

ESTATÍSTICA PARA SAÚDE COLETIVA Aula 14

Seminários de hoje

Nomes (Aluno ou Dupla)	Data seminário	Nome do artigo
ANDERSON SILVA	15/10/2020	Características da epidemia de dengue em Pinhalzinho, Santa Catarina.
ROSA MARIA GARCIA + ANA LEITE	15/10/2020	Consumo de alimentos fora do lar no Brasil segundo locais de aquisição
TAINARA PRADELLA + ADRIANA BARROS	15/10/2020	Doenças Crônicas Não Transmissíveis e fatores de risco e proteção em adultos com ou sem plano de saúde
PAMELA MONTE CRUZ	15/10/2020	Prevalência de transtornos mentais comuns e fatores associados em moradores da área urbana de São Paulo, Brasil

Revisão: Correlações

 Compare o numero de horas de estudo vs. nota em um teste

 Os pontos indicam a nota e numero de horas de estudo para cada aluno

 Compare o numero de horas de estudo vs. nota em um teste

 Os pontos indicam a nota e numero de horas de estudo para cada aluno

20 30 Número de horas de estudo

Quanto mais próximo os dados estiverem dessa reta imaginaria, maior será a correlação

r de Pearson = 0.97

r de Pearson = 0.76

Aula de hoje

Regressão linear simples

Regressão linear simples

Variável resposta

Variável preditora

1 variável quantitativa

1 variável quantitativa

Regressões

 Pense nos modelos matemáticos como manequins, onde você ajusta seus dados a uma estrutura previamente estabelecida

$$y_i = \beta_0 + \beta_1 x_{i1}$$

Equação que define valores esperados de uma dada variável resposta (y), dado a observação de uma variável preditora (x)

Para que servem modelos preditivos?

 β_1

$$y_i = \beta_0 + \beta_1 x_{i1}$$

X

• Em regressão linear, chamamos a constante que multiplica o valor de x por β_1

- Nos exemplos
 - Em Y = 2 *x o valor de β_1 = 2
 - Em Y = -2 *x o valor de β_1 =-2
 - Em Y = 0 *x o valor de β_1 =0

 β_0

$$y_i = \beta_0 + \beta_1 x_{i1}$$

Formula: y = 5 + 2 * x

• Em regressão linear, chamamos o valor que corta o eixo y de β_0

Nos exemplos

- Em Y = 0 + 2 * x o valor de β_0 = 0
- Em Y = 5 + 2 * x o valor de β_0 = 5
- Em Y = 10 + 2 * x o valor de β_0 = 10
- Em Y = 15 + 2 * x o valor de β_0 = 15

Erro (ε)

Erro (ε)

Coeficiente de determinação (R²)

Coeficiente de determinação (R²)

• R² varia entre 0 e 1

 Coeficiente de determinação é a proporção da variação de y explicada pela variação de x

 Quanto maior o valor de R², mais os pontos estarão espalhados ao redor da reta

• A reta de regressão linear serve portanto para você prever valores de y, dado uma observação de x.

• Porém, você só pode fazer extrapolações dentro dos limites que você estudou.

 Por exemplo, em uma relação de idade vs altura, se você estudou crianças de 2 à 8 anos, você não pode usar o mesmo modelo para prever a altura de alguém de 80 anos.

Aplicação de uma regressão linear

Interpretar resultado

> summary(modelo) Call: $lm(formula = y \sim x)$ Residuals: Min 1Q Median 3Q Max -10.3226 -2.1808 -0.0269 3.4070 7.8274 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 77.2792 2.5127 30.76 < 2e-16 *** x 5.8954 0.4378 13.47 9.37e-14 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.411 on 28 degrees of freedom Multiple R-squared: 0.8663, Adjusted R-squared: 0.8615

F-statistic: 181.3 on 1 and 28 DF, p-value: 9.365e-14

Interpretar resultado

> summary(modelo)

Call:

```
lm(formula = y \sim x)
Residuals:
    Min 1Q Median 3Q
                                      Max
-10.3226 -2.1808 -0.0269 3.4070 7.8274
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 77.2792 2.5127 30.76 < 2e-16 ***
             5.8954 0.4378 13.47 9.37e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.411 on 28 degrees of freedom
Multiple R-squared: 0.8663, Adjusted R-squared: 0.8615
F-statistic: 181.3 on 1 and 28 DF, p-value: 9.365e-14
```

Interpretar resultado

> summary(modelo)

Call:

```
lm(formula = y \sim x)
Residuals:
    Min 1Q Median
                              3Q
                                      Max
-10.3226 -2.1808 -0.0269 3.4070 7.8274
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 77.2792 2.5127 30.76 < 2e-16 ***
            5.8954 0.4378 13.47 9.37e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.411 on 28 degrees of freedom
Multiple R-squared: 0.8663, Adjusted R-squared: 0.8615
F-statistic: 181.3 on 1 and 28 DF, p-value: 9.365e-14
```

Hipótese testada

• H₀: O coeficiente não é diferente de zero

• H₁: O coeficiente é diferente de zero

Interpretar resultado

```
Resultado: P menor que 0.05
Conclusão: H₁ é verdadeira
```

Hipóteses testadas

 H_0 : β 1 não é diferente de zero. Portanto, não há associação entre as variáveis.

