Teoria da Computação Linguagens Regulares (Parte 1) Gramáticas Regulares

Prof. Jefferson Magalhães de Morais

18 de março de 2021

Introdução

- O que será visto nesta primeira parte do módulo de Linguagens Regulares
 - Gramáticas regulares
 - Equivalência entre gramáticas lineares
 - Conjuntos e Expressões regulares
 - Autômatos finitos
 - Determinísticos
 - Não-Determinísticos sem transições em vazio
 - Não-Determinísticos com transições em vazio
 - Algoritmos
 - Eliminação de não-determinismos
 - Eliminação de transições em vazio
 - Eliminação de estados inacessíveis
 - Eliminação de estados inúteis

Gramáticas Regulares

- São gramáticas cujas regras $\alpha \to \beta$ atendem às seguintes condições
 - $\bullet \quad \alpha \in N$
 - ② $\beta \in (\Sigma \cup \{\varepsilon\})(N \cup \{\varepsilon\})$ se linear unitária à direita, ou $\beta \in (N \cup \{\varepsilon\})(\Sigma \cup \{\varepsilon\})$ se linear unitária à esquerda
- Linguagens geradas por gramáticas regulares recebem o nome de linguagens regulares
- Alguns autores consideram extensões das regras $\alpha \to \beta$, tais como
 - $\alpha \in N$
 - $\beta \in \Sigma^*(N \cup \{\varepsilon\})$ se linear à direita, ou $\beta \in (N \cup \{\varepsilon\})\Sigma^*$ se linear à esquerda

Equivalência entre gramáticas lineares

- Teorema (Linear à direita \Leftrightarrow linear à esquerda): "Se G_1 é uma gramática linear à direita, então existe uma gramática linear à esquerda G_2 tal que $L(G_1) = L(G_2)$, e vice-versa."
- Considere $L^R = L^R(G_1)$, o reverso da linguagem definida por G_1
- Considere também G' tal que $L^R = L(G')$
- Considere ainda G'' tal que β de comprimento não-unitário de G' sejam invertidas em G'' conforme o algoritmo de linguagem reversa

Equivalência entre gramáticas lineares

- Algoritmo: linguagem reversa
 - Entrada: uma gramática linear à direita $G' = (V, \Sigma, P', S)$
 - Saída: uma gramática linear à esquerda $G''=(V,\Sigma,P'',S)$, tal que $L(G'')=L^R(G')$
 - Método:

 - 2 Se $\alpha \to \beta \in P', \beta \in (\Sigma \cup N \cup \{\varepsilon\})$, então $\alpha \to \beta \in P''$
 - $\textbf{3} \ \ \textit{Se} \ \alpha \rightarrow \beta \in P', \beta \in (\Sigma N), \ \textit{ent\~ao} \ \alpha \rightarrow \beta^R \in P''$

Algoritmo: linear à direita ⇔ esquerda

- ullet Entrada: uma gramática linear à direita G_1
- Saída: uma gramática linear à esquerda G_2 , tal que $L(G_2) = L(G_1)$
- Método:
 - ① Determinar $L(G_1)$
 - ② Determinar $L^{R}(G_1)$
 - **3** Obter uma gramática linear à direita G' tal que $L(G') = L^R(G_1)$
 - lacksquare Transformar G' em G_2 , conforme o algoritmo de linguagem reversa

Exemplo

Considere a

gramática linear à direita G_1 :

$$S \to aS$$
$$S \to bS$$

$$S \to P$$
$$P \to cQ$$

$$Q \to cR$$

$$R \to dR$$

$$R \to d$$

- **Primeiro passo**: determinar $L(G_1)$ $L(G_1) = \{w \in \{a, b, c, d\}^* \mid$
- $oldsymbol{0}$ w começa com zeros ou mais símbolos aou b
- 2 w continua com exatamente dois símbolos c
- w terminar com um ou mais símbolos d

- **Segundo passo**: determinar $L^R(G_1)$ $L^{R}(G_{1}) = \{w \in \{a, b, c, d\}^{*} \mid$
 - w terminar com zero ou mais símbolos a

ou b

- 2 w continua com exatamente dois símbolos c
- w começa com um ou mais símbolos d

Exemplo

Terceiro passo: obter uma gramática linear à direita G' tal que $L(G') = L^R(G_1)$

$$S' \rightarrow dS'$$

$$S' \rightarrow dP'$$

$$P' \rightarrow cQ'$$

$$Q' \rightarrow cR'$$

$$R' \rightarrow aR'$$

$$R' \rightarrow bR'$$

 $R' \to \varepsilon$

Quarto passo: transformar G' em G_2 pela aplicação do algoritmo de linguagem reversa

$$S'' \to S''d$$

$$S'' \to P''d$$

$$P'' \to Q''c$$

$$Q'' \to R''c$$

$$R'' \to R''a$$

$$R'' \to R''b$$

$$R'' \to \varepsilon$$

$$\therefore$$
 G_2 é linear à esquerda e $L(G_2) = L(G_1)$

Exemplo

- Considere as derivações da sentença abaccdd, respectivamente em G_1 e G_2
 - $S \xrightarrow{G_1} aS \xrightarrow{G_1} abS \xrightarrow{G_1} abaP \xrightarrow{G_1} abacQ \xrightarrow{G_1} abaccR \xrightarrow{G_1} abaccdR \xrightarrow{G_1} abaccdd$

• $S'' \xrightarrow{G_2} S''d \xrightarrow{G_2} P''dd \xrightarrow{G_2} Q''cdd \xrightarrow{G_2} R''ccdd \xrightarrow{G_2} R''baccdd \xrightarrow{G_2} R''abaccd \xrightarrow{G_2} abaccdd$

Exercícios

- Obter as GLUDs que gerem as linguagens cujas sentenças estão descritas a seguir. Em seguida, obter as GLUEs equivalente às GLUDs. Considere o alfabeto $\Sigma = \{a, b\}$
 - ullet Começam com aa
 - ullet Não começam com aa
 - Terminam com bbb
 - Não terminam com bbb
 - Contém a subcadeia aabbb