



| Please write clearly, i | n block capitals. |
|-------------------------|-------------------|
| Centre number           | Candidate number  |
|                         |                   |
| Surname                 |                   |
| Forename(s)             |                   |
| Candidate signature     |                   |

# AS FURTHER MATHEMATICS

Paper 1

Exam Date Morning Time allowed: 1 hour 30 minutes

### **Materials**

For this paper you must have:

- The AQA booklet of formulae and statistical tables.
- You may use a graphics calculator.

### Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

## **Advice**

Unless stated otherwise, you may quote formulae, without proof, from the booklet. You do not necessarily need to use all the space provided.

# Answer all questions in the spaces provided.

1 A reflection is represented by the matrix  $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ 

State the equation of the line of invariant points.

Circle your answer.

[1 mark]

$$x = 0$$

$$y = 0$$

$$y = x$$

$$y = -x$$

**2** Find the mean value of  $3x^2$  over the interval  $1 \le x \le 3$ 

Circle your answer.

[1 mark]

$$8\frac{2}{3}$$

10

26

3 Find the equations of the asymptotes of the curve  $x^2 - 3y^2 = 1$ 

Circle your answer.

[1 mark]

$$y = \pm 3x$$
  $y = \pm \frac{1}{3}x$   $y = \pm \sqrt{3}x$   $y = \pm \frac{1}{\sqrt{3}}x$ 

[1 mark]

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & k \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

| 4 | (a) | Find the value of $\boldsymbol{k}$ for which matrix $\boldsymbol{A}$ is | singular |
|---|-----|-------------------------------------------------------------------------|----------|
|---|-----|-------------------------------------------------------------------------|----------|

| 4 (b) | Describe the transformation represented by matrix <b>B</b> . |          |  |
|-------|--------------------------------------------------------------|----------|--|
|       |                                                              | [1 mark] |  |
|       |                                                              |          |  |
|       |                                                              |          |  |

| 4 (c) (i) | Given that <b>A</b> and <b>B</b> are both non-singular, verify that $A^{-1}B^{-1} = (BA)^{-1}$ . |           |
|-----------|--------------------------------------------------------------------------------------------------|-----------|
| . , . ,   |                                                                                                  | [4 marks] |

| 4 (c) (ii) |  | ) Prove the result $\mathbf{M}^{-1}\mathbf{N}^{-1} = (\mathbf{N}\mathbf{M})^{-1}$ for all non-singular square matrices $\mathbf{M}$ and $\mathbf{N}$ same size. |          |  |
|------------|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
|            |  |                                                                                                                                                                 | l marks] |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |
|            |  |                                                                                                                                                                 |          |  |

|                        |                  |                 | 125π                |  |
|------------------------|------------------|-----------------|---------------------|--|
| Use integration to sho | w that the volur | ne generated is | $3\frac{125\pi}{2}$ |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |
|                        |                  |                 |                     |  |

| 6 (a) | Use the definitions of $\sinh x$ and $\cosh x$ in terms of $e^x$ and $e^{-x}$ to show that |           |
|-------|--------------------------------------------------------------------------------------------|-----------|
|       | $x = \frac{1}{2} \ln \left( \frac{1+t}{1-t} \right)$ where $t = \tanh x$                   |           |
|       |                                                                                            | [4 marks] |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |
|       |                                                                                            |           |

Question 6 continues on the next page

| 6 (b) (i) | Prove $\cosh^3 x = \frac{1}{4} \cosh 3x + \frac{3}{4} \cosh x$ |           |
|-----------|----------------------------------------------------------------|-----------|
|           |                                                                | [4 marks] |
|           |                                                                |           |
|           |                                                                |           |
|           |                                                                |           |
|           |                                                                |           |
|           |                                                                |           |
|           |                                                                |           |
|           |                                                                |           |
|           |                                                                |           |
|           |                                                                |           |

| 6 | (b) (ii) | Show that the equation $\cosh 3 x = 13 \cosh x$ has only one positive solution. |           |
|---|----------|---------------------------------------------------------------------------------|-----------|
|   |          | Find this solution in exact logarithmic form.                                   | [4 marks] |
|   |          |                                                                                 |           |
|   |          |                                                                                 |           |
|   |          |                                                                                 |           |
|   |          |                                                                                 |           |
|   |          |                                                                                 |           |
|   |          |                                                                                 |           |
|   |          |                                                                                 |           |
|   |          |                                                                                 |           |

A lighting engineer is setting up part of a display inside a large building. The diagram shows a plan view of the area in which he is working.

He has two lights, which project narrow beams of light.

One is set up at a point 3 metres above the point *A* and the beam from this light hits the wall 23 metres above the point *D*.

