Computação Gráfica

Agostinho Brito

Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte

22 de março de 2005

O que é computação gráfica

	Entrada			
Saída	IMAGEM		MODELO	
IMAGEM	Processamento digital de	lma-	Computação gráfica	
MODELO	gens Visão computacional		Geometria Computacional	

É aplicada em:

- Interfaces de usuário;
- Traçado de gráficos (interativos);
- Automação de escritório;
- CAD;
- Simulação de sistemas;
- Animação;
- Arte e comércio; etc.

O que será estudado

- OpenGL;
- Dispositivos de exibição;
- Algoritmos de rastreamento;
- Algoritmos de preenchimento;
- Recortes;
- Transformações geométricas 2D e 3D;
- Projeções em perspectiva;
- Modelagem geométrica;

- Representação de curvas no plano e no espaço;
- Tratamento de linhas e superfícies escondidas;
- Rendering;
- Modelos de iluminação;
- Modelos de cor;
- Tratamento de sombras;
- Ray Tracing/Radiância;
- Textura;

Dispositivos Vetoriais

Foram os primeiros dispositivos gráficos de exibição. Tais dispositivos apresentavam as seguintes características:

- Uma tela de fósforo era sensibilidada por um feixe de luz;
- Linhas podiam ser traçadas de qualquer ponto para qualquer ponto na tela;
- O tempo de traçado dos desenhos dependia velocidade de comunicação entre o computador e o dispositivo gráfico e do número de objetos a serem desenhados;
- Ausência de cor;
- Traçado de objetos tridimensionais era muito custoso.

Figura: Dispositivo de exibição vetorial

Dispositivos de rastreamento

- Dispositivos raster são como matriz de células discretas que podem ser acesas ou apagadas. As linhas desenhadas aparecem serrilhadas, semelhantes a escadas.
 A este efeito é dado o nome de aliasing.
- O uso de dispositivos de rastreamento (raster graphics) permite que o tempo de desenho da imagem na tela seja independente do número de objetos desenhados.

Figura: Dispositivo de exibição por rastreamento

A implementação de um dispositivo raster em um tubo de raios catódicos - CRT - pode ser feito com o uso de *frame buffers*, obedecendo às seguintes etapas:

- Armazenar numa matriz os pontos a serem desenhados;
- Ler a informação digital em cada elemento da matriz e converter para uma voltagem elétrica com um DAC (conversor digital-analógico).
- Sensibilizar a tela gráfica nas coordenadas correspondentes às da matriz;

Funciomanento de um CRT

Figura: CRT monocromático (preto e branco).

Dispositivos lógicos

Locator: provê informações de coordenadas em 2 ou 3 dimensões.

Valuator: provê um valor simples, geralmente apresentado como um número real.

Button: utilizado para selecionar e ativar eventos ou procedimentos.

Pick: identifica ou seleciona objetos na tela.

Keyboard: coleção de botões.

Dispositivos físicos

Tablet: consiste em superfície plana e uma caneta, usada para apontar uma

posição na superfície do tablet. Também chamado mesa digitalizadora.

Touch panel: semelhante ao tablet, atua como um locator, onde o dispositivo

apontador pode ser, por exemplo, um dedo.

Mouse: é dotado de uma bola interna que atua sobre dois valuators, indicando

posição. Botões adicionais servem para realizar choice ou pick de

entidades na tela.

Joystick: semelhante ao mouse, mas com uma origem fixa.

Trackball: semelhante ao mouse. Utilizados quando o espaço físico é reduzido

para a aplicação.

Outros: Spaceball, data glove, caneta ótica.

- Sendo a tela gráfica uma matriz de pontos, é impossível traçar uma linha direta de um ponto a outro. Sendo assim, alguns pontos da tela deverão ser selecionados para representar o objeto que se deseja desenhar.
- O processo utilizado na determinação dos pixels que melhor aproximam um determiado objeto é denominado rasterização (rastering).

Figura: Rasterização de linhas retas.

<ロ > ← □

DDA - Analizador diferencial digital

• A equação da linha direta entre dois pontos (x_1, y_1) e (x_2, y_2) é dada pela equação

$$y_{i+1} = y_i + \frac{y_2 - y_1}{x_2 - x_1} \Delta x, \tag{1}$$

onde: $\Delta x = x_2 - x_1$ e $\Delta y = y_2 - y_1$.

