CO 485/685 Fall 2022:

Lecture Notes

1	Introduction	on to Cryptography
	Lecture 1	$(09/07; skipped) \dots \dots \dots \dots \dots \dots \dots \dots$
	Lecture 2	Almost-Public Key Cryptosystems (09/09)
	Lecture 3	A Public Key Cryptosystem – RSA (09/12)
	Lecture 4	Security Definitions (09/14)
	Lecture 5	Actual IND-CPA systems (09/16)
2	Quadratic	Residues
	Lecture 6	Number Theory Background (09/19)
	Lecture 7	Squares Under a Modulus (09/21)
	Lecture 8	Squares cont'd (09/23)
	Lecture 9	Applying to DDH (09/26)

Lecture notes taken, unless otherwise specified, by myself during the Fall 2022 offering of CO 485/685, taught by David Jao.

Chapter/lecture titles are made-up nonsense and do not follow the textbook or any other published resource. Actually, scratch that, this entire document is nonsense because I am literally auditing this course two nested prerequisites behind.

Chapter 1

Introduction to Cryptography

Lecture 1 (09/07; skipped)

Lecture 2 Almost-Public Key Cryptosystems (09/09)

- For a symmetric key cryptosystem, require sets of key space K, message space M, and ciphertext space C
 - Define encryption function $Enc: K \to M \to C$ and decryption $Dec: K \to C \to M$
 - Correctness property: for all k, Dec(k) is a left inverse of Enc(k)
 - Symmetric means that both decryption and encryption use shared secret k, which we assume is drawn randomly from K
- Public key encryption scheme (Diffie, Hellman, Merkle, c. 1976)
 - Setup similar: message space M and ciphertext space C but with two key spaces K_1 of public keys and K_2 of private keys
 - Define $Enc:K_1\to M\to C$ and $Dec:K_2\to C\to M$
 - Define $KeyGen: \mathbb{1}^{\ell} \to R \subset K_1 \times K_2$
 - * For some reason, let $\mathbb{1}^n$ be the unary representation of n??
 - Correctness: for all $(k_1, k_2) \in R$ related, $Dec(k_2)$ is a left inverse of $Enc(k_1)$
- Merkle puzzle (1974)
 - Each party creates "puzzle" which is hard to solve but not too hard
 - Alice generates 1,000,000 puzzles and sends them to Bob
 - Bob solves one of the puzzles arbitrarily and sends half of the answer to Alice
 - Alice knows the answer, so Alice knows the second half of the answer, which becomes the shared secret
 - Eve cannot (realistically) solve 500,000 puzzles in time to intercept
- Diffie–Hellman key exchange
 - Consider the multiplicative group $G = (\mathbb{Z}/p\mathbb{Z})^* = 1, \dots, p-1$ and some arbitrary element $g \in G$ with sufficiently large order
 - Alice privately picks some $x \in \mathbb{Z}$, computes g^x , and sends it to Bob
 - Bob privately picks some $y \in \mathbb{Z}$, computes g^y , and sends it to Alice
 - Both can now calculate a shared secret $k = g^{xy} = (g^x)^y = (g^y)^x$
 - Eve would have to solve the Diffie–Hellman problem: given p, g, g^x, g^y , find g^{xy} which is known to be hard
- Clifford Cocks privately discovered RSA 1973, DH 1974 for GCHQ (if you believe the intelligence community)

Lecture 3 A Public Key Cryptosystem – RSA (09/12)

