PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/18456
A61K 31/00, 35/00, 38/00, C07K 14/435, 14/705, C12N 5/10, 15/12, 15/63, G01N 33/53, 33/566	A1	(43) International Publication Date: 7 May 1998 (07.05.98)
(21) International Application Number: PCT/US (22) International Filing Date: 29 October 1997 (DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/742,440 30 October 1996 (30.10.96)	, t	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(71) Applicant: THE REGENTS OF THE UNIVERS CALIFORNIA [US/US]; 22nd floor, 300 Lakesi Oakland, CA 94612-3550 (US).	de Driv)F c,
(72) Inventors: COUGHLIN, Shaun, R.; 2 Turtle Rod Tiburon, CA 94920 (US). ISHIHARA, Hiroaki; Avenue, San Francisco, CA 94122 (US). CON Andrew; 1427 Schrader Street, San Francisco, C (US).	1770 17 NNOLL	th Y,
(74) Agent: BERLINER, Robert; Fulbright & Jaworsk 29th floor, 865 South Figueroa Street, Los Ang 90017-2571 (US).	i, L.L. geles, (A A
	,	

(54) Title: PROTEASE-ACTIVATED RECEPTOR 3 AND USES THEREOF

(57) Abstract

Disclosed are cDNAs and genomic DNAs encoding protease-activated receptor 3 (PAR3) from mouse and human, and the recombinant polypeptides expressed from such cDNAs. The recombinant receptor polypeptides, receptor fragments and analogs expressed on the surface of cells are used in methods of screening candidate compounds for their ability to act as agonists or antagonists to the effects of interaction between thrombin and PAR3. Agonists are used as the therapeutics to treat wounds, thrombosis, atherosclerosis, restenosis, inflammation, and other thrombin-activated disorders. Antagonists are used as therapeutics to control blood coagulation and thereby treating heart attack and stroke. Antagonists mediate inflammatory and proliferative responses to injury as occur in normal wound healing and variety of diseases including atherosclerosis, restenosis, pulmonary inflammation (ARDS) and glomerulosclerosis. Antibodies specific for a protease-activated receptor 3 (or receptor fragment or analog) and their use as a therapeutic are also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	RS	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland -
AZ	Azerbaijan	GB	United Kingdom	MC '	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Тодо
BB	Barbados	. GH	Ghana	MG	Madagascar .	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IR	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	ŲG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO .	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI."	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		*
EE	Estonia	LR	Liberia	SG	Singapore		

- 1

PROTEASE-ACTIVATED RECEPTOR 3 AND USES THEREOF

Field of the Invention

This invention relates to nucleic acids, their sencoded protease-activated receptor 3 proteins, and screening assays for agonists and antagonists of the protease activated receptor 3 proteins.

Background of the Invention

Thrombin, a coagulation protease generated at 10 sites of vascular injury, activates platelets, leukocytes, and mesenchymal cells (Vu, T.-K.H. et al. (1991) Cell <u>64</u>:1057-1068). Activation of platelets by thrombin is thought to be critical for hemostasis and thrombosis. In animal models, thrombin inhibitors block 15 platelet-dependent thrombosis, which is the cause of most heart attacks and strokes in humans. Available data in humans suggests that thrombosis in arteries can be blocked by inhibitors of platelet function and by thrombin inhibitors. Thus it is likely that thrombin's 20 actions on platelets contribute to the formation of clots that cause heart attack and stroke. Thrombin's other actions on vascular endothelial cells and smooth muscle cells, leukocytes, and fibroblasts may mediate inflammatory and proliferative responses to injury, as 25 occur in normal wound healing and a variety of diseases (atherosclerosis, restenosis, pulmonary inflammation (ARDS), glomerulosclerosis, etc.). A thorough understanding of how thrombin activates cells is an important goal.

- 2 -

A receptor that mediates thrombin signaling has been previously identified (Vu, T.-K.H. et al. (1991) Cell 64:1057-1068; USPN 5,256,766). This receptor revealed a novel proteolytic mechanism of activation and is referred to as PAR1 (protease-activated receptor 1). PAR1 is activated by the binding of thrombin to and cleavage of PAR1's amino terminal exodomain at a specific site. Receptor cleavage unmasks a new amino terminus, which then functions as a tethered peptide ligand by binding intramolecularly to the body of the receptor to effect transmembrane signaling (Vu, T.-K.H. et al. (1991) Cell 64:1057-1068). Synthetic peptides that mimic this tethered ligand domain function as PAR1 agonists and activate it independent of thrombin and receptor cleavage (Vu, T.-K.H. et al. (1991) Cell 64:1057-1068).

To identify which of thrombin's known cellular actions are mediated by PAR1, a PAR1 knockout mouse was recently generated (Connolly, A. et al. (1996) Nature 381:516-519). Analysis of mice in which both alleles of the PAR1 gene were disrupted provided definitive evidence for a second platelet thrombin receptor and for tissue specific roles of distinct thrombin receptors.

Specifically, in mice, PAR1 is not important for platelet responses but is critical for fibroblast responses.

A second protease-activated receptor (PAR2) was cloned during a search for relatives of the Substance K receptor (Nystedt, S., et al. (1994) PNAS USA, 91:9208-9212). The physiological activator of PAR2 remains unknown; it is not activated by thrombin.

25

30

SUMMARY OF THE INVENTION

The protease-activated receptor (PAR3) disclosed herein is useful in assaying libraries of compounds for their activity as thrombin agonists and antagonists. DNA

- 3 -

encoding PAR3 is placed in a functional expression vector, expressed in a cell line, and used to assay compounds for activity as an agonist or antagonist of thrombin's affect on PAR3.

The invention features substantially pure DNA (cDNA or genomic DNA) encoding a protease-activated receptor 3 (PAR3) from vertebrate tissues (SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:5) and degenerate sequences thereof; substantially pure protease-activated receptor 3 polypeptides encoded thereby; as well as amino acid sequences substantially identical to the amino acid sequences SEQ ID NO:3 and SEQ ID NO:6 from mouse and human, respectively. The invention further comprises fragments of the PAR3 receptor which are activated by thrombin. Such fragments may have the same amino acid sequence as SEQ ID NOs:3 and 6 or be at least 80% identical to the amino acid sequences SEQ ID NO:3 and SEQ ID NO:6.

In various embodiments, the DNA, receptor or receptor fragment is derived from a vertebrate animal, preferably, human or mouse. However, the gene can be chemically synthesized.

An object of the invention is to provide a nucleotide sequence encoding a novel receptor.

Another object is to provide a cell line genetically engineered to express the nucleotide sequence.

25

Another object is to provide a method whereby a compound or library of compounds can be assayed as
thrombin agonists or antagonists for their ability to activate or block the receptor expressed by the nucleotide sequence.

An advantage of the present invention is that a novel thrombin receptor PAR3 is disclosed making it possible to identify novel thrombin agonists and

-4.

antagonists which may not be identifiable via PAR1 or PAR2 receptors.

A feature of the invention is that it makes it possible to obtain additional information regarding thrombin activation and the sequence of biochemical events initiated by such.

These and other objects, advantages and features of the present invention will become apparent to those skilled in the art upon reading the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

10

Fig. 1 is the complete nucleotide and amino acid sequences (SEQ ID NO:1 and SEQ ID NO:3, respectively) of the mouse protease-activated receptor 3 gene coding region cDNA. The deduced amino acid sequence of the receptor is provided below the nucleotide sequence and contains 369 amino acids. The deduced amino acid sequence begins at nucleotides 51-53 (ATG = Met) and ends at nucleotides 1158-1160 (TAG = stop).

Fig. 2 is the genomic sequence (containing exon 2) 20 of the mouse protease-activated receptor 3 (SEQ ID NO:2).

Fig. 3 is the nucleotide and deduced amino acid sequences (SEQ ID NO:4 and SEQ ID NO:6, respectively) of the human protease-activated gene coding region cDNA. The deduced amino acid sequence is provided below the nucleotide sequence and contains 374 amino acids. The coding region of the cDNA sequence begins at nucleotides 58-60 (ATG = Met) and ends at nucleotides 1180-1182 (TAG = stop).

Fig. 4 is the genomic sequence (containing exon 2) 30 of the human protease-activated receptor 3 (SEQ ID NO:5).

Fig. 5A shows the alignment of the deduced amino acid sequences (SEQ ID NO:3, 6, 7, 8, 9) of the mouse PAR3, human PAR3, human PAR1, and human PAR2. To

indicate homology, gaps (represented by blank spaces)
have been introduced into the five sequences.

Transmembrane domains are overlined (TM1-7). Fig. 5B
shows the alignment of the hirudin-like portion of human
5 PAR1, PAR2, and PAR3 amino acid sequences.

Fig. 6 is a bar graph showing cell surface binding of M1 monoclonal antibody to M1 epitope on Cos 7 cells expressing hPAR3 or hPAR3 T39P in the presence and absence of α -thrombin.

Fig. 7 is a bar graph of hPAR3 signaling in Cos 7 cells in the presence and absence of G α 16 and the presence and absence of α -thrombin. Signaling is measured by phosphoinositide hydrolysis.

Fig. 8 is a graph of phosphoinositide hydrolysis in response to PAR3 signaling as a function of increasing α -thrombin concentration, and in the presence and absence of G α 16 protein.

Fig. 9 is a graph of phosphoinositide hydrolysis in response to PAR3 signaling as a function of increasing γ -thrombin concentration, and in the presence and absence of G α 16 protein.

Fig. 10 is a graph comparing the specificity of PAR1 and PAR3 for thrombin.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before the present protease-activated receptor assays and methods of using such are described, it is to be understood that this invention is not limited to the particular DNA sequences, materials, methods, or processes described as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting since the scope

- 6 -

of the present invention will be limited only by the appended claims.

It must be noted that as used in this specification and the appended claims, the singular forms 5 "a", "and," and "the" include plural referents unless the contexts clearly dictates otherwise. Thus, for example, reference to "a DNA sequence" includes mixtures and large numbers of such sequences, reference to "an assay" includes assays of the same general type, and reference to "the method" includes one or more methods or steps of the type described herein.

The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Unless defined otherwise, all technical and scientific terms herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials, similar or equivalent to those described herein, can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. All publications cited herein are incorporated herein by reference for the purpose of disclosing and describing specific aspects of the invention for which the publication is cited in connection with.

DEFINITIONS

30

By "protease-activated receptor 3", "PAR3", "PAR3 receptor" and the like, is meant all or part of a vertebrate cell surface protein which is specifically

- 7 -

activated by thrombin or a thrombin agonist thereby activating PAR3-mediated signalling events (e.g., phosphoinositide hydrolysis, Ca²⁺ efflux, platelet aggregation). The polypeptide is characterized as having the ligand activating properties (including the agonist activating and antagonist inhibiting properties) and tissue distribution described herein. Specifically, PAR3 receptors are expressed by the DNA sequences of SEQ ID NOs:2, 4, and 5.

By a "polypeptide" is meant any chain of amino acids, regardless of length or post-translational modification (e.g., glycosylation).

By "substantially pure" is meant that the protease-activated receptor 3 polypeptide provided by the 15 invention is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, PAR3 20 polypeptide. A substantially pure PAR3 polypeptide may be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid encoding a PAR3 polypeptide, or by chemically synthesizing the protein. Purity can be measured by any 25 appropriate method, e.g., column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis. The protein is substantially pure if it can be isolated to a band in a gel.

By a "substantially identical" amino acid sequence
is meant an amino acid sequence which differs only by
conservative amino acid substitutions, for example,
substitution of one amino acid for another of the same
class (e.g., valine for leucine, arginine for lysine,
etc.) or by one or more non-conservative amino acid
substitutions, deletions, or insertions located at

- 8 -

positions of the amino acid sequence which do not destroy the biological activity of the receptor. Such equivalent receptors can be isolated by extraction from the tissues or cells of any animal which naturally produce such a receptor or which can be induced to do so, using the methods described below, or their equivalent; or can be isolated by chemical synthesis; or can be isolated by standard techniques of recombinant DNA technology, e.g., by isolation of cDNA or genomic DNA encoding such a receptor. Substantially identical receptors have the same biological function, e.g. are activated by the same compound.

By "derived from" is meant encoded by the genome of that organism and present on the surface of a subset of that organism's cells.

By "isolated DNA" is meant DNA that is not in its native environment in terms of not being immediately contiguous with (i.e., covalently linked to) the complete coding sequences with which it is immediately contiguous 20 (i.e., one at the 5' end and one at the 3' end) in the naturally-occurring genome of the organism from which the DNA of the invention is derived. The term therefore includes, for example, recombinant DNA which is incorporated into a vector; into an autonomously 25 replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or which exists as a separate molecule (e.g., a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. It also includes any 30 recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence.

"Isolated DNA" can mean the DNA is in vectors which are preferably capable of directing expression of the protein encoded by the DNA in a vector-containing secll and further includes cells containing such vectors

- 9 -

(preferably eukaryotic cells, e.g., CHO cells (ATCC; Cat. No. CCL 61 or COS-7 cells (ATCC; Cat. No. CRL 1651; and the *Xenopus* oocytes of the type described in the above cited reference Vu, T.-K.H. et al. (1991) Cell <u>64</u>:1057-1068). Preferably, such cells are stably transfected with such isolated DNA.

By "transformed cell" and "transfected cell",
 "genetically engineered cell", and the like, is meant a
 cell into which (or into an ancestor of which) has been
 introduced, by means of genetic engineering, a DNA
 molecule encoding a PAR3 (or DNA encoding a biologically
 active fragment or analog, thereof). Such a DNA molecule
 is "positioned for expression" meaning that the DNA
 molecule is positioned adjacent to a DNA sequence which
 directs transcription and translation of the sequence
 (i.e., facilitates the production of the PAR3 protein, or
 fragment or analog, thereof).

By "specifically activates", as used herein, is meant an agent, such as thrombin, a thrombin analog, a 20 PAR3 agonist or other chemical agent including polypeptides such as an antibody, which activates protease-activated receptor 3, receptor polypeptide or a fragment or analog thereof to initiate PAR3-mediated biological events as described herein, but which does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally includes a protease-activated receptor 3 polypeptide.

By "specifically inhibits", as used herein, is meant an agent, such as a thrombin analog, a PAR3

antagonist or other chemical agent including polypeptides such as an antibody, which inhibits activation of protease-activated receptor 3, receptor polypeptide or a fragment or analog thereof, such as by inhibiting thrombin or by blocking activation of PAR3 by thrombin or other PAR3 activator. Preferably, the agent activates or

inhibits the biological activity in vivo or in vitro of the protein to which it binds.

