

Electronic Design Department

Poland, Phone/Fax: e-mail: url: 44-100 Gliwice, Dubois 16 +48 32 2311171, 2313027 ipcenter@evatronix.com www.evatronix.com

April 15, 2011

R80251XC Design Specification

Document Revision History

Revision	Date	Person	Changes made in document from previous revision
1.00	20.02.2008	T.T. P.P.	First version
1.01	10.12.2008	M.P.	Review & corrections.
1.02	29.12.2008	T.T.	Corrections
1.03	8.01.2009	P.P. T.T. P.P.	Correct subcomponents specification
1.04	13.02.2009	M.P.	Tracking on. OCDS modifications.
1.05	21.08.2009	M.P.	Tracking off. Cleanup.
1.06	21.05.2010	J.T	SFR's and Peripherals description corrections.
1.07	27.10.2010	M.P.	Added Register File access to the OCDS.
1.08	12.11.2010	M.P.	Corrected the Block Diagram and added 80C515-like Timer2 to the Features list.
1.09	15.11.2010	M.P.	Corrected UCONFIG0 and UCONFIG1 registers description.
		J.T.	Corrected and complemented the PCA chapter.
1.10	10.01.2011	M.P.	Corrected Pin Description table and External Memory / Internal Memory timing diagrams.
		J.T	Corrected and complemented the WATCHDOG chapter.
1.11	24.01.2011	M.P.	Modified Pin Description table, Feature list, Block Diagram and Interface Timings: R80251XC-I(F) version was added.
1.12	08.02.2011	M.P.	Review and cleanup.
1.13	15.04.2011	J.T.	Corrected ISR subcomponent, IEN2 and IRCON2 registers description.

Table of Contents

1.	Int	oduction	13
	1.1.	Overview	13
	1.2.	Features	
	1.3.	Acceptance Criteria	16
	1.4.	Terminology and Symbol Conventions	16
	1.5.	References	16
2.	Arc	hitectural Specification	
	2.1.	Pin Description	
	2.2.	Functional Description	22
	2.3.	Memory Organization	 22
	2.4.	Special Function Registers	2.1
	2.5.	External Memory Interface (R80251XC-T(F) only)	
	2.6.	Internal Program Memory Interface (R80251XC-I(F) only)	
	2.7.	External Memory Interface (R80251XC-I(F) only)	
	2.8.	Internal Data Memory Interface	92
	2.9.	External Special Function Registers Interface	93
	2.10.	Special Case	96
	2.11.	On-Chip Debug Support Interface	98
	2.12.	Serial Interfaces	98
	2.13.	Hold Interface	99
3.		gramming Specification	
	3.1.	 	
	3.1. 3.2.		100
	3.2. 3.3.	Procedure Calls, Interrupts, Exceptions	
		Device Configuration	
4.		dware specification	
	4.1.	Block Diagram	120
	4.2.	Blocks Description	121
	4.3.	Clocks	4 2 2
	4.4.	Reset	
	4.5. 4.6.	Power Management Testability	124 124
		,	
	Sut 5.1.	components specification	
	5.1. 5.2.	R80251XC_CPU	120 141
	5.2. 5.3.	ISR	
	5.3. 5.4.	TIMER0TIMER1	
	5. 4 . 5.5.	TIMER2_251	
	5.6.	TIMER2_515	
	5.7.	PCA	160 167
	5.7. 5.8.	SERIALO	
	5.9.		
	5.10.	SERIAL1WATCHDOG	170 170
	5.10. 5.11.	PMURSTCTRL	191
	5.11. 5.12.	PORTS	
	5.12. 5.13.		
	5.13. 5.14.	WAKEUPCTRLSFRMUX	186 187
	5.14. 5.15.		
	5.15. 5.16.	SYNCREGSEXTINT	195 197
	5.10. 5.17.		
	5.17. 5.18.		
	5.16. 5.19.	SEC_I2C	216 220
	5.19. 5.20.	SPI_MS	220 230
	J.ZU.	OCDS	230

5.21.	SOFTRSTCTRL	269
5.22.	RTC	270

List of Figures

Figure	1. R8	0251XC	Mem	ory Map								. 22
Figure	2. Ad	ldress S	paces	For the	MCS 51 Arc	hitectur	·е					. 23
Figure	3. MC	CS-51 A	ddres	s Space I	Mapping Int	o MCS-	251 Archi	tecture				. 24
Figure	4. Lo	gical Me	emory	Address	Space							. 25
Figure	5. Int	ternal M	1 emor	у Мар								. 27
Figure	6. Th	e Regis	ter Fil	le								. 28
Figure	7. Re	gister F	ile Lo	cations 0	⊢ 7							. 29
Figure	8. De	dicated	Regis	sters in t	he Register	File and	d Corresp	onding S	SFRs			. 30
Figure	10. P	rogram	Mem	ory Read	Cycle with	3 Wait	States					. 75
Figure	11. P	rogram	Mem	ory Read	Cycle with	3 Wait	States, D	elayed b	y Memps	sack		. 75
_		_		-		_	-					
Figure	13. P	rogram	Mem	ory Read	Cycle with	3 Wait	States (P	osedge S	SRAM)			. 76
Figure	14. P	rogram	Mem	ory Read	Cycle with	3 Wait	States De	elayed by	/ Memps	ack(Posed	dge SRAM).	. 76
_		_		-		_	-					
Figure	16. P	rogram	Mem	ory Write	Cycle with	1 Wait	State (Ne	egedge S	SRAM)			. 77
Figure	17. P	rogram	Mem	ory Write	Cycle with	1 Wait	State Del	layed by	Mempsa	ick (Nege	dge SRAM)	. 77
_		-		•	, ,	-	•					
•		•		•	•		•	•	,			
Figure	20. P	rogram	Mem	ory Write	Cycle with	1 Wait	State Del	layed by	Mempsa	ick (Posed	dge SRAM).	. 79
Figure	21. E	xternal	Data	Memory	Read Cycle	(Neged	lge SRAM)				. 79
Figure	22. E	xternal	Data	Memory	Read Cycle	with 3	Wait State	es (Nege	edge SRA	λM)		. 80
Figure	23. E	xternal	Data	Memory	Read Cycle	with 3					egedge SRA	
Figure	 24 F	vtornal		Memony	 Doad Cyclo	(Dosed						
_				-	-	•	- ,					
_				-	Read Cycle			-	_			. 01
												. 81
Figure	27. E	xternal	Data	Memory	Write Cycle	(Negeo	dge SRAM	1)				. 82
Figure	28. E	xternal	Data	Memory	Write Cycle	with 1	Wait Stat	e (Nege	dge SRAI	M)		. 82
Figure	29. E	xternal	Data	Memory	Write Cycle	with 2	Wait Stat	es Delay	ed by M	emack (N	legedge SRA	(MA
_					-	-		-				
Figure	32. E	xternal	Data								osedge SRA	
· -:												
_				•		•		•				
-						•		-				
_				•		•	, , ,	,				
-						•		•				
_				-				-				
•				•		, ,	_	•				
_				-				_				
riuule	+ ∪. □	אנכווומו	uald	1-1C11101V	word write	CVUE	ruseuue	JKAIYI)				.0/

Figure 41.	Internal Program Memory Read Cycle (SRAM/ROM)	. 88
Figure 42.	Program Memory Read Cycle with 3 Wait States	. 88
Figure 43.	Internal Program Memory Write Cycle (SRAM)	. 89
Figure 44.	Program Memory Write Cycle with 1 Wait State (SRAM)	. 89
Figure 45.	Program Memory Read Cycle (R80251XC-I(F) version)	. 90
Figure 46.	External Data Memory Read Cycle (R80251XC-I(F) version)	. 90
Figure 47.	External Memory Write Cycle (R80251XC-I(F) version)	91
_	Internal Data Memory Read Cycle	
Figure 49.	Internal Data Memory Read Cycle (Word Read)	92
Figure 50.	Internal Data Memory Read Cycle (Dword Read)	92
_	Internal Data Memory Write Cycle	
Figure 52.	Internal Data Memory Write Cycle (Word Write)	93
•	Internal Data Memory Write Cycle (Dword Write)	
	External Special Function Register Read Cycle	
	External Special Function Register Read Cycle (Word Read)	
Figure 56.	External Special Function Register Read Cycle (Dword Read)	. 94
_	External Special Function Registers Write Cycle	
Figure 58.	External Special Function Registers Write Cycle (Word)	. 95
_	External Special Function Registers Write Cycle (Dword)	
Figure 60.	Access With Dir8 Addressing to SFR and IRAM	96
•	Access With Dir8 Addressing to SFR and IRAM	
_	Access With Dir8 Addressing to SFR and IRAM	
_	Access With Dir8 Addressing to SFR and IRAM	
	Access to IRAM and External RAM (Word)	
	Access to IRAM and External RAM (Dword)	
_	Device Configuration After Reset	
_	R80251XC Block Diagram	
_	CPU – Debug Request Timing	
_	CPU – Single Step in Debug Mode Timing With User Program	
Figure 70.	CPU – Single Step in Debug Mode Timing With Debugger Program	135
_	CPU – Hold Request Timing	
Figure 72.	CPU – Hold Request During Debug Mode	137
_	CPU – Hold Request During Single-Step Operation	
Figure 74.	CPU - Interrupt Timing	138
Figure 75.	CPU – "Rmwinstr" Output Timing	139
-	CPU – Power-Down Mode Timings	
_	ISR Block Diagram	
Figure 78.	Priority Structure Diagram	146
•	Priority Level Diagram	
	Interrupt Request and Interrupt Vector Generation Diagram	
_	Interrupt Request Handshaking Timings	
_	Interrupt acknowledge generation	
_	IS_REG Handling Logic	
_	Timer 0 in Mode 0 and 1	
Figure 85.	Timer 0 in Mode 2	154

Figure 86. Timer 0 in Mode 3	154
Figure 87. Timer 1 in Mode 0 and 1	157
Figure 88. Timer 1 in Mode 2	157
Figure 89. TIMER2 Symbol	160
Figure 90. TIMER2 Block Diagram	162
Figure 91. Timer 2 in Reload Mode	163
Figure 92. Timer 2 in Compare Mode 0	164
Figure 93. Compare Mode 0 Operation	165
Figure 94. Timer 2 in Compare Mode 1	165
Figure 95. CCU Port diagram	
Figure 96. Timer 2 in Capture Mode	166
Figure 97. SERIALO Block Diagram	172
Figure 98. SERIALO Baud rate generation diagram	172
Figure 99. SERIAL0 Transmission in Mode 0	
Figure 100. SERIALO Reception in Mode 0	
Figure 101. SERIALO Transmission in Mode 1	
Figure 102. SERIALO Reception in Mode 1	
Figure 103. SERIALO Transmission in Mode 2	
Figure 104. SERIALO Reception in Mode 2	
Figure 105. SERIALO Transmission in Mode 3	
Figure 106. SERIALO Reception in Mode 3	
Figure 107. SERIAL1 block diagram	
Figure 108. SERIAL1 Baud rate generation diagram	
Figure 109. SERIAL1 Transmission in Mode A	
Figure 110. SERIAL1 Reception in Mode A	
Figure 111. SERIAL1 Transmission in Mode B	
Figure 112. SERIAL1 Reception in Mode B	
Figure 113. External Reset Timing	
Figure 114. Watchdog Reset Timing	
Figure 115. Reset Output Generation	
Figure 116. PORTS Block Diagram	
Figure 117. WAKEUPCTRL Block Diagram	
Figure 118. SFRMUX Block Diagram	
Figure 119. SYNCNEG Block Diagram	
Figure 120. External Interrupt 0 Detection	
Figure 121. External Interrupt 1 Detection	
Figure 122. External Interrupt 2 Detection	
Figure 123. External Interrupt 3 Detection	
Figure 124. External Interrupt 4 Detection	
Figure 125. External Interrupt 5 Detection	
Figure 126. External Interrupt 6 Detection	
Figure 127. External Interrupt 7 Detection	
Figure 128. External Interrupt 8 Detection	
Figure 129. External Interrupt 9 Detection	
Figure 130. External Interrupt 10 Detection	206

Figure	131.	External Interrupt 11 Detection	207
Figure	132.	External Interrupt 12 Detection	207
Figure	133.	I2C Block Diagram	209
Figure	134.	Secondary I2C Block Diagram	220
Figure	135.	SPI_MS Block Diagram	223
Figure	136.	SPI_MS Transmitter Frame Format	225
Figure	137.	Data transmission format in MASTER mode (cpha = '0' cpol = '0')	226
Figure	138.	Data Transmission Format in MASTER Mode (cpha = '0' cpol = '1')	227
Figure	139.	Data Transmission Format in MASTER Mode (cpha = '1' cpol = '0')	227
Figure	140.	Data Transmission Format in MASTER Mode (cpha = '1' cpol = '1')	228
Figure	141.	Data Transmission Format in SLAVE Mode	228
Figure	142.	Data Transmission in SLAVE Mode For "cpha" = 0 and "cpha" = 1	229
Figure	143.	Interrupt Request Generated by "spif" Flag	229
Figure	144.	Interrupt Request Generated by "modf" Flag	230
Figure	145.	Interrupt Request Not Generated by "modf"	230
Figure	146.	OCDS Block Diagram	231
Figure	147.	The IEEE 1149.1 TAP State Machine vs NEXUS State Machine	236
Figure	148.	The Ieee 1149.1 Tap State Machine	238
Figure	149.	Reset and the NEXUS_ENABLE Instruction Write	240
Figure	150.	The OCDSBPAM1 Register Select	240
Figure	151.	The OCDSBPAM1 Write	240
Figure	152.	Clock Domains Diagram	247
Figure	153.	The Debugrst Reset Signal Generation	248
Figure	154.	The Trst Reset Diagram in OCDS_DEBUGPORT	248
Figure	155.	OCDS_DEBUGPORT Block Diagram	249
Figure	156.	Data Capture and Data Update Solution	251
Figure	157.	Instruction Shift Register Implementation	252
Figure	158.	Data Shift Register Implementation	252
Figure	159.	OCDS_UNIT Block Diagram	254
Figure	160.	OCDS_TRACE Block Diagram	259
Figure	161.	RTC Block Diagram	270

List of Tables

Table 1. Abbreviations and Acronyms	16
Table 2. Terminology	
Table 3. Pin Description	18
Table 4. MCS-51 to MCS-251 Address Mapping	24
Table 5. Register Bank Selection	29
Table 6. Special Function Registers Locations	31
Table 7. Special Function Registers Reset Values	31
Table 8. CCAPMn Register	36
Table 9. CCEN Register	37
Table 10. I2C2ADR Register	39
Table 11. I2C2CON Register	40
Table 12. I2C2STA Register	41
Table 13. I2CADR Register	42
Table 14. I2CCON Register	43
Table 15. I2CSTA Register	44
Table 16. IEN0 Register	45
Table 17. IEN1 Register	45
Table 18. IEN2 Register	46
Table 19. IPH0 Register	47
Table 20. IPL0 Register	48
Table 21. Priority Groups	48
Table 22. Priority Levels	48
Table 23. IRCON Register	48
Table 24. IRCON2 Register	49
Table 25. PCON Register	50
Table 26. PSW Register	51
Table 27. PSW1 Register	52
Table 28. Effects of Instructions on PSW and PSW1 Flags	52
Table 29. Register Bank Locations	53
Table 30. RTAH Register	54
Table 31. RTAM Register	54
Table 32. RTAS Register	55
Table 33. RTASS Register	55
Table 34. RTCC Register	55
Table 35. RTCD0 Register	57
Table 36. RTCD1 Register	57
Table 37. RTCH Register	57
Table 38. RTCM Register	58
Table 39. RTCS Register	58
Table 40. RTCSS Register	58
Table 41. RTCSEL Register	
Table 42. Internal RTC Register Locations	59
Table 43. S0CON Register	61
Table 44. Serial Port 0 Modes and Baud Rates	61

Table 45.	S1CON Register	. 62
Table 46.	SPCON Register	. 64
Table 47.	SPSTA Register	. 65
Table 48.	SRST Register	. 66
Table 49.	T2CON Register	. 67
	TCON Register	
	TMOD Register	
Table 52.	Timers/Counters Modes	. 70
	Configuration Byte UCONFIG0	
Table 54.	Configuration Byte UCONFIG1	. 72
Table 55.	Notation For Instruction Operands	100
Table 56.	Arithmetic Operations	101
Table 57.	Logic Operations	103
Table 58.	Data Transfer Operations	105
Table 59.	Program Branches	107
Table 60.	Boolean Manipulation	108
	Instructions in Hexadecimal Order For R80251XC	
Table 62.	Instructions in Hexadecimal Order For MCS-251	112
	Data Instruction	
	High Nibble, Byte 0 Of Data Instruction	
	Addressing Mode Support For Reg,Op2 Instructions	
	Bit Instructions	
	High Nibble, Byte 1 Of Bit Instructions	
	Push/Pop Instructions	
	Control Instructions	
	Displacement/Extended Movs	
	Inc/Dec Instructions	
	Shifts Instructions	
	RMW Instructions	
	R80251XC Clock Inputs	
	R80251XC Asynchronous Inputs	
	R80251XC_CPU Pin Description	
	R80251XC_CPU Parameters	
	ISR Pin Description	
	Interrupt Priority Groups	
	Interrupt priority between groups	
	Interrupt Priority Levels	
	The "IS_REG" Register Bits Function	
	Interrupt Request Relations	
	Group 0 Requests Priority Truth Table	
	Group 0 Demultiplexer Truth Table	
	Interrupt vector and interrupt request	
	Interrupt Connections	
	TIMERO Pin Description	
Table 89.	TIMER1 Pin Description	156

Table 90. TIMER2_251 Pin Description	. 159
Table 91. TIMER2 Pin Description	. 160
Table 92. CCU_PORT Pin Description	. 161
Table 93. PCA Pin Description	. 167
Table 94. SERIALO Pin Description	. 170
Table 95. SERIAL1 Pin Description	. 176
Table 96. Watchdog Timer Pin Description	. 179
Table 97. PMURSTCTRL Pin Description	. 181
Table 98. PORTS Pin Description	. 184
Table 99. WAKEUPCTRL Pin Description	. 186
Table 100. SFRMUX Pin Description	. 187
Table 101. SYNCNEG Pin Description	. 195
Table 102. EXTINT Pin Description	. 197
Table 103. I2C Pin Description	. 208
Table 104. I2C Clock Rate Bit Settings	. 210
Table 105. I2C Status in Master Transmitter Mode	. 212
Table 106. I2C Status in Master Receiver Mode	. 213
Table 107. I2C Status in Slave Receiver Mode	. 214
Table 108. I2C Status in Slave Transmitter Mode	
Table 109. I2C Status - Miscellaneous States	. 218
Table 110. Secondary I2C Pin Description	. 219
Table 111. SPI_MS Pin Description	. 221
Table 112. SPI_MS Special Function Registers	
Table 113. SPI_MS Interrupt Flags	. 229
Table 114. OCDS Pin Description	. 231
Table 115 Implemented Instructions	. 234
Table 116. The IEEE 1149.1 Sequence to Enable Nexus Block For Communication	
Table 117. The Ieee 1149.1 Controller Command Input	
Table 118 OCDS Special Function Registers	. 236
Table 119 TAP States Codes	. 239
Table 120. BUFF Register	
Table 121 OCDS Special Function Registers	. 241
Table 122 OCDSCTRL Register	
Table 123 OCDSACC Register	. 243
Table 124 OCDSDR0 Register	. 243
Table 125 OCDSPC Register	. 243
Table 126 OCDSINSTR Register	
Table 127 OCDSMAC Register	. 244
Table 128. OCDSTRC Register	
Table 129 OCDSBPD Register	
Table 130 OCDSBPDM Register	
Table 131 OCDSBA Register	
Table 132 OCDSBAM Register	
Table 133 OCDSBPC Register	
Table 134 Clock Inputs	. 247

Table 135 OCDS_DEBUGPORT Pin Description	249
Table 136. OCDS_UNIT Pin Description	254
Table 137. OCDS_TRACE Pin Description	260
Table 138. Trace Frames	263
Table 139. Frame Format 1	264
Table 140. Frame Format 2	264
Table 141. Frame Format 3	265
Table 142. Frame Format 4	265
Table 143. Frame Format 5	265
Table 144 OCDS Parameters	267
Table 145 SOFTWARE RESET Pin Description	269
Table 146 RTC Pin Description	270

1. Introduction

1.1. Overview

1.1.1 Purpose Of Document

This document contains the design specifications of R80251XC IP core which is member of MCS-251 microcontroller family with additional components. This family of 8-bit microcontrollers is a high-performance upgrade of the widely-used MCS51 microcontrollers. The document contains architectural specification and hardware specification. Furthermore it details an overall component specification and provides functional description of all subcomponents.

1.1.2 Maintenance Of Document

The Design specification is developed in parallel to Verification Specification and Test Plan. All those documents are reviewed and signed-off before top-level testbench is coded.

1.2. Features

1.2.1 Features Of Reference Standard Implemented

a) Instruction Set

This IP core is compliant with the Intel MCS 251 instruction set.

b) I2C™ Serial Bus Interface

The R80251XC provides an interface to the Philips I2C[™] serial bus.

c) Spi Serial Bus Interface

The R80251XC provides an interface to the Motorola SPI™ serial bus.

d) Other Peripherals

The R80251XC is equipped with peripherals functionally compatible with selected peripherals of Intel 80C251, Dallas 80C530 and Siemens SAB 80C515/80C517 microcontrollers:

- 80C251-like peripherals:
 - o Timer 0, 1 & 2
 - o Programmable Counter Array
 - o Serial Port 0
 - o 7-sources (extended to 21) Interrupt Controller with 4 priority levels
 - o 8-bit Parallel I/O PORTS
 - Watchdog Timer
- SAB80C515-like peripherals:
 - Serial Port 1
 - Timer 2 with Compare / Capture Unit (CCU)
- Dallas 80C530-like peripherals:
 - Real Time Clock

1.2.2 Features Of Reference Standard Not Implemented

a) Other Peripherals

For the R80251XC-T(F) version, the 8-bit Parallel PORTS are not used as a multiplexed Program / Data Bus. All of them are general purpose I/O ports, which may be also off-core combined with dedicated pins of other peripherals.

1.2.3 Evatronix Proprietary Features

- Power Management Unit
- On-Chip Debug Support

1.2.4 List Of Features

- Control Unit
 - 8-bit Instruction decoder
 - o Instructions operating on 8-bit, 16-bit, or 32-bit operands. (In comparison with 8-bit and 16-bit operands, 32-bit operands are accessed with fewer addressing modes)
- Arithmetic-Logic Unit
 - o 32-bit arithmetic and logic instructions
 - Boolean manipulations
 - o the MUL (multiply) and DIV (divide) instructions for unsigned 8-bit and 16-bit data
 - eight-bit multiplication: 8 bits × 8 bits -> 16 bits
 - sixteen-bit multiplication: 16 bits × 16 bits -> 32 bits
 - eight-bit division: 8 bits ÷ 8 bits → 16 bits (8-bit quotient, 8-bit remainder)
 - sixteen-bit division: 16 bits ÷ 16 bits -> 32 bits (16-bit quotient, 16-bit remainder)
- Input/Output ports
 - Input/Output ports (optional)
 - Up to four 8-bit I/O ports
 - Alternate port functions such as external interrupts and serial interface are separated, providing extra port pins when compared with the standard 80251 (applies to R80251XC-T(F))
 - 16-bit Timers/Counters (optional)
 - o 80C251-like Timer 0, 1
 - 80C251-like Timer 2
 - or
 - 80515-like Timer2 with CCU (applies to R80251XC-T(F))
 - Programmable Counter Array (optional)
 - 16-bit timer/counter
 - Five 16-bit capture/compare modules
 - o Output signal generators
 - Pulse width modulators
 - Software Watchdog Timer
 - Full Duplex Serial Interfaces (optional)
 - Serial 0 (80C251-like)
 - Synchronous mode, fixed baud rate

- 8-bit UART mode, variable baud rate
- 9-bit UART mode, fixed baud rate
- 9-bit UART mode, variable baud rate
- Serial 1 (80517-like) (applies to R80251XC-T(F))
 - 8-bit UART mode, variable baud rate
 - 9-bit UART mode, variable baud rate
 - Baud Rate Generator
- Interrupt Controller
 - Four Priority Levels with 21 interrupt sources (80C251-like, with more sources)
- 14 bit Watchdog Timer (optional)
- Internal Data Memory interface
 - addresses up to 1024 B of Data Memory Space
- External Memory interface
 - addresses up to 16 MB of External Memory
 - De-multiplexed Address/Data Bus to ease the connection with memories (applies to R80251XC-T(F))
 - Compatible addressing with MCS-51 using DPTR or using DPX (extended data pointer) for addressing up to 16 MB
- Special Function Registers interface
 - Services to 128 External Special Function Registers (depending on peripheral configuration)
- Power Management Unit (optional)
 - Power down modes: IDLE and STOP
- Debug Interface for On-Chip Debug Support (OCDS) (optional)
- I2C interface (optional) (applies to R80251XC-T(F))
- Secondary I2C interface (optional) (applies to R80251XC-T(F))
- SPI interface (optional) (applies to R80251XC-T(F))
- Real Time Clock (optional) (applies to R80251XC-T(F))
- Extensive core configurability
 - o external interrupts: 0 ... 14 (applies to R80251XC-T(F))
 - o external interrupts: 0 ... 2 (applies to R80251XC-I(F))
 - o Power management unit: 0 or 1
 - number of 8-bit I/O ports: 0 ... 4
 - o number of 16-bit timers: 0, 1, 2 or 3
 - Timer 2 type: 80C251-like or 80C515-like (applies only to R80251XC-T(F))
 - Watchdog timer: 0 or 1
 - Programmable Counter Array: 0 or 1
 - o number or serial ports: 0, 1 or 2 (applies to R80251XC-T(F))
 - o number or serial ports: 0 or 1 (applies to R80251XC-I(F))
 - Software reset: 0 or 1 (applies to R80251XC-T(F))
 - I2C master-slave interface: 0 or 1 (applies to R80251XC-T(F))
 - Secondary I2C master-slave interface: 0 or 1 (only when basic I2C is implemented) (applies to R80251XC-T(F))
 - SPI master-slave interface: 0 or 1 (applies to R80251XC-T(F))

- Real Time Clock: 0 or 1 (applies to R80251XC-T(F))
- o On-Chip Debug Support: 0 or 1
 - OCDS type (without Trace, with Program Trace, with Program and Data Trace): 0, 1 or 2
 - number of breakpoints: 2 ... 8

NOTE: The 80C251-like Timer2 and PCA are mutually exclusive to the 80C515-like Timer2

1.3. Acceptance Criteria

The acceptance criteria for designed R80251XC component have been defined in the Verification Specification Test Plan for R80251XC component.

1.4. Terminology and Symbol Conventions

Table 1. Abbreviations and Acronyms

Symbol	Description
LSB	Least Significant Bit
MSB	Most Significant Bit
SFR	Special Function Register
CPU	Control Processor Unit
ALU	Arithmetic-Logic Unit
ISR	Interrupt Service Routine unit
PMU	Power Management Unit
I2C	Inter-IC – a serial interface designed by Philips Semiconductors
SPI	Serial Peripheral Interface
RTC	Real Time Clock
OCDS	On-Chip Debug Support

Table 2. Terminology

Term	Description
Input	Input term when IP core pinout is described always means input to the core
Output	Output term when IP core pinout is described always means its output.

1.5. References

1.5.1 Industry Standards and Specifications

- MCS®51 Microcontroller Family User's Manual, Intel, February 1994
- 8-Bit CMOS Single-Chip Microcontroller SAB 80C515 / SAB 80C535, Siemens, February 1996
- 8-Bit CMOS Single-Chip Microcontroller SAB 80C517 / SAB 80C537, Siemens, April 1995
- High-Speed Microcontroller Data Book, Dallas Semiconductor, 1995
- TSC 80251 Programmer's Guide, Atmel, Rev E December 2000
- 8XC251SA/SB/SP/SQ Embedded Microcontroller User's Manual, Intel, May 1996

 8XC251SA/SB/SP/SQ High-Performance CHMOS Microcontroller – Commercial/Express, Intel, May 1996

1.5.2 Related Documents

- R80251XC Verification Specification, Evatronix SA 2010
- R80251XC Test Plan, Evatronix SA 2010
- R80251XC Integration Manual, Evatronix SA 2010

1.5.3 Other Documents

 Reuse Methodology Manual, Second edition (RMM2), M. Keating, P. Bricaud, Kluwer Academic Publishers 1999

1.5.4 Web Sites

- http://www.evatronix.pl
- http://www.intel.com
- http://www.siemens.com
- http://www.atmel-wm.com

2. Architectural Specification

2.1. Pin Description

The pinout of the R80251XC has not been fixed to specific device I/O, thereby, allows flexibility with user application. The R80251XC contains only unidirectional pins - inputs or outputs. For proper communications via bi-directional PORTS 0-3, it is necessary to use incircuit Open Drains.

Table 3. Pin Description

Name	Туре	Polarity	Description
Name	Type	Bus size	Description
clkcpu	I	Rise	Engine clock
-			Pulse for internal circuits, which are stopped when R80251XC is
			in IDLE or STOP mode
clkcpuen	0	High	Engine clock enable output
			External control for the "clkcpu" clock, when set to 1 the system
			clock should be applied to the "clkcpu" input, otherwise the
.11		D.	"clkcpu" should be stopped
clkper	I	Rise	Peripheral clock
			Pulse for internal circuits, which are stopped when R80251XC is
clkperen	0	High	in STOP mode Peripheral clock enable output
Скреген	U	підіі	External control for the "clkper" clock, when set to 1 the system
			clock should be applied to the "clkper" input, otherwise the
			"clkper" should be stopped
reset	I	High	Hardware reset input
	_	1.19.1	High level on this pin for two clock cycles while both "clkcpu"
			and "clkper" are running resets the device
ro	ro O		Reset output
			Set active when either external reset, watchdog timer, software
			reset, or OCDS generates reset signal to the core
rtcx	I	Rise/Fall	RTC 32,768kHz clock input (optional)
			Used to trigger the RTC counters
rtcreset	Ι	High	RTC Reset input (optional)
			Used to reset the RTC (both synchronous and asynchronous
Dowl	0		way)
Port (1 0	O hit hi divertional I/O next with appropriated investe and extracte
port0i port0o	I	8 8	8-bit bi-directional I/O port with separated inputs and outputs
port0_strengtl		High	When high, the Port0 drives strong 1. When low, Port0 should
porto_strengti		riigii	drive a pull-up.
port0_dir*	0	High	When high, the Port0 is configured as output driver. The
porto_an		riigii	strength of high state depends on 'port0_strength' output. The
			low state is always strong.
			When low, the Port0 is configured as input, no matter what
			values are written to 'port0o' or 'port0_strength'.
Port :	1		
port1i	I	8	8-bit bi-directional I/O port with separated inputs and outputs
port1o	0	8	
Port 2	2		

Name			Polarity Bus size	Description			
port2i		I	I 8		8-bit bi-directional I/O port with separated inputs and outputs		
port2o		0)	8	, a		
port2_streng	th*	0)	High	When high, the Port2 drives strong 1. When low, Port2 should drive a pull-up.		
Port	3				Turive a pail-ap.		
port3i			I	8	8-bit bi-directional I/O port with separated inputs and outputs		
port3o			Ō	8	o bit bi directional 1/0 port with separated inputs and outputs		
port3_6_stre	nath	า*	0	High	When high, the selected bits (6, 7) of Port3 are driven with		
port3_7_stre			0	High	strong 1. When low, Port3.6(7) should drive a pull-up.		
			terr	upts input			
int0		Ι		Low/Fall	External interrupt 0		
int1		I		Low/Fall	External interrupt 1		
int2		I		Fall/Rise	External interrupt 2		
int3		I		Fall/Rise	External interrupt 3		
int4		I		Rise	External interrupt 4		
int5		I		Rise	External interrupt 5		
int6		I		Rise	External interrupt 6		
int7		I		Rise	External interrupt 7		
int8		I		Rise	External interrupt 8		
int9		I		Rise	External interrupt 9		
int10		Ι		Rise	External interrupt 10		
int11			External interrupt 11				
int12		I		Rise	External interrupt 12		
int13	I Rise		Rise	External interrupt 13			
Seria	al O	int	erfa	ice	·		
rxd0i	I -		-	Serial 0 receive data			
rxd0o	0			-	Serial 0 transmit data		
txd0	0 -		-	Serial 0 transmit data or receive clock in mode 0			
Seria	al 1	int	erfa	ice			
rxd1		I		-	Serial 1 receive data		
txd1		0		-	Serial 1 transmit data		
I2C	inte	erfa	ce				
scli		I		-	Serial clock input		
sdai		I		-	Serial data input		
sclo		0		-	Serial clock output		
sdao		0		-	Serial data output		
	nda	ary	I2C	interface			
scl2i		I		-	Serial clock input		
sda2i		I		-	Serial data input		
scl2o		0		-	Serial clock output		
sda2o		0		-	Serial data output		
SPI	inte	erfa	ce				
scki		I		-	Serial clock input		
scko	O - Serial clock output		-				
scktri		0		High	Serial clock tri-state enable (to combine the "sck" bidirectional		
ccn		port)					
ssn	1	I I	+	Low Slave select input			
misoi	1		_	<u> </u>	"Master input / slave output" input pin		
misoo misotri	1	0		- High	"Master input / slave output" output pin "Master input / slave output" tri-state enable (to combine the		
misotri	O High		піуп	"miso" bidirectional port)			

Name	Tv	mo	Polarity	Description		
Name	ıy	ре	Polarity Bus size	Description		
mosii		I	-	"Master output / slave input" input pin		
mosio	()	-	"Master output / slave input" output pin		
mositri	()	High	"Master output / slave input" tri-state enable (to combine the "mosi" bidirectional port)		
spssn	()	8	Slave select output register		
Time	rs in	terfa	ace			
t0]	I	Fall	Timer 0 external input		
t1]	I	Fall	Timer 1 external input		
t2i		I	Fall	Timer 2 external input		
t2ex		I	Fall	Timer 2 capture trigger/count direction select		
t2o)	-	Timer 2 clock output		
	ramı	mabl	e Counter A			
eci]	I	Fall	PCA external input		
cexi(4:0)]	I	Rise/Fall	PCA compare/capture inputs		
cexo)	5	PCA compare/capture outputs		
Exte	rnal	men	nory interfa	ce (R80251XC-I(F) version only)		
ea		I	Low	External Access Input Implemented only in R80251XC-I(F) version, used to enable the Code fetch from ROM interface ('ea'=1) or external memory (using Port0, Port2 and Port3) (when 'ea'=0).		
ale	0		High	Address Latch Enable Output Driven high when the multiplexed bus composed of Port2 and Port0 provides valid address information to be latched outside of the core.		
psen	O Low		Low	Program Store Enable Output Driven low when the External Program Memory is read.		
Exte	rnal	men	nory interfa	ce (R80251XC-T(F) version only)		
memack]	I	High	Data Memory acknowledge		
mempsack		I	High	Program Memory acknowledge		
memdatai		I	8	Memory data input		
memdatao	(C	8	Memory data output		
memaddr	(0	24	Memory address		
mempswr	(C	High	Code Memory write enable		
mempsrd	(0	High	Code Memory read enable		
memwr	(0	High	Data Memory write enable		
memrd	(0	High	Data Memory read enable		
				ce (for posedge-clocked memories)		
(R80	251 2	XC-T	(F) version	only)		
memdatao_co	omb	0	8	Memory data output		
memaddr_cor	mb	0	24	Memory address		
mempswr_co	mb	0	High	Code Memory write enable		
mempsrd_cor	mempsrd_comb O		High	Code Memory read enable		
memwr_comb O		High	Data Memory write enable			
			High	Data Memory read enable		
Inter	nal	Data	Memory in	terface (for posedge-clocked memories)		
ramdatai]	I	8	Data bus input		
ramdatao	()	8	Data bus output		
ramaddr	()	10	Data file address		
ramwe	0		High	Data file write enable		
ramoe)	High	Data file output enable		
External Special Function Registers interface						

Name	Туре	Polarity Bus size	Description		
sfrdatai	I	8	SFR data bus input		
sfrdatao	0	8	SFR data bus output		
sfraddr	0	7	SFR address		
sfrwe	0	High	SFR write enable		
sfroe	0	High	SFR output enable		
sfrack	I	High	SFR acknowledge		
Inter	nal Prog	ram Memo	ry Interface (R80251XC-I(F) version only)		
romdatai	I	8	On-chip Code Memory data input		
romdatao	0	8	On-chip Code Memory data output		
romaddr	0	ROMADDR _LENGTH	On-chip Code Memory address		
romwr	0	High	On-chip Code Data Memory write enable		
romrd	0	High	On-chip Code Data Memory read enable		
On-C	hip Debu	ug Support	interface (OCDS)		
trst	I	Low	Debug logic reset input (IEEE1149.1 Test Logic Reset)		
tck	I	High	Debug clock (IEEE1149.1 Test Clock)		
tms	I	High	Test Mode Select (IEEE1149.1 Test Mode Select)		
tdi	I	High	Debug Data Input (IEEE1149.1 Test Data Input)		
tdo	0	High	Debug Data Output (IEEE1149.1 Test Data Output)		
tdoenable	0	High	Debug Data Output Enable		
Trace	e RAM In	iterface (OC	CDS)**		
addr_buf0	0	BUF_SIZE	RAM0 address bus.		
datao_buf0	0	65	RAM0 data output bus.		
datai_buf0	I	65	RAM0 data input bus.		
wr_buf0	0	High	RAM0 write enable signal.		
rd_buf0	0	High	RAM0 read enable signal.		
addr_buf1	0	BUF_SIZE	RAM1 address bus.		
datao_buf1	0	65	RAM1 data output bus.		
datai_buf1	I	65	RAM1 data input bus.		
wr_buf1	0	High	RAM1 write enable signal.		
rd_buf1	0	High	RAM1 read enable signal.		

^{*} Outputs existing only in R80251XC-I(F) versions.

^{**} Implemented when Trace option of the OCDS is enabled.

2.2. Functional Description

The R80251XC is based on the 8XC251SX, which is the first member of the MCS 251 microcontroller family. This family of 8-bit microcontrollers is a high-performance upgrade of the widely-used MCS 51.

It provides software and hardware interrupts, interfaces for serial communication, timer system with compare-capture-reload resources, multi-purpose I/O ports, watchdog timer, real time clock and debugger interface.

The R80251XC is available in two CPU performance options:

- R80251XC-T(F) version, whose architecture eliminates redundant states and implements parallel execution of fetch and execution phases; the CPU state latency is shortened from 2 clock cycles to just one clock cycle in respect to the reference device
- R80251XC-I(F) version, which is timing-compatible to the 8XC251SX device from Intel

The R80251XC core architecture features:

- 24-bit linear addressing and up to 16 Mbytes of memory
- Register File based CPU with registers accessible as bytes, words and double words
- Instruction queue with the capability to configure the number of bytes in a queue (FIFO register-based memory)
- Enriched instruction set, including 32-bit arithmetic and logic instructions
- 64-Kbyte extended stack space
- Minimum instruction—execution time of one clock cycle
- Binary-code compatibility with MCS 51 microcontrollers.

2.3. Memory Organization

The R80251XC microcontroller has three address spaces: Memory Space, Special Function Register (SFR) space and Register File.

Figure 1. R80251XC Memory Map

The memory space in the MCS 251 architecture is un-segmented. The 64-Kbyte "regions" 00:, 01:, ..., FF: are introduced only as a convenience for discussions. Addressing in the MCS 251 architecture is linear; there are no segment registers.

2.3.1 Compatibility With the MCS 51 Architecture

The address spaces in the MCS 51 architecture are mapped into the address spaces in the MCS 251 architecture. This mapping allows code written for MCS 51 microcontrollers to run on MCS 251 microcontrollers.

Figure 2 shows the address spaces for the MCS 51 architecture. Internal data memory locations 00H–7FH can be addressed directly and indirectly. Internal data locations 80H–FFH can only be addressed indirectly. Directly addressing these locations accesses the SFRs. The 64-Kbyte code memory has a separate memory space. Data in the code memory can be accessed only with the MOVC instruction. Similarly, the 64-Kbyte external data memory can be accessed only with the MOVX instruction.

The register file (registers R0–R7) comprises of four switchable register banks, each having eight registers. The 32 bytes required for the four banks occupy locations 00H–1FH in the on-chip data memory.

Figure 3 shows how the address spaces in the MCS 51 architecture map into the address spaces in the MCS 251 architecture; details are listed in Table 4.

The 64-Kbyte code memory for MCS 51 microcontrollers maps into region FF: of the memory space for MCS 251 microcontrollers. Assemblers for MCS 251 microcontrollers assemble code for MCS 51 microcontrollers into region FF:, and data accesses to code memory are directed to this region. The assembler also maps the interrupt vectors to region FF:. This mapping is transparent to the user; code executes just as before, without modification.

Figure 2. Address Spaces For the MCS 51 Architecture

Figure 3. MCS-51 Address Space Mapping Into MCS-251 Architecture

	I	ACS 51 Archite	MCS 251 Architecture	
Memory Type	Size	Location	Data Addressing	Location
Code	64 Kbytes	0000H-FFFFH	Indirect using MOVC instr.	FF:0000H-FF:FFFFH
External Data	64 Kbytes	0000H-FFFFH	Indirect using MOVX instr.	01:0000H-01:FFFFH
Tatawas I Data	128 bytes	00H-7FH	Direct, Indirect	00:0000H-00:007FH
Internal Data	128 bytes	80H-FFH	Indirect	00:0080H-00:00FFH
SFRs	128 bytes	S:80H-S:FFH	Direct	S:080H-S:0FFH
Register File	8 bytes	R0-R7	Register	R0-R7

Table 4. MCS-51 to MCS-251 Address Mapping

The 64-Kbyte external data memory for MCS 51 microcontrollers is mapped into the memory region specified by bits 16–23 of the data pointer DPX, i.e., DPXL. DPXL is accessible as register file location 57 and also as the SFR at S:084H. The reset value of DPXL is 01H, which maps the external memory to region 01: as shown in Figure 3.

One can change this mapping by writing a different value to DPXL. A mapping of the MCS 51 microcontroller external data memory into any 64-Kbyte memory region in the MCS 251 architecture provides complete run-time compatibility because the lower 16 address bits are identical in the two address spaces.

The 256 bytes of on-chip data memory for MCS 51 microcontrollers (00H-FFH) are mapped to addresses 00:0000H-00:00FFH to ensure complete run-time compatibility. in the MCS 51

architecture, the lower 128 bytes (00H-7FH) are directly and indirectly addressable; however the upper 128 bytes are accessible by indirect addressing only. in the MCS 251 architecture, all locations in region 00: are accessible by direct, indirect, and displacement addressing.

The 128-byte SFR space for MCS 51 microcontrollers is mapped into the 128-byte SFR space of the MCS 251 architecture starting at address S:080H, as shown in Figure 3. This provides complete compatibility with direct addressing of MCS 51 microcontroller SFRs (including bit addressing). The SFR addresses are unchanged in the new architecture. in the MCS 251 architecture, SFRs A, B, DPL, DPH, and SP (as well as the new SFRs DPXL and SPH) reside in the register file for high performance. However, to maintain compatibility, they are also mapped into the SFR space at the same addresses as in the MCS 51 architecture.

Figure 4. Logical Memory Address Space

2.3.2 Program and Code Memory

The External Bus Interface shares both Program Memory and External Data Memory and services memory when "memrd" or "memwr" signals are active.

Code can be executed only from external memory from 00:041FH to FF:FFF7H (FF:FFF8 – FF:FFFFFFH is configuration array). Code cannot be executed from Register File, SFRs and IRAM space (the code is only read from external memory using memrd signal). After reset the CPU reads Configuration Bytes from address FF:FFF8H and FF:FFF9H and after that code execution begins at FF:0000H (where MCS51 program memory is mapped). The lower part of program memory includes interrupt and reset vectors. The interrupt vectors are spaced at 8-byte intervals, starting from FF:0003h.

Call, Return and Jump instructions can be executed from whole external memory.

A variable length of fetch cycle and data instructions is introduced to access fast or slow ROM. Two bits of "uconfig0" register and two bits of "uconfig1" register together with external "memack" signal control memory wait states.

Two bits of "uconfig0" control number of wait states for all regions except 01: (see Table 53). Two bits of "uconfig1" control number of wait states for region 01: (see Table 54).

If "memack" signal is asserted, the length of data instructions reading data from all regions depends on the settings of "uconfig1" or "uconfig1". If "memsack" is not acknowledged, wait state is inserted until "memack" is active again.

All data-related instructions read data according to the way of mapping shown in Figure 4 as follows:

- The first 32 bytes (00:0000H–00:001FH) provide storage for a part of the register file.
- Address range (00:0020H–00:041FH) is internal RAM, which is limited to 1kB, but when using direct addressing address range (00:0080H–00:00FFH) it is the SFR (see Figure 2 and Table 4).
- Other addresses refer to external memory.

2.3.3 Internal Data Memory

The R80251XC internal data memory interface services 1024 bytes of off-core data memory. The memory space accommodates also 128 bytes of Special Function Registers (see Figure 5). Addresses lower than 80h access lower 128 bytes of internal data memory. Both direct or indirect addressing can be used in this case.

Indirect addressing of locations higher than 7Fh accesses upper 128 bytes of internal data memory, while direct addressing of locations higher than 7Fh accesses SFR space.

Addressing of locations higher than 0FFh accesses internal data memory.

The lower 128 bytes contain working registers (00h ... 1Fh) and bit-addressable memory (20h ... 2Fh). The lowest 32 bytes form four banks, each consisting of eight registers (R0-R7). Two bits of the program memory status word (PSW) select which bank is in use. The next 16 bytes of memory form a block of bit-addressable memory, accessible via 00h-7Fh addresses (see Figure 5).

Figure 5. Internal Memory Map

2.3.4 The SFR Space

The SFR space can accommodate up to 128 8-bit special function registers with addresses in a range of S:080H–S:0FFH. Some of these locations may be unimplemented in a particular device. in the MCS 251 architecture, the prefix "S:" is used with SFR addresses to distinguish them from the memory space addresses 00:0000H–00:00FFH.

2.3.5 Register File

The register file has its own address space (Figure 1). The 64 locations in the register file are numbered decimally from 0 to 63. Locations 0–7 represent one of four switchable register banks, each having 8 registers. The 32 bytes required for these banks occupy locations 00:0000H–00:001FH in the memory space. Register file locations 8–63 do not appear in the memory space.

Figure 6. The Register File

Register file locations 0–7 actually consist of four switchable banks of eight registers each, as illustrated in Figure 7. The four banks are implemented as the first 32 bytes of internal RAM and are always accessible as locations 00:0000H–00:001FH in the memory address space. Only one of the four banks is accessible via the register file at a given time. The accessible, or "active," bank is selected by bits RS1 and RS0 in the PSW register, as shown in Table 5. Register Bank Selection. This bank selection can be used for fast context switches.

Register file locations 8–31 and 56–63 are always accessible. These locations are implemented as registers in the CPU. Register file locations 32–55 are reserved and cannot be accessed.

Figure 7. Register File Locations 0-7

		PSW Selection Bits		
вапк	Address range	RS1	RS0	
Bank 0	00H - 07H	0	0	
Bank 1	08H - 0FH	0	1	
Bank 2	10H - 17H	1	0	
Bank 3	18H – 1FH	1	1	

Table 5. Register Bank Selection

2.3.6 Byte, Word and Dword Registers

Depending on its location in the register file, a register is addressable as a byte, a word, and/or a dword, as shown on the right side of Figure 6. A register is named for its lowest numbered byte location. For example:

- R4 is the byte register consisting of location 4.
- WR4 is the word register consisting of registers 4 and 5.
- DR4 is the dword register consisting of registers 4–7.

Locations R0–R15 are addressable as bytes, words, or dwords. Locations 16–31 are addressable only as words or dwords. Locations 56–63 are addressable only as dwords. Registers are addressed only by the names shown in Figure 6 - except for the 32 registers that comprise the four banks of registers R0–R7, which can also be accessed as locations 00:0000H–00:001FH in the memory space.

2.3.7 Dedicated Registers

The register file has four dedicated registers:

- R10 is the B-register
- R11 is the accumulator (ACC)
- DR56 is the extended data pointer, DPX
- DR60 is the extended stack pointer, SPX

These registers are located in the register file; however, R10, R11 and some bytes of DR56 and DR60 are also accessible as SFRs. The bytes of DPX and SPX can be accessed in the register file only by addressing the dword registers. The dedicated registers in the register file and their corresponding SFRs are illustrated in Figure 8 and listed in Table 6.

Figure 8. Dedicated Registers in the Register File and Corresponding SFRs

2.4. Special Function Registers

2.4.1 Special Function Registers Locations

The map of Special Function Registers is shown in Table 6. SFR addresses are preceded by "S:" to differentiate them from addresses in the memory space. Unoccupied locations in the SFR space are unimplemented, i.e., no register exists. If an instruction attempts to write to an unimplemented SFR location, the instruction executes, but nothing is actually written. If an unimplemented SFR location is read, it returns an unspecified value.

In the orignal Intel chip, SFRs may be accessed only as bytes; they may not be accessed as words or dwords. in R80251XC SFRs may be accessed as byte, word and dword.

Registers marked in gray are optional.

Table 6. Special Function Registers Locations

Hex/ Bin	X000	X001	X010	X011	X100	X101	X110	X111	Bin/ Hex
F8		<u>ch</u>	ccap0h	ccap1h	ccap2h	ccap3h	ccap4h		FF
F0	<u>b</u>		<u>i2cdat</u>	<u>i2cadr</u>	<u>i2ccon</u>	<u>i2csta</u>		<u>srst</u>	F7
E8	ien1	<u>cl</u>	ccap0l	ccap1l	ccap2l	ccap3l	ccap4l		EF
EO	<u>acc</u>	<u>spsta</u>	<u>spcon</u>	<u>spdat</u>	<u>spssn</u>				E7
D8	<u>ccon</u>	<u>cmod</u>	ccapm0	ccapm1	ccapm2	ccapm3	ccapm4		DF
D0	<u>psw</u>	psw1	<u>i2c2dat</u>	<u>i2c2adr</u>	<u>i2c2con</u>	<u>i2c2sta</u>			D7
C8	t2con	t2mod	rcap2l/ crcl	rcap2h/ crch	<u>tl2</u>	<u>th2</u>	rtcsel	rtcdata	CF
CO	<u>ircon</u>	<u>ccen</u>	ccl1	cch1	ccl2	cch2	ccl3	cch3	C7
В8	<u>ipl0</u>	s0aden		<u>s1relh</u>			<u>sph</u>	ircon2	BF
В0	<u>p3</u>							<u>iph0</u>	В7
A8	<u>ien0</u>	s0addr							AF
A0	<u>p2</u>						<u>wdtrst</u>	<u>wcon</u>	A7
98	s0con	s0buf	ien2	s1con	s1buf	<u>s1rell</u>			9F
90	<u>p1</u>	uconfig0	uconfig1						97
88	<u>tcon</u>	<u>tmod</u>	<u>tl0</u>	<u>tl1</u>	<u>th0</u>	<u>th1</u>			8F
80	<u>p0</u>	<u>sp</u>	<u>dpl</u>	<u>dph</u>	<u>dpxl</u>			<u>pcon</u>	87

In MCS-51:

The 16 addresses from SFR space are both byte- and bit-addressable. The bit-addressable SFRs are registers which addresses end with 000'b (80'h, 88'h, 90'h ... F8'h). Those 16 registers (128 bits) together with 128 bits from internal data memory (locations 20'h ... 2F'h) form the bit-addressable space (see Figure 4 and Table 4).

In MCS-251:

All SFRs from 80h to F8h are both byte- and bit-addressable.

