

Balancing Inventory

Why do we need inventory?

Mitigate risks

- Supplier delays
- Forecast error
- Production hazards

Reduce costs

- Transaction costs through scale effect
- Purchasing costs thanks to grouped orders and volume discounts
- Financial speculation

Logistical constraints

Compensate for any bottleneck (production, logistics)

Marketing

- Merchandizing: you want to be seen.
- Satisfy clients on time (MTS/MT0)

Shortage gaming

Why do we limit inventory?

Mitigate risks

Obsolescence & Dead stocks

Reduce costs

- Holding costs
- Perishable goods

Logistical constraints

Storage space

Marketing

Feeling of scarcity

But

Hides bottlenecks: no incentive to streamline operations.

Balancing Inventory

We Want More

Mitigate risks

- Supplier delays
- Forecast error
- Production hazards

Reduce costs

- Transaction costs through scale effect
- Purchasing costs thanks to grouped orders and volume discounts
- Financial speculation

Logistical constraints

Compensate for any bottleneck (production, logistics)

Marketing

- Merchandizing: you want to be seen.
- Satisfy clients on time (MTS/MTO)

Shortage gaming

We Want Less

Mitigate risks

Obsolescence & Dead stocks

Reduce costs

- Holding costs
- Perishable goods

Logistical constraints

Storage space

Marketing

Feeling of scarcity

Operations

 Hides bottlenecks: no incentive to streamline operations.

Balancing Inventory

Too little inventory	Too much inventory	
Shortages	Dead stocks	
Transaction costs	Holding costs	
Production flexibility	Storage space	

Service level

Service Levels: Definitions

Cycle Service Level (α in $Ss = z\sigma\sqrt{L+R}$)

The probability of not stocking out during an order replenishment cycle.

Period Service Level (α_p)

Fraction of periods (a day, a week, a month) without shortages (= inventory on-hand > 0). (Often called on-shelf availability)

Great if you track sales

(Item) Fill Rate (β)

Fraction of items directly supplied from onhand inventory.

Great if you track all orders

Order Fill Rate (On Time in Full, OTIF)

Fraction of clients' orders entirely supplied from on-hand inventory. (One order often contains multiple different products.)

Fill Rate > Period Service Level > Cycle Service Level

Service Level: DIY

Over these 8 periods, what is the ...

- Cycle service level (we received two orders)
- Fill rate
- Period service level

Dow	Inventory		Domand	Lastaslas
Day	Start	End	Demanu	Lost sales
1	80	60	20	0
2	60	25	35	0
3	25	0	25	0
4	0	0	10	10
5	80	65	15	0
6	65	40	25	0
7	40	25	15	0
8	25	5	20	0
Total			165	10

Service Level - What's your favorite KPI?

- 1 Cycle Service Level (α)
- Period Service Level (α_p , on-shelf availability)
- (Item) Fill Rate (B) Click on the projected screen to start the question
- 4 Order Fill Rate (On Time in Full, OTIF)
- 5 Something else

Service level

Beer Game

Fresh Connection

+ a lot of other internal metrics

Inventory Policies

How Inventory Policies Control Inventory

Inventory policy: How much to order, When to order, (Where to store)

Inventory Definitions

On-Hand

Inventory physically available for a client to buy.

Backorders

Backlog of open orders that are not yet fulfilled. This happens when you do not have enough onhand inventory to fulfill orders directly, and the orders are not lost.

In-transit Inventory

Goods ordered from a supplier but not yet available in our warehouse for our clients to buy. These goods are considered to be *in-transit* between two warehouses.

Net-Inventory Level

Inventory level including: available on-hand inventory and in-transit inventory, minus backorders, orders not yet shipped, etc.

Net = On-Hand + In-Transit - Backorders

Inventory Policies

Static vs. Dynamic

Static

When 2 left, I will buy 5.

Pro: Simple

Con: Not future-proof

Dynamic

When less than 2 weeks of forecast, I buy 5 weeks of forecast.

Pro: future proof! More adequations with real needs

Con: needs integration with

forecast.

Continuous vs. Periodic

Continuous

At any point in time, if I need to do an order, I do it.

Pro: Reactive!

Con: You can't do it in practice.

Periodic

Once a day/week/month, I make an order.

Pro: Grouped orders

Con: Less reactive

Order Quantity: Fixed vs. Variable

Fixed Quantity

I always order full pallets.

Pro: Lower order/logistical costs

Con: You might order too much or

not enough

Variable Quantity

I order what I need.

Pro: You have exactly what you

need

Con: High order costs

Policy #1: (R,S) Periodic Review & Up-to Level

Policy

- When? Every R periods
- How Much? Up to a level S

Pros

Lead time + Review Period

- Simple to group different SKUs in a single order toward one supplier.
- Fixed order timings can allow smooth operations (collaboration with supplier).

