CSE202 Design and Analysis of Algorithms

Week 2 — Divide & Conquer 1: How fast can we multiply?

Naive Multiplication

Input: two *n*-digit integers

n multiplications + O(n) carries

•

n multiplications + O(n) carries

 $O(n^2)$ additions + O(n) carries

Output: $\leq 2n$ digits

Total: $O(n^2)$ digit (or bit) operations

For integers $\leq N$ this is $O(\log^2 N)$

Quadratic algorithm: #operations $O(n^2)$ for an input size n

One Second of Computation

With a good polynomial or integer library, 1 sec. is sufficient to

multiply two integers with 30,000,000 digits; multiply two polynomials of degree 650,000; multiply two matrices of size 850x850; (but factor an integer with 42 digits only).

1 sec. is in the asymptotic regime of the algorithms

Divide and Conquer

I. Polynomials

Polynomials and Integers

Polynomials behave like integers, without carries

Divide & Conquer by Itself Doesn't Help

F and G of degree $\langle n \mapsto H := FG$

- 1. If n = 1 return FG
- 2. Let $k := \lceil n/2 \rceil$
- 3. Split $F = F_0 + x^k F_1$, $G = G_0 + x^k G_1$ F_0, F_1, G_0, G_1 of degree < k
- 4. Compute recursively

$$H_0 := F_0G_0, H_1 := F_0G_1, H_2 := F_1G_0, H_3 := F_1G_1$$

5. Return $H_0 + x^k(H_1 + H_2) + x^{2k}H_3$

Complexity: $C(n) \le 4C(\lceil n/2 \rceil) + \lambda n$ coefficient operations

Complexity of the Naive DAC

$$C(n) \le 4C(\lceil n/2 \rceil) + \lambda n$$

iterate once

$$\leq \lambda n + 4\lambda \lceil n/2 \rceil + 16C(\lceil n/2 \rceil_2)$$

Notation:

$$\lceil x/2 \rceil_1 = \lceil x/2 \rceil$$

$$\lceil x/2 \rceil_{k+1} = \lceil \lceil x/2 \rceil_k / 2 \rceil$$

N: power of 2 s.t.

$$n \le N < 2n$$

iterate k-1 times, use N

$$\leq \lambda N \left(1 + 2 + \cdots + 2^{k-1}\right) + 4^k C(\lceil n/2 \rceil_k)$$

bound geometric series

$$\leq 4^k \left(\lambda \frac{N}{2^k} + C(\lceil n/2 \rceil_k) \right)$$

use
$$k = \lceil \log_2 n \rceil$$

$$= O(n^2)$$

An extra idea is needed to beat the naive algorithm

Polynomials of Degree 1

$$F = f_0 + f_1 T$$
, $G = g_0 + g_1 T$ \mapsto $H := FG = h_0 + h_1 T + h_2 T^2$

Naive algorithm:

$$H = (\underbrace{f_0 g_0}) + (\underbrace{f_0 g_1} + \underbrace{f_1 g_0}) T + \underbrace{f_1 g_1} T^2 \qquad \text{4 multiplications}$$
 & 1 addition

Interpolation from 3 values:

$$h_0 = F(0)G(0) = f_0 g_0$$
 1 mult.
 $h_2 = {}^{\shortparallel}F(\infty)G(\infty){}^{\shortparallel} = f_1 g_1$ 1 mult.
 $\tilde{h}_1 = h_0 + h_1 + h_2 = F(1)G(1) = (f_0 + f_1)(g_0 + g_1)$ 1 mult.

$$FG = h_0 + (\tilde{h}_1 - h_0 - h_2)T + h_2T^2$$

3 multiplications, 2 additions, 2 subtractions

Karatsuba's Algorithm

F and G of degree $\langle n \mapsto H := FG$

Idea: Evaluate $FG = h_0 + (\tilde{h}_1 - h_0 - h_2)T + h_2T^2$ at $T = x^k$.

- 1. If *n* is small, use naive multiplication
- 2. Let k := [n/2]
- 3. Split $F = F_0 + x^k F_1$, $G = G_0 + x^k G_1$ F_0, F_1, G_0, G_1 of degree < k
- 4. Compute recursively

$$H_0 := F_0 G_0, H_2 := F_1 G_1, \tilde{H}_1 := (F_0 + F_1)(G_0 + G_1)$$

5. Return
$$H_0 + x^k(\tilde{H}_1 - H_0 - H_2) + x^{2k}H_2$$

$$u_n = n + 3u_{\lceil n/2 \rceil}, u_1 = 1$$

Complexity: $C(n) \le 3C(\lceil n/2 \rceil) + \lambda n$ coefficient operations

Complexity of Karatsuba's Algorithm

$$C(n) \le 3C(\lceil n/2 \rceil) + \lambda n$$

iterate once

$$\leq \lambda n + 3\lambda \lceil n/2 \rceil + 9C(\lceil n/2 \rceil_2)$$

iterate k-1 times, use N

$$\leq \lambda N \left(1 + \frac{3}{2} + \dots + \left(\frac{3}{2} \right)^{k-1} \right) + 3^k C(\lceil n/2 \rceil_k)$$

reorder sum

$$\leq \lambda N \left(\frac{3}{2}\right)^{k-1} \left(1 + 2/3 + \dots + (2/3)^{k-1}\right) + 3^k C(\lceil n/2 \rceil_k)$$

bound geometric series

$$\leq 3^k \left(2\lambda \frac{N}{2^k} + C(\lceil n/2 \rceil_k) \right)$$

 $use \\ k = \lceil \log_2 n \rceil$

$$\leq (2\lambda + 1)3^{\lceil \log_2 n \rceil} = O(n^{\log_2 3})$$

$$\approx 1.58$$

Notation:

$$\lceil x/2 \rceil_1 = \lceil x/2 \rceil$$

$$\lceil x/2 \rceil_{k+1} = \lceil \lceil x/2 \rceil_k / 2 \rceil$$

N: power of 2 s.t.

