BT3040 - BIOINFORMATICS - Assignment 7

Submitted by Sahana (BE17B038)

Question 1

Algorithm -

- Based on hydrophobicity values (which are stored in a dictionary), a list containing the Hgm values of all residues is created.
- With AA residue on x-axis and Hgm values on y-axis, the Hydrophobicity profile is plotted.
- Depending on whether the Hgm value for a particular residue is higher/lower than the mean Hgm value, a binary list is created where 1 Hydrophobic. 0 Hydrophilic.
- This binary list will help us identify Alpha and Beta strands in the given sequence.
- An alpha strand is identified as a repeating unit of 2 values of Hgm above the mean and 2 values below the mean (axis).
- A beta strand is identified as alternative values of Hgm above and below the mean axis.

Code -

```
import matplotlib.pyplot as plt
import numpy as np
def hydrophobicity profile(seq):
    Hgm = {'A': 13.85, 'D': 11.61, 'C': 15.37, 'E': 11.38, 'F': 13.93,
           'G': 13.34, 'H': 13.82, 'I': 15.28, 'K': 11.58, 'L': 14.13,
           'M': 13.86, 'N': 13.02, 'P': 12.35, 'Q': 12.61, 'R': 13.10,
           'S': 13.39, 'T': 12.70, 'V': 14.56, 'W': 15.48, 'Y': 13.88}
    H val = []
    n = len(seq)
    for i in range(n):
        H val.append(Hgm[seq[i]])
    plt.plot(H val,'-o')
    plt.xlabel('AA residue')
    plt.ylabel('Hydrophobicity values')
    plt.title('Hydrophobicity profile')
    plt.plot(np.mean(H val)*np.ones(n),'r')
    plt.show
    print('The pattern of hydrophobicity values are printed. 1 -
Hydrophobic. 0 - Hydrophilic.\n')
    binary = [0]*n
    for i in range(n):
        if H val[i]>np.mean(H val):
            binary[i]=1
    print(binary)
    return binary
a =
'FDCAEYRSTNIYGYGLYEVSMKPAKNTGIVSSFFTYTGPAHGTQWEIDIEFLGKDTTKVQFNYYTNGVGGHEKV
ISLGFDASKGFHTYAFDWQPGYIKWYVDGVLK'
hydrophobicity profile(a)
```

Output -

The pattern of hydrophobicity values are printed. 1 - Hydrophobic. 0 - Hydrophilic.

Alpha strands -

- Position 9 0, 0, 1, 1 TNIY
- Position 20 1, 1, 0, 0 SKMP
- Position 27 0, 0, 1, 1 TGIV
- Position 38 0, 0, 1, 1, 0, 0 GPAHGT
- Position 51 1, 1, 0, 0 FLGK
- Position 63 1, 1, 0, 0 YYTN
- Position 72 0, 0, 1, 1 EKVI
- Position 81 1, 1, 0, 0, 1, 1 ASKGFH
- Position 94 0, 0, 1, 1 PGYI
- Position 100 1, 1, 0, 0, 1, 1 YVDGVLK

Beta strands - (4 residues or more is only considered)

- Position 4 1, 0, 1, 0, 1, 0 AEYRST
- Position 12 1, 0, 1, 0, 1 YGYGL
- Position 34 1, 0, 1, 0 FTYT
- Position 44 0, 1, 0, 1, 0, 1, 0, 1 QWEIDIEF
- Position 58 0, 1, 0, 1, 0, 1 KVQFNY
- Position 77 1, 0, 1, 0, 1 LGFDA

