Particle spectrograph

Wave operator and propagator

	$\Delta_{1}^{\#1}{}_{\alpha\beta}$	$\Delta_{1}^{\#1}_{\alpha\beta} \; \Delta_{1}^{\#2}_{\alpha\beta} \; \Delta_{1}^{\#3}_{\alpha\beta}$	$\Delta_{1}^{\#3}{}_{+}\alpha\beta$	$\Delta_{1}^{\#1}{}_{\alpha}$	$\Delta_{1}^{\#2}{}_{\alpha}$	$\Delta_{1}^{\#3}$	$\Delta_{1^-}^{\#4}{}_{\alpha}$	$\Delta_{1}^{\#5}{}_{\alpha}$	$\Delta_{1^{-}}^{\#6}{}_{\alpha}$	${\mathcal T}_{1^-}^{\#1}_{\alpha}$
$\Delta_{1}^{\#1} +^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_1^{\#2} + \alpha \beta$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2}{a_0}$	0	0	0	0	0	0	0	0
$\Delta_1^{\#3} + ^{lphaeta}$	0	0	$\frac{4}{a_0}$	0	0	0	0	0	0	0
$\Delta_{1^{\bar{-}}}^{\#1} +^{\alpha}$	0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2k^2}{\sqrt{3}a_0(2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	0	$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$
$\Delta_{1}^{#2} +^{lpha}$	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$-\frac{k^2}{\sqrt{6} a_0 (2+k^2)}$	$-\frac{ik(4+k^2)}{a_0(2+k^2)^2}$
$\Delta_{1}^{\#3} +^{lpha}$	0	0	0	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$	$-\frac{76+52k^2+3k^4}{12a_0(2+k^2)^2}$	$\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$	$\frac{-2+k^2}{3\sqrt{2} \ a_0 (2+k^2)^2}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{2 + 3 k^2}}$	$\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$
$\Delta_{1}^{\#4} +^{lpha}$	0	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{\sqrt{5} (10+3k^2)}{12 a_0 (2+k^2)}$	$\frac{1}{12a_0}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$	$-\frac{\sqrt{5}}{6a_0}$	$-\frac{i\sqrt{\frac{5}{6}}k}{a_0(2+k^2)}$
$\Delta_{1}^{\#5} +^{lpha}$	0	0	0	$\sqrt{\frac{2}{3}} k^2$ $2 a_0 + a_0 k^2$	$\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$\frac{-2+k^2}{3\sqrt{2} \ a_0 (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$	$\frac{2(17+14k^2+3k^4)}{3a_0(2+k^2)^2}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	$\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$
$\Delta_{1^{-}}^{\#6} +^{\alpha}$	0	0	0	0	$-\frac{k^2}{\sqrt{6}(2a_0+a_0k^2)}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{2 + 3 k^2}}$	$-\frac{\sqrt{5}}{6a_0}$	$-\frac{\sqrt{2} (7+3k^2)}{3 a_0 (2+k^2)}$	$\frac{5}{3a_0}$	$-\frac{i\sqrt{\frac{2}{3}}k}{a_0(2+k^2)}$
${\mathcal T}_{1^{ ext{-}}}^{\#1}\dagger^{lpha}$	0	0	0	$\frac{2i\sqrt{2}k}{2a_0 + a_0k^2}$	$\frac{ik(4+k^2)}{a_0(2+k^2)^2}$	$-\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$	$\frac{i}{2}\sqrt{\frac{5}{6}}k$ $2a_0+a_0k^2$	$-\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$	$i \sqrt{\frac{2}{3}} k$ $2a_0 + a_0 k^2$	$\frac{2k^2}{a_0(2+k^2)^2}$

