

... THE FILE COPY

MIMIMUM REQUIRED SIGNAL FOR LIMARS EXPERIMENTS

31 OCT 90

LAWRENCE E. MYERS

WRDC/AARI-2 WPAFB, OH 45433-6543

Approved for public release; distribution is unlimited.

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical memo has been reviewed and is approved for publication.

KEVIN W. AYER, /CAPT, USAF

Project Engineer

Electro-Optic Techniques Group

DONALD L. TOMLINSON, Chief Electro-Optic Techniques Group Electro-Optics Branch

FOR THE COMMANDER

GALE D. URBAN, Chief Electro-Optics Branch Mission Avionics Division Avionics Laboratory

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WRDC/AARI-2, Wright-Patterson AFB OH 45433-6543, to help maintain a current mailing list.

Copies of this memo should not be returned unless return is required by security considerations, contractual obligations, or notice on a

specific document.

101107	or notice on a
Acces	sion For
NTIS	GRA&I
DTIC	TAB 🗂
ı	ounced
Justi	fication
<u> </u>	
Ву	
Distr	ibution/
Avai	lability Codes
	Avail and/or
Dist	Special
1]
10.	
HI	
	

MIMIMUM REQUIRED SIGNAL FOR LIMARS EXPERIMENTS

FOREWORD

This report was prepared by Lawrence E. Myers, Electro-Optics Engineer, Technology / Scientific Services Inc. This work was supported by the US Air Force, Wright Research and Development Center, Avionics Laboratory under contract #F33601-89-D-J002 as part of the Laser Imaging and Ranging System (LIMARS) project. This document was originally presented as an In-House Technical Briefing; the author wishes to thank the people from WRDC/AARI-2 and T/SSI who reviewed this briefing and provided useful feedback. The author wishes to acknowledge Dr. Ed Champagne of WRDC/CA-E who contributed to this work by reviewing the manuscript and offering helpful comments.

ABSTRACT

This report determines the minimum detectable signal required to perform the LIMARS experiment. LIMARS is a direct detection laser radar using a novel receiver scheme to produce a pixel-registered range image without scanning. This work was motivated by the need to size the transmitter laser which, for this experimental system, is a Nd:YAG laser operating at 1.06µm. The laser must produce at least the minimum detectable power at the detector for the experimental conditions. The minimum detectable power is that power which just exceeds the noise for given probabilities of detection and false alarm. I included contributions of noise from scene emission, scene reflection, and internal sources, and I considered experiments in the Bldg 620 Tower and the Bldg 622 Collimator. For the Tower experiment, in the worst case of reflected sunlight there are 410 rms noise electrons per pixel. In the Collimator experiment, internal noise of 100 rms noise electrons per pixel dominates.

I wrote a computer program to plot the probability of detection as a function of signal electrons for given probability of false alarm and number of noise electrons using Poisson statistics. Speckle was not included in this program. I verified the output by comparison with other published results and with a Gaussian approximation. I used the program to calculate the number of signal electrons needed in the two experimental cases for 90% probability of detection and 0.1% probability of false alarm. The Tower experiment requires 1800 received signal electrons per pixel, or 1.7×10^{-14} J per pixel at 1.06 μ m with a 2% detector quantum efficiency. The Collimator experiment requires 440 received signal electrons per pixel, or 4.1×10^{-15} J per pixel. These values for minimum detectable energy at the detector can then be used in the laser radar range equation to determine the output required from the transmitter laser.

- (4)

BASIC LASER RADAR EQUATION

$$P_R = \frac{P_T}{R^2 \Omega_T} \frac{\rho A_{Targ}}{R^2 \Omega_{Targ}} A_R T_{RT}$$

where P_R = Received Power A_R = Receiver Effectiv · Area P_T = Transmitted Power $Ω_T$ = Transmitter Solid Angle R = Range

 $ho = Target Reflectivity

A_{Targ} = Target Effective Area

O_{Targ} = Target Solid Angle

T_{RT} = Round Trip Loss$

Agrees with radar formulation of the range equation with the definition of Antenna Gain G and Target Cross Section of given by:

$$\frac{G_{r}}{4\pi} = \frac{1}{\Omega_{T}} \qquad \frac{\sigma}{4\pi} = \frac{\rho A_{Targ}}{\Omega_{Targ}}$$

• Transmitter Power Required:

$$P_T \ge \frac{P_{R, \min} R^4 \Omega_T \Omega_{Targ}}{\rho A_{Targ} A_R T_{RT}}$$

where P_{R,min} is the Minimum Detectable Power:

$$P_{R, \min} = (NEP)(SNR)$$

where NEP=Noise Equivalent Power and SNR=Signal-to-Noise Ratio required for given probabilities of detection and false alarm.

