

MLD Considered Harmful

Antonios Atlasis aatlasis@secfu.net

Jayson Salazar jsalazar@ernw.de

Rafael Schaefer rschaefer@ernw.de

Road Map

- Background Information
- ¬ MLD, Myths and Facts
- Profiting from MLD
- Mitigations
- Conclusions

Background Information

On IPv6, MLD and where the Internet is heading

Web Content Available over IPv6

From: http://6lab.cisco.com/stats/

Users Accessing the Internet over IPv6

Belgium: 37,28%

Germany: 18,24%

USA: 15,93%

Japan: 10,83 %

France: 5,46%

From: http://6lab.cisco.com/stats/

The IPv6 Vision

- Personal appliances are increasingly incorporating networking capabilities.
- Research and monitoring devices such as sensor networks are also looking towards IPv6 and multicasting.
- Concrete efforts are being directed towards materializing the "Internet of Things."

This All Sounds Great, but ...

Is IPv6 mature enough for deployment and most important, are we informed enough?

Information
Multicast Listener Query
Multicast Listener Report
Multicast Listener Query
Multicast Listener Report

Time	SRC ADD	DST ADD	MLD MADDR
13:23:18.574201000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:18.574210000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:18.623002000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:18.623011000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:18.840934000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:18.840938000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:36.215326000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:36.215336000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:36.276699000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:36.276708000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:36.339596000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:36.339601000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:37.201776000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:37.201787000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:37.203986000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3
13:23:37.203993000	fe80::200:ff:fe00:11	ff02::16	ff02::1:3

MLD, Every Protocol Has a Story

Hopefully, an entertaining one.

The Unicast Side of Things

Basic Concepts behind Multicasting

- The sender does not require N data transmissions to reach N clients.
- The infrastructure takes care of the routing and replication.
- The sender sends its data once and N clients receive it.
- How does the infrastructure know where the listeners are located?

Where is Multicast being Used? (I)

¬ The usual suspects:

- Video-conferencing
- IPTV
- Sensor-networks
- Monitoring and logging

Where is Multicast being Used? (II)

- IPv6 has 'replaced' broadcasting with multicasting and multicast-related mechanisms
- How, you ask? By mixing the Neighbor-Discovery protocol, with Solicited-Node multicast addresses and MLD

MLD Will Make our Life much Easier

Well, at least it should ...

The Initial Scenario

- IPv6 counterpart of IGMP
- ¬ MLD enables IPv6 routers to discover the presence of multicast listeners on its attached links
- Specifically, which multicast addresses are of interest to those neighboring nodes.
- MLDv1 dates back to 1999 and was superseded by MLDv2 in 2004

Basic MLD Operation

- ¬ The Querier sends periodical Queries to which Listeners with reportable addresses reply.
- ¬ The Querier does not learn which or how many clients are interested in which sources.
- ¬ The Querier uses reported information for deciding what ingress data to forward.

MLD Messages

Querier-Sent Messages, Queries

```
▼ Internet Control Message Protocol v6
  Type: Multicast Listener Query (130)
  Code: 0
   Checksum: 0x6b89 [correct]
  Maximum Response Code: 0
  Reserved: 0000
  Multicast Address: ff08::2001:db8 (ff08::2001:db8)
 ▼ Flags: 0x00
    .... 0... = Suppress Router-Side Processing: False
    .... .000 = QRV (Querier's Robustness Variable): 0
    0000 .... = Reserved: 0
   QQIC (Querier's Query Interval Code): 0
   Number of Sources: 4
   Source Address: 2001:db8:1::1 (2001:db8:1::1)
   Source Address: 2001:db8:1::2 (2001:db8:1::2)
   Source Address: 2001:db8:1::3 (2001:db8:1::3)
   Source Address: 2001:db8:1::4 (2001:db8:1::4)
```

- Queries have ICMPv6 type 130
- General Queries are sent to FF02::1
- Specific Queries are sent to the multicast address being queried.

