PREDICTING THE IMPACT OF COVID-19 ON THE EMERGENCY MEDICAL SERVICE IN LOMBARDY, ITALY

ANGELA ANDREELLA¹, SPYROS BALAFAS¹, ANTONIETTA MIRA^{1,2}, GIULIA GHILARDI³, GRETA CARRARA³, FABRIZIO RUGGERI ⁴, ERNST WIT², GUIDO BERTOLINI ³, GIOVANNI NATTINO ³

JSM - AUGUST 2021

¹University of Insubria, Varese, Italy

²University of Svizzera Italiana, Lugano, Switzerland

³Institute of Pharmacological Research Mario Negri, Milan, Italy

⁴National Research Council, Institute of Applied Mathematics and Information Technology, Milan, Italy

INTRODUCTION - TSUNAMI PROJECT

The Lombardy region in Italy relies on the emergency medical service called **AREU**.

PROBLEM: The number and type of **calls** to the emergency call center changed dramatically due to **COVID-19** pandemic.

AIM: Predictive model of the upcoming ambulance trips is crucial to **organize** the available emergency response resources.

TSUNAMI PROJECT

Supported by Lombardy region - Italy

INTRODUCTION - SPATIAL ORGANIZATION

AREU is organized in four regions: Lakes, Alps, **Metropolitan**, Plane.

AREU can use: daily-seasonal variations, social and demographic factors, weather circumstances, and epidemiological factors.

- AREU data: information about all the calls received → Region, Time, if the calls activated an aid, i.e., it becomes an event, etc;
- ARPA data: weather data collected from sensors located across the Lombardy → Temperature, rainfall, snowfall;

DATA

■ **ISTAT and ISS data**: demographic and epidemiological data → Flu incidence, number of car accidents, etc.

BUT also COVID-19 related factors.

- Department of Civil Protection: number of hospitalized patients with symptoms, swabs, etc;
- **ISS**: reproduction number R_t .

Events: Dispatch of transport and/or equipment.

MODEL

GOAL: Predict number of **events** for each of 4 regions.

■ We focus here on **Metropolitan** area (Milan and Monza).

METHOD:

- Generalized Additive Model with negative-binomial family;
- The data were aggregated at hour and region levels;
- Final predictions were aggregated at the day level.

| 17

MODEL SELECTION

We select model with best mean absolute prediction error.

■ Prediction error:

$$\left[\frac{\hat{y}_i - y_i}{y_i}\right],$$

where y_i is the observed value and \hat{y}_i the predicted one at day i level.

■ Using 4 fold Cross-validation across 2020 and 2021.

MODEL

The following covariates were then selected:

- cubic regression spline for Hours with 24 basis;
- cubic regression spline for Quarter with 4 basis;
- P-spline for Day with 7 basis;
- Tensor product smooths between Day and Hour;
- Temperature lagged one day;
- Events of the day before lagged 1-2-3 by hour;
- Events aggregated by day and lagged 1, 2 and 7 days;
- \blacksquare R_t lagged one day;
- Flu incidence lagged one day.

RESULTS

 Θ

RESULTS

RESULTS

RESULTS - ONE DAY AHEAD

RESULTS - ONE DAY AHEAD

- 87% of predictions has absolute error below 5%;
- Mean absolute error equals 4.41.

RESULTS - FIVE DAYS AHEAD

RESULTS - FIVE DAYS AHEAD

- 55% of predictions has absolute error below 5%;
- Mean absolute error equals 5.24.

TAKE HOME MESSAGES

- We proposed a valuable model to predict number of events occured in Metropolitan;
- capturing the daily and seasonal variation and incorporating epidemiological aspects as well as weather information.

and the model works well also for predicting the number of events for the other regions:

- Plan → mean absolute errors equals 4.13;
- Lakes → mean absolute errors equals 5.9;
- Alps → mean absolute errors equals 6.47.