Lentes gravitacionales en astrofísica y cosmología

Actividad Práctica 6

- 1. Distancias cosmológicas
 - a) Demuestre que

$$\chi = c \int_{t}^{t_0} \frac{dt'}{a(t')} = c \int_{a}^{a_0} \frac{da'}{H(a') a'^2} = c \int_{0}^{z} \frac{dz'}{H(z')}$$

(para la última igualdad, elija la "normalización" $a_0 = 1$).

b) Resuelva la integral:

$$\chi = \int_0^r \frac{dr'}{\sqrt{1 - Kr'^2}}.$$

Respuesta: $r = \frac{1}{\sqrt{|K|}} S_K \left(\sqrt{|K|} \chi \right)$, donde $S_K = sen, senh$, o 1, para K > 0, K < 0 y K = 0 (naturalmente, en este caso $r = \chi$).

A partir de estos resultados, obtenga la expresión de la distancia comóvil r en función de z, en términos de H_0 y Ω_{i0} (recuerde que $K = \Omega_K H_0^2$, para $a_0 = 1$).

Respuesta:

$$r = \frac{1}{H_0 \sqrt{|1 - \Omega_0|}} S_K \left(\sqrt{|1 - \Omega_0|} \int_0^z \frac{dz'}{E(z')} \right), \tag{1}$$

donde $E(z) = H(z)/H_0$.

c) A partir de este resultado, encuentre la expresión para la distancia de luminosidad D_L .

Cálculos con a_0 explícito. Para verificar explícitamente que a_0 no está presente en ninguna relación entre observables, podemos repetir el procedimiento anterior sin hacer la elección ($a_0 = 1$). Este procedimiento es útil para adquirir cierta práctica en manipulaciones comunes en cosmología.

Repita los pasos del ejercicio anterior (y los de la obtención de D_L) para una elección genérica de a_0 . Demuestre que $D_L = (1+z) a_0 r(z)$, y que $\frac{1}{\sqrt{|K|}} S_K \left(\sqrt{|K|} \chi \right)$. No obstante, $K = -a_0^2 H_0^2 \Omega_K$ y

$$\chi = c \int_{a_0}^{a} \frac{da'}{H(a') a'^2} = \frac{c}{a_0} \int_{0}^{z} \frac{dz'}{H(z')}$$

de modo que la expresión final es idéntica a (1).

- 2. Distancia diámetro angular
 - a) ¿Cómo se define la distancia de diámetro angular, D_A ?
 - b) Obtenga su expresión en términos del parámetro de Hubble utilizando la métrica de Friedmann y detallando sus pasos.
- 3. Comportamiento de las distancias cosmológicas con el corrimiento al rojo y la composición del Universo

Obtenga numéricamente las distancias de luminosidad y de diámetro angular en unidades del radio de Hubble (c/H_0) . Haga gráficos de D_L y D_A en función del corrimiento al rojo z (hasta z=1,10,100,1000) para las siguientes combinaciones de parámetros de densidad:

$$\Omega_m = 0.3, \Omega_{\Lambda} = 0$$

$$\Omega_m = 0.3, \Omega_{\Lambda} = 0.7$$

$$\Omega_m = 1, \Omega_{\Lambda} = 0$$

¿Qué conclusiones saca de estos gráficos?

¿A partir de qué valores de z espera que Ω_{γ} comience a ser relevante?

4. Edad del Universo

Utilizando la definición del parámetro de Hubble,

$$H\left(t\right) = \frac{\dot{a}}{a}$$

y recordando que

$$H(a) = H_0 \sqrt{\Omega_r \left(\frac{a_0}{a}\right)^4 + \Omega_m \left(\frac{a_0}{a}\right)^3 + \Omega_K \left(\frac{a_0}{a}\right)^2 + \Omega_\Lambda}, \qquad (2)$$

obtenga la expresión para la edad del universo:

$$t_{0} = \int_{0}^{t_{0}} dt = H_{0}^{-1} \int_{0}^{a_{0}} \frac{da}{a\sqrt{\Omega_{r} \left(\frac{a_{0}}{a}\right)^{4} + \Omega_{m} \left(\frac{a_{0}}{a}\right)^{3} + \Omega_{K} \left(\frac{a_{0}}{a}\right)^{2} + \Omega_{\Lambda}}}.$$
 (3)

Calcule la edad del universo (en $Ga=10^9$ años) para $\Omega_m=0.3$, $\Omega_{\Lambda}=0.7$ y h=0.7. El valor de Ω_r será dado por el resultado del ejercicio (3) (aquí, solo con fines didácticos, despreciaremos la contribución de los neutrinos).

¿Qué ocurre si despreciamos la contribución de la radiación? ¿Y la curvatura?

¿Cómo queda la edad del Universo si ahora $\Omega_{\Lambda} = 0$ y $\Omega_{K} = 0$?

Suponiendo que el universo es plano (K=0) y despreciando la radiación, haga un gráfico de t_0 en unidades de h^{-1} Ga en función de Ω_m .

Haga el mismo gráfico, pero ahora para $\Omega_{\Lambda} = 0$ (y por tanto $K \neq 0$).

Diversas estimaciones actuales para la edad de las estrellas más viejas indican un límite inferior de 11 Ga (véase, por ejemplo: L. M. Krauss, B. Chaboyer, Science, **299**, 5603, 65 (2003); L. M. Krauss, ApJ, **604**, 481 (2004), astro-ph/0212369). Naturalmente, este valor proporciona un límite inferior para la edad del universo. ¿A qué conclusiones puede llegar, teniendo en cuenta los resultados que ha obtenido más arriba?

Como se mencionó en el curso, podemos definir un "inicio del universo" extrapolando la curva a(t) para $a \to 0$. Esto implica suponer que los componentes de materia seguirán comportándose como en la ecuación (2). Sin embargo, no sabemos cómo es la ecuación de estado de la materia a temperaturas altísimas, donde pueden intervenir numerosos efectos aún no estudiados en laboratorio. ¿Qué condiciones sería necesario imponer al comportamiento de la materia para que el universo no haya tenido un inicio, es decir, para que la integral (3) diverja?