CHAPTER 3

Section 3.1

S:	FFF	SFF	FSF	FFS	FSS	SFS	SSF	SSS
X:	0	1	1	1	2	2	2	3

- 2. X = 1 if a randomly selected book is non-fiction and X = 0 otherwise
 - X = 1 if a randomly selected executive is a female and X = 0 otherwise
 - X = 1 if a randomly selected driver has automobile insurance and X = 0 otherwise
- 3. M = the difference between the large and the smaller outcome with possible values 0, 1, 2, 3, 4, or 5; W = 1 if the sum of the two resulting numbers is even and W = 0 otherwise, a Bernoulli random variable.
- In my perusal of a zip code directory, I found no 00000, nor did I find any zip codes with four zeros, a fact which was not obvious. Thus possible X values are 2, 3, 4, 5 (and not 0 or 1). X = 5 for the outcome 15213, X = 4 for the outcome 44074, and X = 3 for 94322.
- No. In the experiment in which a coin is tossed repeatedly until a H results, let Y = 1 if the experiment terminates with at most 5 tosses and Y = 0 otherwise. The sample space is infinite, yet Y has only two possible values.
- **6.** Possible X values are 1, 2, 3, 4, ... (all positive integers)

Outcome:	RL	AL	RAARL	RRRRL	AARRL
X:	2	2	5	5	5

7.

- **a.** Possible values are 0, 1, 2, ..., 12; discrete
- **b.** With N = # on the list, values are 0, 1, 2, ..., N; discrete
- **c.** Possible values are 1, 2, 3, 4, ...; discrete
- **d.** $\{x:0< x<\infty\}$ if we assume that a rattlesnake can be arbitrarily short or long; not discrete
- e. With c = amount earned per book sold, possible values are $0, c, 2c, 3c, \dots, 10,000c;$
- **f.** { y: 0 < y < 14} since 0 is the smallest possible pH and 14 is the largest possible pH; not discrete
- **g.** With m and M denoting the minimum and maximum possible tension, respectively, possible values are $\{x: m < x < M\}$; not discrete
- **h.** Possible values are 3, 6, 9, 12, 15, ... i.e. 3(1), 3(2), 3(3), 3(4), ...giving a first element, etc.; discrete
- 8. Y = 3 : SSS;

Y = 4: FSSS:

Y = 5: FFSSS, SFSSS;

Y = 6: SSFSSS, SFFSSS, FSFSSS, FFFSSS;

Y = 7: SSFFS, SFSFSSS, SFFFSSS, FSSFSSS, FSFFSSS, FFFFSSS

9.

- **a.** Returns to 0 can occur only after an even number of tosses; possible S values are 2, 4, 6, 8, ...(i.e. 2(1), 2(2), 2(3), 2(4),...) an infinite sequence, so x is discrete.
- **b.** Now a return to 0 is possible after any number of tosses greater than 1, so possible values are $2, 3, 4, 5, \ldots (1+1,1+2,1+3,1+4,\ldots)$, an infinite sequence) and X is discrete

- **a.** T = total number of pumps in use at both stations. Possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- **b.** X: -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6
- **c.** U: 0, 1, 2, 3, 4, 5, 6
- **d.** Z: 0, 1, 2

Section 3.2

11.

a.

X	4	6	8
P(x)	.45	.40	.15

b.

c.
$$P(x = 6) = .40 + .15 = .55$$

$$P(x > 6) = .15$$

12.

a. In order for the flight to accommodate all the ticketed passengers who show up, no more than 50 can show up. We need y = 50.

$$P(y = 50) = .05 + .10 + .12 + .14 + .25 + .17 = .83$$

- **b.** Using the information in a. above, P(y > 50) = 1 P(y = 50) = 1 .83 = .17
- **c.** For you to get on the flight, at most 49 of the ticketed passengers must show up. P(y = 49) = .05 + .10 + .12 + .14 + .25 = .66. For the 3rd person on the standby list, at most 47 of the ticketed passengers must show up. P(y = 44) = .05 + .10 + .12 = .27

13.

a.
$$P(X \le 3) = p(0) + p(1) + p(2) + p(3) = .10 + .15 + .20 + .25 = .70$$

b.
$$P(X < 3) = P(X \le 2) = p(0) + p(1) + p(2) = .45$$

c.
$$P(3 \le X) = p(3) + p(4) + p(5) + p(6) = .55$$

d. P(
$$2 \le X \le 5$$
) = p(2) + p(3) + p(4) + p(5) = .71

- e. The number of lines not in use is 6-X, so 6-X=2 is equivalent to X=4, 6-X=3 to X=3, and 6-X=4 to X=2. Thus we desire $P(2 \le X \le 4) = p(2) + p(3) + p(4) = .65$
- **f.** $6 X \ge 4$ if $6 4 \ge X$, i.e. $2 \ge X$, or $X \le 2$, and $P(X \le 2) = .10 + .15 + .20 = .45$

14.

a.
$$\sum_{y=1}^{5} p(y) = K[1+2+3+4+5] = 15K = 1 \implies K = \frac{1}{15}$$

b.
$$P(Y \le 3) = p(1) + p(2) + p(3) = \frac{6}{15} = .4$$

c.
$$P(2 \le Y \le 4) = p(2) + p(3) + p(4) = \frac{9}{15} = .6$$

d.
$$\sum_{y=1}^{5} \left(\frac{y^2}{50} \right) = \frac{1}{50} [1 + 4 + 9 + 16 + 25] = \frac{55}{50} \neq 1; \text{ No}$$

15.

b.
$$P(X = 0) = p(0) = P[\{ (3,4) (3,5) (4,5) \}] = \frac{3}{10} = .3$$

 $P(X = 2) = p(2) = P[\{ (1,2) \}] = \frac{1}{10} = .1$
 $P(X = 1) = p(1) = 1 - [p(0) + p(2)] = .60$, and $p(x) = 0$ if $x \neq 0, 1, 2$

c.
$$F(0) = P(X \le 0) = P(X = 0) = .30$$

 $F(1) = P(X \le 1) = P(X = 0 \text{ or } 1) = .90$
 $F(2) = P(X \le 2) = 1$

The c.d.f. is

$$F(x) = \begin{cases} 0 & x < 0 \\ .30 & 0 \le x < 1 \\ .90 & 1 \le x < 2 \\ 1 & 2 \le x \end{cases}$$

Chapter 3: Discrete Random Variables and Probability Distributions

16.

a.

 X	Outcomes		p(x)
 0	FFFF	$(.7)^4$	=.2401
1	FFFS,FFSF,FSFF,SFFF	$4[(.7)^3(.3)]$	=.4116
2	FFSS,FSFS,SFFS,FSSF,SFSF,SSFF	$6[(.7)^2(.3)^2]$	=.2646
3	FSSS, SFSS,SSFS,SSSF	$4[(.7)(.3)^3]$	=.0756
4	SSSS	$(.3)^4$	=.0081

b.

- **c.** p(x) is largest for X = 1
- **d.** $P(X \ge 2) = p(2) + p(3) + p(4) = .2646 + .0756 + .0081 = .3483$ This could also be done using the complement.

a.
$$P(2) = P(Y = 2) = P(1^{st} \ 2 \text{ batteries are acceptable})$$

= $P(AA) = (.9)(.9) = .81$

b.
$$p(3) = P(Y = 3) = P(UAA \text{ or } AUA) = (.1)(.9)^2 + (.1)(.9)^2 = 2[(.1)(.9)^2] = .162$$

- **c.** The fifth battery must be an A, and one of the first four must also be an A. Thus, $p(5) = P(AUUUA \text{ or } UAUUA \text{ or } UUAUA \text{ or } UUUAA) = 4[(.1)^3(.9)^2] = .00324$
- **d.** $P(Y = y) = p(y) = P(\text{the } y^{\text{th}} \text{ is an A and so is exactly one of the first } y 1) = (y 1)(.1)^{y-2}(.9)^2, y = 2,3,4,5,...$

18.

a.
$$p(1) = P(M = 1) = P[(1,1)] = \frac{1}{36}$$

 $p(2) = P(M = 2) = P[(1,2) \text{ or } (2,1) \text{ or } (2,2)] = \frac{3}{36}$
 $p(3) = P(M = 3) = P[(1,3) \text{ or } (2,3) \text{ or } (3,1) \text{ or } (3,2) \text{ or } (3,3)] = \frac{5}{36}$
Similarly, $p(4) = \frac{7}{36}$, $p(5) = \frac{9}{36}$, and $p(6) = \frac{11}{36}$

b.
$$F(m) = 0$$
 for $m < 1$, $\frac{1}{36}$ for $1 \le m < 2$,

$$F(m) = \begin{cases} 0 & m < 1 \\ \frac{1}{36} & 1 \le m < 2 \\ \frac{4}{36} & 2 \le m < 3 \\ \frac{9}{36} & 3 \le m < 4 \\ \frac{16}{36} & 4 \le m < 5 \\ \frac{25}{36} & 5 \le m < 6 \\ 1 & m \ge 6 \end{cases}$$

19. Let A denote the type O+ individual (type O positive blood) and B, C, D, the other 3 individuals. Then $p(1) - P(Y = 1) = P(A \text{ first}) = \frac{1}{4} = .25$

$$p(2)=P(Y=2)=P(B,C,\text{ or }D\text{ first and }A\text{ next})=\frac{3}{4}\cdot\frac{1}{3}=\frac{1}{4}=.25$$

$$p(4) = P(Y = 3) = P(A \text{ last}) = \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{4} = .25$$

