Status of A Fish (Sebastes yourfish) Off the U.S. Pacific Coast in 2017

3

8

9

10

11

12

13

14

15

16

17

18

19

Author No. 1^1 Author No. 2^2 Author No. 3^3

¹Southwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, California 95060

²Northwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, Washington 98112

³Washington Department of Fish and Wildlife, 600 Capitol Way North, Olympia, Washington 98501

DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

- 20 This report may be cited as:
- ex. Monk, M. H., He, X., and Budrick, J. 2017. Status of the California Scorpionfish (Scorpaena
- 22 guttata) Off Southern California in 2017. Pacific Fishery Management Council, Portland, OR.
- 23 Available from http://www.pcouncil.org/groundfish/stock-assessments/

Status of A Fish (Sebastes yourfish) Off the U.S. Pacific Coast in 2017

26 Contents

27	Ε'n	cecut	sive Summary	1
28		Stoc	k	i
29		Cato	ches	i
30		Data	a and Assessment	vi
31		Stoc	k Biomass	viii
32		Recr	ruitment	xi
33		Exp	loitation status	xiii
34		Ecos	system Considerations	XV
35		Refe	erence Points	XV
36		Man	nagement Performance	xvi
37		Unre	esolved Problems and Major Uncertainties	xvi
38		Deci	ision Table	xvi
39		Rese	earch and Data Needs	xxi
40	1	Intr	roduction	1
41		1.1	Basic Information and Life History	1
42		1.2	Early Life History	1
43		1.3	Map	1
44		1.4	Ecosystem Considerations	1
45		1.5	Fishery Information	1
46		1.6	Summary of Management History	1
47		1.7	Management Performance	1
48		1.8	Fisheries Off Mexico or Canada	1

49	2	Ass	essmen	ıt	1
50		2.1	Data		1
51			2.1.1	Commercial Fishery Landings	2
52			2.1.2	Commercial Discards	2
53			2.1.3	Commercial Fishery Length and Age Data	2
54			2.1.4	Sport Fishery Removals and Discards	2
55			2.1.5	Fishery-Dependent Indices of Abundance	2
56			2.1.6	Fishery-Independent Data Sources	2
57			2.1.7	Biological Parameters and Data	3
58			2.1.8	Environmental or Ecosystem Data Included in the Assessment	3
59		2.2	Previo	ous Assessments	4
60			2.2.1	History of Modeling Approaches Used for this Stock	4
61			2.2.2	yyyy Assessment Recommendations	4
62		2.3	Model	Description	4
63			2.3.1	Transition to the Current Stock Assessment	4
64			2.3.2	Summary of Data for Fleets and Areas	4
65			2.3.3	Other Specifications	4
66			2.3.4	Modeling Software	4
67			2.3.5	Data Weighting	5
68			2.3.6	Priors	5
69			2.3.7	Estimated and Fixed Parameters	5
70		2.4	Model	Selection and Evaluation	6
71			2.4.1	Key Assumptions and Structural Choices	6
72			2.4.2	Alternate Models Considered	6
73			2.4.3	Convergence	6
74		2.5	Respon	nse to the Current STAR Panel Requests	6
75		2.6	Base (Case Model Results	7
76			2.6.1	Parameter Estimates	7
77			2.6.2	Fits to the Data	7
78			2.6.3	Uncertainty and Sensitivity Analyses	7
79			2.6.4	Retrospective Analysis	8
80			2.6.5	Likelihood Profiles	8
81			2.6.6	Reference Points	8

82	3	Harvest Projections and Decision Tables	Č
83	4	Regional Management Considerations	8
84	5	Research Needs	8
85	6	Acknowledgments	9
86	7	Tables	10
87	8	Figures	2 5
88	$\mathbf{A}_{]}$	ppendix A. Detailed fits to length composition data	A-1
89	$\mathbf{R}_{\mathbf{c}}$	eferences	

90 Executive Summary

executive-summary

 $_{91}$ \mathbf{Stock}

This assessment reports the status of the China rockfish (Sebastes nebulosus) resource in U.S. waters off the coast of ... using data through 2014.

 $_{ ext{catches}}$

- Information on historical landings of China rockfish are available back to xxxx... (Table a).
- ⁹⁶ Commercial landings were small during the years of World War II, ranging between 0 to 0
- 97 metric tons (mt) per year.
- 98 (Figures a-b)
- 99 (Figure c)
- Since 2000, annual total landings of China rockfish have ranged between 2-4 mt, with landings in 2014 totaling 3 mt.

Figure a: China rockfish catch history for the recreational fleets. $f^{ig:Exec_catch1}$

Figure b: Stacked line plot of China rockfish catch history for the commercial fleets. | fig:Exec_catch2

Table a: Recent China rockfish landings (mt) by fleet.

				tab:Exec_c	<u>catch</u>
Landings 1	Landings 2	Landings 3	Landings 4	Landings 5	Total
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	-	-	-
-	-	-	_	-	-
-	-	-	-	-	-
-	-	-	-	-	-
	Landings 1	Landings 1 Landings 2 - -	Landings 1 Landings 2 Landings 3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Landings 1 Landings 2 Landings 3 Landings 4 - - - -	Landings 1 Landings 2 Landings 3 Landings 4 Landings 5 - - - - - - - - - - - - - -<

Figure c: Catch history of China rockfish in the Northern model. $\begin{tabular}{l} fig:r4ss_catches \\ \end{tabular}$

Data and Assessment

data-and-assessment

- This a new full assessment for China rockfish, which was last assessed in ... using Stock Synthesis Version xx. This assessment uses the newest version of Stock Synthesis (3.30.xx).
 The model begins in 1900, and assumes the stock was at an unfished equilibrium that year.
- 106 (Figure d).

Figure d: Map depicting the distribution of California scorpionfish out to 600 ft. The stock assessment is bounded at Pt. Conception in the north to the U.S./Mexico border in the south.

107 Stock Biomass stock-biomass

(Figure e and Table b).

The 2014 estimated spawning biomass relative to unfished equilibrium spawning biomass is above the target of 40% of unfished spawning biomass at 73.4% (95% asymptotic interval: \pm 63.7%-83.2%) (Figure f). Approximate confidence intervals based on the asymptotic variance estimates show that the uncertainty in the estimated spawning biomass is high.

Table b: Recent trend in beginning of the year spawning output and depletion for the Northern model for China rockfish.

			tab	:SpawningDeplete_mod1
Year	Spawning Output	~ 95%	Estimated	~ 95%
	(billion eggs)	confidence	depletion	confidence
		interval		interval
2006	17.942	(8.86-27.03)	0.734	(0.638-0.83)
2007	18.030	(8.94-27.12)	0.738	(0.642 - 0.833)
2008	18.044	(8.95-27.14)	0.738	(0.643 - 0.833)
2009	18.034	(8.93-27.13)	0.738	(0.642 - 0.833)
2010	18.062	(8.96-27.17)	0.739	(0.644 - 0.834)
2011	17.993	(8.89-27.1)	0.736	(0.64 - 0.833)
2012	17.971	(8.86-27.08)	0.735	(0.638 - 0.832)
2013	17.981	(8.87-27.09)	0.736	(0.639 - 0.833)
2014	17.944	(8.83-27.06)	0.734	(0.637 - 0.832)
2015	17.950	(8.83-27.07)	0.734	(0.637 - 0.832)

Spawning output with ~95% asymptotic intervals

Figure e: Time series of spawning biomass trajectory (circles and line: median; light broken lines: 95% credibility intervals) for the base case assessment model. fig: Spawnbio_all

Spawning depletion with ~95% asymptotic intervals

Figure f: Estimated relative depletion with approximate 95% asymptotic confidence intervals (dashed lines) for the base case assessment model.

