ELECTROMAGNETIC STALLDING PLATE AND MICROWAVE ROUIT UNIT

Patent number:

JP8222878

Publication date:

1996-08-30

Inventor:

HINOHARA SEIKI

Applicant:

NEC ENG LTD

Ciassification:

- international:

H05K9/00; H01P3/08; H03F3/60

european:
Application number:

JP19950023594 19950213

Priority number(s):

Report a data error here

Abstract of JP8222878

PURPOSE: To provide an electromagnetic shielding plate having such a simple structure that the plate can surely prevent the interference of electromagnetic waves and a microwave circuit unit equipped with the electromagnetic shielding plate. CONSTITUTION: An electromagnetic shielding plate 1 is formed to have a threaded hole la at one end section and a free end having a prescribed level difference at the other end section and, at the same time, a projecting body 1b is integrally formed with the plate at a prescribed part of the free end. At the time of shielding the input and output ends of a package housing a microwave circuit, the end section of the plate 1 with the hole la is screwed on the input end or output end of the package 2 with the free end of the plate 1 floated above the upper surface of the package 2. Then an enclosure cover 4 having a grounding potential is put on the package and the back section of the free end is brought into contact with the upper surface of the package 2 by bending the free end of the plate 1 by pushing the upper end section of the projecting body 1b with the internal surface of the cover 4.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

http://v3.espacenet.com/textdoc?DB=PAJ&&IDX=JP8222878&F=0

5/27/2005

(19) 日本国特許庁 (JP)

●₂公開特許公報 (A)

特開平8-222878

(43)公開日 平成8年(1996)8月30日

(51) Int. Cl. 6 H05K 9/00 H01P 3/08 H03F 3/60	識別記号	庁内整理番号	F I HO5K 9/00 HO1P 3/08 HO3F 3/60	技術表示館所 F
			審查請求	未請求 請求項の数3 OL (全4頁)
(21)出顯番号	特願平7-23594		(71) 出願人	日本電気エンジニアリング株式会社
(22) 出願日	平成7年(1995)2月13日	(72)発明者	東京都港区芝浦三丁目18番21号 日野原 成輝 東京都港区芝浦三丁目18番21号 日本電気 エンジニアリング株式会社内	
			(74)代理人	弁理士 鈴木 正剛
			1	

(54) 【発明の名称】電磁シールド板及びマイクロ波回路ユニット

(57)【要約】

【目的】 構造が簡単で確実に電波の干渉を防ぐことが できる構造の電磁シールド板及びこの電磁シールド板を 有するマイクロ波回路ユニットを提供する。

【構成】 電磁シールド板1の一端部にピス孔1aを形成し、他端部を所定高の段差をもつ自由端とするととは、自由端の所定部位に突出体1bを一体形成する。マイクロ波回路を収容したパッケージ2の入出力端をシールド板1の自由端をパッケージ2の上面に浮かした状態で、ピス孔1aをパッケージ2の入出力端のいずれか一方と共にそジ止め固定する。そして接地電位の値体カバー4をかぶせ、突起体1bの自由端をカバー内壁で押して自由端を換ませ、この自由端の有面能とパッケージ2の上面部とを接触させる。

[特許請求の範囲]

【請求項1】 導電性筐体内の空間に配されるマイクロ 波回路の所定部位と前記筺体とを導通させるための電磁 シールド板であって、前記筺体への取付用切り欠き部が 形成された基端部と、この基端部に対して所定高の段差 をもち且つ前記段差方向に突出する突出体が一体形成さ れた自由端と、を有する導電性薄板から成り、前記筺体 への取付時に筺体内壁に押された前記突出体が自由端を 前記マイクロ波回路の所定部位に導通させる構造である ことを特徴とする電磁シールド板。

【請求項2】 信号入力部と信号出力部との間を電磁的 に遮蔽するための接地部が設けられたマイクロ波回路 と、このマイクロ波を収容するための空間が形成された 導電性筐体と、この筐体と前記接地部とを導通させる電 磁シールド板とを有するマイクロ波回路ユニットにおい τ.

