

Engenharia de Software Computacional thinking with Python

Prof. Dr. Francisco Elânio

Agenda da aula

- Conceitos sobre algoritmos: fluxograma e pseudocódigo
- Código pensando em Python
- Atividade em sala de aula

Conceitos sobre algoritmos, fluxogramas e pseudocódigo

Conceito de Algoritmos

Algoritmo é uma sequência de passos que visa atingir um objetivo bem definido (FORBELLONE, 1999).

Algoritmo é uma descrição de uma sequência de passos que deve ser seguida para realização de uma tarefa (ASCENCIO, 1999).

Algoritmo é uma sequência finita de instruções ou operações cuja execução, em tempo finito, resolve um problema computacional, qualquer que seja sua instância (SALVETTI, 1999).

Conceito de Algoritmos

Algoritmos podem ser apresentados por fluxogramas e pseudocódigos.

Pseudocódigo

- 1. Ler a primeira nota do aluno (N1)
- 2. Ler a segunda nota do aluno (N2)
- 3. Ler a terceira nota do aluno (N3)
- 4. Calcular a média das notas: media = (N1 + N2 + N3) / 3
- 5. Se media > 7 então
 - 6. Escrever "Aluno aprovado"

Senão

- 7. Escrever "Aluno reprovado"
- 8. Fim

Conceito Pseudocódigo

É uma forma genérica de escrever um algoritmo (linguagem simples) sem necessidade de conhecer qualquer linguagem de programação.

Média aluno

```
Início
  Ler a primeira nota do aluno (N1)
  Ler a segunda nota do aluno (N2)
 Ler a terceira nota do aluno (N3)
 Calcular a média das notas: media =
(N1 + N2 + N3)/3
 Se media > 7 então
      Escreva "Aluno aprovado"
  Senão
     Escreva "Aluno reprovado"
Fim
```

Maior valor inteiro

```
início
   Digite um número inteiro para A
   Leia (A)
   Digite um número inteiro para B
   Leia (B)
   Se A > B
      Escreva ("A é maior que B")
    Senão
      Escreva ("B é maior que A")
Fim
```

Conceito Pseudocódigo

É uma forma genérica de escrever um algoritmo (linguagem simples) sem necessidade de conhecer qualquer linguagem de programação.

Área Círculo

```
Início
real: AREA, RAIO
escreva ("Digite o raio do círculo em
centímetros: ")
leia (RAIO)
      AREA ← 3.1416 * (RAIO * RAIO)
\{\pi = 3.1416, aproximado\}
escreva ("Área = ", AREA)
se AREA < 5
então escreva ("Área pequena")
Fim
```

Conceito Fluxograma

É um diagrama que descreve um processo, sistema ou algoritmo de computador. Utiliza alguns símbolos para representar início, entrada e saída, decisão, etc.

São utilizados para documentar, estudar, planejar, melhorar e comunicar processos complexos por meio de diagramas.

Simbologia - Fluxograma

Indica o início ou fim do processo

Indica um ponto de tomada de decisão

Indica cada atividade que precisa ser executada

Indica um atraso no processo

Indica um subprocesso que foi pré-definido

Indica que o fluxograma continua a partir desse ponto

Indica os documentos utilizados no processo

Indica a direção do fluxo

Fluxograma – Média aluno

Código pensando em Python Média notas

```
nota1 = float(input("Digite a primeira nota: "))
nota2 = float(input("Digite a segunda nota: "))
nota3 = float(input("Digite a terceira nota: "))

media = (nota1 + nota2 + nota3) / 3
print("A média das notas é:", media)

Variável nota1
Variável nota2
Variável média
Imprimir o valor da variável média
```

Resultado do algoritmo no VSCode Média notas

Fluxograma – Comparação entre A e B

Início do fluxograma Início Ler valores de A e B A, B Sim

A é maior

que B

A > B

B é maior que A

Fim

Não

Processo de tomada de decisão: verificação da condição entre A e B

Retorna valor B, pois é maior que A

Retorna valor A, pois é maior que B

Fim do algoritmo

Código pensando em Python Comparação entre A e B

```
A = float(input("Digite o valor de A: "))
B = float(input("Digite o valor de B: "))

if A > B:
    print("A é maior do que B")

else:
    print("B é maior do que A")

Condição Se
    Retorna A caso A seja maior que B

Condição caso a condição do if seja falso
Retorna B caso A seja menor que B
```

