10.7 **Exercises**

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Vocabulary: Fill in the blanks.

- **1.** The origin of the polar coordinate system is called the _____.
- **2.** For the point (r, θ) , r is the _____ from O to P and θ is the _____, counterclockwise from the polar axis to the line segment \overline{OP} .
- **3.** To plot the point (r, θ) , use the _____ coordinate system.
- **4.** The polar coordinates (r, θ) and the rectangular coordinates (x, y) are related as follows:

$$x =$$
_____ $y =$ ____ $\tan \theta =$ ____ $r^2 =$ _____

Skills and Applications

Plotting a Point in the Polar Coordinate System In Exercises 5–18, plot the point given in polar coordinates and find three additional polar representations of the point, using $-2\pi < \theta < 2\pi$.

- 5. $(2, \pi/6)$
- **6.** $(3, 5\pi/4)$
- 7. $(4, -\pi/3)$
- 8. $(1, -3\pi/4)$
- **9.** $(2, 3\pi)$
- **10.** $(4, 5\pi/2)$
- 11. $(-2, 2\pi/3)$

- **12.** $(-3, 11\pi/6)$
- **13.** $(0, 7\pi/6)$
- **14.** $(0, -7\pi/2)$
- 15. $(\sqrt{2}, 2.36)$
- **16.** $(2\sqrt{2}, 4.71)$
- 17. (-3, -1.57)
- 18. (-5, -2.36)

Polar-to-Rectangular Conversion In Exercises 19-28, a point is given in polar coordinates. Convert the point to rectangular coordinates.

- **19.** $(0, \pi)$
- **20.** $(0, -\pi)$
- **21.** $(3, \pi/2)$
- **22.** $(3, 3\pi/2)$
- **23.** $(2, 3\pi/4)$
- **24.** $(1, 5\pi/4)$
- **25.** $(-2, 7\pi/6)$
- **26.** $(-3, 5\pi/6)$
- **27.** $(-3, -\pi/3)$
- **28.** $(-2, -4\pi/3)$

🖶 Using a Graphing Utility to Find Rectangular Coordinates In Exercises 29-38, use a graphing utility to find the rectangular coordinates of the point given in polar coordinates. Round your results to two decimal places.

- **29.** $(2, 7\pi/8)$
- **30.** $(3/2, 6\pi/5)$
- **31.** $(1, 5\pi/12)$
- **32.** $(4, 7\pi/9)$
- **33.** (-2.5, 1.1)
- **35.** (2.5, -2.9)
- **34.** (-2, 5.76)**36.** (8.75, -6.5)
- **37.** (−3.1, 7.92)
- **38.** (-2.04, -5.3)

Rectangular-to-Polar Conversion In Exercises 39-50, a point is given in rectangular coordinates. Convert the point to polar coordinates. (There are many correct answers.)

- **39.** (1, 1)
- **40.** (2, 2)
- **41.** (-3, -3)
- **42.** (-4, -4)
- **43.** (3, 0)
- **44.** (-6,0)
- **45.** (0, -5)
- **46.** (0, 8) **48.** $(-\sqrt{3}, \sqrt{3})$
- **47.** $(-\sqrt{3}, -\sqrt{3})$ **49.** $(\sqrt{3}, -1)$
- **50.** $(-1, \sqrt{3})$
- 🖰 Using a Graphing Utility to Find Polar

Coordinates In Exercises 51-58, use a graphing utility to find one set of polar coordinates of the point given in rectangular coordinates. Round your results to two decimal places.

- **51.** (3, -2)
- **52.** (6, 3)
- **53.** (-5, 2)
- **54.** (7, -2)
- **55.** $(-\sqrt{3}, -4)$
- **56.** $(5, -\sqrt{2})$
- **57.** $(\frac{5}{2}, \frac{4}{3})$
- **58.** $\left(-\frac{7}{9}, -\frac{3}{4}\right)$

■ Converting a Rectangular Equation to Polar Form In Exercises 59–78, convert the rectangular equation to polar form. Assume a > 0.

