Reversible Jump MCMC 与准备金估计模型选择

刘乐平、高磊

天津财经大学统计系

2013年3月25日

参考文献

- * GREEN, P. J. 1995. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination.Biometrika.
- * VERRALL, R. J., AND M. V. WUTHRICH. 2012.Reversible Jump Markov Chain Monte Carlo Method For Parameter Reduction In Claims Reserving.North American Actuarial Journal.

Contents

① Bayesian ODP(Over Distributed Possion) 模型

2 RJMCMC

Contents

① Bayesian ODP(Over Distributed Possion) 模型

2 RJMCMC

Contents

① Bayesian ODP(Over Distributed Possion) 模型

2 RJMCMC

内容

- 🚺 Bayesian ODP(Over Distributed Possion) 模型
 - 问题背景
 - ODP 模型
 - 贝叶斯方法用于 ODP 估计

损失流量三角形

(devyear									
accyear	0	1	2	3	4	5	6	7	8	9
0	357848	766940	610542	482940	527326	574398	146342	139950	227229	67948
1	352118	884021	933894	1183289	445745	320996	527804	266172	425046	NA
2	290507	1001799	926219	1016654	750816	146923	495992	280405	NA	NA
3	310608	1108250	776189	1562400	272482	352053	206286	NA	NA	NA
4	443160	693190	991983	769488	504851	470639	NA	NA	NA	NA
5	396132	937085	847498	805037	705960	NA	NA	NA	NA	NA
6	440832	847631	1131398	1063269	NA	NA	NA	NA	NA	NA
7	359480	1061648	1443370	NA	NA	NA	NA	NA	NA	NA
8	376686	986608	NA	NA	NA	NA	NA	NA	NA	NA
9	344014	NA	NA	NA	NA	NA	NA	NA	NA	NA

乘法模型

有以下记号:

- * 事故年水平: μ;
- * 进展年水平: ri
- * 乘法模型: $E_{\mu_i,\gamma_i}[X_{i,j}] = \mu_i \gamma_j, i,j \in 0,...,I$

根据乘法模型,为了估计增量下三角形,须估计出 2(I+1) 个参数 $\mu_0, ..., \mu_I; \gamma_0, ..., \gamma I$ 。而我们仅有 (I+1)(I+2)/2 个数据 (上三角形数据的个数)。统计中,我们把它称为过度参数化问题。

解决过度参数化问题

为解决过度参数化问题,很自然地就是用一条曲线拟合这些参数,例如,用指数递减曲线拟合 $\gamma_0,...,\gamma_I$ 。

解决过度参数化问题

* 举例, I = 8, k = 4

Figure 1: GAM

8 / 23

ODP Model-超散布泊松分布模型

* 给定 $\vartheta = (\mu_0, ..., \mu_l; \gamma_0, ..., \gamma_l, \phi), X_{i,i}$ 为独立随机变量,满足

$$\frac{X_{i,j}}{\phi}|_{\vartheta} \sim Poisson(\mu_i \gamma_j/\phi)$$

* 与泊松分布的区别:

$$E[X_{i,j}|\vartheta] = \mu_i \gamma_j$$

$$F(X_{i,j}|\vartheta) = [\varphi_i \varphi_i]$$

ODP Model-超散布泊松分布模型

* 给定 $\theta = (\mu_0, ..., \mu_l; \gamma_0, ..., \gamma_l, \phi), X_{i,j}$ 为独立随机变量,满足

$$\frac{X_{i,j}}{\phi}|_{\vartheta} \sim \textit{Poisson}(\mu_i \gamma_j/\phi)$$

* 与泊松分布的区别:

$$E[X_{i,j}|\vartheta] = \mu_i \gamma_j$$

ODP Model-超散布泊松分布模型

* 给定 $\theta = (\mu_0, ..., \mu_l; \gamma_0, ..., \gamma_l, \phi), X_{i,i}$ 为独立随机变量,满足

$$\frac{X_{i,j}}{\phi}|_{\vartheta} \sim \textit{Poisson}(\mu_i \gamma_j/\phi)$$

* 与泊松分布的区别:

$$E[X_{i,j}|\vartheta] = \mu_i \gamma_j$$

$$Var(X_{i,j}|\vartheta) = \boxed{\phi\mu_i\gamma_j}$$

$ODP \mod + GAM + Bayes$

固定 k:

* 模型参数为:

$$\theta_k = (\alpha, \beta, \mu_0, ..., \mu_l; \gamma_0, ..., \gamma_{k-1})$$

* 对于 $j \in k, \ldots, l$,

$$\gamma_j = \exp(\alpha - j\beta)$$

$$\mu_i \sim \Gamma(s, s/m_i), i = 0, \dots, l,$$

 $\gamma_j \sim \Gamma(v, v/c_j), j = 0, \dots, k-1$
 $\alpha \sim N(\alpha, \sigma^2), \beta \sim N(b, \tau^2)$

$\mathsf{ODP}\ \mathsf{model} + \mathsf{GAM} + \mathsf{Bayes}$

固定 k:

* 模型参数为:

$$\theta_k = (\alpha, \beta, \mu_0, ..., \mu_l; \gamma_0, ..., \frac{\gamma_{k-1}}{})$$

* 对于 *j* ∈ *k*,...,*l*,

$$\gamma_j = \exp(\alpha - j\beta)$$

$$\mu_i \sim \Gamma(s, s/m_i), i = 0, \dots, l,$$

 $\gamma_j \sim \Gamma(v, v/c_j), j = 0, \dots, k-1$
 $\alpha \sim N(\alpha, \sigma^2), \beta \sim N(b, \tau^2)$

$ODP \mod + GAM + Bayes$

固定 k:

* 模型参数为:

$$\theta_{\mathbf{k}} = (\alpha, \beta, \mu_0, ..., \mu_{\mathbf{i}}; \gamma_0, ..., \frac{\gamma_{\mathbf{k}-1}}{})$$

* 对于 *j* ∈ *k*,..., *I*,

$$\gamma_j = \exp(\alpha - j\beta)$$

$$\mu_i \sim \Gamma(s, s/m_i), i = 0, \dots, l,$$

$$\gamma_j \sim \Gamma(v, v/c_j), j = 0, \dots, k-1$$

$$\alpha \sim N(\alpha, \sigma^2), \beta \sim N(b, \tau^2)$$

$\mathsf{ODP}\ \mathsf{model} + \mathsf{GAM} + \mathsf{Bayes}$

固定 k:

* 模型参数为:

$$\theta_k = (\alpha, \beta, \mu_0, ..., \mu_l; \gamma_0, ..., \frac{\gamma_{k-1}}{})$$

* 对于 *j* ∈ *k*,...,*I*,

$$\gamma_j = \exp(\alpha - j\beta)$$

$$\mu_i \sim \Gamma(s, s/m_i), i = 0, \dots, I,$$

$$\gamma_j \sim \Gamma(v, v/c_j), j = 0, \dots, k-1$$

$$\alpha \sim N(\alpha, \sigma^2), \beta \sim N(b, \tau^2)$$

$$p_k(\theta_k|(X_{i,j})_{(i,j)\in\Omega}) \propto f_k((X_{i,j})_{(i,j)\in\Omega},\theta_k)$$
 (1)

- * 利用MCMC可以从该分布中采样,进而获得相关参数的估计值,以 此可以估计得到准备金。
- * k?????,Let the data speak.How?Answer:Bayes idea again! +
 Tool:RJMCMC!

$$p_k(\theta_k|(X_{i,j})_{(i,j)\in\Omega}) \propto f_k((X_{i,j})_{(i,j)\in\Omega},\theta_k) \tag{1}$$

- * 利用MCMC可以从该分布中采样,进而获得相关参数的估计值,以 此可以估计得到准备金。
- * k?????,Let the data speak.How?Answer:Bayes idea again! +
 Tool:RJMCMC!

$$p_k(\theta_k|(X_{i,j})_{(i,j)\in\Omega}) \propto f_k((X_{i,j})_{(i,j)\in\Omega},\theta_k) \tag{1}$$

- * 利用MCMC可以从该分布中采样,进而获得相关参数的估计值,以 此可以估计得到准备金。
- * k?????,Let the data speak.How?Answer:Bayes idea again! +
 Tool:RJMCMC!

$$p_k(\theta_k|(X_{i,j})_{(i,j)\in\Omega}) \propto f_k((X_{i,j})_{(i,j)\in\Omega},\theta_k) \tag{1}$$

- * 利用MCMC可以从该分布中采样,进而获得相关参数的估计值,以 此可以估计得到准备金。
- * k?????,Let the data speak.How?Answer:Bayes idea again! + Tool:RJMCMC!

内容

采样样本概况

利用 RJMCMC 抽样得到的样本概况(M1 有一个参数,M2 有两个参数)。

T	模型	参数				
t	1	θ_{11}^t				
t+1	2	θ_{21}^{t+1}	$\mid heta_{22}^{t+1} \mid$			
t+2	2	$\left \begin{array}{c} \theta_{21}^{\tilde{t}+2} \\ \theta^{\tilde{t}+3} \end{array}\right $	$\begin{array}{c} \theta_{22}^{t+1} \\ \theta_{22}^{t+2} \end{array}$			
t+3	1	$\theta_{11}^{\overline{t}+3}$				
t+4	1	θ_{11}^{t+4}				
t+5	1	$\theta_{11}^{\dagger + 5}$				
t+6	2	θ_{21}^{t+2}	θ_{22}^{t+2}			

Table 1: RJMCMC 样本示例

内容

关于数据的设计

Figure 2: 模拟数据设计

关于数据的设计

* 我们定义事故年数为 10, 进展年也为 10.

I <- 9

* 事故年水平的定义为

```
u = 1.02^(0:I) * 10^7
u
```

[1] 10000000 10200000 10404000 10612080 10824322 11040808 11261624 114

* 我们设计的数据在 k=4 处划分为两段, $\gamma_0,...,\gamma_3$ 有具体的数值定义,而 $\gamma_4,...,\gamma_9$ 则服从一指数递减曲线,相关参数也已经设置。

```
r0_3 <- c(0.159, 0.179, 0.179, 0.139)
alpha = -1.6159
beta = 0.2
r4_9 <- exp(alpha - beta * (4:9))
```

关于数据的设计

	0	1	2	3	4	5	6	7	8	9
0	1619686	1605365	1789134	1204245	701947	644759	741318	606242	419492	433979
1	2096654	1828792	1912791	1283858	1172218	714845	707710	525486	397655	0
2	2013759	1736024	1684836	1885917	852724	612746	734329	566127	0	0
3	1508176	1748213	1714909	1453170	890544	669430	480932	0	0	0
4	1565750	1640238	2160561	1985603	1127682	871973	0	0	0	0
5	2199588	2158210	1854062	1792833	852008	0	0	0	0	0
6	2065669	2217071	1818990	1270410	0	0	0	0	0	0
7	1858507	2625637	1863646	0	0	0	0	0	0	0
8	1783441	1900148	0	0	0	0	0	0	0	0
9	1848961	0	0	0	0	0	0	0	0	0

Figure 3: RJMCMC 采样 K 值

Figure 4: RJMCMC 采样 K 值

Figure 5: RJMCMC 采样 r.2 样本

Figure 6: RJMCMC 采样 r.2 分布

Figure 7: RJMCMC 采样 r 均值

祝福

