Cracking Passwords with Time-memory Trade-offs

Gildas Avoine
INSA Rennes (France), UCL (Belgium)

SUMMARY

Motivations

Hellman Tables

Oechslin Tables

Real Life Examples

Conclusion

MOTIVATIONS

- Motivations
- Hellman Tables
- Oechslin Tables
- Real Life Examples
- Conclusion

One-way Function

Function $h: A \rightarrow B$ that is easy to compute on every input, but hard to invert given the image of an arbitrary input.

One-way Function

Function $h: A \rightarrow B$ that is easy to compute on every input, but hard to invert given the image of an arbitrary input.

One-way Function

Function $h: A \rightarrow B$ that is easy to compute on every input, but hard to invert given the image of an arbitrary input.

Example: Password-based Authentication

```
User (username, pwd)

\begin{array}{c}
\text{User (username, pwd} \\
\hline
\end{array}

\begin{array}{c}
\text{Computer} \\
\text{Compute } h(\text{pwd})
\end{array}
```

Exhaustive Search

Online exhaustive search:

• Computation: N := |A|

o Storage: 0

Precalculation: 0

Precalculated exhaustive search:

Computation: 0

• Storage: N

Precalculation: N

00

HELLMAN TABLES

- Motivations
- Hellman Tables
- Oechslin Tables
- Real Life Examples
- Conclusion

- Martin Hellman's cryptanalytic time-memory trade-off (1980).
- lacksquare Precalculation phase to speed up the online attack: $T \propto rac{N^2}{M^2}$

- Martin Hellman's cryptanalytic time-memory trade-off (1980).
- lacksquare Precalculation phase to speed up the online attack: $T \propto rac{N^2}{M^2}$

- Martin Hellman's cryptanalytic time-memory trade-off (1980).
- lacksquare Precalculation phase to speed up the online attack: $T \propto rac{N^2}{M^2}$

- Martin Hellman's cryptanalytic time-memory trade-off (1980).
- lacksquare Precalculation phase to speed up the online attack: $T \propto rac{N^2}{M^2}$

- Martin Hellman's cryptanalytic time-memory trade-off (1980).
- lacksquare Precalculation phase to speed up the online attack: $T \propto rac{N^2}{M^2}$

- Martin Hellman's cryptanalytic time-memory trade-off (1980).
- lacksquare Precalculation phase to speed up the online attack: $T \propto rac{N^2}{M^2}$

Reduction Functions

- \blacksquare R: B \rightarrow A is used to map a point from B to A arbitrarily
- It should be fast to compute (w.r.t. h)
- R should be surjective.
- R should be deterministic.
- $\forall a \in A, \ |R^{-1}(a)| \approx \frac{|B|}{|A|}$
- Typically, $R: b \mapsto b \mod N$.

Precalculation Phase (recap)

- Invert $h: A \rightarrow B$.
- Define $R: B \rightarrow A$ an arbitrary (reduction) function.
- Define $f: A \rightarrow A$ such that $f = R \circ h$.
- Chains are generated from arbitrary values in A.

- The generated values should cover the set A (probabilistic).
- Only the first and the last element of each chain is stored.

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

■ Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at $y_1 : y_1 \xrightarrow{f} y_2 \xrightarrow{f} y_3 \xrightarrow{f} \dots y_s$

Coverage and Collisions

■ Collisions occur during the precalculation phase.

Coverage and Collisions

Collisions occur during the precalculation phase.

Coverage and Collisions

- Collisions occur during the precalculation phase.
- Several tables with different reduction functions.

00

OECHSLIN TABLES

- Motivations
- Hellman Tables
- Oechslin Tables
- Real Life Examples
- Conclusion

Using Several Reduction Functions (Oechslin, 2003)

- Use a different reduction function per column: rainbow tables.
- Invert $h: A \rightarrow B$.
- Define $R_i: B \to A$ arbitrary (reduction) functions.
- Define $f_i: A \to A$ such that $f_i = R_i \circ h$.

• If 2 chains collide in different columns, they don't merge.