• Para implementar um DDA simples, o maior dos valores de Δx ou Δy é escolhido como unidade de rasterização. O algoritmo DDA funciona nos quatro quadrantes.

if
$$abs(x_2-x_1) \geq abs(y_2-y_1)$$
 then Tamanho = $abs(x_2-x_1)$ else Tamanho = $abs(y_2-y_1)$ end if {seleciona o maior dos valores entre Δx e Δy como unidade rasterização} $\Delta x = (x_2-x_1)/Tamanho$ $\Delta y = (y_2-y_1)/Tamanho$ $i=1$ while $i \leq Tamanho$ do desenhaPonto(Floor(x), Floor(y)) {Floor: valor arredondado de um dado número real. Inteiro(-8.6) = -9; Inteiro(-8.4) = -8} $x = x + \Delta x$ $y = y + \Delta y$ $i = i + 1$ end while

Exemplo de uso do algoritmo DDA

• Exemplo de uso do DDA para traçar uma linha do ponto (0,0) ao ponto (-5,-2). Os valores iniciais das variáveis do algoritmo são: $x_1 = 0$, $y_1 = 0$, $x_2 = -5$, $y_2 = -2$, Tamanho = 5, $\Delta x = -1$ e $\Delta y = -0$, 4.

i	desenhaPonto	Х	У
		0.0	0.0
1	(0.0,0.0)		
		-1.0	-0.4
2	(-1.0,-0.0)		
		-2.0	-0.8
3	(-2.0,-1.0)		
		-3.0	-1.2
4	(-3.0,-1.0)		
		-4.0	-1.6
_5	(-4.0,-2.0)		

Tabela: Funcionamento do DDA

Limitações práticas

- Utiliza aritmética de ponto flutuante;
- Se a função Floor for substituída por uma função inteira verdadeira, os resultados serão diferentes;

Algoritmo de Bresenham para traçado de linhas

 Para cada ponto a ser traçado, o algoritmo verifica sua a distância entre a posição do ponto e a localização do grid. Apenas o sinal do erro é analisado. A base do algoritmo é mostrada na figura abaixo.

Figura: Base do algoritmo de Bresenham para linhas

Algoritmo real de Bresenham para retas

• O erro é iniciado com valor igual a -1/2. A cada iteração, $e=e+\Delta y/\Delta x$. Quando o erro assume um valor positivo, é necessário reinicializá-lo, subtraindo "1" do seu valor.

```
x = x_1

y = y_1

\Delta x = x_2 - x_1

\Delta y = y_2 - y_1

m = \Delta y/\Delta x

e = m - 1/2

for i = 1 to \Delta x do

desenhaPonto(x,y)

while e \ge 0 do

y = y + 1

e = e - 1

end while

x = x + 1

e = e + m

end for
```


Algoritmo inteiro de Bresenham para retas

• O algoritmo de bresenham pode ser melhorado se a divisão por Δx for eliminada, passando a utilizar somente aritmética inteira. O novo erro será agora:

$$\overline{e} = 2e\Delta x$$

As modifições são apresentadas no algoritmo inteiro de Bresenham para retas.

```
\overline{e}=2\Delta y-\Delta x

for i=1 to \Delta x do
   desenhaPonto(x,y)

while \overline{e}\geq 0 do
   y=y+1
\overline{e}=\overline{e}-2\Delta x

end while

x=x+\Delta x
\overline{e}=\overline{e}+2\Delta y
end for
```


Algoritmo generalizado de Bresenham para retas

```
X = X_1
y = y_1
\Delta x = abs(x_2 - x_1)
\Delta y = abs(y_2 - y_1)
s1 = Sinal(x_2 - x_1)
s2 = Sinal(y_2 - y_1)
if \Delta y > \Delta x then
   Temp = \Delta x
   \Delta x = \Delta y
   \Delta y = \text{Temp}
   Troca = 1
else
   Troca = 0
end if
\overline{e} = 2\Delta y - \Delta x
for i = 1 to \Delta x do
```

```
desenhaPonto(x,y)
  while \overline{e} > 0 do
      if Troca = 1 then
        x = x + s1
     else
        y = y + s2
     end if
      \overline{e} = \overline{e} - 2\Delta x
  end while
  if Troca = 1 then
      y = y + s2
  else
      x = x + s1
  end if
   \overline{e} = \overline{e} + 2\Delta y
end for
```

Algoritmo de Bresenham para traçado de circunferências

- A geração dos pontos é feita apenas para o segundo octante da circunferência e replicados para os demais octantes.
- O pixel selecionado na figura foi previamente escolhido como o mais adequado. O próximo ponto a ser selecionado para o traçado será o que mais se aproximar da circunferência.