Ŧ	$\mathcal{A}_{3^{-} \alpha\beta\chi}^{\#1} \qquad \Delta_{3^{-} \alpha\beta\chi}^{\#1} $ $\mathcal{A}_{3^{-}}^{\#1} + \alpha\beta\chi \qquad -\frac{a_{0}}{2} \qquad \Delta_{3^{-}}^{\#1} + \alpha\beta\chi \qquad -\frac{2}{a_{0}}$
	Quadratic (free) action
	$\mathcal{S} == \iiint (\frac{1}{4} \left(2a_0\mathcal{R}^{\alpha}_{\ \alpha}^{\ \beta}\mathcal{R}^{\chi}_{\ \beta\chi} + 4h^{\alpha\beta}\mathcal{T}_{\alpha\beta} + \mathcal{R}^{\alpha\beta\chi} \left(-2a_0\mathcal{R}_{\beta\chi\alpha} + 4\Delta_{\alpha\beta\chi} \right) - \right)$
	$a_0 h_{\chi}^{\chi} \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha\beta} + a_0 h_{\chi}^{\chi} \partial_{\beta} \mathcal{A}_{\alpha}^{\alpha\beta} - 2 a_0 h_{\alpha\chi} \partial_{\beta} \mathcal{A}^{\alpha\beta\chi} +$
	$2a_0 h_{\beta\chi} \partial^{\chi} \mathcal{A}_{\alpha}^{\alpha\beta}))[t, x, y, z] dz dy dx dt$

$h_1^{\#1}$	0	0	0	$-\frac{ia_0k}{4\sqrt{2}}$	0	$\frac{i a_0 k}{4 \sqrt{6}}$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$\frac{ia_0k}{4\sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	
${\mathscr A}_{1^{\bar{-}}\alpha}^{\#6}$	0	0	0	0	0	9 -	$-\frac{\sqrt{5} a_0}{6}$	$\frac{a_0}{6\sqrt{2}}$	5 <i>a</i> 0	$-\frac{i a_0 k}{4 \sqrt{6}}$	
${\mathscr A}_{1^{\text{-}}}^{\#5}{}_{\alpha}$	0	0	0	0	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$	8 0p	$\frac{a_0}{6\sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	
${\mathcal A}_{1^-}^{\#4}{}_{\alpha}$	0	0	0	0	0	$\frac{\sqrt{5} a_0}{6}$	3 3	$-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$	$-\frac{\sqrt{5} a_0}{6}$	$\frac{1}{4}\overline{i}\sqrt{\frac{5}{6}}a_0k$	
${\mathscr A}_{1^{\text{-}}}^{\#3}{}_{\alpha}$	0	0	0	0	0	- <u>a0</u>	$\frac{\sqrt{5} a_0}{6}$	$-\frac{a_0}{6\sqrt{2}}$	- <u>a0</u>	$-\frac{i a_0 k}{4 \sqrt{6}}$	
${\mathcal A}_{1^-}^{\#2}{}_{lpha}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	
${\mathscr A}_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	- <u>4</u>	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	
${\mathscr A}_{1}^{\#3}{}_{lphaeta}$	0	0	$\frac{a_0}{4}$	0	0	0	0	0	0	0	
${\cal A}_{1}^{\#2}_{\alpha\beta}\;{\cal A}_{1}^{\#3}_{\alpha\beta}\;{\cal A}_{1}^{\#1}_{\alpha}\;{\cal A}_{1}^{\#2}_{\alpha}\;{\cal A}_{1}^{\#3}_{1}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0	
$\mathcal{A}_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{a_0}{4}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	
	$\mathcal{A}_1^{\#_1} +^{\alpha \beta}$	$\mathcal{A}_1^{\#_2} + \alpha^{\beta}$	$\mathcal{A}_1^{\# 3} +^{\alpha eta}$	${\mathscr A}_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\mathcal{A}_{1}^{\#2} +^{lpha}$	$\mathcal{A}_{1}^{\#3} +^{lpha}$	$\mathscr{A}_{1^{\bar{-}}}^{\#4} +^{\alpha}$	${\mathscr A}_{1}^{\#5}\dagger^{lpha}$	${\mathscr A}_{1}^{\#6}{\dagger}^{lpha}$	$h_1^{#1} + ^{lpha}$	

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$2\mathcal{T}_{0+}^{\#2} - ik \Delta_{0+}^{\#2} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \Delta^{\alpha\beta\chi}$	1
$\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$	$\partial_{\alpha}\Delta^{\alpha\beta}_{\ \beta} == 0$	1
$6 \mathcal{T}_{1}^{\#1}{}^{\alpha} - i k (3 \Delta_{1}^{\#2}{}^{\alpha} -$	$2 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \mathcal{T}^{\beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \Delta^{\beta \alpha \chi} ==$	3
$\Delta_1^{\#5\alpha} + \Delta_1^{\#3\alpha}$) == 0	$2\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\Delta^{\beta\chi\delta}$	
$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} +$	$\partial_{\beta}\partial^{\alpha}\Delta^{\beta\chi}_{\chi} == \partial_{\chi}\partial^{\chi}\Delta^{\alpha\beta}_{\beta}$	3
$2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$		
Total constraints/gauge genera	ators:	8

