Jean-Pierre Serre

Linear Representations of Finite Groups

Translated from the French by Leonard L. Scott

figi dade fi stikus tahusadisti. Kalenda disercikat

CHAPTER 1

Generalities on linear representations

1.1 Definitions

Let V be a vector space over the field C of complex numbers and let GL(V) be the group of *isomorphisms* of V onto itself. An element a of GL(V) is, by definition, a linear mapping of V into V which has an inverse a^{-1} ; this inverse is linear. When V has a finite basis (e_i) of n elements, each linear map $a: V \to V$ is defined by a square matrix (a_{ij}) of order n. The coefficients a_{ij} are complex numbers; they are obtained by expressing the images $a(e_i)$ in terms of the basis (e_i) :

$$a(e_j) = \sum_i a_{ij} e_i.$$

Saying that a is an isomorphism is equivalent to saying that the determinant $det(a) = det(a_{ij})$ of a is not zero. The group GL(V) is thus identifiable with the group of invertible square matrices of order n.

Suppose now G is a finite group, with identity element 1 and with composition $(s, t) \mapsto st$. A linear representation of G in V is a homomorphism ρ from the group G into the group GL(V). In other words, we associate with each element $s \in G$ an element $\rho(s)$ of GL(V) in such a way that we have the equality

$$\rho(st) = \rho(s) \cdot \rho(t) \text{ for } s, t \in G.$$

[We will also frequently write ρ_s instead of $\rho(s)$.] Observe that the preceding formula implies the following:

$$\rho(1) = 1, \quad \rho(s^{-1}) = \rho(s)^{-1}.$$

When ρ is given, we say that V is a representation space of G (or even simply, by abuse of language, a representation of G). In what follows, we

aper and the first many restablishment of the second species of the second seco

restrict ourselves to the case where V has finite dimension. This is not a very severe restriction. Indeed, for most applications, one is interested in dealing with a finite number of elements x_i of V, and can always find a subrepresentation of V (in a sense defined later, cf. 1.3) of finite dimension, which contains the x_i : just take the vector subspace generated by the images $\rho_s(x_i)$ of the x_i .

Suppose now that V has finite dimension, and let n be its dimension; we say also that n is the degree of the representation under consideration. Let (e_i) be a basis of V, and let R_s be the matrix of ρ_s with respect to this basis. We have

$$det(R_s) \neq 0$$
, $R_{st} = R_s \cdot R_t$ if $s, t \in G$.

If we denote by $r_{ij}(s)$ the coefficients of the matrix R_s , the second formula becomes

$$r_{ik}(st) = \sum_{j} r_{ij}(s) \cdot r_{jk}(t).$$

Conversely, given invertible matrices $R_s = (r_{ij}(s))$ satisfying the preceding identities, there is a corresponding linear representation ρ of G in V; this is what it means to give a representation "in matrix form."

Let ρ and ρ' be two representations of the same group G in vector spaces V and V'. These representations are said to be *similar* (or *isomorphic*) if there exists a linear isomorphism τ : V \rightarrow V' which "transforms" ρ into ρ' , that is, which satisfies the identity

$$\tau \circ \rho(s) = \rho'(s) \circ \tau \text{ for all } s \in G.$$

When ρ and ρ' are given in matrix form by R_s and R_s' respectively, this means that there exists an invertible matrix T such that

$$T \cdot R_s = R'_s \cdot T$$
, for all $s \in G$,

which is also written $R'_s = T \cdot R_s \cdot T^{-1}$. We can identify two such representations (by having each $x \in V$ correspond to the element $\tau(x) \in V'$); in particular, ρ and ρ' have the same degree.

1.2 Basic examples

(a) A representation of degree 1 of a group G is a homomorphism ρ : $G \to \mathbb{C}^*$, where \mathbb{C}^* denotes the multiplicative group of nonzero complex numbers. Since each element of G has finite order, the values $\rho(s)$ of ρ are roots of unity; in particular, we have $|\rho(s)| = 1$.

If we take $\rho(s) = 1$ for all $s \in G$, we obtain a representation of G which is called the *unit* (or *trivial*) representation.