NOISE POWER

• Noise Power \approx Mean Squared Current Fluctuation i_N^2 :

$$i_N^2 = i_S^2 + i_{BG}^2 + i_{IN}^2$$

 i_s^2 = shot noise due to the signal where

 $\frac{1}{l_{NG}^2}$ = shot noise due to the background $\frac{1}{l_{NG}^2}$ = noise due to all internal sources

- Since $hv \ll kT$ at $\lambda = 1 \mu m$, noise due to fluctuation of background power can be ignored.
- · Shot Noise

$$i_{SN}^2 = 2qiB$$

 \underline{q} = charge of electron where

i = average photogenerated current

B = electrical bandwidth of the circuit

The average photogenerated current is related to the power in the incident optical beam by:

$$\frac{1}{i} = \frac{P \eta q}{h v}$$

P = incident optical powerwhere

 η = detector quantum efficiency

V = frequency of incident optical radiation

NUMBER OF NOISE ELECTRONS

- A CCD collects, stores, and transfers electrons which are converted to voltage for output. It is common to describe signals in CCDs in terms of number of electrons, N.
- The Number of Electrons N and the Current i are Random Variables related by:

$$N = \frac{i\tau}{q}$$

where
$$\tau$$
 = observation time

The Mean and Variance are related by:

$$\overline{N} = \frac{i\tau}{q}$$

$$Var[N] = \frac{i^2 \tau^2}{q^2}$$

where
$$i^2$$
 = Variance of i = rms current fluctuation

The Equivalent Number of Noise Electrons = Standard Deviation of $N = \sqrt{Var[N]}$.

• For a Poisson process, the variance equals the mean: $\overline{N} = \text{Var}[N]$.

So the equivalent number of noise electrons due to shot noise is:

$$N_{SN} = \sqrt{\overline{N}} = \left(\frac{P \eta \tau}{h v}\right)^{\overline{z}}$$

SIGNAL SHOT NOISE

• Average Photogenerated Current due to the Signal:

$$\overline{i_S} = \frac{P_S q \, \eta}{h \, v_S}$$

Signal Shot Noise:

$$i_{S}^{2} = 2qi_{S}B$$

• Since this noise is due to the signal itself, Signal Shot Noise is present even when there is no other noise. "Quantum Limited Detection" \Rightarrow Signal Shot Noise is only source of noise "Photon Limited Detection"

BACKGROUND SHOT NOISE

• Average Photogenerated Current due to the Background:

$$i_{BG} = \frac{P_{BG}q\Pi}{hv_S}$$

Valid for narrowband optical filter of bandwidth Δv centered around v_s such that $\Delta v \ll v_s$ and P_{BG} and η are constant over Δv .

Background Shot Noise:

$$i_{BG}^2 = 2q i_{BG}B$$

• For imaging, each pixel is well-resolved. Assuming the detector size is matched to the blur circle of the receiver optics, all background power due to the area within a pixel instantaneous field of view is collected by the corresponding detector element.

Total power received for an individual pixel is:

$$P_{BG} = \eta' \eta_{pol} \int_{A_s} \int_{\Omega_p} L \cos \theta d\Omega dA$$

where

= transmission loss between the target and the receiver

= loss due to polarization filter

= the area covered by the pixel on the object

= object radiance over band of interest [W m⁻² sr⁻¹] = solid angle subtended by the receiver aperture A_S A_S D_R C

= angle between the line of sight and the normal

to the plane of the target surface

BACKGROUND SHOT NOISE (CONTINUED)

For a Lambertian object, the Radiance L is constant:

$$L = \frac{W}{\pi} \, \text{W/m}^2 \text{sr}$$

where
$$W = \text{object}$$
 exitance over band of interest [W m⁻²]

