Notes on the book: Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edition

Meng-Gen Tsai plover@gmail.com

July 26, 2021

Contents

Chapter 1: Elliptic functions	
Exercise 1.1	
Supplement 1.1.1	
Exercise 1.7	
Exercise 1.11	
Exercise 1.12	
Exercise 1.13	
Exercise 1.14. (Lambert series)	
Exercise 1.15	

Chapter 1: Elliptic functions

Exercise 1.1.

Given two pairs of complex numbers (ω_1, ω_2) and (ω_1', ω_2') with nonreal ratios ω_1/ω_2 and ω_1'/ω_2' . Prove that they generate the same set of periods if, and only if, there is a 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with integer entries and determinant ± 1 such that

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}.$$

Proof.

(1) (\Longrightarrow) Suppose (ω_1, ω_2) and (ω_1', ω_2') generate the same set of periods. In particular, there is a 2×2 matrix $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{M}_{2 \times 2}(\mathbb{Z})$ (resp. $A' := \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in \mathsf{M}_{2 \times 2}(\mathbb{Z})$) such that

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = A \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix}, \qquad \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} = A' \begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix}.$$

Hence it suffices to show $det(A) = \pm 1$.

(2) Note that

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = AA' \begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix}.$$

Hence

$$AA' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Take the determinant on the both sides to get

$$\det(A)\det(A')=1.$$

Since $\det(\mathsf{M}_{2\times 2}(\mathbb{Z}))\subseteq \mathbb{Z}, \, \det(A)=\pm 1.$

(3) (\Leftarrow) $\Omega(\omega_1', \omega_2') \subseteq \Omega(\omega_1, \omega_2)$ is obvious. Note that

$$\begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} = \underbrace{\frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}}_{\in \mathsf{M}_{2\times 2}(\mathbb{Z})} \begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix}.$$

Thus $\Omega(\omega_1, \omega_2) \subseteq \Omega(\omega_1', \omega_2')$. Therefore $\Omega(\omega_1, \omega_2) = \Omega(\omega_1', \omega_2')$.

Supplement 1.1.1.

(Exercise I.1.1 in the textbook: Jörgen Neukirch, Algebraic Number Theory.) $\alpha \in \mathbb{Z}[i]$ is a unit if and only if $N(\alpha) = 1$.

Proof.

- (1) (\Longrightarrow) Since α is a unit, there is $\beta \in \mathbb{Z}[i]$ such that $\alpha\beta = 1$. So $N(\alpha\beta) = N(1)$, or $N(\alpha)N(\beta) = 1$. Since the image of N is nonnegative integers, $N(\alpha) = 1$.
- (2) (\Leftarrow) $N(\alpha) = \alpha \overline{\alpha}$, or $1 = \alpha \overline{\alpha}$ since $N(\alpha) = 1$. That is, $\overline{\alpha} \in \mathbb{Z}[i]$ is the inverse of $\alpha \in \mathbb{Z}[i]$. (Or we solve the equation $N(\alpha) = a^2 + b^2 = 1$, and show that all four solutions $(\pm 1 \text{ and } \pm i)$ are units.)
- (3) Conclusion: a unit $\alpha = a + bi$ of $\mathbb{Z}[i]$ is satisfying the equation $N(\alpha) = a^2 + b^2 = 1$ by (1)(2). That is, the only unit of $\mathbb{Z}[i]$ are ± 1 and $\pm i$.

Exercise 1.7.

The discriminant of the polynomial $f(x) = 4(x - x_1)(x - x_2)(x - x_3)$ is the product $16\{(x_2 - x_1)(x_3 - x_2)(x_3 - x_1)\}^2$. Prove that the discriminant of $f(x) = 4x^3 - ax - b$ is $a^3 - 27b^2$.

Proof.

(1) Since

$$f'(x) = 4(x - x_2)(x - x_3) + 4(x - x_1)(x - x_3) + 4(x - x_1)(x - x_2),$$

we have

$$f'(x_1) = 4(x_1 - x_2)(x_1 - x_3),$$

$$f'(x_2) = 4(x_2 - x_1)(x_2 - x_3),$$

$$f'(x_3) = 4(x_3 - x_1)(x_3 - x_2).$$

Hence

$$f'(x_1)f'(x_2)f'(x_3) = -4\operatorname{disc}(f)$$

where $\operatorname{disc}(f)$ be the discriminant of f(x).

