Structural Equation Modeling

M&S Lecture 2, 2017

Measurement Invariance and Path Analysis

Ellen Hamaker Methodology and Statistics Faculty of Social and Behavioural Sciences

Outline

- Multiple group factor analysis
- Path analysis

Multiple group factor analysis

Thus far we analyzed the **covariance structure**.

We can also analyze the **mean structure**.

Means may be of interest when:

- a) we have multiple groups
- b) we have multiple occasions (longitudinal data)

REMEMBER: a latent variable does not have an intrinsic **scale**. We assign it a scale by **scaling** the factor (either through fixing a factor loading, or through fixing its variance).

The **latent mean** is also unknown (unidentified).

However, we can estimate the **difference in latent means**, either between groups, or between occasions.

E.g., intelligence research

An important topic in **multiple group CFA** is which of the groups scores higher on the latent variable: This is very important in for instance **intelligence research**.

Related to this topic is the question whether a test allows us to make **fair comparisons between individuals from different groups**.

Is a test fair?

In a factor model, the observed variable y is regressed on the latent variable η. Hence, based on some one's standing on the underlying dimension, (s)he has a particular expected score on the observed variable.

η

5

Biased test

Biased implies that two individuals (from different groups) with the same latent score have different (expected) observed scores.

This can be due to a different **intercept**...

 η

Biased test

... or to a different **slope** (= factor loading):

$$y_i = v_g + \lambda_g \eta_i + \epsilon_i$$

η

Covariance and mean structures & likelihood

Measurement equations:

Group 1: $y_i = v_1 + \Lambda_1 \eta_i + \varepsilon_i$

Group 2: $y_i = v_2 + \Lambda_2 \eta_i + \varepsilon_i$

Covariance structures:

Group 1: $\Sigma_1 = \Lambda_1 \Psi_1 \Lambda_1^T + \Theta_1$

Group 2: $\Sigma_2 = \Lambda_2 \Psi_2 \Lambda_2^{\mathsf{T}} + \Theta_2$

Mean structures:

Group 1: $\mu_1 = v_1 + \Lambda_1 \alpha_1$

Group 2: $\mu_2 = v_2 + \Lambda_2 \alpha_2$

Log likelihood:
$$logL = \sum_{g=1}^{G} logL_g$$

where:

$$\log L_g = c - \frac{N_g}{2} \log |\Sigma_g| - \frac{N_g}{2} \operatorname{tr}(S_g \Sigma_g^{-1}) - \frac{N_g}{2} (m_g - \mu_g)^T \Sigma_g^{-1} (m_g - \mu_g)$$

Measurement invariance

To make sure that the test is **unbiased** (=fair), we have to test whether:

- 1) factor loadings are identical across the groups \rightarrow weak factorial invariance: $\Lambda_1 = \Lambda_2$
- 2) the intercepts are identical across the groups → strong factorial invariance: v₁ = v₂

Strong factorial invariance implies that:

- Two people from different groups with the same latent scores, have the same expected observed scores
- Group differences in observed means are the result of differences in latent means
- The test allows for a fair comparison between groups, and between people from different groups.

Example: Wicherts & Dolan, 2010

A **4-factor model** for subtests in the RAKIT (an intelligence test):

Sample statistics, parameters, and df

Per group there are 12*13/2 = 78 unique elements in the covariance matrix, and 12 means, so there are 90 sample statistics.

Per group we estimate:

- 12 means
- 12 residual variances
- 4 factor variances
- 6 factor covariances
- 8 factor loadings

So 42 parameters in total.

Hence there are 90-42 = 48 df per group.

Majority group

Specifying this model in Mplus for the **majority group only**:

```
Majority.inp
TITLE:
        Majority
DATA:
        TYPE IS MEANS COVARIANCE:
        FILE IS majority.dat;
        NOBSERVATIONS ARE 196:
            NAMES = CLO EXC MSP VME MAZ ANA OUA DIS LEN HFI IDP STT;
VARIABLE:
            USEVARIABLES ARE ANA VME QUA MSP LEN DIS EXC MAZ HFI CLO IDP STT;
MODEL:
            Hybrid BY ANA VME QUA;
            Memory BY MSP LEN;
            Visual BY DIS EXC MAZ HFI CLO;
            Retrieval BY IDP STT:
OUTPUT: SAMPSTAT TECH1 TECH4 MOD(4) STANDARDIZED;
```

NOTE: The statement USEVARIABLES can be used to make a selection of the variables from the original file, or to change the order of the variables.

