Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

- 고준위방사성폐기물 심층처분시스템 안전규제 기반 구축 방향 -

박 진 용 한국원자력안전기술원 처분규제실장

Contents

- **2** 국외 고준위방폐물 심층처분 개발동향
- 3 심층처분시스템 안전규제 기반구축 **방향**
- 4 맺음말

고준위방사성폐기물 심층처분 개요

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

방사성폐기물 분류

- 방사성폐기물
 - 정의 : 방사성폐기물: 방사성물질 또는 그에 따라 오염된 물질로서 <u>폐기의 대상</u>이 되는 물질(<u>폐기하기로 결정한 사용후핵연료를 포함</u>한다)
 - 분류: 고준위방사성폐기물, 중·저준위방사성폐기물* *핵종별 방사능농도에 따라 중준위, 저준위, 극저준위로 세분화(원안위고시)
- 방사성폐기물 처분
 - 정의 : 방사성폐기물을 회수할 의도 없이 인간의 생활권으로부터 영구히 격리
 - 처분방식: 심층처분*, 천층처분(동굴처분, 표층처분, 매립형처분)
 - *방사성폐기물을 사람의 접근과 방사성핵종의 생태계 유입이 제한될 수 있도록 지하 깊은 곳의 안정한 지층구조에 처분하여 인간 생활권으로부터 영구히 격리시키는 것(원안위고시)
 - cf. 저장 : 방폐물을 회수할 목적, 임시적인 수단

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

방폐물 분류에 따른 처분방식

<(국내)처분방식과 연계한 방폐물 분류>

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

처분시설 기본개념

- 방벽 및 안전기능
 - ▶ 천연방벽: 모암과 주변 지질계
 - 격리 및 격납 제공 : 심도, 방벽 건전성, 지연효과, 희석효과 등의 안전기능
 - ▶ 공학적방벽: 폐기물형태, 용기(캐니스터), 완충재, 뒤채움재
 - 인간침입 제한, 격납, 지하수 유입 제한 등 안전기능
 - → 수동적 안전, 심층방어 제공

I<기본용어>

- 처분시설 : 방폐물이 정치되는 공학적 시설
- 처분시스템: 방사성폐기물, 공학적 방벽을 비롯한 설계특징, 천연방벽, 방사선영향에 연관되는 부지 환경, 처분시설 운영관리 등 처분시설의 안전성을 구성하는 성분 모두
- **다중방벽**: 방폐물을 생태계로부터 격리시키고, 처 분시설로부터 누출된 핵종의 이동을 방지하거나 지연하기 위한 **천연방벽**과 **공학적방벽**
- 천연방벽: 처분장에서 방사성핵종의 이동, 처분시설로 지하수 침투 또는 사람의 침입 및 방사성폐기물의 노출을 제한할 수 있는 천연의 지하구조 및지표구조로서, 처분된 방사성폐기물 또는 공학적방벽을 둘러싼 암반과 토양 등을 포함
- 공학적방벽: 처분환경에서 방사성폐기물의 유출과 처분시설로의 지하수 침투 또는 사람의 침입을 제한하는 역할을 하는 <u>인공물</u>로서 <u>포장용기, 처분</u>용기, 완충재, 처분고 구조물, 뒤채움재 등을 포함

Nuclear Safety & Security Information Conference 2021

원자력 안전규제정보회의

심층처분 개발절차

• <u>부지특성</u>과 <u>Safety case</u>를 지원하는 활동으로부터 취득되는 다량의 정보(다양성) → 개발프로그램을 단계로 분할 → <u>단계별 규제결정이 요구 (개발단계별 규제요건 필요)</u>

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

심층처분 안전성 입증

- Safety case
 - 정의 : 처분시설의 <u>안전성을 입증</u>하는 과학적, 기술적, 행정적, 관리적 <u>증</u> <u>거와 논거의 총화</u>
 - 처분시설 <u>개념화 단계(conceptualization)</u>부터 개발, 해당 시설의 폐쇄 및 허가 종료까지 전 <u>처분시설 개발 전과정</u>을 통해 유지
 - cf. 안전성평가: Safety case의 일부로 방사선적 위해를 체계적으로 평가
- Safety case 역할
 - 처분시설 안전성과 관련한 모든 정보의 문서화를 통한 **통합적인 구조적** 체계 제공

<출처: IAEA SSG-23>

국외 고준위방폐물 심층처분 개발동향

2021
Nuclear Safety & Security Information Conference 2021

국외 고준위방폐물 처분시설 개발현황 (핀란드)

<출처: POSIVA 홈페이지>

	핀란드
처분사업자	Posiva (2개 원전회사 출자)
처분용량	9,000 MTU (2개 원전) + 추가 원 전
처분시설부지	Repository + Encapsulation plant (올킬루오토)
처분심도	지하 420 m
지하연구시설 (URL)	ONKALO URCF(올킬루오토) - 처분시설의 Access tunnel 활용 - 2004년 건설 착수
부지선정	2001년 (1983년~, 18년)
건설허가 및 예상 운영	2012년 12월 허가 신청 2015년 2월 STUK 검토결과 제출 2015년 11월 허가 발급 2020년대 운영 예상

