Marketing Campaign Data Analysis

December 12, 2024

1 ARM

1.1 Libs

```
[11]: import pandas as pd
      import matplotlib.pyplot as plt
      import numpy as np
      import seaborn as sns
      from sklearn.linear_model import LinearRegression
      from sklearn import metrics
      from sklearn.metrics import mean_squared_error
      from sklearn.metrics import r2 score
      from sklearn.model selection import cross val score
      from sklearn.model_selection import cross_val_predict
      from sklearn.model_selection import KFold
      from sklearn.model_selection import train_test_split
      import statsmodels.api as sm
      from statsmodels.formula.api import ols
      import statsmodels.formula.api as smf
      from statsmodels.graphics.api import plot_regress_exog
      # No Perfect Multicollinearity: Variance Inflation Factor (VIF)
      from statsmodels.stats.outliers_influence import variance_inflation_factor
      from statsmodels.stats.diagnostic import het breuschpagan
      from scipy.stats import shapiro
      from statsmodels.stats.stattools import durbin_watson
```

1.2 Intro

```
[12]: df = pd.read_excel('marketing_campaign.xlsx')
    df_sub = df.sample(100)
    df_sub.head()
```

[12]: ID Year_Birth Education Marital_Status Income Kidhome Teenhome
Dt_Customer Recency MntWines MntFruits MntMeatProducts MntFishProducts
MntSweetProducts MntGoldProds NumDealsPurchases NumWebPurchases
NumCatalogPurchases NumStorePurchases NumWebVisitsMonth AcceptedCmp3

Z_Revenue Response 781 10839	
2014-04-14 42 6 5 5 8 0 5 2 1 0	
0 5 2 1 0	
3 4 0 0 0 0	
0 0 3 11 0	
857 425 1985 Graduation Married 55357.0 2 0	
2013-02-19 66 374 64 116 84	
25 64 3 6 2	
11 5 0 0 0 0	
0 0 3 11 0	
564 10232 1963 PhD Divorced 48799.0 0 1	
2013-11-05 9 174 18 81 28	
6 24 3 3 2	
7 3 0 0 0 0	
0 0 3 11 0	
60 6853 1982 Master Single 75777.0 0 0	
2013-07-04 12 712 26 538 69	
13 80 1 3 6	
11 0 1 0 1 1 0	
0 0 3 11 1	
341 11191 1986 Graduation Divorced 41411.0 0 0	
2013-12-07 11 37 32 38 11	
3 18 1 2 1	
4 6 0 0 0 0	
0 0 3 11 0	

[13] :	Аf	guh	doec	ribo	()	т
1151:	ar	SHD	aesc	rnbe	()	

[13]:		count	mean	min	
	25%	50%	75%	max	std
	ID	100.0	6243.75	17.0	
	3693.5	6513.0	9415.75	11191.0	
	3253.59886				
	Year_Birth	100.0	1970.11	1945.0	
	1959.0	1971.0	1980.0	1995.0	
	12.453465				
	Income	99.0	50812.30303	13084.0	
	35868.0	49912.0	65257.5	94472.0	
	19470.632651				
	Kidhome	100.0	0.43	0.0	
	0.0	0.0	1.0	2.0	0.536637
	Teenhome	100.0	0.57	0.0	
	0.0	1.0	1.0	2.0	0.590412
	Dt_Customer	100 2013-08	-30 20:24:00 201	2-08-07 00:00:00	2013-04-30
	12:00:00 2013-09-17	12:00:00 2014	-01-30 18:00:00	2014-06-22 00:00:00)

