L2 Maths-Éco - Probabilités-Statistique 2 - 2019 - 2020

CC FINAL - Durée : 2h

Calculatrices non programmables sont autorisées, le barême est donné à titre indicatif, et peut évoluer

Exercice 1 (3.5 points) Vrai ou Faux (Argumenter en une phrase)

1.	Un intervalle de confiance ponctuel changera à chaque nouvelle expérience	$Vrai\ \Box$	$Faux \square$
2.	La zone de rejet d'un test d'hypothèse changera à chaque nouvelle expérience	$Vrai\ \Box$	$Faux \Box$
3.	Une variable aléatoire X à densité vérifiera nécessairement $\forall x \in \mathbb{R}, \mathbb{P}(X=x) = 0$	$Vrai\ \Box$	$Faux \Box$
4.	Un estimateur biaisé de variance nulle est préférable à un estimateur sans biais de variance non nulle	$Vrai \ \Box$	$Faux \square$
5.	$Si~\hat{T}~est~un~estimateur~efficace~de~\theta,~et~BCR~d\'esigne~la~borne~de~Cram\`er-Rao,~alors~Var(\hat{T})=BCR$	$Vrai\ \Box$	$Faux \square$
6.	$Si~\hat{T}~est~un~estimateur~efficace~de~\theta,~et~BCR~d\'esigne~la~borne~de~Cram\`er-Rao,~alors~Var(\hat{T})>BCR$	$Vrai\ \Box$	$Faux \square$
7.	Lorsque l'on effectue un test d'hypothèse, plus la p-valeur est petite, plus on aura tendance à rejeter le test	$Vrai \ \Box$	$Faux \Box$

Exercice 2 (4 points) Manipulation de loi

Soient X, X_1, \cdots, X_n un échantillon i.i.d. de densité donnée par

$$f_X(x) = 4x^3 1_{x \in [0,1]}.$$

- 1. Calculer $\mathbb{E}[X]$.
- 2. Calculer la fonction de répartition F_X de X.
- 3. Calculer la fonction de répartition F_Y de $Y = X^3$, et en déduire sa densité f_Y .
- 4. Calculer la fonction de répartition F_Z de $Z = \min(X_1, \dots, X_n)$, et en déduire sa densité f_Z .

Exercice 3 (5 points) Estimation

Soient X_1, \dots, X_n un échantillon i.i.d. de densité donnée par

$$f_{\theta}(x) = \frac{4x^3}{\theta} e^{-\frac{x^4}{\theta}} \mathbb{1}_{x \ge 0}, \text{ avec } \theta > 0$$

- 1. Calculer $\mathbb{E}[X_1^4]$
- 2. Calculer l'estimateur \hat{T}_{EMV} par maximum de vraisemblance de θ .
- 3. Cet estimateur est-il sans biais ?
- 4. Calculer l'information de Fisher du modèle.
- 5. L'estimateur \hat{T}_{EMV} est-il efficace ?

Exercice 4 (2.5 points) Test de chi-deux Dans une entreprise, on a dénombré 5300 cas d'absence (dans l'année) se répartissant comme suit :

	Homme	Femme
Maladie	2034	1466
Autres	1966	1534

1. Donner la p-valeur du test de χ^2 d'indépendance. (on rappelle qu'on fera toujours un test unilatéral avec une zone de rejet à droite pour le χ^2 -deux, et on pourra utiliser la table de χ^2 fournie en annexe)

1

2. Le test est-il rejeté au niveau $\alpha = 1\%$?

Exercice 5 (5 points) Test sur la variance

On veut évaluer la performance de deux appareils de mesures de pression, à haute-pression. Pour cela, on travaille a pression contante et contrôlée de $m_0 = 100$ bars, et on prend 10 mesures $X_{1,k}, \dots, X_{10,k}$ avec chaque appareil k, et on calcule leur estimateur de la variance à espérance connue, \hat{V}_1^2 et \hat{V}_2^2 (définies par $\hat{V}_k^2 := \frac{1}{n} \sum_{i=1}^n (X_{i,k} - m_0)^2$, pour k = 1, 2.)

On modélise les mesures faites avec l'appareil i comme des réalisations indépendantes de lois normales d'espérance m_0 connue, et de variance σ_i^2 inconnue. Les observations ont donné $\hat{v}_1^2 = 0.07$ et $\hat{v}_2^2 = 0.012$.

