Fluxo Máximo

Prof. Andrei Braga

Conteúdo

- Problema motivador
- Modelagem com grafos
- Problema do fluxo máximo
- Método de Ford-Fulkerson
- Exercícios
- Referências

Imagem: <u>FTC</u>, CC0, via Wikimedia Commons

"A extração do carvão mineral é um importante segmento da nossa economia, por muitos anos foi a principal atividade econômica de Criciúma. No Sul catarinense, abrange carboníferas, ferrovia, usina térmica e produção de cimento. São 15 municípios envolvidos" – Fonte: Notícia da FACISC de 06/10/2021

Importante: Pesquise sobre os impactos ambientais desta atividade econômica

Imagem: <u>FTC</u>, CC0, via Wikimedia Commons

Extração

Transporte

Utilização

Imagens – Fonte: Notícia da Agência AL de 05/04/2013

Extração

PORTO DE IMBITUBA **Transporte** PESCARIA BRAVA LAGUNA PORTO DE LAGUNA COMPLEXO TERMELÉTRICO
JORGE LACERDA ADMINISTRAÇÃO → URUSSANGA ●TUBARÃO SIDERÓPOLIS JAGUARUNA COCAL DO SUL SANGÃO MORRO DA FUMAÇA CRICIÚMA [®] IÇARA FORQUILHINHA CONVENÇÃO

Utilização

Imagem: <u>FTC</u>, CC0, via Wikimedia Commons

Capacidades diárias de carga das vias

Em um entreposto

, não ocorre nem adição, nem subtração de carga

Carvão mineral - Problema

Problema: Qual é a maior quantidade diária de carga que podemos enviar do ponto de extração para o ponto de utilização?

Carvão mineral - Problema

Envios que resultam na maior quantidade diária de carga possível de ser enviada do ponto de extração para o ponto de utilização

Carvão mineral - Problema

É 24 (12 + 12) a maior quantidade diária de carga possível de ser enviada do ponto de extração para o ponto de utilização

Rede por onde um material flui

The diagram above shows water flowing through a pipework system.

The values on the pipes are the capacities of water that they can carry.

Rede de fluxo

- Uma rede de fluxo é um grafo dirigido (digrafo) G
 - que possui pesos não-negativos nas arestas e
 - o que tem um vértice s chamado de fonte e um vértice $t \neq s$ chamado de sorvedouro
- Em uma rede de fluxo G, dizemos que o peso de uma aresta uv é a sua capacidade, que denotamos por c(uv)
- Exemplo:

Nas redes de fluxo que nos interessa estudar, s será de fato uma fonte (o grau de entrada de s será 0) e f será de fato um sorvedouro (o grau de saída de t será 0)

Esta rede **é diferente** da rede de vias do exemplo do **carvão mineral** (isto, por causa das direções das arestas)

 Dada uma rede de fluxo G, uma função f: E(G)→ℝ atribui a cada aresta de G um valor real (em geral, vamos considerar apenas valores inteiros)

• Exemplo de $f: E(G) \rightarrow \mathbb{R}$:

 Dada uma rede de fluxo G, uma função f: E(G)→ℝ atribui a cada aresta de G um valor real (em geral, vamos considerar apenas valores inteiros)

• Exemplo de $f: E(G) \rightarrow \mathbb{R}$:

- Dada uma rede de fluxo G, um **fluxo** em G é uma função $f: E(G) \rightarrow \mathbb{R}$ tal que
 - $0 \le f(uv) \le c(uv)$, para toda aresta uv de G
 - $\bigcirc \sum_{v \in N^{-}(u)} f(vu) = \sum_{v \in N^{+}(u)} f(uv),$

para todo vértice *u* de *G* diferente de *s* e *t*

Um fluxo respeita as capacidades das arestas (restrição de capacidade)

Para cada vértice diferente de s e t, o fluxo que entra no vértice é igual ao fluxo que sai do vértice (conservação de fluxo)

- Dada uma rede de fluxo G, um **fluxo** em G é uma função $f: E(G) \rightarrow \mathbb{R}$ tal que

 - $0 \le f(uv) \le c(uv)$, para toda aresta uv de G
 - $v \in N^-(u)$ $v \in N^+(u)$
 - \circ $\sum f(vu) = \sum f(uv)$, para todo vértice u de G diferente de s e t
- Exemplo:

- Dada uma rede de fluxo G, um **fluxo** em G é uma função $f: E(G) \rightarrow \mathbb{R}$ tal que
 - $0 \le f(uv) \le c(uv)$, para toda aresta uv de G
 - $\sum_{v \in N^{-}(u)} f(vu) = \sum_{v \in N^{+}(u)} f(uv)$, para todo vértice u de G diferente de s e t
- Dizemos que f(uv) é o fluxo na aresta uv
- O valor do fluxo f, denotado por | f | é dado por

$$|f| = \sum_{v \in N^+(s)} f(sv) - \sum_{v \in N^-(s)} f(vs)$$

- Dada uma rede de fluxo G, um **fluxo** em G é uma função $f: E(G) \rightarrow \mathbb{R}$ tal que
 - \circ 0 \leq $f(uv) \leq c(uv)$, para toda aresta uv de G
- Dizemos que f(uv) é o fluxo na aresta uv
- O valor do fluxo f, denotado por | f | é dado por

$$|f| = \sum_{v \in N^{+}(s)} f(sv)$$

Nas redes de fluxo que nos interessa estudar, s será de fato uma fonte (o grau de entrada de s será 0) e f será de fato um sorvedouro (o grau de saída de t será 0)

- Dada uma rede de fluxo G, um **fluxo** em G é uma função $f: E(G) \rightarrow \mathbb{R}$ tal que
 - $0 \le f(uv) \le c(uv)$, para toda aresta uv de G
- Dizemos que f(uv) é o fluxo na aresta uv
- O valor do fluxo f, denotado por | f | é dado por

$$|f| = \sum_{v \in N^{+}(s)} f(sv)$$

Exemplo:

Valor de f: 11 + 8 = 19

Problema do fluxo máximo

- Dada uma rede de fluxo G, encontre um fluxo f em G de valor máximo
- Exemplo:

f é um fluxo em G de valor máximo

Esta rede **é diferente** da rede de vias do exemplo do **carvão mineral** (isto, por causa das direções das arestas)

Valor de f: 11 + 12 = 23

Problema do fluxo máximo

- Dada uma rede de fluxo G, encontre um fluxo f em G de valor máximo
- Podemos resolver este problema usando o método de Ford-Fulkerson
- Este método, porém, requer que uma transformação seja feita na rede de fluxo recebida como entrada

Eliminação de ciclos de comprimento 2

- O método de Ford-Fulkerson requer que a rede de fluxo recebida como entrada não contenha ciclos de comprimento 2
- Isto n\u00e3o representa uma restri\u00e7\u00e3o importante, pois podemos facilmente eliminar ciclos de comprimento 2 de uma rede de fluxo
- Eliminação de ciclos de comprimento 2:

Como modificar a rede de fluxo de forma que

- o ciclo de comprimento 2 seja eliminado e
- o valor máximo de um fluxo na rede não seja alterado?

Eliminação de ciclos de comprimento 2

- O método de Ford-Fulkerson requer que a rede de fluxo recebida como entrada não contenha ciclos de comprimento 2
- Isto n\u00e3o representa uma restri\u00e7\u00e3o importante, pois podemos facilmente eliminar ciclos de comprimento 2 de uma rede de fluxo
- Eliminação de ciclos de comprimento 2:

- O método de Ford-Fulkerson usa o conceito de rede residual, visto a seguir
- Dados uma rede de fluxo G e um fluxo f em G, a rede residual de G induzida por f, denotada por G_f, é a rede de fluxo tal que
 - os vértices de G_f são iguais aos vértices de G (ou seja, $V(G_f) = V(G)$) e
 - o para cada aresta uv de G,
 - G_f contém a aresta uv se c(uv) f(uv) > 0 e
 - G_f contém a aresta vu se f(uv) > 0

- Dados uma rede de fluxo G e um fluxo f em G, a **rede residual** de G induzida por f, denotada por G_f , é a rede de fluxo tal que
 - os vértices de G_f são iguais aos vértices de G (ou seja, $V(G_f) = V(G)$) e
 - o para cada arestá uv de G,
 - G_f contém a aresta uv se c(uv) f(uv) > 0 e
 - G_f contém a aresta vu se f(uv) > 0
- Exemplo:

 G_f contém $v_3 v_1$ porque $c(v_3 v_1) - f(v_3 v_1) = 3 > 0$

 G_{f} f(v)

 G_f contém $v_1 v_3$ porque $f(v_3 v_1) = 1 > 0$

aresta de G

arestas correspondentes de G_f

- Dados uma rede de fluxo G e um fluxo f em G, a **rede residual** de G induzida por f, denotada por G_f , é a rede de fluxo tal que
 - os vértices de G_f são iguais aos vértices de G (ou seja, $V(G_f) = V(G)$) e
 - para cada aresta uv de G,
 - G_f contém a aresta uv se c(uv) f(uv) > 0 e
 - G_f contém a aresta vu se f(uv) > 0
- Exemplo:

aresta de G

arestas correspondentes de G_f

- Dados uma rede de fluxo G e um fluxo f em G, a rede residual de G induzida por f, denotada por G_f , é a rede de fluxo tal que
 - os vértices de G_f são iguais aos vértices de G (ou seja, $V(G_f) = V(G)$) e
 - para cada aresta uv de G,
 - G_f contém a aresta uv se c(uv) f(uv) > 0 e
 - G_f contém a aresta vu se f(uv) > 0
- Exemplo:

- Dados uma rede de fluxo G e um fluxo f em G, a rede residual de G induzida por f, denotada por G_f, é a rede de fluxo tal que
 - os vértices de G_f são iguais aos vértices de G (ou seja, $V(G_f) = V(G)$) e
 - para cada aresta uv de G,
 - G_f contém a aresta uv se c(uv) f(uv) > 0 e
 - G_f contém a aresta vu se f(uv) > 0
 - o No primeiro caso acima, $c_f(uv) = c(uv) f(uv)$ é a capacidade da aresta uv em G_f e, no segundo caso acima, $c_f(vu) = f(uv)$ é a capacidade da aresta vu em G_f

- Dados uma rede de fluxo G e um fluxo f em G, a rede residual de G induzida por f, denotada por G_f, é a rede de fluxo tal que
 - $c_f(uv) = c(uv) f(uv)$ é a capacidade da aresta uv em G_f e
 - $c_f(vu) = f(uv)$ é a capacidade da aresta vu em G_f
- Exemplo:

arestas correspondentes de G_f

• Exemplo de rede residual:

• Exemplo de rede residual:

Método de Ford-Fulkerson

Ford-Fulkerson(G) <

G é uma rede de fluxo que não contém ciclos de comprimento 2

- 1. Inicialize f fazendo f(uv) = 0 para cada aresta uv de G
- 2. Enquanto existe um st-caminho P na rede residual G_f , faça:
- 3. Determine d sendo d a menor capacidade de uma aresta de P na rede residual G_f ou seja, d = min{ $c_f(uv)$: uv é uma aresta de P }
- 4. Atualize f fazendo o seguinte para cada aresta uv de P:
- 5. Se a aresta *uv* existe em *G*:
- 6. f(uv) = f(uv) + d
- 7. Senão: // neste caso, a aresta vu existe em G
- 8. f(vu) = f(vu) d
- 9. Retorne *f*

Método de Ford-Fulkerson - Exemplo de execução 1

Rede de fluxo recebida como entrada:

Método de Ford-Fulkerson - Exemplo de execução 1

• Passo 1:

• 1^{a.} execução dos passos 2 e 3:

• 1ª execução dos passos 2 e 3:

• 1^{a.} execução dos passos 4 a 8:

• 2ª execução dos passos 2 e 3:

• 2ª execução dos passos 2 e 3:

• 2^{a.} execução dos passos 4 a 8:

• 3ª execução dos passos 2 e 3:

• 3ª execução dos passos 2 e 3:

• 3^{a.} execução dos passos 4 a 8:

• 4^{a.} execução do passo 2:

• 4^{a.} execução do passo 2:

Não existe um st-caminho em G_f O laço dos passos 2 a 8 acaba
e o método retorna f

Rede de fluxo recebida como entrada:

Passo 1:

• 1ª execução dos passos 2 e 3:

• 1ª execução dos passos 2 e 3:

• 1^{a.} execução dos passos 4 a 8:

• 2ª execução dos passos 2 e 3:

• 2ª execução dos passos 2 e 3:

• 2ª execução dos passos 4 a 8:

O fluxo na aresta v_2v_3 diminuiu (veja o slide anterior), mas o valor de f aumentou

• 3ª execução dos passos 2 e 3:

• 3ª execução dos passos 2 e 3:

• 3^{a.} execução dos passos 4 a 8:

• 4ª execução dos passos 2 e 3:

• 4ª execução dos passos 2 e 3:

• 4^{a.} execução dos passos 4 a 8:

• 5^{a.} execução do passo 2:

• 5^{a.} execução do passo 2:

Não existe um st-caminho em G_f O laço dos passos 2 a 8 acaba
e o método retorna f

Exercícios

Exercício 1 da Lista de Exercícios "Fluxo Máximo".

Exercícios

• Exercício 2 da Lista de Exercícios "Fluxo Máximo".

Exercícios

Demais exercícios da Lista de Exercícios "Fluxo Máximo".

Referências

- Esta apresentação é baseada nos seguintes materiais:
 - Capítulo 26 do livro
 Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms.
 3rd. ed. MIT Press, 2009.