Loss Functions

Recall from last time... Challenges in Visual Recognition

Camera pose

Illumination

Deformation

Occlusion

Background clutter

Intraclass variation

Recall from last time... data-driven approach, kNN

Linear Classification

Neural Networks practitioner

Example dataset: CIFAR-10
10 labels
50,000 training images
each image is 32x32x3
10,000 test images.

Parametric approach

image parameters $f(\mathbf{x}, \mathbf{W})$

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total)

Parametric approach: Linear classifier

$$f(x, W) = Wx$$

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1

Parametric approach: Linear classifier

Parametric approach: Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

$$f(x_i, W, b) = Wx_i + b$$

Q: what does the linear classifier do, in English?

$$f(x_i, W, b) = Wx_i + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

$$f(x_i, W, b) = Wx_i + b$$

[32x32x3] array of numbers 0...1 (3072 numbers total)

$$f(x_i, W, b) = Wx_i + b$$

Q2: what would be a very hard set of classes for a linear classifier to distinguish?

So far: We defined a (linear) score function: $f(x_i, W, b) = Wx_i + b$

Example class scores for 3 images, with a random W:

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Coming up:

f(x, W) = Wx

- Loss function

(quantifying what it means to have a "good" W)

- Optimization

(start with random W and find a W that minimizes the loss)

- ConvNets!

(tweak the functional form of f)

Loss functions

Linear classifier

[32x32x3] array of numbers 0...1 (3072 numbers total)

image parameters f(x, W)

10 numbers, indicating class scores

Recall Going forward: Loss function/Optimization

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

				Λā	
- 1	-3	Θ,	m	2	
-1		м	. 6		
	8	93	36		
80				or.	
9				v	
				в.	

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

3.2 cat 5.1 car -1.7 frog 2.9 Losses: Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

1.3 2.2

4.9 2.5

2.0 -3.1

Multiclass SVM loss:

Given an example (x_i,y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$$

$$= \max(0, -2.6) + \max(0, -1.9)$$

$$= 0 + 0$$

= (

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector:

$$s = f(x_i, W)$$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1)$$

$$+\max(0, 2.5 - (-3.1) + 1)$$

$$= \max(0, 6.3) + \max(0, 6.6)$$

$$= 6.3 + 6.6$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

and the full training loss is the mean over all examples in the training data:

$$L=rac{1}{N}\sum_{i=1}^{N}L_{i}$$

$$L = (2.9 + 0 + 12.9)/3$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: what if the sum was instead over all classes? (including j = y_i)

 cat
 3.2
 1.3
 2.2

 car
 5.1
 4.9
 2.5

 frog
 -1.7
 2.0
 -3.1

 Losses:
 2.9
 0
 12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what if we used a mean instead of a sum here?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: what if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

cat **3.2**

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Losses:

2.9

0

12.9

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: what is the min/max possible loss?

 cat
 3.2
 1.3
 2.2

 car
 5.1
 4.9
 2.5

 frog
 -1.7
 2.0
 -3.1

 Losses:
 2.9
 0
 12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: usually at initialization W are small numbers, so all s ~= 0. What is the loss?

Example numpy code:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

There is a bug with the loss:

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

There is a bug with the loss:

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.
frog	-1.7	2.0	-3.′
Losses:	2.9	0	

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

=
$$max(0, 1.3 - 4.9 + 1)$$

+ $max(0, 2.0 - 4.9 + 1)$
= $max(0, -2.6) + max(0, -1.9)$

$$= 0 + 0$$

= 0

With W twice as large:

$$= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1)$$

$$= \max(0, -6.2) + \max(0, -4.8)$$

$$= 0 + 0$$

= 0

Weight Regularization

\lambda = regularization strength (hyperparameter)

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

In common use:

L2 regularization

L1 regularization
Elastic net (L1 + L2)
Max norm regularization
Dropout

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

$$R(W) = \sum_k \sum_l |W_{k,l}|$$

$$R(W) = \sum_k \sum_l eta W_{k,l}^2 + |W_{k,l}|$$

(might see later) (will see later)

L2 regularization: motivation

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

L2 regularization: motivation

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0] \ w_2 = [0.25, 0.25, 0.25, 0.25]$$

Which one does L2 regularization choose?

$$w_1^T x = w_2^T x = 1$$

L2 regularization: motivation

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0] \ w_2 = [0.25, 0.25, 0.25, 0.25]$$

Why does it make sense?

$$w_1^T x = w_2^T x = 1$$

cat **3.2**

car 5.1

frog -1.7

scores = unnormalized log probabilities of the classes.

$$s=f(x_i;W)$$

cat **3.2**

car 5.1

frog -1.7

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s}=oldsymbol{f(x_i;W)} \end{aligned}$

$$s=f(x_i;W)$$

3.2 cat

5.1 car

-1.7 frog

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s=f(x_i;W)$$

cat

3.2

Softmax function

car

5.1

frog

-1.7

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s}=oldsymbol{f(x_i;W)} \end{aligned}$

$$s=f(x_i;W)$$

3.2 cat

5.1 car

-1.7 frog

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} oldsymbol{s}=oldsymbol{f(x_i;W)} \end{aligned}$

$$s=f(x_i;W)$$

3.2 cat

5.1 car

-1.7 frog

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

cat

3.2

car

5.1

frog

-1.7

unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$

unnormalized probabilities

unnormalized log probabilities

probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Q: What is the min/max possible loss L_i?

unnormalized probabilities

unnormalized log probabilities

probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

Q: usually at initialization W are small numbers, so all s ~= 0. What is the loss?

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

unnormalized log probabilities

probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

Q: Why use log()

Slide by Fei-Fei Li, Andrej Karpathy & Justin Johnson

unnormalized log probabilities

probabilities

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and
$$u_1 = 0$$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Other loss functions

- There are many different loss functions
- Below are the binary-classification versions of what we discussed
- ... plus square loss. What would you use it for?
 - Hinge loss
 - Log Loss
 - Square loss

Interactive Web Demo time....

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/