CS 5003: Parameterized Algorithms Lecture 19

Krithika Ramaswamy

IIT Palakkad

FVS - set of vertices that has at least one vertex of every cycle

Feedback Vertex set

Instance: An undirected graph G and an integer k

Question: Does there exist a feedback vertex set of G of size at most k?

Parameter: k

Assume graph is a multigraph

- * Reduction Rule 1: Pelete isolated vertices
- * Reduction Rule 2: Delete degree-1 vertices
- * Reduction Rule 3: If there is a loop at a vertex v, delete v from the graph and reduce the parameter by 1

* Reduction Rule 4: If there is an edge with multiplicity > 2, reduce it to 2

* Reduction Rule 5: Short circuit degree-2 vertices

There exists a minimum FVS that does not contain v

(G,k) is an yes-instance iff (G',k) is an yes-instance

Lemma: If G is graph with minimum degree >= 3, then number of edges incident to any FVS S is > IE(G)1/2

Lemma: If G is graph with minimum degree >= 3, then number of edges incident to any FVS S is > IE(G)1/2

FVS S

In H, let V1 denote vertices with degree atmost 1 in H, V2 degree = 2,

$$E(H,S) >= 2 V_1 + V_2 > V_1 + V_2 + V_3 > E(H)$$

$$E(H) = E(G) - E(H,S) - E(S)$$

 $< E(G) - E(H) - E(S)$
 $<= E(G) - E(H)$

$$E(S) + E(H,S) > E(G)/2$$

Algorithm

- * Step 1: Initialize $S=\emptyset$
- * Step 2: Execute the following steps k times
 - * Step 2.1: Apply preprocessing rules to get equivalent instance (G',k')
 - * Step 2.2: Pick an edge uniformly at random
 - * Edge e={u,v} is picked w.p 1/IE(G')|
 - * Step 2.3: Pick a vertex x from {u,v} uniformly at random
 - * Vertex v is picked w.p 1/2 and vertex u is picked w.p 1/2
 - * Step 2.4: Add x to S and delete x from G
- * Step 3: If S is an FVS of G return yes, otherwise return no.

Analysis

- * Running Time: Polynomial
- Correctness:
 - * If (G,k) is a no-instance then Algorithm always outputs no.
 - * Suppose (G,k) is an yes-instance and F is a <=k FVS
 - * Let H=G-F
 - * Pr (an edge in E(F) \cup E(H,F) is chosen) > 1/2
 - * Pr (a vertex from F is chosen) > $1/2 \cdot 1/2 = 1/4$
 - * Pr(S=F) > (1/4)k
 - * Pr(Algorithm says yes) > (1/4)k

Theorem: Feedback Vertex Set can be solved in randomized polynomial time, with success probability at least 4^{-k} .

Algorithm

Given an input instance (G,k), run the following algorithm 4^k times. If none of the executions return yes, then declare that (G,k) is a no-instance. Otherwise, declare that (G,k) is an yes-instance.

- * Step 1: Initialize $S=\emptyset$
- * Step 2: Execute the following steps k times
 - * Step 2.1: Apply preprocessing rules to get equivalent instance (G',k')
 - * Step 2.2: Pick an edge uniformly at random
 - * Edge e={u,v} is picked w.p 1/IE(G')|
 - * Step 2.3: Pick a vertex x from {u,v} uniformly at random
 - * Vertex v is picked w.p 1/2 and vertex u is picked w.p 1/2
 - * Step 2.4: Add x to S and delete x from G
- * Step 3: If S is an FVS of G, return yes

Analysis

- * Running Time: $0*(4^k)$
- * Correctness:
 - * If (G,k) is a no-instance then Algorithm always outputs no.
 - * Suppose (G,k) is an yes-instance and F is a <=k FVS
 - * Let H=G-F
 - * Pr (an edge in E(F) \cup E(H,F) is chosen) > 1/2
 - * Pr (a vertex from F is chosen) > $1/2 \cdot 1/2 = 1/4$
 - * $Pr(S=F) > (1/4)^k$
 - * Pr(Algorithm says no) < (1-(1/4)k) ^ (4)k <= 1/e
 - * Pr(Algorithm says yes) > 1- 1/e >= 1/2

Theorem: Feedback Vertex Set can be solved in randomized $0*(4^k)$ time, with constant success probability.