Galois Deformations

February 18, 2025

1 Review of Category Theory and Homological Algebra

All the set-theoretic issues are ignored for now.

1.1 Representability

Let $\mathfrak C$ be a category. We define the functors

$$\begin{array}{ccc} h^{\mathfrak{C}}: \mathfrak{C}^{\mathrm{op}} & \longrightarrow [\mathfrak{C}, \mathbf{Set}], & \mathrm{ev}^{\mathfrak{C}}: [\mathfrak{C}, \mathbf{Set}] \times \mathfrak{C} & \longrightarrow \mathbf{Set} \\ S & \longmapsto \mathrm{Hom}_{\mathfrak{C}}(S, \cdot) & (F, S) & \longmapsto F(S). \end{array}$$

Theorem 1 (Yoneda). There is an isomorphism

$$\operatorname{Hom}_{[\mathfrak{C},\mathbf{Set}]^{\operatorname{op}}}(-,h^{\mathfrak{C}}(-)) \simeq \operatorname{ev}^{\mathfrak{C}}$$

as functors $[\mathfrak{C}, \mathbf{Set}] \times \mathfrak{C} \to \mathbf{Set}$ given by

$$\operatorname{Hom}_{[\mathfrak{C},\mathbf{Set}]^{\operatorname{op}}}\left(F,h^{\mathfrak{C}}(S)\right) \longrightarrow F(S)$$
$$\left(F \stackrel{\phi}{\leftarrow} \operatorname{Hom}_{\mathfrak{C}}(S,-)\right) \longmapsto \phi_{S}(\operatorname{id}_{S})$$

for all $F: \mathfrak{C} \to \mathbf{Set}$ and $S \in \mathfrak{C}$, and the functor $h^{\mathfrak{C}}: \mathfrak{C}^{\mathrm{op}} \to [\mathfrak{C}, \mathbf{Set}]$ is fully faithful.

We say that a functor $F: \mathfrak{C} \to \mathbf{Set}$ is **representable**, if there is $X \in \mathfrak{C}$ along with an isomorphism

$$\phi: \operatorname{Hom}_{\mathfrak{C}}(X, -) \simeq F$$

as functors. Note that the functor ϕ is determined² by the universal element $u := \phi_X(\mathrm{id}_X) \in F(X)$, from which every thing in F(T) is pushed forward, i.e. for any morphism $f: X \to T$ in \mathfrak{C} , the unique corresponding element in F(T) is $\phi_T(f) = F(f)(\phi_X(\mathrm{id}_X)) = F(f)(u)$.

1.2 The Ext Functors

Let $\mathfrak A$ be an abelian category with enough projective and injective objects. We have

$$\operatorname{Ext}_{\mathfrak{A}}^{i}(X,Y) := \operatorname{R}^{i} \operatorname{Hom}_{\mathfrak{A}}(X,-)(Y) \simeq \operatorname{R}^{i} \operatorname{Hom}_{\mathfrak{A}}(-,Y)(X)$$

for $X, Y \in \mathfrak{A}, i \geq 0$.

¹There is also the version for $h_{\mathfrak{C}}: \mathfrak{C} \to [\mathfrak{C}^{op}, \mathbf{Set}]$ and $ev_{\mathfrak{C}}: [\mathfrak{C}^{op}, \mathbf{Set}] \times \mathfrak{C} \to \mathbf{Set}$.

²This does not mean that we can decode ϕ from u without knowing ϕ a priori?

We will focus on Ext^1 . An **extension of** A **by** B^3 is a short exact sequence

$$\xi: 0 \to B \to X \to A \to 0.$$

(I may denote ξ by X if there is no confusion.) An isomorphism of two extensions X and X' of A by B is a commutative diagram

An extension of A by B that is isomorphic to

$$0 \to B \hookrightarrow A \oplus B \to A \to 0$$

is said to be split.

