Transistor NMOS:il concetto di soglia

Transistor NMOS : corrente I_{DS}

MOS transistor and its bias conditions

Transistor NMOS: Saturazione

Transistor NMOS canale lungo: Caratteristica I_{DS}-V_{DS}

Transistor NMOS canale corto: Caratteristica I_{DS}-V_{DS}

Transistor NMOS: Modello

Linear Region: $V_{DS} \leq V_{GS} - V_{T}$

$$I_D = k_n \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

with

$$k'_n = \mu_n C_{OX} = \frac{\mu_n \varepsilon_{OX}}{t_{OX}}$$
 Process Transconductance Parameter

Saturation Mode:
$$V_{DS} \ge V_{GS} - V_{T}$$
 Channel Length Modulation
$$I_D = \frac{k'_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

k' = transconduttanza (processo) W/L = fattore di forma (transistor)

 $k = k' \cdot W/L = fattore di guadagno [A/V²] (transistor)$

Transistor MOS: valori tipici

Linear Region: $V_{DS} \leq V_{GS} - V_{T}$

$$I_D = k_n \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$$

with

$$k'_n = \mu_n C_{OX} = \frac{\mu_n \epsilon_{OX}}{t_{OX}}$$
 Process Transconductance Parameter

Saturation Mode:
$$V_{DS} \ge V_{GS} - V_{T}$$
Channel Length Modulation
$$I_D = \frac{k'_n W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

	V _{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

Transistor PMOS canale corto: Caratteristica I_{DS}-V_{DS}

Assume all variables negative!

$$\begin{array}{ccc} N.B & V_{THp} < 0 & V \\ & K'_{p} < 0 & A/V^{2} \end{array}$$

Il transistore MOS come interruttore

NMOS

• • Inverter: dalla porta logica al circuito logico

Porta Logica

Ingresso	Uscita
falso	vero
vero	falso

Circuito Logico (logica positiva)

Ingresso	Uscita
0V	V_{DD}
V_{DD}	0V

L' inverter CMOS : comportamento statico

N.B.
$$V_{DD} > |V_{TH}|$$

L' inverter CMOS : caratteristiche

- Impedenza di ingresso altissima: I_{IN}= I_G=0A
- Impedenza di uscita bassa (R_{ON})
- Consumo <u>statico</u> nullo (V_{IN}=0 opp V_{IN}=V_{DD})

Inverter CMOS: caratteristica statica V_{in}-V_{out} (VTC)

Inverter CMOS : caratteristica statica V_{in}-V_{out} (VTC)

N.B. V_{DD} =2.5V

Inverter CMOS : caratteristica statica V_{in}-V_{out} (VTC)

Inverter CMOS : caratteristica statica V_{in}-V_{out} (VTC)

Robustezza dell' Inverter CMOS

Il comportamento reale di un gate (anche non CMOS) può essere diverso da quello ideale per molte ragioni ed in particolare a causa di:

- Dispersione dei parametri di processo
- Inaccuratezza del processo di fabbricazione
- Rumore durante il funzionamento

Robustezza dell' Inverter CMOS

Occorre definire di parametri che esprimano la **robustezza** del gate riguardo alle non idealità ed in particolare al rumore.

In particolare definiremo i seguenti parametri:

- Soglia logica
- Margine di rumore
- Fan-in
- Fan-out

• • Fan-in e Fan-out

- Fan-in: numero di ingressi della porta logica
 all' aumentare del fan-in aumenta la complessità della porta.
 Inoltre le prestazioni statiche e dinamiche si riducono
- Fan-out: numero di porte collegate all' uscita di un gate.
 All'aumetare del Fan-out aumenta la capacità di carico e
 quindi vengono degradate le prestazioni dinamiche del gate.

Le regole di progetto (design rules) devono limitare questi due parametri in modo da non creare colli di bottiglia.

Soglia logica V_M

La soglia logica (V_M) è per definizione il valore della tensione di ingresso cui corrisponde uguale tensione di uscita. Osservano la VTC, questo valore è quello di intercetta con la retta V_{in} = V_{out} (bisettrice)

Margini di rumore (NM_H e NM_L)

Siano V_{OH} e V_{OL} i livelli <u>nominali</u> di uscita di un gate corrispondenti ad un analogo valore nominale applicato all' ingresso.