So
$$p(3) = 1 - (.25 + .25 + .25) = .25$$

20. P(0) = P(Y = 0) = P(both arrive on Wed.) = (.3)(.3) = .09

$$P(1) = P(Y = 1) = P[(W,Th)or(Th,W)or(Th,Th)]$$

$$= (.3)(.4) + (.4)(.3) + (.4)(.4) = .40$$

$$P(2) = P(Y = 2) = P[(W,F)or(Th,F)or(F,W) \text{ or } (F,Th) \text{ or } (F,F)] = .32$$

$$P(3) = 1 - [.09 + .40 + .32] = .19$$

21. The jumps in F(x) occur at x = 0, 1, 2, 3, 4, 5, and 6, so we first calculate F() at each of these values:

$$\begin{split} F(0) &= P(X \le 0) = P(X = 0) = .10 \\ F(1) &= P(X \le 1) = p(0) + p(1) = .25 \\ F(2) &= P(X \le 2) = p(0) + p(1) + p(2) = .45 \\ F(3) &= .70, F(4) = .90, F(5) = .96, \text{ and } F(6) = 1. \end{split}$$

The c.d.f. is

$$F(x) = \begin{cases} .00 & x < 0 \\ .10 & 0 \le x < 1 \\ .25 & 1 \le x < 2 \\ .45 & 2 \le x < 3 \\ .70 & 3 \le x < 4 \\ .90 & 4 \le x < 5 \\ .96 & 5 \le x < 6 \\ 1.00 & 6 \le x \end{cases}$$

Then $P(X \le 3) = F(3) = .70$, $P(X < 3) = P(X \le 2) = F(2) = .45$, $P(3 \le X) = 1 - P(X \le 2) = 1 - F(2) = 1 - .45 = .55$, and $P(2 \le X \le 5) = F(5) - F(1) = .96 - .25 = .71$

22.

a.
$$P(X = 2) = .39 - .19 = .20$$

b.
$$P(X > 3) = 1 - .67 = .33$$

c.
$$P(2 \le X \le 5) = .92 - .19 = .78$$

d.
$$P(2 < X < 5) = .92 - .39 = .53$$

23.

a. Possible X values are those values at which F(x) jumps, and the probability of any particular value is the size of the jump at that value. Thus we have:

X	1	3	4	6	12
	.30				

b.
$$P(3 \le X \le 6) = F(6) - F(3-) = .60 - .30 = .30$$

 $P(4 \le X) = 1 - P(X < 4) = 1 - F(4-) = 1 - .40 = .60$

24.
$$P(0) = P(Y = 0) = P(B \text{ first}) = p$$

 $P(1) = P(Y = 1) = P(G \text{ first}, \text{ then } B) = P(GB) = (1 - p)p$
 $P(2) = P(Y = 2) = P(GGB) = (1 - p)^2 p$
Continuing, $p(y) = P(Y = y) = P(y \text{ G's and then a } B) = (1 - p)^y p \text{ for } y = 0,1,2,3,...$

25.

a. Possible X values are 1, 2, 3, ...

P(1) = P(X = 1) = P(return home after just one visit) =
$$\frac{1}{3}$$

P(2) = P(X = 2) = P(second visit and then return home) = $\frac{2}{3} \cdot \frac{1}{3}$
P(3) = P(X = 3) = P(three visits and then return home) = $\left(\frac{2}{3}\right)^2 \cdot \frac{1}{3}$

In general
$$p(x) = (\frac{2}{3})^{x-1}(\frac{1}{3})$$
 for $x = 1, 2, 3, ...$

- **b.** The number of straight line segments is Y = 1 + X (since the last segment traversed returns Alvie to O), so as in a, $p(y) = \left(\frac{2}{3}\right)^{y-2} \left(\frac{1}{3}\right)$ for y = 2, 3, ...
- **c.** Possible Z values are 0, 1, 2, 3, ...

$$p(0) = P(\text{male first and then home}) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$$
,

 $p(1) = P(\text{exactly one visit to a female}) = P(\text{female 1}^{\text{st}}, \text{then home}) + P(F, M, \text{home}) + P(M, F, \text{home}) + P(M, F, M, \text{home})$

$$= \left(\frac{1}{2}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)$$

$$= \left(\frac{1}{2}\right)\left(1 + \frac{2}{3}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3} + 1\right)\left(\frac{1}{3}\right) = \left(\frac{1}{2}\right)\left(\frac{5}{3}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{5}{3}\right)\left(\frac{1}{3}\right)$$

$$= \left(\frac{1}{2}\right)\left(1 + \frac{2}{3}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{5}{3}\right)\left(\frac{1}{3}\right) + \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{5}{3}\right)\left(\frac{1}{3}\right)$$

where the first term corresponds to initially visiting a female and the second term corresponds to initially visiting a male. Similarly,

$$p(2) = (\frac{1}{2})(\frac{2}{3})^2(\frac{5}{3})(\frac{1}{3}) + (\frac{1}{2})(\frac{2}{3})^2(\frac{5}{3})(\frac{1}{3})$$
. In general,

$$p(z) = (\frac{1}{2})(\frac{2}{3})^{2z-2}(\frac{5}{3})(\frac{1}{3}) + (\frac{1}{2})(\frac{2}{3})^{2z-2}(\frac{5}{3})(\frac{1}{3}) = (\frac{24}{54})(\frac{2}{3})^{2z-2}$$
 for $z = 1, 2, 3, ...$

26.

a. The sample space consists of all possible permutations of the four numbers 1, 2, 3, 4:

outcome	y value	outcome	y value	outcome	y value
1234	4	2314	1	3412	0
1243	2	2341	0	3421	0
1324	2	2413	0	4132	1
1342	1	2431	1	4123	0
1423	1	3124	1	4213	1
1432	2	3142	0	4231	2
2134	2	3214	2	4312	0
2143	0	3241	1	4321	0

b. Thus
$$p(0) = P(Y = 0) = \frac{9}{24}$$
, $p(1) = P(Y = 1) = \frac{8}{24}$, $p(2) = P(Y = 2) = \frac{6}{24}$, $p(3) = P(Y = 3) = 0$, $p(3) = P(Y = 3) = \frac{1}{24}$.

27. If
$$x_1 < x_2$$
, $F(x_2) = P(X \le x_2) = P(\{X \le x_1\} \cup \{x_1 < X \le x_2\})$
= $P(X \le x_1) + P(x_1 < X \le x_2) \ge P(X \le x_1) = F(x_1)$.
 $F(x_1) = F(x_2)$ when $P(x_1 < X \le x_2) = 0$.

Section 3.3

28.

a.
$$E(X) = \sum_{x=0}^{4} x \cdot p(x)$$

= $(0)(.08) + (1)(.15) + (2)(.45) + (3)(.27) + (4)(.05) = 2.06$

b.
$$V(X) = \sum_{x=0}^{4} (x - 2.06)^2 \cdot p(x) = (0 - 2.06)^2 (.08) + ... + (4 - 2.06)^2 (.05)$$
$$= .339488 + .168540 + .001620 + .238572 + .188180 = .9364$$

c.
$$\sigma_{x} = \sqrt{.9364} = .9677$$

d.
$$V(X) = \left[\sum_{x=0}^{4} x^2 \cdot p(x)\right] - (2.06)^2 = 5.1800 - 4.2436 = .9364$$

a.
$$E(Y) = \sum_{x=0}^{4} y \cdot p(y) = (0)(.60) + (1)(.25) + (2)(.10) + (3)(.05) = .60$$

b.
$$E(100Y^2) = \sum_{x=0}^{4} 100 y^2 \cdot p(y) = (0)(.60) + (100)(.25) + (400)(.10) + (900)(.05) = 110$$

30.
$$\begin{split} E\left(Y\right) &= .60; \\ E\left(Y^2\right) &= 1.1 \\ V(Y) &= E(Y^2) - \left[E(Y)\right]^2 = 1.1 - (.60)^2 = .74 \\ \sigma_y &= \sqrt{.74} = .8602 \\ E\left(Y\right) \pm \sigma_y &= .60 \pm .8602 = (-.2602, 1.4602) \text{ or } (0, 1). \\ P(Y=0) + P(Y=1) &= .85 \end{split}$$

31.

b.
$$E(25X - 8.5) = 25 E(X) - 8.5 = (25)(16.38) - 8.5 = 401$$

c.
$$V(25X - 8.5) = V(25X) = (25)^2 V(X) = (625)(3.9936) = 2496$$

d.
$$E[h(X)] = E[X - .01X^2] = E(X) - .01E(X^2) = 16.38 - 2.72 = 13.66$$

32.

a.
$$E(X^2) = \sum_{x=0}^{1} x^2 \cdot p(x) = (0^2)((1-p) + (1^2)(p) = (1)(p) = p$$

b.
$$V(X) = E(X^2) - [E(X)]^2 = p - p^2 = p(1 - p)$$

c.
$$E(x^{79}) = (0^{79})(1-p) + (1^{79})(p) = p$$

33.
$$E(X) = \sum_{x=1}^{\infty} x \cdot p(x) = \sum_{x=1}^{\infty} x \cdot \frac{c}{x^3} = c \sum_{x=1}^{\infty} \frac{1}{x^2}, \text{ but it is a well-known result from the theory of}$$

infinite series that $\sum_{x=1}^{\infty} \frac{1}{x^2} < \infty$, so E(X) is finite.

