Le λ -calcul pur.

Le λ -calcul a trois domaines proches :

- \triangleright la *calculabilité*, avec l'équivalence entre machines de Turing et λ -expression (vue en FDI);
- ▷ la programmation fonctionnelle (vue en Théorie de la Programmation [Chapitre 6] avec le petit langage FUN);
- ⊳ la théorie de la démonstration (vue dans la suite de ce cours).

On se donne un ensemble infini \mathcal{V} de variables notées x, y, z, \ldots Les termes (du λ -calcul) ou λ -termes sont définis par la grammaire

$$M, N, \dots := \lambda x. M \mid M N \mid x.$$

La construction $\lambda x.$ M s'appelle l' abstraction ou λ -abstraction. Elle était notée $\operatorname{fun} x \to M$ en cours de théorie de la programmation.

Notation. \triangleright On notera $M \ N \ P$ pour $(M \ N) \ P$.

- \triangleright On notera $\lambda xyz.M$ pour $\lambda x.\lambda y.\lambda zM$ (il n'y a pas lieu de mettre des parenthèses ici, vu qu'il n'y a pas d'ambigüités).
- \triangleright On notera $\lambda x. M N$ pour $\lambda x. (M N)$. **Attention**, c'est différent de $(\lambda x. M) N$.

1 Liaison et α -conversion.

Remarque 1 (Liaison). Le « λ » est un lieur. Dans λy . x y, la variable y est $li\acute{e}e$ mais pas x (la variable x libre). On note $\mathcal{V}\ell(M)$ l'ensemble des variables libres de M, définie par induction sur M (il y a 3 cas).

Remarque 2 (α -conversion).

On note $=_{\alpha}$ la relation d' α -conversion. C'est une relation binaire sur les λ -termes fondée sur l'idée de renommage des abstractions en évitant la capture de variables libres :

$$\lambda x. \ x \ y =_{\alpha} \lambda t. \ x \ t \neq_{\alpha} \lambda x. x \ x.$$

Ainsi $\lambda x.\ M =_{\alpha} \lambda z.\ M'$ où M' est obtenu en remplaçant x par z **là où il apparaît libre** et **à condition que** $z \notin \mathcal{V}\ell(M)$. Ceci, on peut le faire partout.

Lemme 1. La relation $=_{\alpha}$ est une relation d'équivalence. Si $M=_{\alpha}N$ alors $\mathcal{V}\ell(M)=\mathcal{V}\ell(N)$.

Par convention, on peut identifier les termes modulo $=_{\alpha}$. On pourra donc toujours dire

« considérons
$$\lambda x. M$$
 où $x \notin E [...]$ »

avec E un ensemble fini de variables.

Ceci veut dire qu'on notera

$$M = N$$
 pour signifier que $M =_{\alpha} N$.

2 La β -réduction.

Définition 1 (β -réduction). On définit la relation de β -réduction sur les λ -termes, notée \rightarrow_{β} ou \rightarrow , définie par les règles d'inférences :

$$\frac{(\lambda x. M) N \to_{\beta} M[^{N}/x]}{M \to_{\beta} M'} \frac{M \to_{\beta} M'}{\lambda x. M \to_{\beta} \lambda x. M'}$$

$$\frac{M \to_{\beta} M'}{M N \to_{\beta} M' N} \frac{N \to_{\beta} N'}{M N \to_{\beta} M N'}$$

où $M[^N/_x]$ est la substitution de x par N dans M (on le défini ci-après).

Définition 2. Un terme de la forme $(\lambda x. M)$ N est appelé un redex (pour reducible expression) ou β -redex. Un terme M est une forme normale s'il n'existe pas de N tel que $M \to_{\beta} N$.

Remarque 3. La relation \rightarrow_{β} n'est pas terminante :

$$\Omega := (\lambda x. \ x \ x) \ (\lambda y. \ y \ y) \rightarrow_{\beta} (\lambda y. \ y \ y) \ (\lambda y. \ y \ y) =_{\alpha} \Omega.$$

Exemple 1.