If we run this factor model, Mplus gives the following warning:

THE MODEL ESTIMATION TERMINATED NORMALLY

WARNING: THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT POSITIVE DEFINITE. THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO LATENT VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO LATENT VARIABLES. CHECK THE TECH4 OUTPUT FOR MORE INFORMATION. PROBLEM INVOLVING VARIABLE VISUAL.

In the **TECH4 output**, we get the correlations matrix of the latent variables:

١	FSIIMAI	ED CORRETATIO	N MAIRIA FOR I	UE PUIENI AUKT	ADLES	
	Correlation of almost 1		HYBRID	MEMORY	VISUAL	RETRIEVA
			1 000			
		IYBRID	1.000			
	M	MEMORY	0.876	1.000		
	V	/ISUAL	0.966	0.677	1.000	
	R	RETRIEVA	0.437	0.418	0.426	1.000

ECTTMATED CODDETATION MATERY FOR THE LATENT MADIA FIG

Model fit majority

Chi-Square Test of Model Fit

Value	81.579
Degrees of Freedom	48
P-Value	0.0018

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.060	
90 Percent C.I.	0.036	0.082
Probability RMSEA <= .05	0.224	

CFI/TLI

CFI	0.908
TLI	0.874

Chi-Square Test of Model Fit for the Baseline Model

Value	431.961
Degrees of Freedom	66
P-Value	0.0000

SRMR (Standardized Root Mean Square Residual)

Model fit minority

Chi-Square Test of Model Fit

Value	71.904
Degrees of Freedom	48
P-Value	0.0143

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.062	
90 Percent C.I.	0.028	0.090
Probability RMSEA <= .05	0.246	

CFI/TLI

CFI	0.921
TLI	0.892

Chi-Square Test of Model Fit for the Baseline Model

Value	370.034
Degrees of Freedom	66
P-Value	0.0000

SRMR (Standardized Root Mean Square Residual)

Measurement invariance

Models to run & compare:

- 1. Free model: **Configural invariance**
- Constrain factor loadings (Λ) across groups: Weak factorial invariance
- 3. Constrain **intercepts** (v) across groups (while freeing latent means): **Strong factorial invariance**

(In addition the residual variances can be contrained across the groups. This is called **strict factorial invariance**: $f(y|\eta,g) = f(y|\eta)$. Note that there can still be differences between the groups (in α and Ψ).)

Testing for weak factorial invariance

There is some discussion in the literature about whether this procedure is correct: Some claim that if (accidently) you use a biased indicator for scaling, this procedure does not work...

However:

- If there are no biased indicators (e.g., strong factorial invariance holds),
 it does work
- If there are biased indicators, it does not matter whether you use a biased or an unbiased indicator for scaling: These models are statistically indentical (i.e., they have the same fit, and thus lead to same chi-square difference tests)

Alternative 1: Just imposes the constraints, and look at the Modification Indices when the model does not fit (top-down procedure; cf. Byrne).

Alternative 2: Test each factor loading separately, using different factor loadings for scaling (not doable when there are many indicators...)

Model 1: Overruling the Mplus defaults

```
MajMin1.inp
TITLE:
        Majority and minority
DATA:
        NGROUPS = 2;
        TYPE IS MEANS COVARIANCE:
        FILE IS majmin.dat;
        NOBSERVATIONS ARE 196 131:
           NAMES = CLO EXC MSP VME MAZ ANA QUA DIS LEN HFI IDP STT;
VARIABLE:
            USEVARIABLES ARE ANA VME QUA MSP LEN DIS EXC MAZ HFI CLO IDP STT;
MODEL:
            Hybrid BY ANA VME QUA;
            Memory BY MSP LEN;
            Visual BY DIS EXC MAZ HFI CLO:
            Retrieval BY IDP STT:
                                                      This is needed to overrule the
MODEL G2:
            Hybrid BY ANA VME QUA;
                                                      defaults: Mplus automatically
            Hybrid BY ANA@1;
                                                   imposes the constraints for strong
            Memory BY MSP LEN;
            Memory BY MSP@1;
                                                     factorial invariance (i.e., equal
            Visual BY DIS EXC MAZ HFI CLO:
                                                     factor loadings and intercepts).
            Visual BY DIS01:
            Retrieval BY IDP STT:
                                                     Note we also need to scale the
            Retrieval BY IDP@1;
                                                       factors in the second group!
            [Hybrid-Retrieval@0];
            [ANA - STT];
OUTPUT: SAMPSTAT TECH1 TECH4 MOD(4) STANDARDIZED;
                                                                                    18
```


