Отчёт о выполнении лабораторной работы 2.1.3

Матренин Василий Б01-006 ФРКТ

21 апреля 2021 г.

Определение C_p/C_v по скорости звука в газе

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

1 Теоретическое введение

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R - газовая постоянная, T - температура газа, а μ его молярная масса. Выразим показатель адиабаты:

$$\gamma = \frac{\mu}{RT}c^2$$

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и, вообще говоря, очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2},$$

где λ — длина волны звука в трубе, а n — любое целое число.

Скорость звука с связана с его частотой f и длиной волны λ соотношением:

$$c = \lambda f$$
.

Подбор условий, при которых возникает резонанс, можно производить двояко:

1) При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Для k-ого резонанса имеем:

$$L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k.

2) При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для k-ого резонанса получим:

$$L = (n+k)\frac{\lambda_{k+1}}{2}$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

1.1 Эксперементальная установка:

Рис. 2. Установка для изучения зависимости скорости звука

Соответственно двум методам измерения скорости звука в работе имеются две установки (рис. 1 и 2). В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Первая установка (рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 .

Вторая установка (рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды. На этой установке измеряется зависимость скорости звука от температуры.

1.2 Ход работы

- 1. Перепишем параметры установки: $L = 570 \pm 1$ мм.
- 2. Исходя из примерного значения скорости звука ($\approx 270 \, \frac{\text{м}}{\text{c}}$), предварительно рассчитаем, в каком диапазоне частот следует вести измерения, чтобы при удлинении трубы можно было наблюдать 4 резонанса: $L = \frac{n\lambda}{2}, \ L + \Delta L = \frac{(n+4)\lambda}{2}$. Поскольку $\Delta L \leq 23$ см, то $\lambda \leq 11.5$ см. Следовательно $f \geq 2400$ гц.

Проведём измерения на первой установке для воздуха и CO_2 . Плавно изменяя длину трубы, последовательно зафиксируем все доступные для наблюдения точки резонанса. Измерения проводятся для нескольких частот. Занесем данные в таблицу 1.

3. Изобразим полученные результаты на графике, откладывая по оси абсцисс номер k последовательного резонанса, а по оси ординат — соответствующее удлинение трубы L. Угловой коэффициент прямой определяет длину полуволны.

Построим график 1: зависимости удлинения L от номера резонанса к для воздуха.

Также построим график 2: зависимости удлинения L от номера резонанса k для углекислого газа.

График 2: Зависимость L(k) при f = const для углекислого газа

Таблица 1. Зависимость L(k) для воздуха и CO2

Воздух					CO2				
k	f, Гц	L, мм	ΔL , мм	с, м/с	k	f, Гц	L, мм	ΔL , mm	с, м/с
1	3146,0	45	_	_	1	2407,3	57	_	_
2	3146,0	100	55	342,91	2	2407,3	111	54	259,99
3	3146,0	154	55	342,91	3	2407,3	165	54	259,99
4	3146,0	209	55	346,06	4	2407,3	221	56	269,62
1	3439,3	37	_	_	1	2796,5	18	_	_
2	3439,3	87	50	343,93	2	2796,5	66	48	265,67
3	3439,3	137	50	343,93	3	2796,5	113	48	265,67
4	3439,3	188	51	350,81	4	2796,5	161	48	268,46
5	_	_	_	_	5	2796,5	209	48	268,46
1	2832,6	41	_	_	1	3207,0	27	_	_
2	2832,6	102	61	345,58	2	3207,0	69	42	269,39
3	2832,6	163	61	345,58	3	3207,0	112	43	275,80
4	2832,6	224	61	345,58	4	3207,0	153	41	262,97
5	_	_	_	_	5	3207,0	195	42	269,39
1	3754,4	38	_	_	1	3610,0	37	_	_
2	3754,4	84	46	345,40	2	3610,0	75	38	274,36
3	3754,4	130	46	345,40	3	3610,0	111	36	259,92
4	3754,4	177	47	352,91	4	3610,0	148	37	267,14
5	_	_	_	_	5	3610,0	186	38	274,36
6	_	_	_	_	6	3610,0	224	38	274,36
1	3966,2	45	_	_	1	3785,8	6	_	_
2	3966,2	89	44	349,03	2	3785,8	43	37	280,15
3	3966,2	133	44	349,03	3	3785,8	78	35	265,01
4	3966,2	177	44	349,03	4	3785,8	112	34	257,43
5	_	_	_		5	3785,8	148	36	272,58

Вычислим с помощью полученных графиков скорость звука в углекислом газе и рассчитаем погрешности.

Погрешность σ_c отдельного измерения определяется следующей формулой:

$$\sigma_c = c\sqrt{\left(\frac{\sigma_\lambda}{\lambda}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2}.$$

Значение λ и ее погрешности получим через МНК, по формуле

$$\lambda = 2\frac{dL}{dk}.$$

Результаты представлены в таблице 2 для воздуха и в таблице 3 для углекислого газа:

Таблица 2. Для воздуха

			1 1		
f, Гц	λ , м × 10^{-2}	\mathbf{c} , \mathbf{m}/\mathbf{c}	σ_{λ} , m $\times 10^{-2}$	σ_f , Гц	σ_c , m/c
3146	4,40	276,85	0,022	5	1,45
3439	4,63	318,48	0,022	5	1,58
2833	6,10	345,58	0,022	5	1,39
3754	5,03	377,69	0,022	5	1,73
3966	5,47	433,51	0,022	5	1,83

