互评作业1:数据探索性分析与数据预处理

程序所在代码仓库地址: Github

1.要求

1.1. 问题描述

本次作业中,自行选择2个数据集进行探索性分析与预处理。

1.2. 数据集

可选数据集包括:

- GitHub Dataset
- MovieLens 10M Dataset
- Alzheimer Disease and Healthy Aging Data in US
- Movies Dataset from Pirated Sites
- VitalDB
- Tweet Sentiment's Impact on Stock Returns

1.3. 数据分析要求

1.3.1 数据摘要和可视化

- 数据摘要
 - 标称属性,给出每个可能取值的频数
 - 数值属性,给出5数概括及缺失值的个数
- 数据可视化
 - 使用直方图、盒图等检查数据分布及离群点

1.3.2 数据缺失的处理

观察数据集中缺失数据、分析其缺失的原因。分别使用下列四种策略对缺失值进行处理:

- 将缺失部分剔除
- 用最高频率值来填补缺失值
- 通过属性的相关关系来填补缺失值
- 通过数据对象之间的相似性来填补缺失值

注意: 在处理后完成, 要对比新旧数据集的差异。

1.4 提交内容

- 分析过程报告(PDF格式)
- 程序所在代码仓库地址(使用Github或码云),仓库中应包含完整的处理数据的代码和使用说明
- 所选择的数据集在仓库的README文件中说明
- 相关的数据文件不要上传到代码仓库中

建议:使用Jupyter Notebook将分析报告和代码组织在一起,使用Notebook的导出功能将报告导出为PDF格式的文件上传到乐学。

2 GitHub Dataset

数据集为github dataset

```
In []: import os
    import requests
    import pandas as pd
    import matplotlib.pyplot as plt
    from scipy import stats
    from sklearn.impute import KNNImputer
    from sklearn.metrics.pairwise import euclidean_distances
    import numpy as np
```

2.1 加载数据集

```
In []: def check_dataset(dataset_path):
    if not os.path.exists(dataset_path):
        print("[!] dataset not exist")
    else:
        print("[!] dataset already exists")

github_data_path = '../data/github_dataset/archive'
check_dataset(github_data_path)

df = pd.read_csv(github_data_path + "/github_dataset.csv")
print("[!] load dataset")

df.head()
```

- [!] dataset already exists
- [!] load dataset

Out[]:		repositories	stars_count	forks_count	issues_count	pull_reques
	0	octocat/Hello-World	0	0	612	3.
	1	EddieHubCommunity/support	271	150	536	
	2	ethereum/aleth	0	0	313	
	3	localstack/localstack	0	0	290	:
	4	education/classroom	0	589	202	4

```
In []: print("columns:\n",df.columns, "\n")
       print(df.info())
      columns:
       Index(['repositories', 'stars_count', 'forks_count', 'issues_count',
             'pull_requests', 'contributors', 'language'],
            dtype='object')
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1052 entries, 0 to 1051
      Data columns (total 7 columns):
                         Non-Null Count Dtype
       #
           Column
         repositories 1052 non-null
       0
                                        object
       1
          stars_count 1052 non-null
                                        int64
       2 forks_count
                        1052 non-null int64
       3 issues_count 1052 non-null int64
         pull_requests 1052 non-null
       4
                                        int64
       5
          contributors 1052 non-null
                                        int64
          language
                         907 non-null
                                        object
      dtypes: int64(5), object(2)
      memory usage: 57.7+ KB
      None
```

2.2.1 数据摘要

```
In []: print('属性类别数:', len(df.columns))
print('总行数:', len(df), "\n")
```

属性类别数: 7 总行数: 1052

对于标称属性,给出每个可能取值的频数

```
In []: def nominal_frequency(data, nominal_attrs):
    frequencies = {}
    for col in nominal_attrs:
        frequencies[col] = data[col].value_counts()
    return frequencies

nominal_attributes = nominal_attributes = ['repositories', 'language']
    nominal_frequencies = nominal_frequency(df, nominal_attributes)

for attr, freq in nominal_frequencies.items():
    print(f"Attribute: {attr}")
    print(freq)
    print("\n")
```

Attribute: repositories kameshsampath/ansible-role-rosa-demos 2 aloisdeniel/bluff 2 2 antoniaandreou/github-slideshow jgthms/bulma-start 2 artkirienko/hlds-docker-dproto 2 . . WhiteHouse/CIOmanagement 1 0xCaso/defillama-telegram-bot 1 ethereum/blake2b-py 1 openfoodfacts/folksonomy_mobile_experiment 1 gamemann/All_PropHealth 1 Name: repositories, Length: 972, dtype: int64

Attribute: language 253 JavaScript Python 155 HTML 72 Java 44 CSS 37 TypeScript 37 Dart 36 C++ 29 Jupyter Notebook 29 28 Ruby C 26 Shell 25 PHP 16 15 Go 10 Rust Swift 10 C# 8 8 Objective-C Kotlin 7 Makefile 6 5 Jinja SCSS 4 3 CoffeeScript Perl 3 3 Dockerfile 3 Solidity 3 AutoHotkey 2 Hack 2 Pawn 2 CodeQL 2 PowerShell 2 Assembly 2 Vim Script 2 Vue 2 Elixir 1 Gherkin **QMake** 1 1 **CMake** 1 0z 1 Cuda QML 1 1 ActionScript 1 Roff HCL 1

```
R 1
PureBasic 1
Smarty 1
Less 1
Svelte 1
Haskell 1
SourcePawn 1
Name: language, dtype: int64
```

