Summary

Dominance Principle

- Dominated acts must not chosen.
- · Dominated acts
 - whose all outcomes under every state are at least as rational as other outcomes of other acts under every state
 - and there are some outcomes under some states are less rational than outcomes of other acts under those states
- Let $v(a_i, s_j)$ be the **value of the outcome** corresponding to the act a_i and the state s_j .

Weak Dominance

• *Weak Dominance* : $a_i \ge a_j$ if and only if $v(a_i, s) \ge v(a_j, s)$ for every state s.

Strong Dominance

• *Strong Dominance*: $a_i \succ a_j$ if and only if $v(a_i, s_m) \ge v(a_j, s_m)$ for every state s_m , and there is some state s_n such that $v(a_i, s_n) > v(a_i, s_n)$.

Maximin Principle

- The maximin principle focuses on the *worst* possible outcome of each act.
- One should *maximize* the *minimal* value obtainable with each act.
- If the worst possible outcome of an act is better than the worst possible outcome of another act, the first act should be chosen.
- Formally speaking : $a_i \succeq a_j$ if an only if $\min(a_i) \geq \min(a_j)$.
- If the minimum value corresponding to the outcomes of two or more acts are the same, the maximin principle ranks the acts as equally rational.

Leximin Rule

- Extended version of Maximin Principle
- Let $min^1(a_i)$ be the value of the worst outcome of act a_i ,
- $min^2(a_i)$ be the value of its second worst outcome,
- In general, $min^n(a_i)$ be the value of its n-th worst outcome

- a_i a_j if and only if there is some positive integer n such that
 - $min^n(a_i) > min^n(a_i)$
 - regardless $min^m(a_i) = min^m(a_i)$ for all m < n

Maximax principle

- The maximax principle focuses on the best outcomes.
- Rationality requires us to prefer alternatives in which the best possible outcome is as good as possible.
- You should maximize the maximal value obtainable with an act.

Optimism-pessimism principle

- A decision maker's degree of optimism can be represented by a **real number** α between 0 and 1.
- $\alpha = 1$: maximal optimism
- $\alpha = 0$: maximal pessimism
- $\max (a_i)$: the best outcome of act a_i
- min (a_i) : the worst outcome of act a_i
- The value of act $a_i = [\alpha \cdot \max(a_i)] + [(1 \alpha) \cdot \min(a_i)]$
 - $\alpha \cdot max(a_i)$ is optimism part on act a_i
 - $(1-\alpha) \cdot min(a_i)$ is pessimism part on act a_i
- α is a subjective interpretation
- α : an agent's optimism index
- $[\alpha \cdot \max(a_i)] + [(1 \alpha) \cdot \min(a_i)]$: an act's α -index (subjective)
- Principle definition : $a_i > a_j$ if and only if α -index $(a_i) > \alpha$ -index (a_j)

$$\lceil lpha \cdot (a_i)
ceil + \lceil (1-lpha) \cdot min(a_i)
ceil > \lceil lpha \cdot (a_i)
ceil + \lceil (1-lpha) \cdot min(a_i)
ceil$$

- If lpha=1, evaluate lpha-index $o max(a_i)$ which means the optimism pessimism rule collapses to the maximax rule.
- If $\alpha=0$, evaluate α -index $\to min(a_i)$ which means the optimism pessimism rule collapses to the maximin rule.
- Note that, in order for this rule to work, the value of outcomes should be measured on an interval scale.

- Is it rational to focus just on the best and the worst cases?
- Determine a series of α , α_1 , α_2 , ..., α_n , such that $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 1$, then define α -index of an act α_i as

$$lpha_1 \cdot max^1(a_i) + lpha_2 \cdot max^2(a_i) + \ldots + lpha_n \cdot min(a_i)$$

- then choose the act with the **greatest** α -index
- Note that $\alpha_1, \alpha_2, ..., \alpha_n$ are **not probabilities**
 - similar to (subjective) probabilities
 - but not equivalent to probabilities
- They are chosen only according to how **much importance** the decision maker attaches to the best, the second best, ..., and the worst outcome of each act.
- The relative importance of an outcome doesn't necessarily correspond to its probability.