- RSA (Rivest, Shamir, Adleman 1977): first cryptosystem and remains secure
- Theoretically secure, but implementations are ass (cf. "Fuck RSA")
- MATH 135 review of the algorithm:
 - This "textbook RSA" has practical flaws and is insecure
 - $KeyGen : \mathbb{1}^{\ell} \to (pk, sk) \in R$
 - 1. Choose random primes $p, q \approx 2^{\ell}$ where p and q are odd and distinct
 - 2. Compute n = pq
 - 3. Choose $e \in (\mathbb{Z}/\phi(n)\mathbb{Z})^{\times}$ where $\phi(n) = (p-1)(q-1)$
 - 4. Compute $d = e^{-1} \mod \phi(n)$
 - 5. Disclose public key (n, e) and keep secret key (n, d)
 - $-Enc:K_1\to M\to C:(n,e)\mapsto m\mapsto m^e\bmod n$ where $M=(\mathbb{Z}/n\mathbb{Z})^\times=x:\mathbb{Z}/n\mathbb{Z}:\gcd(x,n)=1=C$
 - * Weird that M depends on n (part of the key). In practice, it doesn't matter because the only messages that divide n are the primes, which breaks RSA anyways
 - $Dec: K_2 \to C \to M: (n, d) \mapsto c \mapsto c^d \mod m$
- Correctness: Must show that $(m^e \mod n)^d \mod n = m \operatorname{Proof.} (m^e \mod n)^d \mod n = m^{ed} \mod n$ (exponentiation under mod). Then, since $d = e^{-1} \mod \phi(n)$, there exists k such that $de 1 = k\phi(n)$, we have $m^{\phi(n)k+1} \equiv (m^{\phi(n)})^k m \equiv m \pmod m$. This holds by Euler's theorem $(\forall m \in (\mathbb{Z}/n\mathbb{Z})^{\times}, m^{\phi(n)} \equiv 1 \pmod n)$ or Fermat's Little Theorem + Chinese Remainder Theorem (MATH 135)
- Security: Trivial that factoring n = pq breaks RSA by computing $\phi(n)$
 - Conversely, if you know $\phi(n)=(p-1)(q-1)$ you can take $q\phi(n)=(n-1)(q-1)$ and solve for q
 - * To avoid this, use the Carmichael exponent $\lambda(n) = \operatorname{lcm}(p-1,q-1)$ instead of $\phi(n)$ which works. Of course, this doesn't work in practice because it's not actually that much different
 - For any non-trivial case, knowing one pair (e,d) also allows factoring n
 - Must make an assumption about hardness to prove security:
 - * Factoring assumption: factoring random integers is hard
 - * RSA factoring assumption: factoring n = pq is hard (see, e.g., elliptical curve algorithm which depends on size of smallest prime in the factorization)
 - · Of course, quantum computing fucks all of this to hell (see troll PQRSA which uses many small primes to make terabyte-sized moduli)
 - * RSA assumption: given $n, e, m^e \mod n$, it is hard to find m
 - Can prove RSA assumption ⇒ RSA works (cannot prove without assumption without better results from complexity theory)

Lecture 4 Security Definitions (09/14)

- Security definitions, e.g., OW-CPA, IND-CPA, IND-CCA (Boneh, Shoup)
- How secure is a cryptosystem? Specify:
 - Allowable interactions between adversaries and parties
 - * Second part of abbreviation
 - Computational limits of adversary
 - * Not usually specified, usually probabilistic polynomial time

- Goal of the adversary to "break" the cryptosystem
 - * First part of abbreviation
- OW-CPA: "one-way chosen-plaintext attack"
 - Adversary, given public key pk and encryption c of message m under pk, wants to determine m
 - Formally, given a random pk and c such that c = Enc(pk, m) for some random m, it is infeasible for any probabilistic polynomial time algorithm \mathcal{A} to determine m with non-negligible probability. That is, $\Pr[\mathcal{A}(pk,c)=m]=O(\frac{1}{\lambda c})$ for all c > 0.
- Easier way to formalize ("Sequences of Games", Shoup 2004)
 - Two players: challenger \mathcal{C} and adversary \mathcal{A}
 - Then, OW-CPA is
 - 1. \mathcal{C} runs $KeyGen: \mathbb{1}^{\lambda} \xrightarrow{\$} (pk, sk)$
 - 2. \mathcal{C} chooses $m \stackrel{\$}{\leftarrow} M$
 - 3. \mathcal{C} computes $c \leftarrow Enc(pk, m)$
 - 4. $m' \stackrel{\$}{\leftarrow} \mathcal{A}(pk,c)$
 - * with the win condition that m'=m, and we say that a cryptosystem is OW-CPA if a probabilistic polynomial time adversary \mathcal{A} cannot win this game with non-negligible probability
 - IND-CPA (Goldmeier, Micoli 1984): indistinguishability
 - 1. \mathcal{C} runs $(pk, sk) \stackrel{\$}{\leftarrow} KeyGen(\mathbb{1}^{\lambda})$
 - 2. $(m_0, m_1) \stackrel{\$}{\leftarrow} \mathcal{A}(\mathbb{1}^{\lambda}, pk)$
 - 3. \mathcal{C} picks $b \stackrel{\$}{\leftarrow} 0, 1$
 - 4. \mathcal{C} computes $c \stackrel{\$}{\leftarrow} Enc(pk, m_b)$
 - 5. $b' \stackrel{\$}{\leftarrow} \mathcal{A}(\mathbb{1}^{\lambda}, pk, c)$
 - * with the win condition b = b', and a cryptosystem is IND-CPA if for all prob. poly. time \mathcal{A} , $\left|\frac{1}{2} \Pr[\text{win}]\right| = O(\frac{1}{\lambda^{\varepsilon}})$ for all $\varepsilon > 0$
 - * Encryption function must be random, otherwise \mathcal{A} can re-encrypt

