

Module 03 – Exercise Class

Random Forest AdaBoost - Gradient Boosting

Nguyen Quoc Thai

Objectives

Ensemble Learning

- **❖** Introduction
- **!** Ensemble Methods
- **❖** Learning Ensembles
- Constructing Ensembles

Bagging

- Bootstrapping
- Decision Tree
- * Random Forest
- ***** Extract Subset Training Data

Boosting

- Boosting Methods
- **❖** AdaBoost
- Gradient Boosting
- Calculate Weight

Implementation

- Housing Dataset
- * Random Forest
- **❖** AdaBoost
- Gradient Boosting
- Sklearn

Outline

SECTION 1

Ensemble Learning

SECTION 2

Bagging Methods

SECTION 3

Boosting Methods

SECTION 4

Implementation

Decision Tree

If the result from 1 tree is not good...

Why don't we just use more trees?

Accuracy: 100%

Ground Truth	Predict 1	Predict 2	Predict 3	Combine
0	0	0	0	0
0	0	1	0	0
0	0	0	1	0
0	1	0	0	0
1	1	0	1	1
1	1	1	1	1
1	1	1	1	1
1	0	1	1	1

Learning Ensembles

❖ Learn multiple alternative models using different training data or different learning algorithms

Data 1

Model 1

Learning Ensembles

❖ Learn multiple alternative models using different training data or different learning algorithms

Combine decisions of multiple definitions,
 e.g weighted voting

Training Data

Methods for Constructing Ensembles

- ❖ By manipulating the training set
- ***** By manipulating the input features
- ❖ By manipulating the class labels

Original Data

❖ By manipulating the learning algorithm

**

Homogeneous Ensembles

❖ Use a single, arbitrary learning algorithm but manipulate training data to make it learn multiple models

Outline

SECTION 1

Ensemble Learning

SECTION 2

Bagging Methods

SECTION 3

Boosting Methods

SECTION 4

Implementation

Bagging (Bootstrapping Aggregating)

Bootstrapping

- 1 2 8 7 2
- Sampling with replacement 4 3 9 2 5 6
- 789 129738

Out-of-bag (OOB)

- 1 2 3
- Sampling with replacement
- 789

Original Dataset

- 1 2 8 7 2 4
- 4 3 9 2 5 6
- 1 2 9 7 3 8

Training Set

Unselected - OOB

- 3 5 6 9
- 1 7 8
- 4 5 6

Test Set

Aggregating

Bootstrap Dataset

Evaluation: Test Set

Voting

0	1	1	1
0	0	1	0
1	1	1	1

Averaging

1	2	3	2
1	3	2	2
1	1	1	1

Random Forest

Decision Tree

Random Forest

Decision Tree

- **Root Node**: the top-level node
- ❖ **Node**: internal node or decision node
- **❖ Parent Node**: a node that precedes a (child) node
- ❖ Leaf: terminal node a node at the end of a branch – represents outcome of the tree (label or numerical value)
- **❖ Branches**: a subset of a tree, starting at an (internal) node until the leaves

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

$$Gini(D_i) = 1 - \sum_{j=1}^{c} p_j^2$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gini(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

$$Gain(D) = 1 - Entropy(D)$$

$$Entropy(D)$$

$$= \frac{n_1}{n} Entropy(D_1) + \frac{n_2}{n} Entropy(D_2)$$

$$Entropy(D_i) = -\sum_{j=1}^{c} p_j \log_2 p_j$$

Petal_Length	Petal_Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Decision Tree for Regression

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

 $MSE(D) = MSE(D_1) + MS(D_2)$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2 \qquad MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$D = \{0, 0, 55, 83\}$$

$$mean(D) = 34.5$$

$$SSE(D_1) = (0 - 34.5)^2 + (0 - 34.5)^2 + (55 - 34.5)^2 + (83 - 34.5)^2 = 5153$$

$$MSE(D_1) = \frac{(0 - 34.5)^2 + (0 - 34.5)^2 + (55 - 34.5)^2 + (83 - 34.5)^2}{4} = 1288.25$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

