Translacja = synteza białek

Translacja = drugi (ostatni) etap ekspresji genu

Ekspresja genów eukariotycznych

syntetazy aminoacylo-tRNA GTP, ATP, czynniki translacyjne, peptydylotransferaza

Translacja

Porównanie eukariotycznych i prokariotycznych mRNA

Synteza białek = Translacja

mRNA aminokwasy białka

Pytania:

- 1. Jak sekwencja mRNA jest przekładana na sekwencję aminokwasów?
- 2. Jak są aktywowane aminokwasy?
- 3. Jak jest zapewniana wierność przekładu?

Podstawowe etapy translacji:

```
1. Aktywacja aminokwasów sytntetaza aminoacylo-tRNA
aminokwasy + tRNA -----> aminoacylo-tRNA
                                        ATP
2. Inicjacja translacji
                                 rybosomy
mRNA + inicjatorowy-tRNA<sup>met</sup> -----> kompleks inicjujący
                                 Czynniki inicjujące (eIF), GTP
3. Elongacja
               rybosomy, mRNA
aminoacyl-tRNA ----> rosnący łańcuch polipeptydowy
                             czynniki elongacyjne (eEF), GTP
4. Terminacja translacji
mRNA (stop kodon) -----> uwolnienie peptydu
                    czynnik uwalniający (RF)
```

Kod genetyczny – przekład sekwencji mRNA sekwencję aminokwasów

Właściwości kodu genetycznego:

Trójkowy

- Bezprzecinkowy
- •Zdegenerowany

(wieloznaczny)

Uniwersalny

WYJĄTKI:

Genom

mitochondraialny:

	U	С	A	G
C	UUU = phe	UCU = ser	UAU = tyr	UGU = cys
	UUC = phe	UCC = ser	UAC = tyr	UGC = cys
	UUA = leu	UCA = ser	UAA = stop	UGA = stop
	UUG = leu	UCG = ser	UAG = stop	UGG = trp
O	CUU = leu	CCU = pro	CAU = his	CGU = arg
	CUC = leu	CCC = pro	CAC = his	CGC = arg
	CUA = leu	CCA = pro	CAA = gIn	CGA = arg
	CUG = leu	CCG = pro	CAG = gln	CGG = arg
Α	AUU = ile	ACU = thr	AAU = asn	AGU = ser
	AUC = ile	ACC = thr	AAC = asn	AGC = ser
	AUA = ile	ACA = thr	AAA = lys	AGA = arg
	AUG = met	ACG = thr	AAG = lys	AGG = arg
G	GUU = val	GCU = ala	GAU = asp	GGU = gly
	GUC = val	GCC = ala	GAC = asp	GGC = gly
	GUA = val	GCA = ala	GAA = glu	GGA = gly
	GUG = val	GCG = ala	GAG = glu	GGG = gly

ssaki: UGA (STOP) – Trp, AGA, AGG (Arg) – Stop, AUA (Ile) - Met

Kod genetyczny...:

Kodon startu = AUG Kodony stop = UAG, UGA, UAA

Otwarta ramka odczytu (ORF):

Rozpoczyna się AUG i nie jest przerwana kodonem stop Za sekwencje kodujące uznaje się ORF zawierające co najmniej 100 kodonów

Synteza białek jest najbardziej enegrochłonnym procesem komórkowym, zużywa do 90% ATP wytwarzanego w komórkach.

Aktywacja aminokwasów

Aktywacja każdego aminokwasu polega na związaniu ze specyficznym dla niego tRNA

Katalizowana jest przez swoiste dla aminokwasu syntetazy aminoacyl-tRNA

Aminoacyl Synthetase

COR EACH ANTICODON,
THERE IS AN ENZYME
WHICH RECOGNIZES IT
AND ATTACHES THE
APPROPRIATE AMINO ACID
TO ITS ERNA.

Enzymy te są swoiste dla każdego antykodonu.

Rozpoznają antykodon i katalizują przyłączenie właściwego aminokwasu dokońca 3' tRNA

Reakcja aktywacji jest dwustopniowa

Aktywowanie aminokwasu

Jak jest zapewniana poprawność przyłączania aminokwasu?

