PFGM: Poisson Flow Generative Models

Kaiwen Zheng 2023.03.31

Content

• Background: Velocity Field (VF) for Generative Modeling

PFGM: VF defined by Poisson Flow

PFGM++: bridging PFGM and Diffusion Models

we only care about continuous case/ODE form

Summary

Generative Modeling Through Velocity Field

For N-dimensional data x_0

$$\frac{d\mathbf{x}_t}{dt} = \mathbf{v}(\mathbf{x}_t, t)$$

Data distribution

Prior distribution (easy for sampling)

Diffusion models:

- v is the flow of diffusion process
- q_1 is (approximate) Gaussian

Learn to Generate by Matching Velocity Field

Two ODEs:

$$\frac{dx_t}{dt} = v(x_t, t)$$

$$\frac{dx_t}{dt} = v_\theta(x_t, t)$$
 Pre-defined; Gound-truth Model

Objective:

For any point $x \in \mathbb{R}^N$, minimize $E_t[\|v_{\theta}(x,t) - v(x,t)\|_2^2]$

But v(x, t) is **not tractable**

Transition Kernel and Conditional Velocity

Solution:

- 1. Regress v(x, t) unbiasedly:
 - Suppose we pre-define not the marginal q_t , but the transition kernel q_{0t} , so that

$$q_t(x) = \int q_0(x_0) q_{0t}(x|x_0) dx_0$$

• And the corresponding conditional velocity v_{0t} in the conditional ODE

$$\frac{d\mathbf{x}_t|\mathbf{x}_0}{dt} = \mathbf{v}_{0t}(\mathbf{x}_t|\mathbf{x}_0)$$

$$q_{0\epsilon} \longrightarrow q_{01}$$

• By the continuity equation, we can prove [3]

$$v_t(x) = \frac{\int q_0(x_0)q_{0t}(x|x_0)v_{0t}(x|x_0)dx_0}{q_t(x)}$$

Score Matching and Flow Matching

Usually, we define simple transition q_{0t}

- Sample from q_t is easy
- $\nabla \log q_{0t}$, \boldsymbol{v}_{0t} is tractable

We have the relation

$$\nabla \log q_t(\mathbf{x}) = E_{q_{t0}(\mathbf{x}_0|\mathbf{x})} [\nabla \log q_{0t}(\mathbf{x}|\mathbf{x}_0)]$$

Denoising score matching $\min_{\theta} E_{q_0(x_0)q_{0t}(x_t|x_0)} \left[\| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t,t) - \nabla \log q_{0t}\left(\boldsymbol{x}_t|\boldsymbol{x}_0\right) \|_2^2 \right]$

$$\min_{\theta} E_{q_0(\mathbf{x}_0)q_{0t}(\mathbf{x}_t|\mathbf{x}_0)} [\| \mathbf{v}_{\theta}(\mathbf{x}_t,t) - \mathbf{v}_{0t}(\mathbf{x}_t|\mathbf{x}_0) \|_2^2]$$

Conditional flow matching

Biased Estimator Using Finite Points

- 1. Regress v(x, t) unbiasedly
- 2. Estimate v(x, t) biasedly using a batch of reference samples:
 - The data distribution can be viewed as N discrete points

$$q_0(\mathbf{x}) = \frac{1}{N} \sum_{i} \delta(\mathbf{x} - \mathbf{x}^{(i)})$$

Then

Marginal density
$$q_t(x) = \frac{1}{N} \sum_i q_{0t}(x|x^{(i)})$$
 Score
$$\nabla \log q_t(x) = \frac{\sum_i q_{0t}(x|x^{(i)}) \nabla \log q_{0t}(x|x^{(i)})}{\sum_i q_{0t}(x|x^{(i)})}$$
 Velocity field
$$v_t(x) = \frac{\sum_i q_{0t}(x|x^{(i)}) v_{0t}(x|x^{(i)})}{\sum_i q_{0t}(x|x^{(i)})}$$

Biased but lower variance

Special Case: Diffusion Models

In diffusion models, we pre-define **noise schedule** α_t , σ_t , then

•
$$q_{0t}(\mathbf{x}_t|\mathbf{x}_0) = N(\mathbf{x}_t; \alpha_t \mathbf{x}_0, \sigma_t^2 \mathbf{I})$$

