DatosAgrupados

Gabriel

2022-04-13

Estadisticos para datos agrupados

Al tener datos numericos, es necesario calcular siempre antes de agrupar ciertos estadisticos, si no queda mas remedio, que la fuente los tenga agrupados o similares, aun siguie siendo posible calcular los estadisticos originales como aproximacion de los datos reales.

Estadisticos - Media - Varianza - Desviacion tipica - Moda

La diferencia es que es que ahora usaremos la marca de clase multiplicada para dicha clase respectivamente

En lo que se refiere a la moda, se cambia por el intercambio moda, viene a ser la clase que tiene mayor frecuencia absoluta y/o relativa

Le mediana se sustituye por el intervalo tipico para la mediana, un intervalo cuya su frecuencia relativa acumulada sea mayor a 0.5, el primero

$$M = L_c + A_c \cdot \frac{\frac{n}{2} - N_{c-1}}{n_c}$$

Dicha formula se extiende para el calculo de cuantiles

$$Q_p = L_p + A_p \cdot \frac{p \cdot n - N_{p-1}}{n_c}$$

Si no podemos acceder a los datos raw, hay que hacer estos calculos si tenemos agrupados

Ejercicio con agrupados

```
TablaFrecs.L = function(x,L,V){
    x_cut = cut(x, breaks=L, right=FALSE, include.lowest=V)
    intervals = levels(x_cut)
    mc = (L[1:(length(L)-1)]+L[2:length(L)])/2
    Fr.abs = as.vector(table(x_cut))
    Fr.rel = round(Fr.abs/length(x),4)
    Fr.cum.abs = cumsum(Fr.abs)
    Fr.cum.rel = cumsum(Fr.rel)
    tabla = data.frame(intervals, mc, Fr.abs, Fr.cum.abs, Fr.rel, Fr.cum.rel)
    tabla
}
TablaFrecs = function(x,k,A,p){
```

```
L = \min(x) - p/2 + A*(0:k)
  x_cut = cut(x, breaks = L, right=FALSE)
  intervals = levels(x_cut)
  mc = (L[1]+L[2])/2+A*(0:(k-1))
  Fr.abs = as.vector(table(x_cut))
 Fr.rel = round(Fr.abs/length(x),4)
 Fr.cum.abs = cumsum(Fr.abs)
 Fr.cum.rel = cumsum(Fr.rel)
  tabla = data.frame(intervals, mc, Fr.abs, Fr.cum.abs, Fr.rel, Fr.cum.rel)
  tabla
}
#Trabajamos nuevamente con data crabs
datacrab = read.table("../data/datacrab.txt", header = T)
cw = datacrab$width
#Determinando la tabla de frecuencias
k = 10
A = 1.3
L_1 = \min(cw) - (1/2*0.1)
L = L_1 + A*(0:k)
mc = (L[1]+L[2])/2+A*(0:(k-1))
intervals = as.character(c("[20.95,22.25)","[22.25,23.55)","[23.55,24.85)","[24.85,26.15)","[26.15,27.4
cw_cut = cut(cw, breaks = L, right = F)
Fr.abs = as.vector(table(cw_cut))
Fr.rel = round(Fr.abs/length(cw),4)
Fr.cum.abs = cumsum(Fr.abs)
Fr.cum.rel = cumsum(Fr.rel)
cw_df = data.frame(intervals, mc, Fr.abs, Fr.cum.abs, Fr.rel, Fr.cum.rel)
cw_df
##
          intervals mc Fr.abs Fr.cum.abs Fr.rel Fr.cum.rel
## 1 [20.95,22.25) 21.6
                           2
                                       2 0.0116
                                                     0.0116
## 2 [22.25,23.55) 22.9
                            14
                                      16 0.0809
                                                     0.0925
## 3 [23.55,24.85) 24.2 27
                                      43 0.1561
                                                     0.2486
## 4 [24.85,26.15) 25.5
                                      87 0.2543
                          44
                                                     0.5029
                                                  0.6994
## 5 [26.15,27.45) 26.8
                            34
                                      121 0.1965
## 6 [27.45,28.75) 28.1
                            31
                                    152 0.1792 0.8786
                                    167 0.0867
170 0.0173
## 7 [28.75,30.05) 29.4
                           15
                                                   0.9653
## 8 [30.05,31.35) 30.7
                             3
                                      170 0.0173
                                                     0.9826
## 9 [31.35,32.65) 32.0
                             2
                                      172 0.0116
                                                     0.9942
## 10 [32.65,33.95) 33.3
                             1
                                      173 0.0058
                                                     1.0000
\#Calculando\ estadisticos\ agrupados
#Total de muestras
TOT = cw_df$Fr.cum.abs[10]
#la sumatoria de las frecuencias absolutas de cada intervalo por la marca de clase de cada uno dividido
anchura.media = round(sum(cw_df$Fr.abs*cw_df$mc)/TOT,3)
anchura.media
```

