7-9 Monday – 309-GD2

Xử lý ảnh INT3404 1

Giảng viên: TS. Nguyễn Thị Ngọc Diệp

Email: ngocdiep@vnu.edu.vn

Slide & code: https://github.com/chupibk/INT3404_1

Week 8 recall: Graph-based Segmentation - Graph cut - Normalized graph cut Image Node Graph Cut

Final project registration

Registration form

- https://forms.gle/Qpp1hbX9QPG875gT8
- Speadsheet to edit:
 - https://docs.google.com/spreadsheets/d/1c13rgmfNdlpJEPD544qDY2sHxH-ZOxzobeW8fl1Cl w/edit#gid=82493842
 - > Edit with care!

Lịch trình

Nội dung	Yêu cầu đối với sinh viên
1 Giới thiệu môn học Làm quen với OpenCV + Python	Cài đặt môi trường: Python 3, OpenCV 3, Numpy, Jupyter Notebook
Phép toán điểm (Point operations) – Điều chỉnh độ tương phản – Ghép ảnh	Làm bài tập 1: điều chỉnh gamma tìm contrast hợp lý
3 Histogram - Histogram equalization - Phân loại ảnh dùng so sánh histogram	Thực hành ở nhà
4 Phép lọc trong không gian điểm ảnh (linear processing filtering) - làm mịn, làm sắc ảnh	Thực hành ở nhà Tìm hiểu thêm các phép lọc
5 Tim canh (edge detection)	Thực hành ở nhà
6 Các phép toán hình thái (Erosion, Dilation, Opening, Closing) - tìm biển số	Làm bài tập 2: tìm barcode
7 Chuyển đổi không gian - miền tần số (Fourier) - Hough transform	Thực hành ở nhà
Phân vùng (segmentation) - depth estimation - threshold-based - watershed/grabcut	Đăng ký thực hiện bài tập lớn
9 Mô hình màu Chuyển đổi giữa các mô hình màu	Làm bài tập 3: Chuyển đổi mô hình màu và thực hiện phân vùng
Mô hình nhiễu -Giảm nhiễu -Khôi phục ảnh -Giảm nhiễu chu kỳ - Ước lượng hàm Degration -Hàm lọc ngược, hàm lọc Wiener	Thực hành ở nhà
11 Template matching – Image Matching	Làm bài tập 4: puzzle
12 Nén ảnh	Thực hành ở nhà
13 Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
14 Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
15 Tổng kết cuối kỳ	Ôn tập

In this lecture

- Color basics
 - What is color
 - How human eyes perceive colors
- Color creation
 - How we present and create colors
- Color models
- Color image processing

Color basics

Colors

- Color exists only in light, but light itself seems colorless to the human eyes
- What is color and how we perceive colors?

Color IQ: How well do you see color

- Do you know
 - 1 out of 255 women and 1 out of 12 men have some form of color vision deficiency?
- Color vision test:
 - Farnsworth Munsell 100 Hue Test (1949)
 - http://goo.gl/Nj6mBi
 - Farnsworth D15 arrangement test (1947)
 - http://goo.gl/OL1k6o

Color IQ: it is not just for fun

- Color vision can indicate certain medical conditions
- In industries, where color decisions are critical
 - E.g., Product sales, Design

What is color?

- Our world is just full of electromagnetic radiation of varied intensity and wavelengths
- Objectively, there is only the spectral power distribution of the light that meets the eye
- > Color originates in the mind of the observers

Example of color vision deficiency

Image credit: flickr.com

Color creation

Additive vs Subtractive color creation

Your add light to make the color brighter

You subtract the light from the paper by adding more color

Color matching

The amount of three colors: tristimulus values

How to match color outside the triangle?

Many whites

Color model

Color model

- A mathematical way to map wavelengths to certain colors
- A color model describes a coordinate system where each color is represented by a single point
- Each color model is used for different purpose
- For example:
 - RGB: computer graphics, image processing, image storage
 - HSV, HSL: human visual perception, human vision, computer vision
 - Y'CbCa: image compression
 - CMYK: printing
 - YIQ: television broadcasting systems and video systems

RGB color space

A lot of color spaces

HSV color model

- Hue: wavelength of color
 - Is presented by an angle from 0 to 360
- Value: value of brightness
 - Ranging in [0, 1]
 - V=0 → black
- Saturation: purity of color
 - Ranging in [0, 1]

Quiz: Hue difference If hue values range in [0, 360], what is the absolute difference between the following pairs of hues? • 225 and 75 • 45 and 315

Color space conversion

- Linear transformation
 - Transformation matrix
 - E.g.: XYZ <-> RGB

$$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} * \begin{vmatrix} R \\ G \\ B \end{vmatrix}$$

$$\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} * \begin{vmatrix} R \\ G \\ B \end{vmatrix} = \begin{vmatrix} R \\ G \\ B \end{vmatrix} = \begin{vmatrix} X_r & X_g & X_b \\ Y_r & Y_g & Y_b \\ Z_r & Z_g & Z_b \end{vmatrix} (-1) * \begin{vmatrix} X \\ Y \\ Z \end{vmatrix}$$

- Non-linear transformation
 - RGB <-> CMYK
 - RGB <-> HSV
 - RGB <-> Munsell

Color image processing

Y: luma component (the brightness) U: blue projection V: red projection

Intuition: Why YUV?

- Easier clustering of pixels
- Efficient encoding by chroma subsampling
 - Recall, human vision is more sensitive to intensity changes
 - Y channel can now use more bits
- E.g., YUV422 to represent 2 image pixels, it uses 2 bytes for Y, and 1 byte each for U and V

References

- Youtube: Craig Blackwell channel
 - "Color vision" series
- Udacity: "Introduction to computer vision" course

Homework

Color segmentation

- Face segementation
- Submission link:
 - https://forms.gle/Ui4YZm6r81nDPzDTA
 - Deadline: Nov 6, 2019, 23:59 (Hanoi time)
- Useful OpenCV functions:
 - cv2.cvtColor()
 - cv2.inrange()