•
$$\nabla \log q_{0t} (\mathbf{x}_t | \mathbf{x}_0) = -\frac{\mathbf{x}_t - \alpha_t \mathbf{x}_0}{\sigma_t^2} = -\frac{\varepsilon}{\sigma_t}$$

•
$$v_{0t}(x_t|x_0) = \left(\dot{\alpha}_t - \frac{\dot{\sigma}_t}{\sigma_t}\alpha_t\right)x_0 + \frac{\dot{\sigma}_t}{\sigma_t}x_t = \dot{\alpha}_t x_0 + \dot{\sigma}_t \varepsilon$$

Are there other types of pre-defined velocity field to match?

Content

• Background: Velocity Field (VF) for Generative Modeling

PFGM: VF defined by Poisson Flow

PFGM++: bridging PFGM and Diffusion Models

we only care about continuous case/ODE form

Summary

Poisson Equation

Poisson equation
$$\nabla^2 \varphi(\mathbf{x}) = -\rho(\mathbf{x}),$$
 Gauss's law
$$\mathbf{E}(\mathbf{x}) = -\nabla \varphi(\mathbf{x}) \qquad \nabla \cdot \mathbf{E} = \rho$$
 Poisson field density

Instances:

$$abla \cdot \mathbf{E} = rac{
ho}{arepsilon}$$

• Gravitational field
$$\nabla \cdot \mathbf{g} = -4\pi G \rho$$

$$\nabla \cdot \mathbf{g} = -4\pi G \rho$$

Poisson Field

The Poisson field satisfies

Polynomial decay

$$\mathbf{E}(\mathbf{x}) = -\nabla \varphi(\mathbf{x}) = -\int \nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y}) \rho(\mathbf{y}) d\mathbf{y}, \quad \nabla_{\mathbf{x}} G(\mathbf{x}, \mathbf{y}) = -\frac{1}{S_{N-1}(1)} \frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|^{N}}.$$

surface area of (N-1)-dim unit sphere

ODE (degeneration direction): $\frac{d\mathbf{x}}{dt} = \mathbf{E}(\mathbf{x})$

- No time anchor t in the field.
- Limit: Uniform distribution on the N-dim hyper-hemisphere of infinite radius

Can we match $\mathbf{E}(\mathbf{x})$ and use it for generating? No!

Learn the (N+1)-dim Field

The N-dim field can't generate.

Add an additional dim z. Stop when z hit 0.

• z also acts as a **time anchor**

$$d(\mathbf{x}, z) = \left(\frac{d\mathbf{x}}{dt}\frac{dt}{dz}dz, dz\right) = (\mathbf{v}(\tilde{\mathbf{x}})_{\mathbf{x}}\mathbf{v}(\tilde{\mathbf{x}})_{z}^{-1}, 1)dz$$

Normalized velocity. But any factor will be cancelled.

Learn Normalized Field

Recall

$$\forall \tilde{\mathbf{x}} \in \mathbb{R}^{N+1}, \mathbf{E}(\tilde{\mathbf{x}}) = -\nabla \varphi(\tilde{\mathbf{x}}) = \frac{1}{S_N(1)} \int \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{y}}}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}\|^{N+1}} \tilde{p}(\tilde{\mathbf{y}}) d\tilde{\mathbf{y}}$$

• Empirical estimator (biased)

$$\hat{\mathbf{E}}(\tilde{\mathbf{x}}) = c(\tilde{\mathbf{x}}) \sum_{i=1}^{n} \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{x}}_{i}}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{x}}_{i}\|^{N+1}}$$

$$1/\sum_{i=1}^{n} \frac{1}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{x}}_{i}\|^{N+1}}$$

