#### INTEGRATED CIRCUITS

# DATA SHEET

## For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

## 74HC/HCT182 Look-ahead carry generator

Product specification
File under Integrated Circuits, IC06

December 1990

Philips Semiconductors





## Look-ahead carry generator

#### 74HC/HCT182

#### **FEATURES**

- · Provides carry look-ahead across a group of four ALU's
- Multi-level look-ahead for high-speed arithmetic operation over long word length
- · Output capability: standard
- I<sub>CC</sub> category: MSI

#### **GENERAL DESCRIPTION**

The 74HC/HCT182 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT182 carry look-ahead generators accept up to four pairs of active LOW carry propagate  $(\overline{P}_0, \overline{P}_1, \overline{P}_2, \overline{P}_3)$  and carry generate  $(\overline{G}_0, \overline{G}_1, \overline{G}_2, \overline{G}_3)$  signals and an active HIGH carry input  $(C_n)$ . The devices provide

anticipated active HIGH carries ( $C_{n+x}$ ,  $C_{n+y}$ ,  $C_{n+z}$ ) across four groups of binary adders.

The "182" also has active LOW carry propagate  $(\overline{P})$  and carry generate  $(\overline{G})$  outputs which may be used for further levels of look-ahead.

The logic equations provided at the outputs are:

$$\begin{split} &C_{n+x} = G_0 + P_0 C_n \\ &C_{n+y} = G_1 + P_1 G_0 + P_1 P_0 C_n \\ &C_{n+z} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_n \\ &\overline{G} = \overline{G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0} \\ &P = \overline{P_3 P_2 P_1 P_0} \end{split}$$

The "182" can also be used with binary ALU's in an active LOW or active HIGH input operand mode. The connections to and from the ALU to the carry look-ahead generator are identical in both cases.

#### QUICK REFERENCE DATA

GND = 0 V;  $T_{amb}$  = 25 °C;  $t_r$  =  $t_f$  = 6 ns

| SYMBOL t <sub>PHL</sub> / t <sub>PLH</sub> | DADAMETED                                                                                                                   | CONDITIONS                                  | TYI            |                |                |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------|----------------|----------------|--|
|                                            | PARAMETER                                                                                                                   | CONDITIONS                                  | нс             | нст            | UNIT           |  |
|                                            | propagation delay $\overline{P}_n$ to $\overline{P}$ $C_n$ to any output $\overline{P}_n$ or $\overline{G}_n$ to any output | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ | 11<br>17<br>14 | 14<br>21<br>17 | ns<br>ns<br>ns |  |
| C <sub>I</sub>                             | input capacitance                                                                                                           |                                             | 3.5            | 3.5            | pF             |  |
| C <sub>PD</sub>                            | power dissipation capacitance per package                                                                                   | notes 1 and 2                               | 50             | 50             | pF             |  |

#### Notes

1. C<sub>PD</sub> is used to determine the dynamic power dissipation (P<sub>D</sub> in ∞W):

$$P_D = C_{PD} \cdot V_{CC}^2 \cdot f_i + \sum (C_L \cdot V_{CC}^2 \cdot f_o)$$
 where:

f<sub>i</sub> = input frequency in MHz

fo = output frequency in MHz

 $\Sigma (C_L \cdot V_{CC}^2 \cdot f_0)$  = sum of outputs

C<sub>L</sub> = output load capacitance in pF

V<sub>CC</sub> = supply voltage in V

2. For HC the condition is  $V_1$  = GND to  $V_{CC}$ 

For HCT the condition is  $V_I$  = GND to  $V_{CC}$  - 1.5 V

#### ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

## Look-ahead carry generator

### 74HC/HCT182

#### PIN DESCRIPTION

| PIN NO.     | SYMBOL                               | NAME AND FUNCTION                   |
|-------------|--------------------------------------|-------------------------------------|
| 3, 1, 14, 5 | $\overline{G}_0$ to $\overline{G}_3$ | carry generate inputs (active LOW)  |
| 4, 2, 15, 6 | $\overline{P}_0$ to $\overline{P}_3$ | carry propagate inputs (active LOW) |
| 7           | ₽                                    | carry propagate output (active LOW) |
| 8           | GND                                  | ground (0 V)                        |
| 9           | C <sub>n+z</sub>                     | function output                     |
| 10          | G                                    | carry generate output (active LOW)  |
| 11          | C <sub>n+y</sub>                     | function output                     |
| 12          | C <sub>n+x</sub>                     | function output                     |
| 13          | Cn                                   | carry input (active HIGH)           |
| 16          | V <sub>CC</sub>                      | positive supply voltage             |