• Position 90 - 1, 0, 1, 0 - FDWQ

Question 2 -

Algorithm -

- From the previous function, we obtain binary values and Hydrophobicity values.
- We note that there are no alpha strands of length more than 8 residues.
- Hence, amphipathicity of beta strands is calculated as follows. It is the absolute difference between average hydrophobicity values of residues whose values are above the mean value and the average hydrophobicity values of residues whose values are below the mean value.

```
Code -
def amphipathicity(a):
    [binary, H val] = hydrophobicity profile(a) #Binary format
    n=len(a)
    beta = []
    alpha = []
    for i in range(n):
        if binary[i:i+6] == [0,1,0,1,0,1] or binary[i:i+6] == [1,0,1,0,1,0]:
            beta.append(i)
        if binary[i:i+8] == [0,0,1,1,0,0,1,1] or
binary[i:i+8] == [1,1,0,0,1,1,0,0]:
            alpha.append(i)
    amph beta = [0]*len(beta)
    for i in range(0,len(beta)):
        b1 = 0
        b2 = 0
        start = binary[beta[i]]
        for j in range (0,6,2):
            b1+= H val[beta[i]+j]
            b2+= H val[beta[i]+j+1]
        b1=b1/3
        b2=b2/3
        if start ==1:
            amph beta[i] = b1-b2
        else:
            amph beta[i] = b2-b1
    if alpha==[]:
        print('There are no alpha helices of stretch 8 residues.\n')
    if beta==[]:
        print('There are no beta strands')
    else:
        print('Beta strands of length 6 is found at positions:')
        print(beta)
        print('The corresponding amphipathicity values are:')
        print(amph beta)
ISLGFDASKGFHTYAFDWQPGYIKWYVDGVLK'
```

'FDCAEYRSTNIYGYGLYEVSMKPAKNTGIVSSFFTYTGPAHGTQWEIDIEFLGKDTTKVQFNYYTNGVGGHEKV amphipathicity(a)

```
There are no alpha helices of stretch 8 residues.
 Beta strands of length 6 is found at positions:
 [3, 43, 44, 45, 57]
 The corresponding amphipathicity values are:
 [1.31333333333361, 3.47999999999986, 3.889999999997, 3.37333333333295, 1.72000000000000042]
Calculations -
Position 3 - H val = [13.85, 11.38, 13.88, 13.1, 13.39, 12.7]
b1 = (13.85+13.38+13.39)/3 = 13.706666666666669
Position 43 - H val = [12.61, 15.48, 11.38, 15.28, 11.61, 15.28]
b1 = (12.61+11.38+11.61)/3 = 11.8666666666666667
Position 44 - H val = [15.48, 11.38, 15.28, 11.61, 15.28, 11.38]
b2 = (11.38+11.61+11.38)/3 = 11.45666666666669
Position 45 - H val = [11.38, 15.28, 11.61, 15.28, 11.38, 13.93]
b1 = (11.38+11.61+11.38)/3 = 11.45666666666669
amphipathicity of position 45 = |b1-b2| = 3.373333333333333295
Position 57 - H val = [11.58, 14.56, 12.61, 13.93, 13.02, 13.88]
b2 = (14.56+13.93+13.88)/3 = 14.1233333333333333
amphipathicity of position 57 = |b1-b2| = 1.720000000000000042
```

Question 3 -

Algorithm –

- For a specified window length d, Hydrophobicity value of a residue is taken as average of H_val(s) from i-(d/2) to i+(d/2)
- The H_val for remaining residues are from the dictionary itself.
- The Hydrophobicity profile is then plotted.

Code -

```
'M': 13.86, 'N': 13.02, 'P': 12.35, 'Q': 12.61, 'R': 13.10,
       'S': 13.39, 'T': 12.70, 'V': 14.56, 'W': 15.48, 'Y': 13.88}
H val = []
l = int(d/2)
n = len(seq)
for i in range(1):
    H_val.append(Hgm[seq[i]])
for i in range(1, n-1-1):
    a=0
    for j in range (-1,1,1):
        a+=Hgm[seq[i+j]]
    a=a/d
    H_val.append(a)
for i in range(n-1-1,n):
    H val.append(Hgm[seq[i]])
plt.plot(H_val,'-o')
plt.xlabel('AA residue')
plt.ylabel('Hydrophobicity values')
plt.title('Hydrophobicity profile with window length')
plt.plot(np.mean(H val)*np.ones(n),'r')
plt.show
```

