Approximate Riemann-Siegel Theta Function Via Stirling's Gamma Function Approximation

BY STEPHEN CROWLEY
May 17, 2025

The Riemann-Siegel theta function $\theta(t)$ is defined as:

$$\theta(t) = \arg \Gamma\left(\frac{1}{4} + \frac{it}{2}\right) - \frac{t}{2}\log \pi$$

Theorem. (Stirling Approximation of $\theta(t)$) The approximation of the Riemann-Siegel theta function is:

$$\theta(t) = \frac{t}{2} \log \left(\frac{t}{2\pi} \right) - \frac{t}{2} - \frac{\pi}{8} + O\left(\frac{1}{t} \right)$$

Theorem 1. (Inverse Formula) The inverse theta function θ^{-1} is:

$$\theta^{-1}(x) = 2\pi \exp\left(W\left(\frac{x}{\pi e}\right)\right) + O\left(\frac{\log x}{x}\right)$$

where W is the Lambert W function.

Proof. The definition of the theta function gives $\theta(t) = \arg \Gamma\left(\frac{1}{4} + \frac{it}{2}\right) - \frac{t}{2}\log \pi$. Stirling's formula for the gamma function states:

$$\log \Gamma(z) = \left(z - \frac{1}{2}\right) \log z - z + \frac{1}{2} \log (2\pi) + \frac{1}{12z} + O\left(\frac{1}{z^3}\right)$$

Substituting $z = \frac{1}{4} + \frac{it}{2}$:

$$\log \Gamma\left(\frac{1}{4} + \frac{i\,t}{2}\right) = \left(-\frac{1}{4} + \frac{i\,t}{2}\right) \log \left(\frac{1}{4} + \frac{i\,t}{2}\right) - \frac{1}{4} - \frac{i\,t}{2} + \frac{1}{2} \log \left(2\,\pi\right) + \frac{1}{12\left(\frac{1}{4} + \frac{i\,t}{2}\right)} + O\!\left(\frac{1}{t^3}\right)$$

For the complex number $\frac{1}{4} + \frac{it}{2}$, the modulus equals $\frac{1}{2}\sqrt{\frac{1}{4}+t^2}$ and the argument equals $\arctan{(2t)}$.

The logarithm in polar form equals:

$$\log\left(\frac{1}{4} + \frac{it}{2}\right) = \log\left(\frac{1}{2}\sqrt{\frac{1}{4} + t^2}\right) + i\arctan(2t)$$

Taking the imaginary part and subtracting $\frac{t}{2} \log \pi$ gives:

$$\theta(t) = \frac{t}{2} \log\left(\frac{t}{2\pi}\right) - \frac{t}{2} - \frac{\pi}{8} + O\left(\frac{1}{t}\right)$$

For the inverse theta function, given $x = \theta(t)$:

$$x = \frac{t}{2}\log\left(\frac{t}{2\pi}\right) - \frac{t}{2} - \frac{\pi}{8} + O\left(\frac{1}{t}\right)$$

Rearranging terms:

$$x + \frac{\pi}{8} = \frac{t}{2} \log \left(\frac{t}{2\pi} \right) - \frac{t}{2} + O\left(\frac{1}{t} \right)$$

Substituting $u = \frac{t}{2\pi}$:

$$x + \frac{\pi}{8} = \pi u \log(u) - \pi u + O\left(\frac{1}{u}\right)$$

This equation has the form $\pi u \log(u) - \pi u = x + \frac{\pi}{8}$. Dividing by π :

$$u \log(u) - u = \frac{x + \frac{\pi}{8}}{\pi} = \frac{x}{\pi} + \frac{1}{8}$$

The Lambert W function directly gives:

$$u = \exp\left(W\left(\frac{x}{\pi e}\right)\right)$$

Therefore, the inverse theta function is:

$$\theta^{-1}(x) = 2\pi \exp\left(W\left(\frac{x}{\pi e}\right)\right) + O\left(\frac{\log x}{x}\right)$$