Errors in Hypothesis Testing

Dr. A. Ramesh

Department of Management Studies

Indian Institute of Technology Roorkee

Example

- We are interested in burning rate of a solid propellant used to power aircrew escape systems
- Burning rate is a random variable that can be described by a probability distribution
- Suppose our interest focus on mean burning rate
- Ho: μ = 50 centimeters per second
- H1: $\mu \neq 50$ centimeters per second

Reference: Applied statistics and probability for engineers, Douglas C. Montgomery, George C. Runger, John Wiley & Sons, 2007

Value of the null hypothesis

- The value of the null hypothesis can be obtained by
 - Past experience or knowledge of the process, or even from the previous tests or experiments
 - From some theory or model regarding the process under study
 - From external consideration, such as design or engineering specifications, or from contractual obligations

Note: for this example n=10

Reject H_0

 $\mu \neq 50$ cm/s

Fail to Reject H_0

 $\mu = 50 \text{ cm/s}$

Reject H_0

 $\mu \neq 50$ cm/s

48.5

50

51.5

 \overline{x}

Decision criteria for testing H_0 : $\mu = 50$ cm/s versus H_1 : $\mu \neq 50$ cm/s.

Note: for this example we will assume $\sigma = 2.5$

Type I Error

- The true mean burning rate of the propellant could be equal to 50 centimeters per second
- However randomly selected propellant specimens that are tested, we could observe a value of test statistics χ that falls into the critical region(rejection region).
- We would then reject the null hypothesis Ho in favor of the alternate H1, in fact, Ho is really true
- This type of wrong conclusion is called a type I error

Type I Error

 Rejecting the null hypothesis Ho when it is true is defined as a type I error

Type II Error

Now suppose the true mean burning rate is different from 50 centimeters per second, yet the sample

mean χ falls in the acceptance region

- In this case we would fail to reject Ho when it is false
- This type of wrong conclusion is called a type II error

Type II Error

 Failing to reject the null hypothesis when it is false is defined as a type II error

Type 1 and Type II Errors

	H ₀ is correct	H ₀ is incorrect
H ₀ is accepted	correct decision	Type II error (β) Incorrect acceptance
H ₀ is rejected	Type I error (α) Incorrect rejection	correct decision

Type I error

- $\bar{x} > 51.5$ or $\bar{x} < 48.5$ In the propellant burning rate example, a type I error will occur when either when the true mean burning rate is $\mu = 50$ centimeters per second
- Suppose the standard deviation of burning rate is $\sigma = 2.5$ centimeters per second and n = 10
- Probability distribution $\mu = 50$, standard error = 0.79.
- Type I error is

$$\alpha = P(\bar{x} < 48.5 \text{ when } \mu = 50) + P(\bar{x} > 51.5 \text{ when } \mu = 50)$$

The critical region for H_0 : $\mu = 50$ versus H_1 : $\mu \neq 50$ and n = 10.

Defing function for calculating alpha value

```
In [6]: def z_value(x,mu,SEM):
         z = (x - mu)/SEM
         if(z < 0):
          alfa = stats.norm.cdf(z)
         else:
          alfa = 1 - stats.norm.cdf(z)
         print (alfa)
```

calculating aplha for different values of x,mu, and SEM

```
In [8]: x =48.5
        mu = 50
        SEM = 0.79
```

```
In [9]: z_value(x,mu,SEM)
```

0.02879971774715278

Type I error

- Type I error = 0.057434
- This implies that 5.7 % of all random samples would lead to rejection of the hypothesis Ho: μ =50 centimeters per second.
- We can reduce the type I error by widening the acceptance region. If we make critical value 48 and
 - 52, the value of alpha is 0.0114 (adding 0.0057 and 0.0057).
- Change sample size to 16 then alpha is 0.0164.

```
z_value(48,mu,SEM)
In [40]:
         0.005676434117424844
         z_value(52,mu,SEM)
In [41]:
         0.0056764341174248
```


TYPE II ERROR

The probability of type II error when $\mu = 52$ and n = 10.

The pink area is the probability

of a Type II error if the actual mean is 52.

Type II Error

• Type II error will be committed if the sample mean x-bar falls between 48.5 and 51.5 (critical region

boundaries) when
$$\mu = 52$$
. $\beta = P(48.5 \le x \le 51.5 \text{ when } \mu = 52)$

- 0.2643
- When $\mu = 50.5$
- 0.8923


```
In [4]: beta = stats.norm.cdf((51.5-52)/0.79) #

In [5]: beta
Out[5]: 0.26339575390741593

In [8]: beta = stats.norm.cdf((51.5-50.5)/0.79) #

In [9]: beta
Out[9]: 0.8972117321157791
```


The probability of type II error when $\mu = 50.5$ and n = 10.

Probability density function Normal 8.0 Under H_1 : $\mu = 52$ Under H_0 : $\mu = 50$ 0.6 Probability density 0.4 0.2 48 52 54 46 50 56 \overline{x}

The probability of type II error when $\mu = 52$ and n = 16.

Computing the probability of a type II error may be the most difficult concept

acceptance region	sample size	α	β at $\mu = 52$	β at $\mu = 50.5$
$48.5 < \overline{x} < 51.5$	10	0.0576	0.2643	0.8923
48 $< \bar{x} < 52$	10	0.0114	0.5000	0.9705
$48.5 < \overline{x} < 51.5$	16	0.0164	0.2119	0.9445
48 $< \overline{x} < 52$	16	0.0014	0.5000	0.9918

For constant n, increasing the acceptance region (hence decreasing α) increases β .

