STK201 Aljabar Matriks

Semester Ganjil 2022/2023

PERTEMUAN #3

Teras dan Determinan

disusun oleh:

Bagus Sartono
bagusco@gmail.com
0852-1523-1823

Prodi Statistika dan Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

Outline

- Teras Matriks Persegi dan Sifat-Sifatnya
- Determinan Matriks Persegi dan Sifat-Sifatnya

Teras Matriks

Teras (Bahasa Inggris: trace) dari sebuah matriks persegi $_{n}\mathbf{A}_{n}$ dilambangkan tr(\mathbf{A}) didefinisikan sebagai $tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$

Teras tidak lain adalah penjumlahan dari unsur diagonal matriks persegi

$$\mathbf{K} = \begin{bmatrix} 1 & 2 & 5 & 4 \\ 2 & 2 & 3 & 3 \\ 5 & 3 & 1 & 0 \\ 4 & 3 & 0 & 6 \end{bmatrix}$$
 tr(**K**) = 1 + 2 + 1 + 6 = 10

Beberapa sifat teras matriks

• $tr(\mathbf{A}^T) = tr(\mathbf{A})$

• Untuk $_{m}\mathbf{A}_{n}$ dan $_{n}\mathbf{B}_{m}$ sembarang matriks real, $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$

Menghitung Teras Matriks di R

Determinan Matriks: definisi

- Determinan dari suatu matriks persegi $_{n}\mathbf{A}_{n}=[a_{ij}]_{n\times n}$ dilambangkan det(**A**) atau $|\mathbf{A}|$, didefinisikan sebagai:
- untuk n = 1, $det(A) = a_{11}$
- untuk n = 2, $det(\mathbf{A}) = a_{11}a_{22} a_{12}a_{21}$
- untuk n > 2

$$\det(\mathbf{A}) = \sum_{i=1}^{n} a_{ij} C_{ij}$$
 untuk sembarang baris ke-i, atau

$$\det(\mathbf{A}) = \sum_{i=1}^{n} a_{ij} C_{ij} \quad \text{untuk sembarang kolom ke-j}$$

dengan Cij= $(-1)^{i+j}$ det (A_{ij}) , dan A_{ij} adalah matriks minor yaitu anak matriks A yang dibuang baris ke-i dan kolom ke-j nya

Contoh menghitung determinan

$$\mathbf{A} = [2]$$

det(A) = 2

$$\mathbf{B} = \begin{bmatrix} 4 \end{bmatrix}$$

det(B) = 4

$$\mathbf{C} = [3]$$

 $det(\mathbf{C}) = 3$

$$\mathbf{D} = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$

$$det(\mathbf{D}) = 1(1) - 2(3)$$

= -5

$$\mathbf{F} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

$$det(\mathbf{F}) = 1(2) - 4(3)$$

= -10

$$\mathbf{G} = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$$

$$det(G) = 2(2) - 4(1)$$

= 0

Contoh menghitung determinan

$$\mathbf{H} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 1 & 2 \\ 1 & 1 & 0 \end{bmatrix} \qquad \det(\mathbf{A}) = \sum_{j=1}^{n} a_{ij} C_{ij} \qquad \text{untuk sembarang baris ke-i}$$

misal gunakan baris ke-3 sebagai tumpuan $det(\mathbf{H}) = a31 C31 + a32 C32 + a33 C33$

$$= 1 (-1)^{3+1} \det \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} + 1 (-1)^{3+2} \det \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} + 0 (-1)^{3+3} \det \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$$

$$= 1 (1) (0) + 1 (-1) (-10) + 0 (1) (-5)$$

Determinan Matriks Diagonal dan Segitiga Atas/Bawah

Jika _n**A**_n adalah matriks diagonal, maka

$$\det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii} = a_{11} \times a_{22} \times ... \times a_{nn}$$

Jika $_{n}\mathbf{A}_{n}$ adalah matriks segitiga atas/bawah, maka

$$\det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii} = a_{11} \times a_{22} \times ... \times a_{nn}$$

Sifat-Sifat Determinan

 Jika A memiliki baris atau kolom yang seluruhnya bernilai 0 (nol) maka det(A) = 0

 Jika A memiliki sedikitnya dua baris atau dua kolom yang unsurnya bernilai sama maka det(A) = 0

Sifat-Sifat Determinan

 Jika A dan B adalah matriks persegi berukuran sama, maka det(AB) = det(A) x det(B)

 Jika matriks B diperoleh dengan cara menukar posisi dari dua buah baris (atau kolom) matriks A, maka det(B) = -det(A)

Sifat-Sifat Determinan

• Jika matriks **B** memiliki unsur yang sama dengan matriks **A** kecuali pada satu baris ke-i, $b_i = ca_i$ maka det(B) = c det(A)

• Jika c adalah sebuah konstanta dan A adalah matriks persegi berukuran $n \times n$, maka $\det(cA) = c^n \det(A)$

Menghitung Determinan Matriks di R

```
> A = matrix(c(1,0,2,0,1,2,2,2,1), ncol=3, byrow=TRUE)
> A
     [,1] [,2] [,3]
[1,]
[2,] 0 1
[3,] 2 2
[3,] 2
> det(A)
[1] -7
> B = matrix(c(1, 2, 3, 2, 3, 4, 3, 5, 7), ncol=3, byrow=TRUE)
> B
     [,1] [,2] [,3]
[1,]
[2,]
[3,]
> det(B)
[1] 0
```


Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World