a =

'ALLSFERKYRVRGGTLIGGDLFDFWVGPYFVGFFGVSAIFFIFLGVSLIGYAASQGPTWDPFAISINPPDLKYG LGAAPLLEGGFWQAITVCALGAFISWMLREVEISRKLGIGWHVPLAFCVPIFMFCVLQVFRPLLLGSWGHAFPYG ILSHLDWVNNFGYQYLNWHYNPGHMSSVSFLFVNAMALGLHGGLILSVANPGDGDKVKTAEHENQYFRDVVGYSI GALSIHRLGLFLASNIFLTGAFGTIASGPFWTRGWPEWWGWWLDIPFWS'

```
hgm_window(a,9)
hgm_window(a,19)
```

Output -

Window length = 9

Window length = 19

Transmembrane segments -

Since both the profiles (with window lengths 9 and 19) display highly hydrophobic residues for interior and polar residues for the exterior, they are membrane proteins, since there's a mixture of alpha and beta strands.

Question 4 -

(a) $Pattern - S-T-V-[IL](2)-\{DERK\}$

Result - 138 hits in 138 sequences.

Approximate number of expected random matches in $\sim 100'000$ sequences (50'000'000 residues): 212

1NI5-A	3KCU-E	3091-D	3Q7K-K	4RIB-A	5MLQ-B
1Z2M-A	3KCV-A	3092-A	3R66-C	4RIB-B	5TJ5-L
2AL3-A	3KCV-B	3092 - B	3R66-D	4RIC-A	5VOX-c
2P68-A	3KCV-C	3092-C	3RT3-B	4RIC-B	5VOY-c
2P68-B	3KCV-D	3092-D	3SDL-C	4RID-A	5VOZ-c
2PNF-A	3KCV-E	3093-A	3SDL-D	4RID-B	5WOX-A
2PNF-B	3KCV-F	3093 - B	3U7S-A	4RY3-A	6BI8-C
2R9Y-A	3KCV-G	3093-C	3U7S-B	4U7U-A	6BI8-D
2ZZV-A	3KCV-H	3093-D	4C0T-A	4U7U-M	6C6L-M
2ZZV-B	3KCV-I	3094-A	4DRS-A	4XRI-A	6EOJ-A
2ZZW-A	3KCV-J	3094-B	4DRS-B	4XRK-A	6G7D-A
2ZZW-B	3MA8-A	3094-C	4HUK-A	5B18-A	6G80-A
2ZZX-A	3MA8-B	3094-D	4HUL-A	5B18-B	6G80-B
2ZZX-B	3ML0-B	3PE7-A	4HUM-A	5B18-C	6G80-C
2ZZX-C	3NKL-A	3PSE-B	4HUN-A	5B18-D	6G80-M
2ZZX-D	3NKL-B	3Q7K-A	4MHL-A	5C6P-A	6H40-A
3AYF-A	3090-A	3Q7K-B	4QYZ-A	5CD4-I	607T-e
3AYG-A	3090-B	3Q7K-C	4RI8-A	5CD4-U	607U-e

22	2000 0	00000	4550 5	E 0 = -	C 0 1777
3K3W-B	3090-C	3Q7K-D	4RI8-B	5H9E-A	607V-e
3KCU-A	3090-D	3Q7K-E	4RI9-A	5H9F-A	607W-e
3KCU-B	3091-A	3Q7К-Н	4RI9-B	5J44-A	607X-e
3KCU-C	3091 - B	3Q7K-I	4RIA-A	5J44-B	6P0Y-A
3KCU-D	3091-C	3Q7K-J	4RIA-B	5MLQ-A	6P0Y-B

(b) Pattern - [FILV]-Q-x-x-x-[RK]-G-x-x-x-[RK]-x-x-[FILVWY]

Result – 219 hits in 214 sequences.

