Network Science

2019. szeptember 16.

Basic network characteristics

Distance and paths

The small world property

Compone

We assume:

- N is large,
- the average number of connections per node, $\langle k \rangle$, is small (the graph is sparse).

Randomly chosen "source" node:

number of first neighbors?

Basic network characteristics

Distance and paths
The small world

Compone

We assume:

- N is large,
- the average number of connections per node, $\langle k \rangle$, is small (the graph is sparse).

Randomly chosen "source" node:

number of first neighbors?

Basic network characteristics

Distance and paths
The small world

Compone

We assume:

- N is large,
- the average number of connections per node, $\langle k \rangle$, is small (the graph is sparse).

Randomly chosen "source" node:

• number of first neighbors $\simeq \langle k \rangle$

Basic network characteristics

Distance and paths
The small world property

Compone

We assume:

- N is large,
- the average number of connections per node, \(\lambda \rangle \), is small (the graph is sparse).

- number of first neighbors ≃ ⟨k⟩
- · number of second neighbors?

Basic network characteristics

Distance and paths
The small world

Componer

We assume:

- N is large,
- the average number of connections per node, \(\lambda \rangle \), is small (the graph is sparse).

- number of first neighbors ≃ ⟨k⟩
- number of second neighbors $\simeq \langle k \rangle^2$

Basic network characteristics

Distance and paths
The small world property

Componer

We assume:

- N is large,
- the average number of connections per node, \(\lambda \rangle \), is small (the graph is sparse).

- number of first neighbors ≃ ⟨k⟩
- number of second neighbors $\simeq \langle k \rangle^2$
- number of third neighbors?

Basic network characteristics

Distance and paths

The small world property

Componer

We assume:

- N is large,
- the average number of connections per node, $\langle k \rangle$, is small (the graph is sparse).

- number of first neighbors ≃ ⟨k⟩
- number of second neighbors $\simeq \langle k \rangle^2$
- number of third neighbors $\simeq \langle k \rangle^3$

Basic network characteristics

Distance and paths
The small world property

Compone

We assume:

- N is large,
- the average number of connections per node, $\langle k \rangle$, is small (the graph is sparse).

- number of first neighbors ≃ ⟨k⟩
- number of second neighbors $\simeq \langle k \rangle^2$
- number of third neighbors $\simeq \langle k \rangle^3$
- · etc.

Basic network characteristics

Distance and paths
The small world property
Centralities

Componer

We assume:

- N is large,
- the average number of connections per node, $\langle k \rangle$, is small (the graph is sparse).

- number of first neighbors ≃ ⟨k⟩
- number of second neighbors $\simeq \langle k \rangle^2$
- number of third neighbors $\simeq \langle k \rangle^3$
- · etc.
- $\langle k \rangle^{\langle \ell \rangle} = ?$

Basic network characteristics

Distance and paths
The small world property
Centralities

Componer

We assume:

- N is large,
- the average number of connections per node, \(\lambda \rangle \), is small (the graph is sparse).

- number of first neighbors $\simeq \langle k \rangle$
- number of second neighbors $\simeq \langle k \rangle^2$
- number of third neighbors $\simeq \langle k \rangle^3$
- · etc.
- $\langle k \rangle^{\langle \ell \rangle} \simeq N$

Basic network characteristics

Distance and paths
The small world property
Centralities

Compone

We assume:

- N is large,
- the average number of connections per node, \(\lambda \rangle \), is small (the graph is sparse).

Randomly chosen "source" node:

- number of first neighbors $\simeq \langle k \rangle$
- number of second neighbors $\simeq \langle k \rangle^2$
- number of third neighbors $\simeq \langle k \rangle^3$
- · etc.
- $\langle k \rangle^{\langle \ell \rangle} \simeq N$
- · Thus,

$$\langle \ell \rangle \simeq \frac{\ln N}{\ln \langle k \rangle}$$

<u>_</u>

Basic network characteristics

Distance and

The small world property
Centralities

Component

The small world property

• A network has the small world property if $(\ell) \sim \ln N$ (at most).

