Math 327 Homework 3

September 20, 2017

Anchu A. Lee

Question 3.4

 $S = \{HHH, THHH, HTHHH, TTHHH, TTTHHH, HTTHHH, THTHHH, HHTHHH\}$ S is discrete because you cannot flip a fraction of a heads or tails.

Question 3.10

The probability of rolling any side of a fair six sided die is $\frac{1}{6}$, so the formula for probability distribution is $f(x) = \frac{1}{6}$ for x = 1, 2, 3, 4, 5, 6 Equal chance of getting any side.

Question 3.12

•
$$P(T=5) = F(5) - F(4) = \frac{1}{4}$$

•
$$P(T > 3) = 1 - F(3) = \frac{1}{2}$$

•
$$P(1.4 < T < 6) = F(6) - F(1.4) = \frac{1}{2}$$

•
$$P(T \le 5 \mid T \ge 2) = \frac{P(2 \le T \le 5)}{P(T \ge 2)} = \frac{F(5) - F(2)}{1 - F(2)} = \frac{2}{3}$$

Question 3.14 $x = \frac{12}{60}$

•
$$F(x) = F(0.2) = 1 - e^{-8(0.2)} = 0.79810...$$

•
$$f(x) = \frac{dF}{dx} = 8e^{-8x}$$
 when $x > 0$

$$\int_0^{0.2} f(x)dx = \int_0^{0.2} 8e^{-8x}dx = 8 \int_0^{0.2} e^{-8x}dx = -e^{-8x} \Big|_0^{0.2} = 0.79810...$$

Question 3.18

•
$$P(X < 4) = \int_2^4 \frac{2(1+x)}{27} dx = 0.59259...$$

•
$$P(3 \le X < 4) = \int_3^4 \frac{2(1+x)}{27} dx = 0.33333...$$

Question 3.20

$$F(x) = \int_2^x \frac{2(1+t)}{27} dt = \frac{2}{27} \cdot \int_2^x 1 + t dt = \frac{2}{27} \left(t + \frac{t^2}{2} \right) \Big|_2^x = \frac{(x+4)(x-2)}{27}$$

$$P(3 \le X < 4) = F(4) - F(3) = \frac{(4+4)(4-2)}{27} - \frac{(3+4)(3-2)}{27} = 0.33333...$$

 $\binom{10}{4}$ ways of selecting 4 CDs from 10. We want x number of jazz CDs from $\binom{5}{x}\binom{5}{4-x}$ $f(x) = \frac{\binom{5}{x}\binom{5}{4-x}}{\binom{10}{4}}$ x = 0, 1, 2, 3, 4

Question 3.30

•
$$1 = k \int_{-1}^{1} (3 - x^2) = \frac{16}{3}k, \ k = \frac{3}{16}$$

•
$$P(X < 0.5) = \int_{-1}^{0.5} \frac{3}{16} (3 - x^2) dx = 0.7734375$$

•
$$F(x) = \int_{-1}^{x} \frac{3}{16} (3 - t^2) dt = (3t - \frac{1}{3}t^3) \Big|_{-1}^{x} = \frac{1}{2} + \frac{9}{16}x - \frac{x^3}{16}$$

 $P(|X| < 0.7) = P(X < -0.8) + P(X > 0.8) = F(-0.8) + 1 - F(0.8) = 0.164$

Question 3.32

•
$$\int_0^1 5(1-y)^4 dy = 1$$

•
$$P(Y < 0.1) = \int_0^{0.1} 5(1-y)^4 dy = 0.40951$$

•
$$P(Y > 0.5) = (1 - 0.5)^5 = 0.03125$$

Question 3.38

•
$$P(X \le 2, Y = 1) = f(0,1) + f(1,1) + f(2,1) = \frac{1}{30} + \frac{2}{30} + \frac{3}{30} = \frac{1}{5}$$

•
$$P(X > 2, Y \le 1) = f(3,0) + f(3,1) = \frac{3}{30} + \frac{4}{30} = \frac{7}{30}$$

