Módulo de Círculo Trigonométrico

Seno, Cosseno e Tangente

1^a série E.M.

Círculo Trigonométrico Seno, Cosseno e Tangente.

1 Exercícios Introdutórios

Exercício 1. Determine

- a) $\sin 120^{\circ}$.
- b) sen 180°.
- c) sen 240°.
- d) $\sin 315^{\circ}$.
- e) $\operatorname{sen}(\frac{3\pi}{4})$.
- f) $\operatorname{sen}(\frac{7\pi}{6})$.
- g) $\operatorname{sen}(\frac{5\pi}{3})$.

Exercício 2. Determine

- a) $\cos 90^{\circ}$.
- b) $\cos 135^{\circ}$.
- c) $\cos 240^{\circ}$.
- d) $\cos 330^{\circ}$.
- e) $\cos(\frac{5\pi}{4})$.
- f) $\cos(\frac{11\pi}{6})$.
- g) $\cos(\frac{2\pi}{3})$.

Exercício 3. Determine

- a) $tg 120^{\circ}$.
- b) tg 225°.
- c) tg 240°.
- d) tg 300°.
- e) $\operatorname{tg}(\frac{7\pi}{4})$.
- f) $\operatorname{tg}(\frac{5\pi}{6})$.
- g) $\operatorname{tg}(\frac{4\pi}{3})$.

Exercício 4. Determine

- a) $\sin 720^{\circ}$.
- b) $\cos 1170^{\circ}$.

- c) tg 3540°.
- d) $\sin 3930^{\circ}$.
- e) $\cos(-2115)^{\circ}$.
- f) $tg(-840)^{\circ}$.
- g) $sen(-540)^{\circ}$.
- h) $\operatorname{sen}(\frac{51\pi}{4})$.
- i) $\cos(\frac{37\pi}{6})$.
- j) $\operatorname{tg}(\frac{29\pi}{3})$.
- k) $sen(-\frac{11\pi}{3}).$

2 Exercícios de Fixação

Exercício 5. Qual a menor determinação de α , no segundo quadrante, tal que sen $\alpha = 1/2$?

Exercício 6. Determine α , sendo $\cos \alpha = 0$.

Exercício 7. Determine α , sendo tg $\alpha = 1$.

Exercício 8. Determine α , no segundo quadrante, tal que $\sin \alpha = \frac{\sqrt{3}}{2}$.

Exercício 9. Sabendo que $180^{\circ} < \beta < 270^{\circ}$ e $\cos \beta = -\frac{\sqrt{2}}{2}$, determine β .

Exercício 10. Sabendo que α é um arco do primeiro quadrante, quais são os valores de m que satisfazem a igualdade sen $\alpha = 2m - 7$?

Exercício 11. A expressão $E = \frac{\sin 75^{\circ} \cdot \cos 327^{\circ} \cdot \operatorname{tg} 138^{\circ}}{\sin 269^{\circ} \cdot \operatorname{tg} 288^{\circ}}$ é positiva, negativa ou zero?

Exercício 12. Para que valores de α , $0 \le \operatorname{tg} \alpha \le 1$?

Exercício 13. Determine os possíveis valores reais de k, sabendo que $\cos \beta = 2k + 3$.

Exercício 14. Se α é um arco do terceiro quadrante, determine se $E=\frac{\operatorname{tg}(180^\circ+\alpha)\cdot\operatorname{sen}(270^\circ-\alpha)}{\cos(\alpha-90^\circ)}$ é positivo, negativo ou zero.

Exercício 15. Determine o número de soluções da equação sen $\alpha = 2/3$ no intervalo $[0, 9\pi]$.

Exercício 16. Determine as raízes da equação $2^{\sin x} = \frac{\sqrt{2}}{2}$.

3 Exercícios de Aprofundamento e de Exames

Exercício 17. As torres Puerta de Europa são duas torres inclinadas uma contra a outra, construídas numa avenida de Madri, na Espanha. A inclinação das torres é de 15° com a vertical e elas têm, cada uma, uma altrua de 114m (altura indicada na figura como o segmento AB). Estas torres são um bom exemplo de um prisma oblíquo de base quadrada e uma delas pode ser observada na imagem.

Figura 1

Utilizando 0,26 como valor aproximado para a tangente de 15° e duas casas decimais nas operações, descobre-se que a área da base desse prédio ocupa na avenida um espaço

- a) menor que $100m^2$.
- b) entre $100m^2$ e $300m^2$.
- c) entre $300m^2$ e $500m^2$.
- d) entre $500m^2$ e $700m^2$.
- e) maior que $700m^2$.

