Mathematics Homework Sheet 1

Author: Abdullah Oguz Topcuoglu

Problem 1

Symmetry group S will consist of rotations and reflections.

• Rotations: R_{90} , R_{180} , R_{270}

• Reflections: T_x , T_y , T_d , $T_{d'}$

 \bullet Identity: I

 R_i rotates i degrees clockwise.

 T_x reflects over the x-axis, T_y reflects over the y-axis, T_d reflects diagonally, and $T_{d'}$ reflects over the other diagonal.

When we take a look at S_4 , S_4 has 4! = 24 elements.

Our group S has 8 elements.

Lets start with identity I.

• ()

Rotations:

- $R_{90} = (1, 2, 3, 4)$
- $R_{180} = (1,3)(2,4)$
- $R_{270} = (1, 4, 3, 2)$

Reflections:

- $T_x = (1,2)(3,4)$
- $T_y = (1,4)(2,3)$
- $T_d = (1,3)$
- $T_{d'} = (2,4)$

So, when combined, S can be identified with this subset of S_4 :

$$\{(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (1, 2)(3, 4), (1, 4)(2, 3), (1, 3), (2, 4)\}$$

Problem 2

Problem 2(i)

$$f_{a,b}(x) = ax + b$$

$$(G,\diamond) = \{f_{a,b} : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}\}, f_{a,b} \diamond f_{c,d} = f_{ac,ad+b}\}$$

We want to show (G, \diamond) is a group. To do that, we need to show that (G, \diamond) satisfies the properties of group.

Associativity:

$$f_{a,b} \diamond (f_{c,d} \diamond f_{e,f}) = f_{a,b} \diamond f_{ce,cf+d} = f_{ace,acf+ad+b}$$

$$(f_{a,b} \diamond f_{c,d}) \diamond f_{e,f} = f_{ac,ad+b} \diamond f_{e,f} = f_{ace,acf+ad+b}$$

Thus $f_{a,b} \diamond (f_{c,d} \diamond f_{e,f}) = (f_{a,b} \diamond f_{c,d}) \diamond f_{e,f}$.

Existence of a neutral elemenet:

$$f_{1,0} \diamond f_{a,b} = f_{1,0} \diamond f_{a,b} = f_{a,b}$$

 $f_{1,0}$ is the neutral element.

Existence of inverses:

$$f_{a,b} \diamond f_{1/a,-b/a} = f_{a*(1/a),(-ab/a)+b} = f_{1,0}$$

Thus, $f_{1/a,-b/a}$ is the inverse of $f_{a,b}$.

Therefore, (G, \diamond) is a group.

Problem 2(ii)

$$H = f_{1,b} : b \in \mathbb{R}$$

We want to show (H, \diamond) is a subgroup of (G, \diamond) which is isomorphic to $(\mathbb{R}, +)$. We need to show identity element of (G, \diamond) is in H:

$$f_{1,0} \in H$$

We need to show H is closed under \diamond that is $x_1, x_2 \in H \implies x_1.x_2 \in H$:

$$f_{1,b_1} \diamond f_{1,b_2} = f_{1,b_1+b_2}$$

Thus, $f_{1,b_1} \diamond f_{1,b_2} \in H$. We need to show H is closed under inverses that is $x \in H \implies x^{-1} \in H$:

$$f_{1,b} \diamond f_{1,-b} = f_{1,0}$$

Thus, $f_{1,-b} \in H$.

Problem 3

We are given (X,.) is a group. We are also given that

- (i) e ∈ X satisfies e.x = x for all x ∈ X
 (ii) for each x ∈ X, there exists x⁻¹ ∈ X such that x⁻¹.x = e

We want to show x.e = x and $x.x^{-1} = e$ for all $x \in X$