Exercise 14.1

1. In $\triangle ABC$, $\overline{DE} \parallel \overline{BC}$

- i) $\overline{AD} = 1.5 \text{ cm}, \overline{BD} = 3 \text{ cm},$ $\overline{AE} = 1.3 \text{ cm} \text{ then find } \overline{CE}.$
- ii) If $\overline{AD} = 2.4 \text{ cm}$, $\overline{AE} = 3.2 \text{ cm}$, $\overline{EC} = 4.8 \text{ cm}$, find \overline{AB}

iii) If
$$\frac{\overrightarrow{AD}}{\overrightarrow{DB}} = \frac{3}{5}, \overrightarrow{AC} = 4.8 \text{ cm}, \text{ find}$$

ĀĒ

iv) If
$$\overline{AD} = 2.4 \text{ cm}$$
, $\overline{AE} = 3.2 \text{ cm}$, $\overline{DE} = 2 \text{ cm}$, $\overline{BC} = 5 \text{ cm}$, find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE}

v) If
$$\overline{AD} = 4x - 3$$
, $\overline{AE} = 8x - 7$,

 $\overline{BD} = 3x - 1$, and $\overline{CE} = 5x - 3$, find the value of x

In AABC, DE || BC

(i)
$$\frac{\text{mAD}}{\text{mBD}} = \frac{\text{mAE}}{\text{mEC}}$$
$$\frac{1.5}{3} = \frac{1.3}{\text{mEC}}$$
$$\text{mEC} = \frac{3 \times 1.3}{1.5}$$
$$= 2.6 \text{ cm}$$

(ii) In
$$\triangle ABC$$
, $\overrightarrow{DE} \parallel \overrightarrow{BC}$
 $\overrightarrow{mAB} = \overrightarrow{mAD} + \overrightarrow{mBD}$

Now
$$\frac{\text{mAD}}{\text{mDB}} = \frac{\text{mAE}}{\text{mEC}}$$
 $\frac{2.4}{\text{x}} = \frac{3.2}{4.8}$
 $x = \frac{4.8 \times 2.4}{3.2}$
 $x = \frac{48 \times 24}{10 \times 32}$
 $x = 3.6 \text{cm}$.

∴ $\frac{\text{mAB}}{\text{mAB}} = \frac{3}{5}$, $\frac{\text{mAC}}{\text{mAC}} = 4.8 \text{cm}$
In $\frac{\text{mAB}}{\text{mDB}} = \frac{3}{5}$, $\frac{\text{mAC}}{\text{mEC}} = 4.8 \text{cm}$
In $\frac{\text{mAD}}{\text{mDB}} = \frac{\text{mAE}}{\text{mEC}}$
 $\frac{\text{mAD}}{\text{mDB}} = \frac{\text{mAC} - \text{mCE}}{\text{mCE}}$
 $\frac{3}{5} = \frac{4.8 - \text{mCE$

mAE = 1.8cm

(iv)
$$\overline{\text{MAD}} = 2.4 \text{cm}$$
,
 $\overline{\text{mAE}} = 3.2 \text{ cm}$, $\overline{\text{mDE}} = 2 \text{cm}$, $\overline{\text{mBC}} = 5 \text{cm}$.
 $\overline{\text{mAB}} = ? \overline{\text{mDB}} = ? \overline{\text{mAC}} = ? \overline{\text{mCE}} = ?$

EPI AB

DEPB is a parallelogram, then

$$m\overline{PB} = mDE = 2cm$$
.

$$\overline{mCP} = 5 - 2 = 3cm$$

In
$$\triangle ABC$$
, $\overline{EP} \parallel \overline{AB}$

$$\frac{\text{mCE}}{3.2} = \frac{3}{2}$$

$$\overline{mCE} = \frac{3 \times 3.2}{2}$$

$$mCE = 3 \times 1.6 = 4.8cm$$

Now DEll BC, in ΔABC

$$\frac{\overrightarrow{mBD}}{\overrightarrow{mAD}} = \frac{\overrightarrow{mCE}}{\overrightarrow{mAE}}$$

$$\frac{\overline{\text{mBD}}}{2.4} = \frac{4.8}{3.2}$$

$$\overline{\text{BD}} = \frac{2.4 \times 4.8}{3.2} = 3.6 \text{cm}$$

$$\overline{MAB} = \overline{MAD} + \overline{MDB}$$

= 2.4 + 3.6
= 6.0 cm

$$\overrightarrow{mAC} = \overrightarrow{mAE} + \overrightarrow{mEC}$$

= 3.2 + 4.8

= 8.0 cm.