Given an extension $\xi: 0 \to B \to X \to A \to 0$ of A by B, the cohomological functors $\operatorname{Ext}^*(A, -)$ induces the exact sequence

$$\operatorname{Hom}(A,X) \to \operatorname{Hom}(A,A) \stackrel{\partial_{\xi}}{\to} \operatorname{Ext}^{1}(A,B).$$

Let's look at the class $\Theta(\xi) := \partial_{\xi}(\mathrm{id}_A) \in \mathrm{Ext}^1(A, B) = 0$. If $\Theta(\xi) = 0$, then there is a section $f : A \to X$ of $X \to A$ in ξ , i.e. ξ is split. This means that $\Theta(\xi) \in \mathrm{Ext}^1(A, B)$ is the obstruction for ξ to be split.

Theorem 2. Let R be a (possibly non-commutative) ring. For left R-modules A and B, there is a natural bijection

$$\left\{ \begin{array}{l} \text{isomorphism classes of} \\ \text{extensions of } A \text{ by } B \end{array} \right\} \stackrel{1:1}{\longleftrightarrow} \operatorname{Ext}^1_R(A,B)$$

given by $\Theta: \xi \mapsto \partial_{\xi}(\mathrm{id}_A)$.

Example 1.1. Let k be a topological ring (field if necessary), G be a topological group, V be a continuous k[G]-module that is free of k-rank d. Then there is a canonical isomorphism

$$\operatorname{Ext}_{k[G]}^1(V,V) \simeq H^1(G,\operatorname{ad} V).$$

(There should be a constructive proof, but I failed...)

We propose another proof in the next subsection.

1.3 Universal δ -Functors

We concentrate on cohomological things.

Definition 1. A (covariant) cohomological δ -functor is a collection of additive functors

$$\{T^n:\mathfrak{A}\to\mathfrak{B}\}_{n\geq 0}$$

indexed by non-negative integers, which induces functorially a long exact sequences in \mathfrak{A} from a short exact sequence in \mathfrak{A} . More precisely, for each exact sequence

$$0 \to A \to B \to C \to 0$$
 in \mathfrak{A} ,

there are fixed morphisms

$$\delta^n: T^n(C) \to T^{n+1}(A)$$
 in \mathfrak{B} , $n \ge 0$,

 $^{^3{\}rm In}$ a category where these operations make sense.

s.t.

$$0 \to T^0(A) \to T^0(B) \to T^0(C) \xrightarrow{\delta^0} T^1(A) \to \cdots$$

is exact⁴; moreover, a morphism of short exact sequences in \mathfrak{A} induces a morphism of long exact sequences in \mathfrak{B} .

For instance, taking cohomology for chain complexes

$$H^*: \mathbf{Ch}_{>0}(\mathfrak{A}) \to \mathfrak{A}$$

or taking right-derivation of a left-exact functor are cohomological δ -functors.

Definition 2. The cohomological δ -functors from $\mathfrak A$ to $\mathfrak B$ form a category, where morphisms are the natural transformations commuting with the δ^n 's. A **universal cohomological** δ -functor is a δ -functor $T = (T^n)$, such that for any δ -functor $S = (S^n)$ and a morphism $f^0: T \to S$, there is a unique morphism $f: T \to S$ extending f^0 .

So a universal δ -functor is like an initial object among δ -functors but it is "weaker".

Theorem 3. If $F: \mathfrak{A} \to \mathfrak{B}$ is a left-exact additive functor, then (if \mathfrak{A} has enough injectives) the right derivations $R^*F: \mathfrak{A} \to \mathfrak{B}$ form a universal δ -functor.

Another proof of Example 1.1. Let k be a field. We show that both $H^*(G, V^{\vee} \otimes_k (-))$ and $\operatorname{Ext}_G^*(V, -)$ are universal δ -functors. Then since they agree at i = 0, they must agree everywhere.

The functors $\operatorname{Ext}_G^*(V,-)$ are derived from $\operatorname{Hom}_G(V,-)$, so they are universal. For $H^*(G,V^{\vee}\otimes_k(-))$, since $V^{\vee}\otimes_k(-)$ is exact, we have⁵

$$H^*(G, V^{\vee} \otimes_k (-)) = \mathbb{R}^* \operatorname{Hom}_G(k, -) \circ (V^{\vee} \otimes_k (-)) = \mathbb{R}^* \left(\operatorname{Hom}_G(k, -) \circ (V^{\vee} \otimes_k (-)) \right),$$

which is also a derived functor.

