Ahora, establecemos una cota inferior para $P(E_j|\mathcal{E}_{j-1})$, cuando $\tau_{\sqrt{M}} \leq j \leq \tau_{\frac{M}{2}}$. Para tal j, condicionalmente en \mathcal{E}_{j-1} , existe un número $0 \leq \beta < 1$ tal que $|N_j| \geq M^{\beta}$. En efecto, condicionalmente en \mathcal{E}_{j-1} , tenemos $|N_j| \geq e^j |N_0| \geq e^{\tau_{\sqrt{M}}} \delta$. Como, para cada $T \geq 0$ se cumple $\sum_{l \leq T} |C_l| \leq \sum_{l=0}^T \delta^j \leq \delta^{T+1}$, tenemos

$$\tau_{\sqrt{M}} = \min\{T : \sum_{j=0}^{T} |C_j| \ge \sqrt{M}\} \ge T_m = \min\{T : \delta^{T+1} \ge \sqrt{M}\}.$$

En consecuencia, debe haber un $\beta > 0$ tal que $\tau_{\sqrt{M}} \ge \log(M^{\beta})$, lo cual implica $|N_i| \ge e^{\tau_{\sqrt{M}}} \delta \ge M^{\beta} \delta \ge M^{\beta}$.

Para obtener la cota, usamos la desigualdad de Bernstein.

Condicionalmente en \mathcal{E}_{j-1} , E_m ocurre si al menos $e|E_{j-1}|$ de las $|N_{j-1}|=\delta|E_{j-1}|\geq 6|E_{j-1}|$ variables independientes alcanzaron nuevas comunidades. Por la definición de $\tau_{\frac{M}{2}}$, si $j\leq \tau_{\frac{M}{2}}$, entonces la probabilidad de que las variables $(X_i)_{i\in N_{j-1}}$ (uniformemente distribuidas) encuentren una comunidad vista anteriormente es menor que $\frac{1}{2}$, y por lo tanto, la probabilidad de encontrar an sucesor nuevo es mayor que $P(Y_i=1)$, donde $Y_i\sim Ber(\frac{1}{2})$. Fijamos $\epsilon\geq 0$ tal que $3-\epsilon\geq e$.

Entonces,

$$P(E_j|\mathscr{E}_{j-1}) \ge 1 - P(|\sum_{i=0}^{|N_{j-1}|} (Y_i - \frac{1}{2})| \ge \epsilon |N_{j-1}|).$$

Acotaremos el término de la derecha usando de nuevo la desigualdad de Bernstein.

Aplicamos Bernstein a $(X_i - \frac{1}{2})_{i=1}^n$ con

$$\sigma = \frac{1}{2}$$
 $L = 1$ $t = \frac{\sqrt{\epsilon}\sqrt{n}}{\sigma}$.

Lo que resulta en

$$\alpha = \sqrt{\epsilon}/\sigma \qquad \frac{t^2}{1 + \alpha/3} \ge \frac{\epsilon n}{2\sigma^2} \ge \epsilon n.$$

Tenemos

$$P(|\sum_{i=1}^{|N_{j-1}|} (X_i - \frac{1}{2})| \ge \epsilon |N_{j-1}|) \le 2e^{-\epsilon |N_{j-1}|}.$$

Por lo visto anteriormente, condicionalmente en \mathscr{E}_{j-1} , tenemos $|N_{j-1}| \geq M^{\beta}$, con $\beta > 0$.

Entonces, por Bernstein, obtenemos

$$P(E_j|\mathscr{E}_{j-1}) \ge 1 - 2e^{-\epsilon M^{\beta}} \ge 1 - \frac{1}{M^3}.$$

Donde la última desigualdad cumple para $M \geq M_0$.