The Ramsey model

John Kramer – University of Copenhagen September 2024

Agenda

Consumption theory

- Two-period model recap
- Marginal propensities to consume
- Extension to arbitrary periods

The Ramsey model

- Derivation
- Steady state
- Dynamics
- Welfare

Two-period model recap

Preferences are given by

$$U = u(c_0) + \beta u(c_1)$$

- Individuals live for two periods
- Future utility is discounted at rate β

Dynamic budget constraints

$$c_0 + a_1 = y_0$$

 $c_1 = y_1 + (1+r)a_1$

- Individuals receive endowments (income) each period
- Income can be reallocated across periods using saving/borrowing

Two-period model solution

Euler equation

$$u'(c_0) = \beta(1+r)u'(c_1)$$

- ullet Tradeoff between today and tomorrow is governed by eta and r
- Present value of consumption = present value of endowment

c_0 with CRRA utility

$$\begin{split} c_0^{-\sigma} &= \beta (1+r) c_1^{-\sigma} \text{ and } c_1 = y_1 + (1+r) (y_0 - c_0) \\ &\implies c_0 \left(1 + \frac{(\beta (1+r))^{\frac{1}{\sigma}}}{1+r} \right) = \frac{y_1}{1+r} + y_0 \end{split}$$

Income and substitution effects

- Substitution effect: $\partial c_0/\partial r < 0$ because of higher return
- Income effect: $\partial c_0/\partial r > 0$ because agent is richer

Income and substitution effects

- With log-utility, the two effects exactly cancel
- Interest rate changes have no impact on consumption in period 0

Multiple periods

Two-periods is not enough

- Individuals have longer horizons
- Macroeconomic phenomena may happen on long time scales
- The Solow model has an infinite horizon

Agents with very long life-spans

- Intergenerational altruism
- Time-invariant survival probability
- Mathematical simplicity

Finite horizon

Arbitrary (but finite) horizon

Preferences are given by

$$U = u(c_0) + \beta u(c_1) + \beta^2 u(c_2) + \dots = \sum_{t=0}^{T} \beta^t u(c_t)$$

• Future utility is discounted at rate β

Dynamic budget constraints

$$c_0 + a_1 = y_0 + (1 + r_0)a_{-1}$$

$$c_1 + a_2 = y_1 + (1 + r_1)a_0$$

$$c_2 + a_3 = y_2 + (1 + r_2)a_1$$
...
$$c_t + a_{t+1} = y_t + (1 + r_t)a_t; a_{T+1} \ge 0$$

- a_{-1} is given
- cannot die with debt (a_{T+1})

Solution method

Problem is given by

$$\max_{c_t,a_{t+1}\forall t}U=\sum_{t=0}^T\beta^tu(c_t)$$
 subject to
$$c_t+a_{t+1}=y_t+(1+r_t)a_t;a_T\geq 0;a_0=0$$

Lagrangian

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} u(c_{t}) + \sum_{t=0}^{T} \lambda_{t} \left[y_{t} + (1 + r_{t}) a_{t} - c_{t} - a_{t+1} \right] + \mu a_{T+1}$$

- ullet T utilities and budget constraints to optimize
- Final period a_{T+1} must be chosen separately (although trivial)

Optimization

Zoom in to period t (highly questionable notation)

$$\mathcal{L} = \dots + \beta^t u(\mathbf{c}_t) + \dots + \lambda_t \left[y_t + (1 + r_t) a_t - \mathbf{c}_t - a_{t+1} \right]$$
$$+ \lambda_{t+1} \left[y_{t+1} + (1 + r_{t+1}) a_{t+1} - c_{t+1} - a_{t+2} \right]$$

- The asset choice today affects tomorrow's budget!
- a_{t+1} links periods t and t+1 appears twice!