Assuming Lambertian objects and ignoring the obliquity factor cos θ :

$$P_{BG} = \eta' \eta_{pol} \frac{W}{\pi} A_S \Omega_R = \eta' \eta_{pol} \frac{W}{\pi} A_S \frac{A_R}{R^2}$$

where A_R = receiver aperture area

$$R = \text{range}$$

and it is assumed that $A_R \ll R^2$

Noise power per pixel:

$$\overline{i_{BG}^2} = 2q \left(\frac{P_{BG}}{h v_{S}} \eta q \right) B$$

• Number of equivalent noise electrons:

$$N_{BG} = \left(\frac{P_{BG} \eta \tau}{h v_S}\right)^{1/2} = \left(\frac{\eta' \eta_{pol} W A_S A_R \eta \tau}{\pi R^2 h v_S}\right)^{\frac{1}{2}}$$

SOURCES OF BACKGROUND POWER

Scene Emission:

• Assume objects radiate as Blackbodies at temperature T:

$$W_{Emission} = \int W(\lambda) d\lambda = \int \frac{2\pi}{\lambda^5} c^2 h \frac{1}{\exp(\frac{hc}{\lambda \tau}) - 1} d\lambda$$

• Assume narrowband optical filter of bandwidth $\Delta\lambda$ centered around the signal wavelength λ_s such that $\Delta \lambda \ll \lambda_s$:

$$W_{Emission} = \frac{2\pi}{\lambda_S^3} c^2 h \frac{1}{\exp\left(\frac{hc}{\lambda_S kT}\right) - 1} \Delta \lambda$$

• For $\lambda_s = 1.06 \mu \text{m}$ and T=300°K:

$$W_{Emission} = 6.2 \times 10^{-6} \, \Delta\lambda \, \text{W/m}^2$$

SOURCES OF BACKGROUND POWER (CONTINUED)

Scene Reflection:

• Worst case is Reflected Sunlight. Assume the Sun is a 5770°K Blackbody:

$$W_{Sun} = 2.9 \times 10^{13} \, \Delta \lambda \, \text{W/m}^2$$

• Irradiance at the Earth's Surface:

$$W_{Earth} = W_{Sun} \frac{R_{Sun}^2}{R_{E-S}^2} \Gamma = 6.4 \times 10^8 \Gamma \Delta \lambda \text{ W/m}^2$$

where
$$R_{Sun}$$
 = radius of the sun = 6.952×10^8 m R_{E-S} = distance from the sun to the Earth = 1.495×10^{11} m Γ = transmission through the entire atmosphere

Assuming
$$\Gamma = 0.5$$
: $W_{Earth} = 3.2 \times 10^8 \,\Delta\lambda \,\mathrm{W/m^2}$

Radar Handbook value: $W_{Earth} = 5.3 \times 10^8 \Delta \lambda \text{W/m}^2$ IR Handbook value:

 $W_{Earth} = 1 \times 10^9 \Delta \lambda W/m^2$

Measurement by AARI-3: $W_{Earth} = 6.1 \times 10^6 \Delta \lambda \mathrm{W/m}^2$

• Emittance due to Scene Reflection:

$$W_{\text{Reflection}} = W_{\text{Earth}} \rho = 6.4 \times 10^8 \, \Gamma \, \rho \, \Delta \lambda \, \text{W/m}^2$$

 ρ = scene reflectance (total hemispherical reflectance). where

Assuming
$$\Gamma = 0.5$$
 and $\rho = 0.5$: $W_{Reflection} = 1.6 \times 10^8 \Delta \lambda \text{ W/m}^2$

BACKGROUND SHOT NOISE FOR LIMARS EXPERIMENT (TOWER)

$$N_{BG} = \left(\frac{\eta' \eta_{pol} W A_S A_R \eta \tau}{\pi R^2 h v_S}\right)^{1/2}$$

Typical values for Tower experiment:

 $\eta_{pol} = 0.5$ (1 linear polarization component)

 $A_s = 0.225 \text{m}^2$ (6" square pixel to resolve 1' cross-range)

 $A_R = 0.0314$ m² (20cm diameter receiver aperture)

 $\eta = 0.02$ (Fairchild CCD222)

 $\tau = 30 \text{ms}$ (30Hz frame rate)

 $R=2.3 \mathrm{km}$ (Bldg 620 Tower to Wright Field Test Range) $\lambda_{\mathrm{s}}=1.06 \mu \mathrm{m}$

 $N_{BG} = 824.7 \sqrt{\eta'W} = 824.7 \sqrt{\eta'C\Delta\lambda}$ where $C = \begin{cases} 1.6 \times 10^8 & \text{for bright sunlight reflection} \\ 6.2 \times 10^{-6} & \text{for T=300K emission only} \end{cases}$

