Year 12 - Ext 1 - Trial and HSC Revision - Sheet 5

Name:

Question 1 {further calculus}

Which of the following is an equation of a curve that intersects at right angles every curve of the family $y = \frac{1}{x} + k$ (where k is a constant)?

(A)
$$y = x^2$$

(B)
$$y = -x^2$$

(C)
$$y = -\frac{1}{3}x^3$$

(D)
$$y = \frac{1}{3}x^3$$

Question 2 {mathematical induction}

Emma Jane made an error proving that $3^{2n}-1$ is divisible by 8 (for $n \ge 1$), using mathematical induction. Part of her proof is shown below.

Step 2: Assume the result true for
$$n = k$$

 $3^{2k} - 1 = 8P$ where P is an integer.
Hence $3^{2k} = 8P + 1$

Step 3: To prove the result is true for
$$n = k + 1$$

RTP:
$$3^{2(k+1)} - 1 = 8Q$$
 where Q is an integer. Line 1
LHS = $3^{2k+2} - 1$ Line 2
= $3^{2k} \times 3^2 - 1$ Line 3
= $(8P+1) \times 3^2 - 1$ (using the assumption) Line 3
= $72P + 1 - 1$ Line 4
= $72P$
= $8(9P)$
= $8Q$
= RHS

In which line did Emma Jane make an error?

(A) Line 1 (B) Line 2 (C) Line 3 (D) Line 4

Question 3 {trig equations} -

Solve $\sin 2\theta = \cos \theta$ for $0 \le \theta \le \pi$.

Hint: move the $\cos \theta$ to the LHS and factorise, don't just divide by $\cos \theta$

2

Question 4 {polynomials}

The cubic polynomial $P(x) = ax^3 + bx^2 - 6x + 8$ has a factor of (x-1) and a remainder of -24 when divided by (x+2).

(i) Show that
$$a = 3$$
 and $b = -5$.

(ii) Hence without using calculus, sketch P(x), showing all axes intercepts. 3

Hint: use the Remainder Theorem, it'll be much much easier.

Question 5 {polynomials}

Find the term independent of x in the expansion of
$$\left(5x^2 + \frac{1}{x}\right)^{12}$$
.

Hint: "independent term" means the term that doesn't have an \boldsymbol{x} in it. AKA the constant term.

Question 6 {polynomials}

Let the cubic polynomial, $P(x) = x^3 - 3x^2 - 4x + 12$ have roots α, β and γ .

(i) Find the value of
$$\alpha + \beta + \gamma$$
.

(ii) Find the value of
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
.

(iii) Given that two of its roots have a sum of zero, find the values of α , β and γ .

Question 7 {vectors}

Alysha hits a golf ball off the ground with velocity V at an angle of projection θ to the horizontal. The equations of motion are as follows and do not need to be proven:

$$\ddot{x} = 0 \qquad \qquad \ddot{y} = -g$$

$$\dot{x} = V \cos \theta \qquad \qquad \dot{y} = V \sin \theta - gt$$

$$x = Vt \cos \theta \qquad \qquad y = Vt \sin \theta - \frac{1}{2}gt^2$$

- (i) Show that Alysha's golf ball reaches a maximum height of $\frac{V^2 \sin^2 \theta}{2g}$.
- (ii) Kristine hits a second golf ball projected from the same horizontal plane. 4

 It has velocity $V \times \sqrt{\frac{5}{2}}$ and is projected at an angle $\frac{\theta}{2}$ to the horizontal.

 What angles should Alysha and Kristine project their golf balls if they are to reach the same maximum height?

Question 8 {second derivatives}

Prove that the graph of $y = \log_e x$ is concave down for all x > 0.

2

Question 9 {differential equations}

The slope field below could represent which of the following differential equations?

- A. $\frac{dy}{dx} = \frac{2x}{y}$ B. $\frac{dy}{dx} = \frac{2y}{x}$ C. $\frac{dy}{dx} = \frac{x^2}{y^2}$ D. $\frac{dy}{dx} = \frac{y^2}{x^2}$