VRDI TDA Breakout Session: Introduction to Persistent Homology

Moon Duchin, Tom Needham, Thomas Weighill

Voting Rights Data Institute June 25, 2019

Concepts from Topology

Topology is a field of math which studies geometrical objects up to loose notions of "equivalence".

Each such object is called a (topological) space, denoted X.

Roughly, spaces are equivalent if one can be deformed into the other via stretching and bending, without creating or closing holes.

Figure: Homotopy equivalence, from Singh et. al. 2008.

Concepts from Topology

Algebraic topology is a subfield of topology where one computes invariants of a space which distinguish it from other spaces.

To each space X, we can associate a vector space $H_k(X)$ called the kth homology vector space of X.

Its dimension $\beta_k(X)$ is called the *k*th Betti number of *X*.

Punchline

If X and Y have $\beta_k(X) \neq \beta_k(Y)$ for some k, then X and Y are not equivalent!

Concepts from Topology

The Betti number $\beta_k(X)$ counts "k-dimensional holes" in X:

- \blacktriangleright $\beta_0(X)$ # of connected pieces
- \blacktriangleright $\beta_1(X)$ # of unfilled loops
- \blacktriangleright $\beta_2(X)$ # of unfilled "voids" (interior of a basketball)
- $ightharpoonup eta_k(X)$ well-defined concept we can't visualize for k > 2

Figure: Disconnected graph.

Figure: Disconnected graph.

Figure: Surface of a sphere.

Figure: Any loop on the sphere can be filled in with a disk.

Figure: Torus (surface of a donut).

Figure: Blue loops can't be filled by disks that stay in the surface.

Simplicial Homology

A k-simplex is a k-dimensional generalization of a triangle.

A simplicial complex is a space obtained by gluing together simplices along lower-dimensional faces.

Simplicial Homology

Computing homology/Betti numbers of simplicial complexes is easy!

Boils down to linear algebra:

- o Gluing process is described by linear maps.
- Homology is computed from kernels and images of these maps.

How Does This Apply to Data?

The most common type of data is a point cloud — a set of vectors $X = \{\vec{x}_1, \dots, \vec{x}_N\}$, each $\vec{x}_j \in \mathbb{R}^d$.

This is a simplicial complex with only 0-dimensional simplices and no interesting topology; i.e.,

$$\beta_0 = N, \quad \beta_1, \beta_2, \ldots = 0.$$

Idea

Construct a family of simplicial complexes.

Keep track of "births" and "deaths" of topological features (holes of various dimensions) along the family.

This leads to the main tool in TDA: persistent homology.

Terminology

Such a family is called a filtered simplicial complex.

There are many techniques for creating them.

The previous example is called a Čech complex.

In computational examples, we'll use a related construction called a Vietoris-Rips complex.

Vietoris-Rips Complex

Let $X = {\vec{x}_1, \dots, \vec{x}_N} \subset \mathbb{R}^d$. The Vietoris-Rips complex of X is the filtered simplicial complex given at time r by:

- ▶ Vertex set at time *r* is *X*
- ▶ A subset $S = \{\vec{x}_{i_0}, \vec{x}_{i_2}, \dots, \vec{x}_{i_k}\}$ forms a k-simplex at time r if and only if

$$\|\vec{x} - \vec{y}\| \le r \ \forall \ \vec{x}, \vec{y} \in S.$$

Terminology

The topological signatures we get from persistent homology are called barcodes.

Terminology

We can record the "birth time" and "death time" of each topological feature to get a persistence diagram.

Level Set Filtrations

Another common filtration is by sublevel sets of the graph of a function.

TDA Workflow

