INFORMATIKAI ALAPISMERETEK

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

> NEMZETI ERŐFORRÁS MINISZTÉRIUM

Fontos tudnivalók

- A megoldásokra kizárólag a javítási útmutatóban leírt pontszámok adhatók.
- A pontszámok minden esetben egész számok!
- Ha a vizsgázó nem a feladatban meghatározottak szerint válaszol, akkor a válasz nem fogadható el!
 - (Pl.: **H** betű helyett nem válaszolhat **N** betűvel.)
- Ha a feladat egyetlen válasz (pl. egyetlen betűjel) megadását kéri, és a vizsgázó több különböző választ (pl. több különböző betűjelet) ad meg, akkor a feladatra 0 pontot kell adni!
- Ha egy kérdésre a leírás szerint csak egyetlen válasz adható, akkor az erre adható pontszám nem osztható, tehát pl. egy 2 pontos kérdés esetében vagy 0, vagy 2 pont adható!
- Egyéb esetekben a javítási útmutató részletesen leírja, hogy milyen módon adható részpontszám!
- Ha valamely feladatban a vizsgázó javított a megoldásán, de a javítása nem egyértelmű, akkor a válasz nem fogadható el, a feladatrészre 0 pontot kell adni! Egyértelmű javítás esetén a kijavított megoldást kell értékelni!
- Ha a vizsgázó valamely kérdésre egy általánostól eltérő rendszer használata miatt nem a várt választ adja, de a válasza és az indoklása elfogadható, akkor a kérdésre adható pontszámot meg kell adni.
- A javítási-értékelési útmutató mellett letölthető mintamegoldások az adott feladat egy lehetséges megoldását mutatják be. A dolgozat értékeléséhez kizárólag a javításiértékelési útmutatóban foglaltak az irányadóak.

I. Tesztfeladat megoldása

1)	b	Hexa alak: C3:8D:79:0C
2)	b	A felhasználót szimbolizáló kis kép, mely például a fórum kommentek mellett jelenik meg. Mérete általában korlátozott, hogy a megjelenítése ne vegyen igénybe túl sok időt
3)	a	A dinamikus IP-cím az internet-szolgáltató által kiosztott változó cím. Amikor a számítógép csatlakozik az internetre, kap egy IP-címet, amikor pedig a felhasználó bezárja a kapcsolatot, akkor a címet egy másik gép számára oszthatják ki
4)	b	Az operációs rendszerben beállítható korlátozás a felhasználó számára, leggyakrabban a merevlemezen felhasználható területre vonatkozik 1 pont
5)	d	válaszidő
6)	a	Igaz: Egy bekezdésen belül többféle betűtípus és betűnagyság használható.1 pont
7)	d	Android, MS-Windows, MS-Office, Linux. Három operációs rendszer, az MS-Office nem
8)	b	Az algebrai alak: F=((A+B)·C)·B
9)	b) ig c) új	em igaz en bekezdés (vagy bekezdés végjel vezérlőkarakter) jléc (vagy élőfej)
	0-1 H	Helyes válasz: 0 pont, 2-3 helyes válasz: 1 pont, 4 helyes válasz:
10) c	8 sec

A kérdésekre adható maximális pontszám csak helyes válasz esetén jár. Pontszámot megbontani csak az előírt esetben lehet.

II. Számítógépes feladat és számítógéppel végzett interaktív gyakorlat Szövegszerkesztési, táblázatkezelési, prezentációkészítési ismeretek

1.A – 1.B feladat 25 pont

Feladatkitűzés:

Készítse el szövegszerkesztő program használatával az alábbi ábrán látható informatika jegyzetoldalt!

PROGRAMOZÁS MÓDSZERTAN - PROGRAMOZÁSI TÉTELEK 1. Egy sorozathoz egy értéket rendelő tételek 1.1. Összegzés tétele 1.1.1. Az általános feladat szöveges megfogalmazása Adott: Egy sorozat, a sorozat elemein értelmezett egy összegzés művelet. Feladat: Határozzuk meg a sorozat elemeinek az összegét! 1.1.2. Specifikáció * Adatok: m,n: egész számok f:[m..n] -> H // Egy egész intervallum // A sorozat, elemeit H-ból vesszük +:[m..n]x[m..n] -> H // A H halmaz elemein értelmezett egy + művelet s: H // Az össszeg Előfeltétel: m,n,f és + adottak és m<=n Utófeltétel: $s = \sum_{i=m}^{n} f(i)$ Megjegyzés: A H halmaz határozza meg a sorozat elemeinek a típusát
 A + jelű művelet nem csak összeadás lehet, hanem szorzás, logikai művelet stb. 1.1.3. Algoritmus Eljárás Összegez: Ciklus I:=m-től n-ig s:=s+f(i) Ciklus vége Eljárás vége 1.1.4. Struktogram *** Összegez: s:=0 i := m-1i<n s:=s+f(i)* A megadott specifikáció általános, nem csak vektorokra vonatkozik ** Ha a művelet nem összeadás, akkor a kezdőérték 0 helyett a műveletre jellemző semleges érték lesz, pl. szorzás esetében 1. *** A struktogramban a számlálós ciklus helyett előltesztelős ciklust alkalmazunk.

