Alma Mater Studiorum · Università di Bologna

Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica

Modelli di traffico per la formazione della congestione su una rete stradale

Relatore:
Prof. Armando Bazzani

Presentata da: Gregorio Berselli

Abstract

Indice

Introduzione			
1	Mod	delli di traffico	5
	1.1	Osservabili macroscopici	5
		1.1.1 Densità	5
		1.1.2 Flusso	5
		1.1.3 Velocità media	6
	1.2	Diagrammi fondamentali	6
2	Cos	truzione del modello	9
	2.1	Random Walk su network	9
	2.2		10
3	Rist	ultati	12
\mathbf{A}	Imp	plementazione	17
	A.1	Classi	17
		A.1.1 VehicleType	17
		A.1.2 Vehicle	17
		A.1.3 Street	18
		A.1.4 Graph	19
	A.2	-	20
	A 3	Performance	20

Elenco delle figure

1.1	Diagrammi fondamentali di Greenshield	7
2.1	Temperatura statistica	11
3.2	Prova. Prova. Prova.	13
A.1	Velocità nel modello	19

Introduzione

Le congestioni nel traffico sono ad oggi uno dei maggiori problemi per lo sviluppo delle città. Nel solo stato della Florida, ad esempio, è stato stimato che dal 2003 al 2007 queste abbiano causato perdite dai 4.5 ai 7 miliardi di dollari annui [5]. Nell'ultimo decennio, con l'obiettivo di attenuare questa problematica, nelle grandi città hanno cominciato a proliferare diverse compagnie di ride-hailing, come Uber. Nonostante il beneficio economico portato da esse e dalla competitività del mercato la presenza in gran numero di questi fornitori di servizi va a peggiorare la qualità della mobilità urbana. Questo effetto diventa abbastanza rilevante in zone nelle quali vi è poca domanda o la velocità stradale media è sufficientemente bassa. Ogni operatore aggiunto di questo settore causa, ad esempio, un aumento del numero totale di veicoli su strada del 2.5% a Manhattan e del 37% a San Francisco [3].

Un ruolo fondamentale nella gestione delle congestioni nelle città lo gioca la logistica delle stesse. Si consideri ora la rete stradale di una città generica di superfice approssimabile a quella di una circonferenza di raggio R. È lecito ipotizzare che il numero M di nodi (incroci) della rete cresca proporzionalmente alla superficie della città, quindi al quadrato del raggio $M \propto R^2$. Si definisca ora la variabile costo C della rete, la quale dipenderà sia dal numero di nodi che dalla lunghezza di scala della stessa, ossia $C \propto MR^2$. Unendo le due relazioni precedenti si ottiene $C \propto M^{\frac{3}{2}}$ ed è possibile constatare che per una città ideale come quella considerata il costo della logistica stradale cresca all'aumentare del numero di nodi. La nascita e lo sviluppo delle metropoli, avvenuta nell'ultimo secolo, ha quindi cause da ricercarsi non nel miglioramento della logistica quanto a cambiamenti nella mobilità, come l'introduzione di mezzi pubblici quali autobus, tram e metropolitane.

Capitolo 1

Modelli di traffico

1.1 Osservabili macroscopici

Prima di iniziare a modellizzare il problema è necessario domandarsi quali siano gli osservabili macroscopici principali e come siano legati tra di loro. La descrizione di un sistema a livello macroscopico risulta critica ai fini della descrizione della dinamica.

