Planche 1:

On considère
$$M = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix}$$
 et $X = \begin{pmatrix} x \\ y \end{pmatrix}$.

On pose $\varphi_M(X) = X^{\top} M X$ et $f(x, y) = \varphi_M(X)$.

- a) Tracer avec Python la surface $f: [-2,2] \times [-2,2] \to \mathbb{R}$.
 - **b)** Trouver le ou les extremum(s) locaux de f s'il(s) existe(nt)?
 - \mathbf{c}) Montrer que f est surjective.
- 2) a) Montrer que $M \in \mathcal{M}_n(\mathbb{R})$ s'écrit comme la somme de deux matrices symétrique et antisymétrique. L'écriture est-elle unique ?
 - b) Écrire une fonction Python qui renvoie la partie symétrique de M.

3) Soit
$$M = \begin{pmatrix} 291 & 332 & 413 \\ 332 & 291 & 508 \\ 291 & 413 & 332 \end{pmatrix}$$

- a) Appliquer la fonction précédente à M (on notera S la partie symétrique de M).
- **b)** Conjecturer quelque chose sur $\varphi_M(X)$ et $\varphi_S(X)$.
- 4) Montrer que $\varphi_M = \varphi_S$ pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$.
- **5)** On suppose M nilpotente.
 - a) Montrer que $\operatorname{tr}(M) = \operatorname{tr}(S)$.
 - **b)** Trouver spectre(M).
 - c) Trouver $\operatorname{Im}(\varphi_M)$.

Planche 2:

Soit $p \in]0,1[,(X_n)_{n\in\mathbb{N}^*}$ des v.a. indépendantes suivant une loi de probabilité définie de la façon suivante:

$$P(X_n = 1) = p \text{ et } P(X_n = 2) = 1 - p$$

 $P(X_n=1)=p \text{ et } P(X_n=2)=1-p$ On pose $S_n=\sum_{i=1}^n X_i$ et $Y_k=\inf\{n\in\mathbb{N}^*,\ S_n\geqslant k\}.$ On admet qu'il s'agit d'une v.a.

- 1) Justifier l'existence de Y_k . Implanter une fonction simulant Y_k en fonction de k et de p.
- 2) Définir une fonction permettant de calculer une approximation m_k de $E(Y_k)$, pour un p donné. Tracer m_k en fonction de k, pour $p \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$.
- **3)** Montrer que, pour tout $k \ge 3$ et $n \ge 2$:

$$P(Y_k = n) = pP(Y_{k-1} = n - 1) + (1 - p)P(Y_{k-2} = n - 1)$$

- 4) En déduire que $E(Y_k) = pE(Y_{k-1}) + (1-p)E(Y_{k-2}) + 1$.
- 5) Montrer qu'il existe $c_p \in \mathbb{R}$ tel que $E(Y_p) \sim c_p k$.

Planche 3:

On définit une suite $(A_n)_{n\geqslant 0}$ de polynômes par les conditions :

$$A_0 = 1, \forall n \in \mathbb{N}, A'_{n+1} = A_n \text{ et } \forall n \in \mathbb{N}, \int_0^1 A_{n+1}(x) dx = 0.$$

- 1) Déterminer A_1, A_2, A_3 .
- 2) Écrire un code qui calcule A_n (utiliser numpy.polynomial).
- 3) Comparer, pour plusieurs valeurs de n, $A_n(0)$ et $A_n(1)$; $A_n(X)$ et $A_n(1-X)$. Émettre des conjectures.
- 4) Tracer sur l'intervalle] 1,1[les courbes des fonctions $x \mapsto \frac{x}{e^x 1}$ et $x \mapsto \sum_{k=0}^{10} A_k(0)x^k$. Émettre des conjectures.
- 5) Démontrer les conjectures émises.

Planche 4:

Soit $A_n = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ telle que, pour tout $i, a_{i,i} = 0$ et, pour tout $i \neq j, a_{i,j} = j$.

- 1) Écrire une fonction M(n) renvoyant A_n .
- 2) Écrire une fonction renvoyant les valeurs propres de A_n . Afficher A_n et ses valeurs propres pour n variant de 2 à 10. En déduire une conjecture sur A_n .
- 3) Montrer que les valeurs propres de A_n vérifient l'équation $\sum_{k=1}^n \frac{k}{x+k} = 1$.
- 4) En déduire que A_n est diagonalisable.

Planche 5:

Soit n un entier naturel. On considère la matrice $A_{n+1} \in \mathcal{M}_{n+1}(\mathbb{R})$ telle que :

pour tout
$$j \in [\![2,n+1]\!], a_{j-1,j}=j-1$$
 et pour tout $j \in [\![1,n]\!], a_{j+1,j}=n+1-j$

et dont tous les autres coefficients sont nuls.

