Simplified INLA, automatic differentiation and adaptive Gauss-Hermite quadrature for fast and accurate approximate inference

Integrated nested Laplace approximations for extended latent Gaussian models, with application to the Naomi HIV model

Adam Howes 1, 2

@adamhowes

Math19@ic.ac.uk

Alex Stringer³ Seth R. Flaxman⁴ Jeffrey W. Eaton²

Department of Mathematics, Imperial College London
 MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial

College London

³ Department of Statistics and Actuarial Science, University of Waterloo

⁴ Department of Computer Science, University of Oxford

The Naomi model

Inference procedure

Laplace approximation

Adaptive Gauss-Hermite Quadrature

Approximate integrals by

$$\int_{\Theta} p(heta) \mathrm{d} heta pprox |L| \sum_{z \in \mathcal{Q}(m,k)} p(\hat{ heta} + Lz) \omega(z)$$

with Gauss-Hermite quadrature rule $z\in\mathcal{Q}(m,k)$ adapted based upon the mode $\hat{\theta}=\mathrm{argmax}_{\theta\in\Theta}\in p(\theta)$ and lower Cholesky $LL^{\top}=-\partial_{\theta}^2\log p(\theta)|_{\theta=\hat{\theta}}$ of the target.

Our algorithm

Given C++ user template for $-\log p(y,x,\theta)$:

Comparison Conclusions

Funding AH was supported by the EPSRC and Bill & Melinda Gates Foundation. This research was supported by the MRC Centre for Global Infectious Disease Analysis.

References