

Arquiteturas Paralelas: máquinas MIMD com memória distribuída

Paulo Sérgio Lopes de Souza pssouza@icmc.usp.br

Universidade de São Paulo / ICMC / SSC — São Carlos Laboratório de Sistemas Distribuídos e Programação Concorrente

MIMD com Memória Distribuída - Multicomputadores

- Máquinas MIMD com memória distribuída
 - Diferentes computadores (ou nós)
 - Interconectados por uma rede de conexão
 - Oferece suporta a interação entre processos

- Nós são unidades independentes e assíncronas
 - Têm CPU, memória local e E/S
 - Múltiplas instruções executam assincronamente sobre dados diferentes.
- Espaços de endereçamento são locais aos processos
 - Processos não acessam memórias de outros processos
 - Interação por primitivas send e receive
- Modelo de programação considera
 - Modelo de memória por troca de mensagens
- Exemplos de arquiteturas
 - Clusters, MPPs (Massively Parallel Processors) e Grids

- Nós formados usualmente por CPUs multicore,
 - Núcleos em um nó compartilham memória e E/S (discos, rede, ou outros)
 - Threads que executam em um mesmo nó podem compartilhar memória
 - Neste caso, no nó, o modelo de memória é compartilhado
 - Combinação dos modelos de memória formam um modelo híbrido
 - Permite explorar a versatilidade das máquinas MIMD
- Características (qualidade) da rede de interconexão
 - Afetam granulação do paralelismo (normalmente é mais alta em clusters)
 - Replicações de redes fornecem redundância e maior vazão
- Projeto do algoritmo paralelo deve ter como foco um trade-off:
 - Maximizar o grau de concorrência e
 - Minimizar sobrecarga de comunicação

Figure 8-36. A generic multicomputer.

- Benefícios (Stallings, 2013):
 - Escalabilidade absoluta:
 - há possibilidade de máquinas com vários nós

- Escalabilidade incremental:
 - novos nós podem ser adicionados

Usam sistemas operacionais e outras ferramentas de software disponíveis

para máquinas SISD

- Questões de projeto dos Sistemas Operacionais de Clusters
 - Gerenciamento de falhas
 - Clusters para alta disponibilidade
 - Oferece alta probabilidade que todos os recursos estejam funcionando
 - Caso haja falha, novas requisições tratadas por outro nó
 - Clusters com tolerância a falhas
 - Garante funcionamento mesmo na presença de falhas
- Redundância garante retorno de requisições não retornadas
 - Failover: recuperação de falhas para outro dispositivo que esteja apto
 - Failback: retorno ao dispositivo original quando este voltar a funcionar
- Escalonamento: é essencial à escalabilidade
 - Políticas e mecanismos de escalonamento distribuem carga de trabalho
 - Balanceamento da carga de trabalho é um objetivo usual

Oops

- Usos da computação paralela sobre máquinas MIMD com memória distribuída
 - Computação paramétrica
 - Algoritmo sequencial executado em paralelo com parâmetros diferentes
 - Compilação para geração automática de paralelismo
 - Compilador gera porções que podem ser executadas em paralelo
 - Aplicações paralelas
 - Programador desenvolve a aplicação para executar na máquina MIMD

- Sistemas básicos para clusters
 - Oferecem suporte ao desenvolvimento e execução de aplicações concorrentes com passagem de mensagens
 - Sistemas operacionais gerenciam cada nó

- Linux é um exemplo
- Permitem interação entre processos locais ou remotos
 - preste atenção na diferença dos modelos de memória
- · Compiladores tradicionais são usuais: C, Fortran, Java
 - Permitem o uso de linguagens conhecidas
 - Bibliotecas possibilitam a geração de processos, comunicação e sincronização dos processos.
- Middlewares oferecem recursos extra de software/hardware para:
 - Ponto de entrada único para processos
 - gerenciamento de submissões (escalonamento e balanceamento da carga), espaço único de processos e migração de processos
 - Interface de usuário padronizada, controle único e pontos de verificação (recuperação de falhas)
 - Espaço único para E/S, hierarquia de sistemas de arquivos e rede virtual única

- Sistemas básicos para clusters:
 - uma visão gráfica, hierárquica e abstrata da gerência do cluster

Figure 17.10 Cluster Computer Architecture [BUYY99a]

Stallings (2013)

Usualmente estão hospedados em racks...

Figure 17.11 Example 100-Gbps Ethernet Configuration for Massive Blade Server Site

... mas não precisam estar...

