Supplementary Material 1 Frequency Chaos Game Representation

Fatemeh Alipour¹ and Kathleen A. Hill², Lila Kari¹

1 FCGR of resolution k

Definition S1.1. A Frequency Chaos Game Representation (FCGR_k) of a sequence $s \in \Delta^n$ with resolution k with $n \geq k$, is a matrix in $R^{2^k \times 2^k}$ derived from X_s , the CGR image of s. Its (i, j)th entry f_{ij} satisfies:

$$f_{ij} = \frac{Number\ of\ points\ of\ X_s\ in\ cell\ (i,j)}{n} \tag{1}$$

where cell(i,j) is the (i,j)th subsquare, starting from the bottom left, of the square \mathcal{G} if we subdivide \mathcal{G} into $2^k \times 2^k$ equal size subsquares.

It is worth remarking that each of the $2^k \times 2^k$ cell(i,j) corresponds to one of the 4^k k-mer, that is, the frequency f_{ij} that pixels of CGR image X_s of S falling into cell(i,j) is the frequency that the corresponding k-mer occurs in the sequence s. Note that cell(i,j) is uniquely determined by its upper left corner $(x_i,y_j)=(\frac{2(i-1)}{2^k}-1,\frac{2j}{2^k}-1)$, or equivalently, $i=1+2^{k-1}(x_i+1), j=2^{k-1}(y_i+1)$. And the upper left (x_i,y_j) is determined by the k-mer s_k recursively as follows: $C(s_k)=(x_i,y_j),\ C(s_k(1:k-1))=(x_i',y_j'),\ C(empty)=(-1,1),$

$$C(s_k) = \begin{cases} & ((x_i'-1)/2, (y_j'-1)/2), \ if \ s(k) = A, \\ & ((x_i'+1)/2, (y_j'-1)/2), \ if \ s(k) = T, \\ & ((x_i'+1)/2, (y_j'+1)/2), \ if \ s(k) = G, \\ & ((x_i'-1)/2, (y_j'+1)/2), \ if \ s(k) = C. \end{cases}$$

The FCGR matrix provides a compact and informative representation of the sequence s.

¹ School of Computer Science, University of Waterloo, Waterloo, ON, Canada

Department of Biology, University of Western Ontario, London, ON, Canada falipour@uwaterloo.ca