Отчет о выполнении лабораторной работы 3.7.3

Длинная линия

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

Puc. 1: Схематическое изображение элемента dx длинного коаксиального кабеля

1 Аннотация

Цель работы: ознакомится и проверить на практике теорию распространения электрических сигналов вдоль длинной линии; измерить амплитудо- и фазово-частотные характеристики коаксиальной линии; определить погонные характеристики такой линии; на примере модели длинной линии изучить вопрос распределения амплитуды колебаний сигнала по длине линии.

В работе используются: осциллограф АКТАКОМ ADS-6142H; генератора АКИП 3420/1; бухта с коаксиальным кабелем pk 50-4-11; схематический блок "модель длинной линии"; магазин сопротивления P33, соединительные провода.

2 Теоретические сведения

Рассмотрим элемент dx длинного коаксиального кабеля. Этот элемент представляет собой изолированный коаксиальный проводящий (медный) цилиндр некоторого радиуса r_2 , на оси которого расположен сплошной тонкий проводник (медный) круглого сечения с

радиусом r_1 . Пространство между этими проводниками заполнена средой, обладающей диэлектрической проницаемостью ε и магнитной восприимчивостью μ . Как известно, такой элемент обладает индуктивностью

$$dL = 2\mu \ln \left(r_2/r_1 \right) dx \tag{1}$$

Удельная (погонная) индуктивность единицы длины такого кабеля:

$$L_x = \frac{dL}{dx} = 2\mu \ln \left(r_2 / r_1 \right) \tag{2}$$

Два проводника, образующих этот элемент dx коаксиального кабеля, должны обладать взаимной ёмкостью. Можно показать, что ёмкость элемента dx коаксиального кабеля определяется выражением:

$$dC = \frac{\varepsilon}{2\ln\left(r_2/r_1\right)} dx \tag{3}$$

а его удельная (погонная) ёмкость единицы длины равна:

$$C_x = \frac{dC}{dx} = \frac{\varepsilon}{2\ln(r_2/r_1)}. (4)$$

Когда по такому кабелю передаётся сигнал, в его центральной жиле и внешней оболочке возникают взаимно противоположные токи I(x), а также электрическое напряжение U(x) между внешним и внутренним проводниками. При высоких частотах v сигналов, распространяющихся в кабеле (когда длина кабеля l > V/v, где V - характерная скорость распространения сигнала в кабеле, эта скорость, как правило, порядка скорости света) I(x) и U(x) вообще говоря зависят от координаты x.

Изменение напряжения на концах элемента dx вызваны возникновением ЭДС индукции и падением напряжения в результате омического сопротивления проводников:

$$U(x+dx) - U(x) = -\frac{L_x dx}{c^2} \frac{\partial I}{\partial t} - R_x dx I, \qquad (5)$$

где погонное сопротивление

$$R_x = \frac{dR}{dx} = \frac{1}{\sigma \cdot S} \tag{6}$$

здесь σ - удельная проводимость материала проводников, S - площадь их поперечного сечения.

Изменение силы тока вызвано тем, что некоторая часть электрического заряда q как бы "перетекает на "обкладки"конденсатора, роль которых играют проводники коаксиального кабеля:

$$I(x+dx) - I(x) = -\frac{\partial q}{\partial t} \tag{7}$$

где $q = C_x dx U$.

Представим уравнения (5) и (7) в виде системы, описывающей распространение сигнала вдоль длинной линии:

$$\begin{cases}
U(x) = U(x + dx) + \frac{L_x dx}{c^2} \frac{\partial I}{\partial t} + R_x dxI, \\
I(x) = I(x + dx) + \frac{\partial q}{\partial t}.
\end{cases}$$
(8)

Эту систему уравнений называют телеграфными уравнениями. Разделим оба уравнения на длину элемента dx и, воспользовавшись определением дифференциалов, перепишем (8) следующим образом:

$$\begin{cases}
\frac{\partial I}{\partial x} = -C_x \frac{\partial U}{\partial t} \\
\frac{\partial U}{\partial x} = -\frac{L_x}{C^2} \frac{\partial I}{\partial t} - R_x I
\end{cases}$$
(9)

Из (9) выразим перекрёстные производные:

$$\begin{cases}
\frac{\partial^{2} I}{\partial x \partial t} = -C_{x} \frac{\partial^{2} U}{\partial^{2} t} \\
\frac{\partial^{2} U}{\partial x^{2}} = -\frac{L_{x}}{c^{2}} \frac{\partial^{2} I}{\partial x \partial t} - R_{x} \frac{\partial I}{\partial x}
\end{cases}$$
(10)

Из (9) и (10) получаем волновое уравнение для напряжения U(x)

$$\frac{\partial^2 U}{\partial x^2} = \frac{L_x C_x}{c^2} \frac{\partial^2 U}{\partial t^2} + R_x C_x \frac{\partial U}{\partial t}.$$
 (11)

