# WEAK RESTRICTED DELAUNAY THEOREMS

Altali, Edelsbrunner, Milleyko

- I. RESULTS
- I. PRELIMINARIES
- II. CURVES
- IV. SURFACES

# I. RESULTS

#### I.1 WEAK WITNESSES

L = Rd ... finite set of landmarks

5 = L ... simplex

DEF. A weak witness of  $\epsilon$  is a point  $x \in \mathbb{R}^d$  s.t.  $\|x-\alpha\| \le \|x-b\|$  for all  $a \in \epsilon$ ,  $b \in L-\epsilon$ .

#### I.1 WEAK WITNESSES

L = Rd ... finite set of Randmarks

6 € L ... simplex

DEF. A strong witness of 6 is a point x e Rd s.t.

||x-a|| \( \) ||x-b|| for all a = 6, be L-8.

#### I.1 WEAK WITNESSES

- L = Rd ... finite set of landmarks
- 5 € L ... simplex
- DEF. A strong witness of 6 is a point x e Rd s.t.

  ||x-a|| \( \) ||x-b|| for all a = 6, be L-8.
- 1. strong witness => 5 e DeP(L).
- 2. Haces weak witness => 5 & DeP(L)

[de SiRva 03]

#### DELAUNAY TRIANGULATION



- ightharpoonup s = strong witness
- $\triangleright w = \text{weak witness}$

#### Theorem [de Silva 03]



#### MOTIVATION



Delaunay triangulation



 $Restricted\ Delaunay\ triangulation$ 

#### **MOTIVATION**



Witness complexes approximation of restricted Delaunay triangulation?

# I.2 CURVATURE



dim M = k = dim TMx

#### I.2 CURVATURE



dim M = k = dim TMx

$$K = \max_{x \in M} \max_{v \in TM_x} K(x, v)$$
 is  $\max_{x \in M} \sum_{v \in TM_x} K(x, v)$  is  $\max_{x \in M} \sum_{v \in TM_x} K(x, v)$ 

### I.2 CURVATURE AND REACH



$$dim M = k = dim TM_x$$

$$d-k = dim NM_x$$

$$K = \max_{x \in M} \max_{v \in TM_x} K(x, v)$$
 is  $\max_{x \in M} \sum_{v \in TM_x} K(x, v)$  is  $\max_{x \in M} \sum_{v \in TM_x} K(x, v)$ 

$$g = \min_{x \in M} \min_{u \in NM_x} g(x, u)$$
 is  $(gRobaR) \frac{reach}{reach}$ 

#### I.2 CURVATURE AND REACH



$$dim M = k = dim TM_x$$
  
 $d-k = dim NM_x$ 

$$K = \max_{x \in M} \max_{v \in TM_x} \kappa(x, v)$$
 is  $\max_{x \in M} \sum_{v \in TM_x} \kappa(x, v)$  is  $\max_{x \in M} \sum_{v \in TM_x} \kappa(x, v)$ 

$$g = \min_{x \in M} \min_{u \in NM_x} g(x, u)$$
 is  $(gRobaR) \frac{reach}{reach}$ 

# II.2 COUNTEREXAMPLE



#### I.2 COUNTEREXAMPLE



x ∈ M is weak witness of ab

#### I.2 COUNTEREXAMPLE



x & M is weak witness of ab

#### I.3 SAMPLING ASSUMPTION

dim M = k

DEF. An  $\epsilon$ -sample is a subset Le M s.t. every point  $\times \epsilon$  M has at least k+1 points a  $\epsilon$  L with  $\| \times - \alpha \| < \epsilon \cdot \epsilon$ .

#### I.4 MAIN RESULT

THEOREM. 
$$\varepsilon_1 = \sqrt{3}$$
,  $\varepsilon_2 \leq \sqrt{2}$ .

### I. Preliminaries

# I.1 EUCLIDEAN SPACE

```
M=Rd, L=Rd

THEOREM [de Silva 03]

If every face of 6=L has a weak witness in Rd then 6 has a strong witness in Rd.
```

### I.1 EUCLIDEAN SPACE

M=Rd, L=Rd

THEOREM [de Silva 03]

If every face of 6=L has a weak witness in Rd then 6 has a strong witness in Rd.



