

Sapere utile

IFOA Istituto Formazione Operatori Aziendali

BIG DATA e Analisi dei Dati

Lezione 2.1 – File systems

Mauro Bellone, Robotics and Al researcher

bellonemauro@gmail.com www.maurobellone.com

GitHub repo attivo

Link per scaricare i tutorial che faremo durante questo corso:

https://github.com/bellonemauro/Tutorial_corsoIFOA2021_big

Obiettivo

- ✓ Comprensione del file system per sistemi computazionali
- Comprensione delle problematiche relative al processamento e la memorizzazione di big data con i file system tradizionali
- ✓ Introduzione al file system di Hadoop e mapReduce

Livelli di astrazione del software

Hardware

Livelli di astrazione del software

Hardware

Il file è una collezione nominate di informazioni memorizzate in una memoria secondaria.

Il file è una collezione nominate di informazioni memorizzate in una memoria secondaria.

Dal punto di vista dell'utente un file è la più piccola quantità di memoria allottabile in una memoria (secondaria), dalla quale i dati possono essere letti o scritti.

Il file è una collezione nominate di informazioni memorizzate in una memoria secondaria.

Dal punto di vista dell'utente un file è la più piccola quantità di memoria allottabile in una memoria (secondaria), dalla quale i dati possono essere letti o scritti.

Tipi di informazione memorizzabile: dati numerici, caratteri o programmi (any!)

Il file è una collezione nominate di informazioni memorizzate in una memoria secondaria.

Dal punto di vista dell'utente un file è la più piccola quantità di memoria allottabile in una memoria (secondaria), dalla quale i dati possono essere letti o scritti.

Tipi di informazione memorizzabile: dati numerici, caratteri o programmi (any!)

Un file ha una struttura definita che dipende dal suo tipo (da cui l'estensione)

Attributi di un file

- ➤ **Nome**: tag leggibile
- Identificatore: tag unico (tenuto nel file system e univoco per ogni file)
- > **Tipo**: documento, eseguibile etc.
- Locazione: puntatore alla locazione di memoria iniziale del file
- Dimensione: dimensione corrente in memoria
- > **Protezione**: controllo di sicurezza per accesso in lettura, scrittura, esecuzione
- Data, ora e identificazione utenti: attribute temporali e monitoraggio di uso

Operazioni su un file

- Creazione: tag leggibile
- Scrittura: tag unico (tenuto nel file system e univoco per ogni file)
- Lettura: Si ritorna il puntatore al cluster di memoria iniziale del file da leggere
- > Spostamento: Il puntatore viene aggiornato su un altro valore
- Cancellazione: Rilascia lo spazio allocato per quell file
- Troncaggio: La lunghezza del file viene ridotta
- Rinominazione, apertura, chiusura: Copia il blocco di memoria nella RAM o lo dealloca

Directories

Troppi file in una lista sono complessi da gestire, abbiamo bisogno di raggruppamenti di files detti "cartelle"

Directories

Troppi file in una lista sono complessi da gestire, abbiamo bisogno di raggruppamenti di files detti "cartelle"

C:\Users\Mauro\Dropbox\CorsoIFOA_2021\lecture1

Struttura dei dischi

- A Traccia
- B Settore geometrico
- C Settore di traccia
- D Cluster

- 1 Blocco
- 2 Cluster

Memorizzazione

Un file viene memorizzato in uno o più clusters, se il cluster è pieno si alloca un altro cluster, se il cluster non è pieno, lo spazio rimanente nel cluster resta non allocato.

- ✓ Uso del disco non ottimo
- ✓ Frammentazione

Cos'è il file system

Il file system è un meccanismo standard di allocazione e organizzazione dei dati su memoria

Cos'è il file system

Il file system è un meccanismo standard di allocazione e organizzazione dei dati su memoria

Cos'è il file system

Il file system è un meccanismo standard di allocazione e organizzazione dei dati su memoria

Tipi di file system

- ✓ File Partition Table FAT 8/12/16/32
- ✓ New Technology File System NTFS
- ✓ EXT2/3/4
- ✓ exFAT

File Partition Table FAT 8/12/16/32

✓ File Partition Table FAT 8/12/16/32

I file system sono costituiti da una tabella di voci con degli attributi (es. isDirectory, isReadOnly, hidden etc)

Attributo	Dimensione
Filename	8B
Extension	3B
Attributi	1B
Riservato	1B
Data di creazione	3B
Ora di creazione	3B
Ultimo accesso	2B
Data ultima modifica	2B
Ora ultima modifica	2B
Primo cluster	2B
Dimensione file	4B
First cluster	MSB, 2B
First cluster	LSB, 2B

Clusters

Tipicamente la dimensione del cluster varia tra 2 to 32 KiB per FAT8 e FAT12 e aumenta a 256kB per FAT16 e FAT32