(v) If
$$\overrightarrow{AD} = 4x - 3$$
, $\overrightarrow{AE} = 8x - 7$, $\overrightarrow{BD} = 3x - 1$
and $\overrightarrow{CE} = 5x - 3$, Find the value of x

In $\triangle ABC, \overline{DE} \parallel \overline{BC}$

$$\frac{\text{mAD}}{\text{mBD}} = \frac{\text{mAE}}{\text{mCE}}$$

$$4x - 3 \quad 8x - 7$$

$$\frac{4x-3}{3x-1} = \frac{6x-7}{5x-3}$$

$$(4x-3)(5x-3) = (8x-7)(3x-1)$$

$$20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$20x^2 - 24x^2 - 27x + 29x + 9 - 7 = 0$$

$$-4x^2 + 2x + 2 = 0$$

$$2x^2 - x - 1 = 0$$

$$2x^2 - 2x + x - 1 = 0$$

$$2x(x-1)+1(x-1)=0$$

$$(x-1)(2x+1)=0$$

$$x-1=0$$
 or $2x+1=0$

$$x=1 \text{ or } 2x = -1$$

$$x=1 \text{ or } x = \frac{-1}{2}$$

But
$$x = \frac{-1}{2}$$
 not possible

So x = 1

2. If $\triangle ABC$ is an isosceles triangle, $\angle A$ is vertex angle and \overrightarrow{DE} intersects the

sides \overline{AB} and \overline{AC} as shown in the figure so that.

$$m\overline{AD}: m\overline{DB} = m\overline{AE}: m\overline{EC}$$

Prove that $\triangle ADE$ is also an isosceles triangle.

In $\triangle ABC$, $\angle A$ is vertical angle and $\overrightarrow{AB} \cong \overrightarrow{AC}$

$$\frac{mAD}{mDB} = \frac{mAE}{mEC}$$

$$\frac{mDB}{mAD} = \frac{mFC}{mAE}$$

$$\frac{mDB + mAD}{mAD} = \frac{mEC + mAE}{mAE}$$

 $\frac{mAB}{mAD} = \frac{mAC}{mAE}$

Now
$$\overline{MAB} = \overline{MAC}$$

 $\overline{MAD} = \overline{MAE}$

 Δ ADE is an isosceles triangle.

3. In an equilateral triangle ABC shown in the figure.

$$m\overline{AE}: m\overline{AC} = m\overline{AD}: m\overline{AB}$$

Find all three angles of $\triangle ADE$ and name it also.

Given: AABC is an equilateral triangle.

$$\frac{mAE}{mAC} = \frac{mAD}{mAB}$$

To Prove: Find all angles of $\triangle ADE$

Statements	Reasons
$\frac{\text{mAE}}{\text{mAC}} = \frac{\text{mAD}}{\text{mAB}}$	Given
Then DE BC ΔABC is equilateral triangle	Proved
Then $m\angle A = m\angle B = m\angle C = 60^{\circ}$ $\overline{DE} \overline{BC}$	Corresponding angle
$m \angle l = m \angle B = 60^{\circ}$	
$m\angle 2 = m\angle C = 60^{\circ}$	
$m\angle A = 60^{\circ}$	

4. Prove that the line segment drawn through the midpoint of one side of a triangle and parallel to another side bisects the third side.

is

٨

Tô Prove:

$$m\overline{AE} = m\overline{EC}$$

	Statements	Reasons
In	ΔΑΒС	
	DEHBC	Given
	$\frac{\overline{\text{mAD}}}{\overline{\text{mBD}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}} \dots (i)$	
	mBD mEC	
	$\overline{MAD} = \overline{MDB}$	Given
	$\underline{mDB} = \underline{mAE}$	
	mDB mEC	Put $mAD = mDB$ in (i)
ŀ	$1 = \frac{m\overline{AE}}{m\overline{AE}}$	
	mEC	
	$\overline{\text{mAE}} = \overline{\text{mEC}}$	

Prove that the line segment joining the mid-points of any two sides of a triangle is parallel to the third side. Given:

In $\triangle ABC$, points D, E are such that $\overline{MAD} = \overline{MDB}$

 $m\overline{AE} = m\overline{EC}$

mAD mAE mEC mDB

To Prove:

DENBC

It is possible only when point K lies on the point C.

