CMP462: Natural Language Processing

Lecture 10: Lexicalized Parsers

Mohamed Alaa El-Dien Aly
Computer Engineering Department
Cairo University
Spring 2013

Agenda

- Lexicalized Parsers
- Independence in PCFGs
- Unlexicalized Parsers

Acknowledgment:

Most slides adapted from Chris Manning and Dan Jurafsky's NLP class on Coursera.

Lexicalization of PCFGs

Introduction

Christopher Manning

(Head) Lexicalization of PCFGs

[Magerman 1995, Collins 1997; Charniak 1997]

- The head word of a phrase gives a good representation of the phrase's structure and meaning
- Puts the properties of words back into a PCFG

the actual words, which might be useful S NP VPe.g. walked is likely to be followed by a PP, while saw **NNP** VBD is not Sue walked NP NN into the store

These rules do not mention

(Head) Lexicalization of PCFGs

[Magerman 1995, Collins 1997; Charniak 1997]

- The head word of a phrase gives a good representation of the phrase's structure and meaning
- Puts the properties of words back into a PCFG
- Captures more information from the language into the grammar

(Head) Lexicalization of PCFGs

[Magerman 1995, Collins 1997; Charniak 1997]

- Word-to-word affinities are useful for certain ambiguities
 - PP attachment is now (partly) captured in a local PCFG rule.

Lexicalized parsing was seen as *the* parsing breakthrough of the late 1990s

 Eugene Charniak, 2000 JHU workshop: "To do better, it is necessary to condition probabilities on the actual words of the sentence. This makes the probabilities much tighter:

```
- p(VP \rightarrow V NP NP) = 0.00151

- p(VP \rightarrow V NP NP \mid said) = 0.00001

- p(VP \rightarrow V NP NP \mid gave) = 0.01980
```

 Michael Collins, 2003 COLT tutorial: "Lexicalized Probabilistic Context-Free Grammars ... perform vastly better than PCFGs (88% vs. 73% accuracy)"

Lexicalization of PCFGs

The model of Charniak (1997)

Charniak (1997)

- A very straightforward model of a lexicalized PCFG
- Probabilistic conditioning is "top-down" like a regular PCFG
 - But actual parsing is bottom-up, somewhat like the CKY algorithm we saw
 - Uses two probability distributions:
 - Probability of headwords
 - Probability of a rule

corporate profits rose

a.
$$h = profits$$
; $c = NP$

b.
$$ph = rose$$
; $pc = S$

c.
$$P(h|ph, c, pc)$$
 Head word prob.

d.
$$P(r|h,c,pc)$$
 rule prob.

Find the most probable head word given parent head word (*rose*), current category (*NP*), and parent category (*S*)

corporate profits rose

a.
$$h = profits$$
; $c = NP$

b.
$$ph = rose$$
; $pc = S$

c.
$$P(h|ph,c,pc)$$

d.
$$P(r|h,c,pc)$$

Find the best rule to expand NP given the current head word (*profits*), current category (*NP*), and parent category (*S*)

corporate profits rose

a.
$$h = profits$$
; $c = NP$

b.
$$ph = rose$$
; $pc = S$

c.
$$P(h|ph,c,pc)$$

d.
$$P(r|h,c,pc)$$

corporate profits rose

Lexicalization models argument selection by sharpening rule expansion probabilities

 The probability of different verbal complement frames (i.e., "subcategorizations") depends on the verb:

Frequencies of different rules and head verb

Local Tree	come	take	think	want
$VP \rightarrow V$	9.5%	2.6%	4.6%	5.7%
$VP \rightarrow V NP$	1.1%	32.1%	0.2%	13.9%
$VP \rightarrow VPP$	34.5%	3.1%	7.1%	0.3%
VP → V SBAR	6.6%	0.3%	73.0%	0.2%
$VP \rightarrow V S$	2.2%	1.3%	4.8%	70.8%
$VP \rightarrow V NP S$	0.1%	5.7%	0.0%	0.3%
VP → V PRT NP	0.3%	5.8%	0.0%	0.0%
$VP \rightarrow V PRT PP$	6.1%	1.5%	0.2%	0.0%

Lexicalization sharpens probabilities: Predicting heads

Having more "context" sharpens the probabilities

- P(prices | n-plural) = .013
- P(prices | n-plural, NP) = .013
- P(prices | n-plural, NP, S) = .025
- P(prices | n-plural, NP, S, v-past) = .052
- P(prices | n-plural, NP, S, v-past, fell) = .146

Can we actually estimate all these probabilities?

Charniak (1997) linear interpolation/shrinkage

- $\lambda_i(e)$ is here a function of how much one would expect to see a certain occurrence, given the amount of training data, word counts, etc.
- \blacksquare C(ph) is semantic class of parent headword
- Techniques like these for dealing with data sparseness are vital to successful model construction

Charniak (1997) shrinkage example

	P(prft rose,NP,S)	P(corp prft,JJ,NP)
P(h ph,c,pc)	0	0.245
P(h C(ph),c,pc)	0.00352	0.0150
P(h c,pc)	0.000627	0.00533
P(h c)	0.000557	0.00418

- Allows utilization of rich highly conditioned estimates,
 but smoothes when sufficient data is unavailable
- One can't just use MLEs: one commonly sees previously unseen events, which would have probability 0.

