ÍNDICE		
1	Grafos	1
2	Grafos dirigidos	2
3	Isomorfismos y homeomorfismos	3
4	Caminos y conectividad	3
	1. GRAFOS	

DEFINICIÓN 1: Grafo.

Sean V un conjunto finito y A un subconjunto de pares no ordenados de V. Se dice que G=(V,A) es un grafo, al conjunto V se lo denomina vértices de grafo y al conjunto V se lo denomina aristas del grafo. Para V0 V1, se dice que la arista V2 une el vértice V3 con el vértice V5.

Dado un grafo G = (V, A), si e une el vértice u con el vértice v se dice también que e conecta u y v y que u y v son los extremos de e.

Dado un grafo G = (V, A), si para algún $u \in V$ se tiene que e une el vértice v consigo mismo, se dice que e es un lazo. Si un grafo no contiene lazos, se dice que es un grafo simple.

DEFINICIÓN 2.

Sean G = (V, A) un grafo y $u, v \in V$. Se dice que u y v son advacentes en G si existe $e \in A$ tal que e une u con v.

DEFINICIÓN 3.

Sea G=(V,A) un grafo. Para $u\in V$, se define el grado de u, denotado por grad(u), por el número de aristas en A que contienen a u como uno de sus extremos (en caso de que existan lazos, estos cuentan por dos).

TEOREMA 1: Apretón de manos.

Sea G = (V, A) un grafo. Se tiene que

$$\sum_{u \in V} grad(u) = 2|A|.$$

TEOREMA 2.

Todo grafo tiene un número par de vértices de grado impar.

2. GRAFOS DIRIGIDOS

DEFINICIÓN 4: Grafo dirigido.

Sean V un conjunto finito y A un subconjunto de pares ordenados de V. Se dice que G = (V, A) es un grafo dirigido o digrafo, al conjunto V se lo denomina vértices de grafo y al conjunto A se lo denomina arcos del grafo. Para $e \in A$, si e = (u, v), con $u, v \in V$, se dice que el arco e empieza en el vértice u y termina en el vértice v.

A

Dado un grafo dirigido G = (V, A), si e empieza en el vértice u y termina en el vértice v se dice también que v es un sucesor de u y que u y v son los extremos inicial y final de e, respectivamente.

A

Sean G=(V,A) un grafo dirigido y $\mathfrak{u}\in V$. Se denota por $suc(\mathfrak{u})$ al conjunto de todos los sucesores de \mathfrak{u} , es decir,

$$\text{suc}(u) = \{v \in V : (u, v) \in V\}.$$

A

Dado un grafo dirigido G = (V, A), si para algún $u \in V$ se tiene que e empieza y termina en el vértice u, se dice que e es un lazo. Si un grafo dirigido no contiene lazos, se dice que es un grafo simple.

DEFINICIÓN 5.

Sean G=(V,A) un grafo dirigido y $u,v\in V$. Se dice que u y v son advacentes en G si existe $e\in A$ tal que e une u con v o viceversa.

DEFINICIÓN 6.

Sea G = (V, A) un grafo dirigido. Si los arcos o vértices de G se etiquetan con algún tipo de datos, se dice que G es un grafo dirigido etiquetado.

DEFINICIÓN 7.

Sea G=(V,A) un grafo dirigido. Para $u\in V$, se define el grado de salida de u, denotado por $grad_s(u)$, por el número de aristas en A que contienen a u como su extremo inicial. De manera similar, se define el grado de entrada de u, denotado por $grad_e(u)$, por el número de aristas en A que contienen a u como su extremo final.

Dados un grafo dirigido G=(V,A) y $v\in V$, si $grad_s(v)=0$, se dice que v es un sumidero, y si $grad_e(v)=0$, se dice que v es una fuente.

TEOREMA 3.

Sea G = (V, A) un grafo dirigido. La suma de los grados de salida de los vértices de G es igual a la suma de los grados de entrada de los vértices e igual al número de aristas de G, es decir

$$|A| = \sum_{\mathfrak{u} \in V} \mathsf{grad}_{e}(\mathfrak{u}) = \sum_{\mathfrak{u} \in V} \mathsf{grad}_{s}(\mathfrak{u}).$$

3. ISOMORFISMOS Y HOMEOMORFISMOS

DEFINICIÓN 8.

