OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini

> July 3, 2017 13:15

CONTENTS

1	Intro	oductio	on	4			
	1.1	Cmgu	ıi files for cmgui-2.9	4			
	1.2	Variat	tions to consider	4			
	1.3	Folde	r structure	4			
2	Hov	v to work on this document					
3	Diff	Diffusion equation					
	3.1		tion in general form	6			
	3.2		ple-0001	7			
	,	3.2.1	Mathematical model - 2D	7			
		3.2.2	Mathematical model - 3D	7			
		3.2.3	Computational model	7			
		3.2.4	Result summary	8			
	3.3	Exam	•	11			
		3.3.1	Mathematical model - 2D	11			
		3.3.2	Mathematical model - 3D	11			
		3.3.3	Computational model	11			
		3.3.4	Result summary	12			
	3.4	Exam	ple-0002	15			
		3.4.1	Mathematical model - 2D	15			
		3.4.2	Mathematical model - 3D	15			
		3.4.3	Computational model	15			
		3.4.4	Result summary	16			
	3.5	Example-0003					
		3.5.1	Mathematical model - 2D	19			
		3.5.2	Mathematical model - 3D	19			
		3.5.3	Computational model	10			

^{*} Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany † Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart Germany

[‡] Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

Figure 13	2D results, iron reference w/ command line arguments [2.0	
0 -	1.0 0.0 8 4 0 1 0]	20
Figure 14	2D results, current run w/ command line arguments [2.0 1.0	
0 1		21
Figure 15	3D results, iron reference w/ command line arguments [2.0	
6		21
Figure 16	3D results, current run w/ command line arguments [2.0 1.0	
-8		22
Figure 17	2D results, iron reference w/ command line arguments [8 4	
iguic 17	,	24
Figure 18	2D results, current run w/ command line arguments [8 4 0 2	-4
igure 10	,	24
Figure 19	2D results, iron reference w/ command line arguments [2.0	-4
rigule 19	9 -	26
Figure 20	2D results, current run w/ command line arguments [2.0 1.0	20
riguie 20	· · · · · · · · · · · · · · · · · · ·	~ -
C:	•	27
Figure 21	3D results, iron reference w/ command line arguments [2.0	
	• • •	27
Figure 22	3D results, current run w/ command line arguments [2.0 1.0	0
n•	1 1	28
Figure 23		31
Figure 24		31
Figure 25		32
Figure 26		32
Figure 27	Results, analytical solution	34
Figure 28		34
Figure 29	Results, iron reference	35
Figure 30	Results, current run	35
LIST OF TA	ABLES	
Гable 1	Initials of people working on examples, in alphabetical order	
	(surnames)	5
	()

INTRODUCTION 1

This document contains information about examples used for testing OpenCMISSiron. Read: How-to¹ and [1].

Cmgui files for cmgui-2.9

Variations to consider

Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

• Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

1.3 Folder structure

TBD..

¹ https://bitbucket.org/hessenthaler/opencmiss-howto

2 HOW TO WORK ON THIS DOCUMENT

e9TAzqaYavKi0z0D4pKY9RGI/edit#gid=0 please indicate what you are working on or if a given example was finished

• no mark: to be done

• x: currently working on it

• xx: done

Initials	Full name
CB	Christian Bleiler
AH	Andreas Hessenthaler
TK	Thomas Klotz
AK	Aaron Krämer
BM	Benjamin Maier
SM	Sergio Morales
MM	Mylena Mordhorst
HS	Harry Saini

 Table 1: Initials of people working on examples, in alphabetical order (surnames).

3 DIFFUSION EQUATION

3.1 Equation in general form

The governing equation is,

$$\label{eq:delta_t} \vartheta_t \mathfrak{u} + \nabla \cdot [\sigma \nabla \mathfrak{u}] = \mathsf{f} \text{,} \tag{1}$$

with conductivity tensor $\boldsymbol{\sigma}.$ The conductivity tensor is,

- defined in material coordinates (fibre direction),
- diagonal,
- defined per element.

3.2 Example-0001

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.2.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 0 x = y = 0, (3)$$

$$u = 1$$
 $x = 2, y = 1.$ (4)

No material parameters to specify.

3.2.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{5}$$

with boundary conditions

$$u = 0 x = y = z = 0, (6)$$

$$u = 1$$
 $x = 2, y = z = 1.$ (7)

No material parameters to specify.

3.2.3 Computational model

• Commandline arguments are:

float: length along x-direction

float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

3.2.4 Result summary

Figure 1: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 2: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 3: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 4: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.3 Example-0001-u

Example uses user-defined regular meshes in CHeart mesh format and solves a static problem, i.e., applies the boundary conditions in one step.

3.3.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{8}$$

with boundary conditions

$$u = 0 x = y = 0, (9)$$

$$u = 1$$
 $x = 2, y = 1.$ (10)

No material parameters to specify.

3.3.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{11}$$

with boundary conditions

$$u = 0 x = y = z = 0, (12)$$

$$u = 1$$
 $x = 2, y = z = 1.$ (13)

No material parameters to specify.

3.3.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

• Note: Binary uses command line arguments to search for the relevant mesh files.

3.3.4 Result summary

Figure 5: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 6: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 7: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 8: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.4 Example-0002

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.4.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{14}$$

with boundary conditions

$$u = 15y x = 0, (15)$$

$$u = 25 - 18y$$
 $x = 2.$ (16)

No material parameters to specify.

