Welcome to STN International! Enter x:x

LOGINID:ssptacmb1647

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * *	* Welcome to STN International * * * * * * * * *					
	Web Page for STN Seminar Schedule - N. America CAS patent coverage to include exemplified prophetic substances identified in English-, French-, German-,					
NEWS 3 NOV 26	and Japanese-language basic patents from 2004-present MARPAT enhanced with FSORT command					
	CHEMSAFE now available on STN Easy					
	Two new SET commands increase convenience of STN					
NEWS 5 NOV 20	searching					
NEWS 6 DEC 01	ChemPort single article sales feature unavailable					
	GBFULL now offers single source for full-text					
112110 1 220 12	coverage of complete UK patent families					
NEWS 8 DEC 17	Fifty-one pharmaceutical ingredients added to PS					
NEWS 9 JAN 06	The retention policy for unread STNmail messages					
	will change in 2009 for STN-Columbus and STN-Tokyo					
	WPIDS, WPINDEX, and WPIX enhanced Japanese Patent					
	Classification Data					
NEWS 11 FEB 02	Simultaneous left and right truncation (SLART) added					
	for CERAB, COMPUAB, ELCOM, and SOLIDSTATE					
NEWS 12 FEB 02	GENBANK enhanced with SET PLURALS and SET SPELLING					
NEWS 13 FEB 06	Patent sequence location (PSL) data added to USGENE					
NEWS 14 FEB 10	COMPENDEX reloaded and enhanced					
	27 08 CURRENT WINDOWS VERSION IS V8.3,					
AND	CURRENT DISCOVER FILE IS DATED 23 JUNE 2008.					
NEWS HOURS SIN	Operating Hours Plus Help Desk Availability					
NEWS LOGIN Welcome Banner and News Items						
NEWS IPC8 For general information regarding STN implementation of IPC 8						
NEWS IFCO FOI	general information regarding 51% implementation of irc o					
Enter NEWS followed by the item number or name to see news on that						
specific topic.						

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 13:33:47 ON 10 FEB 2009

=> file medline embase biosis caplus

SINCE FILE TOTAL ENTRY SESSION COST IN U.S. DOLLARS FULL ESTIMATED COST 0.22 0.22

```
FILE 'MEDLINE' ENTERED AT 13:33:56 ON 10 FEB 2009
FILE 'EMBASE' ENTERED AT 13:33:56 ON 10 FEB 2009
Copyright (c) 2009 Elsevier B.V. All rights reserved.
FILE 'BIOSIS' ENTERED AT 13:33:56 ON 10 FEB 2009
Copyright (c) 2009 The Thomson Corporation
FILE 'CAPLUS' ENTERED AT 13:33:56 ON 10 FEB 2009
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)
=> s (insulin(w)receptor(w)substrate(w)2 or irs(w)2)
          4675 (INSULIN(W) RECEPTOR(W) SUBSTRATE(W) 2 OR IRS(W) 2)
=> s 11 and (over(w)express?)
            36 L1 AND (OVER(W) EXPRESS?)
=> dup rem 12
PROCESSING COMPLETED FOR L2
             22 DUP REM L2 (14 DUPLICATES REMOVED)
=> dis ibib abs 13 1-22
     ANSWER 1 OF 22 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights
     reserved on STN
ACCESSION NUMBER:
                    2008436533 EMBASE
TITLE:
                    Momordica charantia (bitter melon) reduces plasma
                    apolipoprotein B-100 and increases hepatic insulin receptor
                    substrate and phosphoinositide-3 kinase interactions.
                    Nerurkar, Pratibha V., Dr. (correspondence); Lee, Yun
AUTHOR:
                    Kyung; Motosue, Megan
CORPORATE SOURCE:
                    Laboratory of Metabolic Disorders and Alternative Medicine,
                    Department of Molecular Biosciences and Bioengineering,
                    University of Hawaii at Manoa, Honolulu, HI 96816, United
                    States. pratibha@hawaii.edu
AUTHOR:
                    Adeli, Khosrow
CORPORATE SOURCE:
                    Research Institute, The Hospital for Sick Children,
                    University of Toronto, Toronto, ON M5G 1X8, Canada.
AUTHOR:
                    Nerurkar, Vivek R.
CORPORATE SOURCE:
                    Department of Tropical Medicine, Medical Microbiology and
                    Pharmacology, Asia-Pacific Institute of Tropical Medicine
                    and Infectious Diseases, University of Hawaii at Manoa,
                    Honolulu, HI 96813, United States.
                    British Journal of Nutrition, (2008) Vol. 100, No. 4, pp.
SOURCE:
                    751-759.
                    Refs: 42
                    ISSN: 0007-1145 E-ISSN: 1475-2662 CODEN: BJNUAV
PUBLISHER:
                    Cambridge University Press, Shaftesbury Road, Cambridge,
                    CB2 2RU, United Kingdom.
                    S 0007-1145(08)93743-0
PUBLISHER IDENT .:
COUNTRY:
                    United Kingdom
DOCUMENT TYPE:
                    Journal: Article
FILE SEGMENT:
                    003
                            Endocrinology
                    018
                            Cardiovascular Diseases and Cardiovascular Surgery
                    029
                            Clinical and Experimental Biochemistry
                    030
                           Clinical and Experimental Pharmacology
                    037
                           Drug Literature Index
```

LANGUAGE .

SUMMARY LANGUAGE: English

English

ENTRY DATE: Entered STN: 30 Sep 2008

Last Updated on STN: 30 Sep 2008

Aqueous extracts or juice from unripened fruit of Momordica charantia (bitter melon) has traditionally been used in the treatment of diabetes and its complications. Insulin resistance is characterized by significant down-regulation of hepatic insulin signalling as documented by attenuated phosphorylation of insulin receptor (IR), IR substrates 1 and 2, phosphoinositide-3 kinase, protein kinase B, and overexpression of phosphotyrosine phosphatase 1B. We recently demonstrated that bitter melon juice (BMJ) is a potent inhibitor of apoB secretion and TAG synthesis and secretion in human hepatoma cells, HepG2, that may be involved in plasma lipid- and VLDL-lowering effects observed in animal studies. The aim of this study was to evaluate the effects of BMJ on plasma apoB levels and hepatic insulin signalling cascade in mice fed high-fat diet (HFD). Female C57BL/6 mice (4-6 weeks old) were randomized into three groups receiving regular rodent chow, HFD and HFD+BMJ. The data indicate that BMJ not only improves glucose and insulin tolerance but also lowers plasma apoB-100 and apoB-48 in HFD-fed mice as well as modulates the phosphorylation status of IR and its downstream signalling molecules. Investigating the biochemical and molecular mechanisms involved in amelioration of diabetic dyslipidaemia by BMJ may lead to identification of new molecular targets for dietary/alternative therapies. . COPYRGT. The Authors 2008.

ANSWER 2 OF 22 MEDLINE on STN DUPLICATE 1

ACCESSION NUMBER: 2008174922 MEDLINE

DOCUMENT NUMBER: PubMed ID: 18221412

TITLE: Advances in vertebrate aging research 2007.

AUTHOR: Austad Steven

CORPORATE SOURCE: University of Texas Health Science Center, Barshop Center for Longevity and Aging Studies, San Antonio, TX 78245,

USA.. austad@uthscsa.edu

SOURCE: Aging cell, (2008 Mar) Vol. 7, No. 2, pp. 119-24. Electronic Publication: 2008-01-21.

Journal code: 101130839. E-ISSN: 1474-9726.

