SECTION 28 – COMPUTATION OF QUANTITIES

0624. General.

- a. Excavation in rock should be separated from ordinary excavation owing to the longer time and different methods required.
- b. Excavation in side-hill cut should also be recorded separately as the excavated material is usually side cast and is not available for filling elsewhere.
- c. Allowances must be applied for swell and shrinkage. For small earthworks the Figures given in Table 6.1 can be used. For work over large areas it is better to allow an over-all 10 percent increase in the computed fill requirement.
- d. When possible, quantities should be tabulated (see example in Table 6.3), so that the quantity available or required for filling at any particular change can be readily determined.
- e. For planning large scale earthworks a mass diagram should be prepared to simplify the selection of the most economical method of organizing work.
- f. For very hasty work the proforma shown in Figure 6.3 may be used.

Figure 6-2 (a): Shapes of Earthworks Through Cut

Figure 6-2 (b): Shapes of Earthworks Embankment

Figure 6-2 (c): Shapes of Earthworks Side Hill Cut

TABLE 6.3-EXAMPLE OF TABULATION OF EARTHWORK QUANTITES

Ser	Chain	Average	Average	Cutting	Banking	Material and	Quantity corrected by	Total quantity of
No	age of	depth of	height	(+)	(-)	shrinkage	shrinkage constant (cuyds)	material available at
	station	out bank	of bank	(cuyds)	(cuyds)	constant		chain age (cu yds)
	(ft)	(ft)	(ft)			(percent)		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(j)
1.	100+00	2	-	244	-	88	+215	+215
2.	101+00	6	-	867	-	88	+763	+978
3.	102+00	1	-	117	-	88	+103	+1,081
4.	102+25	0.5	-	15	-	88	+13	+1,094
5.	103+00	-	1	-	-117	105	-123	+971
6.	104+00	-	8	-	-1,244	105	-1,306	-335

Notes:-

- a. At chainage 10,225 ft the changeover from from cut to fill takes place.
- b. At chainage 10,400 ft there is a deficit of 335 cu yds fill which must be imported from borrow pit.
- c. Colm (b) is the distance along the centre line from the starting point in hundreds of feet plus feet.
- d. Colm (e) gives volume of excavation between cahinages as read from Table 20.
- e. Colm (f) gives volume of bankings as read from Table 20.
- f. Colm (g) is the correction factor for swell, shrinkage or settlement (see Table 17).
- g. Colm (h) colms (e) and (f) corrected by colm (g).
- h. Colm (f) is the continuous algebraic sum of colm (h), ie, the quantity of surplaus (+) or deficient (-) fill at that chainage.

Chainage	Section	Type	Gradient	Average cross section	Volume	Volume	Volume of	Remarks
		of			of cut	of fill	fill+ 10%	
		material			(cuyds)	(cuyds)		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(j)
0 200	A	OL	1/20 up to ch 200	1/10 /VI	41	-	-	Not suitable for fill spread downhill to wast by doxer
200 500	В	SC	1/15 down to ch 500	2/3 4 243	322	-	-	Use for part filling between ch 500-1000 Haul distance approx 500 ft

1000	С	-	Level	2/3 1/3		2639	2903	822 yds from cut in sec B Renaining 2080 yds from borrow pit. Haul distance approx 200 ft
------	---	---	-------	---------	--	------	------	--

Figure 6-3: Proforma for the hasty estimation of earthwork.

- 0625. <u>Computing volume</u>: To compute volume cross sectional areas of cut or fill must be determined at known distance apart.
 - a. Cross sections should be plotted preferably on squared paper at every 100 ft station and at every marked change of slope along the centre line. Plotting is simplified by using a template of the formation profile made to scale.
 - b. Areas are most quickly measured by plan meter Approximate value can be found by counting squares.
 - c. The volume (v) of the prismatic between two cross sections of areas A_1 and A_2 sq ft, situated L ft apart is given by the equation:-

$$V = (\underline{A_1 + A}) \times L \text{ cu ft}$$

If cross sections are taken at 100 ft stations this equation can be simplified to the form:-

$$V_v = 1.85 (A_1 + A_2)$$

Where V_y is in cu yds

and A1 and A2 are in sq ft

These formula are reasonably accurate only when the end areas are of approximately the same shape, but more precise methods are unnecessary when field methods of measuring and setting out are used.

- d. Borrow pit volume can be computed from the average cross sectional area. In pits of irregular shape it may be necessary to divide up the plan view into rectangles or triangles of about 20 to 50 ft sides and to compute each portion separately.
- e. Swell and shrinkage factors must not be overlooked.

0626. Hasty estimates

a. <u>Bank and through cuts:</u> Approximate quantities may be calculated from a longitudinal section of the centre line by measuring the average depth of cut or height of fill for each 100 ft length of the alignment and obtaining from Table 6.4 the corresponding volume of cut or fill. Factors for swell and shrinkage must be applied. Table 6.4 is calculated on the assumption that both the existing ground and the proposed formation are level. Errors due to this assumption are usually compensating, except where the natural ground has a continuous cross fall. In about 10 to 15 percent.

b. <u>Side-hill cuts:</u> Approximate quantities of excavation can be found from Table 6.5 in which the figures are calculated for the case where the formation level of the centre line is at the existing ground level.

