L44

Theory of MRI Reconstruction

CS 473/673 Jeff Orchard

Goal: To find out how the MR signal can be turned into tomographic images.

Bloch's Equation

Net magnetization vector \vec{M}

$$\vec{M} = \vec{M}_x + \vec{M}_y + \vec{M}_z = M_x \vec{i} + M_y \vec{j} + M_z \vec{k}$$

Bloch's equation governs the behaviour of $\, \vec{M} \,$

$$\frac{d\vec{M}}{dt} = \boxed{\gamma \vec{M} \times \vec{B}_0} - \boxed{\frac{1}{T_2} \left(M_x \vec{i} + M_y \vec{j} \right)} - \boxed{\frac{1}{T_1} \left(M_z - M_0 \right) \vec{k}}$$
Larmour Transverse Longitudinal precession (x-y) decay (z) decay

(see page 108 of Jeff's thesis for explanation of T_1 and T_2 .)

Dynamics of M_{xy}

Recall:

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \vec{B}_0 - \frac{1}{T_2} \left(M_x \vec{i} + M_y \vec{j} \right) - \frac{1}{T_1} \left(M_z - M_0 \right) \vec{k}$$

$$\frac{d\vec{M}}{dt} = \gamma \vec{M} \times \left(\vec{B}_0 + \vec{G} \cdot \vec{x} \right) - \frac{1}{T_2} \left(M_x \vec{i} + M_y \vec{j} \right) - \frac{1}{T_1} \left(M_z - M_0 \right) \vec{k}$$

We introduce a gradient in the strength of the magnetic field. The gradient is in the direction \vec{x} , with no z-component.

In matrix form...

$$\frac{d\vec{M}}{dt} = -\begin{bmatrix} \frac{1}{T_2} & -\gamma \left(B_0 + \vec{G} \cdot \vec{x} \right) & 0\\ \gamma \left(B_0 + \vec{G} \cdot \vec{x} \right) & \frac{1}{T_2} & 0\\ 0 & 0 & \frac{1}{T_1} \end{bmatrix} \vec{M} + \frac{1}{T_1} \vec{M}_0$$

Solution for M_{xy}

T2 Relaxation

$$M_{xy}(x,y,t) = ce^{-i\gamma B_0 t} e^{\frac{-i}{T_2}} e^{-i(k_x x + k_y y)}$$

Normal precession at Larmour frequency

Frequency/Phase state (the *k*'s depend on the gradients)

$$k_{x}(t) = \int_{0}^{t} G_{x}(\tau)d\tau$$
 $k_{y}(t) = \int_{0}^{t} G_{y}(\tau)d\tau$

MR Signal

The MR signal is the sum of all the excited M_{xy} 's (ignoring t now).

$$S(k_x, k_y) = \iint M_{xy}(x, y)e^{-i(k_x x + k_y y)} dxdy$$

This looks just like a Fourier Transform, where (k_x, k_y) are the frequency variables. Thus, its inverse is just like the inverse FT,

$$M_{xy}(x,y) = \iint S(k_x, k_y) e^{i(k_x x + k_y y)} dk_x dk_y$$

Gradient-Echo Imaging

Instead of flipping all the dipoles by 180° , reverse the phase difference to refocus the dipoles.

Echo-Planar Imaging (EPI)

A gradient-echo technique that allows one to collect a whole slice in one excitation.

Exhibits T2* contrast, not T2 contrast.

