

Vector-based Dynamic IR-drop Prediction Using Machine Learning

Jia-Xian Chen*; Shi-Tang Liu*; Yu-Tsung Wu*; Mu-Ting Wu*; James Chien-Mo Li*; Norman Chang**; Ying-Shiun Li**; Wen-Tze Chuang** 2022 Asia and South Pacific Design Automation Conference (ASP-DAC)

*Lab of Dependable Systems (LaDS)

Graduate Institute of Electronics Engineering , NTU

** Ansys

IR-drop

■ Deviation from the power supply voltage

■ Include V_{DD}-drop and ground bounce

□ Degrade performance and cause system failure

☐ Test issue

- Power is larger in test mode than in normal mode
- No IR-drop issue in normal mode
- Some test vectors induce large IR-drop
- Increase yield loss

2024/5/10

LaDS, GIEE, NTU

3

Category of IR-drop

☐ Static IR-drop

- Analysis with constant current source (average current)
- Partial voltage of power supply network
- Fix power supply network

■ Dynamic IR-drop

- Analysis with time-vary current source (dynamic current)
- Cells draw current from power supply when signal toggle
- Perform engineering change order

[Nithin 10] Nithin, S. K., Gowrysankar Shanmugam, and Sreeram Chandrasekar. "Dynamic voltage (IR) drop analysis and design closure: Issues and challenges." 2010 11th International Symposium on Quality Electronic Design (ISQED). IEEE, 2010. LaDS, GIEE, NTU

Dynamic IR-drop Analysis

- □ Commercial tool: Redhawk, Hspice, and Voltus
- **□** Vectorless
 - Randomly assign transitions to cells during timing window
 - Available at early stage
 - Pessimistic
 - Not input real vector

□ Vector-based

- Assign transitions recorded in waveform to cells
- Input real vector
- Too many vectors
- Long runtime to perform dynamic IR-drop analysis

2024/5/1

LaDS, GIEE, NTU

Motivations & Goals

■ Motivations

- Risky vectors cause IR-drop violation
- Vector-based dynamic IR-drop analysis is important
- Runtime of dynamic IR-drop is long
- No good method to identify IR-drop risky vectors

□ Goals

- Predict maximum dynamic IR-drop for all logic cells
- Machine learning speedup dynamic IR-drop analysis
- Identify IR-drop risky vectors with predicted IR-drop

2024/5/10

LaDS, GIEE, NTU

7

Contributions & Key Results

□ Contributions

- Predict vector-based dynamic IR-drop for all logic cells
- Extract importance features from waveform
- Density map features to consider local effect of IR-drop
- Accurately identify IR-drop risky vectors in short time

■ Key results

- Mean absolute error (MAE) of IR-drop predictor is less than 3% of supply voltage
- 495x speedup compared to commercial tool
- Identify 70% IR-drop risky vectors

2024/5/10

LaDS, GIEE, NTU

Previous Work I

□ Predict average dynamic IR-drop [Yamato12]

- Features: average power
- High correlation between average power and average dynamic IR-drop
- Building a linear model for every cell is time-consuming

□ Identify hot spots of IR-drop [Dhotre 17]

- Features: layout and power information
- Cannot predict IR-drop value of each cell

[Yamato12] Y. Yamato, T. Yoneda, K. Hatayama, and M. Inoue, "A fast and accurate per-cell dynamic ir-drop estimation method for at-speed scan test pattern validation," in 2012 IEEE International Test Conference (ITC). IEEE, 2012, pp. 1–8. [Dhotre 17] Dhotre, Harshad, Stephan Eggersglüß, and Rolf Drechsler. "Identification of efficient clustering techniques for test power activity on the layout." 2017 IEEE 26th Asian Test Symposium (ATS). IEEE, 2017.

2024/5/10

LaDS, GIEE, NTU

Previous Work II

□ Predict dynamic IR-drop for each cells [Fang 18]

- Features: power, timing, physical
- Consider floorplan (neighbor cell feature)
- Not consider the effect of different vectors

□ Predict system level dynamic IR-drop [Mozaffari 19]

- Features: switching factor, sensor distance...
- Transferable on similar design
- Only predict the IR-drop of one sensor

[Mozaffari19] Mozaffari, Seyed Nima, et al. "An Efficient Supervised Learning Method to Predict Power Supply Noise During Atspeed Test." 2019 IEEE International Test Conference (ITC). IEEE, 2019.