First order conditions ⇒ Euler equation

$$\frac{\partial \mathcal{L}}{\partial c_t}: \qquad \beta^t u'(c_t) = \lambda_t$$

$$\frac{\partial \mathcal{L}}{\partial a_{t+1}}: \qquad \lambda_t = (1 + r_{t+1})\lambda_{t+1}$$

$$\implies u'(c_t) = \beta(1 + r_{t+1})u'(c_{t+1})$$

- Euler equation exactly the same as in 2-period model
- Also, agents will always choose $a_{T+1} = 0$ due to u'(c) > 0

Infinite horizon

Infinite horizon

Problem is given by

$$\max_{c_t, a_{t+1} \forall t} U = \sum_{t=0}^{\infty} \beta^t u(c_t)$$
 subject to
$$c_t + a_{t+1} = y_t + (1 + r_t) a_t$$

$$\lim_{T \to \infty} \left(\prod_{t=0}^{T} \frac{1}{1 + r_t} \right) a_{T+1} \ge 0; a_0 = 0$$

- The present value of "final period" savings must be positive
- Importance becomes clear when using intertemporal budget constraint

Two ways of obtaining an Euler equation

Optimizing using the intertemporal budget constraint

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(c_t) + \lambda \left(\prod_{s=0}^t \frac{1}{1+r_s} \right) (y_t - c_t)$$
$$\frac{\partial L}{\partial c_t} : \beta^t u'(c_t) = \lambda \left(\prod_{s=0}^t \frac{1}{1+r_s} \right)$$

• Combinding with t+1 condition yields $u'(c_t) = \beta(1+r_{t+1})u'(c_{t+1})$

Optimizing using the dynamic budget constraints

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} u(c_{t}) + \sum_{t=0}^{T} \lambda_{t} \left[y_{t} + (1 + r_{t}) a_{t} - c_{t} - a_{t+1} \right]$$

$$\frac{\partial \mathcal{L}}{\partial c_{t}} : \qquad \beta^{t} u'(c_{t}) = \lambda_{t}$$

$$\frac{\partial \mathcal{L}}{\partial a_{t+1}} : \qquad \lambda_{t} = (1 + r) \lambda_{t+1}$$

• As before, combining the two yields $u'(c_t) = \beta(1 + r_{t+1})u'(c_{t+1})$

The intertemporal budget constraint

No-Ponzi as $T \rightarrow \infty$

No-Ponzi pins down the path of c_t (by not allowing infinite consumption)

$$\frac{1}{1+r_0}a_1 = \frac{1}{1+r_0}(y_0 - c_0) + a_0$$

$$\frac{1}{1+r_1}a_2 = \frac{1}{1+r_1}(y_1 - c_1) + a_1$$

$$\implies \frac{1}{1+r_1}a_2 = \frac{1}{1+r_1}(y_1 - c_1) + (y_0 - c_0) + (1+r_0)a_0$$

$$\implies \frac{1}{1+r_1}\frac{1}{1+r_0}a_2 = \frac{1}{1+r_1}\frac{1}{1+r_0}(y_1 - c_1) + \frac{1}{1+r_1}(y_0 - c_0) + a_0$$

$$\vdots$$

$$\implies \underbrace{\left(\prod_{t=0}^T \frac{1}{1+r_t}\right)a_{T+1}}_{t=0} = \sum_{t=0}^T \left(\prod_{s=0}^t \frac{1}{1+r_s}\right)(y_t - c_t)$$

Just as in 2 periods: PV of consumption equals PV of income

The Ramsey model

Constant growth rate

• US long-run growth has been constant for 200 years

Constant return on capital

• The return on capital has been constant for 200 years

Constant factor shares

• The labor income share is constant (Source: Fred)

Constant capital output ratio

Figure: Capital-Output ratio in the U.S.

Source: NIPA table 1.1. The figure plots the ratio between fixed capital and consumer durables relative to the GDP.

