Вопрос №1

Пределы числовых последовательностей

Определение предела числовой последовательности

Определение. Вещественное число x называется пределом числовой последовательности $\{x_n\}$, если выполняется следующее условие: для любого интервала (a,b) такого, что $x \in (a,b)$ существует номер N, обладающий тем свойством, что $\forall n \geq N \Rightarrow x_n \in (a,b)$.

Используя понятие окрестности точки, определение предела можно дать так: $\lim_{n\to\infty} x_n = x \Leftrightarrow \forall O(x) \; \exists N : \; \forall n \geq N \; x_n \in O(x).$

Помимо конечных пределов рассматриваются также бесконечные пределы, определяемые следующим отношениями:

$$\lim_{n \to \infty} x_n = +\infty \Leftrightarrow \forall M \ \exists N : \ \forall n \ge N \ x_n > M, \tag{-\infty}$$

$$\lim_{n \to \infty} x_n = -\infty \Leftrightarrow \forall M \ \exists N : \ \forall n \ge N \ x_n < M. \tag{-\infty}$$

где $+\infty$ и $-\infty$ - правая и левая бесконечно удаленные точки числовой прямой.

Свойства предела

1 Если предел последовательности существует, то он единственен.

Определение. Расширенной числовой прямой называется множество $\mathbb{R} = \{-\infty \cup (-\infty, +\infty) \cup +\infty\}$. При этом окрестностью точки $\{-\infty\}$ называется любой интервал вида $(-\infty, a)$, а окрестностью точки $\{+\infty\}$ любой интервал вида $(b, +\infty)$.

Доказательство единственности основано на следующем свойстве.

Лемма (об отделимости). Если $x \in \mathbb{R}$ и $y \in \mathbb{R}$, $x \neq y$, то существуют окрестности O(x) и O(y) такие что $O(x) \cap O(y) = \emptyset$.

Доказательство. Пусть x < y. Если $x = -\infty$ и $y = +\infty$, то возьмем $O(x) = (-\infty, a_1)$ и $O(y) = (a_2, +\infty)$, где $a_1 < a_2$. Из определения интервала следует, что $O(x) \cap O(y) = \emptyset$. Пусть числа x и y конечны. Тогда по лемме о плотности существует конечная десятичная дробь a, лежащая между x и y: x < a < y. В этом случае возьмем $O(x) = (-\infty, a)$, $O(y) = (a, +\infty)$, тогда $O(x) \cap O(y) = \emptyset$. Пусть числа $x = -\infty$ и y конечны. Возьмем $a = (y)_0 - 1$ и $b = \overline{(y)_0} + 1$. Тогда (a, b) = O(y). Взяв

в этом случае $O(x) = (-\infty, a)$, получаем $O(x) \cap O(y) = \emptyset$. Аналогично рассматривается случай, когда x конечно, а $y = +\infty$.

Теорема (о единственности предела). Числовая последовательность может иметь только один предел (конечный или бесконечный).

Доказательство. Предположим, что последовательность $\{x_n\}$ имеет два разных предела: $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} x_n = y$, $x\neq y$. По лемме об отделимости существуют окрестности O(x) и O(y) такие что $O(x)\cap O(y)=\emptyset$. Из условия, что x и y - пределы, получаем $\exists N_1\colon \forall n\geq N_1\Rightarrow x_n\in O(x)$, $\exists N_2\colon \forall n\geq N_2\Rightarrow x_n\in O(y)$. Возьмем $n=\max\{N_1,N_2\}$. Тогда $x_n\in O(x)$ и $x_n\in O(y)$. Следовательно, $O(x)\cap O(y)\neq\emptyset$. Это противоречит выбору окрестностей.

