

自然语言处理 Natural language Processing

授课教师: 胡玥

2024.12

课程编码: 180086081203P2002H 课程名称: 自然语言处理 授课团队 黄河燕、胡玥 、张仰森

第9章 NLP基础任务

序列标注

2/3

内容提要

- 9.0 概述
- 9.1 文本分类
- 9.2 文本匹配
- 9.3 序列标注
- 9.4 序列生成

9.3 序列标注

■ 序列标注

本节内容:

- 1. 序列标注问题概述
- 2. 隐马尔科夫模型HHM(概率统计模型)
- 4. 神经网络序列标注模型 (深度学习模型)

问题引入

● 实体识别与抽取 (在给定的序列中找到目标序列)

非结构化文本

2011年7月25日,在上海举办的游泳世锦赛上,年仅15岁的叶诗文的以2分08秒90的成绩勇夺女子200米混合泳冠军,成为最年轻的单项世界冠军获得者。

2011年7月25日,在上海举办的游泳世锦赛上,年仅15岁的叶诗文的以2分08秒90的成绩勇夺女子200米混合泳冠军,成为最年轻的单项世界冠军获得者。

标	输入	任务建模	输出
注任务	非结构化	序列标注	目标片段
	文本序列	模型	一般用序列标注方法

■ 例1: 实体识别类问题

问题1: 将给定的输入序列中的人名识别出来 (人名识别)

新任总裁罗建国宣布了对部门经理邓奇的任免通知

问题2: 将给定的输入序列中的组织机构名识别出来 (组织机构名)

新任总裁罗建国宣布了对远大公司经理国庆的任免通知

问题3: 将给定的输入序列中的军事术语抽取出来

鹰式战斗机是一款极为优秀的多用途战斗机

序列标注建模: "将输入的语言序列转化为标注序列",通过标注序列标签含义来解决问题。如:

◆ 命名实体识别 (人名识别)

> {BIEO} 或 {BIO} B-词首 I-词中 E-词尾 O-单个词

◆ 命名实体识别 (组织机构名识别)

输入序列: 新任总裁罗建国宣布了对远大公司经理国庆的任免通知

标注序列: 0 00 0000 0 000 BII E000 0000 00

◆ 信息抽取 (实体识别)

输入: 鹰式战斗机是一款极为优秀的多用途战斗机

输出: BIIIEOOOOOOBIIIE

■ 例2: 词性标注 (POS) 类问题

概率统计NLP中的词法分析中词性标注

目标: 将给定的输入序列中词的词性标出来

如: 输入: Flies like a flower

词性标注结果: Flies/N like /V a/ART flower/N

标签集合集 { 单词的词性, 如 N 、V 等 }

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB(like V)	0.1
PROB (like P)	0.068
PROB (like N)	0.012
$PROB(a \mid ART)$	0.360
$PROB(a \mid N)$	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB(birds N)	0.076

序列标注方法:

标注问题是分类问题的推广,是复杂结构预测的简单形式(监督学习)

许多自然语言处理问题 均可转化为<mark>序列标注问题,</mark>如 分词、 短语识别、依存分析、语义角色标注,信息抽取……

9.3 序列标注

■ 序列标注

本节内容:

- 1. 序列标注问题概述
- 2. 隐马尔科夫模型HHM(概率统计模型)
 - 2.1 马尔科夫模型
 - 2.2. 隐马尔科夫模型
- 3. 神经网络序列标注模型 (深度学习模型)

马尔可夫 (Andrei Andreyevich Markov, 18510.6.14 ~ 1922.7.20)

前苏联数学家。切比雪夫(1821年5月16日~1894年12月8日)的学生。在概率论、数论、函数逼近论和微分方程等方面卓有成就。他提出了用数学分析方法研究自然过程的一般图式—马尔可夫链,并开创了随机过程(马尔可夫过程)的研究。

马尔可夫链

一个系统有N个状态 S1, S2, ..., Sn,

随着时间(空间)推移,系统从某一状态转移到另一状态

如果系统在t时间的状态q t 只与其在时间 t -1的状态相关[$P(q_i|q_{i-1}\cdots q_1)$

= P(q_i|q_{i-1})],则系统构成离散的一阶马尔可夫链(马尔可夫过程)

马尔可夫模型(马尔可夫链出现的概率):

$$p(S_0, S_1, \dots, S_T) = \prod_{t=1}^T p(S_t | S_{t-1}) \ p(S_0)$$

模型输入: 状态序列

模型输出: 状态序列的概率值

模型参数: P(q_t|q_{t-1}))

\$1 \$2 \$3 \$n \$1 \$a11 \$a12 \$a13 \$a1n \$2 \$a21 \$a22 \$a23 \$a2n \$3 \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$\frac{1}{2}\$ \$n \$an1 \$an2 \$an3 \$anr

