Emory University MATH 362 Mathematical Statistics II

Learning Notes

Jiuru Lyu

January 30, 2024

Contents

1	Estima	ation	2
	1.1 In	ntroduction	2
	12 T	he Method of Maximum Likelihood and the Method of Moments	3

1 Estimation

1.1 Introduction

Definition 1.1.1 (Model). A *model* is a distribution with certain parameters.

Example 1.1.2 The normal distribution: $N(\mu, \sigma^2)$.

Definition 1.1.3 (Population). The *population* is all the objects in the experiment.

Definition 1.1.4 (Data, Sample, and Random Sample). *Data* refers to observed value from sample. The *sample* is a subset of the population. A *random sample* is a sequence of independent, identical (i.i.d.) random variables.

Definition 1.1.5 (Statistics). *Statistics* refers to a function of the random sample.

Example 1.1.6 The sample mean is a function of the sample:

$$\overline{Y} = \frac{1}{n}(Y_1 + \dots + Y_n).$$

Example 1.1.7 Central Limit Theorem

We randomly toss n=200 fair coins on the table. Calculate, using the central limit theorem, the probability that at least 110 coins have turned on the same side.

$$\overline{X} = \frac{X_1 + \dots + X_{200}}{200} \quad \stackrel{\text{CLT}}{\sim} \quad N(\mu, \sigma^2),$$

where

$$\mu = \mathbf{E}(\overline{X}) = \frac{\sum_{i=1}^{200} \mathbf{E}(X_i)}{200},$$

$$\sigma^2 = \mathbf{Var}(\overline{X}) = \mathbf{Var}\left(\frac{X_1 + \dots + X_{200}}{200}\right) = \frac{\sum_{i=1}^{200} \mathbf{Var}(X_i)}{200^2}.$$

Definition 1.1.8 (Statistical Inference). The process of *statistical inference* is defined to be the process of using data from a sample to gain information about the population.

Example 1.1.9 Goals in statistical inference

- 1. **Definition 1.1.10 (Estimation).** To obtain values of the parameters from the data.
- 2. **Definition 1.1.11 (Hypothesis Testing).** To test a conjecture about the parameters.
- 3. **Definition 1.1.12 (Goodness of Fit).** How well does the data fit a given distribution.
- 4. Linear Regression

1.2 The Method of Maximum Likelihood and the Method of Moments

Example 1.2.1 Given an unfair coin, or p-coin, such that

$$X = \begin{cases} 1 & \text{head with probability } p, \\ 0 & \text{tail with probability } 1 - p. \end{cases}$$

How can we determine the value p?

Solution 1.

- 1. Try to flip the coin several times, say, three times. Suppose we get HHT.
- 2. Draw a conclusion from the experiment.

Key idea: The choice of the parameter p should be the value that maximizes the probability of the sample.

$$\mathbf{P}(X_1 = 1, X_2 = 1, X_3 = 0) = \mathbf{P}(X_1 = 1)\mathbf{P}(X_2 = 1)\mathbf{P}(X_3 = 0) = p^2(1 - p) := f(p).$$

Solving the optimization problem $\max_{p>0} f(p)$, we find it is most likely that $p=\frac{2}{3}$. This method is called the *likelihood maximization method*.

Definition 1.2.2 (Likelihood Function). For a random sample of size n from the discrete (or continuous) pdf $p_X(k;\theta)$ (or $f_Y(y;\theta)$), the *likelihood function*, $L(\theta)$, is the product of the pdf evaluated at $X_i = k_i$ (or $Y_i = y_i$). That is,

$$L(\theta) \coloneqq \prod_{i=1}^{n} p_X(k_i; \theta) \quad \text{or} \quad L(\theta) \coloneqq \prod_{i=1}^{n} f_Y(y_i; \theta).$$

Definition 1.2.3 (Maximum Likelihood Estimate). Let $L(\theta)$ be as defined in Definition 1.2.2. If θ_e is a value of the parameter such that $L(\theta_e) \geq L(\theta)$ for all possible values of θ , then we call θ_e the *maximum likelihood estimate* for θ .

Theorem 1.2.4 The Method of Maximum Likelihood

Given random samples X_1, \ldots, X_N and a density function $p_X(x)$ (or $f_X(x)$), then we have the likelihood function defined as

$$L(\theta) = p_X(X; \theta) = \mathbf{P}(X_1, X_2, \dots, X_N)$$

$$= \mathbf{P}(X_1)\mathbf{P}(X_2)\cdots\mathbf{P}(X_N) \qquad [independent]$$

$$= \prod_{i=1}^{N} p_X(X_i; \theta) \qquad [identical]$$

Then, the maximum likelihood estimate for θ is given by

$$\theta^* = \arg\max_{\theta} L(\theta),$$

where

$$L\left(\arg\max_{\theta} L(\theta)\right) = L^*(\theta) = \max_{\theta} L(\theta).$$

Example 1.2.5 Consider the Poisson distribution $X=0,1,\ldots$, with $\lambda>0$. Then, the pdf is given by

$$p_X(k,\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

Given data k_1, \ldots, k_n , we have the likelihood function

$$L(\lambda) = \prod_{i=1}^{n} p_X(X = k; \lambda) = \prod_{i=1}^{n} e^{-\lambda} = \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \frac{\lambda^{\sum k_i}}{k_1! \cdots k_n!}$$

Then, to find the maximum likelihood estimate of λ , we need to $\max_{\lambda} L(\lambda)$. That is to solve $\partial L(\lambda)$

$$\frac{\partial L(\lambda)}{\partial \lambda} = 0 \text{ and } \frac{\partial^2 L(\lambda)}{\partial \lambda^2} < 0.$$

Example 1.2.6 Waiting Time.

