MAT02010 - Tópicos Avançados em Estatística II

Diagaramas causais: uma introdução

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2019

Atividade 1

Doença coronariana e níveis de catecolaminas

- Com base em experimentos com animais, a função de emergência da medula adrenal foi estudada.
- O sistema nervoso simpático é ativado quando um indivíduo é desafiado.
- Via o hipotálamo, o estresse psicológico estimula a medula adrenal para liberar as duas catecolaminas, epinefrina (adrenalina) e norepinefrina (noradrenalina) na corrente sanguínea.
 - Esta reação rápida de defesa prepara o corpo para a batalha.
- No entanto, nos dias atuais o sistema simpático é desafiado por ameaças de natureza social ou mental.
 - ► Elevação da pressão arterial e da frequência cardíaca e da liberação de ácidos graxos livres e glicose na corrente sanguínea numa rotina mentalmente estressante, mas sedentária vai ser prejudicial para o organismo, principalmente para o sistema cardiovascular.

Doença coronariana e níveis de catecolaminas

- ► Com este estudo de caso teremos a oportunidade de comparar a incidência de doença coronariana (CHD) em dois grupos de exposição (níveis alto e baixo de catecolaminas).
 - P1: Esta relação é causal?
 - P2: Quais as suposições necessárias para o estabelecimento de uma relação causal?
 - P3: É necessário a análise dos dados para responder as perguntas acima?

Dados

- Os dados considerados neste estudo de caso são derivados de um estudo de coorte – Evans County Heart Disease Study – realizado entre 1960 e 1969.
- ► Estes dados dizem respeito a uma coorte de 609 indivíduos do sexo masculino, brancos, com idades entre 40 e 76 anos, livres de doença coronariana e residentes no distrito de Evans, Georgia, em 1960.
- Após sete anos, toda a coorte foi reexaminada e os novos casos de doença coronariana foram identificados.
- ▶ **Nível de catecolaminas** é a variável exposição de interesse.
- ► Todas as variáveis, com exceção de CHD, foram medidas na linha de base (1960).

Variáveis

Nome da variável	Descrição da variável	Código da variável		
CHD	Ocorrência de doença coronariana	0 = não caso		
CHD	Ocorrencia de doctiça coronatiana	1=novo caso		
CAT	Nível sérico de catecolaminas	0 = baixo		
CAI	Wiver series de catecoraninas	1=alto		
SMK	Tabagismo	0 = nunca fumou		
	Tabagisitio	1=fumante		
FCG	Alterações do eletrocardiograma	0 = ECG normal $1 = qualquer$ alteração		
LCG	Alterações do eletrocardiograma			
OCC	Tipo de ocupação	0= não agricultor		
	Tipo de ocupação	1=agricultor		
MAR	Estado civil	0= não casado		
	Estado Civil	1 = casado		

Variáveis

Nome da variável	Descrição da variável	Código da variável
AGE	ldade	Anos
CHL	Colesterol	mg/100~mL
SBP	Pressão arterial sistólica	mmHg
DBP	Pressão arterial diastólica	mmHg
QTI	Índice de Quételet	$100 \times [peso (lb)/altura (in.)^2]$
HEM	Hematócrito	Percentual
SES	Status socioeconômico	Índice de McGuire-White
PLS	Pulsação	Batidas/minuto

Dados (amostra grátis)

id	chd	cat	age	chl	smk	ecg	dbp	sbp	hpt	сс	ch
21	0	0	56	270	0	0	80	138	0	0	0
31	0	0	43	159	1	0	74	128	0	0	0
51	1	1	56	201	1	1	112	164	1	1	201
71	0	1	64	179	1	0	100	200	1	1	179
74	0	0	49	243	1	0	82	145	0	0	0
91	0	0	46	252	1	0	88	142	0	0	0

Conhecimento a priori

P: Faça uma discussão a respeito dos fatores psicossociais associados a liberação de catecolaminas. Quais os efeitos cardiovasculares são esperados destas catecolaminas?

Prática

► Construa o diagrama causal (DAG) para avaliar o efeito da exposição na resposta de interesse.

- Utilizando o critério back-door (apresente os passos utilizados) responda:
 - Existe confundimento? O que isso implica em termos de suposições de identificação do efeito causal?
 - Se existe confundimento, é possível controlar este confundimento?
 - 3. Ainda, se existe confundimento, quais são as variáveis do conjunto suficiente para controle/ajuste?

