

commutant is a weak operator closed subalgebra

 ${\bf Canonical\ name} \quad {\bf Commutant Is AWeak Operator Closed Subalgebra}$

Date of creation 2013-03-22 18:39:32 Last modified on 2013-03-22 18:39:32 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Theorem
Classification msc 46L10

Let H be a Hilbert space and B(H) the algebra of bounded operators in H. Recall that the commutant of a subset $\mathcal{F} \subset B(H)$ is the set of all bounded operators that commute with those of \mathcal{F} , i.e.

$$\mathcal{F}' := \{ T \in B(H) : TS = ST, \forall S \in \mathcal{F} \}.$$

- If $\mathcal{F} \subset B(H)$, then \mathcal{F}' is a subalgebra of B(H) that contains the identity operator and is closed in the weak operator topology.
- : It is clear that \mathcal{F}' contains the identity operator, since it commutes with all operators in B(H) and in particular with those of \mathcal{F} .

Let us now see that \mathcal{F}' is a subalgebra of B(H). Let $T_1, T_2 \in \mathcal{F}'$ and $\lambda \in \mathbb{C}$. We have that, for all $S \in \mathcal{F}$,

$$S(T_1 + T_2) = ST_1 + ST_2 = T_1S + T_2S = (T_1 + T_2)S$$

 $S(\lambda T_1) = \lambda ST_1 = \lambda T_1S$
 $S(T_1T_2) = T_1ST_2 = T_1T_2S$

thus, $T_1 + T_2$, λT_1 and $T_1 T_2$ all belong to \mathcal{F}' , and therefore \mathcal{F}' is a subalgebra of B(H).

It remains to see that \mathcal{F}' is weak operator closed. Suppose (T_i) is a net in \mathcal{F}' that converges to T in the weak operator topology. Then, for all $x, y \in H$ we have that $\langle T_i x, y \rangle \to \langle T x, y \rangle$. Thus, for all $S \in \mathcal{F}$, we have

$$\langle (TS - ST)x, y \rangle = \langle TSx, y \rangle - \langle Tx, S^*y \rangle$$

$$= \lim \left(\langle T_i Sx, y \rangle - \langle T_i x, S^*y \rangle \right)$$

$$= \lim \left\langle (T_i S - ST_i)x, y \rangle$$

$$= \lim \left\langle (T_i S - T_i S)x, y \rangle \right\rangle$$

$$= 0$$

Hence, TS - ST = 0, so that $T \in \mathcal{F}'$. We conclude that \mathcal{F}' is closed in the weak operator topology. \square