<u>Definiamo</u> inoltre V_{IH} e V_{IL} i valori limite per i livelli di ingresso. Questi sono definiti nominalmente come i livelli corrispondenti ai punti della VTC a pendenza pari a -1. I margini di rumore sono quindi <u>definiti</u> come:

$$NM_L = V_{IL} - V_{OL}$$
 e $NM_H = V_{OH} - V_{IH}$

Margini di rumore ($NM_H e NM_L$)

Proprietà rigenerativa

Porta logica rigenerativa

$$\begin{array}{c|c} X & \hline & Y & \hline & 12 & O & Z \\ \hline & Z = Y' = (X')' = X & \end{array}$$

Attraverso I1 (da X a Y)
Attraverso I2 (da Y a Z)

Il passaggio 4 (l'arco) serve a riportare l'uscita del primo inverter (Y) sull'asse delle ascisse, per poi utilizzare la stessa curva (che è anche la VTC del secondo inverter)

Porta logica <u>non</u> rigenerativa

Non tutte le VTC permettono la rigenerazione

Caratteristica ideale

Se:

$$V_{OL}$$
=0V, V_{OH} = V_{DD} , V_{IL} = V_{IH} = V_{DD} /2 e V_{M} = V_{DD} /2

allora i margini di rumore sono uguali e massimi.

La VTC dell' inverter CMOS si avvicina all'idealità.

• • Calcolo della soglia logica

La soglia logica (V_M) si trova imponendo che le due correnti siano uguali e $V_{out} = V_{in}$. Tale condizione si verificherà nella zona (c) dove entrambi i MOS sono in saturazione.

$$V_{\text{gs}} = V_{\text{in}} = V_{\text{M}}$$

$$V_{\text{sg}} = V_{\text{DD}} - V_{\text{in}} = V_{\text{DD}} - V_{\text{M}}$$

$$\frac{K_n}{2} (V_{in} - V_{TN})^2 = \frac{|K_p|}{2} \cdot (V_{DD} - V_{in} - |V_{TP}|)^2$$

$$V_{M} = \frac{\sqrt{\frac{|K_{p}|}{K_{n}}} \cdot (V_{DD} - |V_{TP}|) + V_{TN}}{1 + \sqrt{\frac{|K_{p}|}{K_{n}}}}$$

$$\operatorname{con} K_p = K_p' \cdot S_p$$

$$K_n = K_n' \cdot S_n$$

K = Fattore di guadagnoK'= Transconduttanza di processo

$$S_p = W_p/L_p$$
 $S_n = W_n/L_n$

• • Dimensionamento del gate

$$V_{M} = \frac{\sqrt{\frac{|K_{p}|}{K_{n}}} \cdot (V_{DD} - |V_{TP}|) + V_{TN}}{1 + \sqrt{\frac{|K_{p}|}{K_{n}}}}$$

Osservazione:

Dalle considerazioni precedenti si deduce che nel caso dell' inverter CMOS un dimensionamento ottimale di V_M è $V_{M\cong}V_{DD}/2$

Tale valore si raggiunge se si verificano le seguenti uguaglianze:

$$K_p \cong K_n$$
 e $|V_{TP}| \cong V_{TN}$

Se la seconda dipende dal processo di fabbricazione, la prima può essere verificata scegliendo opportunamente i rapporti W/L dei transistori.

