Data Science Fundamentals (90001) - Final Project

ASD (Autism Spectrum Disorder) - Prediction based on Phenotypic Data

Tali Aharon 034791236

Import

```
In [226... | # Basic libraries for data handeling
         import pandas as pd
         import numpy as np
         # For exploring and ploting the data
         import matplotlib.pyplot as plt
         import seaborn as sns
         import statistics as stat
         import scipy as scip
         # For preprocessing
         from sklearn.compose import ColumnTransformer
         from sklearn.impute import SimpleImputer
         from sklearn.impute import KNNImputer
         from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
         from sklearn.decomposition import PCA
         # For preprocessing and for train-test-predict-evaluate...
         from sklearn.pipeline import Pipeline
         # For train-test-predict
         from sklearn.model selection import train test split, GridSearchCV
```

about:srcdoc Page 1 of 39

```
# Classification Models
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cluster import KMeans as KMeans

# For evaluating our models
from sklearn.metrics import confusion_matrix as confusion_matrix
# I removed warnings to get a clean notebook/pdf
import warnings
warnings.filterwarnings('ignore')
```

Exploratory Data Analysis

Load and Preview the data:

We start with 2 CSV files: "ABIDEII_Composite_Phenotypic" and "ABIDEII_Long_Composite_Phenotypic".

about:srcdoc Page 2 of 39

```
In [227...
# Load CSV data files
df = pd.read_csv('ABIDEII_Composite_Phenotypic.csv', encoding='windows-1252')
#df.columns = [x.lower() for x in df.columns]

df_long = pd.read_csv('ABIDEII_Long_Composite_Phenotypic.csv', encoding='windows-1252')
#df_long.columns = [x.lower() for x in df_long.columns]

# selecting rows from df_long where SESSION='Baseline'
df_long_baseline = df_long.loc[df_long['SESSION'] == 'Baseline']
df_long_baseline.drop('SESSION', inplace=True, axis=1)

df = pd.concat([df, df_long_baseline])

df.head(50)
```

Out[227]: SITE_ID SUB_ID NDAR_GUID DX_GROUP PDD_DSM_IV_TR ASD_DSM_5 AGE_AT_SCAN SEX HANDEDNESS_CATEGORY HANDED

0	ABIDEII- BNI_1	29006	NaN	1	NaN	NaN	48.0	1	1.0
1	ABIDEII- BNI_1	29007	NaN	1	NaN	NaN	41.0	1	1.0
2	ABIDEII- BNI_1	29008	NaN	1	NaN	NaN	59.0	1	1.0
3	ABIDEII- BNI_1	29009	NaN	1	NaN	NaN	57.0	1	1.0
4	ABIDEII- BNI_1	29010	NaN	1	NaN	NaN	45.0	1	1.0
5	ABIDEII- BNI_1	29012	NaN	1	NaN	NaN	62.0	1	1.0
6	ABIDEII- BNI_1	29013	NaN	1	NaN	NaN	51.0	1	1.0
7	ABIDEII- BNI_1	29015	NaN	1	NaN	NaN	47.0	1	1.0

about:srcdoc Page 3 of 39

8	ABIDEII- BNI_1	29017	NaN	1	NaN	NaN	55.0	1	1.0
9	ABIDEII- BNI_1	29025	NaN	1	NaN	NaN	57.0	1	1.0
10	ABIDEII- BNI_1	29026	NaN	1	NaN	NaN	54.0	1	1.0
11	ABIDEII- BNI_1	29027	NaN	1	NaN	NaN	45.0	1	1.0
12	ABIDEII- BNI_1	29028	NaN	1	NaN	NaN	21.0	1	1.0
13	ABIDEII- BNI_1	29029	NaN	1	NaN	NaN	20.0	1	1.0
14	ABIDEII- BNI_1	29030	NaN	1	NaN	NaN	18.0	1	1.0
15	ABIDEII- BNI_1	29031	NaN	1	NaN	NaN	21.0	1	1.0
16	ABIDEII- BNI_1	29037	NaN	1	NaN	NaN	19.0	1	1.0
17	ABIDEII- BNI_1	29039	NaN	1	NaN	NaN	19.0	1	1.0
18	ABIDEII- BNI_1	29041	NaN	1	NaN	NaN	19.0	1	1.0
19	ABIDEII- BNI_1	29042	NaN	1	NaN	NaN	25.0	1	1.0
20	ABIDEII- BNI_1	29043	NaN	1	NaN	NaN	53.0	1	1.0
21	ABIDEII- BNI_1	29046	NaN	1	NaN	NaN	18.0	1	1.0

about:srcdoc Page 4 of 39

22	ABIDEII- BNI_1	29052	NaN	1	NaN	NaN	40.0	1	1.0
23	ABIDEII- BNI_1	29053	NaN	1	NaN	NaN	24.0	1	1.0
24	ABIDEII- BNI_1	29055	NaN	1	NaN	NaN	22.0	1	1.0
25	ABIDEII- BNI_1	30144	NaN	1	NaN	NaN	22.0	1	1.0
26	ABIDEII- BNI_1	30148	NaN	1	NaN	NaN	55.0	1	1.0
27	ABIDEII- BNI_1	30150	NaN	1	NaN	NaN	47.0	1	1.0
28	ABIDEII- BNI_1	30151	NaN	1	NaN	NaN	22.0	1	1.0
29	ABIDEII- BNI_1	29011	NaN	2	NaN	NaN	48.0	1	1.0
30	ABIDEII- BNI_1	29014	NaN	2	NaN	NaN	64.0	1	1.0
31	ABIDEII- BNI_1	29016	NaN	2	NaN	NaN	41.0	1	1.0
32	ABIDEII- BNI_1	29018	NaN	2	NaN	NaN	51.0	1	1.0
33	ABIDEII- BNI_1	29019	NaN	2	NaN	NaN	62.0	1	1.0
34	ABIDEII- BNI_1	29020	NaN	2	NaN	NaN	46.0	1	1.0
35	ABIDEII- BNI_1	29021	NaN	2	NaN	NaN	43.0	1	1.0

ABIDEII-

about:srcdoc Page 5 of 39

36	BNI_1	29022	NaN	2	NaN	NaN	40.0	1	1.0
37	ABIDEII- BNI_1	29023	NaN	2	NaN	NaN	46.0	1	1.0
38	ABIDEII- BNI_1	29024	NaN	2	NaN	NaN	60.0	1	1.0
39	ABIDEII- BNI_1	29032	NaN	2	NaN	NaN	20.0	1	1.0
40	ABIDEII- BNI_1	29033	NaN	2	NaN	NaN	54.0	1	1.0
41	ABIDEII- BNI_1	29034	NaN	2	NaN	NaN	21.0	1	1.0
42	ABIDEII- BNI_1	29035	NaN	2	NaN	NaN	22.0	1	1.0
43	ABIDEII- BNI_1	29036	NaN	2	NaN	NaN	56.0	1	1.0
44	ABIDEII- BNI_1	29038	NaN	2	NaN	NaN	21.0	1	1.0
45	ABIDEII- BNI_1	29040	NaN	2	NaN	NaN	49.0	1	1.0
46	ABIDEII- BNI_1	29044	NaN	2	NaN	NaN	19.0	1	1.0
47	ABIDEII- BNI_1	29045	NaN	2	NaN	NaN	48.0	1	1.0
48	ABIDEII- BNI_1	29047	NaN	2	NaN	NaN	55.0	1	1.0
49	ABIDEII- BNI_1	29048	NaN	2	NaN	NaN	25.0	1	1.0

about:srcdoc Page 6 of 39

50 rows × 348 columns

Statisticaly describing the numeric columns

228	df.des	cribe()							
3]:		SUB_ID	DX_GROUP	PDD_DSM_IV_TR	ASD_DSM_5	AGE_AT_SCAN	SEX	HANDEDNESS_CATEGORY	HANDEDNES!
	count	1152.000000	1152.000000	633.000000	205.000000	1152.000000	1152.000000	1129.000000	6
	mean	30035.146701	1.527778	0.829384	0.536585	14.797624	1.228299	1.181577	
	std	3845.471750	0.499445	1.040002	0.499880	9.023974	0.419918	0.517236	
	min	28675.000000	1.000000	0.000000	0.000000	5.128000	1.000000	1.000000	-1
	25%	28991.750000	1.000000	0.000000	0.000000	9.388390	1.000000	1.000000	
	50%	29311.500000	2.000000	0.000000	1.000000	11.645205	1.000000	1.000000	
	75%	29622.250000	2.000000	2.000000	1.000000	17.757500	1.000000	1.000000	1
	max	51315.000000	2.000000	3.000000	1.000000	64.000000	2.000000	3.000000	1

8 rows × 340 columns

1st phase of Feature Selection - using domain knowledge relevance to ASD

about:srcdoc Page 7 of 39

Out[229]:		SUB_ID	NDAR_GUID	DX_GROUP	PDD_DSM_IV_TR	ASD_DSM_5	AGE_AT_SCAN	SEX	HANDEDNESS_CATEGORY	HANDEDNESS_SCC
	0	29006	NaN	1	NaN	NaN	48.0	1	1.0	
	1	29007	NaN	1	NaN	NaN	41.0	1	1.0	
	2	29008	NaN	1	NaN	NaN	59.0	1	1.0	
	3	29009	NaN	1	NaN	NaN	57.0	1	1.0	
	4	29010	NaN	1	NaN	NaN	45.0	1	1.0	

