AMENDMENTS TO THE CLAIMS:

Please change the heading at page 127, line 1, from "Patent claims" to --WHAT IS CLAIMED IS:--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-9 (canceled)

-- Claim 10 (new) A pyrroline of formula (I)

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^6
 R^4
 R^8
 R^8
 R^8
 R^8
 R^8

in which

R¹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R² represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R³ represents hydrogen, halogen, or methyl,

R⁴ represents hydrogen, C₁-C₆-alkyl, (C₁-C₆-alkoxy)carbonyl, (C₃-C₆-cycloalkyl)-oxycarbonyl, or (C₁-C₆-haloalkoxy)carbonyl; or represents aryl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, and C₁-C₄-haloalkylthio,

A¹ represents N or CH,

A² represents N or CR⁹,

R⁵ represents hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₆-haloalkoxy, C₁-C₆-haloalkylsulphonyl, alkylthio, C₁-C₆-haloalkylsulphinyl, or C₁-C₆-haloalkylsulphonyl,

 R^6 , R^7 , R^8 , and R^9 independently of one another represent hydrogen, halogen, cyano, formyl, nitro, tri(C_1 - C_6 -alkyl)silyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_2 - C_6 -alkenyl, C_2 - C_6 -

- alkenyloxy, (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)carbonyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkenyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkenyloxy, (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, pentafluorothio, - $C(R^{10})$ =N-OR¹¹, - $SO_2NR^{12}R^{13}$, - $(CH_2)_pNR^{12}R^{13}$, - $(CH_2)_pN(R^{12})COR^{13}$, - $(CH_2)_pN(R^{12})SO_2R^{13}$, - OSO_2R^{12} , or - $OSO_2NR^{12}R^{13}$,
- R^{10} represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkyl, alkenyl, or C_3 - C_6 -cycloalkyl,
- R¹¹ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkyl, or C₃-C₆-cycloalkyl-C₁-C₄-alkyl; or represents aryl-C₁-C₄-alkyl that is optionally mono- or polysubstituted by identical or different radicals R⁵,
- R¹² and R¹³ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₁-C₆-haloalkyl; represent C₃-C₆-cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₆-alkyl; represents C₃-C₆-cycloalkyl-C₁-C₄-alkyl; or represents aryl-C₁-C₄-alkyl that is optionally mono- or polysubstituted by identical or different radicals R⁵, or
- R^{12} and R^{13} together represent C_2 - C_6 -alkylene, (C_1 - C_3 -alkoxy)- C_1 - C_3 -alkylene, or (C_1 - C_3 -alkylthio)- C_1 - C_3 -alkylene, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_6 -alkyl,
- p represents 0, 1, or 2,
- Q represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W¹,
- W¹ represents halogen, cyano, C₁-C₁₆-alkyl, C₁-C₁₆-alkoxy, C₁-C₁₆-alkylthio, C₁-C₁₆-alkylsulphinyl, C₁-C₁₆-alkylsulphonyl, C₁-C₁₆-haloalkyl, C₁-C₁₆-haloalkylsulphinyl, C₁-C₁₆-haloalkylsulphinyl, C₁-C₁₆-haloalkylsulphinyl, or C₃-C₁₂-cycloalkyl; or represents aryl or aryl-C₁-C₄-alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, formyl, nitro, tri(C₁-C₆-alkyl)silyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C

alkylsulphinyl, C_1 - C_6 -alkylsulphonyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkenyloxy, $(C_1$ - C_6 -alkyl)carbonyl, $(C_1$ - C_6 -alkoxy)carbonyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulphinyl, C_1 - C_6 -haloalkylsulphonyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkenyloxy, $-C(R^{10})$ =N- OR^{11} , $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$,

the symbol * denotes a stereogenic center and the symbol • denotes a further stereogenic center when R⁴ does not represent hydrogen, wherein the substituents at the two stereogenic centers are located at cis- or trans-positions relative to each other.

