

I claim:

1. A method of generating optical emissions from metallic point sources, comprising the steps of:

5 forming micron-size droplets containing nano-size particles;
passing the droplets into individual target sources;
irradiating the individual target sources with a laser beam having substantially identical diameter to each of the individual droplets; and
producing optical emissions from the irradiated target sources.

10

2. The method of claim 1, wherein the droplets include:
nano particles of metals in a liquid.

15 3. The method of claim 2, wherein the liquid is selected from at least one of:
H₂O, oil, oleates, soapy solutions, and alcohol.

4. The method of claim 2, wherein the droplets include:
Tin(Sn) nano-particles in the liquid.

20 5. The method of claim 2, wherein the droplets include:
Copper(Cu) nano-particles in the liquid.

6. The method of claim 2, wherein the droplets include:
Zinc(Zn) nano-particles in the liquid.

25

7. The method of claim 2, wherein the droplets include:
Gold(Au) nano-particles in the liquid.

8. The method of claim 2, wherein the droplets include:
Aluminum(Al) nano-particles in the liquid.

- 5 9. The method of claim 2, wherein the droplets include:
Bismuth(Bi) nano-particles in the liquid.

10. The method of claim 1, wherein the room temperature includes:
approximately 10 degrees to approximately 30 degrees C.

11. The method of claim 1, wherein the optical emissions include:
EUV emissions.

12. The method of claim 1, wherein the optical emissions include:
XUV emissions.

13. The method of claim 1, wherein the optical emissions include:
X-ray emissions.

- 20 14. The method of claim 1, wherein the optical emissions include:
wavelengths of approximately 11.7 nm.

15. The method of claim 1, wherein the optical emissions include:
wavelengths of approximately 13 nm.

- 25 16. The method of claim 1, wherein the optical emissions include:
wavelength ranges of approximately 0.1 nm to approximately 100 nm.

17. The method of claim 1, wherein the optical emissions include:
wavelength ranges of approximately 0.5 nm to approximately 1.5 nm.

- 5 18. The method of claim 1, wherein the optical emissions include:
wavelength ranges of approximately 2.3 nm to approximately 4.5 nm.