Или в каноническом виде:

$$\frac{\partial^2 U}{\partial t^2} - V_\phi^2 \frac{\partial^2 U}{\partial x^2} + \gamma \frac{\partial U}{\partial t} = 0 \tag{12}$$

где введены следующие обозначения для фазовой скорости:

$$V_{\phi} = \frac{c}{\sqrt{L_x C_x}} \tag{13}$$

и декремента затухания:

$$\gamma = R_x C_x V_\phi^2. \tag{14}$$

Подставляя (2) и (4) в выражение для фазовой скорости (13), легко видеть, что, эта скорость имеет тот же вид, как и скорость распространения обычных электромагнитных волн в некоторой среде с диэлектрической проницаемостью ε и магнитной восприимчивостью μ :

$$V_{\phi} = \frac{C}{\sqrt{\varepsilon \mu}}.\tag{15}$$

Решение (12) удобно искать в виде:

$$U(x,t) = U_0 e^{-i\omega t} e^{(-\alpha + ik)x}$$
(16)

Из первого уравнения системы (9) легко установить характер изменения силы тока в длинной линии:

$$I(x,t) = U_0 \frac{C_x \omega}{k + i\alpha} e^{-i\omega t} e^{(-\alpha + ik)x}$$
(17)

Из (16) и (17) видно, что отношение силы тока и напряжения в длинной линии не зависят от времени и координаты. Это отношение называют волновым сопротивлением (импедансом):

$$Z(\omega, k) = \frac{U(x, t)}{I(x, t)} = \frac{k + i\alpha}{C_x \omega}.$$
 (18)

В пределе малых затуханий $\alpha << \omega$

$$Z(\omega, k) \approx \frac{k}{C_x \omega} = \frac{1}{C_x V_\phi} = \frac{1}{c} \sqrt{\frac{L_x}{C_x}}$$
 (19)

Если в конце такую длинную линию замкнуть на сопротивление

$$R_0 = \frac{1}{c} \sqrt{\frac{L_x}{C_x}} \tag{20}$$

то бегущая вдоль длинной линии волна "будет воспринимать" нагрузку как бесконечное продолжение этой длинной линии. Другими словами, когда длинная линия подключена к нагрузке с сопротивлением R_0 , отражённой волны не возникает. Во всех остальных случаях, когда $R \neq R_0$ (в том числе и в частных случаях незамкнутого конца, когда $R \to \infty$ и короткозамкнутой линии, когда R = 0) возникает отражённая волна, описываемая выражением (сравни с (13)):

 $U(x,t) = U_0 e^{-i\omega t} e^{-(\alpha+ik)x}$, которое также удовлетворяет решению системы (9). Подставляя (16) в (12) получаем характеристическое уравнение:

$$-\omega^2 - V_{\phi}^2(-\alpha + ik)^2 - i\omega\gamma = 0 \tag{21}$$

Или, разделяя действительную и мнимую части, приходим к системе:

$$\begin{cases}
\omega^2 = V_\phi^2 (k^2 - \alpha^2) \\
2\alpha k V_\phi^2 = \omega \gamma
\end{cases}$$
(22)

Из (22) следует (в пределе малых затуханий $\alpha << \omega$):

$$\alpha = \frac{\omega}{V_{\phi}} \sqrt{\frac{\sqrt{1 + (\gamma/\omega)^2 - 1}}{2}} \approx \frac{\omega}{V_{\phi}} \sqrt{\frac{\gamma^2}{4\omega^2}} = \frac{\gamma}{2V_{\phi}} = R_{\chi} C_x \frac{V_{\phi}}{2}, \qquad (23)$$

$$k = \frac{\omega}{V_{\phi}}. \qquad (24)$$

Таким образом, амплитуда напряжения на нагрузке (в конце длинной линии) будет иметь вид:

$$U_n(t) = U_0 e^{-\alpha l} e^{ikl} e^{-i\omega t}.$$
 (25)

При этом амплитуда колебаний на согласованной нагрузке (в конце длинной линии) имеет вид:

$$U_n = U_0 e^{-\alpha l}, (26)$$

и набег фазы сигнала на выходе (в конце длинной линии) относительно входного сигнала (вначале длинной линии) будет иметь вид:

$$\Delta \varphi = kl. \tag{27}$$

Так как модуль волнового вектора k прямо пропорционален частоте сигнала ω (см. выражение (24)) следует понимать, что разность фазы $\Delta \varphi$ монотонно увеличивается с увеличением ω .

