

Vicente Helano

vicente.sobrinho@ufca.edu.br

Seja ${f A}$ simétrica, munida de uma decomposição ${f A}={f L}{f U}$

Seja ${f A}$ simétrica, munida de uma decomposição ${f A}={f L}{f U}$ Então,

$$\mathbf{L}\mathbf{U} = \mathbf{A} = \mathbf{A}^{\mathsf{T}} = (\mathbf{L}\mathbf{U})^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}$$

Seja ${f A}$ simétrica, munida de uma decomposição ${f A}={f L}{f U}$ Então,

$$\mathbf{L}\mathbf{U} = \mathbf{A} = \mathbf{A}^{\mathsf{T}} = (\mathbf{L}\mathbf{U})^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}$$

Como ${f L}$ é uma matriz triangular inferior com diagonal unitária, logo inversível, podemos escrever

$$\mathbf{U} = \mathbf{L}^{-1} \mathbf{U}^\intercal \mathbf{L}^\intercal$$
 $\mathbf{U} (\mathbf{L}^\intercal)^{-1} = \mathbf{L}^{-1} \mathbf{U}^\intercal$

Seja ${f A}$ simétrica, munida de uma decomposição ${f A}={f L}{f U}$ Então,

$$\mathbf{L}\mathbf{U} = \mathbf{A} = \mathbf{A}^{\mathsf{T}} = (\mathbf{L}\mathbf{U})^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}$$

Como ${f L}$ é uma matriz triangular inferior com diagonal unitária, logo inversível, podemos escrever

$$\mathbf{U} = \mathbf{L}^{-1} \mathbf{U}^\intercal \mathbf{L}^\intercal$$
 $\mathbf{U} (\mathbf{L}^\intercal)^{-1} = \mathbf{L}^{-1} \mathbf{U}^\intercal$

Mas observe que ambos os lados da equação acima DEVEM ser matrizes diagonais

Seja ${f A}$ simétrica, munida de uma decomposição ${f A}={f L}{f U}$

Então,

$$\mathbf{L}\mathbf{U} = \mathbf{A} = \mathbf{A}^{\mathsf{T}} = (\mathbf{L}\mathbf{U})^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}$$

Como ${f L}$ é uma matriz triangular inferior com diagonal unitária, logo inversível, podemos escrever

$$\mathbf{U} = \mathbf{L}^{-1} \mathbf{U}^\intercal \mathbf{L}^\intercal$$
 $\mathbf{U} (\mathbf{L}^\intercal)^{-1} = \mathbf{L}^{-1} \mathbf{U}^\intercal$

Mas observe que ambos os lados da equação acima DEVEM ser matrizes diagonais

Definido $\mathbf{D} = \mathbf{U}(\mathbf{L}^\intercal)^{-1}$, temos que $\mathbf{U} = \mathbf{D}\mathbf{L}^\intercal$

Seja ${f A}$ simétrica, munida de uma decomposição ${f A}={f L}{f U}$

Então,

$$\mathbf{L}\mathbf{U} = \mathbf{A} = \mathbf{A}^{\mathsf{T}} = (\mathbf{L}\mathbf{U})^{\mathsf{T}} = \mathbf{U}^{\mathsf{T}}\mathbf{L}^{\mathsf{T}}$$

Como ${f L}$ é uma matriz triangular inferior com diagonal unitária, logo inversível, podemos escrever

$$\mathbf{U} = \mathbf{L}^{-1} \mathbf{U}^\intercal \mathbf{L}^\intercal$$
 $\mathbf{U} (\mathbf{L}^\intercal)^{-1} = \mathbf{L}^{-1} \mathbf{U}^\intercal$

Mas observe que ambos os lados da equação acima DEVEM ser matrizes diagonais

Definido $\mathbf{D} = \mathbf{U}(\mathbf{L}^\intercal)^{-1}$, temos que $\mathbf{U} = \mathbf{D}\mathbf{L}^\intercal$

Portanto, $\mathbf{A} = \mathbf{L}\mathbf{U} = \mathbf{L}\mathbf{D}\mathbf{L}^\intercal$

Exemplo

$$\begin{bmatrix} 4 & -4 & 4 \\ -4 & 6 & 0 \\ 4 & 0 & 16 \end{bmatrix}$$

Uma matriz real $\bf A$ de ordem n é dita **definida positiva** se ${\bf x}^{\sf T}{\bf A}{\bf x}>0$, para todo ${\bf x}$ não nulo

Uma matriz real \mathbf{A} de ordem n é dita **definida positiva** se $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}>0$, para todo \mathbf{x} não nulo

$$\mathbf{A} = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$

Uma matriz real \mathbf{A} de ordem n é dita **definida positiva** se $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}>0$, para todo \mathbf{x} não nulo

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 2 & 5 \end{bmatrix}$$

Teorema. Seja $\bf A$ uma matriz real simétrica de ordem n. Então $\bf A$ é definida positiva se e somente se todos os seus autovalores são positivos

Teorema. Seja $\bf A$ uma matriz real simétrica de ordem n. Então $\bf A$ é definida positiva se e somente se todos os seus autovalores são positivos

$$\mathbf{A} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

A k-ésima **submatriz principal** de A é definda por

$$\mathbf{A}_{k} = [a_{ij}]$$
 , $i, j \in \{1, 2, \dots, k\}$

A k-ésima **submatriz principal** de $\mathbf A$ é definda por

$$\mathbf{A}_k = [a_{ij}]$$
 , $i, j \in \{1, 2, \dots, k\}$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

Proposição. Uma matriz real simétrica **A** é **definida positiva** se e somente se os determinantes de **todas** as suas submatrizes principais forem estritamente positivos

Proposição. Uma matriz real simétrica **A** é **definida positiva** se e somente se os determinantes de **todas** as suas submatrizes principais forem estritamente positivos

[1	1	1
1	2	2
$\lfloor 1$	2	3_

Proposição. Seja ${\bf A}$ uma matriz simétrica de ordem n. Então, as seguintes afirmações são equivalentes

- (a) A é positiva definida
- (b) Os determinantes de todas as submatrizes principais são positivos
- (c) A pode ser reduzida à forma triangular superior por eliminação de Gauss sem a necessidade de permutar linhas e, além disso, seus pivôs serão todos positivos
- (d) Existe \mathbf{L} triangular inferior, cujos elementos da diagonal são todos positivos, tal que $\mathbf{A} = \mathbf{C}\mathbf{C}^{\mathsf{T}}$

Proposição. Seja ${\bf A}$ uma matriz simétrica de ordem n. Então, as seguintes afirmações são equivalentes

- (a) A é positiva definida
- (b) Os determinantes de todas as submatrizes principais são positivos
- (c) A pode ser reduzida à forma triangular superior por eliminação de Gauss sem a necessidade de permutar linhas e, além disso, seus pivôs serão todos positivos
- (d) Existe \mathbf{L} triangular inferior, cujos elementos da diagonal são todos positivos, tal que $\mathbf{A} = \mathbf{C}\mathbf{C}^{\mathsf{T}}$

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^\intercal = \mathbf{L}(\mathbf{D})^{1/2}(\mathbf{D})^{1/2}\mathbf{L}^\intercal = \mathbf{C}\mathbf{C}^\intercal$$

$\lceil 1 \rceil$	1	1
1	2	2
1	2	3

Vicente Helano vicente.sobrinho@ufca.edu.br