THE JOURNEY FROM WILD TO TEXTBOOK DATA: A CASE STUDY FROM THE NATIONAL LONGITUDINAL SURVEY OF YOUTH

A Preprint

Dewi Amaliah

Department of Econometrics and Business Statistics Monash University Clayton, VIC 3800 dama0007@student.monash.edu

Dianne Cook

Department of Econometrics and Business Statistics Monash University Clayton, VIC 3800 dicook@monash.edu

Emi Tanaka

Department of Econometrics and Business Statistics
Monash University
Clayton, VIC 3800
emi.tanaka@monash.edu

Kate Hyde

Nicholas Tierney

Department of Econometrics and Business Statistics Monash University Clayton, VIC 3800

September 30, 2021

Abstract

The National Longitudinal Survey of Youth (NLSY79) is a prominent open data source that has been important for educational purposes and multidisciplinary research on longitudinal data. Subsets of this data can be found in numerous textbooks and research articles. However, the steps and decisions taken to get from the raw data to the textbook data is never clearly articulated. This article describes our journey when trying to re-create a textbook example data set from the original database, with the goal being to refresh the textbook data more regularly. Thus, this paper demonstrates the process – extracting, tidying, cleaning, and exploring with documentation – to make refreshed data available for education or research. Three new data sets, and the code to produce them are provided in an accompanying open source R package, called [CENSORED]. As a result of this process, some recommendations are also made for the NLSY79 curators for incorporating data quality checks, and providing more convenient samples of the data to potential users.

Keywords Data cleaning; Data tidying; Reproducible workflow; Longitudinal data; NLSY79; Initial data analysis;

1 Introduction

"Open data" is data that is freely accessible, modifiable, and shareable by anyone for any purpose (Open Knowledge Foundation 2021). This type of data can be useful as example data in statistical textbooks and for research purposes. However, open data is often referred to as what we might call "wild data" because it requires substantial cleaning and tidying to tame it into textbook shape. Huebner Marianne, Vach, and Cessie (2016) emphasize that making the data cleaning process accountable and transparent is imperative and essential for the integrity of downstream statistical analyses and model building (M. Huebner et al. 2020). Data cleaning can be considered to be a part of what is called "initial data analysis" (IDA) (Chatfield 1985). In IDA one would also explore the data, especially to check if the data is consistent with assumptions required for modeling. This is also related to exploratory data analysis (EDA), coined by Tukey (1977) with a focus on learning from data. EDA can be considered to encompass IDA. Dasu and Johnson (2003) say that data cleaning and exploration, without naming it as IDA, is a difficult task and consumes 80% of the data mining task.

Despite it's importance, this IDA stage is often undervalued and neglected (Chatfield 1985). There are few research papers that document the data cleaning (Wickham 2014). Furthermore, the decisions made in this stage often go unreported in the sense that IDA is often performed in an unplanned and unstructured way and is only shared among restricted parties (M. Huebner et al. 2020).

This paper demonstrates the steps of IDA, and documents the process, for a prominent open data source, National Longitudinal Survey of Youth 1979, henceforth referred to NLSY79. This data has been playing an important role in research in various disciplines, including but are not limited to economics, sociology, education, public policy, and public health for more than a quarter of the century (Pergamit et al. 2001). In addition, this is considered a carefully designed longitudinal survey with high retention rates, making it suitable for life course research (Pergamit et al. 2001; Cooksey 2017). According to Cooksey (2017), thousands of articles, and hundreds of book chapters and monographs have utilized this data. Moreover, the NLSY79 is considered the most widely used and most important cohort in the survey data (Pergamit et al. 2001).

Singer and Willett (2003) used the wages and other variables of high school dropouts from the NLSY79 data as an example data set to illustrate longitudinal data modeling of wages on workforce experience, with covariates education and race. Our aim is to refresh this textbook data with data from 1994 through to the latest data reported in 2018. Here, we investigate the process of getting from the raw NLSY79 data to a textbook data set as similar as possible to that provided by Singer and Willett (2003). We should also note that race is a variable in the original data set, and for compatibility it is also provided with the refreshed data, for the purposes of studying racism, not race (Fullilove 1998),

Our process of cleaning builds heavily on the tidyverse approach (Wickham et al. 2019). The data is first organised into "tidy data" (Wickham 2014) and then further wrangled using the data pipeline and split-apply-combine approach (Wickham 2011). The resulting data is provided in a new R package called yowie which includes the code so that the process is reproducible, and could be used to further refresh the data as new records are made available in the NLSY79 database.

