

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ КАФЕДРА «Информатика и системы управления» (ИУ) «Информационная безопасность» (ИУ8)

Моделирование систем

Домашнее задание №1 Вариант 4

Преподаватель: Глинская Е. В.

Студент: Велинецкий А.В.

Группа: ИУ8-52

Задача

Однопроцессорный компьютер решает задачи. Интенсивность потока задач - 1 задача в минуту (время между задачами распределено по экспоненциальному закону). Среднее время решения задачи 1 минута (распределено по экспоненциальному закону). В случае если, процессор занят, то задача становится в очередь (максимальная длина очереди 5 задач), если в очереди уже находится 5 задач, то задача получает отказ в решении.

Определить: среднею длину очереди, среднее время пребывания задачи в очереди, степень загрузки процессора, вероятность решения задачи. Провести имитационное моделирование системы работы системы в течение 10 часов, 100 часов, 1000 часов.

Расчет на аналитических моделях

СМО является одноканальная СМО с ограниченной очередью, все потоки простейшие.

Состояния:

s0 – процессор свободен, очередь пуста;

s1 – процессор занят, очередь пуста;

s2 – процессор занят, в очереди одно требование;

. . .

s6 – процессор занят, в очереди 5 требований. (n = 6)

Интенсивность входного потока задач:

$$\lambda = \frac{1}{1_{MUH}} = 1 \frac{3a\partial a^{4}}{MUH}$$

Интенсивность потока обслуживания задач:

$$\mu = \frac{1}{1_{MUH}} = 1 \frac{3a\partial a4}{MUH}$$

Приведенная интенсивность:

$$\rho=\frac{\lambda}{\mu}=1$$
 Т. к. $\rho=1$, то $p_0=p_1=\cdots=p_n=\frac{1}{n+1};$

При
$$n = 6$$
, $p_0 = 1/7$

Степень загрузки процессора (вероятность того, что процессор занят):

$$K_{\text{3arp}} = 1 - p_0 = \frac{6}{7} = 0.86$$

Относительная пропускная способность – вероятность решения задачи:

$$U = 1 - p_{\text{отк}} = 1 - p_0 \rho^n = 1 - \frac{1}{7} = \frac{6}{7} = 0.86$$

Абсолютная пропускная способность – среднее число задач, обслуживаемых в единицу времени:

$$A = \lambda U = \frac{6}{7}$$

Среднее число задач в системе:

$$\overline{Q}_{\text{CMCT}} = p_0 \sum_{k=1}^{n} k \rho^k = p_0 \sum_{k=1}^{6} k \rho^k = \frac{1}{7} (1 + 2 + \dots + 6) = 3$$

Средняя длина очереди:

$$\overline{Q}_{\text{оч}} = \overline{Q}_{\text{сист}} - K_{\text{загр}} = 3 - \frac{6}{7} = 2\frac{1}{7} = 2.14$$

Среднее время пребывания задачи в очереди:

$$\overline{T}_{\text{O4}} = \frac{\overline{Q}_{\text{O4}}}{A} = \frac{15}{7} * \frac{7}{6} = \frac{15}{6} = 2.5$$

Имитационное моделирование на языке GPSS

Текст программы на GPSS с комментариями представлен в листинге 1.

Листинг 1

Текст программы на GPSS с комментариями

```
Generate (Exponential(1,0,1)); Генерируем транзакт-задачу
Met test L Q1,5,Otkaz; Проверка длины очереди, если не проходит,
то уходим на метку Otkaz
queue 1; Задача становится в очередь
seize 1; Задача занимает процессор
depart 1; Задача освобождает очередь
advance (Exponential(2,0,1)); Моделируем время обслуживания
release 1; Задача освобождает процессор
terminate ; Транзакт уничножается
Otkaz terminate ; Транзакт уничножается
generate 60000; Генерируем транзакт для задания времени
моделирования
savevalue P_Obs,(1 - N$Otkaz/N$Met);сохраняем значение
вероятности решения задачи
```

terminate	1;	Уменьшаем счетчик,	определяющий	число	прогонов
start	1;	Прогон модели			

Результаты моделирования представлены в листинге 2.

Листинг 2.

Результаты моделирования на GPSS

	Tuesday.	November 16.	2021 18:07:	18		
	_	110 1011201 10,	2021 20.07.			
STA	RT TIME		BLOCKS FA			
	0.000	60000.000	12	1	0	
	NAME		VALUE			
MET			2.000			
OTKA			9.000			
P_OB	S	10	000.000			
LABEL	LOC BLO	СК ТҮРЕ	ENTRY COUNT	CURRENT COU	JT RETRY	
		ERATE	59808	0	0	
MET	2 TES		59808	0	0	
	3 QUE	UE	51553	0	0	
	4 SEI	ZE	51553	0	0	
	5 DEF	ART	51553	0	0	
	6 ADV	ANCE	51553	1	0	
	7 REI	EASE	51552	0	0	
		MINATE	51552	0	0	
OTKAZ		MINATE	8255	0	0	
		ERATE	1	0	0	
		EVALUE	1	0	0	
	12 TEF	MINATE	1	0	0	
FACILITY	ENTRIES UI	II. AVE. I	IME AVAIL. O	WNER PEND IN	NTER RETRY DEL	AY
1	51553 (0			9809 0	0 0	0
	K_{3ap}					
QUEUE			(0) AVE CONT		AVE.(-0) RET	
1	5 0	51553 858	2.141	2.492	2.990 0	
		,,	Γ	_	$\overline{\overline{T}}$	
SAVEVALUE P OBS	RETF 0	$\begin{array}{c} Y & YAH \\ 0.8 \end{array}$	`	Q_{ouep}	\overline{T}_{ovep}	

На листинге отмечены четыре параметра СМО, которые требуется рассчитать в задании.

Значения, требуемых параметров, полученные в результате имитационного моделирования в течении различных интервалов времени, а также те же результаты, полученные аналитически представлены в табл. 1.

Таблица 1 Результаты, полученные при аналитическом расчете и имитационном моделировании

Параметры	Аналитически й расчет	Время моделирования			
	и расчет	10 час.	100 час.	1000	
				час.	
$\overline{Q}_{o \prime e p}$	2.14	2.08	2.24	2.14	
$\overline{T}_{o\textit{чер}}$ (в мин.)	2.5	2.48	2.65	2.49	
K_{3arp}	0.86	0.85	0.87	0.86	
U	0.86	0.87	0.85	0.86	

Вывод

Таким образом, при анализе результатов имитационного моделирования можно сделать вывод о том, что с увеличением длительности интервала моделирования, полученные результаты становятся все более близкими с результатами, полученными при аналитическом расчете.