

自我介绍

- 苏锐
- 2017 参与创办 Juicedata, 负责 商业化与社区发展工作

Content

目录

01 背景:基础模型与训练集的变化

02 存储的三种类型,与 AI 业务中的选型

03 JuiceFS 的设计思路

04 案例: JuiceFS 在 AI 数据管道中的实践

Part 01

背景: 基础模型与训练集的变化

Scaling Law 下的模型与训练数据集变化

CV 领域

- MNIST, 70K imgs, 50MB
- ImageNet, 1.5M imgs, 150GB
- OpenImages, 9M imgs, 500GB
- SDXL Base+Refiner model, ~26GB

LLM 领域

- GPT,参数 110M,文本 5.7G
- GPT-2,参数1.5B,文本 40G
- GPT-3,参数 175B,文本 45TB
- GPT-4,参数 1800B,文本 1PB
- Yi Model, 3T tokens ~ 6TB

数据集越来越大,模型和 Checkpoint 也越来越大。 单机存储必须转为分布式存储,单机训练也必须转为多机训练。

Part 02 存储的三种类型,与 AI 业务中的选型

	块存储 Block Storage	对象存储 Object Storage	文件存储 File Storage	
产品举例	EBS, SSD裸盘	S3, MinIO	EFS, CephFS	
多机访问	X			
POSIX 兼容	〈 兼容			
容量	有上限	弹性	部分产品弹性	
时延	低	高	中	
吞吐	固定	与数据量相关	与数据量或磁盘数相关	

	块存储 Block Storage	对象存储 Object Storage	文件存储 File Storage
产品举例	Loo, SSD裸血	S3, MinIO	EFS, CephFS
多机访问	分布式训练需要 共享存储。	✓	✓
POSIX 兼容		X	
容量		弹性	部分产品弹性
时延		高	中
吞吐		与数据量相关	与数据量或磁盘数相关

对象存储 vs. 文件存储, 怎么选?

对象存储的命名空间 Bucket

文件存储的命名空间 Volume

对象存储 vs. 文件存储, 怎么选?

对象存储的命名空间 Bucket

- POSIX 兼容
- 追加写,覆盖写
- 预读
- 目录遍历
- 原子改名

文件存储的命名空间 Volume

- POSIX 兼容
- 追加写,覆盖写
- 预读
- 目录遍历
- 原子改名

对象存储 vs. 文件存储, 怎么选?

对象存储适合海量数据归档, 模型训练

对象存储的命名空间 Bucket

文件存储适合多样复杂的计算需求 模型训练

文件存储的命名空间 Volume

	块存储 Block Storage	对象存储 Object Storage	文件存储 File Storage
产品举例	E.J. SSD徐	, Minlo	EFS, CephFS
多机访问	用可以多节点访问	对象存储无法支持 AI 应用对数据的 复杂访问需求。	✓
POSIX 兼容			✓
容量			部分产品弹性
时延			中
吞吐			与数据量或磁盘数相关

文件存储架构变迁

	NAS	第一代分布式文件存储	云原生分布式存储		
年代	1990 年代	2005 年	2017 年		
产品举例	EMC / NetApp	Ceph、HDFS、Lustre	JuiceFS		
特点	单点故障控制器瓶颈共享受限横向扩展困难	运维成本高容量规划和扩容复杂TCO 高	弹性伸缩弹性性能扩展全托管服务TCO 低		
是否适用 于AI训练?	硬件方案,集群扩展能力有限。	性能与容量绑定,虽然能扩展,但运维复杂度高。	利用云上基础设施,性能与容量 解耦,为模型训练提供数据规模 与性能的弹性扩展能力。		

Part 03 JuiceFS 的设计思路

一种常见的用法

用户目前解决成本问题的 (无奈) 方法

• 数据要在两套系统中手工迁移,效率低

常见用法的痛点

- 不仅在两套存储系统中迁移数据效率低
- 也难以应对弹性负载对存储系统的需求
- 只能按最大值预估

工作负载: 突发任务多, 弹性要求高

JuiceFS 架构设计

存储系统的性价比

- 经济:用对象存储做数据持久层,便宜且可靠;如阿里云的CPFS,其按官网报价(1.4元/GB/月)来算,10PB 数据的月成本将达到千万级别,JuiceFS TCO 仅为 20%;
- 弹性:用分布式缓存和对象存储提供了性能与容量的弹性扩展;
- 高性能:相较于高性能的专用文件系统,分布式文件系统的性能是用户最关心的问题之一。JuiceFS 通过多级缓存加速架构为预训练提供充足的读写吞吐能力。用户生产环境中的 I/O 吞吐量监测数据,峰值超过了 340GB/s。很多文件存储的性能是每 TB 提供多少吞吐量,比如每 TB 容量提供 250MBps 吞吐,此时小集群无法提供高吞吐。