- 1) Écrire une fonction Python qui prend un entier n en argument et renvoie A_{n+1} .
- 2) Déterminer avec Python les valeurs propres de A_{n+1} . Que peut-on conjecturer?
- 3) Soit u l'endomorphisme de $\mathbb{R}_n[X]$ canoniquement associé à la matrice A_{n+1} . Montrer qu'il existe un polynôme Q ne dépendant pas de n tel que, pour tout $P \in \mathbb{R}_n[X]$, u(P) = QP' + nXP.
- 4) En déduire les éléments propres de u.
- **5)** La matrice A_{n+1} est-elle diagonalisable ?

Planche 6:

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose :

$$P_n(x) = 1 + x + x^2 + x^3 + \dots + x^{2n} = \sum_{k=0}^{2n} x^k$$

- 1) À l'aide de l'ordinateur, tracer les courbes des fonctions P_n pour $-2 \le x \le 2$ et $1 \le n \le 10$. On utilisera la commande plt.axis([-2, 0, 0, 5]) afin de cadrer la fenêtre graphique. Que remarquez-vous sur les lieux où P_n atteint un minimum?
- 2) Pour $x \neq 1$ et $n \in \mathbb{N}^*$, montrer que:

$$P'_n(x) = \frac{u_n(x)}{(x-1)^2}$$

où u_n est une fonction polynomiale à déterminer.

- 3) Pour $n \in \mathbb{N}^*$, donner l'allure du tableau de variations de la fonction P_n . Montrer en particulier que P_n possède un minimum unique sur \mathbb{R} . Dans la suite, on notera a_n le réel où P_n atteint son minimum.
- 4) Créer une fonction informatique A qui prend en argument un entier $n \in \mathbb{N}^*$ et renvoie une valeur approchée de a_n .
- 5) Représenter graphiquement a_n en fonction de n pour $1 \le n \le 500$. Que peut-on conjecturer sur la limite de cette suite ?
- 6) Déterminer un équivalent simple de la quantité $\ln(2n+1-2na_n)$ puis, en exploitant la relation $P'_n(a_n) = 0$, en déduire la limite de la suite $(a_n)_{n \in \mathbb{N}^*}$.
- 7) On pose maintenant $a_n = -1 + h_n$. Déterminer un équivalent de h_n lorsque $n \to +\infty$.
- 8) On pose $w_n = h_n \frac{\ln n}{2n} \frac{\ln 2}{n}$. À l'aide d'une représentation graphique, conjecturer la nature de la série $\sum w_n$.
- 9) Démontrer le résultat conjecturé à la question précédente.

Planche 7:

Soient $S_1: x \mapsto \sum_{n=1}^{+\infty} \ln(1+x^{2n}), S_2: x \mapsto \sum_{n=1}^{+\infty} \ln(1+x^{2n-1}) \text{ et } S_3: x \mapsto \sum_{n=1}^{+\infty} \ln(1-x^{2n-1}).$

- 1) Déterminer les domaines de définition de S_1 , S_2 , S_3 .
- 2) Tracer les graphes de sommes partielles pour diverses valeurs de n.
- 3) Tracer les graphes de sommes partielles de $S_1 + S_2 + S_3$. Conjecture ?
- 4) Montrer que S_1, S_2, S_3 sont de classe \mathscr{C}^1 .
- 5) Montrer la conjecture.

Planche 8:

$$C_1 \mid C_2 \mid C_3 \mid C_4$$

On étudie la position au cours du temps d'un pion sur un jeu de 4 cases dont la règle est la suivante : Au temps n = 0, le pion est en C_1 , et pour un temps n quelconque,

- si le pion est en C_i avec $i \neq 1$, il passe en C_{i-1} au temps n+1;
- si le pion est en C_1 , il passe en C_1 , C_2 , C_3 ou C_4 de façon équiprobable.
- 1) Écrire une fonction prenant en paramètre n et renvoyant toutes les positions du pion jusqu'au temps n.
- 2) Tracer les positions successives en fonctions du temps pour n = 10, n = 50, n = 100. Formuler une conjecture.
- 3) On note X_n la v.a. donnant le numéro de la case où se trouve le pion à l'instant n. On pose

$$U_n = \begin{pmatrix} P(X_n = 1) \\ P(X_n = 2) \\ P(X_n = 3) \\ P(X_n = 4) \end{pmatrix}.$$

- a) Déterminer A telle que $U_{n+1} = AU_n$.
- b) La matrice A est-elle diagonalisable?
- c) Que peut-on en déduire pour la convergence de $(U_n)_n$? (En cas de convergence, donner la limite.)
- 4) Pour $i \in [1, 4]$ et $n \in \mathbb{N}$, on note $Y_n(i)$ la v.a. du nombre de fois où le pion est allé sur la case i au cours des (n+1) premières étapes.
 - a) Écrire une fonction prenant en paramètre n, et qui renvoie $(Y_n(1), \ldots, Y_n(4))$.
 - b) La tester 100 fois pour n = 100.
 - c) Qu'en conclure pour $E(Y_{100}(i))$?

