

Define by building it up from simpler fors.

$$d_{\beta}(t) = \begin{cases} 0 & \text{if } |t| > \beta \\ \frac{1}{2\beta} & \text{if } |t| < \beta \end{cases}$$

We take
$$\delta(t) = \lim_{\beta \to 0} d_{\beta}(t)$$

blue:
$$d_{1/3}(t)$$
 To tal area under brown: $d_{1/3}(t)$ $d_{p}(t) = 1$ red: $d_{0,1}(t)$

Properties

reperties
$$S(t) = \begin{cases} 0 & \text{for all } t \neq 0 \\ +\infty & \text{for } t = 0 \end{cases}$$
Not really a fine called a "generalized fine"

· Like each of the dp(t) used to build $\delta(t)$ the area under 5 is 1. That is

$$\frac{1}{-} = \int_{-\infty}^{\infty} S(t) dt = \int_{-\varepsilon}^{\varepsilon} S(t) dt$$

· Note if we integrate up to 'c'

$$\int_{-\infty}^{c} \delta(t) dt = \begin{cases} 0, & c < 0 \\ 1, & c > 0 \end{cases}$$

So in some generalized sense $\frac{d}{dt}U(t) = \delta(t)$ Zero etswhere

$$\frac{1}{4}U(t) = \delta(t)$$

• Sifting property
$$\int_{-\infty}^{\infty} f(t) S(t-c) dt = f(c)$$

and, so by letting $C \rightarrow 0^+$, get $\{\{\{\{t\}\}\}=1\}$

An exemple of solving a DE containing 5:

$$y'' + 2y' + 2y = \delta(t-\pi), \quad y(0) = 1, y'(0) = 0.$$

Strategy: Solve 2 related problems

$$y'' + 2y' + 2y = 0$$
, $y(0) = 1$, $y'(0) = 0$

Dur orig.

Dur orig.

Thomag. version
$$w/$$
 attached TCs

problem

is solved

by the sum

of solves.

To nonhome, $(girm)$ DE $w/$ zeroed TCs

to 0 and

 $y'' + 2y' + 2y = \delta(t-\pi)$, $y(0) = 0$, $y'(0) = 0$.

Affaching (1), seems Ch. 4 methods are usable.

$$y'' + 2y' + 2y = 0$$
 $Char.egn,$ $Char.e$

roots
$$r = \frac{-2}{2(1)} \pm \frac{1}{2(1)} \sqrt{2^2 - 4(1)(2)} = -1 \pm i$$

are nonred
$$\omega/\alpha = -1$$
, $\beta = 1$

general solute DE in O is linear combs. of these 7 (t) = c, e tost + c, e sint $y'(t) = -c_1e^{-t} cost - c_1e^{-t} sint - c_2e^{-t} sint + c_3e^{-t} cost$ Applying ICs: 1 = y(0) = c e coso + c e sin 0 = c $0 = y'(0) = -c_1 \cdot 1 - c_1 \cdot 0 - c_2 \cdot 0 + c_2 \cdot 1 = c_2 - c_1$ So $y(t) = e^{-t}\cos t + e^{-t}\sin t$ solves ①. Attack (2) using L.T.: take L.T. of both sides of DE $\frac{1}{2}\left\{y'' + 2y' + 2y'\right\} = \frac{1}{2}\left\{\delta(t-\pi)\right\}$ \$\frac{1}{3}\frac{1}{3} + 2 \frac{1}{3}\frac{1}{3} + 2 \frac{1}{3}\frac{1}{3} = e^{-\textit{T}} $\sum_{A} \frac{1}{Y - Aylor - ylor)} + 2 \left[AY - ylor \right] + 2Y = e^{-\pi A}$ $\left(\lambda^2 + 2\lambda + 2 \right) Y = e^{-\pi A}$ $\Rightarrow \forall (\lambda) = \frac{1}{\Lambda^2 + 2\lambda + 2} \cdot e^{-\pi \lambda}$ New y2(t) = 1 { this Use entry $2\{U(t-c)\} = e^{-c} \cdot 1\{f(t)\}$ which explains how exponential appears on A-side, and

how to Seal with it.

Task: to find
$$\int_{a^2+2a+2}^{b} \left\{\frac{1}{a^2+2a+2}\right\}$$

rests of $\frac{3}{4}+2a+2$ nonreal so complete the square

$$\frac{1}{a^2+2a+2} = \frac{1}{a^2+2a+1+1} = \frac{1}{(a+1)^2+1} = \frac{1}{[a-(-1)]^2+1}$$

Here entry in table

$$\frac{6}{(a-a)^2+b^2} = comes \text{ from } e^{at}\sin(bt)$$

So
$$\frac{1}{a^2+2a+2} = \frac{1}{[a-(-1)]^2+(1)^2} = comes \text{ from } e^{-t}\sin(bt)$$

$$\int_{a}^{b} \left\{\frac{1}{a^2+2a+2}\right\} = e^{-t}\sin t$$

$$\int_{a}^{b} \left\{\frac{1}{a^2+2a+2}\right\} = \frac{1}{a^2+2a+2} \cdot e^{-Ta} = \frac{1}{a^2+2a+2} \cdot$$

 $y'' + by' + cy = \delta(t)$, y(0) = 0, y'(0) = 0 — like a blow to a system

have the some Solution.