Deep Learning

Optimization for Training Deep Models

Gunhee Kim

Computer Science and Engineering

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization
 - Approximate Second-order Methods
- Challenges in Neural Network Optimization
- Optimization Strategies and Meta-Algorithms

Cost Function

If we exactly know the performance measure *P* of test sets, it is an *optimization* problem

• If not, we define a cost function $J(\theta)$ so that Minimizing $J(\theta) \sim \text{maximizing } P$

Cost function as an average over the training set

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \hat{p}_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{y})$$

- L: the per-example loss function, $f(x; \theta)$: predicted output
- \hat{p}_{data} : empirical distribution, y: target output

Risk (expected generalization error)

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim p_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{y})$$

• p_{data} : true data generating distribution

Cost Function

Empirical risk

• If the data are iid, the error function J is a sum of error functions J_m , one per data point

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \hat{p}_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y) = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

Empirical risk minimization is prone to overfitting

• Models with high capacity can simply memorize the training set

Gradient Descent

The (almost) simplest algorithm in the world

Although it may not be often the most efficient method

Gradient $\partial f(x)/\partial x$ at x is the direction where f(x) increases

• The negative $-\partial f(x)/\partial x$ is called steepest descent direction

Gradient Descent

Goal: minimize_x f(x)

Procedure

- Start from initial point x₀
- Just iterate $x_{k+1} = x_k \varepsilon_k \nabla J(x_k)$
- ε_k is a stepsize at iteration k

Stepsize is an issue

Batch Gradient Descent in Machine Learning

Find a parameter set θ to minimize error function $J(\theta)$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \varepsilon_k \nabla J(\boldsymbol{\theta}_k)$$

Batch (deterministic) gradient descent

Process all examples together in each step

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \varepsilon_k \boldsymbol{g}$$
 where $\boldsymbol{g} = \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^m L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$

- Entire training set examined at each step
- Very slow when n is very large

Mini-Batch Gradient Descent

Computing the exact gradient is expensive

 This seems wasteful because there will be only a small change in the weights

Stochastic gradient descent (or online learning)

- If each batch contains just one example
- Much faster than exact gradient descent
- Effective when combined with momentum

Select examples randomly (or reorder and choose in order)

• for i = 1 to n:

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \varepsilon_k \boldsymbol{g}$$
 where $\boldsymbol{g} = \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$

Stochastic Gradient Descent

Does it converge? [Leon Bottou, 1998]

 When the leaning rate decreases with an appropriate rate and (with mild assumptions), SGD converges

$$\sum_{k=1}^{\infty} \varepsilon_k = \infty$$
 and $\sum_{k=1}^{\infty} \varepsilon_k^2 < \infty$

The learning rate (or step size) is a free parameter

- No general prescriptions for selecting appropriate learning rate
- Even no fixed rate appropriate for entire learning period

Too large size: Divergence

Too small size: Slow convergence

Mini-Batch Gradient Descent

Mini-batch optimization

- Divide the dataset into small batches of examples, compute the gradient using a single batch, make an update, then move to the next batch
- Good for multicore or parallel architectures
- Particularly good for GPU that is very good at matrix computation (power of 2 batch sizes)
- Small batches can offer a regularizing effect (due to the noise by random sampling)

Convergence is very sensitive to learning rate

- Oscillations near solution due to probabilistic nature of sampling
- Need to decrease with time to ensure the algorithm converges

Gradient Descent with Momentum

Original Gradient Descent

Gradient Descent with Momentum

• v^i is the weighted sum of all the previous gradient $(\nabla C(\theta^0), \nabla C(\theta^1), \cdots, \nabla C(\theta^{i-1}))$

Gradient Descent with Momentum

Nesterov's Accelerated Gradient

Do not compute the gradient at old state

Gradient descent, Momentum, NAG

Physical analogy

- Momentum = (mass) × (velocity)
- Force: the negative gradient
- Velocity v: exponentially decaying average of negative gradient

Gradient descent, Momentum, NAG

Given a minibatch of m training examples: $\{(x^{(i)}, y^{(i)})\}$

SGD

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Apply update $\theta \leftarrow \theta \varepsilon g$

SGD with momentum

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Compute the velocity update: $v \leftarrow \alpha v \varepsilon g$
- Apply update $\theta \leftarrow \theta + v$

