

David Nuñez

CANS 2018 - Naples, Italy

Why

Encrypted file sharing

Why

Encrypted multi-user chats

Why

Decentralized Netflix

Central server + TLS

Data vulnerable to hackers, state actors etc

Solution

Proxy re-encryption + decentralization

What is proxy re-encryption (PRE)

PRE and multiple receivers

Sharing in permissioned network

- Node sees everything;
- Node can deny to work.

Permissioned network + SSS

• Nodes can collude to see everything.

Sharing with PRE

- Collusion with receiver possible,
- Node can deny to work.

Sharing with threshold PRE

• Collusion with receiver: *m* nodes + receiver.

Umbral: threshold proxy re-encryption

- "Umbral" is Spanish for "threshold"
- PRE properties: Unidirectional, single-hop, non-interactive
- It follows a KEM/DEM approach:
 - UmbralKEM provides the threshold re-encryption capability
 - ▶ Uses ECIES for key encapsulation with zero knowledge proofs of correctness for verifiability on prime order curves (such as secp256k1)
 - ► The DEM can be any authenticated encryption (currently ChaCha20-Poly1305)
- IND-PRE-CCA security
- Verification of re-encryption correctness through Non-Interactive ZK Proofs
- Reference implementation: https://github.com/nucypher/pyUmbral/
- Documentation (WIP): https://github.com/nucypher/umbral-doc

Early Users

Fully Homomorphic Encryption

nuFHE Library

- GPU implementation of fully homomorphic encryption
- Uses either FFT or integer NTT
- GitHub: https://github.com/nucypher/nufhe
- Achieved 100x performance over TFHE benchmarks

Platform	Library	Performance (ms/bit)	
		Binary Gate	MUX Gate
Single Core/Single GPU - FFT	TFHE (CPU)	13	26
	nuFHE	0.13	0.22
	Speedup	100.9	117.7
Single Core/Single GPU - NTT	cuFHE	0.35	N/A
	nuFHE	0.35	0.67
	Speedup	1.0	-

Useful links

Website: https://nucypher.com

Github: https://github.com/nucypher/

PyUmbral: https://github.com/nucypher/pyUmbral/ GoUmbral: https://github.com/nucypher/goUmbral/ Mocknet: https://github.com/nucypher/mock-net/

Discord: https://discord.gg/7rmXa3S

Whitepaper: https://www.nucypher.com/whitepapers/english.pdf

E-mail: david@nucypher.com E-mail: hello@nucypher.com