This paper is structured in the following way. Section 2 describes the NLSY79 data source. Section 3 presents the steps of cleaning the data, including getting and tidying the data from the NLSY79 and IDA to find and repair anomalies. Our final subset is compared the old textbook subset in Section 4. Finally, Section 5 summarizes the contribution and makes recommendations for the NLSY79 data curators.

2 The NLSY79

2.1 Database

The NLSY79 is a longitudinal survey held by the U.S Bureau of Labor Statistics that follows the lives of a sample of American youth born between 1957-1964 (Bureau of Labor Statistics, U.S. Department of Labor 2021). The cohort originally included 12,686 respondents aged 14-22 when first interviewed in 1979. It comprised of Blacks, Hispanics, economically disadvantaged non-Black non-Hispanics, and youth in the military. In 1984 and 1990, two sub-samples were dropped from the interview; the dropped subjects are the 1,079 members of the military sample and 1,643 members of the economically disadvantaged non-Black non-Hispanics, respectively. Hence, 9,964 respondents remain in the eligible samples. The surveys were

conducted annually from 1979 to 1994 and biennially thereafter. Data are currently available from Round 1 (1979 survey year) to Round 28 (2018 survey year).

Although the main focus area of the NLSY is labor and employment, the NLSY also covers several other topics, including education; training and achievement; household, geography, and contextual variables; dating, marriage, cohabitation; sexual activity, pregnancy, and fertility; children; income, assets and program participation; health; attitudes and expectations; and crime and substance use.

There are two ways to conduct the interview of the NLSY79, which are face-to-face interviews or by telephone. In recent survey years, more than 90 percent of respondents were interviewed by telephone (Cooksey 2017).

2.2 Target data

The NLSY79 data used in Singer and Willett (2003). contains the longitudinal measurements on yearly mean hourly wages with years of workforce experience, and demographic variables education and race, from 1979 through to 1994. In addition, the cohort is restricted to male high-school dropouts who first participated in the study at age 14-17 years. Thus the target data set is to collect the same variables for the extended time frame of 1994 through to 2018, the most recent year reported.

3 Data cleaning

M. van der Loo and de Jonge (2018) describe the notion of a "statistical value chain" where the production stages of data cleaning process are earmarked as raw data (data from the data source), input data (data organised with correct type and identified variables) and valid data (data that faithfully represent the variables). In this section, we outline the steps to download the raw data (Section 3.1) and then tidying the raw data into input data, specifically for wages data (Section ??), demographic variables (Section 3.1.1) and the employment variables (Section 3.1.2), so that the resulting input data can be used downstream for validating the data as described in Section 3.2.

3.1 Getting the data

The NLSY79 data contains a large scope of variables but for our aim, the scope required is limited to demographic profiles and wages data. More specifically, we went to the NLSY79 database website at https://www.nlsinfo.org/content/cohorts/nlsy79/get-data, clicked on the direct link to NSLY79 data and navigated as described below.

Navigating the data source to download the raw data

- NLSY79 (https://www.nlsinfo.org/investigator/pages/search?s=NLSY79)
- ✓ The CASEID will be always be selected.
- ✓ The 3 recommended demographic variable (sample ID, race and sex) were selected.

For the remaining variables, we went to the "Variable Search" tab and select variables as follows

- ▶ Education, Training and Achievement Scores
 - ▷ Education ▷ Summary measures ▷ All schools ▷ By year ▷ Highest grade completed
 - ✓ All 80 variables in Highest grade completed were selected.
- ▷ Employment
 - ▷ Summary measures ▷ By job
 - ▶ Hours worked
 - ✓ All 442 primary variables in Hours worked were selected.
 - ▶ Hourly wages
 - ✓ All 156 variables in Hourly wages were selected.
- ▶ Household, Geography and Contextual Variables
 - ▷ Context ▷ Summary measures ▷ Basic demographics ▷ Date of birth
 - ✓ All 4 variables in Date of birth were selected.
- ⚠ To download all 686 variables selected, we then navigate to the tab "Save / Download" then select the tab "Advanced Download". We select the R Source code and Comma-delimited datafile of selected variables with Reference Number as column headers. We name the filename "NLSY79" and press the download button. There are also options to get control or dictionary files for SAS, SPSS and STATA.

