Clase 16

IIC 1253

Prof. Cristian Riveros

Recordatorio: Cardinalidad

Sea A y B dos conjuntos.

Definición

A y B son equinumerosos si existe una biyección $f: A \rightarrow B$.

Si A es equinumeroso con B lo anotaremos como |A| = |B|.

Recordatorio: Cardinalidad

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Por lo tanto, podemos tomar las clases de equivalencia de $|\cdot| = |\cdot|$.

Definición

Para un conjunto A, denotaremos por |A| su **clase de equivalencia** según la relación $|\cdot| = |\cdot|$.

Recordatorio: Conjuntos numerables

Definición

Decimos que un conjunto A es numerable si: $|A| = |\mathbb{N}|$.

Proposición

A es numerable si, y solo si, existe una secuencia infinita:

$$a_0, a_1, a_2, a_3, \ldots, a_n, a_{n+1}, \ldots$$

- 1. $a_i \in A$ para todo $i \in \mathbb{N}$.
- 2. $a_i \neq a_j$ para todo $i \neq j$.
- 3. para todo $a \in A$, existe un $i \in \mathbb{N}$ tal que $a = a_i$.

A es numerable si, y solo si, todos sus elementos se pueden poner en una lista infinita.

Recordatorio: Conjuntos numerables y no-numerables

Sabemos que...

- Los conjuntos \mathbb{P} , \mathbb{Z} , \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son numerables.
- Los conjuntos \mathbb{R} y $2^{\mathbb{N}}$ son no-numerables.

Teorema de Cantor

Para todo conjunto no vacío A,

NO existe una **biyección** entre A y el conjunto potencia 2^A .

Funciones y cardinalidad

Sea A y B dos conjuntos no vacíos.

Definición

Decimos que B es al menos tan numeroso como A:

$$|A| \leq |B|$$

si existe una función inyectiva $f: A \rightarrow B$.

¿qué tipo de relación es $|\cdot| \le |\cdot|$?

Sea A y B dos conjuntos no vacíos.

Teorema (Cantor-Schröder-Bernstein)

Si existen funciones **inyectivas** $f: A \rightarrow B$ y $g: B \rightarrow A$, entonces existe una función **biyectiva** $h: A \rightarrow B$.

En otras palabras, |A| = |B| si, y solo si, $|A| \le |B|$ y $|B| \le |A|$

Demostración

Sea A, B conjuntos no vacíos y $f: A \to B, g: B \to A$ funciones inyectivas. Sin perdida de generalidad, suponga que A y B son disjuntos $(A \cap B = \emptyset)$.

¿cómo hacemos una biyección desde A hasta B?

Demostración

Sea A, B conjuntos no vacíos y $f: A \to B$, $g: B \to A$ funciones **inyectivas**. Sin perdida de generalidad, suponga que A y B son **disjuntos** $(A \cap B = \emptyset)$.

Demostración

Sea A, B conjuntos no vacíos y $f: A \to B$, $g: B \to A$ funciones inyectivas. Sin perdida de generalidad, suponga que A y B son disjuntos $(A \cap B = \emptyset)$.

Caso 1:
$$a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} \cdots \xrightarrow{g} a_k \xrightarrow{f} b_k$$

Caso 2: $a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$

Caso 3: $a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$

Caso 4:
$$b_0 \xrightarrow{g} a_0 \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} \cdots$$

Demostración

Para $a \in A$, sea $C_a \subseteq A \cup B$ "todos los elementos alcanzables desde a":

$$C_{a} = \left\{ x \in A \cup B \mid \exists i \geq 0. \quad x = (f \circ g)^{i}(a) \quad \lor \\ x = (f \circ g)^{i} \circ f(a) \quad \lor \\ x = (g^{-1} \circ f^{-1})^{i}(a) \quad \lor \\ x = (g^{-1} \circ f^{-1})^{i} \circ g^{-1}(a) \quad \right\}$$

donde $(f \circ g)^i$ es la función $f \circ g$ aplicada i-veces $(con (f \circ g)^0(a) = a)$.

Algunos hechos:

- $C_a = C_{a'}$ o $C_a \cap C_{a'} = \emptyset$ para todo $a, a' \in A$. (¿por qué?)
 el conjunto $\{C_a \mid a \in A\}$ forma una partición de $A \cup B$. (¿por qué?)

Demostración

PD: Para todo $a \in A$, existe una biyección $f_a : (A \cap C_a) \to (B \cap C_a)$.

Caso 1:
$$a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} \cdots \xrightarrow{g} a_k \xrightarrow{f} b_k$$

$$g$$

$$f_a(a_i) = b_i \text{ para todo } a_i \in A \cap C_a$$

Caso 2:
$$\qquad \cdots \xrightarrow{g} a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$$

$$f_a(a_i) = b_i$$
 para todo $a_i \in A \cap C_a$

Demostración

PD: Para todo $a \in A$, existe una biyección $f_a : (A \cap C_a) \to (B \cap C_a)$.

Caso 3:
$$a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$$

$$f_a(a_i) = b_i$$
 para todo $a_i \in A \cap C_a$

Caso 4:
$$b_0 \xrightarrow{g} a_0 \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} \cdots$$

$$f_a(a_i) = g^{-1}(a_i) = b_i$$
 para todo $a_i \in A \cap C_a$

Demostración

Por lo tanto, como:

- $lackbox{ } \{C_a \mid a \in A\}$ forma una partición de $A \cup B$ y
- para todo $a \in A$, existe una biyección $f_a : (A \cap C_a) \rightarrow (B \cap C_a)$

entonces:

$$\big(h:A\to B\big)\ =\ \bigcup_{a\in A}f_a$$

es una biyección de A en B.