Projekt B, grupa II

Obliczenia do ćw. nr 13 - potencjometryczny pomiar stałej dysocjacji

1. Opis danych wejściowych

Wszystkie obliczenia wykonywane w ćwiczeniu, należy wykonać na podstawie danych zawartych w trzech plikach: Dane_a.txt, Dane_b.txt i Dane_c.txt

Plik Dane_a.txt zawiera następujące wielkości doświadczalne:

- stężenia początkowe słabego kwasu i słabej zasady, odpowiednio c_{0,k} i c_{0,z} [mol/dm³]
- stężenia kwasu solnego i zasady sodowej, odpowiednio c_{HCl} i c_{NaOH} [mol/dm³]
- aktywności słabego kwasu i słabej zasady, odpowiednio f_k i f_z
- aktywności kwasu solnego i zasady sodowej, odpowiednio f_{HCl} i f_{NaOH}
- objętości słabego kwasu i zasady wzięte do doświadczenia, odpowiednio V_k i V_z [cm³]
- temperature pomiaru T [K]

Plik Dane_b.txt zawiera następujące wielkości pomiarowe, uzyskane przy miareczkowaniu słabego kwasu zasadą sodową (kolejne linijki przedstawiają wartości przy kolejnych pomiarach):

- objętość użytego NaOH (V_{NaOH} [cm3])
- pH

Plik Dane_c.txt zawiera następujące wielkości pomiarowe, uzyskane przy miareczkowaniu słabej zasady kwasem solnym (kolejne linijki przedstawiają wartości przy kolejnych pomiarach):

- objętość użytego HCl (V_{HCl} [cm3])
- pH

2. Opis zadania

Celem projektu jest napisanie skryptu, który odczyta dane zawarte w plikach Dane_a.txt, Dane_b.txt i Dane_c.txt, i na ich podstawie obliczy stałe dysocjacji słabego kwasu i słabej zasady, metodą wykreślną i metodą numeryczną, zgodnie z treścią odpowiedniego ćwiczenia laboratoryjnego, jak opisano poniżej.

a) Na podstawie pliku Dane_b.txt (oraz wybranych wartości liczbowych odczytanych z Dane_a.txt), dla każdego z punktów pomiarowych (opisanych w kolejnych linijkach pliku), należy obliczyć następujące wartości:

- stężenie kwasu c_k i sprzężonej z nim zasady c_z [mol/dm³] na podstawie wzorów:

$$c_z = (V_{NaOH} \cdot c_{NaOH})/(V_k + V_{NaOH}) + 10^{-pH} \qquad (dla \ pH \le 3.5)$$

$$c_z = (V_{\text{NaOH}} \cdot c_{\text{NaOH}})/(V_k + V_{\text{NaOH}})$$
 (dla pH >3,5)

$$c_k = (V_k \cdot c_{0,k} \cdot f_k) / (V_k + V_{NaOH})$$
 - c_z

- współczynnik p = $log_{10}(c_z/c_k)$
- współczynnik $q = \frac{0.509\sqrt{c_z}}{1+\sqrt{c_z}}$
- wartość p-q
- numeryczną stałą dysocjacji pK_k na podstawie wzoru:

$$pK_k = pH - (p-q)$$

Na podstawie stałych pK_k obliczanych dla poszczególnych pomiarów, należy wyznaczyć średnią numeryczną stałą dysocjacji $(pK_{k, av})$ oraz jej niepewność pomiaru, wyrażoną przez odchylenie standardowe.

- b) Na podstawie pliku Dane_c.txt (oraz wybranych wartości liczbowych odczytanych z Dane_a.txt), dla każdego z punktów pomiarowych (opisanych w kolejnych linijkach pliku), należy obliczyć następujące wartości:
- stężenie kwasu c_k i sprzężonej z nim zasady c_z [mol/dm 3] na podstawie wzorów:

$$c_k = (V_{HCl} \cdot c_{HCl})/(|V_z + V_{HCl}) + 10^{-(14-pH)}$$
 (dla pH $\geq 10,5$)

$$c_k = (V_{HCl} \cdot c_{HCl})/(V_z + V_{HCl})$$
 (dla pH <10,5)

$$c_z = (f_z \cdot V_z \cdot c_{0.z})/(V_z + V_{HCl}) - c_k$$

- współczynnik p = $log_{10}(c_z/c_k)$
- współczynnik $q = \frac{0,509\sqrt{c_k}}{1+\sqrt{c_k}}$
- wartość p+q
- numeryczną stałą dysocjacji p K_k na podstawie wzoru:

$$pK_k = pH - (p+q)$$

Na podstawie stałych pK_k obliczanych dla poszczególnych pomiarów, należy wyznaczyć średnią numeryczną stałą dysocjacji ($pK_{k, av}$) oraz jej niepewność pomiaru, wyrażoną przez odchylenie standardowe.

