Evaluate testing data (binary-class) - Lasso $_{EVE\ W.}$

2019-11-16

Contents

U. Load Data	1
1. Scores	2
1.1 Scores per Class	2
1.2 Average score	3
2. Important Features	4
 Note: The two differences between Lasso and Tree-based methods are: Lasso has its own inherent feature selection process. Lasso's vimp will be based on how many times the feature exist in all runs. Regression coefficients material be presented for binary outcomes 	ıy
## user input project_home <- "~/EVE/examples" project_name <- "lasso_binary2"	

0. Load Data

```
## 199 of samples were used
## 100 of full features
## 4 runs, each run contains 5 CVs.
## Labels:
##
## 0 1
## 50 149
run with lasso.r.
```

1. Scores

1.1 Scores per Class

Prevalidation scores during RFE

Confusion Matrix

confusion matrix at feature size = 100

sum across 4 seeds

Reference
Prediction 0 1
0 200 4
1 0 592

1.2 Average score

Prevalidation scores during RFE

2. Important Features

distribution across 4 seed x 5 CV

Number of times a feature is use


```
## (currently only Lasso has this graph)[1] "there are 100 unique features used from the 100 feature se
## [1] "summary of numer of features used in 4 seeds and 5 CVs"
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 100.00 100.00 87.35 100.00 100.00
```

Top Features

Feature Coefficient (95% CI)

Heatmap of top 20 important features

Table 1: parameter selection

cv	lambda	alpha	seed
1	0.0390268	0.0	1001
2	0.0393106	0.0	1001
3	0.0387182	0.0	1001
4	0.0005100	0.5	1001
5	0.0388060	0.0	1001
1	0.0388340	0.0	1002
2	0.0387347	0.0	1002
3	0.0005194	0.5	1002
4	0.0388192	0.0	1002
5	0.0389460	0.0	1002
1	0.0392710	0.0	1003
2	0.0005150	0.5	1003
3	0.0387054	0.0	1003
4	0.0389664	0.0	1003
5	0.0389099	0.0	1003
1	0.0387564	0.0	1004
2	0.0003695	1.0	1004
3	0.0391371	0.0	1004
4	0.0389803	0.0	1004
5	0.0391363	0.0	1004