Computational Physics II: Introduction to Matlab and Numerical Calculus

รศ.ดร. ชรินทร์ โหมดชัง

Assoc. Prof. Dr. Charin Modchang

Department of Physics,

Faculty of Science, Mahidol University

1.0 Basic matrix operations

Definition of Matrix Addition

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are matrices of size $m \times n$, then their **sum** is the $m \times n$ matrix given by

$$A + B = [a_{ij} + b_{ij}].$$

The sum of two matrices of different sizes is undefined.

Definition of Scalar Multiplication

If $A = [a_{ij}]$ is an $m \times n$ matrix and c is a scalar, then the **scalar multiple** of A by c is the $m \times n$ matrix given by

$$cA = [ca_{ij}].$$

Definition of Matrix Multiplication

If $A = [a_{ij}]$ is an $m \times n$ matrix and $B = [b_{ij}]$ is an $n \times p$ matrix, then the **product** AB is an $m \times p$ matrix

$$AB = [c_{ij}]$$

where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + a_{i3} b_{3j} + \dots + a_{in} b_{nj}.$$

1.0 Basic matrix operations

Definition of the Determinant of a 2×2 Matrix

The **determinant** of the matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

is given by

$$\det(A) = |A| = a_{11}a_{22} - a_{21}a_{12}.$$

Definitions of Minors and Cofactors of a Matrix

If A is a square matrix, then the **minor** M_{ij} of the element a_{ij} is the determinant of the matrix obtained by deleting the *i*th row and *j*th column of A. The **cofactor** C_{ij} is given by

$$C_{ij} = (-1)^{i+j} M_{ij}.$$

Definition of the Determinant of a Matrix

If A is a square matrix (of order 2 or greater), then the determinant of A is the sum of the entries in the first row of A multiplied by their cofactors. That is,

$$\det(A) = |A| = \sum_{j=1}^{n} a_{1j} C_{1j} = a_{11} C_{11} + a_{12} C_{12} + \cdots + a_{1n} C_{1n}.$$

Variables

Matlab has only one data type: matrix.

$$x = 5; y = 8; \vec{a} = \begin{bmatrix} 3 & 8 & -1 \end{bmatrix}; \vec{b} = \begin{bmatrix} 1 \\ 5 \\ 3 \end{bmatrix}$$
 $\begin{cases} x = 5; \\ y = 8; \\ a = \begin{bmatrix} 3 & 8 & -1 \end{bmatrix}; \\ b = \begin{bmatrix} 1; 5; 3 \end{bmatrix}; \end{cases}$

$$C = \begin{bmatrix} 2 & 5 & 7 \\ 8 & 3 & 1 \\ 0 & -5 & 8 \end{bmatrix}; \quad D = \begin{bmatrix} 3 & x & 6 \\ pi & 4 & 2 \\ 1 & \sqrt{-1} & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 5 & 7; 8 & 3 & 1; 0 & -5 & 8]; \\ D = \begin{bmatrix} 3 & x & 6; pi & 4 & 2; 1 & sqrt(-1) & 3]; \\ D = \begin{bmatrix} 3 & x & 6; pi & 4 & 2; 1 & sqrt(-1) & 3 \end{bmatrix};$$

```
x = 5;
y = 8;
a = [3 8 -1];
b = [1; 5; 3];
C = [2 5 7; 8 3 1; 0 -5 8];
D = [3 x 6; pi 4 2; 1 sqrt(-1) 3];
```

Arithmetic Operations

All arithmetic operations in Matlab are matrix operations.

```
z = x + y;
g = a*b;
E = C + D;
F = C*D;
G = C/D; %this is equivalent to C*inv(D)
H = C^2; %power operator
J = D' %Hemitian conjugate
K = C.' %Transpose
```