2 Deformation of Representations of Profinite Groups

2.1 The category of complete Noetherian algebras

Let L/\mathbb{Q}_p be a finite extension with residue field \mathbb{F} , so that its ring of integers $\mathcal{O} := \mathcal{O}_L$ contains the ring of Witt vectors $W(\mathbb{F})$ of \mathbb{F} . We consider the category $\widehat{\mathfrak{Ar}_{\mathcal{O}}}$ of complete Noetherian local \mathcal{O} -algebras with residue field \mathbb{F} .

For $A \in \widehat{\mathfrak{Ar}_{\mathcal{O}}}$, we call

$$t_A^\vee := \mathfrak{m}_A/(\mathfrak{m}_A^2 + \mathfrak{m}_\mathcal{O} A)$$

the Zariski (or relative) cotangent space of A over \mathcal{O} , and

$$t_A := \operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}_A/(\mathfrak{m}_A^2 + \mathfrak{m}_{\mathcal{O}}), \mathbb{F})$$

the relative tangent space of A over \mathcal{O} .

 $^{^4}$ In particular, T^0 is left-exact.

⁵I've never learnt this but I accept this for now.

Proposition 2.1. For any homomorphism $\mathcal{O} \to A$ of local rings (no need for completeness) with the same residue field \mathbb{F} , there is a perfect pairing

$$\mathfrak{m}_A/(\mathfrak{m}_A^2 + \mathfrak{m}_\mathcal{O} A) \times \mathrm{Der}_\mathcal{O}(A, \mathbb{F}) \to \mathbb{F}$$

of k-vector spaces, where

$$\operatorname{Der}_{\mathcal{O}}(A, \mathbb{F}) = \{ \delta \in \operatorname{Hom}_{\mathcal{O}}(A, \mathbb{F}) \mid \delta(ab) = \bar{a}\delta(b) + \bar{b}\delta(a), \ \forall a, b \in A \}$$

is the ring of \mathcal{O} -linear derivations from A to k. In particular,

$$\operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}_A/(\mathfrak{m}_A^2+\mathfrak{m}_{\mathcal{O}}),\mathbb{F})\simeq \operatorname{Der}_{\mathcal{O}}(A,\mathbb{F}).$$

Before proving, note that $A = \operatorname{im}(\mathcal{O} \to A) + \mathfrak{m}_A$, and A is generated by $\operatorname{im}(\mathcal{O} \to A)$ and \mathfrak{m}_A as an \mathcal{O} -module, because $A/\mathfrak{m}_A = \mathcal{O}/\mathfrak{m}_{\mathcal{O}}$.

Proof. Consider the natural pairing $\mathfrak{m}_A \times \mathrm{Der}_{\mathcal{O}}(A, \mathbb{F}) \to \mathbb{F}$ given by evaluation.

Right kernel. If $\delta(a) = 0$ for all $a \in \mathfrak{m}_A$, then $\delta \in \mathrm{Der}_{\mathcal{O}}(\mathbb{F}, \mathbb{F}) = 0$.

Left kernel. Both
$$\mathfrak{m}_A$$
 and $\mathfrak{m}_{\mathcal{O}}$ acts by 0 on \mathbb{F} , so any \mathcal{O} -linear derivation $\delta: A \to \mathbb{F}$ (T.B.C.)

Lemma 2.1. A morphism $A \to B$ in $\widehat{\mathfrak{Ar}}_{\mathcal{O}}$ is surjective if and only if the induced map $t_A^* \to t_B^*$ is surjective.

Proof. For any morphism $A \to B$ in $\widehat{\mathfrak{Ar}}_{\mathcal{O}}$, we have the commutative diagram

where the rows are exact. The left column is surjective, because by the comments above,

(some commutative algebra...)

2.2 Deformation functors

Let G be a profinite group, \mathbb{F} be a finite field of characteristic p, V an $\mathbb{F}[G]$ -module of \mathbb{F} -dimension d with G acting continuously⁷. We fix a \mathbb{F} -basis $\beta_{\mathbb{F}}$ of V, via which V is identified with a continuous representation $\bar{\rho}: G \to \mathrm{GL}_d(\mathbb{F})$.