2.4.2 Special Function Registers Reset Values

Table 7. Special Function Registers Reset Values

Register	Location	Reset value	Description
<u>p0</u>	80h	FFh	Port 0 Register

Register	Location	Reset value	Description
SD	81h	07h	Stack Pointer – LSB of SPX
<u>dpl</u>	82h	00h	Data Pointer – Low Byte
<u>dph</u>	83h	00h	Data Pointer – High Byte
<u>dpxl</u>	84h	01h	Data Pointer Extended Low
<u>pcon</u>	87h	00h	Power Control
<u>tcon</u>	88h	00h	Timer/Counter Control Register
<u>tmod</u>	89h	00h	Timer Mode Register
<u>t10</u>	8Ah	00h	Timer 0 Register, low byte
<u>tl1</u>	8Bh	00h	Timer 1 Register, low byte
<u>th0</u>	8Ch	00h	Timer 0 Register, high byte
<u>th1</u>	8Dh	00h	Timer 1 Register, high byte
<u>p1</u>	90h	FFh	Port 1 Register
uconfig0	91h	FFh	Configuration byte 0
uconfig1	92h	FFh	Configuration byte 1
<u>s0con</u>	98h	00h	Serial Port 0, Control Register
<u>s0buf</u>	99h	00h	Serial Port 0, Data Buffer
<u>ien2</u>	9Ah	00h	Interrupt Enable Register 2
s1con	9Bh	00h	Serial Port 1, Control Register
<u>s1buf</u>	9Ch	00h	Serial Port 1, Data Buffer
<u>s1rell</u>	9Dh	00h	Serial Port 1, Reload Register, low byte
<u>p2</u>	A0h	FFh	Port 2 Register
wdrst	A6h	00h	Watchdog Reset Register
<u>wcon</u>	A7h	00h	Waitstate Control Register
<u>ien0</u>	A8h	00h	Interrupt Enable Register 0
<u>s0addr</u>	A9h	00h	Serial Port 0, Slave Address Register
<u>p3</u>	B0h	FFh	Port 3 Register
<u>iph0</u>	B7h	00h	Interrupt Priority Register 0, high byte
<u>ipl0</u>	B8h	00h	Interrupt Priority Register 0, low byte
<u>s0aden</u>	B9h	00h	Serial Port 0 Slave Address Mask Register
<u>s1relh</u>	BBh	03h	Serial Port 1, Reload Register, high byte
<u>sph</u>	BEh	00h	Stack Pointer High – MSB of SPX
<u>ircon2</u>	BFh	00h	Interrupt Request Control 2 Register
<u>ircon</u>	C0h	00h	Interrupt Request Control Register
<u>ccen</u>	C1h	00h	Timer 2 (515) Compare/Capture Enable Register
<u>ccl1</u>	C2h	00h	Timer 2 (515) Compare/Capture Register 1, low byte
cch1	C3h	00h	Timer 2 (515) Compare/Capture Register 1, high byte
ccl2	C4h	00h	Timer 2 (515) Compare/Capture Register 2, low byte
cch2	C5h	00h	Timer 2 (515) Compare/Capture Register 2, high byte

Register	Location	Reset value	Description		
ccl3	C6h	00h	Timer 2 (515) Compare/Capture Register 3, low		
			byte		
cch3	C7h	00h	Timer 2 (515) Compare/Capture Register 3, high byte		
t2con	C8h	00h	Timer 2 (515)/(251) Control Register		
t2mod	C9h	00h	Timer 2 (251) Mode Control Register		
rcap2l/crcl	CAh	00h	Timer 2 (251) Reload/Capture Register, low byte/		
<u>164921/ G161</u>	O'III	0011	Timer 2 (515) Compare/Reload/Capture Register, low byte		
rcap2h/crch	CBh	00h	Timer 2 (251) Reload/Capture Register, high byte/ Timer 2 (515) Compare/Reload/Capture Register, high byte		
<u>tl2</u>	CCh	00h	Timer 2, low byte		
<u>th2</u>	CDh	00h	Timer 2, high byte		
<u>rtcsel</u>	CEh	00h	RTC Select Register (address port to RTC)		
<u>rtcdata</u>	CFh	00h	RTC Data Register (data port to RTC)		
psw	D0h	00h	Program Status Word		
psw1	D1h	00h	Program Status Word 1		
<u>i2c2dat</u>	D2h	00h	Secondary I2C Data Register		
<u>i2c2adr</u>	D3h	00h	Secondary I2C Address Register		
i2c2con	D4h	00h	Secondary I2C Control Register		
<u>i2c2sta</u>	D5h	F8h	Secondary I2C Status Register		
ccon	D8h	00h	PCA Control Register		
cmod	D9h	00h	PCA Mode Register		
ccapm0	DAh	00h	PCA Compare/Capture Module Mode Register 0		
ccapm1	DBh	00h	PCA Compare/Capture Module Mode Register 1		
ccapm2	DCh	00h	PCA Compare/Capture Module Mode Register 2		
ccapm3	DDh	00h	PCA Compare/Capture Module Mode Register 3		
ccapm4	DEh	00h	PCA Compare/Capture Module Mode Register 4		
acc	E0h	00h	Accumulator		
<u>spsta</u>	E1h	00h	Serial Peripheral Status Register		
spcon	E2h	14h	Serial Peripheral Control Register		
spdat	E3h	00h	Serial Peripheral Data Register		
spssn	E4h	FFh	Serial Peripheral Slave Select Register		
ien1	E8h	00h	Interrupt Enable Register 1		
<u>cl</u>	E9h	00h	PCA timer/counter register, low byte		
<u>ccap0l</u>	EAh	00h	PCA Compare/Capture Register 0, low byte		
ccap1l	EBh	00h	PCA Compare/Capture Register 1, low byte		
ccap2l	ECh	00h	PCA Compare/Capture Register 2, low byte		
ccap3l	EDh	00h	PCA Compare/Capture Register 3, low byte		
ccap4l	EEh	00h	PCA Compare/Capture Register 4, low byte		
b	F0h	00h	B Register		
<u>i2cdat</u>	F2h	00h	I2C Data Register		

Register	Location	Reset value	Description
<u>i2cadr</u>	F3h	00h	I2C Address Register
<u>i2ccon</u>	F4h	00h	I2C Control Register
<u>i2csta</u>	F5h	F8h	I2C Status Register
<u>srst</u>	F7h	00h	Software Reset Register
<u>ch</u>	F9h	00h	PCA timer/counter register, high byte
ccap0h	FAh	00h	PCA Compare/Capture Register 0, high byte
ccap1h	FBh	00h	PCA Compare/Capture Register 1, high byte
ccap2h	FCh	00h	PCA Compare/Capture Register 2, high byte
ccap3h	FDh	00h	PCA Compare/Capture Register 3, high byte
ccap4h	FEh	00h	PCA Compare/Capture Register 4, high byte

2.4.3 ACC - Accumulator

Address – E0h Reset value – 00h

The mnemonics for accumulator-specific instructions refer to accumulator as A, not ACC. The 8-bit accumulator (ACC) is byte register R11, which is also accessible in the SFR space as ACC at S:E0H. Accessing ACC as a register is one state faster than accessing them as SFRs. Instructions in the MCS 51 architecture use the accumulator as the primary register for data moves and calculations. However, in the MCS 251 architecture, any of registers R0–R15 can serve for these tasks. As a result, the accumulator does not play the central role that it has in MCS 51 microcontrollers.

2.4.4 B - B Register

Address – F0h Reset value – 00h

The B register, used in multiplies and divides, is register R10, which is also accessible in the SFR space as B at S:F0H. Accessing B as a register is one state faster than accessing them as SFRs.

2.4.5 CCAPnH, CCAPnL – PCA Compare/Capture Registers (n = 0 ... 4)

ССАР4Н:			CCAP4L:		
Address	-	FEh	Address	-	EEh
Reset value	_	00h	Reset value	-	00h
optional register			optional register		
ССАРЗН:			CCAP3L:		
Address	_	FDh	Address	-	EDh
Reset value	_	00h	Reset value	-	00h
optional register			optional register		

CCAP2H:			CCAP2L:		
Address	_	FCh	Address	-	ECh
Reset value	_	00h	Reset value	-	00h
optional register			optional register		
CCAP1H:			CCAP1L:		
Address	_	FBh	Address	_	EBh
Reset value	_	00h	Reset value	_	00h
optional register			optional register		
ССАРОН:			CCAPOL:		
Address	_	FAh	Address	_	EAh
Reset value	_	00h	Reset value	_	00h
optional register			optional register		

Compare/Capture Registers are 16-bit registers used in the operation of Compare/Capture Unit associated with the PCA module (detailed description -).

CCAPnH holds higher byte and CCAPnL holds lower byte of the 16 bit comparison/captured value for the corresponding compare/capture modules. When the PWM mode is set this registers control the duty cycle of the output signal.

CCAP4H, CCAP4L, CCAP3H, CCAP3L, CCAP2H, CCAP1H, CCAP1L, CCAP0H, CCAP0L registers are allocated in the SFR memory space when PCA module is selected during IP core configuration.

2.4.6 CCAPMn - PCA Compare/Capture Mode Registers (n = 0 ... 4)

CCAPM4:

Address – DEh Reset value – 00h

optional register

CCAPM3:

Address – DDh Reset value – 00h

optional register

CCAPM2:

Address – DCh Reset value – 00h

optional register

CCAPM1:

Address – DBh Reset value – 00h

optional register

CCAPMO:

Address – DAh Reset value – 00h

optional register

PCA Compare/Capture Module Mode Registers determine operating mode of the corresponding compare/capture module.

Table 8. CCAPMn Register

Bit	Symbol	Description	Туре
ccapm <i>n</i> .7	1	not used, read as 0	R
ccapm <i>n</i> .6	ecom <i>n</i>	Compare When set enables the module comparator which is used for timer, signal output, pulse width modulation and software watchdog timer (fourth compare/capture module only).	R/W
ccapm <i>n</i> .5	capp <i>n</i>	Capture on Positive Edge When set enables the capture triggered on positive edge on the cexi <i>n</i> input.	R/W
ccapm <i>n</i> .4	cap <i>n</i>	Capture on Negative Edge When set enables the capture triggered on negative edge on the cexin input.	R/W
ccapm <i>n</i> .3	mat <i>n</i>	 Match When set, if the value of the PCA timer/counter and value of compare/capture registers are equal then the ccfn bit in the ccon register is set. When ecomn = 1 and matn = 1 the software timer mode is set. 	R/W
ccapm <i>n</i> .2	tog <i>n</i>	Toggle When set, if the value of the PCA timer/counter and value of compare/capture registers are equal then the cexo n output is toggled. When ecom $n = 1$ and mat $n = 1$ and tog $n = 1$ the high-speed output mode is set.	R/W
ccapm <i>n</i> .1	pwm <i>n</i>	Pulse Width Modulation When set, the module operates as 8-bit pulse width modulator which generates output waveform on the cexon output.	R/W
ccapm <i>n</i> .0	eccf <i>n</i>	Enable ccfn interrupt When set enables an interrupt request when the ccfn flag in the ccon register is set.	R/W

CCAPM4, CCAPM3, CCAPM1, CCAPM0 registers are allocated in the SFR memory space when PCA module is selected during IP core configuration.

2.4.7 CCEN - Timer 2 (515) Compare/Capture Enable Register

Address – C1h Reset value – 00h optional register

CCEN register serves as a configuration register for Compare/Capture Unit associated with the Timer 2 (515) (detailed description – Chapter 5.6).

CCEN register is allocated in the SFR memory space when Timer 2 (515) is selected during IP core configuration.

Table 9. CCEN Register

Bit	Symbol			Description	Туре
ccen.7	cocah3	compare/	/capture m	node for CC3 register	R/W
ccen.6	cocal3	cocah3	cocal3	Description	R/W
		0	0	compare/capture disabled	
		0	1	capture on rising edge at pin cc0	
		1	0	compare enabled	
		1	1	capture on write operation into register cc3	
ccen.5	cocah2	compare/	/capture m	ode for CC2 register	R/W
ccen.4	cocal2	cocah2	cocal2	Description	R/W
		0	0	compare/capture disabled	
		0	1	capture on rising edge at pin cc1	
		1	0	compare enabled	
		1	1	capture on write operation into register ccl2	
ccen.3	cocah1	compare/	/capture m	ode for CC1 register	R/W
ccen.2	cocal1	cocah1	cocal1	Description	R/W
		0	0	compare/capture disabled	
		0	1	capture on rising edge at pin cc2	
		1	0	compare enabled	
		1	1	capture on write operation into register cc1	
ccen.1	cocah0	compare/	/capture m	node for CRC register	R/W
ccen.0	cocal0	cocah0	cocal0	Description	R/W
		0	0	compare/capture disabled	
		0	1	capture on falling/rising edge at pin cc3	
		1	0	compare enabled	
		1	1	capture on write operation into register crcl	

2.4.8 CCH1, CCL1, CCH2, CCL2, CCH3, CCL3 – Timer 2 (515) Compare/Capture Registers

CC1:

CCL1: CCH1: Address C2h Address C3h 00h 00h Reset value -Reset value optional register optional register CC2: CCL2: CCH2: **Address** C4h **Address** C5h 00h 00h Reset value -Reset value optional register optional register

CC3:

CCL3: CCH3:

Address – C6h Address – C7h
Reset value – 00h Reset value – 00h

optional register optional register

Compare/Capture Registers (CC1, CC2, CC3) are 16-bit registers used in the operation of Compare/Capture Unit associated with the Timer 2 (detailed description - 5.4).

CCHn holds higher byte and CCLn holds lower byte of the CCn register.

CCL1, CCH1, CCL2, CCH2, CCL3, CCH3 registers are allocated in the SFR memory space when Timer 2 (515) is selected during IP core configuration.

2.4.9 CRCH, CRCL – Timer 2 (515) Compare/Reload/Capture Register

CRCL: CRCH:

Address – CAh Address – CBh
Reset value – 00h Reset value – 00h
optional register optional register

Compare/Reload/Capture Register CRC is a 16-bit wide register used in the operation of Compare/Capture Unit associated with Timer 2 (detailed description - 5.4).

CRCH holds higher byte and CRCL holds lower byte.

CRCL and CRCH registers are allocated in the SFR memory space when Timer 2 (515) is selected during IP core configuration.

2.4.10 CCON – PCA Control Register

Address – D8h Reset value – 00h

optional register

2.4.11 CH, CL - PCA timer/counter registers

CH: CL:

Address – F9h Address – E9h Reset value – 00h Reset value – 00h optional register

2.4.12 CMOD - PCA Mode Register

Address – D9h Reset value – 00h

optional register

2.4.13 DPXL, DPH, DPL - Data Pointer

DPXL:

Address – 84h Reset value – 01h

DPH: DPL:

Address – 83h Address – 82h Reset value – 00h Reset value – 00h

Dword register DR56 is the extended data pointer, DPX. The lower three bytes of DPX (DPL, DPH, and DPXL) are accessible as SFRs. DPL and DPH comprise the 16-bit data pointer DPTR. While instructions in the MCS 51 architecture always use DPTR as the data pointer, instructions in the MCS 251 architecture can use any word or dword register as a data pointer. DPXL, the byte in location 57 in register file, specifies the region of memory (00:–FF:) that maps into the 64-Kbyte external data memory space in the MCS 51 architecture. in other words, the MOVX instruction addresses the region specified by DPXL when it moves data to and from external memory.

2.4.14 I2C2ADR - Secondary I2C Address Register

Address – D3h Reset value – 00h

optional register

The I2C2ADR register register holds the own address of R80251XC Secondary I2C slave interface. This address is used to recognize if an external device is attempting to access the R85015X-C as slave via Secondary I2C bus.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

The I2C2ADR register is allocated in the SFR memory space when both I2C and Secondary I2C are selected during IP core configuration.

Table 10. I2C2ADR Register

Bit	Symbol	Description	Туре
i2c2adr.7	adr	Own Secondary I2C slave address (7 bit)	R/W
i2c2adr.6			
i2c2adr.5			
i2c2adr.4			
i2c2adr.3			
i2c2adr.2			
i2c2adr.1			
i2c2adr.0	gc	General Call Address Acknowledge	R/W
		If this bit is set, the general call address is recognized; otherwise it is ignored.	

2.4.15 I2C2CON - Secondary I2C Control Register

Address – D4h Reset value – 00h

optional register

The I2C2CON register controls the operation of Secondary I2C interface.

The CPU can read from and write to this 8-bit, directly addressable SFR. Two bits of this register are affected by the Secondary I2C hardware: the **si** bit is set when serial interrupt is requested, and the "sto" bit is cleared when STOP condition is present on the Secondary I2C bus.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

The I2C2CON register is allocated in the SFR memory space when both I2C and Secondary I2C are selected during IP core configuration.

Table 11. I2C2CON Register

Bit	Symbol	Description	Туре
i2c2con.7	cr2	Clock rate bit 2	R/W
i2c2con.6	ens1	I2C enable bit	R/W
		When ens1='0' the "sdao" and "sclo" outputs are set to 1, that drives the output pads of the chip in high impedance, and "sdai" and "scli" input signals are ignored. When ens1='1' I2C component is enabled.	
i2c2con.5	sta	START Flag	R/W
		When sta='1', the I2C component checks the I2C bus status and if the bus is free a START condition is generated.	·
i2c2con.4	sto	STOP Flag	R/W
		When sto='1' and I2C interface is in master mode, a STOP condition is transmitted to the I2C bus.	
i2c2con.3	si	Serial Interrupt Flag	R/W
		The "si "is set by hardware when one of 25 out of 26 possible I2C states is entered (2.4.17). The only state that does not set the "si" is state F8h, which indicates that no relevant state information is available. The "si" flag must be cleared by software. in order to clear the "si" bit, '0' must be written to this bit. Writing a '1' to si bit does not change value of the "si".	

Bit	Symbol	Description	Туре
i2c2con.2	aa	Assert Acknowledge Flag	R/W
		When aa='1', an "acknowledge" will be returned when:	
		- the "own slave address" has been received	
		 the general call address has been received while gc bit in i2caddr register was set 	
		 a data byte has been received while I2C was in master receiver mode 	
		 a data byte has been received while I2C was in slave receiver mode 	
		When aa='0', an "not acknowledge" will be returned when:	
		 a data byte has been received while I2C was in master receiver mode 	
		 a data byte has been received while I2C was in slave receiver mode 	
i2c2con.1	cr1	Clock rate bit 1	R/W
i2c2con.0	cr0	Clock rate bit 0	R/W

For details on clock rate settings see section 5.17.4 g).

2.4.16 I2C2DAT - Secondary I2C Data Register

Address – D2h Reset value – 00h

optional register

The I2C2DAT register contains a byte to be transmitted through Secondary I2C bus or a byte which has just been received through Secondary I2C bus. The CPU can read from and write to this 8-bit, directly addressable SFR while it is not in the process of byte shifting. The I2C2DAT register is not shadowed or double buffered so the user should only read I2C2DAT when an Secondary I2C interrupt occurs.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

The I2C2DAT register is allocated in the SFR memory space when both I2C and Secondary I2C are selected during IP core configuration.

2.4.17 I2C2STA - Secondary I2C Status Register

Address – D5h Reset value – F8h

optional register

The contents of this register reflect the actual state of Secondary I2C interface.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

The I2C2STA register is allocated in the SFR memory space when both I2C and Secondary I2C are selected during IP core configuration.

Table 12. I2C2STA Register

Bit	Symbol	Description	Туре
i2c2sta.7	-	Secondary I2C Status Code	R
i2c2sta.6			
i2c2sta.5			
i2c2sta.4			
i2c2sta.3			
i2c2sta.2	-	Not implemented, read as 0	R
i2c2sta.1			
i2c2sta.0			

2.4.18 I2CADR - I2C Address Register

Address – F3h Reset value – 00h

optional register

The I2CADR register register holds the own address of R80251XC I2C slave interface. This address is used to recognize if an external device is attempting to access the R85015X-C as slave via I2C bus.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

I2CADR register is allocated in the SFR memory space when I2C is selected during IP core configuration.

Table 13. I2CADR Register

Bit	Symbol	Description	Туре
i2cadr.7	adr	Own I2C slave address (7 bit)	R/W
i2cadr.6			
i2cadr.5			
i2cadr.4			
i2cadr.3			
i2cadr.2			
i2cadr.1			
i2cadr.0	gc	General Call Address Acknowledge	R/W
		If this bit is set, the general call address is recognized; otherwise it is ignored.	

2.4.19 I2CCON - I2C Control Register

Address – F4h Reset value – 00h optional register

The I2CCON register controls the operation of I2C interface.

The CPU can read from and write to this 8-bit, directly addressable SFR. Two bits of this register are affected by the I2C hardware: the **si** bit is set when serial interrupt is requested, and the "sto" bit is cleared when STOP condition is present on the I2C bus.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

The I2CCON register is allocated in the SFR memory space when I2C is selected during IP core configuration.

Table 14. I2CCON Register

Bit	Symbol	Description	Туре
i2ccon.7	cr2	Clock rate bit 2	R/W
i2ccon.6	ens1	I2C enable bit When ens1='0' the "sdao" and "sclo" outputs are set to 1, that drives the output pads of the chip in high impedance, and "sdai" and "scli" input signals are ignored. When ens1='1' I2C component is enabled.	R/W
i2ccon.5	sta	START Flag When sta='1', the I2C component checks the I2C bus status and if the bus is free a START condition is generated.	R/W
i2ccon.4	sto	STOP Flag When sto='1' and I2C interface is in master mode, a STOP condition is transmitted to the I2C bus.	R/W
i2ccon.3	Sİ	Serial Interrupt Flag The "si "is set by hardware when one of 25 out of 26 possible I2C states is entered (2.4.17). The only state that does not set the "si" is state F8h, which indicates that no relevant state information is available. The "si" flag must be cleared by software. in order to clear the "si" bit, '0' must be written to this bit. Writing a '1' to si bit does not change value of the "si".	R/W
i2ccon.2	aa	Assert Acknowledge Flag When aa='1', an "acknowledge" will be returned when: - the "own slave address" has been received - the general call address has been received while gc bit in i2caddr register was set - a data byte has been received while I2C was in master receiver mode - a data byte has been received while I2C was in slave receiver mode When aa='0', an "not acknowledge" will be returned when: - a data byte has been received while I2C was in master receiver mode - a data byte has been received while I2C was in slave receiver mode	R/W
i2ccon.1	cr1	Clock rate bit 1	R/W
i2ccon.0	cr0	Clock rate bit 0	R/W

For details on clock rate settings see section 5.17.4 g).

2.4.20 I2CDAT - I2C Data Register

Address – F2h Reset value – 00h

optional register

The I2CDAT register contains a byte to be transmitted through I2C bus or a byte which has just been received through I2C bus. The CPU can read from and write to this 8-bit, directly addressable SFR while it is not in the process of byte shifting. The I2CDAT register is not shadowed or double buffered so the user should only read I2CDAT when an I2C interrupt occurs.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

I2CDAT register is allocated in the SFR memory space when I2C is selected during IP core configuration.

2.4.21 I2CSTA - I2C Status Register

Address – F5h Reset value – F8h

optional register

The contents of this register reflect the actual state of I2C interface.

Detailed description of I2C interface functionality can be found in I2C subcomponent specification - 5.14.

The I2CSTA register is allocated in the SFR memory space when I2C is selected during IP core configuration.

Table 15. I2CSTA Register

Bit	Symbol	Description	Туре
i2csta.7	-	I2C Status Code	R
i2csta.6			
i2csta.5			
i2csta.4			
i2csta.3			
i2csta.2	-	Not implemented, read as 0	R
i2csta.1			
i2csta.0			

2.4.22 IENO - Interrupt Enable 0 Register

Address – A8h Reset value – 00h

The presence of external interrupt enable flags depends on IP core configuration (the number of external interrupts).

The Timer 0 interrupt enable flag is implemented when Timer 0 is selected during IP core configuration.

The Timer 1 interrupt enable flag is implemented when Timer 1 is selected during IP core configuration.

The Timer 2 interrupt enable flag is implemented when Timer 2 is selected during IP core configuration.

The Serial Port 0 interrupt enable flag is implemented when Serial Port 0 is selected during IP core configuration.

The PCA interrupt enable flag is implemented when PCA is selected during IP core configuration.

Table 16. IENO Register

Bit	Symbol	Description	Туре
ien0.7	eal	Interrupts enable	R/W
		When set to 0 – all interrupts are disabled	
		Otherwise enabling each interrupt is done by setting the	
		corresponding interrupt enable bit	
ien0.6	ec	PCA interrupt enable	R/W
		When ec=0 PCA interrupt is disabled.	
		When ec=1 and eal=1 PCA interrupt is enabled.	
ien0.5	et2	TIMER2 interrupt enable	R/W
		When et2=0 timer2 interrupt is disabled.	
		When et2=1 and eal=1 timer2 interrupt is enabled.	
ien0.4	es0	Serial Port 0 interrupt enable	R/W
		When es0=0 Serial Port 0 interrupt is disabled.	
		When es0=1 and eal=1 Serial Port 0 interrupt is enabled.	
ien0.3	et1	TIMER1 overflow interrupt enable	R/W
		When et1=0 timer0 overflow interrupt is disabled.	
		When et1=1 and eal=1 timer1 overflow interrupt is enabled.	
ien0.2	ex1	External interrupt 1 enable	R/W
		When ex1=0 external interrupt 1 is disabled.	
		When ex1=1 and eal=1 external interrupt 1 is enabled.	
ien0.1	et0	TIMERO overflow interrupt enable	R/W
		When et0=0 timer0 overflow interrupt is disabled.	
		When et0=1 and eal=1 timer0 overflow interrupt is enabled.	
ien0.0	ex0	External interrupt 0 enable	R/W
		When ex0=0 external interrupt 0 is disabled.	
		When ex0=1 and eal=1 external interrupt 0 is enabled.	

2.4.23 IEN1 - Interrupt Enable 1 Register

Address – E8h Reset value – 00h

optional register

IEN1 register is allocated in the SFR memory space when number of external interrupts is more than 2 or RTC is selected during IP core configuration.

The presence of external interrupt enable flags depends on IP core configuration (the number of external interrupts).

The RTC interrupt enable flag is implemented when RTC is selected during IP core configuration.

Table 17. IEN1 Register

Bit	Symbol	Description	Туре
ien1.7	-	not used, read as 0	R/W
ien1.6	ertc	RTC interrupt enable	R/W
		When ertc=0 RTC interrupt is disabled.	
		When ertc=1 and eal=1 RTC interrupt is enabled.	
ien1.5	ex6	External interrupt 6 enable	R/W
		When ex6=0 external interrupt 6 is disabled.	
		When ex6=1 and eal=1 external interrupt 6 is enabled.	
ien1.4	ex5	External interrupt 5 enable	R/W
		When ex5=0 external interrupt 5 is disabled.	
		When ex5=1 and eal=1 external interrupt 5 is enabled.	
ien1.3	ex4	External interrupt 4 enable	R/W
		When ex4=0 external interrupt 4 is disabled.	
		When ex4=1 and eal=1 external interrupt 4 is enabled.	
ien1.2	ex3	External interrupt 3 enable	R/W
		When ex3=0 external interrupt 3 is disabled.	
		When ex3=1 and eal=1 external interrupt 3 is enabled.	
ien1.1	ex2	External interrupt 2 enable	R/W
		When ex2=0 external interrupt 2 is disabled.	
		When ex2=1 and eal=1 external interrupt 2 is enabled.	
ien1.0	ex7	External interrupt 7 enable	R/W
		When ex7=0 external interrupt 7 is disabled.	
		When ex7=1 and eal=1 external interrupt 7 is enabled.	

2.4.24 IEN2 - Interrupt Enable 2 Register

Address – 9Ah Reset value – 00h

optional register

IEN2 register is allocated in the SFR memory space when number of external interrupts is more than 8 or Serial 1 is selected during IP core configuration.

The presence of external interrupt enable flags depends on IP core configuration (the number of external interrupts).

The Serial Port 1 interrupt enable flag is implemented when Serial Port 1 is selected during IP core configuration.

Table 18. IEN2 Register

Bit	Symbol	Description	Туре
ien2.7	-	not used, read as 0	R
ien2.6	ex13	External interrupt 13 enable	R/W
		When ex13=0 external interrupt 13 is disabled.	
		When ex13=1 and eal=1 external interrupt 13 is enabled.	

Bit	Symbol	Description	Туре
ien2.5	ex12	External interrupt 12 enable	R/W
		When ex12=0 external interrupt 12 is disabled.	
		When ex12=1 and eal=1 external interrupt 12 is enabled.	
ien2.4	ex11	External interrupt 11 enable	R/W
		When ex11=0 external interrupt 11 is disabled.	
		When ex11=1 and eal=1 external interrupt 11 is enabled.	
ien2.3	ex10	External interrupt 10 enable	R/W
		When ex10=0 external interrupt 10 is disabled.	
		When ex10=1 and eal=1 external interrupt 10 is enabled.	
ien2.2	ex9	External interrupt 9 enable	R/W
		When ex9=0 external interrupt 9 is disabled.	
		When ex9=1 and eal=1 external interrupt 9 is enabled.	
ien2.1	ex8	External interrupt 8 enable	R/W
		When ex8=0 external interrupt 8 is disabled.	
		When ex8=1 and eal=1 external interrupt 8 is enabled.	
ien2.0	es1	Serial Port 1 interrupt enable	R/W
		When es1=0 Serial Port 1 interrupt is disabled.	
		When es1=1 and eal=1 Serial Port 1 interrupt is enabled.	

2.4.25 IPH0, IPL0 - Interrupt Priority Registers

IPHO: IPLO:

Address – B7h Address – B8h Reset value – 00h Reset value – 00h

The 21 interrupt sources are grouped into 7 priority groups. For each of the groups, one of four priority levels can be selected. It is achieved by setting appropriate values in IPH0 and IPL0 registers.

The contents of the Interrupt Priority Registers define the priority levels for each interrupt source according to the tables below.

Table 19. IPHO Register

Bit	Symbol	Description	Туре
iph0.7	-	not used, read as 0	R
iph0.6	-	Interrupt priority	R/W
iph0.5	-	Each bit together with corresponding bit from IPLO register	
iph0.4	-	specifies the priority level of the respective interrupt priority	
iph0.3	-	group.	
iph0.2	-		
iph0.1	_		
iph0.0	-		

Table 20. IPLO Register

Bit	Symbol	Description	Туре
ipl0.7	-	not used, read as 0	R
ipl0.6	-	Interrupt priority	R/W
ipl0.5	-	Each bit together with corresponding bit from IPH0 register	
ipl0.4	-	specifies the priority level of the respective interrupt priority	
ipl0.3	-	group.	
ipl0.2	-		
ipl0.1	-		
ipl0.0	-		

Table 21. Priority Groups

Group	Corresponding interrupt bits			
0	iph0.0, ipl0.0	External interrupt 0	Serial 1 interrupt	External interrupt 7
1	iph0.1, ipl0.1	Timer 0 interrupt	External interrupt 8	External interrupt 2
2	iph0.2, ipl0.2	External interrupt 1	External interrupt 9	External interrupt 3
3	iph0.3, ipl0.3	Timer 1 interrupt	External interrupt 10	External interrupt 4
4	iph0.4, ipl0.4	Serial 0 interrupt	External interrupt 11	External interrupt 5
5	iph0.5, ipl0.5	Timer 2 interrupt	External interrupt 12	External interrupt 6
6	iph0.6, ipl0.6	PCA interrupt	External interrupt 13	RTC interrupt

Table 22. Priority Levels

iph0.x	ipl0.x	
0	0	Level 0 (lowest)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest)

x is the number of priority group.

2.4.26 IRCON - Interrupt Request Control Register

Address – C0h Reset value – 00h optional register

IRCON register is allocated in the SFR memory space when number of external interrupts is more than 2 during IP core configuration.

The presence of external interrupt edge flags depends on IP core configuration (the number of external interrupts).

Table 23. IRCON Register

Bit	Symbol	Description	Туре
ircon.7	i3fr	Active edge selection for external interrupt "int3" 0 - falling edge 1 - rising edge	R/W
ircon.6	i2fr	Active edge selection for external interrupt "int2" 0 - falling edge 1 - rising edge	R/W
ircon.5	iex6	External interrupt 6 edge flag	R/W
ircon.4	iex5	External interrupt 5 edge flag	R/W
ircon.3	iex4	External interrupt 4 edge flag	R/W
ircon.2	iex3	External interrupt 3 edge flag	R/W
ircon.1	iex2	External interrupt 2 edge flag	R/W
ircon.0	iex7	External interrupt 7 edge flag	R/W

2.4.27 IRCON2 - Interrupt Request Control 2 Register

Address – BFh Reset value – 00h

optional register

IRCON2 register is allocated in the SFR memory space when number of external interrupts is more than 8 during IP core configuration.

The presence of external interrupt edge flags depends on IP core configuration (the number of external interrupts).

Table 24. IRCON2 Register

Bit	Symbol	Description	Туре
ircon2.7 ircon2.6	-	Not implemented, read as 0	R
ircon2.5	iex13	External interrupt 13 edge flag	R/W
ircon2.4	iex12	External interrupt 12 edge flag	R/W
ircon2.3	iex11	External interrupt 11 edge flag	R/W
ircon2.2	iex10	External interrupt 10 edge flag	R/W
ircon2.1	iex9	External interrupt 9 edge flag	R/W
ircon2.0	iex8	External interrupt 8 edge flag	R/W

2.4.28 P0, P1, P2, P3 - Port Registers

P3:

Address – B0h Reset value – FFh optional register P2:

Address – A0h Reset value – FFh

optional register

P1:

Address – 90h Reset value – FFh

optional register

P0:

Address – 80h Reset value – FFh

optional register

After write operation, the contents of these registers can be observed at the corresponding pins of the chip (port 0, port 1, port2, port3). Writing a '1' to any of the port bits causes the corresponding pin to be at high level, and writing a '0' causes the corresponding pin to be held at low level.

In case of reading, the state of P0, P1, P2, P3 registers reflects the value of the corresponding R80251XC port.

It should be remembered that some of R80251XC instructions (the Read-Modify-Write instructions) while referring to the Port N in fact refer to the Port N register (e.g. INC P0; ANL P2, A) while the others refer directly to the external port input (e.g. MOV A, P1).

The P0, P1, P2 and P3 registers are allocated in the SFR memory space when Port 0, Port 1, Port 2 or Port3 respectively are selected during IP core configuration.

2.4.29 PCON - Power Control Register

Address – 87h Reset value – 08h

Table 25. PCON Register

Bit	Symbol	Description	Туре
pcon.7	s0mod1	Serial Port 0 baud rate select (Table 44)	R/W
		(baud rate doubler)	
pcon.6	s0mod0	Serial Port 0 bit select	R/W
		When set, the accesses to the SOCON.7 bit applay to the FE bit. When clear, the accesses to the SOCON.7 bit applay to the SM0 bit.	
pcon.5	isr_tm	Interrupt Service Routine Test Mode flag	R/W
		When set to 1, the interrupt vectors assigned to Timer 0, 1 & 2, PCA, Serial Port 0 & 1, SPI and I2C interfaces can be triggered only with the use of external inputs of the core.	
pcon.4	-	-	-
pcon.3 pcon.2	gf1 gf0	General Purpose Flags	R/W
pcon.1	stop	Stop mode control	R/W
		Setting this bit activates the Stop Mode. This bit is always read as 0	

Bit	Symbol	Description	Туре
pcon.0	idle	Idle mode control	R/W
		Setting this bit activates the Idle Mode. This bit is always read as 0	

2.4.30 PSW, PSW1 - Program Status Word Registers

PSW1: PSW:

Address – D1h Address – D0h Reset value – 00h Reset value – 00h

The PSW and the PSW1 registers contain status bits that reflect the current state of the CPU. Note that the Parity bit can only be modified by hardware upon the state of ACC register

The Program Status Word (PSW) register and the Program Status Word 1 (PSW1) register contain four types of bits:

- CY, AC, OV, N, and Z are flags set by hardware to indicate the result of an operation.
- The P bit indicates the parity of the accumulator.
- Bits RS0 and RS1 are programmed by software to select the active register bank for registers R0–R7.
- F0 and UD are available to the user as general-purpose flags.

Individual bits can be addressed with the bit instructions. The PSW and PSW1 bits are used implicitly in the conditional jump instructions.

The PSW register is identical to the PSW register in MCS 51 microcontrollers. The PSW1 register exists only in MCS 251 microcontrollers. Bits CY, AC, RS0, RS1, and OV in PSW1 are identical to the corresponding bits in PSW; i.e., the same bit can be accessed in either register. Table 5-10 lists the instructions that affect the CY, AC, OV, N, and Z bits.

Table 26. PSW Register

Bit	Symbol	Description	Туре
psw.7	су	Carry flag	R/W
		Carry bit in arithmetic operations and accumulator for Boolean operations. The carry flag is set by an addition instruction (ADD, ADDC) if there is a carry out of the MSB. It is set by a subtraction (SUB, SUBB) or compare (CMP) if a borrow is needed from the MSB. The carry flag is also affected by some rotate and shift instructions, logical bit instructions, bit move instructions, and the multiply (MUL) and decimal adjust (DA) instructions.	
psw.6	ac	Auxiliary Carry flag	R/W
		Set if there is a carry-out from 3 rd bit of Accumulator in BCD operations The auxiliary carry flag is affected only by instructions that address 8-bit operands. The AC flag is set if an arithmetic instruction with an 8-bit operand produces a carry out of bit 3 (from addition) or a borrow into bit 3 (from subtraction). Otherwise, it is cleared.	

Bit	Symbol	Description	Туре
psw.5	f0	General purpose Flag 0	R/W
		General purpose flag available for user	
psw.4	rs1	Register bank select control bit 1, used to select working register bank	R/W
psw.3	rs0	Register bank select control bit 0, used to select working register bank	R/W
psw.2	ov	Overflow flag	R/W
		This bit is set if an addition or subtraction of signed variables results in an overflow error. The overflow flag is also set if a multiplication product overflows one byte or if a division by zero is attempted.	
psw.1	ud	User-definable Flag:	R/W
		General purpose flag available for user.	
psw.0	р	Parity flag Reflects the number of `1's in the Accumulator. P = `1' if Accumulator contains an odd number of `1's P = `0' if Accumulator contains an even number of `1's	R
		Not all instructions update the parity bit. The parity bit is set or cleared by instructions that change the contents of the accumulator (ACC, Register R11).	

Table 27. PSW1 Register

Bit	Symbol	Description	Туре
psw1.7	су	Carry flag	R/W
		Exactly the same as PSW	
psw1.6	ac	Auxiliary Carry flag	R/W
		Exactly the same as PSW	
psw1.5	n	Negative Flag:	R/W
		This bit is set if the result of the last logical or arithmetic operation was negative (i.e., bit $15 = 1$). Otherwise it is cleared.	
psw1.4	rs1	Register bank select Exactly the same as PSW	R/W
psw1.3	rs0	Register bank select Exactly the same as PSW	R/W
psw1.2	ov	Overflow flag	R/W
		Exactly the same as PSW	
psw1.1	Z	Zero Flag:	R/W
		This flag is set if the result of the last logical or arithmetic operation is zero. Otherwise it is cleared.	
psw1.0	-	-	-

Table 28. Effects of Instructions on PSW and PSW1 Flags

Tuetuvetien		Flags Affected (1), (5)				
Instruction Type	Instruction	CY	ov	AC (2)	N	z
Arithmetic	ADD, ADDC, SUB, SUBB, CMP	Χ	Х	Х	Χ	Х

Instruction	Instruction	Flags Affected (1), (5)				
	INC, DEC				Χ	Χ
	MUL, DIV (3)	0	Χ		Χ	Χ
	DA	Χ			Χ	Χ
	ANL, ORL, XRL, CLR A, CPL A, RL, RR, SWAP				Χ	Χ
Logical	RLC, RRC, SRL, SLL, SRA (4)	Χ			Χ	Χ
Program	CJNE	Χ			Χ	Χ
Control	DJNE				Χ	Χ

NOTES:

- 1. X =the flag can be affected by the instruction.
 - 0 =the flag is cleared by the instruction.
- 2. The AC flag is affected only by operations on 8-bit operands.
- 3. If the divisor is zero, the OV flag is set and the other bits are meaningless.
- 4. For SRL, SLL, and SRA instructions, the last bit shifted out is stored in the CY bit.
- 5. The parity bit (PSW.0) is set or cleared by instructions that change the contents of the accumulator (ACC Register R11).

The state of rs1 and rs0 bits selects the working register bank as follows:

rs1 rs0 **Selected Register Bank** Location 0 0 Bank 0 (00H - 07H)0 1 Bank 1 (08H - 0FH)1 0 Bank 2 (10H - 17H)1 1 Bank 3 (18H - 1FH)

Table 29. Register Bank Locations

2.4.31 RCAP2H, RCAP2L - Timer 2 (251) reload/capture registers

RCAP2H: CL:

Address - CBh Address - CAh
Reset value - 00h Reset value - 00h
optional register optional register

The RCAP2H and RCAP2L registers are allocated in the SFR memory space when Timer 2 (251) respectively is selected during IP core configuration.

2.4.32 RTCDATA - RTC Data Register

Address – CFh Reset value – 00h optional register

The RTCDAT register is implemented when the Real Time Clock is selected during IP core configuration.

The purpose of the RTCDAT register is to provide (together with the RTCSEK register) a port to read/write the internal registers of the RTC module.

a) RTAH - Real Time Alarm Hour Register

Address – CFh
Reset value – 00h
RTCSEL – 3h
optional register

Table 30. RTAH Register

Bit	Symbol	Description	Туре
rtah.7 rtah.6 rtah.5	1	Not used, read as 0	R
rtah.4 rtah.3 rtah.2 rtah.1 rtah.0	-	These bits represent an hour value of alarm that will be compared against corresponding bits of the Real Time Clock Hour Register (rtch.4-0) provided that hce bit (rtcc.4) is set. This register is reset only by the "rtcreset".	R/W

b) RTAM - Real Time Alarm Minute Register

Address – CFh
Reset value – 00h
RTCSEL – 2h
optional register

Table 31. RTAM Register

Bit	Symbol	Description	Туре
rtam.7 rtam.6	-	Not used, read as 0	R
rtam.5 rtam.4 rtam.3 rtam.2 rtam.1 rtam.0	-	These bits represent a minute value of alarm that will be compared against corresponding bits of the Real Time Clock Alarm Register (rtcm.5-0) provided that mce bit (rtcc.5) is set. This register is reset only by the "rtcreset".	R/W

c) RTAS - Real Time Alarm Second Register

Address – CFh Reset value – 00h RTCSEL – 1h

optional register

Table 32. RTAS Register

Bit	Symbol	Description	Туре
rtas.7 rtas.6	-	Not used, read as 0	R
rtas.5 rtas.4 rtas.3 rtas.2 rtas.1 rtas.0	-	These bits represent a second value of alarm that will be compared against corresponding bits of the Real Time Clock Second Register (rtcs.5-0) provided that sce bit (rtcc.6) is set. This register is reset only by the "rtcreset".	R/W

d) RTASS - Real Time Alarm Subsecond Register

Address – CFh
Reset value – 00h
RTCSEL – 0h
optional register

Table 33. RTASS Register

Bit	Symbol	Description	Туре
rtass.7 rtass.6 rtass.5 rtass.4 rtass.3 rtass.2 rtass.1 rtass.0	-	These bits represent a subsecond value of alarm that will be compared against corresponding bits of the Real Time Clock Subsecond Register (rtcss.7-0) provided that ssce bit (rtcc.7) is set. This register is reset only by the "rtcreset".	R/W

e) RTCC - Real Time Clock Control Register

Address – CFh
Reset value – 00h
RTCSEL – 4h
optional register

Table 34. RTCC Register

Bit	Symbol	Description	Туре
rtcc.7	ssce	Subsecond Compare Enable	R/W
		When set to 1 enables a match between rtcss and rtass registers when evaluating an alarm condition; when set to 0 disables this match and thus an interrupt is generated at every subsecond tick as long as other registers match. This bit is reset only by the "rtcreset".	

Bit	Symbol	Description	Туре
rtcc.6	sce	Second Compare Enable	R/W
		When set to 1 enables a match between rtcs and rtas registers when evaluating an alarm condition; when set to 0 disables this match and thus an interrupt per second is generated as long as other registers match. This bit is reset only by the "rtcreset".	
rtcc.5	mce	Minute Compare Enable	R/W
		When set to 1 enables a match between rtcm and rtam registers when evaluating an alarm condition; when set to 0 disables this match and thus one interrupt per minute is generated as long as other registers match. This bit is reset only by the "rtcreset".	
rtcc.4	hce	Hour Compare Enable	R/W
		When set to 1 enables a match between rtch and rtah registers when evaluating an alarm condition; when set to 0 disables this match and thus one interrupt per hour is generated as long as other registers match. This bit is reset only by the "rtcreset".	
rtcc.3	rtcre	Real Time Clock Read Enable	R/W
		When this bit is set RTC halts updating time registers so that they can be written to. Reading should be accomplished within 1 ms after setting the bit. The bit should be reset after reads are accomplished although it will be automatically reset after 1.95 ms.Reads from RTC registers (rtcss, rtcs, rtcm, rtch, rtcd0, rtcd1) when the rtcre bit is 0 are prohibited and may return erroneous values. This bit is reset also by the "rtcreset".	
rtcc.2	rtcwe	Real Time Clock Write Enable	R/W
		When this bit is set RTC halts updating time registers (rtcss, rtcs, rtcm, rtch, rtcd0, rtcd1) so they can be updated. Updates should be accomplished within 1 ms after setting the bit. The bit should be reset after desired updates are completed although it will be automatically reset after 1.95 ms. Resetting this bit will reset the rtcss register to 00H.When the bit value is 0, writes to the RTC register will be ignored. Attempts to set rtcwe and rtcre bits simultaneously will be ignored. This bit is reset also by the "rtcreset".	
rtcc.1	rtcif	Real Time Clock Interrupt Flag	R/W
		The bit is set when a match has been detected between all enabled alarm registers and their corresponding clock registers. It must be cleared by software following an interrupt. Clearing all compare enable bits (rtcc.7-4) will also clear this bit. RTC interrupts cannot be generated by setting this bit (as it cannot be set in software). This bit is reset only by the "rtcreset".	
rtcc.0	rtce	Real Time Clock Enable	R/W
		This bit enables (or disables) RTC operation as it works as an enable signal for all registers triggered by the clock signal (rtcx) from the real time clock oscillator. This bit is reset only by the "rtcreset".	

f) RTCD0, RTCD1 - Real Time Clock Day Registers 0 & 1

RTCD1:

Address – CFh
Reset value – 00h
RTCSEL = Ah

CFh
Reset value – 00h
RTCSEL = Bh

optional register optional register

Table 35. RTCD0 Register

Bit	Symbol	Description	Туре
rtcd0.7 rtcd0.6 rtcd0.5 rtcd0.4 rtcd0.3 rtcd0.2 rtcd0.1 rtcd0.0	-	The rtcd0 register bits represents the less significant part of the 16-bit current day count. The day count should be seen as a value set by the user relative to a user specified calendar date. It is up to user software to interpret its contents in terms of an absolute date. No alarm register is compared against these bits.	R/W

Table 36. RTCD1 Register

Bit	Symbol	Description	Туре
rtcd1.7 rtcd1.6 rtcd1.5 rtcd1.4 rtcd1.3 rtcd1.2 rtcd1.1 rtcd1.0	-	The rtcd1 register bits represents the most significant part of the 16-bit current day count. The day count should be seen as a value set by the user relative to a user specified calendar date. It is up to user software to interpret its contents in terms of an absolute date. No alarm register is compared against these bits.	R/W

g) RTCH - Real Time Clock Hour Register

Address – CFh Reset value – 00h RTCSEL – 9h optional register

Table 37. RTCH Register

Bit	Symbol	Description	Туре
rtch.7 rtch.6 rtch.5	dow2 dow1 dow0	These bits represent the current day of week and count from 1H to 7H each time the rtch.4-0 rolls over from 17H to 0H. When set to 000B, these bits retain 0 value and the day of week function is disabled. No alarm register is compared against these bits.	R/W
rtch.4 rtch.3 rtch.2 rtch.1 rtch.0	-	These bits represent the hour value of the RTC. This subregister counts from 0H to 17H (23 dec).	R/W

h) RTCM - Real Time Clock Minute Register

Address – CFh
Reset value – 00h
RTCSEL – 8h
optional register

Table 38. RTCM Register

Bit	Symbol	Description	Туре
rtcm.7 rtcm.6	-	Not used, read as 0	R
rtcm.5 rtcm.4 rtcm.3 rtcm.2 rtcm.1 rtcm.0	-	These bits represent the minute value of the RTC. The register counts from 0H to 3BH (59 dec). The user is responsible for writing only the values in this range to the rtcm register.	R/W

i) RTCS - Real Time Clock Second Register

Address – CFh
Reset value – 00h
RTCSEL – 7h
optional register

Table 39. RTCS Register

Bit	Symbol	Description	Туре
rtcs.7 rtcs.6	-	Not used, read as 0	R
rtcs.5 rtcs.4 rtcs.3 rtcs.2 rtcs.1 rtcs.0	-	These bits represent the second value of the RTC. The register counts from 0H to 3BH (59 dec). The user is responsible for writing only the values in this range to the rtcs register.	R/W

j) RTCSS - Real Time Clock Subsecond Register

Address – CFh
Reset value – 00h
RTCSEL – 6h
optional register

Table 40. RTCSS Register

Bit	Symbol	Description	Type

Bit	Symbol	Description	Туре
rtcss.7 rtcss.6 rtcss.5 rtcss.4 rtcss.3 rtcss.2 rtcss.1 rtcss.0	-	These bits represent the subsecond (1/256s) value of the RTC. The register counts from 0H to FFH. It is not possible to write to this register. It is set to 00H whenever the rtcwe bit (rtcc.5) is cleared	R/W

2.4.33 RTCSEL - RTC Select Register

Address – CEh Reset value – 00h

optional register

The RTCSEL register is implemented when the Real Time Clock is selected during IP core configuration.

The purpose of the RTCSEL register is to provide (together with the RTCDAT register) a port to read/write the internal registers of the RTC module.

Table 41. RTCSEL Register

Bit	Symbol	Description	Туре
rtcsel.7 rtcsel.6 rtcsel.5 rtcsel.4	-	Not used, read as 0	R
rtcsel.3 rtcsel.2 rtcsel.1 rtcsel.0	-	A 4-bit pointer to internal registers of the RTC	R/W

The RTCSEL works as a pointer to another internal SFR of the RTC. After writing the requested register's ID to the RTCSEL, it becomes available for reading and writing through the RTCDAT location. The table below lists the internal registers of the RTC module together with their pointer values.

Table 42. Internal RTC Register Locations

Register	ID (RTCSEL value)	Description
RTASS	0h	Real Time Alarm Subsecond register
RTAS	1h	Real Time Alarm Second register
RTAM	2h	Real Time Alarm Minute register
RTAH	3h	Real Time Alarm Hour register
RTCC	4h	Real Time Clock Control register
RTCSS	6h	Real Time Clock Subsecond register
RTCS	7h	Real Time Clock Second register
RTCM	8h	Real Time Clock Minute register

Register	ID (RTCSEL value)	Description
RTCH	9h	Real Time Clock Hour register
RTCD0	Ah	Real Time Clock Day register 0
RTCD1	Bh	Real Time Clock Day register 1

2.4.34 SOADDR - Serial Port 0 Slave Address Register

Address – A9h Reset value – 00h

optional register

The SOADDR register contains slave address for multiprocessor communication.

SOADDR register is allocated in the SFR memory space when Serial Port 0 is selected during IP core configuration.

2.4.35 SOADEN - Serial Port 0 Slave Address Mask Register

Address – B9h Reset value – 00h

optional register

The SOADEN register contains mask byte of slave address for multiprocessor communication. SOADEN register is allocated in the SFR memory space when Serial Port 0 is selected during IP core configuration.

2.4.36 SOBUF - Serial Port 0 Data Buffer

Address – 99h Reset value – 00h

optional register

Writing data to this register sets data in serial output buffer and starts the transmission through Serial Port 0. Reading from the SOBUF reads data from the serial receive buffer. SOBUF register is allocated in the SFR memory space when Serial Port 0 is selected during IP core configuration.

2.4.37 SOCON - Serial Port 0 Control Register

Address – 98h Reset value – 00h

optional register

The SOCON register controls the function of Serial Port 0.

SOCON register is allocated in the SFR memory space when Serial Port 0 is selected during IP core configuration.

Table 43. SOCON Register

Bit	Symbol	Description	Туре		
s0con.7	sm0	Serial Port 0 mode select	R/W		
s0con.6	sm1	(see Table 44)			
s0con.5	sm20	Multiprocessor communication enable (see 5.8.4 c)).	R/W		
s0con.4	ren0	Serial reception enable	R/W		
		If set HIGH serial reception at Serial Port 0 is enabled.			
		Otherwise serial reception at Serial Port 0 is disabled.			
s0con.3	tb80	Transmitter bit 8	R/W		
	This bit is used while transmitting data through Serial Port 0 in Modes 2 and 3. The state of this bit corresponds with the state of the 9 th transmitted bit (e.g. parity check or multiprocessor communication). It is controlled by software.				
s0con.2	rb80	Received bit 8			
		This bit is used while receiving data through Serial Port 0 in Modes 2 and 3. It reflects the state of the 9 th received bit.			
	In Mode 1, if multiprocessor communication is enabled (sm20 = 0), this bit is the stop bit that was received (5.8.4 c)).				
		In Mode 0 this bit is not used.			
s0con.1	ti0	Transmit interrupt flag	R/W		
		It indicates completion of a serial transmission at Serial Port 0.			
		It is set by hardware at the end of bit 8 in mode 0 or at the beginning of a stop bit in other modes. It must be cleared by software.			
s0con.0	s0con.0 ri0 Receive interrupt flag				
		It is set by hardware after completion of a serial reception at Serial Port 0.			
		It is set by hardware at the end of bit 8 in mode 0 or in the middle of a stop bit in other modes.			
		It must be cleared by software.			

Table 44. Serial Port 0 Modes and Baud Rates

sm0	sm1	Mode	Description		Baud Rate
0	0	Mode 0	shift register		Fclk/12
0	1	Mode 1	8-bit UART	Variable	e (details below the table)
1	0	Mode 2	9-bit UART	Depends or	s0mod1 (pcon.7) value
				s0mod1	Baud Rate
				0	Fclk/64
				1	Fclk/32
1	1	Mode 3	9-bit UART	Variable	e (details below the table)

The baud rate for Serial Port 0 working in modes 1 or mode 3:

baud rate =
$$\frac{2^{S0MOD1} * Fclk}{32} * (Timer 1 overflow rate)$$

2.4.38 S1BUF - Serial Port 1 Data Buffer

Address – 9Ch Reset value – 00h

optional register

Writing data to this register sets data in serial output buffer and starts the transmission through Serial Port 1. Reading from the S1BUF reads data from the serial receive buffer. S1BUF register is allocated in the SFR memory space when Serial Port 1 is selected during IP core configuration.

2.4.39 S1CON - Serial Port 1 Control Register

Address – 9Bh Reset value – 00h optional register

The S1CON register controls the function of the Serial Port 1.

S1CON register is allocated in the SFR memory space when Serial Port 1 is selected during IP core configuration.

Table 45. S1CON Register

Bit	Symbol	Description	Туре
s1con.7	sm	Serial Port 1 mode select	R/W
		sm = 0: Mode A selected for Serial Port 1 - 9-bit UART	
		sm = 1: Mode B selected for Serial Port 1 - 8-bit UART	
s1con.6	-	not used, read as 0	R
s1con.5	sm21	Multiprocessor communication enable (5.8.4 c)).	R/W
s1con.4	ren1	Serial reception enable	R/W
		If set HIGH serial reception at Serial Port 1 is enabled. Otherwise serial reception at Serial Port 1 is disabled.	
s1con.3	tb81	Transmitter bit 8	R/W
		This bit is used while transmitting data through Serial Port 1 in Mode A. The state of this bit corresponds with the state of the 9 th transmitted bit (e.g. parity check or multiprocessor communication). It is controlled by software.	
s1con.2	rb81	Received bit 8	R/W
		This bit is used while receiving data through Serial Port 1 in Mode A. It reflects the state of the 9 th received bit.	
		In Mode B, if multiprocessor communication is enabled (sm21 = 0), this bit is the stop bit that was received (5.8.4 c)).	

Bit	Symbol	Description	Туре			
s1con.1	ti1	Transmit interrupt flag	R/W			
		It indicates completion of a serial transmission at Serial Port 1.				
		It is set by hardware at the beginning of a stop bit in mode A or B. It must be cleared by software.				
s1con.0	ri1	Receive interrupt flag				
		It is set by hardware after completion of a serial reception at Serial Port 1.				
		It is set by hardware in the middle of a stop bit in mode A or B. It must be cleared by software.				

The baud rate for Serial Port 1:

band rate =
$$\frac{Fclk}{32*(2^{10} - s1rel)}$$

s1rel – the contents of S1REL registers (2.4.40)

2.4.40 S1RELH, S1RELL - Serial Port 1 Reload Register

S1RELL: S1RELH:

Address – 9Dh Address – BBh Reset value – 00h Reset value – 03h optional register optional register

Serial Port Reload Register is used for Serial Port 1 baud rate generation (page 63).

Only 10 bits are used. 8 bits from the S1RELL as lower bits and 2 bits from the S1RELH (s1relh.1, s1relh.0) as higher bits.

S1RELL and S1RELH registers are allocated in the SFR memory space when Serial Port 1 is selected during IP core configuration.

2.4.41 SPH, SP - Stack Pointer Registers

SPH: SP:

Address – BEh Address – 81h Reset value – 00h Reset value – 07h

Dword register DR60 is the stack pointer, SPX. The byte at location 63 in register file is the 8-bit stack pointer, SP, in the MCS 51 architecture. The byte at location 62 in register file is the stack pointer high, SPH. The two bytes allow the stack to extend to the top of memory region 00:. SP and SPH can be accessed as SFRs.

Two instructions, PUSH and POP directly address the stack pointer. Subroutine calls (ACALL, ECALL, LCALL) and returns (ERET, RET, RETI) also use the stack pointer. to preserve the stack, do not use DR60 as a general-purpose register.

2.4.42 SPCON - Serial Peripheral Control Register

Address – E2h Reset value – 14h

optional register

The Serial Peripheral Control Register is used to configure the SPI module. It selects the Master clock rate, configures the Module as Master or Slave, selects serial clock polarity and phase, enables the "ssn" input and enables/disables the whole SPI module.

SPCON register is allocated in the SFR memory space when SPI is selected during IP core configuration.