1.1.1 Densità

La densità è una variabile tipicamente fisica adotatta nella teoria del traffico. La densità ρ rappresenta il numero di veicoli per unità di lunghezza della strada. Sia ora Δx la lunghezza di una strada in cui sono presenti n veicoli, allora ad un tempo generico t si ha che

$$\rho(n, t, \Delta x) = \frac{n(t)}{\Delta x}$$

La densità si esprime in veicoli al kilometro (veh/km). Tipicamente per ogni corsia di una strada si ha una $\rho_{max} \sim 10^2$ veh/km. Si osservi ora come moltiplicando e dividendo per un infinitesimo temporale dt il denominatore divenga l'area dell'intervallo di misura S. In particolare

$$\rho(t, \Delta x, S) = \frac{n(t)dt}{\Delta x dt} = \frac{\text{tempo totale trascorso in } S}{S}$$
 (1.1)

1.1.2 Flusso

Il flusso Φ rappresenta il numero m di veicoli che attraversano un certo località x in un intervallo di tempo Δt

$$\Phi(m, x, \Delta t) = \frac{m}{\Delta t} \tag{1.2}$$

Il flusso è espresso in veicoli all'ora (veh/h). Considerando ora un intorno infinitesimo dx di x è possibile ricavare la dipendenza più generale

$$\Phi(x, \Delta t, S) = \frac{mdx}{\Delta t dx} = \frac{\text{distanza totale percorsa dai veicoli in } S}{S}$$
 (1.3)

1.1.3 Velocità media

La velocità media è definita come il rapporto tra il flusso e la densità: si nota immediatamente come questa non dipenda dall'area dell'intervallo di misura. Unendo le Eq. (1.3) e (1.1):

$$\bar{v}(x,t,S) = \frac{\Phi(x,\Delta t,S)}{\rho(t,\Delta x,S)}$$
(1.4)

La relazione fondamentale della Traffic Flow Theory [4] è riassumibile nella:

$$\Phi = \rho \bar{v} \tag{1.5}$$

1.2 Diagrammi fondamentali

A causa della relazione fondamentale del traffico riportata in Eq. (1.5) risulta chiaro come su tre osservabili analizzati si abbiano solamente due variabili indipendenti.

Figura 1.1: Diagrammi fondamentali d Greenshield.

In una situazione stazionaria (rete in equilibrio) è possibile descrivere il sistema graficamente con tre diagrammi: \bar{v} - Φ , Φ - ρ e \bar{v} - ρ . La prima formulazione di questi, riportata come esempio in Fig. 1.1, è stata effettuata da Greenshield sulla base di alcune misurazioni da lui eseguite. Assumendo lineare la relazione tra ρ e \bar{v} le relazioni negli altri due diagrammi risultano paraboliche. In particolare, si ottengono un massimo di flusso sia a $\rho_c = \frac{\rho_t}{2}$ sia per $\bar{v}_c = \frac{\bar{v}_l}{2}$, con ρ_j e \bar{v}_l capacità e velocità massime, rispettivamente. Studiando i diagrammi fondamentali è possibile suddividere le condizioni di traffico in tre regimi:

• Completamente Libero

Quando i veicoli non sono condizionati dal traffico ed è per loro possibile viaggiare alla velocità massima \bar{v}_l , ossia la velocità libera. La velocità libera dipende solo

dalla geometria e dalle restrizioni applicate ad una strada. Si osservi come per questo valore di velocità si abbiano un flusso e una densità prossimi allo 0.

• Saturo

Nelle strade sature il flusso e la velocità tendono a 0 e i veicoli si accodano ad una densità massima ρ_t (densità di traffico).

• in Capacità

La capacità della strada eguaglia il flusso massimo Φ_c , il quale ha associate una densità ρ_c e una velocità \bar{v}_c . Si ha sempre $\bar{v}_c < \bar{v}_l$.

Capitolo 2

Costruzione del modello

2.1 Random Walk su network

In generale, un network è descritto da una matrice di adiacenza $\mathcal{A}_{ij} = \{0,1\}$ in cui la cella (i,j) assume il valore 1 se il nodo i è connesso al nodo j, 0 altrimenti. Nei casi considerati in questo studio si assume sempre che $\mathcal{A}_{ij} = \mathcal{A}_{ji}$ (proprietà di simmetria). Affiancata alla matrice di adiacenza si usa definire spesso la matrice dei pesi \mathcal{W}_{ij} , la quale definisce il peso di ciascun collegamento tra nodi. In particolare, la matrice \mathcal{W}_{ij} possiede le seguenti propietà:

- $\mathcal{A}_{ij} = 0 \Longrightarrow \mathcal{W}_{ij} = 0$;
- $\mathcal{A}_{ij} = 1 \Longrightarrow \mathcal{W}_{ij} \neq 0$.

