$12a_{0551} \ (K12a_{0551})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{51} - u^{50} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{51} - u^{50} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

a) Are consistings
$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^4 + u^2 + 1 \\ u^4 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^2 + 1 \\ -u^4 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u^7 - 2u^5 - 2u^3 \\ u^9 + u^7 + u^5 + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{12} + 3u^{10} + 5u^8 + 4u^6 + 2u^4 + u^2 + 1 \\ -u^{14} - 2u^{12} - 3u^{10} - 2u^8 - 2u^6 - 2u^4 - u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u^{25} + 6u^{23} + \dots + 2u^3 + u \\ -u^{27} - 5u^{25} + \dots - u^3 + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{43} - 10u^{41} + \dots - 8u^5 - 3u^3 \\ u^{45} + 9u^{43} + \dots - u^3 + u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u^{40} + 9u^{38} + \dots - 3u^4 + 1 \\ u^{40} + 8u^{38} + \dots + 6u^6 + 2u^4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{22} - 5u^{20} + \dots - 3u^4 + 1 \\ -u^{22} - 4u^{20} + \dots - 2u^4 - u^2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{49} 4u^{48} + \cdots + 4u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{51} + 23u^{50} + \dots + 2u - 1$
c_2, c_7	$u^{51} + u^{50} + \dots + 2u + 1$
<i>c</i> ₃	$u^{51} - u^{50} + \dots - 4u + 1$
c_4, c_5, c_9 c_{10}, c_{11}	$u^{51} + u^{50} + \dots + 4u + 1$
	$u^{51} + u^{50} + \dots + 4596u + 2061$
c_{8}, c_{12}	$u^{51} + 5u^{50} + \dots + 26u + 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{51} + 11y^{50} + \dots + 26y - 1$
c_{2}, c_{7}	$y^{51} + 23y^{50} + \dots + 2y - 1$
<i>c</i> ₃	$y^{51} - y^{50} + \dots + 50y - 1$
$c_4, c_5, c_9 \\ c_{10}, c_{11}$	$y^{51} + 67y^{50} + \dots + 2y - 1$
<i>c</i> ₆	$y^{51} + 27y^{50} + \dots - 54758682y - 4247721$
c_8, c_{12}	$y^{51} + 43y^{50} + \dots - 1634y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.124050 + 1.007820I	-1.22807 - 1.23128I	-11.11038 + 4.31437I
u = 0.124050 - 1.007820I	-1.22807 + 1.23128I	-11.11038 - 4.31437I
u = -0.567657 + 0.794330I	13.08480 - 2.27933I	0.58371 + 3.39997I
u = -0.567657 - 0.794330I	13.08480 + 2.27933I	0.58371 - 3.39997I
u = 0.491070 + 0.796347I	3.39837 + 2.06094I	0.34753 - 4.06473I
u = 0.491070 - 0.796347I	3.39837 - 2.06094I	0.34753 + 4.06473I
u = -0.764672 + 0.536054I	18.2452 - 4.1032I	1.95310 + 2.72318I
u = -0.764672 - 0.536054I	18.2452 + 4.1032I	1.95310 - 2.72318I
u = -0.275626 + 0.885976I	-0.65991 - 1.25740I	-7.37275 + 5.16821I
u = -0.275626 - 0.885976I	-0.65991 + 1.25740I	-7.37275 - 5.16821I
u = -0.095918 + 1.079980I	2.64743 + 3.72333I	-5.51914 - 4.10632I
u = -0.095918 - 1.079980I	2.64743 - 3.72333I	-5.51914 + 4.10632I
u = 0.748117 + 0.519457I	8.20876 + 2.78699I	1.43171 - 3.73896I
u = 0.748117 - 0.519457I	8.20876 - 2.78699I	1.43171 + 3.73896I
