# Medical Concept Extraction and Relationship Classification from Patient Records

Team Name – ConceptMiners

#### **Team Members:**

- Meet Gandhi
- Rohan Saraogi
- Tarun Raheja



# **Contents**

- Problem Statement & Motivation
- Dataset
- Methodology
- Results
- Conclusion
- >>> Future Work, Limitations & Ethical Considerations

### **SECTION ONE**

# **Problem Statement & Motivation**

### **Problem Statement**

To help clinicians by extracting medical concepts like drug, strength, dosage, duration, frequency, etc., from patient records and establish relations between them.

Overall, we are solving the task of Named Entity Recognition and Relation extraction from medical notes

# **Motivation**

- There is a need for accurate and efficient extraction of medical concepts and relationship classification from patient records.
- Accurately identifying and classifying medical concepts and relationships within electronic health records is a challenge due to the lack of context and their complex nature.
- Our project aims to develop ontology-aware deep learning models that leverage the Unified Medical Language System (UMLS) to enhance the performance of medical concept extraction and relationship classification.
- The contributions of our project have the potential to improve clinical decision-making, patient care, and facilitate medical research.

Our goal is to maximize Recall for underrepresented entities like adverse drug events (ADEs) in our dataset, as our models are intended to provide support to clinicians rather than make final decisions.

# **SECTION TWO**

# **Dataset**

### **Dataset**

- We are using Harvard Medical School's "n2c2 adverse drug events (ADE) and medication extraction in the electronic health records" dataset for our project.
- The dataset includes 303 de-identified medical records for training and 202 for testing from the MIMIC-III database.
- The dataset contains annotation files with domain expert annotated entity tags and relationship tags for every medical record text file.
- The entity tags include drug, strength, dosage, duration, frequency, form, route, reason, and ADE tags, while the relationship tags include strength-drug, dosage-drug, duration-drug, frequency-drug, form-drug, route-drug, reason-drug, and ADE-drug relationships tags.

The raw text files provided have very long patient records, which must be parsed in a suitable format for our deep-learning models

# **Data Parsing Approach**

- We extract text spans from patient records that contain at least two entities and an accompanying relation between the entity pairs.
- The start and end of the spans are determined by the nearest full-stop or line break before the first entity and after the last entity.
- For entities that do not have a relationship with other entities, we extract text spans that cover that single entity.
- We use the spans containing entities and relations for both NER and relation extraction tasks.
- Spans with only entities are solely utilized for the NER task.
- Finally, we identify spans containing different relationships but identical text due to the presence
  of more than two entities and merge them.

# **Class distribution**

#### **NER – Train/Test Distribution**



#### **Relation – Train/Test Distribution**



### SECTION THREE

# Methodology

# Named Entity Recognition (NER): Baseline

- Our baseline NER model employs token-level features, such as POS tags and case information, to capture
  contextual information within a window of two tokens for medical concept extraction.
- Then we fit a Logistic Regression model on these features for token-level classification to identify the medical concepts.

| Feature         | Description                                                               |
|-----------------|---------------------------------------------------------------------------|
| pos tag         | Part-of-speech tag of the token                                           |
| istitle         | True if the token is in title case, otherwise False                       |
| isupper         | True if the token is in uppercase, otherwise False                        |
| isalpha         | True if the token consists only of alphabetic characters, otherwise False |
| isnumeric       | True if the token consists only of numeric characters, otherwise False    |
| containsnumbers | True if the token contains any numeric characters, otherwise False        |

Table 1: Token-level features and their descriptions

# Named Entity Recognition (NER): LSTM-CRF



# Named Entity Recognition (NER): Transformer-CRF



# **UMLS Data Augmentation for NER: ADE focused**

### For a given entity,

- Selected top Concept Unique Identifier (CUI) (assuming it is above a score threshold)
- Selected an alias for the CUI based on certain conditions
- Replaced the entity with the alias in the text

### Augmentation Example

Overnight, he was placed on lasix gtt with subsequent hypotension this morning. Urine output total 261 cc in 12 hours.



Overnight, he was placed on lasix gtt with subsequent Low Blood Pressure this morning. Urine output total 261 cc in 12 hours.

# **Relation Extraction: Baseline**

- For relationship classification, we extract features using the TF-IDF representation of the shortest dependency paths between the entities.
- Then we fit a Logistic Regression on these representation to classify relationship between the entity pairs.