c) Skrypt powinien utworzyć pliki tekstowe Wyniki_1.txt i Wyniki_2.txt.

W pliku Wyniki_1.txt powinny znaleźć się dwie kolumny liczb, w pierwszej kolumnie powinna znaleźć się wartość p-q obliczona w podpunkcie a), w drugiej wartość pH z pliku Dane_b.txt, dla odpowiedniego pomiaru.

W pliku Wyniki_2.txt powinny znaleźć się dwie kolumny liczb, w pierwszej kolumnie powinna znaleźć się wartość p+q obliczona w podpunkcie b), w drugiej wartość pH z pliku Dane_c.txt, dla odpowiedniego pomiaru.

d) Na podstawie zestawów danych zawartych w plikach Wyniki_1.txt i Wyniki_2,txt, skrypt powinien przeprowadzić dwie regresje liniowe za pomocą metody najmniejszych kwadratów (patrz niżej), w celu wyznaczenia wartości p K_k metodą wykreślną. Funkcja opisana taką regresją ma postać:

 $pH = (p-q) + pK_k$ (dla pliku Wyniki_1.txt) lub $pH = (p+q) + pK_k$ (dla pliku Wyniki_2.txt), gdzie wartość pK_k odpowiada współczynnikowi b z równania y=ax + b, wyznaczonemu dzięki regresji. Skrypt powinien również wyznaczyć niepewność pomiaru stałej pK_k , odpowiadająca niepewności wyznaczenia współczynnika b (Δb , patrz niżej).

Na zakończenie pracy, skrypt powinien wyświetlić na ekranie następujące wartości:

Dla słabego kwasu (dane z pliku Dane_b.txt):

pK_{k, av} (wyznaczone numerycznie, wraz z niepewnością pomiaru)

pK_k (wyznaczone wykreślnie, wraz z niepewnością pomiaru)

Dla słabej zasady (dane z pliku Dane c.txt):

pK_{k. av} (wyznaczone numerycznie, wraz z niepewnością pomiaru)

pK_k (wyznaczone wykreślnie, wraz z niepewnością pomiaru)

Instrukcja przeprowadzania regresji liniowej metodą najmniejszych kwadratów

Dla dowolnego zestawu n punktów doświadczalnych $\{(x_1, y_1), (x_2, y_2),, (x_n, y_n)\}$ można przeprowadzić regresję liniową w celu wyznaczenia współczynników a i b w funkcji opisanej jako y = ax + b.

W celu wyznaczenia obydwu współczynników, należy najpierw znaleźć wyniki następujących sum, dla współrzędnych poszczególnych punktów:

- $\Sigma(x_i)$
- $\Sigma (x_i^2)$
- $\Sigma(y_i)$
- $\Sigma (y_i^2)$
- $\Sigma (x_i y_i)$

Następnie, wyznaczamy wartości poszczególnych współczynników wg wzorów:

$$\Delta = n \sum x^2 - (\sum x)^2$$

$$a = \frac{n \sum xy - \sum x \sum y}{\Delta}$$

$$b = \frac{\sum x^2 \sum y - \sum x \sum xy}{\Delta}$$

$$r = \frac{n \sum xy - \sum x \sum y}{\sqrt{(n \sum x^2 - (\sum x)^2)(n \sum y^2 - (\sum y)^2)}}$$

(r odpowiada tu współczynnikowi R², przed podniesieniem do drugiej potęgi)

W celu wyznaczenia niepewności pomiaru współczynników a i b, należy zastosować wzory:

$$\Delta a = \sqrt{\frac{n}{n-2} \frac{\sum y^2 - a \sum xy - b \sum y}{\Delta}}$$

$$\Delta b = \sqrt{\Delta a \frac{\sum x^2}{n}}$$