Recruitment recruitment

Recruitment deviations were estimated from xxxx-xxxx (Figure g and Table c).

Table c: Recent recruitment for the Northern model.

tab:Recruit_mod1

Year	Estimated	~ 95% confidence
	Recruitment $(1,000s)$	interval
2006	33.29	(23.31 - 47.53)
2007	33.30	(23.33 - 47.54)
2008	33.30	(23.33 - 47.54)
2009	33.30	(23.33 - 47.54)
2010	33.31	(23.33 - 47.55)
2011	33.30	(23.32 - 47.54)
2012	33.29	(23.31 - 47.54)
2013	33.29	(23.32 - 47.54)
2014	33.29	(23.31 - 47.54)
2015	33.29	(23.31 - 47.54)

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure g: Time series of estimated China rockfish recruitments for the base-case model with 95% confidence or credibility intervals. fig:Recruits_all

115 Exploitation status

exploitation-status

Harvest rates estimated by the base model management target levels (Table d and Figure h).

Table d: Recent trend in spawning potential ratio and exploitation for China rockfish in the Northern model. Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by $F_{\rm SPR}$.

	, and the second	-		tab:SPR_Exploit_mod1
Year	Fishing	~ 95%	Exploitation	$^{\sim}~95\%$
	intensity	confidence	rate	confidence
		interval		interval
2005	0.44	(0.27 - 0.61)	0.32	(0.17-0.47)
2006	0.39	(0.24 - 0.55)	0.28	(0.15-0.4)
2007	0.47	(0.3-0.65)	0.35	(0.19 - 0.51)
2008	0.50	(0.32 - 0.68)	0.38	(0.2 - 0.55)
2009	0.45	(0.28 - 0.63)	0.33	(0.18-0.49)
2010	0.56	(0.36 - 0.76)	0.44	(0.24-0.64)
2011	0.51	(0.32-0.7)	0.39	(0.21-0.57)
2012	0.48	(0.3-0.66)	0.35	(0.19 - 0.52)
2013	0.53	(0.34-0.72)	0.41	(0.22 - 0.59)
2014	0.48	(0.3-0.67)	0.36	(0.19 - 0.53)

Figure h: Estimated spawning potential ratio (SPR) for the base-case model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR $_{50\%}$ harvest rate. The last year in the time series is 2014.

118 Ecosystem Considerations

ecosystem-considerations

- In this assessment, ecosystem considerations were not explicitly included in the analysis.
- This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere)
- that could contribute ecosystem-related quantitative information for the assessment.

22 Reference Points

reference-points

This stock assessment estimates that China rockfish in the Northern model is above the biomass target $(SB_{40\%})$, and well above the minimum stock size threshold $(SB_{25\%})$. The estimated relative depletion level for the base model in 2015 is 73.4% (95% asymptotic interval: \pm 63.7%-83.2%, corresponding to an unfished spawning biomass of 17.9497 billion eggs (95% asymptotic interval: 8.83-27.07 billion eggs) of spawning biomass in the base model (Table e). Unfished age 1+ biomass was estimated to be 240.8 mt in the base case model. The target spawning biomass $(SB_{40\%})$ is 9.8 billion eggs, which corresponds with an equilibrium yield of 6.3 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 5.8 mt (Figure i).

Table e: Summary of reference points and management quantities for the base case Northern model.

		tab:Ref_pts_mod1
Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (billion eggs)	24.4	(15.2-33.7)
Unfished age 1+ biomass (mt)	240.8	(153-328.7)
Unfished recruitment (R0, thousands)	34.2	(22.3-46)
Spawning output (2014 billion eggs)	17.9	(8.8-27.1)
Depletion (2014)	0.7342	(0.6367 - 0.8317)
Reference points based on $SB_{40\%}$		
Proxy spawning output $(B_{40\%})$	9.8	(6.1-13.5)
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$)	0.444	(0.444 - 0.444)
Exploitation rate resulting in $B_{40\%}$	0.0551	(0.0522 - 0.058)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	6.3	(4-8.5)
Reference points based on SPR proxy for MSY		
Spawning output	11.3	(7-15.5)
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.0458	(0.0435 - 0.0482)
Yield with SPR_{proxy} at SB_{SPR} (mt)	5.8	(3.7-7.9)
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	5.6	(3.5-7.8)
SPR_{MSY}	0.2875	(0.2823 - 0.2927)
Exploitation rate at MSY	0.0924	(0.0863 - 0.0985)
MSY (mt)	7	(4.5-9.4)

Management Performance

management-performance

Table f

$\begin{array}{c} \textbf{Unresolved Problems and Major Uncertainties} \\ \textbf{unresolved-problems-and-major-uncertainties} \end{array}$

Table f: Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch reflect the commercial landings plus the model estimated discarded biomass.

				tab:mnmgt	_perform
Year	OFL (mt;	ABC (mt)	ACL (mt; OY	Estimated	
	ABC prior to		prior to 2011)	total catch	
	2011)			(mt)	
2007	-	-	=	-	
2008	-	-	-	-	
2009	-	-	-	-	
2010	-	-	-	-	
2011	-	-	-	-	
2012	-	-	-	-	
2013	-	-	-	-	
2014	-	-	-	-	
2015	-	-	-	-	
2016	-	-	-	-	
2017	-	-	-	-	
2018	-	-	-	-	

Decision Table

decision-table

Table g: Projections of potential OFL (mt) for each model, using the base model forecast.

tab:OFL_projection

Year	OFL
2015	9.51
2016	9.57
2017	9.63
2018	9.29
2019	8.98
2020	8.69
2021	8.43
2022	8.20
2023	7.99
2024	7.80
2025	7.64
2026	7.49

Figure i: Equilibrium yield curve for the base case model. Values are based on the 2014 fishery selectivity and with steepness fixed at 0.718. fig:Yield_all

Table h: Summary of 10-year projections beginning in 2016 for alternate states of nature based on an axis of uncertainty for the Northern model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of "—" indicates that the stock is driven to very low abundance under the particular scenario.

tab:Decision_table_mod1
States of nature

						f nature		
			Low I	M = 0.05	Base I	M 0.07	High I	M 0.09
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2019	-	-	-	-	-	-	-
	2020	_	-	_	-	_	_	_
	2021	_	_	_	_	_	_	_
40-10 Rule,	2022	_	_	_	_	_	_	_
Low M	2023	_	_	_	_	_	_	_
	2024	_	_	_	_	_	_	_
	2025	_	_	_	_	_	_	_
	2026	_	_	_	_	_	_	_
	2027	_	_	_	_	_	_	_
	2028	_	_	_	_	_	_	_
	2019	_	_		_		_	
	2020	_	_	_	_	_	_	_
	2021	_	_	_	_	_	_	_
40-10 Rule	2022	_	_	_	_	_	_	_
10 10 1001	2023	_	_	_	_	_	_	_
	2024	_	_	_	_	_	_	_
	2025	_	_	_	_	_	_	_
	2026	_	_	_	_	_	_	_
	2027	_	_	_	_	_	_	_
	2028	_	_	_	_	_	_	_
	2019	_	_		_	_	_	
	2020	_	_	_	_	_	_	_
	2021	_	_	_	_	_	_	_
40-10 Rule,	2022	_	_	_	_	_	_	_
High M	2023	_	_	_	_	_	_	_
IIIgii Wi	2024	_	_	_	_	_	_	_
	2025	_	_	_	_	_	_	_
	2026	_	_	_	_	_	_	_
	2027	_	_	-	_	-	_	-
	2028	_	_	_	_	_	_	-
	2019		_		_		_	
	2019	-	_	-	_	-	_	-
	2020	-	_	-	_	-	_	-
Avorege	2021	-	_	-	_	-	_	-
Average Catch	2022	-	_	-	_	-	_	-
Catch	2023	-	_	-	_	-	_	-
	2024	-	_	-	_	-	_	-
		-	_	-	_	-	_	-
	2026 2027	-	_	-	_	_	_	_
		-	_	-	_	_	_	_
	2028		_	-	_	-	_	-

Table i: Base case results summary.