Oddinal Code. 101130039. E-133N. 1474-97

PUB. COUNTRY: England: United Kingdom
DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals ENTRY MONTH: 200803

ENTRY DATE: Entered STN: 13 Mar 2008

Last Updated on STN: 29 Mar 2008

Entered Medline: 28 Mar 2008

AB Among this year's highlights in vertebrate aging research, we find a study in which, contrary to the oxidative stress hypothesis of aging, reduced expression of a major cellular antioxidant, glutathione peroxidase 4, led to a small increase in mouse lifespan. By contrast, a large comparative proteomic analysis discovered a remarkably robust and previous unsuspected inverse association between species lifespan and relative frequency of cysteine residues in mitochondrially encoded respiratory chain proteins only, which the authors attribute to cysteine's ease of oxidation. Another study evaluated more cleanly than any previous work the hypothesis that blood glucose concentration is a key mediator of aging, and concluded that it wasn't. Several new mouse longevity mutants were also reported this year, some (PAPP-A, IRS-1, and IRS-2 knockouts) supporting previous work on the importance of insulin/insulin-like growth factor-1 signaling and aging. However, there were inconsistencies between laboratories in some of the results, which merit further investigation. Also, somewhat inconsistent with these findings, overexpression of insulin-like growth factor-1 in heart only lengthened life. From a completely new direction, type 5 adenylyl cyclase knockout mice were observed to live more than 30% longer than controls.

Finally, a new program for evaluating potential pharmaceutical interventions in aging and longevity made its appearance, and is notable at this point chiefly for the excellence of its experimental design. A similar program for the disinterested evaluation of reported longevity mutations in mice would be a service to the community of vertebrate aging researchers.

L3 ANSWER 3 OF 22 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights

reserved on STN

COUNTRY:

ACCESSION NUMBER: 2008349612 EMBASE

TITLE: Important genetic checkpoints for insulin resistance in

salt-sensitive (S) Dahl rats.

AUTHOR: Shehata, Marlene F. (correspondence)

CORPORATE SOURCE: Department of Cellular and Molecular Medicine, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada.

mshehata@ottawaheart.ca

SOURCE: Cardiovascular Diabetology, (21 Jun 2008) Vol. 7. arn. 19.

Cardiovascular Diabetolo Refs: 133

E-ISSN: 1475-2840 CODEN: CDAIAZ

PUBLISHER: BioMed Central Ltd., 34 - 42 Cleveland Street, London, W1T

4LB, United Kingdom. United Kingdom

DOCUMENT TYPE: Journal; Article
FILE SEGMENT: 003 Endocrinology

ILE SEGMENT: 003 Endocrinology
005 General Pathology and Pathological Anatomy

022 Human Genetics

029 Clinical and Experimental Biochemistry

LANGUAGE: English SUMMARY LANGUAGE: English

SUMMARY LANGUAGE: English
ENTRY DATE: Entered STN: 1 Aug 2008

Last Updated on STN: 1 Aug 2008

Despite the marked advances in research on insulin resistance (IR) in AB humans and animal models of insulin resistance, the mechanisms underlying high salt-induced insulin resistance remain unclear. Insulin resistance is a multifactorial disease with both genetic and environmental factors (such as high salt) involved in its pathogenesis. High salt triggers insulin resistance in genetically susceptible patients and animal models of insulin resistance. One of the mechanisms by which high salt might precipitate insulin resistance is through its ability to enhance an oxidative stress-induced inflammatory response that disrupts the insulin signaling pathway. The aim of this hypothesis is to discuss two complementary approaches to find out how high salt might interact with genetic defects along the insulin signaling and inflammatory pathways to predispose to insulin resistance in a genetically susceptible model of insulin resistance. The first approach will consist of examining variations in genes involved in the insulin signaling pathway in the Dahl S rat (an animal model of insulin resistance and salt-sensitivity) and the Dahl R rat (an animal model of insulin sensitivity and salt-resistance), and the putative cellular mechanisms responsible for the development of insulin resistance. The second approach will consist of studying the over-expressed genes along the inflammatory pathway whose respective activation might be predictive of high salt-induced insulin resistance in Dahl S rats. Variations in genes encoding the insulin receptor substrates -1 and/or -2 (IRS-1, -2) and/or genes encoding the glucose transporter (GLUTs) proteins have been found in patients with insulin resistance. To better understand the combined contribution of excessive salt and genetic defects to the etiology of the disease, it is essential to investigate the following question: Question 1: Do variations in genes encoding the IRS -1 and -2 and/or genes encoding the GLUTs proteins predict high salt-induced insulin resistance in Dahl S rats? A significant amount of evidence suggested that salt-induced oxidative stress might predict an inflammatory response that upregulates mediators

of inflammation such as the nuclear factor- kappa B (NF-kappa B), the tumor necrosis factor-alpha (TNF-a) and the c-Jun Terminal Kinase (JNK). These inflammatory mediators disrupt the insulin signaling pathway and predispose to insulin resistance. Therefore, the following question will be thoroughly investigated: Question 2: Do variations in genes encoding the NF-kappa B, the TNF- α and the JNK, independently or in synergy, predict an enhanced inflammatory response and subsequent insulin resistance in Dahl S rats in excessive salt environment? Finally, to better understand the combined role of these variations on glucose metabolism, the following question will be addressed: Ouestion 3: What are the functional consequences of gene variations on the rate of glucose delivery, the rate of glucose transport and the rate of glucose phosphorylation in Dahl S rats? The general hypothesis is that "high-salt diet in combination with defects in candidate genes along the insulin signaling and inflammatory pathways predicts susceptibility to high salt-induced insulin resistance in Dahl S rats". .COPYRGT. 2008 Shehata; licensee BioMed Central Ltd.

L3 ANSWER 4 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN

ACCESSION NUMBER: 2007:602995 BIOSIS DOCUMENT NUMBER: PREV200700606305

TITLE: Evaluation of fatty acid metabolism-related gene expression

in nonalcoholic fatty liver disease.

AUTHOR(S): Nakamura, Makoto; Konjima, Motoyuki; Nishi, Hidehiro;

Enjoji, Munechika

SOURCE: Gastroenterology, (APR 2007) Vol. 132, No. 4, Suppl. 2, pp.

A816

Meeting Info.: Digestive Disease Week Meeting/108th Annual Meeting of the American-Gastroenterological-Association. Washington, DC, USA. May 19 -24, 2007. Amer Gastroenterol Assoc; Amer Assoc Study Liver Dis; Amer Soc

Gastrointestinal Endoscopy; Soc Surg Alimentary Tract.

CODEN: GASTAB. ISSN: 0016-5085.

DOCUMENT TYPE: Conference; (Meeting)
Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE: Entered STN: 6 Dec 2007

Last Updated on STN: 6 Dec 2007

Background/Aims: Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver dysfunction, and its prevalence has markedly increased; however, the mechanisms involved in the pathogenesis of NAFLD have not been thoroughly investigated in humans. To clarify precise mechanisms of NAFLD, we evaluated the expression of fatty acid metabolism-related genes. Methods: Real-time RT-PCR was performed using liver biopsy samples from 24 NAFLD patients and 10 normal controls. Results: In NAFLD, expression of acetyl-CoA carboxylase and fatty acid synthase involved in de novo fatty acid synthesis were increased. Adipose differentiation-related protein, which is related to up-take of fatty acids, was also increased. With regard to fatty acid oxidation, in mitochondria, long-chain acyl-CoA dehydrogenase and long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase were up-regulated accompanying with the increased expression of uncoupling protein 2, whereas carnitine palmitoyltransferase la, a rate-limiting enzyme of mitochondrial oxidation, was down-regulated. In peroxisome, both straight-chain acyl-CoA oxidase and branched-chain acyl-CoA oxidase were up-regulated although PPAR alpha was down-regulated. In microsome, CYP2E1 and CYP4A11 were both over-expressed. SOD and catalase involved in antioxidant pathways were also over-expressed. In regard to lipid droplet formation, the expression of diacylglycerol O-acyltransferase 1 and PPAR gamma was increase whereas that of hormone sensitive lipase was decreased. Sterol regulatory element-binding protein Ic (SREBPlc), a transcriptional factor, positively regulates fatty acid

synthesis. SREBPlc is also negatively regulated by AMP-activated protein kinase (AMPK) and positively regulated by insulin. In NAFLD, SREBP1c expression was enhanced, and AMPK was decreased. Insulin receptor substrate (IRS) 2 was also decreased whereas IRS1 was unchanged. Conclusion: These data indicate as follows: increased de novo synthesis and up-take of fatty acid lead to further accumulation of them in hepatocytes, mitochondrial fatty acid oxidation is decreased or fully activated, and peroxisomal and microsomal oxidation was complementally up-regulated to decrease fatty acid accumulation, antioxidant pathways including SOD and catalase were enhanced to neutralize over-produced ROS by oxidation; lipid droplet formation was enhanced. The increased fatty acids synthesis, that is consider as a primary event in NAFLD, is attributable to enhanced SREBPlc which is under the control of balance between AMPK and insulin.

