Structuri algebrice. Monoid. Grup

October 9, 2020

Fie A o mulțime nevidă. O funcție $\cdot: A \times A \to A$ se numește lege de compoziție binară pe A.

Fie o lege de compoziție "·" pe mulțimea A. Unei perechi $(x,y) \in A \times A$ îi corespunde un element notat $x \cdot y \in A$.

Definition

O mulțime A dotată cu o lege de compoziție se numește \mathbf{magm} a.

Definition

Legea de compoziție \cdot pe mulțimea A se numește:

- a) asociativă dacă $(\forall)x, y, z \in A$ are loc $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- b) **comutativă** dacă $(\forall)x, y \in A$ are loc $x \cdot y = y \cdot x$.
- c) cu element neutru dacă

$$(\exists)e \in A$$
, $(\forall)x \in A$, $x \cdot e = e \cdot x = x$.

Definition

O mulțime A dotată cu o lege de compoziție asociativă se numește **semigrup**.

O submulțime $A' \subset A$ spunem că este parte stabilă în raport cu " \cdot " dacă

$$(\forall)x,y\in A', \quad x\cdot y\in A'.$$

Propozitia

Dacă legea de compoziție "·" pe A admite element neutru, atunci acesta este unic.

Demonstrație: Fie e și e' două elemente din A cu proprietatea că $(\forall)x \in A$ are loc $x \cdot e = e \cdot x = x$ și $x \cdot e' = e' \cdot x = x$. Pentru x = e' în primul șir de egalități și x = e în al doilea, rezultă $e' = e' \cdot e = e$, deci elementul neutru este unic.

In cazul notației aditive, elementul neutru (dacă există) îl notăm 0 și îl mai numim *elementul nul /zero*. În notație multiplicativă, elementul neutru se noteză 1 și se mai numește *elementul unu/unitate*. În general, elementul neutru se notează cu e.

Definition

O mulțime A pe care s-a dat o lege de compoziție asociativă și cu element neutru se numește **monoid**.

Example

- a) Mulțimile de numere: naturale, întregi, raționale, reale, sunt monoizi în raport cu adunarea, respectiv cu înmulțirea uzuale definite pe acestea.
- b) Dată fiind o mulțime nevidă, mulțimea A^A a tuturor funcțiilor definite pe A cu valori în A este monoid în raport cu compunerea funcțiilor. Elementul neutru este aici funcția identică $\mathbf{1}_{\mathbf{A}}$.

Fie (A, \cdot) un monoid și e elementul său neutru.

Definition

Un element $x \in A$ se numește **simetrizabil** dacă există un element $x' \in A$ astfel încât

$$x \cdot x' = x' \cdot x = e$$
.

Propozitia

Fie (A, \cdot) un monoid. Dacă $x \in A$ este simetrizabil, atunci simetricul său este unic.

Demonstrație: Fie x' și x'' două elemente din monoidul (A,\cdot) cu proprietatea că

$$x \cdot x' = x' \cdot x = e$$
, $x \cdot x'' = x'' \cdot x = e$.

Înmulțind primul șir de egalități la stânga cu x'' și al doilea la dreapta cu x', obținem

$$x'' = x'' \cdot x \cdot x' = x',$$

deci simetricul unui element, dacă există, este unic.

Elementul x' din definiția anterioară se numește în general simetricul lui x. În cazul notației aditive, simetricul lui x (dacă există) se mai numește opusul lui x și se notează -x. În notație multiplicativă, simetricul lui x (dacă există) se mai numește inversul lui x si se notează x^{-1} .

Mulțimea elementelor simetrizabile ale monoidului A se notează U(A).