(b) Let g be the order of G, and let V be a vector space of dimension g, with a basis $(e_t)_{t \in G}$ indexed by the elements t of G. For $s \in G$, let ρ_s be

A supplier of the control of the problem with the problem and the control of the co

The Mark William Control of the State of the

etingan i kajusti a li juži etini i jedini displantija plantiji kaja na rejaj je jedini i jedini. Pri s Prima i kajusti a li juži etini i jedini displantija plantiji kaja na rejaj je jedini i jedini jedini i jedini

Mar wife To relate

D) 中国国际部分 全国经济企业 (1)

reference en la la participa de la companya de la c La companya de la companya del companya de la companya del companya de la companya de la

Abbrantzer (Ar. M. R. H. 17)

- A Conference of the control of the property of the conference of the control of the control

and the second of the standing of the first property of the product of the second of t

es responsable. El los papares com a est. Media logar de la casica e ser est e per el labor. La los del con el en 1978, de des en despuisde dels laboracións de la constant de la constant de la confesion the linear map of V into V which sends e_i to e_{si} ; this defines a linear representation, which is called the *regular representation* of G. Its degree is equal to the order of G. Note that $e_s = \rho_s(e_1)$; hence note that the images of e_1 form a basis of V. Conversely, let W be a representation of G containing a vector w such that the $\rho_s(w)$, $s \in G$, form a basis of W; then W is isomorphic to the regular representation (an isomorphism $\tau: V \to W$ is defined by putting $\tau(e_s) = \rho_s(w)$).

(c) More generally, suppose that G acts on a finite set X. This means that, for each $s \in G$, there is given a permutation $x \mapsto sx$ of X, satisfying the identities

$$1x = x$$
, $s(tx) = (st)x$ if $s, t \in G$, $x \in X$.

Let V be a vector space having a basis $(e_x)_{x \in X}$ indexed by the elements of X. For $s \in G$ let ρ_s be the linear map of V into V which sends e_x to e_{sx} ; the linear representation of G thus obtained is called the *permutation* representation associated with X.

1.3 Subrepresentations

Let $\rho: G \to GL(V)$ be a linear representation and let W be a vector subspace of V. Suppose that W is *stable* under the action of G (we say also "invariant"), or in other words, suppose that $x \in W$ implies $\rho_s x \in W$ for all $s \in G$. The restriction ρ_s^W of ρ_s to W is then an isomorphism of W onto itself, and we have $\rho_{st}^W = \rho_s^W \cdot \rho_t^W$. Thus $\rho^W: G \to GL(W)$ is a linear representation of G in W; W is said to be a *subrepresentation* of V.

EXAMPLE. Take for V the regular representation of G [cf. 1.2 (b)], and let W be the subspace of dimension 1 of V generated by the element $x = \sum_{s \in G} e_s$. We have $\rho_s x = x$ for all $s \in G$; consequently W is a subrepresentation of V, isomorphic to the unit representation. (We will determine in 2.4 all the subrepresentations of the regular representation.)

Before going further, we recall some concepts from linear algebra. Let V be a vector space, and let W and W' be two subspaces of V. The space V is said to be the direct sum of W and W' if each $x \in V$ can be written uniquely in the form x = w + w', with $w \in W$ and $w' \in W'$; this amounts to saying that the intersection $W \cap W'$ of W and W' is 0 and that $\dim(V) = \dim(W) + \dim(W')$. We then write $V = W \oplus W'$ and say that W' is a complement of W in V. The mapping p which sends each $x \in V$ to its component $w \in W$ is called the projection of V onto W associated with the decomposition $V = W \oplus W'$; the image of p is W, and p(x) = x for $x \in W$; conversely if p is a linear map of V into itself satisfying these two properties, one checks that V is the direct sum of W and the kernel W' of p

Trend : recent of the particle of the property of the property

to de la combina de la la transación de final de la participación de la combinar de la combinar de la combinar La combinar de la combinar del combinar de la combinar de la combinar del combinar de la combinar del combinar de la combinar de la combinar de la combinar de la combinar del combinar de la combinar de la combinar de la combinar de la combinar del combinar del combinar de la combinar del combinar

A DESCRIPTION OF SHAPE AND A SHAPE OF SHAPE AND A SHAP

The state of the second of the

zagytopin kartegorid się 📆 🕽

active of the control of the control

rik diet ist in die eine Geschaften der Angeleine der Sterner der Angelein der Ange

The first of the second of the

(the set of x such that px = 0). A bijective correspondence is thus established between the *projections* of V onto W and the *complements* of W in V.

We return now to subrepresentations:

Theorem 1. Let $\rho: G \to GL(V)$ be a linear representation of G in V and let W be a vector subspace of V stable under G. Then there exists a complement W^0 of W in V which is stable under G.

