Quantum Algorithm as a PDE Solver for Computational Fluid Dynamics (CFD)

BY: Jessica Omuna Anabor

1. Clear Explanation & Novelty

Problem Context:

The primary goal is to simulate 1D viscous Burgers' equation (a nonlinear PDE modeling shockwaves) using a hybrid quantum-classical approach that leverages quantum amplitude encoding, hybrid variational circuits, and noise mitigation techniques.

Algorithm Rationale:

- Amplitude Encoding is used to map classical field data (e.g., velocity fields) into quantum states with low qubit overhead (log₂(N) qubits).
- The hybrid circuit mimics a single time-step of PDE evolution through Trotterization (alternating Hadamard layers, Rz phase rotations, and entanglers).
- Zero-Noise Extrapolation (ZNE) and measurement error mitigation are applied to combat quantum noise.
- Classical Solver (FD) is used for benchmarking the accuracy and stability of the hybrid model.

Originality:

- Combines PDE simulation with quantum state preparation and parameterized hybrid circuits, inspired by quantum tensor networks (QTN) and Hamiltonian simulation elements (HSE).
- Seamlessly integrates classical finite-difference solvers, amplitude encoding, ZNE, and quantum metrics (TV, KL, fidelity) in one demonstrative framework.
- Provides multiple abstraction layers (e.g., direct Aer runs, noisy simulations, AWS Braket support) to evaluate hardware/software scalability.

2. Reproducible Results

Key Features:

- Seed control via np.random.seed(42) ensures deterministic initialization.
- Classical solver (classical_burgers) allows for accurate baselining and result validation.
- All runs log:
 - Number of qubits
 - Output distributions
 - ZNE extrapolated values
 - Statistical uncertainties (CI95)
- Plots and CSVs are saved, making reruns and comparisons straightforward

3. Noise Robustness

Mitigation Techniques Implemented:

- 1. Zero-Noise Extrapolation (ZNE):
 - o Implemented via:
 - Custom fold_gates_for_zne()
 - Mitiq integration (fold_gates_at_random)
 - o Scale factors: [1,3,5]

 linear_zne_extrapolation() computes extrapolated expectation at zero noise.

2. Measurement Error Mitigation:

 If qiskit.ignis is available, the code auto-generates full calibration circuits and applies CompleteMeasFitter.

3. Noisy Backend Simulation:

• **Custom noise models** built with depolarizing errors (e.g., 0.005 for 1-qubit gates, 0.02 for CX).

Noise Resilience Demonstrated:

- The noisy run with 8192 shots and custom noise still produced meaningful results.
- Comparison metrics (vs ideal):
 - KL divergence
 - Total Variation
 - Fidelity

4. Results

A. Summary of ZNE and Raw Results

Case	Backend	Shot s	Raw Zero-State Freq	ZNE Extrapolated Freq	Ideal Zero-State Prob
Baseline	AerSimulator	2048	0.5229	0.5208	0.5157
High Shots	AerSimulator	4000 0	0.5126	0.5103	0.5157
Noisy (toy noise)	AerSimulator (noise)	8192	0.4447	0.4444	0.5157

Interpretation of above results:

• Raw vs Ideal:

The raw measured zero-state frequencies are close to the ideal 0.5157 value under the noiseless backend, especially with high shots. This validates correctness.

• ZNE Impact (Noiseless):

ZNE barely changes the results on the noiseless simulator (0.5208 to 0.5207), as expected.

• ZNE Impact (Noisy):

On the noisy simulator, ZNE provides no meaningful improvement (0.4447 to 0.4444). This suggests:

- The toy noise model may be too symmetric or too strong, making extrapolation ineffective.
- Or the circuit might be not deep enough to benefit from ZNE under the current scaling factors

B. Noise Impact and Divergence Measures

Metric	Baseline (No Noise)	Noisy Backend
KL Divergence	0.0014	0.5372
TV Distance	0.0079	0.1299
L2 Distance	0.0099	0.1032

Interpretation of above results:

- These metrics clearly show a large divergence between the noisy and ideal results, indicating a significant effect from the noise model.
- KL divergence > 0.5 is very high, this suggests the noisy output is quite far from ideal.

C. Benchmark

N	Depth	Fidelity	TV Distance	KL Divergence
8	17	0.9930	0.0684	0.0141
16	33	0.9976	0.0420	0.0048
32	65	0.9986	0.0361	0.0028
64	129	0.9952	0.0518	0.0096

Interpretation of above results:

- These give a broader view of fidelity across varying system sizes.
- Despite increasing depth and circuit size, fidelity remains high (>99%), especially for circuits without injected noise.
- Divergence metrics stay low in the ideal simulator, indicating that the circuits are being simulated and measured correctly.