对于数值属性,给出5数概括及缺失值的个数

```
In [ ]: def numeric_summary(data, numeric_attrs):
             summary = {}
             for col in numeric_attrs:
                 summary[col] = {
                      'min': data[col].min(),
                      'q1': data[col].quantile(0.25),
                      'median': data[col].median(),
                     'q3': data[col].quantile(0.75),
                      'max': data[col].max(),
                      'missing_values': data[col].isnull().sum()
                 }
             return summary
        numeric_attributes = ['stars_count', 'forks_count', 'issues_count', 'pull']
        numeric_summaries = numeric_summary(df, numeric_attributes)
        for attr, summary in numeric_summaries.items():
             print(f"Attribute: {attr}")
             print("Min:", summary['min'])
print("Q1:", summary['q1'])
             print("Median:", summary['median'])
             print("Q3:", summary['q3'])
             print("Max:", summary['max'])
             print("Missing Values:", summary['missing_values'])
             print("\n")
```

```
Attribute: stars_count
Min: 0
Q1: 1.0
Median: 12.0
03: 65.25
Max: 995
Missing Values: 0
Attribute: forks_count
Min: 0
01: 1.0
Median: 6.0
Q3: 38.25
Max: 973
Missing Values: 0
Attribute: issues_count
Min: 1
Q1: 1.0
Median: 2.0
Q3: 6.0
Max: 612
Missing Values: 0
Attribute: pull_requests
Min: 0
01: 0.0
Median: 0.0
Q3: 2.0
Max: 567
Missing Values: 0
Attribute: contributors
Min: 0
01: 0.0
Median: 2.0
Q3: 4.0
Max: 658
Missing Values: 0
```

2.2.2 数据可视化

使用直方图、盒图等检查数据分布及离群点

```
In []: fig, axs = plt.subplots(len(numeric_attributes), 2, figsize=(12, 20))

for i, attr in enumerate(numeric_attributes):
    axs[i, 0].hist(df[attr].dropna(), bins=20, color='skyblue', edgecolor
    axs[i, 0].set_title(f'Histogram of {attr}')
    axs[i, 0].set_xlabel(attr)
    axs[i, 0].set_ylabel('Frequency')
    axs[i, 0].grid(True)
```

```
axs[i, 1].boxplot(df[attr].dropna(), vert=False)
axs[i, 1].set_title(f'Boxplot of {attr}')
axs[i, 1].set_xlabel(attr)
axs[i, 1].grid(True)

plt.tight_layout()
plt.show()
```


以"language"属性为例,绘制直方图检查数据分布,可以看出出现频率最高的为 JavaScript

```
In [ ]: df["language"].value_counts().head(30).plot.barh()
```

Out[]: <AxesSubplot:>

绘制Q-Q图并检查数据分布和离群点。

使用Shapiro-Wilk 检验数据是否符合正态分布,如果 p-value 大于 0.05,则表示数据符合正态分布。

根据图表和数据可知,该数据集中所有数值属性都不符合正态分布且都存在离群点。

```
In []:
        for attr in numeric_attributes:
            data = df[attr].dropna()
            z_scores = (data - data.mean()) / data.std()
            stats.probplot(z_scores, dist="norm", plot=plt)
            plt.title(f'Q-Q Plot of {attr}')
            plt.xlabel('Theoretical quantiles')
            plt.ylabel('Ordered Values')
            plt.grid(True)
            plt.show()
            # 判断离群点是否符合正态分布
            print(f"Attribute: {attr}")
            outliers = z_scores[(z_scores > 3) | (z_scores < -3)]
            if len(outliers) > 0:
                print("There are outliers.")
            else:
                print("There are no outliers.")
            print("Normality Test (Shapiro-Wilk):")
```

```
_, p_value = stats.shapiro(data)
if p_value > 0.05:
    print("The data is normally distributed.")
else:
    print("The data is not normally distributed.")
print("\n")
```


Attribute: stars_count There are outliers.

Normality Test (Shapiro-Wilk):

Attribute: forks_count There are outliers.

Normality Test (Shapiro-Wilk):

Attribute: issues_count There are outliers.

Normality Test (Shapiro-Wilk):

The data is not normally distributed.

Attribute: pull_requests

There are outliers.

Normality Test (Shapiro-Wilk):

Attribute: contributors
There are outliers.
Normality Test (Shapiro-Wilk):
The data is not normally distributed.

2.3 数据缺失的处理

根据结果可知,只有"language"属性有缺失数据。

观察数据集中缺失数据,分析其缺失的原因。分别使用下列四种策略对缺失值进行处理:

- 将缺失部分剔除
- 用最高频率值来填补缺失值
- 通过属性的相关关系来填补缺失值
- 通过数据对象之间的相似性来填补缺失值

注意: 在处理后完成, 要对比新旧数据集的差异。

```
In []: def check_missing_data(data, numeric_attrs, nominal_attrs):
    missing_data = {}

for attr in numeric_attrs:
    missing_count = data[attr].isnull().sum()
    if missing_count > 0:
        missing_data[attr] = missing_count
        print(f"Attribute: {attr}, Missing Count: {missing_count}")
    else:
        print(f"Attribute: {attr} don't have missing data")
```

```
for attr in nominal attrs:
         missing_count = data[attr].isnull().sum()
         if missing_count > 0:
             missing_data[attr] = missing_count
             print(f"Attribute: {attr}, Missing Count: {missing_count}")
         else:
             print(f"Attribute: {attr} don't have missing data")
     return missing_data
 missing_data = check_missing_data(df, numeric_attributes, nominal_attribu
Attribute: stars_count don't have missing data
Attribute: forks_count don't have missing data
Attribute: issues_count don't have missing data
Attribute: pull_requests don't have missing data
Attribute: contributors don't have missing data
Attribute: repositories don't have missing data
Attribute: language, Missing Count: 145
```

2.3.1 将缺失部分剔除

使用将缺失部分剔除策略对缺失值进行处理,在处理后完成,对比新旧数据集的差异。

```
In []: def remove_missing_data(data, attribute):
    new_data = data.copy()

    new_data = new_data.dropna(subset=[attribute])

    return new_data

missing_attribute = 'language'
new_df = remove_missing_data(df, missing_attribute)
df.head()
```

Out[]:		repositories	stars_count	forks_count	issues_count	pull_reques
	0	octocat/Hello-World	0	0	612	3.
	1	EddieHubCommunity/support	271	150	536	
	2	ethereum/aleth	0	0	313	1
	3	localstack/localstack	0	0	290	;
	4	education/classroom	0	589	202	1

```
In [ ]: new_df.head()
```