The other is set up 1 metre above the point *B* and the beam from this light hits the wall 29 metres above the point *C*.



| 7 (a) | By creating a suitable model, show that the beams of light intersect. | [6 marks] |
|-------|-----------------------------------------------------------------------|-----------|
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |

| 7 (b) | Find the angle between the two beams of light.                             | [3 marks] |
|-------|----------------------------------------------------------------------------|-----------|
|       |                                                                            |           |
|       |                                                                            |           |
| 7 (c) | State one way in which the model you created in part (a) could be refined. | [1 mark]  |
|       |                                                                            |           |

| 8 |          | A curve has polar equation $r = 3 + 2\cos\theta$ , where $0 \le \theta < 2\pi$ |           |
|---|----------|--------------------------------------------------------------------------------|-----------|
| 8 | (a) (i)  | State the maximum and minimum values of $\boldsymbol{r}$ .                     | [2 marks] |
|   |          |                                                                                |           |
|   |          |                                                                                |           |
|   |          |                                                                                |           |
|   |          |                                                                                |           |
| 8 | (a) (ii) | Sketch the curve.                                                              | [2 marks] |
|   |          |                                                                                |           |
|   |          |                                                                                |           |
|   |          | O Initial line ▶                                                               |           |
|   |          |                                                                                |           |
|   |          |                                                                                |           |

| Find all of the points of  | of intersection of th | e two curves in | the form $[r, \theta]$ |   |
|----------------------------|-----------------------|-----------------|------------------------|---|
| Tilld all of the points of |                       | c two curves in | ine form [/, o ].      | [ |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |
|                            |                       |                 |                        |   |

9 (a) Sketch on the Argand diagram below, the locus of points satisfying the equation |z-2|=2

[2 marks]



| 9 (b) | Given that $ z-2 =2$ and $\arg(z-2)=-\frac{\pi}{3}$ , express $z$ in the form $a+b\mathrm{i}$ , where $a$ and $b$ are real numbers. |           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
|       | where $u$ and $v$ are real numbers.                                                                                                 | [3 marks] |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |
|       |                                                                                                                                     |           |

10 (a) Prove that

| $6 + 3\sum_{r=1}^{n} (r+1)(r+2) = (n+1)(r+2)$ | 1)(n+2)(n+3) |           |
|-----------------------------------------------|--------------|-----------|
| ,                                             |              | [6 marks] |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |
|                                               |              |           |

| 10 (b) | Alex substituted a few values of $n$ into the expression $(n + 1)(n + 2)(n + 3)$ and made the statement: |
|--------|----------------------------------------------------------------------------------------------------------|
|        | "For all positive integers $n$ ,                                                                         |
|        | $6 + 3\sum_{r=1}^{n} (r+1)(r+2)$                                                                         |
|        | is divisible by 12."                                                                                     |
|        | Disprove Alex's statement.  [2 marks]                                                                    |
|        |                                                                                                          |
|        |                                                                                                          |
|        |                                                                                                          |
|        |                                                                                                          |
|        |                                                                                                          |

| 11 | The equation $x^3 - 8x^2 + cx + d = 0$ where $c$ and $d$ are real numbers, has roots $\alpha$ , $\beta$ , $\gamma$ . When plotted on an Argand diagram, the triangle with vertices at $\alpha$ , $\beta$ , $\gamma$ has an area of 8. |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Given $\alpha$ = 2, find the values of $c$ and $d$ .                                                                                                                                                                                  |
|    | Fully justify your solution.  [5 marks]                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |
|    |                                                                                                                                                                                                                                       |

| 12 | A curve, $C_1$ has equation $y = f(x)$ , where $f(x) = \frac{5x^2 - 12x + 12}{x^2 + 4x - 4}$ |
|----|----------------------------------------------------------------------------------------------|
|    | The line $y = k$ intersects the curve, $C_1$                                                 |

**12 (a) (i)** Show that  $(k+3)(k-1) \ge 0$ 

| [5 marks] |
|-----------|
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |
|           |

| 12 | (a) (ii) | Hence find the coordinates of the stationary point of $C_1$ that is a maximum point. | 4 marks] |
|----|----------|--------------------------------------------------------------------------------------|----------|
|    |          | •                                                                                    |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |
|    |          |                                                                                      |          |

| 12 | (b) | Show that the curve $C_2$ whose equation is $y = \frac{1}{f(x)}$ , has no vertical asymptote | es.       |
|----|-----|----------------------------------------------------------------------------------------------|-----------|
|    |     | $\Gamma(\mathcal{X})$                                                                        | [2 marks] |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
| 12 | (c) | State the equation of the line that is a tangent to both ${\it C}_{1}$ and ${\it C}_{2}$ .   |           |
|    |     |                                                                                              | [1 mark]  |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |
|    |     |                                                                                              |           |

# **END OF QUESTIONS**

Copyright © 2017 AQA and its licensors. All rights reserved.



| Please write clearly in | n block capitals.              |   |
|-------------------------|--------------------------------|---|
| Centre number           | Candidate number               |   |
| Surname                 |                                |   |
| Forename(s)             |                                |   |
| Candidate signature     | I declare this is my own work. | / |

# AS FURTHER MATHEMATICS

Paper 1

Time allowed: 1 hour 30 minutes

## **Materials**

- You must have the AQA Formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

# Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

### Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

| For Examiner's Use |      |
|--------------------|------|
| Question           | Mark |
| 1                  |      |
| 2                  |      |
| 3                  |      |
| 4                  |      |
| 5                  |      |
| 6                  |      |
| 7                  |      |
| 8                  |      |
| 9                  |      |
| 10                 |      |
| 11                 |      |
| 12                 |      |
| 13                 |      |
| 14                 |      |
| 15                 |      |
| 16                 |      |
| 17                 |      |
| TOTAL              |      |
|                    |      |



# Answer all questions in the spaces provided.

1 The complex number  $\omega$  is shown below on the Argand diagram.



Which of the following complex numbers could be  $\omega$ ?