Cons

- Less reactive: riskier to wait for a specific period to make an order.
- Order quantities are not aligned with batch size.
- Fixed order timings can create bottlenecks.

Static

Every Friday, I buy milk so that I have 3 litters.

Dynamic

Every week, we buy enough raw materials to have 4 weeks of forecast in stock.

Policy #2: (s,Q) Continuous Review & Fixed Quantity

Policy

- When? When net inventory is below or equal to s.
 s = Forecast over Lead Time + Safety Stocks
- How Much? Q

Pros

- You make an order when you need it: limited risk of shortage (better when demand/supply variability is high)
- Fixed, optimized order quantity (useful for operations, batch size, full truckload)

Cons

- Need to be able to make orders at any point in time to your internal/external supplier
- Cannot group orders of different products toward the same supplier

Static

When I have less than 10% of ink in my printer, I buy a new cartridge.

Dynamic

When we have 2 weeks of forecast worth of goods, we order one pallet from our supplier.

Policy #3: (R,s,Q) Periodic Review & Up-to Level

Policy

- When? Every R periods, if less than s s ≈ Forecast over Lead Time + R/2 + Safety Stocks
- How Much? Q

Pros

- Fixed, optimized order quantity (useful for operations, batch size, full truckload).
- Simple to group different SKUs in a single order toward one supplier.
- Fixed order timings can allow smooth operations (collaboration with supplier).

Cons

- Riskier policy with two ordering conditions (can even be less reactive than a (R,S) policy). You can set short review periods, but at the expense of grouped orders.
- More difficult to optimize.

Static

Every Friday, if I have less than 3 bottles of milk, I buy a pack of 6.

Dynamic

Every Friday, if I have less than three weeks' worth of expected milk consumption, I buy a pack of 6.

Inventory policy

Inventory policies tell you **when** and **how much to order**

Fixed order quantities

Packaging & logistic optimization

✓ Dynamic ← Future-proof

X Multiple conditions

Riskier, complex policies

s and S can be static or dynamic (period-coverage).

In practice, there is no real continuous systems		
	In practice, there is	
	no <i>real</i> continuous systems	

Replenishment	Reorder Point s	Order Quantity Q	Policy	
Continuous	Yes	Fixed Q	(s,Q)	If less than s, order Q
Continuous	Yes	Up-to level S	(8,8)	If less than s, order up to S
Periodic <i>R</i>	Yes	Fixed Q	(R,s,Q)	Every R , if less than s , order Q
Periodic <i>R</i>	Yes	Up-to level S	(R,s,S)	Every R , if less than s , order up to S
Periodic <i>R</i>	No	Fixed Q	(R,S)	Every R, order up to S

- Our inventory policy says to place a new order (continuous threshold (15 units).
- This morning, we had 17 units in stock. A client came by and bought 5 units.

 How many units should we order to maintain our inventory levels according to our policy?

00

Select the primary reasons for having (high levels of) inventory for supply chains

- 1 Prevent inaccurate forecasts.
- 2 Mitigate risks of supply chain disruptions.

- (<
- 3 Reduce costs by optimizin Click on the projected screen to start the question
- 4 Identify issues in the production process.
- **5** Buffer against forecast inaccuracies

88

Which business drivers incentivize supply chains to keep low inventory levels?

- 1 To achieve economies of scale in purchasing
- To minimize the costs associated with holding and storing inventory

Click on the projected screen to start the question

- To efficiently utilize available storage space and avoid overflow
- 5 To ensure effective merchandising strategies that match inventory displays to consumer demand patterns.
- 6 To mitigate the risk of inventory obsolescence and dead stock

Match these descriptions to inventory policies

The store automatically orders 100 units whenever the stock falls below 20 units.

(R,s,S)

The shop reviews inventory every Monday and orders enough to have 50 units on hand.

(R,s,S)

(s,Q)

under 30 units, it is replenished to 75 units.

Click on the projected screen to start the question

The warehouse conducts a bi-weekly inventory check and orders 100 units if stock is below the ...

(R,s,Q)

A local art supply store orders a new batch of paints whenever their best-selling colors are nearly out o...

(s,Q)

A grocery store checks its stock every Sunday night and orders enough to fully restock the shelves for ...

(R,S)

✓

Policies in Practice

I am following a periodic up-to-level policy (R=1, S=30).

How much should I order? (You need to account for incoming orders and backlog)

Order-up-to level (S): 30

Net inventory level: 0 (on-hand) -2 (backorders) +18 (in-transit) = 16

Order = 14 (= Net Inventory – Order-up-to- level = 30 - 16)

Policies in Practice

I am following a policy with a fixed quantity (Q=20), a periodic review (R=1), and a reorder point (s=20).

How much should I order? (You can order multiple batches at once)

- Reorder point (s): 20
- Net inventory level: 0 (on-hand) 4 (backorders) + 20 (in-transit) = 16
- Order = 20