- syntetazy-tRNA są swoiste dla:
 - 1. pojedynczego aminokwasu
 - 2. swoistego tRNA
- 1. Jak zapewniana jest swoistość aminokwasu?
 - a. swoistość substratowa
 - b. korygowanie błędów

Połączenie t-RNA ze swoistą dla niego syntetazą aminoacylo-tRNA

Korekta Aminoacyl-tRNA

Syntetaza treoniny

Syntetaza treoniny

Syntetaza glutaminy

Translacja przebiega dzięki rybosomom....

Dowód że RNA rybosomu pełni funkcje katalityczne:

- Po usunięciu 95% białek rybosomalnych, podjednostka 60S może katalizować tworzenie wiązań peptydowych
- Białka rybosomalne pomagają w prawidłowym fałdowamiu rRNA

Budowa rybosomów eukariotycznych

Rybosom posiada 3 miejsca wiążące RNA: 1 - dla mRNA i 2 - dla tRNA.

Miejsce P - peptydylo -tRNA, utrzymuje tRNA połączone z rosnącym łańcuchem polipeptydowym

Miejsce A - wiąże aminoacyl-t RNA, czyli tRNA załadowany aminokwasem.

tRNA są utrzymywane w tych miejscach wiązaniem z komplementarnymi parami zasad.

PRZEBIEG TRANSLACJI

- I. Inicjacja u eukariontów
- •jest etapem regulowania tempa translacji
- wymaga hydrolizy ATP i GTP
- •w jej wyniku powstaje kompleks zawierający mRNA, rybosom i inicjatorowy Met-tRNA

TRANSLACJA U EUKARIOTA -INICJACJA (2)

Dwa mechanizmy inicjacji:

- 1. Zależny od struktury CAP
- 2. Niezależny od struktury CAP W translacji mRNA nie posiadających czapeczki inicjacja zachodzi poprzez sekwencję IRES "internal ribosome entry site"

Mechanizm ten wykryto u wirusów np. wirus polio posiada na końcu 5' sekwencję o dług. 741 nukleotydów zawierającą 7 kodonów AUG

Dotychczas u wirusów wykryto 3 różne typy sekwencji IRES

3 typy IRES

TRANSLACJA U EUKARIOTA -INICJACJA (4)

• W inicjacji zależnej od czapeczki (cap) kompleks inicjacyjny przyłącza się do 5' cap i przesuwa się od 5' do 3' do napotkania kodonu startu AUG

INICJACJA

- Związanie eIF3 i eIF4C z małą podjednostką rybosomu, to umożliwia:
- Złożenie kompleksu preinicjacyjnego: inicjatorowy tRNA+eIF2+GTP
- •Związanie kompleksu preinicjacyjnego z mRNA za pomocą kompleksu wiążącego eIF4F (składa się z czynników: eIF-4A, eIF-4E, eIF-4G) (rozpoznaje "Cap").
- •skaning mRNA (odnalezienie AUG w kontekście 5'CCRAUGG-3' (R = puryna). Odbywa się to prawdopodobnie dzięki aktywności helikazy czynników eIF-4A i eIF-4B.
- •eIF5 hydrolizuje GTP i wypiera eIF2 oraz eIF3
- •eIF4C wspomaga wiązanie podjednostki 60S (po odłączeniu eIF6) powstaje kompleks inicjujący 80S
- •kompleks eIF2-GDP uwolniony z małej podjednostki jest ponownie wprowadzany do cyklu inicjacji przez eIF2B (szybkość tego procesu jest regulowana przez fosforylację podjedn. alfa eIF2 (fosforylacja eIF2 hamuje inicjację translacji)

ELONGACJA

Czynnik elongacyjny, eEF-1α, dostarcza aa-tRNA do miejsca "A"

PEPTYDYLOTRANSFERAZA

TERMINACJA

1 czynnik uwalniający (eRF) rozpoznaje wszystkie kodony "stop"; wymaga GTP,

również ogonek poliA może zatrzymywać translację

Czynniki RF powodują, że peptydylotransferaza przenosi polipeptyd na cząsteczkę wody a nie na aminoacylo-tRNA

Potranslacyjne modyfikacje białek.

