Recitation Problems - Com S 311

Week of Jan 29^{th} - Feb 3^{rd}

1. Prove $2^{n+1} \in O(2^n)$.

To show that $2^{n+1} \in O(2^n)$, we have to find positive constants c and n_0 such that $\forall n \geq n_0 \quad 2^{n+1} \leq c \cdot 2^n$. Since $2^{n+1} = 2 \cdot 2^n$, choose c = 2 and $n_0 = 1$. Then, $2^{n+1} \leq c \cdot 2^n$ for all $n \geq n_0$. Hence, $2^{n+1} \in O(2^n)$.

2. Prove or disprove $3^n \in O(2^n)$.

We disprove $3^n \in O(2^n)$ by doing proof by contradiction.

```
Let's assume 3^n \in O(2^n). This implies 3^n \le c \cdot 2^n for some c, and n_0 s.t. \forall n \ge n_0 3^n \le c \cdot 2^n
\Rightarrow (\frac{3}{2})^n \le c for some c.
```

As n increases, the left hand side increases but c remains the same. The LHS cannot be less than or equal to c for all valuations of n, leading to a contradiction. Hence, our assumption is false. Therefore, $3^n \notin O(2^n)$.

3. Derive the worst-case runtime of the following loop structure as a function of n and determine its Big-O upper bound. You must show the derivation of the end result. Assume atomic operations take unit time.

```
r = 0;
for(i = 1; i < n; i++)
    for(j = i + 1; j <= n; j++)
        for(k = 1; k <= j; k++)
            r = r + 1; // Atomic operation taking constant time
        } // end k
    } // end j
} // end i
```

$$Runtime = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sum_{k=1}^{j} 1$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} j$$

$$= \sum_{i=1}^{n-1} \left(\sum_{j=1}^{n} j - \sum_{j=1}^{i} j\right) \quad \left[using \ the \ formula \sum_{j=i+1}^{n} j = \sum_{j=1}^{n} j - \sum_{j=1}^{i} j\right]$$

$$= \sum_{i=1}^{n-1} \left(\frac{1}{2}n(n+1) - \frac{1}{2}i(i+1)\right) \quad \left[using \ the \ formula \sum_{x=1}^{n} x = \frac{1}{2}n(n+1)\right]$$

$$= \frac{1}{2}n(n+1)(n-1) - \frac{1}{2} \sum_{i=1}^{n-1} (i^2 + i)$$

$$= \frac{1}{2}n(n+1)(n-1) - \frac{1}{2} \left(\sum_{i=1}^{n-1} i\right) - \frac{1}{2} \left(\sum_{i=1}^{n-1} i^2\right)$$

$$= \frac{1}{2}n(n+1)(n-1) - \frac{1}{2} \cdot \frac{1}{2}n(n-1) - \frac{1}{2} \left(\sum_{i=1}^{n-1} i^2\right)$$

$$= \frac{1}{2}n(n-1)((n+1) - \frac{1}{2}) - \frac{1}{2} \left(\sum_{i=1}^{n-1} i^2\right)$$

$$= \frac{1}{2}n(n-1)(n+\frac{1}{2}) - \frac{1}{2} \left(\sum_{i=1}^{n-1} i^2\right)$$

$$= \frac{1}{2}n(n-1)(n+\frac{1}{2}) - \frac{1}{2} \left(\sum_{i=1}^{n-1} i^2\right)$$

$$= \frac{1}{2}n(n-1)(n+\frac{1}{2}) - \frac{1}{2} \cdot \frac{1}{6}n(n-1)(2n-1) \quad \left[using \ the \ formula \sum_{x=1}^{n} x^2 = \frac{1}{6}n(n+1)(2n+1)\right]$$
Note: you will need to substitute n with $n-1$ inside the formula

$$= \frac{1}{2}n(n-1)\left[n + \frac{1}{2} - \frac{1}{6}(2n-1)\right]$$

$$= \frac{1}{2}n(n-1)(n + \frac{1}{2} - \frac{1}{3}n + \frac{1}{6})$$

$$= \frac{1}{2}n(n-1)(\frac{2}{3}n + \frac{2}{3})$$

$$= \frac{1}{2} \cdot \frac{2}{3} \cdot n(n-1)(n+1)$$

$$= \frac{1}{3}n(n-1)(n+1) \quad \text{which is } \underline{O(n^3)}$$

4. Derive the runtime of the following loop structure as a function of n and determine its Big-O upper bound. You must show the derivation of the end result. Assume atomic operations take unit time.

For each iteration of the outer loop, the inner loop will do i iterations. So if we consider R iterations of the outer loop:

Outer Loop Iteration	<i>i</i> Value at Beginning of Iteration	Number of Times Inner Loop Iterates
1	1	1
2	2	2
3	2^2	2^2
R	2^{R-1}	2^{R-1}

the summation of runtime will be: $1+2+2^2+...+2^{R-1}=2^R-1$. If the outer loop iterates R times, then $2^{R-1} \le n \Rightarrow 2^R \le 2n$ as per condition of the while loop. Hence, the summation is $\le 2n-1$, which means that the runtime is O(n).