NaN				
Recency	100.0	45.89	0.0	
20.0	42.5	70.25	99.0	
28.965983				
MntWines	100.0	289.63	0.0	
22.75	210.0	436.5	1103.0	
299.032773				
MntFruits	100.0	26.48	0.0	
1.0	8.0	34.25	172.0	38.776615
MntMeatProducts	100.0	147.13	2.0	
11.0	68.5	216.25	804.0	
186.777275				
${ t MntFishProducts}$	100.0	35.39	0.0	
3.0	15.0	43.25	220.0	51.98502
MntSweetProducts	100.0	26.23	0.0	
1.75	7.5	32.5	197.0	
38.731621				
MntGoldProds	100.0	38.14	0.0	
9.0	20.0	50.25	218.0	43.613319
NumDealsPurchases	100.0	2.25	0.0	
1.0	2.0	3.0	10.0	1.816729
NumWebPurchases	100.0	3.86	0.0	
2.0	3.5	6.0	11.0	2.534689
NumCatalogPurchases	100.0	2.72	0.0	
0.0	2.0	5.0	11.0	2.913154
NumStorePurchases	100.0	5.78	2.0	
3.0	5.0	8.0	13.0	3.192732
${\tt NumWebVisitsMonth}$	100.0	5.19	1.0	
3.0	5.0	7.0	10.0	2.149442
AcceptedCmp3	100.0	0.08	0.0	
0.0	0.0	0.0	1.0	0.27266
AcceptedCmp4	100.0	0.07	0.0	
0.0	0.0	0.0	1.0	0.256432
AcceptedCmp5	100.0	0.05	0.0	
0.0	0.0	0.0	1.0	0.219043
AcceptedCmp1	100.0	0.05	0.0	
0.0	0.0	0.0	1.0	0.219043
AcceptedCmp2	100.0	0.02	0.0	
0.0	0.0	0.0	1.0	0.140705
Complain	100.0	0.01	0.0	
0.0	0.0	0.0	1.0	0.1
$Z_{CostContact}$	100.0	3.0	3.0	
3.0	3.0	3.0	3.0	0.0
Z_Revenue	100.0	11.0	11.0	
11.0	11.0	11.0	11.0	
0.0				
Response	100.0	0.1	0.0	

0.0 0.0 0.0 1.0 0.301511

[14]: df_sub.dtypes

[14]: ID int64 Year_Birth int64 Education object Marital_Status object Income float64 Kidhome int64 Teenhome int64 Dt_Customer datetime64[ns] Recency int64 MntWines int64 MntFruits int64 MntMeatProducts int64 MntFishProducts int64 MntSweetProducts int64 ${\tt MntGoldProds}$ int64 NumDealsPurchases int64 NumWebPurchases int64 NumCatalogPurchases int64 NumStorePurchases int64 NumWebVisitsMonth int64 AcceptedCmp3 int64 int64 AcceptedCmp4 AcceptedCmp5 int64 AcceptedCmp1 int64 AcceptedCmp2 int64 Complain int64 Z CostContact int64 Z_Revenue int64 Response int64 dtype: object

1.3 H1

```
data_sub = data_sub[data_sub['Income'] <= 100000]</pre>
data_sub['LogIncome'] = np.log(data_sub['Income'])
data_sub['LogWines'] = np.log(data_sub['MntWines'] + 1) # Add 1 to avoid log(0)
# Créer le modèle de régression avec LogIncome
model_h1 = ols("LogWines ~ LogIncome", data=data_sub).fit()
# Générer le graphe "Y and Fitted vs. X" uniquement
fig = sm.graphics.plot_fit(model_h1, "LogIncome", vlines=False) # vlines=False_u
 ⇒pour éviter les lignes verticales
plt.title("LogWines vs. LogIncome with Fitted Line")
plt.xlabel("LogIncome")
plt.ylabel("LogWines")
plt.show()
print(model_h1.summary())
# Describe
data sub[['MntWines', 'Income']].describe().T
# ----- OLS Assumption Checks ----- #
# 1. Linearity: Residuals vs Fitted Plot
plt.scatter(model_h1.fittedvalues, model_h1.resid)
plt.axhline(0, color='red', linestyle='--', linewidth=1)
plt.title("Residuals vs Fitted Values")
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.show()
# Create dataframe with only the independent variable(s)
x_vars = model_h1.model.exog
vif = pd.DataFrame()
vif["Variable"] = ["Intercept", "LogIncome"]
vif["VIF"] = [variance_inflation_factor(x_vars, i) for i in range(x_vars.
 \hookrightarrowshape[1])]
print(vif)
# 3. Homoskedasticity: Breusch-Pagan Test
bp_test = het_breuschpagan(model_h1.resid, model_h1.model.exog)
print(f"Breusch-Pagan Test p-value: {bp_test[1]}") # Second value is the
 \rightarrow p-value
# 4. Zero Conditional Mean: Residuals centered around O
```

```
plt.hist(model_h1.resid, bins=30, edgecolor='black')
plt.title("Distribution of Residuals")
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.axvline(0, color='red', linestyle='--', linewidth=1)
plt.show()

# 5. Normality of Residuals: Shapiro-Wilk Test
shapiro_test = shapiro(model_h1.resid)
print(f"Shapiro-Wilk Test p-value: {shapiro_test.pvalue}")

# 6. Independence of Errors: Durbin-Watson Test
dw_stat = durbin_watson(model_h1.resid)
print(f"Durbin-Watson Statistic: {dw_stat}")
```