Planche 9:

Soit $S = \{(u_n)_{n \in \mathbb{N}}, \forall n \in \mathbb{N}^*, u_{n+1} = \frac{u_n^2}{n+1}\}$. On désigne par $u_n(x)$ le n-ième terme de la suite de S telle que $u_0 = x$.

- 1) Écrire une fonction Suite(n, x) qui renvoie $u_n(x)$. Tester la fonction pour quelques valeurs. Tracer les premiers termes de la suite pour différentes valeurs de x. Commenter.
- 2) Tester pour n = 31 et x = 1,6616, pour n = 17 et x = 1,6617. Commenter.
- 3) Montrer l'équivalence des trois assertions suivantes :
 - (i) $\exists n \in \mathbb{N}, u_{n+1} \leqslant u_n$
 - (ii) $\exists n \in \mathbb{N}^*, u_n < 1$
 - (iii) (u_n) tend vers 0.
- 4) Montrer que $\exists N \in \mathbb{N}, u_N \geqslant N+2 \Rightarrow \forall n \geqslant N, u_n \geqslant n+2$.
- 5) Étudier les cas x=1 et x=2. On pose $E_0=\{x,\ u_n(x)\to 0\}$ et $E_\infty=\{x,\ u_n(x)\to +\infty\}$. Montrer que E_0 et E_∞ sont deux intervalles tels que $\mathbb{R}_+^*=E_0\cup E_\infty$.

Planche 10:

On pose
$$J_n = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \\ 1 & 0 & \dots & \dots & 0 \end{pmatrix}$$
 et $M_n = I_n + J_n$

- 1) A l'aide de Python déterminer
 - a) Les valeurs propres de M_3, J_3, M_4, J_4 puis conjecturer la diagonalisabilité.
 - **b)** Le rang de M_3, M_4, M_5, M_6 .
- 2) Calculer $(J_n)^n$ et en déduire le caractère diagonalisable de J_n et de M_n sur \mathbb{C} .
- 3) Calculer $rg(M_n)$ en fonction de n.
- 4) Montrer que la suite $((\frac{1}{2}M_n)^k)_{k\in\mathbb{N}}$ converge.
- 5) On définit les points A_1, \ldots, A_n , et P_0 le polygone dont les sommets sont ces points. On définit pour $k \in \mathbb{N}$ le polygone P_{k+1} comme le polygone dont les sommets sont les milieux des côtés du polygone P_k .

Pour tout i tel que $1 \leq i \leq n$ et tout $k \in \mathbb{N}$ on définit z_i^k l'affixe du sommet i du polygone P_k , et

$$X_k = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$
 le vecteur associé.

- a) Montrer que l'on peut exprimer X_k en fonction de X_0 et de M_n
- **b)** Étudier la convergence de la suite $(X_k)_{k\in\mathbb{N}}$.

Planche 11:

Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ vérifie la propriété \mathcal{H}_n si ses coefficients appartiennent tous à $\{-1,1\}$ et si les colonnes de A forment une famille orthogonale.

- 1) À l'aide de l'ordinateur, dénombrer les matrices vérifiant \mathcal{H}_n .

 On pourra construire toutes les matrices à coefficients dans $\{-1,1\}$ en remarquant qu'à chacune de ces matrices on peut associer un unique entier de $[0,2^{n^2-1}]$ écrit en base 2. On pourra aussi utiliser la fonction reshape de la bibliothèque numpy.
- 2) Soit $A \in \mathcal{M}_n(\mathbb{R})$ dont les coefficients appartiennent tous à $\{-1,1\}$. Montrer que A vérifie \mathcal{H}_n si, et seulement si, $\frac{1}{\sqrt{n}}A$ est orthogonale.
- 3) Décrire les transformations du plan associées aux matrices vérifiant \mathcal{H}_2 .
- 4) Soit $A \in \mathscr{M}_n(\mathbb{R})$ vérifiant \mathscr{H}_n . Montrer que A^{\top} vérifie \mathscr{H}_n .
- 5) Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant \mathcal{H}_n . Montrer que la matrice déduite de A en changeant tous les signes sur une ligne ou sur une colonne vérifie \mathcal{H}_n .
- 6) À l'aide de l'ordinateur, dénombrer les matrices vérifiant \mathcal{H}_4 et dont la première ligne et la première colonne ne sont composées que de 1.