ANSWER 5 OF 22 MEDLINE on STN DUPLICATE 2

ACCESSION NUMBER: 2007384086 MEDLINE

DOCUMENT NUMBER: PubMed ID: 17443674 TITLE: Dual regulation of upstream binding factor 1 levels by

IRS-1 and ERKs in IGF-1-receptor signaling. Sun Hongzhi; Tu Xiao; Liu Mingli; Baserga Renato

AUTHOR: Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA. CORPORATE SOURCE:

CONTRACT NUMBER: 089640

SOURCE: Journal of cellular physiology, (2007 Sep) Vol. 212, No. 3,

pp. 780-6. Journal code: 0050222. ISSN: 0021-9541.

PUB. COUNTRY: United States

DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)

(RESEARCH SUPPORT, N.I.H., EXTRAMURAL) LANGUAGE: English

FILE SEGMENT:

Priority Journals

ENTRY MONTH: 200709

TITLE:

ENTRY DATE: Entered STN: 3 Jul 2007 Last Updated on STN: 28 Sep 2007

Entered Medline: 27 Sep 2007

AB The Upstream Binding Factor 1 (UBF1) is a nucleolar protein that participates in the regulation of RNA polymerase I activity and ribosomal RNA (rRNA) synthesis. In 32D myeloid cells expressing the type 1 insulin-like growth factor receptor (IGF-IR), the UBF1 protein (but not its mRNA) is down regulated when the cells are shifted from Interleukin-3 (IL-3) to IGF-1. Ectopic expression of insulin receptor substrate-1 (IRS-1) in these cells inhibits the down-regulation of UBF1. We now show that the stability of UBF1 in 32D-derived cells requires also a signal from the extracellular regulated kinases (ERKs). When ERKs signaling is defective, as in cells over-expressing the insulin receptor (InR) or selected mutants of the IGF-1R, UBF1 is down-regulated, even in the presence of IRS-1. The down-regulation is corrected by the expression of an activated Ha-ras, which stimulates ERKs activity. Mutations at threonines 117 and 201 of UBF1, known to be phosphorylated by ERKs, cause its down-regulation. However, when IRS-2, instead of IRS-1, is ectopically expressed in 32D InR cells, ERKs phosphorylation is increased and UBF is stabilized. Taken together, these results indicate that in 32D-derived myeloid cells expressing either the IGF-IR or the InR, UBF1 levels are regulated by signaling from both IRS proteins and ERKs.

L3 ANSWER 6 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN ACCESSION NUMBER: 2007:602628 BIOSIS DOCUMENT NUMBER: PREV200700605938

> Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.

AUTHOR(S): Nakamuta, Makoto; Kohjima, Motoyuki; Nishi, Hidehiro;

Enjoji, Munechika

SOURCE: Gastroenterology, (APR 2007) Vol. 132, No. 4, Suppl. 2, pp.

A737.

Meeting Info.: Digestive Disease Week Meeting/108th Annual Meeting of the American-Gastroenterological-Association. Washington, DC, USA. May 19 -24, 2007. Amer Gastroenterol Assoc; Amer Assoc Study Liver Dis; Amer Soc

ssoc; Amer Assoc Study Liver Dis; Amer Soc

Gastrointestinal Endoscopy; Soc Surg Alimentary Tract. CODEN: GASTAB. ISSN: 0016-5085.

DOCUMENT TYPE: Conference: (Meeting)

Conference; Abstract; (Meeting Abstract)

LANGUAGE: English

ENTRY DATE: Entered STN: 6 Dec 2007

Last Updated on STN: 6 Dec 2007

Background/Aims: Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver dysfunction, and its prevalence has markedly increased; however, the mechanisms involved in the pathogenesis of NAFLD have not been thoroughly investigated in humans. To clarify precise mechanisms of NAFLD, we evaluated the expression of fatty acid metabolism-related genes. Methods: Real-time RT-PCR was performed using liver biopsy samples from 24 NAFLD patients and 10 normal controls. Results: In NAFLD, expression of acetyl-CoA carboxylase and fatty acid synthase involved in de novo fatty acid synthesis were increased. Adipose differentiation-related protein, which is related to up-take of fatty acids, was also increased. With regard to fatty acid oxidation, in mitochondria, long-chain acyl-CoA clehydrogenase and long-chain L-3-hydroKvacyl-coenzyme A clehydrogenase were up-regulated accompanying with the increased expression of uncoupling protein 2, whereas carnitine palmitoyltransferase la, a rate-limiting enzyme of mitochondrial oxidation, was down-regulated. in peroxisome, both straight-chain acyl-CoA oxiclase and branched-chain acyl-CoA oxidase were up-regulated although PPAR alpha was down-regulated. in microsome, CYP2E1 and CYP4A11 were both over-expressed, SOD and catalase involved in antioxidant pathways were also over-expressed. In regard to lipid droplet formation, the expression of diacylglycerol C-acyltransferase 1 and PPAR gamma was increase whereas that of hormone sensitive lipase was decreased. Sterol regulatory element-binding protein Ic (SREBP1c), a transcriptional factor, positively regulates fatty acid synthesis. SREBP1c is also negatively regulated by AMP-activated protein kinase (AMPK) and positively regulated by insulin. In NAFLD, SREBP1c expression was enhanced, and AMPK was decreased. Insulin receptor substrate (IRS) 2 was also decreased whereas IRS1 was unchanged. Conclusion: These data indicate as follows; increased de novo synthesis and up-take of fatty acid lead to further accumulation of them in hepatocytes; mitochondrial fatty acid oxidation is decreased or fully activated, and peroxisomal and microsomal oxidation was complementally up-regulated to decrease fatty acid accumulation; antioxidant pathways including SOD and catalase were enhanced to neutralize over-produced ROS by oxidation; lipid droplet formation was enhanced. The increased fatty acids synthesis, that is consider as a primary event in NAFLD, is attributable to enhanced SREBPlc which is under the control of balance between AMPK and insulin.

L3 ANSWER 7 OF 22 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN DUPLICATE 3

ACCESSION NUMBER: 2007553895 EMBASE

TITLE: Preeclampsia, insulin signalling and immunological dysfunction: a fetal, maternal or placental disorder?.

AUTHOR: Rademacher, Thomas W.

CORPORATE SOURCE: Department of Immunology and Molecular Pathology, Molecular Medicine Unit, Royal Free and University College London

Medical School, London, United Kingdom.

AUTHOR: Gumaa, Khalid

CORPORATE SOURCE: College of Medicine and Medical Sciences, Arabian Gulf

University, Manama, Bahrain.

AUTHOR: Scioscia, Marco (correspondence)
CORPORATE SOURCE: Department of Gynaecology, Obstetrics and Neonatology,

University of Medical Science of Bari, Policlinico of Bari, Piazza Giulio Cesare 11, 70125 Bari, Italy. marcoscioscia@g

mail.com

SOURCE: Journal of Reproductive Immunology, (Dec 2007) Vol. 76, No.

1-2, pp. 78-84.

