AD-761 665

MINIATURE, REMOTELY CONTROLLED LAND AND WATER VEHICLES

W. S. Pope, et al

Battelle Columbus Laboratories Columbus, Ohio

July 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST AVAILABLE COPY

MINIATURE, REMOTELY CONTROLLED LAND AND WATER VEHICLES (Report No. A-3963)

by

W. S. Pope, D. C. Doerschuk, and J. M. Tierney

TAGFE

NATIONAL TECHNICAL INFORMATION SERVICE

DISTRIBUTION STATE

Approved for public resease; Distribution Unitabilities

MINIATURE, REMOTELY CONTROLLED LAND AND WATER VEHICLES (Report No. A-3963)

by

W. S. Pope, D. C. Doerschuk, and J. M. Tierney

Sponsored by

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY Tactical Technology Office (Contract No. F33657-71-C-0893, ARPA Order No. 1541, Amendment 1)

July 1972

BATTELLE Columbus Laboratories Tactical Technology Center 505 King Avenue Columbus, Ohio 43201

FOREWORD

This study was supported by the Defense Advanced Research Projects
Ageray (ARPA) of the Department of Defense and was monitored by Wright-Patterson
Air Force Base under Contract No. F33657-71-C-0893. Dr. C. H. Church and
Colonel L. P. Monahan, of the Tactical Technology Office of ARPA, were the
technical monitors for this effort.

Battelle is not engaged in research for advertising, sales, production, or publicity purposes, and this report may not be reproduced in full or in part for such purposes. The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.

DISCLAIMER

The views and conclusions contained in this document are those of the authors and should not necessarily be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

TABLE OF CONTENTS

																								Page
INTRODUCTIO	N			•								•	•	•						•				1
SUMMARY .								•			•			•				•		•				2
TECHNICAL A																								4
	rrain Vet																							4
	ehicles .																							6
	Vehicles																							_
																								9
	ious Vehi																							12
CONFERENCE	• • • • •	• • •	•	•		•	•	•		•	•	•					•	ε	•			•	•	13
CONCLUSIONS	AND RECO	MMENDA	TIO	NS		•			•	•		•	•					•	•		•			14
APPENDIX A:	INDÍVID BIBLIOG	UALS A	ND	FAC	IL	ITI	ES	C	ON	TA	CT	FN	1_	DE	FF	DE	N.C	EC						
APPENDIX B:	MISSION																							B-1
PPENDIX C:	CONCEPT																							C-1
PPENDIX D:	TABULAR CHARACTE	SUMMA ERISTI	RY CS	0F • •	VEH	IIC	LE	A	ND •	C	OMI	P0	NE	NT •	•		•	•	•	•	•	•		D-1
PPENDIX E:	TERRAIN																							E-1
PPENDIX F:	HIGHLIGH CONTROLL	ITS OF ED LA	COI ND /	NFE AND	REN WA	ICE ITE	OI R	N I VEI	MII HI(NI#	۱، ا S	URI	Ε,	RI	EM	0T	EL'	Y	•	•	•	•	•	F-1

MINIATURE, REMOTELY CONTROLLED LAND AND WATER VEHICLES

by

W. S. Pope, D. C. Doerschuk, and J. M. Tierney

INTRODUCTION

At the request of Dr. Charles H. Church of the Tactical Technology Office, Defense Advanced Research Projects Agency (ARPA), Battelie's Tactical Technology Center (TACTEC) Initiated a state-of-the-art survey and technical assessment of miniature, remotely controlled (R/C) land and water vehicles in March, 1972. The project was defined and established within the framework of an existing ARPA contract with Battaile-Columbus for analytic support.

Concept of the Investigation

Surveillance, reconnaissance, ambush, decoy, suppression of fire, minefield penetration — all are functions which military personnel might be called upon to perform. But with the tremendous drive toward mechanization which has characterized the U. S. defense effort in recent decades, it is logical to ask, "Why shouldn't these and similar functions be performed by machines?" If we could guide the motions of such machines and receive adequate intelligence from them, the saving in lives would be well worth the developmental investment. Before such developmental programs are launched, It is well to ascertain: (i) the general state of the art of such technology as could be applied to the construction of these machines, (2) the individuals and organizations who have had experience with such devices, and (3) which, if any, of the existing machines described in Item (1) could be used in the field "as is" or with a reasonable amount of modification. Answers to these questions will provide the evaluating Government agency with background information for directing the course of future research and development. This report addresses these questions. *

^{*} A report on another ARPA task conducted by TACTEC contains considerable information of interest concerning guidance and remote control components. issued in August, 1972, the report (No. A-3997) is entitled "Technical Assessment of Remotely Controlled Miniature Aircraft and Accessories".

Program Objectives

The objectives of the program were to:

- Conduct a survey of existing, developmental, and conceptual miniature, P/C land and water véhicles and th∈ir associated components
- (2) Perform a technical assessment of the vehicles identified in the survey to assist interested agencies in determining which vehicles are potentially useful for their specific missions, and what actions might be necessary to modify an existing vehicle to perform as required.

SUMMARY

State-of-the-Art Survey

The state-of-the-art survey for this study was Initiated with searches of the Battelle Technical and Foreign Science Libraries, the Defense Documentation Center, the Scientific and Technical Facility of the National Aeronautics and Space Administration, the TACTEC files, the DEIC (Diver Equipment information Center) files, and U. S. patents. These searches provided the seeds for further productive effort by identifying individuals and facilities who could be contacted for additional information. Most of the contacts were made by telephone, and the requested information was mailed to Battelle. A summary of all facilities and individuals contacted, as well as a list of references, patents, and bibliography resulting from the various searches, is presented in Appendix A of this volume.

initially, the survey was directed toward obtaining specifications for complete, miniature, remotely controlled vehicles, but as more and more information was gathered it became apparent that there simply are not many such vehicles in existence, and that imposing such a limitation would result in inadequate, meaningless data. Accordingly, since the advanced state of remote-control technology would make it relatively easy to install appropriate remote-control equipment in small vehicles, emphasis was shifted to gathering information on those vehicles which could conceivably be adapted to remote control and on components which could be employed on them.

Technical Assessment

This report includes a technical assessment of selected vehicles and systems; a summary of the results of a conference on miniature, remotely

controlled vehicles held at Battelle. and conclusions and recommendations with respect to miniature-vehicle technology.

Only those vehicles which could be most effectively employed in the field "as is" or with minor modification are discussed in the technical assessment. For the assessment a number of typical mission profiles were developed (see Appendix B) and the capabilities of the selected vehicles were evaluated against these.

During the course of this study and during the conference, a number of concepts for small tactical vehicles were generated. Rough sketches of some of these concepts are included in Appendix C. The intent here is to help crystallize some of the descriptive information presented in the body of the report and to suggest more possibilities for remotely controlled tactical vehicles.

The results of the survey are presented in tabular form in Appendix D. Material survey&J included manufacturers' brochures; letters from Government and industry; books, periodicals, journals, patents, reports, and magazines; photographs; technical drawings; and specification sheets. Data amenable to reduction to tabular form were selected from the material received, and are presented as tables in Appendix D under two basic categories: vehicles and components.

Four types of vehicles are considered: all-terrain vehicles, land vehicles, water vehicles, and air-cushion vehicles. The vehicles included represent a wide rariety of sizes, weights, and configurations; some are remotely controlled, some are not. Some of the vehicles have been designed and used in tactical military situations; however, the majority of the vehicles were developed strictly for civilian use. The latter serve to illustrate the range of vehicles and capabilities currently available and to provide a stimulus for the generation of ideas for adapting, modifying, or developing novel concepts for miniature, remotely controlled, tactical vehicles.

Components are divided into three basic areas: power sources, drive trains, and guidance and control systems. The components represented in Appendix D are those which the investigators believe could be used "as is" or successfully adapted for use in small tactical vehicles. As indicated, the components are organized by function; no effort has been made to assemble them into complete systems.

TECHNICAL ASSESSMENT

This section of the report contains a series of brief discussions of the ability of selected vehicles to perform missions outlined in Appendix B. The vehicles are treated in the order in which they appear in Appendix D, although every vehicle is not discussed. It is suggested that the description of the vehicle presented in Appendix D be read before the technical assessment is reviewed.

The vehicles assessed here were chosen for one of the following reasons:

- immediately applicable to one or more of the missions described in Appendix B
- Capable of being converted or modified to fulfill a specified mission
- Illustrate a concept which could be developed into tactical hardware
- Typify a number of similar vehicles.

All-Terrain Venicles

There is a tremendous range of capabilities represented by all-terrain vahicles (ATV's) and snowmobiles; some are designed for dirt and mud, some for swamps, streams, and bogs, some for snow alone, and some can handle all of them. The tracked ATV's, such as the Cushman Trackster (see Table D-I), have more terrain versatility than the wheeled ATV's, but they all offer good bases for small tactical vehicles. When the existing outer shell is removed and replaced with a smooth, light, armored covering a mobile turtle is the result. Such a vehicle would be able to negotiate 45° slopes, push through brush, negotiate obstacles, achieve speeds of 24 to 40 mph on fiat ground, and carry 150 to 200-lb payloads with ease.

ATV Control Systems

The controls of mc t ATV's are very simple, consisting of tractor-type push-pull levers, a single "T" control which is rotated and pushed, or other straightforward devices. Most use torque converters which eliminate transfer case controls. It would be a simple matter to put together a control system for remote maneuvering of any of these vehicles. A head-aimed or other TV system

might need some kind of stabilization system to damp engine vibration and the jolts, bumps, and dips which are a part of off-road travel. The engines used in most ATV's and snowmobiles are usually small two-cycle models. These would have to be slienced, or perhaps a quieter four-cycle engine used, if the vehicle is to have any chance of success as a tactical vehicle. Very few of the vehicles on the market today are very efficient as amphibians. They have low freeboards and are not particularly stable. Some have auxiliary propellers for fording streams, but some redesign would be necessary to bring any of them up to an acceptable level of performance as a combat amphibious vehicle, even unmanned. Such redesign would include: sealing off all engine and control spaces, and providing snorkel and auxiliary propalier or water jet. These vehicles would be well suited to any of the combat, short- or long-range patrols and some of the engineer missions listed in Appendix B.

Grumman R/C Tactical Vehicle

Grumman Aerospace Corporation has constructed a test version of a remotely controlled tactical vehicle (RCTV) for potential application by the Army as a battlefield-support vehicle (see Table D-2). This RCTV was derived from a lunar vehicle (LV) concept, and employs features which were designed to enhance the reliability of the LV. For instance, failure in any one of the four 0.2-hp wheel-drive units will permit continued operation of the vehicle at lower performance levels, and double failures will not totally disable the vehicle. The RCTV uses a fixed TV camera for driving purposes and incorporates rangefinding laser devices, microwave radar, and mine detectors. Power is supplied by Zn-air batteries which furnish 5 kwhr energy. The gross weight is expected to be 626 lb. The operational parameters will include a range of it miles and a speed of 3 mph for 3.7 hours. The total target unit cost of the RCTV is in the range of \$13,200 to \$21,200, which includes the basic vehicle; control, electrical power, navigation, and communication systems; and the TV system.

Land Vehicles*

Little David

The Little David vehicle has demonstrated a capacity to move over moderately rough terrain at about 5 to 10 mph on flat ground. Three possible configurations, having the following dimensions and weights, are called out in Tables D-4 and D-5: Concept 6X6 (electric drive), 6×6 ft, 800 lb; Concept 4X4 (electric drive), 4×4 ft, 700 lb; and Concept 4X4 'gasoline engine), 4×4 ft, 500 lb.

Aithough the Little David was designed primarlly to function as a demolition vehicle, its performance as a machine-gun mobile platform, as a TV (surveillance) platform, and in laying communications wire has been tested. The device performed, but was never taken past the early developmental stages; why? One possibility is that it was before its time (early 1950's), another is that it did not perform well enough to convince people that it would be useful. Today, a number of changes could be made to Little David to upgrade its capabilities for combat missions and short-range patrols: the suspension system could be simplified and made more rugged by using Terra or other high-flotation tires, head-aimed TV system could be used for steering, gun firing and observation; a host of sensor packages could be modularized for mounting on David as the need arose; a permanent radio link with the control station could have a number of unused channels reserved for these sensors as needed; the device could mount a flame thrower, gas dispenser, or rocket launcher.

This very basic platform is probably the first logical step in development of miniature tactical vehicles. Two variations on the Little David would be a tracked platform with the superstructure lower than the track tops so that it could run (even upside down) in the most rugged conditions, and a very fast, low-silhouette tank killer to be used from ambush over short distances.

The influence of terrain and weather on the performance of land vehicles, including a soil trafficability analysis, is presented in Appendix E.

Ryan Jeep-Mounted R/C Mine Detector

The Ryan Aeronautical Co. has designed and manufactured a "Radio Remote Control System for a Truck-Mounted Mine Detector" for MERDC (see Table D-4). The jeep was selected simply because it is an already existing piece of military hardware. The concept is a good one, but limited in its present form. The jeep is a relatively rugged off-road vehicle in its own right but would not be the vehicle of choice for continuous off-road mine sweeping. A specialized vehicle for mine detection, laying, and removal could be built, but it need not be "miniature". It would require a detector sweep head, a mine marker system and an R/C tracked undercarriage in the simple version, and would have stereo TV and a very precise manipulator in the sophisticated version.

A mine detector, and especially a mine-removal device, is a high-risk item and, as such, should not represent an extremely heavy investment on a "per item" basis; the development of the device might indeed be expensive, but if it were finally distributed four per engineer battallon, for instance, the cost could be very attractive.

The mechanical functions of the Ryan vehicle are powered hydraulically, which is efficient, as the engine has more than enough power to handle the job. On a smaller, more portable platform, it would be simpler to use electrical servos run from a battery pack being charged by a small gasoline engine prime mover.

The simpler vehicle could perform the engineer mission of detecting mines and could be used in emergencies to detonate mines, spring traps, demoilsh obstacles, and lay communications wire.

The more sophisticated vehicle would probably be considered too valuable for anything but its primary mission of laying, detecting, and removing mines.

Walking Vehicle

The Walking Vehicle developed by Space General for NASA/AEC and now undergoing experimentation at MERDC is a small (26 in. high \times 29 in. wide \times 37-i/2 in. long) eight-legged vehicle similar to the ROAM described in Table D-5.

It has yet to prove itself more than a curiosity. Its use would lie, presumably, in such things as bunker invasion, urban warfare (climb stairs, rubble piles, look around corners, etc.), and perhaps mountain warfare. The problems associated with such a device are legion: Inclined to be unstable; slow, thus affording a relatively easy target; subject to damage and fouling of the leg and actuation mechanism; and difficult to control remotely because the joiting movement does not permit its TV camera to remain steady. It is certainly not obvious that a small tracked vehicle could not be built that would go anywhere the present Walking Vehicle can go and then some. However, a number of studies have shown theoretical advantages of the Walking Vehicle over tracked, and certainly wheeled, vehicles in very rough terrain.

General Electric is now engaged in work on a "pedulator" using a man as master to slaved legs. It might eventually be possible to station the operator at some secure control station in an appropriate servo-harness and telemeter the servo positions automatically and continuously to the walking (or perhaps climbing) machine. A foveal-peripheral TV system would provide the man with adequate visual feedback of the vehicle environment, and high-resolution pictures of a centered work area.

This is one area where further R&D is indicated but; as yet, no expenditure of funds has been specifically directed toward development of hardware.

The Walking Vehicle would be best suited for short-range patrols, perimeter security, and possibly as a mobile gun platform.

R/C Lawnmower

This vehicle is representative of a large number of small vehicles; e.g., the Mighty Mo X-150, described in Table D-4. In general, they are small, easily controlled remotely (some already are), powered by a small gasoline engine or a battery, and usually designed to carry one or two people. When the seats and other accessories are removed, and a light metal frame, Terra tires and servo controls are installed, a very basic mobile, R/C platform results. This, however, is a long way from becoming a military machine; except for special, one-of-a-kind types of missions, developed as a quick response to a requirement for such a vehicle levied by an intelligence arm or a para-military arm of the Government, such a

vehicle would not be acceptable to the military. Granted, the device is simple and could quickly be brought to the point where it could be sent over the ground with a bomb, for instance, but it simply would not be rugged enough, reliable enough, or secure enough to do its job time after time. It is much better to start from the ground up, designing around tactical environments and directed toward military goals, than to attempt to adapt this hardware. There is nothing in the technology which is not readily available to the R/C land-vehicle designer.

Water Vehicles*

R/C Aberdeen Boat

The Aberdeen boat, described in Table D-7, is one of the very few miniature vehicles found during the investigation which was designed in response to a tactical mission's requirements. The boat functioned perfectly in tests but sparently was never put to use, for reasons which were not available. The boat is flat decked, 69 in. long by ii in. wide and draws 6 in. of water when carrying its design payload of 10 ib (27 ib basic weight; capable of carrying 20-ib load).

Similar boats could be constructed for a variety of missions: floating mine, bomb delivery, decays. They could be used *en masse* with very rudimentary guidance and control against flotilias, or to detonate in areas suspecied of being mined.

A number of design changes could be made to make the boat more effective and versatile.

- Fabricate the entire hull from solid polyurethane foam with all electronics potted and permanently foamed in place—this would eliminate the possibility of water, humidity, and fungus damage.
- Coat outer surfaces with a layer of fiber glass for strength or toughness.
- Leave a midships cargo area, a forward cargo area, and a battery-pack area free for different payloads, payload handling equipment, and power supplies. Provide sealing hatch covers.

^{*} The influence of sea state and current on the performance of water vehicles is discussed briefly in Appendix 5.

