IP address

What is an IP Address?

- An IP (Internet Protocol) address is a numerical label assigned to the devices connected to a computer network that uses the IP for communication.
- IP address act as an identifier for a specific machine on a particular network.
 It also helps you to develop a virtual connection between a destination and a source.
- IP address is an address having information about how to reach a specific host, especially outside the LAN.
- An IP address is a 32 bit unique address.

- IP addresses were divided into five different categories called classes.
- These divided IP classes are class A, class B, class C, class D, and class E.
- classes A, B, and C are most important. Each address class defines a different number of bits for its network prefix (network address) and host number (host address).

Offsets	0	8	16	24	
Class A	0 Network Address 0.0.0.0	to 127.255.255.	Host 127.255.255.255		
Class B	10 Network		Host		
	Address 128.0.0.0 to 191.255.255.255				
Class C	110 Network			Host	
	Address 192.0.0.0 to 223.255.255				
Class D	Address 224.0.0.0 to 239.255.255				
Class E	lass E 11110 Reserved for future use				
	Address 240.0.0	.0. to 255.255.2	55.255		

- IPv4 (Internet Protocol version 4)
- IPv6 (Internet Protocol version 6)

What is IPv4?

• IPv4 is version 4 of IP. It is a current version and the most commonly used IP address. It is a 32-bit address written in four numbers separated by a dot (.), i.e., periods. This address is unique for each device

What is IPv6?

- IPv4 produces 4 billion addresses, and the developers think that these addresses are enough, but they were wrong.
- IPv6 is the next generation of IP addresses.
- The main difference between IPv4 and IPv6 is the address size of IP addresses.
- The IPv4 is a 32-bit address, whereas IPv6 is a 128-bit hexadecimal address.
- IPv6 provides a large address space, and it contains a simple header as compared to IPv4.

Introduction to CIDR

- CIDR (Classless Inter-Domain Routing or supernetting) is a method of assigning IP addresses that improves the efficiency of address distribution and replaces the previous system based on Class A, Class B and Class C networks.
- CIDR IP addresses consist of two groups of numbers, which are also referred to as groups of bits.
- The most important of these groups is the network address, and it is used to identify a network or a sub-network (subnet).
- In contrast to classful routing, which categorizes addresses into one of three blocks, CIDR allows for blocks of IP addresses to be allocated to internet service providers.

Domain Name System

- The Domain Name System (DNS) is a hierarchical and distributed naming system for computers, services, and other resources in the Internet or other Internet Protocol (IP) networks.
- It associates various information with domain names assigned to each of the associated entities.
- DNS is a core internet technology that translates human-friendly domain names into machine-usable IP addresses.

Example: 128.66.111.102 - Exam Moodle

 The DNS operates as a distributed database, where different types of DNS servers are responsible for different parts of the DNS name space.

OSI Model

- The OSI Model (Open Systems Interconnection Model) is a conceptual framework used to describe the functions of a networking system.
- OSI model has seven layers.and each layer performs a particular network function.
- The layers may be listed in a top-to-bottom or bottom to top order.
- OSI stands for Open System Interconnection is a reference model that describes how information from a software application in one computer moves through a physical medium to the software application in another computer.
- OSI model was developed by the International Organization for Standardization (ISO) in 1984, and it is now considered as an architectural model for the inter-computer communications.

1) Physical Layer:

- **Bit synchronization:** The physical layer provides the synchronization of the bits by providing a clock. This clock controls both sender and receiver thus providing synchronization at bit level.
- Bit rate control: The Physical layer also defines the transmission rate i.e. the number of bits sent per second.

2) Data Link Layer

- **Framing:** Framing is a function of the data link layer. It provides a way for a sender to transmit a set of bits that are meaningful to the receiver. This can be accomplished by attaching special bit patterns to the beginning and end of the frame.
- **Error control**: Data link layer provides the mechanism of error control in which it detects and retransmits damaged or lost frames.
- **Flow Control:** The data rate must be constant on both sides else the data may get corrupted thus, flow control coordinates the amount of data that can be sent before receiving acknowledgement.
- Access control: When a single communication channel is shared by multiple devices, the MAC sub-layer of the data link layer helps to determine which device has control over the channel at a given time.

3) Network Layer

- Routing: The network layer protocols determine which route is suitable from source to destination. This function of the network layer is known as routing.
- Logical Addressing: In order to identify each device on internetwork uniquely, the network layer defines an addressing scheme. The sender & receiver's IP addresses are placed in the header by the network layer.

4) Transport Layer

Segmentation : This layer accepts the message from the (session) layer, and breaks the message into smaller units. The transport layer at the destination station reassembles the message.

• Service Point Addressing: In order to deliver the message to the correct process, the transport layer header includes a type of address called service point address or port address

5) Session Layer

- Session establishment, maintenance, and termination: The layer allows the two processes to establish, use and terminate a connection.
- **Synchronization:** This layer allows a process to add checkpoints which are considered synchronization points into the data.
- These synchronization points help to identify the error so that the data is resynchronized properly, and ends of the messages are not cut prematurely and data loss is avoided.

6) Presentation Layer

- **Encryption/ Decryption:** Data encryption translates the data into another form or code. The encrypted data is known as the
- Compression: Reduces the number of bits that need to be transmitted on the network.

7) Application Layer

- Application Layer is also called Desktop Layer.
- These applications produce the data, which has to be transferred over the network. This layer also serves as a window for the application services to access the network and for displaying the received information to the user.
- Example: Application Browsers, Skype Messenger, etc.