Chain Rule – Solutions

UEA LEARNING ENHANCEMENT TEAM MATHEMATICS & STATISTICS

Power-type Compositions

Find the derivative of:

1.
$$y=(4x^2+3)^5$$

Let $u=4x^2+3$, then $\frac{du}{dx}=8x$
 $y=u^5\Rightarrow \frac{dy}{du}=5u^4$

$$\frac{dy}{dx}=5(4x^2+3)^4\cdot 8x=40x(4x^2+3)^4$$

2.
$$y=(7x^3+2)^4$$

Let $u=7x^3+2$, then $\frac{du}{dx}=21x^2$
 $y=u^4\Rightarrow \frac{dy}{du}=4u^3$

$$\frac{dy}{dx}=4(7x^3+2)^3\cdot 21x^2=84x^2(7x^3+2)^3$$

3.
$$y=(5x^2+x)^3$$

Let $u=5x^2+x$, then $\frac{du}{dx}=10x+1$
 $y=u^3\Rightarrow \frac{dy}{du}=3u^2$

$$\frac{dy}{dx} = 3(5x^2 + x)^2(10x + 1)$$

4.
$$y=(1-2x)^6$$
 Let $u=1-2x$, then $\frac{du}{dx}=-2$

$$y=u^6\Rightarrow \frac{dy}{du}=6u^5$$

$$\frac{dy}{dx}=6(1-2x)^5\cdot (-2)=-12(1-2x)^5$$

5.
$$y=(2x-3)^7$$

Let $u=2x-3$, then $\frac{du}{dx}=2$
 $y=u^7\Rightarrow \frac{dy}{du}=7u^6$

$$\frac{dy}{dx} = 7(2x-3)^6 \cdot 2 = 14(2x-3)^6$$

6.
$$y=(x^2+5x-3)^8$$

Let $u=x^2+5x-3$, then $\frac{du}{dx}=2x+5$
$$y=u^8\Rightarrow \frac{dy}{du}=8u^7$$

$$\frac{dy}{dx} = 8(x^2 + 5x - 3)^7 (2x + 5)$$

7.
$$y=(4x^3-x^2+2)^5$$

Let $u=4x^3-x^2+2$, then $\frac{du}{dx}=12x^2-2x$
 $y=u^5\Rightarrow \frac{dy}{du}=5u^4$

$$\frac{dy}{dx}=5(4x^3-x^2+2)^4(12x^2-2x)$$

Exponentials with Composed Arguments

Find the derivative of:

8.
$$y=e^{3x^2+4}$$

Let $u=3x^2+4$, then $\frac{du}{dx}=6x$
 $y=e^u\Rightarrow \frac{dy}{du}=e^u$

$$\frac{dy}{dx} = e^{3x^2+4} \cdot 6x = 6xe^{3x^2+4}$$

9.
$$y = e^{x^3+1}$$

Let $u=x^3+1$, then $\frac{du}{dx}=3x^2$

$$\frac{dy}{dx} = 3x^2 e^{x^3 + 1}$$

10.
$$y = e^{5x^4 + 2x}$$

Let $u = 5x^4 + 2x$, then $\frac{du}{dx} = 20x^3 + 2$

$$\frac{dy}{dx} = (20x^3 + 2)e^{5x^4 + 2x}$$

11.
$$y = e^{7x-3}$$

Let u = 7x - 3, then $\frac{du}{dx} = 7$

$$\frac{dy}{dx} = 7e^{7x-3}$$

12.
$$y = e^{x^2 - 4x + 1}$$

Let $u=x^2-4x+1$, then $\frac{du}{dx}=2x-4$

$$\frac{dy}{dx} = (2x - 4)e^{x^2 - 4x + 1}$$

13.
$$y = e^{x^5 - x^2 + 3}$$

Let $u=x^5-x^2+3$, then $\frac{du}{dx}=5x^4-2x$

$$\frac{dy}{dx} = (5x^4 - 2x)e^{x^5 - x^2 + 3}$$

14.
$$y = e^{2x^3 - x + 4}$$

Let $u=2x^3-x+4$, then $\frac{du}{dx}=6x^2-1$

$$\frac{dy}{dx} = (6x^2 - 1)e^{2x^3 - x + 4}$$

Mixed Practice

15.
$$y = (5x^2 + 4)^3$$

Let $u = 5x^2 + 4$, then $\frac{du}{dx} = 10x$

$$\frac{dy}{dx} = 3(5x^2 + 4)^2 \cdot 10x = 30x(5x^2 + 4)^2$$

16.
$$y = e^{x^2 + 4x + 2}$$

Let $u = x^2 + 4x + 2$, then $\frac{du}{dx} = 2x + 4$

$$\frac{dy}{dx} = (2x+4)e^{x^2+4x+2}$$

17.
$$y = (2x^3 - x^2 + x)^6$$

Let $u = 2x^3 - x^2 + x$, then $\frac{du}{dx} = 6x^2 - 2x + 1$

$$\frac{dy}{dx} = 6(2x^3 - x^2 + x)^5(6x^2 - 2x + 1)$$

18. $y = e^{4x^3 - x^2 + x}$

Let $u = 4x^3 - x^2 + x$, then $\frac{du}{dx} = 12x^2 - 2x + 1$

$$\frac{dy}{dx} = (12x^2 - 2x + 1)e^{4x^3 - x^2 + x}$$

19. $y = (3x^2 + 1)^5$

Let $u = 3x^2 + 1$, then $\frac{du}{dx} = 6x$

$$\frac{dy}{dx} = 5(3x^2 + 1)^4 \cdot 6x = 30x(3x^2 + 1)^4$$

20.
$$y = e^{x^4 + 5x}$$

Let
$$u=x^4+5x$$
, then $\frac{du}{dx}=4x^3+5$

$$\frac{dy}{dx} = (4x^3 + 5)e^{x^4 + 5x}$$