独立于时间 t 的随机过程:

$$P(q_t = S_j | q_{t-1} = S_i) = a_{i,j}, 1 \le i, j \le N$$

其中: 状态转移概率 a_{ij} 必须满足 $a_{ij}>=0$,

$$\mathbf{L} \qquad \sum_{i=1}^{N} a_{i,j} = 1$$

马尔可夫模型组成

三元组 $M = (S, \pi, A)$

其中: 状态转移概率 a_{ij}

$$P(q_t = S_j \mid q_{t-1} = S_i) = a_{i,j}, 1 \le i, j \le N$$

满足 $a_{ij} > = 0$,且 $\sum_{i=1}^{N} a_{i,j} = 1$

π 初始状态向量

参数	含义
S	模型中状态的有限集合
Α	与时间无关的状态转移概率矩 阵
π	初始状态空间的概率分布

马尔可夫模型作用

三元组 $M = (S, \pi, A)$

参数	含义
S	模型中状态的有限集合
Α	与时间无关的状态转移概率矩阵
π	初始状态空间的概率分布

定量描述随机事件: 天气变化

例1: 预测天气变化

S={晴 云 雨 }

$$\pi = (1, 0, 0)$$

假定一段时间内的气象可由一3状态马尔可夫模型 M 描述:

 S_1 : 雨, S_2 : 多云, S_3 : 晴, 转移概率矩阵为:

如果第一天为晴天,根据这一模型,求在今后七天中天气为 S= "晴晴雨雨晴云晴"的概率

即,求

解: 马尔可夫模型状态序列概率:

$$p(S_0, S_1, \dots, S_T) = \prod_{t=1}^T p(S_t | S_{t-1}) \ p(S_0)$$

雨

굸

晴

S=晴晴晴雨雨晴云晴

$$\begin{split} &P(O \mid M) \\ &= P(S_3, S_3, S_3, S_1, S_1, S_1, S_3, S_2, S_3 \mid M) \\ &= P(S_3) \cdot P(S_3 \mid S_3) \cdot P(S_3 \mid S_3) \cdot P(S_1 \mid S_3) \cdot P(S_1 \mid S_1) \cdot P(S_3 \mid S_1) \cdot P(S_2 \mid S_3) \cdot P(S_3 \mid S_2) \\ &= 1 \cdot a_{33} \cdot a_{33} \cdot a_{31} \cdot a_{11} \cdot a_{13} \cdot a_{32} \cdot a_{23} \\ &= (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2) \\ &= 1.536 \times 10^{-4} \end{split}$$

9.3 序列标注

■ 序列标注

本节内容:

- 1. 序列标注问题概述
- 2. 隐马尔科夫模型HHM(概率统计模型)
 - 2.1 马尔科夫模型
 - 2.2. 隐马尔科夫模型
- 3. 神经网络序列标注模型 (深度学习模型)

隐马尔可夫模型 (Hidden Markov Model, HMM)

描写:该模型是一个双重随机过程,我们不知道具体的状态序列,只知道状态转移的概率,即模型的状态转换过程是不可观察的(隐蔽的)而可观察事件的随机过程是隐蔽状态转换过程的随机函数。

--- 创建于20世纪70年代 ---

通过可见的事物的变化揭示深藏其后的内在的本质规律

马尔可夫模型:

天气变化

隐马尔可夫模型HMM:

π: 晴云雨 (1,0,0)

天气变化

状态序列 Q

晴 → 云 → 雨 → 晴 ⁻

海藻变化

观察序列 0

干

稍干

潮湿

湿润

稍干

0:

观察序列变化由状态序列变化引起

(两者相关联)

隐马尔可夫模型(HMM):

要素	含义	实例
S	模型中状态的有限 集合	天气
0	每个状态可能的现 察值	海藻
Α	与时间无关的状态 转移概率矩阵	天气转移板 车矩阵
В	给定状态下,观察 值概率分布	每个天气状 态的海藻观 测概率
π	初始状态空间的概 率分布	初始时选择 某天气概率

五元组 $\lambda = (S, O, \pi, A, B)$ 或简写为 $\lambda = (\pi, A, B)$

HMM的特点:

- ◆ HMM的<mark>状态是</mark>不确定或<mark>不可见</mark>的,只有通过观测序列的随机过程才能表现出来
- ◆ 观察到的事件与状态并不是一一对应,而是通过一组概率分布相联系
- ◆ HMM是一个双重随机过程,两个组成部分:
 - 马尔可夫链:描述状态的转移,用转移概率描述。
 - 一般随机函数:描述状态与观察序列间的关系,用观察值概率描述。

HMM的三个假设:

对于一个随机事件,有一观察值序列: $O=O_1,O_2,\cdots O_T$

该事件隐含着一个状态序列: $Q = q_1,q_2,\cdots q_{T_0}$

假设1: 马尔可夫性假设(状态构成一阶马尔可夫链)

$$P(q_i|q_{i-1}\cdots q_1) = P(q_i|q_{i-1})$$

假设2:不动性假设(状态与具体时间无关)

$$P(q_{i+1}|q_i) = P(q_{j+1}|q_j)$$
,对任意 i ,j成立

假设3:输出独立性假设(输出仅与当前状态有关)

$$p(O_1,...,O_T | q_1,...,q_T) = \Pi p(O_t | q_t)$$

HMM五元组说明:

- 1. 隐藏状态s: 一个系统的(真实)状态,可以由一个马尔科夫过程进行描述(如,天气)
- 3. 观察状态 o: 在这个过程中'可视'的状态(例如,海藻的湿度)
- 3. 状态转移概率矩阵 A = a_{ii}: 包含了一个隐藏状态到另一个隐藏状态的概率 。其中,

$$\begin{cases} a_{ij} = p(q_{t+1} = S_j | q_t = S_i), & 1 \le i, j \le N \\ a_{ij} \ge 0 \\ \sum_{j=1}^{N} a_{ij} = 1 \end{cases}$$

4. 观察概率矩阵 $B=b_{j}(k)$: 从隐藏状态 S_{j} 观察到某一特定符号 ν_{k} 的概率分布矩阵。 其中,

$$\begin{cases} b_{j}(k) = p(O_{t} = v_{k} \mid q_{t} = S_{j}), & 1 \leq j \leq N, \quad 1 \leq k \leq M \\ b_{j}(k) \geq 0 \\ \sum_{k=1}^{M} b_{j}(k) = 1 \end{cases}$$

5. 初始状态的概率分布为: $\pi = \pi_i$, 其中,

$$\begin{cases} \pi_i = p(q_1 = S_i), & 1 \le i \le N \\ \pi_i \ge 0 \\ \sum_{i=1}^N \pi_i = 1 \end{cases}$$

隐马尔可夫模型结构(HMM):

输入: 观察序列

输出: 1. 观察序列的概率值 2. 隐状态序列

参数: $P(q_t|q_{t-1})$, $P(O_t|q_t)$

A矩阵 B矩阵

函数关系:

- (1) 观察序列的概率值 (HMM评估问题)
- (2) 隐状态序列 (HMM解码问题)

HMM评估问题

对于给定观察序列 $O=O_1,O_2,\cdots O_T$,以及模型 $\lambda=(A,B,\pi)$ 求观察序列的概率 $P(O|\lambda)$

求: 观察序列概率P(O|λ) =?

问题:

- 1. 观察序列概率P(O|λ)定义
- 2. 如何计算 P(O|λ)

1. 观察序列概率P(O|λ)定义

■ 对于给定的一个状态序列 $Q = q_1q_2\cdots q_T$,

$$P(O,Q \mid \lambda) = \pi_{q1} a_{q1q2} a_{q2q3} ... a_{qT-1qT} b_{q1} (O_1) b_{q2} (O_2) ,... b_{qT} (O_T)$$

$$P(Q \mid \lambda) \qquad P(O \mid Q, \lambda)$$

$$P(O,Q \mid \lambda) = P(Q \mid \lambda) P(O \mid Q, \lambda)$$

 $\pi = (1, 0, 0)$

■ 对于全部状态序列

观察序列来源

观察序列概率:

已知

$$P(O \mid \lambda) = \sum_{Q} P(O, Q \mid \lambda) = \sum_{Q} P(Q \mid \lambda) P(O \mid Q, \lambda)$$

2. 如何计算 P(O|λ)

观察序列概率:

$$P(O \mid \lambda) = \sum_{O} P(O, Q \mid \lambda) = \sum_{O} P(Q \mid \lambda) P(O \mid Q, \lambda)$$

(1) 穷举法: 找到每一个可能的隐藏状态的序列,这里有3³= 27种,可观察序列的概率就是这27种可能的和。 很显然,这种计算的效率非常低,尤其是当模型中的状态非常多或者序列很长的时候。

穷举法的问题:

◆困难:

如果模型 μ 有 N个不同的状态,时间长度为T,那么有 N^T 个可能的状态序列,搜索路径成指数级组合爆炸

解决方法:

(2) 前向算法 (后向算法): 利用动态规划使用递归来降低计算复杂度

向前算法

前向算法基本思想:

使用递归来降低计算复杂度

$$P(O \mid \lambda) = \sum_{Q} P(O, Q \mid \lambda) = \sum_{Q} P(Q \mid \lambda) P(O \mid Q, \lambda)$$

$$t=1$$
 $\pi_{i'}$ $\alpha_{1}(i)=\pi_{i}b_{i}(O_{1})$ 晴 $\sum_{i=1}^{N}\alpha_{T}(i)$ 潮湿

$$\alpha_{t-1}(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij}\right] b_{j}(O_{t-1}),$$

前向算法实现:

定义 前向变量 $\alpha_t(j)$ (部分概率),表示达到某个中间状态的概率

- ▶当 t=1 时,是初始概率,Pr(状态 j | t=1) = π(状态 j) $\alpha_1(i) = \pi_i b_i(O_1), \quad t = 1$
 - > 当1 ≤ t ≤ T-1 时,

$$\alpha_{t-1}(j) = [\sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 1 \le t \le T-1$$

> 最终结果 $p(O \mid \mu) = \sum_{i=1}^{N} \alpha_{T}(i)$

前向算法 (The forward procedure)

- (1) 初始化: $\alpha_1(i) = \pi_i b_i(O_1), 1 \le i \le N$
- (2) 循环计算:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i)a_{ij}\right]b_{j}(O_{t+1}), \qquad 1 \le t \le T-1$$