7

Basic network characteristics

Distance and paths
The small world property

Component

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225,226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

- · Almost all random graph models have it as well
- Example for non small world networks?

Basic network characteristics

Distance and baths The small world property

Componen

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225,226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

- · Almost all random graph models have it as well.
- Example for non small world networks?

Basic network characteristics

Distance and paths
The small world property

Component

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225,226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

- · Almost all random graph models have it as well.
- · Example for non small world networks?

Basic network characteristics

Distance and paths
The small world property

Componen

Network	Size	$\langle k \rangle$	l	ℓ_{rand}	C	C_{rand}	Reference	Nr.
WWW, site level, undir.	153, 127	35.21	3.1	3.35	0.1078	0.00023	Adamic 1999	1
Internet, domain level	3015 - 6209	3.52 - 4.11	3.7 - 3.76	6.36 - 6.18	0.18 - 0.3	0.001	Yook et al. 2001a,	
							Pastor-Satorras et al. 2001	2
Movie actors	225,226	61	3.65	2.99	0.79	0.00027	Watts, Strogatz 1998	3
LANL coauthorship	52,909	9.7	5.9	4.79	0.43	1.8×10^{-4}	Newman 2001a,b	4
MEDLINE coauthorship	1,520,251	18.1	4.6	4.91	0.066	1.1×10^{-5}	Newman 2001a,b	5
SPIRES coauthorship	56,627	173	4.0	2.12	0.726	0.003	Newman 2001a,b,c	6
NCSTRL coauthorship	11,994	3.59	9.7	7.34	0.496	3×10^{-4}	Newman 2001a,b	7
Math coauthorship	70,975	3.9	9.5	8.2	0.59	5.4×10^{-5}	Barabási et al. 2001	8
Neurosci. coauthorship	209,293	11.5	6	5.01	0.76	5.5×10^{-5}	Barabási et al. 2001	9
E. coli, substrate graph	282	7.35	2.9	3.04	0.32	0.026	Wagner, Fell 2000	10
E. coli, reaction graph	315	28.3	2.62	1.98	0.59	0.09	Wagner, Fell 2000	11
Ythan estuary food web	134	8.7	2.43	2.26	0.22	0.06	Montoya, Solé 2000	12
Silwood park food web	154	4.75	3.40	3.23	0.15	0.03	Montoya, Solé 2000	13
Words, cooccurence	460.902	70.13	2.67	3.03	0.437	0.0001	Cancho, Solé 2001	14
Words, synonyms	22,311	13.48	4.5	3.84	0.7	0.0006	Yook et al. 2001	15
Power grid	4,941	2.67	18.7	12.4	0.08	0.005	Watts, Strogatz 1998	16
C. Elegans	282	14	2.65	2.25	0.28	0.05	Watts, Strogatz 1998	17

- · Almost all random graph models have it as well.
- Example for non small world networks: regular lattices.

Basic network characteristics

Distance and

The small world property
Centralities

Componen

What are the consequences of $\langle \ell \rangle \sim \ln N$?

→ If we consider the "concentric shells" of 1st, 2nd, 3^d, etc neighborhoods:

Basic network characteristics

. .

The small world property

Componen

What are the consequences of $\langle \ell \rangle \sim \ln N$?

 \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:

Basic network characteristics

Distance and paths

The small world property Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

Basic network characteristics

Distance and paths

The small world property Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

Basic network characteristics

Distance and paths

The small world property Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

Basic network characteristics

Distance and paths

The small world property Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

Basic network characteristics

Distance and paths

The small world property Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

Basic network characteristics

Distance and paths

The small world property Centralities

Compone

What are the consequences of $\langle \ell \rangle \sim \ln N$?

- \rightarrow If we consider the "concentric shells" of $1^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

- number of nodes (buildings, blocks, etc.) grows roughly as $n \sim \ell^d$, (e.g., as $n \sim \ell^2$ in a city)

Basic network characteristics

Distance and paths
The small world

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

- number of nodes (buildings, blocks, etc.) grows roughly as $n \sim \ell^d$, (e.g., as $n \sim \ell^2$ in a city)
- to cover the whole system, we need roughly $\ell \sim N^{1/d}$!

