Category Theory in UniMath

Niels van der Weide

Radboud University, The Netherlands

April 4, 2019

This talk

- What are univalent categories?
- ▶ How to construct univalent categories?

Note on terminology: during this talk, I use terminology from UniMath (different from HoTT book).

Categories in Univalent Foundations

Definition (Precategory)

A precategory C consists of

- ▶ A type C_0 of *objects*;
- ▶ For $x, y : C_0$ a type $C_1(x, y)$ of *morphisms*;
- ▶ For $x : C_0$ an *identity* morphism $id_x : C_1(x,x)$;
- ► For $x, y, z : C_0$ and $f : C_1(x, y)$ and $g : C_1(y, z)$, a composition $f \cdot g : C_1(x, z)$

such that

- $f \cdot id_x = f$;
- ightharpoonup $\operatorname{id}_{V} \cdot f = f;$
- $f \cdot (g \cdot h) = (f \cdot g) \cdot h.$

Categories in Univalent Foundations

- Equality is proof relevant in UF.
- Precategories can have 'higher' structure given by the paths.
- ► Eg, the 1-cells are morphisms, 2-cells are equalities between morphisms.
- For categories, we want this to collapse.

Categories in Univalent Foundations

Definition (Category)

A category C consists of

- ▶ A type C_0 of *objects*;
- ▶ For $x, y : C_0$ a **set** $C_1(x, y)$ of *morphisms*;
- ▶ For $x : C_0$ an *identity* morphism $id_x : C_1(x,x)$;
- ▶ For $x, y, z : C_0$ and $f : C_1(x, y)$ and $g : C_1(y, z)$, a composition $f \cdot g : C_1(x, z)$

such that

- $f \cdot id_x = f$;
- ightharpoonup $\operatorname{id}_{V} \cdot f = f;$
- $f \cdot (g \cdot h) = (f \cdot g) \cdot h.$

(Recall: a set is a type for which equality is proof irrelevant)

Examples of Categories

- ► The category **SET** of sets and functions
- ▶ The category of pointed sets and point preserving maps
- ► The category of monoids and homomorphisms

Towards Univalent Categories: Isomorphisms

Definition

A morphism $f:\mathcal{C}_1(x,y)$ is an *isomorphism* if the map $\lambda(g:\mathcal{C}_1(y,z)), f\cdot g$ is an equivalence for every $z:\mathcal{C}_0$. We denote the type of isomorphisms from X to Y by $X\cong Y$.

Note:

- We can find inverses.
- ▶ Being an isomorphism is a proposition
- ▶ id_x is an isomorphism

In UniMath: is_iso

Towards Univalent Categories: Isomorphisms

Alternatively, we can define

Definition

A morphism $f: \mathcal{C}_1(x,y)$ is an *isomorphism* if we have $g: \mathcal{C}_1(y,x)$ such that $f \cdot g = \mathrm{id}_x$ and $g \cdot f = \mathrm{id}_y$.

Note that these definitions are equivalent for categories. In UniMath: z iso.

Univalent Categories

Definition (Univalence Axiom)

- For all types X, Y we have a map idtoeq $X Y : X = Y \rightarrow X \simeq Y$.
- ▶ UA: the map $X = Y \rightarrow X \simeq Y$ is an equivalence.

Definition (Univalent Categories)

Let C be a category.

- ► For all objects $x, y : C_0$ we have a map $idtoiso_{x,y} : x = y \rightarrow x \cong y$.
- ▶ A category C is *univalent* if for all $x, y : C_0$ the map **idtoiso**_{x,y} is an equivalence.

What's so good about univalent categories?

- Nice properties: initial objects are unique (exercise)
- ▶ It's the "right" notion of category in univalent foundations.
- ▶ In the simplicial set interpretation, univalent categories correspond to actual categories.

SET is Univalent

To prove **SET** is univalent, we factor **idtoiso** as follows.

Hence, idtoiso is equal to an equivalence and thus an equivalence.

What about Monoids?

- Is monoids a univalent category?
- Monoids have a more complicated structure, which makes a direct proof harder.
- ▶ We need machinery to make such proofs more manageable.
- ► For this, we use *displayed categories*

Displayed Categories, The Idea

- ightharpoonup Suppose, we have a category C.
- ▶ A displayed category \mathcal{D} represents "structure" or "properties" to be added to \mathcal{C} .
- lacktriangle Displayed categories give rise to a *total category* $\int \mathcal{D}$
- ▶ The objects of $\int \mathcal{D}$ are pairs of $x : \mathcal{C}_0$ with the extra structure.
- ▶ Furthermore, we have a projection (forgetful functor) from the total category to C.
- ▶ Goal of displayed categories: reason about the total category.

