Model selection with stepdown procedures and thresholded Lasso for high dimensional linear regression

Konrad Furmańczyk

Faculty of Applied Infomatics and Mathematics, Warsaw University of Life Sciences (SGGW)

Będlewo 1.12.2016

Outline

- Linear model with Subgaussian errors;
- Two steps selection procedure TLSD;
- Stepdown procedure;
- The consistency of the selection procedure;
- Simulation study.

Linear Model

$$\mathbb{Y} = \mathbb{X}\beta + \varepsilon$$
,

$$(\epsilon_i)$$
 i.i.d., $E(\epsilon_1) = 0$, $Var(\epsilon_1) = \sigma^2$,

 ϵ_1 is Subgaussian with a constant $\sigma>0$ i.e.

$$E(exp(u\epsilon_1)) \le exp(\sigma^2u^2/2)$$
 for all $u \in R$

 \mathbb{X} -deterministic matrix of dimension $n \times p$; $\beta \in \mathbb{R}^p$;

$$p=p(n)>>n;$$

We will consider only sparse models (finite number of β_i is different from 0) and matrix \mathbb{X} satisfies some regular conditions.

Least Absolute Shrinkage and Screening Operator (LASSO)

LASSO
$$\widehat{\beta_L} = \underset{n}{\operatorname{argmin}}_{\beta \in R^p} \left(\frac{1}{2n} \parallel \mathbb{Y} - \mathbb{X}\beta \parallel_2^2 + \lambda_n \parallel \beta \parallel_1 \right)$$
 for some $\lambda_n > 0$ Thresholded LASSO (TL)
$$\widehat{\beta_{TL,j}} = \widehat{\beta_{L,j}} \mathbf{1} \left\{ \left| \widehat{\beta_{L,j}} \right| \geq \delta_n \right\} \text{ for } j = 1, ..., p$$
 for some threshold $\delta_n > 0$:

Sparse Model

Sparse Model

$$I_0 = \{j : \beta_j \neq 0\},\$$

 $I_1 = \{j : \beta_j = 0\},\$
 $|I_0| = p_0 < n$

 p_0 -is constant, does not depend on n

Two steps selection procedure TLSD

At the first step (TL) we choose a set of variables $S_1 = \left\{1 \leq j \leq p : \left|\widehat{eta_{L,j}}\right| \geq \delta_n\right\}$

At the second step we use a stepdown procedure (SD) of multitesting

(
$$h_0$$
) H_i : $\beta_i = 0$ vs. H'_i : $\beta_i \neq 0$ dla $i \in S_1$

Stepdown procedure

Define p-value for hypothesis testing H_i versus H_i' as $\pi_i = 2(1 - \Phi(|t_i|))$ for $i \in S_1$, where Φ is the distribution function of N(0,1).

Test Statistics
$$t_i = \widehat{\beta_{ols,i}}/se\left(\widehat{\beta_{ols,i}}\right)$$
, where $\widehat{\beta_{ols}} = \left(\mathbb{X}_{S_1'}\mathbb{X}_{S1}\right)^{-1}\mathbb{X}_{S_1'}\mathbb{Y}$
$$se\left(\widehat{\beta_{ols,i}}\right) = \begin{cases} \sigma\sqrt{m_{i,i}} & \text{if } \sigma \text{ is known} \\ S\sqrt{m_{i,i}} & \text{if } \sigma \text{ unknown} \end{cases}$$

$$S$$
 -some consistent estimator of σ and $\left(\mathbb{X}_{S_1}^{'}\mathbb{X}_{S1}
ight)^{-1}=(m_{i,j})_{i,j\in S_1}$

Stepdown procedure

```
Let s_1 = |S_1| We have p-values ordered \pi_{(1)} \leq ... \leq \pi_{(s_1)} and respectively null hypotheses H_{(1)} \leq ... \leq H_{(s_1)} \alpha_1 \leq ... \leq \alpha_{s_1} -some constants (may depend on n) If \pi_{(1)} > \alpha_1, then we do not reject any hypothesis H_i; (h_1) otherwise if \pi_{(1)} \leq \alpha_1, ..., \pi_{(r)} \leq \alpha_r then, we reject H_{(1)}, ..., H_{(r)}, where r is the largest number satisfying (h_1).
```

Examples of stepdown procedure

Examples of SD procedures

a) Holm
$$\alpha_j = \frac{q_n}{s_1 + 1 - j}$$

b) UHolm
$$\alpha_j = \frac{([\gamma j]+1)q_n}{s_1+[\gamma j]+1-j}$$
 dla $0 \le \gamma \le 1$

c) BH
$$\alpha_j = \frac{jq_n}{s_1}$$

c) BH
$$\alpha_j = \frac{jq_n}{s_1}$$

d) Bonferroni $\alpha_j = \frac{q_n}{s_1}$ for some $q_n \to 0$

Conditions for α_i for stepdown proc.

$$(A_1)$$
 $\alpha_{s1} \to 0 \text{ as } n \to \infty$

$$(A_2) \hspace{1cm} (1/n)\log(1/\alpha_1) \to 0 \hspace{1mm} \text{as} \hspace{1mm} n \to \infty$$

Remark. For $q_n = 1/(n \log(n))$ the conditions $(A_1) - (A_2)$ are satisfied.