(23.31 - 47.54)	(23.31 - 47.54)	(23.32 - 47.54)	(23.31 - 47.54)	(23.32 - 47.54)	(23.33 - 47.55)	(23.33 - 47.54)	(23.33 - 47.54)	(23.33 - 47.54)	95% CI (23.31 - 47.53) (23.33 - 47.54)	95% CI
33.29		33.29	33.29	33.30	33.31	33.30	33.30	33.30	33.29	Recruits
(0.637 - 0.832)	(0.637 - 0.832)	(0.639-0.833)	(0.638-0.832)	(0.64-0.833)	(0.644-0.834)	(0.642 - 0.833)	(0.643 - 0.833)	(0.642 - 0.833)	e.	95% CI
0.7	0.7	0.7	2.0	2.0	2.0	2.0	2.0	2.0	2.0	Depletion
(8.83-27.07)	(8.83-27.06)	(8.87-27.09)	(8.86-27.08)	(8.89-27.1)	(8.96-27.17)	(8.93-27.13)	(8.95-27.14)	(8.94-27.12)	(8.86-27.03)	95% CI
17.9	17.9	18.0	18.0	18.0	18.1	18.0	18.0	18.0	17.9	Spawning Output
182.52	182.82	182.72	182.90	183.49	183.25	183.36	183.26	182.55	182.15	Age 1+ biomass (mt)
	0.36	0.41	0.35	0.39	0.44	0.33	0.38	0.35	0.28	Exploitation rate
	0.48	0.53	0.48	0.51	0.56	0.45	0.50	0.47	0.39	$[1-SPR)(1-SPR_{50\%})$
										ACL (mt)
										OFL (mt)
										Potal Est. Catch (mt)
										Landings (mt)
	2014	2013	2012	2011	2010	2009	2000	2007	2006	Quantity

Research and Data Needs

research-and-data-needs

137 We recommend the following research be conducted before the next assessment:

- 138 1. **xxxx**:
- 2. **xxxx**:
- 3. **xxxx**:
- 141 4. **xxxx**:
- 142 5. **XXXX**:

143 1 Introduction

introduction

1.1 Basic Information and Life History

basic-information-and-life-history

 $_{\scriptscriptstyle{145}}$ 1.2 Early Life History

early-life-history

146 **1.3** Map

map

A map showing the scope of the assessment and depicting boundaries for fisheries or data collection strata is provided in Figure 1.

1.4 Ecosystem Considerations

ecosystem-considerations-1

In this assessment, ecosystem considerations were not explicitly included in the analysis.

This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere)
that could contribute ecosystem-related quantitative information for the assessment.

1.5 Fishery Information

fishery-information

1.6 Summary of Management History

summary-of-management-history

1.5 1.7 Management Performance

management-performance-1

156 Table f

57 1.8 Fisheries Off Mexico or Canada

fisheries-off-mexico-or-canada

 $_{58}$ 2 Assessment

 ${\tt assessment}$

159 2.1 Data

data

Data used in the China rockfish assessment are summarized in Figure 2. Descriptions of the data sources are in the following sections.

62 2.1.1 Commercial Fishery Landings

commercial-fishery-landings

163 2.1.2 Commercial Discards

commercial-discards

2.1.3 Commercial Fishery Length and Age Data

commercial-fishery-length-and-age-data

The input sample sizes were calculated via the Stewart Method (Ian Stewart, personal communication, IPHC):

Input effN =
$$N_{\text{trips}} + 0.138 * N_{\text{fish}}$$
 if $N_{\text{fish}}/N_{\text{trips}}$ is < 44

Input effN =
$$7.06 * N_{\text{trips}}$$
 if $N_{\text{fish}}/N_{\text{trips}}$ is ≥ 44

2.1.4 Sport Fishery Removals and Discards

sport-fishery-removals-and-discards

Biological samples from the recreational fleets are described in the sections below.

2.1.5 Fishery-Dependent Indices of Abundance

fishery-dependent-indices-of-abundance

Data Source 1

167

- 173 Data Source 1 Index Standardization
- 174 Data Source 1 Length Composition
- 175 Data Source 2
- Data Source 3

177 2.1.6 Fishery-Independent Data Sources

fishery-independent-data-sources

- Data Source 1
- 179 Data Source 1 Index Standardization
- 180 Data Source 1 Length Composition
- Data Source 2

2.1.7 Biological Parameters and Data

biological-parameters-and-data

Love et al. (1987)

184 Length and Age Compositions

- Length compositions were provided from the following sources:
- Source 1 (type, e.g., commercial dead fish, research, recreational, yyyy-yyyy)
- Source 2 (*type*, yyyy-yyyy)
- Source 3 (research, yvyy, yvyy, yvyy, vyyy)

The length composition of all fisheries aggregated across time by fleet is in Figure 3. Descriptions and details of the length composition data are in the above section for each fleet or survey.

192 Age Structures

von Bertalanffy growth curve (Bertalanffy 1938), $L_i = L_{\infty} e^{(-k[t-t_0])}$, where L_i is the length (cm) at age i, t is age in years, k is rate of increase in growth, t_0 is the intercept, and L_{∞} is the asymptotic length.

196 Aging Precision and Bias

- 197 Weight-Length
- 198 Sex Ratio, Maturity, and Fecundity
- 199 Natural Mortality

2.1.8 Environmental or Ecosystem Data Included in the Assessment environmental-or-ecosystem-data-included-in-the-assessment

In this assessment, neither environmental nor ecosystem considerations were explicitly included in the analysis. This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere) that could contribute ecosystem-related quantitative information for the assessment.

2.2Previous Assessments

previous-assessments

2.2.1History of Modeling Approaches Used for this Stock

history-of-modeling-approaches-used-for-this-stock

yyyy Assessment Recommendations 207

yyyy-assessment-recommendations

Recommendation 1:

200

STAT response: xxxxx 210

Recommendation 2:

212 213

STAT response: xxxxx

Recommendation 3:

215 216

STAT response: xxxx

2.3 Model Description

model-description

Transition to the Current Stock Assessment transition-to-the-current-stock-assessment 2.3.1 218

2.3.2 Summary of Data for Fleets and Areas 219

summary-of-data-for-fleets-and-areas

- There are xxx fleets in the base model. They include:
- Commercial: The commercial fleets include ... 221
- Recreational: The recreational fleets include ... 222
- Research: There are xx sources of fishery-independent data available ...

Other Specifications 2.3.3

other-specifications

2.3.4 Modeling Software

modeling-software

The STAT team used Stock Synthesis 3 version 3.30.05.03 by Dr. Richard Methot at the NWFSC. This most recent version was used, since it included improvements and corrections to older versions. The r4SS package (GitHub release number v1.27.0) was used to postprocessing output data from Stock Synthesis.