Let W' be an arbitrary complement of W in V, and let p be the corresponding projection of V onto W. Form the average p^0 of the conjugates of p by the elements of G:

$$p^{0} = \frac{1}{g} \sum_{t \in G} \rho_{t} \cdot p \cdot \rho_{t}^{-1} \qquad (g \text{ being the order of } G).$$

Since p maps V into W and ρ_t preserves W we see that p^0 maps V into W; we have $\rho_t^{-1}x \in W$ for $x \in W$, whence

$$p \cdot \rho_t^{-1} x = \rho_t^{-1} x$$
, $\rho_t \cdot p \cdot \rho_t^{-1} x = x$, and $p^0 x = x$.

Thus p^0 is a projection of V onto W, corresponding to some complement W^0 of W. We have moreover

$$\rho_s \cdot p^0 = p^0 \cdot \rho_s$$
 for all $s \in G$.

Indeed, computing $\rho_s \cdot p^0 \cdot \rho_s^{-1}$, we find:

$$\rho_{s} \cdot p^{0} \cdot \rho_{s}^{-1} = \frac{1}{g} \sum_{t \in G} \rho_{s} \cdot \rho_{t} \cdot p \cdot \rho_{t}^{-1} \cdot \rho_{s}^{-1} = \frac{1}{g} \sum_{t \in G} \rho_{st} \cdot p \cdot \rho_{st}^{-1} = p^{0}.$$

If now $x \in W^0$ and $s \in G$ we have $p^0x = 0$, hence $p^0 \cdot \rho_s x = \rho_s \cdot p^0 x = 0$, that is, $\rho_s x \in W^0$, which shows that W^0 is stable under G, and completes the proof.

Remark. Suppose that V is endowed with a scalar product (x|y) satisfying the usual conditions: linearity in x, semilinearity in y, and (x|x) > 0 if $x \neq 0$. Suppose that this scalar product is invariant under G, i.e., that $(\rho_s x|\rho_s y) = (x|y)$; we can always reduce to this case by replacing (x|y) by $\sum_{t \in G} (\rho_t x|\rho_t y)$. Under these hypotheses the orthogonal complement W⁰ of W in V is a complement of W stable under G; another proof of theorem 1 is thus obtained. Note that the invariance of the scalar product (x|y) means that, if (e_i) is an orthonormal basis of V, the matrix of ρ_s with respect to this basis is a unitary matrix.

Keeping the hypothesis and notation of theorem 1, let $x \in V$ and let w and w^0 be its projections on W and W⁰. We have $x = w + w^0$, whence $\rho_s x = \rho_s w + \rho_s w^0$, and since W and W⁰ are stable under G, we have $\rho_s w \in W$ and $\rho_s w^0 \in W^0$; thus $\rho_s w$ and $\rho_s w^0$ are the projections of $\rho_s x$. It follows the representations W and W⁰ determine the representation V.

entre, un les colon en le committacións, de 1921 de como contre el pari de como de como de 1935. El 186 de la colonia de colonia de 1935 describión de Colonia de la colonia de la colonia de 1935 de 1935 de 1

tri disperit e di la la considerativa disetti in escultifica di la quali di sono di la consecció necessimo di la considera di entre e di la consecutiva di la consecutiva di la consecutiva di la consecutiva d La consecutiva di la

(4) All the first of the control of the control

STORES OF A STANFAR AND A STANFAR

17 Olivir V annum 177 State day! All plants county printed for a county in page 12 ages 12.
Assembly 2 18 in the 22 of the about the county of the

restricted that is equivalent the figure production of the product

THE WILLIAM THE PRINTER OF THE PARTY OF THE

The in the same intensity that the

A Thirty agent is an indicated and the state of the state

The state of the s

A trade to the control of the con

We say that V is the direct sum of W and W⁰, and write $V = W \oplus W^0$. An element of V is identified with a pair (w, w^0) with $w \in W$ and $w^0 \in W^0$. If W and W⁰ are given in matrix form by R_s and R_s^0 , $W \oplus W^0$ is given in matrix form by

$$\begin{pmatrix} R_s & 0 \\ 0 & R_s^0 \end{pmatrix}$$

The direct sum of an arbitrary finite number of representations is defined similarly.

1.4 Irreducible representations

Let $\rho: G \to GL(V)$ be a linear representation of G. We say that it is *irreducible* or *simple* if V is not 0 and if no vector subspace of V is stable under G, except of course 0 and V. By theorem 1, this second condition is equivalent to saying V is not the direct sum of two representations (except for the trivial decomposition $V = 0 \oplus V$). A representation of degree 1 is evidently irreducible. We will see later (3.1) that each nonabelian group possesses at least one irreducible representation of degree $\geqslant 2$.

The irreducible representations are used to construct the others by means of the direct sum:

Theorem 2. Every representation is a direct sum of irreducible representations.

