Convolutional Neural Networks

Cunjian Chen

Department of Computer Science and Engineering

Michigan State University

1/8/2020

Background

 A Convolutional Neural Network (CNN) consists of one or more convolutional layers (often with a subsampling step and an activation step) and then followed by one or more fully connected layers as observed in a standard multilayer neural network.

Background

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Convolution Layer

Convolution Layer

Output Matrix : $C_{out} \times (H_{out} \times W_{out})$

Input: 227*227*3

Conv1: 96 11*11*3 filters, with stride 4

Input: 227*227*3

Conv1: 96 11*11*3 filters, with stride 4

Output: (227-11)/4+1=55, 55*55*96

(W-F+2P)/S+1

Input: 227*227*3

Conv1: 96 11*11*3 filters, with stride 4

Output: (227-11)/4+1=55

Parameters: 11*11*3*96 ~= 35K

Details:

- first use of ReLU
- used Norm layers (not common anymore) heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually w accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

AlexNet

96 convolutional kernels of size 11×11×3 learned by the first convolutional layer on the 224×224×3 input images.

AlexNet

```
class AlexNet(nn.Module):
   def __init__(self, num_classes=1000):
       super(AlexNet, self).__init__()
       self.features = nn.Sequential(
           nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
           nn.ReLU(inplace=True),
           nn.MaxPool2d(kernel_size=3, stride=2),
           nn.Conv2d(64, 192, kernel_size=5, padding=2),
           nn.ReLU(inplace=True),
           nn.MaxPool2d(kernel_size=3, stride=2),
                                                                 Feature Extractor
           nn.Conv2d(192, 384, kernel_size=3, padding=1),
           nn.ReLU(inplace=True),
           nn.Conv2d(384, 256, kernel_size=3, padding=1),
           nn.ReLU(inplace=True),
           nn.Conv2d(256, 256, kernel_size=3, padding=1),
           nn.ReLU(inplace=True),
           nn.MaxPool2d(kernel_size=3, stride=2),
       self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
       self.classifier = nn.Sequential(
           nn.Dropout(),
           nn.Linear(256 * 6 * 6, 4096),
           nn.ReLU(inplace=True),
                                                       Classification
           nn.Dropout(),
           nn.Linear(4096, 4096),
           nn.ReLU(inplace=True),
           nn.Linear(4096, num_classes),
```

Small filters, Deeper networks

- 16 19 layers
- Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2
- 16.4% top 5 error in ILSVRC'12 (AlexNet) -> 7.3% top 5 error in ILSVRC'14

		FC 1000
		FC 4096
	Softmax	FC 4096
	FC 1000	Pool
	FC 4096	3×3 conv, 512
	FC 4096	3×3 conv, 512
	Pool	3×3 conv, 512
	3×3 conv, 512	3×3 conv, 512
	3×3 conv, 512	Pool
	3×3 conv, 512	3×3 conv, 512
	Pool	3×3 conv, 512
	3×3 conv, 512	3×3 conv, 512
Softmax	3×3 conv, 512	3×3 conv, 512
FC 1000	3×3 conv, 512	Pool
FC 4096	Pool	3×3 conv, 256
FC 4096	3×3 conv, 256	3×3 conv, 256
Pool	3×3 conv, 256	3×3 conv, 256
3×3 conv, 256	3×3 conv, 256	3×3 conv, 256
3×3 conv, 384	Pool	Pool
Pool	3×3 conv, 128	3×3 conv, 128
3×3 conv, 384	3×3 conv, 128	3×3 conv, 128
Pool	Pool	Pool
5×5 conv, 256	3×3 conv, 64	3×3 conv, 64
11×11 conv, 96	3×3 conv, 64	3×3 conv, 64
Input	Input	Input
AlexNet	VGG16	VGG19
		13

Softmax

Why smaller filters?

Stack of two 3x3 conv (stride 1) layers has same **effective receptive field** as one 5x5 conv layer.

