No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

91261

Level 2 Mathematics and Statistics, 2016 91261 Apply algebraic methods in solving problems

KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

9.30 a.m. Thursday 24 November 2016 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Apply algebraic methods in solving problems.	Apply algebraic methods, using relational thinking, in solving problems.	Apply algebraic methods, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Formulae Sheet L2-MATHF.

Show ALL working.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

You are required to show algebraic working in this paper. Guess-and-check methods and correct answer(s) only will generally limit grades to Achievement.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL 14

ASSESSOR'S USE ONLY

(a) Simplify $\left(\frac{3b}{c^2}\right)^{-4}$ leaving your answer with positive indices.

(b) Write $x^2 - 8x + 10$ in the form $(x - p)^2 + q$.

(c) Show that the solutions of the equation $x^2 + x - 56 = 0$ are four times the solutions of the equation $4x^2 + x - 14 = 0$.

(ii) Find the relationship between the solutions of the equation $dx^2 + ex + f = 0$ and the solutions of the equation $x^2 + ex + df = 0$, where d, e, and f are real numbers.

the product of the voots is a times by

1	$ax^2 + bx + c = 0$ has solutions $-\frac{1}{2}$ and $\frac{2}{3}$.
ind a possible set of values fo	or a , b , and c .
(2×45)(2×G	F2)
$6x^2 + x - 2$	Vion
a = 68	17
h = 1	
c = -2 (con)	
4	
ind nositive integer value(s) f	for k so that the quadratic equation
$x^2 + 4kx + (2k^2 + 3k - 11) = 0$) has real rational solutions.
ustify your answer.	
1 b2 - Hac M	
16k2-	$8\%(2k^2+3k-11) \ge 0$
16 k2 - 16 k2	#24K+88 1>0
211k + 88 >	0
88> 211k	discriminant
V < 3 =	because if the this
$k \leq 3\frac{3}{3}$	because if # the is
$k \leq 3\frac{2}{3}$	because if the this is
$k \leq 3\frac{2}{3}$	because if # the is
$k \leq 3\frac{2}{3}$	because if the this is
$k \leq 3\frac{2}{3}$	because if the this is
$k \leq 3\frac{2}{3}$	because if the this is
$k \leq 3\frac{2}{3}$	because if the this is
$k \leq 3\frac{2}{3}$	because if the this is
$k \leq 3\frac{2}{3}$	because if the this is
$k \leq 3\frac{2}{3}$	because if the this is

QUESTION TWO

Find the discriminant of the quadratic equation $x^2 = 10x + 3$. (a)

X^2	*******	10	×	<i></i>	3	=	(
102		12		· (8	38	3)/	

X 10 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
2	
$10^2 - 12 = (88)_4$	
	······································

(b)

(c) Marie buys a new car for \$24990.

The car's value decreases continuously by 12% each year.

The value of the car, \$P, t years after she first bought it, can be modelled by a function of the form $P = A(r)^t$.

How long will it take for the value of the car to halve?

(d) (i) Solve the equation $\log_8 x = \frac{2}{3}$.

x=4,

· p

(ii) Solve the equation $6(\log_8 x)^2 + 2\log_8 x - 4 = 0$.

 $\frac{make \log_8 x = u}{6u^2 + 2u - 4 = 0}$

x = 4 or x = 0.25/

The triangular garden has sides with lengths in the ratio 3:4:5.

The path is 1 m wide.

At each corner of the garden, the path is a sector (part) of a circle with a radius of 1 m. The difference between **twice** the **total** area of the path and the area of the garden is 2π m².

Find the length of the longest side of the garden.