Out[]:		repositories	stars_count	forks_count	issues_count	pull_requests	con
	2	ethereum/aleth	0	0	313	27	
	3	localstack/localstack	0	0	290	30	
	4	education/classroom	0	589	202	22	
	5	shobhit97/open- gpstracker	0	0	172	0	
	6	donnemartin/system- design-primer	0	0	164	164	

对比删除前后数据集中记录条数,使用柱状图直观的比较前后差异。

```
In [ ]: print(f"\nNumber of rows in old dataset: {len(df)}")
        print(f"Number of rows in new dataset: {len(new df)}")
        def compare_histograms(old_data, new_data, attribute):
            old_counts = old_data[attribute].value_counts()
            new_counts = new_data[attribute].value_counts()
            all_values = list(set(old_counts.index) | set(new_counts.index))
            plt.figure(figsize=(10, 6))
            plt.bar(all_values, old_counts.reindex(all_values, fill_value=0), col
            plt.bar(all_values, new_counts.reindex(all_values, fill_value=0), col
            plt.title(f'Histogram of {attribute}')
            plt.xlabel(attribute)
            plt.ylabel('Frequency')
            plt.xticks(rotation=45, ha='right')
            plt.legend()
            plt.grid(True)
            plt.show()
        compare_histograms(df, new_df, 'language')
```

Number of rows in old dataset: 1052 Number of rows in new dataset: 907


```
In []: new_df.isna().sum()

Out[]: repositories   0
    stars_count   0
    forks_count   0
    issues_count   0
    pull_requests   0
    contributors   0
    language    0
    dtype: int64
```

2.3.2 用最高频率值来填补

使用最高频率值来填补缺失值策略对缺失值进行处理,在处理后完成,对比新旧数据集的差异。

最高频率值为JavaScript

```
In []: def fill_missing_with_mode(data, attribute):
    new_data = data.copy()

mode_value = new_data[attribute].mode()[0]
    print(f'{mode_value} is the language with the highest frequency.\n')

new_data[attribute].fillna(mode_value, inplace=True)

return new_data

new_df = fill_missing_with_mode(df, missing_attribute)
```

JavaScript is the language with the highest frequency.

```
df.head()
Out[]:
                                      stars_count forks_count issues_count pull_reques
                          repositories
         0
                                                             0
                                                                                       3
                    octocat/Hello-World
                                                0
                                                                         612
            EddieHubCommunity/support
                                               271
                                                           150
                                                                         536
         2
                        ethereum/aleth
                                                 0
                                                             0
                                                                         313
         3
                   localstack/localstack
                                                 0
                                                             0
                                                                         290
         4
                   education/classroom
                                                 0
                                                           589
                                                                         202
In []:
         new_df.head()
Out[]:
                          repositories stars_count forks_count issues_count pull_reques
         0
                    octocat/Hello-World
                                                0
                                                             0
                                                                         612
                                                                                       3
            EddieHubCommunity/support
                                               271
                                                           150
                                                                         536
         2
                        ethereum/aleth
                                                 0
                                                             0
                                                                         313
         3
                   localstack/localstack
                                                                         290
                                                 0
                                                             0
         4
                   education/classroom
                                                 0
                                                           589
                                                                         202
         print(f"\nNumber of rows in old dataset: {len(df)}")
         print(f"Number of rows in new dataset: {len(new df)}")
         print("\nDifferences between old and new datasets:")
         print((df[missing_attribute] != new_df[missing_attribute]).sum())
         compare_histograms(df, new_df, 'language')
       Number of rows in old dataset: 1052
       Number of rows in new dataset: 1052
       Differences between old and new datasets:
```

145

2.3.3 通过属性的相关关系来填补

通过属性的相关关系来填补缺失值策略对缺失值进行处理,在处理后完成,对比新旧数据集的差异。

由于该数据集中只有"language"和"repositories"两个属性为标称值,所以使用"repositories"来填补缺失值。

```
In []: def fill_missing_with_related_attribute(data, missing_attribute, related_new_data = data.copy()

# 计算相关属性的众数值
related_mode_value = new_data[related_attribute].mode()[0]
new_data[missing_attribute].fillna(related_mode_value, inplace=True)
return new_data
related_attribute = 'repositories'

new_df = fill_missing_with_related_attribute(df, missing_attribute, related_head()
```

:[]:		repositories	stars_count	forks_count	issues_count	pull_reques
	0	octocat/Hello-World	0	0	612	3
	1	EddieHubCommunity/support	271	150	536	
	2	ethereum/aleth	0	0	313	:
	3	localstack/localstack	0	0	290	3
	4	education/classroom	0	589	202	<u>'</u>

In []: new_df.head()

0ut

Out[]:		repositories	stars_count	forks_count	issues_count	pull_reques
	0	octocat/Hello-World	0	0	612	3.
	1	EddieHubCommunity/support	271	150	536	
	2	ethereum/aleth	0	0	313	:
	3	localstack/localstack	0	0	290	:
	4	education/classroom	0	589	202	4

```
In []: print("\nDifferences between old and new datasets:")
    print((df[missing_attribute] != new_df[missing_attribute]).sum())
    compare_histograms(df, new_df, 'language')
```

Differences between old and new datasets: 145

2.3.4 通过数据对象之间的相似性来填补

通过数据对象之间的相似性来填补缺失值策略对缺失值进行处理,在处理后完成,对比新 旧数据集的差异。

对于每一条缺失数据,计算其与非缺失记录的欧式距离衡量相似度,使用最相似的记录来填补缺失值。

```
In []: def fill_missing_language(data, missing_attribute, numeric_attributes):
    new_data = data.copy()
    missing_language_records = new_data[new_data[missing_attribute].isna(
    non_missing_language_records = new_data.dropna(subset=[missing_attrib
    filled_data = new_data.copy()

for index, row in missing_language_records.iterrows():
    missing_numeric_values = row[numeric_attributes].values.reshape(1)

    distances = euclidean_distances(missing_numeric_values, non_missi
    most_similar_index = np.argmin(distances)
    filled_language_value = non_missing_language_records.iloc[most_si
    filled_data.at[index, missing_attribute] = filled_language_value
    return filled_data

new_df = filled_df = fill_missing_language(df, missing_attribute, numeric
    df.head()
```