24. Let h(X) denote the net revenue (sales revenue – order cost) as a function of X. Then $h_3(X)$ and $h_4(X)$ are the net revenue for 3 and 4 copies purchased, respectively. For x=1 or 2, $h_3(X)=2x-3$, but at x=3,4,5,6 the revenue plateaus. Following similar reasoning, $h_4(X)=2x-4$ for x=1,2,3, but plateaus at 4 for x=4,5,6.

X	1	2	3	4	5	6
$h_3(x)$	-1	1	3	3	3	3
h ₄ (x)	-2	0	2	4	4	4
p(x)	<u>1</u> 15	<u>2</u> 15	<u>3</u> 15	<u>4</u> 15	<u>3</u> 15	<u>2</u> 15

$$E[h_3(X)] = \sum_{x=1}^{6} h_3(x) \cdot p(x) = (-1)(\frac{1}{15}) + \dots + (3)(\frac{2}{15}) = 2.4667$$

Similarly,
$$E[h_4(X)] = \sum_{x=1}^{6} h_4(x) \cdot p(x) = (-2)(\frac{1}{15}) + \dots + (4)(\frac{2}{15}) = 2.6667$$

Ordering 4 copies gives slightly higher revenue, on the average.

35.

P(x)	.8	.1	.08	.02
X	0	1,000	5,000	10,000
H(x)	0	500	4,500	9,500

E[h(X)] = 600. Premium should be \$100 plus expected value of damage minus deductible or \$700.

36.
$$E(X) = \sum_{x=1}^{n} x \cdot \left(\frac{1}{n}\right) = \left(\frac{1}{n}\right) \sum_{x=1}^{n} x = \frac{1}{n} \left[\frac{n(n+1)}{2}\right] = \frac{n+1}{2}$$

$$E(X^{2}) = \sum_{x=1}^{n} x^{2} \cdot \left(\frac{1}{n}\right) = \left(\frac{1}{n}\right) \sum_{x=1}^{n} x^{2} = \frac{1}{n} \left[\frac{n(n+1)(2n+1)}{6}\right] = \frac{(n+1)(2n+1)}{6}$$

$$So V(X) = \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^{2} = \frac{n^{2}-1}{12}$$

37.
$$E[h(X)] = E\left(\frac{1}{X}\right) = \sum_{x=1}^{6} \left(\frac{1}{x}\right) \cdot p(x) = \frac{1}{6} \sum_{x=1}^{6} \frac{1}{x} = .408$$
, whereas $\frac{1}{3.5} = .286$, so you expect to win more if you gamble.

38.
$$E(X) = \sum_{x=1}^{4} x \cdot p(x) = 2.3, E(X^2) = 6.1, \text{ so } V(X) = 6.1 - (2.3)^2 = .81$$

Each lot weighs 5 lbs, so weight left = 100 - 5x. Thus the expected weight left is 100 - 5E(X) = 88.5, and the variance of the weight left is V(100 - 5X) = V(-5X) = 25V(x) = 20.25.

- 39.
- **a.** The line graph of the p.m.f. of -X is just the line graph of the p.m.f. of X reflected about zero, but both have the same degree of spread about their respective means, suggesting V(-X) = V(X).

b. With
$$a = -1$$
, $b = 0$, $V(aX + b) = V(-X) = a^2V(X)$.

40.
$$V(aX + b) = \sum_{x} [aX + b - E(aX + b)]^{2} \cdot p(x) = \sum_{x} [aX + b - (a\mathbf{m} + b)]^{2} p(x)$$
$$= \sum_{x} [aX - (a\mathbf{m})]^{2} p(x) = a^{2} \sum_{x} [X - \mathbf{m}]^{2} p(x) = a^{2} V(X).$$

41.

a.
$$E[X(X-1)] = E(X^2) - E(X),$$
 $\Rightarrow E(X^2) = E[X(X-1)] + E(X) = 32.5$

b.
$$V(X) = 32.5 - (5)^2 = 7.5$$

c.
$$V(X) = E[X(X-1)] + E(X) - [E(X)]^2$$

With a=1 and b=c, E(X-c)=E(aX+b)=aE(X)+b=E(X)-c. When $c=\mu$, $E(X-\mu)=E(X)-\mu=\mu-\mu=0$, so the expected deviation from the mean is zero.

43.

a.

b.
$$\mathbf{m} = \sum_{x=0}^{6} x \cdot p(x) = 2.64$$
, $\mathbf{s}^2 = \left[\sum_{x=0}^{6} x^2 \cdot p(x)\right] - \mathbf{m}^2 = 2.37$, $\mathbf{s}^2 = 1.54$

Thus μ - 2σ = -.44, and μ + 2σ = 5.72,

so $P(|x-\mu| \ge 2\sigma) = P(X \text{ is lat least 2 s.d.'s from } \mu)$

$$= P(x \text{ is either } \le -.44 \text{ or } \ge 5.72) = P(X = 6) = .04.$$

Chebyshev's bound of .025 is much too conservative. For K = 3,4,5, and 10, $P(|x-\mu| \ge k\sigma) = 0$, here again pointing to the very conservative nature of the bound $\frac{1}{k^2}$.

c.
$$\mu = 0$$
 and $\mathbf{S} = \frac{1}{3}$, so $P(|x-\mu| \ge 3\sigma) = P(|X| \ge 1)$
= $P(X = -1 \text{ or } +1) = \frac{1}{18} + \frac{1}{18} = \frac{1}{9}$, identical to the upper bound.

d. Let p(-1) =
$$\frac{1}{50}$$
, $p(+1) = \frac{1}{50}$, $p(0) = \frac{24}{25}$.

Section 3.4

44.

a.
$$b(3;8,.6) = {8 \choose 3} (.6)^3 (.4)^5 = (56)(.00221184) = .124$$

b.
$$b(5;8,.6) = {8 \choose 5} (.6)^5 (.4)^3 = (56)(.00497664) = .279$$

c. P(
$$3 \le X \le 5$$
) = $b(3;8,.6) + b(4;8,.6) + b(5;8,.6) = .635$

d.
$$P(1 \le X) = 1 - P(X = 0) = 1 - {12 \choose 0} \cdot 1)^0 (.9)^{12} = 1 - (.9)^{12} = .718$$

45.

a.
$$B(4;10,.3) = .850$$

b.
$$b(4;10,.3) = B(4;10,.3) - B(3;10,.3) = .200$$

c.
$$b(6;10,.7) = B(6;10,.7) - B(5;10,.7) = .200$$

d. P(
$$2 \le X \le 4$$
) = B(4;10,.3) - B(1;10,.3) = .701

e.
$$P(2 < X) = 1 - P(X \le 1) = 1 - B(1;10,.3) = .851$$

f.
$$P(X \le 1) = B(1;10,.7) = .0000$$

g.
$$P(2 < X < 6) = P(3 \le X \le 5) = B(5;10,3) - B(2;10,3) = .570$$

46. $X \sim Bin(25, .05)$

a.
$$P(X \le 2) = B(2;25,.05) = .873$$

b.
$$P(X \ge 5) = 1 - P(X \le 4) = 1 - B(4;25,.05) = .1 - .993 = .007$$

c.
$$P(1 \le X \le 4) = P(X \le 4) - P(X \le 0) = .993 - .277 = .716$$

d.
$$P(X = 0) = P(X \le 0) = .277$$

e.
$$E(X) = np = (25)(.05) = 1.25$$

 $V(X) = np(1 - p) = (25)(.05)(.95) = 1.1875$
 $\sigma_x = 1.0897$

47.
$$X \sim Bin(6, .10)$$

a.
$$P(X = 1) = {n \choose x} p^x (1-p)^{n-x} = {6 \choose 1} .1^1 (.9)^5 = .3543$$

b.
$$P(X \ge 2) = 1 - [P(X = 0) + P(X = 1)].$$

From **a**, we know
$$P(X = 1) = .3543$$
, and $P(X = 0) = {6 \choose 0} .1)^0 (.9)^6 = .5314$.

Hence
$$P(X \ge 2) = 1 - [.3543 + .5314] = .1143$$

c. Either 4 or 5 goblets must be selected

i) Select 4 goblets with zero defects:
$$P(X = 0) = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \cdot 1)^0 (.9)^4 = .6561$$
.

ii) Select 4 goblets, one of which has a defect, and the 5th is good:

$$\begin{bmatrix} 4 \\ 1 \end{bmatrix} .1)^{1} (.9)^{3} \times .9 = .26244$$

So the desired probability is .6561 + .26244 = .91854

48. Let
$$S = comes to a complete stop, so $p = .25$, $n = 20$$$

a.
$$P(X \le 6) = B(6;20,.25) = .786$$

b.
$$P(X = 6) = b(6;20,.20) = B(6;20,.25) - B(5;20,.25) = .786 - .617 = .169$$

c.
$$P(X \ge 6) = 1 - P(X \le 5) = 1 - B(5;20,.25) = 1 - .617 = .383$$

d.
$$E(X) = (20)(.25) = 5$$
. We expect 5 of the next 20 to stop.