(2) As $f(x) = 4x^3 - ax - b$, we have $f'(x) = 12x^2 - a$. So

$$f'(x_1)f'(x_2)f'(x_3) = (12x_1^2 - a)(12x_2^2 - a)(12x_3^2 - a).$$

Note that

$$x_1 x_2 x_3 = \frac{b}{4},$$

$$x_1 x_2 + x_2 x_3 + x_3 x_1 = -\frac{a}{4},$$

$$x_1 + x_2 + x_3 = 0,$$

we have

$$x_1^2 x_2^2 x_3^2 = \frac{b^2}{4^2},$$

$$x_1^2 x_2^2 + x_2^2 x_3^2 + x_3^2 x_1^2 = (x_1 x_2 + x_2 x_3 + x_3 x_1)^2 - 2x_1 x_2 x_3 (x_1 + x_2 + x_3)$$

$$= \frac{a^2}{4^2},$$

$$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1 x_2 + x_2 x_3 + x_3 x_1)$$

$$= \frac{a}{2}.$$

(3) Hence

$$f'(x_1)f'(x_2)f'(x_3) = (12x_1^2 - a)(12x_2^2 - a)(12x_3^2 - a)$$

$$= 12^3(x_1^2x_2^2x_3^2) - 12^2a(x_1^2x_2^2 + x_2^2x_3^2 + x_3^2x_1^2)$$

$$+ 12a^2(x_1^2 + x_2^2 + x_3^2) - a^3$$

$$= 12^3 \cdot \frac{b^2}{4^2} - 12^2a \cdot \frac{a^2}{4^2} + 12a^2 \cdot \frac{a}{2} - a^3$$

$$= -4(a^3 - 27b^2).$$

Therefore

$$disc(4x^3 - ax - b) = a^3 - 27b^2.$$

Exercise 1.11.

If $k \geq 2$ and $\tau \in H$ prove that the Eisenstein series

$$G_{2k}(\tau) = \sum_{(m,n)\neq(0,0)} (m+n\tau)^{-2k}$$

has the Fourier expansion

$$G_{2k}(\tau) = 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)e^{2\pi i n \tau}.$$

Proof.

(1) Let $q = e^{2\pi i \tau}$. Similar to Lemma 1.3 on page 19, we have

$$(2k-1)! \sum_{m=-\infty}^{+\infty} \frac{1}{(\tau+m)^{2k}} = (2\pi i)^{2k} \sum_{r=1}^{\infty} r^{2k-1} q^r.$$

(2) Similar to Theorem 1.18, we have

$$G_{2k}(\tau) = \sum_{\substack{(m,n)\neq(0,0)}} (m+n\tau)^{-2k}$$

$$= \sum_{\substack{m=-\infty\\m\neq0(n=0)}}^{+\infty} m^{-2k} + \sum_{n=1}^{\infty} \sum_{m=-\infty}^{+\infty} ((m+n\tau)^{-2k} + (m-n\tau)^{-2k})$$

$$= 2\zeta(2k) + 2\sum_{n=1}^{\infty} \sum_{m=-\infty}^{+\infty} (m+n\tau)^{-2k}$$

$$= 2\zeta(2k) + 2\sum_{n=1}^{\infty} \frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{r=1}^{\infty} r^{2k-1} q^{nr}$$

$$= 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sum_{\substack{d|n\\ =\sigma_{2k-1}(n)}} d^{2k-1} q^{n}.$$

In the last double sum we collect together those terms for which nr is constant.

Exercise 1.12.

Refer to Exercise 1.11. If $\tau \in H$ prove that

$$G_{2k}\left(-\frac{1}{\tau}\right) = \tau^{2k}G_{2k}(\tau)$$

and deduce that

$$G_{2k}\left(\frac{i}{2}\right) = (-4)^k G_{2k}(2i) \qquad \qquad \text{for all } k \ge 2,$$

$$G_{2k}(i) = 0 \qquad \qquad \text{if } k \text{ is odd,}$$

$$G_{2k}(e^{\frac{2\pi i}{3}}) = 0 \qquad \qquad \text{if } k \not\equiv 0 \pmod{3}.$$

Proof.

