

LINEAR PROGRAMMING FORMULATBIONS

2 h o 3)	
$\max Z = c^T x c$	
χ.	
Subject to Axx 6 11/12 by	
76 Ye 0	
a draw the constraints as lines and shade the	
feasible region	
@ if beasible region is bounded, find the coordinates of	
Corner points, bank w	
(3) find which corner point gives the optimal value for	
the objective.	
Jan Jan	
(c) if feasible region is empty, then no solution exists.	
d b	
3. Special cases:	
LP can be either:	
a) in feasible mes	
(b) unbounded	
(c) have onique optimal solution value Z*	
Q: does (a) imply every LP have a unique optimal	2
Solution 2 months	
A: no, there can be so-many solutions as well.	

• a: can (b) and (e) occor simultaneously.

A: if LP is unbounded, it will not have unique optimal solution value z*.

PATTERN CLASSIFICATION

LINE FITTING AS LP

we are given a set of N points (kgy), and we are asked to fit (or find) a line

(say ax+b=y) that minimizes an "error"

(in predicting y) c'e, fonda and b by.

 $\frac{1}{a_3b} \frac{1}{b^2} \left[y_1 - (ax_1 + b) \right]$

for objective is to find a and b corresponding to the optimal line y = ax+b

we can prewrite the problem as wood

 $m(n) \sum_{i=1}^{N} e_i$

e what are the constraints.

• what are c, A, b for this LP (standard form)

, = , = , |

(cTx) max C1x1 + C2x2+ ... Cn nn subject to anxi + aixxx + ... ain xn &b, az x + az 2+ - . . azn xn & bz (Axsb) amin + amin + ... amin xin & bm re Rn Ki >, 0 LP x G Zn P Q A ... to learn! x* Coord) art of Converting Д Solver Z x Cvalue) b real world problems to LP. algo i real problem algo 2 IP why difficult LP problem can be eithen O unique

O un beasible

3 unbounded

		Date 20.1.2020 Page 4	
	min y - (ax + b) asb		
	min \(\sum_{\text{x}} \) e:	ens. Jes	
Li norm:	1 y - (ax; +b) < e;	e, E anno	
	er >, 0		
>>	min $\sum e_i$ min $\sum_{a_0 b_0 e_i}^{N} e_i$		
L2 norm!	min (yo - (anotb))2		
easy	Li norm: absolute error 4		
easy	L2 norm; mean square error +		
hard	10 norm: max. no. of zero err	or 1	
Ş	Los norm; least max. error, i.	e. Cost (max ei) }	

PATTERN CLASSIFICATION AS LP

examples how do we bond a separating line that also maximizes a margin/distance from the line.

maximize & subject to

again find there, A, b for this LP problem as per standard form?

note that the distances have been measured along Y-axis; not the orthogonal distance from the line y = ax + b

equations but flip the inequality signs does anything change?

MAX FLOW PROBLEM

ford - fulkerson algorithm.

max flow passing from a source node s to a destination hade T in a graph G (V, E) is the min. rapacity which when removed from the network

results in zero flow from S to T.

· think of this as the maximum amount of water that can go from A to B in a pipe network in a city COMP. architect. you have seen this in your algorithms class as

this is exactly equal to the min s-T out problem: a cut on the minimum on of edge weights such that

Sa and I are on opposite sides of the cot. review: max flow - mincut theorm.

max. 6(su) + 6(s,v)

(total flow from source node)

max {(s,v) + {(s,v)

subject to

f(s,v) = f(v,v) + f(v,t)

6(s,v) = f(v,t)

0 & f(s,v) < 10

0 < ((s,v) < 5

0 < f(0, e) < 5

0 & f (v, t) & 10

find c, A, b for the given graph.

0 5 ((6, v) 5 5