49. Let
$$S = has$$
 at least one citation. Then $p = .4$, $n = 15$

a. If at least 10 have no citations (Failure), then at most 5 have had at least one (Success): $P(X \le 5) = B(5;15,40) = .403$

b.
$$P(X \le 7) = B(7;15,.40) = .787$$

c.
$$P(5 \le X \le 10) = P(X \le 10) - P(X \le 4) = .991 - .217 = .774$$

50.
$$X \sim Bin(10, .60)$$

a.
$$P(X \ge 6) = 1 - P(X \le 5) = 1 - B(5;20,.60) = 1 - .367 = .633$$

b.
$$E(X) = np = (10)(.6) = 6$$
; $V(X) = np(1 - p) = (10)(.6)(.4) = 2.4$; $\sigma_x = 1.55$ $E(X) \pm \sigma_x = (4.45, 7.55)$. We desire $P(5 \le X \le 7) = P(X \le 7) - P(X \le 4) = .833 - .166 = .667$

c. P(
$$3 \le X \le 7$$
) = P($X \le 7$) – P($X \le 2$) = .833 - .012 = .821

Let S represent a telephone that is submitted for service while under warranty and must be replaced. Then $p = P(S) = P(replaced | submitted) \cdot P(submitted) = (.40)(.20) = .08$. Thus X, the number among the company's 10 phones that must be replaced, has a binomial

distribution with n = 10, p = .08, so p(2) = P(X=2) =
$$\binom{10}{2}$$
.08)² (.92)⁸ = .1478

52.
$$X \sim Bin (25, .02)$$

a.
$$P(X=1) = 25(.02)(.98)^{24} = .308$$

b.
$$P(X=1) = 1 - P(X=0) = 1 - (.98)^{25} = 1 - .603 = .397$$

c.
$$P(X=2) = 1 - P(X=1) = 1 - [.308 + .397]$$

d.
$$\overline{x} = 25(.02) = .5$$
; $\mathbf{S} = \sqrt{npq} = \sqrt{25(.02)(.98)} = \sqrt{.49} = .7$
 $\overline{x} + 2\mathbf{S} = .5 + 1.4 = 1.9$ So $P(0 = X = 1.9 = P(X = 1) = .705$

e.
$$\frac{.5(4.5) + 24.5(3)}{25} = 3.03$$
 hours

53. X =the number of flashlights that work.

Let event $B = \{ \text{battery has acceptable voltage} \}.$

Then P(flashlight works) = P(both batteries work) = P(B)P(B) = (.9)(.9) = .81 We must assume that the batteries' voltage levels are independent.

$$X \sim Bin (10, .81)$$
. $P(X=9) = P(X=9) + P(X=10)$

$$\binom{10}{9} (.81)^9 (.19) + \binom{10}{10} (.81)^{10} = .285 + .122 = .407$$

- **54.** Let p denote the actual proportion of defectives in the batch, and X denote the number of defectives in the sample.
 - **a.** P(the batch is accepted) = $P(X \le 2) = B(2;10,p)$

p	.01	.05	.10	.20	.25
P(accept)	1.00	.988	.930	.678	.526

b.

c. P(the batch is accepted) = $P(X \le 1) = B(1;10,p)$

p	.01	.05	.10	.20	.25
P(accept)	.996	.914	.736	.376	.244

d. P(the batch is accepted) = $P(X \le 2) = B(2;15,p)$

p	.01	.05	.10	.20	.25
P(accept)	1.00	.964	.816	.398	.236

e. We want a plan for which P(accept) is high for $p \le .1$ and low for p > .1 The plan in **d** seems most satisfactory in these respects.

55.

a. P(rejecting claim when p = .8) = B(15;25,.8) = .017

b. P(not rejecting claim when
$$p = .7$$
) = $P(X \ge 16 \text{ when } p = .7)$ = $1 - B(15;25,.7) = 1 - .189 = .811$; for $p = .6$, this probability is = $1 - B(15;25,.6) = 1 - .575 = .425$.

c. The probability of rejecting the claim when p = .8 becomes B(14;25,.8) = .006, smaller than in **a** above. However, the probabilities of **b** above increase to .902 and .586, respectively.

56.
$$h(x) = 1 \cdot X + 2.25(25 - X) = 62.5 - 1.5X$$
, so $E(h(X)) = 62.5 - 1.5E(x)$
= $62.5 - 1.5$ np $- 62.5 - (1.5)(25)(.6) = 40.00

57. If topic A is chosen, when n = 2, P(at least half received) $= P(X \ge 1) = 1 - P(X = 0) = 1 - (.1)^2 = .99$ If B is chosen, when n = 4, P(at least half received) $= P(X \ge 2) = 1 - P(X \le 1) = 1 - (0.1)^4 - 4(.1)^3(.9) = .9963$ Thus topic B should be chosen.

If p = .5, the probabilities are .75 for A and .6875 for B, so now A should be chosen.

58.

a. np(1-p) = 0 if either p = 0 (whence every trial is a failure, so there is no variability in X) or if p = 1 (whence every trial is a success and again there is no variability in X)

b.
$$\frac{d}{dp}[np(1-p)] = n[(1-p) + p(-1)] = n[1-2p=0]$$
 \Rightarrow $p = .5$, which is easily seen to correspond to a maximum value of V(X).

59.

a.
$$b(x; n, 1-p) = \binom{n}{x} (1-p)^x (p)^{n-x} = \binom{n}{n-x} (p)^{n-x} (1-p)^x = b(n-x; n, p)$$

b.
$$B(x;n,1-p) = P(at most x S's when $P(S) = 1-p)$
= $P(at least n-x F's when $P(F) = p)$
= $P(at least n-x S's when $P(S) = p)$
= $1 - P(at most n-x-1 S's when $P(S) = p)$
= $1 - B(n-x-1;n,p)$$$$$$

c. Whenever p > .5, (1 - p) < .5 so probabilities involving X can be calculated using the results **a** and **b** in combination with tables giving probabilities only for $p \le .5$

60. Proof of E(X) = np:

$$E(X) = \sum_{x=0}^{n} x \cdot \binom{n}{x} p^{x} (1-p)^{n-x} = \sum_{x=1}^{n} x \cdot \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} = np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x}$$

$$= np \sum_{y=0}^{n} \frac{(n-1)!}{(y)!(n-1-y)!} p^{y} (1-p)^{n-1-y} \text{ (y replaces x-1)}$$

$$= np \left\{ \sum_{y=0}^{n-1} \binom{n-1}{y} p^{y} (1-p)^{n-1-y} \right\}$$

The expression in braces is the sum over all possible values y = 0, 1, 2, ..., n-1 of a binomial p.m.f. based on n-1 trials, so equals 1, leaving only np, as desired.

61.

- **a.** Although there are three payment methods, we are only concerned with S = uses a debit card and F = does not use a debit card. Thus we can use the binomial distribution. So n = 100 and p = .5. E(X) = np = 100(.5) = 50, and V(X) = 25.
- **b.** With S = doesn't pay with cash, <math>n = 100 and p = .7, E(X) = np = 100(.7) = 70, and V(X) = 21.

62.

- **a.** Let X = the number with reservations who show, a binomial r.v. with n = 6 and p = .8. The desired probability is P(X = 5 or 6) = b(5;6,8) + b(6;6,8) = .3932 + .2621 = .6553
- **b.** Let h(X) = the number of available spaces. Then

$$E[h(X)] = \sum_{i=0}^{6} h(x) \cdot b(x;6,.8) = 4(.000) + 3(.002) = 2(.015 + 3(.082) = .277$$

c. Possible X values are 0, 1, 2, 3, and 4. X = 0 if there are 3 reservations and none show or ... or 6 reservations and none show, so

$$P(X = 0) = b(0;3,.8)(.1) + b(0;4,.8)(.2) + b(0;5,.8)(.3) + b(0;6,.8)(.4)$$

= .0080(.1) + .0016(.2) + .0003(.3) + .0001(.4) = .0013

$$P(X = 1) = b(1;3,.8)(.1) + ... + b(1;6,.8)(.4) = .0172$$

$$P(X = 2) = .0906,$$
 $P(X = 3) = .2273,$

$$P(X = 4) = 1 - [.0013 + ... + .2273] = .6636$$

63. When p = .5, $\mu = 10$ and $\sigma = 2.236$, so $2\sigma = 4.472$ and $3\sigma = 6.708$. The inequality $|X - 10| \ge 4.472$ is satisfied if either $X \le 5$ or $X \ge 15$, or $P(|X - \mu| \ge 2\sigma) = P(X \le 5 \text{ or } X \ge 15) = .021 + .021 = .042$.

In the case p=.75, $\mu=15$ and $\sigma=1.937$, so $2\sigma=3.874$ and $3\sigma=5.811$. $P(|X-15|\geq 3.874)=P(X\leq 11 \text{ or } X\geq 19)=.041+.024=.065$, whereas $P(|X-15|\geq 5.811)=P(X\leq 9)=.004$. All these probabilities are considerably less than the upper bounds .25(for k=2) and .11 (for k=3) given by Chebyshev.

