

Jay Jacobs March 7th, 2015 @jayjacobs

Jay Jacobs

Data Driven Security

http://amzn.to/ddsec

IP and Domains

IP and Domains

Data Driven
Security

The early days...

Malicious Software

201.130.44.18 216.58.216.238 173.194.46.86 badserver1.com badserver2.com badserver3.com

Domain Generating Algorithms (DGA)

Algorithms that generate pseudo-random domain names. Used by malware to communicate with a controlling server.

IP and Domains

Data Driven Security

And Now...

Malicious Software

xautsghmdtoofnn.com No exotugfsphafhxt.com No kykwdvibpsccedj.com No nmexqpgdqnxysvp.com No civtuqeeoqueg.com No kmInfcegedkle.com No uailugreagmxe.com No cohbwhwwdrqqv.com No dbbsxhljgdexb.com No vyqabtoayoheu.com Yes

- 1. Obtain labelled data
- 2. Add or derive features
- 3. Create test/train data sets
- 4. Run classification algorithm[s] on training data
- 5. Evaluate model and features on test data

The Challenge

Data Driven Security

Given a list of domains, classify them as either benign or DGA

hrjiojexjpjodkk.ru
xautsghmdtoofnn.ru
exotugfsphafhxt.ru
kykwdvibpsccedj.ru
nmexqpgdqnxysvp.ru
civtuqeeoqueg.ru
kmlnfcegedkle.ru
uailugreagmxe.ru
cohbwhwwdrqqv.ru
dbbsxhljgdexb.ru

1pbwqpi1599j8ppvlrrl1u580qx.com
1k8le0smhotv93pt7c295rr6e.net
1yzkujin8r9xi1mt6ku0bt5nll.biz
xkvy3k2afwwm1baincm1qds8sz.org
ophh561k6a4vl3dotmo9fshq5.com
1jf7fx5113uv7obiu9k0mqfgyn.net
1e9aiud11ed98c1x4gnp7hi4q8s.org
1drt4la5ndhno93q70cmnwmph.net
6e6bqs1bbmcovukufk3hzhri0.com
1nh8no0q31xv313hzv6xmskrm6.org

3k-5k (3.7k median) malicious domains registered daily in US domains, about 1% of US domains are malicious

The Solution

For Python:

https://github.com/ClickSecurity/data_hacking [dga_detection]

For R:

https://github.com/jayjacobs/dga-tutorial

https://github.com/jayjacobs/dga

http://datadrivensecurity.info/blog/posts/2014/Sep/dga-part1/

Both locations have labelled data!

1. Obtain labelled data

2. Add or derive features

- 3. Create test/train data sets
- 4. Run classification algorithm[s] on training data
- 5. Evaluate model and features on test data

Features?

Data Driven Security

facebook.com
doubleclick.com
google-analytics.com
akamaihd.com
twitter.com
youtube.com
scorecardresearch.com
microsoft.com
googletagservices.com
msftncsi.com

1pbwqpi1599j8ppvlrrl1u580qx.com
1k8le0smhotv93pt7c295rr6e.net
1yzkujin8r9xi1mt6ku0bt5nll.biz
xkvy3k2afwwm1baincm1qds8sz.org
ophh561k6a4vl3dotmo9fshq5.com
1jf7fx5113uv7obiu9k0mqfgyn.net
1e9aiud11ed98c1x4gnp7hi4q8s.org
1drt4la5ndhno93q70cmnwmph.net
6e6bqs1bbmcovukufk3hzhri0.com
1nh8no0q31xv313hzv6xmskrm6.org

Features

Data Driven Security

Length

facebook.com doubleclick.com google-analytics.com

Entropy

1pbwqpi1599j8ppvlrrl1u580qx.com 1k8le0smhotv93pt7c295rr6e.net 1yzkujin8r9xi1mt6ku0bt5nll.biz

n-grams

dictionary word matches

and Others

n-grams

Data Driven Security

3-gr	am	S
------	----	---

ing	3.5482
lin	3.4924
ine	3.4743
ter	3.3857
ion	3.3727
ent	3.3471
tor	3.3469
the	3.3031
ers	3.2736
tra	3.2683

4-grams

line	3.2148
nlin	3.1595
onli	3.1513
tion	3.1322
free	3.0330
news	3.0051
mark	2.9995
game	2.9978
dire	2.9845
irec	2.9781

