Arbres recouvrants

Irena.Rusu@univ-nantes.fr

LINA, bureau 123, 02.51.12.58.16

Sommaire

- Graphes et sous-graphes
- Arbres recouvrants
- Arbres recouvrants de poids minimum
 - Méthode de Prim
 - Méthode de Kruskal

Sommaire

- Graphes et sous-graphes
- Arbres recouvrants
- Arbres recouvrants de poids minimum
 - Méthode de Prim
 - Méthode de Kruskal

Graphes

Intuitivement

Structure représentant des objets (les sommets) et des relations deux à deux, orientées ou non, entre les objets (arcs, arêtes)

Formellement

Graphe (orienté) G = (S, A)

S ensemble (fini) de sommets

 $A \subseteq S \times S$ ensemble d'arcs, *i.e.*, relation sur S

Graphe non orienté G = (S, A)

 $A \subseteq S \times S \text{ t.q. } (x,y) \text{ et } (y,x) \text{ sont identiques par convention}$ ensemble d'arêtes, relation symétrique

Graphes

Graphe (orienté) G = (S, A)

S ensemble (fini) des sommets $A \subseteq S \times S$ ensemble des arcs, *i.e.*, relation sur S

$$S = \{ 1, 2, 3, 4, 5 \}$$

 $A = \{ (1, 2), (1, 3), (2, 3), (3, 2), (4, 4), (4, 5) \}$

Graphe non orienté G = (S, A)

 $A \subseteq S \times S$ ensemble des arêtes,

relation symétrique

$$S = \{ 1, 2, 3, 4 \}$$

 $A = \{ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\} \}$

Exemples

Graphe acyclique d'une expression (DAG)

Sous-graphes

G=(S,A) graphe non-orienté.

Un sous-graphe de G est un graphe G' dont tous les éléments (sommets, arêtes) sont inclus dans les éléments de G.

- → si (x,y) est une arête de G', alors x, y sont tous les deux des sommets de G'
- \rightarrow si (x,y) est une arête de G', alors x, y sont des sommets de G et (x,y) est une arête de G.

Représentations des graphes en machine

$$G = (S, A)$$
 $S = \{1, 2, ..., n\}$

Matrice d'adjacence

utilisation d'opérations matricielles temps de traitement courant : quadratique

Listes de successeurs

réduit la taille si $|A| \ll |S|^2$ temps de traitement courant : O(|S| + |A|)

Matrices d'adjacence

M[i, j] = 1 ssi j adjacent à i

Valuation : $v : A \longrightarrow X$

$$S = \{ 1, 2, 3 \}$$

 $A = \{ (1,1), (1, 2), (1, 3), (2, 1), (3, 2) \}$

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$V = \left(\begin{array}{ccc} 2 & 8 & 5 \\ 3 & 0 & 0 \\ 0 & 2 & 0 \end{array}\right)$$

Listes de successeurs

Listes des A(s)

Valuation : $v : A \longrightarrow X$

Sommaire

- Graphes et sous-graphes
- Arbres recouvrants
- Arbres recouvrants de poids minimum
 - Méthode de Prim
 - Méthode de Kruskal

Arbres

- Un arbre T est un graphe :
 - S'il est vu comme une hiérarchie, c'est un graphe orienté
 - S'il n'est pas vu comme une hiérarchie, c'est un graphe non-orienté
- Dans ce chapitre, un arbre T n'est pas vu comme une hiérarchie
 → graphe non-orienté T.
- Ce qui le caractérise par rapport à un graphe arbitraire
 - Il est connecté ou connexe (toute paire de sommets est reliée par un « chemin » dans T)
 - Il n'a pas de cycles (il n'y a pas de chemin qui revienne à sa destination)

Arbres recouvrants

Arbre recouvrant de G=(S,A):

un arbre T=(S, A') tel que $A' \subseteq A$

(autrement dit, un sous-graphe de G qui a les mêmes sommets et qui est un arbre)

Proposition.

Un graphe non-orienté admet un arbre recouvrant si et seulement si il est connexe.

Engendrer tous les arbres recouvrants d'un graphe

G=(S,A) un graphe non-orienté

$$S=\{1, 2, ..., n\}, |A|=m$$

A donné par un tableau TA de taille 2xm:

- la i-ème arête de G est {TA[1,i],TA[2,i]} avec TA[1,i]<TA[2,i]</p>
- dans TA, les arêtes sont ordonnées par TA[1,i] croissant; on appelle v = TA[1,1] et d(v) le nombre d'arêtes de TA contenant v.

Prem tableau, i entier tels que :

Dans l'arbre que l'on construit à un moment donné, les *i-1* premières arêtes sont

Prem[1]<Prem[2]<...<Prem[i-1] (i=1, 2, ..., n)

Algorithme

```
Procédure ArbresRecouvrants (i entier);
{engendre tous les arbres recouvrants de G dont les i-1 premières arêtes sont les
               éléments d'indices Prem[1], ..., Prem[i-1] du tableau TA}
 si i=n alors fin
 sinon si i=1 alors pour j\leftarrow 1 à d(v) faire {
                   Prem[i]←j;
                   ArbresRecouvrants(i+1)
       sinon pour j\leftarrow Prem[i-1]+1 à m faire
                    si le sous-graphe de G défini par
                      Prem[1], ..., Prem[i-1], j est sans cycle simple
                    alors {
                           Prem[i]←j;
                           ArbresRecouvrants(i+1)
                                                                               15
                                                               15
```

