WE CLAIM:

1. A compound of Formula I:

5 wherein

X represents S or O;

 R^1 represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl, -(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -NH(4-7C)cycloalkyl, or

 $-N[(1-4C)alkyl](CH_2)_rN[(1-4C)alkyl]_2;$

R² represents -CN, -CO₂H, -C(=O)NHR¹³; -C(=O)NHOH, -C(=O)NHCN, -SO₂OH, -SO₂NH(1-4C)alkyl, -C(=O)NHSO₂R¹⁹, -PH(=O)(OH), -P(=O)(OH)₂, -P(=O)(OH)NH₂, -P(=O)(OH)CH[(1-4C)alkoxy]₂, -C(=O)NHSO₂CF₃, -C(=O)NHSO₂CH₂CF₃,

HO N-N, N-N,
$$R^{14}S$$
 HO N-O HO N-S, $S-N$ or $S-N$

15

R⁴ represents hydrogen, OH, -CH₂OH, -CH₂CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃, -CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN, -(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, SH, -CH₂SO₂NH₂, -CH₂NHC(=O)CH₃,

$$N = N$$
 or $N = N$

R⁵ represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂R¹⁰, -(1-4C)alkyl, or -(1-4C)alkoxy;

R⁶ represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

5 R⁷ represents hydrogen or -(1-4C)alkyl;

 R^8 represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN, -NHSO₂ R^{11} , or -C(=O)(1-4C)alkyl;

 R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl, N[(1-6C)alkyl]₂, -C(=O)NH₂, -CN, -CO₂H, -S(1-4C)alkyl, -NHCO₂(1-4C)alkyl,

-C(=O)NHCH₂CH₂CN, or -C(=O)(1-4C)alkyl;

R¹⁰, R¹¹, and R¹² each independently represent –(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂,

NH(1-4C)alkyl, N[(1-4C)alkyl)]₂, thienyl, phenyl, -CH₂phenyl, or –(CH₂)₂phenyl,

wherein phenyl, as used in substituent R¹⁰, R¹¹ or R¹², is unsubstituted or substituted with

F, Cl, Br, CF₃, –(1-4C)alkyl, -(1-4)alkoxy, or acetyl;

15 R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole;

R¹⁴ represents -(1-4C)alkyl;

R¹⁵ represents hydrogen or -(1-4C)alkyl;

R¹⁹ represents (1-4C)alkyl or CF₃;.

m represents 0, 1, 2, or 3;

20 n represents 1, 2, 3, or 4;

p represents 1 or 2;

r represents 1 or 2; and

A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN, NO₂, NH₂, -O(CH₂)_nNH₂, -O(CH₂)_nNHSO₂(1-4C)alkyl, -O(CH₂)_nSO₂(1-4C)alkyl,

 $-C(=O)NH(CH_2)_tNHSO_2(1-4C)alkyl, -S(1-4C)alkyl,$

-(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyloxy, -CO₂H,

 $-CO_2(1-4C) alkyl, -C(=O)(1-4C) alkyl, -C(=O)NH_2, -C(=O)NH(1-6C) alkyl, -C(=O)NH(1-6C$

-C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂,

NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃,

- -O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl and -(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹²,
- -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -C(=O)NH(3-6C)cycloalkyl, -C(=O)NH(CH₂)_nN[(1-4C)alkyl]₂, -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴,
- 10 $-(CH_2)_nNHR^{12}$, $-(CH_2)_nNH(3-6C)$ cycloalkyl, $-(CH_2)_nN[(1-4C)$ alkyl]₂, $-CH_2NHC(=O)CH_3$, $-NHC(=O)NHR^{12}$, -NHC(=O)N[(1-4C)alkyl]₂,

and the pharmaceutically acceptable salts thereof.