Section 3.5

64.

a. $X \sim \text{Hypergeometric N=15, n=5, M=6}$

b.
$$P(X=2) = \frac{\binom{6}{2}\binom{9}{3}}{\binom{15}{5}} = \frac{840}{3003} = .280$$

$$P(X=2) = P(X=0) + P(X=1) + P(X=2)$$

$$= \frac{\binom{9}{5}}{\binom{15}{5}} + \frac{\binom{6}{9}}{\binom{15}{5}} + \frac{840}{3003} = \frac{126 + 756 + 840}{3003} = \frac{1722}{3003} = .573$$

$$P(X=2) = 1 - P(X=1) = 1 - [P(X=0) + P(X=1)] = 1 - \frac{126 + 756}{3003} = .706$$

c.
$$E(X) = 5\left(\frac{6}{15}\right) = 2$$
; $V(X) = \left(\frac{15-5}{14}\right) \cdot 5 \cdot \left(\frac{6}{15}\right) \cdot \left(1 - \frac{6}{15}\right) = .857$;
 $\mathbf{s} = \sqrt{V(X)} = .926$

65.
$$X \sim h(x; 6, 12, 7)$$

a.
$$P(X=5) = \frac{\binom{7}{5}\binom{5}{1}}{\binom{12}{6}} = \frac{105}{924} = .114$$

b.
$$P(X=4) = 1 - P(X=5) = 1 - [P(X=5) + P(X=6)] =$$

$$1 - \left[\frac{\binom{7}{5} \binom{5}{1}}{\binom{12}{6}} + \frac{\binom{7}{6}}{\binom{12}{6}} \right] = 1 - \frac{105 + 7}{924} = 1 - .121 = .879$$

c.
$$E(X) = \left(\frac{6 \cdot 7}{12}\right) = 3.5$$
; $\mathbf{S} = \sqrt{\left(\frac{6}{11}\right)\left(6\right)\left(\frac{7}{12}\right)\left(\frac{5}{12}\right)} = \sqrt{.795} = .892$
 $P(X > 3.5 + .892) = P(X > 4.392) = P(X = 5) = .121$ (see part b)

d. We can approximate the hypergeometric distribution with the binomial if the population size and the number of successes are large: h(x;15,40,400) approaches b(x;15,.10). So $P(X=5) \sim B(5;15,.10)$ from the binomial tables = .998

66.

a.
$$P(X = 10) = h(10;15,30,50) = \frac{\binom{30}{10}\binom{20}{5}}{\binom{50}{15}} = .2070$$

b.
$$P(X \ge 10) = h(10;15,30,50) + h(11;15,30,50) + ... + h(15;15,30,50)$$

= .2070+.1176+.0438+.0101+.0013+.0001 = .3799

c. P(at least 10 from the same class) = P(at least 10 from second class [answer from **b**]) + P(at least 10 from first class). But "at least 10 from 1st class" is the same as "at most 5 from the second" or $P(X \le 5)$.

$$\begin{split} P(X \leq 5) &= h(0;15,30,50) + h(1;15,30,50) + \ldots + h(5;15,30,50) \\ &= 11697 + .002045 + .000227 + .000150 + .000001 + .0000000 \\ &= .01412 \end{split}$$

So the desired probability =
$$P(x \ge 10) + P(X \le 5)$$

= .3799 + .01412 = .39402

d.
$$E(X) = n \cdot \frac{M}{N} = 15 \cdot \frac{30}{50} = 9$$

 $V(X) = \left(\frac{35}{49}\right) (9) \left(1 - \frac{30}{50}\right) = 2.5714$
 $\sigma_X = 1.6036$

e. Let
$$Y = 15 - X$$
. Then $E(Y) = 15 - E(X) = 15 - 9 = 6$
 $V(Y) = V(15 - X) - V(X) = 2.5714$, so $\sigma_Y = 1.6036$

a. Possible values of X are 5, 6, 7, 8, 9, 10. (In order to have less than 5 of the granite, there would have to be more than 10 of the basaltic).

$$P(X = 5) = h(5; 15, 10, 20) = \frac{\binom{10}{5}\binom{10}{10}}{\binom{20}{15}} = .0163.$$

Following the same pattern for the other values, we arrive at the pmf, in table form below.

b. P(all 10 of one kind or the other) = P(X = 5) + P(X = 10) = .0163 + .0163 = .0326

c.
$$E(X) = n \cdot \frac{M}{N} = 15 \cdot \frac{10}{20} = 7.5$$
; $V(X) = \left(\frac{5}{19}\right) (7.5) \left(1 - \frac{10}{20}\right) = .9868$; $\sigma_x = .9934$

$$\mu \pm \sigma = 7.5 \pm .9934 = (6.5066, 8.4934)$$
, so we want $P(X = 7) + P(X = 8) = .3483 + .3483 = .6966$

a.
$$h(x; 6,4,11)$$

b.
$$6 \cdot \left(\frac{4}{11}\right) = 2.18$$

- 69.
- **a.** h(x; 10,10,20) (the successes here are the top 10 pairs, and a sample of 10 pairs is drawn from among the 20)
- **b.** Let X = the number among the top 5 who play E-W. Then P(all of top 5 play the same direction) = P(X = 5) + P(X = 0) = h(5;10,5,20) + h(5;10,5,20)

$$= \frac{\binom{15}{5}}{\binom{20}{10}} + \frac{\binom{15}{10}}{\binom{20}{10}} = .033$$

c. N = 2n; M = n; n = n

h(x;n,n,2n)

$$E(X) = n \cdot \frac{n}{2n} = \frac{1}{2}n;$$

V(X) =

$$\left(\frac{2n-n}{2n-1}\right) \cdot n \cdot \frac{n}{2n} \cdot \left(1 - \frac{n}{2n}\right) = \left(\frac{n}{2n-1}\right) \cdot \frac{n}{2} \cdot \left(1 - \frac{n}{2n}\right) = \left(\frac{n}{2n-1}\right) \cdot \frac{n}{2} \cdot \left(\frac{1}{2}\right)$$

- **70.**
- **a.** h(x;10,15,50)
- **b.** When N is large relative to n, h(x; n,M,N) $\&b\left(x;n,\frac{M}{N}\right)$ so h(x;10,150,500) &b(x;10,.3)
- c. Using the hypergeometric model, $E(X) = 10 \cdot \left(\frac{150}{500}\right) = 3$ and

$$V(X) = \frac{490}{499}(10)(.3)(.7) = .982(2.1) = 2.06$$

Using the binomial model, E(X) = (10)(.3) = 3, and V(X) = 10(.3)(.7) = 2.1

- 71.
- **a.** With S = a female child and F = a male child, let X = the number of F's before the 2^{nd} S. Then P(X = x) = nb(x; 2, .5)
- **b.** P(exactly 4 children) = P(exactly 2 males) = nb(2;2,.5) = (3)(.0625) = .188
- c. $P(\text{at most 4 children}) = P(X \le 2)$

$$= \sum_{x=0}^{2} nb(x;2,.5) = .25 + 2(.25)(.5) + 3(.0625) = .688$$

- **d.** $E(X) = \frac{(2)(.5)}{.5} = 2$, so the expected number of children = E(X + 2)= E(X) + 2 = 4
- **72.** The only possible values of X are 3, 4, and 5.

 $p(3) = P(X = 3) = P(\text{first 3 are B's or first 3 are G's}) = 2(.5)^3 = .250$

 $p(4) = P(two among the 1^{st} three are B's and the 4th is a B) + P(two among the 1^{st} three are$

G's and the 4th is a G) =
$$2 \cdot {3 \choose 2} \cdot (.5)^4 = .375$$

p(5) = 1 - p(3) - p(4) = .375

- 73. This is identical to an experiment in which a single family has children until exactly 6 females have been born(since p = .5 for each of the three families), so p(x) = nb(x;6,.5) and E(X) = 6 (= 2+2+2, the sum of the expected number of males born to each one.)
- 74. The interpretation of "roll" here is a pair of tosses of a single player's die(two tosses by A or two by B). With S = doubles on a particular roll, $p = \frac{1}{6}$. Furthermore, A and B are really identical (each die is fair), so we can equivalently imagine A rolling until 10 doubles appear. The P(x rolls) = P(9 doubles among the first x 1 rolls and a double on the x^{th} roll =

$$\left(\frac{x-1}{9} \right) \left(\frac{5}{6} \right)^{x-10} \left(\frac{1}{6} \right)^9 \cdot \left(\frac{1}{6} \right) = \left(\frac{x-1}{9} \right) \left(\frac{5}{6} \right)^{x-10} \left(\frac{1}{6} \right)^{10}$$

$$E(X) = \frac{r(1-p)}{p} = \frac{10(\frac{5}{6})}{\frac{1}{6}} = 10(5) = 50 \quad V(X) = \frac{r(1-p)}{p^2} = \frac{10(\frac{5}{6})}{\left(\frac{1}{6} \right)^2} = 10(5)(6) = 300$$

Section 3.6

75.

a.
$$P(X \le 8) = F(8;5) = .932$$

b.
$$P(X = 8) = F(8;5) - F(7;5) = .065$$

c.
$$P(X \ge 9) = 1 - P(X \le 8) = .068$$

d.
$$P(5 \le X \le 8) = F(8;5) - F(4;5) = .492$$

e.
$$P(5 < X < 8) = F(7;5) - F(5;5) = .867 - .616 = .251$$

76.

