06

Особенности рекомбинационных процессов в светодиодах на основе InGaN/GaN при больших плотностях инжекционного тока

© Н.С. Аверкиев, М.Е. Левинштейн, П.В. Петров, А.Е. Черняков, Е.И. Шабунина, Н.М. Шмидт

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: Natalia.Shmidt@mail.ioffe.ru

Поступило в Редакцию 14 мая 2009 г.

Показано, что плотность низкочастотного шума светодиодов на основе InGaN/GaN зависит от плотности тока как j^3 при плотностях тока больше $20\,\mathrm{A/cm^2}$. Такой вид зависимости свидетельствует об образовании новых центров безызлучательной рекомбинации, и этот процесс может быть причиной падения внешней квантовой эффективности при больших плотностях тока.

PACS: 85.60.Jb, 81.05.Ea, 81.07.St, 71.55.-i, 72.20.Jv

Индустрия синих светодиодов на основе InGaN/GaN успешно резвивается практически во всех промышленно развитых странах мира. Одной из наиболее важных практических задач, на которых сосредоточены усилия исследователей, является создание энергосберегающего освещения на основе мощных синих InGaN/GaN светодиодов с люминофором.

Основной проблемой, препятствующей успешному решению этой задачи, является падение квантовой эффективности излучения светодиодов с ростом плотности тока, наблюдающееся уже при небольших плотностях тока $j \geqslant 10\,\mathrm{A/cm^2}$. Трудности в решении этой проблемы связаны в том числе с тем, что механизмы излучательной и безызлучательной рекомбинации в светодиодах на основе нитридов все еще остаются в значительной мере неисследованными, в особенности при больших плотностях прямого тока.

Низкочастотный шум в ряде случаев позволяет получить информацию о механизмах рекомбинации, которую трудно или невозможно получить другими методами. В настоящей работе низкочастотный

7

шум исследован в светодиодах на основе InGaN/GaN в диапазоне частот $10-10\,000\,\mathrm{Hz}$ по ранее описанной методике [1] вплоть до значений $j\sim100\,\mathrm{A/cm^2}$, являющихся рабочими для мощных светодиодов и значительно превосходящих не только пороговые плотности тока, но и значения j, при которых наблюдается максимум квантовой эффективности излучения η .

Исследовались два типа светодиодов. Светодиодные структуры типа I с характерной длиной излучения $450-460\,\mathrm{nm}$ содержали 5 пар чередующихся слоев InGaN толщиной 3 nm и GaN толщиной 12 nm. Структуры были выращены на сапфировых подложках методом эпитаксии из металлорганических соединений и смонтированы по технологии флип-чип (без линз) в ЗАО "Светлана—Оптоэлектроника". Размер светоизлучающей площади светодиода A составлял $1.2\cdot 10^{-3}\,\mathrm{cm}^2$ ($300\times 400\,\mu\mathrm{m}$). Максимальные значения η (без линз) составляли $\sim 20-24\%$. С применением линз максимальные значения η достигали 30-35%, что соответствует современному мировому уровню.

Светодиодные структуры типа II представляли собой коммерческие светодиоды фирмы Сгее. Размер светоизлучающей площади светодиодов составлял 10^{-2} cm 2 (1×1 mm). Максимальные значения η для этих светодидов достигали 35-40%. Столь высокие значения η обязаны дизайну активной области с более узкими (2-3 nm) барьерами GaN, чем в светодиодах с традиционным дизайном активной области, а также оптимальному уровню легирования активного слоя кремнием [2].