SGD with Nesterov momentum

- Apply interim update: $\widehat{\theta} \leftarrow \theta + v$
- Compute gradient at interim point: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\widehat{\boldsymbol{\theta}}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \widehat{\boldsymbol{\theta}}), y^{(i)})$
- Compute the velocity and update: $v \leftarrow \alpha v \varepsilon g$ and $\theta \leftarrow \theta + v$

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization
 - Approximate Second-order Methods
- Challenges in Neural Network Optimization
- Optimization Strategies and Meta-Algorithms

How to Set Learning Rates

One of the most difficult hyperparameters to set

Popular assumption: Reduce the learning rate by some factor every few epochs

- At the beginning, we are far from a minimum, so we use larger learning rate
- After several epochs, we are close to a minimum, so we reduce the learning rate
- 1/t decay: $\varepsilon = \varepsilon_0/(1+kt)$ where t is the iteration number, and ε_0 , k are hyperparameters
- Exponential decay: $\varepsilon = \varepsilon_0 \exp(-kt)$

Adaptive Learning Rates

Each parameter should have different learning

 Automatically adapt the axis-aligned learning rates throughout the course of learning

Adagrad

Different adaptive learning rates for each weight

- Divide the learning rate element-wise by history of average gradient
- If w has small average gradient \rightarrow large learning rate If w has large average gradient \rightarrow small learning rate

Loop

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Accumulate squared gradient: : $r \leftarrow r + g \odot g$
- Apply update $\theta \leftarrow \theta \varepsilon/(\delta + \sqrt{r}) \odot g$

Empirical behavior

 The accumulation of squared gradients from the beginning of training can cause a excessive decrease in the learning rate

RMSprop

Suggested by G. Hinton in the Coursera course lecture 6

- Problem of AdaGrad: shrink the learning rate according to the entire history of the squared gradient (too small before arriving)
- Exponentially decaying average to discard history from the extreme past
- Still modulates the learning rate of each weight

Loop

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Accumulate squared gradient: : $r \leftarrow \rho r + (1 \rho) g \odot g$
- Apply update $\theta \leftarrow \theta \varepsilon/(\sqrt{\delta + r}) \odot g$

One of the go-to optimization method for deep learning

Adam (Adaptive Moments)

RMSProp + momentum

- Consider both first-order and second-order moments
- Include bias correction

Loop

- Compute gradient estimate: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- Update the first/second moment: $s \leftarrow \rho_1 s + (1 \rho_1) g$ and $r \leftarrow \rho_2 r + (1 \rho_2) g \odot g$ where ρ_1/ρ_2 : exponential decay rate
- Correct biases: $\hat{s} \leftarrow s/(1-\rho_1^t)$ and $\hat{r} \leftarrow r/(1-\rho_2^t)$
- Apply update $\theta \leftarrow \theta \varepsilon \hat{s}/(\sqrt{\hat{r}} + \delta) \odot g$

Visualizing Optimization Algorithms

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization
 - Approximate Second-order Methods
- Challenges in Neural Network Optimization
- Optimization Strategies and Meta-Algorithms

Parameter Initialization

Initialization is critical!

Only heuristic recommendation

- Neural network optimization is not yet well understood
- How do we set the initial point?
- How does the initial point affect generalization?

Heuristics #1: Break symmetry between different units

- The units at the same layers should be initialized differently
- Otherwise, they are constantly updated in the same way
- One solution: Gram-Schmidt orthogonalization on an initial weight matrix
- Alternative: Random initialization (much cheaper and good enough in a high-entropy distribution in a high-D space)

Parameter Initialization

Heuristics #2: Simply drawn from a Gaussian or uniform

However, magnitudes and scales matter

Trade-off for larger initial weights

- Help avoid losing signal during forward/back-propagation
- May cause exploding values, sensitivity to small perturbation, and loss of gradient through saturated units
- Smaller values encourage regularization

Later, we will discuss Xavier & MSRA initiallization

Parameter Initialization

Other parameter settings are easier

- Simply set the biases to zero
- Safely initialize variance or precision parameters to 1

Practical tips (from pre-training and fine-tuning)

- Initialize a supervised model with the parameters learned by an unsupervised model trained on the same inputs
- Use the parameters learned on a related task
- Sometimes, the parameters on a unrelated task may help
- Other tips: regards multiple settings as hyper-parameters, and test with a single mini-batch of data

Xavier Initialization

Suggest to initialize the weights from a distribution with zero mean and variance:

$$Var(W) = \frac{2}{n_{in} + n_{out}}$$

Xavier Glorot and Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks, AISTAT 2010.

