STAT1005 Week 1 Cheat Sheet

De Mere's Problem

- · Is the problem where De Mere believed in a gambling game where you throw two pairs of six sided dice 24 times, if you always bet on double six's you would make money.
 - In throwing a pair of dice you have 36 (6x6) possible outcomes {(1,1), (1,2), ..., (6,5), (6,6)}
 - The probability of throwing a pair of 6's is 1/36, so the probability of not throwing a pair of 6's is 35/36
 - The probability of throwing a pair of 6's from 24 throws is (35/36)²⁴ = 0.5086
 - So the probability of at least one double six is 1 0.5086 = 0.4914
 - Therefore he would lose money

Sample Space's and events

- The sample space is all possible outcomes, denoted by S
 - So for a single product that is either defective (D) or not (N), the sample space is S = {D, N}
- An event is a subset of outcomes within the sample space S.
 - · An event is simple if it consists of one outcome, and compound if it consists of more than one outcome

Operations in Set Theory

• The complement of an event A, is the set of all outcomes in S that are not denoted in A, denoted as A^c (or A')

• The intersection of two events A and B, is the event consisting of all outcomes that are in both A and B. denoted as $A \cap B$

 The union of two event A and B, is the event consisting of all outcomes that are either in A, B or both, denoted as A \cup B

 When A and B events have no outcomes in common, they are said to be disjoint or mutually exclusive events. This is denoted as $A \cap B = \emptyset$, where \emptyset denotes the event consisting of no outcomes (a null or empty event).

De Morgan's Laws

- $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

Naive Definition of Probability

- · Is based on the assumption that all outcomes are equally likely
 - Let A be an event for an experiment with a finite sample space S. The naive probability of A
 is:
 - P (A) = |A| = number of outcomes favourable to A total number of outcomes in S
 - (We use |A| to denote the size of A (number of outcomes in A))
- · The naive definition wont work when the outcomes are not equally likely to occur
- The naive model is used when:
 - There is symmetry:
 - Things are equally likely (coin with equal sides, a deck of cards with equally sized/shaped cards
 - Outcomes are equally likely by design:
 - A simple random sample of n people from a very large population ensures that all subsets of size n are equally likely
 - · It is a null model:
 - It is assumed the naive definition applies to see what predictions it yields, then compare to observed data to assess whether a hypothesis of equally likely outcomes is tenable, for things like a contingency table