írásbeli vizsga 1212 4 / 19 2012. május 25.

- A szükséges forrásszöveg a jegyzet.txt állományban található!
- A szöveg formázásakor tartsa be a következő oldalon leírtakat!

a) Alapvető beállítások

(2 pont)

- Oldalbeállítások
 - Az oldalméret A4-es, a tájolás álló, az alsó margó mérete 2 cm, a többi 2,5 cm legyen!
- Betűtípus, méret
 - Alkalmazzon a dokumentumban a mintának megfelelő helyeken Times New Roman, illetve Courier New betűtípusokat!
 - Ha ezek esetleg nem állnak rendelkezésre, akkor Times New Roman helyett bármely talpas, Courier New helyett bármely azonos karakterszélességű betűtípus megfelelő.
 - Az alapértelmezett betűméret 12-es legyen, az ettől eltérő méreteket a leírás és a minta alapján állítsa be!

b) Fejléc, lábléc (3 pont)

- Fejléc
 - A *Programozás módszertan Programozási tételek* szöveg a fejlécbe kerüljön!
 - Alkalmazzon kiskapitális betűstílust!
 - Alkalmazzon a fejlécben a mintának megfelelő szegélyezést, a bal oldali szegély vastagabb legyen, mint az alsó!
- Lábléc
 - Szúrjon be jobb oldalra igazított oldalszámot!
 - Alkalmazzon a mintának megfelelő szegélyezést, a jobb oldali szegély vastagabb legyen, mint az alsó!

c) Szövegtörzs (15 pont)

- Többszintű sorszámozás
 - Alkalmazzon a mintának megfelelő stílusú többszintű sorszámozást!
 - Az 1. szint tulajdonságai: 14-es, félkövér betű; árnyékolt, világosszürke szegély; előtte 12 pontos térköz; a sorszám a bal margónál; a szöveg 0,5 cm-nél kezdődik.
 - A 2. szint tulajdonságai: 12-es, félkövér betű; előtte 12 pontos térköz; a sorszám a bal margónál; a szöveg 1 cm-nél kezdődik.
 - A 3. szint tulajdonságai: 12-es, dőlt betű; előtte 6 pontos térköz; a sorszám a bal margónál; a szöveg 1,5 cm-nél kezdődik.
- Az 1.1.1. szakasz jellemzői:
 - Bal behúzás: 0,8 cm; tabulátor: 2,5 cm.
- Az 1.1.2. szakasz jellemzői:
 - Bal behúzások: 0,8 cm, illetve 1,25 cm.
 - Az aláhúzott sorok előtt és után 4-4 pontos térköz.
 - Az Adatok részben a betűméret: 11 és 8 pont; a tabulátor: 8 cm.
 - Az *Előfeltétel* részben a betűméret: 11 pont.
 - Az *Utófeltétel* részben alkalmazza a beépített képletszerkesztőt!
 - *Megjegyzés* rész: 10 pontos betűméret; a felsorolásjel 0,75 cm-nél; a szöveg 1,25 cm-nél kezdődik.
- Az 1.1.3. szakasz jellemzői:
 - Bal behúzás: 2 cm; tabulátorok: 2,5 cm, 3 cm.
 - Az algoritmus első sora előtt 4 pontos térköz.
 - Az algoritmus betűmérete: 11 pont.

- Az 1.1.4 részben a szövegszerkesztő rajzeszközei segítségével rajzolja meg a minta a lapján a struktogramot!
 - A struktogram befoglaló mérete: szélesség 6 cm, magasság 5 cm.
 - Az ellipszisre állítson be árnyékot!
 - Az ábra vízszintesen az oldal közepére legyen igazítva!
- Szúrja be a mintának megfelelő lábjegyzeteket, a megfelelő szimbólumokkal!
- Mentse a megoldását jegyzet néven!

d) Diagramkészítés

(5 pont)

 A jegyzet egy későbbi részén a következő két diagram szemlélteti a jegyzetben található, az alapvető programozási tételek alkalmazására kitűzött feladatok számarányát:

- Készítse el táblázatkezelő programmal azt a táblázatot, amely alapján a diagramok létrehozhatók!
- Készítse el mindkét diagramot, pontosan a mintáknak megfelelően!
- Egy diagramon belül minden adatoszlop, illetve tortaszelet különböző színű legyen!
- A két diagram egymásnak megfelelő oszlopai, illetve tortaszeletei azonos színűek legyenek!
- Mentse a diagramokat tartalmazó állományt *diagramok* néven!
- Szúrja be mindkét diagramot az előzőekben elkészített szöveges dokumentumba, új oldalra!
- A diagramok magassága 6 cm legyen, egymás mellé helyezze őket, vízszintesen középre igazítva!

Értékelés:

a) Alapvető beállítások	2 pont
 A dokumentum neve jegyzet, az oldalméret A4-es, a tájolás álló, 	
az alsó margó 2 cm-es, a többi margó 2,5 cm-es	
 A betűtípus Times New Roman és Courier New, illetve talpas, vagy azonos 	
karakterszélességű betűtípus, a mintának megfelelően	
b) Fejléc, lábléc	3 pont
 A Programozás módszertan - Programozási tételek szöveg a fejlécbe 	
került, kiskapitális betűstílusú	
 Van fejléc és lábléc, a leírásnak és a mintának megfelelő 	
szegélyekkel	
 Jobb oldalra igazított oldalszám a láblécben, kezdő sorszáma 3	

c) Szövegtörzs		15 pont
- Az 1. szint tulajdonságai	• • • • • • • • • • • • • • • • • • • •	13 pont
■ 14-es, félkövér betű; árnyékolt, világosszürke szegély	1 nont	
előtte 12 pontos térköz; a sorszám a bal margónál;	1 point	
a szöveg 0,5 cm-nél kezdődik	1 nont	
 A 2. szint tulajdonságai 	1 point	
 12-es, félkövér betű; előtte 12 pontos térköz; a sorszám a 		
bal margónál; a szöveg 1 cm-nél kezdődik	1 pont	
 A 3. szint tulajdonságai 	r pont	
 12-es, dőlt betű; előtte 6 pontos térköz; a sorszám a bal margónál; 		
a szöveg 1,5 cm-nél kezdődik.	1 pont	
 Az 1.1.1. szakasz jellemzői 	- P	
Bal behúzás: 0,8 cm; tabulátor: 2,5 cm.	1 pont	
 Az 1.1.2. szakasz jellemzői 	1	
 Bal behúzások: 0,8 cm, illetve 1,25 cm; az aláhúzott sorok előtt 		
és után 4-4 pontos térköz.	1 pont	
 Az Adatok részben a betűméret: 11 és 8 pont; a tabulátor: 8 cm; 		
az <i>Előfeltétel</i> részben a betűméret: 11 pont	1 pont	
 Az <i>Utófeltétel</i> részben helyes a képlet 		
 Megjegyzés rész: 10 pontos betűméret; 		
a felsorolásjel 0,75 cm-nél; a szöveg 1,25 cm-nél kezdődik	1 pont	
 Az 1.1.3. szakasz jellemzői: 		
Bal behúzás: 2 cm; tabulátorok: 2,5 cm, 3 cm;		
az algoritmus első sora előtt 4 pontos térköz;		
az algoritmus betűmérete: 11 pont.	1 pont	
– Struktogram	1	
A struktogramon az algoritmus helyesen ábrázolt	1 nont	
Befoglaló mérete: szélesség 6 cm, magasság 5 cm		
 Az ábra arányos, a mintának megfelelő; 	1 pont	
az ellipszisre beállított árnyékot, az ábra középre igazított	1 nont	
 Lábjegyzetek 	1 point	
 Mindhárom lábjegyzet beszúrva 	1 nont	
A szimbólumok megfelelőek	-	
-	_	_
d) Diagramok		5 pont
 Létrehozta a megfelelő alap táblázatot, a szereplő értékeket 		
jól olvasta le, mentette <i>diagramok</i> néven	I pont	
- Oszlopdiagram	1 4	
• Diagramcím, tengelyfeliratok, léptékezés jó	1 pont	
 Oszlopok színe, fő és segédrácsok a leírásnak és a mintának 	1	
megfelelőek	ı pont	
- Tortadiagram - Diagramaím faliratok ják	1 nont	
 Diagramcím, feliratok jók A tortaszeletek színe ugyanolyan, mint a megfelelő színű oszlop 	ı pont	
a másik diagramon	1 nont	
a masik magramon	ı pont	

Adatbázis alapismeretek

2.A – 2.B feladat 25 pont

Feladatkitűzés:

Az alábbi táblázat egy Európa több országát átszelő túraverseny néhány indulójának a versennyel kapcsolatos adatait tartalmazza. Végezze el az ezzel kapcsolatos egyszerű adatbázis-kezelési feladatokat!

a) Hozzon létre egy turaverseny nevű adatbázist!