Figura: Base do algoritmo de Bresenham para circunferências

Determinação do ponto seguinte no traçado da circunferência

- Seja $F(x, y) = x^2 + y^2 R^2$. F(x, y) vale zero, positivo ou negativo, caso o ponto (x, y) esteja sobre, fora ou dentro da circunferência.
- Seja d a variável de decisão, o valor da função F(x, y) no ponto central entre os dois pixels.

$$d_{velho} = F(x_p + 1, y_p - 1/2) = (x_p + 1)^2 + (y_p - 1/2)^2 - R^2$$

• Se $d_{velho} < 0$, E é escolhido. Logo:

$$d_{novo} = F(x_p + 2, y_p - 1/2) = (x_p + 2)^2 + (y_p - 1/2)^2 - R^2$$

 $d_{novo} = d_{velho} + (2x_p + 3)$

Se d_{velho} ≥ 0, SE é escolhido e o novo valor de d será:

$$d_{novo} = F(x_p + 2, y_p - 3/2) = (x_p + 2)^2 + (y_p - 3/2)^2 - R^2$$

 $d_{novo} = d_{velho} + (2x_p - 2y_p + 5)$

Algoritmo de Bresenham para circunferências

- O primeiro ponto da circunferência é (0, R).
- O próximo ponto central cai em (1, R 1/2), logo d = 5/4 R.
- Como d é incrementado com valores inteiros, a mudança d → d = 1 - R não afetará no processo de desenho.
- pontosDaCircunferência(): replica os pontos no segundo octante para os octantes restantes.

```
x = 0

y = raio

d = 1 - raio

PontosDaCircunferencia(x,y)

while y > x do

if d < 0 then

d = d + 2 * x + 3

x = x + 1

else

d = d + 2 * (x - y) + 5

x = x + 1

y = y - 1

end if

PontosDaCircunferencia(x,y)

end while
```


Algoritmos de preenchimento

- Servem para definir o conjunto de pixels que será desenhando dentro de um determinado contorno fechado. Este contorno geralmente pode ser representado na forma poligonal.
- A triagem dos pixels normalmente é feita dentro de uma região limitante, denominada *bounding box*, como mostra a figura.

Figura: bounding box de um polígono

Conversão de varredura

- Exceto nas bordas, pixels adjacentes em um polígono possuem as mesmas características. Esta propriedade é chamada coerência espacial. Assim, os pixels de uma dada linha (scan line) variam somente nas bordas do polígono.
- O processo de determinar quais pixels serão desenhados no preenchimento é chamado conversão de varredura (scan conversion), mostrado na figura 9.

Figura: conversão de varredura para um polígono fechado

Conversão de varredura

A scan line 4, por exemplo, pode ser dividida nas seguintes regiões:

Intervalo	Situação
<i>x</i> < 1	fora do polígono
$1 \le x \le 4$	dentro do polígono
4 < x < 6	fora do polígono
$6 \le x \le 8$	dentro do polígono
<i>x</i> > 8	fora do polígono

- A determinação dos pontos de intersecção não é feita necessariamente da esquerda para a direita. Caso o polígono seja definido pela lista de vértices P₁P₂P₃P₄P₅, a seqüência das intersecções será 8, 6, 4, 1. É necessário então ordenar a lista obtida, ou seja, 1, 4, 6, 8.
- As intersecções podem ser consideradas em pares. Pixels contidos no intervalo formado por estes pares são desenhados na cor do polígono.

Exemplo de conversão de varredura

Considere o traçado do retângulo definido pelas coordenadas (1,1), (5,1), (5,4), (1,4). O resultado do preenchimento utilizando este algoritmo é mostrado na figura.

Ativação de pixels

Problema: a área do retângulo

 $A = (5-1) \times (4-1) = 12,$

mas 20 pixels são ativados!

Solução: realizar o teste na scanline

y + 0,5. O resultado é mostrado na figura de

baixo.