Lecture 5 Actual IND-CPA systems (09/16)

- IND-CPA is the standard security definition for symmetric security
 - Ciphertext contains no information about plaintext (except length)
- Design a slightly different equivalent IND-CPA game:
 - 1. \mathcal{C} runs $(pk, sk) \stackrel{\$}{\leftarrow} KeyGen(\mathbb{1}^{\lambda})$
 - $2. \ (m_0,m_1) \xleftarrow{\$} \mathcal{A}(\mathbb{1}^{\lambda},pk)$

 - 3. \mathcal{C} picks $b \stackrel{\$}{\leftarrow} 0, 1$ 4. \mathcal{C} computes $c_1 \stackrel{\$}{\leftarrow} Enc(pk, m_b)$ and $c_2 \stackrel{\$}{\leftarrow} Enc(pk, m_{b-1})$
 - 5. $b' \stackrel{\$}{\leftarrow} \mathcal{A}(\mathbb{1}^{\lambda}, pk, c_1, c_2)$
- Consider textbook RSA: \mathcal{A} can choose $m_0 \neq m_1$ and compute $Enc(pk, m_0)$ and $Enc(pk, m_1)$ which allows it to win
 - In general, this applies to any scheme with deterministic encryption
- Goldwasser-Micali ("Probabilistic Encryption" 1982)
 - 1. Pick n = pq (useful to have $p \equiv q \equiv 3 \pmod{4}$)
 - 2. Pick $r \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $r \not\equiv x^2 \pmod{p}$ and $r \not\equiv x^2 \pmod{q}$
 - 3. Define pk = (n, r) and sk = (p, q)
 - 4. Select a message bit b from M=0,1

- 5. Encrypt $Enc(b) = r^b y^2$ for some $y \stackrel{\$}{\leftarrow} (\mathbb{Z}/n\mathbb{Z})^{\times}$
- Then, decrypt by determining ciphertext's squareness mod n
 - * This is easy with the factorization n = pq by Euler's criterion (a is square mod prime p if and only if $a^{(p-1)/2} \equiv 1 \pmod{p}$
 - * Determining squareness without factorization of n is hard, apparently
- Since plaintexts are one bit, $OW \iff IND$ and this is provable under the circular-y assumption that determining squareness is hard
- Also one bit messages are literally useless so who cares
- Elgamal (1984) (sometimes IND-CPA)
 - Publickeycryptosystemified Diffie-Hellman
 - 1. Setup is the same as DH, take some element $q \in G$ of a group
 - 2. Define $pk = g^x$ and sk = x

 - 3. Encrypt $Enc(m) = (g^y, g^{xy} \cdot m)$ for $y \overset{\$}{\leftarrow} \mathbb{Z}$ Then, decrypt $Dec(c_1, c_2) = \frac{c^2}{c_1^x} = \frac{g^{xy} \cdot m}{(g^y)^x} = m$
 - In general, key sharing schemes can be cryptosystemified like this
 - In an IND-CPA game, given $(g^y, g^{xy}m_b)$
 - * Divide out m_0 to get either g^{xy} (if $m_b = m_0$) or garbage
 - * Real challenge is distinguishing g^{xy} from garbage
 - Decisional Diffie-Hellman assumption: in the following game, $|\Pr[\mathcal{A} \text{ wins}] \frac{1}{2}|$ is negligible in λ
 - 1. \mathcal{C} chooses $p \stackrel{\$}{\leftarrow} \mathbb{Z}$ prime, $p \approx 2^{\lambda}$
 - 2. \mathcal{C} chooses $g \in (\mathbb{Z}/p\mathbb{Z})^{\times}$
 - 3. \mathcal{C} chooses $x, y \overset{\$}{\leftarrow} \mathbb{Z}$ and $h \overset{\$}{\leftarrow} (\mathbb{Z}/p\mathbb{Z})^{\times}$, computes $g_1 = g^x$, $g_2 = g^y$, $g_3 = g^{xy}$
 - 4. \mathcal{C} chooses $b \leftarrow 0, 1$ and $g_4 = g_3$ if b = 0 and h if b = 1
 - 5. $b' \leftarrow \mathcal{A}(\mathbb{1}^{\lambda}, p, g, g_1, g_2, g_4)$
 - Can prove: if DDH assumption holds, Elgamal is IND-CPA
- Layers of assumptions here:
 - DLOG: given g and g^x , it is hard to find x
 - CDH: given g, g^x , and g^y , it is hard to find g^{xy} (equivalent to Elgamal being OW-CPA)
 - DDH: given g^{xy} and garbage, is hard to distinguish the garbage
- How to piss off mathematicians: solving DLOG in $\mathbb{Z}/n\mathbb{Z}$ is easy but in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is
 - But $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is isomorphic to $\mathbb{Z}/(p-1)\mathbb{Z}$ so DLOG difficulty must not be preserved over isomorphism
 - Specifically, DLOG is as exactly hard as computing the isomorphism (notice that we send $x \mapsto g^x$
- DDH is actually easy in $(\mathbb{Z}/p\mathbb{Z})^{\times}$, need a subgroup $G \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$ with |G| prime