NAJCZĘSTSZE POTRANSLACYJNE MODYFIKACJE BIAŁEK

•PROTEOLITYCZNE ROZSZCZEPIANIE

•WYCINANIE INTEIN

•MODYFIKACJE CHEMICZNE

Proteolityczne rozszczepienie białka

➤ Wykorzystywane jest do usuwania krótkich fragmentów z końca N lub C polipeptydu

*melityna wydzielana przez pszczoły - aktywne białko powoduje lizę komórek zwierzęcych. M. syntetyzowana jest jako nieaktywny prekursor, mający na końcu N 22 dodatkowe aminokwasy

Enzymy z rodziny proteaz asparaginianowych

❖Insulina

Proteaza asparaginianowa Ancylostoma ceylanicum

MARLVLLLALFTLAVASVHRRTFHQPRRYVKSVSLSRQPTLRERLLGTGS
WEDYQKQRYHYQKKLLAKYAANKASKLQSTNEIDELLRNYMDAQYFGTIQ
IGTPAQNFTVIFDTGSSNLWVPSRKCPFYDIACMLHHRYDSGASSTYKED
GRKMAIQYGTGSMKGFISKDNVCIAGICAVEQPFAEATSEPGLTFIAAKF
DGILGMAFPEISVLGVPPVFHTFIEQKKVPSPVFAFWLNRNPDSELGGEI
TLGGMDPRRYVEPITWTPVTRRGYWQFKMDKVQGGSTSIACPNGCQAIAD
TGTSLIAGPKAQVEAIQKFIGAEPLMKGEYMIPCDKVPSLPELSFVIEGR
TFILKGEDYVLTVKAGGKSICLSGFMGMDFPERIGELWILGDVFIGKYYT
VFDIGOARLGFAOAKSEDGYPVGPAVRRYNKFSEDSDSDEDDVFTL

Kompletna sekwencja aminokwasowa:

Oczekiwana sekwencja sygnałowa:

Oczekiwana sekwencja prpeptydu:

Oczekiwana sekwencja części katalitycznjej: 79..446

INSULINA

➤ Wykorzystywane jest również do cięcia <u>poliprotein</u> na segmenty. Każdy z fragmentów staje się aktywnym białkiem

(niektóre białka początkowo syntetyzowane są jako poliproteina, długi polipeptyd zawierający kilka białek połączonych jedno za drugim, sposobem głowa-ogon; bakteriofagi, wirusy eukariotyczne, hormony peptydowe).

PROOPIOMELANOKORTYNA

265 aa

β-MSH γ-endorfina

α-endorfina

enkefalina

					203 uu
26	48	24 31	39	90	
ODCINEK	peptyd N-końcowy	γ ₃ -MSH peptyd J	ACTH	β-LPI	H
		12	13	59	30
		γ ₂ -MSH	α-MSH CLIP	γ-LPH	β -endorfina
				22	1.0

Ryc. Schemat zmian zachodzących w kortykotropach i melanotropach przysadki. Ze wspólnego prekursora proopiomelanokortyny w czasie kontrolowanej proteolizy odcinane są różne fragmenty peptydowe, w których ilość aminokwasów oznaczono cyframi. Typ przemian, a zatem i rodzaj powstających hormonów lub neuroprzekaźników zależy od rodzaju komórki. Peptydy powstające w melanotropach części pośredniej przysadki zaznaczono kolorem różowym (Kawiak, Podstawy Cytofizjologii, 1995, zmodyfikowane).

