$_{ m QCM}^{ m ALGO}$

1. L'implémentation d'une liste itérative sous la forme d'une liste chaînée, n'est pas possible?
a faux
(b) vrai
2. Quelles opérations définissent une liste récursive?
(a) debut
(b) longueur
© fin
d cons
3. La construction d'une liste itérative est basée sur?
(a) L'ajout d'un élément à la première place d'une liste
(a) La jout d'un élement à la promotion (b) La récupération du reste de la liste
(b) La recuperation du rece \mathbb{R}^{i} L'insertion d'un élément à la $\mathbb{K}^{i\hat{e}me}$ place
(d) L'ajout d'un élément en tête de liste
(d) Lajout d'un domest
4. L'implémentation d'une liste récursive sous la forme d'un tableau d'éléments, est dite?
(a) statique
(b) chaînée
c contiguë
(d) dynamique
5. Une pile est une structure intrinsèquement?
(a) Récursive
(b) Itérative
(c) Répétitive
(d) Alternative
(d) Alternative
6. Une liste représentée dynamiquement peut?
a être doublement chaînée
b utiliser un système de sentinelles
© être circulaire
(d) simuler des pointeurs
7. Une liste chaînée peut être représentée statiquement?
a) oui
(b) non

- 8. Une pile est une structure?
 - (a) LIFO
 - (b) PIPO
 - (c) FIFO
 - (d) FIPO
- 9. Une pile a un fonctionnement proche de celui?
 - (a) d'une liste récursive
 - (b) d'une liste itérative
 - (c) aucune des deux
- 10. Que représentent opération1 et opération2 dans l'axiome suivant (dans lequel e est un élément et x une pile)?

opération1(opération2 (e,x)) = e

- (a) opération1 = sommet, opération2 = dépiler
- (b) opération1 = dépiler, opération2 = sommet
- © opération1 = sommet, opération2 = empiler
- (d) opération1 = dépiler, opération2 = empiler

$_{ m QCM}^{ m ALGO}$

- 1. Quels éléments composent la signature d'un type abstrait?
 - (a) Les TYPES
 - (b) Les OPERATIONS
 - (c) Les PRECONDITIONS
 - (d) Les AXIOMES
 - (e) Les variables AVEC
- 2. Pour la déclaration

TYPES du, avec UTILISE beurre, les, croissants

l'opération et : du x beurre x avec x les -> croissants est?

- (a) Un observateur
- (b) Une opération interne
- (c) Un rapporteur
- (d) Une opération externe
- (e) Un observeur
- 3. Les PRECONDITIONS servent à préciser le domaine de définition?
 - (a) d'une opération ponctuelle
 - (b) d'une opération partielle
 - (c) d'une opération auxiliaire
 - (d) d'une opération secondaire
- 4. Quelle opérations ne définissent pas une Liste récursive?
 - (a) debut
 - (b) fin
 - (c) longueur
 - (d) cons
 - (e) ième
- 5. Une pile est une structure intrinsèquement?
 - (a) Récursive
 - (b) Itérative
 - (c) Répétitive
 - (d) Alternative
- 6. Une liste représentée dynamiquement peut?
 - (a) être doublement chaînée
 - (b) utiliser un système de sentinelles
 - (c) être circulaire
 - (d) simuler des pointeurs

1

7. Que représentent x, opération1 et opération2 dans l'axiome suivant (dans lequel e est un Elément)?

est-vide (x) = faux => opération1(opération2 (e,x)) = opération2(e, opération1 (x))

- (a) x est une File, opération1 = enfiler, opération2 = défiler
- (b) x est une Pile, opération1 = dépiler, opération2 = empiler
- (c) x est une File, opération1 = défiler, opération2 = enfiler
- (d) x est une Pile, opération1 = ajouter, opération2 = empiler
- 8. L'implémentation d'une pile sous une forme statique, n'est pas possible?
 - (a) faux
 - (b) vrai
- 9. Un arbre dont les noeuds contiennent des valeurs est?
 - (a) valué
 - (b) étiqueté
 - (c) valorisé
 - (d) évalué
- 10. Dans un arbre binaire, un noeud possédant 2 fils est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe
 - (d) point double

QCM N°12

lundi 10 décembre 2012

Question 11

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$. Alors il existe p premier tel que

- a. $n \mid p$
- (b) $p \mid n$
- c. rien de ce qui précède

Question 12

Soient $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{Z}^2$ tels que $a \equiv b[n]$. Alors

- (a) il existe $k \in \mathbb{Z}$ tel que a = b + kn
- $n \mid a b$
- (c) a et b ont même reste dans la division euclidienne par n
- d. rien de ce qui précède

Question 13

Soient p premier et $k \in \mathbb{N}$ tel que 0 < k < p. Alors $p \wedge k = 1.$