Listener-Sent Messages, Reports

```
Internet Control Message Protocol v6
 Type: Multicast Listener Report Message v2 (143)
 Code: 5
 Checksum: 0xa291 [correct]
 Reserved: 0000
 Number of Multicast Address Records: 800
Multicast Address Record Changed to exclude: ff08::2000
▶ Multicast Address Record Changed to exclude: ff08::2001
▶ Multicast Address Record Changed to exclude: ff08::2002
▶ Multicast Address Record Changed to exclude: ff08::2003
▶ Multicast Address Record Changed to exclude: ff08::2004
▶ Multicast Address Record Changed to exclude: ff08::2005
▶ Multicast Address Record Changed to exclude: ff08::2006
```

- MLDv2 Reports have ICMPv6 type 143
- Reports are sent to FF02::16
- Can report several desired groups and sources simultaneously in so-called MARs

Funky Note #1, State Keeping on Gateways

- A gateway must keep state regarding what "kind" of content must be let through
- MLDv2 extended state keeping mechanisms in order to also keep track of accepted sources
- Timers are kept per reported group and per accepted source

Funky Note #2, It Could've been Better

- MLD does not learn the identity or number of Listeners for a particular multicast group
- When there are multiple routers on the link the Querier is elected by using the lowest IPv6 address seen on a Query.
- In MLDv1, a client may suppress its own report when another node reports the same address.

Funky Note #3, One-to-one Communication

5.1.15. Destination Addresses for Queries

In MLDv2, General Queries are sent to the link-scope all-nodes multicast address (FF02::1). Multicast Address Specific and Multicast Address and Source Specific Queries are sent with an IP destination address equal to the multicast address of interest. *However*, a node MUST accept and process any Query whose IP Destination Address field contains *any* of the addresses (unicast or multicast) assigned to the interface on which the Query arrives. This might be useful, e.g., for debugging purposes.

RFC 3810

Funky Note #3, One-to-one Communication

5.1.15. Destination Addresses for Queries

In MLDv2, General Queries are sent to the link-scope all-nodes multicast address (FF02::1). Multicast Address Specific and Multicast Address and Source Specific Queries are sent with an IP destination address equal to the multicast address of interest. *However*, a node MUST accept and process any Query whose IP Destination Address field contains *any* of the addresses (unicast or multicast) assigned to the interface on which the Query arrives. This might be useful, e.g., for debugging purposes.

RFC 3810

MLDv2 Compared to MLDv1

- ¬ MLDv2 supports for source filtering
- MLDv2 Queries and Reports can refer to multiple sources
- MLDv2 does not have a suppression mechanism nor Done messages
- Groups and Sources can be included or excluded and said status must be tracked by routers

There are Good News, Though

Well, it depends ...

Up Until this Point, You don't need MLD

- You only need MLD if you are operating multicast applications
- But, needing and running isn't the same.
- Except for OpenBSD clients, every
 IPv6-capable host in your network is running it
- Great, complexity for the sake of complexity

So, Summarizing ...

- ¬ You're running a complex, resource-intensive protocol although you usually don't need it
- It has some useful "features"
 - Increases state-keeping on the infrastructure side
 - One can easily become the Querier
 - One can **communicate** on a **one-to-one** basis
 - Some clients implement Report suppression
 - Forcing a switch to MLDv1 is trivial
 - Anything else?

Playing with MLD

On how and what we tested

Test Environment

- ¬ Cisco 1921 routers and Cisco **2960s** switches
- Android, FreeBSD, Ubuntu and Windows virtualized quests

¬ Tools

- Scapy
- Chiron
- Dizzy
- THC IPv6 Toolkit
- Wireshark

Clients' Response Time to MLD Queries

- Most clients replied immediately to Queries with Maximum Response Delay equal to zero
- ¬ 1,3kb/s of MLDv1 Queries become 49,8kb/s on the Querier's side.
- Although the RFC mentions potential "ACK explosions" and traffic amplification, the clients just fire right away.

MLDv1 Traffic Amplification

¬ 1,3kb/s become 49,8kb/s on the router's side, ~3830% the initial traffic

As Usual, Windows Must Behave Differently

In Windows 7 and 8.1 systems the process in charge of MLD + Interrupts processing can consume up to one processor core.

