STATS 300C: Theory of Statistics

Spring 2021

Scribe: Julie Zhang

Lecture 7 — April 20, 2021

Lecturer: Prof. Emmanuel Candès

Warning: These notes may contain factual and/or typographic errors. They are based on Emmanuel Candès's course from 2018 and 2021, and scribe notes.

Outline

Agenda: False Discovery Rate.

- 1. Empirical Process viewpoint of BHq.
- 2. Empirical Process viewpoint of FDR control.
- 3. Improving on BHq.

Much of the material in this lecture is taken from Storey, Siegmund, and Taylor (2004) [1].

7.1 The Empirical Process Viewpoint of BHq

In previous lectures, we introduced the BH procedure by looking at the sorted p-values on the x-axis and whether they fall below a critical line. An alternative way to view BH is to flip the axes and view the sorted p-values on the y-axis. This is illustrated in the following figure.

(b) P-values on the x axis, indices on y

Figure 1: Sorted p-values and BH(q) threshold line

This alternative view allows us to describe the BH procedure in terms of an empirical process. The coordinates on the y-axis are the values of the empirical CDF

$$\widehat{F}_n(t) = \frac{\#\{i : p_i \le t\}}{n}$$

evaluated at the p-values. Assume that the p-values and hypotheses are ordered in increasing order:

$$p(1) \le \dots \le p(n), \qquad H(1) \le H(n)$$

BHq is defined to reject $H(1), ..., H(i_0)$ where

$$i_0 = \max\left\{i: p(i) \le \frac{qi}{n}\right\}$$

The critical p-value is $p^* = p(i_0)$ and can be written as

$$p^* = \max \left\{ p(i) : p(i) \le \frac{qi}{n} \right\}$$
$$= \max \left\{ p(i) : p(i) \le q\widehat{F}_n(p(i)) \right\}$$
$$= \max \left\{ t \in \{p_1, ..., p_n\} : t \le q\widehat{F}_n(t) \right\}$$

If the set is empty, the convention is $p^* = q/n$. Therefore, the BHq procedure is equivalent to rejecting all hypotheses with $p_i \leq \tau_{BH}$:

$$\tau_{BH} = \max \left\{ t : \frac{t}{\widehat{F}_n(t) \vee 1/n} \le q \right\}$$

Notice that $\tau_{BH} \geq q/n$.

This formulation has a simple interpretation. Let $t \in (0,1)$ be fixed and consider rejecting H_i iff $p_i \leq t$. We can construct the rejection/acceptance table for the hypotheses whose values depend on t.

	H_0 accepted	H_0 rejected	Total
H_0 true		V(t)	n_0
H_0 false	T(t)	S(t)	$n - n_0 = n_1$
	n-R(t)	R(t)	n

We define

$$FDP(t) = \frac{V(t)}{R(t) \vee 1}, \qquad FDR(t) = \mathbb{E}[FDP(t)]$$

The idea is to choose the threshold t as large as possible while controlling the FDR at level q. If we had an estimate \widehat{FDR} of the FDR, we can take the threshold τ to be

$$\tau = \sup\{t \le 1 : \widehat{FDR}(t) \le q\}$$

and define the rejection rule to reject H_i iff $p_i \leq \tau$. We hope that this method indeed controls the false discovery rate and that having such a liberal test will not decrease the power too much. The first question is how to estimate FDR(t).

We know that $\mathbb{E}[V(t)] = n_0 t$, but n_0 is not known. Therefore, a conservative estimate of $n_0 t$ is nt, which leads to our first estimate

$$\widehat{FDR}(t) = \frac{nt}{R(t) \vee 1} = \frac{t}{\widehat{F}_n(t) \vee 1/n}$$

This leads us to exactly the BH procedure since

$$\tau_{BH} = \sup \left\{ t \le 1 : \frac{nt}{R(t) \lor 1} \le q \right\}$$

Theorem 1. Under independence, this FDR estimate is biased upwards:

$$\mathbb{E}[\widehat{FDR}(t)] \ge FDR(t)$$

For a proof, see [1].