Dalla matrice di adiacenza è possibile definire il grado del nodo i-esimo come

$$d_i = \sum_j \mathcal{A}_{ij}$$

che indica il numero delle connessioni per ogni nodo.

Una volta note le matrici di adiacenza e il vettore dei gradi la matrice Laplaciana del network è definita come

$$\mathcal{L}_{ij} = d_i \delta_{ij} - \mathcal{A}_{ij} \tag{2.1}$$

ed ha le seguenti proprietà:

- è semi-definita positiva;
- $\mathcal{L}_{ij} > 0 \iff i = j;$
- $\sum_{j} \mathcal{L}_{ij} = \sum_{i} \mathcal{L}_{ij} = 0$, quindi esiste un autovalore nullo λ_0 con corrispondente autovettore $\vec{v}_0 = (1, \dots, 1)$;

• $\sum_{i} \mathcal{L}_{ii} = 2m$, dove m è il numero totale dei link.

Si assuma ora che la rete abbia in totale M nodi e che ognuno di essi possa scambiare particelle coi suoi vicini. Sia π_{ij} la matrice stocastica che definisce la probabilità che una particella effettui il viaggio tra nodi $j \to i$. Questa possiede le seguenti proprietà:

- $\mathcal{A}_{ij} = 0 \Longrightarrow \pi_{ij} = 0$;
- $\bullet \ \sum_{j} \pi_{ij} = 1.$

Assumendo inoltre di avere N particelle nella rete, è possibile definire la funzione $\delta_{\alpha}(i,t)$ che vale 1 se la particella α si trova nel nodo i al tempo t, 0 altrimenti. Ogni particella segue quindi la dinamica

$$\delta_{\alpha}(i, t + \Delta t) = \sum_{j} \xi_{ij}^{\alpha} \delta_{\alpha}(j, t)$$

dove ξ_{ij}^{α} è una matrice random che prende valori della base standard $\hat{e}_i \in \mathbb{R}^M$ con probabilità π_{ij} . Il numero di particelle nel nodo i al tempo t è dato da

$$n_i(t) = \sum_{\alpha} \delta_{\alpha}(i, t)$$

ed è possibile dimostrare [1] che la seguente equazione è un integrale del moto

$$\sum_{i} n_i(t) = N \tag{2.2}$$

2.2 Costruzione del modello

Si consideri ora una matrice di adiacenza simmetrica \mathcal{A}_{ij} rappresentante i collegamenti tra i nodi (incroci) di una rete stradale a cui è associata una matrice dei pesi $\mathcal{S}_{ij} \geq 0$ che definisce la lunghezza di questi collegamenti (strade). Su questo network si definiscano ora le classi di agenti C_1, \ldots, C_k , ognuna delle quali caratterizzata da un nodo sorgente src e destinazione dst e denotate come $C_{\alpha}(src, dst)$. Ogni individuo dovrà, nel corso della simulazione, muovere tra i nodi $src \rightarrow dst$ in modo da seguire il percorso con il costo inferiore. Tuttavia, sarebbe errato calcolare il costo di un percorso sulla base della lunghezza: data la mobilità dei veicoli, è più accurato utilizzare il tempo di percorrenza. A tale fine si definisca ora un'altra matrice dei pesi $\mathcal{V}_{ij} \geq 0$ rappresentante la velocità massima che un agente può possedere su una determinata strada. Nel limite di individui non interagenti tra di loro è quindi possibile calcolare il percorso a costo inferiore, detto $best\ path$, come

$$\min \left\{ \sum_{\{i,j\}=src}^{dst} \frac{S_{ij}}{V_{ij}} \right\} \tag{2.3}$$

È ora necessario definire come questi agenti muovano effettivamente sul network. Per ogni classe di individui C_{α} si definisca una matrice stocastica (di transizione) π_{ij}^{α} con le proprietà descritte nella sezione precedente. La probabilità di transizione $i \to j$ viene assegnata con il seguente algoritmo:

- fissato il nodo di partenza i si inizia a scorrere sul passo successivo nel nodo j;
- se il nodo j si trova sul percorso definito dall'Eq.(2.3) allora viene assegnato peso 1 $(\pi_{ij} = 1)$;
- altrimenti, se $A_{ij} \neq 0$ (il collegamento esiste) viene assegnato un peso $\pi_{ij} = \tanh \beta T$, dove β è un parametro di controllo del modello e T rappresenta una temperatura statistica;
- una volta controllati tutti i possibili j la riga i-esima viene poi normalizzata in modo tale da avere $\sum_j \pi_{ij} = 1$.

Si osservi che grazie all'introduzione della temperatura statistica T è possibile permettere agli agenti di "sbagliare" percorso e uscire dal best path, introducendo così delle fluttuazioni. Inoltre, per $T \to \infty$ l'evoluzione del sistema diventa equivalente ad un Random Walk su network in quanto ogni scelta di percorso ha la medesima probabilità.

Figura 2.1: Probabilità di errore in funzione della temperatura statistica.

Capitolo 3

Risultati

Figura 3.1: Prova.

Figura 3.2: Prova.

Figura 3.3: Prova.

Appendice A

Implementazione

Il modello descritto in precedenza é stato implementato tramite un software scritto in C++.

A.1 Classi

Sfruttando la programmazione a oggetti su cui é basato il linguaggio C++ si é diviso il modello in varie classi.

A.1.1 VehicleType

La classe a livello inferiore é *VehicleType* che, come suggerisce il nome, definisce una tipologia di veicolo. In questo modello ogni veicolo é caratterizzato dai parametri di input nodo sorgente e nodo destinazione. Tuttavia, per muoversi sul network, ogni tipologia di veicolo necessita anche di una matrice di transizione contenente le probabilità di effettuare o meno un passo in una specifica dimensione. Questa matrice viene solo dichiarata come parametro della classe e viene impostata dopo la definizione del network.

A.1.2 Vehicle

Dopo aver definito le tipologie di veicoli é necessario definire anche i veicoli stessi. La classe *Vehicle* rappresenta gli agenti che andranno a muoversi sul network stradale. Un vettore statico di *VehicleType* permette ad ogni veicolo di avere una tipologia definita, tramite un parametro indiciale che determina la posizione nel vettore. Ogni agente ha inoltre due coordinate che ne definiscono la posizione: nodo attuale e strada attuale. Per permetterne il movimento nel tempo sono presenti altri due parametri, non necessari in input, rappresentanti la velocità del veicolo, dettata dalla strada sulla quale si trova, e la penalità di tempo che questo deve scontare, dipendente sia dalla velocità del veicolo stesso sia alla densità di veicoli presente sulla strada in cui si trova.

A.1.3 Street

Una volta definiti i veicoli é necessario definire le proprietà dei collegamenti tra i vari nodi (incroci) della rete. Ogni istanza della classe Street rappresenta un collegamento tra due nodi. I parametri da fornire come input per distinguere una strada in maniera univoca sono l'indice del nodo sorgente e l'indice del nodo destinazione. Si presti ora attenzione al fatto che ogni strada abbia una direzione: considerando due nodi generici i e j, la strada che connette $i \rightarrow j$ sarà differente dalla strada che connette $j \rightarrow i$. Questa distinzione permette sia una gestione delle densità di veicoli più efficiente e coerente con la realtà, non avendo interferenza tra le corsie, sia l'inserimento di strade a senso unico nella rete.