a.
$$P(X \le 5) = F(5;8) = .191$$

b.
$$P(6 \le X \le 9) = F(9;8) - F(5;8) = .526$$

c.
$$P(X \ge 10) = 1 - P(X \le 9) = .283$$

d.
$$E(X) = \lambda = 10$$
, $\sigma_X = \sqrt{1} = 2.83$, so $P(X > 12.83) = P(X \ge 13) = 1 - P(X \le 12) = 1 - .936 = .064$

77.

a.
$$P(X \le 10) = F(10;20) = .011$$

b.
$$P(X > 20) = 1 - F(20;20) = 1 - .559 = .441$$

c.
$$P(10 \le X \le 20) = F(20;20) - F(9;20) = .559 - .005 = .554$$

 $P(10 < X < 20) = F(19;20) - F(10;20) = .470 - .011 = .459$

d.
$$E(X) = \lambda = 20$$
, $\sigma_X = \sqrt{I} = 4.472$
 $P(\mu - 2\sigma < X < \mu + 2\sigma)$ = $P(20 - 8.944 < X < 20 + 8.944)$
 $= P(11.056 < X < 28.944)$
 $= P(X \le 28) - P(X \le 11)$
 $= F(28;20) - F(12;20)$]
 $= .966 - .021 = .945$

a.
$$P(X = 1) = F(1;2) - F(0;2) = .982 - .819 = .163$$

b.
$$P(X \ge 2) = 1 - P(X \le 1) = 1 - F(1,2) = 1 - .982 = .018$$

c.
$$P(1^{st} \text{ doesn't} \cap 2^{nd} \text{ doesn't}) = P(1^{st} \text{ doesn't}) \cdot P(2^{nd} \text{ doesn't})$$

= (.819)(.819) = .671

79.
$$p = \frac{1}{200}$$
; n = 1000; λ = np = 5

a.
$$P(5 \le X \le 8) = F(8;5) - F(4;5) = .492$$

b.
$$P(X \ge 8) = 1 - P(X \le 7) = 1 - .867 = .133$$

80.

- a. The experiment is binomial with n = 10,000 and p = .001, so $\mu = np = 10$ and $\sigma = \sqrt{npq} = 3.161$.
- **b.** X has approximately a Poisson distribution with $\lambda = 10$, so $P(X > 10)^{\sim} 1 F(10;10) = 1 .583 = .417$
- **c.** $P(X = 0)^{-0}$

81.

- **a.** $\lambda = 8$ when t = 1, so P(X = 6) = F(6;8) F(5;8) = .313 .191 = .122, $P(X \ge 6) = 1 F(5;8) = .809$, and $P(X \ge 10) = 1 F(9;8) = .283$
- **b.** t = 90 min = 1.5 hours, so $\lambda = 12$; thus the expected number of arrivals is 12 and the SD $= \sqrt{12} = 3.464$
- c. t = 2.5 hours implies that $\lambda = 20$; in this case, $P(X \ge 20) = 1 F(19;20) = .530$ and $P(X \le 10) = F(10;20) = .011$.

82.

a.
$$P(X = 4) = F(4;5) - F(3;5) = .440 - .265 = .175$$

b.
$$P(X \ge 4) = 1 - P(X \le 3) = 1 - .265 = .735$$

c. Arrivals occur at the rate of 5 per hour, so for a 45 minute period the rate is $\lambda = (5)(.75)$ = 3.75, which is also the expected number of arrivals in a 45 minute period.

- **a.** For a two hour period the parameter of the distribution is $\lambda t = (4)(2) = 8$, so P(X = 10) = F(10;8) F(9;8) = .099.
- **b.** For a 30 minute period, $\lambda t = (4)(.5) = 2$, so P(X = 0) = F(0,2) = .135
- **c.** $E(X) = \lambda t = 2$

84. Let X = the number of diodes on a board that fail.

a.
$$E(X) = np = (200)(.01) = 2$$
, $V(X) = npq = (200)(.01)(.99) = 1.98$, $\sigma_X = 1.407$

b. X has approximately a Poisson distribution with
$$\lambda = np = 2$$
, so $P(X \ge 4) = 1 - P(X \le 3) = 1 - F(3;2) = 1 - .857 = .143$

c. P(board works properly) = P(all diodes work) = P(X = 0) = F(0;2) = .135Let Y = the number among the five boards that work, a binomial r.v. with n = 5 and p = .135. Then $P(Y \ge 4) = P(Y = 4) + P(Y = 5) =$

$$\binom{5}{4}$$
.135)⁴(.865) + $\binom{5}{5}$.135)⁵(.865)⁰ = .00144 + .00004 = .00148

85. $\alpha = 1/(\text{mean time between occurrences}) = \frac{1}{.5} = 2$

a.
$$\alpha t = (2)(2) = 4$$

b.
$$P(X > 5) 1 - P(X \le 5) = 1 - .785 = .215$$

c. Solve for t, given
$$\alpha = 2$$
:

$$1 = e^{-tx}$$

 $\ln(.1) = -\alpha t$
 $t = \frac{2.3026}{2} \approx 1.15 \text{ years}$

86.
$$E(X) = \sum_{x=0}^{\infty} x \frac{e^{-1} \mathbf{1}^x}{x!} = \sum_{x=1}^{\infty} x \frac{e^{-1} \mathbf{1}^x}{x!} = \mathbf{1} \sum_{x=1}^{\infty} x \frac{e^{-1} \mathbf{1}^x}{x!} = \mathbf{1} \sum_{y=0}^{\infty} x \frac{e^{-1} \mathbf{1}^y}{y!} = \mathbf{1}$$

- 87.
- **a.** For a one-quarter acre plot, the parameter is (80)(.25) = 20, so $P(X \le 16) = F(16;20) = .221$
- **b.** The expected number of trees is λ (area) = 80(85,000) = 6,800,000.
- c. The area of the circle is $\pi^2 = .031416$ sq. miles or 20.106 acres. Thus X has a Poisson distribution with parameter 20.106

88.

a.
$$P(X = 10 \text{ and no violations}) = P(\text{no violations} \mid X = 10) \cdot P(X = 10)$$

= $(.5)^{10} \cdot [F(10;10) - F(9;10)]$
= $(.000977)(.125) = .000122$

b. P(y arrive and exactly 10 have no violations) = P(exactly 10 have no violations | y arrive) · P(y arrive) = P(10 successes in y trials when p = .5) · $e^{-10} \frac{(10)^y}{y!}$

$$= {y \choose 10} .5)^{10} (.5)^{y-10} e^{-10} \frac{(10)^y}{y!} = \frac{e^{-10} (5)^y}{10! (y-10)!}$$

c. P(exactly 10 without a violation) = $\sum_{y=10}^{\infty} \frac{e^{-10} (5)^{y}}{10! (y-10)!}$ $= \frac{e^{-10} \cdot 5^{10}}{10!} \sum_{y=10}^{\infty} \frac{(5)^{y-10}}{(y-10)!} = \frac{e^{-10} \cdot 5^{10}}{10!} \sum_{u=0}^{\infty} \frac{(5)^{u}}{(u)!} = \frac{e^{-10} \cdot 5^{10}}{10!} \cdot e^{5}$ $= \frac{e^{-5} \cdot 5^{10}}{10!} = p(10;5).$

In fact, generalizing this argument shows that the number of "no-violation" arrivals within the hour has a Poisson distribution with parameter 5; the 5 results from $\lambda p = 10(.5)$.

89.

a. No events in $(0, t+\Delta t)$ if and only if no events in (0, t) and no events in $(t, t+\Delta t)$. Thus, P_0 $(t+\Delta t) = P_0(t) \cdot P(\text{no events in } (t, t+\Delta t))$ $= P_0(t)[1 - \lambda \cdot \Delta t - o(\Delta t)]$

b.
$$\frac{P_0(t+\Delta t) - P_0(t)}{\Delta t} = -\boldsymbol{I}P_0(t)\frac{\Delta' t}{\Delta' t} - P_0(t) \cdot \frac{o(\Delta t)}{\Delta t}$$

c.
$$\frac{d}{dt} \left[e^{-1t} \right] = -\lambda e^{-\lambda t} = -\lambda P_0(t)$$
, as desired.

d.
$$\frac{d}{dt} \left[\frac{e^{-lt} (\mathbf{I}t)^k}{k!} \right] = \frac{-\mathbf{I}e^{-lt} (\mathbf{I}t)^k}{k!} + \frac{k\mathbf{I}e^{-lt} (\mathbf{I}t)^{k-1}}{k!}$$

$$= -\mathbf{1} \frac{e^{-\mathbf{1}t} (\mathbf{1}t)^k}{k!} + \mathbf{1} \frac{e^{-\mathbf{1}t} (\mathbf{1}t)^{k-1}}{(k-1)!} = -\lambda P_k(t) + \lambda P_{k-1}(t) \text{ as desired.}$$

Supplementary Exercises

Outcomes are $(1,2,3)(1,2,4)(1,2,5)\dots(5,6,7)$; there are 35 such outcomes. Each having probability $\frac{1}{35}$. The W values for these outcomes are $6 (=1+2+3), 7, 8, \dots, 18$. Since there is just one outcome with W value 6, $p(6) = P(W = 6) = \frac{1}{35}$. Similarly, there are three outcomes with W value 9 [(1,2,6)(1,3,5) and 2,3,4)], so $p(9) = \frac{3}{35}$. Continuing in this manner yields the following distribution:

W
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

 P(W)

$$\frac{1}{35}$$
 $\frac{1}{35}$
 $\frac{2}{35}$
 $\frac{3}{35}$
 $\frac{4}{35}$
 $\frac{4}{35}$

Since the distribution is symmetric about 12, $\mu = 12$, and $\mathbf{s}^2 = \sum_{w=6}^{18} (w-12)^2 p(w)$

$$= \frac{1}{35} [(6)^2 (1) + (5)^2 (1) + \dots + (5)^2 (1) + (6)^2 (1) = 8$$

91.

a. p(1) = P(exactly one suit) = P(all spades) + P(all hearts) + P(all diamonds)

+ P(all clubs) = 4P(all spades) =
$$4 \cdot \frac{\begin{pmatrix} 13 \\ 5 \end{pmatrix}}{\begin{pmatrix} 52 \\ 5 \end{pmatrix}} = .00198$$

p(2) = P(all hearts and spades with at least one of each) + ... + P(all diamonds and clubs with at least one of each)

= 6 P(all hearts and spades with at least one of each)

= 6 [P(1 h and 4 s) + P(2 h and 3 s) + P(3 h and 2 s) + P(4 h and 1 s)]

$$=6 \cdot \left[2 \cdot \frac{\binom{13}{4} \binom{13}{1}}{\binom{52}{5}} + 2 \cdot \frac{\binom{13}{3} \binom{13}{2}}{\binom{52}{5}} \right] = 6 \left[\frac{18,590 + 44,616}{2,598,960} \right] = .14592$$

p(4) = 4P(2 spades, 1 h, 1 d, 1 c) =
$$\frac{4 \cdot {\binom{13}{2}} (13)(13)(13)}{\binom{52}{5}} = .26375$$

$$p(3) = 1 - [p(1) + p(2) + p(4)] = .58835$$

b.
$$\mu = \sum_{x=1}^{4} x \cdot p(x) = 3.114, \ \mathbf{s}^2 = \left[\sum_{x=1}^{4} x^2 \cdot p(x)\right] - (3.114)^2 = .405, \ \mathbf{s} = .636$$

92.
$$p(y) = P(Y = y) = P(y \text{ trials to achieve r S's}) = P(y - r \text{ F's before r}^{\text{th}} \text{ S})$$

= $nb(y - r; r, p) = {y - 1 \choose r - 1} p^r (1 - p)^{y - r}, y = r, r + 1, r + 2, ...$

- 93.
- **a.** b(x;15,.75)
- **b.** P(X > 10) = 1 B(9;15, .75) = 1 .148
- **c.** B(10;15,.75) B(5;15,.75) = .314 .001 = .313
- **d.** $\mu = (15)(.75) = 11.75, \sigma^2 = (15)(.75)(.25) = 2.81$
- e. Requests can all be met if and only if $X \le 10$, and $15 X \le 8$, i.e. if $7 \le X \le 10$, so P(all requests met) = B(10; 15,.75) B(6; 15,.75) = .310
- 94. P(6-v light works) = P(at least one 6-v battery works) = 1 P(neither works) = $1 - (1 - p)^2$. P(D light works) = P(at least 2 d batteries work) = $1 - P(at most 1 D battery works) = 1 - [(1 - p)^4 + 4(1 - p)^3]$. The 6-v should be taken if $1 - (1 - p)^2 \ge 1 - [(1 - p)^4 + 4(1 - p)^3]$. Simplifying, $1 \le (1 - p)^2 + 4p(1 - p) \implies 0 \le 2p - 3p^3 \implies p \le \frac{2}{3}$.

Let $X \sim Bin(5, .9)$. Then $P(X \ge 3) = 1 - P(X \le 2) = 1 - B(2; 5, .9) = .991$

96.

- **a.** $P(X \ge 5) = 1 B(4;25,.05) = .007$
- **b.** $P(X \ge 5) = 1 B(4;25,.10) = .098$
- **c.** $P(X \ge 5) = 1 B(4;25,.20) = .579$
- **d.** All would decrease, which is bad if the % defective is large and good if the % is small.
- 97.
- **a.** N = 500, p = .005, so np = 2.5 and b(x; 500, .005) $\Re p(x; 2.5)$, a Poisson p.m.f.
- **b.** P(X = 5) = p(5; 2.5) p(4; 2.5) = .9580 .8912 = .0668
- **c.** $P(X \ge 5) = 1 p(4;2.5) = 1 .8912 = .1088$

98.
$$X \sim B(x; 25, p)$$
.

a.
$$B(18; 25, .5) - B(6; 25, .5) = .986$$

b.
$$B(18; 25, .8) - B(6; 25, .8) = .220$$

c. With
$$p = .5$$
, P(rejecting the claim) = $P(X \le 7) + P(X \ge 18) = .022 + [1 - .978] = .022 + .022 = .044$

- **d.** The claim will not be rejected when $8 \le X \le 17$. With p=.6, $P(8 \le X \le 17) = B(17;25,.6) - B(7;25,.6) = .846 - .001 = .845$. With p=.8, $P(8 \le X \le 17) = B(17;25,.8) - B(7;25,.8) = .109 - .000 = .109$.
- e. We want P(rejecting the claim) = .01. Using the decision rule "reject if X = 6 or $X \ge 1$ 19" gives the probability .014, which is too large. We should use "reject if X = 5 or $X \ge 1$ 20" which yields P(rejecting the claim) = .002 + .002 = .004.
- 99. Let Y denote the number of tests carried out. For n = 3, possible Y values are 1 and 4. P(Y =1) = P(no one has the disease) = $(.9)^3$ = .729 and P(Y = 4) = .271, so E(Y) = (1)(.729) + (4)(.271) = 1.813, as contrasted with the 3 tests necessary without group testing.
- 100. Regard any particular symbol being received as constituting a trial. Then p = P(S) =P(symbol is sent correctly or is sent incorrectly and subsequently corrected) = $1 - p_1 + p_1p_2$. The block of n symbols gives a binomial experiment with n trials and $p = 1 - p_1 + p_1 p_2$.

101.
$$p(2) = P(X = 2) = P(S \text{ on } #1 \text{ and } S \text{ on } #2) = p^2$$

 $p(3) = P(S \text{ on } #3 \text{ and } S \text{ on } #2 \text{ and } F \text{ on } #1) = (1 - p)p^2$

$$p(3) = P(S \text{ on } #3 \text{ and } S \text{ on } #2 \text{ and } F \text{ on } #1) = (1 - p)p^{3}$$

$$p(4) = P(S \text{ on } #4 \text{ and } S \text{ on } #3 \text{ and } F \text{ on } #2) = (1 - p)p^2$$

 $p(5) = P(S \text{ on } \#5 \text{ and } S \text{ on } \#4 \text{ and } F \text{ on } \#3 \text{ and no } 2 \text{ consecutive } S's \text{ on trials prior to } \#3) = \begin{bmatrix} 1 \end{bmatrix}$ $-p(2)](1-p)p^2$

p(6) = P(S on #6 and S on #5 and F on #4 and no 2 consecutive S's on trials prior to #4) = [1 $-p(2)-p(3)](1-p)p^2$

In general, for
$$x = 5, 6, 7, ...$$
: $p(x) = [1 - p(2) - ... - p(x - 3)](1 - p)p^2$

For p = .9,

X	2	3	4	5	6	7	8
p(x)	.81	.081	.081	.0154	.0088	.0023	.0010

So
$$P(X \le 8) = p(2) + ... + p(8) = .9995$$

a. With
$$X \sim Bin(25, .1), P(2 \le X \le 6) = B(6; 25, .1 - B(1; 25, .1) = .991 - .271 = 720$$

b.
$$E(X) = np = 25(.1) = 2.5$$
, $\sigma_X = \sqrt{npq} = \sqrt{25(.1)(.9)} = \sqrt{2.25} = 1.50$

c.
$$P(X \ge 7 \text{ when } p = .1) = 1 - B(6;25,.1) = 1 - .991 = .009$$

d.
$$P(X \le 6 \text{ when } p = .2) = B(6;25,.2) = = .780$$
, which is quite large

103.

a. Let event C = seed carries single spikelets, and event P = seed produces ears with single spikelets. Then P(P \cap C) = P(P | C) \cdot P(C) = .29 (.40) = .116. Let X = the number of seeds out of the 10 selected that meet the condition P \cap C. Then X \sim Bin(10, .116).

$$P(X=5) = {10 \choose 5} (.116)^5 (.884)^5 = .002857$$

b. For 1 seed, the event of interest is P = seed produces ears with single spikelets.

$$P(P) = P(P \cap C) + P(P \cap C') = .116 \text{ (from } \mathbf{a}) + P(P \mid C') \cdot P(C') = .116 + (.26)(.40) = .272.$$

Let Y = the number out of the 10 seeds that meet condition P.