•
$$P(X > Y) = f(1,0) + f(2,0) + f(3,0) + f(2,1) + f(3,1) + f(3,2) = \frac{1}{30} + \frac{2}{30} + \frac{3}{30} + \frac{3}{30} + \frac{4}{30} + \frac{5}{30} = \frac{18}{30}$$

•
$$P(X+Y=4) = f(1,3) + f(2,2) = \frac{4}{30} + \frac{4}{30} = \frac{8}{30}$$

Question 3.40

•
$$g(x) = \int_0^1 \frac{2}{3}(x+2y)dy = \frac{2}{3}\int_0^1 (x+2y)dy = \frac{2}{3}(x+1)$$
, for $0 \le x \le 1$

•
$$h(y) = \int_0^1 \frac{2}{3}(x+2y)dx = \frac{1}{3}(1+4y)$$
, for $0 \le y \le 1$

•
$$P(X < 0.5) = \int_0^{0.5} \frac{2}{3}(x+1)dx = 0.41666...$$

Question 3.44

•
$$1 = \int_{30}^{50} \int_{30}^{50} k(x^2 + y^2) dx dy = k \int_{30}^{50} 20y^2 + \frac{98000}{3} dy = k \frac{3920000}{3}$$
, so $k = \frac{3}{3920000}$

•
$$P(30 \le X \le 40, 40 \le Y < 50) = \frac{3}{3920000} \int_{40}^{50} \int_{30}^{40} (x^2 + y^2) dx dy = \frac{3}{3920000} \int_{40}^{50} 10y^2 + \frac{37000}{3} dy = \frac{3}{3920000} \frac{980000}{3} = 0.25$$

•
$$P(30 \le X \le 40, 30 \le Y < 40) = \frac{3}{3920000} \int_{30}^{40} \int_{30}^{40} (x^2 + y^2) dx dy = \frac{3}{3920000} \int_{30}^{40} 10y^2 + \frac{37000}{3} dy = \frac{3}{3920000} \frac{740000}{3} = 0.18877...$$

Question 3.46

$$\begin{array}{l} \bullet \ \, g(0) = \frac{1}{30} + \frac{2}{30} = \frac{3}{30} \\ g(1) = \frac{1}{30} + \frac{2}{30} + \frac{3}{30} = \frac{6}{30} \\ g(2) = \frac{2}{30} + \frac{3}{30} + \frac{4}{30} = \frac{9}{30} \\ g(3) = \frac{3}{30} + \frac{4}{30} + \frac{5}{30} = \frac{12}{30} \\ \end{array}$$

•
$$h(0) = \frac{1}{30} + \frac{2}{30} + \frac{3}{30} = \frac{6}{30}$$

 $h(1) = \frac{1}{30} + \frac{2}{30} + \frac{3}{30} + \frac{4}{30} = \frac{10}{30}$
 $h(2) = \frac{2}{30} + \frac{3}{30} + \frac{4}{30} + \frac{5}{30} = \frac{14}{30}$

Question 3.50

•
$$g(2) = 0.10 + 0.20 + 0.10 = 0.40$$

 $g(4) = 0.15 + 0.30 + 0.15 = 0.60$

•
$$h(1) = 0.10 + 0.15 = 0.25$$

 $h(3) = 0.20 + 0.30 = 0.50$
 $h(5) = 0.10 + 0.15 = 0.25$

Question 3.68

•
$$g(x) = \int_{1}^{2} \frac{3x-y}{9} dy = \frac{1}{6}(2x-1)$$
 for $1 < x < 3$
 $h(y) = \int_{1}^{3} \frac{3x-y}{9} dx = -\frac{2}{9}(y-6)$ for $1 < y < 2$

• No, because
$$g(x)g(y) \neq f(x,y)$$

•
$$P(X > 2) = \int_2^3 \frac{1}{6} (2x - 1) dx = \frac{2}{3}$$

Question 3.80

Let X be the number of components that work. $P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$

Let X be the humber of components that work $P(X=3) = \binom{5}{3}(0.92)^3(1-0.92)^2 = 0.49836...$ $P(X=4) = \binom{5}{4}(0.92)^4(1-0.92) = 0.28656...$ $P(X=5) = \binom{5}{5}(0.92)^5 = 0.65908...$ $P(X \ge 3) = 0.99547...$