- Mold in a bow plunger trigger and relay which could be used or not according to mission.
- For absolute security, use a wire guidance system where a thin wire is paid out from the boat during its trip.
- Design the shore control box for either RF link or wire guidance.

R/C Firefish Target Boat

The Firefish series of target boats (the smallest boat is 17 ft and weighs 1650 lb, including fuel) was originally designed as a drone to simulate enemy craft for naval gun practice (see Table D-6). It is now being pushed by the manufacturer, SANDAIRE, not only for its primary mission, but also as a demolition boat, a platform for psy-war and propaganda, a harbor surveillance craft, a mine/obstacle clearance device, decoy, and other tactical uses. The size of the boat takes it out of the miniature class, but there is no real need for it to be so large; any of the smaller fiber-glass-hulled sports runabouts could do the job admirably. A displacement-hull, low-silhouette boat about 6 to 8 ft long with either a 5-hp electric or 10-hp silenced gasoline engine should be enough to give a good top speed of 25 to 30 knots. A small autoplict responding only to coded update signals would be one short-term way to prevent RF interference during transit time. Wire guidance is still a possibility, with the wire fed from a tube aft of the prop wash. This method would probably work well to a range of 2000 ft.

The Firefish line has very good possibilities as a tactical craft and should be a primary subject for further R&D effort.

R/C Submersible Sea Drone

Submarines are the ultimate clandestine sea weapon and have been used in all sizes from one-man midgets and swimmer delivery vehicles to the present day nuclear glants. There is a definite place for the tactical miniature submarine: as a guided torpedo controlled from a concealed position on shore, as a sensor package to detect ship movement, as a remotely emplaced mine, and as a clandestine surveyor to chart position and configuration of underwater installations. The Sea Drone submersible (see Table D-7) is ideally suited to all of these missions. It is not small, but size is not so crucial to such a vehicle and must be traded off against the great versatility of the craft.

For the single-purpose missions, however, a much smaller vehicle could be built. Acoustic telemetry would be almost mandatory, although short distances using wire guidance are possible. There are no means by which communications can be maintained with a submerged submarine by RF link except in special cases using a very-low-frequency carrier. This involves large antennas, large amounts of power, and is not secure.

The submersible can be preprogrammed to run a certain course, home in on an acoustic signal, and might even be designed to move up river, away from saline water; however, all of these methods are imprecise and subject to aberrations.

Power for the sub could be as simple as a high-pressure flask of gas driving a turbine and prop or an electric motor/battery combination. The gas-flask-powered sub would be ideal for a very fast, short-running torpedo, where the target would not be able to neutralize it. The battery/electric motor commination would serve in most other instances.

The biggest problem is knowing where the vehicle is at all times so that corrective action can be taken. One method might be to set up two hydrophones spaced a distance apart and feed the audio signals received from the submersible into a set of earphones. The phase difference in the sound arriving at the phones can be used to indicate angle and the loudness can be scaled to show range. Such techniques are under investigation at the University of Florida (Dr. Harry Hollien), and at the Coastal Systems Laboratory in Panama City, Florida, primarily for swimmer navigation. Another variation would be a head-coupled system where an onboard hydrophone pair would pick up target noise and the operator would steer blaurally.

R/C Swimming Television ("Snoopy")

The "Snoopy" vehicle developed at the Naval Undersea R&D Center (NUC) is a system used for inspecting underwater work (see Table D-7). The set would be extremely useful as is for inspecting sunken ordnance prior to explosive ordnance distruction. It has limited work capability now but could carry a more sophisticated manipulator, perhaps a scaled-down version of the NAT (Naval Anthropomorphic Manipulator) of MB Associates. The vehicle can be controlled with head-coupled TV and could be used for underwater surveying, inspection, surveillance, and reconnaissance of enemy installations for real-time assessment.

Hydrofoils

Vary small hydrofoll boats would offer no particular advantage over small, fast, planing hull boats; the maximum speeds of a model hydroplane boat range around 50 knots remotely controlled, and it is doubtful that a small hydrofoll boat would be any more seaworthy in the open ocean, or that it could be controlled at any greater speed in calm water. One advantage is that the vehicle would pitch and pound less than a planing hull in moderate seas.

SKAMP and Aerohydrofoil

The SKAMP concept (Table D-8) of a remotely controlled sailing platform could be coupled with the aerohydrofoli concept of a very-high-speed sailing vessel to produce a vehicle which operates for long periods of time, using wind power only for propulsion and battery power for data transmission. The vessel could be quite small and could be used in the station-keeping mode to monitor ship traffic, listen for submarines, carry sniffers, LLLIV for coastal surveillance, and other sensors.

Oscillating Foil Boat

The oscillating foll boat has particular application to marshes and vegetation-choked waterways. This is also the territory for ACV's and air boats, but the oscillating foll boat has an advantage in that it could be made much quieter than the other two. The general principle should first be demonstrated conclusively on larger craft before initiating a program for small R/C boats of this design.

Amphibious Vehicles

Riverine Utility Craft

The Riverine Utility Craft (RUC) is a marsh vehicle, and as such, It has done a respectable job during early development and initial tests. It does not work well on firm soil, but neither does a boat, and this limitation must be recognized. In areas of extensive swamp and marsh such as the Everglades and the Mekong Lelta, the RUC and smaller versions of it would be a useful tool. Another

useful area would be in tidal swamps and estuaries; the vehicle could be deployed from an offshore boat or submarine, go ashore, up the beach or estuary and move to some target location near the beach. The remote control of such a vehicle would be handled the same as for a ground vehicle.

Visibility in marshy terrain tends to be obscured by tall grasses, jungle vegetation, or mangrove and a small RUC used for tactical purposes may, of necessity, be remotely manned instead of remotely controlled. This would mean a higher cost vehicle and thus require very good justification. In any event, there is a "mobility" gap in the twilight zone between water and firm soil which the RUC seems to fill.

Air-Cushion Vehicles

Air-cushion vehicles (ACV's) are attractive for use in marshes over relatively calm water because of the very high speeds which can be attained where other vehicles are virtually immobile. As a tactical vehicle, they have some definite drawbacks: they tend to be noisy, highly visible (due to spray or dust kicked up by the lift fan), and not very maneuverable. Control would almost have to be by onboard TV except for the very simplest, short-distance runs, or where control from helicopter or slow-flying aircraft is possible. On the positive side however, there are means available for silencing the engine and fan, and if a number of expendable ACV's were to be employed at one time, visibility might be a minor penalty.

The ACV has real potential for use as a minefield penetrator. With ground pressures which can be as low as 0.i psi, the chances of detonating anti-tank and anti-personnel mines are slight. The little "flying saucer" could be used to carry a mine detector and mark the mines in its path, or could simply lay communications wire from one area to another over suspected ground. Size and noise would not necessarily be so critical in these cases (see Table D-9).

CONFERENCE

A one-day conference on miniature, R/C tactical land and water vehicles was held at Battelle on June 22, 1972. The morning session was devoted to

concept generation and the afternoon session was concerned with evaluation of some of the concepts, a discussion of the general state of the art, and R&D requirements. Pepresentatives from industry and private life were called together to lend their various talents to the conference and to relate their differing experiences.

The results of this conference were useful in two respects: first, manufacturers who have worked intimately with the Government on programs involving small tactical vehicles were able to provide authoritative information on the state of the art, their prognosis for directions that future work should and would take, and the problems inherent in the fleid; second, they were able to bring together an impressive body of information on past projects involving R/C tactical vehicles - why they worked or why they failed. Many of the conclusions and recommendations presented in this report resulted from the process of "talking through" the various projects and experiences of the conference participants. Highlights of the conference are given in Appendix F.

CONCLUSIONS AND RECOMMENDATIONS

The major conclusions which have been drawn during the course of this investigation and recommended courses of action for future work are presented below.

Conclusions

Line of sight is the cutoff point as far as low-cost R/C vehicles go; when it is necessary to take a vehicle from the region where it can be controlled by simple R/C methods, e.g., modei-airpiane transmitters and receivers (on the order of 1000 to 3000 ft), to even a distance such as a mile or two, the cost for such a system increases drastically (e.g., from \$3000 to \$30,000). The reason is that the vehicle can no longer be remotely controlled (man controls motions by observing vehicle directly and reacting accordingly); it must be remotely manned (man controls machine motions by monitoring TV transmission from vehicle). Variations such as transferring remote control from station to station as the vehicle moves progressively out of range, or controlling it from a mobile station, such as a helicopter or drone aircraft, are possible, but in a sense, this defeats the purpose of the vehicle in the first place. Even if the vehicle were to be controlled by onboard sensors and preprogrammed instructions, the cost would be at least an order of magnitude greater than for the line-of-sight system.

highly advanced. Except when complete surprise is easy to obtain (e.g., close-quarters ambush), an enemy familiar with the vehicle, say through examination of a captured model, would have no trouble jamming or otherwise disrupting most simple R/C systems. For longer missions, or where the vehicle is not a complete novelty to the enemy, greater radio equipment sophistication to protect against countermeasures drives costs up very rapidly. The requirement to develop an inexpensive, expendable tank killer, mobile satchel charge or similar vehicle appears to be at odds with the sophistication needed to keep the radio link secure. The vehicle could indeed be put together at relatively low cost, but the electronics remains the cost controlling factor. Mass production of the communications and control systems would lower the price, but the first demonstration models and the initial production runs would be expensive.

Miniature land vehicles have inherent problems which are most apparent in the rough ferrain situations one would expect to encounter on battlefields. Topographical features which would be hindrances to larger vehicles become barriers to small vehicles. As vehicle size decreases the avenues of approach become more limited, the vehicle path length is long, and the number of mission aborts increases.

Gasoline engines will, in general, be a better power source than batteries, diesels, or turbines. More energy can be supplied by a tank of gas than by a bank of batteries of the same weight, and small engines are inexpensive. The problem of silencing engine-exhaust noise is being studied in a number of places, and for battlefield conditions an acceptable noise level should be easily obtained. For covert operations, however, battery power would be essential.

A double-tracked land vehicle with little clearance between the tracks would provide the maximum maneuverability, mobility, and stability of any running gear. The tracks could be driven by means of torque converters, as in present-day snowmobiles, and steering could be handled by varying motor rpm to each track independently.

Existing military specifications may not be strictly applicable to miniature, R/C vehicles; relatively low reliability might be tolerated for the expendable models.

One problem which exists with remotely manned systems using TV is that at high speeds, especially on ground vehicles, camera motion makes vehicle

control extremely difficult. This problem can be overcome to a degree by operator confidence and skill, but 50 or 60 mph seems to be a state-of-the-art limit on relatively smooth terrain.

The vast majority of people contacted, from all disciplines, expressed the same sentiment: "Give us a mission and some mont; and we will build the vehicle you need". The general and inescapable conclusion one draws from this is that the technology and expertise exists today to build small, R/C vehicles for spacific tactical missions. The problems are to: (I) specify missions which are reasonably circumscribed and do not require the vehicles to do all conceivable johs, and (2) provide sufficient funds to develop the vehicle. These problems are interrelated; one of the most frequently encountered comments was "they want the vehicle to do everything, but are not willing to pay for this versatility". Certainly this is a common complaint, but it strikes at the heart of the problem. Why are there essentially no miniature, tactical R/C vehicles in existence? They have been tried in the past, but never quire made it. The answer is that the initial efforts lacked sufficient urgency, funds, and high-level backing to carry through to operational status. The "Little David" mobile platform. the Aero-Jet waiking machine, and other devices, have demonstrated their respective capabilities and then languished. The "Little David" was discarded, and the walking machine is now being used for in-house feasibility studies at the U.S. Army Mobility Research and Development Center, Fort Belvoir (MERDC). There are only two ways for the miniature, R/C vehicle to eventually make its way onto the automated battlefleid: one is for industry to push through a concept of its own to the point where the feasibility, practicability, cost, and reliability of the vehicle make it irresistible to the military, and the other is for highly placed Government officials to decide that an R/C mine sweeper, or R/C bomb boat, or whatever, is definitely needed, and supply the requisite funds for a complete program. Knowledgeable manufacturers in this field are wary of investing large sums of time and money in a concept, when they have no assurance that they will be the successful bidder on any resulting Request for Proposal that is issued.

The manufacturers feel that the tactical military personnel who have been given the opportunity to evaluate or participate in the evaluation of remotely controlled or remotely manned equipment have, in the past, been hostile to the devices and to the idea itself. These men do not want a lot of expensive, highly sophisticated equipment that must be guarded, transported, and maintained for a mission which they feel might never materialize.

17 and 18

The systems approach is absolutely essential for all but the very simplest kamikaze vehicles where low cost and mechanical simplicity are traded off against reduced versatility and lower mission success/failure ratio. Much more exacting engineering is required to design so that one vehicle has an excellent chance of completing a given mission than to design for "salvos" of vehicles where it is sufficient if one gets through.

Recommendations

The design of three "basic platform" R/C vehicles - one for land, one for water, and one for underwater use - should be undertaken to demonstrate the feasibility of using commercially available components, insofar as possible, to produce expendable tactical vehicles. They would be low in cost, remotely controlled, designed for mobile bomb-type missions, and, in the case of the land vehicle, for short-range patrols. The prototypes should be designed for both wire guidance and conventional line-of-sight R/C. These vehicles could then be used to demonstrate the potentialities for miniature, R/C vehicles on the battlefield.

A study should be Initiated to determine which specific missions would be best suited for small, R/C vehicle use. These specific missions would then serve as guidelines for the development of Phase II vehicles, building on the knowledge gained from the Phase I vehicles described in the preceding paragraph.

APPENDIX A

INDIVIDUALS AND FACILITIES CONTACTED, REFERENCES, BIBLIOGRAPHY, AND LIST OF U. S. PATENTS

APPENDIX A

INDIVIDUALS AND FACILITIES CONTACTED, REFERENCES, BIBLIOGRAPHY, AND LIST OF U. S. PATENTS

Summarized below are the individuals and facilities contacted during the state-of-the-art survey, and the references, bibliography, and list of U. S. patents which resulted from searches of the TACTEC files, the DEIC files (Diver Equipment information Center, located at Battelle-Columbus), the Defense Documentation Center, the Scientific and Technical Facility of NASA, and U. S. patents.

Summary of Contacts

Organization	Location	Major Subject of Discussion	Contact
Naval Weapons Lab.	Dahlgren, Virginia	Aerohydrofolis	Bernard Smith
AEC Space Nuclear Systems Office	Washington, D. C.	Tel soperators	Ed Johnson
Bendix Corp.	Denver, Colorado	Remote control vehicle	Barry Ellis
Autonetics	Anahelm, Callfornia	Miniature passenger cars	Don Garr
Night Vision Lab., Electronics Command	Ft. Belvoir, Virginia	Low light level-TV	Ben Goldberg
Egiln AFB	Florida	Remote control vehicles	Jerry J. Bauer
Mobility Equipment Research and Development Center	Ft. Beivoir, Virginia	Walking machines	Dick Sales
MB Associates	San Ramon, Callfornia	Remotely manned system	Don Adamski
Electric Boat Co.	Groton, Connecticut	Underwater manipulators	Allen Pesh
Philico-Ford Corp.	Pálo Alto, Callfornia	TV cameras	Harold Gumbel
Army Tank-Automotive Command	Warren, Michigan	Remote control vehicles	Sam Fuller
Naval Missile Center	Point Mugu, California	Remote control missile targets	Mr. Hamilton
White Sands Missile Base	White Sands, New Mexico	Remote control missile targets	Mr. Crisp
Naval Weapons Contor	China Lake, California	Remote control land and sea target drones	Tom Stogsdill

Organization	Location	Major Subject of Discussion	Contact
George Siposs	Costa Mesa, California	Remote control model	
Aerojet General	El Monte, California	Walking machines	Ed Ansell
Speedway Products	Mansflèld, Ohlo	All-terrain vehicles	John Morrow
Twinn-K Inc.	Indianapolis, Indiana	Model components	Ed Hughey
Marion Michaelson	Royal Oak, Michigan	Little David vehicle	3 ,
SANDATRE	San Diego, California	Radio control boats	James Fink
Babcock Electronics	Costa Mesa, Callfornia	Remote control components	Bob Swenson
Charles Mooney	Columbus, Ohio	Model craft	

TACTEC Search

- (I) ENGINEERING CONCEPTS OF ARCTIC AND MARSHY TERRAIN VEHICLES, Ordnance Tank and Automotive Command, Research and Development Division (January 1956), 68 pp (UNCLASSIFIED) (PA 6911R).
- (2) Kerr, R. C., THE ALBEE SINGLE ROLLER DRIVE, TANDEM AXLE, 6 X 6, ROLLIGON VEHICLE, Arabian American OII Company (September 3, 1957), 23 pp (UNCLASSIFIED) (PA 7680R).
- (3) REPORT OF SECOND MEETING OF ARPA ADVISORY COMMITTEE ON MOBILITY ENVIRONMENTAL RESEARCH STUDY, HELD FEBRUARY 24-26, 1964, Miscellaneous Paper No. 4-670, U. S. Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi (August 1964), 199 pp (UNCLASSIFIED) (PA 9733R).
- (4) Nuttall, C. J., Jr., and Grenke, W. C., A FIRST CUT AT DEVELOPING TESTABLE OFF-ROAD PERFORMANCE SPECIFICATIONS FOR VEHICLES ADAPTED TO SPECIFIC TERRAIN, Report No. 169-1, from WNRE Incorporated, Chestertown, Maryland, to Cornell Aeronautical Laboratory, Inc., Buffalo, New York, and ARPA, Project AGILE, Department of Defense, Washington, D. C. (June 1968), 80 pp (UNCLASSIFIED) (PA 33,977).
- (5) Goda, H. L., et al., SIAF TRANSPORT TECHNOLOGY (U), Report No. P-653, Annex A, from Institute for Defense Analyses, Science and Technology Division, Arlington, Virginia (July 1971), 4 pp (CONFIDENTIAL/Group 3) (PA 40,030).
- (6) Liston, R. A., et al., STATE-OF-THE-ART REPORT ON OFF-THE-ROAD MOBILITY RESEARCH, Technical Report No. 9560, Land Locomotion Laboratory, Components Research and Development Laboratories, U. S. Army Tank-Automotive Center, Warren, Michigan (November 1966), 329 pp (UNCLASSIFIED) (PA 29,227), AD 651 726.

