

Elektronika

Auditorne vježbe 5

TRANZISTORI

Bipolarni tranzistor

Bipolarni tranzistor

- Bipolar Junction Transistor (BJT)
- Aktivni elektronički element
- Aktivno djelovanje

 primjena u sklopovima pojačala, sklopke
- "Bipolarni" rad tranzistora zasniva se na struji elektrona i šupljina.
- Ustrojstvo

 dvostruki pn spoj: pnp ili npn
- Tri poluvodička sloja:
 - Emiter (E)
 - Baza (B)
 - Kolektor (C)

Ustrojstvo BJT-a

Osnovni mehanizmi rada BJT-a

- Utiskivanje (injekcija) manjinskih nosilaca iz emitera
- Prijenos (tranzit) manjinskih nosilaca kroz bazu
- Sakupljanje (kolekcija) manjinskih nosilaca na kolektoru.

Područja rada BJT-a

- Normalno aktivno područje: (forward-active)
 - Spoj E-B je polariziran propusno, C-B nepropusno
- Inverzno aktivno područje: (reverse-active)
 - E-B je nepropusno, a C-B propusno polariziran
- Područje zasićenja: (saturation)
 - E-B i C-B su propusno polarizirani
- Područje zapiranja: (cutoff)
 - E-B i C-B su nepropusno polarizirani

Logička 0

Logička 1

BJT kao pojačalo

- Normalno aktivno područje
- Tranzistorski efekt bipolarno međudjelovanje dvaju pn spojeva
- Promjenom napona na spoju E-B mijenja se struja kroz spoj B-C

Struje normalno polariziranog BJT-a

• Stvarni smjerovi struja:

Osnovna strujna jednadžba:

$$I_E = I_B + I_C$$

Osnovni parametri tranzistora

• Djelotvornost emitera – γ

$$\gamma = \frac{I_{pE}}{I_E}$$
 (pnp) $\gamma = \frac{I_{nE}}{I_E}$ (npn)

• Prijenosni faktor baze – β^*

$$\beta^* = \frac{I_{pC}}{I_{pE}}$$
 (pnp) $\beta^* = \frac{I_{nC}}{I_{nE}}$ (npn)

• Strujno pojačanje u spoju ZB - α

$$\alpha = \frac{I_{pC}}{I_E}$$
 (pnp) $\alpha = \frac{I_{nC}}{I_E}$ (npn)

Zadatak 18.

• Silicijski pnp tranzistor radi u normalnom aktivnom području i radi sa strujom emitera $I_E=10$ mA. Odrediti struje I_B i I_C i njihove sastavnice, ako je zadano: $\gamma=0.981$, $\beta*=0.9994$, T=300 K, $I_{CBO}\approx0$.

☑ Rješenje:

 I_{pE} =9,81 mA; I_{nE} =0,19 mA; I_{c} $\approx I_{pC}$ =9,804 mA; I_{B} =0,196 mA; I_{R} =6 μ A.

Zadatak 19.

• Silicijski npn tranzistor radi u normalnom aktivnom području. Na sobnoj temperaturi pri struji baze I_B =90 μ A faktor strujnog pojačanja iznosi α =0,982, struja I_{CB0} =9,82 nA, a γ =0,984. Odrediti sve ostale struje i njihove sastavnice.

☑ Rješenje:

$$I_{C} \approx I_{nC} = 4,9105 \text{ mA};$$
 $I_{E} = 5,0005 \text{ mA}; I_{nE} = 4,9205 \text{ mA}; I_{pE} = 80 \text{ } \mu\text{A};$
 $I_{R} = 10 \text{ } \mu\text{A}.$

Djelotvornost emitera

 Iz Shockleyjeve jednadžbe (ako je emiter široka, a baza uska strana):

$$\gamma = \left[1 + \frac{D_{nE} \cdot N_{DB} \cdot w_B}{D_{pB} \cdot N_{AE} \cdot L_{nE}}\right]^{-1} \qquad \text{(pnp)}$$

$$\gamma = \left[1 + \frac{D_{pE} \cdot N_{AB} \cdot w_B}{D_{nB} \cdot N_{DE} \cdot L_{pE}}\right]^{-1} \qquad \text{(npn)}$$

Zadatak 20.

• Izračunati djelotvornost emitera silicijskog npn tranzistora ako gustoća primjese u emiteru iznosi $N_{DE}=10^{17}~cm^{-3}$, a u bazi $N_{AB}=10^{15}~cm^{-3}$. Efektivna širina baze je $w_B=1~\mu m$, T=300 K. Pretpostaviti da je emiter široka, a baza uska strana.

☑ Rješenje:

 γ =0,99995

Prijenosni faktor baze

- Zahtjev: baza je uska strana!
- \rightarrow nužan uvjet za tranzistorski efekt

$$\beta^* = \frac{1}{1 + \frac{w_B^2}{2 \cdot L_{nB}^2}} \approx 1 - \frac{1}{2} \left(\frac{w_B}{L_{nB}}\right)^2$$

Zadatak 21.

• Baza silicijskog pnp tranzistora ima gustoću donora N_{DB} =5,5·10¹⁵ cm⁻³, a njena tehnološka širina iznosi w_{B0} =2 μ m. Gustoća akceptora u emiteru iznosi N_{AE} =10¹⁷ cm⁻³, a u kolektoru N_{AC} =10¹⁶ cm⁻³. Ako su naponi U_{EB} =0,51 V i U_{CB} =-2 V, izračunati prijenosni faktor baze β * pri T=300 K.

☑ Rješenje:

 β *=0,99997

