Arithmetic Kolchin Irreducibility

Taylor Dupuy (with James Freitag and Lance E. Miller)

Kolchin

 $X/{\bf C}$ irreducible $\Longrightarrow J_{\infty}(X)$ irreducible (singular)

Let A be a \mathbb{C} -algebra X variety over \mathbb{C}

$$J_n(X), J_{\infty}(X) = \text{new varieties over } \mathbf{C}$$

= higher order tangent spaces

$$J_n(X)(A) = X(A[T]/(t^{n+1}))$$

 $J_{\infty}(X)(A) = X(A[[T]])$

Kolchin

$$X/\mathbf{C}$$
 irreducible $\Longrightarrow J_{\infty}(X)$ irreducible (singular)

Gillet, Mustata, de Fernex, Loeser-Sebag, Kolchin, Nicaise-Sebag, Ishii-Kollar, (Chambert-Loir)-Nicaise-Sebag

Example 1.

$$J_1(X)$$

X

Example 1.

$$X: x^4 + y^4 + z^4 = 0$$

expected dimension of $J^3(X) = 2 \cdot 4 = 8$ dimension above (0,0,0) = 9

proof:

$$J_3(X) = \text{plug in } \mathbf{C}[t]/(t^4) \text{ valued points}$$

$$x = x_0 + x_1t + x_2t^2 + x_3t^3 \mod t^4$$

$$y = y_0 + y_1t + y_2t^2 + y_3t^3 \mod t^4$$

$$z = z_0 + z_1t + z_2t^3 + z_3t^3 \mod t^4$$

$$X: x^4 + y^4 + z^4 = 0$$

expected dimension of $J^3(X) = 2 \cdot 4 = 8$ dimension above (0,0,0) = 9

proof:

$$J_3(X) = \text{plug in } \mathbf{C}[t]/(t^4) \text{ valued points}$$

$$x = x_0 + x_1t + x_2t^2 + x_3t^3 \mod t^4$$

$$y = y_0 + y_1t + y_2t^2 + y_3t^3 \mod t^4$$

$$z = z_0 + z_1t + z_2t^3 + z_3t^3 \mod t^4$$

$$(x_1t + x_2t^2 + x_3t^3)^4 + (y_1t + y_2t^2 + y_3t^3)^4 + (z_1t + z_2t^3 + z_3t^3)^4 \equiv 0$$

Mustata:
$$lct(X,D) = dim(X) - \sup_{r \ge 0} \frac{\dim J_r(D)}{r+1}$$

Proof of Kolchin Irreducibility

- Step I: Deformations = Irreducibility.
- Step 2: Smooth case.
- Step 3: Reduction to Smooth Case

Step I: Deforming Arcs = Irreducibility

Theorem.

 $X/{f C}$ smooth, irreducible $\Longrightarrow J_r(X)$ irreducible

Theorem.

 $X/{\bf C}$ smooth, irreducible $\Longrightarrow J_r(X)$ irreducible

Theorem.

 X/\mathbb{C} smooth, irreducible $\Longrightarrow J_r(X)$ irreducible

$$\pi_r^{-1}(U) \cong U \times \mathbf{A}^{(r+1)\dim(X)}$$

Theorem.

 $X/{\bf C}$ smooth, irreducible $\Longrightarrow J_r(X)$ irreducible

$$\pi_r^{-1}(U) \cong U \times \mathbf{A}^{(r+1)\dim(X)}$$

$$\mathcal{O}(\pi_r^{-1}(U)) \cong \mathcal{O}(U)[\text{ variables }]$$

Theorem.

 X/\mathbb{C} smooth, irreducible $\Longrightarrow J_r(X)$ irreducible

$$\pi_r^{-1}(U) \cong U \times \mathbf{A}^{(r+1)\dim(X)}$$

$$\mathcal{O}(\pi_r^{-1}(U)) \cong \mathcal{O}(U)[\text{ variables }]$$
 domain

$$J_{\infty}(\mathrm{Sm}(X)) \subseteq J_{\infty}(X)$$

$$J_{\infty}(\mathrm{Sm}(X))\subseteq J_{\infty}(X)$$

irreducible

$$\overline{J_{\infty}(\mathrm{Sm}(X))}\subseteq J_{\infty}(X)$$

\(\string{irreducible}\)

$$\beta_1 \in J_{\infty}(Y)$$

$$\beta_2 \in \pi^{-1}(Y)$$

$$\overline{J_{\infty}(\mathrm{Sm}(X))} = J_{\infty}(X)$$

irreducible

Step 3: Reduction to Smooth Case (classical)

 X/\mathbf{C}

Step 3: Reduction to Smooth Case (classical)

Step 3: Reduction to Smooth Case (classical)

Step 3: Reduction to Smooth Case (classical)

Step 3: Reduction to Smooth Case (classical)

Step 3: Reduction to Smooth Case (classical)

Step 3: Reduction to Smooth Case (classical)

Step 3: Reduction to Smooth Case (classical)

Recap of Classical

- Step I: Deformations = Irreducibility
- Step 2: Smooth case
- Step 3: Reduction to Smooth Case

Arithmetic Jet Spaces

- 1. work over $\widehat{\mathbf{Z}}_p^{\mathrm{ur}}$
- 2. replace power series with Witt vectors

$$J_{p,r}(X)(A) = X(W_{p,r}(A))$$

Theorem (Buium)

$$\widehat{X}$$
 smooth and integral $\Longrightarrow \widehat{J}_{p,\infty}(\widehat{X})$ integral

Theorems (Dupuy-Frietag-Miller)

$$X$$
 smooth and affine $\Longrightarrow J_{p,\infty}(X)$ irreducible \widehat{X} integral

 $Y \to X$ (weak) affine smoothening

 \widehat{Y} integral $\Longrightarrow J_{p,\infty}(X)$ (weakly) irreducible

Example of a conditional result:

S1

X smooth and X integral $\Longrightarrow J_{p,\infty}(X)$ irreducible.

S2

 $Y \to X$ (weak) smoothening \widehat{Y} integral $\Longrightarrow J_{p,\infty}(X)$ (weakly) irreducible

Step 2: Smooth Case

Theorem. (Buium)

X/R smooth

$$R = W_{p,\infty}(\mathbf{F}_p^{alg})$$

$$\widehat{J}_{p,r}(X) \to \widehat{X}$$

an affine bundle

Corollary. smooth \widehat{X} irreducible $\Longrightarrow \widehat{J}_{p,r}(X)$ irreducible

Smoothenings

Alterations?? (Introduces Ramification)

$$\operatorname{Spec}(K) \longrightarrow \widetilde{X}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(R) \longrightarrow X$$

Neron Smoothenings (Sebag-Loeser, Nicaise-(Chambert-Loir)):

Smoothenings

Alterations?? (Introduces Ramification)

$$\operatorname{Spec}(K) \longrightarrow \widetilde{X}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(R) \longrightarrow X$$

Neron Smoothenings (Sebag-Loeser, Nicaise-(Chambert-Loir)):

$$\exists h: Y \to X$$

- Y smooth, \widehat{Y} irreducible.
- $Y(W_{p,\infty}(\mathbf{F}_p^{alg})) \to X(W_{p,\infty}(\mathbf{F}_p^{alg}))$ surjective

