

Data Science Project Framework

Data Science Project Framework

"Standard for doing data science project"

KDD (Knowledge Data Discovery)

SEMMA (Sample, Explore, Modify, Model, and Assess)

CRISP-DM
(Cross-industry Standard Process for Data Mining)

ASUM-DM
(Analytics Solutions Unified Method for Data Mining)

KDD Process (Fayyad, 1996)

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. Al magazine, 17(3), 37-37.

CRISP-DM Process (European Union, 1997)

Chapman, P., et al (1999, March). The CRISP-DM user guide. In 4th CRISP-DM SIG Workshop in Brussels

SEMMA Process (SAS, 2005)

Sharda, R., Delen, D., Turban, E. (2018). Big data Intelligence, Analytics, and Data Science: A Managerial Perspective. 04. Pearson Education. New Jersey.

ASUM-DM Process (IBM, 2015)

IBM Analytics (2016). Analytics Solutions Unified Method: Implementations with Agile principles.

Framework Comparison

KDD	CRISP-DM	SEMMA	ASUM-DM
Pre KDD	Business Understanding		Analyze
Selection	Data Understanding	Sample	
Preprocessing		Explore	
Transformation	Data Preparation	Modify	Design
Data Mining	Modeling	Model	Configure and Build
Interpretation/Evaluation	Evaluation	Assessment	
Post KDD	Deployment	-	Deploy
_		<u> </u>	Operate and Optimize

CRISP-DM Process

1. Business Understanding

1. Business Understanding

1.1. Determine Business Objectives

- Memahami apa yang sebenarnya klien ingin capai dalam perspektif bisnis.
- Output:

1.1.1. Background

- Informasi yang diketahui tentang situasi bisnis dari klien. Berisi informasi bisnis, masalah, dan solusi saat ini.
- Contoh:
 - Sebuah perusahaan X bergerak di bidang dipimpin oleh.....dst
 - Masalah-masalah yang dihadapi yaitu: penjualan produk mengalami penurunan, banyak pelanggan yang tidak kembali,dst
 - Solusi yang sudah diterapkan: menambah promosi produk, tapi ini membutuhkan biaya yang tidak sedikit, dan tidak signifikan hasilnya.....dst

1.1.2. Business Objectives

- Tentukan tujuan utama yang ingin dicapai klien, dalam perspektif bisnis.
- Contoh:
 - Membuat pelanggan tidak beralih ke produk perusahaan lain
 - Membuat kebijakan yang sesuai keinginan rakyat
 - Menurunkan jumlah kasus korupsi di kalangan pejabat
 - Mengetahui karakteristik masyarakat pengguna media sosial
 -dll

1.1.3. Business Success Criteria

- Kriteria yang menjadikan business objective dikatakan berhasil atau tidak.
 Spesifik dan bisa diukur.
- Contoh:
 - Customer retention rate > 90%
 - Jumlah protes kebijakan di media sosial berkurang 30%
 - Jumlah kasus korupsi berkurang 50%
 - Bidang HR dapat memahami karakteristik masyarakat.
 - DII

1.2. Assess Situation

- Menjelaskan tentang sumber daya, batasan, asumsi, dan faktor-faktor lain yang bisa berpengaruh.
- Output:

1.2.1. Inventory of Resources

- Daftar sumber daya yang tersedia untuk projek
- Contoh:
 - Daftar hardware yang tersedia (komputer, server, dll)
 - Sumber data dan pengetahuan (data apa saja yang dimiliki)
 - Sumber daya manusia (ekspertis yang tersedia, teknisi, dll)
 - Sumber dana
 - dll

1.2.2. Requirement, Assumptions, and Constraints

- Daftar kebutuhan, daftar asumsi, daftar batasan
- Contoh:
 - Kebutuhan: jadwal pelaksanaan, data yang dibutuhkan, sumber daya, dll
 - Asumsi: kualitas data (ketersediaan, akurasi, dll), faktor eksternal, dll
 - Batasan: dana, waktu, sumber daya, data, dll

1.2.3. Risks and Contingencies

- Daftar resiko yang mungkin akan ada dan rencana mengatasinya
- Contoh:
 - Resiko: data yang didapat sangat "kotor", data di komputer hilang, dll
 - Rencana mengatasi: tambah proses "cleansing", menyimpan di cloud, dll

1.2.4. Terminology

- Penjelasan tentang istilah-istilah bisnis (spesifik di klien) dan data science yang berkaitan dengan projek
- Contoh:
 - Bisnis (spesifik): churn rate adalah...., R-naught adalah...., dll
 - Data Science: MSE adalah...., regresi adalah...., recall adalah...., dll

1.2.5. Costs and Benefits

- Perkiraan biaya-biaya yang dibutuhkan serta manfaat yang terkait.
- Contoh:
 - Pengambilan data 100 juta rupiah
 - Semakin banyak dana untuk pengambilan data -> data semakin banyak
 -> prediksi lebih akurat
 - Biaya sewa server 2 juta per bulan
 - Semakin mahal server (kapasitas bagus) -> proses modeling menjadi lebih cepat
 - DII