Sea G = (V, A) un grafo. Si $B \subseteq A$ y $U \subseteq V$ son tales que (B, U) es un grafo, entonces se dice que (B, U) es un subgrafo de G.

DEFINICIÓN 9.

Sean $G_1=(V_1,A_1)$ y $G_2=(V_2,A_2)$ dos grafos. Se dice que G_1 y G_2 son isomorfos si existe una función biyectiva $f\colon V_1\to V_2$ tal que $\mathfrak u$ está conectado con $\mathfrak v$ en G_1 si y solo si $f(\mathfrak u)$ está conectado con $f(\mathfrak v)$ en G_2 .

4. CAMINOS Y CONECTIVIDAD

DEFINICIÓN 10: Camino.

Sean G = (V, A) un grafo y $a, b \in V$. Un camino entre a y b es una secuencia

$$C = (v_0, e_1, v_1, e_2, v_2, \dots, e_{n-1}, v_{n-1}, e_n, v_n)$$

tal que $v_0, v_1, \ldots, v_n \in V$, $e_1, \ldots, e_n \in A$, $v_0 = a$, $v_n = b$ y para todo $k \in \{1, 2, \ldots, n\}$, e_k conecta v_{k-1} con v_k . Al número de aristas que contiene el camino se lo denomina longitud del camino y se lo denota por long(C).

A

Dados G = (V, A) un grafo, $a, b \in V$ y α un camino entre a y b, a α también se lo representará únicamente por sus aristas.

DEFINICIÓN 11: Camino cerrado o circuito.

Sean G un grafo y α un camino en G. Se dice que α es cerrado o que es un circuito si su vértice inicial y final coinciden.

DEFINICIÓN 12: Camino simple.

Sean G un grafo y α un camino en G. Se dice que α es simple si todos sus vértices son diferentes.

DEFINICIÓN 13: Recorrido.

Sean G un grafo y α un camino en G. Se dice que α es un recorrido si todas sus aristas son diferentes.

DEFINICIÓN 14: Circuito simple.

Sean G un grafo y α un circuito en G. Se dice que α es un circuito si es un recorrido.

DEFINICIÓN 15: Ciclo.

Sean G un grafo y α un camino en G. Se dice que α es un ciclo si todos sus vértices son diferentes menos el primero y último que son iguales. Un ciclo de longitud k se denomina un k-ciclo.

TEOREMA 4.

Sean G = (V, A) un grafo y $a, b \in V$. Existe un camino entre a y b si y solo si existe un camino simple entre a y b.

DEFINICIÓN 16.

Sea G=(V,A) un grafo. Se dice que G es conexo si para todo $\mathfrak{u},\mathfrak{v}\in V$, existe un camino entre \mathfrak{u} y \mathfrak{v} .

DEFINICIÓN 17.

Sean G=(V,A) un grafo y $\mathfrak{u},\mathfrak{v}\in V$. Se dice que \mathfrak{u} y \mathfrak{v} están conectados si existe un camino entre \mathfrak{u} y \mathfrak{v} .

TEOREMA 5.

Sean G = (V, A) un grafo. La relación "estar conectados" determina una relación de equivalencia.

DEFINICIÓN 18.

Sea G un grafo. A cada clase de equivalencia de G bajo la relación "estar conectados" se la denomina componente conexa de G.

DEFINICIÓN 19: Distancia entre vértices.

Sean G=(V,A) un grafo conexo y $\mathfrak{u},\mathfrak{v}\in V.$ Se define la distancia de \mathfrak{u} a \mathfrak{v} por

 $d(u, v) = min\{long(C) : C \text{ es un camino entre } u \text{ y } v\}.$

DEFINICIÓN 20: Diámetro.

Sea G = (V, A) un grafo conexo. El diámetro de G se define por

 $diam(G) = máx\{d(u,v) : u,v \in V\}.$

TEOREMA 6.

Sea G un grafo con $V=\{\nu_1,\ldots,\nu_n\}$ y matriz de adyacencia $M_G=(\mathfrak{m}_{ij})$. El número de caminos distintos de longitud k de ν_i a ν_j es igual al elemento en la posición $(\mathfrak{i},\mathfrak{j})$ de la matriz M_G^k .