Introdução às EDO – BCN 0405 – 2° quad. 2025 – Prof. Vinicius Cifú Lopes Segunda Prova – **Versão Y** – 19 ago. 2025

Nome completo legível

Número RA

Resoluçõe e pontuaçõe

(1) Resolva cada item, apresentando apenas as respostas finais. O primeiro item está resolvido como exemplo.

Ex.: Resolva a equação y'' - 5y' + 6y = 0.

$$y = C_1 e^{2x} + C_2 e^{3x}$$

(a) Resolva a equação y" + 4y' + (7y) ≠ 0. (1pto) > aviso em sola

(b) Determine a solução de y'' + 2xy' - 4y = 0 da forma $x^2 + Ax + B$. (1pto)

$$y = x^2 + \frac{1}{2}$$

(c) Determine os equilíbrios de $\begin{cases} x' = 2xy + 5x \\ y' = 3y - 7xy \end{cases}$ (não os classifique). (1pto)

$$(0,0)$$
 $\in (\frac{3}{7},-\frac{5}{2})$

(d) Determine ω para que uma força externa $\cos \omega t$ cause ressonância em um sistema massa-mola horizontal não amortecido com massa λ e constante elástica ρ . (1pto)

$$\omega = \sqrt{P/\lambda}$$

Coloubs: (a) $P(t) = t^2 + 4t + 7 \Rightarrow raizes - 2 \pm \sqrt{3}i$. (b) $y = x^2 + Ax + B \Rightarrow y' = 2x + A \Rightarrow y'' = 2 \Rightarrow 2 + 2x(2x + A) - 4(x^2 + Ax + B) = 0 \Rightarrow 0x^2 - 2Ax + 4(2 - 4B) = 0 \Rightarrow A = 0 e B = 1/2$. (c) $\begin{cases} x(2y + 5) = 0 \\ y(3 - 7x) = 0 \end{cases}$ $\begin{cases} x = 0 \text{ on } y = -5/2 \\ y = 0 \text{ on } x - 3/7 \end{cases}$

(d)
$$\lambda x'' + px = \cos \omega t \Rightarrow P(u) = \lambda u^2 + p \Rightarrow roughts to p/\lambda' i \Rights \times \lambda_k = \lambda \cos (\bar{W}_k t - \theta)$$

(2) Resolva o PVI $x^2y'' - 6xy' + 10y = x^6$, y(1) = 1, y'(1) = 3 (atenção: equação de Euler e método de Lagrange da variação das constantes). (3pts)

Euler:
$$P(t) = 1t^2 + (-6-1)t + 10 \Rightarrow radzes \ 2e5 \Rightarrow y_1 = x^2 e y_2 = x^5$$
 (1pto)
Lagrange: $W = \begin{vmatrix} x^2 & x^5 \\ 2x & 5x^4 \end{vmatrix} = 3x^6 \Rightarrow C_1 = -\left(\frac{y_2 R}{pW} dx = -\left(\frac{x^5 \cdot x^6}{x^2 \cdot 3x^6} dx\right)\right)$

$$= -\left(\frac{x^3}{3} dx = -\frac{x^4}{12} e C_2 = \left(\frac{y_1 R}{pW} dx = \left(\frac{x^2 \cdot x^6}{x^2 \cdot 3x^6} dx\right)\right)\right)$$

$$\Rightarrow y_1 = C_1 y_1 + C_2 y_2 = -\frac{x^4}{12} \cdot x^2 + \frac{x}{3} \cdot x^5 = \frac{x^6}{4} \Rightarrow y_1 = D_1 x^2 + D_2 x^5 + \frac{x^6}{4}$$
 (1pto)

$$y(1) = 1 \Rightarrow D_1 + D_2 + \frac{1}{4} = 1 e y'(1) = 3 \text{ con } y' = 2D_1 x + 5D_2 x'' + \frac{3x^5}{2}$$

$$\Rightarrow 2D_1 + 5D_2 + \frac{3}{2} = 3 \Rightarrow \begin{cases} D_1 + D_2 = 3/4 \\ 2D_1 + 5D_2 = 3/2 \end{cases} \Rightarrow D_1 = 3/4 e D_2 = 0 \Rightarrow y = 0$$

$$= \frac{3}{4}x^2 + \frac{x^6}{4}$$
 (1pto)

(3) Resolva o sistema $\begin{cases} x' = -3x + y \\ y' = -2x - y \end{cases}$ e classifique seu equilíbrio na origem. (3pts)

$$y=x^{1}+3x$$
 (1^{2} eq.) $\Rightarrow y^{1}=x^{11}+3x^{1} \Rightarrow x^{11}+3x^{1}=-2x-(x^{1}+3x)$ (2^{2} eq.)
 $\Rightarrow x^{11}+4x^{1}+5x=0 \Rightarrow P(u)=u^{2}+4u+5 \Rightarrow row zes-2ti \Rightarrow$
 $\Rightarrow x=C_{1}e^{-2t}\cos t+C_{2}e^{-2t} sent$ ($1/2$)
 $\Rightarrow y=x^{1}+3x=C_{1}e^{-2t} sent+C_{2}e^{-2t} sent+C_{2}e^{-2t}(-2) sent+$
 $+(2e^{-2t}\cos t+3C_{1}e^{-2t}\cos t+3C_{2}e^{-2t} sent=(C_{1}+C_{2})e^{-2t}\cos t+$
 $+(C_{2}-C_{1})e^{-2t} sent$ ($1/2$)

Roiges com - 2 LO e i +0 - espiral atratore (Loto)