Entrega Grupo 3

Íñigo Alemany Sánchez, Alberto Almagro Sánchez, Juan Carlos Llamas Núñez, Enrique Rey Gisbert, Pablo Torre Piñana

1. Sea $u := \sqrt{2 + \sqrt{2 + \sqrt{2}}}$. Demostrar que $\mathbb{Q}(u)|\mathbb{Q}$ es una extensión de Galois y calcular el grupo de Galois $G(\mathbb{Q}(u):\mathbb{Q})$.

Un polinomio anulador de u es $P(t) = ((t^2 - 2)^2 - 2)^2 - 2 = t^8 - 8t^6 + 20t^4 - 16t^2 + 2$, que es mónico y además irreducible en $\mathbb{Z}[t]$ por el Criterio de Eisenstein con el primo 2, lo que es equivalente a su irreducibilidad en $\mathbb{Q}[t]$ por el Lema de Gauss. Por tanto, se tiene que P es el polinomio mínimo de u sobre \mathbb{Q} .

Además, si $\delta_1, \delta_2, \delta_3 \in \{-1, 1\}$, tenemos que $\delta_1 \sqrt{2 + \delta_2 \sqrt{2 + \delta_3 \sqrt{2}}}$ es también raíz de P para cualquier combinación de los δ_i , ya que $(\delta_i)^2 = 1$. Por tanto, para ver que la extensión $\mathbb{Q}(u)|\mathbb{Q}$ es de Galois, debemos probar que las 8 raíces se pueden escribir en función de u. Nos centraremos únicamente en aquellas tales que $\delta_1 = 1$, ya que las otras se pueden obtener multiplicando la expresión resultante por -1.

Comenzamos hallando las expresiones de $\sqrt{2}, r := \sqrt{2 + \sqrt{2}}$ y $s := \sqrt{2 - \sqrt{2}}$, que nos serán útiles más adelante:

$$r = u^{2} - 2$$

$$\sqrt{2} = r^{2} - 2 = u^{4} - 4u^{2} + 2$$

$$s = \frac{\sqrt{2}}{r} = \frac{u^{4} - 4u^{2} + 2}{u^{2} - 2} \stackrel{(*)}{=} \frac{u^{8} - 8u^{6} + 21u^{4} - 20u^{2} + 4}{u^{2} - 2} = u^{6} - 6u^{4} + 9u^{2} - 2$$

En (*) hemos hecho uso de que u es raíz de P, es decir, $-2 = u^8 - 8u^6 + 20u^4 - 16u^2$. Para aplicar la igualdad hemos sumado y restado 2 en el numerador y sustituido el -2.

Con esto, podemos calcular el resto de raíces positivas de P, que denotaremos por:

$$v := \sqrt{2 - \sqrt{2 + \sqrt{2}}}$$
 $w := \sqrt{2 + \sqrt{2 - \sqrt{2}}}$ $x := \sqrt{2 - \sqrt{2 - \sqrt{2}}}$

Entonces, la expresión de v será:

$$v = \frac{s}{u} = \frac{u^6 - 6u^4 + 9u^2 - 2}{u}$$

Podemos calcular w teniendo en cuenta que $w = \sqrt{2+s}$, por lo que, como u > 0, se tiene:

$$w = \sqrt{2+s} = \sqrt{2 + (u^6 - 6u^4 + 9u^2 - 2)} = \sqrt{u^6 - 6u^4 + 9u^2} = |u^3 - 3u| = u|u^2 - 3|$$

Como $\sqrt{2} > 1$, tenemos que $r = \sqrt{2 + \sqrt{2}} > \sqrt{2} > 1$, por lo que $u^2 = 2 + r > 3$, y por tanto:

$$w = u |u^2 - 3| = u (u^2 - 3) = u^3 - 3u$$

Finalmente, podemos obtener x a partir de la expresión de w:

$$x = \frac{r}{w} = \frac{u^2 - 2}{u^3 - 3u}$$

Puesto que hemos podido escribir todas las raíces positivas en función de u, concluimos que $v, w, x \in \mathbb{Q}(u)$, por lo que $\mathbb{Q}(u)$ es un cuerpo de descomposición de P, y por tanto la extensión $\mathbb{Q}(u)|\mathbb{Q}$ es de Galois.

