

Sophie Rosset

LIMSI, CNRS

Dialogue humain-machine

une introduction

Plan

- Objectifs du cours
- Systèmes de dialogue
- Système orienté tâche
- Système purement conversationnel
- Évaluation : métriques et méthodologies
- Mini projet

Objectifs du cours

- Brosser un rapide portrait du domaine
 - Définition : qu'entend-ton par système de dialogue, chatbot, etc. ?
 - Historique : quelles évolutions?
 - Méthodes : quelles sont les principales méthodes ? Pourquoi ?
- Présenter les principales méthodologies de l'évaluation
 - Focus sur la compréhension pour le mini-projet
- Ce que n'est pas ce cours
 - une présentation de chacune des approches!

Plan

- Objectifs du cours
- Systèmes de dialogue
- Système orienté tâche
- Système purement conversationnel
- Évaluation : métriques et méthodologies
- Mini projet

Systèmes de dialogue

Plusieurs termes :

systèmes de dialogue, chatbots, agents conversationnels, assistants intelligents...

- termes qui font référence à des aspects différents
 - agent conversationnel implique une incarnation (typiquement un agent animé)
 - système de dialogue : le système (complexe) qui permet l'interaction en langue naturelle
 - chatbots et assistants intelligents : plus du domaine de l'application, du visible
- Point commun : une succession d'énoncés système / utilisateur

Exemples - Patient Genesys

- U: bonjour, comment allez-vous?
- S: Bonjour docteur. Ça va bien. Merci.
- U: qu' est-ce qui vous amène?
- S : Et bien on va me faire une cholécystectomie sous coeliochirurgie .
- U: d'accord. Vous avez déjà été opéré?
- S : Oui j'ai eu plusieurs opérations : j'ai eu une amygdalectomie, une ligamentoplastie genou droit et une cure de hernie inguinale droite.
- U: Ah vous avez eu une hernie?
 - 5 : Oui. une cure de hernie inguinale droite, en janvier 2010.
- U : avec quelle anesthésie?
- S: J'ai eu AG
- U: ah et comment cela a été
- S : Je me rappelle que après j'ai été malade avec des vomissements.

Exemples - UCAR - JOKER

U: hi there!

S: hi

U: how are you joker?

S: i've got to get back to work

U: yeah i've got to get back to work too

S: i'll go with you

U: yeah sure

Systèmes de dialogue

Vision très simple

- qui implique en fait une combinaison de systèmes
- et recouvre au moins deux objectifs différents :
 - ightarrow un système pour aider l'utilisateur à accomplir une tâche ightarrow système orienté tâche
 - ightarrow un système pour parler de tout et de rien, pour $\mathit{chat}\text{-}\mathit{er}
 ightarrow$ système conversationnel

Systèmes de dialogue : deux familles

Système orienté tâche

- but : aider l'utilisateur à accomplir une tâche, obtenir une information
- méthodes : combinaison de composants fondés sur des connaissances (règles) et des modèles statistiques

Système conversationnel

- pas de but spécifique : chercher la réaction la plus naturelle face à un énoncé
- méthodes : approches par sélection (fondées sur des méthodes de RI) ou approches génératives (modèles neuronaux de type seq2seq)

Plan

- Objectifs du cours
- Systèmes de dialogue
- Système orienté tâche
- Système purement conversationnel
- Évaluation : métriques et méthodologies
- Mini projet

Pour quoi faire?

Pour quoi faire?

Pour quoi faire?

La compréhension est souvent considérée comme un enchaînement de 2-3 tâches :

- détection/identification :
 - du domaine : si application multi-domaine
 - de l'intention (aka type de demande) : toujours
- détection des concepts

Découpage apparut à la fin des années 2000 (lié à l'essor des approches statistiques)

But du découpage : décomposer un problème complexe en plusieurs plus simples

Les approches non statistiques (typiquement avec des règles) tendent à tout réaliser en même temps.

