

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB302T DISCRETE MATHEMATICS

UNIT-1 SET THEORY

Tutorial Sheet - 3

Sl.No.		Questions PART-A (3 Marks)
1	For the function F: $\{1, 2, 3, 4, 5\} \rightarrow \{a, b, c, d, e\}$ defined as $F(1)=a$, $F(2)=b$, $F(3)=b$,	
	$F(4)=d$, $F(5)=c$, identify domain(F), codomain(F), range(F), $F^{-1}(a)$, $F^{-1}(\{a,b,c\})$ and	
	$F^{-1}(e)$.	
2	If f and g are both defined on the set of real numbers and c is a constant $f(x) = cx - \int_{-\infty}^{\infty} f(x) dx$	
	$3, g(x) = cx + 5$. If $(f \circ g)(x) = (g \circ f)(x)$ for all values of x, what is the value of c?	
3	Find $(f \circ g \circ h)(x)$ if $f(x) = 2x$, $g(x) = x^2 + 2x$ and $h(x) = 2x$.	
4	Consider the function $g: Z \to Z$ defined by $g(n) = n^2 + 1$. Find $g^{-1}(1)$, $g^{-1}(2)$, $g^{-1}(3)$	
	(3) and $g^{-1}(1)$	0).
5	Find $(g \circ f \circ q)(t)$ if $q(t) = \sqrt{x}$, $f(t) = x^2$ and $g(t) = 5x^9$.	
	PART – B (6 Marks)	
6	Let $f: X \to Y$ and $g: Y \to Z$ be two bijective functions. Show that $(g \circ f)^{-1}$ exists	
	and $(g \circ f)^{-1}$	$= f^{-1} \circ g^{-1}$.
7	and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. For the functions $f(x) = x^{-2} - 4$ and $g(x) = \sqrt{(x+1)}$, find $f(g(x))$, $g(f(x))$, $(f \circ f)(x)$	
	and $(g \circ g)(x)$	
8	If f, g: R \rightarrow R where f(x) = ax+b, g(x)= 1 - x+x ² and (g $^{\circ}$ f)(x) = 9x ² - 9x+3. Find	
	the values of	a and b.
9	If f, g, h : R \rightarrow R where f(x) = x+2, g(x)= 1 / (x ² +1) and h(x) = 3. Find g \circ f $^{-1}$ \circ f(x)	
	and $f^{-1} \circ g \circ$	f(x).
10	Verify $f \circ (g \circ h) = (f \circ g) \circ h$, when $f, g, h : Z \to Z$ defined by $f(n) = n^2$, $g(n) = n+1$	
	and $h(x) = n$	-1.
	I	