FAT12	FAT16	FAT32	Descrizione
0x000	0x0000	0x0000000	Cluster libero
0x001	0x0001	0x0000001	Valore riservato
0x002-0xFEF	0x0002-0xFFEF	0x00000002-0x0FFFFEF	Cluster dati
0xFF0-0xFF6	0xFFF0-0xFFF6	0x0FFFFFF0-0x0FFFFF6	Valori riservati
0xFF7	0xFFF7	0x0FFFFF7	Cluster danneggiato
0xFF8-0xFFF	0xFFF8-0xFFFF	0x0FFFFFF8-0x0FFFFFFF	Ultimo cluster

Clusters

Tipicamente la dimensione del cluster varia tra 2 to 32 KiB per FAT8 e FAT12 e aumenta a 256kB per FAT16 e FAT32

FS	Dimensione file max	Dimensione volume max	
FAT12	32 MB (8kB clusters)	10 bit = 4096 clusters	32 MB (8kB clusters)
FAT16	2 GB / GB	16 bit = 65536 clusters	16 GB (256kB clusters)
FAT32	4 GB	32 bit = 4 Giga-clusters	32 GB - windows format 2TB - altri OS 16 TB - teorici

Clusters

Tipicamente la dimensione del cluster varia tra 2 to 32 KiB per FAT8 e FAT12 e aumenta a 256kB per FAT16 e FAT32

FS	Dimensione file max	Dimensione volume max	
FAT12	32 MB (8kB clusters)	10 bit = 4096 clusters	32 MB (8kB clusters)
FAT16	2 GB / GB	16 bit = 65536 clusters	16 GB (256kB clusters)
FAT32	4 GB	32 bit = 4 Giga-clusters	32 GB - windows format 2TB - altri OS 16 TB - teorici

Limiti del file system

- Dimensione massima del file supportato
- Dimensione massima della memoria
- Massima profondità dell'albero delle cartelle

New Technology File System (NTFS)

- ✓ Dimensione massima del file supportato 16 EiB
- ✓ Dimensione massima della memoria 2⁶⁴ clusters
- ✓ Introduzione del journaling (evita la corruzione)
- ✓ Supporta permessi di lettura scrittura su files e criptaggio

Extended file allocation table - exFAT

- ✓ Dimensione massima del file supportato 16 EiB
- ✓ Ottimizzato per sistemi USB ad alta capacità
- ✓ Largamente supportato su non-Windows OS
- ✓ Installato di default sulle memorie SDXC (schede di memoria SD per camere e smartphone)

Fourth extended filesystem - Ext4

- ✓ Dimensione massima del file supportato 16 TB
- ✓ Dimensione massima della memoria 1 EB (4 kB cluster size)
- ✓ Supportato da tutti i sistemi operativi

To wrap up

- ✓ I file system hanno il compito di gestire l'allocazione delle informazioni
- ✓ I file system hanno una capacità limitata data dalla quantità di memoria fisica indirizzabile
- ✓ Tutti i file system hanno delle intrinseche limitazioni

To wrap up

- ✓ I file system hanno il compito di gestire l'allocazione delle informazioni
- ✓ I file system hanno una capacità limitata data dalla quantità di memoria fisica indirizzabile
- ✓ Tutti i file system hanno delle intrinseche limitazioni

In termini di big data tutte le limitazioni sono amplificate dalla quantità e dal flusso di informazioni

Problemi

- ✓ Memorizzazione
- ✓ Processamento

Problemi

- ✓ Memorizzazione
- ✓ Processamento

È un problema a causa del grande volume di informazioni, nessuno dei file system più evoluti può gestire quantità di memoria e informazioni dell'ordine dei ZB

Problemi

- ✓ Memorizzazione
- ✓ Processamento

Il processamento potrebbe richidere un tempo molto lungo

Hadoop file system

Il file system di Hadoop ci permette di memorizzare dati in maniera distribuita risolvendo il problema della memorizzazione

Hadoop file system

Il file system di Hadoop ci permette di memorizzare dati in maniera distribuita risolvendo il problema della memorizzazione

Mentre mapReduce ci aiuta a risolvere il problema di processare l'informazione

Sapere utile

IFOA Istituto Formazione Operatori Aziendali

BIG DATA e Analisi dei Dati

Lezione 2.2 – Hadoop distributed file system

Mauro Bellone, Robotics and Al researcher

bellonemauro@gmail.com www.maurobellone.com

Obiettivo

- ✓ Comprensione del file system di hadoop
- ✓ Comprensione delle basi di lavoro sul file system di Hadoop

HDFS – **Hadoop distributed file system**

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

HDFS – **Hadoop distributed file system**

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

Requisiti di Progetto:

√ Grandi file (TB)

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

Requisiti di Progetto:

√ Grandi file (TB)

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

Requisiti di Progetto:

- √ Grandi file (TB)
- ✓ Accesso dati in streaming
- **✓** Commodity hardware

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

Requisiti di Progetto:

- √ Grandi file (TB)
- ✓ Accesso dati in streaming
- √ Commodity hardware

Limiti: non funziona bene con

✓ Molti file piccoli

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

Requisiti di Progetto:

- √ Grandi file (TB)
- ✓ Accesso dati in streaming
- √ Commodity hardware

Limiti: non funziona bene con

- ✓ Molti file piccoli
- **✓ Queries a bassa latenza**

Il file system di Hadoop è specificatamente progettato per memorizzare grandi dataset in commodity hardware (no servers, mainframes etc.)