Tick (✓) one box.

[1 mark]

$$\cos{(-2)} + i\sin{(-2)}$$

$$\cos{(-1)} + i\sin{(-1)}$$

$$\cos(1) + i\sin(1)$$

$$\cos(2) + i\sin(2)$$

Given that f(x) = 3x - 1 find the mean value of f(x) over the interval  $4 \le x \le 8$ 

Circle your answer.

[1 mark]

6

11

17

23

3 The matrix  $\mathbf{M}$  represents a rotation about the x-axis.

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a & \frac{\sqrt{3}}{2} \\ 0 & b & -\frac{1}{2} \end{bmatrix}$$

Which of the following pairs of values is correct?

Tick (✓) one box.

[1 mark]

$$a = \frac{1}{2} \quad \text{and} \quad b = \frac{\sqrt{3}}{2}$$

$$a = \frac{1}{2} \quad \text{and} \quad b = -\frac{\sqrt{3}}{2}$$

$$a = -\frac{1}{2}$$
 and  $b = \frac{\sqrt{3}}{2}$ 



$$a = -\frac{1}{2} \quad \text{and} \quad b = -\frac{\sqrt{3}}{2}$$

- The point (2, -1) is invariant under the transformation represented by the matrix  $\mathbf{N}$ 4 Which of the following matrices could be N?

Circle your answer.

[1 mark]

$$\begin{bmatrix} 4 & 6 \\ 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 6 \\ 2 & 5 \end{bmatrix} \qquad \begin{bmatrix} 6 & 5 \\ 4 & 2 \end{bmatrix} \qquad \begin{bmatrix} 5 & 2 \\ 6 & 4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$$

| 5 | Show that the vectors $\begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ 4 \\ 1 \end{bmatrix}$ are perpendicular. | [2 marks] |
|---|---------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 6 | Prove the identity $\cosh^2 x - \sinh^2 x = 1$                                                                                        | [2 marks] |
|   |                                                                                                                                       |           |



| 7 | Show that the Maclaurin series | for $ln(e + 2ex)$ is           |           |
|---|--------------------------------|--------------------------------|-----------|
|   |                                | $1 + 2x - 2x^2 + ax^3 - \dots$ |           |
|   | where $a$ is to be determined. |                                | [3 marks] |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   |                                |                                |           |
|   | Turn over                      | for the next question          |           |
|   |                                |                                |           |



| 8     | Stephen is correctly told that $(1+i)$ and $-1$ are two roots of the polynomial equation                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|
|       | $z^3 - 2iz^2 + pz + q = 0$                                                                                                             |
|       | where $p$ and $q$ are complex numbers.                                                                                                 |
| 8 (a) | Stephen states that $(1-i)$ <b>must</b> also be a root of the equation because roots of polynomial equations occur in conjugate pairs. |
|       | Explain why Stephen's reasoning is wrong.  [1 mark]                                                                                    |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
| 0 /h\ | Find a and a                                                                                                                           |
| 8 (b) | Find $p$ and $q$ [5 marks]                                                                                                             |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       |                                                                                                                                        |
|       |                                                                                                                                        |



| Turn over for the next question |
|---------------------------------|
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |



| 9 (a) | Use the standard formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that |           |
|-------|----------------------------------------------------------------------------------------|-----------|
|       |                                                                                        |           |
|       | $\sum_{r=1}^{n} r(r+3) = an(n+1)(n+b)$                                                 |           |
|       | where $a$ and $b$ are constants to be determined.                                      | [4 marks] |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |
|       |                                                                                        |           |



| $\sum_{r=n+1}^{5n} r(r+3)$ |    |
|----------------------------|----|
| r=n+1                      | [3 |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |
|                            |    |



| 10     | Matrix A is given by                                                                                    |           |
|--------|---------------------------------------------------------------------------------------------------------|-----------|
|        | $\mathbf{A} = \begin{bmatrix} 3 & i-1 \\ i & 2 \end{bmatrix}$                                           |           |
| 10 (a) | Show that $\det \mathbf{A} = a + i$ where $a$ is an integer to be determined.                           | [2 marks] |
|        |                                                                                                         | [Z marks] |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
| 10 (b) | Matrix <b>B</b> is given by                                                                             |           |
|        | $\mathbf{B} = egin{bmatrix} 14 - 2\mathrm{i} & b \ c & d \end{bmatrix}$ and $\mathbf{AB} = p\mathbf{I}$ |           |
|        | where $b,c,d\in\mathbb{C}$ and $p\in\mathbb{N}$                                                         |           |
|        | Find $b$ , $c$ , $d$ and $p$                                                                            | [6 marks] |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |
|        |                                                                                                         |           |