By "biological activity" is meant the ability of the protease-activated receptor 3 to bind thrombin or a PAR3 agonist and signal the appropriate cascade of biological events (e.g., phosphoinositide hydrolysis, Ca²⁺ efflux, and platelet aggregation, and the like, as described herein.

By "substantial increase" is meant an increase in activity or other measurable phenotypic characteristic that is at least approximately a 2-fold increase over control level (where control assays are performed in the absence of activator), preferably at least approximately a 5-fold increase, more preferably at least approximately a 10-fold increase in activity over a control assay.

By "substantial decrease" or "substantial reduction" is meant a decrease or reduction in activity or other measurable phenotypic characteristic that is approximately 80% or the control level, preferably reduced to approximately 50% of the control level, or more preferably reduced to approximately 10% or less of the control level.

The terms "screening method" and "assay method" are used to describe a method of screening a candidate compound for its ability to act as an agonist of a PAR3 ligand. The method involves: a) contacting a candidate agonist compound with a recombinant protease-activated receptor 3 (or PAR3 agonist-binding fragment or analog); b) measuring activation of the receptor, the receptor polypeptide or the receptor fragment or analog; and c) identifying agonist compounds as those which interact with the recombinant receptor and trigger PAR3 activation. Interaction may be cleavage of the receptor to unmask an intramolecular receptor activating peptide or by mimicking the intramolecular receptor-activating

- 11 -

peptide. A tethered ligand may be more difficult to block than a free agonist. Thus, blocking thrombin is the acid test for an agonist which will block responses by other thrombin substrates.

By an "agonist" is meant a molecule which mimics a particular activity, in this case, interacting with a PAR3 ligand in a manner which activates thereby triggering the biological events which normally result from the interaction (e.g., phosphoinositide hydrolysis, Ca²⁺ efflux, and platelet aggregation). Preferably, an agonist initiates a substantial increase in receptor activity relative to control assays in the absence of activator or candidate agonist. An agonist may possess the same, less, or greater activity than a naturally-occurring PAR3 ligand.

The terms "antagonist assay", "antagonist screening" and the like, refer to a method of screening a candidate compound for its ability to antagonize interaction between a naturally-occurring activating 20 ligand or an agonist and the PAR3. The method involves: a) contacting a candidate antagonist compound with a first compound which includes a recombinant PAR3 (or agonist-binding fragment or analog) on the one hand and with a second compound which includes thrombin or a PAR3 25 agonist on the other hand; b) determining whether the first and second compounds interact or are prevented from interaction by the candidate compound; and c) identifying antagonistic compounds as those which interfere with the interaction of the first compound (PAR3 receptor) to the 30 second compound (PAR3 agonist) and which thereby substantially reduce thrombin or PAR3 agonist-activated biological events (e.g., phosphoinositide hydrolysis, Ca²⁺ efflux, and platelet aggregation).

By an "antagonist" is meant a molecule which blocks activation of a PAR3 receptor. This can be done

by inhibiting a particular activity such as the ability of thrombin, for example, to interact with a protease-activated receptor 3 thereby triggering the biological events resulting from such an interaction (e.g., phosphoinositide hydrolysis, Ca²⁺ efflux, and platelet secretion, or platelet aggregation). An antagonist may bind to and thereby block activation of a PAR3 receptor.

The terms "treatment", "treating", "treat" and the like are used herein to generally mean obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. "Treatment" as used herein covers any treatment of a disease in a mammal, particular a human, and includes:

- (a) preventing the disease or symptom from occurring in a subject which may be predisposed to the20 disease or symptom but has not yet been diagnosed as having it;
 - (b) inhibiting the disease symptom, i.e.,
 arresting its development; or
- (c) relieving the disease symptom, i.e., causing 25 regression of the disease.

PREFERRED EMBODIMENTS

In preferred embodiments of both screening methods, the recombinant PAR3 is stably expressed by a vertebrate cell which normally presents substantially no PAR3 on its surface (i.e., a cell which does not exhibit any significant thrombin-mediated phosphoinositide hydrolysis or Ca²⁺ efflux in the presence of a PAR activator); the vertebrate cell is a mammalian cell, is a

- 13 -

Rat 1 cell, or a COS 7 cell; and the candidate antagonist or candidate agonist is a thrombin analog, PAR3 peptide fragment or analog or other chemical agent including a polypeptide such as an antibody.

The receptor proteins of the invention are likely involved in the activation of vertebrate platelet, leukocyte, and mesenchymal cells in response to wounding, as well as mediating signalling in embryonic development. Such proteins and in particular PAR3 antagonists are 10 useful therapeutics for the treatment of such conditions as thrombosis, atherosclerosis, restenosis, and inflammation associated with normal wound healing and a variety of diseases including atherosclerosis, restenosis, pulmonary inflammation (ARDS) and 15 glomerulosclerosis. Preferred therapeutics include 1) agonists, e.g., thrombin analogs, PAR3 peptide fragments or analogs thereof, or other compounds which mimic the action of thrombin upon interaction with the protease-activated receptor 3 or mimic the action of an 20 intramolecular receptor activating peptide; and 2) antagonists, e.g., thrombin analogs, antibodies, or other compounds, which block thrombin or proteaseactivated receptor 3 function by interfering with the thrombin:receptor interaction or by interfering with the 25 receptor intramolecular activating peptide. The dosage would be expected to be comparable with current antiflammatory drugs and should be adjusted based on the age, sex, weight and condition of the patient beginning with small doses and increasing gradually based on 30 responsiveness and toxicity.

Because the receptor component may now be produced by recombinant techniques and because candidate agonists and antagonists may be screened using transformed, cultured cells, the instant invention provides a simple and rapid approach to the identification of useful

- 14 -

therapeutics. Isolation of the PAR3 gene (as cDNA or genomic DNA) allows its expression in a cell type which does not normally bear PAR3 on its surface, providing a system for assaying a thrombin:receptor interaction and receptor activation.

EXAMPLES

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make receptor proteins and sequences encoding such proteins and carry out the methodology for finding such DNA sequences and proteins, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to insure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts or parts by weight, molecular weight is weight average molecular weight; temperature is in degrees centigrade; and pressure is at or near atmospheric.

There now follows a description of the cloning and characterization of the cDNA, genomic DNA and the receptor protein of the protease-activated receptor 3 from mouse and human. Expression vectors containing and capable of expressing the PAR3 DNA, as well as transformed cells containing and expressing the DNA of the invention are also described. Also described are possible PAR3 agonists and antagonists as well as screening assays for receptor agonists and receptor antagonists.

- 15 -

EXAMPLE 1

Isolation of the Mouse Protease-Activated Receptor 3

Rat platelets were used as a source of RNA in the search for and cloning of PAR3 because rat platelets are more abundant than mouse platelets and, like mouse platelets, they do not respond to PAR1 agonist peptides (Connolly, A. et al. (1996) Nature 381: 516-519; and Connolly, T.M. et al (1994) Thromb Haemost 72: 627-33).

- Total RNA was prepared from rat platelets using
 10 Trizol reagent (Gibco BRL). cDNA was then prepared using
 random hexamer primers and the Superscript reverse
 transcriptase system (Gibco, BRL). cDNA was then used
 as template for PCR amplification using a Robocycler
 Gradient 96® (Stratagene) and the primers 5'-
- 15 GTITACATGCTI (A/C) AC (C/T) TIGCI (A/C/G/T) TIGC (A/C/G/T) GA-3'
 (SEQ ID NO:10) and 5'GGATAIACIACIGCIA (A/G/T) (A/G) (A/T) AIC (G/T) (A/C/G/T) TC-3'
 (SEQ ID NO:11) at 5μM in 20μM Tris-HCl (pH 8.4), 50μM

KCl, 1.5 μ M MgCl2, 0.2 μ M dNTP, and 50U/ μ l Taq polymerase.

- Polymerase chain reaction temperature was varied as follows: 94°C for 4 min; 30 cycles of 94°C for 45 sec, 39°C for 60 sec, and 72°C for 90 sec; then 72°C for 7 min. PCR products were subcloned using the TA cloning kit (InVitrogen, San Diego, CA). Rat cDNA clones with
- inserts of approximately 200 bp were analyzed by nucleic acid sequencing. One sequence predicted a novel G-protein coupled receptor related to PAR1 and PAR2. This sequence was used to obtain mouse and human cDNA and genomic clones by a combination of PCR and hybridization
- 30 techniques (see, for example, Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York). The nucleotide sequences are shown in Figures 1-4.

- 16 -

The rat PCR product was then used to clone the full length mouse cDNA and genomic DNA clones. The nucleotide sequences and deduced amino acid sequence of the mouse PAR3 are shown in Figs. 1 and 2.

The human PAR3 cDNA used for the functional studies presented below was cloned from a Lamda gt 10 intestinal cDNA library (Clonetech). Features of human PAR3's amino acid sequence are shown in Figs. 5A and 5B by alignment of the deduced amino acid sequence of PAR3 with those of PAR1 and PAR2. Predicted transmembrane (TM) domains are overlined and predicted Asn-linked glycosylation sites in PAR3 are underlined in the figure. The amino terminal exodomains are compared in Fig. 5b, including the cleavage site (^), the tethered ligand domains of PAR1 and PAR2, and the predicted tethered ligand domain of PAR3 (underlined). Also underlined is PAR3's hirudin-like domain (FEEFP). The similar FEEIP and YEPFW sequences in hirudin and PAR1, respectively are known to bind thrombin's fibrinogen-binding exosite.

The human PAR3 cDNA contained an open reading frame encoding a 374 amino acid putative G proteincoupled receptor (Fig. 3). BLAST search of the Genbank and EST databases revealed this protein to be novel with 28% and 30% amino acid sequence identity to human PAR1 25 and PAR2 (Fig. 5a, Table I). Its amino terminal exodomain revealed a possible thrombin cleavage site and a striking hirudin-like sequence (Fig. 5b). Like the carboxyl tail of hirudin itself, PAR1's hirudin-like sequence is known to dock with thrombin's fibrinogen 30 binding exosite, an interaction important for efficient PAR1 cleavage by thrombin (Vu, T.-K.H. et al. (1991) Nature 353:674-677; Liu, L. et al. (1991) J. Biol. Chem 266:16977-16980; Mathews, I.I. et al. (1994) Biochem 33 3266-79; Ishii, K. (1995) J. Biol. Chem 270:16435-16440, 35 which references are herein incorporated by reference in their entirety). These observations strongly suggested that this new receptor was a novel thrombin receptor.

A comparison of PAR deduced amino acid sequences from human, mouse, and *Xenopus* is provided in Table I below. The % identity of the total sequence as well as the % identity of the transmembrane regions are shown.

TABLE I

PAR SEQUENCE	% AMINO ACID IDENTITY			
	TOTAL	TM1-7		
hPAR3 vs hPAR1	28	37 ·		
hPAR3 vs hPAR2	30	38		
hPAR1 vs hPAR2	28	42		
hPAR3 vs xPAR1	29.	38		
hPAR1 vs xPAR1	52	63		
hPAR3 vs mPAR3	67	74		
hPAR1 vs mPAR1	77	81		
hPAR2 vs mPAR2	78,	85		

h = human

m = mouse

x = Xenopus laevis

EXAMPLE 2

Polypeptide Expression

Polypeptides according to the invention may be produced by transformation of a suitable host cell with all or part of a PAR3 encoding cDNA fragment (e.g., the cDNAs described above) in a suitable expression vehicle, and expression of the receptor.

•

Those skilled in the field of molecular biology will understand that any of a wide variety of expression systems may be used to provide the recombinant receptor The precise host cell used is not critical to protein. 5 the invention. The receptor may be produced in a prokaryotic host (e.g., E. coli) or in a eukaryotic host (e.g., Saccharomyces cerevisiae or mammalian cells, e.g., COS-6M, COS-7, NIH/3T3, or Chinese Hamster Ovary cells). Such cells are available from a wide range of sources 10 (e.g., the American Type Culture Collection, Rockville, MD). The method of transfection and the choice of expression vehicle will depend on the host system selected. Transformation and mammalian cell transfection methods are described, e.g., in Ausubel et al. (Current 15 Protocols in Molecular Biology, John Wiley & Sons, New York, (1989)); expression vehicles may be chosen from those provided, e.g., in Cloning Vectors: A Laboratory Manual (Pouwels, P.H. et al., (1985), Supp. 1987).

Particularly preferred expression systems are the 20 Xenopus oocyte cells of Vu et al. (Vu et al., Cell (1991) supra) and insect cells (SF9-baculovirus) transfected with an expression vector containing and expressing a receptor protein or biologically active fragment thereof. DNA encoding the human or mouse PAR3 or an appropriate 25 receptor fragment or analog (as described above) is inserted into the expression vector in an orientation designed to allow expression. Alternatively, the PAR3 (or biologically active receptor fragment or analog) is expressed by a stably-transfected mammalian cell line. 30 Other preferable host cells which may be used in conjunction with the expression vehicle include NIH/3T3 cells (ATCC Accession No. 1658). The expression may be used in a screening method of the invention (described below) or, if desired, the recombinant receptor protein 35 may be isolated as described below.

- 19 -

A number of vectors suitable for stable transfection of mammalian cells are available to the public, e.g., see Pouwels et al. (supra); methods for constructing such cell lines are also publicly available, s e.g., in Ausubel et al. (<u>supra</u>). In one example, cDNA encoding the receptor (or receptor fragment or analog) is cloned into an expression vector which includes the dihydrofolate reductase (DHFR) gene. Integration of the plasmid and, therefore, the PAR3-encoding gene into the 10 host cell chromosome is selected for by inclusion of 0.01-300 μM methotrexate in the cell culture medium (as described in Ausubel et al., supra). This dominant selection can be accomplished in most cell types. Recombinant protein expression can be increased by DHFR-15 mediated amplification of the transfected gene. Methods for selecting cell lines bearing gene amplifications are described in Ausubel et al. (supra); such methods generally involve extended culture in medium containing gradually increasing levels of methotrexate. 20 DHFR-containing expression vectors commonly used for this purpose include pCVSEII-DHFR and pAdD26SV(A) (described in Ausubel et al., supra). Any of the host cells described above or, preferably, a DHFR-deficient CHO cell line (e.g., CHO DHFR cells, ATCC Accession No. CRL 9096) 25 are among the host cells preferred for DHFR selection of a stably-transfected cell line or DHFR-mediated gene

One particularly preferred stable expression system is a Rat 1 cell (ATCC) stably transfected with a pcDNAI/NEO (InVitrogen, San Diego, CA) expression vector.

amplification.