(8 pont)

- Az adatbázison belül hozzon létre egy versenyadatok nevű adattáblát!
- Hozza létre a szükséges adatmezőket a megfelelő típussal, az azon mezőt állítsa be elsődleges kulcsként!
- Töltse fel az adattáblát az alább megadott adatokkal!

azon	nev	kor	indulas	erkezes
1	Tóthvári Tibor	23	2010.06.11.	2010.09.19.
2	Edward Hope	19	2010.06.13.	2010.09.17.
3	Stephan Zierpinski	34	2010.06.13.	2010.09.20.
4	Rüdiger Stamm	39	2010.06.11.	2010.09.13.
5	Miskolczi András	29	2010.06.15.	2010.09.26.
6	Peter O'Brian	20	2010.06.11.	2010.09.26.
7	Szergej Kubatov	36	2010.06.15.	2010.09.19.
8	Frederic Mignon	34	2010.06.13.	2010.09.19.

- b) Készítsen lekérdezést, amely minden versenyző esetében megadja, hogy hány nap alatt teljesítette a távot, és hogy naponta átlagosan hány km-t gyalogolt! (5 pont)
 - A versenyútvonal teljes hosszúsága 3876 km.
 - A számított mezők neve legyen *napok*, illetve *napiatlag*!
 - A napi átlagok egy tizedes jegy pontossággal jelenjenek meg!
 - A lista legyen növekvően rendezett a napok száma szerint!
 - A lekérdezés neve legyen teljesitmenyek!
- c) Készítsen lekérdezést, amely meghatározza, hogy mely korcsoport versenyzői közül volt a legtöbb induló! (7 pont)
 - Az 1. korcsoportba a 10-19 évesek, a második korcsoportba a 20-29 évesek, a harmadik korcsoportba a 30-39 évesek tartoznak, és így tovább.
 - Feltételezhetjük, hogy 10 év alatti induló nincs.
 - A lekérdezés a korcsoportot, illetve az indulók számát is jelenítse meg!
 - A számított mezők neve legyen korcsoport, illetve induloszam!
 - A lekérdezés neve legyen korcsoportok!
- d) Készítsen lekérdezést, amely törli az adattáblából azokat a legfeljebb 30 éves indulókat, akik 100 napnál gyengébb idővel teljesítették a távot! (5 pont)
 - A lekérdezés teszteléséhez hozzon létre másolatot a versenyadatok adattábláról, versenyadatok2 néven!
 - A lekérdezést erre a táblára vonatkozóan készítse el!
 - A lekérdezés neve legyen *torol*!
 - Tesztelje a lekérdezést a versenyadatok2 adattáblán!
 - Mentse az adattáblát a törlés utáni állapotában!

Megjegyzés:

Amennyiben az adatbázis létrehozása és feltöltése nem az adott keretrendszerből, hanem valamilyen programnyelvi kóddal (pl. SQL) történik, beadandó a használt forrásnyelvű kód is.

Értékelés: Létezik az adatbázis és a tábla, a nevük a megadott:
 1 pont Léteznek a megfelelő típusú és nevű adatmezők:
 2 pont (hibánként -1 pont, minimum 0 pont) Az elsődleges kulcs megfelelően beállításra került: o A 4 pont csak abban az esetben adható meg, ha az adatbevitel teljesen hibátlan o Hibásan bevitt értékenként 1-1 pont levonás jár Negatív pontszám nem adható A lekérdezés listázza a neveket, és tartalmaz két számított mezőt ¹ 1 pont A számított mezők neve a megadott ⁴
 1 pont Rendezés a napok szerint növekvően ⁵
 1 pont Egy lehetséges megoldás MS-SQL-ben: SELECT nev $^{(1)}$, erkezes-indulas+1 $^{(1,2)}$ AS napok $^{(4)}$, Round(3876/napok,1) $^{(1,3)}$ AS napiatlag (4) FROM versenyadatok ORDER BY erkezes-indulas+1 (5); A lekérdezés tartalmaz az eletkor mezőre vonatkozó számított mezőt ¹ 1 pont - Csúcsérték meghatározása ⁶ 1 pont Egy lehetséges megoldás MS-SQL-ben: SELECT TOP 1 (6) Left (eletkor, 1) (1,2) AS korcsoport (7), Count (azon) (4) AS induloszam ⁽⁷⁾ FROM versenyadatok GROUP BY Left(eletkor,1) (3) ORDER BY Count(azon) DESC (5); Létezik a versenyadatok2 tábla¹
 1 pont Helyes a törlésre vonatkozó feltétel életkorra vonatkozó része,