The downloaded data set comes as a zip file, containing the following set of files:

- NLSY79.csv: csv format of the response data,
- NLSY79.dat: dat format of the response data,
- NLSY79. NLSY79: Tagset of variables that can be uploaded to the website to recreate the data set, and
- NLSY79.R: R script for reading the data into R and converting the variables' names and label into something more sensible.

We only alter the file path in NLSY79.R and run the script without any other alteration. This results in an initial processing of the raw data into two data set, categories_qnames (where the observations are stored in categorical/interval values) and new_data_qnames (the observations are stored in integer form).

The raw data, new_data_qnames, is organised such that each row corresponds to an individual. As respondents can have multiple jobs at specific years, the column names, such as HRP1_1979, HRP2_1979, HRP1_1980 and HRP2_1980, contain the information about the job number up to 5 (HRP1 = job 1, HRP2 = job 2) and the year. The raw data consequently has a large number of columns (686 to be specific). The values in the cell under the variables that begin with HRP correspond to the hourly wage in dollars. A glimpse of this data output is shown below.

```
#> 'data.frame':
                   12686 obs. of 686 variables:
#>
   $ CASEID 1979
                                  : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ HRP1_1979
                                         328 385 365 NA 310 NA NA NA 214 NA ...
                                  : int
#> $ HRP2 1979
                                  : int NA NA NA NA 375 NA NA NA NA NA ...
#> $ HRP3_1979
                                  : int NA NA 275 NA NA NA NA NA NA NA ...
#> $ HRP4 1979
                                         NA NA NA NA NA 250 NA NA NA NA ...
#> $ HRP5 1979
                                         NA NA NA NA NA NA NA NA NA ...
                                         NA 457 397 NA 333 275 300 394 200 318 ...
#> $ HRP1 1980
                                  : int
#> $ HRP2 1980
                                         NA NA 367 NA NA NA NA NA NA NA ...
                                  : int
#> $ HRP3 1980
                                         NA NA 380 NA NA NA 290 NA NA NA ...
                                  : int
#> $ HRP4 1980
                                         NA NA NA NA NA NA NA NA NA ...
                                  : int
```

#> [list output truncated]

According to Wickham (2014), tidy data sets comply with three rules: (i) each variable forms a column, (ii) each observation forms a row, and (iii) each type of observational unit forms a table. The raw data does not comply these rules, thus we re-arrange and wrangle the data into tidy data form, columns corresponding to individual ID, year, job number, wage in dollars and the demographic variables. This is done using the tidyverse suite of packages (Wickham et al. 2019), tidyr (Wickham 2020) to pivot the data into long form, dplyr (Wickham et al. 2020), and stringr (Wickham 2019) for creating new variables, and levels of factors by text wrangling. The long form of the data makes it possible to do these data transformations efficiently, and it is an intermediate step towards the final target data. The code for tidying the data are demonstrated at CENSORED/articles/raw-to-input-data.html but also described in the subsequent subsections.

3.1.1 Tidying demographic variables

In our final target data, we wish to include the demographic variables with variable names specified in brackets: gender (gender), race (race), age (age_1979), highest grade completed (hgc), highest grade completed in terms of years, e.g. 9th grade = 9, 3rd year college = 15, (hgc_i) and the corresponding year this grade was completed (yr_hgc).

For gender and race, we only rename the column names. It is worth noting that using these two variable needs special attention. Gender, as reported in the data, only has two categories, which is recognised today as inadequate. Gender is not binary. Further, race is as reported in the database. When doing analysis with this variable, one should keep in mind that the purpose is to study racism rather than race.

The new_data_qnames contains the variables Q1-3_A~Y_1979 and Q1-3_A~Y_1981 which records two versions of the birth year of the respondent; this is also the case for the record of birth month (Q1-3_A~M_1979 and Q1-3_A~M_1981). The record contains two versions of birth year and birth month as the survey recorded this in 1979 and 1981. We checked for consistency for the two versions and found no discrepancy where the responses were recorded in both 1979 and 1981. The age was then calculated using the birth year.