LogWines vs. LogIncome with Fitted Line

OLS Regression Results

Dep. Variable:	LogWines	R-squared:	0.622
Model:	OLS	Adj. R-squared:	0.618
Method:	Least Squares	F-statistic:	159.8

Date:	Wed, 11 Dec 2024	<pre>Prob (F-statistic):</pre>	3.17e-22
Time:	17:08:42	Log-Likelihood:	-145.12
No. Observations:	99	AIC:	294.2
Df Residuals:	97	BIC:	299.4

Df Model: 1
Covariance Type: nonrobust

========	========	========	=======	=========		========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-27.3257	2.543	-10.744	0.000	-32.373	-22.278
LogIncome	2.9813	0.236	12.641	0.000	2.513	3.449
Omnibus:		30	0.168 Dur	bin-Watson:		1.521
Prob(Omnibu	s):	C	0.000 Jar	que-Bera (JE	3):	120.774
Skew:		C	0.868 Pro	b(JB):		5.95e-27
Kurtosis:		8	3.125 Con	d. No.		260.
========	=======	========	=======	========		========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Variable VIF
0 Intercept 571.197873
1 LogIncome 1.000000

Breusch-Pagan Test p-value: 7.275275757130443e-07

Shapiro-Wilk Test p-value: 3.5735220414094185e-05 Durbin-Watson Statistic: 1.5213796613004464

1.4 H2

```
[17]: import statsmodels.formula.api as smf
from statsmodels.graphics.api import plot_regress_exog
from statsmodels.stats.diagnostic import het_breuschpagan
from statsmodels.stats.stattools import durbin_watson
from scipy.stats import shapiro
import matplotlib.pyplot as plt

# Hypothesis 2: Categorical Variable
model_h2 = smf.ols("LogWines ~ C(Education)", data=data_sub).fit()
```

```
print(model_h2.summary())
# Générer le graphe "Y and Fitted vs. X" uniquement
fig, ax = plt.subplots()
data_sub.boxplot(column='MntWines', by='Education', ax=ax)
plt.title("LogWines vs. Education")
plt.suptitle('') # Suppress the default title
plt.xlabel("Education")
plt.ylabel("LogWines")
# Afficher le graphe
plt.show()
print(model_h2.summary())
data_sub[['LogWines', 'Education']].describe().T
\# ----- \#
# 1. Linearity: Residuals vs Fitted Plot
plt.scatter(model_h2.fittedvalues, model_h2.resid)
plt.axhline(0, color='red', linestyle='--', linewidth=1)
plt.title("Residuals vs Fitted Values")
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.show()
# 2. No Perfect Multicollinearity: Check Dummy Variables
# Print the dummy variable matrix
print(model_h2.model.exog[:5])
# 3. Homoskedasticity: Breusch-Pagan Test
bp_test = het_breuschpagan(model_h2.resid, model_h2.model.exog)
print(f"Breusch-Pagan Test p-value: {bp_test[1]}") # Second value is the_
 \rightarrow p-value
# 4. Normality of Residuals: Shapiro-Wilk Test
shapiro_test = shapiro(model_h2.resid)
print(f"Shapiro-Wilk Test p-value: {shapiro_test.pvalue}")
# Plot the distribution of residuals
plt.hist(model_h2.resid, bins=30, edgecolor='black')
plt.title("Distribution of Residuals")
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.axvline(0, color='red', linestyle='--', linewidth=1)
plt.show()
```

```
# 5. Independence of Errors: Durbin-Watson Test
dw_stat = durbin_watson(model_h2.resid)
print(f"Durbin-Watson Statistic: {dw_stat}")
# 6. Zero Conditional Mean of Errors: Residuals by Group
fig, ax = plt.subplots()
data_sub['Residuals'] = model_h2.resid
data_sub.boxplot(column='Residuals', by='Education', ax=ax)
plt.axhline(0, color='red', linestyle='--', linewidth=1)
plt.title("Residuals by Education Level")
plt.xlabel("Education")
plt.ylabel("Residuals")
plt.show()
                           OLS Regression Results
Dep. Variable:
                                       R-squared:
                            LogWines
                                                                         0.093
Model:
                                 OLS Adj. R-squared:
                                                                        0.054
Method:
                       Least Squares F-statistic:
                                                                        2.374
```