• Further, normalize the field

$$\mathbf{v}(\tilde{\mathbf{x}}) = -\sqrt{N}\hat{\mathbf{E}}(\tilde{\mathbf{x}}) / \|\hat{\mathbf{E}}(\tilde{\mathbf{x}})\|_{2} \qquad \mathcal{L}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \|f_{\theta}(\tilde{\mathbf{y}}_{i}) - \mathbf{v}_{\mathcal{B}_{L}}(\tilde{\mathbf{y}}_{i})\|_{2}^{2}$$

$$\tilde{x}_{i} = (x_{i}, 0) \xrightarrow{\tilde{y}_{i}} \tilde{y}_{i} = (y_{i}, z) \qquad \mathbf{y} = \mathbf{x} + \|\epsilon_{\mathbf{x}}\| (1 + \tau)^{m} \mathbf{u}, \quad z = |\epsilon_{z}| (1 + \tau)^{m}$$
perturb

Prior Sampling

Prior sampling on the $z = z_{\text{max}}$ hyperplane

$$p_{\text{prior}}(\mathbf{x}) = \frac{2z_{\text{max}}^{N+1}}{S_N(z_{\text{max}})(\|\mathbf{x}\|_2^2 + z_{\text{max}}^2)^{\frac{N+1}{2}}} = \frac{2z_{\text{max}}}{S_N(1)(\|\mathbf{x}\|_2^2 + z_{\text{max}}^2)^{\frac{N+1}{2}}}$$

- 1. Sample the radius from $p_{\text{radius}}(\parallel \mathbf{x} \parallel_2) \propto \parallel \mathbf{x} \parallel_2^{N-1}/(\parallel \mathbf{x} \parallel_2^2 + z_{\text{max}}^2)^{\frac{N+1}{2}}$
- 2. Uniform sample the angle

Table 1: CIFAR-10 sample quality (FID, Inception) and number of function evaluation (NFE).

	Invertible?	Inception ↑	FID↓	NFE ↓
PixelCNN [36]	Х	4.60	65.9	1024
IGEBM [8]	X	6.02	40.6	60
ViTGAN [24]	X	9.30	6.66	1
StyleGAN2-ADA [17]	X	9.83	2.92	1
StyleGAN2-ADA (cond.) [17]	×	10.14	2.42	1
NCSN [31]	×	8.87	25.32	1001
NCSNv2 [32]	×	8.40	10.87	1161
DDPM [16]	×	9.46	3.17	1000
NCSN++ VE-SDE [33]	×	9.83	2.38	2000
NCSN++ deep VE-SDE [33]	X	9.89	2.20	2000
Glow [19]	✓	3.92	48.9	1
DDIM, T=50 [30]	✓	-	4.67	50
DDIM, T=100 [30]	✓	-	4.16	100
NCSN++ VE-ODE [33]	✓	9.34	5.29	194
NCSN++ deep VE-ODE [33]	✓	9.17	7.66	194
DDPM++ backbone				
VP-SDE [33]	Х	9.58	2.55	1000
sub-VP-SDE [33]	X	9.56	2.61	1000
VP-ODE [33]		9.46	2.97	134
sub-VP-ODE [33]	✓	9.30	3.16	146
PFGM (ours)	✓	$\boldsymbol{9.65}$	2.48	104
DDPM++ deep backbone				
VP-SDE [33]	Х	9.68	2.41	1000
sub-VP-SDE [33]	X	9.57	2.41	1000
VP-ODE [33]	· · · · · ·	9.47	2.86	134
sub-VP-ODE [33]	✓	9.40	3.05	146
PFGM (ours)	✓	9.68	2.35	110

Failure of VE/VP-ODEs on NCSNv2 architecture

VE transition: $\mathcal{N}(\mathbf{x}, \sigma(t)^2)$

(a) Samples from VE-ODE (Euler)

(b) Samples from VE-ODE (Euler w/ correc-

Figure 4: Sample norm distributions with varying time variables (σ for VE-ODE and z for PFGM)

norm-σ correlation

Exponential decay on z for samping

$$d(\mathbf{x},z) = \left(\frac{d\mathbf{x}}{dt}\frac{dt}{dz}dz,dz\right) = \left(\mathbf{v}(\tilde{\mathbf{x}})_{\mathbf{x}}\mathbf{v}(\tilde{\mathbf{x}})_{z}^{-1},1\right)dz \longrightarrow d(\mathbf{x},z) = \left(\mathbf{v}(\tilde{\mathbf{x}})_{\mathbf{x}}\mathbf{v}(\tilde{\mathbf{x}})_{z}^{-1}z,z\right)dt'$$