Из (26) и (27) легко экспериментально определить декремент затухания α и волновое число k для различных ω :

$$\alpha(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_H} \right), \tag{28}$$

$$k(\omega) = \frac{\Delta \varphi}{l}$$

$$k(\omega) = \frac{\Delta\varphi}{l} \tag{29}$$

Ход работы 3

Рис. 2: Схема установки для наблюдения распространения сигналов вдоль длинной линии.

Нагрузка 5	0 Ом (со-	Нагрузка		
гласованная нагруз-		1 MOM		
ка)		(линия без		
		нагрузки)		
Частота	Сдвиг фаз	Частота	Сдвиг фаз	
3.88	2π	3.76	2π	
7.84	4π	7.93	4π	
11.79	8π	11.89	8π	
15.73	16π	15.86	16π	
19.69	32π	19.81	32π	
23.66	64π	23.77	64π	
27.64	218π	31.64	128π	

Таблица 1: Резонансные частоты для синусоидального сигнала

Нагрузка 50 Ом (со-		Нагрузка		
гласованная нагруз-		1 МОм		
ка)		(линия без		
		нагрузки)		
Частота	Сдвиг фаз	Частота	Сдвиг фаз	
3.96	2π	3.90	2π	
7.92	4π	7.81	4π	
11.89	8π	11.71	8π	
15.81	16π	15.62	16π	
19.75	32π	19.52	32π	

Таблица 2: Резонансные частоты для прямоугольного сигнала

Для синусоидального сигнала и нагрузки 50 Ом построим график зависимости $\nu(n)$

Рис. 3: График зависимости $\nu(n)$

Фазовая скорость

$$V_{\Phi} = \frac{\nu}{n} \cdot l = 198 \; \frac{\text{cm}}{c}$$

АЧХ и ФЧХ 3.1

Частота,	Амплитуда	Амплитуда	Фаза
МГц	входного	выходного	
	сигнала, В	сигнала, В	
3.88	5.4	4.84	2π
7.84	5.44	4.6	4π
11.79	5.48	4.44	8π
15.73	5.48	4.32	16π
19.69	5.48	4.0	32π
23.66	5.4	4.08	64π
27.64	5.4	3.76	128π
31.59	5.34	3.7	256π
35.55	5.33	3.63	512π
39.5	5.25	3.29	1024π

Таблица 3: АЧХ и ФЧХ

Определение параметров коаксиального кабеля. 3.2

$$y_1 = \frac{L_x C_x}{c^2} x_1 (30)$$

где

$$x_1 = \omega^2, \tag{31}$$

$$x_1 = \omega^2,$$

$$y_1 = k(\omega)^2 - \alpha(\omega)^2.$$
(31)
(32)

Рис. 4: $y_1(x_1)$

Из графика

$$L_x C_x = 1.44$$

Тогда

$$L_x = 200.2$$

$$C_r = 0.0072$$

$$V_{\Phi} = \frac{c}{\sqrt{L_x C_x}} \cdot l = 250 \, \frac{\text{cm}}{c}$$

Магнитная восприимчивость

$$\mu = \frac{L_x}{2\log\frac{r_2}{r_1}} = 0.93$$

$$\varepsilon = 2C_x \log \frac{r_2}{r_1} = 1.54$$

3.3 Определение удельной проводимости проводников.

3.3.1 Метод А

Из (23) и (28) следует:

$$\alpha(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_n} \right) = R_x C_x \frac{V_\phi}{2}. \tag{33}$$

Если взять удельную проводимость для меди и подставить в известное выражение для характерной толщины скин-слоя:

$$\delta = \frac{c}{2\pi\sqrt{v\sigma}},\tag{34}$$

то окажется, что даже при минимальной частоте $v=1~\mathrm{M}\Gamma$ ц эта толщина будет равна около 65 мкм, что примерно в десять раз меньше радиуса центрального проводника (диаметр центральной жилы равен $d=1,37~\mathrm{mm}$). При больших частотах характерная толщина скинслоя ещё меньше. Поэтому для упрощения будем предполагать, что весь ток сосредоточен в приповерхностном слое и потери, связанные с джоулевым нагревом описываются следующим выражением:

$$dN = \sigma E_0^2 \int_0^\infty e^{-2\frac{z}{\delta}} dz dx L \bigg|_{L=\pi d} = \sigma E_0^2 \cdot dx \cdot \pi d \cdot \frac{\delta}{2} \left(-e^{-2\frac{z}{\delta}} \right) \bigg|_0^\infty \frac{\sigma \cdot \pi d}{dx} \cdot \frac{\delta}{2} (dU)^2 = \frac{(dU)^2}{dR}$$
(35)

где

$$dR = \frac{dx}{\sigma \cdot \pi d} \cdot \frac{2}{\delta} \tag{36}$$

Погонное сопротивление с учётом скин-эффекта можно определить следующим образом:

$$R_x = \frac{dR}{dx} = \frac{2}{\sigma \cdot \pi d \cdot \delta}.$$
 (37)

