

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

ΕΡΓΑΣΤΗΡΙΟ 2

Μέρος Α': Τεκμηρίωση με χρήση Doxygen

Για να εξασφαλιστεί ότι ο πηγαίος κώδικας σας θα έχει επαρκή τεκμηρίωση, το μάθημα ΕΠΛ232 θα απαιτεί την χρησιμοποίηση του λογισμικού doxygen, μια εφαρμογή για την μετατροπή των σχολίων ενός προγράμματος C (και όχι μόνο), σε HTML αρχεία τα οποία μπορούμε να τα δούμε χρησιμοποιώντας ένα browser.

Παράδειγμα:

Στο παράδειγμα φαίνεται πως μπορούμε να προσθέσουμε σχόλια στο κώδικα ώστε μέσω του doxygen να παράγουμε το documentation για το πρόγραμμα. Πιο κάτω βλέπουμε τα σχόλια που βάζουμε σε μια συνάρτηση:

- 1. Κατεβάστε το αρχείο lab2.files.zip από την ιστοσελίδα του μαθήματος. Το αρχείο αυτό περιλαμβάνει:
 - a. ένα πρόγραμμα C, με το όνομα functions.c
 - b. Το αρχείο README.dox
 - c. Ένα αρχείο lab2.conf, που είναι απαραίτητο για την παραγωγή σχολίων σχετικά με το πρόγραμμα functions.c. Το αρχείο lab2.conf παράγεται με την εντολή:

```
doxygen -q lab2.conf
```

Όλα τα πιο πάνω αρχεία πρέπει να βρίσκονται στο ίδιο κατάλογο.

- 2. Ανοίξτε το αρχείο README.dox και προσθέστε γενικά σχόλια σχετικά με το πρόγραμμα σας. Το περιεχόμενο αυτού του αρχείου θα εμφανίζεται στο main page.
- 3. Μην αλλάζετε τις παραμέτρους του αρχείο lab2.conf, το έχουμε κάνει εμείς για εσάς. Οι σημαντικότερες παράμετροι είναι:

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

- a. INPUT = εδώ βάζετε τα ονόματα των αρχείων π.χ functions.c README.dox (δείτε το στο αρχείο lab2.conf)
- b. EXTRACT_ALL = YES Extract documentation even from those elements you haven't yet commented.
- c. OPTIMIZE OUTPUT FOR C = YES
- d. JAVADOC AUTOBRIEF = YES
- e. INLINE_SOURCE = YES Extract the relevant parts of the source and associate them with your description.
- f. GENERATE LATEX = NO Skip generating LaTeX sources for PDF.
- g. CALL_GRAPH = ΝΟ Όταν θα γράψετε κώδικα με πολλά αρχεία η παράμετρος αυτή να είναι CALL_GRAPH = YES ούτος ώστε να δημιουργηθεί και ο γράφος εξάρτησης μεταξύ των αρχείων.
- 4. Στον πίνακα υπάρχουν πληροφορίες σχετικά με την χρησιμοποίηση οδηγιών του Doxygen.

Doxygen tag	Εμφάνιση στο html αρχείο
@file file-name	Prints <i>file-name</i> as header of page.
@brief Brief description goes here.	Description appears in HTML documen
	generated.
@author name1	Author:
@author name2	name1
	name2
@version Version number	Version:
	Version number()
@see FunctionA()	See also:
	FunctionA()
@param variableA DescriptionA	Parameters:
@param variableB DescriptionB	variableA DescriptionA
@param variableC DescriptionC	variableB DescriptionB
•	variableC DescriptionC
@return variableA	Returns:
	variableA
<pre>@bug Description of bug goes here</pre>	Bug:
	Description of bug goes here

- 5. Δίνεται επίσης το αρχείο functionsWithComments.txt το οποίο προκύπτει όταν στο αρχείο functions.txt προστεθούν τα κατάλληλα σχόλια. Όταν τελειώσει η προσθήκη σχολίων στο αρχείο πηγαίου κώδικα, εκτελείται η εντολή: doxygen lab2.conf
- 6. Στο τρέχον κατάλογο δημιουργείται ένας νέος κατάλογος /html
- 7. Εμφανίστε τα σχόλια με την εντολή: firefox html/index.html