Approximate number of expected random matches in $\sim 100\,{}^{\circ}000$ sequences (50'000'000 residues): 125

1B7T-A	1SCM-A	2IXE-A	315F-A	3MIL-B	4BYF-C	4R8G-E	5F0P-A	5TBY-B
1BR1-A	1SR6-A	2IXE-D	3I5G-A	3NOU-A	4E50-A	4RU1-A	5JPM-A	5V7X-A
1BR1-C	1T9H-A	2IXF-A	3I5H-A	3N0U-B	4E53-A	4RU1-B	5JPM-D	5X60-G
1BR1-E	1TLV-A	2IXF-B	3I5I-A	3NOU-C	4E53-B	4RU1-C	5JPN-A	6C1D-P
1BR1-G	1VRB-A	2IXF-C	3IBX-A	3PN7-A	4FXG-A	4RU1-D	5JTW-A	6C1G-P
1BR4-A	1VRB-B	2IXF-D	3IBX-D	3PN7-D	4FXG-D	4RU1-E	5JTW-D	6C1H-P
1BR4-C	1VRB-C	2IXG-A	3J04-A	3TS5-A	4FXK-A	4RU1-F	5LPU-A	6EUD-A
1BR4-E	1VRB-D	20S8-A	3J04-D	3TS5-D	4HRE-A	4RU1-G	5LPU-B	6FSA-A
1BR4-G	1W7B-A	20TG-A	3JAX-A	3TUY-A	4HRE-B	4RU1-H	5LPX-A	6H7W-Q
1DFK-A	1W7I-A	2RD3-A	3JAX-B	3TUY-D	4HRE-C	4RU1-I	5LQ0-A	6H7W-R
1DFL-A	1W7J-A	2RD3-D	3JTD-A	3WFN-B	4HRE-D	4RU1-J	5LQ0-B	6HEG-A
1DFL-B	1WDC-A	2W4T-C	3JVT-A	3WFN-C	4K80-A	4RU1-K	5LQ2-A	6J7C-A
1H99-A	1XJL-A	2W4V-C	3KZW-A	3WFN-D	4L79-A	4RU1-L	5LQ2-B	6JXA-A
1I84-S	1XJL-B	2W4W-C	3KZW-B	3WFN-E	4LZX-B	4X9P-A	5M6B-A	6JXC-A
1184-V	2BL0-A	2WFT-A	3KZW-C	3WQC-A	4N18-A	4XAM-A	5М6В-В	
1KK7-A	2DDI-A	2WFT-B	3KZW-D	3WQC-B	4NN2-A	4XAM-B	5M6B-D	
1KK8-A	2DDJ-A	2WG3-C	3KZW-E	3WQD-A	4NN2-B	4ZLK-A	5N69-A	
1KQM-A	2DFS-A	2WG3-D	3KZW-F	3WQD-B	40UA-A	5F0J-A	5N69-B	
1KWO-A	2DFS-M	3DTP-A	3KZW-G	3WQE-A	40UA-B	5F0K-A	5N7D-A	
1L20-A	2EC6-A	3DTP-B	3KZW-H	3WQE-B	4PB3-A	5F0K-B	5N7D-B	
1M45-B	2HYU-A	3HO3-A	3KZW-I	3WQF-A	4PB3-B	5F0K-C	5N7F-A	
1N2D-C	2HYV-A	3HO4-A	3KZW-J	3WQF-B	4PB4-A	5F0K-D	5N7F-B	
10E9-A	2HYW-A	3HO4-B	3KZW-K	3WQG-A	4PB4-B	5F0K-E	5N7G-A	
1QVI-A	2HYW-B	3HO5-A	3KZW-L	3WQG-B	4PB5-A	5F0L-A	5N7G-B	
1S5G-A	2IX7-C	3но5-в	3MIL-A	4BYF-A	4PB5-B	5F0M-A	5TBY-A	

