Anéis - Subanéis

José Antônio O. Freitas

MAT-UnB

5 de outubro de 2020

Definição

Um anel comutativo $(A,+,\cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se $xy=0_A$, então $x=0_A$ ou $y=0_a$. Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos de um anel A tais que $xy = 0_A$, então x e y são chamados de **divisores próprios de zero**.

Exemplos

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade, por exemplo, em \mathbb{Z}_4 , $\overline{2} \neq \overline{0}$, no entanto $\overline{2} \otimes \overline{2} = \overline{4} = \overline{0}$.

Exemplos

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam \overline{x} , $\overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$ ou $\overline{y}=\overline{0}$. Assim, \mathbb{Z}_m é anel de integridade se, e somente se, m é primo.

Definição

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m > 1 é um subanel de \mathbb{Z} .

Proposição

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y \in B$ e $x \cdot y \in B$ para todos x, $y \in B$.

Prova: FAZER!!!!!

Exemplos

COLOCAR EXEMPLOS