一、选择填空

1 实际应用最广泛的计算机网络体系结构是(A),它的网络层是(B)的。在ISO/OSI参考模型中,同层对等实体间进行信息交换时必须遵守的规则称为(C)。

A: 1. SNA; 2. MAP/TOP; 3. TCP/IP; 4. ISO/OSI; 5. X. 25

B: 1. 基于连接; 2. 基于无连接; 3. 虚电路; 4. 可靠传输

C: 1. 接口; 2. 协议; 3. 服务; 4. 关系; 5. 连接; 6. PAD

答题填空: A(3); B(2); C(2)

2 下列表述是否正确,正确打"√",错误打"×"

A: 面向连接的服务是可靠服务。 (×)

C: 根据ISO/OSI参考模型,PDU(协议数据单元) 是由ICI(接口控制信息)和SDU(服务数据单元) 组成。

 (\times)

3 奈魁斯特定理: 无噪声有限带宽信道的最大数据传输率 = $2Hlog_2V$, 香农定理: 带宽为H赫兹,信噪比为S/N的任意信道的最大数据传输率 = $Hlog_2(1 + S/N)$ 。二值信号在3kHz的信道上传输,信噪比为10dB,最大数据速率为(A)

A: 1. 3kbps; 2. 6kbps; 3. 10.4kbps; 4. 19.5kbps

答题填空: A()

4 差分曼彻斯特码的原理是:每一位中间都有一个跳变,位中间跳变表示(A),位前跳变表示(B)。10M 802.3 LAN使用曼彻斯特编码,它的波特率是(C)。

A、B: 1. 时钟; 2. 同步; 3. 数据; 4. 定界

C: 1.5Mbaud; 2.10Mbaud; 3.20Mbaud; 4.30Mbaud

答题填空: A(); B(); C()

5 物理层的四个重要特性是:机械特性、电气特性、功能特性和(A)。多路复用技术提高了线路利用率,SONET/SDH采用(B)技术。

A: 1. 接口特性; 2. 规程特性; 3. 协议特性; 4. 物理特性

B: 1. TDM; 2. FDM; 3. WDM; 4. DWDM

答题填空: A(); B()

二、计算

对各类通信子网定义下列参数:

- N=两个给定站点之间所经过的段数;
- L=报文长度(L为分组大小P的整数倍),单位:位;
- B=所有线路上的数据传输速率,单位:位/秒;
- P = 分组大小 (P <= L), 单位: 位:
- H=每个分组的分组头,单位:位;
- S1=线路交换的呼叫建立时间,单位:秒;
- S2 = 虚电路的呼叫建立时间,单位:秒;
- D=各段内的传播延迟,单位:秒。
- 1 写出电路交换、报文交换、虚电路分组交换(虚电路分组头可忽略)和数据报分组交换的端到端延迟时间的表达式。
- 2 求 N = 4, L = 30720, B = 9600, P = 1024, H = 16, S1 = 0.2, S2 = 0.1, D = 0.001时, 上述四种交换方式的总延迟时间。

■ 在一个差错信道上使用滑动窗口协议进行数据传输。发送序号和接收序号的取值范围是0~7。其中一方发送窗口和接收窗口的初始状态如下表所示。请根据该方所发生的事件顺序,写出发送窗口和接收窗口上、下界的变化过程。采用"退回到N"的重传技术,允许捎带确认,其中Ixy和Ixy分别表示发送和接收一个帧,x是发送序号,y是希望接收的下一个帧的序号。

某-	一方发	初	100	I10	I20	<i>I01</i>	<i>I12</i>	I32	I42	<i>I22</i>	<i>I32</i>	<i>I42</i>	I20	I25	<i>I53</i>
生的	的事件	始											超时		
发	上界	0													
送	位置														
窗	下界	0													
П	位置														
接	上界	0													
收	位置														
窗	下界	0													
П	位置														

某一	一方发	初	100	I10	120	<i>I01</i>	<i>I12</i>	I32	I42	<i>I22</i>	<i>I32</i>	<i>I42</i>	I20	I25	<i>I53</i>
生的	的事件	始											超时		
发	上界	0	1	2	3	3	3	4	5	5	5	5	2	3	3
送	位置														
窗	下界	0	0	0	0	1	2	2	2	2	2	2	2	2	3
П	位置														
接	上界	0	0	0	0	1	2	2	2	3	4	5	5	5	6
收	位置														
窗	下界	0	0	0	0	1	2	2	2	3	4	5	5	5	6
口	位置														