Expression of the recombinant receptor (e.g., produced by any of the expression systems described herein) may be assayed by immunological procedures, such as Western blot or immunoprecipitation analysis of recombinant cell extracts, or by immunofluorescence of

- 20 -

intact recombinant cells (using, e.g, the methods described in Ausubel et al., supra). Recombinant receptor protein is detected using an antibody directed to the receptor. Described below are methods for producing anti-protease-activated receptor 3 antibodies using, as an immunogen, the intact receptor or a peptide which includes a suitable protease-activate receptor 3 epitope. To detect expression of a PAR3 fragment or analog, the antibody is preferably produced using, as an immunogen, an epitope included in the fragment or analog.

Once the recombinant PAR3 protein (or fragment or

analog, thereof) is expressed, it is isolated, e.g., using immunoaffinity chromatography. In one example, an anti-PAR3 antibody may be attached to a column and used to isolate intact receptor or receptor fragments or analogs. Lysis and fractionation of receptor-harboring cells prior to affinity chromatography may be performed by standard methods (see, e.g., Ausubel et al., suppra). Once isolated, the recombinant protein can, if desired, be further purified, e.g., by high performance liquid chromatography (see, e.g., Fisher, Laboratory Techniques In Biochemistry And Molecular Biology, eds., Work and Burdon, Elsevier, (1980)).

Receptors of the invention, particularly short receptor fragments, can also be produced by chemical synthesis (e.g., by the methods described in <u>Solid Phase Peptide Synthesis</u>, (1984) 2nd ed., The Pierce Chemical Co., Rockford, IL).

EXAMPLE 3

30 Cleavage and Activation Studies of the Recombinant Protease-Activated Receptor 3

PAR3 was demonstrated to be a substrate for thrombin when expressed on the surface of Cos 7 cells (Fig. 6). Human PAR1 or PAR3 cDNAs that were modified to

- 21 -

encode receptors displaying a FLAG epitope (amino acid sequence DYKDDD (SEQ ID NO:12) at a site amino to the thrombin cleavage site were transiently expressed in Cos7 cells. Epitope-tagged PAR1 has been previously described (Ishii, K. et al. (1993) J. Biol. Chem. 268:9780-9786). The analogous epitope-tagged PAR3 cDNA was constructed so as to encode a new amino terminus with the sequence MDSKGSSQKGSRLLLLLLVVSNLLLCQGVVS/DYKDDDDVE-TF (SEQ ID NO:13) representing the prolactin signal peptide, putative signal peptidase site (/), FLAG epitope DYKDDDD (SEQ ID NO:12) and junction VE fused to amino acid 17 in PAR 3.

cDNAs were subcloned into the mammalian expression vector pBJ1. For receptor cleavage studies Cos 7 cells 15 were transfected using DEAE-dextran and thrombin-mediated loss of M1 antibody (Kodak) binding to the FLAG epitope of the cell surface using a procedure described by Ishii et al. (Ishii, K. et al. (1993) supra). Over 95% of M1 antibody binding was transfection-dependent in this 20 system. Cells were incubated for 5 min. at 37°C in the presence (open columns) or absence (closed columns) of 20nM thrombin (Fig. 6). For biochemical identification of the cleavage site, cleavage of soluble PAR3 amino terminal exodomain by thrombin was assayed as follows. A 25 recombinant PAR3 soluble exodomain was prepared in which the amino terminal exodomain residues 21-94 were sandwiched between a translational start and hexahistidine tag (i.e. MG-[PAR3 21-94]-VEHHHHHH; where VEHHHHHH is SEQ ID NO:18). The recombinant protein was 30 expressed as a soluble polypeptide in E. coli, purified, and analyzed before and after thrombin cleavage as previously described for the analogous region of PAR1 (Ishii, K. (1995) J. Biol. Chem. <u>270</u>:16435-16440). Recombinant soluble amino terminal exodomain was cleaved 35 in solution with 50nM thrombin for 1h at 37°C, then

- 22 -

analyzed by SDS-PAGE. Even prolonged incubation with a high concentration of thrombin yielded only one detectable cleavage event indicating that only one thrombin cleavage site exists in the PAR3 exodomain.

5 Amino acid sequencing of the cleavage products revealed only a single new amino terminus with the sequence TFRG (see Fig. 1b). Thus, thrombin recognizes and cleaves PAR3 in the amino terminal exodomain between amino acids K38 and T39 with high specificity.

EXAMPLE 4

PAR3 Signaling Activity

10

The ability of PAR3 to mediate signaling by thrombin was tested. *Xenopus* oocytes were microinjected with cRNA encoding epitope-tagged human PAR3 (hPAR3), hPAR3 bearing the T39P cleavage site mutation, or the F40A tethered ligand domain mutation. Thrombin-triggered ⁴⁵Ca release was measured as described in Vu et al. (Vu, T.-K. H. et al. (1991) *supra*). Surface expression of wild type and mutant receptors was confirmed by M1 antibody binding by the method of Ishii, K. et al. (Ishii, K. et al. (1995) J. Biol. Chem. 270:16435-16440; and Ishii, K. et al. (1993) J. Biol. Chem. 268:9780-9786, which references are herein incorporated by reference in their entirety).

Microinjection of Xenopus oocytes with human PAR3 cRNA conferred thrombin-dependent 45 Ca mobilization (Fig. 7) which reflects agonist-triggered phosphoinositide hydrolysis in this system. Mutation of PAR3's thrombin cleavage site ablated thrombin signaling and thrombin rendered proteolytically inactive by the active site inhibitor PPACK failed to activate PAR3 even at concentrations as high as $1\mu M$. These data strongly

- 23 -

suggest that cleavage of the K 38 -T 39 peptide bond is necessary for PAR3 activation by thrombin.

The specificity of PAR3 and PAR1 signaling was also examined. Protease-triggered ⁴⁵Ca release was

5 measured in *Xenopus* oocytes expressing human PAR1 or PAR3 stimulated with various concentrations of the arginine/lysine specific serine proteases trypsin, Factor Xa, Factor VIIa, tissue plasminogen activator, or plasmin. Chymotrypsin, elastase, and cathepsin G were also tested. PAR3 was at least as specific for thrombin as thrombin receptor PAR1 (Fig. 10).

PAR3 signaling in Cos 7 cells was also examined. Cos 7 cells were transfected with human PAR1 or PAR3. Cells were then metabolically labelled with $^3\text{H-inositol}$ and phosphoinositide hydrolysis was measured in response to the indicated concentrations of α -thrombin (Fig. 8) or γ -thrombin (Fig. 9) as described by Ishii, et al. and Nanevicz et al. (Ishii, K. et al. (1993) supra; and Nanevicz, T. et al. (1996) J. Biol. Chem. 271:702-706).

Co-transfection with α16, a G protein α-subunit expressed in hematopoietic cell lines (Amatruda III, T.T. et al. (1991) J. Biol. Chem. <u>266</u>:5587-5591) caused a 50-150% increase in the maximal PAR3-mediated response to thrombin in these cells in each of three separate experiments (Fig. 7).

The EC₅₀ for thrombin signaling through PAR3 in this system was approximately 0.2 nM, comparable to that seen with PAR1 and well within physiologically achievable thrombin concentrations (Fig 8). γ -thrombin, which is defective in its anion-binding exosite (Rydel, T.J. et al. (1994) J. Biol. Chem. <u>269</u>:22000-22006), was two log units less potent than α -thrombin (EC₅₀ = 20nM; Fig. 9). Similarly, incubation of α -thrombin with the fibrinogen binding exosite blocker hirugen (Skrzypczak, J.E. et al. 1991) J. Mol. Biol. <u>221</u>:1379-1393) right-shifted the

- 24 -

dose response curve two logs (not shown). Alanine substitution at F 48 and E 49 in PAR3's hirudin-like sequence, residues predicted to dock with thrombin's fibrinogen-binding exosite by analogy with hirudin and PAR1 (Fig. 5B) also caused a decrease in thrombin signaling by PAR3. These data strongly suggest that PAR3 interacts with thrombin in a manner similar to PAR1 (Mathews, I. I., et al. (1994) Biochem. 33:3266-3279). Specifically, it is likely that PAR3 amino acids 48-52 (FEEFP, SEQ ID NO:14) dock with thrombin's fibrinogen-binding exosite while amino acids 35-38 (LTPK, SEQ ID NO:15) dock with thrombin's active center leading to cleavage of the K 38 - T 39 peptide bond.

Synthetic peptides that mimic the new amino

15 terminus unmasked by receptor proteolysis, the so called

"tethered ligand domain", act as agonists for PAR1 and

PAR2 (Vu, T. K.-H. et al. (1991) Cell 64:1057-1068;

Nystedt, S. et al. (1994) PNAS USA 91:9208-9212; and USPN

5,256,766, which references are herein incorporated by

20 reference in their entirety).

Peptides homologous to the tethered domain of PAR3 may be tested as potential agonists of PAR3 activity. Two peptides, TFRGAP (SEQ ID NO:16) and TFRGAPPNS (SEQ ID NO:17) were synthesized and tested for their ability to mimic the action of thrombin by causing PAR3 signaling as measured by phosphoinositide hydrolysis. Cos 7 cells expressing human PAR3 were incubated with the peptides at concentrations up to $100\mu M$. Phosphoinositide hydrolysis was not observed to be above control levels indicating that the synthetic peptides caused no detectable signaling by PAR3 under these conditions, whereas an EC50 of 0.2 nM was determined for α -thrombin under the same assay conditions. These results demonstrate that monitoring phosphoinositide hydrolysis provides a useful

- 25 -

means for assessing potential agonists for activity on PAR3 signaling for use as potential pharmaceutics.

The tethered ligand domain of PAR3 was required for PAR3 activation by thrombin. Substitution of Ala for Phe 40 (the F40A PAR3 mutant), which is analogous to the critical Phe 43 in PAR1's tethered ligand (Scarborough, R.M. et al. (1992) J. Biol. Chem. 267:13146-13149), ablated PAR3 signaling but not PAR3 cleavage by thrombin. The observation that cleavage of the Lys 38-Thr 39 peptide bond is necessary for PAR3 activation suggests that PAR3 is probably activated by the same tethered ligand mechanism utilized by PAR1 and 2.

EXAMPLE 5

PAR3 Tissue Expression in Mouse and Human

15 In situ hybridization of mouse tissue revealed the presence of PAR3 mRNA in megakaryocytes in mouse spleen. In the tissues examined (brain, eye, thymus, heart, lung, liver spleen, pancreas, stomach, small intestine, colon, kidneys, bladder, uterus, ovary, testis, skeletal 20 muscle, peripheral nerve, and skin), megakaryocytes in the spleen were the only cells which displayed clearcut hybridization over background. Control samples in which hybridization was performed with a sense strand probe control were negative for all cells. Northern analysis 25 of mouse tissues for PAR3 mRNA showed signals in spleen and lung, with low levels seen in brain, heart, and other tissues. Spleen is a hematopoietic organ in mouse, and megakaryocytes are sometimes seen trapped in the pulmonary microvasculature. Thus both Northern and in 30 situ hybridization data suggest that PAR3 is most abundantly expressed in megakaryocytes in the mouse.

- 26 -

The pharmacology of hPAR3 activation in Cos cells resembles that of mouse platelet activation. Both responses show subnanomolar $EC_{50}s$ for activation by α -thrombin and are thrombin active site- and fibrinogenbinding exosite-dependent. These observations support the concept that the mouse homolog of PAR3 is a thrombin receptor that mediates thrombin responses in mouse platelets. Whether human PAR3 function in human platelets remains to be determined.

The in situ hybridization studies were performed as follows. Anesthetized adult C57BL/6 mice were perfusion-fixed with 4% paraformaldehyde. Organs to be tested were dissected, trimmed, and immersion-fixed for 4 hours in 4% paraformaldehyde. Processed tissues were 15 embedded in paraffin, and 5 mm sections were cut. or antisense 35S-riboprobe was transcribed in vitro from mouse PAR2 cDNA subcloned into the EcoR1 site of pBluescript II SK (Stratagene, San Diego, CA). Hybridization, wash, and development conditions were as 20 reported for mouse PAR1 (Soifer, S.J. et al. (1993) Am. J. Pathol. 144:60-69). To carry out Northern analysis a 32P-labeled probe for the mouse message was generated by random priming (Prime-It II kit; Stratagene) of PCRamplified DNA fragments corresponding to mouse cDNA 25 codons representing transmembrane domains 2 to 3. High stringency hybridizations and washes were performed as per the Clontech protocol for Northern analysis.

Northern analysis of human tissues revealed that PAR3 mRNA is widely distributed with signals noted in small intestine, bone marrow, heart, pancreas, lung, liver, adrenal, trachea, lymph node, stomach, and peripheral blood leukocytes. The role of PAR3 in these various human tissues awaits definition; the finding of PAR3 in human bone marrow and leukocytes is consistent

- 27 -

with PAR3's playing a role in mediating activation of platelets and other hematopoietic cells by thrombin.

EXAMPLE 6

Assays for Protease-Activated Receptor 3 Function

Useful receptor fragments or analogs of the invention are those which interact with thrombin and are activated to initiate the cascade of events associated with thrombin:receptor interaction. Such an interaction may be detected by an in vitro functional assay method (e.g., the phosphoinositide hydrolysis assay, ⁴⁵Ca efflux assay, or platelet aggregation assay described herein). This method includes, as components, thrombin and a recombinant protease-activated receptor 3 (or a suitable fragment or analog) configured to permit thrombin binding (e.g., those polypeptides described herein). Thrombin may be obtained from Sigma Chemical Co. (St. Louis, MO) or similar supplier.

Preferably, the protease-activated receptor 3
component is produced by a cell that naturally presents
substantially no receptor on its surface, e.g., by
engineering such a cell to contain nucleic acid encoding
the receptor component in an appropriate expression
system. Suitable cells are, e.g., those discussed above
with respect to the production of recombinant receptor,
such as Rat 1 cells or COS-7 cells.

EXAMPLE 7

Screening For Protease-Activated Receptor 3 Activator Antagonists and Agonists Antagonists

As discussed above, one aspect of the invention features screening for compounds that inhibit the interaction between thrombin (or other PAR3 activating

- 28 -

compound) and the protease-activated receptor 3, thereby preventing or reducing the cascade of events that are mediated by that interaction. The elements of the screen are a PAR3 activator (such as thrombin), a candidate santagonist, and recombinant PAR3 (or a suitable receptor fragment or analog, as outlined above) configured to permit detection of PAR3 activator, antagonist, and PAR3 function. An additional element may be a downstream substrate, such as phosphoinositide, the hydrolysis of which is used to measure thrombin activity (Ishii, K. et al. (1993) supra; and Nanevicz, T. et al. (1996) supra).