Identification domaine/intention

- apprentissage supervisé : classification
- formulation du problème :

```
un ensemble d'énoncés u_i associés à un label c_i D = (u_1,c_1),...(u_n,c_n)
```

ightarrow entraîner un modèle pour estimer le label correspondant à un nouvel énoncé $u_{\mathbf{k}}$

Méthodes : classification

- SVM, MaxEnt, etc.
- modèles neuronaux variés comme les DBN (Deep Belief Networks), les RNN et LSTM etc.
- → voir slides 48 à 52 du Tuto Chen et al. ACL 2017 https://www.csie.ntu.edu.tw/~yvchen/doc/ DeepDialogue_Tutorial_ACL.pdf

Détection de concepts (slot filling)

concepts = les entités mentionnés dans l'énoncé (mentions) slots = les attributs de la tâche et du domaine slot filling = associer aux slots les mentions (normalisées)

Words	une	chambre	pour	deux	adultes
Slots	B-nb-room	l-nb-room	0	B-nb-pers	l-nb-pers
Exemple tiré de [Bonneau-Maynard et al., 2006]					

Méthodes : annotation en séquence

- CRF: [Hahn et al., 2010]
- LSTM: [Yao et al., 2014]
- RNN et RNN-CRF: [Mesnil et al., 2015]
- ... en pleine effervescence!

Modèle de compréhension joint

Peut-on faire les deux étapes en une seule fois? OUI (***on le faisait avant aussi***)

- Slot filling puis classification : [Guo et al., 2014]
- Représentation commune (GRU) puis parallélisation : [Zhang and Wang, 2016]

Compréhension : analyse fondées sur des grammaires

- Formalisme logique et lambda calcul [Villaneau and Antoine, 2004]
- Expressions régulières [Galibert, 2009] utilisés dans [Campillos Llanos et al., 2016]
- Context Free Grammar [Glass et al., 1995]

Système orienté tâche : gestion dialogue

Compréhension contextuelle

la langue naturelle, hors contexte, est ambiguë

U : je veux réserver un hôtel pour lundi 8 à Nancy

S : pour combien de nuits?

U: deux

 \rightarrow amount(2) = nb-night(2)

• certaines demandes ne se comprennent qu'avec le contexte

U : je voudrais partir vers 17 heures

S: vous avez un train à 16 heures 57 ...

U : et le suivant

S: le train suivant part à 17 heures 30 ...

Système orienté tâche : gestion dialogue

Compréhension contextuelle

- le plus souvent, interne à la gestion de dialogue (mise à jour des états)
- dépend fortement d'une définition du domaine
- modèle à base de connaissances (frame-based, information state update) [Traum and Larsson, 2003, Campillos Llanos et al., 2016]
- modèles neuronaux
 - LSTM qui encodent un ou plusieurs énoncés précédents [Hori et al., 2015]
 - end2end memory network [Chen et al., 2016]

Limsi | Système orienté tâche : gestion du dialogue

Dialogue state tracking (DST): définition

- Objectif : fournir une représentation complète de ce que veut l'utilisateur à n'importe quel moment du dialogue [Henderson, 2015].
- dialogue représenté par : $S = Slot_{inf} \cup Slot_{reg}$;
 - slot_{inf} = ensemble des attributs dont l'utilisateur peut utiliser la valeur comme contrainte de recherche;
 - slot_{inf} = ensemble des attributs dont l'utilisateur peut demander la valeur mais nécessairement utiliser la valeur comme contrainte;
- Dialog state comprend : les slots, les contraintes pour chaque slot_{inf} (valeurs possibles $v \in V + dontcare$) et la méthode de recherche (par contrainte, par alternative ou encore fini)
- Campagne d'évaluation : donner la distribution de probabilités complètes (argument : rend plus robuste)

Limsi | Système orienté tâche : gestion du dialogue

Dialogue state tracking (DST): méthodes

- Méthodes génératives (et rule based)
 - Rule-based [Larsson and Traum, 2000] mais ne permet pas de prendre en compte des hypothèses multiples de LU
 - Réseaux bayésiens dynamiques (DBN) : énumérer tous les possibles peut être explosif, donc soit en maintenant un beam search [Young et al., 2007] soit en supposant une indépendance conditionnelle entre les composants de l'état de dialogue [Thomson and Young, 2010]
 - Inconvénient [Metallinou et al., 2013] : doivent tout modéliser y compris ce qui n'est pas vu dans l'entraînement
- Méthodes discriminantes : modéliser la tâche comme une tâche de classification $\rightarrow (P(s_t|o_0,...,o_t))$
 - Classifieurs linéaires [Metallinou et al., 2013]
 - Réseaux de neurones [Henderson et al., 2013]

Limsi | Système orienté tâche : gestion du dialogue

Contrôleur (module de décision) : objectifs

Le contrôleur de dialogue gère la prise de décision. Il doit décider quand et quoi dire à l'utilisateur, quand et quoi rechercher comme information.

Il s'appuie pour cela sur l'état du dialogue.