[Fang18] Fang, Yen-Chun, et al. "Machine-learning-based dynamic IR drop prediction for ECO." Proceedings of the International Conference on Computer-Aided Design. 2018.

2024/5/10 LaDS, GIEE, NTU

11

Previous Work III

□ Predict average dynamic IR-drop of tile [Zhiyao 20]

- Features: power
- Predict the IR-drop at a specific time
- Cannot predict the IR-drop value of each cell

[Zhiyao20]Xie, Zhiyao, et al. "PowerNet: Transferable dynamic IR drop estimation via maximum convolutional neural network." 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020.

2024/5/10

LaDS, GIEE, NTU

B. Raw Features Extraction

- **□** Vector-independent features (VI)
 - Not change with input vector
 - Extract from Redhawk-SC
- **□** Vector-dependent waveform features (VDW)
 - Change with input vector
 - Extract from waveform
- **□** Vector-dependent power features (VDP)
 - Change with input vector
 - Extract from Redhawk-SC
 - Perform power analysis

2024/5/10

LaDS, GIEE, NTU

Vector-Independent Features I

■Physical location

X, Y coordinate

□ Cell size

Width and height

☐ Effective resistance

Equivalent resistance from power bump to target cell

☐ Shortest path resistance

 Resistance of shortest path from power bump to target cell

2024/5/10

LaDS, GIEE, NTU

17

Vector-Independent Features II

□ Cell type

Label encoding (e.g. 1:BUF, 2:INV, 3:AND)

■ Leakage power

Created by unwanted subthreshold current

■ Load capacitance

Amount of capacitor at the output

Equivalent π model

Transform a cell into equivalent π model

2024/5/10

LaDS, GIEE, NTU

Vector-Dependent Waveform Features

- □ Toggle count of input
- □ Toggle count of output
- □ Toggle count of internal connection
- Minimum arrival time
 - Time of first signal transition

2024/5/10

LaDS, GIEE, NT

19

Vector-Dependent Power Features

- Power dissipated within the boundary of cell
- Switching power
 - Power dissipated by charging of load capacitance
- Transition time
 - Duration of output transition
- Peak current

2024/5/10

LaDS, GIEE, NTU

List of Raw Features

Raw Features	Description	Source*	Category**
x, y	Physical location	RH	VI
w, h	Dimension	RH	VI
R _{eff}	Effective resistance	RH	VI
SPR	Shortest path resistance	RH	VI
Cell type	Cell type	RH	VI
P _{leak}	Leakage power	RH	VI
C _{load}	Load capacitance	RH	VI
Pi _{c1} , Pi _{c2} , Pi _r	Equivalent π model	RH	VI
TC _{input}	Toggle of input	FSDB	VDW
TC _{output}	Toggle of output	FSDB	VDW
TC _{internal}	Toggle of internal connection	FSDB	VDW
T _{arrival}	Minimum arrival time	FSDB	VDW
P _{internal}	Internal power	RH	VDP
P _{switch}	Switching power	RH	VDP
T _{transition}	Transition time	RH	VDP
l _{peak}	Peak current	RH	VDP

*RH: Redhawk-SC; FSDB: format of waveform file

**VI: vector-independent features; VDW: vector-dependent waveform features; VDP: vector-dependent power features

2024/5/10

LaDS, GIEE, NTU

C. Density Map Features Creation

□IR-drop is a local effect

- Use density map features to provide local information around a target cell
- □ Feature dimension is small (8*13+20 = 124)
 - $\blacksquare \ \, \mathsf{Select} \, \, \mathsf{8} \, \mathit{SPR}, R_{eff}, TC_{input}, TC_{output}, TC_{internal}, P_{internal}, \\$ P_{switch} and I_{peak} to create density map features
 - Each selected raw features create 13 density map features
 - 20 raw features
 - Not change with circuit size

2024/5/10

LaDS, GIEE, NTU

D. Machine Learning I

- ☐ Machine learning model: XGBoost
- ☐ Merits: fast, efficient, explainable
- ☐ Given a data set

$$\mathcal{D} = \{(x_i, y_i)\} (|\mathcal{D}| = \mathsf{n}, x_i \in \mathbb{R}^{\mathsf{m}}, y_i \in \mathbb{R})$$

- x_i : input features of the i_{th} cell, y_i : golden IR-drop
- n: total number of cells, m: feature dimension
- □ Ensembles K additive functions

$$y'_{i} = \phi(x_{i}) = \sum_{1}^{K} f_{k}(x_{i}), f_{k} \in \mathcal{F}$$

- F: space of additive functions
- y'_i: predicted IR-drop

2024/5/10

LaDS, GIEE, NTU

O.E.