Model 1: Configural Invariance

Write down the expressions for the covariance matrices and mean vectors of both groups.

Model 1: Model fit of both groups

Chi-Square	Test	of	Model	Fit
------------	------	----	-------	-----

Value		153.483
Degrees of	Freedom	96
P-Value		0.0002

Chi-Square Contributions From Each Group

G1	81.579
G2	71.904

the same as from the separate analyses (so there are absolutely no constraints across the two groups); they sum to the chi-square of this model

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.061	
90 Percent C.I.	0.042	0.078
Probability RMSEA <= .05	0.163	

CFI/TLI

CFI	0.914
TLI	0.882

•••

SRMR (Standardized Root Mean Square Residual)

BTW: Another very useful way of checking your model and seeing where the constraints and defaults are, is by looking at the

TECH1 output!

Value 0.053 20

Model 2: Equal factor loadings

In each group, 8 factor loadings were estimated. Hence, constraining these across groups gives us 8 df, such that model 2 should have 96 + 8 = 104 df.

Model 2: Weak Factorial Invariance

Write down the expressions for the covariance matrices and mean vectors of both groups.

Model 2: Equal factor loadings

Chi-Square Test of Model Fit

Value	158.124
Degrees of Freedom	104
P-Value	0.0005

Chi-square difference between this model and the previous model is:

158 - 153 = 5, with 8 df, which is **not significant**.

Hence, we do not have to reject the **null model** (Model 2 with equal factor loadings) in favor of the **alternative model** (Model 1 without constraints).

Put differently: We can assume there are equal factor loadings.

Model 3: Equal intercepts and factor loadings

In each group, 12 intercepts were estimated: if we would constrain these, we would be saying that the means across the two groups are equal.

However, what we want to say is that the **differences in observed means** are completely explained by **mean differences on the latent variables**.

Therefore, we constrain the intercepts across the groups, and free the latent means in one of the groups: these represent the latent mean differences.

Hence we have: 12 - 4 = 8 parameters less in Model 3 compared to Model 2.

Model 3: Strong Factorial Invariance

Write down the expressions for the covariance matrices and mean vectors of both groups.

Nesting of model 2 and model 3

At first it may be confusing that in model 3 we **constrain the intercepts** AND **free latent means** in the second group: How does this lead to **nested models**?

It helps to write down the **modeled mean differences** between the two groups in each model.

In **model 2** we have: $\mu_2 - \mu_1 = \nu_2 - \nu_1$

This requires **12 additional parameters** (in addition to the 12 mean parameters in group 1).

In model 3 we have: $\mu_2 - \mu_1 = \nu + \Lambda \alpha_2 - \nu = \Lambda \alpha_2$

This requires only **4 additional parameters** (in addition to the 12 mean parameters in group 1).

Model 3: Equal intercepts and factor loadings

This is the **default model that Mplus will fit** when doing a multiple group analysis: hence, the specification is easy:

```
MajMin3.inp
TITLE:
        Majority and minority
DATA:
        NGROUPS = 2:
        TYPE IS MEANS COVARIANCE:
        FILE IS majmin.dat;
        NOBSERVATIONS ARE 196 131:
VARIABLE:
            NAMES = CLO EXC MSP VME MAZ ANA OUA DIS LEN HFI IDP STT:
            USEVARIABLES ARE ANA VME OUA MSP LEN DIS EXC MAZ HFI CLO IDP STT:
MODEL:
            Hybrid BY ANA VME QUA;
            Memory BY MSP LEN;
            Visual BY DIS EXC MAZ HFI CLO:
            Retrieval BY IDP STT:
OUTPUT: SAMPSTAT TECH1 TECH4 MOD(4) STANDARDIZED;
```


Model 3: Equal intercepts and factor loadings

Chi-Square Test of Model Fit

Value	230.660
Degrees of Freedom	112
P-Value	0.0000

Chi-square difference between this model and the previous model is:

231 - 158 = 73, with 8 df, which is **significant**.