- 1. Rappeler la définition d'un χ^2 à n degrés de liberté (on ne demande pas la densité ici)
- 2. On rappelle que $\hat{V}^2 = \frac{1}{n} \sum_{i=1}^n (X_i m_0)^2$. Quelle est la loi de $n \frac{\hat{V}^2}{\sigma^2}$? On argumentera sa réponse.
- 3. On vous donne la propriété suivante : La loi de Fisher $F(n_1, n_2)$ désigne un rapport de deux χ^2 indépendantes à respectivement n_1, n_2 degrés de libertés, renormalisés par le nombre de degrés de liberté : Si $U_1 \sim \chi^2(n_1)$ et $U_2 \sim \chi^2(n_2)$, et $U_1 \coprod U_2$, alors $\frac{U_1}{N_2} \sim F(n_1, n_2)$.

Expliquer pourquoi, si $\sigma_1^2 = \sigma_2^2$, on a $\frac{n_1\hat{V}_1^2}{n_2\hat{V}_2^2} \sim F(n_1, n_2)$

4. Calculer la p-valeur du test :

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

On pourra chercher une statistique mentionnée dans les question précédentes, et utiliser la fonction de répartition de la loi de Fisher donnée en certains points par les sorties de R suivantes ou le tableau de la loi de χ^2 en Annexe.

$$\begin{array}{llll} pf(0.07,10,10) = 0.00012 & pf(0.269,10,10) = 0.025 \\ pf(0.17,10,10) = 0.00489 & pf(0.3358,10,10) = 0.05 \\ pf(1.489,10,10) = 0.72973 & pf(0.4306,10,10) = 0.1 \\ pf(2.915,10,10) = 0.94672 & pf(2.3226,10,10) = 0.9 \\ pf(5.83,10,10) = 0.99495 & pf(2.9782,10,10) = 0.95 \\ pf(11.66,10,10) = 0.9997 & pf(3.7168,10,10) = 0.975 \end{array}$$

- 5. Le test au niveau $\alpha=5\%$ est-il rejeté ? Donner la zone de rejet pour $\frac{n_1\hat{V}_1^2}{n_2\hat{V}_2^2}$.
- 6. On considère maintenant le test

$$H_0: \sigma_1^2 \le \sigma_2^2$$

 $H_1: \sigma_1^2 > \sigma_2^2$

Donner la nouvelle zone de rejet du test au niveau $\alpha = 5\%$.

7. On considère maintenant l'alternative $H_1: \sigma_1^2 > 2\sigma_2^2$. Calculer la puissance minimale du test sous cette hypothèse.

Table de quantiles de la loi de $\chi^2(d)$ La table contient les nombres q tels que $\mathbb{P}\Big(\chi^2(d) < q\Big) = p$.

