WEEK 05

INSTRUCTOR: YANAN WU

TA: KHADIJA NISAR

SPRING 2025

5.1 REGRESSION

MULTIPLE REGRESSION

- Simple linear regression: Bivariate two variables: y and x
- Multiple linear regression: Multiple variables: y and x_1, x_2, x_3, \cdots

LOANS DATA

variable	description
interest_rate	Interest rate for the loan.
income_ver	Categorical variable describing whether the borrower's income source and amount
	have been verified, with levels verified, source_only, and not.
debt_to_income	Debt-to-income ratio, which is the percentage of total debt of the borrower divided by their total income.
$credit_util$	Of all the credit available to the borrower, what fraction are they utilizing. For example, the credit utilization on a credit card would be the card's balance divided by the card's prodict limit.
h l	by the card's credit limit.
bankruptcy	An indicator variable for whether the borrower has a past bankruptcy in her record. This variable takes a value of 1 if the answer is "yes" and 0 if the answer is "no".
term	The length of the loan, in months.
issued	The month and year the loan was issued, which for these loans is always during the first quarter of 2018.
${\tt credit_checks}$	Number of credit checks in the last 12 months. For example, when filing an application for a credit card, it is common for the company receiving the application to run a credit check.

Figure 9.2: Variables and their descriptions for the loans data set.

CATEGORICAL VARIABLE AS PREDICTORS

Min. : 0.000 1st Qu.: 0.000 Median : 1.000 Mean : 1.958 3rd Qu.: 3.000 Max. :29.000

X	interest_rate	income_ver	debt_to_income	credit_util	bankruptcy	term	issue
Min. : 1	Min. : 5.31	Not Verified :3573	Min. : 0.00	Min. :0.0000	no :8759	Min. :36.00	1:3389
1st Qu.: 2502	1st Qu.: 9.43	Source Verified:4112	1st Qu.: 11.06	1st Qu.:0.1690	yes:1213	1st Qu.:36.00	2:2979
Median : 5000	Median :11.98	Verified :2287	Median : 17.57	Median :0.3600		Median :36.00	3:3604
Mean : 5001	Mean :12.42		Mean : 19.31	Mean :0.4031		Mean :43.27	
3rd Qu.: 7502	3rd Qu.:15.05		3rd Qu.: 25.00	3rd Qu.:0.6070		3rd Qu.:60.00	
Max. :10000	Max. :30.94		Max. :469.09	Max. :1.8350		Max. :60.00	
credit_checks							

Which variables are categorical variable?

2-LEVEL CATEGORICAL VARIABLE AS PREDICTORS

```
Residuals:
   Min
            10 Median 30
                                  Max
-7.7573 -3.6373 -0.4473 2.7181 18.6081
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.33189 0.05334 231.204 < 2e-16 ***
bankruptcyyes 0.73538 0.15293 4.809 1.54e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.992 on 9970 degrees of freedom
Multiple R-squared: 0.002314, Adjusted R-squared: 0.002214
F-statistic: 23.12 on 1 and 9970 DF, p-value: 1.542e-06
```

Reference level: *backruptcy* = no

 $\widehat{rate} = 12.332 + 0.735 * backruptcy_{yes}$

REGRESSION MODEL

$$\widehat{rate} = 12.332 + 0.735 * backruptcy_{yes}$$

1. Borrower with bankruptcy record

A.
$$\widehat{rate} = 12.332 + 0.735 * 0$$

2. Borrower without bankruptcy record

B.
$$\widehat{rate} = 12.332 + 0.735 * 1$$

Which value (with bankruptcy or without bankruptcy) has the higher interest rate?