Refs: 51

ISSN: 0165-0378 CODEN: JRIMDR PUBLISHER IDENT.: S 0165-0378(07)00090-3

COUNTRY: Ireland

COUNTRY: Ireland

DOCUMENT TYPE: Journal; General Review; (Review)
FILE SEGMENT: 010 Obstetrics and Gynecology

026 Immunology, Serology and Transplantation

LANGUAGE: English SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 20 Dec 2007

Last Updated on STN: 21 Dec 2007
AB An inappropriate glycogen accumulation in preeclamptic placentas was

described as secondary to biochemical alterations. Insulin resistance is widely accepted to be associated with preclampsia, although its basis remain unclear. A family of putative insulin mediators, namely inositol phosphoglycans, were described to exert many insulin-like effects on lipid and glucose metabolism. A definite association between the P-type mediator (P-IPG) and preeclampsia was reported, being increased in placenta, urine, amniotic fluid and cord blood from human preeclamptic pregnancies. A strong link exists between insulin resistance and inflammation. Clear features of insulin resistance and systemic inflammatory activation were described in preeclampsia. It may be a consequence of the immunological dysfunction that occurs in preeclampsia that is temporized during sperm exposure and co-habitation which confuses the maternal immune network to perceive 'danger'. The overexpression of P-IPG during preeclampsia may be a

counter-regulatory mechanism to insulin resistance since these molecules minic insulin action. Besides, the lipidic form of P-IPG was reported to be similar to endotoxins, and may represent the 'danger signa'. We propose here a novel working theory on insulin resistance and

preeclampsia. .COPYRGT. 2007 Elsevier Ireland Ltd. All rights reserved.

L3 ANSWER 8 OF 22 MEDLINE on STN

ACCESSION NUMBER: 2006459225 MEDLINE DOCUMENT NUMBER: PubMed ID: 16871543

TITLE: Aspartyl-asparagyl beta hydroxylase over-

expression in human hepatoma is linked to

activation of insulin-like growth factor and notch

DUPLICATE 4

signaling mechanisms.

AUTHOR: Cantarini M Chiara; de la Monte Suzanne M; Pang Maoyin;
Tong Ming; D'Errico Antonia; Trevisani Franco; Wands Jack R

CORPORATE SOURCE: Department of Medicine, Rhode Island Hospital, Brown

Medical School, Providence, RI 02903, USA.

CONTRACT NUMBER: AA-02169 (United States NIAAA)
AA-11431 (United States NIAAA)

AA02666 (United States NIAAA) AA12908 (United States NIAAA) CA-35711 (United States NCI) P20RR15578 (United States NCRR)

SOURCE: Hepatology (Baltimore, Md.), (2006 Aug) Vol. 44, No. 2, pp.

446-57.

Journal code: 8302946. ISSN: 0270-9139.

PUB. COUNTRY: United States

DOCUMENT TYPE: (COMPARATIVE STUDY)

(IN VITRO)

Journal; Article; (JOURNAL ARTICLE)

(RESEARCH SUPPORT, N.I.H., EXTRAMURAL) LANGUAGE:

English FILE SEGMENT:

Priority Journals

ENTRY MONTH: 200608

ENTRY DATE: Entered STN: 3 Aug 2006

Last Updated on STN: 25 Aug 2006

Entered Medline: 24 Aug 2006 AB Aspartyl-(asparagyl)-beta-hydroxylase (AAH) is overexpressed in various

malignant neoplasms, including hepatocellular carcinomas (HCCs). The upstream regulation of AAH and its functional role in Notch-mediated signaling and motility in HCC cells was accessed. The mRNA transcript levels of AAH, insulin receptor substrate (IRS), insulin and insulin-like growth factor (IGF) receptors and polypeptides, Notch, Jagged, and HES were measured in 15 paired samples of HCC and adjacent HCC-free human liver biopsy specimens using real-time quantitative RT-PCR and Western blot analysis. Overexpression of AAH was detected in 87% of the HCC relative to the paired HCC-free liver tissue. IRS-1, IRS-2, and IRS-4 were each overexpressed in 80% of the HCC samples, and IGF-I and IGF-2 receptors were overexpressed in 40% and 100% of the HCCs, respectively. All HCC samples had relatively increased levels of Notch-1 and HES-1 gene expression. Overexpression of AAH led to increased levels of Notch, and co-immunoprecipitation experiments demonstrated a direct interaction between AAH and Notch as well as its ligand Jagged. conclusion, contributions to the malignant phenotype of HCC is due to

activation of IGF-I and IGF-II signaling that results in overexpression of both AAH and Notch. The functional role of AAH in relation to cell motility has been linked to increased activation of the Notch signaling pathway.

ANSWER 9 OF 22 MEDLINE on STN DUPLICATE 5 ACCESSION NUMBER: 2006282690

MEDLINE DOCUMENT NUMBER: PubMed ID: 16697063

TITLE: Trk receptor binding and neurotrophin/fibroblast growth factor (FGF)-dependent activation of the FGF receptor

substrate (FRS)-3.

AUTHOR: Dixon Scott J; MacDonald James I S; Robinson Kim N; Kubu

Christopher J: Meakin Susan O

CORPORATE SOURCE: Laboratory of Neural Signaling, Cell Biology Group, The John P. Robarts Research Institute, London, Ontario, Canada N6A 5K8.

Biochimica et biophysica acta, (2006 Apr) Vol. 1763, No. 4,

pp. 366-80. Electronic Publication: 2006-03-21.

Journal code: 0217513. ISSN: 0006-3002.

Netherlands

DOCUMENT TYPE:

SOURCE:

PUB. COUNTRY:

Journal; Article; (JOURNAL ARTICLE) (RESEARCH SUPPORT, NON-U.S. GOV'T)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200607

ENTRY DATE: Entered STN: 23 May 2006

Last Updated on STN: 18 Jul 2006 Entered Medline: 17 Jul 2006

AB We have investigated the signaling properties of the fibroblast growth factor (FGF) receptor substrate 3 (FRS3), also known as SNT-2 or FRS2beta, in neurotrophin-dependent differentiation in comparison with the related adapter FRS2 (SNT1 or FRS2alpha). We demonstrate that FRS3 binds all neurotrophin Trk receptor tyrosine kinases and becomes tyrosine

phosphorylated in response to NGF, BDNF, NT-3 and FGF stimulation in transfected cells and/or primary cortical neurons. Second, the signaling molecules Grb2 and Shp2 bind FRS3 at consensus sites that are highly conserved among FRS family members and that Shp2, in turn, becomes tyrosine phosphorylated. While FRS3 over-expression in PC12 cells neither increases NGF-induced neuritogenesis nor activation of Map kinase/AKT, comparable to previous reports on FRS2, over-expression of a chimeric adapter containing the PH/FTB domains of

the insulin receptor substrate (IRS) 2, in place of the PTB domain of FRS3 (IRS2-FRS3) supports insulin-dependent Map kinase activation and neurite outgrowth in PC12 cells. Collectively, these data demonstrate that FRS3 supports ligand-induced Map kinase activation and that the chimeric IRS2-FRS3 adapter is stimulating sufficient levels of activated ManK to support neurite outgrowth in PC12 cells.

L3 ANSWER 10 OF 22 CAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 2005:1262633 CAPLUS

DOCUMENT NUMBER: 144:17598

TITLE: Receptor binding specificity of herstatin and its use

in the treatment of refractory cancers

INVENTOR(S): Clinton, Gail; Shamieh, Lara

PATENT ASSIGNEE(S): Oregon Health and Science University, USA

SOURCE: PCT Int. Appl., 167 pp.
CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.		KIND DATE		APPLIC	CATION NO.		DATE		
WO 2005112969 WO 2005112969				WO 200)5-US14029		20050422		
							, CA, CH,		
					EC, EE, EC JP, KE, KO				
					4G, MK, Mi				
NI, N	O, NZ, OM	, PG, PH	, PL, P	T, RO, F	RU, SC, SI	, SE, SG	, SK, SL,		
		, TN, TR	, TT, T	Z, UA, U	JG, US, UZ	, VC, VN	, YU, ZA,		
ZM, 2		T.C. MIZ	M/7 N	3 CD C	T 07 T	TIC 7M	77 AM		
					SL, SZ, TZ BE, BG, CH				
					IT, LT, LU				
			, BJ, C	F, CG, C	CI, CM, GA	, GN, GQ	, GW, ML,		
	E, SN, TE								
CA 2564538					5-2564538				
US 20050272637									
EP 1796711							20050422		
R: AT, E	E, BG, CH	, CY, CZ	, DE, D	K, EE, E	ES, FI, FE	, GB, GR	, HU, IE,		
IS, I	T, LI, LI	, LU, MC	, NL, P	L, PT, F	RO, SE, SI	, SK, TR			
PRIORITY APPLN. INFO.: US 2004-564893P P 20040422							20040422		
US 2004-590473P P 20040723									
				WO 200	5-US14029	W	20050422		

