Uydu Hareket Simülasyonu:

Uyduların eliptik yörüngelerinin ifade edilebildiği sistemlerden biri *Kepler* denklemleridir. Bu denklem sistemi diferansiyel formda olan aşağıdaki 3 denklemden oluşmaktadır:

$$\frac{d^2x}{dt^2} = -\gamma M \frac{x}{r^3}$$

$$\frac{d^2y}{dt^2} = -\gamma M \frac{y}{r^3}$$
Burada:
$$\frac{d^2z}{dt^2} = -\gamma M \frac{z}{r^3}$$

$$\gamma = 6.67 \times 10^{-11} \frac{m^3}{kg.m^2}$$
 Kepler sabitidir.

$$M = 5.976 \times 10^{24} kg$$
 Dünyanın kütlesidir.

r Uydunun kütle merkezi ile dünyanın kütle merkezi arasındaki mesafedir.

x, y, z uydunun kartezyen koordinatlarıdır.

Bunları 1. dereceden differansiyel denklem şeklinde yazalım:

$$\frac{dx}{dt} = U$$

$$\frac{dy}{dt} = V$$

$$\frac{dz}{dt} = W$$

$$\begin{split} \frac{dU}{dt} &= -\gamma M \, \frac{x}{r^3} & \frac{dx}{dt} = U \Rightarrow \frac{x_{i+1} - x_i}{\Delta t} \Rightarrow x_{i+1} = x_i + \Delta t. U \\ \frac{dV}{dt} &= -\gamma M \, \frac{y}{r^3} & \frac{dy}{dt} = V \Rightarrow \frac{y_{i+1} - y_i}{\Delta t} \Rightarrow y_{i+1} = y_i + \Delta t. V \\ \frac{dW}{dt} &= -\gamma M \, \frac{z}{r^3} & \frac{dz}{dt} = W \Rightarrow \frac{z_{i+1} - z_i}{\Delta t} \Rightarrow z_{i+1} = z_i + \Delta t. W \end{split}$$

Toplam 6 denklem elde edilir:

$$U_{i+1} = U_{i} - \Delta t.\gamma.M \frac{x_{i}}{r_{i}^{3}}$$

$$V_{i+1} = V_{i} - \Delta t.\gamma.M \frac{y_{i}}{r_{i}^{3}}$$

$$W_{i+1} = W_{i} - \Delta t.\gamma.M \frac{z_{i}}{r_{i}^{3}}$$

$$x_{i+1} = x_{i} + \Delta t.U_{i}$$

$$y_{i+1} = y_{i} + \Delta t.V_{i}$$

$$z_{i+1} = z_{i} + \Delta t.W_{i}$$

$$r_{i}^{2} = x_{i}^{2} + y_{i}^{2} + z_{i}^{2}$$

$$r_{i} = \sqrt{x_{i}^{2} + y_{i}^{2} + z_{i}^{2}}$$

Bu denklemleri çözmek için başlangıç koşulları alınacak, daha sonra 1000 adımda herbir noktada uydunun konumunu ve hızlarını bulacağız

$x_0(m)$	$y_0(m)$	$z_0(m)$	r(m)
10000000	2000000	23000000	32078029,86

Burada (₀) indisi başlangıç şartlarını belirtmektedir. Bunlar **konumlarla ilgili başlangıç şartları**. Buna ilaveten bir de **başlangıç hızları** verilmeli:

$U_0(\begin{subarray}{c} \end{subarray})$	$V_0(\frac{m}{s})$	$W_0(\frac{m}{s})$
Uzunlamasına Hız	Yanlamasına Hız	Dikey Hız
5000	5000	3500

100000 adımda Delta t=0.1 s adımı ile uydunun konumları ve hızları bulunacak. sonra Delta t=1s alınacak 10000 adım için uydunun konumları ve hızları bulunacak (2 durum için konum ve hız grafikleri cizilecelk)