	${\mathcal R}^{\sharp 1}_{2^+lphaeta}$	$\mathcal{A}_{2^{+}lphaeta}^{\#2}$	$\mathcal{A}_{2^{+}lphaeta}^{\#3}$	$h_{2}^{\#1}_{lpha\beta}$	$\mathcal{A}_{2^{-}lphaeta\chi}^{\#1}$	$\mathcal{A}_{2^{-}\alpha\beta\chi}^{\#2}$
$\mathcal{A}_{2}^{\sharp 1}\dagger^{lphaeta}$		0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0
$\mathcal{A}_{2}^{\#2}\dagger^{lphaeta}$	0	- <u>a_0</u> 2	0	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0
$\mathcal{A}_{2}^{\#3}\dagger^{lphaeta}$	0	0	<u>a o</u> 4	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0
$h_2^{\#1}\dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$\mathcal{A}_2^{\sharp_1}$ † $^{lphaeta\chi}$	0	0	0	0	<u>a₀</u> 4	0
$\mathcal{A}_{2}^{\#2}$ † $^{lphaeta\chi}$	0	0	0	0	0	<u>a₀</u> 4

	$\Delta_0^{\#1}$	$\Delta_0^{\#2}$	Δ ₀ ^{#3}	Δ ₀ ^{#4}	${\mathcal T}_0^{\sharp 1}$	${\cal T}_0^{\#2}$	Δ#1
$\Delta_{0}^{\#1}$ †	0	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{2i\sqrt{2}}{a_0k}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	0
$\Delta_{0}^{\#2}$ †	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{144}{a_0 (16+3 k^2)^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$	$\frac{72ik}{a_0(16+3k^2)^2}$	0
Δ ₀ ^{#3} †	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{8i}{\sqrt{3} (16a_0 k + 3a_0 k^3)}$	$-\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$	0
$\Delta_{0}^{\#4}$ †	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{32(13+3k^2)}{3a_0(16+3k^2)^2}$	$\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$	$\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$	0
${\cal T}_{0}^{\#1}\dagger$	2i√2 a ₀ k	$\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$	$-\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$	$-\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$	$\frac{4}{a_0 k^2}$	$\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$	0
$\mathcal{T}_{0}^{\#2}$ †	$\frac{2i\sqrt{6}k}{16a_0 + 3a_0k^2}$	$-\frac{72ik}{a_0(16+3k^2)^2}$	$\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$	$\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$	$-\frac{36k^2}{a_0(16+3k^2)^2}$	0
$\Delta_0^{\#1}$ †	0	0	0	0	0	0	$-\frac{2}{a_0}$

$\mathcal{A}_{0^{\text{-}}}^{\#1}$	0	0	0	0	0	0	$-\frac{a_0}{2}$
$h_0^{#2}$	0	0	$-\frac{1}{4}\bar{I}a_0k$	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0	0
$h_0^{\#1}$	$-\frac{ia_0k}{2\sqrt{2}}$	0	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{ia_0k}{4\sqrt{6}}$	0	0	0
$\mathcal{A}_{0}^{\#4}$	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{a_0}{2\sqrt{2}}$	<u>a0</u>	$\frac{i a_0 k}{4 \sqrt{6}}$	$-\frac{ia_0k}{4\sqrt{2}}$	0
$\mathcal{A}_{0}^{\#3}$	0	$\frac{a_0}{2}$	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$ \frac{i a_0 k}{4} $	0
$\mathcal{A}_{0}^{\#2}$	0	0	$\frac{a_0}{2}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
$\mathcal{A}_{0}^{\#1}$	$-\frac{a_0}{2}$	0	0	0	$\frac{i a_0 k}{2 \sqrt{2}}$	0	0
	$\mathcal{A}_{0}^{\#1}$ $+$	$\mathcal{A}_{0}^{\#2}$ †	A#3+	A#4 +	$h_{0}^{#1}$ †	$h_0^{#2} +$	$\mathcal{A}_{0^{ ext{-}1}}^{\#1}$ †

0 4 0 0

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $a_0 < 0$