Reformulate the problem

minimize
$$2x_1 + 3|x_2 - @a@|$$

subject to $|x_1 + 2| + x_2 \le 5$,

as a linear programming problem by replacing the argument x_k of each absolute value $|x_k|$ as the difference of two new non-negative decision variables p_k and m_k , expressing its absolute value as their sum. Then put the problem into standard form, by introducing s slack variables x_k as needed, where $k = n + 1 \dots n + s$ and n is the number of original decision variables. Please retain all constants in the cost function, so that the standard-form cost agrees with the cost in the original problem.

minimize [[input:cost]] subject to [[input:constraint]], [[input:variables]] ≥ 0 ,

Let $x_1 + 2 = p_1 - m_1$ and replace $|x_1 + 2|$ by $p_1 + m_1$. Let $x_2 - @a@ = p_2 - m_2$, replacing $|x_2 - @a@|$ with $p_2 + m_2$. We obtain the equivalent linear programming problem