Inhibition of thrombin-induced platelet aggregation may also be used as a means of monitoring an antagonist of PAR3 receptor activation. Thrombin is incubated with the candidate inhibitory compound (such as a peptide) for 5 minutes, then the mixture is added to washed platelets and platelet activation is followed as platelet ATP secretion by lumiaggregometry (see, for example, Connolly, A.J. et al. Nature 381:516-519 (1996); and USPN 5,256,766). Alternately, platelets are incubated with a candidate PAR 3 antagonist for 5 minutes. Thereafter the response to thrombin is measured.

Inclusion of potential antagonists in the screening assay along with thrombin allows for the screening and identification of authentic receptor antagonists as those which decrease thrombin-mediated events, such as platelet aggregation.

Appropriate candidate thrombin antagonists include 30 PAR3 fragments, particularly, fragments of the protein predicted to be extracellular and therefore likely to bind thrombin or the tethered ligand; such fragments would preferably include five or more amino acids.

- 29 -

Candidate PAR 3 antagonists include thrombin analogs as well as other peptide and non-peptide compounds and anti-PAR3 antibodies.

AGONISTS

Another aspect of the invention features screening for compounds that act as PAR3 ligand agonists.

Activation of the PAR3 with thrombin or an agonist leads to a cascade of events (such as phosphoinositide hydrolysis, Ca²⁺ efflux, and platelet aggregation), providing a convenient means for measuring thrombin or other agonist activity.

The agonist screening assay of the invention utilizes recombinant cells expressing recombinant PAR3 (or a suitable receptor fragment or analog, as outlined herein) configured to permit detection of PAR3 function. Alternatively, a cell such as a leukocyte, a platelet, or a mesenchymal cell that naturally expresses PAR3 may be used. Other elements of the screen include a detectable downstream substrate of the PAR3 activation, such as radiolabelled phosphoinositide, the hydrolysis of which to a detectable product indicates PAR3 activation by the candidate agonist.

45Ca efflux from a cell expressing PAR3 may be used as a means of measuring receptor activation by candidate agonists (Williams, J.A. et al., (1988) PNAS USA 85:4939-4943; Vu, T.-K. H., et al. (1991) Cell 64:1057-1068; and USPN 5,256,766, which references are herein incorporated by reference in their entirety). 45Ca release by oocytes expressing cRNA encoding PAR3 are assessed as follows. Briefly, intracellular calcium pools are labeled by incubating groups of 30 oocytes in 300 μl calcium-free MBSH containing 50 μCi 45CaCl₂ (10-40 mCi/mg Ca; Amersham) for 4 hours at room temperature.

- 30 -

The labeled oocytes are washed, then incubated in MBSH II without antibiotics for 90 minutes. Groups of 5 oocytes are selected and placed in individual wells in a 24-well tissue culture plate (Falcon 3047) containing 0.5 ml/well 5 MBSH II without antibiotics. This medium is removed and replaced with fresh medium every 10 minutes, the harvested medium is analyzed by scintillation counting to determine ⁴⁵Ca released by the oocytes during each 10-minute incubation. The 10-minute incubations are continued until a stable baseline of ⁴⁵Ca release per unit time is achieved. Two additional 10-minute collections are obtained, then test medium including agonist is added and agonist-induced ⁴⁵Ca release determined.

A voltage clamp assay provides an alternative

method of monitoring agonist activity. Agonist-induced inward chloride currents are measured in voltage-clamped oocytes expressing thrombin receptor encoding cRNA essentially as previously described (Julius, D. et al. Science (1988) 241:558-563, herein incorporated by reference in its entirety) except that the single electrode voltage-clamp technique is employed.

Platelet aggregation may also be used as a means of monitoring PAR3 receptor activation (see, for example, Connolly, A.J. et al. Nature 381:516-519 (1996). In particular, mouse platelets may utilize only PAR 3 for thrombin signaling. Human platelets may use both PAR 1 and PAR 3. Thus both would be useful in deleting against function at PAR 3.

- 31 -

An agonist useful in the invention is one which imitates the normal thrombin-mediated signal transduction pathway leading, e.g., to an increase in phosphoinositide hydrolysis. Appropriate candidate agonists include thrombin analogs or PAR3 tethered ligand domains or other agents which mimic the action of thrombin or the PAR 3 tethered ligand domain. Agonists would be useful for aiding discovery of antagonists.

EXAMPLE 8

10 Anti-Protease-Activated Receptor 3 Antibodies

Protease-activated receptor 3 (or immunogenic receptor fragments or analogs) may be used to raise antibodies useful in the invention. Receptor fragments preferred for the production of antibodies are those fragments deduced or shown experimentally to be extracellular.

Antibodies directed to PAR3 peptides are produced as follows. Peptides corresponding to all or part of the PAR3 protein are produced using a peptide synthesizer by 20 standard techniques. The peptides are coupled to KLH with m-maleimide benzoic acid N-hydroxysuccinimide ester. The KLH-peptide is mixed with Freund's adjuvant and injected into animals, e.g. guinea pigs or goats, to produce polyclonal antibodies. Monoclonal antibodies may 25 be prepared using the PAR3 polypeptides described above and standard hybridoma technology (see, é.g., Kohler et al., Nature (1975) 256:495, 1975; Kohler et al., Eur. J. Immunol. (1976) 6:292; Kohler et al., Eur. J. Immunol. (1976) 6:511; Hammerling et al., in Monoclonal Antibodies 30 and T Cell Hybridomas, Elsevier, NY, (1981); and Ausubel et al., supra). Antibodies are purified by peptide antigen affinity chromatography.

- 32 -

Once produced, antibodies are tested for their ability to bind PAR3 by specific binding to the surface of PAR3-transfected cells by Western blot or immunoprecipitation analysis (such as by the methods described in Ausubel et al., supra).

Antibodies which specifically recognize PAR3 are considered to be likely candidates for useful antagonists; such candidates are further tested for their ability to specifically interfere with the interaction between thrombin and PAR3 (using the functional antagonist assays described herein). Antibodies which antagonize thrombin: PAR3 binding or PAR3 function are considered to be useful antagonists in the invention.

EXAMPLE 9 THERAPY

15

Particularly suitable therapeutics for the treatment of wound healing, thrombosis, atherosclerosis, restenosis, inflammation, and other thrombin-mediated signalling disorders are the agonists and antagonists 20 described above formulated in an appropriate buffer such as physiological saline. Where it is particularly desirable to mimic a receptor fragment conformation at the membrane interface, the fragment may include a sufficient number of adjacent transmembrane residues. 25 this case, the fragment may be associated with an appropriate lipid fraction (e.g., in lipid vesicles or attached to fragments obtained by disrupting a cell membrane). Alternatively, anti-PAR3 antibodies produced as described above may be used as a therapeutic. 30 the antibodies would be administered in a pharmaceutically-acceptable buffer (e.g., physiological If appropriate, the antibody preparation may be combined with a suitable adjuvant.

- 33 -

Antibodies to PAR 3 are useful antagonists which can be formulated as indicated above. Other therapeutically useful antagonists are peptides derived from PAR3 that bind to and block thrombin and include formulation comprising a pharmaceutically acceptable carrier and one or more of the following:

(1) the isolated sequence LPIKTFRGAPPNSFEEFPFSALE;

10

20

25

- (2) uncleavable thrombin inhibitor LPIKPFRGAPPNSFEEFPFSALE where the PAR 3 cleavage site P1' is mutated to block cleavage;
- (3) uncleavable thrombin inhibitor LPI
 (hR)TFRGAPPNSFEEFPFSALE where the PAR 3
 cleavage site P1 is mutated to block
 cleavage;
 hR is beta-homoarginine (the extra methylene
 group is in the main chain);
- (4) uncleavable thrombin inhibitor (dF) PRPFRGAPPNSFEEFPFSALE where the good active site binding sequence dFPR is substituted for LPIK; dF is D-Phenylalanine;
- (5) any of (1)-(4) above where all or part of the sequence TFRGAPPNS is replaced with spacer sequences such as GGG;
- (6) variations and combinations of (1)-(5) which act as antagonists.

The therapeutic preparation is administered in accordance with the condition to be treated. Ordinarily, it will be administered intravenously, at a dosage, of a duration, and with the appropriate timing to elicit the desired response. Appropriate timing refers to, for example, time relative to wounding, time intervals between therapeutic administrations, and the like, at

WO 98/18456 PCT/US97/19732

- 34 -

which administration of therapeutic preparation elicits the desired response. Alternatively, it may be convenient to administer the therapeutic orally, nasally, or topically, e.g., as a liquid or a spray. The dosages s are determined to be an amount of the therapeutic agent delivered to an animal that substantially reduces or alleviates disease symptoms. Treatment may be repeated as necessary for substantial reduction or alleviation of disease symptoms.

PAR3 activator agonists can be used for the treatment of bleeding. Antagonists may be useful in controlling the formation of clots that cause heart attack and stroke, mediating inflammation and the proliferative responses to injury in normal wound healing 15 and a variety of diseases including atherosclerosis, restenosis, pulmonary inflammations (ARDS), glomerulosclerosis, etc.

10

The methods of the invention may be used to screen therapeutic receptor activator agonists and antagonists 20 for their effectiveness in altering thrombin-mediated biological events, such as phosphoinositide hydrolysis or other cell signalling events by the assays described above. Where a non-human mammal is treated or where a therapeutic for a non-human animal is screened, the PAR3 25 or receptor fragment or analog or the antibody employed is preferably specific for that species.

OTHER EMBODIMENTS

Polypeptides according to the invention include any protease-activated receptors (as described herein). 30 Such receptors may be derived from any source, but are preferably derived from a vertebrate animal, e.g., a human or mouse. These polypeptides are used, e.g., to

WO 98/18456 PCT/US97/19732

- 35 -

screen for antagonists which disrupt, or agonists which mimic, a thrombin:receptor interaction.

Polypeptides of the invention also include any analog or fragment of a PAR3 capable of interacting with thrombin. Such analogs and fragments may also be used to screen for PAR3 ligand antagonists or agonists. In addition, that subset of receptor fragments or analogs which bind thrombin and are, preferably, soluble (or insoluble and formulated in a lipid vesicle) may be used as antagonists to reduce the *in vivo* concentration of endogenous thrombin, either circulating concentration or local concentration. The efficacy of a receptor analog or fragment is dependent upon its ability to interact with thrombin; such an interaction may be readily assayed using PAR3 functional assays (e.g., those described herein).

Specific receptor analogs of interest include full-length or partial receptor proteins including an amino acid sequence which differs only by conservative amino acid substitutions, for example, substitution of one amino acid for another of the same class (e.g., valine for leucine, arginine for lysine, etc.) or by one or more non-conservative amino acid substitutions, deletions, or insertions located at positions of the amino acid sequence which do not destroy the receptors' ability to signal thrombin-mediated events (e.g., as assayed above).

Specific receptor fragments of interest include any portion of the PAR3 which is capable of interacting with thrombin, for example, all or part of the extracellular domains predicted from the deduced amino acid sequence. Such fragments may be useful as antagonists (as described above), and are also useful as immunogens for producing antibodies which neutralize the activity of PAR3 in vivo (e.g., by interfering with the

WO 98/18456 PCT/US97/19732

- 36 -

interaction between the receptor and thrombin). sequence of figure 5B is most likely to bind thrombin. Modification of the (K38/T39) cleavage site for example, substitution of proline for T39 will render peptides 5 mimicking this site uncleavable. Such peptides will bind thrombin with high affinity.

Extracellular regions of novel protease-activated receptors may be identified by comparison with related proteins of similar structure (e.g., other members of the 10 G-protein-coupled receptor family); useful regions are those exhibiting homology to the extracellular domains of well-characterized members of the family.

Alternatively, from the primary amino acid sequence, the secondary protein structure and, therefore, 15 the extracellular domain regions may be deduced semiempirically using a hydrophobicity/hydrophilicity calculation such as the Chou-Fasman method (see, e.g., Chou and Fasman, Ann. Rev. Biochem. (1978) 47:251). Hydrophilic domains, particularly ones surrounded by 20 hydrophobic stretches (e.g., transmembrane domains) present themselves as strong candidates for extracellular domains. Finally, extracellular domains may be identified experimentally using standard enzymatic digest analysis, e.g., tryptic digest analysis.

25

Candidate fragments (e.g., any extracellular fragment) are tested for interaction with thrombin by the assays described herein (e.g., the assay described above). Such fragments are also tested for their ability to antagonize the interaction between thrombin and its 30 endogenous receptor, such as PAR3, using the assays described herein. Analogs of useful receptor fragments (as described above) may also be produced and tested for efficacy as screening components or antagonists (using the assays described herein); such analogs are also 35 considered to be useful in the invention.

WO 98/18456 PCT/US97/19732

- 37 -

Identification of the receptor(s) that mediate thrombin signaling provides potential targets for the development of drugs that block thrombin's undesirable actions or mimic its desirable activities. Thrombin receptor antagonists may be used for inhibition of platelet-dependent thrombosis in the setting of unstable angina and myocardial infarction or for blocking thrombin's proinflammatory actions on endothelial cells in the setting of vascular injury. Thrombin receptor agonists may be used to promote hemostasis and fibroblast proliferation at wound sites.

Unmasked tethered ligand domain peptides may provide lead structures for the development of PAR3 agonists or antagonists.

15 The instant invention is shown and described herein in what is considered to be the most practical, and preferred embodiments. It is recognized, however, that departures may be made therefrom, which are within the scope of the invention, and that obvious 20 modifications will occur to one skilled in the art upon reading this disclosure.