| _ |                                 |
|---|---------------------------------|
| _ |                                 |
| _ |                                 |
| _ |                                 |
|   |                                 |
|   |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   | Turn over for the next question |
|   |                                 |
|   |                                 |
|   |                                 |



| 11 (a) | Show that, for all positive integers $r$ ,                                                        |           |
|--------|---------------------------------------------------------------------------------------------------|-----------|
|        | $\frac{1}{(r-1)!} - \frac{1}{r!} = \frac{r-1}{r!}$                                                | [1 mark]  |
|        |                                                                                                   |           |
|        |                                                                                                   |           |
|        |                                                                                                   |           |
| 11 (b) | Hence, using the method of differences, show that                                                 |           |
|        | $\sum_{r=1}^n \frac{r-1}{r!} = a + \frac{b}{n!}$ where $a$ and $b$ are integers to be determined. |           |
|        |                                                                                                   | [3 marks] |
|        |                                                                                                   |           |
|        |                                                                                                   |           |
|        |                                                                                                   |           |
|        |                                                                                                   |           |
|        |                                                                                                   |           |

| - |                                 |
|---|---------------------------------|
| _ |                                 |
|   |                                 |
| _ |                                 |
| _ |                                 |
| - |                                 |
| _ |                                 |
|   |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
|   |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
| _ |                                 |
|   |                                 |
| _ | ·                               |
| _ | ·                               |
| _ |                                 |
| _ |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   | Turn over for the next question |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |
|   |                                 |



| 12     | The equation $x^3 - 2x^2 - x + 2 = 0$ has three roots. One of the roots is 2 |           |
|--------|------------------------------------------------------------------------------|-----------|
| 12 (a) | Find the other two roots of the equation.                                    |           |
|        |                                                                              | [1 mark]  |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
| 12 (b) | Hence, or otherwise, solve                                                   |           |
|        | $\cosh^3\theta - 2\cosh^2\theta - \cosh\theta + 2 = 0$                       |           |
|        | giving your answers in an exact form.                                        |           |
|        |                                                                              | [4 marks] |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |
|        |                                                                              |           |



|   | $\sum_{r=1}^{n} 2^{-r} = 1 - 2^{-n}$ |    |
|---|--------------------------------------|----|
|   |                                      | [4 |
|   |                                      |    |
| - |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |
|   |                                      |    |



| 14         | Curve C <sub>1</sub> has equation                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|            | $\frac{x^2}{16} + \frac{y^2}{4} = 1$                                                                                                        |
| 14 (a)     | Curve $C_2$ is a reflection of $C_1$ in the line $y = x$                                                                                    |
|            | Write down an equation of $C_2$ [1 mark]                                                                                                    |
|            |                                                                                                                                             |
| 14 (b)     | Curve $C_3$ is a circle of radius 4, centred at the origin.                                                                                 |
|            | Describe a single transformation which maps $C_1$ onto $C_3$ [2 marks]                                                                      |
|            |                                                                                                                                             |
| 14 (c)     | Curve $C_4$ is a translation of $C_1$<br>The positive $x$ -axis and the positive $y$ -axis are tangents to $C_4$                            |
| 14 (c) (i) | Sketch the graphs of $C_1$ and $C_4$ on the axes opposite. Indicate the coordinates of the $x$ and $y$ intercepts on your graphs. [2 marks] |
|            |                                                                                                                                             |
|            |                                                                                                                                             |
|            |                                                                                                                                             |
|            |                                                                                                                                             |



 $y \uparrow$ O14 (c) (ii) Determine the translation vector. [2 marks] **14 (c) (iii)** The line y = mx + c is a tangent to both  $C_1$  and  $C_4$  Find the value of m[2 marks]



Two submarines are travelling on different straight lines. The two lines are described by the equations

$$\mathbf{r} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix} \quad \text{and} \quad \frac{x-5}{4} = \frac{y}{2} = 4 - z$$

15 (a) (i) Show that the two lines intersect. [3 marks] **15 (a) (ii)** Find the position vector of the point of intersection. [1 mark]



| 15 (b) | Tracey says that the submarines will collide because there is a common point on the two lines.                                                                  |           |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
|        | Explain why Tracey is not necessarily correct.                                                                                                                  | [1 mark]  |  |  |
|        |                                                                                                                                                                 |           |  |  |
| 15 (c) | Calculate the acute angle between the lines                                                                                                                     |           |  |  |
|        | $\mathbf{r} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ 3 \\ -2 \end{bmatrix}  \text{and}  \frac{x-5}{4} = \frac{y}{2} = 4 - z$ |           |  |  |
|        | Give your angle to the nearest 0.1°                                                                                                                             | [3 marks] |  |  |
|        |                                                                                                                                                                 |           |  |  |
|        |                                                                                                                                                                 |           |  |  |
|        |                                                                                                                                                                 |           |  |  |
|        |                                                                                                                                                                 |           |  |  |
|        |                                                                                                                                                                 |           |  |  |
|        |                                                                                                                                                                 |           |  |  |
|        |                                                                                                                                                                 |           |  |  |
|        |                                                                                                                                                                 |           |  |  |

