Единый государственный экзамен по ИНФОРМАТИКЕ и ИКТ

Инструкция по выполнению работы

Экзаменационная работа состоит из 27 заданий с кратким ответом, выполняемых с помощью компьютера.

На выполнение экзаменационной работы по информатике и ИКТ отводится 3 часа 55 минут (235 минут).

Экзаменационная работа выполняется с помощью специализированного программного обеспечения, предназначенного для проведения экзамена в компьютерной форме. При выполнении заданий Вам будут доступны на протяжении всего экзамена текстовый редактор, редактор электронных таблиц, системы программирования. Расположение указанного программного обеспечения на компьютере и каталог для создания электронных файлов при выполнении заданий Вам укажет организатор в аудитории.

На протяжении сдачи экзамена доступ к сети Интернет запрещён.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

В экзаменационных заданиях используются следующие соглашения.

1. Обозначения для логических связок (операций):

Вариант 16112020

- а) отрицание (инверсия, логическое НЕ) обозначается ¬ (например, ¬А);
- b) конъюнкция (логическое умножение, логическое И) обозначается \land (например, $A \land B$) либо & (например, A & B);
- с) дизьюнкция (логическое сложение, логическое ИЛИ) обозначается \lor (например, $A \lor B$) либо | (например, $A \lor B$);
- d) следование (импликация) обозначается \rightarrow (например, A \rightarrow B);
- е) тождество обозначается \equiv (например, $A \equiv B$). Выражение $A \equiv B$ истинно тогда и только тогда, когда значения A и B совпадают (либо они оба истинны, либо они оба ложны);
- f) символ 1 используется для обозначения истины (истинного высказывания); символ 0 для обозначения лжи (ложного высказывания).
- 2. Два логических выражения, содержащих переменные, называются равносильными (эквивалентными), если значения этих выражений совпадают при любых значениях переменных. Так, выражения $A \to B$ и ($\neg A$) $\lor B$ равносильны, а $A \lor B$ и $A \land B$ неравносильны (значения выражений разные, например, при A = 1, B = 0).
- 3. Приоритеты логических операций: инверсия (отрицание), конъюнкция (логическое умножение), дизъюнкция (логическое сложение), импликация (следование), тождество. Таким образом, $\neg A \land B \lor C \land D$ означает то же, что и (($\neg A$) \land B) \lor ($C \land D$).

Возможна запись $A \land B \land C$ вместо $(A \land B) \land C$. То же относится и к дизьюнкции: возможна запись $A \lor B \lor C$ вместо $(A \lor B) \lor C$.

4. Обозначения Мбайт и Кбайт используются в традиционном для информатики смысле – как обозначения единиц измерения, чьё соотношение с единицей «байт» выражается степенью двойки.

На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути между пунктами Б и Д. Передвигаться можно только по указанным дорогам.

	П1	П2	П3	П4	П5	П6	П7
П1		40		15			
П2	40			35		50	
П3					10	65	8
П4	15	35				22	33
П5			10			50	
П6		50	65	22	50		40
П7			8	33		40	

Ответ:				

] Логическая функция F задаётся выражением ($x \to y \land \neg z$) \lor w. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z,

?	?	?	?	F
		1	0	0
0			1	0
1		1		0

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Функция задана выражением $\neg x \lor y$, зависящим от двух переменных,

а фрагмент таблицы имеет следующий вид.

		$\neg x \lor y$
0	1	0

В этом случае первому столбцу соответствует переменная y, а второму столбцу — переменная x. В ответе следует написать yx.

Ответ:		
OIDCI.		

В фрагменте базы данных представлены сведения о родственных отношениях. На основании приведенных данных определите, сколько детей родилось, когда их матерям было более 24 лет, а отцам — менее 26 лет?