Или, с учётом выражения для характерной толщины скин-слоя (34), имеем:

$$R_x = \frac{4\sqrt{v}}{\sqrt{\sigma} \cdot c \cdot d} \tag{38}$$

Таким образом, подставляя (38) в (33) приходим к зависимости:

$$\alpha(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_u} \right) = \frac{4}{\sqrt{\sigma} \cdot d} C_x \frac{V_\phi}{c} \sqrt{v}. \tag{39}$$

Это выражение можно переписать в следующем виде:

$$y_2 = \frac{4}{\sqrt{\sigma} \cdot d} C_x \frac{V_\phi}{c} x_2 \tag{40}$$

где

$$x_2 = \sqrt{v} \tag{41}$$

$$y_2 = \alpha(\omega) \tag{42}$$

Рис. 5: $y_2(x_2)$

Отсюда

$$\sigma = \left(\frac{2C_x V_\phi}{c \cdot d \cdot (\Delta y_2 / \Delta x_2)}\right)^2$$

$$\sigma = 4.6 \cdot 10^{-18}$$
(43)

3.3.2 Метод Б.

Подставив выражение для γ из (14) во второе уравнение системы (22) и сокращая на квадрат скорости V_ϕ^2 легко прийти к выражению:

$$2\alpha k = \omega R_x C_x. \tag{44}$$

Зная амплитуду колебаний и сдвиг фазы в конце длинной линии относительно входного сигнала экспериментально можно определить как $\alpha(\omega)$, так и $k(\omega)$ (см., например, выражения (28) и (29)). Таким образом, выражение (44) можно представить в следующем виде:

$$y_3 = \frac{4\pi \cdot C_x}{\sqrt{\sigma} \cdot d \cdot c} x_3 \tag{45}$$

где

$$x_3 = v^{3/2}, (46)$$

$$y_3 = \alpha(\omega) \cdot k(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_H} \right) \cdot \frac{\Delta \varphi}{l}.$$
 (47)

Рис. 6: Caption

$$\sigma = \left(\frac{4\pi \cdot C_x}{d \cdot c \left(\Delta y_3 / \Delta x_3\right)}\right)^2$$

$$\sigma = 2.4 \cdot 10^{-18}$$
(48)

3.4 Длинная линия. Модель.

Рис. 7: Модель длинной линии

$$v_0 = \frac{1}{\pi\sqrt{LC}} = 38 \text{ к}\Gamma\text{ц} \tag{*}$$

$$R_0 = \sqrt{\frac{L}{C}} = 178 \text{ Om}$$
 (**)

Частота,	Сдвиг фа-
кГц	зы, рад
1.0	0.13
5.75	0.35
10.5	0.66
15.25	0.69
20.0	1.51
29.5	2.3
34.25	2.45

Таблица 4: Сдвиг фазы между двумя соседними ячейками при разных частотах

Наблюдение резонансов

R = 0					
$ u_{ m pes} = 3.25 \ { m K} \Gamma { m II}$		$ u_{ m pes}=13.68\ { m к}\Gamma$ ц		$ u_{\rm pes} = 23.28 \ {\rm к} \Gamma {\rm ц} $	
Номер	Амплитуда	Номер	Амплитуда	Номер	Амплитуда
1	0.24	1	0.88	1	1.46
2	0.74	2	2.2	2	1.94
3	1.16	3	2.24	3	0.82
4	1.6	4	0.88	4	2.22
5	1.92	5	0.88	5	0.72
6	2.2	6	0.88	6	2.28
7	2.4	7	0.88	7	1.2
8	2.5	8	0.88	8	2.44
9	2.56	9	0.88	9	1.78
10	2.58	10	0.88	10	2.8
$R = \infty$	$R = \infty$				
$ u_{ m pes} = 10.5 \ { m к} \Gamma { m II}$		$ u_{ m pes} = 20.2 \ { m к} \Gamma { m I}{ m I}$		$ u_{ m pes} = 28.3 \ { m к} \Gamma { m II}$	
Номер	Амплитуда	Номер	Амплитуда	Номер	Амплитуда
1	2.08	1	2.52	1	0.96
2	0.92	2	3.44	2	3.88
3	0.5	3	4.28	3	1.12
4	1.82	4	1.28	4	3.84
5	2.5	5	4.6	5	3.2
6	2.22	6	3.28	6	2.96
7	1.34	7	3.8	7	5.08
8	0.62	8	4.88	8	3.76
9	1.76	9	3.04	9	5.6
10	2.46	10	5.52	10	7.2

Таблица 5: Рзонансные частоты и амплитуды на разных клеммах

Рис. 8: $\varphi(\nu)$

Рис. 9: U(n)