Chapter 2

Quadratic Residues

Lecture 6 Number Theory Background (09/19)

- Recall: RSA primes are gigantic so it takes time to do operations
 - e.g. picking $e \in (\mathbb{Z}/\phi(n)\mathbb{Z})^{\times}$ or finding $d = e^{-1} \pmod{\phi(n)}$ using EEA which runs in a logarithmic number of steps
 - e.g. running $Enc(m) = m^e \pmod{n}$ or $Dec(c) = c^d \pmod{n}$ using squareand-multiply which runs in a logarithmic number of steps
- Hard: picking non-squares in integers modulo p

 - Set of primes $\left|((\mathbb{Z}/p\mathbb{Z})^{\times})^{2}\right| = \frac{p-1}{2}$ for odd p > 2- This is because $f(x) = x^{2}$ is a 2-to-1 function on $(\mathbb{Z}/p\mathbb{Z})^{\times}$
 - * To prove, show $f(a) = f(b) \iff a = \pm b$
 - * Apply Euclid's Lemma: $p \mid (x-y)(x+y)$ implies $p \mid x-y$ or $p \mid x+y$, equivalently, $x = y \pmod{p}$ or $x = -y \pmod{p}$
 - * Also another theorem: for R integral domain, every polynomial of degree n over R has at most n roots

Lecture 7 Squares Under a Modulus (09/21)

The big problem: Given $(\mathbb{Z}/n\mathbb{Z})^{\times}$ and $x \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, when is $x \equiv \square \pmod{n}$?

For example, for $\mathbb{Z}/15\mathbb{Z}$, 1 and 4 are squares; for 8: just 1; for 7: 1, 2, and 4; and for 13: 1, 3, 4, 9, 10, and 12.

This breaks down into cases: n composite, n prime power, n prime

Theorem

Suppose
$$n = \prod p_i^{e_i}$$
. Then, $x \equiv \square \pmod{n}$ if and only if for all $i, x \equiv \square \pmod{p_i^{e_i}}$.

Proof. Suppose $x=y^2\pmod n$ for a unit y. Then, $n\mid (x-y^2)$ and $p_i^{e_i}\mid (x-y^2)$ by transitivity. That is, $x\equiv y^2\pmod {p_i^{e_i}}$. In the reverse direction, if $p_i^{e_i}\mid (x-y^2)$ for all i, then by UPF (with some omitted detail), $n \mid (x - y^2)$.

The prime power case reduces to the prime case under conditions discovered in the homework problems lol.

Theorem

The number of squares in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is $\frac{p-1}{2}$ for primes $p \geq 3$.

Proof. This is because $x = y^2 = (-y)^2$ and the size of the set is p - 1.

Build a table (x, g^x) instead of (x, x^2) :

For p = 13 and g = 2, we get (1, 2, 4, 8, 3, 6, 12 = -1, -2, -4, -8, -3, -6, -12 = 1) and the squares are the even-indexed values (1, 4, 3, 12, 9, 10, 1).

This works for tables starting with non-squares: in fact, if $g \neq \square$, then $g^3 \neq \square$ (by the contrapositive, if $g^3 = \square$, then $g = \frac{g^3}{g^2} = \frac{\square}{\square} = \square$).

