Primer on probability and statistics

Notation :

- Lower case: e.g. x,y,w,z

 column vectors (row vectors e.g. w)

 functions, probalitity measones, tetc.
- Neper case : e.g X,Y,A,B { random vortables matrices some functions (e.g. cdf F)
- Caligraphics: { sets, operators, e.g. of, E}

Probability space:

Sample o-algebra measure
$$X: \mathcal{N} \to X$$
space set at all events random variable

Discrete randou variables:

A discrete r.v. X is an enont taking values in a finite or countably infinite discrete space X.

We will denote the probability of X = x as p(X = x) or p(x) (were formally: $p(\{w \in \mathcal{X} : X(w) = x\})$)

Ci) $0 \le p(x) \le 1$

Silo & p(x) & L. D. L. mass function of X.

Continuous rondou variables: (events that take continuous values?

Define the events: $A = (X \in A)$, $B = (X \in B)$, W = (a < B)

Observe,
$$B = AUW$$
, $AOW = \{0\}$
 $P(B) = P(A) + P(W) - P(AOW)$
 $= P(W) = P(B) - P(A)$

cummulative distribut Define a function $F(x) := P(X \le x)$ function of (cdf)

$$P(w) = P(\alpha < X \leq b) = F(b) - F(a)$$

$$F(a) = P(a < X \leq b) = F(b) - F(a)$$

$$F(a) = P(a < X \leq b) = F(b) - F(a)$$

$$F(a) = P(a) \leq F(a) = 0$$

$$F(a) = P(a) \leq P(a) = 0$$

$$F(a) = P(a) \leq P(a) = 0$$

$$F(a) = P(a) = 0$$

ii)
$$\lim_{x\to -\infty} f(x) = 0$$
 $\lim_{x\to +\infty} f(x) = 1$

F(b) $-\frac{1}{2}$ F(a) $-\frac{1}{2}$ F(b) $-\frac{1}{2}$ F(c) $-\frac{1}{2}$ F(c)

If the cdf is differentiable, define $p(x) = \frac{d}{dx} F(x)$

G probability density functor By definition: (pdf) of X

$$P(m) = P(\alpha < x \leq p) = \int_{a}^{b} P(x) dx$$

Properties of a pdf:

$$ii) \int_{-\infty}^{\infty} \rho(x) dx = 1$$

i.) $P(x) \neq 0$ ii) $\int_{-\infty}^{\infty} p(x) dx = 1$ that $p(x) \neq 1$ $\forall x, \alpha$:

long as long as:

iii) $\int_{-\infty}^{\infty} p(x) dx = 1$