Recommendation Systems

- Maria Papadopouli, University of Crete <u>https://www.csd.uoc.gr/~hy539/lectures/Recommendation_Systems.pptx</u>
- Wikipedia
 https://en.wikipedia.org/wiki/Collaborative filtering

Significant industrial & research interest in recommendation systems:

- YouTube increases its watch times by 50% per year
 - amazon 35% of all sales are generated by recommendations

Ratings matrix

Objects (e.g., movies, products)

			i ₁	 i _k	 i _m
		$\mathbf{u_1}$	****	****	★ ☆☆☆☆
r. . ,	۶				
$r_{u,i}$	Users	u _j	★★★ ☆☆	?	大
		:			
		u _n	大大 大大大	大大大大	大大 大大

Sparse matrix: Most values are unknown

Predicting: The task of filling the unknown values

Recommendation Systems

Infer user preferences about items

Produce highly relevant & personalized lists of items

ratings matrix

Main Approaches

Collaborative filtering (CF)

Inspect rating patters to find similar users/items

Content-based (CB)

Analyze attributes of items for building user profiles

In general, CF performs better than CB

- CF fail to provide accurate predictions with insufficient ratings
- CB can alleviate the sparsity problem

Popular Recommenders: K-Nearest Neighbors Approach

User-based collaborative filtering (UBCF)

Assumption: Similar users have similar preferences

- User similarity: agreement on co-rated items
- Prediction: weighted sum of similar user's ratings

	P_1	P_2	P_3	P_4	P_5	P_6	
2	2		1	4	5		
1	5		4			1	
1			5		2	2	
		1		5		4	
2	4		4		2		
8	4	5		1			

Item-based collaborative filtering (IBCF)

Assumption: Users have similar tastes for similar items

- Item similarity: agreement within users rated both items
- Prediction: weighted sum of similar items' ratings

User-based collaborative filtering (UBCF)

Assumption: Similar users have similar preferences

- User similarity: agreement on co-rated items
- Prediction: weighted sum of similar user's ratings

		P_1	P_2	P_3	P_4	P_5	P_6	
	2	2		1	4	5		
	1	5		4			1	
S'	1			5		2	2	
			1		5		4	
	2	4		4		2		
	<u></u>	4	5		1			

Tui

$$r_{u,i} = k \sum_{u' \in U} \operatorname{simil}(u,u') r_{u',i} \qquad k = 1 / \sum_{u' \in U} |\operatorname{simil}(u,u')|$$

$$ext{simil}(x,y) = \cos(ec{x},ec{y}) = rac{ec{x} \cdot ec{y}}{||ec{x}|| imes ||ec{y}||} = rac{\sum\limits_{i \in I_{sy}} r_{x,i} r_{y,i}}{\sqrt{\sum\limits_{i \in I_{s}} r_{x,i}^{2}} \sqrt{\sum\limits_{i \in I_{y}} r_{y,i}^{2}}}$$

IBCF

set of users rated both items

rating on item i rating on item j

Compute similarity between items

tems
$$sim(i,j) = \frac{\sum_{u \in U} (R_{u,i} - \bar{R_u})(R_{u,j} - \bar{R_u})}{\sqrt{\sum_{u \in U} (R_{u,i} - \bar{R_u})^2} \sqrt{\sum_{u \in U} (R_{u,j} - \bar{R_u})^2}}$$

deviation from the average rating

Prediction of rating for item *i*

most similar similarity as rating on similar item items to
$$i$$
 weight $p_{u,i} = \frac{\sum_{j \in S} sim(i,j) R_{u,j}}{\sum_{i \in S} |sim(i,j)|}$

SVD: Matrix Factorization Approach

Decomposition of ratings matrix **R** into the product of **P** & **Q**

Each user & item is described with *F* latent features

• **P**: user factors

• **Q**: item factors

Ratings matrix

Prediction for user u about item i:

$$p_{u,i} = q_i^T p_u = \sum_{f=1}^F q_{i,f} \cdot p_{u,f}$$

Matrix - Factorization

R: Matrix of size $|U| \times |D|$ that contains all the ratings that the users have assigned to the items

Matrix - Factorization: Ratings matrix is approximated

Find two matrices P and Q such that product approximates R

Matrix - Factorization:

Each user & item is characterized with a vector of factors

Matrix - Factorization:

Preference - prediction is the dot product of user & item factors

Item factors: The extent to which an item has some characteristics

User factors: Level of preference for the corresponding characteristics

Matrix - Factorization:

Preference - prediction is the dot product of user & item factors

To get the prediction of a rating of an **item** d_j by a **user** u_i calculate the dot product of the two vectors corresponding to u_i and d_i

Vector corresponding to \mathbf{d}_j $\hat{r}_{ij} = p_i^T q_j = \sum_{k=1}^k p_{ik} q_{kj}$ Vector corresponding to u_i

P	₁ P	2	P ₃	P_4	P ₅	Pe	5
2	2	3	1	4	5	1	
0	5	2	4	4	2	1	
2	4	5	5	3	2	2	
•	2	1	4	5	2	4	
2	4	3	4	5	2	4	
8	4	5	2	1	1	3	

Ratings matrix

factors

X factors

≈ 100

Ratings matrix

	P ₁	P_2	P_3	P ₄ 1	P ₅ F	6	
3	2		1	4	5		
1	5		4			1	
2			5		2	2	
		1		5		4	
2	4		4		2		
	4	5		1			

