THE DERIVATIVE

Tangent Line
Slope of a line
Limit

SECANT LINE AND TANGENT LINE

AVERAGE AND INSTANTANEOUS RATE OF CHANGE

If y = f(x), then we define the average rate of change of y with respect to x over t interval $[x_0, x_1]$ to be

$$r_{\text{ave}} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

and we define the instantaneous rate of change of y with respect to x at x_0 to be

$$r_{\text{inst}} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Geometrically, the average rate of change of y with respect to x over the interval $[x_0, x_1]$ is the slope of the secant line through the points $P(x_0, f(x_0))$ and $Q(x_1, f(x_1))$ (Figure 2.1.11), and the instantaneous rate of change of y with respect to x at x_0 is the slope of the tangent line at the point $P(x_0, f(x_0))$ (since it is the limit of the slopes of the secant lines through P).

$$r_{\text{ave}} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$r_{\text{inst}} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

If desired, we can let $h = x_1 - x_0$,

$$r_{\text{ave}} = \frac{f(x_0 + h) - f(x_0)}{h}$$

$$r_{\text{inst}} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Let
$$y = x^2 + 1$$
.

- (a) Find the average rate of change of y with respect to x over the interval [3, 5].
- (b) Find the instantaneous rate of change of y with respect to x when x = -4.

Solution (a).

$$f(x) = x^2 + 1$$
, $x_0 = 3$, and $x_1 = 5$

$$r_{\text{ave}} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(5) - f(3)}{5 - 3} = \frac{26 - 10}{2} = 8$$

Thus, y increases an average of 8 units per unit increase in x over the interval [3, 5].

Solution (b).

$$f(x) = x^2 + 1$$
 and $x_0 = -4$.

$$r_{\text{inst}} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \lim_{x_1 \to -4} \frac{f(x_1) - f(-4)}{x_1 - (-4)} = \lim_{x_1 \to -4} \frac{(x_1^2 + 1) - 17}{x_1 + 4}$$

$$= \lim_{x_1 \to -4} \frac{x_1^2 - 16}{x_1 + 4} = \lim_{x_1 \to -4} \frac{(x_1 + 4)(x_1 - 4)}{x_1 + 4} = \lim_{x_1 \to -4} (x_1 - 4) = -8$$

Thus, a small increase in x from x = -4 will produce approximately an 8-fold decrease in y.

Practice Problems

The Derivatives

- 1. Let $y = x^2 2x + 3$.
 - (a) Find the average rate of change of y with respect to x over the interval [1, 3].
 - (b) Find the instantaneous rate of change of y with respect to x when x = 2.
- 2. Let $y = 5 + 3x x^2$.
 - (a) Find the average rate of change of y with respect to x over the interval [-1,1].
 - (b) Find the instantaneous rate of change of y with respect to x when x = 0.

DEFINITION OF DERIVATIVE FUNCTION

The function f' defined by the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

is called the *derivative of f with respect to x*. The domain of f' consists of all x in the domain of f for which the limit exists.

DIFFERENTIABILITY

It is possible that the limit that defines the derivative of a function f may not exist at certain points in the domain of f. At such points the derivative is undefined. To account for this possibility we make the following definition.

DEFINITION

A function f is said to be differentiable at x_0 if the limit

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists. If f is differentiable at each point of the open interval (a, b), then we say that it is *differentiable on* (a, b), and similarly for open intervals of the form $(a, +\infty)$, $(-\infty, b)$, and $(-\infty, +\infty)$. In the last case we say that f is *differentiable everywhere*.

Geometrically, a function f is differentiable at x_0 if the graph of f has a tangent line at x_0 . Thus, f is not differentiable at any point x_0 where the secant lines from $P(x_0, f(x_0))$ to points Q(x, f(x)) distinct from P do not approach a unique *nonvertical* limiting position as $x \to x_0$. Figure 2.2.6 illustrates two common ways in which a function that is continuous at x_0 can fail to be differentiable at x_0 . These can be described informally as

- corner points
- · points of vertical tangency

Figure 2.2.6

RELATIONSHIP BETWEEN DIFFERENTIABILITY AND CONTINUITY

If a function f is differentiable at x_0 , then f is continuous at x_0 .

FORMULAE

- 1. $\frac{d}{dx}[c] = 0$, where c is a constant
- 2. $\frac{d}{dx}[x^n] = nx^{n-1}$, where *n* is a real number
- 3. $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$, where c is a constant and f(x) is differentiable at x
- 4. $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$, where f(x) and g(x) are differentiable at x
- 5. $\frac{d}{dx}[f(x) g(x)] = \frac{d}{dx}[f(x)] \frac{d}{dx}[g(x)]$, where f(x) and g(x) are differentiable at x

Find $\frac{dy}{dx}$

(a)
$$y = 2x^2 - \sqrt{x} + 3$$

(b)
$$y = \frac{x^2 + 1}{5}$$

EXAMPLE 3

Find f'(x)

(a)
$$f(x) = -3x^{-5} + 2\sqrt[3]{x}$$

(b)
$$f(x) = (2x^2 - 3)^2$$

EXAMPLE 4

If $f(x) = x^2(x^4 - x)$, evaluate f''(x).

At what point, if any, does the graph of $y = x^3 - 3x + 4$ have a horizontal tangent line?

Find
$$\frac{dy}{dx}\Big|_{x=1}$$
, if $y = \frac{1+x+x^2+x^3+x^4+x^5+x^6}{x^3}$.

EXAMPLE 7

Find y''', when $y = ax^4 + bx^2 + c$.

FORMULAE

- **1.** $\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$, where f(x) and g(x) are differentiable at x
- 2. $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{a}{dx} [f(x)] f(x) \frac{a}{dx} [g(x)]}{[g(x)]^2}$, where f(x) and g(x) are differentiable at x and $g(x) \neq 0$

Find f'(x)

(a)
$$f(x) = (x+2)(2x^2-3)$$

(b)
$$f(x) = (2x^5 - x^2)(2x + 1)$$

EXAMPLE 9

Find $\frac{dy}{dx}$

(a)
$$y = \frac{x^2 + 3}{x - 1}$$

(b)
$$y = (2x+1)\left(1+\frac{1}{x}\right)$$

FORMULAE

- 1. $\frac{d}{dx}(e^{mx}) = me^{mx}$, where m is a constant.
- $2. \ \frac{d}{dx}(\ln x) = \frac{1}{x}$

Find $\frac{dy}{dx}$.

(a)
$$y = 2e^x - e^{4x} + \frac{1}{e^{3x}}$$

(b)
$$y = \ln x + 3 \ln(2x) - 7 \ln(\frac{x}{7})$$

(c)
$$y = 33 - 3e^{-\frac{x}{6}} - \ln(4x)$$

FORMULAE

1.
$$\frac{d}{dx}[\sin x] = \cos x$$

2.
$$\frac{d}{dx}[\cos x] = -\sin x$$

3.
$$\frac{d}{dx}[tanx] = sec^2x$$

4.
$$\frac{d}{dx}[cotx] = -cosec^2x$$

5.
$$\frac{d}{dx}[secx] = secxtanx$$

6.
$$\frac{d}{dx}[cosecx] = -cosecxcotx$$

Find
$$\frac{dy}{dx}$$
.

(a)
$$y = x \sin x$$

(b)
$$y = \frac{\sin x}{1 + \cos x}$$

(c)
$$y = tanx + 2secx - x^2$$

Practice Problems

3. Find $\frac{dy}{dx}$.

(a)
$$y = \frac{1}{5}x^5 - 5 + \sqrt[3]{x}$$

(b)
$$y = \frac{4x^3 - 12x + 1}{8}$$

(c)
$$y = (2x - 3)(x^2 + 5)$$

$$(d)y = x\left(3 - \frac{2}{x}\right)$$

(e)
$$y = \left(\frac{1}{x} + 2\right)(x - 3)$$

(f)
$$y = \frac{x-3}{x+2}$$

4. Find f'(x).

(a)
$$f(x) = (2x + 1)^{23}$$

(b)
$$f(x) = x^{-4} + x^4 + 4$$

$$(g)y = (2x^2 - 7x + 6)^8$$

(h)
$$y = \frac{3-5x}{4+x^2}$$

(i)
$$y = (x - 5) \sin x$$

$$(j) y = \frac{\cos x}{3x-4}$$

$$(k)y = 4 \tan x + \ln(5x) + \sqrt[5]{x}$$

(1)
$$y = e^{-x} \sin(3x - 2)$$

Practice Problems

- 5. If $f(x) = x^2 7x + \frac{1}{x}$ then find the value of f'''(x) at x = -1.
- **6.** Use product rule to find $\frac{d^2y}{dx^2}$ at x = 1, when $y = x^3(3x x^2)$.
- 7. Find $\frac{dy}{dx}$ at x = -2, if $y = \frac{2-x+3x^2+x^3-2x^4}{x^2}$.
- 8. Evaluate $f'''(x) = \ln x + 3x e^{2x}$ at x = 1.