2021 Nuclear Safety & Security Information Conference 2021

국외 고준위방폐물 처분시설 개발현황 (스웨덴)

	스웨덴				
처분사업자	SKB (4개 원전회사 출자)				
처분용량	12,000 MTU (4개 원전)				
처분시설부지	Repository(포스마크) + Clink(오 스카샴)				
처분심도	지하 400-700 m				
지하연구시설 (URL)	Äspö HRL (오크카샴) - 순수 동굴실증실험 - 1990년 건설 착수				
부지선정	2009년 (1990년~, 19년)				
건설허가 및 예상 운영	2011년 3월 허가 신청 2021년 허가 결정(예정)				

<출처: IAEA JC 국가보고서 검토회의>

2021 Nuclear Safety & Security Information Conference 2021

국외 고준위방폐물 처분시설 개발현황 (프랑스)

<출처: Andra 홈페이지>

	프랑스				
처분사업자	Andra (국가방폐물전담기관)				
처분용량	고준위(10,100m³)+중준위 (73,600m³)				
처분시설부지	Meuse/Haute-Marne				
처분심도	지하 500m				
지하연구시설 (URL)	Bure 지하연구시설(점토층) - 인허가 실증실험 - 2000년 운영				
부지선정	1994년 4개 지역 부지조사 착수 (URL 부지선정 목적) 1998년 Bure에 지하연구시설 부 지선정 (2000년 운영착수) 2005년 공론화 이후 2006년 처분 계획을 포함한 관련 법령 제정 2011년 URL 연구지속을 위한 시 행령 제정				
건설허가 및 예상 운영	2023년 이후 건설 착수 (예정) 2035년 이후 운영 (예정)				

심층처분시스템 안전규제 기반구축 방향

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

연구개발 배경(1)

- 사용후핵연료 관리사업 본격화에 대비하여 심층처분시스템에 관한 현 국내 규제요건
 을 세부적으로 개발할 필요
 - 원전해체 등 원전운영 정책 확정에 따라, 변경된 사용후핵연료 총 발생량 등을 반영하여 **사용후핵연료 처분을 종합적으로 고려**한 기술 개발 추진 필요성 대두
 - 사용후핵연료 처분시설 및 이를 위한 지하연구시설 개발 시 **타당성과 안전성을** 확보하기 위해 해당 규제기반 구축 필수
- 국내 고유 심층처분시스템 및 관련 안전성평가기술 개발과 더불어 안전규제 연구개 발을 병행함으로써 사용후핵연료 관리정책의 시너지 효과 창출
 - 심층처분 규제기반을 구축하고 심층처분 규제요소를 적기에 제공
 - 심층처분시스템 <u>안전성검증기반 구축</u>을 통한 사용후핵연료 관리사업의 원활한 수행 뒷받침
 - ※ SF 관리사업 본격화 대비한 심층처분 규제기반 적기 구축 필요

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

연구개발 배경(2)

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

연구개발 배경(3)

해외 선도국의 사용후핵연료 R&D 사례, 사용후핵연료 처분 시점 등을 비춰볼 때, 관련 기술의 적기 확보필요

✔ 해외 주요 국가의 사용후핵연료 관리기술 개발 사례

	1950~1979	1980~1989	1990~1999	2000~2009	2010~2019	2020~
₩ 핀란드	기초연구	부지선정 착수	상세 지질조사	처분장 부지선정 URL 착수	건설허가 승인	처분장 운영 (2023년)
👆 스웨덴	기초연구 URL 착수(1차)	전국 규모 지질조사	처분장 부지선정 착수 URL 착수(2차)	처분시스템 승인	건설허가 신청	처분장 운영 (2030년 경)
프랑스	기초연구	부지선정 착수 및 연기(정치 쟁점화)	방폐물 관리법 제정 URL 착수	국가계획 수립 상세실험 연구	공론화 건설허가 신청준비	처분장 운영 (2025년)

선도국의 경우 기초연구부터 처분장 건설 단계까지 최소 30년 이상 소요

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

연구개발 배경(4)

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

연구추진 개요

- 연구개발 개요
 - 사용후핵연료등 고준위방사성폐기물의 심층처분시스템에 대한 안전요건 및 부합성기준, 규제지침 등 <u>규제요소와 요건별 검증기술 개발</u>을 통해 심층처분에 관한 <u>규제기반 구축</u>
 - 유관부처 공동사업과 연계, 국내 심층처분시스템 개발과 보조를 맞춰 국내 사용후핵연료 관리환경 및 처분시스템 개발 환경에 알맞은 규제요건/안전성검증기술 개발
- 연구과제 구성
 - [과제 1] 사용후핵연료 심층처분시스템 규제요소 개발
 - 심층처분시스템 단계별 개발에 대한 세부 안전요건 및 부합성기준, 규제지침 수립
 - 심층처분 **R&D 규제지원** (규제정보 제공, 기술인증 등)
 - [과제 2] 사용후핵연료 심층처분시스템 안전성검증기술 개발
 - 안전요건에 따른 부문별 안전성 확인을 위한 <u>검증방법론, 검증도구</u> 개발
 - 심층처분 <u>R&D 종합검토</u> (부문별, 연차별)