(Area of circle = πr^2)

	(Thou of one)
	Area of path = 1 + path+c
	Brea of garden = 12x b x 1/2
2/	
2	H+ a+b+c) 2H = 2xaxb
	1 472 + 4 Ta 4 4 Th 4 To = 2 gxb
	4 TC = 2 gb + 4 Tg + 4 Tb + 4 Tc
	CARAMANA /
	C= ab , a+b+ m
	$C = ab + a + b + \mathcal{X}$
Are	ea of garden = 3x \$4x x = 6x1
	a of path = 1 + 3x + 4x + 5x
,,,,,	77 + 3x + 4x + 5x = 6x BAGA
	1 " 1 3x - 2 T 1
	$\Lambda X = 0.34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 $
	Longest side is 5x
	Longest side & = (1.7)

M6

QUESTION THREE

(a) Where would the graph of $y = 12x^2 - x - 6$ cut the x-axis?

At $x = \frac{3}{4}$ or	-2
-------------------------	----

ly .

(b) For what value(s) of x does $\log_x(216) = 3$?

•••
x = 6
,

(c) Rearrange the following formula to make x the subject: $\frac{4x}{5} = \frac{y(x+3)}{2}$.

Question Three continues on the following page.

(d) Solve the equation $9^{8n+6} = 27^{n^2-1} \times 3^{1-3n}$.

(e) A symmetrical bridge has its central cable in the shape of a parabola, as shown in the diagram below.

The towers supporting the cable are each 15 m high and 40 m apart.

At the point midway between the towers, the height of the cable above the road is 3 m.

A vertical post (shown dotted in the diagram) is placed 10 m from the centre of the bridge and just touches the cable.

(i) Use algebra to show that the post is 6 m high. $(20, 40)_{A}$ (ii) Use algebra to show that the post is 6 m high. $(20, 40)_{A}$

(ii) The length of the bridge AB is 60 m.

The outside cables are also parabolic and symmetrical in shape, and touch the road at their vertices A and B.

Find the distance, CD, between the two parabolas at a height of 6 m above the road (the distance CD is shown in the diagram).

(the distance CD is snown in the diagram).
1	$x^{2} + bx + 0$ substitute in (-10, 15) $x^{2} + 8.5x$ set $x + b = 87$
1	v2, 9 E. Sept x to 6 - 87
A	X + 8.5X / SO / N / O = 8 /
٠	wood of well ser
_	
~~	
-	
-	
~	
-	· ·
-	

Annotated Exemplar Template

Low Merit exemplar 2016

Sub	ject:	Math	ematics	Standard:	91261	Total score:	14
Q		rade core	Annotation				
			1a Power correctly a	oplied but simpli	fication incomp	olete	
			1ci Solutions to both	equations found	, relationship n	ot stated or shown	
1	M5		•	s, no reference a	•	um and product of roots action is being referred to	
			1d Incorrect quadrati	c formed, values	for a, b and c	stated were consistent	
			1e Correct substitution values which may pro			in solution for k. No inte	ger
			2a Incorrectly calcula	ted discriminant			
			2b No shown applica	tion of log rules,	incorrect answ	er	
			2c Equation correctly	formed and solv	ed using logs v	vith answer in context	
2	M6	M6	2dii Correct quadration—no evidence of the	-		ution to original equatio	on found
			2e Incorrect equation no evidence of how t			ic formed for difference	of areas,
			3c Attempted to mak	e y the subject			
	А3		3d Application of log formed nor solved.	rules incorrect w	ith the multipl	ication of terms, no qua	dratic
3			3ei Incomplete equat	ion formed			
			3eii Equation for seco	ond parabola inc	omplete.		

2

SUPERVISOR'S USE ONLY

91261

Level 2 Mathematics and Statistics, 2016 91261 Apply algebraic methods in solving problems

9.30 a.m. Thursday 24 November 2016 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Apply algebraic methods in solving problems.	Apply algebraic methods, using relational thinking, in solving problems.	Apply algebraic methods, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Formulae Sheet L2-MATHF.

