(B) $r_1 \le r_3 \le r_2$.

multiple choice:

(C) $r_3 \le r_1 \le r_2$.

- (D) $r_2 \le r_1 \le r_3$.
- 2. (25 points, 5 points each) Fill in the blanks.

(共 25 分, 每小题 5 分) 填空题.

- (1) Let $u, v \in \mathbb{R}^n$ with ||u|| = 2, ||v|| = 4 and $u^T v = 6$. Then ||3u v|| = 4
- (2) Let A be an $n \times n$ matrix with $A^2 = -A$ and let I be the $n \times n$ identity matrix. Then $(A-I)^{-1} = -\frac{1}{2}A - I$ 设 A 为一个 n 阶矩阵, 且 $A^2 = -A$, I 表示 n 阶单位矩阵. 则 $(A - I)^{-1} =$ _
- (3) Let $A = \begin{bmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \end{bmatrix}$ with rank(A) = 1. Then a =______.

设
$$A = \begin{bmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \\ a & a & a & 1 \end{bmatrix}$$
且 $\operatorname{rank}(A) = 1$. 则 $a = \underline{\hspace{1cm}}$.

- (4) Let α be a nonzero 3-dimensional real column vector in \mathbb{R}^3 with $\alpha^T \alpha \neq 1$, and I_3 be the 3×3 identity matrix. Then $\operatorname{rank}(I_3 - \alpha \alpha^T) = \underline{}$. 设 $\alpha \in \mathbb{R}^3$ 为一个非零列向量且 $\alpha^T \alpha \neq 1$, I_3 为 3×3 单位矩阵. 则 $\mathrm{rank}(I_3 - \alpha \alpha^T) =$
- (5) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$. Then the least squares solution to Ax = b is $\hat{x} =$

d = 0,1,-3.

- (a) By applying row operations, determine for which values of α is the matrix A_{α} invertible.
- (b) Find the values of α such that the nullspace of A_{α} , $N(A_{\alpha})$, has dimension 1?

0,1,-3

(c) Let $\alpha = 2$. Write down the matrix inverse of A_{α} .

设 α 为实数, A_{α} 为

we matrix inverse of
$$A_{\alpha}$$
.
$$A_{\alpha} = \begin{bmatrix} 1 & -\alpha & 1 + \alpha \\ \alpha & \alpha^2 & \alpha \\ -\alpha & 1 & -2 \end{bmatrix} \qquad A_{\alpha} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2\alpha} & -\frac{4}{5} \\ 0 & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{2} & \frac{3}{2\alpha} & \frac{2}{5} \end{bmatrix}$$

- (a) 对矩阵 A_{α} 作初等行变换, α 取何值时, A_{α} 为可逆矩阵?
- (b) α 取何值时, 矩阵 A_{α} 的零空间的维数等于 1?
- (c) 设 $\alpha = 2$. 求矩阵 A_{α} 的逆矩阵.
- 4. (10 points) Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 9 & -3 & 1 \\ -1 & 2 & 2 \end{bmatrix}. \qquad A = L \cup$$

Find an LU factorization of A.

设

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 9 & -3 & 1 \\ -1 & 2 & 2 \end{array} \right].$$

A = LU $= \begin{bmatrix} 1 & 0 & 0 \\ 9 & 1 & 0 \\ -1 & -\frac{1}{4} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -12 & -8 \\ 0 & 0 & 1 \end{bmatrix}$

求 A 的一个 LU 分解.

5. (10 points) Consider the following system of linear equations:

(I):
$$\begin{cases} x_1 + x_2 = 0, \\ x_2 - x_4 = 0. \end{cases}$$

Note that the above system (I) has four variables x_1, x_2, x_3, x_4 . Suppose another homogeneous system of linear equations (II) has special solutions

$$u = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, v = \begin{bmatrix} -1 \\ 2 \\ 2 \\ 1 \end{bmatrix}. \quad k = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}.$$

Find the common nonzero solutions of systems (I) and (II).

6. (8 points) Let
$$\mathbb{R}^{2\times 2}$$
 be the vector space consisting of all 2×2 real matrices. Let $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$E = \left\{ E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

- (a) Show that E is a basis for $\mathbb{R}^{2\times 2}$. Linear independence (b) Show that $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$, $X \mapsto XA$ is a linear transformation. T(X + Y) = T(X) + T(Y), T(X + Y) = T(X) + T(Y).
- (c) Find the matrix representation of T with respect to the ordered basis $E_{11}, E_{12}, E_{21}, E_{22}$

设
$$\mathbb{R}^{2\times 2}$$
 为所有 2×2 实矩阵构成的向量空间。设 $A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$, $M=\begin{bmatrix}a&c\\b&d&o\\c&d\end{bmatrix}$, $E=\left\{E_{11}=\begin{bmatrix}1&0\\0&0\end{bmatrix},\ E_{12}=\begin{bmatrix}0&1\\0&0\end{bmatrix},\ E_{21}=\begin{bmatrix}0&0\\1&0\end{bmatrix},\ E_{22}=\begin{bmatrix}0&0\\0&1\end{bmatrix}\right\}$.

- (a) 证明: E 为 ℝ^{2×2} 的一组基.
- (b) 证明: $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, X \mapsto XA$ 为线性变换,
- (c) 求 T 在有序基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵表示.
- 7. (6 points) Let A, B be two $m \times n$ matrices. Prove

(a) rank
$$(A+B) \le \operatorname{rank} A + \operatorname{rank} B$$
? (a) Prost columns of $A: \alpha, \alpha_2, \cdots, \alpha_r$

(b)
$$\operatorname{rank}(A+B) \ge \operatorname{rank} A - \operatorname{rank} B$$
.

(b) rank $(A + B) > \operatorname{rank} A - \operatorname{rank} B$.

(b)
$$\operatorname{rank}(A+B) \ge \operatorname{rank}A - \operatorname{rank}B$$
. Privot columns of B: b, b2, ..., bs

设
$$A, B$$
 都为 $m \times n$ 矩阵. 证明:

(a)
$$\operatorname{rank}(A+B) \leq \operatorname{rank}A + \operatorname{rank}B$$
.

(a)
$$\operatorname{rank}(A+B) \leq \operatorname{rank}A + \operatorname{rank}B$$
.
(b) $\operatorname{rank}(A+B) \geq \operatorname{rank}A - \operatorname{rank}B$.

$$V = \operatorname{Span}(\alpha_1, \dots, \alpha_1, b_1, \dots, b_n) \cdot \operatorname{dim} V \leq (+s).$$

$$\operatorname{Span}(\alpha_1, \dots, \alpha_n, b_1, \dots, b_n) \geq C(A+B)$$

8. (6 points) Let A be an
$$m \times n$$
 matrix with rank r. Show that there exist an $m \times r$ matrix $B = \dim C(B+g)$ and an $r \times n$ matrix C such that $A = BC$ and both B and C have rank r.

设 A 为一个秩为 r 的 $m \times n$ 矩阵. 证明: 存在一个 $m \times r$ 矩阵 B 和一个 $r \times n$ 矩阵 C, 使得 \Rightarrow rank(A+B)

$$A = BC$$
, 其中 B , C 的秩都为 r .

$$n \times r$$
 起降 $B \times n - r \times n$ 矩阵 C , 使得 \Rightarrow $rank(A+B)$

8.
$$A = P_1 \begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix} Q_1$$
 P_1, Q_1 P_1, Q_2 $P_1 = P_2 \begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix} Q_1$ $P_2 = P_1 \begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix} Q_1$ $P_3 = P_4 = P_2 \begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix} Q_1$ $P_4 = P_4 = P_4$