Hence, we **cannot** impose the constraint of equal intercepts.

There is no strong factorial invariance!

To detect **sources of bias**, we look at the **modification indices**: they indicate how much the model would improve if we free this parameter.

Model 3: Check MIs for intercepts

```
MODINDICES (ALL).
Minimum M.I. value for printing the modification index
                                                           20.000
                            M.I.
                                     E.P.C. Std E.P.C.
                                                          StdYX
 E.P.C.
Group G1
BY Statements
                                      -0.980
                           21,475
                                                 -2.917
                                                               -0.522
VISUAL
         BY VME
Means/Intercepts/Thresholds
                           42.546
                                      0.471
                                                 0.471
                                                               0.084
[ VME
                           24,607
                                      -0.430
                                                 -0.430
[ QUA
                                                               -0.089
Group G2
Means/Intercepts/Thresholds
                                                              -1.773
                           42,551
                                      -9.159
                                                 -9.159
[ VME
                           24,609
                                       5.078
                                                  5.078
                                                               1.006
[ OUA
```

Model 3 adjusted for bias: Check MIs again

Including: MODEL G2: [VME];

Model fit:

Value	185.151
Degrees of Freedom	111
P-Value	0.0000

Compared to model 2: 185 - 158 = 27 with 7 df, p=.0003

Modification indices now indicate largest change for:

[MSP] 17.769 -0.488 -0.488 -0.102 [LEN] 17.770 0.138 0.138 0.027

Note it is **no longer** for the intercept of QUA!

That is because MIs change, if you change the model.

Model 3 further adjusted for bias

Including: MODEL G2: [LEN];

Model fit:

Value	166.477
Degrees of Freedom	110
P-Value	0.0004

Compared to model 2: 166 - 158 = 8 with 6 df, p=.238

Now we have a model which has:

- equal factor loadings
- equal intercepts except for VME and LEN (to account for bias)

This allows us to **compare the latent means**.

Model 3 further adjusted for bias

Remember: we fixed the latent means in group 1 (majority) to zero, and estimated the latent means in group 2 (minority), which thus represent the **difference in latent means**.

Means				
HYBRID	-4.184	0.472	-8.866	0.000
MEMORY	-0.626	0.635	-0.986	0.324
VISUAL	-4.155	0.464	-8.962	0.000

0.556

-7.945

Conclusion: Minority group scores on average significantly lower on Hybrid, Visual and Retrieval.

-4.414

RETRIEVAL

In addition, we should check the **intercepts that were not constrained**, to determine the direction of bias.

0.000

Nesting

It is not easy to see that Model 3 is **nested under** Model 2:

- a) we are **not only constraining** parameters (intercepts) to be equal
- b) **but also freeing** parameters (latent means)

This is called the **Reference-Group method**.

There are two alternative methods (which are statistically equivalent!): the Marker-variable method and the Effects-coding method.

Marker-variable method

Model 1: Configural invariance

- fix one of the intercepts per factor to zero in each group (for mean structure);
 estimate all other intercepts and latent means freely in each group
- fix **one of the factor loadings** per factor to **one** in each group (for covariance structure); estimate all other factor loadings freely in each group

Model 2: Weak factorial invariance

constrain factor loadings across the groups

Model 3: Strong factorial invariance

constrain intercepts across the groups

Advantage: nesting is more obvious

Disadvantage: requires to overrule many defaults in Mplus

Effects-coding method

Model 1: Configural invariance

- intercepts are constrained to sum to zero per group; estimate latent means freely per group
- average factor loading is 1

Model 2: Weak factorial invariance

constrain factor loadings across the groups

Model 3: Strong factorial invariance

constrain intercepts across the groups

Advantage: latent and observed variables have a comparable scale

Disadantage: makes no sense when the observed variables have very different scales, and it requires overruling defaults in Mplus

Outline

- Multiple group factor analysis
- Path analysis

And now for something completely different

Thus far, we have focused on **factor analysis**; another form of SEM is **path analysis**.