5

- 2. A compound according to claim 1 wherein R² represents -CO₂H.
- 3. A compound according to claim 2 wherein X represents S.
- 4. A compound according to claim 2 wherein X represents O.
- 5. A compound according to claim 3 or claim 4 wherein A is selected from the group consisting of: -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹², -(CH₂)_pCH(CH₃)NHSO₂R¹²,

5

15

6. A compound according to claim 4 or claim 5 wherein A is selected from the group consisting of: -(CH₂)₂NHSO₂R¹², -CH(CH₃)(CH₂)NHSO₂R¹², -(CH₂)CH(CH₃)NHSO₂R¹²,

$$R^{5}$$
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{6}
 R^{8}
 R^{8}

.7. A compound according to claim 4 or claim 5 wherein A is

- 8. A compound according to claim 7 wherein R¹ represents hydrogen, F, -OCH₃, -C(=O)CH₃, -SCH₃, CF₃, methyl, or ethyl.
- 9. A compound according to claim 8 wherein R¹ represents hydrogen, -SCH₃, CF₃, methyl, or ethyl.
 - 10. A compound according to claim 9 wherein R¹ represents ethyl.
 - 11. A compound according to claim 10 wherein R⁵ represents hydrogen, F, Cl, or -(1-4C)alkyl.
 - 12. A compound according to claim 11 wherein R⁵ represents hydrogen.
 - 13. A compound according to claim 12 wherein R⁴ represents hydrogen, F, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -NHC(=O)(1-4C)alkyl, -NHSO₂R¹⁰, -CN, -CO₂H, -C(=O)(1-4C)alkyl, or -S(1-4C)alkyl.
- 14. A compound according to claim 13 wherein R⁴ represents hydrogen, -CN, -(1-4C)alkoxy, or -S(1-4C)alkyl.

5

10

. 15

20

- 15. A compound according to claim 14 wherein R⁴ represents hydrogen, -CN, ethoxy, or -SCH₃.
- 16. A composition comprising a compound according to claim 1 in combination with a pharmaceutically acceptable carrier, diluent or excipient.
- 17. A method of treating Alzheimer's disease in a patient comprising administering to said patient an effective amount of a compound according to claim 1.
- 18. A method of treating mild cognitive impairment in a patient comprising administering to said patient an effective amount of a compound according to claim 1.
- 19. A method of treating Parkinson's disease in a patient comprising administering to said patient an effective amount of a compound according to claim 1.
- 20. A method of treating schizophrenia in a patient comprising administering to said patient an effective amount of a compound according to claim 1.
- 21. Use of a compound according to claim 1 for the manufacture of a medicament for treating Alzheimer's disease.
- 22. Use of a compound according to claim 1 for the manufacture of a medicament for treating schizophrenia.
 - 23. Use of a compound according to claim 1 for the manufacture of a medicament for treating Parkinson's disease.
- 24. Use of a compound according to claim 1 for the manufacture of a medicament for treating mild cognitive impairment.
 - 25. Use of a compound according to claim 1 for use as a pharmaceutical.
 - 26. A compound of Formula II:

wherein

25 X represents S or O;

R¹ represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl,

-CH₂NHC(=O)CH₃,

10

15

-(1-4C)alkoxy, -S(1-4C)alkyl, -SO(1-4C)alkyl, $-SO_2(1-4C)$ alkyl, -C(=O)(1-3C)alkyl, NH_2 , -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, or -NH(4-7C)cycloalkyl; Z represents -O-(1-6C)alkyl, -O-(2-4C)alkenyl, -O-(1-6C)alkylaryl, -O-(1-6C)alkyl(3-6C)cycloalkyl, -O-(1-6C)alkyl-N,N-(1-6C)dialkylamine,

5 -O-(1-6C)alkyl-pyrrolidine, -O-(1-6C)alkyl-piperidine, -O-(1-6C)alkyl-morpholine, or NH(1-6C)alkyl;

R⁴ represents hydrogen, OH, -CH₂OH, -CH₂CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃, -CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN, -(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, SH, -CH₂SO₂NH₂,

R⁵ represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂R¹⁰, -(1-4C)alkyl, or -(1-4C)alkoxy;

R⁶ represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl; R⁷ represents hydrogen or -(1-4C)alkyl;