Integral form:
$$\mathbf{x}(\log z_{\max}) = \mathcal{M}(\mathbf{x}(\log z_{\min})) \equiv \mathbf{x}(\log z_{\min}) + \int_{\log z_{\min}}^{\log z_{\max}} \mathbf{v}(\mathbf{x}(t'))_{\mathbf{x}} \mathbf{v}(\tilde{\mathbf{x}}(t'))_{z}^{-1} e^{t'} dt'$$

Results for RK45 solver:

Algorithm	$d(\mathbf{x}, z)/dz$	$d(\mathbf{x},z)/dt'$
NFE	242	104
FID score	2.53	2.48

Likelihood evaluation and latent representation

Table 2: Bits/dim on CIFAR-10

	bits/dim ↓
RealNVP [6]	3.49
Glow [19]	3.35
Residual Flow [3]	3.28
Flow++ [14]	3.29
$DDPM\left(L\right)$ [16]	≤ 3.70 [*]
DDPM++ backbone	
VP-ODE [33]	3.20
sub-VP-ODE [33]	3.02
PFGM (ours)	3.19

Figure 10: Interpolation on CelebA 64×64 by PFGM

Content

• Background: Velocity Field (VF) for Generative Modeling

PFGM: VF defined by Poisson Flow

PFGM++: bridging PFGM and Diffusion Models

we only care about continuous case/ODE form

Summary

D-augmented PFGM

Augment with D-dim *z*: $\tilde{\mathbf{x}} = (\mathbf{x}, \mathbf{z}) \in \mathbb{R}^{N+D}$

Poisson field in (N+D)-dim:

$$\mathbf{E}(\tilde{\mathbf{x}}) = \frac{1}{S_{N+D-1}(1)} \int \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{y}}}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}\|^{N+D}} p(\mathbf{y}) d\mathbf{y}$$
(3)

ODE: $d\tilde{\mathbf{x}} = \mathbf{E}(\tilde{\mathbf{x}}) dt$

N-dim data distribution on z=0 hyperplane \longrightarrow uniform distribution on an infinite (N+D)-dim hemisphere

r-anchor

• Due to symmetry, it's sufficient to track $r(\tilde{\mathbf{x}}) = \|\mathbf{z}\|_2$

- By change-of-variable, we have
 - r-augmented point and field

$$\tilde{\mathbf{x}} = (\mathbf{x}, r)$$
 $E(\tilde{\mathbf{x}})_r = \frac{1}{S_{N+D-1}(1)} \int \frac{r}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}\|^{N+D}} p(\mathbf{y}) d\mathbf{y}.$

r-anchored ODE

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}r} = \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}r} = \mathbf{E}(\tilde{\mathbf{x}})_{\mathbf{x}} \cdot E(\tilde{\mathbf{x}})_{r}^{-1} = \frac{\mathbf{E}(\tilde{\mathbf{x}})_{\mathbf{x}}}{E(\tilde{\mathbf{x}})_{r}}$$

Training Objective

(Old) biased estimator

$$\mathbb{E}_{\tilde{p}_{\text{train}}(\tilde{\mathbf{x}})} \mathbb{E}_{\{\mathbf{y}_i\}_{i=1}^n \sim p^n(\mathbf{y})} \mathbb{E}_{\mathbf{x} \sim p_{\sigma}(\mathbf{x}|\mathbf{y}_1)} \\ \left[\left\| f_{\theta}(\tilde{\mathbf{x}}) - \frac{\sum_{i=0}^{n-1} \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{y}}_i}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}_i\|^{N+D}}}{\|\sum_{i=0}^{n-1} \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{y}}_i}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}_i\|^{N+D}} \|_2 + \gamma} \right\|_2^2 \right]$$