4-grams (dga)

```
eqkb 1.0791
ingo 1.0791
wgyh 1.0791
gylr 1.0413
ingw 1.0413
ljtg 1.0413
1rdq 1.0413
nbyp 1.0413
onba 1.0413
qcws 1.0413
```

```
domain class length
                                 entropy
                                          onegram threegram fourgram
                                                                        fivegram
                                                                                  gram345
                                                                        6.844194 32.89709
         facebook legit
                              8 2.750000 36.93176
                                                    15.66067 10.39223
 google-analytics legit
                             16 3.500000 74.47313
                                                    32.33994 16.50915 11.601353 60.45045
         akamaihd legit
                              8 2.405639 37.22381
                                                    11.01290
                                                              1.50515
                                                                       0.000000 12.51805
         facebook legit
                              8 2.750000 36.93176
                                                   15.66067 10.39223
                                                                       6.844194 32.89709
        microsoft legit
                              9 2.947703 42.15909
                                                   17.11639 11.39665
                                                                        7.493930 36.00697
googletagservices legit
                             17 3.292770 79.98536
                                                    36.45091 23.18288 12.778621 72.41240
                                          onegram threegram fourgram fivegram
           domain class length
                                 entropy
                                                                                 gram345
                             15 3.373557 67.02298
                                                                              0 8.673246
  exotugfsphafhxt
                    dga
                                                    8,673246
                                                                     0
    civtuqeeoqueg
                    dga
                             13 3.026987 57.67474
                                                    8.827826
                                                                              0 8.827826
                                                                     0
    cohbwhwwdrqqv
                             13 3.026987 54.43738
                                                    0.000000
                                                                              0 0.00000
                    dga
                                                                     0
    qixyfrsfiyied
                                                                              0 9.761103
                    dga
                             13 3.026987 57.37876
                                                    9.761103
                                                                     0
   ptyjwsefmtslk
                                                                               4.670913
                    dga
                             13 3.392747 58.05692
                                                    4.670913
                                                                     0
                    dga
   hvuwoxwkfpbwy
                             13 3.334679 55.16979
                                                    0.000000
                                                                                0.00000
                                                                     0
```


- 1. Obtain labelled data
- 2. Add or derive features
- 3. Create test/train data sets
- 4. Run classification algorithm[s] on training data
- 5. Evaluate model and features on test data

Train Data

Data Driven Security

Python

```
# Hold out 10%
hold_out_alexa = alexa_dataframe[alexa_total*.9:]
alexa_dataframe = alexa_dataframe[:alexa_total*.9]
hold_out_dga = dga_dataframe[dga_total*.9:]
dga_dataframe = dga_dataframe[:dga_total*.9]

# Pull together our hold out set
hold_out_domains = pd.concat([hold_out_alexa, hold_out_dga], ignore_index=True)

# Concatenate the domains in a big pile!
all_domains = pd.concat([alexa_dataframe, dga_dataframe], ignore_index=True)
```

R

```
library(caret)

testindex <- createDataPartition(dgadomain$subclass, p=0.9, list=F)
traindga <- dgadomain[testindex, ]
testdga <- dgadomain[-testindex, ]</pre>
```

- 1. Obtain labelled data
- 2. Add or derive features
- 3. Create test/train data sets
- 4. Run classification algorithm[s] on training data
- 5. Evaluate model and features on test data

Run Classifer(s)

Data Driven Security

Python

Run Classifer(s)

Data Driven Security

R

- 1. Obtain labelled data
- 2. Add or derive features
- 3. Create test/train data sets
- 4. Run classification algorithm[s] on training data
- 5. Evaluate model and features on test data

Evaluate Model

Data Driven Security

```
Reference
Prediction dga legit
    dga 39292 282
    legit 206 64458
              Accuracy : 0.9953
                95% CI: (0.9949, 0.9957)
   No Information Rate: 0.6211
   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa : 0.9869
Mcnemar's Test P-Value: 0.0006861
           Sensitivity: 0.9948
           Specificity: 0.9956
        Pos Pred Value: 0.9929
        Neg Pred Value: 0.9968
            Prevalence: 0.3789
        Detection Rate: 0.3769
```

Detection Prevalence: 0.3797

Balanced Accuracy: 0.9952

Evaluate Model

Evaluating Features

```
rf.importance <- varImp(rfFit, scale=F)
plot(rf.importance)</pre>
```


- 1. Obtain labelled data
- 2. Add or derive features
- 3. Create test/train data sets
- 4. Run classification algorithm[s] on training data
- 5. Evaluate model and features on test data