(3) 结束,输出:

$$p(O \mid \mu) = \sum_{i=1}^{N} \alpha_{T}(i)$$

算法的时间复杂性:

每计算一个 $\alpha_t(i)$ 必须考虑从 t-1 时的所有 N 个状态转移到状态 S_i 的可能性,时间复杂性为 O(N),对应每个时刻 t,要计算 N 个前向变量: $\alpha_t(1)$, $\alpha_t(2)$, …, $\alpha_t(N)$,所以,时间复杂性为: $O(N) \times N = O(N^2)$ 。 又因 t=1, 2, …, T,所以前向算法总的复杂性为: $O(N^2T)$

穷举算法的时间开销是和 T 指数相关 即 $O(N^T)$

例1: 已有天气和海藻关系的HMM模型 λ ; 求连续3 天海藻湿度的观察结果是(干燥、潮湿、湿润)的概率。

S = {晴天, 阴天, 下雨}

〇 = {湿润, 潮湿, 稍干,干燥}

 π (1, 0, 0)

解:用向前算法

晴天 阴天 下雨 海藻 干 稍干 潮湿 湿润 晴天
$$\begin{pmatrix} 0.50 & 0.25 & 0.25 \\ 0.375 & 0.25 & 0.375 \\ 0.25 & 0.125 & 0.625 \end{pmatrix}$$
 天气 明天 $\begin{pmatrix} 0.60 & 0.20 & 0.15 & 0.05 \\ 0.25 & 0.25 & 0.25 & 0.25 \\ 0.05 & 0.10 & 0.35 & 0.50 \end{pmatrix}$ $\pi = \begin{pmatrix} 1, & 0, & 0 \end{pmatrix}$

1. 前向算法

- (1) 初始化: $\alpha_i(i) = \pi_i b_i(O_i), 1 \le i \le N$
- (2) 循环计算:

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij}\right] b_{j}(O_{t+1}), \quad 1 \le t \le T - 1$$

(3) 结束,输出:

$$p(O \mid \mu) = \sum_{i=1}^{N} \alpha_{T}(i)$$

$$p(O \mid \mu) = \sum_{i=1}^{N} \alpha_T(i) = 0.0025 + 0.0068 + 0.0293 = 0.0386$$

HMM解码问题:

对于给定观察序列 $O=O_1,O_2,\cdots O_T$,以及模型 $\lambda=(A,B,\pi)$ 如何选择一个对应的 状态序列 $S=S_1,S_2,\cdots S_T$,使得S能够最为合理的解释观察序列 O

求: 状态序列序列 $S = S_1, S_2, \cdots S_T$

求: 状态序列序列 $S = S_1, S_2, ... S_T$

(1) 穷举法:找到每一个可能产生观察序列的状态序列,这里有3³= 27种,计算每种可能情况下观察序列的概率,概率最大的状态序列就是要找的状态序列。 很显然,这种计算的效率非常低,尤其是当模型中的状态非常多或者序列很长的时候。

解决方法:

(2) Viterbi 搜索算法:利用动态规划使用递归来降低计算复杂度

Viterbi 搜索算法

Andrew Viterbi

安德鲁.维特比(Andrew Viterbi)

1967年发明了维特比算法。

维特比算法: 利用动态规划方法解决特殊的 篱笆网络有向图的最短路径问题。 是现代数 字通信中使用最频繁的算法; 同时也是很多自 然语言处理的解码算法。

Viterbi 算法基本思想: 使用递归来降低复杂度

- 1. 如果概率最大路径(或说最短路径)经 i 时刻某个点,一定可以找到S到该点的最短路径(可将i时刻点的最短路径记录)
- 2. 从S到E 的路径必定经过 i时刻的某个点
- 3. 当从状态 i 进入到i+1状态时计算S到i+1 状态时,只考虑 i状态所有节点最短路径和和它们到 i+1状态的距离即可。

Viterbi时间复杂度: $O(N^2T)$ 穷举法: $O(N^T)$

Viterbi 算法实现:

(1) 部分最优路径概率

定义一个部分概率 δ ;用 δ (i, t)来表示在t时刻,到状态i的所有可能的序列(路径)中概率最大的序列的概率

$$\begin{split} & \delta_1(i) = \pi_i b_i(O_1), \quad 1 \leq i \leq N \\ & \delta_t(j) = \max_{1 \leq i \leq N} [\delta_{t-1}(i) \cdot a_{ij}] \cdot b_j(O_t), \quad 2 \leq t \leq T, \quad 1 \leq j \leq N \end{split}$$

(2)向后指针记录最优路径

利用一个后向指针 φ 来记录导致某 个状态最大局部概率的前一个状态

$$\phi_t(i) = \arg\max_{j} (\delta_{t-1}(j)a_{ji})$$

(3) 结果

$$q_t^* = \varphi_{t+1}(q_{t+1}^*), \quad t = T-1, T-2, ..., 1$$

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T - 1, T - 2, ..., 1$

算法的时间复杂度: $O(N^2T)$

例1: 已有天气和海藻关系的HMM模型 λ 和连续3 天海藻湿度的观察结果(干燥、潮湿、湿润),求最可能的天气序列

设:
$$\pi = (1, 0, 0)$$

解:用Viterbi 搜索算法

海澡

 $\pi = (1, 0, 0)$

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T-1, T-2,...,1$

(干燥、潮湿、湿润),最可能的天气序列: (晴、雨、雨)