Consider the exponential distribution $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$. Find the MLE λ_e of λ . *Solution 2.*

1 ESTIMATION

The likelihood function of the exponential distribution is given by

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right).$$

Now, define

$$\ell(\lambda) = \ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i.$$

To optimize $\ell(\lambda)$, we compute

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\ell(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i \stackrel{set}{=} 0$$

So,

$$\frac{n}{\lambda} = \sum_{i=1}^{n} y_i \implies \lambda_e = \frac{n}{\sum_{i=1}^{n} y_i} =: \frac{1}{\overline{y}},$$

where \overline{y} is the sample mean.

Example 1.2.7 Given the exponential distribution $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$. Find the MLE of λ^2 .

Solution 3.

Define $\tau = \lambda^2$. Then, $\lambda = \sqrt{\tau}$, and so

$$f_Y(y) = \sqrt{\tau}e^{-\sqrt{\tau}y}, \quad y \ge 0.$$

Then, the likelihood function becomes

$$L(\tau) = \prod_{i=1}^{n} f_Y(y) = \tau^{\frac{n}{2}} \exp\left(-\sqrt{\tau} \sum_{i=1}^{n} y_i\right).$$

Similarly, after maximization, we find

$$\tau_e = \frac{1}{(\overline{y})^2}.$$

Theorem 1.2.8 Invariant Property for MLE

Suppose λ_e is the MLE of λ . Define $\tau := h(\lambda)$. Then, $\tau_e = h(\lambda_e)$.

Proof 4. In this proof, we will prove the case when h is a one-to-one function. The case of h being a many-to-one function is beyond the scope of this course.

Suppose $h(\cdot)$ is a one-to-one function. Then, $\lambda=h^{-1}(\tau)$ is well-defined. Then,

$$\max_{\lambda} L(\lambda; y_1, \dots, y_n) = \max_{\tau} L(h^{-1}(\tau); y_1, \dots, y_n) = \max_{\tau} L(\tau; y_1, \dots, y_n).$$

Example 1.2.9 Waiting Time with an unknown Threshold.

Let $\lambda=1$ in exponential but there is an unknown threshold θ , that, is $f_Y(y)=e^{-(y-\theta)}$ for $y\geq \theta,\ \theta>0$.

Solution 5.

Note that the likelihood function is given by

$$L(\theta; y_1, \dots, y_n) = \prod_{i=1}^n f_Y(y_1) = \exp\left(-\sum_{i=1}^n (y_i - \theta)\right), \quad y_i \ge \theta, \ \theta > 0$$
$$= \exp\left(-\sum_{i=1}^n (y_i - \theta)\right) \cdot \mathbb{1}_{[y_i \ge 0, \ \theta > 0]},$$

where

$$\mathbb{1}_{x \in A} = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Using order statistics,

$$L(\theta) = \exp\left(-\sum_{i=1}^{n} (y_i - \theta)\right) \cdot \mathbb{1}_{\left[y_{(n)} \ge y_{(n-1)} \ge \dots \ge y_{(1)} \ge \theta, \ \theta > 0\right]}$$
$$= \exp\left(-\sum_{i=1}^{n} y_i + n\theta\right) \mathbb{1}_{\left[y_{(n)} \ge \dots \ge y_{(1)} \ge \theta, \ \theta > 0\right]}.$$

So, we know $\theta \leq y_{(1)} = y_{\min}$.

To maximize the likelihood function, we want to maximize $-\sum y_i + n\theta$. That is, to maximize θ , as $\theta \leq y_{\min}$, it must be that $\theta_{\max} = y_{\min}$. Therefore, the MLE is $\theta^* = y_{\min}$.

Example 1.2.10 Suppose $Y_1, \ldots, Y_n \sim \text{Uniform}[0, a]$. That is, $f_Y(y; a) = \frac{1}{a}$ for $y \in [0, a]$. Find MLE a_e of a.

Solution 6.

Note that

$$f_Y(y; a) = \frac{1}{a} \cdot \mathbb{1}_{\{y \in [0, a]\}}$$

$$= \frac{1}{a} \cdot \mathbb{1}_{\{0 \le y_{(1)} \le \dots \le y_{(n)} \le a\}}$$
 where $y_{(1)} = \min y_i$ and $y_{(n)} = \max y_i$

Then,

$$L(a) = \frac{1}{a^n} \mathbb{1}_{\{0 \le y_{(1)} \le \dots \le y_{(n)} \le a\}}$$

To maximize L(a), we want to minimize a^n . Since $a \ge y_{(n)}$, it must be that $a_e = y_{(n)}$. Here, we call $a_e = y_{(n)}$ an *estimate*, and $\widehat{a_{\text{MLE}}} = Y_{(n)}$ an *estimator*.