- a vrai
- b. faux

Question 14

Soit p premier. Le petit théorème de Fermat dit

- a. pour tout $n \in \mathbb{N}$, $n^p \equiv 1 [p]$
- b. pour tout $n \in \mathbb{N}$, $p^n \equiv 1 [p]$
- c. pour tout $n \in \mathbb{N}$, $p^n \equiv n[p]$
- d. pour tout $n \in \mathbb{N}, n^p \equiv p[n]$
- rien de ce qui précède

Question 15

Soit $n \in \mathbb{N}$. Alors $3^{2n+1} \equiv -2^{2n+1} [5]$

- a vrai
- b. faux

Question 16

Soit $(a, b) \in \mathbb{N}^{*2}$. Alors

- a. $a \wedge b = 10 \iff \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 10$
- \bigcirc $a \wedge b = 10 \Longrightarrow \exists (u, v) \in \mathbb{Z}^2, \ au + bv = 10$
- c. $\exists (u, v) \in \mathbb{Z}^2, \ au + bv = 10 \Longrightarrow a \wedge b = 10$
- d. rien de ce qui précède

Question 17

Soit $(a, b, c) \in \mathbb{N}^{*3}$ tel que $c \mid ab$. Alors $c \mid a$ ou $c \mid b$.

- a. vrai
- 6. faux

Question 18

Soit $(a,b) \in \mathbb{N}^{*2}$ tel que a et b sont premiers entre eux. Alors

- (a) $a \wedge b = 1$
- $\hat{\mathbb{D}}$. Le seul diviseur commun dans \mathbb{N} de a et b est 1
- c. Il existe un unique couple $(u,v)\in\mathbb{Z}^2$ tel que au+bv=1
- d. rien de ce qui précède

Question 19

Soit $(a, b) \in \mathbb{N}^{*2}$. Alors

- a. $a \mid a \wedge b$
- c. $b \wedge 1 = b$
- $(a \land b \ge 1)$
- e. rien de ce qui précède

Question 20

Soit $(a,b,c)\in \mathbb{N}^{*3}$ tel que $a\wedge b=1$ et $a\wedge c=1.$ Alors

- a. $a \mid bc$
- b. $bc \mid a$
- $(c.)a \wedge (bc) = 1$
- d. rien de ce qui précède

Q.C.M n°6 de Physique

- 21- La combinaison d'un mouvement elliptique dans le plan (xoy) et d'un mouvement rectiligne sur l'axe Oz donne :
 - a) un mouvement parabolique
 - b) un mouvement elliptique
 - c) un mouvement sinusoïdal
 - (d) un mouvement hélicoïdal elliptique
- 22- La force électrique \vec{F}_e entre deux charges ponctuelles q_1 et q_2 , séparées par une distance r vérifie :
 - a) \vec{F}_e est attractive ou répulsive b) F_e est proportionnelle à la distance r

 - c) \vec{F}_e est toujours attractive
 - d) F_e ne dépend pas de la distance r
- 23- La condition d'équilibre de translation est donnée par:

a)
$$\sum (\vec{F}_{ext}) = m\vec{a}$$

$$(b) \sum_{i} (\vec{F}_{ext}) = \vec{0}$$

(b)
$$\sum (\vec{F}_{ext}) = \vec{0}$$

c) $\sum \vec{M} /_{\Delta} (\vec{F}_{ext}) = \vec{0}$

d)
$$\sum \vec{M} /_{\Delta} (\vec{F}_{ext}) = \frac{d\vec{L}}{dt}$$

- 24) La force magnétique donnée par $\vec{F}_{m}=q\vec{V}\wedge\vec{B}$ agit sur la particule chargée q en :
 - (a) déviant sa trajectoire
 - b) changeant son accélération
 - c) changeant sa masse
 - d) changeant sa vitesse
- 25) La force magnétique $\vec{F}_{\scriptscriptstyle m}=q\vec{V}\wedge\vec{B}$, appliquée à une particule de charge q en mouvement avec une vitesse \vec{V} vérifie :
 - (a) \vec{F}_m perpendiculaire à la trajectoire de la particule
 - b) \vec{F}_m est toujours nulle
 - c) $\vec{F}_{\scriptscriptstyle m}$ est colinéaire au vecteur vitesse de la particule
 - d) \vec{F}_m est tangente à la trajectoire de la particule