Claim 11 (new): A pyrroline of formula (I) according to Claim 10 in which

- R¹ represents fluorine, chlorine, bromine, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R² represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, or C₁-C₄-halo-alkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R³ represents hydrogen, fluorine, chlorine, bromine, or methyl,
- represents hydrogen, C₁-C₄-alkyl, (C₁-C₆-alkoxy)carbonyl, (C₃-C₆-cycloalkyl)-oxycarbonyl, or (C₁-C₄-haloalkoxy)carbonyl having 1 to 9 fluorine and/or chlorine atoms; or represents phenyl that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, and C₁-C₄-haloalkylthio having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- A¹ represents N or CH,
- A² represents N or CR⁹,
- R⁵ represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl; C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, or C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

CS8473 - 5 -

- $\mathsf{R}^6,\,\mathsf{R}^7,\,\mathsf{R}^8,\,\mathsf{and}\,\mathsf{R}^9$ independently of one another represent hydrogen, fluorine, chlorine, bromine, cyano, formyl, nitro, tri(C1-C4-alkyl)silyl, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, C2-C4-alkoxy, C1-C4-alkylthio, C1-C4-alkylsulphinyl, C1-C4-alkylsulphonyl, C2-C4-alkenyl, C2-C4-alkenyloxy, (C1-C4-alkyl)carbonyl, (C1-C4-alkoxy)carbonyl; C1-C4-haloalkyl, C1-C4-haloalkoxy, C1-C4-haloalkylthio, C1-C4-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represent C2-C4-haloalkenyl or C2-C4-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represent (C1-C4-haloalkyl)carbonyl or (C1-C4-haloalkoxy)carbonyl, having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represent pentafluorothio, -C(R^{10})=N-OR^{11}, -SO_2NR^{12}R^{13}, -(CH_2)_pNR^{12}R^{13}, -(CH_2)_pN(R^{12})COR^{13}, -(CH_2)_pN(R^{12})SO_2R^{13}, -OSO_2R^{12}, or -OSO_2NR^{12}R^{13},
- R¹⁰ represents hydrogen, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl having 1 to 7 fluorine, chlorine, and/or bromine atoms, cyclopropyl, cyclopentyl, or cyclohexyl,
- R¹¹ represents hydrogen, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl having 1 to 7 fluorine, chlorine, and/or bromine atoms, or C₃-C₆-cycloalkyl-C₁-C₂-alkyl; or represents benzyl or phenylethyl, each of which is optionally mono- to tetrasubstituted by identical or different radicals R⁵,
- R^{12} and R^{13} independently of one another represent hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C_3 - C_6 -cycloalkyl, or C_3 - C_6 -cycloalkyl- C_1 - C_2 -alkyl; or represents benzyl or phenylethyl, each of which is optionally mono- to tetrasubstituted by identical or different radicals R^5 , or
- R^{12} and R^{13} together represent C_3 - C_5 -alkylene, -(CH_2)₂-O-(CH_2)₂-, or -(CH_2)₂-S-(CH_2)₂-,
- p represents 0 or 1,
- q represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W¹, and

 $W^1 \\$ represents fluorine, chlorine, bromine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, C₁-C₁₂-haloalkoxy, C₁-C₁₂-haloalkylthio, C₁-C₁₂-haloalkylsulphinyl, C₁-C₁₂haloalkylsulphonyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or aryl-C₁-C₂alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄alkenyloxy, $(C_1-C_4-alkyl)$ carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$. C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³.

Claim 12 (new): A pyrroline of formula (I) according to Claim 10 in which

Represents a completely unsaturated 5-membered heterocycle selected from the group consisting of

in which

R¹⁴ and R¹⁵ independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl,

 C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$, $C_1-C_4-haloalkoxy$ alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine. chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$. and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R^{16} represents hydrogen, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms. $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13}

with the proviso that R¹⁴, R¹⁵, and R¹⁶ do not simultaneously represent hydrogen,

are as defined in Claim 10.

 R^{17} and R^{19} independently of one another represent hydrogen, cyano, $\mathsf{C}_1\text{-}\mathsf{C}_{12}$ -alkyl, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-alkoxy}$, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-alkylthio}$, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-alkylsulphinyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_{12}$ -alkylsulphonyl, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-haloalkyl}$, or $\mathsf{C}_3\text{-}\mathsf{C}_{12}\text{-cycloalkyl}$; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$

sulphonyl, C2-C4-alkenyl, C2-C4-alkenyloxy, (C1-C4-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine. chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_pNR^{12}R^{13}, -(CH_2)_pN(R^{12})COR^{13}, -(CH_2)_pN(R^{12})SO_2R^{13}, -OSO_2R^{12}, -O$ and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R^{18} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy. C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine. chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C2-C4-haloalkenyl-

-(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R¹⁷, R¹⁸, and R¹⁹ do not simultaneously represent

atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$,

oxy having in each case 1 to 7 fluorine, chlorine, and/or bromine

R²⁰ and R²³ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl,

CS8473

hvdrogen.

