Appl. No. 10/748,618

22

23

microlens array on said planar front and said back surfaces of the optical sheet includes two

parallel half-sheets laminated together are non-equal.

registered with a <u>non-hemispherical</u> microlens on opposite said front and back surfaces such

23

	Appl. No. 10/748,618 Amdt. dated Dec. 5, 2005 Reply to Office action of Sept. 7, 2005
1	that exit cone chief ray angle is dependent on position across the sheet, said microlenses on
2	opposite said front and back surfaces being separated by a distance of the sheet thickness
3	substantially equal to the focal length of said microlens.
4	·
5	10. (Currently Amended) The optical sheet as recited in Claim 9, further including a second
6	microlens array surface having non-equal pitch, as compared to the front microlens array
7	surface pitch, such that the lenslet centers of both front and back surfaces are aligned
8	substantially near the center of the active sheet, yet lenslet centers near the edge of the active
9	sheet exhibit transverse offsets of up to one lenslet spacing with a specific transverse offset at
10	a specific location within the plane of the sheet.
11	
12	11. (Canceled)
13	
14	12. (Original) The optical sheet as recited in Claim 9, further including a second microlens
15	array surface having substantially equal pitch, as compared to the front microlens array
16	surface pitch, such that the lenslet centers of both front and back surfaces are aligned with an
17	offset of up to one lenslet spacing across the sheet.
18	
19	13-19. (Canceled)
20	
21	20. (New) An illumination system comprising: an array of one or more light-emitting
22	sources located in a source plane; an optical sheet, separated from the source array by a first
23	propagation distance; and an illumination plane separated from said optical sheet by a second

	Appl. No. 10/748,618 Amdt. dated Dec. 5, 2005 Reply to Office action of Sept. 7, 2005
1	propagation distance, so as to provide substantially uniform intensity output profile, within
2	the illuminated area, versus position across said illumination plane, wherein the said optical
3	sheet is a light homogenizing optical sheet, comprising a substantially constant thickness
4	sheet made of transparent material with front and back surfaces, each said front and back
5	surface including a microlens array formed thereon, said microlens array each including a
6	plurality of non-hemispherical microlenses each aligned and registered with a non-
7	hemispherical microlens on an opposite said front and back surfaces, said optical sheet
8	having a sufficient thickness so that said microlenses on opposite said front and back surfaces
9	are separated by a distance substantially equal to the focal length of said microlenses.
10	
11	21. (New) The illumination system as recited in Claim 20, wherein the optical sheet is a
12	tailored optical sheet, wherein the aligned and registered microlens arrays on said front and
13	back surfaces have non-equal pitch, such that exit cones angles are dependent on position
14	across the optical sheet and are allowed to overlap substantially at an illumination plane.
15	
16	22. (New) The illumination system as recited in Claim 20, wherein the optical sheet is a
17	tailored optical sheet, wherein the registered microlens arrays on said front and back surfaces
18	have equal pitch and are transversely aligned, such that exit cones angles exhibit a constant,
19	yet non-normal, exiting angle versus position across the optical sheet.
20	
21	23. (New) The illumination system as recited in Claim 20, further including: an optical
22	system disposed between said source plane and said optical sheet so as to collimate said

sources of the source array; and an optical system disposed between said optical sheet and

	Appl. No. 10/748,618 Amdt. dated Dec. 5, 2005 Broket Office action of Court 7, 2005
1	Reply to Office action of Sept. 7, 2005 said illumination plane so as to condense a substantially top-hat intensity profile versus
2	position across the plane of said illumination plane.
3	
4	24. (New) An illumination system comprising: an array of one or more light-emitting
5	sources located in a source plane; a first optical sheet, separated from the source array by a
6	first propagation distance; a first illumination plane separated from said first optical sheet by
7	a second propagation distance; a second optical sheet located at said first illumination plane;
8	and a second illumination plane separated from said first illumination plane, so as to provide
9	substantially uniform intensity output profile, within the illuminated area, versus position
10	across said first illumination plane and to provide substantially uniform intensity output
11	profile versus position across said second illumination plane as well as versus angle within
12	the illuminated area of said second illumination plane, wherein the said optical sheets are
13	light homogenizing optical sheets, each comprising a substantially constant thickness sheet
14	made of transparent material with front and back surfaces, each said front and back surface
15	including a microlens array formed thereon, said microlens array each including a plurality of
16	non-hemispherical microlenses each aligned and registered with a non-hemispherical
17	microlens on an opposite said front and back surfaces, said optical sheet having a sufficient
18	thickness so that said microlenses on opposite said front and back surfaces are separated by a
19	distance substantially equal to the focal length of said microlenses.
20	
21	25. (New) The illumination system as recited in Claim 24, wherein at least one optical sheet

KARLTON D. POWELL 3109 125th Avenue NE Lake Stevens, WA 98258 (425) 220-1291

and back surfaces have non-equal pitch, such that exit cones angles are dependent on position

is a tailored optical sheet, wherein the aligned and registered microlens arrays on said front

22

23

	Appl. No. 10/748,618 Amdt. dated Dec. 5, 2005 Reply to Office action of Sept. 7, 2005
1	across the optical sheet and are allowed to overlap substantially at an illumination plane.
2	
3	26. (New) The illumination system as recited in Claim 24, wherein at least one optical sheet
4	is a tailored optical sheet, wherein the registered microlens arrays on said front and back
5	surfaces have equal pitch and are transversely aligned, such that exit cones angles exhibit a
6	constant, yet non-normal, exiting angle versus position across the optical sheet.
7	
8	27. (New) The illumination system as recited in Claim 24, further including: an optical
9	system disposed between said source plane and said first optical sheet so as to collimate said
10	sources of the source array; an optical system disposed between said first optical sheet and
11	said second optical sheet so as to condense a substantially top-hat intensity profile versus
12	position across the plane of said second optical sheet; and an optical system disposed
13	between said second optical sheet and said second illumination plane so as to provide a
14	substantially top-hat intensity profile versus position across said second illumination plane, as
15	well as versus angle $lpha_3$ within the illuminated area.
16	
17	28. (New) The illumination system as recited in Claim 27 wherein the tiling patterns of the
18	first light homogenizing optical sheet and the second light homogenizing optical sheet are not
19	the same, such that a uniform top-hat intensity profile exhibiting x/y plane shape due to the
20	tiling pattern of the light homogenizing sheet in plane x_2 is formed at plane x_3 , while the
21	output exit cone shape emanating from plane x_3 exhibits shape due to the tiling pattern of the

22

light homogenizing sheet in plane x_1 .

	Appl. No. 10/748,618 Amdt. dated Dec. 5, 2005
1	Reply to Office action of Sept. 7, 2005 29. (New) The reflective optical sheet as recited in Claim 5, further including an array of
2	one or more light-emitting sources located in a source plane, and an optical system, prior to
3	the sheet, so as to form an illumination system capable of providing top-hat uniformity at an
4	illumination plane.
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
I	