

C. Odpadocuc (Sopsug)

Problem Name	Sopsug
Time Limit	5 seconds
Memory Limit	1 gigabyte

Na periférii Lundu sa stavia nové sídlisko Grushög. Momentálne sa preň pripravuje najdôležitejšia infraštruktúra: odpadový systém. Vo Švédsku na to radi používajú *odpadocuc (sopsug)*. Toto je automatický vákuový systém na zber odpadu: "drbneš odpad do rúry a ono ho to vcucne".

V Grushögu bude N budov. Očíslujeme si ich od 0 do N-1. Tvojou úlohou bude navrhnúť, ako tieto budovy prepojiť rúrami, ktoré budú dokopy tvoriť odpadcuc.

Všetky rúry sú jednosmerné. Ak postavíš rúru od budovy u ku budove v, všetok odpad, ktorý k budove u dorazí alebo tam vznikne, bude odtiaľ ďalej pokračovať rúrou k budove v. Takýchto rúr potrebuješ dokopy postaviť presne N-1, a to tak, aby dokopy zabezpečili, že sa odpad zo všetkých N budov nazbiera pri jednej z nich.

Formálne, tvojich N-1 rúr musí tvoriť zakorenený strom, v ktorom je každá rúra orientovaná smerom ku koreňu.

Aby to nebolo také ľahké, existujú dva typy obmedzení, ktoré musíš dodržať.

Už bolo postavených M rúr. Tieto rúry *musíš* všetky použiť. (Postavené rúry už majú všetky zvolený smer, ktorým musia byť použité.)

Tiež je daných K usporiadaných dvojíc budov, odkiaľ kam je fyzicky nemožné postaviť rúru. (Táto vlastnosť nemusí byť symetrická: ak sa nedá postaviť rúru od u ku v, ešte stále sa môže dať postaviť rúru od v ku u.)

Input

V prvom riadku vstupu sú celé čísla N, M a K.

Nasleduje M riadkov. V každom z nich sú dve rôzne celé čísla a_i,b_i hovoriace, že už existuje rúra berúca odpad z a_i ku b_i .

Zvyšok vstupu tvorí ďalších K riadkov. V každom z nich sú dve rôzne celé čísla c_i,d_i hovoriace, že sa nedá postaviť rúru vedúcu od c_i ku d_i .

Všetkých M+K usporiadaných dvojíc na vstupe bude navzájom rôznych.

Output

Ak žiadne riešenie neexistuje, vypíš jeden riadok s reťazcom "NO".

Ak existujú viaceré riešenia, môžeš si vybrať ľubovoľné jedno z nich. Vypíš N-1 riadkov. V každom z nich vypíš dve medzerou oddelené čísla u_i , v_i hovoriace, že vo výslednom odpadocuce chceš mať rúru od budovy u_i k budove v_i .

Rúry môžeš vypísať v ľubovoľnom poradí. Nezabudni, že všetkých M rúr, ktoré musíš použiť, sa musí objaviť niekde v tvojom výstupe.

Constraints and Scoring

Vo všetkých vstupoch platí:

- $2 \le N \le 300\,000$.
- $0 \le M \le 300000$.
- $0 \le K \le 300\,000$.
- $0 \le a_i, b_i \le N-1$ pre $i = 0, 1, \dots, M-1$.
- $0 \le c_i, d_i \le N-1$ pre $i = 0, 1, \dots, K-1$.

Existuje niekoľko podúloh, v ktorých platia rôzne dodatočné obmedzenia. Body za podúlohy a tieto obmedzenia nájdeš v nasledujúcej tabuľke.

Group	Score	Limits
1	12	M=0 a $K=1$
2	10	M=0 a $K=2$
3	19	K=0
4	13	$N \leq 100$
5	17	Je zaručené, že existuje riešenie, v ktorom je koreňom budova 0 .
6	11	M=0
7	18	Bez ďalších obmedzení.

Example

Na obrázku nižšie sú znázornené prvé dva príklady vstupu a výstupu.

Modré šípky predstavujú už postavené rúry. Čiarkované červené šípky predstavujú smery, ktorými je zakázané stavať nové rúry.

V ľavom obrázku sú čiernou farbou dokreslené šípky zodpovedajúce ukážkovému výstupu. Modrá a čierne šípky dokopy tvoria jedno možné platné riešenie. V tomto riešení sme postavili odpadocuc, ktorý odpad z celého mesta vysype pri dome 0.

Toto nie je jediné možné riešenie pre tento vstup. Napríklad sme mohli namiesto rúry $1 \to 3$ postaviť rúru $0 \to 1$ a dostali by sme iné platné riešenie.

Z obrázku vpravo ľahko nahliadneme, že pre druhý príklad vstupu žiadne platné riešenie neexistuje: modré rúry už tvoria cyklus, zatiaľ čo v zakorenenom strome žiaden cyklus byť nesmie.

Input	Output
5 1 8 4 1 3 1 3 4 3 2 0 2 0 4 2 4 1 0 2 0	4 1 3 0 1 3 2 3
5 4 0 1 0 2 3 3 4 4 2	NO
3 0 1 0 1	1 0 2 0
4 0 2 0 1 1 0	2 0 3 0 1 3