Pasamos ahora a calcular el grupo de Galois $G(\mathbb{Q}(u):\mathbb{Q})$. Sea f el \mathbb{Q} -automorfismo de $\mathbb{Q}(u)$ tal que $f(u) = -w = -u^3 + 3u$. Veamos que el orden de f es 8, por lo que $G(\mathbb{Q}(u):\mathbb{Q})$ será cíclico de orden 8, es decir, isomorfo a \mathbb{Z}_8 . Para ello, calculamos:

$$f(w) = f\left(u^3 - 3u\right) = f(u)^3 - 3f(u) = -w^3 + 3w = v$$

$$f(v) = f\left(\frac{w^2 - 2}{u}\right) = \frac{f(w^2 - 2)}{f(u)} = \frac{f(w)^2 - 2}{-w} = \frac{v^2 - 2}{-w} = \frac{\sqrt{2 + \sqrt{2}}}{\sqrt{2 + \sqrt{2 - \sqrt{2}}}} = x$$

$$f(x) = f\left(\frac{u^2 - 2}{w}\right) = \frac{f(u)^2 - 2}{f(w)} = \frac{w^2 - 2}{v} = \frac{\sqrt{2 - \sqrt{2}}}{\sqrt{2 - \sqrt{2 + \sqrt{2}}}} = u$$

donde la única comprobación que debemos hacer es que efectivamente $v = -w^3 + 3w$:

$$v = -w^3 + 3w = w(3 - w^2) = \left(\sqrt{2 + \sqrt{2 - \sqrt{2}}}\right) \left(1 - \sqrt{2 - \sqrt{2}}\right) > 0$$

Elevando ambos lados al cuadrado (tanto v como $-w^3 + 3w$ son positivos, por lo que mantenemos la equivalencia) obtenemos que:

$$v^{2} = 2 - \sqrt{2 + \sqrt{2}} = \left(2 + \sqrt{2 - \sqrt{2}}\right) \left(3 - \sqrt{2} - 2\sqrt{2 - \sqrt{2}}\right) =$$
$$= 2 - \sqrt{2 - \sqrt{2}} - \sqrt{2}\sqrt{2 - \sqrt{2}}$$

Restando 2 en cada lado, multiplicando por -1 y simplificando:

$$\sqrt{2+\sqrt{2}} = \sqrt{2-\sqrt{2}} + \sqrt{2}\sqrt{2-\sqrt{2}} = \sqrt{2-\sqrt{2}}\left(1+\sqrt{2}\right)$$

Finalmente, dividiendo entre $\sqrt{2-\sqrt{2}}$ llegamos a que:

$$\frac{\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}} = \frac{\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}} \frac{\sqrt{2+\sqrt{2}}}{\sqrt{2+\sqrt{2}}} = \frac{2+\sqrt{2}}{\sqrt{2}} = 1+\sqrt{2}$$

lo cual es cierto, y por tanto $-w^3 + 3w = v$.

Con esto, y teniendo en cuenta que f(-k) = -f(k) para k = u, v, w, x se comprueba que f tiene orden 8 puesto que hemos probado que:

$$u\xrightarrow{f} -w\xrightarrow{f} -v\xrightarrow{f} -x\xrightarrow{f} -u\xrightarrow{f} w\xrightarrow{f} v\xrightarrow{f} x\xrightarrow{f} u$$

- **2.** Sea $\mathbb{Q}_f \subset \mathbb{C}$ el cuerpo de descomposición sobre \mathbb{Q} del polinomio $f(t) := t^8 2$.
- (i) Calcular el número de subextensiones de grado 8 de $\mathbb{Q}_f|\mathbb{Q}$.
- (ii) ¿Es diedral el grupo de Galois $G(\mathbb{Q}_f : \mathbb{Q})$?
- (iii) Encontrar un conjunto finito de generadores de una subextensión $F|\mathbb{Q}$ de $\mathbb{Q}_f|\mathbb{Q}$ tal que el grupo de Galois $G(\mathbb{Q}_f : F)$ sea cíclico de orden 8.