(**New**) unbiased regression

Transition kernel of r-augmented Poisson field

$$p_r(\mathbf{x}|\mathbf{y}) \propto 1/(\|\mathbf{x}-\mathbf{y}\|_2^2 + r^2)^{\frac{N+D}{2}}. \qquad \qquad 1. \quad \text{Sample} \quad p_r(R) \propto \frac{R^{N-1}}{(R^2+r^2)^{\frac{N+D}{2}}} \quad R = \|\mathbf{x}-\mathbf{y}\|_2$$

$$q_{0t} \qquad \qquad 2. \quad \text{Uniform sample the angle}$$

1. Sample
$$p_r(R) \propto \frac{R^{N-1}}{(R^2 + r^2)^{\frac{N+D}{2}}}$$
 $R = \|\mathbf{x} - \mathbf{y}\|_2$

2. Uniform sample the angle

Training Objective

(**New**) unbiased regression

Transition kernel of r-augmented Poisson field

$$p_r(\mathbf{x}|\mathbf{y}) \propto 1/(\|\mathbf{x} - \mathbf{y}\|_2^2 + r^2)^{\frac{N+D}{2}}. \longrightarrow \|\widetilde{\mathbf{x}} - \widetilde{\mathbf{y}}\|_2^{N+D}$$

$$q_{0t}$$

• To obtain the conditional velocity $oldsymbol{v}_{0t}$

$$\mathbf{E}(\tilde{\mathbf{x}}) = \frac{1}{S_{N+D-1}(1)} \int \frac{\tilde{\mathbf{x}} - \tilde{\mathbf{y}}}{\|\tilde{\mathbf{x}} - \tilde{\mathbf{y}}\|^{N+D}} p(\mathbf{y}) d\mathbf{y}$$
(3)

$$v_t(x) = \frac{\int q_0(x_0)q_{0t}(x|x_0)v_{0t}(x|x_0)dx_0}{q_t(x)}$$

$$v_{0r}(\widetilde{x}|\widetilde{y}) = \frac{p_r(\widetilde{x})}{S_{N+D-1}}(\widetilde{x} - \widetilde{y})$$

Predict the normalized conditional velocity

$$\mathbb{E}_{r \sim p(r)} \mathbb{E}_{p(\tilde{\mathbf{y}})} \mathbb{E}_{p_r(\tilde{\mathbf{x}}|\tilde{\mathbf{y}})} \left[\left\| f_{\theta}(\tilde{\mathbf{x}}) - \frac{\mathbf{x} - \mathbf{y}}{r/\sqrt{D}} \right\|_2^2 \right]$$

$$(\tilde{\mathbf{x}} - \tilde{\mathbf{y}})_r / (r/\sqrt{D}) = \sqrt{D}.$$

Diffusion Models as D→∞ Special Cases

$$p_r(\mathbf{x}|\mathbf{y}) \propto 1/(\|\mathbf{x}-\mathbf{y}\|_2^2 + r^2)^{\frac{N+D}{2}}. \qquad \qquad \forall \log p_{0r}(\widetilde{\mathbf{x}}|\widetilde{\mathbf{y}}) \propto \widetilde{\mathbf{x}} - \widetilde{\mathbf{y}} \quad \text{conditional score}$$

$$v_{0r}(\widetilde{\mathbf{x}}|\widetilde{\mathbf{y}}) = \frac{p_r(\widetilde{\mathbf{x}})}{S_{N+D-1}}(\widetilde{\mathbf{x}} - \widetilde{\mathbf{y}}) \propto \widetilde{\mathbf{x}} - \widetilde{\mathbf{y}} \quad \text{conditional velocity}$$

same direction!

This is similar to **VE schedule** in diffusion models

$$q_{0t}(\boldsymbol{x}_t|\boldsymbol{x}_0) = N(\boldsymbol{x}_t;\boldsymbol{x}_0,\sigma_t^2\boldsymbol{I})$$

In the limit $D \rightarrow \infty$:

$$\lim_{\substack{D\to\infty\\r=\sigma\sqrt{D}}}\left\|\frac{\sqrt{D}}{E(\tilde{\mathbf{x}})_r}\mathbf{E}(\tilde{\mathbf{x}})_{\mathbf{x}} - \sigma\nabla_{\mathbf{x}}\log p_{\sigma=r/\sqrt{D}}(\mathbf{x})\right\|_2 = 0$$
 VF in PFGM Score in VE DMs