Таблина 1

таолица т			
Фамилия_И.О.	Пол	Год	
		рожд.	
Ковач Л.П.	Ж	1941	
Данзас К.К.	M	1942	
Павлова В.А.	Ж	1978	
Лесных Л.А.	Ж	1991	
Данзас Е.Ф.	Ж	1972	
Ларина Т.Д.	Ж	1989	
Данзас И.К.	M	1970	
Данзас Е.К.	Ж	1966	
Лесных А.П.	M	1967	
Данзас Т.И.	Ж	1999	
Данзас П.И.	M	1999	
Гиппиус З.А.	Ж	1943	
Петрова С.А.	Ж	1989	
Лесных П.А.	M	1996	
	Фамилия_И.О. Ковач Л.П. Данзас К.К. Павлова В.А. Лесных Л.А. Данзас Е.Ф. Ларина Т.Д. Данзас И.К. Данзас Е.К. Лесных А.П. Данзас Т.И. Данзас П.И. Гиппиус З.А. Петрова С.А.	Фамилия_И.О. Пол Ковач Л.П. Ж Данзас К.К. М Павлова В.А. Ж Лесных Л.А. Ж Данзас Е.Ф. Ж Ларина Т.Д. Ж Данзас И.К. М Данзас Е.К. Ж Лесных А.П. М Данзас Т.И. Ж Данзас П.И. М Гиппиус З.А. Ж Петрова С.А. Ж	

Таблица 2

ID_Родителя	ID_Ребенка
2094	2045
2115	2045
2011	2083
2012	2083
2011	2094
2012	2094
2056	2140
2083	2140
2056	2162
2083	2162
2094	2186
2115	2186
2094	2201
2115	2201

Ответ:	
	_

4	По каналу связи передаются сообщения, содержащие только шесть букв: A, Б, B, Д, O, Т. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: $\mathrm{E}-010,\mathrm{B}-$
	011. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ВОДООТВОД?
	Ответ:

- 5 Автомат обрабатывает натуральное число N (0≤N≤255) по следующему алгоритму:
 - 1) Строится восьми битная двоичная запись числа N.
 - 2) Удаляются средние 4 цифры.
 - 3) Полученное число переводится в десятичную запись и выводится на экран.

Какое наибольшее число, меньшее 110, после обработки автоматом даёт результат 7?

Ответ:

7

6 Определите, при каком наименьшем целом введённом значении переменной d программа выведет число 192.

а программа выведет число 192.	
C++	Паскаль
<pre>#include <iostream></iostream></pre>	var s, n, d: integer;
using namespace std;	begin
<pre>int main() {</pre>	readln (d);
int d, $s = 0$, $n = 0$;	s := 0;
cin >> d;	n := 0;
while (n < 200) {	while n < 200 do
s = s + 64;	begin
n = n + d;	s := s + 64;
}	n := n + d
cout << s << endl;	end;
return 0;	writeln(s)
}	end.
Python	Алгоритмический язык
<pre>Python d = int(input())</pre>	Алгоритмический язык алг
	*
d = int(input())	алг
d = int(input()) s = 0	алг нач цел n, s, d ввод d
<pre>d = int(input()) s = 0 n = 0</pre>	алг нач цел n, s, d ввод d n := 80
<pre>d = int(input()) s = 0 n = 0 while n < 200:</pre>	алг нач цел n, s, d ввод d
<pre>d = int(input()) s = 0 n = 0 while n < 200: s = s + 64</pre>	алг нач цел n, s, d ввод d n := 80
<pre>d = int(input()) s = 0 n = 0 while n < 200: s = s + 64 n = n + d</pre>	алг нач <u>цел</u> n, s, d ввод d n := 80 s := 0
<pre>d = int(input()) s = 0 n = 0 while n < 200: s = s + 64 n = n + d</pre>	алг нач цел n, s, d ввод d n := 80 s := 0 нц пока n < 200
<pre>d = int(input()) s = 0 n = 0 while n < 200: s = s + 64 n = n + d</pre>	алг нач <u>цел</u> n, s, d <u>ввод</u> d n := 80 s := 0 нц <u>пока</u> n < 200 s := s + 64
<pre>d = int(input()) s = 0 n = 0 while n < 200: s = s + 64 n = n + d</pre>	алг нач <u>цел</u> n, s, d <u>ввод</u> d n := 80 s := 0 нц <u>пока</u> n < 200 s := s + 64 n := n + d

Ответ:	
OIBCI.	