This gives us the result that $g^x = g^y$ when $x \equiv y \pmod{p-1}$ (note that this is equivalent to Fermat's Little Theorem, the reverse direction requires g coprime to p-1).

Definition (order)

```
\operatorname{ord}(a) is the period of x \mapsto a^x for a \in (\mathbb{Z}/p\mathbb{Z})^{\times}.
Equivalently, \operatorname{ord}(a) = \min\{t \in \mathbb{Z} : a^t = 1, t > 0\}.
```

Lemma

Given elements a and b, numbers x and y:

- $a^x = 1$ if and only if $ord(a) \mid x$
- $a^x = a^y$ if and only if $x \equiv y \pmod{\operatorname{ord}(a)}$
- $\operatorname{ord}(a^x) = \frac{\operatorname{ord}(a)}{\gcd(x,\operatorname{ord}(a))}$
- If ord(a) and ord(b) are coprime, then ord(ab) = ord(a) ord(b).

Proof. Only prove the last one:

Let $t = \operatorname{ord}(a)$, $u = \operatorname{ord}(b)$, $v = \operatorname{ord}(ab)$. Then, $(ab)^{tu} = a^{tu}b^{tu} = 1^{u}1^{t} = 1$ so we have $v \mid tu$. Now, WLOG, $(ab)^{vu} = 1^{u} = 1 \implies a^{vu}b^{vu} = a^{vu}1 = a^{vu} = 1$. This gives $t \mid vu$ and $t \mid v$ since $\gcd(t, u) = 1$. Likewise, $u \mid v$ and we can conclude $tu \mid v$ because $\gcd(t, u) = 1$. That is, tu = v.

Lecture 8 Squares cont'd (09/23)

Definition (primitive element)

```
g \in G where \{g^n : n \in \mathbb{N}\} = G. Also called a generator.
```

Recall: if there exists primitive $g \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, then for all $h \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ where $h = g^k$, $h \equiv \square \iff k$ even. We can determine squareness using this fact, but finding k such that $h = g^k$ is doing a discrete log, which is hard.

Whether or not a primitive element exists is a non-trivial observation:

Theorem (Gauss' primitive root)

```
For all primes p, (\mathbb{Z}/p\mathbb{Z})^{\times} has a primitive element.
```

Proof. Observe that for all polynomials $f(x) \neq 0$ over $\mathbb{Z}/p\mathbb{Z}$, the number of roots of f(x) is at most deg f. Note that factorization fails in $\mathbb{Z}/n\mathbb{Z}$ in general: e.g. $x^2 - 1 = (x-1)(x+1) = (x-3)(x-5) \mod 8$ or something weird like $x = (3x+2)(2x+3) \mod 6$. We have this observation because $\mathbb{Z}/p\mathbb{Z}$ is an integral domain (and indeed, a field).

Consider $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$.

Claim $t = \operatorname{ord}(a) \mid p - 1$. Write p - 1 = tq + r. If r = 0, done. If r > 0, $\operatorname{ord}(a) = r < t$, contradiction and indeed r = 0.

For each divisor d of p-1, consider $S_d=\{x\in(\mathbb{Z}/p\mathbb{Z})^\times:\operatorname{ord}(x)=d\}$. Then, $\bigcup_{d\mid p-1}S_d=0$ $(\mathbb{Z}/p\mathbb{Z})^{\times}$ and this is a disjoint union. To prove Gauss' theorem, we just need $\left|S_{p-1}\right|>0$.

Proceed in general for arbitrary $|S_d| > 0$ for all $d \mid p - 1$.

If
$$S_d = \emptyset$$
, then $|S_d| = 0$. Otherwise, claim that $|S_d| = \phi(d) = |(\mathbb{Z}/d\mathbb{Z})^{\times}|$.

If S_d is not empty, then $\exists a \in S_d$ where $\operatorname{ord}(a) = d$. Consider $x^d - 1$. The roots of this polynomial will include all elements of S_d (and others). We can write the set of roots as exactly $\{a^0,\ldots,a^{d-1}\}$. So for all $b\in S_d,\,b=a^k$ since b is a root and we need only count those powers with order d. But that is exactly $\operatorname{ord}(a^i) = \frac{\operatorname{ord}(a)}{\gcd(i,d)} = \frac{d}{\gcd(i,d)}$. So we are counting the i such that gcd(i, d) = 1, which is exactly $\phi(d)$.

