Measurement of $\Upsilon(2S)$ Hadronic Acceptance

Jim Pivarski

April 30, 2004

A quick reminder of what I'm doing:

$$\frac{\Gamma_{\rm ee}\Gamma_{\rm had}}{\Gamma_{\rm total}} = \frac{M\gamma^2}{6\pi^2} (area of hadronic lineshape)$$

I have fitted lineshapes, but I need to calibrate them absolutely

$$real area = \frac{measured area}{acceptance} (possibly a luminosity correction)$$

Today's talk: hadronic acceptance of $\Upsilon(2S)$.

Acceptance? Cut Monte Carlo and count survivors, right?

No: data (red) and Monte Carlo (black) disagree near a cut boundary

Number of Tracks

$$P\left(\begin{array}{c}\text{passes tracks AND}\\\text{everything else}\end{array}\right) = \underbrace{P\left(\begin{array}{c}\text{passes} \middle| \text{everything}\\\text{tracks} \middle| \text{else}\end{array}\right)}_{\text{from data}} \underbrace{P\left(\begin{array}{c}\text{passes}\\\text{everything else}\right)}_{\text{from Monte Carlo}}$$

$$= \frac{\text{data numerator}}{\text{data denominator}} \quad \frac{\alpha \text{ Monte Carlo numerator}}{\alpha \text{ Monte Carlo denominator}}$$

Though the modelling isn't perfect, the trigger is extremely efficient

tracks > 2

event vertex

< 5 mm in XY

< 5 cm in Z

> 99.6% pass

(99.8% with other cuts)

I will neglect trigger uncertainties

	$MC \Upsilon \to X \ell^+ \ell^-$	$MC \Upsilon \rightarrow other$
pass "everything else"	3.1%	97.35%
Systematic errors		$MC \Upsilon \rightarrow other$
shift visible energy +0.015		+0.007%
shift CC energy -0.037		+0.132%
shift biggest shower -0.01		+0.013%
$[\text{tracks} > 4] \rightarrow [\text{tracks} > 5]$		-0.12%
$[\text{tracks} > 4] \rightarrow [\text{tracks} > 3]$		+0.23%
Tail Fractions	Data	$MC \Upsilon \to other$
Event vertex XY	0.177%	0.24%
Event vertex Z	-0.097%	0.52%
CC energy	0.0014%	0.029%
Biggest shower	0.00082%	0.0077%

Overall systematic error of 0.60% on MC $\Upsilon \to {\rm other}$

PDG
$$\mathcal{B}_{\mu\mu} = 4.10\% \pm 0.30\%$$

Istvan's
$$\mathcal{B}_{\mu\mu} = 5.82\% \pm 0.13\%$$

$$P\left(\frac{\text{passes}}{\text{everything else}}\right) = 3.1\% \mathcal{B}_{\mu\mu} + 97.35\% (1 - \mathcal{B}_{\mu\mu})$$

$$= \begin{cases} 93.48\% \pm 0.28\% \pm 0.58\% & \text{PDG} \\ stat & syst \end{cases}$$

$$= \begin{cases} 91.86\% \pm 0.12\% \pm 0.58\% & \text{Istvan} \\ stat & syst \end{cases}$$

Now for $P(\text{tracks} > 2 \mid \text{everything else})$:

All cuts except $\frac{\text{tracks} > 2}{\text{applied}}$ have been applied.

Just count how many are to the right of the line?

What about back-grounds?

Number of Tracks

Event vertices can't be constructed when you have fewer than 3 tracks Instead, plot closest $|d_0|$ and $|z_0|$ to the beamspot

Project beamgas into signal region with single-beam

Project cosmics into signal region with no-beam

Do this independently for peak and continuum, then do a continuum subtraction to be background-free (1- and 2-track events)

All cuts applied except that tracks $\in \{1, 2\}$ and "event vertex" cuts are replaced with "closest d_0 " and "closest z_0 "

Data is black, single-beam and no-beam samples are red

Number that fail:

Number of 1, 2 track events	3656 ± 570	16% statistical error
Beamgas correction	160	4.4% difference
Cosmic ray correction	97	2.6% difference
Zero-track upper limit	267	7.3% of 1, 2 tracks
		19% error

Number that pass:

Data events passing all cuts	73354 ± 568	0.77% statistical error
Beamgas correction		0.06% difference

$$P(\text{tracks} > 2 \mid \text{everything else}) = 95.25\% \pm 0.84\%$$

How did I bound the number of zero-track events?

 $\pi^+\pi^-$ missing mass in $\Upsilon(2S) \to \pi^+\pi^ \Upsilon(1S)$ where $\Upsilon(1S) \to 2$ tracks or fewer

So
$$P(\text{pass analysis cuts}) = \begin{cases} 89.04\% \pm 1.05\% \\ 87.50\% \pm 0.95\% \end{cases}$$
 $\mathcal{B}_{\mu\mu} \text{ from PDG}$ $\mathcal{B}_{\mu\mu} \text{ from Istvan}$

 $\Upsilon(2S)$ has a real area of

And the bottom line is

$$\frac{\Gamma_{\text{ee}}\Gamma_{\text{had}}}{\Gamma_{\text{total}}} = \begin{cases}
0.601 \pm 0.018 \text{ keV} & 1.7 \,\sigma\text{'s high} \\
0.612 \pm 0.018 \text{ keV} & 2.0 \,\sigma\text{'s high}
\end{cases}
\mathcal{B}_{\mu\mu} \text{ from PDG}$$

$$\mathcal{B}_{\mu\mu} \text{ from Istvan}$$

DESY-Heidelberg

LENA'82

DASP-II'82

CLEO-I'84

Crystal Ball '88

Argus '94

Novosibirsk '96

CLEO '04 (using PDG $B_{\mu\mu}$) CLEO '04 (using Istvan's)