Decision Tree for Regression

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

$$MSE(D) = MSE(D_1) + MS(D_2)$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$SSE(D_2) = (0 - 46)^2 + (55 - 46)^2 + (83 - 46)^2 = 1450$$

$$SSE(Experience \le 2.0) = 1450$$

Decision Tree for Regression

$$SSE(D) = SSE(D_1) + SSE(D_2)$$

$$MSE(D) = MSE(D_1) + MS(D_2)$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

$$SSE(D_i) = \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2 \qquad MSE(D_i) = \frac{1}{n_i} \sum_{j=1}^{n_i} (x_j - \bar{x}_i)^2$$

Experience	Salary
1.5	0
2.5	0
4.0	55
5.5	83

$$MSE(D_1) = \frac{(0-0)^2}{1} = 0$$

$$MSE(D_2) = \frac{(0-46)^2 + (55-46)^2 + (83-46)^2}{3} = 483$$

$$MSE(Experience \le 2.0) = 483$$

Random Forest

A random forest

* a supervised machine learning algorithm

Data Sampling

Decision Tree Learners

Majority Voting / Averaging

the calculations of numerous decision trees are combined to produce one final result

Data Sampling

Feature = 1
Randomly sample with replacement

Length	Width	Label
1	0.2	0
1.3	0.6	0
0.9	0.7	0
1.7	0.5	1
1.8	0.9	1
1.2	1.3	1

Length	Label
1	0
1.3	0
1	0
1.8	1
1.8	1
1.2	1

Width	Label
0.6	0
0.6	0
0.7	0
0.7	0
0.9	1
1.3	1

Length	Label
1	0
1.3	0
1.2	1
1.8	1
1.8	1
1.2	1

Value = [1,1]

Value = [0,2]

Decision Tree Learners

Length	Label
1	0
1.3	0
1	0
1.8	1
1.8	1
1.2	1

Class 0

Decision Tree Learners

Width	Label
0.6	0
0.6	0
0.7	0
0.7	0
0.9	1
1.3	1

Class 1

Majority Voting for Classification

Random Forest for Regression

Majority Averaging for Regression

Test sample: Experience = 3

Outline

SECTION 1

Ensemble Learning

SECTION 2

Bagging Methods

SECTION 3

Boosting Methods

SECTION 4

Implementation

Boosting Methods

Boosting Methods

Boosting Methods

AdaBoost (Adaptive Boosting)

Calculate weights of samples

Initial sample weight = 1/N

Length	Width	Label	Weight
1	0.2	0	1/6
1.3	0.6	0	1/6
0.9	0.7	0	1/6
1.7	0.5	1	1/6
1.8	0.9	1	1/6
1.2	1.3	1	1/6

Fitting model

Initial sample weight = 1/N

Fitting Model 1

Length	Width	Label	Weight
1	0.2	0	1/6
1.3	0.6	0	1/6
0.9	0.7	0	1/6
1.7	0.5	1	1/6
1.8	0.9	1	1/6
1.2	1.3	1	1/6

Calculate weights of weak learner

Initial sample weight = 1/N

Model 1

Fitting Model 1

Total error (Error rate)

$$\varepsilon_1 = \sum_{incorrect} w_i = \frac{1}{6}$$

Weight of weak learner

$$\alpha_1 = \frac{1}{2} * ln \frac{(1 - \varepsilon_1)}{\varepsilon_1} = 0.8$$

Length	Width	Label	Weight
1	0.2	0	1/6
1.3	0.6	0	1/6
0.9	0.7	0	1/6
1.7	0.5	1	1/6
1.8	0.9	1	1/6
1.2	1.3	1	1/6

 $P_Width \le 0.8$ Entropy = 1.0 Samples = 6Value = [3,3]

Entropy = 0.811Samples = 4Value = [3,1]

Correct: 3
Incorrect: 1

Entropy = 0.0Samples = 2

Value = [0,2]

