

Content

- 1. Target Web
- 2. System Design and Architecture
- 3. Crawling Method
- 4. Ethical Consideration

8. Challenges and Limitation

Market leader with broad product categories (electronics, fashion, home appliances, beauty)

Rich product data: IDs, prices, discounts, seller info, stock, shipping, ratings

Reliable data from official & verified sellers plus active user reviews

User controls help target crawling, reduce server load, support ethical scraping

Offers structured data & real-world challenges for testing crawler performance

System Design and Architecture

I. Crawl Manager

- Orchestrates the crawling strategy, manages URL queues, monitors request frequency, and invokes crawling engines
- Ensures respect for rate limits and robots.txt

3. Request Handler

- Handles complex headers and useragent rotation for Lazada.
- Manages cookies and session tokens (important for logged-in-only data)
- Captures anti-bot flags and implements fallback (retry or proxy)

2. Crawling Libraries

- Selenium: used for rendering dynamic
 JavaScript-based content
- BeautifulSoup: parses the static
 HTML/XML content to extract relevant fields

4. Data Cleaning & Transformation Plan

- Prepare raw data for analysis through basic preprocessing and feature formatting using Pandas
- Key Operations:
 - i. Duplicate Removal
 - ii. Missing Value Handling
 - iii. Data Formatting
 - iv. Type Conversion

System Design and Architecture

6. Optimization Cleaning Process

Leverages high-performance data processing frameworks to scale and accelerate transformation tasks on large datasets.

Key Operations:

- Parallelized Data Processing
- In-Memory Computation
- Query Optimization

5. Data Storage - Mongo DB

- Persistently stores raw and cleaned datasets
- Uses MongoDB Atlas with pymango for CRUD operations
- Supports insertion of Pandas
 DataFrame dictionaries and flexible
 schema

7. Performance Evaluation

- Quantifies efficiency improvements from the optimized data cleaning processes
- Metric captured (time taken for key operations, CPU and memory footprint)
- Data visualization via matplotlib and seaborn

Crawling Method

1. Pagination Handling

a) Get Total Number of Pages

```
pagination = soup.select(".ant-pagination-item")
total_pages = int(pagination[-1].text) if pagination else 1
```

b) Loop Through Each Page

```
for page in range(total_pages):
    print(f"Scraping page {page+1} of {total_pages}")
```

c) Loop Through Each Page

```
next_button = driver.find_element(By.CSS_SELECTOR, ".ant-pagination-next > button")
time.sleep(random.uniform(3, 5)) # Simulate reading delay
next_button.click()
```


Library: Selenium + BeautifulSoup

2 Rate Limiting and Anti-Bot Measures

a) Random Delays (Rate Limiting)

```
time.sleep(random.uniform(2.5, 4.5))
```

```
time.sleep(random.uniform(3, 5))
```

b) Set Fake User-Agent

c) CAPTCHA Detection

Records Collected

Total: 120256 rows

Data Recorded:

1	Product Name	Price	Location	Quantity Sold	Number of Ratings
2	[NOT FOR SALE] Korean Fashion Cloth	0.1	Penang	5 sold	N/A
3	ZD [stock] Letter Printed Short-sleeved T-shirt Men and Women Person	0.9	China	N/A	N/A
4	ZD Summer Yoga Beach Shorts Sports Shorts for Women Home Casual !	1	China	N/A	N/A
5	HD Summer Yoga Beach Shorts Sports Shorts for Women Home Casual	1	China	N/A	N/A
6	4A Shop Running Shorts for Women Spring Summer Fashion Casual Sho	1	China	N/A	N/A
7	HD Breathable Sports Shorts Women's Summer Home Casual Shorts So	1	China	N/A	N/A
8	ZD Breathable Sports Shorts Women's Summer Home Casual Shorts So	1	China	N/A	N/A
9	HD Sports Shorts Women's Summer 2024 Casual Outerwear Three Pant	1	China	N/A	N/A
10	HD Running Shorts for Women Spring Summer Fashion Casual Shorts B	1	China	N/A	N/A

Ethical Consideration

Collected only publicly accessible info (product names, prices, locations, sales, ratings)