Receptor 3 and

SEQUENCE LISTING

	(1) GENERAL INFORMATION		
	(i) APPLICANT: The Regents of the University of California		
5	(ii) TITLE OF THE INVENTION: Protease Activated Uses Thereof		
	(iii) NUMBER OF SEQUENCES: 23		
10	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Fulbright & Jaworski L.L.P. (B) STREET: 865 S. Figueroa Street, 29th Floor (C) CITY: Los Angeles (D) STATE: CA (E) COUNTRY: USA (F) ZIP: 90017-2571		
15	(v) COMPUTER READABLE FORM:	. "	
	(A) MEDIUM TYPE: Diskette		
	(B) COMPUTER: IBM Compatible (C) OPERATING SYSTEM: DOS	•	
	(D) SOFTWARE: FastSEQ for Windows Version 2.0		
20	(vi) CURRENT APPLICATION DATA:		
	(A) APPLICATION NUMBER:		
	(B) FILING DATE: (C) CLASSIFICATION:	-	
	(C) CLASSIFICATION.		
	(vii) PRIOR APPLICATION DATA:		
25	(A) APPLICATION NUMBER: (B) FILING DATE:		
	(b) filing DATE.		
	(viii) ATTORNEY/AGENT INFORMATION:		
	(A) NAME: Berliner, Robert		
30	(B) REGISTRATION NUMBER: 20,121 (C) REFERENCE/DOCKET NUMBER: 5555-462		
	(ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 213-892-9200		
	(B) TELEFAX: 213-680-4518		
	(C) TELEX:		
35	(2) INFORMATION FOR SEQ ID NO:1:		
		•	•
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1224 base pairs	-	
	(B) TYPE: nucleic acid	•	
	(C) STRANDEDNESS: double	•	
40	(D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: cDNA		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	•	
	TGACTITGTA TACTTAACAA CATCCTGTAG CCGGGTCTCA GGACATCAAG		60
45	TTATCTTGGT TGCAGCTGGG CTGCTGTTTC TGCCAGTCAC TGTTTGCCAA		120
42	ATGTTTCAGA CAACTCAGCA AAGCCAACCT TAACTATTAA GAGTTTTAAT AAAATACCTT TGAAGAATTC CCACTTTCTG ACATAGAGGG CTGGACAGGA		180 240
	CTATAAAAGC GGAGTGTCCC GAGGACAGTA TTTCAACTCT CCACGTGAAT		300
	TAGGATACCT GAGAAGTTCC TTAAGTACCC AAGTGATACC TGCCATCTAT		360
50	TIGIGGITGG IGTACCATCC AACATCGTGA CCCTGTGGAA ACTCTCCTTA CCATCAGTCT GGTCATCTTT CACACCAACC IGGCCATCGC AGATCTCCTT		420 480
,,	CACTGCCATT TAAGATCGCC TACCATCTCA ATGGCAACAA CTGGGTATTT		540
	TGTGCCGGAT CACCACGGTC GTTTTCTACG GCAACATGTA CTGCGCTATC	CTGATCCTCA	600
	CTTGCATGGG CATCAACCGC TACCTGGCCA CGGCTCACCC TTTCACATAC		660
	CCAAACGCAG CTTCTCCTTG CTCATGTGTG GCATAGTGTG GGTCATGGTT	ITCTTATACA	720

15

40

45

```
TGCTGCCCTT TGTCATCCTG AAGCAGGAGT ACCACCTCGT CCACTCAGAG ATCACCACCT
                                                                      780
GCCACGATGT CGTCGACGCG TGCGAGTCCC CATCATCCTT CCGATTCTAC TACTTCGTCT
                                                                      840
CCTTAGCATT CTTTGGGTTC CTCATCCCGT TTGTGATCAT CATCTTCTGT TACACGACTC
                                                                      900
TCATCCACAA ACTTAAATCA AAGGATCGGA TATGGCTGGG CTACATCAAG GCCGTCCTCC
                                                                      960
TCATCCTTGT GATTTTCACA ATTTGCTTTG CCCCCACCAA CATCATACTC GTAATCCACC
                                                                     1020
ATGCCAACTA CTACTACCAC AATACCGACA GCTTGTACTT TATGTATCTT ATTGCTCTGT
                                                                     1080
GCCTGGGGAG CCTGAATAGC TGCCTAGATC CATTCCTTTA CTTTGTCATG TCGAAAGTTG
                                                                     1140
TAGATCAGCT TAATCCTTAG TCGGCAATGG CAAGACCACT TTAGAGACCA AGGAGAGATA
                                                                     1200
TCTGGGAAGA CATACATGCT TGGC
                                                                     1224
```

10 (2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1124 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (ix) FEATURE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

	CCATATGCTA	ATATTTCCTT	TCAATTACAG	GCATAAATGT	TTCAGACAAC	TCAGCAAAGC	60
20	CAACCTTAAC	TATTAAGAGT	TTTAATGGGG	GTCCCCAAAA	TACCTTTGAA	GAATTCNNNN	120
	NNNTACAACT	CTCCATGTGA	ATAATGCTAC	CATGGGATAC	CTGAGAAGTT	CCTTAAGTAC	180
	CAAAGTGATA	CCTGCCATCT	ACATCCTGGT	GTTTGTGATT	GGTGTACCAG	CGAACATCGT	240
	GACCCTGTGG	AAACTCTCCT	CAAGGACCAA	ATCCATCTGT	CTGGTCATCT	TTCACACCAA	. 300
	CCTGGCCATC	GCGGATCTCC	TTTTCTGTGT	CACGCTGCCG	TTTAAGATCN	NCCTACCATC	360
25	TCAATGGCAA	CAACTGGGTA	TTTGGCGAGG	TCATGTGCCG	GATCACCACG	GTCGTTTTCT	420
	ACGGCAACAT	GTACTGCGCT	ANNNTCCTGA	TCCTCACCTG	CATGGGCATC	AACCGCTACC	480
	TGGCCACGGC	TCACCCTTTC	ACATACCAGA	AGCTGCCCAA	ACGCAGCTTC	TCCATGCTCA	540
	TGTGTGGCAT	GGTGTGGGTC	ATGGTTTTCT	TATACATGCT	GCCCTTTGTC	ATCCNNNAAG	, 600
	CAGGAGTACC	ACCTCGTCCA	CTCCGAGATC	ACCACCTGCC	ACGATGTCGT	CGACGCGTGC	660
30	GANTCCCCAT	CATCCTTCCG	ATTCTACTAC	TTCGTCTCCT	TAGCATTCTT	TGGGTTCCTC	720
	ATCCCGTTTG	TGATCATCAT	CTTCTGTTAC	ACGACTCTCA	TCCACAAACT	TAAATCAAAA	780
	GATCNGATAT	GGCTGGGCTA	CATCAAGGCC	GTCCTCCTCA	TCCTTGTGAA	TTTCACCATC	840
	TGCTTCCCCC	CCACCAAGNN	NNNNGATATC	TGGGAAGACG	TACATGCTTG	GCTGACTTGT	900
	GCATGGCACC	ATCAGCTCAA	TTTTAATTT	TTTAATTTA	ATTTAATTTA	ATTTTATGTT	960
35	TTTGAGACAG	AGCCTCACTG	TGTAGTCCTG	GCTGGCCTGG	CTGGTTCTCT	ATTTAGACCA	1020
	GGTTAGCCTT	GAACTCACAG	AGATCTGCCT	GCTTCTGCCT	CCCAAGTGCT	GGGTTCAACC	1080
	AGGTCTGGCA	AGCGCTCCAT	TTTTCAGCTC	CTCTGCAACA	GTGC		1124

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 407 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Thr Leu Tyr Thr Xaa Gln His Pro Val Ala Gly Ser Gln Asp Ile Lys
1 10 15 Met Lys Ile Leu Ile Leu Val Ala Ala Gly Leu Leu Phe Leu Pro Val 20 25 30 50 Thr Val Cys Gln Ser Gly Ile Asn Val Ser Asp Asn Ser Ala Lys Pro 35 40 45 40 Thr Leu Thr Ile Lys Ser Phe Asn Gly Gly Pro Gln Asn Thr Phe Glu 50 55 60 Glu Phe Pro Leu Ser Asp Ile Glu Gly Trp Thr Gly Ata Thr Thr 75 80 Ile Lys Ala Glu Cys Pro Glu Asp Ser Ile Ser Thr Leu His Val Asn 85 90 95 Asn Ala Thr Ile Gly Tyr Leu Arg Ser Ser Leu Ser Thr Gln Val Ile 100 105 110 60

Pro Ala Ile Tyr Ile Leu Leu Phe Val Val Gly Val Pro Ser Asn Ile 115 120 125 Val Thr Leu Trp Lys Leu Ser Leu Arg Thr Lys Ser Ile Ser Leu Val 130 135 140 Ile Phe His Thr Asn Leu Ala Ile Ala Asp Leu Leu Phe Cys Val Thr
145. 150 155 160
Leu Pro Phe Lys Ile Ala Tyr His Leu Asn Gly Asn Asn Trp Val Phe
165 170 175 Gly Glu Val Met Cys Arg Ile Thr Thr Val Val Phe Tyr Gly Asn Met 180 185 190 Tyr Cys Ala Ile Leu Ile Leu Thr Cys Met Gly Ile Asn Arg Tyr Leu 195 200 205 Ala Thr Ala His Pro Phe Thr Tyr Gln Lys Leu Pro Lys Arg Ser Phe 210 215 220 Ser Leu Leu Met Cys Gly Ile Val Trp Val Met Val Phe Leu Tyr Met 225 230 235 240 Leu Pro Phe Val Ile Leu Lys Gln Glu Tyr His Leu Val His Ser Glu 245 250 255 Tie Thr Thr Cys His Asp Val Val Asp Ala Cys Glu Ser Pro Ser Ser 260 265 270 Phe Arg Phe Tyr Tyr Phe Val Ser Leu Ala Phe Phe Gly Phe Leu Ile 275 280 285 Pro Phe Val 11e 11e 11e Phe Cys Tyr Thr Thr Leu I1e His Lys Leu 290 295 300 Lys Ser Lys Asp Arg Ile Trp Leu Gly Tyr Ile Lys Ala Val Leu Leu 305 310 315 Ile Leu Val Ile Phe Thr Ile Cys Phe Ala Pro Thr Asn Ile Ile Leu 325 330 335 Val Ile His His Ala Asn Tyr Tyr Tyr His Asn Thr Asp Ser Leu Tyr 340 345 350 Phe Met Tyr Leu Ile Ala Leu Cys Leu Gly Ser Leu Asn Ser Cys Leu 355 360 365 Asp Pro Phe Leu Tyr Phe Val Met Ser Lys Val Val Asp Gln Leu Asn 370 380 Pro Xaa Ser Ala Met Ala Arg Pro Leu Xaa Arg Pro Arg Arg Asp 1le 385 390 395 400 Trp Glu Asp I'le His Ala Trp 405

(2) INFORMATION FOR SEQ ID NO:4:

- 40 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1224 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: Linear
- 45 (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

	TGCTCCATGA	TTTTACAGAT	TTCATAACGT	TTAAGAGACG	GGACTCAGGT	CATCAAAATG	60
	AAAGCCCTCA	TCTTTGCAGC	TGCTGGCCTC	CTGCTTCTGT	TGCCCACTTT	TTGTCAGAGT	120
	GGCATGGAAA	ATGATACAAA	CAACTTGGCA	AAGCCAACCT	TACCCATTAA	GACCTTTCGT	180
50.	GGAGCTCCCC	CAAATTCTTT	TGAAGAGTTC	CCCTTTTCTG	CCTTGGAAGG	CTGGACAGGA	240
	GCCACGATTA	CTGTAAAAAT	TAAGTGCCCT	GAAGAAAGTG	CTTCACATCT	CCATGTGAAA	300
	AATGCTACCA	TGGGGTACCT	GACCAGCTCC	TTAAGTACTA	AACTGATACC	TGCCATCTAC	360
	CTCCTGGTGT	TTGTAGTTGG	TGTCCCGGCC	AATGCTGTGA	CCCTGTGGAT	GCTTTTCTTC	420
	AGGACCAGAT	CCATCTGTAC	CACTGTATTC	TACACCAACC	TGGCCATTGC	AGATTTTCTT	480
55	TTTTGTGTTA	CATTGCCCTT	TAAGATAGCT	TATCATCTCA	ATGGGAACAA	CTGGGTATTT	540
	GGAGAGGTCC	TGTGCCGGGC	CACCACAGTC	ATCTTCTATG	GCAACATGTA	CTGCTCCATT	600
	CTGCTCCTTG	CCTGCATCAG	CATCAACCGC	TACCTGGCCA	TCGTCCATCC	TTTCACCTAC	660
	CGGGGCCTGC	CCAAGCACAC	CTATGCCTTG	GTAACATGTG	GACTGGTGTG	GGCAACAGTT	720
	TTCTTATATA	TGCTGCCATT	TTTCATACTG	AAGCAGGAAT	ATTATCTTGT	TCAGCCAGAC	780
60	ATCACCACCT	GCCATGATGT	TCACAACACT	TGCGAGTCCT	CATCTCCCTT	CCAACTCTAT	840
	TACTTCATCT	CCTTGGCATT	CTTTGGATTC	TTAATTCCAT	TTGTGCTTAT	CATCTACTGC	900
	TATGCAGCCA	TCATCCGGAC	ACTTAATGCA	TACGATCATA	GATGGTTGTG	GTATGTTAAG	960
	GCGAGTCTCC	TCATCCTTGT	GATTTTTACC	ATTTGCTTTG	CTCCAAGCAA	TATTATTCTT	1020
	ATTATTCACC	ATGCTAACTA	CTACTACAAC	AACACTGATG	GCTTATATTT	TATATATCTC	1080
65	ATAGCTTTGT	GCCTGGGTAG	TCTTAATAGT	TGCTTAGATC	CATTCCTTTA	TTTTCTCATG	1140

TCAAAAACCA GAAATCACTC CACTGCTTAC CTTACAAAAT AGTGAAATGA TCTTAGAGAA 1200 CAAGGACAGC CATCACAGAG AACG 1224

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1102 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

	ACAGGCATGG	AAAATGATAC	AAACAACTTG	GCAAAGCCAA	CCTTACCCAT	TAAGACCTTT	60
	CGTGGAGCTC	CCCCAAATTC.	TTTTGAAGAG	TTCCCCTTTT	CTGCCTTGGA	AGGCTGGACA	120
	GGAGCCACGA	TTACTGTAAA	AATTAAGTGC	CCTGAAGAAA	GTGCTTCACA	TCTCCATGTG	180
	AAAAATGCTA	CCATGGGGTA	CCTGACCAGC	TCCTTAAGTA	CTAAACTGAT	ACCTGCCATC	240
15	TACCTCCTGG	TGTTTGTAGT	TGGTGTCCCG	GCCAATGCTG	TGACCCTGTG	GATGCTTTTC	300
	TTCAGGACCA	GATCCATCTG	TACCACTGTA	TTCTACACCA	ACCTGGCCAT	TGCAGATTTT	360
	CTTTTTTGTG	TTACATTGCC	CTTTAAGATA	GCTTATCATC	TCAATGGGAA	CAACTGGGTA	420
	TTTGGAGAGG	TCCTGTGCCG	GGCCACCACA	GTCATCTTCT	ATGGCAACAT	GTACTGCTCC	480
	ATTCTGCTCC	TTGCCTGCAT	CAGCATCAAC	CGCTACCTGG	CCATCGTCCA	TCCTTTCACC	540
20	TACCGGGGCC	TGCCCAAGCA	CACCTATGCC	TTGGTAACAT	GTGGACTGGT	GTGGGCAACA	600
	GTTTTCTTAT	ATATGCTGCC	ATTTTTCATA	CTGAAGCAGG	AATATTATCT	TGTTCAGCCA	660
	GACATCACCA	CCTGCCATGA	TGTTCACAAC	ACTTGCGAGT	CCTCATCTCC	CTTCCAACTC	720
	TATTACTTCA	TCTCCTTGGC	ATTCTTTGGA	TTCTTAATTC	CATTTGTGCT	TATCATCTAC	780
	TGCTATGCAG	CCATCATCCG	GACACTTAAT	GCATACGATC	ATAGATGGTT	GTGGTATGTT	840
25	AAGGCGAGTC	TCCTCATCCT	TGTGATTTTT	ACCATTTGCT	TTGCTCCAAG	CAATATTATT	900
	CTTATTATTC	ACCATGCTAA	CTACTACTAC	AACAACACTG	ATGGCTTATA	TATATATAT	960
	CTCATAGCTT	TGTGCCTGGG	TAGTCTTAAT	AGTTGCTTAG	ATCCATTCCT	TTATTTTCTC	1020
	ATGTCAAAAA	CCAGAAATCA	CTCCACTGCT	TACCTTACAA	AATAGTGAAA	TGATCTTAGA	1080
	GAACAAGGAC	AGCCATCACA	GA				1102