Correct: 2 Incorrect: 0

Update weights of samples

For incorrect predictions $w_{new} = w * e^{\alpha}$ $= \frac{1}{6} * e^{0.8} = 0.37$

For correct predictions

$$w_{new} = w * e^{-\alpha}$$
$$= \frac{1}{6} * e^{-0.8} = 0.07$$

Length	Width	Label	Weight
1	0.2	0	1/6
1.3	0.6	0	1/6
0.9	0.7	0	1/6
1.7	0.5	1	1/6
1.8	0.9	1	1/6
1.2	1.3	1	1/6

Length	Width	Label	Weight
1	0.2	0	0.07
1.3	0.6	0	0.07
0.9	0.7	0	0.07
1.7	0.5	1	0.37
1.8	0.9	1	0.07
1.2	1.3	1	0.07

Update weights of samples

Updated Data

For incorrect predictions

$$w_{new} = w * e^{\alpha}$$

= $\frac{1}{6} * e^{0.8} = 0.37$

For correct predictions

$$w_{new} = w * e^{-\alpha}$$
$$= \frac{1}{6} * e^{-0.8} = 0.07$$

Normalization

Length	Width	Label	Weight
1	0.2	0	0.1
1.3	0.6	0	0.1
0.9	0.7	0	0.1
1.7	0.5	1	0.5
1.8	0.9	1	0.1
1.2	1.3	1	0.1

Total new weights = 0.72

$$0.07*1/0.72 = 0.1$$

 $0.37*1/0.72 = 0.5$

Length	Width	Label	Weight
1	0.2	0	1/6
1.3	0.6	0	1/6
0.9	0.7	0	1/6
1.7	0.5	1	1/6
1.8	0.9	1	1/6
1.2	1.3	1	1/6

Length	Width	Label	Weight
1	0.2	0	0.07
1.3	0.6	0	0.07
0.9	0.7	0	0.07
1.7	0.5	1	0.37
1.8	0.9	1	0.07
1.2	1.3	1	0.07

Create new data

Length	Width	Label	Weight	Random
1	0.2	0	0.1	0.0 => 0.1
1.3	0.6	0	0.1	0.1 => 0.2
0.9	0.7	0	0.1	0.2 => 0.3

0.5

0.1

0.1

0.3 = > 0.8

0.8 = > 0.9

0.9 = > 1.0

0.5

0.9

1.3

1.7

1.8

1.2

	1.7	0.5	1	1/6
	1.8	0.9	1	1/6
	1.2	1.3	1	1/6
	T (1	TT 7* 141	T 1 1	337 • 1 4
7	Length	Width	Label	Weight
	Length 1	0.2	Label 0	0.1
	J			<u> </u>
	1	0.2	0	0.1
	1 1.3	0.2 0.6	0	0.1 0.1

0.5

Length

1.3

0.9

1.7

0.1

0.2

0.7

0.9

0.6

0.4

Width

0.2

0.6

0.7

Label

0

0

0

0.5

Weight

1/6

1/6

1/6

Refresh new weights

Length	Width	Label	Weight
1	0.2	0	1/6
1.3	0.6	0	1/6
1.7	0.5	1	1/6
1.8	0.9	1	1/6
1.7	0.5	1	1/6
1.7	0.5	1	1/6

Fitting model 2 (Round 2)

Length	Width	Label	Weight
1	0.2	0	1/6
1.3	0.6	0	1/6
1.7	0.5	1	1/6
1.8	0.9	1	1/6
1.7	0.5	1	1/6
1.7	0.5	1	1/6

Training Phase

Inference Phase

Summary

Get subset training data

- Sampling Probability
- 7

2 Initial sample weight = 1/N

- Normalization
- 6

3 Fitting Model

For incorrect predictions

$$w_{new} = w * e^{\alpha}$$

5

 $\varepsilon_1 = \sum_{i=1}^{n} w_i$

incorrect

Total error (Error rate)

