Обозначение. Множества всех многочленов с коэффициентами из \mathbb{R} , \mathbb{Q} обозначают соответственно $\mathbb{R}[x]$, $\mathbb{Q}[x]$.

Определение 1. Пусть A и B — многочлены, причем $\deg B > 0$. Разделить A на B с остатком значит найти такие многочлены Q (частное) и R (остаток), что A = BQ + R, где либо R = 0, либо $\deg R < \deg B$.

Задача 1[©]. Разделите с остатком $2x^4 - 3x^3 + 4x^2 - 5x + 6$ на $x^2 - 3x + 1$.

Задача 2. Докажите, что деление с остатком всегда возможно, и частное и остаток определены однозначно.

Задача 3 $^{\varnothing}$. (*Теорема Безу*) Докажите, что остаток от деления A(x) на двучлен x-s равен числу A(s).

Задача 4[©]. **a)** Остаток от деления A(x) на x-1 равен 5, а на x-3 равен 7. Найдите остаток от деления A(x) на (x-1)(x-3). **6)** Найдите остаток от деления x^{1000} на x^2+x-1 .

Определение 2. Многочлен со старшим коэффициентом 1 называется приведённым.

Определение 3. Наибольшим общим делителем многочленов A и B из $\mathbb{R}(x)$ (из $\mathbb{Q}[x]$), хотя бы один из которых ненулевой, назовём (и обозначим $\mathrm{HOД}(A,B)$ или (A,B)) приведённый многочлен из $\mathbb{R}(x)$ (из $\mathbb{Q}[x]$), который 1) делит и A, и B (то есть, является общим делителем A и B); 2) делится на любой общий делитель A и B. Многочлены называются взаимно простыми, если их $\mathrm{HOД}$ равен 1.

Замечание. Из определения 3 не вполне ясно, почему НОД вообще существует. Задачи 6 и 7 проясняют этот вопрос.

Задача 5. Однозначно ли определяется НОД двух многочленов?

Задача 6. а) Пусть A, B, C — многочлены. Докажите, что множество общих делителей у пары A и B такое же, как и у пары A и $B - A \cdot C$, и если НОД есть у одной пары, то он есть и у другой, и эти НОДы равны. **6)** Сформулируйте и докажите алгоритм Евклида вычисления НОД многочленов.

Задача 7°. Докажите, что HOД(A, B) — приведенный многочлен наибольшей степени, делящий и A, и B.

Задача 8[©]. Найдите НОД многочленов: **a)** $x(x-1)^3(x+2)$ и $(x-1)^2(x+2)^2(x+5)$; **6)** $3x^3-2x^2+x+2$ и x^2-x+1 ; **в)*** x^m-1 и x^n-1 ; **г)*** x^m+1 и x^n+1 .

Задача 9 $^{\varnothing}$. Пусть A и B — любые многочлены степени m и n соответственно. Докажите, что

- **a)** существуют такие многочлены U и V, что HOД(A, B) = AU + BV;
- **б)** если $m, \ n > 0$, то U и V можно выбрать так, чтобы $\deg U < n$ (или U = 0) и $\deg V < m$ (или V = 0).
- в) Найдите такие U и V, если A и B многочлены из пункта б) предыдущей задачи.

Определение 4. Многочлен положительной степени из $\mathbb{R}[x]$ (из $\mathbb{Q}[x]$) называется *неприводимым над* \mathbb{R} (над \mathbb{Q}), если он не представляется в виде произведения двух многочленов меньшей степени из $\mathbb{R}[x]$ (из $\mathbb{Q}[x]$).

Задача 10. Докажите, что многочлен степени 2 или 3, не имеющий корней в Q, неприводим над Q.

Задача 11. Может ли неприводимый над \mathbb{Q} многочлен из $\mathbb{Q}[x]$ не быть неприводимым над \mathbb{R} ?

Задача 12 $^{\varnothing}$. Разложите на неприводимые множители над $\mathbb R$ и на неприводимые множители над $\mathbb Q$:

а) 5x + 7; б) $x^2 - 2$; в) $x^3 + x^2 + x + 1$; г) $x^3 - 6x^2 + 11x - 6$; д) $x^3 + 3$; е) $x^4 + 4$.

Задача 13 $^{\textcircled{o}}$. Докажите, что неприводимый над \mathbb{R} многочлен из $\mathbb{R}[x]$, делящий произведение двух многочленов из $\mathbb{R}[x]$, делит один из этих многочленов. (*Указание:* используйте задачу 9a) для взаимно простых многочленов.)

Задача 14°. а) Докажите, что любой многочлен из $\mathbb{R}[x]$ ненулевой степени однозначно (с точностью до множителей из \mathbb{R}) раскладывается в произведение неприводимых над \mathbb{R} многочленов из $\mathbb{R}[x]$.

б) Верно ли аналогичное утверждение для многочленов из $\mathbb{Q}[x]$?

Задача 15. а) Два многочлена из $\mathbb{Q}[x]$ взаимно просты над \mathbb{Q} . Докажите, что у них нет общих действительных корней. б) Обязательно ли два многочлена из $\mathbb{Q}[x]$ без общих действительных корней взаимно просты над \mathbb{Q} ?

Задача 16. Пусть $a \in \mathbb{R}$ — общий корень многочленов S и T из $\mathbb{Q}[x]$, причём T неприводим над \mathbb{Q} . Докажите, что S делится на T, и частное — многочлен с рациональными коэффициентами.

Задача 17. Делится ли **а)** многочлен $x^{100} - 32x^{90} + x^4 + 5x^3 - 3x^2 - 10x + 2$ на многочлен $x^2 - 2$?

б) многочлен $x^{11} + x^9 - 5x^8 + x^7 - 6x^6 - 7x^4 - 98x^2 - 49$ на многочлен $x^3 - 7$?

Задача 18. Пусть α – корень многочлена с рациональными коэффициентами. Докажите, что существует многочлен $P \in \mathbb{Q}[x]$, который делит все такие $Q \in \mathbb{Q}[x]$, что $Q(\alpha) = 0$.

Задача 19*. а) Пусть $\alpha \in \mathbb{R}$ — корень некоторого ненулевого многочлена из $\mathbb{Q}[x]$. Пусть G(x) — произвольный многочлен из $\mathbb{Q}[x]$, такой что $G(\alpha) \neq 0$. Докажите, что существует такой многочлен $H(x) \in \mathbb{Q}[x]$, что $\frac{1}{G(\alpha)} = H(\alpha)$. 6) Найдите такой многочлен H(x), если $\alpha = \sqrt[3]{2}$ и G(x) = x + 1.

1	2	3	$\begin{vmatrix} 4 \\ a \end{vmatrix}$	4 6	5	6 a	6 6	7	8 a	8 6	8 B	8 Г	9 a	9 6	9 B	10	11	12 a	12 б	12 B	12 Г	12 д	12 e	13	14 a	14 б	15 a	15 б	16	17 a	17 б	18	19 a	19 б