1.3. Determine Data Science Goals

Penjelasan tujuan projek data science dalam perspektif teknis

1.3 Determine data science goals

Data science goals

Data science success criteria

1.3.1. Data Science Goals

- Tujuan yang bersifat teknis dan spesifik menjelaskan masalah yang ingin dipecahkan.
- Tipe masalah: deskripsi, eksplorasi, segmentasi, klasifikasi, regresi, atau asosiasi
- Contoh:
 - Klasifikasi produk yang akan dipilih pelanggan
 - Prediksi berapa banyak pelanggan yang akan membeli lagi
 - DII

1.3.1. Data Science Goals (2)

Deskripsi

Ringkasan karakteristik suatu data

Eksplorasi

Mengungkap insight dalam suatu data

Segmentasi

Pemisahan data ke dalam grup-grup

Klasifikasi

Memprediksi label/kelas suatu data

Regresi

Memprediksi nilai kontinyu dari data

Asosiasi

Mengungkap keterkaitan antar data, grup, atau variabel

1.3.2. Data Science Success Criteria

- Kriteria keluaran yang dianggap sukses dalam istilah teknis
- Contoh:
 - Akurasi model prediksi > 95%
 - Indeks Silhouette > 0.8
 - <subjective assessment>
 - DII

1.4. Produce Project Plan

- Penjelasan tentang rencana dalam melaksanakan projek
- Output:

1.4.1. Project Plan

- Daftar langkah-langkah dalam projek serta kebutuhan sumber daya untuk setiap langkah.
- Bisa dibuat menggunakan gantt chart.

1.4.2. Initial Assessment of Tools and Techniques

- Memilih alat dan metode yang potensial digunakan pada setiap fase dalam proyek.
- Bisa disertakan plus minus masing-masing.
- Contoh:
 - Manajemen proyek: Ms Project, Ganttproject, dll
 - Eksplorasi: Tableau, dll
 - Model: Python, R, Knime, dll
 - Report: Latex, Ms Word, dll
 - Teknik prediksi: XGBoost, CNN, dll
 - DII

2. Data Understanding

2.1. Collect Initial Data

 Mencoba mengambil data dari sumber data yang sudah dituliskan sebelumnya.

2.1 Collect initial data

Initial data collection report

2.1.1. Initial Data Collection Report

- Menjelaskan data-data yang digunakan dalam proyek. Termasuk bagaimana cara mendapatkan/mengaksesnya secara teknis.
- Contoh:
 - Data pelanggan dapat diakses dari tabel pelanggan yang ada di database X dengan akses
 - Data komentar warganet diakses menggunakan API Twitter dengan metode pengambilan
 - DII

2.2. Describe Data

- Memeriksa gambaran "kasar" dari suatu data
- Jika diperlukan, bisa ubah asumsi setelah memeriksa data ini

2.2 Describe the data

Data description report

2.2.1. Data Description Report

- Penjelasan umum tentang data meliputi format data, kuantitas, tipe kolom, dan sebagainya.
- Bisa disajikan dalam tabel
- Contoh:
 - Ada 5 tabel, tiap tabel ada 1000 baris dan 16 kolom
 - Kolom 1 adalah, merepresentasikan.....
 - Statistika dasar untuk tiap tabel
 - DII

Hands-on with Python

2.3. Explore Data

- Mengeksplorasi data, meliputi: visualisasi dasar, verifikasi hipotesis, dll
- Proses ini sering disebut sebagai Exploratory Data Analysis (EDA)
- Mungkin terkait langsung dengan tujuan teknis data science tertentu.

2.3 (Explore the data (Explore

Slide: Data Visualization

2.3.1. Data Exploration Report

- Berupa temuan awal atau hipotesis awal serta dampaknya dalam proyek keseluruhan.
- Hasil verifikasi hipotesis awal juga dapat disampaikan.
- Contoh:
 - Temuan tentang adanya tren dari penjualan produk.....
 - Temuan adanya anomali pada data penderita C-19.....
 - Hipotesis awal tentang.....
 - dll

Hands-on with Python

2.4. Verify Data Quality

• Memeriksa kualitas data: apakah datanya lengkap (untuk semua kasus)?, apakah ada data eror? Seberapa banyak erornya? Apakah ada data kosong?