Now, $p-1=|(\mathbb{Z}/p\mathbb{Z})^{\times}|=\left|\bigcup_{d\mid p-1}S_d\right|=\sum|S_d|\leq\sum\phi(d)$ which is equal to p-1 by Möbius inversion. That last inequality being an equality implies that $|S_d| \neq 0$ for any $d \mid p-1$, and in particular $p-1 \mid p-1$.

Quick combinatorical proof of this fact: write out all the p-1 fractions over p-1, then each of $\phi(d)$ is the number of fractions where the denominator reduces to d. The sum must be p-1.

Lecture 9 Applying to DDH (09/26)

Recall the Decisional Diffie-Hellman problem: Given g, g^x, g^y, g^z , determine if z = xy. Formally, as a game:

- \mathcal{C} chooses a bit $b \in \{0,1\}$ and $x, y \overset{\$}{\leftarrow} \mathbb{Z}$ $b' \leftarrow \mathcal{A}(g, g^x, g^y, g^z)$ where $z \leftarrow \begin{cases} xy & b = 0 \\ \$ & b = 1 \end{cases}$
- Win condition: b = b' with non-negligible probability

Notice that if g is a primitive root, then $|\{g^x:x\in\mathbb{Z}\}|=p-1$. But bruteforce DLOG takes $\frac{p-1}{2}$ steps on average. Then, Elgamal is IND-CPA \iff DDH holds.

Proposition

The Decisional Diffie-Hellman assumption in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ with a primitive base q does not hold.

Proof. We tell squares and non-squares apart.

Recall from last lecture's theorem we have that if g is a primitive root, $g^x \equiv \Box \pmod{p}$ \iff $x \equiv 0 \pmod{2}$. Then, by Euler's criterion, $a \equiv \square \pmod{p} \iff a^{(p-1)/2} \equiv 1 \pmod{p}$. Therefore, it is possible to tell the parity of x, y, and z in reasonable time using Euler's criterion (since raising to a power is easy).

If xy is odd only when x and y are odd, so if you know the parity of z you can distinguish if z = xy or random with non-negligible advantage.

Proposition (Euler's criterion)

$$a \equiv \square \pmod{p} \iff a^{(p-1)/2} \equiv 1 \pmod{p}$$

Proof. Suppose $a \equiv \Box$ iff $a \equiv g^k$ for even $k = 2\ell$ iff $a^{(p-1)/2} = (g^k)^{(p-1)/2} = g^{k(p-1)/2} = (g^{p-1})^\ell = 1^\ell = 1$ by F ℓ T.

Otherwise, $a \not\equiv \Box$ iff $a = g^k$ for $k = 2\ell + 1$ iff $a^{(p-1)/2} = (g^k)^{(p-1)/2} = g^{(p-1)/2 \cdot (2\ell + 1)} = g^{(p-1)/2 \cdot 2\ell} \cdot g^{(p-1)/2} = g^{(p-1)/2} \not= 1$. But in fact $g^{(p-1)/2} = \sqrt{g^{p-1}} = \sqrt{1} = -1$ since it is not positive 1.

Corollary. For p > 2, -1 is a square mod p if and only if $p \equiv 1 \pmod{4}$.

Proof. For -1 to be a square, we need $(-1)^{(p-1)/2} \equiv 1 \pmod{p}$. That is, $\frac{p-1}{2}$ is even and we have $p \equiv 1 \pmod{4}$.

This quantity $q^{(p-1)/2}$ is useful and we give it a name:

Definition (Legendre symbol)

For p > 2 and $a \in \mathbb{Z}/p\mathbb{Z}$, the quadratic character of a, written $(\frac{a}{p}) = a^{(p-1)/2}$, is 1 if $a \equiv \square$, 0 if $a \equiv 0$, and -1 if $a \not\equiv \square$.

Equivalently, define $\chi_p:(\mathbb{Z}/p\mathbb{Z})^{\times}\to\{\pm 1\}:a\mapsto(\frac{a}{p})$ and notice that this is a multiplicative homomorphism that preserves $\chi_p(ab)=\chi_p(a)\chi_p(b)$.

Theorem (multiplicativity)

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

Proof.
$$(\frac{ab}{p}) = (ab)^{(p-1)/2} = a^{(p-1)/2}b^{(p-1)/2} = (\frac{a}{p})(\frac{b}{p})$$