(1)

$$G_{2k}\left(-\frac{1}{\tau}\right) = \sum_{(m,n)\neq(0,0)} \left(m - \frac{n}{\tau}\right)^{-2k}$$
$$= \tau^{2k} \sum_{(m,n)\neq(0,0)} (\tau m - n)^{-2k}$$
$$= \tau^{2k} G_{2k}(\tau).$$

- (2) Let $\tau = 2i$. We have $G_{2k}\left(\frac{i}{2}\right) = (-4)^k G_{2k}(2i)$.
- (3) Let $\tau = i$. We have $G_{2k}(i) = (-1)^k G_{2k}(i)$. Hence $G_{2k}(i) = 0$ if k is odd.
- (4) Let $\tau=e^{\frac{\pi i}{3}}$. We have $G_{2k}(e^{\frac{2\pi i}{3}})=e^{\frac{2k\pi i}{3}}G_{2k}(e^{\frac{\pi i}{3}}).$ Since

$$e^{\frac{2\pi i}{3}} = -1 + e^{\frac{\pi i}{3}}$$

and each Eisenstein series is a periodic function of τ of period 1, we have $G_{2k}(e^{\frac{2\pi i}{3}})=G_{2k}(e^{\frac{\pi i}{3}})$. So $G_{2k}(e^{\frac{2\pi i}{3}})=e^{\frac{2k\pi i}{3}}G_{2k}(e^{\frac{2\pi i}{3}})$. Therefore $G_{2k}(e^{\frac{2\pi i}{3}})=0$ if $k\not\equiv 0\pmod 3$.

Exercise 1.13.

Ramanujan's tau function $\tau(n)$ is defined by the Fourier expansion

$$\Delta(\tau) = (2\pi)^{12} \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n \tau},$$

derived in Theorem 1.19. Prove that

$$\tau(n) = 8000\{(\sigma_3 \circ \sigma_3) \circ \sigma_3\}(n) - 147(\sigma_5 \circ \sigma_5)(n),$$

where $f \circ g$ denotes the Cauchy product of two sequences,

$$(f \circ g)(n) = \sum_{k=0}^{n} f(k)g(n-k),$$

and $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha}$ for $n \geq 1$, with $\sigma_3(0) = \frac{1}{240}$, $\sigma_5(0) = -\frac{1}{504}$. (Hint: Theorem 1.18.)

Proof.

(1) Let $q = e^{2\pi i \tau}$. Write

$$g_2(\tau) = \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \sigma_3(k) q^k \right\} = \frac{4\pi^4}{3} \left\{ 240 \sum_{k=0}^{\infty} \sigma_3(k) q^k \right\},$$

$$g_3(\tau) = \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \sigma_5(k) q^k \right\} = \frac{8\pi^6}{27} \left\{ -504 \sum_{k=0}^{\infty} \sigma_5(k) q^k \right\}$$

(Theorem 1.18).

(2) Similar to the proof of Theorem 1.19,

$$\begin{split} &\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2 \\ &= \frac{64\pi^{12}}{27} \left\{ \left(240 \sum_{k=0}^{\infty} \sigma_3(k) q^k \right)^3 - \left(-504 \sum_{k=0}^{\infty} \sigma_5(k) q^k \right)^2 \right\} \\ &= (2\pi)^{12} \left\{ 8000 \left(\sum_{k=0}^{\infty} \sigma_3(k) q^k \right)^3 - 147 \left(\sum_{k=0}^{\infty} \sigma_5(k) q^k \right)^2 \right\} \\ &= (2\pi)^{12} \sum_{n=0}^{\infty} \left\{ 8000 \left\{ (\sigma_3 \circ \sigma_3) \circ \sigma_3 \right\} (n) - 147 (\sigma_5 \circ \sigma_5) (n) \right\} q^n \\ &= (2\pi)^{12} \sum_{n=1}^{\infty} \left\{ 8000 \left\{ (\sigma_3 \circ \sigma_3) \circ \sigma_3 \right\} (n) - 147 (\sigma_5 \circ \sigma_5) (n) \right\} q^n. \end{split}$$

(Here $8000\{(\sigma_3 \circ \sigma_3) \circ \sigma_3\}(0) - 147(\sigma_5 \circ \sigma_5)(0) = 0.$)

(3) Therefore

$$\tau(n) = 8000\{(\sigma_3 \circ \sigma_3) \circ \sigma_3\}(n) - 147(\sigma_5 \circ \sigma_5)(n)$$

for n > 1.

Exercise 1.14. (Lambert series)

A series of the form $\sum_{n=1}^{\infty} f(n) \frac{x^n}{1-x^n}$ is called a **Lambert series**. Assuming absolute convergence, prove that

$$\sum_{n=1}^{\infty} f(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n,$$

where

$$F(n) = \sum_{d \mid n} f(d).$$

Apply this result to obtain the following formulas, valid for |x| < 1.