Relembrando

Como duas variáveis podem estar associadas?

- ➤ X e Y serão associadas na população se:
 - ▶ X causa Y.
 - Y causa X.
 - ▶ existe uma Z que é causa comum de X e Y.
- ➤ X e Y serão associadas em subpopulações definadas por Z se Z é um efeito de X e Y.

Como duas variáveis podem estar associadas?

▶ O que podemos concluir do diagrama abaixo?

Como duas variáveis podem estar associadas?

▶ E neste outro caso? O que podemos concluir?

Grafos acíclicos dirigidos

- Os grafos acíclicos dirigidos (DAGs), ou diagramas causais, oferecem uma linguagem para especificação de relações (causais) entre as variáveis do quadro conceitual.
- ► Critério back-door: (1) verifica a existência de viés de confusão; (2) em caso afirmativo, verifica a existência de um conjunto de variáveis suficiente para o controle (ajuste) do viés de confusão.

Ferramentas computacionais para a construção de DAGs

Coach

Um exemplo

Genetics

▶ A análise de DAGs pode ser tediosa na prática, e se presta bem à automatização por um programa de computador.

Launch DAGitty

online in your

browser

DAGitty

Welcome to DAGitty!

Download DAGitty's source for offline use

- ▶ O DAGitty é um ambiente baseado em navegador para criar, editar e analisar modelos causais (DAGs).
 - O foco está no uso de diagramas causais para minimizar o viés em estudos empíricos em epidemiologia e outras disciplinas.

- O DAGitty é desenvolvido e mantido por Johannes Textor (Tumor Immmunology Lab and Institute for Computing and Information Sciences, Radboud University Nijmegen).
- http://dagitty.net/

Criando um DAG no DAGitty

- No menu Model, clique em New model.
- ▶ O DAGitty irá solicitar o nome da variável de **exposição**, e logo em seguida o nome da variável de **desfecho**.
 - Estas variáveis serão criadas no grafo com o caminho $E \rightarrow D$.
- Para acrescentar uma nova variável dê um duplo-clique na área do grafo e dê um nome para esta variável.
- Para especificar uma relação entre duas variáveis, dê um duplo-clique na variável de origem e um duplo-clique na variável de destino.
 - O mesmo procedimento serve para remover uma relação entre duas variáveis já existente.
- ▶ Para remover uma variável do grafo, clique sobre a variável pressionando a tecla D.
- Para renomear uma variável, clique sobre a variável pressionando a tecla R.
- Na dúvida, consulte os menus How to ... e Help.

Criando um DAG no DAGitty

- ▶ No menu **Model** é possível:
 - exportar o grafo
 - publicar o grafo
- Uma vez publicado, o grafo pode ser:
 - modificado
 - apagado

Atividade 2

Atividade 2

- Utilize o DAGitty para construir o DAG do "exemplo das Catecolaminas".
- ► Verifique se as conclusões obtidas concordam com as que você obteve com o critério back-door "feito a mão".

Instala o pacote dagitty

```
# install.packages("dagitty")

# Carrega o pacote dagitty
library(dagitty)

# Carrega o DAG a partir do DAGitty
dag1 <- downloadGraph(x = "dagitty.net/mBYpOXW")</pre>
```

plot(dag1)

dag1.bd <- backDoorGraph(dag1)
plot(dag1.bd)</pre>


```
# install.packages("ggdag")

# Carrega o pacote ggdag
library(ggdag)

# Carrega o DAG a partir do DAGitty
dag2 <- downloadGraph(x = "dagitty.net/mQLajCg")</pre>
```

ggdag(dag2)

ggdag_paths(dag2)

ggdag_parents(dag2, "D")

ggdag_ancestors(dag2, "D")

ggdag_ancestors(dag2, "C1")

ggdag_children(dag2, "C1")

ggdag_adjustment_set(dag2)

Atividade 3

DAGitty + ggdag

- ▶ Pense em uma **questão causal** que você tem interesse em estudar.
- Utilize um ou mais recursos computacionais para construir um DAG (diagrama causal) do modelo causal relacionado à sua questão de pesquisa.

Avisos

Avisos

- ▶ Próxima semana (13/11): métodos de pareamento/escores de propensão para estimação de efeitos causais.
- ▶ Para casa: Ler artigos de Miguel Hernán.

Por hoje é só!

