Package 'MApckg'

September 5, 2015

Title R package of MetaboAnalyst functions

Description Function from MetaboAnalyst adapted to use in R.

Version 0.1
Suggests knitr
VignetteBuilder knitr
<pre>URL http://github.com/flajole/MApckg</pre>
<pre>BugReports http://github.com/flajole/MApckg/issues</pre>
Imports png,xtable,caret,ellipse,RColorBrewer,Cairo,randomForest,e1071,grDevices,grid,som,pheatmap,pls,siggenes,genefilte
License GPL-3
R topics documented:
ANOVA.Anal 2 ANOVA2.Anal 3 EBAM.A0.Anal 3 FC.Anal 4 Kmeans.Anal 5 PatternHunter 6 PCA.Anal 6 PCA.Loadings 7 PlotANOVA 8 PlotANOVA2 8 PlotCorr 9 PlotCorrHeatMap 9

 PlotPLS
 14

 PlotPLS.Imp
 15

 PlotRF
 16

 PlotEBAM
 10

 PlotFC
 11

 PlotHcTree
 11

 PlotHeatMap2
 12

 PlotKmeans
 13

2 ANOVA.Anal

ANOVA	A.Anal	One-way ANOVA	
Index			29
	Volcano.Anal		. 2
	-		
	_		
	•		
	-		
	DI - 4D CX/M		1.

Description

Performs one-way ANOVA. Creates a file with results: either "anova_nonparametric.csv" or "anova_posthoc.csv" depending on nonpar argument.

Usage

```
ANOVA.Anal(dataSet, analSet, nonpar = FALSE, thresh = 0.05, post.hoc = "fisher")
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
nonpar	If FALSE - use classical ANOVA; if TRUE - Kruskal Wallis Test
thresh	Threshold of significance.
post.hoc	Post-hoc statistics: "tukey" or "fisher"

Value

Native analSet with one added \$aov element consisting of:

- \$aov.nm method of analysis
- \$raw.thresh value of thresh argument
- \$thresh -log10(thresh)
- \$p.value p-values

ANOVA2.Anal 3

- \$p.log -log10(p.value)
- \$inx.imp logical vector of features with significant difference
- \$post.hoc post-hoc statistics, value of post.hoc argument

• \$sig.mat - data frame of significant features with corresponding statistics

ANOVA2.Anal

Two-way ANOVA

Description

Performs two-way ANOVA. Creates a file with results: either "anova_within_sbj.csv" or "anova_between_sbj.csv' depending on type argument.

Usage

```
ANOVA2.Anal(dataSet, analSet, thresh = 0.05, p.cor = "fdr", type = "b")
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
thresh	Threshold of significance.
p.cor	Method of p-value correction, one of p.adjust methods
type	Type of comparison. If "b" - between subjects; if "w" - within subjects

Value

Native analSet with one added \$aov2 element consisting of:

- \$type value of type argument
- \$sig.nm name of file with the resulting ANOVA table
- \$thresh value of thresh argument
- \$multi.c value of p.cor argument
- \$sig.mat data frame of significant features
- \$vennC Venn counts

4 EBAM.A0.Anal

EBAM.A0.Anal

EBAM Fudge Factor

Description

EBAM. A0. Anal - finds EBAM Fudge Factor. Uses find. a0 function.

EBAM. Cmpd. Anal - performs Empirical Bayesian Analysis of Microarray (and Metabolites). Uses ebam function.

Usage

```
EBAM.A0.Anal(dataSet, analSet, paired = FALSE, var.equal = TRUE)
EBAM.Cmpd.Anal(dataSet, analSet, method = "z.ebam", A0 = 0,
    paired = FALSE, var.equal = TRUE)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

paired Are values in data set paired or not.

var.equal Are variances assumed equal or not.

method A character string or name specifying the method or function that should be

used in the computation of the expression score z. If "z.ebam", a modified t- or F-statistic, respectively, will be computed as proposed by Efron et al. (2001). If "wilc.ebam", a (standardized) Wilcoxon sum / signed rank statistic will be used as expression score. Note: if method is "wilc.ebam", then A0 and var.equal

parameters will be ignored

A0 Fudge Factor. EBAM. A0. Anal

Value

EBAM.A0.Anal - native analSet with one added \$ebam.a0 element containing standard find.a0 function output

EBAM. Cmpd. Anal - native analSet with one added \$ebam element containing standard ebam function output

Functions

• EBAM.A0.Anal:

FC.Anal 5

|--|

Description

Fold change (FC) analysis is to compare the absolute value change between two group means. Since column-wise normalization (i.e. log transformation, mean-centering) will significantly change the absolute values, FC is calculated as the ratio between two group means using data before columnwise normalization was applied.

Usage

```
FC.Anal(dataSet, analSet, fcthresh = 2, percent.thresh = 0.75,
  cmpType = 0)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

fcthresh Fold-change threshold.

percent.thresh Sig. count threshold (for paired data only).

cmpType Comparison type. If equal 0 then group 1 is compared against group 2. Otherwise, vice versa.

Details

For paired analysis, the program first counts the number of pairs with consistent change above the given FC threshold. If this number exceeds a given count threshold, the variable will be reported as significant. Writes an output file "fold_change.csv".

Value

Native analSet with one added \$fc element consisting of:

- \$paired are data paired or not
- \$raw. thresh value of fcthresh argument
- \$max.thresh upper log-threshold of fold change
- \$min.thresh lower log-threshold of fold change
- \$fc.all fold changes of all features
- \$fc.mat matrix of fold changes (for paired data only)
- \$fc.log log2 of fold changes (for unpaired data only)
- \$inx.up logical vector of increasing features (for paired data only)
- \$inx.down logical vector of decreasing features (for paired data only)
- \$inx.imp logical vector of features with significant difference (for unpaired data only)
- \$sig.mat data frame of significant features

PatternHunter

Kmeans.Anal	K-means analysis	

Description

Perform K-means analysis. Uses kmeans function.

Usage

```
Kmeans.Anal(dataSet, analSet, clust.num)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

clust.num The cluster number.

Value

Native analSet with one added \$kmeans element containing standard kmeans output.

Description

Correlation analysis.

FeatureCorrelation performs analysis against a given feature. Writes an output file "correlation_feature.csv" Match.Pattern performs analysis against a given pattern. Writes an output file "correlation_pattern.csv" respectively.

Usage

```
FeatureCorrelation(dataSet, analSet, dist.name = "pearson", varName)
Match.Pattern(dataSet, analSet, dist.name = "pearson", pattern = NULL)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
dist.name	Method of correlation calculating, one of "pearson", "kendall", "spearman"
varName	The name of the feature to perform correlation analysis against.
pattern	A character vector, the pattern to search. The pattern is specified as a series of numbers separated by "-". Each number corresponds to the expected expression pattern in the corresponding group. For example, a 1-2-3-4 pattern is used to search for features that increase linearly with time in a time-series data with four time points (or four groups). The order of the groups is given as the first item in the predefined patterns.

PCA.Anal

Value

Native analSet with one added \$corr element consisting of

- \$corr\$sig.nm ???
- \$corr\$cor.mat correlation matrix
- \$corr\$pattern name of the feature of comparison or the used pattern.

PCA.Anal

Perform PCA

Description

Uses prcomp function. Writes two output files: "pca_score.csv" and "pca_loadings.csv". Adds analSet\$pca element with prcomp function output and some basic statistics.

Usage

```
PCA.Anal(dataSet, analSet)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

Value

Native analSet with one added \$pca element consisting of:

- all the elements of the standard prcomp output
- \$std standard deviation
- \$variance variance explained by each PC
- \$cum.var cummulated variance explained

PCA.Loadings

PCA loadings

Description

PCA loadings. Adds loading matrix to analSet\$pca element.

Usage

```
PCA.Loadings(dataSet, analSet, inx1 = 1, inx2 = 2)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

inx1, inx2 The order numbers of PCs.

8 PlotANOVA2

Value

Native analSet with two added elements:

- \$pca\$load.x.uniq ???
- \$pca\$imp.loads loading matrix

PlotANOVA

Plot one-way ANOVA results

Description

Plot one-way ANOVA results

Usage

```
PlotANOVA(dataSet, analSet, imgName = "aov_", format = "png", dpi = 72,
  width = NA)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution. width Image width.

PlotANOVA2

Plot two-way ANOVA results

Description

Plot two-way ANOVA results

Usage

```
PlotANOVA2(dataSet, analSet, imgName = "aov2_", format = "png", dpi = 72,
    width = NA)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution. width Image width. PlotCorr 9

PlotCorr Plot pattern correlations	PlotCorr	Plot pattern correlations	
------------------------------------	----------	---------------------------	--

Description

Plot the top 25 features correlated to a feature or a pattern.

Usage

```
PlotCorr(dataSet, analSet, imgName = "ptn_", format = "png", dpi = 72,
  width = NA)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.

	PlotCorrHeatMap	Plot correlations heatmap	
--	-----------------	---------------------------	--

Description

Plot correlations heatmap and write an output file "correlation_table.csv". Note, the heatmap will only show correlations for a maximum of 1000 features. For larger datasets, only top 1000 features will be selected based on their interquantile range (IQR). When color distribution is fixed, you can potentially compare the correlation patterns among different data sets. In this case, you can choose "do not perform clustering" for all data set, or only to perform clustering on a single reference data set, then manually re-arranged other data sets according to the clustering pattern of the reference data set.

```
PlotCorrHeatMap(dataSet, analSet, imgName = "corr_heat_", format = "png",
    dpi = 72, width = NA, cor.method = "pearson", colors = "default",
    viewOpt = "overview", fix.col = F, no.clst = FALSE, top = F,
    top.num = 999)
```

10 **PlotEBAM**

Arguments

dataSet List, data set object generated by MS_to_MA function. analSet List, containing the results of statistical analysis (can be just an empty list). imgName Image file name prefix. format Image format, one of: "png", "tiff", "pdf", "ps", "svg" dpi Image resolution. width Image width. cor.method Method of correlation calculation, one of "pearson", "kendall", "spearman" The color contrast. One of "default", "gbr" (red/green), "heat", "topo", colors "gray" viewOpt View mode, "overview" or "detailed" If TRUE, color distribution is fixed. fix.col no.clst If TRUE, no clustering lines are plotted. ???????????????????? top The number of the features with the best contrast to be plotted.

Description

top.num

Functions for plotting the results of EBAM.

PlotEBAM. A0 - plot EBAM A0 plot.

PlotEDAM. Cmpd - plot significant features.

Usage

```
PlotEBAM.A0(dataSet, analSet, imgName = "ebam_view_", format = "png",
 dpi = 72, width = NA)
PlotEBAM.Cmpd(dataSet, analSet, imgName = "ebam_imp_", format = "png",
  dpi = 72, width = NA)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution. width Image width.

PlotFC 11

Description

Plot fold change analysis results.

Usage

```
PlotFC(dataSet, analSet, imgName = "fc_", format = "png", dpi = 72,
  width = NA)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.

PlotHCTree	Plot dendrogram
1 TO CHOTT CC	1 tot actiaiogram

Description

Plot hierarchical clustering tree.

Usage

```
PlotHCTree(dataSet, analSet, imgName = "tree_", format = "png", dpi = 72,
  width = NA, smplDist = "euclidean", clstDist = "ward.D")
```

Arguments

(dataSet	List, data set object generated by MS_to_MA function.
į	analSet	List, containing the results of statistical analysis (can be just an empty list).
	imgName	Image file name prefix.
	format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
(dpi	Image resolution.
١	width	Image width.
:	smplDist	The distance measure. One of "euclidean", "spearman"
(clstDist	The agglomeration method to be used, one of "ward.D", "ward.D2", "single", "complete", "average". For details: hclust

PlotHeatMap2

PlotHeatMap2	Plot two-factor heatmap	
--------------	-------------------------	--

Description

Uses pheatmap function. This method displays data in the form of colored cells. It provides direct visualization of the relative levels of individual samples or variables. Each colored cell on the map corresponds to a concentration value in your data table, with samples in rows and features/compounds in columns. You can use heatmap to identify samples/features that are unusually high/low.

Usage

```
PlotHeatMap2(dataSet, analSet, imgName = "heatmap2_", format = "png",
    dpi = 72, width = NA, smplDist = "pearson", clstDist = "average",
    colors = "bwm", viewOpt = "overview", hiRes = FALSE, sortInx = 2,
    var.inx = 1:ncol(dataSet$norm))
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.
smplDist	The distance measure, one of "euclidean", "pearson", "minkowski"
clstDist	The agglomeration method to be used, one of "ward.D", "ward.D2", "single", "complete", "average". For details: pheatmap
colors	The color contrast. One of "default", "gbr" (red/green), "heat", "topo", "gray"
viewOpt	View mode, "overview" or "detailed"
hiRes	If TRUE, then produces hi-resolution plot.
sortInx	If "A", samples are arranged by the first factor; if "B" - by the second one.
var.inx	Vector of the numbers of plotted features.

Value

Native analSet with one added \$htmap2 element containing:

- \$htmap2\$dist.par equal smplDist argument value
- \$htmap2\$clust.par equal clstDist argument value

PlotKmeans 13

PlotKmeans Plot K-means	PlotKmeans
-------------------------	------------

Description

Plot K-means map. Please note: only the cluster members will be calculated if the specified cluster number > 20. The blue lines represent the median intensities of each cluster.

Usage

```
PlotKmeans(dataSet, analSet, imgName = "kmeans_", format = "png",
    dpi = 72, width = NA)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution.

width Image width.

PlotPCA Plot PCA

Description

Set of functions for plotting the results of PCA.

PlotPCAPairSummary - plot summary.

PlotPCAScree - plot scree plot of varience explained by PC.

PlotPCA2DScore - plot 2D score plot.

 ${\tt PlotPCABiplot-plot}\ {\tt the}\ biplot.$

PlotPCALoadings - plot loadings.

```
PlotPCAPairSummary(dataSet, analSet, imgName = "pca_pair_", format = "png",
    dpi = 72, width = NA, pc.num = 2)

PlotPCAScree(dataSet, analSet, imgName = "pca_scree_", format = "png",
    dpi = 72, width = NA, scree.num)

PlotPCA2DScore(dataSet, analSet, imgName = "pca_score2d_", format = "png",
    dpi = 72, width = NA, inx1 = 1, inx2 = 2, reg = 0.95, show = TRUE,
    grey.scale = FALSE)
```

14 PlotPLS

```
PlotPCABiplot(dataSet, analSet, imgName = "pca_biplot_", format = "png",
    dpi = 72, width = NA, inx1 = 1, inx2 = 2)

PlotPCALoadings(dataSet, analSet, imgName = "pca_loading_", format = "png",
    dpi = 72, width = NA, plotType = "scatter", show = TRUE)
```

Arguments

dataSet List, data set object generated by MS_to_MA function. List, containing the results of statistical analysis (can be just an empty list). analSet imgName Image file name prefix. Image format, one of: "png", "tiff", "pdf", "ps", "svg" format dpi Image resolution. width Image width. The number of plotted principal components. pc.num The total number of plotted PCs. scree.num inx1,inx2 The order numbers of PCs. Set the confidence level for plotting confidence region ellipse. reg If TRUE then points at the plot are labeled. show If TRUE then plot is colored in 50 shades of gray. grey.scale

"scatter" for scatter plot or "boxplot" for box plot

PlotPLS Plot PLS

Description

plotType

Set of functions for plotting the results of PLS.

PlotPLSPairSummary - plot summary.

PlotPLS2DScore - plot 2D score plot.

PlotPLSLoadings - plot loadings.

PlotPLS.Classification - plot PLSDA classification performance using different components PlotPLS.Permutation - plot PLSDA permutation plot.

```
PlotPLSPairSummary(dataSet, analSet, imgName = "pls_pair_", format = "png",
    dpi = 72, width = NA, pc.num = 2)

PlotPLS2DScore(dataSet, analSet, imgName = "pls_score2d_", format = "png",
    dpi = 72, width = NA, inx1 = 1, inx2 = 2, reg = 0.95, show = TRUE,
    grey.scale = F)

PlotPLSLoading(dataSet, analSet, imgName = "pls_loading_", format = "png",
    dpi = 72, width = NA, plotType = "scatter", show = T)
```

PlotPLS.Imp

```
PlotPLS.Classification(dataSet, analSet, imgName = "plsda_", format = "png",
    dpi = 72, width = NA)

PlotPLS.Permutation(dataSet, analSet, imgName = "pls_perm_", format = "png",
    dpi = 72, width = NA)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution. width Image width.

pc.num The number of plotted principal components.

inx1, inx2 The order numbers of PCs.

reg Set the confidence level for plotting confidence region ellipse.

show If TRUE then points at the plot are labeled.

grey.scale If TRUE then plot is colored in 50 shades of gray.

plotType "scatter" for scatter plot or "boxplot" for box plot

PlotPLS.Imp Plot PLS important features

Description

There are two importance measures in PLS-DA: one is variable importance in projection (VIP) and the other is weighted sum of absolute regression coefficients (coef.). The colored boxes on the right indicate the relative concentrations of the corresponding metabolite in each group under study.

Usage

```
PlotPLS.Imp(dataSet, analSet, imgName = "pls_imp_", format = "png",
    dpi = 72, width = NA, type = "vip", feat.nm, feat.num = 15,
    color.BW = FALSE)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution. width Image width.

type Importance measure. "vip" - for variable importance in projection (VIP); "coef"

- for weighted sum of absolute regression coefficients.

feat.num The number of top features to plot.

color.BW If TRUE, grey scale is used.

16 PlotRSVM

PlotRF

Plot Random Forest

Description

Set of functions for plotting the results of Random Forest analysis.

PlotRF.Classification - plot feature classification.

PlotRF.VIP - plot variable importance of features ranked by their contributions to classification accuracy (MeanDecreaseAccuracy).

PlotRF.Outlier - plot outlying measures, only top 5 potential outliers are labeled.

Usage

```
PlotRF.Classification(dataSet, analSet, imgName = "rf_cls_", format = "png",
    dpi = 72, width = NA)

PlotRF.VIP(dataSet, analSet, imgName = "rf_imp_", format = "png",
    dpi = 72, width = NA)

PlotRF.Outlier(dataSet, analSet, imgName = "rf_outiler_", format = "png",
    dpi = 72, width = NA)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.

PlotRSVM

Plot RSVM

Description

Set of functions for plotting the results of recursive Support Vector Machine analysis.

PlotRSVM.Classification - plot feature classification.

PlotRSVM.VIP - please note: features are ranked by their frequencies being selected in the best classifiers (only top 15 will be shown)

```
PlotRSVM.Classification(dataSet, analSet, imgName = "svm_cls_",
  format = "png", dpi = 72, width = NA)

PlotRSVM.Cmpd(dataSet, analSet, imgName = "svm_imp_", format = "png",
  dpi = 72, width = NA)
```

PlotSAM 17

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution.width Image width.

PlotSAM Plot SAM

Description

Functions for plotting the results of SAM.

PlotSAM.FDR - plot FDR.

PlotSAM.Cmpd - plot significant features.

Usage

```
PlotSAM.FDR(dataSet, analSet, delta = NULL, imgName = "sam_view_",
  format = "png", dpi = 72, width = NA)

PlotSAM.Cmpd(dataSet, analSet, imgName = "sam_imp_", format = "png",
  dpi = 72, width = NA)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

delta The delta to control FDR. If NULL, then it's suggested automaticly

imgName Image file name prefix.

format Image format, one of: "png", "tiff", "pdf", "ps", "svg"

dpi Image resolution.

width Image width.

PlotSubHeatMap

Description

Plot SOM map for less than 20 clusters. Please note: only cluster members will be calculated if the total cluster number (xdim*ydim) > 20. The blue lines represent the median intensities of each cluster.

Usage

```
PlotSOM(dataSet, analSet, imgName = "som_", format = "png", dpi = 72,
  width = NA)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.

PlotSubHeatMap	Plot heatmap
1 10 CoupilCa Ci lap	1 ioi neaimap

Description

Plot a sub heatmap based on results from t-tests/ANOVA, VIP or Random Forest analysis. Uses pheatmap function. Heatmap provides intuitive visualization of the data table. Each colored cell on the map corresponds to a concentration value in your data table, with samples in rows and features/compounds in columns. You can use heatmap to identify samples/features that are unusually high/low.

Tip 1: Do not re-organize samples/rows to show the natural contrast among groups (with each group a block).

Tip 2: Display top number of features ranked by t-tests to retain the most constrasting patterns.

```
PlotSubHeatMap(dataSet, analSet, imgName = "heatmap_", format = "png",
    dpi = 72, width = NA, smplDist = "euclidean", clstDist = "ward.D",
    colors = "default", method.nm = "tanova", top.num = 25,
    viewOpt = "overview", rowV = TRUE, colV = TRUE, border = T)
```

PlotTT 19

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.
smplDist	The distance measure, one of "euclidean", "pearson", "minkowski"
clstDist	The agglomeration method to be used, one of "ward.D", "ward.D2", "single", "complete", "average". For details: pheatmap
colors	The color contrast. One of "default", "gbr" (red/green), "heat", "topo", "gray"
method.nm	Type of analysis applied to detect features with the best contrast. One of "tanova" - for t-test or ANOVA; "vip" - for PLS-DA VIP; "rf" - for Random Forest analysis
top.num	The number of the features with the best contrast to be plotted.
viewOpt	View mode, "overview" or "detailed"
rowV	If TRUE, samples are reorganized.
colV	If TRUE, features are reorganized.
border	If TRUE, show cell borders.

Value

Native analSet with one added \$htmap element containing:

- \$htmap\$dist.par equal smplDist argument value
- \$htmap\$clust.par equal clstDist argument value

PlotTT Plot t-test results

Description

Plot t-test results

Usage

```
PlotTT(dataSet, analSet, imgName = "tt_", format = "png", dpi = 72,
  width = NA)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.

20 PLS.Anal

PlotVolcano	Plot Volcano results	
-------------	----------------------	--

Description

The volcano plot is a combination of fold change and t-tests. Note, for unpaired samples, the x-axis is log (FC). For paired analysis, the x-axis is number of significant counts. Y-axis is -log10(p.value) for both cases.

Usage

```
PlotVolcano(dataSet, analSet, imgName = "volcano_", format = "png",
    dpi = 72, width = NA)
```

Arguments

8	
dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
imgName	Image file name prefix.
format	Image format, one of: "png", "tiff", "pdf", "ps", "svg"
dpi	Image resolution.
width	Image width.
PLS.Anal	PLS analysis Uses "oscorespls" method of plsr function . Writes
	two output files: "pls_score.csv" and "pls_loadings.csv". Adds analSet\$pls element with plsr function output.
	anaise copis element with pist junction output.

Description

PLS analysis Uses "oscorespls" method of plsr function. Writes two output files: "pls_score.csv" and "pls_loadings.csv". Adds analSet\$pls element with plsr function output.

Usage

```
PLS.Anal(dataSet, analSet)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).

Value

Native analSet with one added \$plsr element containing plsr function output

PLS.Loadings 21

.Loadings PLS loadings

Description

PLS loadings. Adds loading matrix to analSet\$pls element.

Usage

```
PLS.Loadings(dataSet, analSet, inx1 = 1, inx2 = 2)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

inx1, inx2 The numbers of PC.

Value

Native analSet with two added elements:

- \$pls\$load.x.uniq ???
- \$pls\$imp.loads loading matrix

PLSDA cross validation	SDA.CV	P
1 LSD/1 Cross variation	JDA.CV	

Description

Perform PLSDA classification and feature selection. Writes two output files: "plsda_vip.csv" and "plsda_coef.csv".

Usage

```
PLSDA.CV(dataSet, analSet, methodName = "CV",
  compNum = GetDefaultPLSCVComp(dataSet), choice = "Q2")
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
methodName	Cross validation method "LOOCV" or "CV"
compNum	The maximum number of components to search.
choice	The determining performance measure, one of "Q2", "R2", "Accuracy"

22 PLSDA.Permut

Value

Native analSet with one added \$plsda element consisting of:

- \$best.num the detected best number of components
- \$choice value of choice argument
- \$coef.mat matrix of VIPs (variable importance in projection)
- \$vip.mat matrix of weighted sums of absolute regression coefficients
- \$fit.info all performance measures calculated for different number of components

PLSDA.Permut

Permutation PLSDA test

Description

Perform permutation, using training classification accuracy or separation distance as indicator, for two or multi-groups.

Usage

```
PLSDA.Permut(dataSet, analSet, num = 100, type = "accu")
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

num The number of permutations.

type The indicator. If "accu" - training classification accuracy; if "sep" - separation

distance.

Value

Native analSet with some elements added:

- \$plsda\$permut.p-
- \$plsda\$permut.inf -
- \$plsda\$permut.type -
- \$plsda\$permut -

RF.Anal 23

RF.Anal	Random Forests	

Description

Perform Random Forest analysis. Uses randomForest function. Writes results to "randomforests_sigfeatures.csv" file.

Usage

```
RF.Anal(dataSet, analSet, treeNum = 500, tryNum = 10)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

treeNum Number of trees to grow.

tryNum Number of predictors to try for each node.

