Independence of π -system

Fu Lingyue, Tang Ze April 22, 2020

In the text book E4.1, the author put forward a theorem as follows:

1 E4.1 in textbook

Theorem 1. $\mathcal{I}_1, \mathcal{I}_2$ and \mathcal{I}_3 are three π -system that satisfy:

(1)
$$\mathcal{I}_k \subseteq \mathcal{F}(k=1,2,3)$$
;

(2)
$$\Omega \in \mathcal{I}_k(k = 1, 2, 3)$$
. If

 $\forall I_i \in \mathcal{L}_i, I_-(I_1 \cap I_2)$

$$\forall I_i \in \mathcal{I}_i, P(I_1 \cap I_2 \cap I_3) = P(I_1)P(I_2)P(I_3), \tag{1}$$

then $\sigma(\mathcal{I}_1), \sigma(\mathcal{I}_2), \sigma(\mathcal{I}_3)$ are independent.

Proof. Define $\mathcal{J}_i := \sigma(\mathcal{I}_i)$. Fix $I_1 \in \mathcal{I}_1$ and $I_2 \in \mathcal{I}_2$. Consider maps

$$J_3 \mapsto P(I_1 \cap I_2 \cap J_3)$$
 and $J_3 \mapsto P(I_1)P(I_2)P(J_3)$,

then two mapping agree on \mathcal{I}_3 . Also when $I_3 = \Omega$ in equation (1), we can conclude that

$$P(I_1 \cap I_2) = P(I_1 \cap I_2 \cap \Omega) = P(I_1)P(I_2)P(\Omega) = P(I_1)P(I_2),$$

which means, two mapping have the same total mass. Thus we can conclude that $P(I_1 \cap I_2 \cap J_3) = P(I_1)P(I_2)P(J_3)$ holds in the space (Ω, \mathcal{J}_3) .

Similarly, we can conclude the conclusion on both $\sigma(\mathcal{I}_1)$ and $\sigma(\mathcal{I}_2)$. Therefore, $\sigma(\mathcal{I}_1)$, $\sigma(\mathcal{I}_2)$, $\sigma(\mathcal{I}_3)$ are independent.

Question WHY we need the condition " $\Omega \in \mathcal{I}_i$ "?

Solution. In the lemma 1.6 in the textbook, one of the premises is that μ_1 and μ_2 has the same mass on S. Then this condition guarantees that each pair of mapping in our prove has the same mass.

2 Further Discussion

Actually, we can strengthen this theorem:

Theorem 2. $\mathcal{I}_i(i=1,2,3...,n)$ are independent π -system, then $\sigma(\mathcal{I}_1), \sigma(\mathcal{I}_2), \ldots, \sigma(\mathcal{I}_n)$ are independent.

Proof. We define $\mathcal{J}_i := \sigma(\mathcal{I}_i), \Omega \in \mathcal{I}_n(k = 1, 2, ..., n)$.

(1) For fixed $I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2, \dots, I_{n-1} \in \mathcal{I}_{n-1}$, consider maps

$$J_n \mapsto P(I_1 \cap I_2 \cap \cdots \cap I_{n-1} \cap J_n)$$
 and $J_n \mapsto P(I_1)P(I_2) \dots P(I_{n-1})P(J_n)$,

with the same mass $P(I_1)P(I_2)\dots P(I_{n-1})$, and agree on \mathcal{I}_n . According to Lemma 1.6, they agree on $\sigma(\mathcal{I}_n)$, i.e. \mathcal{J}_n .

(2) For fixed $I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2, \dots, I_{n-2} \in \mathcal{I}_{n-2}, J_n \in \mathcal{J}_n$, consider maps

$$J_{n-1} \mapsto P(I_1 \cap I_2 \cap \dots \cap I_{n-2} \cap J_{n-1} \cap J_n)$$
 and $I_{n-2} \cap J_{n-1} \mapsto P(I_1) P(I_2) \dots P(I_{n-2}) P(J_{n-1}) P(J_n)$,

with the same mass $P(I_1)P(I_2)\dots P(I_{n-2})P(J_n)$, and agree on \mathcal{I}_{n-1} . According to Lemma 1.6, they agree on $\sigma(\mathcal{I}_{n-1})$, i.e. \mathcal{J}_{n-1} .

(n) For fixed $J_2 \in \mathcal{J}_2, J_3 \in \mathcal{I}_3, \dots, J_n \in \mathcal{J}_n$, consider maps

$$J_1 \mapsto P(J_2 \cap J_3 \cap \cdots \cap J_n)$$
 and $J_1 \mapsto P(J_2)P(J_3) \dots P(J_n)$,

with the same mass $P(J_2)P(J_3)...P(J_n)$, and agree on \mathcal{I}_1 . According to Lemma 1.6, they agree on $\sigma(\mathcal{I}_1)$, i.e. \mathcal{J}_1 .

Then we finish our proof.