NOI 模拟测试

题目名称	签到	树	区间
英文名称	sign	tree	interval
输入文件	sign.in	tree.in	interval.in
输出文件	sign.out	tree.out	interval.out
时间限制	1s	2s	1s
内存限制	256MB	256MB	8MB
比较方式	全文比较	全文比较	全文比较
题目类型	传统	传统	传统

评测时开启 02 优化开关, 开大栈空间。

签到(sign)

【问题描述】

有一个 $n \times m$ 的网格,第i行第j列的格子我们记作(i,j)。每个格子上都有一个数字,(i,j)上的数字为 $a_{i,j}$ 。

你现在在(1,1),你想走到(*n*, *m*)处签到,每次你可以走到上下左右四个相邻的格子中的一个,当然,你不能走出网格。

你现在的心情值为 $a_{1,1}$,你的心情飘忽不定,你每走一步,你的心情值就会异或上走到的格子上的数字。

你希望你签到的时候心情最好,为此你可以任意绕远路,甚 至可以走到签到处的时候暂时不签到。

请你求出最大的心情值。

【输入格式】

第一行两个正整数n,m。

接下来n行,每行m个非负整数,其中第i行第j个整数表示 $a_{i,j}$ 。

【输出格式】

输出一个整数,表示答案。

【样例输入】

2 2

1 2

3 4

【样例输出】

7

【数据范围】

对于 30%的数据, $n, m \le 4$ 。

另有 30%的数据, $n,m \le 100$, $a_{i,j} \le 1000$ 。

对于 100%的数据, $n,m \leq 500$, $a_{i,j} \leq 10^9$ 。

树(tree)

【问题描述】

有一棵树,节点编号为1到n。还有m次查询,每次给出l,r,x,你需要回答从x号点走到编号在l到r之间最近的点的距离。

【输入格式】

第一行一个正整数n,接下来n-1行,每行三个正整数u,v,l,表示u和v之间有一条长度为l的边。

接下来一行一个正整数m。

接下来m行,每行3个正整数l,r,x,表示一次询问。

【输出格式】

输出m行,每行一个整数,表示答案。

【样例输入】

3

1 2 1

1 3 1

3

2 3 1

2 3 2

【样例输出】

1

0

2

【数据范围】

对于 30%的数据, $n,q \le 1000$ 。

另有 20%的数据,保证2~n号点均与1号点有边相连。

另有 10%的数据, 保证 $i(1 \le i < n)$ 号点与i + 1号点有边相连。

对于 100%的数据, $n, m \le 10^5$, 任意两点之间距离不超过 10^9 。

区间(interval)

【问题描述】

有n个数字,第i个数字为 a_i 。

有m次询问,每次给出 k_i 个区间,每个区间表示第 $l_{i,j}$ 到第 $r_{i,j}$ 个数字,求这些区间中一共出现了多少种不同的数字。

部分数据强制在线。

【输入格式】

第一行包括三个整数n, m, p, p为0或1表示是否强制在线。

第二行n个正整数,第i个表示 a_i 。

接下来依次给出每个询问,每个询问第一行一个正整数,表示 k_i ,接下来 k_i 行,每行两个正整数,分别表示 $l_{i,j}$ 和 $r_{i,j}$,若p=1且这不是第一个询问,输入的 $l_{i,j}$ 和 $r_{i,j}$ 是经过加密的,你需要将这两个数字分别异或上上一个询问的答案,对n取模后再加1,两者较小值为真实的 $l_{i,i}$,较大值为真实的 $r_{i,i}$ 。

【输出格式】

对每个询问输出一行一个整数表示答案。

【样例输入】

3 2 0

1 2 1

1

1 2

2

1 1

3 3

【样例输出】

2

1

【数据范围】

对于全部数据, $1 \le n, m, \sum k_i$, $a_i \le 10^5$, $1 \le l_{i,j} \le r_{i,j} \le n$ 。

子任务 1 (10%): $n, m, \sum k_i, a_i \leq 5000$ 。

子任务 2 (10%): $n,m \leq 5000$ 。

子任务 3 (20%): $k_i = 1$ 。

子任务 4 (20%): p = 0。

子任务 5 (20%): $1 \le n, m, \sum k_i, a_i \le 50000$ 。

子任务 6 (20%): 无特殊限制。