AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior listings and versions thereof.

- 1. (Cancelled).
- 2. (Currently amended) An optically active transition metal-diamine complex represented by the formula (2):

2

$$R^{5}$$
 R^{6}
 R^{12}
 R^{7}
 R^{10}
 R^{1

wherein R^1 and R^2 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, or $-SO_2R^{13}$ (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, M represents a transition metal selected from the group consisting of ruthenium, rhodium and iridium, X represents a halogen atom, L represents a ligand benzene which may be substituted with an alkyl group, and * represents an asymmetric carbon atom, provided that at least one of R^3 to R^7 and R^8 to R^{12} is a substituted amino group.

3. (Currently amended) An optically active transition metal-diamine complex obtained by reacting an optically active diamine compound represented by the formula (1):

3

$$R^{5}$$
 R^{4}
 R^{7}
 R^{12}
 R^{7}
 R^{10}
 R^{10}

wherein R^1 and R^2 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, or $-SO_2R^{13}$ (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, and * represents an asymmetric carbon atom, provided that at least one of R^3 to R^7 and R^8 to R^{12} is a substituted amino group; and a transition metal compound represented by the formula (3):

$$[MX_mL_n]_p \tag{3}$$

wherein M represents a transition metal selected from the group consisting of ruthenium, rhodium and iridium, X represents a halogen atom, L represents a ligand benzene which may be substituted with an alkyl group, m represents 2-or 3, n represents 0-or 1, and p represents 1-or 2.

4. (original) A catalyst for asymmetric synthesis comprising the optically active transition metal-diamine complex according to claim 2 or 3.

5. (original) The catalyst for asymmetric synthesis according to claim 4, wherein the catalyst for asymmetric synthesis is a catalyst for asymmetric reduction.

4

6. (Currently amended) A catalyst for asymmetric synthesis comprising an optically active diamine compound represented by the formula (1):

$$R^{5}$$
 R^{4}
 R^{7}
 R^{12}
 R^{7}
 R^{10}
 R^{10}

wherein R^1 and R^2 each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, or $-SO_2R^{13}$ (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aryloxy group, or a substituted amino group, and * represents an asymmetric carbon atom, provided that at least one of R^3 to R^7 and R^8 to R^{12} is a substituted amino group; and a transition metal compound represented by the formula (3):

$$[\mathsf{MX}_{\mathsf{m}}\mathsf{L}_{\mathsf{n}}]_{\mathsf{p}} \tag{3}$$

wherein M represents a transition metal ruthenium, X represents a halogen atom, L represents a ligand benzene which may be substituted with an alkyl group, m represents 2 or 3, n represents 0 or 1, and p represents 1 or 2.

Docket No.: 66057(71526)

- 7. (original) The catalyst for asymmetric synthesis according to claim 6, wherein the catalyst for asymmetric synthesis is a catalyst for asymmetric reduction.
- 8. (Withdrawn) A process for producing an alcohol, which comprises subjecting a ketone to an asymmetric reduction in an aqueous solvent in the presence of the catalyst for asymmetric reduction of claim 5 or 7.
- 9. (Withdrawn) The process according to claim 8, wherein the ketone is a prochiral ketone, and the produced alcohol is an optically active alcohol.
- 10. (Withdrawn) The process according to claim 9, wherein the ketone is a ketone represented by the following formula (4):

$$R^{21}$$
 R^{22} (4)

wherein R^{21} and R^{22} each independently represent an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, or a ferrocenyl group, provided that $R^{21} \neq R^{22}$, and R^{21} and R^{22} may be bonded to each other to form a cyclic ketone having a substituent, and the resultant optically active alcohol is an optically active alcohol represented by the following formula (5):

$$\begin{array}{c}
\text{OH} \\
\downarrow \\
R^{21} & R^{22}
\end{array} (5)$$

wherein * represents an asymmetric carbon atom and R²¹ and R²² are the same as described above.

11. (Withdrawn) The process according to claim 8, wherein the asymmetric reduction is based on asymmetric transfer hydrogenation.

Docket No.: 66057(71526)

- 12. (Withdrawn) The process according to claim 8, wherein the catalyst for asymmetric reduction is recovered after use.
- 13. (Withdrawn) The process according to claim 12, wherein the recovery is performed in the form of an aqueous solution.
- 14. (Withdrawn) The process according to claim 8, wherein the recovered catalyst for asymmetric reduction is recycled.
- 15. (Withdrawn) The process according to claim 14, wherein the recovered catalyst for asymmetric reduction is a catalyst to be recycled in the form of the recovered aqueous solution.
 - 16. (original) A diamine compound represented by the formula (1b):

$$R^{5}$$
 R^{4}
 R^{3}
 R^{13}
 R^{2}
 R^{6}
 R^{12}
 R^{7}
 R^{11}
 R^{10}
 R^{10}

wherein R^2 represents a hydrogen atom, an optionally substituted hydrocarbon group, or – SO_2R^{13} (wherein R^{13} represents an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group), R^3 to R^{12} each independently represent a hydrogen atom, an optionally substituted hydrocarbon group, an optionally substituted heterocyclic group, an optionally substituted alkoxy group, an optionally substituted aryloxy group, an optionally substituted aralkyloxy group, or a substituted amino group, and R^{13} represents

an optionally substituted hydrocarbon group, a camphoryl group, or a substituted amino group, provided that at least one of R³ to R⁷ and R⁸ to R¹² is a substituted amino group.