Exercício 18. A população de peixes em uma lagoa varia conforme o regime de chuvas da região. Ela cresce no período chuvoso e decresce no período de estiagem. Esta população é descrita pela expressão $P(t)=10^3(\cos((\frac{t-2}{6})\pi)+5)$ em que o tempo t é medido em meses. É correto afirmar que

- a) o período chuvoso corresponde a dois trimestres do ano.
- b) a população atinge seu máximo em t = 6.
- c) o período de seca corresponde a 4 meses do ano.
- d) a população média anual é de 6000 animais.

e) a população atinge seu mínimo em t=4 com 6000 animais.

Exercício 19. O valor de $(\cos 165^\circ + \sin 155^\circ + \cos 145^\circ - \sin 25^\circ + \cos 35^\circ + \cos 15^\circ)$ é

- a) $\sqrt{2}$.
- b) -1.
- c) 0.
- d) 1.
- e) 1/2.

Exercício 20. O número real m que satisfaz à sentença $\frac{m+1}{m-2}=\cos 3015^\circ$ é

- a) $4 3\sqrt{2}$.
- b) $3\sqrt{2} 4$.
- c) $3 4\sqrt{2}$.
- d) $4\sqrt{2} + 3$.
- e) $3\sqrt{2} + 4$.

Respostas e Soluções.

1.

a)
$$\sin 120^{\circ} = \sin 60^{\circ} = \sqrt{3}/2$$
.

b)
$$\sin 180^{\circ} = 0$$
.

c)
$$\sin 240^{\circ} = -\sin 60^{\circ} = -\sqrt{3}/2$$
.

d)
$$\sin 315^{\circ} = -\sin 45^{\circ} = -\sqrt{2}/2$$
.

e)
$$\sin \frac{3\pi}{4} = \sin \frac{\pi}{4} = \sqrt{2}/2$$
.

f)
$$\sin \frac{7\pi}{6} = -\sin \frac{\pi}{6} = -1/2$$
.

g)
$$\sin \frac{5\pi}{3} = -\sin \frac{\pi}{3} = -\sqrt{3}/2$$
.

2.

a)
$$\cos 90^{\circ} = 0$$
.

b)
$$\cos 135^\circ = -\cos 45^\circ = -\frac{\sqrt{2}}{2}$$
.

c)
$$\cos 240^{\circ} = -\cos 60^{\circ} = -1/2$$
.

d)
$$\cos 330^{\circ} = \cos 30^{\circ} = \sqrt{3}/2$$
.

e)
$$\cos(5\pi/4) = -\cos(\pi/4) = -\sqrt{2}/2$$
.

f)
$$\cos(11\pi/6) = \cos(\pi/6) = \sqrt{3}/2$$
.

g)
$$\cos(2\pi/3) = -\cos(\pi/3) = -1/2$$
.

3.

a)
$$tg 120^{\circ} = -tg 60^{\circ} = -\sqrt{3}$$
.

b)
$$tg 225^{\circ} = tg 45^{\circ} = 1$$
.

c)
$$tg 240^{\circ} = tg 60^{\circ} = \sqrt{3}$$
.

d)
$$tg 300^{\circ} = -tg 60^{\circ} = -\sqrt{3}$$
.

e)
$$tg(7\pi/4) = -tg(\pi/4) = -1$$
.

f)
$$tg(5\pi/6) = -tg(\pi/6) = -\sqrt{3}/3$$
.

g)
$$tg(4\pi/3) = tg(\pi/3) = \sqrt{3}$$
.

4.

a)
$$\sin 720^{\circ} = \sin 0^{\circ} = 0$$
.

b)
$$\cos 1170^{\circ} = \cos 90^{\circ} = 0$$
.

c)
$$tg 3540^{\circ} = tg 300^{\circ} = -tg 60^{\circ} = -\sqrt{3}$$
.

d)
$$\sin 3930^{\circ} = \sin 330^{\circ} = -\sin 30^{\circ} = -1/2$$
.

e)
$$\cos(-2115)^{\circ} = \cos 45^{\circ} = \sqrt{2}/2$$
.

f)
$$tg(-840)^{\circ} = tg 240^{\circ} = tg 60^{\circ} = \sqrt{3}$$
.

g)
$$sen(-540)^{\circ} = sen 180^{\circ} = 0.$$

h)
$$sen(51\pi/4) = sen(3\pi/4) = sen(\pi/4) = \sqrt{2}/2$$
.

i)
$$\cos(37\pi/6) = \sin(\pi/6) = 1/2$$
.

j)
$$tg(29\pi/3) = tg(5\pi/3) = -tg(\pi/3) = -\sqrt{3}$$
.

k)
$$sen(-11\pi/3) = sen(\pi/3) = \sqrt{3}/2$$
.

