

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/010233

International filing date: 25 March 2005 (25.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/557,740
Filing date: 29 March 2004 (29.03.2004)

Date of receipt at the International Bureau: 09 May 2005 (09.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

1314671

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

April 27, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE.

APPLICATION NUMBER: 60/557,740

FILING DATE: *March 29, 2004*

RELATED PCT APPLICATION NUMBER: PCT/US05/10233

Certified by

Under Secretary of Commerce
for Intellectual Property
and Director of the United States
Patent and Trademark Office

PROVISIONAL APPLICATION COVER SHEET
Additional Page

PTO/SB/16 (08-03)

Approved for use through 07/31/2006, OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket Number UA 04-065

INVENTOR(S)/APPLICANT(S)		
Given Name (first and middle [if any])	Family or Surname	Residence (City and either State or Foreign Country)
Dhanasekaran	Muthu	Tucson, Arizona

[Page 2 of 2]

Number 2 of 2

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

EXPRESS MAIL CERTIFICATE

“Express Mail” mailing label No. **ER 388500347 US**

Date of Deposit: March 29, 2004

I hereby certify that this correspondence is
being deposited with the United States Postal
Service as “Express Mail Post Office to Addressee”
service under 37 C.F.R. 1.10 on date indicated
above and such envelope is addressed to Mail Stop Provisional
Patent Application, Commissioner for Patents,
P.O. Box 1450, Alexandria, VA 22313-1450

David G. Perry
(Name of Applicant, assignee or
registered representative)

(Signature)

3/29/04

(Date)

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

U.S. Provisional Patent Application

TITLE: Amphipathic Helical Glycopeptide Address Sequences for Enhanced Blood-
Brain Barrier Transport of Neuroactive Peptides

INVENTORS: Robin L. Polt & Dhanasekaran Muthu

FILED: March 29, 2004

Glycoprotein Analgesics: Conformational and Pharmacological Characterization of O-Linked Glycosyl- Enkephalins and Glycosyl-Endorphins

Robin Polt, Dhanasekaran Muthu, Edward J. Bilsky,
Henry I. Yamamura, Frank Porreca, Larissa Yeomans,
Charles M. Keyari, Richard D. Eggleton

Endogenous Opioid Peptides

Tyr-Gly-Gly-Phe-Met

Tyr-Gly-Gly-Phe-Leu

Enkephalins

Tyr-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-
Val-Thr-Leu-Phe-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-
Lys-Gly-Glu³¹
beta-Endorphin

Tyr-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-
Asn-Asn-Gln¹⁷
Dynorphin-A

! Y. vs S.C. Injection

Ist Generation Helix Design

YtGFLGELAS*KWFNAMES*-CONH₂

1st & 2nd Generation Helical Opioids

Peptide Sequence	<i>mu</i> IC_{50} nM	<i>delta</i> IC_{50} nM
YtGFLGELAS*KWVNNALE-CONH ₂	insoluble in H ₂ O	—
YtGFL GELAS*KWVNNALES*-CONH ₂	9.5	144
YtGFL GELAS*KWVNNALES*F-CONH ₂	insoluble in H ₂ O	—
YtGFL GELAS*KWVNNALES*FW-CONH ₂	insoluble in H ₂ O	—
YtGFLGALKS*FAES*LS*N-CONH ₂	—	—
YtGFLGLLKs*FAES*WS*NF-CONH ₂	11.9	154
YtGFLGKs*FAELWS*NFLS*-CONH ₂	25.6	38.2
YtGFLGLLKs*FWVES*WS*NF-CONH ₂	—	—

3rd Generation Helix Design

3rd Generation Helices

Dhana Muthu (*unpublished results*)

Octanol:Saline Distribution Studies

Mouse *in situ* Perfusion Studies

K_{in} Values from *in situ* Perfusion Studies

Initial Volume of Distribution (V_d) from *in situ* Perfusion Studies

Functional Bio-Assays

H₂N-Y-t-G-F-L-Linker-N-B-E-K-A-L-K-Ser(Glc)-L-NH₂

Linker	MVD (IC_{50})	GPI (IC_{50})	Ratio (delta/mu)
Pro	34.5 nM	63.1 nM	1.8
beta-Ala	23.0 nM	354 nM	15
Gly-Gly	18.8 nM	196 nM	10
Morphine	258 nM	54.7 nM	0.21

Peg Davis, U. of A. Pharmacology (unpublished)