Big MLD Reports, Router Resource Depletion

```
user@ubuntu: ~
                             My traceroute
                                             [v0.85]
ubuntu (::)
                                                        Fri Jan 16 16:43:24 2015
              Display mode
                                                   Order of fields
eys: Help
                             Restart statistics
                                                                     quit
                                        Packets
                                                              Pings
 Host
                                      Loss%
                                              Snt
                                                    Last
                                                               Best
                                                                      Wrst StDev
                                                           Avg
 1. 2001:db8:1::ec:1
                                       0.0%
                                               71
                                                     0.6
                                                           0.6
                                                                 0.3
                                                                        1.0
                                                                              0.0
    2001:db8:2::ec:1
                                       0.0%
                                                                 0.6
                                                                              0.2
```

```
user@ubuntu: ~
                             My traceroute [v0.85]
ubuntu (::)
                                                       Fri Jan 16 16:36:04 2015
             Display mode
                                                  Order of fields
Revs: Help
                             Restart statistics
                                                                    quit
                                       Packets
                                                              Pings
Host
                                     Loss%
                                             Snt
                                                   Last
                                                          Avg Best Wrst StDev
1. 2001:db8:1::ec:1
                                      0.0%
                                                   22.1
                                                          7.2
                                                                     78.2 11.5
                                                                0.4
 2. 2001:db8:2::ec:1
                                                                     80.0 13.5
```


Big Reports Fill the Cache in about 30s

- Device becomes unresponsive, packets start being dropped and latency goes up
- Further Listeners aren't able to join multicast groups since the table is effectively full
- Putting a hard limit on the number of entries isn't likely to help

The PIM IPv6 Process Fails, Not that Bad

%SYS-2-MALLOCFAIL: Memory allocation of 65536 bytes failed from 0x21028EF4,

alignment 0

Pool: Processor Free: 419724 Cause: Memory fragmentation

Alternate Pool: None Free: 0 Cause: No Alternate pool

-Process= "PIM IPv6", ipl= 0, pid= 329

-Traceback= 21010528z 210109FCz 2101E0FCz 24B69248z 24B2C374z 24B2F324z

231FA520z 231F7FA8z24B30408z 24B30C2Cz 231D41D8z 231D4D40z 231D4F60z

24B3CDF87 210329B47 210329987

IPv6 Addresses can't be Leased, Hm

%SYS-2-MALLOCFAIL: Memory allocation of 232 bytes failed from 0x24A42624, alignment 0 Pool: Processor Free: 1800716 Cause: Memory Fragmentation Alternate Pool: None Free: 0 Cause: No Alternate pool -Process= "DHCPv6 Server", ipl= 0, pid= 338 -Traceback= 210z 24A3782Cz 24A37C2Cz 24A37DD4z 210329B4z 21032998z

Neither does SSH work, Oh Well ...

%SYS-2-MALLOCFAIL: Memory allocation of 12252 bytes failed from 0x249F0200, alignment 0 Pool: Processor Free: 1312500 Cause: Memory fragmentation Alternate Pool: None Free: 0 Cause: No Alternate pool -Process= "Exec", ipl= 0, pid= 3 -Traceback= 210121E8z 249E5408z 24A098B0z 24A062B4z 24A085D8z 24A08AF4z 22909EA0z 22911F60z 22924164z 210329B4z 21032998z

Demo

Overloading network infrastructure via MLD

Just Useless Defaults by Cisco

- 156.500 MLD entries cause the routers to malfunction.
- Who and what for needs 150k MLD entries?
- So much for useful defaults, limit MLD state!
- Not limited to the listed devices, similar behavior was observed with ASR1000s

Drivers, Always Drivers

Exception 13 in world 34185:rhttpproxy-u @ 0x4 r0=0x80010031 cr2=0xffffc1e0d04be060 cr3=0x11fece0 ast branch from 0x418009b668ba to 0x418009b669c5 rame=0x41239625d310 ip=0x4180098524a5 err=0 rflags ax=0x410864671698 rbx=0x410864671100 rcx=0x1 dx=0x100200000000060 rbp=0x41239625d430 rsi=0x4108 di=0x410864671100 r8=0x0 r9=0x2e0 10=0xb3 r11=0x1 r12=0x0 13=0x0 r14=0x1 r15=0x0 PCPU1:34185/rhttpproxy-work CPU O: VU ode_start: 0x418009800000 VMK uptime: 1:06:25:48.1 x41239625d430:[0x4180098524a5]FastSlab_AllocWithTir x41239625d4a0: [0x418009978d07]Pkt_AllocHandleWithS)x41239625d4c0:[0x418009978f78]Pkt_AllocWithFlags@vr <41239625d4e0:[0x418009a20363]vmk_PktAllocForDMAEp</p>

- high rates of MLD traffic are received on an Intel 82573L network interface
- 0-Day'ish, relevant only as DoS, though.

