Japan Patent Office Utility Model Laying-Open Gazette

Utility Model Laying Open No.

63-198233

Date of Laying-Open:

December 20, 1988

International Class(es):

H04B 1/18

1/10

1/26

H04N 5/44

(2 pages in all)

Title of the Invention:

An Antenna Booster Mixer

Utility Model Appln. No.

62-88634

Filing Date:

June 8, 1987

Inventor(s):

Yoshitada Yamaguchi

Applicant(s):

Alps Denki Kabushiki Kaisha

(transliterated, therefore the spelling might be incorrect)

[Claims for Utility Model Registration]

An antenna booster mixer comprising a transformer that mixes an amplified antenna signal with an RF modulation signal output from an RF modulator, and a resistor higher than the terminal impedance of an RF signal output unit is connected between the transformer and the RF signal output unit so as to be in parallel with the terminal impedance.

⑩ 公開実用新案公報(U)

昭63-198233

<pre>⑥Int Cl.⁴</pre>		識別記号	庁内整理番号	@公開	昭和63年(198	88)12月20日
H 04 B	1/18 1/10		B - 7251 - 5K N - 6866 - 5K			
H 04 N	1/18 1/10 1/26 5/44		K - 7251 - 5K Z - 6957 - 5C	審查記	青求 未請求	(全2頁)

アンテナブースタ・ミキサ ❷考案の名称

纽実 関 昭62-88634

顧 昭62(1987)6月8日 留出

⑩考 案 者 山口 好 惟

東京都大田区雪谷大塚町1番7号 アルプス電気株式会社

アルプス電気株式会社 砂出 願人

東京都大田区雪谷大塚町1番7号

弁理士 野崎 照夫 個代 理

の実用新薬登録請求の範囲

増幅されたアンテナ信号とRFモジュレータか ら出力されるRF変調信号とをミキシングするト ランスを有しており且つ、トランスとRF信号出 力部との間に、RF信号出力部の終端インピーダ ンスよりも高い抵抗が終端インピーダンスに対し て並列となるように接続されて成るアンテナプー スタ・ミキサ。

図面の簡単な説明

第1図は本考案の実施例によるアンテナプース タ・ミキサの主要部の回路図、第2図はアンテナ

ブースタ・ミキサとその接続経路を示すプロツク 図、第3図は従来のアンテナブースタ・ミキサの 主要部の回路図、第4図は従来例と本考案の実施 例におけるアイソレーションの特性を比較して示 した線図である。

1 ·····アンテナブースタ・ミキサ、2 ······TV アンテナ、3,5……ブースタ、4……トランス T1によつて構成される分配器、6 ……トランス T₂によつて構成されるミキサ、Rx·····終端イン ピーダンス、R2, R3……付加抵抗。

第2図

1・・・アンテナフースタ・ミキサ

2・・・TVアンテナ

3,4...7-29

4.1.分配器

6・・・ミキサ

フ・・・RFモジュレータ

Rx・・・終酬インピーダンス

Rs,Rs···付加抵抗

⑩ 日本国特許庁(JP)

⑪実用新案出願公開

❸公開 昭和63年(1988)12月20日

⑩ 公開実用新案公報(U)

昭63-198233

審査請求 未請求 (全 頁)

図考案の名称 アンテナブースタ・ミキサ

到実 顧 昭62-88634

魯出 顧 昭62(1987)6月8日

⑩考 案 者 山 口 好 惟 東京都大田区雪谷大塚町1番7号 アルプス電気株式会社

内

⑪出 顋 人 アルプス電気株式会社 東京都大田区雪谷大塚町1番7号

切代 理 人 弁理士 野崎 照夫

1考案の名称

アンテナブースタ・ミキサ

明

2 実用新案登録請求の範囲

増幅されたアンテナ信号とRFモジュレータから出力されるRF変調信号とをミキシングするトランスを有しており且つ、トランスとRF信号出力部との間に、RF信号出力部の終端インピーダンスに対して並列となるように接続されて成るアンテナブースタ・ミキサ。

3考案の詳細な説明

(技術分野)

本考案は、RFモジュレータなどと一体化されるアンテナブースタ・ミキサに係り、特にアンテナ信号と、RFモジュレータからの出力信号とのアイソレーションが向上されるアンテナブースタ・ミキサに関する。

(考案の背景)

第2図は、アンテナブースタミキサ1とその接

続機器の構成を示すプロック図である。

T V アンチナ 2 からの入力は、第一のブースタ 3 によって増幅され、分配器 4 によって第二のブースタ 5 と V T R チューナ 6 とに分配される。第二のブースタ 5 によって増幅されたアンテナ信号はミキサ 6 によって R F モジュレータ 7 からついる。この R F 出力部 8 からの出力信号はれる。この R F 出力部 8 からの出力信号は、T V 受像器 9 に内蔵されている T V チューナ 1 0 に送られる。