- (7) Wesclowski, R., and Koiva, M., TRAIL VEHICLES, Mobility Command, Vehicle Concept and Engineering Section, Advanced Design Branch, Research Division, Research and Engineering Directorate, Army Tank-Automotive Command, Center Line, Michigan (October 29, 1962), 49 pp (UNCLASSIFIED) (PA 7999R).
- (8) Chaplin, H. R., and Ford, A. G., SOME DESIGN PRINCIPLES OF GROUND EFFECT MACHINES, Section G: Seakeeping, Report No. 2121G, David Taylor Model Basin, Aerodynamics Laboratory, Washington, D. C. (July 1966), 36 pp (UNCLASSIFIED) (PA 25,515), AD 640 015.
- (9) Lowson, M. V., BASIC MECHANISMS OF NOISE GENERATION BY HELICOPTERS, V/STOL AIRCRAFT, AND GROUND EFFECT MACHINES, Report No. WR 65-9, Wyle Laboratories, Testing Division, Huntsville Facility (May 1965), 32 pp (UNCLASSIFIED) (PA 20,358), AD 623 158.
- (10) Hayward, L., A SURVEY OF AMERICAN INTERESTS IN GROUND EFFECT MACHINES, HOVERING CRAFT AND HYDROFOILS, The International Review of Air Cushion Vehicles and Hydrofoils, Kalerghi Publications, London, England, Vol 4, No. 5 (February 1965) (UNCLASSIFIED) (PA 16,128N).
- (II) BIBLIOGRAPHY ON LIGHTWEIGHT GROUND VEHICLES (U), Report No. R-910, from RACIC, Battelle Columbus Laboratories, Columbus, Ohio, to Director of Defense, Army Personnel Research Establishment, Farnborough, Hants., United Kingdom (April 17, 1967) (CONFIDENTIAL/Group 4).
- (12) Hyatt, R. W., and Hardenbrook, J. M., TABULATIONS OF DAYLIGHT AND LOW-LIGHT-LEVEL TELEVISION SYSTEMS (U), Report No. R-4088, from RACIC, Battelle Columbus Laboratories, Columbus, Ohio, to Advanced Research Projects Agency, Arlington, Virginia (May 1972) (SECRET/Group 1).

DEIC Search

- (1) UNDERWATER TELEVISION LINK, Industrial Research, p 59 (December 1970).
- (2) A STUDY OF VARIOUS MARINE SYSTEMS CAPABLE OF PERFORMING WORK IN 12,000-FOOT WATER DEPTHS, Ocean Systems, Inc., 41 pp (DEIC Accession No. 02215).
- (3) Niblock, R. W., UNMANNED UNTETHERED SUBMARINES DESIGNED FOR WORK TO 20,000 FEET, Undersea Technology, Vol 11, No. 5, pp 42-43 (May 1970).
- (4) WEST GERMAN UNDERWATER VEHICLES, Undersea Technology, Vol 12, No. 10, p. 25 (October 1971) (DEIC Accession No. 02257).
- (5) VFW-FOKKER BUILDS PENGUIN (in German), Poseidon, No. 12 (108), p 545 (1970).

DDC Search

(i) Chatten, J. B., HEAD AIMED TELEVISION/REMOTELY OPERATED VEHICLES, Final Technical Report No. RADC-TR-71-49, for the period May 1968 - July 1970,

- from Control Data Corporation, Rosemont, Pennsylvania, to Rome Air Development Center, Air Force Systems Command, Criffiss Air Force Base, New York (March 1971), 89 pp (UNCLASSIFIED) (PA 39,630), AD 883-618.
- (2) Isbell, R. A., EVALUATION OF REMOTELY OPERATED MINE DETECTOR, Final Letter Report, Army Concept Team In Vietnam, APO San Francisco 96384 (October 1969), 10 pp (UNCLASSIFIED), AD 861 954 L.
- (3) Amelink, H., AUTOMATION AND REMOTE CONTRO! ON SHIPS: A SELECTIVE 8.BLIO-GRAPHY, Report No. TDCK-49991, for the period 1961 1967, Technisch Documentatie en informatie Centrum vor de Krijgsmacht, The Hague, Netherlands (February 1968), 76 pp (UNCLASSIFIED), AD 832 259.
- (4) McGhee, R. B., IMPROVED TECHNIQUES FOR THE CONTROL OF REMOTE DEVICES, Fin. Scientific Report, No. AFOSR-TR-71-2175, for the period January 15, 1970 to January 14, 1971, The Ohio State University, Department of Electrical Engineering, Columbus, Ohio (March 10, 1971), 7 pp (UNCLASSIFIED), AD 728 214.
- (5) Hoffman, C. W., A RADIO CONTROL SYSTEM FOR A 1/150 SCALE MODEL OF USS FORRESTAL, Report No. 1359, David Taylor Model Basin, Washington, D. C. (February 1960) (UNCLASSIFIED), AD 249 908.
- (6) Hoffman, C. W., A RADIO CONTROL AND POWERING SYSTEM FOR FREE-RUNNING MODELS OF SURFACE SHIPS, Report No. 1460, David Taylor Model Basin, Washington, D. C. (December 1960), 37 pp (UNCLASSIFIED), AD 233 793.
- (7) Ruthven, B., Oisen, W. C., and Bennett, D. F., THE DEVELOPMENT OF A DRONE BOAT KIT (U), Report No. 275, Navy Mine Defense Laboratory, Panama City, Florida (November 1965), 39 pp (CONFIDENTIAL), AD 368-318.
- (8) Jeffress, L. A., et al., A REMOTE-CONTROLLED, MINE-DISPOSAL BOAT (U), DRL Accoustical Report No. 242, Defense Research Laboratory, The University of Texas, Austin, Texas (June 9, 1965), 51 pp (MARIS DENTIAL/Group 3) (PA 21,953), AD 363 675 L.

NASA Search

- (i) Myton, M. E., UNMANNED MOBILE VEHICLES FOR LUNAR SURFACE EXPLORATION, Report No. 6i-SPC-8, from Defense Systems Department, General Electric Company, Santa Barbara, California, to National Aeronautics and Space Administration (November 13, 1961) (UNCLASSIFIED/NASA Only) (NASA Accession No. X69-75484).
- (2) Finelli, J. P., et al., DUAL-MODE ROVING VEHICLES FOR APOLLO LUNAR SURFACE EXPLORATION, NASA Report No. TR-68-25, from Defense Research Laboratories, General Motors Corporation, Santa Barbara, California, to National Aeronautics and Space Administration (June 1968) (UNCLASSIFIED/Government Agency Only) (NASA Accession No. X69-14913).

- (3) Miller, B. P., ANALYSIS OF REMOTE CONTROL SYSTEMS FOR LUNAR VEHICLES, NASA Report No. TR-68-20, from Electronics-Defense Research Laboratories, General Motors Corporation, Santa Barbara, Caiifornia, to National Aeronautics and Space Administration (May 1968) (UNCLASSIFIED/Government Agency Only) (NASA Accession No. X69-13479).
- (4) Corry, T. M., et ai., ROVING VEHICLE MOTION CONTROL, NASA Final Report No. CR-92643 TR-67-60, from Defense Research Corporation, Santa Barbara, Cailfornia, to Jet Propuision Laboratory, Cailfornia Institute of Technology, Pasadena, California (December 1967) (UNCLASSIFIED) (NASA Accession No. N68-15246).

Bibliography

INVITATION TO SNOWMOBILING, ZIff-Davis Publishing Company, New York, New York (1970).

Baidwin, W. C., and Milier, J. V., MULTI-LEGGED WALKER FINAL REPORT, Space General Corporation, El Monte, Cailfornia (1966).

TRAFFICABILITY OF SOILS, A SUMMARY OF TRAFFICABILITY STUDIES THROUGH 1955, prepared by the Waterways Experiment Station, U. S. Army Corps of Engineers, Vicksburg, Mississippi (December 1966).

ENGINEERING DESIGN HANDBOOK, AUTOMOTIVE SERIES, AUTOMOTIVE SUSPENSIONS, U. S. Army Materiei Command (April 1967).

Mandel, P., WATER AIR AND INTERFACE VEHICLES, Massachusetts Institute of Technology (1969).

ENGINEERING DESIGN HANDBOOK, AUTOMOTIVE SERIES, THE AUTOMOTIVE ASSEMBLY, U. S. Army Materiel Command (December 1962).

Sweeney, J. B., A PICTORIAL HISTORY OF OCEANOGRAPHIC SUBMERSIBLES, Crown Publishers, New York, New York (1970).

Taggart, R., MARINE PROPULSION, PRINCIPLES AND EVOLUTION, Gulf Publishing Company, Houston, Texas (1969).

ENGINEERING INDEX, Engineering Index inc., New York, New York.

Journal of Terramechanics, Pergamon Press, Fairview Park, Einisford, New York.

U. S. Patents Search

2,115,315	Muller, et al.	3,331,463	Kramer
2,133,038	Muller, et al.	3,351,037	MellI
2,586,239	MacKenzie	3,372,664	Nicholas, et al.
2,593,618	Sebel	3,372,766	L!fferth
2,667,721	Muller	3,382,836	Hume
2,742,735	Sommerhoff	3,386,406	Tsunoda
2,770,074	Jones, et al.	3,398,480	Tsunda
2,778,158	Ernst	3,403,654	Wilson
2,852,888	Howard	3,403,745	Comnons
2,923,092	Reiser	3,409,100	Krongvlit
2,969,032	Pinnes	3,420,326	Kusmer
3,014,311	Ernst	3,427,078	Parsons
3,029,371	Salto	3,429,069	Sargeant
3,041,485	Jolley	3,430,724	Hutcherson
3,120,719	Simonds	3,446,175	Boehler, et al.
3,132,864	Glass, et al.	3,447,259	Cagen
3,160,983	Smith, et al.	3,452,702	Slemmons
3,166,039	Weymouth	3,458,950	Tomaro
3, 172, 233	Lent	3,466,798	Speers, at al.
3, 178,853	Greenwood, et al.	3,470,633	Soehnlen
3,187,462	Licitis	3,472,333	Loewenstern, Jr.
3,196,580	Rakestraw	3,474,751	Hebert
3,199,249	Carver, et al.	3,504,122	Ratliff, Jr.
3,205,847	Smith	3,517,457	Peno
3,227,125	Grebe	3,517,458	Sato
3,242,896	Kauffmann	3,521,566	Veidhulzen
3,300,894	Glass, et al.	3,553,886	Hamilton
3,306,250	Pitchford	3,564,765	Stormon, et al.
3,311,424	Taylor	3,583,514	Taylor
3,327,796	Hanmer	3.589,058	Labat
3,594,951	Perhacs	3,634,969	Hariting, et al.
3,613,302	Stohrer	3,635,304	Hills
3,628,284	Soulakis, et al.	3,664,701	Kondur

The following patents also were noted in making the search. They appeared to be of less interest.

1,927,233	Forner	7 750 674	5
		3,358,634	Pratt
2,054,644	Wulfert	3,363,714	Orpana
2,161,971	Muller	3,369,622	Thomas
2,167,245	Lohr	3,370,166	DaRold
2,463,362	Doll	3,376,945	Kaprelian
2,528,945	Carpenter	3,402,784	Roberson
2,723,492	Muller	3,414,072	Hodges
2,732,659	Howard	3,418,960	Ne I son
2,736,990	Howard	3,418,961	Gregg
2,755,596	Well	3,420,204	Samuel
2,832,426	Seargeant	3,421,252	Downey
2,834,152	Lambert	3,421,472	Oberg
2,885,019	Gardner	3,426,720	Enos

A-7 and A-8

2,892,290	Ryan	3,428,015	Cloud
2,896,367	Glass	3,439,448	Ryan
2,940,217	Hauge	3,444,837	Donofrio
2,988,762	Babçock	3,446,174	Ballu
2,000,128	McAda	3,448,822	LaLone
4,046,697	Pullen	3,456,753	Graves
3,050,904	Morse	3,476,204	Westby
3,065,569	Nielsen	3,481,072	Stohrer
3,090,455	Crowley	3,482,352	Helm
3,130,803	Wiggins	3,486,477	Pender
3,17:.963	Bourgulgnon	3,487,802	Roy
3,181,272	Glbson	3,501,863	Matsushiro
3,189,115	Rethorst	3,503,151	
3,190,255	Olson	3,507,349	White
3, 191, 571	Rex	3,511,207	Comer
3,200,538	Glass	•	Ito
3,203,500	Gaberson	3,513,931	Warner
3,229,420	Dlas	3,530,617	Halvorsen
3,232,005		3,550,714	Bellinger
3,244,250	Lahr	3,566,988	Wise
	Barrett	3,587,769	Lotter
3,252,247	Miller	3,628,286	Mashahl ro
3,305,249	Chase	3,642,087	Sampey
3,348,518	Forsyth	3,653,456	Uemura
3,426,721	Justinian		

APPENDIX B

MISSION ANALYSIS

APPENDIX B

MISSION ANALYSIS

The vehicles which are presented in this report are devices which, for the most part, exist independent of any military considerations. A small number were designed with specific tactical missions in mind, but most were built under other guidelines. In order to evaluate the existing and potential capabilities of these latter vehicles for use in tactical military missions, it is obvious that the first step is to define these missions. Accordingly, a brief outline of some possible general and specific missions was developed and is presented below. It should be noted that these missions are not the same as they would have been in World War i, and may well be obsolete for conflicts in the distant future; the aim here has been to draw up a series of possible missions for small, R/C land and water vehicles which would apply to current and foreseeable future conflicts.

Tactical R/C Land Vehicle Missions

Combat Mission

Low-profile equipment hauler
Anti-tank, anti-armored vahicle
Mobile gun platform
Ambush
Mobile bomb
Chemical-agent deployment
Forward observer (artillery, air strikes)

Short-Range Patrol

Surveiliance (stationary observation, sensing, mapping, terrain study)

Reconnaissance (mobile surveillance)

Draw fire/decoy

Pointman, flanker, rear guard

Psy-war aid

Long-Range Patrol

Scout (reconnaissance/surveillance)
Rear guard or point (security)
Forward observer (artillery)

Engineer Missions

Lay mines, detect, recover (deactivate) mines
String barbed wire or other obstacles
Detonate mines, spring traps
Obstacle demolition
Bunker fortification destruction
Siit-trench digger, foxhole digger
Fire fighter
Lay communications wire

Base Activity

Sentry (stationary)
Watch dog (perimeter security)
POW guard
Litter bearer

Tactical R/C Water Vehicle Missions

Combat

Beach obstacle clearance
PT boat
Kamikaza (bomb delivery)
Bridge, structure demolition

Short-Range Patrol

Riverine, estuary patroi Friendiy harbor security Minesweeper (detection, detonation)

Long-Range Patrol

Coastline surveillance
Enemy harbor activity surveillance
Psy-war platform
Minesweeper (detection)

Tactical R/C Amphibious Vehicle Missions

Combat

SEAL-type missions

Beach assault

Surf penetrators to deliver small R/C vehicles to shore

Bomb delivery

Short-Range Patrol

Same as for land vehicles except that vehicle is designed for relatively short water transits such as stream or pond crossings, rain-filled depressions, mud flats, and in swamps.

Long-Range Patrol

Same as for land vehicles except modified for relatively short water transits as above.

Engineer Missions

Lay communications wire through swamp, over water Minefield penetration and detection (ACV's only)

Detonate mines, spring traps

String barbed wire

Obstacle demolition.

APPENDIX C

CONCEPT SKETCHES

APPENDIX C

CONCEPT SKETCHES

The rough illustrations of concepts shown on the following pages present a number of different ideas that have been generated during the course of this investigation. They are intended to complement the entries presented in Appendix D, using vehicles and components in various combinations to generate new systems and showing some completely novel ideas not presented elsewhere in the report. Land vehicles are illustrated in Figures C-I through C-I7; water vehicles in Figures C-38 through C-27; amphiblous vehicles in Figures C-28 through C-31; and noncombat vehicles in Figures C-32 through C-36.

FRONT VIEW

Note: This tread is designed to provide maximum traction while at the same time presenting minimum width and the lowest center of gravity possible.

FIGURE C-1. MINI-REMOTE-CONTROLLED PATROL AND ATTACK VEHICLE

FIGURE C-3. ATTACKING DUGOUT WITH GATLING GUN AND GRENADE LAUNCHER

36

FIGURE C-4. RADIO CONTROL

FIGURE C-5. ANTI-PERSONNEL FRAGMENTATION GRENADES

FIGURE C-6. TRACKED VEHICLE

FIGURE C-7. VEHICLE FOR ONE-WAY MISSIONS

This vehicle is designed for use when the troops are too close to the enemy to call for air support or mortar fire. Here, vehicles loaded with high explosive work their way in close to the enemy. When the vehicles are in the best position, the operator detonates the charges, blowing up vehicles and enemy.