Increasing n, can decrease both types of errors.

Type I & II Errors Have an Inverse Relationship

If you reduce the probability of one error, the other one increases so that everything else is unchanged.

Factors Affecting Type II Error

- True value of population parameter
 - $-\beta$ Increases when the difference between hypothesized parameter and its true value decrease
- Significance level lpha
 - Increases when eta decreases
- Population standard deviation σ
 - Increases when $oldsymbol{eta}$ increases
- Sample size
 - $-\beta$ Increases when n decreases

How to Choose between Type I and Type II Errors

- Choice depends on the cost of the errors
- Choose smaller Type I Error when the cost of rejecting the maintained hypothesis is high
 - A criminal trial: convicting an innocent person
- Choose larger Type I Error when you have an interest in changing the status quo

Calculating the probability of Type II Error

Ho: $\mu = 8.3$

H1: μ < 8.3

Determine the probability of Type II error if $\mu = 7.4$ at 5% significance level. $\sigma = 3.1$ and n = 60.

Solution:

An error will be made when $Z \ge -1.645$, for that will fail to reject Ho.

$$\beta = 0.2729$$

Retain Ho

 $\mu = 7.4 c$

 $c = 8.3 - 1.645 (3.1/\sqrt{60})$

Solving for Type II Errors: Example

$$H_0$$
: $\mu = 12$
 H_a : $\mu < 12$

*H*_a:
$$\mu$$
 < 12

$$\overline{X}_{c} = \mu + Z_{c} \frac{\sigma}{\sqrt{n}}$$

$$= 12 + (-1.645) \frac{0.10}{\sqrt{60}}$$

$$= 11.979$$

If X < 11.979, reject H_0 .

If $X \ge 11.979$, do not reject H_0 .

Type II Error for Example with μ =11.99 Kg

In [50]: type_2(12,11.99,0.1,60,0.05)

0.8079200023112734

Type II Error for Demonstration with μ =11.96 Kg

In [51]: type_2(12,11.96,0.1,60,0.05) 0.07303790512847008

Hypothesis Testing and Decision Making

- We have illustrated hypothesis testing applications referred to as significance tests
- In the tests, we compared the p-value to a controlled probability of a Type I error, a, which is called the level of significance for the test
- With a significance test, we control the probability of making the Type I error, but not the Type II error
- We recommended the conclusion "do not reject H_0 " rather than "accept H_0 " because the latter puts us at risk of making a Type II error

Hypothesis Testing and Decision Making

- With the conclusion "do not reject H_0 ", the statistical evidence is considered inconclusive
- Usually this is an indication to postpone a decision until further research and testing is undertaken
- In many decision-making situations the decision maker may want, and in some cases may be • forced, to take action with both the conclusion "do not reject H_0 " and the conclusion "reject H_0 ."
- In such situations, it is recommended that the hypothesis-testing procedure be extended to include consideration of making a Type II error

Power of a test

- The mean response time for a random sample of 40 foodorder is 13.25 minutes
- The population standard deviation is believed to be 3.2 minutes.
- The restaurant owner wants to perform a hypothesis test, with α =0.05 level of significance, to determine whether the service goal of 12 minutes or less is being achieved.

Calculating the Probability of a Type II Error

Hypotheses are: H_0 : $\mu \le 12$ and H_a : $\mu > 12$

Rejection rule is: Reject H_0 if $z \ge 1.645$

Value of the sample mean that identifies the rejection region:

$$z = \frac{\bar{x} - 12}{3.2/\sqrt{40}} \ge 1.645$$

34

$$\bar{x} \ge 12 + 1.645 \left(\frac{3.2}{\sqrt{40}}\right) = 12.8323$$

We will accept H_0 when $x \le 12.8323$

Calculating the Probability of a Type II Error

Probabilities that the sample mean will be in the acceptance region:

$= 12.8323 - \mu$								
Values of μ	z = -	$3.2/\sqrt{40}$	β	1 - β				
14.0	-2.31		.0104	.9896				
13.6	-1.52		.0643	.9357				
13.2	-0.73		.2327	.7673				
12.8323	0.00		.5000	.5000				
12.8	0.06		.5239	.4761				
12.4	0.85		.8023	.1977				
12.0001	1.645		.9500	.0500				


```
type_2(14,12,3.2,40,0.05)
In [20]:
         0.010499750448532241
In [21]: type_2(13.6,12,3.2,40,0.05)
         0.06457982995225997
In [23]: type_2(13.2,12,3.2,40,0.05)
         0.2336575101104159
In [22]: type_2(12.8323,12,3.2,40,0.05)
         0.49995065746353273
In [27]: type_2(12.8,12,3.2,40,0.05)
         0.5254013387545549
In [24]: type_2(12.4,12,3.2,40,0.05)
         0.8035262335707292
In [26]: type_2(12.0001,12,3.2,40,0.05)
         0.9499796127157129
```


Power of the Test

The probability of correctly rejecting H_0 when it is false is called the power of the test.

For any particular value of m, the power is 1 - b.

We can show graphically the power associated with each value of μ ; such a graph is called a power curve.

Power Curve

Thank You

