Glottal Inversion

Lasse Lybeck Robert Sirviö

March 28, 2014

1 Introduction

2 Materials and Methods

2.1 The inversion method

2.1.1 Tikhonov reguralization

The classical Tikhonov regularized solution for $m = Af + \varepsilon$ defined in (ref here) is usually denoted by the vector $T_{\alpha}(m) \in \mathbb{R}^n$ that minimizes

$$\|AT_{\alpha}(m) - m\|^{2} + \alpha \|T_{\alpha}(m)\|^{2} \Leftrightarrow$$

$$T_{\alpha}(m) = \operatorname*{argmin}_{z \in \mathbb{R}^{n}} \{ \|Az - m\|^{2} + \alpha \|z\|^{2} \},$$

where $\alpha > 0$ is called a regularization parameter. The resulting $T_{\alpha}(m)$ can be understood as a compromise between two conditions, namely

- I. $T_{\alpha}(m)$ should give a small residual $AT_{\alpha}(m) m$.
- II. $||T_{\alpha}(m)||_2$ should be small.

The α parameter is used in order to tune to balance between the two conditions above.

In generalized Tikhonov regularization some prior knowledge is assumed to be known. In some cases f might be known to be smooth. This information can be incorporated into the regularization by choosing

$$T_{\alpha}(m) = \operatorname*{argmin}_{z \in \mathbb{R}^{n}} \left\{ \left\| Az - m \right\|^{2} + \alpha \left\| Lz \right\|^{2} \right\}, \tag{1}$$

where L is a discretized differential operator. In our model proposed in [ref here] we know the glottal impulse to be zero in an interval [mera kama hit när modellen är skriven]

- 2.1.2 The conjugate gradient method
- 3 Results
- 4 Discussion

References

[1] Mueller, Jennifer L. & Siltanen Samuli Linear and Nonlinear Inverse Problems with Practical Applications.
SIAM, 1:st edition, 2012