Figura: scanlines y = y + 1/2

Algoritmo da lista ordenada de arestas

Técnicas alternativas para preenchimento de polígonos utilizam a ordenação das intersecções entre as arestas do polígonos e as *scanlines* (*ordered edge list algorithm*).

Determine para cada aresta as intersecções com as (y + 1/2) scanlines, via Bresenham.

Armazene as intersecções (x, y + 1/2) em uma lista.

Ordene a lista obtida da seguinte forma: (x_1, y_1) precede (x_2, y_2) se $y_1 > y_2$ ou $y_1 = y_2$ e $x_1 \le x_2$.

Extraia os pares de elementos da lista, (x_1, y_1) e (x_2, y_2) .

Ative os pixels da scanline y para valores inteiros de x tais que $x_1 \le x + 1/2 \le x_2$.

Para o polígono da última figura, de vértices $P_1(1,1)$, $P_2(8,1)$, $P_3(8,6)$, $P_4(5,3)$, $P_5(1,7)$, os dados obtidos para cada scanline são mostrados na tabela 2.

scanline	intersecções encontradas
1.5	(8, 1.5), (1, 1.5)
2.5	(8,2.5), (1,2.5)
3.5	(8,3.5), (5.5,3.5), (4.5,3.5), (1,3.5)
4.5	(8, 4.5), (6.5, 4.5), (3.5, 4.5), (1, 4.5)
5.5	(8, 5.5), (7.5, 5.5), (2.5, 5.5), (1, 5.5)
6.5	(1.5, 6.5), (1, 6.5)
7.5	nenhuma

Tabela: determinação de de intesecções para o algoritmo ordered edge list

Exemplo de algoritmo

 Quando ordenadas pelo algoritmo, as intersecções com as y + 1/2 scanlines formarão a seguinte lista:

$$(1,6.5), (1.5,6.5), (1,5.5), (2.5,5.5), \dots, (1,1.5), (8,1.5)$$

 Extraindo os pares de intersecções desta lista e aplicando o processo de seleção de pontos descritos no algoritmo, será gerada a seguinte lista de pontos para ativação:

$$(1,6), (1,5), (2,5), \dots, (1,1), (2,1),$$

 $(3,1), (4,1), (5,1), (6,1), (7,1)$

 O resultado do processo de preenchimento é mostrado na figura.

Figura: preenchimento de um polígono pelo algoritmo *ordered edge list*

Melhorando o algoritmo

O algoritmo anterior pode ser melhorado se o processo de ordenação for mais eficiente. Ao invés de ordenar toda a lista de uma só vez, para cada scanline, as coordenadas x da intersecção são armazenadas em uma célula (y bucket) correspondente à scanline, como mostrado na figura. Assim, a ordenação é feita apenas dentro de cada scanline.

8	Х	Х	Х	Х	Х	Х
7	Х	Х	Х	Х	Х	Х
6	1.5	1	Х	Х	Х	Х
5	8	7.5	2.5	1	Х	Х
4	8	6.5	3.5	1	Х	Х
3	8	5.5	4.5	1	Х	Х
2	8	1	Х	Х	Х	Х
1	8	1	Х	Х	Х	Х
0	Х	Х	Х	Х	Х	Х
(a)						

8	Х	Х	Х	Х	Х	Х
7	Х	Х	Х	Х	Х	Х
6	1	1.5	Х	Х	Х	Х
5	1	2.5	7.5	8	Х	Х
4	1	3.5	6.5	8	Х	Х
3	1	4.5	5.5	8	Х	Х
2	1	8	Х	Х	Х	Х
1	1	8	X	Х	Х	Х
0	Х	Х	Х	Х	Х	Х
			(b)			

Figura: ybuckets para as scanlines do polígono da figura 9.

Lista ordenada de arestas usando lista de arestas ativas

O novo algoritmo ainda necessita de muita memória alocada para armazenar as listas de intersecções. Utilizar uma lista encadeada! Uma lista de fronteiras ativas indica para o algoritmo as arestas presentes (ativas) em cada *scanline*.

{Preparação dos dados}

Determine para cada aresta as intersecções com as (y + 1/2) scanlines, via Bresenham, as maiores scanlines interceptadas pela aresta.

Armazene a aresta do polígono no y bucket da scanline correspondente.