Таблица 3. Для углекислого газа

f, Гц	λ , м $\times 10^{-2}$	\mathbf{c} , \mathbf{m}/\mathbf{c}	σ_{λ} , m $\times 10^{-2}$	σ_f , Гц	σ_c , M/c
2407	3,55	171,11	0,022	5	1,12
2797	3,73	208,56	0,022	5	1,29
3207	4,20	269,39	0,022	5	1,47
3610	4,77	344,39	0,022	5	1,66
3786	5,46	413,41	0,022	5	1,75

Можно заметить, что значения скоростей звука при различных частотах не совпадают. Общая погрешность:

$$\sigma_c = \sqrt{(c_{\text{сл}})^2 + (c_{\text{кос}})^2}$$

Для воздуха:

$$\sigma_{\text{случ.воздуха}} = 26,56 \frac{\text{м}}{\text{с}}$$

$$\sigma_{ ext{koc.вoздyxa}} = 0,73 \, rac{ ext{M}}{ ext{c}}$$

$$\sigma_{c \text{ воздуха}} = 26,57 \frac{\text{м}}{c}$$

Итак,

$$c = (3, 5 \pm 0, 3) \times 10^2 \frac{\text{M}}{\text{c}}.$$

Теоретическое значение скорости при температуре $t=20^{\circ}C$ равно

$$c \approx 343 \frac{M}{c}$$
.

Для углекислого газа:

$$\sigma_{\text{случ.CO2}} = 23,76 \frac{\text{м}}{\text{с}}$$

$$\sigma_{\text{koc.}CO2} = 0,76 \, \frac{\text{M}}{\text{c}}$$

$$\sigma_{c\,CO2} = 23,77\,\frac{\mathrm{M}}{\mathrm{c}}$$

Итак,

$$c = (2, 8 \pm 0, 3) \times 10^2 \frac{\text{M}}{\text{c}}.$$

Теоретическое значение скорости при температуре $t=24,1^{\circ}C$ равно

$$c = 273, 6 \frac{M}{c}.$$

В пределах погрешности эксперементальные значения совпадают с теоретическими. Однако стоит сказать пару слов о таком сильном разбросе для c. Это может быть связано с тем, что подвижную часть цилиндра двигали не достаточно медленно.

4. Проведём измерения на второй установке. Данные представлены в таблице 4.

Таблица 4

	таолица т									
N	T, C	f, Гц	$\Delta \mathbf{f}, \mathbf{Hz}$	$\mathbf{c}, \mathbf{m}/\mathbf{c}$		N	$\mid \mathbf{T}, \mathbf{C} \mid$	f, Гц	Δf , mm	$ \mathbf{c}, \mathbf{m}/\mathbf{c} $
1	50	912	_	_		1	40	895	_	
2	50	1133	221	353,6		2	40	1113	218	348,8
3	50	1363	230	368,0		3	40	1342	229	366,4
4	50	1580	217	347,2		4	40	1557	215	344,0
5	50	1813	233	372,8		5	40	1770	213	340,8
6	50	2032	219	350,4		6	40	1973	203	324,8
1	30	898	_	_		1	20	873	_	_
2	30	1113	215	344,0		2	20	1086	213	340,8
3	30	1320	207	331,2		3	20	1290	204	326,4
4	30	1535	215	344,0		4	20	1514	224	358,4
5	30	1760	225	360,0		5	20	1715	201	321,6
6	30	1974	214	342,4		6	20	1940	225	360,0

5. Полученные результаты изобразим на графике 3: откладывая по оси абсцисс номер резонанса k, а по оси ординат — разность между частотой последующих резонансов и частотой первого резонанса: $\Delta f_k = f_{k+1} - f_1$. Угловой коэффициент прямой определяет величину c/2L.

График 3: Зависимость f(k) при T = const для воздуха

Вычислим с помощью полученных графиков скорость звука в воздухе и рассчитаем погрешности.

Длина трубы постоянная и равна

$$L = 800 \pm 1 \, \text{mm}$$

Погрешность σ_c отдельного измерения определяется следующей формулой:

$$\sigma_c = c\sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2},$$

где A - коэффициент наклона прямой на графике.

Результаты представлены в таблице 5:

Таблица 5

T, °C	T, K	f, Гц	с, м/с	γ
50	323	212,7	340,32	1,251
40	313	215,3	344,48	1,322
30	303	216,4	346,24	1,380
20	293	224,5	359,2	1,536

По полученным данным расчитаем γ .

$$\overline{\gamma} = 1,372$$

$$\gamma_{\mathrm{сл}} = \sqrt{rac{\sum_{i=1}^{4} (\gamma_i - \overline{\gamma})^2}{3}} = 0.04.$$

Косвенная погрешность определения γ мала, так как $\frac{2\sigma_c}{4c}\approx 0,25\%$. Итак,

$$\gamma = 1,37 \pm 0,04,$$

что в пределах погрешности совпадает с теоретическим значением $\gamma = 1, 4$.

Вывод

Мы измерили показатель адиабаты использовав скорость звука при помощи резонансных пиков зависимости амплитуды принимаемого сигнала при прохождении в закрытом пространстве от расстояния, проходимого звуком в одну сторону из-за появления стоячих волн, результаты эксперимента совпали с табличными значениями. $\gamma = 1,37 \pm 0,04$.

Также измерили скорость звука для воздуха и для углекислого газа. Экспериментальные данные с хорошей точностью совпали: для воздуха: $c=(3,5\pm0,3)\times 10^2\,\frac{\rm M}{\rm c}$, для CO2: $c=(2,8\pm0,3)\times 10^2\,\frac{\rm M}{\rm c}$.