■ 在一个差错信道上使用滑动窗口协议进行数据传输。发送序号和接收序号的取值范围是0~7。其中A方发送窗口和接收窗口的初始状态如下表所示。请根据A方发送窗口和接收窗口的变化过程,给出导致窗口变化的事件顺序。采用"退回到N"的重传技术,允许捎带确认,用Axy和Bxy分别表示A发送和接收一个帧,Axy_timeout表示Axy超时,x是发送序号,y是希望接收的下一个帧的序号。发送窗口上界为next_frame_to_send,下界为ack_expected;接收窗口下界为frame_expected。

A 7	方发生	初															
的	事件	始	A00														
发	上界	0	1	2	3	3	3	4	5	5	5	5	2	3	3	4	5
送	位置																
窗	下界	0	0	0	0	1	2	2	2	2	2	2	2	2	3	3	3
П	位置																
接收	女窗口	0	0	0	0	1	2	2	2	3	4	5	5	5	6	6	6
下列	界位置																

- 在一个差错信道上A、B双方使用滑动窗口协议进行数据传输,双方采用"选择性"的重传技术,允许捎带确认,发送序号和接收序号的取值范围是0~7。请根据表1和表2中A方窗口初始状态和随后发生的事件,给出每个事件发生后发送窗口和接收窗口的变化过程,并给出表1中在S2_timeout,RNAK5事件之后A方按照协议接着发生的事件,表2中R41,ACKtimeout事件之后A方按照协议接着发生的事件。(请在表中对应事件下的空格里标出)
- Sxy和Rxy分别表示A发送和接收一个数据帧,x是帧中携带的数据的序号,y是希望下一帧接收的数据的序号;Sz_timeout表示A方发送窗口内序号为z的数据超时,ACKtimeout表示ACK时钟超时;SACKz和RACKz分别表示A方发送和接收一个ACK确认帧,z是希望下一帧接收的数据的序号;SNAKz和RNAKz分别表示A方发送和接收一个NAK确认帧,z是希望下一帧接收的数据的序号。发送窗口上界为下一个将要发送的数据的序号(next_frame_to_send),下界为最早发送出去的但还没有被确认的数据的序号(ack_expected);接收窗口下界为按照顺序希望最早接收到的数据的序号(frame_expected)。

L														
A发生事件		初始	S ₂₀	R ₀₁	R ₁₂	S ₃₂	S _{2_} timeout	R _{ACK4}	S ₄₂	S ₅₂	S ₆₂	R ₂₅	R _{NAK5}	R _{ACK}
A 方发送	下界	0	0	1	2	2	2	4	4	4	4	5	5	7
送窗口	上界	2	3	3	3	4	4	4	5	6	7	7	7	7

A发生的事件	=	初始	R ₂₀	S_{03}	R ₄₁	R ₃₁	ACK _{timeout}	R ₅₁
A方接收窗	下界	2	3	3	3	5	5	6
П	上界	6	7	7	7	1	1	2

	丰 仏	÷π.4/\		G.	R ₄₁		ACK _{timeout}	
A发生的	事件	初始	R ₂₀	S ₀₃	S _{NAK3}	R ₃₁	S _{ACK5}	R ₅₁
A方接 收窗口	下界	2	3	3	3	5	5	6
收窗口	上界	6	7	7	7	1	1	2

■局域网的IEEE 802系列标准中,802.3定义了 采用(A)技术的局域网标准,它所采用的 介质访问控制技术确定冲突要花费(B)倍 电缆长度的传输时间。

A: 1. CSMA; 2. CSMA/CD; 3. ETHERNET;

4. 分槽ALOHA

B: 1. 1; 2. 2; 3. 3; 4. 1. 5

答题填空: A(); B()

- 一个IPv4地址块的子网掩码为255. 255. 240.
 - 0,则该子网可用的最大IP地址数为(A)。(B)采用链路状态算法。

A: 1.4096; 2.16; 3.256; 4.4094; 5.254

B: 1. RIP; 2. OSPF; 3. BGP-4; 4. EGP

答题填空: A(); B()

一个网络的拓扑结构如下图所示,一台路由器连接三个IEEE 802.3 LAN,每个LAN连接60台计算机。现有一个IP地址块202.112.37.0/24,请合理化分子网,给出网络掩码和主机A、DNS服务器、FTP服务器的IP地址。如果主机A知道DNS服务器和路由器的IP地址、路由器的MAC地址、和FTP服务器的域名,而不知道DNS服务器的MAC地址和FTP服务器的IP地址,路由器知道所有相关信息,请叙述主机A通过FTP操作从FTP服务器下载文件的工作流程和各层地址变换,包括应用层、传输层、网络层和数据链路层的操作。

■ 如图所示,5台路由器组成全相连的网络, 每台路由器有5个接口,分别连接其它4台路 由器和1个局域网,每个局域网最多连接20 台计算机,每台计算机分配1个IP地址。如 果只有一个IPv4地址块202.112.10.0/24可供 分配,请给出一种合理的地址分配方案,分 别给出每个局域网的地址空间和路由器每个 端口的地址以及它们的掩码。

