Estimation of PM 2.5 emission in Beijing, China, using weather data

Arnold Lin

Motivation

"The air quality is getting WORSE!"

"Public amnesia"

OR

Truth by majority

Questions

- How do weather conditions influence $PM_{2.5}$ concentration?
- What does seasonality imply about emission?
- How did policies change the PM_{2.5} emissions?

$$\frac{dm}{dt} = E + F_H + F_V + D$$

Why Beijing?

- Familiarity
- China represents a group of developing country
- The special location

Industrial Emission Mountain Beijing 北京市 Automobiles Tangshan 唐山市 102.02 mi (164.19 km) Tianjin 天津市

Data Source

- Weather data: Weather Underground
- PM 2.5 data: U.S. Department of State Air Quality Monitoring Program. (2017). *Mission China*.
- Policy data: Courtesy of Caiwei Huang, Emory undergraduate research assistant of Dr. Saikawa

Methods

Weather Data 2008.1 ~ 2017.2 Aggregation ——— Featurization **Training** PM_{2.5} Data 2008.4 ~ 2017.2 Data Imputation → Computation

Methods - Aggregation

Time	Temp	Wind
15:30	28 °C	5 mph N
16:00	27 °C	N/A
16:00	N/A	5 mph E
16:30	25 ℃	0 mph

Time	Temp	Wind
16:00	27.5 ℃	7.07 mph
		NE
17:00	25 ℃	0 mph

Methods - Imputation

Time	PM _{2.5} (μg/m³)
15:00	42
16:00	N/A
17:00	46

Time	PM _{2.5} (μg/m³)
15:00	42
16:00	44.0
17:00	46

Time	$PM_{2.5} (\mu g/m^3)$
15:00	124
16:00	N/A
17:00	N/A
18:00	128

Time	$PM_{2.5} (\mu g/m^3)$
15:00	124
16:00	125.33
17:00	126.67
18:00	128

Features

Hour

Month

Temp

Feels like

Humidity

Pressure

Wind Speed North

Wind Speed East

Absolute Wind Speed

Weather Conditions:

Thunder

Snow

Hail

Rain

Drizzle

Cloudy

First Glance at Data

First Glance at Data

 0
 35
 75
 115
 150
 250

First Glance at Data

Factor Analysis

Next Steps

- Under standing features
- According to $\frac{dm}{dt} = E + F_H + F_V + D$:
 - Reduce weather factors
 - Estimate emission
- Compare the data with policies