 R^8 represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN, -NHSO₂ R^{11} , or -C(=O)(1-4C)alkyl;

R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl, N[(1-6C)alkyl]₂, -C(=O)NH₂, -CN, -CO₂H, -S(1-4C)alkyl, -NHCO₂(1-4C)alkyl, -C(=O)NHCH₂CH₂CN, or -C(=O)(1-4C)alkyl;

R¹⁰, R¹¹, and R¹² each independently represent -(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂, NH(1-4C)alkyl, N[(1-4C)alkyl)]₂, thienyl, phenyl, -CH₂phenyl, or -(CH₂)₂phenyl,

wherein phenyl, as used in substituent R¹⁰, R¹¹ or R¹², is unsubstituted or substituted with F, Cl, Br, CF₃, -(1-4C)alkyl, -(1-4)alkoxy, or acetyl;

R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole; R¹⁴ represents -(1-4C)alkyl;

R¹⁵ represents hydrogen or -(1-4C)alkyl;

30 m represents 0, 1, 2, or 3;

```
n represents 1, 2, 3, or 4;
p represents 1 or 2;
r represents 1 or 2; and
```

A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN,

- 5 NO₂, NH₂, -O(CH₂)_nNH₂, -O(CH₂)_nNHSO₂(1-4C)alkyl, -O(CH₂)_nSO₂(1-4C)alkyl,
 - -C(=O)NH(CH₂)_rNHSO₂(1-4C)alkyl, -S(1-4C)alkyl,
 - -(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyloxy, -CO₂H,
 - -CO₂(1-4C)alkyl, -C(=O)(1-4C)alkyl, -C(=O)NH₂, -C(=O)NH(1-6C)alkyl,
 - -C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two
- substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃,
 - -O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl and
- 15 –(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹²,
- -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -C(=O)NH(3-6C)cycloalkyl, -C(=O)NH(CH₂)_nN[(1-4C)alkyl]₂,
- 20 -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴,
 - $-(CH_2)_nNHR^{12}$, $-(CH_2)_nNH(3-6C)$ cycloalkyl, $-(CH_2)_nN[(1-4C)$ alkyl]₂,
 - -CH₂NHC(=O)CH₃, -NHC(=O)NHR¹², -NHC(=O)N[(1-4C)alkyl]₂,

and the pharmaceutically acceptable salts thereof.

- 27. A compound according to claim 26 wherein X is O.
- 28. A compound according to claim 26 wherein X is S.
- 29. A compound according to claim 27 or claim 28 wherein A is selected from the group consisting of: -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹², -(CH₂)_pCH(CH₃)NHSO₂R¹²,

30. A compound according to claim 27 or claim 28 wherein A is selected from the group consisting of: -(CH₂)₂NHSO₂R¹², -CH(CH₃)(CH₂)NHSO₂R¹²,

10 -(CH₂)CH(CH₃)NHSO₂R¹²,

WO 2005/070916 PCT/US2005/000004

-237-

$$R^{5}$$
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{6

31. A compound according to claim 27 or claim 28 wherein A is

5 32. A compound according to claim 31 wherein R¹ represents hydrogen, F, -OCH₃, -C(=O)CH₃, -SCH₃, CF₃, methyl, or ethyl.

33. A compound according to claim 32 wherein R¹ represents hydrogen, -SCH₃, CF₃, methyl, or ethyl.

34. A compound according to claim 33 wherein R¹ represents ethyl.

35. A compound according to claim 34 wherein R⁵ represents hydrogen, F, Cl, or –(1-4C)alkyl.

36. A compound according to claim 35 wherein R⁵ represents hydrogen.

37. A compound according to claim 36 wherein R^4 represents hydrogen, F, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -NHC(=O)(1-4C)alkyl, -NHSO₂ R^{10} , -CN, -CO₂H, -C(=O)(1-4C)alkyl, or -S(1-4C)alkyl.