Para obtener el cuerpo de descomposición del polinomio f sobre $\mathbb Q$ calculamos sus raíces. Sea $u:=\sqrt[8]{2}$ el único número real positivo cuya potencia octava es 2 y sea $\xi:=e^{\frac{2\pi i}{8}}$ con $\mathbf i:=\sqrt{-1}$. Entonces las soluciones de $f(\mathbf t)=0$ son $\mathbf t=u\xi^j$ con j=0,1,...,7. Por tanto, $\mathbb Q_f=\mathbb Q(u,u\xi,u\xi^2,u\xi^3,u\xi^4,u\xi^5,u\xi^6,u\xi^7)=\mathbb Q(u,\xi)$. En la segunda igualdad, el contenido hacia la derecha es inmediato y el contenido hacia la izquierda se sigue de que $\xi=\frac{u\xi}{u}\in\mathbb Q_f$. Queremos probar que $\mathbb Q(u,\xi)=\mathbb Q(u,\mathbf i)$, ya que esta elección de representantes nos facilitará el trabajo en lo que sigue. De la igualdad $\xi=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\mathbf i=\frac{u^4}{2}+\frac{u^4}{2}\mathbf i$ se obtiene el contenido hacia la derecha y despejando $\mathbf i$ como $\mathbf i=\xi\frac{2}{u^4}-1$, el otro contenido.

Estamos ahora interesados en calcular el grado de la extensión $\mathbb{Q}_f|\mathbb{Q}$ para lo que utilizamos la transitividad del grado, es decir, $[\mathbb{Q}(u,\mathbf{i}):\mathbb{Q}]=[\mathbb{Q}(u,\mathbf{i}):\mathbb{Q}(u)]\cdot[\mathbb{Q}(u):\mathbb{Q}]$. El grado de la extensión $\mathbb{Q}(u)|\mathbb{Q}$ es fácil de calcular porque coincide con el grado del polinomio mínimo sobre \mathbb{Q} de u. Veamos que $P_{\mathbb{Q},u}=f$. Pero esto es claro porque $f(u)=0, f\in\mathbb{Q}[\mathbf{t}]$, es mónico e irreducible en $\mathbb{Q}[\mathbf{t}]$. Para esto último, f es irreducible en $\mathbb{Z}[\mathbf{t}]$ por el Criterio de Eisenstein para el primo 2 y por el Lema de Gauss también lo es en $\mathbb{Q}[\mathbf{t}]$. Por tanto, $[\mathbb{Q}(u):\mathbb{Q}]=\deg(f)=8$. Por otro lado, $[\mathbb{Q}(u,\mathbf{i}):\mathbb{Q}(u)]\leq [\mathbb{Q}(\mathbf{i}):\mathbb{Q}]=2$ y esta desigualdad es en realidad una igualdad porque $\mathbb{Q}(u)\subset\mathbb{R}$ y $\mathbb{Q}(u,\mathbf{i})$ tiene elementos en \mathbb{C} . Por tanto, $[\mathbb{Q}(u,\mathbf{i}):\mathbb{Q}]=2\cdot 8=16$.