Take $A \in \widehat{\mathfrak{Ar}_{\mathcal{O}}}$. A **deformation** of V to A is a pair (V_A, ι_A) , where

- V_A is an A[G]-module that is free of finite rank over A, and
- $\iota_A: V_A \otimes_A \mathbb{F} \simeq V$ is an isomorphism of $\mathbb{F}[G]$ -modules.

A framed deformation of (V, β) is a triple (V, ι_A, β_A) , where

• (V, ι_A) is a deformation of V to A,

$$G \times V \to V \quad (q, v) \mapsto qv$$

is continuous; or equivalently, $G \to \operatorname{GL}(V)$ is continuous.

⁶For $a \in A$, denote by $\bar{a} \in k$ the residue class.

⁷This means that the map

• β_A is a basis of V_A over A that reduces to β_F via ι_A .

Define $D_V(A)$ (resp. $D_V^{\square}(A)$) to the set of isomorphism classes of deformations (resp. framed deformations) of V to A.

Remark. If we view (V, β) as the representation $\bar{\rho}: G \to \operatorname{GL}_d(V)$, then a framed deformation (V_A, ι_A, β_A) is a representation $\rho_A: G \to \operatorname{GL}_d(A)$ lifting $\bar{\rho}$, namely $G \stackrel{\rho_A}{\to} \operatorname{GL}_d(A) \to \operatorname{GL}_d(\mathbb{F})$ is exactly $\bar{\rho}$, and two framed deformations are isomorphic if the are the same representation $G \to \operatorname{GL}_d(A)$. Forgetting the basis, we see that two deformations are isomorphic if they are, as representations, conjugate by some element in $\ker(\operatorname{GL}_d(A) \to \operatorname{GL}_d(\mathbb{F}))$

2.3 Representability

A profinite group G satisfies the Mazur's finiteness condition Φ_p , if for every open subgroup $G' \subset G$, the \mathbb{F}_p -vector space $\mathrm{Hom}_{\mathrm{gp}}(G',\mathbb{F}_p)$ of continuous group homomorphisms is finite.

Theorem 4 (Mazur). Assume that G satisfies condition Φ_p .

- (a) D_V^{\square} is representable by an $R_V^{\square} \in \widehat{\mathfrak{Ar}_{\mathcal{O}}}$.
- (b) If Schur's lemma $\operatorname{End}_{\mathbb{F}[G]}(V) = \mathbb{F}$ is true, then D_V is representable by an $R_V \in \widehat{\mathfrak{Ar}}_{\mathcal{O}}$.

2.3.1 Construction of R_V^{\square}

We are looking for a universal representation $\rho^{\square}: G \to \operatorname{GL}_d(R_V^{\square})$ in the sense that for any lift $\rho_A: G \to \operatorname{GL}_d(A)$ of $\bar{\rho}$ with $A \in \widehat{\mathfrak{Ar}_{\mathcal{O}}}$, there is a morphism $R_V^{\square} \to A$ s.t. $G \xrightarrow{\rho^{\square}} \operatorname{GL}_d(R_V^{\square}) \to \operatorname{GL}_d(A)$ equals ρ_A . Suppose first that G is finite with presentation

$$G = \langle g_1, \dots, g_s \mid r_1(g_1, \dots, g_s) = \dots = r_t(g_1, \dots, g_s) \rangle$$
.

Let

$$\mathcal{R} := \mathcal{O}\left[\left\{X_{ij}^k\right\}_{1 \leq i, j \leq d}^{1 \leq k \leq s}\right] \middle/ \mathcal{I},$$

where \mathcal{I} is the ideal generated by all *entries* of the matrices

$$r_l(X^1, \dots, X^k) - id, \quad X^k = (X_{ij}^k)_{i,j}, \ 1 \le k \le s, \ 1 \le l \le t.$$

Consider the kernel \mathcal{J} of the homomorphism

$$\mathcal{R} \to \mathbb{F}$$
 $X_{ij}^k \mapsto \text{the } (i,j)\text{-entry of } \bar{\rho}(g_k)$

and define $R_V^{\square} := \varprojlim_n \mathcal{R}/\mathcal{J}^n$ to be the \mathcal{J} -adic completion of \mathcal{R} . Define $\rho^{\square} : G \to \mathrm{GL}_d(R_V^{\square})$ by $\rho^{\square}(g_k) := X^k$.

