Chapter 1

Introduction

Here, I will do the exercises in the book from calculus to cohomology.

Exercise 1.1. Is there a smooth function $F: U \to \mathbb{R}$, such that

$$\frac{\partial F}{\partial x_1} = f_1, \ \frac{\partial F}{\partial x_2} = f_2, \ f = (f_1, f_2)$$

Proof.

$$\frac{\partial^2 F}{\partial x_1 \partial x_2} = \frac{\partial^2 F}{\partial x_2 \partial x_1} \implies \frac{\partial f_1}{\partial x_2} = \frac{\partial f_2}{\partial x_1}$$

Is the above condition sufficient?

Exercise 1.2. The answer is no.

For example, we set $f = (f_1, f_2)$ as follows:

$$f_1 = \frac{-x_2}{x_1^2 + x_2^2}, \ f_2 = \frac{x_1}{x_1^2 + x_2^2}$$

Proof.

$$\frac{\partial f_1}{\partial x_2} = \frac{\partial f_2}{\partial x_1} = \frac{x_2^2 - x_1^2}{(x_1^2 + x_2^2)^2}$$

Definition 1.3. A subset $X \subset \mathbb{R}^n$ is said to be *star-shaped* with respect to the point $x_0 \in X$ is the line segment $\{tx_0 + (1-t)x \mid t \in [0,1]\}$ is contained in X for all $x \in X$.

Exercise 1.4. If X is a star-shaped space, then the solution of Exercise 1 is affirmative.

Proof. WLOG, $x_0 = 0$. Let $G(t) = F(tx_1, tx_2)$, then

$$G(t) = \int_0^t \frac{\partial G(s)}{\partial s} ds = \int_0^t x_1 f_1(sx_1, sx_2) + x_2 f_2(sx_1, sx_2) ds$$

as we desired. \Box

Remark 1.5. Star-shaped space is "contractible" (topological property).

Definition 1.6. Let $U \subset \mathbb{R}^k$ and $C^{\infty}(U, \mathbb{R}^k)$ be the set of smooth functions $\phi: U \to \mathbb{R}^k$. For k = 2, we define the *gradient* and *rotation*

grad:
$$C^{\infty}(U,\mathbb{R}) \to C^{\infty}(U,\mathbb{R}^k)$$
, rot: $C^{\infty}(U,R^2) \to C^{\infty}(U,\mathbb{R})$

Proposition 1.7.

$$rot \circ grad = 0$$

Definition 1.8.

$$H^1(U) = \ker(\text{rot})/\text{im}(\text{grad})$$

Remark 1.9. We have the following fact:

$$H^1\left(\mathbb{R}^2 - \bigcup_{i=1}^k \{x_i\}\right) \cong \mathbb{R}^k$$

$$\implies h^1\left(\mathbb{R}^2 - \bigcup_{i=1}^k \{x_i\}\right) = \#\{\text{holes}\}$$

Definition 1.10. We can define the *gradient* for $U \subset \mathbb{R}^k$ with $k \geq 1$ as follows

$$\operatorname{grad}(f) = \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right)$$

Definition 1.11.

$$H^0(U) = \ker \left(\operatorname{grad} \right)$$

Remark 1.12.

$$0 \longrightarrow C^{\infty}(U,\mathbb{R}) \xrightarrow{\operatorname{grad}} C^{\infty}(U,\mathbb{R}^2) \xrightarrow{\operatorname{rot}} C^{\infty}(U,\mathbb{R})$$

Definition 1.13. An open set $U \subset \mathbb{R}^k$ is connected if and only if $H^0(U) = \mathbb{R}$.

Proof. If grad(f) = 0, then f is locally constant. Hence, $f^{-1}(f(x_0))$ is open and closed, hence, the connected component of U, which is exactly U itself.

Remark 1.14.

$$h^0(U) = \#\{\text{the component of } U\}$$

Definition 1.15. When k = 3, we define the concept of gradient, rotation, divergence.

grad :
$$C^{\infty}(U, \mathbb{R}) \to C^{\infty}(U, \mathbb{R}^3)$$

rot : $C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R}^3)$
div : $C^{\infty}(U, \mathbb{R}^3) \to C^{\infty}(U, \mathbb{R})$

which is defined by

$$\operatorname{grad}(f) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial x_3}\right)$$
$$\operatorname{rot}(f_1, f_2, f_3) = \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}, \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}, \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right)$$
$$\operatorname{div}(f_1, f_2, f_3) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} + \frac{\partial f_3}{\partial x_3}.$$

Proposition 1.16. The sequence below

$$0 \longrightarrow C^{\infty}(U,\mathbb{R}) \xrightarrow{\operatorname{grad}} C^{\infty}(U,\mathbb{R}^3) \xrightarrow{\operatorname{rot}} C^{\infty}(U,\mathbb{R}^3) \xrightarrow{\operatorname{div}} C^{\infty}(U,\mathbb{R})$$

is a complex, i.e.

$$rot \circ grad = 0$$
, $div \circ rot = 0$

Definition 1.17.

$$H^2(U) = \ker(\operatorname{div})/\operatorname{im}(\operatorname{rot}).$$

Theorem 1.18. For an open star-shaped set in \mathbb{R}^3 we have that $H^0(U) = \mathbb{R}$, $H^1(U) = 0$ and $H^2(U) = 0$.

Proof. First, grad(f) = 0 implies that f is locally constant. Assume $x_0 = 0$ again, then we can define a function

$$G(t) = F(tx_1, tx_2, tx_3)$$

$$G(t) = \int_0^t (x_1 f_1 + x_2 f_2 + x_3 f_3) ds$$

Then $F(x_1, x_2, x_3) = G(1)$

$$\frac{\partial F}{\partial x_1}\Big|_{(x_1, x_2, x_3)} = \int_0^1 \left(f_1 + tx_1 \frac{\partial f_1}{\partial x_1} + tx_2 \frac{\partial f_2}{\partial x_1} + tx_3 \frac{\partial f_3}{\partial x_1} \right) dt$$

$$= \int_0^1 \left(f_1 + tx_1 \frac{\partial f_1}{\partial x_1} + tx_2 \frac{\partial f_1}{\partial x_2} + tx_3 \frac{\partial f_1}{\partial x_3} \right) dt$$

$$= \int_0^1 \frac{d}{dt} \left(tf_1(tx_1, tx_2, tx_3) \right) dt$$

$$= tf_1(tx_1, tx_2, tx_3)\Big|_{t=0}^1$$

$$= f(x_1, x_2, x_3)$$

For $H^2(U)$,

Chapter 2

Simplicial sets

- 2.1 Triangulated spaces
- 2.1.1 Main Definition