5. Se α fosse do primeiro quadrante, então α seria 30°, mas como pertence ao segundo quadrante, $\alpha=180^\circ-30^\circ=150^\circ.$

6. $\cos \alpha = 0$ nas extremidades superior e inferior do círculo trigonométrico. Assim, temos $\alpha = \{90^{\circ}, 270^{\circ}, 450^{\circ}, ...\}$, ou seja, $\alpha = 90^{\circ} + 180^{\circ}k$, onde $k \in \mathbb{Z}$, ou ainda, $\alpha = \pi/2 + k\pi$, onde $k \in \mathbb{Z}$.

7

Se tg $\alpha = 1$, então $\alpha = \pi/4 + k\pi$, onde $k \in \mathbb{Z}$.

8.
$$\alpha = 180^{\circ} - 60^{\circ} = 120^{\circ}$$
.

9.
$$\beta = 180^{\circ} + 45^{\circ} = 225^{\circ}$$
.

10. Como $\alpha \in$ ao primeiro quadrante, então $0 < \sin \alpha < 1$. Assim, temos 0 < 2m - 7 < 1, segue que 7/2 < m < 4.

11.
$$\frac{\sin 75^{\circ} \cdot \cos 327^{\circ} \cdot \operatorname{tg} 138^{\circ}}{\sin 269^{\circ} \cdot \operatorname{tg} 288^{\circ}} = \frac{(+) \cdot (+) \cdot (-)}{(-) \cdot (-)} < 0,$$
portanto a expressão é negativa.

12. No primeiro quadrante (menor determinação positiva do arco), temos $0^{\circ} \leq \alpha \leq 45^{\circ}$. No terceiro quadrante (e menor determinação potivita do arco), temos $180^{\circ} \leq \alpha \leq 225^{\circ}$. Generalizando, chegamos a $180^{\circ}k \leq \alpha \leq 45^{\circ} + 180^{\circ}k$, onde $k \in \mathbb{Z}$.

13. Sabemos que $-1 \le \cos \beta \le 1$. Assim, temos $-1 \le 2k + 3 \le 1$, segue que $-2 \le k \le -1$.

14. Como α é um arco do terceiro quadrante, então tg $(180^{\circ} + \alpha) > 0$, sen $(270^{\circ} - \alpha) > 0$ e cos $(\alpha - 90^{\circ}) < 0$. Dessa forma, E = (+)(+)/(-) < 0, ou seja, E é negativo.

15. Como $0 < \sin \alpha < 1$, α é um arco do primeiro ou segundo quadrantes. No intervalo $[0,9\pi]$, que equivale a quatro voltas e meia no círculo trigonométrico, passaremos cinco vezes por cada um destes quadrantes, ou seja, são 10 soluções.

16.

$$2^{\sin x} = \frac{\sqrt{2}}{2}$$

$$2^{\sin x} = 2^{-1/2}$$

$$\sin x = -1/2$$

$$x = 210^{\circ} + k360^{\circ}, ou$$

$$x = 330^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$$

- 17. (ENEM 2013) Chamando de ℓ o lado da base quadrada do prédio, temos tg 15° = $\frac{\ell}{114}$, segue $\ell=29,64m$. Portanto a área é $(29,64)^2=858,73m^2$. Resposta E.
- 18. (EsPCEx 2014) Resposta A. Tomando um intervalo de 12 meses, por exemplo, 2 < t < 14, teremos uma volta completa no círculo trigonométrico. Isso significa que metade do tempo, dois trimestres, $\cos((\frac{t-2}{6})\pi)$ aumenta (2 < t < 5e11 < t < 14) e, consequentemente, o período é de chuva.
- **19.** (EsPCEx 2014) Como a expressão é equivalente a $(-\cos 15^{\circ} + \sin 25^{\circ} \cos 35^{\circ} \sin 25^{\circ} + \cos 35^{\circ} + \cos 15^{\circ})$, seu valor é 0. Resposta C.
- **20.** $\frac{m+1}{m-2} = \cos 3015^{\circ} = \cos 135^{\circ} = -\cos 45^{\circ} = -\sqrt{2}/2.$ Assim, temos $2(m+1) = -\sqrt{2}(m-2)$, segue que $m = \frac{2\sqrt{2}-2}{2\sqrt{2}+2} = 3\sqrt{2}-4.$ Resposta B.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com