Teoría de Sylow

Definiciones

- Un grupo G donde todo elemento de G tiene orden una potencia de un primo p es llamado un p-grupo.
- Si $H \leq G$ y H es un p-grupo, entonces decimos que H es un p-subgrupo de G.

Los teoremas de Sylow son una ayuda inmensa para describir propiedades de los subgrupos de un grupo G sólo a partir de su orden, para exponerlos tenemos que primero ver un lema importante:

Lema:

Si un grupo H de orden p^n con p primo actúa sobre un conjunto finito S y si $S_0=\{x\in S:hx=x,\ \forall h\in H\}$, entonces $|S|\equiv |S_0|\ \mathrm{mod}(p)$.

Resumen de la demostración:

- 1. Revisamos que $|\overline{x}|=1\Longleftrightarrow x\in S_0.$
- 2. Planteamos a S como la unión disjunta de las órbitas de sus elementos de la siguiente forma:

$$S = S_0 \cup \overline{x}_1 \cup \overline{x}_2 \cup ... \cup \overline{x}_n$$

3. Para algún n. donde $\overline{x}_i>1$ para todo $1\leq i\leq n$. Por lo que tenemos que

$$|S| = |S_0| + |\overline{x}_1| + |\overline{x}_2| + \ldots + |\overline{x}_n|$$

- 4. Por lo visto en acciones, $|\overline{x}_i|=[G:H_{x_i}]$ y por el teorema de Lagrange tenemos que $|\overline{x}_i|$ divide a $|H|=p^n$ para todo i.
- 5. Concluimos que $|S|=|S_0|+|\overline{x}_1|+|\overline{x}_2|+...+|\overline{x}_n|\equiv |S_0|+0+0+...+0=|S_0|\bmod(p).$

Con esto en mano, podemos pasar a otro teorema necesario antes de entrar de lleno a Sylow:

Teorema de Cauchy:

Si G es un grupo finito cuyo orden es divisible por un primo p, entonces G contiene un elemento de orden p.

Resumen de la demostración:

1. Definimos a $S=\{(a_1,a_2,...,a_p): a_i\in G\land a_1\cdot a_2\cdot ...\cdot a_p=e\}$ como el conjunto de las p-tuplas cuyo producto es el neutro. Claramente podemos caracterizar a a_p como $(a_1\cdot a_2\cdot ...\cdot a_n)^{-1}$ por lo que deducimos que $|S|=n^{p-1}$.

Básicamente tenemos que para un elemento de S necesitamos una n-upla donde para la primera componente tenemos n opciones (donde |G|=n), para la segunda componente seguimos teniendo n opciones, así hasta la p-1 componente, pues para garantizar que nuestra upla esté en S necesitamos que la p-ésima componente sea el inverso de todas las anteriores (que es único). Así, $|S|=n^{p-1}\times 1=n^{p-1}$.

- 2. Como p|n, particularmente $p|n^{p-1}$ y por tanto $|S|\equiv 0 \ \mathrm{mod}(p)$.
- 3. Ahora, vamos a hacer actuar a \mathbb{Z}_p sobre S por medio de permutaciones cíclicas, esto es que si $k \in \mathbb{Z}_p$, $k(a_1,a_2,...,a_p) = (a_{k+1},...,a_p,a_1,...,a_k)$ (básicamente moviendo hacia la izquierda k veces la p-upla).

Tenemos que ver que esta acción está bien definida, por lo que vemos los siguientes tres puntos:

- $\begin{array}{c} \circ \ k(a_1,a_2,...,a_p) \in S \text{: En efecto, si } (a_1,a_2,...,a_p) \in S \text{ entonces } a_1 \cdot a_2 \cdot ... \cdot \\ a_p = e \text{, esto significa que } (a_1 \cdot a_2 \cdot ... \cdot a_k) \cdot (a_{k+1} \cdot ... \cdot a_p) = e \text{ por lo que } (a_1 \cdot a_2 \cdot ... \cdot a_k) = (a_{k+1} \cdot ... \cdot a_p)^{-1} \text{ y como los inversos conmutan, } (a_{k+1} \cdot ... \cdot a_p)(a_1 \cdot a_2 \cdot ... \cdot a_k) = e \text{ y por tanto } (a_{k+1},...,a_p,a_1,...,a_k) \in S. \end{array}$
- Naturalmente un movimiento de 0 a la izquierda no altera a la upla luego $0(a_1,a_2,...,a_p)=(a_1,a_2,...,a_p).$
- \circ Sean $m,n\in\mathbb{Z}_p$,

$$egin{aligned} (m+n)(a_1,a_2,...,a_p) &= (a_{m+n+1},...,a_p,a_1,...,a_{m+n}) \ &= m(a_{n+1,...,}) \ &= m(n(a_1,a_2,...,a_p)) \end{aligned}$$

Esto no lo he terminado, lo tengo que preguntar.

- 4. Usando el lema anterior, tenemos que para $S_0=\{x\in S: hx=x\}, 0\equiv |S|\equiv |S_0| \ \mathrm{mod}(p).$
- 5. Ahora, si $(a_1,a_2,...,a_p)\in S_0$ entonces $(a_{k+1},...,a_p,a_1,...,a_k)=(a_1,...,a_p)$ para todo $k\in\mathbb{Z}_p$ por lo que $a_1=a_2=...=a_p$, llamemos $x=a_1$, como $(x,x,...,x)\in S$, se tiene que $x^p=e$.

6. Ahora bien, sabemos que $(e,e,...,e) \in S_0$ por lo que $|S_0| \neq 0$ y por tanto $|S_0| = hp$ para algún $h \in \mathbb{N}$, como $p \geq 2$, sabemos que existe $x \neq e, x \in G$ tal que $x^p = e$.

Por últimos, tenemos que definir 1 concepto:

• **Definición:** Sea G un grupo ($H \leq G$ un subgrupo de G), en el cual para todo elemento $x \in G$ ($x \in H$) se tiene que $|x| = p^k$ con p primo y $k \in \mathbb{N}$, entonces diremos que G es un p-grupo (H es un p-subgrupo).

Ahora si, los susodichos teoremas:

1^{er} Teorema de Sylow:

Sea G un grupo de orden p^nm , con $n\geq 1$, p primo y (p,m)=1. Entonces, G contiene un subgrupo de orden p_i para cada $1\leq i\leq n$ y cada subtrupo de orden p^i es normal en algún otro subgrupo de orden p^{i+1} .

Resumen de la demostración:

La idea para demostrar que existen los i gruos de orden p^i gira alrededor de hacerla por inducción matemática sobre i.

- 1. La existencia del subgrupo del caso i=1 es garantizado por el Teorema de Cauchy pues existe un elemento x con orden p por lo que $\langle x \rangle \leq G$ es un subgrupo de orden p^1 .
- 2. Ahora supongamos que tenemos un grupo H de orden p^i , por el **lema del normalizador** $H \lneq N_G(H)$ y además el orden del grupo cociente $N_G(H)/H$ es múltiplo de p, aplicando el teorema de Cauchy existe un elemento $xH \in N_G(H)/H$ tal que |xH|=p, como $x \in N_g(H)$, podemos definir al siguiente subgrupo:

$$H'=H\cup xH\cup x^2H\cup...x^{p-1}H$$

Donde dado que $x^i H \in N_G(H)/H$ para $0 \leq i < p$ entonces son todos disyuntos dos a dos y por tanto

$$egin{aligned} |H'| &= |H| + |xH| + ... + |x^{p-1}H| \ &= p^i + p^i + ... + p^i \ &= p \cdot p^i \ &= p^{i+1} \end{aligned}$$

- 3. Tenemos que verificar que H' es subgrupo:
 - \circ Como $H \subseteq H'$, $H \neq \emptyset$ y $e \in H'$.
 - $\text{Sean } a,b \in H' \text{, } a \in x^jH \text{ y } b \in x^kH \text{ para } 0 \leq j,k$

Así, ya probamos que existe al menos un subgrupo con orden p^i para cada $1 \leq i \leq n$.