3.4.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = \mathbf{0} \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{17}$$

with boundary conditions

$$u = 15y x = 0, (18)$$

$$u = 15y$$
 $x = 0,$ (18)
 $u = 25 - 18y$ $x = 2.$ (19)

No material parameters to specify.

3.4.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

3.4.4 Result summary

Figure 9: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 10: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 11: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 12: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.5 Example-0003

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.5.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0,2] \times [0,1], \tag{20} \label{eq:20}$$

with boundary conditions

$$u = 15y \qquad x = 0, \tag{21}$$

$$u = 15y$$
 $x = 0,$ (21) $\partial_n u = 25 - 18y$ $x = 2.$ (22)

No material parameters to specify.

3.5.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{23}$$

with boundary conditions

$$u = 15y x = 0, (24)$$

$$u = 15y$$
 $x = 0,$ (24) $\vartheta_n u = 25 - 18y$ $x = 2.$ (25)

No material parameters to specify.

3.5.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

3.5.4 Result summary

Figure 13: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 14: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 15: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 16: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.6 Example-0004

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.6.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{26}$$

with boundary conditions

$$u = 2.0e^{x} \cdot \cos(y)$$
 on $\partial\Omega$. (27)

No material parameters to specify.

3.6.2 Computational model

• Commandline arguments are:

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

42010

84010

21020

42020

84020

42011

84011

21021

42021

84021

100 50 0 1 0 (not tested yet..)

100 50 0 2 0 (not tested yet..)

100 50 0 1 1 (not tested yet..)

100 50 0 2 1 (not tested yet..)

3.6.3 Result summary

Figure 17: 2D results, iron reference w/ command line arguments [8 4 0 2 0].

Figure 18: 2D results, current run w/ command line arguments [8 4 0 2 0].

3.7 Example-0011

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.7.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot [\sigma \nabla u] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{28}$$

with boundary conditions

$$u = 0 x = y = 0, (29)$$

$$u = 1$$
 $x = 2, y = 1.$ (30)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{31}$$

3.7.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{32}$$

with boundary conditions

$$u = 0$$
 $x = y = z = 0,$ (33)

$$u = 1$$
 $x = 2, y = z = 1.$ (34)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{35}$$

3.7.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: σ_{11} float: σ₂₂

float: σ_{33} (ignored for 2D)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0 1 1 2.0 1.0 0.0 4 2 0 1 0 1 1 2.0 1.0 0.0 8 4 0 1 0 1 1 2.0 1.0 0.0 2 1 0 2 0 1 1

3.7.4 Result summary

Figure 19: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0 1 1].

Figure 20: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0 1 1].

Figure 21: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0 1 1 1].

Figure 22: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0 1 1 1].

4 LINEAR ELASTICITY

4.1 Equation in general form

$$\partial_{tt}\mathbf{u} + \nabla \cdot \mathbf{\sigma}(\mathbf{u}, \mathbf{t}) = \mathbf{f}(\mathbf{u}, \mathbf{t})$$
 (36)

4.2 Example-0101

4.2.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \sigma(\mathbf{u}, t) = \mathbf{0} \qquad \qquad \Omega = [0, 160] \times [0, 120] \times [0, 120], t \in [0, 5], \tag{37}$$

with time step size $\Delta_t = 1$ and $u = [u_x, u_y]$ in 2D $u = [u_x, u_y, u_z]$ in 3D. The boundary conditions in 2D are given by

$$u_x = u_y = 0 \qquad x = y = 0, \tag{38}$$

$$u_x = 16$$
 $x = 160,$ (39)

and in 3D by

$$u_x = u_y = u_z = 0$$
 $x = y = z = 0$, (40)

$$u_x = 16$$
 $x = 160$. (41)

The material parameters are

$$E = 10000MPa,$$
 (42)

$$v = 0.3,$$
 (43)

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3.$$
 (44)

4.2.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: displacement percentage load

• Commandline arguments for tests are:

. . .

4.2.3 Results

4.2.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 23: Results, analytical solution.

Figure 24: Results, Abaqus reference.

Figure 25: Results, iron reference.

Figure 26: Results, current run.

4.3 Example-0102

4.3.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \sigma(u,t) = 0 \qquad \qquad \Omega = [0,160] \times [0,120] \times [0,120], t \in [0,5], \tag{45}$$

with time step size $\Delta_t = 1$ and $u = [u_x, u_y]$ in 2D $u = [u_x, u_y, u_z]$ in 3D. The boundary conditions in 2D are given by

$$u_{x} = u_{y} = 0 \qquad \qquad y = 0, \tag{46}$$

and in 3D by

$$u_x = u_z = 0 x = 0, (48)$$

$$u_{y} = 0 y = 0, (49)$$

$$u_x = 160$$
 $x = 160$, (50)

The material parameters are

$$E = 10000MPa,$$
 (52)

$$v = 0.3,$$
 (53)

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3. \tag{54}$$

4.3.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: displacement percentage load

• Commandline arguments for tests are:

. . .

4.3.3 Results

4.3.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 27: Results, analytical solution.

Figure 28: Results, Abaqus reference.

Figure 29: Results, iron reference.

Figure 30: Results, current run.

5 FINITE ELASTICITY

6 NAVIER-STOKES FLOW

7 MONODOMAIN

8 CELLML MODEL

REFERENCES

[1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & $multi-scale\ computational\ infrastructure\ for\ the\ vph/physiome\ project.\ \textit{Progress}$ in biophysics and molecular biology, 107(1):32–47, 2011.