Resultado do algoritmo no VSCode Comparação entre A e B

```
A = float(input("Digite o valor de A: "))

B = float(input("Digite o valor de B: "))

if A > B:
    print("A é maior do que B")

else:
    print("B é maior do que A")

5.3s

B é maior do que A
```

Fluxograma – Área de um círculo

Início do fluxograma

Entre com valor do raio

Calcula área com base no valor de R e pi

Apresenta/retorna o valor da área

Fim do algoritmo

Código pensando em Python Área de um círculo

```
raio = float(input("Digite o raio do círculo: "))

area = 3.1415 * raio ** 2

Print("A área do círculo é:", area)

Variável raio

Variável raio

Retorna área do círculo
```

Resultado do algoritmo no VSCode Área de um círculo

```
raio = float(input("Digite o raio do círculo: "))
area = 3.1415 * raio ** 2

print("A área do círculo é:", area)

14] 
A área do círculo é: 78.53750000000001
```


Fluxograma Área de terrenos

Código pensando em Python Área de terrenos

```
Loop infinito
while True:
                                                                                 Bloco de tratamento de exceção
  try:
                                                                                 Exibe mensagem para usuário
    print("Digite o comprimento do terreno:")
                                                                                 Lê a entrada comprimento
    COMP = float(input())
                                                                                 Exibe mensagem para usuário
    print("Digite a largura:")
                                                                                 Lê a entrada comprimento
    LARG = float(input())
                                                                                 Calcula área
    AREA = COMP * LARG
                                                                                 Apresenta valor da área
    print("Área =", AREA)
                                                                                 Deseja calcular nova área?
    continuar = input("Deseja continuar? (s/n): ").lower()
                                                                                 Se sim, continue, senão, fim.
    if continuar != "s":
      break
                                                                                 Este bloco será executado durante a
  except ValueError:
                                                                                 conversão das entradas para números
    print("Entrada inválida. Certifique-se de inserir valores
                                                                                 float
numéricos.")
```

Resultado do algoritmo no VSCode Área de terrenos

```
while True:
       try:
           print("Digite o comprimento do terreno:")
           COMP = float(input())
           print("Digite a largura do terreno:")
           LARG = float(input())
           AREA = COMP * LARG
           print("Área =", AREA)
           continuar = input("Deseja continuar? (s/n): ").lower()
           if continuar != "s":
               break
       except ValueError:
           print("Entrada inválida. Certifique-se de inserir valores numéricos.")

√ 14.7s

Digite o comprimento do terreno:
Digite a largura do terreno:
Área = 10.0
Digite o comprimento do terreno:
Digite a largura do terreno:
Área = 6.0
```

Atividade em sala de aula

Criar algoritmos para cinco problemas

Apresentar fluxograma e pseudocódigo

1. Ler o sexo de uma pessoa (M, F) e imprimir uma mensagem informando se "É homem" ou se "É mulher".

2. Crie um algoritmo para calcular a energia em joules utilizando a equação da teoria da relatividade de Albert Einstein.

 $E = m \times c$, em que:

E é energia (J) m é massa (kg) c é velocidade da luz - 300000 km/h

3. Agora crie um algoritmo que imprima a mensagem criança, adolescente, adulto-jovem, meia-idade ou idoso de acordo com as seguintes faixas de idade:

Criança - nascimento até os 11 anos de idade Adolescência - entre 12 e 20 anos Adulto-jovem - entre 21 e 40 anos Meia-idade - entre 40 e 65 anos Idoso - acima dos 65 anos de idade 4. Uma determinada faculdade utiliza quatro atividades para avaliar o desempenho do seu aluno. No entanto, para verificar o seu desempenho no semestre utiliza apenas as três maiores notas. Crie um algoritmo para calcular a média deste aluno.

5. Crie um algoritmo para calcular a potência em watts de um motor em corrente contínua de acordo com as equações abaixo. Repare que o usuário pode inserir tensão V e corrente I, ou Resistência R e Corrente I, ou Tensão V e Resistência R.

$$P = V \times I$$

 $P = R \times I \times I$
 $P = V^2 / R$

O importante é não parar de questionar (Einstein)

Referências

ASCENCIO, A. F. G, CAMPOS, E. A. V. Fundamentos da Programação de Computadores: algoritmos, Pascal, C/C++ e Java, 2ª Edição, São Paulo: Pearson 2007.

SALVETTI, Dirceu Douglas; BARBOSA, Lisbete Madson. Algoritmos. São Paulo: Pearson, 2004.