HMM参数学习

隐马尔科夫模型参数

$$P(S_t | S_{t-1}) = \frac{P(S_{t-1}S_t)}{P(S_{t-1})} \qquad P(O_t | S_t) = \frac{P(O_t | S_t)}{P(S_t)}$$

训练思路:

通过观察序列 $O = O_1O_2 \cdots O_T$ 作为训练数据,用最大似然估计,使得观察序列 O 的概率 $p(O|\mu)$ 最大。

情况1: 产生观察序列 O 的状态 Q = $q_1q_2\cdots q_T$ 已知,可以采用有监督的学习方法,用最大似然估计来计算 μ 的参数:

其中, $\delta(x, y)$ 为<u>克罗奈克(Kronecker)函数</u>,当 x= y 时, $\delta(x, y)$ =1, 否则 $\delta(x, y)$ = 0。

$$\bar{b}_{j}(k) = \frac{Q + \text{N状态}q_{j} 输出符号v_{k} 的次数}{Q \text{到达}q_{j} 的总次数} = \frac{\sum_{t=1}^{T} \delta(q_{t}, S_{j}) \times \delta(O_{t}, v_{k})}{\sum_{t=1}^{T} \delta(q_{t}, S_{j})}$$

其中,v_k是模型输出符号集中的第 k 个符号。

情况2: HMM 中的状态序列Q 是观察不到的,这时,最大似然估计方法不可行。可以采用无监督的EM学习方法。

解决方法:

期望最大化EM 算法。根据EM 算法调节模型的参数 π_i a_{ij} , $b_{j(k)}$,使得观察序列O的概率P(O|M)最大,主要使用前向后向算法(鲍姆-韦尔奇Baum-Welch)算法。

(略)

统计自然语言处理时代HMM模型在统计自然语言处理中有着广泛的应用

观察序列 $O=O_1O_2\cdots O_r$: 处理的语言单位,一般为 词

状态序列 S = S1S2···ST : 与语言单位对应的句法信息,一般为 词类/词性

模型参数: 初始状态概率、状态转移概率、发射概率 需要学习获得

★ 分词: HMM的评估问题: 当分词出现多种可能时,求观察序列 $O=O_1O_2\cdots O_7$ 的概率, 结果取 概率最大的序列; 解码问题: 用序列标注直接进行分词

★ 词性标注: 相当HMM的解码问题。即求观察序列 $O=O_1O_2\cdots O_7$ 下,概率 最大的标注序列 argmax P(Q|O , μ)

★ 其他: 如 短语识别、语音识别 ·······.

m// [m/m]/n /w =]/cc /w 画m/n /m 国家/n 电视台/nis 上/f 向/p 国人/ns 领导人/nnt 渴望/v 找到/v 与/cc 优/d 已/d 显示/v 出/vf 上述/b 意向/n 坐下/vi , /w 周围/f 是/vshi 大/a /vshi 一笔/mq 好/a 的/udel 投资/vn 的/udel 中国/ns 社交/n 媒体/n 上/f

例1: HMM模型在词性标注中的应用

设,有如下从语料库训练得到的词性转移概率矩阵和词语生成概率矩阵

词性转移概率

内丘积沙加干		
词性	估计	
PROB(ARTIØ)	0.71	
PROB(N ø)	0.29	
PROB(NIART)	1	
PROB(V N)	0.43	
PROB(NIN)	0.13	
PROB(PIN)	0.44	
PROB(NIV)	0.35	
PROB(ART V)	0.65	
PROB (ART P)	0.74	
PROB(N1P)	0.26	

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB (like \ V)	0.1
PROB (like P)	0.068
PROB (like N)	0.012
$PROB(a \mid ART)$	0.360
$PROB(a \mid N)$	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB(birds N)	0.076

试对 "flies like a flower "进行词性标注

解: 问题求解目标:对每个词标出其词性

该问题属于序列标注问题,可用HMM模型进行标注

观察集 (词集): flies, like, a, flower

状态集 (词性集): N, V, P, ART

可用 Viterbi 搜索算法 解码

词性转移概率

- 14 D 190 1	
词性。	估计
PROB(ARTIØ)	0.71
PROB(N ø)	0.29
PROB(NIART)	1
PROB(V N)	0.43
PROB(NIN)	0.13
PROB(PIN)	0.44
PROB(NIV)	0.35
PROB(ART V)	0.65
PROB(ART P)	0.74
PROB(N1P)	0.26
<u>.</u>	

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB(like V)	0.1
PROB (like P)	0.068
PROB (like N)	0.012
$PROB(a \mid ART)$	0.360
$PROB(a \mid N)$	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB (birds N)	0.076