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer.

$$C \times (7 \times 7 \times C) = 49C^2 \longrightarrow 3 \times (C \times (3 \times 3 \times C)) = 27C^2$$

		FC 1000
		FC 4096
	Softmax	FC 4096
	FC 1000	Pool
	FC 4096	3×3 conv, 512
	FC 4096	3×3 conv, 512
	Pool	3×3 conv, 512
	3×3 conv, 512	3×3 conv, 512
	3×3 conv, 512	Pool
	3×3 conv, 512	3×3 conv, 512
	Pool	3×3 conv, 512
	3×3 conv, 512	3×3 conv, 512
Softmax	3×3 conv, 512	3×3 conv, 512
FC 1000	3×3 conv, 512	Pool
FC 4096	Pool	3×3 conv, 256
FC 4096	3×3 conv, 256	3×3 conv, 256
Pool	3×3 conv, 256	3×3 conv, 256
3×3 conv, 256	3×3 conv, 256	3×3 conv, 256
3×3 conv, 384	Pool	Pool
Pool	3×3 conv, 128	3×3 conv, 128
3×3 conv, 384	3×3 conv, 128	3×3 conv, 128
Pool	Pool	Pool
5×5 conv, 256	3×3 conv, 64	3×3 conv, 64
11×11 conv, 96	3×3 conv, 64	3×3 conv, 64
Input	Input	Input
AlexNet	VGG16	VGG19
		14

Softmax

```
(not counting biases)
INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
```

Softmax FC 1000 FC 4096 FC 4096 Pool 3×3 conv, 512 3×3 conv, 512 3×3 conv, 512 Pool 3×3 conv, 512 3×3 conv, 512 3×3 conv, 512 Pool 3×3 conv, 256 3×3 conv, 256 3×3 conv, 256 Pool 3×3 conv. 128 3×3 conv, 128 Pool 3×3 conv, 64 3×3 conv, 64 Input

VGG16

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

		FC 1000
		FC 4096
	Softmax	FC 4096
	FC 1000	Pool
	FC 4096	3×3 conv, 512
	FC 4096	3×3 conv, 512
	Pool	3×3 conv, 512
	3×3 conv, 512	3×3 conv, 512
	3×3 conv, 512	Pool
	3×3 conv, 512	3×3 conv, 512
	Pool	3×3 conv, 512
	3×3 conv, 512	3×3 conv, 512
Softmax	3×3 conv, 512	3×3 conv, 512
FC 1000	3×3 conv, 512	Pool
FC 4096	Pool	3×3 conv, 256
FC 4096	3×3 conv, 256	3×3 conv, 256
Pool	3×3 conv, 256	3×3 conv, 256
3×3 conv, 256	3×3 conv, 256	3×3 conv, 256
3×3 conv, 384	Pool	Pool
Pool	3×3 conv, 128	3×3 conv, 128
3×3 conv, 384	3×3 conv, 128	3×3 conv, 128
Pool	Pool	Pool
5×5 conv, 256	3×3 conv, 64	3×3 conv, 64
11×11 conv, 96	3×3 conv, 64	3×3 conv, 64
Input	Input	Input
AlexNet	VGG16	VGG19
		16

Softmax

GoogLeNet

The most straightforward way of improving the performance of deep neural networks is by increasing their size.

- Bigger size means a larger number of parameters, making the network more prone to the overfitting, if the number of the labeled samples in the training set is scarce.
- Increased network size means the dramatically increased use of computational resources.

By adding auxiliary classifiers connected to these intermediate layers, discrimination in the lower stages in the classifier was expected. It was used to combat the vanishing gradient problem while providing regularization.

GoogLeNet Filter Concatenation Filter Concatenation 3×3 convolution 5×5 convolution 1×1 convolution 1×1 convolution 3×3 convolution 3×3 max pooling 5×5 convolution 1×1 convolution 3×3 max pooling 1×1 convolution 1×1 convolution Multi-scale **Previous Layer Previous Layer**

Increase the depth and width of the network while keeping the computational budget constant.

