Grundlagen: Teil 1

Andreas Henrici

MANIT1 IT18ta_ZH

17. September 2018

- Einleitung
- 2 Zahlmengen
- Rechnen mit Potenzen, Wurzeln, Logarithmen
 - Rechenregeln für Potenzen
 - Rechenregeln für Logarithmen

Themen von MANIT1

- Grundlagen
 - Zahlmengen

Einleitung

- Rechnen mit Potenzen, Wurzeln, Logarithmen
- Gleichungen und Ungleichungen
- Reelle Funktionen einer Variablen
 - Begriff und Darstellung einer Funktion
 - Eigenschaften von und Operationen mit Funktionen
 - Koordinatentransformationen
 - Wichtige Typen von Funktionen: Polynome, rationale Funktionen
- Folgen und Reihen
 - Folgen und Reihen: Grundbegriffe
 - Arithmetisch und geometrische Folgen und Reihen
 - Grenzwerte von Folgen und Reihen
- Differentialrechnung
 - Grenzwerte und Stetigkeit von Funktionen
 - Grundlagen der Differentialrechnung
 - Ableitungsregegln
 - Charakteristische Kurvenpunkte, Kurvendiskussion
 - Extremwertprobleme

Menge: Konzept

- Menge: Abstraktes Konzept
- Wir brauchen vor allem Zahlmengen
- Es gibt aber auch Mengen von Funktionen, von Kurven, ...
- Das Konzept "Menge" ist nicht auf die Mathematik beschränkt!

Definition

Eine *Menge M* ist eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte sind untereinander unterscheidbar und heissen die Elemente der Menge.

Bemerkung

Ein Element kann nur einmal in einer Menge vorkommen.

Bemerkung

Die einfachste Menge ist ... die leere Menge ∅ oder {}.

Zahlmengen

N: Menge der natürlichen Zahlen:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

■ N*: Menge der natürlichen Zahlen ohne 0:

$$\mathbb{N}^* = \{1, 2, 3, \ldots\}$$

Z: Menge der ganzen Zahlen:

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

Q: Menge der rationalen Zahlen:

$$\mathbb{Q} = \left\{ \left. rac{
ho}{q}
ight|
ho \in \mathbb{Z}, q \in \mathbb{N}^*
ight\}$$

- R: Menge der reellen Zahlen: "Vollständige" Zahlengerade
- \mathbb{C} : Menge der komplexen Zahlen: $\mathbb{C} = \{p + q \cdot j | p \in \mathbb{R}, q \in \mathbb{R}\}$

Mengen: Charakterisierung

Mögliche Arten der Darstellung:

aufzählend:

$$M = \{a_1, a_2, \ldots\}$$

Zahlmengen 0000000

beschreibend:

$$M = \{x | x \text{ hat die Eigenschaft } \dots \}$$

Beispiel

aufzählend:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

beschreibend:

$$\mathbb{Q} = \left\{ \left. rac{
ho}{q}
ight|
ho \in \mathbb{Z}, q \in \mathbb{N}^*
ight\}$$

Definition

Überblick

Die Zugehörigkeit von Objekten zu einer Menge wird folgendermassen beschrieben:

• Falls das Objekt p in der Menge M enthalten ist

$$p \in M$$

Falls das Objekt q in der Menge M nicht enthalten ist:

$$q \notin M$$

Beispiel

- \bullet 3 \in \mathbb{N}
- $\sqrt{2} \notin \mathbb{Q}$
- $\sqrt{2} \in \mathbb{R}$
- $j \notin \mathbb{R}$

Mengen: Teilmengen

Definition

Eine Menge *A* heisst Teilmenge einer Menge *B*, wenn jedes Element von *A* auch Element von *B* ist.

$$A \subseteq B$$
 oder $A \subset B$

Beispiel

- $\bullet \ \mathbb{N} \subset \mathbb{Q}$
- Allgemeiner:

$$\mathbb{N}^* \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{Q}$$
.

Spezielle Teilmengen: "Intervalle":

Definition

Unter einem *Intervall* verstehen wir eine zusammenhängende Teilmenge der reellen Zahlen \mathbb{R} .