### Shortest Dependency Path Example

She was started on prophylactic Oxacillin to cover skin flora, and Dermatology was consulted along with Neurology and Ophthalmology for the ophthalmic involvement



ophthalmic for consulted started on Oxacillin

# **Relation Extraction: LSTM Model**



The raw text is modified with special tokens to help the model understand the relationships better. For example: \(\script{S:PERSON}\)Bill\(\script{S:PERSON}\) was born in\(\script{O:CITY}\) Seattle\(\script{O:CITY}\)

# SECTION FOUR

# Results

# **NER Results: Trained on raw data**

### **Baseline**

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| B-ADE        | 0.00      | 0.00   | 0.00     | 582     |
| B-Dosage     | 0.96      | 0.89   | 0.92     | 17212   |
| B-Drug       | 0.75      | 0.62   | 0.68     | 11048   |
| B-Duration   | 0.74      | 0.44   | 0.55     | 1942    |
| B-Form       | 0.75      | 0.78   | 0.76     | 6581    |
| B-Frequency  | 0.70      | 0.68   | 0.69     | 16977   |
| B-Reason     | 0.55      | 0.06   | 0.10     | 3556    |
| B-Route      | 0.74      | 0.54   | 0.63     | 2394    |
| B-Strength   | 0.84      | 0.93   | 0.89     | 32945   |
| E-ADE        | 0.00      | 0.00   | 0.00     | 582     |
| E-Dosage     | 0.90      | 0.87   | 0.89     | 17212   |
| E-Drug       | 0.74      | 0.66   | 0.70     | 11039   |
| E-Duration   | 0.70      | 0.61   | 0.65     | 1959    |
| E-Form       | 0.69      | 0.45   | 0.54     | 6593    |
| E-Frequency  | 0.70      | 0.64   | 0.67     | 16957   |
| E-Reason     | 0.59      | 0.01   | 0.03     | 3544    |
| E-Route      | 0.84      | 0.51   | 0.64     | 2394    |
| E-Strength   | 0.82      | 0.93   | 0.87     | 32948   |
| I-ADE        | 0.00      | 0.00   | 0.00     | 450     |
| I-Dosage     | 0.98      | 0.96   | 0.97     | 31686   |
| I-Drug       | 0.44      | 0.17   | 0.24     | 3632    |
| I-Duration   | 0.70      | 0.63   | 0.67     | 1469    |
| I-Form       | 0.68      | 0.76   | 0.72     | 17241   |
| I-Frequency  | 0.70      | 0.80   | 0.75     | 42387   |
| I-Reason     | 0.00      | 0.00   | 0.00     | 2603    |
| I-Route      | 0.00      | 0.00   | 0.00     | 86      |
| I-Strength   | 0.70      | 0.64   | 0.67     | 3580    |
| 0            | 0.85      | 0.91   | 0.88     | 503040  |
| S-ADE        | 0.00      | 0.00   | 0.00     | 881     |
| S-Dosage     | 0.63      | 0.46   | 0.53     | 6482    |
| S-Drug       | 0.80      | 0.58   | 0.67     | 51669   |
| S-Duration   | 0.00      | 0.00   | 0.00     | 110     |
| S-Form       | 0.87      | 0.80   | 0.84     | 35081   |
| S-Frequency  | 0.68      | 0.55   | 0.61     | 19723   |
| S-Reason     | 0.70      | 0.30   | 0.42     | 6694    |
| S-Route      | 0.83      | 0.79   | 0.81     | 28556   |
| S-Strength   | 0.78      | 0.72   | 0.75     | 10338   |
| accuracy     |           |        | 0.83     | 952173  |
| macro avg    | 0.60      | 0.51   | 0.53     | 952173  |
| weighted avg | 0.82      | 0.83   | 0.82     | 952173  |
|              |           |        |          |         |

### **LSTM**

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Drug         | 0.9015    | 0.9395 | 0.9201   | 61167   |
| Strength     | 0.9448    | 0.9588 | 0.9517   | 42957   |
| Form         | 0.9209    | 0.9292 | 0.925    | 41417   |
| Frequency    | 0.8319    | 0.8416 | 0.8367   | 36495   |
| Route        | 0.9436    | 0.962  | 0.9527   | 30583   |
| Dosage       | 0.9279    | 0.9404 | 0.9341   | 23506   |
| Reason       | 0.7458    | 0.7745 | 0.7598   | 9533    |
| Duration     | 0.7724    | 0.7926 | 0.7824   | 1982    |
| ADE          | 0.4158    | 0.5781 | 0.4837   | 1299    |
|              |           |        |          |         |
| micro avg    | 0.8991    | 0.9202 | 0.9095   | 248939  |
| macro avg    | 0.8227    | 0.8574 | 0.8385   | 248939  |
| weighted avg | 0.9001    | 0.9202 | 0.91     | 248939  |