38. A compound according to claim 37 wherein R^4 represents hydrogen, -CN, -(1-4C)alkoxy, or -S(1-4C)alkyl.

15

20

39. A compound according to claim 38 wherein R⁴ represents hydrogen, -CN, ethoxy, or -SCH₃.

40. A process for preparing a compound of Formula Ia:

wherein

5 X represents S or O;

 R^1 represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl, -(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -NH(4-7C)cycloalkyl, or -N[(1-4C)alkyl](CH₂)_rN[(1-4C)alkyl]₂;

- 10 R⁴ represents hydrogen, OH, -CH₂OH, -CH₂CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃, -CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN, -(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, SH, -CH₂SO₂NH₂,
- 15 -CH₂NHC(=O)CH₃,

$$N = N$$
 or $N = N$

 R^5 represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂ R^{10} , -(1-4C)alkyl, or -(1-4C)alkoxy;

R⁶ represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

20 R⁷ represents hydrogen or -(1-4C)alkyl;

 R^8 represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH_2 , -CN, -NHSO₂ R^{11} , or -C(=O)(1-4C)alkyl;

 R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl, N[(1-6C)alkyl]₂, -C(=O)NH₂, -CN, -CO₂H, -S(1-4C)alkyl, -NHCO₂(1-4C)alkyl,

-C(=O)NHCH2CH2CN, or -C(=O)(1-4C)alkyl; R¹⁰, R¹¹, and R¹² each independently represent -(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂, NH(1-4C)alkyl, N[(1-4C)alkyl)]₂, thienyl, phenyl, -CH₂phenyl, or -(CH₂)₂phenyl, wherein phenyl, as used in substituent R¹⁰, R¹¹ or R¹², is unsubstituted or substituted with F, Cl, Br, CF₃, –(1-4C)alkyl, -(1-4)alkoxy, or acetyl; 5 R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole; R¹⁴ represents -(1-4C)alkyl; R¹⁵ represents hydrogen or -(1-4C)alkyl; R¹⁹ represents (1-4C)alkyl or CF₃; 10 m represents 0, 1, 2, or 3; n represents 1, 2, 3, or 4; p represents 1 or 2; r represents 1 or 2; and A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN, NO_2 , NH_2 , $-O(CH_2)_nNH_2$, $-O(CH_2)_nNHSO_2(1-4C)$ alkyl, $-O(CH_2)_nSO_2(1-4C)$ alkyl, 15 -C(=O)NH(CH₂)_rNHSO₂(1-4C)alkyl, -S(1-4C)alkyl, -(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyloxy, -CO₂H, $-CO_2(1-4C) alkyl, -C(=O)(1-4C) alkyl, -C(=O)NH_2, -C(=O)NH(1-6C) alkyl, -C(=O)NH(1-6C$ -C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO2, 20 NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃, -O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO2, NH2, CN, -(1-4C)alkyl and -(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_nNHSO₂R¹², 25 -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO2, NH2, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, $-N[(1-4C)alkyl]_2, -C(=O)NH(3-6C)cycloalkyl, -C(=O)NH(CH_2)_nN[(1-4C)alkyl]_2,$ -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴, 30 $-(CH_2)_nNHR^{12}$, $-(CH_2)_nNH(3-6C)$ cycloalkyl, $-(CH_2)_nN[(1-4C)$ alkyl]₂, -CH₂NHC(=0)CH₃, -NHC(=0)NHR¹², -NHC(=0)N[(1-4C)alkyl]₂,

comprising hydrolyzing a compound of Formula II:

wherein

X represents S or O;

R¹ represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl,

5 -(1-4C)alkoxy, -S(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, or -NH(4-7C)cycloalkyl;

Z represents -O-(1-6C)alkyl, -O-(2-4C)alkenyl, -O-(1-6C)alkylaryl,

-O-(1-6C)alkyl(3-6C)cycloalkyl, -O-(1-6C)alkyl-N,N-(1-6C)dialkylamine,

-O-(1-6C)alkyl-pyrrolidine, -O-(1-6C)alkyl-piperidine, -O-(1-6C)alkyl-morpholine, or

