

# Security Assessment: CNDR TOKEN

June 13, 2024

• Audit Status: Fail

• Audit Edition: Advance





## **Risk Analysis**

#### **Classifications of Manual Risk Results**

| Classification | Description                      |
|----------------|----------------------------------|
| Critical       | Danger or Potential Problems.    |
| High           | Be Careful or Fail test.         |
| Medium         | Pass, Not-Detected or Safe Item. |
| Low            | Function Detected                |

#### **Manual Code Review Risk Results**

| Contract Privilege                 | Description  |
|------------------------------------|--------------|
| Buy Tax                            | 100%         |
| Sale Tax                           | 100%         |
| <ul><li>Cannot Buy</li></ul>       | Pass         |
| Cannot Sale                        | Pass         |
| Max Tax                            | 100%         |
| Modify Tax                         | Yes          |
| Fee Check                          | Pass         |
|                                    | Detected     |
| <ul><li>Trading Cooldown</li></ul> | Not Detected |
| Can Pause Trade?                   | Pass         |
| Pause Transfer?                    | Not Detected |
| Max Tx?                            | Fail         |
| Is Anti Whale?                     | Detected     |
|                                    | Not Detected |
|                                    |              |

| Description   |
|---------------|
| Not Detected  |
| Pass          |
| Detected      |
| Pass          |
| Not Detected  |
| Not Detected  |
| Not Detected  |
| no            |
| Not Detected  |
| Detected      |
| Not Detected  |
| 0             |
| Critical Risk |
| No            |
| N/A           |
|               |

The following quick summary it's added to the project overview; however, there are more details about the audit and its results. Please read every detail.

## **Project Overview**

### **Token Summary**

| Parameter     | Result            |
|---------------|-------------------|
| Address       | Ox                |
| Name          | CNDR              |
| Token Tracker | CNDR (\$CNDR)     |
| Decimals      | 9                 |
| Supply        |                   |
| Platform      | BASE              |
| compiler      | v0.8.23           |
| Contract Name | Cindr             |
| Optimization  | Yes with 200 runs |
| LicenseType   | MIT               |
| Language      | Solidity          |
| Codebase      |                   |
| Payment Tx    | Corporate         |

## Main Contract Assessed Contract Name

| Name | Contract | Live |
|------|----------|------|
| CNDR | Ox       | Yes  |

#### **TestNet Contract was Not Assessed**

#### **Solidity Code Provided**

| SolID | File Sha-1                               | FileName  |
|-------|------------------------------------------|-----------|
| CINDR | d59ca56e0889a0698b75d0e45050bd31ba432b0c | Cindr.sol |
| CINDR |                                          |           |

## **Call Graph**

The contract for CNDR has the following call graph structure.



### **Inheritance**

The contract for CNDR has the following inheritance structure.

The Project has a Total Supply of



### **Privileged Functions (onlyOwner)**

| Please Not | e it the co | ontract is f | Renounced | none of | this ti | unctions | can t | be executed. |  |
|------------|-------------|--------------|-----------|---------|---------|----------|-------|--------------|--|
|            |             |              |           |         |         |          |       |              |  |

| Function Name                | Parameters              | Visibility |
|------------------------------|-------------------------|------------|
| excludeFromReward            | address account         | external   |
| includeInReward              | address account         | external   |
| excludeFromFee               | address account         | external   |
| includeInFee                 | address account         | external   |
| setTaxFeePercent             | uint16 _taxFee          | external   |
| setBurnFeePercent            | uint16 _burnFee         | external   |
| setLiquidityFeePercent       | uint16 _liquidityFee    | external   |
| setMarketingFeePerce<br>nt   | uint16<br>_marketingFee | external   |
| setMaxTxPercent              | uint256<br>maxTxPercent | external   |
| setSwapAndLiquifyEna<br>bled | bool _enabled           | external   |

#### \$CNDR-01 | Potential Sandwich Attacks.

| Category | Severity | Location          | Status     |
|----------|----------|-------------------|------------|
| Security | Medium   | Cindr.sol: L: 847 | UnResolved |

#### **Description**

A sandwich attack might happen when an attacker observes a transaction swapping tokens or adding liquidity without setting restrictions on slippage or minimum output amount. The attacker can manipulate the exchange rate by frontrunning (before the transaction being attacked) a transaction to purchase one of the assets and make profits by back running (after the transaction being attacked) a transaction to sell the asset. The following functions are called without setting restrictions on slippage or minimum output amount, so transactions triggering these functions are vulnerable to sandwich attacks, especially when the input amount is large:

- swapExactTokensForETHSupportingFeeOnTransferTokens()
- addLiquidityETH()

#### Remediation

We recommend setting reasonable minimum output amounts, instead of 0, based on token prices when calling the aforementioned functions.

