1 13.1: Vectors and the Geometry of Space

Definition.

- Vectors
 - Have a direction and magnitude,
 - vector \overrightarrow{PQ} has a tail at P and a head at Q,
 - Can be denoted as \mathbf{u} or \vec{u} ,
 - Equal vectors have the same direction and magnitude (not necessarily the same position)

- Scalars are quantities with magnitude but no direction (e.g. mass, temperature, price, time, etc.)
- **Zero vector**, denoted **0** or $\vec{0}$, has length 0 and no direction

Scalar-vector multiplication:

- Denoted $c\mathbf{v}$ or $c\vec{v}$,
- length of vector multiplied by |c|,
- $c\mathbf{v}$ has the same direction as \mathbf{v} if c > 0, and has the opposite direction as \mathbf{v} if c < 0, (what if c = 0?)
- \mathbf{u} and \mathbf{v} are parallel if $\mathbf{u} = c\mathbf{v}$. (what vectors are parallel to $\mathbf{0}$?)

Vector Addition and Subtraction:

Given two vectors \mathbf{u} and \mathbf{v} , their sum, $\mathbf{u} + \mathbf{v}$, can be represented by the parallelogram (triangle) rule: place the tail of \mathbf{v} at the head of \mathbf{u}

The difference, denoted $\mathbf{u} - \mathbf{v}$, is the sum of $\mathbf{u} + (-\mathbf{v})$:

Vector Components:

A vector \mathbf{v} whose tail is at the origin (0,0) and head is at (v_1, v_2) is a **position vector** (in **standard position**) and is denoted $\langle v_1, v_2 \rangle$. The real numbers v_1 and v_2 are the x-and y-components of \mathbf{v} .

Vectors $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ are equal if and only if $u_1 = v_1$ and $u_2 = v_2$.

Magnitude:

Given points $P(x_1, y_1)$ and $Q(x_2, y_2)$, the **magnitude**, or **length**, of vector $\overrightarrow{PQ} = \langle x_2 - x_1, y_2 - y_1 \rangle$, denoted $|\overrightarrow{PQ}|$, is the distance between points P and Q.

$$|\overrightarrow{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The magnitude of position vector $\mathbf{v} = \langle v_1, v_2 \rangle$ is $|\mathbf{v}|$. (How do $|\overrightarrow{PQ}|$ and $|\overrightarrow{QP}|$ relate to each other?)

Note: The norm, denoted $\|\mathbf{u}\|$ or $\|\mathbf{u}\|_2$, is equivalent to the magnitude of a vector.

Equation of a Circle:

Definition.

A **circle** centered at (a, b) with radius r is the set of points satisfying the equation

$$(x-a)^2 + (y-b)^2 = r^2.$$

A **disk** centered at (a, b) with radius r is the set of points satisfying the inequality

$$(x-a)^2 + (y-b)^2 < r^2$$
.

Vector Operations in Terms of Components

Definition. (Vector Operations in \mathbb{R}^2)

Suppose c is a scalar, $\mathbf{u} = \langle u_1, u_2 \rangle$, and $\mathbf{v} = \langle v_1, v_2 \rangle$.

$$\mathbf{u} + \mathbf{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$$

Vector addition

$$\mathbf{u} - \mathbf{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$$

Vector subtraction

$$c\mathbf{u} = \langle cu_1, cu_2 \rangle$$

Scalar multiplication

Example. Let $\mathbf{u} = \langle 1, 2 \rangle$, $\mathbf{v} = \langle -2, 3 \rangle$, c = 2, and d = 3. Find the following:

$$\mathbf{u} + \mathbf{v}$$

 $c\mathbf{u}$

$$c\mathbf{u} + d\mathbf{v}$$

 $\mathbf{u} - c\mathbf{v}$

Definition.

A unit vector is any vector with length 1.

In \mathbb{R}^2 , the **coordinate unit vectors** are $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.

Example. Let $\mathbf{u} = \langle -7, 3 \rangle$. Find two unit vectors parallel to \mathbf{u} . Find another vector parallel to \mathbf{u} with a magnitude of 2.

Properties of Vector Operations:

Suppose \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and a and c are scalars. Then the following properties hold (for vectors in any number of dimensions).

1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ Commutative property of addition

2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ Associative property of addition

3. $\mathbf{v} + \mathbf{0} = \mathbf{v}$ Additive identity

4. $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$ Additive inverse

5. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ Distributive property 1

6. $(a+c)\mathbf{v} = a\mathbf{v} + c\mathbf{v}$ Distributive property 2

7. $0\mathbf{v} = \mathbf{0}$ Multiplication by zero scalar

8. $c\mathbf{0} = \mathbf{0}$ Multiplication by zero vector

9. $1\mathbf{v} = \mathbf{v}$ Multiplicative identity

10. $a(c\mathbf{v}) = (ac)\mathbf{v}$ Associative property of scalar multiplication