Aashsih Kumar pcr902

December 10, 2019

Contents

1	The Role of Independence	1
2	How to Split a Sample into Training and Test Set	2
	2.1	2
	2.2	3
	2.3	4
3	Occam's Razor	4
	3.1 a high-probability bound for L(h) that holds for all $h \in H_d$	4
	3.2 a high-probability bound for L(h) that holds for all $h \in H$	4
	3.3 Trade off between picking short strings and long strings	5
	3.4	
4	Kernels	5
	4.1 Distance in feature space	5
	4.2 Sum of kernels	6
	4.3 Rank of Gram matrix	6

The Role of Independence 1

Let $X_1,...,X_n$ be dependent random variables such that $X_i=X_1$ and $X_0\in\{0,1\}$

$$E[X] = 0 * \frac{1}{2} + 1 * \frac{1}{2} \tag{1}$$

$$=\frac{1}{2}\tag{2}$$

So, there are only two cases,

Case 1: all the X are 0

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = \frac{1}{n}\sum_{i=1}^{n}0\tag{3}$$

$$=0 (4)$$

then,

$$|E[X] - \frac{1}{n} \sum_{i=1}^{n} X_i| = |\frac{1}{2} - 0|$$
 (5)

$$=\frac{1}{2}\tag{6}$$

Case 2: all the X are 1

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = \frac{1}{n}\sum_{i=1}^{n}1\tag{7}$$

$$=1 (8)$$

then,

$$|E[X] - \frac{1}{n} \sum_{i=1}^{n} X_i| = |\frac{1}{2} - 1| \tag{9}$$

$$=\frac{1}{2}\tag{10}$$

So,

$$P(|E[X] - \frac{1}{n} \sum_{i=1}^{n} X_i| \ge \frac{1}{2}) = \frac{2}{2}$$
(11)

$$=1 \tag{12}$$

2 How to Split a Sample into Training and Test Set

2.1

We have a fixed split of dataset S into S^{test} and S^{train} , where n^{test} is size of S^{test} .

We have trained a model $\hat{h}_{S^{train}}^*$

According to theorem 3.1 in lecture notes , Generalization bound for single hypothesis, we have

$$P\left(L(h) \ge \hat{L}(h,s) + \sqrt{\frac{\ln\frac{1}{\delta}}{2n}}\right) \le \delta \tag{13}$$

Using the above stated theorem we can say

$$P\left(L(\hat{h}_{S^{train}}^*) \ge \hat{L}(\hat{h}_{S^{train}}^*, S^{test}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2n^{test}}}\right) \le \delta$$
(14)

By changing signs of the inequality, we have

$$P\left(L(\hat{h}_{Strain}^*) \le \hat{L}(\hat{h}_{Strain}^*, S^{test}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2n^{test}}}\right) \ge 1 - \delta$$
(15)

2.2

We consider m splits $\{(S_1^{test}, S_1^{train}),, (S_m^{test}, S_m^{train})\}$, where the size of the test sets are $n_1, ..., n_n$ and $h_1^*, ..., h_n^*$ are m prediction models where h_i^* is trained on S_i^{train} . We need to show

$$P\left(\exists h_i^* \in H : L(\hat{h}_i^*) \ge \hat{L}(\hat{h}_i^*, S_i^{test}) + \sqrt{\frac{\ln \frac{m}{\delta}}{2n_i}}\right) \le \delta \tag{16}$$

we have,

$$P\left(\exists h_i^* \in H : L(\hat{h}_i^*) \ge \hat{L}(\hat{h}_i^*, S_i^{test}) + \sqrt{\frac{\ln \frac{m}{\delta}}{2n_i}}\right) \tag{17}$$

taking union bound

$$P\left(\exists h_i^* \in H : L(\hat{h}_i^*) \ge \hat{L}(\hat{h}_i^*, S_i^{test}) + \sqrt{\frac{\ln \frac{m}{\delta}}{2n_i}}\right) \le \sum_{i=1}^m P\left(L(\hat{h}_i^*) \ge \hat{L}(\hat{h}_i^*, S_i^{test}) + \sqrt{\frac{\ln \frac{m}{\delta}}{2n_i}}\right)$$

$$\tag{18}$$

From comparing above equation with hoeffding inequality below,

$$P\left(\mu - \frac{1}{n}\sum_{i=1}^{n} X_i \ge \sqrt{\frac{\ln\frac{1}{\delta}}{2n}}\right) \le \delta \tag{19}$$

