Pollair

Erika Yamile Lache Blanco Código: 2140348

MOTIVACIÓN

- Conocer parámetro pm2.5 contaminante en el aire.
- Tomar medidas preventivas de movilidad.
- 3 A largo plazo, Evitar enfermedades pulmonares

- Predecir correctamente el valor del parámetro teniendo en cuenta teniendo en cuanta las seis horas registradas anterior a este.
- Cargar, tratar y almacenar óptimamente el dataset.
- Proponer alternativas que puedan generar mejoras en el resultado final del proyecto.
- Elegir entre las alternativas el método de mayor precisión en la regresión.

TRATAMIENTO DEL DATASET

Total de datos en el dataset = 90345

Dataset resultante = 4.222

- Datos con el parámetro Pm2.5 = 5.4677
- Total de valores = 4.216

Datos con idLocalidad 7063 = 4.458

Valor de elementos nulos (-9.9999) = 236

Recordatorio

Limpieza realizada al dataset para poder implementar los métodos de regresión.

CLASIFICADORES

Decision Tree

modelo que prediga el valor de una variable objetivo en función de varias variables de entrada.

Random Forest

Creado para modelos de clasificación o regresión mediante la construcción de árboles de decisión. Es una de los algoritmos más flexibles y fáciles de implementar.

SVR

Es el tipo de algoritmo de aprendizaje profundo que realiza el aprendizaje supervisado para clasificación o regresión de grupos de datos.

Implementación

DTR

regressor_DTR = DecisionTreeRegressor()
regressor_DTR.fit(X_train_DTR, y_train_DTR)


```
regressor_RFR = RandomForestRegressor()
regressor_RFR.fit(X_train_RFR, y_train_RFR)
```

RFR

```
SVC
```

```
est_SVR = SVR(kernel=kernel)
est_SVR.fit(X_train_SVR, y_train_SVR)
```


Errores obtenidos con la implementación del modelo.

Predicción

Modelo RandomForestRegressor (Valores reales y valores de predicción)

Predicción

-- Esperado

Errores obtenidos con la implementación del modelo.

MSE depth split data 30.817 RMSE depth split data 5.551 MAE depth split data 4.218

Modelo SVR (Valores reales y valores de predicción

Son una seria de algoritmos que imitan las operaciones de un cerebro humano para reconocer las relaciones entre grandes cantidades de datos

Implementación

```
model_DNN = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape = X_train_DNN[0].shape),
    tf.keras.layers.Dense(3, activation=tf.nn.relu),
    tf.keras.layers.Dense(1, activation=tf.nn.relu)
])
```


ERRORES

de cada método

	MSE	RMSE	MAE
DTR	32.955	5.741	4.413
RFR	32.955	5.741	4.413
SUR	30.817	5.551	4.218
RN	_	_	4.206

