MA110: Lecture 11

Saurav Bhaumik Department of Mathematics IIT Bombay

Spring 2025

Similarity of Square Matrices

Definition

Let A, $B \in \mathbb{K}^{n \times n}$. We say that A is similar to B (over \mathbb{K}) if there is an invertible $P \in \mathbb{K}^{n \times n}$ such that $B = P^{-1}AP$, that is, AP = PB. In this case, we write $A \sim B$.

One can easily check (i) ${\bf A}\sim {\bf A}$, (ii) if ${\bf A}\sim {\bf B}$ then ${\bf B}\sim {\bf A}$, and (iii) if ${\bf A}\sim {\bf B}$ and ${\bf B}\sim {\bf C}$, then ${\bf A}\sim {\bf C}$.

Examples:

(i) Let
$$\mathbf{A} := \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$$
. It is easily seen that $\mathbf{P} := \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ is invertible and . $\mathbf{P}^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$. Hence \mathbf{A} is similar to

$$\boldsymbol{B} := \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 6 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

which is a diagonal matrix.

More Examples and a Characterization of Similarity

- (ii) Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Then $\mathbf{A} \sim \mathbf{I} \iff \mathbf{A} = \mathbf{I}$.
- (iii) Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let \mathbf{E} be $n \times n$ an elementary matrix. Then $\mathbf{B} := \mathbf{E} \mathbf{A} \mathbf{E}^{-1}$ is similar to \mathbf{A} . Note: $\mathbf{E} \mathbf{A}$ is obtained from \mathbf{A} by an elementary row operation on \mathbf{A} , and \mathbf{B} is obtained from $\mathbf{E} \mathbf{A}$ by the 'reverse column operation' on $\mathbf{E} \mathbf{A}$.

Diagonalizability

Definition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is called **diagonalizable** (over \mathbb{K}) if \mathbf{A} is similar to a diagonal matrix (over \mathbb{K}).

Examples

(i) Let
$$\mathbf{A} := \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$$
. Let $\mathbf{P} := \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$, so that $\mathbf{P}^{-1} := \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$. Then \mathbf{A} is similar to the matrix

$$\boldsymbol{B} := \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 6 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},$$

which is a diagonal matrix.

- (ii) Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Then $\mathbf{A} \sim \mathbf{I} \iff \mathbf{A} = \mathbf{I}$.
- (iii) Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let \mathbf{E} be $n \times n$ an elementary matrix. Then $\mathbf{B} := \mathbf{E} \mathbf{A} \mathbf{E}^{-1}$ is similar to \mathbf{A} . Note: $\mathbf{E} \mathbf{A}$ is obtained from \mathbf{A} by an elementary row operation on \mathbf{A} , and \mathbf{B} is obtained from $\mathbf{E} \mathbf{A}$ by the 'reverse column operation' on $\mathbf{E} \mathbf{A}$.

Similarity of matrices has the following characterisation.

Proposition

Let \mathbf{A} , $\mathbf{B} \in \mathbb{K}^{n \times n}$. Then $\mathbf{A} \sim \mathbf{B}$ if and only if there is an ordered basis E for $\mathbb{K}^{n \times 1}$ such that \mathbf{B} is the matrix of the linear transformation $T_{\mathbf{A}} : \mathbb{K}^{n \times 1} \to \mathbb{K}^{n \times 1}$ with respect to E.

In fact, $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ if and only if the columns of \mathbf{P} form an ordered basis, say E, for $\mathbb{K}^{n\times 1}$ and $\mathbf{B} = \mathbf{M}_E^E(T_{\mathbf{A}})$.

Proof. Let $\mathbf{B} := [b_{jk}]$. Now $\mathbf{A} \sim \mathbf{B} \iff$ there is an invertible matrix \mathbf{P} such that $\mathbf{AP} = \mathbf{PB}$. Let \mathbf{x}_k be the k-th column of P. Then $E := (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is an ordered basis for $\mathbb{K}^{n \times 1}$. Conversely, if $E = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ is an ordered basis then the matrix $P = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ is invertible. Now $\mathbf{AP} = \mathbf{PB}$ implies:

$$\mathbf{A} \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{bmatrix}.$$

The kth column of LHS is $\mathbf{A}\mathbf{x}_k$ and the kth column of RHS is the linear combination of $\mathbf{x}_1,\ldots,\mathbf{x}_n$ with coefficients from the k column of \mathbf{B} . Thus $\mathbf{A}\mathbf{x}_k = b_{1k}\mathbf{x}_1 + \cdots + b_{nk}\mathbf{x}_n$ for $k=1,\ldots,n$. This means the kth column of $\mathbf{M}_E^E(T_\mathbf{A})$ is the kth column $\begin{bmatrix} b_{1k} & \cdots & b_{nk} \end{bmatrix}^T$ of $\mathbf{B}, k=1,\ldots,n$, that is, $\mathbf{B} = \mathbf{M}_E^E(T_\mathbf{A})$. Conversely, if $\mathbf{B} = \mathbf{M}_E^E(T_\mathbf{A})$ then again $\mathbf{A}\mathbf{x}_k = T_A(\mathbf{x}_k) = b_{1k}\mathbf{x}_1 + \cdots + b_{nk}\mathbf{x}_n$ for $k=1,\ldots,n$, so $\mathbf{AP} = \mathbf{PB}$ where $P = [\mathbf{x}_1,\ldots,\mathbf{x}_n]$.

Proposition

A matrix $\mathbf{A} \in \mathbb{K}^{n \times n}$ is diagonalizable if and only if there is a basis for $\mathbb{K}^{n \times 1}$ consisting of eigenvectors of \mathbf{A} .

In fact,
$$\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \mathbf{D}$$
, where $\mathbf{X} := \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}$ and $\mathbf{D} := \operatorname{diag}(\lambda_1, \dots, \lambda_n) \iff \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ is a basis for $\mathbb{K}^{n \times 1}$ and $\mathbf{A}\mathbf{x}_k = \lambda_k \mathbf{x}_k$ for $k = 1, \dots, n$.

Proof. **A** is diagonalizable \iff there is an invertible matrix **X** and a diagonal matrix **D** such that $\mathbf{AX} = \mathbf{XD}$. This is the case if and only if there is a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ for $\mathbb{K}^{n \times 1}$ and there are $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ such that

$$\mathbf{A} \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

The LHS is just $[\mathbf{A}\mathbf{x}_1, \dots, \mathbf{A}\mathbf{x}_n]$ and the RHS is just $[\lambda \mathbf{x}_1, \dots, \lambda_n \mathbf{x}_n]$. Thus the proposition follows.

If $\mathbf{A} = \mathbf{X}\mathbf{D}\mathbf{X}^{-1}$, then for any $m \in \mathbb{N}$,

$$\mathbf{A}^m = (\mathbf{X}\mathbf{D}\mathbf{X}^{-1})\cdots(\mathbf{X}\mathbf{D}\mathbf{X}^{-1}) = \mathbf{X}\mathbf{D}^m\mathbf{X}^{-1} = \mathbf{X}\operatorname{diag}(\lambda_1^m,\ldots,\lambda_n^m)\mathbf{X}^{-1}.$$

Example

We have seen that

$$\mathbf{A} := \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1}$$
and
$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}. \text{ Hence}$$

$$\mathbf{A}^{m} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2^{m} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 2^{m}3 & 1 \\ 2^{m}2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 2^{m}3 - 2 & -2^{m}3 + 3 \\ 2^{m}2 - 2 & -2^{m}2 + 3 \end{bmatrix} \quad \text{for } m \in \mathbb{N}.$$

Similarity and Eigenvalues

Recall that $\lambda \in \mathbb{K}$ is an eigenvalue of $\mathbf{A} \in \mathbb{K}^{n \times n}$ if $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$ for some $\mathbf{x} \in \mathbb{K}^{n \times 1}$ with $\mathbf{x} \neq \mathbf{0}$. It turns out that similar matrices have the same eigenvalues. In fact, more is true.