Egy lehetséges megoldás MS-SQL-ben:

```
DELETE * ^{(2)} FROM versenyadatok2 ^{(1)} WHERE (erkezes-indulas+1>100) ^{(3)} And (eletkor<=30) ^{(4)};
```

Megjegyzések:

- A zárójelekben szereplő számok hivatkozások, nem részei az SQL lekérdezéseknek!
- Más elvű megoldások esetén a megfelelő funkciót megvalósító megoldásrészek a pontszámokat a fenti részletezés arányában kaphatják meg!

Algoritmus kódolása

3. A feladat 13 pont

Feladatkitűzés:

Kódolja az alábbi algoritmust a választott programozási nyelven! Az algoritmus a Shell-módszer alkalmazásával növekvően rendezi a generált számokat.

Beadandó a feladatot megoldó program forráskódja! A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk!

```
Konstans N=20
Változó A[0..N-1]:valós elemű tömb
Eljárás Generalas:
Változó I:egész
  Ciklus I:=0-től N-1-ig
     A[I]:=VeletlenEgesz(-100,100)
  Ciklus vége
Eljárás vége
Eljárás Kiiras:
Változó I:egész
  Ciklus I:=0-től N-1-ig
    Ki: A[I]
  Ciklus vége
Eljárás vége
Eljárás ShellRendezes:
Változó D,I,J,X,Y:egész
  D:=1
                                                       (1)
  Ciklus amíg (D*2<=N)
                                                          (2)
    D=D*2
                                                          (2)
  Ciklus vége
                                                          (2)
  D := D-1
                                                       (1)
  Ciklus
                                                             (3)
                                                                (4)
     I:=0
     Ciklus amíg (I<=D) és (I+D<N)
                                                                (4)
       Ciklus J:=I+D-től N-1-ig (D lépésközzel)
                                                                   (5)
         X := A[J]
                                                                      (6)
         Y := J - D
                                                                      (6)
         Ciklus amíg (Y>-1) és (X<A[Y])
                                                                         (7)
            A[Y+D] = A[Y]
                                                                         (7)
            Y=Y-D;
                                                                         (7)
         Ciklus vége
                                                                         (7)
         A[Y+D]=X
                                                                      (6)
       Ciklus vége
                                                                   (5)
       I := I + 1
                                                                (4)
     Ciklus vége
                                                                (4)
    D=D/2
                                                             (3)
  Amíg (D>0)
                                                             (3)
Eljárás vége
Program:
  Generalas
  Kiiras
  ShellRendezes
  Kiiras
Program vége.
```

<u>Értékelés:</u>

a) A program szerkezete, változók deklarálása	2 pont
 A programkód szintaktikailag hibátlan, lefordítható, eljárásokra A pont akkor adható meg, ha legalább 2 eljárás definiálá 	
meghívásra került.	ista es
 A továbbiakban már nem kell pontot levonni azért, mert 	a
program esetleg nincs eljárásokra tagolva!	
 A tömbváltozó és a konstans helyes deklarálása 	1 pont
b) Tömb generálása és kiírása	4 pont
 A tömbelemekbe egész érték kerül 	
 A megfelelő intervallumbeli elemek kerülnek a tömbbe 	1 pont
Minden tömbelem kiírásra kerül	1 pont
A kiírás tagolt, áttekinthető	1 pont
c) Rendezés Shell módszerrel	7 pont
 Az (1) jelű sorok helyes kódolása 	=
 A (2) jelű sorok helyes kódolása 	1 pont
 A (3) jelű sorok helyes kódolása 	1 pont
 A (4) jelű sorok helyes kódolása 	1 pont
 Az (5) jelű sorok helyes kódolása 	±
 A (6) jelű sorok helyes kódolása 	
 A (7) jelű sorok helyes kódolása 	1 pont

Input adatsoron dolgozó program elkészítése

4. A feladat 22 pont

Feladatkitűzés:

Írjon programot, amely segítségével ellenőrizhetjük az úgynevezett "születésnap paradoxont"! E szerint bármely iskolai osztályban, vagy egyéb, véletlenszerűen összegyűlt, kb. 30 fős társaságban nagyon jó eséllyel található legalább 2 olyan ember, akik az év ugyanazon a napján ünneplik a születésnapjukat.

