Department of Applied Mathematics and Humanities

S. V. National Institute of Technology, Surat, Gujarat

Tutorial-03

B. Tech.-I (Semester-I) Branch-All

Subject: Mathematics-I (MA101 S1)

Topic: Curvature and Radius of curvature

- 1. Prove that radius of curvature at any point of the Astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is three times the length of the perpendicular from the origin to the tangent at that point.
- 2. If ρ_1 and ρ_2 are the radii of curvatures at the extremities of a focal chord of the parabola $y^2 = 4ax$, then show that $\rho_1^{-\frac{2}{3}} + \rho_2^{-\frac{2}{3}} = (2a)^{-\frac{2}{3}}$.
- 3. For the curve $s^2 = 8ay$ Show that $\rho = 4a\sqrt{1 (\frac{y}{2a})}$.
- 4. In the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that the radius of curvature at an end of the major axis is equal to the sem-latus rectum of the ellipse.
- 5. Find the radius of curvature at the origin of the following curves:

(i)
$$x^3 + y^3 = 3axy$$
 (ii) $y^2 = x^2(\frac{a+x}{a-x})$ (iii) $x^4 - y^4 + x^3 - y^3 + x^2 - y^2 + y = 0$.

Ans. (i)
$$\frac{3a}{2}$$
 (ii) $a\sqrt{2}$ (iii) $\rho = \frac{1}{2}$

- 6. State and prove radius of curvature for cartesian curves.
- 7. The tangents at two points P, Q on the cycloid $x = a(t-\sin t)$, $y = a(1-\cos t)$ are at right angles; show that if ρ_1 , ρ_2 be the radii of curvature at these points, then $\rho_1^2 + \rho_2^2 = 16 a^2$.
- 8. For the curve $y = c \cosh(\frac{x}{c})$, show that $\rho = \frac{y^2}{c}$ at (0, c).
 - 9. For the curve $r = a(1 + \cos\theta)$, show that $\frac{\rho^2}{r}$ is constant.
 - 10. Find the radius of curvature for the curve $y^2(2+x) = x(2-x)$ at a point whose x-coordinate is 1.

 Ans. $\rho = 2\sqrt{3}$
- 11. Find the points on the parabola $y^2 = 8x$ at which the radius of curvature is $7\frac{13}{16}$.

Ans.
$$(\frac{9}{8}, 3)$$
 $(\frac{9}{8}, -3)$

- 12. For the curve $y = \frac{ax}{a+x}$, if ρ is the radius of curvature at any point (x, y), show that $(\frac{2\rho}{a})^{\frac{2}{3}} = (\frac{y}{x})^2 + (\frac{x}{y})^2$.
- 13. Show that the radius of curvature at any point of the curve $x = a(\theta + sin\theta)$, $y = a(1 cos\theta)$ is $4a \cos(\frac{\theta}{2})$.
- 14. Find the point where the radius of curvature of the curve $x^2y=a(x^2+\frac{a^2}{\sqrt{5}})$ is minimum.

Ans.
$$x = a$$
, minimum curvature is $\frac{9a}{10}$