Multi armed Bandits

Chuck Chan

April 3, 2021

Problem

Conditions

- Fixed set of limited resources and time
- Resources must be allocated between competing choices to maximize expected gains
- Each choice has properties that are partially known at the time of allocation and becomes better understood as time passes or by allocating resources
- Assumes the distribution for rewards from choices are fixed but unknown

Classic Example

 Gambler deciding which slot machine to play and how many times to play each, which order to play them, and if they should continue or switch machines.

Explore & Exploit tradeoff

- A tradeoff is created between time spent on Exploring and Exploiting the choices
 - Exploration is the time spent gathering information on the possible choices.
 - Exploitation is spending the time on the choice that is expected to maximizes the gains.
- Regret (ρ) is the difference between gains from the strategy taken and maximum gains given complete information. It is used to evaluate how well a strategy performs.
- Some algorithms can be stuck on suboptimal solutions like local means

Multi Armed bandit Applications

- Clinical Trials
 - Adaptive allocation strategy to improve data collection by allocate more samples for exploring promising treatments
- Portfolio management
 - Making portfolio choices by exploiting correlations among arms to balance risk and amount of passive and active investments
- Dynamic pricing
 - Real-time pricing for product balancing demand with maximizing profits
- Recommender Systems
 - Recommend relevant items to users based on contextual information
- Social Media Marketing
 - Maximize user awareness of a product through social networks by selecting seed users for exposure
- Information Retrieval
 - Determines selection process for information returned by search
- Anomaly detection
 - Identify deviating nodes that are used for predicting fraudulent transactions that are given to a human investigator

Solutions

- ε Greedy
 - Assigns probability to balance exploration / exploitation
- Softmax / Botzmann Exploration
 - Algorithm converges on an efficient arm
- Pursuit Algorithm
 - Modifies probability of choosing each arm based on rewards
- Reinforcement Comparison
 - Calculates a preference for each arm and compares an mean rewards
- Upper Confidence bound family of algorithms
 - Construct and updates a mean and confidence interval for the reward of each arm
- Gittens Index
 - Maintains a value function for each arm
- Thompson Sampling
 - Maintains a mean and standard deviation for each arm and selects based on prior probabilities

ε Greedy Strategies

- Strategy to balance explore and exploit options
 - ε is the probability of choosing explore and 1- ε is exploit
 - Each round an arm is selected based on a probability is generated randomly of explore and exploit
 - During exploration each non-best arms are all considered equivalently

Softmax / Boltzmann Exploration

- Select arms based on rewards from a probability from the Boltzmann distribution
- Arms with larger empirical means have a higher chance of being picked
- Hyperparameter τ controls the randomness of the choice
 - $\tau = 0$ means the algorithm becomes greedy picking the largest empirical mean
 - When τ is large, arms are selected uniformly at random
- Represented as:

$$p_i(t+1) = \frac{e^{\widehat{\mu_i}(t)/\tau}}{\sum_{j=1}^k e^{\widehat{\mu_j}(t)/\tau}}, i = 1, ..., n$$
average reward for all arms

Probability of choosing arm i at time t+1

Pursuit Algorithm

- Starts with uniform probabilities assigned to each arm $p_i(0) = 1/k$ and a learning rate $\beta \in (0,1)$
- Probabilities are updated after each turn t

Update if $i = \operatorname{argmax} \widehat{\mu_j}(t)$

Represented as:

$$p_i(t+1) = \begin{cases} p_i(t) + \beta(1-p_i(t)) \\ p_i(t) + \beta(0-p_i(t)) \end{cases}$$
 Update of arm i otherwise

Learning rate between (0,1)

Reinforcement Comparison

- Maintain an distribution over all actions that is updated
- Maintain an average expected reward $\bar{r}(t)$
- Probability of selecting an arm is computed by comparing empirical mean with the average expected rewards
 - Probability is increased if it is above the average expected rewards
 - Decreased if equal or lower
- Probability of selecting an arm i:

 $p_i(t) = \frac{e^{\pi_i(t)}}{\sum_{i=1}^k e^{\pi_j(t)}}$ Preference for each arm i average preference for arm j

$$\sum_{j=1}^{n} e^{nj(t)}$$

• Preference update if arm j(t) is played and reward r(t) is received:

$$\pi_{j(t)}(t+1) = \pi_{j(t)}(t) + \beta(r(t) - \bar{r}(t))$$
 Average expected rewards

Mean rewards update at every turn:

turn: Learning rates between 0,1
$$\bar{r}(t+1) = (1-\alpha)\bar{r}(t) + \alpha r(t)$$
 Reward at time t

Upper Confidence Bounds algorithm family

- construct a confidence interval of what each arm's true performance might be
 - Factors the uncertainty caused by variance using empirical means
 - Limited series of pulls tracking times each arm is played
- Algorithm assumes each arm will perform as well as its upper confidence bound selecting the arm with the highest one
- Algorithm variants
 - UCB-1
 - Tuned UCB-1 (includes variance)
 - Bayes UCB (includes prior distribution information)