u = 0.796612 + 0.437292I	17.6940 - 7.1625I	1.28660 + 3.00306I
u = 0.796612 - 0.437292I	17.6940 + 7.1625I	1.28660 - 3.00306I
u = -0.778283 + 0.440419I	7.77323 + 5.65959I	0.63336 - 4.31014I
u = -0.778283 - 0.440419I	7.77323 - 5.65959I	0.63336 + 4.31014I
u = -0.371193 + 1.043920I	-1.29263 - 0.95577I	-8.94786 - 0.46472I
u = -0.371193 - 1.043920I	-1.29263 + 0.95577I	-8.94786 + 0.46472I
u = 0.091632 + 1.113570I	12.41680 - 5.09230I	-4.77006 + 2.62305I
u = 0.091632 - 1.113570I	12.41680 + 5.09230I	-4.77006 - 2.62305I
u = -0.730042 + 0.483625I	3.79742 - 0.31118I	-2.99375 + 3.59553I
u = -0.730042 - 0.483625I	3.79742 + 0.31118I	-2.99375 - 3.59553I
u = 0.748991 + 0.449203I	3.60271 - 2.92364I	-3.83628 + 4.17852I
u = 0.748991 - 0.449203I	3.60271 + 2.92364I	-3.83628 - 4.17852I
u = 0.330853 + 1.087020I	7.29518 + 0.30876I	-8.00000 - 0.78025I
u = 0.330853 - 1.087020I	7.29518 - 0.30876I	-8.00000 + 0.78025I
u = 0.431459 + 1.058770I	-3.31703 + 3.41847I	-14.6084 - 5.2638I
u = 0.431459 - 1.058770I	-3.31703 - 3.41847I	-14.6084 + 5.2638I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.471802 + 1.075960I	-0.59913 - 5.95166I	-8.00000 + 8.50499I
u = -0.471802 - 1.075960I	-0.59913 + 5.95166I	-8.00000 - 8.50499I
u = 0.490778 + 1.100730I	8.34808 + 7.02798I	-8.00000 - 6.50051I
u = 0.490778 - 1.100730I	8.34808 - 7.02798I	-8.00000 + 6.50051I
u = 0.614197 + 1.047040I	6.63961 + 2.38883I	0
u = 0.614197 - 1.047040I	6.63961 - 2.38883I	0
u = -0.629234 + 1.042400I	16.7365 - 1.1689I	0
u = -0.629234 - 1.042400I	16.7365 + 1.1689I	0
u = -0.595770 + 1.063400I	2.07756 - 4.75365I	-8.00000 + 0.I
u = -0.595770 - 1.063400I	2.07756 + 4.75365I	-8.00000 + 0.I
u = 0.597475 + 1.082780I	1.72685 + 8.04071I	0
u = 0.597475 - 1.082780I	1.72685 - 8.04071I	0
u = -0.606769 + 1.094070I	5.83091 - 10.88290I	0
u = -0.606769 - 1.094070I	5.83091 + 10.88290I	0
u = 0.613048 + 1.101110I	15.7156 + 12.4555I	0
u = 0.613048 - 1.101110I	15.7156 - 12.4555I	0
u = 0.638692 + 0.195238I	10.86370 - 2.72758I	-2.02598 + 2.69670I
u = 0.638692 - 0.195238I	10.86370 + 2.72758I	-2.02598 - 2.69670I
u = -0.546991 + 0.180701I	1.78156 + 1.95178I	-2.96735 - 4.57785I
u = -0.546991 - 0.180701I	1.78156 - 1.95178I	-2.96735 + 4.57785I
u = 0.433964	-0.812863	-12.4030

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{51} + 23u^{50} + \dots + 2u - 1$
c_2, c_7	$u^{51} + u^{50} + \dots + 2u + 1$
c_3	$u^{51} - u^{50} + \dots - 4u + 1$
c_4, c_5, c_9 c_{10}, c_{11}	$u^{51} + u^{50} + \dots + 4u + 1$
<i>c</i> ₆	$u^{51} + u^{50} + \dots + 4596u + 2061$
c_8, c_{12}	$u^{51} + 5u^{50} + \dots + 26u + 7$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{51} + 11y^{50} + \dots + 26y - 1$
c_2, c_7	$y^{51} + 23y^{50} + \dots + 2y - 1$
c_3	$y^{51} - y^{50} + \dots + 50y - 1$
c_4, c_5, c_9 c_{10}, c_{11}	$y^{51} + 67y^{50} + \dots + 2y - 1$
<i>c</i> ₆	$y^{51} + 27y^{50} + \dots - 54758682y - 4247721$
c_8, c_{12}	$y^{51} + 43y^{50} + \dots - 1634y - 49$