Derive the Xavier Initialization

Assumptions

- Dense and linear activations: $Y = W_1X_1 + W_2X_2 + \cdots + W_nX_n$
- X, Y, W are independent

Derivation

Variance product of independent variables

$$Var(XY) = [E(X)]^{2}Var(Y) + [E(Y)]^{2}Var(X) + Var(X)Var(Y)$$

• Thus, $Var(W_iX_i)$

$$= [E(X_i)]^2 Var(W_i) + [E(W_i)]^2 Var(X_i) + Var(X_i) Var(W_i)$$

$$= Var(X_i) Var(W_i) \quad (\because E(X_i) = 0, E(W_i) = 0)$$

• Finally,
$$Var(Y) = Var(W_1X_1 + W_2X_2 + \dots + W_nX_n)$$

= $nVar(X_i)Var(W_i)$ (: X_i, W_i are i.i.d)

Derive the Xavier Initialization

What we want is $Var(Y) = Var(X_i)_{i \in [1,n]}$

- $Var(Y) = nVar(W_i)Var(X_i)$ from previous slide
- Thus, $nVar(W_i) = 1$

$$Var(W_i) = \frac{1}{n} = \frac{1}{n_{in}}$$

The same steps for the backpropagation

$$Var(W_i) = \frac{1}{n_{out}}$$

Take the average of the two

• It is not easy to satisfy both constraints (only if $n_{in} + n_{out}$)

$$Var(W_i) = \frac{2}{n_{in} + n_{out}}$$

Why is Xavier Initialization Important?

Make sure the weights are 'just right', keeping the signal in a reasonable range through many layers

- If the weights start too small, then the signal shrinks as it passes through each layer
- If the weights start too large, then the signal grows as it passes through each layer

Without proper initialization

Single layer

$$Var(Y) = n_{in}Var(W)Var(X)$$

Multiple layers

$$Var(Y) = \left[\prod_{d} n_{in}^{d} Var(W_{d})\right] Var(X)$$

Why is Xavier Initialization Important?

Both forward (response) and backward (gradient) signal can vanish/explode

• Forward:
$$Var(Y) = \left[\prod_{d} n_{in}^{d} Var(W_{d})\right] Var(X)$$

• Backward:
$$Var\left(\frac{\partial}{\partial X}\right) = \left[\prod_{d} n_{out}^{d} Var(W_{d})\right] Var\left(\frac{\partial}{\partial X}\right)$$

What Xavier does

• Forward: $n_{in}^d Var(W_d) = 1$

• Backward: $n_{out}^d Var(W_d) = 1$

exploding

MSRA Initialization

Initialization under ReLU

- ReLU removes almost half of input variance is also halved
- So, we should use doubled variance

$$Var(W) = \frac{2}{n}, std(W) = \sqrt{\frac{2}{n}}$$

MSRA initialization

- Forward: $\prod_{d} \frac{1}{2} n_{in}^{d} Var(W_{d}) \Rightarrow \frac{1}{2} n_{in}^{d} Var(W_{d}) = 1$
- Backward: $\prod_{d} \frac{1}{2} n_{out}^{d} Var(W_{d}) \Rightarrow \frac{1}{2} n_{out}^{d} Var(W_{d}) = 1$
- With D layers, a factor of 2 per layer has exponential impact of 2^{D}

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization
 - Approximate Second-order Methods
- Challenges in Neural Network Optimization
- Optimization Strategies and Meta-Algorithms

Second-Order Method: Newton's Method

Second-order methods make use of second derivatives

Newton's Method

Idea: use a second-order Taylor approximation to function

• Approximate $J(\theta)$ near some point θ_0

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

 Make a local quadratic approximation based on the value, slope, and curvature

Newton's method: jump to the minimum of this quadratic

• Repeat
$$\theta_{t+1} = \theta_t - H^{-1} \nabla_{\theta} J(\theta_0)$$

Newton's Method

Makes use of the curvature or Hessian matrix H

Converge much more quickly

Hessian matrix should be positive-definite

- i.e. eigenvalues of the Hessian are all positive
- Use regularization to avoid non-positive-definite

