第1章 概述

主要内容:

- 计算机网络的发展
- ☀● 计算机网络的分类
- ☀● 计算机网络拓扑结构
- ☀● 计算机网络的主要性能指标

1.1 计算机网络的发展

- ●计算机网络的产生
- ●因特网

一、计算机网络的产生

第一代计算机网络:

50年代初, 面向终端的计算机通信网,

采用电路交换技术。

电路交换技术示意图:

电路交换技术的的特点:

- 电路交换必定是面向连接的
- 电路交换的三个阶段:
 - 建立连接
 - 通信
 - 释放连接

电路交换技术的的缺点:

- 通信的线路中有一条链路或一个交换机出现了 故障,通信就被中断;
- 改用其它线路通信,还需重新建立连接(十几秒),可能会造成重大的损失;
- 通信双方始终占用端到端的固定传输带宽;

适合传输计算 机数据吗?

电路交换技术传送计算机数据效率低

- 计算机数据具有突发性;
- 导致通信线路的利用率很低。

第二代 计算机网络

● 60 年代初,美苏冷战的产物 美国国防部领导的远景研究规划局ARPA (Advanced Research Project Agency) 提出要研制一 种生存性很强的新型计算机网络。

针对采用电路交换技术的计算机网络

新型计算机网络的特点:

- 网络能够连接不同类型的计算机,不局限于单一 类型的计算机;
- 所有的网络结点都同等重要,提高网络的生存性;
- 计算机在进行通信时,必须有冗余的路由;
- 网络的结构应尽可能地简单,并能非常可靠地传送数据。

分组交换网的示意图

分组交换技术的原理

● 在发送端, 先把较长的报文划分成较短的、固定长度的 数据段。

●每一个数据段前面添加上首部构成分组

请注意:现在左边是"前面"

- 分组交换网以"分组"作为数据传输单元。
- 依次把各分组发送到接收端(假定接收端在左边)。

接收端收到分组后剥去首部还原出原始数据。

●最后,在接收端把收到的数据组装起来,恢复成原始的报文。

分组交换网的示意图

分组首部的作用?

- ●每一个分组的首部都含有目的地址和源地址等控制信息。
- 路由器根据分组首部中的目的地址,把分组转发到下一个路由器。
- 用这样的存储转发方式,分组就能传送到最终目的地。

分组的存储转发过程

分组交换的优点

- ●高效 动态分配传输带宽,对通信链路是逐段占用;
- 灵活 以分组为传送单位独立查找路由;
- 迅速 不必先建立连接就能向其他主机发送分组;
- 可靠 完善的网络协议;

总结: 分组交换技术适合传输计算机数据。

二、因特网

- ●因特网的相关概念
- ●因特网的发展

(一) 因特网的相关概念

- ●结点 计算机、集线器(HUB)、交换机、路由器等。
- 网络由若干结点和连接结点的链路构成。
- 互联网 通过<mark>路由器</mark>将两个以上的网络连接在一起,构成 覆盖范围更大的网络。
- 因特网-----全球最大的互联网。

(二) 因特网的发展

1、从单个分组交换网(ARPANET)向互联网发展

- 1969年,第一个分组交换网 ARPANET 最初只 是一个单个的分组交换网。
- 1983 年 TCP/IP 协议成为标准协议。
- 1983,诞生了<mark>因特网</mark> Internet。

2、三级结构的因特网(1985年)

•1991年,因特网对全世界开放

3、多层次 ISP 结构的因特网

- ●1993年,美国政府不再负责因特网的运营;
- 第三阶段的特点是逐渐形成了多层次 ISP 结构 的因特网;
- 出现了**因特网服务提供者 ISP** (Internet Service Provider);

用户通过 ISP 上网

根据提供服务的覆盖面积大小以及所拥有的 IP 地址数目的不同,ISP 也分成为不同的层次。

主机A → 本地 ISP → 第二层 ISP → NAP → 第一层 ISP → NAP → 第二层 ISP → 本地 ISP → 主机B

多层次ISP结构的因特网概念示意图

因特网的发展情况概况

	网络数	主机数	用户数	管理机构数
1980	10	_ 0	10^{2}	10^{0}
1990	10^{3}	10^{5}	10^{6}	10^{1}
2000	10^{5}	10^{7}	10^{8}	10^{2}
2005	10^{6}	10^{8}	10^{9}	10^3

