

Chapter 3Describing Data Using Numerical Measures

Chapter Goals

After completing this chapter, you should be able to:

- Compute and interpret the mean, median, and mode for a set of data
- Compute the range, variance, and standard deviation and know what these values mean
- Construct and interpret a box and whiskers plot
- Compute and explain the coefficient of variation and z scores
- Use numerical measures along with graphs, charts, and tables to describe data

Chapter Topics

- Measures of Center and Location
 - Mean, median, mode, geometric mean, midrange
- Other measures of Location
 - Weighted mean, percentiles, quartiles
- Measures of Variation
 - Range, interquartile range, variance and standard deviation, coefficient of variation

Summary Measures

Measures of Center and Location

Mean (Arithmetic Average)

- The Mean is the arithmetic average of data values
 - Sample mean $\frac{1}{x} = \frac{\sum_{i=1}^{n} x_i}{x_i} = \frac{x_1 + x_2 + \dots + x_n}{n}$

Population mean
$$\mu = \frac{\sum\limits_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \cdots + x_N}{N}$$

Mean (Arithmetic Average)

(continued)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

Median

Not affected by extreme values

- In an ordered array, the median is the "middle" number
 - If n or N is odd, the median is the middle number
 - If n or N is even, the median is the average of the two middle numbers

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may may be no mode
- There may be several modes

Weighted Mean

 Used when values are grouped by frequency or relative importance

Example: Sample of 26 Repair Projects

Days to Complete	Frequency
5	4
6	12
7	8
8	2

Weighted Mean Days to Complete:

$$\overline{X}_{W} = \frac{\sum w_{i}X_{i}}{\sum w_{i}} = \frac{(4\times5) + (12\times6) + (8\times7) + (2\times8)}{4 + 12 + 8 + 2}$$
$$= \frac{164}{26} = 6.31 \text{ days}$$

Review Example

Five houses on a hill by the beach

House Prices:

\$2,000,000 500,000 300,000 100,000 100,000

Summary Statistics

House Prices:

\$2,000,000 500,000 300,000 100,000

Sum 3,000,000

Mean: (\$3,000,000/5)

= \$600,000

Median: middle value of ranked data= \$300,000

Mode: most frequent value

= \$100,000

Which measure of location is the "best"?

- Mean is generally used, unless extreme values (outliers) exist
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region – less sensitive to outliers

Shape of a Distribution

- Describes how data is distributed
- Symmetric or skewed

(Longer tail extends to left)

(Longer tail extends to right)

Other Location Measures

The pth percentile in a data array:

- p% are less than or equal to this value
- (100 p)% are greater than or equal to this value

(where $0 \le p \le 100$)

- 1st quartile = 25th percentile
- 2nd quartile = 50th percentile
 = median
- 3rd quartile = 75th percentile

Percentiles

The pth percentile in an ordered array of n values is the value in ith position, where

$$i = \frac{p}{100}(n+1)$$

Example: The 60th percentile in an ordered array of 19 values is the value in 12th position:

$$i = \frac{p}{100}(n+1) = \frac{60}{100}(19+1) = 12$$

Quartiles

Example: Find the first quartile

Sample Data in Ordered Array: 11 12 13 16 16 17 18 21 22

$$(n = 9)$$

 $Q1 = 25^{th}$ percentile, so find the

$$\frac{25}{100}$$
 (9+1) = 2.5 position

so use the value half way between the 2nd and 3rd values,

Box and Whisker Plot

A Graphical display of data using 5-number summary:

Minimum -- Q1 -- Median -- Q3 -- Maximum

Example:

Shape of Box and Whisker Plots

 The Box and central line are centered between the endpoints if data is symmetric around the median

 A Box and Whisker plot can be shown in either vertical or horizontal format

Distribution Shape and Box and Whisker Plot

Left-Skewed

Symmetric

Right-Skewed

Box-and-Whisker Plot Example

Below is a Box-and-Whisker plot for the following data:

This data is very right skewed, as the plot depicts

Measures of Variation

Variation

 Measures of variation give information on the spread or variability of the data values.

Same center, different variation

Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Range =
$$x_{\text{maximum}} - x_{\text{minimum}}$$

Range =
$$14 - 1 = 13$$

Disadvantages of the Range

Ignores the way in which data are distributed

Sensitive to outliers

Interquartile Range

- Can eliminate some outlier problems by using the interquartile range
- Eliminate some high-and low-valued observations and calculate the range from the remaining values.
- Interquartile range = 3rd quartile 1st quartile

Interquartile Range

Example:

Variance

Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
 - Sample standard deviation:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Calculation Example: Sample Standard Deviation

Sample Data (X_i):

10 12 14 15 17 18 18 24

n = 8 Mean $= \overline{x} = 16$

$$s = \sqrt{\frac{(10 - x)^{2} + (12 - x)^{2} + (14 - x)^{2} + \dots + (24 - x)^{2}}{n - 1}}$$

$$=\sqrt{\frac{(10-16)^2+(12-16)^2+(14-16)^2+\cdots+(24-16)^2}{8-1}}$$

$$=\sqrt{\frac{126}{7}} = \boxed{4.2426}$$

Mean =
$$15.5$$

S = 4.57

Coefficient of Variation

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Is used to compare two or more sets of data measured in different units

Population

$$CV = \left(\frac{\sigma}{\mu}\right) \cdot 100\%$$

Sample

$$CV = \left(\frac{s}{x}\right) \cdot 100\%$$

Comparing Coefficient of Variation

Stock A:

- Average price last year = \$50
- Standard deviation = \$5

$$CV_A = \left(\frac{s}{x}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = \frac{10\%}{10\%}$$

Stock B:

- Average price last year = \$100
- Standard deviation = \$5

$$CV_B = \left(\frac{s}{x}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% = \frac{5\%}{\$}$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

- If the data distribution is bell-shaped, then the interval:
- $\mu \pm 1\sigma$ contains about 68% of the values in the population or the sample

The Empirical Rule

- $\mu \pm 2\sigma$ contains about 95% of the values in the population or the sample
- $\mu \pm 3\sigma$ contains about 99.7% of the values in the population or the sample

Tchebysheff's Theorem

 Regardless of how the data are distributed, at least (1 - 1/k²) of the values will fall within k standard deviations of the mean

Examples:

At least within		
$(1 - 1/1^2) = 0\%$	k=1 (μ ± 1σ)	
$(1 - 1/2^2) = 75\%$	$k=2 (\mu \pm 2\sigma)$	
$(1 - 1/3^2) = 89\%$	$k=3 (\mu \pm 3\sigma)$	

Standardized Data Values

 A standardized data value refers to the number of standard deviations a value is from the mean

 Standardized data values are sometimes referred to as z-scores

Standardized Population Values

$$z = \frac{x - \mu}{\sigma}$$

where:

- x = original data value
- μ = population mean
- σ = population standard deviation
- z = standard score
 (number of standard deviations x is from μ)

Standardized Sample Values

$$z = \frac{x - \overline{x}}{s}$$

where:

- x = original data value
- \overline{x} = sample mean
- s = sample standard deviation
- z = standard score
 (number of standard deviations x is from μ)

Using Microsoft Excel

- Descriptive Statistics are easy to obtain from Microsoft Excel
 - Use menu choice:
 tools / data analysis / descriptive statistics
 - Enter details in dialog box

Using Excel

Use menu choice:

tools / data analysis / descriptive statistics

Using Excel

(continued)

Η

G

Descriptive Statistics ? X 2000000 500000 Input-ОК 300000 1 \$A\$1:\$A\$6 Input Range: 100000 Cancel Columns Grouped By: 1000000 C Rows Help Enter dialog box _ ✓ Labels in First Row details 10 Output options 11 Output Range: 12 New Worksheet Ply: 13 New Workbook 14 15 ✓ Summary statistics 16 Confidence Level for Mean: Check box for □ Kth Largestが 18 ☐ Kth Smallest: summary statistics 19 20 21

House Prices

Click OK

Excel output

Microsoft Excel descriptive statistics output, using the house price data:

House Prices:

\$2,000,000 500,000 300,000 100,000

	Α		В		
1	House Prices				
2					
3	Mean			600000	
4	Standard Error		357770.8764		
5	Median			300000	
6	Mode			100000	
7	Standard	Deviation		800000	
8	Sample Variance		6.4E+11		
9	Kurtosis		4.130126953		
10	Skewness		2.006835938		
11	Range			1900000	
12	Minimum		100000		
13	Maximum		2000000		
14	Sum		3000000		
15	Count			5	
16					
17					

Chapter Summary

- Described measures of center and location
 - Mean, median, mode, geometric mean, midrange
- Discussed percentiles and quartiles
- Described measure of variation
 - Range, interquartile range, variance,
 standard deviation, coefficient of variation
- Created Box and Whisker Plots

Chapter Summary

(continued)

- Illustrated distribution shapes
 - Symmetric, skewed
- Discussed Tchebysheff's Theorem
- Calculated standardized data values