For correct predictions

$$w_{new} = w * e^{-\alpha}$$

Weight of weak learner

$$\alpha_1 = \frac{1}{2} * ln \frac{(1 - \varepsilon_1)}{\varepsilon_1}$$

Boosting Methods

Gradient Boosting

Gradient Boosting

Original Data

$$r_1 = y_1 - \hat{y}_1, h_1(x)$$

Experience	Salary
1	0
3	20
3.5	30
4	35
5.5	60

Initial Model Prediction

$$r_1 = y_1 - \hat{y}_1, h_1(x)$$

	0 + 20 + 30 + 35 + 60	= 29
$\mu = \frac{1}{N} \sum_{i=1}^{N} y_i =$	5	– 29

Experience	Salary	Initial Prediction
1	0	29
3	20	29
3.5	30	29
4	35	29
5.5	60	29

Calculating Residuals

$$r_1 = y_1 - \hat{y}_1, h_1(x)$$

$$\mu = \frac{1}{N} \sum y_i \qquad \qquad r = y - \hat{y} = y - \mu$$

Experience	Salary	Initial Prediction	Residual 1
1	0	29	- 29
3	20	29	- 9
3.5	30	29	1
4	35	29	6
5.5	60	29	31

Building a Decision Tree

Using the residuals as the target $h_1(x)$

Original Data

Model 1

$$r_1 = y_1 - \hat{y}_1, h_1(x)$$

Experience	Residual 1
1	- 29
3	- 9
3.5	1
4	6
5.5	31

Compute Decision Tree Output

Update Predictions

$$y_{new} = \hat{y} + lr * \hat{r}$$
$$lr = 0.1$$

Experience	Salary	Initial Prediction	Residual 1	Predicted Residuals 1	Prediction 1
1	0	29	- 29	- 29	26.1
3	20	29	- 9	- 9	28.1
3.5	30	29	1	3.5	29.35
4	35	29	6	3.5	29.35
5.5	60	29	31	31	32.1

Calculating Residuals for Round 2

$$r_2 = y - y_{new}$$

Experience	Salary	Initial Prediction	Residual 1	Predicted Residuals 1	Prediction 1	Residual 2
1	0	29	- 29	- 29	26.1	- 26.1
3	20	29	- 9	- 9	28.1	- 8.1
3.5	30	29	1	3.5	29.35	0.65
4	35	29	6	3.5	29.35	5.65
5.5	60	29	31	31	32.1	27.9

Training Pharse

$$\mu = \frac{1}{N} \sum y_i$$

Ensemble Model f(x)

Inference Phase

$$f(x) = \mu + lr * \sum h_t(x) = 29 + 0.1 * (2 + 1 + 7) = 30$$

$$lr = 0.1$$

Initial Model Prediction

$$\mu = \frac{1}{N} \sum y_i$$

1

Calculate Residuals

$$r_1 = y - \hat{y} = y - \mu$$

$$r_2 = y - y_{new}$$

Build a Decision Tree h(x)

Compute Residual Outputs

Update Predictions

 $y_{new} = \hat{y} + lr * \hat{r}$ lr = 0.1

Outline

SECTION 1

Ensemble Learning

SECTION 2

Bagging Methods

SECTION 3

Boosting Methods

SECTION 4

Implementation

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype		
0	price	545 non-null	int64		
1	area	545 non-null	int64		
2	bedrooms	545 non-null	int64		
3	bathrooms	545 non-null	int64		
4	stories	545 non-null	int64		
5	mainroad	545 non-null	object		
6	guestroom	545 non-null	object		
7	basement	545 non-null	object		
8	hotwaterheating	545 non-null	object		
9	airconditioning	545 non-null	object		
10	parking	545 non-null	int64		
11	prefarea	545 non-null	object		
12	furnishingstatus	545 non-null	object		
dtypes: int64(6) = object(7)					

dtypes: int64(6), object(7)

