Topology (Main Source: Munkres)

Tharun Naagesh

December 17, 2024

CONTENTS

C	Contents		
Ι	Point-Set Topology	5	
	Topological Spaces and Continuous functions 1 Topological Spaces	7	

4 CONTENTS

Part I Point-Set Topology

CHAPTER 1

TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

1 Topological Spaces

Definition 1.1. (Topology) A topology τ on a set X is a collection \mathscr{B} of sets called open sets such that:

- 1. \emptyset and X belong to \mathscr{B}
- 2. For any collection of sets $U_{\alpha} \in \mathcal{B}$, $\bigcup_{\alpha} U_{\alpha}$ is also in \mathcal{B} (closed under arbitrary unions)
- 3. For any finite collection $\{U_1, U_2 \cdots U_k\}$ of sets of \mathscr{B} , $\bigcap_{i=1}^k U_i \in \mathscr{B}$ (closed under finite intersections)

Definition 1.2. (Discrete and Indiscrete topology)

- 1. The topology (\emptyset, X) of a set X is called the *indiscrete topology*.
- 2. The topology in which every subset of X is an open set is called the *Discrete topology*

Definition 1.3. ((Finer and Coarser topologies)) Let τ and τ' be two topologies of space X. We say τ' is finer than τ if $\tau \subset \tau'$, or every open set in τ is one in τ' .

Remark 1.4. Of course, not all topologies are comparable, like the above definition suggests.