5 rows × 135 columns

2nd phase of Feature Reduction - aggregating multiple columns into one (using mean)

```
In [230... # Add columns using aggregation functions applyed on existing columns
         ADI R df = df ASD[['ADI R SOCIAL TOTAL A', 'ADI R VERBAL TOTAL BV', 'ADI R NONVERBAL TOTAL BV', 'ADI R RRB TOTAL
         df ASD['ADI R MEAN'] = np.nan
         for index, row in ADI R df.iterrows():
             df ASD.at[index, 'ADI R MEAN'] = np.nanmean(np.array(row))
         BRIEF_df = df_ASD[['BRIEF_INHIBIT_T', 'BRIEF_SHIFT_T', 'BRIEF_EMOTIONAL_T', 'BRIEF_BRI_T', 'BRIEF_INITIATE_T', 'E
         df ASD['BRIEF MEAN'] = np.nan
         for index, row in BRIEF df.iterrows():
             df ASD.at[index, 'BRIEF MEAN'] = np.nanmean(np.array(row))
         CELF df = df ASD[['CELF 5-8 CORE S', 'CELF 5-8 RECEPTIVE S', 'CELF 5-8 EXPRESSIVE S', 'CELF 9-21 CORE S', 'CELF 9
         df ASD['CELF MEAN'] = np.nan
         for index, row in CELF df.iterrows():
             df ASD.at[index, 'CELF MEAN'] = np.nanmean(np.array(row))
         BASC2 df = df ASD[['BASC2 PRS ANGER T', 'BASC2 PRS HYPERACTIVITY T', 'BASC2 PRS AGGRESSION T', 'BASC2 PRS CONDUCT
         df ASD['BASC2 MEAN'] = np.nan
         for index, row in BASC2 df.iterrows():
```

about:srcdoc Page 8 of 39

```
df ASD.at[index, 'BASC2_MEAN'] = np.nanmean(np.array(row))
CPRS df = df ASD[['CPRS OPP', 'CPRS COG-INATT', 'CPRS HYPERACT', 'CPRS ANX SHY', 'CPRS PERFECT', 'CPRS SOCIAL PRO
df_ASD['CPRS_MEAN'] = np.nan
for index, row in CPRS_df.iterrows():
    df ASD.at[index, 'CPRS MEAN'] = np.nanmean(np.array(row))
CASI df = df ASD[['CASI ADHD-I CUTOFF', 'CASI ADHD-H CUTOFF', 'CASI ADHD-C CUTOFF', 'CASI ODD CUTOFF', 'CASI CD (
df ASD['CASI MEAN'] = np.nan
for index, row in CASI df.iterrows():
    df ASD.at[index, 'CASI MEAN'] = np.nanmean(np.array(row))
CSI df = df ASD[['CSI ADHD-I CUTOFF', 'CSI ADHD-H CUTOFF', 'CSI ADHD-C CUTOFF', 'CSI ODD CUTOFF', 'CSI CD CUTOFF
df ASD['CSI MEAN'] = np.nan
for index, row in CSI df.iterrows():
    df_ASD.at[index, 'CSI_MEAN'] = np.nanmean(np.array(row))
# Drop columns which were already aggregated into a new column
df ASD = df ASD.drop(['ADI R SOCIAL TOTAL A', 'ADI R VERBAL TOTAL BV', 'ADI R NONVERBAL TOTAL BV', 'ADI R RRB TOT
df ASD.head(200)
```

about:srcdoc Page 9 of 39

Out[230]:

:		SUB_ID	NDAR_GUID	DX_GROUP	PDD_DSM_IV_TR	ASD_DSM_5	AGE_AT_SCAN	SEX	HANDEDNESS_CATEGORY	HANDEDNESS_S
	0	29006	NaN	1	NaN	NaN	48.000000	1	1.0	
	1	29007	NaN	1	NaN	NaN	41.000000	1	1.0	
	2	29008	NaN	1	NaN	NaN	59.000000	1	1.0	
	3	29009	NaN	1	NaN	NaN	57.000000	1	1.0	
	4	29010	NaN	1	NaN	NaN	45.000000	1	1.0	
	•••	•••								
1	95	28838	NaN	1	1.0	NaN	11.484932	1	1.0	
1	96	28839	NaN	1	1.0	NaN	11.353425	2	1.0	
•	197	28840	NaN	1	1.0	NaN	11.652055	1	1.0	
1	98	28843	NaN	1	1.0	NaN	11.123288	1	1.0	
1	99	28844	NaN	1	3.0	NaN	11.912329	1	1.0	

200 rows × 31 columns

In [231... df_ASD.info()

about:srcdoc Page 10 of 39

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1152 entries, 0 to 74
Data columns (total 31 columns):

	Column	Non-Null Count	Dtype
		1150	
0	_	1152 non-null	
1	_	310 non-null	-
2	DX_GROUP	1152 non-null	
3	PDD_DSM_IV_TR	633 non-null	
4	ASD_DSM_5	205 non-null	
5	AGE_AT_SCAN	1152 non-null	
6	SEX	1152 non-null	
	HANDEDNESS_CATEGORY	1129 non-null	
	HANDEDNESS_SCORES	641 non-null	
9	ADOS_G_TOTAL	369 non-null	float64
10	ADOS_2_TOTAL	283 non-null	float64
11	ADOS_2_SEVERITY_TOTAL	278 non-null	
12	SRS_TOTAL_RAW	785 non-null	
13	SRS_TOTAL_T	756 non-null	float64
14	SCQ_TOTAL	293 non-null	float64
15	AQ_TOTAL	44 non-null	float64
16	VINELAND SUM SCORES	103 non-null	float64
17	RBSR_6SUBSCALE_TOTAL	451 non-null	float64
18	RBSR_5SUBSCALE_TOTAL	261 non-null	float64
19	MASC_TOTAL_T	216 non-null	
20	CBCL 6-18 TOTAL COMPETENCE T		
21	CBCL_6-18_TOTAL_PROBLEM_T	400 non-null	float64
22	CBCL_1.5-5_TOTAL_T	17 non-null	
23	BDI_TOTAL	135 non-null	float64
24	ADI R MEAN	346 non-null	float64
25	BRIEF_MEAN	487 non-null	
26	CELF_MEAN	56 non-null	
	BASC2 MEAN	149 non-null	float64
	CPRS MEAN	100 non-null	float64
	CASI MEAN	90 non-null	float64
	CSI MEAN	17 non-null	
	es: float64(27), int64(3), obj		

dtypes: float64(27), int64(3), object(1)

memory usage: 320.3+ KB

about:srcdoc Page 11 of 39

3rd phase of Feature Selection - removing features where 90% or more of the data is missing

In [232... df_ASD = df_ASD.drop(['AQ_TOTAL', 'VINELAND_SUM_SCORES', 'CBCL_6-18_TOTAL_COMPETENCE_T', 'CBCL_1.5-5_TOTAL_T', 'Cdf_ASD.head(200)

Out[232]:

:		SUB_ID	NDAR_GUID	DX_GROUP	PDD_DSM_IV_TR	ASD_DSM_5	AGE_AT_SCAN	SEX	HANDEDNESS_CATEGORY	HANDEDNESS_S
	0	29006	NaN	1	NaN	NaN	48.000000	1	1.0	
	1	29007	NaN	1	NaN	NaN	41.000000	1	1.0	
	2	29008	NaN	1	NaN	NaN	59.000000	1	1.0	
	3	29009	NaN	1	NaN	NaN	57.000000	1	1.0	
	4	29010	NaN	1	NaN	NaN	45.000000	1	1.0	
	•••									
	195	28838	NaN	1	1.0	NaN	11.484932	1	1.0	
	196	28839	NaN	1	1.0	NaN	11.353425	2	1.0	
	197	28840	NaN	1	1.0	NaN	11.652055	1	1.0	
	198	28843	NaN	1	1.0	NaN	11.123288	1	1.0	
	199	28844	NaN	1	3.0	NaN	11.912329	1	1.0	

200 rows × 23 columns

Plots Showing the distribution of values in each numeric column

about:srcdoc Page 12 of 39

```
In [233... # Select the numeric columns
   numeric_columns = df_ASD.select_dtypes(include=['int64', 'float64']).columns

# Create a figure with a subplot for each numeric column
fig, axes = plt.subplots(nrows=len(numeric_columns), figsize=(20, 30))

# Set the figure's margins
fig.subplots_adjust(hspace=1, wspace=1)

# Create a histogram for each numeric column
for ax, column in zip(axes, numeric_columns):
        ax.hist(df_ASD[column], bins=20, edgecolor='k')
        ax.set_title(column)

# Show the plot
plt.show()
```


about:srcdoc Page 13 of 39

about:srcdoc Page 14 of 39

Plot Categorical Columns

I ploted each one of the categorical columns to find out their distribution along the ASD and No-ASD categories