• Depth: the number of network levels

(a) Inception Module, naïve version

Width: the number of units at each level

(b) Inception Module with dimension reduction

GoogLeNet Filter Concatenation Filter Concatenation 3×3 convolution 5×5 convolution 1×1 convolution 1×1 convolution 3×3 convolution 3×3 max pooling 5×5 convolution 1×1 convolution 1×1 convolution 3×3 max pooling 1×1 convolution Multi-scale **Previous Layer Previous Layer**

The design follows the practical intuition that visual information should be processed at various scales and then aggregated so that the next stage can abstract features from the different scales simultaneously.

(a) Inception Module, naïve version

(b) Inception Module with dimension reduction

GoogLeNet

- 1x1 convolutions are used mainly as dimension reduction modules to remove computational bottleneck.
- 1×1 convolutions are used to compute reductions before the expensive 3×3 and 5×5 convolutions.

GoogLeNet

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

Is learning better networks as easy as stacking more layers?

Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error.

Deeper neural networks are more difficult to train. Such degradation is not caused by overfitting.

Residual Mapping:
$$\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$$

The formulation of F(x)+x can be realized by feedforward neural networks with "shortcut connections".

Residual Mapping:
$$\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$$

Identity shortcut connections add no extra parameter.

Residual Mapping:
$$\mathcal{F}(\mathbf{x}) := \mathcal{H}(\mathbf{x}) - \mathbf{x}$$

The form of the residual function F is flexible. If F has only a single layer, equation is similar to a linear layer (no observed advantage). F is applicable to convolutional layers.

Used in ResNet-34

```
def forward(self, x):
    identity = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample is not None:
        identity = self.downsample(x)
    out += identity
    out = self.relu(out)
    return out
```

256-d

1x1, 64

relu

3x3, 64

relu

1x1, 256

Dimension Restored

Used in ResNet-50/101/152

```
def forward(self, x):
    identity = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    out = self.relu(out)
    out = self.conv3(out)
    out = self.bn3(out)
    if self.downsample is not None:
        identity = self.downsample(x)
    out += identity
    out = self.relu(out)
    return out
```

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
			3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x		_	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	Γ 1×1 128]	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLO	OPs	1.8×10^9 3.6×10^9 3.8×10^9 7.6×10^9				11.3×10 ⁹			

Building blocks are shown in brackets, with the numbers of blocks stacked.

Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Traditional convolutional networks with L layers have connections, while DenseNet has L(L+1)/2 connections.

 Each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.

In contrast to ResNets, features are combined through summation before they are passed into a layer; instead, features are combined by concatenating them.

The ℓ th layer receives the feature-maps of all preceding layers, $x_0\cdots x_{\ell-1}$, as input:

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$$

where $[x_0 \cdots x_{\ell-1}]$ refers to the concatenation of the featuremaps produced in layers $0 \cdots \ell-1$.

 H_{ℓ} (·) is a composite function of three consecutive operations: batch normalization (BN), followed by a rectified linear unit (ReLU) and a 3 × 3 convolution (Conv).

What is the number of input feature maps for the ℓ th layer, suppose that each function H produces k feature maps?

What is the number of input feature maps for the ℓ th layer, suppose that each function H produces k feature maps?

$$k_0 + k \times (\ell - 1)$$

The hyper-parameter k is the growth rate of the network.