All wheels turn to right (or left), permitting vehicle to advance on enemy in oblique fashion. This will not expose sides of vehicle to enemy fire.

FIGURE C-8. POSSIBLE WHEEL POSITIONS (PRESENTING SMALLEST TARGET TO ENEMY FIRE)

FIGURE C-9. TERRA TIRE (ABILITY TO FLOAT AND SWIM)

FIGURE C-10. INDIVIDUALLY DRIVEN LOW-PRESSURE TIRES

FIGURE C-11. LAND-MINE DETONATOR (GASOLINE ENGINES)

Vibrators tamp ground in front of advancing troops as they pick their way through a suspected minefield. Paint is sprayed from both sides of vehicle, showing safe path.

FIGURE C-12. REMOTE-CONTROL SNOWMOBILE FIRING TOW MISSILE

FIGURE C-13. FOXHOLE DIGGER

FIGURE C-15. ANTI-TANK

FIGURE C-16. SUCTION-CUP-FITTED TRACKED CLIMBER

FIGURE C-17. CONCEPTUALIZATION OF CLIMBER IN ACTION

T

FIGURE C-18. REMOTELY CONTROLLED, SATI. POWERED WARHEADS

FIGURE C-19. CONCEPTUAL VIEW OF AN R/C SAIL-POWERED WARHEAD

FIGURE C-20. CONCEPTUAL VIEW OF AN R/C SAIL-POWERED WATER VEHICLE WITH INCORPORATED ANTI-PERSONNEL PROJECTILE

FIGURE C-21. HIGH-SPEED, REMOTELY CONTROLLED BOMB ON HYDROFOILS -- POWERED BY WATER JET

FIGURE C-22. MINE LAYING SYSTEM

The main advantage of this system is that the harbor can be mined in secret. No aircraft or surface ships have to be used. Since the sub will not have to surface or cut the net, the enemy will have no warning until ships start to sink. Placing mines this way is accurate; also, fewer are needed.

FIGURE C-23. SELF-PROPELLED MINE WITH SWIMMING RANGE OF ABOUT 1 MILE
This mine will lie in wait for periods up to 3 to 6
months. The sound of ships' screws activates systems
when in range. When activated, the mine cuts its
cable and attacks the sound.

FIGURE C-24. KILLER VERSION

FIGURE C-25. ANTI-SUBMARINE WARFARE APPLICATIONS

T

I

I

FIGURE C-26. SELF-ATTACHING BOMB TO BE DETONATED AFTER A PREDETERMINED INTERVAL

FIGURE C-27. POSSIBLE ATTACHING POINTS ON THE STERN SECTION OF A SHIP

FIGURE C-28. BARBED WIRE DISPENSER (SHALLOW STREAMS OR LAKES)

FIGURE C-29. BARBED WIRE DISPENSER (ON LAND)

FIGURE C-30. AIR CUSHION VEHICLE

FIGURE C-31. USE OF AIR CUSHION VEHICLES FOR ATTACK

Here, the harbor is protected by an anti-submarine net and mines. The submarine attacks enemy ships with air cushion vehicles, which pass over the net and mines.

FIGURE C-32. FLYING TUB ε_5

FIGURE C-33. AIR-SEA RESCUE UTILIZING PARA-RAFTS

Ĭ

FIGURE C-33. (CONTINUED)

FIGURE C-33. (CONTINUED)

FIGURE C-34. GUARD DOG

Possible Floor Plan of Gun Room in Armory

FIGURE C-35. CONCEPTUALIZATION OF USE OF GUARD DOG

- For use in armories, warehouses, schools, recreation centers, department stores, etc.
- Rides on tracks; electrical power picked up from tracks; auxiliary power provided in vehicle
- Track can be permanently installed in floor or laid on floor in temporary installations
- Repelling agents, gas, dyes, foul-smelling chemicals, whistles, lights, gun firing blank cartridges.

70

I

*This item can be made up as illustrated

FIGURE C-36. R/C CHEMICAL AND DYE SPRAY PACKAGE

APPENDIX D

TABULAR SUMMARY OF VEHICLE
AND COMPONENT CHARACTERISTICS

APPENDIX D

TABULAR SUMMARY OF VEHICLE AND COMPONENT CHARACTERISTICS

The tables presented in this appendix give data taken from Information on vehicles and components received during the course of this study. Material gathered for the state-of-the-art survey included manufacturers' brochures; letters from Government and industry; books, periodicals, journals, patents, reports, and magazines; photographs; technical drawings; and specification sheets. Data amenable to reduction to tabular form were selected from the material received, and are presented herein under two basic categories: vehicles (Tables D-! through D-9) and components (Tables D-i0 through D-26).

Tables D-I through D-3 cover ATV's with iC engines, electric drive, and IC-powered snowmobiles, respectively. Land vehicles having IC engines and those powered electrically are summarized in Tables D-4 and D-5. Data on water vehicles with iC engines, electric drive, and miscellaneous propulsion systems, respectively, are given in Tables D-6 through D-8. Internal-combustion-powered ACV's are covered in Table D-9.

Tables D-iO and D-II give data on power sources, specifically engines and batteries/storage cells. The drive train is covered in Tables D-I2 through D-I4, where details are given on transmissions, variable motor drives, and torque converters, respectively. The remaining tables encompass information obtained on guidance and control systems. Table D-I5 covers transmitters; Table D-I6, rate gyros and switches; Table D-I7, DC to AC converters; Table D-I8, variable speed controls; Table D-I9, potentiometers; Table D-20, DC motors; and Table D-21, generators. Data for five different sizes of sciencids are given in Tables D-22 through D-26.

TABLE D-1. SUPPARY OF CHARACTERISTICS OF ALL-TERRAIN YEHICLES (INTERNAL COMBUSTION POWERED) (a)

			Engine	او				7	-			
Pode	Manufacturer	Make	Type	2	Displace- ment, cc	Transmission	Suspension	Overal	Overall Ofmensions, in. Length Width Height	ns in. Height	Height.	Additional Information
AFF Sur-Trek	AMF Hestern Tool Oiv.	210	2 cy	2	295	2 fwd, 1 rev	2-psi tires	126	%	37	750	\$2195
Amphicat ATV	Mobility Unlimited	Sachs	2 cy	9	277	2 flad, 1 rev	Soft tires	8	3	33	515	\$1595
Argo 6	Ontario Orive & Gear	Kohler	2 cy	88	388	2 fud, 1 rev	2-psi tires	98	57.5	37.5	575	\$1845
Attex SR/300 D	ATV Mfg. Co.	310	2 0	2	300	1 fed, 1 vev	Soft tires	82.5	53	8	950	£1595
Attex ?	ATV MFg. Co.	31.0	1	:	340	1 fwd, 1 rev	Soft tires	82.5	53	8	} ;	
Attex 7	ATV MFg. Co.	3	:	:	9	_	Soft tires	82.5	: :S	*	:	\$1675
Attex ?	ATV MFg. Co.	COL	!	1	225	1 fwd, 1 rev	Soft tires	82.5	23	8	:	Î
Attex ?	ATV MF9. Co.	Briggs & Stratton	1	6	1	1 fad, 1 rev	Soft times	82.5	53	8	;	\$ 995
Ba2000	Otaco Ltd.	700	2 cy	12.5	225	1 fad, 1 rev	1.5-psf times	8	52.5	35	450	\$1595
Busse A. T. Magen	Lusse Bros. Inc.	Volkswagen	;	55	1600	4 fed man/3 fed semi- auto, 1 rev	4-psi tires	921	72	22	1700	\$4875
Camel Centipede	Camel Mfg. Co.	J.C0	2 03	19.5	1	? flud, 1 rev	2-pst tires	80.5	54.5	33.5	575	\$1495
Camel Centipede Nach II	Camel Mfg. Co.	Borg- Marner	2 cy	9	295	1 fad, 1 rev	2-psf times	æ	54.5	33	498	\$1395
Carrier, 500 1b	:	ı	:	7	:	1 fad, 1 rev	1	*	88	52	200	U.S. Army
Carrier, 1/2 ton	:	!	;	15	:	:	;	118	80	:	925	U.S. Army
Carrier, 2000 1b	:	;	:	2	ł	2 fed, 1 rev	:	122	26	8	2000	U.S. Army
Catagator 6	Catagator Corp.	Kohler or Onen	4 0	2	:	1 fad, 1 rev	Rigid	98	65	35	1500	\$2295
Chaparral	Cheparral Industries	310	2 cy	8	295	1 fed, 1 rev	1.5-psi tires	8	55	*	470	\$1695
Coot	Frigiking Div.	lecurseh	4	15	453 (27.66 c1)	2 fad, 1 rev	4-psi tires	16	3	8	110C	2- or 4- wheel
Coot 124SS	Coot Inc.	Tecumseh	4 0	22	453 (27.66 cf)	2 fad, 1 rev	Soft times	8	2	8	016	\$1695
Dura-Kat Scooter	Dura Corp.	:	:	18	1	3 fad, 1 rev	;	2	8	*	1200	;
Eagle	Standard	Tecumseh	4 C	15	453	2 flad, 1 rev	10-psf tire:	3.	*	8	1350	\$1872

TABLE D-1. SUMMARY OF CHARACTERISTICS OF ALL-TERRAIN VEHICLES (INTERNAL COMBUSTION POWERED) (a) (continued)

			Engline	2	0.50			Overall	Dimens to:	in in	Le fahr.	
Model	Manufacturer	Make	Type	9	ment, cc	Transmission	Suspension	Leng	Leng:", Vidit Ir 1911	E E	lb.	Information
Ferret	Arnold Mfg. Co.	Kohler	ŀ	14 or	ŀ	ŀ	:	&	48 or 72	8	1150	Tractor
Gama Goat	:	ł	:	8	:	:	:	200	8	8	3700	U.S. Army
Got'cha 4000	Action-Age Inc.	Briggs & Stratton	4 04	•	319 (19.44 cí)	3	2-ply times	88	3	36.5	9	\$ 995
Honda U.S. 90	American Honda	Honda	40	7	&	8 speed	2-psi tires	61.8	37.4	34.6	196	\$ 590
Hurricane		210	1	8	295	? fad, 1 rev	High flotation tires	83	38	i	069	:
Hustler	Hustler Corp.	70	2 CV	52	340	2 fad, 1 rev	Soft tires	96	3	8	635	\$1795
Jiger Twin Six	Breton Versatrek	#	2 cy	12.5	246	Hydrostatic	High flotation tires	82	25	\$	450	\$1295
Jiger	Breton Versatrek	Kohler	1	20.5	562	Hydrostatic	High flotation times	82	25	\$	i	\$1395
Karou 225	Karou Inc.	3	2 0	13	225	1 fad, opt'l	2-psi tires	2	53	ਨ	395	\$1395
Karou ?	Karou Inc.	8	2 03	20	1	1 fed. opt'l	2-psi tires	2	53	*	:	1
Kłd	Kinetics Int'n'l. Div.	Wisconsin WH4-0	4 0	8	1770 (108 c1)	Twin hydro- static	Rigid	8	8	æ	2200	\$3217
Lockley ASV 295	Lockley Mfg. Co.	350	2 cy	22	562	Salsbury, opt'l rev	2-psi tires	96	S	8	8	\$1295
Hax ATV	Recreatives Inc.	200	2 03	2	297	Borg-Harner skid steer	2-psi tires	*	%	37	525	\$1545
MFX 4000	Messey-Ferguson	š	:	25	ł	ł	ł	ŀ	:	1	1	:
Hini Brute	Feldmann Eng. & Mfg.	Chrysler	2 CJ	•	134	2 fwd, 1 rev	2-psi tires	62	46.5	8	320	\$ 895
Hni Brute	Feldmenn Eng. & Mfg.	·	1	11.5	08	2 fad, 1 rev	2-psi tires	29	46.5	8	1	:
Newt the Bold	Challenger Corp.	900	2 CJ	54	440	1 fad, 1 rev	1-ps1 tires	96.5	99	40.8	850	\$1850
Newt the Bold	Challenger Corp.	Lawson	4 04	12	;	:	:	:	:	ŀ	:	\$1795
Otter	John D. Alger	ł	4	12.5	1	I fad, I rev	Soft tires	:	:	:	007	\$1000
Passe Par Tout 340	Valcartier Indust.	Sects	2 03	22.5	336	opt'l 2 fad	Bogies & preumatic wheels	*	47.7	3	750	ł

TABLE D-1. SUMMARY OF CHARACTERISTICS OF ALL-TERRAIN YEHICLES (INTERNAL COMBUSTION POWEREO)^(a) (continued)

Model	Manufacturer	Peke	Ţ	9	Displace- ment, cc	Transmission	Suspension	Overall Length	Overall Ofmensic is, in. Length Width Height	is, in.	Meight,	Additional Information
Ridge Runner ASV	Ridge Runner Inc.	Kohler	2 cy	33	819	1 flwd, 1 nev	Bogie wheels	112	45	27	900	\$2195
Roughrider	McKee Bros. Ltd.	3.0	2 03	±	230	I fad, opt'l	2-psi tires	83	25	37.5	370	\$1475
RUC	:	Chrysler	8-A	380	7212 (440 cf)	Chrysler auto. 2 fed, 1 rev	Spiral rotors	242	89	137	8920	Riverine
Ruppster Maja 230	Rupp Industries, Inc.	310	2 cy	:	230	Torque	4-psi times	2	\$	*	:	Craft
Sierra Trail Boss	Vesely Co.	Kohler	2 cy	8	309	1 fad, 1 rev	Low pressure	&	57	*	999	\$1495
Snow Eagle ATV-600	McCorneck	#	2 cy	8	9	l fwd, opt'l rev	Bogies & synthetic rubber tracks	S.	;	;	410	\$1395
Spoiler 700 & 7006	Speedway Products, Tecumseh Inc.	Tecumseh	;	7	246	2 fwd	Low pressure times	8	48	8	317	:
Sportster ATV	Roper Corp.	200	2 cy	19	292	1 fwd, 1 rev	Low pressure	95.5	3	33	929	\$1695
Spyder	Scorpion, Inc.	20	2 cy	2	340	1 fwd, 1 rev	Leaf springs	35	S	4 5	695	\$1195
Stalker	Ski-Tow Mfg. Co.	Tecumseh	4 0	15	:	1 fad. 1 rev	2-ps' tires	93	63	98	490	\$1595
Terra Jet 300	Terra Jet Inc.	Kohler	2 cy	8	295	Albion	Soft tires	901	3	43	825	\$1485
Terra Tiger 10	Allis-Chalmers	50	2 cy	9	246	Torque	2- to 3-psi times	8 8	35	37	525	\$1375
Terra Tiger 18	Allis-Chalmers	200	2 cy	<u>5</u>	162	ŀ	2- to 3-psi	98	25	37	;	\$1575
Tracker	Alsport	;	;	z	395	? fwd, rev	:	;	ł	;	;	
Trackster	Cushman Motors	OMC	2 cy	22	437	I fwd, I rev	Boate wheels	92	29	=	1040	C2880
Trail King Olablo	Quality Axle Hfg.	Briggs & Stratton	0	00	319 (19.44 c1)	Salsbury auto, opt'l rev	2-psi tires	8	2	33	240	\$ 895
Tricart	Sperry Rand Corp.	200	2 cy	=	230	Fud	4-psi tires	29	52.5	32	225	\$ 750
Water Skipper	Borg-Marner Corp.	Corvair	:	8	;	;	:	148	3		400	

rev = reverse Man = manual Semiauto = semiautomatic cy = cycle ci = cubic inch fwd = forward

auto = automatic opt'l = optional.