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 408 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
- 35 (D) TOPOLOGY: linear

30

(ix) FEATURE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 425 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Ile Trp Ala Leu Ala Ile Ala Gly Val Val Pro Leu Val Leu Lys 225 230 240

Glu Gln Thr Ile Gln Val Pro Gly Leu Asn Ile Thr Thr Cys His Asp 255

Val Leu Asn Glu Thr Leu Leu Glu Gly Tyr Tyr Ala Tyr Tyr Phe Ser 260 265

Ala Phe Ser Ala Val Phe Phe Phe Val Pro Leu Ile Ile Ser Thr Val 280 285

Cys Tyr Val Ser Ile Ile Arg Cys Leu Ser Ser Ser Ala Val Ala Asn 290 295

Arg Ser Lys Lys Ser Arg Ala Leu Phe Leu Ser Ala Ala Val Phe Cys 305

Ile Phe Ile Ile Cys Phe Gly Pro Thr Asn Val Leu Leu Ile Ala His 325

Tyr Ser Phe Leu Ser His Thr Ser Thr Thr Glu Ala Ala Tyr Phe Ala 340

Tyr Leu Leu Cys Val Cys Val Ser Ser Glu Cys Gln Arg Tyr Val Tyr Ser 370

Ile Leu Cys Cys Lys Glu Ser Ser Asp Pro Ser Ser Tyr Asn Ser Ser 380

Gly Gln Leu Met Ala Ser Lys Met Asp Thr Cys Ser Ser Asn Leu Asn 415

Asn Ser Ile Tyr Lys Lys Leu Leu Thr 425

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 394 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

```
Ser Ala Tyr Val Leu Net Ile Arg Met Leu Arg Ser Ser Ala Met Asp
260 265 270
      Glu Asn Ser Glu Lys Lys Arg Lys Arg Ala Ile Lys Leu Ile Val Thr
              275
                                     280
                                                            285
      Val Leu Ala Met Tyr Leu Ile Cys Phe Thr Pro Ser Asn Leu Leu Leu
290 295 300
      Val Val His Tyr Phe Leu Ile Lys Ser Gln Gly Gln Ser His Val Tyr
305 310 315 320
     Ala Leu Tyr Ile Val Ala Leu Cys Leu Ser Thr Leu Asn Ser Cys Ile
325 330 335
      Asp Pro Phe Val Tyr Tyr Phe Val Ser His Asp Phe Arg Asp His Ala 340 345
      Lys Asn Ala Leu Leu Cys Arg Ser Val Arg Thr Val Lys Gin Met Gin
355 360 365
15
      Val Ser Leu Thr Ser Lys Lys His Ser Arg Lys Ser Ser Ser Tyr Ser
                                375
      Ser Ser Ser Thr Thr Val Lys Thr Ser Tyr
      385
                            390
20
```

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

25

40

45

50

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Asp Phe Glu Glu Ile Pro Glu Glu Tyr Leu Gln

- (2) INFORMATION FOR SEQ ID NO:10: 30
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
- 35 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: Other
 - (B) LOCATION: 1...29
 - (D) OTHER INFORMATION: N=Inosine at residues 3, 12, 18, 21, and 24
 - (A) NAME/KEY: Other
 - (B) LOCATION: 22...27
 - (D) OTHER INFORMATION: N=A or C or G or T at residues 22 and 27

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GTNTACATGC THMACYTHGC NHTHGCHGA

- (2) INFORMATION FOR SEQ ID NO:11:
- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- 55 (ix) FEATURE:

- 45 -

```
(A) NAME/KEY: Other
```

- (B) LOCATION: 6...21
- (D) OTHER INFORMATION: N=Inosine at residues 6, 9, 12, 15, and 21

5

- (A) NAME/KEY: Other
- (B) LOCATION: 24
- (D) OTHER INFORMATION: N=A or C or G or T at residue 24
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

10 GGATANACNA CNGCNADRWA NCKNTC

26

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Asp Tyr Lys Asp Asp Asp 1 5

20

25

15

- (2) INFORMATION FOR SEQ ID NO:13:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 39 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Asp Ser Lys Gly Ser Ser Gln Lys Gly Ser Arg Leu Leu Leu Leu

1 5 10 15

0 Leu Val Val Ser Asn Leu Leu Leu Cys Gln Gly Val Val Ser Asp Tyr
20 25 30

Lys Asp Asp Asp Asp Val Glu
35

(2) INFORMATION FOR SEQ ID NO:14:

35

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 5 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

40

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Phe Glu Glu Phe Pro 1 5

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

5

25

- 46\ -

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
```

Leu Thr Pro Lys

- (2) INFORMATION FOR SEQ ID NO:16:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 10 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Thr Phe Arg Gly Ala Pro 5

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9 amino acids
 (B) TYPE: amino acid 15

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Thr Phe Arg Gly Ala Pro Pro Asn Ser

- (2) INFORMATION FOR SEQ ID NO:18:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: 30

Leu Pro Ile Lys Thr Phe Arg Gly Ala Pro Pro Asn Ser Phe Glu Glu Phe Pro Phe Ser Ala Leu Glu

- (2) INFORMATION FOR SEQ 1D NO:19: 35
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- 40
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Leu Pro Ile Lys Pro Phe Arg Gly Ala Pro Pro Asn Ser Phe Glu Glu 10

- Phe Pro Phe Ser Ala Leu Glu
 - (2) INFORMATION FOR SEQ ID NO:20:

5

15

35

- 47 -

```
(i) SEQUENCE CHARACTERISTICS:
   (A) LENGTH: 24 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
```

(D) TOPOLOGY: linear

(ix) FEATURE:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Leu Pro Ile Xaa Thr Pro Phe Arg Gly Ala Pro Pro Asn Ser Phe Glu 10 Glu Phe Pro Phe Ser Ala Leu Glu -20

- (2) INFORMATION FOR SEQ ID NO:21:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
- - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
- Xaa Pro Arg Pro Phe Arg Gly Ala Pro Pro Asn Ser Phe Glu Glu Phe 10 15 Pro Phe Ser Ala Leu Glu 20
 - (2) INFORMATION FOR SEQ ID NO:22:
- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single 25

 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Leu Pro Ile Lys

- (2) INFORMATION FOR SEQ ID NO:23:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Thr Phe Arg Gly Ala Pro Pro Asn Ser

- 48 -

CLAIMS

That which is claimed is:

- 1. Substantially pure DNA encoding a protease-activated receptor 3.
- 2. The DNA of claim 1, wherein the DNA is mammalian.
- 3. Substantially pure DNA having the nucleotide sequence selected from the group consisting of Fig. 1 (SEQ ID NO:1), or degenerate variants thereof, and encoding the amino acid sequence of Fig. 1 (SEQ ID NO:3); Fig. 2 (SEQ ID NO:2), or degenerate variants thereof encoding an amino acid sequence comprising the amino acid sequence of Fig. 1 (SEQ ID NO:3); Fig. 3 (SEQ ID NO:4), or degenerate variants thereof encoding the amino acid sequence of Fig. 2 (SEQ ID NO:6); and Fig. 4 (SEQ ID NO:5), or degenerate variants thereof encoding an amino acid sequence comprising the amino acid sequence of Fig. 3 (SEQ ID NO:6).
- 4. Substantially pure DNA having 50% or greater sequence identity to the DNA sequence of a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:5 and which hybridizes to the DNA sequence SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, or SEQ ID NO:5, respectively.
- 5. An isolated protease-activated receptor 3 protein.

WO 98/18456 PCT/US97/19732

- 49 -

- 6. The substantially pure protein of claim 5 having an amino acid sequence selected from the group consisting of the sequence shown in Fig. 1 (SEQ ID NO:3). and the sequence shown in Fig. 2 (SEQ ID NO:6).
- 7. A substantially pure polypeptide having an amino acid sequence which is at least 80% identical to an amino acid sequence selected from the group consisting of the sequence shown in Fig. 1 (SEQ ID NO:3) and the sequence shown in Fig. 2 (SEQ ID NO:6), wherein
 - a) said polypeptide is activated by thrombin; and
 b) said polypeptide mediates phosphoinositide
 hydrolysis in a cell expressing said polypeptide
 on its surface.
- 8. A substantially pure polypeptide which is a fragment or analog of a protease-activated receptor 3 comprising a domain capable of activation by thrombin and mediating phosphoinositide hydrolysis.
 - 9. A vector comprising the DNA of claim 1.
 - 10. A cell comprising the vector of claim 9.
- 20 11. An assay device, comprising: a support surface; and a cell of claim 10.
- 12. The assay device of claim 11, wherein the cell is bound to the support surface or present in a suspension on the support surface.

WO 98/18456 PCT/US97/19732

- 50 -

- 13. A method of testing a candidate compound for its ability to act as an agonist of a protease-activated receptor 3 ligand, the method comprising:
- a) contacting a candidate compound with a cell which expresses on its surface a recombinant proteaseactivated receptor 3 protein or biologically active fragment or analog thereof;
 - b) measuring PAR3-mediated response of the cell; and
- c) identifying the candidate compound as an agonist wherein the contacting causes a substantial increase in PAR3-mediated response.
- 14. A method of testing a candidate compound for the ability to act as an antagonist of a protease15 activated receptor 3 ligand, the method comprising:
- a) contacting in the presence of a proteaseactivated receptor agonist a candidate compound with a cell which expresses on its surface a recombinant protease-activated receptor 3 protein or biologically
 active fragment or analog thereof;
 - b) measuring PAR3-mediated response of the cell; and
- c) identifying the candidate compound as an antagonist wherein the contacting causes a substantial
 25 decrease in PAR3-mediated response relative to PAR3-mediated response in the absence of the candidate antagonist.
- 15. The method of claim 14, wherein the cell is a mammalian cell which normally presents substantially no
 30 protease-activated receptor 3 on its surface, the PAR3mediated response measured in intracellular
 phosphoinositide hydrolysis in the cell.

16. The method of claim 14, further comprising: mixing thrombin with platelets and the identified candidate compound; and

observing the effect of the candidate compound on mediating platelet aggregation.

- 17. A therapeutic composition, comprising:
 a protease-activated receptor 3 ligand agonist;
 and
 - a physiologically-acceptable carrier.

WO 98/18456 PCT/US97/19732

- 52 -

19. The composition of claim 18, wherein the antagonist is selected from the group consisting of:

(1) the isolated sequence LPIKTFRGAPPNSFEEFPFSALE;

- (2) uncleavable thrombin inhibitor LPIKPFRGAPPNSFEEFPFSALE where the PAR 3 cleavage site P1' is muted to block cleavage;
- (3) uncleavable thrombin inhibitor LP
 (hR)TFRGAPPNSFEEFPFSALE where the PAR 3
 cleavage site P1 is mutated to block
 cleavage;
 hR is beta-homoarginine (the extra methylene
 group is in the main chain);
- (4) uncleavable thrombin inhibitor (dF) PRPFRGAPPNSFEEFPFSALE where the good active site binding sequence dFPR is substituted for LPIK; dF is D-Phenylalanine;
- (5) any of (1)-(4) above where all or part of the sequence TFRGAPPNS is replaced with spacer sequences such as GGG;
- (6) variations and combinations of (1) (5) which act as antagonists.
- 20. A method of treatment, comprising:

 administering to a patient a therapeutically
 25 effective amount of the composition of claim 18.

1/16