2023.03.31 Kaiwen Zheng PFGM 24

Alignment Relation

In the limit
$$D \rightarrow \infty$$
:

$$\lim_{\substack{D \to \infty \\ r = \sigma \sqrt{D}}} \left\| \frac{\sqrt{D}}{E(\tilde{\mathbf{x}})_r} \mathbf{E}(\tilde{\mathbf{x}})_{\mathbf{x}} - \sigma \nabla_{\mathbf{x}} \log p_{\sigma = r/\sqrt{D}}(\mathbf{x}) \right\|_2 = 0$$
 VF in PFGM Score in VE DMs

Alignment relation: $r = \sigma \sqrt{D}$

Limit of transition kernel

$$\lim_{D \to \infty, r = \sigma\sqrt{D}} \frac{1}{(\|\mathbf{x} - \mathbf{y}\|_{2}^{2} + r^{2})^{\frac{N+D}{2}}}$$

$$\propto \lim_{D \to \infty, r = \sigma\sqrt{D}} e^{-\frac{(N+D)}{2}\ln(1 + \frac{\|\mathbf{x} - \mathbf{y}\|^{2}}{r^{2}})}$$

$$= \lim_{D \to \infty, r = \sigma\sqrt{D}} e^{-\frac{(N+D)\|\mathbf{x} - \mathbf{y}\|_{2}^{2}}{2r^{2}}} = e^{-\frac{\|\mathbf{x} - \mathbf{y}\|_{2}^{2}}{2\sigma^{2}}}$$

Limit of training objective

$$\mathbb{E}_{r \sim p(r)} \mathbb{E}_{p(\tilde{\mathbf{y}})} \mathbb{E}_{p_r(\tilde{\mathbf{x}}|\tilde{\mathbf{y}})} \left[\left\| f_{\theta}(\tilde{\mathbf{x}}) - \frac{\mathbf{x} - \mathbf{y}}{r/\sqrt{D}} \right\|_2^2 \right] \xrightarrow{r = \sigma \sqrt{D}, D \to \infty} \mathbb{E}_{\sigma \sim p(\sigma)} \lambda(\sigma) \mathbb{E}_{p(\mathbf{y})} \mathbb{E}_{p_{\sigma}(\mathbf{x}|\mathbf{y})} \left[\left\| f_{\theta}(\mathbf{x}, \sigma) - \frac{\mathbf{x} - \mathbf{y}}{\sigma} \right\|_2^2 \right]$$

DSM/FM in PFGM

DSM/FM under VE in DMs

Alignment Instances

Align hyperparameters

$$r_{\text{max}} = \sigma_{\text{max}} \sqrt{D}, p(r) = p(\sigma = r/\sqrt{D})/\sqrt{D}$$

Align the training and sampling algorithm with EDM [5]

Algorithm 1 EDM training

- 1: Sample a batch of data $\{\mathbf{y}_i\}_{i=1}^{\mathcal{B}}$ from $p(\mathbf{y})$ 2: Sample standard deviations $\{\sigma_i\}_{i=1}^{\mathcal{B}}$ from $p(\sigma)$
- 3: Sample noise vectors $\{\mathbf{n}_i \sim \mathcal{N}(0, \sigma_i^2 \mathbf{I})\}_{i=1}^{\mathcal{B}}$
- 4: Get perturbed data $\{\hat{\mathbf{y}}_i = \mathbf{y}_i + \mathbf{n}_i\}_{i=1}^{\mathcal{B}}$ 5: Calculate loss $\ell(\theta) = \sum_{i=1}^{\mathcal{B}} \lambda(\sigma_i) \|f_{\theta}(\hat{\mathbf{y}}_i, \sigma_i) \mathbf{y}_i\|_2^2$
- 6: Update the network parameter θ via Adam optimizer