WYCINANIE INTEIN = BIAŁKOWA WERSJA WYCINANIA INTRONÓW Z PRE-mRNA

- ► INTEINY są to wewnętrzne segmenty białek wykryte po raz pierwszy u drożdży w 1990 r (do 2000 r wykryto 20, głównie w genach archeonów ale także u bakterii i niższych eukariontów).
- ►Inteiny eukariotyczne występują zarówno w białkach kodowanych przez geny jądrowe jak i geny poszczególnych organelli
- ► Większość intein ma od 300 do 600 aminokwasów długości
- Sekwencje na końcach inteiny są podobne we wszystkich znanych przypadkach (pierwszym aminokwasem jest metionina a dwa ostatnie to histydyna i asparagina.
- ➤ Wewnątrz inteiny znajduje się również kilka konserwatywnych aminokwasów.
- Przypuszcza się, że aminokwasy te biorą udział w procesie wycinania, który jest katalizowany przez samą inteinę

WYCINANIE INTEIN

Inteiny mają zdolność do ukierunkowanego przemieszczania się

- mogą wycinać sekwencję DNA kodującą inteinę (zdolność endonukleazy), która może być włączona w DNA kodujący bezinteinową wersję białka.

CHEMICZNA MODYFIKACJA BIAŁKA

Najprostsza – dołączanie małej grupy chemicznej np. grupy: acetylowej metylowej

fosforanowej (w różnych białkach wykryto ponad 150 różnych modyfikowanych aminokwasów)

• aktywna transkrypcyjnie chromatyna jest szczególnie bogata w acetylowane formy histonów. Wykazano istnienie korelacji pomiędzy wzrostem acetylacji histonów H3 i H4 ("superacetylacja) i syntezą RNA.

GLIKOZYLACJA = przekształcenie peptydów w glikoproteiny

▶Najbardziej złożona modyfikacja

Wynikiem glikozylacji może być przyłączenie do białka dużych struktur tworzących rozgałęzioną sieć, w której skład wchodzi 10-20 różnego typu jednostek cukrowych.

Te łańcuchy boczne kierują białko do odpowiedniego miejsca w komórce i decydują o stabilności białek krążących w krwiobiegu

- *Glikozylacja typu O polega na przyłączeniu bocznego łańcucha cukrowego poprzez grupę hydroksylową seryny lub treoniny
- *Glikozylacja typu N w jej wyniku następuje przyłączenie poprzez grupę aminową asparaginy

N - Glikozylacja

1) Wytworzenie prekursora cukrowego za pośrednictwem ufosforylowanego glikolipidu – dolicholu

2) Przeniesienie oligosacharydu na cząsteczkę asparaginy, która pojawia się w łańcuchu peptydowym oddzielona jednym aminokwasem od seryny lub treoniny (układ asparagina-x-seryna, asparagina-x-treonina)

3) Przetwarzanie oligosacharydu, kolejne przekształcanie w Aparacie Golgiego

Aparat Golgiego

Modyfikacje na terenie Aparatu Golgiego

- •Glikozylacja poprzez wiązanie O-glikozydowe
- •Siarkowanie dodawanie reszt kwasu siarkowego do produktów wydzielniczych (siarkowane glikozoaminoglikany wchodzą w skład proteoglikanów tkanki łącznej i stanowią ważny biologicznie produkt wydzielniczy fibroblastów, chondroblastów, czy komórek tucznych.
- •Reakcje fosforylacji dołączanie reszt kwasu fosforowego (kazeina z komórek gruczołu mlekowego, grupy fosforanowe przyłączone estrowo do seryny)
- •Acylacja i formowanie lipoprotein tworzenie lipoaminokwasów i lipopolisacharydów

Przykłady potranslacyjnych modyfikacji chemicznych

Modyfikacja	Modyfik. aa	Przykł. białko	
Acetylacja	Lizyna	Histony	
Metylacja	Lizyna	Histony	
Fosforylacja	Seryna	b. sygnałowe	
Hydroksylacja	Prolina, lizyna	kolagen	
N-formylacja	N-końcowa	melityna	
	glicyna		
Glikozylacja t.O	Seryna, treonina	b. wydzielane i	
Glikozylacja N	Asparagina	bł.	
		,, ,,	
Dodanie bocznego ł. lipid	Seryna, treonina,		
Acylacja	Cysteina	białka błonowe	
N-mirystylacja	N-końcowa		
	glicyna	niektóre kinazy	

Dziękuję za uwagę