Lecture 2

STEPS TO NETWORKING

- Understand networks objectives
- Explain steps to networking
- Explain common network issues and how to resolve them
- Describe network layering

- Communication between applications on different computers
- Must understand application needs/demands
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

Four Steps to Networking

- Communicating across a link
- Connecting together multiple links (internetworking)
- Finding and routing data to nodes on internetwork

Matching application requirements

A First Step

- Creating a link between nodes
- Link: path followed by bits
 - Wired or wireless
 - Broadcast or point-to-point (or both)
- Node: any device connected to a link

Types of Links

Packet Transmission Modes

- Unicast
 - Transmission to single specific receiver
- Broadcast
 - Transmission to all network nodes
- Multicast
 - Transmission to specific subset of nodes
- Anycast
 - Transmission to one of a specific subset of nodes

What are Switched Networks?

- Switch: moves bits between links
 - Packet switching
 - Circuit switching

Back in the Old Days...

Then Came TDM...

Synchronous time division multiplexing

TDM Logical Network View

Packet Switching (Internet)

Packet Switching

- Interleave packets from different sources
- Efficient: resources used on demand
 - Statistical multiplexing
- General
 - Multiple types of applications
- Accommodates bursty traffic
 - Addition of queues

Statistical Multiplexing Gain

- 1 Mbps link; users require 0.1 Mbps when transmitting; users active only 10% of the time
- Circuit switching: can support 10 users
- Packet switching: with 35 users, probability that >=10 are transmitting at the same time < 0.0017

Characteristics of Packet Switching

- Store and forward
 - Packets are self contained units
 - Can use alternate paths reordering
- Contention
 - Congestion
 - Delay

Second Step: Internet[work]

- A collection of interconnected networks
- Host: network endpoints (computer, PDA, light switch, ...)
- Router: node that connects networks
- Internet vs. internet

Challenge

- Many differences between networks
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
- How to translate between various network technologies

Third Step: How To Find Nodes Strathmore

Naming

- Humans use readable host names
 - E.g. www.strathmore.edu
 - Globally unique (can correspond to multiple hosts)
- Naming system translates to physical address
 - E.g. DNS translates name to IP Address (e.g. 128.2.11.43)
 - Address reflects location in network

Domain Name System

What's the IP address for www.cmu.edu?

It is 128.2.11.43

Computer 1 Local DNS Server

DNS server address manually configured into OS

Packet Routing/Delivery

- Each network technology has different local delivery methods
- Address resolution provides delivery information within network
 - E.g., ARP maps IP addresses to Ethernet addresses
 - Local, works only on a particular network
- Routing protocol provides path through an internetwork

Network: Address Resolution Protocol

Internetwork: Datagram Routing Strathmore

Routing

- Forwarding tables at each router populated by routing protocols.
- Original Internet: manually updated
- Routing protocols update tables based on "cost"
 - Exchange tables with neighbors or everyone
 - Use neighbor leading to shortest path

Fourth Step: Application Demands

- Reliability
 - -Corruption
 - –Lost packets
- Flow and congestion control
- Fragmentation
- In-order delivery
- Etc...

What if the Data gets Corrupted?

What if Network is Overloaded? Strathmore UNIVERSITY

Solution: Buffering and Congestion Control

- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources
- Called "congestion control"

What if the Data gets Lost?

What if the Data Doesn't Fit?

Problem: Packet size

- On Ethernet, max IP packet is 1.5kbytes
- Typical web page is 10kbytes

What if the Data is Out of Order?

Network Functionality Summary

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....

What is Layering?

- Modular approach to network functionality
- Example:

Protocols

- Module in layered structure
- Set of rules governing communication between network elements (applications, hosts, routers)
- Protocols define:
 - Interface to higher layers (API)
 - Interface to peer
 - Format and order of messages
 - Actions taken on receipt of a message

Layering Characteristics

- Each layer relies on services from layer below and exports services to layer above
- Interface defines interaction
- Hides implementation layers can change without disturbing other layers (black box)

Layering

Layer Encapsulation

Protocol Demultiplexing

Multiple choices at each layer

E.g.: OSI Model: 7 Protocol

- Layers
- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

OSI Layers and Locations

Example: Transport Layer

- First end-to-end layer
- End-to-end state
- May provide reliability, flow and congestion control

Example: Network Layer

- Point-to-point communication
- Network and host addressing
- Routing

Is Layering Harmful?

- Sometimes...
 - Layer N may duplicate lower level functionality (e.g., error recovery)
 - Layers may need same info (timestamp, MTU)
 - Strict adherence to layering may hurt performance

Summary

- Network is set up for various purposes
- For a network to operate the way it does their exist other underlying technologies other than just hardware and software
- Networks operate using layering approach