Algorithm 2 PFGM++ training with hyperparameter transferred from EDM

- 1: Sample a batch of data $\{\mathbf{y}_i\}_{i=1}^{\mathcal{B}}$ from $p(\mathbf{y})$
- 2: Sample standard deviations $\{\sigma_i\}_{i=1}^{\mathcal{B}}$ from $p(\sigma)$
- 3: Sample r from p_r : $\{r_i = \sigma_i \sqrt{D}\}_{i=1}^{\mathcal{B}}$
- 4: Sample radiuses $\{R_i \sim p_{r_i}(R)\}_{i=1}^{\mathcal{B}^{i-1}}$ 5: Sample uniform angles $\{\mathbf{v}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|_2}\}_{i=1}^{\mathcal{B}}$, with $\mathbf{u}_i \sim$ $\mathcal{N}(\mathbf{0}, \mathbf{I})$
- 6: Get perturbed data $\{\hat{\mathbf{y}}_i = \mathbf{y}_i + R_i \mathbf{v}_i\}_{i=1}^{\mathcal{B}}$ 7: Calculate loss $\ell(\theta) = \sum_{i=1}^{\mathcal{B}} \lambda(\sigma_i) \|f_{\theta}(\hat{\mathbf{y}}_i, \sigma_i) \mathbf{y}_i\|_2^2$
- 8: Update the network parameter θ via Adam optimizer

Algorithm 3 EDM sampling (Heun's 2nd order method)

```
1: \mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \sigma_{\text{max}}^2 \mathbf{I})
2: for i = 0, ..., T-1 do
3: \mathbf{d}_i = (\mathbf{x}_i - f_{\theta}(\mathbf{x}_i, t_i))/t_i
4: \mathbf{x}_{i+1} = \mathbf{x}_i + (t_{i+1} - t_i)\mathbf{d}_i
        if t_{i+1} > 0 then
              \mathbf{d}'_{i} = (\mathbf{x}_{i+1} - f_{\theta}(\mathbf{x}_{i+1}, t_{i+1}))/t_{i+1}
               \mathbf{x}_{i+1} = \mathbf{x}_i + (t_{i+1} - t_i)(\frac{1}{2}\mathbf{d}_i + \frac{1}{2}\mathbf{d}_i')
           end if
9: end for
```

Algorithm 4 PFGM++ training with hyperparameter transferred from EDM

```
1: Set r_{\text{max}} = \sigma_{\text{max}} \sqrt{D}
2: Sample radius R \sim p_{r_{\text{max}}}(R) and uniform angle \mathbf{v} = \frac{\mathbf{u}}{\|\mathbf{v}\|_{2}}
        with \mathbf{u} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
 3: Get initial data \mathbf{x}_0 = R\mathbf{v}
  4: for i = 0, \dots, T-1 do
            \mathbf{d}_i = (\mathbf{x}_i - f_{\theta}(\mathbf{x}_i, t_i))/t_i
            \mathbf{x}_{i+1} = \mathbf{x}_i + (t_{i+1} - t_i)\mathbf{d}_i
            if t_{i+1} > 0 then
                  \mathbf{d}'_{i} = (\mathbf{x}_{i+1} - f_{\theta}(\mathbf{x}_{i+1}, t_{i+1}))/t_{i+1}
                 \mathbf{x}_{i+1} = \mathbf{x}_i + (t_{i+1} - t_i)(\frac{1}{2}\mathbf{d}_i + \frac{1}{2}\mathbf{d}_i')
            end if
11: end for
```

Table 1. CIFAR-10 sample quality (FID) and number of function evaluations (NFE).

	Min FID↓	Top-3 Avg FID ↓	NFE ↓
DDPM (Ho et al., 2020)	3.17	-	1000
DDIM (Song et al., 2021a)	4.67	-	50
VE-ODE (Song et al., 2021b)	5.29	-	194
VP-ODE (Song et al., 2021b)	2.86	-	134
PFGM (Xu et al., 2022)	2.48	-	104
PFGM++ (unconditional)			
D = 64	1.96	1.98	35
D = 128	1.92	1.94	35
D = 2048	1.91	1.93	35
D = 3072000	1.99	2.02	35
$D o \infty$ (Karras et al., 2022)	1.98	2.00	35
PFGM++ (class-conditional)			
D = 2048	1.74	-	35
$D \to \infty$ (Karras et al., 2022)	1.79	-	35

Table 2. FFHQ sample quality (FID) with 79 NFE in unconditional setting

	$\operatorname{Min}\operatorname{FID}\downarrow$	Top-3 Avg FID \downarrow
D = 128	2.43	2.48
D = 2048	2.46	2.47
D = 3072000	2.49	2.52
$D \to \infty$ (Karras et al., 2022)	2.53	2.54

(a)
$$D = 128$$
 (FID=2.43)

(j) $D \rightarrow \infty$, $\alpha = 0$ (FID=1.98)

Figure 9. Generated images on FFHQ 64×64 dataset, by (left) D = 128 and (right) EDM $(D \to \infty)$.

