3-1/ What are the possible sets defined by a DFA? ALL = P(z*) = "all possible sets of strings" Ø E ALL 2 Jay & ALL Jay & ALL E e 3 EALL E & ALL Shakesprane Plays EALL All valid (programs EALL Solutions to 304 exams EALL X fALL, but x & REG ALL DFAs ALL = the Regular languages REG ALL=REG X ALL EREL X REG SALL & Inve [>0=0=0=0 | EDFA L() = EJAy 3 A= 80°1" nENat3 EEA GOILEA OIEA Why are Q and & Sinite in the DFA defn? Lrigor of math (infinite doesn't exist until after DEAS do L reflects reality REG ALL FIN = finite = set of all finite sets REG & FIN X evens REG = FIN X J FIN CREG - there's a DFA For every digital trie Disjoint (5) finite set

3-3/	DFAs run in $\Theta(n)$ time and $O(\log \log n)$ space
	and $\Theta(\log_2 Q)$ space
	OFAs describe languages and languages have "operations" To do DFAs have "operations"?
	2010, 1113 v 203 = {0,010,111}
	O FAL
	evens (eventerath) U eevens (binary number is even)
	202000
	= string is even long or ends in o
M	Closure under Union of REG :=
	YA, BEREG. AUBEREG.
	= \ABEDFA, FEEDFA, L(C) = L(A) \(\mathcal{L}(B)\)
	Forall then exists -> a compiler
	Input: $A = (QA, \Sigma, 80+, 8+, FA)$ $B = (QB, \Sigma, 80B, 8B, FB)$ $B = (QB, \Sigma, 80B, 8B, FB)$
	Output: C= (QC, E, GOC, SC, FC)
	BC = QH X QB SC((Ba, 8b), C)
	BOC = (BOA, BOB) = (SA(Ba, C),
	Sc = BSUYSY ASUYS Y SB (86, C) } FC = FAXFB U FAXQB / FC FOR N = FAXFB

3-3/ even length =

06 01

is-even =

1 = same but (Ay) Stands a lone

U =

0011 /

How big is the V output?

Space matters log(|Qcl)

log(|Qpl | |QBl)

2 · log(|Qpl)

operations = V, N, O, R, &, N
proved

"The regular operations"

 $E \circ X = X$ $(A \cup X) \circ (Y \cup A) =$ $A \cup (X \cup Y)$