

Vorlesung Fertigungstechnik - Übung Schnittzeit III

Dr.-Ing. Anke Müller, 05.06.2018
Institut für Werkzeugmaschinen und Fertigungstechnik

Theorieteil

- Bearbeitungszeit t_e
- Übersicht Formeln und Einheiten
- Unterschied zwischen Bearbeitungslänge I_b und Schnittlänge I_c am Beispiel Außenlängsdrehen
- Berechnung von Bearbeitungs-, Hauptnutzungs- und Schnittzeiten für:
 - 1.) Außenlängsdrehen eines zylindrischen Werkstücks
 - 2.) Plandrehen eines zylindrischen Werkstücks mit konstanter Drehzahl
 - 3.) Plandrehen eines zylindrischen Werkstücks mit konstanter Schnittgeschwindigkeit

- Umfangsplanfräsen
- Bohren
- Stirnplanfräsen
- Außenlängsdrehen

1. Aufgabe analysieren

Aufgabe lesen, Hinweise mit unterstreichen, markieren

2. Wirkrichtungen, Bearbeitungszeiten einzeichnen

- Vorschubrichtungen, Drehrichtung, gegebene Größen einzeichnen
- Schnitt-, An-, Überlaufzeiten einzeichnen, Nebennutzungszeit überlegen und aufschreiben (Folgefehler!)

3. Prüfen, ob v_c oder n konstant ist

$$v_c = \pi \cdot d \cdot n$$

- Entsprechenden Gegenpart ausrechnen, der wird immer benötigt.
- Beim Stirnplandrehen aufpassen, da dort immer nur bis zur Mitte verfahren wird
- Beim Längsdrehen darauf achten, das $a_{\rm p}$ immer 2x den Durchmesser reduziert
- Wenn der Zusammenhang nicht linear ist, muss für die Zeit te integriert werden

4. Grundformel für die gesuchte Zeit heraussuchen, schrittweise fehlende Größen $t_h = t_c + t_{ii} = \frac{l_h}{v_f}$ bestimmen und nacheinander einsetzen

oft ist t_h oder t_c gesucht

Theorieteil

- Bearbeitungszeit t_e
- Übersicht Formeln und Einheiten
- Unterschied zwischen Bearbeitungslänge I_b und Schnittlänge / Standweg I_c am Beispiel Außenlängsdrehen
- 1.) Plandrehen eines zylindrischen Werkstücks mit konstanter Drehzahl
- 2.) Plandrehen eines zylindrischen Werkstücks mit konstanter Schnittgeschwindigkeit
- 3.) Außenlängsdrehen eines zylindrischen Werkstücks
- 4.) Stoßen eines quaderförmigen Werkstücks

- Umfangsplanfräsen
- Bohren
- Stirnplanfräsen (Übung Schnittzeit III)
- Außenlängsdrehen (Übung Schnittzeit III)

1. Schritt: Analysieren

Mit einem zweischneidigem Wendelbohrer soll in ein Werkstück mit der Dicke h_w = 30 mm ein Durchmesser D = 12 mm gebohrt werden. Das Werkzeug hat einen Spitzenwinkel σ = 120°.

Berechnen Sie die Hauptnutzungszeit t_h , wenn die Spanungsdicke h_D = 0,15 mm und die Drehzahl n = 500 min⁻¹ betragen! Der Abstand des Bohrers vom Werkstück vor dem Bearbeitungsbeginn soll $l_{\ddot{u}1}$ = 2 mm betragen.

 $n = 500 \text{ min}^{-1}$

 $h_D = 0.15 \text{ mm}$

 $\sigma = 120^{\circ}$

 $I_{01} = 2 \text{ mm}$

D = 12 mm

z = 2

 $h_w = 30 \text{ mm}$

1. Schritt: Analysieren

Mit einem <u>zweischneidigem</u> Wendelbohrer soll in ein Werkstück mit der Dicke $h_w = 30 \text{ mm}$ ein Durchmesser D = 12 mm gebohrt werden. Das Werkzeug hat einen Spitzenwinkel $\sigma = 120^{\circ}$.

Berechnen Sie die Hauptnutzungszeit $\underline{t}_{\underline{h}}$, wenn die Spanungsdicke $\underline{h}_{\underline{D}}$ = 0,15 mm und die Drehzahl \underline{n} = 500 min⁻¹ betragen! Der Abstand des Bohrers vom Werkstück vor dem Bearbeitungsbeginn soll $\underline{l}_{\underline{u}1}$ = 2 mm betragen.

