Contents

1	Characteristic curve	2
2	Fundamental differential geometry 2.1 Manifold and Atlas	3 3 4 4 5
3	Vector calculus on spherical coordinates	6
4	Statements in functional analysis and general topology	7
5	Space curve theory	8
6	Algebraic integer6.1 Quadratic integer6.2 Integral basis6.3 Fractional ideals6.4 Frobenius element6.5 Quadratic Dirichlet character	9 9 9 10 10
7	Diophantine equations 7.1 Quadratic equation on a plane	11 11 12
8	The local-global principle 8.1 The local fields	13 13 14 14
9	Ultrafilter	15
10	Universal coefficient theorem	16
11	Analysis problems	19
12	Bundles	24
13	Action	25
14	Some problems	27

1 Characteristic curve

Consider

$$\begin{cases} u_t + u^2 u_x = 0, & (t, x) \in \Omega \subset \mathbb{R}_{t \ge 0} \times \mathbb{R}_x, \\ u(0, x) = x, & \text{at } x \in \mathbb{R}. \end{cases}$$

Suppose that a function $u: \Omega \to \mathbb{R}_y$ is a solution. Let M be the surface y = u(t, x) and let E be the ambient space $\Omega \times \mathbb{R}_y$.

Proposition 1.1. Let $\gamma: I \to E$ be an integral curve of the vector field

$$X = \frac{\partial}{\partial t} + y^2 \frac{\partial}{\partial x} - 0 \frac{\partial}{\partial y}$$

such that $\gamma(0) \in M$. Then, $\gamma(\theta) \in M$ for all $\theta \in I$.

Proof. We may assume γ is maximal. Define $\tilde{\gamma}: \tilde{I} \to M$ as the maximal integral curve of the vector field

$$\tilde{X} = \frac{\partial}{\partial t} + u^2 \frac{\partial}{\partial x} - 0 \frac{\partial}{\partial y} \in \Gamma(TM)$$

such that $\tilde{\gamma}(0) = \gamma(0)$. Since X and \tilde{X} coincide on M, the curve $\tilde{\gamma}$ is also an integral curve of X with $\tilde{\gamma}(0) = \gamma(0)$. By the uniqueness of the integral curve, we get $\tilde{I} \subset I$ and $\gamma(\theta) = \tilde{\gamma}(\theta)$ for all $\theta \in \tilde{I}$.

Since M is closed in E, the open interval $\tilde{I} = \gamma^{-1}(M)$ is closed in I, hence $\tilde{I} = I$ by the connectedness.

Definition 1.1. The projection of the integral curve γ onto Ω is called a *characteristic*.

This proposition implies that we might be able to describe the points on the surface M explicitly by finding the integral curves of the vector field X. Since X does not depend on u, we can solve the ODE: let $\gamma(\theta) = (t(\theta), x(\theta), y(\theta))$ be the integral curve of X such that $\gamma(0) = (0, \xi, \xi)$. Then, the system of ODEs

$$\frac{dt}{d\theta} = 1, t(0) = 0,$$

$$\frac{dx}{d\theta} = y(\theta)^2, x(0) = \xi,$$

$$\frac{dy}{d\theta} = 0, y(0) = \xi$$

is solved as

$$t(\theta) = \theta,$$
 $y(\theta) = \xi,$ $x(\theta) = \xi^2 \theta + \xi.$

Therefore,

$$u(t,x) = \frac{-1 + \sqrt{1 + 4tx}}{2t}.$$

From this formula, we would be able to determine the suitable domain Ω as

$$\Omega = \{ (t, x) : tx > -\frac{1}{4} \}.$$

2 Fundamental differential geometry

2.1 Manifold and Atlas

Definition 2.1. A locally Euclidean space M of dimension m is a Hausdorff topological space M for which each point $x \in M$ has a neighborhood U homeomorphic to an open subset of \mathbb{R}^d .

Definition 2.2. A manifold is a locally Euclidean space satisfying the one of following equivalent conditions: second countability, blabla

Definition 2.3. A chart or a coordinate system for a locally Euclidean space is a map φ is a homeomorphism from an open set $U \subset M$ to an open subset of \mathbb{R}^d . A chart is often written by a pair (U, φ) .

Definition 2.4. An atlas \mathcal{F} is a collection $\mathcal{F} = \{(U_{\alpha}, \varphi_{\alpha}) \mid \alpha \in A\}$ of charts on M such that $\bigcup_{\alpha \in A} U_{\alpha} = M$.

Definition 2.5. A differentiable maifold is a manifold on which a differentiable structure is equipped.

The definition of differentiable structure will be given in the next subsection. Actually, a differentiable structure can be defined for a locally Euclidean space.

2.2 Definition of Differentiable Structure

Definition 2.6. An atlas \mathcal{F} is called differentiable if any two charts $\varphi_{\alpha}, \varphi_{\beta} \in \mathcal{F}$ is compatible: each transition function $\tau_{\alpha\beta} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ which is defined by $\tau_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ is differentiable.

It is called a *qluing condition*.

Definition 2.7. For two differentiable atlases $\mathcal{F}, \mathcal{F}'$, the two atlases are *equivalent* if $\mathcal{F} \cup \mathcal{F}'$ is also differentiable.

Definition 2.8. An differentiable atlas \mathcal{F} is called *maximal* if the following holds: if a chart (U, φ) is compatible to all charts in \mathcal{F} , then $(U, \varphi) \in \mathcal{F}$.

Definition 2.9. A differentiable structure on M is a maximal differentiable atlas.

To differentiate a function on a flexible manofold, first we should define the differentiability of a function. A differentiable structure, which is usually defined by a maximal differentiable atlas, is roughly a collection of differentiable functions on M. When the charts is already equipped on M, it is natural to define a function $f: M \to \mathbb{R}$ differentiable if the functions $f \circ \varphi^{-1} \colon \mathbb{R}^d \to \mathbb{R}$ is differentiable.

The gluing condition makes the differentiable function for a chart is also differentiable for any charts because $f \circ \varphi_{\alpha}^{-1} = (f \circ \varphi_{\beta}^{-1}) \circ (\varphi_{\beta} \circ \varphi_{\alpha}^{-1}) = (f \circ \varphi_{\beta}^{-1}) \circ \tau_{\alpha\beta}$. If a function f is differentiable on an atlas \mathcal{F} , then f is also differentiable on any atlases which is equivalent to \mathcal{F} by the definition of the equivalence relation for differential atlases. We can construct the equivalence classes respected to this equivalence relation.

Therefore, we want to define a differentiable structure as a one of the equivalence classes. However the differentiable structure is frequently defined as a maximal atlas for the convenience since each equivalence class is determined by a unique maximal atlas.

Example 2.1. While the circle S^1 has a unique smooth structure, S^7 has 28 smooth structures. The number of smooth structures on S^4 is still unknown.

Definition 2.10. A continuous function $f: M \to N$ is differentiable if $\psi \circ f \circ \varphi^{-1}$ is differentiable for charts φ, ψ on M, N respectively.