Beadandó a feladatot megoldó program forráskódja! A feladat megoldásaként teljes, fordítható és futtatható kódot kérünk!

a) Adatbevitel (10 pont)

- A program kérje be sorban a társaságbéliek teljes születési dátumát!
 - Minden születési dátum bekérése előtt írja ki, hogy hányadik dátum beírásánál tart a felhasználó!
 - Az adatbevitel "éééé.hh.nn." formában történjen, pl. "1976.05.12."!
 - A program ellenőrizze a beírt dátum helyességét, helytelen dátum beírása esetén adjon "Helytelen dátum!" hibaüzenetet, és kérje be újra!
 - Helytelen dátumok pl:

```
o "1976.05.12" (nincs pont a nap után)
o "1976.5.12." (nincs vezető 0 a hónap előtt)
o "1976.13.12." (helytelen hónap)
o "1976.02.30." (helytelen a nap)
```

illetve bármely, dátumként nem értelmezhető szöveg!

- Ha a felhasználó a dátum megadása helyett *Enter*-t üt, akkor az adatbevitel érjen véget!
- A program legalább 10 db születési dátumot kérjen be! Ha ennél kevesebb dátum beírása után a felhasználó ki akar lépni, akkor a program írja ki:

```
"A beírt születésnapok száma kisebb, mint 10, folytatnia kell az adatbekérést!",
```

és adjon lehetőséget további adatok beírására!

A program legfeljebb 30 születési dátumot fogadjon el! Ha a felhasználó beírta a 30. dátumot, akkor a program írja ki:

```
"A beírt születésnapok száma elérte a 30 db-ot, több adatot nem írhat be!"
```

és kezdje meg a beírt adatok vizsgálatát!

- b) A program a mintának megfelelően, táblázatszerűen listázza a születési dátumokat! (5 pont)
- A lista növekvően rendezett legyen, elsősorban év, másodsorban hónap, harmadsorban nap szerint!

Sorszám	Születési dátum
1.	1985.12.23.
2.	1989.03.17.
3.	1990.12.23.
4.	1995.03.17.

- c) A program vizsgálja meg, hogy teljesül-e a születésnap paradoxon!
- (7 pont)
- Írja ki a mintának megfelelően azokat a születésnapokat, amelyek többszörösen szerepelnek!
 - A kiírt születésnapok formátuma "hh.nn." legyen!
 - A lista növekvően rendezett legyen, elsősorban hónap, másodsorban nap szerint!

Születésnap Előfordulás 03.17 2 12.23 2

– Írja ki a program, hogy teljesül-e a születésnap-paradoxon!

Értékelés:

a)	Adatbevitel		10 pont
	 A program bekéri és eltárolja későbbi feldolgozásra a születési 		
	dátumokat, az adatbevitel üres string végjelig történik	l pont	
	 A program megjeleníti, hogy hányadik adat bevitelénél tartunk 	pont	
	 A dátumok formájának az ellenőrzése. A program 		
	o felismeri, ha nem "éééé.hh.nn." formátumú a beírt adat	l pont	
	o felismeri, ha nem megfelelő a hónap értéke	pont	
	o felismeri, ha nem megfelelő a nap értéke		
	 Legalább 10 adat beírását megköveteli a program 		
	 Kevesebb, mint 10 beírt adat esetén a megfelelő üzenet látható 		
	 Legfeljebb 30 adat írható be 		
	 A 30. beírt adat után a megfelelő üzenet látható 	pont	
b)	A dátumok rendezett listázása		5 pont
	A beírt dátumok mindegyike megjelenik a listában	l pont	
	 A lista táblázatszerű, a mintának megfelelő, van fejléc 	l pont	
	 A dátumok év szerint növekvően rendezetten jelennek meg 	l pont	
	 Az azonos évbe eső dátumok egymáshoz képest hónap szerint 		
	növekvően rendezetten jelennek meg	pont	
	 Az azonos évbe és hónapba eső dátumok egymáshoz képest 		
	nap szerint növekvően rendezetten jelennek meg	l pont	
c)	A születésnap-paradoxon vizsgálata		7 pont
	 A listában megjelenik legalább egy olyan születésnap, amely 		
	többször is szerepel	l pont	
	 A listában megjelenik minden olyan születésnap, amely 		
	többször is szerepel		
	 A születésnapok mellett szerepel az előfordulások száma 		
	 A születésnapok hónap szerint növekvően rendezetten jelennek meg 	l pont	
	 Az azonos hónapba eső születésnapok egymáshoz képest nap szerint 		
	növekvően rendezetten jelennek meg		
	 A lista táblázatszerű, a mintának megfelelő, van fejléc 		
	 Kiírásra kerül, hogy teljesül-e a születésnap-paradoxon! 	pont	

Papíron megoldandó feladatok

Elektrotechnikai feladat

3. B feladat

Maximális pontszám:13 pont

Egy 230 V-os hálózati feszültségről működő fűtőtestben két fűtőszál (fűtőbetét) különféle kapcsolásaival biztosítják a melegítéshez szükséges teljesítmény fokozatokat. Elnevezésük és értékük: Ra=120 Ω és Rb=40 Ω .

