Prof. Dr. Andreas Maletti, Dr. habil. Karin Quaas, Fabian Sauer

Aufgaben zur Lehrveranstaltung

Berechenbarkeit

Serie 7

▶ Die Übungsaufgaben werden in den Übungen ab dem 7.7.2025 besprochen.

Übungsaufgabe 7.1

Besitzen die folgenden Instanzen des Postschen Korrespondenzproblems (PCP) eine Lösung? Falls ja, geben Sie eine Lösung an. Falls nicht, begründen Sie, warum keine Lösung existieren kann.

- (a) $\langle (ab, abb), (aab, ba), (ba, aa) \rangle$
- (b) $\langle (ab, abab), (b, a), (aba, b), (aa, a) \rangle$

Übungsaufgabe 7.2

Gegeben sei das folgende Entscheidungsproblem P_1 :

- Gegeben ein PCP $P = \langle (u_1, v_1), \dots, (u_k, v_k) \rangle$ über $\Sigma = \{a\}$.
- Frage: Besitzt *P* eine Lösung?

Zeigen Sie, dass P_1 deterministisch polynomiell entscheidbar ist.

Übungsaufgabe 7.3 (NP)

Wir definieren das Problem der zwei Fahrradtaschen wie folgt.

- Gegeben: n_1, n_2, \ldots, n_k in Binärkodierung
- Frage: Existieren $I, J \subseteq \{1, ..., k\}$ sodass $I \cap J = \emptyset$ und $\sum_{i \in I} n_i = \sum_{i \in I} n_i$?
- (a) Geben Sie für die beiden folgenden Instanzen des Problems der zwei Fahrradtaschen an, ob es sich um positive oder negative Instanzen handelt (mit Begründung).
 - (i) 5,7,3,17,1,2
 - (ii) 1, 2, 4, 8, 16
- (b) Zeigen Sie, dass das Problem der zwei Fahrradtaschen nichtdeterministisch polynomiell entscheidbar ist.