0.00	x5 0.26 0.13 -0.04 2.81	x6 0.00 1.00 0.00 0.00	x7 -0.02 -0.51 0.17 0.77	A 804.26 102.13 365.96 11846.81	
Вводимая пер				====					
итерация 3 base x4 x2 x3 f x4: 799.17 x2: 19.92 x3: 366.80	X1 0.46 -0.05 0.42 0.40	x2 0.00 1.00 0.00 0.00	x3 0.00 0.00 1.00 0.00	x4 1.00 0.00 0.00 0.00	x5 0.25 0.02 -0.04 2.81	x6 -0.05 0.20 0.00 0.04	x7 0.00 -0.10 0.17 0.75	A 799.17 19.92 366.80 11850.62	

Рисунок 1 – Результат работы программы

ЗАКЛЮЧЕНИЕ

В ходе выполнения практической работы была решена задача линейного программирования, связанная с оптимизацией производства подшипников двух типов. На основании исходных данных была составлена математическая модель: целевая функция, отражающая прибыль, и система ограничений, описывающих доступное время работы оборудования. Затем задача была приведена к канонической форме, после чего решена с использованием симплексного метода.

Симплексный метод продемонстрировал свою эффективность для данной задачи, позволив найти оптимальное распределение ресурсов, максимизирующее прибыль предприятия.

К основным преимуществам симплексного метода можно отнести: высокую точность при решении линейных задач; чёткую пошаговую процедуру, удобную для алгоритмизации; возможность применения к задачам с большим числом переменных и ограничений.

Однако у метода есть и недостатки: чувствительность к численным ошибкам при большом количестве итераций; неэффективность при решении задач с огромным числом переменных; невозможность применения к задачам с нелинейными ограничениями или целевой функцией.

В целом, симплексный метод остаётся универсальным и надёжным инструментом для решения широкого класса прикладных задач линейного программирования.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Болотова Л. С. Многокритериальная оптимизация. Болотова Л. С., Сорокин А. Б. [Электронный ресурс] / Метод. указания по вып. курсовой работы М.: МИРЭА, 2015.
- 2. Сорокин А. Б. Методы оптимизации: гибридные генетические алгоритмы. Сорокин А. Б. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2016.
- 3. Сорокин А. Б. Линейное программирование: практикум. Сорокин А. Б., Бражникова Е. В., Платонова О. В. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2017.

приложения

Приложение A – Код реализации симплексного метода на языке Python.

Приложение А

Код реализации симплексного метода на языке Python

Листинг А.1. Реализация симплексного метда.

```
import numpy as np
def print table(table, basis, columns, iteration):
        print(f"\n{'='*50}\nMтерация {iteration}\n{'='*50}")
        header = ["base"] + columns
        rows = []
         for i in range(len(table)-1):
                  row = [basis[i]] + [f"{val:.2f}" if abs(val) >= 0.01 else "0.00" for val
in table[i]]
                  rows.append(row)
         rows.append(["f"] + [f"{val:.2f}" for val in table[-1]])
         for row in [header] + rows:
                 print("{: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8
>8} | {: >12}".format(*row))
def simplex method():
         num vars = 4
         num slack = 3
         columns = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'A']
        basis = ['x5', 'x6', 'x7']
         iteration = 1
         table = np.array([
                  [2, 1, 0.5, 4, 1, 0, 0, 3400],
                  [1, 5, 3, 0, 0, 1, 0, 1200],
                  [3, 0, 6, 1, 0, 0, 1, 3000],
                  [-7.5, -3, -6, -12, 0, 0, 0, 0]
         ], dtype=float)
        print table(table, basis, columns, 0)
         while True:
                  z row = table[-1, :-1]
                  if all(z row \geq 0):
                           break
                  entering col = np.argmin(z row)
                 print(f"\nВводимая переменная: {columns[entering col]}")
                  ratios = []
                  for row in table[:-1]:
                           if row[entering col] > 0:
                                    ratios.append(row[-1] / row[entering col])
                           else:
                                   ratios.append(np.inf)
                  exiting row = np.argmin(ratios)
                 print(f"Выводимая переменная: {basis[exiting row]}")
                 pivot = table[exiting row, entering col]
                 table[exiting row] = table[exiting row] / pivot
                  for i in range(len(table)):
                           if i != exiting row:
                                   factor = table[i, entering col]
                                   table[i] -= factor * table[exiting row]
                 basis[exiting row] = columns[entering col]
                 print table(table, basis, columns, iteration)
                 iteration += 1
         for var, val in zip(basis, table[:-1, -1]):
                 print(f"{var}: {val:.2f}")
         print(f"Максимальная прибыль: {table[-1, -1]:.2f} ден. ед.")
simplex method()
```