zillow project Barrett Jones

Barrett Jones 10/7/2017

below we take a quick look at the data and some summary stats. I have reduced the data size by quite a bit (to 10,000 observations) so I can do some test modeling. I am trying to predict the log error in the zillow housing price model. You can see above that the log error follows a symmetric distribution with very long tails, and that log error seems to vary greatly month to month.

Hist of outcome

(Zillow Housing Price Model log(Error))

Trend Log Error by Month

Model 1: Random Intercept Model

```
## lmer(formula = logerror ~ calculatedfinishedsquarefeet + month +
## bathroomcnt + bedroomcnt + (1 | regionidzip) + (1 | regionidcity),
## data = traindat)
```

Summary of Errors

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.04161 0.07526 0.10010 0.10580 0.13590 0.19140
```

Distribution of Errors

Histogram of error

So it looks like this model performs ok the median of the mean absolute error from the 50 cross validation cuts is 0.1001248, but I notice that the relationship between bedroom/bathroom count and logerror is not linear. I will try a gam to fit a polynomial regression model.

Model 2: Generalized Additive Model

```
## gam(formula = logerror ~ s(calculatedfinishedsquarefeet) + s(bathroomcnt) +
## s(bedroomcnt) + as.factor(month), data = traindat)
```

Summary of Errors

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.05708 0.09181 0.10940 0.11390 0.13620 0.19120
```

Distribution of Errors

Histogram of error

looks like I got about the same performance from the gam. The median cross validate mean absolute error=0.1093742,is slightly different from the random intercept model, but not by much. Probably would be pretty similar results on the full data set. I will have to do some more testing, perhaps a hierarchial model with some polynomial terms with perform better.