4. Vemos que con el paso inductivo ya tenemos que $H \subseteq H'$ pues $H' \subseteq N_G(H)$. Así queda demostrado el teorema.

Definición:

• Si $|G|=p^nm$ donde p es primo y m un entero tal que (p,m)=1, entonces un subgrupo $H\leq G$ que cumpla que $|H|=p^n$ es llamado un p-subgrupo de Sylow.

2^{do} Teorema de Sylow:

Si H es un p-subgrupo de un grupo finito G, y P es un p-subgrupo de Sylow de G, entonces existe $x \in G$ tal que $H < xPx^{-1}$. En particular, dos p-subgrupos de Sylow de G son conjungados.

Resumen de la demostración:

- 1. Definimos a S como el conjunto de todas las clases módulo P.
- 2. Hacemos a ${\cal H}$ actuar sobre ${\cal S}$ por medio de traslación a izquierda. Dada esta acción podemos definir

$$S_0 = \{xP \in S : hxP = xP, \forall h \in H\}$$

- 3. Por Lema, $|S| \equiv |S_0| \mod(p)$ donde |S| = [G:P].
- 4. Sabemos que $|G|=p^nm$ para algún primo p y un natural m tales que (p,m)=1, como P es un p-subgrupo de Sylow, es el máximo subgrupo con orden potencia de p, esto es $|P|=p^n$ y por tanto [G:P]=m.

5. Como (p,m)=1, $p\nmid |S|$ luego $|S_0|\not\equiv 0 \ \mathrm{mod}(p)$ y por tanto existe $xP\in S_0$.

Tenemos que

$$xP \in S_0 \Leftrightarrow hxP = xP, \qquad orall h \in H \ \Leftrightarrow x^{-1}hxP = P, \quad orall h \in H \ \Leftrightarrow x^{-1}HxP = P$$

6. Ahora bien, sea $H'=x^{-1}Hx$. Si H'P=P necesariamente todo elemento de H debe pertenecer a P, pues es cerrado algebráicamente. Por tanto:

$$xP \in S_0 \Leftrightarrow x^{-1}Hx \le P$$

 $\Leftrightarrow H \le xPx^{-1}$

7. Para algún $x \in G$, y por tanto H es subgrupo de una conjugación de P.

3^{er} Teorema de Sylow

Si G es un grupo finito y p un primo, entonces el número n de p-subgrupos de Sylow de G divide a |G| y es de la forma kp+1 para algún $k\in\mathbb{N}$.

Resumen de la demostración:

- 1. Por el segundo Teorema de Sylow sabemos que el número n de p-subgrupos de Sylow para un p primo particular es el número de conjugaciones de H, donde H es algún p-subgrupo de Sylow.
- 2. Así, sabemos que $n = [G:N_G(H)]$, un divisor de G.
- 3. Definamos S como el conjunto de todos los p-subgrupos de Sylow y hagamos actuar a H sobre S por conjugación.
- 4. Nuevamente usamos a $S_o=\{K\in S: hKh^{-1}=K, \forall h\in H\}$, naturalmente $S_0\neq\varnothing$ pues $H\in S_0$.
- 5. Ahora bien, sabemos que $H extleq N_G(H)$ y que $H \lneq N_G(H)$. También sabemos que para cualquier $K \in S$, $H = gKg^{-1}$ para algún $g \in G$. (Por el segundo teorema de Sylow)
- 6. Por lo tanto, para cualquier $P\in S_0$, se tiene que $hPh^{-1}=P$ para todo $h\in H$ por lo que $P \leq N_G(H)$ pero como |H|=|P|, necesariamente H=P y por tanto, $|S_0|=1$.
- 7. Luego $n=|S|\equiv |S_0|\equiv 1\ \mathrm{mod}(p)$ por lo que n=kp+1 para algún natural k.