Basic network characteristics

Distance and paths
The small world

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a regular lattice, e.g., a city:

- number of nodes (buildings, blocks, etc.) grows roughly as $n \sim \ell^d$, (e.g., as $n \sim \ell^2$ in a city)
- to cover the whole system, we need roughly $\ell \sim N^{1/d}$!
- (e.g., in a city with 100.000 buildings, $\ell \simeq 300$!)

Basic network characteristics

Distance and paths

The small world property
Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a random network, e.g., social network:

Basic network characteristics

Distance and paths

The small world property
Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a random network, e.g., social network:

Basic network characteristics

Distance and paths

The small world property
Centralities

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a random network, e.g., social network:

Basic network characteristics

Distance and paths
The small world

property
Centralities

Compon

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a random network, e.g., social network:

Basic network characteristics

Distance and paths
The small world

Compone

- \rightarrow If we consider the "concentric shells" of 1 $^{st},\,2^{nd},\,3^d,\,etc.$ neighborhoods:
 - in a random network, e.g., social network:

Basic network characteristics

Distance and paths
The small world

Compone

What are the consequences of $\langle \ell \rangle \sim \ln N$?

- \rightarrow If we consider the "concentric shells" of 1st, 2nd, 3^d, etc. neighborhoods:
 - in a random network, e.g., social network:

- number of nodes grows **exponentially** as $n \sim \langle k \rangle^{\ell}$!

Basic network characteristics

Distance and paths
The small world

Compone

- \rightarrow If we consider the "concentric shells" of 1st, 2nd, 3^d, etc. neighborhoods:
 - in a random network, e.g., social network:

- number of nodes grows **exponentially** as $n \sim \langle k \rangle^{\ell}$!
- to cover the whole system, only a couple of neighborhoods are needed,

Basic network characteristics

Distance and paths
The small world property

Compon

- \rightarrow If we consider the "concentric shells" of 1st, 2nd, 3^d, etc. neighborhoods:
 - in a random network, e.g., social network:

- number of nodes grows **exponentially** as $n \sim \langle k \rangle^{\ell}$!
- to cover the whole system, only a couple of neighborhoods are needed.
- (e.g., in a network with N=100.000 and $\langle k \rangle = 5$ we need only $\ell \simeq 7!)$

Node centralities

Basic network characteristics

Distance and paths

The small we property

Centralities

Componen

Ā

Node centralities

Basic network characteristics

Distance and baths The small worl property

Centralities
Componen

One of the widely used centrality measures is called "closeness".
 How would you define it?

Node centralities

Basic network characteristics

Distance and paths
The small world property
Centralities

Component

Closeness

• The closeness or closeness centrality of node \emph{i} is usually defined as

$$C_c(i) \equiv \frac{1}{\langle \ell_i \rangle},$$

where the nodes unreachable from i are left out of the average.

- With this definition a node "closer" to the rest of the network obtains a higher C_c value.
- Nodes "closer" to the rest of the network are intuitively central.

7

Basic network characteristics

Distance and baths The small worl property

Centralities Componer

> Another important centrality measure is called "betweenness". How would you define it?

Basic network characteristics

Distance and baths
The small world property
Centralities

Componer

- The betweenness of a node or link is equal to the number of shortest paths (between all possible pairs of nodes) passing through the given node or link.
- If multiple shortest paths are possible between a given pair of nodes, they are given equal weights adding up to one:

$$b_i \equiv \sum_{s \neq i, v \neq i} \frac{\sigma_{sv}(i)}{\sigma_{sv}}.$$

Basic network characteristics

Distance and baths
The small world property
Centralities

Componer

- The betweenness of a node or link is equal to the number of shortest paths (between all possible pairs of nodes) passing through the given node or link.
- If multiple shortest paths are possible between a given pair of nodes, they are given equal weights adding up to one:

$$b_i \equiv \sum_{s \neq i, v \neq i} \frac{\sigma_{sv}(i)}{\sigma_{sv}}.$$

Basic network characteristics

Distance and baths
The small world property
Centralities

Componer

- The betweenness of a node or link is equal to the number of shortest paths (between all possible pairs of nodes) passing through the given node or link.
- If multiple shortest paths are possible between a given pair of nodes, they are given equal weights adding up to one:

$$b_i \equiv \sum_{s \neq i, v \neq i} \frac{\sigma_{sv}(i)}{\sigma_{sv}}.$$

Basic network characteristics

Distance and baths
The small world property
Centralities

Componer

- The betweenness of a node or link is equal to the number of shortest paths (between all possible pairs of nodes) passing through the given node or link.
- If multiple shortest paths are possible between a given pair of nodes, they are given equal weights adding up to one:

$$b_i \equiv \sum_{s \neq i, v \neq i} \frac{\sigma_{sv}(i)}{\sigma_{sv}}.$$

Basic network characteristics

Distance and paths

property

Centralities

Componen

Basic network characteristics

Distance and paths
The small work property
Centralities

Compone

Eigenvector centrality:

The eigenvalue problem of the adjacency matrix:

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{2N} \\ \vdots & & \ddots & \vdots \\ A_{N1} & A_{N2} & \cdots & A_{NN} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}.$$

- The eigenvectors have the same number of components (elements) as the number of nodes in the system...
- \rightarrow We can take the **largest eigenvalue** λ_1 , and treat the components of the corresponding eigenvector \mathbf{v}_1 as the value of a centrality measure, associated to the corresponding node in the network.

Basic network characteristics

Distance and paths
The small work property
Centralities

Compone

Eigenvector centrality:

• The eigenvalue problem of the adjacency matrix:

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{2N} \\ \vdots & & \ddots & \vdots \\ A_{N1} & A_{N2} & \cdots & A_{NN} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}.$$

- The eigenvectors have the same number of components (elements) as the number of nodes in the system...
- \rightarrow We can take the **largest eigenvalue** λ_1 , and treat the components of the corresponding eigenvector \mathbf{v}_1 as the value of a centrality measure, associated to the corresponding node in the network.

Basic network characteristics

Distance and baths
The small work property
Centralities

Compone

Eigenvector centrality:

• The eigenvalue problem of the adjacency matrix:

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{2N} \\ \vdots & & \ddots & \vdots \\ A_{N1} & A_{N2} & \cdots & A_{NN} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_N \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}.$$

- The eigenvectors have the same number of components (elements) as the number of nodes in the system...
- ightarrow We can take the **largest eigenvalue** λ_1 , and treat the components of the corresponding eigenvector \mathbf{v}_1 as the value of a centrality measure, associated to the corresponding node in the network.

Basic network characteristics

Distance and paths
The small world

property Centralities

Componen

What is PageRank?

Basic network characteristics

Centralities

The basic concept of PageRank:

The importance of a node is affected by:

- the number of in-neighbors,
- the importance of the in-neighbors.

Basic network characteristics

Distance and paths
The small worl property
Centralities

Componer

How to calculate PageRank?

Basic network characteristics

Distance and paths
The small work property
Centralities

Componer

How to calculate PageRank?

Basic network characteristics

Distance and baths
The small work property
Centralities

Componer

How to calculate PageRank?

$$\frac{\mathbf{r}_i(t+1)}{\text{PageRank of }i} = \sum_{\substack{j \in M(i) \\ \text{neighs. of }i}} \frac{\mathbf{r}_j(t)}{k_j}.$$

Basic network characteristics

Distance and baths
The small work property
Centralities

Componer

How to calculate PageRank?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly:

$$\frac{r_i(t+1)}{\text{PageRank of }i} = \sum_{\substack{j \in M(i) \\ \text{neighs. of }i}} \frac{r_j(t)}{k_j}.$$

 $\rightarrow \sum_{i=1}^{N} r_i$ is conserved!