$_{230}$ 2.3.5 Data Weighting

data-weighting

231 **2.3.6** Priors

priors

The log-normal prior for female natural mortality were based on a meta-analysis completed by Hamel (2015), as described under "Natural Mortality." Female natural mortality was fixed at the median of the prior, 0.xxx for an assumed maximum age of xx. An uninformative prior was used for the male offset natural mortality, which was estimated.

The prior for steepness (h) assumes a beta distribution with parameters based on an update for the Thorson-Dorn rockfish prior (Dorn, M. and Thorson, J., pers. comm.), which was endorsed by the Science and Statistical Committee in 2018. The prior is a beta distribution with mu=0.xxx and sigma=0.xxx. Steepness is fixed in the base model at the mean of the prior. The priors were applied in sensitivity analyses where these parameters were estimated.

2.3.7 Estimated and Fixed Parameters

estimated-and-fixed-parameters

A full list of all estimated and fixed parameters is provided in Tables 2.

The base model has a total of xxx estimated parameters in the following categories:

- 244 XXX,
- 245 XXX
- xxx, and
- xxx selectivity parameters

The estimated parameters are described in greater detail below and a full list of all estimated and parameters is provided in Table 2.

- 250 Growth.
- 251 Natural Mortality.
- Selectivity.
- 253 Other Estimated Parameters.
- 254 Other Fixed Parameters.

255	2.4 Model Selection and Evaluation model-selection-and-evaluation
256	2.4.1 Key Assumptions and Structural Choices key-assumptions-and-structural-choices
257	2.4.2 Alternate Models Considered alternate-models-considered
258	2.4.3 Convergence convergence
259	2.5 Response to the Current STAR Panel Requests response-to-the-current-star-panel-requests
260 261	Request No. 1:
262	Rationale: xxx
263	STAT Response: xxx
264	Request No. 2:
265	Todquest 110. 2.
266	Rationale: xxx
267	STAT Response: xxx
268 269	Request No. 3:
270	Rationale: x.
271	STAT Response: xxx
272	Request No. 4:
273	
274	Rationale: xxx
275	STAT Response: xxx
276 277	Request No. 5:
278	Rationale: xxx
279	STAT Response: xxx

30 2.6 Base Case Model Results

base-case-model-results

The following description of the model results reflects a base model that incorporates all of the changes made during the STAR panel (see previous section). The base model parameter estimates and their approximate asymptotic standard errors are shown in Table 2 and the likelihood components are in Table 3. Estimates of derived reference points and approximate 95% asymptotic confidence intervals are shown in Table e. Time-series of estimated stock size over time are shown in Table 4.

287 2.6.1 Parameter Estimates

parameter-estimates

The additional survey variability (process error added directly to each year's input variability) for all surveys was estimated within the model.

```
290 (Figure 5).
```

The stock-recruit curve ... Figure 6 with estimated recruitments also shown.

292 2.6.2 Fits to the Data

fits-to-the-data

Model fits to the indices of abundance, fishery length composition, survey length composition, and conditional age-at-length observations are all discussed below.

295 2.6.3 Uncertainty and Sensitivity Analyses

uncertainty-and-sensitivity-analyses

²⁹⁶ A number of sensitivity analyses were conducted, including:

- 1. Sensitivity 1
- 298 2. Sensitivity 2
- 3. Sensitivity 3
- 300 4. Sensitivity 4
- 5. Sensitivity 5, etc/

2.6.4 Retrospective Analysis

retrospective-analysis

303 2.6.5 Likelihood Profiles

likelihood-profiles

04 2.6.6 Reference Points

reference-points-1

Reference points were calculated using the estimated selectivities and catch distribution among fleets in the most recent year of the model, (2013). Sustainable total yield (landings plus discards) were 5.8 mt when using an $SPR_{50\%}$ reference harvest rate and with a 95% confidence interval of (3.7-7.9) mt based on estimates of uncertainty. The spawning biomass equivalent to 40% of the unfished level ($SB_{40\%}$) was 9.8 mt.

310 (Figure 7

The 2014 spawning biomass relative to unfished equilibrium spawning biomass is above/below the target of 40% of unfished levels (Figure 8). The relative fishing intensity, $(1 - SPR)/(1 - SPR_{50\%})$, has been xxx the management target for the entire time series of the model.

Table e shows the full suite of estimated reference points for the base model and Figure 9 shows the equilibrium curve based on a steepness value xxx.

3 Harvest Projections and Decision Tables

harvest-projections-and-decision-tables

- The forecasts of stock abundance and yield were developed using the final base model, with the forecasted projections of the OFL presented in Table g.
- The forecasted projections of the OFL for each model are presented in Table h.

321 4 Regional Management Considerations

regional-management-considerations

22 5 Research Needs

research-needs

There are a number of areas of research that could improve the stock assessment for China rockfish. Below are issues identified by the STAT team and the STAR panel:

325 1. **XXXX**:

- 326 2. **xxxx**:
- 3. **xxxx**:
- 328 4. **xxxx**:
- 5. **XXXX**:

330 6 Acknowledgments

acknowledgments

7 Tables

tables

Table 1: Results from 100 jitters from the base case model.

tab:jitter

Description	Value	NA	NA
Returned to base case	-	-	-
Found local minimum	-	-	-
Found better solution	-	-	-
Error in likelihood	-	-	-
Total	100	100	100

and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and Table 2: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum prior type information (mean, SD).

No. Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp. Val, SD)
1 NatM_p_1_Fem_GP_1	0.070	-3	(0.01, 0.15)			Log_Norm (-2.94, 0.53)
2 L-at_Amin_Fem_GP_1	2.000	-2	(-10, 45)			Normal $(2, 10)$
3 L-at_Amax_Fem_GP_1	35.411	9	(20, 50)	OK	0.364	Normal (34, 10)
4 VonBert_K-Fem_GP_1	0.147	9	(0.01, 0.3)	OK	900.0	Normal $(0.1, 0.8)$
5 CV_young_Fem_GP_1	0.100	9-	(0.01, 0.25)			None
6 CV_old_Fem_GP_1	0.080	9	(0.01, 0.25)	OK	0.007	None
$7 \text{ NatM}_{-p-1}\text{-Mal-GP}_{-1}$	0.000	-3	(-1, 0.15)			None
8 L-at_Amin_Mal_GP_1	0.000	-2	(-1, 45)			Normal $(2, 10)$
9 L-at_Amax_Mal_GP_1	0.000	-4	(-1, 50)			Normal (33.13, 10)
10 VonBert_K_Mal_GP_1	0.000	-4	(-1, 0.3)			Normal (0.2461, 0.8)
11 CV_young_Mal_GP_1	0.000	-3	(-1, 0.25)			None
12 CV_old_Mal_GP_1	0.000	-3	(-1, 0.25)			None
13 Wtlen_1_Fem	0.000	-3	(0, 1)			None
14 Wtlen_2_Fem	3.177	-3	(2, 4)			None
15 Mat50%.Fem	28.500	-3	(1, 100)			None
16 Mat_slope_Fem	-1.000	-3	(-9, 9)			None
17 Eggs/kg_inter_Fem	0.196	-3	(-3, 3)			None
18 Eggs/kg_slope_wt_Fem	0.057	-3	(-3, 3)			None
19 Wtlen_1_Mal	0.000	-3	(0, 1)			None
20 Wtlen_2_Mal	3.177	-3	(2, 4)			None
24 CohortGrowDev	0.000	-4	(0,0)			None
$25 ext{ SR-LN(R0)}$	3.531	П	(2, 12)	OK	0.177	None
26 SR_BH_steep	0.773	-3	(0.2, 1)			Full_Beta (0.773, 0.147)
27 SR_sigmaR	0.500	-3	(0, 2)			None
28 SR_envlink	0.100	-3	(-5, 5)			None
29 SR_R1_offset	0.000	-4	(-5, 5)			None

