		los intervalos [a	$(a,b), [a,b], [a,+\infty)$	son medibles
	D.A.M			
[a,b);	(2) (0,6)	-> {e} ((e.b)	EH	
	EM CM	lad hed	decido e tingo,	ey_e
1. / [2	1) - ((1)	1) = h_3	la suc	
MICO	b)/ Volia L	310 - 0-0		
		4		
QVO	(2b] e M	lidet	<u>-</u> @	
		A M SI	11	
YUU	$\begin{bmatrix} \partial_1 + \omega \end{bmatrix}$) E J 4	((6,1%))=+	0-0-10
([2,+	$((-\infty)^2) = ((-\infty)^2)$) ((e, c	10 (-01) e M	-> (-a,2) EM
		1	x m abuto	
	gue, y calcul () (() () () () () () () () () () () ()	gue, y calcular su medida. (V) [a,b) + A (a,b) EM CM Add and A ((a,b)) - long [a	gue, y calcular su medida. (VQ [a, b) { M (a,b) = {a} U(a,b) - {a} U(a,b) EM CM (Adefambor ((a,b)) = long [a,b) = b-a (VQ [a,b] e M idnti	