TABLE D-2. SUMMARY OF CHARACTERISTICS OF ALL-TERRAIN VEHICLES (ELECTRIC POWERED)

			Motor		Power	Source	Weight,	Additional
Model	Manufacturer	Make	Make Type HP	오	Туре	/pe Capacity	di	
Attex	ATV Mfg. Co.	æ	36 v	1	Pb-acid batteries	1	795	\$3000
RCTV	Grumman Aerospace Corp.	1	1200 ₩	0.8	1200 w 0.8 Zn-air batteries	1200 w (5 kwhr)	929	Remote control tactical vehicle

TABLE D-3. SUMMARY OF CHARACTERISTICS OF SMOW VEHICLES (INTERNAL COMBUSTION POWERED, SKI STEERED)

					Engine			Carbu	Carburetor	Dimen	Dimensions,	Ju.		
Manufacturer	Pake	Model	Make	Model	Type	£	Displace- ment, cc	Make	Type Type	Length Width	Width	Fack Midth	le ight	Year
Rupp Industries Inc.	American	30hp	Rupp	:	2 cyl- inder	8	:	;	1	ı	:	8	1	1
		40hp	Rupp	•	2 cyl- inder	\$:	ŀ	;	;	ŀ	18	;	:
		SOND	Rupp	:	2 cyl- inder	8	i	;	:	;	•	8	1	;
Artic Enterprises Inc.	Boss Cat	:	:	:	Turbine	1200	•	!	:	240	ł	1	1850	:
Chaparral Industries Inc.	Chaparral	Chaparral	HIT	55R	;	:	300	Tillotson	Ë	;	:	;	;	1968
		Chaparral	Hirth	160R	;	:	372	Tillotson	2	1	ŀ	:	ł	1968
		Firebird	# IT	170R	;	:	300	Tillotson	¥	;	ł	ł	ł	1968
		Chaparral	Kohler	K309-1	:	!	300	Tillotson	HRZZA	1	1	;	ł	1969
		Chaparral	Hirth	200K	:	:	372	Tillotson	H07AX	:	ł	;	;	1969
		Chaparral	Kohler	K618-2	:	ŀ	819	Tillotson	;	;	ŀ	;	ŀ	1969
		Firebind	Kohler	K309-1	ł	1	308	Tillotson	HR22A	ł	i	;	ŀ	1969
		Firebird	HIT	200R	:	1	372	Tillotson	HD7AX	;	i	ł	:	1969
		Firebird	Hirth	170R	:	;	9	Tillotson	1	ŀ	1	;	;	1969
		Snowgoer	Kohler	K618-2	;	1	819	Tillotson	;	:	;	ŀ	:	1969
		300	Kohler	K309-1	ŀ	i	200	Til otson or Keihin	:	:	i	:	!	1970
		300	H.	200R	i	:	372	Tillotson or Keihin	1	;	;	1	:	1970
		Firebind	Sachs	:	:	:	336	Tillotson or Keihin	1	1	:	:	ł	1970
		Firebird	Hirth	210R	1	:	399	Tillotson or Keihin	:	1	ł	:	;	1970
		Firebird	#	ZIIR	ł	:	438	Tillotson or Keihin	1	ŀ	ł	ŀ	:	1970
		Firebird	Ŧ.	220R	:	1	493	Tillotson or Keihin	:	:	:	;	B	0.61
		Firebira	ž.	171R	:	1	1 53	Tillotson or Keihin	:	:	;	;	:	1970
		Executive	Sachs	!	;	:	336	Tillotson or Keihin	ŀ	:	ŀ	:	:	1970

TABLE D-3. SUPPARY OF CHARACTERISTICS OF SHOW YEHICLES (INTERNAL COMBUSTION POWERED, SKI STEERED) (continued)

					The same				CATOURECOF		MENTS I CHIS			
Manufacturer	Make	Model	Make	Fodel	Type	9	Displace- ment, oc	Make	Type	Length	Width	E dth	16 a	Yea
Chaparral Industries Inc.	Chaparral	Executive	Ŧ	210R	1	1	388	Tillotson or Keihin	ŧ	:	:	ı	:	1970
		Executive	Ŧ	2118	1	:	8	Tillotson or Keihin	:	;	:	:	:	1970
		Executive	Ŧ	220R	:	:	493	Tillotson or Keihin	1	;	1	;	:	1970
		Executive	Ŧ	171R	:	:	634	Tillotson or Keihin	:	:	}	}	;	1970
		Snowgoer	Kohler	K618-2	•	:	819	Tillotson or Keihin	:	;	1	;	;	0.61
		Skylark	Ŧ	1938	ŀ	;	262	Tillotson	¥	;	;	;	:	1971
		Skylark	FIT	78	:	1	338	Tillotson	皇	:	;	;	;	1971
		Skylark	FIT	200R	ł	:	372	Tillotson	웃	1	ł	:	;	197
		Firebird	E E	194R	1	;	338	Tillotson	운	ł	ł	ì	;	1571
		Firebird	210	1340/2	;	1	339	ŀ	;	1	ŀ	;	:	1971
		Firebird	ğ	340	;	1	339	Kethen	£	:	;	;	ł	1971
		Firebird	30	L399/2	;	;	398	1	:	;	!	;	:	197
		Firebird	ğ	\$;	;	300	Kethin	£	ŀ	:	;	ł	1971
		Firebird	HIT	2118	;	:	438	Kethin	유	+	;	;	;	1971
		Firebird	Sachs	SA2-4#0	;	;	437	Keihin	ź	;	;	;	1	197
		Firebird	8	2	;	1	;	Kethin	皇	:	;	1	;	1971
		Firebird	£ E	220R	:	:	493	Kethin	皇	1	:	:	;	197
		Firebird	H	171R	1	;	634	Kethin	皇	i	;	;	;	1971
		Executive	310	13%/2	:	1	339	;	ŀ	1	1	:	:	1971
		Executive	3	340	:	1	339	Kethin	£	;	;	ł	;	1971
		Executive	310	1399/2	:	;	398	1	;	:	ł	1	:	197
		Executive	8	9	:	ł	398	Kethin	품	1	:	!	:	1971
		Executive	Ŧ	21 1R	;	;	438	Kethin	皇	1	;	1	;	1971
		Executive	Sachs	SA2-440	1	ł	437	Keihin	皇	1	1	1	;	1971
		Executive	3	4	:	1	:	Kethin	皇	:	!	:	;	197
		Executive	ŧ	220R	ŀ	ł	493	Kethin	유	1	!	ł	;	1971
		Executive	Ŧ	171R	:	1	634	Kethin	오	:	;	1	;	1971

TABLE D-3. SUMMARY OF CHARACLERISTICS OF SNOW VEHICLES (INTERNAL COMBUSTION POWERED, SKI STEERED) (continued)

TABLE D-3. SUMMARY OF CHARACTERISTICS OF SNOW VEHICLES (INTERNAL COMBULTION POWERED, SKI STEERED) (continued)

					Engine			Carbure	ror	Dime	ns ions.	1		
			1 1 1	1		9	Displace-	Wode 1/	Model /		Track	Track	Weight,	,
Hanutacturer	Маке	Hode	Hake	1 000	Abe	È	ment, cc	TAKE	N.	ובשלנו שוסנו	M 10CM	5	2	100
Herter's Inc.	Herter's	Yakutat 18	JLO	L340	;	;	336	Tillotson	HD14A	;	;	:	;	1970
		Seward 15	310	L 395	:	;	396	Tillntson	HD14A	;	;	!	i	1970
		Seward 18	210	L 395	:	;	396	Tiliotson	HD14A	;	;	;	;	1970
		Kodiak 18	200	L440/2	:	;	433.8	Tillotson	HD14A	;	;	;	:	1970
		Yukon 18	200	L44D/2	;	;	433.8	Tillotscn	HD14A	;	;	i	;	1970
		Barrow 18	Kohler	K399-2	:	;	399	Tillotson	£	!	;	1	:	1970
		Nome 15	Lloyd	LS400	;	:	386	Tillotson	HD14A	:	:	;	:	1970
		Nome 18	Lloyd	LS400	:	ŀ	386	Tillotson	HD14A	1	;	:	;	1970
		Nitro G	310	L295	:	;	262	Tillotson	HD13A	:	;	:	:	1970
		Nitro GI	210	L340	•	;	336	Tillotson	HD13A	:	1	1	;	1970
		Nitro GII	210	LR760/2	;	:	744	Tillotson	HD13A	;	ł	:	1	1970
		Sitka	310	1295	;	;	262	Tillotson	HR61A	;	:	1	:	1971
		Yakutat	310	L340	:	;	338	Tillotson	HD63A	;	;	i	:	1971
		Kodłak	Sachs	L440	:	;	436	Tillotson	HD64A	:	;	1	;	1971
		Yukon	Kohler	K340-2	;	;	339	Tillotson	HR79A	:	;	ŀ	:	1971
		Barrow	Kohler	K399-2	;	¦	399	Tillotson	HR79A	:	!	ŀ	;	1971
		Nitro G	Sachs	SA290SS	;	;	293	Tillotson	H029A	;	;	;	:	1971
		Nitro 6	Sachs	SA340	;	;	336	Tillotson	HD27A	:	:	:	1	1971
		Nitro G	Sachs	SA2-440	;	;	436	Tillotson	HD64A	;	;	;	;	1971
		Yukon	Kohler	K399-2	;	;	399	Tillotson	HR79A	ł	;	:	:	1972
		Kodiak	Sachs	SA2-440	;	;	436	Tillotson	HD64A	;	;	:	:	1972
		Klondike	Kohler	K440-2	:	;	436	Tillotson	유	:	1	!	:	1972
		Nitro GI	Kohler	K399-2	;	•	399	Tillotson	HR79A	:	;	:	;	1972
		Nitro GII	Kohler	K440-2	ì	;	436	Tillotson	유	:	:	;	;	1972
		Nitro GIII	Sachs	SA2-44D	1	;	436	Tillotson	HD64A	:	;	:	;	1972
Industries Bouchard Inc.	Moto-Ski	100	310	L252	;	;	247	Tillotson	HL187A	;	;	;	;	1965
		300	HIT	53R	ţ	;	300	Tillotson	HL 192A	;	:	1	;	1965
		Cadet	Hirth	81R	;	1	246	Tillotson	HL187	;	;	;	:	9961
		Capri	Hirth	24%	;	1	300	Tillotson	HL207A	:	:	:	;	9961
		Zephyr	Hirth	SAR	;	:	360	Tillotson	HL207A	1	;	:	:	1966

TABLE D-3. SUMMARY OF CHARACTERISTICS OF SNOW VEHICLES (INTERNAL COMBUSTION POWERED, SKI STEERED) (continued)

				Engine			Oien ace	Carburetor	OF BACK	Dimer	Dimensions, in.	19.	4405-017	
Manufacturer	Make	Model	Ske	Model	Type	4	ment, cc	Make	Type	Length	Width	Width Width	lb lb	Year
Industries Bouchard Inc.	Moto-Ski	HIST	÷.	SSR	1	:	300	Tillotson	HR3A	ł	:	;	1	1967
		202H	# C	SSR	;	1	300	Tillotson	HR3A	;	;	1	1	1967
		Cadet	Hirth	82R	;	:	246	Tillotson	HR] 3A	;	;	;	;	1968
		Capri	Ħ	SSR	;	:	300	Tillotson	HR16AX	1	1	1	;	1968
		Zephyr	Fit	SSR	;	1	300	Tillotson	HR16AX	;	1	;	1	1968
		Zephyr	Hirth	160R	;	1	372	Tillotson	НО7А Х	;	:	;	:	1968
		MS-18	Hith	SSR	:	1	300	Tillotson	HR:6AX	;	1	1	:	1968
		Cadet	Hirth	82R	;	1	246	Tillotson	HR76	1	;	1	;	1969
		Capri	Hirth	192R	;	1	317	Tillotson	HZ25A	1	;	;	;	1969
		Capri	Hirth	200R	1	1	372	Tillotson	HD17A	;	;	!	;	1969
		Zephyr	Hirth	192R	;	1	371	Tillotson	HR25A	;	:	;	;	1969
		Zephyr	Hit	200R	;	;	372	Tillotson	H017A	;	;	;	:	1969
		MS-18	Hirth	200R	:	1	372	Tillotson	HD] 7A	;	1	;	;	1969
		MS-18	Hirth	220R	;	;	493	Tillotson	HD17A	:	:	1	;	1969
		MS-18	Hith	NT/L	;	1	634	Tillotson	HD17A	;	:	:	;	1969
		Cadet	310	L295	;	1	262	Tillotson	HR44A	:	:	;	;	1970
		Capri	Hirth	191R	;	1	300	Tillotson	HR44A	1	1	;	1	1970
		Capri	Hirth	194R	;	1	338	Tillotson	HD25A	:	:	;	1	1970
		Capri	JL0	L380	i	1	372	Tillotson	H025A	1	1	;	1	1970
		Zephyr	Hirth	192R	;	:	317	Tillotson	HR44A	;	;	;	:	1970
		Zephyr	Hirth	194R	1	1	338	Tillotson	H017A	:	i	!	;	1970
		Zephyr	Hirth	200R	:	1	372	Tillotson	HD17A	:	;	;	;	1970
		Zephyr	300	L380	1	1	372	Tillotson	HD17A	;	1	;	1	1970
		MS-18	310	L380	i	1	372	Tillotson	H017A	;	1	1	;	1970
		MS-18	#: #	220R	i	1	493	Tillotson	HO17A	;	:	1	1	1970
		MS-18	Hirth	171R	i	;	634	Tillotson	H017A	ł	:	:	!	1970
		Grand Prix	Hirth	194R	ł	1	338	Tillotson	H017A	;	:	1	:	1970
		Grand Prix	Sachs	ł	1	1	340	Tillotson	HD17A	;	i	;	;	1970
		Grand Prix	Hirth	ZIIR	:	;	438	Tillotson	HD17A	1	1	;	;	1970
		Grand Prix	Hirth	171R	1	;	634	Tillotson	HP17A	:	:	;	:	1970

TABLE D-3. SUMMARY OF CHARACTERISTICS OF SNOW VEHICLES (INTERNAL CONFUSTION POWERED, SKI STEERED) (continued)

					Engine				retor	Oimensions	Ι.	in		
Manufacturer	Make	Mode	Make	Model	Туре	đ.	Oisplace- ment, cc	Σ	Model/ lake Type	Length Width	Width	rack Width	Weight, lb	Year
Industries Bouchard Inc.	Moto-Ski	Mini Sno	310	L 223	:	;	223	Keihin	406	;	!	:	;	1971
		Capri	310	L 295	1	;	262	Keihin	406	;	;	:	;	1971
		Capri	Hirth	194R	;	:	338	Tillotscr	¥	;	;	:	;	1971
		Capri	310	LR399/2	;	;	398	Tillotson	쭞	ľ	:	:	ı	1971
		Zephyr	Hirth	194R	;	;	338	Tillotson	오		1	;	;	1971
		Zephyr	310	LR399/2	1	;	398	Tillotson	9	;	ł	;	;	1971
		Grand Prix	JL0	LR340/2	;	;	339	Tillotson	유	;	;	;	;	1971
		Grand Prix	310	LR399/2	;	:	398	Tilletson	오	;	ł	;	;	1971
		Grand Prix	Hirth	171R	;	;	634	Tillotson	유	;	;	;	:	1971
		MS-18	310	LR399/2	;	;	398	Tillotson	무	;	;	;	:	1971
		MS-18	Hirth	171R	;	:	634	Tillotson	오	:	;	:	:	1971
		Capri 250	BSE	:	;	:	247	Tillotson	:	;	:	:	:	1972
		Capri 295	Hirth	193R	;	;	252	Tillotson	:	;	;	;	1	1972
		Capri 340	Hirth	194R	;	ŀ	338	Tillotson	;	;	1	;	;	1972
		Capri 340	310	LR340/2	;	;	339	Tillotson	;	!	;	;	:	1972
		Capri 400	310	LR399/2	;	;	398	Tillotson	;	:	ŀ	;	;	1972
		Zephyr 340	8SE	:	;	:	336	Tillotson	ļ	1	;	!	;	1972
		Zephyr 440	8SE	;	1	:	435	Tillotson	;	;	:	;	;	1972
		MS-18 400	310	LR399/2	;	;	398	Tillotson	;	:	ŀ	!	;	1972
		Grand Prix SS	BSE	:	;	;	336	Tillotson	;	1	1	;	1	1972
		Grand Prix SS	BSE	;	:	:	435	Tillotson	;	;	;	;	:	1972
Rupp Industries Inc.	Nitro	295	Rupp	;	1	:	295	;	!	;	:	15.5	;	1
		340	Rupp	;	:	1	340	;	;	;	;	15.3	;	;
		400	Rupp	:	;	;	400	;	;	;	;	15.5	ł	;
		440	Rupp	:	1	ŀ	440	;	;	;	:	15.5		;
		059	Rupp	:	;	:	650	:	;	;	1	18	;	:
Polaris Industries Inc.	Polaris	Lil' Andy	310	L152	;	!	148	Tillotson	Ŧ	;	;	;	;	1965
		Mustang KA80H	Kohler	K181	:	;	305 (18.6 c1)	Carter	z	:	;	1	;	1965
		Mustang J90H	310	L252	:	;	247	Tillotson	HL187A	:	1	;	:	1965
		Mustang H12H	Hivth	52R	;	:	300	Tillotson	HL184A	;	1	:	;	1965

TABLE D-3. SUMMARY OF CHARACTERISTICS OF SNOW WEHICLES (INTERNAL COMBUSTION POWERED, SKI STEERED) (continued)

					בוולווגב	١		Carburetor	-		ens tons	١		
Manufacturer	Make	Model	Make	Model	Type	윺	Displace- ment, cc	Make	Type /	Length	ength Width Width	Track	Height, 1b	Year
Polaris Industries	Polaris	S)t	31.0	1252	1	;	247	Tillotson	HL211B	:	;	:	:	1966
Inc.		Mustang 900	JLO	L252	:	1	247	Tillotson	HL211B	ł	ł	:	;	1966
		Mus tang 1000	310	7527	:	;	247	Tillotson	H_211B	ŀ	1	:	:	1966
		Mustang 1400	JL0	1372	1	:	372	Tillotson	HDGA	:	:	:	H	1966
Rupp Industries Inc.	Rogue	25hp	Rupp	;	:	25	:	:	1	;	1	15.5	:	;
		15hp	Rupp	ł	;	15	;	:	:	1	;	15.5	:	:
Sports Power Inc.	Sno-Pony	Colt	Chrysler	8200	;	;	134	Tillotson	HL135	ł	ł	;	;	1969
		Pony	Chrysler	8200	;	ŀ	134	Tillotson	HL135	1	1	;	:	1969
		Express	Chrysler	8200	i	:	134	Tillotson	HL135	1	1	1	;	1969
		Spr. Ex.	310	1227	;	:	223	Tillotson	HR19A	1	;	;	1	6961
		Mach I	Chrysler	8200	ŀ	:	134	T:11otson	HR135	1	;	1	:	1970
		Mach II	Solo	506	ł	;	180	Tillotson	HR19A	:	;	:	:	1970
		Mach III	Solo	602	;	ì	220	Tillotson	HR19A	:	:	;	:	1970
		Spr. Ex.	210	L230	ł	ł	223	Tillotson	HR19A	;	1	:	;	1970
		Spr. Ex.	McCul lough	10:	:	:	596	McCul lough	1	1	ł	;	;	1970
		180	50.0	902	;	1	180	Tillotson	HR19A	;	1	:	;	1971
		220	Solo	502	;	1	220	Tillotson	HR19A	ł	1	;	ŀ	1971
		295R	310	R295	1	:	262	Tillotson	HD13A	:	;	1	:	1971
		340 Twin	JL0	LR340/2	;	:	339	Tillotson	HD69A	1	!	1	1	1971
		Convertible	Solo	503	;	1	220	Tillotson	HR194	;	1	:	:	1971
		981	Solo	902	;	;	8 2	:	:	ł	:	:	;	1972
		220	Solo	502	:	1	220	;	;	;	1	1	:	1972
		340 Twin	310	LR340/2	;	1	339	;	;	1	ŀ	:	:	1972
		295R	310	ı	;	:	:	:	;	1	:	1	!	1972
Lionel Enterprises	Sno-Prince	A-16	Hirth	54R	1	1	300	Tillotson	HR3A	;	:	;	:	1968
HC.		A-17	Hirth	190R	1	ł	300	Tillotson	HRBA	i	i	ł	1	1968
		£-17	Hirth	160R	;	1	372	Tillotson	HD7A	1	1	;	:	1968
		A-18	Hirth	1918	;	:	300	Tilloteon	9	1	"			1060

