Ch ng 3

BÀITOÁNT I UV NT I

3.1. Bài toán v n t i t ng quát

ây là m t bài toán t i u tuy n tính c bi t.

ng d ng: t i u v n t i hàng hóa, t i u truy n t i i n n ng, s p x p s n xu t v.v...

3.1.1. L p bài toán

Xem l i thí d 7, ch ng 1.

 $Gi \quad s \quad m \; kho \; h\grave{a}ng \; A_1, \, A_2, \, \ldots, \, A_m \; v \; \; i \; kh \; \; i \; l \quad ng \; t \quad ng \quad ng \; l\grave{a} \; a_1, \, a_2, \, \ldots, \, a_m.$

n n i nh n B_1 , B_2 , ..., B_n v i yêu c u $là <math>b_1$, b_2 , ..., b_n .

Gi s :
$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$
 (i u ki n cân b ng thu – phát, hay cân b ng giao - nh n)

Chi phí chuy n 1 n v hàng hóa t A_j n B_j là C_{ij} ($i = \overline{1,m}$; $j = \overline{1,n}$)

M t khác $C = (c_{ii})_{mxn} - Ma tr n chi phí.$

Yêu c u: v n chuy n h t hàng t các A_i n các B_j sao cho các A_i thì h t hàng, B_j thì nh n hàng và t ng chi phí là nh nh t.

Xây d ng mô hình

t
$$x_{ij}$$
 ch l ng hàng s v n chuy n t A_i n B_j ($i = \overline{1,m}$; $j = \overline{1,n}$), $x_{ij} \ge 0$

V y t ng chi phí:
$$f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min (hàm m c tiêu)$$
 (1)

$$\sum_{j=1}^{n} x_{ij} = a_i \ (i = \overline{1, m})$$

$$\sum_{i=1}^{m} x_{ij} = b_j \ (j = \overline{1, n})$$

$$x_{ij} \ge 0 \ (i = \overline{1, m}; \ j = \overline{1, n})$$

$$(2)$$

Bài toán (1), (2) – là bài toán t i u tuy n tính d ng chính t c. Do ó có th gi i b ng ph ng pháp n hình. Tuy nhiên, bài toán có c i m s bi n l n (m x n bi n), s ràng bu c l n (m + n), vì v y vi c gi i b ng ph ng pháp n hình m t nhi u công s c. C n a ra ph ng pháp gi i riêng cho bài toán v n t i.

gi i bài toán t i u v n t i, ta xây d ng bài toán d ng c bi t c a bài toán này.

3.1.2. Bài toán v n t i d ng b ng

Bài toán v n t i (1), (2) có th vi t d i d ng b ng nh sau:

	Thu	Е	\mathbf{B}_1	B_2	 B _n
Phát		t) 1	b_2	b_n
	A_1	c_{11}		c_{12}	 c_{1n}
	a_1		x_{11}	x_{12}	x_{1n}
	A_2	c_{21}		c_{22}	 c_{2n}
	a_2		X ₂₁	X ₂₂	X_{2n}
	•••				
	A_{m}	c_{m1}		c _{m2}	 C _{mn}
	$a_{\rm m}$		x_{m1}	X_{m2}	X _{mn}

$$f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min$$
 (1)

$$\sum_{j=1}^{n} x_{ij} = a_i \ (i = \overline{1, m})$$
 (2)

$$\sum_{i=1}^{m} x_{ij} = b_{j} \ (j = \overline{1, n})$$

$$x_{ii} \ge 0 \ (i = \overline{1,m}; \ j = \overline{1,n})$$

Các khái ni m:

- Các ô ng v i $x_{ij} > 0$ g i là "ô ch n".
- T p h p liên ti p các ô c a b ng mà m i hàng hay c t có không quá 2 ô thì c g i là m t dây chuy n, n u dây chuy n khép kín g i là vòng.

Thí d 1:

Thí d 2:

a_i b_i	b_1	b_2	b_3	b_4					
a_1	*		*						
a_2			*	*	Các ô	ánh d u	Thí d	2 là dây chuy n khép kín	V
a_3	*			*					

3.1.3. Tính ch t chung c a bài toán v n t i

Tính ch t 1: Bài toán v n t i vân b ng thu phát ($\sum a_i = \sum b_j$) thì luôn có ph ng án t i u.

Tính ch t 2: Gi s b ng v n t i có m hàng, n c t, E là t p các ô không t o thành vòng g m úng (m + n -1) ô. Khi ó n u thêm 1 ô m i b t k thì E t o thành vòng duy nh t.

