Yash Srivastawa 180889	
AE777A Quiz 2	
1.) Given function: $C(v) = 1 v^3 + 1 v^2 + 1 v$	
on diffrentiating it:	
$\frac{2}{dv} = \frac{1}{4}$	
Both are sto continuous & ve R. for stationary point:	
$\frac{L'(0) = 0}{0^{2} + 0 + 1} = 0$ $\frac{(0 + 1)^{2} = 0}{2}$	
v= - ½, which is smal. v = - ½ is stationary point.	
Now, $\lfloor (-\frac{1}{2}) = 2 \times (-\frac{1}{2}) + 1 = 0$ $U = -\frac{1}{2}$, is a Singular point of $6(u)$ it doesn't	5
U= -1/2, is a singular point of 6(U) it doesn't satisfy necessary condition for minima.	