- 26) Le vecteur quantité de mouvement \vec{p} d'un point matériel de masse m est :
 - a) perpendiculaire au vecteur vitesse \vec{V}
 - b) colinéaire et de sens opposé au vecteur vitesse \vec{V}
 - c) indépendant de la masse m du point matériel
 - \vec{Q} colinéaire au vecteur vitesse \vec{V}
- 27) Le moment cinétique $\vec{L} = O\vec{M} \wedge m\vec{v}$ représente :
 - a) le moment du poids $\vec{P} = m\vec{g}$
 - b) le moment de la masse m.
 - c) le moment de la force de frottement.
 - \bar{p} le moment du vecteur quantité de mouvement \bar{p}
- 28) Lorsqu'une balle arrive perpendiculairement sur un mur avec une quantité de mouvement \vec{p}_{balle} et rebondit dans la même direction, le vecteur quantité de mouvement transmis au mur s'écrit :
 - a) $\vec{p}_{mur} = \vec{p}_{balle}$
 - (b) $\vec{p}_{mur} = 2\vec{p}_{balle}$
 - c) $\vec{p}_{mur} = -\vec{p}_{balle}$
 - d) $\vec{p}_{mur} = \vec{0}$
- 29) Le moment du Poids \vec{P} par rapport au point d'appui O de la poutre (de longueur L) est :
 - a) $P.\frac{L}{4}$
 - (b) $-P.\frac{L}{4}$
 - c) $P.\frac{3L}{4}$
 - d) $-P.\frac{L}{2}$

- 30) La norme du moment cinétique d'une masse m, tournant autour du point O avec une vitesse angulaire constante ω est :
 - (a) $\|\vec{L}\| = mr^2 \omega$
 - b) $\|\vec{L}\| = mr\omega$
 - c) $\|\vec{L}\| = r^2 \omega$
 - $\mathrm{d)} \ \left\| \vec{L} \right\| = 0$

- 31. The man wanted to kill the old man
 - a. for his gold
 - b. because he didn't like him
 - c) because his eyes made his blood run cold
 - d. because he was wronged by the old man
- 32. What did the man try to convince he was not?
 - a. stupid
 - 6 mad
 - c. nice
 - d. evil
- 33. How did the man describe the groan he heard?
 - a. One of pain
 - b. One of grief
 - (c.) One of mortal terror
 - d. One of madness
- 34. The narrator was vexed by the old man's
 - a) Evil eye
 - b. Hearty tone
 - c. behaviour
 - d. sagacity
- 35. Which word is closest in meaning to 'acute'?
 - a. dull
 - (b) sharp
 - c. big
 - d. close
- 36. The narrators' dissimulating behavior was shown
 - (a) In his hearty tone to old the man every morning
 - b. In his willingness to kill the old man
 - c. In his courage to kill the old man
 - d. None of these
- 37. 'I can't get rid of this headache.'Here, get rid of means
 - a. To throw it away
 - b. To remove it
 - C. To be free of it
 - d. To sell it
- 38. 'Could you do me a favour?'....Here, do me a favour means
 - (a) To help me
 - b. To give me something
 - c. To give me an advantage
 - d. To support me
- 39. 'Who's going to look after the children while you are away?'....Here, to look after means
 - a. To see them
 - b. To take care of them
 - c. To take them
 - d. To care them

- 40. 'He was lucky to get away with only a \$100 fine.'....Here, to get away means
 - a. To steal something

