WHAT IS CLAIMED IS:

1	1. An apparatus for scheduling the transmission of data packets for a
2	plurality of data packet flows, said data packet flows being allocated given shares
3	of the transmission capacity r of a communication link and being grouped in
4	bundles, said bundles being allocated service shares of the processing capacity of
5	said communication link, the transmission over the communication link being
6	divided in service frames, a service frame offering at least one transmission
7	opportunity to every data packet flow that is backlogged, a backlogged data
8	packet flow being a data packet flow that has at least one data packet stored in
9	respective one of a plurality of packet queues, the scheduling apparatus
10	comprising:
11	
12	means for determining the duration of the service frame; and
13	
14	means for guaranteeing that each data packet flow always receives at leas
15	its allocated service share if it remains continuously backlogged over a sufficient
16	number of consecutive service frames, and that each bundle receives at least its
17	allocated service share if there is always at least one data packet flow in the
18	bundle that remains continuously backlogged for the whole duration of a service
19	frame over a sufficient number of consecutive service frames, said guaranteeing
20	means including:
21	
22	means for maintaining, for each bundle I , a cumulative share Φ_I that
23	relates to the sum of said service shares allocated to respective ones of said data
24	packet flows that are grouped together in the same bundle I ;
25	

26	means for computing, for each bundle I, a service ratio between the
27	service share R_I allocated to said bundle I and said cumulative share Φ_I of the
28	bundle; and
29	
30	means for modulating said service shares allocated to respective ones of
31	said plurality of data packet flows using the service ratio computed for respective
32	ones of said plurality of bundles.
1	2. The scheduling apparatus of claim 1, wherein a Weighted Round Robin
2	(WRR) algorithm is used to schedule the transmission of data packets.
	o militaria de Califa I al la la DeCala Decula Debia
1	3. The scheduling apparatus of claim 1, wherein a Deficit Round Robin
2	(DRR) algorithm is used to schedule the transmission of data packets.
1	4. The scheduling apparatus of claim 1, wherein a Surplus Round Robin
2	(SRR) algorithm is used to schedule the transmission of data packets.
1	5. The scheduling apparatus of claim 1, wherein the duration of said
2	service frames is variable.
1	6. The scheduling apparatus of claim 1, wherein the duration of said
2	service frames is fixed.
1	7. The scheduling apparatus of claim 1, wherein said means for
2	determining the duration of a service frame include:
3	1 1 1 C EDMONT.
4	a global frame counter FRMCNT;
5	a start flag σ_I for each bundle I of said plurality of bundles; and
6	a start mag o ₁ for each bundle 1 of said profatity of bundless, and

7	
8	a frame flag FF_i for each data packet flow i of said plurality of data
9	packet flows.
1	8. The scheduling apparatus of claim 7, wherein the start flag σ_I of
2	bundle I is set equal to the global frame counter FRMCNT when the first data
3	packet flow in the bundle becomes backlogged.
1	9. The scheduling apparatus of claim 7, wherein the frame flag FF_i of
2	data packet flow i is set to a different value than the global frame counter
3	FRMCNT when the flow becomes backlogged or is processed for the last time in
4	the current service frame.
1	10. The scheduling apparatus of claim 7, wherein the end of a service
2	frame and the start of the following one are simultaneously detected when the
3	frame flag FF_i of the next data packet flow i to be processed has different value
4	than the global frame counter FRMCNT.
1	11. The scheduling apparatus of claim 10, wherein the value of said global
2	frame counter $FRMCNT$ is set equal to the value of said frame flag FF , after
3	detecting a difference between the two values.

- 1 12. The scheduling apparatus of claim 1, wherein the value of the
 2 cumulative share Φ_I of bundle I is equal to the sum of the service shares of the
 3 data packet flows of bundle I that are backlogged.
- 1 13. The scheduling apparatus of claim 12, wherein the value of the cumulative share Φ_I of bundle I is set when a first data packet flow of the bundle

3	is first serviced in a service frame, and kept unchanged for the whole duration of
4	the same service frame, even if the backlog state of one or a plurality of data
5	packet flows of bundle I changes during the service frame.
1	14. The scheduling apparatus of claim 13, wherein a running share ϕ_I
2	maintains the sum of the service shares of the data packet flows that are
3	backlogged in bundle I, and changes when the backlog state of one or a plurality
4	of data packet flows in the bundle changes, the value of said running share ϕ_I
5	being used to set the value of said cumulative share Φ_I when required.
1	15. The scheduling apparatus of claim 13, wherein said first service to said
2	first data packet flow of bundle I is detected when the start flag σ_I of the bundle I
3	that includes the next flow i to be processed has different value than the global
4	frame counter FRMCNT.
1	16. A method for scheduling the transmission of data packets for a
2	plurality of data packet flows, said data packet flows being allocated given shares
3	of the transmission capacity of an outgoing communication link and being
4	grouped in a plurality of bundles, said bundles being allocated service shares of
5	the transmission capacity r of said outgoing communication link, the transmission
6	over the communication link being divided in service frames, a service frame
7	offering at least one transmission opportunity to every data packet flow that is
8	backlogged, a backlogged data packet flow being a data packet flow that has at
9	least one data packet stored in respective one of a plurality of packet queues, the
10	method comprising the steps of:
11	

12 13 determining the duration of the service frame;

14	guaranteeing that each data packet flow always receives at least its
15	allocated service share if it remains continuously backlogged over a sufficient
16	number of consecutive service frames, and that each bundle receives at least its
17	allocated service share if there is always at least one data packet flow in the
18	bundle that remains continuously backlogged for the whole duration of a service
19	frame over a sufficient number of consecutive service frames;
20	
21	maintaining, for each bundle I , a cumulative share Φ_I that relates to the
22	sum of said service shares allocated to respective ones of said data packet flows
23	that are grouped together in the same bundle I ;
24	
25	computing, for each bundle I , a service ratio between the service share R_I
26	allocated to said bundle I and said cumulative share Φ_I of the bundle; and
27	
28	modulating said service shares allocated to respective ones of said
29	plurality of data packet flows using the service ratio computed for respective ones
30	of said plurality of bundles.