Continued on next page

Table 2: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

Žo.	No. Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp.Val, SD)
30	SR_autocorr	0.000	66-	(0,0)			None
89	InitF_11_WA_SouthernWA_Rec_PCPR	0.000		(0, 1)			None
69	InitF_22_WA_NorthernWA_Rec_PC	0.000		(0, 1)			None
20	InitF_33_WA_NorthernWA_Rec_PR	0.000		(0, 1)			None
71	Q-extraSD_3_3_WA_NorthernWA_Rec_PR	0.126	2	(0, 2)	OK	0.024	None
72	SizeSel_1P_1_1_WA_SouthernWA_Rec_PCPR	34.890	4-	(19, 36)			None
73	SizeSel_1P_2_1_WA_SouthernWA_Rec_PCPR	-4.000	6-	(-9, 5)			None
74	SizeSel_1P_3_1_WA_SouthernWA_Rec_PCPR	3.970	ಬ	(0, 9)	OK	0.364	None
75	SizeSel_1P_4_1_WA_SouthernWA_Rec_PCPR	8.000	6-	(0, 9)			None
92	SizeSel_1P_5_1_WA_SouthernWA_Rec_PCPR	-8.000	6-	(-9, 9)			None
22	SizeSel_1P_6_1_WA_SouthernWA_Rec_PCPR	8.000	6-	(-9, 9)			None
28	SizeSel_2P_1_2_WA_NorthernWA_Rec_PC	34.862	4	(19, 36)	OK	1.001	None
62	SizeSel_2P_2_2_WA_NorthernWA_Rec_PC	-4.000	6-	(-9, 5)			None
80	SizeSel_2P_3_2_WA_NorthernWA_Rec_PC	2.925	ಬ	(0, 9)	OK	0.347	None
81	SizeSel_2P_4_2_WA_NorthernWA_Rec_PC	8.000	6-	(0, 9)			None
85	SizeSel_2P_5_2_WA_NorthernWA_Rec_PC	-8.000	6-	(-9, 9)			None
83	SizeSel_2P_6-2_WA_NorthernWA_Rec_PC	8.000	6-	(-9, 9)			None

Table 3: Likelihood components from the base model.

tab:like_components

Likelihood component	Value
	7 002 00
TOTAL	1097.30
Catch	0.00
Survey	-98.12
Length composition	763.02
Age composition	421.52
Recruitment	10.88
Forecast recruitment	0.00
Parameter priors	0.00
Parmeter soft bounds	0.01

Table 4: Time-series of population estimates from the base-case model. Relative exploitation rate is $(1-SPR)/(1-SPR_{50\%})$.

Year	Total biomass (mt)	Spawning biomass (mt)	Depletion	Age-0 recruits	Total catch (mt)	Relative exploita- tion rate	SPR
1900	241	24	0.000	34	0	0.00	1.00
1901	241	$\overline{24}$	0.000	34	0	0.00	1.00
1902	241	$\overline{24}$	0.000	34	0	0.00	1.00
1903	241	24	0.000	34	0	0.00	1.00
1904	241	24	0.000	34	0	0.00	1.00
1905	241	24	0.000	34	0	0.00	1.00
1906	241	24	0.000	34	0	0.00	1.00
1907	241	24	0.000	34	0	0.00	1.00
1908	241	24	0.000	34	0	0.00	1.00
1909	241	24	0.000	34	0	0.00	1.00
1910	241	24	0.000	34	0	0.00	1.00
1911	241	24	0.000	34	0	0.00	1.00
1912	241	24	0.000	34	0	0.00	1.00
1913	241	24	0.000	34	0	0.00	1.00
1914	241	24	0.000	34	0	0.00	1.00
1915	241	24	0.000	34	0	0.00	1.00
1916	241	24	0.000	34	0	0.00	1.00
1917	241	24	0.000	34	0	0.00	1.00
1918	241	24	0.000	34	0	0.00	1.00
1919	241	24	0.000	34	0	0.00	1.00
1920	241	24	0.000	34	0	0.00	1.00
1921	241	24	0.000	34	0	0.00	1.00
1922	241	24	0.000	34	0	0.00	1.00
1923	241	24	0.000	34	0	0.00	1.00
1924	241	24	0.000	34	0	0.00	1.00
1925	241	24	0.000	34	0	0.00	1.00
1926	241	24	0.000	34	0	0.00	1.00
1927	241	24	0.000	34	0	0.00	1.00
1928	241	24	0.000	34	0	0.00	1.00
1929	241	24	0.000	34	0	0.00	1.00
1930	241	24	0.000	34	0	0.00	1.00
1931	241	24	0.000	34	0	0.00	1.00
1932	241	24	0.000	34	0	0.00	1.00
1933	241	24	0.000	34	0	0.00	1.00
1934	241	24	0.000	34	0	0.00	1.00
1935	241	24	0.000	34	0	0.00	1.00
1936	241	24	0.000	34	0	0.00	1.00

Continues next page

Table 4: Time-series of population estimates from the base-case model. Relative exploitation rate is $(1 - SPR)/(1 - SPR_{50\%})$.

Year	Total biomass (mt)	Spawning biomass (mt)	Depletion	Age-0 recruits	Total catch (mt)	Relative exploita- tion rate	SPR
1937	241	24	0.000	34	0	0.00	1.00
1938	241	24	0.000	34	0	0.00	1.00
1939	241	24	0.000	34	0	0.00	1.00
1940	241	24	0.000	34	0	0.00	1.00
1941	241	24	0.000	34	0	0.00	1.00
1942	241	24	0.000	34	0	0.00	1.00
1943	241	24	0.000	34	0	0.00	1.00
1944	241	24	0.000	34	0	0.00	1.00
1945	241	24	0.000	34	0	0.00	1.00
1946	241	24	0.000	34	0	0.00	1.00
1947	241	24	0.000	34	0	0.00	1.00
1948	241	24	0.000	34	0	0.00	1.00
1949	241	24	0.000	34	0	0.00	1.00
1950	241	24	0.000	34	0	0.00	1.00
1951	241	24	0.000	34	0	0.00	1.00
1952	241	24	0.000	34	0	0.00	1.00
1953	241	24	0.000	34	0	0.00	1.00
1954	241	24	0.000	34	0	0.00	1.00
1955	241	24	0.000	34	0	0.00	1.00
1956	241	24	0.000	34	0	0.00	1.00
1957	241	24	0.000	34	0	0.00	1.00
1958	241	24	0.000	34	0	0.00	1.00
1959	241	24	0.000	34	0	0.00	1.00
1960	241	24	0.000	34	0	0.00	1.00
1961	241	24	0.000	34	0	0.00	1.00
1962	241	24	0.000	34	0	0.00	1.00
1963	241	24	0.000	34	0	0.00	1.00
1964	241	24	0.000	34	0	0.00	1.00
1965	241	24	0.000	34	0	0.00	1.00
1966	241	24	0.000	34	0	0.00	1.00
1967	241	24	0.000	34	1	0.00	0.91
1968	240	24	0.994	34	2	0.00	0.89
1969	238	24	0.987	34	2	0.17	0.87
1970	237	24	0.980	34	2	0.20	0.86
1971	235	24	0.971	34	2	0.23	0.84
1972	233	23	0.961	34	3	0.26	0.82
1973	231	23	0.951	34	3	0.29	0.80

Continues next page

Table 4: Time-series of population estimates from the base-case model. Relative exploitation rate is $(1 - SPR)/(1 - SPR_{50\%})$.

