modela Densidad pdf

Explora variables

Selección via VIF

Variance inflation factors

	GVIF
TP_PEND	18.733129
FR_MATDE	5.332493
TP_SU_NO	77.011617
FR_QUERC	6.744059
FR_CONIF	4.709830
TP_RSH_V	6.306512
HIDRO_ITH	9.930089
elev	12.872846
TP_ES_OE	1.723477
DS_ARBOL	13.111944
TP_RSD_P	99.027235
p_anu_year	1.218943
p_ver_year	1.218924
t_anual_year	2.927638

Variance inflation factors

	GVIF
TP_PEND	18.202050
FR_MATDE	3.658258
TP_SU_NO	3.896966
FR_QUERC	4.185879
FR_CONIF	4.708816
TP_RSH_V	5.533327
HIDRO_ITH	9.712253
elev	11.912386
TP_ES_OE	1.721772
DS_ARBOL	11.220764
<pre>p_anu_year</pre>	1.215929
p_ver_year	1.211315
t_anual_year	2.915966

Variance inflation factors

	GVIF
FR_MATDE	2.254276
TP_SU_NO	1.459813
TP_RSH_V	1.711456
HIDRO_ITH	2.614135
elev	6.312014
TP_ES_OE	1.614165
DS_ARBOL	3.414437
<pre>p_anu_year</pre>	1.177967
p_ver_year	1.201177
t_anual_year	2.873489

Modelos

- Transformo algunas variables
- Hago selección de modelos usando BIC:

 $potential\ variables:\ den_sr \sim FR_MATDE+TP_SU_NO+TP_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+HIDRO_ITH+elev+TP_ES_OE+DS_ARBOL+p_RSH_V+D-RSH_U+RSH_U+RSH_U+RSH_U+RSH_U+RSH_U+RSH_U+RSH_U+RSH_U+RSH_U+RSH_$

TASK: Genetic algorithm in the candidate set.

Initialization...

Algorithm started...

Improvements in best and average IC have bebingo en below the specified goals.

Algorithm is declared to have converged.

Completed.

DHARMa residual diagnostics

xpected Model predictions (rank transformed)

DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated

Simulated values, red line = fitted model. p-value (two.sided) = 0.856

 $\ensuremath{\mathsf{DHARMa}}$ nonparametric dispersion test via sd of residuals fitted vs. simulated

data: simulationOutput

ratioObsSim = 0.98975, p-value = 0.856
alternative hypothesis: two.sided

Residual vs. predicted No significant problems detected

Test for location of quantiles via qgam

data: simulationOutput

p-value = 0.6578

alternative hypothesis: both

Trasnformar datos

DHARMa residual diagnostics

Interacción??

TASK: Genetic algorithm in the candidate set.

 ${\tt Initialization...}$

Algorithm started...

Improvements in best and average IC have bebingo en below the specified goals. Algorithm is declared to have converged. Completed.

Call:

```
glm(formula = s@formulas[[1]], family = fam, data = m)
```

Deviance Residuals:

Min 1Q Median 3Q Max -0.86513 -0.22400 -0.03751 0.16747 1.12929

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	8.06335	2.24831	3.586	0.000474	***
FR_MATDELog	-1.47842	0.35897	-4.119	6.77e-05	***
HIDRO_ITH	-0.85067	0.33024	-2.576	0.011125	*
DS_ARBOLLog	-0.86956	0.26626	-3.266	0.001398	**
FR_MATDELog:HIDRO_ITH	0.21208	0.04738	4.476	1.65e-05	***
FR_MATDELog:DS_ARBOLLog	0.06745	0.02120	3.181	0.001838	**
HIDRO_ITH:DS_ARBOLLog	0.09711	0.03962	2.451	0.015593	*

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.1241278)

Null deviance: 58.283 on 135 degrees of freedom Residual deviance: 16.012 on 129 degrees of freedom

AIC: 111.01

Number of Fisher Scoring iterations: 2

Conditions used in construction of plot

HIDRO_ITH: 6.775455 DS_ARBOLLog: 5.901787

Conditions used in construction of plot

FR_MATDELog: 2.30291 HIDRO_ITH: 6.775455

Conditions used in construction of plot

FR_MATDELog: 2.30291 DS_ARBOLLog: 5.901787

VAS por aqui

numeric(0)

DHARMa residual diagnostics

Seleccion de variables

```
old selection - FR_CONIF - Pp_ver - TP_RSD_P - TP_ES_OE - FR_PASTO - elevation - t_anual - HIDRO_ICT - TP_PEND - Pp_anu - FR_QUERC - FR_MATDE - FR_MATDI
```

Unir div_mean y den_mean y generar un dataframe para modelizar