Evidentemente, la extensión $\mathbb{Q}_f|\mathbb{Q}$ es de Galois por ser el cuerpo de descomposición de un polinomio, luego $\operatorname{ord}(G_{\mathbb{Q}}(f))=16$. Los automorfismos de $\mathbb{Q}_f=\mathbb{Q}(u,\mathtt{i})$ quedan determinados por las imágenes de u e \mathtt{i} . Cada automorfismo transforma estos elementos en raíces de su polinomio irreducible luego tenemos un máximo de $8\cdot 2=16$ candidatos. Como $\operatorname{ord}(G_{\mathbb{Q}}(f))=16$ todas estas asignaciones inducen automorfismos en \mathbb{Q}_f . Por tanto, $G_{\mathbb{Q}}(f)=\{\rho_{kl}: k\in\{0,1\},\ l\in\{0,1,...,7\}\}$, donde $\rho_{kl}(\mathtt{i})=(-1)^k\mathtt{i},\ \rho_{kl}(u)=u\xi^l$, y por lo anterior,

$$\rho_{kl}(\xi) = \rho_{kl} \left(\frac{u^4}{2} + \frac{u^4}{2} \mathbf{i} \right) = \frac{\rho_{kl}(u)^4}{2} + \frac{\rho_{kl}(u)^4}{2} \rho_{kl}(\mathbf{i}) = \frac{(u\xi^l)^4}{2} + \frac{(u\xi^l)^4}{2} (-1)^k \mathbf{i} = \xi^{4l} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} (-1)^k \mathbf{i} \right) = \xi^{4l} \xi^{1-2k}.$$

Para responder a las tres cuestiones que se preguntan es conveniente calcular el orden de los automorfismos.

$$\begin{array}{l} \rho_{0,0}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,0}(u) = u \\ \rho_{0,1}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,1}(u) = u\xi, \; \; \rho_{0,1}(\xi) = \xi^5, \; u \to u\xi \to u\xi^6 \to u\xi^7 \to u\xi^4 \to u\xi^5 \to u\xi^2 \to u\xi^3 \to u \\ \rho_{0,2}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,2}(u) = u\xi^2, \; \rho_{0,2}(\xi) = \xi, \; u \to u\xi^2 \to u\xi^4 \to u\xi^6 \to u \\ \rho_{0,3}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,3}(u) = u\xi^3, \; \rho_{0,3}(\xi) = \xi^5, \; \rho_{0,3} = \rho_{0,1}^{-1} \\ \rho_{0,4}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,4}(u) = u\xi^4, \; \rho_{0,4}(\xi) = \xi, \; u \to u\xi^4 \to u \\ \rho_{0,5}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,5}(u) = u\xi^5, \; \rho_{0,5}(\xi) = \xi^5, \; u \to u\xi^5 \to u\xi^6 \to u\xi^3 \to u\xi^4 \to u\xi \to u\xi^2 \to u\xi^7 \to u \\ \rho_{0,6}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,6}(u) = u\xi^6, \; \rho_{0,6}(\xi) = \xi, \; \rho_{0,6} = \rho_{0,2}^{-1} \\ \rho_{0,7}(\mathtt{i}) = \mathtt{i}, \; \rho_{0,7}(u) = u\xi^7, \; \rho_{0,7}(\xi) = \xi^5, \; \rho_{0,7} = \rho_{0,5}^{-1} \end{array}$$

```
\begin{array}{lll} \rho_{1,0}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,0}(u) = u & \mathtt{i} \to -\mathtt{i} \to \mathtt{i} \\ \rho_{1,1}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,1}(u) = u\xi, \; \rho_{1,1}(\xi) = \xi^3, \; u \to u\xi \to u\xi^4 \to u\xi^5 \to u \\ \rho_{1,2}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,2}(u) = u\xi^2, \; \rho_{1,2}(\xi) = \xi^7, \; u \to u\xi^2 \to u \\ \rho_{1,3}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,3}(u) = u\xi^3, \; \rho_{1,3}(\xi) = \xi^3, \; u \to u\xi^3 \to u\xi^4 \to u\xi^7 \to u \\ \rho_{1,4}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,4}(u) = u\xi^4, \; \rho_{1,4}(\xi) = \xi^7, \; u \to u\xi^4 \to u \\ \rho_{1,5}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,5}(u) = u\xi^5, \; \rho_{1,5}(\xi) = \xi^3, \; \rho_{1,5} = \rho_{1,1}^{-1} \\ \rho_{1,6}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,6}(u) = u\xi^6, \; \rho_{1,6}(\xi) = \xi^7, \; u \to u\xi^6 \to u \\ \rho_{1,7}(\mathtt{i}) = -\mathtt{i}, \; \rho_{1,7}(u) = u\xi^7, \; \rho_{1,7}(\xi) = \xi^3, \; \rho_{1,7} = \rho_{1,3}^{-1} \end{array}
```

Una vez conocemos los automorfismos del grupo de Galois y sus respectivos órdenes ya podemos responder todas las preguntas.