### **Transformer**

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| <b>.</b>     |           |        |          |         |
| Drug         | 0.8968    | 0.939  | 0.9174   | 61167   |
| Strength     | 0.9414    | 0.9587 | 0.95     | 42957   |
| Form         | 0.9257    | 0.9212 | 0.9234   | 41417   |
| Frequency    | 0.867     | 0.8726 | 0.8698   | 36495   |
| Route        | 0.9457    | 0.9617 | 0.9536   | 30583   |
| Dosage       | 0.9236    | 0.9473 | 0.9353   | 23506   |
| Reason       | 0.6905    | 0.7782 | 0.7317   | 9533    |
| Duration     | 0.7659    | 0.7876 | 0.7766   | 1982    |
| ADE          | 0.4224    | 0.3141 | 0.3603   | 1299    |
|              |           |        |          |         |
| micro avg    | 0.9018    | 0.9227 | 0.9121   | 248939  |
| macro avg    | 0.8199    | 0.8312 | 0.8242   | 248939  |
| weighted avg | 0.902     | 0.9227 | 0.9121   | 248939  |
|              |           |        |          |         |

# NER Results: Trained on raw data + finetuned on UMLS augmented data for ADE

### **LSTM**

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Drug         | 0.8785    | 0.9489 | 0.9124   | 61167   |
| Strength     | 0.9333    | 0.9606 | 0.9468   | 42957   |
| Form         | 0.9123    | 0.9108 | 0.9116   | 41417   |
| Frequency    | 0.8539    | 0.8562 | 0.8551   | 36495   |
| Route        | 0.9592    | 0.9429 | 0.951    | 30583   |
| Dosage       | 0.9084    | 0.9172 | 0.9128   | 23506   |
| Reason       | 0.8111    | 0.7028 | 0.7531   | 9533    |
| ADE          | 0.2376    | 0.6474 | 0.3476   | 1299    |
| Duration     | 0.8208    | 0.774  | 0.7967   | 1982    |
|              |           |        |          |         |
| micro-avg    | 0.8907    | 0.9149 | 0.9026   | 248939  |
| macro-avg    | 0.8128    | 0.8512 | 0.8208   | 248939  |
| weighted-avg | 0.8963    | 0.9149 | 0.9046   | 248939  |

### **Transformer**

|              | Precision | Recall | F1-Score | Support |  |
|--------------|-----------|--------|----------|---------|--|
| Drug         | 0.8731    | 0.941  | 0.9058   | 61167   |  |
| Strength     | 0.9357    | 0.9562 | 0.9458   | 42957   |  |
| Form         | 0.9178    | 0.9228 | 0.9203   | 41417   |  |
| Frequency    | 0.8551    | 0.858  | 0.8566   | 36495   |  |
| Route        | 0.9509    | 0.9424 | 0.9466   | 30583   |  |
| Dosage       | 0.9244    | 0.9455 | 0.9348   | 23506   |  |
| Reason       | 0.7222    | 0.749  | 0.7353   | 9533    |  |
| ADE          | 0.2378    | 0.6451 | 0.3475   | 1299    |  |
| Duration     | 0.7466    | 0.779  | 0.7625   | 1982    |  |
|              |           |        |          |         |  |
| micro-avg    | 0.8869    | 0.9188 | 0.9026   | 248939  |  |
| macro-avg    | 0.796     | 0.8599 | 0.8172   | 248939  |  |
| weighted-avg | 0.893     | 0.9188 | 0.9051   | 248939  |  |
|              |           |        |          |         |  |

# NER Results: Trained on raw data + finetuned on UMLS augmented data for ADE + Weights adjusted

#### **LSTM**

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Drug         | 0.878     | 0.949  | 0.9121   | 61167   |
| Strength     | 0.9356    | 0.9609 | 0.9481   | 42957   |
| Form         | 0.9187    | 0.9116 | 0.9152   | 41417   |
| Frequency    | 0.8572    | 0.857  | 0.8571   | 36495   |
| Route        | 0.9606    | 0.9454 | 0.953    | 30583   |
| Dosage       | 0.9112    | 0.9196 | 0.9154   | 23506   |
| Reason       | 0.8123    | 0.6964 | 0.7499   | 9533    |
| ADE          | 0.2553    | 0.6459 | 0.366    | 1299    |
| Duration     | 0.8205    | 0.7497 | 0.7835   | 1982    |
|              |           |        |          |         |
| micro-avg    | 0.8939    | 0.9153 | 0.9044   | 248939  |
| macro-avg    | 0.8166    | 0.8484 | 0.8222   | 248939  |
| weighted-avg | 0.8987    | 0.9153 | 0.906    | 248939  |