$$n \le N < 2n$$

II. Integers

From Polynomials to Integers

Recall: Polynomials behave like integers, without carries

No theorem of complexity equivalence exists, but the algorithms over polynomials can often be adapted to integers, with the same complexity.

Karatsuba's Algorithm for Integers

$$F$$
 and G integers $< 2^n \mapsto H := FG$

- 1. If *n* is small, use naive multiplication
- 2. Let $k := \lceil n/2 \rceil$
- 3. Split $F = F_0 + 2^k F_1$, $G = G_0 + 2^k G_1$ $F_0, F_1, G_0, G_1 < 2^k$

in the polynomial version.

Obtained by changing

4. Compute recursively

$$H_0 := F_0 G_0, \quad H_2 := F_2 G_2, \quad \tilde{H_1} := (F_0 + F_1)(G_0 + G_1)$$

5. Return $H_0 + 2^k (\tilde{H}_1 - H_0 - H_2) + 2^{2k} H_2$

Same algorithm as for polynomials, similar (not exactly the same) complexity analysis.

$$\rightarrow O(n^{\log_2 3})$$
 bit operations

Experiments in Python

A Python long integer is stored using a list of 30-bit digits (CSE 101)

```
import timeit, math
import matplotlib.pyplot as plt

def testmul(nbdigits,nbtimes):
    # produce two integers with nbdigits decimal digits
    a = 7**math.trunc(nbdigits*math.log(10,7))
    b = 9**math.trunc(nbdigits*math.log(10,9))
    def doit():
        return a*b
    return min(timeit.repeat(doit,number=nbtimes,repeat=3))/nbtimes

t = [500*i for i in range(1,100)]
L = [testmul(i,20) for i in t]
plt.loglog(t,L)
```


Application: Fast Evaluation of Linear Recurrences with Constant Coefficients

Ex.: F_{100} where $F_{n+2} = F_{n+1} + F_n$, $F_0 = F_1 = 1$ (Fibonacci)

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = M^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

 $\longrightarrow O(\log n)$ coefficient operations by binary powering

$$M^{99} = ((M^2M)^{16}M)^2M$$

Exercise (more difficult): estimate the number of **bit** operations

Works for all linear recurrences with constant coefficients

Which of these Algorithms is Best?

None of them!

GMP (the Gnu Multiprecision Library) uses:

# 64-bit words	approx # digits	Algorithm	
0	0	Naive	
26	500	Karatsuba	
73	1.400	Toom - 3	Assignment
208	4.000	Toom - 4	this week
4736	90.000	FFT	Next week

III. Matrices

Matrix Multiplication: Strassen's Algorithm

Input: two $n \times n$ matrices A, X with $n = 2^k$

Output: AX

1. If n = 1, return AX

2. Split
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
, with $(n/2) \times (n/2)$ blocks

3. Compute recursively the 7 products

$$\begin{aligned} q_1 &= a(x+z), \ q_2 = d(y+t), \ q_3 = (d-a)(z-y), \\ q_4 &= (b-d)(z+t), \ q_5 = (b-a)z, \\ q_6 &= (c-a)(x+y), \ q_7 = (c-d)y \end{aligned}$$
 Exercise: prove the complexity in $O(n^{\log_2 7})$ operations.

4. Return
$$\begin{pmatrix} q_1 + q_5 & q_2 + q_3 + q_4 - q_5 \\ q_1 + q_3 + q_6 - q_7 & q_2 + q_7 \end{pmatrix}$$

World Records

Best algorithm for matrix multiplication

Classical 3 **Through the years*** 1969 Strassen 2.808 **Strassen Pan 2.796** 1978 Pan 2.796** **Through the years** 1978 Pan 2.796** 2.796 Pan 2.
1969 Strassen 2.808 Strassen Pan 2.796
1981 Schönhage 2.522
1982 Romani 2.517
C., W. Stressen Multers 1981 Coppersmith-Winograd 2.496
c., w. 2.376 1986 Strassen 2.479
1989 Coppersmith-Winograd 2.376
Big Open Question: 2012 Vassilevska Williams 2.3729
is 2 the limit? 2014 Le Gall 2.3728

References for this lecture

The slides are designed to be self-contained.

They were prepared using the following books that I recommend if you want to learn more:

Next

Assignment this week: generalisation of Karatsuba's algorithm

Next tutorial: DAC for sequences, sums and polynomials

Next week: fast Fourier transform

Feedback

Moodle

Questions or comments: <u>Bruno.Salvy@inria.fr</u>