- R_V^{\square} is complete, and it is local (with residue field \mathbb{F}) because \mathcal{J} is a maximal ideal.
- ρ^{\square} is well-defined, because

$$GL_{d}(R_{V}^{\square}) \xrightarrow{\det} R_{V}^{\square}$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \xrightarrow{\bar{\rho}} GL_{d}(\mathbb{F}) \xrightarrow{\det} \mathbb{F}$$

commutes, and R_V^{\square} is local.

• One checks that R_V^{\square} represents D_V^{\square} and ρ^{\square} is the **universal framed deformation** of $\bar{\rho}$ (if R_V^{\square} is Noetherian).

In the general case of G being profinite, we write $G = \varprojlim_i G/H_i$ with $H_i \subset \ker \bar{\rho}$ open and normal in G and consider the universal lifts (R_i, ρ_i) of the representations $G/H_i \to \mathbb{F}$ from $\bar{\rho}$. For $G/H_i \to G/H_j$, the universality of ρ_i provides the dotted arrow in the commutative diagram

$$G/H_i \xrightarrow{\rho_i} \operatorname{GL}_d(R_i)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G/H_j \xrightarrow{\rho_j} \operatorname{GL}_d(R_j)$$

Therefore we obtain $(R_V^{\square}, \rho^{\square}) := \underline{\lim}_i (R_i, \rho_i)$.

Note that this contruction requires not the condition Φ_p , which is needed to make R_V^{\square} Noetherian.

2.3.2 The tangent space

Let $\mathbb{F}[\varepsilon] := \mathbb{F}[X]/(X^2)$, which is called the ring of **dual numbers**. For a functor $D: \widehat{\mathfrak{Ar}_{\mathcal{O}}} \to \mathbf{Set}$ sending the terminal object $\mathbb{F}[\varepsilon]$ to the terminal object $D(\mathbb{F}) = \{\bullet\}$, we call the set $t_D := D(\mathbb{F}[\varepsilon])$ the **Zariski tangent space** of D. If there is a fixed bijection $D(\mathbb{F}[\varepsilon] \oplus \mathbb{F}[\varepsilon]) \simeq D(\mathbb{F}[\varepsilon]) \times D(\mathbb{F}[\varepsilon])$, we equip t_D with the \mathbb{F} -linear structure give by this bijection.

• Assume that $D: \widehat{\mathfrak{Ar}_{\mathcal{O}}} \to \mathbf{Set}$ is representable by $R \in \widehat{\mathfrak{Ar}_{\mathcal{O}}}$. Then the tangent space

$$t_D \simeq \operatorname{Hom}_{\mathcal{O}}(R, \mathbb{F}[\varepsilon]) \simeq \operatorname{Hom}_{\mathbb{F}}(\mathfrak{m}_R/(\mathfrak{m}_R^2 + \mathfrak{m}_{\mathcal{O}}), \mathbb{F}[\varepsilon]) = t_R$$

is the Zariski or relative tangent space of R over \mathcal{O} . (what is the last isomorphism (if there is one...)?)

Define ad $V := \operatorname{End}_{\mathbb{F}}(V) \simeq V^{\vee} \otimes_{\mathbb{F}} V$ with the standard G-module structure ad $\bar{\rho} = \bar{\rho}^{\vee} \otimes \bar{\rho}$.

Lemma 2.2. There are canonical isomorphisms⁸

$$D_V(\mathbb{F}[\varepsilon]) \simeq \operatorname{Ext}^1_{\mathbb{F}[G]}(V, V) \simeq H^1(G, \operatorname{ad} V).$$

Proof. (1) Given an extension

$$0 \longrightarrow V \stackrel{i}{\longrightarrow} W \stackrel{\pi}{\longrightarrow} V \longrightarrow 0$$

of $\mathbb{F}[G]$ -modules, we define the $\mathbb{F}[G]$ -linear action of ε on W by $\varepsilon|_W := i \circ \pi$, which endows W with an $\mathbb{F}[\varepsilon][G]$ -module structure and an isomorphism

$$W \otimes_{\mathbb{F}[\varepsilon]} \mathbb{F} = W/\varepsilon W = W/i(V) \stackrel{\pi}{\simeq} V.$$

Conversely, for a deformation (W, ι) of V to $\mathbb{F}[\varepsilon]$, we get an extension of V by itself

as $\mathbb{F}[G]$ -modules.⁹ The first isomophism is thereby established.