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

Μερικές διαφορές Doxygen με Javadoc

- Το Javadoc είναι εργαλείο τεκμηρίωσης μόνο για την γλώσσα Java. Από την άλλη, το Doxygen υποστηρίζει τεκμηρίωση εκτός από την Java και σε άλλες γλώσσες όπως C++, C, Java, Objective-C, Python, IDL (Corba and Microsoft flavors), Fortran, VHDL, PHP, C#.
- Το Javadoc προϋποθέτει την γνώση ετικετών HTML (tags) π.χ. , , , <i>οι οποίες είθισται να περιλαμβάνονται στα σχόλια του κώδικα για σκοπούς μορφοποίησης του κειμένου. Με το Doxygen, τα σχόλια μέσα στον κώδικα είναι πολύ πιο συνοπτικά και απαλλαγμένα από προσμίξεις ετικετών, χωρίς να υπάρχει η ανάγκη για χρήση HTML.
- Το Doxygen επιτρέπει τη δημιουργία διαφόρων τύπων διαγραμμάτων για οπτική παρακολούθηση των εμπλεκομένων αρχείων και του κώδικα π.χ. διάγραμμα συσχέτισης/εξάρτησης αρχείων.
- Το Doxygen παρέχει μια δομημένη εμφάνιση του πηγαίου κώδικα μέσω διαγραμμάτων, παραπομπών μέσα στον κώδικα, και επισήμανσης κώδικα (syntax highlighted code).
- Το Doxygen επιτρέπει την εξαγωγή διαφορετικών αρχείων εξόδου όπως π.χ. HTML, PDF, LATEX, man pages, κτλ.) εν αντιθέσει με το Javadoc παρέχει μόνο HTML.
- Οι πιο πάνω δυνατότητες του Doxygen είναι δεδομένες ακόμη και αν ο κώδικας δεν έχει καθόλου σχόλια.

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

Μέρος Β': Ανάγνωση αριθμών από αρχείο με χρήση συναρτήσεων

1. Γράψτε ένα πρόγραμμα στο οποίο η συνάρτηση main() θα καλεί μια συνάρτηση readNumbers() η οποία θα διαβάζει 20 ακέραιους αριθμούς από ένα αρχείο data.txt και να τους αποθηκεύει σε ένα πίνακα. Ο πίνακας θα είναι αρχικά δηλωμένος μέσα στη συνάρτηση main(). Στη συνέχεια θα καλείται από τη main() η συνάρτηση largestNumber() που θα βρίσκει και θα επιστρέφει τον μεγαλύτερο αριθμό μέσα από τον πίνακα. Και τέλος θα καλείται η συνάρτηση printAll() που θα τυπώνει το περιεχόμενο του πίνακα και τον μεγαλύτερο αριθμό σ' ένα αρχείο εξόδου με όνομα output.txt.

Πρέπει να γίνει χρήση των εντολών fopen(), fclose(), fscanf() και fprintf().

<u>Σημείωση</u>: Προσθέστε στο πρόγραμμα τα απαραίτητα σχόλια και τρέξτε το εργαλείο doxygen για να δείτε τα αποτελέσματα.

Παράδειγμα εκτέλεσης:

Μετά την εκτέλεση του προγράμματος, το αρχείο *output.txt* θα περιέχει τα εξής:

```
The numbers stored in data.txt are:
86
15
23
19
46
82
11
67
17
33
71
39
6
87
72
44
27
16
74
1
The largest number in data.txt is 87
```


ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

Μέρος Γ': Ανάγνωση συμβολοσειρών από αρχείο και επεξεργασία με χρήση της βιβλιοθήκης string.h

Strings

- Τα strings στην γλώσσα C είναι πίνακες από χαρακτήρες.
- Χρησιμοποιούνται για να αποθηκεύσουν λέξεις ή προτάσεις (κυρίως) στην Αγγλική γλώσσα.
- Κάποιες γλώσσες προγραμματισμού έχουν τύπο δεδομένων string (βλέπε Java, C++), αλλά ή C δεν έχει.
- Το τέλος ενός string στην γλώσσα C καθορίζεται από τον χαρακτήρα \ 0 ο οποίος καλείται τερματικός χαρακτήρας NULL.
- Το πρόγραμμα πρέπει να προβλέπει χώρο αποθήκευσης του τερματικού χαρακτήρα NULL. Για παράδειγμα, ο πίνακας χαρακτήρων που θα αποθηκεύσει το string "Hello" πρέπει να έχει μέγεθος τουλάχιστον 6 bytes: char hello[6];

String functions in string.h

Η γλώσσα C περιέχει ένα σύνολο από συναρτήσεις που μπορούν να χρησιμοποιηθούν για να διαχειριστούμε strings.