Compone

How to calculate PageRank?

$$\underbrace{r_i(t+1)}_{\text{PageRank of }i} = \underbrace{\sum_{j \in M(i)}}_{\text{neighs. of }i} \frac{r_j(t)}{k_j}.$$

- $\rightarrow \sum_{i=1}^{N} r_i$ is conserved!
- \rightarrow For simplicity we can assume $\sum_{i=1}^{N} r_i = 1$.

Compone

How to calculate PageRank?

$$\underbrace{r_i(t+1)}_{\text{PageRank of }i} = \underbrace{\sum_{j \in M(i)}}_{\text{neighs. of }i} \frac{r_j(t)}{k_j}.$$

- $\rightarrow \sum_{i=1}^{N} r_i$ is conserved!
- \rightarrow For simplicity we can assume $\sum_{i=1}^{N} r_i = 1$.
- Damping: with probability p_d we "click" at random instead of following the links:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{i \in M(i)} \frac{r_i(t)}{k_i}.$$

Basic network characteristics

Distance and baths
The small work property
Centralities

Compone

How to calculate PageRank?

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

Basic network characteristics

Distance and baths
The small work property
Centralities

Compone

How to calculate PageRank?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

Practical algorithm

- Initially distribute r_i evenly, i.e., $r_i = 1/N$.
- Iterate according to the rule above, and r_i will converge soon.

Basic network characteristics

Distance and baths
The small work property
Centralities

Compone

How to calculate PageRank?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

 \rightarrow What is the steady state distribution of r_i ?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

→ What is the steady state distribution of r_i ? Steady state means $r_i(t+1) = r_i(t) = r_i$.

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

→ What is the steady state distribution of r_i?
 Steady state means r_i(t+1) = r_i(t) = r_i.
 Let us rewrite the steady state equation in a matrix form:

$$\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix} = \frac{p_d}{N} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + ?$$

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$\frac{r_i(t+1)}{N} = \frac{p_d}{N} + \left(1-p_d\right) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

→ What is the steady state distribution of r_i?
 Steady state means r_i(t + 1) = r_i(t) = r_i.
 Let us rewrite the steady state equation in a matrix form:

$$\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix} = \frac{p_d}{N} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + (1 - p_d) \begin{pmatrix} \frac{A_{11}}{k_1} & \frac{A_{21}}{k_2} & \cdots & \frac{A_{N1}}{k_N} \\ \frac{A_{12}}{k_1} & \frac{A_{22}}{k_2} & \cdots & \frac{A_{NN}}{k_N} \\ \vdots & & \ddots & \vdots \\ \frac{A_{1N}}{k_1} & \frac{A_{2N}}{k_2} & \cdots & \frac{A_{NN}}{k_N} \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix}$$

Basic network characteristics

Distance and baths
The small world property
Centralities

Compone

How to calculate PageRank?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

→ What is the steady state distribution of r_i?
 Steady state means r_i(t+1) = r_i(t) = r_i.
 Let us rewrite the steady state equation in a matrix form:

$$\underbrace{\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix}}_{\mathbf{r}} = \underbrace{\frac{p_d}{N}}_{\mathbf{l}} \underbrace{\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}}_{\mathbf{l}} + (1 - p_d) \underbrace{\begin{pmatrix} \frac{A_{11}}{k_1} & \frac{A_{21}}{k_2} & \cdots & \frac{A_{N1}}{k_N} \\ \frac{A_{12}}{k_1} & \frac{A_{22}}{k_2} & \cdots & \frac{A_{NN}}{k_N} \\ \vdots & & \ddots & \vdots \\ \frac{A_{1N}}{k_1} & \frac{A_{2N}}{k_2} & \cdots & \frac{A_{NN}}{k_N} \end{pmatrix}}_{\mathbf{U} = [\mathbf{K}^{-1}\mathbf{A}]^T} \underbrace{\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix}}_{\mathbf{r}}$$