Différentes approches

- Les graphes → automates à états finis
- Les schémas (frame)
- Les approches statistiques
- Les approches neuronales

Limsi Système orienté tâche : gestion du dialogue

Contrôleur : automate à états finis

- Les noeuds représentent les questions du système
- Les arcs représentent les réponses
- Le graphe représente toutes les alternatives possibles (légales)

Limsi | Système orienté tâche : gestion du dialogue

Contrôleur : automate à états finis

- Les noeuds représentent les questions du système
- Les arcs représentent les réponses
- Le graphe représente toutes les alternatives possibles (légales)

Quelques remarques :

- La gestion du dialogue est très simple tout comme les échanges possibles
- Ne peut être utilisé que dans des tâches très simples et très structurées (slots limités en nombre et valeurs)
- Toujours utile et utilisé

Limsi Système orienté tâche : gestion du dialogue

Contrôleur (module de décision) : les frame (ou schémas)

- Un schéma permet un dialogue plus souple (ordre éléments non contraint)
- Un schéma peut impliquer une analyse non contextuelle plus complexe
- Un schéma permet un dialogue à initiative mixte
- Possibilité d'avoir autant de schéma que de (sous-)tâches ou un schéma complexe

Un schéma est une manière plus flexible pour contrôler le dialogue.

- Il représente ce que doit résoudre le système
- Il s'agit d'un ensemble de slots que le système doit remplir au fur et à mesure
- \rightarrow est le point de départ de ce qui est utilisé en DST.

Limsi | Système orienté tâche : gestion du dialogue

Contrôleur (module de décision) : apprentissage par renforcement

- Proposé par [Young, 2006]
- Gestion du dialogue = prendre une décision
- Apprendre à prendre une décision en fonction d'un état
- Modélisation des états :
 - MDP: Markov Decision Process
 - POMDP : Partially Observable Markov Decision Process
- Apprentissage de la stratégie de dialogue (policy, décision) : Apprentissage par renforcement [Sutton and Barto, 1998]

Apprentissage nécessite beaucoup de données et de beaucoup d'essais.

→ simulation d'utilisateur [Schatzmann et al., 2006]

Limsi Système orienté tâche : gestion du dialogue

Approches neuronales

- Elles sont récentes [Wen et al., 2017]
- Objectif : apprendre à mapper les schémas du dialogue (les slots) et un historique à une réponse du système de dialogue.
- Des modèles de type encoder-decoder sont utilisés pour l'apprentissage du système.
- Une approche hybride a été récemment proposé permettant dans une architecture neuronale d'intégrer des programmes (ie des règles) [Williams et al., 2017]

Système orienté tâche : Génération

Génération : objectif

Transformer un schéma sémantique en une phrase en langue naturelle request(quartier) confirm(city), confirm(date)

- \rightarrow S : Pour le lundi 8 à Nancy, avez-vous un quartier préféré?
 - Décider quoi dire
 - Décider comment le dire

Génération: méthodes

- Génération fondée sur des patrons (template based)
 - ensemble de paires(phrases à trous, schémas)
- Génération fondée sur des syntagmes (phrase based)
 - à partir de là des modèles statistiques (cf. liste des publications sur le site)

Dialogue humain-machine '

Système orienté tâche : bilan

Système complexe

Un système de dialogue orienté tâche est un système complexe qui implique plusieurs composants, le plus souvent « pipelinés »

- (Reconnaissance de la parole)
- Compréhension de la langue
- Gestionnaire de dialogue
- Génération en langue

Approches

Les approches sont variées allant du combo règles et connaissances explicites aux approches statistiques et neuronales, et ce quel que soit le module concerné

→ Quelles sont les forces et faiblesses de chacune de ces approches?

Règles/connaissances explicites

- Pour
 - facile à interpréter/débuguer
 - nécessite peu de données
 - évolution raisonnablement simple jusqu'à un certain point
 - → toujours en usage dans les systèmes commerciaux
- Contre
 - difficile à maintenir
 - passage à un nouveau domaine parfois difficile (dépend de l'implémentation)
 - passage à une nouvelle langue parfois difficile (dépend de l'implémentation)
- A voir
 - repose sur une expertise (le développeur doit être expert???)