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

2. 递归:
$$\delta_t(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_j(O_t)$$
, $2 \le t \le T, 1 \le j \le N$

$$\varphi_{\scriptscriptstyle t}(j) = \underset{1 \leq i \leq N}{\arg\max} [\delta_{\scriptscriptstyle t-1}(i)a_{\scriptscriptstyle ij}] b_{\scriptscriptstyle j}(O_{\scriptscriptstyle t}) \;, \;\; 2 \leq t \leq T, 1 \leq j \leq N$$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T-1, T-2,...,1$

观察序列

(词)	flies	like	a	flower
				V
				N (词性)
				P
				ART

词性转移概率

词性 估计 PROB(ARTIØ) 0.71 PROB(NIØ) 0.29 PROB(NIART) PROB(VIN) 0.43 PROB(NIN) 0.13 PROB(PIN) 0.44 PROB(NIV) 0.35 PROB(ART | V) 0.65 PROB(ART | P) 0.74 PROB(N1P) 0.26

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB (like V)	0.1
PROB (like P)	0.068
PROB (like N)	0.012
PROB(a ART)	0.360
PROB(a N)	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB(birds N)	0.076

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

2. 递归:
$$\delta_t(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_j(O_t), 2 \le t \le T, 1 \le j \le N$$

$$\varphi_{t}(j) = \underset{1 \le i \le N}{\operatorname{arg\,max}} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \le t \le T, 1 \le j \le N$$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T - 1, T - 2,...,1$

观察序列

(词) flies like a flower

词性转移概率

词性 估计 PROB(ARTIØ) 0.71 PROB(NIØ) 0.29 PROB(NIART) PROB(VIN) 0.43 PROB(NIN) 0.13 PROB(PIN) 0.44PROB(NIV) 0.35 PROB(ART | V) 0.65 PROB(ART | P) 0.74 PROB(N1P) 0.26

词语生成概率

PROB (the ART)	0.54
PROB (flies N)	0.025
PROB(flies V)	0.076
PROB (like \ V)	0.1
PROB (like P)	0.068
PROB (like N)	0.012
$PROB(a \mid ART)$	0.360
$PROB(a \mid N)$	0.001
PROB(flower N)	0.063
PROB(flower V)	0.05
PROB (birds N)	0.076

Viterbi 搜索算法

1. 初始化:
$$\delta_1(i) = \pi_i b_i(O_1)$$
, $\varphi_1(i) = 0$, $1 \le i \le N$

2. 递归:
$$\delta_t(j) = [\max_{1 \le i \le N} \delta_{t-1}(i)a_{ij}]b_j(O_t), 2 \le t \le T, 1 \le j \le N$$

$$\varphi_{t}(j) = \underset{1 \le i \le N}{\operatorname{arg\,max}} [\delta_{t-1}(i)a_{ij}]b_{j}(O_{t}), \quad 2 \le t \le T, 1 \le j \le N$$

3. 终结:
$$p^* = \max_{1 \le i \le N} [\delta_T(i)]$$
 , $q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$

4. 路径回溯:
$$q_t^* = \varphi_{t+1}(q_{t+1}^*)$$
, $t = T-1, T-2,...,1$

观察序列 (词)

flies /N

like /V

a /ART

flower /N

结果

例2: 用HMM实现简单的中文分词

例 . 输入: 北京是中国的首都

输出: 北京 是 中国 的 首都 (词序列)

m/v 顷例/n ,/w 司/cc /w 国际/n ,国家/n 电视台/nis 上/f 向/p 国人/ /ns 领导人/nnt 渴望/v 找到/v 与/cc 优/d 已/d 显示/v 出/vf 上述/b 意向/ n 坐下/vi ,/w 周围/f 是/vshi 大/a r/vshi 一笔/mq 好/a 的/udel 投资/vn 的/udel 中国/ns 社交/n 媒体/n 上/f

语料

解: 用单字序列标注方法

{ 词首/B,词内/I,词尾/E,单字词/O }

模型HMM:

S: 状态集合, { B, I, E, O}

O:观察值集合,{单个汉字:人、民、中.....}

A: 状态转移概率矩阵

B: 给定状态下, 观察值的概率分布

π: 初始状态空间的概率分布

参数学习

语料:

训练语料: 国/B 家/E 电/B 视/I 台/E 上/O 向/O 国/B人

/E 领/B 导/I 人/E....

训练语料: 国/B 家/E 电/B 视/I 台/E 上/O 向/O

国/B人/E 领/B 导/I 人/E....