More Evaluation

			domain	legit	dga	
			doubleclick	1.000	0.000	2
			googlesyndication	1.000	0.000	5
			googleapis	1.000	0.000	6
le	dga		googleadservices	1.000	0.000	7
0.	1.000	138957	twitter	1.000	0.000	8
0.	1.000	138958	youtube	1.000	0.000	10
0.	1.000	138959	scorecardresearch	1.000	0.000	11
0.	1.000	138961	googleusercontent	1.000	0.000	14
0.	1.000	138965	msftncsi	0.994	0.006	17
0.	1.000	138967	verisign	1.000	0.000	22
0.	1.000	138968	quantserve	1.000	0.000	24
0.	1.000	138969	bluekai	1.000	0.000	25
0.	1.000	138971	digicert	1.000	0.000	31
0.	1.000	138973	pubmatic	1.000	0.000	34
0.	0.998	138974	adadvisor	1.000	0.000	36
0.	1.000	138975	yahooapis	0.994	0.006	43
0.	1.000	138976	googletagmanager	1.000	0.000	47
0.	1.000	138977	crwdcntrl	0.992	0.008	48
0.	1.000	138978	mookie1	1.000	0.000	49
0.	1.000	138979	imrworldwide	1.000	0.000	54
0.	1.000	138981				
0.	1.000	138982				

	dga	legit	domain
138957	1.000	0.000	7sy3v81toy7vim3br0410212pg
138958	1.000	0.000	i8hkuf1wwfc8w1g25u0110vx6w3
138959	1.000	0.000	etvp9c12ixta51jko7ba18xgd3
138961	1.000	0.000	bw25th1nsiukt1344bch1gwgr1h
138965	1.000	0.000	1opr1mm13rpbbm1iy7sdr1572kdu
138967	1.000	0.000	hhnp8p1732n9113wcdb2no89fb
138968	1.000	0.000	155xuit1i4td2bkc2t18qes6me
138969	1.000	0.000	5jndc1t1bvy811hk5ntxk6r4j
138971	1.000	0.000	p5b9an11o4kybhsghp2inlq58
138973	1.000	0.000	12sjxntztid4mh6snhldpqc3z
138974	0.998	0.002	15rrp3pyeoms11dbgsqurati8
138975	1.000	0.000	1wguzv3dd1tf91wm6og2s6qkv
138976	1.000	0.000	1wvyjf21f8ve5967taqgpkpgvz
138977	1.000	0.000	r16k3i172flcb1u5d8vh1u7yfww
138978	1.000	0.000	1a3i2bq1cjka6s19kdymf1411282
138979	1.000	0.000	qcnqm211790taqp8h54eb9w85
138981	1.000	0.000	1ccvakyzxp80o1ij99er1d5yt56
138982	1.000	0.000	naihsdncxgv8e3eivnx2qmg0
138983	1.000	0.000	5yeo3813dmjen17zzsxtp1oyhn
138984	0.992	0.008	1gl0zqzcqo5futz9ead2vj6e3

		dga	legit	domain
963	75	0.532	0.468	muskelschmiede
967	39	0.492	0.508	cendrawasih11
971	82	0.506	0.494	empayar-pemuda
978	24	0.506	0.494	avto-flagman
260	11	0.534	0.466	semilukskaya-crb
252	73	0.502	0.498	amovpnforoosh11
279	55	0.482	0.518	fairheadkenya
335	6	0.536	0.464	m3mieszkania
354	84	0.524	0.476	stukadoorsbedrijfvannoord
387	6	0.504	0.496	pik-equipment
411	73	0.520	0.480	oxfordlawtrove
710	22	0.546	0.454	inezandvinoodh
722	28	0.528	0.472	voiceofdaegu
990	01	0.536	0.464	sacdokulmesi-tr
878	461	0.452	0.548	viokbmsinerce
878	951	0.512	0.488	hebsphsplitih
886	501	0.504	0.496	hotodfonwpougi
890	121	0.544	0.456	vgcjamateqgut
897	231	0.504	0.496	bjoseraicgty
912	801	0.470	0.530	ewebqestbocrus
916	521	0.496	0.504	dseemngarkpll
919	051	0.528	0.472	ojmeatrfojec
924	721	0.478	0.522	plletrsadpawy
936	541	0.528	0.472	fbyantymmandfxh
937	80	0.514	0.486	yreapptcabyech

Evaluating visually

Recommendations

Data Driven Security

Springer Texts in Statistics Gareth James Daniela Witten Trevor Hastie Robert Tibshirani An Introduction to Statistical Learning with Applications in R Springer

Jay Jacobs @jayjacobs