

IMD0033 - Probabilidade Aula 15 - Visualização e Comparação de Distribuições de Frequência

Ivanovitch Silva Maio, 2019

Agenda (Parte I)

- Visualizando distribuições
- Gráficos de barra, pizza e histogramas
- Assimetria
- Distribuições simétricas

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1.git

Ou

git pull

PREVIOUSLY ON...

Id	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
317	Jane Ace	\$95 000	 Female

Visualize the patterns

Gender	Frequency		
Male	147		
Female	170		

Organize the data in comprehensible forms to find patterns

Visualizing Distributions

Graphs make easy to scan and compare frequencies, providing us with a single picture of the entire distribution of a variable (**nominal** or **ordinal scale**)

Bar Plots

horizontal bar plots are ideal to use when the labels of the unique values are long

wnba['Pos'].value_counts().plot.bar()

wnba['Pos'].value_counts().plot.barh()

Pie Charts

Pie Charts

Percentage of players in WNBA by level of experience

Histograms

interval

We can see that 75% of the values are distributed within a relatively narrow interval (between 2 and 277), while the remaining 25% are distributed in an interval that's slightly larger.

this interval

>> wnba['	<pre>PTS'].describe()</pre>
count	143.000000
mean	201.790210
std	153.381548
min	2.000000
25%	75.000000
50%	177.000000
75%	277.500000
max	584.000000

The Statistics Behind Histograms


```
>> wnba['PTS'].describe()
count
         143.000000
         201.790210
mean
std
         153.381548
min
           2.000000
25%
          75.000000
50%
         177.000000
75%
         277.500000
         584.000000
max
Name: PTS, dtype: float64
```

```
>> wnba['PTS'].plot.hist()
```


Binning for Histograms

Skewed Distributions

Skewed Distributions

Skewed Distributions

Symmetrical Distributions

Symmetrical Distribution (uniform)

The values are distributed uniformly

ld	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
 317	 Jane Ace	\$95 000	 Female

Understand how the data is **structured** and **measured**

Visualize the patterns

50 %

Gender	Frequency
Male	147
Female	170

Organize the data in comprehensible forms to find patterns

Agenda (Parte II)

- Agrupamentos de gráficos de barras
- Comparando histogramas
- Estimativa de densidade kernel
- Gráficos de faixa e caixa
- Pontos fora da curva

Seaborn

Comparing Frequency Distribution

sns.countplot(x = 'Exp ordinal', hue = 'Pos', data = wnba)

Challenge: Do older players play less?

	Name	Age	age_mean_relative	MIN	min_mean_relative
0	Aerial Powers	23	young	173	below average
1	Alana Beard	35	old	947	average or above
2	Alex Bentley	26	young	617	average or above
3	Alex Montgomery	28	old	721	average or above
4	Alexis Jones	23	young	137	below average

sns.countplot(x = 'age_mean_relative', hue = 'min_mean_relative', data = wnba)

Comparing Histograms

Comparing Histograms

Kernel Density Estimate (KDE) Plots

Kernel Density Estimate Plots

Drawbacks of Kernel Density Plots

Strip Plots

Box Plots

Box Plots

<matplotlib.axes._subplots.AxesSubplot at 0x1a180c4518>

<matplotlib.axes._subplots.AxesSubplot at 0x1a18180208>

ld	Name	Salary	****	Gender
1	Mary Ann	\$35 000		Female
2	Marc Downey	\$55 000		Male
 51	 Juliet Ali	\$45 000		Female
 317	 Jane Ace	\$95 000		Female

Understand how the data is **structured** and **measured**

Visualize the patterns

Gender	Frequency
Male	147
Female	170

Organize the data in comprehensible forms to find patterns