Proposition

Let $\mathbf{A}, \mathbf{A}' \in \mathbb{K}^{n \times n}$ be similar. Then $p_{\mathbf{A}}(t) = p_{\mathbf{A}'}(t)$. In particular, $\lambda \in \mathbb{K}$ is an eigenvalue of \mathbf{A} if and only if λ is an eigenvalue of \mathbf{A}' . Consequently, the algebraic multiplicity of λ as an eigenvalue of \mathbf{A} is equal to the algebraic multiplicity of λ as an eigenvalue of \mathbf{A}' . Furthermore, the geometric multiplicity of λ as an eigenvalue of \mathbf{A} is equal to the geometric multiplicity of λ as an eigenvalue of \mathbf{A}' .

Proof: Since $\mathbf{A} \sim \mathbf{A}'$, there is an invertible $\mathbf{P} \in \mathbb{K}^{n \times n}$ such that $\mathbf{A}' = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$. Writing $\mathbf{I} = \mathbf{P}^{-1}\mathbf{P}$, we see that $p_{\mathbf{A}'}(t) = \det(\mathbf{A}' - t\mathbf{I}) = \det(\mathbf{P}^{-1}\mathbf{A}\mathbf{P} - t\mathbf{I}) = \det(\mathbf{A} - t\mathbf{I}) = p_{\mathbf{A}}(t)$.

Proof Contd. It remains to prove the assertion about geometric multiplicity. Let λ be an eigenvalue of **A** and **x** be an eigenvector of **A** corresponding to λ . Then $\mathbf{x} \neq \mathbf{0}$ and $Ax = \lambda x$. Since $A' = P^{-1}AP$, we see that $x' := P^{-1}x$ satisfies $\mathbf{A}'\mathbf{x}' = \lambda\mathbf{x}'$. Also $\mathbf{x}' \neq \mathbf{0}$ since **P** is invertible. Thus \mathbf{x}' is an eigevector of \mathbf{A}' corresponding to λ . Also, it is easy to check that $\{\mathbf{x}_1,\ldots,\mathbf{x}_{\sigma}\}$ is a basis for $\mathcal{N}(\mathbf{A}-\lambda\mathbf{I})$ if and only if $\{\mathbf{P}^{-1}\mathbf{x}_1,\ldots,\mathbf{P}^{-1}\mathbf{x}_{\sigma}\}$ is a basis for $\mathcal{N}(\mathbf{A}'-\lambda\mathbf{I})$. Hence the geometric multiplicity of λ as an eigenvalue of **A** is equal to the geometric multiplicity of λ as an eigenvalue of \mathbf{A}' .

Example

$$\mathbf{A} := \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \ \Rightarrow p_{\mathbf{A}}(t) = \det \begin{bmatrix} \lambda - t & 1 \\ 0 & \lambda - t \end{bmatrix} = (\lambda - t)^2.$$

Hence λ is the only eigenvalue of **A**, and its algebraic multiplicity is 2. But its geometric multiplicity is 1 since

$$\mathbf{A} - \lambda \mathbf{I} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \Longrightarrow \operatorname{rank}(\mathbf{A} - \lambda \mathbf{I}) = 1 \Longrightarrow \operatorname{nullity}(\mathbf{A} - \lambda \mathbf{I}) = 1.$$

Note that in the above example, if **A** were similar to a diagonal matrix **D**, then we must have $\mathbf{D} = \operatorname{diag}(\lambda,\lambda)$, since eigenvalues and their algebraic multiplicities of **A** and **D** have to be the same. But the geometric multiplicity of λ as an eigenvalue of **D** is 2. This shows that **A** is not diagonalizable.

Example

$$\mathbf{A} := \begin{bmatrix} 3 & 0 & 0 \\ -2 & 4 & 2 \\ -2 & 1 & 5 \end{bmatrix} \Rightarrow p_{\mathbf{A}}(t) = \det \begin{bmatrix} 3 - t & 0 & 0 \\ -2 & 4 - t & 2 \\ -2 & 1 & 5 - t \end{bmatrix}.$$

Computing the determinant, we find $p_{\mathbf{A}}(t) = (3-t)^2(6-t)$. Hence 3 is an eigenvalue of **A** of algebraic multiplicity 2, and 6 is an eigenvalue of **A** of algebraic multiplicity 1. Also,

$$\mathbf{A} - 3\mathbf{I} = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 2 \\ -2 & 1 & 2 \end{bmatrix} \Rightarrow \operatorname{rank}(\mathbf{A} - 3\mathbf{I}) = 1.$$

So nullity($\mathbf{A} - 3\mathbf{I}$) = 2. In fact, $\left\{ \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^\mathsf{T}, \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^\mathsf{T} \right\}$ is a basis of the eigenspace of \mathbf{A} corresponding to eigenvalue 3, and so its geometric multiplicity is equal to 2.