The next step is tidying the highest grade completed (hgc) variable. This variable came with several version in each year. We choose the revised May data because it seemed to have less missing and presumably has been checked. However, there is no revised May data for 2012, 2014, 2016, and 2018, thus, we use the ordinary May data for these years. The code for tidying this variable is provided in the supplementary materials.

Furthermore, hgc is measured and could be updated in each period of the survey. Hence, we only used the highest grade completed ever and derived the year when it is completed. The code for deriving this variable is also available at CENSORED/articles/raw-to-input-data.html.

Finally, we get all of the demographic profiles of the NLSY79 cohort. We then save this data as demog nlsy79.

3.1.2 Tidying employment variables

The employment data comprises of three variables, i.e., total hours of work per week, number of jobs that an individual has, and mean hourly wage.

hours worked per week initially has only one version per job, no choice from 1979 to 1987 (QES-52A). From 1988 onward, when we had more options, we chose the variable for total hours, including time spent working from home (QES-52D). However, in 1993, this variable did not have all the five D variables (the first one and the last one were missing), so we used QES-52A variable instead. In addition, 2008 only had jobs 1-4 for the QES-52D variable (whereas the other years had 1-5), so we use these.

The same way was also deployed to tidy the rate of wage by year and by ID. The difference is that the hourly rate has only one version of each year. The hours of work and the hourly rate are then joined to calculate the number of jobs that a respondent has and their mean hourly wage. Some observations have 0 in their hourly rate and work hours, which is considered an invalid value. Thus, these observations are set to be NA. Besides, there are some observations with unusual hours of work. Here, we also censored the observations with > 84 hours of work a week to be NA.

Since our ultimate goal is to calculate the mean hourly wage, the number of jobs is calculated based on the availability of the rate_per_hour information. For example, the number of jobs of ID 1, based on hours_work, is 2. However, since the information of hourly rate of job_02 is not available, the number of jobs is considered as 1.

Table 1: The frequency table of the age at the start of the survey (?CHECK) in the full NSLY79 data

Age	Number of individuals
15	1,265
16	1,550
17	1,600
18	1,530
19	1,662
20	1,722
21	1,677
22	1,680

Further, we calculated the mean hourly wage for each ID in each year using a weighted mean with the hours of work as the weight. However, there is a lot of missing value in hours_work variable. In that case, we only calculated the mean hourly wage based on the arithmetic/regular mean method. Hence, we created a new variable to flag whether the mean hourly wage is weighted or regular. Additionally, if an ID only had one job, we directly used their hourly wages information and flagged it as arithmetic mean.

#>	# /	A tibb	le: 10	x 6			
#>		id	year	mean_hourly_wage	total_hours	number_of_jobs	is_wm
#>		<int></int>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<lgl></lgl>
#>	1	1	1979	3.28	38	1	FALSE
#>	2	1	1981	3.61	NA	1	FALSE
#>	3	2	1979	3.85	35	1	FALSE
#>	4	2	1980	4.57	NA	1	FALSE
#>	5	2	1981	5.14	NA	1	FALSE
#>	6	2	1982	5.71	35	1	FALSE
#>	7	2	1983	5.71	NA	1	FALSE
#>	8	2	1984	5.14	NA	1	FALSE
#>	9	2	1985	7.71	NA	1	FALSE
#>	10	2	1986	7.69	NA	1	FALSE

The employment and demographic variables are then joined. We also filtered the data to only have the cohort who completed the education up to 12th grade and participated at least five rounds in the survey and save it to an object called wages.

3.2 Initial data analysis

According to Huebner Marianne, Vach, and Cessie (2016), initial data analysis (IDA) is the step of inspecting and screening the data after being collected to ensure that the data is clean, valid, and ready to be deployed in the later formal statistical analysis. Moreover, Chatfield (1985) argues that the two main objectives of IDA are data description, which is to assess the structure and the quality of the data, and model formulation without any formal statistical inference.

In this paper, we conduct an IDA or a preliminary data analysis to assess the consistency of the data with the cohort information that the NLSY provides. In addition, we also aim to find the anomaly in the wages values using this approach. We mainly use graphical summaries to do the IDA using ggplot2 (Wickham 2016) and brolgar (Tierney, Cook, and Prvan 2020).

