## Zestaw 4

#### **Zadanie A**

Narysować przykładową trajektorię procesu Poissona



gdzie skok o 1 jest wykonywany co czas  $t_i$  wylosowany z rozkładu wykładniczego  $f(t) = \lambda e^{-\lambda t}$ , gdzie  $\lambda = 1 \left[ \frac{1}{\min} \right]$ . Czas ten proszę wygenerować metodą odwracania dystrybuanty.

Zebrać  $10^4$  trajektorii i narysować rozkład prawdopodobieństwa w czasach  $t=1,\ 20,\ 90$  Porównań z rozkładem Poissona

#### **Zadanie B**

Symulacja procesu kolejkowego (na podstawie procesu Poissona)

## Legenda:

Tempo przychodzenia zadań do serwera:  $\lambda_A$ 

Odstęp czasu pomiędzy przychodzeniem nowych zadań:  $t_i^A = -\frac{\ln(1-n)}{\lambda_A}$ , gdzie  $n \rightarrow \text{Uniform}(0,1)$ 

Tempo wykonywania zadań przez serwer:  $\lambda_{\mathbb{S}}$ 

Czas wykonywania kolejnych zadań:  $t_i^S = -\frac{\ln(1-n)}{\lambda_S}$ , gdzie  $n \rightarrow \text{Uniform}(0,1)$ 

Jednocześnie serwer może wykonywać tylko jedno zadanie.

## Zadanie:

Stworzyć wykres

- a) liczby zadań w kolejce od czasu
- b) liczby wykonanych zadań od czasu

dla

I) 
$$\lambda_A = \frac{1}{20} i \lambda_S = \frac{1}{15}$$

II) 
$$\lambda_A = \frac{1}{20} i \lambda_S = \frac{1}{100}$$

III) 
$$\lambda_A = \frac{1}{20} i \lambda_S = \frac{1}{5}$$

#### **Zadanie** C

Sprawdzić prawo Little'a

$$E(R) * \lambda_A = E(x),$$

gdzie E(R) - średni czas spędzony przez zadanie w systemie i E(x) - liczba zadań w systemie dla

I) 
$$\lambda_A = \frac{1}{20} i \lambda_S = \frac{1}{15}$$

II) 
$$\lambda_A = \frac{1}{20} i \lambda_S = \frac{1}{100}$$

III) 
$$\lambda_A = \frac{1}{20} i \lambda_S = \frac{1}{5}$$

Wartość oczekiwana E(...) powinna pochodzić z ~1000 symulacji, gdzie każda trwa t ~ 10000

### **Zadanie D**

Wykonać wykresy:

- a) E(liczba zadań w systemie) od  $\lambda_{\!\scriptscriptstyle A}$
- b) E(liczba zadań w systemie) od  $\lambda_{S}$
- c) E(liczba zadań w systemie) od  $r = \frac{\lambda_A}{\lambda_S}$

# **Dodatkowe Zadanie E**

Dla  $\lambda_A = \frac{1}{20}$  i  $\lambda_S = \frac{1}{100}$  zaobserwować zatykanie się systemu i na podstawie odpowiednich wykresów znaleźć znaczenie zależności:

a) 
$$(\lambda_A - \lambda_S) t$$

b) 
$$\frac{(\lambda_A - \lambda_S)}{\lambda_S} t$$