RESTRICTED TABLE 6.4: EARTHWORK QUANTITIES FOR BANKS AND CUTTINGS

Average		Quantity	per 100	feet, with	angle of	repose 1	in 1 ½ (cu yds)		Add where	Subtract	Subtract
depth of cut					Wid					angle of	where	where angle
or heght of	th of top of bank or base of cutting									repose of 1	angle of	of respose is
fill (ft)	16 ft	18 ft	20 ft	22 ft	24 ft	26 ft	28 ft	30 ft	32 ft	in 2 (cu yds)	respose	2 in 1 (cu
											is 1 in 1	yds)
											(cu yds)	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(j)	(k)	(1)	(m)	(n)
1.	65	72	80	87	95	102	109	117	124	2	2	4
2.	141	156	170	185	200	215	230	244	259	7	7	15
3.	228	250	272	294	317	339	361	383	405	16	16	33
4.	326	356	385	415	444	474	504	533	563	30	30	59
5.	435	472	509	546	583	620	657	694	731	46	46	93
6.	556	600	614	689	733	777	822	867	911	67	67	133
7.	687	739	791	843	894	946	998	1,050	1,102	91	914	181
8.	830	889	948	1,007	1,067	1,126	1,185	1,244	1,304	116	116	137
9.	983	1,050	1,116	1,183	1,250	1,317	1,383	1,450	1,517	150	150	300
10.	1,148	1,222	1,296	1,370	1,444	1,518	1,593	1,667	1,741	185	185	370
11.	1,324	1,406	1,487	1,568	1,650	1,731	1,813	1,894	1,976	224	224	448
12.	1,511	1,600	1,689	1,778	1,867	1,953	2,044	2,133	2,222	267	267	534
13.	1,709	1,806	1,902	1,998	2,094	2,191	2,287	2,383	2,480	313	313	626
14.	1,919	2,022	2,126	2,230	2,333	2,437	2,541	2,644	2,748	363	363	725

15.	2,139	2,250	2,361	2,472	2,583	2,694	2,806	2,917	3,028	416	416	852
16.	2,370	2,489	2,607	2,725	2,844	2,962	3,081	3,200	3,319	476	476	948
17.	2,613	2,739	2,865	2,991	3,116	3,241	3,369	3,494	3,620	534	534	1068
18.	2,867	3,000	3,133	3,267	3,400	3,533	3,667	3,800	3,933	598	598	1,196
19.	3,131	3,272	3,413	3,554	3,694	3,835	3,976	4,117	4,257	667	667	1,334
20.	3,407	3,556	3,704	3,852	4,000	4,148	4,296	4,444	4,592	740	740	1,480
21.	3,694	3,850	4,005	4,161	4,317	4,472	4,628	4,783	4,939	819	819	1,638
22.	3,993	4,156	4,318	4,482	4,644	4,807	4,970	5,133	5,296	896	896	1,792
23.	4,302	4,472	4,642	4,812	4,982	5,153	5,324	5,494	5,665	980	980	1,960
24.	4,622	4,800	4,938	5,156	5,333	5,511	5,689	5,967	6,044	1,066	1,066	2,132
25.	4,954	5,139	5,324	5,509	5,694	5,879	6,065	6,250	6,435	1,158	1,158	2,316
26.	5,296	5,489	5,681	5,374	6,066	6,259	6,452	6,644	6,837	1,252	1,252	2,504
27.	5,650	5,850	6,050	6,250	6,450	6,650	6,850	7,050	7,250	1,350	1,350	2,700
28.	6,015	6,222	6,430	6,637	6844	7,051	7,259	7,467	7,674	1,452	1,452	2,904
29.	6,391	6,606	6,820	7,035	7250	7,460	7,680	7,894	8,109	1,558	1,558	3,116
30.	6,778	7,000	7,222	7,444	7657	7,889	8,111	8,333	8,555	1,667	1,667	3,334

TABLE 6.5: QUANTITIES OF EXCAVATION IN SIDE-HILL SLOPES

Side-hill slope of	Qua	antity of excava	tion (cu yds per 100	ft)*						
natural ground	Angle repose of soil									
surface	2 in 1	1 in 1	1 in 1½	1 in 2						
(a)	(b)	(c)	(d)	(e)						
1 in 1	3.7 W^2	-	-	-						
1 in 1½	1.85 W^2	3.7	-	-						
1 in 2	1.23 W^2	1.85 W^2	3.7 W^2	-						
1 in 3	0.741 W^2	0.925 W^2	1.23 W^2	1.85 W^2						
1 in 4	0.529 W^2	0.617 W^2	0.741 W^2	0.925 W^2						
1 in 5	0.411 W^2	0.463 W^2	0.329 W^2	0.617 W^2						
1 in 7	0.284 W^2	0.308 W^2	0.336 W^2	0.370 W^2						
1 in 10	0.195 W^2	0.205 W^2	0.218 W^2	0.231 W^2						
1 in 12	0.161 W^2	0.168 W^2	0.176 W^2	0.185 W^2						
1 in 15	0.127 W^2	0.132 W^2	0.137 W^2	0.142 W^2						
1 in 20	0.095 W^2	0.098 W^2	0.100 W^2	0.103 W^2						
1 in 25	0.70 W^2	0.077 W^2	0.079 W^2	0.081 W^2						

^{*} W=actual width of cut (in feet), whether the formation is in full cut or part in cut and part on fill.