Regular conditions

Regular conditions for a matrix $\mathbb X$

 $(B_1)\parallel x_j\parallel_2/\sqrt{n}=1$ for j=1,...,p, where x_j -jth column of matrix $\mathbb X$

(B₂) let
$$v_{I1} = \{v_i : i \in I_1\}, v_{I0} = \{v_i : i \in I_0\}; C(I_0; 3) = \{v \in R^p : ||v_{I1}||_1 \le 3 ||v_{I0}||_1\};$$
 for some $\gamma > 0$ the below condition is satisfied $(1/n) v' \mathbb{X}' \mathbb{X} v \ge \gamma ||v||_2^2$ for every $v \in C(I_0; 3)$

Regular conditions

regular conditions for model and estimators

$$(B_3) \min_{j \in I_0} |\beta_j| \geq C_1 \lambda_n$$
 for some constant $C_1 > 0$

(B₄)
$$C_2\lambda_n \leq \delta_n \leq \lambda_n (C_1 - 3/\gamma)$$
 for some constant $C_2 > 0$

(B₅)
$$\lambda_n = C_\lambda \sqrt{\log(p)/n}$$
 for $C_\lambda = 2\sigma$.

consistency condition for S

(C)
$$S \to^P \sigma \text{ as } n \to \infty$$

The consistency of selection procedure

Consistency Theorem

Any TLSD procedure satysfying: $(A_1) - (A_2)$, $(B_1) - (B_5)$ if σ is known and additionally (C) if σ is unknown, is consistent for selection problem in linear model.

The consistency of selection procedure

A selection procedure is consistent if $P\left(\widehat{I}=I_0\right) \to 1$ as $n \to \infty$, where \widehat{I} is the number of chosen significant variables.

Auxilliary results

Lemma 1

Let (B_2) , (B_4) , (B_5) be satisfied.

Then for every r > 0 at least with probability

 $1-2\exp(-\frac{1}{2}(r-2)\log(p))$, we have $|S_1| \le p_0(1+C_3/\gamma^2)$ for some constant $C_3 > 0$.

Lemma 2

Let (B_2) , (B_3) , (B_5) be satisfied.

Then for every r > 0 at least with probability

 $1 - 2 \exp(-\frac{1}{2}(r-2)\log(p))$, we have $I_0 \subset S_1$.

Sketch of the proof

A selection procedure is consistent if $P(V \ge 1) \to 0$ and $P(R \ne p_0) \to 0$ as $n \to \infty$, where V-the number of false rejected predoctors, R-the number of all rejected predictors using TLSD procedure. From Lemma 2 it is sufficient to show that $P(\widetilde{V} \ge 1) \to 0$ and $P(\widetilde{R} \ne p_0) \to 0$, where \widetilde{V} -the number of false rejected predictors, \widetilde{R} -the number of all rejected predictors using the stepdown procedure $(h_0) - (h_1)$.

Sketch of the proof

By Lemma 1 it is sufficient to show (p. Furmanczyk, 2016)

- (i) $P(\pi_i \leq \alpha_{s1}) \rightarrow 0$ for $i \in I_1$
- (ii) $\max_{j \in I_0} (1 F_j(\alpha_1)) \in 0$ as $n \to \infty$, where F_j -distribution function of p-value π_j for $j \in I_0$.

The conditions (i) - (ii) are implied by the conditions $(A_1), (A_2), (C)$.

Simulations'

The matrix X is fixed for all simulations generated from $N_p(0, Id)$ and normalized

Simulated models

$$(M1) Y = \sum_{j=1}^{p_0} 2X_j + \epsilon$$

(M2)
$$Y=1.3X_1 + X_2 + 1.4X_3 + 1.5X_4 + \epsilon$$

(M3)
$$Y=1.3X_1+1.3X_2+X_3+X_4+1.4X_5+1.4X_6+1.5X_7+1.5X_8+\epsilon$$
,

where $\epsilon \sim N(0,1)$

Simulations

In simulation we set $\delta_n = \sqrt{\log(p)/n}$ and

 $\lambda_n = 2\sqrt{\log(p)/n} * seq(10, 0.05, by = -0.05)$ for cross-validation for Lasso.