Statistiques (pomdp, rl)

- Pour
 - données utilisées pour développer (plus proche d'une réalité)
 - pas nécessaire d'écrire/coder des comportements de façon explicite
- Contre
 - passage à nouveau domaine et nouvelles langues difficiles
 - difficile à interpréter/débuguer
 - évolution peu simple (repose sur RL, repose sur utilisateur simulé -> appris sur données disponibles)
- A voir
 - repose sur des données annotées coûteuses à obtenir (expert est présent ici)
 - impossible d'apprendre un modèle qui ferait tout (end-2-end)

Apprentissage profond (approches neuronales)

- Pour
 - données utilisées pour développer (plus proche d'une réalité)
 - pas nécessaire d'écrire/coder des comportements de façon explicite
 - passage à l'échelle plus simple
 - puissance des représentations
 - end-2-end devient envisageable
- Contre
 - passage à nouveau domaine et nouvelles langues difficiles
 - difficile à interpréter/débuguer
- A voir
 - Comme pour les autres approches, repose sur de très grandes quantités de données, au moins alignement input/output ... comment les obtenir? peut-on généraliser? quoi? comment?

Questions à se poser

- données disponibles? quelles formes?
- coûts obtention des données vs coûts développement
- richesse et complexité du domaine

Plan

- Objectifs du cours
- Systèmes de dialogue
- Système orienté tâche
- Système purement conversationnel
- Évaluation : métriques et méthodologies
- Mini projet

Système purement conversationnel

Objectifs

- modéliser des capacités conversationnelles tout venant
- fondamentalement : générer la raction la plus appropriée étant donné un contexte et un énoncé utilisateur

Méthodes

- Hypothèse : dans de grand corpus de conversations, on peut trouver la manière...
- Deux familles d'approches
 - approches de type « recherche d'information »
 - approches génératives

Plan

- Objectifs du cours
- Systèmes de dialogue
- Système orienté tâche
- Système purement conversationnel
- Évaluation : métriques et méthodologies
- Mini projet

Évaluation : métriques et méthodologies

Évaluation « objectives »

- Évaluer automatiquement ce que fait le système
 - compréhension
 - gestion du dialogue
 - génération
- Compare le résultat du système (hypothèse) à ce qui est attendu (référence)
 - Précision, Rappel, F-mesure
 - Concept Error Rate
 - Slot Error Rate
 - score BLEU et ses dérivés (génération de surface)

Évaluation : métriques et méthodologies

Évaluation « subjectives »

- Évaluer la perception que l'utilisateur a
 - des capacités du système (est-ce que le système comprend? répond bien?...)
 - de l'interaction qu'il a avec le système (est-ce qu'il est agréable? poli?...)
- Questionnaires, échelles de likert...

Évaluation : métriques et méthodologies

Questions

- Existe-t-il une corrélation entre la satisfaction utilisateur et les scores objectifs?
- Peut-on prédire à partir d'indicateurs la satisfaction utilisateur?

Obtention des données

- en faisant appel à des volontaires
 - annotation des données
 - + possibilité évaluation « subjectives »
- par simulation
 - pas d'évaluation « subjective »
- en utilisant des corpus existants [Bonneau-Maynard et al., 2006, Henderson, 2015, Williams et al., 2017]
 - peu de domaines et tâches disponibles
 - inadapté à de nouveaux domaines, langues, tâches

Plan

- Objectifs du cours
- Systèmes de dialogue
- Système orienté tâche
- Système purement conversationnel
- Évaluation : métriques et méthodologies
- Mini projet

Mini projet

Objectif

- Développer un système simple de compréhension (slot filling)
- Etudier l'impact des différents types de données (artificielles)

Méthodes

- Système : votre choix (CRF, LSTM, ...)
- Analyse de données
 - étude corpus trn : lexique, longueur des termes, nb termes différents...
 - étude corpus dev : idem
 - ressemblance entre trn et dev
- Évaluation
 - appliquer votre modèle sur les données de test
 - évaluer à l'aide des métriques P, R, F et SER (voir script fourni)
 - analyse à partir de l'analyse de données

Mini projet

Rendu

- une seule archive nommée
 NOM1(NOM2) projet-eidi-slu.tar.gz
- contenant :
 - un rapport au format PDF
 - le code, un readme et les données supplémentaires le cas échéant
- envoi à rosset[arobase]limsi[point]fr
- présentation mardi 13 février

Bonneau-Maynard, H., Ayache, C., Bechet, F., Denis, A., Kuhn, A., Lefevre, F., Mostefa, D., Quignard, M., Rosset, S., Servan, C., and Villaneau, J. (2006).

Results of the French Evalda-Media evaluation campaign for literal understanding.

In Irec. pages 2054-2059. Genoa.

Campillos Llanos, L., Bouamor, D., Zweigenbaum, P., and Rosset, S. (2016).

Managing linguistic and terminological variation in a medical dialogue system.

In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC

2016), Paris, France.