TABLE D-3. SUMMARY OF CHARACTERISTICS OF SROW VEHICLES (INTERNAL COMBUSTION POWERED, SKI SIELKED) (continued)

				Enc	Engine		N.	Can	Carouretor (Dimen	sions,		Height	
Manufacturer	Make	Model	Make	Model	Туре	윺	ment, cc	Make	Type	Length Width	Width	Length Width Width	10	Year
Lionel Enterprises	Sno-Prince	A-28	Lloyd	LS400	!	:	386	Tillotson	HR26A	;	;	;	1	1969
Inc.		K-28	Hirth	171R	:	1	634	Tillotson	HD]3A	;	:	;	1	1969
		Blizzard	Sachs	SA280A	;	:	277	Tillotson	HL252A	;	}	:	1	1970
		Tornado I	Lloyd	LS400	;	;	386	Tillotson	HRZ6A	;	1	;	;	1970
		Tornado II	Hirth	191R	;	!	300	Tillotson	HR8A	;	7	;	1	1970
		Cyclone I	Lloyd	LS400	1	;	386	Tillotson	HR47A	;	;	1	;	0.6
		Cyclone II	Sachs	SA370	;	i	368	Tillotson	HD26A	!	;	1	;	1970
		Cyclone III	Hirth	200R	:	i	372	Tillotson	HD26A	;	!	;	!	1970
		Hurricane I	Hirth	200 R	;	1	372	Tillotson	HD26A	1	1	1	!	1970
		Hurricane II	Hirth	220R	;	:	493	Keihin	407	;	1	1	1	1970
		XL-300-S	Sachs	SA280	ł	ł	277	Tillotson	HL252A	1	1	;	:	1971
		XL-300-J	31.0	1295	;	;	262	Tillotson	HR102A	;	1	;	1	1971
		хг340	Hirth	194R	1	ł	338	Tillotson	HD65A	1	1	:	1	197
		XLS-340/2	Lloyd	LS400	1	1	386	Tillotson	HR47A	!	1	;	;	197
		хг-400	310	LR399/2	;	:	398	Tillotsen	HD65A	1	!	!	;	1971
		GTS-340	Hirth	200R2	1	:	372	Tillotson	HD26A	+	1	!	!	197
		GT-400	310	LR399/2	;	1	398	Tillotson	HD25A	1	!	:	:	197
		GT-500	Hirt	220R4	;	:	493	Tillotson	HD25A	;	1	!	1	197
		GT-640	Hirth	171R	;	1	634	Tillotson	HD25A	1	1	;	1	1971
Speedway Products Inc.	Speedway	340	Sachs	;	2 cyl- inder	ਲ	340	Walbro	무	94	33	15.5	330	;
		440	Konler	;	2 cyl- inder	58	440	-: lotson	뫄	94	33	15.5	346	1
		650	Kohler	:	3 cyl- inder	8	650	Tillotson	유	94	33	15.5	370	1
Rupp Industries Inc.	Yankee	25hp	Rupp	:	2 cyl- inder	52	+	1	:	1	1	15.5	}	1
		30hp	Rupp	:	2 cyl- inder	99	1	1	1	:	1	15.5	!	1
		40hp	Rupp	:	2 cyl.	9	1	1	ł	!	1	15.5	:	i

TABLE D-4. SUMMARY OF CHARACTERISTICS OF LAND VEHICLES (INTERNAL COMBUSTION POWERED) (a)

			ű	Engine				INCLU	Overall Dimensions	lons,		
Model	Manufacturer	Hake	Type,	£	Displace- ment, cc	Transmission	Suspension	I ength Width Height	Hdth.	Height	Weight,	Additional
Autoc	Asimuth Eng Co	Kohler	-	18	:	Hydrostatic	:	90	20	3	2000	Loader-tractor
Chevy Jr.	Rupp Industries	Tecumseh	4	3.5	;	Forward	:	87	35.5	1	240	:
Concept 4X4	Inc. U. S. Army	:	1	6-10	1	1	;	8	8	92	200	Remote radio control
0-301	Rupp Industries	Tecumseh	•	3.5	;	Forward	:	15	36	:	115	1
Dunecycle	A.P.E. Products	Briggs & Stratton	4	S	200	Forward	Soft tires	89	94	3	011	\$460
Haflinger	Stevr-Puch	;	;	52	639 (39 ct)	;	All-coil	;	;	:	:	\$2000
Jeep MISIAI	Ryan Aeronautical	;	;	1	ŀ	1	:	;	1	:	1	Remote radio control
Mighty Mo X-150	Remote-A-Matic	Briggs & Stratton	•	∞	319 (19.44 ci)	Furnard, reverse	;	9	\$	8	325	Remote or manual control
Mini-Inzer	C F. Struck Corp.	!	•	9	;	Forward, reverse	Rigid	46	37.5	33	:	\$400
Pug	Bruce Mfg. Corp.	Tecumseh	1	15	;	Torque converter, 2 forward, 1 reverse	None	138	15	:	1000	\$1795
Sterra Sadie	Sierra Motors	;	:	9.5	1	;	;	8	4 8	:	1000	\$700
Trail-Breaker	Rokon Inc.	Chrysler	8	œ	134 (8.2 cf)	Albion 3 SP	5-psi times	11	28	4	180	\$695

(a) Abbreviation used: ci = cubic inch.

TABLE D-5. SUMMARY OF CHARACTERISTICS OF LAND VEHICLES (ELECTRIC POWEREO)

;			Motor		Power Source	ource	overall Dimensions,	ייייייייייייייייייייייייייייייייייייי	ons.	Motob	Addition.
Model	Manufacturer	Make	Type	<u>a</u>	Туре	Capacity	ength	Width	Height	1b	
1	Chubu Electric Co.	1	80 v (6 kw)	į	Ni-Cd/96 v	11.5 kwhr	۱	;	:	3850	:
:	kansai Elec. Pwr. Co.	;	80 v (5 kw)	;	Pb-acid/84 v	8.8 kwhr	;	:	;	2178	;
:	Lansing-Bagnall Ltd.	;	:	;	Pb-acid	4.7 kwhr	:	;	;	: :	;
;	Rowan Controller Co.	!	Compound d.c.	1	Pb-acid, ∓8 ,	7.2 kwhr	+	ļ	-	;	ł
;	Tokyo Electric Pwr. Co.	;	90 v (5.5 kw)	;	Pb-acid/96 v	6.7 kwhr	;	;	;	1750	:
:	ube Investments Ltd.	:	ŀ	:	Pb-acid	:	;	1	:	950	;
:	Yardney	:	Series 4.c.	7.1	Ag-Zn	12 kwhr	;	!	;	1600	i
:	Yuasa Denchi Co. Ltd.	;	63 v (7 17 kw)	1	Pb-acid/80 v	32 kwhr	;	;	;	4290	
Allectric	West Penn Pwr. Co.	1	72 v	7.1	Pb-acid/72 v	9 kwhr	;	1	;	2160	: :
Carter Coaster	Carter Eng.	:	Shunt d.c.	1	Pb-acid/12 v	5 kwhr	;	1	ļ ;	200	1
Concept 4%4 (Little Oavid)	U.S. Army	;	:	2-3	N.	1	99	52	56	700	Remote radio
Concept 6x6 (Little David)	U.S. Army	:	:	2-3	Z	;	86	52	56	800	Remote radio
Electrovair	General Motors Corp.	;	Induction a.c.	100	A9-Zn/530 v	19.5 lowhr	;	;	;	3400	;
Electrovan	General Motors Corp.	:	Induction a.c.	125	H2-02	180-270 kwhr	:	,	:	7100	;
Fiat 103TE	Fiat	;	96 v compound	1	Pb-acid/12 v (16)	5) 10 kwhr	;	-	:	2992	;
Fiat Mark II	Fiat	;	96 v compound	;	Pb-acid/12 v (16)	5) 10 kwhr	i	;	;	2992	;
Ford Commuta	Ford of U.K.	:	i	5 (2)	Pb-acid/48 v	5 kwhr	ŀ	1	:	1200	;
Henney Kilowatt	Union Electric Corp.	;	Series d.c.	7.1	Pb-acid	8 kwhr	:	;	1	21 35	;
Markette	Westinghouse	;	1	4.5 (2)	Pb-acid	8 kwhr	;	;	;	1730	;
Mars II	Elect. Fuel Propul. Inc.	:	:	15	Pb-acid/96 v	30 kwhr	;	:	1	3640	Renault 10 base
Mini	General Electric Co.	;	;	;	Pb-acid & Ni-Cd	;	;	;	;	2300	1
Mini II	Telearchics Ltd.	;	Series d.c.	3 (2)	Pb-acid/64 v	" ANT	;	;	;	2378	;
Mini I Traveler	AEI Ltd.	:	Series d.c.	10	Pb-acid/96 v	5.3 kwhr	:	;	;	2499	
Pargo	Columbia Car Corp.	:	d.c.	;	Pb-acid/18 v	;	;	;	;	;	
Dargo	Columbia Car Corp.	:	d.c.	;	Pb-acid/36 v	;	!	!	;	;	
РОАМ	Space-General B1	Jack & Decker	Reversible l d.c.	1/3 (2)	Matercycle battery/12 v (4)	4 hr	45	32	:	100	Remote radio conirol walker
Rover	Bendix Corp.	;	1	:	-	;	20	53	27	0ù2	Remote control

TABLE D-5. SUMMARY OF CHARACTERISTICS OF LAND VEHICLES (ELECTRIC POWERED) (continued)

					ď		Overal	Overall Dimensions,	fons.	10.00	***************************************
Model	Manufacturer	Make	Type	dH.	Type	Capacity	Length Width		Height	le lgnt.	lb Information
200	Scottish Aviation Ltd.	i	Series d.c.	2.7 (2)	2.7 (2) Pb-acid/48 +	5 kwhr	ł	:	:	1000	:
Sedan	Linear Alpha	:	Inductive a.c.	52	Li-N1-F/144 v	20 kwhr	;	;	:	:	Modified Ford Falcon
Stare Car	Alden Self-Transit Corp.	;	H	2.5 (4)	2.5 (4) Pb-acid/18 v	1	;	;	:	1700	-
Super Electivic	Gar Wood	;	1	2 (2)	Pb-acid/96 v	:	;	:	1	:	;
Trident	Peel Eng.	;	;	2	Pb-acid/12 v	:	:	;	;	200	:
Urbantha	Bargagli & Christiani	;	24 v	1.3	Pb-acid	1.9 kwhr	1	1	;	750	1
UEST 127 San	Linear Alpha	i •	Inductive a.c.	9		25 kwhr	:	1	1	:	Modified Internat'l Horvester M-800
Voltair	Elect. Fuel Propul. Inc.	;	Series d.c.	;	Pb-Co	:	;	:	;	5300	Hornet base
West Special	:	;	:	;	N1-Cd/12 v	i	;	:	;	920	:
Wheel Horse EXT	Aircraft Dynamics	:	Traction	1 (2)	1 (2) Pb-ac1d/6 v (6)	ı	:	:	:	:	Charger 10 base: tractor
- Finn	Hign Speed Motors Inc.	:	Series d.c.	4	Pb-acid/48 v	6 kwhr	1	1	:	1200	:

TABLE D-6. SUMMARY OF CHARACTERISTICS OF WATER VEHICLES (INTERNAL COMBUSTION POWERED)

						Pange.		Over	Overall Dimensions, in.	1S TONS	ir.		
Model	Manufacturer	Make	Engine	슢	knots	mauticai	Control	Length	Width/ Beam	Uraft	Height	Weight	Additiona Information
ı	Cnarles Mooney	Onlson & Rice	Industrial	3/4	25	Line o⁴ sight	Remote radio	09	7	m	ł	91 0S	PT boat model
Corsair II	(Italiar)	ł	Diesel	;	0.	800	Manned	472	5.	1	:	14 tons	Swimmer delivery vehicle
CT2 <i>F</i>	(Italian)	1	Gasoline	1	3.5	5 0	000000	228	30.5	:	:	1.7 tons	1.7 tons Swimmer delivery vehicle
Firefish	SANDAIRE	Mercrufter	4 cylinder, 4 stroke	120	30	:	Remote radio	204	80	;	39	1650 15	Target and utility
Marlin	Aristo-Craft	Seahorse 15	Outboard	;	ł	1	Remote	29.8	11.5	1	e. 9	;	Mode]
×s	(Italian)	Ħ	Diesel	300	=	1200	Manned	636	æ	1	1	52 tons	Swimmer cellvery vehicle
SX 324	(Italian)	1	Diesel	:	=	೨೦೦	Manned	612	32	1	:	32 tons	Swimmer delivery vehicle
SX 404	(Italian)	1	Diesel	235	=	1200	Manned	628	78	:	;	40 tons	Swimmer delivery vehicle
Tarpon	Aristo-Craft	Seahorse 15	Outboard	1	ŀ	;	Remote	37.8	14.5	1	7.8	:	Mode
Water Spyder 1-A	Water Spyder Marine Ltd.	Various	Outboard	10-25	40 mph	ł	Manned	72	48-84	ł	1	al 08	Hydrofoti
Water Spyder 2-8	Water Spyder Marine Ltd.	Various	Outboard	20-35	40 mph	1	Manced	144	64-85	!	1	220 1b	Hydrofoil
Water Spyder 6-A	Water Snyder Marine Ltd.	Various	Outboard	60-115	40 mph	1	Manne	228	93-156	1	2,	gl 086	:

TABLE D-7. SUMMARY OF CHARACTERISTICS OF WATER VEHICLES (ELECTRIC POWERED)

	;		Motor	Power Source	ource	Speed.	Range,		D ALL	Uverall Dimensions, in.	Sions	١		Addiedon
Model	Manufacturer	Make	Type	ype	Capacity	knots	mles	Control	Length	Beam	Draft Height	eight	Weight	Information
:	Kometsu Ltd.	!	168 hp	Diesel gen.	170 kva	2.2 mph	492 ft	Remote cable	330.7	147.6	ı	147.6	37.5 toms	Underwater bulldozer
Aberdeen	Lab (2)	Chrysler	12 v, d.c. (2)	Pb-acid (2 or 3)	8 amphr (ea)	8.5	Line of sight	Remote	69	Ξ	9	:	27 16	Flat top
Aquaped	Aerojet	;	d.c.	Pb-acid	1	1.5-2	52	Manned	1	ł	!	:	9 1 6 1	Swimmer delivery vehicle
Canoe	(British)	1	d.c.	Pb-acid	1	4.4	04	Manned	152	27	1	1	dl 000	Swimmer delivery vehicle
CE2F	(Italian)	;	d.c.	Ag-Zn or Pb-acid	1	4.5	100/60	Manned	236.2	31.5	:	1	1.9 tons	Swimmer delivery vehicle
CE2F/C	(Italian)	:	d.c.	Pb-acid	;	9	09	Manned	292	ಸ	1	1	2.6 tons	Swimmer delivery vehicle
Chariot	(British)	;	2 hp, d.c.	Pb-acid	1	m	5	Manned	265	28.5	1	ŀ	1.75 tons	Swimmer delivery vehicle
ii ii		•	ŀ	:	:	9.6	8	Manned	472	\$5	1	ŀ	14 tons	Swimmer delivery vehicle
CT2F	(Italian)	1	d.c.	Pb-acid	1	3.5	20	Manned	228	30.5	:	ł	1.7 tons	Swimmer delivery vehicle
Mfaisub MK III	Aerojet	:	:	Pb-acid	1	ı,	33	Manned	102	4	:		36 15	Swimmer delivery vehicle
Minisub MK VI	Aerojet	:	:	Pb-acid	:	5-4	n:-7	Manned	172	22	1	8	dl 009	Swimmer delivery vehicle
Minisub MK VIII	Aerojet	:	d.c.	:	:	3-4	7-8	Manned	168	8	H	6 9	979 1b	Swimmer delivery vehicle

TABLE D-7. SUMMARY OF CHARACTERISTICS OF WATER VEHICLES (ELECTRIC POWERED) (continued)