Nuclear Safety & Security Information Conference 2021

원자력 안전규제정보회의

과제구성 및 연구범위

심층처분 규제기반 구축 대상: 시스템 개발 및 안전요소

※전체개발단계에 대한 **규제기반** 구축

Nuclear Safety & Security Information Conference 2021

원자력 안전규제정보회의

과제1 (지정과제)

KINS 주관

개 요 심층처분 규제기반을 구축하고 심층처분 규제요소를 적기 에 제공하여 SNF 관리사업의 원활한 수행 뒷받침하는 기술개발

연구내용

- ·부지/URL 요건 개발
- •전체단계 세부규제요건 정립
- ·부지/URL 부합성 기준 개발
- 방벽 및 안전요소 부합성 기준 개발
- •안전목표 부합성 기준 정립

성과물

- 부지/URL 개발 및 종합안전성 규제요 건
- •처분시스템 개발단계별 부합성 기준 •처분시스템 안전목표 부합성 기준

KIGAM 주관

과제2 (공모)

개 요 심층처분 안전성 검증기반 구축, 시스템개발 단계별 규제 적합성 확인을 통해 국내 개발사업의 원활한 추진 뒷받침

연구내용

- ·처분시스템 안전요소별 검증방법론
 ·처분시스템 개발단계별
- 안전성검증전략수립 · 처분시스템 종합 안전성 검증체계

성과물

- · 처분시스템 요소별 성능검증지침
- · 처분시스템 규제적합성 검토지침
- · 처분시스템 종합성능/안전성 검증체계 (지침/전산도구)

사용후핵연료 심층처분 시스템 안전규제 기반 구축

연구목적

● 사용후핵연료 처분 관리 규제기반 확립

개 요

사용후핵연료 처분시스템 개발을 뒷받침하고 객관적 근거 기반의 처분 안전성을 확보

2021 Nuclear Safety & Security Information Conference 2021 윈자력 안전규제정보회의

연구개발 성과계획

	1단계			2단계			3단계		
구분	2021	2022	2023	2024	2025	2026	2027	2028	2029
규제요건 개발 20건	Safety case 개발 기본요건	천연방벽 요건 (지질)	천연방벽 요건 (수리지질)	천연방벽 요건 (지구화학)	천연방벽 요건 (지표환경)			심층방어 요건	
		부지개발 요건	시스템구성요 건	URL개발 요건		방폐물 특성요건	처분시설 개발 기본요건	Safety case 구성요건	Safety case 개발요건
			공학적 방벽 구성요건	공학적 방벽 (구조물) 요건	공학적 방벽 (처분용기) 요건	공학적방벽 (완충재/뒤채움) 요건	처분시설 설계/건설 요건	처분시설 운영요건	처분시설 폐쇄요건
규제지침 개발 20건		심층처분 안전규제 기본지침	부지개발 규제지침	천연방벽 규제지침 (지구화학)	URL개발 규제지침				Safety case개발 규제지침
		천연방벽 규제 기본지침	천연방벽 규제지침 (지질)	천연방벽 규제지침 (수리지질)	천연방벽 규제지침 (지표환경)	공학적방벽(처 분용기) 규제지침	방폐물 특성 규제지침	처분시설 설계/건설 규제지침	심층처분 종합안전성 규제지침
			URL규제 기본지침	공학적방벽 규제 기본지침	공학적방벽(구성 /구조물)규제자침	공학적방벽 (완충재/뒤채움) 규제지침	처분시설 규제 기본지침	처분시설 운영단계 규제지침	처분시설 폐쇄단계 규제지침
	규제요건 6(건), 규제지침 5(건) 개발			규제요건 7(건), 규제지침 8(건) 개발			규제요건 7(건), 규제지침 8(건) 개발		

4 맺음말

Nuclear Safety & Security Information Conference 2021

원자력 안전규제 정보회의

- 국내 심층처분시설 개발에 대비한 선제적 규제 대응
 - <u>처분부지 및 지하연구시설(URL)</u>의 개발단계에 필요한 요건과 심층처분시설의 설계·건설·운영·폐쇄·폐쇄후관리·최종조치 등 개발 단계별 요건 제시
 - 신규로 진행할 심층처분시스템 연구 속도에 맞춰 선제적 규제 체계를 구축
- 심층처분시스템 전반 종합적인 규제기준 •지침 정비
 - 국내 처분시설 특성에 따른 규제요소와 그 부합성 기준 및 세부 규제지침 정비
- 국내 심층처분 규제기술 확보를 통한 심층처분사업 수행 적기 지원
 - 심층처분사업의 원활한 수행을 위해, 국내 심층처분 규제요건 사전 검증, R&D 인증프로그램 등을 통하여 심층처분사업을 규제 측면에서 적기 지원
- 심층처분 전반 기본요건·부합성기준 선정, 규제 지침 및 방법론 검증 기여
 - 심층처분시설의 종합 안전성 검증을 심층처분 규제요건 검증 및 부합성 기존을 통해 심층처분 규제기술 향상과 규제기준 정비

감사합니다

