БИЛЕТ 7. ДНФ

Простой конъюнкцией (англ. *inclusive conjunction*) или **конъюнктом** (англ. *conjunct*) называется конъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза.

Простая конъюнкция

- полная, если в неё каждая переменная (или её отрицание) входит ровно 1 раз;
- монотонная, если она не содержит отрицаний переменных.

Дизъюнктивная нормальная форма, ДНФ (англ. disjunctive normal form, DNF) — нормальная форма, в которой булева функция имеет вид дизъюнкции нескольких простых конъюнктов.

Пример ДНФ: $f(x, y, z) = (x \wedge y) \vee (y \wedge \neg z)$

Совершенная дизъюнктивная нормальная форма, СДНФ (англ. *perfect disjunctive normal form, PDNF*) — ДНФ, удовлетворяющая условиям:

- в ней нет одинаковых простых конъюнкций,
- каждая простая конъюнкция полная.

Пример СДНФ: $f(x, y, z) = (x \land \neg y \land z) \lor (x \land y \land \neg z)$.

Для любой булевой функции $f(\vec{x})$, не равной тождественному нулю, существует СДНФ, ее задающая.

Пример построения СДНФ для медианы

1. В таблице истинности отмечаем те наборы переменных, на которых значение функции равно 1.

x	y	z	$\langle x, y, z \rangle$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2. Для каждого отмеченного набора записываем конъюнкцию всех переменных по следующему правилу: если значение некоторой переменной есть 1, то в конъюнкцию включаем саму переменную, иначе ее отрицание.

x	y	z	$\langle x, y, z \rangle$	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$(\neg x \land y \land z)$
1	0	0	0	
1	0	1	1	$(x \land \neg y \land z)$
1	1	0	1	$(x \wedge y \wedge \neg z)$
1	1	1	1	$(x \wedge y \wedge z)$

3. Все полученные конъюнкции связываем операциями дизъюнкции:

$$\langle x,y,z\rangle = \big(x\wedge y\wedge z\big)\vee \big(\neg x\wedge y\wedge z\big)\vee \big(x\wedge \neg y\wedge z\big)\vee \big(x\wedge y\wedge \neg z\big)$$