EXERCICES CORRIGES

Exercice n°1.

Dérivée et primitives

- 1) Calculez la dérivée de la fonction f définie par $f(x) = 3x^3 9x + 1$.
- 2) Déduisez-en deux primitives de la fonction g définie par $g(x) = 9x^2 9$
- 3) Déterminer le sens de variation de f sur \mathbb{R}

Exercice n°2 à 11 – Primitives sans fonction logarithme

Déterminer une primitive de f sur un intervalle contenu dans son ensemble de définition

Exercice n°2. Usage des tableaux de primitives usuelles

1)
$$f(x) = 2x + 1$$

2)
$$f(x) = 10x^4 + 6x^3 - 1$$

3)
$$f(x) = (x-1)(x+3)$$

4)
$$f(x) = \frac{1}{x^2} - x^2$$

5)
$$f(x) = \frac{-4}{3x^5}$$

1)
$$f(x) = 2x + 1$$
 2) $f(x) = 10x^4 + 6x^3 - 1$ 3) $f(x) = (x - 1)(x + 3)$
5) $f(x) = \frac{-4}{3x^5}$ 6) $f(x) = x + \frac{1}{\sqrt{x}}$ 7) $f(x) = \sin x - 2\cos x$

$$7) \ f(x) = \sin x - 2\cos x$$

Exercice n°3. Primitive et constante

Soit f la fonction définie sur
$$]0; +\infty[$$
 par $f(x) = 3x - 1 + \frac{2}{x^2}$.

Déterminer la primitive F de f sur $]0;+\infty[$ qui s'annule pour x=1.

Exercice n°4.

Trouver la primitive F de f sur I vérifiant la condition donnée

1)
$$f(x) = 1 - x + x^2 - x^3$$
 $I = \mathbb{R}$

$$I=\mathbb{R}$$

$$F(1)=0$$

2)
$$f(x) = x + \frac{1}{x^2} - \frac{1}{\sqrt{x}}$$
 $I =]0; +\infty[$ $F(1)=1$

$$I=]0;+\infty[$$

$$F(1)=1$$

Exercices n°5 à n°8 : Déterminer une primitive des fonctions données

Exercice n°5 Forme $u'u^n$

Exercise 11 5. 1 office 11 th						
1) $f(x) = 3(3x+1)^4$	2) $f(x) = 16(4x-1)^3$	3) $f(x) = (2x+7)^6$	4) $f(x) = (6x-2)(3x^2-2x+3)^5$			
5) $f(x) = \frac{1}{x^2} \left(1 + \frac{1}{x} \right)^4$	$6) \ f(x) = \sin x \cos x$					

Exercice n°6. Forme $\frac{u'}{u^2}$

\mathfrak{u}					
1) $f(x) = \frac{4}{(1+4x)^2}$	$2) f(x) = \frac{6}{(2x+1)^2}$	3) $f(x) = \frac{1}{(4x+3)^2}$	$4) f(x) = \frac{-1}{(2-x)^2}$		
$5) f(x) = \frac{2}{(4-3x)^2}$	6) $f(x) = \frac{2x+1}{(x^2+x+1)^2}$	7) $f(x) = \frac{4x-10}{(x^2-5x+6)^2}$	$8) f(x) = \frac{\cos x}{\sin^2 x}$		
$9) f(x) = \frac{\sin x}{\cos^2 x}$					

Exercice n°7.

Soit la fonction f définie par $f(x) = \frac{3x+4}{(x+1)^3}$.

- 1) Déterminer les réels a et b tels que, pour tout $x \neq -1$, $f(x) = \frac{a}{(x+1)^2} + \frac{b}{(x+1)^3}$
- 2) En déduire une primitive F de f sur $]-1;+\infty[$.

Exercice n°8. Forme $\frac{u'}{\sqrt{u}}$ 1) $f(x) = \frac{3}{\sqrt{3x+2}}$ 2) $f(x) = \frac{1}{\sqrt{2-5x}}$ 3) $f(x) = \frac{1}{\sqrt{2x-3}}$ 4) $f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$ 5) $f(x) = \frac{x}{\sqrt{x^2-1}}$ 6) $f(x) = \frac{\cos x}{\sqrt{2+\sin x}}$

1)
$$f(x) = \frac{3}{\sqrt{3x+2}}$$

2)
$$f(x) = \frac{1}{\sqrt{2-5x}}$$

3)
$$f(x) = \frac{1}{\sqrt{2x-3}}$$

4)
$$f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$$

5)
$$f(x) = \frac{x}{\sqrt{x^2 - 1}}$$

$$6) \ f(x) = \frac{\cos x}{\sqrt{2 + \sin x}}$$

Exercice n°9.