1	Музыкальный фрагмент был записан в формате моно, оцифрован и
	сохранён в виде файла с использованием сжатия данных. При этом
	производилось сжатие данных, объем сжатого фрагмента стал равен 40% от
	первоначальной записи. Затем тот же музыкальный фрагмент был записан
	повторно в формате стерео (двухканальная запись) и оцифрован с
	разрешением в 8 раз выше и частотой дискретизации в 2 раз выше, чем в
	первый раз. При этом производилось сжатие данных, объем сжатого
	фрагмента стал равен 60% от повторной записи. Во сколько раз размер
	повторной записи будет больше изначальной?

Этвет:	
JIBCI.	

- 8 Все пятибуквенные слова, составленные из букв В, Е, Н, О, К, записаны в алфавитном порядке и пронумерованы, начиная с 1. Начало списка выглядит так:
 - 1. BBBBB
 - 2. BBBBE
 - 3. BBBBK
 - 4. BBBBH
 - 5. BBBBO
 - 6. BBBEB

...

Под каким номером в списке идёт последнее слово, в котором буквы Н и К встречаются ровно по два раза?

Ответ:		

Задание выполняется с использованием прилагаемых файлов.

9

В электронной таблице содержатся результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Определите наибольшие суточные колебания температуры (разность между максимальной и минимальной температурой в течение суток). В ответе запишите только целую часть получившегося числа.

В ответе запишите только целую часть получившегося числа.

Ответ: .

Задание выполняется с использованием прилагаемых файлов.

10

С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «Хорошо» или «хорошо» в тексте произведения И.С.Тургенева «Записки охотника». В ответе укажите только число.

Ответ: .

11

Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем в битах сообщения, состоящего из 180 нот?

Ответ: ______.

12 Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F1)?

ПОКА снизу свободно ИЛИ
справа свободно
ЕСЛИ снизу свободно
ТО вниз
ИНАЧЕ вправо
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА

Ответ	r:		

13 На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей, ведущих из города А в город Н и проходящих через пункт Г или через пункт Е, но не через оба этих пункта?

Ответ:

3начение арифметического выражения: $9^7 + 3^{21} - 8$ записали в системе счисления с основанием 3. Найдите сумму цифр в этой записи. Ответ запишите в десятичной системе.

_		
Ответ:		

Укажите **наименьшее** целое значение A, при котором выражение

$$(6x + 4y \ne 34) \lor (A > 5x + 3y) \land (A > 4y + 15x - 35)$$

истинно для любых целых положительных значений x и y.

16 Алгоритм вычисления функции F(n) задан следующими соотношениями:

$$F(n) = 1$$
 при $n \le 1$;

$$F(n) = n \cdot F(n-1)$$
 при чётных $n > 1$;

$$F(n) = n + F(n-2)$$
 при нечётных $n > 1$;

Определите значение F(84).

Ответ:			

17 Рассматривается множество целых чисел, принадлежащих числовому отрезку [2568; 7858], которые удовлетворяют следующим условиям:

- делятся на 4 или на 5;
- не делятся на 11, 20, 27.

Найдите минимальное и максимальное из таких чисел.

Для выполнения этого задания можно написать программу или воспользоваться редактором электронных таблиц.

Задание выполняется с использованием прилагаемых файлов.

18

Исходные данные для Робота записаны в файле в виде электронной таблицы прямоугольной формы. Робот может двигаться только вверх и вправо. Робот может брать монеты только с тех клеток, где количество монет чётно. Если количество монет нечётно, то Робот не берёт в этой клетке ни одной монеты. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

Ответ:		

- Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
 - а) добавить в кучу два камня;
 - б) увеличить количество камней в куче в три раза.

Игра завершается в тот момент, когда количество камней в куче становится не менее 36. Если при этом в куче оказалось не более 85 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. В начальный момент в куче было S камней, $1 \le S \le 35$.

У кого из игроков есть выигрышная стратегия при $S=30,\,32?$ В качестве ответа укажите два имени – сначала для $S=30,\,$ затем для S=32.

Ответ:	

20 Для условия игры из задания 19, ответьте на вопрос.

У кого из игроков есть выигрышная стратегия при $S=8,\ 10?$ В качестве ответа укажите два имени — сначала для $S=8,\$ затем для S=10.

Ответ:	

21 Для условия игры из задания 19, ответьте на вопрос.

У кого из игроков есть выигрышная стратегия при S = 6?

Ответ: .

Получив на вход натуральное число x, этот алгоритм печатает два числа: а и b. Укажите наибольшее трёхзначное натуральное число, при вводе которого алгоритм печатает сначала 1, а потом 8.

