Quantum PS3

Richard Fern

1.	2.7) Time Dependence	2
2.	2.8) Well-defined Observables	4
3.	2.9) Hermiticity	5
4.	2.10) Hermitian Commutators	6
5.	2.11) Hermitian Products	7
6.	2.12) Simultaneous Eigenstates	8
7.	2.13) Mutual Eigenstates	9
8.	2.14) Commutators	11

2.7) Time Dependence

A particle is confined in a potential well such that its allowed energies are $E_n = n^2 \mathcal{E}$, where n = 1, 2, ... is an integer and \mathcal{E} a positive constant. The corresponding energy eigenstates are $|1\rangle, |2\rangle, ..., |n\rangle, ...$ At t = 0 the particle is in the state

$$|\psi(0)\rangle = 0.2 |1\rangle + 0.3 |2\rangle + 0.4 |3\rangle + 0.843 |4\rangle.$$

(a) What is the probability, if the energy is measured at t = 0, of finding a number smaller than $6\mathcal{E}$? [1]

The energies of these states are $\mathcal{E}, 4\mathcal{E}, 9\mathcal{E}$ and $16\mathcal{E}$ so the probability is the mod square of the first two (divided by the normalisation),

$$P(E < 6\mathcal{E}) = 0.1299.$$

(b) What is the mean value and what is the rms deviation of the energy of the particle in the state $|\psi(0)\rangle$? [2]

The average energy is

$$\langle E \rangle = \langle \psi(0) | H | \psi(0) \rangle$$
.

We are told that $H|n\rangle = n^2 \mathcal{E}|n\rangle$ so

$$\langle E \rangle = \sum_{n} |c_n|^2 E_n$$

(assuming $|\psi(0)\rangle$ is normalised) where $c_n = \langle n|\psi(0)\rangle$. Thus,

$$\langle E \rangle = 13.20\mathcal{E}.$$

The expectation of E^2 is then

$$\langle E^2 \rangle = \langle \psi(0) | H^2 | \psi(0) \rangle = \sum_n |c_n|^2 E_n^2 = 196.1 \mathcal{E}^2.$$

Therefore the standard deviation is

$$\sigma = \sqrt{\langle E^2 \rangle - \langle E \rangle^2} = 4.7 \mathcal{E}.$$

(c) Calculate the state vector $|\psi\rangle$ at time t. Do the results found in (a) and (b) for time t remain valid for arbitrary time t? [2]

Each individual state picks up an $e^{-i\frac{E}{\hbar}t}$. Thus,

$$|\psi(t)\rangle = 0.2e^{-i\frac{\mathcal{E}}{\hbar}t}|1\rangle + 0.3e^{-i\frac{4\mathcal{E}}{\hbar}t}|2\rangle + 0.4e^{-i9\frac{\mathcal{E}}{\hbar}t}|3\rangle + 0.843e^{-i16\frac{\mathcal{E}}{\hbar}t}|4\rangle.$$

This doesn't change the results in (a) and (b) as they only required the mod square of the amplitude. This time dependence only adds a phase so nothing changes.

(d) When the energy is measured it turns out to be $16\mathcal{E}$. After the measurement what is the state of the system? What result is obtained if the energy is measured again? [1]

After the measurement,

$$|\psi(t)\rangle = |4\rangle$$
.

The wavefunction has been collapsed so this is the wavefunction for all time.

2.8) Well-defined Observables

A particle moves in the potential $V(\mathbf{x})$ and is known to have energy E_n . (a) Can it have well-defined momentum for some particular $V(\mathbf{x})$? (b) Can the particle simultaneously have well-defined energy and position? [4]

Given that the energy of the system is know the wavefunction must be some eigenstate of the Hamiltonian,

$$H|\psi\rangle = E_n|\psi\rangle$$
.

Can this state have well defined momentum? This would demand that

$$\hat{\boldsymbol{p}}|\psi\rangle = \boldsymbol{p}_n|\psi\rangle$$
.

So consider some $|\psi\rangle$ which is an eigenstate of both H and $\hat{\boldsymbol{p}}$. Then,

$$H\hat{\boldsymbol{p}}|\psi\rangle = E_n\boldsymbol{p}|\psi\rangle = \hat{\boldsymbol{p}}H|\psi\rangle.$$

So for any eigenstate of H to be a state of well-defined momentum we required

$$[H, \hat{\boldsymbol{p}}] = 0$$

which is not true for generic V(x), only if V = constant.

Part (b) is exactly the same but considering \hat{x} as the operator. Thus, we would need

$$[H, \hat{\boldsymbol{x}}] = 0$$

which for any Hamiltonian of the form

$$H = \frac{\hat{\boldsymbol{p}}^2}{2m} + V(\hat{\boldsymbol{x}})$$

cannot be true. So no, the particle can never have well-defined energy and position.