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

→ What is the steady state distribution of r_i?
 Steady state means r_i(t+1) = r_i(t) = r_i.
 Let us rewrite the steady state equation in a matrix form:

$$\underbrace{\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix}}_{\mathbf{r}} = \underbrace{\frac{p_d}{N}}_{\mathbf{l}} \underbrace{\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}}_{\mathbf{l}} + (1 - p_d) \underbrace{\begin{pmatrix} \frac{A_{11}}{k_1} & \frac{A_{21}}{k_2} & \dots & \frac{A_{N1}}{k_N} \\ \frac{A_{12}}{k_1} & \frac{A_{22}}{k_2} & \dots & \frac{A_{N2}}{k_N} \\ \vdots & & \ddots & \vdots \\ \frac{A_{1N}}{k_1} & \frac{A_{2N}}{k_2} & \dots & \frac{A_{NN}}{k_N} \end{pmatrix}}_{\mathbf{U} = [\mathbf{K}^{-1}\mathbf{A}]^T} \underbrace{\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_N \end{pmatrix}}_{\mathbf{r}}$$

The same eq. in vector notation:

$$\mathbf{r} = \frac{p_d}{N} \mathbf{1} + (1 - p_d) \mathbf{U} \cdot \mathbf{r}$$

Componer

How to calculate PageRank?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

 \rightarrow What is the steady state distribution of r_i ?

$$\mathbf{r} = \frac{p_d}{N} \mathbf{1} + (1 - p_d) \mathbf{U} \cdot \mathbf{r}$$

Compone

How to calculate PageRank?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

 \rightarrow What is the steady state distribution of r_i ?

$$\mathbf{r} = \frac{p_d}{N} \mathbf{1} + (1 - p_d) \mathbf{U} \cdot \mathbf{r}$$

$$\uparrow$$

Eigenvector centrality v_i is the *i*-th component of the leading eigenvector \mathbf{v} of \mathbf{A} , fulfilling

$$\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$$
.

Compone

How to calculate PageRank?

 Let us assume an iterative process, where everybody is distributing its current PageRank r among its neighbors evenly, with damping:

$$r_i(t+1) = \frac{p_d}{N} + (1-p_d) \sum_{j \in M(i)} \frac{r_j(t)}{k_j}.$$

$$\mathbf{r} = \frac{p_d}{N} \mathbf{1} + (1 - p_d) \mathbf{U} \cdot \mathbf{r}$$

$$\uparrow$$

Eigenvector centrality v_i is the *i*-th component of the leading eigenvector \mathbf{v} of \mathbf{A} , fulfilling

$$\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$$
.

→ Thus, PageRank is a variation of eigenvector centrality!

Basic network characteristics

Distance and paths

The small worl property Centralities

Components

COMPONENTS

Components Undirected case

Basic network characteristics

Components

Component

A component in an undirected network corresponds to a maximal set of nodes in which a path exists between any pair of nodes.

Giant component

Basic network characteristics

Distance and paths
The small wor property
Centralities

Components

- Most networks we encounter contain a giant component.
- → What is a "giant component"?

Giant component

Basic network characteristics

paths
The small world
property

Controlition

Components

Giant component

A network (graph) with system size $N \to \infty$ contains a giant component if the relative size of this component remains finite, (larger than zero):

$$\lim_{N\to\infty}\frac{S_1}{N}>0$$

7

Components Directed networks

Basic network characteristics

ustance and aths The small worl property Centralities

Components

How to generalize the concept of components for the directed case?

Components Directed networks

Basic network characteristics

Distance and paths
The small world property
Centralities

Components

Strongly connected component

A strongly connected component is a maximal set of nodes in which a directed path exists between any pair of nodes.

Weakly connected component

A weakly connected component is a maximal set of nodes in which an undirected path exists between any pair of nodes.

Components of the Internet

Basic network characteristics

istance and aths The small work property Centralities

Components

How does the structure of a large directed network like the Internet looks like on the large scale from the point of view of components?