Question 5 -

Algorithm -

- The FASTA file is read.
- The contents of the file is then split into 2 lists, one containing the headers and the other containing the sequences.
- The occurances of the patterns from Question 4 are checked through all sequences from the above list.
- If found, the position and the found pattern is printed. Else, 'Not found!' is printed.

```
def pattern search():
    f = open('D:\Textbook-Sem6\Bioinformatics\Q5.fasta','r') #While testing
this code, please give the relavent address.
    a = ''
    sequences = []
    header = []
    for line in f:
        if line[0]=='>':
            header.append(line)
            sequences.append(a)
            a=''
        else:
            a+=str(line)
    sequences.append(a)
    sequences.pop(0)
    for i in range(len(sequences)):
        sequences[i] = sequences[i].replace('\n','')
    for j in range(len(header)):
        header[i] = header[i].replace('\n','')
    n = len(header)
    a = ['I','L']
    b = ['D', 'E', 'R', 'K']
    c = ['F','I','L','V']
    d = ['R','K']
    e = ['F','I','L','V','W','Y']
    p1 len = 6
    p2 len = 14
    print('Searching for the pattern - "S-T-V-[IL](2)-{DERK}" in the given
sequence. \nPrinting position and the pattern in the sequence.')
    for i in range(n):
        p1 = []
        print(header[i])
        s = sequences[i]
        for i in range(len(s)-p1 len+1):
            if s[i:i+3] == 'STV' and s[i+3] in a and s[i+4] in a and s[i+5]
not in b:
                print(i,s[i:i+p1 len])
                p1.append(s[i:i+p1 len])
        if len(p1) == 0:
            print('Not found!')
    print('\nSearching for the pattern - "[FILV]-Q-x-x-x-[RK]-G-x-x-x-[RK]-
x-x-[FILVWY]" in the given sequence.\nPrinting position and the pattern in
the sequence.')
    for i in range(n):
        p2 = []
        print(header[i])
        s = sequences[i]
        for i in range(len(s)-p2 len+1):
            if s[i] in c and s[i+1]=='Q' and s[i+5] in d and s[i+6]=='G'
and s[i+10] in d and s[i+13] in e:
                print(i,s[i:i+p2 len])
                p2.append(s[i:i+p2 len])
        if len(p2) == 0:
            print('Not found!')
```

```
f.close()
```

pattern search() #Running the function

Output -

```
Searching for the pattern - "S-T-V-[IL](2)-{DERK}" in the given
sequence.
Printing position and the pattern in the sequence.
>1BR1:A|PDBID|CHAIN|SEQUENCE
Not found!
>1B7T:A|PDBID|CHAIN|SEQUENCE
Not found!
>1BR4:A|PDBID|CHAIN|SEQUENCE
Not found!
>1H99:A|PDBID|CHAIN|SEQUENCE
Not found!
>1DFL:B|PDBID|CHAIN|SEQUENCE
Not found!
>1184:S|PDBID|CHAIN|SEQUENCE
Not found!
>1NI5:A|PDBID|CHAIN|SEQUENCE
25 STVLLH
>2P6B:B|PDBID|CHAIN|SEQUENCE
Not found!
>2PNF:B|PDBID|CHAIN|SEQUENCE
31 STVIIT
>2ZZB:B|PDBID|CHAIN|SEQUENCE
Not found!
Searching for the pattern - "[FILV]-Q-x-x-x-[RK]-G-x-x-x-[RK]-x-
x-[FILVWY]" in the given sequence.
Printing position and the pattern in the sequence.
>1BR1:A|PDBID|CHAIN|SEQUENCE
797 FOAOCRGYLARKAF
>1B7T:A|PDBID|CHAIN|SEQUENCE
784 FQAHIRGYLIRKAY
>1BR4:A|PDBID|CHAIN|SEQUENCE
797 FQAQCRGYLARKAF
>1H99:A|PDBID|CHAIN|SEQUENCE
51 IQRNQKGLDIKNAL
>1DFL:B|PDBID|CHAIN|SEQUENCE
780 FOAHIRGYLIRKAY
>1184:S|PDBID|CHAIN|SEQUENCE
```

797 FQAQCRGYLARKAF >1NI5:A|PDBID|CHAIN|SEQUENCE

Not found!

>2P6B:B|PDBID|CHAIN|SEQUENCE

Not found!