10 NH(1-6C)alkyl;

15

 $R^{4} \text{ represents hydrogen, OH, -CH}_{2}\text{OH, -CH}_{2}\text{OH, -CH}_{2}\text{OH, -CH}_{2}\text{O(1-4C)alkyl, F, Cl, CF}_{3}, \\ OCF_{3}, -CN, NO_{2}, NH_{2}, -CH_{2}\text{NH}_{2}, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH_{2}, -CH_{2}\text{C(=O)NH}_{2}, -NHC(=O)(1-4C)alkyl, -(CH_{2})_{m}NHSO_{2}R^{10}, -(CH_{2})_{n}CN, -(CH_{2})_{m}CO_{2}H, -C(=NOH)CH_{3}, -(CH_{2})_{m}CO_{2}(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl, -NH(1-4C)alkyl, -N[(1-4C)alkyl]_{2}, -SR^{10}, -SOR^{10}, -SO_{2}R^{10}, SH, -CH_{2}SO_{2}NH_{2}, \\ CHANGO ON CHANGO ON CHANGO C$

 $-CH_2NHC(=O)CH_3$,

 R^5 represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂ R^{10} , -(1-4C)alkyl, or -(1-4C)alkoxy;

20 R^6 represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

R⁷ represents hydrogen or -(1-4C)alkyl;

R⁸ represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN,

-NHSO₂ R^{11} , or -C(=O)(1-4C)alkyl;

R8a represents hydrogen, F, Cl, B9, -(1-4C)alkyl, NO2, NH2, NH(1-6C)alkyl,

 $N[(1-6C)alkyl]_2$, $-C(=O)NH_2$, -CN, $-CO_2H$, -S(1-4C)alkyl, $-NHCO_2(1-4C)alkyl$, -C(=O)NHCH2CH2CN, or -C(=O)(1-4C)alkyl; R¹⁰, R¹¹, and R¹² each independently represent -(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂, NH(1-4C)alkyl, N[(1-4C)alkyl)]₂, thienyl, phenyl, -CH₂phenyl, or -(CH₂)₂phenyl, wherein phenyl, as used in substituent R¹⁰, R¹¹ or R¹², is unsubstituted or substituted with 5 F, Cl, Br, CF₃, -(1-4C)alkyl, -(1-4)alkoxy, or acetyl; R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole; R¹⁴ represents -(1-4C)alkvl: R¹⁵ represents hydrogen or -(1-4C)alkyl; 10 m represents 0, 1, 2, or 3; n represents 1, 2, 3, or 4; p represents 1 or 2; r represents 1 or 2; and A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN, NO_2 , NH_2 , $-O(CH_2)_nNH_2$, $-O(CH_2)_nNHSO_2(1-4C)$ alkyl, $-O(CH_2)_nSO_2(1-4C)$ alkyl, 15 -C(=O)NH(CH₂)_rNHSO₂(1-4C)alkyl, -S(1-4C)alkyl, -(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyloxy, -CO₂H, -CO₂(1-4C)alkyl, -CHO, -C(=O)(1-4C)alkyl, -C(=O)NH₂, -C(=O)NH(1-6C)alkyl, -C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO2, 20 NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃, -O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl and -(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_nNHSO₂R¹², 25 -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, $-\dot{N}[(1-4C)alkyl]_2$, -C(=O)NH(3-6C)cycloalkyl, $-C(=O)NH(CH_2)_nN[(1-4C)alkyl]_2$, -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴, 30 $-(CH_2)_nNHR^{12}$, $-(CH_2)_nNH(3-6C)$ cycloalkyl, $-(CH_2)_nN[(1-4C)alkyl]_2$,

-CH₂NHC(=O)CH₃, -NHC(=O)NHR¹², -NHC(=O)N[(1-4C)alkyl]₂,

with a hydrolysis agent.

WO 2005/070916 PCT/US2005/000004

41. A process according to claim 40 wherein the hydrolysis agent is a base.

-244-