D. Machine Learning II

■ Minimize objective function

$$\mathcal{L}(\phi) = \sum_i \ell(y'_i, y_i) + \sum_k \Omega(f_k)$$

- $\ell(y'_i, y_i) = \frac{1}{N} \sum_{i=1}^{N} ||y'_i y_i||^2$: loss function
- $\Omega(f) = \gamma T + \frac{1}{2}\lambda ||w||^2$: regularization term
 - T: number of leaves
 - w : leaf weights

2024/5/10

LaDS, GIEE, NTU

D. Machine Learning III

■ Trained in an additive manner

$$\mathcal{L}^{(t)} = \sum_{i=1}^{n} \ell(y_i, {y'_i}^{(t-1)} + f_t(x_i)) + \Omega(f_t)$$

• ${y'}_i^{(t-1)}$: predicted IR-drop value of i_{th} cell at the t-1 $_{th}$ iteration

2024/5/10

LaDS, GIEE, NT

27

Outline

- □Introduction
- □Background
- **□** Proposed Technique
- **□** Experimental Results
- Conclusion

2024/5/10

LaDS, GIEE, NTU

Setup

□ Profile of circuit designs

Circuit Design	# cells	# vectors	Mean IR-drop (mV)	Max IR-drop (mV)	Runtime of IR-drop analysis (s)	
MEMC	223,829	187	248.67	402.72	7,224	
b19	347,049	1,953	183.87	565.34	4,785	
leon3mp	1,049,484	3,558	219.03	467.68	24,210	

- Perform IR-drop analysis with Redhawk-SC
- Supply voltage: 0.95V
- Cell library: NanGate 45-nm

□ System:

- Intel Xeon E5-2620 v3 + 64G RAM
- Intel Core i7-9700KF + RTX 2080 + 64G RAM

2024/5/10

LaDS, GIEE, NTU

20

Evaluation Metrics

□ Normalized root mean square error (NRMSE)

■ RMSE =
$$\sqrt{\frac{\sum_{i=1}^{N}(y_i-y_i)^2}{N}}$$
, NRMSE = $\frac{\text{RMSE}}{\text{mean}(y')} * 100\%$

☐ Mean absolute error (MAE)

y': predicted value y : golden value

$$MAE = \frac{\sum_{i=1}^{N} ||y'_i - y_i||}{N}$$

■ Max error (MaxE)

■
$$MaxE = max(y'_i - y_i)$$
 for $i = 1$ to N

□ Correlation coefficient (CC)

Density Map Features

□ Compare Raw Features & Density Map Features

- Raw+Density has higher CC than Raw
- Raw+Density has lower MAE, MaxE, and NRMSE than Raw

	ME	MC	b 1	19	leon3mp			
	Raw*	Raw* Raw		Raw	Raw*	Raw		
		+Density**		+Density**		+Density**		
MAE(mV)	26.37	19.47	43.06	25.91	13.65	12.29		
MaxE(mV)	344.93	326.49	456.26	195.69	360.52	298.2		
NRMSE(%)	18.36	15.25	29.35	18.97	12.55	10.32		
CC	0.45	0.66	0.34	0.79	0.73	0.83		

*Raw: raw features only

2024/5/10

LaDS, GIEE, NTU

33

Different feature sets

□ Compare VI, VDW, and VDP

- VI is the worst
- Both VI+VDW and VI+VDP have good performance

Danismo		ME	MC			b1	19		leon3mp				
Design	VI	VI	VI	VI									
Metrics		+VDW	+VDP	+VDW		+VDW	+VDP	+VDW		+VDW	+VDP	+VDW	
Wetrics				+VDP				+VDP				+VDP	
MAE(mV)	22.84	19.47	15.77	15.76	34.69	25.91	30.61	30.19	9.56	12.29	14.39	13.06	
MaxE(mV)	338.4	326.4	262.4	357.0	279.8	195.6	249.4	287.5	626.5	298.2	219.8	263.0	
NRMSE(%)	17.72	15.25	12.17	12.91	25.61	18.97	21.24	21.34	11.8	10.32	9.71	10.31	
CC	0.47	0.66	0.81	0.78	0.55	0.79	0.71	0.71	0.76	0.83	0.87	0.82	
Feature													
Dimension	20	72	72	124	20	72	72	124	20	72	72	124	