Soit g la fonction définie sur $]0; +\infty[$ par $g(x) = x\sqrt{x}$.

1) Calculez la dérivée de g sur $]0;+\infty[$

2) soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \sqrt{x}$.

Déduisez de la première question une primitive de f sur $]0;+\infty[$

Exercice n°10.

La courbe (C) donnée ci-dessous est la représentation graphique dans un repère orthonormal d'une fonction f définie et dérivable sur $\mathbb R$.

1) Pour chacune des affirmations ci-dessous indiquer si elle est vraie ou fausse et justifier votre réponse :

a. Toute primitive de f s'annule pour 0,5.

b. Toute primitive de f est décroissante sur [0 ; 0,5].

2. Parmi les courbes (C_1) et (C_2) données ci-dessous, l'une est la représentation graphique d'une primitive de f sur $\mathbb R$.

Indiquer laquelle en précisant les raisons de votre choix.

Exercice n°11 à 16 – Primitives utilisant les fonctions logarithmes et exponentielles

Exercice n°11.

Déterminez une primitive de la fonction f proposée sur l'intervalle I donné :

1)
$$f(x) = x^2 - 5x + \frac{1}{x} \text{ sur } I =]0; +\infty[$$
 2) $f(x) = \frac{x^2 + x + 1}{x} \text{ sur } I =]0; +\infty[$

2)
$$f(x) = \frac{x^2 + x + 1}{x}$$
 sur $I =]0; +\infty[$

3)
$$f(x) = \frac{7}{x} + \frac{5}{\sqrt{x}} + \frac{1}{x^2} =]0; +\infty[$$
 4) $f(x) = \frac{3}{3x - 4} \text{ sur } = \left[\frac{4}{3}; +\infty\right]$

4)
$$f(x) = \frac{3}{3x-4} \text{ sur I} = \left[\frac{4}{3}; +\infty \right]$$

5)
$$f(x) = \frac{1}{x+1} \text{ sur } I =]-1; +\infty[$$

6)
$$f(x) = \frac{1}{x+1} \text{ sur } I =]-\infty; -1[$$

7)
$$f(x) = \frac{2x}{x^2 - 4} \text{ sur }]2; +\infty[$$

8)
$$f(x) = \frac{1}{3x-5} \text{ sur } [2; +\infty[$$

9)
$$f(x) = \frac{x+1}{x^2 + 2x + 2}$$
 sur \mathbb{R}

10)
$$f(x) = \frac{x}{x^2 - 1}$$
 sur]-1;1[

Exercice n°12.

On considère la fonction définie sur I=[4;+ ∞ [par $f(x) = \frac{2x^2 - 3x - 4}{x - 2}$

1) Trouver trois réels
$$a,b$$
, et c tels que $f(x) = ax + b + \frac{c}{x-2}$

2) En déduire une primitive de
$$f$$
 sur $[4; +\infty]$

Exercice n°13.

Déterminez une primitive de la fonction f proposée sur l'intervalle I donné :

1)
$$f(x) = \frac{\cos x}{\sin x}$$
 sur $I = \left]0; \frac{\pi}{2}\right[$

2)
$$f(x) = \frac{\ln x}{x}$$
 sur $I = [1; +\infty[$

3)
$$f(x) = \frac{1}{x \ln x} \operatorname{sur} \left[1; +\infty\right[$$

4)
$$f(x) = \tan x \text{ sur } \left[\frac{\pi}{2}; \pi \right]$$

Exercice n°14.

Déterminez une primitive sur \mathbb{R} de la fonction f donnée :

betermines and primitive sai as ac in remetion;		, doinie.		
$1) f(x) = \frac{1}{4}e^x$	$2) f(x) = e^{-x}$	3) $f(x) = e^{2x+3}$	$4) f(x) = xe^{x^2}$	$5) f(x) = \frac{e^x}{e^x + 1}$

Exercice n°15.

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+2)e^x$

Déterminez les nombres a et b tels que la fonction F, définie sur \mathbb{R} , par $F(x) = (ax + b)e^x$ soit une primitive de f.

Exercice n°16.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{3}{e^{-x} + 1}$

1) Vérifiez que pour tout
$$x$$
 de \mathbb{R} , on a $f(x) = \frac{3e^x}{e^x + 1}$

2) Déduisez en la primitive F de f qui s'annule pour x=0