3 2.9) Hermiticity

Which of the following operators are Hermitian, given that \hat{A} and \hat{B} are Hermitian:

$$\hat{A} + \hat{B};$$
 $c\hat{A};$ $\hat{A}\hat{B};$ $\hat{A}\hat{B} + \hat{B}\hat{A}.$

Show that in one dimension, for functions which tend to zero as $|x| \to \infty$, the operator $\frac{\partial}{\partial x}$ is not Hermitian, but $-i\hbar \frac{\partial}{\partial x}$ is. Is $\frac{\partial^2}{\partial x^2}$ Hermitian? [5]

By inspection,

 $\hat{A} + \hat{B}$ is Hermitian,

 $c\hat{A}$ is not necessarily Hermitian (unless $c^* = c$),

 $\hat{A}\hat{B}$ is not necessarily Hermitian,

 $\hat{A}\hat{B} + \hat{B}\hat{A}$ is Hermitian.

For the second part consider what Hermiticity means,

$$\langle \psi | A | \phi \rangle = \langle \psi | A \phi \rangle = \int dx \psi^*(x) A \phi(x)$$

= $\langle A \psi | \phi \rangle = \int dx (A \psi(x))^* \phi(x).$

However, if we take $A = \frac{\partial}{\partial x}$ then

$$\langle \psi | A \phi \rangle = \left[\psi(x) \frac{\partial \phi}{\partial x} \right]_{-\infty}^{\infty} - \int dx \frac{\partial \psi^*}{\partial x} \phi(x)$$

but

$$\langle A\psi|\phi\rangle = \int \mathrm{d}x \left(\frac{\partial\psi}{\partial x}\right)^*\phi(x).$$

Therefore, A cannot be Hermitian.

However, appending an i to it does make it Hermitian as, upon complex conjugation of $A\psi(x)$, we pick up the required minus sign.

Finally, $\frac{\partial^2}{\partial x^2}$ is Hermitian. To see this we integrate by parts twice, which gives two minus signs, which therefore cancel.

2.10) Hermitian Commutators

Given that \hat{A} and \hat{B} are Hermitian operators, show that $i[\hat{A}, \hat{B}]$ is a Hermitian operator. [2]

This is very simple.

$$(i[A, B])^{\dagger} = -i (AB - BA)^{\dagger}$$

$$= -i \left[(AB)^{\dagger} - (BA)^{\dagger} \right]$$

$$= -i \left(B^{\dagger} A^{\dagger} - A^{\dagger} B^{\dagger} \right)$$

$$= i (AB - BA)$$

$$= i[A, B].$$

So it's Hermitian.

5 2.11) Hermitian Products

Given that for any two operators $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$, show that

$$(\hat{A}\hat{B}\hat{C}\hat{D})^{\dagger} = \hat{D}^{\dagger}\hat{C}^{\dagger}\hat{B}^{\dagger}\hat{A}^{\dagger}.$$

[1]

We just plug this in

$$\begin{split} [ABCD]^\dagger &= [(AB)(CD)]^\dagger \\ &= (CD)^\dagger (AB)^\dagger \\ &= D^\dagger C^\dagger B^\dagger A^\dagger. \end{split}$$

Simple.

2.12) Simultaneous Eigenstates

Show that if there is a complete set of mutual eigenkets of the Hermitian operators \hat{A} and \hat{B} , then $[\hat{A}, \hat{B}] = 0$. Explain the physical significance of this result. [3]

If $|n\rangle$ are mutual eigenkets of A and B then

$$A|n\rangle = a_n|n\rangle$$
,

$$B|n\rangle = b_n|n\rangle$$
.

Therefore, consider some general state

$$|\psi\rangle = \sum_{n} \psi_n |n\rangle.$$

Then consider the action of the commutator on this state,

$$[A, B] |\psi\rangle = \sum_{n} \psi_n (AB - BA) |n\rangle$$
$$= \sum_{n} \psi_n (a_n b_n - b_n a_n) |n\rangle = 0.$$

Therefore, [A, B] = 0.

Physically this means that, if two operators A and B commute, then the states of the system can be states of well-defined A and B.

2.13) Mutual Eigenstates

Does it always follow that if a system is an eigenstate of \hat{A} and $[\hat{A}, \hat{B}] = 0$ then the system will be in an eigenstate of \hat{B} ? If not, give a counterexample. [4]

Consider two operators which commute, [A, B] = 0. Now consider an eigenstate of A,

$$A|n\rangle = a_n|n\rangle$$
.

Then consider applying B to this. This will a priori generate some new state, $|\phi\rangle$,

$$B|n\rangle = |\phi\rangle$$
.