2.3 Curves

Definition 2.11. For $f: M \to \mathbb{R}$ and (U, ϕ) a chart,

$$df\left(\frac{\partial}{\partial x^{\mu}}\right) := \frac{\partial f \circ \phi^{-1}}{\partial x^{\mu}}.$$

Definition 2.12. Let $\gamma: I \to M$ be a smooth curve. Then, $\dot{\gamma}(t)$ is defined by a tangent vector at $\gamma(t)$ such that

$$\dot{\gamma}(t) := d\gamma \left(\frac{\partial}{\partial t}\right).$$

Let $\phi: M \to N$ be a smoth map. Then, $\phi(t)$ can refer to a curve on N such that

$$\phi(t) := \phi(\gamma(t)).$$

Let $f: M \to \mathbb{R}$ be a smooth function. Then, $\dot{f}(t)$ is defined by a function $\mathbb{R} \to \mathbb{R}$ such that

$$\dot{f}(t) := \frac{d}{dt} f \circ \gamma.$$

Proposition 2.2. Let $\gamma: I \to M$ be a smooth curve on a manifold M. The notation $\dot{\gamma}^{\mu}$ is not confusing thanks to

$$(\dot{\gamma})^{\mu} = (\dot{\gamma^{\mu}}).$$

In other words,

$$dx^{\mu}(\dot{\gamma}) = \frac{d}{dt}x^{\mu} \circ \gamma.$$

2.4 Connection computation

$$\nabla_X Y = X^{\mu} \nabla_{\mu} (Y^{\nu} \partial_{\nu})$$

$$= X^{\mu} (\nabla_{\mu} Y^{\nu}) \partial_{\nu} + X^{\mu} Y^{\nu} (\nabla_{\mu} \partial_{\nu})$$

$$= X^{\mu} \left(\frac{\partial Y^{\nu}}{\partial x^{\mu}} \right) \partial_{\nu} + X^{\mu} Y^{\nu} (\Gamma^{\lambda}_{\mu\nu} \partial_{\lambda})$$

$$= X^{\mu} \left(\frac{\partial Y^{\nu}}{\partial x^{\mu}} + \Gamma^{\nu}_{\mu\lambda} Y^{\lambda} \right) \partial_{\nu}.$$

The covariant derivative $\nabla_X Y$ does not depend on derivatives of X^{μ} .

$$Y^{\nu}_{,\mu} = \nabla_{\mu}Y^{\nu} = \frac{\partial Y^{\nu}}{\partial x^{\mu}}, \qquad Y^{\nu}_{;\mu} = (\nabla_{\mu}Y)^{\nu} = \frac{\partial Y^{\nu}}{\partial x^{\mu}} + \Gamma^{\nu}_{\mu\lambda}Y^{\lambda}.$$

Theorem 2.3. For Levi-civita connection for g,

$$\Gamma_{ij}^l = \frac{1}{2}(\partial_i g_{jk} + \partial_j g_{ki} - \partial_k g_{ij}).$$

Proof.

$$(\nabla_{i}g)_{jk} = \partial_{i}g_{jk} - \Gamma_{ij}^{l}g_{lk} - \Gamma_{ik}^{l}g_{jl}$$
$$(\nabla_{j}g)_{kl} = \partial_{j}g_{kl} - \Gamma_{jk}^{l}g_{li} - \Gamma_{ji}^{l}g_{kl}$$
$$(\nabla_{k}g)_{ij} = \partial_{k}g_{ij} - \Gamma_{ki}^{l}g_{ij} - \Gamma_{kj}^{l}g_{il}$$

If ∇ is a Levi-civita connection, then $\nabla g = 0$ and $\Gamma_{ij}^k = \Gamma_{ji}^k$. Thus,

$$\Gamma_{ij}^{l}g_{kl} = \frac{1}{2}(\partial_{i}g_{jk} + \partial_{j}g_{ki} - \partial_{k}g_{ij}).$$

$$\Gamma_{ij}^{l} = \frac{1}{2}g^{kl}(\partial_{i}g_{jk} + \partial_{j}g_{ki} - \partial_{k}g_{ij}).$$

2.5 Geodesic equation

Theorem 2.4. If c is a geodesic curve, then components of c satisfies a second-order differential equation

$$\frac{d^2\gamma^{\mu}}{dt^2} + \Gamma^{\mu}_{\nu\lambda} \frac{d\gamma^{\nu}}{dt} \frac{d\gamma^{\lambda}}{dt} = 0.$$

Proof. Note

$$0 = \nabla_{\dot{\gamma}}\dot{\gamma} = \dot{\gamma}^{\mu}\nabla_{\mu}(\dot{\gamma}^{\lambda}\partial_{\lambda}) = (\dot{\gamma}^{\nu}\partial_{\nu}\dot{\gamma}^{\mu} + \dot{\gamma}^{\nu}\dot{\gamma}^{\lambda}\Gamma^{\mu}_{\nu\lambda})\partial_{\mu}.$$

Since

$$\dot{\gamma}^{\nu}\partial_{\nu}\dot{\gamma}^{\mu}=\dot{\gamma}(\dot{\gamma}^{\mu})=d\dot{\gamma}^{\mu}(\dot{\gamma})=d\dot{\gamma}^{\mu}\circ d\gamma\left(\frac{\partial}{\partial t}\right)=d\dot{\gamma}^{\mu}\left(\frac{\partial}{\partial t}\right)=\ddot{\gamma}^{\mu},$$

we get a second-order differential equation

$$\frac{d^2\gamma^{\mu}}{dt^2} + \Gamma^{\mu}_{\nu\lambda} \frac{d\gamma^{\nu}}{dt} \frac{d\gamma^{\lambda}}{dt} = 0$$

for each μ .

3 Vector calculus on spherical coordinates

$$V = (V_r, V_\theta, V_\phi)$$

$$= V_r \qquad \widehat{r} \qquad + \qquad V_\theta \qquad \widehat{\theta} \qquad + \qquad V_\phi \qquad \widehat{\phi} \qquad \text{(normalized coords)}$$

$$= V_r \qquad \frac{\partial}{\partial r} \qquad + \qquad \frac{1}{r} V_\theta \qquad \frac{\partial}{\partial \theta} \qquad + \qquad \frac{1}{r \sin \theta} V_\phi \qquad \frac{\partial}{\partial \phi} \qquad (\Gamma(TM))$$

$$= V_r \qquad dr \qquad + \qquad r V_\theta \qquad d\theta \qquad + \qquad r \sin \theta V_\phi \qquad d\phi \qquad (\Omega^1(M))$$

$$= r^2 \sin \theta V_r \qquad d\theta \wedge d\phi \qquad + \qquad r \sin \theta V_\theta \qquad d\phi \wedge dr \qquad + \qquad r V_\phi \qquad dr \wedge d\theta \qquad (\Omega^2(M)).$$

$$\nabla \cdot V = \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial r} \left(r^2 \sin \theta V_r \right) + \frac{\partial}{\partial \theta} \left(r \sin \theta V_\theta \right) + \frac{\partial}{\partial \phi} \left(r V_\phi \right) \right]$$

$$\Delta u = \frac{1}{r^2 \sin \theta} \left[\frac{\partial}{\partial r} \left(r^2 \sin \theta \frac{\partial}{\partial r} u \right) + \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} u \right) + \frac{\partial}{\partial \phi} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \phi} u \right) \right]$$

Let (ξ, η, ζ) be an orthogonal coordinate that is *not* normalized. Then,

$$\sharp = g = \operatorname{diag}(\|\partial_{\xi}\|^{2}, \|\partial_{\eta}\|^{2}, \|\partial_{\zeta}\|^{2})$$

$$\widehat{x} = \|\partial_{x}\|^{-1} \partial_{x} = \|\partial_{x}\| dx = \|\partial_{y}\| \|\partial_{z}\| dy \wedge dz$$

In other words, we get the normalized differential forms in sphereical coordinates as follows:

$$dr$$
, $r d\theta$, $r \sin \theta d\phi$, $(r d\theta) \wedge (r \sin \theta d\phi)$, $(r \sin \theta d\phi) \wedge (dr)$, $(dr) \wedge (r d\theta)$.

