1. Introdução

A modulação por largura de pulso (PWM) é uma técnica amplamente utilizada na eletrônica para controlar a potência média entregue a um dispositivo. Essa técnica envolve a geração de um sinal digital com uma largura de pulso variável, permitindo o controle preciso da intensidade de um componente sem a necessidade de alterar sua tensão de alimentação.

O PWM é aplicado em uma variedade de dispositivos eletrônicos, como motores, fontes de alimentação, controle de brilho em LEDs e conversores de energia. Sua popularidade se deve às suas características vantajosas, como eficiência energética, controle preciso e baixo custo de implementação.

A essência do PWM está no fato de que um sinal de pulso com uma largura de pulso variável pode controlar a quantidade média de energia entregue a um dispositivo. Ao variar a largura do pulso, é possível ajustar a potência média fornecida, resultando em um controle eficiente e preciso.

2. Princípio de funcionamento do PWM

O princípio de funcionamento do circuito PWM baseia-se na variação da largura do pulso do sinal digital gerado. Esse sinal consiste em uma série de pulsos com uma amplitude fixa e uma duração que pode ser ajustada. A largura do pulso representa a fração de tempo em que o sinal está em nível alto (geralmente 5V) em relação ao período total do sinal.

A relação entre a largura do pulso e a tensão média do sinal é crucial para o controle da potência entregue ao dispositivo. Quando a largura do pulso é aumentada, a tensão média aumenta, resultando em uma maior potência média fornecida. Da mesma forma, uma redução na largura do pulso resulta em uma menor tensão média e, portanto, menor potência média.

O sinal PWM é gerado por meio de circuitos eletrônicos específicos, que podem incluir osciladores, comparadores e circuitos lógicos. Esses componentes trabalham em conjunto para produzir um sinal digital com largura de pulso variável, de acordo com a configuração desejada.

5. Vantagens e desvantagens do PWM

Vantagens do PWM:

Eficiência energética: O PWM permite o controle preciso da potência entregue a um dispositivo. Ao ajustar a largura do pulso do sinal PWM, é possível controlar a quantidade média de energia fornecida ao componente, resultando em uma utilização eficiente da energia.

Controle preciso: O PWM oferece um controle altamente preciso da intensidade ou velocidade de um dispositivo. A variação da largura do pulso permite ajustar finamente a potência média entregue, possibilitando um controle detalhado e suave.

Compatibilidade com uma ampla gama de dispositivos: O PWM é compatível com uma variedade de dispositivos eletrônicos, como motores, lâmpadas, bobinas e LEDs. Isso o torna uma técnica versátil para o controle de diferentes componentes.

Baixo custo de implementação: O circuito PWM pode ser implementado com componentes eletrônicos básicos, tornando-o uma solução de controle de baixo custo.

Desvantagens do PWM:

Interferência e ruídos elétricos: O chaveamento rápido do sinal PWM pode gerar interferências e ruídos elétricos indesejados, que podem afetar outros componentes ou sistemas próximos. É necessário adotar medidas adequadas de filtragem e blindagem para minimizar esses efeitos.

Necessidade de filtragem adequada: Como o sinal PWM consiste em pulsos rápidos, é necessário aplicar um filtro passa-baixas para suavizar o sinal e obter uma forma de onda mais contínua. Isso é importante para evitar oscilações indesejadas e garantir um comportamento estável do componente controlado.

Complexidade do projeto: O projeto do circuito PWM pode se tornar mais complexo dependendo das especificações e requisitos do componente controlado. Isso inclui o dimensionamento correto dos componentes, seleção de transistores de potência adequados e considerações de dissipação de calor.

6. Aplicações do circuito PWM em diferentes áreas

O circuito PWM possui uma ampla gama de aplicações em diferentes áreas da eletrônica. Vamos explorar algumas dessas aplicações para entender a versatilidade dessa técnica:

Controle de motores: O controle de velocidade de motores de corrente contínua (DC) é uma das aplicações mais comuns do circuito PWM. Ao variar a largura do pulso do sinal PWM enviado ao motor, é possível ajustar a potência média fornecida, controlando assim sua velocidade de rotação. Essa aplicação é utilizada em robótica, automação industrial, ventiladores, impressoras 3D e muitas outras áreas.

Fontes de alimentação chaveadas: As fontes de alimentação chaveadas usam o circuito PWM para converter a tensão de entrada em uma tensão de saída regulada. O PWM controla o chaveamento dos transistores de potência, permitindo um controle preciso da tensão média fornecida ao componente. Esse tipo de fonte de alimentação é amplamente utilizado em eletrônicos de consumo, computadores, sistemas de energia solar e muito mais.

Controle de brilho em LEDs: O circuito PWM é usado para controlar o brilho em LEDs (Light Emitting Diodes). Ao variar a largura do pulso do sinal PWM aplicado ao LED, é possível ajustar a quantidade média de corrente entregue, o que resulta em um controle eficiente do brilho. Essa aplicação é comumente encontrada em iluminação residencial, displays digitais, telas de dispositivos móveis e iluminação automotiva.

Controle de servo motores: Servo motores são amplamente utilizados em aplicações de controle de posição, como em braços robóticos, aeromodelismo e automação industrial. O circuito PWM é utilizado para controlar a posição desses motores, fornecendo pulsos com largura variável para indicar o ângulo desejado. O sinal PWM determina a posição do eixo do servo motor.