Exemple

	1	2	3	4	5	6	7
TA:	1	1	1	2	2	3	5
	5	3	4	3	4	5	6

Exemple

		1	2	3	4	5	
i=1	Prem	1					

Sommaire

- Graphes et sous-graphes
- Arbres recouvrants
- Arbres recouvrants de poids minimum
 - Méthode de Prim
 - Méthode de Kruskal

Arbres recouvrants de poids minimum

```
Calcul d'un arbre de poids minimum recouvrant un graphe connexe
```

```
Applications conception de réseaux (téléphonique, électrique, d'intercommunication,...) et étude de leur fonctionnement
```

```
Algorithmes
```

```
de Prim O(n^2) (adapté aux matrices d'adjacence) de Kruskal O(m \log m) (adapté aux listes de successeurs et graphes contenant peu d'arêtes)
```

Le problème

Graphe valué G = (S, A, v) avec valuation $v : A \rightarrow R$ non-orienté et connexe

Poids (ou coût) d'un sous-graphe G' = (S', A'): $poids(G') = \sum (v(p,q) \mid (p,q) \in A')$

Problème : déterminer un arbre recouvrant de poids minimum pour G poids = 14

Propriétés

Graphe non-orienté et connexe G = (S, A)T = (S, B) arbre recouvrant pour G

Propriétés

- *T* possède *n*-1 arêtes
- si $\{p, q\} \in A$ -B alors $H = (S, B + \{u,v\})$ possède un cycle

$$|B| = 5$$

Sommaire

- Généralités sur les arbres
- Arbres recouvrants
- Arbres recouvrants de poids minimum
 - Méthode de Prim
 - Méthode de Kruskal

Algorithme de Prim : Qui, quoi, pourquoi ?

Algorithme initialement proposé par
 Vojtech Jarnik (1897-1970) en 1930.

About a certain minimal problem, Práce Moravské
Přírodovědecké Společnosti, 6, 1930, pp. 57–63. (in Czech).

Retrouvé de manière indépendante par
 Robert Prim (1921 -) en 1957:

Shortest connexion networks and some generalizations, Bell System Technical Journal, 36: 1389-1401, 1957.

Retrouvé indépendamment en 1959 par
 Edsker Dikjstra (1930-2002)

Méthode de Prim (1957) – algorithme glouton

Calcul d'un arbre recouvrant de poids minimum :

- Commencer par un sommet
- o Tant que le graphe n'est pas entièrement couvert faire
 - ajouter à l'arbre une arête de poids minimum
 - ajouter l'autre extrémité de cette arête

Exemple (suite)

Algorithme de Prim

```
Algorithme PRIM( graphe (\{1, 2, ..., n\}, A, v) ) {
T \leftarrow \{1\};
B \leftarrow \emptyset;
tant que |T| < n faire {
<math>\{p, q\} \leftarrow arête de poids minimal telle que p \in T et q \notin T;
T \leftarrow T + \{q\};
B \leftarrow B + \{p, q\};
}
retour (T, B);
```

Temps d'exécution : $O(n^2)$ au moyen de deux tables indexées par les sommets

Implémentation

Tables proche et poids pour trouver l'arête $\{p, q\}$

```
q \notin T proche[q] = p \in T

ssi \ v(p, q) = min \{ v(p', q) \mid p' \in T \}

q \notin T poids[q] = v(proche[q], q)

q \in T poids[q] = +\infty
```


	a	b	C	d	е	f
proche		a	a	a	a	a
poids	8	1	5	3	5	5

Une étape

ajout de b et {a, b}

Temps O(1+|A(b)|)

Sommaire - Partie Arbres

- Généralités sur les arbres
- Arbres recouvrants
- Arbres recouvrants de poids minimum
 - Méthode de Prim
 - Méthode de Kruskal

Algorithme de Kruskal – Historique

- Joseph Kruskal (1928-2010)
- Collègue de R. Prim aux Laboratoires Bell.

Publication en 1956 :

On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. In: *Proceedings of the American Mathematical Society*, Vol 7, No. 1 (Feb, 1956), pp. 48–50

Méthode de Kruskal (1956)

Calcul d'un arbre recouvrant de poids minimum :

- Ocommencer par n sous-arbres (= sommets isolés)
- o Tant qu'il reste au moins deux arbres faire
 - réunir deux sous-arbres disjoints par une arête de poids minimal

Exemple (suite)

Algorithme de Kruskal

```
Algorithme KRUSKAL( graphe ({1, 2, ..., n}, A, v) ) {
         liste ← arêtes de A par ordre croissant des poids;
        B \leftarrow \emptyset;
        tant que |B| < n-1 faire {
                 soit {p, q} le premier élément de liste;
                 liste \leftarrow liste - \{p, q\};
                 si le graphe (\{1, 2, ..., n\}, B \cup \{p, q\}) est sans cycles
                   alors
                          B \leftarrow B \cup \{p, q\}
        retour ({1, 2, ..., n}, B);
 Temps d'exécution : O(m \log m) utilisant des méthodes de type
```

CLASSE/UNION

Et après ?

- L'algorithmique des graphes en général et des arbres en particulier va beaucoup plus loin.
- Les problèmes à traiter sont de moins en moins évidents ...
- ... et ont de plus en plus besoin
 - d'expérience
 - de réflexion
 - et même d'acharnement

pour les résoudre, ainsi que de preuves pour convaincre.

■ Si ça vous dit d'aller plus loin ... master ORO.