Responsible Request Timing

Random delays (2.5–4.5s) mimic human browsing to prevent server overload

CAPTCHA Detection

Script pauses when CAPTCHA appears

Ethical Data Usage

Data used strictly for academic analysis

Alignment with Best Practices

Followed ethical scraping guidelines


```
from pymongo import MongoClient

uri = "mongodb+srv://hanwei:hanwei123@mongodbms-p1.5d52qxu.mongodb.net/?retryWrites=true&w=majority&appName=MongoDBMS-P1"

client = MongoClient(uri)

db = client["MongoDBMS-P1"]

collection = db["mycollection"]
```



```
# Load CSV or JSON
df = pd.read_csv("Dataset.csv", encoding="ISO-8859-1")

# Convert to dictionary format for MongoDB
data_dict = df.to_dict("records")

# Insert into MongoDB
collection.insert_many(data_dict)
```



```
# Load data from MongoDB into DataFrame
df = pd.DataFrame(list(collection.find()))

# Drop MongoDB's autogenerated _id (optional, re-created on insert)
if '_id' in df.columns:
    df.drop(columns=['_id'], inplace=True)
```


1. Drop duplicates df.drop duplicates(inplace=True)

	Product Name	Price	Location	Quantity Sold	Number of Ratings
0	[NOT FOR SALE] Korean Fashion Cloth	0.1	Penang	5 sold	NaN
1	ZD [stock] Letter Printed Short-sleeved T-shir	0.9	China	NaN	NaN
2	ZD Summer Yoga Beach Shorts Sports Shorts for	1	China	NaN	NaN
3	HD Summer Yoga Beach Shorts Sports Shorts for	1	China	NaN	NaN
4	4A Shop Running Shorts for Women Spring Summer	1	China	NaN	NaN
120251	ASUS Vivobook Pro N6506M VMA030WSM- 15.6" 3K O	RM9,531.00	NaN	NaN	NaN
120252	ASUS ROG Zephyrus G16 GA605W VQR037W- 16â□□ OL	RM11,913.00	NaN	NaN	NaN
120253	Acer Predator Triton Neo 16 PTN16-51-91BP (Int	RM8,999.00	NaN	NaN	NaN
120254	ASUS Zenbook Duo Ux8406M-Apz042Ws Grey	RM11,494.00	NaN	NaN	NaN
120255	Asus Zenbook 14 OLED UX3405M-APZ345 / 346WSM L	RM7,699.00	NaN	NaN	NaN

116308 rows × 5 columns

```
2 Fill NaN
```

```
# 2. Replace NaN in specific columns with "unknown"

df_copy["Product Name"].fillna("unknown", inplace=True)

df_copy["Location"].fillna("unknown", inplace=True)

df_copy["Price"].fillna("unknown", inplace=True)

# 3. Fill actual NaN with "0" in critical columns

df_copy["Quantity Sold"].fillna("0", inplace=True)

df_copy["Number of Ratings"].fillna("0", inplace=True)
```

	Product Name	Price	Location	Quantity Sold	Number of Ratings
0	[NOT FOR SALE] Korean Fashion Cloth	0.1	Penang	5 sold	0
1	ZD [stock] Letter Printed Short-sleeved T-shir	0.9	China	0	0
2	ZD Summer Yoga Beach Shorts Sports Shorts for	1	China	0	0
3	HD Summer Yoga Beach Shorts Sports Shorts for	1	China	0	0
4	4A Shop Running Shorts for Women Spring Summer	1	China	0	0
120251	ASUS Vivobook Pro N6506M VMA030WSM- 15.6" 3K O	RM9,531.00	unknown	0	0
120252	ASUS ROG Zephyrus G16 GA605W VQR037W- 16â□□ OL	RM11,913.00	unknown	0	0
120253	Acer Predator Triton Neo 16 PTN16-51-91BP (Int	RM8,999.00	unknown	0	0
120254	ASUS Zenbook Duo Ux8406M-Apz042Ws Grey	RM11,494.00	unknown	0	0
120255	Asus Zenbook 14 OLED UX3405M-APZ345 / 346WSM L	RM7,699.00	unknown	0	0

116308 rows × 5 columns

```
# 4. Clean "Quantity Sold" (e.g., "5K sold" → 5000)
import re

def clean_quantity(q):
    if isinstance(q, str):
        q = q.lower().replace("sold", "").strip()
        if "k" in q:
            return int(float(q.replace("k", "")) * 1000)
        return int(re.findall(r"\d+", q)[0]) if re.findall(r"\d+", q) else 0
        return 0

df_copy["Quantity Sold"] = df_copy["Quantity Sold"].apply(clean_quantity)
```