Out[]:		repositories	stars_count	forks_count	issues_count	pull_reques
	0	octocat/Hello-World	0	0	612	3.
	1	EddieHubCommunity/support	271	150	536	
	2	ethereum/aleth	0	0	313	:
	3	localstack/localstack	0	0	290	:
	4	education/classroom	0	589	202	4

<pre>In []: new_df.head()</pre>								
Out[]:		repositories	stars_count	forks_count	issues_count	pull_reques		
	0	octocat/Hello-World	0	0	612	3.		
	1	EddieHubCommunity/support	271	150	536			
	2	ethereum/aleth	0	0	313	:		
	3	localstack/localstack	0	0	290	:		
	4	education/classroom	0	589	202	,		

```
In [ ]: compare_histograms(df, new_df, 'language')
```


3 Tweet Sentiment's Impact on Stock Returns

数据集为Tweet Sentiment's Impact on Stock Returns

3.1 加载数据集

```
In []: def check_dataset(dataset_path):
    if not os.path.exists(dataset_path):
        print("[!] dataset not exist")
    else:
        print("[!] dataset already exists")

github_data_path = '../data/TSISR/archive'
    check_dataset(github_data_path)

df = pd.read_csv(github_data_path + "/reduced_dataset-release.csv")
    print("[!] load dataset")

df.head()
```

- [!] dataset already exists
- [!] load dataset

/Users/zhangyunhe/anaconda3/envs/ML/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3553: DtypeWarning: Columns (13) have mixed types.S pecify dtype option on import or set low_memory=False. exec(code_obj, self.user_global_ns, self.user_ns)

```
Out[]:
            Unnamed:
                                TWEET
                                          STOCK
                                                      DATE LAST_PRICE 1_DAY_RETUR
                                    RT
                       @robertoglezcano:
         0
                    0
                              @amazon
                                             NaN
                                                        NaN
                                                                    NaN
                                                                                    Na
                          #Patents Show
                                   Fl...
                 NaN
                               Amazon
                                       31/01/2017
                                                     823.48
                                                                0.008379
                                                                                0.01492
         1
                          @FAME95FM1
                         Jamaicans make
         2
                    1
                                           PayPal 31/01/2017
                                                               39.780000
                                                                                0.0020
                            money with
                           @Payoneer...
                       @CBSi Jamaicans
                        make money with
                    2
         3
                                           PayPal 31/01/2017
                                                               39.780000
                                                                                0.0020
                             @Payoneer
                                @Pay...
                             @Hitz92fm
                         Jamaicans make
         4
                    3
                                           PayPal 31/01/2017
                                                               39.780000
                                                                                0.0020
                            money with
                           @Payoneer ...
        print("columns:\n",df.columns, "\n")
        print(df.info())
       columns:
        Index(['Unnamed: 0', 'TWEET', 'STOCK', 'DATE', 'LAST_PRICE', '1_DAY_RETUR
       Ν',
               '2 DAY RETURN', '3 DAY RETURN', '7 DAY RETURN', 'PX VOLUME',
               'VOLATILITY 10D', 'VOLATILITY 30D', 'LSTM POLARITY',
               'TEXTBLOB_POLARITY', 'MENTION'],
             dtype='object')
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 143282 entries, 0 to 143281
       Data columns (total 15 columns):
        #
            Column
                                Non-Null Count
                                                  Dtype
            Unnamed: 0
        0
                                124761 non-null
                                                  object
        1
                                143279 non-null
            TWEET
                                                  object
        2
            ST0CK
                                85176 non-null
                                                  object
        3
            DATE
                                85176 non-null
                                                  object
        4
            LAST_PRICE
                                85176 non-null
                                                  float64
        5
            1_DAY_RETURN
                                85176 non-null
                                                  float64
        6
            2_DAY_RETURN
                                85176 non-null
                                                  float64
        7
            3_DAY_RETURN
                                85176 non-null
                                                  float64
        8
            7 DAY RETURN
                                85176 non-null
                                                  float64
                                85176 non-null
        9
            PX_V0LUME
                                                  float64
        10
            VOLATILITY_10D
                                85171 non-null
                                                  float64
        11
            VOLATILITY_30D
                                85165 non-null
                                                  float64
        12
           LSTM_POLARITY
                                85175 non-null
                                                  object
        13
            TEXTBLOB_POLARITY
                                45594 non-null
                                                  object
                                27073 non-null
        14
           MENTION
                                                  object
       dtypes: float64(8), object(7)
       memory usage: 16.4+ MB
       None
```

3.2.1 数据摘要

```
In [ ]: print('属性类别数:', len(df.columns))
print('总行数:', len(df), "\n")
```

