Le GRANDEZZE FISICHE - Capitolo 1

SIMULAZIONE

Nome e Cognome:		
-	Data:	

NOTA: svolgi ogni problema in una singola facciata del foglio protocollo [2 punti per ogni problema]

- 1) Completa le seguenti equivalenze scrivendo il risultato in NOTAZIONE SCIENTIFICA:
 - A) scrivi in metri la distanza media Terra Sole: 150 milioni di km
 - B) scrivi in kg la massa della Terra: 5970 miliardi di miliardi di tonnellate
 - C) scrivi in secondi il tempo impiegato dalla luce per raggiungere la stella più vicina 4,2 anni
- Esegui le seguenti operazioni poi, scrivi il risultato ottenuto in NOTAZIONE SCIENTIFICA ed infine indica l'ORDINE di GRANDEZZA
 - A) $(5,6\cdot10^5)\cdot(2,4\cdot10^{-2}):(1,8\cdot10^4)$
 - B) $(4.8 \cdot 10^6) + (2.6 \cdot 10^5) (1.5 \cdot 10^4)$
 - $9.2 \cdot 10^{-6}$
 - C) $1.5 \cdot 10^{-2}$
- 3) Con un distanziometro laser vengono misurate le dimensioni di un'aula supposta a forma di parallelepipedo: larghezza=6,375m; lunghezza=5,435m e altezza=3,525m
 - A) calcola la superficie del pavimento dell'aula in m²
 - B) calcola la superficie del pavimento dell'aula in cm²
 - C) calcola il volume dell'aula in m³
 - D) calcola il volume dell'aula in cm³
 - E) calcola il volume dell'aula in Litri
- 4) Eratostene misurò la circonferenza della Terra in circa 250000 stadi.
 - A) esprimi la circonferenza della Terra in km sapendo che uno stadio è pari a 157,5m
 - B) calcola il raggio della Terra in km
 - C) calcola la superficie della Terra in km²
 - D) calcola il volume della Terra in km³
 - E) converti il volume della Terra appena calcolato in m³
 - F) calcola la densità della Terra in kg/m³, sapendo che la massa della Terra è $m_{Terra} = 5.97 \cdot 10^{24} kg$
 - G) converti la densità della Terra in g/cm³