	Product Name	Price	Location	Quantity Sold	Number of Ratings
0	[NOT FOR SALE] Korean Fashion Cloth	0.1	Penang	5	0
1	ZD [stock] Letter Printed Short-sleeved T-shir	0.9	China	0	0
2	ZD Summer Yoga Beach Shorts Sports Shorts for	1	China	0	0
3	HD Summer Yoga Beach Shorts Sports Shorts for	1	China	0	0
4	4A Shop Running Shorts for Women Spring Summer	1	China	0	0
120251	ASUS Vivobook Pro N6506M VMA030WSM- 15.6" 3K O	RM9,531.00	unknown	0	0
120252	ASUS ROG Zephyrus G16 GA605W VQR037W- 16â□□ OL	RM11,913.00	unknown	0	0
120253	Acer Predator Triton Neo 16 PTN16-51-91BP (Int	RM8,999.00	unknown	0	0
120254	ASUS Zenbook Duo Ux8406M-Apz042Ws Grey	RM11,494.00	unknown	0	0
120255	Asus Zenbook 14 OLED UX3405M-APZ345 / 346WSM L	RM7,699.00	unknown	0	0

116308 rows × 5 columns

Transform "Quantity Sold"

```
# 5. Clean "Number of Ratings" (e.g., "(10)" → 10)

def clean_ratings(r):
    if isinstance(r, str):
        match = re.search(r"\d+", r)
        return int(match.group()) if match else 0

    return 0

df copy["Number of Ratings"] = df copy["Number of Ratings"].apply(clean ratings)
```

(10)	->	10
(99)	->	99
(1000)	->	1000
(1)	->	1
(O)	->	0

Transform

"Number of Ratings"

	Product Name	Price	Location	Quantity Sold	Number of Ratings
0	[NOT FOR SALE] Korean Fashion Cloth	0.1	Penang	5	0
1	ZD [stock] Letter Printed Short-sleeved T-shir	0.9	China	0	0
2	ZD Summer Yoga Beach Shorts Sports Shorts for	1	China	0	0
3	HD Summer Yoga Beach Shorts Sports Shorts for	1	China	0	0
4	4A Shop Running Shorts for Women Spring Summer	1	China	0	0
120251	ASUS Vivobook Pro N6506M VMA030WSM- 15.6" 3K O	9531.00	unknown	0	0
120252	ASUS ROG Zephyrus G16 GA605W VQR037W- 16â□□ OL	11913.00	unknown	0	0
120253	Acer Predator Triton Neo 16 PTN16-51-91BP (Int	8999.00	unknown	0	0
120254	ASUS Zenbook Duo Ux8406M-Apz042Ws Grey	11494.00	unknown	0	0
120255	Asus Zenbook 14 OLED UX3405M-APZ345 / 346WSM L	7699.00	unknown	0	0

116308 rows × 5 columns

5 Transform "Price"


```
# 7. Convert "Price" to float and leave the word "unknown"

def to_float_or_unknown(val):
    try:
        return float(val)
    except:
        return "unknown"

df_copy["Price"] = df_copy["Price"].apply(to_float_or_unknown)

# 8. Convert Quantity Sold & Number of Ratings to int
    df_copy["Quantity Sold"] = df_copy["Quantity Sold"].astype(int)
    df copy["Number of Ratings"] = df copy["Number of Ratings"].astype(int)
```

Price (string)	->	float
Quantity Sold (string)	->	int
Number of Ratings (string)	->	int


```
# 8. Upload cleaned data back to MongoDB collection.drop() collection.insert_many(df_copy.to_dict("records"))
```


*

Optimization Techniques

*

Why choose Polars?

Lazy Execution

Efficient Columnar Memory Layout

Native Multithreaded Parallelism


```
# 2. Load data using pandas with proper encoding, then convert to Polars
print("Loading data with pandas and converting to Polars...")
try:
    pandas_df = pd.read_csv("Dataset.csv", encoding="ISO-8859-1")
    df = pl.from_pandas(pandas_df)
    df lazy = df.lazy()
   print("\nSchema of the DataFrame:")
    schema = df_lazy.collect_schema()
    for name, dtype in schema.items():
        print(f"- {name}: {dtype}")
    print("\nFirst few rows of raw data:")
    print(df_lazy.fetch(5))
except Exception as e:
    print(f"Error loading data: {e}")
    raise
```