假设,语料中不重复的中文单字共8000个

国家电视台上向国人…
$$B = \begin{bmatrix} XXXX & XXX$$

• $\pi = [XXX, 0, 0, XXX]^T$ π ∈R⁴,元素之和为1

用最大似然估计学习参数:

有观察序列 $O=O_1O_2...O_T$ 和 状态序列 $Q=q_1q_2.....q_T$ 用极大似然估计

•
$$\pi_i = \frac{\sum_{t=1}^{T} \delta(q_t, S_i)}{T}$$
, $(S_0 = B, S_1 = I, S_2 = E, S_3 = O)$

•
$$a_{ij} = \frac{\sum_{t=1}^{T-1} \delta(q_t, S_i) \times \delta(q_{t+1}, S_j)}{\sum_{t=1}^{T-1} \delta(q_t, S_i)}$$

•
$$b_{jk} = \frac{\sum_{t=1}^{T} \delta(q_t, S_j) \times \delta(o_t, v_k)}{\sum_{t=1}^{T} \delta(q_t, S_j)}$$

预测-分词

输入: 北京是中国的首都

输出: BEOBEOBE

分词结果: 北京/ 是/ 中国/ 的/ 首都

 $A = \begin{bmatrix} B & I & E & O \\ I & 0 & 0.3 & 0.7 & 0 \\ 0 & 0.4 & 0.6 & 0 \\ 0.5 & 0 & 0 & 0.5 \end{bmatrix}$ $B = \begin{bmatrix} XXX & XXX \\ XXX & XXX &$

注意: 分词和词性标注虽均用HMM模型, 但 状态集

观察集 不同,训练语料标注不同,模型参数不同

思考:

用HMM模型是否可以同时识别人名, 地名和组织结构名?

张/B-PER 三/I-PER 在/O 北/B-Loc 京/I-Loc 旅/O 游/O …..

隐马尔科夫模型问题

HMM 等生产式模型存在的问题

1. 由于生成模型定义的是联合概率,必须列举所有观察序列的可能值,这对多数领域来说是比较困难的。

在自然语言处理中,常知道各种各样但又不完全确定的信息,需要一个统一的模型将这些信息综合起来。

2. 输出独立性假设要求序列数据严格相互独立才能保证推导的正确性,导致其不能考虑上下文特征

在自然语言处理中,常常需要考虑上下文关系。

问题: HMM对于自然语言中的上下文信息不能利用

隐马尔科夫模型改进

最大熵模型:

1: 如何利用各种各样但又不完全确定的信息(上下文信息)?

如何建模上下文信息?

最大熵模型

$$p_{\lambda}(y|x) = \frac{1}{Z_{\lambda}(x)} \exp(\sum_{i} \lambda_{i} f_{i}(x, y))$$

其中:

$$Z_{\lambda}(x) = \sum_{y} \exp(\sum \lambda_{i} f_{i}(x, y))$$

称为归一化因子。

特点:可以综合上下文信息

详情略

隐马尔科夫模型改进

条件随机场 CREF:

2: 如何用这些信息进行序列标注(生成序列上下文有关)

如何建模输出间信息?

条件随机场

$$p(y | x, \lambda) = \frac{1}{Z(x)} \exp \left(\sum_{i} \lambda_{j} t_{j} (y_{i-1}, y_{i}, x, i) + \sum_{ki} \mu_{k} S_{k}(y_{i}, x, i) \right)$$

其中:
$$Z(x) = \sum_{y} \exp(\sum_{ji} \lambda_{j} t_{j} (y_{i-1}, y_{i}, x, i) + \sum_{ki} \mu_{k} S_{k}(y_{i}, x, i))$$

特点:综合上下文信息

并且建立输出之间联系

9.3 序列标注

■ 序列标注

本节内容:

- 1. 序列标注问题概述
- 2. 隐马尔科夫模型HHM(概率统计模型)
- 3. 神经网络序列标注模型 (深度学习模型)
 - (1) 双向RNN+softmax 模型
 - (2) 双向RNN+CRF 模型

神经网络序列标注模型架构

(1) BiRNN+softmax 模型:

■ 模型结构:

(1) BiRNN+softmax 模型:

■ 模型结构:

参数: W1,U1, W2, U2,Wc,

■ 模型学习 (有监督)

Ŷ格式: (10000) (01000) (00000) (00100)

 \widehat{Y} : B-PER I-PER O B-Loc

X: 张三在北京

如 标人名: 训练数据(有标注训练集)

张/B-PER 三/I-PER 在/O 北/B-Loc 京/I-Loc 旅/O 游/O …..

标签集: {B-PER, I-PER, B-Loc, I-Loc, O}

(1) 双向RNN+softmax 模型:

■ 模型学习 (有监督)

• 定义损失函数

交叉熵损失:
$$J(\theta; x, y) = -\sum_{j=1}^{K} y_j \log((y_{pred})_j)$$
 k 标签数

整体损失:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} J(\theta; x^{(i)}, y^{(i)})$$
 $\theta = \{W1, U1, W2, U2, Wc, \}$

• 用BPTT算法训练参数 W1,U1, W2, U2, Wc

9.3 序列标注

■ 序列标注

本节内容:

- 1. 序列标注问题概述
- 2. 隐马尔科夫模型HHM(概率统计模型)
- 3. 神经网络序列标注模型 (深度学习模型)
 - (1) 双向RNN+softmax 模型
 - (2) 双向RNN+CRF 模型

BiRNN+softmax 模型存在问题:

例如:

对BiRNN+softmax 模型改进:

改进思路: 建立输出之间的关系

输出:概率最大的序列 B-Loc I-Loc O

对BiRNN+softmax 模型改进:

改进思路: 建立输出之间的关系

输出:概率最大的序列 B-Loc I-Loc O

方法: 设一组参数A学习标签间的转移概率

A: k× k方阵

K: 标签数

如何改进BiRNN+softmax 模型 (建立输出间联系) ?

