

TrenchP™ Power MOSFETs

IXTA28P065T IXTP28P065T

 $V_{DSS} = -65V$ $I_{D25} = -28A$ $R_{DS(2D)} \le 45m\Omega$

P-Channel Enhancement Mode Avalanche Rated

TO-263 AA (IXTA)

TO-220AB (IXTP)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	T _J = 25°C to 150°C	- 65	V
$\mathbf{V}_{\mathtt{DGR}}$	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	- 65	V
V _{GSS}	Continuous	±15	V
V _{GSM}	Transient	±25	V
I _{D25}	T _c = 25°C	- 28	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	- 90	Α
I _A	T _c = 25°C	- 28	Α
E _s	$T_{c} = 25^{\circ}C$	200	mJ
P _D	$T_{c} = 25^{\circ}C$	83	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T_L	1.6mm (0.062 in.) from Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in.
Weight	TO-220 TO-263	3.0 2.5	g g

Features

- International Standard Packages
- Avalanche Rated
- Extended FBSOA
- Fast Intrinsic Diode
- $^{\bullet}$ Low $\rm R_{\rm \tiny DS(ON)}$ and $\rm Q_{\rm \tiny G}$

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High-Side Switching
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators
- Battery Charger Applications

Characteristic Values Symbol **Test Conditions** (T_J = 25°C, Unless Otherwise Specified) Max. Min. Тур. $V_{GS} = 0V, I_{D} = -250\mu A$ $\mathbf{BV}_{\mathrm{DSS}}$ - 65 $V_{DS} = V_{GS}, I_{D} = -250 \mu A$ - 2.5 - 4.5 V V_{GS(th)} $V_{GS} = \pm 15V, V_{DS} = 0V$ ±50 nA l_{GSS} $V_{DS} = V_{DSS}, V_{GS} = 0V$ -3 μA I_{DSS} T_. = 125°C -100 μA $\boldsymbol{R}_{\text{DS}(\underline{on})}$ $V_{GS} = -10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$ 45 $m\Omega$

Symbo (T _J = 25		Test Conditions Unless Otherwise Specified)	Charae Min.	cteristic ' Typ.	Values Max.
g _{fs}		$V_{DS} = -10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	10	16	S
C _{iss})			2030	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		270	pF
\mathbf{C}_{rss}	J			127	pF
t _{d(on)})	Resistive Switching Times		21	ns
t,		_		29	ns
$\mathbf{t}_{d(off)}$	1	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		36	ns
t _f	J	$R_{g} = 10\Omega$ (External)		23	ns
Q _{g(on)})			46	nC
Q_{gs}	}	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		20	nC
\mathbf{Q}_{gd}	J			10	nC
R _{thJC}					1.5 °C/W
$\mathbf{R}_{\mathrm{thCS}}$		TO-220		0.50	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$		hara ⁄lin.	cteristic Typ.	Values Max.	
I _s	$V_{GS} = 0V$			- 28	Α
I _{sm}	Repetitive, Pulse Width Limited by T_{JM}			-112	Α
V _{SD}	$I_{\rm F} = -28A, V_{\rm GS} = 0V, \text{ Note 1}$			-1.5	V
$\left\{egin{array}{c} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} \ \mathbf{I}_{RM} \end{array} \right\}$	$I_{_{\rm F}}$ = -14A, -di/dt = -100A/ μ s $V_{_{\rm R}}$ = - 33V, $V_{_{\rm GS}}$ = 0V		31 34 - 2.2		ns nC A

1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$. Note

IXTP28P065T

MY2	INCHES		MILLIMETERS	
21M	MIN	MAX	MIN	MAX
Α	.160	.190	4.06	4.83
A1	.080.	.110	2.03	2.79
Ь	.020	.039	0.51	0.99
b2	.045	.055	1.14	1.40
С	.016	.029	0.40	0.74
c2	.045	.055	1.14	1.40
D	.340	.380	8.64	9.65
D1	.315	.350	8.00	8.89
Ε	.380	.410	9.65	10.41
E1	.245	.320	6.22	8.13
е	.100 BSC 2.54 BS		BSC	
L	.575	.625	14.61	15.88
L1	.090	.110	2.29	2.79
L2	.040	.055	1.02	1.40
L3	.050	.070	1.27	1.78
L4	0	.005	0	0.13

ns:	1 - Gate	2 - Drain
	3 - Source	

MYZ	INCHES		MILLIMETERS		
311	MIN	MAX	MIN	MAX	
Α	.170	.190	4.32	4.83	
b	.025	.040	0.64	1.02	
b1	.045	.065	1.15	1.65	
С	.014	.022	0.35	0.56	
D	.580	.630	14.73	16.00	
E	.390	.420	9.91	10.66	
е	.100 BSC		2.54 BSC		
F	.045	.055	1.14	1.40	
H1	.230	.270	5.85	6.85	
J1	.090	.110	2.29	2.79	
k	0	.015	0	0.38	
L	.500	.550	12.70	13.97	
L1	.110	.230	2.79	5.84	
ØΡ	.139	.161	3.53	4.08	
Q	.100	.125	2.54	3.18	

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ $T_J = 125^{\circ}C$

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = -14A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = -14A$ Value vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

