UNIVERSITE ASSANE SECK DE ZIGUINCHOR

Examen d'Architecture des Ordinateurs : Session Normale

Durée: 3h00mn Documents non autorisés

Partie 1: Circuits combinatoires (10points)

Exercice 1:

Dans la plupart des transmissions dans un réseau, les bits à transmettre se présentment en parallèle et sont transmis en série. Comme le montre le schéma ci-dessous, l'émetteur passe par le Circuit combinatoire 1 pour transmettre en série un octet bit par bit via (E_0,E_1,E_2,E_3) . De même que l'émetteur, le récepteur les reçoit bit par bit par l'intermédiaire d'un Circuit combinatoire 2 et les range sur sur (S_0,S_1,S_2,S_3)

- 1) Quels circuits combinatoires peuvent jouent respectivement les fonctions de Circuit combinatoire 1 et Circuit Combintoire 2 du schéma. (2points)

 Multiplexeur-Démultiplexeur (voir cours)
- 2) Pour chaque circuit, donner sa table de vérité, ses équations booléennes et faire un schéma détaillé de l'ensemble Circuit combinatoire 1 lié à Circuit combinatoire 1. (6points)

 Voir schéma ci-dessous et support de cours pour les tables de vérité et equations booléennes.
- **3)**Tester le circuit par la transmission du 2ème bit sur E₂ jusqu'à sa reception sur S₂. (2point Voir schéma ci-dessous

Partie 2: Circuits séquentiels (10points)

Exercice 3:

Pour chacun des circuits séquentiels suivants, donner sa table de vérité (5points)

Н	S	R	Q _(t)	$ar{\mathrm{Q}}_{ ext{(t)}}$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	0
1	1	0	0	1
1	1	1	$Q_{(t-1)}$	$\bar{\mathrm{Q}}_{(t-1)}$
	Fi			

Н	S	R	Q _(t)	$\bar{Q}_{(t)}$
-	0	0	0	0
_	0	1	0	1
-	1	0	1	0
-	1	1	Q _(t-1)	$\bar{Q}_{(t-1)}$
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0
Figure3				

Н	S	R	Q _(t)	$\bar{Q}_{(t)}$	
	0	0	1	1	
\downarrow	0	1	1	1	
1	1	0	1	1	
\downarrow	1	1	1	1	
-	0	0	$Q_{(t-1)}$	$\bar{Q}_{(t-1)}$	
_	0	1	0	1	
-	1	0	1	0	
-	1	1	1	1	
	Fig				

Н	S	R	Q _(t)	$\bar{Q}_{(t)}$	
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	0	0	
1	0	0	Q _(t-1)	Ō (t-1)	
1	0	1	1	0	
1	1	0	0	1	
1	1	1	0	0	
Figure4					

Exercice 4:

Soit le circuit suivant:

1) Donner sa table de vérité. (2points)

Н	A	В	Q(t)
1	0	0	$Q_{(t-1)}$
1	0	1	1
1	1	0	0
1	1	1	Ō (t-1)

2) Remplir le chronogramme (2points)

Voir chronogramme

3) Fonctionne t-il comme une bascule? Si oui, donner la bascule. Comme JK(1points)