- **59.** $x^2 + y^2 = 9$
- **60.** $x^2 + y^2 = 16$
- **61.** y = x
- **62.** y = -x
- **63.** x = 10
- **64.** y = -2
- **65.** 3x y + 2 = 0
- **66.** 3x + 5y 2 = 0
- **67.** xy = 16
- **68.** 2xy = 1
- **69.** x = a
- **70.** y = a
- **71.** $x^2 + y^2 = a^2$
- 72. $x^2 + y^2 = 9a^2$
- **75.** $(x^2 + y^2)^2 = x^2 y^2$ **76.** $(x^2 + y^2)^2 = 9(x^2 y^2)$
- **73.** $x^2 + y^2 2ax = 0$ **74.** $x^2 + y^2 2ay = 0$

- 77. $v^3 = x^2$
- **78.** $v^2 = x^3$

Converting a Polar Equation to Rectangular Form In Exercises 79–100, convert the polar equation to rectangular

79.
$$r = 5$$

80.
$$r = -7$$

81.
$$\theta = 2\pi/3$$

82.
$$\theta = -5\pi/3$$

83.
$$\theta = \pi/2$$

84.
$$\theta = 3\pi/2$$

85.
$$r = 4 \csc \theta$$

85.
$$r = 4 \csc \theta$$

86.
$$r = 2 \csc \theta$$

87.
$$r = -3 \sec \theta$$

88.
$$r = -\sec \theta$$

89.
$$r = -2 \cos \theta$$

91. $r^2 = \cos \theta$

90.
$$r = 4 \sin \theta$$

91.
$$r^2 = \cos \theta$$

93. $r^2 = \sin 2\theta$

92.
$$r^2 = 2 \sin \theta$$

94. $r^2 = \cos 2\theta$

95.
$$r = 2 \sin 3\theta$$

96.
$$r = 3 \cos 2\theta$$

97.
$$r = \frac{2}{1 + \sin \theta}$$

$$98. \ r = \frac{1}{1 - \cos \theta}$$

99.
$$r = \frac{6}{2 - 3 \sin \theta}$$

99.
$$r = \frac{6}{2 - 3\sin\theta}$$
 100. $r = \frac{5}{\sin\theta - 4\cos\theta}$

Converting a Polar Equation to Rectangular Form In Exercises 101–108, describe the graph of the polar equation and find the corresponding rectangular equation.

101.
$$r = 6$$

102.
$$r = 8$$

103.
$$\theta = \pi/6$$

104.
$$\theta = 3\pi/4$$

105.
$$r = 3 \sec \theta$$

106.
$$r = 2 \csc \theta$$

107.
$$r = 2 \sin \theta$$

108.
$$r = -6 \cos \theta$$

•• 109. Ferris Wheel• • • • • • • • • •

The center of a Ferris wheel lies at the pole of the polar coordinate system, where the distances are in feet. Passengers enter a car at $(30, -\pi/2)$. It takes 45 seconds for the wheel to complete one clockwise revolution.

(a) Write a polar equation that models the possible positions of a passenger car.

- (b) Passengers enter a car. Find and interpret their coordinates after 15 seconds of rotation.
- (c) Convert the point in part (b) to rectangular coordinates. Interpret the coordinates.
- 110. Ferris Wheel Repeat Exercise 109 when the distance from a passenger car to the center is 35 feet and it takes 60 seconds to complete one clockwise revolution.

Exploration

True or False? In Exercises 111 and 112, determine whether the statement is true or false. Justify your answer.

- **111.** If $\theta_1 = \theta_2 + 2\pi n$ for some integer n, then (r, θ_1) and (r, θ_2) represent the same point in the polar coordinate system.
- **112.** If $|r_1| = |r_2|$, then (r_1, θ) and (r_2, θ) represent the same point in the polar coordinate system.
- 113. Error Analysis Describe the error in converting the rectangular coordinates $(1, -\sqrt{3})$ to polar form.

$$\tan \theta = -\sqrt{3}/1 \implies \theta = \frac{2\pi}{3}$$

$$r = \sqrt{1^2 + \left(-\sqrt{3}\right)^2} = \sqrt{4} = 2$$

$$(r, \theta) = \left(2, \frac{2\pi}{3}\right)$$

HOW DO YOU SEE IT? Use the polar coordinate system shown below.

- (a) Identify the polar coordinates of points A-E.
- (b) Which points lie on the graph of r = 3?
- (c) Which points lie on the graph of $\theta = \pi/4$?

115. Think About It

(a) Convert the polar equation

$$r = 2(h\cos\theta + k\sin\theta)$$

to rectangular form and verify that it represents a circle.

(b) Use the result of part (a) to convert

$$r = \cos \theta + 3 \sin \theta$$

to rectangular form and find the center and radius of the circle it represents.