Chapter 2

Multimedia Fundamentals

2017.03

Prof. Park Kyusik

Contents

- Information and Signal
 - Analog and Digital
- Digitization of analog source
 - ADC and DAC
 - Bit rate
- Digital signal and spectrum
- Network

Information and Signal

- Signal
 - Physical realization of information in electrical waveform such as current or voltage
 - Signal itself carries information
 - All nature signal (speech, audio, image) exists in the analog form

Multimedia System

Information to signal transformation

- Possible to measure in electrical waveform in LAB
- Way of carrying out the information

Digital hearing aid system

2017-02-27 Multimedia System

Classifying Signal

- Analog Signal (continuous-time signal)
 - Continuous waveform with respect to time
 - x(t), y(t)

- Digital signal (discrete-time signal)
 - Discrete waveform with respect to time
 - Sampled version of analog signal x[n], y[n]
 - 0,1 is called digital binary

Multimedia Signal

- Signal classification
 - Time-varying: Audio, Spatial-varying: Image
 - Time, Spatial-varying: Moving Pictures = Video (spatial means 2D space)

Analog Signal

$$x(t) = A \cdot \sin(2\pi f t + \theta)$$

8

- Information lies on the amplitude
- A amplitude, f frequency in Hz, θ phase

* Amplitude - strength of the signal

- Speech and audio
 - Represents loudness or strength of the sound
 - ⇒ SPL (sound pressure level)

SPL

$$SPL (dB) = 20 \cdot \log_{10} \left(\frac{P}{P_0} \right)$$

- P_0 is reference sound pressure. It is measured when we can barely hear the 1kHz sine tone. $P_0 = 2.5X10^{-5}N/m^2$
- *P* is measuring sound pressure
- Image: Strength or intensity of the light

Frequency (f)

• Number of repetitions of same pattern in 1 sec (unit: Hz); Period (T) = 1 / f (unit: sec)

frequency	Time-domain waveform	Sound hearing	
(a) $f = 1kHz$	relatively slow time-varying	relatively heard as low tone (pitch)	
(b) $f = 5kHz$	relatively fast time-varying	relatively heard as high tone (pitch)	

2017-02-27

Multimedia System

Phase

• Phase angle θ between two sinusoids

Digital Binary

- Information lies on discerning ability between binary 0 and binary 1
- * Does not matter with amplitude!!

Advantage of DSP

- Allows high quality of signal processing
 - Digital Binary 0, 1 is highly robust to noise
 - Not sensitive to environmental factors such as temperature as in analog signal

Analog transmission

Digital transmission

- Possible to setup programmable digital system
 - Can easily change system functionality by slightly modifying the SW program in DSP Chip
 - Not possible with analog system, the hardware must be redesigned overall
- Possible to process multimedia data
 - Can easily combine different type of digital media such as speech, audio, image
 - Easy store, processing, transmission

- * Low cost digital IC Chip is available
 - Getting more smaller and low cost
 - Low-powered chip is always desirable
- Good security messaging services using various coding technique

Weak point of DSP

- Need to process huge amount of digital data after A/D conversion
 - So always data compression with digital system

 Detection of digital signal require the communication system to be synchronized

Analog to Digital Conversion

ADC

Two Steps in ADC

- Step 1) **Sampling** (Sample and Hold)
- Step 2) Quantization and Digitization

- ⇒ Digital binary sequence 0110...
- \Rightarrow Called

PCM (Pulse Code Modulation)

resulting binary = PCM code

Sampling

• Takes samples of analog signal at regular interval called sampling period T_s

sampling rate =
$$f_S = \frac{1}{T_S}$$
 (sample/sec=Hz)

- Quantization and Digitization
 - Quantization Process that truncate each sampled value as the ones that computer can represent
 - Digitization Process that represent quantized value as digital binary

2017-02-27 Multimedia System

Analog to digital conversion (ADC)

2017-02-27

Multimedia System

- How fast one must sample analog signal?
 - Must fast enough to take consideration of fast varying portion in analog signal.
 - If sampling speed is too slow, it will lose important high frequency components of the analog signal.
 - Some tradeoff in sampling!
 - ⇒ <u>Sampling Theory (1950, Shannon)</u>

2017-02-27 Multimedia System

Nyquist-Shannon sampling theory

• Analog signal x(t) can be perfectly reconstructed from its sample values x[n] if we sample analog signal with more than twice the maximum frequency component f_{max} (or Bandwidth=B) of the analog signal

Nyquist sampling rate $f_s = 2B$

2017-02-27 Multimedia System

*Ex) music signal contains frequency up to 20kHz, what is the Nyquist rate and Nyquist frequency?

$$f_s \ge 2(20 \, kHz) = 40 \, kHz$$

- Nyquist rate 40kHz
- Nyquist frequency 20kHz

2017-02-27 Multimedia System

- Aliasing effect and anti-aliasing filter
 - What if Nyquist sampling condition is not satisfied?

