COMPUTER SYSTEM

Computer Components...

- All contemporary computer designs are based on concepts developed by John von Neumann.
- The von Neumann architecture and is based on three key concepts:
 - Data and instructions are stored in a single read—write memory.
 - Memory are addressable by location
 - Execution occurs in a sequential fashion from one instruction to the next.

Computer Components

- The CPU exchanges data with memory. For this it uses two internal registers: a memory address register (MAR), which specifies the address in memory for the next read or write, and a memory buffer register (MBR), which contains the data to be written into memory or receives the data read from memory.
- An I/O address register (I/OAR) specifies a particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of data between an I/O module and the CPU.

Computer Function

- Instruction processing consists of two steps: The processor reads (fetches) instructions from memory one at a time and executes each instruction.
- Program execution consists of repeating the process of instruction fetch and instruction execution.
- The processing required for a single instruction is called an instruction cycle which consist of the fetch cycle and the execute cycle.

Instruction Fetch and Execute...

Instruction Fetch and Ex

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

Interrupts...

□ All the computers provide a mechanism by which other modules (I/O, memory) may interrupt the normal processing of the processor.

Table 3.1 Classes of Interrupts

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, or reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation, request service from the processor, or to signal a variety of error conditions.
Hardware Failure	Generated by a failure such as power failure or memory parity error.

Interrupts

Interconnection Structures

- □ Computer consists of a set of components or modules of three basic types (processor, memory, I/O) that communicate with each other. The collection of paths connecting the these modules is called the interconnection structure.
- The most common are
 the **bus** and various multiple-bus structures
 point to point interconnection structures

Computer Modules

Data Transfer Types

- Memory to processor: The processor reads an instruction or a unit of data from memory.
- □ Processor to memory: The processor writes a unit of data to memory.
- I/O to processor: The processor reads data from an I/O device via an I/O module.
- \square Processor to I/O: The processor sends data to the I/O device.
- □ I/O to or from memory: An I/O module is allowed to exchange data directly with memory, without going through the processor, using direct memory access.

Bus Interconnection

- □ A bus is a communication pathway connecting two or more devices.
- A key characteristic of a bus is that it is a shared transmission medium.
- If two devices transmit during the same time period, their signals will overlap and become garbled.
- A bus consists of multiple communication pathways, or lines. Each line is capable of transmitting signals representing binary 1 and binary 0. For example, an 8-bit unit of data can be transmitted over eight bus lines.
- Computer systems contain different buses also called as System buses,
 - Data bus (32, 64, 128 bits)
 - Address bus (8, 16, 32 bits)
 - Control lines

Point-to-Point Interconnect

- At higher and higher data rates, it becomes increasingly difficult to perform the synchronization and arbitration functions in a timely fashion.
- Compared to the shared bus, the point-to-point interconnect has lower latency, higher data rate, and better scalability.
- Intel's QuickPath Interconnect (QPI), which was introduced in 2008.
 - Multiple direct connections:
 - Layered protocol architecture:
 - Packetized data transfer

PCI Express

- The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-independent bus that can function as a peripheral bus.
- Compared with other common bus specifications, PCI delivers better system performance for high-speed I/O subsystems (e.g., graphic display adapters, network interface controllers, and disk controllers).
- PCI has been widely adopted and is finding increasing use in personal computer, workstation, and server systems.
- Accordingly, a new version, known as PCI Express (PCIe) has been developed.
- A key requirement for PCle is high capacity to support the needs of higher data rate I/O devices, such as Gigabit Ethernet.