1 Calculus II

1.1 Integration

1.1.1 Standard Integral Forms

$$\int f'(x)dx = f(x) + c$$

$$\int f'(x)(f(x))^n dx = \frac{1}{n+1} \quad f(x)^{n+1} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + c$$

$$\int f'(x)e^{f(x)} dx = e^{f(x)} + c$$

1.1.2 Special and Trigonometric Integrals

$$\int \frac{1}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left(\frac{x - a}{x + a}\right) + c$$

$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left(\frac{a + x}{a - x}\right) + c$$

$$\int \tan(x) dx = \ln(\sec(x))$$

$$\int \cot(x) dx = \ln(\sin(x))$$

$$\int \csc(x) dx = -\ln(\csc(x) + \cot(x))$$

$$\int \sec(x) dx = \ln(\sec(x) + \tan(x))$$

1.1.3 Integration by Substitution

Given a substitution
$$u(x)$$
 where $f(x)=g(u)$
$$\int f(x)dx = \int g(u)\frac{dx}{du}du$$

For definite integrals, substitute u back to receive the integral as a function of x. For definite integrals with limits [a,b], change limits to [u(a),u(b)] to evaluate the integral.

1.1.4 Integration by Parts

Recall the chain rule:

$$\frac{d}{dx}f(x)g(x) = f(x)g'(x) + f'(x)g(x)$$
$$f(x)g(x) = \int f(x)g'(x) + f'(x)g(x)dx$$
$$\int f(x)g'(x) = f(x)g(x) - \int f'(x)g(x)dx$$

To find the indefinite integral of a function involving multiplication, use integration by parts to eliminate one part of the integral.

1.2 Definite Integrals

1.2.1 Area Under Curve

Area bounded by x axis, x=a, x=b and f(x):

$$\int_{a}^{b} |f(x)| dx$$

Area bounded by y axis, y = a, y = b and f(y):

$$\int_{a}^{b} |f(y)| dy$$

1.2.2 Area of Parametric

Area bounded by x axis, x=a, x=b and parametric curve (x(t),y(t):

$$\int_{a}^{b}ydx=\int_{c}^{d}y(t)\frac{dx}{dt}dt$$
 Where $x(c)=a,x(d)=b$

1.2.3 Volume of Rotation

Volume enclosed by curve rotated about x axis:

$$\pi \int_{a}^{b} (f(x))^{2} dx$$