AB The binding interactions between herstatin, or the intron 8-encoded receptor binding domain (RBD Int8) of the protein, and several receptors were analyzed. Herstatin and the intron 8-encoded domain bind with high affinity (e.g., nanomolar concns.) to all four of the ErbB receptors: EGFR (HER-1, erbB-1); HER-2 (erbB-2); HER-3 (erbB-3); and HER-4 (erbB-4), as well as to ? EGFR and the IGF-1 receptor, and such binding has utility to modulate signaling mediated by these receptors. Herstatin inhibited target receptor-mediated activation of intracellular signaling pathways (e.g., PJ3/Akt, IRS-2, etc., pathways) that

are important in cell survival, and further inhibited target receptor-mediated (e.g., IGF-1/IGF-1R-mediated) survival of cancer cells. Aspects of the present invention thus provide methods and compns. for the treatment of cancer, including cancer refractory to other erbB-based agents, and of other conditions and disorders characterized by target receptor expression, over-expression, signaling,

and/or aberrant signaling. Addnl. aspects provide methods of targeted drug delivery.

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD, ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 11 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN

ACCESSION NUMBER:

2005:247465 BIOSIS PREV200510038239

3

DOCUMENT NUMBER:

TITLE:

Hepatocyte CYP2E1 overexpression and steatohepatitis lead

to impaired hepatic insulin signaling.

AUTHOR(S):

Schattenberg, Jorn M.; Wang, Yongjun; Singh, Rajat; Rigoli, Raina M.; Czaja, Mark J. [Reprint Author]

CORPORATE SOURCE:

Albert Einstein Coll Med, Marion Bessin Liver Res Ctr, 1300

Morris Pk Ave, Bronx, NY 10461 USA czaja@aecom.vu.edu

SOURCE:

Journal of Biological Chemistry, (MAR 18 2005) Vol. 280,

No. 11, pp. 9887-9894.

CODEN: JBCHA3. ISSN: 0021-9258.

DOCUMENT TYPE: LANGUAGE:

Article English

ENTRY DATE:

Entered STN: 8 Jul 2005

Last Updated on STN: 8 Jul 2005

AR Insulin resistance and increased cytochrome P450 2E1 (CYP2E1) expression are both associated with and mechanistically implicated in the development of nonalcoholic fatty liver disease. Although currently viewed as distinct factors, insulin resistance and CYP2E1 expression may be interrelated through the ability of CYP2E1-induced oxidant stress to impair hepatic insulin signaling. To test this possibility, the effects of in vitro and in vivo CYP2El overexpression on hepatocyte insulin signaling were examined. CYP2E1 overexpression in a hepatocyte cell line decreased tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 in response to insulin. CYP2E1 overexpression was also associated with increased inhibitory serine 307 and 636/639 IRS-1 phosphorylation. In parallel, the effects of insulin on Akt activation, glycogen synthase kinase 3, and FoxOla phosphorylation, and glucose secretion were all significantly decreased in CYP2E1 over-expressing cells. This inhibition of insulin signaling by CYP2E1 overexpression was partially c-Jun N-terminal kinase dependent. In the methionine- and choline-deficient diet mouse model of steatohepatitis with CYP2E1 overexpression, insulin-induced IRS-1, IRS-2, and Akt phosphorylation were similarly decreased. These findings indicate that increased hepatocyte CYP2E1 expression and the presence of steatohepatitis result in the down-regulation of insulin signaling, potentially contributing to the insulin resistance associated with nonalcoholic fatty liver disease.

ANSWER 12 OF 22 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 2005199769 EMBASE

TITLE: The GLUTs family - Lessons from transgenic mice. AUTHOR: Hartil, K.; Weldon, R.H.; Seki, Y.; Charron, M.J.

(correspondence)

CORPORATE SOURCE:

Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States. charron@aecom.yu.edu

SOURCE: Current Medicinal Chemistry: Immunology, Endocrine and Metabolic Agents, (Apr 2005) Vol. 5, No. 2, pp. 189-206.

Refs: 144

ISSN: 1568-0134 CODEN: CMCIC8

COUNTRY: Netherlands

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 016 Cancer

018 Cardiovascular Diseases and Cardiovascular Surgery

022 Human Genetics

029 Clinical and Experimental Biochemistry

003 Endocrinology

005 General Pathology and Pathological Anatomy

LANGUAGE: English

SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 19 May 2005

Last Updated on STN: 19 May 2005

The glucose transporters (GLUTs) are currently a 13 member family of AB facilitative transmembrane proteins which transport glucose down its concentration gradient. The GLUTs have a tissue specific expression and regulation. Dysregulation of GLUTs have been implicated in the pathogenesis of a number of diseases including diabetes and cancer and are known to play an important role in the developing embryo. In addition, roles for GLUTs in cardiac function and embryonic development have been identified and will be discussed in this review. The ability to ablate or over-express GLUTs has advanced our understanding of the role these transporters play in the maintenance of normal glucose homeostasis and the pathogenesis of diabetes. The development of Cre-LoxP technology coupled with the existence of tissue specific promoters allows investigators to manipulate gene expression both globally and in a tissue specific manner. The major GLUTs which have been investigated using transgenic technology are GLUT1, GLUT4 and GLUT2. Overexpression of GLUT4 and GLUT1 results in increased glucose uptake and metabolism. However, only GLUT4 overexpression protects against the development of insulin resistance in transgenic mice. Genetic ablation of GLUT4 and GLUT2 results in impaired insulin tolerance and defects in both lipid and glucose metabolism. This review will present various transgenic models of GLUT modification and discuss what has been learned from these models about the role that GLUTs play in glucose homeostasis, insulin action and development. . COPYRGT. 2005 Bentham Science Publishers Ltd.

ANSWER 13 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN

ACCESSION NUMBER: 2005:299708 BIOSIS DOCUMENT NUMBER: PREV200510093733

TITLE: Regulation of IGF-I signalling in cardiomyocytes in

adhesion.

O'Donovan, H. C. [Reprint Author]; O'Connor, R. AUTHOR(S): CORPORATE SOURCE: BioSci Inst, Cork, Ireland

Molecular Biology of the Cell, (NOV 2004) Vol. 15, No. SOURCE:

Suppl. S, pp. 14A.

Meeting Info.: 44th Annual Meeting of the

American-Society-for-Cell-Biology. Washington, DC, USA.

December 04 -08, 2004. Amer Soc Cell Biol. CODEN: MBCEEV. ISSN: 1059-1524.

DOCUMENT TYPE: Conference; (Meeting)

Conference; Abstract; (Meeting Abstract) LANGUAGE:

English ENTRY DATE: Entered STN: 15 Aug 2005

Last Updated on STN: 15 Aug 2005

L3 ANSWER 14 OF 22 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN DUPLICATE 6

ACCESSION NUMBER: 2003239564 EMBASE

Retinoic acid-induced growth arrest of MCF-7 cells involves TITLE:

the selective regulation of the IRS-1/PI 3-kinase/AKT

Del Rincon, Sonia V.; Rousseau, Caroline; Samanta, Ratna; AUTHOR:

Miller Jr., Wilson H. (correspondence)

Lady Davis Inst. for Med. Research, Sir Mortimer B. Davis CORPORATE SOURCE: Jewish Gen. H., Departments of Oncology and Medicine,

Montreal, Oue., Canada. wmiller@ldi.jgh.mcgill.ca

Miller Jr., Wilson H. (correspondence) AUTHOR .