- 2 Любая стационарная последовательность имеет предел: $\forall nx_n = C \Rightarrow \lim_{n \to \infty} x_n = C$.
- 3 Для любого вещественного числа x справедливы предельные равенства

$$\lim_{n \to \infty} \underline{(x)_n} = x \text{ u } \lim_{n \to \infty} \overline{(x)_n} = x. \tag{1}$$

Доказательство. Докажем первое из равенств 1. Пусть (a,b) - произвольная конечная окрестность вещественного числа x, то есть a < x < b. Тогда $\exists N : \overline{(a)_N} < \underline{(x)_N}$. Следовательно, в соответствии со свойствами десятичных приближений справедливы неравенства $a \leq \overline{(a)_N} < \underline{(x)_N} \leq x < b, \ \forall n \geq N \Rightarrow \underline{(x)_N} \leq \underline{(x)_n} \leq x$. Таким образом, для любого $n \geq N$ имеем неравенства $a < \underline{(x)_n} < b$. Это и означает, что $\lim_{n \to \infty} \underline{(x)_n} = x$. Второе из равенств 1 доказывается аналогично. В частности, для x = 0 имеем $\overline{(x)_n} = 10^{-n}$ и поэтому $\lim_{n \to \infty} 10^{-n} = 0$.

- 4 Последовательность $x_n = (-1)^n$ не имеет предела.
- $5 \lim_{n \to +\infty} n = +\infty, \lim_{n \to -\infty} n = -\infty.$
- 6 Последовательность $x_n = (-1)^n \cdot n$ не имеет ни конечного, ни бесконечного предела.

Доказательство. Предположим противное, то есть что существует вещественное число x такое что $x_n \to x$ при $n \to \infty$. Полагаем

 $a=\underline{(x)_0}-1,\,b=\overline{(x)_0}+1,\,N=\max\{|a|,|b|\}.$ Здесь N - натуральное. Интервал (a,b) представляет собой окрестность O(x), причем вне этой окрестности лежит любое число x_n с номером $n\geq N$: если n нечетное, то $x_n\leq a$, если же n четное, n>N, то $x_n\geq b$. Это противоречит определению предела. Аналогично рассматривается предположение, что $x=+\infty$ и $x=-\infty$.

Примеры нахождения

•
$$\lim_{n \to \infty} \frac{n!}{(n+1)! - n!} = \lim_{n \to \infty} \frac{n!}{n!(n+1) - n!} = \lim_{n \to \infty} \frac{n!}{n!(n+1-1)} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

•
$$\lim_{n \to \infty} \left(5 + \frac{3}{n} + \frac{2}{n^2}\right) = \lim_{n \to \infty} 5 + \lim_{n \to \infty} \frac{3}{n} + \lim_{n \to \infty} \frac{2}{n^2} = 5.$$

•
$$\lim_{n \to \infty} \left(2 - \frac{1}{n} + \frac{1}{n^2}\right) = \lim_{n \to \infty} 2 - \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n^2} = 2.$$

$$\bullet \lim_{n\to\infty} \frac{2}{n^4} = 0.$$

Неравенство Бернулли

Теорема. Если x > -1, то $(1+x)^n \ge 1 + nx$ для всех натуральных $n \ge 1$. Доказательство. Индукцией по n. При n = 1, оно верно, пусть при n = n тоже верно, то при n = n + 1: $(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) \ge (1+nx) + x = 1 + (n+1)x$.

Второй замечательный предел

Теорема. $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$ (или $\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$).

Доказательство. Докажем сначала теорему для случая последовательности: $x_n=(1+\frac{1}{n})^n; n\in\mathbb{N}.$ По формуле бинома Ньютона: $(a+b)^n=a^n+\frac{n}{1}\cdot a^{n-1}\cdot b+\frac{n(n-1)}{1\cdot 2}\cdot a^{n-2}\cdot b^2+\ldots+\frac{n(n-1)(n-2)\ldots(n-(n-1))}{1\cdot 2\cdot 3\cdot\ldots\cdot n}\cdot b^n; n\in\mathbb{N}.$ Полагая $a=1; b=\frac{1}{n},$ получим:

$$(1+\frac{1}{n})^n = 1+\frac{n}{1}\frac{1}{n}+\frac{n(n-1)}{1\cdot 2}\cdot\frac{1}{n^2}+\frac{n(n-1)(n-2)}{1\cdot 2\cdot 3}\cdot\frac{1}{n^3}+\ldots+\frac{n(n-1)(n-2)\ldots(n-(n-1))}{1\cdot 2\cdot 3\cdot \ldots \cdot n}\cdot\frac{1}{n}=\frac{n(n-1)(n-2)}{(2)}\cdot\frac{1}{n^2}+\frac{n(n-1)(n-2)}{1\cdot 2\cdot 3}\cdot\frac{1}{n^3}+\ldots+\frac{n(n-1)(n-2)}{(2)}$$

