Resolving ontology mappings using Boomer

Jim Balhoff & Chris Mungall

WSBO-2021: Workshop on Synergizing Biomedical Ontologies July 15, 2021

Mutual cross-references between terminologies

Mapping across hierarchies


```
RHEA: 10104
             EC:1.14.11.15
RHEA: 10108
             EC:1.1.1.248
RHEA: 10112
             EC:4.2.1.22
RHEA: 10116
             EC:1.1.1.44
RHEA: 10116
             EC:1.1.1.351
             METACYC: GSPAMID-RXN
RHEA: 17176
RHEA: 17236
             METACYC: FUCISOM-RXN
RHEA: 26155
             METACYC: LUMAZINESYN-RXN
RHEA: 10041
             REACTOME:R-HSA-176606.2
RHEA:10041
             REACTOME: R-HSA-8953499.2
RHEA: 10117
             REACTOME: R-HSA-71299.3
GO:0000009
             EC:2.4.1.232
GO:0000010
             RHEA: 20836
GO:0000016
             EC:3.2.1.108
GO:0000016
             METACYC: LACTASE-RXN
GO:0000016
             RHEA: 10076
GO:0000025
             METACYC: MALTOSECAT-PWY
GO:0000034
             EC:3.5.4.2
GO:0000906
             METACYC: LUMAZINESYN-RXN
GO:0000034
             RHEA: 23688
GO:0000048
             EC:2.3.2.12
GO:0000105
             METACYC: HISTSYN-PWY
GO:0000104
             METACYC:SUCC-FUM-OXRED-RXN
```

+32,000 more lines...

EC

Focusing on disagreements

- GO:0018849 is cross-referenced to RHEA:10640
- But GO:0018849 is also mapped to EC and Metacyc terms which are cross-referenced to a different group of Rhea reactions
- GO editors examined the reactions and revised the GO:0018849 cross-reference to point to RHEA:30031

Bayesian OWL ontology merging (BOOM)

Choose a logical interpretation for every mapping (hypothetical axioms)

```
GO:0000009 EC:2.4.1.232
GO:0000010 RHEA:20836
GO:0000016 EC:3.2.1.108
GO:0000016 METACYC:LACTASE-RXN
GO:0000016 CC:2.4.1.232
GO:00000010 SubClassOf RHEA:20836
GO:0000016 SuperClassOf EC:3.2.1.108
GO:0000016 <a href="https://doi.org/10.2007/color=14">GO:00000016 SubClassOf RHEA:20836</a>
GO:00000016 SuperClassOf EC:3.2.1.108
GO:00000016 <a href="https://doi.org/10.2007/color=14">GO:0000016 SubClassOf RHEA:20836
GO:00000016 SuperClassOf EC:3.2.1.108
```

- Combine with existing ontology (asserted axioms)
- Check the combined ontology for problems:
 - Are there now unsatisfiable classes?
 - (e.g., from violations of disjointness)
 - Have we inferred equivalences between terms from the same ontology?
 - (e.g., mappings causing subclass cycles)
 - o In either case, we need to choose different logical interpretations
- Once an interpretation is chosen for every mapping, review, edit, re-run

Boomer

- k-BOOM prototype originally developed by Chris Mungall
 - Applied to initialize the Mondo harmonized disease ontology
 - o Preprint: https://doi.org/10.1101/048843
- Boomer is a new implementation:
 - Simple command-line interface
 - Internally supports arbitrary sets of hypothetical axioms; use cases beyond mappings
 - Significantly faster: run in a few minutes rather than a full day
- Based on Whelk reasoner
 - Allows Boomer to quickly roll back to intermediate reasoning states
 - Whelk is implemented in Scala using immutable data structures which allows for scalable incremental reasoning

Workflow

Merge needed ontologies (assertions)

Assemble mappings; assign probabilities to mapping semantics

boomer

- Divide into maximal equivalence cliques
- Find most probable logical interpretations
- Output cliques containing non-max-probability choices

OWL (combined ontology)

Markdown summary of choices

JSON graphs by clique

OBOGraphviz

Choosing logical interpretations

Goal: find the combined set of choices (coherent merged ontology) with the highest joint probability

	ProperSubClassOf	ProperSuperClassOf	EquivalentTo	<none></none>
			≡	⋣⋢
GO:0000009 EC:2.4.1.232	0.08	0.08	0.80	0.04
GO:0000010 RHEA:20836	0.08	0.08	0.80	0.04
GO:0000016 EC:3.2.1.108	0.08	0.08	0.80	0.04
GO:0000016 METACYC:LACTASE-RXN	0.08	0.08	0.80	0.04
RHEA:66549 REACTOME:R-HSA-17664	46.3 0.10	0.70	0.15	0.05
and so on				

