

TD Nº3: Les Diodes à semi-conducteur

Eléments Électronique-AP2

2018-2019

Excercice 1:

On considère un barreau de silicium intrinsèque. On donne: la charge d'électron e=1,6.10⁻¹⁹ C, la constante de Boltzmann k=1,38.10⁻²³ J/K, le nombre d'Avogadro $N_A=6,0210^{23}\, \text{mol}^{-1}$, la constante de Planck h=6,6.10⁻³⁴ J.s, la masse atomique =28.08 g. Masse volumique= 2,33.10³ kg.m⁻³. La largeur de la bande interdite $E_g=1,1$ ev (supposée indépendante de la température). Les concentrations effectives des porteurs dans la bande de conduction et la bande de valence est:

$$N_{\rm C} = 3.10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}} {\rm atomes/cm^{-3}} \qquad N_{\rm V} = 10^{19} \left(\frac{T}{300}\right)^{\frac{3}{2}} {\rm atomes/cm^{-3}}$$

- 1. Calculer la concentration n_i des des porteurs à 300 K.
- 2. Le barreau est maintenant dopé à raison d'un atome d'antimoine (Sb) pour 5.10¹² atomes . Déterminer la concentration des impureté introduites. Quel type de semi-conducteur obtient-on ? (dans quelle colonne de la classification périodique se situe cet atome?).
- Après avoir rappelé comment on établit les expressions générales donnant les concentrations des porteurs n et p en fonction de n_i et des concentrations des impuretés acceptrices et donatrices, déterminer ces concentrations à 300 K.
- 4. On admet que le barreau de silicium redevient pratiquement intrinsèque lorsque n_i dèpasse de 10 fois la valeur de la concentration des impuretés introduites. A quelle température minimum doit-on chauffer le barreau pour se trouver dans un tel cas ?

Excercice 2:

Le Germanium (Masse volumique(ρ) =5,323 g.cm⁻³, $n_i = 2,510^{13}$ cm⁻³) est dopé à raison d'un atome d'Arsenic (V colonne) pour 10^6 atomes de Germanium.

- 1. Quel semi-conducteur obtient-on? Calculer n_0 et p_0 .
- 2. Sachant que $\mu_n = 3500 \, \mathrm{cm}^2 \mathrm{V.s}$ et $\mu_p = 1500 \, \mathrm{cm}^2 \mathrm{V.s}$, calculer la conductivité du cristal dopé ainsi que sa résistivité. Comparer cette valeur du matériau intrinsque ($\mu_n = 3900 \, \mathrm{cm}^2 \mathrm{V.s}$) et $\mu_p = 1900 \, \mathrm{cm}^2 \mathrm{V.s}$)
- 3. On considère un barreau de Germanium dopé comme précédemment de section 1.2 mm² et de longueur 1.3 cm soumis à une d.d.p de 0,5 V. Calculer la densité du courant, J, et le courant I.

Excercice 3:

Soit le circuit de la figure 1; la tension d'entée est supposé sinusoïdale :

$$V_e = E_M \sin(\omega t)$$

On suppose au départ que la diode est idéale (1^{ière} approximation):

Figure 1: Écrêteur unilatéral

- 1. Déterminer la tension de sortie, V_s , et tracer la caractétique de transfert $V_s = f(V_e)$
- 2. Refaire la même question on tenant compte de la tension seuil de la diode V_{seuil} ($2^{i\`{e}me}$ approximation).
- 3. Refaire la même question on tenant compte de la tension seuil et la résistance dynamique de la diode (V_{seuil}, R_d) (3^{ième} approximation).

Excercice 4:

Soit D une diode à jonction PN au Silicium. Sa caractéristique peut être approchée par la courbe de la figure 2 a).

Figure 2: caractéristique a) et montage de polarisation de la diode b)

- 1. La diode D est inséré dans le circuit de figure 2 b).
 - (a) Écrire l'équation de la droite de charge la diode. Tracer cette droite dans le plan (V_d,I_d) . Déterminer graphiquement et avec calcul les coordonnés du point de fonctionnement $P(V_{d0},I_{d0})$ de la diode.

On donne $E_1=12\,V,\,R_1=400\,\Omega$ et $R_2=100\,\Omega$.

On suppose que E₁ n'a plus une valeur fixe, régime dynamique, mais évolue selon la loi :

$$e_1 = E_1 + E_{1m} \sin(2\pi f t)$$

Avec f=50 Hz, $E_1 = 12 \text{ V}$ et $E_{1m} = 2 \text{ V}$

(b) Donner l'équation de variation de la droite de charge.

- (c) Comment se déplace la droite de charge au cours du temps ?
- (d) Donner les deux positions extrême de la droite de charge.
- (e) Tracer les variations de la droite de charge, celle du courant i_d et de la tension v_d
- 2. La diode D est insérée dans le circuit de la figure 3 a). On donne E=8V, $R_3=820\Omega$, $R_4=82\Omega$, $R_5=25,45\Omega$ et $R_u=100\Omega$.

Figure 3: montage de polarisation d'une diode du signal a) et celui d'une diode Zener b)

- (a) Donner le schéma équivalent de la diode.
- (b) Calculer e_{th} et R_{th} du générateur de Thévenin alimentant la diode et la résistance d'utilisation R_u . On donne:

$$v_e = 150 \sin(\omega t)$$

- (c) Lorsque la diode est passante, représenter le schéma équivalent du circuit.
- (d) Exprimer i_d et v_d en fonction v_e.
- (e) A quelle condition i_d s'annula t-il? donner la nouvelle expression de v_s en fonction de v_e

Excercice 5:

Une diode Zener de tension $V_z=45\,V$ est utilisée pour réguler une tension sinusoïdale redressée et filtrée, susceptible de varier entre $40V \le V_z \le 60V$ -voir figure 3 b).

On considère que la résistance dynamique de la diode R_z est nulle. On donne $R_u=1.8\,k\Omega$

- 1. Lorsque $V_e = 40V$, on mesure $i_1 = 20 \text{ mA}$, déduire R_1 .
- 2. A partir de quelle valeur de V_e, la tension de sortie est-elle régulée?
- 3. Donner V_s en fonction de V_e .
- 4. Calculer l'intensité du courant dans la diode quand $V_{\text{e}} = 60\,\text{V}$