about:srcdoc Page 15 of 39

```
In [234... # Create a bar plot for the sex column
sns.countplot(x='DX_GROUP', hue=df_ASD['SEX'].map({1:"Male", 2:"Female"}), data=df_ASD)

# Set actual diagnosis instead of DX_Group=1 or 2
plt.xticks([0,1], ["ASD", "No ASD"])

# Add a title
plt.title('ASD by Sex')

# Show the plot
plt.show()
```

about:srcdoc Page 16 of 39

about:srcdoc Page 17 of 39

about:srcdoc Page 18 of 39

about:srcdoc Page 19 of 39

```
In [236... # Create a bar plot for the HANDEDNESS_CATEGORY column
    sns.countplot(x='DX_GROUP', hue=df_ASD['HANDEDNESS_CATEGORY'].map({1:"right handed", 2:"left handed", 3:"mixed ha
# Set actual diagnosis instead of DX_Group=1 or 2
    plt.xticks([0,1], ["ASD", "No ASD"])

# Add a title
    plt.title('ASD by HANDEDNESS_CATEGORY')
# Show the plot
    plt.show()
```

about:srcdoc Page 20 of 39

Correlations Analysis - using Heatmap

Showing the correlation of each numeric column with all other numeric columns (including our target column - DX_GROUP) We wish to keep the columns highly correlated to DX_GROUP Also, we want to discard of non-target columns which show high correlation between themselves (keep one of them and drop the other)

about:srcdoc Page 21 of 39

```
In [237... # Create a figure with a heatmap for the correlations
fig, ax = plt.subplots(figsize=(48, 48))
sns.heatmap(df_ASD.corr(), annot=True, ax=ax)

# Add a title
plt.title('Correlations')

# Show the plot
plt.show()
```


about:srcdoc Page 22 of 39

4th phase of Feature Selection - removing one feature from each pair of highly correlated non-target features

about:srcdoc Page 23 of 39

```
# Remove one of highly correlated column-pair
In [238...
         df ASD = df ASD.drop(['ADOS 2 SEVERITY TOTAL', 'HANDEDNESS SCORES', 'SRS TOTAL RAW', 'RBSR 5SUBSCALE TOTAL'], axis
         df ASD.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 1152 entries, 0 to 74
         Data columns (total 19 columns):
              Column
                                          Non-Null Count Dtype
              -----
              SUB ID
                                          1152 non-null
                                                           int64
                                          310 non-null
                                                           object
              NDAR GUID
              DX GROUP
                                          1152 non-null
                                                           int64
              PDD DSM IV TR
                                          633 non-null
                                                           float64
              ASD DSM 5
                                          205 non-null
                                                           float64
                                          1152 non-null
                                                           float64
              AGE AT SCAN
          6
              SEX
                                          1152 non-null
                                                           int64
                                          1129 non-null
                                                           float64
              HANDEDNESS CATEGORY
                                          369 non-null
                                                           float64
              ADOS G TOTAL
              ADOS 2 TOTAL
                                          283 non-null
                                                           float64
                                          756 non-null
                                                           float64
              SRS TOTAL T
                                          293 non-null
          11
              SCQ TOTAL
                                                           float64
                                          451 non-null
              RBSR 6SUBSCALE TOTAL
                                                           float64
                                          216 non-null
              MASC TOTAL T
                                                           float64
              CBCL 6-18 TOTAL PROBLEM T
                                          400 non-null
                                                           float64
              BDI TOTAL
                                          135 non-null
                                                           float64
                                          346 non-null
                                                           float64
          16 ADI R MEAN
              BRIEF MEAN
                                          487 non-null
                                                           float64
                                          149 non-null
                                                           float64
              BASC2 MEAN
         dtypes: float64(15), int64(3), object(1)
         memory usage: 212.3+ KB
```

5th phase of Feature Selection - selecting the best correlated features to ASD (target=DX_GROUP)

about:srcdoc Page 24 of 39

In [239... # Create a Dataframe containing the features showing the highest correlation to ASD (DX_GROUP)

df_ASD_Pred = df_ASD[['PDD_DSM_IV_TR', 'ASD_DSM_5', 'SRS_TOTAL_T', 'SCQ_TOTAL', 'RBSR_6SUBSCALE_TOTAL', 'CBCL_6-1

df_ASD_Pred.head(200)

Out[239]:

:		PDD_DSM_IV_TR	ASD_DSM_5	SRS_TOTAL_T	SCQ_TOTAL	RBSR_6SUBSCALE_TOTAL	CBCL_6- 18_TOTAL_PROBLEM_T	BRIEF_MEAN	ADOS.
	0	NaN	NaN	79.0	NaN	NaN	NaN	NaN	
	1	NaN	NaN	65.0	NaN	12.0	NaN	NaN	
	2	NaN	NaN	57.0	NaN	15.0	NaN	NaN	
	3	NaN	NaN	56.0	NaN	13.0	NaN	NaN	
	4	NaN	NaN	87.0	NaN	20.0	NaN	NaN	
	•••								
19	95	1.0	NaN	68.0	NaN	NaN	65.0	61.090909	
19	96	1.0	NaN	67.0	NaN	NaN	57.0	59.272727	
19	97	1.0	NaN	83.0	NaN	NaN	57.0	56.090909	
19	98	1.0	NaN	65.0	NaN	NaN	63.0	53.818182	
19	99	3.0	NaN	66.0	NaN	NaN	60.0	50.636364	

200 rows × 8 columns

Preprocessing of the selected columns

about:srcdoc Page 25 of 39

```
In [240... # We saw in the histograms that the RBSR, SCO and SRS fields were skewed. I handeled it -
         df ASD Pred['SRS TOTAL T'] = np.log1p(df ASD Pred['SRS TOTAL T'])
         df ASD Pred['SCQ TOTAL'] = np.log1p(df ASD Pred['SCQ TOTAL'])
         df ASD Pred['RBSR 6SUBSCALE TOTAL'] = np.log1p(df ASD Pred['RBSR 6SUBSCALE TOTAL'])
         numeric features = df ASD Pred.select dtypes(include=['float', 'int']).columns
         print (numeric features)
         # Standardize numeric values and filling NaN values (using KNN imputer as there are many missing values)
         numeric transformer = Pipeline(steps=[
             ('imputer', KNNImputer(n neighbors=2)),
             ('scaler', StandardScaler())])
         preprocessor = ColumnTransformer(
             transformers=[
                 ('num', numeric transformer, numeric features)])
         df ASD Pred.head(200)
         Index(['PDD DSM IV TR', 'ASD DSM 5', 'SRS TOTAL T', 'SCQ TOTAL',
                'RBSR 6SUBSCALE TOTAL', 'CBCL 6-18 TOTAL PROBLEM T', 'BRIEF MEAN',
                'ADOS G TOTAL'],
```

dtype='object')

about:srcdoc Page 26 of 39

Out[240]:

:	PDD_DSM_IV_TR	ASD_DSM_5	SRS_TOTAL_T	SCQ_TOTAL	RBSR_6SUBSCALE_TOTAL	CBCL_6- 18_TOTAL_PROBLEM_T	BRIEF_MEAN	ADOS.
0	NaN	NaN	4.382027	NaN	NaN	NaN	NaN	
1	NaN	NaN	4.189655	NaN	2.564949	NaN	NaN	
2	NaN	NaN	4.060443	NaN	2.772589	NaN	NaN	
3	NaN	NaN	4.043051	NaN	2.639057	NaN	NaN	
4	NaN	NaN	4.477337	NaN	3.044522	NaN	NaN	
•••								
195	1.0	NaN	4.234107	NaN	NaN	65.0	61.090909	
196	1.0	NaN	4.219508	NaN	NaN	57.0	59.272727	
197	1.0	NaN	4.430817	NaN	NaN	57.0	56.090909	
198	1.0	NaN	4.189655	NaN	NaN	63.0	53.818182	
199	3.0	NaN	4.204693	NaN	NaN	60.0	50.636364	

200 rows × 8 columns

Classification

Split into train-test

Keep a random 25% of the samples (rows) for test

about:srcdoc Page 27 of 39

In [241... # Split data into training and testing sets
X = df_ASD_Pred
y = df_ASD['DX_GROUP']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=2)

In [242... X_train = X_train[['PDD_DSM_IV_TR', 'ASD_DSM_5', 'SRS_TOTAL_T', 'SCQ_TOTAL', 'RBSR_6SUBSCALE_TOTAL', 'CBCL_6-18_1
X_train.head(200)

Out[242]:

:		PDD_DSM_IV_TR	ASD_DSM_5	SRS_TOTAL_T	SCQ_TOTAL	RBSR_6SUBSCALE_TOTAL	CBCL_6- 18_TOTAL_PROBLEM_T	BRIEF_MEAN	ADOS
	962	2.0	NaN	4.262680	2.079442	1.945910	51.0	NaN	
	658	0.0	NaN	3.737670	0.693147	NaN	52.0	67.000000	
	556	0.0	NaN	3.806662	NaN	NaN	NaN	41.090909	
	989	NaN	1.0	4.248495	3.555348	2.890372	NaN	NaN	
	370	2.0	NaN	4.317488	NaN	2.944439	68.0	66.363636	
	•••								
	177	2.0	NaN	4.488636	NaN	NaN	56.0	62.545455	
	275	2.0	1.0	NaN	NaN	3.465736	NaN	NaN	
	529	0.0	NaN	3.761200	NaN	0.000000	49.0	43.818182	
	412	0.0	NaN	3.737670	NaN	0.693147	43.0	41.818182	
	13	NaN	NaN	4.418841	NaN	3.737670	NaN	NaN	

200 rows × 8 columns

about:srcdoc Page 28 of 39

Fit-Test-Evaluate

I used 5 different classification models: Logistic Regression, KNN, Support Vector Machine, Decision Tree and Random Forest.

```
In [243... # Create a pipeline for logistic regression
         logistic pipeline = Pipeline([
             ('column transformer', preprocessor),
             ('classifier', LogisticRegression())
         ])
         # Create a grid of hyperparameters for logistic regression
         logistic param grid = {
             'classifier C': [0.1, 1, 10],
              'classifier max iter': [500]
         # Create a pipeline for KNN
         KNN pipeline = Pipeline([
             ('column_transformer', preprocessor),
             ('classifier', KNeighborsClassifier())
         ])
         # Create a grid of hyperparameters for KNN
         KNN param grid = {
             'classifier n neighbors': [8, 9, 10],
             'classifier leaf size': [2, 4, 6, 8, 10, 12]
         # Create a pipeline for support vector machine
         svm pipeline = Pipeline([
             ('column transformer', preprocessor),
             ('classifier', SVC())
         ])
```

about:srcdoc Page 29 of 39

```
# Create a grid of hyperparameters for support vector machine
svm param grid = {
    'classifier__C': [0.1, 1, 10],
    'classifier kernel': ['linear', 'rbf']
# Create a pipeline for decision tree
tree pipeline = Pipeline([
    ('column transformer', preprocessor),
    ('classifier', DecisionTreeClassifier())
1)
# Create a grid of hyperparameters for decision tree
tree param grid = {
    'classifier max depth': [3, 5, 7],
    'classifier min samples leaf': [1, 2, 3]
# Create a pipeline for Random Forest
RF pipeline = Pipeline([
    ('column transformer', preprocessor),
    ('classifier', RandomForestClassifier())
1)
# Create a grid of hyperparameters for random forest
RF param grid = {
    'classifier max depth': [3, 5, 7],
    'classifier min samples leaf': [1, 2, 3]
# Create a list of pipelines and parameter grids
pipelines = [
    ('Logistic Regression', logistic pipeline, logistic param grid),
    ('KNN', KNN pipeline, KNN param grid),
    ('Support Vector Machine', svm pipeline, svm param grid),
    ('Decision Tree', tree pipeline, tree param grid),
```

about:srcdoc Page 30 of 39

```
('Random Forest', RF pipeline, RF param grid)
# Loop through the pipelines and parameter grids
for name, pipeline, param grid in pipelines:
    print(f'Fitting {name}...')
    # Create a GridSearchCV object for the pipeline
    gscv = GridSearchCV(pipeline, param grid, cv=3, scoring='accuracy')
    # Fit the pipeline to the training data
    gscv.fit(X train, y train)#, classifier sample weight = sw array)
    # Predict and print the best parameters and score
    y pred = gscv.predict(X test)
    # Evaluate the pipeline on the test data
    score = gscv.score(X test, y test)
    print(f'Classification report:\n {classification report(y test,y pred)}')
    print(f'Best parameters: {gscv.best params }')
    print(f'Best score: {gscv.best score :.2f}')
    print(f'Test score: {score:.2f}')
    print()
Fitting Logistic Regression...
Classification report:
                            recall f1-score support
               precision
           1
                   0.96
                             0.84
                                       0.90
                                                  141
           2
                   0.87
                             0.97
                                       0.91
                                                  147
```

Best parameters: {'classifier__C': 1, 'classifier__max_iter': 500}
Best score: 0.93