前記電磁シールド板は、

前記筺体への取付用切り欠き部が形成された基端部と、 この基端部に対して所定高の段差をもち且つ前記段差方 向に突出する突出体が一体形成された自由端と、を有す 20 る導電性薄板から成り、前記筐体への取付時に筺体内壁 に押された前記突出体が自由端を前記マイクロ波回路の 接地部に導通させる構造であることを特徴とするマイク 口波回路ユニット。

【請求項3】 前記マイクロ波回路は、電界効果トラン ジスタで構成される増幅回路であり、前記接地部である 漢電性パッケージで囲まれていることを特徴とする請求 項2記載のマイクロ波回路ユニット。

【発明の詳細な説明】

100011

[産業上の利用分野] 本発明は、マイクロ波回路ユニッ トに係り、特に電波干渉による回路動作の影響を避ける ための電磁シールド板の構造に関する。

[0002]

【従来の技術】マイクロ波回路ユニット、例えばFET を使用したマイクロ波帯の増幅器では、FETの信号入 力部と信号出力部との間の電波干渉による影響を避ける ため、入出力部間を電磁シールド板でシールド(電磁遮 蔽) しているのが通常である。

[0003] 図2は、従来のこの種の電磁シールド板の 40 構造例を示す図であり、(a)は電波伝搬方向に対して 垂直にカットしたときの断面図、(b) はシールド板単 体の正面図、(c)はその側面図である。これらの図に おいて、2は断面凸状の導電性パッケージに収容された 上記増幅器(以下、単にパッケージと称する)、3は導 電性筐体ケース、4は導電性筐体力パーを示す。パッケ ージ2の両側部、つまり筐体ケース3にスペーサを介し てネジ止め固定する部分がFETの信号入出力部に相当 する入出力端である。また、パッケージ2の上面部と筺 体力パー4の内壁との間には一定の空間が形成されてい 50

る。

[0004]電磁シールド板5は、例えばリン青銅製の 導電性薄板から成り、図2 (b) に示すように、その両 端部に2つの取付用切り欠き部(以下、ピス孔)5 aが 形成され、さらに断面コ字状のピス間薄板連結部 5 b に 所定厚みの突起体 5 c が一体形成されている。そして、 ピス孔5aをパッケージ2の入出力端と共に筐体ケース 3に取り付け、筺体力パー4をかぶせたときに、突起体 5 c の上端部がカバー内壁に押されてピス間薄板連結部 5 bが撓み、当該連結部 5 bの一部がパッケージ 2 の上 10 面部と接触する。これによりパッケージ2の上面が筺体 カバー4と導通して、入出力端を電磁的にシールドする ようになっている。

[0005] [発明が解決しようとする課題] 上述のように、従来の 電磁シールド板5は、2つのピス孔5aにてパッケージ 2の入出力端と共に固定され、筐体カバー4に押される 際にピス間薄板連結部5bが撓んでカバー内壁とパッケ ージ2の上面とが突起体5cを介して導通するようにな っていたので、パッケージ2の高さ(厚み)、あるいは **筺体力パー4や電磁シールド板5の寸法精度にパラツキ** があると、パッケージ2と電磁シールド板5との間に隙 間ができ、電磁シールドが不完全となる。そのため、電 波干渉が発生して増幅器が共振あるいは発振する問題が あり、各々の寸法精度がかなり厳格に要求されていた。 [0006] 本発明は、このような問題点に鑑み、構造 が簡単で確実に電波の干渉を防ぐことができる構造の電 磁シールド板及びこの電磁シールド板を有するマイクロ 波回路ユニットを提供することにある。

[0007] 30

【課題を解決するための手段】本発明の電磁シールド板 は、導電性筺体内の空間に配されるマイクロ波回路の所 定部位と前記筺体とを導通させるもので、前記筺体への 取付用切り欠き部が形成された基端部と、この基端部に 対して所定高の段差をもち且つ前記段差方向に突出する 突出体が一体形成された自由端と、を有する導電性薄板 から成り、前記筺体への取付時に筺体内壁に押された前 記突出体が自由端を前記マイクロ波回路の所定部位に導 通させる構造であることを特徴とする。

【0008】また、本発明のマイクロ波回路ユニット は、信号入力部と信号出力部との間を電磁的に遮蔽する ための接地部が設けられたマイクロ波回路と、このマイ クロ波を収容するための空間が形成された導電性筐体 と、この筐体と前記接地部とを導通させる電磁シールド 板とを有する。この電磁シールド板は、前記筐体への取 付用切り欠き部が形成された基端部と、この基端部に対 して所定高の段差をもち且つ前記段差方向に突出する突 出体が一体形成された自由端と、を有する導電性薄板か ら成り、前記筺体への取付時に筺体内壁に押された前記 突出体が自由端を前記マイクロ波回路の接地部に導通さ