 Dep. Variable:
 LogWines
 R-squared:
 0.093

 Model:
 0LS
 Adj. R-squared:
 0.054

 Method:
 Least Squares
 F-statistic:
 2.374

 Date:
 Wed, 11 Dec 2024
 Prob (F-statistic):
 0.0578

 Time:
 16:47:21
 Log-Likelihood:
 -188.54

 No. Observations:
 98
 AIC:
 387.1

 Df Residuals:
 93
 BIC:
 400.0

 Df Model:
 4

Covariance Type: nonrobust

coef std err P>|t| [0.025 0.975] Intercept 3.7750 0.567 6.659 0.000 4.901 2.649 C(Education) [T.Basic] -2.0744 1.330 -1.5600.122 -4.7150.566 C(Education) [T.Graduation] 1.0467 0.616 1.700 0.093 2.270 C(Education) [T.Master] 0.9418 0.694 1.356 0.178 -0.4372.321 C(Education)[T.PhD] 1.1696 0.688 1.699 0.093 -0.197 2.536 Omnibus: Durbin-Watson: 8.705 1.932 Prob(Omnibus): 0.013 Jarque-Bera (JB): 7.270 Skew: -0.572Prob(JB): 0.0264 Kurtosis: 2.314 Cond. No. 10.2

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

=============			
Dep. Variable:	LogWines	R-squared:	0.093
Model:	OLS	Adj. R-squared:	0.054
Method:	Least Squares	F-statistic:	2.374
Date:	Wed, 11 Dec 2024	Prob (F-statistic):	0.0578
Time:	16:47:22	Log-Likelihood:	-188.54
No. Observations:	98	AIC:	387.1
Df Residuals:	93	BIC:	400.0
Df Model:	4		
Covariance Type:	nonrobust		
=======================================			
=========			
	coef	std err t	P> t
[0 025 0 975]			

[0.025 0.975]

Intercept	3.7750	0.567	6.659	0.000	
2.649 4.901					
<pre>C(Education)[T.Basic]</pre>	-2.0744	1.330	-1.560	0.122	
-4.715 0.566					
<pre>C(Education)[T.Graduation]</pre>	1.0467	0.616	1.700	0.093	
-0.176 2.270					
<pre>C(Education)[T.Master]</pre>	0.9418	0.694	1.356	0.178	
-0.437 2.321					
C(Education)[T.PhD]	1.1696	0.688	1.699	0.093	
-0.197 2.536					
	.=======		:======:		===
Omnibus:	8.705	Durbin-Watson:		1.	932
<pre>Prob(Omnibus):</pre>	0.013	Jarque-Bera (JB): 7		7.	270
Skew: -0		Prob(JB): 0.0		264	
Kurtosis:	2.314	Cond. No.		1	10.2

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[[1. 0. 0. 0. 1.] [1. 0. 1. 0. 0.] [1. 0. 0. 0. 1.] [1. 0. 1. 0. 0.] [1. 1. 0. 0. 0.]

Breusch-Pagan Test p-value: 0.08042693637853336 Shapiro-Wilk Test p-value: 0.00031816835351909455

