112-1 NTU-CA Lab1 Report

b10902138 陳德維

1. Modules Explanation

Adder.v

Adder module takes two 32-bit data data1_i, data2_i as input and output the bit-sum of the 2 datas (i.e. data_o = data1_i + data2_i). In this data path, the adder is used to increment PC by 4.

ALU Control.v

ALU Control module takes an instruction segments ([31:25]+[14-12]) and a 2-bit select signal ALU0p from Control module as input and output a 3-bit data for ALU as select signal to determine what operation should ALU do.

ALU.v

 ALU module takes a select signal input from ALU_Control module, two 32-bit input data from either register of sign-extended immediate and output a zero signal for branching and a ALU_result for the result after ALU finished the selected operation.

Control.v

Control module takes a segment of the instruction([6:0]) and output 3 signal
RegWrite, ALUOp, ALUSrc based on the type of the instruction for other modules to use.

MUX32.v

 MUX32 module implement a 32-bit input 2x1 multiplexer having one 1-bit select signal and two 32-bit data, and output the data which select signal indicated.

Sign_Extend.v

 Sign_Extend module takes a 12-bit immediate and extend its most significant bit to a 32-bit immediate.

CPU.v

 CPU module instantiate all the module above and uses wire to connect each module in order to construct the data path given in Figure1.

2. Development Environment

OS: Ubuntu 22.04 given by the Dockerfile

• Compiler: iverilog 11.0-1.1

• Text Editor: VScode + Wavetrace