16 Curve C has equation  $y = \frac{ax}{x+b}$  where a and b are constants.

The equations of the asymptotes to C are x = -2 and y = 3



**16 (a)** Write down the value of a and the value of b

| [2 marks] |
|-----------|
|-----------|

**16 (b)** The gradient of *C* at the origin is  $\frac{3}{2}$ 

With reference to the graph, explain why there is exactly one root of the equation

$$\frac{ax}{x+b} = \frac{3x}{2}$$

[2 marks]

| $\frac{ax}{x+b} \le 1 - x$ |          |
|----------------------------|----------|
| x + b                      | [4 marks |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
| <br>                       |          |
| <br>                       |          |
| <br>                       |          |
|                            |          |
| <br>                       |          |
| <br>                       |          |
|                            |          |
| <br>                       |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |
|                            |          |



| 17 | The curve $C_1$ has polar equation $r = 2a(1 + \sin \theta)$ for $-\pi < \theta \le \pi$ where $a$ is a |
|----|---------------------------------------------------------------------------------------------------------|
|    | positive constant.                                                                                      |
|    |                                                                                                         |



|        | W mildi inc                                                  |           |
|--------|--------------------------------------------------------------|-----------|
|        | The point $M$ lies on $C_1$ and the initial line.            |           |
| 17 (a) | Write down, in terms of $a$ , the polar coordinates of $M$   | [1 mark]  |
|        |                                                              |           |
| 17 (b) | $N$ is the point on $C_1$ that is furthest from the pole $O$ |           |
|        | Find, in terms of $a$ , the polar coordinates of $N$         | [2 marks] |
|        |                                                              |           |
|        |                                                              |           |
|        |                                                              |           |
|        |                                                              |           |
|        |                                                              |           |



|          | show that the area of triangle $NPQ$ can be written in the form $m\sqrt{3}a^2$ where $m$ is a rational number to be determined. |    |
|----------|---------------------------------------------------------------------------------------------------------------------------------|----|
| <b>w</b> |                                                                                                                                 |    |
|          | mere m is a rational number to be determined.                                                                                   |    |
| _        |                                                                                                                                 | [5 |
| _        |                                                                                                                                 |    |
|          |                                                                                                                                 |    |
|          |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
|          |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
|          |                                                                                                                                 |    |
|          |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |
|          |                                                                                                                                 |    |
| _        |                                                                                                                                 |    |



On the initial line below, sketch the graph of  $r=2a(1+\cos\theta)$  for  $-\pi<\theta\leq\pi$  Include the polar coordinates, in terms of a, of any intersection points with the initial line. [2 marks]

O Initial line

**END OF QUESTIONS** 







| Question number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |



| Question number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |  |  |
|-----------------|--------------------------------------------------------------------------------------|--|--|
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |
|                 |                                                                                      |  |  |



| Question<br>number | Additional page, if required. Write the question numbers in the left-hand margin.                                                                                                                                                                                                  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    |                                                                                                                                                                                                                                                                                    |  |  |
|                    | Copyright information                                                                                                                                                                                                                                                              |  |  |
|                    | For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.                                     |  |  |
|                    | Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. |  |  |
|                    | Copyright © 2021 AQA and its licensors. All rights reserved.                                                                                                                                                                                                                       |  |  |







| Please write clearly ir | n block capitals.              |
|-------------------------|--------------------------------|
| Centre number           | Candidate number               |
| Surname                 |                                |
| Forename(s)             |                                |
| Candidate signature     | I declare this is my own work. |

# AS FURTHER MATHEMATICS

Paper 1

Monday 11 May 2020

Afternoon

Time allowed: 1 hour 30 minutes

## **Materials**

- You must have the AQA formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

### Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

### Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

| For Examiner's Use |      |  |
|--------------------|------|--|
| Question           | Mark |  |
| 1                  |      |  |
| 2                  |      |  |
| 3                  |      |  |
| 4                  |      |  |
| 5                  |      |  |
| 6                  |      |  |
| 7                  |      |  |
| 8                  |      |  |
| 9                  |      |  |
| 10                 |      |  |
| 11                 |      |  |
| 12                 |      |  |
| 13                 |      |  |
| 14                 |      |  |
| 15                 |      |  |
| 16                 |      |  |
| 17                 |      |  |
| 18                 |      |  |
| TOTAL              |      |  |
|                    |      |  |



# Answer all questions in the spaces provided.

1 Express the complex number  $1 - i\sqrt{3}$  in modulus-argument form.

Tick (✓) one box.