(22)

we can say that

$$P\left(\exists h_{i}^{*} \in H : L(\hat{h}_{i}^{*}) \geq \hat{L}(\hat{h}_{i}^{*}, S_{i}^{test}) + \sqrt{\frac{\ln \frac{m}{\delta}}{2n_{i}}}\right) \leq \sum_{i=1}^{m} P\left(L(\hat{h}_{i}^{*}) \geq \hat{L}(\hat{h}_{i}^{*}, S_{i}^{test}) + \sqrt{\frac{\ln \frac{m}{\delta}}{\delta}}\right)$$

$$\leq \sum_{i=1}^{m} \frac{\delta}{m}$$

$$(21)$$

 $=\delta$

Hence, proved

By changing the sign of the above inequality, we get

$$P\left(\exists h_i^* \in H : L(\hat{h}_i^*) \le \hat{L}(\hat{h}_i^*, S_i^{test}) + \sqrt{\frac{\ln \frac{m}{\delta}}{2n_i}}\right) \ge 1 - \delta \tag{23}$$

2.3

We can define the prior , $\pi(h) = \frac{1}{3i-1}$, where i is the index of the test set and split is done in a way such that as i increases the size of train set decreases.

3 Occam's Razor

3.1 a high-probability bound for L(h) that holds for all $h \in H_d$.

According to corollary 3.1 in lecture notes,

$$P\left(\exists h \in H : L(h) \ge \hat{L}(h,s) + \sqrt{\frac{\ln \frac{M}{\delta}}{2n}}\right) \le \delta \tag{24}$$

where H is a finite set of hypothesis with class of size M.

Let d be the depth We know $|\Sigma| = 27$,

 \sum^{d} be the space of the string of length d

 H_d be the space op functions from $\sum_{i=1}^{d} to \{0,1\}$

for string of length 1, we would have 27 choices and for length d we would have 27^d And we have then we have two choices for languages, so in total we have $M = 2^{27^d}$

$$M = 2^{27^d} (25)$$

$$\pi(h) = \frac{1}{M} \tag{26}$$

$$\pi(h) = \frac{1}{2^{27^d}} \tag{27}$$

By using above equation 23 and substituting the value of M, we get

$$P\left(\exists h \in H_d : L(h) \ge \hat{L}(h,s) + \sqrt{\frac{\ln \frac{2^{27^d}}{\delta}}{2n}}\right) \le \delta \tag{28}$$

By changing the sign in the inequality, we get

$$P\left(\exists h \in H_d: L(h) \le \hat{L}(h,s) + \sqrt{\frac{\ln \frac{2^{27^d}}{\delta}}{2n}}\right) \ge 1 - \delta \tag{29}$$

3.2 a high-probability bound for L(h) that holds for all $h \in H$.

According to theorem 3.3 from lecture notes, we have

$$P\left(\exists h \in H : L(h) \ge \hat{L}(h,s) + \sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}\right) \le \delta \tag{30}$$

Let d(h) be the depth of the hypothesis h We know $|\Sigma| = 27$, Σ^d be the space of the string of length d H_d be the space op functions from Σ^d to $\{0,1\}$ $H = \bigcup_{i=0}^{\infty} H_d$ $|H_d| = 2^{27^d}$

$$\pi(h) = \frac{1}{2^{d(h)+1}} \frac{1}{2^{27^{d(h)}}} \tag{31}$$

 $\sum_{h\in H} \pi(h) \leq 1$

By substituting the value of $\pi(h)$ in equation 30, we get

$$P\left(\exists h \in H : L(h) \ge \hat{L}(h,s) + \sqrt{\frac{\ln \frac{2^{d(h)+1}2^{27^{d(h)}}}{\delta}}{2n}}\right) \le \delta$$
 (32)

