Formula-Sheet

Basic Vectors

- > A scalar is a physical quantity with magnitude only
- > A vector is a physical quantity with magnitude and direction
- > A unit vector has magnitude one.
- > Magnitude of a vector : $|a| = \sqrt{a_1^2 + a_2^2 + a_3^2}$, if $\bar{a} = a_1 i + a_2 j + a_3 k$

> Scalar Product

If \overline{a} and \overline{b} are two vectors and θ is the angle between them then the scalar quantity $|\overline{a}||\overline{b}|\cos\theta$ is called the **scalar product** or the **dot product** of \overline{a} and \overline{b} is denoted by $\overline{a}\cdot\overline{b}$.

$$= \text{If } \bar{a} = a_1 i + a_2 j + a_3 k \text{ and } \bar{b} = b_1 i + b_2 j + b_3 k \text{ then } \bar{a} \cdot \bar{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

> Two vectors \bar{a} and \bar{b} ($\bar{a} \neq 0, \bar{b} \neq 0$) are **perpendicular** if $\bar{a} \cdot \bar{b} = 0$

> Vector Product

If \overline{a} and \overline{b} are two vectors and θ is the angle between them then the vector product of \overline{a} and \overline{b} is defined as a vector $ab\sin\theta n$ where n is a unit vector perpendicular to the plane of $\overline{a}, \overline{b}$. The vector product or cross product of \overline{a} and \overline{b} is denoted by $\overline{a} \times \overline{b}$.

> If
$$\bar{a} = a_1 i + a_2 j + a_3 k$$
 and $\bar{b} = b_1 i + b_2 j + b_3 k$ then
$$\bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

- > Area of parallelogram of sides \bar{a} and $\bar{b}=\left|\bar{a}\times\bar{b}\right|$.
- > Area of a triangle is $\Delta = \frac{1}{2} |\overline{a} \times \overline{b}|$.
- >Area of parallelogram when diagonals $\frac{1}{2}|d_1\times d_2|$, where d_1 and d_2 are the diagonals.