The capital-output ratio in the US hovers around 3 Danish data

Importance of microfoundations

Quick Solow-model recap

$$k_{t+1} = i_t + (1 - \delta)k_t$$

$$y_t = F(k_t, l_t)$$

$$y_t = c_t + i_t = c_t + sy_t \implies c_t = (1 - s)y_t$$

The savings rate is not microfounded, just a parameter

Next steps:

- Combine optimal consumption choice with Solow to get Ramsey
- Add firm sector and asset market clearing
- Assume representative agent (infinitely many identical HHs)
- Assume labor is supplied inelastically at $l_t = 1 \forall t$

Firms

Representative firm

$$\max_{K_t, L_t} AK_t^{\alpha} L_t^{1-\alpha} - r_t K_t - w_t L_t$$

- Assume Cobb-Douglas specification for production function
- Production function F(.) turns K and L into Y
- Firms are perfectly competitive
- ullet They take prices r_t, w_t as given

First order conditions

$$\begin{split} f_k'(k_t, 1) &= r_t \text{ where } k_t = K_t/L_t \\ f_l'(k_t, 1) &= w_t \end{split}$$

Labor income share is constant (prove it!)

$$\frac{w_t \dot{L}_t}{A K_t^{\alpha} L_t^{1-\alpha}} = 1 - \alpha$$

Households optimality per capita

Modified first order conditions from before

$$u'(c_t) = \beta(1 + r_{t+1} - \delta)u'(c_{t+1})$$

 $c_t + a_{t+1} = \mathbf{w}_t + (1 + r_t - \delta)a_t + \underbrace{\Pi_t}_{Profit}$

- Households earn wage w_t (similar to endowment, since labor is supplied inelastically)
- ullet Households lend to the firms at rate r_t
- ullet δ depreciates each period

Transversality conditions

$$\lim_{T \to \infty} \beta^T u'(c_T) a_{T+1} = 0; \quad \lim_{T \to \infty} \beta^T u'(c_T) k_{T+1} = 0$$

- Not the same as no-Ponzi condition! No-Ponzi prevents too much debt (constraint)

General Equilibrium

 \bullet General equilibrium implies that all markets clear & agents optimize

Market clearing

Capital and labor market clearing

$$l_t = 1$$
$$k_t = a_t$$

Resource constraint (same as in the Solow model)

$$c_t + a_{t+1} = w_t + (1 + r_t - \delta)a_t + \Pi_t$$

$$c_t + k_{t+1} = (1 - \delta)k_t + r_t k_t + w_t + f(k_t) - r_t k_t - w_t$$

$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$

Capital tomorrow (k_{t+1}) is

- Leftover capital from today (after depreciation)
- Production less consumption

Laws of motion

Ramsey

$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$

$$u'(c_t) = \beta(1 + r_{t+1} - \delta)u'(c_{t+1})$$

Solow

$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$

 $c_t = (1 - s)f(k_t)$

- ullet The savings rate s is now endogenized through optimally chosen consumption
- One fewer ad-hoc parameter

Steady state I

In the model's steady state, c and k must be constant

Steady state of capital accumulation

$$k = (1 - \delta)k + f(k) - c$$

$$\implies c = f(k) - \delta k$$

For any k, there is a specific level of c that keeps k constant

Steady state in the Euler equation

$$u'(c) = \beta(1+r-\delta)u'(c)$$

$$u'(c) = \beta(1+f'(k)-\delta)u'(c)$$

$$f'(k) = \frac{1}{\beta} + \delta - 1$$

- ullet Consumption remains constant at a specific level of capital k
- c is not pinned down from this

Steady state II

Steady state of the model

$$f'(k) = \frac{1}{\beta} + \delta - 1$$
$$c = f(k) - \delta k$$

• Both equations must hold at the same time \implies intersection

Assume functional forms

$$F(K) = K^{\alpha}L^{1-\alpha} \implies k^{\alpha} \text{ if } L = 1$$
 (Cobb-Douglas production)
$$u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$$
 (CRRA utility)

Unique steady state value of capital

$$k = \left(\frac{\alpha}{\frac{1}{\beta} + \delta - 1}\right)^{\frac{1}{1 - \alpha}}$$

Dynamics

How do we get to the steady state?

- Does every starting point converge to the steady state?
- How fast is the speed of convergence?
- What are the dynamics of the model far away from steady state?

Phase diagram

Describe the dynamics graphically

Plug in some numbers!