(a)
$$\sum_{n=1}^{\infty} \frac{\mu(n)x^n}{1-x^n} = x.$$

(b)
$$\sum_{n=1}^{\infty} \frac{\varphi(n)x^n}{1-x^n} = \frac{x}{(1-x)^2}.$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^{\alpha} x^n}{1 - x^n} = \sum_{n=1}^{\infty} \sigma_{\alpha}(n) x^n.$$

(d)
$$\sum_{n=1}^{\infty} \frac{\lambda(n)x^n}{1-x^n} = \sum_{n=1}^{\infty} x^{n^2}.$$

(e) Use the result in (c) to express $g_2(\tau)$ and $g_3(\tau)$ in terms of Lambert series in $x = e^{2\pi i \tau}$.

Note. In (a), $\mu(n)$ is the Möbius function; In (b), $\varphi(n)$ is Euler's totient; and in (d), $\lambda(n)$ is Liouville's function.

Proof. Similar to the proof of Exercise 1.11.

$$\sum_{n=1}^{\infty} f(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} f(n) \sum_{r=1}^{\infty} x^{rn}$$

$$= \sum_{n=1}^{\infty} \sum_{r=1}^{\infty} f(n) x^{rn}$$

$$= \sum_{n=1}^{\infty} \left(\sum_{d|n} f(d) \right) x^n.$$

$$= F(n)$$

Proof of (a). Theorem 2.1 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$F(n) := \sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n > 1. \end{cases}$$

Hence

$$\sum_{n=1}^\infty \mu(n) \frac{x^n}{1-x^n} = \sum_{n=1}^\infty F(n) x^n = x.$$

Proof of (b). Theorem 2.2 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that $F(n) := \sum_{d|n} \varphi(d) = n$. Hence

$$\sum_{n=1}^{\infty} \varphi(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} n x^n = \frac{x}{(1 - x)^2}.$$

Proof of (c). Since

$$F(n) := \sum_{d|n} d^{\alpha} = \sigma_{\alpha}(n),$$

we have

$$\sum_{n=1}^{\infty} n^{\alpha} \frac{x^n}{1-x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} \sigma_{\alpha}(n) x^n.$$

Proof of (d). Theorem 2.19 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory shows that

$$F(n) := \sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{if } n \text{ is a square,} \\ 0 & \text{otherwise.} \end{cases}$$

Hence

$$\sum_{n=1}^{\infty} \lambda(n) \frac{x^n}{1 - x^n} = \sum_{n=1}^{\infty} F(n) x^n = \sum_{n=1}^{\infty} x^{n^2}.$$

Proof of (e).

(1) Let $q = x = e^{2\pi i \tau}$

$$g_2(\tau) = \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \sigma_3(k) q^k \right\}$$
 (Theorem 1.18)
$$= \frac{4\pi^4}{3} \left\{ 1 + 240 \sum_{k=1}^{\infty} \frac{k^3 q^k}{1 - q^k} \right\}$$
 ((c)).

(2) Similarly,

$$g_3(\tau) = \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \sigma_5(k) q^k \right\}$$
 (Theorem 1.18)
$$= \frac{8\pi^6}{27} \left\{ 1 - 504 \sum_{k=1}^{\infty} \frac{k^5 q^k}{1 - q^k} \right\}$$
 ((c)).

Exercise 1.15.

Let

$$G(x) = \sum_{n=1}^{\infty} \frac{n^5 x^n}{1 - x^n},$$

and let

$$F(x) = \sum_{\substack{n=1\\ (n \ odd)}}^{\infty} \frac{n^5 x^n}{1 + x^n}.$$

- (a) Prove that $F(x) = G(x) 34G(x^2) + 64(x^4)$.
- (b) Prove that

$$\sum_{\substack{n=1\\ (n\ odd)}}^{\infty}\frac{n^5}{1+e^{n\pi}}=\frac{31}{504}.$$

(c) Use Theorem 12.17 in the textbook: T. M. Apostol, Introduction to Analytic Number Theory to prove the more general result

$$\sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1+e^{n\pi}} = \frac{2^{4k+1}-1}{8k+4} B_{4k+2}.$$

Proof of (a).

(1) Consider the general case. Let

$$G(x) = \sum_{n=1}^{\infty} \frac{n^{4k+1} x^n}{1 - x^n},$$

and let

$$F(x) = \sum_{\substack{n=1\\(n,odd)}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n}.$$

Show that $F(x) = G(x) - (2^{4k+1} + 2)G(x^2) + 2^{4k+2}G(x^4)$.

