

Linear Regression I

Dr. Chelsea Parlett-Pelleriti

Linear Regression

- Linear Regression Basics
- Assumptions
- Coefficients
- Z-Scoring
- Choosing a Line of Best Fit
 - Least Squares
 - Maximum Likelihood Estimation
- Assessing Model Fit

What

- Use multiple
 variables (can be
 continuous,
 categorical, or both) to
 predict a continuous
 variable.
- Use a line (or a plane) to describe the relationship between these variables.

How

- \bullet Y = mx + b
- Y = mx + nz + b
- Slope tells you how variables change together
- Intercept tells you what would happen if all your predictors were 0.

Predict weight by height

coef

Intercept -82.2887

height 0.9786

Predict weight by height + diet

	coef
Intercept	-72.0358
diet[T.veg]	-7.6222
height	0.9420

Predict weight by height + diet + age

A 1-unit increase in ____ causes our predicted value to (increase/decrease) by _____

	coef
Intercept	-57.4078
diet[T.veg]	-8.2640
height	0.8948
age	-0.1298

Z-Scoring

Who is the GOAT? 🔝 🐠

53 home-runs

Who is the GOAT? 😥 🔑

Who is the GOAT? 🚯 🐠

Z-Score

$$z = \frac{x - \bar{x}}{\sigma_x}$$

Predict weight by height + diet + age

A 1-standard deviation increase in ____ causes our predicted value to ____ (increase/decrease) by _____

	coef
Intercept	93.6861
diet[T.veg]	-8.2640
height	13.4689
age	-2.5245

Standardizing variables

for understanding and for model convergence

Choosing A Line/Plane

- Sum of Squared Errors
- MeanSquared Error

Least Squares and MLE

$$SSE = \sum_{i=1}^{\infty} (y_i - \hat{y}_i)^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 * x_i)^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 * x_i)^2$$

$$\frac{\partial SSE}{\partial \beta_0} = \sum_{i=1}^{n} 2(y_i - \beta_0 - \beta_1 * x_i)(-1)$$

$$\frac{\partial SSE}{\partial \beta_1} = \sum_{i=1}^{n} 2(y_i - \beta_0 - \beta_1 * x_i)(-x_i)$$

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 * x_i)^2$$

$$\frac{\partial SSE}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 * x_i)(-1) = 0$$

$$\frac{\partial SSE}{\partial \beta_1} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 * x_i)(-x_i) = 0$$

For full proof see: https://statproofbook.github.io/P/slr-ols

$$SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 * x_i)^2$$

$$i=1$$

$$\frac{\partial SSE}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 * x_i)(-1) = 0 \qquad \beta_0 = \bar{y} - \hat{\beta}_1 * \bar{x}$$

$$\frac{\partial SSE}{\partial \beta_1} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 * x_i)(-x_i) = 0 \qquad \beta_1 = \frac{Cov(x,y)}{Var(x)} = Corr(x,y) * \frac{sd(x)}{sd(y)}$$

$$\theta_{MLE} = \underset{\theta \in \Theta}{\arg \max} \ L(\theta)$$

Pick parameter values that make the data likely

are the parameter values (out of all possible parameter values) that maximize

$$\beta_0 = \bar{y} - \hat{\beta}_1 * \bar{x}$$

$$\beta_1 = \frac{Cov(x, y)}{Var(x)} = Corr(x, y) * \frac{sd(x)}{sd(y)}$$

Assessing Model Fit

$$MSE = \frac{1}{n} \sum_{i} (actual_i - predicted_i)^2$$

$$MSE = \frac{1}{n} \sum_{i} (actual_i - predicted_i)^2$$

Loss Function

that assesses performance, smaller is better

$$MAE = \frac{1}{n} \sum_{i} |actual_{i} - predicted_{i}|$$

$$R^{2} = 1 - \frac{\sum_{i} (actual_{i} - predicted_{i})^{2}}{\sum_{i} (actual_{i} - average)^{2}}$$

 R^2 :

 R^2

R²:

R²:

 R^2 :

R²:

$$R^{2} = 1 - \frac{\sum_{i} (actual_{i} - predicted_{i})^{2}}{\sum_{i} (actual_{i} - average)^{2}}$$

$$MAPE = \frac{1}{n} \sum_{i} \left| \frac{acutal_{i} - predicted_{i}}{actual_{i}} \right|$$

$$1 \sim |acutal_i - predicted_i$$

$$MAPE = \frac{1}{n} \sum_{i} \left| \frac{acutal_{i} - predicted_{i}}{actual_{i}} \right|$$

$$\begin{array}{c|c} mATE = n \angle_{i} & actual_{i} \\ \hline \\ -2 & \sum_{i} (actual_{i} - predicted_{i})^{2} \\ \end{array}$$

$$R^{2} = 1 - \frac{\sum_{i} (actual_{i} - predicted_{i})^{2}}{\sum_{i} (actual_{i} - average)^{2}}$$

$$MSE = \frac{1}{n} \sum_{i} (actual_i - predicted_i)^2$$

$$MAE = \frac{1}{n} \sum_{i} |actual_{i} - predicted_{i}|$$