《大学物理 AII》作业 No.03 波的干涉(参考答案)

班级	学号	姓名	成绩	

2、理解波的和 3、理解驻波、 区别。	波节、波腹等概念 员失、半波反射(固	差、波程差等概念, ; 掌握驻波形成条件	掌握干涉相长、干流件、驻波的特征。理解 定射(自由端反射)等	解驻波与行波的
一、填空题				
1、根据波的氢	叠加原理,几列波相	遇,在相遇区域内包	再一点的振动等于 <u></u>	各列波单独存在
时在该点引起	<u>振动的矢量和</u> 。因山	比波的叠加实质就是	:振动的叠加_。	
	波的强度在空间上是		<u>II位差恒定</u> 。满足相 ⁻ 在时间上是 <u>稳定</u>	

- 3、形成驻波的条件是<u>两列振幅相等,在同一直线上沿相反方向传播的相干波叠加</u>;驻波的主要特征在于它是一种稳定的<u>分段振动</u>。振幅恒为 0 的点称为<u>波节</u>,振幅最大的点称为<u>波腹</u>。两波节之间各点振动相位<u>相同</u>,同一波节两侧各点相位<u>相反(相差 π)</u>。
- 4. 机械波在介质中传播,当一介质质元的振动动能的相位是 $\pi/4$ 时,它的弹性势能的相位是 $\pi/4$ 。
- **解**:因为波的动能和势能同相位,所以弹性势能的相位也是 $\pi/4$ 。
- 5. 一个点波源位于 O 点,以 O 为圆心作两个半径分别为 R_1 和 R_2 的同心球面。在两个球

面上分别取相等的面积 ΔS_1 和 ΔS_2 ,则通过它们的平均能流之比 $\overline{P}_1/\overline{P}_2$ =

$$R_2^2/R_1^2$$
 \circ

解: 球面波振幅 $A \propto \frac{1}{r}, \frac{A_1}{A_2} = \frac{R_2}{R_1}$, 又平均能流 $\overline{P} = \frac{1}{2} \rho A^2 \omega^2 u^2 \Delta S_{\perp}$,

所以
$$\frac{\overline{P_1}}{\overline{P_2}} = \frac{{A_1}^2}{{A_2}^2} = \frac{{R_2}^2}{{R_1}^2}$$
。

6. 如图所示, S_1 和 S_2 为同相位的两相干波源,相距为L,P点距 S_1 为r; 波源 S_1 在P

点引起的振动振幅为 A_1 ,波源 S_2 在P点引起的振动

振幅为 A_2 , 两波波长都是 λ , 则P点的振幅A

$$= \sqrt{{A_{1}}^{2} + {A_{2}}^{2} + 2A_{1}A_{2}\cos\left(2\pi\frac{L - 2r}{\lambda}\right)} \quad .$$

解:
$$P$$
 点相位差: $\Delta \varphi = 2\pi \frac{r_2 - r_1}{\lambda} = 2\pi \frac{(L - r) - r}{\lambda} = 2\pi \frac{L - 2r}{\lambda}$, (或者 $\Delta \varphi = 2\pi \frac{2r - L}{\lambda}$)

$$P$$
 点振幅: $A = \sqrt{{A_1}^2 + {A_2}^2 + 2A_1A_2\cos\Delta\varphi} = \sqrt{{A_1}^2 + {A_2}^2 + 2A_1A_2\cos\left(2\pi\frac{L - 2r}{\lambda}\right)}$ 。

二、选择题

1. S_1 和 S_2 是波长均为 λ 的两个相干波的波源,相距 3 λ /4, S_1 的相位比 S_2 落后 π /2。若 两波单独传播时,在过 S_1 和 S_2 的直线上各点的强度相同,不随距离变化,且两波的强度 都是 I_0 ,则在 S_1 、 S_2 连线上 S_1 外侧和 S_2 外侧各点,合成波的强度分别是

$$\mathsf{C}$$

- [C] (A) $4I_0$, $4I_0$.
- (B) $0, 0_{\circ}$
- (C) $0, 4I_0$.
- (D) $4I_0$, 0_{\circ}

 \mathbf{M} : 在 S_1 的外侧,两波源引起的分振动的相位差

$$P S_1 \qquad S_2 \qquad Q \qquad \vec{u}$$

$$l_1 \qquad 3\lambda/4 \qquad l_2$$

$$\Delta \varphi = \varphi_2 - \varphi_1 - 2\pi \frac{r_2 - r_1}{\lambda} = \frac{\pi}{2} - \frac{3\pi}{2} = -\pi$$
 ,

合振动振幅 A=0,波的强度 I=0;

