Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama Bütünleme Sınavı – 31 Ocak 2014

<pre>leal (%eax,%eax,2), %eax sall \$2, %eax</pre>	t <- x+x*2 return t <<	2;												
Soru 1. Yukarıdaki örnekte %eax yazmacı 12 ₁₀ ile çarpılmaktadır. Benzer biçimde %eax yazmacını 6 ₁₀ ile çarpan kodu yazınız.														
Soru 2. Aşağıda onlu tabanda verile	en sayıların ikili tabanda karşılık	larını yazınız.												
0.25 -														

0.5	=	
0.875	=	
	=	

Normalized Values	Denormalized	Bias = $2^{k-1} - 1$				
Condition: $\exp \neq 000\cdots 0$			S	exp	frac	1
and exp ≠ 111…1	Condition:			ОХР	nao	l
$E = \exp - Bias$	exp = 0000		1	4-bits	3-bits	
•	E = -Bias + 1					

,	50	rı	u	3.	• `	Υı	ık	aı	r10	da	lK1	ιt)1l	g	1l6	er	K	aŗ	S	ar	nı	ın	da	ı]	10)	S	ıy	1S	ın	1 8	s t	1t	l1k	C I	ca	ya	ın	no	οk	ta	l 1	S	ıy	1 (ola	ara	ak	k	0	dl	ay	′1n	17
0														• •		• •		• •	• •				• • •				• •	• •	• • •				• • •			• • •						• •						• •		• • •			• •	
0														• •		• •		• •					• • •				• •		• • •							• • •						• •						• •					• •	
0																• •							• • •						• • •																			• •					• •	
0														• •		• •		• •	• •	• • •			• • •					• •	• • •				• • •			• • •												• •	• • •	• • •			• •	

Soru 4. Aşağıdaki örnekte iki sayının arasındaki farkı bulan fonksiyonun C programlama dili ve x86 simgesel dili ile kodlamaları verilmiştir. Siz de üç sayının en büyüğünü bulan fonksiyon için kodlamaları C programlama dili ve x86 simgesel dili ile yapınız.

```
int absdiff(int x, int y)
{
    int result;
    if (x > y) {
       result = x-y;
    } else {
       result = y-x;
    }
    return result;
}
```

```
absdiff:
  pushl %ebp
  movl %esp, %ebp
   movl 8(%ebp), %edx
         12(%ebp), %eax
   movl
   cmpl
         %eax, %edx
   jle
          .L6
         %eax, %edx
   subl
   movl
        %edx, %eax
   jmp .L7
   subl %edx, %eax
   popl %ebp
   ret
```

Soru 5. Soru 4'de verilen örnek için yığıt yapısını çiziniz.

Soru 6. Soru 4'deki çözümünüz için yığıt yapısını çiziniz.

Soru 7. Soru 4'deki çözümünüzde geliştirdiğiniz kodu çağıran kesimi x86 simgesel dili ile kodlayınız.

Soru 8. Aşağıdaki kod kesimi uygulandığında olası bir çıktısını veriniz.

```
void fork4()
{
    printf("L0\n");
    if (fork() != 0) {
        printf("L1\n");
        if (fork() != 0) {
            printf("L2\n");
            fork();
        }
    }
    printf("Bye\n");
}
```

Soru 9. Görev anahtarlama (Context Switching) sırasında uygulanan adımları listeleyiniz.

IA32 Stack: Push

Carnegie Mel

IA32 Stack: Pop

Carnegie Mell

Procedure Control Flow

- Use stack to support procedure call and return
- Procedure call: call label
 - Push return address on stack
 - Jump to *label*
- Return address:
 - Address of the next instruction right after call
 - Example from disassembly

804854e: e8 3d 06 00 00 call 8048b90 <main> 8048553: 50

- Return address = 0x8048553
- Procedure return: ret
 - Pop address from stack
 - Jump to address

47