- Για να χρησιμοποιήσουμε τις συναρτήσεις αυτές, κάνουμε include την βιβλιοθήκη string.h: #include <string.h>
- int **strlen** (char str[]) επιστρέφει το μήκος ενός string χωρίς να λαμβάνεται υπόψιν ο τερματικός χαρακτήρας NULL

Παράδειγμα:

```
char string[10] = "john";
printf("%d\n", strlen(string)); // θα τυπώσει 4
```

• strcat(char str1[], char str2[]) συνενώνει το str2 στο τέλος του str1 Παράδειγμα:

```
char string[15] = "john"; strcat(string, "smith"); printf("%d\n", strlen(string)); // \theta\alpha τυπώσει 9 printf("%s\n", string); // \theta\alpha τυπώσει johnsmith
```

• **strcpy** (char str1[], char str2[]) αντιγράφει το str2 στο str1, ξεκινώντας από την πρώτη θέση του str1

```
Παράδειγμα:
char word[10] = "hello";
strcpy(word, "world");
printf("%s\n", word); // θα τυπώσει world
```

**

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

• int **strcmp** (char str1[], char str2[]) συγκρίνει το str1 με το str2 και επιστρέφει 0 αν είναι του ιδίου μήκους και έχουν ακριβώς τους ίδιους χαρακτήρες σε όλες τις θέσεις. Επιστρέφει ένα αριθμό < 0 αν το str1 < str2 και ένα αριθμό > 0 αν str1 > str2.

```
Παράδειγμα:
char word[10] = "hello";
printf("%d\n", strcmp(word, "hello")); // θα τυπώσει 0
printf("%d\n", strcmp(word, "world")); // αρνητικός αριθμός
printf("%d\n", strcmp(word, "friend")); // θετικός αριθμός
```

• **strtok** (char str1[], char delim[]) διαχωρίζει το str1 σε μια ακολουθία από μηδέν ή περισσότερα non-empty tokens. Ο/οι χαρακτήρας/ες διαχωρισμού (μπορεί να είναι πάνω από ένας) δίνονται στον πίνακα delim. Στην πρώτη κλήση της συνάρτησης δίνεται το str1 που θα διαχωριστεί σε tokens. Σε κάθε επόμενη κλήση της strtok, το πρώτο όρισμα θα πρέπει να είναι NULL.

Παράδειγμα:

```
char str[80] = "This is-EPL232 : website";
char s[] = " -:";
char *token;
/* get the first token */
token = strtok(str, s);
/* walk through other tokens */
while( token != NULL ) {
    printf( "%s\n", token );
    token = strtok(NULL, s);
}
```

Αποτέλεσμα εκτέλεσης:

```
This
is
EPL232
website
```

1. Γράψτε ένα πρόγραμμα textAnalyzer.c το οποίο ζητά από τον χρήστη να δώσει ένα αρχείο εισόδου που περιέχει κείμενο. Το πρόγραμμα θα διαβάζει το αρχείο εισόδου, θα επεξεργάζεται το κείμενο και θα εκτυπώνει σε άλλο αρχείο εξόδου κάποια στατιστικά στοιχεία. Δίνεται το αρχείο εισόδου file.txt.

Παράδειγμα εκτέλεσης (με έντονο κόκκινο χρώμα η είσοδος του χρήστη):

```
Please enter the name of the input file.
Filename: file.txt
Please enter the name of the output file.
Filename: outfile.txt
Processing complete.
```


ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

Το αρχείο εξόδου outfile.txt θα πρέπει να περιέχει τα εξής:

Statistics for file: file.txt Total # of characters in file: 417 Letters 297 71.22 % 77 18.47 % White space Digits 17 4.08 % Other characters 26 6.24 % Total # of words in file: 82 The words of file.txt in alphabetical order: 100 123rd 12:45 13 15 17 2 And Didn't Не How I'11 PMThe Well When and anything anyways? at better brown cats chasing checked darn do dog dog dog dogs

dreamed

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

far

fox

fox

foxes

had

have

he

he

he

110

he

he?

his

his

his

jumped

jumped

jumping

just

lazy

lazy

lazy

lazy

leaped

mailmen

more

of

of

over

over

over

pretty

quick

rabbits

sheep

so

speaking

tell

the

the

the

time?

to

was

was

was

watch

who

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

why with you

Μέρος Δ': Ασκήσεις για βρόχους και συναρτήσεις

2. Γράψτε ένα πρόγραμμα multiple3.c το οποίο ζητά από τον χρήστη δυο αριθμούς, και βρίσκει και να τυπώνει όλους τους αριθμούς μεταξύ των δυο εισαγόμενων αριθμών (συμπεριλαμβανομένων) που διαιρούνται με 3.