- Exemplo dos Clusters usados pela Google (Tanenbaum, 2013)
 - Indexar bilhões de páginas e pesquisar a base o mais rápido possível
 - Tratar requisições concorrentes dos usuários 24/7
 - Opção por máquinas simples
 - Grande redundância de hardware, inclusive dos links ópticos
 - Clusters projetados para tolerância a falhas
 - Hardwares que param de funcionar
 - Bugs de software
 - Falta de energia
 - Problemas externos
 - terremotos, ataques, ...
 - Replicação para tratar falhas
 - Previsão de falhas no projeto
 - Manter alta vazão e disponibilidade
 - Otimização da relação custo / benefício

Tanenbaum (2013)

Figure 8-44. A typical Google cluster.

Massively Parallel Processors (MPP)

- MPP são supercomputadores MIMD com memória distribuída como clusters
 - Mas orçados na faixa de milhões de dólares (Tanenbaum, 2013)
 - Usados para problemas que requerem maior desempenho
- Normalmente usam tecnologias escalares/vetoriais já conhecidas e redes proprietárias de alto desempenho (mais eficiência).
- Exemplo: BlueGene (IBM)

Figure 8-38. The BlueGene/P custom processor chip.

Tanenbaum (2013)

Grades (Grids)

- Desafios atuais têm uma escala grande e são interdisciplinares
 - Ciência, engenharias, indústria, meio ambiente, ...
 - Missões à Marte
 - Consórcios para construção aviões, barragens, ...
 - Equipes internacionais trabalhando em novas vacinas
- Necessitam que organizações individuais com seus recursos trabalhem juntas
 - Soma de esforços, recursos e dados para atingirem um objetivo comum
- Grids representam sistemas e tecnologias usadas para conectar computadores isolados geograficamente
 - Grid é usualmente um cluster heterogêneo, fracamente acoplado e internacional
- Fornece uma infraestrutura técnica para que organizações compartilhem um objetivo comum, formando uma organização virtual
 - Flexível, com muitos membros que mudam
 - Dá suporte trabalho colaborativo de diferentes áreas
 - Permite controle sobre os próprios recursos

Grades (Grids)

- Grids têm características multilaterais que consideram seus pares
 - Diferente de modelos já consolidados como cliente-servidor ou peer-to-peer
- Por isso, o desenvolvimento de Grids envolve
 - Novos serviços, ferramentas e protocolos para habilitar o funcionamento dessas organizações virtuais
- Grids precisam de acesso a diferentes recursos
 - Pertencem a organizações distintas com infraestruturas diferentes
 - Organizações decidem o que compartilhar, por quanto tempo e para quem
- No fim, Grids focam em gerir o acesso a recursos compartilhados
 - A gerência pode ser decomposta em camadas

Layer	Function
Application	Applications that share managed resources in controlled ways
Collective	Discovery, brokering, monitoring and control of resource groups
Resource	Secure, managed access to individual resources
Fabric	Physical resources: computers, storage, networks, sensors, programs and data

Figure 8-52. The grid layers.

Grades (Grids)

- Segurança é um aspecto chave para o sucesso dos Grids
 - Credenciais têm um peso importante na segurança
 - Autenticação de credenciais, assinaturas digitais, ...

- Interoperabilidade entre diferentes organizações segue padrões
 - Global Grid Forum gerencia o processo de padronização dos sistemas
 - Framework OGSA (Open Grid Services Architecture)
 - Posiciona vários padrões em desenvolvimento
 - Padrões já consolidados também são usados, como o
 - WSDL (Web Services Definition Language) descrevem serviços OGSA
 - Diferentes categorias de serviços são padronizados:
 - Infraestrutura (comunicação entre recursos)
 - Gerenciamento de recursos (reserva e liberação de recursos)
 - Dados (movimentação e replicação de dados)
 - Contexto (descrição de recursos e políticas de uso)
 - Informação (disponibilidade de recursos)
 - Auto gerenciamento (suporte a uma qualidade de serviço declarada)
 - Segurança (garantir políticas de segurança)
 - Gerenciamento de execução (gerenciar o fluxo de trabalho)

Referências

Stallings, W.; Computer Organization and Architecture: Designing for Performance. Ninth Edition. Pearson. 2013.

Tanenbaum, A. S.; Austin, T.; Structured Computer Organization. Sixth Edition. Pearson. 2013.

Patterson, D. A.; Hennessy, J. L.; Computer Organization and Design: the hardware / software interface. Fith Edition. Elsevier, 2014.

Rauber, T.; Rünger, G.; Prallel Programming for Multicore and Cluster Systems. Second Edition. Springer. 2013.

Material Complementar

Material sobre Consistência de Memória e Coerência de Cache

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://scs.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=694972dd-dac1-4635-8939-b6abe3f99749

https://www.cs.colostate.edu/~cs551/CourseNotes/Consistency/TypesConsistency.html

Arquiteturas Paralelas: máquinas MIMD com memória distribuída

Paulo Sérgio Lopes de Souza pssouza@icmc.usp.br

Universidade de São Paulo / ICMC / SSC – São Carlos Laboratório de Sistemas Distribuídos e Programação Concorrente