	N_{BG} $(\eta'=1)$	N_{BG} ($\eta' = 11.6\% - 100\%$)
Δλ nm	$C = 1.6 \times 10^8$	$C = 6.2 \times 10^{-6}$
-	110 - 330	$2 - 6 \times 10^{-5}$
10	360 - 1000	$0.7 - 2 \times 10^{-4}$
100	1100 - 3300	$2-6\times10^{-4}$

 $N_{BG} \approx 400$ noise electrons • For Transmitter Sizing, use 10nm filter and sunlit day:

BACKGROUND SHOT NOISE FOR LIMARS EXPERIMENT (COLLIMATOR)

$$N_{BG} = \left(\frac{\eta' \eta_{pol} W A_S A_R \eta \tau}{\pi R^2 h v_S}\right)^{1/2}$$

Typical values for Collimator experiment:

 $\eta_{pol} = 0.5$ (1 linear polarization component)

 $A_s = 4.22 \times 10^{-6} \text{m}^2$ (2° FOV half-angle / 210,688 pixels)

 $A_R = 0.00385 \text{m}^2$ (70mm diameter receiver aperture)

 $\eta = 0.02$ (Fairchild CCD222)

 $\tau = 30 \text{ms}$ (30Hz frame rate)

R = 15.24m (Length of Bldg 622 Collimator Test Range) $\lambda_s = 1.06\mu m$

 $N_{BG} = 188.7 \sqrt{\eta'W} = 188.7 \sqrt{\eta'C\Delta\lambda}$ where $C = \begin{cases} 1.6 \times 10^8 & \text{for bright sunlight reflection} \\ 6.2 \times 10^{-6} & \text{for T=300K emission only} \end{cases}$

	N_{BG} $(\eta'=1)$	N_{BG} (η' = 11.6% – 100%)
Δλ nm	$C = 1.6 \times 10^8$	$C = 6.2 \times 10^{-6}$
1	26 - 75	$0.5 - 1 \times 10^{-5}$
10	81 - 240	$2 - 5 \times 10^{-5}$
100	260 - 750	$0.5 - 1 \times 10^{-4}$

• For Transmitter Sizing, use 10nm filter and dim light: $N_{BG} \approx 10^{-4}$ noise electrons

INTERNAL NOISE

• Internal Noise Sources in CCDs (Dereniak & Crowe):

Input Noise
Transfer Efficiency Noise
Trapping Noise
Dark Current Noise
Clock Feedthrough Noise
Floating Diffusion Reset Noise
Amplifier Noise
Detector Uniformity Noise

• Typical Internal Noise values (all sources) range from 7 to 800 noise electrons per pixel.

Read Noise

Fairchild CCD222 array has 60 noise electrons per pixel.

IR Handbook gives typical value for state-of-the-art ccd cameras as 100 rms noise electrons.

$$\Rightarrow N_{IW} = 100 \text{ noise electrons}$$

TOTAL NOISE

• Total number of Noise Electrons is the root-sum-square addition of the contributions:

$$N_{Tot} = \left(\sum_{i} N_i^2\right)^{1/2}$$

• Total Noise Electrons (other than Signal Shot Noise):

$$N_{Tot} = (N_{BG}^2 + N_{IN}^2)^{1/2} \approx \begin{cases} 100 \text{ for no background contribution} \\ 100 \text{ for dim light in Collimator} \\ 410 \text{ for bright sunlight in Tower} \end{cases}$$

• Total number of Noise Electrons is standard deviation of a Poisson process. The mean of that process is:

$$N_N = (N_{Tot})^2 = N_{BG}^2 + N_{IN}^2 \approx \begin{cases} 10^4 & \text{for no background contribution} \\ 10^4 & \text{for dim light in Collimator} \\ 1.7 \times 10^5 & \text{for bright sunlight in Tower} \end{cases}$$

RADAR SIGNAL-TO-NOISE RATIO (SNR)

For any radar, the SNR is found by joint solution of:

$$p_{fa} = \sum_{k=N}^{\infty} p_N(k)$$

$$p_d = \sum_{k=N}^{\infty} p_{S+N}(k)$$

where

$$p_d = \sum_{k=N_f}^{\infty} p_{S+N}(k)$$

= probability of generating k electrons due to noise and signal = probability of generating k electrons due to noise alone $p_{S+N}(k)$ N_T $p_N(k)$

= threshold level

Detection Statistics 7

Fig. 10.1. Probability density for de signal current in Gaussian noise

Figure 2.4 Envelope of receiver output illustrating false alarms due to noise.