Thí d: Trong thí d 1 có m + n - 1 = 6. Thêm m tô m i b t k s có m t vòng duy nh t (ô *).

Tính ch t 3: N u b ng có m hàng, n c t, gi s V là t p g m m + n ô thì chác ch n có 1 vòng nào ó trong t p V. N u V ch a úng m t vòng thì lo i m t ô b t k c a vòng thì m + n - 1 ô s không t o thành vòng.

3.2 Tìm ph ng án c b n xu t phát c a bài toán v n t i

3.2.1. Ph ng án c b n c a bài toán v n t i

M t ph ng án ng v i m t t p h p ô ch n th o mãn i u ki n ràng bu c (2).

Ph ng án c b n là m t ph ng án có úng m + n - 1 ô mà không t o thành vòng. N u ph ng án c b n có m + n - 1 t o thành vòng thì g i là ph ng án c b n suy bi n.

Ph ng án c b n không suy bi n u tiên a vào gi i bài toán v n t i g i là ph ng án c b n xu t phát.

3.2.2. Tìm ph ng án c b n xu t phát c a bài toán v n t i

a) Ph ng pháp góc Tây – B c: B t u phân ph i hàng cho ô u tiên bên trái c a b ng (ô góc Tây – B c) m t l ng hàng t i a có th c $x_{11} = \min(a_1, b_1)$. Khi m t hàng hay m t c t b lo i ra khi h t hàng ho c ã hàng thì ta ti p t c phân ph i cho ô góc Tây B c c a b ng còn l i. C nh v y cho n khi m i hàng, c t u b lo i. N u không m + n -1 ô ch n, thì b sung 1 ô ch n sao cho không t o thành vòng v i $x_{ij} = 0$.

Thí d: Tìm ph ng án xu t phát b ng ph ng pháp góc Tây B c

	Thu		B_1			B_2			\mathbf{B}_3	
Phát			20			40			30	
A_1		1			3			5		
	30			20			10			
A_2		5			4			2		
	25						25			
A_3		8			5			4		
	35						5			30

$$\sum A_i = \sum B_j = 90$$

 $S \quad \hat{o} \ ch \quad n \ 5 = m+n \ -1 \qquad ph \quad ng \ \acute{a}n \ c \quad b \ n.$

M t khác, các ô ch n không t o thành vòng

Ph ng án trên là ph ng án c b n không suy bi n.

ây là ph ng án xu t phát c a bài toán

b) Ph ng pháp "min – **c** c": phân ph i hàng vào ô có giá c c nh nh t v i l ng hàng t i a. Sau ó lo i ô ó ra. Sau ó ti p t c v i các ô có giá c c nh nh t trong các ô còn l i... Cho nh t. Khi ó thu c l ph ng án có m + n – l ô ch n (N u không thì b sung $x_{ii} = 0$).

3.3 Thu t toán gi i bài toán v n t i

Có hai thu t toán: Thu t toán "Th v" và thu t toán "Qui không" giá c c ô ch n, c xây d ng d a trên tính ch t c b n sau c a bài toán v n t i.

3.3.1. Tính ch t c b n c a bài toán v n t i

nh lý: N u thêm vào 1 hàng (hay 1 c t) c a ma tr n c c phí cùng 1 giá tr tùy ý thì <u>ph ng án v n t i t i u c</u> a bài toán không thay i.

(ng nhiên T ng chi phí có thay i, do các giá c c ã thay i).

3.3.2. Thu t toán qui không giá c c ô ch n

- **B** c1: Tìm ph ng án xu t phát g m m + n 1 \hat{o} không có vòng b ng các ph ng pháp \tilde{a} bi t.
- **B** c 2: Qui không c c phí ô ch n
 - C ng vào hàng thi c a ma trnc c phís r_i.
 - C ng vào c t th j c a ma tr n c c phí s s_i
 - Sao cho c c phí m i c a các ô ch n u b ng 0.
 - C c phí m i ô ch n $C'_{ij} = C_{ij} + r_i + s_j = 0$

B c3: Kimtra i u kinti u

- N u sau khi các giá c $\,$ c các ô ch n $\,$ $C_{ij}^{'}=0\,$ mà các ô còn l i (ô lo i- không ph $\,$ i ô ch $\,$ n) u có $\,$ $C_{ij}^{'}\geq0\,$ v $\,$ i m $\,$ i ô lo $\,$ i thì ph $\,$ ng án $\,$ ang xét là ph $\,$ ng án $\,$ t $\,$ i $\,$ u. Khi $\,$ ó $\,$ t ng chi

phí
$$f(x) = \sum_{\forall \hat{a} chan} C_{ij} x_{ij}$$
.