Relating geometric and algebraic multiplicities

Proposition

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let λ be an eigenvalue of \mathbf{A} . Then the geometric multiplicity of λ is less than or equal to its algebraic multiplicity.

Proof. Let g be the geometric multiplicity of λ . Let $(\mathbf{v}_1,\ldots,\mathbf{v}_g)$ be an ordered basis of the eigenspace of λ ; extend it to an ordered basis $(\mathbf{v}_1,\ldots,\mathbf{v}_g,\mathbf{v}_{g+1},\ldots,\mathbf{v}_n)$ of $\mathbb{K}^{n\times 1}$. Define $\mathbf{P}:=\begin{bmatrix}\mathbf{v}_1&\cdots&\mathbf{v}_n\end{bmatrix}$. Then \mathbf{P} is invertible since its n columns $\mathbf{v}_1,\ldots,\mathbf{v}_n$ are linearly independent. Consider $\mathbf{A}':=\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$. Since $\mathbf{A}\mathbf{v}_j=\lambda\mathbf{v}_j$ and $\mathbf{P}\mathbf{e}_j=\mathbf{v}_j$ for $j=1,\ldots,g$, we see that the j th column of \mathbf{A}' is given by

$$\mathbf{A}'\mathbf{e}_j = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{e}_j = \mathbf{P}^{-1}\mathbf{A}\mathbf{v}_j = \lambda\mathbf{P}^{-1}\mathbf{v}_j = \lambda\mathbf{e}_j.$$

Hence

$$\mathbf{A}' = \begin{bmatrix} \lambda & \cdots & 0 & \\ \vdots & \ddots & \vdots & \mathbf{C} \\ 0 & \cdots & \lambda & \end{bmatrix}$$

where $\mathbf{C} \in \mathbb{K}^{g \times (n-g)}$, $\mathbf{O} \in \mathbb{K}^{(n-g) \times g}$ and $\mathbf{D} \in \mathbb{K}^{(n-g) \times (n-g)}$. Expanding by the first column, we see that

$$\det(\mathbf{A}'-t\mathbf{I})=(\lambda-t)^gq(t),$$

where q(t) is a polynomial of degree n - g. Thus

$$p_{\mathbf{A}}(t) = p_{\mathbf{A}'}(t) = \det(\mathbf{A}' - t\mathbf{I}) = (\lambda - t)^g q(t).$$

Thus $(\lambda - t)^g$ divides the characteristic polynomial $p_{\mathbf{A}}(t)$ of **A**. Since the algebraic multiplicity of λ is the largest natural number m such that $(\lambda - t)^m$ divides $p_{\mathbf{A}}(t)$, we obtain $g \leq m$.

Eigenvectors corresponding to distinct eigenvalues

Our next result is about the linear independence of eigenvectors corresponding to distinct eigenvalues of a matrix.

Lemma

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of \mathbf{A} . Let $\mathbf{x}_1, \dots, \mathbf{x}_k$ belong to the eigenspaces of \mathbf{A} corresponding to $\lambda_1, \dots, \lambda_k$ respectively. Then

$$\mathbf{x}_1 + \cdots + \mathbf{x}_k = \mathbf{0} \iff \mathbf{x}_1 = \cdots = \mathbf{x}_k = \mathbf{0}.$$

In particular, if $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are eigenvectors of \mathbf{A} corresponding to $\lambda_1, \ldots, \lambda_k$ respectively, then the set $\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ is linearly independent.

Proof. We use induction on the number k of distinct eigenvalues of \mathbf{A} . Clearly, the result holds for k=1.

Let $k \ge 2$ and assume that the result holds for k - 1.

