

HashNWalk: Hash and Random Walk Based **Anomaly Detection in Hyperedge Streams**

Geon Lee, Minyoung Choe, and Kijung Shin

{geonlee0325, minyoung.choe, kijungs}@kaist.ac.kr

Summary

- Goal: to detect anomalous hyperedges in a hyperedge stream
- **Previous Work:**
 - proposed algorithms for (pairwise) graphs
 - focused on *only one* of the aspects of anomalousness
- **Proposed Method (HashNWalk):**
 - an online algorithm for detecting anomalous hyperedges
 - detects structurally/temporally abnormal hyperedges
- **Results:**
 - **Speed:** processes each hyperedge in near real-time
 - **Space:** requires constant space, controlled by the user
 - **Accuracy:** outperforms the competitors up to 47% ↑ AUROC

Background: Hypergraphs

- Hypergraphs model group interactions
 - each hyperedge is a subset of any number of nodes

- In many real-world scenarios, hypergraphs evolve over time
 - a hyperedge stream $\{(e_i, t_i)\}_{i=1}^{\infty}$ is a sequence of hyperedges $e_2 = (\tilde{e}_2, t_2 = 10)$

Background: Random Walk

Random walk based on edge-dependent vertex weights for exploiting higher-order information

If the current node is u,

- ① Select a hyperedge e that contains node u (i.e., $u \in e$) with probability proportional to the weight $\omega(e)$.
- Select a node $v \in e$ with probability proportional to the edgedependent vertex weight $\gamma_e(v)$.
- Walk to node v.

Problem Definition

- **Anomalies in Hypergraphs:**
 - Unexpected hyperedges consist of unnatural comb. of nodes
 - Bursty hyperedges appear in bursts in a short period of time

- **Formal Problem Definition:**
 - **Given:** a hyperedge stream
 - **Detect:** anomalous (i.e., unexpected/bursty) hyperedges
 - Desired: (a) in near real-time
 - (b) using constant space

Proposed Algorithm: HashNWalk

(1) Hypergraph Summarization

- a new hyperedge arrives in the input hyperedge stream
- nodes are merged into M supernodes by **hashing**
- each hyperedge is represented as an M-dimensional vector

(2) Incremental Update

- $\widetilde{P}_{u,v}$ is the **transition probability** of supernode u o v
- $\widetilde{\boldsymbol{P}}$ is computed from \boldsymbol{S} and \boldsymbol{T}
- They are incrementally updated in response to new hyperedges

(3) Anomaly Detection

- the hypergraph summary $\widetilde{\boldsymbol{P}}$ is compared with its expectation
- functions **score**_U and **score**_B measure anomalousness

Experimental Results

Q1. Performance: HashNWalk is accurate and fast in a real dataset (credit card transactions) and two semi-real datasets

- Q2. Discoveries: HashNWalk detects meaningful events.
- (1) Case study in **DBLP hypergraph**

(2) Case study in cite-patent hypergraph

Q3. Scalability: HashNWalk scales linearly with the hypergraph size

Reproducibility: source code & datasets are available at:

https://github.com/geonlee0325/HashNWalk