By changing the sign of the above inequality, we get

$$P\left(\exists h \in H : L(h) \le \hat{L}(h,s) + \sqrt{\frac{\ln \frac{27^{d(h)+1}2^{27^{d(h)}}}{\delta}}{2n}}\right) \ge 1 - \delta \tag{33}$$

3.3 Trade off between picking short strings and long strings

The L(h) depends on two terms - $\hat{L}(h,s)$ and $\sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}$

 $\hat{L}(h,s)$ depends on the number of hypothesis, i.e, 2^{27^d} (calculated above), which decreases with increase in number of hypothesis. Thus decreases with the increase in d and favors large d.

 $\sqrt{\frac{\ln \frac{1}{\pi(h)\delta}}{2n}}$ increases with the increase in d and favors small d. So, there is a trade-off between picking small and large d

3.4

4 Kernels

4.1 Distance in feature space

To show:

$$||\Phi(x) - \Phi(z)|| = \sqrt{k(x, x) - 2k(x, z) + k(z, z)}$$
(34)

We have , $||\Phi(x) - \Phi(z)||$

$$||\Phi(x) - \Phi(z)|| = \sqrt{\langle \Phi(x) - \Phi(z), \Phi(x) - \Phi(z) \rangle}$$
(35)

$$= \sqrt{\langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(z) \rangle + \langle \Phi(z), \Phi(z) \rangle}$$
 (36)

We know that $k(x,y) = \langle \Phi(x), \Phi(y) \rangle$. So,

$$||\Phi(x) - \Phi(z)|| = \sqrt{k(x, x) - 2k(x, z) + k(z, z)}$$
(37)

4.2 Sum of kernels

Let $k_1, k_2 : X \times X \rightarrow R$ be positive-definite kernels.

To show : $k(x,z) = k_1(x,z) + k_2(x,z)$ is also positive-definite

For positive definite kernel K, $\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j=1}^m c_i c_j K_{i,j} \geq 0$

 $K_{i,j} = k(x_i, z_j)$

So, using above equation we can say

$$\sum_{i,j=1}^{m} c_i c_j K_1(x_i, z_j) \ge 0 \tag{38}$$

$$\sum_{i,j=1}^{m} c_i c_j K_2(x_i, z_j) \ge 0 \tag{39}$$

Adding above two equations, we get

$$\sum_{i,j=1}^{m} c_i c_j K_1(x_i, z_j) + \sum_{i,j=1}^{m} c_i c_j K_2(x_i, z_j) \ge 0$$
(40)

$$\sum_{i,j=1}^{m} c_i c_j (K_1(x_i, z_j) + K_2(x_i, z_j)) \ge 0$$
(41)

$$\sum_{i,j=1}^{m} c_i c_j K(x_i, z_j) \ge 0 \tag{42}$$

Hence, k(x,z) is positive-definite

4.3 Rank of Gram matrix

The Gram or kernel matrix of k with respect to $x_1, ..., x_m$ is the m x m matrix K with elements $K_{i,j} = k(x_i, x_j)$

We know that

$$k(x_i, x_j) = \langle \phi(x_i), \Phi(x_j) \rangle \tag{43}$$

here, Φ is identity, so

$$k(x_i, x_j) = \langle x_i, x_j \rangle$$

$$= x_i^T x_j$$
(44)

 $x_i \in \mathbb{R}^d$ and there are m input patterns, and

$$K = X^T X (46)$$

According to rank properties, rank of X^TX is same as rank of X.

$$RankOf(K) = RankOf(X^{T}X)$$
(47)

$$= RankOf(X) \tag{48}$$

$$\leq \min(m,d) \tag{49}$$

m and d are dimensions of X matrix