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - [\boldsymbol{H} + \alpha \boldsymbol{I}]^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Very expensive to calculate and store the Hessian matrix

- Inversion of Hessian has a complexity of $O(n^3)$
- Hessian has to be computed at every training iteration

Quasi-Newton Methods

Idea: approximate the inverse of Hessian H^{-1}

• Different methods use different rules for updating H^{-1}

BFGS algorithm is one of the most prominent ones

• Cost of update or inverse update is $O(n^2)$ operations

Loop (basically, the same with Newton's method)

- Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$
- Compute $\phi = g_t g_{t-1}$, $\Delta = \theta_t \theta_{t-1}$
- Approximate H^{-1} : $M_t = M_{t-1} + (1 + \frac{\phi^T M_{t-1} \phi}{\Delta^T \phi}) \frac{\phi^T \phi}{\Delta^T \phi} \frac{\phi^T M_{t-1} + M_{t-1} \phi \Delta^T}{\Delta^T \phi}$
- Compute search direction: $\rho_t = M_t g_t$
- Perform line search: $\varepsilon^* = \operatorname{argmin}_{\varepsilon} \frac{1}{m} \sum_{i=1}^m L(f(x^{(i)}; \theta_t + \varepsilon \rho_t), y^{(i)})$
- Apply update $\theta_t + 1 = \theta_t + \varepsilon^* \rho_t$

Limited-memory BFGS Method

Main disadvantage of quasi-Newton method is need to store H and H^{-1}

L-BFGS does not store H^{-1}

• Instead we store m (e.g. m = 30) most recent values of

$$\phi = g_j - g_{j-1}, \qquad \Delta = \theta_j - \theta_{j-1}$$

We recursively compute H_t^{-1}

$$\boldsymbol{H}_{j}^{-1} = (\boldsymbol{I} - \frac{\boldsymbol{\Delta}_{j} \boldsymbol{\phi}_{j}^{T}}{\boldsymbol{\phi}_{j}^{T} \boldsymbol{\Delta}_{j}}) \boldsymbol{H}_{j-1}^{-1} (\boldsymbol{I} - \frac{\boldsymbol{\phi}_{j} \boldsymbol{\Delta}_{j}^{T}}{\boldsymbol{\phi}_{j}^{T} \boldsymbol{\Delta}_{j}}) + \frac{\boldsymbol{\Delta}_{j} \boldsymbol{\Delta}_{j}^{T}}{\boldsymbol{\phi}_{j}^{T} \boldsymbol{\Delta}_{j}}$$

- for j = t, t 1, ..., t m + 1, assuming $H_{t-m}^{-1} = I$
- Cost per iteration is O(nm); storage is O(nm) (In general $m \ll n$)

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization
 - Approximate Second-order Methods
- Challenges in Neural Network Optimization
- Optimization Strategies and Meta-Algorithms

#1. III-Conditioning of the Hessian

Recall a second-order Taylor approximation

• Approximate $J(\theta)$ near some point θ_0

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \boldsymbol{g} + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

where $\boldsymbol{g} = \nabla_{\boldsymbol{\theta}} J = \partial J / \partial \boldsymbol{\theta}$, $\boldsymbol{H} = \nabla_{\boldsymbol{\theta}}^2 J = \partial^2 J / \partial \boldsymbol{\theta}^2$

• By GD, the new parameter is $\theta = \theta_0 - \epsilon g$. Therefore,

$$J(\boldsymbol{\theta}_0 - \epsilon \boldsymbol{g}) \approx J(\boldsymbol{\theta}_0) - \epsilon \boldsymbol{g}^T \boldsymbol{g} + \frac{1}{2} \epsilon^2 \boldsymbol{g}^T \boldsymbol{H} \boldsymbol{g}$$

- If the last term is too large, the GD step can move uphill
- If it is zero or negative, the GD will decrease the function forever

Ill-conditioning means $\frac{1}{2}\epsilon^2 g^T H g > \epsilon g^T g$

Cost value at new parameter is always larger!

#1. III-Conditioning of the Hessian

Practical tips

- Monitor $g^T g$ and $g^T H g$
- If the gradient norm does not shrink, it is not good
- If $g^T H g$ grows faster, it is worse

An example where the gradient norm keeps increasing, but the training is successful

#2. Local Minima

Training neural networks = non-convex optimizations

Extremely many (or possibly infinite) amount of local minima

It is an open problem

- How many local minima exist?
- When and how optimization algorithms encounter them?

