Math 307 – Problem Set 2

Printed-copy Due: 5pm on 09/18/2014

(1) Let G be a group and $g \in G$. For all positive integers n, show that $(g^{-1})^n = (g^n)^{-1}$.

Proof. We prove this by induction. Base step: when n=1, it is clear that $(g^{-1})^1=g^{-1}=(g^1)^{-1}$. Now assume this is true for $n=k, k\in\mathbb{Z}, k>1$. Then let n=k+1, so we have that $(g^{-1})^{k+1}=(g^{-1})^k\cdot g^{-1}=(g^k)^{-1}\cdot g^{-1}=(g^{k+1})^{-1}$.

Name: Alexander Powell

So, via the principle of mathematical induction, it is proven that for all positive integers n, $(g^{-1})^n = (g^n)^{-1}$.

(2) For $n \in \mathbb{N}$, n > 1, let $\mathbb{Z}_n := \{0, 1, \dots, n-1\}$ and $\mathbb{Z}_n^{\times} := \{1, \dots, n-1\}$.

(a) Show that $(\mathbb{Z}_n, +)$, where $a + b := (a + b) \mod n$, is a group.

Proof. To prove something is a group, we must establish 4 things: closure, associativity, identity, and inverse relationships.

We can revert back to the division algorithm, which states that modular addition is a binary operation, to prove closure.

To prove associativity, let $a, b, c \in \mathbb{Z}_n$. It can be shown that: ((a+b)modn + c)modn = ((a+b)+c)modn = (a+(b+c))modn = (a+(b+c))modn.

To prove identity, it is clear that for any element $m \in \mathbb{Z}_n$, (m+0)modn = (0+m)modn = m. Therefore, an identity can be defined for every element in \mathbb{Z}_n .

Finally, to prove the inverse, we can show that if $m \in \mathbb{Z}_n$, then it is the case that (m + (n-m))modn = nmodn = 0

(b) For positive integers a and n, show that $ax \mod n = 1$ has a solution if and only if gcd(a, n) = 1.

Proof. First we prove that $ax \mod n = 1$ has a solution if $\gcd(a,n) = 1$. Let $(ab)modn = 1, b \in \mathbb{Z}$. Now we know there exists $p \in \mathbb{Z}$ such that ab = np + 1 which can be rewritten as ab - np = 1 and $\gcd(a,n) = 1$.

Next we need to prove that if gcd(a, n) = 1, then $ax \mod n = 1$ has a solution. Since gcd(a, n) = 1, we know that there exist $x, q \in \mathbb{Z}$ such that ax + nq = 1. Also, (ax + nq)modn = 1 modn = 1 = ((ax)modn + (nq)modn)modn = ((as)modn + 0)modn = (as)modn.

(c) Use part (b) to show that $(\mathbb{Z}_n^{\times},\cdot)$, where $a\cdot b:=(ab) \bmod n$, is a group if and only if n is a prime.

Proof. To prove closure: Let $a, b \in \mathbb{Z}_n$, then $(ab) mod n \in \mathbb{Z}$. Then we know that $ab \neq 0$. If (ab) mod n = 0, then there exists $p \in \mathbb{Z}$ such that ab = np.

To prove associativity: Let $x, y, z \in \mathbb{Z}_n$, then

$$((ab)modn \cdot c)modn = ((ab) \cdot c)modn = (a \cdot (bc))modn) = (a \cdot (bc)modn)modn$$

To prove identity: Let $i \in \mathbb{Z}_n$, then $(i \cdot 1) mod n = (1 \cdot i) mod n = i$.

To prove inverse: From part b it is clear that (ax) mod n has an inverse for every $a \in \mathbb{Z}_n^{\times}$.

(3) Let $\mathbb{Q}(\sqrt{2}) := \{a + \sqrt{2}b : a, b \in \mathbb{Q}\}$. Show that

1

(a) $\mathbb{Q}(\sqrt{2}) \leq \mathbb{R}$.

Proof. First it is necessary to prove that $\mathbb{Q}(\sqrt{2})$ is non-empty. This is clearly the case because if you plug any rational numbers, a and b, into the expression $a+\sqrt{2}b$, it will return a result. Second, if we let $p,q\in\mathbb{Q}(\sqrt{2})$, then $p=a+\sqrt{2}b$ and $q=c+\sqrt{2}d$. Then $(a+\sqrt{2}b)/(c+\sqrt{2}d)\in\mathbb{Q}(\sqrt{2})\leq\mathbb{R}$.

(b) $\mathbb{Q}(\sqrt{2})^{\times} \leq \mathbb{R}^{\times}$.

Proof. Again, it can easily be determined that $\mathbb{Q}(\sqrt{2})^{\times}$ is non-empty by simply entering in rational numbers for a and b. Also, we will again use $p,q\in\mathbb{Q}(\sqrt{2})^{\times}$, then $p=a+\sqrt{2}b$ and $q=c+\sqrt{2}d$. The inverse of q can be defined as $\frac{1}{(c+\sqrt{2}d)}=\frac{1}{(c+\sqrt{2}d)}\cdot\frac{(c-\sqrt{2}d)}{(c-\sqrt{2}d)}=\frac{(c-\sqrt{2}d)}{(c^2-2d^2)}$. Then by taking the product of x and y^{-1} , we get

$$\frac{ac-\sqrt{2}ad}{c^2-2d^2}+\sqrt{2}\times(\frac{bc-\sqrt{2}db}{c^2-2d^2})$$

which is clearly an element of $\mathbb{Q}(\sqrt{2})^{\times}$.

(4) Recall that the transpose of an $m \times n$ matrix $A = [a_{ij}]$, denoted by A^{T} , is the $n \times m$ matrix whose entries are $[a_{ji}]$. Show that

$$O_n(\mathbb{R}) := \left\{ Q \in GL_n(\mathbb{R}) : Q^\mathsf{T}Q = QQ^\mathsf{T} = I_n \right\} \le GL_n(\mathbb{R}),$$

where I_n denotes the $n \times n$ identity matrix.

Proof. First we must show that $O_n(\mathbb{R})$ is non-empty. This is clearly the case because the identity matrix is an element of $O_n(\mathbb{R})$.

Next, because $Q^{\mathsf{T}}Q = QQ^{\mathsf{T}} = I$ we can determine that Q is an orthogonal matrix. Therefore, $Q^{\mathsf{T}} = Q^{-1}$, so if we let A and B be matrices $\in O_n(\mathbb{R})$, then $AB^{-1} = AB^{\mathsf{T}}$. Now, we have that $(AB^{\mathsf{T}})^{\mathsf{T}}AB^{\mathsf{T}} = B(A^{\mathsf{T}}A)B^{\mathsf{T}} = BB^{\mathsf{T}} = I$.

This is an element of $O_n(\mathbb{R})$, thus $O_n(\mathbb{R}) \leq GL_n(\mathbb{R})$.