#### **Transformer**

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Drug         | 0.8697    | 0.94   | 0.9035   | 61167   |
| Strength     | 0.9315    | 0.9573 | 0.9443   | 42957   |
| Form         | 0.9221    | 0.9199 | 0.921    | 41417   |
| Frequency    | 0.8543    | 0.8591 | 0.8567   | 36495   |
| Route        | 0.9502    | 0.9449 | 0.9475   | 30583   |
| Dosage       | 0.9261    | 0.9432 | 0.9345   | 23506   |
| Reason       | 0.7297    | 0.7431 | 0.7363   | 9533    |
| ADE          | 0.2168    | 0.6759 | 0.3283   | 1299    |
| Duration     | 0.7432    | 0.781  | 0.7616   | 1982    |
|              |           |        |          |         |
| micro avg    | 0.8847    | 0.9185 | 0.9013   | 248939  |
| macro avg    | 0.7937    | 0.8627 | 0.8149   | 248939  |
| weighted avg | 0.8923    | 0.9185 | 0.9044   | 248939  |

# **Relation Extraction Results**

### **Baseline**

|                | Precision | Recall | F1-Score | Support |
|----------------|-----------|--------|----------|---------|
| ADE-Drug       | 0.62      | 0.53   | 0.57     | 733     |
| Dosage-Drug    | 0.75      | 0.83   | 0.79     | 2695    |
| Duration-Drug  | 0.48      | 0.54   | 0.51     | 426     |
| Form-Drug      | 0.92      | 0.9    | 0.91     | 4374    |
| Frequency-Drug | 0.87      | 0.87   | 0.87     | 4034    |
| Reason-Drug    | 0.84      | 0.77   | 0.8      | 3410    |
| Route-Drug     | 0.9       | 0.89   | 0.9      | 3546    |
| Strength-Drug  | 0.85      | 0.89   | 0.87     | 4244    |
| accuracy       |           |        | 0.85     | 23462   |
| macro avg      | 0.78      | 0.78   | 0.78     | 23462   |
| weighted avg   | 0.85      | 0.85   | 0.85     | 23462   |

### **LSTM**

|                      | Precision | Recall | F1-Score | Support |
|----------------------|-----------|--------|----------|---------|
| Form-Drug            | 0.8904    | 0.8267 | 0.8574   | 4374    |
| Frequency-Drug       | 0.8763    | 0.9251 | 0.9      | 4034    |
| Route-Drug           | 0.676     | 0.8739 | 0.7624   | 3546    |
| Strength-Drug        | 0.9228    | 0.7717 | 0.8405   | 4244    |
| Reason-Drug          | 0.6987    | 0.8487 | 0.7664   | 3410    |
| Dosage-Drug          | 0.8643    | 0.8883 | 0.8761   | 2695    |
| ADE-Drug             | 0.5217    | 0.7872 | 0.6275   | 733     |
| <b>Duration-Drug</b> | 0.6818    | 0.8803 | 0.7684   | 426     |
|                      |           |        |          |         |
| micro avg            | 0.7978    | 0.8508 | 0.8235   | 23462   |
| macro avg            | 0.7665    | 0.8502 | 0.7998   | 23462   |
| weighted avg         | 0.8153    | 0.8508 | 0.8274   | 23462   |
|                      |           |        |          |         |

### SECTION FIVE

# Conclusion

# **Conclusion**

- Deep learning models significantly outperform machine learning baselines in all performance metrics.
- Transformer model outshines LSTM (20 epochs) with only 10 epochs of training in micro and weighted average F1 scores; macro F1 scores are similar for both models.
- Data augmentation increases recall for underrepresented classes but reduces precision, leading to a
  decrease in overall F1 scores; model potentially confuses ADEs with reasons.
- Forcing model to focus more on context by adjusting importance weights of ADEs and reasons doesn't yield anticipated improvement in deep learning models' performance.
- No overall performance improvement observed with data augmentation, possibly due to augmenting only ADE data.

### **SECTION SIX**

# Future Work, Limitations & Ethical Considerations

# **Limitations & Ethical Consideration**

- Our models may have limitations in generalizing to different data sources or medical sub-domains.
- We could not train our deep learning models due to compute constraints on Google Colab.
- Ensuring secure and privacy-preserving environments is critical to prevent unauthorized access to sensitive medical information.
- Developing robust defenses against adversarial attacks is essential to ensure the reliability and security of our models in real-world applications.

# **Future Work**

- Explore different ways of incorporating UMLS ontologies.
- Better data parsing could implement our model performance.
- Joint training of NER and Relation Extraction models
- Advanced loss functions could be explored to handle class imbalance and improve overall performance of underrepresented classes

# Thank you!