С увеличением n число положительных слагаемых в правой части равенства 2 увеличивается. Кроме того, при увеличении n число $\frac{1}{n}$ убывает,

поэтому величины $(1-\frac{1}{n}), (1-\frac{2}{n}), \ldots$, возрастают. Поэтому последовательность $\{x_n\} = \{(1+\frac{1}{n})^n\}; n \in \mathbb{N}$ – возрастающая, при этом

$$(1+\frac{1}{n})^n \ge 2, \ n \in \mathbb{N}. \tag{3}$$

Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство $(1+\frac{1}{n})^n < 1+1+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}+\ldots+\frac{1}{1\cdot 2\cdot 3\cdot \ldots\cdot n}$. Усилим полученное неравенство, заменим $3,4,5,\ldots$, стоящие в знаменателях дробей, числом $2\colon (1+\frac{1}{n})^n < 1+(1+\frac{1}{2}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}})$. Сумму в скобке найдем по формуле суммы членов геометрической прогрессии: $1+\frac{1}{2}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}}=\frac{1\cdot (1-(\frac{1}{2})^n)}{1-\frac{1}{2}}=2\cdot (1-\frac{1}{2^n})<2$. Поэтому

$$(1 + \frac{1}{n})^n < 1 + 2 = 3. (4)$$

Итак, последовательность ограничена сверху, при этом $\forall n \in \mathbb{N}$ выполняются неравенства 3 и 4: $2 \geq (1 + \frac{1}{n})^n < 3$.

Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность $x_n=(1+\frac{1}{n})^n,\ n\in\mathbb{N}$ монотонно возрастает и ограничена, значит имеет предел, обозначаемый буквой e. Т.е. $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$.

Число Эйлера

Рассмотрим выражение $(1+\frac{1}{n})^n$, $n \in \mathbb{N}$. Взяв n неограниченно возрастающих значений и вычисляя соответствующие значения степени $(1+\frac{1}{n})^n$, по-

Можно заметить, что при увеличении n значение степени стремится к какому-то пределу, приближенно равному 2,718. Докажем это.

Теорема. Последовательность $(1+\frac{1}{n})^n$ $(n=1,2,\ldots)$ стремится к конечному пределу, заключенному между 2 и 3.

Доказательство. Пользуясь биномом Ньютона будем иметь: $(1+\frac{1}{n})^n=1+n\cdot\frac{1}{n}+\frac{n(n-1)}{1\cdot 2}\cdot\left(\frac{1}{n}\right)+\frac{n(n-1)(n-2)}{1\cdot 2\cdot 3}\cdot\left(\frac{1}{n}\right)^2+\ldots+\frac{n(n-1)(n-2)\dots(n-(n-1))}{1\cdot 2\cdot 3\cdot \dots \cdot n}\cdot\left(\frac{1}{n}\right)^n$ или

$$(1+\frac{1}{n})^n = 2+\frac{1}{2}(1-\frac{1}{n})+\frac{1}{2\cdot 3}(1-\frac{1}{n})(1-\frac{2}{n})+\ldots+\frac{1}{2\cdot 3\cdot \ldots \cdot n}(1-\frac{1}{n})(1-\frac{2}{n})\ldots(1-\frac{n-1}{n}).$$

При n>1 все слагаемые в формуле 5 положительны, причем с возрастанием показателя n увеличивается число слагаемых и каждое соответствующее слагаемое становится больше.

Следовательно, последовательность $(1+\frac{1}{n})^n$, начиная с наименьшего значения, равного 2, растет вместе с показателем n. С другой стороны очевидно, что каждое слагаемое в правой части формулы 5 увеличится, если все множители знаменателей заменить на двойки, а каждую из скобок заменить единицей. Поэтому: $(1+\frac{1}{n})^n=2+\frac{1}{2}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}}$. В силу известной формулы для суммы арифметической прогрессии имеем: $\frac{1}{2}+\frac{1}{2^2}+\ldots+\frac{1}{2^{n-1}}=\frac{\frac{1}{2}-\frac{1}{2^2}}{1-\frac{1}{2}}=1-\frac{1}{2^{n-1}}<1$. Отсюда: $(1+\frac{1}{n})^n<3$.

