

Reporting reproducible model studies; an example study using JWS Online and SEEK

Jacky L. Snoep et al.,

JWS Online team, SysMO-DB teams at Manchester and at HITS

JWS Online as a service

JWS Online: link to scientific journals

FEBSJ, IET-SB, Microbiology, Metabolomics

Intermediate instability at high temperature leads to low pathway efficiency for an *in vitro* reconstituted system of gluconeogenesis in *Sulfolobus solfataricus*

Theresa Kouril¹, Dominik Esser¹, Julia Kort¹, Hans V. Westerhoff^{2,3,4}, Bettina Siebers¹ and Jacky L. Snoep^{2,3,5}

- 1 Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Germany 2 Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
- 3 Manchester Centre for Integrative Systems Biology, Manchester Institute for Biotechnology, University of Manchester, UK
- 4 Synthetic Systems Biology, University of Amsterdam, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- 5 Department of Biochemistry, Stellenbosch University, Matieland, South Africa

Database

The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/database/kouril/index.html. The investigation and complete experimental data set is available on the SEEK at https://seek.sysmo-db.org/investigations/51.

degradation of the thermolable intermediates dinydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency.

Database

The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/database/kouril/ index.html. The investigation and complete experimental data set is available on the SEEK at https://seek.sysmo-db.org/investigations/51.

Abbreviations

BPG, 1,3-bis-phosphoglycerate; DHAP, dihydroxyacetone phosphate; EMP, Embden-Meyerhof-Parnas; FBPA/ase, fructose 1,6-bisphosphate aldolase/phosphatase (EC 4.1.2.13); F6P, fructose 6-phosphate; GAP, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate; GAPDH; GAPDH;

4666

FEBS Journal 280 (2013) 4666-4680 @ 2013 FEBS

JWS Online interface

RatePLot: Isolated reaction interrogation and link to model construction data

Model simulation and link to model validation data

SED-ML output and simulation

SED-ML output and simulation (launchSEDMLquery.jsp)

SED-ML simulation results:

tanget="Kgap(WSparam" newvalue="0.83766"></changeattribute><changeattribute target="kGDH(WSparam" newvalue="10">
</changeattribute><changeattribute><changeattribute><changeattribute>

tanget "Knadp/WSparam" newvalue = "0.271013"> </changeattribute > <changeattribute target = "Knadph/WSparam" newvalue = "0.0735253"> </changeattribute > <changeattribute > <changeattri

Task: simulateModel Model: urn:miriam:jws:kouril3 10 8 9ic pep pyr 0 20 40 60 80 100 120 146

Load example 1 Load example 2 Choose File no file selected

Intermediate instability at high temperature leads to low pathway efficiency for an *in vitro* reconstituted system of gluconeogenesis in *Sulfolobus solfataricus*

Theresa Kouril¹, Dominik Esser¹, Julia Kort¹, Hans V. Westerhoff^{2,3,4}, Bettina Siebers¹ and Jacky L. Snoep^{2,3,5}

- 1 Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Germany 2 Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
- 3 Manchester Centre for Integrative Systems Biology, Manchester Institute for Biotechnology, University of Manchester, UK
- 4 Synthetic Systems Biology, University of Amsterdam, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- 5 Department of Biochemistry, Stellenbosch University, Matieland, South Africa

Database

The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/database/kouril/index.html. The investigation and complete experimental data set is available on the SEEK at https://seek.sysmo-db.org/investigations/51.

degradation of the thermolable intermediates dinydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency.

Database

The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.mib.ac.uk/database/kouril/ index.html. The investigation and complete experimental data set is available on the SEEK at https://seek.sysmo-db.org/investigations/51.

Abbreviations

BPG, 1,3-bis-phosphoglycerate; DHAP, dihydroxyacetone phosphate; EMP, Embden-Meyerhof-Parnas; FBPA/ase, fructose 1,6-bisphosphate aldolase/phosphatase (EC 4.1.2.13); F6P, fructose 6-phosphate; GAP, glyceraldehyde 3-phosphate; GAPDH, glyceraldehyde 3-phosphate; GAPDH; GAPDH;

4666

FEBS Journal 280 (2013) 4666-4680 @ 2013 FEBS

JWS Online: link to SEEK/projects

Thank you!