H₁: β1 é diferente de zero. Portanto, há (sim) associação entre as variáveis.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 77.2792 2.5127 30.76 < 2e-16 ***

x 5.8954 0.4378 13.47 9.37e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.411 on 28 degrees of freedom

Multiple R-squared: 0.8663, Adjusted R-squared: 0.8615

F-statistic: 181.3 on 1 and 28 DF, p-value: 9.365e-14
```

Coeficiente de determinação (R²)

> summary(modelo)

Coeficiente de determinação é a proporção da variação de y explicada pela variação de x

OBS: esse valor varia entre 0 – 1

```
Residual standard error: 4.411 on 28 degrees of freedom
Multiple R-squared: 0.8663, Adjusted R-squared: 0.8615
F-statistic: 181.3 on 1 and 28 DF, p-value: 9.365e-14
```

Validação de modelos

Pré-requisitos

Normalidade

Verificar se não existem outliers

• O modelo deve passar por uma validação (análise de resíduos)

Validação de modelos / Analise de resíduos

- O que são resíduos? R. Diferença entre valores esperados (de acordo com a formula do modelo) e valores observados
 - OBS: Como isso vai aparecer no R
 Fitted values = valores previstos
 - Residuals = valores previstos valores observados
- Como analisar os resíduos? Inspeção gráfica (Cap 2, Zuur et al 2009)
 - Fazer um gráfico de resíduos vs valores previstos para avaliar se
 - 1. A relação é linear
 - 2. Existe homocedasticidade (pontos estão igualmente distribuídos igualmente em toda a área do gráfico)
 - Avaliar por histograma/boxplot se os resíduos tem distribuição normal
 - Resíduos vs. variável explanatória (para testar independência)

Estrutura do banco de dados

Como fica uma tabela desse tipo de dado?

Nome	Quantidade média de cafeína (em mg) consumidas ao longo de 15 dias	Média da quantidade de horas de sono de cada voluntario ao longo de 15 dias
Voluntario_1	541	7.46
Voluntario_2	241	7.76
Voluntario_3	441	7.56
Voluntario_4	541	7.46
Voluntario_5	241	7.76
Voluntario_6	341	7.66
Voluntario_7	841	7.16
Voluntario_8	341	7.66
Voluntario_9	341	7.66
Voluntario_10	741	7.26

do		variavei preditora		variaverresposta	
uU		quantitativa contínua	. •	quantitativa contínua	
	~ 100		\sim \sim \pm 1	· '	

	Quantidade média de cafeína (em mg)	Média da midade de horas de sono de cada voluntario ao longo de
Nome	consumidas ao longo de 15 dias	15 dias
Voluntario_1	541	7.46
Voluntario_2	241	7.76
Voluntario_3	441	7.56
Voluntario_4	541	7.46
Voluntario_5	241	7.76
Voluntario_6	341	7.66
Voluntario_7	841	7.16
Voluntario_8	341	7.66
Voluntario_9	341	7.66
Voluntario_10	741	7.26

Exemplos dos alunos

Exemplos de adaptações de perguntas da Lista um que podem ser respondidas com essa metodologia

- 1) Realizar dieta hiperproteica ajuda no emagrecimento? (Alex)
- 2) Beber pouca água pode causar perda de memória? (Leticia)
- 3) O sono está relacionado ao crescimento da criança? (Pamela)
- 4) A taxa de infeção por dengue das cidades, está associada a proporção de casas que recebem saneamento básico? (Rafaela Reimberg)
- 5) Existe correlação entre taxa de mortalidade infantil e nível de pobreza (estimado pelo PIB) nos diferentes estados brasileiros? (Rosa)

Realizar dieta hiperproteica ajuda no emagrecimento?

Beber pouca água pode causar perda de memória?

O sono está relacionado ao crescimento da crianca?

A taxa de infeção por dengue das cidades, está associada a proporção de casas que recebem saneamento básico?

Existe correlação entre taxa de mortalidade infantil e nível de pobreza (estimado pelo PIB) nos diferentes estados brasileiros?

Prática

Prática – 1 A pressão sanguínea diastólica pode ser prevista pelo tempo em repouso, após a pratica de atividade física?

Tabela "DadosAula13.xlsx"

- Colunas da tabela:
 - Pressao: Variável quantitativa contínua
 - Repouso: Variável quantitativa contínua

Interpretação dos resultados

```
> summary(modelo)
```

call:

lm(formula = tabela1\$Pressao ~ tabela1\$Repouso)

Residuals:

```
Min 1Q Median 3Q -4.2191 -1.4858 -0.1014 1.3140
```

Hipóteses testadas

H₀: β1 não é diferente de zero. Portanto, não há associação entre as variáveis.

Resultado: P maior que 0.05

Conclusão: H₀ é verdadeira

 H_1 : β 1 é diferente de zero. Portanto, há (sim) associação entre as variáveis.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.72152 1.50690 6.451 4.23e-09 ***
tabela1$Repouso -0.00201 0.14924 -0.013 0.989
```

Gráfico ou diagrama de dispersão

Tempo em repouso após atividade fisica

Prática – 2 A pressão sanguínea diastólica pode ser prevista quantidade de sódio consumida na ultima hora?

Tabela "DadosAula12.xlsx"

- Colunas da tabela:
 - Pressao: Variável quantitativa contínua
 - Sodio: Variável quantitativa contínua

Interpretação dos resultados

> summary(modelo)

call:

lm(formula = tabela1\$Pressao ~ tabela1\$Sodio)

Residuals:

1Q Median Min 3Q -1.3668 -0.4557 0.0677 0.3699

Coefficients:

(Intercept)

Hipóteses testadas

 H_0 : β 1 não é diferente de zero. Portanto, não há associação entre as variáveis.

Resultado: P menor que 0.05

Conclusão: H₁ é verdadeira

 H_1 : β1 é diferente de zero. Portanto, há (sim) associação entre as variáveis.

```
Estimate Std. Error t value Pr(>|t|)
                            0.1444
                                                      ***
                5.5936
                                      38.73
                                               <2e-16
tabela1$Sodio
                8.6317
                            0.2758
                                               <2e-16
                                                      * * *
                                      31.29
```

Gráfico ou diagrama de dispersão

Validação do modelo

