

بخش تئورى

۱. (تعاریف پایه) به هریک از سوالات زیر پاسخ دهید.

- الف) رگرسیون خطی چیست و چگونه در مدل پیشبینی استفاده می شود؟ با ذکر مثالی در دادههای دنیای واقعی (مانند طبیعت و ...) این مدل را بیان کنید.
 - ب) مفروضات و ویژگیهای مورد نظر در رگرسیون خطی را بیان کنید.
- ج) رگرسیون لجستیک چیست و چه تفاوتی با رگرسیون خطی دارد و مفروضات مطرح شده در این مدل را بیان کنید.
 - د) براورد بیشینه درست نمایی یا به اختصار MLE را توضیح دهید و نحوه ی استفاده از آن را در رگرسیون الجستیک بیان کنید.

۲. مجموعه داده زیر را در نظر بگیرید.

X	Y
5	2
0	1
2	1
1	1
2	0

رگرسیون تک متغیره Y بر روی X را بدست آورید.

۳. (اثبات نااریبی برآوردگر رگرسیون یک متغیره) مدل رگرسیون خطی یک متغیره را در نظر بگیرید. فرض
کنید n داده داریم که شامل متغیرهای پیشگو (متغیرهای مستقل) و متغیرهای پاسخ (متغیرهای وابسته)
بهصورت

$$(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$$

فرض كنيد مقدار واقعى متغير ياسخ برابر است با

$$y_i = \beta_0 + \beta_1 x_i + e_i$$

مقدار پیشبینی شده بهازای هر متغیر χ_i برابر است با

$$\hat{y}_i = \theta_0 + \theta_1 x_i$$

و مقدار خطا به ازای هر داده، برابر است با تفاضل مقدار متغیر پاسخ و مقدار پیشبینی شده. یعنی

$$e_i = y_i - \hat{y}_i$$

و در حالت نمایش برداری به ازای تمام دادهها، مقدار پیشبینی شده و خطا را بصورت زیر نمایش میدهیم

$$y = \beta_0 + \beta_1 x + e$$
, $e = y - \hat{y}$
$$\hat{y} = \theta_0 + \theta_1 x$$

بطوری که

$$y = (y_1, y_2, ..., y_n), x = (x_1, x_2, ..., x_n), e = (e_1, e_2, ..., e_n), \hat{y} = (\hat{y}_1, \hat{y}_2, ..., \hat{y}_n)$$

حال ثابت کنید برآوردگر $\widehat{\mathcal{Y}}$ نااریب است.

(راهنمایی: در ابتدا می توانید نشان دهید که $\mathrm{E}[e]=0$ و سپس نشان دهید $\mathrm{E}[\theta_0]=\beta_0$ و $\mathrm{E}[\theta_0]=\beta_0$ و سپس بهراحتی می توان برررسی کرد که $\mathrm{E}[\hat{y}|x]=\beta_0+\beta_0+\beta_0$ برای این کار لازم است از $\mathrm{MSE}=\sum_{i=1}^n(y_i-\hat{y}_i)^2$ و $\mathrm{MSE}=\sum_{i=1}^n(y_i-\hat{y}_i)^2$ موارد بالا را در آن بررسی کنید. به شرط صادق بودن این موارد، گوییم برآوردگر نااریب است و امیدواریم مقدار پیش بینی شده، با مقدار مجهولی که از آن اطلاعاتی نداریم، برابر شود.)

بخش پیاده سازی

۱. قصد داریم رگرسیون خطی چند متغیره را پیاده سازی کنیم.

الف) با استفاده از کتابخانه sklearn دیتاست boston را لود کنید. ۸۰ درصد از نمونههای دیتاست را برای دادههای train_test_split و ۲۰ درصد را برای دادههای test با استفاده از train_test_split جدا کنید و دادهها را نرمالسازی کنید. در فرآیند آموزش از Mini-Batch Gradient Descent استفاده کنید و تابع خطا را در نظر بگیرید.

ب) با استفاده از نرم ۲ (L_2-norm) تابع هزینه در بخش الف را تغییر دهید و پایدارسازی (regularization) را اعمال کنید.

ج) نتایج بخش الف و ب را با یکدیگر مقایسه کنید.

7. طبقهبند لجستیک (logistic regression) را اعمال کنید.

الف) مانند سوال ۱، دیتاست breast-cancer را از sklearn لود کنید. ۸۰ درصد نمونهها را برای train و الف) مانند سوال ۱، دیتاست train_test_split را از train_test_split جدا کنید و دادهها را نرمالسازی کنید.

ب) با استفاده از نرم ۲ (L_2-norm) تابع هزینه در بخش الف را تغییر دهید و پایدارسازی (regularization) را اعمال کنید.

ج) نتایج الف و ب را با یکدیگر مقایسه کنید.

۳. (استفاده از کتابخانه) سوال ۱ را با استفاده از کتابخانه sklearn پیاده سازی کنید. نتایج و پارامترهای بدست آمده را با نتایج و پارامترهای سوال ۱ مقایسه کنید.

۴. (استفاده از کتابخانه) سوال ۲ را با استفاده از کتابخانه sklearn پیادهسازی کنید. نتایج و پارامترهای بدست آمده را با نتایج و پارامترهای سوال ۲ مقایسه کنید.

۵. بصورت دلخواه، یک مثال ساده در معادله نرمال پیادهسازی کنید.

نكات

- تمرینها را در سامانه ایلرن بارگزاری کنید.
- تمام تمرینهای تئوری، باید بصورت دستنویس و خوانا باشند.
- لطفا گزارش را به زبان فارسی بنویسید و تمامی نکات، فرضها و فرمولها در آن ذکر شود. گزارش در روند تصحیح تمارین، از اهمیت ویژهای برخوردار است.
- کپی کردن کدهای آماده موجود در اینترنت و یا استفاده از تکالیف همکلاسیها تقلب محسوب میشود.
 - درصورت مشاهده تقلب، نمرات تمامی افراد شرکت کننده در آن، صفر لحاظ میشود.
 - بجز مواردی که ذکر شده از کتابخانه sklearn استفاده شود، در دیگر موراد فقط از توابع پایتون و کتابخانه numpy استفاده شود.