VI: vector-independent features, VDW: vector-dependent waveform features VDP: vector-dependent power features

2024/5/10 LaDS, G

^{**}Raw+Density: raw features and density map features

Runtime of IR-drop Predictor I

☐ Training time (18 vectors)

Bottleneck: IR-drop analysis for training labels

		ME	MC		b19				leon3mp			
Stone	VI	VI+	VI+	VI+	VI	VI+	VI+	VI+	VI	VI+	VI+	VI+
Stage		VDW	VDP	VDW		VDW	VDP	VDW		VDW	VDP	VDW
				+VDP				+VDP				+VDP
IR-drop analysis for		130.	000			86,0	000			435.	000	
training labels(s)		100,	000			00,	000			700,	000	
VI extraction(s)	1,608	1,608	1,608	1,608	2,951	2,951	2,951	2,951	5,913	5,913	5,913	5,913
VDW extraction(s)	0	109	0	109	0	24	0	24	0	256	0	256
Preprocess(s)	25	154	129	125	10	86	79	83	57	470	470	470
Training(s)	58	126	146	151	85	96	150	171	746	509	925	943
Total training	131	132	131	132	89	89	89	89	442	442	443	443
runtime(1000s)	131	132	131	132	09	09	09	09	442	442	443	443
2024/5/10		LaDS, GIEE, NTU										35

		ME	MC		b19				leon3mp			
Stage	VI	VI+	VI+	VI+	VI	VI+	VI+	VI+	VI	VI+	VI+	VI+
Stage		VDW	VDP	VDW		VDW	VDP	VDW		VDW	VDP	VDW
				+VDP				+VDP				+VDP
VDW extraction(s)	0.0	2.7	0.0	2.7	0.0	0.4	0.0	0.4	0.0	1.4	0.0	1.4
VDP extraction(s)	0.0	0.0	529.4	529.4	0.0	0.0	76.4	76.4	0.0	0.0	489.5	489.5
Preprocess												
+Prediction(s)	0.6	3.8	3.2	3.1	0.2	1.4	1.3	1.3	0.3	2.5	2.5	2.5
Total prediction												
time(s)	0.6	6.5	532.6	535.2	0.2	1.8	77.6	78.1	0.3	3.8	492.0	493.3
IR-drop												
analysis(s)		3,2	27			1,3	78			2,3	806	
Speedup ratio	5,234	495	6	6	8,861	778	17	17	7,685	600	4	4
2024/5/10		LaDS, GIEE, NTU									36	

- □VI predict the same value for different vectors
- □VI+VDW+VDP has longest prediction time but doesn't have best performance
- □ Compare VI+VDW with VI+VDP
 - VI+VDW and WI+VDP have comparable performance
 - VI+VDW has extremely high speedup ratio
 - Recommend VI+VDW

Design	МЕМС		b19		leon3mp			
Metrics	VI+VDW	VI+VDP	VI+VDW	VI+VDP	VI+VDW	VI+VDP		
CC	0.66	0.81	0.79	0.71	0.83	0.87		
Speedup ratio	495	6	778	17	600	4		
2024/5/10	LaD	S, GIEE, NTU		37				

Conclusion

- **□** Extract importance features from waveform
- □ Create density map to consider local effect
- □ Predict vector-based dynamic IR-drop for cells
- MAE of IR-drop predictor is 3% of supply voltage
- □495x speedup compared to a popular commercial tool
- □ Identify 70% IR-drop risky vectors

2024/5/10

LaDS, GIEE, NTU

44

Acknowledgments

- ☐ This work is supported by Ansys inc.
- □ Thank to Norman Chang, Ying-Shiun Li, and Wen-Yze Chuang

2024/5/10

LaDS, GIEE, NTU