Much research reveals that it could not be so seriously, for sufficiently large neural networks

- Most local minima have a low cost function values
- We may not be so worry for finding a true global minimum

Practical tips

Plot the norm of the gradient over time: it should shrink

#3. Plateaus, Saddles, and Other Flat Regions

Critical points: the points where the gradient is zero

Saddle points: the Hessian matrix has both positive and negative eigenvalues

- A local minimum along one cross-section and a local maximum along another cross-section
- GD goes downhill and thus can escape saddle points rapidly

#3. Plateaus, Saddles, and Other Flat Regions

Two important things about saddle points of random functions (including neural networks)

- 1. The expected ratio of (# saddle points) / (# local minima) grows exponentially with *n*
 - In analogy of coin flipping to decide the sign of each eigenvalue of the Hessian
 - It is exponentially unlikely that all n coin tosses will be heads
- 2. Critical points with high cost are far more likely to be saddles

Another reason why the 2nd-order method is not popular in the NN optimization

- A vanilla Newton's method jumps to a critical points, including saddle points and local maxima
- Saddle-free Newton method exists though

#4. Cliffs and Exploding Gradients

Suppose extremely steep regions like *cliffs*

- If we use momentum or if the learning rate is too large
- Gradient specifies the optimal direction, not the optimal step size

Remedy: Gradient clipping heuristic

- Limit the magnitude of (learning rate) × (gradient)
- Common in the optimization of RNNs

#5. Long-Term Dependencies

In RNNs, the same parameters are repeated applied

- At t steps, we have $x^T W^t$
- If W has an eigendecomposition $W = V diag(\lambda)V^{-1}$,

$$\mathbf{W}^{t} = (\mathbf{V}diag(\lambda)\mathbf{V}^{-1})^{t} = \mathbf{V}(diag(\lambda))^{t}\mathbf{V}^{-1}$$

- If any $\lambda_i \gg 1$, the gradient will explode (easy to remedy: clipping)
- If any $\lambda_i \ll 1$, the gradient will vanish (much more serious)

(Even very deep) feedforward networks suffer much less

Other Challenges

#6. Inexact gradients

- Reason: i) too many data, ii) intractable objective
- In practice, only have a noisy or biased estimate of gradients

#7. Poor correspondence btw. local and global structure

- e.g. being initialized on the wrong side of mountain
- Many existing research aims at finding good initialization (or multiple initializations)

#8. Theoretical limits of optimization

No theoretical or practical bounds on the optimization performance

Outline

- Stochastic Gradient Descents
 - Basic Algorithms
 - Algorithms with Adaptive Learning Rates
 - Parameter Initialization
 - Approximate Second-order Methods
- Challenges in Neural Network Optimization
- Optimization Strategies and Meta-Algorithms (Batch normalization)

Batch Normalization

Covariate shift

- Training and test distributions are different
- Handled by domain adaptation

It also happens in the distributions of internal nodes of a deep network

Training

e.g. two-layered network

$$\ell = F_2(F_1(\boldsymbol{u}, \boldsymbol{\theta}_1), \boldsymbol{\theta}_2) \qquad x = F_1(\boldsymbol{u}, \boldsymbol{\theta}_1)$$

$$\ell = F_2(\boldsymbol{x}, \boldsymbol{\theta}_2)$$

- Exactly equivalent form, but what if the distribution of and u are x are severely different?
- Even small changes get amplified down the network (connected to exploding/vanishing gradients)
- Called internal covariate shift

Test

Batch Normalization

Objective: mitigate internal covariate shift

Train faster and achieve higher accuracy

Whitening of each layer's input?