Glycopeptide analgesics: Conformational and
pharmacological characterization of O-linked
glycosyl-enkephalins and glycosyl-endorphins

Dhanasekaran Muthu Ph.D.
Prof. Robin Polt's Laboratory
Department of Chemistry
The University of Arizona
Tucson 85721

Opioid receptor and their agonist effects

Opioid receptor

δ (delta)

μ (mu)

κ (kappa)

- Analgesia
- Respiratory depression
- Miosis
- Reduced -gastrointestinal motility
- Nausea
- Vomiting
- Euphoria

- Analgesia
- Respiratory depression
- Miosis
- Dysphoria

M.J. Brownstein, Proc.Natl.Acad.Sci. USA 90:5391-5393(1993)

Naturally occurring opioid peptides

Peptide	Sequence	Receptor Subtype
Met-Enkephalin	<u>YGGFM</u>	μ/δ
Leu-Enkephalin	<u>YGGFL</u>	δ/μ
Dynorphin A	<u>YGGFLRRIRPKLKWNINQ</u>	$\kappa(\mu)$
Dynorphin B	<u>YGGFLRRQFKVVT</u>	$\kappa(\mu,\delta)$
α -Neoendorphin	<u>YGGFLRKY</u>	$\kappa(\mu,\delta)$
β -Neoendorphin	<u>YGGFLRKYP</u>	$\kappa(\mu,\delta)$
β_h -Endorphin	<u>YGGFMTSEKSQTPLVTLFKNAIIKNAAYKKGE</u>	μ/δ
Peptide E	<u>YGGFMRRVGRPEWWMDYQKRYGGFL</u>	μ/κ

Linear Leu-enkephalin analog

Tyr-DThr-Gly-Phe-Leu-Thr-OH (DTLET)

δ selective agonist

G.Gacel et al. J. Med. Chem., 31:1891-1897(1988)

Glycosylated enkephalin analogue

TYR-(D)THR-GLY-PHE-LEU-SER*-NH₂

R.Polt et. al. Proc.Natl.Acad.Sci. USA. 91:7114-7118(1994)

E.J.Bilsky et. al. J.Med.Chem. 43:2586-2590(2000)

S.A.Mitchell et al. J.Org.Chem. 66:2327-2342(2001)

Advantages of glycosylated opioid peptide analogs

- ◊ Highly water soluble
- ◊ Increased serum stability
- ◊ Blood brain-barrier is not a problem
- ◊ Simple metabolites (amino acid and sugar)
- ◊ No side-effects shown on mice, yet

R. Polt et. al. *Proc. Natl. Acad. Sci. USA.* 91: 7114-7118(1994)
E.J. Bilsky et. al. *J. Med. Chem.* 43: 2586-2590(2000)
R.D. Eggleton et. al. *J. Pharm. Expt. Ther.* 299: 967-972(2001)
R.D. Eggleton et. al. *Brain research* 881: 37-46(2000)

Design of helical endorphin/dynorphin analogs

Message segment

H₂N-Y-(D)T-G-F-LLinker-N-B-L-E-K-A-L-K-S*-L-NH₂

Address segment

Designed to be amphipathic helical

Proline

β-Alanine

Gly-Gly

Design of amphipatic helical address segment

N⁷-L⁸-B⁹-E¹⁰-K¹¹-A¹²-L¹³-K¹⁴-S(Sugar)L¹⁵-L¹⁶

- ◇ Purely based on amino acid secondary structure propensity and hydrophobic character
- ◇ Asn⁷ as helix cap
- ◇ Salt bridge between Glu¹⁰ and Lys¹⁴ to improve solubility and helix stability
- ◇ Unnatural amino acid to Alb⁹ promote helix formation
- ◇ Amino acid heterogeneity maintained for NMR characterization

Pharmacology: in vitro binding

Enkephalin analogs

Sugar	MVD (δ) IC_{50} nm	GPI (μ) IC_{50} nm	μ / δ selectivity
No sugar	2.723	25.04	9.1
Glucose	1.56	33.83	21.6
Lactose	5.727	34.75	6.1
Melibiose	6.062	63.14	10.4
Morphine	258	54.7	0.212

Peg Davis, Dept of Pharmacology, University of Arizona

Pharmacology: in vitro binding

Endorphin/dynorphin analogs

Linker	MVD (δ) IC_{50} nm	GPI (μ) IC_{50} nm	μ / δ selectivity
Pro	34.49	63.14	1.8
β Ala	22.95	353.7	15.4
Gly-Gly	18.79	196.4	10.4
Morphine	258	54.7	0.212

Peg Davis, Dept of Pharmacology, University of Arizona

In vivo pharmacology: Analgesics in mice i.c.v.

