数据挖掘——马的疝病分析

2120161061 王雨佳

一、数据摘要

为方便处理, 首先将数据中确实数据"?"统一替换为"NaN"。

1. 对标称属性,给出每个可能取值的频数。

针对每个可能取值的频数,利用 matlab 函数 "tabulate"进行计算,由于属性较多,随机选择几个属性 (surgery/Age/abdomen/cp_data)进行结果展示,结果如下:

>> tabulate(surgery)		>> tabula	te(cp_data)	>> tabula	te(abdomen)	>> tabulate(Age)				
Value	Count	Value	Count	Value	Count	Value	Count			
1	214	1	124	1	31	1	340			
2	152	2	244	2	24	2	0			
				3	19	3	0			
				4	55	4	0			
				5	96	5	0			
						6	0			
						7	0			
						8	0			
						9	28			

2. 数值属性,最大、最小、均值、中位数、四分位数及缺失值的个数如下图所示:

surgery max: 2 min: 1 mean: 1.4153 median: 1 quartile-1/4: 1 quartile-3/4: 2 missing: 2	rectal_temperature max: 40.8 min: 35.4 mean: 38.1344 median: 38.1 quartile-1/4: 37.8 quartile-3/4: 38.5 missing: 69	temperature_of_extremities max: 4 min: 1 mean: 2.3564 median: 3 quartile-1/4: 1 quartile-3/4: 3 missing: 65
Age max: 9 min: 1 mean: 1.6087 median: 1 quartile-1/4: 1 quartile-3/4: 1 missing: 0	pulse max: 184 min: 30 mean: 70.7573 median: 60 quartile-1/4: 48 quartile-3/4: 88 missing: 26	peripheral_pulse max: 4 min: 1 mean: 1.9614 median: 1 quartile-1/4: 1 quartile-3/4: 3 missing: 83
Hospital_Number max: 5305629 min: 514279 mean: 1112333.8614 median: 530299 quartile-1/4: 528911.5 quartile-3/4: 534736 missing: 0	respiratory_rate max: 96 min: 8 mean: 30.5219 median: 28 quartile-1/4: 18 quartile-3/4: 36 missing: 71	mucous_membranes max: 6 min: 1 mean: 2.8344 median: 3 quartile-1/4: 1 quartile-3/4: 4 missing: 48

capillary_refill_time max: 3 min: 1 mean: 1.303 median: 1 quartile-1/4: 1 quartile-3/4: 2 missing: 38	abdominal_distension max: 4 min: 1 mean: 2.2244 median: 2 quartile-1/4: 1 quartile-3/4: 3 missing: 65	nasogastric_reflux_PH max: 8.5 min: 1 mean: 4.9623 median: 5.4 quartile-1/4: 3.375 quartile-3/4: 6.5 missing: 299
pain max: 5 min: 1 mean: 2.9082 median: 3 quartile-1/4: 2 quartile-3/4: 4 missing: 63	nasogastric_tube max: 3 min: 1 mean: 1.7384 median: 2 quartile-1/4: 1 quartile-3/4: 2 missing: 131	rectal_examination max: 4 min: 1 mean: 2.7792 median: 3 quartile-1/4: 1 quartile-3/4: 4 missing: 128
peristalsis max: 4 min: 1 mean: 2.9082 median: 3 quartile-1/4: 3 quartile-3/4: 4 missing: 52	nasogastric_reflux max: 3 min: 1 mean: 1.6085 median: 1 quartile-1/4: 1 quartile-3/4: 2 missing: 133	abdomen max: 5 min: 1 mean: 3.7156 median: 4 quartile-1/4: 3 quartile-3/4: 5 missing: 143
packed_cell_volume max: 75 min: 4 mean: 45.6568 median: 44 quartile-1/4: 37.125 quartile-3/4: 52 missing: 37	abdomcentesis_total_protein max: 10.1 min: 0.1 mean: 2.9481 median: 2.1 quartile-1/4: 1.95 quartile-3/4: 3.9 missing: 235	lesion1 max: 41110 min: 0 mean: 3650.8342 median: 3025 quartile-1/4: 2111.5 quartile-3/4: 3209 missing: 0
total_protein max: 89 min: 3.3 mean: 24.7711 median: 7.5 quartile-1/4: 6.5 quartile-3/4: 58 missing: 43	outcome max: 3 min: 1 mean: 1.5273 median: 1 quartile-1/4: 1 quartile-3/4: 2 missing: 2	lesion2 max: 7111 min: 0 mean: 96.9728 median: 0 quartile-1/4: 0 quartile-3/4: 0 missing: 0
abdominocentesis_appearance max: 3 min: 1 mean: 2.046 median: 2 quartile-1/4: 1 quartile-3/4: 3 missing: 194	surgical_lesion max: 2 min: 1 mean: 1.3696 median: 1 quartile-1/4: 1 quartile-3/4: 2 missing: 0	lesion3 max: 2209 min: 0 mean: 6.0027 median: 0 quartile-1/4: 0 quartile-3/4: 0 missing: 0
<pre>cp_data max: 2 min: 1 mean: 1.663 median: 2 quartile-1/4: 1 quartile-3/4: 2 missing: 0</pre>		

二、数据可视化

针对数值属性,

1. 绘制直方图,如 mxPH,用 qq 图检验其分布是否为正态分布。

针对各标称属性,直方图如下所示:

针对各标称属性, qq 图如下图所示:

通过以上 qq 图,可以看出属性 "packed cell volume" 服从正态分布。

2. 绘制盒图,对离群值进行识别。

三、数据缺失的处理

数据集中有30%的值是缺失的,因此需要先处理数据中的缺失值。

分别使用下列四种策略对缺失值进行处理:

1. 将缺失部分剔除

经过删除,该数据集仅剩7条数据,用词方法对缺失值进行处理效果并不好。

2. 用最高频率值来填补缺失值

根据直方图,用最高频率值填补缺失值后,变化不明显。

3. 通过属性的相关关系来填补缺失值

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 2	3	24	25	26	27	28
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	NaN	1.0000	0.6759	NaN	NaN	-0.0499	0.0012	0.0063	0.1819	-0.0990																		
3	NaN	0.6759	1	NaN	NaN	-0.1136	0.1304	-0.0562	-0.0194	-0.1367																		
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
11	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
13	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
14	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
15	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
17	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
21	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
22	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
23	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN
24		-0.0499		NaN		NaN	1.0000			-0.0400																		
25		0.0012		NaN					-0.0024																			
26		0.0063		NaN						0.2460																		
2/		0.1819		NaN				******		0.0373	0.0372																	
28	NaN	-0.0990	-0.1367	NaN	NaN	0.0575	-0.0241	0.1081	0.0372	1.0000																		

有上述结果可以看出,属性 "Age"与 "Hospital Number"显著相关 (0.6759), "surgical

lesion"与"lesion1"微相关(-0.2515),"lesion2"与"lesion3"微相关(0.2460)。

Hospital Number = +(4.9647e+05) * Age + (3.1367e+05)

Age = +(9.2019e-07) * Hospital Number + (0.58514)

4. 通过数据对象之间的相似性来填补缺失值

数据相似性结果见 "attribute_similarity.txt",根据数据对象之间的相似性进行填补,

结果如下所示:

