Supervising Process

Example:

Linear process

$$X_t = \left(1 - \frac{t}{T}\right) X_0 + \frac{t}{T} X_T,$$

Where $X_0 \sim \mathcal{N}\left(0,I\right)$ and $X_T \sim p_T$.

 X_t interpolate source (noise) and target (data).

Requirements:

Supervising Process

Requirements:

 X_t interpolate source (noise) and target (data).

Example:

Linear process

$$X_t = \left(1 - \frac{t}{T}\right) X_0 + \frac{t}{T} X_T,$$

Where $X_0 \sim \mathcal{N}\left(0,I\right)$ and $X_T \sim p_T$.

Parametrization

We find a map $Y, X_t \mapsto X_{t+1}$ and train a model $p_{Y|t}^{\theta}(Y|X_t)$:

Noise prediction: $Y = X_0$.