$$\begin{aligned} \operatorname{grad}: \nabla &= \left[\begin{array}{c} \frac{1}{\|\partial_x\|} \frac{\partial}{\partial x} \cdot -, \, \frac{1}{\|\partial_y\|} \frac{\partial}{\partial y} \cdot -, \, \frac{1}{\|\partial_z\|} \frac{\partial}{\partial z} \cdot - \right] \\ \operatorname{curl}: \nabla &= \left[\begin{array}{c} \frac{1}{\|\partial_y\| \|\partial_z\|} \left(\frac{\partial}{\partial y} (\|\partial_z\| \cdot -) - \frac{\partial}{\partial z} (\|\partial_y\| \cdot -) \right) \right. , \\ &\qquad \qquad \frac{1}{\|\partial_z\| \|\partial_y\|} \left(\frac{\partial}{\partial z} (\|\partial_x\| \cdot -) - \frac{\partial}{\partial x} (\|\partial_z\| \cdot -) \right) \right. , \\ &\qquad \qquad \frac{1}{\|\partial_x\| \|\partial_y\|} \left(\frac{\partial}{\partial x} (\|\partial_y\| \cdot -) - \frac{\partial}{\partial y} (\|\partial_x\| \cdot -) \right) \right] \\ \operatorname{div}: \nabla &= \frac{1}{\|\partial_x\| \|\partial_y\| \|\partial_z\|} \left[\begin{array}{c} \frac{\partial}{\partial x} (\|\partial_y\| \|\partial_z\| \cdot -) \\ \frac{\partial}{\partial y} (\|\partial_z\| \|\partial_x\| \cdot -) \end{array}, \, \frac{\partial}{\partial y} (\|\partial_z\| \|\partial_x\| \cdot -) \right. , \, \frac{\partial}{\partial z} (\|\partial_x\| \|\partial_y\| \cdot -) \right] \\ \Delta &= \frac{1}{\|\partial_x\| \|\partial_y\| \|\partial_z\|} \left[\begin{array}{c} \frac{\partial}{\partial x} \left(\frac{\|\partial_y\| \|\partial_z\|}{\|\partial_x\|} \frac{\partial}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\|\partial_z\| \|\partial_x\|}{\|\partial_y\|} \frac{\partial}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\|\partial_x\| \|\partial_y\|}{\|\partial_z\|} \frac{\partial}{\partial z} \right) \right] \\ \operatorname{grad} &= \frac{1}{\|\cdot\|^1} (\nabla) \|\cdot\|^0 \\ \operatorname{curl} &= \frac{1}{\|\cdot\|^2} (\nabla \times) \|\cdot\|^1 \\ \operatorname{div} &= \frac{1}{\|\cdot\|^3} (\nabla \cdot) \|\cdot\|^2 \end{aligned}$$

4 Statements in functional analysis and general topology

Function analysis:

- Suppose a densely defined operator T induces a Hilbert space structure on its domain. If the inclusion is bounded, then T has the bounded inverse. If the inclusion is compact, then T has the compact inverse.
- A closed subspace of an incomplete inner product space may not have orthogonal complement: setting L^2 inner product on C([0,1]), define $\phi(f) = \int_0^{\frac{1}{2}} f$.
- Every seperable Banach space is linearly isomorphic and homeomorphic. But there are two non-isomorphic Banach spaces.
- open mapping theorem -> continuous embedding is really an embedding.
- $D(\Omega)$ is defined by a *countable stict* inductive limit of $D_K(\Omega)$, $K \subset \Omega$ compact. Hence it is not metrizable by the Baire category theorem. (Here strict means that whenever $\alpha < \beta$ the induced topology by \mathcal{T}_{β} coincides with \mathcal{T}_{α})
- A net $(\phi_d)_d$ in $D(\Omega)$ converges if and only if there is a compact K such that $\phi_d \in D_K(\Omega)$ for all d and ϕ_d converges uniformly.
- Th integration with a locally integrable function is a distribution. This kind of distribution is called regular. The nonregular distribution such as δ is called singular.
- D' is equipped with the weak* topology.
- $\frac{\partial}{\partial x}$: $D' \to D'$ is continuous. They commute (Schwarz theorem holds).
- $D \to S \to L^p$ are continuous (immersion) but not imply closed subspaces (embedding).

General topology:

• $H \subset \mathbb{C}$ and $H \subset \widehat{\mathbb{C}}$ have distinct Cauchy structures which give a same topology. In addition, the latter is precompact while the former is not.

5 Space curve theory

Definition 5.1. Let α be a curve.

$$\mathbf{T} := \frac{\alpha'}{\|\alpha'\|}, \quad \mathbf{N} := \frac{\mathbf{T}'}{\|\mathbf{T}'\|}, \quad \mathbf{B} := \mathbf{T} \times \mathbf{N}.$$

Proposition 5.1. T', B', N are collinear.

Definition 5.2.

$$s(t) := \int_0^t \|\alpha'\|, \quad \kappa := \frac{d\mathbf{T}}{ds} \cdot \mathbf{N}, \quad \tau := -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N}.$$

Theorem 5.2 (Frenet-Serret formula). Let α be a unit speed curve.

$$\begin{pmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix}.$$

Theorem 5.3. Let α be a unit speed curve.

$$\alpha' = \mathbf{T}$$

$$\alpha'' = \kappa \mathbf{N}$$

$$\alpha''' = -\kappa^2 \mathbf{T} + \kappa' \mathbf{N} + \kappa \tau \mathbf{B}$$

$$\kappa = \|\alpha''\|, \quad \tau \frac{[\alpha' \alpha'' \alpha''']}{\kappa^2}.$$

Theorem 5.4. Let α be a curve.

$$\alpha' = s'\mathbf{T}$$

$$\alpha'' = s''\mathbf{T} + s'^{2}\kappa\mathbf{N}$$

$$\alpha''' = (s''' - s'^{3}\kappa^{2})\mathbf{T} + (3s's''\kappa + s'^{2}\kappa')\mathbf{N} + s'^{3}\kappa\tau\mathbf{B}$$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^{3}}, \quad \tau = \frac{[\alpha'\alpha''\alpha''']}{\|\alpha' \times \alpha''\|}.$$

Problem solving strategy:

• Represent α and its derivatives over the Frenet basis.

•

Uniqueness: The Frene-Serret formula is an ODE for the vector (of vectors) $(\mathbf{T}, \mathbf{N}, \mathbf{B})$. After showing this equation preserves orthonormality, obtain α by integratin \mathbf{T} . The skew-symmetry implies that $\|\mathbf{T}\|^2 + \|\mathbf{N}\|^2 + \|\mathbf{B}\|^2$ is constant.

6 Algebraic integer

6.1 Quadratic integer

Theorem 6.1. Every quadratic field is of the form $\mathbb{Q}(\sqrt{d})$ for a square-free d.

Theorem 6.2. Let d be a square-free.

$$\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z} + \sqrt{d}\mathbb{Z} & , d \equiv 2, 3 \pmod{4} \\ \mathbb{Z} + \frac{1 + \sqrt{d}}{2}\mathbb{Z} & , d \equiv 1 \pmod{4} \end{cases}$$

$$\Delta_{\mathbb{Q}(\sqrt{d})} = \begin{cases} 4d & , d \equiv 2, 3 \pmod{4} \\ d & , d \equiv 1 \pmod{4} \end{cases}$$

Example 6.3.

$$\Delta_{\mathbb{Q}(i)} = -4, \quad \Delta_{\mathbb{Q}(\sqrt{2})} = 8, \quad \Delta_{\mathbb{Q}(\gamma)} = 5, \quad \Delta_{\mathbb{Q}(\omega)} = -3$$

where $\gamma := \frac{1+\sqrt{5}}{2}$ and $\omega = \zeta_3$.

Theorem 6.4. Let $\theta^3 = hk^2$ for h, k square-free's.

$$\mathcal{O}_{\mathbb{Q}(\theta)} = \begin{cases} \mathbb{Z} + \theta \mathbb{Z} + \frac{\theta^2}{k} \mathbb{Z} & , m \not\equiv \pm 1 \pmod{9} \\ \mathbb{Z} + \theta \mathbb{Z} + \frac{\theta^2 \pm \theta k + k^2}{3k} \mathbb{Z} & , m \equiv \pm 1 \pmod{9} \end{cases}$$

Corollary 6.5. If θ^3 is a square free integer, then

$$\mathcal{O}_{\mathbb{Q}(\theta)} = \mathbb{Z}[\theta].$$

6.2 Integral basis

Theorem 6.6. Let $\alpha \in K$. $Tr_K(\alpha) \in \mathbb{Z}$ if $\alpha \in \mathcal{O}_K$. $N_K(\alpha) \in \mathbb{Z}$ if and only if $\alpha \in \mathcal{O}_K$.

