

Increased Antihydrogen Production in GBAR towards a first Lamb-Shift Measurement in Antihydrogen

Laurin Koller
18. September 2024

Contents

- 1. Setup of the GBAR Experiment
- 2. Lamb Shift Setup Test using a H⁻ Beam
- 3. First H Production Measurements in 2024
 - 1. Production Rate with Voltage Pulses
 - 2. Production Rate with Clusters
 - 3. Comparing Results to 2022

1. Setup of the GBAR Experiment

Image from [Oelert, 2015]

GBAR – Gravitational Behavior of Antimatter at Rest

- 100 keV \overline{p} beam from ELENA
- Cooling in drift tube
- \overline{p} Trap to reduce beam emittance and compress beam radially
 - Beam leaves trap with 6 keV
- Beam enters cavity in reaction chamber with positronium

$$-\overline{p} + Ps \rightarrow \overline{H} + e^-$$

$$-\overline{H} + Ps \rightarrow \overline{H}^+ + e^-$$

- H
 and H
 pass through Lamb shift setup
- \overline{H}^+ gets separated and enter free fall chamber
 - Cool \overline{H}^+ with laser cooled Be⁺ to ~10 μ K
 - Strip positron from \overline{H}^+ with laser
 - $-\overline{H}$ falls 30 cm

Lamb Shift Setup

- Microwave Spectrometer generating E-field to test different frequencies
 - If 2S → 2P transition is induced, 2P state decays to ground state with emission of Lyman-α photon
- Quenching field in the Lyman-α detector induces remaining 2S → 2P transitions
- Four MCPs on the sides of the detector are used to detect the emitted Lyman-α photons
- Charged particles get deflected in the switchyard, neutral particles can be seen on the \overline{H} detector (MCP5)
 - H̄ production is determined using MCP5

2. Lamb Shift Setup Test using a H⁻ Beam

Microwave Scanner on/off Measurement

MWS Frequency	0 MHz	1060 MHz
Number of events	1169	1170
Average beam intensity	8.85×10^{6}	8.78×10^{6}
Average pulses per spill	8.70	8.38

- Images from one H⁻ spill with the MW scanner off
 - Voltage for one of the four MCPs
- Ringing in the voltage after each pulses
 - Scales with height of pulse

- Pulse height histograms for each MCP in the Lyman-α detector separately
 - Each pair of histograms is scaled using the total beam intensities

- Pulse height histogram summed over the four MCPs
 - The two histograms for the MW Scanner off and on are scaled using the total beam intensities
- 511 ± 92 more Lyman- α photons detected in the MW Scanner off events
- Rough estimate for detection efficiency: 0.0041
 - Efficiency of detector was measured around 0.16 when it was new

3. First H Production Measurements in 2024

Data taken for the 2024 H Production

- Take mixing and background measurements with identical beam steering and \overline{p} trap setup
 - For background events no positronium is in the cavity
 - 468 mixing events, 776 background events
- To get arrival window of \overline{H} take background events with the switchyard off
 - 11 such events were taken
 - Voltage is averaged over the 11 events
 - Use time window from $6.46 \mu s$ to $6.86 \mu s$
- Image of MCP5 are taken for each spill with a phosphor screen behind the MCP and a CCD camera
 - Images are generated over 1 μs

Antihydrogen Production from Voltage Pulses in MCP5

- Voltage of MCP5 for one \overline{p} spill
 - The vertical lines show the \overline{p} arrival on MCP5
 - The pulse is a \overline{H} candidate

• All pulses found in the voltage of MCP5 around the \overline{p} arrival window for the mixing (blue) and background (orange) events

Works cited:

- Oelert, W. (2015). "The ELENA project at CERN". https://doi.org/10.48550/arXiv.1501.05728
- Tanaka, T. (2024). "Design of a microwave spectrometer for high-precision Lamb shift spectroscopy of antihydrogen atoms". https://doi.org/10.1007/s10751-024-01876-3
- Blumer, P. (2024). "Production of a 6keV antihydrogen beam in the GBAR experiment". PSAS 2024.
 https://indi.to/QpJ8j