

020 – FLIP-FLOPS Com portas lógicas NAND. CIRCUITOS BI-ESTÁVEIS

O circuito do FLIP-FLOP e o CI de portas NAND

Flip-Flop/Latch

Α	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

SN74HC00N

Do circuito para o chip

Flip-Flop/Latch

Do circuito para o chip

SN74HC00N

O QUE SABEMOS SOBRE AS SAÍDAS DAS PORTAS LÓGICAS

- Não existe O (zero) e 1 (um) de forma absoluta (são faixas)
- As saídas das portas são combinações resultantes de 2 entradas (simplificando)
- •O computador precisa RETER o que corresponde aos valores 0 e 1 (persistência)

O QUE É UM CIRCUITO BI-ESTÁVEL ? Por que o estamos procurando

- Sabemos que o sistema binário é o mais seguro eletronicamente, pois se 0 e 1 são faixas, e são apenas 2 estados, imaginem como seria para lidar com o sistema decimal
- O bit é a unidade fornecida pelos circuitos bi-estáveis

CONCLUSÕES

- O circuito Flip-Flop RS tem seu estado inicial com entradas em LOW(0)
- Um envio de sinal HIGH(1) provoca uma saída em HIGH na direção diagonal
- •Dois sinais de entrada em HIGH são proibidos, portanto primeiro se troca o que está em HIGH para LOW, para depois trocar o que estava em LOW para HIGH.

Montagem

SN74HC00N

CIRCUITO