>2PNF:B|PDBID|CHAIN|SEQUENCE

Not found!

>2ZZB:B|PDBID|CHAIN|SEQUENCE

Not found!

Question 6 -

Algorithm -

- Download the protein sequences (in FASTA format) of the given UNIPROT IDs from Retrieve ID Mapping at https://www.uniprot.org/uploadlists/
- The search pattern is slight modified as [KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW] to suit the first web browser. From the second one, search motif is [KRHQNST]-x-G-[ILVFMYWAC]-x-[IVLFMYW]
- Paste the FASTA file in the given space and submit your input. The server will output the matches as specified below.

Output -

Summary of results from both the servers for question 6

UNIPROT ID	Server 1	Server 2
P66948	0	0
P0A910	1	1
P06996	1	1
P0A940	2	2
P0A937	0	0
P9WIU5	1	1
P9WHT9	0	0
P03304	5	5
Q66765	5	5
P12296	3	3
Q155Z9	2	2
P17594	5	5

Results from - https://www.bioinformatics.org/sms2/protein_pattern.html

Results for 487 residue sequence "sp|P66948|BEPA_ECOLI Beta-barrel assembly-enhancing protease OS=Escherichia coli (strain K12) OX=83333 GN=bepA PE=1 SV=1" starting "MFRQLKKNLV"

no matches found for this sequence.

Results for 346 residue sequence "sp|POA910|OMPA_ECOLI Outer membrane protein A OS=Escherichia coli (strain K12) OX=83333 GN=ompA PE=1 SV=1" starting "MKKTAIAIAV"

>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=184
end=191
SLGVSYRF

Results for 367 residue sequence "sp|P06996|OMPC_ECOLI Outer membrane porin C OS=Escherichia coli (strain K12) OX=83333 GN=ompC PE=1 SV=1" starting "MKVKVLSLLV"

>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=114
end=121
NYGVVYDV

Results for 810 residue sequence "sp|POA940|BAMA_ECOLI Outer membrane protein assembly factor BamA OS=Escherichia coli (strain K12) OX=83333 GN=bamA PE=1 SV=1" starting "MAMKKLLIAS"

>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=251
end=258
KKGIYVTV

>match number 2 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=769 end=776 SAGIALQW

Results for 113 residue sequence "sp|POA937|BAME_ECOLI Outer membrane protein assembly factor BamE OS=Escherichia coli (strain K12) OX=83333 GN=bamE PE=1 SV=1" starting "MRCKTLTAAA"

no matches found for this sequence.

Results for 326 residue sequence "sp|P9WIU5|ARFA_MYCTU Peptidoglycan-binding protein ArfA OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=arfA PE=1 SV=1" starting "MASKAGLGQT"

>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=266
end=273
SEGINIPL

Results for 291 residue sequence "sp|P9WHT9|PSB_MYCTU Proteasome subunit beta OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=prcB PE=1 SV=1" starting "MTWPLPDRLS"

no matches found for this sequence.

Results for 2290 residue sequence "sp|P03304|POLG_EMCV Genome polyprotein OS=Encephalomyocarditis virus OX=12104 PE=1 SV=1" starting "MATTMEQETC"

```
>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=242
end=249
KTGWRVQV
>match number 2 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=760
end=767
NHGLLVRW
>match number 3 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=921
end=928
HRGLEVRL
>match number 4 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=1756
end=1763
KAGVSVPV
>match number 5 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=2141
end=2148
RAGLYLTY
Results for 2292 residue sequence "sp|Q66765|POLG EMCVR Genome polyprotein
OS=Encephalomyocarditis virus (strain Rueckert) OX=650129 PE=1 SV=1"
starting "MATTMEQETC"
>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=244
end=251
KTGWRVQV
>match number 2 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=762
end=769
NHGLLVRW
>match number 3 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=923
end=930
HRGLEVRL
>match number 4 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=1758
end=1765
KAGVSVPV
>match number 5 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=2143
end = 2150
RAGLYLTY
Results for 2293 residue sequence "sp|P12296|POLG ENMGO Genome polyprotein
OS=Mengo encephalomyocarditis virus OX=12107 PE=1 SV=3" starting
"MATTMEOEIC"
>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=244
end=251
KTGWRVOV
>match number 2 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=1759
end=1766
KAGVSVPV
>match number 3 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=2144
end = 2151
```