Let's not Forget the Scenario

- MLD messages are processed regardless of **destination** address
- A malicious user can trivially become the Querier on the link

Force MLDv1 Usage and Reports Suppression

	SRC MAC	SRC ADD	DST ADD
03.275444000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
03.275458000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
08.737940000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa
08.737953000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa
26.141097000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774
26.141105000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774
50.939472000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::1:ff00:13
50.939489000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::1:ff00:13
08.343150000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
08.343160000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
43.335196000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774
43.335208000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774
12.541043000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa
12.541050000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa
13.410482000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
13.410495000	kali_eth0	fe80::200:ff:fe00:14	ff02::1

The Last Call for Drinks, Last-Listener-Queries

MLDv2 Report or MLDv1 Done --> Last Listener Query --> MLD General Query -->

- Last-Listener-Queries are sent by the Querier when a Listener expresses its lack of interest in certain traffic
- ¬ Is sent as a Specific-Query to the multicast address which is being queried
- An attacker can become the Querier. leave a group on behalf of a client and fake a Last-Listener-Query

However, Something was Missing

	SRC MAC	SRC ADD	MLD MADDR	Len.
47.373682000	ubuntu_eth0	ubuntu.local	ff08::db8	90
47.373696000	ubuntu_eth0	ubuntu.local	ff08::db8	90
56.087140000	Cisco_15:c0:11	fe80::200:cff:fe15:c011		90
58.028565000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
58.028578000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
38.885241000	kali_eth0	fe80::200:ff:fe00:14	ff08::db8	90
38.885255000	kali_eth0	fe80::200:ff:fe00:14	ff08::db8	90
01.332813000	Cisco_15:c0:11	fe80::200:cff:fe15:c011		90
09.418357000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
09.418367000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
06.582484000	Cisco_15:c0:11	fe80::200:cff:fe15:c011		90
13.996287000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
13.996304000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130

In Reality, It's Even Easier

MLDv2 Report or MLDv1 Done -->

Last Listener Query -->

MLD General Query -->

- Cisco 1921 devices do not forward
 Last-Listener-Queries
- To prevent a client from receiving certain multicast data-flows one simply has to spoof an MLD Report or Done message
- The interested **Listener won't have** the **chance** to **reply** since, well, the switch doesn't forward the query

Demo

So, management wants video-conferencing?

But Someone had to Add Something else ...

Because there is always room for more complexity

MLD-Snooping ... Yes, More Complexity!

- ¬ Is not standardized
- ¬ There's an informational RFC
- Brings state-keeping behavior to the switches
- Considered by RFC3810 and others where ND is specified.

Of Course, Nothing Could Go Wrong

PU I	utilization for	five seconds:	99%/14%	; one	minute:	99%;
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Mir
1	0	30	0	0.00%	0.00%	0.009
2	1262	124662	10	0.09%	0.02%	0.009
3	58	91	637	0.00%	0.00%	0.009
PID	Runtime(ms)	Invoked	uSecs	5Sec	1Min	5Mir
4	6080171	353695	17190	1.10%	1.20%	0.939
5	1132	10396	108	0.00%	0.00%	0.009
6	0	1	0	0.00%	0.00%	0.009

Anything else?

One last minor detail

Trivial Host Discovery and Fingerprinting (I)

rime	Source	Destination	Protocol	ength
0.000000	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.000013	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.008497	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.008506	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.023971	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.023984	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.025772	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.025777	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.261958	Windows7.1-linklocal	ff02::16	ICMPv6	90
0.261967	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.048733	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.048746	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.063445	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.063458	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.075012	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.075020	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.077356	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.077366	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.264367	Windows7.1-linklocal	ff02::16	ICMPv6	90
600.264378	Windows7.1-linklocal	ff02::16	ICMPv6	90
199.407524	Windows7.1-linklocal	ff02::16	ICMPv6	0

- MLD is the perfect protocol for the job.
- Pre-enabled in Windows, Linux and FreeBSD
- Reports are sent even before the ND Process starts
- Hosts must respond to Queries
- Works even when responses to ICMPv6 are disabled

Trivial Host Discovery and Fingerprinting (II)

os	Multicast Group	Service
IOS 15.4(3) M	ff02::2	All IPv6 routers on the Link
	ffo2::d	PIM routers
	ff02::16	All MLDv2 capable routers
	ff02::1:2	All DHCP servers and relay agents
FreeBSD 10.0	ff02::2:ff2e:b774	IPv6 Node Information Query
	ff02::2:2eb7:74fa	IPv6 Node Information Query (Invalid)
Ubuntu 14.04	ffo2::FB	Zero Configuration Networking
Windows 8.1	ffo2::C	SSDP
	ff02::1:3	LLMNR

Is MLD really not used at all?