Then $Y \sim Bin(10, .272)$, and P(Y = 5) = .0767.

$$P(Y \le 5) = b(0;10,.272) + ... + b(5;10,.272) = .041813 + ... + .076719 = .97024$$

With S = favored acquittal, the population size is N = 12, the number of population S's is M = 4, the sample size is n = 4, and the p.m.f. of the number of interviewed jurors who favor

acquittal is the hypergeometric p.m.f.
$$h(x;4,4,12)$$
. $E(X) = 4 \cdot \left(\frac{4}{12}\right) = 1.33$

105.

a.
$$P(X = 0) = F(0;2) 0.135$$

b. Let S = an operator who receives no requests. Then p = .135 and we wish P(4 S's in 5

trials) =
$$b(4;5,..135) = {5 \choose 4} ..135)^4 (.884)^1 = .00144$$

c. P(all receive x) = P(first receives x) · ... · P(fifth receives x) = $\left[\frac{e^{-2}2^x}{x!}\right]^5$, and P(all

receive the same number) is the sum from x = 0 to ∞ .

106. P(at least one) = 1 - P(none) = 1 -
$$e^{-lpR^2} \cdot \frac{(lpR^2)^0}{0!} = 1 - e^{-lpR^2} = .99 \Rightarrow e^{-lpR^2} = .01$$

$$\Rightarrow R^2 = \frac{-1n(.01)}{lp} = .7329 \Rightarrow R = .8561$$

107. The number sold is min (X, 5), so $E[\min(x, 5)] = \sum_{n=0}^{\infty} \min(x, 5) p(x, 4)$

=
$$(0)p(0;4) + (1) p(1;4) + (2) p(2;4) + (3) p(3;4) + (4) p(4;4) + 5\sum_{x=5}^{\infty} p(x;4)$$

= $1.735 + 5[1 - F(4;4)] = 3.59$

108.

a.
$$P(X = x) = P(A \text{ wins in } x \text{ games}) + P(B \text{ wins in } x \text{ games})$$

 $= P(9 \text{ S's in } 1^{\text{st}} \text{ x-1} \cap S \text{ on the } x^{\text{th}}) + P(9 \text{ F's in } 1^{\text{st}} \text{ x-1} \cap F \text{ on the } x^{\text{th}})$
 $= {x-1 \choose 9} p^9 (1-p)^{x-10} p + {x-1 \choose 9} (1-p)^9 p^{x-10} (1-p)$
 $= {x-1 \choose 9} p^{10} (1-p)^{x-10} + (1-p)^{10} p^{x-10}$

b. Possible values of X are now 10, 11, 12, ... (all positive integers \geq 10). Now

$$P(X = x) = {x-1 \choose 9} p^{10} (1-p)^{x-10} + q^{10} (1-q)^{x-10}$$
 for $x = 10, ..., 19$,
So $P(X \ge 20) = 1 - P(X < 20)$ and $P(X < 20) = \sum_{x=10}^{19} P(X = x)$

109.

- a. No; probability of success is not the same for all tests
- **b.** There are four ways exactly three could have positive results. Let D represent those with the disease and D' represent those without the disease.

Combination		Probability
D	D'	
0	3	$\left[\binom{5}{0} (.2)^0 (.8)^5 \right] \cdot \left[\binom{5}{3} (.9)^3 (.1)^2 \right]$ =(.32768)(.0729) = .02389
1	2	$\begin{bmatrix} 5 \\ 1 \end{bmatrix} .2)^{1} (.8)^{4} \end{bmatrix} \cdot \begin{bmatrix} 5 \\ 2 \end{bmatrix} .9)2(.1)^{3} $ =(.4096)(.0081) = .00332
2	1	$\left[{5 \choose 2}.2)^2 (.8)^3 \right] \cdot \left[{5 \choose 1}.9)^1 (.1)^4 \right]$ =(.2048)(.00045) = .00009216
3	0	$\left[\binom{5}{3} . 2)^3 (.8)^2 \right] \cdot \left[\binom{5}{0} . 9)^0 (.1)^5 \right]$ =(.0512)(.00001) = .0000000512

Adding up the probabilities associated with the four combinations yields 0.0273.

110.
$$k(r,x) = \frac{(x+r-1)(x+r-2)...(x+r-x)}{x!}$$
With $r = 2.5$ and $p = .3$, $p(4) = \frac{(5.5)(4.5)(3.5)(2.5)}{4!}(.3)^{2.5}(.7)^4 = .1068$
Using $k(r,0) = 1$, $P(X \ge 1) = 1 - p(0) = 1 - (.3)^{2.5} = .9507$

111.

a. $p(x; \lambda, \mu) = \frac{1}{2} p(x; \mathbf{l}) + \frac{1}{2} p(x; \mathbf{m})$ where both $p(x; \lambda)$ and $p(x; \mu)$ are Poisson p.m.f.'s and thus ≥ 0 , so $p(x; \lambda, \mu) \geq 0$. Further,

$$\sum_{x=0}^{\infty} p(x; \mathbf{I}, \mathbf{m}) = \frac{1}{2} \sum_{x=0}^{\infty} p(x; \mathbf{I}) + \frac{1}{2} \sum_{x=0}^{\infty} p(x; \mathbf{m}) = \frac{1}{2} + \frac{1}{2} = 1$$

b.
$$.6p(x; \mathbf{l}) + .4p(x; \mathbf{m})$$

c.
$$E(X) = \sum_{x=0}^{\infty} x \left[\frac{1}{2} p(x; \mathbf{l}) + \frac{1}{2} p(x; \mathbf{m}) \right] = \frac{1}{2} \sum_{x=0}^{\infty} x p(x; \mathbf{l}) + \frac{1}{2} \sum_{x=0}^{\infty} x p(x; \mathbf{m})$$
$$= \frac{1}{2} \mathbf{l} + \frac{1}{2} \mathbf{m} = \frac{\mathbf{l} + \mathbf{m}}{2}$$

d.
$$E(X^2) = \frac{1}{2} \sum_{x=0}^{\infty} x^2 p(x; \mathbf{l}) + \frac{1}{2} \sum_{x=0}^{\infty} x^2 p(x; \mathbf{m}) = \frac{1}{2} (\mathbf{l}^2 + \mathbf{l}) + \frac{1}{2} (\mathbf{m}^2 + \mathbf{m})$$
 (since for a Poisson r.v., $E(X^2) = V(X) + [E(X)]^2 = \lambda + \lambda^2$), so $V(X) = \frac{1}{2} [\mathbf{l}^2 + \mathbf{l} + \mathbf{m}^2 + \mathbf{m}] - \left[\frac{\mathbf{l} + \mathbf{m}}{2} \right]^2 = \left(\frac{\mathbf{l} - \mathbf{m}}{2} \right)^2 + \frac{\mathbf{l} + \mathbf{m}}{2}$

a.
$$\frac{b(x+1;n,p)}{b(x;n,p)} = \frac{(n-x)}{(x+1)} \cdot \frac{p}{(1-p)} > 1 \text{ if np} - (1-p) > x, \text{ from which the stated}$$
conclusion follows

b.
$$\frac{p(x+1; \mathbf{I})}{p(x; \mathbf{I})} = \frac{\mathbf{I}}{(x+1)} > 1 \text{ if } x < \lambda - 1 \text{, from which the stated conclusion follows. If}$$
 λ is an integer, then λ - 1 is a mode, but $p(\lambda, \lambda) = p(1 - \lambda, \lambda)$ so λ is also a mode[$p(x; \lambda)$] achieves its maximum for both $x = \lambda$ - 1 and $x = \lambda$.

113.
$$P(X = j) = \sum_{i=1}^{10} P \text{ (arm on track } i \cap X = j) = \sum_{i=1}^{10} P \text{ (} X = j \mid \text{arm on } i \text{)} \cdot p_i$$
$$= \sum_{i=1}^{10} P \text{ (next seek at I+j+1 or I-j-1)} \cdot p_i = \sum_{i=1}^{10} (p_{i+j+1} + P_{i-j-1}) p_i$$
where $p_k = 0$ if $k < 0$ or $k > 10$.

114.
$$E(X) = \sum_{x=0}^{n} x \cdot \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} = \sum_{x=1}^{n} \frac{\frac{M!}{(x-1)!(M-x)!} \cdot \binom{N-M}{n-x}}{\binom{N}{n}}$$

$$n \cdot \frac{M}{N} \sum_{x=1}^{n} \binom{M-1}{x-1} \binom{N-M}{n-x}}{\binom{N-1}{n-1}} = n \cdot \frac{M}{N} \sum_{y=0}^{n-1} \binom{M-1}{y} \frac{\binom{N-1-(M-1)}{n-1-y}}{\binom{N-1}{n-1}}$$

$$n \cdot \frac{M}{N} \sum_{y=0}^{n-1} h(y; n-1, M-1, N-1) = n \cdot \frac{M}{N}$$

115. Let
$$A = \{x : |x - \mu| \ge k\sigma\}$$
. Then $\sigma^2 = \sum_A (x - m)^2 p(x) \ge (ks)^2 \sum_A p(x)$. But $\sum_A p(x) = P(X \text{ is in } A) = P(|X - \mu| \ge k\sigma)$, so $\sigma^2 \ge k^2 \sigma^2 \cdot P(|X - \mu| \ge k\sigma)$, as desired.

a. For [0,4],
$$\lambda = \int_0^4 e^{2+.6t} dt = 123.44$$
, whereas for [2,6], $\lambda = \int_2^6 e^{2+.6t} dt = 409.82$

b.
$$\lambda = \int_0^{0.9907} e^{2+.6t} dt = 9.9996 \approx 10$$
, so the desired probability is F(15, 10) = .951.