

DMKD FINAL PROJECT

Course Code: CSI 382

Course Title: Data Mining and Knowledge Discovery Sessional

Submitted By: Sumaiya Akter(CSE06307402)

Submitted To: Md. Towhidul Islam Robin (Senior Lecturer)

[Date: 12/05/2021]

Student Information Analysis

& Predict Their Lunch Quality

1.**About Data:** This dataset has been collect from https://www.kaggle.com/spscientist/students-performance-in-exams/tasks?taskId=2743 its about Predicting student lunch quality with the demographic and socioeconomic information. I will classify the lunch quality between Standard or free/reduced.

In this data set there are 8 feature they are describing below;

gender: this feature define whether the student is male or female

race/ethnicity :this feature distribute the student among group A', 'group B', 'group C', 'group D', 'group E

parental_level_of_education: this define the educational level of parents and distribute them among these categories associates degree', 'bachelor degree', 'high school', 'master degree', 'some college', 'some high school']

lunch: this feature describe the lunch quality of student whether it is Standard or free/reduced. test preparation course this feature describe the test preparation quality of student whether it is complete or not complete.

math score: Marks secured by the students in math

reading_score : Marks secured by the students in reading writing_score : Marks secured by the students in writing

In this data set there is 1000 records are gathered by student.

2.Dataset Properties:

Gender: Among Thousand student there are 518 female & 482 male student.

Gender Ratio Among student

So there is more female student than male student.

Race/Ethnicity: Most of the student are from group C > group D > group B > group E > group A >

parental_level_of_education: Most of the parents are from 'some college'>associates degree',> 'high school'>'some high school'>bachelor degree'>'master degree',

Lunch Ratio: More student get Standard lunch than the free lunch.

Lunch Ratio among Student free/reduced

35.5%

64.5%

test preparation course: Only 35% student take test preparation.

Math score: Secured By Student

Writing score: Secured By Student

Reading score: Secured By Student

3. Preprocessing Of Data:

In this step data has been checked for duplication. For analyzing purpose categorical value of some column has been replace by the numerical value.

	gender	race/ethnicity	parental_level_of_education	lunch	test preparation course	math_score	reading_score	writing_score
0	0	1	3	1	0	72	72	74
1	0	2	2	1	1	69	90	88
2	0	1	5	1	0	90	95	93
3	1	0	4	0	0	47	57	44
4	1	2	2	1	0	76	78	75
995	0	4	5	1	1	88	99	95
996	1	2	1	0	0	62	55	55
997	0	2	1	0	1	59	71	65
998	0	3	2	1	1	68	78	77
999	0	3	2	0	0	77	86	86

6. Analyze dataset to uncover hidden information.:

Here I find average marks of student. And then plot the "Average Marks of Male & Female Student Base on Parental Level Of Education"

'Average Marks of Male & Female Student Base on lunch'

Average Marks of Male & Female Student Base on test preparation course

Average Marks of Male & Female Student Base on Parental Level Of Education

Average Marks of Male & Female Student Base on test preparation course

- **7. Split data set**: Here Split my data set into four different ratios as TRAIN/ TEST Ratio 90/10 75/25 50/50 30/70 & Do the further procedure.
- **8. Fit your data into ML models:** Here we use different ML models
 - KNN (with optimum value of K): I found the optimum value of k in different ratios
 - 90/10 optimum value of K is 34
 - 75/25 optimum value of K is 34
 - 50/50 optimum value of K is 28
 - 30/70- optimum value of K is 13

- Decision Tree (with optimum value of max depth) :): I found the optimum value of max depth in different ratios
 - 90/10 optimum value max depth of is 4
 - 75/25 optimum value max depth of is 2
 - 50/50 optimum value max depth of is 3
 - 30/70- optimum value max depth of is 4

• SVM : I use SVM Supervised ML model for fitting the data.

9. Compare the accuracy, precision, recall, and f1 score for different algorithm and different ratios:

Precision Comparison:

Recall Comparison:

F1_Score Comparison:

Accuracy Comparison: observing this comparison we see $\,$ DTree have highest accuracy in $\,$ 90/10 ratio. KNN have highest accuracy in $\,$ 50/50 ratio. SVM have highest accuracy in $\,$ 50/50 ratio.

10.Fit the data set into KMean algorithm.

In this section I separate the target variable lunch from the orginal data set and fit the value in KMEAN

	gender	race/ethnicity	parental_level_of_education	test preparation course	math_score	reading_score	writing_score
0	0	1	3	0	72	72	74
1	0	2	2	1	69	90	88
2	0	1	5	0	90	95	93
3	1	0	4	0	47	57	44
4	1	2	2	0	76	78	75
995	0	4	5	1	88	99	95
996	1	2	1	0	62	55	55
997	0	2	1	1	59	71	65
998	0	3	2	1	68	78	77
999	0	3	2	0	77	86	86

1000 rows × 7 columns

11. Find the optimum cluster value and cluster quality using the value of intertia.: Here I find the optimum cluster value 2 for the given data set ,

12. Conclusion: By analyzing this dataset and apply the model I can predict the lunch quality of the student both in supervised & Unsupervised learning. Among three supervised learning decision Tree works better in 90/10 ratio and perform worst in 50/50 train /test split ratio. & KNN works better in 50/50 and worst in 90/10.the accuracy of SVM was not as good as two others but its work almost same in 75/25,50/50& 30/70 ratio.