HIGH-DIMENTIONAL ANALYSIS

Programming Exercise – 02

Deadline: 23h59 12/06/2021

Submitting via email: dxtien95@gmail.com

Programming language: Python

PROBLEM:

Apply Linear Discriminant Analysis algorithm on the Iris flower dataset. Make a comparison between LDA and PCA projected samples.

Note: Do LDA step by step, available tool for PCA is accepted.

Dataset description:

- The famous "Iris" dataset that has been deposited on the UCI machine learning repository (https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data).
- It contains measurements for 150 iris flowers from three different species (*setosa*, *versicolor* and *virginica*).
- The four features of the dataset are *sepal length*, *sepal width*, *petal length* and *petal width*

After finishing your task, please write a short report or a summary (pdf file) to explain your answers, ideas and the way your code works.

NOTICE

- 1. Please send the two files (coding and report file) before the due date. Or send the jupyter-notebook file (ipynb, html, pdf) or google-colab link.
- 2. The mail subject and the folder's name would be [HDA2020_PEXX_Name_StudentCode], where PE means Programming Exercise. For example: HDA2020_PE01_Le_Van_A_1711001 or HDA2020_PE01_LeVanA_1711001.
- 3. Inside the coding file, there should be a brief introduction (as example below).

HIGH DIMENSIONAL ANALYSIS Programming Exercise: 01 Name: Le Van A Student code: 1711001

4. There is **NO** acceptance for **cheating** or **copying**.

TUTORIAL

Export html file from jupyter-notebook