属性类别数: 15 总行数: 143282

对于标称属性, 给出每个可能取值的频数

```
In [ ]:
    def nominal_frequency(data, nominal_attrs):
        frequencies = {}
        for col in nominal_attrs:
            frequencies[col] = data[col].value_counts()
        return frequencies

nominal_attributes = nominal_attributes = ['Unnamed: 0', 'TWEET', 'STOCK'
        nominal_frequencies = nominal_frequency(df, nominal_attributes)

for attr, freq in nominal_frequencies.items():
        print(f"Attribute: {attr}")
        print(freq)
        print("\n")
```

```
Attribute: Unnamed: 0
          8224
Nike
           7022
eBav
Reuters
           3618
Netflix
           3548
Apple
           2117
28392
              1
28391
              1
28390
              1
28389
              1
862071
              1
Name: Unnamed: 0, Length: 85278, dtype: int64
Attribute: TWEET
eBay
3726
04/09/2018
3467
05/09/2018
2525
Reuters
2093
06/09/2018
1880
@Lynxii @nextofficial It's called Sunday trading law love, look it up and
stop acting so entitled\r\r
@Ryanair This lady shouldn't have been moved from her seat. The racist sho
uld have been removed from the plane. A c... https://t.co/5TdJ10GgCU
Absolutely disgusting of @Ryanair to enable this vile racist. They moved t
he lady! They should have kicked that man... https://t.co/XmHLtUdMLJ
1
@marklovegrove @MarieBYates @Ryanair @_SJPeace_ The right thing to do is a
lways going to be uncomfortable. Stop ra... https://t.co/snAkktnaCu
1
RT @Google: With hands-free ordering from your Google Assistant, it's a br
ew-tiful #NationalCoffeeDay. Just say "Hey Google, talk to @Starb...\r
Name: TWEET, Length: 61030, dtype: int64
Attribute: STOCK
           3797
Nike
79.6
           2710
Reuters
           2482
Apple
           2238
eBay
           2063
37.52
              1
1201.26
              1
413.5
              1
108.25
              1
81.86
              1
```

Name: STOCK, Length: 2696, dtype: int64

```
Attribute: DATE
0.0
                          10518
0.03266331658291468
                          2710
                          1837
04/09/2018
                          1800
-0.004004004004004097
                          1602
13/09/2018
184.88
                              1
4036.7
                              1
65.48
                              1
0.007709251101321586
                             1
0.0025851776043666237
                             1
Name: DATE, Length: 4260, dtype: int64
Attribute: LSTM_POLARITY
                          14805
-1
                          12268
0.0
                          10050
@Nike
                          8165
                          7288
@eBay
0.07826704545454545
                              1
-0.025568181818181827
0.3145454545454546
                             1
-0.087500000000000001
-0.4833333333333333
Name: LSTM_POLARITY, Length: 997, dtype: int64
Attribute: TEXTBLOB_POLARITY
0.0
                          7878
0.0
                          6589
@eBay
                          4058
@Reuters
                          2301
@netflix
                          1546
0.1787878787878788
                             1
0.13125
                             1
                             1
0.170995670995671
0.2348484848484849
                             1
-0.038690476190476206
Name: TEXTBLOB_POLARITY, Length: 1406, dtype: int64
Attribute: MENTION
@Nike
                   3787
@Reuters
                   2655
@Apple
                   2181
@eBay
                   2174
@netflix
                   1952
@vodafone
                      4
@21CF
                      4
                      4
@bancosantander
                      2
@CarrefourGroup
@cardinalhealth
                      2
```

Name: MENTION, Length: 100, dtype: int64

对于数值属性,给出5数概括及缺失值的个数

```
In [ ]: def numeric_summary(data, numeric_attrs):
            summary = {}
            for col in numeric_attrs:
                summary[col] = {
                    'min': data[col].min(),
                     'q1': data[col].quantile(0.25),
                     'median': data[col].median(),
                    'q3': data[col].quantile(0.75),
                    'max': data[col].max(),
                     'missing_values': data[col].isnull().sum()
            return summary
        numeric_attributes = ['LAST_PRICE', '1_DAY_RETURN', '2_DAY_RETURN', '3_DAY
        numeric_summaries = numeric_summary(df, numeric_attributes)
        for attr, summary in numeric_summaries.items():
            print(f"Attribute: {attr}")
            print("Min:", summary['min'])
            print("Q1:", summary['q1'])
            print("Median:", summary['median'])
            print("Q3:", summary['q3'])
            print("Max:", summary['max'])
            print("Missing Values:", summary['missing_values'])
            print("\n")
```

Attribute: LAST_PRICE Min: -0.1735537190082644 Q1: -0.0004139072847681 Median: 0.0099706744868034

Q3: 49.9725 Max: 165500.0

Missing Values: 58106

Attribute: 1_DAY_RETURN
Min: -0.1778512396694214
Q1: -0.0059891383423284
Median: 0.0011188839589404
Q3: 0.0136032611184903
Max: 0.24363885871119
Missing Values: 58106

Attribute: 2_DAY_RETURN
Min: -0.2049586776859504
Q1: -0.009847977204623175
Median: 0.0031618281115262
Q3: 0.022653721682847825
Max: 0.2671133119720361
Missing Values: 58106

Attribute: 3_DAY_RETURN Min: -0.1778512396694214

Q1: 0.0

Median: 0.0374371859296482

Q3: 7943443.0 Max: 308106768.0 Missing Values: 58106

Attribute: 7_DAY_RETURN Min: -0.2049586776859504 Q1: 0.0338680926916221

Median: 20.517 Q3: 52.668

Max: 143947510.0 Missing Values: 58106

Attribute: PX_VOLUME

Min: 1.0 01: 17.152

Median: 24.07800000000001

Q3: 2628128.0 Max: 169803668.0 Missing Values: 58106

Attribute: VOLATILITY_10D

Min: -1.0 Q1: 1.0

Median: 9.482 Q3: 20.289 Max: 124.137

Missing Values: 58111

Attribute: VOLATILITY_30D

Min: -1.0 Q1: 0.0 Median: 0.3 Q3: 16.026 Max: 74.355

Missing Values: 58117

3.2.2 数据可视化

使用直方图、盒图等检查数据分布及离群点

```
In []: fig, axs = plt.subplots(len(numeric_attributes), 2, figsize=(12, 30))

for i, attr in enumerate(numeric_attributes):
    axs[i, 0].hist(df[attr].dropna(), bins=20, color='skyblue', edgecolor
    axs[i, 0].set_title(f'Histogram of {attr}')
    axs[i, 0].set_xlabel(attr)
    axs[i, 0].set_ylabel('Frequency')
    axs[i, 0].grid(True)

axs[i, 1].boxplot(df[attr].dropna(), vert=False)
    axs[i, 1].set_title(f'Boxplot of {attr}')
    axs[i, 1].set_xlabel(attr)
    axs[i, 1].grid(True)

plt.tight_layout()
plt.show()
```