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264	
Convolution	112 × 112	7×7 conv, stride 2				
Pooling	56 × 56		$3 \times 3 \max p$	pool, stride 2		
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	
Transition Layer	56 × 56		1 × 1	conv		
(1)	28×28		2 × 2 average	e pool, stride 2		
Dense Block	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 12 \end{bmatrix} \times 12$	
(2)	26 × 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	
Transition Layer	28×28	$1 \times 1 \text{ conv}$				
(2)	14 × 14	2×2 average pool, stride 2				
Dense Block	14×14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 64$	
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$				
(3)	7×7	2×2 average pool, stride 2				
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 48 \end{bmatrix} \times 48$	
(4)	/ ^ /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\left[\begin{array}{c} 3 \times 3 \text{ conv} \end{array}\right]^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	
Classification	1 × 1	7×7 global average pool				
Layer		1000D fully-connected, softmax				

A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

The MobileNet model is based on **depthwise separable convolutions** which is a form of factorized convolutions which factorize a standard convolution into a **depthwise convolution** and a 1× 1 convolution called a **pointwise convolution**.

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Input feature map $F: D_F \times D_F \times M$

Ouput feature map $G: D_G \times D_G \times N$

Convolution kernel $K: D_K \times D_K \times M \times N$

What is the parameter and computational cost for standard convolution?

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Input feature map $F: D_F \times D_F \times M$

Ouput feature map $G: D_G \times D_G \times N$

Convolution kernel K: $D_K \times D_K \times M \times N$

What is the parameter and computational cost for standard convolution?

Parameter: $D_K \times D_K \times M \times N$

Computational Cost: $D_K \times D_K \times M \times N \times D_G \times D_G$

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

What is the parameter and computational cost for depthwise separable convolution?

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

What is the parameter and computational cost for depthwise separable convolution?

Parameter: $D_K \times D_K \times M + M \times N$

Computational Cost: $D_K \times D_K \times M \times D_G \times D_G + M$

 $\times N \times D_G \times D_G$

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

What is reduction in computational cost?

$$\frac{D_K \times D_K \times M \times D_G \times D_G + M \times N \times D_G \times D_G}{D_K \times D_K \times M \times N \times D_G \times D_G}$$

$$= \frac{1}{N} + \frac{1}{D_K \times D_K}$$

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

What is reduction in parameter size?

$$\frac{D_K \times D_K \times M + M \times N}{D_K \times D_K \times M \times N}$$

$$= \frac{1}{N} + \frac{1}{D_K \times D_K}$$

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Standard convolutional layer

Depthwise + Pointwise layers

ShuffleNet

Model Comparisons

Model	Input Resolution	Params(M)	MACs(G)	Top-1 error	Top-5 error
alexnet	224x224	61.1	0.72	43.45	20.91
vgg11	224x224	132.86	7.63	30.98	11.37
vgg13	224x224	133.05	11.34	30.07	10.75
vgg16	224x224	138.36	15.5	28.41	9.62
vgg19	224x224	143.67	19.67	27.62	9.12
vgg11_bn	224x224	132.87	7.64	29.62	10.19
vgg13_bn	224x224	133.05	11.36	28.45	9.63
vgg16_bn	224x224	138.37	15.53	26.63	8.50
vgg19_bn	224x224	143.68	19.7	25.76	8.15

Model	Input Resolution	Params(M)	MACs(G)	Top-1 error	Top-5 error
resnet18	224x224	11.69	1.82	30.24	10.92
resnet34	224x224	21.8	3.68	26.70	8.58
resnet50	224x224	25.56	4.12	23.85	7.13
resnet101	224x224	44.55	7.85	22.63	6.44
resnet152	224x224	60.19	11.58	21.69	5.94
squeezenet1_0	224x224	1.25	0.83	41.90	19.58
squeezenet1_1	224x224	1.24	0.36	41.81	19.38
densenet121	224x224	7.98	2.88	25.35	7.83
densenet169	224x224	14.15	3.42	24.00	7.00
densenet201	224x224	20.01	4.37	22.80	6.43
densenet161	224x224	28.68	7.82	22.35	6.20
inception_v3	224x224	27.16	2.85	22.55	6.44

GMACs = 2 * GFLOPs

TORCHVISION.MODELS

Model Comparisons