Path analysis is closely related to **regression analysis**: observed variables are used to predict other observed variable.

In path analysis, we may have:

- more than one outcome variable
- a variable that is both regressed on predictors, and a predictor of other variables (i.e., be a mediator).

It is also possible to do **path analysis with latent variables**.

Effect of corporal punishment

Corporal punishment is: the deliberate infliction of pain as retribution for an offence, or for the purpose of disciplining or reforming a wrongdoer or to change an undesirable attitude or behavior.

We are interested in how **corporal punishment** influences children's **psychological maladjustment**.

Sample: 175 children between the ages of 8 and 18.

Rohner, R. P., Bourque, S. L., & Elordi, C. A. (1996). Children's perceptions of corporal punishment, caretaker acceptance, and psychological adjustment in a poor, biracial southern community. *Journal of Marriage and the Family, 58*, 842-852.

Laws on corporal punishment

- Corporal punishment prohibited in **schools** and the **home**
- Corporal punishment prohibited in **schools** only
- Corporal punishment **not** prohibited

Research question: mediation

Specifically, is the effect of perceived harshness and perceived justness of physical punishment on children's psychological maladjustment **mediated** by perceived caretaker's rejection?

Variables:

Perceived harshness: 0 = never punished physically in any way

16 = punished more than 12 times a week, very hard

Perceived justness: 2 = very unfair and almost never deserved

8 = very fair and almost always deserved

Perceived rejection: my mother does not really love me

my mother ignores me as long as I do not bother her

my mother goes out of her way to hurt my feelings

Psych. maladjustment: higher score implies more problems

40

Mediation model: path diagram

DIY

How can you get the **measurement equation** to be:

$$\mathbf{y}_{i} = \nu + \Lambda \eta_{i} + \varepsilon_{i}$$
$$= \eta_{i}$$

DIY

Write down the **structural equation** for this model:

$$\eta_i = \alpha + B\eta_i + \zeta_i$$

DIY

The current expression for η_i is **recursive**. Rewrite it, such that η_i only appears on the left-hand side.

$$\eta_i = \alpha + B\eta_i + \zeta_i$$

Full structural equation model:

Measurement equation: $\mathbf{y}_i = \mathbf{v} + \Lambda \eta_i + \mathcal{E}_i$

Structural equation: $\eta_i = \alpha + B\eta_i + \zeta_i$

Mean structure: $\mu = \nu + \Lambda (I - B)^{-1} \alpha$

Covariance structure: $\Sigma = \Lambda (I - B)^{-1} \Psi (I - B)^{-1T} \Lambda^{T} + \Theta$

Model specification

Model fit

Chi-Square Test of Model Fit		
Value	1.546	
Degrees of Freedom	2	
P-Value	0.4616	
RMSEA (Root Mean Square Error Of Appro	eximation)	
Estimate	0.000	
90 Percent C.I.	0.000	0.139
Probability RMSEA <= .05	0.598	
CFI/TLI		
CFI	1.000	
TLI	1.012	
SRMR (Standardized Root Mean Square Re	esidual)	
Value	0.023	

Parameter estimates

					Two-Tailed	i
		Estimate	S.E.	Est./S.E.	P-Value	
D	0.7				_	
REJECT	ON					NOTE: this
HARSH		2.607	0.584	4.462	0.000	parameter is
JUST		-4.395	0.763	-5.758	0.000	only reported
MALAD	ON					because we explicitly
REJEC:	r	0.387	0.051	7.658	0.000	asked Mplus for it
HARSH	WITH				L	101 11
JUST	WIII	-0.259	0.262	-0.987	0.324	
Variances	5					
HARSH		4.514	0.483	9.354	0.000	
JUST		2.645	0.283	9.354	0.000	
Residual	Variance	S				
REJEC:	r	268.220	28.674	9.354	0.000	48
MALAD		158.956	16.993	9.354	0.000	