- (i) En primer lugar, se pide calcular el número de subextensiones de grado 8 de $\mathbb{Q}_f|\mathbb{Q}$. Por el Teorema fundamental de la teoría de Galois, existe una biyección entre las subextensiones de $\mathbb{Q}_f|\mathbb{Q}$ y los subgrupos de $G_{\mathbb{Q}}(f)$, por lo que este número de subextensiones de grado 8 será igual al número de subgrupos de orden $2 = \frac{16}{8}$. El número de subgrupos de orden 2 es igual al número de elementos de orden 2, porque cada elemento de orden 2 genera un subgrupo formado por él mismo y la identidad. Como $G_{\mathbb{Q}}(f)$ tiene 5 elementos de orden 2 concluimos que hay 5 subextensiones de grado 8 de $\mathbb{Q}_f|\mathbb{Q}$.
- (ii) Después se pregunta si $G_{\mathbb{Q}}(f)$ es diedral. Un argumento sencillo para demostrar que $G_{\mathbb{Q}}(f)$ no es isomorfo a \mathcal{D}_8 es contar el número de elementos de orden 2 que hay en cada uno de los grupos y ver que no coinciden. Hemos visto que $G_{\mathbb{Q}}(f)$ tiene 5 elementos de orden 2 y \mathcal{D}_8 tiene como elementos de orden 2 las 8 simetrías y la rotación de ángulo π , en total 9. Por tanto $G_{\mathbb{Q}}(f)$ no es isomorfo a \mathcal{D}_8 .
- (iii) Por último, se pide encontrar un grupo finito de generadores de una subextensión $F|\mathbb{Q}$ de $\mathbb{Q}_f|\mathbb{Q}$ tal que $G(\mathbb{Q}_f:F)$ sea cíclico de orden 8. Podemos tomar F de tal forma que $G(\mathbb{Q}_f:F)=\langle \rho_{0,1}\rangle$ con lo que $F=\mathrm{Fix}(\langle \rho_{0,1}\rangle)=\mathbb{Q}(\mathtt{i})$, que efectivamente es una subextensión de grado 2 y $G(\mathbb{Q}_f:F)$ es cíclico de orden 8.

- **3.** (i) Sea $\zeta := e^{2\pi i/5}$, donde $i := \sqrt{-1}$. Demostrar que $\sqrt{5} \in \mathbb{Q}(\zeta)$.
- (ii) Sea $E := \mathbb{Q}(\sqrt{5})$. Calcular el grado de las extensiones $E(\sqrt[10]{5}) \mid E \mid y \mid E(e^{2\pi i/10}) \mid E$.
- (iii) Sea $f(t) := t^{10} 5$ y $\mathbb{Q}_f \subset \mathbb{C}$ un cuerpo de descomposición de f sobre \mathbb{Q} . Calcular el grado de $\mathbb{Q}_f | \mathbb{Q}$.
- (iv) ¿Cuántas subextensiones de grado 5 tiene $\mathbb{Q}_f|\mathbb{Q}$?
- (v) Demostrar que $\sqrt{3} \notin \mathbb{Q}(\zeta)$.
- (vi) Calcular el polinomio mínimo de ζ sobre $\mathbb{Q}(\sqrt{3})$.
- (i) Podemos expresar ζ como $\zeta = \cos\left(\frac{2\pi}{5}\right) + \mathbf{i}\sin\left(\frac{2\pi}{5}\right)$. Sea $u := \zeta + \zeta^{-1}$. Por la fórmula de Euler para ζ y ζ^{-1} sabemos que $u = \zeta + \zeta^{-1} = 2\cos\left(\frac{2\pi}{5}\right) \in \mathbb{Q}(\zeta)$.