2.4 • Verify data quality •

Data quality report

2.4.1. Data Quality Report

- Daftar hasil pengamatan kualitas data
- Jika ada masalah terkait kualitas, berikan juga solusi yang mungkin
- Contoh:
 - Penulisan jenis kelamin tidak sama. Solusi: proses standardisasi
 - Ada 50 data kosong pada kolom. Solusi: imputasi
 - Kolom profesi semua berisi mahasiswa. Solusi: hapus kolom/tambah data
 - DII

3. Data Preparation

3.1. Select Data

- Memilih subset data, dapat berupa kolom atau tabel yang sesuai dengan tujuan data science
- Proses yang digunakan: feature selection dan sampling

3.1 (Select data (

Rationale for inclusion/exclusion

3.1.1. Rationale for Inclusion/Exclusion

- Daftar alasan mengapa memilih atau membuang data yang bersangkutan
- Dapat memanfaatkan uji statistika
- Contoh:
 - Kolom pendapatan dipilih karena berkorelasi tinggi dengan pengeluaran berdasarkan uji korelasi
 - Membagi data menjadi data training dan testing menggunakan random sampling
 - DII

Hands-on with Python

3.2. Clean Data

 Meningkatkan kualitas data hingga mencapai tingkat yang dibutuhkan untuk melakukan analisis tertentu

3.2 () Clean data

Data cleaning report

3.2.1. Data Cleaning Report

- Menjelaskan keputusan serta langkah-langkah dalam mengatasi masalah kualitas data yang ada di data quality report (2.4.1)
- Contoh:
 - Proses mengatasi data kosong
 - Mengatasi typo
 - DII

Hands-on with Python

3.3. Construct Data

- Membangun data dengan menambah kolom baru atau menambah baris baru
- Menambah kolom (derived attributes) biasa disebut feature engineering
- Menambah baris (generated records) biasa disebut oversampling

Hands-on with Python

Slide: Feat. Eng. and Gen. Records

3.4. Integrate Data

Menggabungkan data dari berbagai tabel atau dari sumber lain

3.4 • Integrate data

Hands-on with Python

3.5. Format Data

- Pengubahan format data dengan tidak mengubah makna namun bisa berguna untuk pembuatan model
- Contoh: mengubah urutan kolom, urutan baris, dan sebagainya

3.5 Format data E Reformatted data

3.6. Data Set

- Output akhir dari proses data understanding
- Data set = data siap untuk dibuat model
- Data set description = informasi metadata tentang dataset

4. Modeling

4.1. Select Modeling Technique

Memilih teknik pemodelan yang akan digunakan

Hands-on with Python

4.1.1. Modeling Technique

4.1.2. Modeling Assumptions

- Banyak model yang mengharuskan suatu asumsi terhadap data.
- Contoh:
 - Linear regression membutuhkan asumsi linearitas, dll
 - Random forest tidak membutuhkan asumsi
 - SVM membutuhkan asumsi bahwa datanya independen dan tersebar merata
 - dll

4.2. Generate Test Design

- Merencanakan skema pengujian model
- Contoh:
 - Membagi dataset ke dalam training, validation, dan testing dengan proporsi.....Kemudian melakukan pembuatan model di training, diaplikasikan di validation, dan diuji di testing.
 - Dsb

4.2 () Generate test design

Test design

4.3. Build Model

- Menjalankan proses pembuatan model
- Output:
 - Parameter awal yang digunakan di model
 - Model itu sendiri
 - Deskripsi model. Bisa berisi parameter/hyperparameter yang digunakan, dan informasi lain terkait model akhir

4.4. Assess Model

 Mengevaluasi hasil model dikaitkan dengan kriteria sukses dari tujuan data science

4.4.1. Model Assessment

- Regression
 - MAE (Mean Absolute Error), MSE (Mean Square Error), RMSE (Root Mean Square Error)
- Classification
 - Accuracy, Precision, Recall, F1-Score, Sensitivity, Specivicity, TPR, FPR, ROC AUC, dll
- Clastering
 - WCSS, Silhouette Index, Rand Index, Calinski-Harabasz Index, Davies-Bouldin Index, dll

4.4.2. Revised Parameter Settings

- Berdasarkan hasil assessment, maka bisa dilakukan proses pengubahan parameter yang ada di dalam model untuk mendapat model terbaik.
- Alur proses bisa berulang dari membuat model hingga assessment

5. Evaluation

5. Evaluation

- Mengevaluasi keseluruhan projek, dikaitkan dengan business objective
- Result projek = Model + Findings (temuan)

5.1. Evaluate Results

- Apakah hasil dari data science sudah sesuai dengan business objective?
- Tuliskan rekomendasi untuk projek selanjutnya
- Pilih model yang hasilnya sesuai dengan business criteria

5.2. Review Process

- Meninjau ulang proses data science di dalam projek
- Dapat dikatakan sebagai proses Quality Assurance

5.2 Review process

5.3. Determine Next Steps

- Membuat daftar aksi selanjutnya beserta alasannya
- Menentukan langkah mana yang diambil beserta alasannya

6. Deployment

6.1. Plan Deployment

• Membuat perencanaan pengaplikasian hasil data science ke dalam proses bisnis

6.1 Plan deployment

Deployment plan

6.2. Plan Monitoring and Maintenance

 Membuat perencanaan monitoring dan perawatan hasil data science yang sudah di-deploy ke sistem bisnis

6.2 Plan monitoring and maintenance

Monitoring and maintenance plan

6.3. Produce Final Report

Membuat laporan dan presentasi akhir

6.4. Review Project

 Membuat review keseluruhan projek, bagian mana yang bisa ditingkatkan, beserta rekomendasi pengembangan selanjutnya

6.4 Review project

Experience documentation