Chapter 4: Integrals Week 10

Pierre-Olivier Parisé Calculus I (MATH-241 01/02)

> University of Hawai'i Fall 2021

Upcoming this week

- 1 4.0 Symbol of summation
- 2 4.1 Areas and Distances

Definition 1

The symbole $\sum_{n=k}^{m} a_n$ means to sum the numbers a_k , a_{k+1} , \cdots , a_m .

Explicitly, we have

$$\sum_{n=k}^m a_n = a_k + a_{k+1} + \cdots + a_m.$$

Example 2

Using the sumbol \sum , write the sum 1+2+3+4.

Example 3

Using the symbol \sum , write the sum 1 + 1/2 + 1/3 + 1/4.

Question 4

What is the sum of the first n positive integers? That is, what is $1+2+3+4+\cdots+n$? Do we have a formula for this?

Values of n	Values of the sum
1	1
2	3
3	6
4	10
:	:
10	55

Table: Some Values of the Sum of the first positive integers

There is a nice trick to find the formula. Let S be the sum of the positive integers up to 6.

Arrange the sum in this way

$$1+2+3+4+5+6=S$$

 $6+5+4+3+2+1=S$.

Sum each equality together:

We got six 7, so $6 \cdot 7 = 2S$, so $S = 6 \cdot 7/2 = 21$.

The great Gauss (the prince of mathematics) used this little trick to compute this sum.

Figure: Carl Frederich Gauss

There is another proof of this formula which is really nice.

- (a) Initial position of the in- (b) Another copy of the (c) Two copies stacked tegers
 - pyramide

7/14

$$\mathsf{Numbers} = \frac{6 \times 7}{2}.$$

Week 10 UHawai'i

Theorem 5

In general, we have

$$\sum_{k=1}^n k = \frac{n(n+1)}{2}.$$

Theorem 6

In general, we have

$$\sum_{k=1}^{n} k^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

Theorem 7

In general, we have

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

PO Parisé Week 10 UHawai'i

Question 8

What is the area of

- a rectangle?
- a triangle?
- a shape delimited by straight lines?

(d) Rectangle A = bh

(e) Triangle A = bh/2

(f) Polygonal shape $A = A_1 + A_2 + A_3$

9/14

PO Parisé Week 10 UHawai'i

Question 9

Can you find the area of the shape in the picture below? Area under a curve

Figure: Area under the curve $y = x^2$ on [0, 1]

Week 10 UHawai'i 10 / 14

Example 10

Approximate the area under the curve $y = x^2$ for $x \in [0, 1]$ with 4 rectangles.

Definition 11

Let f be a function on an interval [a, b]. Set $\Delta x := \frac{b-a}{n}$.

• The upper sum of triangles is defined as

$$R_n := \sum_{k=1}^n f(a + k\Delta x) \Delta x.$$

The lower sum is defined as

$$L_n := \sum_{k=1}^n f(a + (k-1)\Delta x) \Delta x.$$

Remarks

- The points $x_k = a + k\Delta x$ are called the right-end points.
- The points $x_k = a + (k-1)\Delta x$ are called the left-end points.

PO Parisé Week 10 UHawai'i

n	L_n	R_n
10	0.28500000	0.3850000
20	0.3087500	0.3587500
100	0.3283500	0.3383500
1000	0.3328335	0.3338335

So, the area seems to approach 0.33333... = 1/3.

Example 12

Prove that $\lim_{n\to\infty} R_n = \frac{1}{3}$.

We can use this idea to apply to the general case. Let [a, b] be an interval and let $\Delta x := \frac{b-a}{n}$. Take x_n a list of points such that

$$x_0 = a,$$
 $x_1 = a + \Delta x,$ $x_2 = a + 2\Delta x,$ $x_3 = a + 3\Delta x,$ \vdots \vdots $x_{n-1} = a + (n-1)\Delta x,$ $x_n = a + n\Delta x.$

Put $R_n := \sum_{k=1}^n f(x_k) \Delta x$.

Definition 13

Let f be a function defined on the interval [a,b]. The area A of the region S lying under the graph of the function f is the limit of the sum of the areas of approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} (f(x_1)\Delta x + f(x_2)\Delta x + \cdots + f(x_n)\Delta x).$$

Remarks

• We can take any point $x_k^* \in [x_{k-1}, x_k]$ and form the sum $\sum_{k=1}^n f(x_k^*) \Delta x$.

PO Parisé Week 10 UHawai'i

Figure: Sum of rectangles obtained from sample points

Exercises: 3, 4, 14, 21-26. Read section on the distance problem.

PO Parisé Week 10 UHawai'i