PANDAS DATAFRAME & BASIC STATISTICS

ERT 474/574 Open-Source Hydro Data Analytics Sep 17th 2025

Logistics

• HW2 due today

In the last lecture, we introduced **Numpy** (a powerful tool to generate data arrays and calculations)

How can we more effectively manipulate data?

import pandas as pd

Data Structure

Powerful functions

Data Structure

Data Structure	Dimension
Series	1
Data Frames	2

What is the difference between series and Data Frames?

Data Series

tom	105
bob	306
nancy	3560
dan	1200
eric	50

Data Framework

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

column

Row

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

Column name

index

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

df.loc[index, column name]

Column name

index

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

df.loc['tom','Fav_number']

Column name

index

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

df.iloc[0,0]

0th row

1st row

2nd row

3rd row

4th row

	Fav_number	Fav_color
tom	105	red
bob	306	blue
nancy	3560	orange
dan	1200	pink
eric	50	green

0th column

1st column

Data manipulation for time series data

Streamflow for Niagara River @ Buffalo, NY

Out[70]:		streamflow	quality_flag
	date		
	2022-10-01	203000.0	А
	2022-10-02	194000.0	А
	2022-10-03	206000.0	Α
	2022-10-04	213000.0	Α
	2022-10-05	215000.0	Α
	2022-12-28	209000.0	Α
	2022-12-29	206000.0	Α
	2022-12-30	207000.0	Α

211000.0

216000.0

93 rows × 2 columns

2022-12-31

2023-01-01

Data manipulation for time series data

Streamflow for Niagara River @ Buffalo, NY

How can we change the frequency of data from daily to monthly?

Data manipulation for time series data

Streamflow for Niagara River @ Buffalo, NY

How can we identify the extreme high flow events?

When is that event?

We will practice more in today's lab session!

Statistical methods are widely used in hydrologic modeling

How do we do descriptive analysis when we get a data?

- Mean, variance, standard deviation (Box plot)
- PDF(Histogram), CDF (Quantile mapping), median (interquantile range)
- Extreme detection
 - z-score
 - 7Q10

If you were a state hydrologist, when you were asked to give a high-level introduction to Niagara Rivers at Buffalo, what information would you provide based on the streamflow observations?

1. Sample Mean

$$\bar{X} = \sum_{i=1}^{n} \frac{X_i}{n}$$

Mean streamflow usually is used to evaluate the overall water availability for a region.

If you were a state hydrologist, when you were asked to give a highlevel introduction to Niagara Rivers at Buffalo, what information would you provide based on the streamflow observations?

"Variance" refers to a measure of how spread out a set of data is from its mean (average), essentially indicating how much variation exists within a data set

2. Sample Variance

$$\sigma^2 = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{n - 1}$$

3. Standard Deviation

$$\sigma = \sqrt{\sigma^2}$$

If you were a state hydrologist, when you were asked to give a highlevel introduction to Niagara Rivers at Buffalo, what information would you provide based on the streamflow observations?

How do we create a time series with same \bar{X} but 0.5 σ ?

$$X_{i,fake} = \overline{X} + \frac{1}{2}(X_i - \overline{X})$$

If you were a state hydrologist, when you were asked to give a highlevel introduction to Niagara Rivers at Buffalo, what information would you provide based on the streamflow observations?

A more straightforward way to visualize the spread of the dataset?

Flow with lower standard deviation are more centered around the mean value!

Box-plot

Box-plot

Probability Density Function

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

The total area below a PDF is 1.

We can use histogram to visualize the PDF for time series data.

Probability Density Function

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

We can use histogram to visualize the PDF for time series data

The histogram might look a bit different after we change the bin size

Probability Density Function

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

 $P(X \leq median) = 0.5$

Probability Density Function

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Probability Density Function

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Probability Density Function

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

Cumulative Distribution Functions

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$$

Cumulative Distribution Functions

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$$

Cumulative Distribution Functions

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y)dy$$

• In the analysis, CDF can be a powerful tool for visualizing the shifting of hydrologic regimes.

Use CDF to visualize the shift in hydrologic regimes

Use CDF to visualize the shift in hydrologic regimes

Use CDF to visualize the shift in hydrologic regimes

What information can we read from the plot in the right?

Thanks!