Minimax Regret

- The best alternative is one that **minimizes** the **maximum** amount of regret.
- $a_i \succ a_j$ if and only if the maximum regret of a_i is less than the maximum regret of a_j , or to put it formally:

$$max\{(v(a_i,s_1)-max(s_1),(v(a_i,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_1),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_1),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_1),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_1),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_1),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_1)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2),(v(a_j,s_2)-max(s_2)),\dots\} < max\{(a_j,s_2)-max(s_2),(v(a_j,s_2)-ma$$

Procedure

- The value of regret for each outcome is calculated by subtracting the value of the best outcome of each state from the value of the outcome in question.
 - This obtains the *regret matrix*
- The act chosen based on Minimax Regret principle is an act whose maximum regret for all states is minimum among other acts for all states.
 - Find the maximum regret for each act.
 - Choose the act with the least maximum regret

The principle Of Insufficient Reason

- If one has no reason to think that one state of the world is **more probable than another**, then all states should be assigned **equal** probability.
- By applying the principle of insufficient reason, an initial decision problem under **ignorance** is transformed into a decision problem under **risk**.

- If one advocates the principle of maximizing expected value as the best rule for decisions under risk, then the principle of insufficient reason can be stated as:
- $a_i \succ a_j$ if and only if $\sum_{x=1}^n \frac{1}{n} v(a_i, s_x) > \sum_{x=1}^n \frac{1}{n} v(a_j, s_x)$

Relationship Properties

- $x \succeq y$ if and only if $x \succ y$ or $x \sim y$
- $x \sim y$ if and only if $x \succeq y$ and $y \succeq x$
- $x \succ y$ if and only if $x \succeq y$ and not $x \sim y$
- For every x and y, it should hold that :
- Completeness $x \succ y$ or $x \sim y$ or $y \succ x$
- **Asymmetry** If $x \succ y$, then it is *false* that $y \succ x$.
- **Transitivity** If $x \succ y$ and $y \succ z$, then $x \succ z$.
- **Negative Transitivity** If it is *false* that $x \succ y$ and *false* that $y \succ z$, then it is false that $x \succ z$.
 - It implies that indifference is **transitive** (if $x \sim y$ and $y \sim z$, then $x \sim z$).
 - Indifference does not follow form the assumption in **Transitivity**

Neumann and Morgenstern Method

- Z is a finite set of basic prizes
- **L** is a set of lotteries that can be constructed from **Z** by applying the following inductive definition:
 - Every basic prize in **Z** is a lottery
 - If A and B are lotteries, then so is the prospect of getting A with probability p and B with probability (1-p), for every $0 \le p \le 1$.
 - Nothing else is a lottery.

Detailed Example

- Simpson is going to go to a rock concert. Three bands are playing tonight. He thinks A is better than B, which is better than C.
- Two tickets are available:
 - Ticket 1 entitles him to a 70% chance of watching A and a 30% chance of watching C.
 - Ticket 2 entitles him to watch B with 100% certainty.
- Upon reflection, he finds the two tickets equally attractive.
- Suppose we know that Simpson always acts according to the principle of maximizing utility.

• By reasoning backward, we can find the utilities he attaches to A, B, C. That is have to solve the following equation:

$$0.7 \cdot u(A) + 0.3 \cdot u(C) = 1.0 \cdot u(B)$$

- Stipulate that u(A) = 100 and u(C) = 0, then it turns out that u(B) = 70.
 - u(A) and u(C) are picked arbitrary.

The Mathematics of Probability

Kolmogorov Axioms

- $1 \ge p(A) \ge 0$, probability of every event lies between 0 and 1.
- p(S) = 1, probability of the entire sample space is 1.
- If $A \cap B = \emptyset$, then $p(A \cup B) = p(A) + p(B)$ (keyword, sample space).
- If it is more natural to think the question by counting thinking instead of using probability for proposition, use counting instead.
 - For example, choose one red card and one black card without drawback.
- Notice that condition probability need to consider independency of an event / proposition.
- Conditional Probability:
 - $p(\sim B|A) = 1 p(B|A)$
 - same for $p(\sim A|B) = 1 p(A|B)$
- To construct inverse conditional probability:
 - Look for what the question is asking about to

Unknown Priors

- Prior probability / unconditional probability of B : p(B)
- Probability that are given
 - Probability of A happen n times given not B : $p(A|\sim B) = x^n$
 - Probability of A happen n times given B : $p(A|B) = x^{\prime n}$
- Find probability of B happen given A : p(B|A)