Table 46. SPCON Register

Bit	Symbol				Description	Туре			
spcon.7	spr2	Serial	Periph	eral Ra	ite 2	R/W			
		Togeth mode.	Together with "spr1" and "spr0" defines the clock rate in master mode.						
spcon.6	spen	Serial	Periph	eral En	able	R/W			
			When cleared disables the SPI interface. When set enables the SPI interface.						
spcon.5	ssdis	SS Dis	sable			R/W			
		modes Slave I In Slav	When cleared enables the "ssn" input in both Master and Slave modes. When set disables the "ssn" input in both Master and Slave modes. In Slave mode, this bit has no effect if "cpha"=0. When "ssdis" is set, no "modf" interrupt request will be generated.						
spcon.4	mstr	Serial	Periph	eral Ma	ester	R/W			
					es the SPI as a Slave.				
		When	set conf	igures tl	he SPI as a Master.				
spcon.3	cpol		Polarit	•		R/W			
					k" is set to 0 in idle state. set to 1 in idle state.				
spcon.2	cpha	Clock	Phase			R/W			
		idle sta	When cleared, data is sampled when the "scki"/"scko" leaves the idle state (see "cpol"). When set, data is sampled when the "scki"/"scko" returns to idle state (see "cpol").						
spcon.1	spr1			eral Ra		R/W			
spcon.0	spr0	Togeth	ner with	"spr2" s	specify the serial clock rate in Master mode.	R/W			
		spr2							
		0	0	0	Fclk / 2				
		0	0	1	Fclk / 4				
		0	1	0	Fclk / 8				
		0	1	1	Fclk / 16				
		1	0	0	Fclk / 32				
		1	0	1	Fclk / 64				
		1	- 						

Bit	Symbol				Description	Туре
		1	1	1	the master clock is not generated (when "cpol" = '1' on the "scko" output is high level, otherwise is low level)	

2.4.43 SPDAT - Serial Peripheral Data Register

Address – E3h Reset value – 00h

optional register

The SPDAT is a read/write buffer for the "receive data" register. While writing to the SPDAT data is placed directly into the shift register (there is no transmit buffer).

Reading the SPDAT returns the value located in the receive buffer, not the shift register.

SPDAT register is allocated in the SFR memory space when SPI is selected during IP core configuration.

2.4.44 SPSSN - Serial Peripheral Slave Select Register

Address – E4h Reset value – FFh

optional register

The SPSSN is a read/write register used to control the "spssn[7:0]" output bus of the core. Data written to this register is directly available on the "spssn" output. Each of its bits can be used to select a separate external SPI slave device.

The SPSSN register is allocated in the SFR memory space when SPI is selected during IP core configuration.

2.4.45 SPSTA - Serial Peripheral Status Register

Address – E1h Reset value – 00h

optional register

The SPSTA register contains flags to signal data transfer complete, Write collision and inconsistent logic level on "ssn" (slave select) pin (mode fault error).

SPSTA register is allocated in the SFR memory space when SPI is selected during IP core configuration.

Table 47. SPSTA Register

Bit	Symbol	Description	Туре			
spsta.7	spif	Serial Peripheral Data Transfer Flag	R			
		Set by hardware upon data transfer completion.				
		Cleared by hardware when data transfer is in progress. Can be also cleared by reading the "spsta" register with the "spif" bit set, and then reading the "spdat" register.				

Bit	Symbol	Description	Туре
spsta.6	wcol	Write Collision Flag	R
		Set by hardware upon write collision to "spdat".	
		Cleared by hardware upon data transfer completion when no collision has occurred. Can be also cleared by an access to "spsta" register and an access to "spdat" register.	
spsta.5	sserr	Synchronous Serial Slave Error Flag	R
		Set by hardware when "ssn" input is deasserted before the end of receive sequence.	
		Cleared by disabling the SPI module (clearing "spen" bit in "spcon" register).	
spsta.4	modf	Mode Fault Flag	R
		Set by hardware when the "ssn" pin level is in conflict with actual mode of the SPI_MS controller (configured as master while externally selected as slave).	
		Cleared by hardware when the "ssn" pin is at appropriate level. Can be also cleared by software by reading the "spsta" register with "modf" bit set.	
spsta.3	-	not used, read as 0	R
spsta.2			
spsta.1			
spsta.0			

2.4.46 SRST - Software Reset Register

Address – F7h Reset value – 00h optional register

The software reset will be accomplished through the SRST SFR register. The contents of this register are presented below.

Table 48. SRST Register

Bit	Symbol	Description	Туре
srst.7	-	not used, read as 0	R
srst.6	-		
srst.5	-		
srst.4	-		
srst.3	-		
srst.2	-		
srst.1	-		

Bit	Symbol	Description	Туре
srst.0	srstreq	Software reset request.	R/W
		Writing '0' value to this bit will have no effect.	
		Single writing '1' value to this bit will have no effect.	
		Double writing `1' value (in two consecutive instructions) will generate an internal software reset.	
		Reading this bit will inform about the reset source: if '0' – source of last reset sequence was not a software reset (hardware, watchdog or debugger reset); if '1' – source of last reset sequence was a software reset (caused by double writing '1' value to the "srstreg" bit).	

2.4.47 T2CON - Timer 2 (515) Control Register

Address – C8h Reset value – 00h optional register

T2CON register reflects the current status of R80251XC Timer 2 and it is used to control Timer 2 operation.

T2CON register is allocated in the SFR memory space when Timer 2 is selected during IP core configuration.

Table 49. T2CON Register

Bit	Symbol	Description	Туре
t2con.7	t2ps	Prescaler select	R/W
		t2ps = 0 - timer 2 is clocked with $1/12$ of the oscillator frequency.	
		t2ps = 1 - timer 2 is clocked with $1/24$ of the oscillator frequency.	
t2con.6	i3fr	Active edge selection for external interrupt "int3", (used also as compare and capture signal)	R/W
		0 - falling edge	
		1 - rising edge	
t2con.5	i2fr	Active edge selection for external interrupt "int2"	R/W
		0 - falling edge	
		1 - rising edge	
t2con.4	t2r1	Timer 2 reload mode selection:	R/W
		0X – reload disabled	
t2con.3	t2r0	10 – Mode 0	
		11 – Mode 1	
t2con.2	t2cm	Timer 2 copare mode selection	R/W
		0 – Mode 0	
		1 – Mode 1	
t2con.1	t2i1	Timer 2 input selection: (t2i1, t2i0)	R/W
		00 timer 2 stopped	

Bit	Symbol		Description			
t2con.0	t2i0	01	input frequency f/12 or f/24			
		10	timer 2 is incremented by falling edge detection at pin "t2"			
		11	input frequency f/12 or f/24 gated by external pin "t2"			

2.4.48 T2MOD - Timer 2 (251) Mode Control Register

Address – C8h Reset value – 00h optional register

T2MOD register is allocated in the SFR memory space when Timer 2 (251) is selected during IP core configuration.

2.4.49 TCON - Timers 0 & 1 - Timer/Counter Control Register

Address – 88h Reset value – 00h optional register

TCON register reflects the current status of R80251XC Timer 0 and Timer 1 and it is used to control operation of these modules.

TCON register is allocated in the SFR memory space when Timer 0 or Timer 1 is selected during IP core configuration.

Table 50. TCON Register

Bit	Symbol	Description	Туре
tcon.7	tf1	Timer 1 overflow flag Bit set by hardware when TIMER1 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.	R/W
tcon.6	tr1	TIMER1 Run control If cleared, Timer 1 stops.	R/W
tcon.5	tf0	Timer 0 overflow flag Bit set by hardware when Timer 0 overflows. This flag can be cleared by software and is automatically cleared when interrupt is processed.	R/W
tcon.4	tr0	Timer 0 Run control If cleared, Timer 0 stops.	R/W
tcon.3	ie1	External interrupt 1 flag Set by hardware, when external interrupt int1 (edge/level, depending on settings) is observed. Cleared by hardware when interrupt is processed.	R/W

Bit	Symbol	Description	Туре
tcon.2	it1	External interrupt 1 type control	R/W
		If set, external interrupt 1 is activated at falling edge on input pin. If cleared, external interrupt 1 is activated at low level on input pin.	
tcon.1	ie0	External interrupt 0 flag	R/W
		Set by hardware, when external interrupt int0 (edge/level, depending on settings) is observed. Cleared by hardware when interrupt is processed.	
tcon.0	it0	External interrupt 0 type control	R/W
		If set, external interrupt 0 is activated at falling edge on input pin. If cleared, external interrupt 0 is activated at low level on input pin.	

The tf0, tf1 (timer 0 and timer 1 overflow flags), ie1 and ie1 (external interrupt 0 and 1 flags) will be automatically cleared by hardware when the corresponding service routine is called.

2.4.50 TH0, TL0 – Timer 0 Registers

TH0: TL0:

Address - 8Ch Address - 8Ah
Reset value - 00h Reset value - 00h
optional registers optional registers

These registers reflect the state of Timer 0. TH0 holds higher byte and TL0 holds lower byte. Timer 0 can be configured to operate as either timer or counter.

TL0 and TH0 registers are allocated in the SFR memory space when Timer 0 is selected during IP core configuration.

2.4.51 TH1, TL1 – Timer 1 Registers

TL1: TH1:

Address - 8Dh Address - 8Bh
Reset value - 00h Reset value - 00h
optional register optional register

These registers reflect the state of Timer 1. TH1 holds higher byte and TL1 holds lower byte. Timer 1 can be configured to operate as either timer or counter.

TL1 and TH1 registers are allocated in the SFR memory space when Timer 1 is selected during IP core configuration.

2.4.52 TH2, TL2 – Timer 2 Registers

TL2: TH2:

Address - CCh Address - CDh
Reset value - 00h Reset value - 00h
optional register optional register

These registers reflect the state of Timer 2. TH2 holds higher byte and TL2 holds lower byte.

Timer 2 can be configured to operate in compare, capture or reload modes.

TL2 and TH2 registers are allocated in the SFR memory space when Timer 2 is selected during IP core configuration.

2.4.53 TMOD – Timers 0 & 1 Mode Register

Address – 89h Reset value – 00h optional register

TMOD register is used in configuration of R80251XC Timer 0 and TIMER1.

TMOD register is allocated in the SFR memory space when Timer 0 or Timer 1 is selected during IP core configuration.

Table 51. TMOD Register

Bit	Symbol	Description	Туре
tmod.7	gate	Timer 1 gate control	R/W
		If set, enables external gate control (pin "int(1)") for Counter 1. When "int(1)" is high, and "tr1" bit is set (Table 50), the Counter 1 is incremented every falling edge on "t1" input pin	
tmod.6	c/t	Timer 1 counter/timer select	R/W
		Selects Timer or Counter operation. When set to 1, a Counter operation is performed, when cleared to 0, the Timer/Counter 1 will function as a Timer.	
tmod.5	m1	Timer 1 mode	R/W
tmod.4	m0	Selects mode for Timer/Counter 1, as shown in table below.	
tmod.3	gate	Timer 0 gate control	R/W
		If set, enables external gate control (pin "int(0)") for Counter 0. When "int(0)" is high, and "tr0" bit is set (Table 50), the Counter 0 is incremented every falling edge on "t0" input pin	
tmod.2	c/t	Timer 0 counter/timer select	R/W
		Selects Timer or Counter operation. When set to 1, a Counter operation is performed, when cleared to 0, the Timer/Counter 0 will function as a Timer.	
tmod.1	m1	Timer 0 mode	R/W
tmod.0	m0	Selects mode for Timer/Counter 0, as shown in table below.	

Table 52. Timers/Counters Modes

m0	m1	Mode	Function
0	0	Mode 0	13-bit Counter/Timer, with 5 lower bits in tl0 (tl1) register and 8 bits in th0 (th1) register (for Timer 0 or Timer 1, respectively). Note, that unlike in 80C51, the 3 high-order bits of tl0 (tl1) are zeroed whenever Mode 0 is enabled.
0	1	Mode 1	16-bit Counter/Timer.

m0	m1	Mode	Function				
1	0	Mode 2	8 -bit auto-reload Counter/Timer. The reload value is kept in th0 (th1), while tl0 (tl1) is incremented every machine cycle. When tl0 (tl1) overflows, a value from th0 (th1) is copied to tl0 (tl1).				
1	1	Mode 3	For TIMER1: TIMER1 is stopped.				
			For TIMER0: Timer 0 acts as two independent 8 bit Timers / Counters – tl0, th0.				
			- tl0 uses the TIMER0 control bits and sets tf0 flag on overflow				
			 th0 operates as timer. It is enabled by tr1 bit and sets tf1 flag on overflow. 				

2.4.54 UCONFIG0, UCONFIG1 - User Configuration Registers

UCONFIG0: UCONFIG1:

Address – 91h Address – 92h
Reset value – FFh
Memory location – FF:FFF8h Memory location – FF:FFF9h

Configuration array is fetched after reset from memory at addresses FF:FFF8H to FF:FFFFH. The configuration bytes are located at locations FF:FFF8H and FF:FFF9H.

Table 53 Configuration Byte UCONFIG0

Bit	Symbol		Description						
uconfig0.7	ucon	Configu	Configuration Byte Location						
		80C251 t 0. This bit is	This bit is implemented only in the R80251XC-I version (Intel 80C251 timing-compatible). For R80251XC-T version, it is always 0. This bit is written during the first UCONFIG0 read performed after reset. After that, the second UCONFIG0 read and						
		UCONFIC	61 is per	formed:					
			from on-chip program memory, when 'ucon'=0 or when 'ea' pin=1 regardless of 'ucon' bit previously read.						
		- from of	f-chip pi	rogram memory when 'ucon'=1 and 'ea' pin=0.					
uconfig0.6 uconfig0.5	wsa1 wsa0		nal men	Il regions except 01:): nory accesses, selects the number of wait states wr.					
		wsa1	wsa1 wsa0 description						
		0	0 0 Inserts 3 wait states for all regions except 01:						
		0	0 1 Inserts 2 wait states for all regions except 01:						
		1	0	Inserts 1 wait state for all regions except 01:					
		1	1	Zero wait states for all regions except 01:					

Bit	Symbol			Description	n			Туре			
uconfig0.4	xale	This b		ed only in the R80 atible). For R8025				R/W			
		When	When 'xale'=1, the 'ale' output pulse takes a single clock cycle. When 'xale'=0, the 'ale' output pulse takes 3 clock cycles.								
uconfig0.3 uconfig0.2	rd[1:0]	These (Intel are all These	Memory Signal Selection These bits are implemented only in the R80251XC-I version (Intel 80C251 timing-compatible). For R80251XC-T version, they are always 0. These bits configure the size of External Memory and behaviour of p1, p3, psen and wr pins								
		rd	p1.7 (a17)	p3.7 (a16/rd)	psen	p3.6 (wr)	External Memory size				
		00 01 10	memaddr[17]	memaddr[16] memaddr[16]	all addresses	writes to all locations	256KB 128KB 64KB				
		11		`rd' for addresses below 0x7FFFFF	only addresses above or equal 0x800000	only writes to MCS51 XDATA locations	64KB, MCS51 compati ble				
uconfig0.1	page	This bit is implemented only in the R80251XC-I version (Intel 80C251 timing-compatible). For R80251XC-T version, it is always 0. If 'page'=0, the Page Mode is enabled and the address bits 15:8 are multiplexed with data bits 7:0 on port P2, while address bits 7:0 are put to port P0. If 'page'=1, the Page Mode is disabled and address bits 15:8 are put to port P2, while address bits 7:0 and data bits 7:0 are						R/W			
uconfig0.0	src	Source src = microc	-	ry Mode Select: de (compatible w		51		R/W			

Table 54. Configuration Byte UCONFIG1

Bit Symbol Description Type	Bit Sym	ool Description	Туре
-----------------------------	---------	-----------------	------

Bit	Symbol			Description		Туре
uconfig1.7 uconfig1.6 uconfig1.5		Not used,	read as 0			R
uconfig1.4	intr	the PC and	interrupt d PSW1).	s push 4 bytes onto the stack (the 3 bytes s push the 2 lower bytes of the PC onto the		R/W
uconfig1.3	wsb	Wait State B This bit is implemented only in the R80251XC-I version (Intel 80C251 timing-compatible). For R80251XC-T version, it is always 0. When 'wsb'=0, one additional external wait state is generated for memory region 01. When 'wsb'=1, no additional wait states are generated for region 01.			R/W	
uconfig1.2 uconfig1.1	wsb1 wsb0	External For extern	External Wait State B (Region 01:): For external memory accesses, selects the number of wait states for memrd, memwr.			
		wsb1	wsb0	description		R/W
		0	0	Inserts 3 wait states for region 01:		14, 44
		0	1	Inserts 2 wait states for region 01:		
		1	0	Inserts 1 wait state for region 01:		
		1	1	Zero wait states for region 01:		
uconfig1.0		Not used,	read as 1			R

2.4.55 WCON – Waitstate Control Register

Address – A7h Reset value – 00h

2.4.56 WDTRST - Watchdog Timer Reset Register

Address – A6h Reset value – 00h

optional register

The Watchdog component can be cleared and enabled by two consecutive writes (1Eh, E1h values) to the WDTRST register.

WDTRST register is allocated in the SFR memory space when Watchdog is selected during IP core configuration.

2.4.57 External Special Function Registers

The External Special Function Registers interface services up to 119 off-core special function registers. The off-core peripherals can use all addresses from the SFR address space range 80H to FFH except of those that are already implemented inside the core.

If an SFR is not implemented inside the core, it is routed to External Special Function Registers interface.

When a read instruction occurs with an address of an SFR, which has been implemented both inside and outside the core, the read will return the contents of the internal SFR.

When a write instruction occurs with an address of an SFR which has been implemented both inside and outside the core, both internal and external SFRs will be written.

The External SFR Interface is equipped with a wait-state mechanism, allowing to connect slower peripherals from outside. Each read or write operation on SFR can be completed only when an active "sfrack" is there at the rising edge of the CPU clock ("clkcpu"). Note that the "sfrack" affects all SFRs, internal and external. The external device should set '1' to that input by default, when internal registers are accessed. The "sfrack" signal must be synchronized to the "clkcpu" clock since it is used directly without pre-sampling inside the CPU.

2.5. External Memory Interface (R80251XC-T(F) only)

2.5.1 Interface Description

The R80251XC contains interface to External Memory which is used to access external data memory and program memory.

The interface consists of the 24-bit wide address bus "memaddr", the 8-bit input data bus "memdatai", the 8-bit output data bus "memdatao", and control signals "mempsrd", "mempswr", "memrd", "memwr". This interface should be used to access falling-edge triggered synchronous RAM, or asynchronous RAM if the write strobe is gated by the 'clkcpu' to ensure proper timing..

For rising-edge triggered SRAM, the additional output signals are provided: "memaddr_comb", "memdatao_comb", "mempsrd_comb", "mempswr_comb", "memrd_comb" and "memwr_comb". Data read from memory should be connected to the "memdatai" input.

The External Memory Interface provides hardware and software controlled wait states. The number of software controlled waitstates is defined by the UCONFIG0 and UCONFIG1 registers. Apart from that, there are "mempsack" and "memack" signals used to stretch each memory access by external hardware if necessary. An access can only be finished when the internal (software-controlled) wait state has finished and the corresponding memory acknowledge input is 1 at the rising edge of the "clkcpu".

2.5.2 Program Memory Read Cycle (Negedge SRAM)

The figure below shows an example read of the instruction at address N.

Figure 9. Program Memory Read Cycle (Negedge SRAM)

Note: N - address of actually executed instruction

(N) - instruction fetched from address N

Figure 10. Program Memory Read Cycle with 3 Wait States

Figure 11. Program Memory Read Cycle with 3 Wait States, Delayed by Mempsack

2.5.3 Program Memory Read Cycle (Posedge SRAM)

The figure below shows an example read of the instruction at address N.

Figure 12. Program Memory Read Cycle (Posedge SRAM)

Note: N - address of actually executed instruction

(N)

Figure 13. Program Memory Read Cycle with 3 Wait States (Posedge SRAM)

Figure 14. Program Memory Read Cycle with 3 Wait States Delayed by Mempsack(Posedge SRAM)

Program Memory Write Cycle (Negedge SRAM) 2.5.4

Figure 15. Program Memory Write Cycle (Negedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

addr - address of program memory being written

Data - data written at addr

Figure 16. Program Memory Write Cycle with 1 Wait State (Negedge SRAM)

Figure 17. Program Memory Write Cycle with 1 Wait State Delayed by Mempsack (Negedge SRAM)

2.5.5 Program Memory Write Cycle (Posedge SRAM)

Figure 18. Program Memory Write Cycle (Posedge SRAM)

Note: N - address of instruction performing write

(N) - instruction fetched from address N

N+1 - address of next instruction

addr - address of program memory being written

Data - data written at addr

Figure 19. Program Memory Write Cycle with 1 Wait State (Posedge SRAM)

Figure 20. Program Memory Write Cycle with 1 Wait State Delayed by Mempsack (Posedge SRAM)

2.5.6 External Data Memory Read Cycle (Negedge SRAM)

Figure 21. External Data Memory Read Cycle (Negedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory
Data - data read from address addr

Figure 22. External Data Memory Read Cycle with 3 Wait States (Negedge SRAM)

Figure 23. External Data Memory Read Cycle with 3 Wait States Delayed by Memack (Negedge SRAM)

2.5.7 External Data Memory Read Cycle (Posedge SRAM)

Figure 24. External Data Memory Read Cycle (Posedge SRAM)

Note: N - address of instruction performing a read

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory
Data - data read from address addr

Figure 25. External Data Memory Read Cycle with 3 Wait States (Posedge memory)

Figure 26. External Data Memory Read Cycle with 3 Wait States Delayed by Memack (Posedge memory)

2.5.8 External Data Memory Write Cycle (Negedge SRAM)

Figure 27. External Data Memory Write Cycle (Negedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of data memory being written

Data - data written at addr

Figure 28. External Data Memory Write Cycle with 1 Wait State (Negedge SRAM)

Figure 29. External Data Memory Write Cycle with 2 Wait States Delayed by Memack (Negedge SRAM)

2.5.9 External Data Memory Write Cycle (Posedge SRAM)

Figure 30. External Data Memory Write Cycle (Posedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of data memory being written

Data - data written at addr

Figure 31. External Data Memory Write Cycle with 1 Wait State (Posedge SRAM)

Figure 32. External Data Memory Write Cycle with 2 Wait States Delayed by Memack (Posedge SRAM)

2.5.10 External Data Memory Dword Read Cycle (Negedge SRAM)

clkcpu	
memaddr	N N+1 (addr) addr+1 (addr+2) addr+3 (N+2)
memdatai	(N) (N+1) \(\frac{1}{2}\) \(\f
memdatao	
mempsrd	
mempswr	
memrd	
memwr	

Figure 33. External Data Memory Dword Read Cycle (Negedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory
Data - data read from address addr

2.5.11 External Data Memory Dword Read Cycle (Posedge SRAM)

clkcpu	
memaddr_comb	N N+1 addr addr+1 addr+2 addr+3 N+2
memdatai	(N) \((N+1) \)\(data[31:24] \)\(data[23:16]\)\(data[15:8] \)\(data[7:0] \)\((N+2) \)
memdatao_comb	
mempsrd_comb	
mempswr_comb	
memrd_comb	
memwr_comb	

Figure 34. External Data Memory Dword Read Cycle (Posedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory
Data - data read from address addr

2.5.12 External Data Memory Dword Write Cycle (Negedge SRAM)

Figure 35. External Data Memory Dword Write Cycle (Negedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory

Data - data write to address addr

2.5.13 External Data Memory Dword Write Cycle (Posedge SRAM)

clkcpu	
memaddr_comb	N N+1 x addr x addr+1 x addr+2 x addr+3 x N+2 x
memdatai	(N) (N+1) (N+2)
memdatao_comb	data[31:24] (data[23:16])(data[15:8] (data[7:0]
mempsrd_comb	
mempswr_comb	
memrd_comb	
memwr_comb	

Figure 36. External Data Memory Dword Write Cycle (Posedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory

Data - data write to address addr

2.5.14 External Data Memory Word Read Cycle (Negedge SRAM)

Figure 37. External Data Memory Word Read Cycle (Negedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory
Data - data read from address addr

2.5.15 External Data Memory Word Read Cycle (Posedge SRAM)

Figure 38. External Data Memory Word Read Cycle (Posedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory

Data - data read from address addr

2.5.16 External Data Memory Word Write Cycle (Negedge SRAM)

Figure 39. External Data Memory Word Write Cycle (Negedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory

Data - data write to address addr

2.5.17 External Data Memory Word Write Cycle (Posedge SRAM)

Figure 40. External Data Memory Word Write Cycle (Posedge SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of external data memory

Data - data write to address addr

2.6. Internal Program Memory Interface (R80251XC-I(F) only)

2.6.1 Interface Description

The R80251XC-I(F) contains interface to Internal Program Memory.

The interface consists of the configurable width (13-bit by default) address bus "romaddr", the 8-bit input data bus "romdatai", the 8-bit output data bus "romdatao", and control signals "romrd", "romwr". This interface should be used to access both rising- or falling-edge triggered synchronous RAM/ROM, or asynchronous RAM if the write strobe is gated by the 'clkcpu' to ensure proper timing, or synchronous ROM. As each access takes at least two clock cycles, both rising or falling edge triggered memories can be used.

The Internal Program Memory Interface is mapped in the :FF page at address 0xFF:0000 when the 'ea' input is driven high. If the 'ea' is low, the Internal Program Memory is inaccessible.

The Internal Program Memory Interface provides software controlled wait states. The number of software controlled waitstates is defined by the UCONFIG0 and UCONFIG1 registers. An access can only be finished when the internal (software-controlled) wait state has finished.

2.6.2 Internal Program Memory Read Cycle (SRAM/ROM)

The figure below shows an example read of the instruction at address N.

Figure 41. Internal Program Memory Read Cycle (SRAM/ROM)

Note: N - address of an instruction

(N) - instruction fetched from address N

Figure 42. Program Memory Read Cycle with 3 Wait States

2.6.3 Program Memory Write Cycle (SRAM)

clkcpu	
romaddr	/ N / N+1 / Addr / N+2 / N+3 /
romdatao	(Data)
romrd	
romwr	
romdatai	(N) \((N+1) \) (N+2) \((N+3) \)

Figure 43. Internal Program Memory Write Cycle (SRAM)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of program memory being written

Data - data written at 'Addr'

Figure 44. Program Memory Write Cycle with 1 Wait State (SRAM)

2.7. External Memory Interface (R80251XC-I(F) only)

2.7.1 Interface Description

The R80251XC contains the multiplexed interface to External Memory which is used to access external data memory and program memory.

The interface consists of the Port0, Port2 and Port3, plus 'ale' and 'psen' signals. The R80251XC-I(F) version is limited to 18 bits of address bus available to the outside, as in the original Intel devices.

The External Memory Interface provides software controlled wait states. The number of software controlled waitstates is defined by the UCONFIG0 and UCONFIG1 registers. Note that one wait state always takes two clock cycles.

The functionality of the External Memory Interface depends on the UCONFIG0 and UCONFIG1 registers. For details, see section 2.4.54 .

The Code is always fetched with the 'psen' signal (low active). The memory is always written with the 'port3o[6]' signal (wr – write enable output). The Data Memory is read with the 'port3o[7]' signal (rd – read enable output).

2.7.2 Program Memory Read Cycle (R80251XC-I(F) only)

The figure below shows an example read of the instruction at address N in non-page mode (UCONFIG0.1 = 1), standard ALE (UCONFIG0.4 = 1) and no wait states.

Figure 45. Program Memory Read Cycle (R80251XC-I(F) version)

Note: N - address of an instruction

(N) - instruction fetched from address N

2.7.3 External Data Memory Read Cycle (R80251XC-I(F) only)

The figure below shows an example one byte data read in non-page mode (UCONFIG0.1 = 1), standard ALE (UCONFIG0.4 = 1) and no wait states.

Figure 46. External Data Memory Read Cycle (R80251XC-I(F) version)

Note: N - address of an instruction

(N) - instruction fetched from address N

N+1 - address of next instruction
Addr - address of memory being read

Data - data read from Addr

2.7.4 External Memory Write Cycle (R80251XC-I(F) only)

The figure below shows an example one byte write in non-page mode (UCONFIG0.1 = 1), standard ALE (UCONFIG0.4 = 1) and no wait states.

Figure 47. External Memory Write Cycle (R80251XC-I(F) version)

Note: N - address of an instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

Addr - address of memory being written

Data - data written at Addr

2.8. Internal Data Memory Interface

2.8.1 Interface Description

The R80251XC provides interface to the microcontroller's Internal Data Memory (which can be implemented as off-core rising-edge triggered synchronous RAM or register file). Note that when the CPU encounters a wait state, or for the R80251XC-I(F) version, the single read/write cycle takes multiple cycles, depending on the number of wait states, or two for the R80251XC-I(F).

2.8.2 Internal Data Memory Read Cycle

Figure 48. Internal Data Memory Read Cycle

Note: Addr - address of internal data memory
Data - data read from address addr

Figure 49. Internal Data Memory Read Cycle (Word Read)

Note: Addr - address of internal data memory

Data - data read from address addr

Figure 50. Internal Data Memory Read Cycle (Dword Read)

Note: Addr - address of internal data memory

Data - data read from address addr

2.8.3 Internal Data Memory Write Cycle

Figure 51. Internal Data Memory Write Cycle

Note: Addr - address of internal data memory

Data - data written into address addr

Figure 52. Internal Data Memory Write Cycle (Word Write)

Note: Addr - address of internal data memory

Data - data written into address addr

Figure 53. Internal Data Memory Write Cycle (Dword Write)

Note: Addr - address of internal data memory

Data - data written into address addr

It is possible that two consecutive write operations are performed to different addresses. It happens when a subroutine or interrupt call is executed and the Program Counter is pushed onto stack.

2.9. External Special Function Registers Interface

2.9.1 Interface Description

The R80251XC provides interface to External Special Function Registers (external to the microcontroller core).

Note that when the CPU encounters a wait state, or for the R80251XC-I(F) version, the single read/write cycle takes multiple cycles, depending on the number of wait states, or two for the R80251XC-I(F).

This interface can be easily adapted via an external wrapper to the AMBA™, VCI™ or OCP™ interfaces.

2.9.2 External SFR Read Cycle

clkcpu	
sfraddr	addr
sfrdatao	
sfrdatai	(data)
sfroe	
sfrwe	

Figure 54. External Special Function Register Read Cycle

Note: Addr - address of special function register - data read from address addr

Figure 55. External Special Function Register Read Cycle (Word Read)

Note: Addr - address of special function register

Data - data read from address addr

Figure 56. External Special Function Register Read Cycle (Dword Read)

Note: Addr - address of special function register

Data - data read from address addr

2.9.3 External SFR Write Cycle

Figure 57. External Special Function Registers Write Cycle

Figure 58. External Special Function Registers Write Cycle (Word)

Note: Addr - address of special function register - data written into address Addr (Word)

Figure 59. External Special Function Registers Write Cycle (Dword)

Note: Addr - address of special function register

Data - data written into address Addr (Dword)

2.10. Special Case

Read and write are similar, so this section contains only examples of read cycle.

2.10.1 Access to Sfrs (3 Bytes) and Internal RAM (1 Byte) - Dword

Example for this case is MOV Drk,dir8 where dir8 = 7DH

Figure 60. Access With Dir8 Addressing to SFR and IRAM

2.10.2 Access to Sfrs (2 Bytes) and Internal RAM (2 Byte) - Dword

Example for this case is MOV Drk,dir8 where dir8 = 7EH

Figure 61. Access With Dir8 Addressing to SFR and IRAM

2.10.3 Access to Sfrs (1 Bytes) and Internal RAM (3 Byte) – Dword

Example for this case is MOV Drk,dir8 where dir8 = 7FH

Figure 62. Access With Dir8 Addressing to SFR and IRAM

2.10.4 Access to Sfrs (1 Bytes) and Internal RAM (1 Byte) – Word

Example for this case is MOV Wrj,dir8 where dir8 = 7FH

Figure 63. Access With Dir8 Addressing to SFR and IRAM

2.10.5 Access to Internal RAM (1 Byte) and External RAM (1 Byte) – Word

Example for this case is MOV Wrj,dir16 where dir16 = 41FH

Figure 64. Access to IRAM and External RAM (Word)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

3FFH - address of internal data memory (logical address is 41FH)

datah - data read from address 3FFH from IRAM

datal - data read from address 00:0420H from external memory

2.10.6 Access to IRAM (2 Bytes) and External RAM (2 Bytes) – Dword

Example for this case is MOV Drk, dir16 where dir16 = 41EH

Figure 65. Access to IRAM and External RAM (Dword)

Note: N - address of instruction

(N) - instruction fetched from address N

N+1 - address of next instruction

data - data read from IRAM (3FEH, 3FFH) or external memory (00:0420H

and 00:0421H)

2.11. On-Chip Debug Support Interface

2.11.1 Interface Description

The R80251XC contains the interface to the On-Chip Debug Support compliant with IEEE1149.1 standard. Detailed description can be found in section OCDS 5.1.3 e).

2.12. Serial Interfaces

2.12.1 Serial 0 and Serial 1

The R80251XC contains up to two Serial Port Interfaces (UARTs). For details refer to the description of Serial Port 0 (5.8) and Serial Port 1 (5.9).

2.12.2 I2C Interface

The R80251XC contains an optional Inter-Integrated Circuit Bus (I2C[™]) Interface. For details refer to the full description of I2C component (5.17).

2.12.3 Secondary I2C Interface

The R80251XC contains an optional Secondary Inter-Integrated Circuit Bus ($I2C^{TM}$) Interface. It is identical (except for SFR locations & interrupt involved) to the primary I2C Interface, and can only be implemented when the primary interface is implemented too.

2.12.4 SPI Interface

The R80251XC contains an optional Perial Peripheral Interface (SPI). For details refer to the full description of SPI component (5.18).

^{*} Example: ramaddr = 3FEH when logical address is 41EH

2.13. Hold Interface

2.13.1 Interface Description

The R80251XC contains ythe HOLD interface. Detailed description can be found in section 5.1.3 e) (Hold Mode).

3. Programming Specification

3.1. Instruction Set

All R80251XC instructions are binary code compatible and perform the same functions as they do within the industry standard 8051. The following tables give a summary of instruction cycles of the R80251XC microcontroller core.

Table 55 and Table 56 contain notes on mnemonics used in Instruction Set tables.

Table 56 ... Table 60 show instruction hexadecimal codes, numbers of bytes and machine cycles that each instruction takes to be executed. Note the number of cycles is given for no program memory wait states.

Table 55. Notation For Instruction Operands

Symbol	Description
	Notation for Register Operands
@Ri	A memory location (00H–FFH) addressed indirectly via byte register
	R0 or R1
Rn	Working register R0-R7
Rm	Byte register R0-R15 of the currently selected register file
Rmd	Destination register
Rms	Source register
Wrj	Word register WR0, WR2,, WR30 of the currently selected register
	file
WRjd	Destination register
WRjs	Source register
@Wrj	A memory location (00:0000H–00:FFFFH) addressed indirectly through word register WR0–WR30
@WRj+dis16	Data RAM location (00:0000H-00:FFFFH) addressed indirectly
	through a word register (WR0–WR30) + displacement value, where
	the displacement value is from 0 to 64 Kbytes.
DRk	Dword register DR0, DR4,, DR28, DR56, DR60 of the currently selected register file
DRkd	Destination register
DRks	Source register
@Drk	A memory location (00:0000H–FF:FFFFH) addressed Indirectly through dword register DR0–DR28, DR56, DR60
@DRk+dis24	Data RAM location (00:0000H–FF:FFFFH) addressed indirectly through a dword register (DR0–DR28, DR56, DR60) + displacement value, where the displacement value is from 0 to 64 Kbytes
	Notation for Direct Addresses
dir8	An 8-bit direct address. This can be a memory address (00:0000H–00:00FFH) or an SFR address (S:00H - S:FFH).

Symbol	Description
dir16	A 16-bit memory address (00:0000H–00:FFFFH) used in direct addressing.
	Notation for Immediate Addressing
#data	An 8-bit constant that is immediately addressed in an instruction.
#data16	A 16-bit constant that is immediately addressed in an instruction.
#0data16	A 32-bit constant that is immediately addressed in an instruction. Upper word is filled with zeros.
#1data16	A 32-bit constant that is immediately addressed in an instruction. Upper word is filled with ones.
#short	A constant, equal to 1, 2, or 4, that is immediately addressed in an instruction.
	Notation for Bit Addressing
bit51	A directly addressed bit (bit number = 00H–FFH) in memory or an SFR. Bits 00H–7FH are the 128 bits in byte locations 20H–2FH in the on-chip RAM. Bits 80H–FFH are the 128 bits in the 16 SFR's with addresses that end in 0H or 8H: S:80H, S:88H, S:90H, , S:F0H, S:F8H.
bit	A directly addressed bit in memory locations 00:0000H–00:007FH or in any defined SFR. A binary representation of the bit number (0–7) within a byte.
	Notation for Destinations in Control Instructions
rel	SJMP and all conditional jumps include an 8-bit offset byte. Its range is +127/-128 bytes relative to the first byte of the following instruction
addr11	Destination address for ACALL or AJMP, within the same 2-Kbyte page of program memory as the first byte of the following instruction
addr16	Destination address for LCALL or LJMP, can be anywhere within the 64-Kbyte page of program memory address space
addr24	A 24-bit destination address. A destination can be anywhere within the 16-Mbyte address space.

3.1.1 Instructions in Functional Order

A shaded cell denotes an instruction in the MCS-251 architecture.

The number of instruction cycles is given as follows: A /B where.

A is the number of instruction cycles needed to execute instruction which is fetched from instruction queue register (number of cycles depends on dec_newinstr).

B is the number of instruction cycles needed to execute instruction which is fetched from External Memory (number of cycles depends on dec newinstr and dec phase block).

The table below doesn't take the waitstates into consideration.

Table 56. Arithmetic Operations

Mnemonic	Description		Cycles Bin/Src
ADD A,Rn	Add register to accumulator	1/2	1/2

Mnemonic	Description	Bytes Bin/Src	Cycles Bin/Src
ADD A,dir8	Add directly addressed data to accumulator	2/2	1 / 1
ADD A,@Ri	Add indirectly addressed data to accumulator	1/2	2/3
ADD A,#data	Add immediate data to accumulator	2/2	1/1
ADD Rmd,Rms	Add byte register to byte register	3 / 2	2/1
ADD WRjd,WRjs	Add word register to word register	3 / 2	3 / 2
ADD Drkd,DRks	Add dword register to dword register	3 / 2	5 / 4
ADD Rm,#data	Add immediate 8-bit data to byte register	4/3	3 / 2
ADD WRj,#data16	Add immediate 16-bit data to word register	5 / 4	4/3
ADD Drk,#0data16	Add 16-bit unsigned immediate data to dword register	5 / 4	6/5
ADD Rm,dir8	Add directly addressed data to byte register	4/3	3 / 2
ADD Wrj,dir8	Add directly addressed data to word register	4/3	4/3
ADD Rm,dir16	Add directly addressed data (64 K) to byte register	5 / 4	3 / 2
ADD Wrj,dir16	Add directly addressed data (64 K) to word register	5/4	4/3
ADD Rm,@WRj	Add indirectly addressed (64 K) data to byte register	4/3	3 / 2
ADD Rm,@DRk	Add indirectly addressed (16 M)data to byte register	4/3	4/3
ADDC A,Rn	Add register to accumulator with the carry flag	1/2	1/2
ADDC A,dir8	Add directly addressed data to accumulator with the carry flag	2/2	1/1
ADDC A,@Ri	Add indirectly addressed data to accumulator with the carry flag	1/2	2/3
ADDC A,#data	Add immediate data to accumulator with the carry flag	2/2	1 / 1
SUB Rmd,Rms	Subtract byte register from byte register	3 / 2	2/1
SUB WRjd,WRjs	Subtract word register from word register	3 / 2	3/2
SUB Drkd,DRks	Subtract dword register from dword register	3 / 2	5 / 4
SUB Rm,#data	Subtract immediate 8-bit data from byte register	4/3	3/2
SUB WRj,#data16	Subtract immediate 16-bit data from word register	5 / 4	4/3
SUB Drk,#0data16	Subtract 16-bit unsigned immediate data from dword register	5/4	6/5
SUB Rm,dir8	Subtract directly addressed data from byte register	4/3	3 / 2
SUB Wrj,dir8	Subtract directly addressed data from word register	4/3	4/3
SUB Rm,dir16	Subtract directly addressed data (64 K) from byte register	5 / 4	3 / 2
SUB Wrj,dir16	Subtract directly addressed data (64 K) from word register	5/4	4/3
SUB Rm,@WRj	Subtract indirectly addressed (64 K) data from byte register	4/3	3 / 2
SUB Rm,@DRk	Subtract indirectly addressed (16 M)data from byte register	4/3	4/3
SUBB A,Rn	Subtract register from accumulator with borrow	1/2	1/2
SUBB A,direct	Subtract directly addressed data from accumulator with borrow	2/2	1/1
SUBB A,@Ri	Subtract indirectly addressed data from accumulator with borrow	1/2	2/3
SUBB A,#data	Subtract immediate data from accumulator with borrow	2/2	1 / 1
INC A	Increment accumulator	1/1	1 / 1
INC Rn	Increment register	1/2	1/2
INC dir8	Increment directly addressed location	2/2	2/2
INC @Ri	Increment indirectly addressed location	1/2	3 / 4
INC DPTR	Increment data pointer	1/1	1 / 1

Mnemonic	Description	Bytes Bin/Src	Cycles Bin/Src
INC Rm,#short	Increment byte register by 1, 2, or 4	3 / 2	2/1
INC WRj,#short	Increment word register by 1, 2, or 4	3 / 2	2/1
INC DRk,#short	Increment dword register by 1, 2, or 4	3 / 2	4/3
DEC A	Decrement accumulator	1/1	1/1
DEC Rn	Decrement register	1/2	1/2
DEC direct	Decrement directly addressed location	2/2	2/2
DEC @Ri	Decrement indirectly addressed location	1/2	3 / 4
DEC Rm,#short	Decrement byte register by 1, 2, or 4	3 / 2	2/1
DEC WRj,#short	Decrement word register by 1, 2, or 4	3 / 2	2/1
DEC DRk,#short	Decrement dword register by 1, 2, or 4	3 / 2	4/3
MUL AB	Multiply A and B	1/1	5 / 5
MUL Rmd,Rms	Multiply byte register and byte register	3 / 2	6/5
MUL Wrjd, WRjs	Multiply word register and word register	3 / 2	12 / 11
DIV AB	Divide A by B	1/1	10 / 10
DIV Rmd,Rms	Divide byte register and byte register	3 / 2	11 / 10
DIV WRjd,WRjs	Divide word register and word register	3 / 2	21 / 20
DA A	Decimally adjust accumulator	1/1	1/1
CMP Rmd,Rms	Compare byte register with byte register	3 / 2	2/1
CMP WRjd,WRjs	Compare word register with word register	3 / 2	3 / 2
CMP DRkd,DRks	Compare dword register with dword register	3 / 2	5 / 4
CMP Rm,#data	Compare immediate 8-bit data with byte register	4/3	3 / 2
CMP WRj,#data16	Compare immediate 16-bit data with word register	5 / 4	4/3
CMP Drk,#0data16	Compare 16-bit zero-extended immediate data with dword register	5 / 4	6 / 5
CMP Drk,#1data16	Compare 16-bit one-extended immediate data with dword register	5 / 4	6 / 5
CMP Rm,dir8	Compare directly addressed data with byte register	4/3	3 / 2
CMP Wrj,dir8	Compare directly addressed data with word register	4/3	4/3
CMP Rm,dir16	Compare directly addressed data (64 K) with byte register	5/4	3 / 2
CMP Wrj,dir16	Compare directly addressed data (64 K) with word register	5/4	4/3
CMP Rm,@WRj	Compare indirectly addressed (64 K) data with byte register	4/3	3 / 2
CMP Rm,@DRk	Compare indirectly addressed (16 M)data with byte register	4/3	4/3

Table 57. Logic Operations

Mnemonic	Description	Bytes	Cycles
ANL A,Rn	AND (Logical AND) register to accumulator	1/2	1/2
ANL A,dir8	AND directly addressed data to accumulator	2/2	1/1
ANL A,@Ri	AND indirectly addressed data to accumulator	1/2	2/3
ANL A,#data	AND immediate data to accumulator	2/2	1 / 1
ANL dir8,A	AND accumulator to directly addressed location	2/2	2/2
ANL dir8,#data	AND immediate data to directly addressed location	3/3	3/3
ANL Rmd,Rms	AND byte register to byte register	3/2	2/1

Magazania	Description	Durboo	Cycles
Mnemonic	Description AND word assistant assistant	Bytes	Cycles
ANL WRjd,WRjs	AND word register to word register	3/2	3/2
ANL Rm,#data	AND immediate 8-bit data to byte register	4/3	3/2
ANL WRj,#data16	AND immediate 16-bit data to word register	5/4	4/3
ANL Rm,dir8	AND directly addressed data to byte register	4/3	3/2
ANL Wrj,dir8	AND directly addressed data to word register	4/3	4/3
ANL Rm,dir16	AND directly addressed data (64 K) to byte register	5/4	3/2
ANL Wrj,dir16	AND directly addressed data (64 K) to word register	5/4	4/3
ANL Rm,@WRj	AND indirectly addressed (64 K) data to byte register	4/3	3/2
ANL Rm,@DRk	AND indirectly addressed (16 M) data to byte register	4/3	4/3
ORL A,Rn	OR (Logical OR) register to accumulator	1/2	1/2
ORL A,dir8	OR directly addressed data to accumulator	2/2	1/1
ORL A,@Ri	OR indirectly addressed data to accumulator	1/2	2/3
ORL A,#data	OR immediate data to accumulator	2/2	1/1
ORL dir8,A	OR accumulator to directly addressed location	2/2	2/2
ORL dir8,#data	OR immediate data to directly addressed location	3/3	3/3
ORL Rmd,Rms	OR byte register to byte register	3 / 2	2/1
ORL WRjd,WRjs	OR word register to word register	3/2	3 / 2
ORL Rm,#data	OR immediate 8-bit data to byte register	4/3	3 / 2
ORL WRj,#data16	OR immediate 16-bit data to word register	5/4	4/3
ORL Rm,dir8	OR directly addressed data to byte register	4/3	3/2
ORL Wrj,dir8	OR directly addressed data to word register	4/3	4/3
ORL Rm,dir16	OR directly addressed data (64 K) to byte register	5/4	3/2
ORL Wrj,dir16	OR directly addressed data (64 K) to word register	5/4	4/3
ORL Rm,@WRj	OR indirectly addressed (64 K) data to byte register	4/3	3/2
ORL Rm,@DRk	OR indirectly addressed (16 M) data to byte register	4/3	4/3
XRL A,Rn	Exclusive OR (Logical Exclusive OR) register to accumulator	1/2	1/2
XRL A,dir8	Exclusive OR directly addressed data to accumulator	2/2	1/1
XRL A,@Ri	Exclusive OR indirectly addressed data to accumulator	1/2	2/3
XRL A,#data	Exclusive OR immediate data to accumulator	2/2	1/1
XRL dir8,A	Exclusive OR accumulator to directly addressed location	2/2	2/2
XRL dir8,#data	Exclusive OR immediate data to directly addressed location	3/3	3/3
XRL Rmd,Rms	Exclusive OR byte register to byte register	3/2	2/1
XRL WRjd,WRjs	Exclusive OR word register to word register	3/2	3/2
XRL Rm,#data	Exclusive OR immediate 8-bit data to byte register	4/3	3/2
XRL WRj,#data16	Exclusive OR immediate 16-bit data to word register	5/4	4/3
XRL Rm,dir8	Exclusive OR directly addressed data to byte register	4/3	3/2
XRL Wrj,dir8	Exclusive OR directly addressed data to byte register Exclusive OR directly addressed data to word register	4/3	4/3
XRL Rm,dir16	Exclusive OR directly addressed data to word register Exclusive OR directly addressed data (64 K) to byte register	5/4	3/2
XRL Wrj,dir16	Exclusive OR directly addressed data (64 K) to byte register Exclusive OR directly addressed data (64 K) to word register		
		5/4	4/3
XRL Rm,@WRj	Exclusive OR indirectly addressed (64 K) data to byte register	4/3	3/2
XRL Rm,@DRk	Exclusive OR indirectly addressed (16 M) data to byte register	4/3	4/3
CLR A	Clear accumulator	1/1	1/1
CPL A	Complement accumulator	1/1	1/1

Mnemonic	Description	Bytes	Cycles
RL A	Rotate accumulator left	1/1	1/1
RLC A	Rotate accumulator left through the carry flag	1/1	1/1
RR A	Rotate accumulator right	1/1	1/1
RRC A	Rotate accumulator right through the carry flag	1/1	1/1
SLL Rm	Shift byte register left	3/2	1/2
SLL WRj	Shift word register left	3/2	2/1
SRA Rm	Shift byte register right through the MSB	3/2	2/1
SRA WRj	Shift word register left through the MSB	3/2	2/1
SRL Rm	Shift byte register right	3/2	2/1
SRL WRj	Shift word register right	3/2	2/1
SWAP A	Swap nibbles within the accumulator	1/1	2/2

Table 58. Data Transfer Operations

Mnemonic	Description	Bytes	Cycles
MOV A,Rn	Move register to accumulator	1/2	1/2
MOV A,dir8	Move directly addressed data to accumulator	2/2	1/1
MOV A,@Ri	Move indirectly addressed data to accumulator	1/2	2/3
MOV A,#data	Move immediate data to accumulator	2/2	1/1
MOV Rn,A	Move accumulator to register	1/2	1/2
MOV Rn,dir8	Move directly addressed data to register	2/3	1/2
MOV Rn,#data	Move immediate data to register	2/3	1/2
MOV dir8,A	Move accumulator to direct	2/2	2/2
MOV dir8,Rn	Move register to direct	2/3	2/3
MOV dir8,dir8	Move directly addressed data to directly addressed location	3/3	3/3
MOV direct,@Ri	Move indirectly addressed data to directly addressed location	2/3	3 / 4
MOV direct,#data	Move immediate data to directly addressed location	3/3	3/3
MOV @Ri,A	Move accumulator to indirectly addressed location	1/2	3 / 4
MOV @Ri,dir8	Move directly addressed data to indirectly addressed location	2/3	3 / 4
MOV @Ri,#data	Move immediate data to indirectly addressed location	2/3	3 / 4
MOV DPTR,#data16	Load Data Pointer with a 16-bit immediate	3/3	2/2
MOV Rmd,Rms	Move byte register to byte register	3 / 2	2/1
MOV WRjd,WRjs	Move word register to word register	3 / 2	2/1
MOV Drkd,DRks	Move dword register to dword register	3 / 2	3 / 2
MOV Rm,#data	Move immediate 8-bit data to byte register	4/3	3 / 2
MOV WRj,#data16	Move immediate 16-bit data to word register	5 / 4	3 / 2
MOV Drk,#0data16	Move 16-bit zero-extended immediate data to dword register	5 / 4	5 / 4
MOV Drk,#1data16	Move 16-bit one-extended immediate data to dword register	5 / 4	5 / 4
MOV Drk,dir8	Move directly addressed data to dword register	4/3	6/5
MOV Drk,dir16	Move directly addressed (64 K) data to dword register	5 / 4	6/5

Mnemonic	Description	Bytes	Cycles
MOV Rm,dir8	Move directly addressed data to byte register	4/3	3 / 2
MOV Wrj,dir8	Move directly addressed data to word register	4/3	4/3
MOV Rm,dir16	Move directly addressed data (64 K) to byte register	5/4	3/2
MOV Wrj,dir16	Move directly addressed data (64 K) to word register	5/4	4/3
MOV Rm,@WRj	Move indirectly addressed (64 K) data to byte register	4/3	2/2
MOV Rm,@DRk	Move indirectly addressed (16 M)data to byte register	4/3	4/3
MOV WRjd,@WRjs	Move indirectly addressed (64 K) data to word register	4/3	4/3
MOV Wrj,@DRk	Move indirectly addressed (16 M) data to word register	4/3	5/4
MOV dir8,Rm	Move byte register to directly addressed data	4/3	4/3
MOV dir8,Wrj	Move word register to directly addressed data	4/3	5 / 4
MOV dir16,Rm	Move byte register to directly addressed data (64 K)	5/4	4/3
MOV dir16,Wrj	Move word register to directly addressed data (64 K)	5/4	5/4
MOV @Wrj,Rm	Move byte register to indirectly addressed (64 K) data	4/3	4/3
MOV @Drk,Rm	Move byte register to indirectly addressed (16 M) data	4/3	5/4
MOV @Wrjd,WRjs	Move word register to indirectly addressed (64 K) data	4/3	5 / 4
MOV @Drk,Wrj	Move word register to indirectly addressed (16 M) data	4/3	6/5
MOV dir8,DRk	Move dword register to directly addressed data	4/3	7/6
MOV dir16,DRk	Move dword register to directly addressed data (64 K)	5/4	7/6
MOV Rm,@WRj+dis16	Move indirectly addressed data with displacement value (64	5/4	6/5
MOV WRj,@WRj+dis16	K) to byte register Move indirectly addressed data with displacement value (64	5 / 4	7/6
MOV Rm,@DRk+dis24	K) to word register Move indirectly addressed data with displacement value (16	5 / 4	7/6
MOV WRj,@DRk+dis24	M) to byte register Move indirectly addressed data with displacement value (16	5 / 4	8 / 7
MOV @Wrj+dis16,Rm	M) to word register Move byte register to indirectly addressed data with	5 / 4	6 / 5
MOV @Wrj+dis16,Wrj	displacement value (64 K) Move word register to indirectly addressed data with	5 / 4	7/6
MOV @DRk+dis24,Rm	displacement value (64 K) Move byte register to indirectly addressed data with	5 / 4	7/6
MOV @DRk+dis24,Wrj	displacement value (16 M) Move word register to indirectly addressed data with displacement value (16 M)	5 / 4	8 / 7
MOVH Drk(hi),#data16	Move 16-bit immediate data into upper word of dword register	5 / 4	3 / 2
MOVS Wrj,Rm	Move byte register to word register with sign extension	3 / 2	2/1
MOVZ Wrj,Rm	Move byte register to word register with zero extension	3/2	2/1
MOVC A,@A+DPTR	Load accumulator with a code byte relative to DPTR	1/1	6/6
MOVC A,@A+PC	Load accumulator with a code byte relative to PC	1/1	6/6
MOVX A,@Ri	1) Move external RAM (8-bit addr.) to accumulator	1/2	4/5
MOVX A,@DPTR	1) Move external RAM (16-bit addr.) to accumulator	1/1	5/5
MOVX @Ri,A	1) Move accumulator to external RAM (8-bit addr.)	1/1	4/4
MOVX @RI,A	1) Move accumulator to external RAM (16-bit addr.)	·	5/5
,	` '	1/1	_
PUSH dir8	Push directly addressed data onto stack	2/2	2/2

Mnemonic	Description	Bytes	Cycles
PUSH #data	Push immediate data onto stack	4/3	4/3
PUSH #data16	Push 16-bit data immediate onto stack	5 / 4	5 / 5
PUSH Rm	Push byte register onto stack	3 / 2	4/3
PUSH WRj	Push word register onto stack	3 / 2	6/5
PUSH DRk	Push dword register onto stack	3 / 2	10 / 9
POP dir8	Pop directly addressed location from stack	2/2	3/3
POP Rm	Pop byte register from stack	3 / 2	3 / 2
POP WRj	Pop word register from stack	3 / 2	5 / 4
POP DRk	Pop dword register from stack	3/2	9/8
XCH A,Rn	Exchange register with accumulator	1/2	3 / 4
XCH A,dir8	Exchange directly addressed location with accumulator	2/2	3/3
XCH A,@Ri	Exchange indirect RAM with accumulator	1/2	4/5
XCHD A,@Ri	Exchange low-order nibbles of indirect and accumulator	1/2	4/5

Note:

Table 59. Program Branches

Mnemonic	Description	Bytes	Cycles
ACALL addr11	Absolute subroutine call	2/2	9/9
ECALL @DRk	Extended subroutine call, indirect	3 / 2	12 / 11
ECALL adr24	Extended subroutine call	5 / 4	14 / 13
LCALL @WRj	Long subroutine call, indirect	3 / 2	9/8
LCALL addr16	Long subroutine call	3/3	9 / 9
ERET	Extended subroutine return	3 / 2	6/6
RET	Return from subroutine	1/1	10 / 9
RETI (1)	Return from interrupt	1/1	6/6
AJMP addr11	Absolute jump	2/2	3/3
EJMP addr24	Extended jump	5 / 4	6/5
EJMP @DRk	Extended jump, indirect	3 / 2	7/6
LJMP @WRj	Long jump, indirect	3 / 2	6 / 5
LJMP addr16	Long jump	3/3	4 / 4
SJMP rel	Short jump (relative address)	2/2	3/3
JMP @A+DPTR	Jump indirect relative to the DPTR	1 / 1	5 / 5
JC rel	Jump if the carry flag is set	2/2	4 / 4
JNC rel	Jump if the carry flag is not set	2/2	4 / 4
JB bit,rel	Jump if directly addressed bit is set	5 / 4	7/6
JB bit51,rel	Jump if directly bit of 8-bit addressed location is set	3/3	5 / 5
JNB bit,rel	Jump if directly addressed bit is not set	5 / 4	7/6
JNB bit51,rel	Jump if directly bit of 8-bit addressed location is not set	3/3	5 / 5
JBC bit,rel	Jump if directly addressed bit is set and clear bit	5 / 4	10 / 9
JBC bit51,rel	Jump if directly bit of 8-bit addressed location is set and clear bit	3/3	7/7

 $^{^{1)}}$ External memory addressed by instructions in the MCS 51 architecture is in the region specified by DPXL (reset value = 01H).

