

시계열 분석 기법과 응용

Week 5. ARCH/GARCH 모형 5-3. ARCH/GARCH 모형의 추정

> 전치혁 교수 (포항공과대학교 산업경영공학과)

ARCH 모형의 추정

• 최우추정법사용

$$u_t | u_{t-1}, ... \sim Nor(0, \sigma_t^2)$$

• 로그우도함수 (평균방정식이 회귀모형인 경우)

$$\ln L(\theta|y_1, ..., y_n) = -\frac{1}{2} \sum_{t=1}^n \left[\log(2\pi) + \log(\sigma_t^2) + \frac{u_t^2}{\sigma_t^2} \right]$$

$$u_t = y_t - x_t \beta$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2$$

• ARCH 시차 q는 여러가지를 시도한 후 정보기준 (information criteria)으로 결정

ARCH 모형의 추정

예: AR(1)-ARCH(q)모형의 추정

- 평균방정식: $Y_t = c + \phi Y_{t-1} + u_t$
- 분산방정식: $\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2$

(분석 결과)

- SC 및 HQ 정보기준은 시차 3에서 최소가 되고 AIC 는 시차 4에서 최소이므로, 시차 3 또는 4인 모형이 적절하다고 볼 수 있다.
- 다음에서 언급할 LM 검정을 통한 잔차 진단을 사용하는 것이 바람직할 것이다.

	ARCH(1)	ARCH(2)	ARCH(3)	ARCH(4)
с ф	1.121 (4.9) 0.113 (2.8)	1.181 (5.9) 0.115 (3.1)	1.196 (6.1) 0.110 (3.0)	1.198 (6.1) 0.102 (2.8)
$\begin{array}{ c c } & \alpha_0 \\ & \alpha_1 \end{array}$	36.84 (12.2)	30.73(10.5)	27.26 (9.4)	24.84 (7.8)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.175 (3.4)	0.156 (2.8) 0.157 (2.3)	0.155 (3.0) 0.123 (1.9)	0.134 (2.6) 0.112 (1.5)
α_4			0.118 (2.4)	0.100 (2.1) 0.060 (1.3)
Log L	-2929.19	-2916.92	-2912.09	
SC HQ	6.635 6.622	6.615	6.612	-2909.10 6.621
AIC	6.614	6.599 6.588	6.592 6.580	6.594 6.577

*괄호안 숫자는 t값임

ARCH 효과 검정

LM (Lagrange multiplier) 검정

- Breusch-Pagan (1979) 제안
- 잔차 진단에 사용토록 Engle (1982) 추천
- 가설: H_0 : $\alpha_1 = \cdots = \alpha_q = 0$
- 검정 절차
 - 1. 모형 추정으로 부터 잔차 u_t 를 얻는다.
 - 2. 잔차제곱을 사용하여 다음 회귀모형의 R^2 을 산출한다.

$$u_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \varepsilon_t$$

- 3. 검정통계량 $LM = nR^2$ 산출
- 4. $LM > \chi^2(q, \alpha)$ 이면 가설 기각

ARCH 효과 검정

(예) 다음은 어떤 평균 방정식 추정후의 잔차에 대한 ARCH 효과를 검정한 결과 (Eviews)이다.

Heteroscedasticity Test: ARCH

F-statistic 122.992 Prob. F(4,155) 0.0000 **Obs*R-squared (LM)121.667** Prob. Chi-Square(4) 0.0000

Test Equation:

Dependent Variable: RESID^2

Included observation: 160 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	6.23E-24	2.91E-24	2.1416	0.0338
RESID^2(-1)	0.99761	0.08049	12.3949	0.0000
RESID^2(-2)	-0.24527	0.11185	-2.1929	0.0298
RESID^2(-3)	0.22998	0.11181	2.0570	0.0414
RESID^2(-4)	-0.12037	0.08092	-1.4875	0.1389

분석결과: 잔차에 ARCH효과가 남아 있으므로 잔차에 대한 ARCH모형을 추가하여 다시 분석해야 함.

GARCH 모형의 추정

• 최우추정법사용

$$u_t|u_{t-1},...\sim Nor(0,\sigma_t^2)$$

• 로그우도함수 (평균방정식이 회귀모형인 경우)

$$\ln L(\theta|y_1, ..., y_n) = -\frac{1}{2} \sum_{t=1}^n \left[\log(2\pi) + \log(\sigma_t^2) + \frac{u_t^2}{\sigma_t^2} \right]$$

$$u_t = y_t - x_t \beta$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \dots + \alpha_q u_{t-q}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_p \sigma_{t-p}^2$$

GARCH 모형의 추정

(예) 다음은 2017.7 ~ 2018.6 간의 kospi200의 수익률에 대한 GARCH(1,1) 모형의 추정결과이다.

- ARCH항은 유의하지 않으나 GARCH항은 유의하다.

$$\alpha_1 + \beta_1 = 0.9654$$

Dependent Variable: RETURN

Method: ML ARCH-Normal distribution (BFGS / Marquardt steps)

Date: 07/24/19 Time: 15:59

Sample (adjusted): 7/04/2017 6/29/2018 Included observations: 238 after adjustments Convergence achieved after 37 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-9.63E-05	0.000551	-0.174835	0.8612
Variance Equation				
C RESID(-1)^2 GARCH(-1)	2.26E-06 0.023914 0.941468	1.12E-06 0.020650 0.030706	2.010652 1.158062 30.66095	0.0444 0.2468 0.0000
R-squared Adjusted R-squared	-0.000011 -0.000011			-0.000122 0.007719

GARCH 모형의 추정

(예) 다음은 어떤 자산의 수익률 (RET)을 모 형화하는데 GARCH(3,3)을 사용하고 Eviews로 추정한 결과이다.

- 시차 3에서 ARCH 항이 유의하며 시차 3 에서 GARCH 항 역시 5%에서 유의함을 알수있다.
- $-\alpha_1 + \alpha_2 + \alpha_3 + \beta_1 + \beta_2 + \beta_3 = 0.4553$

	Coefficient	Std. Error	z-Statistic	Prob.	
С	1.99E-05	1.43E-05	1.3908	0.1643	
Variance Equation					
С	2.94E-08	7.73E-09	3.81	0.0001	
RESID(-1)^2	0.0491	0.0460	1.07	0.2862	
RESID(-2)^2	-0.0567	0.0518	-1.10	0.2729	
RESID(-3)^2	0.1778	0.0564	3.15	0.0016	
GARCH(-1)	0.5208	0.2745	1.90	0.0578	
GARCH(-2)	0.1133	0.3179	0.36	0.7216	
GARCH(-3)	-0.3490	0.1595	-2.19	0.0286	

R-squared -0.00163

Adjusted R-squared -0.02849