## Look-ahead carry generator

## 74HC/HCT182





## Look-ahead carry generator

74HC/HCT182

#### **FUNCTION TABLE**

|                            | INPUTS                     |                                      |                            |                                 |                            |                                 |                       |                                 | OUTPUTS          |                  |                       |                       |                  |  |
|----------------------------|----------------------------|--------------------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------|-----------------------|---------------------------------|------------------|------------------|-----------------------|-----------------------|------------------|--|
| Cn                         | G <sub>0</sub>             | ₽ <sub>0</sub>                       | G₁                         | ₽ <sub>1</sub>                  | G <sub>2</sub>             | P <sub>2</sub>                  | G <sub>3</sub>        | ₽ <sub>3</sub>                  | C <sub>n+x</sub> | C <sub>n+y</sub> | C <sub>n+z</sub>      | G                     | P                |  |
| X<br>L<br>X<br>H           | H<br>H<br>L                | H<br>X<br>X<br>L                     |                            |                                 |                            |                                 |                       |                                 | L<br>L<br>H<br>H |                  |                       |                       |                  |  |
| X<br>X<br>L<br>X<br>H      | X<br>H<br>X<br>L           | X<br>H<br>X<br>X<br>X<br>L           | H<br>H<br>L<br>X           | H<br>X<br>X<br>X<br>L<br>L      |                            |                                 |                       |                                 |                  | L<br>L<br>H<br>H |                       |                       |                  |  |
| X<br>X<br>L<br>X<br>X<br>H | X<br>H<br>H<br>X<br>X<br>L | X<br>X<br>H<br>X<br>X<br>X<br>X<br>L | X<br>H<br>H<br>X<br>L<br>X | X<br>H<br>X<br>X<br>X<br>X<br>L | H<br>H<br>H<br>L<br>X      | H<br>X<br>X<br>X<br>X<br>L<br>L |                       |                                 |                  |                  | L<br>L<br>L<br>H<br>H |                       |                  |  |
|                            | X<br>X<br>H<br>X<br>X<br>X |                                      | X<br>H<br>H<br>X<br>X<br>L | X<br>X<br>H<br>X<br>X<br>X      | X<br>H<br>H<br>X<br>L<br>X | X<br>H<br>X<br>X<br>X<br>X<br>L | H<br>H<br>H<br>L<br>X | H<br>X<br>X<br>X<br>X<br>L<br>L |                  |                  |                       | H<br>H<br>H<br>L<br>L |                  |  |
|                            |                            | H<br>X<br>X<br>X<br>L                |                            | X<br>H<br>X<br>X<br>L           |                            | X<br>X<br>H<br>X<br>L           |                       | X<br>X<br>X<br>H<br>L           |                  |                  |                       |                       | H<br>H<br>H<br>L |  |