Year biomass biomass (mt) Spawning Depletion sports Age-0 recruits Total catch (mt) Relative exploitation rate 1974 229 23 0.940 34 3 0.32 0.79 1975 226 23 0.928 34 4 0.35 0.77 1976 224 22 0.915 34 2 0.19 0.86 1977 223 22 0.911 34 1 0.14 0.89 1978 223 22 0.990 34 4 0.39 0.75 1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 21 0.878 34 3 0.29 0.80 1982 217 21 0.878 34 3 0.36 0.77 1984 214 21 0.864 34 3	Year	Total	Spawning	Depletion	Age-0	Total	Relative	SPR
(mt) (mt) tion rate 1974 229 23 0.940 34 3 0.32 0.79 1975 226 23 0.928 34 4 0.35 0.77 1976 224 22 0.915 34 2 0.19 0.86 1977 223 22 0.911 34 1 0.14 0.89 1978 223 22 0.909 34 4 0.39 0.75 1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 21 0.878 34 3 0.29 0.83 1982 217 21 0.878 34 3 0.29 0.83 1983 215 21 0.864 34 3 0.36 0.77 1985 212 21	rear			Depletion	_			5110
1974 229 23 0.940 34 3 0.32 0.79 1975 226 23 0.928 34 4 0.35 0.77 1976 224 22 0.915 34 2 0.19 0.86 1977 223 22 0.909 34 4 0.39 0.75 1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 22 0.882 34 3 0.27 0.82 1981 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42					10010100	(1110)	-	
1975 226 23 0.928 34 4 0.35 0.77 1976 224 22 0.915 34 2 0.19 0.86 1977 223 22 0.911 34 1 0.14 0.89 1978 223 22 0.909 34 4 0.39 0.75 1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 22 0.882 34 2 0.24 0.83 1982 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.36 0.77 1985 212 21 0.864 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42		(1110)	(1110)				01011 1000	
1976 224 22 0.915 34 2 0.19 0.86 1977 223 22 0.911 34 1 0.14 0.89 1978 223 22 0.909 34 4 0.39 0.75 1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1985 212 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53	1974	229	23	0.940	34	3	0.32	0.79
1977 223 22 0.911 34 1 0.14 0.89 1978 223 22 0.909 34 4 0.39 0.75 1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 22 0.882 34 2 0.24 0.83 1983 215 21 0.871 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53	1975	226	23	0.928	34	4	0.35	0.77
1978 223 22 0.909 34 4 0.39 0.75 1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 22 0.882 34 2 0.24 0.83 1982 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65	1976	224	22	0.915	34	2	0.19	0.86
1979 220 22 0.896 34 3 0.31 0.79 1980 219 22 0.888 34 3 0.27 0.82 1981 217 22 0.882 34 2 0.24 0.83 1982 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 192 20 0.807 34 7 0.77	1977	223	22	0.911	34	1	0.14	0.89
1980 219 22 0.888 34 3 0.27 0.82 1981 217 22 0.882 34 2 0.24 0.83 1982 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1986 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90	1978	223	22	0.909	34	4	0.39	0.75
1981 217 22 0.882 34 2 0.24 0.83 1982 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89	1979	220	22	0.896	34	3	0.31	0.79
1982 217 21 0.878 34 3 0.29 0.80 1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89	1980	219	22	0.888	34	3	0.27	0.82
1983 215 21 0.871 34 3 0.32 0.79 1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78	1981	217	22	0.882	34	2	0.24	0.83
1984 214 21 0.864 34 3 0.36 0.77 1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58	1982	217	21	0.878	34	3	0.29	0.80
1985 212 21 0.856 34 3 0.36 0.77 1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51	1983	215	21	0.871	34	3	0.32	0.79
1986 211 21 0.849 34 4 0.42 0.73 1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.33	1984	214	21	0.864	34	3	0.36	0.77
1987 209 20 0.839 34 5 0.53 0.69 1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.33 0.77 1998 183 17 0.708 33 3 0.33	1985	212	21	0.856	34	3	0.36	0.77
1988 206 20 0.825 34 6 0.65 0.64 1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.705 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24	1986	211	21	0.849	34	4	0.42	0.73
1989 202 20 0.807 34 7 0.77 0.60 1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.705 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30	1987	209	20	0.839	34	5	0.53	0.69
1990 198 19 0.786 33 8 0.90 0.56 1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37	1988	206	20	0.825	34	6	0.65	0.64
1991 193 19 0.761 33 4 0.50 0.69 1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44	1989	202	20	0.807	34	7	0.77	0.60
1992 192 18 0.753 33 8 0.89 0.56 1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.724 33 2 0.30	1990	198	19	0.786	33	8	0.90	0.56
1993 187 18 0.732 33 7 0.78 0.59 1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29	1991	193	19	0.761	33	4	0.50	0.69
1994 184 18 0.716 33 5 0.58 0.66 1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.732 33 3 0.32	1992	192	18	0.753	33	8	0.89	0.56
1995 183 17 0.709 33 4 0.51 0.69 1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.734 33 2 0.28	1993	187	18	0.732	33	7	0.78	0.59
1996 182 17 0.705 33 3 0.35 0.76 1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.738 33 3 0.35	1994	184	18	0.716	33	5	0.58	0.66
1997 183 17 0.708 33 3 0.33 0.77 1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.33	1995	183	17	0.709	33	4	0.51	0.69
1998 183 17 0.711 33 2 0.24 0.82 1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.33 0.77	1996	182	17	0.705	33	3	0.35	0.76
1999 185 18 0.717 33 2 0.30 0.79 2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	1997	183	17	0.708	33	3	0.33	0.77
2000 185 18 0.720 33 3 0.37 0.75 2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.33 0.77	1998	183	17	0.711	33	2	0.24	0.82
2001 186 18 0.722 33 4 0.44 0.72 2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.33 0.75 2009 189 18 0.738 33 3 0.33 0.77	1999	185	18	0.717	33	2	0.30	0.79
2002 185 18 0.720 33 2 0.30 0.79 2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	2000	185	18	0.720	33	3	0.37	0.75
2003 186 18 0.724 33 2 0.29 0.80 2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	2001	186	18	0.722	33	4	0.44	0.72
2004 187 18 0.728 33 2 0.27 0.81 2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	2002	185	18	0.720	33	2	0.30	0.79
2005 188 18 0.732 33 3 0.32 0.78 2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	2003	186	18	0.724	33	2	0.29	0.80
2006 188 18 0.734 33 2 0.28 0.80 2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	2004	187	18	0.728	33		0.27	0.81
2007 189 18 0.738 33 3 0.35 0.76 2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	2005	188	18	0.732	33	3	0.32	0.78
2008 189 18 0.738 33 3 0.38 0.75 2009 189 18 0.738 33 3 0.33 0.77	2006	188	18	0.734	33	2	0.28	0.80
2009 189 18 0.738 33 0.33 0.77	2007	189	18	0.738	33	3	0.35	0.76
	2008	189	18	0.738	33	3	0.38	0.75
<u>2010</u> 189 18 0.739 33 4 0.44 0.72	2009	189	18	0.738	33	3	0.33	0.77
	2010	189	18	0.739	33	4	0.44	0.72

Continues next page

Table 4: Time-series of population estimates from the base-case model. Relative exploitation rate is $(1 - SPR)/(1 - SPR_{50\%})$.

