Deep-people #8

Auto-Encoder,U-netと音源分離

Tsugumasa Yutani

- Musical Applications of Machine Learning
 https://mac.kaist.ac.kr/~juhan/gct634/index.html
- [week11-1] AE, U-Net, and source separation
 https://mac.kaist.ac.kr/~juhan/gct634/Slides/[week11-1]%20AE,%20U-Net,%20and%20source%20separation.pdf

Juhan先生の講義資料を一部改変して直訳しました その他参考文献・リンク等は適宜スライド内に記載しています。

はじめに

- これまでの勉強会では、分類タスクに対してCNNやRNNを使用 ○オーディオからラベルやスコア(MIDI,ビート,コード)の特徴抽出を目的としていた
- 出力をオーディオ信号にしたい場合はどうすればよいか
 - ○例えば、音源分離やオーディオスタイル変換をするには?
 - ○特徴空間をオーディオ信号に戻すデコーダー(アップサンプリング)が必要

Encoder-Decoder model

- Encoder-Decoder の代表的なモデル
 - o Auto-encoder(AE), Variational auto-encoder(VAE), Generative adversarial network(GAN)など

个今回はここを説明

Auto-Encoder(AE)

- 入力を再構成する様に構成されたニューラルネットワーク(教師なし学習)
 - ○エンコーダー:入力を潜在的なベクトルに変換する(次元圧縮)
 - デコーダー:潜在ベクトルから入力を再構成する
 - 再構成誤差を最小化するように回帰的に学習させる (損失関数 $l(W;x) = ||x \hat{x}||^2$)

Auto-Encoder(AE)

- 入力を再構成する様に構成されたニューラルネットワーク(教師なし学習)
 - ○エンコーダー:入力を潜在的なベクトルに変換する(次元圧縮)
 - デコーダー:潜在ベクトルから入力を再構成する
 - 再構成誤差を最小化するように回帰的に学習させる (損失関数 $l(W;x) = ||x \hat{x}||^2$)

Deep Auto-Encoder(DAE)

- AEよりも表現力の高い学習することができる
 - 重み行列はEncoder-Decoderで対象な層同士で共有できる

例:
$$W^{(6)} = (W^{(1)})^T$$
, $W^{(5)} = (W^{(2)})^T$, $W^{(4)} = (W^{(3)})^T$

次元削減

● 潜在ベクトルを低次元に設定する事で特徴抽出(データ圧縮)を行うことが出来る ODAEは線形モデル(PCA:主成分分析)よりも複雑なデータを上手く学習できる

Reconstruction

DAE: $28 \times 28 \rightarrow 1000 \rightarrow 500 \rightarrow 250 \rightarrow 30$

PCA: 28 x 28 → 30

DAE: $28 \times 28 \rightarrow 1000 \rightarrow 500 \rightarrow 250 \rightarrow 2$

PCA: 28 x 28 → 2

(Hinton and Salakhutdinov, 2006)

ex. ノイズ除去(デノイジングオートエンコーダ)

- 入力データに含まれるノイズの除去
 - ○人為的にノイズを加えたデータを入力として、
 - ノイズ追加前のオリジナルのデータを出力するよう学習
 - ○ノイズが含まれたデータから、ノイズ除去後のデータが取り出せるようになる

十字状のノイズが含まれた画像に対しての、オートエンコーダを使ったデノイズ例

https://jp.mathworks.com/discovery/autoencoder.html

ex. 異常検知

- ●入出力に正常データを与えて学習、再構成可能にする
 - ○異常データを入力した際、正常な波形に戻そうとモデルは再構成する
 - ○入出力の誤差が大きくなるので異常である事がわかる

正常な波形の場合

異常な波形の場合

オートエンコーダを使った時系列信号の異常検知の例

https://jp.mathworks.com/discovery/autoencoder.html

Convolutional Auto-Encoder

- ●オートエンコーダーに畳み込みニューラルネットを用いる
 - ○高次元の非標識データから圧縮された特徴ベクトルを得るために使用される
 - ○この教師なし学習は最近あまり人気がないらしい...

Encoder-Decoder model (教師あり学習)

- ●semantic segmentation、音源分離などで教師あり学習として用いられる
 - ossは画素ごとに独立してクラス識別を行い、画像全体の意味的な領域に分割する問題
 - o Deconvolution(逆畳み込み) はよく使われるが、正確ではない

(入力データを復元するようなものではなく、誤解を招く)

Encoder-Decoder Architecture (教師あり学習)

