姓名:	学号 :	
/年 日・	_	

上册 五六七章 小测验

(共31分,10分为本次测验满分数,高于10分的额外分累加入下次成绩)

一、选择题(每题1分)

- 1. 关于闭区间[a,b]上的定积分定义 $\int_a^b f(x)dx = \lim_{t \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$, 下列表述错误的是(D)
 - (A) 定积分的值与 ξ 的选取方式无关
 - (B) 定积分的值与 Δx , 的划分方式无关
 - (C) λ 不可以用所有 Δx_i 区间长度中最小值来表示
 - (D) λ 可以用所有 Δx 区间长度的中位数来表示
- 设 F(x) 是连续函数 f(x) 的一个原函数,则必有(A)
 - (A) F(x) 是偶函数 ⇔ f(x) 是奇函数
- (B) F(x)是奇函数 $\Leftrightarrow f(x)$ 是偶函数
- (C) F(x) 是周期函数 $\Leftrightarrow f(x)$ 是周期函数 (D) F(x) 是单调函数 $\Leftrightarrow f(x)$ 是单调函数
- 设非齐次线性微分方程 y'+P(x)y=Q(x) 有两个不同的解: $y_1(x),y_2(x)$, c 为任意常数,则该方程的通解为(B)

(非齐次方程的两个特解之差是对应齐次方程的解)

- (A) $C\lceil y_1(x) y_2(x) \rceil$ (B) $y_1(x) + C\lceil y_1(x) y_2(x) \rceil$
- (C) $C \lceil y_1(x) + y_2(x) \rceil$ (D) $y_1(x) + C \lceil y_1(x) + y_2(x) \rceil$

二、填空题(每题1分)

- 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y}{1+x^2} \Delta x + \alpha$,且当 $\Delta x \to 0$ 时, α 是 Δx 的高阶无穷小量, $y(0) = \pi$,则 $y(1) = \pi e^{\frac{\pi}{4}}$. (微分方程)
- $x(y''')^2 + 2x^2y'^2 + x^3y = x^4 + 1$ 是 3 阶微分方程.
- 设函数 f(x) 连续,则 $\frac{d}{dx} \int_0^x t f(t^2 x^2) dt = x f(-x^2)$. (换元法)
- 函数 f(x) 在 [a,b] 上有界是 f(x) 在 [a,b] 上可积的 <u>必要</u>条件,而 f(x) 在 [a,b] 上连续是 f(x) 在 [a,b] 上可积的 <u>充分</u>条件.

三、判断题(每题1分)

- |f(x)| 在 [a,b] 上可积,但 f(x) 在 [a,b] 上不一定可积(<mark>对</mark>)
- 若 f(x)+g(x) 在 [a,b] 上可积,则 f(x) 与 g(x) 也均在上可积(\mathbf{e})
- 微分方程的通解包含了微分方程所有的解(错)

四、计算题(每题3分)

1. 已知
$$f(x)$$
 连续,且 $\int_0^x tf(2x-t)dt = \frac{1}{2}\arctan x^2$. 已知 $f(1)=1$, 求 $\int_1^2 f(x)dx$ 的值。(换元法)

令
$$2x-t=u$$
,则 $\int_0^x tf(2x-t)dt=\int_0^{2x}(2x-u)f(u)du$,对 x 求导:

左端求导=(
$$\int_{x}^{2x} (2x-u)f(u)du$$
)'=($2x\int_{x}^{2x} f(u)du - \int_{x}^{2x} uf(u)du$)'= $2\int_{x}^{2x} f(u)du - xf(x)$

右端求导=
$$\left(\frac{1}{2}\arctan x^2\right)' = \frac{1}{2}\frac{2x}{1+x^4} = \frac{x}{1+x^4}$$
,即 $2\int_x^{2x} f(u)du - xf(x) = \frac{x}{1+x^4}$,带入 $x = 1$ 得:

$$2\int_{1}^{2} f(u)du - f(1) = \frac{1}{2}, \quad \mathbb{RI} \int_{1}^{2} f(x)dx = \frac{3}{4}$$

2. 求极限
$$\lim_{x\to a} \frac{x}{x-a} \int_a^x f(t)dt$$
, 其中 $f(x)$ 连续

$$\lim_{x \to a} \frac{x}{x - a} \int_{a}^{x} f(t) dt \xrightarrow{\text{Addistip}} \lim_{x \to a} \frac{\int_{a}^{x} f(t) dt + x f(x)}{1} = a f(a)$$

3. 计算
$$\int_{1}^{e} \sin(\ln x) dx$$

令 $u = \ln x, x = e^u$, 当x = 1和0时, u = 0和1, 带入原积分得:

$$\int_{1}^{e} \sin(\ln x) dx = \int_{0}^{1} \sin u de^{u} = \left[e^{u} \sin u \right]_{0}^{1} - \int_{0}^{1} e^{u} \cos u du$$

$$= e \sin 1 - \int_{0}^{1} \cos u de^{u} = e \sin 1 - \left[e^{u} \cos u \right]_{0}^{1} - \int_{0}^{1} \sin u de^{u}$$

$$= e \sin 1 - e \cos 1 + 1 - \int_{0}^{1} \sin u de^{u}$$

故
$$\int_0^1 \sin u de^u = \frac{e \sin 1 - e \cos 1 + 1}{2}$$

4. 求曲线 $y = e^x$ 与直线 x = 1, x = 2 及 y = 0 所围区域的面积。.

$$A = \int_1^2 e^x dx = e^2 - e$$

五、证明题(每题3分)

1. 设 f(x) 在 [0,1] 上连续,且 f(x) < 1,求证: 方程 $2x - \int_0^x f(t)dt = 1$ 在 (0,1) 内有且只有一个实根. (介值定理)证明: 构造辅助函数 $G(x) = 2x - \int_0^x f(t)dt - 1$

2) 又G'(x) = 2 - f(x) > 0, 所以G(x)在[0,1]上为单调递增函数;

结合 1)、2) 知,G(x) = 0在 (0,1) 内有且只有一个实根。

- 2. 设 f(x) > 0,且在 [a,b]上连续, $F(x) = \int_a^x f(t)dt + \int_b^x \frac{dt}{f(t)}$, $x \in [a,b]$. 证明:(1) $F'(x) \ge 2$;(2) 方程 F(x) = 0在区间 (a,b)内有且仅有一个根. 方法同上。
- 3. 验证函数 $y = C_1 \cos kx + C_2 \sin kx (C_1, C_2$ 为常数) 是微分方程 $\frac{d^2 y}{dx^2} + k^2 y = 0$ 的通解

$$\frac{d^2 y}{d x^2} + k^2 y = -C_1 k^2 \cos kx - C_2 k^2 \sin kx + k^2 y$$
$$= -k^2 (C_1 \cos kx + C_2 \sin kx) + k^2 y = -k^2 y + k^2 y = 0$$

所以 $y = C_1 \cos kx + C_2 \sin kx$ 是方程的解,另外,因为 C_1 , C_2 是**两个独立的任意常数**,故 $y = C_1 \cos kx + C_2 \sin kx$ 是方程的通解。