Nilotpal Chakraborty

 $nilotpalc@vt.edu \mid Phone- +1-5409886128$

EDUCATION

Virginia Polytechnique Institute and State University

Blacksburg, Virginia

Jan 2022 – Present

 $Phd\ in\ Engineering\ Mechanics$

Tiruchirappalli, Tamil Nadu

NIT Tiruchirappalli
BS in Mechanical Engineering

July 2016 - June 2020

Professional Experience

Contributor to SPHinXsys

April 2023 – Present

Virginia Tech / Technical University Munich

Remote

- Working with TUM researchers on developing an open source SPH software
- Collaborating with developers through GitHub
- Developing a 3D SPH code that can simulate high speed droplet impact
- Using OOP for class design and Intel tbb for parallelization while coding

Researcher April 2022 – Dec 2022

Virginia Tech / Rolls-Royce University Technology Center

Blacksburg, Virginia

- Worked with a team of Rolls-Royce engineers, Virginia Tech professors and Phd students
- \bullet Developed novel stochastic particle fracture models for high speed aero-engine compressors
- Developed MATLAB codes for particle fracture models
- Used git for version control
- Wrote a technical report using Latex for Rolls-Royce summarizing the models

Software Developer

Nov 2020 – April 2021

Zeus Numerix Pvt. Ltd
Pune, Maharashtra

- Contributed to development of a software that simulates the physics of chaotic atmospheric turbulence
- Wrote code for two modules out of total six modules of the software
- Developed models for the extinction coefficient and optical turbulence phenomena in the atmosphere
- Used OOP for class design
- \bullet Got experienced in unit testing in C++
- Collaborated with developers through GitLab

Graduate Research Intern

May 2020 – Aug 2020 Chennai, Tamil Nadu

• Contributed to the development of FEST-3D, an open source CFD software

- Coded in Fortran
- Got experienced in using Paraview for visualization

PUBLICATIONS

IIT Madras

 M. M. Akash, N. Chakraborty, J. Mohammad, K. Reindl, and S. Basu. Computational multiphase characterization of perfusion trends inside biomimetic reduced-order dense tumors. *Experimental and Computational Multiphase Flow*, 2022

ACADEMIC PROJECTS

Prediction of Membrane Permeability of Molecules Using Machine Learning

Aug - Nov 2022

- Worked with a group of 4 PhD students from different departments
- Data engineering: Responsible for visualization, analysis and preprocessing of raw datasets of approx. 100k rows and 300 columns
- Developed Python codes for k-means clustering, Lasso and MLP based ML models
- Used Python scientific computing modules Numpy, Scipy and Matplotlib
- Got familiar with the Cheminformatics package
- Wrote a technical report in Latex disseminating the findings

2D Navier Stokes solver for lid driven cavity flow

- Wrote a MATLAB code for simulating the 2d lid-driven cavity problem using FVM
- Implemented staggered grid algorithm
- Validated results for Reynolds nos. 10-1000 with Ghia and Ghia

Blood flow into pancreatic tumors

Aug 2020 – Dec 2021

- Worked with researchers from National Institutes of Health and South Dakota State University
- Developed a reduced order model for three phase non-Newtonian blood flow into a human pancreatic tumor
- Wrote user-defined functions in ANSYS Fluent to perform multiple simulations with varying design and boundary/initial conditions
- Disseminated research work at APS DFD 2021 conference
- Published a paper in Experimental and Computational Multiphase Flow

2D Navier Stokes solver for a pressure driven Hagen Poiseuille flow

Aug – Nov 2019

- Developed a solver in Python for solving 2d Navier Stokes equations for flow inside a pipe
- Used Python scientific computing modules Numpy, Scipy and Matplotlib

von Karman Turbine

Aug 2018 – May 2019

- Worked with a team of 6 people as the project lead
- Modelled flow and wake induced vibrations using a Van der Pol equation, a second order non-linear ODE with non-linear damping in MATLAB
- Used time integration methods such as semi-implicit Euler and Runge-Kutta Fehlberg schemes, and techniques of numerical continuation and shooting
- Designed and built a turbine power-station to undergo 1D vibration by eliminating drag effects
- Presented the project to industry professionals during NIT Trichy's techfest and won the first prize

Relevant courses taken

Programming assignments: OOP in Java, Machine Learning, CFD and Heat Transfer, Numerical Analysis and Software

Mechanics specialization: Continuum mechanics, Fluid Mechanics, Solid Mechanics, Dynamics

TECHNICAL SKILLS

Languages: C, C++, Java, Python, Matlab, Fortran

Softwares: Latex, ANSYS Fluent, Paraview, Mayavi, Microsoft Office

Operating Systems: Linux(Ubuntu), Windows

SOFT SKILLS

Communication: Excellent English speaking and writing skills

People management: As the President of a technical club at my undergraduate university, I had first hand experience of talent identification, team building and conflict resolution