Used Phones & Tablets Prices Prediction

Team 3 - Eric Gu, Hongjie Wang, Hesam Mojtahedi , Ching-Hao Wang, Chainika Shah

Contents

- 1 Introduction Problem Statement
- **2** Data Exploration & Visualization Web Demo
- **3** Price Prediction Using Multiple Models
- 4 Results and Key Observations
- 5 Conclusion and Further Scope

1 Introduction - Problem Statement

Understanding the Problem

• **Growing Market**: The used and refurbished device market has expanded significantly due to cost-effectiveness for consumers and businesses.

• Pricing Challenge:

- Too low → Financial losses for sellers
- Too high → Poor sales performance
- Consumers struggle to determine fair prices

Need for a Solution:

A data-driven approach is essential to accurately predict used phone and tablet prices.

Contents

Data Exploration & Visualization Web Demo

https://www.kaggle.com/datasets/ahsan81/used-handheld-device-

Dataset

3454 entries with 15 features each

used_device_data

				4554_457155_4414								
device_brand	os	screen_size	4g	5g	rear_camera_mp	front_camera_mp	internal_memory	ram	battery	weight	release_year	days_used
Honor	Android	14.5	yes	no	13	5	64	3	3020	146	2020	127
Honor	Android	17.3	yes	yes	13	16	128	8	4300	213	2020	325
Honor	Android	16.69	yes	yes	13	8	128	8	4200	213	2020	162
Honor	Android	25.5	yes	yes	13	8	64	6	7250	480	2020	345
Honor	Android	15.32	yes	no	13	8	64	3	5000	185	2020	293
Honor	Android	16.23	yes	no	13	8	64	4	4000	176	2020	223
Honor	Android	13.84	yes	no	8	5	32	2	3020	144	2020	234
Honor	Android	15.77	yes	no	13	8	64	4	3400	164	2020	219
Honor	Android	15.32	yes	no	13	16	128	6	4000	165	2020	161
Honor	Android	16.23	yes	no	13	8	128	6	4000	176	2020	327
Honor	Android	15.47	yes	no	13	8	64	3	3020	150	2020	268
Honor	Android	15.32	yes	no	13	8	64	4	5000	185	2020	344
Honor	Android	16.69	yes	yes	13	16	128	8	4100	206	2019	537
Honor	Android	15.32	yes	no	13	16	64	4	4000	171.5	2019	336
Honor	Android	14.5	yes	no	13	5	32	2	3020	146	2019	230

Mean: 4.36 corresponding to <u>USD\$318</u>

UC San Diego

Data Analysis and Visualization

Dataset Web Demo: https://wi25-ece143-team3.streamlit.app/

Price Prediction Using Multiple Models

Price Prediction - Regression Problem

- We explored multiple models to predict used device prices:
 - Linear Regression Established a baseline performance
 - Neural Networks Captured complex patterns in data
 - K-Nearest Neighbors (KNN) Based on similarity to past data points
 - Random Forest Bagging learning for improved accuracy
 - Support Vector Machine (SVM) Effective for high-dimensional data
 - XGBoost Optimized gradient boosting for superior performance

Results and Key Observations

Results

Key Findings:

- The original price of a device is the strongest predictor
 - This aligns with market trends: high-end phones hold their value better.
- Tree-based models (Random Forest, XGBoost) and SVM performed best, with SVM achieving the lowest RMSE of 0.3011.
- KNN showed surprising efficiency, indicating that price prediction can benefit from finding similar past sales.
- Neural network could improve with more data points, but struggled slightly compared to tree-based models.

Model	RMSE	MAE		
Linear Regression	0.371775	0.289166		
NN Model	0.320985	0.247323		
KNN Model	0.307225	0.233728		
Random Forest	0.301147	0.233340		
SVM Model	0.301137	0.228863		
XGBoost Model	0.306823	0.239365		

5 Conclusion and Further Scope

Conclusion and Further Scope

Key Takeaways and Future Work

- Data Freshness is Critical The smartphone market evolves rapidly, so models need frequent updates.
- **Enhancing our Web Demo** Future work could allow users (sellers) to enter phone details and get an estimated price.
- Feature Engineering Exploring additional data like phone condition, repair history, and market trends could further improve predictions.
- Hyperparameter Tuning Optimizing models like XGBoost for even better accuracy.

Thank you!