Exercice 231, page 284

def xor(x, y):

return (x and not y) or (not x and y)

Exercice 232, page 284 On note $f_1(x,y,z)=(x\wedge y)\vee(\neg y\wedge z)$ et $f_2(x,y,z)=(x\vee \neg y)\wedge (y\vee z).$

Une première façon de montrer l'égalité $f_1(x,y,z)=f_2(x,y,z)$ est de vérifier que les tables de vérité de ces fonctions sont les mêmes.

1		1	1	0	0	0	0	x
_	_	0	0	1	1	0	0	y
1	0	0 1	0	1	0	0 0 1	0	14
_	1	1	0	0	0	_	0	$f_1(x,y,z)$
1 1	1 1	1 (1 (0 1	0	0 0 1	0	x
		_	_	_	_	0		y
_	0	_	<u> </u>	1	0	_	9	\$5
1	1	1	0	0	0		0	

La deuxième méthode consiste à utiliser les propriétés des opérateurs logiques pour transformer par exemple la deuxième expression en la première.

$$(x \lor \neg y) \land (y \lor z) = ((x \lor \neg y) \land y) \lor ((x \lor \neg y) \land z)$$

$$= (x \land y) \lor (y \land \neg y) \lor (x \land z) \lor (\neg y \land z)$$

$$= (x \land y) \lor (y \land \neg y) \lor (x \land z) \lor (\neg y \land z)$$

$$= (x \land y) \lor (x \land z) \lor (\neg y \land z)$$

$$= (x \land y) \lor (x \land z) \lor (\neg y \land z)$$

$$= (x \land y) \lor (x \land z) \lor (y \lor \neg y) \lor (\neg y \land z)$$

$$= (x \land y) \lor (x \land z \land y) \lor (x \land z \land y) \lor (\neg y \land z)$$

$$= (x \land y) \lor (1 \lor z) \lor ((\neg y \land z) \land (1 \lor x))$$

$$= (x \land y) \lor (1 \lor z) \lor (1 \lor x)$$

$$= (x \land y) \lor (\neg y \land z)$$

$$= (x \land y) \lor (\neg y \land z)$$

Exercice 233, page 284 Il y a plein de solutions. En voici deux :

$$f(x,y) = \neg(x \oplus y)$$

= $(x \land y) \lor (\neg x \land \neg y)$

La table de vérité est la suivante :

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}$$

Solutions des exercices

Exercice 234, page 284 La table est la suivante :

_	1	1	_	0	0 1 0	0	0	x	
_	1	0	0	1	1	0	0	y	
-	0	1	0	1	0	_	0	13	
0	0	0	1	0	1	1	0	f(x,y,z)	

Cette fonction détermine si exactement une variable vaut 1. Une expression plus simple est

$$f(x,y,z) = (\neg x \land (y \oplus z)) \lor (x \land \neg y \land \neg z).$$

Exercice 235, page 285 Le premier additionneur 1 bit se charge d'additionner les bits de poids faible. Son entrée c_0 vaut 0. Sa sortie c (la retenue) est envoyée sur l'entrée c_0 du second additionneur 1 bit, qui se charge de l'addition des bits de poids fort.

Supposons que le premier nombre soit e_0e_1 et le second e_2e_3 . Alors, la table de vérité est la suivante, où s_0s_1 est le résultat et c la retenue sortante.

																entrées
1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	e ₀	ĺ
-	1	1	0	0	0	0	1	1	_	ı	0 0 1	0	0	0	e_1	ent
-	0	0	1	1	0	0	1	1	0	0	1	1	0	0	e_2	rées
0	1	0	_	0	1	0	1	0	_	0	_	0	_	0	e	
															-	
0	0	1	0							0	-		0	0	-	S.
ိ 1	0 0	1 1	0 1							0 1	1 1	1 0	0 1	0 0	-	sorties
0 1 1	0 0 1	1 1 0	0 1 1							0 1 0	1 1 0	1 0 0	0 1 0	0 0 0	-	sorties
0	0 0 1	1 1 0	0 1 1							0 1 0	1 1 0	1 0 0	0 1 0	0 0 0	-	sorties