CORPORATE SOURCE: Lady Davis Institute, 3755 Cote Ste-Catherine Rd.,

Montreal, Que. H3T 1E2, Canada. wmiller@ldi.jgh.mcgill.ca

SOURCE: Oncogene, (29 May 2003) Vol. 22, No. 22, pp. 3353-3360. Refs: 74

ISSN: 0950-9232 CODEN: ONCNES

COUNTRY: United Kingdom

DOCUMENT TYPE: Journal; Article FILE SEGMENT:

016 Cancer

0.30 Clinical and Experimental Pharmacology

037 Drug Literature Index

LANGUAGE: English

SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 3 Jul 2003 Last Updated on STN: 3 Jul 2003

In the MCF-7 breast cancer cell line, insulin-like growth factors (IGFs) are known to elicit antiproliferative actions via the insulin receptor substrate-1 (IRS-1)/PI 3-kinase/AKT pathway. All-trans retinoic acid (RA) is a potent inhibitor of MCF-7 cell proliferation, but the mechanism by

which growth regulation is achieved remains unclear. We investigated the effects of RA on the regulation of the IGF-IR and its key signaling

elements: IRS-1, IRS-2, and SHC. Treatment of MCF-7

cells with RA caused a significant reduction in IRS-1 protein and tyrosine

phosphorylation levels at a concentration and time consistent with

RA-mediated growth inhibition. IRS-1 regulation is selective, as RA did not influence IRS-2 or SHC levels. Downstream

signaling events were also selectively reduced, as RA abrogated

IGF-I-stimulated AKT activation but did not alter erk1/2 activation. To confirm the importance of IRS-1 regulation by RA, we examined the response to RA in MCF-7 cells over-expressing IGF-IR and IRS-1. RA resistance was observed in MCF-7 cells overexpressing IRS-1 but not IGF-IR. This suggests that RA-mediated growth inhibition requires the selective downregulation of IRS-1 and AKT. Therapeutic agents targeting

the IRS-1/PI 3-kinase/AKT pathway may enhance the cytostatic effects of RA in breast cancer, since overexpression of IRS-1 and AKT have been reported in primary breast tumors.

ANSWER 15 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on SIN

ACCESSION NUMBER: 2004:131927 BIOSIS DOCUMENT NUMBER: PREV200400134137

TITLE: Genetic alterations and aberrant expression of genes

related to the phosphatidyl-inositol-3'-kinase/protein

kinase B (Akt) signal transduction pathway in

glioblastomas.

AUTHOR(S): Knobbe, Christiane B.; Reifenberger, Guido [Reprint Author] CORPORATE SOURCE: Department of Neuropathology, Heinrich-Heine-University,

Moorenstrasse 5, D-40225, Duesseldorf, Germany

reifenberger@med.uni-duesseldorf.de

SOURCE: Brain Pathology, (October 2003) Vol. 13, No. 4, pp.

507-518. print.

ISSN: 1015-6305 (ISSN print).

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 10 Mar 2004

Last Updated on STN: 10 Mar 2004

Glioblastomas frequently carry mutations in the PTEN tumor suppressor gene on 10q23.3. The tumor suppressor properties of Pten are closely related to its inhibitory effect on the phosphatidylinositol-3'-kinase (Pi3k)-dependent activation of protein kinase B (Akt) signalling. Here, we report on the analysis of 17 genes related to the Pi3kIAkt signalling pathway for genetic alteration and aberrant expression in a series of 103 glioblastomas. Mutation, homozygous deletion or loss of expression of PTEN was detected in 32% of the tumors. In contrast, we did not find any aberrations in the inositol polyphosphate phosphatase like-1 gene (INPPL1), whose gene product may also counteract Pi3k-dependent Akt activation. Analysis of genes encoding proteins that may activate the pathway upstream of Pi3k revealed variable fractions of tumors with EGFR amplification (31%), PDGFRA amplification (8%), and IRS2 amplification (2%). The protein tyrosine kinase 2 (PTK2/FAK1) gene was neither amplified nor over-expressed at the mRNA level. Investigation of three genes encoding catalytic subunits of Pi3k (PIK3CA, PIK3CD, and PIK3C2B) revealed amplification of PIK3C2B (1932) in 6 tumors (6%). Overexpression of PIK3C2B mRNA was detected in 4 of these cases. PIK3CD (1p36.2) and PIK3CA (3q26.3) were not amplified but PIK3CD mRNA was overexpressed in 6 tumors (6%). Amplification and overexpression of AKT1 was detected in a single case of gliosarcoma. The IRS1, PIK3R1, PIK3R2, AKT2, AKT3, FRAP1, and RPS6KB1 genes were neither amplified nor overexpressed in any of the tumors. Taken together, our data indicate that different genes related to the Pi3k/Akt signalling pathway may be aberrant in glioblastomas.

ANSWER 16 OF 22 CAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 2003:453249 CAPLUS

DOCUMENT NUMBER: 139:191809

AUTHOR(S):

TITLE: Transgenic mice with dominant negative PKC-theta in skeletal muscle: A new model of insulin resistance and

> obesity Serra, C.; Federici, M.; Buongiorno, A.; Senni, M. I.;

Morelli, S.; Segratella, E.; Pascuccio, M.; Tiveron, C.; Mattei, E.; Tatangelo, L.; Lauro, R.; Molinaro,

M.; Giaccari, A.; Bouche, Marina

CORPORATE SOURCE: Department of Histology and Medical Embryology,

University of Rome "La Sapienza", Rome, Italy SOURCE: Journal of Cellular Physiology (2003), 196(1), 89-97

CODEN: JCLLAX: ISSN: 0021-9541

PUBLISHER: Wiley-Liss, Inc.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Protein kinase C θ (PKC-θ) is the PKC isoform predominantly expressed in skeletal muscle, and it is supposed to mediate many signals necessary for muscle histogenesis and homeostasis, such as TGFB. nerve-dependent signals and insulin. To study the role of PKC- θ in these mechanisms we generated transgenic mice expressing a "kinase dead" mutant form of PKC- θ (PKC- θ K/R), working as "dominant neg.," specifically in skeletal muscle. These mice are viable and fertile, however, by the 6-7 mo of age, they gain weight, mainly due to visceral fat deposition. Before the onset of obesity (4 mo of age), they already show increased fasting and fed insulin levels and reduced insulin-sensitivity, as measured by ipITT, but normal glucose tolerance, as measured by ipGTT. After the 6-7 mo of age, transgenic mice develop hyperinsulinemia in the fasting and fed state. The ipGTT revealed in the transgenic mice both hyperglycemia and hyperinsulinemia. At the mol. level, impaired activation of the IR/IRS/PI3K pathway and a significant decrease both in the levels and in insulin-stimulated activation of the serine/threonine

kinase Akt were observed Taken together these data demonstrate that

over-expression of dominant neg. PKC- θ in skeletal

muscle causes obesity associated to insulin resistance, as demonstrated by defective receptor and post-preceptor activation of signaling cascade.

THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 3.4 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 17 OF 22 CAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 2001:129407 CAPLUS

DOCUMENT NUMBER: 134:261420

TITLE: Specific inhibition by hGRB10ζ of insulin-induced glycogen synthase activation: evidence for a novel

signaling pathway

Wu, J.; Nantel, A.; Bergeron, J. J. M.; Thomas, D. Y.; Posner, B. I.

Mounier, C.; Lavoie, L.; Dumas, V.; Mohammad-Ali, K.;

CORPORATE SOURCE:

The Polypeptide Hormone Laboratory, McGill University, Montreal, QC, H3A 2B2, Can.

SOURCE:

Molecular and Cellular Endocrinology (2001), 173(1-2), 15-27

CODEN: MCEND6; ISSN: 0303-7207 Elsevier Science Ireland Ltd.