 $(C_1-C_4-alkoxy)$ carbonyl, C_1-C_4 -haloalkyl, C_1-C_4 -haloalkoxy, C_1-C_4 -haloalkylsulphinyl, C_1-C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2-C_4 -haloalkenyl, C_2-C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R²¹ and R²² independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R²⁰, R²¹, R²², and R²³ do not simultaneously represent hydrogen,

R²⁴ represents hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl,

R²⁵ and R²⁶ independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)-carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy,

 C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})$ =N- OR^{11} , $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R²⁷ represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R²⁴, R²⁵, R²⁶, and R²⁷ do not simultaneously represent hydrogen,

R²⁸ and R³⁰ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloal

alkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine. chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$. and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. R^{29} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C2-C4haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. R^{31} represents hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$, $C_1-C_4-haloalkoxy$ alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine. chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$.

and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10, with the proviso that R^{28} , R^{29} , R^{30} , and R^{31} do not simultaneously represent hydrogen,

 R^{32} and R^{34} independently of one another represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}\mathsf{alkyl}$, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C2-C4haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)₀NR¹²R¹³, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. R^{33} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$. $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. with the proviso that R³², R³³, and R³⁴ do not simultaneously represent hydrogen,

CS8473 - 14 -

R³⁵ and R³⁶ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. with the proviso that R³¹, R³⁵, and R³⁶ do not simultaneously represent

R³⁷ represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)-carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10.

CS8473

hydrogen,

 R^{38} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy. C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine. chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10.

with the proviso that R²⁴, R³⁷, and R³⁸ or R³¹, R³⁷, and R³⁸ do not simultaneously represent hydrogen,

R³⁹, R⁴⁰ and R⁴¹ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

- with the proviso that R³⁹, R⁴⁰, and R⁴¹ do not simultaneously represent hydrogen,
- R^{42} and R^{43} independently of one another represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkoxy,$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkylthio,}$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkylsulphinyl,}$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkylsulphinyl,}$ or $\mathsf{C}_3\text{-}\mathsf{C}_{12}\text{-}cycloalkyl;}$ or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkylsulphinyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkylsulphonyl,$ $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}alkenyl,$ $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}alkenyloxy,$ $(\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkyl)carbonyl,$ $(\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkoxy)\text{-}carbonyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}haloalkyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}haloalkylsulphonyl$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}haloalkenyl,$ $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}haloalkenyl,$ $\mathsf{C}_2\text{-}\mathsf{C}_4\text{-}haloalkenyloxy$ having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $\mathsf{-}\mathsf{C}(\mathsf{R}^{10})\text{=}\mathsf{N}\text{-}\mathsf{OR}^{11}$, $\mathsf{-}\mathsf{SO}_2\mathsf{N}\mathsf{R}^{12}\mathsf{R}^{13}$, $\mathsf{-}(\mathsf{CH}_2)_p\mathsf{N}(\mathsf{R}^{12})\mathsf{COR}^{13}$, $\mathsf{-}(\mathsf{CH}_2)_p\mathsf{N}(\mathsf{R}^{12})\mathsf{COR}^{13}$, $\mathsf{-}(\mathsf{CH}_2)_p\mathsf{N}(\mathsf{R}^{12})\mathsf{COR}^{13}$, $\mathsf{-}(\mathsf{CH}_2)_p\mathsf{N}(\mathsf{R}^{12})\mathsf{COR}^{13}$, where R^{10} to R^{13} are as defined in Claim 10,
- with the proviso that R²⁴, R⁴², and R⁴³ do not simultaneously represent hydrogen,
- R⁴⁴ and R⁴⁵ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylylcarbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_nNR¹²R¹³.

 $-(CH_2)_pN(R^{12})COR^{13}, -(CH_2)_pN(R^{12})SO_2R^{13}, -OSO_2R^{12}, \text{ and} \\ -OSO_2NR^{12}R^{13}, \text{ where } R^{10} \text{ to } R^{13} \text{ are as defined in Claim 10,} \\ \text{with the proviso that } R^{24}, R^{44}, \text{ and } R^{45} \text{ or } R^{31}, R^{44}, \text{ and } R^{45} \text{ do not simultaneously represent hydrogen,} \\$

 R^{46} and R^{47} independently of one another represent hydrogen, $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkyl,$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkoxy,$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkylthio,}$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkylsulphinyl,}$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}alkylsulphonyl,}$ $\mathsf{C}_1\text{-}\mathsf{C}_{12}\text{-}haloalkyl,}$ or $\mathsf{C}_3\text{-}\mathsf{C}_{12}\text{-}cycloalkyl;}$ or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-}alkyl,$ C

with the proviso that R^{46} and R^{47} do not simultaneously represent hydrogen, R^{48} and R^{49} independently of one another represent hydrogen, C_1 - C_{12} -alkyl,