Show ALL working.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

You are required to show algebraic working in this paper. Guess-and-check methods and correct answer(s) only will generally limit grades to Achievement.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL 19

QUESTION ONE

ASSESSOR'S

leaving your answer with positive indices. (a)

#N₽

- Write $x^2 8x + 10$ in the form $(x p)^2 + q$. $\frac{\chi^{2}-8\chi+10=(\chi)(\chi)}{(\chi-p)^{2}+q=\chi^{2}-p\chi-p\chi+p^{2}+q}$ $= \chi^2 + -2px + p^2 + q$
- Show that the solutions of the equation $x^2 + x 56 = 0$ are four times the solutions of the (c) (i) equation $4x^2 + x - 14 = 0$. $\chi = \frac{-b \pm \sqrt{b^3 - 4a^2}}{2a}$

Find the relationship between the solutions of the equation $dx^2 + ex + f = 0$ and the (ii)

A quadratic equation of the form $ax^2 + bx + c = 0$ has solutions $-\frac{1}{2}$ and $\frac{2}{3}$. (d)

Find a possible set of values for a, b, and c.

$$x = -\frac{1}{2}$$
 or $x = \frac{3}{3}$

$$2\chi = -1 \qquad 3x = 2$$

$$3x = 2$$

$$\frac{2x+1)(3x-2)=0}{(2x+1)(3x-2)=0}$$

$$\frac{6x^2 - 4x + 3x - 2 = 0}{6x^2 - x - 2 = 0}$$

$$6x^{2} - x - 2 = 0$$

$$a = 6 \ b = -1 \ (= -2)$$

Find positive integer value(s) for k so that the quadratic equation (e) $2x^2 + 4kx + (2k^2 + 3k - 11) = 0$ has real rational solutions.

Justify your answer.

$$a = 2$$
 $b = 4k$ $c = 2k^2 + 3k - 11$

$$\frac{(4k)^2 - 4(2)(2k^2 + 3k - 11) = 0}{(4k)^2 - 4(2)(2k^2 + 3k - 11) = 0}$$

$$(6k^2 - 8(2k^2 + 3k - 11) = 0$$

$$16k^2 - 16k^2 + 24k - \#88 = 0$$

QUESTION TWO

ASSESSOR'S USE ONLY

(a) Find the discriminant of the quadratic equation $x^2 = 10x + 3$.

$$b^2 - 4ac = (10)^2 - 4 \times 3$$

discriminant is (38)

(b) Simplify $\frac{4\log(u^3)}{\log u}$.

<u>log u¹²</u> = <u>log u + log u''</u> <u>log u</u> <u>log u</u>

		U	
.40.		>	
-/-	12	111	
7	(69	4 /	
		-/-/-	_
`			

(c) Marie buys a new car for \$24990.

The car's value decreases continuously by 12% each year.

The value of the car, P, t years after she first bought it, can be modelled by a function of the form $P = A(r)^t$.

How long will it take for the value of the car to halve?

12425-2420

12495 = 24990 x 0.88t

0.5 = 0.88 t

$$\log 0.5 = t \log 0.88$$

$$t = \frac{\log 0.5}{\log 0.88}$$

It will take Brazess

& about 5.4 years, or about 5 years and 5 months

for the value to halve,

(d) (i) Solve the equation $\log_8 x = \frac{2}{3}$.

 $\begin{cases}
\frac{2}{3} & z \\
2
\end{cases}$

2C = 4

(ii) Solve the equation $6(\log_8 x)^2 + 2\log_8 x - 4 = 0$.

let 10g 8 x be x

 $6\pi^2 + 2\pi - 4 = 0$

9C = 2/3 , -1

The triangular garden has sides with lengths in the ratio 3:4:5.

The path is 1 m wide.

At each corner of the garden, the path is a sector (part) of a circle with a radius of 1 m.

The difference between twice the total area of the path and the area of the garden is 2π m².

Find the length of the longest side of the garden.

