Aspergillus oryzae produces glycerol ($C_3H_8O_3$), biomass ($CH_{1.75}O_{0.45}N_{0.23}$) and malic acid ($C_4H_6O_5$) under aerobic conditions. Take the (P/O) ratio for NADH as 1.6 and assume that FADH₂=NADH. The metabolism is given by the following cmol based map:

The following is known about the physiology of the microbe:

α	γ	μ	θ	
$\frac{cmol\ CO_2}{cmol\ X}$	$\frac{mol\ ATP}{cmol\ X}$	$\frac{1}{h}$	$\frac{mol\ ATP}{cmol\ X\cdot h}$	
0.12	2.2	0.15	0.1	

					_
4	\ A / I= = +	is the	1		r - 7
	What	IC The	Wal	IIA O	Tar
_ .	vviiat	13 1111	vai	uc o	ı a:

[1]

1/3

2. What is the value of β ?

[3]

Anabolic readion.

The CHAD + YKU NH3 + NATP->X + WCOL + BNADH + YSW H2O

 $C = 0,12 \quad Crol \quad C_{2} \quad (given)$

DOR: (HLD = 4+2(1)-2(1)=4

(H1,75 D0,45 Nops = 4+1,75-2(0,45)-3(0,72)= 4,16

TNADH = (5= 0,16

3. What is the value of c?

[2]

From glusse to pyrovate (glycolysis), there are a net 2 mol ATP produced per mol Glucose.

The cmol balance around the pyruvate node is given as:

$$r_4 = \delta r_6 + \epsilon r_5$$

4. What is the value of δ ?

$$\delta = \frac{3}{4}$$

5. What is the value of ε ?

$$C = \frac{3}{2}$$

6. What is the value of g?

7. What is the value of h?

Consider GTP as an AIP for the 4-carton Malate

8. Determine
$$\kappa$$
: $r_6 + r_5 = \kappa r_7$

$$k=3/2$$

The 'adapted' flux model is given in the attached Excel and Python files (see semester test 1 files under tests). Note that it represents **seven** equations, with the last equation representing the energy balance. All equations are equal to zero except the last equation that is equal to θ .

9. Determine the mass based yield of malic acid on glucose in g/g if the oxygen rate is known to be 0.13 $mol O_2/(cmol X.h)$. [3]

10. Determine the rate of CO_2 formation for the conditions in question 9. Give answer in *mol* $CO_2/(cmol\ X.h)$. [2]

(0) formed =
$$\times \Gamma_1 + \frac{1}{2}\Gamma_5 + \frac{1}{2}\Gamma_7 - \frac{1}{4}\Gamma_6$$

= $0_112(0_1/50) + \frac{1}{2}(0_1/1) + \frac{1}{2}(0_1/2) - \frac{1}{4}(0_1/2)$

11. Determine the rate of water formation/depletion for the conditions in question 9. Give					
answer in mol $H_2O/(cmol\ X.h)$. [4] MA Gly					
CH20+NH3+02-7CH1750945NO,33 +CH305+CH30	>+ Co2 + 420				
CH2O+NH3+O2-DCH1750q45Nox3+CH3O3+CH3O3+CH3O					
for additional equations use: M = 0,15 /h	,				
O2 uptake = 0,13 molt)/ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				
CO, produtin= 0,129 md	(XL)				
Malte prodution-0,222 moli	Jal X.L				
12. Determine the ovugen rate that will result in the formation of zero glyce	70				

[3]

answer in mol $O_2/(cmol\ X.h)$.

13. What is the maximum possible yield of malic acid on glucose. Give your answer in g/g. [3] $\int \mathcal{L} \mathcal{L} = \Gamma_1 = 0 \quad \text{and} \quad \Gamma_2 = 0$

14. For the condition in question 13, how many moles of oxygen (O₂) are consumed per mole of glucose?
[2]

15. Determine Y_{xO} in mol/cmol that will result in an equimolar formation rate of glycerol and malic acid. Growth occurs at the normal rate. [4]

$$\frac{4}{1} = \frac{1}{1} = \frac{0.124 \times 10^{2}}{100} \times \frac{4}{100} = \frac{0.829 \times 10^{2}}{100} \times \frac{100}{100} = \frac{0.829 \times 10^{2}}{100} \times \frac{100}{100} = \frac{100}{100} = \frac{100}{100} \times \frac{100}{100} = \frac{100}{100} \times \frac{100}{100} = \frac{100}{100} \times \frac{100}{100} = \frac{100}{100} = \frac{100}{100} \times \frac{100}{100} = \frac{100$$