Theorem 6.7. Let $\{\omega_1, \dots, \omega_n\}$ be a basis of K over \mathbb{Q} . If $\Delta(\omega_1, \dots, \omega_n)$ is square-free, then $\{\omega_1, \dots, \omega_n\}$ is an integral basis.

Theorem 6.8. Let $\{\omega_1, \dots, \omega_n\}$ be a basis of K over \mathbb{Q} consisting of algebraic integers. If $p^2 \mid \Delta$ and it is not an integral basis, then there is a nonzero algebraic integer of the form

$$\frac{1}{p} \sum_{i=1}^{n} \lambda_i \omega_i.$$

6.3 Fractional ideals

Theorem 6.9. Every fractional ideal of K is a free \mathbb{Z} -module with rank $[K:\mathbb{Q}]$.

Proof. This theorem holds because K/\mathbb{Q} is separable and \mathbb{Z} is a PID.

6.4 Frobenius element

Consider an abelian extension L/K. Let \mathfrak{p} be a prime in \mathcal{O}_K . Since L/K is Galois, the followings do not depend on the choice of \mathfrak{P} over \mathfrak{p} .

Lemma 6.10. The following sequence of abelian groups is exact:

$$0 \longrightarrow I(\mathfrak{P}|\mathfrak{p}) \longrightarrow D(\mathfrak{P}|\mathfrak{p}) \longrightarrow \operatorname{Gal}(k(\mathfrak{P})/k(\mathfrak{p})) \longrightarrow 0,$$

where $k(\mathfrak{P}) := \mathcal{O}_L/\mathfrak{P}$ and $k(\mathfrak{p}) := \mathcal{O}_K/\mathfrak{p}$ are residue fields.

The Frobenius element is defined as an element of $D(\mathfrak{P}|\mathfrak{p})/I(\mathfrak{P}|\mathfrak{p}) \cong \operatorname{Gal}(k(\mathfrak{P})/k(\mathfrak{p}))$, which is a cyclic group.

Definition 6.1. For an unramified prime $\mathfrak{p} \subset \mathcal{O}_K$ so that $I(\mathfrak{P}|\mathfrak{p})$ is trivial, the Frobenius element $\phi(\mathfrak{P}|\mathfrak{p}) \in \operatorname{Gal}(L/K)$ is defined by

$$\phi_{\mathfrak{P}|\mathfrak{p}}(\mathfrak{P}) = \mathfrak{P}, \quad \text{and} \quad \phi_{\mathfrak{P}|\mathfrak{p}}(x) \equiv x^{|\mathcal{O}_K/\mathfrak{p}|} \pmod{\mathfrak{P}} \quad \text{for} \quad x \in \mathcal{O}_L.$$

The first condition is equivalent to $\phi_{\mathfrak{P}|\mathfrak{p}} \in D(\mathfrak{P}|\mathfrak{p})$. In fact, the Frobenius element is in fact a generator of the cyclic group $D(\mathfrak{P}|\mathfrak{p}) \cong \operatorname{Gal}(k(\mathfrak{P})/k(\mathfrak{p}))$ by the Galois theory of finite fields.

Remark. Fermat's little theorem states

$$\phi_{\mathfrak{V}|\mathfrak{p}}(x) \equiv x \pmod{\mathfrak{p}}, for x \in \mathcal{O}_K,$$

which means $\phi_{\mathfrak{P}|\mathfrak{p}}$ fixes the field $\mathcal{O}_K/\mathfrak{p}$ so that $\phi_{\mathfrak{P}|\mathfrak{p}} \in \operatorname{Gal}(k(\mathfrak{P})/k(\mathfrak{p}))$.

6.5 Quadratic Dirichlet character

Let $K = \mathbb{Q}(\sqrt{D})$ be a quadratic field with discriminant D and $L = \mathbb{Q}(\zeta_D)$ be the cyclotomic field for $\zeta_D = e^{\frac{2\pi i}{D}}$.

$$D(\mathfrak{P}/p) \subset \operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/D\mathbb{Z})^{\times} \qquad L = \mathbb{Q}(\zeta_D)$$

$$\downarrow^q \qquad \qquad \downarrow_{\chi_K = \left(\frac{D}{\cdot}\right)}$$

$$D(\mathfrak{p}/p) \subset \operatorname{Gal}(K/\mathbb{Q}) \cong \{\pm 1\} \qquad K = \mathbb{Q}(\sqrt{D}).$$

For $p \nmid D$ so that p is unramified, let $\sigma_p := (\zeta_D \mapsto \zeta_D^p) \in \operatorname{Gal}(L/\mathbb{Q})$. Then, what is $\sigma_p|_K$ in $\operatorname{Gal}(K/\mathbb{Q})$. In other words, for $\sigma_p(\zeta_D) = \zeta_D^p$ which is true: $\sigma_p(\sqrt{D}) = \pm \sqrt{D}$?

Note that σ satisfies the condition to be the Frobenius element: $\sigma_p = \phi_{\mathfrak{P}|p}$. Therefore, $q(\phi_{\mathfrak{P}|p}) = \phi_{\mathfrak{p}|p} = \sigma_p|_K$ is also a Frobenius element. There are only two cases:

(1) If
$$f = |D(\mathfrak{p}/p)| = 1$$
, then $\sigma|_K$ is the identity, so $\chi_K(p) = 1$

(2) If
$$f = |D(\mathfrak{p}/p)| = 2$$
, then $\sigma|_K$ is not trivial, so $\chi_K(p) = -1$

Artin reciprocity: $(\mathbb{Z}/D\mathbb{Z})^{\times}$ is extended to I_K^S .

7 Diophantine equations

7.1 Quadratic equation on a plane

Ellipse is reduced by finitely many computations.

Especially for hyperbola, here is a strategy to use infinite descent.

- (1) Let midpoint to be origin.
- (2) Find the subgroup of $SL_2(\mathbb{Z})$ preserving the image of hyperbola(which would be isomorphic to \mathbb{Z}).
- (3) Find an impossible region.
- (4) Assume a solution and reduce it to the either impossible region or the ground solution.

Example 7.1 (Pell's equation). Consider

$$x^2 - 2y^2 = 1.$$

A generator of hyperbola generating group is $g = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$. It has a ground solution (1,0) and impossible region 1 < x < 3. If (a,b) is a solution with a > 0, then we can find n such that $g^n(a,b)$ is in the region [1,3). The possible case is $g^n(a,b) = (1,0)$.

Example 7.2 (IMO 1988, the last problem). Consider a family of equations

$$x^2 + y^2 - kxy - k = 0.$$

By the vieta jumping, a generator is $g:(a,b)\mapsto (b,kb-a)$. It has an impossible region $xy<0: x^2+y^2-kxy-k\geq x^2+y^2>0$. If (a,b) is a solution with a>b, then we can find n such that $g^n(a,b)$ is in the region $xy\leq 0$. Only possible case is $g^n(a,b)=(\sqrt{k},0)$ or $g^n(a,b)=(0,-\sqrt{k})$. In ohter words, the equation has a solution iff k is a perfect square.

7.2 The Mordell equations

(The reciprocity laws let us learn not only which prime splits, but also which prime factors a given polynomial has.)

$$y^2 = x^3 + k$$

There are two strategies for the Mordell equations:

- $x^2 2x + 4$ has a prime factor of the form 4k + 3
- $x^3 = N(y a)$ for some a.

First case: k = 7, -5, -6, 45, 6, 46, -24, -3, -9, -12.

Example 7.3. Solve $y^2 = x^3 + 7$.