• • • • •

2020

40亿

我国互联网应用的发展

2020年,中国的网民数达到8亿多

主要内容:

- 计算机网络的发展
- ☀☞计算机网络的分类
- ★● 计算机网络拓扑结构
- ☀● 计算机网络的主要性能指标

☀ 1.2 计算机网络的分类

从网络的作用范围来分:

- 局域网 LAN (Local Area Network)
- 城域网 MAN (Metropolitan Area Network)
- 广域网 WAN (Wide Area Network)

(一)局域网 LAN

- ●把公司或企业的办公楼群或校园内的计算机 连接起来构成的网络
- ●作用范围:几公里~十几公里

局域网 LAN

局域网 LAN

(二) 城域网 MAN

- ●覆盖范围介于局域网和广域网之间,十几公里~上百公里;
- ●由高速结点交换机和高速链路连接起来构成的城市 主干网;
- ●把一个城市内不同地点的局域网、各种主机和服务 器连接起来
- ●一般是由国内运营商负责组建和维护。

(三)广域网 WAN

- ●连接国家或洲构成的高速主干网;
- ●作用范围:几百公里~几千公里;
- ●一般由运营商(国内外)联合投资建。

广域网 MAN

- ●中国台湾有9条光缆
- ●中国香港和韩国各有11条光缆
- ●日本至少有11个入口15条光缆

主要内容:

- 计算机网络的发展
- ☀● 计算机网络的分类
- ☀☞计算机网络拓扑结构
- ☀● 计算机网络的主要性能指标

☀ 1.3 计算机网络拓扑结构

- ●总线型拓扑结构
- ●环型拓扑结构
- 网状拓扑结构
- ●星型拓扑结构
- 树型拓扑结构

集线器或交换机(可靠性高)

星型拓扑结构

环型拓扑结构

网状拓扑结构

树型拓扑结构

主要内容:

- 计算机网络的发展
- ☀● 计算机网络的分类
- ★● 计算机网络拓扑结构
- ☀☞计算机网络的主要性能指标

☀ 1.4计算机网络的主要性能指标

- ●速率
- ●帶宽
- ●时延
- ●时延带宽积

(一)速率

●在数字信道上传送数据的速度,也称为数据率或比特率。

常用的速率单位:

- ■比特每秒, 即 b/s (或bit/s)
- 千比每秒,即 kb/s (10³ b/s)
- ■兆比每秒, 即 Mb/s(10⁶ b/s)
- ■吉比每秒, 即 Gb/s(10⁹ b/s)
- 太比每秒, 即 Tb/s (10¹² b/s)
- 拍比每秒,即 Pb/s(10¹⁵ b/s)
- _艾比每秒,即 Eb/s(10¹⁸ b/s)
- ■泽比每秒,即 Zb/s(10²¹ b/s)

.

注意:

●表示数据块的长度。

常用的单位:

- bit (比特) 或B(字节)
- **kb** (2¹⁰ bit)
- Mb (2²⁰ bit)
- Gb (2³⁰ bit)
- Tb (2⁴⁰ bit)
- Pb (2⁵⁰ bit)
- Eb (2⁶⁰ bit)
- Zb (2⁷⁰ bit)

(二)带宽

带宽:是指结点向信道上发送数据的速率,又称为发送速率。

常用的带宽单位:

```
■比特每秒, 即 b/s (或bit/s)
千比每秒,即 kb/s (10<sup>3</sup> b/s)
■兆比每秒、即 Mb/s(10<sup>6</sup> b/s)
■吉比每秒、即 Gb/s(10<sup>9</sup> b/s)
■太比每秒。即 Tb/s(10<sup>12</sup> b/s)
■拍比每秒、即 Pb/s(10<sup>15</sup> b/s)
_ 艾比每秒. 即 Eb/s (10<sup>18</sup> b/s)
■泽比每秒、即 Zb/s(10<sup>21</sup> b/s)
```

光纤的带宽 > 同轴电缆的带宽 > 双绞线的带宽

(三)时延

• 是指数据(一个报文或分组)从网络(或一条链路)的一端传送到另一端所需时间。

时延=发送时延+传播时延+排队时延+处理时延

四种时延所产生的地方

从结点 A 向结点 B 发送数据

发送时延

- **发送时延**(传输时延) 发送数据时, 数据块从结点**进入到传输媒体**所需要的 时间。
- 信道带宽 向信道上发送数据的速率。

发送时延 = 数据块长度(比特) 信道带宽(比特/秒)