Example 1.2.11 MLE that Does Not Esist

Suppose $f_Y(y; a) = \frac{1}{a}$, $y \in [0, a)$. Find the MLE.

Solution 7.

The likelihood function is the same:

$$L(a) = \frac{1}{a^n} \mathbb{1}_{\{0 \le y_{(1)} \le \dots \le y_{(n)} < a\}}.$$

However, since [0,a) is not a closed set, the optimization problem $\max_{a \in [0,a)} L(a)$ does not have a solution. Hence, the estimate does not exist.

Remark 1.1 MLE may not be unique all the time.

Example 1.2.12 Multiple MLE Values

Suppose $X_1, \ldots, X_n \sim \text{Uniform}\left[a - \frac{1}{2}, a + \frac{1}{2}\right]$, where $f_X(x; a) = 1, \ x \in \left[a - \frac{1}{2}, a + \frac{1}{2}\right]$. Find the MLE.

Solution 8.

In the indicator function notation, we can rewrite the pdf to be

$$f_X(x;a) = \mathbb{1}_{\left\{a - \frac{1}{2} \le x \le a + \frac{1}{2}\right\}} = \mathbb{1}_{\left\{a - \frac{1}{2} \le x_{(1)} \le \dots \le x_{(n)} \le a + \frac{1}{2}\right\}}.$$

ESTIMATION

So, the likelihood function will be

$$L(a) = \prod_{i=1}^{n} f_x(x_i; a) = \begin{cases} 1, & a \in \left[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2} \right] \\ 0, & \text{otherwise.} \end{cases}$$

So, the L(a) will be maximized whenever $a \in \left[x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2}\right]$. Therefore, MLE can be any value in the range $\left| x_{(n)} - \frac{1}{2}, x_{(1)} + \frac{1}{2} \right|$. Say,

$$a_e = x_{(n)} - \frac{1}{2}$$
 or $a_e = x_{(1)} - \frac{1}{2}$ or $a_e = \frac{x_{(n)} - \frac{1}{2} + x_{(1)} + \frac{1}{2}}{2} = \frac{x_{(n)} + x_{(1)}}{2}$.

Theorem 1.2.13 MLE for Multiple Parameters

In general, we have the likelihood function $L(\theta)$, where $\theta = (\theta_1, \dots, \theta_p)$. To find the MLE, we need

$$\frac{\partial L(\theta)}{\partial \theta_i} = 0 \quad i = 1, \dots, p,$$

and the Hessian matrix

$$\left(\frac{\partial^2 L(\theta)}{\partial \theta_i \partial \theta_j}\right)_{i,j=1,\dots,p} := \begin{pmatrix} \frac{\partial^2 L(\theta)}{\partial \theta_1^2} & \cdots & \frac{\partial^2 L(\theta)}{\partial \theta_1 \partial \theta_p} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 L(\theta)}{\partial \theta_p \partial \theta_1} & \cdots & \frac{\partial^2 L(\theta)}{\partial \theta_p^2} \end{pmatrix}$$

should be negative dfinite.

Example 1.2.14 MLE for Multiple Parameters: Normal Distribution

Suppose $Y_1, \ldots, Y_n \sim N(\mu, \sigma)$. Then,

$$f_{Y_i}(u;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(y_i-\mu)^2/(2\sigma^2)}.$$

Find the MLE for μ and σ .

Solution 9.

The likelihood function will be

$$L(\mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-(y_i - \mu)^2 / (2\sigma^2)}.$$

Then, we define

$$\ell(\mu, \sigma) = \ln L(\mu, \sigma) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \sigma^2 - \frac{1}{2} (\sigma^2)^{-1} \sum_{i=1}^{n} (y_i - \mu)^2.$$

Set

$$\begin{cases} \frac{\partial \ell(\mu, \sigma)}{\partial \mu} = 0 & \text{1} \\ \frac{\partial \ell(\mu, \sigma)}{\partial \sigma} = 0 & \text{2} \end{cases}$$

From ①, we have

$$\frac{1}{\sigma^2} \sum_{i=1}^n (y_1 - \mu) = 0$$

$$\sum_{i=1}^n y_i = n\mu \implies \left[\mu_e = \frac{\sum y_i}{n} = \overline{y} \right]$$

From ②, by the invariant property of MLE, we instead set

$$\frac{\partial \ell(\mu, \sigma)}{\partial \sigma^2} = 0$$

$$-\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2} \left(\frac{1}{\sigma^2}\right)^2 \sum_{i=1}^n (y_i - \mu)^2 = 0$$

$$\frac{1}{2\sigma^2} \left(-n + \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right) = 0$$

$$-n\sigma^2 + \sum_{i=1}^n (y_i - \mu)^2 = 0 \qquad (\mu_e = \overline{y})$$

$$\sum_{i=1}^n (y_i - \overline{y})^2 = n\sigma^2$$

$$\sigma_e^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 \implies \sigma_e = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2}$$