Difference in Pandas and Polars

Pandas

```
# 2. Replace NaN in specific columns with "unknown"

df_copy["Product Name"].fillna("unknown", inplace=True)

df_copy["Location"].fillna("unknown", inplace=True)

df_copy["Price"].fillna("unknown", inplace=True)
```

Polars

```
# b. Replace NaN in specific columns with "unknown"

df_lazy = df_lazy.with_columns([
    pl.col("Product Name").fill_null("unknown"),
    pl.col("Location").fill_null("unknown"),
    pl.col("Price").fill_null("unknown")
])
```



```
*
```

```
# 5. Clean "Number of Ratings" (e.g., "(10)" → 10)
def clean_ratings(r):
    if isinstance(r, str):
        match = re.search(r"\d+", r)
        return int(match.group()) if match else 0
    return 0

df_copy["Number of Ratings"] = df_copy["Number of Ratings"].apply(clean_ratings)
```

```
# e. Clean "Number of Ratings" (e.g., "(10)" → 10)

df_lazy = df_lazy.with_columns([
    pl.col("Number of Ratings")
    .cast(pl.Utf8)
    .str.extract(r"(\d+)")
    .cast(pl.Int64)
    .fill_null(0)
    .alias("Number of Ratings")
])
```


Performance of Polars

Pandas

- Elapsed Time: 9.12 sec
- Memory Used (Start → End): 248.86 MB → 315.95 MB
- Peak Memory (tracemalloc): 41.63 MB
- Throughput: 12,758.67 records/sec
- Total Records Cleaned: 116308

Polars

- Elapsed Time: 0.82 sec
- Memory Used (Start → End): 438.77 MB → 530.44 MB
- Peak Memory (tracemalloc): 26.82 MB
- Throughput: 142,084.92 records/sec
- Total Records Cleaned: 116308

PySpark Why choose Pyspark?

Scalability

PySpark handles large datasets distributed across clusters, while Pandas works best with data that fits into a single machine's memory.

Parallel Processing

PySpark processes data in parallel on multiple nodes, significantly speeding up computations; Pandas runs mostly single-threaded.

Optimized Execution

PySpark uses Catalyst optimizer and Tungsten engine to optimize queries and resource use, Pandas lacks such optimizations.

PySpark Code Comparison

```
# d. Clean "Quantity Sold" (e.g., "5K sold" → 5000)

def clean_quantity(q):
    if isinstance(q, str):
        q = q.lower().replace("sold", "").strip()
        if "k" in q:
            return int(float(q.replace("k", "")) * 1000)
        return int(re.findall(r"\d+", q)[0]) if re.findall(r"\d+", q) else 0
        return 0

df_copy.loc[:, "Quantity Sold"] = df_copy["Quantity Sold"].apply(clean_quantity)
```

```
# 4.Clean "Quantity Sold" (e.g., "5K sold" → 5000)

sdf = sdf.withColumn(
    "Quantity Sold",
    when(
        col("Quantity Sold").rlike(".*K.*"),
        (regexp_replace(col("Quantity Sold"), "K", "").cast("int") * 1000)
    ).otherwise(col("Quantity Sold").cast("int"))
)
```

PySpark Performance Comparison

Pandas

- Elapsed Time: 2.97 sec
- Memory Used (Start → End): 686.22 MB → 603.24 MB
- 🚀 Peak Memory (tracemalloc): 126.92 MB
- Throughput: 39,172.01 records/sec
- Total Records Cleaned: 116296

PySpark

- Elapsed Time: 2.81 sec
- Memory Used (Start → End): 571.34 MB → 571.34 MB
- 🚀 Peak Memory (tracemalloc): 0.09 MB
- Throughput: 41,322.38 records/sec
- Total Records Cleaned: 116296

Dask

How does Dask optimize the Cleaning Process?

Lazy Evaluation via Task Graph

Out-of-Core and Blockwise Parallelism

Scheduler-Based Parallel Execution

Data Cleaning Steps Comparison

Clean "Quantity Sold"

```
df["Quantity Sold"] = df["Quantity Sold"].apply(clean_quantity)
```

```
df.fillna({
    "Product Name": "unknown",
    "Location": "unknown",
    "Price": "unknown",
    "Quantity Sold": "0",
    "Number of Ratings": "0"
}, inplace=True)
```

Fill Missing Value

Trigger Execution

```
df = df.assign(
    Quantity_Sold=df["Quantity Sold"].map(clean_quantity, meta=("Quantity_Sold", "int64"))
)
```

```
df = df.fillna({
    "Product Name": "unknown",
    "Location": "unknown",
    "Price": "unknown",
    "Quantity Sold": "0",
    "Number of Ratings": "0"
})
```

```
df_clean_dask = df.compute()
```

Not required — all operations already executed eagerly.