Proof. Taking mod 8, x is odd and y is even. Consider

$$y^2 + 1 = (x+2)(x^2 - 2x + 4).$$

Since

$$x^2 - 2x + 4 = (x - 1)^2 + 3,$$

there is a prime $p \equiv 3 \pmod{4}$ that divides the right hand side. Taking mod p, we have

$$y^2 \equiv -1 \pmod{p}$$
,

which is impossible. Therefore, the equation has no solutions.

Example 7.4. Solve $y^2 = x^3 - 2$.

Proof. Taking mod 8, x and y are odd. Consider a ring of algebraic integers $\mathbb{Z}[\sqrt{-2}]$. We have

$$N(y - \sqrt{-2}) = (y - \sqrt{-2})(y + \sqrt{-2}) = x^3.$$

For a common divisor δ of $y \pm \sqrt{-2}$, we have

$$N(\delta) \mid N((y-\sqrt{-2})-(y+\sqrt{-2})) = N(2\sqrt{-2}) = |(2\sqrt{-2})(-2\sqrt{-2})| = 8.$$

On the other hand,

$$N(\delta) \mid x^3 \equiv 1 \pmod{2},$$

so $N(\delta) = 1$ and δ is a unit. Thus, $y \pm \sqrt{-2}$ are relatively prime. Since the units in $\mathbb{Z}[\sqrt{-2}]$ are ± 1 , which are cubes, $y \pm \sqrt{-2}$ are cubics in $\mathbb{Z}[\sqrt{-2}]$.

Let

$$y + \sqrt{-2} = (a + b\sqrt{-2})^3 = a(a^2 - 6b^2) + b(3a^2 - 2b^2)\sqrt{-2},$$

so that $1 = b(3a^2 - 2b^2)$. We can conclude $b = \pm 1$. The possible solutions are $(x, y) = (3, \pm 5)$, which are in fact solutions.

8 The local-global principle

8.1 The local fields

Let $f \in \mathbb{Z}[x]$.

Does
$$f = 0$$
 have a solution in \mathbb{Z} ?

Does $f = 0$ have a solution in $\mathbb{Z}/(p^n)$ for all n ?

Does $f = 0$ have a solution in \mathbb{Z}_p ?

In the first place, here is the algebraic definition.

Definition 8.1. Let $p \in \mathbb{Z}$ be a prime. The ring of the p-adic integers \mathbb{Z}_p is defined by the inverse limit:

$$\mathbb{Z}_p := \lim_{\substack{n \in \mathbb{N}}} \mathbb{F}_{p^n} \longrightarrow \cdots \longrightarrow \mathbb{Z}/(p^3) \longrightarrow \mathbb{Z}/(p^2) \longrightarrow \mathbb{F}_p.$$

Definition 8.2. $\mathbb{Q}_p = \operatorname{Frac} \mathbb{Z}_p$.

Secondly, here is the analytic definition.

Definition 8.3. Let $p \in \mathbb{Z}$ be a prime. Define a absolute value $|\cdot|_p$ on \mathbb{Q} by $|p^m a|_p = \frac{1}{p^m}$. The local field \mathbb{Q}_p is defined by the completion of \mathbb{Q} with respect to $|\cdot|_p$.

Definition 8.4. $\mathbb{Z}_p := \{x \in \mathbb{Q}_p : |x|_p \leq 1\}.$

Example 8.1. Observe

$$3^{-1} \equiv 2_5 \pmod{5}$$

 $\equiv 32_5 \pmod{5^2}$
 $\equiv 132_5 \pmod{5^3}$
 $\equiv 1313132_5 \pmod{5}^7 \cdots$

Therefore, we can write

$$3^{-1} = \overline{132}_5 = 2 + 3p + p^2 + 3p^3 + p^4 + \cdots$$

for p = 5. Since there is no negative power of 5, 3^{-1} is a p-adic integer for p = 5.

Example 8.2.

$$7 \equiv 1_3^2 \pmod{3}$$

 $\equiv 111_3^2 \pmod{3^3}$
 $\equiv 20111_3^2 \pmod{3^5}$
 $\equiv 120020111_3^2 \pmod{3^9} \cdots$

Therefore, we can write

$$\sqrt{7} = \cdots 120020111_3 = 1 + p + p^2 + 2p^4 + 2p^7 + p^8 + \cdots$$

for p=3. Since there is no negative power of 3, $\sqrt{7}$ is a p-adic integer for p=3.

There are some pathological and interesting phenomena in local fields. Actually note that the values of $|\cdot|_p$ are totally disconnected.

Theorem 8.3. The absolute value $|\cdot|_p$ is nonarchimedean: it satisfies $|x+y|_p \leq \max\{|x|_p, |y|_p\}$.

Proof. Trivial.

Theorem 8.4. Every triangle in \mathbb{Q}_p is isosceles.

Theorem 8.5. \mathbb{Z}_p is a discrete valuation ring: it is local PID.

Proof. asdf

Theorem 8.6. \mathbb{Z}_p is open and compact. Hence \mathbb{Q}_p is locally compact Hausdorff.

Proof. \mathbb{Z}_p is open clearly. Let us show limit point compactness. Let $A \subset \mathbb{Z}_p$ be infinite. Since \mathbb{Z}_p is a finite union of cosets $p\mathbb{Z}_p$, there is α_0 such that $A \cap (\alpha_0 + p\mathbb{Z}_p)$ is infinite. Inductively, since

$$\alpha_n + p^{n+1} \mathbb{Z}_p = \bigcup_{1 \le x < p} (\alpha_n + xp^{n+1} + p^{n+2} \mathbb{Z}_p),$$

we can choose α_{n+1} such that $\alpha_n \equiv \alpha_{n+1} \pmod{p^{n+1}}$ and $A \cap (\alpha_{n+1} + p^{n+2}\mathbb{Z}_p)$ is infinite. The sequence $\{\alpha_n\}$ is Cauchy, and the limit is clearly in \mathbb{Z}_p .

8.2 Hensel's lemma

Theorem 8.7 (Hensel's lemma). Let $f \in \mathbb{Z}_p[x]$. If f has a simple solution in \mathbb{F}_p , then f has a solution in \mathbb{Z}_p .

Proof. asdf

Remark. Hensel's lemma says: for X a scheme over \mathbb{Z}_p , X is smooth iff $X(\mathbb{Z}_p) \to X(\mathbb{F}_p)$???

Example 8.8. $f(x) = x^p - x$ is factorized linearly in $\mathbb{Z}_p[x]$.

8.3 Sums of two squares

Theorem 8.9 (Euler). A positive integer m can be written as a sum of two squares if and only if $v_p(m)$ is even for all primes $p \equiv 3 \pmod{4}$.

Lemma 8.10. Let p be a prime with $p \equiv 1 \pmod{4}$. Every p-adic integer is a sum of two squares of p-adic integers.

9 Ultrafilter

Theorem 9.1. Let \mathcal{U} be an ultrafilter on a set S and X be a compact space. For $f: S \to X$, the limit \mathcal{U} -lim f always exists.

Theorem 9.2. Let $X = \prod_{\alpha \in \mathcal{A}} X_{\alpha}$ be a product space of compact spaces X_{α} . A net $\{f_d\}_{d \in \mathcal{D}}$ on X has a convergent subnet.

Proof 1. Use Tychonoff. Compactness and net compactness are equivalent. \Box

Proof 2. It is a proof without Tychonoff. Let \mathcal{U} be a ultrafilter on a set \mathcal{D} containing all $\uparrow d$. Define a directed set $\mathcal{E} = \{(d, U) \in \mathcal{D} \times \mathcal{U} : d \in U\}$ as $(d, U) \prec (d', U')$ for $U \supset U'$. Let $f : \mathcal{E} \to X$ be a net defined by $f_{(d,U)} = f_d$.