Example

- a) În monoidul $(\mathbb{N},+)$ singurul element simetrizabil este 0, pe când în monoizii $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, toate elementele sunt simetrizabile, opusul unui element x fiind numărul -x.
- b) În monoidul (\mathbb{N},\cdot) singurul element simetrizabil este 1, în monoidul (\mathbb{Z},\cdot) singurele elemente simetrizabile sunt -1,1, pe când în monoizii (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) , toate elementele diferite de zero sunt simetrizabile, inversul unui element nenul x fiind numărul $\frac{1}{x}$.
- c) În monoidul (A^A, \circ) elementele simetrizabile sunt funcțiile bijective, știut fiind faptul că orice funcție bijectivă este inversabilă și reciproc. Mulțimea $U(A^A)$ se notează S(A) și se numește mulțimea permutărilor mulțimii A.

Fie (A, \cdot) un monoid și n un întreg pozitiv. Notăm

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_n \in A.$$

În notație aditivă pentru un monoid (A, +), egalitatea de mai sus se scrie

$$nx = \underbrace{x + x + \dots + x}_{n}$$
.

Propozitia

- a) Dacă $x, y \in U(A)$, atunci $x \cdot y \in U(A)$ și $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$.
- b) Dacă $x \in U(A)$, atunci $x^{-1} \in U(A)$ și $(x^{-1})^{-1} = x$.
- c) Pentru orice întregi pozitivi n, m și $x \in A$, au loc relațiile:

$$e^n = e$$
, $x^n \cdot x^m = x^{n+m}$, $(x^n)^{-1} = (x^{-1})^n$, $(x^m)^n = x^{nm}$.

d) Pentru orice $x, y \in A$ astfel încât $x \cdot y = y \cdot x$, are loc egalitatea

$$(x \cdot y)^n = x^n \cdot y^n.$$

Fie (A, \cdot) , (B, *) monoizi, cu elementele neutre e_A , respectiv e_B .

Definition

O funcție $f: A \rightarrow B$ se numește **morfism de monoizi** dacă verifică:

$$f(x \cdot y) = f(x) * f(y), \quad (\forall) x, y \in A.$$

Observatia

În multe monografii se consideră morfism de monoizi doar acele morfisme care satisfac și condiția $f(e_A) = e_B$, așa numitele morfisme unitare de monoizi.

Fie I o mulțime nevidă, cel mult numărabilă, numită alfabet. Elementele ei le numim simboluri. Numim cuvânt de lungime n în alfabetul I imaginea ordonată a unei funcții

$$f: \{1, 2, ..., n\} \to I, \quad \alpha = f(1)f(2)...f(n),$$

sau, altfel spus, o secvență finită, ordonată, de n elemente din 1:

$$\alpha = a_1 a_2 ... a_n, \quad a_i \in I, \quad i = \overline{1, n},$$

unde $n \in \mathbb{N}^*$. Am notat $a_i = f(i)$ simbolul de pe poziția i în cuvântul α . Numim lungimea cuvântului α numărul simbolurilor sale. Dacă $\alpha = a_1 a_2 ... a_n$, atunci notăm lungimea sa $l(\alpha) = n$.

Din definiția cuvintelor ca funcții, este evident că două cuvinte $\alpha = a_1 a_2 ... a_n$ și $\beta = b_1 b_2 ... b_m$ sunt egale dacă n = m (au aceeași lungime) și $a_i = b_i$, pentru orice $i = \overline{1, n}$.

Fie L(I) mulţimea tuturor cuvintelor cu simboluri din I. Facem convenţia că în L(I) există şi cuvântul e care nu are niciun simbol, adică I(e)=0.

Pe L(I) definim operația de concatenare (juxtapunere / alăturare), care acționează astfel:

$$(\forall)\alpha = a_1 a_2 ... a_n, \quad \beta = b_1 b_2 ... b_m, \quad \alpha\beta = a_1 a_2 ... a_n b_1 b_2 ... b_m.$$

Concatenarea este o lege de compoziție pe L(I), asociativă și care admite elementul neutru e. Prin urmare $(L(I), \cdot)$ este un monoid, numit monoidul liber generat de I.

Funcția lungime $I: L(I) \to \mathbb{N}$, unde $I(\alpha)$ este lungimea cuvântului α , este morfism unitar surjectiv de monoizi.