答案

- 5台路由器之间有10条链路,每个链路连接的两个端口构成一个子网,需要4个IP地址。
- **202.112.10.** (0, 4, 8, 12, 16, 20, 24, 28, 32, 36) 255.255.255.252
- 每个局域网分配32个地址
- **202.112.10.** (64, 96, 128, 160, 192), 255.255.255.224

主机C通过FTP向服务器S传送文件,双方建立TCP 连接,采用慢启动算法进行拥塞控制。初始阈值 threshold为5000字节, 主机C发送的TCP段的数据 长度固定为1000字节,初始拥塞窗口大小为1000 字节。使用网络监听工具对主机C的FTP传输过程 中的收发包进行监听。下表给出了该FTP数据通道 的建立连接和数据传输的部分过程,请将相关内容 填入空白处,并给出收发包事件发生后主机C的 TCP实体的拥塞窗口congwin和阈值threshold的大 小。"---"表示该空格不需要填写,确认序号等于 希望接收的下一个字节的序号。

16425	源IP地	目的IP地	源端口号	目的端口号	序号SEQ	确认序号	控制位	备注	主机C的	主机C的
收发包 序号	址	日的IP地 址		日的新口亏 	户与SEQ	研队序写 ACK	控 制位	金	土がにCET congwin	土がに関 threshold
1	С	S	1077	20	1000		Syn=1	连接请求		
2	S	С	20	1077	3000	1001	Syn=1 Ack=1			
3	С	S	1077	20	1001	3001	Ack=1			
4	С	S	1077	20	1001	3001		数据传输	1000	5000
5	S	С	20	1077	3001	2001	Ack=1		2000	5000
6	С	S	1077	20	2001	3001			2000	5000
7	С	S	1077	20	3001	3001			2000	5000
8	S	С	20	1077	3001	3001	Ack=1		3000	5000
9	С	S	1077	20	4001	3001			3000	5000
10	С	S	1077	20	5001	3001			3000	5000
11	S	С	20	1077	3001	5001	Ack=1		5000	5000
12	С	S	1077	20	6001	3001			5000	5000
13	С	S	1077	20	7001	3001			5000	5000
14	С	S	1077	20	8001	3001			5000	5000
15	С	S	1077	20	9001	3001			5000	5000
16	S	С	20	1077	3001	10001	Ack=1		6000	5000
17	С	S	1077	20	10001	3001			6000	5000
18	С	S	1077	20	11001	3001			6000	5000
19	С	S	1077	20	10001	3001		序号为10001的包超时重 传	1000	3000

在TCP协议中,使用慢启动算法和拥塞避免 算法进行拥塞控制。假设网络负载非常稳定, 在一个TCP连接中,每当拥塞窗口大小达到 W时就会丢包, $W = 2^n$ (n是正整数)。假 设每个TCP段的长度都是最大发送段长MSS, 段的发送和接收时间可以忽略, RTT (Round Trip Time) 为常量,并且有足够 多的数据要发送。求平均传输速率。

答案

- 在第一次慢启动和拥塞避免算法执行周期内,域值并不知道,因此也不知道在哪个区间使用慢启动算法或拥塞避免算法。但是从第二次以后,域值都等于W/2,即从每个RTT发送1个MSS到每个RTT发送W/2个MSS,TCP使用慢启动算法;从每个RTT发送W/2 + 1个MSS到每个RTT发送W个MSS,TCP使用拥塞避免算法。由于有足够的数据要发送,所以第一个算法执行周期可以忽略。
- 执行慢启动算法周期内,发送的段数为: $1 + 2 + 4 + ... + W/2 = 1 + 2 + 4 + ... + 2^{n-1} = 2^n 1$,RTT个数为n个。
- 执行拥塞避免算法周期内,发送的段数为: $(W/2 + 1) + (W/2 + 2) + (W/2 + 3) + ... + W = (2^{n-1} + 1) + (2^{n-1} + 2) + (2^{n-1} + 3) + ... + 2^n = 2^{n-1} 2^{n-1} + 1 + 2 + 3 + ... + 2^{n-1} = 2^{2n-2} + 2^{2n-3} + 2^{n-2}, RTT个数为<math>W/2 = 2^{n-1}$
- 所以,平均传输速率为($2^n-1+2^{2n-2}+2^{2n-3}+2^{n-2}$)/($n+2^{n-1}$)= (W $-1+W^2/4+W^2/8+W/4$) / (log₂W + W/2) = (3W² + 10W -8) / (4W + 8log₂W) * (MSS/RTT)
- 近似等于0.75 W*MSS/RTT