TABLE 5.1
 Select (Unilateral) z-Transform Pairs

No.	<i>x</i> [<i>n</i>]	X[z]
1	$\delta[n-k]$	z^{-k}
2	u[n]	$\frac{z}{z-1}$
3	nu[n]	$\frac{z}{(z-1)^2}$
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3u[n]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$
6	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$
8	$n\gamma^n u[n]$	$\frac{\gamma z}{(z-\gamma)^2}$
9	$n^2 \gamma^n u[n]$	$\frac{\gamma z(z+\gamma)}{(z-\gamma)^3}$
10	$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!} \gamma^n u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
11a	$ \gamma ^n \cos \beta n u[n]$	$\frac{z(z- \gamma \cos\beta)}{z^2-(2 \gamma \cos\beta)z+ \gamma ^2}$
11b	$ \gamma ^n \sin \beta n u[n]$	$\frac{z \gamma \sin\beta}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12a	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{rz[z\cos\theta - \gamma \cos(\beta - \theta)]}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12b	$r \gamma ^n\cos(\beta n + \theta)u[n]$ $\gamma = \gamma e^{j\beta}$	$\frac{(0.5re^{j\theta})z}{z-\gamma} + \frac{(0.5re^{-j\theta})z}{z-\gamma^*}$
12c	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{z(Az+B)}{z^2+2az+ \gamma ^2}$
	$r = \sqrt{\frac{A^2 \gamma ^2 + B^2 - 2AaB}{ \gamma ^2 - a^2}}$	
	$\beta = \cos^{-1} \frac{-a}{ \gamma }$	
	$\theta = \tan^{-1} \frac{Aa - B}{A\sqrt{ \gamma ^2 - a^2}}$	