PUBLISHER: DOCUMENT TYPE: Journal

AUTHOR(S):

LANGUAGE: English

Grb10 is a member of a family of adapter proteins that binds to

tyrosine-phosphorylated receptors including the insulin receptor kinase (IRK). In this study recombinant adenovirus was used to over-

express hGrb10ζ, a new Grb10 isoform, in primary rat

hepatocytes and the consequences for insulin signaling were evaluated. Over-expression of hGrb105 resulted in 50%

inhibition of insulin-stimulated IRK autophosphorylation and activation.

Anal. of downstream events showed that hGrb104 over-

expression specifically inhibits insulin-stimulated glycogen synthase (GS) activity and glycogen synthesis without affecting

insulin-induced IRS1/2 phosphorylation, PI3-kinase activation, insulin

like growth factor binding protein-1 (IGFBP-1) mRNA expression, and ERK1/2 MAP kinase activity. The classical pathway from PI3-kinase through Akt-PKB/GSK-3 leading to GS activation by insulin was also not affected by

hGrb10ζ over-expression. These results indicate

that hGrb10% inhibits a novel and presently unidentified insulin

signaling pathway leading to GS activation in liver.

REFERENCE COUNT: 47 THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS RECORD, ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 18 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on STN

ACCESSION NUMBER: 2001:250874 BIOSIS

DOCUMENT NUMBER: PREV200100250874 TITLE:

Serine residues 1177/78/82 of the insulin receptor are

required for substrate phosphorylation but not

autophosphorylation.

Bossenmaier, Birgit; Strack, Volker; Stoyanov, Borislav; AUTHOR(S): Kruetzfeldt, Jan; Beck, Alexander; Lehmann, Rainer;

Kellerer, Monika; Klein, Harald; Ullrich, Axel; Lammers,

Reiner; Haering, Hans-Ulrich [Reprint author] CORPORATE SOURCE: Med. Klinik u. Poliklinik, Innere Med. IV,

Eberhard-Karls-Universitaet Tuebingen, Otfried-Mueller-Str.

10, D-72076, Tuebingen, Germany hans-ulrich.haering@med.uni-tuebingen.de

SOURCE: Diabetes, (June, 2000) Vol. 49, No. 6, pp. 889-895. print.

CODEN: DIAEAZ. ISSN: 0012-1797.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 23 May 2001

Last Updated on STN: 19 Feb 2002 Serine residues of the human insulin receptor (HIR) may be phosphorylated

and negatively regulate the insulin signal. We studied the impact of 16 serine residues in HIR by mutation to alanine and co-overexpression in human embryonic kidney (HEK) 293 cells together with the docking proteins insulin receptor substrate (IRS)-1, IRS-2, or (SHC) Src homologous and collagen-like. As a control, IRS-1 was also cotransfected with an HIR with a juxtamembrane deletion (HIRDELTAJM) and therefore not containing the domain required for interaction with IRS-1. Coexpression of HIR with IRS-1, IRS-2, and SHC strongly enhanced tyrosine phosphorylation of these proteins. A similar increase in tyrosine phosphorylation was observed in cells overexpressing IRS-1, IRS-2, or SHC together with all HIR mutants except HIRDELTAJM and a mutant carrying exchanges of serines 1177, 1178, and 1182 to alanine (HIR1177/78/82), although this mutant showed normal autophosphorylation. Analysis of total cell lysates with anti-phosphotyrosine antibodies showed that in addition to the over-expressed substrates, other cellular proteins displayed reduced levels of tyrosine phosphorylation in these cells. To study consequences for phosphatidylinositol 3-kinase (PI 3-kinase) activation, we established stable NIH3T3 fibroblast cell lines overexpressing wild-type HIR, HIR1177/78/82, and other HIR mutants as the control. Again, HIR1177/78/82 showed normal autophosphorylation but showed a clear decrease in tyrosine phosphorylation of endogenous IRS-1 and activation of PI 3-kinase. This decrease in kinase activity also occurred in an in vitro kinase assay towards recombinant IRS-1. Finally, we performed a separation of the phosphopeptides by high-performance liquid chromatography and could not detect any differences in the profiles of HIR and HIR1177/78/82. In conclusion, we have defined a region in HIR that is important for substrate phosphorylation but not autophosphorylation. Therefore, this mutant may provide new insights into the mechanism of kinase activation and substrate phosphorylation.

1.3 ANSWER 19 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on

AUTHOR(S):

SOURCE:

ACCESSION NUMBER: 2000:336043 BIOSIS

DOCUMENT NUMBER: PREV200000336043

TITLE: The juxtamembrane but not the carboxyl-terminal domain of the insulin receptor mediates insulin's metabolic functions

> in primary adipocytes and cultured hepatoma cells. Paz, K.; Boura-Halfon, S.; Wyatt, L. S.; LeRoith, D.; Zick,

Y. [Reprint author]

CORPORATE SOURCE: Department of Molecular Cell Biology, Weizmann Institute of

Science, Rehovot, 76100, Israel

Journal of Molecular Endocrinology, (June, 2000) Vol. 24,

No. 3, pp. 419-432. print.

CODEN: JMLEEI. ISSN: 0952-5041.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 10 Aug 2000

Last Updated on STN: 7 Jan 2002

Insulin-stimulated signaling pathways are activated upon interactions between the intracellular domains of the receptor and its downstream effectors. Insulin receptor substrate proteins (IRS-1, -2, -3 and -4) are the best-studied substrates for the insulin receptor kinase (IRK). We have previously shown that IRS-1 and IRS-2 interact with the juxtamembrane (JM) but not with the carboxyl-terminal (CT) region of the insulin receptor (IR) in vitro. However, the precise role of these IR regions in mediating insulin's bioeffects is still unresolved. In the present work we made use of vaccinia virus as a vector for quantitative

expression of the JM and CT domains within the cytoplasm of physiologically insulin-responsive primary rat adipocytes and rat hepatoma Fao cells. We could demonstrate that overexpression of either the JM or the CT domains did not inhibit either insulin binding or insulin-stimulated receptor autophosphorylation. In contrast, metabolic effects such as insulin-induced glucose utilization in adipocytes, and insulin-induced amino acid utilization in Fao hepatoma cells were inhibited (70-80%) in cells over-expressing the JM but not the CT domains of IR. The inhibitory effects of the overexpressed JM domain were accompanied by inhibition of insulin-stimulated IRS-1 phosphorylation, decreased IRS-1-associated PI3K activity, and decreased phosphorylation of the downstream effectors of PI3K, PKB and p70 S6K. Insulin-stimulated thymidine incorporation in Fao cells was also inhibited (40%) upon overexpression of the JM but not the CT region of IR. Our findings suggest that interactions between the JM region of IR and its downstream effectors are obligatory for insulin-stimulated metabolic functions in physiologically relevant insulin responsive cells. They also rule out the possibility that interaction of proteins, including PI3K, with the CT domain can provide an alternative pathway.

ANSWER 20 OF 22 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN

ACCESSION NUMBER: 2000326752 EMBASE

TITLE: The functional significance of Shc in insulin signaling as

a substrate of the insulin receptor.

Sasaoka, T., Dr. (correspondence); Kobayashi, M. Dept. of Clinical Pharmacology, Toyama Med. and Pharmaceut. AUTHOR: CORPORATE SOURCE:

Univ., 2630 Sugitani, Toyama 930-0194, Japan.

SOURCE: Endocrine Journal, (2000) Vol. 47, No. 4, pp. 373-381.

