Embedded System Design and Modeling

FSM example

► Recall the previous FSM example

count = count - 1

Figure 1: Parking system FSM

Can we make it is simpler to draw?

Extended FSMs

count: integer (0, MAX)

Nariables:

► Extended FSM = FSM with internal variables

→ Inputs:
 up: bool
 down: bool
 → Outputs:

Figure 2: Extended FSM with variable "count"

Extended FSM

- The state of the model = the current "bubble" and the values of all the internal variables
- Example: OS hibernation in Windows:
 - ▶ state of computer = all the RAM memory values
 - ▶ if all memory is written down on HDD, and reloaded tomorrow, the system effectively resumes operation from where it left off
- ▶ State is not anymore "the number of bubbles"
 - there is only one "bubble" in our FSM
 - ▶ but there are MAX+1 states (all possible values of the count variable)

Declarations

- ► Always make explicit declaration of:
 - model inputs
 - model outputs
 - model internal variables
 - and their data types

Measure time

Ts=1 sec.

- Extended FSM are useful for modeling **time-based** conditions:
 - measure passage of time: increment a variable every tick
 - only works if the FSM is time-triggered

Example: pedestrian crossing light

- How is time measured in the model below?
- How many states does the model below have?

Figure 3: Extended FSM with time measuring ¹

EECS 149/249A, UC Berkeley: 7

¹image from Seshia' slides

Hybrid systems

Figure 4: Hybrid systems ²

²image from Seshia' slides

Hybrid systems

- ► **Hybrid systems** = system with mixes discrete and continuous behavior
- Example: a PID controller with different modes:
 - ▶ a set of distinct functioning model (e.g. Startup / Normal / Idle)
 - each state is a sub-system implemented with continuous dynamics
- ▶ State **refinement** = a lower-level implementation of a state

Types of hybrid systems

- ► **Timed automata** = hybrid system where every state refinement just measures passage of time (differential equation of degree 1)
- ► **Higher-order systems** = hybrid system where every state refinement uses higher-order differential equation (2 or more)
- ► Two-level control systems = complex controllers with two levels of operation
 - high-level discrete modes of operation (e.g. ECU Power Modes: Normal / Startup / Sleep Mode 1 / Sleep Mode 2)
 - low-level refinements with continuous dynamics

Timed automata

Figure 5: Timed automaton example ³

³image from Seshia' slides

Example

 $\begin{aligned} & \text{continuous variable: } x(t) \in \mathbb{R} \\ & \text{inputs: } click \in \{present, absent\} \\ & \text{outputs: } single, double \in \{present, absent\} \end{aligned}$

Figure 6: Mouse Double-click detector model ⁴

- ▶ Here $\dot{x}(t) = 1$ means "x(t) increases linearly with time", so it measures time
- ► How many states does this model have?

⁴image from Seshia' slides

Example: Another Thermostat

Temperature threshold is 20 with minimum times T_c and T_b in each mode

Figure 7: - Another thermostat model as a Timed Automaton ⁵

⁵image from Seshia' slides

Example: Another Thermostat

Temperature threshold is 20 with minimum times T_c and T_h in each mode

Figure 8: Input and output signals ⁶

⁶image from Seshia' slides

Example: Another Traffic Light

Timed automaton model of a traffic light controller

```
continuous variable: x(t): \mathbb{R}
inputs: pedestrian: pure
outputs: sigR, sigG, sigY: pure
                                            green
             x(t) \ge 60 / sigG
                                           \dot{x}(t) = 1
                                                                  pedestrian \land x(t) < 60 /
                  x(t) := 0
                             pedestrian \land x(t) \ge 60 / sigY
                   red
                                                                     pending
                \dot{x}(t) = 1
                                        x(t) := 0
                                                                      \dot{x}(t) = 1
                                                                x(t) \ge 60 / sigY
                                            yellow
              x(t) \ge 5 / sigR
                                           \dot{x}(t) = 1
                                                                    x(t) := 0
                  x(t) := 0
```

This light remains green at least 60 seconds, and then turns yellow if a pedestrian has requested a crossing. It then remains red for 60 seconds.

Figure 9: Traffic Light controller Timed Automaton ⁷

⁷image from Seshia' slides

Example: Tick generator

Figure 10: Timed Automaton to generate a *tick* event every T seconds ⁸

⁸image from Seshia' slides

Example: Bouncing Ball

Hybrid Automaton for Bouncing Ball

Figure 11: Timed Automaton to simulate a bouncing ball movements ⁹

⁹image from Seshia' slides

FSM simulation software

- ► FSM simulation software
- Used in this class: Stateflow (Simulink / Matlab)
- ► Features:
 - State Actions
 - ► Temporal Logic
 - Other events
 - ▶ ... other ...

State actions

- ► Actions can exist not only on transitions, but also **inside states**
- ► Three main types of **State Actions**:
 - entry (en): executed only when a state is entered
 - exit (ex): executed only when a state is exited
 - during (du): executed when we are in state which is neither entered, not exited

State actions

Figure 12: State Actions example ¹⁰

¹⁰image from Matlab docs

State actions

► State actions can be avoided (use only transitions actions), but sometimes one or the other are more convenient

Temporal logic

- ► For time-based conditions, states certain predefined variables, which can be used to **measure time spent in a state**
 - **tick**: measures time steps
 - is incremented at every time step
 - is reset to 0 every time a state is exited or entered
 - actual duration depends on model step size
 - **sec** / **msec**: measures seconds or miliseconds
 - is incremented every second / milisecond
 - is reset to 0 every time a state is exited or entered
 - actual duration is independent on model step size

Temporal logic

- ► Temporal operators **after()**, **on()**, **every()** can generate events which can be used in conditions
- **Examples**:
 - ► after(10, tick):
 - event is fired after 10 time steps spent in a state
 - evaluates to FALSE for the first 9 steps, is TRUE every time after that
 - on(x, tick):
 - event is fired only **once**, exactly after x time steps spent in a state
 - ightharpoonup evaluates to FALSE for the first x-1 time moments, is TRUE only once at the x-th moment, is FALSE after that
 - every(x, tick):
 - event is fired pariodically after x time steps
 - ightharpoonup evaluates to FALSE for the first x-1 time moments, is TRUE once at the x-th moment, then FALSE for the next x-1 time moments, then TRUE again, and so on

Temporal logic

Figure 13: Temporal Logic example 11

¹¹image from Matlab docs