Como $\zeta^5 = 1$ y $\zeta \neq 1$, ζ será raíz del polinomio ciclotómico $\Phi_5(t) = t^4 + t^3 + t^2 + t + 1$. Sea $h(t) := t^{-2} \cdot \Phi_5(t)$, que se anula en ζ ya que ζ no es raíz de t^2 . Reescribiendo h llegamos a que:

$$h(t) = (t^2 + t^{-2}) + (t + t^{-1}) + 1$$
 y, como $(t + t^{-1})^2 = t^2 + t^{-2} + 2$, entonces:

$$h\left({\bf t}\right) = \left[\left({\bf t} + {\bf t}^{-1}\right)^2 - 2 \right] + \left({\bf t} + {\bf t}^{-1}\right) + 1 = \left({\bf t} + {\bf t}^{-1}\right)^2 + \left({\bf t} + {\bf t}^{-1}\right) - 1$$

Como
$$h(\zeta) = 0$$
, deducimos que $h(\zeta) = (\zeta + \zeta^{-1})^2 + (\zeta + \zeta^{-1}) - 1 = 0 \Leftrightarrow u^2 + u - 1 = 0$

Resolviendo la ecuación de segundo grado, tenemos que $u = \frac{-1 \pm \sqrt{5}}{2}$. Dado que u ha de ser positivo, tomamos la solución positiva, obteniendo que $\sqrt{5} = 2u + 1 \in \mathbb{Q}(\zeta)$.

(ii) En primer lugar, $E\left(\sqrt[10]{5}\right) = \mathbb{Q}\left(\sqrt[10]{5}\right)$ ya que $\sqrt{5} \in \mathbb{Q}\left(\sqrt[10]{5}\right)$, pues $\left(\sqrt[10]{5}\right)^5 = \sqrt{5}$. Es decir, $\mathbb{Q}\left(\sqrt{5}\right) | \mathbb{Q}$ es una subextensión de $\mathbb{Q}\left(\sqrt[10]{5}\right) | \mathbb{Q}$. Sabemos que $[\mathbb{Q}\left(\sqrt{5}\right):\mathbb{Q}] = 2$ ya que el polinomio mínimo de $\sqrt{5}$ sobre \mathbb{Q} es $g_1(t) := t^2 - 5$ (es mónico e irreducible por el Criterio de Eisenstein con el primo 5, aplicable a \mathbb{Q} por el Lema de Gauss) y también sabemos que $[\mathbb{Q}\left(\sqrt[10]{5}\right):\mathbb{Q}] = 10$ ya que el polinomio mínimo de $\sqrt[10]{5}$ sobre \mathbb{Q} es $g_2(t) := t^{10} - 5$ que de nuevo es mónico e irreducible argumentando de forma análoga. Por todo lo anterior y la transitividad del grado:

$$[E(\sqrt[10]{5}):E] = [\mathbb{Q}(\sqrt[10]{5}):\mathbb{Q}(\sqrt{5})] = \frac{[\mathbb{Q}(\sqrt[10]{5}):\mathbb{Q}]}{[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]} = \frac{10}{2} = 5$$