- $\beta = 0.96$
- $\delta = 0.1$
- $\alpha = 0.3$
- $\sigma = 1$

Dynamics along c dimension

- $u'(c_t) = \beta(1 + r_t \delta)u'(c_{t+1})$
- High $k_t \to \text{low marginal product } f'(k_t) \to \text{low } r_t \to c_t \uparrow \text{today}$

Dynamics along k dimension

- $k_{t+1} = (1 \delta)k_t + f(k_t) c_t$
- High $c_t \to \text{little left to invest in } k_{t+1} \to \text{capital falls}$
- f(k) is concave \rightarrow as k grows, output grows by less and less

Full dynamics - Phase diagram

- Steady state where the two lines cross
- ullet c^* and k^* define the balanced growth path (after transition)

Full dynamics - Phase diagram

- Steady state where the two lines cross
- ullet c^* and k^* define the balanced growth path (after transition)

Dynamics towards convergence

• Only very specific starting conditions converge

Dynamics towards convergence

• For each k_0 , only one value of c_0 leads to convergence

Solving the Ramsey model

For each k_0 , only one c_0 is eligible!

- Remember the no-ponzi condition: too much debt (c) is not permitted (top left)
- Remember the transversality condition: too much wealth (k) is not permitted (bottom right)

$$\sum_{t=0}^{T} \left(\prod_{s=0}^{t} \frac{1}{1 - \delta + r_s} \right) (w_t - c_t) = 0$$

ullet There is no analytical solution for c_0

Solution

- Guess c_0 , iterate forward using Euler eq. and resource constr.
- Narrow search c_0 using, e.g., bisection search

Capital

Consumption

Rental rate of capital

Wage

Solow comparison

Law of motion

$$k_{t+1} = (1 - \delta)k_t + sf(k_t) \implies k_{ss} = \frac{s}{\delta}k_{ss}^{\alpha} \implies k_{ss} = \left(\frac{s}{\delta}\right)^{\frac{1}{1-\alpha}}$$

ullet s set to match Ramsey gives the same steady state

Transition comparison

• Ramsey model converges much faster. Why?

Savings rate is endogenous

• Savings rate in Ramsey is very high initially (Why?)

Welfare in the Solow model

Maximize steady state consumption subject to the resource constraint

$$\max_{k} f(k) - \delta k \implies f'(k^{gr}) = \delta$$

ullet The maximum possible consumption is attained when $\delta = \mathsf{MPK}$

Optimal savings rate

$$k^{gr} = \left(\frac{s^{gr}}{\delta}\right)^{\frac{1}{1-\alpha}} \implies s^{gr} = \delta(k^{gr})^{1-\alpha}$$

- In Solow's model, the savings rate is an exogenous parameter
- ullet If policy can manipulate s, it can attain optimal consumption

Golden rule capital accumulation

• Largest distance between $sf(k^{gr})$ and $f(k^{gr})$, given δ slope

Welfare in the Ramsey model I

Planner's problem

$$\max_{c_t,k_{t+1} \forall t} U = \sum_{t=0}^{\infty} \beta^t u(c_t)$$
 subject to $k_{t+1} = (1-\delta)k_t + f(k_t) - c_t$; $k_{t+1} > 0$; k_0 given

- Similar to the household's optimization problem [HH problem]
- Note: resource constraint, not budget constraint
- w_t and r_t not taken as given

Solution

$$u'(c_t) = \beta(1 + r_{t+1} - \delta)u'(c_{t+1})$$
$$k_{t+1} = (1 - \delta)k_t + f(k_t) - c_t$$

Welfare in the Ramsey model II

Modified golden rule

$$u'(c_t) = \beta(1 + r_{t+1} - \delta)u'(c_{t+1})$$

$$\implies f'(k^{ss}) = \delta + \frac{1}{\beta} - 1$$

- \bullet β enters welfare maximizing capital level
- Preferences matter

Comparison

$$f'(k^{ss}) = \delta + \frac{1}{\beta} - 1 > \delta = f'(k^{gr})$$

- Optimal capital in Ramsey always below Solow
- Return on capital (to consumers) must equal MPK
- Not necessary in Solow (since s is exogenous)

Welfare theorem

First welfare theorem

- · Economy is perfectly competitive
- No inefficiencies, frictions or externalities
- The utility function exhibits the usual properties

→ The equilibrium is Pareto efficient!