Components of the Internet

Basic network characteristics

Distance and paths
The small work property
Centralities

Components

Advanced network characteristics

distribution

Calculating p(k)

p(k) in the E-R

model

Advanced network characteristics

Advanced network characteristics

Degree distribution Calculating p(k)

DEGREE DISTRIBUTION

Advanced network characteristics

Degree distribution

Calculating p(k)

Advanced network characteristics

Degree distribution Calculating p(k)

Degree distribution

probability distribution of the node degrees.

Advanced network characteristics

Degree distribution

> p(k) in the E-I model

Degree distribution \longrightarrow probability distribution of the node degrees.

Degree distribution

• The degree distribution of a network, p(k) is equal to the probability that a randomly chosen node has a degree k.

7

Advanced network characteristics

Finite networks

Advanced network characteristics

Degree
distribution
Calculating p(k)
p(k) in the E-R

Degree distribution

• For a finite network with N nodes,

$$p(k) = \frac{N_k}{N},$$

where N_k denotes the number of nodes with degree k.

• Thus, p(k) is simply the fraction of nodes with degree k.

Ā

Calculating p(k)

Advanced network characteristics

Degree distribution Calculating p(k)p(k) in the E-R model

- The calculation of the degree distribution is very similar to the construction of a histogram.
- We count for each degree value k how many nodes have that degree,
- and we divide it by the total number of nodes.

Calculating p(k)

Advanced network characteristics

Degree distribution Calculating p(k) p(k) in the E-R model

- The calculation of the degree distribution is very similar to the construction of a histogram.
- We count for each degree value k how many nodes have that degree,
- and we divide it by the total number of nodes.

Advanced network characteristics

Degree distribution P(k) in the E-R

 What is the degree distribution of an Erdős-Rényi graph where N nodes are linked independently with probability p?

Advanced network characteristics

Degree distribution Calculating p(k) in the E-R

- What is the degree distribution of an Erdős-Rényi graph where N nodes are linked independently with probability p?
 - The number of edges between *i* and *j*:

$$\mathcal{P}(e_{ij} = 1) = p$$

 $\mathcal{P}(e_{ij} = 0) = 1 - p$

(This is the Bernoulli distribution.)

Advanced network characteristics

Degree
distribution
Calculating p(k)
p(k) in the E-R

- What is the degree distribution of an Erdős-Rényi graph where N nodes are linked independently with probability p?
 - The number of edges between i and j:

$$\mathcal{P}(e_{ij} = 1) = p$$

 $\mathcal{P}(e_{ij} = 0) = 1 - p$

(This is the Bernoulli distribution.)

- A given node can choose from N-1 possible neighbors, which are attached independently,
- $\rightarrow p(k)$ follows a binomial distribution:

$$p(k) = {N-1 \choose k} p^k (1-p)^{N-1-k}.$$

Advanced network characteristics

Degree
distribution
Calculating p(k)
p(k) in the E-R

• We usually neglect the -1:

$$p(k) = \binom{N}{k} p^k (1-p)^{N-k},$$

 and approximate in the large N limit the binomial distribution by the Poisson distribution:

$$p(k) = {N \choose k} p^k (1-p)^{N-k}$$

$$\downarrow$$

$$p(k) \simeq \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}, \qquad \langle k \rangle = N_{\underline{P}}$$

Advanced network characteristics

Degree distribution Calculating p(k) p(k) in the E-R

• We usually neglect the -1:

$$p(k) = \binom{N}{k} p^k (1-p)^{N-k},$$

 and approximate in the large N limit the binomial distribution by the Poisson distribution:

$$p(k) = {N \choose k} p^k (1-p)^{N-k}$$

$$\downarrow$$

$$p(k) \simeq \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}, \qquad \langle k \rangle = Np$$

Advanced network characteristics

Degree
distribution
Calculating p(k)
p(k) in the E-R

From binomial to Poisson distribution

$$p(k) = \frac{N(N-1)\cdots(N-k+1)}{k!} \frac{\langle k \rangle^k}{N^k} \left(1 - \frac{\langle k \rangle}{N}\right)^N \left(1 - \frac{\langle k \rangle}{N}\right)^{-k}$$
$$= \frac{\langle k \rangle^k}{k!} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^N}_{\simeq e^{-\langle k \rangle}} \underbrace{\frac{N(N-1)\cdots(N-k+1)}{N^k}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^{-k}}_{\simeq 1}$$