As stated previously, the respondents' ages ranged from 12 to 22 when first interviewed in 1979. Hence, we validate whether all of the respondents were in this range. Additionally, the NLSY also provides the number of the survey cohort by their gender (6,403 males and 6,283 females) and race (7,510 Non-Black/Non-Hispanic; 3,174 Black; 2,002 Hispanic). To validate this, we used the demog_nlsy79, i.e., the data with the survey years 1979 sample. Table 1 and Table 2 suggest that the demographic data we had is consistent with the sample information in the database.

The next step is that explore the mean hourly wage data. In this case, we only explore the wages data of up to 12^{th} grade. Here, we use visualisation techniques to do IDA.

Table 2: The contingency table for gender and race for the full NLSY79 data.

Gender	Hispanic	Black	Non-Black, Non-Hispanic	Total
Male Female	1,000 (15.62%) 1,002 (15.95%)	1,613 (25.19%) 1,561 (24.84%)	3,790 (59.19%) 3,720 (59.21%)	6,403 (100.00%) 6,283 (100.00%)
Total	2,002 (15.78%)	3,174 (25.02%)	7,510 (59.20%)	12,686 (100.00%)

Figure 1: Longitudinal profiles of wages for a random sample of 20 individuals in the refreshed data. Most, but not all, individuals here experienced increasing wages over time, and several have experienced considerable fluctuation in wages. Some individuals are only measured for a short period.

Figure 2: Summary plots to check the cleaned data reveal more cleaning is necessary: longitudinal profiles of wages for all individuals 1979-2018 (A), boxplots of minimum, median, and maximum wages of each individual (B), and one individual (id=39) with an unusual wage relative to their years of data (C). Some values of hourly wages are unbelievable, and some individuals have externely unusual wages in some years.

We take 36 samples randomly from the data and plot them, as shown in Figure 1. It implies that these respondents have a lot of variability in wages, for example, the IDs in panel numbers 5, 7, and 11. The plot also implies that the samples have a different pattern of mean hourly wages. Some have had flat wages for years but had a sudden increase in one particular year, then it gone down again, while the others experienced an upsurge in their wage, for instance, the IDs in panel 9. However, when checking the summary plots (Figure 2), we found that some observations had exceptionally high wages. Some of them, for example respondents in Figure 2 C had experienced unusual wages only in certain year.

The anomalies are also found in the total hours of work, where some observations work for 420 hours a week in total. According to Pergamit et al. (2001), one of the flaws of the NLSY79 employment data is that the NLSY79 collects the information of the working hours since the last interview. Thus, it might be challenging for the respondents to track the within-job hours' changes between survey years, especially for the respondents with fluctuated working hours or seasonal jobs. It even has been more challenging since 1994, where the respondents had to recall two years periods. This shortcoming might also contribute to the fluctuation of one's wages data.

3.2.1 Replacing extreme values

As part of the IDA, which is the model formulation, we build a robust linear regression model to treat the extreme values in the data. Robust linear regression yields an estimation robust to the influence of noise or contamination (Koller 2016). It also aims to detect the contamination by weighting each observation based on how "well-behaved" they are, known as robustness weight. Observations with lower robustness weight are suggested as an outlier by this method (Koller 2016).

Since we work with longitudinal data, we build the model for each ID instead of the overall data. The robust mixed model could be the best model to be employed in this case. However, this method is too computationally and memory expensive, especially for a large data set, like the NLSY79 data. Thus, the model for each ID is built utilizing the nest and map function from tidyr (Wickham 2020) and purrr (Henry and Wickham 2020), respectively.

We build the model using the rlm function from MASS package (Venables and Ripley 2002). We set the mean_hourly_wage and year as the dependent and predictor, respectively. Furthermore, we use M-Estimation with Huber weighting, where the observation with a slight residual gets a weight of 1, while the larger the residual, the smaller the weight (less than 1) (UCLA: Statistical Consulting Group 2021). However, the challenging part of detecting the anomaly using the robustness weight is determining the weight threshold in which the observations are considered outliers. Moreover, it should be noted that not all the outliers are due to an error. Instead, it might be that one had reasonably increasing or decreasing wages in a particular period.