Un pas de β -réduction peut :

- \triangleright dupliquer un terme (c.f. (\star));
- \triangleright laisser un redex inchangé (c.f. $(\star\star)$);
- ⊳ faire disparaître un redex (qui n'est pas celui que l'on contracte) :

$$(\lambda x. u)((\lambda z. z) t) \rightarrow_{\beta} u ;$$

▷ créer de nouveaux redex :

$$(\lambda x. x y) (\lambda z. z) \rightarrow_{\beta} (\lambda z. z) y.$$

3 Substitutions.

Exemple 2. Le terme λxy . x c'est une « fonction fabriquant des fonctions constantes » au sens où

$$(\lambda xy. x)M \rightarrow_{\beta} \lambda y. M,$$

à condition que $y \notin \mathcal{V}\ell(M)$. On doit cependant α -renommer pour éviter la capture :

$$(\lambda xy.x) (\lambda t. y) \not\rightarrow_{\beta} \lambda y. (\lambda t. y)$$

$$\downarrow^{\parallel}$$

$$(\lambda xy'.x) (\lambda t. y) \rightarrow_{\beta} \lambda y'. (\lambda t. y).$$

Définition 3. On procède par induction, il y a trois cas :

Lemme 2 (Gymnastique des substitutions). Pour $y \notin \mathcal{V}\ell(R)$,

$$(P[Q/y])[R/x] = (P[R/x])[Q[R/x]/y].$$

Lemme 3. Si $M \to_{\beta} M'$ alors $\mathcal{V}\ell(M') \subseteq \mathcal{V}\ell(M)$.

4 Comparaison λ -calcul et FUN.

En λ -calcul, on a une règle

 $et \ y \neq x.$

$$\frac{M \to_{\beta} M'}{\lambda x. \ M \to_{\beta} \lambda x. \ M'}.$$

Cette règle n'existe pas en FUN (ni en fouine) car on traite les fonctions comme des valeurs. Et, en FUN , les trois règles suivantes sont

mutuellement exclusives:

$$\frac{M \to_{\beta} M'}{(\lambda x.\ M)\ N \to_{\beta} M[^N/x]} \qquad \frac{M \to_{\beta} M'}{M\ N \to_{\beta} M'\ N} \qquad \frac{N \to_{\beta} N'}{M\ N \to_{\beta} M\ N'}$$

car on attend que N soit une valeur avant de substituer.

En FUN (comme en fouine), pour l'exemple 1, on se limite à n'utiliser que les flèches rouges.

La relation \to_{β} est donc « plus riche » que $\to_{\sf FUN}$. En $\sf FUN$, on a une stratégie de réduction : on a au plus un redex qui peut être contracté. On n'a pas de notion de valeur en λ -calcul pur. Le « résultat d'un calcul » est une forme normale.

5 Exercice : les booléens.

On définit

$$T := \lambda xy. x$$
 $F := \lambda xy. y.$

Ainsi, pour tout M (si $y \notin \mathcal{V}\ell(M)$),

$$\mathbf{T} M \to \lambda y. M \qquad \mathbf{F} M \to \lambda y. y =: \mathbf{I}.$$

La construction if b then M else N se traduit en b M N.

Le « non » booléen peut se définir par :

$$\triangleright$$
 not := $\lambda b. b \mathbf{F} \mathbf{T} = \lambda b. b (\lambda xy. y) (\lambda tu. t);$

 \triangleright **not**' := $\lambda b. \lambda xy. byx.$

La première version est plus abstraite, la seconde est « plus électricien ». On a deux formes normales *différentes*.

De même, on peut définir le « et » booléen :

- \triangleright and := λb_1 . λb_2 . b_1 (b_2 **T F**) **F**;
- \triangleright and' := λb_1 . λb_2 . λxy . $b_1 (b_2 x y) y$.

6 Confluence de la β -réduction.

Définition 4 (Rappel, c.f. **Théorie de la Programmation** [Chapitre 10]). On dit que \to est confluente en $t \in A$ si, dès que $t \to^* u_1$ et $t \to^* u_2$ il existe t' tel que $u_1 \to^* t'$ et $u_2 \to^* t'$.

Les flèches en pointillés représentent l'existence.

On dit que \rightarrow est confluente si \rightarrow est confluente en tout $a \in A$.

La propriété du diamant correspond au diagramme ci-dessous :

c'est-à-dire si $t \to u_1$ et $t \to u_2$ alors il existe t' tel que $u_1 \to t'$ et $u_2 \to t'$.

La confluence pour \rightarrow , c'est la propriété du diamant pour \rightarrow^* . On sait déjà que la β -réduction n'a pas la propriété du diamant (certains chemins de l'exécution sont plus longs), mais on va montrer qu'elle est confluente.

Définition 5. On définit la relation de r'eduction parallèle, notée \Rightarrow , par les règles d'inférences suivantes :

$$\frac{M \rightrightarrows M'}{x \rightrightarrows x} \frac{M \rightrightarrows M'}{\lambda x. \ M \rightrightarrows \lambda x. \ M'}$$

$$\frac{M \rightrightarrows M' \quad N \rightrightarrows N'}{M \ N \rightrightarrows M' \ N'} \frac{M \rightrightarrows M' \quad N \rightrightarrows N'}{(\lambda x. \ M) \ N \rightrightarrows M'[N'/x]}$$

Lemme 4. La relation \Rightarrow est réflexive.