- Ahead of time: specify, for each mapping, the strength of preference for each interpretation (should add up to 1)
- Could be based on mapping relation in source:
 - o A skos:exactMatch B ⇒ prefer A EquivalentTo B
 - A skos:narrowMatch B ⇒ prefer A ProperSuperClassOf B
- Or, based on lexical substring:
 - A: "type 1 diabetes" xref B: "diabetes" ⇒ prefer A ProperSubClassOf B

Searching for configurations

	Search 1	Search 2	Search 3
	□ □ ≡ ⊉⊈	□ □ ≣ ⊉⊈	⊏ ⊐ ≡ ⊉⊈
GO:0000009 EC:2.4.1.232	0.08 0.08 0.80 0.04	0.08 0.08 0.80 0.04	0.08 0.08 0.80 0.04
GO:0000010 RHEA:20836	0.08 0.08 <mark>0.80</mark> 0.04	0.08 0.08 0.80 0.04	0.08 0.08 0.80 0.04
GO:0000016 EC:3.2.1.108	0.08 0.08 <mark>0.80</mark> 0.04	0.08 0.08 0.80 0.04	0.08 0.08 0.80 0.04
GO:0000016 METACYC:LACTASE-RXN	0.08 0.08 <mark>0.80</mark> 0.04	0.08 0.08 <mark>0.80</mark> 0.04	0.08 0.08 0.80 0.04
RHEA:66549 REACTOME:R-HSA-176646.3	0.10 0.70 0.15 0.05	0.10 0.70 0.15 0.05	0.10 0.70 0.15 0.05
Joint probability:	0.0002048	0.0002048	0.0028672 🔽

- Exhaustive search: check all possible configurations, from highest joint probability to lowest
 - Always finds the/a coherent merged ontology with the best possible score.
 - May never finish for large groups of mappings (15 mappings = >1 billion configurations)
- Greedy search: step through mappings, taking highest probability choice that fits.
 - Highly dependent on order, so conducts many runs with shuffling.

Divide and conquer

- It would be impossible to apply the exhaustive search algorithm to a full set of mappings (e.g., 32k GO–Rhea–EC-Metacyc)
- Also difficult to review resulting relation choices
- Boomer divides the input into "maximal equivalence cliques":
 - Set all mappings to EquivalentTo
 - Merge with ontology and classify with reasoner (disable disjointness logic)
 - Divide mappings into groups defined by resulting equivalence nodes
 - Search for best configuration within each clique independently
- Result for each clique is output as a separate JSON graph for visualization
- Not foolproof; resulting combination of clique results may not be coherent
 - After deciding a logical interpretation for the mapping, differences in modeling approaches between ontologies may remain to be resolved after merging cliques.

GO–Rhea mappings project

- Goal: improve the correctness of mappings between GO catalytic activity terms and Rhea reactions
 - Enable automation of logical definitions (reaction participants) for GO catalytic activities
- Extracted xrefs to Rhea, EC, and Metacyc from GO
- Extracted xrefs to EC and Metacyc from Rhea
- Combined xrefs and assigned probabilities; prefer EquivalentTo (unless GO xref has skos:broadMatch or skos:narrowMatch qualifier)
- Merged ontologies: Gene Ontology, Rhea hierarchy, EC hierarchy
- Result from Boomer: 38 cliques with a GO–Rhea mapping using a non-maximal probability
 - o Issue for each, in GO GitHub repo
- Workflow <u>Makefile</u>

More complex example

- Not always an obvious solution
- Here we can start by focusing on the cross-references around GO:0102822, which has a thin (less preferred) mapping edge
- GO:0102822 is mapped to one Rhea reaction, but grouped here with its subclass reaction.

Future plans for Boomer

- Refine workflow with additional cases
 - Some example workspaces (poorly documented!):
 - GO + Rhea
 - Biolink model relations + Relation Ontology
 - UBERON + EMAPA anatomy
- Explore options for more complex modularization strategies
 - Balance modularization with preference for global coherence
- Applications beyond mapping
 - Boomer can be used to find compatible combinations of any kind of class axioms (subclass, equivalence, disjointness, class and property assertions)
- Command-line interface continues to evolve
 - Plan to add a separate command to output a fully coherent merged ontology (as an alternative to current clique approach)
- Support SSSOM inputs

Thank you!

Software:

- Boomer: <u>https://github.com/INCATools/boomer</u>
 er
- OBOGraphviz: <u>https://github.com/cmungall/obographviz</u>
- ROBOT: http://robot.obolibrary.org
 talk by Rebecca Jackson tomorrow
- Whelk reasoner: https://github.com/balhoff/whelk

(All open source)

Funding:

- NIH 1U01HG009453-01 (INCA)
- NIH 2U41HG002273-17 (Gene Ontology Consortium)

Special thanks to Pascale Gaudet (GO), Harold Drabkin (GO), Anne Morgat (Rhea)