perception algorithm: $y = +1 \rightarrow w \times 70$ $y = -1 \rightarrow w \times 70$ $y = -1 \rightarrow w \times 70$ $y = 41 \Rightarrow x = w + x$ $y = -1 \Rightarrow x = w - x$ $y = -1 \Rightarrow x = w - x$ $\exists w^* st. \forall (x,y) \in D$ $y w^{T} x > 0$ We are scalling w* st. 114*11=1

We are a ssuming miss classification so $y x \bar{1} x \leq 0$

Leds start with looking at how with changes for each update. 1) is the same as Golden bog so >0 (wfyx) Te* = Ww* + ywx > ww* + y Margin (lengthe from boundry to point) Defined $y = min \left(x^{Tw*} \right) > 0$ (x,y) $\in 0$ What is the distance to the closest point We have found that when we make an update by gamma = w w + + 8

Now let's look at www $-\frac{1}{2}\left(w+yx\right)^{1}\left(w+yx\right)=w^{7}x+2yw^{7}x+y^{2}x$ < WW + 1 cs Inequality After M updates: \rightarrow $M \leftarrow \frac{\lambda_{S}}{1}$ have proved that the algorithm conveyes after a finite set of iterations "M" dependant on the distance to the closest point.