Model Manufacturer Pig (Italian) Sea Oceanic Orone I Industries Sea Horse (Italian) Mod I Sea Horse (Italian) II Snoopy NUC SSB (Italian) SSB (Italian)	Make	Motor	Power Source	Capacity	Speed, knots	nautical miles	Control	4		Draft Height	toiot	112 : 014	Additional
		Type	•	7170606	Knots	m1 es	2			המדני	100.00		T. K
A : A :	1 1		lype	7			101111	רבנואריי	Dedill		1	Mergne	Information
A. A.	;	d.c.	Pb-acid	;	2.2	01	Manned	204	20.8	:	:	1.54 tons	Swimmer delivery vehicle
		1/2 hp, d.c. (2)	Pb-acid/ 48 v	220 amphr	9	5.2	Remote acoustic	204	24	:	56	1.4 tons	Submersible
	1	1.8 hp, d.c.	Ag-Zn	:	8	25	Manned	174	30	;	:	850 lb	Swimmer delivery vehicle
	1	1.8 hp, d.c.	Pb-acid	!	3.8	15	Manned	173	62	1	;	800 1b	Swimmer delivery vehicle
m	:	;	Hydraulic	:	;	;	Remote cable	89	:	:	13	91 09	Underwater TV system
	1	d.c.	Pb-acid	;	9	45	Manned	337	32	:	:	2 tons	Swimmer delivery vehicle
	:	S4 hp	;	1	=	1200	Manned	636	28	:	1	52 tons	Swimmer delivery vehicle
SX 324 (Italian)	:	1	;	;	Ξ	0001	Manned	612	78	ł	;	32 tons	Swimmer delivery vehicle
SX 404 (Italian)	:	40 hp	;	;	Ξ	1200	Manned	628	78	1	;	40 tons	Swimmer delivery vehicle
Trass III (Italian)	:	ن .	Pb-acid	;	m	20	Manned	210	59	:	;	1800 1b	Swimmer delivery vehicle
Unitow Marine Resources Inc.	nc.	:	:	;	;	6.0	Acoustic homing	144	80	;	1	;	Underwater vehicle
Xcraft (British)	1	30 hp, d.c.	Pb-acid		9	20	Manned	919	5.69	;	:	27 tons	Swimmer delivery vehicle
XE (Bricish)	:	d.c.	Pb-acid	1	9	80	Manned	637.5	59.5	:	:	30.3 tons	Swimmer delivery vehicle

TABLE D-8. SUMMARY OF CHARACTERISTICS OF WATER VEHICLES (MISCELLANEOUS)

				Kange,		Uver	UVerall Dimensions, in.	US TOUS .			
Mode:	Manufacture	Propulsion/Power	Speed, knots	nautical miles	Control	Length	Width/ Beam	Draft Height	Height	Weight,	Additional Information
:	Robert R. Adams	Sail	ю	Line of sight	Remote radio	99	11.8	:	3		Model sloop
Flying Fish	Nigg	Sail	8	1	Manned	192	240	12-39	288	;	Hydrofoil
Ice Skimmer	Lockley Mfg. Co.	Sail	;	:	Manned	901	72	;	50 +	\$0 5	Ice boat
Minisub PV II	Aerojet	Pedal & CO ₂ motor	3.4	4	Manned	:	;	:	ŀ	:	Swimmer oelivery vehicle
Minisub MK III	Aerojet	Pedal & CO ₂ motor	'n	33	Manned	102	4	;	in In	961	Swimmer delivery vehicle
Minisub MK VIII	Aerojet	Pedal & electric motor	3-4	7-8	Marned	168	06	1	46	979	Swimmer delivery vehicle
MK I SPU	Aerojet	Pedal	т	m	Manned	1	:	1	:	:	Swimmer delivery vehicle
SKAMP QMB-1	RCA Space Systems	Satl	!	Unlimited	Unlimited Programmed and remote radio	;	108 D	;	199	1800	Station-keeping platform

TABLE D & SUMMARY OF CHARACTERISTICS OF AIR-CUSMION VEHICLES (INTERNAL COMBUSTION POWERED)

		Lift Engine	aj je			Propulsion Engine	ļ							
			Δ.	Disc.			Dis- place-			Overa	Overall Dimensions in.	lons,		
Model	Manufacturer	Make	±	Rent,	Make	9	ment,	Speed,	nautical miles	Length	Wfdth/ Beam	Height	le ight,	Additional Information
:	Acrydyne	;	;	:	Avco Lycoming	150(2)	1	50 knots	90	258	132	98-89	4500	Integrated lift & propulsion system
:	Gerald Crisman	1	œ	1	:	:	1	ł	i	1	48 D	1	:	Integrated lift & propulsion system
;	(German)	Fichtel & Sachs	20	1	Fichtel & Sachs	15	1	8	ł	1	:	:	!	Wankel engine
:	Winfield Hovercraft Ltd.	:	;	1	:	:	150	3	ŀ	; I	72 D	ł	:	Integrated lift & propulsion System
Aeromobile 14	Bertelsen Mfg. Co.	1	1	;	310	22	740	S	1	156	ŀ	;	9011	Integrated lift & propulsion system
Agriplane A38		1	i	:	:	200	:	:	:	:	:	:	:	Combined SEV & wheeled vehicle
Agriplane A38	!	Renault	150	:	Renault	45	:	:	:	:	:	:	:	Combined SEV & wheeled vehicle
Cyclone	Nigel Beale	Rowena	13	137	Rowena	13	137	40	:	112	79	98	90	:
Fan-Jet Skimmer	Skimmers Inc.	1	1	1	Chrysler	9	1	18	æ	911	Z	8	052	Integrated lift & propulsion system
Floral l	Nihon Univer- sity	Fwj1 ES-162-DS	60	1	Yamamoto or Mercury	22(2) or 50(2)	ŀ	50.5	i	179	70.8	56.8	123	Propulsion by twin outboard engines
Hovercar	Cecil Blankley	:	1	;	Hillman Imp	41.7	840	ł	1	174	84	25	1344	Integrated lift & propulsion system
Hoverlark	;	Stihl	1	137	Stihl	;	137	9	!	106	S	47	150	:
Hovernaut	;	Stihl	;	137	Stihl	;	137	8	:	109	73	51.8	181	1
Hoverpallet 206	E. Allman & Co. Ltd.	Various 4 cycle	:	506	:	;	ŀ	1	!	8	8	:	140	Manual propulsion
Hoverpallet 319	E. Allman & Co. Ltd.	Various 4 cycle	:	319	:	•	1	:	1	96	48	:	150	Manual propulsion
Hummingbird	Air Kinetics Inc.	:	;	:	310	88	ł	35	:	:	1	ŀ	!	Air boat, mot ACV
Leda 1	Bettocchi	A.H. 81	9	;	A.H. 81	¥	1	35	:	:	72	48	200	:

TABLE D-9. SUMMARY OF CHARACTERISTICS OF AIR-CUSHION VEHICLES (INTERNAL COMBUSTION POWERED) (continued)

					2000									
				0is- place-			Ois- place-		Range,	Overa	Overall Oimenstons.	stons,		
Model	Manufacturer	Make	슢	ment.	Make	Н	ment,	Speed,	nautical	nutical Width/ miles Length Beam	Width/ Beam	Height	Weight. Tb	Additional Information
M-& Flying Saucer	Bartlett Flying Saucer	:	1	1	Briggs & Stratton	3.5	;	;	:	1	113 0	;	150	Integrated lift & probulsion system
inkushion	Mike Pinder	Rowena	13	137	Aerial	20	250	90	:	120	8	30	220	:
Portaire	Taylorcraft Pty Ltd.	Wisconsin HS-80	:	:	:	:	:	1	;	09	45	30	135	Manual propulsion
Stim-Air	Morgan Hughes Inc.	;	;	;	2 cycle	28	:	1	1	}	1	:	;	Integrated lift & propulsion system
Smuggler	Air Kinetics Inc.	:	1	1	MA	42	1500	3,5	;	160	;	:	1	Integrated lift & propulsion system
Spectra 1	(Canadian)		:	:	;	:	:	09	:	•	:	:	;	Separate lift &

TABLE D-10. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (ENGTIES)

Ì,		place-			Bore/						
Manufacturer	Model))	HD 6 NOW	Cyi inders	MM.	Model	Model Quantity	Ignition Type	Cooling Type	Height.	Fuel/011
Fichtel & Sachs AG	SA280	111	16 @ 5500	-	71/70	£	_	Cosch magneto	Contractions		
	SA280A	277	14 9 4800	_	71/70	Ħ	_	Bosch magnete	Centra rugal ran	:	C5: 1
	SA290	297	20 @ 5500	-	73 5/70		- ,	Bosca magneto	Centrifugal fan	8	25:1
	SA290	293	- 4		07/5.5	Ĕ S		Bosch magneto	Centrifugal fan	;	25:1
	\$4200B			-	13/10	¥	_	Bosch magneto	Centrifugal fan	;	25:1
	NOCOUC	567		-	73/70	H0	_	Bosch magneto	Free air		26.1
	SA2905S	293		-	73/70	OH.	_	Bosch magneto	Centrifical fac		1:07
	SA340	336	22 @ 5200	-	75.5/75	9	_	Bosch magneto		1	1367
	SA340C	334	29 € 6500	-	78/70	9	_	Bosch magneto	Cortes forms	:	[:57
	SA340R	334	:	_	78/70	9		מספרון ווישקוובנט	Centritugal tan	:	25:1
	SA:405S	336	26 ₽ 6000	_	75.5/75	2 5		Bosch magneto		:	75:1
	SA370	368	24 9 5300	-	30776			poscu magneto	Centrifugal fan	4 3	25:1
Hirth Motoren KG	87.5	300	4		27/6/	חא-או		Bosch magneto	Centrifugal fan	;	25:1
	96	900	٠ و		89/5/	Ħ	-	Bosch magneto	Centrifugal fan	1	25:1
	40	3 5	ه خا	-	75/68	물	-	Bosch magneto	Centrifugal fan	1	25:1
	¥ 69			_	75/68	œ.	_	Bosch magneto		ļ	25:1
	KCC 8	3 8		-	15/68	æ I	-	Bosch magneto		;	25:1
	K 00	767		_	74/68	1	_	Bosch magneto		ł	26.1
	56 83	292	15 6 5000] vertical	74/68	;	:	Bosch dynamo		47	1.6
	818	246	10 9 5000	•	20161	÷		magneto			
	828	246	12 5 9 5000	- •	\$ 101	뒾	_	Bosch magneto	Centrifugal fan	:	25:1
			0006 4 6 7 7	-	10/64	£	_	Bosch dynamo magneto	Centrifugal fan	39	23:1
	1500	9	Ω.	l vertical	70/64	1	:	Bosch magneto	;	95	;
	NO 1	372	•		80.5/73	9	_	Bosch magneto	Centrifugal fan	3 1	26.1
	X0 .	00	•	2	89/5/	¥	2	Bosch E.T. magneto	Centrifugal fan	:	25:1
	718	634	•		89/11	QH	_	Bosch E.T. magneto	Centrifugal fan	11	25:1
	**************************************	S	•		89/11	:	:	Bosch dynamo magnets	;	11	:
	17 IRAE	1	•	je L	89/11	ł	;	Bosch dynamo magneto	;	77	:
	NO.	050	28 6 6500	2	78/68	;	1	Bosch E.T.	Centrifugal fan	ł	25:1

TABLE 0-10. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (ENGINES) (continued)

Manufacturer	Model	place- ment,	HP @ RPM	Cylinders	Bore/ Stroke,	Hodel (Carburetor Model Quantity	lgnition Type	Cooling Type		Weight, Fuel/Oil lb Ratio
Hirth Motoren KG	180R	493	24 @ 5000	2 opposed	70/64	± œ	2	Bosch E.T. magneto	Centrifusal fan	:	25.1
	190R	38	19 @ 5000	_	75/68	H.	-	Bosch magneto	Centrifugal fan		25.1
	1918	300	19 @ 5500		75/68	Ĩ	-	Bosch magneto			26.1
	192R	317	20.5 @ 5750	-	77/68	£	-	Bosch magneto	Cantrifucial fam		25.3
	19284	317	20.5 @ 5750	l vertical	77/68	;	:	Bosch dynamo magneto			1.63
	192P4E	317	20.5 @ 5750	lvertical	77/68	;	;	Bosch dynamo magneto		2 6	
	193R	292	19 @ 5500	_	74/58	유	_	Bosch magneto	Contrifunal fan		26 1
	19384	232	19 @ 5500	lvertical	74/68	;	;	Bosch dynamo magneto			S
	193R4E	56?	19 @ 5500	lvertical	74/68	;	:	Bosch dynamo magneto	:	57	:
	194R	338	28 @ 6500	-	79.5/68	H0	~	Bosch magneto	Centrifugal fan		25:1
	194R4	338	28 @ 6500	l vertical	79.5/68	;	;	Bosch dynamo magneto	`		
	200R	372	23 @ 5500	-	80.5/73	Gr.	-	8csch magneto	Centrifugal fan		25.1
	200P4	372	23 @ 5500	lvertical	80.5/73	1	:	Bosch dynamo magneto	:		; ;
	20084E	372	23 @ 5500	lvertical	80.5/73	;	;	Bosch dynamo magneto	*	63	;
	210R	399	22 @ 5500	2 in-line	63/64	H0	_	Bosch E.T. magneto	Centrifugal fan		;
	210R4	399	œ.	2 Seen ine	63/64	:	;	Bosch dynamo magneto	` 		25:1
	210R4E	366	22 @ 5500	2 in-line	63,64		!	Bosch dynamo magneto	8 8	71	;
	2118	438	24 3 5500	2 in-line	66/64	4	-	Bosch E.T. magneto	Centrificaal fan		;
	211R4	438	24 @ 5500	2 in-line	99/99	;	1	Bosch dynamo magneto	;		25:1
	211R4E	438	24 @ 5500	2 in-line	99/99	:	;	Bosch dynamo magneto	ı	70	;
	220R	493	27 @ 5500	2 in-line	70,64	유	_	Bosch E.T. magneto	Centrifugal fan		;
	220R4	493	27 @ 5500	2 in-line	70/64	:	:	Bosch dynamu magneto	:		25.1
	220R4E	493	9	2 in-line	71/64	;	;	Bosch dyr.amo magneto	;	69	; ;
	230R	793	œ	3 in-line	72.5/64	H0	٣	Bosch dynamo magneto	Free air	105	;
	231R	647	•	٣	65.5/64	H0	m	bosch E.T. magneto	Free air	;	25:1
	Z60R	338	æ	2	95/29	:	-	Bosch E.T. magneto	Axial fan	;	25:1
	7.97 :	162	25 @ 6500	2	57.5/56	:	-	:	Axial fan	i	25:1
	Honker	793	08	~	:		•		1		

TABLE 0-10. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (ENGINES) (continued)

Manufacturer	Hode]	place- ment,	HP & RPM	Cylinders	Bore/ Stroke,	200	Carburetor Model Quantity	Ignition Type	Coolin Type	Weight,	Fuel/011 Ratio
Kawasaki Motors Corp.	KT-150A	292	20 6 5500	-	74/68	£	-	Flywheel magneto	Centrifugal fan	1	20:1
	KT-1508	292	22 @ 6000	-	71/68	£	-	Flywheel magneto	Centri ² ugal fan	:	20:1
	KT-150C	333	24 € 6000	-	89/62	오	-	Flywheel magneto	Centrifugal fan	:	20:1
McCulloch	43184	1639	72 @ 4100	4 hori- zontal, opposed	80.8/79.4	+	:	McCulloch magneto	Air cooled	11	:
	4318E	1639	72 @ 4100	4 hori- zontal, oppnsed	80.8/79.4	-	:	McCulloch magneto	Air cooled	;	;
	4318F	1639	92 6 4100	4 hori- zontal, opposed	80.8/79.4	-	;	McCulloch magneto	Air cooled	:	;
	43186	1639	06	;	:	;	:	;	1	;	:
	MC-49C	80.3	2	-	54/35	;	:	High tension magneto	Air ccoled	12	20:1
	MC-918	1	10		55/41.5	;	:	High tension magneto	Air cooled	11.8	20:1
Rockwell-JLO	189	100	4.75 @ 5500	-	55/42	£	-	£120	Centrifugal fan	:	20:1
	1152	148	5.7 @ 4500	_	59/54	¥	_	RB1 6V/17W	Centrifugal fan	:	25:1
	1617	198	7.3 @ 4500	-	85/99	¥	-	RB1 6V/174	Cent-ifugal fan	:	25:1
	L230	223	12.5 @ 5500	-	70/58	H.	-	RB1 6V/17W	Centrifugal fan	:	20:1
	1230	223	14 & 6000	-	70/58	9	-	RCP 1V 12V/40M	Centrifugal fan	:	20:1
	1252	247	9.1 6 4250	-	99/69	HL, HR	_	SB1 6V/16(36)W	Centrifugal fan	:	25:1
	1292	262	14.6 ₽ 4500	-	75/66	HR,HO	-	SB1 6V/16W	Centrifugal fan	:	20:1
	1295	262	18.5 @ 5500	-	74.5/67	H. F.	_	SCP 1V 12V/75W	Centrifugal fan	:	20:1
	1297	596	17.5 9 5000	-	15/67	HR, HO	_	SC 1V 12V/40W	Centrifugal fan	:	20:1
	1300	582	19.5 € 5500	_	15/67	HR, HO	-	JC1 12V/40W	Centrifugal fan	:	20:1
	1340	336	22 € 5500	-	80/67	쏲	-	3CP 1V 12V/75W	Centrifugal fan	:	20:1
	L372	372		-	80/74	9	-	SC1 12V/40W	Centrifugal fan	:	20:1
	L 380	372	23.5 @ 5000	-	80/74	HR .HO	_	SC 1V or CP 1V	Centrifugal fan	:	20:1
	1395	372	24.5 @ 5000	_	82.5/74	9	_	RCP 1V 12V/75W	Centrifugal fan	:	20:1

TABLE 0-10. SUMMARY OF CHAMACTERISTICS OF POWER SOURCES (ENGINES) (continued)