Year	Total biomass (mt)	Spawning biomass (mt)	Depletion	Age-0 recruits	Total catch (mt)	Relative exploita- tion rate	SPR
2011	188	18	0.736	33	3	0.39	0.74
2012	188	18	0.735	33	3	0.35	0.76
2013	188	18	0.736	33	3	0.41	0.74
2014	188	18	0.734	33	3	0.36	0.76
2015	188	18	0.734	33			

Table 5: Sensitivity of the base model to dropping or down-weighting data sources and alternative assumptions about growth.

Label	Base	Default	Harmonic	Estimate	$\operatorname{Estimate}$	Drop PR	Drop PC	Drop
	(Francis	weights	mean	equal M	equal M	data	data	RecDD
	weights)		weights		and h			data
TOTAL_like	1	ı	1	ı	1	1	1	
Catch_like	ı	ı	ı	ı	ı	ı	ı	ı
Equil_catch_like	ı	ı	ı	ı	1	I	1	1
Survey_like	ı	ı	ı	ı	1	I	1	1
Length_comp_like	ı	ı	ı	ı	ı	ı	ı	ı
Age_comp_like	ı	ı	ı	ı	ı	ı	ı	ı
Parm_priors_like	ı	ı	ı	ı	1	ı	1	1
SSB_Unfished_thousand_mt	ı	ı	ı	ı	ı	ı	ı	1
TotBio_Unfished	ı	ı	ı	ı	ı	ı	ı	1
SmryBio_Unfished	ı	ı	ı	ı	1	ı	1	1
Recr_Unfished_billions	ı	ı	ı	ı	1	ı	1	1
SSB_Btgt_thousand_mt	ı	ı	ı	ı	1	ı	1	1
${ m SPR_Btgt}$	ı	ı	ı	ı	1	ı	1	1
Fstd_Btgt	ı	ı	ı	ı	ı	ı	ı	1
Tot Yield_Btgt_thousand_mt	ı	ı	ı	ı	ı	ı	1	1
SSB_SPRtgt_thousand_mt	ı	ı	ı	ı	1	ı	1	1
Fstd_SPRtgt	ı	ı	ı	ı	1	ı	1	1
TotYield_SPRtgt_thousand_mt	ı	ı	ı	ı	ı	ı	ı	1
SSB_MSY_thousand_mt	ı	ı	1	ı	ı	ı	ı	1
SPR_MSY	ı	ı	ı	ı	1	ı	1	ı
Fstd_MSY	ı	ı	ı	ı	ı	ı	1	1
TotYield_MSY_thousand_mt	ı	ı	ı	ı	ı	ı	1	1
Ret Yield_MSY	ı	ı	ı	ı	ı	ı	ı	1
Bratio_2015	ı	1	1	ı	ı	ı	ı	ı
$F_{-}2015$	ı	ı	ı	ı	1	ı	ı	ı
SPRratio_2015	ı	ı	ı	ı	1	ı	1	1
Recr_2015	ı	ı	ı	ı	1	ı	1	1
Recr_Virgin_billions	ı	ı	ı	ı	1	ı	ı	1
L-at_Amin_Fem_GP_1	ı	ı	ı	ı	1	ı	1	1
L_at_Amax_Fem_GP_1	ı	ı	ı	ı	1	ı	1	1
VonBert_K_Fem_GP_1	ı	ı	ı	ı	ı	ı	ı	1
CV_young_Fem_GP_1	ı	ı	ı	ı	1	ı	1	1
1 d 2 d 11 75								

Table 6: Summary of the biomass/abundance time series used in the stock assessment.

tab:Index_summary	Endorsed	SSC	ט ט)	SSC		SSC		SSC	SSC		SSC		SSC	
tab:Inde	Method	delta-GLM	(bin-lognormal)	binomial	delta-GLM	(bin-lognormal)	delta-GLM	(bin-lognormal)	VAST	delta- GLM	(bin-lognormal)	delta-GLM	(bin-lognormal)	delta- GLM	(bin-lognormal)
	, Filtering	trip, area, regulations,	Stephens-MacCall	depth, sample size	habitat, regulations, effort,	boats	sample size, depth, tow	times	depth, area	gear, site, month		depth, area		habitat, regulations, effort,	boats
	Fishery	No	Z		$N_{\rm o}$		Yes		Yes	Yes		Yes		$N_{\rm O}$	
	Name	Recreational PR dockside CPUE	CPEV logbook CPITE		Onboard observer discard catch	CPUE	Sanitation district CPUE		NWFSC trawl survey CPUE	CSUN/VRG Gillnet survey CPUE		Southern California Bight trawl	survey CPUE	Onboard observer retained catch	CPUE
	Years	2004-2016	1980-2016	0000	2002-2016		1970-2016		2003-2016	1995-2008		1994; 1998;	2003; 2008; 2013	2002-2016	
	Fleet	4	Σ	o .	9		_		∞	6		11		12	

parameters are exponential offsets from female parameters, and depletion and SPR ratio are for the year of 2017. The base model includes all of the data. Retrol removes the last year of data (2016), Retro2 removes the last two years of data, Retro3 Table 7: Summaries of key assessment outputs and likelihood values from the retrospective analysis. Note that male growth removes three years and Retro4 removes four years.

tab:retro

Label Domelo notunel mentalitu	7		0+20	70+20	7
Domele netunel mentelitu	Dasc	Retroi	Derioz	TIGHTOO	Retro4
remaie natural mortanty	0.26	0.26	0.26	0.26	0.26
Steepness	0.72	0.72	0.72	0.72	0.72
lnR0	8.16	8.09	8.07	8.04	8.08
Total Biomass (mt)	2796.86	2593.78	2568.77	2498.07	2650.36
Depletion	57.41	53.57	50.74	50.72	54.78
SPR ratio	0.72	0.76	0.79	0.80	0.74
Female Lmin	12.43	12.45	12.90	12.63	13.03
Female Lmax	33.31	33.50	33.39	33.37	33.46
Female K	0.25	0.24	0.24	0.25	0.23
Male Lmin (offset)	0.00	0.00	0.00	0.00	0.00
Male Lmax (offset)	-0.16	-0.16	-0.15	-0.16	-0.15
Male K (offset)	-0.29	-0.30	-0.43	-0.41	-0.56
Negative log-likelihood	1097.30	1047.56	1009.37	961.81	897.04
No. parameters	0.00	0.00	0.00	0.00	0.00
TOTAL	0.00	0.00	0.00	0.00	0.00
Equililibrium catch	-98.12	-92.00	-89.12	-81.75	-80.59
Survey	763.02	739.90	720.39	700.10	99.029
Length composition	421.52	390.56	369.97	336.26	299.84
Age composition	10.88	60.6	8.12	7.20	7.12
Recruitment	0.00	0.00	0.00	0.00	0.00
Forecast Recruitment	0.00	0.00	0.00	0.00	0.00
Parameter priors	0.01	0.01	0.01	0.01	0.01

Table 8: Summaries of key assessment outputs and likelihood values from selected likelihood profile runs on virgin recruitment (lnR0) and steepness. Note that male growth parameters are exponential offsets from female parameters, and depletion and SPR ratio are for the year of 2017.