Let V be a linear representation of G. We proceed by induction on $\dim(V)$. If $\dim(V) = 0$, the theorem is obvious (0 is the direct sum of the *empty family* of irreducible representations). Suppose then $\dim(V) \ge 1$. If V is irreducible, there is nothing to prove. Otherwise, because of th. 1, V can be decomposed into a direct sum $V' \oplus V''$ with $\dim(V') < \dim(V)$ and $\dim(V'') < \dim(V)$. By the induction hypothesis V' and V'' are direct sums of irreducible representations, and so the same is true of V.

Remark. Let V be a representation, and let $V = W_1 \oplus \cdots \oplus W_k$ be a decomposition of V into a direct sum of irreducible representations. We can ask if this decomposition is unique. The case where all the ρ_s are equal to 1 shows that this is not true in general (in this case the W_i are lines, and we have a plethora of decompositions of a vector space into a direct sum of lines). Nevertheless, we will see in 2.3 that the number of W_i isomorphic to a given irreducible representation does not depend on the chosen decomposition.

1.5 Tensor product of two representations

Along with the direct sum operation (which has the formal properties of an addition), there is a "multiplication": the tensor product, sometimes called the Kronecker product. It is defined as follows:

und file of the file of the second file of the file of the second of the

A THE STATE OF THE PARTY OF THE

et consumer of the street of

The state of the s

The first the first service of the second was a filler to be a second of the second of

The second of th

complete contract of the second of

And The Committee of t

To begin with, let V_1 and V_2 be two vector spaces. A space W furnished with a map $(x_1, x_2) \mapsto x_1 \cdot x_2$ of $V_1 \times V_2$ into W, is called the tensor product of V_1 and V_2 if the two following conditions are satisfied:

(i) $x_1 \cdot x_2$ is linear in each of the variables x_1 and x_2 .

(ii) If (e_{i_1}) is a basis of V_1 and (e_{i_2}) is a basis of V_2 , the family of products $e_{i_1} \cdot e_{i_2}$ is a basis of W.

It is easily shown that such a space exists, and is unique (up to isomorphism); it is denoted $V_1 \otimes V_2$. Condition (ii) shows that

$$\dim(V_1 \otimes V_2) = \dim(V_1) \cdot \dim(V_2).$$

Now let $\rho^1: G \to GL(V_1)$ and $\rho^2: G \to GL(V_2)$ be two linear representations of a group G. For $s \in G$, define an element ρ_s of $GL(V_1 \otimes V_2)$ by the condition:

$$\rho_s(x_1 \cdot x_2) = \rho_s^1(x_1) \cdot \rho_s^2(x_2) \text{ for } x_1 \in V_1, x_2 \in V_2.$$

[The existence and uniqueness of ρ_s follows easily from conditions (i) and (ii).] We write:

$$\rho_s = \rho_s^1 \otimes \rho_s^2.$$

The ρ_s define a linear representation of G in $V_1 \otimes V_2$ which is called the *tensor product* of the given representations.

The matrix translation of this definition is the following: let (e_{i_1}) be a basis for V_1 , let $r_{i_1j_1}(s)$ be the matrix of ρ_s^1 with respect to this basis, and define (e_{i_2}) and $r_{i_2j_2}(s)$ in the same way. The formulas:

$$\rho_s^1(e_{j_1}) = \sum_{i_1} r_{i_1j_1}(s) \cdot e_{i_1}, \qquad \rho_s^2(e_{j_2}) = \sum_{i_2} r_{i_2j_2}(s) \cdot e_{i_2}$$

imply:

$$\rho_s(e_{j_1} \cdot e_{j_2}) = \sum_{i_1,i_2} r_{i_1,i_1}(s) \cdot r_{i_2,i_2}(s) \cdot e_{i_1} \cdot e_{i_2}.$$

Accordingly the matrix of ρ_s is $(r_{i_1j_1}(s) \cdot r_{i_2j_2}(s))$; it is the *tensor product* of the matrices of ρ_s^1 and ρ_s^2 .

The tensor product of two irreducible representations is not in general irreducible. It decomposes into a direct sum of irreducible representations which can be determined by means of character theory (cf. 2.3).

In quantum chemistry, the tensor product often appears in the following way: V_1 and V_2 are two spaces of functions stable under G, with respective bases (ϕ_{i_1}) and (ψ_{i_2}) , and $V_1 \otimes V_2$ is the vector space generated by the products $\phi_{i_1} \cdot \psi_{i_2}$, these products being linearly independent. This last condition is essential. Here are two particular cases where it is satisfied:

上的。 第二章

and the state of t

and the property of the following the second of the second