Chen, Y.-N., Hakkani-Tür, D., Tür, G., Gao, J., and Deng, L. (2016).

End-to-end memory networks with knowledge carryover for multi-turn spoken language understanding.

In INTERSPEECH, pages 3245-3249.

Galibert, O. (2009).

Approaches and methodologies for automatic Question-Answering in an open-domain, interactive setup.

Phd dissertation, Université Paris Sud - Paris XI.

Glass, J., Flammia, G., Goodine, D., Phillips, M., Polifroni, J., Sakai, S., Seneff, S., and Zue, V. (1995).

Multilingual spoken-language understanding in the mit voyager system.

Speech communication, 17(1-2):1-18.

Guo, D., Tur, G., Yih, W.-t., and Zweig, G. (2014).

Joint semantic utterance classification and slot filling with recursive neural networks. In Spoken Language Technology Workshop (SLT), 2014 IEEE, pages 554–559, IEEE.

Hahn, S., Dinarelli, M., Raymond, C., Lefèvre, F., Lehen, P., De Mori, R., Moschitti, A., Ney, H., and Riccardi, G. (2010).

Comparing stochastic approaches to spoken language understanding in multiple languages. *IEEE Transactions on Audio, Speech and Language Processing (TASLP)*, 16:1569–1583.

Henderson, M. (2015).

Machine learning for dialog state tracking: A review. In Machine Learning in Spoken Language Processing Workshop.

Henderson, M., Thomson, B., and Young, S. (2013).

Deep neural network approach for the dialog state tracking challenge. In *Proceedings of the SIGDIAL 2013 Conference*, pages 467–471.

Hori, C., Hori, T., Watanabe, S., and Hershev, J. R. (2015).

Context sensitive spoken language understanding using role dependent lstm layers. In Machine Learning for SLU Interaction NIPS 2015 Workshop.

Larsson, S. and Traum, D. R. (2000).

Information state and dialogue management in the trindi dialogue move engine toolkit. *Natural language engineering*, 6(3-4):323–340.

Mesnil, G., Dauphin, Y., Yao, K., Bengio, Y., Deng, L., Hakkani-Tur, D., He, X., Heck, L., Tur, G.,

Yu, D., and Zweig, G. (2015).

Using recurrent neural networks for slot filling in spoken language understanding. *IEEE/ACM Trans. Audio. Speech and Lang. Proc.*, 23(3):530–539.

Metallinou, A., Bohus, D., and Williams, J. (2013).

Discriminative state tracking for spoken dialog systems.

In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 466–475, Sofia, Bulgaria. Association for Computational Linguistics.

Schatzmann, J., Weilhammer, K., Stuttle, M., and Young, S. (2006).

A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies.

The knowledge engineering review, 21(2):97-126.

Sutton, R. S. and Barto, A. G. (1998).

Reinforcement learning: An introduction, volume 1.

MIT press Cambridge.

Thomson, B. and Young, S. (2010).

Bayesian update of dialogue state: A pomdp framework for spoken dialogue systems.

Computer Speech & Language, 24(4):562-588.

Traum, D. R. and Larsson, S. (2003).

The information state approach to dialogue management.

In Current and new directions in discourse and dialogue, pages 325–353. Springer.

Villaneau, J. and Antoine, J.-Y. (2004).

Categorials grammars used to partial parsing of spoken language.

In *CG2004*.

Wen, T.-H., Vandyke, D., Mrkšić, N., Gasic, M., Rojas Barahona, L. M., Su, P.-H., Ultes, S., and Young, S. (2017).

A network-based end-to-end trainable task-oriented dialogue system.

In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 438–449, Valencia, Spain. Association for Computational Linguistics.

Williams, J. D., Asadi, K., and Zweig, G. (2017).

Hybrid code networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 665–677, Vancouver, Canada. Association for Computational Linguistics.

Yao, K., Peng, B., Zhang, Y., Yu, D., Zweig, G., and Shi, Y. (2014).

Spoken language understanding using long short-term memory neural networks.

In Spoken Language Technology Workshop (SLT), 2014 IEEE, pages 189–194. IEEE.

Young, S. (2006).

Using pomdps for dialog management.

In Spoken Language Technology Workshop, 2006. IEEE, pages 8-13. IEEE.

Young, S., Schatzmann, J., Weilhammer, K., and Ye, H. (2007).

The hidden information state approach to dialog management.

In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 4, pages IV–149. IEEE.

Zhang, X. and Wang, H. (2016).

A joint model of intent determination and slot filling for spoken language understanding. In *IJCAI*, pages 2993–2999.