Homework 2

Dan Sokolsky

October 12, 2020

Exercise 1.

Proof. Since $f \neq 0$, there exists a radius r, on which $\int_{B_r(0)} |f| = c > 0$. For |x| > r, we have $B_r(0) \subseteq B_{|x|+r}(x)$ and therefore

$$Mf(x) \ge \frac{1}{\mu(B_{|x|+r}(x))} \int_{B_{|x|+r}(x)} |f| \ge \frac{c}{(|x|+r)^n}$$

So that

$$\int_{\mathbb{R}^n} |Mf(x)| \ge \int_{|x|>r} \frac{c}{(|x|+r)^n} = \infty$$

Thus, $Mf \notin L^1(\mathbb{R}^n)$.

Exercise 2.

Proof.

Exercise 3.

Proof.