Mnemonic	Description	Bytes	Cycles
JZ rel	Jump if accumulator is zero	2/2	5 / 5
JNZ rel	Jump if accumulator is not zero	2/2	5 / 5
JE rel	Jump if equal	3 / 2	5 / 4
JNE rel	Jump if not equal	3 / 2	5 / 4
JG rel	Jump if greater than	3 / 2	5 / 4
JLE rel	Jump if less than or equal	3 / 2	5 / 4
JSL rel	Jump if less than (signed)	3 / 2	5 / 4
JSLE rel	Jump if less than or equal (signed)	3 / 2	5 / 4
JSG rel	Jump if greater than (signed)	3 / 2	5 / 4
JSGE rel	Jump if greater than or equal (signed)	3 / 2	5 / 4
CJNE A,dir8,rel	Compare directly addressed data to accumulator and jump if not equal	3 / 3	5 / 5
CJNE A,#data,rel	Compare immediate data to accumulator and jump if not equal	3 / 3	5 / 5
CJNE Rn,#data,rel	Compare immediate data to register and jump if not equal	3 / 4	5/6
CJNE @Ri,#data,rel	Compare immediate data to ind. and jump if not equal	3 / 4	6/7
DJNZ Rn,rel	Decrement register and jump if not zero	2/3	5/6
DJNZ dir8,rel	Decrement directly addressed location and jump if not zero	3/3	6/6
TRAP (1)	Jump to the trap interrupt vector	2/1	10 / 9
NOP	No operation	1 / 1	1 / 1

Note:

When the instruction jumps to another address you should add one state to the number of cycle in the Table 59.

Table 60. Boolean Manipulation

Mnemonic	Description	Bytes	Cycles
CLR C	Clear the carry flag	1/1	1/1
CLR bit51	Clear directly addressed bit	2/2	2/2
CLR bit	Clear directly addressed bit	4/3	4/3
SETB C	Set the carry flag	1/1	1/1
SETB bit51	Set directly addressed bit	2/2	2/2
SETB bit	Set directly addressed bit	4/3	4/3
CPL C	Complement the carry flag	1/1	1/1
CPL bit51	Complement directly addressed bit	2/2	2/2
CPL bit	Complement directly addressed bit	4/3	4/3
ANL C,bit51	AND directly addressed bit to the carry flag	2/2	2/1
ANL C,bit	AND directly addressed bit to the carry flag	4/3	4/2
ANL C,/bit51	AND complement of directly addressed bit to the carry flag	2/2	2/1
ANL C,/bit	AND complement of directly addressed bit to the carry flag	4/3	4/2
ORL C,bit51	OR directly addressed bit to the carry flag	2/2	2/1
ORL C,bit	OR directly addressed bit to the carry flag	4/3	4/2

 $^{^{1)}}$ Number of cycle depend on the setting of "uconfig1.4" bit (see Table 54)

Mnemonic	Description	Bytes	Cycles
ORL C,/bit51	OR complement of directly addressed bit to the carry flag	2/2	2/1
ORL C,/bit	OR complement of directly addressed bit to the carry flag	4/3	4/2
MOV C,bit51	Move directly addressed bit to the carry flag	2/2	2/1
MOV C,bit	Move directly addressed bit to the carry flag	4/3	4/2
MOV bit51,C	Move the carry flag to directly addressed bit	2/2	2/1
MOV bit,C	Move the carry flag to directly addressed bit	4/3	4/2

3.1.2 Instructions in Hexadecimal Order

Table 61. Instructions in Hexadecimal Order For R80251XC

Opcode Bin.	Opcode Src.	Mnemonic	Opcode Bin.	Opcode Src.	Mnemonic
00 H	00 H	NOP	80 H	80 H	SJMP rel
01 H	01 H	AJMP addr11	81 H	81 H	AJMP addr11
02 H	02 H	LJMP addr16	82 H	82 H	ANL C,bit
03 H	03 H	RR A	83 H	83 H	MOVC A,@A+PC
04 H	04 H	INC A	84 H	84 H	DIV AB
05 H	05 H	INC dir8	85 H	85 H	MOV dir8,dir8
06 H	A506 H	INC @R0	86 H	A586 H	MOV dir8,@R0
07 H	A507 H	INC @R1	87 H	A587 H	MOV dir8,@R1
08 H	A508 H	INC R0	88 H	A588 H	MOV dir8,R0
09 H	A509 H	INC R1	89 H	A589 H	MOV dir8,R1
OA H	A50A H	INC R2	8A H	A58A H	MOV dir8,R2
OB H	A50B H	INC R3	8B H	A58B H	MOV dir8,R3
OC H	A50C H	INC R4	8C H	A58C H	MOV dir8,R4
0D H	A50D H	INC R5	8D H	A58D H	MOV dir8,R5
OE H	A50E H	INC R6	8E H	A58E H	MOV dir8,R6
OF H	A50F H	INC R7	8F H	A58F H	MOV dir8,R7
10 H	10 H	JBC bit,rel	90 H	90 H	MOV DPTR,#data16
11 H	11 H	ACALL addr11	91 H	91 H	ACALL addr11
12 H	12 H	LCALL addr16	92 H	92 H	MOV bit,C
13 H	13 H	RRC A	93 H	93 H	MOVC A,@A+DPTR
14 H	14 H	DEC A	94 H	94 H	SUBB A,#data
15 H	15 H	DEC dir8	95 H	95 H	SUBB A,dir8
16 H	A516 H	DEC @R0	96 H	A596 H	SUBB A,@R0
17 H	A517 H	DEC @R1	97 H	A597 H	SUBB A,@R1
18 H	A518 H	DEC R0	98 H	A598 H	SUBB A,R0
19 H	A519 H	DEC R1	99 H	A599 H	SUBB A,R1
1A H	A51A H	DEC R2	9A H	A59A H	SUBB A,R2
1B H	A51B H	DEC R3	9B H	A59B H	SUBB A,R3
1C H	A51C H	DEC R4	9C H	A59C H	SUBB A,R4
1D H	A51D H	DEC R5	9D H	A59D H	SUBB A,R5

Opcode	Opcode	Mnemonic	Opcode	Opcode	Mnemonic
Bin.	Src.	DEC DC	Bin.	Src.	CURP A DC
1E H	A51E H		9E H	A59E H	SUBB A,R6
1F H	A51F H	DEC R7	9F H	A59F H	SUBB A,R7
20 H	20 H	JB bit,rel	A0 H	A0 H A1 H	ORL C,/bit AJMP addr11
21 H	21 H	AJMP addr11 RET	A1 H A2 H		
22 H 23 H	22 H 23 H	RL A	A2 H	A2 H A3 H	MOV C,bit INC DPTR
24 H	24 H		A4 H	A4 H	MUL AB
25 H	25 H	ADD A,#data ADD A,dir8	A5 H	A4 H	ESC
26 H		ADD A,@R0	A6 H	A5A6 H	
27 H		ADD A,@R1	A7 H		MOV @R1,dir8
28 H		ADD A, RO	A8 H		MOV R0,dir8
29 H		ADD A,R1	A9 H	A5A9 H	MOV R1,dir8
29 H		ADD A,R2	AA H		MOV R2,dir8
2B H		ADD A,R3	AB H		MOV R3,dir8
2C H		ADD A,R4	AC H		MOV R4,dir8
2D H		ADD A,R5	AD H		MOV R5,dir8
2E H		ADD A,R6	AE H	A5AE H	·
2F H		ADD A,R7	AF H	A5AF H	MOV R7,dir8
30 H	30 H	JNB bit,rel	B0 H	B0 H	ANL C,/bit
31 H	31 H	ACALL addr11	B1 H	B1 H	ACALL addr11
32 H	32 H	RETI	B2 H	B2 H	CPL bit
33 H	33 H	RLC A	B3 H	B3 H	CPL C
34 H	34 H	ADDC A,#data	B4 H	B4 H	CJNE A,#data,rel
35 H	35 H	ADDC A,dir8	B5 H	B5 H	CJNE A,dir8,rel
36 H		ADDC A,@R0	B6 H		CJNE @R0,#data,rel
37 H		ADDC A,@R1	B7 H		CJNE @R1,#data,rel
38 H		ADDC A,R0	B8 H		CJNE R0,#data,rel
39 H		ADDC A,R1	B9 H	A5B9 H	
3A H		ADDC A,R2	ва н		CJNE R2,#data,rel
3B H		ADDC A,R3	вв н		CJNE R3,#data,rel
3C H		ADDC A,R4	вс н	А5ВС Н	· · · ·
3D H		ADDC A,R5	BD H	A5BD H	
3E H		ADDC A,R6	BE H	A5BE H	CJNE R6,#data,rel
3F H	A53F H	ADDC A,R7	BF H	A5BF H	CJNE R7,#data,rel
40 H	40 H	JC rel	C0 H	СО Н	PUSH dir8
41 H	41 H	AJMP addr11	C1 H	C1 H	AJMP addr11
42 H	42 H	ORL dir8,A	C2 H	C2 H	CLR bit
43 H	43 H	ORL dir8,#data	С3 Н	С3 Н	CLR C
44 H	44 H	ORL A,#data	C4 H	C4 H	SWAP A
45 H	45 H	ORL A,dir8	C5 H	C5 H	XCH A,dir8
46 H	A546 H	ORL A,@R0	C6 H	A5C6 H	XCH A,@R0
47 H	A547 H	ORL A,@R1	C7 H	A5C7 H	XCH A,@R1

Opcode Bin.	Opcode Src.	Mnemonic	Opcode Bin.	Opcode Src.	Mnemonic
48 H		ORL A,R0	C8 H		XCH A,R0
49 H		ORL A,R1	C9 H		XCH A,R1
4A H		ORL A,R2	CA H		XCH A,R2
4B H		ORL A,R3	СВН		XCH A,R3
4C H		ORL A,R4	ССН		XCH A,R4
4D H			CD H		XCH A,R5
4E H		ORL A,R6	CE H		XCH A,R6
4F H		ORL A,R7	CF H		XCH A,R7
50 H	50 H	JNC rel	D0 H	D0 H	POP dir8
51 H	51 H	ACALL addr11	D1 H	D1 H	ACALL addr11
52 H	52 H	ANL dir8,A	D2 H	D2 H	SETB bit
53 H	53 H	ANL dir8,#data	D3 H	D3 H	SETB C
54 H	54 H	ANL A,#data	D4 H	D4 H	DA A
55 H	55 H	ANL A,dir8	D5 H	D5 H	DJNZ dir8,rel
56 H	A556 H	ANL A,@R0	D6 H	A5D6 H	XCHD A,@R0
57 H	A557 H	ANL A,@R1	D7 H	A5D7 H	XCHD A,@R1
58 H	A558 H	ANL A,R0	D8 H	A5D8 H	DJNZ R0,rel
59 H	A559 H	ANL A,R1	D9 H	A5D9 H	DJNZ R1,rel
5A H	A55A H	ANL A,R2	DA H	A5DA H	DJNZ R2,rel
5B H	A55B H	ANL A,R3	DB H	A5DB H	DJNZ R3,rel
5C H	A55C H	ANL A,R4	DC H	A5DC H	DJNZ R4,rel
5D H	A55D H	ANL A,R5	DD H	A5DD H	DJNZ R5,rel
5E H	A55E H	ANL A,R6	DE H	A5DE H	DJNZ R6,rel
5F H	A55F H	ANL A,R7	DF H	A5DF H	DJNZ R7,rel
60 H	60 H	JZ rel	E0 H	E0 H	MOVX A,@DPTR
61 H	61 H	AJMP addr11	E1 H	E1 H	AJMP addr11
62 H	62 H	XRL dir8,A	E2 H	E2 H	MOVX A,@R0
63 H	63 H	XRL dir8,#data	E3 H	E3 H	MOVX A,@R1
64 H	64 H	XRL A,#data	E4 H	E4 H	CLR A
65 H	65 H	XRL A,dir8	E5 H	E5 H	MOV A,dir8
66 H	A566 H	XRL A,@R0	E6 H	A5E6 H	MOV A,@R0
67 H	A567 H	XRL A,@R1	E7 H	A5E7 H	MOV A,@R1
68 H	A568 H	XRL A,R0	E8 H	A5E8 H	MOV A,R0
69 H	A569 H	XRL A,R1	E9 H	A5E9 H	MOV A,R1
6A H	A56A H	XRL A,R2	EA H	A5EA H	MOV A,R2
6B H		XRL A,R3	EB H	A5EB H	MOV A,R3
6C H		XRL A,R4	EC H	A5EC H	MOV A,R4
6D H		XRL A,R5	ED H	A5ED H	MOV A,R5
6E H		XRL A,R6	EE H	A5EE H	MOV A,R6
6F H	A56F H	XRL A,R7	EF H	A5EF H	MOV A,R7
70 H	70 H	JNZ rel	F0 H	F0 H	MOVX @DPTR,A
71 H	71 H	ACALL addr11	F1 H	F1 H	ACALL addr11

Opcode Bin.	Opcode Src.	Mnemonic	Opcode Bin.	Opcode Src.	Mnemonic
72 H	72 H	ORL C,bit	F2 H	F2 H	MOVX @R0,A
73 H	73 H	JMP @A+DPTR	F3 H	F3 H	MOVX @R1,A
74 H	74 H	MOV A,#data	F4 H	F4 H	CPL A
75 H	75 H	MOV dir8,#data	F5 H	F5 H	MOV dir8,A
76 H	A576 H	MOV @R0,#data	F6 H	A5F6 H	MOV @R0,A
77 H	A577 H	MOV @R1,#data	F7 H	A5F7 H	MOV @R1,A
78 H	A578 H	MOV R0,#data	F8 H	A5F8 H	MOV R0,A
79 H	A579 H	MOV R1,#data	F9 H	A5F9 H	MOV R1,A
7A H	A57A H	MOV R2,#data	FA H	A5FA H	MOV R2,A
7B H	A57B H	MOV R3,#data	FB H	A5FB H	MOV R3,A
7C H	A57C H	MOV R4,#data	FC H	A5FC H	MOV R4,A
7D H	A57D H	MOV R5,#data	FD H	A5FD H	MOV R5,A
7E H	A57E H	MOV R6,#data	FE H	A5FE H	MOV R6,A
7F H	A57F H	MOV R7,#data	FF H	A5FF H	MOV R7,A

Table 62. Instructions in Hexadecimal Order For MCS-251

Opcode Bin.	Opcode Src.	Mnemonic	Opcode Bin.	Opcode Src.	Mnemonic
A508 H	08 H	JSLE rel	A588 H	88 H	
A509 H	09 H	MOV Rm,@Wrj+dis	A589 H	89 H	LJMP @WRj
					EJMP @DRk
A50A H	OA H	MOVZ Wrj,Rm	A58A H	8A H	EJMP addr24
A50B H	0B H	INC R,#short (1)	A58B H	8B H	
		MOV reg,ind			
A50C H	OC H		A58C H	8C H	DIV Rm,Rm
A50D H	0D H		A58D H	8D H	DIV WRj,WRj
A50E H	OE H	SRA reg	A58E H	8E H	
A50F H	OF H		A58F H	8F H	
A518 H	18 H	JSG rel	A598 H	98 H	LCALL@WRj
					ECALL @DRk
A519 H	19 H	MOV @WRj+dis,Rm	A599 H	99 H	ECALL addr24
A51A H	1A H	MOVS WRj,Rm	A59A H	9A H	
A51B H	1B H	DEC R,#short (1)	A59B H	9B H	
		MOV ind,reg			
A51C H	1C H		A59C H	9C H	SUB Rm,Rm
A51D H	1D H		A59D H	9D H	SUB WRj,WRj
A51E H	1E H	SRL reg	A59E H	9E H	SUB reg,op2 (2)
A51F H	1F H		A59F H	9F H	SUB DRk,DRk
A528 H	28 H	JLE rel	A5A8 H	A8 H	
A529 H	29 H	MOV Rm,@DRk+dis	A5A9 H	A9 H	Bit Instructions (3)
A52A H	2A H		A5AA H	AA H	ERET

Opcode	Opcode	Mnemonic	Opcode		Mnemonic
Bin.	Src.		Bin.	Src.	
A52B H	2B H	40000	A5AB H	AB H	AUU D. D.
A52C H	2C H	ADD Rm,Rm	A5AC H	AC H	MUL Rm,Rm
A52D H	2D H	ADD WRj,WRj	A5AD H	AD H	MUL WRj,WRj
A52E H	2E H	ADD reg,op2 (2)	A5AE H	AE H	
A52F H	2F H	ADD DRk,DRk	A5AF H	AF H	
A538 H	38 H	JG rel	A5B8 H	B8 H	
A539 H	39 H	MOV @DRk+dis,Rm	A5B9 H	B9 H	TRAP
A53A H	3A H		A5BA H	BA H	
A53B H	3B H		A5BB H	BB H	
A53C H	3C H		A5BC H	BC H	CMP Rm,Rm
A53D H	3D H		A5BD H	BD H	CMP WRj,WRj
A53E H	3E H	SLL reg	A5BE H	BE H	CMP reg,op2 (2)
A53F H	3F H		A5BF H	BF H	CMP DRk,DRk
A548 H	48 H	JSL rel	A5C8 H	C8 H	
A549 H	49 H	MOV WRj,@WRj+dis	A5C9 H	C9 H	
A54A H	4A H		A5CA H	CA H	PUSH op1 (4)
					MOV DRk,PC
A54B H	4B H		A5CB H	СВ Н	
A54C H	4C H	ORL Rm,Rm	A5CC H	СС Н	
A54D H	4D H	ORL WRj,WRj	A5CD H	CD H	
A54E H	4E H	ORL reg,op2 (2)	A5CE H	CE H	
A54F H	4F H		A5CF H	CF H	
A558 H	58 H	JSGE rel	A5D8 H	D8 H	
A559 H	59 H	MOV @WRj+dis,WRj	A5D9 H	D9 H	
A55A H	5A H		A5DA H	DA H	
A55B H	5B H		A5DB H	DB H	
A55C H	5C H	ANL Rm,Rm	A5DC H	DC H	POP op1 (4)
A55D H	5D H	ANL WRj,WRj	A5DD H	DD H	
A55E H	5E H	ANL reg,op2 (2)	A5DE H	DE H	
A55F H	5F H		A5DF H	DF H	
A568 H	68 H	JE rel	A5E8 H	E8 H	
A569 H	69 H	MOV WRj,@DRk+dis	A5E9 H	E9 H	
A56A H	6A H		A5EA H	EA H	
A56B H	6B H		A5EB H	EB H	
A56C H	6C H	XRL Rm,Rm	A5EC H	EC H	
A56D H	6D H	XRL WRj,WRj	A5ED H	ED H	
A56E H	6E H	XRL reg,op2 (2)	A5EE H	EE H	
A56F H	6F H		A5EF H	EF H	
A578 H	78 H	JNE rel	A5F8 H	F8 H	
A579 H	79 H	MOV @DRk+dis,WRj	A5F9 H	F9 H	
A57A H	7A H	MOV op1,reg (5)	A5FA H	FA H	
A57B H	7B H	,	A5FB H	FB H	

Opcode Bin.	Opcode Src.	Mnemonic	Opcode Bin.	Opcode Src.	Mnemonic
A57C H	7C H	MOV Rm,Rm	A5FC H	FC H	
A57D H	7D H	MOV WRj,WRj	A5FD H	FD H	
A57E H	7E H	MOV reg,op2 (2)	A5FE H	FE H	
A57F H	7F H	MOV DRk,DRk	A5FF H	FF H	

Note:

- $^{1)}$ R = Rm / WRj / DRk
- 2) op2 are defined in Table 63, Table 64 and Table 65.
 3) See Table 66 and Table 67.
 4) See Table 68.
 5) See Table 70

Table 63. Data Instruction

Instruction	Byt	te 0	В	yte 1	Byte	2	Byte 3
Oper Rmd,Rms	Х	С	md	ms			
Oper Wrjd,Wrjs	Х	D	jd/2	js/2			
Oper Drkd,Drks	Х	F	kd/4	ks/4			
Oper Rm,#data	Х	Е	m	0000	#da	ta	
Oper Wrj,#data16	Х	Е	j/2	0100	#data16	(high)	#data16 (low)
Oper Drk,#data16	Х	Е	k/4	1000	#data16	(high)	#data16 (low)
MOV Drk(h),#data16 MOV Drk,#1data16 CMP Drk,#1data16	7 7 B	A E E	k/4	1100	#data16	(high)	#data16 (low)
Oper Rm,dir8	Х	Е	m	0001	dir8 a	ddr	
Oper Wrj,dir8	Х	Е	j/2	0101	dir8 a	ddr	
Oper Drk,dir8	Х	Е	k/4	1101	dir8 a	ddr	
Oper Rm,dir16	Х	Е	m	0011	dir16 add	r (high)	dir16 addr (low)
Oper Wrj,dir16	Х	Е	j/2	0111	dir16 addr (high)		dir16 addr (low)
Oper Drk,dir16(1)	Х	Е	k/4	1111	dir16 addr (high)		dir16 addr (low)
Oper Rm,@Wrj	Х	Е	j/2	1001	m 00		
Oper Rm,@Drk	Х	Е	k/4	1011	m	00	

Note:

Table 64. High Nibble, Byte 0 Of Data Instruction

×	(oper
0010	2	ADD
1001	9	SUB
1011	В	CMP
0100	4	ORL
0101	5	ANL
0110	6	XRL

¹⁾ For this instruction, the only valid operation is MOV.

X		oper
0111	7	MOV

Table 65. Addressing Mode Support For Reg, Op2 Instructions

x	Operation	Rm,#data	Wrj,#data16	Drk,#0data16	Drk,#1data16	Rm,dir8	Wrj,dir8	Drk,dir8	Rm,dir16	Wrj,dir16	Drk,dir16	Rm,@Wrj	Rm,@Drk
2	ADD reg,op2	X	X	X		X	X		X	X		X	X
9	SUB reg,op2	X	X	X		X	X		X	X		X	X
В	CMP reg,op2	X	Х	х	х	X	х		х	X		X	х
4	ORL reg,op2	x	X			x	X		х	X		X	x
5	ANL reg,op2	Х	Х			Х	Х		х	Х		Х	х
6	XRL reg,op2	Х	X			х	Х		х	Х		Х	Х
7	MOV reg,op2	х	X	х	х	x	х	X	х	х	X	х	x

All of the bit instructions in the MCS 251 architecture have opcode A9.

Table 66. Bit Instructions

Instruction	Byt	te 0	Byte 1			Byte 2	Byte 3
Bit Instr (dir8)	Α	9	XXXX	0	bit	dir8 addr	rel addr

Table 67. High Nibble, Byte 1 Of Bit Instructions

XXXX	Bit Instruction
0001	JBC bit
0010	JB bit
0011	JNB bit
0111	ORL Cy,bit
1000	ANL Cy,bit
1001	MOV bit,Cy
1010	MOV Cy,bit
1011	CPL bit
1100	CLR bit
1101	SETB bit
1110	ORL Cy,/bit
1111	ANL Cy,/bit

Table 68. Push/Pop Instructions

Instruction	Byte 0	Byte 1	Byte 2	Byte 3
Tileti detion	Dyte 0	Dyte 1	Dyte 2	Dyte 5

Instruction	Byt	te 0	Byte 1		Byte 2	Byte 3
PUSH #data	С	Α	md	ms	#data	
PUSH #data16	C	Α	jd/2	js/2	#data16 (high)	#data16 (low)
PUSH Rm	С	Α	kd/4	ks/4		
PUSH Wrj	C	Α	m	0000		
PUSH Drk	C	Α	j/2	0100		
MOV Drk,PC	C	Α	k/4	1000		
POP Rm	D	Α	m	0001		
POP Wrj	D	Α	j/2	0101		
POP Drk	D	Α	k/4	1101		

Table 69. Control Instructions

Instruction	Byt	te 0	В	yte 1	Byte 2	Byte 3
EJMP addr24	8	Α	md	ms	#data	
ECALL addr24	9	Α	jd/2	js/2	#data16 (high)	#data16 (low)
LJMP @Wrj	8	9	kd/4	ks/4		
LCALL @Wrj	9	9	m	0000		
EJMP @Drk	8	8	j/2	0100		
ECALL @Drk	9	9	k/4	1000		
ERET	Α	Α				
JE rel	8	8	re	l addr		
JNE rel	7	8	re	l addr		
JLE rel	2	8	re	l addr		
JG rel	3	8	re	l addr		
JSL rel	4	8	re	l addr		
JSGE rel	5	8	rel addr			
JSLE rel	0	8	rel addr			
JSG rel	1	8	rel addr			
TRAP	В	9				

Table 70. Displacement/Extended Movs

Instruction	Byt	te O	В	yte 1	Byte 2	Byte 3
MOV Rm,@WRj+dis	0	9	m	j/2	dis[15:8]	
MOV Wrk,@WRj+dis	4	9	j/2	k2	dis[15:8]	
MOV Rm,@Drk+dis	2	9	m	k/4	dis[15:8]	
MOV WRj,@DRk+dis	6	9	j/2	k/4	dis[15:8]	
MOV @WRj+dis,Rm	1	9	m	j/2	dis[15:8]	
MOV @WRj+dis,WRk	5	9	j/2	k2	dis[15:8]	
MOV @DRk+dis,Rm	3	9	m	k/4	dis[15:8]	
MOV @DRk+dis,WRj	7	9	j/2	k/4	dis[15:8]	
MOVS WRj,Rm	1	Α	j/2	m		
MOVZ WRj,Rm	0	Α	j/2	m		

Instruction	Byt	e 0	В	yte 1	Byt	te 2	Byte 3
MOV WRj,@WRj	0	В	j/2	1000	j/2	0000	
MOV WRj,@DRk	0	В	k/4	1010	j/2	0000	
MOV @WRj,WRj	1	В	j/2	1000	j/2	0000	
MOV @DRk,WRj	1	В	k/4	1010	j/2	0000	
MOV dir8,Rm	7	Α	m	0001	dir8	addr	
MOV dir8,WRj	7	Α	j/2	0101	dir8	addr	
MOV dir8,DRk	7	Α	k/4	1101	dir8	addr	
MOV dir16,Rm	7	Α	m	0011	dir16 ad	dr (high)	dir16 addr (low)
MOV dir16,WRj	7	Α	j/2	0111	dir16 ad	dr (high)	dir16 addr (low)
MOV dir16,DRk	7	Α	k/4	1111	dir16 ad	dr (high)	dir16 addr (low)
MOV @WRj,Rm	7	Α	j/2	1001	m	0000	
MOV @DRk,Rm	7	Α	k/4	1011	m	0000	

Table 71. Inc/Dec Instructions

Instruction	Ву	te 0	Byte 1		
INC Rm,#short	0	В	m	00	SS
INC Wrj,#short	0	В	j/2	01	SS
INC Drk,#short	0	В	k/4	11	SS
DEC Rm,#short	1	В	m	00	SS
DEC Wrj,#short	1	В	j/2	01	SS
DEC Drk,#short	1	В	k/4	11	SS

Note:

Encoding for ss: ss – short

00 - 1

01 - 2

11 - 4

Table 72. Shifts Instructions

Instruction	By	te 0	Ву	te 1
SRA Rm	0	Е	m	0000
SRA Wrj	0	Е	j/2	0100
SRL Rm	1	Е	m	0000
SRL Wrj	1	Е	j/2	0100
SLL Rm	3	Е	m	0000
SLL Wrj	3	Е	j/2	0100

3.1.3 Read-Modify-Write Instructions

Instructions that read a byte from SFR or internal RAM, modify it and rewrite it back, are called "Read-Modify-Write" instructions. When the destination is an I/O port (P0), or a Port bit, these instructions read the output register rather than the pin.

A shaded cell denotes an instruction in the MCS-251 architecture.

Table 73. RMW Instructions

Mnemonic	Description
----------	-------------

Mnemonic	Description
ANL dir8,A	AND accumulator to direct
ANL dir8,#data	AND immediate data to direct
ORL dir8,A	OR accumulator to direct
ORL dir8,#data	OR immediate data to direct
XRL dir8,A	Exclusive OR accumulator to direct
XRL dir8,#data	Exclusive OR immediate data to direct
JBC bit51, rel	Jump if bit is set and clear bit
CPL bit51	Complement bit
INC dir8	Increment direct
DEC dir8	Decrement direct
DJNZ dir8,rel	Decrement and jump if not zero
MOV bit51,C	Move the carry flag to direct bit
CLR bit51	Clear bit
SETB bit51	Set bit
JBC bit, rel	Jump if bit is set and clear bit
CLR bit	Clear bit
SETB bit	Set bit
CPL bit	Complement bit
ANL c,bit	AND bit to carry flag
ANL c,/bit	AND bit to carry flag
ORL c,bit	OR bit to carry flag
ORL c,/bit	OR bit to carry flag
MOV bit,c	Move bit to carry flag

3.2. Procedure Calls, Interrupts, Exceptions

Detailed description of the interrupt structure implemented in the R80251XC is provided by specification of ISR subcomponent in section 5.2.

3.3. Device Configuration

The R80251XC provides user design flexibility by configuring certain operating features at device reset. These features fall into the following categories:

- external memory interface (wait state)
- source mode/binary mode opcodes
- selection of bytes stored on the stack by an interrupt

Wait state configurations provide 0, 1, 2, or 3 wait states.

The configuration of the MCS 251 microcontroller is established by the reset routine based on information stored in configuration bytes. The R80251XC microcontroller stores configuration information in two configuration bytes located in code memory.

Figure 66. Device Configuration After Reset

The R80251XC reserves the top eight bytes of the memory address map (FF:FFF8H–FF:FFFFH) for an eight-byte configuration array. The two lowest bytes of the configuration array are assigned to the user configuration bytes UCONFIG0 (FF:FFF8H) and UCONFIG1 (FF:FFF9H).

Bit definitions of UCONFIG0 and UCONFIG1 are provided in Table 53 and Table 54. The upper 6 bytes of the configuration array are reserved for future use.

4. Hardware specification

4.1. Block Diagram

Figure 67. R80251XC Block Diagram

4.2. Blocks Description

The structure of the R80251XC consists of:

- R80251XC_CPU— this unit contains the instruction register and instruction execution FSM,
 Program Counter and Data Pointer register, Stack Pointer register, the Arithmetic-Logic
 Unit with Accumulator, B and Program Status Word registers (ACC, B, PSW, PSW1) (to
 provide all arithmetic addition, subtraction, multiplication, division and logic bit- and
 byte-wise AND, OR, XOR operations, the Program and External Data Memory interface,
 the On-Chip Data Memory and Special Function Registers interface, and interface to On Chip Debug Support
- **ISR** Interrupt Service Routine, provides interrupt enable and priority registers, priority decoder and interrupt vector generation
- TIMERO –provides a flexible 16-bit timer/counter with control and status register
 optional
- TIMER1 –provides a flexible 16-bit timer/counter with control and status register
 optional
- **TIMER2_251** provides a flexible 16-bit timer/counter with control, status and reload/capture register optional
- **TIMER2_515** contains the 16-bit Timer 2 with Capture-Compare Unit (4 compare/capture modules), with control and status register optional
- **PCA** (Programmable Counter Array) contains the 16-bit Timer/Counter and Capture/Compare Registers (5 modules), with control and status registers optional
- **SERIALO** contains Serial Port 0, a flexible synchronous/UART controller compatible to standard 80C51 serial port, with additional baud rate generator optional
- **SERIAL1** provides the Serial Port 1, a simplified UART with its own baud rate generator optional
- **EXTINT** provides edge-detection hardware for all External Interrupts from 0 to 12 optional
- **WATCHDOG** system supervisor, generating microcontroller reset when not refreshed in specified time optional
- **DMA** Direct Memory Access Controller, with 1 to 8 independent channels optional
- PMURSTCTRL Power Management Unit with Reset Control Unit, generates clock gates for the main CPU and for peripherals, serves the Power Down Modes: IDLE and STOP; generates internal synchronous reset signal (upon external reset or watchdog timer overflow)
- WAKEUPCTRL Wake-Up From Power-Down Mode Control Unit, provides external interrupts "int0" and "int1" service during power-down modes, to be used by the PMURSTCTRL module
 optional
- PORTS parallel I/O port controller, serves up to 4 parallel 8-bit I/O ports to be used in combination with off-core buffers, compatible to classic 80C51, but without multiplexed memory feature and without alternate functions (if needed, to be combined off-core)

 optional
- **SYNCNEG** contains flip-flops to synchronize all asynchronous inputs such as hardware reset or external interrupts

- **SFRMUX** provides a common bus bultiplexer for all the internal and external Special Function Registers
- I2C provides a flexible master slave I2C interface optional
- **SEC_I2C** provides secondary master slave I2C interface optional
- SPI provides a flexible master slave SPI interface optional
- **OCDS** provides development functions such as run/stop/step control and software/hardware breakpoints of program execution optional
- RTC provides Real Time Clock function optional

4.3. Clocks

4.3.1 Clock Inputs

Table 74. R80251XC Clock Inputs

Clock	Туре	Polarity	Description
clkcpu	I	Rise	Engine clock
			Pulse for internal circuits, which are stopped when R80251XC is in IDLE or STOP mode
clkper	I	Rise	Peripheral clock
			Pulse for internal circuits, which are stopped when R80251XC is in STOP mode
tck	I	Rise/Fall	Test (Debug) Clock
			IEEE1149.1 port clock input.
rtcx	I	Rise/Fall	RTC Clock
			Pulse for the Real Time Clock (should be 32,768kHz).

- The "clkcpu" is a clock signal dedicated to main R80251XC modules like CPU, DMA, OCDS (On Chip Debug System) and SOFTRSTCTRL (Software Reset), which are stopped in both IDLE and STOP power-down modes. It should be generated outside the core the way that it runs when the "clkcpuen" output is active and stopped otherwise.
- The "clkper" is a clock signal dedicated to R80251XC peripheral modules like Interrupt Service Routine, Serial PORTS, Timers, Watchdog Timer, Multiplication/Division Unit, Parallel I/O PORTS, External Interrupts, I2C and SPI, which are stopped in the STOP mode. It should be generated outside the core the way that it runs when the "clkperen" output is active and stopped otherwise. Both "clkcpu" and "clkper" have to be balanced since there is no synchronization logic between their domains.
- The "tck" is a clock signal dedicated to R80251XC OCDS module. It is used to synchronize the transmission through OCDS port (IEEE1149.1 compliant). Both edges of this clock are used inside the OCDS module.
- The "rtcx" is a clock signal dedicated to R80251XC Real Time Clock module. It should be connected to a 32,768kHz oscillator to provide valid time count. The "rtcx" triggers the RTC time registers at the rising edge.

4.3.2 Clock Domains

There are up to four clock domains in the R80251XC.

The first domain, associated with the main system clock – "clk" – is composed of:

The first domain, associated with the "clkcpu" input, is composed of:

o R80251XC CPU

The second domain, associated with the "clkper" input, consists of:

- o ISR
- SERIALO
- SERIAL1
- TIMER0
- o TIMER1
- o TIMER2_515 or TIMER_251
- o PCA
- o EXTINT
- WATCHDOG
- PORTS
- o I2C
- o SPI_MS
- SYNCNEG

The third domain, associated with the "tck" input, consists of:

 \circ OCDS

The fourth domain, associated with the "rtcx" input, consists of:

o RTC

4.4. Reset

4.4.1 Reset Description

Upon reset, all the registers and flip-flops of the R80251XC are put into known state. See 2.4.2 for SFR reset values. The Program Memory, External Data Memory, On-Chip Data Memory (Internal Data Memory) and Special Function Register interface control outputs are set inactive. The Program Counter is loaded with zero. During reset, the "swd" input is sampled to enable or disable the "automatic start" of the Watchdog Timer, when selected during core configuration. Only the synchronization flip-flops gathered in the SYNCNEG module have no reset.

4.4.2 Power-On Reset

Power-on reset feature is not implemented in R80251XC.

4.4.3 Hardware Reset

The R80251XC core contains a single "reset" input. It should be active (high) for at least two periods of "clkper" clock to ensure that it will be sampled active at least once.

The "reset" input is routed to the **SYNCNEG** subcomponent and sampled there at every peripheral clock ("clkper") rising edge. The main internal synchronous "rst" signal is generated from the input samples of "reset", software reset, watchdog overflow and OCDS. The "rst" signal is routed to all clock domains in the core and it forces all synchronous logic to a known state.

Detailed description of reset generation can be found in paragraphs describing **SYNCNEG** and **PMURSTCTRL** subcomponent.

Additionally the R80251XC can be reset using the "trst" input to the OCDS module, if implemented. It is used asynchronously to reset the TAP machine of the OCDS, and also generates an internal reset to be OR-ed with the "rst" signal mentioned above.

If the Real Time Clock is implemented, there is the "rtcreset" input implemented to provide asynchronous reset to the flip-flops and registers which are triggered by the "rtcx" clock. Those registers / flip-flops should not be affected by the main hardware reset in order to maintain valid clock count despite of the system activity.

4.4.4 Software Reset

For more details on Software Reset feature see section 5.21. This feature is optional.

4.5. Power Management

4.5.1 Power Saving Modes

There are two power saving modes implemented in the R80251XC. For proper operation it is required that "clkcpu" and "clkper" inputs are off-core connected to "clk" gated by "clkcpuen" and "clkperen" outputs, respectively. The power down modes are controlled by the PCON register (see 2.4.29).

- **STOP mode** in this mode both "clkperen" and "clkcpuen" signals are disabled and gated clocks are stopped, causing all synchronous circuits driven by "clkcpu" and "clkper" to stop.
- **IDLE mode** in this mode only the main CPU is stopped. That means the Control Unit, ALU, Program/Data Memory interface and RAM/SFR interface are stopped. The "clkcpuen" is disabled, while the "clkperen" remains active.

4.6. Testability

4.6.1 On-Chip Test and Debug Features

The R80251XC provides the On-Chip Debug Support. This enables the following functions:

- run/stop control
- single-step mode
- software breakpoint
- debugger program
- hardware breakpoints
- access to all registers and memories
- program trace
- data trace

For detailed description of the functions above refer to section OCDS (5.20)

4.6.2 Design For Test

The design is strictly synchronous with positive-edge clocking. There are no internal tri-states. All the flip-flops in the design have synchronous reset (except for SYNCNEG module and RTC). Therefore scan insertion is straightforward.

4.6.3 Asynchronous Inputs

The following input signals should be externally (off-core) synchronized to prevent metastability problems. If synchronized to the system clock, the negative edge should be used.

Table 75. R80251XC Asynchronous Inputs

Name	Туре	Polarity	Description	
memack	I	High	Memory acknowledge	
sfrack	I	High	Special Function Register acknowledge	

All signals listed above have combinational logic between core input and internal flip-flops, due to architectural issues coming out of single-clock instruction cycle.

5. Subcomponents specification

5.1. R80251XC_CPU

5.1.1 Overview

The R80251XC_CPU is the main Central Processing Unit of the R80251XC. It is a compact, all-in-one module which integrates the following:

- Shared Program and External Data Memory interface (24-bit linear addressing)
- Interface to internal and external (regarding the whole R80251XC) Special Function Registers
- Internal Memory (up to 1024B of IRAM) interface
- Compact instruction decoder and instruction execution machine
- 8-bit ALU with addition, subtraction, logical operations, bit-wise operations,
 8 x 8 and 16 x 16 bit multiplication, 8 / 8 and 16 / 16 bit division
- 24-bit Program Counter (PC)
- 16-bit Stack Pointer (SPX)
- 24-bit Extended Data Pointer (DPX)
- Internal Wait-state generator
- Debug Interface to the OCDS module
- Interface to the PMURSTCTRL module to support the Power-Down modes IDLE and STOP.
- Debug Interface
- Interface to the SFR bus multiplexer for proper functionality of the Read-Modify-Write instructions on the 8-bit I/O ports (PORTS module)
- Interface to the Watchdog Timer (WATCHDOG module) to stop it in debug mode.
- Hold Interface
- DMA Interface

5.1.2 Pin Description

Table 76. R80251XC_CPU Pin Description

Name	Туре	Polarity Bus size	Description	
Global	signal	S		
clkcpu	I	Rise	Engine clock	
•			Synchronizes all sequential logic at the rising edge	
rst	I	High	Synchronous reset input	
			When active for at least 1 clock cycle, the CPU is reset at the rising edge of the "clkcpu"	
Progra	am and	External D	ata Memory Bus	
memdatai	I	8	Memory data input	
			Shared Program / External Data Memory data input	

Name	Ту	pe	Polarity Bus size	Description	
memaddr	C)	24	Memory address	
				Shared Program / External Data Memory address output	
memdatao	memdatao O		8	Memory data output	
				Data to be written to Program / External Data Memory	
mempsrd	C)	High	Program Memory read enable	
mempswr	C)	High	Program Memory write enable	
memrd	C)	High	External Data Memory read enable	
memwr	C)	High	External Data Memory write enable	
mempsack	I		High	Program Memory acknowledge	
memack	I		High	External Data Memory acknowledge	
movc_access	C)	High	Indicates Code Memory read by instruction, not to queue Used in R80251XC-I(F) version only	
codefetch_dis card	I		High	Cancels the actually completed code fetch Used in R80251XC-I(F) version only	
Progra	ım a	nd	External D	ata Memory Bus for Rising-Edge Triggered SRAM	
memaddr_com	nb	0	24	Memory address	
memdatao_cor	nb	0	8	Memory data output	
mempsrd_com	nb	0	High	Program Memory read enable	
mempswr_con	nb	0	High	Program Memory write enable	
memrd_comb)	0	High	External Data Memory read enable	
memwr_coml	memwr_comb O		High	External Data Memory write enable	
codefetch_con	codefetch_comb O		High	Denotes Code fetch to queue from code read by MOVC Used only in the R80251XC-I(F) version	
Power	Ma	nag	ement Uni	t signals	
cpu_resume	I		High	Resume input	
				Resumes the CPU from power-down mode	
	upt	Cor	troller (IS		
irq	I		High	Interrupt request input	
_				Forces a call to interrupt service routine pointed by "intvect"	
intvect	I		5	Interrupt vector input	
_				Used to generate the target address of interrupt service routine	
intcall	C)	High	Interrupt acknowledge signal	
				Indicates that the CPU is currently latching the "intvect" and that interrupt is in progress	
retiinstr	C)	High	Return from interrupt indicator	
instruction, to be used by the Interrupt Controller (ISR)					
			atus signal		
newinstr	C)	High	New instruction indicator	
				Indicates the 1 st cycle of a new instruction	
rmwinstr	C)	High	Read-Modify-Write instruction indicator	
				Indicates the CPU is executing a Read-Modify-Write kind of instruction	

Name	Туре	Polarity Bus size	Description	
waitstaten	0	Low	Waitstate indicator	
			When low, indicates that the CPU is performing a Wait State	
HOLD	Mode s	ignals		
hold	I	High	Hold Request	
holda	0	High	Hold Acknowledge	
		ace signals		
debugreq	I	High	Debug Request input Forces the CPU to stop program execution and enter the Debug	
			Mode	
debugprog	I	High	Debugger Program select input	
			Determines whether the instruction executed comes from the debugger logic or normal program, and therefore suppresses the incrementation of the Program Counter	
debugack	0	High	Debug Acknowledge output	
			Indicates that the CPU has stopped instruction execution and entered the Debug Mode	
codefetch	0	High	Instruction Fetch output	
			Indicates that there is a program memory read to the queue	
pcreg	0	24	Program Counter output	
flush	0	High	Queue Flush indicator Active when a jump occurs	
flush_comb	0	High	Queue Flush indicator Early, pre-register value	
lastcycle	0	High	Indicates the last cycle before a new instruction is decoded	
swbdreq	0	High	Software Breakpoint detection	
pcoutsample	0	High	Indicates when the "pcreg" output is valid (for Trace function)	
debuginstr	Ι	32	Instruction to be executed by setting 'debugstep' and 'debugprog'	
a5instr	I	High	Indicates the "prefix" instruction execution	
pipefull	0	8	Queue status indicator (each bit represents one level of the queue)	
pipeempty	0	4	Returns the number of bytes to be removed from queue in the next cycle, used for Trace and breakpoints	
watchdogstop	0	High	Stops the Watchdog when the CPU is in debug mode	
dr0_out	0	32	Contents of the DR0 register	
Intern	al (On-	Chip) Data	Memory & Special Function Registers Interface	
ramdatai	I	8	Internal (On-Chip) Data Memory Data Bus input Contains data read from memory	
sfrdatai	I	8	Special Function Registers Data Bus input	
J. Gata	-		Contains data read from Special Function Registers	
ramaddr	0	10	Internal (On-Chip) Data Memory address bus	
			Shared address bus for Internal (On-Chip) Data Memory	
ramaddr_sync	0	10	Internal (On-Chip) Data Memory address bus	
_ , -			The contents of "ramaddr" after a register, to be used by breakpoints/Trace	

Name	Туре	Polarity Bus size	Description	
sfraddr	0	8	SFR address bus	
			Shared address bus for Special Function Registers	
sfraddr_comb	0	8	SFR address bus	
			Early values (pre-register) of the "sfraddr" to be used in the Interrupt Controller (ISR)	
ramdatao	0	8	Internal (On-Chip) Data Memory bus output	
			Contains data to be written to Internal (On-Chip) Data Memory	
sfrdatao	0	8	SFR data bus output	
			Contains data to be written to Special Function Registers	
sfrdatao_com	0	8	SFR data bus output	
b			Early values (pre-register) of the "sfrdatao" to be used in the Interrupt Controller (ISR)	
ramoe	0	High	Internal (On-Chip) Data Memory Output Enable	
			Indicates a read access to the memory	
ramoe_sync	0	High	The contents of "ramoe" after a register, to be used by breakpoints/Trace	
ramwe	0	High	Internal (On-Chip) Data Memory Write Enable	
			Indicates a write access to the memory	
ramwe_sync	0	High	The contents of "ramwe" after a register, to be used by breakpoints/Trace	
sfroe	0	High	SFR Output Enable	
			Indicates a read access to the Special Function Register	
sfrwe	0	High	SFR Write Enable	
			Indicates a write access to the Special Function Register	
sfroe_comb	0	High	Early values (pre-register) of the "sfroe" to be used in the Ports module (only in R80251XC-I(F) version)	
sfrwe_comb	0	High	Early values (pre-register) of the "sfrwe" to be used in the Interrupt Controller (ISR)	
sfrack	I	High	SFR Read / Write Acknowledge	
CPU S	pecial F	unction Ro	egisters	
p2	0	High	Port 2 register	
			Contains the higher 8 bits of address for MOVX @Ri instructions	
acc	0	8	Accumulator Register	
			Used by most of the arithmetic and logic instructions as target	
b	0	8	B Register	
			Used by MUL and DIV instructions, or as a general purpose register	
rs_out	0	2	Register bank select	
			Select the working register bank of R0-R7 registers	
С	0	High	Carry flag	
			Carry bit in arithmetic operations and accumulator for Boolean operations	

Name	Туре	Polarity	Description	
	0	Bus size		
ac	0	High	Auxiliary Carry flag Set if there is a carry-out from 3 rd bit of Accumulator in BCD operations	
ov	0	High	Overflow flag	
			Set in case of overflow in Accumulator during arithmetic operations	
р	0	High	Parity flag Reflects the number of '1's (modulo 2) in the Accumulator	
f0	0	High	General purpose Flag 0 "psw.5" bit from PSW	
ud_out	0	High	User-definable Flag (General purpose Flag 1)	
_			"psw.1" bit from PSW	
n_out	0	High	Negative flag This bit is set if the result of the last logical or arithmetic operation was negative (i.e., bit 15 = 1). Otherwise it is cleared.	
z_out	0	High	Zero flag This flag is set if the result of the last logical or arithmetic operation is zero. Otherwise it is cleared.	
dpxl_out	0	8	Data Pointer Extended Low register DPXL is the lower byte of the upper word of the extended data pointer, DPX = DR56	
dph_out	0	8	Data Pointer High-order Byte register	
	_		Contains bits 15:8 of the Data Pointer Register	
dpl_out	0	8	Data Pointer Low-order Byte register	
	_	0	Contains bits 7:0 of the Data Pointer Register	
sp_out	0	8	Stack Pointer Register Points to the Top-of-stack	
sph_out	0	8	Stack Pointer High Register	
3pri_out			Stack Pointer High Register SPH is the upper byte of the lower word of DR60, the extended stack pointer (SPX).	
gf0	0	-	General Flag 0	
			Part of PCON register	
gf1	0	-	General Flag 1 Part of PCON register	
uconfig0_7_o ut	0	-	Part of PCON register Part of UCONFIGO (bit [7]) For readout, used in R80251XC-I(F) version only	
uconfig0_65_ out	0	2	Part of UCONFIGO (bits [6:5]) For readout	
uconfig0_41_ out	0	4	Part of UCONFIGO (bits [4:1]) For readout, used in R80251XC-I(F) version only	
uconfig0_0_o ut	0	-	Part of UCONFIGO (bit [0]) For readout	
uconfig1_4_o ut	0	-	Part of UCONFIG1 (bit [4]) For readout	

Name	Туре	Polarity Bus size	Description	
uconfig1_3_o ut	0	-	Part of UCONFIG1 (bit [3]) For readout, used in R80251XC-I(F) version only	
uconfig1_21_ out	0	2	Part of UCONFIG1 (bits [2:1]) For readout	
uconfig1_0_o ut	0	-	Part of UCONFIG1 (bit [0]) For readout, used in R80251XC-I(F) version only	
Power	Manag	ement Un	it signals	
stop	0	High	Stop Mode indicator	
			Used to turn-off the CPU and peripheral clocks	
idle	0	High	Idle Mode indicator	
			Used to turn-off the CPU clock	
stop1	0	High	Stop Mode flag	
			Used for PCON register readout only	
idle1	0	High	Idle Mode flag	
			Used for PCON register readout only	

5.1.3 Description

The functional blocks of the R80251XC_CPU are designed to provide high configurability, flexibility, readability and performance. This modular structure allows the following parameters to be introduced. The detailed description of functional sub-modules can be found further in this section. Also the exact timing of each instruction execution can be found further.

a) R80251XC_CPU Configuration

The R80251XC_CPU can be tuned-up to the target system requirements by using the following parameters (listed in alphabetical order), to be configured manually or with the use of dedicated proprietary configuration tool.

Table 77. R80251XC_CPU Parameters

Name	Туре	Valid values	Default value	Purpose
LEGACY_MODE	INTEGER	0,1	1	Enables/disables the implementation of the "Legacy", Intel 80C251-timing-compatible version (R80251XC-I(F)). When set to 0, the improved version is implemented (R80251XC-T(F)).
HOLD_IMPLEMENT	INTEGER	0,1	1	Enables/disables the implementation of the "hold" and "holda" signals.
OCDS_IMPLEMENT	INTEGER	0,1	1	Enables/disables the implementation of the On-Chip Debug Support
SRST_IMPLEMENT	INTEGER	0,1	1	Enables/disables the implementation of the Software Reset function
PMU_IMPLEMENT	INTEGER	0,1	1	Enables/disables the implementation of Power-Down mode flags of the "pcon" registers, to be used by the PMU module
PORT0_IMPLEMENT PORT1_IMPLEMENT PORT2_IMPLEMENT PORT3_IMPLEMENT	INTEGER	0,1	1	Enable/disable the implementation of the "rmwinstr" output signal which is required when at least one of the parameters is not zero
WATCHDOG_IMPLEMENT	INTEGER	0,1	1	Enables/disables the implementation of the "watchdogstop" output signal used to control the Watchdog Timer in debug mode

b) Program / External Data Memory Interface

The shared Program / External Data Memory interface is built of the following signals:

- "memaddr" 24-bit address bus output
- "memrd" External Memory Read Enable output
- "memwr" External Memory Write Enable output
- "memdatai" 8-bit Data input
- "memdatao" 8-bit Data output

The Program / External Data Memory interface is purely registered. Each of the output signals is connected directly to an output of a flip-flop/register, and the input data bus is captured directly into a register with synchronous write-enable signal.

c) Internal / External SFR Interface

The Special Function Interface consists of the following signals:

"sfraddr" 7-bit address bus output
"sfroe" SFR Read Enable output
"sfrwe" SFR Write Enable output
"sfrdatai" 8-bit SFR Data input

• "sfrdatao" 8-bit Data output, shared between SFR and IRAM interfaces

The Internal / External SFR output interface is purely registered. Each of the output signals is connected directly to an output of a flip-flop/register. The input data bus is subject to some combinational logic before it is captured into a register.

d) On-Chip RAM Interface

The On-chip RAM (aka. IRAM) Interface consists of the following signals:

• "ramaddr" 10-bit address bus output, shared between IRAM and SFR interface

"ramoe" SFR Read Enable output
 "ramwe" SFR Write Enable output
 "ramdatai" 8-bit SFR Data input

• "ramdatao" 8-bit Data output, shared between IRAM and SFR interfaces

The On-Chip RAM interface is built to support rising-edge triggered SRAM directly. The outputs are combinational early values from before the registers/flip-flops, to be captured by the memory itself. The input data bus is subject to some combinational logic before it is captured into a register.

e) Instruction Decoder and Execution Machine

The Central Processing Unit FSM is the core module of the R80251XC_CPU. Its job is to:

- initiate a program memory read operation (instruction is fetched from queue or from external memory),
- recognize whether there is a Debug Request ("debugreq"), and if so, stop program execution and return the "debugack",
- recognize whether there is an interrupt request ("irq"), and if so, break current program execution and perform a call to interrupt subroutine,
- decode an instruction and force control signals to ALU, SP, PC, DPTR and Program/XDATA, SFR, or IRAM interfaces; when an instruction requires more than one cycle to complete, the "phase" counter is incremented but the instruction register (top of queue) remains unchanged, and the FSM generates different outputs in different "phases"s; when the last "phase", which depends on the instruction, is reached, a new instruction is initiated and the process repeats again

The queue fetches successive bytes into internal registers if there is no access to external memory while the instruction is being executed. If there is a data memory read/write, the bus gets busy and instructions are not fetched to the queue. In the last state of an instruction, the queue is shifted by the number of bytes that the instruction consist of. In the last state of Calls, Returns and Jump instructions, all the bytes in the queue are removed and the instruction is fetched from a new address.