以"Unnamed: 0"和"STOCK"属性为例,绘制直方图检查数据分布

```
In [ ]: df["Unnamed: 0"].value_counts().head(30).plot.barh()
```

Out[]: <AxesSubplot:>

In []: df["STOCK"].value_counts().head(30).plot.barh()

Out[]: <AxesSubplot:>

绘制Q-Q图并检查数据分布和离群点

使用Shapiro-Wilk 检验数据是否符合正态分布,如果 p-value 大于 0.05,则表示数据符合正态分布。

根据图表和数据可知、该数据集中所有数值属性都不符合正态分布且都存在离群点

```
In []:
        for attr in numeric_attributes:
            data = df[attr].dropna()
            z_scores = (data - data.mean()) / data.std()
            stats.probplot(z_scores, dist="norm", plot=plt)
            plt.title(f'Q-Q Plot of {attr}')
            plt.xlabel('Theoretical quantiles')
            plt.ylabel('Ordered Values')
            plt.grid(True)
            plt.show()
            # 判断离群点是否符合正态分布
            print(f"Attribute: {attr}")
            outliers = z_scores[(z_scores > 3) | (z_scores < -3)]</pre>
            if len(outliers) > 0:
                print("There are outliers.")
            else:
                print("There are no outliers.")
            print("Normality Test (Shapiro-Wilk):")
             _, p_value = stats.shapiro(data)
            if p_value > 0.05:
                print("The data is normally distributed.")
            else:
```

print("The data is not normally distributed.")
print("\n")

Attribute: LAST_PRICE There are outliers.

Normality Test (Shapiro-Wilk):

The data is not normally distributed.

/Users/zhangyunhe/anaconda3/envs/ML/lib/python3.7/site-packages/scipy/stat s/morestats.py:1760: UserWarning: p-value may not be accurate for N > 500 $^{\circ}$

warnings.warn("p-value may not be accurate for N > 5000.")

Attribute: 1_DAY_RETURN There are outliers.

Normality Test (Shapiro-Wilk):

Attribute: 2_DAY_RETURN There are outliers.

Normality Test (Shapiro-Wilk):

The data is not normally distributed.

Attribute: 3_DAY_RETURN There are outliers.

Normality Test (Shapiro-Wilk):

Attribute: 7_DAY_RETURN There are outliers.

Normality Test (Shapiro-Wilk):

Attribute: PX_VOLUME There are outliers.

Normality Test (Shapiro-Wilk):

The data is not normally distributed.

Attribute: VOLATILITY_10D

There are outliers.

Normality Test (Shapiro-Wilk):

Attribute: VOLATILITY_30D There are outliers.

Normality Test (Shapiro-Wilk):

The data is not normally distributed.

3.3 数据缺失的处理

观察数据集中缺失数据,分析其缺失的原因。分别使用下列四种策略对缺失值进行处理:

- 将缺失部分剔除
- 用最高频率值来填补缺失值
- 通过属性的相关关系来填补缺失值
- 通过数据对象之间的相似性来填补缺失值

注意: 在处理后完成, 要对比新旧数据集的差异。

```
In []: def check_missing_data(data, numeric_attrs, nominal_attrs):
    missing_data = {}

    for attr in numeric_attrs:
        missing_count = data[attr].isnull().sum()
        if missing_count > 0:
            missing_data[attr] = missing_count
            print(f"Attribute: {attr}, Missing Count: {missing_count}")
        else:
            print(f"Attribute: {attr} don't have missing data")

    for attr in nominal_attrs:
        missing_count = data[attr].isnull().sum()
```

```
if missing_count > 0:
    missing_data[attr] = missing_count
    print(f"Attribute: {attr}, Missing Count: {missing_count}")
    else:
        print(f"Attribute: {attr} don't have missing data")

    return missing_data

missing_data = check_missing_data(df, numeric_attributes, nominal_attributes)
missing_list = [attr for attr in missing_data]

print("missing_list : ", missing_list)

Attribute: LAST_PRICE, Missing Count: 58106
Attribute: 1_DAY_RETURN, Missing Count: 58106
Attribute: 3_DAY_RETURN, Missing Count: 58106
Attribute: 7_DAY_RETURN, Missing Count: 58106
Attribute: 7_DAY_RETURN, Missing Count: 58106
Attribute: 7_DAY_RETURN, Missing Count: 58106
Attribute: PX_VOLUME_Missing_Count: 58106
```

```
Attribute: 1 DAY RETURN, Missing Count: 58106
Attribute: 2_DAY_RETURN, Missing Count: 58106
Attribute: 3_DAY_RETURN, Missing Count: 58106
Attribute: 7_DAY_RETURN, Missing Count: 58106
Attribute: PX_VOLUME, Missing Count: 58106
Attribute: VOLATILITY 10D, Missing Count: 58111
Attribute: VOLATILITY_30D, Missing Count: 58117
Attribute: Unnamed: 0, Missing Count: 18521
Attribute: TWEET, Missing Count: 3
Attribute: STOCK, Missing Count: 58106
Attribute: DATE, Missing Count: 58106
Attribute: LSTM POLARITY, Missing Count: 58107
Attribute: TEXTBLOB_POLARITY, Missing Count: 97688
Attribute: MENTION, Missing Count: 116209
missing_list : ['LAST_PRICE', '1_DAY_RETURN', '2_DAY_RETURN', '3_DAY_RETU
RN', '7_DAY_RETURN', 'PX_VOLUME', 'VOLATILITY_10D', 'VOLATILITY_30D', 'Unn
amed: 0', 'TWEET', 'STOCK', 'DATE', 'LSTM_POLARITY', 'TEXTBLOB_POLARITY',
'MENTION'1
```

3.3.1 将缺失部分剔除

使用将缺失部分剔除策略对缺失值进行处理,在处理后完成,对比新旧数据集的差异。

删除后新数据集仅有 27064 条记录。

```
In [ ]: df.isnull()
```

Out[]:

	Unnamed: 0	TWEET	STOCK	DATE	LAST_PRICE	1_DAY_RETURN	2_DAY_I
0	False	False	True	True	True	True	
1	True	False	False	False	False	False	
2	False	False	False	False	False	False	
3	False	False	False	False	False	False	
4	False	False	False	False	False	False	
•••		•••	•••		•••	•••	
143277	False	False	True	True	True	True	
143278	True	False	False	False	False	False	
143279	False	False	False	False	False	False	
143280	False	False	True	True	True	True	
143281	True	False	False	False	False	False	

143282 rows × 15 columns

```
In []: def remove_missing_data(data, missing_list):
    new_data = data.copy()

    for attribute in missing_list:
        new_data = new_data.dropna(subset=[attribute])

    return new_data

new_df = remove_missing_data(df, missing_list)
    df.head()
```

Out[]:		Unnamed: 0	TWEE	т ѕто	СК	DATE	LAST_PRIC	CE 1	_DAY_RETUR
	0	0	R @robertoglezcand @amazo #Patents Sho Fl.	o: on N w	aN	NaN	Na	aN	Na
	1	NaN	Amazo	on 31/01/20	017	823.48	0.0083	79	0.01492
	2	1	@FAME95FM Jamaicans mak money wit @Payoneer.	ce :h Pay	Pal 31/0)1/2017	39.7800	00	0.0020
	3	2	@CBSi Jamaican make money wit @Payonee @Pay.	:h er Pay	Pal 31/0)1/2017	39.7800	00	0.0020
	4	3	@Hitz92fr Jamaicans mak money wit @Payoneer .	ke Pay	Pal 31/0)1/2017	39.7800	00	0.0020
In []:	new	_df.head()							
Out[]:		Unnamed:	TWEET	ѕтоск	DA	TE LA	AST_PRICE	1_D <i>A</i>	Y_RETURN
	2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/20	017	39.78		0.002011
	3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/20	017	39.78		0.002011
	4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/20	017	39.78		0.002011
	11	7	RT @nikitakhara: Thank you, @Starbucks CEO for	Starbucks	31/01/20	017	55.22		0.012314
	20	12	@gawker Jamaicans make money with @Payoneer @P	PayPal	31/01/20	017	39.78		0.002011

```
In [ ]: print(f"\nNumber of rows in old dataset: {len(df)}")
print(f"Number of rows in new dataset: {len(new_df)}")
```

Number of rows in old dataset: 143282 Number of rows in new dataset: 27064

In []: new_df.isnull()

Out[]:		Unnamed: 0	TWEET	STOCK	DATE	LAST_PRICE	1_DAY_RETURN	2_DAY_I
	2	False	False	False	False	False	False	
	3	False	False	False	False	False	False	
	4	False	False	False	False	False	False	
	11	False	False	False	False	False	False	
	20	False	False	False	False	False	False	
	•••		•••	•••	•••			
	143251	False	False	False	False	False	False	
	143252	False	False	False	False	False	False	
	143259	False	False	False	False	False	False	
	143276	False	False	False	False	False	False	
	143279	False	False	False	False	False	False	

27064 rows × 15 columns

```
In [ ]:
        new_df.isna().sum()
                               0
Out[]: Unnamed: 0
        TWEET
                               0
        ST0CK
                               0
        DATE
                               0
        LAST_PRICE
                               0
        1_DAY_RETURN
                               0
                               0
        2_DAY_RETURN
        3_DAY_RETURN
                               0
        7_DAY_RETURN
                               0
        PX_V0LUME
                               0
        VOLATILITY_10D
                               0
        VOLATILITY_30D
                               0
        LSTM_POLARITY
                               0
        TEXTBLOB_POLARITY
                               0
                               0
        MENTION
        dtype: int64
```

3.3.2 用最高频率值来填补

使用最高频率值来填补缺失值策略对缺失值进行处理,在处理后完成,对比新旧数据集的差异。

```
In [ ]: def fill_missing_with_mode(data, missing_list):
    new_data = data.copy()
```

```
for attribute in missing_list:
         mode_value = new_data[attribute].mode()[0]
         print(f'{mode_value} is the {attribute} with the highest frequence
         new data[attribute].fillna(mode value, inplace=True)
     return new data
 new_df = fill_missing_with_mode(df, missing_list)
0.0 is the LAST_PRICE with the highest frequency.
0.0 is the 1_DAY_RETURN with the highest frequency.
0.0 is the 2_DAY_RETURN with the highest frequency.
18565837.0 is the 3_DAY_RETURN with the highest frequency.
20.517 is the 7_DAY_RETURN with the highest frequency.
20.153 is the PX_VOLUME with the highest frequency.
1.0 is the VOLATILITY_10D with the highest frequency.
0.0 is the VOLATILITY 30D with the highest frequency.
Nike is the Unnamed: 0 with the highest frequency.
eBay is the TWEET with the highest frequency.
Nike is the STOCK with the highest frequency.
0.0 is the DATE with the highest frequency.
1 is the LSTM_POLARITY with the highest frequency.
0.0 is the TEXTBLOB_POLARITY with the highest frequency.
@Nike is the MENTION with the highest frequency.
```

```
In [ ]: df.head()
```

Out[]:	Unnar	med: 0	TWEET	STOCK	DATE	LAST_PRICE	1_DAY_RETUR
	0	0	RT @robertoglezcano: @amazon #Patents Show Fl	NaN	NaN	NaN	Na
	1	NaN	Amazon	31/01/2017	823.48	0.008379	0.01492
	2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020
	3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.0020
	4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020
In []:	new_df.h	nead()					
Out[]:	Unnar	med: 0	TWEET	sтоск	DATE	LAST_PRICE	1_DAY_RETUR
	0	0	RT @robertoglezcano: @amazon #Patents Show Fl	Nike	0.0	0.000000	0.00000
	1	Nike	Amazon	31/01/2017	823.48	0.008379	0.01492
	2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020
	3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.0020
	4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020
In []:			nber of rows in o				
			<pre>in old dataset: in new dataset:</pre>				
In []:			ferences between ssing_list] != ne				

```
Differences between old and new datasets:
LAST PRICE
                      58106
1_DAY_RETURN
                      58106
2_DAY_RETURN
                      58106
3_DAY_RETURN
                      58106
7 DAY RETURN
                      58106
PX_V0LUME
                      58106
VOLATILITY 10D
                      58111
VOLATILITY_30D
                      58117
Unnamed: 0
                      18521
TWEET
                          3
ST0CK
                      58106
DATE
                      58106
LSTM POLARITY
                      58107
TEXTBLOB_POLARITY
                      97688
MENTION
                     116209
dtype: int64
```