Thus, let's consider the following. Given that the operators commute

$$AB |n\rangle = BA |n\rangle$$

 $A |\phi\rangle = Ba_n |n\rangle$
 $A |\phi\rangle = a_n |\phi\rangle$.

Therefore, this new state $|\phi\rangle$ is also an eigenstate of A. How could this have happened? Consider what $B|n\rangle$ could be in general. B is some operator which a priori will mix in a lot of eigenstates

$$B\left|n\right\rangle = \left|\phi\right\rangle = \sum_{n'} b_{n'} \left|n'\right\rangle$$

where each $|n'\rangle$ is an eigenstate of A with eigenvalue $a_{n'}$. Thus, if we know that $A |\phi\rangle = a_n |n\rangle$ then it must be the case that all $b_{n'} = 0$ except for b_n . So we conclude that

$$B|n\rangle = b_n|n\rangle$$

and the eigenstates of A are simultaneously eigenstates of B.

So this is the reverse of the previous proof. There we saw that $|\psi\rangle$ was the eigenstate of two operators A and B and we saw they had to commute for this to be true. Here we have two operators which commute, [A,B]=0, and we see that the eigenstates of A must also be the eigenstates of B. This is automatic. Therefore consider our previous problems where we assumed that eigenstates have definite parity. We knew that [H,P]=0 and so eigenstates of H must also be eigenstates of parity.

However, this is slightly deceptive. The above proof only works if the eigenstates of A are not degenerate. A very similar proof works in the degenerate case but the final conclusion is somewhat different. We just showed that "If A and B commute then the eigenstates of A must be eigenstates of B". In the degenerate case you should find that "If A and B commute then the eigenstates of A can always be made to coincide with the eigenstates of B". This is a statement about the non-uniqueness of degenerate eigenstates (the linear combination of any two is always an eigenstate with the same eigenvalue).

As such, we finally reach the answer to the question; No. The issue is that if A has any degenerate eigenstates then a generic eigenstate of A will not necessarily be an eigenstate of B. For example, consider the free particle Hamiltonian,

$$H = \frac{p^2}{2m},$$

which commutes with p. The eigenstates of H are

$$\psi = Ae^{ikx} + Be^{-ikx}.$$

However,

$$p\psi = \hbar k \left(Ae^{ikx} - Be^{-ikx} \right) \neq \hbar k\psi.$$

8 2.14) Commutators

Show that

(a)
$$[\hat{A}\hat{B}, \hat{C}] = A[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}$$
. [2]

We just write this out,

$$[AB, C] = ABC - CAB$$

$$= ABC - CAB + ACB - ACB$$

$$= A(BC - CB) + (AC - CA)B$$

$$= A[B, C] + [A, C]B.$$

(b) $[\hat{A}\hat{B}\hat{C},\hat{D}] = \hat{A}\hat{B}[\hat{C},\hat{D}] + \hat{A}[\hat{B},\hat{D}]\hat{C} + [\hat{A},\hat{D}]\hat{B}\hat{C}$. Explain the similarity with the rule for differentiating a product. [2]

We use the rule we just derived,

$$[ABC, D] = AB[C, D] + [AB, D]C$$

= $AB[C, D] + A[B, D]C + [A, D]BC$.

Much like differentiation therefore, we have a product rule,

$$\frac{\partial}{\partial x}(ABC) = A'BC + AB'C + ABC'.$$

(c)
$$[\hat{x}^n, \hat{p}] = i\hbar n\hat{x}^{n-1}$$
. [2]

Consider this commutator, using the rule from (a),

$$[x^n, p] = [x, p]x^{n-1} + x[x^{n-1}, p] = i\hbar x^{n-1} + x[x^{n-1}, p].$$

Thus, we have a rule which we can apply to the x^{n-1} commutator,

$$[x^{n}, p] = i\hbar x^{n-1} + x\left(i\hbar x^{n-2} + x[x^{n-2}, p]\right) = 2i\hbar x^{n-1} + x^{2}[x^{n-2}, p].$$

This shows a clear pattern resulting in

$$[x^n, p] = i\hbar n x^{n-1}.$$

(d) $[f(\hat{x}), \hat{p}] = i\hbar \frac{\mathrm{d}f}{\mathrm{d}x}$ for any function f(x). [2]

Here we expand the function,

$$f(x) = \sum_{n} f_n x^n.$$

Thus,

$$[f(x), p] = \left[\sum_{n} f_n x^n, p\right]$$
$$= \sum_{n} f_n [x^n, p]$$
$$= i\hbar \sum_{n} f_n n x^{n-1}.$$

By inspection this is clearly just the derivative,

$$[f(x), p] = i\hbar \frac{\mathrm{d}f}{\mathrm{d}x}.$$