1000 MC replications of model selection

(M1) - (M3) were carried out.

We used the procedur TLSD(Holm, UHolm, Bonf., BH) and for comaparision TL, SCAD.

SCAD (Smoothly Clipped Absolute Deviation - Fan and Li (2001))

$$\widehat{\beta} = \operatorname{argmin}_{\beta \in R^p} \parallel \mathbb{Y} - \mathbb{X}\beta \parallel_2^2 / n + \sum_{i=1}^p J_{\lambda}(|\beta_i|)$$

SCAD

The penalty for a = 3.7

$$J_{\lambda}\left(\theta\right) = \begin{cases} \lambda \left|\theta\right| & \text{for } \left|\theta\right| \leq \lambda \\ -\left(\theta^{2} - 2a\lambda \left|\theta\right| + \lambda^{2}\right) / \left(2\left(a - 1\right)\right) & \text{for } \lambda < \left|\theta\right| \leq a\lambda \\ \left(a + 1\right)\lambda^{2} / 2 & \text{for } \left|\theta\right| > a\lambda \end{cases}$$

for LASSO we have the penalty

$$J_{\lambda}(\theta) = \lambda |\theta|$$

Results for M1 simulations

	p=500 p ₀ =5	p=500 p ₀ =10	p=500 p ₀ =20	$p=1000 \\ p_0=20$	p=2000 p ₀ =5	p=2000 p ₀ =10
Bonf	987	986	983	980	995	990
Holm	980	965	904	904	994	979
UHolm_0.01	980	965	904	904	994	979
UHolm_0.1	980	964	895	899	994	979
UHolm_0.5	980	964	890	895	994	979
UHolm_0.9	980	965	890	895	994	979
ВН	980	963	880	889	994	978
SCAD	13	26	43	33	3	6
TL	974	930	589	573	994	960

Table 1. Frequencies of the true model that are selected in 1000 simulations for n = 200.

Results for M2 simulations

Df	$_{n=100}^{p=500}$	$p=500 \\ n=200 \\ 993$	$_{n=100}^{p=1000}$ $_{995}^{n=100}$	$p=1000 \\ n=200 \\ 992$	$p=2000 \\ n=100 \\ 997$	p=2000 n=200 997
Bonf	991	993	995	992	997	997
Holm	989	990	994	991	997	996
UHolm_0.01	989	990	994	991	997	996
UHolm_0.1	989	990	994	991	997	996
UHolm_0.5	989	990	994	991	997	996
UHolm_0.9	989	990	994	991	997	996
ВН	988	988	994	991	997	996
SCAD	38	14	33	7	17	7
TL	986	985	993	991	996	995

Table 2. Frequencies of the true model that are selected in 1000 simulations

Results for M3 simulations

Bonf	p=500 n=100 977	p=500 n=200 988	p=1000 n=100 974	p=1000 n=200 992	p=2000 n=100 984	p=2000 n=200 990
Holm	929	972	951	989	964	987
UHolm_0.01	929	972	951	989	964	987
UHolm_0.1	929	972	951	989	964	987
UHolm_0.5	929	972	951	989	963	987
UHolm_0.9	929	972	950	989	963	987
ВН	924	970	945	989	960	987
SCAD	68	15	43	10	30	4
TL	833	957	889	987	897	985

Table 3. Frequencies of the true model that are selected in 1000 simulations for

References

- Benjamini, Y., Liu, W. (1999). A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. *J. Statist. Plann. Infer.* **82**, 163-170.
- Bunea, F., Wegkamp, M.H., Auguste, A. (2006). Consistent variable selection in high dimensional regression via multiple testing. *J. Statist. Plann. Infer.* **136**, 12, 4349-4364.
- Fan, J.and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. *J. Amer. Statist. Assoc.* **96**, 1348–1360.
- Friedman, J., Hastie, T., Simon, N. and Tibshirani, R. (2015), glmnet: Lasso and elastic-net regularized generalized linear models. R package version 2.0.
- Furmańczyk, K. (2014). Selection in parametric models via some stepdown procedures. *Appl. Math. (Warsaw)* **41**, 81-92.

Literatura

- Furmańczyk, K. (2015). On some stepdown procedures with application to consistent variable selection in linear regression. *Statistics* **49**, 614-628.
- Furmańczyk, K. (2016). Variable selection using stepdown procedures in high-dimensional linear models. *Appl. Math.* (Warsaw) DOI: 10.4064/am2286-6-2016
- Furmańczyk, K. (2016). Stepdown procedures with thresholded Lasso for high dimensional parametric model selection. preprint
- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. **6**, 65-70.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *J. Roy. Statist. Soc. Ser. B* **58** 267-288.