#### Notes

H = HIGH voltage level
 L = LOW voltage level
 X = don't care

## Look-ahead carry generator

74HC/HCT182

#### DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I<sub>CC</sub> category: MSI

#### AC CHARACTERISTICS FOR 74HC

GND = 0 V;  $t_r = t_f = 6 \text{ ns}$ ;  $C_L = 50 \text{ pF}$ 

| SYMBOL                              |                                                      | T <sub>amb</sub> (°C) |                |                 |            |                 |             |                 |      | TEST CONDITIONS        |              |
|-------------------------------------|------------------------------------------------------|-----------------------|----------------|-----------------|------------|-----------------|-------------|-----------------|------|------------------------|--------------|
|                                     |                                                      | 74HC                  |                |                 |            |                 |             |                 |      | 2475-61                | 14/41/EE0DMO |
|                                     | PARAMETER                                            | +25                   |                |                 | -40 to +85 |                 | -40 to +125 |                 | UNIT | V <sub>cc</sub><br>(V) | WAVEFORMS    |
|                                     |                                                      | min.                  | typ.           | max.            | min.       | max.            | min.        | max.            |      | (-,                    |              |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $\overline{P}_n$ to $\overline{P}$ |                       | 30<br>14<br>11 | 120<br>24<br>20 |            | 150<br>30<br>26 |             | 180<br>36<br>31 | ns   | 2.0<br>4.5<br>6.0      | Fig.6        |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>C <sub>n</sub> to any output    |                       | 55<br>20<br>16 | 170<br>34<br>29 |            | 215<br>43<br>37 |             | 255<br>51<br>43 | ns   | 2.0<br>4.5<br>6.0      | Fig.6        |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $\overline{P}_n$ to $\overline{G}$ |                       | 47<br>17<br>14 | 145<br>29<br>25 |            | 180<br>36<br>31 |             | 220<br>44<br>38 | ns   | 2.0<br>4.5<br>6.0      | Fig.6        |
| t <sub>PHL</sub> / t <sub>PLH</sub> | $ \overline{P}_n \text{ to } C_{n+n} $               |                       | 47<br>17<br>14 | 145<br>29<br>25 |            | 180<br>36<br>31 |             | 220<br>44<br>38 | ns   | 2.0<br>4.5<br>6.0      | Fig.6        |
| t <sub>PHL</sub> / t <sub>PLH</sub> | $ \overline{G}_n \text{ to } C_{n+n} $               |                       | 44<br>16<br>13 | 135<br>27<br>23 |            | 170<br>34<br>29 |             | 205<br>41<br>35 | ns   | 2.0<br>4.5<br>6.0      | Fig.6        |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $\overline{G}_n$ to $\overline{G}$ |                       | 41<br>15<br>12 | 135<br>27<br>23 |            | 170<br>34<br>29 |             | 205<br>41<br>35 | ns   | 2.0<br>4.5<br>6.0      | Fig.6        |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                               |                       | 19<br>7<br>6   | 75<br>15<br>13  |            | 95<br>19<br>16  |             | 110<br>22<br>19 | ns   | 2.0<br>4.5<br>6.0      | Fig.6        |

## Look-ahead carry generator

74HC/HCT182

#### DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I<sub>CC</sub> category: MSI

#### Note to HCT types

The value of additional quiescent supply current ( $\Delta I_{CC}$ ) for a unit load of 1 is given in the family specifications. To determine  $\Delta I_{CC}$  per input, multiply this value by the unit load coefficient shown in the table below.

| INPUT                                                                                        | UNIT LOAD COEFFICIENT |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
| $\overline{\underline{G}}_0, \overline{G}_1, \overline{P}_0, \overline{P}_1, \overline{P}_2$ | 1.50                  |  |  |  |  |  |  |
| G <sub>3</sub>                                                                               | 0.30                  |  |  |  |  |  |  |
| $\overline{G}_2$ , $\overline{P}_3$ , $C_n$                                                  | 1.25                  |  |  |  |  |  |  |

#### AC CHARACTERISTICS FOR 74HCT

GND = 0 V;  $t_r = t_f = 6 \text{ ns}$ ;  $C_L = 50 \text{ pF}$ 

| SYMBOL                              |                                                                                      | T <sub>amb</sub> (°C) 74HCT |      |      |            |      |             |      |      | TEST CONDITIONS        |           |  |
|-------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|------|------|------------|------|-------------|------|------|------------------------|-----------|--|
|                                     | PARAMETER                                                                            |                             |      |      |            |      |             |      |      |                        |           |  |
|                                     |                                                                                      | +25                         |      |      | -40 to +85 |      | -40 to +125 |      | UNIT | V <sub>CC</sub><br>(V) | WAVEFORMS |  |
|                                     |                                                                                      | min.                        | typ. | max. | min.       | max. | min.        | max. |      | (*)                    |           |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $\overline{P}_n$ to $\overline{P}$                                 |                             | 17   | 28   |            | 35   |             | 42   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>C <sub>n</sub> to any output                                    |                             | 26   | 43   |            | 54   |             | 65   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $\overline{P}_n$ to $\overline{G}$                                 |                             | 20   | 33   |            | 41   |             | 50   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $\overline{P}_{n}$ to $C_{n+n}$                                    |                             | 20   | 33   |            | 41   |             | 50   | ns   | 4.5                    | Fig.6     |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay $\overline{G}_n$ to $C_{n+n}$ , $\overline{G}_n$ to $\overline{G}$ |                             | 18   | 32   |            | 40   |             | 48   | ns   | 4.5                    | Fig.6     |  |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                                                               |                             | 7    | 15   |            | 19   |             | 22   | ns   | 4.5                    | Fig.6     |  |

## Look-ahead carry generator

74HC/HCT182

#### **AC WAVEFORMS**



#### APPLICATION INFORMATION





## Look-ahead carry generator

#### 74HC/HCT182





#### **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".