$$f_s < 2 \cdot f_{\text{max}}$$

No unique analog signal can be reconstructed

Quantization

- Tradeoff in quantization
 - If number of quantization bits (N) is increased
 - High resolution, better representation of sample; good reproduction of sound
 - If N is decreased
 - Signal quality is low, but need to process only a small amount of data

- If too few quantization level
- Sound: coarse hiss, loss of quiet passages, general fuzziness (quantization noise)
- * Images: banding and posterization
 - banding dispersing color
 - Posterization color discontinuity

Million color and four color

Posterization

Posterization

as bit/pixel decrease, more posterization

Bit rate (Data rate)

Number of bits to process media signal after ADC to meet signal quality

Bit rate
$$= R =$$

 f_s (sample/sec) X N (bits/sample)

Speech signal Bit rate

- Analog speech BW \approx 4Khz
- On ADC
 - Sampling rate f_s =4Khz X 2 = 8Khz
 8K = 8000 samples/sec
 - Quantization 8bit/sample
 - Bit rate R = 8000 X 8 = 64Kbps

2017-02-27 Multimedia System

Music signal Bit rate

- Music signal BW ≈ 22.05 Khz
- On ADC
 - Sampling rate $f_s = 22.05$ Khz X 2 = 44.1Khz 44.1K=44100 samples/sec
 - Quantization 16bit/sample
 - Bit rate R = 44100 X 16 = 0.705 Mbps MONO
 - Stereo music

R = 0.705 Mbps X 2 = 1.41 Mbps

2017-02-27 Multimedia System

Data rate for Audio

	Sampling (KHz)	# of bits	Mono/ST	Bit rate (KByte/S)
Telephone	8	8	Mono	8
AM	11.025	8	Mono	11.025
FM	22.050	16	ST	88.2
CD	44.1	16	ST	176.4

2017-02-27 Multimedia System

Frequency-Domain Spectrum Analysis

Male/female speech discrimination

 See frequency spectrum whether it contains high or low frequency component

❖ Ex 1) DTMT Telephone

 Press 5 – signal composed of 770Hz(low) & 1336Hz (High)

- Receiver end Fourier transform of the signal
 - See frequency spectrum to identify the frequency components

- Ex 2) Vuvuzelas noise
 - World cup soccer game 2014, Brazil
 - Vuvuzelas has a constant pitch or frequency of
 235 Hz Use of notch filter

2017-02-27 Multimedia System

37

Two signal representation in DSP

Time-domain waveform &

Frequency-domain spectrum

Q) Which one is female's voice?

* Bandwidth definition

- BW = distance in Hz from 0Hz to max freq. comp.
- BW is very important concept in DSP and communication area

Revisiting def. of bandwidth

- What is the BW or max. freq. component in this case ? 4.3kHz? 4kHz? or ∞Hz
 - BW is not the actual max. freq. component
 - Instead, it is freq. comp. which has meaningful energy or magnitude values (BW = 4kHz)

Examples of frequency spectrum

Speech word "away" and frequency spectrum

Speech word "ah" and frequency spectrum

440Hz tuning fork signal

Single piano tone (middle C)

Each piano chord is assigned to single frequency

Cord	Freq.
С	262Hz
Е	330Hz
G	392Hz

Middle C frequency spectrum

- Fundamental frequency (262Hz) + Harmonics
- Harmonics are integer multiples of fundamental frequency

Multiple piano chord (CE)

Cord	Freq.
С	262Hz
Е	330Hz
G	392Hz

Periodic signal + random noise

 From frequency spectrum, easily identify the 32Hz sine wave

2017-02-27 Multimedia System

48

Networks

- Local area networks (LANs) connect several computers on one site (Ethernet)
- * LANs connected together by routers, bridges and switches form an internet
- The Internet is a global network of networks (internet) communicating via TCP/IP protocols
 - Mostly operated by commercial Internet Service Providers (ISPs)

Internet Access

- Old Dial-up connection uses modem and analog telephone line
 - V90 modem 56kbps maximum
- Broadband always-on digital connection (>512kbps)
 - ADSL, Cable, Satellite
- Dedicated line (T1, T3)

MIME Types

- Need to identify the type of media data in a data stream in a platform-independent way
- MIME (Multipurpose Internet Mail Extension)
 - Originally designed to allow inclusion of data other than text in email, adopted by HTTP
 - Content-type: type/subtype
 - Types include text, image, audio, video, application, subtypes define specific formats
 - e.g. text/html, image/gif

Homework 2

- Read Chapter 2
- Investigate practical A/D technology
 - PCM, DPCM, ADPCM, DM, ADM ...
- Audio quality
 - Depending on sampling freq. & Q. Bit
 - Various kinds of audio format
 - CD, SACD, DVD –audio, XRCD, HDCD

Add network, DB.. fundamental technology