Maths

Alexander

July 14, 2024

Algebra

Lines

Slope of the line through $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope-intercept equation of line with slope m and y-intercept b:

$$y = mx + b$$

Point-slope equation of line through $P_1 = (x_1, y_1)$ with slope m:

$$y - y_1 = m(x - x_1)$$

Circles

Equation of the circle with center (a, b) and radius r:

$$(x-a)^2 + (y-b)^2 = r^2$$

Distance and Midpoint Formulas

Distance between $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint of P_1P_2 :

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Laws of Exponents

$$x^{m}x^{n} = x^{m+n}$$

$$\frac{x^{m}}{x^{n}} = x^{m-n}$$

$$(x^{m})^{n} = x^{mn}$$

$$x^{-n} = \frac{1}{x^{n}}$$

$$(xy)^{n} = x^{n}y^{n}$$

$$(\frac{x}{y})^{n} = \frac{x^{n}}{y^{n}}$$

$$x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}$$

$$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^{m}} = (\sqrt[n]{x})^{m}$$

Special Factorizations

$$x^{2} - y^{2} = (x + y)(x - y)$$

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$$

Binomial Theorem

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x-y)^2 = x^2 - 2xy + y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$$

$$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$$

$$(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^2 + \ldots + \binom{n}{k}x^{n-k}y^k + \ldots + nxy^{n-1} + y^n$$
where $\binom{n}{k} = \frac{n(n-1)\ldots(n-k+1)}{1\cdot 2\cdot 3\ldots k}$

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Inequalities and Absolute Value

If
$$a < b$$
 and $b < c$, then $a < c$.
If $a < b$, then $a + c < b + c$.
if $a < b$ and $c > 0$, then $ca < cb$.
if $a < b$ and $c < 0$, then $ca > cb$.

$$|x| = x \text{ if } x >= 0$$

$$|x| = -x \text{ if } x <= 0$$

Geometry

Formulas for area A, circumference C, and volume V Triangle

$$A = \frac{1}{2}bh$$
$$A = \frac{1}{2}ab\sin(\theta)$$

Circle

$$A = \pi r^2$$
$$C = 2\pi r$$

Sector of Circle

$$\begin{array}{c} A = \frac{1}{2} r^2 \theta \\ s = r \theta \end{array}$$

Sphere

$$V = \frac{4}{3}\pi r^3$$
$$A = 4\pi r^2$$

Cylinder

$$V=\pi r^2 h$$

Cone

$$V = \frac{1}{3}\pi r^2 h$$
$$A = \pi r \sqrt{r^2 + h^2}$$

Cone with arbitrary base

$$V = \frac{1}{3}Ah$$

Trigonometry

Pythagorean Theorem: For a right trianlge with hypotenuse of length c and legs of lengths a and b, $c^2=a^2+b^2$.

Angle Measurement

Precalculus Review