传播时延

传播时延 =

• 传播时延 电磁波在信道中传播而花费的时间。

信道长度(米)

电磁波在信道上的传播速率(米/秒)

电磁波在信道上的传播速率

- 在自由空间中 3.0×10⁵km/s
- 在铜线电缆中 2.3×105km/s
- 在光纤中 2.0×10⁵km/s

双绞线和同轴电缆

排队时延

- 分组进入路由器后,先在缓存队列中排 队,等待处理,这部分时延称为排队时 延。
- 排队时延取决于网络当时的通信量。

处理时延

• 处理时延 主机或路由器收到分组后要进行一些必要的处理所花费的时间。

路由器 R₁ 的路由表

目的主机所在的网络	下一跳路由器的地址
10.0.0.0	R2
128.6.0.0	R3
189.2.0.0	R4
192.8.6.0	R5

[例]

• 假定有一个长度为100MB的数据块,在带宽为 1Mb/s的光纤信道上(信道长度为1000km)传 输,计算发送时延和传播时延(不考虑排队时 延和处理时延)。

发送时延=
$$\frac{100\times2^{20}\times8bit}{10^6bit/s}$$
 =838.9s
传播时延= $\frac{1000km}{2.0\times10^5 \text{ km/s}}$ =5ms

(四) 时延带宽积

三种传输媒体链路容量的对比(长度相等)

练习题:

1、常见的计算机网络拓扑结构有: _____、 ____、___和___、____和___。

练习题:

 2、按照网络的作用范围,计算机网络可以划分为: ____、和____、三种类型。

2、按照网络的作用范围, 计算机网络可以划分为:

局域网 、 **城域网** 、和 广域网 三种类型。

3、Internet 起源于()。

A.美国 B.英国 C.德国 D.澳大利亚

3、Internet 起源于(A)。

A.美国 B.英国 C.德国 D.澳大利亚

4、计算机网络通信的一个显著特点是()。

A、稳定性 B、间歇性、突发性

C、安全性 D、易用性

4、计算机网络通信的一个显著特点是(B)。

A、稳定性 B、间歇性、突发性

C、安全性 D、易用性

5、中国教育和科研网(CERNET)是非盈利的管理与服 务性机构。其宗旨是为我国教育用户服务,促进我国 互联网络健康、有序地发展。承担其运行和管理工作 主要单位是()。

A. 北京大学 B. 清华大学

C. 信息产业部 D. 中国科学院

5、中国教育和科研网(CERNET)是非盈利的管理与服务性机构。其宗旨是为我国教育用户服务,促进我国互联网络健康、有序地发展。承担其运行和管理工作主要单位是(B)。

A. 北京大学 B. 清华大学

C. 信息产业部 D. 中国科学院

6、随着电信和信息技术的发展,国际上出现了所谓

"三网融合"的趋势,下列不属于三网之一的是()。

A. 传统电信网 B. 计算机网(主要指互联网)

C. 有线电视网 D. 卫星通信网

6、随着电信和信息技术的发展,国际上出现了所谓

"三网融合"的趋势,下列不属于三网之一的是(D)。

A. 传统电信网 B. 计算机网(主要指互联网)

C. 有线电视网 D. 卫星通信网

- 7、采用个人拨号上网的方式时,其中的IP地址是 ()。
- A.由个人在TCP/IP设置时随意设定的。
- B.由ISP给个人入网用户分配的永久地址。
- C.由Internet服务商动态分配的临时地址。
- D.个人上网无须IP地址。

- 7、采用个人拨号上网的方式时,其中的IP地址是(C)。
- A.由个人在TCP/IP设置时随意设定的。
- B.由ISP给个人入网用户分配的永久地址。
- C.由Internet服务商动态分配的临时地址。
- D.个人上网无须IP地址。

【本章小结】

- ※ 两种交换技术:分组交换技术和电路交换技术
- ※ 计算机网络的分类:局域网、城域网和广域网
- ※ 网络拓扑结构:总线型、环型、网状、星型和树型拓扑结构
- ※ 计算机网络的主要性能指标

作业:

P14 1 . 5 . 6