[1] 26.312

```
#la varianza, la sumatoria de las frecuencias absolutas de cada intervalo, por la marca de clase al cua
anchura.var = round(sum(cw_df$Fr.abs*cw_df$mc^2)/TOT - anchura.media^2, 3)
anchura.var
## [1] 4.476
#desviacion tipica, la raiz cuadrada de la varianza
anchura.dt = round(sqrt(anchura.var),3)
anchura.dt
## [1] 2.116
#Intervalo modal, le pido que de los intervalos, me de cuando la frecuencia absoluta sea igual al maxim
I.modal = cw_df$intervals[which(cw_df$Fr.abs == max(cw_df$Fr.abs))]
I.modal
## [1] "[24.85,26.15)"
#Intervalo critico para la mediana, de los intervalos, los que tengan frecuencia relativa acumulada may
I.critic = cw_df$intervals[which(cw_df$Fr.cum.rel >= 0.5)]
I.critic[1]
## [1] "[24.85,26.15)"
#Ahora vamos a la estimacion de la mediana real
n = TOT
Lc = L[4]
Lc.pos= L[5]
Ac = L[5]-L[4]
Nc.ant = cw_df$Fr.cum.abs[3]
nc = cw_df$Fr.abs[4]
M = Lc+Ac*((n/2)-Nc.ant)/nc
M # Aproximacion de la mediana en datos reales
## [1] 26.13523
#Con la funcion median, si tengo disponibles los datos raw
median(cw)
## [1] 26.1
#Ver formulas para calcular quantiles
aprox.quantile.p = function(Lcrit, Acrit, n, p, Ncrit.ant, ncrit){
  round(Lcrit+Acrit*(p*n-Ncrit.ant)/ncrit,3)
}
aprox.quantile.p(Lc,Ac,n,0.25,Nc.ant,nc) #Primer cuartil
```

[1] 24.857

```
aprox.quantile.p(Lc,Ac,n,0.75,Nc.ant,nc) #Tercer cuartil
```

[1] 27.413

Histogramas de frecuencia

Si las amplitudes de los intervalos son distintas, no vamos a tener un histograma 100% representativo, en este caso hay que mirar las areas representadas y no las alturas

En frecuencias relativas, represento la densidad, si sumo todas las areas, me debe de dar 1

Frecuencias nulas, no es conveniente representar en el histograma, a no ser que lo quermos representar a proposito

Funcion hist(), x es el vector, breaks son los intervalos, se puede pasar k y entre comillas el metodo "Scott"

Calculo density del histograma, corresponden a las alturas de las barras, frecuencia relativa dividida por su amplitud

Histograma de frecuencia absoluta

Histograma de recuencia absoluta acumulada

Histograma de frecuencia relativa

Histograma de frecuencia relativa acumulada

Practica con los cangrejos

```
#Trabajando con cw, aplicando primero la funcion hist
hist(cw, breaks = L, right = F, main = "Histograma de las anchuras de los cangrejos")
```

Histograma de las anchuras de los cangrejos


```
#Mirando la estrucutra interna, con plot = F
hist(cw, breaks = L, right = F, plot = F)
```

```
## $breaks
    [1] 20.95 22.25 23.55 24.85 26.15 27.45 28.75 30.05 31.35 32.65 33.95
##
## $counts
    [1] 2 14 27 44 34 31 15 3 2 1
##
##
## $density
     \hbox{\tt [1]} \ \ 0.008892841 \ \ 0.062249889 \ \ 0.120053357 \ \ 0.195642508 \ \ 0.151178301 \ \ 0.137839040 \\
##
##
    [7] 0.066696309 0.013339262 0.008892841 0.004446421
##
## $mids
    [1] 21.6 22.9 24.2 25.5 26.8 28.1 29.4 30.7 32.0 33.3
##
## $xname
## [1] "cw"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
```

 $\#Usando\ las\ funciones\ preparadas,\ primero\ absoluta,\ luego\ absoluta\ acumulada\ histAbs(cw,\ L)$

Histograma de frecuencias absolutas

Frec. absolutas acumuladas

Histograma de frecuencias absolutas acumuladas

