Álgebra 1

Lista 05 (Polinômios)

- 5.1. (Calculando m.d.c. II). Encontre o m.d.c. dos seguintes polinômios sobre Q:
 - (i) $X^7 3X^5 + 2X^4$ e $X^5 + X^4 2X^3 X^2 X + 2$
 - (ii) $X^5 4X^4 3X^3 + 34X^2 52X + 24 \text{ e } X^3 3X^2 + 4$
 - (iii) $X^5 X^4 6X^3 2X^2 + 5X + 3 e X^3 3X 2$

Verifique as respostas por outro método.

- 5.2. (Schönemann e Eisenstein). Seja $f(X) = a_n X^n + \cdots + a_0$ um polinômio de grau n > 0 com coeficientes inteiros. Se existe um primo p tal que p divide a_{n-1}, \ldots, a_0 mas p não divide a_n e p^2 não divide a_0 , demonstre que f(X) é irredutível sobre \mathbb{Z} .
- 5.3. (Irredutibilidade depende do anel de coeficientes). Mostre que X^4+1 é um polinômio irredutível sobre \mathbb{Q} , mas possui divisores de grau 2 sobre o corpo dos números da forma $x+y\sqrt{2}$, onde x e y percorrem todos os números racionais.
- 5.4. (Se o anel dos coeficientes não for um corpo...). Prove que o conjunto I de todos os polinômios da forma 2f(X) + Xg(X), onde f(X) = g(X) percorrem $\mathbb{Z}[X]$, é fechado para a subtração e é tal que se $p(X) \in I$ então todos os múltiplos de p(X) pertencem a I. Prove que I não consiste nos múltiplos de um polinômio em $\mathbb{Z}[X]$.
- 5.5. (Derivação). Seja K um corpo. Defina a aplicação $D: K[X] \to K[X]$ por: se $f(X) = a_n X^n + ... + a_0$ com $a_i \in K$, então Df(X) = 0 quando n = 0 e, em geral, $Df(X) = na_n X^{n-1} + ... + a_1$. Verifique que:
 - (i) Se f(X) e g(X) são polinômios em K[X] e $a \in K$, então D(f(X) + g(X)) = Df(X) + Dg(X), D(af(X)) = aDf(X), e D(f(X)g(X)) = Df(X)g(X) + f(X)Dg(X).
 - (ii) Se f(X) é um polinômio de grau > 0 em K[X], então para que uma raiz a de f(X) em K possua multiplicidade > 1 é necessário e suficiente que Df(a) = 0.
- 5.6. $(K(X) \in K((X)))$. Se K for um corpo, verifique que, com as operações usuais, os seguintes conjuntos formam corpos:
 - (i) O conjunto de todas as frações $\frac{p}{q}$, onde $p,q\in K[X], q\neq 0$.
 - (ii) O conjunto de todas as séries formais de Laurent $\sum_{n=m}^{\infty} a_n X^n$, onde $a_n \in K$ e $m \in \mathbb{Z}$.