By the previous theorem, \mathcal{U} -lim $\pi_{\alpha}f_d$ exsits for each α . Define $f \in X$ such that $\pi_{\alpha}f = \mathcal{U}$ -lim $\pi_{\alpha}f_d$. Let $G = \prod_{\alpha} G_{\alpha} \subset X$ be any open neighborhood of f where $G_{\alpha} = X_{\alpha}$ except finite. Then G_{α} is an open neighborhood of $\pi_{\alpha}f$ so that we have $U_{\alpha} := \{d : \pi_{\alpha}f_d \in G_{\alpha}\} \in \mathcal{U}$ by definition of convergence with ultrafilter.9 Since $U_{\alpha} = \mathcal{D}$ except finites, we can take an upper bound $U_0 \in \mathcal{U}$. Then, by taking any $d_0 \in U_0$, we have $f_{(d,U)} \in G$ for every $(d,U) \succ (d_0,U_0)$. This means $f = \lim_{\varepsilon} f_{(d,U)}$, so we can say $\lim_{\varepsilon} f_{(d,U)}$ exists.

10 Universal coefficient theorem

Lemma 10.1. Suppose we have a flat resolution

$$0 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0.$$

Then, we have a exact sequence

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{Tor}_1^R(A,B) \longrightarrow P_1 \otimes B \longrightarrow P_0 \otimes B \longrightarrow A \otimes B \longrightarrow 0.$$

Theorem 10.2. Let R be a PID. Let C_{\bullet} be a chain complex of flat R-modules and G be a R-module. Then, we have a short exact sequence

$$0 \longrightarrow H_n(C) \otimes G \longrightarrow H_n(C;G) \longrightarrow \operatorname{Tor}(H_{n-1}(C),G) \longrightarrow 0$$

which splits, but not naturally.

Proof 1. We have a short exact sequence of chain complexes

$$0 \longrightarrow Z_{\bullet} \longrightarrow C_{\bullet} \longrightarrow B_{\bullet-1} \longrightarrow 0$$

where every morphism in Z_{\bullet} and B_{\bullet} are zero. Since modules in $B_{\bullet-1}$ are flat, we have a short exact sequence

$$0 \longrightarrow Z_{\bullet} \otimes G \longrightarrow C_{\bullet} \otimes G \longrightarrow B_{\bullet-1} \otimes G \longrightarrow 0$$

and the associated long exact sequence

$$\cdots \longrightarrow H_n(B;G) \longrightarrow H_n(Z;G) \longrightarrow H_n(C;G) \longrightarrow H_{n-1}(B;G) \longrightarrow H_{n-1}(Z;G) \longrightarrow \cdots$$

where the connecting homomomorphisms are of the form $(i_n: B_n \to Z_n) \otimes 1_G$ (It is better to think diagram chasing than a natural construction). Since morphisms in B and Z are zero (if it is not, then the short exact sequence of chain complexes are not exact, we have

$$\cdots \longrightarrow B_n \otimes G \longrightarrow Z_n \otimes G \longrightarrow H_n(C;G) \longrightarrow B_{n-1} \otimes G \longrightarrow Z_{n-1} \otimes G \longrightarrow \cdots$$

Since

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(H_{n}, G) \longrightarrow B_{n} \otimes G \longrightarrow Z_{n} \otimes G \longrightarrow H_{n} \otimes G \longrightarrow 0$$

for all n, the exact sequence splits into short exact sequence by images

$$0 \longrightarrow H_n \otimes G \longrightarrow H_n(C;G) \longrightarrow \operatorname{Tor}_1^R(H_{n-1},G) \longrightarrow 0.$$

For splitting, \Box

Proof 2. Since R is PID, we can construct a flat resolution of G

$$0 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow G \longrightarrow 0.$$

Since modules in C_{\bullet} are flat so that the tensor product functors are exact and $P_1 \to P_0$ and $P_0 \to G$ induce the chain maps, we have a short exact sequence of chain complexes

$$0 \longrightarrow C_{\bullet} \otimes P_1 \longrightarrow C_{\bullet} \otimes P_0 \longrightarrow C_{\bullet} \otimes G \longrightarrow 0.$$

Then, we have the associated long exact sequence

$$\cdots \longrightarrow H_n(C; P_1) \longrightarrow H_n(C; P_0) \longrightarrow H_n(C; G) \longrightarrow H_{n-1}(C; P_1) \longrightarrow H_{n-1}(C; P_0) \longrightarrow \cdots$$

Since flat tensor product functor commutes with homology funtor from chain complexes, we have

$$\cdots \longrightarrow H_n \otimes P_1 \longrightarrow H_n \otimes P_0 \longrightarrow H_n(C;G) \longrightarrow H_{n-1} \otimes P_1 \longrightarrow H_{n-1} \otimes P_0 \longrightarrow \cdots$$

Since

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(G, H_{n}) \longrightarrow H_{n} \otimes P_{1} \longrightarrow H_{n} \otimes P_{0} \longrightarrow H_{n} \otimes G \longrightarrow 0$$

for all n, the exact sequence splits into short exact sequence by images

$$0 \longrightarrow H_n \otimes G \longrightarrow H_n(C;G) \longrightarrow \operatorname{Tor}_1^R(G,H_{n-1}) \longrightarrow 0.$$

Proof 3. (??) By tensoring G, we get the following diagram.

 $H_n \otimes G$ $H_{n-1} \otimes G$ $\operatorname{coker} \partial_{n+1} \otimes G \operatorname{ker} \partial_{n-1} \otimes G$ $\operatorname{coker} \partial_n \otimes G \xrightarrow{\overset{\longrightarrow}{}} C_{n-1} \otimes G$ $\operatorname{im} \partial_n \otimes G \xrightarrow{\overset{\longrightarrow}{}} C_{n-1} \otimes G$ $\operatorname{Tor}_1(H_{n-1}, G)$

Every aligned set of consecutive arrows indicates an exact sequence. Notice that epimorphisms and cokernals are preserved, but monomorphisms and kernels are not. Especially, $\operatorname{coker} \partial_{n+1} \otimes G = \operatorname{coker} (\partial_{n+1} \otimes 1_G)$ is important.

Consider the following diagram.

Since $\ker \partial_{n-1}$ is free,

If we show $\operatorname{im}(\partial_n \otimes 1_G) \to \ker \partial_{n-1} \otimes G$ is monic, then we can get

$$H_n(C;G) = \ker(\operatorname{coker} \partial_{n+1} \otimes G \to \operatorname{im}(\partial_n \otimes 1_G))$$

= \ker(\text{coker} \partial_{n+1} \otimes G \to \ker \partial_{n-1} \otimes G).

11 Analysis problems

Problem 11.1. The following series diverges:

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+|\sin n|}}.$$

Solution. Let $A_k := [1, 2^k] \cap \{x : |\sin x| < \frac{1}{k}\}$. Divide the unit circle $\mathbb{R}/2\pi\mathbb{Z}$ by 7k uniform arcs. There are at least $2^k/7k$ integers that are not exceed 2^k and are in a same arc. Let S be the integers and x_0 be the smallest element. Since, $|x - x_0| \pmod{2\pi} < \frac{2\pi}{7k}$ for $x \in S$,

$$|\sin(x-x_0)| < |x-x_0| \pmod{2\pi} < \frac{2\pi}{7k} < \frac{1}{k}.$$

Also, $1 \le x - x_0 \le x \le 2^k$, $x - x_0 \in A_k$.

$$|A_k| \ge \frac{2^k}{7k}.$$

Therefore,

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{n^{1+|\sin n|}} &\geq \sum_{n \in A_N} \frac{1}{n^{1+|\sin n|}} \\ &\geq \sum_{k=1}^{N} (|A_k| - |A_{k-1}|) \frac{1}{2^{k+1}} \\ &= \sum_{k=1}^{N} \frac{|A_k|}{2^{k+1}} - \sum_{k=1}^{N-1} \frac{|A_k|}{2^{k+2}} \\ &= \frac{|A_N|}{2^{N+1}} + \sum_{k=1}^{N-1} \frac{|A_k|}{2^{k+2}} \\ &\geq \sum_{k=1}^{N} \frac{2^k}{2^{k+2}} \frac{1}{7^k} \\ &= \frac{1}{28} \sum_{k=1}^{N} \frac{1}{k} \\ &\to \infty. \end{split}$$

Problem 11.2. If $|xf'(x)| \leq M$ and $\frac{1}{x} \int_0^x f(y) dy \to L$, then $f(x) \to L$ as $x \to \infty$.