#### Referrences:

What Are Sandwich Attacks in DeFi — and How Can You Avoid Them?.

#### \$CNDR-03 | Lack of Input Validation.

| Category         | Severity | Location                                                                                                                  | Status   |
|------------------|----------|---------------------------------------------------------------------------------------------------------------------------|----------|
| Volatile<br>Code | Low      | Cindr.sol: L: 354 C: 14, L: 347 C: 14, L: 338 C: 14, L: 329 C: 14, L: 320 C: 14, L: 311 C: 14, L: 304 C: 14, L: 297 C: 14 | Detected |

#### **Description**

The given input is missing the check for the non-zero address.

The given input is missing the check for the only Owners need to be revisited for require..

#### Remediation

We advise the client to add the check for the passed-in values to prevent unexpected errors as below:

```
require(receiver != address(0), "Receiver is the zero address"); ...
require(value X limitation, "Your not able to do this function"); ...
```

We also recommend customer to review the following function that is missing a required validation. onlyOwners need to be revisited for require..

#### \$CNDR-04 | Centralized Risk In addLiquidity.

| Category        | Severity | Location               | Status   |
|-----------------|----------|------------------------|----------|
| Coding<br>Style | High     | Cindr.sol: L: 907 C:14 | Detected |

#### **Description**

uniswapV2Router.addLiquidityETH{value: ethAmount}(address(this), tokenAmount, 0, 0, owner(), block.timestamp);

The addLiquidity function calls the uniswapV2Router.addLiquidityETH function with the to address specified as owner() for acquiring the generated LP tokens from the \$CNDR-WBNB pool.

As a result, over time the \_owner address will accumulate a significant portion of LP tokens. If the \_owner is an EOA (Externally Owned Account), mishandling of its private key can have devastating consequences to the project as a whole.

#### Remediation

We advise the to address of the uniswapV2Router.addLiquidityETH function call to be replaced by the contract itself, i.e. address(this), and to restrict the management of the LP tokens within the scope of the contract's business logic. This will also protect the LP tokens from being stolen if the \_owner account is compromised. In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a decentralized mechanism or via smart-contract based accounts with enhanced security practices, f.e. Multisignature wallets.

- 1. Indicatively, here are some feasible solutions that would also mitigate the potential risk:
- 2. Time-lock with reasonable latency, i.e. 48 hours, for awareness on privileged operations;
- 3. Assignment of privileged roles to multi-signature wallets to prevent single point of failure due to the private key;

Introduction of a DAO / governance / voting module to increase transparency and user involvement

#### **\$CNDR-05 | Missing Event Emission.**

| Category         | Severity | Location                                                                                                                                                           | Status   |
|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Volatile<br>Code | Low      | Cindr.sol: L: 262 C: 14, L: 281 C: 14, L: 297 C: 14, L: 304 C: 14, L: 311 C: 14,L: 320 C: 14, L: 329 C: 14, L: 338 C: 14, L: 347 C: 14, L: 907 C: 14, L: 900 C: 14 | Detected |

#### **Description**

Detected missing events for critical arithmetic parameters. There are functions that have no event emitted, so it is difficult to track off-chain changes. The linked code does not create an event for the transfer.

#### Remediation

Emit an event for critical parameter changes. It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

## **\$CNDR-07 | State Variables could be Declared Constant.**

| Category        | Severity | Location                     | Status     |
|-----------------|----------|------------------------------|------------|
| Coding<br>Style | Low      | Cindr.sol: L: 25, L:95, L:98 | ■ Detected |

#### **Description**

Constant state variables should be declared constant to save gas.

\_decimals uniswapV2Router uniswapV2Pair

#### Remediation

Add the constant attribute to state variables that never changes.

https://docs.soliditylang.org/en/latest/contracts.html # constant-state-variables

#### **\$CNDR-10** | Initial Token Distribution.

| Category                      | Severity | Location          | Status     |
|-------------------------------|----------|-------------------|------------|
| Centralization /<br>Privilege | High     | Cindr.sol: L: 201 | UnResolved |

#### **Description**

All of the CNDR tokens are sent to the contract deployer when deploying the contract. This could be a centralization risk as the deployer can distribute tokens without obtaining the consensus of the community.