Nella classe Street viene poi definito un parametro di controllo del modello, ossia la lunghezza media dei veicoli. Altri parametri della strada sono la sua lunghezza, il numero n di veicoli su di essa, la velocità massima consentita, il numero di corsie (direzionate come la strada stessa) e la capacità massima n_{max} di veicoli presenti contemporaneamente. Si noti come mentre un veicolo conosce esattamente la strada in cui si trova ciò non sia vero per la strada in quanto quest'ultima possiede informazione solamente sul numero totale di veicoli presenti su di essa. La velocità effettiva mantenibile su una strada, essendo un valore altamente dinamico, non viene considerata come parametro (quindi immagazzinato in memoria) ma viene calcolato tramite una funzione quando necessario. In particolare, l'andamento della velocità su una strada segue la funzione

$$v(n) = v_{max} \left(1 - 0.75 \frac{n}{n_{max}} \right) \tag{A.1}$$

Figura A.1: Ipotesi dell'andamento della velocità in funzione della densità.

Come visibile in Fig. A.1 anche una volta raggiunta la densità massima i veicoli non si fermano ma si immettono sulla strada, quando si libera sufficiente spazio, con una velocità minima pari al 25% della velocità massima.

A.1.4 Graph

Ultima classe definita, che comprende tutte le precedenti, é la classe *Graph*, la quale costruisce effettivamente il network stradale. Parametro di input necessario per creare un'istanza é la matrice di adiacenza, che definisce le connessioni tra i nodi. Tramite essa viene poi generato un vettore di puntatori a *Street* che genera le connessioni tra i nodi come strade.

Il movimento degli agenti sul network é determinato dalla matrice di transizione assegnata alle varie tipologie di veicoli. Questa viene generata tramite l'utilizzo del famoso algoritmo Dijkstra [2] e si basa sulla ricerca del best path, il percorso a costo (lunghezza) inferiore, dalla posizione dell'agente alla destinazione definita dal suo Vehicle Type. Si é poi deciso di introdurre un parametro di temperatura statistica al network per poter permettere ai veicoli di seguire un percorso differente rispetto al best path fornito dall'algoritmo Dijkstra. L'algoritmo di evoluzione, infatti, assegna peso 1 ai best path e un peso π variabile tra 0 e 1 ai percorsi più lunghi. Quest'ultimo peso varia in base alla temperatura del sistema secondo la funzione

$$\pi(T) = \tanh(kT) \tag{A.2}$$

dove k é un parametro di controllo del modello. Si procede poi alla normalizzazione a 1 di ogni vettore riga della matrice in modo tale da poter ottenere la probabilità di transizione. Una volta ottenute le probabilità di transizione il sistema può evolvere tenendo presente che:

- se un agente prova a muovere su una strada piena questo movimento viene impedito e di fatto si perde uno step temporale;
- la velocità di ogni veicolo viene impostata all'ingresso in una strada e non più modificata fino all'ingresso nella strada successiva.

A.2 Esecuzione

A.3 Performance

Il programma é stato compilato utilizzando il compilatore gcc-9 su Ubuntu 20.04 nel Windows Subsystem for Linux. La compilazione é stata effettuata utilizzando le flag

-03 -Wall -Wextra -fsanitize=address

in cui:

- O3 indica il livello di ottimizzazione massima volto a ridurre il tempo di esecuzione del programma;
- Wall e Wextra consentono di correggere ogni tipo di warning che sorge in compilazione;
- fsanitize=address consente di ottenere un'ottima gestione della memoria.

Bibliografia

- [1] A. Bazzani. "Random walks on Graphs, Master Equation and Maximal Entropy Principle". In: 2015.
- [2] Thomas Cormen et al. Introduction to Algorithms, Second Edition. Gen. 2001, pp. 504–508. ISBN: 0-262-03293-7.
- [3] Dániel Kondor et al. "The cost of non-coordination in urban on-demand mobility". In: Scientific Reports 12.1 (mar. 2022), p. 4669. ISSN: 2045-2322. DOI: 10.1038/s41598-022-08427-2. URL: https://doi.org/10.1038/s41598-022-08427-2.
- [4] S. Logghe Prof. L.H. Immers. "Traffic Flow Theory". In: 2002.
- [5] Ruoniu Wang. The economic cost of traffic congestion in Florida. Ago. 2010. DOI: 10.13140/RG.2.2.11217.43368.