Figure 3: Comparison between the original (black dots) and the corrected (solid grey) mean hourly wage for a sample of individuals. A robust linear model prediction was used to correct mean hourly wages value. We can see that some extreme spikes, corresponding to implausible wages, have been replaced with values more similar to wages in neighboring years, but otherwise the profiles are not changed. Some spikes might remain when wage vaues are plausible.

To minimize the risk of mistakenly identifying an outlier as an "erroneous outlier," we simulate some thresholds and study how they affect the data. We find that 0.12 is the most reasonable value to be the threshold to minimize that drawback's risk because it still captures the sensible spikes in the data. In other words, we keep maintaining the natural variability of the wages while minimizing anomalies because of the error in the data recording. After deciding the threshold, we impute the observations whose weights are less than 0.12 with the models' predicted value. We then flag those observations in a new variable called <code>is_pred</code>.

Figure 3 shows the mean hourly wage before and after the extreme values are replaced. It implies that the fluctuation can still be observed in the data after the treatment. However, the large spikes, which are considered "erroneous outliers," are already eliminated from the data. Hence, the model produces a data set with a more reasonable degree of fluctuation.

Further, Figure 4 A shows that after eliminating the extreme values, the highest value has decreased to be around \$350. The spikes are still observed but not as extreme as the original data set. In Figure 4 B, we plot the three features of mean hourly wages, namely the minimum, median, and maximum value. We still can see some extreme values in maximum wages, but consider it as a natural variability of the data. In Figure 4 C, we can see that after imputing the extreme value in ID=39, we can see how the the wages change over the years more clearly.

Finally, we save the imputed data and set the appropriate data type for the variables.

Figure 4: Re-make of the summary plots of the fully processed data suggest that it is now in a reasonable state: longitudinal profiles of wages for all individuals 1979-2018 (A), boxplots of minimum, median, and maximum wages of each individual (B), and one individual with an unusual wage relative to their years of data (C).

3.3 Recap

Figure 5 summarizes the steps taken to go from raw to input to valid data (M. van der Loo and de Jonge 2018) to create a refreshed wages data set.

4 Comparison of refreshed with the original data

Now is the time to see how close we have come to the original textbook data. The original set contains wages of high school dropouts wages (Singer and Willett 2003) from 1979 through to 1994. The refreshed data set for comparison is also wages on high school drop outs, over 1979 to 2018. The original set is available in the R package brolgar and the refreshed data is available in the R package [CENSORED].

There are two aspects of the original data that make a direct comparison difficult. The time variable provided is "experience in the workforce." It is not clear how this is calculated. One would expect that there is a record of the day the individual first started a job, and this is used to adjust the year of collection. We have not been able to find this information in the database. Secondly, wages were inflation-adjusted to 1990 prices, which is not done for the refreshed data.

The treatment of unlikely wages differ in the refreshed data. In the original data by Singer and Willett (2003), wages greater than \$75 are set to be missing. However, in recent context, this value is too low to be set as the maximum threshold. We opted to use the weights from a robust linear regression to determine what should be set as missing value as described in Section 3.2.1.

Figure 6 shows a comparison of the two sets. (A direct ID matching is not possible.) There are 888 individuals in the original and 1,188 individuals in the refreshed data. This suggests some individuals were removed in the original data. In addition, in the original set the racial break down was 246 black, 204 hispanic and 438 white, while in the refreshed data there are 346 black, 219 hispanic and 623 white, so the proportions have not been exactly reproduced. On education, in the refreshed data there are very few individuals with less than a 12th grade education, which varies from the original. In the original data there were 366 individuals with up to 8th grade and 522 9th-12th grade, as compared to 967 with 12th grade in the refreshed data.

5 Summary

This paper has described the stages to take a particular open data set and make it a textbook data set, ready for the classroom or research. In the first stage, we showed the steps performed to get the data from the NLSY79 database. The data format needed converting to tidy format, and this was described. After that, an initial data analysis was conducted to investigate and screen the quality of the data. We found and fixed

Figure 5: The stages of data cleaning from the raw data to get three datasets contained [CENSORED]. # of individuals means the number of respondents included in each stage, while # of observations means the number of rows in the data. The color represents the stage of data cleaning in statistical value chain (M. P. J. van der Loo and de Jonge 2021). Pink, blue, and green represents the raw, input, and valid data, respectively.