The Opcode is placed always in the register pipe[0]. All the operations that can occur within the CPU have their own decoder, which monitors the 'pipe[0]' signal. Together with the "phase" counter, the decoders occasionally enable several signals that direct the data frow between registers and arithmetic operations.

The main FSM also services several signals to the Debug Interface, Interrupt Controller, SFR Multiplexer and Watchdog Timer.

Debug Mode

The Debug Interface inputs are sampled at the beginning of a new instruction, at the same time as the instruction queue gets shifted after completing an instruction. If that sample is active, the FSM proceeds to the Debug Mode: it clears the instruction queue, suppresses program memory fetch, freezes the Program Couter value, and acknowledges using the "debugack" output. In that state, the "debugreq", "debugprog" and "debugstep" inputs are sampled at each clock cycle. The interrupt request is not taken into account in Debug Mode. When the "debugreq" becomes inactive, the FSM resumes program execution by initiating a new instruction fetch and disabling the acknowledge output ("debugack"). When the "debugstep" becomes active during the Debug Mode, the FSM works similary to the situation above but this time it is possible to freeze the state of the Program Counter, when the "debugprog" input was active during active "debugstep". This feature is used to force several instructions from outside to provide access to all resources of the R80251XC, without any influence on program flow. The "debugreq" input must remain active if only a single instruction is to be executed after "debugstep", otherwise the FSM proceeds normal operation as if there is no Debug Mode.

When the "debugreq" input goes active during the Power-Down Mode, it also requests clock resuming to the PMURSTCTRL and when the clock runs, it proceeds to the Debug Mode. The state of the Power-Down flags in the "pcon" register however remain unchanged. The debug interface can execute any instructions from user memory or inserted by debugger, and operate on memories or peripherals as usually. When the "debugreq" is disabled, the CPU returns to the Power-Down Mode as defined by flags in the "pcon" register. Those flags can also be modified by the debug interface.

clkcpu $\underline{\mathbf{9}}$ Sample ${\underline {\mathbb Q}}\,\mathsf{Sample}$ Sample ${\underline {\mathbb Q}} \, \mathsf{Sample}$ debugreq \mathcal{Q} Sample 9 Sample **♀Sample** ${\color{red} {\bf 9} \, {\bf Sample}}$ debugprog ${\displaystyle \underbrace{{}^{\circ}_{}}} Sample$ $\operatorname{\mathsf{\underline{Q}}}\operatorname{\mathsf{Sample}}$ Sample debugstep N+2 N+3 N+1 N+2 memaddr ADD A,#N (N+2) memdatai mempsrd fetch $\boldsymbol{\phi}$ Instruction loaded, but not executed ADD A,#N NOP NOP (N+2) instr debugack watchdogstop

Figure 68. CPU – Debug Request Timing

Figure 69. CPU - Single Step in Debug Mode Timing With User Program

Figure 70. CPU – Single Step in Debug Mode Timing With Debugger Program Hold Mode

The Hold Interface input is sampled at the beginning of a new instruction, at the same time as the instruction queue is shifted after completion of an instruction. If that sample is active, the FSM proceeds to the Hold Mode: it clears the instruction queue, suppresses program memory fetch, freezes the Program Couter, and acknowledges using the "holda" output. In that state, the "hold" input is sampled at each clock cycle.

The interrupt request is not taken into account in Hold Mode. If during the Hold Mode an interrupt occurs then the core activates "intoccur" output.

When the "hold" becomes inactive, the FSM resumes program execution by initiating a new instruction fetch and disabling the acknowledge output ("holda").

When the "hold" input goes active during the Power-Down Mode it proceeds to the Hold Mode and 'holda' output is activated. The state of the Power-Down flags in the "pcon" register remain unchanged. When the "hold" input is disabled, the CPU deactivates 'holda' output and returns to the Power-Down Mode as defined by flags in the "pcon" register.

If "hold" goes active in Debug Mode and there is no pending single step operation then 'debugack' output is deactivated, the core enters Hold Mode and 'holda' output is activated. When 'hold' input becomes incactive then 'holda' output is deactivated, the core enters Debug Mode and activates 'debugack' output or executes instructions if 'debugreq' input is inactive.

If "hold" goes active in Debug Mode when single-step is executed then step operation is finished, "debugack" stays inactive and "holda" acknowladge output is activated. The core enters Hold Mode. When the "hold" input becomes inactive "holda" output is deactivated, "debugack" goes active and the core enters into Debug Mode.

Figure 71. CPU - Hold Request Timing

Figure 72. CPU – Hold Request During Debug Mode

Figure 73. CPU – Hold Request During Single-Step Operation

Interrupts

The interrupt request input "irq" is sampled at the beginning of a new instruction, at the same time as the instruction queue is shifted after completion of an instruction. If that sample is active, and no Debug Mode request sample is active ("debugreq"=0), the the FSM proceeds the interrupt call: suppresses program memory fetch, pushes the Program Counter onto stack, loads the Program Counter with target interrupt vector, acknowledges using the "intcall" output for one clock period, and invokes back the instruction fetch. The actual interrupt vector is sampled at input "intvect" in exactly the cycle when "intcall" output is active, so that the Interrupt Controller (ISR module) can determine which vector was captured. The ISR should then remove the "irq" request immediately as it receives the "intcall", to prevent multiple interrupt call from single request.

When there was an instruction modifying one of the Interrupt Enable / Priority SFRs, the next following instruction is not interrupted. Therefore if there is a series of instructions writing to e.g. The "ien0" register, an interrupt can be acknowledged after the next instruction after that series.

The other signal which is used by the ISR is the "retiinstr". It goes active when the RETI (Return from Interrupt) instruction is executed by the FSM. It tells the ISR that an interrupt service subroutine has completed so that it can free its "interrupt in-service" register.

Figure 74. CPU - Interrupt Timing

I/O PORTS SFR control

The "rmwinstr" output is used by the SFRMUX module to select between the output register and port input when referring to "port0"..."port3" SFR for read. Since the so called "Read-Modify-Write" (RMW) instructions read data from output port register rather than port input as other instructions do, the Special Function Register multiplexer uses the "rmwinstr" signal to choose the proper register for read.

Figure 75. CPU - "Rmwinstr" Output Timing

f) Alu

The Arithmetic-Logic Unit integrated within the R80251XC_CPU consists of the following blocks designed to perform different kinds of operations on 8-bit, 16-bit and 32-bit data:

- basic arithmetic/logic operations
 - addition with or without carry
 - subtraction with or without borrow
 - o incrementation / decrementation
 - o logical AND, OR, XOR, negation
 - o rotate left / right through carry or without carry
 - o nibble-swap / nibble write / pass-through / zero
- bit-wise logic operations
 - o set / clear / complement / move bit
 - AND / OR bit by carry / not carry
- advanced arithmetic operations
 - decimal adjust
 - multiplication
 - o division

The ALU serves arithmetic/logic operations desired by particular instructions, both explicit and implicit. The explicit are e.g. addition in ADD instructions, the implicit are e.g. pass-through operations in MOV instructions, subtractions used for comparison in CJNE instructions.

g) Program Counter

The 24-bit Program Counter is used to generate the Program Memory address during instruction fetch operation. Its contents is copied to the Program / External Data Memory interface and then incremented.

h) Extended Stack Pointer

The 16-bit Extended Stack Pointer is an internal SFR used to address the On-chip Memory (IRAM) or External Ram when operating as a software stack. When the CPU is executing a PUSH or CALL or interrupt service, it forces the Stack Pointer to increment. When executing a POP or RET, the Stack Pointer gets decremented.

i) Extended Data Pointer

While instructions in the MCS 51 architecture always use DPTR as the data pointer, instructions in the MCS 251 architecture can use any word or dword register as a data pointer. DPXL, the byte in location 57, specifies the region of memory (00:–FF:) that maps into the 64-Kbyte external data memory space in the MCS 51 architecture. in other words, the MOVX instruction addresses the region specified by DPXL when it moves data to and from external memory.

Instructions in the MCS® 51 architecture use DPTR for data moves, code moves, and for a jump instruction (JMP @A+DPTR).

j) PMU Interface

The R80251XC_CPU contains the "idle" and "stop" flags of the "pcon" register (see 2.4.29). They are implemented depending on the IP core configuration, see Table 77. When any of these is set using the SFR interface, the "cpu_stop" signal is activated to suppress new instruction fetch and execution. The main FSM of the R80251XC_CPU enters the state when fetch is not performed, the instruction queue is cleared, and all bus control signals (write / read strobes) are inactive. After that, the actual "idle" or "stop" output of the R80251XC_CPU is activated, so that the PMU module can safely turn off the CPU clock ("clkcpu"). to resume the R80251XC_CPU operation, the PMU activates the "cpu_resume" signal which clears the "fsm halt" mentioned above and the CPU starts instruction fetch again.

Figure 76. CPU - Power-Down Mode Timings

5.2. ISR

5.2.1 ISR Overview

The **ISR** - Interrupt Service Routine unit, is a subcomponent responsible for interrupt handling. It receives up to 21 interrupt requests. Each interrupt source has its own request flag that is located in devices which is a source of interrupt. No interrupt request flags are located directly in ISR. All interrupts are requested by high level on correspondent inputs to ISR.

Each of the interrupt sources can be individually enabled or disabled by corresponding enable flag in "ien0", "ien1", "ien2" and "ien4" SFR register. Additionally all interrupts can be globally enabled or disabled by the "ea" flag in the "ien0" SFR.

All interrupt sources are divided into 7 interrupts groups. Each of the interrupt groups can have one of four interrupt priority levels assigned. The interrupt priority level is defined by flags located in the "ip0" and "ip1" SFR registers.

5.2.2 ISR Pin Description

Table 78. ISR Pin Description

Name	Туре	Polarity Bus size	Description	
clkper	I	Rise	Clock input	
			Triggers all internal synchronous elements at the rising edge	
rst	I	High	Synchronous reset input	
			When active for at least 1 clock cycle, the ISR is reset at the rising edge of the "clkper"	
intcall	I	High	Interrupt Call	
			Signal set by CPU. It is high for one clock cycle when CPU is in interrupt acknowledge cycle, and when it reads interrupt vector.	
retiinstr	I	High	RETI request	
			Signal set by CPU when it executes RETI instruction	
isr_tm	I	High	ISR Test Mode input	
			When set to 1, the interrupt vectors assigned to Timer 0 & 1, Serial Port 0 & 1, SPI and I2C interfaces can be triggered only with the use of external inputs of the core (for verification purposes)	
int_vect_03	I	High	Interrupt request 0	
			Interrupt request input. When it is high, it indicates that some device needs service. If this interrupt is enabled then request to the CPU and the corresponding vector are generated. to assure that interrupt will be accepted by CPU it must be kept high as long as corresponding interrupt acknowledge signal is generated.	
			The following "int_vect_xx" inputs represent the other 21 interrupt sources, where the last part of their name indicates the actial interrupt vector address.	
int_vect_0B	I	High	Interrupt request 1	
int_vect_13	I	High	Interrupt request 2	
int_vect_1B	I	High	Interrupt request 3	
int_vect_23	I	High	Interrupt request 4	

Name	Туре	Polarity	Description			
	7,10	Bus size				
int_vect_2B	I	High	Interrupt request 5			
int_vect_33	I	High	Interrupt request 18			
int_vect_43	I	High	Interrupt request 6			
int_vect_4B	I	High	Interrupt request 7			
int_vect_53	I	High	Interrupt request 8			
int_vect_5B	I	High	Interrupt request 9			
int_vect_63	I	High	Interrupt request 10			
int_vect_6B	I	High	Interrupt request 11			
int_vect_EB	I	High	Interrupt request 29			
int_vect_83	I	High	Interrupt request 12			
int_vect_8B	I	High	Interrupt request 13			
int_vect_93	I	High	Interrupt request 14			
int_vect_9B	I	High	Interrupt request 15			
int_vect_A3	I	High	Interrupt request 16			
int_vect_AB	I	High	Interrupt request 17			
int_vect_BB	I	High	Interrupt request 23			
irq	0	High	Interrupt request output			
			Interrupt request to the CPU. When it is active, it indicates that one or more devices need service.			
intvect	0	5	Interrupt Vector			
			Interrupt vector is an 5-bit value that CPU uses to generate the address of interrupt service subroutine. The CPU reads this value when interall signal is set to high.			
int_ack_03	0	High	Interrupt acknowledge 0 output			
			Interrupt acknowledge signal. It is generated for one clock cycle. When high indicates that CPU has accepted interrupt request and now it calls to corresponding interrupt service subroutine.			
int_ack_0B	0	High	Interrupt acknowledge 1			
int_ack_13	0	High	Interrupt acknowledge 2			
int_ack_1B	0	High	Interrupt acknowledge 3			
int_ack_43	0	High	Interrupt acknowledge 6			
int_ack_4B	0	High	Interrupt acknowledge 7			
int_ack_53	0	High	Interrupt acknowledge 8			
int_ack_5B	0	High	Interrupt acknowledge 9			
int_ack_63	0	High	Interrupt acknowledge 10			
int_ack_6B	0	High	Interrupt acknowledge 11			
int_ack_8B	0	High	Interrupt acknowledge 13			
int_ack_93	0	High	Interrupt acknowledge 14			
int_ack_9B	0	High	Interrupt acknowledge 15			
int_ack_A3	0	High	Interrupt acknowledge 16			
int_ack_AB	0	High	Interrupt acknowledge 17			
int_ack_BB	0	High	Interrupt acknowledge 23			

Name	Туре	Polarity Bus size	Description	
is_reg	0	4	Interrupt in Service register Returns the priority level of the interrupt actually being in service. Used to generate an interrupt in the power-down mode	
ip0	0	7	Interrupt Priority register 0 (IPL0) Output of Interrupt Priority 0 SFR register. Only the bits used for interrupt handling purpose are implemented in the ISR (7 bits).	
ip1	0	7	Interrupt Priority register 1 (IPH0) Output of Interrupt Priority 1 SFR register. Only the bits used for interrupt handling purpose are implemented in the ISR (7 bits).	
ien0	0	7	Interrupt Enable register 0 Interrupt Enable 0 SFR register output.	
ien1	0	6	Interrupt Enable register 1 Interrupt Enable 1 SFR register output.	
ien2	0	6	Interrupt Enable register 2 Interrupt Enable 2 SFR register output.	
ien4	0	6	Interrupt Enable register 4 Interrupt Enable 4 SFR register output.	
sfraddr	I	7	SFR register Address bus Address of SFR register that CPU wants to read from or write to.	
sfrdatai	I	8	SFR input data bus Data that CPU wants to write to SFR register. Destination register is selected by address on sfraddr bus.	
sfrwe	I	High	SFR write enable Write enable signal to SFR registers. When it is active (high) the CPU writes data (from sfrdatai) to register selected by address on the "sfraddr".	

5.2.3 ISR Block Diagram

Figure 77. ISR Block Diagram

5.2.4 ISR Description

a) ISR Special Function Registers Block

The following SFR registers are located in the ISR:

- ien0 ien1 ien2 ien4 interrupt enable registers
- ipl0 iph0 interrupt priority registers.

There are no interrupt request flags inside the ISR unit.

More detailed description of the Special Function Registers can be found in section 2.3.4 .

Writing to the SFR registers located in the ISR unit is done through SFR bus. When the CPU wants to write data to SFR registers located in the SFR unit, it sets corresponding address on the SFR address bus ("sfraddr" signal) and activates the "sfrwe" signal for one clock cycle. When the "sfrwe" is active (high), data from "sfrdatai" bus are written into the SFR register pointed by address on "sfraddr" bus.

Outputs from all SFR registers are mapped to the output ports of the ISR. The multiplexer that chooses one of them when the CPU reads the SFR register is outside of the ISR unit.

b) Interrupt Priority Decoder

Group6

All interrupt requests are divided into 7 groups. The definition each of group is shown in table below.

Interrupt group	Priority in group:					
	Highest	Middle	Lowest			
Group0	int_vect_03	int_vect_83	int_vect_43			
Group1	int_vect_0B	int_vect_8B	int_vect_4B			
Group2	int_vect_13	int_vect_93	int_vect_53			
Group3	int_vect_1B	int_vect_9B	int_vect_5B			
Group4	int_vect_23	int_vect_A3	int_vect_63			
Group5	int vect 2B	int vect AB	int vect 6B			

int_vect_33

Table 79. Interrupt Priority Groups

Inside group there is, fixed by hardware, interrupt priority structure. Sources from first column have the highest priority (inside group), sources from middle column have middle priority and interrupts sources from the last column have the lowest priority. There is no possibility to change interrupt priority inside the group.

int_vect_BB

There is also an interrupt priority structure between the groups. Group0 has the highest priority and Group5 has the lowest. The priority between groups can be programmed by changing priority level (priority level can be set from 0 to 3) assigned to each group. The priority level of interrupt group is defined by flags of the "ipl0" and "iph0" SFR registers. Relations between flags in "ipl0" and "iph0" SFR registers and interrupt groups are defined in the table below.

Table 80. Interrupt priority between groups

Interrupt	Priority within this	IPHO bit	IPLO bit
group	same priority level		

int_vect_EB

Interrupt group	Priority within this same priority level	IPH0 bit	IPLO bit
Group0	Highest	0	0
Group1		1	1
Group2		2	2
Group3		3	3
Group4		4	4
Group5		5	5
Group6	Lowest	6	6

The settings of interrupt priority flags and priority level are shown in table below.

Level	Priority	IPH0.x bit	IPLO.x bit
Level0	Lowest	0	0
Level1		0	1
Level2		1	0
Level3	Highest	1	1

Table 81. Interrupt Priority Levels

All priority types are taken into account when more than one interrupt is requested. The most important is the priority level set by "ipl0" and "iph0" registers, then the natural priority between groups, and at last the priority inside each group.

To determine which interrupt has the highest priority (which must be serviced in the first order) the following steps are made.

- 1. From all groups there are chosen those which have the highest priority level.
- 2. From those with the highest priority level there is chosen one with the highest natural priority between groups.
- 3. From group with highest priority there is chosen the interrupt with the highest priority inside the group.

What is important is that currently running interrupt service subroutine can be interrupted only by interrupt with higher priority level. No interrupt with the same or lower priority level can interrupt the currently running interrupt service subroutine. Therefore there can be maximum four interrupts in service at the same time.

The information about priority level of the interrupt in service is stored in the "is_reg" register. When any of the bits in the "is_reg" is set, that means that interrupt with corresponding priority level is in service. Table 82 shows the relation between bits in "is_reg" register and interrupts in service.

is_reg bit	Interrupt in service
is_reg.0	Priority level 0
is_reg.1	Priority level 1
is_reg.2	Priority level 2
·	•

is_reg.3

Table 82. The "IS REG" Register Bits Function

Priority level 3

ATTENTION: Any write to "ipl0", "iph0" SFRs registers (changing interrupt priority levels) does not modify the "is_reg" register. That means that when some interrupt is requested with priority X, the invoked subroutine has priority level X even though priority level for sources has been changed; this interrupt subroutine can be interrupted only by interrupt with priority higher than X.

The interrupt priority structure is built as a combinational block. It is split into three parts. Figure 78 shows structure of interrupt priority hardware.

Figure 78. Priority Structure Diagram

In the first step, all interrupt request inputs are masked by logical AND with the corresponding interrupt enable bits. After the masking logic, interrupt requests are divided into 6 groups. The relation between interrupt request inputs, interrupt enable bits and interrupt grouping (as in diagram above) is shown in Table 83.

Table 83. Interrupt Request Relations

Interrupt request input	Interrupt enable bit	Interrupt request in diagram	Group	Interrupt
int_vect_03	ien0(0)	irq0_g0	Group 0	irq_g0(4)
int_vect_83	ien2(0)	irq2_g0		irq_g0(2)
int_vect_43	ien1(0)	irq4_g0		irq_g0(0)

Interrupt request input	Interrupt enable bit	Interrupt request in diagram	Group	Interrupt
int_vect_0B	ien0(1)	irq0_g1	Group 1	irq_g1(4)
int_vect_8B	ien2(1)	irq2_g1		irq_g1(2)
int_vect_4B	ien1(1)	irq4_g1		irq_g1(0)
int_vect_13	ien0(2)	irq0_g2	Group 2	irq_g2(4)
int_vect_93	ien2(2)	irq2_g2		irq_g2(2)
int_vect_53	ien1(2)	irq4_g2		irq_g2(0)
int_vect_1B	ien0(3)	irq0_g3	Group 3	irq_g3(4)
int_vect_9B	ien2(3)	irq2_g3		irq_g3(2)
int_vect_5B	ien1(3)	irq4_g3		irq_g3(0)
int_vect_23	ien0(4)	irq0 <u>g</u> 4	Group 4	irq_g4(4)
int_vect_A3	ien2(4)	irq2 <u>g</u> 4		irq_g4(2)
int_vect_63	ien1(4)	irq4_g4		irq_g4(0)
int_vect_2B	ien0(5)	irq0_g5	Group 5	irq_g5(4)
int_vect_AB	ien2(5)	irq2_g5		irq_g5(2)
int_vect_6B	ien1(5)	irq4_g5		irq_g5(0)
int_vect_33	ien0(6)	irq0_g6	Group 6	irq_g6(4)
int_vect_BB	ien2(6)	irq2_g6		irq_g6(2)
int_vect_EB	ien1(6)	irq4_g6		irq_g6(0)

The first block in interrupt priority structure (shown as "g0" to "g6" in diagram above) chooses which interrupt inside the group has the highest priority. The output from this block is a 3-bit vector that has only one bit active. This active bit represents interrupt request with the highest priority inside the group. in case when no interrupt has been requested all outputs are low ('0'). The truth table for this component is shown in Table 84.

Table 84. Group 0 Requests Priority Truth Table

irq0_g0	irq1_g0	irq2_g0	irq_g0
0	0	0	00000
0	0	1	00001
0	1	0	00100
0	1	1	00100
1	0	0	10000
1	0	1	10000
1	1	0	10000
1	1	1	10000

The table above is made for Group 0. For other groups the relations are built in this same way. The only exception is Group 6, which has two interrupt source only.

The next component in interrupt priority structure is the demultiplexer that assigns interrupt requests to one of four interrupt priority level blocks. Flags in "ipl0" and "iph0" SFR registers define to which priority level block the current interrupt request should be assigned. Outputs of this demultiplexer that are not pointed by "ipl0.x" and "iph0.x" bits are set to inactive state ($^{\circ}$ 0').

input	ip1.0, ip0.0	irq_g0_p3	irq_g0_p2	irq_g0_p1	irq_g0_p0
irq_g0	00	00000	00000	00000	irq_g0
	01	00000	00000	irq_g0	00000
	10	00000	irq_g0	00000	00000
	11	ira a0	00000	00000	00000

Table 85. Group 0 Demultiplexer Truth Table

Table 85 describes the behavior of priority level demultiplexer for Group0. The other groups are built in the same way.

The next elements in interrupt priority structure are 4 priority decoders (blocks "int_prior0" to "int_prior3") that represent four priority levels. Block "int_prior0" represents interrupt priority level 0, "int_prior1" represents level 1 and so on. Inputs to this block are outputs from demultiplexers that assign groups of interrupt requests to priority levels exactly like bits in "ip0" and "ip1" SFR define. Additionally each priority level block has an enable input ("enable_in"). If this pin is low, all interrupt requests to this level are ignored. Output from level decoder block is one interrupt request which has the highest priority inside the level and enable signal ("enable_out") for lower priority level. Interrupt enable output signal becomes low when interrupt enable input to block is low or when interrupt is requested from this level. Internal structure of each priority level decoder is shown in Figure 79.

Figure 79. Priority Level Diagram

The enable input to interrupt priority block for level 3 ("int_prior3") is "ien0(7)" that enables and disables all interrupts globally and "is_reg(3)" bit. The enable input to interrupt priority block for level 2 ("int_prior2") is interrupt enable output from block for level 3 and "is_reg(2)". The enable input to interrupt priority block for level 1 ("int_prior1") is interrupt enable output

from block for level 2 and "is_reg(1)". The enable input to interrupt priority block for level 0 ("int_prior0") is interrupt enable output from block for level 1 and "is_reg(0)".

Outputs "out0" from all priority level blocks are OR-ed together and form the "int_req0". The other outputs from priority level blocks ("out1", "out2" ...) are OR-ed in this same way and form signals "int req1", "int req2",

The interrupt priority structure organized as described above ensures that only one bit of "int0", "int1" ... is active at this same time. Additionally when some bit is active it means that this interrupt has now the highest priority and can be requested to CPU (no interrupt with the same or higher priority is in service).

In the next step all the "int_req" ("int_req0" to "int_req6") signals are stored in flip-flops. A logical OR of all request makes the main interrupt request to the CPU and upon interrupt request stored in flip-flips the interrupt vector is generated. The ISR structure that makes this function is shown in Figure 80.

The relation between interrupt requests stored in flip-flops and interrupt vector generated to the CPU is shown in table Table 86. The exac values of interrupt vectors (INT_VECT0, INT_VECT1 etc) are defined in package or parameter file. When no interrupt request is set, the "intvect" keeps the value of the last used interrupt vector.

Table 86. Interrupt vector and interrupt request

Interrupt request source	intvect	<pre>int_req0_reg, int_req1_reg, int_req2_reg, int_req3_reg, int_req4_reg, int_req5_reg,</pre>
int_vect_03	INT_VECT0	10000, 00000, 00000, 00000, 00000, 00000, 00000
int_vect_0B	INT_VECT1	00000, 10000, 00000, 00000, 00000, 00000, 00000
int_vect_13	INT_VECT2	00000, 00000, 10000, 00000, 00000, 00000, 00000
int_vect_1B	INT_VECT3	00000, 00000, 00000, 10000, 00000, 00000, 00000
int_vect_23	INT_VECT4	00000, 00000, 00000, 00000, 10000, 00000, 00000
int_vect_2B	INT_VECT5	00000, 00000, 00000, 00000, 00000, 10000, 00000
int_vect_33	INT_VECT18	00000, 00000, 00000, 00000, 00000, 00000, 10000
int_vect_43	INT_VECT6	00001, 00000, 00000, 00000, 00000, 00000, 00000
int_vect_4B	INT_VECT7	00000, 00001, 00000, 00000, 00000, 00000, 00000
int_vect_53	INT_VECT8	00000, 00000, 00001, 00000, 00000, 00000, 00000
int_vect_5B	INT_VECT9	00000, 00000, 00000, 00001, 00000, 00000, 00000
int_vect_63	INT_VECT10	00000, 00000, 00000, 00000, 00001, 00000, 00000
int_vect_6B	INT_VECT11	00000, 00000, 00000, 00000, 00000, 00001, 00000
int_vect_EB	INT_VECT29	00000, 00000, 00000, 00000, 00000, 00000, 00001
int_vect_83	INT_VECT12	00100, 00000, 00000, 00000, 00000, 00000, 00000
int_vect_8B	INT_VECT13	00000, 00100, 00000, 00000, 00000, 00000, 00000
int_vect_93	INT_VECT14	00000, 00000, 00100, 00000, 00000, 00000, 00000
int_vect_9B	INT_VECT15	00000, 00000, 00000, 00100, 00000, 00000, 00000
int_vect_A3	INT_VECT16	00000, 00000, 00000, 00000, 00100, 00000, 00000
int_vect_AB	INT_VECT17	00000, 00000, 00000, 00000, 00000, 00100, 00000
int_vect_BB	INT_VECT23	00000, 00000, 00000, 00000, 00000, 00000, 00100

Figure 80. Interrupt Request and Interrupt Vector Generation Diagram

The ISR structure described above inserts 2 clock cycle delay between interrupt request to the ISR and interrupt request sent by ISR to CPU.

When the ISR sets interrupt request to the CPU, it responds by executing interrupt acknowledge cycle and generating the "intcall" signal. The timing of interface signals between ISR and CPU is shown in Figure 81.

Figure 81. Interrupt Request Handshaking Timings

When the CPU sets "intcall" signal, it informs the ISR that it has accepted interrupt request and that on nearest rising edge of the clock it will latch the interrupt vector. Active "intcall" signal forces the ISR to generate the corresponding interrupt acknowledge signal (acknowledge to interrupt request source) and to update the "is_reg register". Interrupt acknowledge signals and new value of the "is_reg" are generated upon interrupt vector sent to the CPU. This solution ensures that the "is_reg" and acknowledge signal will be generated correctly according to interrupt service subroutine taken by the CPU. The hardware that implements this function is shown in Figure 82.

Figure 82. Interrupt acknowledge generation

The "is_reg" signal that contains information about interrupts in service (interrupts with which interrupt priority levels are in service) is updated only when "intcall" or "intreti" signals are active. When the "intcall" is active, information about new interrupt in service is added to the "is_reg". in other hand, when "intreti" signal is active, this means that some interrupt service subroutine has finished. Always the interrupt with the highest priority is finished first. Hardware responsible for handling the "is reg" register is shown in Figure 83.

Figure 83. IS_REG Handling Logic

c) ISR Test Mode

The "isr_tm" input pin is designed to substitute the interrupt requests coming from Timer 0, 1 & 2, PCA, Serial Port 0 & 1, External Interrupt 2 shared with the SPI interrupt, and External Interrupt 7 shared with I2C interrupt. When "isr_tm" is set to 1, the corresponding interrupt requests are connected to direct inputs to the core instead of the original sources, to ease the verification process of the ISR.

d) Interrupt Connections

The table below shows the interconnections between interrupt sources (peripherals) and the inputs to the ISR module.

Table 87. Interrupt Connections

Interrupt input / vector	Source	Test mode	Description
int_vect_03	ie0	ie0	External Interrupt 0
int_vect_0B	t0_tf0	tOff	Timer 0 overflow
int_vect_13	ie1	ie1	External Interrupt 1
int_vect_1B	tf1_gate	t1ff	Timer 1 overflow
int_vect_23	riti0_gate	rxd0ff	Serial Port 0 interrupt
int_vect_2B	tfexf2_gate	t2iff	Timer 2 overflow
int_vect_33	cfccf_gate	eciff	PCA interrupt
int_vect_43	iex7_gate	sdaiff	External Interrupt 7 / I2C interrupt
int_vect_4B	iex2_gate	misoiff	External Interrupt 2 / SPI interrupt
int_vect_53	iex3	iex3	External Interrupt 3
int_vect_5B	iex4	iex4	External Interrupt 4
int_vect_63	iex5	iex5	External Interrupt 5
int_vect_6B	iex6	iex6	External Interrupt 6
int_vect_83	riti1_gate	rxd1ff	Serial Port 1 interrupt
int_vect_8B	iex8	iex8	External Interrupt 8
int_vect_93	iex9	iex9	External Interrupt 9
int_vect_9B	iex10	iex10	External Interrupt 10
int_vect_A3	iex11	iex11	External Interrupt 11
int_vect_AB	iex12	iex12	External Interrupt 12
int_vect_BB	iex13	iex13	External Interrupt 13
int_vect_EB	rtcint	rtcint	Real Time Clock Interrupt

5.3. TIMERO

5.3.1 Overview

The **TIMER0** subcomponent contains the Timer 0 - a 16-bit register that can be configured for counter or timer operations. It can be accessed as SFRs: "th0" and "tl0" (2.4.50).

5.3.2 Pin Description

Table 88. TIMERO Pin Description

Name	Туре	Polarity Bus size	Description
clkper	I	Rise	Peripheral Clock
			Clock input for all internal synchronous logic

Name	Туре	Polarity Bus size	Description
rst	I	High	Hardware reset input
			The subcomponent is reset when this pin is held high for at least one clock cycle
newinstr	I	High	New instruction indicator
			Indicates the previous cycle was the first cycle of current instruction
Timer	s interfa	ce	
t0ff	I	high	Timer 0 external input
t0ack	I	high	Timer 0 interrupt acknowledge
t1ack	I	high	Timer 1 interrupt acknowledge
int0ff	I	falling/low	External interrupt 0 input
t0_tf0	0	high	Timer 0 overflow flag
t0_tf1	0	high	Timer 1 overflow flag
Specia	Special Function Register		interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"
t0_tmod	0	4	TIMER0 – related part of the "tmod" register
t0_tr0	0	High	The "tr0" flag of the "tcon" register
tl0	0	8	Timer 0 output (low-order byte)
th0	00	8	Timer 0 output (high-order byte)

5.3.3 Block Diagram

a) Mode 0 and Mode 1

In mode 0, Timer 0 is configured as a 13-bit register ("t10" = 5 bits, "th0" = 8 bits). The upper 3 bits of "t10" are unchanged and should be ignored.

In mode 1 Timer 0 is configured as a 16- bit register.

Figure 84. Timer 0 in Mode 0 and 1

b) Mode 2

In this mode the Timer 0 is configured as an 8-bit register with auto-reload.

Figure 85. Timer 0 in Mode 2

c) Mode 3

In mode 3 Timer 0 is configured as one 8-bit timer/counter and one 8-bit timer. When Timer 0 works in mode 3 Timer 1 can still be used in other mode by the serial port as a baud rate generator, or application not requiring an interrupt from Timer 1.

Figure 86. Timer 0 in Mode 3

5.3.4 Description

In the timer mode, the Timer 0 is incremented every 12 clock cycles, which means that it counts up after every 12 periods of the clock signal.

In the counter mode, the Timer 0 is incremented when the falling edge is detected at the corresponding input pin – "t0" for Timer 0. Since it takes 2 clock cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 clock cycle.

Four operating modes can be selected for Timer 0. Two Special Function Registers: "tmod" (2.4.53) and "tcon" (0) are used to select the appropriate mode.

a) Timer/Counter 0 in Mode 0

This mode is invoked by setting the "tmod[1:0]"="00" flags of the "tmod" register (2.4.53). In this mode, the count rate is derived from the "clk" input for Timer option or from the "t0" input for Counter option. The Timer option is selected by clearing "tmod[2]" flag, otherwise the Counter option is selected.

The Timer/Counter is divided in two 8 bit registers, lower and higher byte. Lower byte in this mode is additionally divided in two parts consisting of lower 5 bits and higher 3 bits (only higher 5 bits are part of the counter). This makes the Timer/Counter 0 a 13 bit counter that is incremented every 12 clock cycles, or when external signal "t0" changes its value from 1 to 0.

When Timer/Counter 0 overflows, the "tcon[5]" flag is set and interrupt is generated through "tf0" output pin. This bit is cleared when acknowledge signal ("int0ack") arrives.

The Timer/Counter may be controlled by software or hardware. The 'tcon[4]" flag must be set to run the Timer 0. Interrupt on "int0" stops counting, if appropriate gate flag "tmod[3]" is enabled.

See Figure 84.

b) Timer/Counter 0 in Mode 1

This mode is invoked by setting the "tmod[1:0]"="01" flags of the "tmod" register (2.4.53). This mode differs from Mode 0 only in that the lower byte is not divided in 5-bit and 3-bit parts, but the whole lower byte works as a counter. The Timer/Counter 0 is a 16 bit counter in mode 1.

See Figure 84.

c) Timer/Counter 0 in Mode 2

This mode is invoked by setting the "tmod[1:0]"="10" flags of the "tmod" register (2.4.53). In this mode, the count rate is derived from the "clk" input for Timer option or from the "t0" input for Counter option. The Timer option is selected by clearing "tmod[2]" flag, otherwise the Counter option is selected.

In this mode only lower byte ("tl0") is incremented every 12 clock cycles or when external signal "t0" changes its value from 1 to 0.

In this mode the Timer/Counter works as an 8-bit reload timer/counter. When lower byte of Timer/Counter overflows, the "tcon[5]" flag is set and interrupt is generated through "tf0" output pin. This bit is cleared when acknowledge signal ("int0ack") arrives. Additionally, when the overflow occurs the new value is fetched from higher byte ("th0") to lower byte ("tl0").

The Timer/Counter may be controlled by software or hardware. The "tcon[4]" flag must be set to run the Timer 0. Interrupt on "int0" stops counting, if appropriate gate flag "tmod[3]" is enabled.

See Figure 85.

d) Timer/Counter 0 in Mode 3

This mode is invoked by setting the "tmod[1:0]"=11 flag of "tmod" register (2.4.53).

In this mode, the count rate for lower byte is derived from the "clk" input for Timer option or from the "t0" input for Counter option, but the count rate for higher byte is only derived from the "clk". The Timer option is selected by clearing "tmod[2]" flag, otherwise the Counter option is selected.

In this mode the lower byte ("tl0") is incremented every 12 clock cycles or when external signal "t0" changes its value from 1 to 0. The higher byte ("th0") is incremented every 12 clock cycles.

When the lower byte of Timer/Counter overflows, the "tcon[5]" flag is set and interrupt is generated through "tf0" output pin. When the higher byte overflows, the "tcon[7]" flag is set

and interrupt is generated through "tf1" output pin. These bits are cleared when appropriate acknowledge signals ("int0ack", "int1ack") arrive, respectively.

In this mode the lower byte of Timer/Counter 0 is controlled by `tcon[4]" flag which must be set to enable Timer operation, and by the "int0" input which stops counting when forced to 0 while the "tmod[3]" flag is set.

The higher byte is controlled only by "tcon[6]" flag which enables counting when set.

5.4. TIMER1

5.4.1 Overview

The **TIMER1** subcomponent contains Timer 1 - a 16-bit register that can be configured for counter or timer operations. It can be accessed as SFRs: "th1", "tl1" (2.4.51).

5.4.2 Pin Description

Table 89. TIMER1 Pin Description

			-
Name	Туре	Polarity Bus size	Description
clkper	I	Rise	Peripheral Clock
			Clock input for all internal synchronous logic
rst	I	High	Hardware reset input
			The subcomponent is reset when this pin is held high for at least one clock cycle
newinstr	I	High	New instruction indicator
			Indicates the previous cycle was the first cycle of current instruction
Timer	s interfa	ce	
t1ff	I	high	Timer 1 external input
t1ack	I	high	Timer 1 interrupt acknowledge
int1ff	I	falling/low	External interrupt 1 input
t1_tf1	0	high	Timer 1 overflow flag
t1ov	0	high	Timer 1 overflow output
Specia	al Function	on Register	interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"
t1_tmod	0	4	TIMER1 – related part of the "tmod" register
t1_tr1	0	High	The "tr1" flag of the "tcon" register
tl1	0	8	Timer 1 output (low-order byte)
th1	0	8	Timer 1 output (high-order byte)

5.4.3 Block Diagram

a) Mode 0 and Mode 1

In mode 0, Timer 1 is configured as a 13-bit register ("t11" = 5 bits, "th1" = 8 bits). The upper 3 bits of "t11" are unchanged and should be ignored.

In mode 1 Timer 1 is configured as a 16- bit register.

Figure 87. Timer 1 in Mode 0 and 1

b) Mode 2

In this mode the TIMER1 is configured as an 8-bit register with auto-reload.

Figure 88. Timer 1 in Mode 2

c) Mode 3

In mode 3 Timer 1 is stopped.

5.4.4 Description

In the timer mode, the Timer 1 is incremented every 12 clock cycles, which means that it counts up after every 12 periods of the clock signal.

In the counter mode, the Timer 1 is incremented when the falling edge is detected at the corresponding input pin — "t1" for Timer 1. Since it takes 2 clock cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 clock cycle.

Four operating modes can be selected for Timer 1. Two Special Function Registers: "tmod" (2.4.53) and "tcon" (0) are used to select the appropriate mode.

a) Timer/Counter 1 in Mode 0

This mode is invoked by setting the "tmod[5:4]"="00" flags of the "tmod" register (2.4.53). In this mode, the count rate is derived from the "clk" input for Timer option or from the "t1" input for Counter option. The Timer option is selected by clearing "tmod[6]" flag, otherwise the Counter option is selected.

The Timer/Counter 1 is divided in two 8 bit registers, lower and higher byte. Lower byte in this mode is additionally divided in two parts consisting of lower 5 bits and higher 3 bits (only higher 5 bits are part of the counter). This makes the Timer/Counter 1 a 13 bit counter that is incremented every 12 clock cycles or when external signal "t1" changes its value from 1 to 0.

When Timer/Counter 1 overflows, the "tcon[7]" flag is set and interrupt is generated through "tf1" output pin. This bit is cleared when acknowledge signal ("int1ack") arrives.

The Timer/Counter 1 may be controlled by software or hardware. The 'tcon[6]" flag must be set to run the Timer 1. Interrupt on "int1" stops counting, if appropriate gate flag "tmod[7]" is enabled.

See Figure 87.

b) Timer/Counter 1 in Mode 1

This mode is invoked by setting the "tmod[5:4]"="01" flags of the "tmod" register (2.4.53). This mode differs from Mode 0 only in that the lower byte is not divided in 5-bit and 3-bit parts, but the whole lower byte works as a counter. The Timer/Counter 1 is a 16 bit counter in mode 1.

See Figure 87.

c) Timer/Counter 1 in Mode 2

This mode is invoked by setting the "tmod[5:4]"="10" flags of the "tmod" register (2.4.53). In this mode, the count rate is derived from the "clk" input for Timer option or from the "t1" input for Counter option. The Timer option is selected by clearing the "tmod[6]" flag, otherwise the Counter option is selected.

In this mode the Timer/Counter works as an 8-bit reload timer/counter. Only lower byte ("tl1") is incremented every 12 clock cycles or when external signal "t1" changes its value from 1 to 0.

When lower byte of Timer/Counter overflows, the "tcon[7]" flag is set and interrupt is generated through "tf1" output pin. This bit is cleared when acknowledge signal ("int1ack") arrives. Additionally when the overflow occurs the new value is fetched from higher byte ("th1") to lower byte ("tl1").

The Timer/Counter may be controlled by software or hardware. The "tcon[6]" flag must be set to run the Timer 1. Interrupt on "int1" stops counting, if appropriate gate flag "tmod[7]" is enabled.

SeeFigure 88.

d) Timer/Counter 1 in Mode 3

This mode is invoked by setting the "tmod[5:4]''=11 flag of "tmod'' register (2.4.53). In this mode the Timer/Counter 1 is disabled (only Timer/Counter 0 can operate in mode 3).

5.5. TIMER2_251

5.5.1 Overview

The **TIMER2_251** subcomponent contains a 16-bit register that can be configured for counter or timer operations. It can be accessed as SFRs:"th2", "tl2" (2.4.52) and controlled by "t2con"(2.4.47) and "t2mod"(2.4.48) registers. There are also "rcap2h" and "rcap2l" (2.4.31) registers for capture an reload functions.

5.5.2 Pin Description

Table 90. TIMER2_251 Pin Description

Name	Туре	Polarity Bus size	Description	
clkper	I	rise	Peripheral Clock	
			Clock input for all internal synchronous logic	
rst	I	high	Hardware reset input	
			The subcomponent is reset when this pin is held high for at least one clock cycle	
newinstr	I	high	New instruction indicator	
			Indicates the previous cycle was the first cycle of current instruction	
percycle	I	4	Peripheral cycles	
			Current number of peripheral cycle	
Timer	2 input	S		
t2iff	I	high/fall	Timer 2 external gate/edge input	
t2exff	I	fall	Timer 2 capture trigger	
Timer	2 outp	uts		
t2o	0	-	Timer 2 clock	
t2ov	0	high	Timer 2 overflow (for Serial 0)	
tf2	0	high	Timer 2 overflow flag	
exf2	0	high	Timer 2 external signal	
Specia	al Funct	ion Regist	er interface	
sfrdatai	I	8	SFR data bus input	
			Data to be written to internal SFRs	
sfraddr	I	7	SFR Address bus	
			Contains the address of SFR being read or written	
sfrwe	I	high	SFR Write enable	
			Enables write to the SFR pointed by "sfraddr"	
rclk	0	high	Recieve clock bit select	
tclk	0	high	Transmit clock bit select	
exen2	0	high	External interrupt 2 enable flag	
tr2	0	-	Run control bit	
ct2	0	-	Counter/Timer Select	
cprl2	0	-	Capture/Reload Select	
t2oe	0	_	Output enable bit	

Name	Туре	Polarity Bus size	Description
dcen	0	-	Down count enable bit
tl2	0	8	Timer 2 output (low-order byte)
th2	0	8	Timer 2 output (high-order byte)
rcap2l	0	8	Reload/Capture Register 0 (low-order byte)
rcap2h	0	8	Reload/Capture Register 0 (high-order byte)

5.6. TIMER2_515

5.6.1 Overview

The **TIMER2** subcomponent is composed of TIMER2 that can be configured for either counter or timer operations, and the Compare/Capture Unit which is a sub-component of TIMER2.

Figure 89. TIMER2 Symbol

5.6.2 Pin Description

Table 91. TIMER2 Pin Description

Name	Туре	Polarity Bus size	Description
clkper	I	rise	Peripheral Clock
			Clock input for all internal synchronous logic
rst	I	high	Hardware reset input
			The subcomponent is reset when this pin is held high for at least one clock cycle
newinstr	I	high	New instruction indicator
			Indicates the previous cycle was the first cycle of current instruction
Time	r 2 input	S	
t2ff	I	high/fall	Timer 2 external gate/edge input

Name	Туре	Polarity Bus size	Description
t2exff	I	fall	Timer 2 capture trigger
Coma	re/Capt	ure interfa	ice
ccff(0)	I	rise/fall	compare/capture 0 input
ccff(1)	I	rise	compare/capture 1 input
ccff(2)	I	rise	compare/capture 2 input
ccff(3)	I	rise	compare/capture 3 input
com	0	4	compare 03 output
T2CO	N interfa	ace	
tf2	0	high	Timer 2 overflow signal
exf2	0	high	Timer 2 external signal
ccubus	0	4	Compare output bus (direct output of the core)
Speci	al Funct	ion Regist	er interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	high	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"
tl2	0	8	Timer 2 output (low-order byte)
th2	0	8	Timer 2 output (high-order byte)
exen2	0	high	External interrupt 2 enable flag
crcl	0	8	Compare/Capture Register 0 (low-order byte)
crch	0	8	Compare/Capture Register 0 (high-order byte)
t2con	0	8	Timer 2 Control Register
ccen	0	8	Compare/Capture Enable Register
ccl1	0	8	Compare/Capture Register 1 (low-order byte)
cch1	0	8	Compare/Capture Register 1 (high-order byte)
ccl2	0	8	Compare/Capture Register 2 (low-order byte)
cch2	0	8	Compare/Capture Register 2 (high-order byte)
ccl3	0	8	Compare/Capture Register 3 (low-order byte)
cch3	0	8	Compare/Capture Register 3 (high-order byte)

Table 92. CCU_PORT Pin Description

Name	Туре	Polarity Bus size	Description
clkper	I	rise	Peripheral Clock
			Clock input for all internal synchronous logic
rst	I	high	Hardware reset input
			The subcomponent is reset when this pin is held high for at least one clock cycle
compare	I	high	Compare signal
			In compare mode 0 directly controlled port

Name	Туре	Polarity Bus size	Description
ov	I	high	Timer 2 overflow
			In compare mode 0 directly controlled port
cocahl	I	2	Compare function enable - ccen
t2cm	I	-	Compare mode bit -t2con(2): when 0 -mode 0
			when 1 -mode 1
pout	0	-	Compare output to Port 1
Speci	al Funct	ion Regist	er interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"

5.6.3 Block Diagram

Figure 90. TIMER2 Block Diagram

5.6.4 Timer 2 Description

The Timer 2 can operate as timer, event counter, or gated timer.

Figure 91. Timer 2 in Reload Mode

a) Timer Mode

This mode is invoked by setting the "t2i0''=1 and "t2i1''=0 flags of "t2con'' register (2.4.47). In this mode, the count rate is derived from the "clk'' input.

The Timer 2 is incremented every 12 or 24 clock cycles depending on the 2:1 prescaler. The prescaler mode is selected by bit "t2ps" of "t2con" register (2.4.47). When "t2ps"=0, the timer counts up every 12 clock cycles, otherwise every 24 cycles.

b) Event Counter Mode

This mode is invoked by setting the "t2i0"=0 and "t2i1"=1 flags of "t2con" register (2.4.47). In this mode the Timer 2 is incremented when external signal "t2" changes its value from 1 to 0. The "t2" input is sampled at every rising edge of the clock. The Timer 2 is incremented in the cycle following the one in which the transition was detected. The maximum count rate is $\frac{1}{2}$ of the clock frequency.

c) Gated Timer Mode

This mode is invoked by setting the "t2i0"=1 and "t2i1"=1 flags of "t2con" register (2.4.47). In this mode the Timer 2 is incremented every 12 or 24 clock cycles (depending on "t2ps" flag) but additionally it is gated by external signal "t2". When "t2"=0, the Timer 2 is stopped. The "t2" input is sampled into a flip-flop and then it blocks the Timer 2 incrementation.

d) Timer 2 Reload

A 16-bit reload from the "crc" register (2.4.8) can be executed in two modes:

- Reload Mode 0: Reload signal is generated by Timer 2 overflow (auto reload)
- Reload Mode 1: Reload signal is generated by negative transition at the corresponding input pin "t2ex".

5.6.5 Compare Function

The Compare/Capture Unit consists of four registers: "cc1", "cc2", "cc3" (2.4.5) and "crc" (2.4.8). Each of these registers can be configured to work in comparator mode. in this mode the value stored in register is compared with the contents of the TIMER2. The comparators outputs drive four low ordered bits of port "p1" ("p1.0" ... "p1.3"), where:

- "p1.0" is output of the comparator associated with the register "crc" ("ccubus.0")
- "p1.1" is the output of comparator associated with the register "cc1" ("ccubus.1")
- "p1.2" is the output of comparator associated with the register "cc2" ("ccubus.2")
- "p1.3" is the output of comparator associated with the register "cc3" ("ccubus.3") There are two compare modes selected by bit "t2cm" in "t2con" register.

a) Compare Mode 0

The Compare Mode 0 is invoked by setting bit "t2cm"=0 of "t2con" register (2.4.47). In mode 0, when the value in Timer 2 equals the value of the compare register, the comparator output changes from low to high. It goes back low on timer 2 overflow. In this mode writing to port 1 ("p1") will have no effect, because the input line from the internal bus and the write-to-register line are disconnected. Figure below illustrates the function of compare mode 0.

* Only for CRC

Figure 92. Timer 2 in Compare Mode 0

Figure 93. Compare Mode 0 Operation

b) Compare Mode 1

The Compare Mode 1 is invoked by setting bit "t2cm"=1 of "t2con" register (2.4.47). In compare mode 1, the transition of the output signal can be determined by software. A Timer 2 overflow causes no output change. in this mode both transitions of output signal can be controlled. Figure below shows a functional diagram of a register/port configuration in compare mode 1 in compare mode 1 the value is written first to the "Shadow Register", and when the compare signal goes active this value is transferred to the output register.

- * Only for CRC
- ** Shadow register is used

Figure 94. Timer 2 in Compare Mode 1

Figure 95. CCU Port diagram

5.6.6 Capture Function Description

Each of four 16-bit CCU registers can be configured to work in capture mode.

In this mode the actual timer/counter contents are saved into CCU register upon an external event (mode 0) or a software write operation (mode 1).

Figure 96. Timer 2 in Capture Mode

a) Capture Mode 0

In mode 0 capturing of Timer 2 contents is executed when:

- rising edge is detected on input "cc1" (for "cc1" register working in capture mode)
- rising edge is detected on input "cc2" (for "cc2" register working in capture mode)

- rising edge is detected on input "cc3" (for "cc3" register working in capture mode)
- rising or falling edge is detected on input "cc0", depending on bit "i3fr" (for "crc" register working in capture mode)

The timer 2 contents will be latched into appropriate capture register. in this mode no interrupt request will be generated.

b) Capture Mode 1

In mode 1 capture of Timer 2 is caused by any write into the low-ordered byte of the dedicated capture register. The value written to capture register is irrelevant for this function. The Timer 2 contents will be latched into appropriate capture register. in this mode no interrupt request will be generated.

5.7. PCA

5.7.1 Overview

The PCA (Programmable Counter Array) subcomponent is composed of a 16-bit Timer/Counter and five Compare/Capture modules. It performs a lot of timing and counting operations including Pulse Width Modulations and Watchdog Timer.

5.7.2 Pin Description

Table 93. PCA Pin Description

Name	Туре	Polarity Bus size	Description
clkper	I	rise	Peripheral Clock
			Clock input for all internal synchronous logic
rst	I	high	Hardware reset input
			The subcomponent is reset when this pin is held high for at least one clock cycle
newinstr	I	high	New instruction indicator
			Indicates the previous cycle was the first cycle of current instruction
percycle	I	4	Peripheral cycles
			Current number of peripheral cycle
t0ov	I	high	Timer 0 overflow flag
idle	I	high	Idle Mode Flag
PCA i	nput	T	
eciff	I	high/fall	PCA external input
Coma	re/Capt	ure interfa	ice
cexiff	I	5(rise/fall)	Compare/Capture inputs
cexo	0	5	Compare outputs
PCA Watchdog output			
pcawdts	0	high	PCA Watchdog reset signal
Speci	al Funct	ion Registe	er interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs

Name	Туре	Polarity Bus size	Description
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	high	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"
cidl	0	-	Idle Mode Control
wdte	0	-	PCA Watchdog Enable
cps	0	2	Input of Timer/Counter Select
ecf	0	-	Interrupt from Timer/Counter Enable
cf	0	-	Timer/Counter Overflow Flag
cr	0	-	Timer/Counter Run Control
ccf	0	5	Compare/Capture Flags
ecom	0	5	Compare Modes of Compare/Capture Modules
сарр	0	5	Positive Capture Mode of Compare/Capture Modules
capn	0	5	Negative Capture Mode of Compare/Capture Modules
mat	0	5	Match of Compare/Capture Modules
tog	0	5	Toggle of Compare/Capture Modules
pmw	0	5	Pulse Width Modulation Mode of Compare/Capture Modules
eccf	0	5	Interrupt from Compare/Capture Modules Enable
cl	0	8	Timer/Counter Register (low-order byte)
ch	0	8	Timer/Counter Register (high-order byte)
ccap0l	0	8	Compare/Capture Register 0 (low-order byte)
ccap0h	0	8	Compare/Capture Register 0 (high-order byte)
ccap1l	0	8	Compare/Capture Register 1 (low-order byte)
ccap1h	0	8	Compare/Capture Register 1 (high-order byte)
ccao2l	0	8	Compare/Capture Register 2 (low-order byte)
ccap2h	0	8	Compare/Capture Register 2 (high-order byte)
ccap3l	0	8	Compare/Capture Register 3 (low-order byte)
ccap3h	0	8	Compare/Capture Register 3 (high-order byte)
ccap4l	0	8	Compare/Capture Register 4 (low-order byte)
ccap4h	0	8	Compare/Capture Register 4 (high-order byte)

5.7.3 Description

The main part of PCA component is a 16-bit Timer/Counter which serves as time base and event counter for Compare/Capture modules. The value of Timer/Counter is accessible by the "ch/cl" SFR register pair and the values of five Compare/Capture modules can be read or write by SFR register pairs: "ccap0h/ccap0l", "ccap1h/ccap1l", "ccap2h/ccap2l", "ccap3h/ccap3l" and "ccap4h/ccap4l". Control function, mode select and status reading are realized by the "cmod" and the "ccon" registers for Timer/Counter and PCA interrupts, and by the "ccapm0", "ccapm1", "ccapm2", "ccapm3" and "ccapm4" for Compare/Capture modules.