DETECTION STATISTICS

• Heterodyne Detection:

Detected Power ≈ Received Power

Complex Gaussian Noise (Rayleigh Distribution): Bandlimited

$$p(i) = \frac{i}{i_N^2} \exp\left(-\frac{i^2}{2i_N^2}\right)$$

Signal + Noise (Ricean Distribution):

$$p(i) = \frac{i}{i_N^2} \exp\left(-\frac{(i^2 + i_S^2)}{2i_N^2}\right) I_0\left(\frac{ii_S}{i_N^2}\right)$$

where $I_0(\cdot)$ is the modified Bessel function of order 0

Voise alone

0.6

Figure 2.6 Probability-density function for noise alone and for signal-plus-noise, illustrating the process of threshold detection.

DETECTION STATISTICS (CONTINUED)

• Direct Detection:

Poisson Statistics valid for:

$$\frac{N_{Avg}}{\tau \Delta v} \ll 1$$

.

1. Statistics in any disjoint time interval are independent.

and probability of exactly 1 photoelectron $\rightarrow \alpha \Delta t = N_{Avg}$ where $\alpha =$ average rate 2. As length of time interval $\Delta t \downarrow$, probability of >1 photelectron \rightarrow negligib's small

Noise

(Poisson Distribution):

 $p_N(k) = \frac{(N_N)^k}{k!} \exp(-N_N)$

Signal (Poisson Distribution):

 $p_s(k) = \frac{(N_s)^k}{k!} \exp(-N_s)$

Signal + Noise

(Poisson Distribution): $p_{s+\nu}($

 $p_{S+N}(k) = \frac{(N_S + N_N)^k}{k!} \exp[-(N_S + N_N)]$

where $N_N =$ average number of noise electrons generated $N_S =$ average number of signal electrons generated

TARGET STATISTICS: SPECKLE

- Speckle is variation of the target cross section that affects signal statistics ⇒ spatial fluctuation. Target return can be correlated or uncorrelated from pulse to pulse ⇒ temporal fluctuation.
- Energy reflected off target is redistributed into grainy pattern with peaks and nulls.
- Speckle is caused by surface roughness:

specular target \Rightarrow optically smooth diffuse target \Rightarrow optically rough

smaller features \Rightarrow larger speckle lobes larger features \Rightarrow smaller speckle lobes

TARGET STATISTICS: SPECKLE (CONTINUED)

With speckle, the average signal is itself a random variable with probability density function $p(N_s)$. • Previous probability of detection calculations assumed a constant average signal from the target N_s.

Probability of False Alarm

$$p_{ja} = \sum_{k=N_r}^{\infty} p_N(k)$$

Probability of Detection

$$p_d = \int_0^\infty p_d(N_S) p(N_S) dN_S$$

$$=\int_0^\infty \sum_{k=N_r}^\infty p_{S+N}(k) p(N_S) dN_S$$

Typical Speckle Statistics:

Negative Exponential Distribution:

$$p(N) = \frac{1}{N_{Avg}} e^{-\frac{N}{A_{vg}}}$$

DIRECT DETECTION WITH SPECKLE

J.W. Goodman, "Some Effects of Target-Induced Scintillation on Optical Radar Performance," Proc IEEE, Vol 53(11), Nov 65.

· Noise:

Poisson Distribution

 $p_N(k) = \frac{(N_N)^k}{k!} \exp(-N_N)$

· Signal:

Signal Spectral Energy Density w in each Correlation Cell (Speckle Lobe):

Negative Exponential Distribution

 $p(w) = \frac{1}{w_{Avg}} \exp\left(-\frac{w}{w_{Avg}}\right)$

Total Received Energy $W = \int_A w dA$:

Gamma Distribution

 $p(W) = \left(\frac{M}{W_{Avg}}\right)^M \frac{W^{M-1} \exp\left(-\frac{MW}{W_{Avg}}\right)}{\Gamma(M)}$

where M = number of correlation cells

Probability of k Signal Photons $p_s(k) = \int_0^\infty p_s(k \mid W) p(W) dW$ where $p_s(k \mid W) = \left(\frac{\eta W}{h v}\right)^k \exp\left(-\frac{\eta W}{h v}\right) / k!$:

Negative Binomial Distribution

 $p_{S}(k) = \frac{\Gamma(k+M)}{\Gamma(k+1)\Gamma(M)} \left(1 + \frac{M}{N_{S}}\right)^{-k} \left(1 + \frac{N_{S}}{M}\right)^{-M}$

GAMMA FUNCTION

$$\Gamma(\alpha) = \int_{0}^{\infty} e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

$$\Gamma(1) = 1$$

$$\Gamma(\alpha+1)=\Gamma(\alpha)$$

$$\Gamma(k+1) = k!$$
 $(k=0,1,...)$

Generalized Factorial Function

For $\alpha < 0$:

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)\cdots(\alpha+k)}$$

 $(\alpha \neq 0, -1, -2, \dots)$

where $k = \text{smallest integer such that } \alpha + k + 1 > 0$.

Definition. Let X be a continuous ran-

Fig. 405. Gamma function

 $f(x) = \frac{\alpha}{1'(r)} (\alpha x)^{r-1} e^{-\alpha x},$

its pdf is given by

= 0, clsewhere.

FIGURE 9.6

DIRECT DETECTION WITH SPECKLE (CONTINUED)

Signal + Noise

Probability of k photoelectrons due to Negative Binomial Signal + Poisson Noise:

$$p_{S+N}(k) = \left(\frac{M}{M+N_S}\right)^M \frac{\exp(-N_N)}{(M-1)!} \sum_{j=0}^k \frac{(k+M-j-1)!}{j!(k-j)!} (N_N)^j \left(\frac{N_S}{M+N_S}\right)^{k-j}$$

· Simplifications of Negative Binomial Signal:

For M=1 (one speckle lobe received) \Rightarrow diffuse, unresolved target:

Signal: Bose-Einstein Distribution $p_s(k) = \frac{1}{1+N_s} \left(\frac{N_s}{1+N_s} \right)^k$

Signal + Noise:

 $p_{S+N}(k) = \frac{\exp(-N_N)}{1+N_S} \sum_{j=0}^{k} \frac{(N_N)^j}{j!} \left(\frac{N_S}{1+N_S}\right)^{k-j}$

For $\frac{N_s}{M} \ll 1 \implies$ diffuse, well-resolved target:

Signal: Poisson Distribution

 $p_s(k) = \frac{(N_s)^k}{k!} \exp(-N_s)$

Signal + Noise: Poisson Distribution

 $p_{S+N}(k) = \frac{(N_{S+N})^k}{k!} \exp(-N_{S+N})$

Resolved Target $\Rightarrow \downarrow$ range $\Rightarrow \uparrow$ number of Correlation Cells intercepted by receiver.

 $M=\infty \Rightarrow identical to Specular.$

SNR PLOTS

• Find threshold N_T , the minimum integer such that probability of noise exceeding N_T is less than desired p_{fa} :

Probability of False Alarm

 $p_{fa} \ge \sum_{k=N_r}^{\infty} p_N(k) = \sum_{k=N_r}^{\infty} \frac{(N_N)^k}{k!} \exp(-N_N)$

• Calculate probability that signal + noise exceeds N_7 :

Probability of Detection

 $p_d = \sum_{k=N_t}^{\infty} p_{S+N}(k) = \sum_{k=N_t}^{\infty} \frac{(N_N + N_S)^k}{k!} \exp[-(N_N + N_S)]$

Neglect effects of speckle. Valid for specular & well-resolved diffuse targets.

Note that N_N includes only noise other than signal shot noise

and that $p_{N+S}(k)$ takes into account signal shot noise.

• For given N_N , read off $N_S \Rightarrow \text{Minimum Detectable Signal}$.

SNR PLOTS: Pd vs. SIGNAL & NOISE

APPROXIMATIONS OF POISSON DISTRIBUTION

• Bounds on Pa & Pa in Closed Form:

$$p_{fa} = \sum_{k=N_{1}}^{\infty} \frac{N_{N}^{k} e^{-N_{N}}}{k!} < e^{-N_{N}} \frac{N_{N}^{N_{T}}}{1 - \left(\frac{N_{N}}{N_{T}+1}\right)}$$

$$p_{d} = 1 - P_{miss} = 1 - \sum_{k=0}^{N_{T}-1} \frac{N_{k}^{k} e^{-N_{S+N}}}{k!} > 1 - \left[e^{-N_{S+N}} \frac{N_{N}^{N_{T}-1}}{(N_{T}-1)!} \frac{1 - \left(\frac{T-1}{N_{S+N}}\right)^{N_{T}}}{(N_{T}-1)!}\right]$$