Displayed Categories, The Data

Definition

A displayed category $\mathcal D$ over $\mathcal C$ consists of

- ▶ For each $x : C_0$ a type D_0^x of *objects over x*.
- ▶ For each $f: \mathcal{C}_1(x,y)$, $\overline{x}: \mathcal{D}_0^x$ and $\overline{y}: \mathcal{D}_0^y$ a set $\mathcal{D}_1^f(\overline{x},\overline{y})$ of morphisms over f.
- ▶ For each $x : \mathcal{C}_0$ and $\overline{x} : \mathcal{D}_0^x$ an identity $\overline{\mathrm{id}_x} : \mathcal{D}_1^{\mathrm{id}_x}(\overline{x}, \overline{x})$.
- ▶ For $f: \mathcal{C}_1(x, y)$, $g: \mathcal{C}_1(y, z)$, $\overline{f}: \mathcal{D}_1^f(\overline{x}, \overline{y})$. and $\overline{g}: \mathcal{D}_1^g(\overline{y}, \overline{z})$, a composition $\overline{f} \cdot \overline{g}: \mathcal{D}_1^{f \cdot g}(\overline{x}, \overline{z})$.

What about the laws?

Displayed Categories, Towards The Laws

Let's try to write the right unitality law. Suppose $\overline{f}: \mathcal{D}_1^f(\overline{x}, \overline{y})$. Then

$$\overline{f} \cdot \overline{\mathsf{id}_y} : \mathcal{D}_1^{f \cdot \mathsf{id}_y}(\overline{x}, \overline{y})$$

Hence, the law $\overline{f} = \overline{f} \cdot \overline{\operatorname{id}_y}$ does not type check.

Displayed Categories, Towards The Laws

Let's try to write the right unitality law.

Suppose $\overline{f}: \mathcal{D}_1^f(\overline{x}, \overline{y})$. Then

$$\overline{f} \cdot \overline{\mathsf{id}_y} : \mathcal{D}_1^{f \cdot \mathsf{id}_y}(\overline{x}, \overline{y})$$

Hence, the law $\overline{f} = \overline{f} \cdot \overline{\mathrm{id}_{y}}$ does *not* type check.

Solution: use transport. Laws become dependent equalities.

Displayed Categories, The Laws

Suppose,
$$f,g:\mathcal{C}_1(x,y)$$
 and $p:f=g$. Then
$$\operatorname{transport}^{\lambda h,\mathcal{D}_1^h(\overline{x},\overline{y})}\ p:\mathcal{D}_1^f(\overline{x},\overline{y})\to\mathcal{D}_1^g(\overline{x},\overline{y})$$

Recall that

$$\overline{f}: \mathcal{D}_1^f(\overline{x}, \overline{y})$$
 $f \cdot \overline{\mathsf{id}_y}: \mathcal{D}_1^{f \cdot \mathsf{id}_y}(\overline{x}, \overline{y})$

So, it suffices to find a path $f = f \cdot id_y$. This is one of the axioms of categories.

The Total Category

Definition

Let $\mathcal D$ be a displayed category over $\mathcal C$. Then we define the *total category* $\int \mathcal D$ to be the category for which

- objects are pairs $x : \mathcal{C}_0$ and $\overline{x} : \mathcal{D}_0^x$
- ▶ morphisms from (x, \overline{x}) to (y, \overline{y}) are pairs $f : C_1(x, y)$ and $\overline{f} : \mathcal{D}_1^f(\overline{x}, \overline{y})$

Definition

We have a projection functor $\pi_1: \int D \longrightarrow C$. It sends (x, \overline{x}) to x and (f, \overline{f}) to f.

Examples of Displayed Categories: Pointed Sets

Define a displayed category *P* over **SET**:

- Objects over X are elements x : X
- ▶ Morphisms over $f: X \rightarrow Y$ from x: X to y: Y are paths f x = y
- ▶ Morphism over id_X is a path id_X x = x (reflexivity)

The total category $\int P$ is the category of *pointed sets*. Objects: pair of a set X and x:X. Morphisms: point preserving maps.