3.3.3 通过属性的相关关系来填补

通过属性的相关关系来填补缺失值策略对缺失值进行处理,在处理后完成,对比新旧数据集的差异。

检查数值属性的相关系数矩阵

In []:	df.corr()				
Out[]:		LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN
	LAST_PRICE	1.000000	-0.013310	-0.013472	-0.037885
	1_DAY_RETURN	-0.013310	1.000000	0.734714	0.196885
	2_DAY_RETURN	-0.013472	0.734714	1.000000	0.269247
	3_DAY_RETURN	-0.037885	0.196885	0.269247	1.000000
	7_DAY_RETURN	-0.022251	-0.037411	-0.063732	-0.167271
	PX_VOLUME	0.016460	-0.021278	-0.026231	-0.210847
	VOLATILITY_10D	0.067075	-0.051252	-0.068032	-0.435475
	VOLATILITY_30D	0.099773	-0.045195	-0.039004	-0.313782

设置相关系数阈值为0.7, 筛选具有相关性的数据

```
In []: correlation_matrix = df.corr()
    threshold = 0.7

related_attributes = dict()
    for i in range(len(correlation_matrix.columns)):
        for j in range(i):
            if abs(correlation_matrix.iloc[i, j]) > threshold:
                attribute_i = correlation_matrix.columns[i]
                attribute_j = correlation_matrix.columns[j]
                related_attributes[attribute_i] = attribute_j

print("\nAttributes with correlation greater than", threshold, ":")
```

```
for key, value in related_attributes.items():
    print(f"{key} : corelate with {value}")
```

Attributes with correlation greater than 0.7: 2_DAY_RETURN: corelate with 1_DAY_RETURN VOLATILITY_10D

通过属性相关关系填补缺失值

```
In []: def fill_missing_with_related_attributes(data, related_attributes):
    new_data = data.copy()

    for attribute, related in related_attributes.items():
        related_mean = new_data[related].mean()
        print(f"{attribute} related with {related} , use {related_mean} f
        new_data[attribute].fillna(related_mean, inplace=True)

    return new_data

filled_df = fill_missing_with_related_attributes(df, related_attributes)
```

 2_DAY_RETURN related with 1_DAY_RETURN , use 0.004374982086701198 fill missing data

 $\begin{tabular}{ll} VOLATILITY_30D & related with VOLATILITY_10D & , use 11.883456869121542 & fill missing data \\ \end{tabular}$

In []: df.head()

Out[]:		Unnamed: 0	TWEET	STOCK	DATE	LAST_PRICE	1_DAY_RETUR
	0	0	RT @robertoglezcano: @amazon #Patents Show Fl	NaN	NaN	NaN	Na
	1	NaN	Amazon	31/01/2017	823.48	0.008379	0.01492
	2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020
	3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.0020
	4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020

In []: new_df.head()

Out[]:		Unnamed: 0	TWEET	sтоск	DATE	LAST_PRICE	1_DAY_RETUR
	0	0	RT @robertoglezcano: @amazon #Patents Show Fl	Nike	0.0	0.000000	0.00000
	1	Nike	Amazon	31/01/2017	823.48	0.008379	0.01492
	2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020
	3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.0020
	4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020

```
def plot_comparison_histogram_and_boxplot(original_data, filled_data, att
    plt.figure(figsize=(10, 5))
    plt.hist(original_data[attribute], alpha=0.5, label='Original')
    plt.hist(filled_data[attribute], alpha=0.5, label='Filled')
    plt.title(f'{attribute} Histogram')
    plt.legend()

plt.show()

plot_comparison_histogram_and_boxplot(df, new_df, "2_DAY_RETURN")
    plot_comparison_histogram_and_boxplot(df, new_df, "VOLATILITY_30D")
```


3.3.4 通过数据对象之间的相似性来填补

通过数据对象之间的相似性来填补缺失值策略对缺失值进行处理,在处理后完成,对比新 旧数据集的差异。

对于每一条缺失数据,使用KNN算法通过数据对象相似性来填补。

Out[]:		Unnamed: 0	TWEET	sтоск	DATE	LAST_PRICE	1_DAY_RETUR
	0	0	RT @robertoglezcano: @amazon #Patents Show Fl	NaN	NaN	NaN	Na
	1	NaN	Amazon	31/01/2017	823.48	0.008379	0.01492
	2	1	@FAME95FM1 Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020
	3	2	@CBSi Jamaicans make money with @Payoneer @Pay	PayPal	31/01/2017	39.780000	0.0020
	4	3	@Hitz92fm Jamaicans make money with @Payoneer	PayPal	31/01/2017	39.780000	0.0020

为了更直观的展示结果,此处只显示数值属性处理后的结果。

In []:	new_df.head()										
Out[]:		LAST_PRICE	1_DAY_RETURN	2_DAY_RETURN	3_DAY_RETURN	7_DAY_RETURN					
	0	229.142895	0.004375	0.007293	5.891352e+06	2.020673e+06					
	1	0.008379	0.014924	0.014924	-1.262933e-03	3.137196e+06					
	2	39.780000	0.002011	0.012318	1.231775e-02	5.480141e-02					
	3	39.780000	0.002011	0.012318	1.231775e-02	5.480141e-02					
	4	39.780000	0.002011	0.012318	1.231775e-02	5.480141e-02					