[1 mark]

$$2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$$



$$2\bigg(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\bigg)$$



$$2\bigg( \text{cos}\Big( -\frac{\pi}{3} \Big) + i \, \text{sin}\Big( -\frac{\pi}{3} \Big) \bigg)$$



$$2\left(\cos\left(-\frac{2\pi}{3}\right)+i\sin\left(-\frac{2\pi}{3}\right)\right)$$

Given that 1-i is a root of the equation  $z^3-3z^2+4z-2=0$ , find the other two roots.

Tick (✓) one box.

[1 mark]

$$-1+i \ \ \text{and} \ \ -1$$



$$1+i$$
 and  $1$ 



$$-1+i$$
 and 1



$$1+i \ \ \text{and} \ \ -1$$



3 Given (x-1)(x-2)(x-a) < 0 and a > 2

Find the set of possible values of x.

Tick (✓) one box.

[1 mark]

$${x : x < 1} \cup {x : 2 < x < a}$$

$${x : 1 < x < 2} \cup {x : x > a}$$

$${x : x < -a} \cup {x : -2 < x < -1}$$

|  | ı |
|--|---|

$${x: -a < x < -2} \cup {x: x > -1}$$

Turn over for the next question



| 4     | The matrices <b>A</b> and <b>B</b> are such that                                                                                                        |           |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|       | $\mathbf{A} = \begin{bmatrix} 2 & a & 3 \\ 0 & -2 & 1 \end{bmatrix}  \text{and}  \mathbf{B} = \begin{bmatrix} 1 & -3 \\ -2 & 4a \\ 0 & 5 \end{bmatrix}$ |           |
| 4 (a) | Find the product $\mathbf{AB}$ in terms of $a$ .                                                                                                        | [2 marks] |
|       |                                                                                                                                                         |           |
|       |                                                                                                                                                         |           |
|       |                                                                                                                                                         |           |
|       |                                                                                                                                                         |           |
|       |                                                                                                                                                         |           |
|       |                                                                                                                                                         |           |
| 4 (b) | Find the determinant of $\bf AB$ in terms of $a$ .                                                                                                      | [1 mark]  |
|       |                                                                                                                                                         |           |





| (c) | Show that <b>AB</b> is singular when $a = -1$ | [2 mark |
|-----|-----------------------------------------------|---------|
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     | Turn over for the next question               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |
|     |                                               |         |



| 5 (a) | Show that                            |           |
|-------|--------------------------------------|-----------|
|       | $r^2(r+1)^2 - (r-1)^2r^2 = pr^3$     |           |
|       | where $p$ is an integer to be found. | a a wls l |
|       | ן זי די                              | nark]     |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |
|       |                                      |           |



|        | $\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$ |
|--------|----------------------------------------------|
| [3 mai | r=1                                          |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |
|        |                                              |



6 Anna has been asked to describe the transformation given by the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

She writes her answer as follows:

The transformation is a rotation about the x-axis through an angle of  $\theta$ , where

$$\sin \theta = \frac{1}{2}$$
 and  $-\sin \theta = -\frac{1}{2}$  
$$\theta = 30^{\circ}$$

Identify and correct the error in Anna's work.

| [2 marks |
|----------|
|          |
| <br>     |
| <br>     |
|          |
|          |
| <br>     |
|          |
|          |
|          |
|          |
|          |
| <br>     |
|          |
|          |
|          |
|          |
|          |
|          |



|   |                  | [    |
|---|------------------|------|
|   | <br>             | <br> |
|   | <br>             | <br> |
|   | <br>             | <br> |
|   | <br>             |      |
|   |                  |      |
|   | -                |      |
|   | <br>             | <br> |
|   | <br>             |      |
|   | <br><del> </del> | <br> |
|   |                  |      |
|   |                  |      |
|   |                  |      |
|   | <br>             |      |
|   | <br>·            | <br> |
|   | <br>             | <br> |
|   |                  |      |
|   |                  |      |
|   | <br>             | <br> |
|   | <br>             | <br> |
|   | <br>             | -    |
|   | <br>·            | <br> |
|   |                  |      |
|   |                  |      |
|   | <br>             |      |
|   | <br>             | <br> |
|   | <br>             | <br> |
|   | <br>             |      |
|   |                  |      |
|   |                  |      |
| , | <br>             | <br> |



| 8 (a) | Prove that |                                                                 |           |
|-------|------------|-----------------------------------------------------------------|-----------|
|       |            | 4 (4 . )                                                        |           |
|       |            | $\tanh^{-1} x = \frac{1}{2} \ln \left( \frac{1+x}{1-x} \right)$ |           |
|       |            | $2 \left(1-x\right)$                                            |           |
|       |            |                                                                 | [5 marks] |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |
|       |            |                                                                 |           |



| 0 (5) | Due to the the success of |                                |           |
|-------|---------------------------|--------------------------------|-----------|
| 8 (b) | Prove that the graphs of  |                                |           |
|       |                           | $y = \sinh x$ and $y = \cos x$ | osh x     |
|       |                           |                                |           |
|       |                           |                                |           |
|       | do <b>not</b> intersect.  |                                |           |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |
|       | do <b>not</b> intersect.  |                                | [3 marks] |