0.90

0.91

0.91

0.91

accuracy

macro avg

weighted avg

0.91

0.91

0.91

about:srcdoc Page 31 of 39

288

288

288

```
Test score: 0.91
Fitting KNN...
Classification report:
                            recall f1-score
               precision
                                               support
           1
                   0.95
                             0.88
                                       0.92
                                                  141
           2
                   0.89
                             0.96
                                       0.92
                                                  147
    accuracy
                                       0.92
                                                  288
                                       0.92
                                                  288
   macro avq
                   0.92
                             0.92
weighted avg
                                       0.92
                                                  288
                   0.92
                             0.92
Best parameters: {'classifier leaf size': 6, 'classifier n neighbors': 8}
Best score: 0.94
Test score: 0.92
Fitting Support Vector Machine...
Classification report:
               precision
                            recall f1-score support
           1
                   0.97
                             0.87
                                       0.92
                                                  141
           2
                   0.89
                             0.97
                                       0.93
                                                  147
    accuracy
                                       0.92
                                                  288
                                       0.92
                                                  288
   macro avq
                   0.93
                             0.92
weighted avg
                   0.93
                             0.92
                                       0.92
                                                  288
Best parameters: {'classifier C': 10, 'classifier kernel': 'rbf'}
Best score: 0.94
Test score: 0.92
```

Fitting Decision Tree...
Classification report:
 precision recall f1-score support

1 0.96 0.84 0.90 141
2 0.87 0.97 0.91 147

about:srcdoc Page 32 of 39

```
288
                                        0.91
    accuracy
   macro avg
                   0.91
                              0.90
                                        0.91
                                                   288
weighted avg
                   0.91
                              0.91
                                        0.91
                                                   288
Best parameters: {'classifier_ max_depth': 5, 'classifier_ min_samples_leaf': 2}
Best score: 0.95
Test score: 0.91
Fitting Random Forest...
Classification report:
               precision
                            recall f1-score
                                                support
           1
                   0.98
                             0.87
                                        0.92
                                                   141
           2
                   0.88
                             0.99
                                        0.93
                                                   147
                                        0.93
                                                   288
    accuracy
                                        0.93
   macro avg
                   0.93
                              0.93
                                                   288
weighted avg
                   0.93
                                        0.93
                              0.93
                                                   288
Best parameters: {'classifier max depth': 7, 'classifier min samples leaf': 1}
Best score: 0.95
Test score: 0.93
```

Now, let's try and do this faster - using PCA and Clustering

about:srcdoc Page 33 of 39

```
In [244... # Starting again from the original dataframe df (not using any of the previous data selection phases)
         numeric features = df.select dtypes(include=['float', 'int']).columns
         X = df[numeric features.values].drop('DX GROUP',axis=1)
         y = df['DX GROUP']
         # Filling NaN values (using KNN imputer as there are many missing values)
         imputer = KNNImputer(n neighbors=2)
         X_imputed = imputer.fit_transform(X)
         # Scale the data
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X imputed)
         # Visualize the data with PCA
         pca = PCA(n components=2)
         reduced data = pca.fit transform(X scaled)
         # Create a figure with a scatter plot
         fig, ax = plt.subplots(figsize=(8, 6))
         sns.scatterplot(x=reduced data[:, 0], y=reduced data[:, 1], hue=y.map({1:"ASD", 2:"No ASD"}), ax=ax)
         # Add a title
         plt.title('ABIDEII Composite Phenotypic Dataset - Before Clustering')
         # Show the plot
         plt.show()
```

about:srcdoc Page 34 of 39

Fit-Predict and evaluate KMeans results

about:srcdoc Page 35 of 39

about:srcdoc Page 36 of 39

Clusters Visualization

```
In [246... # Step size of the mesh. Decrease to increase the quality of the VQ.
h = 0.02 # point in the mesh [x_min, x_max]x[y_min, y_max].

# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
```

about:srcdoc Page 37 of 39

```
xx, yy = np.meshgrid(np.arange(x min, x max, h), np.arange(y min, y max, h))
# Obtain labels for each point in mesh. Use last applied kmeans model.
Z = kmeans.predict(np.c [xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(
    Ζ,
   interpolation="nearest",
   extent=(xx.min(), xx.max(), yy.min(), yy.max()),
   cmap=plt.cm.Paired,
   aspect="auto",
   origin="lower",
plt.plot(reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2)
# Plot the centroids as a white x
centroids = kmeans.cluster centers
plt.scatter(
   centroids[:, 0],
   centroids[:, 1],
   marker="x",
   s=169
   linewidths=3,
   color="w",
    zorder=10,
plt.title(
    "K-means clustering on the ABIDEII Composite Phenotypic dataset (PCA-reduced data)\n"
    "Centroids are marked with white cross"
plt.xlim(x min, x max)
plt.ylim(y min, y max)
plt.xticks(())
```

about:srcdoc Page 38 of 39

plt.yticks(())
plt.show()

K-means clustering on the ABIDEII_Composite_Phenotypic dataset (PCA-reduced data) Centroids are marked with white cross

In []:

about:srcdoc Page 39 of 39