

به نام خدا

کارگاه علم داده با پایتون پیشرفته

جلسه هفتم: ماشین بردار بشتیبان (SVM)

: مدرس

مهرناز جليلى

دانشُمِو کارشناسی ارشد علم داده ها

دانشگاه شهید بهشتی

Classification Support Vector Machines

- supervised
- classifier based on separator
- mapping data to high-dimensional so a hyperplane separator can be drawn
- Lots of real world datas are Linearly non separable, but what if we go to a higher dimension?;)

Clump	UnifSize	UnifShape	MargAdh	SingEpiSize	BareNuc	BlandChrom	NormNucl	Mit	Class
5	1	1	1	2	1	3	1	1	benign
5	4	4	5	7	10	3	2	1	benign
3	1	1	1	2	2	3	1	1	malignant
6	8	8	1	3	4	3	7	1	benign
4	1	1	3	2	1	3	1	1	benign
8	10	10	8	7	10		7	1	malignant
1	1	1	1	2	10	3	1	1	benign
2	1	2	н	2	1	3	1	1	benign
2	1	1	1	2	1	1	1	5	benign
4	2	1	1	2	1	2	1	1	benign

Linear separability

linearly separable

not linearly separable

Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- · in 2D the discriminant is a line
- w is the normal to the line, and b the bias
- · W is known as the weight vector

Classification Support Vector Machines

- but... how to move to ndimention?
- there are different kernel functions
- our libraries will do, we will just compare
- How to find the hyperplane?

Classification Support Vector Machines

- to find the hyperplane, we are looking for largest margins from support vectors
- can also be solved using gradient descent
- when learned, we can just check the data and see if i above the line or below it and decide

What is the best w?

• maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine

Linear separability again: What is the best w?

 the points can be linearly separated but there is a very narrow margin

 but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

Given training vectors $x_i \in \mathbb{R}^p$, i=1,..., n, in two classes, and a vector $y \in \{1, -1\}^n$, our goal is to find $w \in \mathbb{R}^p$ and $b \in \mathbb{R}$ such that the prediction given by $sign(w^T\phi(x) + b)$ is correct for most samples.

SVC solves the following primal problem:

$$egin{aligned} \min_{w,b,\zeta} rac{1}{2} w^T w + C \sum_{i=1}^n \zeta_i \ ext{subject to } y_i (w^T \phi(x_i) + b) \geq 1 - \zeta_i, \ \zeta_i \geq 0, i = 1, \dots, n \end{aligned}$$

Intuitively, we're trying to maximize the margin (by minimizing $||w||^2 = w^T w$), while incurring a penalty when a sample is misclassified or within the margin boundary. Ideally, the value $y_i(w^T\phi(x_i)+b)$ would be ≥ 1 for all samples, which indicates a perfect prediction. But problems are usually not always perfectly separable with a hyperplane, so we allow some samples to be at a distance ζ_i from their correct margin boundary. The penalty term c controls the strength of this penalty, and as a result, acts as an inverse regularization parameter (see note below).

The dual problem to the primal is

$$\min_{lpha} rac{1}{2} lpha^T Q lpha - e^T lpha$$
 subject to $y^T lpha = 0$ $0 \leq lpha_i \leq C, i = 1, \ldots, n$

Classification

Support Vector Machines

Pros

- accurate in high dimensional spaces
- memory efficient

Cons

- Prone to over-fitting if we have lots of features
- No probability estimation
- Not computationally efficient for large dataset (n>1000)

Classification

Support Vector Machines

Image recognition

Text Category Assignment

- spam
- category
- sentiment analysis

Gene Expression Classification

Outlier detection and clustering

Lab: SVM

L07-MehrnazJalili