Таким образом, члены последовательности $(1+\frac{1}{n})^n$ при неограниченном возрастании n постоянно возрастают, оставаясь больше 2, но меньше 3.

Итак, $e=\lim_{\substack{x\to\infty\\2,718281828459045}}(1+\frac{1}{n})^n$. Приближенно значение этого числа есть: $e\approx 2,718281828459045$.

Полагая
$$\frac{1}{x} = \alpha$$
, будем иметь: $e = \lim_{\alpha \to \infty} (1 + \alpha)^{\frac{1}{\alpha}}$.

Через e удобно выражать многие пределы. Оно иррационально, служит основанием натурального логарифма.

Натуральный логарифм

Если основание логарифма равно e, то такой логарифм называется натуральным. Записывается он как $\log_e a$ (краткая запись: $\ln(a)$). Функция натурального логарифма монотонно возрастает при x>0.

Выражение логарифма числа x при основании a через натуральный логарифм этого числа: $\log_a x = \frac{1}{\ln a} \ln x$.

Гармонический ряд

$$1+rac{1}{2}+rac{1}{3}+\ldots+rac{1}{n}+\ldots$$
 - гармонический ряд.

Также записывается как:
$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{k}$$
.

Ряд назван гармоническим, так как складывается из "гармоник": k-я гармоника, извлекаемая из скрипичной струны, — это основной тон, производимый струной длиной $\frac{1}{k}$ от длины исходной струны. Кроме того, каждый член ряда, начиная со второго, представляет собой среднее гармоническое двух соседних членов.

Особенностью гармонического ряда является то, что он постепенно расходится.

Скорость стремления к бесконечности последовательности частичных сумм гармонического ряда

Пусть $H_n=1+\frac{1}{2}+\ldots+\frac{1}{n},\ n=1,2,\ldots$ Докажем, что $\lim_{n\to\infty} H_n=+\infty$. Имеем для любого $n=1,2,\ldots$: $H_{2n}-H_n=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\geq n\cdot\frac{1}{2n}=\frac{1}{2}$. Следовательно, $\exists \varepsilon=\frac{1}{2}:\ \forall N\ \exists n=N,\ \exists m=2N=2n:\ |H_n-H_m|\geq\frac{1}{2}$. Это означает, что последовательность $\{H_n\}$ не удовлетворяет условию Коши. Согласно следствию из теоремы Коши у последовательности $\{H_n\}$ не может существовать конечного предела. Но $\{H_n\}$ монотонно возрастает: $H_{n+1}-H_n=\frac{1}{n+1}>0\ \Rightarrow H_{n+1}>H_n$. Следовательно, по теореме Вейерштрасса, у нее есть предел. Но так как предел не может быть конечным, то он равен бесконечности: $\lim_{n\to\infty} H_n=\lim_{n\to\infty} (1+\frac{1}{2}+\ldots+\frac{1}{n})=+\infty$.

Вопрос №2

Уравнение кривых на плоскости

Уравнением кривой (линии) на координатной плоскости называется уравнение, которому удовлетворяют координаты x и y каждой точки данной кривой и не удовлетворяют координаты любой точки, не лежащей на этой кривой.

В общем случае уравнение кривой может быть записано в виде F(x,y) = 0 или y = f(x).

Полярная система координат

Определение. Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой декартовой, или прямоугольной, системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.

Каждая точка в полярной системе координат может быть определена двумя полярными координатами, которые обычно называются ρ (радиальная координата) и ϕ (угловая координата, полярный угол). Координата ρ соответствует расстоянию от точки до центра, или полюса системы координат, а координата ϕ равна углу, отсчитываемому в направлении против часовой стрелки от луча через 0° (иногда называемого полярной осью системы координат). Полярный радиус определен для любой точки плоскости и всегда принимает неотрицательные значения $\rho \geq 0$. Полярный угол ϕ определен для любой точки плоскости, за исключением полюса O, и принимает значения $-\pi < \phi \leq \pi$. Полярный угол измеряется в радианах и отсчитывается от полярной оси:

- в положительном направлении (против направления движения часовой стрелки), если значение угла положительное;
- в отрицательном направлении (по направлению движения часовой стрелки), если значение угла отрицательное.

