System kolejkowy

Wykorzystywana literatura:

- Wykłady: https://kacpertopol.github.io/

Rozkład wykładniczy

FGP
$$f(x) = e^{-x \lambda} \lambda$$

$$ln[@]:= \lambda = 1;$$

Plot
$$[\lambda * Exp[-x * \lambda], \{x, 0, 10\}]$$

Dystrybuanta CDF

$$F(x) = 1 - e^{-x \lambda}$$

$$ln[\bullet]:= \lambda = 1;$$

Plot[1-Exp[-
$$x * \lambda$$
], {x, 0, 10}]

wykres funkcja eksponencjalna

Odwracanie dystrybuanty

$$y = 1 - e^{-x \lambda}$$

$$\mathbf{1} - \mathbf{y} = \mathbf{e}^{-\mathbf{x} \lambda}$$

$$\begin{array}{ll} ln \; (y-1) & = -x\lambda \\ -\frac{ln \; (1-y)}{\lambda} & = x \end{array}$$

Odwrotna dystrybuanta

$$F^{-1}(x) = -\frac{\ln (1-y)}{\lambda}$$
,

gdzie $y \rightarrow Uniform(0,1)$

 $In[\circ]:= \lambda = 1;$

Plot
$$\left[\frac{-\text{Log}[1-y]}{\lambda}, \{y, 0, 1\}\right]$$

System kolejkowy

Tempo przychodzenia zadań do serwera: λ_A

Odstęp czasu pomiędzy przychodzeniem nowych zadań: $t_i^A = -\frac{\ln(1-n)}{\lambda_a}$, gdzie $n \rightarrow \text{Uniform}(0,1)$

Tempo wykonywania zadań przez serwer: $\lambda_{\mathbb{S}}$

Czas wykonywania kolejnych zadań: $t_i^S = -\frac{\ln(1-n)}{\lambda_S}$, gdzie $n \rightarrow \text{Uniform}(0,1)$

Jednocześnie serwer może wykonywać tylko jedno zadanie.

Czas pojawiania się nowych zadań w systemie: $\alpha_i = t_1^A + t_2^A + ... + t_i^A$

Czas gdy kolejne zadania będą wykonywane na serwerze: β_i

gdy serwer jest pusty: $\beta_i = \alpha_i$

gdy serwer zawiera kolejkę: $\beta_i = \beta_{i-1} + t_{i-1}^S$, gdzie $\beta_1 = t_1^A$

Przypadek $\lambda_A = \frac{1}{20}$ i $\lambda_S = \frac{1}{15}$ --- zadania wykonywane szybciej niż napływają

ln[-]:= lambdaA = 1/20 //N

przybliżenie n

Out[@]= 0.05

In[*]:= (*Średni czas czekania na kolejne zadanie:*)

$$\begin{array}{l} \textit{In[*]:=} \ \ \, \mathsf{Table} \Big[-\frac{\mathsf{Log} \, [1 - \mathsf{RandomReal} \, []]}{\lambda} \ \ \, /. \ \, \lambda \to \mathsf{lambdaA} \, , \ \, \{\texttt{i} \, , \, \texttt{1} \, , \, \mathsf{100\,000}\} \Big] \ \, // \, \, \mathsf{Mean} \\ \big[\mathsf{tabela} \ \ \, \big[\mathsf{srednia} \, \, \mathsf{arytmetyczna} \big] \\ \end{array}$$

Out[*]= 19.9981

$$ln[*]:=$$
 lambdaS = 1/15 // N przybliżenie n

Out[*]= 0.0666667

<code>ln[*]:= (*Średni czas czekania na wykonanie zadania:*)</code>

$$ln[*]:= \begin{tabular}{ll} Table & Log[1-RandomReal[]] & λ &$$

Out[*]= 14.9938

Przypadek $\lambda_A = \frac{1}{20}$ i $\lambda_S = \frac{1}{100}$ --- zadania wykonywane wolniej niż napływają; system się zatyka

Out[*]= **0.05**

In[*]:= (*Średni czas czekania na kolejne zadanie:*)

$$\begin{array}{l} \textit{In[*]:=} \ \ \, \mathsf{Table} \big[-\frac{\mathsf{Log} \, [1 - \mathsf{RandomReal} \, [] \,]}{\lambda} \ \ \, /. \ \, \lambda \to \mathsf{lambdaA} \, , \ \, \{\texttt{i} \, , \, \texttt{1} \, , \, \mathsf{100\,000}\} \big] \ \, // \, \, \mathsf{Mean} \\ \big[\mathsf{\acute{s}rednia} \ \, \mathsf{arytmetyczna} \big] \end{array}$$

Out[*]= 19.9324

$$ln[*]:=$$
 lambdaS = 1/100 // N przybliżenie

Out[*]= 0.01

<code>ln[*]:= (*Średni czas czekania na wykonanie zadania:*)</code>

Out[•]= 100.001

Przypadek $\lambda_A = \frac{1}{20}$ i $\lambda_S = \frac{1}{5}$ --- zadania wykonywane znacznie szybciej niż napływają

Out[*]= 0.05

ln[*]:= (*Średni czas czekania na kolejne zadanie:*)

Out[*]= 20.0451

$$ln[*]:=$$
 lambdaS = 1/5// N przybliżenie nu

Out[*]= **0.2**

<code>ln[*]:= (*Średni czas czekania na wykonanie zadania:*)</code>

Out[*]= 4.9944