Refs: 37

ISSN: 0918-8959 CODEN: ENJOEO

COUNTRY: Japan

DOCUMENT TYPE: Journal; General Review; (Review)

FILE SEGMENT: 029 Clinical and Experimental Biochemistry

003 Endocrinology

LANGUAGE: English

SUMMARY LANGUAGE: English

ENTRY DATE: Entered STN: 5 Oct 2000

Last Updated on STN: 5 Oct 2000

Shc is composed of 46-, 52-, 66-kDa isoforms which arise from alternative splicing of the primary Shc transcript. Upon insulin stimulation, the activated insulin receptor interacts with Shc. The NPXY motif around 960-Tyr residue of the insulin receptor binds to the N-terminal PTB domain of Shc. Subsequently, the 52-kDa, and, to a lesser extent, the 46-kDa Shc isoforms are tyrosine phosphorylated. Although Tyr-239/240 and Tyr-317 residues are the possible candidates of Shc phosphorylation sites, insulin predominantly phosphorylates the Shc Tyr-317 residue. Phosphorylated Shc binds to Grb2 which forms a complex with Sos quanine nucleotide exchange factor for p21ras. Both tyrosine-phosphorylated Shc and IRS can bind to Grb2, but Shc.ovrhdot.Grb2.ovrhdot.Sos is the predominant coupling pathway from the activated insulin receptor to p21ras. Along this line, microinjection of anti-Shc antibody inhibited insulin-induced mitogenesis, and the quanine nucleotide exchange activity for p21ras is tightly associated with Shc, but not with IRS. On the other hand, insulin only transiently activates p21ras for the strict hormonal regulation. For this regulation, longer time of insulin treatment deactivates p21ras by dissociation of Sos from the Shc.ovrhdot.Grb2.ovrhdot.Sos complex while Shc is still complexed with Grb2. Thus, Shc plays a critical role in insulin-induced mitogenesis through regulation of p21ras activity. As regards the impact of Shc on the metabolic aspects, Shc is shown to compete with IRS as the substrate of the insulin receptor. Thus, IRS mediated downstream signaling leading to glycogen synthesis was decreased

by over-expression of Shc. Taken together, Shc appears to play an important role in insulin induced mitogenesis, whereas Shc may not be required for regulation of the metabolic aspects of insulin.

ANSWER 21 OF 22 BIOSIS COPYRIGHT (c) 2009 The Thomson Corporation on DUPLICATE 7

ACCESSION NUMBER: 1999:442983 BIOSIS DOCUMENT NUMBER: PREV199900442983

TITLE: The carboxyl terminal extension of the Drosophila insulin

receptor homologue binds IRS-1 and influences cell

survival. AUTHOR(S): Marin-Hincapie, Mireya; Garofalo, Robert S. [Reprint

author]

CORPORATE SOURCE: Pfizer Inc., Groton, CT, 06340-8002, USA

SOURCE: Journal of Biological Chemistry, (Aug. 27, 1999) Vol. 274,

No. 35, pp. 24987-24994. print. CODEN: JBCHA3. ISSN: 0021-9258.

DOCUMENT TYPE: Article LANGUAGE: English

ENTRY DATE: Entered STN: 26 Oct 1999

Last Updated on STN: 26 Oct 1999

The Drosophila insulin receptor (INR) homolog includes an extension of approximately 400 amino acids at the carboxyl-terminal end of its beta subunit containing several tyrosine-based motifs known to mediate interactions with signaling proteins. In order to explore the role of this extension in INR function, mammalian expression vectors encoding either the complete INR beta subunit (beta-Myc) or the INR beta subunit without the carboxyl-terminal extension (betaDELTA) were constructed, and the membrane-bound beta subunits were expressed in 293 and Madin-Darby canine kidney cells in the absence of the ligand-binding alpha subunits. beta-Myc and betaDELTA proteins were constitutively active tyrosine kinases of 180 and 102 kDa, respectively. INR beta-Myc co-immunoprecipitated a phosphoprotein of 170 kDa identified as insulin receptor substrate-1 (IRS-1), whereas INR betaDELTA did not, suggesting that the site of interaction was within the carboxyl-terminal extension. IRS-1 was phosphorylated on tyrosine to a much greater extent in cells expressing INR beta-Myc than in parental or INR betaDELTA cells. Despite this, a variety of PTB or SH2 domain-containing signaling proteins, including IRS-2, mSos-1, Shc, p85 subunit of

phosphatidylinositol 3-kinase, SHP-2, Raf-1, and JAK2, were not associated with the INR beta-MyccotdotIRS-1 complex. Over-

expression of INR beta-Mvc and betaDELTA kinases conferred an equivalent increase in cell proliferation in both 293 and Madin-Darby canine kidney cells, indicating that this growth response is independent of the carboxyl-terminal extension. However, INR beta-Myc-expressing cells exhibited enhanced survival relative to parental and betaDELTA cells, suggesting that the carboxyl-terminal extension, through its interaction with IRS-1, plays a role in the regulation of cell death.

ANSWER 22 OF 22 CAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 1997:751426 CAPLUS DOCUMENT NUMBER: 128:57610

ORIGINAL REFERENCE NO.: 128:11142h,11143a

TITLE: Insulin receptor substrate

-2 (IRS-2) can mediate

the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells AUTHOR(S): Zhou, Lixin; Chen, Hui; Lin, Chung H.; Cong, Li-Na; Mcgibbon, Margaret A.; Sciacchitano, Salvatore;

Lesniak, Maxine A.; Quon, Michael J.; Taylor, Simeon

Ι.

CORPORATE SOURCE: Diabetes Branch, NIDDK, National Institutes of Health,

Bethesda, MD, 20892, USA

SOURCE: Journal of Biological Chemistry (1997), 272(47),

29829-29833

CODEN: JBCHA3: ISSN: 0021-9258

PUBLISHER: American Society for Biochemistry and Molecular

Biology

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Insulin receptor substrates-1 and -2 (IRS-1 and -2) are important

substrates of the insulin receptor tyrosine kinase. Previous studies have focused upon the role of IRS-1 in mediating the actions of insulin. In

the present study, we demonstrate that IRS-2 can

mediate translocation of the insulin responsive glucose transporter GLUT4 in a physiol. relevant target cell for insulin action. Co-immunopptn. expts. performed on cell lysates derived from freshly isolated rat adapose cells incubated in the presence or absence of insulin indicated that twice

as much phosphatidylinositol 3-kinase was associated with endogenous IRS-1 as with IRS-2 after insulin stimulation. When rat adipose cells in primary culture were transfected with expression vectors

for IRS-1 or IRS-2, we observed 40-fold overexpression of human IRS-1 or murine IRS-2. In

addition, anti-phosphotyrosine immunoblotting expts. confirmed that the recombinant substrates were phosphorylated in response to insulin

stimulation. To examine the role of IRS-2 in

insulin-stimulated translocation of GLUT4, we studied the effects of overexpression of IRS-1 and -2 on translocation of a co-transfected epitope-tagged GLUT4 (GLUT4-HBA). Overexpression of IRS-1 or IRS

-2 in adipose cells resulted in a significant increase in the basal level of cell surface GLUT4 (in the absence of insulin).

Interestingly, at maximally effective concns. of insulin (60 nM), the level of cell surface GLUT4 in cells overexpressing IRS-1 or -2 significantly exceeded the maximal recruitment observed in the control cells

(160 and 135% of control, resp.; p < 0.003). Our data directly demonstrate that IRS-2, like IRS-1, is capable of

participating in insulin signal transduction pathways leading to the recruitment of GLUT4. Thus, IRS-2 may provide an

alternative pathway for critical metabolic actions of insulin.

REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> FIL STNGUIDE

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 78.99 79.21 TOTAL DISCOUNT AMOUNTS (FOR OUALIFYING ACCOUNTS) SINCE FILE ENTRY SESSION CA SUBSCRIBER PRICE -3.28 -3.28

FILE 'STNGUIDE' ENTERED AT 13:36:04 ON 10 FEB 2009 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Feb 6, 2009 (20090206/UP).

=> logout

LOGOUT IS NOT A RECOGNIZED COMMAND

The previous command name entered was not recognized by the system. For a list of commands available to you in the current file, enter

"HELP COMMANDS" at an arrow prompt (=>).

=> logoff

ALL L# QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF

LOGOFF? (Y)/N/HOLD:y
COST IN U.S. DOLLARS
SINCE FILE TOTAL
ENTRY SESSION

FULL ESTIMATED COST SESSION 1.05 80.26

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL ENTRY SESSION CA SUBSCRIBER PRICE 0.0.0 -3.28

STN INTERNATIONAL LOGOFF AT 13:45:03 ON 10 FEB 2009