L' inverter CMOS: comportamento dinamico

(a) Low-to-high

(b) High-to-low

C_L rappresenta la somma (parallelo) di diverse capacità ed in particolare:

- Capacità Drain –Bulk/Well
- Capacità della linea di trasmissione collegata all' uscita del gate
- Capacità di ingresso del gate a valle

Quando il gate commuta, all' uscita si svolge un transitorio di carica/scarica di tipo RC con R e C che cambiano durante il transitorio stesso

Transistore MOS : capacità "interne"

• • Una visione più completa

• • Una visione più completa

L' inverter CMOS in transitorio

- Il comportamento dinamico dell'inverter è caratterizzato da 3 parametri fondamentali:
- 1) Tempo di Propagazione (t_p): il tempo medio necessario perché una transizione in ingresso si propaghi in uscita (50%-50%)
- **2) Tempo di salita (t_r):** il tempo che impiega il segnale in uscita per portarsi da basso a alto (10%-90%)
- 3) Tempo di discesa (t_f): il tempo che impiega il segnale in uscita per portarsi da alto a basso (90%-10%)

L' inverter CMOS in transitorio

t_{pHL}/t_{pLH}= tempo fra una variazione del 50% dell'ingresso ed una del 50% dell'uscita

$$t_p = (t_{pHL} + t_{pLH})/2$$

t_r= tempo variazione dell'uscita dal 10% del valore nom

t_f = tempo di variazione dal 90% del valore nominale alto al 10%

L' inverter CMOS in transitorio

<u>Ipotesi:</u> fronti di salita e discesa di $V_{\rm IN}$ di durata nulla

Tempo di propagazione t_{pHL}

Consideriamo il transitorio di <u>discesa</u>. Dall' inizio il transistore l'NMOS si trova In conduzione, inizialmente in saturazione ($V_{DS}=V_{DD}=V_{GS}>V_{GS}-V_{Tn}$). Il PMOS al contrario è OFF.

Il tempo impiegato dalla tensione al nodo di uscita (drain dell' NMOS) per scendere a V_{DD}/2 può essere calcolato usando la relazione

$$t_p = \int_{v_1}^{v_2} \frac{C_L(v)}{i(v)} dv$$

In questa relazione sia la capacità di carico $\mathbf{C_L}$ che la corrente di drain i dipendono In modo <u>non lineare</u> da \mathbf{v} . Inoltre $v_1 = V_{DD}$ e $v_2 = V_{DD}/2$. Il calcolo può essere effettuato manualmente solo se

- Si trascura la dipendenza da v della capacità C_L
- 2. Al posto di calcolare i(v) si usi il modello resistivo del NMOS utilizzando una resistenza equivalente \mathbf{R}_{EQ}

● ■ Tempo di propagazione t_{pHL}

Durante la prima parte del transitorio l'NMOS si trova in saturazione. In questa zona la dipendenza di I_{DS} da V_{DS} è circa lineare ed è legata al parametro λ che modella l' effetto di canale corto.

Da considerazioni geometriche si può dimostrare che la resistenza $R_{\text{EQ}}\,$ da utilizzare per il calcolo di $t_{\text{p}}\,$ è pari a:

$$\begin{split} R_{eq} &= \frac{1}{V_{DD}/2} \int\limits_{V_{DD}/2}^{V_{DD}} \frac{V}{I_{DSAT}(1+\lambda V)} dV \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{7}{9} \lambda V_{DD}\right) \\ \text{dove} \quad I_{DSAT} &= k! \frac{W}{L} \left((V_{DD} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right) \end{split}$$

Analisi del transitorio alto-basso

Analisi del transitorio basso-alto

Consideriamo una rete RC del 1' ordine con Vout scollegato avremo che la corrente che attraversa il MOS raggiunge interamente il condensatore ($I_R = I_C$)

$$V_{DD} = RC \frac{\partial V_{out}}{\partial t} + V_{out} = V_{out} = VDD \left(1 - e^{-\frac{t}{RC}}\right)$$

Dunque serve una V_{out} o Dunque serve una V_{out} pari a V_{DD} .

