Проектирование БД

Механизмы хранения

Многие системы содержат **устойчивые** объекты, то есть такие, которые можно сохранять на постоянных носителях и впоследствии извлекать при необходимости. Для этого чаще всего используют:

- реляционные БД,
- объектно-ориентированные БД,
- гибридные объектно-реляционные БД,
- иерархические БД,
- текстовые файлы, XML-файлы и пр. сводится к построению моделей данных. UML позволяет создавать:
- концептуальные модели,
- логические схемы БД и
- физические модели БД.

Концептуальная модель

Information Engineering (IE), воронья лапа (Crow's Foot) - стандарт;

IDEF1X - стандарт;

Entity/Relationship (ER) – производная от Information Engineering; используется в CASE-средствах Sybase.

Нотация Баркера - стандарт; разработал Ричард Баркер; используется в CASE-средствах Oracle;

Merise - использует ассоциации вместо связей; **Нотация Чена** - стандарт; разработал Питер Чен: отношения отображаются вершинами.

Концептуальная UML-модель

Класс ассоциации — класс, который представляет отношение ассоциации между другими классами.

Логическая модель данных

Логические модели данных предлагают независимые от конкретной СУБД реляцион-ные структуры, которые могут использоваться разработчиками для оптимизации и понимания метаданных. Логические модели данных можно разрабатывать отдельно или

генерировать из концептуальных моделей данных.

Ссылочная целостность в правом отношении декларативная, а в левом отношении она является процедурной (триггером).

Поддержка целостности

БД представляет собой собрание записей, связанных ссылочной целостностью.

Стрелки показывают направление ссылки внешнего ключа на первичный ключ.

Эти отношения между записями должны соответствовать бизнес-правилам. Все операции по модификации: insert, update и весеробъявление в SQL-операторе create table (alter table), которое указывает, что делать, когда запись в этой таблице должна быть удалена, изменена или добавлена.

Процедурная ссылочная целостность использует язык программирования БД. Программы, написанные на таком языке, называются **триггерами**. Отдельный триггер может быть написан для каждой из трех операций модификации каждой таблицы.

Поддержка операций удаления и корректировки для декларативной ссылочной целостности позволяет использует следующие варианты:

- cascade (каскадный),
- restrict (ограниченный),
- nullify (задание пустого указателя),
- default (значение по умолчанию).

Физическая модель данных

Типы атрибутов соответствуют типам конкретной СУБД и добавляются индексы.

```
Скрипт для генерации БД create table actor ( actor_code NUMBER(5) not null,
```

```
actor name VARCHAR2(25) )
create unique index actor PK on actor (actor code
ASC)
create table movie (
movie code NUMBER(5) not null,
movie title VARCHAR2(30),
director VARCHAR2(20),
constraint PK MOVIE primary key (movie_code) )
create index directorJSJU on movie (director ASC)
create table listed as (
actor code NUMBER(5) not null,
movie_code NUMBER(5) not null,
position
             NUMBER(2),
constraint PK LISTED AS primary key
(actor code, movie code),
constraint FK LISTED A REFERENCE ACTOR foreign
```

(actor code) references actor (actor code) on delete

key

cascade

Если физическая модель БД определена с помощью CASE-средства, то оно может автоматически создать скрипт для генерации БД.

Объектно-реляционное отображение

Объектно-реляционным отображением отображение концепту-альных классов в таблицы

называется

Отображение объектов

Шаблон Представление объектов в виде таблиц (Representing Objects as Tables)

Для каждого класса объектов, подлежащих постоянному хранению, определить отдельную таблицу, а атрибуты объекта, содержащие данные простых типов хранить в отдельных столбцах.

Шаблон Идентификатор объектов (Object Identifier)

Каждой записи и объекту присваивается уникальный, автома тически формируемый, неизменный идентификатор объекта (Object Identifier — OID). Большинство CASE-средств позволяет определять идентификаторы, вводя их как дополнительные свойства атрибутов класса.

Каждая таблица в качестве первичного ключа использует идентификатор объекта, прямо или косвенно связанный с каждым объектом.

UML не имеет никакого визуального способа показать идентификаторы классов, кроме вспомогательных стереотипов или примечаний. В UML есть понятие *профиля* (UML profile), под которым понимается набор взаимосвязанных стереотипов, тегированных значений и ограничений, объединенных общим предназначением. Так

Отображение ассоциаций

Концептуальные классы — просто контейнеры данных. Операции обычно не рассматриваются в концептуальных классах. Это делает отображение в таблицы более простым.

Главная проблема заключается в **отображении отно шений** между классами. Рассматриваемые отношения включают ассоциации с различными множественностями, агрегированиями и обобщениями.

Отображение ассоциации и агреги<u>рования «один ко многим»</u>

Отображение ассоциации «многие ко многим»

Отображение ассоциации «один к одному»

отооражение рекурсивнои ассоциации «один ко многим»

Отображение рекурсивной ассоциации «многие ко многим»

Отображение обобщения

проектирование и создание вд для управления электронной почтой

Итерация 1 из учебного примера ЕМ предполагает, что БД существует заранее и загружена данными относительно служащих, деловых партнеров и исходящих сообщений.

Прикладная программа ЕМ извлекает эту информацию из БД, готовит и посылает электронные сообщения и отмечает в БД какие исходящие сообщения уже были посланы.

Следующие итерации позволят помещать в БД исходящие сообщения и связанную с ними информацию из прикладной программы.

Диаграмма концептуальных классов для ЕМ

Диаграмма концептуальных классов для ЕМ

	Idet	JD HJ			
Employee				Contact	
+ first_name + family_name + login_name	: String : String : String : String : String		+++++	contact_id organization first_name family_name contact_en	: String ne : String
01	11	11 0* for			
		0* crea+	+ m + m + d	OutMenessage_idnessage_subnessage_texate_created	: No oject : String tt : String : Date

Физическая модель БД для ЕМ

Связи моделей данных в Power Designer