Argumentando de forma similar, como $e^{2\pi \mathbf{i}/5} = \left(e^{2\pi \mathbf{i}/10}\right)^2$ y $\sqrt{5} \in \mathbb{Q}\left(e^{2\pi \mathbf{i}/5}\right)$ según lo visto en (i), entonces $\sqrt{5} \in \mathbb{Q}\left(e^{2\pi \mathbf{i}/10}\right)$. Por tanto, $E\left(e^{2\pi \mathbf{i}/10}\right) = \mathbb{Q}\left(e^{2\pi \mathbf{i}/10}\right)$. Sabemos que el polinomio mínimo de $e^{2\pi \mathbf{i}/10}$ sobre \mathbb{Q} es el polinomio ciclotómico $\Phi_{10}\left(\mathbf{t}\right) = \mathbf{t}^4 - \mathbf{t}^3 + \mathbf{t}^2 - \mathbf{t} + 1$, que tiene grado $4 = \varphi(10)$, por lo que:

$$[E(e^{2\pi \mathtt{i}/10}) : E] = [\mathbb{Q}(e^{2\pi \mathtt{i}/10}) : \mathbb{Q}(\sqrt{5})] = \frac{[\mathbb{Q}(e^{2\pi \mathtt{i}/10}) : \mathbb{Q}]}{[\mathbb{Q}(\sqrt{5}) : \mathbb{Q}]} = \frac{4}{2} = 2$$

(iii) Sea $r:=\sqrt[10]{5}$ la única raíz real positiva de f. El resto de raíces serán de la forma $r\cdot \xi^k$ donde $0\le k\le 9$ y $\xi:=e^{2\pi \mathbf{i}/10}$ por lo que el conjunto de raíces de f será $\{r\cdot \xi^k: 0\le k\le 9\}$. Por tanto, un cuerpo de descomposición de f sobre $\mathbb Q$ es $\mathbb Q_f=\mathbb Q$ (r,ξ) . Ya sabemos por el apartado anterior que $[E\left(\xi\right):E]=2$ y $[E\left(r\right):E]=5$ y como 5 y 2 son coprimos, $[E\left(r,\xi\right):E]=5\cdot 2=10$. Por último, como $[\mathbb Q\left(\sqrt{5}\right):\mathbb Q]=2$ y $\sqrt{5}\in\mathbb Q\left(\xi\right)$ concluimos que $[\mathbb Q_f:\mathbb Q]=[\mathbb Q\left(r,\xi\right):\mathbb Q]=[E\left(r,\xi\right):E]\cdot [E:\mathbb Q]=10\cdot 2=20$.

(iv) Como la extensión $\mathbb{Q}_f|\mathbb{Q}$ es de Galois, su grado (que es 20) coincide con el orden de $G:=G(\mathbb{Q}_f:\mathbb{Q})$. Así que el número de subextensiones de grado 5 coincidirá con el número de subgrupos de G de orden $4=\frac{20}{5}$. Puesto que $20=2^2\cdot 5$, los subgrupos de G de orden 4 son sus 2-subgrupos de Sylow. Por el tercer Teorema de Sylow, si n_2 es el número de 2-subgrupos de Sylow de G, entonces $n_2\equiv 1\mod 2$ y $n_2|5$. Es decir, n_2 es o bien 1, o bien 5.

Veamos por contradicción que $n_2 = 5$. Si $n_2 = 1$, entonces, ese 2-subgrupo de Sylow de G, al que llamaremos H, sería el único subgrupo de G de su grado, por lo que sería normal.

Utilizamos ahora que $\mathbb{Q}(\sqrt[5]{5})|\mathbb{Q}$ es una (de hecho, según hemos supuesto, la única) subextensión de grado 5 de $\mathbb{Q}_f|\mathbb{Q}$. Esto es fácil de comprobar, pues el polinomio

$$q_3(t) := t^5 - 5$$

tiene a $\sqrt[5]{5}$ por única raíz real, es mónico, y es irreducible (por el Criterio de Eisenstein con el primo 5, aplicable a $\mathbb Q$ por el Lema de Gauss), luego es el polinomio mínimo sobre $\mathbb Q$ de $\sqrt[5]{5}$, y $[\mathbb Q(\sqrt[5]{5}):\mathbb Q]=5$. Así que necesariamente $H=G(\mathbb Q_f:\mathbb Q(\sqrt[5]{5}))$, por ser H el único subgrupo de orden 4 de G, y $\mathbb Q(\sqrt[5]{5})|\mathbb Q$ la única subextensión de grado 5 de $\mathbb Q_f|\mathbb Q$.