⁸In Ext¹, we consider *continuous* extension classes.

⁹The fact $W \simeq V \oplus V$ as $\mathbb{F}[G]$ -modules doesn't mean that the extension split.

(2) The second isomorphism is a general fact that we have extracted as Example 1.1.

We use the abbreviation $h^i(\cdots) := \dim_{\mathbb{F}} H^i(\cdots)$.

Lemma 2.3. If G satisfies condition Φ_p , then $D_V(\mathbb{F}[\varepsilon])$ is a finite dimensional \mathbb{F} -vector space, and

$$\dim_{\mathbb{F}} D_V^{\square}(\mathbb{F}[\varepsilon]) = \dim_{\mathbb{F}} D_V(\mathbb{F}[\varepsilon]) + d^2 - h^0(G, \operatorname{ad} V)$$

is also finite.

Proof. Let $G' := \ker(G \to \operatorname{GL}(V))$. Since G acts continuously, G' is an open normal subgroup of G. Consider the inflation-restriction exact sequence

$$0 \to H^1(G/G', \operatorname{ad} V) \to H^1(G, \operatorname{ad} V) \to H^1(G', \operatorname{ad} V)^{G/G'}$$
.

The left term is obviously finite. For the right term, G' acts trivially, so 10

$$H^1(G', \operatorname{ad} V) = \operatorname{Hom}_{\operatorname{gp}}(G', \operatorname{ad} V) \simeq \operatorname{Hom}_{\operatorname{gp}}(G', \mathbb{F}_p) \otimes_{\mathbb{F}_p} \operatorname{ad} V$$

is finite by condition Φ_p . Therefore $\dim_{\mathbb{F}} D_V(\mathbb{F}[\varepsilon]) = h^1(G, \operatorname{ad} V) < \infty$.

(Do the equation later.)

Lemma 2.4. Let A be a complete local \mathcal{O} -algebra with residue field \mathbb{F} . If $\{\alpha_i\}_{i\in I}\subset \mathfrak{m}_A$ generates the relative cotangent space $t_A^{\vee}=\mathfrak{m}_A/(\mathfrak{m}_A^2+\mathfrak{m}_{\mathcal{O}})$ of A over \mathcal{O} as an \mathcal{O} -module, then the homomorphism

$$\mathcal{O}[X_i \mid i \in I] \to A \quad X_i \mapsto \alpha_i$$

is surjective.

Proof. Cannot use Lemma 2.1 because Noetherianity of A is the goal!

Corollary 2.1. The ring R_V^{\square} is Noetherian if $H^1(G, \operatorname{ad} V)$ is \mathbb{F} -finite-dimensional.

Proof. Combine the lemmata above.

This completes the proof of Theorem 4 (a).

2.3.3 Quotient by group action and the representability of D_V

Result is
$$\operatorname{Spf} R_V = \operatorname{Spf} R_V^{\square} / \widehat{\operatorname{PGL}_d}$$
.

2.3.4 Presentation of the universal deformation ring R_V

3 Taylor-Wiles Patching

Keep the notations $\mathcal{O} = \mathcal{O}_L$ for L/\mathbb{Q}_p , and let $k = \mathcal{O}/\mathfrak{m}_{\mathcal{O}}$ and $\varpi \in \mathcal{O}$ be a uniformizer.

Fix a continuous absolutely irreducible modular representation $\rho: \operatorname{Gal}_{\mathbb{Q},\{p,\infty\}} \to \operatorname{GL}_2(k)$ with determinant $\bar{\varepsilon}^{-1}$.

$$\operatorname{Hom}_{\operatorname{gp}}(G,V) \simeq \operatorname{Hom}_{\operatorname{gp}}(G,k) \otimes_k V$$

for any group G and any finite dimensional vector space V over a field k.

¹⁰We have