● Encoder-Decoder アーキは通常、全層畳み込み(FCN)に設定されている

οエンコーダー:畳み込み層→プーリング層(ダウンサンプリング)

o デコーダー: 畳み込み層→アンプーリング層 (アップサンプリング)

http://www.net.c.dendai.ac.jp/~tamura/

- ●. 畳み込みで圧縮したデータをもとのサイズに戻す方法
 - ○しかし、畳み込みの逆プロセスではなく入力データを完全に復元する訳ではない
 - ○入力データを拡大するためにデータを補完してから畳み込みを行う

oハイパーパラメータ: stride, padding

Learning Deconvolution Network for Semantic Segmentation, Hyeonwoo Noh, Seunghoon Hong, Bohyung Han, 2015

https://github.com/vdumoulin/conv_arithmetic

- ●.転置畳み込み(逆畳み込み)の処理
 - 1. strideで指定した行数分(列数)だけ入力データのピクセル間に余白を入れる(3×3の場合)
 - 2. カーネルのサイズより1行(1列)少ない数だけ余白を追加
 - 3. paddingに応じて余白を削る
 - 4. 畳み込み処理を行う

1.strideに応じて入力データを拡張

2.入力データの周囲に余白を取る

- ●.転置畳み込み(逆畳み込み)の処理
 - 1. strideで指定した行数分(列数)だけ入力データのピクセル間に余白を入れる(3×3の場合)
 - 2. カーネルのサイズより1行(1列)少ない数だけ余白を追加
 - 3. paddingで指定した行数分(列数)だけ外側の余白を削る
 - 4.畳み込み処理を行う

padding=2

3. paddingに応じて余白を削る

- ●.転置畳み込み(逆畳み込み)の処理
 - 1. strideで指定した行数分(列数)だけ入力データのピクセル間に余白を入れる(3×3の場合)
 - 2. カーネルのサイズより1行(1列)少ない数だけ余白を追加
 - 3. paddingで指定した行数分(列数)だけ外側の余白を削る
 - 4.畳み込み処理を行う

padding=2

3. paddingに応じて余白を削る

●.転置畳み込み(逆畳み込み)の具体例

o stride=1, padding=0の例

1

-1 1 -2 2

入力データ (2×2) カーネル (2×2)

https://nisshingeppo.com/a

1 2 3 4 -1 1 -2 2

入力データ (2×2) カーネル (2×2)

https://nisshingeppo.com

●.転置畳み込み(逆畳み込み)の具体例

o stride=2, padding=1の例

入力データ (2×2)

カーネル (2×2)

https://nisshingeppo.com/a

ステップ1 stride=2 ステップ2 余白を取る ステップ3 padding=1 ステップ4 畳み込み処理

Unpooling層

- プーリングを元に戻す(=アンプーリング)
 - o encode-decoder CNNではMax-Unpooling(最大値アンプーリング)がよく用いられる
 - o Encode部分のMax-Pooling層での最大値を取ったインデックスを保存しておき、

Decode部分のMax-Unpooling層では位置情報に基づいて最大値を入力し、

他は全てゼロを埋める。

https://qiita.com/cv_carnavi/items/8fb0c795798ee88bd8b2

補足: Unpoolingのその他手法

● 最近近傍補完、バイリニア補完、釘埋め等

ハンズオン

- Timbre transfer (DDSP: Differentiable Digital Signal Processing)
 - 従来の信号処理要素をend-to-endで学習できるようにした音声生成モデル
 - ○F0の倍数(整数)の正弦波の合計をオーディオとして生成
 - ○ニューラルネットから(F0,振幅,高調波分布,ノイズ成分,残響成分)を供給

□リンク Google Colab、論文、解説

- セマンティックセグメンテーション等で用いられる (画素一つ一つに対してクラスを推測するネットワーク)
 - ○対応するエンコーダー層からのスキップ接続により、"物体の局所的特徴と全体的位置情報"の両方を統合して学習させる
 - ○医療用画像のセグメンテーションに初めて導入

U-Net: Convolutional Networks for Biomedical Image Segmentation: Olaf Ronneberger, Philipp Fischer, Thomas Brox, 2015

音源分離

- ●複数音源がミックスダウンされたミックス音から、個々の音を分離する処理
 - ○人間は音響パターン(音色、音域、ADSRなど)により 個々の音源を認識することができる

Source: https://source-separation.github.io/tutorial/landing.html

音源分離

- 基本的なパイプライン
 - ○音声表現としてスペクトログラムを使用する
 - ○音源分離モデルは、2次元マスク $(M \in [0.0, 1.0])$ を推定する
 - ○混合スペクトログラムとマスクの要素ごとの乗算により、 目標音源スペクトログラムを推定する
 - ○混合位相をターゲット位相にコピーする

U-netを用いた歌声の分離

- U-Netによる正確なセグメンテーションが音源分離に有効
 - U-Netの入力は混合スペクトログラムで、出力はmask画像である
 - スペクトログラム上の、再構成された音のわずかなズレに音質は 非常に敏感に反応する

Singing Voice Separation with Deep U-Net Convolutional Networks, Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel Bittner, Aparna Kumar, Tillman Weyde, 2017