Valutiamo il tempo di propagazione al 50% (*) $V_{DD} = V_{DD} \left(1 - e^{-\frac{t}{RC}}\right) => tp = RC \ln 2$ Dunque serve un tempo infinito per raggiungere

$$V_{out} = \frac{V_{DD}}{2} = V_{DD} \left(1 - e^{-\frac{t}{RC}} \right) = > tp = RC \ln 2$$

(*) variazione brusca dell' ingresso

Tempo di propagazione

Ricordandoci che nell' analisi della rete RC del prim'ordine, il tempo di decadimento a V_{DD}/2 (<u>discesa</u>) può essere così calcolato

$$t_{pHL} = \ln(2)R_{eqn}C_L = 0.69R_{eqn}C_L$$

In modo del tutto simmetrico si può stimare il tempo di salita

$$t_{pLH} = 0.69 R_{eqp} C_L$$

Definiamo infine il tempo di propagazione (ritardo) complessivo come

$$t_p = \frac{t_{pHL} + t_{pLH}}{2} = 0.69C_L \left(\frac{R_{eqn} + R_{eqp}}{2}\right)$$

Esempio
Si consideri un inverter CMOS.

Le caratteristiche tecnologiche sono: R_{RIFp} = 31 K Ω , R_{RIFn} = 13 K Ω

I rapporti geometrici dei due transistori sono : W_n/L_n = 1.5 , W_p/L_p = 4.5

Calcolare il tempo di propagazione se $C_1 = 6$ fF

$$R_{eqn} = R_{RIFn}/(W_n/L_n) = 13 \text{ K}\Omega / 1.5 = 8.66 \text{ K}\Omega$$
 $R_{eqp} = R_{RIFp}/(W_p/L_p) = 31 \text{ K}\Omega / 4.5 = 6,88 \text{ K}\Omega$
 $t_{pHL} = \ln(2)R_{eqn}C_L = 0.69R_{eqn}C_L = 36 \text{ ps}$
 $t_{pLH} = 0.69R_{eqp}C_L = 29 \text{ ps}$
 $t_p = \frac{t_{pHL} + t_{pLH}}{2} = 0.69C_L \left(\frac{R_{eqn} + R_{eqp}}{2}\right) = 32.5 \text{ ps}$

Ottimizzazione del tempo di propagazione

Analizzando la dipendenza di t_p da diversi parametri si trova che:

1) <u>Dipendenza da V_{DD} </u>: risulta modesta per V_{DD} elevate. Rilevante per V_{DD} <2 V_{T}

2) Dipendenza da (W/L)_p/(W/L)_n

L' inverter CMOS: consumo di potenza

- Il consumo di potenza è un parametro fondamentale per misurare le caratteristiche di una tecnologia.
- In genere la potenza dissipata da una porta logica si divide in 2 componenti:
 - Statica (consumata in situazione di stabilità dell'uscita)
 - -Dinamica (consumata in commutazione dell'uscita)

Consumo di potenza : definizioni

o Potenza Istantanea:

$$p(t) = v(t) \times i(t) = V_{supply} \times i(t)$$

Potenza di picco

$$P_{peak} = V_{supply} i_{peak}$$

Potenza media

$$P_{avg} = \frac{1}{T} \int_{t}^{t+T} p(t)dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i(t)dt$$

Energia spesa in commutazione

- Ad ogni commutazione del gate viene spesa una certa energia.
- Nel caso dell' inverter CMOS per la transizione L → H, ipotizzando una transizione brusca $V_{DD} \rightarrow 0V$ dell' ingresso (gate) il calcolo può essere eseguito come segue:

L'energia fornita dal generatore V_{DD} è:

$$E_{VDD} = \int_{0}^{\infty} i_{VDD}(t) V_{DD} dt = V_{DD} \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} dt = C_{L} V_{DD} \int_{0}^{\infty} dv_{out} = C_{L} V_{DD}^{2}$$
pergia immagazzinata nel condensatore è:

L'energia immagazzinata nel condensatore è:

$$E_C = \int_0^\infty i_{VDD}(t) v_{out} dt = \int_0^\infty C_L \frac{dv_{out}}{dt} v_{out} dt = C_L \int_0^V v_{out} dv_{out} = \frac{C_L V_{DD}^2}{2}$$

La differenza, pari a $CV_{DD}^2/2$, è quindi dissipata in calore su R ovvero sul PMOS:

• • Energia e potenza dinamica

- Ad ogni commutazione del gate viene spesa una certa energia.
- Durante la transizione H → L, ipotizzando una transizione brusca 0V →V_{DD} → dell'ingresso (gate), l' intera energia immagazzinata nel condensatore viene dissipata
 - sulla resistenza R di scarica e cioè sul transitore NMOS

In un intero ciclo di commutazione L \rightarrow H \rightarrow L quindi l' energia erogata dall' alimentazione è pari a $E = C \cdot V_{DD}^2$

La potenza dinamica assorbita risulterà quindi

$$p_{dyn} = E/T = E \cdot f = C \cdot f \cdot V_{DD}^2$$

Esempio

• Sia dato un inverter in tecnologia CMOS 0.25μm. la capacità C_L al nodo di uscita è 6fF e la tensione di alimentazione è V_{DD} = 2.5V.