• If 2 chains collide in different columns, they don't merge.

• If 2 chains collide in different columns, they don't merge.

- If 2 chains collide in different columns, they don't merge.
- If 2 chains collide in same column, merge can be detected.

- If 2 chains collide in different columns, they don't merge.
- If 2 chains collide in same column, merge can be detected.

A table without merges is said perfect (clean).

Online Procedure is More Complex

Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at y_1 :

Online Procedure is More Complex

Given one output $y \in B$, we compute $y_1 := R(y)$ and generate a chain starting at y_1 :

Success Probability of a Table is Bounded

$\mathsf{Theorem}$

Given t and a sufficiently large N, the expected maximum number of chains per perfect rainbow table without merge is:

$$m_{\sf max}(t) pprox rac{2N}{t+1}.$$

Theorem

Given t, for any problem of size N, the expected maximum probability of success of a single perfect rainbow table is:

$$P_{\sf max}(t) pprox 1 - \left(1 - rac{2}{t+1}
ight)^t$$

which tends toward $1 - e^{-2} \approx 86\%$ when t is large.

Average Cryptanalysis Time

Theorem

Given N, m, ℓ , and t, the average cryptanalysis time is:

$$T = \sum_{k=1 top c=t-\lfloor rac{k-1}{\ell}
floor}^{k=\ell t}
ho_k(rac{(t-c)(t-c+1)}{2} + \sum_{i=c}^{i=t} q_i i)\ell +$$

$$(1-\frac{m}{N})^{\ell t}(\frac{t(t-1)}{2}+\sum_{i=1}^{i=t}q_{i}i)\ell$$

where

$$q_i = 1 - \frac{m}{N} - \frac{i(i-1)}{t(t+1)}.$$

REAL LIFE EXAMPLES

- Motivations
- Hellman Tables
- Oechslin Tables
- Real Life Examples
- Conclusion

Windows LM Passwords (Algorithm)

- Win98/ME/2k/XP uses the Lan Manager Hash (LM hash).
- The password is cut in two blocks of 7 characters.
- Lowercase letters are converted to uppercase. Not salted.

Windows LM Hash (Results)

Cracking an alphanumerical password (LM Hash) on a PC. Size of the problem: $N = 8.06 \times 10^{10} = 2^{36.23}$.

	Brute Force	TMTO
Online Attack (op)	4.03×10^{10}	1.13×10^{6}
Time	2 h 15	0.226 sec
Precalculation (op)	0	1.42×10^{13}
Time	0	33 days
Storage	0	2 GB

Gildas Avoine 2:

Statistics from 10,000 Leaked Hotmail Passwords

Password Type	%
numeric	19%
lower case alpha	42%
mixed case alpha	3%
mixed numeric alpha	30%
other charac	6%

Password Length	%
≤ 7	37%
≤ 8	58%
≤ 9	70%

Windows NT LM Passwords

- Win NT/2000/XP/Vista/Seven uses the NT LM Hash.
- The password is no longer cut in two blocks.
- Lowercase letters are not converted to uppercase. Not salted.

Windows NT LM Hash (Results)

Cracking a 7-char (max) alphanumerical password (NT LM Hash) on a PC. Size of the problem: $N = 2^{41.7}$.

	Brute Force	TMTO
Online Attack (op)	1.78×10^{12}	4.48×10^{7}
Time	99 hrs	9.0 sec
Precalculation (op)	0	6.29×10^{14}
Time	0	1458 days
Storage	0	16 GB

Gildas Avoine 2:

CONCLUSION

- Motivations
- Hellman Tables
- Oechslin Tables
- Real Life Examples
- Conclusion

Limits of Cryptanalytic Time-memory Trade-offs

- A TMTO is never better than a brute force.
- TMTO makes sense in several scenarios.
 - Attack repeated several times.
 - Lunchtime attack.
 - Attacker is not powerful but can download tables.
- Two conditions to perform a TMTO.
 - Reasonably-sized problem.
 - One-way function (or chosen plaintext attack on a ciphertext).