C++	Паскаль
<pre>#include <iostream></iostream></pre>	var x, a, b: longint;
using namespace std;	begin
<pre>int main() {</pre>	readln(x);
int x, a, b;	a := 0; b := 1;
cin >> x;	while $x > 0$ do begin
a = 0; b = 1;	if $x \mod 2 > 0$ then
while $(x > 0)$ {	$a := a + x \mod 11$
if $(x%2 > 0)$ a += $x%11$;	else
else b *= x%11;	b := b * (x mod 11);
x = x / 11;	x := x div 11;
}	end;
cout << a << endl << b;	<pre>writeln(a); write(b);</pre>
return 0;	end.
}	
Python	Алгоритмический язык
x = int(input())	алг
a = 0	нач
b = 1	<u>цел</u> а, b, х
while $x > 0$:	ввод х
while $x > 0$: if $x % 2 > 0$:	<u>ввод</u> х a := 0
if x % 2 > 0:	a := 0
if $x % 2 > 0$: a = a + x % 11	a := 0 b := 1
<pre>if x % 2 > 0: a = a + x % 11 else:</pre>	а := 0 b := 1 нц <u>пока</u> х > 0
<pre>if x % 2 > 0: a = a + x % 11 else: b = b * (x % 11)</pre>	a := 0 b := 1 нц пока x > 0 если mod(x, 2) > 0 то
<pre>if x % 2 > 0: a = a + x % 11 else: b = b * (x % 11) x = x // 11</pre>	$a := 0$ $b := 1$ $H \subseteq \underline{\text{пока}} \times > 0$ $\underline{\text{если mod}}(x, 2) > 0$ $\underline{\text{то}}$ $a := a + \text{mod}(x, 11)$
<pre>if x % 2 > 0: a = a + x % 11 else: b = b * (x % 11) x = x // 11 print(a)</pre>	$a := 0$ $b := 1$ $\text{нц } \underline{\text{пока}} \times > 0$ $\underline{\text{если }} \text{mod}(x, 2) > 0$ $\underline{\text{то}}$ $a := a + \text{mod}(x, 11)$ $\underline{\text{иначе}}$
<pre>if x % 2 > 0: a = a + x % 11 else: b = b * (x % 11) x = x // 11 print(a)</pre>	$a := 0$ $b := 1$ $\text{нц} \ \underline{\text{пока}} \ x > 0$ $\underline{\text{если}} \ \text{mod}(x, 2) > 0 \ \underline{\text{то}}$ $a := a + \text{mod}(x, 11)$ $\underline{\text{иначе}}$ $b := b * \text{mod}(x, 11)$
<pre>if x % 2 > 0: a = a + x % 11 else: b = b * (x % 11) x = x // 11 print(a)</pre>	a := 0 b := 1 нц пока x > 0 если mod(x, 2) > 0 то a := a + mod(x, 11) иначе b := b * mod(x, 11) конец если
<pre>if x % 2 > 0: a = a + x % 11 else: b = b * (x % 11) x = x // 11 print(a)</pre>	a := 0 b := 1 нц пока x > 0 eсли mod(x, 2) > 0 то a := a + mod(x, 11) иначе b := b * mod(x, 11) конец если x := div(x, 11)
<pre>if x % 2 > 0: a = a + x % 11 else: b = b * (x % 11) x = x // 11 print(a)</pre>	a := 0 b := 1 нц пока x > 0 eсли mod(x, 2) > 0 то a := a + mod(x, 11) иначе b := b * mod(x, 11) конец если x := div(x, 11)

Ответ: .

- 23 Исполнитель A23S преобразует целое число, записанное на экране. У исполнителя три команды, каждой команде присвоен номер:
 - 1. Прибавь 2
 - 2. Прибавь 3
 - 3. Прибавь предыдущее

Первая команда увеличивает число на экране на 2, вторая увеличивает это число на 3, третья прибавляет к числу на экране число, меньшее на 1 (к числу 3 прибавляется 2, к числу 11 прибавляется 10 и т. д.). Программа для исполнителя A23S – это последовательность команд.

Сколько существует программ, которые число 2 преобразуют в число 11?