Value

Native analSet with two added elements:

- \$rf standard randomForest function output
- \$rf.sigmat matrix of features significance (sorted by MeanDecreaseAccuracy).

RSVM.Anal	Support Vector Machine (SVM)	

Description

Perform recursive SVM for feature selection and classification. Uses svm function. Writes results to "svm_sigfeatures.csv" file. R-SVM uses SVM (with linear kernel) to perform classification recursively using different feature subsets. Features are selected based on their relative contribution in the classification using cross validation error rates. The least important features are eliminated in the subsequent steps. This process creates a series of SVM models (levels). The features used by the best model are plotted. LOOCV: leave one out cross-validation.

Usage

```
RSVM.Anal(dataSet, analSet, cvType = 10)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
сvТуре	Type of cross-validation of: integer - N-fold-CV is used; "L00" - leave-one-out CV (LOOCV); "bootstrape" - bootstrape CV

24 SetEBAMSigMat

Value

Native analSet with one added element \$svm containing - standard randomForest function output

|--|--|--|

Description

Perform Significance Analysis of Microarray (and Metabolites). Uses sam function.

Usage

```
SAM.Anal(dataSet, analSet, method = "d.stat", paired = FALSE,
  var.equal = TRUE)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

method A character string or a name specifying the method/function that should be used

in the computation of the expression scores d. If "d.stat", a modified t-statistic or F-statistic, respectively, will be computed as proposed by Tusher et al. (2001). If "wilc.stat", a Wilcoxon rank sum statistic or Wilcoxon signed rank statistic

will be used as expression score.

paired Are values in data set paired or not.

var.equal Are variances assumed equal or not.

Value

Native analSet with one added \$sam element containing standard sam function output

|--|

Description

EBAM matrix of significance. Writes results to "ebam_sigfeatures.csv" file.

Usage

```
SetEBAMSigMat(dataSet, analSet, delta = 0.9)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

delta The delta to control FDR

SetSAMSigMat 25

Value

Native analSet with two added elements:

- \$ebam.cmpd matrix containing z.value, posterior, local.fdr columns
- \$ebam.delta value of delta argument

SetSAMSigMat

SAM matrix of significance

Description

SAM matrix of significance. Writes results to "sam_sigfeatures.csv" file.

Usage

```
SetSAMSigMat(dataSet, analSet, delta = 1.3)
```

Arguments

dataSet List, data set object generated by MS_to_MA function.

analSet List, containing the results of statistical analysis (can be just an empty list).

delta The delta to control FDR

Value

Native analSet with two added elements:

- \$sam.cmpd matrix containing d.value, stdev, rawp, q.value columns
- \$sam.delta value of delta argument

SOM.Anal

SOM analysis

Description

Perform Self Organizing Map analysis. Uses som function. The parameters and outcome are identical.

```
SOM.Anal(dataSet, analSet, x.dim = 1, y.dim = 3, initMethod = "linear",
neigb = "gaussian")
```

26 Ttests.Anal

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
x.dim	An integer specifying the x-dimension of the map.
y.dim	An integer specifying the y-dimension of the map.
initMethod	A character string specifying the initializing method. The following are permitted: "sample" uses a random sample from the data; "random" uses random draws from $N(0,1)$; "linear" uses the linear grids upon the first two principle components directin.
neigb	A character string specifying the neighborhood function type. The following are permitted: "bubble", "gaussian"

Value

Native analSet with one added \$som element containing standard som output.

|--|

Description

Performs group comparison. Creates a file with results: either "Wilcoxon_rank.csv" or "t_test.csv" depending on nonpar argument.

Usage

