Marcos Monteiro Junior

- O que é?
 - É um elemento eletrônico, desenvolvido para executar tarefas especificas, com linguagem de comando especifica.
 - Ele utiliza uma memória de programa para ler as instruções que deve executar (ROM) e se utiliza de uma memória de dados (RAM), para armazenar temporariamente informações de uso próprio das instruções.

- Seu proposito
 - É executar tarefa específica gravada em sua memória de código, a ROM
 - Em geral se comunica com o mundo real para sentir informações do meio ambiente.
 - Programa-se a ROM com códigos compatíveis com a linguagem do microcontrolador

Descrição

- Via de controle de endereços: servem para o mo selecionar qual posição de memória ou periféricos deseja se comunicar
- Via de controle auxiliar: ao sinais de controles que permitem ao mc acionar, por exemplo, por um certo tempo a ROM ou a RAM.
- Via de I/O: são vias destinadas a comunicação com o "mundo exterior", entende-se qualquer elemento eletrônico que seja sensível ao mundo físico.
- CPU: o "cérebro" do sistema e tem competência para acionar e se comunicar com todas as vias supracitadas, sempre obedecendo as diretivas na ROM.

Descrição

• CPU:

- Ela realiza a busca de instrução na ROM e executa essa instrução
- Tem a capacidade de realizar operações logicas e funções aritméticas, além de transferência de dados interna e externamente, funções de comparação de dados com consequente decisão.

Componentes externos

- Oscilador: elemento que gera o marca-passo da CPU.
- Reset: é o elemento que faz a CPU iniciar suas rotinas internas e realizar também a primeira leitura de instrução
- Interrupções; são pinos de acesso externos que permitem interromper o mc, fazendo com que ele pule o endereço da instrução

CPU internamente

Figura 1,3 - Ilustração da CPU em um ciclo de busca de instrução (na ROM).

Registradores

- Os sinais podem ser lidos diretamente nas portas I/O, como por exemplo: PO (porta pO) possui um reg imagem de "PO".
- Contador de programa
- Reg de instrução
- Unidade de decodificação: onde a instrução é decodificada.
- ULA
- Acumulador: é um registrador principal e muito popular, pois várias instruções se referem a ele para operar.
- Unidade de controle

8051 Básico

 Note que o barramento de endereços é de 16 bits em que os 8 bits menos significativos são derivados junto com 8 bits de dados.

 Utiliza-se um latch, para economizar pinos, assim em geral o 8051 tem 40 pinos, se fosse separado seriam 48 pinos

Figura 1.4 - Diagrama de interligação básica do microcontrolador 8051.

Diferenças entre Mp, Mc

- O hardware mc tem muito mais funções que um mp
- O microcontrolador corresponde a um microprocessador e seus periféricos típicos todos juntos em só chip.
- Por exemplo o mp contem IR,PC,ULA,INT, Mc inclui o próprio mp mais timer, serial e RAM/ROM, alguns também englobam a EPROM.

Grupo de instruções

- Subgrupo do SET (conjunto de instruções)
 - Aritméticas
 - Logicas
 - De transferências de dados
 - Booleanas
 - De ramificação (decisão/desvio)
- Exemplos
 - Dec A= decrementa o registrador A
 - Cjne a,#data,rel= compare and jump if not equal
- *obs o # mostra que data é um valor (um número)

Instruções

- Cjne A,#data,rel
- É uma instrução que compara o conteúdo de "a" Com o valor de "#data". Se eles forem iguais, não desvia e continua na próxima instrução, se não forem iguais, ele desvia para o endereço relativo "rel"
- Exemplo: carrega-se "A" com "5", compara-se com "10" e desvia-se para endereço "100", se estes conteúdos não forem iguais.

Instruções

```
mov A,#5

cjne A,#10,1000

clr A

1000: mov B,#20
```

Mundo Exterior

Periféricos de armazenamento de massa: HD, RAM etc.

Interfaces homem –máquinas

• Periféricos de controle: atuação e sensoriamento

Conversor a/d

Mundo exterior

Figura 1.6 - Ilustração hipotética de um microprocessador e seus periféricos.