L' energia necessaria per caricare e scarica la capacità è

$$E_{dyn} = C_L \cdot V_{DD}^2 = 37.5 \text{ fJ}$$

Ipotizziamo che il gate commuti ad una frequenza di 1 GHz.

La potenza dissipata risulta quindi

$$P_{dyn} = f \cdot E_{dyn} = 37.5 \mu W$$

Potenza di cortocircuito

- Ipotizziamo ora che le transizioni non avvengano in maniera brusca ma con una tempo di salita/discesa finito (t_r, t_f).
- ➤ La VTC viene quindi percorsa in un tempo finito e quindi per un breve periodo i transistori NMOS e PMOS sono entrambi accesi.
- ➤ In questa situazione c'è un cammino diretto fra la V_{DD} e massa.
- La corrente che circola per questo effetto si dice di cortocircuito (I_{SC}).

Potenza di cortocircuito

Approssimando l' andamento della I_{CC} ad un triangolo di base t_{CC} e altezza I_{peak} (dipendente anche dalla capacità di carico) , la corrente media durante il transitorio risulta

$$I_{AVG} = \frac{I_{peak}}{2}$$

L' energia spesa <u>per un intero ciclo di commutazioni L→H→L</u> risulta quindi facilmente calcolabile:

$$E_{CC} = 2 \cdot V_{DD} \cdot I_{AVG} \cdot t_{CC} = V_{DD} \cdot I_{peak} \cdot t_{CC}$$

Infine, la potenza spesa risulterà

$$P_{CC} = E_{CC} \cdot f$$

Consumo statico

- ➤ Nell' inverter CMOS esistono diversi cammini di corrente parassite (sottosoglia e giunzioni in inversa in particolare)
- Queste correnti rappresentano un consumo di potenza definito statico (quindi continuo) di cui si tiene conto raggruppando le correnti in un unico contributo I_{stat}
- ➤ La potenza statica dissipata risulta quindi :

$$P_{stat} = V_{CC} \cdot I_{stat}$$

Consumo totale di potenza

Il consumo totale (massimo) risulta quindi essere:

$$P_{tot} = P_{stat} + P_{dyn} + P_{CC} = V_{CC} \cdot I_{stat} + \left(C_L \cdot V_{DD}^2 + V_{DD} \cdot I_{peak} \cdot t_{CC}\right) \cdot f$$

In realtà il termine dipendente da f va moltiplicato per la probabilità $P_{0\rightarrow 1} < 1$ che si verifichi una transizione $0\rightarrow 1$.

Se definiamo il <u>fattore di attività</u> $f_{0\rightarrow 1}$ come

$$f_{0\to 1} = f \cdot P_{0\to 1}$$

allora

$$P_{tot} = V_{CC} \cdot I_{stat} + \left(C_L \cdot V_{DD}^2 + V_{DD} \cdot I_{peak} \cdot t_{CC} \right) \cdot f_{0 \to 1}$$

• • Figure di merito

1. Prodotto ritardo-consumo (PDP)

Trascurando il consumo statico e di CC ed ipotizzando il funzionamento alla massima frequenza (f_{max} =1/(2 t_p) si ottiene :

$$PDP = P_{av}t_p \qquad PDP = C_L V_{DD}^2 f_{max}t_p = \frac{C_L V_{DD}^2}{2}$$

2. Prodotto energia-ritardo (EDP)

$$EDP = PDP \times t_p = P_{av}t_p^2 = \frac{C_L V_{DD}^2}{2}t_p$$