Discrete Mathematics: Homework #2

Due on February 1, 2025 at $4:00 \mathrm{pm}$

 $Professor\ Satish\ Rao$

Zachary Brandt zbrandt@berkeley.edu

Problem 1: Universal Preference

Suppose that preferences in a stable matching system are universal: all n jobs share the preferences $C_1 > C_2 > \cdots > C_n$ and all candidates share the preferences $J_1 > J_2 > \cdots > J_n$.

- A) What pairing do we get from running the algorithm with jobs proposing? Prove that this happens for all n.
- B) What pairing do we get from running the algorithm with candidates proposing? Justify your answer.
- C) What does this tell us about the number of stable pairings? Justify your answer.

Part A

The pairings we get from running the stable matching algorithm with jobs proposing is one where, for an index i, candidate C_i is paired with job J_i , i.e., the pairings we get are $\{(C_1, J_1), (C_2, J_2), \dots, (C_n, J_n)\}$.

To prove that this happens for all n, I'll use the principle of induction to prove the *base case* and the *inductive step*.

- Base Case: When n=1, the claim holds since there is only one possible pairing (C_1, J_1) .
- Inductive Hypothesis: Assume that the pairing we get is $\{(C_1, J_1), (C_2, J_2), \dots, (C_k, J_k)\}$ for some value of n = k where $k \in \mathbb{N}$.
- Inductive Step: For n = k + 1, we can show that the preferences and matching are the following:

Jobs	Candidates				
J_1	$C_1 > C_2 > \dots > C_k > C_{k+1}$				
J_2	$C_1 > C_2 > \dots > C_k > C_{k+1}$				
:	÷				
J_k	$C_1 > C_2 > \dots > C_k > C_{k+1}$				
J_{k+1}	$C_1 > C_2 > \dots > C_k > C_{k+1}$				

Candidates	Jobs		
C_1	$J_1 > J_2 > \dots > J_k > J_{k+1}$		
C_2	$J_1 > J_2 > \dots > J_k > J_{k+1}$		
:	:		
C_k	$J_1 > J_2 > \dots > J_k > J_{k+1}$		
C_{k+1}	$J_1 > J_2 > \dots > J_k > J_{k+1}$		

The algorithm takes k + 1 days to produce a stable matching. The resulting pairing is as follows. The circles indicate the job that a candidate picked on a given day (and rejected the rest).

Candidate	Day 1	Day 2		Day k	$\mathbf{Day} \ k+1$
C_1	$\bigcirc 1, 2, \dots, k, k+1$	1		1	1
C_2		$(2),\ldots,k,k+1$		2	2
:	:	:	•••	:	:
C_k				(k), k+1	<u>(k)</u>
C_{k+1}					(k+1)

It takes 1 more day for the algorithm to terminate, and since candidate C_{k+1} is least preferred by all jobs, it will be proposed to last. The job proposing will be job J_{k+1} , since it is least preferred by all candidates. Therefore, we get a pairing $\{(C_1, J_1), (C_2, J_2), \dots, (C_k, J_k), (C_{k+1}, J_{k+1})\}$. By induction, we have shown that we get a pairing $\{(C_1, J_1), (C_2, J_2), \dots, (C_n, J_n)\}$ for all n.

Part B

The pairings we get from running the stable matching algorithm with jobs proposing is one where, for an index i, candidate C_i is paired with job J_i , i.e., the pairings we get are $\{(C_1, J_1), (C_2, J_2), \dots, (C_n, J_n)\}$.

Part C

Because both the job-optimal and candidate-optimal stable matching algorithms produce the same pairing, there is only 1 stable pairing.