 C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)-carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, - $C(R^{10})$ =N-OR 11 , -SO $_2$ NR 12 R 13 , - $(CH_2)_p$ NR 12 R 13 ,

 $-(CH_2)_pN(R^{12})COR^{13}, \ -(CH_2)_pN(R^{12})SO_2R^{13}, \ -OSO_2R^{12}, \ and$ $-OSO_2NR^{12}R^{13}, \ where \ R^{10} \ to \ R^{13} \ are \ as \ defined \ in \ Claim \ 10,$ with the proviso that R^{48} and R^{49} do not simultaneously represent hydrogen, R^{50} and R^{51} independently of one another represent hydrogen, C_1 - C_{12} -alkyl,

 C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkylsulphonyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)-carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})$ =N- $-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

with the proviso that R⁵⁰ and R⁵¹ do not simultaneously represent hydrogen, represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio,

 C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})$ =-N- $-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})$ $-OCR^{13}$.

 $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

 R^{53} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_6NR^{12}R^{13}$. $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10.

with the proviso that R⁵² and R⁵³ do not simultaneously represent hydrogen. represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C2-C4-alkenyloxy, (C1-C4-alkyl)carbonyl, (C1-C4-alkoxy)carbonyl, C1-C4haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$. and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

CS8473

 R^{54}

 R^{55} represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, -(CH₂)₀N(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10.

with the proviso that R^{54} and R^{55} do not simultaneously represent hydrogen, R^{56} and R^{57} independently of one another represent hydrogen, C_1 - C_{12} -alkyl,

 C_1 – C_{12} -alkoxy, C_1 – C_{12} -alkylthio, C_1 – C_{12} -alkylsulphinyl, C_1 – C_{12} -alkylsulphonyl, C_1 – C_{12} -haloalkyl, or C_3 – C_{12} -cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 – C_4 -alkyl, C_1 – C_4 -alkoxy, C_1 – C_4 -alkylthio, C_1 – C_4 -alkylsulphinyl, C_1 – C_4 -alkylsulphonyl, C_2 – C_4 -alkenyl, C_2 – C_4 -alkenyloxy, (C_1 – C_4 -alkyl)carbonyl, (C_1 – C_4 -alkoxy)-carbonyl, C_1 – C_4 -haloalkyl, C_1 – C_4 -haloalkoxy, C_1 – C_4 -haloalkylsulphinyl, C_1 – C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 – C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, - $C(R^{10})$ =N-OR 11 , -SO $_2$ NR 12 R 13 , -(CH $_2$) $_p$ NR 12 R 13 , -(CH $_2$) $_p$ N(R^{12})COR 13 , -(CH $_2$) $_p$ N(R^{12})SO $_2$ R 13 , -OSO $_2$ R 12 , and -OSO $_2$ NR 12 R 13 , where R 10 to R 13 are as defined in Claim 10,

with the proviso that R⁵⁶ and R⁵⁷ do not simultaneously represent hydrogen.

R⁵⁸ and R⁵⁹ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1$ - C_4 -alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C2-C4haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms. $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13},\ -(CH_2)_pN(R^{12})SO_2R^{13},\ -OSO_2R^{12},\ and$ -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. with the proviso that R⁵⁸ and R⁵⁹ do not simultaneously represent hydrogen. R^{60} represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio. C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy. $(C_1-C_4-alkyl)$ carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-alkyl$ haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$. $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

with the proviso that R²⁴ and R⁶⁰ or R³¹ and R⁶⁰ do not simultaneously represent hydrogen,

 R^{61} represents C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$. C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10.

 R^{62} represents cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl. C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $C_1-C_4-haloalkyl$, $C_1-C_4-haloalkoxy$. C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms. C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹. $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R⁶³ represents C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the

group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. represents C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkoxy alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine. chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, represents C₁-C₁₂-alkyl, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-halo-

CS8473

 R^{64}

 R^{65}

alkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in

each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl. C2-C4-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$. and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, R^{66} represents C₁-C₁₂-alkyl, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine. chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$. and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. R^{67} represents C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, $(C_1$ - C_4 -alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C2-C4-haloalkenyl, C2-C4-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, $-(CH_2)_0NR^{12}R^{13}$, $-(CH_2)_0N(R^{12})COR^{13}$, $-(CH_2)_0N(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$,

CS8473

and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10. and

represents C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10.