```
Ttests.Anal(dataSet, analSet, nonpar = FALSE, thresh = 0.05,
   paired = FALSE, var.equal = TRUE)
```

Arguments

dataSet	List, data set object generated by MS_to_MA function.
analSet	List, containing the results of statistical analysis (can be just an empty list).
nonpar	If FALSE - use classical t-test; if TRUE - Wilcoxon Rank Test
thresh	Threshold of significance.
paired	Are values in data set paired or not.
var.equal	Are variances assumed equal or not.

Value

Native analSet with one added \$tt element consisting of:

- \$tt.nm method of analysis
- \$raw. thresh value of thresh argument
- \$thresh -log10(thresh)
- \$p.value p value
- \$p.log -log10(p.value)
- \$inx.imp logical vector of features with significant difference
- \$sig.mat data frame of significant features

Volcano.Anal 27

Note

Note, for large data set (> 1000 variables), both the paired information and the group variance will be ignored, and the default parameters will be used for t-tests to save computational time. If you choose non-parametric tests (Wilcoxon rank-sum test), the group variance will be ignored.

Volcano.Anal Volcano

Description

The volcano plot is a combination of fold change and t-tests. Note, for unpaired samples, the x-axis is log (FC). For paired analysis, the x-axis is number of significant counts. Y-axis is -log10(p.value) for both cases. Writes an output file "volcano.csv"

Usage

```
Volcano.Anal(dataSet, analSet, paired = FALSE, fcthresh = 2, cmpType = 0,
    percent.thresh = 0.75, nonpar = FALSE, thresh = 0.05,
    var.equal = TRUE)
```

Arguments

dataSet List, data set object generated by MS_to_MA function. List, containing the results of statistical analysis (can be just an empty list). analSet Are values in data set paired or not. paired fcthresh Fold-change threshold. cmpType Comparison type. If equal 0 then group 1 is compared against group 2. Otherwise, vice versa. percent. thresh Sig. count threshold (for paired data). If FALSE - use classical t-test; if TRUE - Wilcoxon Rank Test nonpar thresh Threshold of significance. var.equal Are variances assumed equal or not.

Value

Native analSet with one added \$volcano element consisting of:

- \$raw. threshx value of fcthresh argument
- \$raw. threshy value of thresh argument
- \$paired -log10(thresh)
- \$max.xthresh upper log-threshold of fold change
- \$min.xthresh lower log-threshold of fold change
- \$thresh.y--log10(thresh)
- \$fc.all fold changes of all features
- \$fc.log log of fold changes
- \$fc.log.uniq java-object

Volcano. Anal

- \$inx.up logical vector of increasing features
- \$inx.down logical vector of decreasing features
- \$p.log -log10(p.value)
- \$inx.p logical vector of features with p <= thresh
- \$sig.mat data frame of significant features

Index

ANOVA.Anal, 2 ANOVA2.Anal, 3 ebam, 3, 4 EBAM.A0.Anal, 3, 4 EBAM.Cmpd.Anal (EBAM.A0.Anal), 3 FC.Anal, 4 FeatureCorrelation (PatternHunter), 6 find.a0, 3, 4 hclust, 11	PlotRSVM, 16 PlotSAM, 17 PlotSOM, 18 PlotSubHeatMap, 18 PlotTT, 19 PlotVolcano, 20 PLS.Anal, 20 PLS.Loadings, 21 PLSDA.CV, 21 PLSDA.Permut, 22 plsr, 20 prcomp, 6, 7
kmeans, 5 Kmeans.Anal, 5 Match.Pattern(PatternHunter), 6	randomForest, 23, 24 RF.Anal, 23 RSVM.Anal, 23
MS_to_MA, 2–27	sam, 24
p.adjust, 3 PatternHunter, 6 PCA.Anal, 6 PCA.Loadings, 7 pheatmap, 12, 18, 19 PlotANOVA, 8 PlotANOVA2, 8 PlotCorr, 9 PlotCorrHeatMap, 9 PlotEBAM, 10 PlotFC, 11 PlotHCTree, 11 PlotHeatMap2, 12 PlotKmeans, 13	SAM. Anal, 24 SetEBAMSigMat, 24 SetSAMSigMat, 25 som, 25, 26 SOM. Anal, 25 svm, 23 Ttests. Anal, 26 Volcano. Anal, 27
PlotPCA, 13 PlotPCA2DScore (PlotPCA), 13 PlotPCABiplot (PlotPCA), 13 PlotPCALoadings (PlotPCA), 13 PlotPCAPairSummary (PlotPCA), 13 PlotPCAScree (PlotPCA), 13 PlotPLS, 14 PlotPLS. Imp, 15 PlotPLS2DScore (PlotPLS), 14 PlotPLSLoading (PlotPLS), 14 PlotPLSPairSummary (PlotPLS), 14 PlotPLSPairSummary (PlotPLS), 14 PlotRF, 16	