0.999	10.8276	13.8155	16.2662	18.4668	20.515	22.4577	24.3219	26.1245	27.8772	29.5883	31.2641	32.9095	34.5282	36.1233	37.6973	39.2524	40.7902	42.3124	43.8202	45.3147	46.797	48.2679	49.7282	51.1786	52.6197	54.052	55.476	56.8923	58.3012	59.7031
								.						-			_	<u> </u>								_				-
0.998	9.5495	12.4292	14.7955	16.9238	18.9074	20.7912	22.6007	24.3521	26.0564	27.7216	29.3536	30.957	32.5352	34.0913	35.6276	37.1461	38.6485	40.1361	41.6103	43.072	44.5222	45.9618	47.3915	48.8118	50.2234	51.6269	53.0226	54.411	55.7925	57.1674
0.995	7.8794	10.5966	12.8382	14.8603	16.7496	18.5476	20.2777	21.955	23.5894	25.1882	26.7568	28.2995	29.8195	31.3193	32.8013	34.2672	35.7185	37.1565	38.5823	39.9968	41.4011	42.7957	44.1813	45.5585	46.9279	48.2899	49.6449	50.9934	52.3356	53.672
0.99	6.6349	9.2103	11.3449	13.2767	15.0863	16.8119	18.4753	20.0902	21.666	23.2093	24.725	26.217	27.6882	29.1412	30.5779	31.9999	33.4087	34.8053	36.1909	37.5662	38.9322	40.2894	41.6384	42.9798	44.3141	45.6417	46.9629	48.2782	49.5879	50.8922
0.985	5.9165	8.3994	10.465	12.3391	14.0978	15.7774	17.3984	18.9739	20.5125	22.0206	23.5028	24.9628	26.4034	27.8268	29.2349	30.6292	32.0112	33.3817	34.742	36.0926	37.4345	38.7681	40.0941	41.413	42.7252	44.0311	45.3311	46.6256	47.9147	49.1989
0.975	5.0239	7.3778	9.3484	11.1433	12.8325	14.4494	16.0128	17.5345	19.0228	20.4832	21.92	23.3367	24.7356	26.1189	27.4884	28.8454	30.191	31.5264	32.8523	34.1696	35.4789	36.7807	38.0756	39.3641	40.6465	41.9232	43.1945	44.4608	45.7223	46.9792
0.95	3.8415	5.9915	7.8147	9.4877	11.0705	12.5916	14.0671	15.5073	16.919	18.307	19.6751	21.0261	22.362	23.6848	24.9958	26.2962	27.5871	28.8693	30.1435	31.4104	32.6706	33.9244	35.1725	36.415	37.6525	38.8851	40.1133	41.3371	42.557	43.773
6.0	2.7055	4.6052	6.2514	7.7794	9.2364	10.6446	12.017	13.3616	14.6837	15.9872	17.275	18.5493	19.8119	21.0641	22.3071	23.5418	24.769	25.9894	27.2036	28.412	29.6151	30.8133	32.0069	33.1962	34.3816	35.5632	36.7412	37.9159	39.0875	40.256
8.0	1.6424	3.2189	4.6416	5.9886	7.2893	8.5581	9.8032	11.0301	12.2421	13.442	14.6314	15.812	16.9848	18.1508	19.3107	20.4651	21.6146	22.7595	23.9004	25.0375	26.1711	27.3015	28.4288	29.5533	30.6752	31.7946	32.9117	34.0266	35.1394	36.2502
0.2	0.0642	0.4463	1.0052	1.6488	2.3425	3.0701	3.8223	4.5936	5.3801	6.1791	6.9887	7.8073	8.6339	9.4673	10.307	11.1521	12.0023	12.857	13.7158	14.5784	15.4446	16.314	17.1865	18.0618	18.9398	19.8202	20.703	21.588	22.4751	23.3641
0.1	0.0158	0.2107	0.5844	1.0636	1.6103	2.2041	2.8331	3.4895	4.1682	4.8652	5.5778	6.3038	7.0415	7.7895	8.5468	9.3122	10.0852	10.8649	11.6509	12.4426	13.2396	14.0415	14.848	15.6587	16.4734	17.2919	18.1139	18.9392	19.7677	20.5992
0.05	0.0039	0.1026	0.3518	0.7107	1.1455	1.6354	2.1673	2.7326	3.3251	3.9403	4.5748	5.226	5.8919	6.5706	7.2609	7.9616	8.6718	9.3905	10.117	10.8508	11.5913	12.338	13.0905	13.8484	14.6114	15.3792	16.1514	16.9279	17.7084	18.4927
0.025	0.001	0.0506	0.2158	0.4844	0.8312	1.2373	1.6899	2.1797	2.7004	3.247	3.8157	4.4038	5.0088	5.6287	6.2621	2206.9	7.5642	8.2307	8.9065	9.5908 1	$10.2829 \mid 1$	10.9823	11.6886 1	12.4012 1	13.1197 1	$13.8439 \mid 1$	14.5734 1	15.3079 1	16.0471 1	16.7908 1
0.015	4e - 04	0.0302	0.1516	0.3682	0.6618	1.016	1.4184	1.8603	2.3349	2.8372	3.3634	3.9104	4.4757	5.0572	5.6534	6.2628	6.8842	7.5165	8.1588	8.8105	9.4708	$10.139 \mid 1$	10.8147 1	11.4974 1	12.1867 1		13.5833 1	14.29 1	$15.0019 \mid 1$	15.7188 1
0.01	2e - 04	0.0201	0.1148	0.2971	0.5543	0.8721	1.239	1.6465	2.0879	2.5582	3.0535	3.5706	4.1069	4.6604	5.2293	5.8122	6.4078	7.0149	7.6327	8.2604	8.8972	9.5425	10.1957	10.8564	11.524	12.1981 1	12.8785	13.5647	14.2565 1	14.9535
0.005	< 1e - 04	0.01	0.0717	0.207	0.4117	0.6757	0.9893	1.3444	1.7349	2.1559	2.6032	3.0738	3.565	4.0747	4.6009	5.1422	5.6972	6.2648	6.844	7.4338	8.0337	8.6427	9.2604	9.8862	10.5197	11.1602	11.8076	12.4613	13.1211	13.7867
	04	04																												
0.002	< 1e -	0.004	0.0387	0.1292	0.2801	0.4864	0.7411	1.0375	1.3702	1.7345	2.1265	2.543	2.9816	3.4398	3.9159	4.4081	4.9153	5.4361	5.9694	6.5144	7.0703	7.6362	8.2116	8.7959	9.3885	686.6	10.5969	11.2118	11.8334	12.4614
0.001	< 1e - 04	0.002	0.0243	0.0908	0.2102	0.3811	0.5985	0.8571	1.1519	1.4787	1.8339	2.2142	2.6172	3.0407	3.4827	3.9416	4.4161	4.9048	5.4068	5.921	6.4467	6.983	7.5292	8.0849	8.6493	9.2221	9.8028	10.3909	10.9861	11.588
d p	П	2	3	4	ಬ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	22	56	27	28	56	30
																	3													