Armazene a intersecção inicial x, o número de *scanlines* interceptadas pela aresta, Δy , e o incremento de x, Δx , de *scanline* para *scanline* em uma lista encadeada. {Conversão dos dados}

Para cada *scanline*, verifique o aparecimento de novas arestas nos *y buckets* correspondentes, e adicione a aresta à lista de arestas ativas.

Ordene as intersecções da lista de arestas ativas na ordem crescente, ou seja, x_1 precede x_2 se $x_1 \le x_2$.

Extraia os pares de elementos da lista, (x_1, y_1) e (x_2, y_2) .

Ative os pixels da *scanline* y para valores inteiros de x tais que $x_1 \le x + 1/2 \le x_2$.

Para cada aresta na lista de arestas ativas, decremente Δy por 1. Se $\Delta y < 0$, remova aresta dessa lista.

Calcule a nova intersecção x para cada elemento da lista de arestas ativas, $x_n ovo = x_v elho + \Delta x$.

Exemplo do algoritmo

O resultado da aplicação deste algoritmo no preenchimento do polígono usado anteriormente é mostrado na figura abaixo.

Figura: Preparação dos dados

Figura: Conversão dos dados

Preenchimento baseado em semente

- Algoritmos de preenchimento baseado em semente, ou seed fill algorithms, assumem que pelo menos um ponto no interior do polígono é conhecido. O algoritmo tenta encontrar o restante dos pontos no interior e preenchê-los com uma determinada cor.
- Neste caso, uma informação adicional é requerida: o tipo de conectividade da região. As regiões podem ser 4-conectadas ou 8-conectadas.
- Para uma região 4-conectada, todos os pixels no seu interior podem ser alcançados com combinações dos movimentos leste, oeste, norte e sul. Para uma região 8-conectada, os pontos no interior podem ser alcançadas com combinações dos movimentos leste, oeste, norte, sul, nordeste, noroeste, sudoeste e sudeste, como mostrado na figura.
- As regiões 4-conectadas são delimitadas por fronteiras 8-conectadas. As regiões 8-conectadas são delimitadas por fronteiras 4-conectadas.

Figura: Tipos de conectividade em uma região

Algoritmo seed fill para regiões 4-conectadas

```
{Seed(x,y) é o pixel semente}
{Push/Pop: coloca/retira o pixel em uma pilha}
Pixel(x,y) = Seed(x,y)
Push Pixel(x,y)
while pilha não vazia do
  Pop Pixel(x,y)
  if Pixel(x,y) \neq New value then
    Pixel(x,y) = New value
  end if
  if Pixel(x+1,y) \neq New value and Pixel(x+1,y) \neq Boundary value then
    Push Pixel(x+1,y)
  end if
  if Pixel(x,y+1) \neq New value and Pixel(x,y+1) \neq Boundary value then
    Push Pixel(x,y+1)
  end if
  if Pixel(x-1,y) \neq New value and Pixel(x-1,y) \neq Boundary value then
    Push Pixel(x-1,y)
  end if
  if Pixel(x,y-1) \neq New value and Pixel(x,y-1) \neq Boundary value then
    Push Pixel(x,y-1)
  end if
                                                       end while
```

Algoritmo scanline seed fill

Embora simples, o algoritmo anterior consome muita memória com o uso de pilhas. Além disso, a pilha pode conter freqüentemente informação duplicada. O algoritmo scanline seed fill contorna este problema semeando apenas um pixel nos trechos de uma scanline a ser preenchida. Algoritmo seed fill para regiões 4-conectadas:

while pilha não vazia do

Retire um pixel semente de um trecho de uma pilha contendo a semente. Preencha os trechos à esquerda e à direita da semente, até que uma fronteira seja encontrada.

Grave as coordenadas da extrema esquerda (*Xleft*) e da extrema direita(*Xright*) do trecho preenchido.

Na faixa $Xleft \le x \le Xright$, para as scanlines imediatamente superior e imediatamente inferior, verifique se existem apenas pixels de fronteiras ou previamente preenchidos. Se estas scanlines não contém apenas pixels de fronteiras ou previamente preenchidos, marque com uma semente o pixel da extrema direita de cada um dos trechos encontrados na faixa $Xleft \le x \le Xright$.

end while

Funcionamento do algoritmo scanline seed fill

Os números mostrados dentro dos pixels representam a posição da semente na pilha de sementes.