Solution. Since

$$\left| f(x) - \frac{F(x) - F(a)}{x - a} \right| \le \frac{1}{x - a} \int_a^x |f(x) - f(y)| \, dy$$

$$= \frac{1}{x - a} \int_a^x (x - y)|f'(c)| \, dy$$

$$\le \frac{M}{x - a} \int_a^x \frac{x - y}{c} \, dy$$

$$\le M \frac{x - a}{a}$$

by the mean value theorem and

$$f(x) - L = \left[f(x) - \frac{F(x) - F(a)}{x - a} \right] + \frac{x}{x - a} \left[\frac{F(x)}{x} - L \right] + \frac{a}{x - a} \left[\frac{F(a)}{a} - L \right],$$

we have for any $\varepsilon > 0$

$$\limsup_{x \to \infty} |f(x) - L| \le \varepsilon$$

where a is defined by $\frac{x-a}{a} = \frac{\varepsilon}{M}$.

Problem 11.3. Let $f_n: I \to I$ be a sequence of real functions that satisfies $|f_n(x) - f_n(y)| \le |x-y|$ whenever $|x-y| \ge \frac{1}{n}$, where I = [0,1]. Then, it has a uniformly convergent subsequence.

Solution. By the Bolzano-Weierstrass theorem and the diagonal argument for subsequence extraction, we may assume that f_n converges to a function $f: \mathbb{Q} \cap I \to I$ pointwisely.

Step 1. For $n \geq 4$, we claim

$$|x-y| \le \frac{1}{n} \implies |f_n(x) - f_n(y)| \le \frac{5}{n}.$$
 (1)

Fix $x \in I$ and take $z \in I$ such that $|x - z| = \frac{2}{n}$ so that

$$|f_n(x) - f_n(z)| \le |x - z| = \frac{2}{n}.$$

If y satisfies $|x-y| \leq \frac{1}{n}$, then we have $|y-z| \geq |x-z| - |x-y| \geq \frac{1}{n}$, so we get

$$|f_n(y) - f_n(z)| \le |y - z| \le |y - x| + |x - z| \le \frac{3}{n}.$$

Combining these two inequalities proves what we want.

Step 2. For $\varepsilon > 0$ and $N := \left\lceil \frac{15}{\varepsilon} \right\rceil$ we claim

$$|x - y| \le \frac{1}{N}$$
 and $n > N \implies |f_n(x) - f_n(y)| \le \frac{\varepsilon}{3}$ (2)

when $N \geq 4$. It is allowed for |x - y| to have the following two cases:

$$|x - y| \le \frac{1}{n}$$
 or $\frac{1}{n} < |x - y| \le \frac{1}{N}$.

For the former case, by the inequality (1) we have

$$|f_n(x) - f_n(y)| \le \frac{5}{n} < \frac{5}{N} \le \frac{\varepsilon}{3}.$$

For the latter case, by the assumption at the beginning of the problem, we have

$$|f_n(x) - f_n(y)| \le |x - y| \le \frac{1}{N} \le \frac{\varepsilon}{15}.$$

Hence the claim is proved.

Step 3. We will prove f is uniformly continuous. For $\varepsilon > 0$, take $\delta := \frac{1}{N}$, where $N := \left\lceil \frac{15}{\varepsilon} \right\rceil$. We will show

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

for $x, y \in \mathbb{Q} \cap I$ and $N \geq 4$. Fix rational numbers x and y in I which satisfy $|x - y| < \delta$. Since $f_n(x)$ and $f_n(y)$ converges to f(x) and f(y) respectively, we may take an integer n_x and n_y , such that

$$n > n_x \implies |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$
 (3)

and

$$n > n_y \implies |f_n(y) - f(y)| < \frac{\varepsilon}{3}.$$
 (4)

Choose an integer n such that $n > \max\{n_x, n_y, N\}$. Then, combining (3), (2), and (4), we obtain

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Since f is continuous on a dense subset $\mathbb{Q} \cap I$, it has a unique continuous extension on the whole I. Let it denoted by the same notation f.

Step 4. Finally, we are going to show $f_n \to f$ uniformly. For $\varepsilon > 0$, let $N := \left\lceil \frac{15}{\varepsilon} \right\rceil$. The uniform continuity of f allows to have $\delta > 0$ such that

$$|x - y| < \delta \implies |f(x) - f(y)| < \frac{2}{3}\varepsilon.$$
 (5)

Take a rational $r \in I$, depending on $x \in I$, such that $|x - r| < \min\{\frac{1}{N}, \delta\}$. Then, by (2) and (5), given $n > N \ge 4$, we have an inequality

$$|f_n(x) - f(x)| \le |f_n(x) - f_n(r)| + |f_n(r) - f(r)| + |f(r) - f(x)|$$

 $< \frac{\varepsilon}{3} + |f_n(r) - f(r)| + \frac{2}{3}\varepsilon$

for any $x \in I$. By limiting $n \to \infty$, we obtain

$$\lim_{n \to \infty} |f_n(x) - f(x)| < \varepsilon.$$

Since ε and x are arbitrary, we can deduce the uniform convergence of f_n as $n \to \infty$.

Problem 11.4. A measurable subset of \mathbb{R} with positive measure contains an arbitrarily long subsequence of an arithmetic progression. (made by me!)

Solution. Let $E \subset \mathbb{R}$ be measurable with $\mu(E) > 0$. We may assume E is bounded so that we have $E \subset I$ for a closed bounded interval since \mathbb{R} is σ -compact. Let n be a positive integer arbitrarily taken. Then, we can find N such that $\sum_{k=1}^{N} \frac{1}{k} > (n-1)\frac{\mu(I)}{\mu(E)}$.

Assume that every point x in E is contained in at most n-1 sets among

$$E, \ \frac{1}{2}E, \ \frac{1}{3}E, \ \cdots, \ \frac{1}{N}E.$$

In other words, it is equivalent to:

$$\bigcap_{k \in A} \frac{1}{k} E = \emptyset$$

for any subset $A \subset \{1, \dots, N\}$ with $|A| \ge n$. Define

$$E_A := \bigcap_{k \in A} \frac{1}{k} E \cap \bigcap_{k' \in A} \left(\frac{1}{k'} E\right)^c$$

for $A \subset \{1, \dots, N\}$. Then, $\mu(E_A) = 0$ for $|A| \ge n$.

Note that we have

$$\mu(\frac{1}{k}E) = \sum_{k \in A} \mu(E_A) = \sum_{\substack{k \in A \\ |A| < n}} \mu(E_A).$$

Summing up, we get

$$\sum_{k=1}^{N} \mu(\frac{1}{k}E) = \sum_{k=1}^{N} \sum_{\substack{k \in A \\ |A| < n}} \mu(E_A) = \sum_{|A| < n} |A| \mu(E_A)$$

by double counting, and since E_A are dijoint, we have

$$\sum_{|A| < n} |A| \mu(E_A) = (n-1) \sum_{0 < |A| < n} \mu(E_A) \le (n-1)\mu(I),$$

hence a contradiction to

$$\sum_{k=1}^{N} \mu(\frac{1}{k}E) > (n-1)\mu(I).$$

Therefore, we may find an element x that belongs to $\frac{1}{k}E$ for $k \in A$, where $A \subset \{1, \dots, N\}$ with |A| = n. Then, $ax \in E$ for all $a \in A \subset \mathbb{Z}$.