```
FIG. 1-1
                               30 ~
TG ACT TTG TAT ACT TAA CAA CAT CCT GTA GCC GGG TCT CAG GAC ATC AAG
AC TGA AAC ATA TGA ATT GTT GTA GGA CAT CGG CCC AGA GTC CTG TAG TTC
   TLYT*QHPVAGSQDIK>
                   70
                              80
                                         90
         60
ATG AAA ATC CTT ATC TTG GTT GCA GCT GGG CTG CTG TTT CTG CCA GTC
TAC TTT TAG GAA TAG AAC CAA CGT CGA CCC GAC GAC AAA GAC GGT CAG
 M K I L I L V A A G L L F L P V>
                               130
          110
                     120
                                          140
ACT GTT TGC CAA AGT GGC ATA AAT GTT TCA GAC AAC TCA GCA AAG CCA
TGA CAA ACG GTT TCA CCG TAT TTA CAA AGT CTG TTG AGT CGT TTC GGT
 T.VCQSGINVSDNSAKP>
            160
                       170
                                  180
                                            190
  150
ACC TTA ACT ATT AAG AGT TTT AAT GGG GGT CCC CAA AAT ACC TTT GAA
TGG AAT TGA TAA TTC TCA AAA TTA CCC CCA GGG GTT TTA TGG AAA CTT
 TLTIKSFNGGPQNTFE>
             210
                       220
                                   230
GAA TTC CCA CTT TCT GAC ATA GAG GGC TGG ACA GGA GCC ACC ACA ACT
 CTT AAG GGT GAA AGA CTG TAT CTC CCG ACC TGT CCT CGG TGG TGT TGA
 EFPLSDIEGWTGATT>
                260
                           270
      250
                                      280
                                                 290
 ATA AAA GCG GAG TGT CCC GAG GAC AGT ATT TCA ACT CTC CAC GTG AAT
 TAT TIT CGC CTC ACA GGG CTC CTG TCA TAA AGT TGA GAG GTG CAC TTA
 IKAECPEDSISTLH V N>
        300
                   310
                             320
                                         330
 AAT GCT ACC ATA GGA TAC CTG AGA AGT TCC TTA AGT ACC CAA GTG ATA
 TTA CGA TGG TAT CCT ATG GAC TCT TCA AGG AAT TCA TGG GTT CAC TAT
 NATIGYLRSSLSTQVI>
                              370
          350
                     360
                                          380
 CCT GCC ATC TAT ATC CTG CTG TTT GTG GTT GGT GTA CCA TCC AAC ATC
 GGA CGG TAG ATA TAG GAC GAC AAA CAC CAA CCA CAT GGT AGG TTG TAG
 PAIYILLF V V G V P S N I>
  390
             400
                       410
                                  420
 GTG ACC CTG TGG AAA CTC TCC TTA AGG ACC AAA TCC ATC AGT CTG GTC
 CAC TGG GAC ACC TTT GAG AGG AAT TCC TGG TTT AGG TAG TCA GAC CAG
  V T L W K L S L R T K S I S L V>
```

FIG. 1-2 440 470 ATC TTT CAC ACC AAC CTG GCC ATC GCA GAT CTC CTT TTC TGT GTC ACA TAG AAA GTG TGG TTG GAC CGG TAG CGT CTA GAG GAA AAG ACA CAG TGT I F H T M L A I A D L L F C V T> 500 510 520 530 CTG CCA TTT AAG ATC GCC TAC CAT CTC AAT GGC AAC AAC TGG GTA TTT GAC GGT AAA TTC TAG CGG ATG GTA GAG TTA CCG TTG TTG ACC CAT AAA P F K I A Y H L N G N N W V 540 550 560 570 GGC GAG GTC ATG TGC CGG ATC ACC ACG GTC GTT TTC TAC GGC AAC ATG CCG CTC CAG TAC ACG GCC TAG TGG TGC CAG CAA AAG ATG CCG TTG TAC G E V M C R I T T V V F Y G N 580 590 600 610 620 TAC TGC GCT ATC CTG ATC CTC ACT TGC ATG GGC ATC AAC CGC TAC CTG ATG ACG CGA TAG GAC TAG GAG TGA ACG TAC CCG TAG TTG GCG ATG GAC Y C A I L I L T C M G I N R Y L> 630 640 650 660 670 GCC ACG GCT CAC CCT TTC ACA TAC CAG AAG CTG CCC AAA CGC AGC TTC CGG TGC CGA GTG GGA AAG TGT ATG GTC TTC GAC GGG TTT GCG TCG AAG ATAHPFTYQKLPKRSF> 680 700 710 690 720 TCC TTG CTC ATG TGT GGC ATA GTG TGG GTC ATG GTT TTC TTA TAC ATG AGG AAC GAG TAC ACA CCG TAT CAC ACC CAG TAC CAA AAG AAT ATG TAC S L L M C G I V W V M V F L Y M> 730 740 750 760 CTG CCC TTT GTC ATC CTG AAG CAG GAG TAC CAC CTC GTC CAC TCA GAG GAC GGG AAA CAG TAG GAC TTC GTC CTC ATG GTG GAG CAG GTG AGT CTC LPFVILKQEYHLVHSE> 780 **790** -800 810 ATC ACC ACC TGC CAC GAT GTC GTC GAC GCG TGC GAG TCC CCA TCA TCC TAG TGG TGG ACG GTG CTA CAG CAG CTG CGC ACG CTC AGG GGT AGT AGG ITTCHDVV DACESPS 820 830 840 850 860 TTC CGA TTC TAC TAC TTC GTC TCC TTA GCA TTC TTT GGG TTC CTC ATC AAG GCT AAG ATG ATG AAG CAG AGG AAT CGT AAG AAA CCC AAG GAG TAG R F Y Y F V S L A F F

3/16

FIG. 1-3

```
870
              880
                        890
                                    900
 CCG TTT GTG ATC ATC ATC TTC TGT TAC ACG ACT CTC ATC CAC AAA CTT
 GGC AAA CAC TAG TAG TAG AAG ACA ATG TGC TGA GAG TAG GTG TTT GAA
  PFVI
              IIFCYTTLIHKL>
    920
                930
                           940
                                     950
 AAA TCA AAG GAT CGG ATA TGG CTG GGC TAC ATC AAG GCC GTC CTC CTC
 TTT AGT TTC CTA GCC TAT ACC GAC CCG ATG TAG TTC CGG CAG GAG GAG
  K. S K D R I W L G Y I K A V L L>
                             990
       970
                  980
                                       1000
                                                  1010
 ATC CTT GTG ATT TTC ACA ATT TGC TTT GCC CCC ACC AAC ATC ATA CTC
 TAG GAA CAC TAA AAG TGT TAA ACG AAA CGG GGG TGG TTG TAG TAT GAG
  ILVIFTICFAPTNIIL>
         1020
                   1030
                              1040
                                          1050
 GTA ATC CAC CAT GCC AAC TAC TAC TAC CAC AAT ACC GAC AGC TTG TAC
 CAT TAG GTG GTA CGG TTG ATG ATG ATG GTG TTA TGG CTG TCG AAC ATG
    I H H A N Y Y Y H N T D S L Y>
          1070
                      1080
1060
                                1090
                                           1100
 TTT ATG TAT CTT ATT GCT CTG TGC CTG GGG AGC CTG AAT AGC TGC CTA
 AAA TAC ATA GAA TAA CGA GAC ACG GAC CCC TCG GAC TTA TCG ACG GAT
  FMYLIALCLGSLNSCL>
  1100
             1120
                        1130
                                   1140
                                              1150
 GAT CCA TTC CTT TAC TTT GTC ATG TCG AAA GTT GTA GAT CAG CTT AAT
 CTA GGT AAG GAA ATG AAA CAG TAC AGC TTT CAA CAT CTA GTC GAA TTA
  DPFLYFVMSKVVDQLN>
    1160
                                     1190
                1170
                          1180
                                                1200
 CCT TAG TCG GCA ATG GCA AGA CCA CTT TAG AGA CCA AGG AGA GAT ATC
 GGA ATC AGC CGT TAC CGT TCT GGT GAA ATC TCT GGT TCC TCT CTA TAG
  P * S A M A R P L * R P R R D I>
                 1220
 TGG GAA GAC ATA CAT GCT TGG C
 ACC CTT CTG TAT GTA CGA ACC G
  W E D I H A W X>
```

4/16

FIG. 2-1

10	20	30	40	50
CCATATGCTA	ATATTTCCTT	TCAATTACAG	GCATAAATGT	TTCAGACAAC
60	70	80	90	100
* *	* * CAACCTTAAC	* * TATTAAGAGT	* *	* *
110 * *	* *	130 * *	140	150 * *
TACCTTTGAA	GAATTC	TACAACT	CTCCATGTGA	ATAATGCTAC
160	170	180	190	200
CATGGGATAC	CTGAGAAGTT	* * * CCTTAAGTAC	* * CAAAGTGATA	* * CCTGCCATCT
210		230		
* *	* *	* *		* *
ACATCCTGGT	GTTTGTGATT	GGTGTACCAG	CGAACATCGT	GACCCTGTGG
260	270	280	290	300
AAACTCTCCT	CAAGGACCAA	ATCCATCTGT	CTGGTCATCT	TTCACACCAA
310	320	330	340	350
* *	* *	* *	* *	* *
CCTGGCCATC	GCGGATCTCC	TTTTCTGTGT		TTTAAGATC-
360	370 * *	380 * *	390	400 * *
-CCTACCATC	TCAATGGCAA	CAACTGGGTA	TTTGGCGAGG	TCATGTGCCG
410	420	430	440	450
* *	* *	* * ACGGCAACAT	* * *	* *
			GIACIGCGCI	
460 * *	470 * *	480 * *	* · *	500 * *
TCCTCACCTG	CATGGGCATC	AACCGCTACC	TGGCCACGGC	TCACCCTTTC
510		530		
ACATACCAGA	* *	ACGCAGCTTC	* * TCCATGCTCA	* *
560				
* *	* *	* *	* *	* *
GGTGTGGGTC	ATGGTTTTCT	TATACATGCT	GCCCTTTGTC	ATCCAAG
610	620		640	
CAGGAGTACC				ACGATGTCGT

SUBSTITUTE SHEET (rule 26)

FIG. 2-2

660	670	680	690	700
* *	* *	* *	* *	· * *
CGACGCGTGC	GANTCCCCAT	CATCCTTCCG	ATTCTACTAC	TTCGTCTCCT
710	720	730	740	750
* *	* *	* *	* *	. * *
TAGCATTCTT	TGGGTTCCTC	ATCCCGTTTG	TGATCATCAT	CTTCTGTTAC
760	770	780	790	800
· * *	* *	* * *	* *	* *
ACGACTCTCA	TCCACAAACT	TAAATCAAAA	GATCNGATAT	GGCTGGGCTA
810	820	830	840	850
* *	* *	* *	* *	* *
CATCAAGGCC	GTCCTCCTCA	TCCTTGTGAA	TTTCACCATC	TGCTTCCCCC
860	870	880	890	900
* *	* *	* *	* *	*
CCACCAAG	GATATC	TGGGAAGACG	TACATGCTTG	GCTGACTTGT
910	920	930	940	950
* * *	* *	* *	* *	* *
GCATGGCACC	ATCAGCTCAA	TTTTTAATTT	TTTAATTTTA	ATTTAATTTA
960	970	980	990	1000
* 1	* *	* *	* *	* *
ATTTTATGTT	TTTGAGACAG	AGCCTCACTG	TGTAGTCCTG	GCTGGCCTGG
1010	1020	1030	1040	1050
* *	* * *	* *	*	* *
CTGGTTCTCT	ATTTAGACCA	GGTTAGCCTT	GAACTCACAG	AGATCTGCCT
1060	1070	1080	1090	1100
* 1	* *	* *	* *	* * *
GCTTCTGCCT			AGGTCTGGCA	AGCGCTCCAT
1110) 1120	þ.	-	
* 1	* * *	•		
TTTTCAGCT	CTCTGCAACA	GTGC		

FIG. 3-1.

20 10 30 TGC TCC ATG ATT TTA CAG ATT TCA TAA CGT TTA AGA GAC GGG ACT CAG ACG AGG TAC TAA AAT GTC TAA AGT ATT GCA AAT TCT CTG CCC TGA GTC I S * Ι Q R L R D G T 70 80 50 60 90 GTC ATC AAA ATG AAA GCC CTC ATC TTT GCA GCT GCT GGC CTC CTG CTT CAG TAG TTT TAC TTT CGG GAG TAG AAA CGT CGA CGA CCG GAG GAC GAA IFAAAGLE VIKMK A L 120 130 100 110 140 CTG TTG CCC ACT TTT TGT CAG AGT GGC ATG GAA AAT GAT ACA AAC AAC GAC AAC GGG TGA AAA ACA" GTC TCA CCG TAC CTT TTA CTA TGT TTG TTG L L P T F C Q S G'M E N D T N N> 150 160 170 180 190 TTG GCA AAG CCA ACC TTA CCC ATT AAG ACC TTT CGT GGA GCT CCC CCA AAC CGT TTC GGT TGG AAT GGG TAA TTC TGG AAA GCA CCT CGA GGG GGT A K P T L P I K T F R G 200 210 220 240 230 AAT TCT TTT GAA GAG TTC CCC TTT TCT GCC TTG GAA GGC TGG ACA GGA TTA AGA AAA CTT CTC AAG GGG AAA AGA CGG AAC CTT CCG ACC TGT CCT SFEEFPFS Α L G W T Ε 260 270 250 280 GCC ACG ATT ACT GTA AAA ATT AAG TGC CCT GAA GAA AGT GCT TCA CAT CGG TGC TAA TGA CAT TTT TAA TTC ACG GGA CTT CTT TCA CGA AGT GTA ATIT V K I K C P E E S 300 310 320 330 CTC CAT GTG AAA AAT GCT ACC ATG GGG TAC CTG ACC AGC TCC TTA AGT GAG GTA CAC TTT TTA CGA TGG TAC CCC ATG GAC TGG TCG AGG AAT TCA L H V K N A T M G Y L T S S L S> 350 360 370 380 ACT AAA CTG ATA CCT GCC ATC TAC CTC CTG GTG TTT GTA GTT GGT GTC TGA TTT GAC TAT GGA CGG TAG ATG GAG GAC CAC AAA CAT CAA CCA CAG K L I P A I Y L L V F V V G V> T 390 400 410 420 430 CCG GCC AAT GCT GTG ACC CTG TGG ATG CTT TTC TTC AGG ACC AGA TCC GGC CGG TTA CGA CAC TGG GAC ACC TAC GAA AAG AAG TCC TGG TCT AGG Τ F F Α W M L T R S>

7/16

FIG. 3-2

	4	40			450			46	0		4	70			480
*	,	*		* '	*		*		*	*		*		*	*
ATC	TGT	ACC	ACT	GTA	TTC	TAC	ACC	AAC	CTG	GCC	ATT	GCA	GAT	TTT	CTT
TAG	ACA	•		CAT								CGT	CTA	AAA	GAA
I	С	T		٧	F	-	T	N	L	Α	٠I	Α	D	F	L>
		49	_		5	00			510			52	-		
	*		*	TT0		*		*	*		~~	070	*	*	
				TTG											
				AAC	bbb P	AAA F									
F 520	С	٧	T 540	L	P	г 55	• •	Ι	Α,	Y 560	Н	L	N 570	G	N>
530 *		*	34U *		*	5.	*	*		*		*	3/U *		*
ΔΔΓ	TGG	GTA	TTT	GGA	GAG	GTC	CTG	TGC	CGG	GCC	ACC	ACA	GTC	ATC	TTC
				CCT											
N	W	٧	F	G	Ε	V	L	C	R	A	T	T	٧	I	F>
58	30			590			600			6.	LO		6	20	
	* .	*		*		*	*		*		*	*		*	
				TAC											
ATA	CCG	TTG	TAC	ATG				GAC	GAG	GAA	CGG	ACG	TAG	TCG	TAG
Y	G	. N	M		С	S	-	L	L	Ĺ		С	I		I>
	630			64	10 *			550 *		_	660			67	′0 ★
. *	*	T40	~	000		~ CTC	CAT		TTO	*		000	~	CTC	
				GCC											
N		A I G	GAC L	A	IAG	V	H	P		T	Y	R	G	L	P>
И		680	L	^	690	٧	п		00 .	'		710	u	L	720
*	. '	*		*	*	-	*	,	*	*		*		*	*
AAG	CAC	ACC	TAT	GCC	TTG	GTA	ACA	TGT	GGA	CTG	GTG	TGG	GCA	ACA	GTT
				CGG											
K	Н	T	Υ	Α	L	٧	T	С	G	L	٧	W	Α	T	٧>
		7	30			740			750			7	60		
•	*		*	*		*		*	*		*	-	*	*	
				CTG											
				GAC								_			
F	Ĺ	Y	M 700	L	P	F		I	_	K	Q	E	Y	Y	L>
770 *		*	780 *		*	,	90 *	*		800		*	810		*
GTT	CAG				ACC	ΔCC	TGC	САТ	GAT		CAC	ΔΔΓ		TGC	GAG
				TAG											
V	_	P	D	I			C		D		Н	·N		C	E>
•	20	•	_	830	•	•	840			•	50	••		860	_
	*	*		*	,	*	*		*		.*	*		*	
TCC	TCA	TCT	CCC	TTC	CAA	CTC	TAT	TAC	TTC	ATC	TCC	TTG	GCA	TTC	TTT
AGG	AGT	AGA	GGG	AAG	GTT	GAG	ATA	ATG	AAG	TAG	AGG	AAC	CGT	AAG	AAA
S	S	S	P	F	Q	L	. Y	Y	F	I	S	L	Α	F	F>

SUBSTITUTE SHEET (rule 26)

FIG. 3-3