Fie $\alpha \in L(I)$. Notăm

$$\alpha^0 = e$$
, $\alpha^2 = \alpha \alpha$, $\alpha^n = \alpha \alpha^{n-1}$, $(\forall) n \in \mathbb{N}$.

Dacă $I = \{a\}$, atunci $L(I) = \{e, a, a^2, ..., a^n, ...\}$ este un monoid comutativ. Mai mult, funcția

$$f: \mathbb{N} \to L(I), \quad f(n) = a^n, \quad (\forall) n \in \mathbb{N}$$

, este bijectivă, fiind inversa funcției lungime definită pe acest monoid.

Dacă $|I| \geq 2$, atunci $(L(I), \cdot)$ este monoid necomutativ. Într-adevăr, dacă există două simboluri diferite $a \neq b$ în I, atunci cuvintele ab și ba sunt diferite.

Deoarece egalitatea a două cuvinte revine la identificarea simbolurilor, putem afirma că monoidul liber generat de o mulțime este un monoid cu simplificare la stânga, adică

$$\alpha\beta = \alpha\gamma \Leftrightarrow \beta = \gamma.$$

Cuvântul α se numește prefix al cuvântului $\alpha\beta$. Regula de mai sus spune că dacă două cuvinte au același prefix, atunci sunt egale dacă stergând prefixul de la ambele, cuvintele rămase sunt egale.

Următoarele afirmații reprezintă așa-numitele *Proprietăți aritmetice* ale monoidului liber generat de o mulțime:

Propozitia

Fie I o mulțime nevidă și $(L(I), \cdot)$ monoidul liber generat de I. Dacă pentru cuvintele $p, q \in L(I)$ există un număr natural nenul n astfel încât $p^n = q^n$, atunci p = q.

Demonstrație: Pentru n=1 este evident. Pentru $n\geq 2$, din egalitatea $l(p^n)=l(q^n)$ rezultă l(p)=l(q). Fie $p=a_1a_2...a_k$ și $q=b_1b_2...b_k$. Egalitatea din ipoteză se scrie

$$a_1a_2...a_kp^{n-1}=b_1b_2...b_kq^{n-1}.$$

Identificând simbolurile, rezultă $a_i = b_i$, $(\forall) i = \overline{1, k}$, deci p = q.

Propozitia

Fie p și q două cuvinte peste alfabetul I, cu proprietarea pq = qp. Atunci există $r \in L(I)$ și $n, m \in \mathbb{N}$ astfel încât $p = r^n$, $q = r^m$.

Demonstrație: Vom face demonstrația prin inducție matematică, după lungimea cuvântului pq.

Dacă l(pq) = 0, atunci p = e și q = e, iar concluzia este adevărată. Presupunem că pentru orice cuvinte p, q cu l(pq) < n și pq = qp, există un cuvânt astfel încât p și q sunt puteri ale sale.

Fie acum cuvintele p,q cu l(pq)=n și pq=qp. Fără a restrânge generalitatea, putem presupune l(p)< l(q). Egalitatea pq=qp spune că p este prefix al lui q, deci există $p_1\in L(I)$ astfel încât $q=pp_1$. Simplificând la dreapta cu p relația $ppp_1=pp_1p$, obținem $pp_1=p_1p$. Mai mult, are loc și $l(pp_1)< n$. Aplicând ipoteza de inducție, rezultă că există $r\in L(I)$ și numerele naturale

m, n astfel încât $p = r^n$, $p_1 = r^m$. Rezultă $q = r^{n+m}$.

Propozitia

Dacă p, q, r sunt cuvinte peste alfabetul I pentru care există un număr natural nenul k astfel încât $pq^k = r^k p$, atunci pentru orice număr natural n are loc egalitatea $pq^n = r^n p$.

Exemplu:

Fie I un alfabet și $p, q, r \in L(I)$ astfel încât $pq^2 = r^2p$, I(p) = 8, I(r) = 3. Atunci pq = rp.