Sistemas de áudio digital: O circuito PWM é empregado em sistemas de áudio digital, como amplificadores de áudio Classe D. Nesses sistemas, o sinal de áudio é convertido em um sinal PWM, que é amplificado e, posteriormente, filtrado para reproduzir o sinal de áudio original. A utilização do PWM nesse contexto permite uma alta eficiência energética e baixa distorção, resultando em um som de alta qualidade.

Slide 1

Boa tarde, nós vamos apresentar nosso trabalho sobre modulação por largura de pulso. Eu sou a Camila, ele é o Bernardo e ele é o Alexandre

Slide 2

Nós vamos falar sobre (ler tópicos da agenda)

Slide 3

O escopo do projeto é desenvolver um circuito com transmissor, receptor e canal que use sinais reais, e nós decidimos implementar a modulação por largura de pulso

Slide 4

Primeiro vamos começar falando o que é pwm

A modulação por largura de pulso (PWM) é uma técnica amplamente utilizada na eletrônica para controlar a potência média entregue a um dispositivo. Essa técnica envolve a geração de um sinal com uma largura de pulso variável, permitindo o controle eficiente e preciso da intensidade dessa entrega sem a necessidade de alterar sua tensão de alimentação.

Slide 5

Nós vamos explicar mais pra frente o funcionamento do circuito, mas basicamente, o princípio de funcionamento do circuito PWM baseia-se na variação da largura do pulso do sinal gerado.

Esse sinal é uma série de pulsos com uma amplitude fixa e uma duração ajustável.

Já sobre a largura, existe uma relação entre a largura do pulso e a tensão média do sinal que é usada para o controle da potência entregue ao dispositivo. Quando a largura do pulso é aumentada, a tensão média aumenta, resultando em uma maior potência média fornecida. Da mesma forma, uma redução na largura do pulso resulta em uma menor tensão média e, portanto, menor potência média.

Slide 6

Agora sobre as vantagens e desvantagens do pwm, as vantagens são:

 Resistência a ruído: os sinais do processador para o sistema controlado estão no formato digital, sem a necessidade de conversão digital para analógico. Manter o sinal no formato digital minimiza o impacto do ruído. O ruído pode afetar apenas o sinal digital se for forte o suficiente para alterar a lógica 1 para a lógica 0 ou a lógica 0 para a lógica 1.

- Controle preciso: O PWM oferece um controle altamente preciso da intensidade ou velocidade de um dispositivo. A variação da largura do pulso permite ajustar finamente a potência média entregue, possibilitando um controle detalhado e suave.
- Compatibilidade com uma ampla gama de dispositivos: O PWM é compatível com uma variedade de dispositivos eletrônicos, como motores, lâmpadas, bobinas e LEDs. Isso o torna uma técnica versátil para o controle de diferentes componentes.
- **Baixo custo de implementação:** O circuito PWM pode ser implementado com componentes eletrônicos básicos, tornando-o uma solução de controle de baixo custo.

As desvantagens são:

- **Perda de chaveamento em altas frequências:** ao dissipar muita potência, tem-se produção de calor e outras perdas perdas
- Necessidade de filtragem adequada: Como o sinal PWM consiste em pulsos rápidos, é necessário aplicar um filtro passa-baixas para suavizar o sinal e obter uma forma de onda mais contínua. Isso é importante para evitar oscilações indesejadas e garantir um comportamento estável do componente controlado.
- Complexidade do projeto: O projeto do circuito PWM pode se tornar mais complexo dependendo das especificações e requisitos do componente controlado. Isso inclui o dimensionamento correto dos componentes, seleção de transistores de potência adequados e considerações de dissipação de calor.

Slide 7

Finalmente, algumas aplicações do pwm são:

 Controle de motores: O controle de velocidade de motores de corrente contínua (DC) é uma das aplicações mais comuns do circuito PWM. Ao variar a largura do pulso do sinal PWM enviado ao motor, é possível ajustar a potência média fornecida, controlando assim sua velocidade de rotação. Essa aplicação é utilizada em robótica, automação industrial, ventiladores, impressoras 3D e muitas outras áreas.

- Fontes de alimentação chaveadas: As fontes de alimentação chaveadas usam o circuito PWM para converter a tensão de entrada em uma tensão de saída regulada. O PWM controla o chaveamento dos transistores de potência, permitindo um controle preciso da tensão média fornecida ao componente. Esse tipo de fonte de alimentação é amplamente utilizado em eletrônicos de consumo, computadores, sistemas de energia solar e muito mais.
- Controle de brilho em LEDs: O circuito PWM é usado para controlar o brilho em LEDs (Light Emitting Diodes). Ao variar a largura do pulso do sinal PWM aplicado ao LED, é possível ajustar a quantidade média de corrente entregue, o que resulta em um controle eficiente do brilho. Essa aplicação é comumente encontrada em iluminação residencial, displays digitais, telas de dispositivos móveis e iluminação automotiva.
- Controle de servo motores: Servo motores são amplamente utilizados em aplicações de controle de posição, como em braços robóticos, aeromodelismo e automação industrial. O circuito PWM é utilizado para controlar a posição desses motores, fornecendo pulsos com largura variável para indicar o ângulo desejado. O sinal PWM determina a posição do eixo do servo motor.
- Sistemas de áudio digital: O circuito PWM é empregado em sistemas de áudio digital, como amplificadores de áudio Classe D. Nesses sistemas, o sinal de áudio é convertido em um sinal PWM, que é amplificado e, posteriormente, filtrado para reproduzir o sinal de áudio original. A utilização do PWM nesse contexto permite uma alta eficiência energética e baixa distorção, resultando em um som de alta qualidade.