POSIX 在 AI 业务中不可或缺

- 数据工程师几乎都在用 Python, POSIX 提供了文件操作最好的 灵活性, 能满足各种数据处理需求。
- HDFS 只支持追加写,无法支持需要覆盖写的数据处理方法,比如 Pandas。同时,HDFS 的 Python SDK 也不够成熟。
- S3 等对象存储不支持高效的追加或者修改(只能整体覆盖),
 不支持重命名操作。目录操作的性能会很慢。另外,数据处理容易遇到对象存储的带宽限制,和 API QPS 限制。
- 一定要注意 POSIX 兼容性,可以用 pjdfstest。S3FS, Goofys,
 Alluxio 都是部分 POSIX 兼容。

多云, 多区域的数据访问与分发

原始数据 ~10 PBs

加速模型部署,提升 GPU 利用率

- 加载过程需要从存储系统中单线程顺序读取,影响速度的关键 因素是单线程顺序读取时的吞吐量,JuiceFS 当前版本加载模型 吞吐性能为 1500MB/s。经过为模型加载场景的优化后,读吞吐可以提升至 3GB/s。
- 以 PyTorch 加载 pickle 格式模型的过程为例, 在顺序读取模型 文件的同时会完成 pickle 数据的反序列化, 也会消耗时间。在 我们的测试中, 从内存盘加载 Llama 2 7B 全精度模型, pickle 格式, 26GB 大小, 吞吐性能是 2.2GB/s。因为内存是最快的 存储介质, 所以我们将其视为极限值。从 JuiceFS 加载同样的 模型, 吞吐性能为 2.07GB/s, 是极限值的 94%。

3

Part 04

案例: JuiceFS 在 AI 数据管道中的实践

Case Study NAVER

● 选型:

- HDFS 不支持 CSI; CephRBD 不支持 ReadWriteMany; 对象存储
 不支持 POSIX; NFS 缺少 HA;
- 最初引入 Alluxio:
 - POSIX 兼容不足,数据不一致,运维压力;
- 选择 JuiceFS:
 - 完全兼容 POSIX; 强一致性; 减轻运维负担;
 - 在 AI 分布式学习中,可以作为共享的工作区、checkpoint、日 志存储;
 - 可以使用大容量、可共享(ReadWriteMany,ReadOnlyMany)卷;
 - 高性能(缓存),可以替代 hostPath、local—path。可以轻松实现有状态应用的云原生转换;
 - 支持多种数据存储和元数据引擎,适用于大多数 k8s 环境;
 - 可以替代高成本的共享存储,如 AWS EFS、Google filestore、DDN exascaler。

- JuiceFS 在 1000 GPU 规模下保持 98% 以上 GPU 利用率。
- ANL 的结果依然非常优秀,考虑到 ANL 测试的 网络条件是高带宽低延迟的 Slingshot 网络,能 有这样的成绩也是意料之中的。

- JuiceFS 的 GPU 利用率随着集群规模变大,缓慢线 性下降, 在 500 卡规模时保持 97% 以上。
- 缓存节点的机型数量和网络带宽有限, 本次测试达 到的最大规模为 483 卡。在这种规模下, JuiceFS 集群的聚合带宽为 1.7 Tb, 而 ANL 集群的带宽是 5.2 Tb .

Case Study # F

社区版 JuiceFS 与企业版 JuiceFS 迁移方案对比:在执行文件系统的迁移过程中,我们同时对 JuiceFS 社区版和企业版进行了迁移操作。社区版分别采用了以 Redis 和 MySQL 作为元数据管理的两种配置。经过全面的比较后发现,社区版在迁移期间的影响业务时间较长,且迁移过程极易受到增量数据量的影响。

与此相反,企业版的迁移能够保持 JuiceFS 服务的持续可用性,尽管这要求业务方进行 3 次重启。正确选择重启时机是至关重要的,如果处理得当,对业务的影响可以降至最低。

搜广推		视觉/NLP	大语言模型		***		
机器学习平台UI与CLI命令行终端工具							
数据集管理	模型	管理	笔记本	模型训练	推理服务 镜像构建		镜像构建
BMTrain	Deeps	Speed	TensorFlow		Serving		
多个K8s集群							
HDFS .		Juic	ceFS		云	盘	

JuiceFS 的 POSIX 兼容性和数据分块使我们能够按需读取数据,读取性能接近 S3 能提供的性能 的上限,有效 解决了大型模型在 Serverless 环境中冷启动缓慢的问题。 使用 JuiceFS 后,模型加载速度由原来的 20 多分钟缩 短至几分钟。

他们在使用 JuiceFS

Metabit Trading

DP'Technology 深势科技