7.2 Martingale Theory and FDR Control

We can invert the estimate of FDR to prove FDR control using martingales, giving us an alternate proof of the Benjamini-Hochberg result.

Theorem 2. BH (1995).

The procedure rejecting all hypotheses with $p_i \leq \tau_{BH}$ controls the FDR:

$$\mathbb{E}[FDR(\tau_{BH})] = qn_0/n$$

Proof. We let $\tau = \tau_{BH}$. Define the filtration

$$\mathcal{F}_t = \sigma(V(s), R(s) : t \le s \le 1)$$

Notice this is a backwards filtration: for $t_1 < t_2$, $\mathcal{F}_{t_2} \subset \mathcal{F}_{t_1}$. Define the reverse martingale $\{V(t)/t, 0 \le t \le 1\}$. We prove this is indeed a martingale: Let $s \le t$.

$$\mathbb{E}\left[\frac{V(s)}{s}\middle|\mathcal{F}_t\right] = \frac{1}{s}\mathbb{E}[V(s)|\mathcal{F}_t]$$

$$= \frac{1}{s} \cdot \frac{s}{t}V(t) \qquad (*)$$

$$= \frac{V(t)}{t}$$

where in (*) we used the fact that under \mathcal{F}_t , $V(t) = \#\{p_i : p_i \leq t, H_i \text{ null}\}$ and these $p_i \sim U[0,t]$ and are independent. This proves $\{V(t)/t, 0 \leq t \leq 1\}$ is a martingale.

Lecture 7 — April 20, 2021

Next, notice that τ_{BH} is a stopping time with respect to $\{\mathcal{F}_t\}$. This is because knowing $V(s), R(s) = n\widehat{F}_n(s)$ for $s \geq t$ will determine whether $\tau \leq t$. Therefore, $\{\tau \leq t\} \in \mathcal{F}_t$ and τ is a stopping time.

We are ready to apply Doob's Optional Stopping Theorem. By definition, $R(\tau) \vee 1 = n\tau/q$. Therefore,

$$FDR(\tau) = \mathbb{E}\left[\frac{V(\tau)}{R(\tau) \vee 1}\right]$$
$$= \frac{q}{n}\mathbb{E}\left[\frac{V(\tau)}{\tau}\right]$$
$$= \frac{q}{n}\mathbb{E}\left[\frac{V(1)}{1}\right]$$
$$= \frac{q}{n} \cdot n_0$$

7.3 Improving on BHq

We want to improve the simple conservative estimate of $\hat{\pi}_0 = 1$ by using the distribution of p-values. Fix $\lambda \in [0, 1)$ and define

$$\hat{\pi}_0^{\lambda} = \frac{n - R(\lambda)}{(1 - \lambda)n}$$

We usually will take $\lambda = 1/2$, while $\lambda = 0$ recovers the BHq procedure. The motivation for this estimation is the following:

$$\hat{\pi}_0^{\lambda} = \frac{n_0 - V(\lambda) + n_1 - S(\lambda)}{(1 - \lambda)n}$$

We would expect the non-null p-values to be small, so $n_1 - S(\lambda) \approx 0$, and hence

$$\hat{\pi}_0^{\lambda} \approx \frac{n_0 - S(\lambda)}{(1 - \lambda)n} \approx \frac{n_0 - (n_0/2)}{n/2} = \frac{n_0}{n}$$

Our estimate for the false discovery rate is

$$\widehat{FDR}^{\lambda}(t) = \hat{\pi}_0^{\lambda} \cdot \frac{nt}{R(t) \vee 1}$$

and the natural test would be to reject H_i iff $p_i \leq \tau$,

$$\tau = \sup\{t \le 1 : \widehat{FDR}(t) \le q\}$$

In cases where $\hat{\pi}_0^{\lambda}$ is smaller than 1, say 0.8, we may get more powerful results than BHq because we have a significant proportion of non-nulls.

There are several drawbacks to this approach. One drawback is that we may have $\hat{\pi}_0^{\lambda} > 1$, in which we are being even more conservative in our estimation. In addition, the threshold τ may not control the FDR, so we introduce a modified version called Storey's procedure.

