CE353 PRINCIPLES OF TRANSPORTATION AND TRAFFIC ENGINEERING

RECITATION 4

1.) A horizontal curve is to be constructed as a second class highway. The given standards and the selected values are as follows:

Given standards: 2 nd Class Highway	Selected Values:
$V_d = 70 \text{ km/hr}$	$R = 250 \text{ m}$ $\Delta = 20^{\circ}$
$R_{\text{min}} = 200 \text{ m}$	g = 4%
$G_{\text{max}} = 5\%$	<i>5</i> . / v
$e_{\text{max}} = 8\%$	
w (lane width) = 3.5 m	
μ = 0.5 , μ _b =0.7	
t_R (perception and reaction time) = 2.5 sec	

There is an immovable obstruction 2.6 m away from center of the inner lane and it creates a lateral sighting problem.

Check whether the selected values meet the given standards. If not, make necessary adjustments on design speed.

2.)

A horizontal curve with a radius of 200 meters and intersection angle $\Delta = 30^{\circ}$ is located on a road section. The platform width and lane width of that road are 10 m and 3.5 m respectively. Taking design speed as 90 km/hr and the distance between inner edge and the obstruction as 6 m, answer the following questions:

- a) Is the necessary sight distance is maintained for safe stopping?
- b) How many meters does the obstruction have to be moved, if the above mentioned sight distance is not maintained?

(Note that M_s is measured from the centerline of the inner edge.)