memory usage: 55.5+ KB

Housing Dataset

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 13 columns):
    Column
                       Non-Null Count
                                       Dtype
     price
                       545 non-null
                                       int64
                       545 non-null
                                       int64
     area
                                       int64
    bedrooms
                       545 non-null
     bathrooms
                       545 non-null
                                       int64
    stories
                                       int64
                       545 non-null
                                       object
    mainroad
                       545 non-null
                                       object
     questroom
                       545 non-null
                       545 non-null
                                       object
     basement
    hotwaterheating
                       545 non-null
                                       object
     airconditioning
                       545 non-null
                                       object
     parking
                                       int64
                       545 non-null
     prefarea
                       545 non-null
                                       object
 12 furnishingstatus 545 non-null
                                       object
dtypes: int64(6), object(7)
memory usage: 55.5+ KB
```


Categorical Label Encoding

```
['mainroad',
  'guestroom',
  'basement',
  'hotwaterheating',
  'airconditioning',
  'prefarea',
  'furnishingstatus']
```

```
1 categorical_cols = df.select_dtypes(include=['object']).columns.to_list()
2
3 ordinal_encoder = OrdinalEncoder()
4 encoded_categorical_cols = ordinal_encoder.fit_transform(
5     df[categorical_cols]
6 )
7 encoded_categorical_df = pd.DataFrame(
8     encoded_categorical_cols,
9     columns=categorical_cols
10 )
11 numerical_df = df.drop(categorical_cols, axis=1)
12 encoded_df = pd.concat(
13     [numerical_df, encoded_categorical_df], axis=1
14 )
```


Train Test Split

Training & Evaluation

```
1 regressor = RandomForestRegressor(
2    random_state=random_state
3 )
4 regressor.fit(X_train, y_train)
```

RandomForestRegressor
RandomForestRegressor(random_state=1)

```
1 y_pred = regressor.predict(X_val)
```

```
1 mae = mean_absolute_error(y_val, y_pred)
2 mse = mean_squared_error(y_val, y_pred)
3
4 print('Evaluation results on validation set:')
5 print(f'Mean Absolute Error: {mae}')
6 print(f'Mean Squared Error: {mse}')
```

Evaluation results on validation set: Mean Absolute Error: 0.46093873321571177 Mean Squared Error: 0.37944418523089524

```
1 regressor = AdaBoostRegressor(
2    random_state=random_state
3 )
4 regressor.fit(X_train, y_train)
```

AdaBoostRegressor
AdaBoostRegressor(random_state=1)

```
1 y_pred = regressor.predict(X_val)
```

```
1 mae = mean_absolute_error(y_val, y_pred)
2 mse = mean_squared_error(y_val, y_pred)
3
4 print('Evaluation results on validation set:')
5 print(f'Mean Absolute Error: {mae}')
6 print(f'Mean Squared Error: {mse}')
```

Evaluation results on validation set: Mean Absolute Error: 0.567680019897059 Mean Squared Error: 0.5739244030038942

```
1 regressor = GradientBoostingRegressor(
2    random_state=random_state
3 )
4 regressor.fit(X_train, y_train)
```

GradientBoostingRegressor
GradientBoostingRegressor(random_state=1)

```
1 y_pred = regressor.predict(X_val)
```

```
1 mae = mean_absolute_error(y_val, y_pred)
2 mse = mean_squared_error(y_val, y_pred)
3
4 print('Evaluation results on validation set:')
5 print(f'Mean Absolute Error: {mae}')
6 print(f'Mean Squared Error: {mse}')
```

Evaluation results on validation set: Mean Absolute Error: 0.4516626127750995 Mean Squared Error: 0.39610445936979427

Summary

Ensemble Learning

- Introduction
- **Solution** Ensemble Methods
- **❖** Learning Ensembles
- Constructing Ensembles

Bagging

- Bootstrapping
- Decision Tree
- Random Forest
- ***** Extract Subset Training Data

Boosting

- Boosting Methods
- **❖** AdaBoost
- Gradient Boosting
- Calculate Weight

Implementation

- Housing Dataset
- * Random Forest
- **❖** AdaBoost
- Gradient Boosting
- Sklearn

Thanks! Any questions?