Upper Confidence Bounds 1

- maintains the number of times each arm is played and empirical means
- Use Hoeffding's inequality to assign upper bound to an arm's mean reward
- Initially each arm is played once
- Followed by a greedy algorithm:

confidence interval for the average reward

eedy algorithm:
$$j(t) = \arg \max_{i=1,\dots,k} \left(\frac{\hat{\mu}_i}{n_i} + \sqrt{\frac{2lnt}{n_i}} \right)$$

Number of times arm i is played

average reward for arm i

Upper Confidence Bounds 1

- Smaller n_i the larger the Confidence Intervals and less accurate mean rewards, Larger results in smaller confidence and more accurate mean rewards
- As t increases the algorithm converges to the optimal action
- Regret calculation

$$8\sum_{i:\mu_i<\mu^*} \frac{\ln(t)}{\mu^*-\mu_i} + \left(1 + \frac{\pi^2}{3}\right) \sum_{i=1}^k \mu^* - \mu_i$$

 Regret is O(log(n)) bounded growth, optimizing regret to a multiplicative constant

Tuned UCB1 (Audibert, et al 2009)

- Performs better than UCB
- Includes variance of each arm
- Equation to pick arms at turn t:

Number of times arm *i* is played

Variance calculated by sum of squares of reward

$$j(t) = \arg\max_{i=1,\dots,k} \left(\hat{\mu}_i + \sqrt{\frac{lnt}{n_i}} \min\left(\frac{1}{4}, \hat{\sigma}_i(t) + \frac{2lnt}{n_i} \right) \right)$$
average reward for arm i

Bayesian UCB

- Uses Priors about distributions in determining confidence intervals
- Assume rewards normally distributed

Algorithm:

Thompson Sampling

- also known as posterior sampling & probability matching
- Aims to quickly identify arm with highest mean, by starting with a posterior belief for the mean and adjusting the mean for the arm played
- Algorithm converges to the optimal solution.
- Chooses arm with posterior probability of being the best arm
 - Not choosing the one most likely to be effective
 - Gives benefit of doubt to less explored choices
- Accounts for uncertainty about means, higher uncertainty ensured a less explored arm is pulled
- The variance in the posterior enables exploration

Thompson sampling for Bernoulli rewards

- Sampling distribution with Bernoulli rewards
- Start with Beta priors using Beta(1,1) for each arm
- $Beta(\alpha, \beta)$ priors are updated at round t where:
 - Successes updates $Beta(\alpha+1,\beta)$ if 1 is observed
 - Failures updates $Beta(\alpha, \beta+1)$ if 0 is observed
- Arm i is selected that maximizes rewards calculated by $\hat{\theta}_k = \frac{\alpha_k}{\alpha_k + \beta_k}$
- Beta posteriors are updated.

Thompson Sampling with Gaussian Priors

Empirical mean

- Rewards for arm i is N(μ_i, 1)
- Starting priors set N(0,1)
- Sample $\tilde{\mu}_{i,t}$ from posterior mean for $N\left(\hat{\mu}_{i,t}, \frac{1}{n_{i,t}+1}\right)$ arm i
- Arm i is selected that maximizes $\widetilde{\mu}_{i,t}$
- Update the empirical mean $\hat{\mu}_{i,t}$ for i_t

Number of observations

Gittins index

- Measures reward that can be achieved in a stochastic process using dynamic allocation indexes
- Used for Bayesian MAB problems where
 - Each arm has a reward distribution that has an known prior
 - The arms are independent
 - The objective is to maximize the expected discount reward
- Prior probabilities are updated each time a decision is made with posterior probability
- An single arm is represented as a Markov chain and reward function
- Policy is a function that determines the decision of which arm to chose next.

Gittens Index Calculation and Policy

- A Gittens Index (GI) is calculated for each arm and the reward is allocated as stochastic process of success and failure with an unknown probability of success
- A policy is implemented and depends on the relative accuracy of the GI limited by:
 - decisions involving arms with similar GI values being rare
 - Cost of a suboptimal action is small when the GI is close to the optimal arm, giving a boundary for the loss rewards of the policy in terms of GI where the GI accuracy limits the losses and rewards.
- Each time an arm is selected the GI for that arm is updated.
- Some policies may reduce / retire arms

Calibration method for GI calculation

Value function for single arm(risk arm):

$$V(\Sigma, n, \gamma, \lambda) = \max \left\{ \frac{\Sigma}{n} - \lambda + \gamma E_Y [V(\Sigma + Y, n + 1, \gamma, \lambda)]; 0 \right\}$$
Value of the risk arm
Value of the safe arm reduced to 0

• The fix reward arm λ minimizes the value function to close to zero and is found by recursion of a calibration algorithm given some initial bounds