7.4 Storey's Procedure

Storey's procedure involves a simple modification of to the estimate of π_0 defined in the previous section. Define

$$\hat{\pi}_0 = \frac{1 + n - R(1/2)}{n/2}$$

The only difference between $\hat{\pi}_0$ and $\hat{\pi}_0^{1/2}$ is the added 1 in the numerator. Our test now becomes reject H_i iff $p_i \leq \tau$,

$$\tau = \sup\left\{t \le \frac{1}{2} : \widehat{FDR}(t) = \frac{1 + n - R(1/2)}{n/2} \cdot \frac{nt}{R(t) \lor 1} \le q\right\}$$

Notice that we only take the supremum over $t \leq \frac{1}{2}$, which is necessary because the estimate of π_0 used the information of the *p*-values > 1/2.

Theorem 3. Storey's procedure controls FDR at level q.

Proof. We use martingale theory in a proof similar to the proof of Theorem 2. We know that $\widehat{FDR}(\tau) = q$. Then

$$\begin{split} FDR(\tau) &= \mathbb{E}\left[\frac{V(\tau)}{R(\tau) \vee 1}\right] \\ &= \mathbb{E}\left[\frac{V(\tau)}{n\tau} \cdot \frac{n\tau}{R(\tau) \vee 1} \cdot \frac{1+n-R(1/2)}{n/2} \cdot \frac{n/2}{1+n-R(1/2)}\right] \\ &= \mathbb{E}\left[\widehat{FDR}(\tau) \cdot \frac{V(\tau)}{n\tau} \cdot \frac{n/2}{1+n-R(1/2)}\right] \\ &= q \cdot \mathbb{E}\left[\frac{V(\tau)}{\tau} \cdot \frac{1/2}{1+n-R(1/2)}\right] \end{split}$$

Applying Doob's Optional Stopping Theorem to the martingale $\{V(t)/t : t \in [0, 1/2]\}$ and stopping time τ , we have

$$FDR(\tau) = q \cdot \mathbb{E}\left[\frac{V(1/2)}{1/2} \cdot \frac{1/2}{1 + n - R(1/2)}\right]$$
$$= q \cdot \mathbb{E}\left[\frac{V(1/2)}{1 + n - S(1/2) - V(1/2)}\right]$$
$$\leq q \cdot \mathbb{E}\left[\frac{V(1/2)}{1 + n_0 - V(1/2)}\right]$$

where the last inequality holds because $n_1 - S(1/2) \ge 0$.

We directly calculate $\mathbb{E}\left[\frac{V(1/2)}{1+n_0-V(1/2)}\right] \leq 1$. We know that $V(1/2) \sim Bin(n_0, 1/2)$. Then

$$\mathbb{E}\left[\frac{V(1/2)}{1+n_0-V(1/2)}\right] = \sum_{i=1}^{n_0} \mathbb{P}(V(1/2)=i)) \cdot \frac{i}{1+n_0-i}$$

$$= 2^{-n_0} \sum_{i=1}^{n_0} \binom{n_0}{i} \cdot \frac{i}{1+n_0-i}$$

$$= 2^{-n_0} \sum_{i=1}^{n_0} \frac{i \cdot n_0!}{(n_0-i+1) \cdot (n-i)! \cdot i!}$$

$$= 2^{-n_0} \sum_{i=1}^{n_0} \frac{n_0!}{(n_0-i+1)!(i-1)!}$$

$$= 2^{-n_0} \sum_{j=0}^{n_0-1} \binom{n_0}{j}$$

$$= 2^{-n_0} (2^{n_0} - 1)$$

$$= 1 - 2^{-n_0}$$

$$\leq 1$$

Therefore, $FDR(\tau) \leq q$ and this concludes the proof.

References

[1] Taylor J. Storey J. and Siegmund D. "Strong Control, Conservative Point Estimation and Simultaneous Conservative Consistency of False Discovery Rates: A Unified Approach". In: *Journal of the Royal Statistical Society. Series B (Statistical Methodology)* 66.1 (2004), pp. 187–205.