- N u sau khi qui không giá c c ô ch n mà t n t i ô là ô lo i mà $C_{ij}^{'} < 0$ (ô vi ph m), ph ng án ch a t i u, c n ki m tra xem ô nào là vi ph m nhi u nh t ($C_{ij}^{'} < 0$ nh nh t – g i là ô i u ch nh).

B c4: Xây d ng ph ng án mit th n

- B sung ô i u ch nh \tilde{a} tìm trên vào t p ô ch n c , khi ó có t p ô ch n m i m + n ô, ph i xu t hi n m t vòng duy nh t V_i g i là vòng i u ch nh.
- ánh d u ch n l cho các ô trong vòng i u ch nh, ô i u ch nh là ô l.
- Tìm ô lo i ra kh i vòng i u ch nh

L ng i u ch nh q = $\min x_{ii}$ (các ô ch n c a V_i)

Thay i ph ng án Vi: ô ch n: x_{ij} - q; ô l: x_{ij} + q. Khi ó m t ô ch n tr thành x_{ij} = 0 (ô lo i).

Ph ng án m i g m m + n - 1 \hat{o} v i giá c c m i là ph ng án xu t phát cho b c sau. L p l i b c 2 cho n khi th a mãn ph ng án t i u.

Thí d 3: Gi i bài toán v n t i sau:

	Thu	B ₁	B_2	B ₃
Phát		80	20	60
A_1	_	5	4	1
	50			
A_2	_	3	2	6
	40			
A_3		7	9	11
	70			

Gi i

$$\sum A_i = \sum B_j = 160$$

B c 1: Tìm ph ng án xu t phát b ng ph ng pháp "min-c c"

	Thu	B_1	B_2	B_3	
Phát		80	20	60	
\mathbf{A}_1		5	4	1	$r_1 = -1$
	50	8	8	0	
				50	
\mathbf{A}_2		3	2	6	$r_2 = -7$
	40	0	0	-1	
		20	20	X ₂₃	
		20 (C)		(L)	
A_3		7	9	11	$r_3 = -11$
	70	0	3	0	
		60		10	
		(L)		(C)	
		$s_1 = 4$	$s_2 = 5$	$s_3 = 0$	

Ph ng án có 5 = m + n - 1 ô ch n và không có vòng

Ph ng án c b n không suy bi n

Ph ng án xu t phát.

 ${f B}$ ${f c}$ 2: - Qui không ô ch n

- Tính giá ô lo $\,$ i nh $\,$ trong $\,$ b $\,$ ng trên.

B c 3: \hat{O} vi ph m là \hat{o} (2,3) do $C'_{23} = -1 < 0$ \hat{O} i u ch nh

 $B \ \ \text{sung} \ \hat{o} \ \ i \ u \ \text{ch} \ \text{nh} \ \ v \\ \\ \text{vong} \ \ i \ u \ \text{ch} \ \text{nh}.$

L ng i u ch nh: $q = min (\hat{o} ch n) = 10$

Ph ng án m i:

$$\vec{x_{ij}} = \begin{cases} x_{ijcu} \notin V_1 \\ x_{ijcu} + q; ij - L \in V_1 \\ x_{ijcu} - q; ij - C \in V_1 \end{cases}$$

B c 4: Ph ng án m i

	Thu	B_1	B_2	B_3	
Phát		80	20	60	
A_1		8	8	0	$r_1 = -1$
	50	7	7		
				50	
A_2		0	0	-1	$r_2 = 0$
	40			0	
		10	20	10	
A_3		0	3	0	$r_3 = 0$
	70		3		
		70		0	
		$s_1 = 0$	$s_2 = 0$	$s_3 = 1$	

Ph ng án m i có m + n - 1 ô, không vòng.

Tr 1 i b c 2 (Qui không ô ch n. Tính các ô lo i)

Ta có: Các ô lo i có $C_{ij} \ge 0$

Ph ng án t i u

Ph ng án t i u
$$x^* = \begin{pmatrix} 0 & 0 & 50 \\ 10 & 20 & 10 \\ 70 & 0 & 0 \end{pmatrix} \Rightarrow f(x^*) = 670$$

3.4 Các d ng c bi t c a bài toán v n t i

3.4.1. Bài toán v n t i không cân b ng thu phát $\sum a_i \neq \sum b_j$

a)
$$\sum a_{i} > \sum b_{j} \Rightarrow D \operatorname{ng} f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \min(1)$$

$$\sum_{j=1}^{n} x_{ij} \leq a_{i} (i = \overline{1, m})$$

$$\sum_{i=1}^{m} x_{ij} = b_{j} (j = \overline{1, n})$$

$$x_{ij} \geq 0 (i = \overline{1, m}; j = \overline{1, n})$$

Nh n xét: Có nh ng i m phát còn l i hàng th a, các i m thu nh n hàng.