12 Bundles

Show that S^n has a nonvanishing vector field if and only if n is odd.

Solution. Since S^n is embedded in \mathbb{R}^{n+1} , the tangent bundle TS^n can be considered as an embedded manifold in $S^n \times \mathbb{R}^{n+1}$ which consists of (x,v) such that $\langle x,x \rangle = 1$ and $\langle x,v \rangle = 0$, where the inner product is the standard one of \mathbb{R}^{n+1} .

Suppose n is odd. We have a vector field $(x_1, x_2, \dots, x_{n+1}; x_2, -x_1, \dots, -x_n)$ which is nonvanishing.

Conversely, suppose we have a nonvanishing vector field X. Consider a map

$$\phi: S^n \xrightarrow{X} TS^n \to S^n \times \mathbb{R}^{n+1} \xrightarrow{\phi} \mathbb{R}^{n+1} \to S^n.$$

The last map can be defined since X is nowhere zero. Since this map satisfies $\langle x, \phi(x) \rangle = 0$ for all $x \in S^n$, we can define homotopies from ϕ to the identity map and the antipodal map respectively. Therefore, the antipodal map must have positive degree, +1, so n is odd. \square

13 Action

Definition

- $G \curvearrowright X$
 - fcn $G \times X \to X$: compatibility, identity
 - hom ρ : G → Sym(X) or Aut(X)
 - funtor from G
 - nt) X is called G-set.
 - nt) ρ is called permutation repr.
 - * right action is a contravariant functor.
- $\operatorname{Stab}_G(x) = G_x$, $\operatorname{Orb}_G(x) = G.x$
 - Orbit-stabilizer theorem
 - pf) quotient with $-.x: G \to X$.
 - * this is not the first isom.
 - * stabilizer is also called isotropy group.
- Faithfulness, Transitivity

Useful Actions

- * these actions are on P(G).
 - Left Multiplication

$$-\operatorname{Stab}(A) = AA^{-1}$$

eg)
$$G \curvearrowright G/H$$
, for $H \le G$
 $\ker \rho = \bigcap xHx^{-1} = \operatorname{Core}_G(H)$

$$-\operatorname{Stab}(A) = N_G(A)$$

eg)
$$G \curvearrowright \{\{h\} : h \in H\}$$
, for $H \lhd G$

$$\ker \rho = C_G(H), \operatorname{im} \rho \subset \operatorname{Aut}(H)$$

eg)
$$G \curvearrowright \operatorname{Syl}_p$$

* conjugation is an isomorphism.

Sylow Theorem

•
$$\operatorname{Syl}_p \neq \emptyset$$

•
$$n_p = kp + 1 \mid [G : \overline{P}]$$

• $G \curvearrowright \operatorname{Syl}_p$ transitive pf) four actions by conjugation: $G \curvearrowright G, \quad \overline{P}, G, P \curvearrowright \operatorname{Orb}_G(\overline{P}).$

EXERCISES

14 Some problems

Problems I made:

- 1. Let f be C^2 with $f''(c) \neq 0$. Defined a function ξ such that $f(x) f(c) = f'(\xi(x))(x c)$ with $|\xi c| \leq |x c|$, show that $\xi'(c) = 1/2$.
- 2. Let f be a C^2 function such that f(0) = f(1) = 0. Show that $||f|| \leq \frac{1}{8} ||f''||$.
- 3. Show that a measurable subset of \mathbb{R} with positive measure contains an arbitrarily long subsequence of an arithmetic progression.
- 4. Show that there is no continuous bijection from $[0,1]^2 \setminus \{p\}$ to $[0,1]^2$.
- 1. Show that for a nonnegative sequence a_n if $\sum a_n$ diverges then $\sum \frac{a_n}{1+a_n}$ also diverges.
- 2. Show that if both limits of a function and its derivative exist at infinity then the former is 0.
- 3. Show that every real sequence has a monotonic subsequence that converges to the limit superior of the supersequence.
- 4. Show that if a decreasing nonnegative sequence a_n converges to 0 and satisfies $S_n \leq 1 + na_n$ then S_n is bounded by 1.
- 5. Show that the set of local minima of a convex function is connected.
- 6. Show that a smooth function such that for each x there is n having the nth derivative vanish is a polynomial.
- 7. Show that if a continuously differentiable f satisfies $f(x) \neq 0$ for f'(x) = 0, then in a bounded set there are only finite points at which f vanishes.
- 8. Let a function f be differentiable. For a < a' < b < b' show that there exist a < c < b and a' < c' < b' such that f(b) f(a) = f'(c)(b a) and f(b') f(a') = f'(c')(b' a').
- 9. Show that if xf'(x) is bounded and $x^{-1}\int_0^x f \to L$ then $f(x) \to L$ as $x \to \infty$.
- 10. Show that if a sequence of real functions $f_n: [0,1] \to [0,1]$ satisfies $|f(x)-f(y)| \le |x-y|$ whenever $|x-y| \ge \frac{1}{n}$, then the sequence has a uniformly convergent subsequence.
- 11. (Flett)
- 12. Let f be a differentiable function with f(0) = 0. Show that there is $c \in (0,1)$ such that cf(c) = (1-c)f'(c).
- 13. Find the value of $\lim_{n\to\infty} \frac{1}{n} \left(\sum_{k=1}^n \frac{1}{n} f\left(\frac{k}{n}\right) \int_0^1 f(x) \, dx \right)$.
- 14. Let f be a continuous function. Show that f(x)=c cannot have exactly two solutions for every c.

- 15. Show that a continuous function that takes on no value more than twice takes on some value exactly once.
- 16. Let f be a function that has the intermediate value property. Show that if the preimage of every singleton is closed, then f is continuous.
- 17. Show that if a holomorphic function has positive real parts on the open unit disk then $|f'(0)| < 2 \operatorname{Re} f(0)$.
- 18. Show that if at least one coefficient in the power series of a holomorphic function at each point is 0 then the function is a polynomial.
- 19. Show that if a holomorphic function on a domain containing the closed unit disk is injective on the unit circle then so is on the disk.
- 20. Show that for a holomorphic function f and every z_0 in the domain there are $z_1 \neq z_2$ such that $\frac{f(z_1) f(z_2)}{z_1 z_2} = f'(z_0)$.
- 21. For two linearly independent entire functions, show that one cannot dominate the other.
- 22. Show that uniform limit of injective holomorphic function is either constant or injective.
- 23. Suppose the set of points in a domain $U \subset \mathbb{C}$ at which a sequence of bounded holomorphic functions (f_n) converges has a limit point. Show that (f_n) compactly converges.
- 24. Show that normal nilpotent matrix equals zero.
- 25. Show that two matrices AB and BA have same nonzero eigenvalues whose both multiplicities are coincide blabla...
- 26. Show that if A is a square matrix whose characteristic polynomial is minimal then a matrix commuting A is a polynomial in A.
- 27. Show that if two by two integer matrix is a root of unity then its order divides 12.
- 28. Show that a finite symmetric group has two generators.
- 29. Show that a nontrivial normalizer of a p-group meets its center out of identity.
- 30. Show that a proper subgroup of a finite p-group is a proper subgroup of its normalizer. In particular, every finite p-group is nilpotent.
- 31. Show that the complement of a saturated monoid in a commutative ring is a union of prime ideals.
- 32. Show that the Galois group of a quintic over \mathbb{Q} having exactly three real roots is isomorphic to S_5 .
- 33. Show that if $A^{\circ} \in B$ and B is closed, then $(A \cup B)^{\circ} \subset B$.
- 34. Show that the tangent space of the unitary group at the identity is identified with the space of skew Hermitian matrices.
- 35. Prove the Jacobi formula for matrix.

- 36. Show that S^3 and T^2 are parallelizable.
- 37. Show that $\mathbb{R}P^n = S^n/Z_2$ is orientable if and only if n is odd.