せる構造である。なお、前記マイ | 波回路は、例えば FETで構成された増幅回路であり、前記接地部である 導電性パッケージで囲まれているものとする。

[0009]

[作用] 本発明の電磁シールド板は、基端部のみを筐体 に取り付けて固定する機造なので、簡易な形状であり、 しかも自由端が突出体に加わる力によって容易に撓むの で、両端部が固定されている場合に比べて確実にマイク 口波回路の接地部に接触する。接地部がFETで構成さ れた増幅回路を囲む導電性パッケージである場合には電 10 で、鋳物による管体にも適用が可能となり、低価格化も 磁シールド板との接触がより確実となる。

[0010]

【実施例】以下、図面を参照して本発明の実施例を説明 する。図1は本発明の一実施例に係る電磁シールド板の 構造説明図であり、(a)は電波伝搬方向に対して垂直 にカットしたときの断面図、(b) はシールド板単体の 正面図、(c)はその側面図である。なお、図2(a) ~ (c) に示した構成要素と同一部分については同一符 号を付してその説明を省略する。

【0011】本実施例の電磁シールド板1は、導電性部 20 材、例えばリン青銅板から成り、その一端部に筐体ケー ス3にネジ止めするためのビス孔1aを形成している。 一方、他端部は、このピス孔1 a の形成部位に対して所 定高の段差をもつ自由端をなし、日つ段部から所定距離 の部位に、段差方向に突出する突出体1 bを一体形成し ている。この突出体 1 b も 導電性部材から成るものであ る。

【0012】上記構造の電磁シールド板1を用いてパッ ケージ2の入出力端をシールドする場合は、電磁シール ド板1の自由端をパッケージ2の上面に浮かした状態 で、ビス孔1aをパッケージ2の入力端あるいは出力端 のいずれか一方と共にネジ止め固定する。そして接地電 位の筐体カバー4をかぶせて筐体ケース3に固定する。 このとき、突起体1bの上端部がカバー内壁に押されて 自由端が撓み、この自由端の背面部とパッケージ2の上 面部とが接触する。これによりパッケージ2の上面が筐 体カパー4と導通して、その入出力端が電磁的にシール ドされる。

【0013】このように、本実施例の電磁シールド板1 は、一端部のみを固定し、他端部を所定高の段差をもつ 自由端とするとともに、この自由端の所定部位に突出体 1 bを一体形成し、筐体カバー4をかぶせた際に自由端 が容易に捧むようにしたので、両端部が固定されている 従来品に場合に比べて確実にパッケージ2の上面部と接 触する。したがって、パッケージ2内の発振や共振が確 実に防止される。また、簡易構造なので量産性にも優 れ、さらに、寸法精度を厳格に考慮する必要がないの

【0014】なお、本発明は、電磁シールド板の他端部 を自由端として撓み易くした点に主眼があるので、突起 体 1 b の形状、数量については必ずしも図 1 の例に限定 されるものではない。

[0015]

[効果] 以上の説明から明かなように、本発明の電磁シ ールド板によれば、自由端がマイクロ波回路の信号入力 部と信号出力部との間の接地部と確実に導通するので、 電磁シールドが完全になる効果がある。したがって、こ の電磁シールド板を用いてマイクロ波回路ユニットを構 成した場合に、電波干渉による発振や共振が確実に防止 され、動作信頼性が格段に向上する。

【図面の簡単な説明】

【図1】(a)は本実施例の電磁シールド板を電波伝搬 方向に対して垂直にカットしたときの断面図、 (b) は 電磁シールド板単体の正面図、(c)はその側面図。

【図2】(a)は従来の電磁シールド板を電波伝搬方向 に対して垂直にカットしたときの断面図、(b) は電磁 30 シールド板単体の正面図、(c)はその側面図。

1. 5 電磁シールド板

1a, 5a ピス孔

【符号の説明】

1 b. 5 c 突起体

2 パッケージ (FETで構成した増幅器)

3 僅体ケース

(単体カバー 4

BEST AVAILABLE CUP'S