University of South Bohemia

Faculty of Science

Praktika IV

Comptnův rozptyl

Datum: 18.10.2023 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

- Ukažte, jak se mění energie gama záření v závislosti na úhlu rozptylu
- Vykreslete graf převrácených hodnot energie jako funkci $(1 \cos\theta)$
- Určete původní energii gamma záření a klidovou hmotnost elektronu

2 Pomůcky

Zdroj gamma záření LABKIT-SR-Cs137, detektor Osprey, program ProSpect, Radiagem 2000, podložka s úhloměrem, ocelový kůl

3 Teorie

Comptův rozptyl nastává, když dopadající foton má mnohem větší energii než elektron v atomu. Když se pak tento foton srazí s elektronem jádře, může ho z jádra vyrazit a z elektronu se stane volný elektron.

Protože je mnohem jednoduší detekovat foton než elektron, parametry elektronu vyvodíme z vlastnotí rozptýleného fotonu.

$$p_1 = p_2 + p_e$$

Na vztah pro comptův rozptyl můžeme přijít ze zákona zachování energie, kde p_1 je hybnost fotonu před srážkou, p_2 je hybnost fotonu po srážce a p_e je hybnost elektronu.

Nesmíme zapomenout, že hybnosti jsou vektory. Dále v textu už notaci vektorů nepoužívám.

$$(\vec{p}_1 - \vec{p}_2)^2 = \vec{p}_1^2 \vec{p}_2^2 - 2\vec{p}_1 \vec{p}_2$$
$$(\vec{p}_1 - \vec{p}_2)^2 = \vec{p}_1^2 \vec{p}_2^2 - 2p_1 p_2 cos(\theta)$$

Potom bude úhel θ úhel rozptylu fotonem před srážkou a po srážce. Pokud elektron bude před srážkou v klidu, bude mít energii $E_0 = mc^2$, po srážce bude mít energii $\sqrt{E_0 + p_e^2 c^2}$.

$$p_{1}c + E_{0} = p_{2}c + \sqrt{E_{0}^{2} + p_{e}^{2}c^{2}}$$

$$\vdots$$

$$\lambda_{1} - \lambda_{2} = \frac{h}{m_{0}c}(1 - \cos\theta)$$
(1)

 λ_1 je vlnová délka nalétavajícího fotonu a λ_2 fotonu po srážce. Vydělením předchozí rovnice h dostaneme vztah

$$\frac{1}{h}(\lambda_1 - \lambda_2) = \frac{1}{m_0 c}(1 - \cos\theta)$$
$$\frac{1}{p_1} - \frac{1}{p_2} = \frac{1}{m_0 c}(1 - \cos\theta)$$

Vydělím celou rovnici \boldsymbol{c}

$$\frac{1}{E_1} - \frac{1}{E_2} = \frac{1}{m_0 c^2} (1 - \cos\theta) \tag{2}$$

4

5 Data

Figure 1: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Jednotlivé peaky v grafu značí energi
i $E_2(\lambda_2)$ (ten modrý) a $E_1(\lambda_1)$ (ten červený).

Tabulka 1:

úhel	$E_2[KeV]$	$E_1[KeV]$	$1 - cos(\theta)$
0	662.245	662.245	0.0
10	657.493	657.493	0.015
20	600.902	654.037	0.06
30	564.614	654.037	0.134
40	535.239	651.445	0.234
50	447.544	650.581	0.357
60	405.641	648.853	0.5
70	358.986	650.581	0.658

Rovnici 2 můžeme upravit na tvar

$$\begin{split} -\frac{1}{E_2}&=\frac{1}{m_0c^2}(1-\cos\theta)-\frac{1}{E_1}\\ &\frac{1}{E_2}=-\frac{1}{m_0c^2}(1-\cos\theta)+\frac{1}{E_1} \end{split}$$
Což je vlastně lineární rovnice o tvaru $u(x)=-ax+b$

Figure 2: Graf závislosti napětí odezvy vzorku na napětím budícím magnetické pole

Kdea=0.00193438ab=0.00150388

$$a = \frac{1}{m_0c^2}$$

$$m_0 = \frac{1}{ac^2} =$$

$$b = \frac{1}{E_1}$$

$$E_1 = \frac{1}{b} = 664.943 KeV$$