Standardized results

Mplus gives 3 forms of standardized results when requested:

- STDYX Standardization: uses the variances of the continuous latent variables as well as the variances of the background (=exogenous) and outcome (endogenous) variables
- STDY Standardization: uses the variances of the continuous latent variables and the variances of the outcome (endogenous) variables; this should be used if one has a binary (=dichotomous) predictor
- **STD Standardization**: uses the variances of the continuous latent variables for standardization

Here we use STDYX; we could also specifically ask for this with:

OUTPUT: STDYX

Indirect (=mediated) effects

There is **no direct path** from harshness to maladjustment, but there is an **indirect path** (mediated through rejection). Idem for justness.

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

I	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Effects from JUST to Sum of indirect Specific indirect MALAD	MALAD -1.700	0.369	-4.602	0.000
REJECT JUST	-1.700	0.369	-4.602	0.000
Effects from HARSH to Sum of indirect Specific indirect MALAD	1.009	0.262	3.855	0.000
REJECT HARSH	1.009	0.262	3.855	0.000

50

Standardized indirect effects

STANDARDIZED TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

STDYX Standardization

imate	S.E.	Est./S.E.	Two-Tailed P-Value			
LAD						
0.190	0.039	-4.881	0.000			
0.190	0.039	-4.881	0.000			
Effects from HARSH to MALAD						
0.147	0.037	4.012	0.000			
0.147	0.037	4.012	0.000			
	imate LAD 0.190 0.190 ALAD 0.147	LAD 0.190 0.039 0.190 0.039 ALAD 0.147 0.037	LAD 0.190 0.039 -4.881 0.190 0.039 -4.881 ALAD 0.147 0.037 4.012			

Cautionary note on testing indirect effects

All the tests for parameters and functions of parameters (e.g., indirect effects, R-square) are **Wald tests** and are thus based on the **assumption** of normality.

A mediation effect is a **product** of two (or more) parameters. Each parameter has a normal sampling distribution. Hence, the indirect effect is the product of two (or more) normally distributed variables.

This is not normal!
As a result, the p-value you obtain with the Wald test is **incorrect** (may be too small or too large).

Solution: Bootstrapping

Bootstrapping is based on **resampling** from your data: For each bootstrap sample the model is estimated, including the **indirect effect**.

If we repeat this procedure many times (e.g., 1000 times), we obtain **1000 estimates** of the indirect effect, and this is used to determine the **95% confidence interval**.

Use:

ANALYSIS: BOOTSTRAP = 1000;

OUTPUT: Cinterval

See for details: Mplus User's Guide, p. 548-549 and Example 3.16.

(Note: bootstrapping requires the raw data.)

Multiple mediators

If you have **multiple mediators**, you may be interested in:

- total mediated effect
- specific mediated effect (through a particular mediator)
 Mplus gives both.

When you have **multiple paths that include the same mediator**, you may be interested in all these paths simultaneously, or separately:

- simultaneously: y VIA mediator x
- separately: y IND mediator x

Take home message

- Crucial issue in multiple group CFA is measurement invariance
- Mplus imposes constraints for strong factorial invariance; note that this does not imply these constraints hold
- You have to test each constraint separately, using nested models and chi-square difference tests
- In multiple group analysis, the mean structure is of interest (in addition to the covariance structure)
- If a test/questionnaire is biased, you can **adjust** your model for this, and still **compare the groups in a fair & meaningful way**
- But when too many items/subtests are biased, it is hard/impossible to adjust for this.

Take home message

- Path analysis is another form of SEM
- It requires the use of the structural equation, which allows variables to be regressed on each other (using the matrix B)
- The measurement equation is only used to **transfer** the observed y variables to the structural equation (i.e., there is no "real" measurement model, since $\eta = y$)
- You may consider different routes of mediation in you model
- To test whether indirect (i.e., mediated) effects are significant, using confidence intervals based on bootstrapping should be preferred over the (standard) Wald test
- Factor analysis (i.e., latent variables) and path analysis (i.e., structural relationships) can also be combined in SEM

Cannabis use disorders

Body image and exercise

Emotional intelligence and life satisfaction