TV受像器によってテレビ放送の受信を行なうときには、TVアンテナ2によって受信されたVHFへUHFの周波数帯のアンテナ信号がミキサ6からTVチューナ10に出力される。またこのときVTRによる録画を行なう場合には、分配器4によって分配されたアンテナ信号がVTRチューナ6によって選局され、磁気テーブへの記録が行なわれる。

VTRの再生モードでは、VTR内の再生回路からRFモジュレータ7に映像信号と音声信号

(A/V 信号) が送られる。 R F モジュレータ 7 で は、UHFのTV放送信号がない周波数帯(例え ば欧州では591.25MHzである第36チャンネル付 近)の搬送波が発せられ、この搬送波がA/V 信号 によって変調されてミキサ6に出力される。ミキ サ6では、このRFモジュレータ7から発せられ るRF変調信号がブースタ5を経たTVアンテナ 信号と共にTVチューナ10に出力されることに なる。前述のようにRFモジュレータ7から出力 されるRF変調信号の周波数帯はTV放送のない 空きチャンネルを使用しているため、TV受像器 9 では、例えばUHFの第36チャンネルが VTR専用で且つTV受信周波数の一部としてと らえることができ、TVチューナ10によって TV放送とVTR再生信号とを任意に選択するこ とができる。そのためこのアンテナブースタ・ミ キサでは、アンテナ信号とRFモジュレータ7か ら出力されるRF変調信号との切換えを行なう必 要がない。

第3図は上記アンテナブースタ・ミキサの要部

を構成する回路を示している。この回路図に示すように、分配器4はバルントランスT」によって構成されており、ミキサ6はバルントランスTュによって構成されている。また回路中のコイルしょとコンデンサCュはハイバスフィルタであり、アンテナ信号のVHF帯低域の強入力信号がRFモジュレータ7に入り込んでピート妨害を生じるのを防止するためのものである。

またRx は、RF信号出力部8の終端インピーダンスを示している。

(考案が解決しようとする問題点)

前記のようにミキサ6がバルントランスT2によって構成されている場合、ブースタ5のRFモジュレータ7からのRFモジュレーション)が確保である。また、ミキサ6では、アンテナ入力のうちのVHF~UHFの広帯なるーンテナスカの方ちのVHF~UHFの広帯なるーでは、この広い間波数帯域の全域にわたってなりにあるバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するバルントランスT2を使用するアクスを使用するアクスを使用するアクスを使用するアクスを使用するアクスを使用するアクスを使用するアクスを使用するアクスを使用するアクスを使用するアクスを使用するアクスを表もである。

そこで、バルントランスT2によって大きなアイソレーションをもたせる対策として、RFで割信号で、DHFの36チャンネル)の周波数にて共振れている。この回路定数を設定することが行なわり、RF変調信号(UHFの36チャンネル)付近で、アンテナ入力信号とRFモジュレータ出で、テンテナ入力信号とRFモジュレータに調整することが可能になる。

しかしながら、この場合にRF信号出力部8に おける終端インビーダンス Rx が上記の回路定数 に影響を与えることになる。この終端インピーダ ンスRxは、RF信号出力部8とTVチューナ 10を結ぶケーブルの長さなどによって変化する ことになるため、この変化によって、RFモジュ レータ7-バルントランスT2-RF信号出力部 8の信号経路の回路定数が変動することになる。 その結果、前述のRF変調信号と回路定数による 共振点とが一致しなくなり、所望のアイソレー ションを得ることができなくなる。第4図は UHFの36チャネル付近で共振点を持つように 回路定数を設定した場合のアイソレーションの変 化について示している。 RF信号出力部8におけ る公称の終端インピーダンスが例えば75Ωの場 合、この75Ωの抵抗によって終端した場合のアイ ソレーションの変化は第4図にて(A) で示す線と なり、UHFの36チャンネル付近においてアイ ソレーションが大きくなる。ところが出力部8に おける終端インピーダンスが変化して例えば出力

がオーブン(終端インピーダンスR×が無限大) となった場合には、アイソレーションの変化は第 4 図において (B) で示す線となる。 R F 出力が オーブンの場合と、公称の75Ωにて終端した場合 とでは、UHFの36チャンネル付近におけるア ィソレーションのばらつき幅が10~15d8程度と大 きくなる。 したがって、 RF信号出力部8と TVチューナ10とを接続するケーブルの長さな どによって終端インピーダンスR× が高くなり、 公称の例えば75Ωよりも大きく変動すると、 UHFの36チャネル付近の共振点が失われて、 この周波数帯におけるアイソレーションが大きく 低下する場合が懸念される。このアイソレーショ ンの低下がαで示す限界よりも小さくなると、 R F モジュレータ 7 の信号が A N T ・ I N 端子に 漏れ易くなる。

本考案は上記従来の問題点を解決するものであり、RFモジュレータートランス-RF信号出力部の信号経路の回路定数を設定してRF変調信号に対する共振点を持たせるようにした場合におい

