1 Passeggiata al lago

Un laghetto di montagna, di forma approssimativamente circolare, ha una superficie di $2.5\,\mathrm{km}^2$. Quanto tempo ci vuole (in secondi) per fare una passeggiata intorno al lago, camminando lentamente a una velocità media di $1.8\,\mathrm{km/h?}$

2 Superstrada verticale

Se un automobile viaggiasse verticalmente alla velocità di $100\,\mathrm{km/h}$, quanto tempo ci metterebbe per uscire dall'atmosfera partendo da terra (si consideri come confine tra l'atmosfera terrestre e lo spazio esterno la linea di Kármán, posta a $100\,\mathrm{km}$)? Se l'automobile in questione pesasse $740\,\mathrm{kg}$, quanto lavoro dovrebbe essere svolto dal motore per raggiungere lo spazio (si trascuri l'attrito dell'aria e si assuma che l'accelerazione gravitazionale sia costante lungo l'intero tragitto). [$1\,\mathrm{h},725\,\mathrm{MJ}$]

3 Space Shuttle

Lo space shuttle della NASA raggiunge lo spazio (linea di Kármán) in $2 \min$ e 30 s. Qual è la velocità dello shuttle al termine del tragitto in km/h? Valutare l'accelerazione subita dai piloti durante il lancio [4800 km/h]

4 Stazione Spaziale Internazionale

La stazione spaziale internazionale orbita ad un'altitudine di circa $400\,\mathrm{km}$. Determinare la velocità che permetta alla stazione di percorrere un moto circolare uniforme attorno alla terra senza cadere. Si considerino le seguenti costanti $GM = 3.90 \cdot 10^{14}\,\mathrm{m}^3/\mathrm{s}^2$, e raggio terrestre $r = 6373\,\mathrm{km}$. [27600 km/h]

5 Pallina da tennis

Una pallina da tennis viene lanciata orizzontalmente all'altezza $H=2.4\,\mathrm{m}$ ad una velocità di $v_0=30\,\mathrm{m/s}$. La rete si trova a $d=12\,\mathrm{m}$ di distanza, ed è alta $h=90\,\mathrm{cm}$. La pallina riesce a superare la rete? A quale distanza dal giocatore cade?

6 Sorpasso in autostrada

Un auto viaggia in autostrada alla velocità di $130\,\mathrm{km/h}$ e vuole superare un autocarro che si muove alla velocità di $90\,\mathrm{km/h}$. Supponendo che la distanza iniziale tra i due è di $30\,\mathrm{m}$, la macchina riuscirà a superare l'autocarro? Se si, dopo quanto tempo avverrà, assumendo che le velocità rimangano costanti? [2.7 s]

7 Scontro fra carrelli

Due carrelli di massa $m_1 = 150 \,\mathrm{kg}$ e $m_2 = 350 \,\mathrm{kg}$ viaggiano su un binario uno contro l'altro con velocita $v_1 = 6 \,\mathrm{m/s}$ e $v_2 = 4 \,\mathrm{m/s}$, fino a scontrarsi. Dopo l'urto, restano attaccati ma continuano a muoversi. Determinare la velocità (modulo e verso) del sistema dei due carrelli dopo l'urto. [Verso di v_2 , $v = -1 \,\mathrm{m}$]

8 Energia di un proiettile

Un proiettile di massa $2.40 \,\mathrm{kg}$ viene sparato da una quota di $125 \,\mathrm{m}$ sopra il suolo con velocità iniziale di $150 \,\mathrm{m/s}$. Ignorando la resistenza dell'aria, calcolare: (a) l'energia cinetica del proiettile al momento dello sparo; (b) l'energia potenziale; (c) la velocità del proiettile nel momento del suo impatto a terra.

 $[2.7 \cdot 10^4 \,\mathrm{J}, 2.9 \cdot 10^3 \,\mathrm{J}, 157.8 \,\mathrm{m/s}]$

9 Energia di un corpo in caduta

Un corpo è lasciato cadere da $80\,\mathrm{m}$ di altezza. Calcolare il rapporto tra la sua energia potenziale e quella cinetica quando ha percorso $25\,\mathrm{m}$.

10 Compressione di una molla

Un blocco di massa $2\,\mathrm{kg}$, in moto su un piano orizzontale senza attrito con velocità iniziale di $1.2\,\mathrm{m/s}$, urta contro una molla di massa trascurabile e costante elastica $k=50\,\mathrm{N/m}$. Calcolare la massima compressione della molla dopo l'urto.

11 Aste in rotazione

Una massa di $300\,\mathrm{g}$ attaccata ad un filo lungo $1.5\,\mathrm{m}$ viene posta in rotazione lungo una circonferenza orizzontale ad una velocit'a di $6\,\mathrm{m/s}$. Calcolare l'accelerazione centripeta della massa, e la tensione del filo.

 $[24 \,\mathrm{m/s^2}, 7.2 \,\mathrm{mN}]$