#### Remediation

We recommend the team to be transparent regarding the initial token distribution process, and the team shall make enough efforts to restrict the access of the private key.

## **\$CNDR-11** | Potential Reentrancy in \_swapTokensForEth.

| Category     | Severity | Location                | Status     |
|--------------|----------|-------------------------|------------|
| Optimization | High     | Cindr.sol: L: 874 C: 14 | UnResolved |

#### **Description**

The \_swapAndTransfer function involves external calls which could be exploited for reentrancy.

#### Remediation

Use reentrancy guards or check-effects-interactions pattern.

#### **\$CNDR-13 | Extra Gas Cost For User.**

| Category         | Severity        | Location                | Status   |
|------------------|-----------------|-------------------------|----------|
| Logical<br>Issue | 1 Informational | Cindr.sol: L: 829 C: 14 | Detected |

#### **Description**

The user may trigger a tax distribution during the transfer process, which will cost a lot of gas and it is unfair to let a single user bear it.

#### Remediation

We advise the client to make the owner responsible for the gas costs of the tax distribution.

#### \$CNDR-16 | Taxes can be up to 100%.

| Category         | Severity | Location               | Status   |
|------------------|----------|------------------------|----------|
| Logical<br>Issue | Critical | Cindr.sol: L: 311 C: 0 | Detected |

#### **Description**

The current definition of taxes can be set up to 100% for specific wallets, we suggest to modify the function not to be dynamic but to be a static resolution.

```
feeInTokens > senderBalance && (feeInTokens / 100) * 95 <= senderBalance
```

due to the logic written in here may results in loss of funds.

#### Remediation

```
We advise the team to review the following logic function function setFee(uint256 redisFeeOnBuy, uint256 redisFeeOnSell, uint256 taxFeeOnBuy, uint256 taxFeeOnSell) public onlyOwner {
    _redisFeeOnBuy = redisFeeOnBuy;
    _redisFeeOnSell = redisFeeOnSell;
    _taxFeeOnBuy = taxFeeOnBuy;
    _taxFeeOnSell = taxFeeOnSell;
}
```

#### **\$CNDR-21** | Max Transaction Controls.

| Category   | Severity | Location                 | Status     |
|------------|----------|--------------------------|------------|
| UnResolved | Medium   | Cindr.sol: L: 347, L: 14 | ■ Detected |

#### **Description**

The contract includes mechanisms to control the maximum transaction amount, which helps prevent large transfers that could affect the token's price stability.

#### Remediation

Set Reasonable Limits: Ensure that the limits are set to reasonable values that do not hinder normal trading activities. Add Governance Mechanism: Introduce a governance mechanism to allow the community to vote on changes to these limits, reducing centralization risks. Emit Events: Ensure that any changes to these limits emit events for better transparency and tracking. Validation Checks: Add validation checks to ensure the new limits are within acceptable ranges.

#### \$CNDR-22 | Missing recoverETH Function.

| Category | Severity | Location              | Status   |
|----------|----------|-----------------------|----------|
|          | High     | Cindr.sol: L: 0, L: 0 | Detected |

#### **Description**

The contract currently lacks a function to recover accidentally sent ETH. This can be problematic if someone mistakenly sends ETH to the contract address or if there are any miscalculations in the contract that result in ETH being stuck.

#### Remediation

The absence of a recoverETH function can lead to loss of funds if ETH is accidentally sent to the contract. Implementing a recovery mechanism will allow the owner to retrieve such funds, enhancing the contract's robustness and user trust.

# **Technical Findings Summary**Classification of Risk

| Severity        | Description                                                                                                                                                                            |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Critical        | Risks are those that impact the safe functioning of a platform and must be addressed before launch. Users should not invest in any project with outstanding critical risks.            |
| High            | Risks can include centralization issues and logical errors. Under specific circumstances, these major risks can lead to loss of funds and/or control of the project.                   |
| Medium          | Risks may not pose a direct risk to users' funds, but they can affect the overall functioning of a platform                                                                            |
|                 | Risks can be any of the above but on a smaller scale. They generally do not compromise the overall integrity of the Project, but they may be less efficient than other solutions.      |
| 1 Informational | Errors are often recommended to improve the code's style or certain operations to fall within industry best practices. They usually do not affect the overall functioning of the code. |

#### **Findings**

| Severity      | Found | Pending | Resolved |
|---------------|-------|---------|----------|
| Critical      | 1     | 1       | 0        |
| High          | 4     | 4       | 0        |
| Medium        | 2     | 2       | 0        |
| O Low         | 3     | 3       | 0        |
| Informational | 1     | 1       | 0        |
| Total         | 11    | 11      | 0        |

## **Social Media Checks**

| Social<br>Media | URL                        | Result |
|-----------------|----------------------------|--------|
| Twitter         | https://x.com/CINDRonBase  | Pass   |
| Other           |                            |        |
| Website         | https://CINDRonBase.com    | Fail   |
| Telegram        | https://t.me/CINDR_on_Base | Pass   |

We recommend to have 3 or more social media sources including a completed working websites.