Dask

Performance Comparison

Pandas

- Elapsed Time: 8.84 sec
- Memory Used (Start → End): 512.98 MB → 544.23 MB
- Throughput: 13,162.45 records/sec
- Total Records Cleaned: 116308

Dask

- Elapsed Time: 9.61 sec
- 📊 Memory Used (Start → End): 298.34 MB → 314.79 MB
- ✓ Peak Memory (tracemalloc): 58.65 MB
- Throughput: 12,097.35 records/sec
- Total Records Cleaned: 116308

DuckDB

How DuckDB Optimize The Process?

Columnar Engine Vectorized Execution

DuckDB

Data Cleaning Steps Comparison

Drop Duplicates

SELECT DISTINCT * FROM

df.drop_duplicates(inplace=True)

Fill Missing Value

df_copy["Product Name"].fillna("unknown")

WHEN "Product Name" IS NULL OR "Product Name" = ''
THEN 'unknown'
ELSE "Product Name"

Convert Data Type

df_copy["Number of Ratings"].astype(int)

CAST(regexp_extract("Number of Ratings", '\\d+') AS INT)

DuckDB

Performance Comparison

Pandas

★★☆☆☆

- Elapsed Time: 8.84 sec
- Memory Used (Start → End): 512.98 MB → 544.23 MB
- Peak Memory (tracemalloc): 39.11 MB
- Throughput: 13,162.45 records/sec
- Total Records Cleaned: 116308

DuckDB

- Elapsed Time: 4.79 sec
- Memory Used (Start → End): 517.74 MB → 515.71 MB
- 🚀 Peak Memory (tracemalloc): 31.88 MB
- Throughput: 24,265.28 records/sec
- Total Records Cleaned: 116296

Analytical queries,

efficient local

Performance Evaluation

\ \ /
4 >
XX

	Framework	Average Time (sec)	Peak Memory (MB)	Throughput (records/sec)	Strengths	Use Case Fit
	Pandas	8.84	41.16	13,167	Simple, in-memory speed, ease of use	Small to medium datasets (<1M rows)
	Polars	0.83	26.80	140,433	Columnar, lazy execution, fast in- memory ops	Fastest single-node processing
)	PySpark	2.81	0.09	41,322	Distributed, cluster- scale parallelism, built for big data	Large-scale or cluster environments
	Dask	9.61	58.65	12,097	Parallelism, Pandas- like syntax, chunked memory	Larger-than-memo datasets

21,124

31.87

DuckDB

5.51

In-process OLAP

engine, zero-copy,

SQL-style queries

Comparative Analysis

- Polars proved to be the fastest in execution due to its Rust-based engine and lazy evaluation.
- DuckDB showed strong performance using vectorized and SQL-style processing, with most memory-efficient due to its in-process engine and vectorized queries.
- PySpark offered the best scalability for distributed, large-scale workloads but added overhead for smaller datasets.
- Dask is better suited for larger or partitioned datasets, stood out for its flexibility and compatibility with the familiar Pandas API and parallel processing.
- Pandas remained the most beginner-friendly tool, thanks to its intuitive syntax, extensive documentation, widespread use, reliable and quick for the given dataset size, but not optimized for scaling.

Performance Ranking

- 1st place: Polars leads the fastest runtime with its high throughput, and low memory use.
- 2nd place: PySpark offered excellent throughput, high scalability, and minimal memory usage.
- 3rd place: DuckDB showed balanced performance with strong memory efficiency and throughput.
- 4th place: Pandas which is suitable for small to medium data and offers moderate performance.
- 5th place: Dask is best for scalability beyond memory, but the slowest one for this dataset size of approximately ~116,000 rows of data with 5 columns.

Challenges and Limitation

CAPTCHA & Bot Prevention

Missing Product Data

Dynamic JavaScript Content

Scalability Issues

Limited & Unreliable Pagination

Search Algorithm Restrictions

Thank You