- a) Sorolja fel az összes lehetséges összekapcsolási lehetőséget. Az így kialakított kapcsolások mekkora ellenállásokat jelentenek a hálózatban? (1pont)
- b) Mekkora teljesítmények állíthatók elő a két ellenállás különféle összekapcsolásával, és ezek a maximális teljesítmény hány %-ai? (4 pont)
- c) Mekkora a fűtőtest által felvett legnagyobb áram értéke? (2 pont)
- d) Hány %-kal csökken a legnagyobb hálózati teljesítmény, ha a hálózati feszültség 15%-al csökken? (3 pont)
- e) Mennyibe kerül a fűtőtest 30 napos, napi 8 órán történő üzemeltetése, ha fele időben a maximális, fele időben a minimális teljesítménnyel használjuk? (1kWh ára: 38Ft)? (3pont)?

3.B Elektrotechnikai feladat megoldása

Maximális pontszám:13 pont

a) Az összekapcsolási lehetőségek felsorolása, és az ellenállásértékek felírása. (1 pont)

A: Ra külön, 120Ω

B: Rb külön, 40Ω

C: Ra+Rb sorosan, R_C = Ra+ Rb = $120\Omega+40\Omega=160 \Omega$

D: Ra és Rb párhuzamosan
$$R_D$$
 = Ra x Rb = $\frac{120\Omega \cdot 40\Omega}{120\Omega + 40\Omega}$ = $\frac{30 \Omega}{120\Omega + 40\Omega}$

b) Milyen teljesítmények állíthatók elő a két ellenállás különféle összekapcsolásával, és ezek a maximális teljesítmény hány %-ai? (4 pont)

$$P = \frac{U^2}{R}$$

A maximális teljesítmény:

$$P_{\text{max}} = \frac{U^2}{R_D} = \frac{(230V)^2}{30\Omega} = \underline{1763.3W} \quad \frac{1763.3W}{1763.3W} = 1 \rightarrow \underline{100\%}$$

A esetben:

$$P_A = \frac{(230V)^2}{120\Omega} = \underline{440.8W} \quad \frac{440.8W}{1763.3W} = 0.25 \rightarrow \underline{25\%}$$

B esetben:

$$P_B = \frac{(230V)^2}{40\Omega} = \underline{1322,5W} \quad \frac{1322,5W}{1763,3W} = 0,75 \rightarrow \underline{75\%}$$

C esetben:

$$P_C = \frac{(230V)^2}{160\Omega} = \frac{330.6W}{1763.3W} = 0.187 \rightarrow \underline{18.7\%}$$

c) Mekkora a fűtőtest által felvett legnagyobb áram értéke: (2 pont)

$$I = \frac{U}{R_D} = \frac{230V}{30\Omega} = \frac{7,67A}{100}$$

d) A legnagyobb hálózati teljesítmény százalékos csökkenése: (3 pont)

$$P_{csokk} = \frac{(230V \cdot 0.85)^2}{300} = \underline{1274W}$$

ez az eredetinek $\frac{1274W}{1763.3W}$ =0,7225-szerese, azaz 72,25%

vagyis a teljesítménycsökkenés: 100% - 72,25%=27,75%

e) A fűtőtest üzemeltetésének a költsége:

(3 pont)

$$P_{\ddot{o}ssz} = 15[nap] \cdot 8[\acute{o}ra] \cdot P_{max}[W] + 15[nap] \cdot 8[\acute{o}ra] \cdot P_{C}[W]$$

$$P_{\ddot{o}ssz}\!\!=\!15\cdot8\cdot1763,\!3[W]\!+\!15\cdot8\cdot330,\!6[W]\!=\!15\cdot8\cdot(1763,\!3+330,\!6)\!=\!251268\;Wh=251,\!268\;kWh=261,\!268\;k$$

A költség:
$$251,268 \text{ kWh} \cdot 38 \frac{\text{Ft}}{\text{kWh}} = 9548 \text{ Ft}$$

Digitális elektronikai feladat

4. B feladat

Maximális pontszám: 22 pont

Adott egy kapukból álló, 4 bemenetű logikai áramkör. (Változók súlyozása: A: 2⁰, B:2¹, C: 2², D: 2³)

a) Írja fel a kimeneti függvényt algebrai alakban!