参数: W1,U1, W2, U2,Wc,

如何改进BiRNN+softmax 模型 (建立输出间联系) ?

输出: 概率最大的序列

$$Y = s(X, y) = \sum_{i=0}^{L} A_{y_i, y_{i+1}} + \sum_{i=1}^{L} P_{i, y_i}$$

(2) BiRNN+CRF 模型:

模型结构:

参数: W1,U1, W2, U2, Wc, A

■ 模型学习 (有监督)

如 标人名: 训练数据(有标注训练集)

张/B-PER 三/I-PER 在/O 北/B-Loc 京/I-Loc 旅/O 游/O …..

标签集: {B-PER, I-PER, B-Loc, I-Loc, O}

■ 模型学习 (有监督)

• 损失函数:交叉熵损失

• 优化目标
$$p(\mathbf{y}|\mathbf{X}) = \frac{e^{s(\mathbf{X},\mathbf{y})}}{\sum_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} e^{s(\mathbf{X},\widetilde{\mathbf{y}})}}. \qquad \left(s(\mathbf{X},\mathbf{y}) = \sum_{i=0}^{L} A_{y_i,y_{i+1}} + \sum_{i=1}^{L} P_{i,y_i} \right)$$

最大化
$$\log(p(\mathbf{y}|\mathbf{X})) = s(\mathbf{X},\mathbf{y}) - \log\left(\sum_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} e^{s(\mathbf{X},\widetilde{\mathbf{y}})}\right) \\ = s(\mathbf{X},\mathbf{y}) - \underset{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}}{\operatorname{logadd}} \ s(\mathbf{X},\widetilde{\mathbf{y}})$$

其中,Yx是所有可能的输出序列

- 用BPTT算法训练参数 θ=[A,W1,U1, V1, W2, U2, V2,Wc]
- 模型预测: $\mathbf{y}^* = \operatorname*{argmax} s(\mathbf{X}, \widetilde{\mathbf{y}}).$ $\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}$

■ 实验结果:

Comparison of tagging performance on POS, chunking and NER tasks for various models.

		POS	CoNLL2000	CoNLL2003
	Conv-CRF (Collobert et al., 2011)	96.37	90.33	81.47
Random	LSTM	97.10	92.88	79.82
	BI-LSTM	97.30	93.64	81.11
	CRF	97.30	93.69	83.02
	LSTM-CRF	97.45	93.80	84.10
	BI-LSTM-CRF	97.43	94.13	84.26
	Conv-CRF (Collobert et al., 2011)	97.29	94.32	88.67 (89.59)
Senna	LSTM	97.29	92.99	83.74
	BI-LSTM	97.40	93.92	85.17
	CRF	97.45	93.83	86.13
	LSTM-CRF	97.54	94.27	88.36
	BI-LSTM-CRF	97.55	94.46	88.83 (90.10)

CRF效果好于只用LSTM或BI-LSTM

BI-LSTM与CRF结合的方法在多项任务上表现最好

双向RNN+softmax 与 双向RNN+CRF 模型对比:

如 标人名: 训练数据(有标注训练集) 标签集: {B-PER, I-PER, B-Loc, I-Loc, O} 张/B-PER 三/I-PER 在/O 北/B-Loc 京/I-Loc 旅/O 游/O …..

RNN+softmax:

Ŷ格式: (10000) (01000) (00000) (00100)

 \widehat{Y} : B-PER I-PER O B-Loc

X: 张三在北京

• 损失函数

交叉熵损失:
$$J(\theta; x, y) = -\sum_{j=1}^{k} y_j \log((y_{pred})_j)$$
 k 标签数

RNN+CRF

 \hat{Y} 格式: (000 ... 10 ...)

 \widehat{Y} : B-PER I-PER O B-Loc

X: 张三在北京

• 损失函数:交叉熵损失

• 优化目标
$$p(\mathbf{y}|\mathbf{X}) = \frac{e^{s(\mathbf{X},\mathbf{y})}}{\sum_{\widetilde{\mathbf{y}} \in \mathbf{Y}_{\mathbf{X}}} e^{s(\mathbf{X},\widetilde{\mathbf{y}})}}. \qquad (s(\mathbf{X},\mathbf{y}) = \sum_{i=0}^{L} A_{y_{i},y_{i+1}} + \sum_{i=1}^{L} P_{i,y_{i}}) \quad s(\mathbf{X},\mathbf{y}) = \sum_{i=0}^{L} A_{y_{i},y_{i+1}} + \sum_{i=1}^{L} P_{i,y_{i}}$$

参考文献:

http://wenku.baidu.com/view/3cf29130f111f18583d05a57.html

http://wenku.baidu.com/view/9121f528bd64783e09122b80.html

http://wenku.baidu.com/view/bbd57f82fc4ffe473268ab59.html?from=search

李航,统计学习方法 清华大学出版社

宗成庆,统计自然语言处理(第2版)

在此表示感谢!

谢谢!

Thank you