Examples of Displayed Categories: Monoids

Define a displayed category over **SET**

- ▶ Objects over *X* are monoid structures
- ► Morphisms over *f* are proofs that *f* is a homomorphism

The total category is the category of monoids.

Constructions with Displayed Categories

Some constructions which allow building displayed categories modularly.

- ► The full subcategory is a displayed category
- We can take the product of displayed categories

- Start with the category of sets.
- ▶ Define a displayed category P on sets. Objects over X are points.

- Start with the category of sets.
- ▶ Define a displayed category *P* on sets. Objects over *X* are points.
- ▶ Define a displayed category M' on sets. Objects over X are maps $X \times X \to X$.

- Start with the category of sets.
- ▶ Define a displayed category *P* on sets. Objects over *X* are points.
- ▶ Define a displayed category M' on sets. Objects over X are maps $X \times X \to X$.
- ▶ This gives a displayed category $P \times M'$ over sets (the product)
- Call its total category E.
- ▶ Objects of \mathcal{E} are pairs (X, (e, f)) with e : X and $f : X \to X$

- Start with the category of sets.
- ▶ Define a displayed category P on sets. Objects over X are points.
- ▶ Define a displayed category M' on sets. Objects over X are maps $X \times X \to X$.
- ▶ This gives a displayed category $P \times M'$ over sets (the product)
- ightharpoonup Call its total category \mathcal{E} .
- ▶ Objects of $\mathcal E$ are pairs (X,(e,f)) with e:X and $f:X\to X$
- ▶ Define a displayed category M over \mathcal{E} . Objects over (X, (e, f)) are proofs that it's a monoid.
- ▶ Then the total category of *M* is the category of monoids.

Note: displayed categories can be layered.

- Start with the category of sets.
- ▶ Define a displayed category P on sets. Objects over X are points.
- ▶ Define a displayed category M' on sets. Objects over X are maps $X \times X \to X$.
- ▶ This gives a displayed category $P \times M'$ over sets (the product)
- ightharpoonup Call its total category \mathcal{E} .
- ▶ Objects of $\mathcal E$ are pairs (X,(e,f)) with e:X and $f:X\to X$
- ▶ Define a displayed category M over \mathcal{E} . Objects over (X, (e, f)) are proofs that it's a monoid.
- ▶ Then the total category of *M* is the category of monoids.

Untangling (break down in small parts) and stratification (layers)

Towards Displayed Univalence: Displayed Isomorphisms

Definition

Let $\mathcal D$ be a displayed category over $\mathcal C$ and suppose, f is an isomorphism with inverse g. We say $\overline f:\mathcal D_1^f(\overline x,\overline y)$ is a *(displayed) isomorphism* if there is $\overline g:\mathcal D_1^g(\overline y,\overline x)$ which are mutual inverses (again as dependent equalities).

We write $\overline{x} \cong_f \overline{y}$ for the type of displayed isomorphisms over f.

Displayed Univalence

- ▶ Again the identity \overline{id}_x is an isomorphism
- ▶ By path induction, we get for each p : x = y a map

$$\mathbf{dispidtoiso}_{\overline{x},\overline{y}}: \overline{x} =_{p} \overline{y} \to \overline{x} \cong_{\mathbf{idtoiso}_{x,y} p} \overline{y}$$

► We say \mathcal{D} is *displayed univalent* if **dispidtoiso** is an equivalence.

Main Theorem

Theorem

If C is univalent and D is displayed univalent, then $\int D$ is univalent.

Examples of Displayed Univalent Categories

- ► The displayed category *P* of pointed sets is displayed univalent and thus the category of pointed sets is univalent.
- ► The displayed category *M* of monoids is displayed univalent and thus the category of monoids is univalent.

Conclusion

Take away message:

- Displayed categories are a convenient way to modularly construct univalent categories.
- Work with small "edible" pieces.

In the exercises:

- Study univalent categories more closely
- Define monoids as a displayed category

Literature

- ► HoTT Book, Chapter 9
- Ahrens, Benedikt and Lumsdaine, Peter LeFanu. "Displayed Categories." Logical Methods in Computer Science 15 (2019).
- Ahrens, B., Kapulkin, K., & Shulman, M. (2015). Univalent Categories and the Rezk Completion. Mathematical Structures in Computer Science, 25(5), 1010-1039.