

Velikostne skale življenja

Kako lahko vidimo majhne stvari?

Kako povečamo majhne stvari?

Nastanek slike zaradi loma svetlobe na ukrivljeni površini (geometrijska optika):

Optična povečava: $M = y_2 / y_1 = f_2 / f_1$

Uklon svetlobe nam zamegli sliko

Nastanek slike zaradi uklona svetlobe:

Kako podrobno vidimo majhne stvari?

- Slika točke zaradi uklona svetlobe ni neskončno ostra. Če sta dve točki preblizu skup, se njuni sliki zlijeta.
- Najmanjša razdalja med dvema točkama (d), pri kateri ju lahko razločimo na sliki, je ločljivost mikroskopa.
 Ta je odvisna od:
 - valovne dolžine svetlobe λ
 - numerične odprtine objektiva $NA = n \sin(\alpha)$ n - lomni količnik medija α - polovični kot zajema svetlobe
 - ne od povečave!

Ernst Abbe

• Z optičnim mikroskopom lahko razločimo le podrobnosti večje od d (v najboljšem primeru λ /2, t.i. uklonska limita)!

Velikostne skale življenja

Kratka zgodovina svetlobne mikroskopije

17. stol.

20. stol.

21. stol.

Zgradba presevnega mikroskopa

Kaj vidmo na teh slikah?

Dve nadgradnji presevnega mikroskopa

PhC:

Objective Nomarski Prism

Condenser Nomarski

Quarter Wavelength

Polarizer -

Phase Contrast

V čem se razlikujeta sliki iste celice?

Presevna mikroskopija

Fluorescenčna mikroskopija

Fluorescenca: revolucija kontrasta

Osnove fluorescence

Energijski prehodi elektrona

Diagram Jabłonskega

Spekter svetlobe

Stokesov premik

Fluorescenčni mikroskop

Spekter svetlobe

Konfokalni fluorescenčni mikroskop

• Omogoča optično rezinjenje

Niz slik po globini:

3D rekonstrukcija:

Superločljiv fluorescenčni mikroskop

Velikostne skale življenja

Fluorescenčna barvila

Fluorescenčni proteini

Chromophore Structural Motifs of Green Fluorescent Protein Variants

Organska barvila

Fluorescenca: revolucija specifičnosti

Fluorescenčno označevanje proteinov

Nespecifično

Označevanje izoliranih proteinov (npr. protiteles)

Specifično

Fluorescenčno označena protitelesa

Ekspresija fluorescenčnih proteinov v celici

Fluorescenčno označevanje DNA/RNA

Nespecifično

DAPI, Hoechst, ...

Specifično

Fluorescence in situ hybridization (FISH)

Laboratorijska biomedicina – Molekularna biofizika

Fluorescenčno označevanje lipidov

Nespecifično

Fluorescenčni analogi lipidov, maščobnih kislin, transmembranskih proteinov ipd. (amfifilne molekule)

Specifično

Vezava na izbrano vrsto lipidov (fosfatidilserin)

Kim Nature Protocols 2010

Fluorescenčna mikroskopija Kontrast + specifičnost 1 μm konfokalno | STED

Vaje na IJS: petek, 18. 4. 2025

- 2 skupini do 7 oseb.
- Začetek ob 11.00 / 13.00.
- Dobimo se v galeriji IJS (glavna stavba, vhod s parkirišča na Jamovi cesti).
- Trajanje vaje vsake skupine: 3h (2h v laboratoriju + 1h za obdelavo materiala).
- Vsaka skupina potrebuje en računalnik z naloženim programom Fiji (https://fiji.sc)
- Vaje vodijo kolegi Laboratorija za biofiziko: Hana Kokot, Boštjan Kokot
- Vsaka skupina pripravi kratko predstavitev (cca 10 min), pri tem sta vam koordinatorja vaj na voljo še eno dodatno uro (se sami dogovorite za termin)
- Predstavitve 25. 4. 2025

Kako lahko opazujemo še manjše strukture?

Kako lahko opazujemo molekularne strukture?

- "Sliko" ustvari interakcija svetlobe s snovjo: fotoni ("delci svetlobe") se od elektronov v snovi "odbijajo" v vse smeri (= sipanje)
- Da lahko delce snovi razločimo na sliki, morajo biti razdalje med njimi primerljive ali večje od valovne dolžine svetlobe
 → Z vidno svetlobo ne ločimo struktur pod 200 nm
- Za opazovanje molekularnih struktur potrebujemo svetlobo s krajšo valovno dolžino ($\lambda \sim 0,1-10$ nm):
 - Rentgenski žarki

$$\lambda = h c / E$$

• Hitri delci (e, n):

$$\lambda = h / m v$$
 (de Broglie)

h .. Planckova konstanta

$$(6.6 \times 10^{-34} \text{ J s} = 4.1 \times 10^{-15} \text{ eV s})$$

c.. svetlobna hitrost

$$(3 \times 10^8 \text{ m/s})$$

... z elektronskim mikroskopom

Namesto EM valovanja uporabimo hitre delce, ki se obnašajo podobno!

... s sipanjem rentgenske svetlobe

 Pri sipanju svetlobe na več delcih dobimo interferenčni vzorec

• Če se razdalje pravilno ponavljajo (kristal), so interferenčne ojačitve ostre

• Kakšna elektronska struktura je povzročila izmerjen interferenčni vzorec?

... s sipanjem rentgenske svetlobe

- Rentgenski interferenčni vzorec na kristalu DNA razkrije obliko dvojne vijačnice!
- Rentgenska kristalografija je do sedaj najuspešnejša metoda za določanje struktur proteinov!
 - + doseže ločljivost pod 0,1 nm
 - potrebna kristalizacija vzorca (red dolgega dosega ojači signal)

Franklin & Gosling Nature 1953

Watson & Crick Nature 1953

... s sipanjem rentgenske svetlobe pod ozkimi koti (SAXS)

- Ponavljajoče se dimenzije molekularnih struktur povzročijo interferenčne vrhove tudi v raztopini.
- Iz izračunanega profila elektronske gostote določimo značilne razdalje:
 - velikost micel
 - debelina membran
 - povprečne razdalje med molekulami
 - ..
- Podobno tudi z nevtroni (SANS)

... s spektroskopijami

 Merimo prenos energije vzbujenega stanja z enega dela molekule na drugi del

• Z EM valovanjem v vidnem, IR, MW ali RF delu spektra lahko merimo razdalje v molekuli z natančnostjo pod 0,1 nm!

• primeri:

• FRET (fluorescence resonance energy transfer)

NOE (nuclear Overhauser effect)

ELDOR (electron-electron double resonance)