<u>Σημείωση</u>: Προσθέστε στο πρόγραμμα τα απαραίτητα σχόλια και τρέξτε το εργαλείο doxygen για να δείτε τα αποτελέσματα.

3. Γράψτε ένα πρόγραμμα losange.c το οποίο ζητά από τον χρήστη έναν ακέραιο αριθμό n, και εμφανίζει έναν ρόμβο μεγέθους n. Π.χ. για n=5 το πρόγραμμα εμφανίζει:

- 4. Γράψτε ένα πρόγραμμα primeNumbers.c το οποίο ζητά από τον χρήστη έναν αριθμό *n*, και εμφανίζει όλους τους πρώτους αριθμούς μικρότερους του *n*.
- 5. Γράψτε ένα πρόγραμμα triangle.c το οποίο ζητά από τον χρήστη έναν αριθμό N και εμφανίζει ένα τρίγωνο με N γραμμές. Π .χ. για N=8 το πρόγραμμα εμφανίζει:

Οι πιο κάτω ασκήσεις να υλοποιηθούν με χρήση συναρτήσεων όπως καθορίζει η εκφώνηση της κάθε άσκησης.

6. Γράψτε ένα πρόγραμμα που διαβάζει ακέραιους αριθμούς από το χρήστη αριθμούς (το πολύ 10), και τους ταξινομεί σε αύξουσα σειρά χρησιμοποιώντας ένα πίνακα (μεγέθους

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

10) και τον αλγόριθμο selection sort. Οι αριθμοί θα εισάγονται από το χρήστη μέσω της συνάρτησης main. Η είσοδος θα τερματίζεται όταν ο χρήστης δώσει το 0. Η ταξινόμηση να γίνεται από την συνάρτηση selectionSort. Η εκτύπωση των ταξινομημένων αριθμών να γίνεται και πάλι μέσω της main.

- 7. Ένας ακέραιος αριθμός θεωρείται τέλειος εάν ισούται με το άθροισμα των διαιρετών του. Γράψτε ένα πρόγραμμα, το οποίο ζητά έναν αριθμό από τον χρήστη, και τυπώνει όλους τους τέλειους αριθμούς μέχρι αυτόν τον αριθμό. Το πρόγραμμα να χρησιμοποιεί μια συνάρτηση perfect η οποία λαμβάνει σαν είσοδο ένα ακέραιο αριθμό και να επιστρέφει 1 εάν ο δοθέντας αριθμός είναι τέλειος, 0 εάν δεν είναι.
- 8. Γράψτε ένα πρόγραμμα το οποίο αφού διαβάζει 2 αριθμούς, πρέπει να ελέγχει εάν και οι 2 αριθμοί είναι θετικοί (μεγαλύτεροι του 0). Σ' αυτή την περίπτωση, να διαιρεί το μικρότερο από το μεγαλύτερο και να τυπώνει το αποτέλεσμα. Σ' αντίθετη περίπτωση να τυπώνει ανάλογο μήνυμα (να αναφέρει ποιος αριθμός είναι ο θετικός και ποιος όχι) και το πρόγραμμα να τερματίζει. Η εισαγωγή των 2 αριθμών να γίνεται στη συνάρτηση main και όλα τα υπόλοιπα στη συνάρτηση div ().
- 9. Γράψτε ένα πρόγραμμα christmasTree.c το οποίο εμφανίζει ένα Χριστουγεννιάτικο δέντρο όπως στην παρακάτω εικόνα:

Το πρόγραμμα να χρησιμοποιεί μια συνάρτηση, triangle (int n), που τυπώνει ένα τρίγωνο παίρνοντας σαν παράμετρο τον αριθμό των γραμμών π.χ. για n=3 η συνάρτηση τυπώνει:

ΕΠΛ 232: ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΚΑΙ ΕΡΓΑΛΕΙΑ

10. Αλλάξτε το πρόγραμμα που γράψατε για την τρίτη άσκηση, ώστε να εμφανίζει ένα πιο όμορφο Χριστουγεννιάτικο δέντρο όπως στην παρακάτω εικόνα:

11. Για τους πιο τολμηρούς: Γράψτε ένα πρόγραμμα που εμφανίζει το παρακάτω σχήμα χρησιμοποιώντας βρόγχους και συναρτήσεις.