Make mean = 0, and variance = 1

Simply nomalizing each layer would not work

 Should be differentiable, not loose information of each layer, and not require the whole data

Normalization via Mini-batch Statistics

Two necessary simplification

- 1. Normalize each scalar feature independently
 - For a layer with d-dimensional layer input $x = (x^1, ..., x^d)$

$$\hat{x}^k = \frac{x^k - E[x^k]}{\sqrt{Var[x^k]}}$$

• Introduce a pair of parameters γ^k , β^k to learn a bias and std. dev.

$$y^k = \gamma^k \hat{x}^k + \beta^k$$

- 2. Each mini-batch produces estimates of the statistics of each activation
 - Mini-batch mean $\mu^k = \frac{1}{m} \sum_{i=1}^m x_i^k$
 - mini-batch variance $(\sigma^k)^2 = \frac{1}{m} \sum_{i=1}^m (x_i^k \mu^k)^2$

Normalization via Mini-batch Statistics

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
               Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
   \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i
                                                                       // mini-batch mean
    \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2
                                                               // mini-batch variance
     \widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
                                                                                    // normalize
      y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                                            // scale and shift
```

Normalization via Mini-batch Statistics

BN layer has the same size of its input layer

Can intermediate any hidden layers

BN enables higher learning rates

- BN(Wu) = BN((aW)u): Gradient propagation through BN layer is not affected by the scale of weight W
- Gradients propagate normalized, and weight updates stabilized

BN regularizes the model

No dropout, reduced L2 regularization

Training Batch Normalized Networks

BN is fully differentiable operation, and the gradient can propagate through BN

- Training the introduced γ , β , in addition to the original parameters
- See the equations in the paper

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i}$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}}$$

Batch Normalization in CNN

Typical transformation can be represented as affine function + element-wise nonlinearity

$$z = g(Wu + b)$$

- where $g(\cdot)$: activation function (e.g. ReLU or Sigmoid)
- FC layer and CONV layer

Applying BN transform before the nonlinearity

- The bias b can be ignored since will be canceled by mean subtraction
- The weights W, and BN parameters γ , β are to be learned

$$z = g(BN(Wu + b))$$

Evaluation of Batch Normalization

ImageNet-1K classification with the GoogLeNet

Accelerating BN Networks

- Increase learning rate : $0.0015 \rightarrow 0.0075 \sim 0.045 (5x \sim 30x)$
- Remove Dropout
- Reduce (remove) L2 weight regularization
- Accelerate the learning rate decay (x6)
- Shuffle training examples more thoroughly
- Reduce the distortion for input augmentation

Evaluation of Batch Normalization

ImageNet-1K classification results

- Inception vs. BN-Baseline : faster training
- BN-Baseline vs. BN-x5: even faster training(14x), higher accuracy
- BN-x30: somewhat slower than BN-x5, higher accuracy

Model	Steps to 72.2%	Max accuracy
Inception	$31.0 \cdot 10^{6}$	72.2%
BN-Baseline	$13.3 \cdot 10^6$	72.7%
BN-x5	$2.1 \cdot 10^{6}$	73.0%
BN-x30	$2.7 \cdot 10^{6}$	74.8%
BN-x5-Sigmoid		69.8%

BN-x5/30: BN with 5x/30x learning rate BN-x5-Sigmoid: Sigmoid instead of ReLU

Summary

BN helps faster, better training for CNNs

Use it as an additional layer interspersing

Benefits

- Enable to use high learning rate
- Regularization: Can remove Dropout
- Easy to use (e.g. tf.nn.batch_normalization() in TensorFlow)

Limits

- Performance depends on size of the mini-batch
- Hard to apply for online-learning, small batch-size, and RNN
- Applying BN to RNN is not promising yet. [L.C Pereyra et al. Batch Normalized Recurrent Neural Networks. arXiv:1510.01378, 2015]

Summary

BN helps faster, better training for CNNs

Use it as an additional layer interspersing

Benefits

- Enable to use high learning rate
- Regularization: Can remove Dropout
- Easy to use (e.g. tf.nn.batch_normalization() in TensorFlow)

Limits

- Performance depends on size of the mini-batch
- Hard to apply for online-learning, small batch-size, and RNN
- Applying BN to RNN is not promising yet. [L.C Pereyra et al. Batch Normalized Recurrent Neural Networks. arXiv:1510.01378, 2015]

Relation with Xavier/MSRA Initialization

Xavier/MSRA initialization: Analytic normalizing each layer

Use it as an additional layer interspersing

BN: data-driven normalizing each layer, for each minibatch

- Greatly accelerate training
- Less sensitive to initialization
- Improve regularization

Multi-branch nets

- Xavier/MSRA init are not directly applicable for multi-branch nets
- Optimizing multi-branch ConvNets largely benefits from BN (e.g. all Inceptions and ResNets)