Element by element operations:

```
L = C.*D;
M = C./D;
N = C.^2;
```

Loops and conditionals

```
for i=1:5 %Your basic loops; i goes from 1 to 5 with the default step 1 p(i) = 2^i; end %This is the end of the loop for i=1:2:5 %Your basic loops; i goes from 1 to 5 with the step 2 q(i) = 2^i; end %This is the end of the loop while (x>1) x = x/2 end
```

Loops and conditionals

```
if (k > 5) % A simple conditional
  a = 2;
end
if (m>= 5 && m <= 8) %Another conditional using else
  a = 3;
else
 a = 4;
end
if (m > = 5 \&\& m < = 8)
  a = 3;
elseif (m == 10) %Conditional using elesif
  a = 4;
end
```

Colon operator

The colon operator can be used to create a vector.

How can we increase the speed of (1)?

```
Consider
(1)
tau = 0.1;
for i=1:100
    time(i) = tau*i;
end

(2)
tau = 0.1;
i = 1:100; %The colon operator can be used to create a vector
time = tau*i;
```

The colon operator is also useful for selecting parts of a matrix.

-z = B(:,2) assigns the second column of matrix B to the vector z.

Input and Output

x = input('Enter the value of x: ');

```
a = input('Answer < yes> or < no>: ','s')
disp('The value of x is ')
disp(x)
fprintf('The value of x is %g \n',x);
other useful commands:
          :save all variables in the workspace
save
load
          :load the saved data
>>save ABC A B C %store the values of A,B,C into the file 'ABC.mat'
>>load ABC A C %read the values of A,C from the file 'ABC.mat'
>>clear A C %clear the memory of MATLAB about A,C
```

Some useful build-in functions

Table 1.1: Selected MATLAB mathematical functions.

Table 1.1: Selected MATLAB mathematical functions.	
abs(x)	Absolute value or complex magnitude
norm(x)	Magnitude of a vector
sqrt(x)	Square root
sin(x), cos(x)	Sine and cosine
tan(x)	Tangent
atan2(y,x)	Arc tangent of y/x in $[0, 2\pi]$
exp(x)	Exponential
log(x), log10(x)	Natural logarithm and base-10 logarithm
rem(x,y)	Remainder (modulo) function (e.g., rem(10.3,4)=2.3)
floor(x)	Round down to nearest integer (e.g., floor(3.2)=3)
ceil(x)	Round up to nearest integer (e.g., ceil(3.2)=4)
rand(N)	Uniformly distributed random numbers from
	the interval $[0, 1)$. Returns $N \times N$ matrix.
randn(N)	Normal (Gaussian) distributed random numbers
	(zero mean, unit variance). Returns $N \times N$ matrix.

Some useful build-in functions

inv(x) :Inverse of the matrix x

plot(x,y) :Plot vector x versus vector y

semilogx(x,y) :Semilog plot

semilogy(x,y) :Semilog plot

loglog(x,y) :loglog plot

polar(theta,rho) :Polar plot

zeros(N) :Create an N-by-N matrix with all elements set to zero

ones(N) :Create an N-by-N matrix with all elements set to one

2D Graphic

```
x=1:0.1:10;
y=sin(x);
plot(x,y)
xlabel('x')
ylabel('sin(x)')
title('Plot function')
```


2D Graphic

```
%nm114 2: plot several types of graph
th = [0: .02:1]*pi;
subplot(221), polar(th,exp(-th))
subplot(222), semilogx(exp(th))
subplot(223), semilogy(exp(th))
subplot(224), loglog(exp(th))
pause, clf
subplot(221), stairs([1 3 2 0])
subplot(222), stem([1 3 2 0])
subplot(223), bar([2 3; 4 5])
subplot(224), barh([2 3; 4 5])
pause, clf
y = [0.3 \ 0.9 \ 1.6 \ 2.7 \ 3 \ 2.4];
subplot(221), hist(y,3)
subplot(222), hist(y, 0.5 + [0 1 2])
```