The last two factors converge to 1:

$$\lim_{N \to \infty} \frac{N(N-1)\cdots(N-k+1)}{N^k} = 1$$

$$\lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N}\right)^{-k} = 1,$$

whereas

$$\lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N} \right)^N = e^{-\langle k \rangle}$$

Thus

$$p(k) \simeq \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}.$$

_

Advanced network characteristics

Degree distribution Calculating p(k) p(k) in the E-R

From binomial to Poisson distribution

$$p(k) = \frac{N(N-1)\cdots(N-k+1)}{k!} \frac{\langle k \rangle^k}{N^k} \left(1 - \frac{\langle k \rangle}{N}\right)^N \left(1 - \frac{\langle k \rangle}{N}\right)^{-k}$$
$$= \frac{\langle k \rangle^k}{k!} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^N}_{\simeq e^{-\langle k \rangle}} \underbrace{\frac{N(N-1)\cdots(N-k+1)}{N^k}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^{-k}}_{\simeq 1}$$

The last two factors converge to 1:

$$\begin{split} & \lim_{N \to \infty} \frac{N(N-1)\cdots(N-k+1)}{N^k} = 1, \\ & \lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N}\right)^{-k} = 1, \end{split}$$

whereas

$$\lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N} \right)^N = e^{-\langle k \rangle}$$

Thus

$$p(k) \simeq \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}.$$

_

Advanced network characteristics

Degree distribution Calculating p(k) in the E-R

From binomial to Poisson distribution

$$p(k) = \frac{N(N-1)\cdots(N-k+1)}{k!} \frac{\langle k \rangle^k}{N^k} \left(1 - \frac{\langle k \rangle}{N}\right)^N \left(1 - \frac{\langle k \rangle}{N}\right)^{-k}$$
$$= \frac{\langle k \rangle^k}{k!} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^N}_{\simeq e^{-\langle k \rangle}} \underbrace{\frac{N(N-1)\cdots(N-k+1)}{N^k}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^{-k}}_{\simeq 1}$$

The last two factors converge to 1:

$$\begin{split} & \lim_{N \to \infty} \frac{N(N-1)\cdots(N-k+1)}{N^k} = 1, \\ & \lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N}\right)^{-k} = 1, \end{split}$$

whereas

$$\lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N} \right)^N = e^{-\langle k \rangle}$$

Thus

$$p(k) \simeq \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}.$$

Ļ

Advanced network characteristics

Degree
distribution
Calculating p(k)
p(k) in the E-R

From binomial to Poisson distribution

$$p(k) = \frac{N(N-1)\cdots(N-k+1)}{k!} \frac{\langle k \rangle^k}{N^k} \left(1 - \frac{\langle k \rangle}{N}\right)^N \left(1 - \frac{\langle k \rangle}{N}\right)^{-k}$$
$$= \frac{\langle k \rangle^k}{k!} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^N}_{\simeq e^{-\langle k \rangle}} \underbrace{\frac{N(N-1)\cdots(N-k+1)}{N^k}}_{\simeq 1} \underbrace{\left(1 - \frac{\langle k \rangle}{N}\right)^{-k}}_{\simeq 1}$$

The last two factors converge to 1:

$$\begin{split} & \lim_{N \to \infty} \frac{N(N-1)\cdots(N-k+1)}{N^k} = 1, \\ & \lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N}\right)^{-k} = 1, \end{split}$$

whereas

$$\lim_{N \to \infty} \left(1 - \frac{\langle k \rangle}{N} \right)^N = e^{-\langle k \rangle}$$

Thus,

$$p(k) \simeq \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}.$$

_

Advanced network characteristics

Degree distribution Calculating p(k) p(k) in the E-R

Advanced network characteristics

Degree
distribution
Calculating p(k)
p(k) in the E-R