(4 pont)

b) Adja meg a kapcsolás igazságtáblázatát,

- (6 pont)
- a kapcsolás függvényének diszjunktív sorszámos alakját, valamint írja fel a függvényt mintermek kapcsolataként!
- irja fel a függvényt mintermek kapcsolataként!
 c) Grafikus egyszerűsítéssel (Karnaugh-tábla) hozza egyszerűbb alakra!
- (6 pont)
- d) Valósítsa meg az egyszerűsített függvényt NAND kapukkal!
- (6 pont)

4.B Digitális elektronikai feladat megoldása

Maximális pontszám: 22 pont

a) A kimeneti függvény algebrai alakban

4 pont

A kimeneti függvény a kizáró vagy függvény jelölésével felírva:

$$F=A+B$$
 $\bigoplus \overline{C}\cdot D = A\cdot B$ $\bigoplus (C+D)$

$$P \oplus Q = P \cdot Q + P \cdot Q$$

összefüggést és a de-Morgan szabályt felhasználva:

$$F = \overline{A} \cdot \overline{B} \cdot (\overline{C + \overline{D}}) + \overline{\overline{A} \cdot \overline{B} \cdot (C + \overline{D})} = \overline{A} \cdot \overline{B} \cdot (\overline{C} \cdot D) + (A + B) \cdot (C + \overline{D}) = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + A \cdot C + A \cdot \overline{D} + B \cdot C + B \cdot \overline{D}$$

b) A kapcsolás igazságtáblázata, mintermes és diszjunktív sorszámos alakjainak felírása:

6 pont

D	C	В	A	\mathbf{F}^4
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2 pont

Helyesen adja meg az igazságtáblázatot 2 po
$$\mathbf{F}^4 = \overline{\mathbf{D} \cdot \mathbf{C} \cdot \mathbf{B}} \cdot \mathbf{A} + \overline{\mathbf{D} \cdot \mathbf{C}} \cdot \mathbf{B} \cdot \overline{\mathbf{A}} + \overline{\mathbf{D}} \cdot \overline{\mathbf{C}} \cdot \mathbf{B} \cdot \overline{\mathbf{A}} + \overline{\mathbf{D}} \cdot \overline{\mathbf{C}} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{A}} + \overline{\mathbf{D}} \cdot$$

Helyesen adja meg a mintermeket

2 pont

$$F^4 = \sum (1,2,3,5,6,7,8,13,14,15)$$

Helyesen adja meg a sorszámos alakot

2 pont

c) Karnaugh-tábla felrajzolása, egyszerűsítés, rajz Az eredmény:

6 pont

$$F^4 = \overrightarrow{D} \cdot A + \overrightarrow{D} \cdot B + C \cdot A + C \cdot B + D \cdot \overrightarrow{C} \cdot \overrightarrow{B} \cdot \overrightarrow{A}$$

ŖА	00	01	11	10
DC				
00		1	(1)	4
01		(1	$\sqrt{\lambda}$	1
11		1	V	1
10	1			

d) az egyszerűsített függvény áramköri megvalósítása NAND kapukkal: **6 pont**

Logikailag helyes, de a szükségesnél több kaput tartalmazó megoldás esetén maximálisan 4 pont adható.

A feladatok értékelésének általános szabályai

A megoldási útmutatótól eltérő, de szakmailag jó megoldásokat is el kell fogadni a feltüntetett pontszámokkal.

A feladatra (részfeladatra) adható maximális pontszámot csak akkor kaphatja meg a tanuló, ha a képletbe az adatokat szakszerűen behelyettesíti, és így számítja ki a végeredményt.

Az adatok normál alakban való használatát indokolt esetben kell megkövetelni.

A végeredmény csak akkor fogadható el teljes pontszámmal, ha az eredmény számértéke és mértékegysége is kifogástalan.

A részkérdésekre adható legkisebb pontszám 1 pont, tört pontszám nem adható.

Összefüggő részkérdések esetén, ha hibás valamelyik részfeladat eredménye, akkor a hibás eredmény következő részfeladatban (részfeladatokban) való felhasználása esetén a kifogástalan megoldásokra a feltüntetett pontokat kell adni.

Mindazonáltal értelemszerűen pontlevonást eredményez, ha:

- a továbbyitt részeredmény szakmailag egyértelműen lehetetlen, illetve extrém,
- a felhasznált részeredmény csökkenti az utána következő részfeladat(ok) megoldásának bonyolultságát.