(Area of circle = πr^2) $A = \pi r^2$ let area of path be p, area of garden be q $A = \pi \times 1^2$ $2p - q = 2\pi$ $A = \pi$ The area of the path corners $p = \frac{2\pi + q}{2}$ add up to $\pi m^2 = 3 \cdot 14 m^2 (3sf)$ Let area of non circular paths be q $q = p - 3 \cdot 14$ $p = q + 3 \cdot 14$ $q = \frac{q}{2} + \frac{3 \cdot 14}{3 \cdot 14}$ $q = \frac{q}{2} + \frac{3 \cdot 14}{3 \cdot 14}$ $q = \frac{q}{2} + \frac{3 \cdot 14}{3 \cdot 14}$

ASSESSOR'S USE ONLY

ASSESSOR'S USE ONLY

QUESTION THREE

(a) Where would the graph of $y = 12x^2 - x - 6$ cut the x-axis?

() =	12x2+21-6
	1 ± 12 - 4 × 12 × -6
<i>X</i> -	24
	\

 $=0.75, -\frac{2}{3}$

at $x = \frac{3}{4}$ and $x = \frac{-2}{3}$

(b) For what value(s) of x does $\log_{x}(216) = 3$?

 $x^3 = 216$

 $\chi = \sqrt[3]{216}$

x=6 when $\log_{30}(216)=3$

(c) Rearrange the following formula to make x the subject: $\frac{4x}{5} = \frac{y(x+3)}{2}$.

2(4x) = 5(yx + 3y)

8x = 5yx + 15y

8x-5yx=15y

x (8-5y) = 15y

x = 18y

Question Three continues on the following page.

(d) Solve the equation $9^{8n+6} = 27^{n^2-1} \times 3^{1-3n}$

(e) A symmetrical bridge has its central cable in the shape of a parabola, as shown in the diagram below.

The towers supporting the cable are each 15 m high and 40 m apart.

At the point midway between the towers, the height of the cable above the road is 3 m.

A vertical post (shown dotted in the diagram) is placed 10 m from the centre of the bridge and just touches the cable.

(i) Use algebra to show that the post is 6 m high.

(ii) The length of the bridge AB is 60 m.

The outside cables are also parabolic and symmetrical in shape, and touch the road at their vertices A and B.

Find the distance, CD, between the two parabolas at a height of 6 m above the road (the distance CD is shown in the diagram).

Equation of centre cable, as previously calculated, is

090000000000000000000000000000000000000	
y=0.03 x (x-40) and C	is at point (30, -9)
Egn of outside cable	So dist between Candtower is
$y = \alpha \times (x - 20)$	to m
$-15 = a \times 10 \times (10-20)$	dist between D and tower is
-15 = 10a × -10	3-675 m (3 dp)
a = 0.15	total distance between Cand D
so eqn is y=0-15x (x-20)	is 13-675m (3dp)
D is at $y=-9$	
-9 = 0.15x(x-20)	
0 = 0.15x2 - 603x +9	
2 = 403 + 10032-4×0.15×9 = 3.67	5 or 16.324

The central calde

The outside cables

Annotated Exemplar Template

Merit exemplar 2016

Subj	ect: Ma	thematics	Standard:	91261	Total score:	19	
Q	Grade score	Annotation					
	M6	1ci Solutions to bot 1cii Only one equat 1d Quadratic forme 1e Correct substitut	1a Power correctly applied and expression simplified 1ci Solutions to both equations found and relationship shown numerically 1cii Only one equation formed correctly 1d Quadratic formed and correct values for a, b and c stated 1e Correct substitution into discriminant, no inequality in solution for k. No integer values which provide real rational solutions.				
2	M6	2b Incorrect applica 2c Equation correct 2dii Correct quadra	2a Incorrectly calculated discriminant 2b Incorrect application of log rules 2c Equation correctly formed and solved using logs with answer in context 2dii Correct quadratic with solutions, solutions to original equation not found 2e No application of ratios, no quadratic formed for difference of areas.				
3	E7	3d Correct applicati	3c Terms with x gathered to one side, equation given with x as subject 3d Correct application of log rules, no quadratic formed. 3ei Equation formed and evidence of correct post height 3eii Equation for second parabola formed and solution for y = -9 used to determine length CD.				