Well, it's more complex than that ...

Of Course, Multicast Applications

Whether intra or inter-domain, you wouldn't want all those video streams to get broadcasted like crazy.

Funky Note #5, The Neighbor Discovery Protocol

- No broadcast, all-nodes multicast address instead.
- Every IPv6 address has a associated derived Solicited-Node multicast group.
- All relevant Solicited-Node groups must be joined by a node during interface initialization.
- ¬ RFC 4861: "joining the solicited-node multicast address is done using a Multicast Listener Discovery protocol such as the [MLD] or [MLDv2] protocols."

Funky Note #6, Duplicate Address Detection

Note that when a node joins a multicast address, it typically sends a Multicast Listener Discovery (MLD) report message [RFC2710] [RFC3810] for the multicast address. In the case of Duplicate Address Detection, the MLD report message is required in order to inform MLDsnooping switches, rather than routers, to forward multicast packets. In the above description, the delay for joining the multicast address thus means delaying transmission of the corresponding MLD report message. Since the MLD specifications do not request a random delay to avoid race conditions, just delaying Neighbor Solicitation would cause congestion by the MLD report messages. The congestion would

RFC 4862

All this for What? (I)

All this for What? (II)

- **Normal** multicast **traffic**, ICMPv6 in this case, is appropriately **forwarded**.
- **ND-related traffic** just gets **broadcasted**.
- Cisco seemingly followed the easy route here.

See: http://tools.ietf.org/id/draft-pashby-magma-simplify-mld-snooping-01.txt

	Interface	SRC ADD	DST ADD	Information
.516049000	0	2001:db8:1::bad	ff02::1:ff00:db8	Neighbor Solicitation for ff08::db8
.516183000	2	2001:db8:1::bad	ff02::1:ff00:db8	Neighbor Solicitation for ff08::db8
.516186000	1	2001:db8:1::bad	ff02::1:ff00:db8	Neighbor Solicitation for ff08::db8
.949196000	1	2001:db8:1::aa	ff08::db8	Echo (ping) request id=0x10ad, seq=1

Wrap-Up

What have we learned?

Some Ideas for Admins

- **Limit** the **rate** at which your infrastructure components process MLD messages.
- ¬ If you're not running multicast applications, stay away from MLD-Snooping
- If pertinent, consider filtering MLD messages on your access and distribution layers; at least Queries.
- Don't enable full multicast routing or MLD-Snooping for few services. Configure multicast groups used for critical services **statically** (e.g. DHCPv6)

A Couple of Points for the IETF

- ¬ MLDv2: Routers must not accept Queries destined to FF02::2, FF02::16, or unicast addresses, link-local or global.
 - "For debugging purposes" isn't a valid reason
- ¬ MLDv1: Nodes must not accept Reports to their unicast addresses.
- Both: Querier election by using the 'lowest' IPv6 address? Is such a trivial mechanism really useful?

Future Work

- Telcos are deploying IPv6 multicasting in their IPTV solutions
- Surveillance using IP cameras is widespread. As IPv6 gains traction IPv6 multicast is likely to also come into play
- Video-conferencing is now sought after by 'the management'. Solutions also rely on multicasting
- How are cheap appliances and simple networks going to deal with what allegedly is the 'future' of the Internet?

Conclusions

- ¬ You have MLD traffic in your IPv6 network, yes you do!
- ¬ Theory says MLD is required for ND, practice shows it isn't
- MLD introduces complexity and a immature codebase
- MLD is crucial for IPv6 multicasting, but not for your typical IPv6 network.
- ¬ If multicasting is the future, more people have a critical look at the protocols that power it, among them MLD
- ¬ The IETF should reconsider the role and design of MLD

Thank You for Your Time!

Enjoy BlackHat Asia!

Antonios Atlasis aatlasis@secfu.net

Jayson Salazar jsalazar@ernw.de

Rafael Schaefer rschaefer@ernw.de