Lemme 5. Si $\Re \subseteq \mathcal{S}$ alors $\Re^* \subseteq \mathcal{S}^*$. De plus, $(\Re^*)^* = \Re^*$.

Lemme 6. Les relations \rightarrow^* et \rightrightarrows^* coïncident.

- **Preuve.** \triangleright On a $\rightarrow^* \subseteq \rightrightarrows^*$ car cela découle de $\rightarrow \subseteq \rightrightarrows$ par induction sur \rightarrow en utilisant la réflexivité de \rightrightarrows .
 - ightharpoonup On a $ightharpoonup^* \subseteq
 ightharpoonup^*$ car cela découle de $ightharpoonup \subseteq
 ightharpoonup^*$. En effet, on montre que pour tout M, M' si M
 ightharpoonup M' alors $M
 ightharpoonup^* M'$, par induction sur ightharpoonup. Il y a 4 cas.
 - Pour $x \rightrightarrows x$, c'est immédiat.
 - Pour l'abstraction, on suppose $M \rightrightarrows M'$ alors par induction $M \to^* M'$, et donc $\lambda x. M \to^* \lambda x. M'$ par induction sur $M \to^* M'$.
 - Pour l'application, c'est plus simple que pour la précédente.
 - Pour la substitution, supposons $M \rightrightarrows M'$ et $N \rightrightarrows N$. On déduit par hypothèse d'induction $M \to^* M'$ et $N \to^* N'$. Et, par induction sur $M \to^* M'$, on peut montrer que $(\lambda x. M) NN \to^* (\lambda x. M') N$. Puis, par induction sur $N \to^* N'$, on montre $(\lambda x. M') N \to^* (\lambda x. M') N'$. Enfin, par la règle de β-réduction, on a $(\lambda x. M')N' \to M'[N'/x]$. On rassemble tout pour

obtenir:

$$(\lambda x. M) N \to^{\star} M'[N'/x].$$

On est donc ramené à montrer que \rightrightarrows^* a la propriété du diamant. Or \rightrightarrows a la propriété du diamant, ce que l'on va montrer en TD.

Lemme 7. Si $M \Rightarrow M'$ alors $N \Rightarrow N'$ implique $M[N/x] \Rightarrow M'[N'/x]$.

Preuve. Par induction sur $M \rightrightarrows M'$, il y a 4 cas. On ne traite que le cas de la 4ème règle. On suppose donc $M = (\lambda y. P) Q$ avec $y \notin \mathcal{V}\ell(N)$ et $y \neq x$. On suppose aussi $P \rightrightarrows P', Q \rightrightarrows Q'$ et M' = P'[Q'/y]. On suppose de plus $N \rightrightarrows N'$. Par hypothèse d'induction, on a $P[N/x] \rightrightarrows P'[N'/x]$ et $Q[N/x] \rightrightarrows Q'[N'/x]$. On applique la 4ème règle d'inférence définissant \rightrightarrows pour déduire

$$\underbrace{(\lambda y. (P[N/x]))}_{\parallel} (Q[N/x]) \Longrightarrow (P'[N'/x])[Q'[N'/x]/y] = (P'[Q'/y])[N'/x]$$

$$(\lambda y. P)[N/x]$$

$$\operatorname{car} x \neq y$$

par le lemme de gymnastique des substitutions et car $y \notin \mathcal{V}\ell(N') \subset \mathcal{V}\ell(N)$ et car $N \to^* N'$.

Proposition 1. La relation \Rightarrow a la propriété du diamant.

Preuve. Vu en TD.

Corollaire 1. On a la confluence de \rightarrow_{β} .

Définition 6. La β -équivalence, ou β -convertibilité est la plus petite relation d'équivalence contenant \rightarrow_{β} . On la note $=_{\beta}$.

Si l'on a

alors $M =_{\beta} N$.

Proposition 2. Tout λ -terme est β -équivalent à au plus une forme normale.

Preuve. Si $M =_{\beta} N$ et M, N sont des formes normales, alors par confluence il existe P tel que $M \to^{\star} P$ et $N \to^{\star} P$. On a donc que M = N = P.

Remarque 4 (Conséquences). \triangleright Deux normales distinctes (au sens de $=_{\alpha}$) ne sont pas β -convertibles.

 \triangleright Si on a un λ -terme qui diverge et qui a une forme normale, par exemple $(\lambda x.\ y)\ \Omega$, alors on peut toujours « revenir » sur la forme normale.