2019 年全国硕士研究生招生考试试题

一、选择题(本题共8小题,每小题4分,共32分.在	每小题给出的四个选项中	,只有一项符合题目要
求,把所选项前的字母填在题后的括号内.)		
(1) 当 $x \to 0$ 时, 若 $x - \tan x$ 与 x^k 是同阶无穷小	k = (
(A)1. $(B)2.$ (C)	(D)4.	
(2) 曲线 $y = x\sin x + 2\cos x \left(-\frac{\pi}{2} < x < 2\pi\right)$ 的	均拐点坐标为()	
$(A)(0,2).$ $(B)(\pi,-2).$	(C) $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.	(D) $\left(\frac{3\pi}{2}, -\frac{3\pi}{2}\right)$.
(3) 下列反常积分发散的是()		
$(A)\int_0^{+\infty} x e^{-x} dx. \qquad (B)\int_0^{+\infty} x e^{-x^2} dx.$	$(C) \int_0^{+\infty} \frac{\arctan x}{1 + x^2} dx.$	$(D)\int_0^{+\infty} \frac{x}{1+x^2} \mathrm{d}x.$
(4) 已知微分方程 $y'' + ay' + by = ce^x$ 的通解为 y	$V = (C_1 + C_2 x) e^{-x} + e^x, $	リa√b√c 依次为()
(A)1, 0, 1. $(B)1, 0, 2.$	(C)2, 1, 3.	(D)2, 1, 4.
(5) 已知平面区域 $D = \left\{ (x, y) \middle x + \right\}$	$ y \leq \frac{\pi}{2}$, $I_1 = \iint_D$	$\sqrt{x^2 + y^2} dx dy, I_2 = $
$\iint_{D} \sin \sqrt{x^{2} + y^{2}} dx dy, I_{3} = \iint_{D} (1 - \cos \sqrt{x^{2} + y^{2}}) dx dy$	() dxdy, 则()	
$(A)I_3 < I_2 < I_1.$	(B) $I_2 < I_1 < I_3$.	
$(C)I_1 < I_2 < I_3.$	(D) $I_2 < I_3 < I_1$.	
(6) 已知 $f(x)$, $g(x)$ 2 阶可导且 2 阶导函数在 x	=/ .	$\frac{(x-g(x))}{(x-a)^2} = 0$ 是曲线
y = f(x) 和 $y = g(x)$ 在 $x = a$ 对应的点处相	切且曲率相等的()	
(A) 充分非必要条件.	(B) 充分必要条件.	
(C) 必要非充分条件.	(D) 既非充分又非必要:	条件.
(7) 设 A 是 4 阶矩阵, A^* 是 A 的伴随矩阵, 若线性	\pm 方程组 $Ax = 0$ 的基础解	系中只有2个向量,则
$r(A^*) = ()$		
(A)0. (B)1.	` '	(D)3.
(8) 设 A 是 3 阶实对称矩阵, E 是 3 阶单位矩阵.	$ \overline{A}A^2 + A = 2E, \mathbb{L} A = $	$=4$,则二次型 $x^{1}Ax$ 的
规范形为()	(D) 2 2 2	
$(A)y_1^2 + y_2^2 + y_3^2.$	$(B)y_1^2 + y_2^2 - y_3^2.$	
$(C)y_1^2 - y_2^2 - y_3^2.$	(D) $-y_1^2 - y_2^2 - y_3^2$.	
二、填空题(本题共6小题,每小题4分,共24分,持	四答室埴在550 中 は と ト ト	

(10) 曲线 $\begin{cases} x = t - \sin t, \\ y = 1 - \cos t \end{cases}$ 在 $t = \frac{3\pi}{2}$ 对应点处的切线在 y 轴上的截距为_____.

(9) $\lim_{x\to 0} (x+2^x)^{\frac{2}{x}} = \underline{\hspace{1cm}}$

(11) 设函数
$$f(u)$$
 可导, $z = yf\left(\frac{y^2}{x}\right)$, 则 $2x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} =$ _____.

(12) 曲线
$$y = \ln \cos x \left(0 \le x \le \frac{\pi}{6} \right)$$
 的弧长为_____.

(13) 已知函数
$$f(x) = x \int_{1}^{x} \frac{\sin t^{2}}{t} dt$$
,则 $\int_{0}^{1} f(x) dx =$ ______.

(14) 已知矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -2 & 1 & -1 & 1 \\ 3 & -2 & 2 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix}$$
, A_{ij} 表示 $|\mathbf{A}|$ 中 (i,j) 元的代数余子式,则 $A_{11} - A_{12} =$

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

已知函数
$$f(x) = \begin{cases} x^{2x}, & x > 0, \\ xe^x + 1, & x \le 0. \end{cases}$$
 求 $f'(x)$,并求 $f(x)$ 的极值.

(16)(本题满分10分)

求不定积分
$$\int \frac{3x+6}{(x-1)^2(x^2+x+1)} dx$$
.

(17) (本题满分10分)

设函数
$$y(x)$$
 是微分方程 $y' - xy = \frac{1}{2\sqrt{x}} e^{\frac{x^2}{2}}$ 满足条件 $y(1) = \sqrt{e}$ 的特解.

(I) 求y(x);

($\| \| \|$) 设平面区域 $D = \{(x,y) \mid 1 \le x \le 2, 0 \le y \le y(x)\}$, 求 D 绕 x 轴旋转所得旋转体的体积.

(18) (本题满分10分)

已知平面区域 $D = \{(x,y) \mid |x| \leq y, (x^2 + y^2)^3 \leq y^4\}$, 计算二重积分

$$\iint\limits_{D} \frac{x+y}{\sqrt{x^2+y^2}} \, \mathrm{d}x \, \mathrm{d}y.$$

(19)(本题满分10分)

设 n 为正整数,记 S_n 为曲线 $y=\mathrm{e}^{-x}\sin x (0 \leq x \leq n\pi)$ 与 x 轴所围图形的面积,求 S_n ,并 求 $\lim_{n\to\infty} S_n$.

(20) (本题满分11分)

已知函数 u(x,y) 满足 $2\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial y^2} + 3\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} = 0$, 求 a,b 的值, 使得在变换 $u(x,y) = v(x,y)e^{ax+by}$ 下, 上述等式可化为 v(x,y) 不含一阶偏导数的等式.

(21)(本题满分11分)

已知函数 f(x) 在 [0,1] 上具有 2 阶导数,且 f(0) = 0, f(1) = 1, $\int_0^1 f(x) dx = 1$,证明:

- (I) 存在 $\xi \in (0,1)$,使得 $f'(\xi) = 0$;
- (Ⅱ) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.

(22) (本题满分11分)

已知向量组
$$I: \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 2 \\ a^2 + 3 \end{pmatrix}$$
与 $II: \boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ 1 \\ a + 3 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 0 \\ 2 \\ 1 - a \end{pmatrix},$

$$\boldsymbol{\beta}_3 = \begin{pmatrix} 1 \\ 3 \\ a^2 + 3 \end{pmatrix}$$
. 若向量组 I 与 II 等价,求 a 的取值,并将 $\boldsymbol{\beta}_3$ 用 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表示.

(23) (本题满分11分)

已知矩阵
$$\mathbf{A} = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}$$
与 $\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$ 相似.

- (I) 求x,y;
- (\mathbb{I}) 求可逆矩阵 P,使得 $P^{-1}AP = B$.