て、RF信号出力部における終端インピーダンスが変動しても、アイソレーションの大幅な低下が生じないようにしたアンテナブースタ・ミキサを提供するものである。

〔問題点を解決するための具体的な手段〕

本考案によるアンテナブースタ・ミキサは、増幅されたアンテナ信号とRFモジュレータからお出力されるRF変調信号とをミキシングするトリンスを有しており且つ、トランスとRF信号出力部の終端インピーダンスに対よりも高い抵抗が終端インピーダンスに対るよりもあるように接続されて成るものである。

(作用)

このアンテナブースタ・ミキサでは、RF信号出力部における公称の終端インピーダンス接続になるに抵抗を終端インピーダンスが無限大になったとの機能を発揮するようになる。または公の終端インピーダンスが公称値と同じまたは公称の終端インピーダンスが公称値と同じまたは公称の

値に近い値になった場合には付加した抵抗によってインピーダンスが低下するが、従来における終端インピーダンスの変化に比べて実質的な終端インピーダンスの変化の幅が小さくなり、アイソレーションの低下幅を小さく抑えられるようになる。

(考案の実施例)

以下、本考案の実施例を第1図によって説明する。

第1図はアンテナブースタ・ミキサの要部を構 成する回路を示している。

符号3はアンテナ入力信号を増幅するための第一のブースタ、4はバルントランスTιによって構成されている分配器、5は第二のブースタいのはが、6はバルントランスT。によって構成させている。コイルLιとコンデンサCによってルカランスタ5からRFによったの強入力信号がRFにジュレータである。

バルントランスTzとRF信号出力部8との間には抵抗R2が設けられている。この抵抗R2は抵抗R2が設けられている。この抵抗R2は、RF信号出力部8の終端インピーダンスRxの値は公称の終端インピーダンスRxの値は公称の終端インピーダンスRxの値は分称の終端インピーダンスRxが例えば75Ωの場合、抵抗R2は例えば150Ωに設定する。

このアンテナブースタ・ミキサでは、RFモジュレータ7ーバルントランスT』-RF信号出力部8に至る信号経路の回路定数によって、RFモジュレータ7から出力されるRF変調信号の周波数帯(例えばUHFの36チャンネル付近)において共振点を持つように設定されている。

第1 図に示す回路において、 R F 信号の出力がオーブン(終端インピーダンス R x が無限大)の場合には、前記抵抗 R 2 によって 150 Ω の実質的な終端インピーダンスを持つことができるようになる。この場合のアイソレーションの変化は、第

3

また第 1 図に示す実施例では、バルントランスT 2 と R F 信号出力部 8 との間に抵抗 R s が付加されている。この抵抗 R s の抵抗値は終端インピーダンス R x よりも小さく、例えば 15 Ω 程度である。この抵抗 R s を付加することにより、終端

インピーダンスR×の変動による実質的な終端インピーダンスの変動を小さく抑えることができるようになり、第4図における線(C) と線(D) とのばらつき幅をさらに小さく抑えることができるようになる。またこの場合、抵抗R。の値が微小であるため、NF(雑音指数)の劣化もわずかである。

としても、アイソレーションの劣化をきわめてわずかなものとできる。このようにいかなる負荷状態においてもアイソレーションを十分なレベルに保持できることにより、RFモジュレータ7の信号がANT・IN端子に漏れにくくなり、TV受像器の録画再生画面にピート障害などが生じることも改善される。

(考案の効果)

以上のように、本考案によれば、終端インピー ダンスの変化によるミキサでのアイソレーション の劣化が減少し、安定した性能のアンテナブース タ・ミキサを得ることができるようになる。

4 図面の簡単な説明

第1図は本考案の実施例によるアンテナブースタ・ミキサの主要部の回路図、第2図はアンテナブースタ・ミキサとその接続経路を示すブロック図、第3図は従来のアンテナブースタ・ミキサの主要部の回路図、第4図は従来例と本考案の実施例におけるアイソレーションの特性を比較して示した線図である。

I …アンテナブースタ・ミキサ、2 … T V アンテナ、3,5 … ブースタ、4 … トランス T 1 によって構成される分配器、6 … トランス T 2 によって構成されるミキサ、R x … 終端インピーダンス、R 2 , R 3 … 付加抵抗。

出願人 アルプス電気株式会社 代理人 弁理士 野 崎 照 夫取扱

図 第 2

1・・・アンテナフースタ・ミキサ

2・・・「Vアンテナ

3,4・・・ブースタ

4...分配器

6・・・ミキサ

フ・・・RFモジュレータ

Rx・・・終端インピーダンス

Rz,R3、付加抵抗

361

出願人アルプス電気株式会社

10 20 2 3

第3図

第4 図

362 出願人アルプス電気株式会社 代理人 野 崎 照 夫 実開63-1982

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: _

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.