Variables

λ an arm of known fixed reward

 γ discount factor Y random variable of the risk arm state with state (Σ, n) Σ Bayes sum of rewards of the risk arm

n Bayesian number of observations of the risk arm

Bernoulli MAB GI calculation

- Reward of one or zero
- Value function for discrete single arm of a disc

$$W(\Sigma, n, \gamma, \lambda) = \max \left\{ \frac{\Sigma}{n} - \lambda + \gamma \left[\frac{\Sigma}{n} V(\Sigma + Y, n + 1, \gamma, \lambda) + \left(1 - \frac{\Sigma}{n}\right) V(\Sigma, n, \gamma, \lambda) \right]; 0 \right\}$$

Variables

λ an arm of known fixed reward

γ discount factor

Y random variable of the risk arm state with state (Σ, n)

 Σ Bayes sum of rewards of the risk arm

n Bayesian number of observations of the risk arm

Algorithms for the multi-armed bandit problem (2000)

- Tested multiple MAB solutions against different bandit characteristics
- Algorithms tested
 - ε Greedy
 - Boltzmann Exploration
 - Upper Confidence Bounds
 - Reinforcement Comparisons
 - Pursuit Algorithms
- Characteristics for MABs
 - Different distributions
 - Number of arms
 - Reward variances
- Tested algorithms in Medical Clinical trial settings

Algorithms for the multi-armed bandit problem (2000)

- Simple heuristic algorithms like Boltzmann exploration out performed advance algorithms
 - Both ϵ Greedy and Boltzmann Exploration had versions that had decreasing hyperparameters ϵ and τ but were found to have no advantage by Vermorel and Mohri (2005)
- Performance of algorithms affected by number of arms and reward variances
- Algorithms vary depending on Bandit instances
 - UCB family is good for bandits with small number of arms and high reward variance, but degrades as number of arms increase

Adversarial Bandits

- Multi-arm Bandit variant where an adversary determines the outcome of based on the arm that is selected
- Goal is to minimize negative outcomes
- Examples
 - iterated prisoner's dilemma
 - Clinical trials
- Solutions include EXP3 algorithm
 - Weights are adjusted for favorable arms

Exponential weight for Exploration & Exploitation (EXP3)

- Weight are adjusted over time to favor good arms and reduced for less promising arms
- Algorithm initialized a vector of weights each at 1
- Setup: $p_i(t) = (1-\gamma) \frac{w_i(t)}{\sum_{j=1}^k w_j(t)} + \frac{\gamma}{k}$ Hyperparameter for exploration of arms uniformly at random where 1= pure exploration k is the number of different arms
- Draw arms i_t randomly according to p_i , ..., p_k and observe rewards $x_{i_t} \in [0,1]$
- Define estimated reward $\hat{x}_j(t) = \frac{x_j(t)}{p_j(t)}$ for $j = i_t$, otherwise 0 for all j
- Update weights $w_j(t+1) = w_j(t)e^{\gamma \hat{x}_j(t)/k}$

Contextual Bandits

- Multi-armed bandit variant where choosing an arm is dependent on a set of contextual information. The reward is observed for the chosen action
- Goal:
 - Balance explore and exploit behavior
 - Use context as effectively as possible, generalize across context
 - Handle selection bias from skewed data of exploring while exploiting
- Characteristics
 - K arms
 - d-dimensional feature vector $x_{i,t}$ for every arm i, at time t
 - Linear parametric model with parameter θ and expected rewards for arm i, at time $t:x_{i,t}\theta$
 - Optimal arm depends on context $x_t^* = \underset{x_{i,t}}{arg \max} x_{i,t} \theta$

Contextual Bandits

- Determine a policy to choose action based on context
 - Policies decide prior to learning
 - Associating context with the best action is treated as a classification problem
- Examples
 - News / Advertising from a website that is served to users with a set of browsing history
 - Medical doctor assigning a treatment with the most favorable outcome based on symptoms
 - Clinical trial with patient data
 - Recommender systems for media with user preferences

Contextual bandit solutions

- Follow the Leader (FTL)
 - Find the empirically best policy and use it to select the best action
- Thompson Sampling
 - Use least square estimator for rewards, the state transition is learned by comparing against a fixed policy.
 - Transition probabilities for each state and action is stored in a Dirichlet posterior
- EXP4
 - Modified EXP3 algorithm with experts advice influencing probability
- LinUCB
 - Modified UCB algorithm that uses a data matrix of features for context, a linear function with hyperparameters, and a vector corresponding to feedback

More Bandit variations

- Lipschitz Bandit, where an algorithm has information on the similarity between arms.
 - Used for dynamic pricing problems
- Bandits with Knapsack, bandit problems with a supply constraints
 - Used in dynamic pricing problems with limited supply
- Combinatorial bandit, where a set of k arms are selected
 - Used for online advertising and social influence maximation.
- Adversarial Bandits with corruption, where the adversary knows the actor's choice and has the ability to corrupt the reward of the selected arm.

The End