ВАХ диодов обоих типов представлены на рис. 1. Максимальным значениям тока на рис. 1 соответствует плотность тока $j\sim 100\,\mathrm{A/cm^2}$ для диодов обоих типов. Из рисунка видно, что в области малых плотностей токов ток ("ток утечки") в диодах типа I существенно, на несколько порядков больше, чем в диодах типа II. Известно, что токи утечки при малых смещениях определяются процессами туннельной безызлучательной рекомбинации, локализованной в системе протяженных дефектов, пронизывающих активную область светодиодов [3,4], и их величина во многом определяется степенью упорядоченности этой системы [5,6]. Таким образом, можно предположить, что материал диодов типа II структурно более совершенен, несмотря на близкие значения плотностей дислокаций, определенные методом рентгеновской дифрактометрии в структурах обоих типов. Значения "порогового тока", отмеченные стрелками на рис. 1, определялись по минимальной интенсивности излучения, которая могла быть зарегистрирована, и

Рис. 1. Вольт-амперные характеристики светодиодов обоих типов. Стрелками отмечены значения "порогового тока" I_{th} , равные $3.51 \cdot 10^{-6} \, \mathrm{A}$ для диодов типа I и $1.66 \cdot 10^{-5} \, \mathrm{A}$ для диодов типа II. На вставке показана зависимость квантовой эффективности η от плотности тока для диодов обоих типов при большой плотности тока.

соответствовали значению $\eta \approx 10^{-3}$. В области больших токов наблюдаемое на рис. 1 в логарифмическом масштабе "насыщение" обусловлено падением приложенного напряжения на паразитных последовательных сопротивлениях светодиодов: контактов, подложки, буферного слоя, слаболегированных и компенсированных тонких "технологических" слоев, p-слоя и т.д.

Зависимости $\eta(j)$ с падением эффективности в области больших плотностей тока показанные на вставке, типичны для светодиодов на основе InGaN/GaN. Диоды типа II характеризуются относительно более медленным спадом вблизи максимума η . При $j>30\,\mathrm{A/cm^2}$ зависимости $\eta(j)$ практически параллельны. Во всей исследованной области токов $I>I_{th}$ частотная зависимость спектральной плотности шума S_I в

Рис. 2. Зависимости спектральной плотности шума $S_I(I)$ для диодов обоих типов. На вставке показаны токовые зависимости относительной спектральной плотности шума, нормированные на площадь диода A. Пунктирные линии показывают характерные зависимости $S_I(I)$ от тока I.

измеренном диапазоне частот $10-10\,000\,\mathrm{Hz}$ имела вид 1/f. На рис. 2 показаны зависимости $S_I(I)$ для диодов обоих типов, соответствующие частоте измерения $f=640\,\mathrm{Hz}$. На вставке к рисунку показаны для той же частоты зависимости относительной спектральной плотности шума, нормированные на площадь диода A (шум обратно пропорционален площади диодов).

Зависимости $S_I(I)$, представленные на рис. 2, согласуются с соответствующими зависимостями для современных ультрафиолетовых LEDs, приведенных в работе [2]. В области малых токов $I \ll I_{th}$ шум в диодах типа I следует закону $S_I(I) \sim I$, что свидетельствует о преобладании мономолекулярной безызлучательной рекомбинации при условии сла-

бого заполнения уровней, ответственных за шум 1/f [2]. Как видно из рис. 2, не только абсолютные значения шума, но и нормированные на площадь относительные значения плотности шума для диода типа I значительно превышают соответствующие значения для диодов типа II. Таким образом, данные шумовых измерений свидетельствуют о том, что степень упорядоченности системы протяженных дефектов [5,6] в диодах типа I значительно хуже.

С ростом тока зависимость $S_I(I)$ становится более пологой, и при токах $10^{-4}\,\mathrm{A} \leqslant I \leqslant 10^{-2}\,\mathrm{A}\,$ шум довольно слабо зависит от тока. На зависимостях AS_I/I^2 (вставка к рис. 2) этому участку соответствует падение относительной плотности шума в соответствии с законом $S_I/I^2 \sim 1/I^2$. На этом участке нормированные зависимости относительной спектральной плотности шума практически совпадают. В соответствии с анализом, приведенным в [2], этому участку токов соответствует преобладание излучательной бимолекулярной рекомбинации.