**Social Media Information Notes:** 

Auditor Notes: undefined Project Owner Notes:



### **Audit Result**

#### **Final Audit Score**

| Review         | Score |
|----------------|-------|
| Security Score | 65    |
| Auditor Score  | 65    |

The Following Score System Has been Added to this page to help understand the value of the audit, the maximum score is 100, however to attain that value the project most pass and provide all the data needed for the assessment. Our Passing Score has been changed to 85 Points for a higher standard, if a project does not attain 85% is an automatic failure. Read our notes and final assessment below.

#### **Audit Fail**



# Assessment Results Important Notes:

Overall Classification.

• Security: Mediumi

• Centralization: High

• Optimization: Mediumi

• Transparency: Mediumi

Fund Recovery: Mediumi

• Score: 65/100i

Overall Conclusion.

- The Cindr token contract has a solid foundation with its reflection mechanism, auto liquidity, and fee structure. However, there are significant concerns, particularly around centralization and potential security risks. The absence of a recoverETH function adds to the medium severity issues, highlighting the need for a recovery mechanism to prevent loss of funds.
- Addressing the high and medium severity issues will significantly enhance the contract's robustness and trustworthiness. The overall score of 65 reflects a need for improvements in decentralization, security measures, and fund recovery mechanisms. Regular audits, thorough testing, and adherence to best practices are recommended to maintain and improve the contract's integrity.

#### • Chat about Cindr.soli

# Auditor Score =65 Audit Fail



## **Appendix**

#### **Finding Categories**

#### **Centralization / Privilege**

Centralization / Privilege findings refer to either feature logic or implementation of components that actagainst the nature of decentralization, such as explicit ownership or specialized access roles incombination with a mechanism to relocate funds.

#### **Gas Optimization**

Gas Optimization findings do not affect the functionality of the code but generate different, more optimalEVM opcodes resulting in a reduction on the total gas cost of a transaction.

#### **Logical Issue**

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on howblock.timestamp works.

#### **Control Flow**

Control Flow findings concern the access control imposed on functions, such as owner-only functionsbeing invoke-able by anyone under certain circumstances.

#### **Volatile Code**

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that mayresult in a vulnerability.

#### **Coding Style**

Coding Style findings usually do not affect the generated byte-code but rather comment on how to makethe codebase more legible and, as a result, easily maintainable.

#### **Inconsistency**

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a constructor assignment imposing different require statements on the input variables than a setterfunction.

#### **Coding Best Practices**

ERC 20 Conding Standards are a set of rules that each developer should follow to ensure the code meet a set of creterias and is readable by all the developers.

#### **Disclaimer**

Assure Defi has conducted an independent security assessment to verify the integrity of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in the reviewed code for the scope of this assessment. This report does not constitute agreement, acceptance, or advocation for the Project, and users relying on this report should not consider this as having any merit for financial advice in any shape, form, or nature. The contracts audited do not account for any economic developments that the Project in question may pursue, and the veracity of the findings thus presented in this report relate solely to the proficiency, competence, aptitude, and discretion of our independent auditors, who make no guarantees nor assurance that the contracts are entirely free of exploits, bugs, vulnerabilities or deprecation of technologies.

All information provided in this report does not constitute financial or investment advice, nor should it be used to signal that any persons reading this report should invest their funds without sufficient individual due diligence, regardless of the findings presented. Information is provided 'as is, and Assure Defi is under no covenant to audited completeness, accuracy, or solidity of the contracts. In no event will Assure Defi or its partners, employees, agents, or parties related to the provision of this audit report be liable to any parties for, or lack thereof, decisions or actions with regards to the information provided in this audit report.

The assessment services provided by Assure Defi are subject to dependencies and are under continuing development. You agree that your access or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are emergent technologies with high levels of technical risk and uncertainty. The assessment reports could include false positives, negatives, and unpredictable results. The services may access, and depend upon, multiple layers of third parties.