Kh c ph c gi i: Thêm 1 c t nh n hàng gi b_{n+1} v i nhu c u $b_{n+1} = \sum a_i - \sum b_j$ v i m i giá c c cho c t là $C_{i,n+1} = 0$. Khi ó bài toán tr thành cân b ng thu phát Gi i nh bình th ng.

b)
$$\sum a_i < \sum b_j \Rightarrow D \operatorname{ng} f(x) = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \to \min$$
 (1)
$$\sum_{j=1}^n x_{ij} = a_i \ (i = \overline{1,m})$$

$$\sum_{i=1}^m x_{ij} \le b_j \ (j = \overline{1,n})$$

$$x_{ij} \ge 0 \ (i = \overline{1,m}; \ j = \overline{1,n})$$

Nh n xét: Các i m phát h t hàng, có i m thu không nh n hàng Kh c ph c gi i: Thêm 1 hàng phát hàng gi a_{m+1} v i l ng hàng $a_{m+1} = \sum b_j - \sum a_i$ v i m i giá c c là $C_{m+1,j} = 0$. Khi ó bài toán tr thành cân b ng thu phát Gi i nh bình th ng.

Thí d 4: Gi i bài toán v n t i sau: (Phát > Thu)

	Thu	B_1	B_2	B_3
Phát		20	40	60
A_1		3	4	1
	80			
A_2		4	2	3
	30			
A_3		1	5	6
	50			

Gi i

Ta có:
$$\sum a_i = 160$$
; $\sum b_j = 120$. $\Rightarrow \sum a_i - \sum b_j = 40$

 $Th \hat{e} m \ c \ t \ v \ i \ B_4 = 40 \ v \hat{a} \ C_{i4} = 0$

Gi i bài toán bình thong dùng phong pháp min-coc tìm phong án xu t phát

	Thu	B_1	B_2	\mathbf{B}_3	\mathbf{B}_4	
Phát		20	40	60	40	
A_1		3	4	1	0	$r_1 = 0$
	80	2	-1	0	0	
			\mathbf{X}_1	60	20	
			I		C	
A_2		4	2	3	0	$r_2 = 3$
	30	6	0	5	3	
			30)		
A_3		1	5	6	0	$r_3 = 0$
	50	0	0	5	0	
		20	10)	20	
				1	L	
		$s_1 = -1$	$s_2 = -5$	$s_3 = -1$	$s_4 = 0$	

Có ph ng án c b n (m + n - 1 = 6), không t o thành vòng Ph ng án c b n không suy bi n.

Ti n hành t i u hóa b ng phuong pháp "Qui không giá c c ô ch n"

Có ô vi ph m ô (1, 2)

Thêm vào t p ô ch n lúc ó có vòng nh b ng trên

L ng i u ch nh q = 10

Ph ng án m i

	Thu	B_1	\mathbf{B}_2	\mathbf{B}_3	B_4	
Phát		20	40	60	40	
A_1		2	-1	0	0	$r_1 = 0$
	80	2	0	0	0	
			10	60	10	
A_2		6	0	5	3	$r_2 = -1$
	30	5	0	4	2	
			30			
A_3		0	0	5	0	$r_3 = 0$
	50	0	1	5	0	
		20			10	
		$s_1 = 0$	$s_2 = 1$	$s_3 = 0$	$s_4 = 0$	

Ph ng án m i có m + n - 1 ô, không vòng.

Tr l i b c 2 (Qui không ô ch n. Tính các ô lo i)

Ta có: Các ô lo i có $C_{ii}^{'} \ge 0$ Ph ng án là t i u

Ph ng án t i u
$$x^* = \begin{pmatrix} 0 & 10 & 60 \\ 0 & 30 & 0 \\ 20 & 0 & 0 \end{pmatrix} \Rightarrow f(x^*) = 180$$

Thí d 5: Gi i bài toán v n t i sau: (Phát < Thu)

	Thu	B_1	B_2	B_3
Phát		80	30	60
A_1		5	4	1
	50			
A_2		3	2	6
	40			
A_3		7	9	11
	70			

Gi i

Có
$$\sum a_i = 160$$
; $\sum b_j = 170 \Rightarrow \sum b_j - \sum a_i = 10$

Thêm hàng v i $A_4 = 10$ và $C_{4j} = 0$

Gi i bài toán bình th ng dùng ph ng pháp min-c c tìm ph ng án xu t phát (u tiên cho b ng c tr c).