С дальнейшим ростом тока, при значениях плотностей тока $\sim 5-10~{\rm A/cm^2}$, соответствующих падению η (вставка к рис. 1), происходит нарастание плотности шума для обоих типов светодиодов, и зависимость $S_I(I)$ близка к закону $S_I \sim I^2$ ("полочка" на зависимости AS_I/I^2 , показанной на вставке к рис. 2). Такой тип зависимости характерен для ситуации, когда шум обусловлен флуктуациями линейного сопротивления (контакты, подложка, буферные слои и т.д.). С дальнейшим ростом тока зависимость $S_I(I)$ характеруется зависимостью $S_I \sim I^3$. В [7] было показано, что зависимость $S_I \sim I^3$ обусловлена появлением новых центров безызлучательной рекомбинации. Зависимость $S_I \sim I^3$ неоднократно наблюдалась также при больших плотностях тока в металлах (см., например, обзор [8]), где связь такого типа зависимости с генерацией дефектов протекающим током установлена достаточно надежно.

Следует отметить два важных обстоятельства. Во-первых, в нашем случае образование новых дефектов является процессом обратимым, в отличие от случая деградировавших светодиодов [7], так как после возвращения в режим малых плотностей тока BAX и зависимости $\eta(I)$ в исследуемых светодиодах полностью вопроизводятся. Во-вторых, полученные данные позволяют предположить, что падение η с ростом тока (вставка к рис. 1) вызвано усилением безылучательной рекомбинации в результате образования новых центров. В пользу этого предположения свидетельствует также слабая зависимость η от тока:

 $\eta \sim I^{-0.2}$. Полученные данные ставят под сомнение механизм объемной Оже-рекомбинации, предложенный авторами [3,9] в качестве основной причины падения η при больших плотностях тока.

Полученные результаты показали целесообразность проведения исследований низкочастотного шума светодиодов при больших плотностях тока и подтвердили сомнения по поводу того, что объемная Оже-рекомбинация является основной причиной падения квантовой эффективности при больших плотностях тока. Кроме того, они показали, что канал локальной безузлучательной рекомбинации, связанный с системой протяженных дефектов может препятствовать развитию процесса излучательной рекомбинации, а значит приводить к снижению мощности излучения светодиодов.

Авторы выражают благодарность сотрудникам ЗАО "Светлана— Оптоэлектроника" за предоставленные структуры и светодиоды.

Работа подержана Российским фондом фундаментальных исследований (грант 08-02-00010) и грантом президиума РАН "Новые материалы"9A32.

Список литературы

- [1] Sayer S., Rumyantsev S.L., Shur M.S., Pala N., Bilenko Yu., Zhang J.P., Hu X., Lunev A., Deng J., Gaska R. // J. Appl. Phys. 2006. V. 100. P. 034504.
- [2] Chernyakov A.E., Sobolev M.M., Ratnikov V.V., Shmidt N.M., Yakimov E.B. // Superlattices and Microstructures. 2009. V. 45. P. 301.
- [3] Gardner N.G., Muller G.O., Shen Y.C., Watanabe S. // Appl. Phys. Lett. 2007.V. 91. P. 243506.
- [4] Albrecht M., Schulz T., Weyher J., Lucznik B., Prystawko P. // Proceedings of the 8 International Workshop BIAMS. 2006. P. 28.
- [5] Shmidt N., Besyul'kin A., Dunaevsky M. et al. // J. Phys: Cond. Matter. 2002.V. 14. P. 13025.
- [6] Ankudinov A.V., Besyulkin A.I., Kolmakov A.G. et al. // Physica B. 2003.V. 340–342. P. 462.
- [7] Bychkhin S., Pogany D., Meneghesso G., Zanoni E. // J. Appl. Phys. 2005. V. 97. P. 123714.
- [8] Жигальский Г.П. // УФН. 2003. Т. 173. В. 5. С. 465.
- [9] Shen Y.C., Muller G.O., Watanabe S., Gardner N.G., Krames M.R. // Appl. Phys. Lett. 2007. V. 91. P. 141101.