Worksheet 9

December 2, 2022

1. Prove that for $1 \le k \le n$,

$$(i) <\!\! a_0,\, a_1,\, \ldots\,,\, a_n\!\!> \, = \, <\!\! a_0,\, a_1,\, \ldots\,, a_{k\text{-}1}, <\!\! a_k,\, a_{k\text{+}1},\, \ldots\,,\, a_n\!\!> >,$$

Hint: Use Induction on the number of terms in the innermost continued fraction on the right hand side $\langle a_k, a_{k+1}, \dots, a_n \rangle$.

(ii) Use part(i) to prove that:

$$\langle a_0, a_1, \dots, a_n \rangle = a_0 + \frac{1}{\langle a_1, \dots, a_n \rangle}$$

- 2. Convert each of the following into finite simple continued fractions
 - (i) 0.23
 - $(ii) \frac{233}{177}$
- 3. Find $\frac{p}{q}$ if $\frac{p}{q} = [3, 7, 15, 1]$. Convert $\frac{p}{q}$ to a decimal and compare with the value of π .
- 4. (i) Writing the simple continued fraction of proper fractions. Ex. $\frac{29}{67}$.

$$\frac{29}{67} = [0,2,3,4,2]$$

$$\frac{29}{67} = [a_1,a_2,a_3,a_4,a_5]$$

$$0+ \frac{1}{2+\frac{1}{3+\frac{1}{2}}}$$

$$\frac{8}{1} = \frac{2}{2} = a_1$$

$$\frac{29}{29} = [0,2,3,4,2]$$

$$\frac{29}{29} = [0,2,3,4,2]$$

$$\frac{9}{29} = a_2$$

$$\frac{27}{2} = a_3$$

$$\frac{27}{2} = a_4$$

$$\frac{8}{1} = a_4$$

$$\frac{2}{0}$$

- (ii) Write the continued fraction expansion for $\frac{67}{29}$.
- (iii) Compare (i) & (ii) above to conclude a general result for the relation between the continued fraction of

$$\frac{p}{q}$$
& $\frac{q}{p}$, where p>q.