

- univariate analysis
 - Categorical
 - Numerical
- pairwise analysis
- multivariate analysis

Analysis of numerical attributes

Pr = \frac{e_r}{ml_r}

Pland

Machine Learning @ Carlo Vercellis

POLITECNICO MILANO 1863

اما این ها کاملا نمایش دهنده رضعیت داده ها نیستند. در تصویر زیر هر سه مورد یکی خواهد بود

Measures of dispersion for numerical attributes other measures.

MEAN ABSOLUTE DEVIATION:

MAD = $\frac{1}{m}\sum_{i=1}^{m}|x_i-\bar{\mu}|$ SAMPLE STANDARD DEVIATION: $\bar{\sigma}=\sqrt{\bar{\sigma}^2}$ SAMPLE VARIANCE: $\bar{\sigma}=\sqrt{\bar{\sigma}^2}$ COEFFICIENT OF VARIATION: $\bar{\sigma}^2=\frac{1}{m-1}\sum_{i=1}^{m}(x_i-\bar{\mu})^2$ COEFFICIENT OF VARIATION:

CV = $100\frac{\bar{\sigma}}{\bar{\mu}}$ Nachine Learning Φ Carlo Vercellis

Measures of relative location for numerical attributes affecting data

MEAD-MEAN: mean of the values between q_L e q_U WINSORIZED-MEAN: increase (decrease) values less (greater) than the quantile q_P (q_{1-p})

improvement over the sample mean, idea

POLITECNICO MILANO 1863

Analysis of the empirical density $I_{\text{curt}} = \frac{\bar{\mu}_4}{\bar{\sigma}^4} - 3 \qquad \qquad \bar{\mu}_4 = \frac{1}{m} \sum_{i=1}^m (x_i - \bar{\mu})^4.$

Bivariate Analysis --> can be either numerical or categorical

statistical

Contingency table family 0 1 totale 6 (f₁)
6
7
6 1 2 3 4 2 4 2 5 3 4 2 3 25 **11** (*g*₁) 14 (82) totale Two attributes are independent if

multivariate Analysis