Într-adevăr, din egalitatea de cuvinte de mai sus rezultă mai întâi că $l(pq^2) = l(r^2p)$, deci l(q) = l(r), apoi, prin inducție matematică, $pq^{2m} = r^{2m}p$, pentru orice număr natural m.

Evaluăm apoi egalitatea $pq^2 = r^2p$ din punct de vedere al lungimilor: I(p) = 8 este mai mic decât $I(r^2) = 6$. Considerăm egalitatea $pq^4 = r^4p$, de unde, din $I(p) < I(r^4)$, rezultă că p este un prefix de lungime 8 al cuvântului r^4 . Adică p este format din primele 8 simboluri din cele 12 ale lui r^4 . Deoarece I(r) = 3 putem scrie $r = a_1 a_2 a_3$ și obtinem $p = r^2 a_1 a_2$.

Înlocuind expresia obținută pentru p în relația $pq^4 = rp$ putem calcula:

$$pq = r^2 a_1 a_2 a_3 a_1 a_2 = r^3 a_1 a_2 = rp.$$

Demonstrație: Pentru n=0, este adevărat. Dacă demonstrăm pentru n=1, adică pq=rp, atunci prin inducție matematică se demonstrează pentru orice n. Într-adevăr, presupunând că $pq^i=r^ip$, concatenăm la dreapta cu q, deci $pq^{i+1}=r^ipq$, iar din pq=rp rezultă $pq^{i+1}=r^irp$, adică $pq^{i+1}=r^{i+1}p$. Conform principiului inducției matematice $pq^n=r^np$ pentru orice număr natural n.

A rămas să demonstrăm pq=rp. Din ipoteză, există $k\in\mathbb{N}^*$ astfel încât $pq^k=r^kp$. Dacă k=1, atunci am terminat. Dacă $k\geq 2$, atunci, prin inducție matematică rezultă $pq^{km}=r^{km}p$, pentru orice $m\in\mathbb{N}^*$.

Egalitatea cuvintelor $pq^k = r^k p$ conduce la faptul că au aceeași lungime și aceleași simboluri, în aceeași ordine. Primul fapt $l(pq^k) = l(r^k p)$ implică l(p) + kl(q) = kl(r) + l(p), deci cuvintele q și r au aceeași lungime. Pentru a folosi identitatea simbolurilor, vom compara lungimea lui p cu lungimea lui r^k .

Dacă $l(p) \le l(r^k)$, atunci p este prefix de lungime l(p) al cuvântului Dacă $I(p) < I(r^k)$, atunci există un număr natural m pentru care $I(p) < I(r^{mk})$. Îl alegem pe cel mai mic m cu această proprietate. Mai exact, acest număr este $\left\lceil \frac{l(p)}{k l(r)} \right\rceil + 1$. Considerăm egalitatea $pq^{km} = r^{km}p$, de unde rezultă că p este prefix al cuvântului r^{mk} . adică este de forma $p = r^s r_1$, unde am scris $r = r_1 r_2$ pentru a exprima acel prefix al cuvântului r care intră în componența lui p, după eventuale s expresii întregi ale lui r. Avem $s = \left\lceil \frac{l(p)}{l(r)} \right\rceil$, iar r_1 este prefixul de lungime I(p) - sI(r) al lui r.

Revenind în egalitatea $pq^{km} = r^{km}p$ cu forma $p = r^sr_1$, obținem succesiv

$$r^{s}r_{1}q^{km} = r^{mk+s}r_{1} \Rightarrow r_{1}q^{km} = r^{km}r_{1} \Rightarrow r_{1}q^{km} = r_{1}r_{2}r^{km-1}r_{1} \Rightarrow$$

$$q^{km} = r_{2}(r_{1}r_{2})^{km-1}r_{1} \Rightarrow q^{km} = (r_{2}r_{1})^{km}.$$

Folosind Propoziția 3.1, rezultă $q = r_2 r_1$.

Calculăm $pq = r^s r_1 r_2 r_1 = r^{s+1} r_1$ și $rp = rr^s r_1 = r^{s+1} r_1$, de unde obținem pq = rp, ceea ce trebuia demonstrat.