PCFG Independence Assumptions

PCFGs and Independence

• The symbols in a PCFG define independence assumptions:

- At any node, the material inside that node is independent of the material outside that node, given the label of that node
- Any information that statistically connects behavior inside and outside a node must flow through that node's label
- We can parse any subtree independently of any other part of the tree

Non-Independence I

The independence assumptions of a PCFG are often too strong

 Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects)

Non-Independence II

- Symptoms of overly strong assumptions:
 - Rewrites get used where they don't belong

Because the of expansion $NP \rightarrow NNP NNP$ is independent of $NP \rightarrow NP JJ NN$

Why didn't it learn the correct one?

Incorrect parse

Refining the Grammar Symbols

 We can relax independence assumptions by encoding dependencies into the PCFG symbols, by state splitting:

Parent annotation [Johnson 98]

Marking possessive NPs

- What are the most useful features to encode?

The Return of Unlexicalized PCFGs

Accurate Unlexicalized Parsing

[Klein and Manning 2003]

- What do we mean by an "unlexicalized" PCFG?
 - Grammar rules are not systematically specified down to the level of lexical items
 - NP-stocks is not allowed
 - NP^S-CC is fine
 - Closed vs. open class words
 - Long tradition in linguistics of using function words as features or markers for selection (VB-have, SBAR-if/whether)
 - Open-class selection is really a proxy for semantics

Thesis

Most of what you need for accurate parsing, and much of what lexicalized PCFGs actually capture *isn't* lexical selection between content words but just basic grammatical features, like verb form, finiteness, presence of a verbal auxiliary, etc.

Experimental Approach

Corpus: Penn Treebank, WSJ; iterate on small dev set

- Performance P/R/F1
- Size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: @NP_NP_CC [from binarization]
- We state-split as sparingly as possible
 - Highest accuracy with fewest symbols
 - Error-driven, manual hill-climb, one annotation at a time

Horizontal Markovization

Horizontal Markovization: Merges States

Condition on fixed amount of context/history

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
 (i.e., parent annotation)

Model	F1	Size
v=h=2v	77.8	7.5K

Unary Splits

 Problem: unary rewrites are used to transform categories so a high-probability rule can be used.

Here we are expecting a sentence S and not just a VP, but the rule $S \rightarrow VP$ has high probability

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Unary Splits

 Problem: unary rewrites are used to transform categories so a high-probability rule can be used.

 Solution: Mark unary rewrite sites with -U in the training data

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Unary Splits

 Problem: unary rewrites are used to transform categories so a high-probability rule can be used.

 Solution: Mark unary rewrite sites with -U in the training data

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: SBAR sentential complementizers (that, whether, if), subordinating conjunctions (while, after), and true prepositions (in, of, to) are all tagged IN.

- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: SBAR sentential complementizers (that, whether, if), subordinating conjunctions (while, after), and true prepositions (in, of, to) are all tagged IN.

Add tag IN^NOM that expects a NP as its complement, and learn that *if* is not an example of this

- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: SBAR sentential complementizers (that, whether, if), subordinating conjunctions (while, after), and true prepositions (in, of, to) are all tagged IN.

- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

Yield Splits

- Problem: sometimes the behavior of a category depends on something inside its future yield (subtree).
- Examples:
 - Possessive NPs
 - Finite vs. infinite VPs
 - Lexical heads!

Solution: annotate future elements into nodes.

Annotation	F1	Size
tag splits	82.3	9.7K
POSS-NP	83.1	9.8K
SPLIT-VP	85.7	10.5K

Yield Splits

- Problem: sometimes the behavior of a category depends on something inside its future yield (subtree).
- Examples:
 - Possessive NPs
 - Finite vs. infinite VPs
 - Lexical heads!

ROOT

S

" NP VP-VBZ ."

" DT VBZ VP-VB !"

This is VB NP

panic NN

panic NN

buying

Mark VP with the type of VB in it

Solution: annotate future elements into nodes.

Annotation	F1	Size
tag splits	82.3	9.7K
POSS-NP	83.1	9.8K
SPLIT-VP	85.7	10.5K

Yield Splits

- Problem: sometimes the behavior of a category depends on something inside its future yield (subtree).
- Examples:
 - Possessive NPs
 - Finite vs. infinite VPs
 - Lexical heads!

Helps find the right parse

Solution: annotate future elements into nodes.

Annotation	F1	Size
tag splits	82.3	9.7K
POSS-NP	83.1	9.8K
SPLIT-VP	85.7	10.5K

Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
 Some tags tend to appear high while others appear low in the tree.
- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

Annotation	F1	Size
Previous	85.7	10.5K
BASE-NP	86.0	11.7K
DOMINATES-V	86.9	14.1K
RIGHT-REC-NP	87.0	15.2K

A Fully Annotated Tree

Final Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Klein & Manning 03	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

Beats "first generation" lexicalized parsers

Summary

- Lexicalized parsers:
 - Use lexical information to annotate the grammar rules
 - Induces some "semantic" information into the parser
- Unlexicalized parsers:
 - Use some "context" to annotate the grammar rules
 - Deals with some problems of the independence assumptions of PCFGs
 - No use of lexical information
 - Comparable results to early lexicalized parsers

Recap

- Lexicalized Parsers
- Independence in PCFGs
- Unlexicalized Parsers