Thus DEIIBC

Theorem

The internal bisector of an angle of a triangle divides the side opposite to it in the ratio of the lengths of the sides containing the angle.

Given: In $\triangle ABC$ internal angle bisector of $\angle A$ meets \overline{CB} at the point D.

To Prove:
$$m\overline{BD}$$
: $m\overline{DC} = m\overline{AB}$: $m\overline{AC}$

Construction:

Draw a line segment $\overline{BE} \parallel \overline{DA}$ to meet \overline{CA} produced at E.

Proof:

Statements	Reasons
$\therefore \overrightarrow{AD} \parallel \overrightarrow{EB} \text{ and } \overrightarrow{EC} \text{ intersects them,}$ $\therefore m \angle 1 = m \angle 2 \qquad \dots (i)$	Construction Corresponding angles
Again $\overline{AD} \parallel \overline{EB}$ and \overline{AB} intersects them,	
$\therefore m \angle 3 = m \angle 4 \qquad \dots (ii)$ But $m \angle 1 = m \angle 3$ $\therefore m \angle 2 = m \angle 4$ and $\overline{AB} \cong \overline{AE}$ or $\overline{AE} \cong \overline{AB}$	Alternate angles Given From (i) and (ii) In a Δ, the sides opposite to congruent angles are also congruent.
Now $\overline{AD} \parallel \overline{EB}$	Construction
$\therefore \frac{mBD}{mDC} = \frac{mEA}{mAC}$	By Theorem
or $\frac{mBD}{mDC} = \frac{mAB}{mAC}$ Thus $mBD : mDC = m\overline{AB} : \overline{AC}$	$m\overline{EA} = m\overline{AB}$ (proved)

Theorem: If two triangles are similar, then the measures of their corresponding sides are proportional.

Given: $\triangle ABC \sim \triangle DEF$

i.e., $\angle A \cong \angle D$, $\angle B \cong \angle E$, and $\angle C \cong \angle F$

To Prove:

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

Construction:

- i) Suppose that $m\overline{AB} > m\overline{DE}$
- ii) $m\overline{AB} \le m\overline{DE}$

On \overline{AB} take a point L such that $\overline{mAL} = \overline{mDE}$

On \overline{AC} take a point M such that $\overline{mAM} = \overline{mDF}$. Join L and M by the line segment LM.

Proof:

Statements	Reasons
i) In $\triangle ALM \longleftrightarrow \triangle DEF$	
$\frac{\angle A \cong \angle D}{AL \cong DE}$	Given Construction
$\overrightarrow{AM} \cong \overrightarrow{DF}$ Thus $\triangle ALM \cong \triangle DEF$ and $\angle L \cong \angle E$, $\angle M \cong \angle F$, Now $\angle E \cong \angle B$, and $\angle F \cong \angle C$	Construction S.A.S. Postulate (Corresponding angles of congruent triangles) Given
$\therefore \angle L \cong \angle B, \angle M \cong \angle C,$	Transitivity of congruence
Thus LM BC	Corresponding angles are equal.
Hence $\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$ or $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}}$ (i)	By Theorem $m\overline{AL} = m\overline{DE} \text{ and } m\overline{AM} = m\overline{DF}$ (construction)
Similarly by intercepting segments on	
\overline{BA} and \overline{BC} , we can prove that	
$\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{EF}}{m\overline{BC}} \qquad(ii)$	
Thus $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}} = \frac{m\overline{EF}}{m\overline{BC}}$	by (i) and (ii)
or $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$	by taking reciprocals
ii) If $mAB < mDE$, it can similarly be	

proved by taking intercepts on the sides of ΔDEF	
If $m\overline{AB} = m\overline{DE}$,	
then in $\triangle ABC \longleftrightarrow \triangle DEF$ $\angle A \cong \angle D$ $\angle B \cong \angle E$ and $AB \cong DE$ so $\triangle ABC \cong \triangle DEF$ Thus $\frac{mAB}{mDE} = \frac{mAC}{mDF} = \frac{mBC}{mEF} = 1$ Hence the result is true for all the cases.	Given Given $A.S.A \cong A.S.A$ $AC \cong \overline{DF}, \overline{BC} \cong \overline{EF}$