2-LEVEL CATEGORICAL VARIABLE AS PREDICTORS

- Intercept: The estimated average interest rate for borrower without a bankruptcy record is 12.332
 This is the value we get if we plug in 0 for the explanatory variable
- Slope: The estimated average interest rate for borrower with a bankruptcy record is 0.735 higher than borrower without a bankruptcy record

Then, the estimated average interest rate for borrower with a bankruptcy record is 12.332 + 0.735= 13.067

This is the value we get if we plug in 1 for the explanatory variable

3-LEVEL CATEGORICAL VARIABLE AS PREDICTORS

```
Residuals:
   Min
            10 Median
-9.0466 -3.7249 -0.6549 2.5350 19.7151
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         11.07486
                                    0.08104 136.7
income verSource Verified 1.44009
                                    0.11079
                                               13.0
                                                      <2e-16 ***
income_verVerified
                          3.28178
                                    0.12972
                                                      <2e-16 ***
                                               25.3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.844 on 9969 degrees of freedom
Multiple R-squared: 0.06056, Adjusted R-squared: 0.06037
F-statistic: 321.3 on 2 and 9969 DF, p-value: < 2.2e-16
```

Which income verification (Source verified, verified, Non verified) is the reference level?

$$\widehat{rate} = 11.075 + 1.44 * income_{sourceVer} + 2.282 * income_{verified}$$

REGRESSION MODEL

$$\widehat{rate} = 11.075 + 1.44 * income_{sourceVer} + 2.282 * income_{verified}$$

1. Income_ver take a value of sourceVeri

A.
$$\widehat{rate} = 11.075 + 1.44 * 0 + 2.282 * 0$$

2. Income_ver take a value of Verified

B.
$$\widehat{rate} = 11.075 + 1.44 * 1 + 2.282 * 0$$

3. Income_ver take a value of NonVerified

C.
$$\widehat{rate} = 11.075 + 1.44 * 0 + 2.282 * 1$$

Which income verification approach has the highest interest rate?

- 1. Source verification
- 2. Verification
- 3. Not verification
- 4. Can not tell

ASSESSING MANY x_i IN A MODEL

Im(formula = interest_rate ~ income_ver + debt_to_income + credit_util + bankruptcy + issue +
credit_checks, data = loans)

Multiple regression aims to minimize *SSE*:

$$SSE = e_1^2 + e_2^2 + \dots + e_n^2 = \sum_{i=1}^n e_i^2$$

OUTPUT FOR THE REGRESSION MODEL

Which two variables are not important?

$$credit_{util} = \frac{credit\ banlance}{credit\ limit}$$

Interpretation for β_{credit_util} :

All other variables held constant, if someone's credit utilization increase 1 unit, the change in interest rate is 4.90.

Call:

lm(formula = interest_rate ~ income_ver + debt_to_income + credit_util +
 bankruptcy + term + issue + credit_checks, data = loans)

Residuals:

Min 1Q Median 3Q Max -12.1117 -3.1003 -0.7256 2.3307 18.8157

Coefficients:

	Estimate	Sta. Error	t value	Pr(> t)	
(Intercept)	1.942374	0.206167	9.421	< 2e-16 **	**
<pre>income_verSource Verified</pre>	0.998043	0.099200	10.061	< 2e-16 **	**
income_verVerified	2.562094	0.117203	21.860	< 2e-16 **	**
debt_to_income	0.021808	0.002937	7.425	1.22e-13 **	**
credit_util	4.897255	0.161900	30.249	< 2e-16 **	**
bankruptcyyes	0.391221	0.132295	2.957	0.00311 **	k
term	0.153340	0.003945	38.871	< 2e-16 **	**
issue2	-0.047150	0.108057	-0.436	0.66259	
issue3	-0.087727	0.102938	-0.852	0.39410	
credit_checks	0.228311	0.018244	12.514	< 2e-16 **	**

Residual standard error: 4.3 on 9962 degrees of freedom Multiple R-squared: 0.2602, Adjusted R-squared: 0.2596 F-statistic: 389.4 on 9 and 9962 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

INTERPRETATION

All else being equal, borrower with bankruptcy record

- a) are estimated to have interest rate 0.39 lower
- b) are estimated to have interest rate 0.39 higher

than borrower without bankruptcy record

Call:

lm(formula = interest_rate ~ income_ver + debt_to_income + credit_util +
 bankruptcy + term + issue + credit_checks, data = loans)

Residuals:

Min 1Q Median 3Q Max -12.1117 -3.1003 -0.7256 2.3307 18.8157

Coefficients:

	Estimate	Sta. Error	t value	Pr(> t)	
(Intercept)	1.942374	0.206167	9.421	< 2e-16 **	**
income_verSource Verified	0.998043	0.099200	10.061	< 2e-16 **	**
income_verVerified	2.562094	0.117203	21.860	< 2e-16 **	**
debt_to_income	0.021808	0.002937	7.425	1.22e-13 **	**
credit_util	4.897255	0.161900	30.249	< 2e-16 **	**
bankruptcyyes	0.391221	0.132295	2.957	0.00311 **	*
term	0.153340	0.003945	38.871	< 2e-16 **	**
issue2	-0.047150	0.108057	-0.436	0.66259	
issue3	-0.087727	0.102938	-0.852	0.39410	
credit_checks	0.228311	0.018244	12.514	< 2e-16 **	**

Residual standard error: 4.3 on 9962 degrees of freedom Multiple R-squared: 0.2602, Adjusted R-squared: 0.2596 F-statistic: 389.4 on 9 and 9962 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

R^2 VS. ADJUSTED R^2

$$R^2 = \frac{explained\ variability}{total\ variability}$$

$$R_{adj}^2 = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-p-1}\right)$$

where n is the number of cases and p is the number of predictors (explanatory variables) in the model.

- Because p is never negative, R_{adj}^2 will always be smaller than R^2 .
- R_{adj}^2 applies a penalty for the number of predictors included in the model.
- Therefore, we choose models with higher R_{adj}^2 over others.

R^2 VS. ADJUSTED R^2

```
call:
lm(formula = interest_rate ~ income_ver + debt_to_income + credit_util +
   bankruptcy + term + issue + credit_checks, data = loans)
Residuals:
    Min
              10 Median
                               3Q
                                       Max
-12.1117 -3.1003 -0.7256
                          2.3307 18.8157
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         1.942374
                                    0.206167
                                             9.421 < 2e-16 ***
income_verSource Verified 0.998043
                                  0.099200 10.061 < 2e-16 ***
income_verVerified
                         2.562094
                                   0.117203 21.860 < 2e-16 ***
debt_to_income
                         0.021808
                                   0.002937 7.425 1.22e-13 ***
credit_util
                         4.897255 0.161900 30.249 < 2e-16 ***
bankruptcyyes
                         0.391221
                                  0.132295
                                              2.957 0.00311 **
                         0.153340
                                    0.003945 38.871 < 2e-16 ***
term
                                  0.108057 -0.436 0.66259
issue2
                        -0.047150
issue3
                        -0.087727 0.102938 -0.852 0.39410
credit_checks
                         0.228311
                                    0.018244 12.514 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.3 on 9962 degrees of freedom
Multiple R-squared: 0.2602,
                              Adjusted R-squared: 0.2596
F-statistic: 389.4 on 9 and 9962 DF, p-value: < 2.2e-16
```

COLLINEARITY BETWEEN INDEPENDENT VARIABLES

- ☐ Two independent variables are said to be collinear when they are correlated, and this collinearity complicates model estimation.
- We don't like adding independent that are associated with each other to the model, because often times the addition of such variable brings nothing to the table. Instead, we prefer the simplest best model, i.e. parsimonious model.
- While it's impossible to avoid collinearity from arising in observational data, experiments are usually designed to prevent correlation among predictors.

COLLINEARITY DIAGNOSTICS

VIF: variance-inflation factor

 Variance inflation factor measure the inflation in the variances of the parameter estimates due to collinearities that exist among the predictors.

$$VIF_i = \frac{1}{1 - R_i^2} = \frac{1}{Tolerance}$$

Step 1:
$$x_1 = \alpha_0 + \alpha_2 x_2 + \alpha_3 x_3 + \cdots + \alpha_i x_i + \varepsilon$$

where R_1^2 is the coefficient of determination of the regression equation in step one

COLLINEARITY DIAGNOSTICS

- VIF > 5: A cutoff of 5 is also commonly used
- VIF > 10: indicating multicollinearity is high

	GVIF	Df	$GVIF^{(1/(2*Df))}$
income_ver	1.053346	2	1.013078
<pre>debt_to_income</pre>	1.047341	1	1.023397
credit_util	1.025391	1	1.012616
bankruptcy	1.008434	1	1.004208
term	1.020978	1	1.010434
issue	1.002292	2	1.000573
credit_checks	1.017132	1	1.008530

WEEK 03

CODE DEMO SESSION

Instructor: Yanan Wu

TA: Khadija Nisar

Spring 2025