 - b. To go somewhere
 C To receive a light punishment
 d. To be punished

Dalis cliaque groupe de pilitases, une seule est conteste, agazene

- 41- a Quel est grande cette montagne!
 - b Quelle est grande cette montagne!
 - O-Qu'elle est grande cette montagne!
- 42- a Les conseils quelle m'a donnés m'ont sauvé la vie.
 - b Les conseils quels m'a donnés m'ont sauvé la vie.
 - C- Les conseils qu'elle m'a donnés m'ont sauvé la vie.
 - Les conseils quelle m'a donné m'ont sauvée la vie.
 - e Les conseils qu'elle m'a donnés m'ont sauvée la vie.
- 43- (a) Je me demande quelle est sa fonction.
 - b Je me demande quel est sa fonction.
 - c Je me demande qu'elle est sa fonction.
- 44- a –Je possède quelque bons romans.
 - b Je possède quelles que bons romans.
 - c Je possède quels que bons romans.
 - d Je possède qu'el le que bons romans.
 - O Je possède quelques bons romans.
- 45- a J'en ai lu quelque cinquantes pages.
 - b J'en ai lu quelques cinquante pages.
 - c J'en ai lu quelques cinquantes pages.
 - d- J'en ai lu quelque cinquante pages.
- 46- a Refusez toutes leurs suggestions, quelqu'elles soient.
 - b Refusez toutes leurs suggestions, quelle qu'elle soit.
 - C- Refusez toutes leurs suggestions, quelles qu'elles soient.
 - d Refusez toutes leurs suggestions, qu'elles quelles soient.
 - e Refusez toutes leurs suggestions, quellesqu'elles soient.
- 47- a Tous ces soucis, quel qu'il soit ont minée leur santé.
 - b Tous ces soucis, tel qu'il soit ont miné leur santé.
 - c Tous ces soucis, quels qu'ils soient ont minée leur santé.
 - d Tous ces soucis, quelles qu'il soit ont minée leur santé.
 - (e) Tous ces soucis, quels qu'ils soient ont miné leur santé.
- 48- a Il veut qu'elle reprenne ses affaires qu'elle avait apportées il y a quelques 20 ans.
 - b Il veut quelle reprenne ses affaires qu'elle avait apportées il y a quelque 20 ans.
 - c Il veut qu'elle reprenne ses affaires qu'elle avait apporté il y a quelque 20 ans.
 - (d)- Il veut qu'elle reprenne ses affaires qu'elle avait apportées il y a quelque 20 ans.
 - e Il veut qu'elle reprenne ses affaires quelle avait apportées il y a quelque 20 ans.
- 49- a Quels que habiles qu'ils soient, ils n'auront pas fini à l'heure.
 - b Qu'elles que habiles qu'ils soient, ils n'auront pas fini à l'heure.
 - c Quels que habiles qu'ils soient, ils n'auront pas fini à l'heure.
 - d Quelque habiles qu'ils soient, ils n'auront pas fini à l'heure.
 - e Quelques habiles qu'ils soient, ils n'auront pas fini à l'heure.
- 50- a Les guelques pays qu'elles ont visités les ont enchanté.
 - b Les quelque pays qu'elles ont visités les ont enchantées.
 - c Les quelques pays quelles ont visités les ont enchantés.
 - 🕜 Les quelques pays qu'elles ont visités les ont enchantées.
 - e Les quelque pays qu'elles ont visité les ont enchantées.

QCM Electronique - InfoSUP

Pensez à bien lire les questions ET les réponses proposées

- Q1. Quelle est la résistance vue entre A et B?
 - a. 3R
 - b. R
 - $\bigcirc \frac{3R}{2}$
 - d. $\frac{2R}{3}$

- Q2. Quelle est la bonne formule ?
 - (a) $I_1 = \frac{I}{3}$
 - b. $I_1 = \frac{2}{3} I$
 - c. $I_1 = I$
 - d. $I_1 = \frac{I}{2}$

- Q3. Quelle est la bonne formule ?
 - a. $U = \frac{\frac{E_1}{R_1} + \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_0} + \frac{1}{R_3}}$
 - b. $U = \frac{\frac{E_1}{R_1} + I_0 \frac{E_3}{R_3}}{\frac{1}{R_1} + \frac{1}{R_0} + \frac{1}{R_3}}$
 - c. $U = \frac{\frac{E_3}{R_3} I_0 \frac{E_1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_0} + \frac{1}{R_3}}$

Soit un courant sinusoïdal $i(t) = l.\sin(\omega t + \varphi)$

- Q4. Par convention, I est une grandeur réelle quelconque, sans unité.
 - a. VRAI

b. FAUX

- Q5. ω correspond à
 - a. Une vitesse angulaire
 - b. La fréquence du signal

- c. La période du signal
- d. Aucune de ces réponses.

Q6. Quelle relation est correcte ? T représente la période de i(t) et f, sa fréquence.

a.
$$\omega = 2.\pi.T$$

(b)
$$\omega T = 2.\pi$$

c.
$$\omega = 2.\pi$$

d.
$$\omega = \frac{2.\pi}{f}$$

Q7. La valeur moyenne d'un signal périodique s(t) est donnée par la relation :

(a)
$$S_{moy} = \frac{1}{T} \int_0^T s(t) dt$$

b.
$$S_{moy} = \sqrt{\frac{1}{T} \int_0^T s(t) dt}$$

c.
$$S_{moy} = \sqrt{\frac{1}{T} \int_0^T s^2(t) dt}$$

d.
$$S_{moy} = 0$$

Q8. La valeur moyenne de i(t) est donnée par la relation :

a.
$$I_{moy} = I$$

b.
$$I_{moy} = \frac{I}{\sqrt{2}}$$

d.
$$I_{moy} = I. \omega$$

Q9. La valeur efficace d'un signal périodique s(t) est donnée par la relation :

a.
$$S_{eff} = \frac{1}{T} \int_0^T s(t) dt$$

b.
$$S_{eff} = \sqrt{\frac{1}{T} \int_0^T s(t) dt}$$

$$C. S_{eff} = \sqrt{\frac{1}{T} \int_0^T s^2(t) dt}$$

d.
$$S_{eff} = 0$$

Q10. La valeur efficace de i(t) est donnée par la relation :

a.
$$I_{eff} = I$$

c.
$$I_{eff} = 0$$

d.
$$I_{eff} = I^2$$