Figure 6: Comparison of original textbook example (A) with refreshed data (B). The original data was inflation-adjusted to 1990 prices and the individual's time of collection was converted to a length of experience in the workforce, which make it difficult to precisely compare the two sets.

the anomalous observations in wages using a robust linear regression model. Finally a comparison is made between the original and refreshed data sets.

The data cleaning process is documented and the code has been made available. These provide the opportunity to again refresh the textbook data as updated data is published in the NLSY79 database. Determining the appropriate robustness weight to threshold the anomalous observations is documented, and a shiny (Chang et al. 2020) app is provided to assist. The current subset is made available in a new R package, called [CENSORED].

Various difficulties were encountered in trying to refresh the data, which include:

- determining which records should be downloaded from the database.
- there are many errors in the data, e.g. hourly wages greater than \$30,000 per hour.
- there is no explicit variable in the database recording high school dropout, which means we needed to compare date of 12th grade with the individual's age.
- calculating experience in the workforce, would require knowing the time of first job within the first year the individual was recorded.

Ultimately, the refreshed data is reasonably similar to the original, but unsatisfactorily far from it. The last step required would be to inflation-adjust wages, but this is better to do with each wave of new data added, so that it is relative to the last date in the data.

Some readers may disagree with our decisions made to produce the refreshed textbook data and may have better insight than us in producing a more appropriate textbook data. We do not assert that we have produced the best textbook data, but rather we describe our journey to provide a reasonable textbook data set. All code and documentation are provided for transparency, and future updates of the [CENSORED] package may contain additional variables, or filters of the full set, if it is deemed important.

Finally, for the data providers we recommend that a validation system with clear rules is added on data entry, and that alternative output formats, such as a tidy format would help users make better use of the resource. The problem with many of the wages records is that there are implausible values, or confusion on how to record wages for multiple jobs. These values could be validated with simple checks at data entry. Providing

an open data resource also is accompanied with the responsibility that the data, especially data that is as valuable as this, is reliable. Users need to be able to trust the data.

6 Acknowledgements

We would like to thank Aarathy Babu for the insight and discussion during the writing of this paper.

The entire analysis is conducted using R (R Core Team 2020) in RStudio IDE using these packages: tidyverse (Wickham et al. 2019), ggplot2 (Wickham 2016), dplyr (Wickham et al. 2020), readr (Wickham and Hester 2020), tidyr (Wickham 2020), stringr (Wickham 2019), purrr (Henry and Wickham 2020), brolgar (Tierney, Cook, and Prvan 2020), patchwork (Pedersen 2020), kableExtra (Zhu 2019), MASS (Venables and Ripley 2002), janitor (Firke 2020), and tsibble (Wang, Cook, and Hyndman 2020). The paper are generated using knitr (Xie 2014) and rmarkdown (Xie, Dervieux, and Riederer 2020).

7 Supplementary Materials

- Codes: R script to reproduce data tidying and cleaning are available in this page.
- R Package: [CENSORED] is a data container R package that contains 3 datasets, namely the high school mean hourly wage data, high school dropouts mean hourly wage data, and demographic data of the NLSY79 cohort. This package could be accessed here.
- **shiny app**: An interactive **shiny** web app to visualise the effect of selecting different weight threshold for substituting the wages data to its predicted value from a fit of the robust linear regression model. This app could be accessed here with the source code provided here.