(2) The identity

$$\sum_{n=1}^{\infty} \frac{x^n}{1+x^n} = \sum_{n=1}^{\infty} \frac{x^n}{1-x^n} - 2\sum_{n=1}^{\infty} \frac{x^{2n}}{1-x^{2n}}$$

is always true. Hence $H(x):=\sum_{n=1}^{\infty}\frac{n^{4k+1}x^n}{1+x^n}=G(x)-2G(x^2)$.

(3) Note that

$$H(x) = \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n} + \sum_{\substack{n=1\\(n \text{ even})}}^{\infty} \frac{n^{4k+1}x^n}{1+x^n}$$
$$= F(x) + \sum_{n=1}^{\infty} \frac{(2n)^{4k+1}x^{2n}}{1+x^{2n}}$$
$$= F(x) + 2^{4k+1} \sum_{n=1}^{\infty} \frac{n^{4k+1}x^{2n}}{1+x^{2n}}$$
$$= F(x) + 2^{4k+1}H(x^2).$$

Hence

$$\begin{split} F(x) &= H(x) - 2^{4k+1}H(x^2) \\ &= [G(x) - 2G(x^2)] - 2^{4k+1}[G(x^2) - 2G(x^4)] \\ &= G(x) - (2^{4k+1} + 2)G(x^2) + 2^{4k+2}G(x^4). \end{split}$$

Proof of (b). Take k = 1 in part (c), we have

$$\sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^5}{1 + e^{n\pi}} = \frac{31}{12} \cdot \frac{1}{42} = \frac{31}{504}.$$

Proof of (c).

(1) Let $q = e^{2\pi i \tau}$. So

$$G_{4k+2}(\tau) = 2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} \sum_{n=1}^{\infty} \sigma_{4k+1}(n)q^n \qquad \text{(Exercise 1.11)}$$
$$= 2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q) \qquad \text{(Exercise 1.14(c))}$$

Hence

$$G_{4k+2}(\tau) - (2^{4k+1} + 2)G_{4k+2}(2\tau) + 2^{4k+2}G_{4k+2}(4\tau)$$

$$= \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q) \right]$$

$$- (2^{4k+1} + 2) \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q^2) \right]$$

$$+ 2^{4k+2} \left[2\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}G(q^4) \right]$$

$$= (1 - (2^{4k+1} + 2) + 2^{4k+2}) \cdot 2\zeta(4k+2)$$

$$+ \frac{2(2\pi i)^{4k+2}}{(4k+1)!}[G(q) - (2^{4k+1} + 2)G(q^2) + 2^{4k+2}G(q^4)]$$

$$= (2^{4k+2} - 2)\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!}F(q).$$

(2) By taking $\tau = \frac{i}{2}$, we have

$$F(q) = F(e^{-\pi}) = \sum_{\substack{n=1\\ (n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}}$$

and

$$\begin{split} G_{4k+2}(\tau) &- (2^{4k+1}+2)G_{4k+2}(2\tau) + 2^{4k+2}G_{4k+2}(4\tau) \\ &= G_{4k+2}\left(\frac{i}{2}\right) - (2^{4k+1}+2)G_{4k+2}(i) + 2^{4k+2}G_{4k+2}(2i) \\ &= (-4)^{2k+1}G_{4k+2}(2i) - (2^{4k+1}+2)\cdot 0 + 2^{4k+2}G_{4k+2}(2i) \\ &= 0. \end{split}$$

(Exercise 1.12). Hence

$$0 = (2^{4k+2} - 2)\zeta(4k+2) + \frac{2(2\pi i)^{4k+2}}{(4k+1)!} \sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1 + e^{n\pi}}.$$

(3) Theorem 12.17 in the textbook: $T.\ M.\ Apostol,\ Introduction\ to\ Analytic\ Number\ Theory\ shows\ that$

$$\zeta(4k+2) = (-1)^{2k+1+1} \frac{(2\pi)^{4k+2} B_{4k+2}}{2(4k+2)!} = \frac{(2\pi)^{4k+2} B_{4k+2}}{2(4k+2)!}.$$

Hence

$$\sum_{\substack{n=1\\(n \text{ odd})}}^{\infty} \frac{n^{4k+1}}{1+e^{n\pi}} = \frac{2^{4k+1}-1}{8k+4} B_{4k+2}.$$