3D Graphic

```
%nm115: to plot 3D graphs
t = 0:pi/50:6*pi;
expt = exp(-0.1*t);
xt = expt.*cos(t); yt = expt.*sin(t);
%dividing the screen into 2 x 2 sections
subplot(221), plot3(xt, yt, t), grid on %helix
subplot(222), plot3(xt, yt, t), grid on, view([0 0 1])
subplot(223), plot3(t, xt, yt), grid on, view([1 -3 1])
subplot(224), plot3(t, yt, xt), grid on, view([0 -3 0])
pause, clf
x = -2:.1:2; y = -2:.1:2;
[X,Y] = meshgrid(x,y); Z = X.^2 + Y.^2;
subplot(221), mesh(X,Y,Z), grid on %[azimuth,elevation] = [-37.5,30]
subplot(222), mesh(X,Y,Z), view([0,20]), grid on
pause, view([30,30])
subplot(223), contour(X,Y,Z)
subplot(224), contour(X,Y,Z,[.5,2,4.5])
```

Movies

Graphic User Interface (GUI)

Ising.m

If you don't know, ask Matlab

- 1. If you know the function name, but don't know how to use it: help 'function name' (e. g. help for)
- 2. If you want to find the MATLAB commands/functions which are related with a job: lookfor 'job' (e.g. lookfor repeat)

Simple Matlab Program

Orthogonality program: orthog.m

Table 1.4: Outline of program orthog, which evaluates the dot product of a pair of three dimensional vectors.

- Initialize the vectors **a** and **b**.
- Evaluate the dot product as $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}_1 \mathbf{b}_1 + \mathbf{a}_2 \mathbf{b}_2 + \mathbf{a}_3 \mathbf{b}_3$.
- Print dot product and state whether vectors are orthogonal.

Exercise: Modify the orthogonality program so that it can handle vectors of any length.

Simple Matlab Program

If we have 3 data points, what is the simplest equation of a curve which passes through all data points?

The Lagrange form of the interpolation polynomial which passes 3 data points is

$$p(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}y_3$$

where (x_1,y_1) , (x_2,y_2) , (x_3,y_3) are the three data points to be fitted. Commonly, such polynomials are used to interpolate between data points.

Simple Matlab Program

Interpolation program: interp.m, intrpf.m

Table 1.6: Outline of function intrpf, which evaluates the Lagrange quadratic (1.5).

- Inputs: $\mathbf{x} = [x_1 \ x_2 \ x_3], \ \mathbf{y} = [y_1 \ y_2 \ y_3], \ \text{and} \ x^*$
- Outputs: y*
- Calculate $y^* = p(x^*)$ using the Lagrange polynomial (1.5).

Simple Matlab Program

Interpolation program: interp.m, intrpf.m

In general, if we have *n* data points, (ASK)

$$p(x) = \sum_{j=1}^{n} p_j f_{nj}(x)$$

where
$$f_{nj}(x) = \prod_{k \neq j}^{n} \frac{x - x_k}{x_j - x_k}$$

1.2 Numerical Errors

1. Round-off error

In Matlab eps = 2.2204e-016

Try to calculate the following in Matlab

- 1. (1+eps)-1
- 2. (2+eps)-2

So, what is the value of this expression $\frac{10}{(3+10^{-20})-3}$

2. Range Error

Try to calculate these in Matlab: 10^400 and $10^(-400)$. Check if $10^400 = 10^500$ The maximum range of number that Matlab can represent is about $10^{\pm 308}$

Inf = Infinity
NaN = Not a Number, e. g., 0/0

1.2 Numerical Errors

3. Loss of Significant

$$f_1(x) = \sqrt{x}(\sqrt{x+1} - \sqrt{x}), \qquad f_2(x) = \frac{\sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

Program: nm122

1.3 Numerical Differentiation

Naïve Formula

Definition
$$f'(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

We also have the Taylor series expressed as

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \dots$$

So, the first order derivative can be written as

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

Truncation Error

1.3 Numerical Differentiation

Centered Formula

An equivalent definition for the derivative is

$$f'(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

Using the Taylor series expansion

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \frac{1}{6}h^3f'''(x) + \dots$$
$$f(x-h) = f(x) - hf'(x) + \frac{1}{2}h^2f''(x) - \frac{1}{6}h^3f'''(x) + \dots$$

What is the truncation error?