Requisiti di Progetto:

- √ Grandi file (TB)
- ✓ Accesso dati in streaming
- √ Commodity hardware

Limiti: non funziona bene con

- ✓ Molti file piccoli
- ✓ Queries a bassa latenza

HDFS – Namenode e datanode

- ✓ È un master deamon
- ✓ Solo 1 namenode può essere attivo

- ✓ È un master deamon
- ✓ Solo 1 namenode può essere attivo

Namenode failure !!!

- ✓ È un master deamon
- ✓ Solo 1 namenode può essere attivo
- ✓ Gestisce tutti i data nodes

- ✓ È un master deamon
- ✓ Solo 1 namenode può essere attivo
- ✓ Gestisce tutti i data nodes
- ✓ Contiene tutti i metadata (NO DATA)

- ✓ È un master deamon
- ✓ Solo 1 namenode può essere attivo
- ✓ Gestisce tutti i data nodes
- ✓ Contiene tutti i metadata (NO DATA)

✓ È un slave deamon

- ✓ È un slave deamon
- ✓ Ci sono molti datanode

- ✓ È un slave deamon
- ✓ Ci sono molti datanode
- ✓ Contiene i dati reali

- ✓ È un slave deamon
- ✓ Ci sono molti datanode
- ✓ Contiene i dati reali
- √ Fault tolerance

- ✓ È un slave deamon
- ✓ Ci sono molti datanode
- ✓ Contiene i dati reali
- √ Fault tolerance

HDFS – **Metadata**

I metadata sono allocati nel namenode e ci danno informazioni su locazione, dimensione e altre informazioni sui files contenuti nei datanodes

HDFS – **Metadata**

I metadata sono allocati nel namenode e ci danno informazioni su locazione, dimensione e altre informazioni sui files contenuti nei datanodes

HDFS – Metadata

I metadata sono allocati nel namenode e ci danno informazioni su locazione, dimensione e altre informazioni sui files contenuti nei datanodes

Progettate un sistema come se niente possa funzionare a dovere!!!

Casi di guasto:

- 1. Crash del namenode (hardware failure, mancanza di corrente etc.)
- 2. Esaurita la capacità di memoria del namenode

Un namenode secondario tiene traccia dei files di editlog e fsimage

secondario

Un namenode secondario tiene traccia dei files di editlog e fsimage

Questo significa che bisogna anche aggiornare il file editlog

Un namenode secondario tiene traccia dei files di editlog e fsimage

Tutto il processo tipicamente è eseguito ogni ora nel cluster

HDFS – Architettura del cluster

HDFS – Architettura del cluster

HDFS – Architettura del cluster

HDFS – Architettura del cluster

HDFS – Blocchi di dati

Il file system di hadoop divide grandi files in piccoli blocchi (data block)

HDFS – Blocchi di dati

Il file system di hadoop divide grandi files in piccoli blocchi (data block)

By default i dati sono divisi in blocchi di 128 MB

HDFS - Blocchi di dati

Il file system di hadoop divide grandi files in piccoli blocchi (data block)

By default i dati sono divisi in blocchi di 128 MB

Blocchi più piccoli causano overhead del sistema

Blocchi più grandi allungherebbero tempi di processamento

By default il fattore di replicazione è 3, quindi abbiamo sempre almeno 3 copie dello stesso dato su rack diversi

Rack n

Il namenode effettua tutte le operazioni di creazione e aggiornamento dei metadata con informazioni di lettura, scrittura e accesso su ogni blocco

Rack 1

Rack 2

Namenode

Namenode

HDFS – Lettura

HDFS – Lettura

HDFS - Lettura - RPC (remote procedure call)

HDFS – Lettura – RPC (remote procedure call)

HDFS – Lettura – RPC (remote procedure call)

HDFS - Scrittura

HDFS – Scrittura

HDFS – Scrittura

Namenode

HDFS - Scrittura

Namenode

Il client crea un file sul file system distribuito

HDFS - Scrittura

Il file system distribuito interagisce con il namenode per restituire una locazione dove creare il file

L'interazione è fatta sempre tramite chiamata RPC

HDFS – Scrittura

HDFS – Scrittura

HDFS - Scrittura

HDFS - Vantaggi