在 S_2 外侧,两波源引起的分振动的相位差 $\Delta \varphi = \varphi_2 - \varphi_1 - 2\pi \frac{r_2 - r_1}{2} = \frac{\pi}{2} + \frac{3\pi}{2} = 2\pi$,

所以合振动振幅 $A = 2A_0$, 波的强度 $I = 4I_0$

2. 沿着相反方向传播的两列相干波, 其波动方程分别为 $y_1 = A \cos 2\pi (vt - x / \lambda)$ 和 $y_2 = A \cos 2\pi (vt + x / \lambda)$ 。在叠加后形成的驻波中,各处的振幅是

 $\begin{bmatrix} \mathbf{D} \end{bmatrix}$ (A) A;

- (B) 2A;
- (C) $2A\cos(2\pi x/\lambda)$;
- (D) $|2A\cos(2\pi x/\lambda)|$.

解: 两列波叠加后形成的驻波方程为

$$y = y_1 + y_2 = 2A\cos\left(2\pi\frac{x}{\lambda}\right)\cos\left(2\pi vt\right) = A(x)\cos\left(2\pi vt\right),$$

振幅为
$$|A(x)| = \left| 2A\cos\left(2\pi\frac{x}{\lambda}\right) \right|$$
。

3. 图示为 t 时刻的某驻波波形曲线。若此时 A 点处媒质质元的振动动能在减小, 则 A 点处媒质质元的振动势能和 B 点处媒质质元的振动动能分别在。

- [A] (A)增大,减小;
- (A)增大,减小; (B) 增大,减小; (C) 减小,减小; (D) 增大,增大。

解:因为 A 点处媒质质元的振动动能在减小,故 A 点此时 沿 v 轴正向运动, 所以其形变在增大, 所以势能在增大; 而 B 点此时沿 v 轴负向运动, 其动能在减小。

4. 有两列沿相反方向传播的相干波,其波动方程分别为 $y_1 = A \cos 2\pi (vt - x / \lambda)$ 和 $y_2 = A\cos 2\pi (vt + x/\lambda)$ 。叠加后形成驻波, 其波节位置的坐标为:

- [D] (A) $x = \pm k\lambda$.
- (B) $x = \pm (2k+1)\lambda/2$
- (C) $x = \pm k\lambda/2$.
- (D) $x = \pm (2k+1)\lambda/4$.

其中的 $k = 0, 1, 2, 3 \cdots$ 。

解: 驻波方程为 $y = y_1 + y_2 = 2A\cos\left(2\pi\frac{x}{\lambda}\right)\cos\left(2\pi vt\right)$

波节处满足:
$$2A\cos\left(2\pi\frac{x}{\lambda}\right) = 0$$
, $\cos\left(2\pi\frac{x}{\lambda}\right) = 0$, $2\pi\frac{x}{\lambda} = \pm(k\pi + \frac{\pi}{2})$, 所以 $x = \pm(2k+1)\frac{\lambda}{4}$ $(k=0,1,2\cdots)$

5. 在弦线上有一简谐波,其表达式为
$$y_1 = 2.0 \times 10^{-2} \cos \left[100 \pi \left(t + \frac{x}{20} \right) - \frac{\pi}{3} \right]$$
 (SI)

为了在此弦线上形成驻波,并且在 x=0 处为一波腹,此弦线上还应有一简谐波,其表达式应为:

[C] (A)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100\pi \left(t - \frac{x}{20} \right) + \frac{\pi}{3} \right]$$
 (SI)

(B)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100\pi \left(t - \frac{x}{20} \right) + \frac{4\pi}{3} \right]$$
 (SI)

(C)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100 \pi \left(t - \frac{x}{20} \right) - \frac{\pi}{3} \right]$$
 (SI)

(D)
$$y_2 = 2.0 \times 10^{-2} \cos \left[100\pi \left(t - \frac{x}{20} \right) - \frac{4\pi}{3} \right]$$
 (SI)

解: 设另一波的波动方程为
$$y_2 = 2.0 \times 10^{-2} \cos \left[100 \pi \left(t - \frac{x}{20} \right) + \varphi \right]$$
, 因为 $x = 0$ 处为一波腹,

所以
$$x=0$$
 处两分振动的相位相同,即: $100\pi\left(t+\frac{0}{20}\right)-\frac{\pi}{3}=100\pi\left(t-\frac{0}{20}\right)+\varphi$,

故
$$\varphi = -\frac{1}{3}\pi$$
。

三、计算题

1. 如图所示, S_1 , S_2 为两平面简谐波相干波源. S_2 的相位比 S_1 的相位超前 $\pi/4$,波长 $\lambda = 8.00$ m, $r_1 = 12.0$ m, $r_2 = 14.0$ m, S_1 、 S_2 在 P 点引起的振动振幅分别为 0.30 m、 0.20 m,求 P 点的合振幅.