| 9          | The quadratic equation $2x^2 + px + 3 = 0$ has two roots, $\alpha$ and $\beta$ , where $\alpha > \beta$ | 3.      |
|------------|---------------------------------------------------------------------------------------------------------|---------|
| 9 (a) (i)  | Write down the value of $\alpha \beta$ .                                                                | 1 mark] |
|            |                                                                                                         |         |
| 9 (a) (ii) | Express $lpha+eta$ in terms of $p$ .                                                                    | 1 mark] |
|            |                                                                                                         |         |
| 9 (b)      | Hence find $(\alpha - \beta)^2$ in terms of $p$ .                                                       | marks]  |
|            |                                                                                                         |         |
|            |                                                                                                         |         |
|            |                                                                                                         |         |
|            |                                                                                                         |         |
|            |                                                                                                         |         |
|            |                                                                                                         |         |
|            |                                                                                                         |         |



| <b>Hence</b> find, in terms of $p$ , a quadra | no oquanon with roots ( | a rana p i r |
|-----------------------------------------------|-------------------------|--------------|
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |
|                                               |                         |              |



| 10 (a) | Show that the equation                                     |           |
|--------|------------------------------------------------------------|-----------|
|        | $y = \frac{3x - 5}{2x + 4}$                                |           |
|        |                                                            |           |
|        | can be written in the form                                 |           |
|        | (x+a)(y+b)=c                                               |           |
|        | where $a$ , $b$ and $c$ are integers to be found.          | <b>10</b> |
|        |                                                            | [3 marks] |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
| 10 (b) | Write down the equations of the asymptotes of the graph of |           |
|        | 3x - 5                                                     |           |
|        | $y = \frac{3x - 5}{2x + 4}$                                | [2 marks] |
|        |                                                            | [2        |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
|        |                                                            |           |
| l      |                                                            |           |



| 10 (c) | Sketch, on the axes provided, the graph of |                             |           |  |  |  |
|--------|--------------------------------------------|-----------------------------|-----------|--|--|--|
|        |                                            | $y = \frac{3x - 5}{2x + 4}$ | [3 marks] |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            | ▲                           |           |  |  |  |
|        |                                            | <i>y</i> †                  |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            | 0                           | x         |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |
|        |                                            |                             |           |  |  |  |

| 11 | Sketch the polar graph of     |                             |              |
|----|-------------------------------|-----------------------------|--------------|
|    |                               | $r=\sinh\theta+\cosh\theta$ |              |
|    | for $0 \leq \theta \leq 2\pi$ |                             | [3 marks]    |
|    |                               |                             | [o marks]    |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               | 0                           |              |
|    |                               |                             | Initial line |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |
|    |                               |                             |              |



| The mean value of the function f over the interval $1 \le x \le 5$ is $m$ .                       |           |
|---------------------------------------------------------------------------------------------------|-----------|
| The graph of $y = g(x)$ is a reflection in the $x$ -axis of $y = f(x)$ .                          |           |
| The graph of $y = h(x)$ is a translation of $y = g(x)$ by $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$  |           |
| Determine, in terms of $m$ , the mean value of the function $h$ over the interval $4 \le x \le 8$ | [2 mayka] |
|                                                                                                   | [2 marks] |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |
|                                                                                                   |           |

Turn over for the next question

| 13 | Line $l_1$ | has e | guation |
|----|------------|-------|---------|
| 10 |            | Has C | qualion |

$$\frac{x-2}{3} = \frac{1-2y}{4} = -z$$

and line  $l_{\rm 2}$  has equation

$$\mathbf{r} = \begin{bmatrix} -7 \\ 4 \\ -2 \end{bmatrix} + \mu \begin{bmatrix} 12 \\ a+3 \\ 2b \end{bmatrix}$$

| In the case when $l_1$ | and $l_2$ are p | arallel, show | $\begin{bmatrix} a+3\\2b \end{bmatrix}$ that $a=-1$ | 1 and find the | value |
|------------------------|-----------------|---------------|-----------------------------------------------------|----------------|-------|
|                        | 2 7 7           | , , ,         |                                                     |                | [4    |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |
|                        |                 |               |                                                     |                |       |



| 13 (b) | In a <b>different</b> case, the lines $l_1$ and $l_2$ intersect at exactly one point, and the value of $b$ is 3 |           |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
|        | Find the value of <i>a</i> .                                                                                    | [5 marks] |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        | ,                                                                                                               |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |
|        |                                                                                                                 |           |  |  |  |  |



| 14 | (a) | Given |
|----|-----|-------|
|----|-----|-------|

$$\frac{x+7}{x+1} \le x+1$$

show that

$$\frac{(x+a)(x+b)}{x+c} \ge 0$$

where a, b, and c are integers to be found.