Growth model?

Baseline model without growth

$$F(K_{t}, L_{t}) = AK_{t}^{\alpha}L_{t}^{1-\alpha}$$

$$K_{t+1} = K_{t}(1-\delta) + F(K_{t}, L_{t}) - C_{t}$$

$$U = \sum_{t=0}^{\infty} \beta^{t}u(C_{t}) \quad \text{s.t.} \quad C_{t} + B_{t+1} = B_{t}(1-\delta + R_{t}) + L_{t}w_{t}$$

$$w_{t} = F'_{L}(K_{t}, L_{t}); \quad r_{t} = F'_{K}(K_{t}, L_{t})$$

- We set $L_t = 1$, which simplified things
- What if there is population growth in the economy?
- What if there is technological progress?
- Can this model be used to understand growth in steady state?

Normalization I

Population growth

- The model accommodates population growth
- ullet Assume that L_t implies that the whole labor force works full time
- Assume the labor force growth at $L_{t+1} = (1+n)L_t$
- Need to assume new per-worker utility function $u(c_t)$

Ramsey model normalized for population growth

$$\frac{F(K_t, L_t)}{L_t} = f(k_t) = Ak_t^{\alpha}$$

$$\frac{L_{t+1}}{L_t} k_{t+1} = (1+n)k_{t+1} = k_t (1-\delta) + f(k_t) - c_t$$

$$U = \sum_{t=0}^{\infty} (\beta(1+n))^t u(c_t) \qquad \text{s.t.} \qquad c_t + (1+n)b_{t+1} = b_t (1-\delta+r_t) + w_t$$

Normalization II

Technological progress

- The model also accomodates (exogenous) technological progress
- Assume that $A_{t+1} = (1 + \gamma)A_t$
- ullet Normalize the model by dividing by $A_t L_t$
- Express everything in efficiency units, reformulate Y_t = $K_t^{\alpha}[\hat{A}_tL_t]^{1-\alpha}$
- This only works with the preferences we have assumed!

Ramsey model normalized for population and technological growth

$$\begin{split} &\frac{F(K_t, L_t)}{A_t L_t} = f(k_t) = k_t^{\alpha} \\ &\frac{L_{t+1} A_{t+1}}{L_t A_t} k_{t+1} = (1+n)(1+\gamma) k_{t+1} = k_t (1-\delta) + f(k_t) - \frac{c_t}{(1+\gamma)^t} \\ &U = \sum_{t=0}^{\infty} (\widetilde{\beta} (1+n))^t u(c_t) \quad \text{s.t.} \quad c_t + (1+n) b_{t+1} = b_t (1-\delta+r_t) + w_t \end{split}$$

Appendix

BC math I

Backwards substitution (Back)

$$a_{t+1} = y_t + (1+r_t)a_t - \left[\beta^t(1+r)^t\right]^{\frac{1}{\sigma}}c_0$$

$$a_{t+1} = y_t + (1+r)\left(y_{t-1} + (1+r)a_{t-1} - \left[\beta^{t-1}(1+r)^{t-1}\right]^{\frac{1}{\sigma}}c_0\right) - \left[\beta^t(1+r)^t\right]^{\frac{1}{\sigma}}c_0$$

$$a_{t+1} = \sum_{i=0}^t (1+r)^i y_{t-i} + (1+r)^t a_0 - \sum_{i=0}^t (1+r)^i \left[\beta^{t-i}(1+r)^{t-i}\right]^{\frac{1}{\sigma}}c_0$$

$$a_{t+1} = (1+r)^t \left[\sum_{i=0}^t (1+r)^{i-t} y_{t-i} - \sum_{i=0}^t (1+r)^{i-t} \left[\beta^{t-i}(1+r)^{t-i}\right]^{\frac{1}{\sigma}}c_0\right]$$