The Timer/Counter and Compare/Capture modules interrupt sources share a single interrupt vector. The PCA interrupt request to ISR is realized as a logic OR of all PCA interrupt sources. Detailed PCA interrupt cause detection is possible by the "ccon" register reading, where

compare and capture events in Compare/Capture modes and Timer/Counter overflows set proper bits. The PCA interrupt request is generated when:

- the "cf" overflow flag in the "ccon" register and the "ecf" interrupt enable bit in the "cmod" register are set,
- the "ccf0" compare/capture flag in the "ccon" register and the "eccf0" enable bit in the "ccapm0" register are set,
- the "ccf1" compare/capture flag in the "ccon" register and the "eccf1" enable bit in the "ccapm1"register are set,
- the "ccf2" compare/capture flag in the "ccon" register and the "eccf2" enable bit in the "ccapm2" register are set,
- the "ccf3" compare/capture flag in the "ccon" register and the "eccf3" enable bit in the "ccapm3" register are set,
- the "ccf4" compare/capture flag in the "ccon" register and the "eccf4" enable bit in the "ccapm4" register are set.

All interrupt flags ("cf", "ccf0", "ccf1", "ccf2", "ccf3", "ccf4") in the "ccon" register can be cleared by software only.

a) Timer/Counter

A 16-bit Timer/Counter is composed of two 8-bit Special Function Registers: "ch" (high byte) and "cl" (low byte). These registers can be read anytime, but writing is enabled when the "cr" bit in the "ccon" register is cleared (equal '0') only (Timer/Counter is stopped). The "cps1" and "cps0" bits in the "cmod" register determine which one of the four following signals increment Timer/Counter lower byte ("cl"):

- clock pulse with Fclkper/12 frequency when "cps1,cps0" = 00,
- clock pulse with Fclkper/4 frequency when "cps1,cps0" = 01,
- Timer 0 overflow (sampled with Fclkper/12 frequency) when "cps1,cps0" = 10,
- the "eciff" falling edge on external input (sampled with Fclkper/4 frequency the maximum input frequency is Fclkper/8) when "cps1,cps0" = 11,

The "cl" register overflow increments the "ch" register after 2 cycles of "clkper" clock. The "ch" register overflow sets the "cf" flag in the "ccon" register. The "cf" flag generate interrupt request to ISR when the "ecf" bit in the "cmod" register is set. The "cr" bit in the "ccon" register starts and stop Timer/Counter. When "cidl" flag in the "cmod" register is set (equal '1'), the Timer/Counter works in IDLE mode (when the "pcon.0" bit is set).

b) Capture Mode of Compare/Capture modules

Each of five Compare/Capture modules register pair ("ccap0h/ccap0l", "ccap1h/ccap1l", "ccap2h/ccap2l", "ccap3h/ccap3l" and "ccap4h/ccap4l") can be configured to work in capture mode

In this mode the actual Timer/Counter contents are saved into the registers upon an external event. This capturing is executed when:

- rising edge is detected on inputs: "cexi0", "cexi1", "cexi2", "cexi3" or "cexi4" (when appropriately: the "capp0" bit in the "ccapm0" register is set, the "capp1" bit in the "ccapm1" register is set, the "capp2" bit in the "ccapm2" register is set, the "capp3" bit in the "ccapm3" register is set or the "capp4" bit in the "ccapm4" register is set),
 falling edge is detected on inputs: "cexi0", "cexi1", "cexi2", "cexi3" or "cexi4" (when
- falling edge is detected on inputs: "cexi0", "cexi1", "cexi2", "cexi3" or "cexi4" (when appropriately: the "capn0" bit in the "ccapm0" register is set, the "capn1" bit in the "ccapm1" register is set, the "capn2" bit in the "ccapm2" register is set, the "capn3" bit in the "ccapm3" register is set or the "capn4" bit in the "ccapm4" register is set)
- rising or falling edge is detected on inputs: "cexi0", "cexi1", "cexi2", "cexi3" or "cexi4" (when appropriately: the "capp0" and the "capn0" bits in the "ccapm0" register are set, the "capp1" and the "capn1" bits in the "ccapm1" register are set, the "capp2" and the "capn2" bits in the "ccapm2" register are set, the "capp3" and the "capn3" bits in the "ccapm3" register are set or the "capp4" and the "capn4" bits in the "ccapm4" register are set)

When Timer/Counter contents is latched into appropriate capture registers, then the proper "ccfn'' bit in the "ccon'' register is set. When the corresponding interrupt enable bit ("eccfn'') in the "ccapmn'' register is set, interrupt request will be generated.

c) Software Timer and High-speed Output Modes of Compare/Capture modules

The Compare/Capture modules can be configured to work in comparator modes. in this modes the value stored in register is compared with the contents of the Timer/Counter. The comparators outputs set corresponding "ccfr" flag (Software Timer Mode) and optionally drive five PCA Compare/Capture outputs ("cexo0" ... "cexo4") (High-speed Output Mode), where:

- "cexo0" is output of the comparator associated with the register pair "ccap0h/ccap0l"
- "cexo1" is the output of comparator associated with the register pair "ccap1h/ccap1l",
- "cexo2" is the output of comparator associated with the register pair "ccap2h/ccap2l",
- "cexo3" is the output of comparator associated with the register pair "ccap3h/ccap3l",
- "cexo3" is the output of comparator associated with the register pair "ccap4h/ccap4l",

When the "ecomn" and the "matn" bits in the "ccapmn" register are set, a match between the Timer/Counter registers and Compare/Capture registers set appropriate Compare/Capture flag ("ccfn" bit in the "ccon" register), next if the corresponding "eccfn" bit in the "ccapmn" register is set, the interrupt request is generated.

The High-speed Output Mode is selected by setting the "togn'' bit ("ecomn''=1, "matn''=1) in the "ccapmn'' register. In this mode an output signal (on the "cexon'' pins) is generated by toggling when a match occurs. By setting or clearing the "cexon'' bit by software ("cexon''" outputs correspond with "p1.3".."p1.7" bits in the "p1" register), the user determine initial state of the "cexon'' bit.

d) Watchdog Timer Mode of Compare/Capture modules

The PCA provides a programmable Watchdog Timer (WDT) as a mode option in Compare/Capture module 4. This mode is selected by setting the "ecom4" and the "mat4" bits in the "ccapm4" register and the "wdte" bit in the "cmod' register. The PCA WDT generates device reset when the value in the "ch/cl" registers and the value in "ccap4h/ccap4l" are equal.

e) Pulse Width Modulation (PWM) Mode of Compare/Capture modules

The Compare/Capture modules can be programmed as up to five independent pulse width modulators. This mode is select by setting the "ecom n'' and the "pwm n'' bits in the "ccapm n'' register.

If PWM mode is selected, the "cl" register is compared with the "ccapnl" register. When "cl"<"ccapnl", the state of the "cexon" output is low. When "cl"=>"ccapnl", the state of the "cexon" output is high (until "cl" overflows from FFh to 00h).

5.8. SERIALO

5.8.1 Overview

The SERIALO provides a flexible full-duplex synchronous/asynchronous receiver/transmitter. It can operate in four modes (one synchronous and three asynchronous). The Serial_0 is buffered at the receive side, i.e. it can reveive new data while the previously received is not damaged in the receive register until the completion of the 2nd transfer. The Serial_0 is fully compatible with the standard 80251 serial channel.

5.8.2 Pin Description

Table 94. SERIALO Pin Description

Name	Туре	Polarity Bus size	Description
clkper	I	Rise	Peripheral Clock
			Clock input for all internal synchronous logic
rst	I	High	Hardware reset input The subcomponent is reset when this pin is held high for at least one clock cycle
Conti	rol signa	ls	
newinstr	I	High	New instruction indicator
			Indicates the previous cycle was the first cycle of current instruction
t1ov	I	High	Timer 1 overflow
Seria	l Port In	terface	
rxd0ff	I	-	Serial Port 0 receive data input
txd0	0	-	Serial Port 0 transmit data output
rxd0o	0	-	Serial Port 0 mode 0 receive clock output
Inter	rupts	Т	
ri0	0	High	Serial Port 0 receive flag
ti0	0	High	Serial Port 0 transmit flag
Speci	al Funct	ion Regist	er interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"
s0mod	0	2	"Baud Rate Doubler" and "S0CON.7 select" bits of the PCON register
s0con	0	8	Serial 0 Control Register
s0buf	0	8	Serial 0 Data Buffer
s0addr	0	8	Serial 0 Slave Address Register
s0aden	0	8	Serial 0 Slave Address Mask Register

5.8.3 Block Diagram

Figure 97. SERIALO Block Diagram

5.8.4 Description

a) The Serial Port 0 Baud Rate Generation

Figure 98. SERIALO Baud rate generation diagram

b) The Serial Port 0 Operating Modes

Mode 0

In mode 0 the Serial Port 0 operates as synchronous transmitter/receiver. The "txd0" outputs the shift clock. The "rxd0o" outputs data and the "rxd0i" inputs data. 8 bits are transmitted with LSB first. The baud rate is fixed at 1/12 of the main clock frequency. Reception is started by setting the "ren0" = 1 flag "s0con" register (2.4.34), and clearing the "ri0" flag. Transmission is started by writing data to "s0buf" register.

Figure 99. SERIALO Transmission in Mode 0

Figure 100. SERIALO Reception in Mode 0

Mode 1

In mode 1 the Serial Port 0 operates as asynchronous transmitter/receiver with 8 data bits and programmable baud rate. Additionally the baud rate can be doubled with the use of the "s0mod1" bit of the "pcon" register (2.4.29).

Transmission is started by writing to the "s0buf" register. The "txd0" pin outputs data. The first bit transmitted is a start bit (always 0), then 8 bits of data proceed, after which a stop bit (always 1) is transmitted.

The "rxd0i" pin inputs data. When reception starts, the Serial Port 0 synchronizes with the falling edge detected at pin "rxd0i". Input data are available after completion of the reception in the "s0buf" register, and the value of stop bit is available as the "rb80" flag in the "s0con" register. During the reception, the "s0buf" and "rb80" remain unchanged until the completion.

Figure 101. SERIALO Transmission in Mode 1

Figure 102. SERIALO Reception in Mode 1

Mode 2

In mode 2 the Serial Port 0 operates as asynchronous transmitter/receiver with 9 data bits and baud rate fixed to Fclkper/32 or Fclkper/64, depending on the setting of "s0mod1" bit of "pcon" register (2.4.29).

Transmission is started by writing to the "s0buf" register. The "txd0" pin outputs data. The first bit transmitted is a start bit (always 0), then 9 bits of data proceed where the 9th is taken from bit "tb80" of the "s0con" register, after which a stop bit (always 1) is transmitted.

The "rxd0i" pin inputs data. When reception starts, the Serial Port 0 synchronizes with the falling edge detected at pin "rxd0". Input data are available after completion of the reception in the "s0buf" register, and the 9th bit is available as the "rb80" flag in the "s0con" register. During the reception, the "s0buf" and "rb80" remain unchanged until the completion.

Figure 103. SERIALO Transmission in Mode 2

Figure 104. SERIALO Reception in Mode 2

Mode 3

The only difference between Mode 2 and Mode 3 is that in Mode 3 either internal baud rate generator or Timer 1 can be used to specify the baud rate.

In mode 3 the Serial Port 0 operates as asynchronous transmitter/receiver with 9 data bits and programmable baud rate. Additionally the baud rate can be doubled with the use of the "s0mod7" bit of the "pcon" register (2.4.29).

Transmission is started by writing to the "s0buf" register. The "txd0" pin outputs data. The first bit transmitted is a start bit (always 0), then 9 bits of data proceed where the 9th is taken from bit "tb80" of the "s0con" register, after which a stop bit (always 1) is transmitted.

The "rxd0i" pin inputs data. When reception starts, the Serial Port 0 synchronizes with the falling edge detected at pin "rxd0". Input data are available after completion of the reception in the "s0buf" register, and the 9th bit is available as the "rb80" flag in the "s0con" register. During the reception, the "s0buf" and "rb80" remain unchanged until the completion.

Figure 105. SERIALO Transmission in Mode 3

Figure 106. SERIALO Reception in Mode 3

c) The Serial Port 0 Multiprocessor Communication

The feature of receiving 9 bits in Modes 2 and 3 of Serial Interface 0 can be used for multiprocessor communication.

When the "sm20" bit of the "s0con" register (2.4.34) is set, the receive interrupt is generated only when the 9^{th} received bit ("rb80" of "s0con") is 1. Otherwise, no interrupt is generated upon reception.

To utilize this feature to multiprocessor communication, the slave processors have their "sm20" bit set to 1. The master processor transmits the slave's address, with the 9^{th} bit set to 1, causing reception interrupt in all of the slaves. The receiver compares the received byte with their slave address. If there is a match, the addressed slave clears its "sm20" flag and the rest of the message is transmitted from the master with the 9^{th} bit set to 0. The other slaves keep their "sm20" set to 1 so that they ignore the rest of the message sent by the master.

d) Baud rates

In synchronous Mode 0 baud rate is fixed at Fclkper/12. Mode 2 has two optional baud rates (selected by the "s0mod1" bit in the "pcon" register). In modes 1 and 3 the baud rate is generated by overflow of Timer 1 and(or) Timer 2.

5.9. SERIAL1

5.9.1 Overview

The SERIAL1 provides a flexible full-duplex asynchronous receiver/transmitter. It can operate in two modes. The SERIAL1 is buffered at the receive side, i.e. it can reveive new data while the previously received is not damaged in the receive register until the completion of the 2^{nd} transfer.

5.9.2 Pin Description

Table 95. SERIAL1 Pin Description

Name	Туре	Polarity Bus size	Description
clkper	I	Rise	Peripheral Clock Clock input for all internal synchronous logic
rst	I	High	Hardware reset input The subcomponent is reset when this pin is held high for at least one clock cycle
newinstr	I	high	New instruction indicator
			Indicates the previous cycle was the first cycle of current instruction
Seria	l Port In	terface	
rxd1ff	I	-	Serial Port 1 receive data input
txd1	0	-	Serial Port 1 transmit data output
Inter	rupts		
ri1	0	High	Serial Port 1 receive flag
ti1	0	High	Serial Port 1 transmit flag
Speci	ial Funct	ion Regist	er interface
sfrdatai	I	8	data input bus
sfraddr	I	7	address bus
sfrwe	I	High	write enable
s1con	0	8	Serial 1 Control Register
s1buf	0	8	Serial 1 Data Buffer
s1rell	0	8	Serial 1 Baud Rate Generator Reload Register (low-order byte)
s1relh	0	8	Serial 1 Baud Rate Generator Reload Register (high-order byte)

5.9.3 Block Diagram

Figure 107. SERIAL1 block diagram

5.9.4 Description

a) The Serial Port 1 Baud Rate Generation

Figure 108. SERIAL1 Baud rate generation diagram

b) The Serial Port 1 Operating Modes

Mode A

In mode A the Serial Port 1 operates as asynchronous transmitter/receiver with 9 data bits and programmable baud rate. The "s1relh", "s1rell" (2.4.40) baud rate generator is used to synchronize input and output transfers. The baud rate of Serial Port 1 cannot be modified using the "s0mod1" bit of the "pcon" register.

Transmission is started by writing to the "s1buf" register (2.4.38). The "txd1" pin outputs data. The first bit transmitted is a start bit (always 0), then 9 bits of data proceed where the 9th is taken from bit "tb81" of the "s1con" register (2.4.39), after which a stop bit (always 1) is transmitted.

The "rxd1i" pin inputs data. When reception starts, the Serial Port 1 synchronizes with the falling edge detected at pin "rxd1i". Input data are available after completion of the reception in the "s1buf" register (2.4.38), and the 9^{th} bit is available as the "rb81" flag in the "s1con" register (2.4.39). During the reception, the "s1buf" and "rb81" remain unchanged until the completion.

Figure 109. SERIAL1 Transmission in Mode A

Figure 110. SERIAL1 Reception in Mode A

Mode B

In mode B the Serial Port 1 operates as asynchronous transmitter/receiver with 8 data bits and programmable baud rate. The "s1relh", "s1rell" (2.4.40) baud rate generator is used to synchronize input and output transfers. The baud rate cannot be mofified using the "s0mod1" bit of the "pcon" register.

Transmission is started by writing to the "s1buf" register (2.4.38). The "txd1" pin outputs data. The first bit transmitted is a start bit (always 0), then 8 bits of data proceed, after which a stop bit (always 1) is transmitted.

The "rxd1i" pin inputs data. When reception starts, the Serial Port 0 synchronizes with the falling edge detected at pin "rxd1i". Input data are available after completion of the reception in the "s1buf" register (2.4.38), and the value of stop bit is available as the "rb81" flag in the "s1con" register (2.4.39). During the reception, the "s1buf" and "rb81" remain unchanged until the completion.

Figure 111. SERIAL1 Transmission in Mode B

Figure 112. SERIAL1 Reception in Mode B

c) The Serial Port 1 Multiprocessor Communication

The feature of receiving 9 bits in Mode A of Serial Interface 1 can be used for multiprocessor communication.

When the "sm21" bit of the "s1con" register(2.4.39) is set, the receive interrupt is generated only when the 9^{th} received bit ("rb81" of "s1con") is 1. Otherwise, no interrupt is generated upon reception.

To utilize this feature to multiprocessor communication, the slave processors have their "sm21" bit set to 1. The master processor transmits the slave's address, with the 9^{th} bit set to 1, causing reception interrupt in all of the slaves. The slave processors' software compares the received byte with their network address. If there is a match, the addressed slave clears its "sm21" flag and the rest of the message is transmitted from the master with the 9^{th} bit set to 0. The other slaves keep their "sm21" set to 1 so that they ignore the rest of the message sent by the master.

5.10. WATCHDOG

5.10.1 Overview

The watchdog timer is a 14-bit counter that is incremented every 12 clock cycles. It is used to provide the system supervision in case of software or hardware upset. If the software is not able to refresh the Watchdog Timer after 196608 clock cycles (16,384 ms when using 12MHz clock), an internal reset is generated.

5.10.2 Pin Description

Table 96. Watchdog Timer Pin Description

Name	Туре	Polarity Bus size	Description
clkper	I	Rise	Peripheral Clock Clock input for all internal synchronous logic
resetff	I	High	Registered "reset" signal , synchronized at the rising edge of "clkper", used to reset the Watchdog Timer and to detect the Start Input ("swd")
newinstr	I	high	New instruction indicator Indicates the previous cycle was the first cycle of current instruction
wdts	0	High	Watchdog timer status flag output

Name	Туре	Polarity Bus size	Description
Debug	interfa	ace	
debugack	I	High	Debug acknowledge
			Indicates that the CPU has stopped instruction execution and entered the Debug Mode
watchdogstop	I	High	Stop the Watchdog Timer
			It is set by the CPU to syspend the Watchdog Timer when the CPU is in Debug Mode
Specia	I Funct	ion Regist	er interface
sfrdatai	I	8	Input data bus
sfraddr	I	7	Address bus
sfrwe	I	High	Write enable

5.10.3 Description

The Watchdog Timer consists of 14-bit counter (not accessible as SFR) and control logic. The Watchdog Timer is incremented every 12 clock cycles, which makes the whole period to be 12*16384=196608 clock cycles long.

a) Start Procedure

After hardware reset the Watchdog Timer is inactive. The only way to start the Watchdog Timer is by software. The Watchdog Timer is started by writing the two-byte sequence (write 1Eh and next E1h values to the "wdtrst" register.

When watchdog counter enters the state of 3FFFh, the internal reset is generated as the "wdts" output is active.

b) Refreshing the Watchdog Timer

The watchdog timer must be refreshed regularly to prevent reset request signal ("wdts") from becoming active. This requirement imposes obligation on the programmer to issue two followed instructions. The first instruction writes the 1Eh value to the "wdtrst" register and the second one writes the E1h value to the "wdtrst" register. The maximum allowed delay between writing proper values is 1 instruction cycles (that means the instructions which load both values to the "wdtrst" register are not separated with any other instruction). After that the internal watchdog counter is automatically cleared, which prevents the Watchdog Timer reset flag generating.

5.11. PMURSTCTRL

5.11.1 Overview

The main purpose of the **PMURSTCTRL** subcomponent is to provide the R80251XC with two operation modes with limited power consumption (IDLE or STOP) and to generate the internal synchronous reset signal.

The power down modes are implemented as two outputs controlling the behaviour of the off-core clock generator. The **PMURSTCTRL** generates output signals named "clkcpuen" and "clkperen" which should be externally used as gating control signals for clocks connected with appropriate R80251XC inputs ("clkcpu" and "clkper", respectively). These signals serve as clock enable signals for R80251XC CPU and peripherals.

The most of all registers and flip-flops in the R80251XC design are synchronously reset by high active internal "rst" signal. External hardware reset or watchdog timer reset can activate this signal. High level on external "reset" pin or watchdog reset request for at least two clock cycles while the "clk" is running resets the device. The "rst" signal is synchronized with the "clkper" in the **SYNCNEG** module, then it is combined with the other reset requests from Watchdog, Software Reset module and the OCDS in the **PMURSTCTRL**, and again it is synchronized by one flip-flop in the **SYNCNEG** module.

5.11.2 Pin Description

Table 97. PMURSTCTRL Pin Description

Name	Туре	Polarity Bus size	Description
resetff	I	High	Hardware reset input sample
			This signal is sampled and used to generate the main device reset
Internal reset signals			
wdts	I	High	Watchdog Timer status flag
			Reset Request from Watchdog Timer
srst	I		Software reset rquest
			Reset request from software reset control logic.
rst	0	High	Main device synchronous reset output
			Combined reset signal derived from "reset" input, Watchdog Timer overflow, Software Reset and OCDS reset to all other subcomponents of the R80251XC (except Watchdog Timer and Software Reset components)
rsttowdt	0	High	Watchdog synchronous reset output
			Combined reset signal derived from "reset" input Software Reset and OCDS reset, to be synchronized in the SYNCNEG module, then connected to the Watchdog Timer component
rsttosrst	0	High	Software Reset component synchronous reset output
			Combined reset signal derived from "reset" input, Watchdog Timer overflow and OCDS reset, to be synchronized in the SYNCNEG module, then connected to the Software Reset component
PMU	signals		
idle	I	High	Idle Mode Request from the CPU

Name	Туре	Polarity Bus size	Description
stop	I	High	Stop Mode Request from the CPU
pmuintreg	I	High	Interrupt request from WAKEUPCTRL unit
clkcpu_en	0	High	CPU clock enable output
			Controls the off-core gated "clkcpu" signal, when disabled stops the clock
clkper_en	0	High	Peripheral clock enable output
			Controls the off-core gated "clkper" signal, when disabled stops the clock
cpu_resume	0	High	Used to wake-up the CPU after exitting from Power-Down Mode
hold	I	High	HOLD mode request input
holdacpu	I	High	HOLD acknowledge generated by CPU
holdapmu	0	High	HOLD acknowledge generated by PMURSTCTRL in Power-Down Mode
Debug signals			
debugrst	I	High	Debug reset rquest
			Reset request from debugger.
pmudreq	I	High	Debug request input
			Debug request signal (sychronized)
debug-	I	High	Debug request input
pmureq			Debug request signal (from other clock domain)
debugack	I	High	Debug acknowledge
			Indicates that the CPU has stopped instruction execution and entered the Debug Mode
debugperen	I	High	Peripheral clock control input
			Debugger signal – enable or disable peripheral clock.
debugpmu-	0	High	Debug request ouput
req_synch			Debug request signal (sychronized)

The Power Management Unit provides two power management modes: IDLE and STOP.

a) Idle Mode

Setting the "idle" bit of "pcon" register (2.4.29) invokes the IDLE mode. in the IDLE mode clock for peripherals is running (the "clkper_en"=1, "clkcpu_en"=0). Power consumption drops because the CPU clock is stopped. The CPU can exit the IDLE state with any interrupt or reset.

b) Stop Mode

Setting the "stop" bit of "pcon" register (2.4.29) invokes the STOP mode. Both clocks for the CPU and peripherals are stopped in this mode (the "clkper_en"=0, "clkcpu_en"=0). The CPU can exit this state with an external interrupt ("int0" or "int1") or reset. Internally generated interrupts (timer, serial port, ...) cannot be used since they require clock activity to operate.

The "clkcpu_en" output is dedicated to control the off-core gate on to the "clkcpu" input. The "clkper_en" output is dedicated to control the off-core gate on to the "clkper" input.

c) Reset Generation

The extenrnal "reset" input is sampled by two rising-edge triggered flip-flops in the SYNCNEG module. The main device synchronous reset "rst" is activated three clock periods after hardware "reset" is active. The "rst" is active for minimum 2 clock cycles to allow the proper reset when Power Down mode is invoked.

When the Watchdog Timer overflow occurs, the "rst" is activated immediately.

Figure 113. External Reset Timing

Note:

clk – external clock input

Tclk – clock period

reset – external reset input

resetff - external reset input sampled by 2 rising-edge triggered flip-flops

rst — internally generated reset

Figure 114. Watchdog Reset Timing

Note:

clk – external clock input

Tclk – clock period

wdt – watchdog timer registers ("wdth", "wdtl")

wdts - watchdog timer status flag

rst — internally generated reset signal

Figure 115. Reset Output Generation

d) Hold Mode

Normally the HOLD mode is serviced by the CPU. The exception is the Power-Down Mode. When IDLE or STOP mode is invoked, and the "hold" signal becomes active, the "holdapmu" is activated immediately and interrupts are suspended (no wake-up is possible unless "hold" is inactive again). The "holdapmu" signal is combinationally OR-ed with the "holdacpu", generated synchronously by the CPU when not in STOP or IDLE mode. The "holda" output of the core is, depending on PMU_IMPLEMENT parameter, connected to "holdapmu" or "holdacpu".

5.12. PORTS

5.12.1 Overview

The **PORTS** subcomponent is composed of four 8-bit registers that can be accessed as Special Function Registers: "p0", "p1", "p2" and "p3". The contents of these registers is reflected at the output ports: "port0o", "port1o", "port2o" and "port3o", respectively. To ensure the 8051-like PORTS, it is required for the corresponding inputs and outputs to be externally (off-core) connected using open-drain buffers.

5.12.2 Pin Description

Table 98. PORTS Pin Description

Name	Туре	Polarity Bus size	Description	
clkper	I	Rise	Peripheral Clock	
			Clock input for all internal synchronous logic	
rst	I	High	Synchronous reset input	
			The subcomponent is reset when this pin is held high for at least one clock cycle	
PORTS outputs				
port0o	0	8	Port 0 output	
port1o	0	8	Port 1 output	
port2o	0	8	Port 2 output	
port3o	0	8	Port 3 output	
Speci	Special Function Register interface			

Name	Туре	Polarity Bus size	Description
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"

5.12.3 Block Diagram

Figure 116. PORTS Block Diagram

5.12.4 Description

The **PORTS** subcomponent consists of four 8-bit registers "p0", "p1", "p2" and "p3" (2.4.28) which can be accessed as Special Function Registers while performing write or Read-Modify-Write instructions.

The contents of "p0", "p1", "p3" and "p3" registers can also be observed at the corresponding output ports of the core.

The related inputs of the "p0"..."p3" are sampled by the SYNCNEG module to filter-out the metastable states. The Read-Modify-Write access to the PORTS is performed in the SFRMUX module, where either the contents of an output register ("port0".."port3") or the sampled inputs ("port0ff".."port3ff") are selected using the "rmwinstr" signal.

5.13. WAKEUPCTRL

5.13.1 Overview

The purpose of the WAKEUPCTRL is to calculate interrupt request signal when the processor is in the STOP mode. The CPU and peripheral clocks are stopped in that mode, therefore the interrupt request for the PMURSTCTRL has to be derived combinationally. If "int0" or "int1" conditions are met, the "pmuintreq" output is activated and it enables back the clock activity in the PMURSTCTRL component. The "pmuintreq" output can also be set when the processor is in the IDLE mode, when the peripheral clock is running and the interrupt controller (ISR) generates an interrupt request.

5.13.2 Pin Description

Table 99. WAKEUPCTRL Pin Description

Name	Туре	Polarity Bus size	Description
irq	I	High	Interrupt request from ISR
int0ff	I	Low/Fall	External interrupt 0
int1ff	I	Low/Fall	External interrupt 1
it0	I	-	External Interrupt 0 type select
it1	I	-	External Interrupt 1 type select
isreg	I	4	In-service register
			Contains the priority level of interrupt in progress
intprior0	I	2	External Interrupt 0 priority
intprior1	I	2	External Interrupt 1 priority
eal	I	High	Global interrupt enable
eint0	I	High	Interrupt 0 enable
eint1	I	High	Interrupt 1 enable
pmuintreq	0	High	Interrupt request to PMURSTCTRL

5.13.3 Block Diagram

Figure 117. WAKEUPCTRL Block Diagram

5.13.4 Description

When the IDLE mode is invoked, the ISR and other peripherals are clocked normally and interrupts are generated normally, therefore the "irq" signal coming from the ISR module can directly activate the "pmuintreq" output to finish the IDLE mode.

When the STOP mode is invoked, neither the "clkcpu" nor "clkper" are working. The ISR module can't generate an interrupt since no peripherals are working. The only interrupts that may be accepted in the STOP mode are External Interrupt 0 and 1 ("int0", "int1"). The additional interrupt priority decoder (combinational) which is introduced in the WAKEUPCTRL detects whether External Interrupt 0 or 1 is enabled and at proper priority level so that it can be accepted. If so, the "pmuintreq" output is activated, causing the PMURSTCTRL to exit from the STOP mode.

5.14.SFRMUX

5.14.1 Overview

The SFRMUX module serves a global Special Function Registers bus multiplexer. When any of the internal or external SFRs is being read with the use of direct addressing, that data is passed through the SFRMUX to the CPU.

5.14.2 Pin Description

Table 100. SFRMUX Pin Description

Name	Туре	Polarity Bus size	Description
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
С	I	High	Carry flag
			Carry bit in arithmetic operations and accumulator for Boolean operations
ac	I	High	Auxiliary Carry flag
			Set if there is a carry-out from 3 rd bit of Accumulator in BCD operations

Name	Туре	Polarity	Description
Name	Турс	Bus size	Description
f0	I	-	General purpose Flag 0
			General purpose flag available for user
rs	I	2	Register bank select bus, used to select working register bank
ov	I	High	Overflow flag
			Set in case of overflow in Accumulator during arithmetic operations
ud	I	-	User defined flag (General purpose Flag 1)
			General purpose flag available for user
р	I	High	Parity flag
			Reflects the parity of the Accumulator contents
n	I	High	Negative flag
			This bit is set if the result of the last logical or arithmetic operation was negative (i.e., bit $15 = 1$). Otherwise it is cleared.
Z	I	High	Zero flag
			This flag is set if the result of the last logical or arithmetic operation is zero. Otherwise it is cleared.
acc	I	8	Accumulator register
b	I	8	B register
dpl	I	8	Data Pointer Low register
			Contains bits 7:0 of the Data Pointer Register
dph	I	8	Data Pointer High register
			Contains bits 15:8 of the Data Pointer Register
dpxl	I	8	Data Pointer Extended Low register
			DPXL is the lower byte of the upper word of the extended data
			pointer, DPX = DR56
uconfig0_65	I	2	User Config register 0 (wsa)
			uconfig0.6, uconfig0.5
			The number of wait states for external memory accesses. (all regions except 01:)
uconfig0_0	I	1	User Config register 0 (src)
uconingo_o	1	1	uconfig0.0
			Source Mode/Binary Mode Select
uconfig1_4	I	1	User Config register 1 (intr)
			uconfig1.4
			Interrupt Mode
uconfig1_21	I	2	User Config register 1 (wsb)
			uconfig1.2, uconfig1.1
			The number of wait states for external memory accesses (Region 01:).
sp	I	8	Stack Pointer
		Ū	Points to the Top-of-stack
sph	I	8	Stack Pointer high
		Ū	SPH is the upper byte of the lower word of DR60, the extended
			stack pointer (SPX).

Name	Туре		Description
	_	Bus size	
s0mod	I	2	Serial Port 0: "baud rate doubler" and "s0con.7 select".
gf0	I	-	General purpose bit
	_		pcon.2
p2sel	I	High	High-order address byte configuration bit
		LP.L	pcon.3
stop	I	High	Stop mode control
			Setting this bit activates the Stop Mode. This bit is always read as 0
idle	I	High	Idle mode control
laic	_		Setting this bit activates the Idle Mode. This bit is always read as
			0
port0	I	8	Parallel Port 0 Output Register
port1	I	8	Parallel Port 1 Output Register
port2	I	8	Parallel Port 2 Output Register
port3	I	8	Parallel Port 3 Output Register
port0ff	I	8	Parallel Port 0 Input Register
port1ff	I	8	Parallel Port 1 Input Register
port2ff	I	8	Parallel Port 2 Input Register
port3ff	I	8	Parallel Port 3 Input Register
rmwinstr	I	High	Read-Modify-Write Instruction Indicator
			Used to select between Port Output / Port Input register for read
t0_tmod	I	4	Timer 0 Mode register
			tmod.0-tmod.3 bits
t0_tf0	I	High	Timer 0 overflow flag
t0_tf1	I	High	Timer 1 overflow flag
			Generated by Timer 0 in Mode 3
t0_tr0	I	High	Timer 0 run control flag
tl0	I	8	Timer 0 Low Register
th0	I	8	Timer 0 High Register
t1_tmod	I	4	Timer 1 Mode register
			tmod.4-tmod.7 bits
t1_tf1	I	High	Timer 1 overflow flag
t1_tr1	I	High	Timer 1 run control flag
tl1	I	8	Timer 1 Low Register
th1	I	8	Timer 1 High Register
wdtrel	I	8	Watchdog Timer Reload Register
ip0wdts	I	High	Watchdog Timer Status Flag
			Bit ip0.6
wdt_tm	I	High	Watchdog Timer Test Mode
tl2	I	8	Timer 2 Low Register
th2	I	8	Timer 2 High Register
exen2	I	High	External interrupt 2 enable flag

Name	Туре	Polarity Bus size	Description
crcl	I	8	Compare/Capture Register 0 (low-order byte)
crch	I	8	Compare/Capture Register 0 (high-order byte)
t2con	I	8	Timer 2 Control Register
ccen	I	8	Compare/Capture Enable Register
ccl1	I	8	Compare/Capture Register 1 (low-order byte)
cch1	I	8	Compare/Capture Register 1 (high-order byte)
ccl2	I	8	Compare/Capture Register 2 (low-order byte)
cch2	I	8	Compare/Capture Register 2 (high-order byte)
ccl3	I	8	Compare/Capture Register 3 (low-order byte)
cch3	I	8	Compare/Capture Register 3 (high-order byte)
tf2	I	High	Timer 2 overflow flag
exf2	I	High	Timer 2 external flag
s0con	I	8	Serial Port 0 Control Register
s0buf	I	8	Serial Port 0 Data Buffer
s0rell	I	8	Serial Port 0 Reload Register (low-order byte)
s0relh	I	8	Serial Port 0 Reload Register (high-order byte)
	I	High	Serial Port 0 Baud Rate Select flag
			When set, an additional baud rate generator is used for Serial Port 0, otherwise Timer 0 overflow is used
s1con	I	8	Serial Port 1 Control Register
s1buf	I	8	Serial Port 1 Data Buffer
s1rell	I	8	Serial Port 1 Reload Register (low-order byte)
s1relh	I	8	Serial Port 1 Reload Register (high-order byte)
ie0	I	High	External interrupt 0 flag
			Bit tcon.1
it0	I	High	External interrupt 0 type control
			Bit tcon.0
ie1	I	High	External interrupt 1 flag
			Bit tcon.3
it1	I	High	External interrupt 1 type control
			Bit tcon.2
iex2	I	High	External interrupt 2 edge flag
iex3	I	High	External interrupt 3 edge flag
iex4	I	High	External interrupt 4 edge flag
iex5	I	High	External interrupt 5 edge flag
iex6	I	High	External interrupt 6 edge flag
iex7	I	High	External interrupt 7 edge flag
iex8	I	High	External interrupt 8 edge flag
iex9	I	High	External interrupt 9 edge flag
iex10	I	High	External interrupt 10 edge flag
iex11	I	High	External interrupt 11 edge flag
iex12	I	High	External interrupt 12 edge flag

Name	Туре	Polarity Bus size	Description
int_req_ch0	I	High	DMA Channel 0 interrupt flag
int_req_ch1	I	High	DMA Channel 1 interrupt flag
int_req_ch2	I	High	DMA Channel 2 interrupt flag
int_req_ch3	I	High	DMA Channel 3 interrupt flag
int_req_ch4	I	High	DMA Channel 4 interrupt flag
int_req_ch5	I	High	DMA Channel 5 interrupt flag
int_req_ch6	I	High	DMA Channel 6 interrupt flag
int_req_ch7	I	High	DMA Channel 7 interrupt flag
dmas0	I	8	DMA Source Address Register 0
dmas1	I	8	DMA Source Address Register 1
dmas2	I	7	DMA Source Address Register 2
dmat0	I	8	DMA Target Address Register 0
dmat1	I	8	DMA Target Address Register 1
dmat2	I	7	DMA Target Address Register 2
dmac0	I	8	DMA Byte Counter Register 0
dmac1	I	8	DMA Byte Counter Register 1
dmac2	I	7	DMA Byte Counter Register 2
dmasel	I	8	DMA Select Register
dmam0	I	8	DMA Mode Register 0
dmam1	I	8	DMA Mode Register 1
ien0	I	8	Interrupt Enable 0 Register
ien1	I	6	Interrupt Enable 1 Register
ien2	I	6	Interrupt Enable 2 Register
ip0	I	6	Interrupt Priority 0 Register
ip1	I	6	Interrupt Priority 1 Register
isr_testmode	I	High	Interrupt Controller Test Mode Flag
i2c_int	I	High	I2C interrupt request signal
i2cdat_o	I	8	I2C Data Register
i2cadr_o	I	8	I2C Own Slave Address Register
i2ccon_o	I	8	I2C Control Register
i2csta_o	I	8	I2C Status Data Register
i2c2_int	I	High	Secondary I2C interrupt request signal
i2c2dat_o	I	8	Secondary I2C Data Register
i2c2adr_o	I	8	Secondary I2C Own Slave Address Register
i2c2con_o	I	8	Secondary I2C Control Register
i2c2sta_o	I	8	Secondary I2C Status Data Register
intspi	I	High	Serial Peripheral Interface interrupt request signal
spcon	I	8	Serial Peripheral Interface Control Register
spsta	I	8	Serial Peripheral Interface Status Register
spdat	I	8	Serial Peripheral Interface Data Register
spssn	I	8	Serial Peripheral Interface Slave Select Register

sfrdatai I 8 External SFR Bus input srstflag I High Software reset flag tf1_gate O High Set when either t0_tf1 or t1_tf1 is active riti0_gate O High Serial Port 0 Receive/Transmit Interrupt request signal Set when either the "ri0" or "ti0" flag of the "s0con" registe active riti1_gate O High Serial Port 1 Receive/Transmit Interrupt request signal Set when either the "ri1" or "ti1" flag of the "s1con" registe active tfexf2_gate O High Timer 2 Interrupt request signal Set when either the "tf2" or "exf2" flag of the "ircon" registe active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "int (SPI interrupt request) is active iex7_gate O High External Interrupt 7 / 12C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i20 (12C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon" register or the "i20 (12C interrupt request) is active	gnal er is
srstflag I High Software reset flag tf1_gate O High Set when either t0_tf1 or t1_tf1 is active riti0_gate O High Serial Port 0 Receive/Transmit Interrupt request signal Set when either the "ri0" or "ti0" flag of the "s0con" register active riti1_gate O High Serial Port 1 Receive/Transmit Interrupt request signal Set when either the "ri1" or "ti1" flag of the "s1con" register active tfexf2_gate O High Timer 2 Interrupt request signal Set when either the "tf2" or "exf2" flag of the "ircon" register active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "into (SPI interrupt request) is active iex7_gate O High External Interrupt 7 / 12C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2d (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the "i2d (I2C interrupt request) is active	gnal er is
tf1_gate	gnal er is
riti0_gate O High Serial Port 0 Receive/Transmit Interrupt request signal Set when either the "ri0" or "ti0" flag of the "s0con" register active riti1_gate O High Serial Port 1 Receive/Transmit Interrupt request signal Set when either the "ri1" or "ti1" flag of the "s1con" register active tfexf2_gate O High Timer 2 Interrupt request signal Set when either the "tf2" or "exf2" flag of the "ircon" register active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "interrupt request) is active iex7_gate O High External Interrupt 7 / 12C interrupt request signal Set when either the "iex7" of the "ircon" register or the "iex6" (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the Set when either the "iex8" of the "ircon2" register o	gnal er is
riti0_gate O High Serial Port 0 Receive/Transmit Interrupt request signative riti1_gate O High Serial Port 1 Receive/Transmit Interrupt request signated set when either the "ri1" or "ti1" flag of the "s1con" registed active Timer 2 Interrupt request signal Set when either the "tf2" or "exf2" flag of the "ircon" registed active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "interrupt request) is active iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2d (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	gnal er is
Set when either the "ri0" or "ti0" flag of the "s0con" registed active riti1_gate	gnal er is
riti1_gate O High Serial Port 1 Receive/Transmit Interrupt request signal Set when either the "ri1" or "exf2" flag of the "ircon" register active Timer 2 Interrupt request signal Set when either the "tf2" or "exf2" flag of the "ircon" register active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "interrupt request) is active iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2d (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	gnal er is
Set when either the "ri1" or "ti1" flag of the "s1con" register active tfexf2_gate O High Timer 2 Interrupt request signal Set when either the "tf2" or "exf2" flag of the "ircon" regist active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "int (SPI interrupt request) is active iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2d (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	er is
tfexf2_gate O High Timer 2 Interrupt request signal Set when either the "tf2" or "exf2" flag of the "ircon" regist active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "interrupt request) is active iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2d (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	
Set when either the "tf2" or "exf2" flag of the "ircon" regist active iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "int (SPI interrupt request) is active iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2d (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	ter is
iex2_gate O High External Interrupt 2 / SPI interrupt request signal Set when either the "iex2" of the "ircon" register or the "int (SPI interrupt request) is active iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2c (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	ter is
Set when either the "iex2" of the "ircon" register or the "int (SPI interrupt request) is active iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2d (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	
iex7_gate O High External Interrupt 7 / I2C interrupt request signal Set when either the "iex7" of the "ircon" register or the "i2c (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	
Set when either the "iex7" of the "ircon" register or the "i20 (I2C interrupt request) is active iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	tspi"
iex8_gate O High External Interrupt 8 / DMA Channels 0 & 4 interrupt Set when either the "iex8" of the "ircon2" register or the	
Set when either the "iex8" of the "ircon2" register or the	c_int"
	t
"dmaint0" or "dmaint4" (DMA Channel 0 & 4 interrupt requactive	est) is
iex9_gate O High External Interrupt 9 / DMA Channels 1 & 5 interrupt	t
Set when either the "iex9" of the "ircon2" register or the "dmaint1" or "dmaint5" (DMA Channel 1 & 5 interrupt requactive	est) is
iex10_gate O High External Interrupt 10 / DMA Channels 2 & 6 interru	pt
Set when either the "iex10" of the "ircon2" register or the "dmaint2" or "dmaint6" (DMA Channel 2 & 6 interrupt requise active	uest)
iex11_gate O High External Interrupt 11 / DMA Channels 4 & 7 interrupt	pt
Set when either the "iex11" of the "ircon2" register or the "dmaint3" or "dmaint7" (DMA Channel 3 & 7 interrupt requise active	uest)
sfrdatao O 8 SFR data bus output	
Output of the SFR multiplexer	
int_ack_03_isr I High Interrupt acknowledge by ISR input	
int_ack_03_dma I int_ack_03 O Interrupt acknowledge by DMA input Combined Interrupt acknowledge output	
int_ack_0b_isr I High Interrupt acknowledge by ISR input	
int_ack_0b_isi	
int_ack_0b O Combined Interrupt acknowledge output	
int_ack_13_isr I High Interrupt acknowledge by ISR input	
int_ack_13_dma I int_ack_13 O Interrupt acknowledge by DMA input Combined Interrupt acknowledge output	

Name	Туре	Polarity Bus size	Description
int_ack_1b_isr int_ack_1b_dma int_ack_1b	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_43_isr int_ack_43_dma int_ack_43	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_4b_isr int_ack_4b_dma int_ack_4b	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_53_isr int_ack_53_dma int_ack_53	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_5b_isr int_ack_5b_dma int_ack_5b	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_63_isr int_ack_63_dma int_ack_63	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_6b_isr int_ack_6b_dma int_ack_6b	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_8b_isr int_ack_8b_dma int_ack_8b	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_93_isr int_ack_93_dma int_ack_93	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_9b_isr int_ack_9b_dma int_ack_9b	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_a3_isr int_ack_a3_dma int_ack_a3	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
int_ack_ab_isr int_ack_ab_dma int_ack_ab	I I O	High	Interrupt acknowledge by ISR input Interrupt acknowledge by DMA input Combined Interrupt acknowledge output
ext_sfr_sel	0	High	External SFR detect output Set active when an external SFR is accessed

5.14.3 Block Diagram

Figure 118. SFRMUX Block Diagram

5.14.4 Description

The SFRMUX is a general Special Function Register Bus multiplexer. It selects one of the input registers pointed by the "sfraddr" bus and puts its contents onto the output bus "sfrdatao", which is fed to the CPU. There is the only one SFR bus multiplexer in the whole R80251XC design.

Several registers, e.g. The "ircon" or "tcon", are internally concatenated from single, non-vector inputs (separated flags).

All the register locations and eventual bit-wise assignments are defined in Chapter 2.4 : Special Function Registers.

The Parallel Port 0-3 registers can be read from two different sources depending on the state of the "rmwinstr" input, regardless of the "sfraddr". When a Read-Modify-Write instruction is performed, the output register of the selected Port is used instead of the input Port. This is shown in Figure 116.

The other purpose of the SFRMUX module is to generate interrupt request signals from Timer 1, Timer 2, Serial Port 0, Serial Port 1, External Interrupts 2 & 7, DMA channels 0-7 interrupts, SPI interrupt and I2C interrupt. Those interrupts are generated here because they can be invoked by setting more than one flag. Their sources are simply OR-ed and then routed to the interrupt controller as one signal.

This sub-component contains only combinational logic.

5.15.SYNCREGS

5.15.1 Overview

The SYNCNEG module incorporates the clock domain synchronization flip-flops for all external asynchronous inputs.

5.15.2 Pin Description

Table 101. SYNCNEG Pin Description

Name	Туре	Polarity Bus size	Description					
clkper	I	Rise	Peripheral Clock					
			Peripheral clock, used here to capture the state of asynchronous input signals into flip-flops					
reset	I	High	Hardware reset input					
			Conected directly to the "reset" input of the core					
int0	I	Low/Fall	External Interrupt 0 input					
int1	I	Low/Fall	External Interrupt 1 input					
int2	I	Fall/Rise	External Interrupt 2 input					
int3	I	Fall/Rise	External Interrupt 3 input					
int4	I	Rise	External Interrupt 4 input					
int5	I	Rise	External Interrupt 5 input					
int6	I	Rise	External Interrupt 6 input					
int7	I	Rise	External Interrupt 7 input					
int8	I	Rise	External Interrupt 8 input					
int9	I	Rise	External Interrupt 9 input					
int10	I	Rise	External Interrupt 10 input					
int11	I	Rise	External Interrupt 11 input					
int12	I	Rise	External Interrupt 12 input					
port0i	I	8	Parallel Port 0 input					
port1i	I	8	Parallel Port 1 input					
port2i	I	8	Parallel Port 2 input					
port3i	I	8	Parallel Port 3 input					

Bus size	
swd I High Start Watchdog Timer input	
t0 I Fall Timer 0 external input	
t1 I Fall Timer 1 external input	
t2 I Fall Timer 2 external input	
t2ex I Fall Timer 2 capture trigger input	
CC I 4 Compare/Capture inputs	
rxd0i I - Serial Port 0 data input	
rxd1 I - Serial Port 1 data input	
sdai I - I2C Interface data input	
misoi I - Synchronous Peripheral Interface data input	
intOff O Low/Fall External Interrupt 0 synchronization flip-flop out	put
int1ff O Low/Fall External Interrupt 1 synchronization flip-flop out	put
int2ff O Fall/Rise External Interrupt 2 synchronization flip-flop out	put
int3ff O Fall/Rise External Interrupt 3 synchronization flip-flop out	put
int4ff O Rise External Interrupt 4 synchronization flip-flop out	put
int5ff O Rise External Interrupt 5 synchronization flip-flop out	put
int6ff O Rise External Interrupt 6 synchronization flip-flop out	put
int7ff O Rise External Interrupt 7 synchronization flip-flop out	put
int8ff O Rise External Interrupt 8 synchronization flip-flop out	put
int9ff O Rise External Interrupt 9 synchronization flip-flop out	put
int10ff O Rise External Interrupt 10 synchronization flip-flop ou	tput
int11ff O Rise External Interrupt 11 synchronization flip-flop ou	tput
int12ff O Rise External Interrupt 12 synchronization flip-flop ou	
portOff O 8 Parallel Port 0 synchronization register output	•
port1ff O 8 Parallel Port 1 synchronization register output	
port2ff O 8 Parallel Port 2 synchronization register output	
port3ff O 8 Parallel Port 3 synchronization register output	
tOff O Fall Timer 0 external input synchronization flip-flop	
t1ff O Fall Timer 1 external input synchronization flip-flop	
swdff O High Start Watchdog Timer input synchronization flip-	flop
t2ff O Fall Timer 2 external input synchronization flip-flop	•
t2exff O Fall Timer 2 capture trigger synchronization flip-flop	
ccff O 4 Compare/Capture inputs synchronization register	r
rxd0ff O - Serial Port 0 data synchronization flip-flop	
rxd1ff O - Serial Port 1 data synchronization flip-flop	
sdaiff O - I2C Interface data synchronization flip-flop (for v	verification
misoiff O - Synchronous Peripheral Interface data synchroni (for verification purposes only)	zation flip-flop
resetff O High Hardware reset synchronization flip-flop	
rsttowdt I High Reset for Watchdog Timer before being synchror	nized
rsttosrst I High Reset for Software Reset module before being sy	nchronized

Name	Туре	Polarity Bus size	Description
rst	I	High	Reset for the remaining modules before being synchronized
rsttowdtff	0	High	Reset for Watchdog Timer
rsttosrstff	0	High	Reset for Software Reset module
rstff	0	High	Reset for the remaining modules

5.15.3 Block Diagram

Figure 119. SYNCNEG Block Diagram

5.15.4 Description

The SYNCNEG module contains the synchronization flip-flops for all external asynchronous inputs. Each of the input signals is connected to a rising edge triggered flip-flop, which is then fed to another flip-flop, and then connected to the output of the SYNCNEG module. Then all of those signals are routed into various components of the R80251XC.

If it is assured that a signal from the list above is off-core synchronized to the system clock, the synchronization logic can be skipped for that signal, by modifying the code to substitute the clocked assignment with a direct assignment.

5.16. EXTINT

5.16.1 Overview

The EXTINT module contains edge-detection logic and request flags for all external interrupt inputs. Since the interrupt inputs are already synchronized with the system clock in the SYNCNEG module, therefore they are used together with only one flip-flop to detect rising or falling transitions.

5.16.2 Pin Description

Table 102. EXTINT Pin Description

Name	Туре	Polarity Bus size	Description						
clkper	I	Rise	Peripheral clock						
			Clock input for all internal synchronous logic						
rst	I	High	Synchronous reset input						
			The subcomponent is reset when this pin is held high for at least one clock cycle						
newinstr	I	High	New instruction indicator						
			Indicates the previous cycle was the first cycle of current instruction						
int0ff	I	Fall/Low	Externai Interrupt 0 input sample						

Name	Туре	Polarity Bus size	Description
int0ack	I	High	External Interrupt 0 acknowledge
			Clears interrupt request flag
int1ff	I	Fall/Low	Externai Interrupt 1 input sample
int1ack	I	High	External Interrupt 1 acknowledge
			Clears interrupt request flag
int2ff	I	Fall/Rise	Externai Interrupt 2 input sample
iex2ack	I	High	External Interrupt 2 acknowledge
			Clears interrupt request flag
int3ff	I	Fall/Rise	Externai Interrupt 3 input sample
iex3ack	I	High	External Interrupt 3 acknowledge
			Clears interrupt request flag
int4ff	I	Rise	Externai Interrupt 4 input sample
iex4ack	I	High	External Interrupt 4 acknowledge
			Clears interrupt request flag
int5ff	I	Rise	Externai Interrupt 5 input sample
iex5ack	I	High	External Interrupt 5 acknowledge
			Clears interrupt request flag
int6ff	I	Rise	Externai Interrupt 6 input sample
iex6ack	I	High	External Interrupt 6 acknowledge
			Clears interrupt request flag
int7ff	I	Rise	Externai Interrupt 7 input sample
iex7ack	I	High	External Interrupt 7 acknowledge
			Clears interrupt request flag
int8ff	I	Rise	Externai Interrupt 8 input sample
iex8ack	I	High	External Interrupt 8 acknowledge
			Clears interrupt request flag
int9ff	I	Rise	Externai Interrupt 9 input sample
iex9ack	I	High	External Interrupt 9 acknowledge
			Clears interrupt request flag
int10ff	I	Rise	Externai Interrupt 10 input sample
iex10ack	I	High	External Interrupt 10 acknowledge
. 14400			Clears interrupt request flag
int11ff	I	Rise	Externai Interrupt 11 input sample
iex11ack	I	High	External Interrupt 11 acknowledge
1.14000			Clears interrupt request flag
int12ff	I	Rise	Externai Interrupt 12 input sample
iex12ack	I	High	External Interrupt 12 acknowledge
			Clears interrupt request flag
com	I	4	Compare signals from Timer 2 / CCU
ccen	I	8	Compare / Capture Enable register from Timer 2 / CCU
ie0	0	High	External Interrupt 0 Edge flag
it0	0	High	External Interrupt 0 Type flag

Name	Туре	Polarity Bus size	Description
ie1	0	High	External Interrupt 1 Edge flag
it1	0	High	External Interrupt 1 Type flag
i2fr	0	High	External Interrupt 2 Edge Select flag
iex2	0	High	External Interrupt 2 Edge flag
i3fr	0	High	External Interrupt 3 Edge Select flag
iex3	0	High	External Interrupt 3 Edge flag
iex4	0	High	External Interrupt 4 Edge flag
iex5	0	High	External Interrupt 5 Edge flag
iex6	0	High	External Interrupt 6 Edge flag
iex7	0	High	External Interrupt 7 Edge flag
iex8	0	High	External Interrupt 8 Edge flag
iex9	0	High	External Interrupt 9 Edge flag
iex10	0	High	External Interrupt 10 Edge flag
iex11	0	High	External Interrupt 11 Edge flag
iex12	0	High	External Interrupt 12 Edge flag
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"

5.16.3 Block Diagram

All the elements of the EXTINT module are shown in their own block diagrams in paragraphs below (Figure 120 to Figure 132).

