Homework 1

Date: 27/03/2024

StudentID: ChauTND2

Ex1: Online vs Offline extraction. Example?

	Online extraction	Offline extraction
Definitions	Online extraction is the process of extracting data by interacting directly with the data source (querying a database, API, etc.), in real-time or near real-time	Offline extraction entails extracting data from the source and storing it elsewhere, such as dump files, archive logs, backups, or data lakes. This is used when real-time interaction with the data source is not feasible or practical
Use cases	Online extraction is used when there is a need for real-time analysis (sales, stocks, etc.) or the data tends to change quickly and dynamically	Offline extraction is used when there is no need for real-time analysis, such as for studies, historical trend analysis, periodic reporting, etc.
Examples	A retail company analyses real- time sales trends by maintaining a direct connection to continuously access the latest transaction data	Daily transaction logs are extracted and stored in a data lake. These logs are later accessed for various purposes, like monthly sales report

Ex2: ETL vs ELT?

	ETL	ELT
Meaning	Extract Transform Load	Extract Load Transform
Process	Extract data from various sources, transformed according to business rules or requirements, and then loaded into a data warehous or data mart	Extract data, load it into a storage system (like a data lake or data warehouse) in its raw form, and transformation occurs later, often within the storage system itself or during query execution
Advantages	Assure data quality, as all data are cleansed, transformed and normalized before storing in DW	Preserve the entire raw data, offering flexibility for various use cases
Disadvantages	May result in missing some parts of the data due to pre-transformation	Requires more storage
When to use	Suited for smaller datasets or when transformation requirements are well-defined and consistent	Preferred for handling large volumes of data and scenarios where data structures and transformation needs may vary over time or across different analytical purposes (like large company's data)

What do companies use these days?

From my research, ETL (Extract, Transform, Load) used to be the standard procedure primarily due to the high costs of cloud storage in the past. To minimise data size while maintaining analysis quality, people needed to cleanse and filter data, retaining only essential components. However, with advancements in technology and the decreasing costs of cloud storage, the approach to data handling has evolved.

Nowadays, there's a growing trend towards preserving entire raw data sets for later transformations. This shift is driven by factors such as more affordable cloud storage, the recognition of the value of raw data for future analysis, and the increasing variety of use cases requiring access to detailed, unaltered data.

While ETL processes are still relevant, especially for specific analytical tasks requiring data transformation and aggregation, ELT enables organisations to explore new insights, support machine learning initiatives, analyse historical trends, and meet compliance requirements. However, albeit minimal, some level of transformation or standardisation may still occur as part of the data management process, so that the data is searchable, restructured in the correct format, etc. so the process could be EtTL.

Ex3: Virtual Environment vs Virtual Machine vs Container.

VM: Virtualization of the OS Kernel + Applications layer

Applications
layer

OS Kernel

Hardware

Container: Virtualization of the Applications layer only

Applications layer

OS Kernel

Hardware

	Virtual Environment	Virtual Machine	Container
Definitions	A self-contained directory tree that contains dependency details, allowing each application install and manage their own dependencies	An emulation of a physical computer, runs their own instance of the OS Kernel and applications, mostly isolated from the host system	A software instance that encapsulates the application and its dependencies
How they do it	Let application install their own dependencies inside a directory separated from the global environment	Use hypervisor which abstracts the hardware physical resources, allow the VM use the resources without relying on host system	Some kernel technologies like namespaces and control groups (cgroups)
What they use	Utilizes the computer's hardware (CPU, memory, storage), OS kernel, and applications. Only separates the dependency packages	Use the computer's hardware (CPU, memory, storage), but use its own OS kernel and applications	Use the computer's hardware (CPU, memory, storage) and OS kernel
Isolation level	Isolate the dependency packages inside the environment	Isolate the OS kernel and the applications inside it, encapsulating the whole operating system (high level of isolation).	Isolate at the application level, shares the OS kernel.
Portability	Has limited portability due to differences in system architectures and dependencies	Portable across systems, as it encapsulates the entire operating system, but there might still be	Portable across systems, as it packages

	Virtual Environment	งุดุกกุล ti lo ility iรณes due to hypervisor incompatibility	epolications and their dependencies
Use cases	Suitable for different projects on one machine, or when all team members have the same OS	Used for projects that require a high level of isolation or OS-specific configurations	Commonly used in software development or team projects