RAGLYLTY

Results for 2181 residue sequence "sp|Q155Z9|POLG_SVV1 Genome polyprotein OS=Seneca Valley virus (isolate -/United States/SSV-001/2002) OX=686944 PE=1 SV=1" starting "MQNSHFSFDT"

>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=69
end=76
QLGLDIVY

>match number 2 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=262
end=269
KCGWQVQV

Results for 2292 residue sequence "sp|P17594|POLG_EMCVD Genome polyprotein OS=Encephalomyocarditis virus (strain emc-d diabetogenic) OX=12106 PE=3 SV=2" starting "MATTMEQEIC"

>match number 1 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=244
end=251
KTGWRVQV

>match number 2 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=762
end=769
NHGLLVRW

>match number 3 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=923
end=930
HGGLEIRL

>match number 4 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=1758
end=1765
KAGVSVPV

>match number 5 to "[KRHQNST].G[ILVFMYWAC].[IVLFMYW].[IVLFMYW]" start=2143
end=2150
RAGLYLTY

Result from https://prosite.expasy.org/scanprosite/

Total number of matches: 25 hits in 9 sequences They are - $\!\!\!\!\!$

sp-P0A910-OMPA_ECOLI	184	191	USERPAT1			•	SlGVsYrF
sp-P06996-OMPC_ECOLI	114	121	USERPAT1	•	•	•	NyGVvYdV
sp-P0A940-BAMA_ECOLI sp-P0A940-BAMA_ECOLI	251 769	258 776	USERPAT1 USERPAT1				KkGIyVtV SaGIaLqW
sp-P9WIU5-ARFA_MYCTU	266	273	USERPAT1	•		•	SeGInIpL
sp-P03304-POLG_EMCV sp-P03304-POLG_EMCV sp-P03304-POLG_EMCV sp-P03304-POLG_EMCV sp-P03304-POLG_EMCV	242 760 921 1756 2141	249 767 928 1763 2148	USERPAT1 USERPAT1 USERPAT1 USERPAT1 USERPAT1		· · · ·	· · · ·	KtGWrVqV NhGLlVrW HrGLeVrL KaGVsVpV RaGLyLtY
sp-Q66765-POLG_EMCVR sp-Q66765-POLG_EMCVR	244 762	251 769	USERPAT1 USERPAT1				KtGWrVqV NhGLlVrW

sp-Q66765-POLG_EMCVR	923	930	USERPAT1		•		HrGLeVrL
sp-Q66765-POLG_EMCVR	1758	1765	USERPAT1				KaGVsVpV
sp-Q66765-POLG_EMCVR	2143	2150	USERPAT1	•	•	•	RaGLyLtY
sp-P12296-POLG_ENMGO	244	251	USERPAT1		•		KtGWrVqV
sp-P12296-POLG_ENMGO	1759	1766	USERPAT1		•		KaGVsVpV
sp-P12296-POLG_ENMGO	2144	2151	USERPAT1	•	•	•	RaGLyLtY
sp-Q155Z9-POLG_SVV1	69	76	USERPAT1				QlGLdIvY
sp-Q155Z9-POLG_SVV1	262	269	USERPAT1	•	•	•	KcGWqVqV
sp-P17594-POLG_EMCVD	244	251	USERPAT1				KtGWrVqV
sp-P17594-POLG_EMCVD	762	769	USERPAT1		•		NhGLlVrW
sp-P17594-POLG EMCVD	923	930	USERPAT1		•		HgGLeIrL
sp-P17594-POLG EMCVD	1758	1765	USERPAT1		•		KaGVsVpV
sp-P17594-POLG_EMCVD	2143	2150	USERPAT1	•	•	•	RaGLyLtY