Balancing Robustness and Rigidity

Robustness

Rigidity

$$D=1$$

- Less norm-σ correlation
- Tolerate to errors
- Better on weak networks

$D=\infty$

- Narrow range of norm
- Sensitive to errors
- Better to fit for high-capacity networks

Figure 4: Sample norm distributions with varying time variables (σ for VE-ODE and z for PFGM)

Demonstration of Robustness

Post-training quantization

Table 3. FID score versus quantization bit-widths on CIFAR-10.

Quantization bits:	9	8	7	6	5
D = 64	1.96	1.96	2.12	2.94	28.50
D = 128	1.93	1.97	2.15	3.68	34.26
D = 2048	1.91	1.97	2.12	5.67	47.02
$D \to \infty$	1.97	2.04	2.16	5.91	50.09

Controlled noise injection in training

(j) $D \rightarrow \infty$, $\alpha = 0$ (FID=1.98)

(h) D=2048, $\alpha=0.1$ (FID=1.95)

(k) $D \rightarrow \infty$, $\alpha = 0.1$ (FID=9.27)

(i) D=2048, $\alpha = 0.2$ (FID=2.19)

(1) $D \rightarrow \infty, \alpha = 0.2$ (FID=92.41)

Content

Background: Velocity Field (VF) for Generative Modeling

PFGM: VF defined by Poisson Flow

PFGM++: bridging PFGM and Diffusion Models

we only care about continuous case/ODE form

Summary

Summary

- D-augmented PGFM
- Balancing robustness and rigidity
- Alignment with DMs, outperform EDM by tuning D

Summary

Under the framework of VF:

	PFGM	DM (VE)
Time Anchor t	r	σ
q_{0t}	$\propto \frac{1}{(\ x_r - x_0\ _2^2 + r^2)^{(N+D)/2}}$	$\propto e^{-\frac{\ x_{\sigma}-x_0\ _2^2}{2\sigma^2}}$
$oldsymbol{v}_{0t}$	$\frac{q_r(x_r)}{S_{N+D-1}}(x_r-x_0)$	$\frac{x_{\sigma}-x_{0}}{\sigma}$
Biased Score/Velocity Estimator	$\propto \sum_{i} \frac{x_{r} - x_{0}^{(i)}}{\left(\left\ x_{r} - x_{0}^{(i)}\right\ _{2}^{2} + r^{2}\right)^{(N+D)/2}}$	$\propto \sum_{i} e^{-\frac{\left\ x_{\sigma} - x_{0}^{(i)}\right\ _{2}^{2}}{2\sigma^{2}}} \frac{x_{\sigma} - x_{0}^{(i)}}{\sigma^{2}}$
Normalized Unbiased Score/Flow Matching Target	$\frac{x_r - x_0}{r/\sqrt{D}}$	$\frac{x_{\sigma}-x_{0}}{\sigma}$

Stable Target Field [4]

References

- [1] Xu, Yilun, et al. "Poisson flow generative models." arXiv preprint arXiv:2209.11178 (2022).
- [2] Xu, Yilun, et al. "Pfgm++: Unlocking the potential of physics-inspired generative models." arXiv preprint arXiv:2302.04265 (2023).
- [3] Lipman, Yaron, et al. "Flow matching for generative modeling." arXiv preprint arXiv:2210.02747 (2022).
- [4] Xu, Yilun, Shangyuan Tong, and Tommi Jaakkola. "Stable Target Field for Reduced Variance Score Estimation in Diffusion Models." arXiv preprint arXiv:2302.00670 (2023).
- [5] Karras, Tero, et al. "Elucidating the design space of diffusion-based generative models." arXiv preprint arXiv:2206.00364 (2022).