```
870
               880
                          890
                                    900
                                               910
 GGA TTC TTA ATT CCA TTT GTG CTT ATC ATC TAC TGC TAT GCA GCC ATC
 CCT AAG AAT TAA GGT AAA CAC GAA TAG TAG ATG ACG ATA CGT CGG TAG
 GFLIPFVLIIYCYAAI>
                 930
      920
                            940
                                       950
                                                 960
 ATC CGG ACA CTT AAT GCA TAC GAT CAT AGA TGG TTG TGG TAT GTT AAG
 TAG GCC TGT GAA TTA CGT ATG CTA GTA TCT ACC AAC ACC ATA CAA TTC
     R T L N A Y D H R W L W Y V K>
                 980
                              990
                                        1000
         970
 GCG AGT CTC CTC ATC CTT GTG ATT TTT ACC ATT TGC TTT GCT CCA AGC
 CGC TCA GAG GAG TAG GAA CAC TAA AAA TGG TAA ACG AAA CGA GGT TCG
 ASLLILVIFTICFAP
          1020
                     1030
                               1040
                                          1050
1010
 AAT ATT ATT CTT ATT CAC CAT GCT AAC TAC TAC AAC AAC ACT
 TTA TAA TAA GAA TAA TAA GTG GTA CGA TTG ATG ATG ATG TTG TTG TGA
  NIILIIHHANYYYNN
            1070
                       1080
                                  1090
                                           1100
  1060
 GAT GGC TTA TAT TTT ATA TAT CTC ATA GCT TTG TGC CTG GGT AGT CTT
 CTA CCG AAT ATA AAA TAT ATA GAG TAT CGA AAC ACG GAC CCA TCA GAA
  DGLYFIYLIALCLGSL>
                                 1140
               1120
                         1130
 AAT AGT TGC TTA GAT CCA TTC CTT TAT TTT CTC ATG TCA AAA ACC AGA
 TTA TCA ACG AAT CTA GGT AAG GAA ATA AAA GAG TAC AGT TTT TGG TCT
  NSCLDPFLYFLMSKTR>
      1160
                1170
                            1180
                                     1190
 AAT CAC TCC ACT GCT TAC CTT ACA AAA TAG TGA AAT GAT CTT AGA GAA
 TTA GTG AGG TGA CGA ATG GAA TGT TTT ATC ACT TTA CTA GAA TCT CTT
  NHSTAYLTK**NDLRE>
                   1220
         1210
 CAA GGA CAG CCA TCA CAG AGA ACG
 GTT CCT GTC GGT AGT GTC TCT TGC
     GQPSQR
```

9/16

FIG. 4-1

	10	.••	20		30	*	40		50
-ACAGG(CATG.	GAAAAT							
	60		70				90		100
* TTAAGA	. * 'CTT	* TCGTGG/	* AGCT	*	* ΤΤΔΔ		* AAGA	* GTTCCC	*
IIAAUA	110								
*	*					*			
TCTGCC	TTGG	AAGGCT							AGTG
*	160	*	170 *	*	180	*	190	*	200
CCCTGA	AGAA	AGTGCT					TGCT	ACCATO	GGGT
	210		220		230	*	240		250
* ACCTGA	* AA) 1	* CTCCTT							*
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	260								300
*	*					*		*	*
GTGTTT	GTAG	TTGGTG							
*	. 310	*	320 *	★	330	*	340 *	*	350 *
CTTCAG	GACC	AGATCC							
•	360		370		380		390		400
* TTGC&G	* ΔΤΤΤ	* TCTTTT	* TTCT				* AGAT	*	* TCAT
TTUCAU	410								
*	*	*	*	*	*	*	*		*
CTCAAT		ACAACT	GGGT				TGCC	GGGCC	ACCAC
* *	460 *		470 *	*	480 *	*	490 *		500 *
AGTCAT	CTTC	TATGGC	AACA						
	510	*	520		530	•	540		550
		* CCGCTA							
CAUCA	560		570		580		590		600
*	*		*	*	*		*	*	*
CTGCCC	CAAGC	ACACCT	ATGC	CTTGG	TAACA	TGTGG	ACTGG	TGTGG	GCAAC
. *	610		620 *		630 *		640 *		650 *
AGTTTT	CTTA	TATATO	CTGC	CATTT	TTCAT	ACTGA	AGCAG	GAATA	TTATC

SUBSTITUTE SHEET (rule 26)

10/16

FIG. 4-2

670 680 660 700 TTGTTCAGCC AGACATCACC ACCTGCCATG ATGTTCACAA CACTTGCGAG 710 720 730 TCCTCATCTC CCTTCCAACT CTATTACTTC ATCTCCTTGG CATTCTTTGG 760 780 ATTCTTAATT CCATTTGTGC TTATCATCTA CTGCTATGCA GCCATCATCC 830 GGACACTTAA TGCATACGAT CATAGATGGT TGTGGTATGT TAAGGCGAGT 870 880 CTCCTCATCC TTGTGATTTT TACCATTTGC TTTGCTCCAA GCAATATTAT 930 TCTTATTATT CACCATGCTA ACTACTACTA CAACAACACT GATGGCTTAT ATTITATATA TCTCATAGCT TTGTGCCTGG GTAGTCTTAA TAGTTGCTTA GATCCATTCC TTTATTTTCT CATGTCAAAA ACCAGAAATC ACTCCACTGC TTACCTTACA AAATAGTGAA ATGATCTTAG AGAACAAGGA CAGCCATCAC AGA

ETVFSVDEFSAS PEESASHLHVKNATMG MGPRR LLLVAACFSLCGP LLSARTRARRPESKATNATLDPR/SFLLRNPNDKYEPFWEDEEKNESGLTEYRLVSINKSSPLQKQLPAFISEDASG LIFAAAGLLLLLP TFCQSGME<u>NDI</u>NNLAKP TLPIK/TFRGAPPN SFEEFPFSALEGWTGATITVKIKC TNRSSKGR/SLIGKVDGTSHVTGKGVTV MRSPSAAWLLGAAILLA ASLSCSGTIQG ΨKA hPAR2-1 ካPAR1-1 nPAR3-1

YLTSSLSTKLIPAIYLLVFVVGVPANAVTLWMLFFRTR SICTTVFYTNLAIADFLFCVTLPFKIAYHLNGNNWVFGEVLCRATTVIFYGNMYCSILLLACISINRYLAI hPAR1-95 YLTSSWLTLFVPSVYTGVFVVSLPLNIMAIVVFILKMKVKKPAVVYMLHLATADVLFVSVLPFKISYYFSGSDWQFGSELCRFVTAAFYCNMYASILLMTVISIDRFLAV VLTGKLTTVFLPIVYTIVFVVGLPSNGMALWVFLFRTKKKHPAVIYMANLALADLLSVIWFPLKIAYHIHGNNWIYGEALCNVLIGFFYGNMYCSILFMTCLSVQRYWVI hPAR3-87 nPAR2-68

YDHRWLWYV hpari-205 vypmqslswrtlgrasftclaiwalaiagvvplvlkeqtiqvpglnittchdvlnetlleg yyayyfsafsavfffvpliistvcycsiirclsssavanrskk sral hPAR2-178 UNPMGHSRKKANIAIGI SLAIWLLILLVTIPLYVVKQTIFIPALNITTCHDVLPEQLLVGD MFNYFLSLAIGVFLFPAFLTASAYVLMIRMLRSSAMDENSEKKRKAAI PAR3-196 VHPFTYRGLPKHTYALVTCGLVWATVFLYMLPFFILKQEYYLVQPDITTCHDVHNTCESSSPFQLYYFISLAFFGFLIPFVLIIYCYAAIIRTLNA -- TM5--UTE SHEET (

KASLLILVIFTICFAPSNIILIIHHANYYY<u>NNT</u> DGLYFIYLIALCLGSLNSCLOPFLYFLMSKTRNHSTAYLTK ----TM6---

hPARI-313 FLSAAVFCIFIICFGPTNVLLIAHYSFLSHTSTTEAAYFAYLLCVCVSSISSCIDPLIYYYASSECQRYVYSILCCKESSDPSSYNSSGQLMASKMDTCSSNLNNSIYKFLL hPAR2-287 KLIVTVLAMYLICFTPSNLLLVVHY FLIKSQGQSHVYALYIVALCLSTLNSCIDPFVYYFVSHDFRDHAKNALLCRSVRTVKQMQVSLTSKKHSRKSSSYSSSSTTVKTSY hPAR3-301 rule 26)

SL IGKVDGTSHVTGKGVTVETVFSVD. FERGAPPN SFEEFPFSALEGWTGA. SFLLRNPNDKYEPFWEDEEKNESG.. . DFEEIPEEYLO nPAR3- 34-62 ..TLPIK hPAR1- 37-65 ..TLDPR 32-62 .. SSKGR Hirudin C-tail PAR2-

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

SUBSTITUTE SHEET (rule 26)

F16

SUBSTITUTE SHEET (rule 26)

FIG. 10

SUBSTITUTE SHEET (rule 26)

International application No. PCT/US97/19732

		ł
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) : Please See Extra Sheet.		
US CL: 435/7.2, 13, 69.1, 320.1, 325, 395; 514/1; 530/3 According to International Patent Classification (IPC) or to bo	•	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system follow	ved by classification symbols)	
U.S. : 435/7.2, 13, 69.1, 320.1, 325, 395; 514/1; 530/3	50; 536/23.5	
Documentation searched other than minimum documentation to to	he extent that such documents are included	in the fields searched
Electronic data base consulted during the international search (Please See Extra Sheet.	name of data base and, where practicabl	c, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
X, P ISHIHARA et al. Protease-activated receptor in humans. Nature. 03 Apr		1-13
A, P 506, especially figures 1-4.	ii 1997, Vol. 360, pages 302-	14-18
X NYSTEDT et al. Molecular cloni	ing of a potential proteinase	1-2, 5, 9-13
Y activated receptor. Proc. Natl. Acad. vol. 91, pages 9208-9812, see especia (Materials and Methods).	ally Figures 2-6 and page 9208	14-17
X, E US 5,686,597 A (COLEMAN et al.) 1 especially columns 3-5, 7, and 10.	1 November 1997 (11/11/97),	1-2, 5, 8-13, 17- 18
Y, E		14-16
	·	
X Further documents are listed in the continuation of Box	C. See patent family annex.	
Special categories of cited documents: A* document defining the general state of the art which is not contaidered	*T* later document published after the inte date and not in conflict with the appl	ication but cited to understand
to be of particular relevance 'E' cartier document published on or after the international filing date	the principle or theory underlying the "X" document of particular relevance; the	claimed invention cannot be
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	considered novel or cannot be conside when the document is taken alone "Y" document of particular relevance; the	
document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive combined with one or more other such being obvious to a person skilled in t	step when the document is a documents, such combination
P document published prior to the international filing date but later than the priority date claimed	"A." document member of the same patent	family
Date of the actual completion of the international search 23 JANUARY 1998	Date of mailing of the international sea 2 3 FEB 1998	arch report
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer	FILLY
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196	. []

International application No.
PCT/US97/19732

0.40 .:	· > DOCUMENTO COMMINENTO TO DE DEL ENAME							
Category*	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.							
x	US 5,256,766 A (COUGHLIN et al.) 26 October 1993 see especially columns 4-5, 7-10, 14-16, and 18-22.		1-2, 5, 8-18					
			•					
		•						
	· · · · · · · · · · · · · · · · · · ·							
, .								
٠.		st.						

International application No. PCT/US97/19732

Box I Observations	where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report	has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos. because they	: relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos. because they an extent the	: relate to parts of the international application that do not comply with the prescribed requirements to such t no meaningful international search can be carried out, specifically:
3. Claims Nos. because they	are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations	where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Sear	ching Authority found multiple inventions in this international application, as follows:
Please See Extra	Shoot.
-	
·	
claims.	d additional search fees were timely paid by the applicant, this international search report covers all searchable
2. As all searche of any addition	able claims could be searched without effort justifying an additional fee, this Authority did not invite payment onal fee.
3. As only some only those cla	of the required additional search fees were timely paid by the applicant, this international search report covers tims for which fees were paid, specifically claims Nos.:
4. No required restricted to t	additional search fees were timely paid by the applicant. Consequently, this international search report is the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

International application No. PCT/US97/19732

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

A61K 31/00, 35/00, 38/00; C07K 14/435, 14/705; C12N 5/10, 15/12; 15/63; G01N 33/53, 33/566

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, STN, BIOSCIENCE, BIOSIS, MEDLINE, CAPLUS, SCISEARCH, WPIDS

search terms: thrombin?(5a)receptor?, protease?(5a)receptor?, agonist?, antagonist?, therap?

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-16, drawn to a substantially pure DNA, a vector, an isolated protease-activated receptor 3, a substantially pure protein, a substantially pure polypeptide, a cell, an assay device, and a method of testing a candidate compound for agonist, a method of testing a candidate compound for antagonist and a method of testing a candidate compound with thrombin and platelets.

Group II, claim(s) 17, drawn to a therapeutic composition of agonist.

Group III, claim(s) 18-19, drawn to a therapeutic composition of antagonist.

Group IV, claim 20, drawn to a method of administering the therapeutic composition of antagonist.

The inventions listed as Groups do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons.

The main invention is Group I which is first product, first method of making the product, and the first method of using the product. Pursuant to 37 CFR 1.475(d), these claims are considered by the ISA/US to constitute the main invention, and none of the related groups II-IV correspond to the main invention.

The products of Group II and III, do not share the same or corresponding special technical feature with Group I, because they are drawn to products having materially different structures and functions, and each defines a separate invention over the art.

The methods of Group IV do not share the same or corresponding technical feature with Group I, because the methods have materially different process steps and are practiced for materially different purposes; and, the products of Group I is not used in or made by the method of Group IV; thus, each defines a separate invention over the art.

Accordingly, the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED-IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.