Например, точка с координатами $(3,60^\circ)$ будет выглядеть на графике как точка на луче, который лежит под углом 60° к полярной оси, на расстоянии трёх единиц от полюса. Точка с координатами $(3,-300^\circ)$ будет находиться на том же месте.

Уравнение прямой, проходящей через две точки

Каноническое уравнение прямой на плоскости вида $\frac{x-x_1}{a_x}=\frac{y-y_1}{a_y}$ задает в прямоугольной системе координат Oxy прямую, проходящую через точку $M_1(x_1,y_1)$ и имеющую направляющий вектор $\vec{a}=(a_x,a_y)$. Направляющим вектором прямой a, которая проходит через точки M_1 и M_2 , является вектор $M_1 M_2$, он имеет координаты (x_2-x_1,y_2-y_1) .

Каноническое уравнение прямой a, проходящей через две заданные точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$, имеет вид $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ (или $\frac{x-x_2}{x_2-x_1}=\frac{y-y_2}{y_2-y_1}$). Параметрические уравнения прямой на плоскости, проходящей через

две точки
$$M_1(x_1,y_1)$$
 и $M_2(x_2,y_2)$ имеют вид
$$\begin{cases} x=x_1+(x_2-x_1)\cdot\lambda\\y=y_1+(y_2-y_1)\cdot\lambda \end{cases}$$
 или

$$\begin{cases} x = x_2 + (x_2 - x_1) \cdot \lambda \\ y = y_2 + (y_2 - y_1) \cdot \lambda \end{cases}$$

Угловой коэффициент прямой

Уравнение прямой, разрешенной относительно y, называется уравнением с угловым коэффициентом: y = kx + b.

Здесь угловой коэффициент $k = \operatorname{tg}(\phi)$, где ϕ - угол наклона прямой к оси Ox, а параметр b (равен величине отрезка OB, отсекаемого прямой от оси Oy) сдвиг прямой по оси Oy.

Уравнение прямой, проходящей через данную точку $M(x_0, y_0)$ и имеющей коэффициент k, находится по формуле: $y - y_0 = k(x - x_0)$. Если эта прямая параллельна оси Oy, то ее уравнение записывается в виде: $x = x_0$.

Уравнение прямой, проходящей через данную точку параллельно данному вектору

Пусть прямая проходит через точку $M_0(x_0, y_0)$ параллельно вектору $\vec{a} = (l, m)$.

Точка M(x,y) лежит на прямой тогда и только тогда, когда векторы $\vec{a}=(l,m)$ и $\vec{M_0M}=(x-x_0,y-y_0)$ коллинеарны. Векторы $\vec{a}=(l,m)$ и $\vec{M_0M}=(x-x_0,y-y_0)$ коллинеарны тогда и только тогда, когда их координаты пропорциональны, то есть

$$\frac{x - x_0}{l} = \frac{y - y_0}{m}.\tag{6}$$

Полученная система уравнений задает искомую прямую и называется каноническими уравнениями прямой на плоскости.

Уравнения 6 представим в виде $\frac{x-x_0}{l}=\frac{y-y_0}{m}=t$, где t принимает любые значения $-\infty < t < \infty$.

Следовательно, можем записать
$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \end{cases}$$
, где $-\infty < t < \infty$.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Пусть дана некоторая точка M_0 и вектор \vec{n} . Проведем через точку M_0 прямую l перпендикулярно вектору \vec{n} .

Пусть M - произвольная точка. Точка M лежит на прямой l в том и только в том случае, когда вектор $\vec{M_0}M$ перпендикулярен вектору \vec{n} , а

для этого необходимо и достаточно, чтобы скалярное произведение векторов \vec{n} и $\vec{M_0M}$ равнялось нулю:

$$\vec{n} \cdot \vec{M_0 M} = 0. \tag{7}$$

Чтобы выразить последнее равенство в координатах, введем прямоугольную декартову систему координат. Пусть точки M_0 и M имеют координаты (x_0, y_0) и (x, y). Тогда: $M_0 M = (x - x_0, y - y_0)$. Обозначим координаты нормального вектора \vec{n} через (A, B). Теперь равенство 7 можно записать так:

$$A(x - x_0) + B(y - y_0) = 0. (8)$$

Уравнение 8 есть уравнение прямой l, проходящей через данную точку $M_0(x_0, y_0)$ перпендикулярно данному вектору $\vec{n} = (A, B)$.

