Koordinatentransformation

• alte und neue Abbildung mit gewünschter Basis werden über identische Abbildung verknüpft

– kommutatives Diagramm

• lineare Transformation

- Transformationsmatrix
 - Spalten sind Koordinatenvektoren der alte Basisvektoren
 - muss invertierbar sein ==> Transformation in beide Richtungen möglich
 - -n Dimensionen ==> n Gleichungssysteme zu lösen

Praktische Umsetzung

- Gleichungssystem aufstellen mit Transformationsmatrix T
 - n Gleichungen ==> viel Rechenaufwand
- Möglichkeiten Rechenaufwand zu mindern
 - B ist kanonische Basis in V
 - Orthonormalbasis für B

- *
 $< b_j, b_k > = \delta_{jk}$ Kronecker-Delta
- * Vektoren paarweise orthogonal + Einheitsvektoren
- $-V = \mathbb{R}^n$
 - * Abbildung dazwischen mit kanonischer Basis

- \ast beide Transformationsmatrizen auf diese Abbildung bestimmen
 - ♦ Matrix besteht aus Basisvektoren
 - $\quad \blacksquare \ M=(b_1,...,b_n)$
- * Transformationsmatrix mal Inverse der anderen Transformationsmatrix
 - $\bullet \ \, T_{alt} * T_{neu}^{-1}$
- * Beispiel

 $[[{\rm Lineare~Abbildungen}]]~[[{\rm Basis}]]$