[4 marks]

**14 (b)** Briefly explain why this statement is incorrect.

$$\frac{(x+p)(x+q)}{x+r} \ge 0 \Leftrightarrow (x+p)(x+q)(x+r) \ge 0$$

[1 mark]



| 14 (c) | Solve |              |                           |                 |
|--------|-------|--------------|---------------------------|-----------------|
|        |       |              | $\frac{x+7}{x+1} \le x+1$ |                 |
|        |       |              | X + 1                     | [2 marks]       |
|        |       |              |                           | <br><u> </u>    |
|        |       |              |                           | <br>            |
|        |       |              |                           | <br>            |
|        |       |              |                           |                 |
|        |       |              |                           |                 |
|        |       |              |                           |                 |
|        |       |              |                           |                 |
|        |       |              |                           | <br><del></del> |
|        |       |              |                           |                 |
|        |       |              |                           | <br>            |
|        |       |              |                           |                 |
|        |       |              |                           | <br>            |
|        |       |              |                           |                 |
|        |       |              |                           |                 |
|        |       |              |                           |                 |
|        |       | Turn over fo | r the next question       |                 |
|        |       |              |                           |                 |
|        |       |              |                           |                 |



A segment of the line y = kx is rotated about the x-axis to generate a cone with vertex O.

The distance of O from the centre of the base of the cone is h.

The radius of the base of the cone is r.



| 15 | (a)         | Find $k$ in terms | of | r | and | h. |
|----|-------------|-------------------|----|---|-----|----|
|    | <b>\-</b> ' |                   | •  | • | •   |    |

|      |      |      | [1 mark] |
|------|------|------|----------|
| <br> | <br> | <br> |          |
| <br> |      |      |          |
|      |      |      |          |
| <br> | <br> |      |          |



| $\frac{1}{3}\pi r^2 h$ |           |
|------------------------|-----------|
| 3                      | [3 marks] |
|                        | [o marko] |
| <br>                   |           |
|                        |           |
|                        |           |
| <br>                   |           |
|                        |           |
|                        |           |
| <br>                   |           |
| <br>                   |           |
|                        |           |
|                        |           |
| <br>                   |           |
|                        |           |
| <br>                   |           |
| <br>                   |           |
|                        |           |
| <br>                   |           |
| <br>                   |           |
|                        |           |
| <br>                   |           |
| <br>                   |           |
|                        |           |
| <br>                   |           |
| <br>                   |           |
|                        |           |
| <br>                   |           |
|                        |           |
|                        |           |
| <br>                   |           |
| <br>                   |           |
|                        |           |
|                        |           |
| <br>                   |           |
|                        |           |
| <br>                   |           |
| <br>                   |           |
|                        |           |
|                        |           |



| 16     | A and B are non-singular square matrices.                              |           |
|--------|------------------------------------------------------------------------|-----------|
| 16 (a) | Write down the product $\mathbf{A}\mathbf{A}^{-1}$ as a single matrix. | [1 mark]  |
|        |                                                                        |           |
|        |                                                                        |           |
| 16 (b) | ${f M}$ is a matrix such that ${f M}={f A}{f B}$ .                     |           |
|        | Prove that $\mathbf{M}^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$          | [3 marks] |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |
|        |                                                                        |           |



| The polar e   | equation of the c    | ircle $C$ is |                             |         |
|---------------|----------------------|--------------|-----------------------------|---------|
|               |                      | r = a(0)     | $\cos 	heta + \sin 	heta$ ) |         |
| Find, in ter  | ms of $a$ , the radi | us of $C$ .  |                             |         |
| Fully justify | your answer.         |              |                             |         |
|               |                      |              |                             | [4 mark |
|               |                      |              |                             | <br>    |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             | <br>    |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             |         |
|               |                      |              |                             | <br>    |



The locus of points  $L_1$  satisfies the equation |z| = 2

The locus of points  $L_2$  satisfies the equation  $\arg(z+4) = \frac{\pi}{4}$ 

**18 (a)** Sketch  $L_1$  on the Argand diagram below.

[1 mark]



**18 (b)** Sketch  $L_2$  on the Argand diagram above.

[1 mark]

| 18 (c) | The complex number $a + ib$ , where $a$ and $b$ are real, lies on $L_1$                 |           |
|--------|-----------------------------------------------------------------------------------------|-----------|
|        | The complex number $c+\mathrm{i}d$ , where $c$ and $d$ are real, lies on $\mathrm{L}_2$ |           |
|        | Calculate the least possible value of the expression                                    |           |
|        | $(c-a)^2 + (d-b)^2$                                                                     | [3 marks] |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        | -                                                                                       |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        |                                                                                         |           |
|        | END OF QUESTIONS                                                                        |           |







| Question number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|-----------------|--------------------------------------------------------------------------------------|
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |



| Question number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|-----------------|--------------------------------------------------------------------------------------|
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |



| Question number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|-----------------|--------------------------------------------------------------------------------------|
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |
|                 |                                                                                      |



| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin.                                                                                                                                                                                               |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                    |
|                    | Copyright information                                                                                                                                                                                                                                                              |
|                    | For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.                                     |
|                    | Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team. |
|                    | Copyright © 2020 AQA and its licensors. All rights reserved.                                                                                                                                                                                                                       |