7

- 17. (Currently amended) The optically active transition metal-diamine complex according to claim 3, wherein the transition metal compound represented by the formula (3) is selected from the group consisting of [RuCl₂(benzene)]₂, [RuBr₂(benzene)]₂, [Rul₂(benzene)]₂, [RuCl₂(p-cymene)]₂, RuBr₂(p-cymene)]₂, [Rul₂(p-cymene)]₂, [RuCl₂(hexamethylbenzene)]₂, [RuBr₂(hexamethylbenzene)]₂, [Rul₂(hexamethylbenzene)]₂, [RuCl₂(mesitylene)]₂, [RuBr₂(mesitylene)]₂, and [Rul₂(mesitylene)]₂, [RuCl₂(pentamethylcyclopentadiene)]₂, [RuBr₂(pentamethylcyclopentadiene)]₂, [Rul2(pentamethylcyclopentadiene)]2, [RuCl2(cod)]n, [RuBr2(cod)]n, [Rul2(cod)]n, [RuCl₂(nbd)]n, [RuBr₂(nbd)n, [Rul₂(nbd)]n, RuCl₃ hydrate, RuBr₃ hydrate, Rul₃ hydrate, [RhCl₂(cyclopentadiene)]₂, [RhBr₂(cyclopentadiene)]₂, [Rhl₂(cyclopentadiene)]₂, [RhCl₂(pentamethylcyclopentadiene)]₂, [RhBr₂(pentamethylcyclopentadiene)]₂, [Rhl2(pentamethylcyclopentadiene)]2, [RhCl(cod)]2, (RhBr(cod)]2, [RhI(cod)]2, [RhCl(nbd)]2, [RhBr(nbd)]₂, [RhI(nbd)]₂, RhCl₃ hydrate, RhBr₃ hydrate, RhI₃ hydrate, [IrCl₂(cyclopentadiene)]₂, [IrBr₂(cyclopentadiene)]₂, [Irl₂(cyclopentadiene)]₂, [IrCl₂(pentamethylcyclopentadiene)]₂, [IrBr₂(pentamethylcyclopentadiene)]₂, [Irl₂(pentamethylcyclopentadiene)]₂, [IrCl(cod)]₂, [IrBr(cod)]₂, [Irl(cod)]₂, [IrCl(nbd)]₂, [IrBr(nbd)]₂, [IrI(nbd)]₂, IrCl₃ hydrate, IrBr₃ hydrate and IrI₃ hydrate.
- 18. (Currently amended) The catalyst for asymmetric synthesis according to claim 6, wherein the transition metal compound represented by the formula (3) is selected from the group consisting of [RuCl₂(benzene)]₂, [RuBr₂(benzene)]₂, [RuI₂(benzene)]₂, [RuI₂(p-cymene)]₂, [RuCl₂(p-cymene)]₂, [RuCl₂(hexamethylbenzene)]₂, [RuCl₂(hexamethylbenzene)]₂, [RuCl₂(mesitylene)]₂, [RuCl₂(mesitylene)]₂, [RuCl₂(mesitylene)]₂, [RuCl₂(pentamethylcyclopentadiene)]₂, [RuCl₂(pentamethylcyclopentadiene)]₂, [RuCl₂(cod)]_n, [RuBr₂(cod)]_n, [RuI₂(cod)]_n,

[RuCl₂(nbd)]n, [RuBr₂(nbd)]n, [Rul₂(nbd)]n, RuCl₃ hydrate, RuBr₃ hydrate, Rul₃ hydrate, [RhCl₂(cyclopentadiene)]₂, [RhBr₂(cyclopentadiene)]₂, [Rhl₂(cyclopentadiene)]₂, [RhCl₂(pentamethylcyclopentadiene)]₂, [RhBr₂(pentamethylcyclopentadiene)]₂, [RhCl(cod)]₂, [RhBr(cod)]₂, [RhCl(nbd)]₂, [IrBr₂(cyclopentadiene)]₂, [Irl₂(cyclopentadiene)]₂, [Irl₂(cyclopentadiene)]₂, [Irl₂(cyclopentadiene)]₂, [Irl₂(pentamethylcyclopentadiene)]₂, [IrCl(cod)]₂, [IrRr₂(pentamethylcyclopentadiene)]₂, [IrCl(nbd)]₂, [IrCl(nbd)]₂

8