Ayudantía 9 Computación Científica II

Profesor: Cristopher Arenas Fuentes Ayudante: Javier Levio Silva

20 de noviembre de 2017

1. Considere la siguiente EDP:

$$u_{tt}(x,t) = 4u_{xx}(x,t) \tag{1}$$

$$u(x,0) = 2 \tag{2}$$

$$u_t(x,0) = 1 (3)$$

$$u(0,t) = 1 \tag{4}$$

$$u(1,t) = 2 \tag{5}$$

- (a) ¿A qué tipo de EDP corresponde el problema?
- (b) ¿Es posible realizar una estimación mediante diferencias finitas utilizando $\Delta x = 0.25$ y $\Delta t = 0.01$?. Hint: Verifique la condición CFL.
- (c) Utilizando diferencias finitas, determine un sistema matricial para encontrar una solución en $t = t_0$ y en $t = t_n$ para $0 < n \le t_N$.
- 2. Considere el siguiente sistema no-lineal de ecuaciones diferenciales parciales definido en $(x,t) = [0,1] \times [0,T]$:

$$u_{tt}(x,t) = c(x(x,t))u_{xx}(x,t) \tag{6}$$

$$v_{tt}(x,t) = v_{xx}(x,t) \tag{7}$$

$$u(x,0) = \sin(\pi x) \exp(-(x-0.5)^2) \tag{8}$$

$$v(x,0) = \sin(\pi x) \exp(-(x-0.5)^2) \tag{9}$$

$$u_t(x,0) = 0 (10)$$

$$v_t(x,0) = 0 \tag{11}$$

$$u(1,t) - u(0,t) = 0 (12)$$

$$v(1,t) = 0 \tag{13}$$

$$v(0,t) + v_x(0,t) = \frac{\pi}{\exp(1/4)}$$
(14)

$$c(x) = 1 + \epsilon \cos(x) \tag{15}$$

(a) Construya un algoritmo basado en diferencias finitas que encuentre una aproximación numérica de las funciones incógnitas u(x,t) y v(x,t) en la grilla (x_i,t_k) donde $x_i=\frac{i}{n}$ y $t_k=\frac{kT}{m}$ para $i\in\{0,1,...,n\}$ y $k\in\{0,1,...,m\}$. Considere ϵ , T, n y m como parametros de su algoritmo.