

**Profº Agnaldo Cieslak** 



- Propriedades da lógica proposicional:
- Tautologia

Quando uma proposição é verdadeira sob todos os pontos de vista, dizemos que é uma tautologia. Ou seja, o resultado da proposição complexa será sempre V.

• p ∨¬p = V em qualquer caso

| Р | <b>—</b> P | P V P |
|---|------------|-------|
| V | F          | V     |
| F | V          | V     |





- Propriedades da lógica proposicional:
- Contradição

Quando uma proposição é falsa sob todos os pontos de vista, dizemos que é uma contradição (ou contradição semântica). Ou seja, o resultado da proposição complexa será sempre F.

• p ^¬p = F em qualquer caso

| Р | ☐ P | P ^ P |
|---|-----|-------|
| V | F   | F     |
| F | V   | F     |



#### Contradição

 Em outros termos, é toda proposição composta P (p, q, r,...) cujo valor lógico é sempre F (falsidade), quaisquer que sejam os valores lógicos das proposições simples componentes p, q, r, ...

- Pensem na proposição abaixo:
  - "hoje é sábado e hoje não é sábado"
- Agora pensem em linguagem simbólica e montem a proposição com o conectivo correto.
- Agora façam a tabela verdade e vejam o resultado.
- Agora pense na frase: "hoje é sábado ou hoje não é sábado
- O que vocês podem concluir dela?

### Contradições

1. A proposição "p ^ ~p" é uma contradição, conforme mostra a sua tabela-verdade:

Portanto, não há como dizer que uma proposição é simultaneamente Verdadeira e falsa.

| р | ~p | p ^ ~p |
|---|----|--------|
| V | F  | F      |
| F | V  | F      |

 A proposição "p ↔ ~p" é uma contradição, conforme se vê pela sua tabela-verdade:

| р | ~p | p ↔ ~p |
|---|----|--------|
| V | F  | F      |
| F | V  | F      |



## Contradições

3. A proposição "(p ^ q) ^ ~(p v q)" é uma contradição?

| р | q | p ^ q | pvq | ~(p v q) | (p ^ q) ^ ~(p v q) |  |
|---|---|-------|-----|----------|--------------------|--|
| V | V | V     | V   | F        | F                  |  |
| V | F | F     | V   | F        | F                  |  |
| F | V | F     | V   | F        | F                  |  |
| F | F | F     | F   | V        | F                  |  |

# Contradições - Exemplos

4. A proposição "~p ^ (p ^ ~q)" é uma contradição, conforme mostra a sua tabela-verdade:

| р | q | ~p | ~q | p ^ ~q | ~p ^ (p ^ ~q) |
|---|---|----|----|--------|---------------|
| V | V | F  | F  | F      | F             |
| V | F | F  | V  | V      | F             |
| F | V | V  | F  | F      | F             |
| F | F | V  | V  | F      | F             |





- Propriedades da lógica proposicional:
- Exercício on line: Qual proposição é tautológica?:
  - a) Se Pedro é bonito ou o céu é azul, então Pedro é bonito e o céu é azul.
  - b) Se Pedro é bonito, então Pedro é bonito ou o céu é azul.
  - c) Se Pedro é bonito ou o céu é azul, então o céu é azul.
  - d) Se Pedro é bonito, então Pedro é bonito e o céu é azul.





#### Qual proposição é tautológica?

- a) Se João é alto, então João é alto e Guilherme é gordo.
- b) Se João é alto ou Guilherme é gordo, então Guilherme é gordo.
- c) Se João é alto, então João é alto ou Guilherme é gordo.
- d) Se João é alto ou Guilherme é gordo, então João é alto e Guilherme é gordo.
- e) Se João é alto ou não é alto, então Guilherme é gordo.





- Propriedades da lógica proposicional:
- Contingência

Quando uma proposição assume resultados verdadeiros e falsos em seu resultado, dizemos que é uma contingência. Ou seja, o resultado da proposição complexa será V e F (quando se olha a tabela verdade.

| р | q | p ^ q |
|---|---|-------|
| V | V | V     |
| V | F | F     |
| F | V | F     |
| F | F | F     |





Aplicação Contingência - sistemas de recomendação

Jorge tem 18 anos, gosta de samba e costuma frequentemente comentar isto nas suas redes sociais e nos fóruns que participa, onde sinaliza a paixão por camisas com o tema de samba. Porém, por superstição, ele informa ainda que não gosta de camisas totalmente pretas e totalmente brancas.

Através de um sistema de recomendação de conteúdo pode-se ter a seguinte proposição para a situação problema citada:

Jorge compra camisas se elas forem diferentes de preta ou branca e tem que ser sobre samba. As variáveis são cores e a preferência pessoal dele. Então quando Jorge compra a camisa?

C: ação de comprar

p: cor preta

q: cor branca

r: tema da camisa de samba





- Trabalho para ciclo 1: em grupos
- O(s) aluno(s) deverá(ão) criar uma estória simples através de construção de proposições complexas (sugerido 5 proposições) e suas respectivas tabelas verdade, contemplando as seguintes propriedades:
- Tautologia;
- Contradição;
- Équivalência;
  - Usar à vontade os conectivos lógicos (negação, conjunção, disjunção, condição, bi-condição);
- Não é obrigatório que tenha todos os conectivos básicos.
- Apresentar a estória em linguagem normal e em linguagem proposicional, e as respectivas tabelas verdade das proposições.

Senac



- Trabalho para ciclo 1: em grupos
  - Critério de avaliação: criatividade e coerência com as regras proposicionais.
- Data de entrega: 07/10/2021
- Data de apresentação: 14/10/2021 via sorteio do componente da equipe que apresentará a solução.
- Roteiro:
- 1. Pensar e construir a estória a ser apresentada;
- 2. Redigir a estória como texto;
- Construir frases proposicionais simples envolvendo os conectivos apropriados;
- Traduzir as frases para a linguagem simbólica (proposicional);
- Organizar a estória para que tenha um final coerente com a tautologia, a contradição e/ou a equivalência proposicional;



Atividade 5 - Exercícios para compartilhar:

- 1. Construir as tabelas-verdade das seguintes proposições:
- a)  $\neg (p \lor \neg q)$  b)  $p \land q \longrightarrow p \lor q$
- c)  $\neg p \land r \longrightarrow q \lor \neg r$  d)  $(p \land \neg q) \lor r$
- 2. Avaliar a proposição abaixo e classificá-la. Depois, sabendo que os valores lógicos das proposições p e q são respectivamente F e V, determinar o valor lógico da proposição:

$$(p \land (\neg q \longrightarrow p)) \land \neg ((p \lor \neg q) \longrightarrow q \lor \neg p)$$

- Demonstrar qual a classificação desta proposição (Tautologia, Contradição, contingência): p ^ r —> q v r
- 4. Demonstrar qual a classificação desta proposição: (p ^ q) ^ ¬ (p v q)