	сколько существует программ, которые число 2 преобразуют в число 11:
	Ответ:
	Задание выполняется с использованием прилагаемых файлов.
24	Текстовый файл содержит последовательность из строчных и заглавных букв английского алфавита и цифр, всего не более 10^6 символов. Запишите в ответе номер символа, с которого начинается наибольшая убывающая подпоследовательность. Нумерация символов начинается с 1.
	Ответ:
5	Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [6638225; 6638322], простые числа. Выведите все найденные простые числа в порядке возрастания, слева от каждого числа выведите его номер по порядку.

Ответ:	

Задание выполняется с использованием прилагаемых файлов.

26

Спутник «Фотон» проводит измерения солнечной активности, результат каждого измерения представляет собой натуральное число. Перед обработкой серии измерений из неё исключают К наибольших и К наименьших значений (как недостоверные). По заданной информации о значении каждого из измерений, а также количестве исключаемых значений, определите наибольшее достоверное измерение, а также целую часть среднего значения всех достоверных измерений.

Входные и выходные данные.

В первой строке входного файла находятся два числа, записанные через пробел: N- общее количество измерений (натуральное число, не превышающее 10 000) и K- количество исключаемых минимальных и максимальных значений. В следующих N строках находятся значения каждого из измерений (все числа натуральные, не превышающие 1000), каждое в отдельной строке.

Запишите в ответе два числа: сначала наибольшее достоверное измерение, а затем целую часть среднего значения всех достоверных измерений. Пример входного файла:

43

44 23

9

39 5

38

36

При таких исходных данных ответ должен содержать 2 числа -43 и 35. Пояснение: будут отброшены значения 5, 9, 44, 50. Тогда наибольшее оставшееся значение равно 43, а среднее значение из оставшихся равно (23+34+36+38+39+43):6=35,5.

Задание выполняется с использованием прилагаемых файлов.

27

Имеется набор данных, состоящий из положительных целых чисел, не превышающих 10000. Необходимо найти количество троек, в которых сумма первых двух элементов равна третьему элементу. Порядок элементов тройки должен соответствовать порядку в последовательности.

Входные данные:

Даны два входных файла: файл A и файл B, каждый из которых содержит в первой строке количество чисел N ($1 \le N \le 100000$). Каждая из следующих N строк содержит одно натуральное число, не превышающее $10\ 000$.

Пример входного файла:

7

2

5

8

/

Для указанных входных данных таких троек 6: $\{1+2=3, 1+8=9, 2+3=5, 2+5=7, 2+7=9, 3+5=8\}$.

В ответе укажите два числа: сначала количество троек для файла А, затем для файла В.

Предупреждение: для обработки файла В **не следует** использовать переборный алгоритм, вычисляющий сумму для всех возможных вариантов, поскольку написанная по такому алгоритму программа будет выполняться слишком долго.

ИНФОРМАТИКА

Система оценивания экзаменационной работы по информатике и ИКТ

За правильный ответ на задания 1-24 ставится 1 балл; за неверный ответ или его отсутствие -0 баллов.

За верный ответ на задание 25 ставится 2 балла; за ошибочные значения только в одной строке ответа ИЛИ за отсутствие не более одной строки ответа ИЛИ присутствие не более одной лишней строки ответа ставится 1 балл. В остальных случаях -0 баллов.

За верный ответ на задание 26 ставится 2 балла; если значения в ответе перепутаны местами ИЛИ в ответе присутствует только одно верное значение (второе неверно или отсутствует) — ставится 1 балл. В остальных случаях — 0 баллов.

За верный ответ на задание 27 ставится 2 балла; если значения в ответе перепутаны местами ИЛИ в ответе присутствует только одно верное значение (второе неверно или отсутствует) — ставится 1 балл. В остальных случаях — 0 баллов.

Файлы к варианту: https://vk.cc/aCyKwL Ссылка на тест в эмуляторе: https://vk.cc/aCzMoV

Информация об авторе

Автор	Евгений Джобс	
	vk.com/eugenyjobs	
Группа проекта	vk.com/inform_web	
Канал на youtube	www.youtube.com/c/EvgenijJobs	
Автор эмулятора	Алексей Кабанов	
	vk.com/cabanovalexey	
Канал на youtube	www.youtube.com/user/axelofan2010	