09 Exercices

Signal; périodicité, puissance vs énergie finie et variable indépendante

1. Déterminer pour chacun de ces signaux, s'il est périodique, et le cas échéant la période (bien penser à la définition de la période) :

a)
$$x(t) = cos^2(\omega_0 t)$$

e)
$$x[n] = cos(2n)$$

b)
$$x(t) = cos^{3}(2\pi t/T)$$

f)
$$x[n] = cos(2\pi n)$$

c)
$$x(t) = e^{-2t}cos(2\pi f_0 t)$$

g)
$$x[n] = cos\left(\frac{\pi n}{1.2}\right)$$

d)
$$x[n] = (-1)^n$$

2. Donner un exemple de : a) un signal à énergie finie et b) un signal à puissance finie. Justifiez vos exemples.

3. Déterminer pour chacun des signaux ci-dessous s'il est à énergie ou à puissance finie :

a)
$$\begin{cases} x(t) = e^{-\frac{t}{t_0}} & pour \ t > 0 \\ x(t) = 0 & pour \ t < 0 \end{cases}$$

e)
$$x(t) = A(u(t) - u(t - t_0))$$

avec $t_0 > 0$

b)
$$x(t) = e^{-\frac{t}{t_0}}$$

f)
$$x(t) = Au(t)$$

c)
$$x(t) = t$$

g)
$$x[n] = cos(\pi n)$$

d)
$$x(t) = cos(\omega_0 t)$$

h)
$$x[n] = sin(\pi n)$$

i) $x[n] = cos(\pi n/2)$

4. Soit le signal :
$$\underline{x}_2(t) = A_2 \exp(\underline{s}_2 t) + A_2 \exp(\underline{s}_2^* t)$$

où $\underline{s}_2 = \sigma_2 + j\omega_2$ et $\underline{s}_2^* = \sigma_2 - j\omega_2$
Et si $\Re{\{\underline{x}_2\}} = 10 \exp\left(-\frac{t}{0.1}\right) \cos(100 t)$, calculer les valeurs de A_2 , σ_2 et ω_2 .

Haute école d'ingénierie et d'architecture Fribourg Hochschule für Technik und Architektur Freiburg

- 5. Soit $x[n] = A \cdot \underline{r}^n$, avec A = 2, $\underline{r} = 1 + j$. Donnez la forme du signal $x_{r\acute{e}el}[n] = Re\{x[n]\} = Re\{C \cdot \underline{r}^n\}$ et déterminez les valeurs numériques respectives de r, Ω , et φ .
- 6. Représenter graphiquement pour le signal x(t) ci-contre, les signaux y(t) suivants :

4)
$$y_4(t) = x(2(t+2))$$

2)
$$y_2(t) = x(3t+2)$$

5)
$$y_5(t) = x(2(t-2))$$

3)
$$y_3(t) = x(-2t-1)$$

6)
$$y_6(t) = x(3t) + x(3t+2)$$