Mengen: Intervalle

Tyoen von Intervallen:

• Abgeschlossene Intervalle:

$$[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$$

Offene Intervalle:

$$(a, b) = \{x \in \mathbb{R} | a < x < b\}$$

Halboffene Intervalle, z.B.:

$$[a,b) = \{x \in \mathbb{R} | a \le x < b\}$$

Unendliche Intervalle, z.B.:

$$[a,\infty)=\{x\in\mathbb{R}|a\leq x\}$$

Mengen: Unendliche Intervalle

Wichtige unendliche Intervalle:

$$\bullet \mathbb{R}^+ = \mathbb{R}_{>0} = (0, \infty) = \{x \in \mathbb{R} | x > 0\}$$

•
$$\mathbb{R}_{>0} = [0, \infty) = \{x \in \mathbb{R} | x \geq 0\}$$

•
$$\mathbb{R}^- = \mathbb{R}_{<0} = (-\infty, 0) = \{x \in \mathbb{R} | x < 0\}$$

•
$$\mathbb{R}_{\leq 0} = (-\infty, 0] = \{x \in \mathbb{R} | x \leq 0\}$$

Bemerkung

Vorsicht:

- Mit ∞ und $-\infty$ kann man *nicht* gewöhnlich rechnen!

Zahlmengen

Potenzen: Definition

Basis	Exponent	Definition
$oldsymbol{a} \in \mathbb{R}$	$n\in\mathbb{N}^*$	$a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ mal}}$
$a \in \mathbb{R} \setminus \{0\}$	0	$a^0=1$
$a\in\mathbb{R}ackslash\{0\}$	$-n$ mit n ∈ \mathbb{N}^*	$a^{-n}=\frac{1}{a^n}$
$a\in\mathbb{R}_{\geq 0}$	$\frac{1}{n}$ mit $n \in \mathbb{N}^*$	$a^{\frac{1}{n}} = \sqrt[n]{a}$
$a\in\mathbb{R}_{\geq 0}$	$\frac{m}{n}$ mit $m \in \mathbb{Z}$, $n \in \mathbb{N}^*$	$a^{\frac{m}{n}}=\sqrt[n]{a^m}$
$a\in\mathbb{R}_{\geq 0}$	$oldsymbol{b} \in \mathbb{R}$	$a^b = e^{b \cdot \ln(a)}$

Potenzen: Rechenregeln

Satz

Für alle $a \ge 0$, b > 0 und $m, n \in \mathbb{R}$ gilt:

$$(1) \quad a^m \cdot a^n \quad = \quad a^{m+n}$$

$$(2) \quad \frac{a^m}{a^n} \qquad = \quad a^{m-n}$$

$$(3) \quad (a^m)^n \quad = \quad a^{m \cdot n}$$

$$(4) \quad (a \cdot b)^n = a^n \cdot b^n$$

$$(5) \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Überblick

Logarithmen: Definition und Grundeigenschaften

Definition

Seien $a \in \mathbb{R}_{>0} \setminus \{1\}$ (d.h. a > 0, $a \neq 1$) sowie r > 0. Der Logarithmus von r zur Basis a, $\log_a(r)$, ist die Lösung x der Gleichung

$$r=a^{x}$$
.

Zusammenhang zwischen Potenzen und Logarithmen:

$$r = a^x \Leftrightarrow x = \log_a(r)$$

• Natürlicher Logarithmus: falls a = e = 2.71828...

$$ln(a) = log_e(a)$$
.

Satz über die "Umkehrfunktion":

Satz

Es gilt für alle a > 0 mit $a \neq 1$:

$$a^{\log_a(x)} = x \quad (x > 0), \qquad \log_a(a^x) = x \quad (x \in \mathbb{R}).$$

Logarithmen: Rechenregeln

Satz

Für alle a, b > 0 mit $a, b \neq 1$, u, v > 0, $k \in \mathbb{R}$ und $n \in \mathbb{N}^*$ gilt:

(1)
$$\log_a(u \cdot v) = \log_a(u) + \log_a(v)$$

(2) $\log_a(\frac{u}{v}) = \log_a(u) - \log_a(v)$
(3) $\log_a(u^k) = k \cdot \log_a(u)$
(4) $\log_a(\sqrt[n]{u}) = \frac{1}{n} \cdot \log_a(u)$
(5) $\log_a(u) = \frac{\log_b(u)}{\log_b(a)}$

Bemerkung

Die Regel $\log_a(u \cdot v) = \log_a(u) + \log_a(v)$ wurde früher dazu verwendet, Multiplikationen in Additionen zu verwandeln!