	Thu	\mathbf{B}_1	B_2	B_3	
Phát		80	30	60	
A_1		5	4	1	$r_1 = -1$
	50	4	3	0	
				50	
A_2		3	2	6	$r_1 = -3$
	40	0	0	3	
		10	30		
A_3		7	9	11	$r_1 = -7$
	70	0	3	4	
		70			
A_4		0	0	0	$r_1 = 0$
	10		1		
			0	10	
		$s_1 = 0$	$s_1 = 1$	$s_1 = 0$	

Ph ng án có 5 ô, do ó thêm 1 ô (ch n ô (4,2) sao cho không to thành vòng)

Có ph ng án c b n (m+n-1=6), không t o thành vòng Ph ng án c b n không suy bi n. Qui không \hat{o} ch n.

Ta có: Các ô lo i có $C_{ij} \ge 0$

Ph ng án t i u

Ph ng án t i u
$$x^* = \begin{pmatrix} 0 & 0 & 50 \\ 10 & 30 & 0 \\ 70 & 0 & 0 \end{pmatrix} \Rightarrow f(x^*) = 630$$

3.4.2. Bài toán v n t i có ô c m

Th c t có m t s tuy n $\,$ ng A_i $\,$ n B_j có th có s c (g y c u, c m $\,$ ng) và không th v n chuy n theo tuy n này $\,$ c.

Giô(i, j) ng viôc m

 $Do \ \acute{o} \ g\acute{a}n \ c \quad c \ \^{o} \ c \ m \ b \ ng \ 1 \ s \quad M \ (s \quad d \quad ng \ c \ c \ l \ n) \ C_{ij} = M$

Sau ó gi i bình th ng

Tìm ph ng án ban u theo ph ng pháp min-c c.

3.4.3. Bài toán v n t i tìm max f(x)

T ng t bài toán c ch có hàm m c tiêu $f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \max(1) v$ i h ràng bu c nh c.

Cách gi i:

Cách 1:
$$t g(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} -c_{ij} x_{ij} \to \min$$

Gi i bình th $\operatorname{ng} x_{g(x)}^*$ c ng là ph ng án t i u c a f(x)

Nh ng $f_{\text{max}} = -g_{\text{min}}$

Cách 2: v n nguyên bài toán $f(x) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow \max$ thay i tìm ph ng án xu t phát b ng ph ng pháp max-c c (u tiên phân ph i cho ô có chi phí l n)

Dùng ph $\,\,$ ng pháp qui không giá c $\,\,$ c ô ch $\,$ n $r_i,\,s_j$ và $\,\,$ i u ki n t i $\,$ u là C' $_{ij}$ < 0 v i m i ô lo i. Các qui trình làm t $\,\,$ ng t $\,$.

Thí d 6: M t phân x ng có 5 công nhân trong ó có 2 n , 3 nam, có 5 máy th i bóng èn v i 3 lo i: lo i I - 1 cái, lo i II - 2 cái, lo i III - 2 cái. M i công nhân i u khi n m t máy v i n ng su t nh trong b ng. B trí lao ng h p lý n ng su t lao ng là max

Máy	I	II	III
Công nhân	1	2	2
N	10	8	7
2			
Nam	8	9	11
3			

Gi i. ây là bài toán v n t i tìm max, cân b ng thu phát

$$\sum A_i = \sum B_i = 160$$

Cách 1: Max-c c

N	l áy	I		I	I	III	
Công nhân	/	1		2	2	2	
N		10		8		7	$r_1 = 0$
	2	0		0		-3	
			1		1		
Nam		8		9		11	$r_2 = -1$
	3	-2		0		0	
					1	2	
		$s_1 = -10$)	$s_2 = -3$	8	$s_3 = -10$	

Ph ng án có 4 = m + n - 1, không to thành vòng Ph ng án c b n không suy bi n. Qui không ô ch n. Ta có: Các ô lo i có $C'_{ij} < 0$ Ph ng án ang xét là t i u.

N ng su t cao nh t
$$f_{\text{max}} = 49$$
, $x^* = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$