Label	R07400	R07800	R08200	R08600	R09000	h0410	h0570	h0710	h0870	ho 660 m u
Female M	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
Steepness	0.72	0.72	0.72	0.72	0.72	0.41	0.57	0.71	0.87	0.99
$\ln \mathrm{R0}$	7.40	7.80	8.20	8.60	9.00	8.34	8.21	8.16	8.13	8.11
Total biomass (m)	1623.19	2113.03	2894.72	4173.95	6142.97	3313.42	2943.85	2802.69	2712.12	2667.97
Depletion (%)	46.83	49.83	58.31	66.23	71.80	51.20	55.27	57.32	58.81	59.60
SPR ratio	1.05	0.91	0.70	0.49	0.34	89.0	0.71	0.72	0.72	0.73
Female Lmin	12.16	12.41	12.43	12.39	12.36	12.43	12.44	12.43	12.43	12.43
Female Lmax	34.29	33.83	33.26	32.76	32.42	33.19	33.28	33.31	33.33	33.34
Female K	0.24	0.25	0.25	0.26	0.26	0.25	0.25	0.25	0.25	0.25
Male Lmin (offset)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Male Lmax (offset)	-0.18	-0.17	-0.16	-0.15	-0.15	-0.16	-0.16	-0.16	-0.16	-0.16
Male K (offset)	-0.22	-0.31	-0.29	-0.24	-0.21	-0.27	-0.29	-0.29	-0.30	-0.30
Negative log-likelihood										
TOTAL	1117.15	1101.02	1097.33	1099.69	1102.95	1101.35	1098.58	1097.35	1096.72	1100.21
Catch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Equil_catch	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Survey	-100.10	-99.20	-97.99	-97.00	-96.37	-98.27	-98.18	-98.12	-98.06	-98.03
$Length_comp$	761.18	760.12	763.44	767.61	220.76	765.11	763.69	763.05	762.58	762.33
Age_comp	437.32	427.37	421.09	418.57	417.98	420.58	421.24	421.51	421.68	421.77
Recruitment	18.74	12.72	10.80	10.50	10.58	12.55	11.40	10.90	10.56	10.38
Forecast_Recruitment	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$Parm_{-}priors$	0.00	0.00	0.00	0.00	0.00	1.38	0.42	0.01	-0.04	3.76
$Parm_soft bounds$	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
$Parm_devs$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Crash_Pen	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

mortality. Note that male growth parameters are exponential offsets from female parameters, and depletion and SPR ratio are for the year of 2017. Table 9: Summaries of key assessment outputs and likelihood values from selected likelihood profile runs on female natural

tab:like_profiles																									
M0400	0.40	0.72	31.00	9753570000000.00	79.74	0.00	12.24	33.73	0.24	0.00	-0.15	-0.36		1091.52	0.00	0.00	-98.95	755.26	425.16	9.54	0.00	0.51	0.00	0.00	0.00 0.00
M0350	0.35	0.72	12.21	89473.50	79.27	0.03	12.39	33.25	0.25	0.00	-0.15	-0.32		1089.92	0.00	0.00	-98.33	759.19	418.75	10.05	0.00	0.25	0.00	0.00	0.00
M0300	0.30	0.72	8.95	4632.81	80.89	0.41	12.43	33.31	0.25	0.00	-0.15	-0.31		1092.96	0.00	0.00	-98.33	760.88	420.05	10.30	0.00	0.00	0.01	0.00	0.00
M0260	0.26	0.72	8.20	2861.79	58.15	0.70	12.44	33.31	0.25	0.00	-0.16	-0.30		1096.96	0.00	0.00	-98.14	762.85	421.41	10.82	0.00	0.00	0.01	0.00	0.00
M0220	0.22	0.72	29.2	2259.39	47.72	0.97	12.39	33.23	0.25	0.00	-0.16	-0.27		1102.66	0.00	0.00	-97.79	765.50	422.97	11.91	0.00	0.00	0.01	0.00	0.00
Label	Female M	Steepness	$\ln \mathrm{R0}$	Total biomass (m)	Depletion (%)	SPR ratio	Female Lmin	Female Lmax	Female K	Male Lmin (offset)	Male Lmax (offset)	Male K (offset)	Negative log-likelihood	TOTAL	Catch	Equil_catch	Survey	Length_comp	Age_comp	Recruitment	Forecast_Recruitment	Parm_priors	Parm_softbounds	Parm_devs	Crash_Pen

Table 10: Projection of potential OFL, spawning biomass, and depletion for the base case model.

Yr	OFL contribution	ACL landings (mt)	Age 5+ biomass (mt)	Spawning Biomass (mt)	tab:Forecast_mod1 Depletion			
	(mt)	4.050	100 700	1 - 0 - 0	0.24			
2015	9.505	1.970	182.580	17.950	0.734			
2016	9.570	2.030	183.586	18.068	0.739			
2017	9.629	8.815	184.496	18.177	0.744			
2018	9.289	8.503	179.232	17.554	0.718			
2019	8.977	8.217	174.479	16.983	0.695			
2020	8.691	7.956	170.207	16.465	0.674			
2021	8.433	7.719	166.384	15.997	0.655			
2022	8.199	7.506	162.976	15.577	0.637			
2023	7.990	7.314	159.934	15.200	0.622			
2024	7.803	7.142	157.222	14.864	0.608			
2025	7.636	6.990	154.802	14.566	0.596			
2026	7.488	6.854	152.641	14.302	0.585			

8 Figures

figures

Figure 1: Map showing the state boundary lines for management of the recreational fishing fleets fig:boundary_map

Figure 2: Summary of data sources used in the Northern model. fig:data_plot

Figure 3: Length comp data, aggregated across time by fleet. Labels 'retained' and 'discard' indicate discarded or retained sampled for each fleet. Panels without this designation represent the whole catch. fig:comp_lendat_aggregated_across_time

Length-based selectivity by fleet in 2014

Figure 4: Selectivity at length for all of the fleets in the base model. fig:sel01_multiple_fleets

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure 5: Estimated time-series of recruitment for China rockfish. fig:ts11_Age-0_recruits_

Figure 6: Estimated recruitment (red circles) and the assumed stock-recruit relationship (black line) for China rockfish. The green line shows the effect of the bias correction for the lognormal distribution.

Figure continued from previous page

Length (cm) 346

347

Figure continued from previous page

Spawning output with ~95% asymptotic intervals

Figure 7: Estimated spawning biomass (mt) with approximate 95% asymptotic intervals. fig:ts7_Spawn

Spawning depletion with ~95% asymptotic intervals

Figure 8: Estimated spawning depletion with approximate 95% asymptotic intervals. fig:ts9_Spawnin

Figure 9: Equilibrium yield curve for the base case model. Values are based on the 2014 fishery selectivity and with steepness fixed at 0.718. fig:yield1_yield_curve

Figure A10: Length comps, retained, 1_WA_SouthernWA_Rec_PCPR. 'N adj.' is the input sample size after data_weighting adjustment. N eff. is the calculated effective sample size used in the McAllister_Iannelli tuning method. fig:mod1_1_comp_lenfit_flt1mkt2

Appendix A. Detailed fits to length composition data

appendix-a.-detailed-fits-to-length-composition-data

Figure A11: Length comps, retained, 3_WA_NorthernWA_Rec_PR. 'N adj.' is the input sample size after data_weighting adjustment. N eff. is the calculated effective sample size used in the McAllister_Iannelli tuning method. fig:mod1_2_comp_lenfit_flt3mkt2

References

references

- Bertalanffy, L. von. 1938. A quantitative theory of organic growth. Human Biology **10**: 181–213.
- Hamel, O. 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES Journal of Marine Science **72**: 62–69.
- Love, M.S., Axell, B., Morris, P., Collins, R., and Brooks, A. 1987. Life history and fishery of the California scorpionfish, *Scorpaena guttata*, within the Southern California Bight. Fishery Bulletin **85**: 99–116.