Ed Bilsky, University of New England, Maine

In vivo pharmacology Analgesics in mice i.v.

Ed Bilsky, University of New England, Maine

Peptide Conformation by Circular

Dicroism

- ◊ Peptide is random coil in water
- ◊ Adopts helical conformation in TFE and SDS micelle

Peptide Conformation by Circular Dichroism

Dicroidism
 $\text{H}_2\text{N}-\text{Y}-(\text{D})\text{T}-\text{G}-\text{F}-\text{L}-\text{Pro}-\text{N}-\text{L}-\text{B}-\text{E}-\text{K}-\text{A}-\text{L}-\text{K}-\text{Ser}(\text{Lac})-\text{L}-\text{NH}_2$

- ◇ Peptide is random coil in water
- ◇ Adopts helical conformation in TFE and SDS micelle

Peptide conformation by Circular Dichroism

H₂N-γ-(D)T-G-F-L-βAla-N-L-B-E-K-A-L-K-Ser(Glc)-L-NH₂

- ◆ Peptide is random coil in water
- ◆ Adopts helical conformation in TFE and SDS micelle

Peptide Conformation by Circular Dichroism

H₂N-Y-(D)T-G-F-L-Gly-N-L-B-E-K-A-L-K-Ser(Glc)-L-NH₂

- ◊ Peptide is random coil in water
- ◊ Adopts helical conformation in TFE and SDS micelle

Peptide structure by ^1H - ^2D NMR

Chemical shift plot

$\text{H}_2\text{N}-\gamma-(\text{D})\text{T}-\text{G}-\text{F}-\text{L}-\text{Pro}-\text{N}-\text{L}-\text{B}-\text{E}-\text{K}-\text{A}-\text{L}-\text{K}-\text{Ser}(\text{Glc})-\text{L}-\text{NH}_2$

Peptide conformation by ^1H -2D NMR Chemical shift plot

$\text{H}_2\text{N}-\gamma-(\text{D})\text{T}-\text{G}-\text{F}-\text{L}-\text{Pro}-\text{N}-\text{L}-\text{B}-\text{E}-\text{K}-\text{A}-\text{L}-\text{K}-\text{Ser}(\text{Lac})-\text{L}-\text{NH}_2$

Effect of different sugars on peptide conformation

SDS micelle

Residue

Peptide conformation in SDS micelle by ^1H - 2D NMR

$\text{H}_2\text{N}-\text{Y}-(\text{D})\text{T}-\text{G}-\text{F}-\text{L}-\underline{\text{Pro}}-\text{N}-\text{L}-\text{B}-\text{E}-\text{K}-\text{A}-\text{L}-\text{K}-\text{Ser}(\text{Glc})-\text{L}-\text{NH}_2$

Peptide conformation in SDS micelle by ^1H - ^2D NMR

Peptide conformation in SDS micelle by
 ^1H -2D NMR

$\text{H}_2\text{N}-\gamma-(\text{D})\text{T}-\text{G}-\text{F}-\text{L}-\text{Pro}-\text{N}-\text{L}-\text{B}-\text{E}-\text{K}-\text{A}-\text{L}-\text{K}-\text{Ser}(\text{Lac})-\text{L}-\text{NH}_2$

Mouse *in situ* perfusion studies

$\text{H}_2\text{N}-\text{Y}-(\text{D})\text{T}-\text{G}-\text{F}-\text{L}-\text{Linker}-\text{N}-\text{L}-\text{B}-\text{E}-\text{K}-\text{A}-\text{L}-\text{K}-\underline{\text{Ser}}^*-\text{L}-\text{NH}_2$

Glycopeptides penetrate blood brain-barrier!

Richard Egleton, Dept. of Pharmacology, University of Arizona

Kinetic values from *in situ* perfusion studies

Conclusions

- ◊ Glycosylation promotes blood brain-barrier penetration irrespective of the length of the peptide
- ◊ Peptide with Proline linker is the best among endorphin analogs and is potential candidate for further development
- ◊ Sugar type perturbs the conformation of the peptide in amphipathic media

Dihedral angle distribution Over 2000ps MD analysis

Peptide 100h in sds

Percentage helicity from Circular dichroism

Peptide Synthesis

Octanol:Saline distribution studies

Richard Egleton, Dept. of Pharmacology, University of Arizona