5.16.4 Description

a) External Interrupt 0

The External Interrupt 0 can be programmed to be low level active or falling transaction active. When interrupt condition is met, the "ie0" bit in "tcon" SFR (0) is set. Setting this bit forces interrupt request generation (if not masked), and corresponding interrupt vector is set. During the interrupt acknowledge cycle (when the CPU sets "intack" signal), when interrupt vector points to subroutine intended for external interrupt 0, the corresponding bit ("ie0") is automatically cleared by hardware, but only in case when this interrupt was set to be negative transaction sensitive. in case that external interrupt was set to be low level active, the interrupt subroutine must force external device to release the interrupt pin. Low level or negative transaction sensitivity is defined by "it0" flag in "tcon" (0) SFR.

The External interrupt 0 can be also triggered by setting a corresponding request bit of "tcon" by software.

Figure 120. External Interrupt 0 Detection

b) External Interrupt 1

The External Interrupt 1 can be programmed to be low level active or falling transaction active. When interrupt condition is met, the "ie1" bit in "tcon" SFR (0) is set. Setting this bit forces interrupt request generation (if not masked), and corresponding interrupt vector is set. During the interrupt acknowledge cycle (when the CPU sets "intack" signal), when interrupt vector points to subroutine intended for external interrupt 1, the corresponding bit ("ie1") is automatically cleared by hardware, but only in case when this interrupt was set to be negative transaction sensitive. in case that external interrupt was set to be low level active, the interrupt subroutine must force external device to release the interrupt pin. Low level or negative transaction sensitivity is defined by "it1" flag in "tcon" (0) SFR.

The External interrupt 1 can be also triggered by setting a corresponding request bit of "tcon" by software.

Figure 121. External Interrupt 1 Detection

c) External Interrupt 2

The External Interrupt 2 can be programmed to be positive or negative edge sensitive (depending on "i2fr" bit in "t2con" (2.4.47) SFR). When the chosen edge occurs, bit "iex2" in

"ircon" (2.4.26) SFR register is set and corresponding interrupt is invoked. Interrupt request flag "iex2" in "ircon" is cleared by hardware automatically when the service routine is vectored to.

The edge detection on "int2ff" input and setting the "iex2" flag in "ircon" SFR, in hardware, is made according to the scheme shown on Figure 122.

Figure 122. External Interrupt 2 Detection

The External Interrupt 2 (after being synchronized to the system clock in the SYNCNEG module) is checked for rising or falling transition, depending on the setting of the "i2fr" flag, which is also implemented in EXTINT module. The "iex2" interrupt request flag can be set by hardware upon detection of chosen edge of the interrupt signal, and can be cleared by hardware upon receiving acknowledge signal from the interrupt controller (ISR module).

The interrupt edge detection module is protected against losing interrupt requests which occur during a Read-Modify-Write instructions performed on the interrupt request register. The edge detection pulse is cleared after finishing the current instruction, which assures that an interrupt detected between "read" and "write" stages of the Read-Modify-Write instructions will not be lost.

d) External Interrupt 3

The External Interrupt 3 can be programmed to be positive or negative edge sensitive (depending on the "i3fr" bit in "t2con" (2.4.47) SFR). When chosen edge occurs, the "iex3" flag in "ircon" (2.4.26) SFR register is set and corresponding interrupt is invoked. The low / high level must remain at least 1 clock cycle for the rising/falling edge to be detected.

Additionally the "iex3" flag can be set (and interrupt invoked) by the Compare/Capture Unit "com(0)" signal. The Compare/Capture Unit sets "iex3" flag in "ircon" (2.4.26) SFR register when compare/capture mode for CRC register is set to compare mode (flags "cocal0"=0 and "cocah0"=1 in "ccen" (2.4.7) SFR) and the value in Timer 2 becomes equal to the value of compare register "crc" (register "crc" consist of "crcl" and "crch", see 2.4.8). The external interrupt configuration (falling or rising edge sensitive) also applies here. The "i3fr" defines the edge of "com(0)" which generates interrupt, that means that it is also possible to generate interrupt when the contents of Timer 2 become not equal to the "crc" register.

The "iex3" is set by Compare/Capture Unit only when "cocal0"=0 and "cocah0"=1. in all others cases the "iex3" is set when corresponding edge on external pin occurs. It is impossible to use both External Interrupt 3 and interrupt from CCU at this same time.

The "iex3" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int3" input and setting the "iex3" flag in "ircon" (2.4.26) SFR is made according to the scheme shown in Figure 123

Figure 123. External Interrupt 3 Detection

e) External Interrupt 4

The External Interrupt 4 is only rising edge sensitive. When a rising edge occurs, the "iex4" flag in "ircon" (2.4.26) SFR register is set and corresponding interrupt is invoked. Low or high level at "int4" input pin must be at least 1 clock cycle long for the rising edge to be detected.

Additionally the "iex4" flag can be set (and interrupt invoked) by Compare/Capture Unit. Compare/Capture Unit sets the "iex4" flag in "ircon" SFR register when compare/capture mode for "cc1" register is set to compare mode (flags "cocal1"=0 and "cocah1"=1 in "ccen" (2.4.7) SFR) and value of Timer 2 becomes equal to the value of compare register "cc1" (register "cc1" consists of "cc1l" and "cc1h", see 2.4.5).

The "iex4" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int4" input and setting the "iex4" flag in "ircon" (2.4.26) SFR is made according to the scheme shown in Figure 124.

Figure 124. External Interrupt 4 Detection

f) External Interrupt 5

The External Interrupt 5 is only rising edge sensitive. When a rising edge occurs, the "iex5" flag in "ircon" (2.4.26) SFR register is set and corresponding interrupt is invoked. Low or high level at "int5" input pin must be at least 1 clock cycle long for the rising edge to be detected.

Additionally the "iex5" flag can be set (and interrupt invoked) by Compare/Capture Unit. Compare/Capture Unit sets the "iex5" flag in "ircon" SFR register when compare/capture mode for "cc2" register is set to compare mode (flags "cocal2"=0 and "cocah2"=1 in "ccen" (2.4.7) SFR) and value of Timer 2 becomes equal to the value of compare register "cc2" (register "cc2" consists of "cc2l" and "cc2h", see 2.4.5).

The "iex5" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int5" input and setting the "iex5" flag in "ircon" (2.4.26) SFR is made according to the scheme shown in Figure 125.

Figure 125. External Interrupt 5 Detection

g) External Interrupt 6

The External Interrupt 6 is only rising edge sensitive. When a rising edge occurs, the "iex6" flag in "ircon" (2.4.26) SFR register is set and corresponding interrupt is invoked. Low or high level at "int6" input pin must be at least 1 clock cycle long for the rising edge to be detected.

Additionally the "iex6" flag can be set (and interrupt invoked) by Compare/Capture Unit. Compare/Capture Unit sets the "iex6" flag in "ircon" SFR register when compare/capture mode for "cc3" register is set to compare mode (flags "cocal3"=0 and "cocah3"=1 in "ccen" (2.4.7) SFR) and value of Timer 2 becomes equal to the value of compare register "cc3" (register "cc3" consists of "cc3l" and "cc3h", see 2.4.5).

The "iex6" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int6" input and setting the "iex6" flag in "ircon" (2.4.26) SFR is made according to the scheme shown in Figure 126.

Figure 126. External Interrupt 6 Detection

h) External Interrupt 7

The External Interrupt 7 is only rising edge sensitive. When a rising edge occurs, the "iex7" flag in "ircon" (2.4.26) SFR register is set and corresponding interrupt is invoked. Low or high level at "int7" input pin must be at least 1 clock cycle long for the rising edge to be detected.

The "iex7" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int7" input and setting the "iex7" flag in "ircon" (2.4.26) SFR is made according to the scheme shown in Figure 127.

Figure 127. External Interrupt 7 Detection

i) External Interrupt 8

The External Interrupt 8 is only rising edge sensitive. When a rising edge occurs, the "iex8" flag in "ircon2" (2.4.27) SFR register is set and corresponding interrupt is invoked. Low or high level at "int8" input pin must be at least 1 clock cycle long for the rising edge to be detected.

The "iex8" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int8" input and setting the "iex8" flag in "ircon2" (2.4.27) SFR is made according to the scheme shown in Figure 128.

Figure 128. External Interrupt 8 Detection

j) External Interrupt 9

The External Interrupt 9 is only rising edge sensitive. When a rising edge occurs, the "iex9" flag in "ircon2" (2.4.27) SFR register is set and corresponding interrupt is invoked. Low or high level at "int9" input pin must be at least 1 clock cycle long for the rising edge to be detected.

The "iex9" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int9" input and setting the "iex9" flag in "ircon2" (2.4.27) SFR is made according to the scheme shown in Figure 129.

Figure 129. External Interrupt 9 Detection

k) External Interrupt 10

The External Interrupt 10 is only rising edge sensitive. When a rising edge occurs, the "iex10" flag in "ircon2" (2.4.27) SFR register is set and corresponding interrupt is invoked. Low or high level at "int10" input pin must be at least 1 clock cycle long for the rising edge to be detected.

The "iex10" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int10" input and setting the "iex10" flag in "ircon2" (2.4.27) SFR is made according to the scheme shown in Figure 130.

Figure 130. External Interrupt 10 Detection

I) External Interrupt 11

The External Interrupt 11 is only rising edge sensitive. When a rising edge occurs, the "iex11" flag in "ircon2" (2.4.27) SFR register is set and corresponding interrupt is invoked. Low or high level at "int11" input pin must be at least 1 clock cycle long for the rising edge to be detected.

The "iex11" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int11" input and setting the "iex11" flag in "ircon2" (2.4.27) SFR is made according to the scheme shown in Figure 131.

Figure 131. External Interrupt 11 Detection

m) External Interrupt 12

The External Interrupt 12 is only rising edge sensitive. When a rising edge occurs, the "iex12" flag in "ircon2" (2.4.27) SFR register is set and corresponding interrupt is invoked. Low or high level at "int12" input pin must be at least 1 clock cycle long for the rising edge to be detected.

The "iex12" flag is cleared by hardware automatically when invoked service routine is vectored to.

The hardware edge detection on "int12" input and setting the "iex12" flag in "ircon2" (2.4.27) SFR is made according to the scheme shown in .

Figure 132. External Interrupt 12 Detection

5.17.I2C

5.17.1 Overview

The **I2C** subcomponent is the I2C Bus Controller which provides an interface that meets the Philips I2C bus specification and supports all transfer modes from and to the I2C bus.

The I2C bus uses two wires to transfer information between devices connected to the bus: "scl" (serial clock line) and "sda" (serial data line).

The I2C logic handles bytes transfer autonomously. It also keeps track of serial transfers, and a status register ("i2csta", 2.4.17) reflects the status of the I2C Bus Controller and the I2C bus.

5.17.2 Pin Description

Table 103. I2C Pin Description

Name	Туре	Polarity Bus size	Description
clk	I	Rise	Clock
			Clock input for all internal synchronous logic
rst	I	High	Hardware reset input
			The subcomponent is reset when this pin is held high for at least one clock cycle
bclk	I	Rise	Baud rate clock
			Pulse for transmission speed control, internally synchronized with the "clk" input
si	0	High	Serial transmission interrupt
			Active high when service is requested by the I2C component
I2C ii	nterface	Т	
scli	I	Level	I2C clock input
sdai	I	Level	I2C data input
sclo	0	Level	I2C clock output
sdao	0	Level	I2C data output
Speci	al Funct	ion Regist	er interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs ("i2cdat", "i2ccon", "i2cadr")
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"
i2cdat_o	0	8	I2C Data Register output
i2cadr_o	0	8	I2C Own Slave Address Register output
i2ccon_o	0	8	I2C Control Register output
i2csta_o	0	8	I2C Status Register output

i2cadr Address Register Address Comparator i2cdat Shift Register Input Filter sdai sfrdatai Output SFR interface Arbitration And Synchronization Logic sfrdatao Input Filter bclk Serial Clock Generator Output i2ccon Control Register i2csta Status Register

5.17.3 Block Diagram

Figure 133. I2C Block Diagram

5.17.4 Description

The I2C bus uses two wires to transfer information between devices connected to the bus: "scl" (serial clock line) and "sda" (serial data line). The I2C component requires the use of external open-drain buffers since it has only unidirectional ports. The "sda" and "scl" lines refered further are the actual I2C bus signals, while the I2C component is connected to them with the use of open-drains ("sdao" as output and "sdai" as input, "sclo" as output and "scli" as input). Each device connected to the bus is software addressable by a unique address. The I2C is a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer. The filtering logic rejects spikes on the bus data line to preserve data integrity.

a) Operating Modes

The I2C component performs 8-bit oriented, bi-directional data transfers up to 100 kbit/s in the standard mode or up to 400 kbit/s in the fast mode and may operate in the following four modes:

b) Master Transmitter Mode:

Serial data output through "sdao" while "sclo" outputs the serial clock.

c) Master Receiver Mode:

Serial data is received via "sdai" while "sclo" outputs the serial clock.

d) Slave Receiver Mode

Serial data and the serial clock are received through "sdai" and "scli".

e) Slave Transmitter Mode

Serial data is transmitted via "sdao" while the serial clock is input through "sdi".

f) Arbitration and Synchronization Logic

In the master mode, the arbitration logic checks that every transmitted high state ('1') on "sdao" actually appears as high state ('1') on the I2C bus "sda". If another device on the bus overrides high and pulls the "sda" line low ('0'), arbitration is lost and the I2C immediately changes from master transmitter to slave receiver.

The synchronization logic synchronizes the serial clock generator with the clock pulses on the "scli" line from another device.

g) Serial Clock Generator

This programmable clock pulse generator provides the "sclo" clock pulses when the I2C is in the master mode. The clock generator is suppressed when the I2C is in the slave mode. The function of the clock generator is controlled by bits "cr0", "cr1" and "cr2" of "i2ccon" register (2.4.15). The table below shows the possible rates of "clko" in the master mode. The "bclk" input referenced in the table is connected to the Timer 1 overflow output. That means the baud rate of the I2C can be controlled by the Timer 1.

- C**	ord.	o::0		Clk divided by						
cr2	cr1	cr0	6 MHz	12 MHz	16 MHz	24 MHz				
0	0	0	23	47	63	92	256			
0	0	1	27	54	71	108	224			
0	1	0	31	63	83	124	192			
0	1	1	37	75	100	148	160			
1	0	0	6.25	12.5	17	25	960			
1	0	1	50	100	133	200	120			
1	1	0	100	200	266	400	60			
1	1	1	"bclk" input divided by 8							

Table 104. I2C Clock Rate Bit Settings

h) Input Filter

Input signals are synchronized with clock ("clk"), and spikes shorter than three clock periods are filtered out. Each filter consists of three flip-flops. The first one is used to latch the input directly, while the other two form a shift register which is loaded from the first one. When the state of the 2nd and 3rd flip-flop is either "11" or "00", an internal filtered signal is set or reset, respectively.

i) Address Comparator

The received 7-bit slave address is compared with the I2C component own slave address. The own slave address can be programmed using the "i2caddr" register (see 2.4.14). Also the first received byte is compared with the general call address (00H), depending on the "gc" bit of "i2caddr" register (2.4.14). If equality is found, the "si" bit of the "i2ccon" register (2.4.15) is set and an interrupt is requested.

j) Interrupt Generation

The "si" flag of the "i2ccon" register (2.4.15) is set by hardware when one of 25 out of 26 possible I2C states is entered (2.4.17). The only state that does not set the "si" is state F8h, which indicates that no relevant state information is available. The "si" flag must be cleared by software. in order to clear the "si" bit, '0' must be written to this bit. Writing a '1' to si bit does not change value of the "si".

The I2C interrupt vector is shared with the External Interrupt 7. The "si" signal is OR-ed with the External Interrupt 7 edge flag, before it comes into the Interrupt Controller (ISR). to determine the actual source of that interrupt, the "si" flag has to be investigated by the interrupt service routine. Since the External Interrupt 7 flag is automatically cleared after vectoring to the service subroutine, only the state of the "si" flag brings the information of the actual source of the interrupt.

k) Special Function Registers

The microprocessor interfaces to the I2C component via the following four special function registers: "i2ccon" (control register, 2.4.15), "i2csta" (status register, 2.4.17), "i2cdat" (data register, 2.4.16) and "i2cadr" (own slave address register, 2.4.14).

The "i2cadr" register contains the Own Slave Address of the I2C component, and the "gc" flag which enables the recognition of a general call address.

The "i2ccon" register contains the global I2C enable bit "ens1", clock rate setting bits ("cr0", "cr1", "cr2", see Table 11. I2C2CON Register). It also provides flags to initiate sending START or STOP conditions to the I2C bus ("sta", "sto" bits), a flag controlling the ACK bit in I2C transmission after receiving own slave address or general call address or after receiving data either in master or slave mode ("aa" – assert acknowledge flag). Finally the "i2ccon" provides the interrupt request flag "si" which is set by hardware when a change of the main controlling FSM is detected. See the "i2csta" register description for FSM details.

The "i2cdat" register contains a byte to be transmitted through I2C bus or a byte which has just been received through I2C bus. The "i2cdat" register is not shadowed or double buffered so the MCU should only read it when an I2C interrupt occurs.

The "i2csta" register reflects the state of the main FSM of the I2C component. The three least significant bits of this register are always zero. There are 26 possible status codes, which are presented in Table 105 ... Table 109. When one of the 25 out of 26 possible I2C FSM states is entered, an interrupt is requested. The only state that does not generate an interrupt is the F8h state.

In the table below, referring to "SLA" means slave address, "R" means R/W bit=1 tramsferred together with the slave address, "W" means R/W bit=0 transferred together with the slave address.

Table 105. I2C Status in Master Transmitter Mode

		Application	softw	are re			
Status code	Status of the I2C	to/from		to I2	CCON		Next action taken by the I2C hardware
Couc	120	I2CDAT	sta	sto	si	aa	120 Haraware
08H	START condition has been transmitted	Load SLA+W	X	0	0	Х	SLA+W will be transmitted ACK will be received
10H	Repeated START	Load SLA+W or	Χ	0	0	Χ	As above
	condition has been transmitted	Load SLA+R	X	0	0	X	SLA+R will be transmitted I2C will be switched to "master receiver" mode
18H	SLA+W has been	Load data byte	0	0	0	Χ	Data byte will be transmitted; ACK will be received
	transmitted; ACK has been	or no action	1	0	0	Х	Repeated START will be transmitted;
	received	or no action	0	1	0	Х	STOP condition will be transmitted; the "sto" flag will be reset
		or no action	1	1	0	X	STOP condition followed by a START condition will be transmitted; the "sto" flag will be reset
20H	SLA+W has been	Load data byte	0	0	0	Χ	Data byte will be transmitted; ACK will be received
	transmitted; "not ACK" has	or no action	1	0	0	Х	Repeated START will be transmitted
	been received	or no action	0	1	0	Х	STOP condition will be transmitted; the "sto" flag will be reset
		or no action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; the "sto" flag will be reset
28H	Data byte in i2cdat has	Load data byte	0	0	0	Х	Data byte will be transmitted; ACK bit will be received
	been transmitted;	or no action	1	0	0	Х	Repeated START will be transmitted
	ACK has been received	or no action	0	1	0	X	STOP condition will be transmitted; the "sto" flag will be reset
		or no action	1	1	0	Х	STOP condition followed by a START condition will be transmitted; sto flag will be reset

.		Application	softw	are re			
Status code	Status of the I2C	to/from		to I2	CCON		Next action taken by the I2C hardware
Couc		I2CDAT	sta	sto	si	aa	120 naraware
30H	Data byte in i2cdat has	Data byte	0	0	0	Х	Data byte will be transmitted; ACK will be received
	been transmitted	or no action	1	0	0	Х	Repeated START will be transmitted;
		or no action	0	1	0	Х	STOP condition will be transmitted; sto flag will be reset
		or no action	1	1	0	X	STOP condition followed by a START condition will be transmitted; sto flag will be reset
38H	Arbitration lost in SLA+R/W or data bytes	No action	0	0	0	Х	I2C bus will be released; the "not addressed slave" state will be entered
		or no action	1	0	0	Х	A START condition will be transmitted when the bus becomes free

Table 106. I2C Status in Master Receiver Mode

		Application	softw	are re			
Status code	Status of the I2C	to/from		to i20	CCON		Next action taken by the I2C hardware
Couc	120	I2CDAT	sta	sto	si	aa	120 Haraware
08H	START condition has been transmitted	Load SLA+R	Х	0	0	Х	SLA+R will be transmitted; ACK will be received
10H	Repeated START	Load SLA+R	Х	0	0	Х	As above
	condition has been transmitted	or Load SLA+W	Х	0	0	Х	SLA+W will be transmitted; I2C will be switched to "master transmitter" mode
38H	Arbitration lost in "not ACK" bit	No action or	0	0	0	Х	I2C bus will be released; I2C will enter a "slave" mode
		no action	1	0	0	Х	A start condition will be transmitted when the bus becomes free
40H	SLA+R has been transmitted;	No action or	0	0	0	0	Data byte will be received; not ACK will be returned
	ACK has been received	no action	0	0	0	1	Data byte will be received; ACK will be returned

		Application	softw	are re			
Status code	Status of the I2C	to/from		to i20	CCON		Next action taken by the I2C hardware
couc	120	I2CDAT	sta	sto	si	aa	120 Haraware
48H	SLA+R has been transmitted;	No action	1	0	0	Х	Repeated START condition will be transmitted
	"not ACK" has been received	or no action	0	1	0	Х	STOP condition will be transmitted; the "sto" flag will be reset
		or no action	1	1	0	X	STOP condition followed by START condition will be transmitted; the "sto" flag will be reset
50H	Data byte has been received;	Read data byte or	0	0	0	0	Data byte will be received; "not ACK" will be returned
	ACK has been returned	read data byte	0	0	0	1	Data byte will be received; ACK will be returned
58H	Data byte has been received;	Read data byte or	1	0	0	Х	Repeated START condition will be transmitted
	"not ACK" has been returned	read data byte or	0	1	0	Х	STOP condition will be transmitted; the "sto" flag will be reset
		read data byte	1	1	0	X	STOP condition followed by START condition will be transmitted; the "sto" flag will be reset

Table 107. I2C Status in Slave Receiver Mode

	Status of the I2C	Application	softw	rare re			
Status code		to/from I2CDAT	to i2CCON				Next action taken by the I2C hardware
			sta	sto	si	aa	12C Haluwale
60H	Own SLA+W has been received; ACK	No action	Х	0	0	0	Data byte will be received and "not ACK" will be returned
	has been returned	or no action	X	0	0	1	Data byte will be received and ACK will be returned
68H	Arbitration lost in SLA+R/W as master; own	No action	Х	0	0	0	Data byte will be received and "not ACK" will be returned
	SLA+W has been received, ACK returned	or no action	Х	0	0	1	Data byte will be received and ACK will be returned
70H	General call address (00H) has been	No action	Х	0	0	0	Data byte will be received and "not ACK" will be returned
	received; ACK has been returned	or no action	X	0	0	1	Data byte will be received and ACK will be returned

Application software re						se	
Status code	Status of the I2C	to/from	to i2CCON				Next action taken by the I2C hardware
		I2CDAT	sta	sto	si	aa	
78H	Arbitration lost in SLA+R/W as master; general call address has	No action or no action	X	0	0	0	Data byte will be received and "not ACK" will be returned Data byte will be received
	been received, ACK returned						and ACK will be returned
80H	Previously addressed with own SLV	Read data byte or	Х	0	0	0	Data byte will be received and "not ACK" will be returned
	address; DATA has been received; ACK returned	read data byte	Х	0	0	1	Data byte will be received and ACK will be returned
88H	Previously addressed with own SLA; DATA byte has been	Read data byte	0	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address
	received; "not ACK" returned	read data byte	0	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized
		read data byte	1	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address; START condition will be transmitted when the bus becomes free
		read data byte	1	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized; START condition will be transmitted when the bus becomes free
90H	Previously addressed with general call	Read data byte or	X	0	0	0	Data byte will be received and "not ACK" will be returned
	address; DATA has been received; ACK returned	read data byte	X	0	0	1	Data byte will be received and ACK will be returned

	Application software response							
Status code	Status of the I2C	to/from	to i2CCON				Next action taken by the I2C hardware	
code	120	I2CDAT	sta	sto	si	aa	12C Hardware	
98H	Previously addressed with general call address; DATA has been received; ACK returned	Read data byte	0	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address	
		read data byte	0	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized	
		read data byte	1	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address; START condition will be transmitted when the bus becomes free	
		read data byte	1	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized; START condition will be transmitted when the bus becomes free	
АОН	STOP condition or repeated START condition has been received while still addressed as SLV/REC or SLV/TRX	No action	0	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address	
		no action	0	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized	
		no action	1	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address; START condition will be transmitted when the bus becomes free	
		no action	1	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized; START condition will be transmitted when the bus becomes free	

Table 108. I2C Status in Slave Transmitter Mode

		Application	softw				
Statu s code	Status of the I2C	to/from	to i2CCON				Next action taken by the I2C hardware
3 couc	120	I2CDAT	sta	sto	si	aa	120 Haraware
A8H	Own SLA+R has been received; ACK	Load data byte or	Х	0	0	0	Last data byte will be transmitted and ACK will be received
	has been returned	load data byte	Х	0	0	1	Data byte will be transmitted; ACK will be received
ВОН	Arbitration lost in SLA+R/W as master; own	Load data byte or	Х	0	0	0	Last data byte will be transmitted and ACK will be received
	SLA+R has been received; ACK has been returned	load data byte	X	0	0	1	Data byte will be transmitted; ACK will be received
B8H	Data byte has been transmitted;	Load data byte or	Х	0	0	0	Last data byte will be transmitted and ACK will be received
	ACK has been received	load data byte	Х	0	0	1	Data byte will be transmitted; ACK will be received
C0H	Data byte has been transmitted; not ACK has	No action or	0	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address
	been received	no action	0	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized
		no action	1	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address; START condition will be transmitted when the bus becomes free
		no action	1	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized; START condition will be transmitted when the bus becomes free

		Application	softw	are re			
Statu s code	Status of the I2C	to/from					Next action taken by the I2C hardware
5 0000	, code 12C	I2CDAT	sta	sto	si	aa	220 1101 0 1101 0
C8H	Last data byte has been transmitted; ACK has been	No action or	0	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address
	received	no action	0	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized
		no action	1	0	0	0	Switched to "not addressed slave" mode; no recognition of own slave address or general call address; START condition will be transmitted when the bus becomes free
		no action	1	0	0	1	Switched to "not addressed slave" mode; own slave address or general call address will be recognized; START condition will be transmitted when the bus becomes free

Table 109. I2C Status - Miscellaneous States

			n software response				
Statu s code	Status of the I2C	to/from		to i20	CCON		Next action taken by the I2C hardware
3 Code	120	I2CDAT	sta	sto	si	aa	12C Hardware
F8H	No relevant state information available; si=0	No action	No action		Wait or proceed current transfer		
00H	Bus error during MST or selected slave modes	No action	0		0	X	Only the internal hardware is affected in the "master" or "addressed slave" modes. in all cases, the bus is released and I2C is switched to the "not addressed slave" mode. The "sto" flag is reset.

5.18.SEC_I2C

5.18.1 Overview

The Secondary I2C subcomponent is the same I2C Bus Controller as described in section 5.17, with only the SFR locations different.

It can only be implemented when the basic I2C interface is also implemented.

5.18.2 Pin Description

Table 110. Secondary I2C Pin Description

Name	Туре	Polarity Bus size	Description
clk	I	Rise	Clock
			Clock input for all internal synchronous logic
rst	I	High	Hardware reset input
			The subcomponent is reset when this pin is held high for at least one clock cycle
bclk2	I	Rise	Baud rate clock
			Pulse for transmission speed control, internally synchronized with the "clk" input
si2	0	High	Serial transmission interrupt
			Active high when service is requested by the I2C component
Secon	ndary I2	C interface	
scl2i	I	Level	I2C clock input
sda2i	I	Level	I2C data input
scl2o	0	Level	I2C clock output
sda2o	0	Level	I2C data output
Speci	al Funct	ion Regist	er interface
sfrdatai	I	8	SFR data bus input
			Data to be written to internal SFRs ("i2c2dat", "i2c2con", "i2c2adr")
sfraddr	I	7	SFR Address bus
			Contains the address of SFR being read or written
sfrwe	I	High	SFR Write enable
			Enables write to the SFR pointed by "sfraddr"
i2c2dat_o	0	8	Secondary I2C Data Register output
i2c2adr_o	0	8	Secondary I2C Own Slave Address Register output
i2c2con_o	0	8	Secondary I2C Control Register output
i2c2sta_o	0	8	Secondary I2C Status Register output

5.18.3 Block Diagram

Figure 134. Secondary I2C Block Diagram

5.18.4 Description

The Secondary I2C unit instantiates the I2C module described in section 5.17.

It works identical with the only exception that the Special Function Registers "i2c2dat" (2.4.16), "i2c2adr" (2.4.14), "i2c2con" (2.4.15) and "i2c2sta" (2.4.17) are located respectively at addresses: 0xD2, 0xD3, 0xD4 and 0xD5.

The interrupt generation of the Secondary I2C is identical as in the I2C module. The interrupt request output is OR-ed with interrupt requests from I2C and External Interrupt 7. to recognize the source of interrupt, when vectored to address 0x0043 the "i2csta" and "i2c2sta" registers must be checked.

5.19.SPI MS

5.19.1 Overview

The SPI_MS module allows full-duplex, synchronous, serial communication between the MCU and peripherals, including other MCUs. It is obvious that the MCU and any peripherals must include SPI module.

The module may be programmed to work as master or as slave device.

The SPI MS provides the following features:

- Full duplex mode
- Three wire synchronous transfers
- Master or Slave mode
- Seven SPI Master baud rates
- Slave Clock rate up to Fclk/4
- Serial clock with programmable polarity and phase
- Master Mode fault error flag with MCU interrupt capability

- Write collision flag protection
- 8-bit data transmitted Most Significant Bit (MSB) first, Least Significant Bit (LSB) last
- 8-bit Slave Select Output port to control external slave devices
- Special Function Registers interface to the host CPU
- No bi-directional ports; standard SPI pins to be externally connected to 3state buffers

5.19.2 Pin Description

Table 111. SPI_MS Pin Description

Name	Туре	Polarity Bus size	Description
clk	I	Rise	Clock
			Pulse for all synchronous circuits
rst	I	High	Reset
			Puts all synchronous logic into a known state.
sfraddr	I	7	Special Function Registers address bus
			Selects which internal SFR is currently accessed.
sfrdatai	I	8	Special Function Registers input data bus Data to be written to internal SFRs
sfrwe	I	High	Special Function Registers write enable
		3	Enables write of "sfrdatai" to internal SFR selected by "sfraddr"
sfroe	I	High	Special Function Registers read enable
			Indicates that internal SFR selected by "sfraddr" is read.
spen	I	High	Serial Peripheral Enable Enables the SPI. When 1, the component is enabled and transmission may be initiated. When 0, resets the internal FSM and forces "scko", scktri", "misoo", misotri", "mosio" and "mositri" outputs to 0. It is connected to "spcon.6" bit at the top level of the core.
mstr	I	High	Serial Peripheral Master Configures the SPI as a Master or a Slave. When 1, the component is configured as Master otherwise it is configured as Slave. It is connected to "spcon.4" bit at the top level of the core.
cpol	I	-	Clock Polarity Configures the idle state of "scko" serial clock when SPI is enabled (when disabled, "scko" is in high level). When 1, the "scko" output is set (i.e. "scko" = '1') otherwise it is cleared (i.e. "scko" = '0'). It is connected to "spcon.3" bit at the top level of the core.
cpha	I	-	Clock Phase Configures the data sampling point. When 0, data is sampled when "sck" goes to active state (see "cpol"). When 1, data is sampled when "sck" goes to idle state (see "cpol"). It is connected to "spcon.2" bit at the top level of the core.
scki	I	Rise/Fall	Serial Clock Input Pulse for shifting input data when in Slave Mode. The maximum rate allowed is the "clk" frequency / 4.
ssn	I	Low	Slave Select Input Activates the SPI module as a Slave. When SPI was configured as a Master, a Mode Fault error is generated.
misoi	I	-	Master Input Data to be shifted into a receive register in Master Mode.

Name	Туре	Polarity Bus size	Description
mosii	I	-	Slave Input
			Data to be shifted into a receive register in Slave Mode.
spcon	0	8	Serial Peripheral Control Register output
			Direct output of "spcon" register.
spsta	0	8	Serial Peripheral Status Register output
			Direct output of "spsta" register.
spdat	0	8	Serial Peripheral Data Register output
			Direct output of "spdat" receive data buffer register.
sfrdatao	0	8	Special Function Registers bus output
			Outputs one of "spcon", "spsta", "spdat" registers depending on
			"sfraddr". Note that, unlike "spcon" output, the "spcon" register is
			here combined of "cpha", "cpol", "mstr" and "spen" inputs.
scko	0	Rise/Fall	Serial Clock Output
scktri	0	High	Serial Clock Output Tri-state
			Pulse for external slaves for shifting data, generated in Master
			Mode. The "tri" output enables the on-chip, off-core tri-state
			output buffer. Together with "scki" those ports form a bi-
			directional "sck" pad.
misoo	0		Slave Output
misotri	0	High	Slave Output Tri-state
			Data output when the SPI is configured in Slave Mode. The "tri"
			output enables the on-chip, off-core tri-state output buffer.
			Together with "misoi" those ports form a bi-directional "miso" pad.
mosio	0		Master Output
mositri	0	High	Master Output Tri-state
			Data output when the SPI is configured in Master Mode. The "tri"
			output enables the on-chip, off-core tri-state output buffer.
			Together with "mosii" those ports form a bi-directional "mosi" pad.
intspi	0	High	SPI Interrupt Request
			Request for the MCU to generate an interrupt.
spssn	0	8	Slave select output register

5.19.3 Block Diagram

Figure 135. SPI_MS Block Diagram

5.19.4 Description

The component communicates with host microprocessor through SFR interface (i.e. "sfrdatai", "sfraddr", "sfrwe", "sfroe") and INT interface (i.e. "intspi"). Communication with other devices, which include the SPI module, is realized through TR interface (i.e. "mosi" group, "miso" group, "sck" group).

Functional blocks of SPI_MS module:

• INT – interrupt control block

- SFR Special Functional Register block
- TR Transmit block
- The SFR block controls the write/read operations on SFR registers of SPI MS module. It contains the following:
 - address decoder,
 - Special Function Registers SPCON, SPSTA, SPDAT,
 - output multiplexor.
- The TR block controls the SPI transmission process. It is composed of the following:
 - the Finite State Machine which plays a key role in operation of the SPI_MS module; it controls the Master or Slave functionality
 - system clock counter/divider, which is used to generate the SPI Master clock "scko"; the Master clock is selected from one of seven clock rates i.e. The system clock divided by 2, 4, 8, 16, 32, 64 or 128
 - rising and falling edge detector on "scki" input pin; it is used only in Slave mode
 - transmission end detector
 - level and falling edge detector on "ssn" input pin
 - data shift register.
- The INT block generates interrupt request upon "spif" and "modf" flags.
- a) Special Function Registers

E4h

There are three special function registers in the SPI_MS.

FFH

Register Location **Reset value Description** SPCON E2h 14H Serial Peripheral Control register **SPSTA** 00H Serial Peripheral Status register E1h **SPDAT** E3h 00H Serial Peripheral Data register

Table 112. SPI_MS Special Function Registers

The "spcon" (2.4.42) register is used in configuration of the SPI_MS module. It controls the master clock output rate (bits "spr0", "spr1" and "spr2"), the clock polarity ("cpol") and phase ("cpha"), configures the SPI_MS either as master or slave ("mstr" bit), enables or disables the "ssn" input ("ssdis" bit) and enables or disables the whole SPI_MS component ("spen" bit).

Serial Peripheral Slave Select register

The "spsta" (2.4.45) register reflects the current status of the SPI_MS module. The "spif" flag informs that there is a transfer in progress or a transfer has finished. The "wcol" flag indicates that a write collision on the "spdat" has occured, i.e. The "spdat" register was written through the SFR interface while there was a transfer on the SPI interface. The "serr" bit informs that the "ssn" input was removed before the end of receive sequence when the SPI_MS was configured as slave. Finally, the "modf" bit notifies when the state of the "ssn" input is in conflict with the actual mode settings (i.e. when "ssn"=0 and the SPI_MS is configured as a master).

The "spdat" (2.4.43) register is used during transmission process. Data from this register can be sent through the TR (Transmit/Receive) interface, i.e. byte of data begins shifting out on

SPSSN

output pin ("mosio" - in Master mode, "misoo" - in Slave mode). Simultaneously, another byte shifts in from input pin ("misoi" - in Master mode, "mosii" - in Slave mode). After transmission process is completed the received data can be read from "spdat" register.

The "spssn" (2.4.44) register is used to control up to 8 external slave devices connected to the core. It can be also used as a general purpose 8-bit output port.

b) Tr Interface

Tha main SPI interface is controlled by the TR (Transmit/Receive) block (see Figure 135). Figure 136 shows the general format of data transmission. Depending on the settings of SPI_MS module, the bits of data are sent in turn on rising edge ("cpol" = '0') or on falling edge ("cpol"='1') of master clock ("scko"). Data are received at the falling edge ("cpol"='0') or rising edge ("cpol"='1') of master clock ("scko"). This applies either for master or slave transmitter/receiver, assuming that "scko" is the main clock of the transmission. If "cpha" bit is set, the first bit (MSB) will be sent on the "mosio"/"misoo" at the first active edge of "scko". If "cpha" bit is cleared, the first bit (MSB) will be sent half a period of "scko" signal before active edge of this signal. in addition, the data input ("misoi" for master, "mosii" for slave) is sampled in the half of each bit transmitted, at the opposite edge of the clock at which data are shifted out to "mosio" output.

Figure 136. SPI_MS Transmitter Frame Format

The TR interface consists of four inputs and six outputs:

- Inputs
- scki serial clock
- ssn slave select
- misoi master input slave output
- mosii master output slave input
- Outputs:
- scko serial clock
- scktri tri-state buffer enable of sck pin
- misoo master input slave output
- misotri tri-state buffer enable of miso pin
- mosio master output slave input
- mositri tri-state buffer enable of mosi pin

These inputs and outputs are divided in three groups:

"miso" group

The "misoo", "misotri" and "misoi" are dedicated to an off-core connection with a tristate buffer to provide an external bi-directional port "miso".

"mosi" group

The "mosio", "mositri" and "mosii" are dedicated to an off-core connection with a tristate buffer to provide an external bi-directional port "mosi".

"sck" group

The "scko", "scktri" and "scki" are dedicated to an off-core connection with a tri-state buffer to provide an external bi-directional port "sck".

•

MASTER MODE

In master mode (the "mstr" bit of "spcon" register is set) the SPI_MS waits on write operation to "spdat" register. If write operation to "spdat" register is done, transmission is started. Data shifts out on "mosio" pin at the "scko" serial clock transition ("send_edge"). Simultaneously, another data byte shifts in from the slave on master's "misoi" pin ("capture_edge").

Figure 137. Data transmission format in MASTER mode (cpha = '0' cpol = '0')

Figure 138. Data Transmission Format in MASTER Mode (cpha = '0' cpol = '1')

Figure 139. Data Transmission Format in MASTER Mode (cpha = '1' cpol = '0')

Figure 140. Data Transmission Format in MASTER Mode (cpha = '1' cpol = '1')

SLAVE MODE

First, the SPI_MS module has to be configured as a slave by writing "mstr"=0 in "spcon" register. Then it has to be enabled by setting the "spen"=1. Figure 141 presents process of data transmission in slave mode.

The configuration: "cpha'' = '1', "cpol'' = '1', baud rate is f/4 (values of bits spcon(7), spcon(1), spcon(0) have no effect in this mode).

Figure 141. Data Transmission Format in SLAVE Mode

In slave mode the SPI_MS waits on low level on "ssn" input. The "ssn" input must remain low until the transmission is completed. The beginning of transmission depends on the state of the "cpha" bit of SPCON register (Figure 141, Figure 142). When "cpha" is cleared, then the slave must begin driving its data before the first "scki" edge, and a falling edge on the "ssn" input is used to start the transmission. When the "cpha" bit is set, then the slave uses the first edge of "scki" input as a transmission start signal.

Figure 142. Data Transmission in SLAVE Mode For "cpha" = 0 and "cpha" = 1

c) Interrupt Generation

The SPI_MS provides the SPI Interrupt output "intspi". Two status flags can generate interrupt request (see Table 113).

Table 113. SPI_MS Interrupt Flags

Name	Description
"spif"	When the transmission is finished, this flag is set by hardware.
"modf"	This bit is set when the level on "ssn" input is in conflict with actual mode, i.e. it is '0' in Master mode (if "ssdis" = '0').

Figure 143 presents interrupt request caused by the "spif" flag. When the transmission ends the "spif" flag is set automatically by hardware.

Figure 143. Interrupt Request Generated by "spif" Flag

Figure 144 presents interrupt request caused by "modf" flag. The "modf" flag is set automatically by hardware when level on the "ssn" input is inconsistent with respect to the selected operation mode (the SPI_MS module is configured in master mode and there is low level detected at "ssn" input) and the "ssdis" flag is cleared.

Figure 144. Interrupt Request Generated by "modf" Flag

Figure 145 presents situation when the interrupt request does not occur even there is "modf" condition detected. When the "ssdis" flag is set the "modf" interrupt is not generated.

Figure 145. Interrupt Request Not Generated by "modf"

The interrupt request is disabled when both flags "spif" and "modf" are cleared.

The SPI interrupt shares the same vector as the External Interrupt 2. The "intspi" output signal is OR-ed with the External Interrupt 2 edge flag, before it comes into the Interrupt Controller (ISR). to determine the actual source of that interrupt, the "modf" and "spif" flags have to be investigated by the interrupt service routine. Since the External Interrupt 2 flag is automatically cleared after vectoring to the service subroutine, only the state of the "modf" and "spif" flags brings the information about the actual source of the interrupt.

5.20.OCDS

5.20.1 Overview

The OCDS implements functions which allow to stop/run/step the CPU. The OCDS is divided into two parts: first of them is a block responsible for JTAG communication, nexus operation control and control/status registers; second block controls debug mode entering, memory access functions and instruction substitution (step from OCDSINSTR register).

5.20.2 Block Diagram

Figure 146. OCDS Block Diagram

- **TAP** TAP module controls JTAG communication.
- **INSTRUCTION REGISTER** the Instruction Register contains current JTAG instruction.
- **DATA REGISTERS** Data Registers holds OCDS control and status bits.
- **MEMORY ACCESS** the memory access module is used for memory read/write operations, single instruction executing (from code memory or OCDSINSTR register).
- **ADDRESS COMPARATOR** the Address Comparator is used to determine if current read/write address is in the range selected in breakpoint address registers.
- **DATA COMPARATOR** the Data Comparator is used to determine if current read/write data fulfill conditions selected in data and data mask breakpoint registers.
- **BREAKPOINT LOGIC** the Breakpoint Logic Unit is responsible for generation of halting signals to the CPU.

5.20.3 Pin Description

Table 114. OCDS Pin Description

Name	Туре	Polarity Bus size	Description
clk	I	High	Clock Pulse for all internal synchronous circuits in the OCDS_UNIT and the OCDS_TRACE components.
rst	I	High	Reset input External reset signal.
debugrst	0	High	Reset output Internal reset signal from OCDS.

Name	Туре	Polarity Bus size	Description
tck	I	Rise	Test Clock Test clock signal (JTAG 1149.1). Clock pulse for all internal synchronous circuits in TCK clock domain (the OCDS_DEBUGPORT component).
tms	I	High	Test mode select Test mode signal (JTAG 1149).
tdi	I	High	Test data input Test data input (JTAG 1149.1).
trst	I	Low	Test reset Test reset signal (JTAG 1149).
tdo	0	High	Test data output Test data output (JTAG 1149.1).
tdoenable	0	High	External tristate buffer Control signal for external tdo tristate buffer.
debugack	I	High	Debug mode acknowledge Debug acknowledge signal from CPU.
flush	I	High	Flush Program branch indicator.
codefetche	I	High	Code fetch Code fetch indicator.
datafetche	I	High	Data fetch Data fetch indicator.
lastcycle	I	High	Last cycle of instruction Last cycle of instruction indicator.
allfetch	I	High	All instruction fetch All instruction fetch (performed and annuled indicator.
асс	I	OCDSACC_LEN	Accumulator register input Accumulator contents.
dr0	I	OCDSDR0_LEN	DR0 register input DR0 contents.
pcreg	I	OCDSPC_LEN	Program Counter register input Program counter contents.
debugreq	0	High	Debug mode request Debug mode request signal to CPU.
debugstep	0	High	Debug step Debug step signal (single instruction execution).
debugprog	0	High	Debugger program Instruction fetch source select signal.
datao	I	8	External memory data bus input Memory data bus output from CPU, connected to external data memory input. Combinatorial input signal for OCDS used for breakpoint detection.

Name	Туре	Polarity Bus size	Description
memaddr	I	24	External memory address bus External memory address bus output from CPU, connected to external data memory input. Combinatorial input signal for OCDS used for breakpoint detection.
memwr	I	High	External memory write enable External memory write signal output from CPU (memwr), connected to OCDS input. Combinatorial input signal.
memrd	I	High	External memory read enable External memory read signal output from CPU (memrd), connected to OCDS input. Combinatorial input signal.
waitstaten	I	Low	Waitstate indicator Active low when the CPU performs a wait cycle (internally or externally generated)
memdatai	0	8	CPU memory data bus input Memory data bus output from OCDS, connected to CPU (memdatai input port). Combinatorial output signal driven with either external data memory output bus or substituted instruction (in step mode or memory access).
debugmemdatai	I	8	External memory data bus output Memory data bus output from external memory, connected to OCDS input. Combinatorial input signal.
ramdatai	I	8	Internal RAM data output Internal RAM data output bus (from internal RAM to processor) connected to OCDS for breakpoint detection. Combinatorial input signal.
ramaddr	I	8	Internal RAM address bus Internal RAM address bus connected to OCDS for breakpoint detection. Combinatorial input signal.
ramwe	I	High	Internal RAM write enable Internal RAM write enable signal connected to OCDS for breakpoint detection. Combinatorial input signal.
ramoe	I	High	Internal RAM output enable Internal RAM read enable signal connected to OCDS for breakpoint detection. Combinatorial input signal.
Out	puts des	signed for PMU (when	PMU_IMPLEMENT = 1 only)
debugpmureq	О	High	Debug request for PMU Debug request for PMU – wake up from IDLE or STOP mode when debug mode is entered (the dreq bit in OCDSCTRL register is set).

Name	Туре	Polarity Bus size	Description				
debugperen	0	High	Peripherals clock enable Peripheral clock enable signal (when inactive – peripherals doesn't work).				
	Ou	tput designed for Prog	ram Memory Write				
debugpmw	0	High	OCDS program memory write Program memory write signal for debugger using (memory write).				
Inputs and out	Inputs and outputs designed for Trace (when OCDS_TYPE parameter is 1 or 2 only)						
addr_buf0	0	BUF_SIZE	RAMO address RAMO address bus.				
datao_buf0	0	BUF_LEN	RAM0 data output RAM0 data output bus.				
datai_buf0	I	BUF_LEN	RAMO data input RAMO data input bus.				
wr_buf0	0	High	RAM0 write enable RAM0 write enable signal.				
rd_buf0	0	High	RAM0 read enable RAM0 read enable signal.				
addr_buf1	0	BUF_SIZE	RAM1 address RAM1 address bus.				
datao_buf1	0	BUF_LEN	RAM1 data output RAM1 data output bus.				
datai_buf1	I	BUF_LEN	RAM1 data input RAM1 data input bus.				
wr_buf1	0	High	RAM1 write enable RAM1 write enable signal.				
rd_buf1	0	High	RAM1 read enable RAM1 read enable signal.				

5.20.4 Functional Description

a) JTAG Instruction Register

This section presents implementation of the JTAG instruction register.

The instruction register is 4 bit long. All the instructions that are implemented are summarized in Table 115.

Most of the debug registers are accessible according to the way described in the Nexus 5001 standard (except for memory access register OCDSMEMACC register). All the NEXUS registers are accessible through the IEEE 1149.1 port independently of the state of the target processor.

Table 115 Implemented Instructions

Code	Name	Chosen DR	Description
		(Source of data)	

Code	Name	Chosen DR (Source of data)	Description
0001	ID-CODE	ID Register	32 bit ID register (the value can by defined by user before core synthesis). Required by IEEE standard.
1001	BUFF	Trace Buffer Register	Register containing trace frame during reading trace buffer. Instruction is implemented if configuration with trace is chosen.
1010	OCDSMEMACC	Memory Access Data Register	Data read from or that are to be written to memory.
1011	NEXUS-ENABLE	Nexus Registers	Refer to NRR selection 5.20.4 b).
1111	BYPASS	Bypass Register	Required by IEEE standard.
All others	BYPASS	Bypass Register	Some codes can be used in a future versions. It is recommended not to use them.

b) NRR Access

Access to the NRRs is enabled when the IEEE 1149.1 controller decodes a device-specific NEXUS-ENABLE instruction entered via the SELECT_IR_SCAN path. When the IEEE 1149.1 controller passes through the UPDATE-IR state and decodes the NEXUS-ENABLE instruction, the Nexus controller will be reset to the NRR select state. The Nexus controller can work in one of the three states: idle, register select state and register data access state. Table 116 illustrates the IEEE 1149.1 sequence of selection of the Nexus controller.

Table 116. The IEEE 1149.1 Sequence to Enable Nexus Block For Communication

Step	TMS	IEEE 1149.1 State	Nexus State	Description
1	0	RUN_TEST_IDLE	IDLE	IEEE 1149.1 controller in reset state.
2	1	SELECT_DR_SCAN	IDLE	
3	1	SELECT_IR_SCAN	IDLE	
4	0	CAPTURE_IR	IDLE	Load value "0001" into TDI/TDO shifter ¹ .
5	0	SHIFT_IR	IDLE	TDO becomes active and the IEEE
3 TCKs				1149.1 shifter is ready. Shift 3 bits of size of vendor-defined Nexus-Enable Instruction.
6	1	EXIT1_IR	IDLE	Last bit of Device ID shifted out to TDO.
7	1	UPDATE_IR	REG_SELECT	IEEE 1149.1 controller decoder. Nexus controller is forced to register select state.
8	0	RUN_TEST_IDLE	REG_SELECT	Nexus controller enabled and ready to receive commands.

When the IEEE 1149.1 NEXUS-ENABLE instruction is decoded by the IEEE 1149.1 controller, the IEEE 1149.1 port allows tool/target communication with up to 128 IEEE 1149.1 NRRs. Each NRR is referenced by a unique register address index in the range 0 through 127.

¹. IEEE 1149.1 Specifies that IR should capture the value XX..X01. Nexus 5001 is in this point inconsistent with IEEE1149.1

All the communication with the Nexus controller is performed via the SELECT_DR_SCAN path. The Nexus controller will default to a register select state when enabled. Accessing an NRR requires two passes through the SELECT_DR_SCAN path: one pass to select the NRR and the second one to read/write the NRR.

The first pass through the SELECT_DR_SCAN path is used to enter an 8-bit Nexus command which consists of a read/write control bit in the LSB followed by a 7-bit NRR address, as it is illustrated in the Table 117.

Table 117. The Ieee 1149.1 Controller Command Input

Bits 71	Bit 0
7 bit NRR address	R/W
Note: R/W=0 - write	
R/W=1 - read	

The second pass through the SELECT_DR_SCAN path is used to read or write the NRR data by shifting in the data LSB first during the SHIFT_DR state. When an NRR is read, the register value is loaded into the IEEE 1149.1 shifter during the CAPTURE_DR state. When an NRR is written, the value is loaded by the IEEE 1149.1 shifter to the NRR during the UPDATE_DR state. While reading data from an NRR, there is no requirement to shift out the entire NRR content, and shifting may be terminated once the required number of bits have been acquired. Figure 147 illustrates the relationship between an IEEE 1149.1 TAP state machine and a Nexus controller state machine.

Figure 147. The IEEE 1149.1 TAP State Machine vs NEXUS State Machine Table 118 OCDS Special Function Registers

Step	TMS	IEEE 1149.1 State	Nexus State	Description
1	0	RUN_TEST_IDLE	NRR REG_SELECT	IEEE 1149.1 controller in reset state.
2	1	SELECT_DR_SCAN	NRR REG_SELECT	
3	0	CAPTURE_DR	NRR REG_SELECT	IEEE 1149.1 shifter may be loaded with last value of register being decoded by Nexus controller or Nexus status information.
4	0	SHIFT_DR	NRR REG_SELECT	TDO becomes active and NRR address and write bit is shifted in.

Step	TMS	IEEE 1149.1 Nexus State State		Description
	7	TCKs	NRR REG_SELECT	
5	1	EXIT1_DR	NRR REG_SELECT	Last bit of NRR shifted into TDI.
6	1	UPDATE_DR	NRR REG_SELECT	Nexus controller decodes and selects register.
7	1	SELECT_DR_SCAN	NRR DATA ACCESS	Second pass through SELECT_DR_SCAN
8	0	CAPTURE_DR	NRR DATA ACCESS	IEEE 1149.1 shifter may be loaded with last value of register being decoded by Nexus controller or Nexus status information.
9	0	SHIFT_DR NRR DATA ACCES		TDO becomes active and outputs current value of register while new value is shifted in through TDI.
	N-1 TCKs		NRR DATA ACCESS	
10	1	EXIT1_DR	NRR DATA ACCESS	Last bit of NRR shifted out to TDO.
11	1	UPDATE_DR	NRR DATA ACCESS	Nexus controller writes value to register.
12	0	RUN_TEST_IDLE	NRR REG_SELECT	IEEE 1149.1 controller returns to idle state, or may return to SELECT_DR_SCAN state for new NRR register select. Total number of TCK clocks = 49 in this example.

c) Jtag Interface

An IEEE 1149.1 port used for this standard implements all the mandatory features of the standard IEEE 1149.1 port, including the "BYPASS" and "IDCODE" instructions. A 16-state IEEE 1149.1 TAP state machine is used per the IEEE-1149.1 standard as illustrated in Figure 148.

The 5 required IEEE 1149.1 pins are as follows:

- Test Data Input (TDI) provides for serial movement of data into the IEEE 1149.1 port.
- Test Data Output (TDO) provides for serial movement of data out of the IEEE 1149.1 port. All target accesses initiated via the IEEE 1149.1 port are transmitted by the target via TDO
- Test Clock Input (TCK) provides the clock for the IEEE 1149.1 port.
- Test Mode Select Input (TMS) provides access to the IEEE 1149.1 TAP state machine.
- Test Reset Input (TRST) provides for asynchronous initialization of the IEEE 1149.1
 controller. TRST signal is implemented in the model and it is core's user responsibility to
 provide reset signal on power on to guarantee that debug feature of embedded processor
 core will be disabled on power on. Optionally (it depends on the user), the TRST signal
 can be accessed as an external pin. The signal levels for the five IEEE 1149.1 pins are
 defined by the hardware in which the core is implemented.
- The timing for the five IEEE 1149.1 pins is in agreement with the IEEE 1149.1 standard².