Gegeben:

 $n = 500 \text{ min}^{-1}$

 $h_D = 0.15 \text{ mm}$

 $\sigma = 120^{\circ}$

 $I_{01} = 2 \text{ mm}$

D = 12 mm

z = 2

 $h_w = 30 \text{ mm}$

2. Schritt: Grundformel, Fehlende herleiten

2. Schritt: Grundformel, Fehlende herleiten

2. Schritt: Grundformel, Fehlende herleiten

Braunschweig

3. Schritt: Grundformel, alles einsetzen

32

Theorieteil

- Bearbeitungszeit t_e
- Übersicht Formeln und Einheiten
- Unterschied zwischen Bearbeitungslänge I_b und Schnittlänge / Standweg I_c am Beispiel Außenlängsdrehen
- 1.) Plandrehen eines zylindrischen Werkstücks mit konstanter Drehzahl
- 2.) Plandrehen eines zylindrischen Werkstücks mit konstanter Schnittgeschwindigkeit
- 3.) Außenlängsdrehen eines zylindrischen Werkstücks
- 4.) Stoßen eines quaderförmigen Werkstücks

- Umfangsplanfräsen
- Bohren
- Stirnplanfräsen (Übung Schnittzeit III)
- Außenlängsdrehen (Übung Schnittzeit III)

34

Theorie

Eingriffswinkel:

Umfangsfräsen

$$\sin \frac{\varphi_s}{2} = \frac{a_e}{d}$$

φ_s...Eingriffswinkel d...Fräserdurchmesser

Stirnfräsen

$$z_e = \frac{\varphi_s \cdot z}{360^\circ}$$

a_e...Arbeitseingriff

z...Zähnezahl

Stirnplanfräsen

35 Theorie

Nach der Richtung der Vorschubbewegung Unterscheidet man zwischen Gleich- und -Gegenlauffräsen.

Umfangsfräsen:

Im Gegenlauf ist die Drehbewegung des Fräsers gegen die Vorschubbewegung des Werkstücks gerichtet. Nur vorteilhaft, wenn die Werkstücke hart und verscheißfest sind (Gussteile) Im Gleichlauf drängen sich Fräser und Werkstoff gegenseitig ab, die Oberfläche ist dann besser.

Stirnfräsen:

Die Wirkungen von Gleich- und Gegenlauf heben sich auf

Beim Gegenlauf wird der Fräser zum Werkstoff gezogen, beim Gleichlauf abgedrängt.

Quelle: Slideplayer.org, Evers 2010, Europa Lehrmittel Verlag

36

Theorie

 Φ o. $\rho_{c, s, max}$ = Eingriffswinkel

Torschub-richtungswinkel

κ = Werkzeug-Einstellwinkel

h_m = mittlere Spanungsdicke

h_{max} = max.

Spanungsdicke min = min.

h_{min} = min. Spanungsdicke

a_e = Eingriffsbreite

Quelle: Maschine+Werkzeug

Übungsaufgaben – Stirnplanfräsen

1. Schritt: Analysieren

Berechnen Sie die Hauptnutzungszeit th gem. Skizze!

Gegeben:

$$I_b = 500 \text{ mm}$$

$$z = 8$$

$$b_w = 55 \text{ mm}$$

$$h_{D,max} = 0.4 \text{ mm}$$

$$\kappa_r = 90^{\circ}$$

$$D = 150 \text{ mm}$$

$$v_c = 120 \text{ m/min}$$

Übungsaufgaben – Stirnplanfräsen

2. Schritt: Grundformel, Fehlende herleiten

41

Übungsaufgaben – Stirnplanfräsen

3. Schritt: Einsetzen und Lösen

45

Theorieteil

- Bearbeitungszeit t_e
- Übersicht Formeln und Einheiten
- Unterschied zwischen Bearbeitungslänge I_b und Schnittlänge / Standweg I_c am Beispiel Außenlängsdrehen
- 1.) Plandrehen eines zylindrischen Werkstücks mit konstanter Drehzahl
- 2.) Plandrehen eines zylindrischen Werkstücks mit konstanter Schnittgeschwindigkeit
- 3.) Außenlängsdrehen eines zylindrischen Werkstücks
- 4.) Stoßen eines quaderförmigen Werkstücks

- Umfangsplanfräsen
- Bohren
- Stirnplanfräsen
- Außenlängsdrehen

- 1. Schritt: Analysieren
- Ein rotationssymmetrisches Werkstück (Skizze) soll mit konstanter Drehzahl längs übergedreht werden. Berechnen Sie die Schnittzeit!
- b) Geben Sie für den Fall des Längsdrehens mit konstanter Schnittgeschwindigkeit eine Funktion für die Drehzahl in Abhängigkeit des Werkstückradius an und berechnen Sie die Schnittzeit!

Gegeben:

$$d_1 = 80 \text{ mm}$$

$$d_2 = 40 \text{ mm}$$

$$I_{\rm w} = 200 \; {\rm mm}$$

$$v_{c,max}(d_1) = 180 \text{ m/min}$$

$$f = 0.6 \text{ mm}$$

$$I_{ij} = 0 \text{ mm}$$

Übungsaufgaben – Außenlängsdrehen

2. Grundformel, Fehlende herleiten

Lösungsansatz für a):

- Grundformel
- I_h und v_f bestimmen
- Formel für t_h, l_h und v_f einsetzen

Lösungsansatz für b):

- v_c ist konst.
- $d\mathbf{t_h}$, $d\mathbf{l_h}$ und $\mathbf{v_f}(\mathbf{r})$, \mathbf{n} und α bestimmen
- für t_h über den Radius integrieren

Überlegen:

Welche der beiden Bearbeitungsmethoden ist wirtschaftlich günstiger?