The first derivative can be written as

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

1.3 Numerical Differentiation

Exercise: Derive the second derivative using the Taylor expansion

Answer:
$$f''(x) = \frac{f(x+h)-2f(x)+f(x-h)}{h^2} + O(h^2)$$

Demonstration: deriv.m and fund_deriv.m

Trapezoid rule

Consider the integral

$$I = \int_{a}^{b} f(x) dx$$

Our strategy for estimating I is to evaluate f(x) at a few points and fit a simple curve (e.g., piecewise linear) through these points.

Trapezoid rule

Figure 10.3: General trapezoidal rule for estimating integrals.

The area of a single trapezoid is

$$T_i = \frac{1}{2}(x_{i+1} - x_i)(f_{i+1} + f_i)$$

where $f_i \equiv f(x_i)$

Trapezoid rule

The true integral is estimated as the sum of the areas of the trapezoids, so

$$I \approx I_T = T_1 + T_2 + \ldots + T_{N-1}$$

If we take equal spacing

$$h = \frac{b-a}{N-1}$$
, so $x_i = a + (i-1)h$

Then

$$T_i = \frac{1}{2}h(f_{i+1} + f_i)$$

The trapezoidal rule for equally spaced points is

$$I_T(h) = \frac{1}{2}hf_1 + hf_2 + hf_3 + \dots + hf_{N-1} + \frac{1}{2}hf_N$$
$$= \frac{1}{2}h(f_1 + f_N) + h\sum_{i=2}^{N-1} f_i$$

Trapezoid rule

Most numerical analysis texts give the truncation error for the trapezoidal rule as

$$I - I_T(h) = -\frac{1}{12}(b - a)h^2 f''(\zeta)$$

Where there exists $a \le \zeta \le b$

Simpson rule

$$f(x) = \frac{(x - x_i)(x - x_{i+1})}{(x_{i-1} - x_i)(x_{i-1} - x_{i+1})} f_{i-1} + \frac{(x - x_{i-1})(x - x_{i+1})}{(x_i - x_{i-1})(x_i - x_{i+1})} f_i$$
$$+ \frac{(x - x_{i-1})(x - x_i)}{(x_{i+1} - x_{i-1})(x_{i+1} - x_i)} f_{i+1} + O(h^3).$$

$$S = \frac{h}{3} \sum_{j=0}^{n/2-1} (f_{2j} + 4f_{2j+1} + f_{2j+2}) + O(h^4),$$

Homework

(1)

Operations on Vectors

(a) Find the mathematical expression for the computation to be done by the following MATLAB statements.

$$>> n = 0:100; S = sum(2.^-n)$$

(b) Write a MATLAB statement that performs the following computation.

$$\left(\sum_{n=0}^{10000} \frac{1}{(2n+1)^2}\right) - \frac{\pi^2}{8}$$

(c) Write a MATLAB statement which uses the commands prod() and sum() to compute the product of the sums of each row of a 3 × 3 random matrix.

Homework

2. Write a Malab code to numerically differentiate the following functions using right, left, and center derivatives. Your program should also allow the user to specify the desired maximum error.

$$1.1 x^2 + x + 5$$

$$1.2\cos(x)$$

$$1.3 \left(\sin(x)-1\right)^4$$

ส่งการบ้านมาที่

Email: homework.charin@gmail.com

อย่าลืมเขียน ชื่อ นามสกุล และรหัสนักศึกษาทุกครั้ง ทั้งในตัวอีเมลและในไฟล์การบ้าน