Durbin-Watson Statistic: 1.932448290596193

1.5 H3

```
model_h3 = ols("LogWines ~ LogIncome * C(Kidhome)", data=data_sub).fit()
# Adjust pandas display settings
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
# Display summary results
print(model_h3.summary())
# ----- OLS Assumption Checks ----- #
# 1. Linearity: Residuals vs Fitted Plot
plt.scatter(model h3.fittedvalues, model h3.resid)
plt.axhline(0, color='red', linestyle='--', linewidth=1)
plt.title("Residuals vs Fitted Values")
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.show()
# 2. No Perfect Multicollinearity: Variance Inflation Factor (VIF)
from statsmodels.stats.outliers_influence import variance_inflation_factor
vif = pd.DataFrame()
x_vars = model_h3.model.exog
vif["Variable"] = ["Intercept", "LogIncome", "Kidhome 1", "Kidhome 2", "

¬"Interaction_1", "Interaction_2"]
vif["VIF"] = [variance inflation factor(x_vars, i) for i in range(x_vars.
 \hookrightarrowshape[1])]
print(vif)
# 3. Homoskedasticity: Breusch-Pagan Test
from statsmodels.stats.diagnostic import het_breuschpagan
bp_test = het_breuschpagan(model_h3.resid, model_h3.model.exog)
print(f"Breusch-Pagan Test p-value: {bp_test[1]}") # Second value is the
 \rightarrow p-value
# 4. Normality of Residuals: Shapiro-Wilk Test
from scipy.stats import shapiro
shapiro test = shapiro(model h3.resid)
print(f"Shapiro-Wilk Test p-value: {shapiro_test.pvalue}")
# Plot the distribution of residuals
plt.hist(model_h3.resid, bins=30, edgecolor='black')
plt.title("Distribution of Residuals")
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.axvline(0, color='red', linestyle='--', linewidth=1)
plt.show()
```

```
from statsmodels.stats.stattools import durbin_watson
dw_stat = durbin_watson(model_h3.resid)
print(f"Durbin-Watson Statistic: {dw_stat}")
# 6. Zero Conditional Mean of Errors: Residuals by Predictor
plt.scatter(data_sub["LogIncome"], model_h3.resid)
plt.axhline(0, color='red', linestyle='--', linewidth=1)
plt.title("Residuals vs LogIncome")
plt.xlabel("LogIncome")
plt.ylabel("Residuals")
plt.show()
# Residuals by group (Kidhome)
fig, ax = plt.subplots()
data_sub['Residuals'] = model_h3.resid
data_sub.boxplot(column='Residuals', by='Kidhome', ax=ax)
plt.axhline(0, color='red', linestyle='--', linewidth=1)
plt.title("Residuals by Kidhome Level")
plt.xlabel("Kidhome")
plt.ylabel("Residuals")
plt.show()
                       OLS Regression Results
______
Dep. Variable:
                        LogWines R-squared:
                                                            0.674
                            OLS Adj. R-squared:
Model:
                                                            0.657
Method:
                  Least Squares F-statistic:
                                                            38.95
               Wed, 11 Dec 2024 Prob (F-statistic): 1.75e-21
Date:
                        16:50:34 Log-Likelihood:
Time:
                                                         -146.16
No. Observations:
                            100 AIC:
                                                            304.3
Df Residuals:
                             94 BTC:
                                                            320.0
Df Model:
                             5
Covariance Type:
                       nonrobust
______
_____
                          coef std err t P>|t|
[0.025 0.975]
                       -18.1930 3.467 -5.247 0.000
Intercept
-25.077 -11.309
C(Kidhome)[T.1]
                       -4.6356
                                 5.123
                                          -0.905
                                                     0.368
-14.808 5.537
C(Kidhome) [T.2]
                      -89.9748 55.962 -1.608
                                                     0.111
```

5. Independence of Errors: Durbin-Watson Test

-201.088 21.138

LogIncome	2.1669	0.318	6.821	0.000
1.536 2.798				
LogIncome:C(Kidhome)[T.1]	0.3509	0.483	0.727	0.469
-0.608 1.309				
LogIncome:C(Kidhome)[T.2]	8.3918	5.280	1.589	0.115
-2.091 18.875				
		.=======		
Omnibus:	15.079	Durbin-Wats	son:	1.928
Prob(Omnibus):	0.001	Jarque-Bera	(JB):	36.721
Skew:	-0.456	Prob(JB):		1.06e-08
Kurtosis:	5.825	Cond. No.		6.07e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.07e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Variable VIF

```
0 Intercept 1037.443583

1 LogIncome 538.916222

2 Kidhome_1 5297.561628

3 Kidhome_2 2.362351

4 Interaction_1 515.925549

5 Interaction_2 5296.421147
```

Breusch-Pagan Test p-value: 2.2854257691510815e-07 Shapiro-Wilk Test p-value: 0.00021334826697041767

Durbin-Watson Statistic: 1.9278783705168596

1.6 BONUS

```
[]: # Hypothesis 2: Categorical Variable
model_h2 = smf.ols("MntWines ~ C(Kidhome)", data=data_sub).fit()
print(model_h2.summary())
```

OLS Regression Results

Dep. Variable:	MntWines	R-squared:	0.272
Model:	OLS	Adj. R-squared:	0.257
Method:	Least Squares	F-statistic:	17.59
Date:	Wed, 11 Dec 2024	Prob (F-statistic):	3.23e-07
Time:	16:41:26	Log-Likelihood:	-683.54
No. Observations:	97	AIC:	1373.
Df Residuals:	94	BIC:	1381.
Df Model:	2		
Covariance Type:	nonrobust		

===

0.975]	coef	std err	t	P> t	[0.025	
Intercept 507.475	430.4340	38.801	11.093	0.000	353.393	
C(Kidhome) [T.1] -218.563	-335.2145	58.751	-5.706	0.000	-451.866	
C(Kidhome)[T.2] -82.247	-415.1006	167.640	-2.476	0.015	-747.954	
==========		========		=======		=====
Omnibus:		32.400	Durbin-Wats	on:		1.946
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	6	7.246
Skew:		1.281	Prob(JB):		2.5	0e-15
Kurtosis:		6.173	Cond. No.			6.49

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.