² I.e. any JTAG-probe that adheres to the IEEE 1149.1 specification can be used to control the OCDS

Figure 148. The Ieee 1149.1 Tap State Machine

Assertion of a power on reset signal on the embedded processor or the TRST pin causes the IEEE 1149.1 controller to default to being loaded with the IDCODE instruction upon exit of TEST_LOGIC_RESET controller state. This allows for immediate entry to the SELECT_DR_SCAN path to retrieve the contents of the device ID. The contents of ID Code register can be modified by user however the LSB of the IDCODE must be a logic 1 so that examination of the first bit of data, shifted out of a component during a data scan sequence immediately following exit from the TEST_LOGIC_RESET controller state, shows whether a Device Identification (DID) Register is included in the design, as required by Nexus 5001 standard.

The core system logic will continue its normal operation undisturbed when the IEEE 1149.1 controller decodes the IDCODE instruction.

d) Deviation From the IEEE 1149.1 Standard

The synthesizable core model is targeted mainly on FPGA. For optimisation reasons the following limitation was applied:

- Only one global clock network is used for all FF's in the whole design interface
- Only FF's are used (there is no latches)
- The vast majority of FF's work on rising edge of clock (only 4 FF's work on falling edge)

- Only limited number of FF's uses asynchronous reset TAP FSM Flip-Flops, Instruction Register and OCDSCTRL register. All the others are reset synchronously.
- For portability reason no device specific features (e.g. XILINX FPGA's provide internal TAP) are used in the interface.
- The reason mentioned above leads to the following deviation from the IEEE standard:
 - All registers (IR, DRs) are updated at rising edge of TCK while exiting UPDATE state.
 - Assertion of asynchronous TRST signal sets only TAP-FSM, Instruction Register and OCDSCTRL register to initial state, what is enough for core system logic to continue its normal operation undisturbed. All the other registers are reset when TAP FSM is in TEST LOGIC RESET state at first rising edge of TCK.
 - EXTEST, INTEST and other instructions that refer to Boundary Scan Path (BSP) are not implemented (even if BSP is implemented in FPGA it is device specific feature and is not used).

e) JTAG Timing

The exemplary waveforms show the following operations:

- Test Logic Reset performed without using TRST signal (TMS=1, 5 TCP pulses)
- Writing Nexus Enable Code into IEEE TAP Instruction Register (Nexus enable code 1101)
- Writing value 008054h to OCDSBPAM1 (23 bit) register (OCDSBPAM1 address 89h)

Signal description:

tck, tms, tdi, tdo - IEEE 1149.1 Test Access Port pins.

tdoenable - output signal

ins - contents of the instruction register (internal)

nxaddress - Nexus address (internal)

ocdsbpam1 - contents of the OCDSBPAM1 register (internal)

tapstate - TAP controller state (internal). For codes³ refer to Table 119.

Table 119 TAP States Codes

TAP STATE	CODE (hex)
TEST_LOGIC_RESET	F
RUN_TEST_IDLE	С
SELECT_DR_SCAN	7
CAPTURE_DR	6
SHIFT_DR	2
EXIT1_DR	1
PAUSE_DR	3
EXIT2_DR	0
UPADATE_DR	5
SELECT_IR_SCAN	4
CAPTURE_IR	E

³ the State Codes are chosen according to IEEE149.1 appendix on exemplary implementation

TAP STATE	CODE (hex)
SHIFT_IR	Α
EXIT1_IR	9
PAUSE_IR	В
EXIT2_IR	8
UPADATE_IR	D

Figure 149. Reset and the NEXUS_ENABLE Instruction Write

Figure 150. The OCDSBPAM1 Register Select

Figure 151. The OCDSBPAM1 Write

5.20.5 Trace Data Register (BUFF)

The Trace Data Register (BUFF) is implemented when OCDS_TYPE parameter value is 1 or 2 during IP core configuration.

Table 120. BUFF Register

Bit Number Description

Bit	Number	Description
Empty	n	Empty status bit empty $=$ '1' – data trace buffer is empty and frame field is not valid trace frame empty $=$ '0' – data trace buffer is not empty and frame field is valid trace frame
Frame	n-10	Trace frame from trace buffer.

Trace buffer read procedure:

- o Enter debug mode.
- o Write BUFF instruction into the JTAG instruction register.
- o Read BUFF data register through the data scan.

For more details see 5.20.11 .

5.20.6 Special Function Registers

Table 121 OCDS Special Function Registers

Register	Nexus location (decimal)	Reset value	Length	Read/ Write	Description
OCDSCTRL	64	00H	11	RS/W	Control register
OCDSACC	65	See Note 3	8	RO	Accumulator
OCDSPC	66	See Note 3	24	RO	Program Counter
OCDSINSTR	67	000000H	32	RW	Instruction Substitution
OCDSMAC	68	00H	8	RW	Memory Access Control
OCDSTRC	69	0H	4	RS/W	Trace control register
OCDSDR0	70	00000000H	32	RO	DR0 register
OCDSBPD1	71	00H	8	RW	Breakpoint 1 Data
OCDSBPDM1	72	00H	8	RW	Breakpoint 1 Data Mask
OCDSBPA1	73	000000H	24	RW	Breakpoint 1 Start Address
OCDSBPAM1	74	000000H	24	RW	Breakpoint 1 End Address
OCDSBPC1	75	00H	8	RS/W	Breakpoint 1 Control
OCDSBPD2	76	00H	8	RW	Breakpoint 2 Data
OCDSBPDM2	77	00H	8	RW	Breakpoint 2 Data Mask
OCDSBPA2	78	00000H	24	RW	Breakpoint 2 Start Address
OCDSBPAM2	79	00000H	24	RW	Breakpoint 2 End Address
OCDSBPC2	80	00H	8	RS/W	Breakpoint 2 Control
OCDSBPD_N	71+5*(N-1)	00H	8	RW	Breakpoint N Data
OCDSBPDM_N	72+5*(N-1)	00H	8	RW	Breakpoint N Data Mask
OCDSBPA_N	73+5*(N-1)	000000H	24	RW	Breakpoint N Start Address
OCDSBPAM_N	74+5*(N-1)	000000H	24	RW	Breakpoint N End Address
OCDSBPC_N	75+5*(N-1)	00H	8	RS/W	Breakpoint N Control

Register	Nexus location (decimal)	Reset value	Length	Read/ Write	Description
Read/Write Access	description:				
RO	- Read Only				
RW	- When Read the last written value is returned				
RS/W	- Written value is used for control, when read returns some status information				
Note 1: Write of the	e program counter regi	ister is done by	the LJMP #a	ddr instructi	ion.

a) OCDSCTRL Register

Table 122 OCDSCTRL Register

Bit	Number	Description
swbstop	10	Software breakpoint status
		swbstop ='1' software breakpoint occurred
		swbstop ='0' software breakpoint did not occur
-	9	Not used.
dprog1	8	Debugger program.
		Program selector 1:
		dprog1='1' – (and if dprog0='1') instruction is fetched from OCDSINSTR register, but Program Counter (PC) is normally incremented. If the fetched instruction is a jump instruction, PC will be reloaded according to the argument provided by OCDSINSTR.
		dprog1='0' – user program, instruction is fetched from the program memory, PC is normally incremented (except when dprog0='1').
-	7	Not used.
clkperen	6	Peripheral clock enable
		clkperen='1' – peripheral's clock is enabled in the debug mode
		clkperen='0' - peripheral's clock is disabled in the debug mode
rst	5	Reset
		The rst bit is connected directly to the microcontroller's reset input. Notice that setting of the core reset active causes that no other operation on core can be performed, e.g. reading or writing memory, loading registers etc.
ocdsen	4	OCDS enable
		ocdsen='1' - OCDS is enabled
		ocdsen='0' - OCDS is disabled. The microcontroller is not stopped at the breakpoints. 0xA5A5 instruction is executed like NOP instruction. The rst bit is ignored.

Note 2: Registers OCDSACC, OCDSPC can be read in any time and this operation does not cause any interference for the core. However if processor is running the values read from the above register are unpredictable because there is no synchronization mechanism between core and these registers, accessed via IEEE 1149.1.

Note 3: Physically OCDSACC and OCDSPC registers does not exist. When they are read current accumulator and program counter contents are always returned.

Bit	Number	Description
dack	3	Debug acknowledge dack='1' – the microcontroller is stopped (at the breakpoint, at the software breakpoint or external debug request dreq='1') dack='0' – the microcontroller executes instructions. Value written to this bit is ignored.
dreq	2	Debug request external input dreq='1' – the microcontroller enters debug mode and asserts dack='1'. dreq='0' – the microcontroller leaves debug mode and asserts dack='0'. dreq is also used to start execution of user program after reaching breakpoint. in such case dreq bit must be set and then cleared.
dstep	1	Debug step When dstep is set to '1' it causes processor to execute single instruction. After that, this bit is automatically cleared. So writing '1' again causes execution of the following instruction. When read always equal to '0'. NOTE: It is not allowed to set DREQ bit and DSTEP bit simultaneously (if DREQ bit was previously equal to '0') For synchronization reason the result of such operation is unpredictable.
dprog0	0	Debugger program Program selector 0: dprog0='1' – debugger program, instruction is fetched from OCDSINSTR register. Program Counter (PC) is not incremented then. However if the fetched instruction is a jump instruction, PC will be reloaded according to the argument provided by OCDSINSTR. dprog0='0' – user program, instruction is fetched from the program memory (except when dprog1='1'). PC is normally incremented.

b) OCDSCACC Register

Table 123 OCDSACC Register

Bit	Number	Description
acc	70	Accumulator contents

c) OCDSCDR0 Register

Table 124 OCDSDR0 Register

Bit	Number	Description
dr0	310	DR0 register contents

d) OCDSPC Register

Table 125 OCDSPC Register

Bit	Number	Description
рс	230	Program counter contents

e) OCDSINSTR Register

Table 126 OCDSINSTR Register

Bit	Number	Description
ocdsinstr3	3124	The instruction register
ocdsinstr2	2316	The instruction register 1
ocdsinstr1	158	The argument register 2
ocdsinstr0	70	The argument register 3

f) OCDSMAC Register

Table 127 OCDSMAC Register

Bit	Number	Description
regfilesel	3	Register File/Memory select
		regfilesel='1' - Read/write of the Register File
		regfilesel='0' - Read/write of program/data memory
memrd	2	Memory read
		memrd='1' - Read of the program/data memory
		memrd='0' - Normal mode
memwr	1	Memory write
		memwr='1' - Write of the program/data memory
		memwr='0' - Normal mode
daprosel	0	Data/program memory select
		daprosel='1' - Read/write of the data memory
		daprosel='0' - Read/write of the program memory

Reading from and writing to memory is performed by causing core to execute the sequence of proper instructions. For that reason reset signal provided to the core must be 0' (rst bit in OCDSCTRL register must be equal to 0' and external reset signal must be equal to 0', and processor must be stopped (OCDSCTRL - dreq = 1').

Performing read from/write to memory requires reloading DPTR register first and change the state of accumulator. For that reason ACC and DPTR must be saved earlier and restored after finishing of the operation.

For read/write of the Register File, the 'regfilesel' bit must be set. The value of the ACC[3:0] register prior to setting the 'memrd' or 'memwr' bit will be used as pointer to the Register File double word (ACC=0 points to DR0, ACC=15 points to DR60). The 32-bit values written to OCDSMEMACC register will be written to the DR0 and then to the selected Register File 'double word'; the values read from the selected 'double word' register in the Register File will be passed through the DR0 to the OCDSMEMACC register. For that reason the ACC and DR0 must be stored earlier and restored after finishing of the operation.

g) OCDSTRC Register

The Trace Control Register (OCDSTRC) is implemented when OCDS_TYPE parameter value is 1 or 2 during IP core configuration.

Table 128. OCDSTRC Register

Bit	Number	Description
switch	3	Switch trace bit.
		Bit is taken into the consideration common with <i>cont</i> bit and events starting trace – external trigger and writing to cont <i>bit</i> (start/end trace events configured in OCDSBP* registers are independent).
		Possible cases:
		Start event and switch $='1'$ – start program and data trace.
		Start event and switch $='0'$ – start program trace.
		Bit is always read as 0 in configuration without trace option.
cont	2	Continue bit.
		Leaving the debug mode with $cont = '0'$ ends trace (program and program and data).
		Leaving the debug mode with $cont = '1'$ continues or starts trace (program and data).
		Setting <i>cont</i> bit ('0' to '1') in normal program execution mode starts trace (program and data).
		Bit is always read as 0 in configuration without trace option.
full	1	Trace buffer full status
		full ='1' trace buffer is full
		full ='0' trace buffer is not full
		Bit is always read as 0 in configuration without trace option.
full_bp_en	0	Breakpoint from trace buffer (on reaching full status)
		full_bp_en ='1' breakpoint enabled
		full_bp_en ='0' breakpoint disabled
		Bit is always read as 0 in configuration without trace option.

h) OCDSBPD Register

Table 129 OCDSBPD Register

Bit	Number	Description
ocdsbpd	70	Data value

i) OCDSBPDM Register

Table 130 OCDSBPDM Register

Bit	Number	Description
ocdsbpdm	70	Data mask value

j) OCDSBPA Register

Table 131 OCDSBA Register

Bit	Number	Description
ocdsbpa	230	Start address

k) OCDSBPAM Register

Table 132 OCDSBAM Register

Bit	Number	Description
ocdsbpam	230	End address

I) OCDSBPC Register

Table 133 OCDSBPC Register

Bit	Number	Description
mod	75	Breakpoint logic mode
		000 – breakpoint
		001 – start program trace
		010 – end program trace
		011 – start program and data trace
		100 – end program and data trace
		101 – start data trace
		110 – end data trace
		111 – data trace mode
		In configuration without any trace option only 000 value is allowed.
		In configuration with program trace only 000, 001 and 010 values are allowed.
		In configuration with full trace (program and data) all values are allowed.
		Writing to <i>mod</i> field not allowed value is treated as writing 000 value.
mss	4	Data memory select
		mssn='1' - internal data memory for breakpoint n
		mssn='0' - external data memory for breakpoint n
bpstop	3	Program stopped at the breakpoint
		bpstopn='1' - program stopped at the breakpoint "n"
		bpstopn='0' - breakpoint "n" inactive
memsel	2	Memory select
		memseln='1' - program memory select for breakpoint n
		memseln='0' - data memory select for breakpoint n
rsel	1	Read select
		rseln='1' - read accesses are monitored for breakpoint n
		rseln='0' - read accesses are not monitored for breakpoint n
wsel	0	Write select
		wseln='1' - write accesses are monitored for breakpoint n
		wseln='0' - write accesses are not monitored for breakpoint n

5.20.7 Clock

a) Clock Inputs

Table 134 Clock Inputs

Clock	Polarity	Clock description	
clk	Rise	Clock: the CPU clock signal used in breakpoint conditions check	
tck	Rise	Test clock: test clock signal (JTAG 1149.1)	

b) Clock Desription

Clock clk is used for internal OCDS operations. All CPU signals are generated in the clk clock domain and internal OCDS logic uses them for halt conditions detection and control the CPU.

Clock tck is used for JTAG communication with host controller. All OCDS functions are accessed by writing or reading OCDS registers according to JTAG protocol.

Clock tck period must be at least two times greater then clk clock period.

c) Clock Domains

Figure 152. Clock Domains Diagram

The OCDS_DEBUGPORT unit is placed in the tck clock domain. All the registers in this domain are rising tck clock edge sensitive except for these ones (sensitive on the falling tck clock edge):SHIFTIR, SHIFTDR, RESET, ENABLE, TDO.

The OCDS_UNIT is placed in clk clock domain. All the registers in this domain are rising clk clock edge sensitive.

5.20.8 Reset

a) Reset Description

The OCDS core has two reset input signals: rst and trst.

The rst signal is reset signal (rstout) for all the flip-flops in clk clock domain – components: OCDS_UNIT and OCDS_TRACE.

The trst signal (in the OCDS_DEBUGPORT) is an asynchronous reset for TAP controller (refer to Figure 154). If trst is active TAP enters into TEST_LOGIC_RESET state and then on the first falling tck edge internal reset (reset) signal is activated. The trst signal asynchronously resets SHIFTIR, SHIFTDR, resets and enables flip-flops. Internal reset signal synchronously resets all the remaining registers, at the rising tck clock edge, except UP_IREG (instruction register) and

UP_REG_OCTRL (ocds control register) which are reset asynchronously. Internal reset signal resets tdo flip-flop on the falling tck clock edge.

The debugrst reset signal (for CPU) is generated on the basis two bits in OCDSCTRL register: OCDSEN and RST (see figure below).

Figure 153. The Debugrst Reset Signal Generation

Figure 154. The Trst Reset Diagram in OCDS_DEBUGPORT

b) Hardware Reset

The external rst signal should be active (high level) for at least two periods of clk clock to reset flip-flops in the clk clock domain.

The external trst signal should be active (low level) for at least one period of tck clock to reset TAP placed in the OCDS_DEBUGPORT unit.

5.20.9 OCDS_DEBUGPORT

a) OCDS_DEBUGPORT Overviev

The OCDS_DEBUGPORT is used for JTAG communication with host controller. This unit contains instruction register, all data registers and NEXUS function controller.

JTAG INSTRUCTION INTERFACE **TAP & NEXUS** REGISTER ID NEXUS REGISTERS REGISTER NEXUS BREAKPOINT REGISTERS OCDSCTRL OCDS OCDSACC OCDSBPCnMEMORY ACCESS REGISTERS REGISTER OCDSPC OCDSBPDn INTERFACE OCDSINST R OCDSBPDMn OCDSMAC OCDSBPAn BYPASS REGISTER OCDSSCNT OCDSBPAMn

b) OCDS_DEBUGPORT Block Diagram

Figure 155. OCDS_DEBUGPORT Block Diagram

c) OCDS_DEBUGPORT Pin Description

Table 135 OCDS_DEBUGPORT Pin Description

Name	Туре	Polarity Bus size	Description		
JTAG interface					
tck	I	Rise	Test Clock Test clock signal (JTAG 1149.1). Clock pulse for all internal synchronous circuits in TCK clock domain		
tms	I	High	Test mode select Test mode signal (JTAG 1149).		
tdi	I	High	Test data input Test data input (JTAG 1149.1).		
trst	I	Low	Test reset Test reset signal (JTAG 1149).		
tdo	0	High	Test data output Test data output (JTAG 1149.1).		
tdoenable	0	High	External tristate buffer Control signal for external tdo tristate buffer.		
		CPU interfac	e		
debugrst	0	High	OCDS reset Reset signal connected to the CPU reset input port. This signal is logic sum of ocdsen and rst bit from OCDSCTRL register.		
CPU and OCDS_UNIT interface					
updatememaccreg	0	High	Update memory Signal causing memory write operation in the OCDS_UNIT. The OCDS_UNIT takes in consideration control information from OCDSMAC register.		

Name	Туре	Polarity Bus size	Description			
capturememaccreg	0	High	Capture memory Signal causing memory read operation in the OCDS_UNIT. The OCDS_UNIT takes in consideration control information from OCDSMAC register.			
Parallel inputs and outputs to/from registers						
ocdsctrli	I	OCDSCTRL_LEN	OCDS control register input OCDS status and control input signal.			
ocdsctrlo	0	OCDSCTRL_LEN	OCDS control register output OCDS status and control output signal.			
ocdsacci	I	OCDSACC_LEN	Accumulator register input Accumulator contents.			
ocdsdr0i	I	OCDSDR0_LEN	DR0 register input DR0 contents.			
ocdspci	I	OCDSPC_LEN	Program counter register input Program counter contents.			
ocdsinstro	0	OCDSINSTR_LEN	OCDS instruction register output OCDS instruction register contents.			
ocdsmaco	0	OCDSMAC_LEN	OCDS memory access control register output OCDS memory access control register contents.			
ocdsbpdo	0	(OCDS_NO_OF_BP* OCDSBPD_LEN)	OCDS breakpoint data registers outputs OCDS breakpoint data registers contents.			
ocdsbpdmo	0	(OCDS_NO_OF_BP* OCDSBPD_LEN)	OCDS breakpoint data mask register outputs OCDS breakpoint data mask registers contents.			
ocdsbpao	0	(OCDS_NO_OF_BP* OCDSBPA_LEN)	OCDS breakpoint start address registers outputs OCDS breakpoint start address registers contents.			
ocdsbpamo	0	(OCDS_NO_OF_BP* OCDSBPA_LEN)	OCDS breakpoint end address registers outputs OCDS breakpoint end address registers contents.			
ocdsbpctrli	I	(OCDS_NO_OF_BP* OCDSBPCTRL_LEN)	OCDS breakpoint control registers inputs Current OCDS breakpoint status and control bits.			
ocdsbpctrlo	0	(OCDS_NO_OF_BP* OCDSBPCTRL_LEN)	OCDS breakpoint control registers outputs OCDS breakpoint control registers contents.			

Name	Туре	Polarity Bus size	Description		
ocdsmemaccregi	I	OCDSMEMACCREG_LEN	OCDS memory access data register input Value which will be loaded into OCDS memory access data register (current accumulator contents).		
ocdsmemaccrego	0	OCDSMEMACCREG_LEN	OCDS memory access data register output OCDS memory access data register contents.		
Inputs and outputs designed for Trace (when OCDS_TYPE parameter is 1 or 2 only)					
jbuf_reg	I	OCDSBUFF_LEN	Buffer Register Input		
capturedr	0	High	Data Capture Register		
bufenable	0	High	Trace Buffer Enable		
ocdstrci	I	OCDSTRC_LEN	OCDS trace control register input Trace control register (OCDSTRC) contents (status flags).		
ocdstrco	0	OCDSTRC_LEN	OCDS trace control register output Trace control register (OCDSTRC) contents (control flags).		

d) TAP Controller Description

TAP controller is designed according to the state diagram shown in Figure 148.

e) Shift Registers

Figure 156. Data Capture and Data Update Solution

The OCDS_DEBUGPORT contains two shift registers: one for the instruction scan and second for the data scan.

The shift instruction register captures decimal value 1 on the rising tck edge in CAPTURE IR state (refer to Figure 156). Instruction is shifted into shift register from tdi input on the rising tck edge. On tdo output captured value appears bit by bit. in UPDATE IR state new instruction is written into the instruction register.

The shift data register captures proper value from active data register (the register depends on the current instruction) through multiplexer on the rising edge of tck in CAPTURE DR state (refer to Figure 156). Data is shifted into the shift register from tdi input on the rising tck edge. On tdo output captured value appears bit by bit. in UPDATE DR state new data is written into proper data register through demultiplexer.

Figure 157 presents the instruction shift register implementation. in CAPTURE IR STATE decimal value 1 is captured into the instruction shift register. The LSB bit (tdoi) is written into tdo output register on the falling tck edge (if instruction scan is selected). Register is shifted on the rising tck clock edge. Input tdi value is written into highest bit of instruction shift register.

In UPDATE IR state value from shift register is written into instruction register. Instruction shift register size is equal to instruction code size.

Figure 157. Instruction Shift Register Implementation

Figure 158 presents the data shift register implementation. in CAPTURE DR state value from selected register is captured into lowest bits of shift register and the remaining bits are written with 0. LSB bit (tdod) is written into tdo output register on the falling tck edge (if data scan is selected). Register is shifted on the rising tck clock edge. Input tdi value is written into the highest bit of the shift register. The only exception of this is BYPASS register. in this case tdi input value is written into the lowest bit of the shift register.

In UPDATE DR STATE value from highest bits of shift register are written into selected data register. Data shift register size is equal to the longest data register size. in case of capturing or updating registers which are shorter then shift register only valid number of bits are taken into consideration.

Figure 158. Data Shift Register Implementation

Current active scan (data or instruction) decides which shift register is connected to the tdo output.

f) Updating and Capturing Data in Memory Access

If OCDSMEMACC instruction is chosen:

- in CAPTURE DR STATE capturememaccreg signal is generated
- in UPDATE DR STATE updatememaccreg is generated.

The signals mentioned above and configuration information from OCDSMAC register are used in the OCDS_UNIT for memory access operation.

g) Nexus Access

To enable NEXUS functions Nexus-enable instruction must be written in to JTAG instruction register. Relations between JTAG and NEXUS controller are shown in Figure 147.

Internal logic decodes kind of operation (read or write) and Nexus register address. First step after enabling Nexus controller is to write an input command (Table 117) through data scan. After kind of operation and register address detection – proper register is enabled (each Nexus register has its own enable signal). in the second pass through the data scan write to or read from addressed register is done.

For detailed information about accessing Nexus registers refer to 5.20.4 b).

5.20.10 OCDS_UNIT

a) OCDS_UNIT Overview

Main tasks for the OCDS UNIT are:

- halting and starting CPU (upon given conditions),
- · memory read/write access operations in debug mode,
- instruction substitution in step mode (instruction can be executed from code memory or OCDS instruction register),
- forming status bits placed in OCDS registers.
- b) OCDS_UNIT Block Diagram

Figure 159. OCDS_UNIT Block Diagram

c) OCDS_UNIT Pin Description

Table 136. OCDS_UNIT Pin Description

		_	
Name	Туре	Polarity Bus size	Description
clk	I	High	Clock Pulse for all internal synchronous circuits.
rst	I	High	Reset input External reset signal.
debugrst	0	High	Reset output Internal reset signal from debugger.
ocdsupdatememr	I	High	Update memory Signal causing memory write operation in the OCDS Unit. The OCDS Unit takes in consideration control information from OCDSMAC.
ocdscapturememr	I	High	Capture memory Signal causing memory read operation in the OCDS Unit. The OCDS Unit takes in consideration control information from OCDSMAC.
debugack	I	High	Debug mode acknowledge Debug acknowledge signal from CPU.
flush	I	High	Flush Program branch indicator.
codefetche	I	High	Code fetch Code fetch indicator.

Name	Туре	Polarity Bus size	Description
datafetche	I	High	Data fetch Data fetch indicator.
lastcycle	I	High	Last cycle of instruction Last cycle of instruction indicator.
allfetch	I	High	All instruction fetch All instruction fetch (performed and annuled indicator.
debugreq	0	High	Debug mode request Debug mode request signal to CPU.
debugstep	0	High	Debug step Debug step signal (single instruction execution).
debugprog	0	High	Debugger program Instruction fetch source select signal.
datao	I	8	External memory data bus input Memory data bus output from CPU, connected to external data memory input. Combinatorial input signal for OCDS_UNIT unit used for breakpoint detection.
memaddr	I	16	External memory address bus External memory address bus output from CPU, connected to external data memory input. Combinatorial input signal for OCDS_UNIT unit used for breakpoint detection.
memwr	I	High	External memory write enable External memory write signal output from CPU (memwr), connected to OCDS_UNIT input. Combinatorial input signal.
memrd	I	High	External memory read enable External memory read signal output from CPU (memrd), connected to OCDS_UNIT input. Combinatorial input signal.
waitstaten	I	Low	Waitstate indicator Active low when the CPU performs a wait cycle (internally or externally generated)
memdatai	0	8	CPU memory data bus input Memory data bus output from OCDS Unit, connected to CPU (memdatai input port). Combinatorial output signal driven with either external data memory output bus or substituted instruction (in step mode or memory access).
debugmemdatai	I	8	External memory data bus output Memory data bus output from external memory, connected to OCDS_UNIT input. Combinatorial input signal.

Name	Туре	Polarity Bus size	Description
ramdatai	I	8	Internal RAM data output Internal RAM data output bus (from internal RAM to processor) connected to OCDS Unit for breakpoint detection. Combinatorial input signal.
ramaddr	I	8	Internal RAM address bus Internal RAM address bus connected to OCDS Unit for breakpoint detection. Combinatorial input signal.
ramwe	I	High	Internal RAM write enable Internal RAM write enable signal connected to OCDS Unit for breakpoint detection. Combinatorial input signal.
ramoe	I	High	Internal RAM output enable Internal RAM read enable signal connected to OCDS Unit for breakpoint detection. Combinatorial input signal.
ocdsen	I	High	OCDS enable This signal enables OCDS functions.
dreq	I	High	Debug request Debug request bit from OCDS control register.
dstep	I	High	Debug step Debug step request from OCDS control register.
dprog0	I	High	Debugger program
dprog1	I	High	Fetch source selector (user program memory or OCDS instruction register) bits from OCDS control register.
dack	0	High	Debug acknowledge Debug acknowledge signal from CPU.
swbstop	0	High	Software breakpoint Software breakpoint status.
ocdsinstr	I	OCDSINSTR_LEN	OCDS instruction input Contents of OCDS instruction register.
ocdsrd	I	High	Memory read Read from program/data memory (depends on daprosel signal).
ocdswr	I	High	Memory write Write to program/data memory (depends on daprosel signal).
daprosel	I	High	Data/program memory select Memory selector signal.
regfilesel	I	High	Data/program memory select Memory selector signal.
ocdsbpdvecto	I	(OCDS_NO_OF_BP* OCDSBPD_LEN)	OCDS breakpoints data input Contents of all OCDS breakpoint data registers.

Name	Туре	Polarity Bus size	Description
ocdsbpdmvecto	I	(OCDS_NO_OF_BP* OCDSBPD_LEN)	OCDS breakpoints data mask input Contents of all OCDS breakpoint data mask registers.
ocdsbpavecto	I	(OCDS_NO_OF_BP* OCDSBPA_LEN)	OCDS breakpoints start address input Contents of all OCDS breakpoint start address registers.
ocdsbpamvecto	I	(OCDS_NO_OF_BP* OCDSBPA_LEN)	OCDS breakpoints end address input Contents of all OCDS breakpoint end address registers.
ocdsbpcvecto	I	(OCDS_NO_OF_BP* OCDSBCTRL_LEN)	OCDS breakpoints control input Contents of all OCDS breakpoint control registers.
ocdsbpcvecti	0	(OCDS_NO_OF_BP* OCDSBCTRL_LEN)	OCDS breakpoints control output Breakpoint status which will be updated in breakpoint control registers.
ocdsmemaccrego	I	OCDSMEMACCREG_LEN	OCDS memory access data input Contents of all OCDS memory access data register.
	Ou	tput designed for Prog	ram Memory Write
debugpmw	0	High	OCDS program memory write Program memory write signal for debugger using (memory write).
Inputs and	d outpu	its designed for PMU (v	vhen PMU_IMPLEMENT = 1 only)
debugperen	0	High	Peripherals clock enable Peripheral clock enable signal.
clkperen0	I	High	Peripheral clock enable
clkperen1	I	High	This signals enables clock signal for peripherals in debug mode.
	outs de		OCDS_TYPE parameter is 1 or 2 only)
full_bp_en	I	High	Trace breakpoint enable Breakpoint enable if trace buffer is full (control flag).
full	I	High	Trace buffer full Trace buffer full indicator.
cdfetch_t	0	High	Code or data fetch Code or data fetch indicator.
user_prog_t	0	High	User program User program indicator.
bp_stopi	I	OCDS_NO_OF_BP	Breakpoint Breakpoint detection signal.
hit_coderd	0	OCDS_NO_OF_BP	Code memory read event Code memory read event indicator. Read event fulfils OCDSBPAN, OCDSBPAMn, OCDSBPDN, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).

Name	Туре	Polarity Bus size	Description
hit_codefe	0	OCDS_NO_OF_BP	Instruction code fetch event Instruction code read event indicator. Read event fulfils OCDSBPAN, OCDSBPAMN, OCDSBPDN, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit_codewr	0	OCDS_NO_OF_BP	Code memory write event Code memory write event indicator. Write event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit_xramwr	0	OCDS_NO_OF_BP	External data memory write event External data memory write event indicator. Write event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit _xramrd	0	OCDS_NO_OF_BP	External data memory read event External data memory read event indicator. Read event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit _iramwr	0	OCDS_NO_OF_BP	Internal data memory write event Internal data memory write event indicator. Write event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit _iramrd	0	OCDS_NO_OF_BP	Internal data memory read event Internal data memory read event indicator. Read event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).

5.20.11 OCDS_TRACE Unit

a) Trace Overview

TRACE is used for program and data trace frames collecting. This unit contains trace buffer controller.

b) Trace Block Diagram

Figure 160. OCDS_TRACE Block Diagram

Event Control

Event Control block is responsible for triggering trace frames generation. It starts and stops trace frames collecting.

Program Trace Frame, Data Trace Frame 0, Data Trace Frame 1

These blocks are responsible for generation of particular fields in trace frames.

Frame select module

Formed trace frames are passed to the trace buffer by this module.

Trace memory control

Trace memory is FILO structure. This unit controls read/write operations from/to the trace buffer. The Trace memory control generates full and empty trace buffer flags.

Memory frame select

Trace frames are placed in the trace buffer. The trace buffer is made as two RAM memories. The Memory frame select module selects trace frame from one of these memories and passes it into trace_data output port.

c) Trace Pin Description

Table 137. OCDS_TRACE Pin Description

Table 157. OCDS_TRACE FIII Description			
Name	Ty pe	Polarity Bus size	Description
clk	I	Rise	Clock Pulse for all internal synchronous circuits.
rst	I	High	Reset External reset signal for CPU.
codefetch	I	High	Code fetch Code fetch indicator.
flush	I	High	Flush Code fetch after branch indicator.
pcout	I	24	Program counter Contents of the CPU program counter register.
capturedr	I	High	Capture data scan Capture data scan state indicator.
bufenable	I	High	Trace buffer enable Trace buffer enable signal.
debugreq	I	High	Debug request Debug request signal.
debugack	I	High	Debug acknowledge Debug mode acknowledge signal.
trace_data	0	BUF_LEN	Trace data Trace data bus contains read frame from the trace buffer.
full	0	High	Trace buffer full Trace buffer full indicator.
empty	0	High	Trace buffer empty Trace buffer empty indicator.
cont	I	High	Continue bit
switch*	I	High	Switch trace bit
memaddr*	I	24	External memory address bus External memory address bus output from CPU, connected to external data memory input.
datao*	I	8	External memory data bus input Memory data bus output from CPU, connected to external data and program memory input.
debugmemdatai*	I	8	External memory data bus output Memory data bus connected to CPU memdatai input.
ramaddr*	I	8	Internal RAM address bus Internal RAM address bus.
ramdatai*	I	8	Internal RAM data output Internal RAM data output bus (from internal RAM to processor).

Name	Ty pe	Polarity Bus size	Description
waitstaten	I	High	Waitstate indicator
		9	Active low when the CPU performs a wait cycle (internally or externally generated)
cdfetch_t	I	High	Code or data fetch
_			Code or data fetch indicator.
user_prog_t	I	High	User program
			User program indicator.
bp_stopi	0	OCDS_NO_OF_BP	Breakpoint
			Breakpoint detection signal.
ocdsbpcvecto	I	OCDS_NO_OF_BP*	OCDS breakpoints control input
		OCDSBPCTRL_LEN	Contents of all OCDS breakpoint control registers.
hit_coderd	I	OCDS_NO_OF_BP	Code memory read event
			Code memory read event indicator. Read event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit_codefe	I	OCDS_NO_OF_BP	Instruction code fetch event
			Instruction code read event indicator. Read event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit_codewr	I	OCDS_NO_OF_BP	Code memory write event
			Code memory write event indicator. Write event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit_xramwr	I	OCDS_NO_OF_BP	External data memory write event
			External data memory write event indicator. Write event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit _xramrd	I	OCDS_NO_OF_BP	External data memory read event
			External data memory read event indicator. Read event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit _iramwr	I	OCDS_NO_OF_BP	Internal data memory write event
			Internal data memory write event indicator. Write event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).
hit _iramrd	I	OCDS_NO_OF_BP	Internal data memory read event
			Internal data memory read event indicator. Read event fulfils OCDSBPAn, OCDSBPAMn, OCDSBPDMn and OCDSBPCn (except <i>mod</i> field).

Name	Ty pe	Polarity Bus size	Description
addr_buf0	0	BUF_SIZE	RAM0 address
			RAM0 address bus.
datao_buf0	0	BUF_LEN	RAM0 data output
			RAM0 data output bus.
datai_buf0	I	BUF_LEN	RAM0 data input
			RAM0 data input bus.
wr_buf0	0	High	RAM0 write enable
			RAM0 write enable signal.
rd_buf0	0	High	RAM0 read enable
			RAM0 read enable signal.
addr_buf1	0	BUF_SIZE	RAM0 address
			RAM1 address bus.
datao_buf1	0	BUF_LEN	RAM1 data output
			RAM1 data output bus.
datai_buf1	I	BUF_LEN	RAM1 data input
			RAM1 data input bus.
wr_buf1	0	High	RAM1 write enable
			RAM1 write enable signal.
rd_buf1	0	High	RAM1 read enable
			RAM1 read enable signal.
* - PORTS exists only in configuration with data trace (OCDS_TYPE = 2).			

d) Trace Description

TRACE unit monitors program flow and read/write operations in the CPU in normal program execution mode. According to trace configuration trace frames are written into the trace buffer. The trace buffer is read in the debug mode through JTAG interface.

There are two kinds of trace:

- Program trace after detecting any taken branch program trace frame is generated. Trace frame contains information about given branch.
- Data trace after detecting read/write operation which fulfils data trace attributes (possible attributes are the same as for the breakpoint) data trace frame is generated. Trace frame contains information about given read/write operation.

Possible OCDS configurations:

- OCDS without trace.
- OCDS with program trace.
- OCDS with program and data trace.

e) Starting and Finishing Trace

Trace start - possible methods:

• Breakpoint configuration (start trace program/data on read/write event in the CPU).

- Setting *cont* bit ('0' to'1' in normal program execution mode) in the OCDSCTRL register. Event starts simultaneously program and data trace when *switch* bit is set (OCDSCTRL register). When *switch* is cleared event starts program trace only.
- Leaving debug mode with *cont* bit set to '1'. Event starts simultaneously program and data trace when *switch* bit is set (OCDSCTRL register). When *switch* is cleared event starts program trace only.
- Start trace in debug mode is done by setting *cont* bit from '0' to '1'.

Trace end - possible methods:

- Breakpoint configuration (end program/data trace on read/write event in the CPU).
- Trace (program and data) ends every time when the CPU enters into debug mode (it is
 possible to enter into the debug mode on trace buffer full). If enabled trace is required
 after leaving debug mode *cont* and *switch* bits (OCDSCTRL register) must be set before
 (please refer to trace start possible methods mentioned earlier).
- f) Trace Frames

Table 138. Trace Frames

Frame Name	CODE	Description
PT_BR	0000	Program Trace Branch frame is generated when branch occurs.
START_PT_FR	0010	Program Trace Start frame is generated when event which starts program trace does not generate program trace frame (frames with PT prefix) and START_PT_DT_FR frame.
START_ PT_DT_FR	0100	Program and Data Trace Start frame is generated when events which start program and data trace in the same time do not generate program and data trace frame (frames with PT and DT prefixes).
START_ DT_FR	0011	Data Trace Start frame is generated when event which starts data trace does not generate data trace frame (frames with DT prefix) and START_PT_DT_FR frame.
DT_CODE_RD	1000	Data Trace Code Memory Read frame is generated when code memory read operation performed by the CPU fulfills data trace configuration.
DT_CODE_FE	0101	Data Trace Code Fetch frame is generated when the CPU fetches instruction which fulfills data trace configuration.
DT_CODE_WR	1100	Data Trace Code Memory Write frame is generated when code memory write operation performed by the CPU fulfills data trace configuration.
DT_IRAM_RD	1001	Data Trace Internal Data Memory Read frame is generated when internal data memory read operation performed by the CPU fulfills data trace configuration.
DT_IRAM_WR	1101	Data Trace Internal Data Memory Write frame is generated when internal data memory write operation performed by the CPU fulfills data trace configuration.
DT_XRAM_RD	1010	Data Trace External Data Memory Read frame is generated when external data memory read operation performed by the CPU fulfills data trace configuration.

Frame Name	CODE	Description
DT_XRAM_WR		Data Trace External Data Memory Write frame is generated when external data memory write operation performed by the CPU fulfills data trace configuration.

Note 1: Length and value of the CODE field stays unchanged in both possible trace configurations (configuration with program trace and configuration with program and data trace).

g) Trace Frames Formats

Format 1

Format 1 is used for following frames:

PT_BR

Table 139. Frame Format 1

Field name	Bit	Description
START_BIT	64	START_BIT=1 when event which started program trace generated data trace frame.
		START_BIT=0 other cases.
CODE	6360	Trace frame code (see Table 138).
START_ADDR	5936	Branch instruction address or instruction address executed just before interrupt call.
END_ADDR	3512	First instruction address after branch or first instruction address in interrupt handler.
UNB	110	Unused bits read as 0.

Format 2

Format 2 is used for following frames:

PT_BR_EX

Table 140. Frame Format 2

Field name	Bit	Description
START_BIT	64	START_BIT=1 when event which started program trace generated data trace frame. START_BIT=0 other cases.
CODE	6360	Trace frame code (see Table 138).
START_ADDR	5936	Branch instruction address or instruction address executed just before interrupt call.
END_ADDR	3512	First instruction address after branch or first instruction address in interrupt handler.
DATA	114	Trace data from code memory read operation. This field is complementary information for data trace.
UNB	30	Unused bits read as 0.

Format 3

Format 3 is used for following frames:

DT_CODE_RD

DT_CODE_WR

DT_IRAM_RD

DT_IRAM_WR

DT_XRAM_RD

Note 2: in trace configuration without data trace PT_BR and START_PT_FR frames are generated only.

DT_XRAM_WR

Table 141. Frame Format 3

Field name	Bit	Description	
START_BIT	64	START_BIT=1 when event which started program trace generated data trace frame. START_BIT=0 other cases.	
CODE	6360	Trace frame code (see Table 138).	
PC	5936	Address of instruction which performed read/write operation.	
		This field is not valid for DT_CODE_FE frame. Fetched instruction address is given in DATA_ADDR field.	
DATA_ADDR	3512	Address of data in read/write operation.	
DATA	114	Data which was read from/write to memory in read/write operation.	
UNB	30	Unused bits read as 0.	

Format 4

Format 4 is used for following frames:

START_PT_FR START_PT_DT_FR START_DT_FR

Table 142. Frame Format 4

Field name	Bit	Description			
START_BIT	64	START_BIT=1.			
CODE	6360	Trace frame code (see Table 138).			
START_ADDR	5936	Address of currently executed instruction except situation when trace starts on instruction fetch then START_ADDR equals to fetched instruction address.			
UNB	350	Unused bits read as 0.			

Format 5

Format 5 is used for following frames:

DT_CODE_FE

Table 143. Frame Format 5

Field name	Bit	Description			
START_BIT	64	START_BIT=1.			
CODE	6360	Trace frame code (see Table 138).			
START_ADDR	5936	Address of instruction from which any of the bytes caused data read match.			
INSTR	354	Top of instruction queue, consisting of the actual instruction and eventually next instruction data, too.			
VALID	30	Four bytes of instruction validity bits; when a bit is 1, it means the corresponding byte of 'INSTR' has met the data read match. Bit 0 corresponds with field [113] and bit 3 with [35:28].			

The DT_CODE_FE frame is generated at the end of the execution of the instruction that is aligned in to the high end of the INSTR field. As there can be multiple bytes "taken" by the CPU in a single clock cycle, this frame only provides the address of the 1st byte of an instruction and four indicators pointing which of the maximum four bytes of instruction caused a data trace match.

Start bit is set in trace frames or start frame is generated every time:

- On leaving debug mode with enabled trace (cont bit in the OCDSCTRL register is set).
- On start trace event (set in OCDSBP* registers).
- When change of cont bit (OCDSCTRL register) from '0' to '1' in normal execution mode is detected.

h) The Trace Buffer

The trace buffer is FILO (First in Last Out) structure. Trace frames generated during instruction execution are written into the buffer. Physically the buffer is built as two RAM memories. Those memories can be written in the same time with two different frames. One frame occupies one RAM location.

The frames are written into the memory on the rising clkcpu edge (in normal CPU mode) when write enable signal is active. Read signal is asserted in tck clock domain but the buffer is read on the rising clkcpu edge when read falling edge is detected (tck clock period equals at least two clkcpu periods). Read signal is active when JTAG controller is in the CAPTURE_DR state and the BUFF instruction is the JTAG instruction register.

i) Trace Buffer Full Flag

- The *full* buffer flag is placed in OCDSCTRL register. The flag is set when in the trace buffer is space for 3 trace frames only. The flag is set to '0' when all frames are read from the trace buffer or when the trace buffer is cleared (changing the JTAG BUFF instruction into any other JTAG instruction).
- When the trace buffer is full it is possible:
- To stop program execution and enter into the debug mode when *full_bp_en* bit is set to '1' in OCDSCTRL register.
- To stop trace frames collecting without stopping program execution when *full_bp_en* bit is set to '0' in OCDSCTRL register. Collected frames are not overwritten.
- j) Trace Buffer Empty Flag

The *empty* trace buffer flag is placed in JTAG data BUFF register. The flag is set to '1' when the trace buffer do not contain trace frames. Trace frames read from the BUFF register with empty *flag* set to '1' are not valid. The flag is set to '0' when the trace buffer contains at least one trace frame.

k) Trace Buffer Read Rules

- Trace buffer read is performed only in the debug mode through the JTAG interface until
 empty flag in the BUFF register is set.
- Values read from the BUFF register with empty flag set to '1' are not valid.

- Frames are read from trace buffer in FILO-like order (the last generated frames are read first).
- The trace buffer is cleared after changing the JTAG BUFF instruction into any other JTAG instruction.
- After updating the JTAG instruction register with the BUFF instruction internal buffer pointer is decremented if in the trace buffer exist at least one free memory location for trace frame.

1) Trace in Debug Mode

It is possible to generate trace frames in debug mode if trace is enabled.

Trace in debug mode rules:

- start program/data trace frames are not generated.
- START_BIT is set to 0 in frames generated by step from code memory.
- START_BIT is set to 1 in frames generated by step from OCDSINSTR register and memory access operations (through OCDSMAC register).

5.20.12 Parameters

Table 144 OCDS Parameters

Name	Туре	Default value	Description		
Main parameters					
OCDS_TYPE		0			
OCDS_NO_OF_BP	Integer	4	Number of breakpoints.		
	Regis	ter address	ses		
MAX_REG_LEN	Integer	46	Maximum data register size.		
ADR_NX_VND_REG_AREA	Integer	64	Begin of vendor defined registers in NEXUS address area.		
OCDSCTRL_ADR	Integer	0	OCDSCTRL register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSACC_ADR	Integer	1	OCDSACC register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSPC_ADR	Integer	2	OCDSPC register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSINSTR_ADR	Integer	3	OCDSINSTR register address given relatively to ADR_NX_VND_REG_AREA		
OCDSMAC_ADR	Integer	4	OCDSMAC register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSTRC_ADR	Integer	5	OCDSTRC register address given relatively to ADR_NX_VND_REG_AREA.		

Name	Туре	Default value	Description		
OCDSBPD1_ADR	Integer	6	OCDSBPD1 register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSBPDM1_ADR	Integer	7	OCDSBPDM1 register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSBPA1_ADR	Integer	8	OCDSBPA1 register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSBPAM1_ADR	Integer	9	OCDSBPAM1 register address given relatively to ADR_NX_VND_REG_AREA.		
OCDSBPCTRL1_ADR	Integer	10	OCDSBPC1 register address given relatively to ADR_NX_VND_REG_AREA.		
	TAP	parameter	rs		
IR_DEF_LEN	Integer	4	Instruction register size.		
ID_CODE_LEN	Integer	32	ID Register size.		
ID_CODE_VALUE	Bit vector	50000321h	Contents of the ID register. Refer to ID_CODE_LEN.		
	Instruction codes				
IDREG_IR	Bit vector	1h	Identification instruction code. Refer to IR_DEF_LEN.		
NXENABLE_IR	Bit vector	Bh	Enable Nexus controller instruction code. Refer to IR_DEF_LEN.		
MEMACCREG_IR	Bit vector	Ah	Memory access instruction code. Refer to IR_DEF_LEN.		
BYPAS_IR	Bit vector	Fh	Bypass instruction code. Refer to IR_DEF_LEN.		
BUFFREG_IR	Bit vector	9h	Trace Memory Access Register Enable		

Note: OCDSBPD1_ADR, OCDSBPDM1_ADR, OCDSBPA1_ADR, OCDSBPA1_ADR, OCDSBPC1_ADR addresses are relative to ADR_NX_VND_REG_AREA. Mentioned addresses are correct for the first set of breakpoint registers. to calculate addresses for the following breakpoint registers it is necessary to add multiple of 5 (5 for second breakpoint, 10 for third breakpoint registers etc) for proper register base address calculation (for default values refer to Table 121).

Examples:

Address of OCDSBPA2 register for second breakpoint is equal:

ADR_NX_VND_REG_AREA + OCDSBPA1_ADR + 5

Address of OCDSBPC4 register for fourth breakpoint is equal:

ADR_NX_VND_REG_AREA + OCDSBPC1_ADR + 15

5.21.SOFTRSTCTRL

5.21.1 Overview

The SOFTRSTCTRL component implements functions which allow to reset all components of the R80251XC core (except the SOFTRSTCTRL core). The software reset is performed by SFR write sequence.

5.21.2 Pin Description

Table 145 SOFTWARE RESET Pin Description

Name	Туре	Polarity Bus size	Description	
clkcpu	I	Rise	Clock	
			Clock input for all internal synchronous logic	
resetff	I	High	Internally generated reset:	
			Used to reset all internal synchronous logic	
newinstr	I	High	New instruction indicator	
			Indicates the previous cycle was the 1 st cycle of a new instruction	
debugack	I	High	Debug acknowledge	
			Indicates that the CPU has stopped instruction execution and entered the Debug Mode	
watchdogstop	I	High	Watchdog stop	
			Used only in the Debug Mode, is active when the CPU is not executing any instruction from normal program	
srstreq	0	High	Software reset request	
			Software reset request – system reset is performed.	
srstflag	Ο	High	Software reset flag	
			Software reset status flag output.	
sfrdatai	I	8	Special Function Registers Data Bus input	
			Contains data written to Special Function Registers	
sfraddr	I	7	SFR register Address bus	
			Address of SFR register that CPU wants to read from or write to.	
sfrwe	I	High	SFR Write Enable	
			Indicates a write access to the Special Function Register	

5.21.3 Description

A software reset will be generated after two consecutive '1' value writes to the "srstreq" bit in the "srst" register (0F7h). This solution will prevent accidental reset evoking.

It will be possible to identify if the source of the reset sequence was a software reset, by reading the "srstreq" bit in the "srst" register.

A software reset won't have influence on the debugger.

A software reset will be visible outside of the core by the "ro" output (this output will be logic 'OR' of watchdog, debugger and software reset signals).

5.22. RTC

5.22.1 Overwiew

The Real Time Clock realizes a real time count with a resolution of 1/256th second. It allows the user to read seconds, minutes, hours, day of the week and the date. The date is represented by a 16-bit number, which value is interpreted by the user software. The RTC enables a count of 179 years. The RTC features an alarm function which may be used to generate interrupts at a given time during a day or periodically. These interrupts may be used to resume operation from the IDLE/STOP mode at a given time.

5.22.2 Block Diagram

Figure 161. RTC Block Diagram

5.22.3 Pin Description

Table 146 RTC Pin Description

Name	Туре	Polarity Bus size	Description	
clk	I	Rise	R80251XC Peripheral Clock input	
rst	I	High	Internal synchronous reset	
rtcreset	I	High	RTC asynchronous reset	
rtcx	I	Rise/Fall	RTC Clock input	
rtcifo	0	High	RTC Interrupt Flag to the Interrupt Controller	
rtcifa	0	High	RTC Interrupt Flag to the Power Management Unit	
sfrdatai	I	8	SFR data bus input	
rtcsel	0	4	RTC Select Register output	
rtcdata	0	8	RTC Data Register output	
sfraddr	I	7	SFR address bus input	
sfrwe	I	High	SFR write enable input	

5.22.4 Description

a) Starting and Stopping the RTC

Starting and stopping the RTC is controlled with rtce bit (rtcc.0). When the bit is set all the registers triggered with the RTC clock (rtcx) are enabled and the RTC counters are clocked. When this bit is cleared the state of the registers freezes. The value of the clock registers will be preserved along with all control and alarm settings.

b) Setting and Reading the RTC Registers

Access to the RTC registers (rtcss, rtcs, rtcm, rtch, rtcd0, rtcd1) is controlled with the rtcwe and rtcre bits. to enable reading the RTC registers, the rtcre bit must be set. to enable writing the RTC registers, the rtcwe bit must be set. Updates to the time keeping registers are suspended until rtcwe (or rtcre) is cleared. Any access (reading or updating) should be accomplished within 1 ms from an appropriate bit setting. If a subsecond timer tick occurs during the access window it will be processed as soon as rtcwe (or rtcre) is cleared.

The rtcwe and rtcre bits are not allowed to be set simultaneously. Attempt of doing so will be ignored. If not cleared in the software within 1.95 ms after being set each of these bits will be cleared automatically.

Writing an invalid time (i.e. a value outside the range representing valid second, minute or hour value) to the RTC registers will result in an inaccurate count by RTC.

c) Using the RTC Alarm

The alarm function is used to generate an interrupt when the RTC value matches a value from the enabled alarm register. When the RTC reaches the selected alarm value, it sets a flag (rtcif). This will cause an interrupt if enabled, even in Stop mode. With interrupt not enabled, it can still wake-up the R80251XC from IDLE or STOM mode.

The user selects the alarm time by setting the rtass, rtas, rtam and rtah registers. It is not necessary to set the rtcwe or rtcre bits to access alarm registers. There is no specific alarm register bound to the RTC Day count or RTC Day of Week register. Therefore it is up to user software to control the execution of an alarm that is desired only at a specific date. Writing an invalid value (e.g. 61 to rtam or rtah registers) will never cause a match. It is the responsibility of the user to ensure that only valid time values are written to alarm registers.

The alarm function is implemented with a comparator that matches the alarm value set by the user against the current RTC value. The user can select a match of one or more of the following registers: rtass, rtas, rtam and rtah against their RTC counterparts by setting appropriate compare enable bits (rtcc.7-4). Any RTC register that has a corresponding compare enable bit set to 0 is treated as a match. This allows an alarm to occur once a day at specific point in time (when all compare enable bits are set) or periodically - once per second, once per minute, once per hour within a given period of time (depending on a combination of the compare enable bits that are set).

The general procedure for setting the alarm registers to cause an RTC interrupt is as follows:

- clear the ertc bit of the ien4 register and all alarm compare enable bits (rtcc.7-4),
- write one or more alarm registers (rtass, rtas, rtam, rtah),
- set the desired alarm compare enable bits and the ertc bit (ien4.5).

d) RTC Special Function Registers

Real Time Clock is interfaced through 10 special function registers: six that keep time count (rtcss, rtcs, rtch, rtcd1, rtcd0) and four that control the alarm time (rtass, rtas, rtam, rtah).

Its operation is controlled by the rtcc register and ertc (ien4.5) bit.

All functions and restrictions on accessing the registers are presented in the "Special Function Registers" section.