U-netを用いた歌声の分離

- U-Netのアーキテクチャの詳細
 - 波形入力は8kHzにリサンプリングされ、スペクトログラムは[0,1]の範囲に正規化
 - o. カーネルサイズ(5,5)、ストライドサイズが (2,2) のフィルタ
 - ○プーリングなし
 - ○出力はシグモイド関数(∈ [0.0, 1.0])

mask(model output)

音源分離したスペクトログラム(output)

○損失関数として $L_{1,1}$ / ルムを使用する。 $L(X,Y;\Theta) = \left| |f(X,\Theta) \odot X - Y| \right|_{1,1}$

メモ:ミックス音源からボーカル単体を引いて、 mask画像と要素積を取ったものを損失関数と置いている ・L_1,1ノルムは単純にその要素の絶対値の和

Singing Voice Separation with Deep U-Net Convolutional Networks, Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel Bittner, Aparna Kumar, Tillman Weyde, 2017

混合スペクトログラム(input)

U-netを用いた歌声の分離

メモ:

5年前の論文なので 今はもっと精度の良いものが 提案されているとは思います

データセット

- ○2万組の音楽トラックとそのインストゥルメンタルバージョンを集める
- o発声スペクトログラムは、T-F binで $\max(X Y_i, 0)$ により計算
- 結果

Mixture spectrogram

instrumental track spectrogram

- o Baseline model:スキップ接続のないバージョン(それ以外は同じ)
- o Chimera model:ディープクラスタリングを用いたモデル

	U-Net	Baseline	Chimera
NSDR Vocal	11.094	8.549	8.749
NSDR Instrumental	14.435	10.906	11.626
SIR Vocal	23.960	20.402	21.301
SIR Instrumental	21.832	14.304	20.481
SAR Vocal	17.715	15.481	15.642
SAR Instrumental	14.120	12.002	11.539

	U-Net	Baseline	Chimera
NSDR Vocal	8.681	7.877	6.793
NSDR Instrumental	7.945	6.370	5.477
SIR Vocal	15.308	14.336	12.382
SIR Instrumental	21.975	16.928	20.880
SAR Vocal	11.301	10.632	10.033
SAR Instrumental	15.462	15.332	12.530

iKala mean scores

MedleyDB mean scores

Singing Voice Separation with Deep U-Net Convolutional Networks, Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel Bittner, Aparna Kumar, Tillman Weyde, 2017

Spectrogramの問題点

- ◆ STFTは、ウィンドウサイズ、ホップサイズなど、多くのパラメータに依存○ 最適なパラメータ設定を見つけることが難しい
- ●ボーカル単体の出力にミックス音源の位相を使用して再構成すると、 アーチファクト(ノイズというか何というか)が発生する場合がある
 - (特に異なる音源からの高調波成分が重なっている場合)
 - ○振幅から位相を推定することもできる
 - Griffin-Limアルゴリズムは、最も一般的な位相復元手法の一つ (https://librosa.org/doc/latest/generated/librosa.griffinlim.html)
 - しかし、位相を完全に復元できるものではなく計算量も多い

Griffin-Limアルゴリズム

●振幅スペクトログラムに対応する位相情報を乱数で作成ISTFTとSTFTを行い、残った情報(位相に矛盾があると情報が欠損する≒再構成できない)で元のスペクトログラムを置き換える。これを繰り返していく

(準備)位相スペクトログラムを乱数で選び初期値を生成

$$X(m,k) = A(m,k) \exp(j\phi(m,k))$$

(1)逆短時間フーリエ変換

$$x(t) \leftarrow \text{ISTFT}[X(m,k)]$$

(2) 短時間フーリエ変換を施す

$$X(m,k) \leftarrow \text{STFT}[x(t)]$$

(3) 振幅スペクトログラムを置き換える

$$X(m,k) \leftarrow A(m,k)X(m,k)/|X(m,k)|$$

https://qiita.com/reiko_s/items/c53875e0cf688298218d https://www.jstage.jst.go.jp/article/jasj/72/12/72_764/_pdf/-char/ja

ハンズオン

● Open-Unmix:音源分離のためのオープンソースDNN

oポップミュージックをボーカル、ドラム、ベース、その他の楽器の4つに分離

oMUSDB18データセットで事前にトレーニング済

o3層の双方向ディープLSTMモデルを使用

Github

https://sigsep.github.io/

Google Colab

https://colab.research.google.com/drive/1pFa8GCJcOjF7xTRHS-sfZG6n4sjaPdle?usp=sharing

Open-Unmix - A Reference Implementation for Music Source Separation Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji,2019

参考文献

Open Unmix

https://sigsep.github.io/

Google Colab

https://colab.research.google.com/drive/1mijF0zGWxN-KaxTnd0q6hayAlrID5fEQ