• Gaussian Approximation for large N (N>100):

Sum of N independent Random Variables \rightarrow Gaussian Distribution as $N \rightarrow \infty$. Variance $\rightarrow \Sigma$ Variances Mean $\rightarrow \Sigma$ Means

$$p_N(k) = \frac{N^k e^{-N}}{k!} \rightarrow p_N(k) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(k-\mu)^2}{2\sigma^2}}$$
 where $\mu = \sigma^2 = N$

For
$$P_{sa} = 10^{-3}$$
:
$$N_{s} = 3.08 \sqrt{N_{N}} + 1.29 \sqrt{N_{S+N}}$$

$$N_{s} = 3.75 \sqrt{N_{N}} + 1.29 \sqrt{N_{S+N}}$$
For large N_{N} : $N_{s} \approx 4.37 \sqrt{N_{N}}$

Note
$$N_{S+N} = N_S + N_N$$

VALUES OF P_d and P_{fa}

• Probability of False Alarm, p_{fa} :

$$p_{fa} = \frac{\tau}{t_{fa}}$$

where
$$t_{fa}$$
 = time between false alarms

For imaging sensor, p_{fa} = Fraction of False Detection Pixels per frame.

Assume ergodic process so that temporal average = ensemble average, valid for Poisson statistics. For initial LIMARS experiment, prefer image relatively free of false detections.

Use Fraction of False Detection Pixels < 0.1% $\Rightarrow 70$ false detection pixels in frame of 256×256

$$\Rightarrow p_{fa} = 10^{-3}$$

• Probability of Detection, p_d:

$$p_d = 1 - p_{DO}$$
 where p_{DO} = fraction of drop-out pixels

For initial LIMARS experiment, prefer relatively few drop-outs.

However SNR climbs rapidly for $p_d > 90\%$.

Use
$$p_d = 0.90$$

$$\Rightarrow$$
 10% of target image pixels will be missing.

MINIMUM DETECTABLE SIGNAL FOR LIMARS

Assume
$$p_{fa} = 10^{-3}$$
 and $p_d = 0.90$:

N_N	N_{S}	$E_{s}\left(J\right)^{*},\eta=1$	$E_{s}(J)^{*}, \eta = 0.02$
104	440	8.3×10^{-17}	4.1×10^{-15}
1.7×10^{5}	1800	3.4×10^{-16}	1.7×10^{-14}

* Minimum Detectable Energy per pixel at detector for single pulse $E_S = N_S h \, c / \lambda \eta$ where η =detector quantum efficiency. (Recall that N_N was calculated with $\eta = 0.02$.)

REFERENCES

- T. Absi, Irradiance Measurements by WRDC/AARI-3 from 7 Feb 85 1213 local time (highest sun angle): 7.98µW/cm² over 992-1005nm band with 30% cloud cover.
- C. Bachman, Laser Radar Systems & Techniques (Artech House, Dedham MA, 1979).
- E. Dereniak & D. Crowe, Optical Radiation Detectors, p. 239-240 (John Wiley & Sons, New York 1984).
- J. Goodman, "Some Effects of Target-induced Scintillation on Optical Radar Performance," <u>Proc IEEE</u> 53(11), p. 1688-1700, (Nov 1965).
- J. Jamieson, et al., Infrared Physics and Engineering, p. 19 (McGraw-Hill, New York, 1963).
- R. Kingston, Detection of Optical and Infrared Radiation (Springer-Verlag, Berlin, 1978).
- E. Kreyszig, <u>Advanced Engineering Mathematics</u> p. A-57 (John Wiley & Sons, New York, 1979).
- P. Meyer, <u>Introductory Probability and Statistical Applications</u>, p. 194 (Addison-Wesley Publishing Co, Reading MA, 1970).
- M. Skolnik, Introduction to Radar Systems, p. 27, 225 (McGraw-Hill, New York, 1980).
- M. Skolnik, Radar Handbook, p. 37-5, 37-39, 37-54 (McGraw-Hill, New York, 1970).
- W. Wolfe & G. Zissis, <u>The Infrared Handbook</u>, p. 3-37 (Infrared Information Analysis Center, Ann Arbor MI, 1985).
- A. Yariv, Optical Electronics, p. 315-317 (Holt, Rinehart & Winston, New York, 1985).