$$0 = \sum_{i=0}^T (1+r)^{i-T} y_{T-i} - \sum_{i=0}^T (1+r)^{i-T} \left[\beta^{T-i}(1+r)^{T-i}\right]^{\frac{1}{\sigma}}c_0$$

$$0 = \sum_{i=0}^T \frac{1}{(1+r)^{T-i}} y_{T-i} - \sum_{i=0}^T \frac{1}{(1+r)^{T-i}} \left[\beta^{T-i}(1+r)^{T-i}\right]^{\frac{1}{\sigma}}c_0$$

BC math II

Flip counting of sums to make it easier on the eyes (Back)

$$0 = \sum_{i=0}^{T} \frac{1}{(1+r)^{i}} y_{i} - \sum_{i=0}^{T} \frac{1}{(1+r)^{i}} \left[\beta^{i} (1+r)^{i}\right]^{\frac{1}{\sigma}} c_{0}$$

$$\sum_{i=0}^{T} \frac{1}{(1+r)^{i}} \left[\beta^{i} (1+r)^{i}\right]^{\frac{1}{\sigma}} c_{0} = \sum_{i=0}^{T} \frac{1}{(1+r)^{i}} y_{i}$$

$$c_{0} = \frac{\sum_{i=0}^{T} \frac{1}{(1+r)^{i}} y_{i}}{\sum_{i=0}^{T} \frac{\left[\beta^{i} (1+r)^{i}\right]^{\frac{1}{\sigma}}}{(1+r)^{i}}}$$

Marginal propensity to consume

How much of an additional dollar would people spend/save in period 0? Use result from before!

$$c_0 = \frac{\frac{y_1}{1+r} + y_0}{\left(1 + \frac{(\beta(1+r))^{\frac{1}{\sigma}}}{1+r}\right)}$$

Marginal propensity to consume

$$\frac{\partial c_0}{\partial y_0} = \frac{1}{\left(1 + \frac{(\beta(1+r))^{\frac{1}{\sigma}}}{1+r}\right)}$$

- · Consumption is exactly proportional to "permanent income"
- With CRRA, the proportionality factor is constant

MPC in the data (Almgren et al, 2022)

• MPC out of unexpected lottery win equal to monthly HH income

Imposing CRRA utility

Period 0 consumption (assuming constant r and using $a_{T+1} = 0$) Algebra

$$c_0 = \frac{\sum_{i=0}^{T} \frac{1}{(1+r)^i} y_i}{\sum_{i=0}^{T} \frac{\left[\beta^i (1+r)^i\right]^{\frac{1}{\sigma}}}{(1+r)^i}}$$

Permanent income

- Consumption depends on a weighted average of all future income
- Only small shares of income increases are consumed

Marginal Propensity to consume

$$\frac{\partial c_0}{\partial y_0} = \frac{1}{\sum_{i=0}^T \frac{\left[\beta^i (1+r)^i\right]^{\frac{1}{\sigma}}}{(1+r)^i}}$$

Marginal propensity to consume

 c_0 consumption (similar algebra as with T)

$$c_0 = \lim_{T \to 0} \frac{\sum_{i=0}^{T} \frac{1}{(1+r)^i} y_i}{\sum_{i=0}^{T} \frac{\left[\beta^i (1+r)^i\right]^{\frac{1}{\sigma}}}{(1+r)^i}} = \left(1 - \frac{\left[\beta(1+r)\right]^{\frac{1}{\sigma}}}{1+r}\right) \sum_{i=0}^{\infty} \frac{1}{(1+r)^i} y_i$$

Marginal Propensity to Consume

$$\frac{\partial c_0}{\partial y_0} = \left(1 - \frac{\left[\beta(1+r)\right]^{\frac{1}{\sigma}}}{1+r}\right)$$

- Apply "reasonable calibration" (σ = 1, β = 0.9)
- ullet MPC =0.1 \Longrightarrow agent spends only 10% of transitory income gain
- Unrealistically low, MPCs are closer to 30% in the data