Por la segunda parte del Teorema Fundamental de la Teoría de Galois, el hecho de que H sea normal es equivalente a que la subextensión $\mathbb{Q}(\sqrt[5]{5})|\mathbb{Q}$ sea de Galois. Pero esto es imposible, pues de ser el caso, se tendría que \mathbb{Q}_{g_3} , el cuerpo de descomposición del polinomio g_3 sobre \mathbb{Q} , coincide con $\mathbb{Q}(\sqrt[5]{5})$, pero $\mathbb{Q}(\sqrt[5]{5}) \subset \mathbb{R}$, y sabemos que g_3 tiene raíces complejas, luego \mathbb{Q}_{g_3} tiene elementos en $\mathbb{C}\backslash\mathbb{R}$ y no pueden coincidir.

Por tanto, $n_2 = 5$, de modo que $\mathbb{Q}_f | \mathbb{Q}$ tiene 5 subextensiones de grado 5, que de hecho son $\mathbb{Q}(\sqrt[5]{5}\zeta^k) | \mathbb{Q}$ con k = 0, 1, ..., 4.

(v) Lo probamos por contradicción. Si $\sqrt{3} \in \mathbb{Q}(\zeta)$, entonces, como $[\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2$, tenemos que tanto $\mathbb{Q}(\sqrt{3})|\mathbb{Q}$ como $\mathbb{Q}(\sqrt{5})|\mathbb{Q}$ son subextensiones de grado 2 de $\mathbb{Q}(\zeta)|\mathbb{Q}$, y como sabemos que $\sqrt{3} \notin \mathbb{Q}(\sqrt{5})$, necesariamente

$$[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{5})]\cdot[\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 2\cdot 2 = 4$$

Esto implica que $\mathbb{Q}(\sqrt{3}, \sqrt{5}) = \mathbb{Q}(\zeta)$ (pues tenemos \subset , y la igualdad se sigue de que ambas extensiones tienen el mismo grado sobre \mathbb{Q}), lo cual es imposible porque $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subset \mathbb{R}$ y $\zeta \in \mathbb{C}\backslash\mathbb{R}$, luego $\sqrt{3} \notin \mathbb{Q}(\zeta)$.

(vi) Sabemos que $[\mathbb{Q}(\zeta):\mathbb{Q}] = \varphi(5) = 4$, y también que $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = 2$. Utilizamos el apartado anterior, que nos dice que $\sqrt{3} \notin \mathbb{Q}(\zeta)$, para deducir que $[\mathbb{Q}(\sqrt{3},\zeta):\mathbb{Q}(\zeta)] = 2$, pues ha de ser mayor que 1 y menor o igual que 2 (ya que $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = 2$). Gracias a la transitividad del grado, obtenemos que

$$[\mathbb{Q}(\sqrt{3},\zeta):\mathbb{Q}] = [\mathbb{Q}(\sqrt{3},\zeta):\mathbb{Q}(\zeta)]\cdot[\mathbb{Q}(\zeta):\mathbb{Q}] = 2\cdot 4 = 8$$

Esto nos sirve para calcular el grado de la extensión $\mathbb{Q}(\sqrt{3},\zeta)|\mathbb{Q}(\sqrt{3})$, puesto que

$$[\mathbb{Q}(\sqrt{3},\zeta):\mathbb{Q}(\sqrt{3})] = \frac{[\mathbb{Q}(\sqrt{3},\zeta):\mathbb{Q}]}{[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]} = \frac{8}{2} = 4.$$

Por tanto, puesto que el polinomio ciclotómico asociado al primo 5, Φ_5 , tiene grado 4, es mónico y se anula en ζ , ha de ser $P_{\mathbb{Q}(\sqrt{3}),\zeta} = \Phi_5(\mathsf{t}) = \mathsf{t}^4 + \mathsf{t}^3 + \mathsf{t}^2 + \mathsf{t} + 1$.