AIM: To design 3 bit synchronous up down counter using IC7473 and JK flipflop.

Apparatus Required: 1. Electronic circuit design kit

2.IC 7473

3.Patch cords.

Theory: A **3-bit synchronous up-down counter** counts in a binary sequence from 0 to 7 and can be controlled to either increment (count up) or decrement (count down) on each clock pulse. This counter uses **IC 7473** (which contains two JK flip-flops) and an additional JK flip-flop to form the three required stages.

Key Concepts

- **Synchronous Operation**: All three flip-flops are clocked simultaneously, avoiding the delay issues in asynchronous counters.
- **Up-Down Control**: Additional control logic (usually involving AND, OR gates) is used to switch the counter between up and down modes by setting the J and K inputs appropriately.
- **Clock and Clear Inputs**: The common clock signal drives state changes across all flip-flops, while the clear input can reset the counter to zero

Logic diagram:

Procedure:

Step1: determine the number of flip-flops required. A 3-bit counter requires three FFs. It has 8 states (000,001,010,011,101,110,111) and all the states are valid. Hence no don't cares. For selecting up and down modes, a control or mode signal M is required. When the mode signal M=1 and counts down when M=0. The clock signal is applied to all the FFs simultaneously.

Step2: draw the state diagrams: the state diagram of the 3-bit up-down counter is drawn as

Step3: select the type of flip flop and draw the excitation table: JK flip-flops are selected and the excitation table of a 3-bit up-down counter using JK flip-flops is drawn as shown in fig

PS mo			mode	NS			required excitations					
Q3	Q2	Q1	M	Q3	Q2	Q1	J3	K3	J2	K2	J1	K1
0	0	0	0	1	1	1	1	х	1	х	1	Х
0	0	0	1	0	0	1	0	X	0	X	1	х
0	0	1	0	0	0	0	0	X	0	х	Х	1
0	0	1	1	0	1	0	0	х	1	х	х	1
0	1	0	0	0	0	1	0	X	Х	1	1	Х
0	1	0	1	0	1	1	0	X	Х	0	1	Х
0	1	1	0	0	1	0	0	х	Х	0	х	1
0	1	1	1	1	0	0	1	X	Х	1	х	1
1	0	0	0	0	1	1	х	1	1	х	1	х
1	0	0	1	1	0	1	х	0	0	х	1	Х
1	0	1	0	1	0	0	X	0	0	X	X	1
1	0	1	1	1	1	0	х	0	1	X	X	1
1	1	0	0	1	0	1	Х	0	Х	1	1	Х
1	1	0	1	1	1	1	х	0	Х	0	1	Х
1	1	1	0	1	1	0	х	0	Х	0	х	1
1	1	1	1	0	0	0	X	1	Х	1	X	1

Step 4: obtain the minimal expressions: From the excitation table we can conclude that J1=1 and K1=1, because all the entries for J1and K1 are either X or 1. The K-maps for J3, K3,J2 and K2 based on the excitation table

Step5: draw the logic diagram: a logic diagram using those minimal expressions.

Result: Designed and verified Truth table of 3 bit synchronous up/down counter using IC 7473.