Functions

Shirley Chu

De La Salle University

February 18, 2020

Introduction

Definition

Let A and B be sets. f is a *function* from A to B when exactly one element of B to each element of A.

$$f(a) = b$$
 $f: A \rightarrow B$

a.k.a. mappings or transformations

Example: f(x) = x + 1

Introduction

Definition

Given $f: A \rightarrow B$, i.e. f(a) = b

- A is the domain of f
- B is the codomain of f
- b is the image of a
- a is the preimage of b

Note that the *range of f* is the set of all images of f. The range of f is also known as *image of f*.

Example

Determine if each is a function or not. If so, determine the domain, codomain and range of each function.

```
Example 1: f: \{a, b, c, d, e\} \to \mathbb{Z} and f(a) = 1, f(b) = 2, f(c) = -1, f(d) = 5, f(d) = 1 and f(e) = 1.

**not a function**
```

Example 2:
$$f: \{a, b, c, d, e\} \rightarrow \mathbb{Z}$$
 and $f(a) = 1$, $f(b) = 2$, $f(c) = -1$, $f(d) = 5$ and $f(e) = 1$.

- domain of $f: \{a, b, c, d, e\}$
- codomain of $f: \mathbb{Z}$
- range of $f: \{1, 2, -1, 5\}$

Example 3:
$$f$$
: set of students $\to \mathbb{Z}$ and $f(\mathsf{Abby}) = 82$, $f(\mathsf{Bren}) = 62$, $f(\mathsf{Carla}) = 71$, $f(\mathsf{Desiree}) = 95$ and $f(\mathsf{Eddie}) = 50$.
 a function

- domain of *f*: {Abby, Bren, Carla, Desiree, Eddie}
- \blacksquare codomain of $f: \mathbb{Z}$
- \blacksquare range of $f: \{82, 62, 71, 95, 50\}$

Operations on Functions

Let f_1 and f_2 be functions from A to \mathbb{R} . Functions $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R} .

(let $x \in A$)

- $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- $(f_1f_2)(x) = f_1(x)f_2(x)$

Example: Let f and g be functions from \mathbb{R} to \mathbb{R} where f(x) = x + 5 and $g(x) = x - x^2$.

- $(f+g)(x) = 2x + 5 x^2$
- $(f \cdot g)(x) = 5x 4x^2 x^3$

One-to-One Functions

Definition

A function f from A to B is one-to-one or an injection, if and only if f(a) = f(b) for all a = b in the domain of f.

A function is said to be *injective* if it is one-to-one.

Example 1:
$$f: \{a, b, c, d\} \rightarrow \{1, 2, 3, 4, 5\}$$
 and $f(a) = 4$, $f(b) = 5$, $f(c) = 1$, $f(d) = 3$

one-to-one

Example 2:
$$f: \mathbb{Z} \to \mathbb{Z}$$
 where $f(x) = x^2$
not one-to-one, since $f(1) = f(-1) = 1$ and $1 \neq -1$.

Onto Functions

Definition

A function f from A to B is *onto* or a *surjection*, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

A function is said to be *surjective* if it is onto.

Example 1:
$$f: \{a, b, c, d\} \rightarrow \{1, 2, 3, 4, 5\}$$
 and $f(a) = 4$, $f(b) = 5$, $f(c) = 1$, $f(d) = 3$

not onto, since there is not x such that f(x) = 2.

Example 2: $f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2$

not onto, since there is no x such that f(x) < 0.

Example 3: $f: \mathbb{Z} \to \mathbb{Z}$ where f(x) = x + 1

One-to-One Correspondence

Definition

A function f is a *one-to-one correspondence* or a *bijection*, if it is **both** one-to-one and onto.

A function is said to be *bijective* if it is a one-to-one correspondence.

Example 1:
$$f : \{a, b, c, d\} \rightarrow \{1, 2, 3, 4, 5\}$$
 and $f(a) = 4$, $f(b) = 5$, $f(c) = 1$, $f(d) = 3$

not a one-to-one correspondence, since it is not onto.

Example 2:
$$f: \mathbb{Z} \to \mathbb{Z}$$
 where $f(x) = x + 1$

one-to-one correspondence

Summary

Supposed $f: A \rightarrow B$ and $x \in A$ and $y \in B$

- f is **injective**: If f(x) = f(y) then x = y
- f is surjective: $\forall y \exists x (f(x) = y)$

Thus,

- f is **not injective**: Found f(x) = f(y) where $x \neq y$.
- f is **not surjective**: Found y such that $\forall x \ (f(x) \neq y)$.

Exercise 1

- Determine if f is a function from \mathbb{R} to \mathbb{R} ?
 - 1 $f(x) = \frac{1}{x}$
- Determine if f is a function from \mathbb{Z} to \mathbb{R} ?
 - 1 $f(n) = \pm n$
 - 2 $f(n) = \sqrt{n^2 + 1}$
- Find these values.
 - 1 1.1
 - $\left[-0.1\right]$
 - $\left[-\frac{3}{4}\right]$
 - $\boxed{\frac{1}{2} + \left\lceil \frac{3}{2} \right\rceil}$

Exercise 2

■ Determine whether function f from \mathbb{Z} to \mathbb{Z} is one-to-one, onto or one-to-one correspondence.

1
$$f(x) = -3x + 4$$

$$f(x) = -3x^2 + 7$$

3
$$f(x) = x^5 + 1$$

$$f(x) = \frac{x+1}{x+2}$$

■ Determine whether function f from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} is one-to-one, onto or one-to-one correspondence.

1
$$f(m, n) = m + n$$

2
$$f(m, n) = m^2 + n^2$$

$$f(m,n)=|n|$$

References

Rosen, 2007 Kenneth Rosen.

Discrete Mathematics and Its Applications 7th edition, 2007