Claim 13 (new): A pyrroline of formula (I) according to Claim 10 in which A¹ and A² each represent CH.

Claim 14 (new): A pyrroline of formula (I-b) according to Claim 10 in which

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^2
 R^6
 R^6
 R^7
 R^8
 R^8
 R^8

in which

A¹, A², R¹, R², R³, R⁵, R⁶, R⁷, R⁸, and Q are as defined for formula (I) in Claim 10, R⁴ is as defined for formula (I) in Claim 10 but does not represent hydrogen, the carbon atom in the 2-position of the pyrrole ring has the R configuration, and the two substituents in the 2- and 3-positions of the pyrrole ring are located *cis* to each other.

CS8473 - 26 -

Claim 15 (new): A pyrroline of formula (I-a) according to Claim 10 in which

$$R^3$$
 R^4
 R^5
 R^7
 R^8
 R^8
 R^6
 R^4
 R^8
 R^8
 R^8

in which

A¹, A², R¹, R², R³, R⁵, R⁶, R⁷, R⁸, and Q are as defined for formula (I) in Claim 10, and

the carbon atom in the 2-position of the pyrrole ring has the R configuration.

Claim 16 (new): A pyrroline of formula (I-f) according to Claim 10 in which

$$R^3$$
 R^4
 R^5
 R^5
 R^3
 R^2
 R^2
 R^4
 R^5
 R^5
 R^4
 R^5

in which

(1) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(2) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(3) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(4) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is H, and Q is

$$N$$
 CF_3

- (6) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $N \rightarrow 0$
- (7) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is F, and Q is $\longrightarrow_{N \to 0}^{N \to CF_3}$
- (8) R^1 is F, R^2 is F, R^3 is H, R^4 is CO_2Et , R^5 is H, and Q is CF_3
- (9) R^1 is F, R^2 is F, R^3 is H, R^4 is CO_2Et , R^5 is H, and Q is $N \longrightarrow 0$
- (10) R^1 is F, R^2 is F, R^3 is H, R^4 is CO_2Et , R^5 is H, and Q is N

- (13) R^1 is F, R^2 is F, R^3 is H, R^4 is C_2H_5 , R^5 is H, and Q is OC_3H_7 -i

- (14) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is F, and Q is $\longrightarrow_{N \to 0}^{N \to CF_3}$
- (16) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is F, and Q is $\underbrace{\qquad \qquad \qquad }_{O-N}^{N-1} t^{-Bu}$
- (17) R^1 is CH_3 , R^2 is H, R^3 is H, R^4 is H, R^5 is F, and Q is OMe
- (18) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is -N = CN
- (19) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $C(CH_3)_3$
- (20) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is OCH_3 .
- (21) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $C(CH_3)_3$
- (22) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is CH_3

- (23) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $(CCH_3)_3$
- (24) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $N \longrightarrow C(CH_3)_3$
- (25) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $N \longrightarrow CH(CH_3)_2$
- (26) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is
- (27) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $\underbrace{ \begin{array}{c} N \\ \\ \\ \end{array} }^{C_4 H_9 \text{-n}}$
- (29) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is C_3H_7 -i
- (31) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is $\underbrace{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad }_{OC_5H_{11}-i}$

Claim 17 (new): A process for preparing compounds of formula (I) according to Claim 10 comprising reacting a Δ^1 -pyrroline of formula (II)

in which R¹, R², R³, R⁴, A¹, and R⁵ are as defined for formula (I) in Claim 10, with a benzene derivative of formula (III)

$$R^{6}$$
 R^{6}
 R^{6}
 R^{8}
 R^{6}
 R^{8}
 R^{6}
 R^{6}
 R^{7}
 R^{8}
 R^{8}

in which

 A^2 , R^6 , R^7 , R^8 , and Q are as defined for formula (I) in Claim 10, and X^1 represents bromine, iodine, or $-OSO_2CF_3$,

in the presence of a catalyst and in the presence of a diluent.

Claim 18 (new): A pesticide comprising one or more compounds of formula (I) according to Claim 10 and one or more extenders and/or surfactants.

Claim 19 (new): A method for controlling pests comprising allowing an effective amount of one or more compounds of formula (I) according to Claim 10 to act on pests and/or their habitat.

Claim 20 (new): A process for preparing pesticides comprising mixing one or more compounds of formula (I) according to Claim 10 with one or more extenders and/or surfactants. --

CS8473 - 31 -