Общее уравнение прямой на плоскости

Теорема. Всякое невырожденное уравнение первой степени вида Ax + By + C = 0 ($A^2 + B^2 \neq 0$) представляет собой уравнение некоторой прямой на плоскости Oxy.

Доказательство.

- 1. Пусть сначала $B \neq 0$. Тогда уравнение выше можно представить в виде: $y = -\frac{A}{B}x \frac{C}{B}$. Сравнивая это с уравнением y = kx + b, мы получим, что это есть уравнение прямой с угловым коэффициентом $k = -\frac{A}{B}$ и начальной ординатой $b = -\frac{C}{B}$.
- 2. Пусть теперь B=0; тогда $A\neq 0$. Имеем Ax+C=0 и $x=-\frac{C}{A}$. Полученное уравнение представляет собой уравнение прямой параллельной оси Oy и отсекающей на оси Ox отрезок $a=-\frac{C}{A}$.

Вычисление угла между прямыми

Рассмотрим две прямые (не параллельные оси Oy), заданные их уравнениями с угловыми коэффициентами: y = kx + b, где $k = \operatorname{tg}(\phi)$ и y = k'x + b', где $k' = \operatorname{tg}(\phi')$. Требуется определить угол θ между ними. Точнее, под углом θ мы будем понимать наименьший угол, отсчитываемый против хода часовой стрелки, на который вторая прямая повернута относительно первой ($0 \le \theta \le \pi$). Этот угол θ равен углу ACB треугольника ABC. Далее, из элементарной геометрии известно, что внешний

угол треугольника равен сумме внутренних, с ним не смежных. Поэтому $\phi' = \phi + \theta$, или $\theta = \phi' - \phi$. Отсюда на основании известной формулы тригонометрии получаем: $\operatorname{tg}(\theta) = \operatorname{tg}(\phi' - \phi) = \frac{\operatorname{tg}(\phi') - \operatorname{tg}(\phi)}{1 + \operatorname{tg}(\phi) \cdot \operatorname{tg}(\phi')}$. Заменяя $\operatorname{tg}(\phi)$ и $\operatorname{tg}(\phi')$ соответственно на k и k', окончательно получаем: $\operatorname{tg}(\theta) = \frac{k' - k}{1 + k \cdot k'}$. Эта формула дает выражение тангенса угла между двумя прямыми через угловые коэффициенты этих прямых.

Условие параллельности и перпендикулярности двух прямых

Если прямые параллельны, то $\phi' = \phi$ и, следовательно: k = k'.

Обратно: если выполнено условие k=k', то, учитывая, что ϕ' и ϕ заключаются в пределах от 0 до π , получаем: $\phi'=\phi$, и, следовательно, рассматриваемые прямые или параллельны, или сливаются.

Прямые на плоскости параллельны тогда и только тогда, когда их угловые коэффициенты равны между собой.

Если прямые перпендикулярны, то $\theta = \frac{\pi}{2}$ и, следовательно: $\cot(\theta) = \frac{1}{\lg(\theta)} = \frac{1+k\cdot k'}{k'-k} = 0$. Отсюда 1+kk'=0 и $k'=-\frac{1}{k}$. Справедливо и обратное утверждение.

Две прямые на плоскости перпендикулярны тогда и только тогда, когда их угловые коэффициенты обратны по величине и противоположны по знаку.

Вычисление расстояния от данной точки до данной прямой

Если мы определим координаты (x_2,y_2) точки H_1 , то искомое расстояние $|M_1H_1|$ мы сможем вычислить, используя формулу для нахождения расстояния от точки M_1 до точки H_1 по их координатам: $|M_1H_1|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$, где (x_2,y_2) координаты точки H_1 , а (x_1,y_1) - координаты точки M_1 . Или: $d=\frac{|Ax_1+By_1+C|}{\sqrt{A^2+B^2}}$, где A и B - коэффициенты из Ax+By+C=0 - обобщенного уравнения прямой.