解:

$$\Delta \varphi = \varphi_2 - \varphi_1 - \frac{2\pi}{\lambda} (r_2 - r_1)$$

$$= \frac{\pi}{4} - \frac{2\pi}{8} (14 - 12)$$

$$= -\frac{\pi}{4}$$

$$= -\frac{\pi}{4}$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\varphi} = 0.464 \quad (m)$$

2. 设入射波的方程式为 $y_1 = A\cos 2\pi \left(\frac{x}{\lambda} + \frac{t}{T}\right)$, 在 $x = \frac{\lambda}{2}$ 处发生反射,反射点为固定端。

设反射时无能量损失,求:

(1) 反射波的方程式;

(2) 合成的驻波的方程式;

(3) 波腹和波节的位置。

$$\begin{array}{ccc}
& & & & & \\
\hline
O & & \frac{\lambda}{2} & & & \\
\hline
& & &$$

$$y_2(\frac{\lambda}{2}) = A\cos\left[2\pi\left(\frac{\lambda/2}{\lambda} + \frac{t}{T}\right) + \pi\right] = A\cos(2\pi\frac{t}{T}),$$

所以反射波的波动方程为: $y_2 = A\cos\left[2\pi \frac{t}{T} - \frac{2\pi}{\lambda}(x - \frac{\lambda}{2})\right] = A\cos(2\pi \frac{t}{T} - \frac{2\pi}{\lambda}x + \pi)$

(2)合成的驻波的方程式为

$$y = y_1 + y_2 = 2A\cos\left(2\pi\frac{x}{\lambda} - \frac{\pi}{2}\right)\cos\left(2\pi\frac{t}{T} + \frac{\pi}{2}\right)$$

(3) 波腹位置满足: $2\pi \frac{x}{\lambda} - \frac{\pi}{2} = n\pi$ $n = 1, 2, 3 \cdots$,

所以波腹的位置为:
$$x = \frac{1}{2} \left(n + \frac{1}{2} \right) \lambda$$
 $n = 1, 2, 3 \cdots$

波节位置满足
$$2\pi \frac{x}{\lambda} - \frac{\pi}{2} = (2n+1)\frac{\pi}{2}$$
, $n = 1, 2, 3 \dots$, $x = \frac{1}{2}n\lambda$ $n = 1, 2, 3 \dots$

3. 如图所示,一平面简谐波沿 x 轴正方向传播,BC 为波密介质的反射面。波在 P 点反射, $OP = 5\lambda/4$, $DP = \lambda/8$ 。在 t = 0 时,O 处质点的合振动是经过平衡位置向正方向运动。求(1)驻波方程;(2)D 点处的合振动方程。(设入射波和反射波的振幅皆为 A,频率为 v。)

\mathbf{M} : (1) 以 O 点为坐标原点,设入射波方程式为

$$y_1 = A\cos\left[2\pi\left(v\ t - \frac{x}{\lambda}\right) + \varphi\right]$$

入射波在 P 点引起振动的振动方程为

$$y_{1P} = A\cos\left[2\pi\left(v\ t - \frac{5\lambda/4}{\lambda}\right) + \varphi\right] = A\cos\left(2\pi v\ t - \frac{1}{2}\pi + \varphi\right)$$

反射时有半波损失, $y_{2P} = A\cos\left(2\pi v t + \frac{\pi}{2} + \varphi\right)$

反射波方程式为

$$y_2 = A\cos\left[2\pi\left(vt - \frac{5\lambda/4 - x}{\lambda}\right) + \frac{\pi}{2} + \varphi\right] = A\cos\left[2\pi\left(vt + \frac{x}{\lambda}\right) + \varphi\right]$$

合成驻波方程式为

$$y = y_1 + y_2 = 2A\cos\left(2\pi\frac{x}{\lambda}\right)\cos\left(2\pi v \, t + \varphi\right)$$

由题设条件: t=0 时, x=0 处, y=0, 且向 y 轴正方向运动,所以 $\varphi=-\frac{\pi}{2}$,

故驻波方程为:
$$y = 2A\cos\left(2\pi\frac{x}{\lambda}\right)\cos\left(2\pi v t - \frac{\pi}{2}\right)$$

(2) 又
$$x_D = \frac{5\lambda}{4} - \frac{\lambda}{8} = \frac{9\lambda}{8}$$
,代入上式,得 D 点的振动方程

$$y_D = 2A\cos\left(2\pi \times \frac{9}{8}\right)\cos\left(2\pi v\ t - \frac{\pi}{2}\right) = \sqrt{2}A\cos\left(2\pi v\ t - \frac{\pi}{2}\right).$$