Suppose $\mathbf{x}:=\mathbf{x}_1+\cdots+\mathbf{x}_{k-1}+\mathbf{x}_k=\mathbf{0}$. Then $\mathbf{A}\mathbf{x}=\mathbf{0}$, that is, $\lambda_1\mathbf{x}_1+\cdots+\lambda_{k-1}\mathbf{x}_{k-1}+\lambda_k\mathbf{x}_k=\mathbf{0}$. Also, multiplying the first equation by λ_k , we obtain $\lambda_k\mathbf{x}_1+\cdots+\lambda_k\mathbf{x}_{k-1}+\lambda_k\mathbf{x}_k=\mathbf{0}$. Subtraction gives $(\lambda_1-\lambda_k)\mathbf{x}_1+\cdots+(\lambda_{k-1}-\lambda_k)\mathbf{x}_{k-1}=\mathbf{0}$.

By the induction hypothesis,

$$(\lambda_1 - \lambda_k)\mathbf{x}_1 = \cdots = (\lambda_{k-1} - \lambda_k)\mathbf{x}_{k-1} = \mathbf{0}$$
. Since $\lambda_1 \neq \lambda_k, \ldots, \lambda_{k-1} \neq \lambda_k$, we obtain $\mathbf{x}_1 = \cdots = \mathbf{x}_{k-1} = \mathbf{0}$, and so $\mathbf{x}_k = \mathbf{0}$ as well.

Now let $\mathbf{x}_1, \dots, \mathbf{x}_k$ be eigenvectors. If $\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k = \mathbf{0}$, then $\alpha_1 \mathbf{x}_1 = \dots = \alpha_k \mathbf{x}_k = \mathbf{0}$. But $\mathbf{x}_1 \neq \mathbf{0}, \dots, \mathbf{x}_k \neq \mathbf{0}$, so that $\alpha_1 = \dots = \alpha_k = \mathbf{0}$. Thus $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ is linearly independent.

Theorem

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$, and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of \mathbf{A} . Let g_j be the geometric multiplicity of λ_j for $j=1,\ldots,k$. Then $g_1+\cdots+g_k\leq n$. Further, \mathbf{A} is diagonalizable if and only if $g_1+\cdots+g_k=n$.

Proof. Let $p_A(t) = \prod_{j=1}^k (\lambda_j - t)^{n_j}$. Then n_j is the algebraic multiplicity of λ_j . We have already seen that $g_j \leq n_j$. Thus,

$$\sum_{j=1}^k g_j \leq \sum_{j=1}^k n_j = n.$$

If A is diagonalizable, that is, similar to a diagonal matrix D, then the distinct eigenvalues of D are exactly $\lambda_1,\ldots,\lambda_k$ and for each $j=1,\ldots,k$, the geometric and algebraic multiplicities of λ_j are same for A and D. However as D is a diagonal matrix, the algebraic and geometric multiplicities for each eigenvalue are same, hence $g_j=n_j$ for each j, thus $\sum_{j=1}^n g_j=n$.

Conversely, suppose $\sum_{j=1}^{n} g_j = n$. Let V_j denote the eigenspace $\mathcal{N}(\mathbf{A} - \lambda_j \mathbf{I})$ of $\mathbb{K}^{n \times 1}$, and let E_j be a basis for V_j consisting of g_j eigenvectors of \mathbf{A} corresponding to λ_j for $j = 1, \ldots, k$.

Proof contd.

We claim that the set $E := E_1 \cup \cdots \cup E_k$ is linearly independent. Let \mathbf{x} be a linear combination of elements of E. Collate the elements of E_i for each j = 1, ..., k and write $\mathbf{x} = \mathbf{x}_1 + \cdots + \mathbf{x}_k$, where $\mathbf{x}_i \in V_i$ for $i = 1, \dots, k$. Suppose $\mathbf{x} = \mathbf{0}$. Then $\mathbf{x}_i = \mathbf{0}$ for $i = 1, \dots, k$ by the previous lemma. For $j \in \{1, ..., k\}$, \mathbf{x}_i is a linear combination of elements of the set E_i , and since the set E_i is linearly independent, every coefficient in this linear combination must be 0. Since this holds for each j = 1, ..., k, we see that every coefficient in the linear combination \mathbf{x} of elements of E must be 0. Now E_i has g_i many elements, so E has $\sum_i g_i = n$ many elements. As the dimension of \mathbb{K}^n is n, E must be a basis. As every element of E is an eigenvector of A, by results already proved, A is diagonalizable.