References

- Bureau of Labor Statistics, U.S. Department of Labor. 2021. "National Longitudinal Survey of Youth 1979 Cohort, 1979-2016 (Rounds 1-28)." Produced and distributed by the Center for Human Resource Research (CHRR), The Ohio State University. Columbus, OH.
- Chang, Winston, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPherson. 2020. shiny: Web Application Framework for R. https://CRAN.R-project.org/package=shiny.
- Chatfield, C. 1985. "The Initial Examination of Data." *Journal of the Royal Statistical Society. Series A. General* 148 (3): 214–53.
- Cooksey, Elizabeth C. 2017. "Using the National Longitudinal Surveys of Youth (NLSY) to Conduct Life Course Analyses." In *Handbook of Life Course Health Development*, edited by Richard M. Lerner Neal Halfon Christoper B. Forrest, 561–77. Cham: Springer. https://doi.org/https://doi.org/10.1007/978-3-319-47143-3 23.
- Dasu, Tamraparni, and Theodore Johnson. 2003. Exploratory Data Mining and Data Cleaning. Wiley Series in Probability and Statistics. Hoboken: WILEY.
- Firke, Sam. 2020. janitor: Simple Tools for Examining and Cleaning Dirty Data. https://CRAN.R-project.org/package=janitor.
- Fullilove, M. T. 1998. "Comment: Abandoning "Race" as a Variable in Public Health Research—an Idea Whose Time Has Come." *American Journal of Public Health* 88 (9): 1297–98.
- Henry, Lionel, and Hadley Wickham. 2020. purrr: Functional Programming Tools. https://CRAN.R-project.org/package=purrr.
- Huebner, Marianne, Werner Vach, and Saskia le Cessie. 2016. "A Systematic Approach to Initial Data Analysis Is Good Research Practice." The Journal of Thoracic and Cardiovascular Surgery 151 (1): 25–27.
- Huebner, Marianne, Werner Vach, Saskia le Cessie, Carsten Oliver Schmidt, and Lara Lusa. 2020. "Hidden Analyses: A Review of Reporting Practice and Recommendations for More Transparent Reporting of Initial Data Analyses." BMC Medical Research Methodology 20 (1): 61–61.
- Koller, Manuel. 2016. "robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models." Journal of Statistical Software 75 (6): 1–24.

- Open Knowledge Foundation. 2021. "Open Definition. Defining Open in Open Data, Open Content, and Open Knowledge." 2021. http://opendefinition.org/od/2.1/en/.
- Pedersen, Thomas Lin. 2020. patchwork: The Composer of Plots. https://CRAN.R-project.org/package=patchwork.
- Pergamit, Michael R., Charles R. Pierret, Donna S. Rothstein, and Jonathan R. Veum. 2001. "Data Watch: The National Longitudinal Surveys." *The Journal of Economic Perspectives* 15 (2): 239–53.
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Singer, Judith D, and John B Willett. 2003. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford u.a: Oxford Univ. Pr.
- Tierney, Nicholas, Di Cook, and Tania Prvan. 2020. brolgar: BRowse Over Longitudinal data Graphically and Analytically in R. https://github.com/njtierney/brolgar.
- Tukey, John W. (John Wilder). 1977. Exploratory Data Analysis. Addison-Wesley Series in Behavioral Science. Reading, Mass.: Addison-Wesley Pub. Co.
- UCLA: Statistical Consulting Group. 2021. "Robust Regression | R Data Analysis Examples." February 2021. https://stats.idre.ucla.edu/r/dae/robust-regression/.
- van der Loo, Mark P. J., and Edwin de Jonge. 2021. "Data Validation Infrastructure for R." Journal of Statistical Software 97 (10): 1-31. https://doi.org/10.18637/jss.v097.i10.
- van der Loo, Mark, and Edwin de Jonge. 2018. Statistical Data Cleaning with Applications in r.
- Venables, W. N., and B. D. Ripley. 2002. *Modern Applied Statistics with s.* Fourth. New York: Springer. http://www.stats.ox.ac.uk/pub/MASS4.
- Wang, Earo, Dianne Cook, and Rob J Hyndman. 2020. "A New Tidy Data Structure to Support Exploration and Modeling of Temporal Data." *Journal of Computational and Graphical Statistics* 29 (3): 466–78. https://doi.org/10.1080/10618600.2019.1695624.
- Wickham, Hadley. 2011. "The Split-Apply-Combine Strategy for Data Analysis." *Journal of Statistical Software*, Articles 40 (1): 1–29. https://doi.org/10.18637/jss.v040.i01.
- ——. 2014. "Tidy Data." Journal of Statistical Software 59 (10): 1–23.
- . 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
- ——. 2019. stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.
- . 2020. tidyr: Tidy Messy Data. https://CRAN.R-project.org/package=tidyr.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.
- Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2020. dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
- Wickham, Hadley, and Jim Hester. 2020. readr: Read Rectangular Text Data. https://CRAN.R-project.org/package=readr.
- Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.
- Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.
- Zhu, Hao. 2019. kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.