# I.1 EUCLIDEAN SPACE

M=Rd, L=Rd

THEOREM [de Silva 03]

If every face of 6=L has a weak witness in Rd then 6 has a strong witness in Rd.

PROOF

# II.3 KEY TOPOLOGICAL LEMMA



#### II.3 KEY TOPOLOGICAL LEMMA



#### REACH LEMMA.

$$J < g$$
 and  $J < r < 2g-J$   
 $\Longrightarrow B(z,r) \cap M$  is a topological k-ball.

# II. CURVES

#### II.1 UPPER BOUND: $\varepsilon_1 = \sqrt{3}$



E-sample for E>13

#### II.1 UPPER BOUND: $\epsilon_1 = \sqrt{3}$



E-sample for E>13

every face of abc has a weak witness, but abc has no strong witness

# II.2 EDGES



# II.2 EDGES



B(x,r) with  $r < \sqrt{3}g$ R.L.  $B(x,r) \cap M$  is topological interval

# II.2 EDGES



B(x,r) with r < 13gT.L.

B(x,r) n M is topological inleval

y is strong witness of ab

#### II.3 TRIANGLES



# IV.1 UPPER BOUND: \(\epsi\_2 \leq \sqrt{2}\)



E-sample for E>12

# W.1 UPPER BOUND: E2 4 12



E-sample for E>12

### IV.1 UPPER BOUND: \(\epsilon\_2 \leq \sqrt{2}\)



E-sample for E>12

every face of Nabe has a weak witness, but Nabe has no strong witness

# IV.2 TRIANGLES



### IV.2 TRIANGLES



construct  $\alpha: [0,1] \rightarrow M$  by intersecting M with normal diameter disk

### IV.2 TRIANGLES



construct  $\alpha: [0,1] \rightarrow M$ move along  $\alpha$  to find strong witness





Prop. I 
$$d(x,y) \leq \frac{2}{\kappa} \arcsin(\frac{\kappa}{2} \|x - y\|) + \|x - y\| \leq \frac{2}{\kappa}$$



Prop. I  $d(x,y) \leq \frac{2}{\kappa} \arcsin\left(\frac{\kappa}{2} \|x-y\|\right) : f\|x-y\| \leq \frac{2}{\kappa}$ .

PROP. I 4 TM, TM, & kd(x,y).



Prop. I  $d(x,y) \leq \frac{2}{\kappa} \arcsin\left(\frac{\kappa}{2} \|x-y\|\right)$  if  $\|x-y\| \leq \frac{2}{\kappa}$ .

PROP. I 4 TM, TM, & kd(x,y).

PROP.  $\underline{\mathbb{I}}$   $4(y-x)TM_x \leq \frac{\kappa}{2}d(x,y)$  if  $d(x,y) \leq \frac{\pi}{2\kappa}$ .

#### TRIANGLES



#### TRIANGLES



## IV.3 TETRAHEDRA

4 nodes

12 arcs

# IV.3 TETRAHEDRA



4 nodes

12 arcs

## IV.3 TETRAHEDRA



#### CONCLUSION

- ► Witness complexes approximate restricted Delaunay triangulations for curves and surfaces.

  - $\frac{1}{\sqrt{5}} \le \varepsilon_2 \le \sqrt{2}.$

#### Conclusion

- Witness complexes approximate restricted Delaunay triangulations for curves and surfaces.

  - $\frac{1}{\sqrt{5}} \le \varepsilon_2 \le \sqrt{2}.$
- ▶ For k-manifolds with  $k \ge 3$ , situation more complicated:
  - ▶  $\varepsilon_k = 0$  for  $k \ge 3$  → counterexample by Oudot uses slivers

#### Conclusion

- Witness complexes approximate restricted Delaunay triangulations for curves and surfaces.
  - ho  $\varepsilon_1 = \sqrt{3}$ .
  - $ightharpoonup \frac{1}{\sqrt{5}} \le \varepsilon_2 \le \sqrt{2}.$
- ▶ For k-manifolds with  $k \ge 3$ , situation more complicated:
  - ▶  $\varepsilon_k = 0$  for  $k \ge 3$  → counterexample by Oudot uses slivers
  - Boissonnat et al. assign weights to landmarks to eliminate slivers

# THANK YOU

#