CS 564 Midterm Exam Fall 2018 Answers

A: Let's write some queries! [30%]
We will use the following database schema:
Student (stid, firstname, lastname, major) Class (code, title, semester, year, description) Enrolled (stid, code, numcredits)
Furthermore, Enrolled.stid is a foreign key referring to Student.stid and Enrolled.code is a foreign key referring to Class.code
1. [10%] Express the following query in SQL: output the student IDs of the students that have taken at least 30 credits across all classes.
2. [10%] Express the following query in SQL: for each class offered in Spring 2018, output the class code and the number of CS majors that took that class.

3. $\[10\%\]$ Express the following SQL query in Relational Algebra:

```
SELECT DISTINCT firstname, lastname FROM Student
WHERE stid NOT IN (
SELECT s.stid
```

```
FROM Student s, Enrolled e
WHERE s.stid = e.stid AND e.numcredits > 3);
```

B: ER, RELATIONAL MODEL, AND SOME SQL [13%]

For the following questions, circle **exactly one** correct option.

1. [5%] Consider the following ER diagram:

If we translate the relationship **Appts** to a relation in the relational model, how many attributes will the relation have?

2. [4%] Consider the schema from Part A. The following SQL queries will always give the same result:

```
SELECT * FROM Enrolled
LEFT OUTER JOIN Student on Student.stid = Enrolled.stid;

SELECT * FROM Enrolled
INNER JOIN Student on Student.stid = Enrolled.stid;
```

3. [4%] Consider the following relational table for Student:

studentID	name	age
1234	George	NULL
1144	Anna	19
2214	Maria	NULL

How many tuples will the following SQL query return?

SELECT Student FROM name = 'George' OR age > 20 ; WHERE

C: NORMALIZATION AND DEPENDENCY THEORY [42%]

Consider the relation R(A, B, C, D, E) with the following set F of functional dependencies:

$$A \rightarrow B, C$$
 $D \rightarrow C$ $E \rightarrow D$ $B, E \rightarrow C$

$$D \rightarrow C$$

$$E \rightarrow L$$

$$B, E \rightarrow C$$

[10%] Add a tuple to the instance of *R* below such that **all** fds in *F* are violated:

Α	В	C	D	E
a	b	С	d	e
a	b	С	ď	e'

ANSWER:

For the following questions, circle the right option(s).

- #1 There can be more than one correct options for every question!
- #2 You can get partial credit by explaining how you came up with your answer.
 - 1. **[12%]** The following attribute sets are **superkeys** but **not keys** in relation *R*:

(iii)
$$A, B, C, D$$

(ii)
$$A, D, E$$
 (iii) A, B, C, D (iv) A, B, C, D, E

ANSWER:

2. [8%] The following functional dependencies are **redundant** in *F* (in other words, if we remove the functional dependency, the fd closure remains the same):

(i)
$$A \rightarrow B$$
, C

(ii)
$$D \rightarrow C$$

(iii)
$$E \rightarrow D$$

(i)
$$A \rightarrow B, C$$
 (ii) $D \rightarrow C$ (iii) $E \rightarrow D$ (iv) $B, E \rightarrow C$

ANSWER:

3. [12%] The following hold for the decomposition of R into ABC, AE, DE. It is:

(i) lossless-join

(ii) dependency preserving

ANSWER:

D: Buffer Management [15%]

In this question, we consider a buffer pool with 5 frames, and two files: one with three pages A_1 , A_2 , A_3 , and the other with four pages B_1 , B_2 , B_3 , B_4 . We want to read these two files in a nested loop (as we will see later in class, this is one possible implementation of a join between the two files). The sequence of requests is as follows:

```
Request A_1, Request B_1, Release B_1, Request B_2, Release B_2, ..., Release A_1, Request A_2, Request B_1, Release B_1, Request B_2, Release B_2, ..., Release A_2, Request A_3, Request B_1, Release B_1, Request B_2, Release B_2, ..., Release A_3.
```

Initially, all buffer frames are free, and none of the pages to be accessed are in RAM. For the following questions, circle the right option.

#1 You can get partial credit by explaining how you came up with your answer.

oes