Manufac*urer	Model	place- ment, cc	Đ.	P RP M	Cylinders	Bore, Stroke,	-	etor				10.41	
Rotax Werke AG	165	163	7			23,63	<u>.</u>	Quantity	Ignition Type	C0011	Cooling Type	16	lb Ratio
	247	247	12		-	95/20	₹ 5		Bosch magneto	1		:	20:1
	250	247	12		-	99/69	=		Bosch magneto	•		:	20:1
	290	291.6 22	22		-	75/66	! E		bosch magneto	:		1	20:1
	262	291.6	22		_	75/66	2 5		Bosca magneto	:		:	20:1
	300	239.4	12-15		-	29/92	2 9		bosch magneto	!		;	20:1
	302	299.4	12-15		-	76/66	9		bosch magneto	:		:	20:1
	320	318	8		,	76/70	9		bosch magneto	;		:	20:1
	335	334.5	18-26		-	78/70	£		oosch magneto	:		:	20:1
	337	334.5 18-26	18-26		-	78/70	£		Bosch magneto	!		!	20:1
	340	334.5	18-26		-	78/70	2		onsen magneto	:		:	20:1
	342	334 5	19-26		_	78/70	9		bosch magneto	:		1	20:1
national Harvester	Saturn	:	33.	0509	i	:		•	busen magneto	:		:	20:1
101504	* C							:	:	;		050	

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS)

Manufacturer	Make	Medel		Sotential,	Capacity,	Rate,	Dimensions,		in.		
	אפע	1006	Ype	>	amp-hr	hr	Length	Width	Height	Weight	Application
Electric Storage Battery Co.	Exide	DMSC (9)	Pb-acid	:	200	9	3.56	5.19	18.5	40 1b	SeaSpace power systems
			Pb-acid	;	250	9	4.31	61.9	18.5	40 16	
			Pt-acid	!	300	9	5.06	6.13	18.5	58 th	*******
			Pb-acid	;	350	vo	5.88	6.25	18.5		-
			Pb-acid	:	400	9	6.62	6.2	18.5		
		_	Pb-acid	;	450	9	7.38	6.25	18.69	86 lb	
		_	Pb-acid	:	200	9	8.12	6.25	18.63		
		DMSC (23)	Pb-acid	1	250	9	8.88	6.25	18.69	102 16	
		_	Pb-acid	1	009	9	9.62	6.25	18.69	112 16	
		_	Pb-acid	:	650	9	10.38	6.25	18.69	120 16	
		_	Pb-acid	;	700	٥.	11.12	6.25	18.69		
		DMSC (33)	Pb-acid	!	800	9	12.62	5.25	18.69		
		_	Pb-acid	i	260	9	3.56	6.19	20.69		
		DRSC (11)	Pb-acid	;	325	9	4.31	6.19	20.69		
		DRSC (13)	Pb-acid	i	390	9	9.09	6.19	20.69		
		_	Pb-acid	;	455	9	5.88	6.25	20.69	77 1b	
		DRSC (17)	Pb-acid	;	520	9	6.62	6.25	20.69		
		_	Pb-aci3	ŀ	585	9	7.38	5.25	20.88		
		$\overline{}$	Pb-acid	;	650	9	8.12	6.25	88.07	108 16	
		0RSC (23)	Pb-acid	;	715	9	8.88	6.25	20.89	118 15	
		0RSC (25)	Pb-acid	;	780	9	9.62	6.25	20.88	127 lb	
		~	Pb-acid	;	845	9	10.38	6.25	20.88		
		DRSC (29)	Pb-acid	!	910	9	11.12	6.25	20.88	147 1b	
		DTG (11)	Pb-acid	;	360	S	4.31	6.19	23.25	df 7a	
		OTG (13)	Pb-acid	1	432	ų	5.06	6.19	23.25	78 16	
			Pb-acid	;	504	9	5.88	6.25	23.25		
		(11) 510	Pb-acid	:	576	¥	6.62	6.25	23.38		
		016 (19)	Pb-acid	;	648	9	7.38	6.25	23.3		
		OTG (21)	Pb-acid	:	720	9	8.12	6.25	23.38	127 1b	
		0TG (23)	Pb-acid	;	792	9	88.88	26 3	23 30	1001	

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	Type	, ,	amp-hr	h	Length Width	Width	He laht	Weight	Application
Electric Storage Battery Co.	Exi te	DTG (25)	Pb-acid	i	864	9	9.52	6.25	23.38	151 1b	SpaSpace nower custems
		01G (27)	Pb-acid	;	936	9	10.38	6.15	23.38		district parcial statement
			Pb-acid	+	1008	9	11.12	6.25	23.38		
		OTG (33)	Pb-acid	1	1152	9	12.62	6.25	23.38	195 16	
		OTSC (9)	Pb-acid	1	340	9	3.56	6.19	24.25		-
			Pb-ac1d	1	425	9	4.31	6.19	24.25		
			Pb-acid	ł	510	9	5.06	6.19	24.25		
			Pb-acid	!	595	9	5.88	6.25	24.25		
		0TSC (17)	Pb-acid	ì	680	9	6.62	6.25	24.38		
			Pb-acid	:	765	9	7.38	6.25	24.38	121 16	
		DTSC (21)	Pb-acid	;	850	9	8.12	6.25	24.38		
			Pb-acid	1	935	9	8.88	6.25	24.38	145 16	
		DTSC (25)	Pb-actd	:	1020	ų,	9.65	6.25	24.38	157 16	
			Pb-acid	;	1105	9	10.38	6.25	24.38	169 16	
			Pb-acid	1	1190	9	11.12	6.25	24.38		
			Pb-acid	;	1360	9	12.62	6.25	24.38	206 16	
			Pb-acid	:	440	9	3.56	6.19	31.31	22 16	
			Pb-acid	:	550	9	4.31	6.19	31.31	88 16	
			Pb-acid	;	099	9	5.06	6.19	31.31	105 16	
			Pb-acid	;	770	9	5.88	6.25	31.31	121 16	glace & digenomique.
			Pb-acid	:	880	9	6.62	6.25	31.62	141 16	Statistic discussion
			Pb-acid	;	990	9	7.38	6.25	31.62	156 16	
			Pb-acid	;	1100	9	8.12	6.25	31.62	171 16	
			Pb-ac4d	;	009	•	3.75	8.81	31.31	101 16	
			Pb-acfd	!	750	9	4.50	8.81	31.31	123 16	
			Pb-acid	:	906	9	5.25	8.81	31.31	149 1b	
		DMXC (15)	Pb-acid	;	1050	9	9.00	8.81	31.31	169 16	
			Pb-acid	:	1200	9	6.75	8.81	31.31	191 16	
			Pb-acid	:	1350	9	7.50	8.81	31.31		_
		DMXC (21)	Pb-acid	•	1500	9	8.25	8.81	31.31	232 1b	
		DMXC (25)	Pb-acid	:	1900	9	9.78	ממ	21 62	376 34	

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Flectric Storage Battery Co.		Mode	Туре	>	amp-hr	hr.	Length	Undersions, in. Length Width	eight	Weight	Application
ירבה יר ברנו האר הפרבו ל רחי	Exide	DMEC (7)	Pb-acfd	:	510	9	3.06	8.8	31.31	90 75	SeaSpace sower systems
		DMEC (9)	Pb-acid	1	089	9	3.75	8.81	31.31	106 16	
		OMEC (11)	Pb-acid	1	850	9	4.50	8.81	31.31	129 16	
			Pb-acid	1	1020	9	5.25	8.81	31.31	152 16	
		DIEC (15)	Pb-acid	;	1190	9	6.00	8.8	31.31	174 16	
		Τ.	Pb-acid	1	1360	9	6.75	18.8	31.31	198 16	
			Pb-acid	+	1530	9	7.50	8.81	31.31	221 16	
		DMEC (21)	Pb-acid	;	1700	9	8.25	8.81	31.31	242 16	
		DMEC (25)	Pb-acfd	:	2040	9	9.78	8.81	31.62	28, 16	
		MF 1	;	9	æ	9	;	ŀ	:	5 16	
		下 2	;	12	w	9	;	:	;	7.5 16	1
General Electric Co.	:	41B001AB31	:	1.2	0.75	_	i	0.87 0	2.04	0.19 1b	Aere
		41B003AB02	:	1.2	က		;	1.25 0	2.86	0.35 16	
		41B005AB04	;	1.2	2	-	;	1.30 0	6.72	0.50 16	
		42B003AB02	;	1.2	m	-	2.00	99.0	2.88	0.35 16	
		42B004AB02	:	1.2	4	-	2.12	0.82	3.12	0.47 16	
		42B006AB01	:	1.2	9	-	2.12	9.82	3.56	0.60 16	
		42B012AB01	:	1.2	12	-	3.05	1.10	4.68	1.25 16	Aerospace
		42B020AB01	:	1.2	20	-	3.02	7.79	4.58	2.00 15	
		42B901AA01	:	2.4	0.08	;	0.54	0.94 0	1	0.8 oz	;
		428901AA01	:	3.6	0.08	;	97.0	0.94 D	!	1.2 02	:
		42B901AA01	;	4.8	0.08	;	0.97	0.94 0	1	1.4 02	:
		42B901AA31	:	9	0.08	:	1.19	0.94 0	•	1.6 02	•
		42B901AA01	;	12	0.08	;	2.27	0.94 0	;	3.0 02	:
		42B902AA02	:	2.4	0.18	;	0.72	1.02 0	-	1.3 02	;
		42B902AA02	;	3.6	0.18	;	1.03	1.02 0	1	1.7 02	:
		42B902AA02	:	₹	0.18	;	1.33	1.02 0	;	2.2 oz	;
		42B902AA02	!	9	0.18	;	7.6	1.02 D	;	2.5 02	:
		42B902AA02	:	12	0.18	;	3.17	1.02 0	ł	4.7 02	;
		42B903AA02	;	24	0.25	;	0.54	1.40 D	:	2.0 02	:
		42B903AA72	:	3.6	0.25	1	92.0	1.40 0	:	20 5.7	:
		428903AA02	:	8.8	0.25	;	0.97	1.40 0	1	3.2 02	:
		42B903AA02	:	ي	0.25	;	1.19	1.40 0	:	3.8 02	;

TABLE 0-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	Tunn	rotentias,	Lapacity,	ָם ר ה	חווח	Dimensions, in.			
		-	207				rendera	MIGEN	Heldnt	ME 1 gnt	Application
General Electric Co.	:	428903AA02	:	12	0.25	:	2.27	1.40 0	;	6.8 02	:
		428905AA02	;	2.4	0.5	;	0.88	1.39 0	;	2.9 oz	•
		428905AA02	:	3.6	0.5	1	1.27	1.39 D	;	3.9 02	;
		428905AA02	1	8.4	0.5	1	1.66	1.39 0	;	5.0 oz	i
		428905AA02	:	9	0.5	1	2.04	1.39 0	:	5.9 02	;
		428905AA02	1	12	0.5	1	3.98	1.39 0	:	11.2 oz	!
		42E908AA02	:	2.4	8.0	:	0.80	2.04 0	1	7.1 02	;
		428908AA02	;	3.6	8.0	1	1.14	2.04 0	;	9.4 02	1
		428908AA02	:	4.8	8.0	;	1.49	2.04 D	;	11.6 02	;
		42B908AA02	:	9	8.0	ì	1.83	2.04 D	1	13.9 02	;
		428908AA02	:	12	8.0	1	3.54	2.04 0	:	25.0 oz	;
		42891 SAK32	;	2.4	1.6	;	1.33	2.04 0	;	10.4 02	;
		428918AAU2	;	3.6	1.6	1	1.94	2.04 0	1	14.3 oz	ŀ
		428918AA02	;	4.8	1.6	ł	2.55	2.04 0	:	18.2 oz	;
		428918AA02	:	9	1.6	1	3.16	2.04 0	;	22.1 oz	:
		428918AA02	:	12	1.6	:	6.23	2.04 0	:	41.5 02	:
		413001AA10	+	9	-	:	5.0	1.0	1.7	0.6 lb	1
		418001AA10	1	12	-	:	5.0	5.0	1.7	1.1 lb	;
		418001AA10	;	24	-	;	5.0	4.0	1.7	2.3 1b	i
		41B002AA04	;	9	2	;	7.1	1.4	1.6	1.2 1	:
		41B002AA04	;	12	2	:	7.1	8.2	1.6	2.3 15	;
		41B002AA04	;	24	2	;	7.1	5.7	1.6	4.7 1b	;
		41B004AA05	;	9	3.5	;	7.1	1.4	2.4	2.2 lb	!
		\$18004AA05	;	12	3.5	;	7.1	8.2	2.4	4.5 lb	:
		41 BO04AA05	:	24	3.5	1	7.1	5.7	2.4	10.01	:
		418004AAG7	;	9	4	1	1.3	2.1	8.4	2.4 1b	:
		41B004AA07	:	12	4	1	5.6	2.1	8.4	4.9 lb	:
		41B004AA07	:	24	4	:	5.5	1.2	8.4	10.5 lb	:
		42B001AD02	N1-Cd	;	0.8	-	1.5	0.5	3.5	0.1 16	;
		42B003A001	N1-Cd	:	ю	-	1.9	0.5	4.0	0.3 1b	;
		42B004AA12	Ni-Cd	:	**	-	2.4	0.0	5.9	0.4 lb	;
		42B009AA02	Ni-Cd	:	7.2	-	3.7	9.0	4.1	0.9 lb	;
		42B007AA01	:	1.2	7	-	2.22	1.06	3.88	0.88 1b	;
		42B015AA01	:	1.2	15	-	3.00	1.16	4.56	1.5 lb	•
		42B022AA01	;	1.2	22	-	2 22	1.06	0	1 06 16	

TABLE Delt. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	TVDA	' Orentall'	saparity,	Kate,	Ulmens	Ofmensions, in.	-		
General Floring Co					amp-nr	2	Length	Width	Keight	Metght	Application
Rigid Electric CO.	ŀ	42B035AA01	1	1.2	35	_	3.00	1 16	63.0	2 20 1	
		42B052AA01	;	1.2	63			2	0.0	3.22 Ib	;
		42R080AA01			7	-	3.	1.66	8.63	4.47 1b	;
		420104401	:	7.1	<u> </u>	_	3.60	2.41	8.63	6.38 lb	;
		4281U4AAU1	!	1.2	104	_	3.00	3.16	8.63	8 32 16	
		42B160AA01	;	1.2	160	_	3.00	4 72		12 26 25	•
		438011AC02	;	1.2	160	_			5	01 cc.31	;
		438022AC02			2 5		4.4	-	6.9	1.2 16	;
		A 280348001	}	7.1	77	-	3.2	-:	8.2	2.0 76	;
		4350354CD3	;	1.2	콨	_	3.1	1.4	9.3	3.5 Jb	;
		4350/0ACC2	;	1.2	20	_	5.0	2.5	8.3	4L 0.9	
		4 38080A . 12	:	1.2	80	_	3.0	2.4	9.6	41 2 9	ì
		43B0B5AA01	;	1.2	85	_	5.9	2.6	7.0		;
		43B100AA01	:	1.2	100	_	5.9	3.5		11 5 36	;
		438140AA01	;	1.2	140	-	5.9	4.4	, _C	5 5 5	;
		43B160AA02	;	1.2	160	_	4.7	3.0		12 0 15	:
		43B170AA01	;	1.2	170	_		, ,	0.6	01.0.51	:
		43B200AA01	;	1.2	200	_		, . , .		18.8 Ib	:
		43B360A401	;	1.2	360		h (22.2 lb	:
Gould-National	;	20R			000	-	7.1	4.9	9.11	40.0 1b	;
Batteries, Inc.		903	;	:	0.02	• •	;	0.449 0	0.201	0.04 02	(6)
		900	!	:	0.05	!	;	0.606 0	0.230	0.09.07	[[6]
		1008	;	;	0.1	;	;	0.964 0	0.240	0 20 02	
		1508	;	;	0.15			000	200	70 07.0	Cell
		2258	;	;	356 0	}		1984	0.260	0.3 oz	Cell
		225BH			627.0	;	;	0.984 D	0.339	0.41 02	Cell
		4500	1	:	0.225	;	;	0.984 0	0.347	0.44 GZ	Cell
		9064	;	;	0.45	;	-	1.689 0	0.299	1.1 02	Cell
		Hanne	;	!	0.5	;	:	1.340 0	0 374		
		2.4V/508	;	2.4	0.05	;		0 629 0	200	20.6.0	_
		3.64/508	;	3.6	50.0			0.070.0	0.40	0.08 02	1
		4.BV/508	1		6.6	;	:	0.628 0	0.70	0.12 oz	;
		6 DV/50B	1	•	0.05	:	:	0.628 0	0.93	0.16 oz	;
		2 200.00	;	0	0.0 5		:	0.628 0	1.17	0.20 02	
		906/47.	:	7.2							

TABLE D-1: SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	Type	>	amp-hr	Ė	Length Width	Width	Height	Weight	Application
Gould-National	;	8.44/508	;	8.4	0.05	;	:	0.628 0	1.64	0 28 07	
Batteries, Inc.		9.64/508	;	9.6	0.05	:	;	0.628 0		0 30 01	1 8
		10.84/508	;	10.8	0.05	;	;	0.628	2.11	0.36 07	;
		12.00/508	:	12	9.08	;	;	0.628 0	2.34		;
		2 4V/100B	:	2.4	0.1	;	:	1.004 0	0.505	0.58 02	;
		3.64/1008	ŀ	3.6	0.1	;	:	1.004 D	0.750	0.86 02	:
		4.84/1008	;	4.8	0.1	;	;	1.004 0	0.995	1.15 oz	:
		6.04/1008	;	9	0.1	:	:	1.004 0	1.240	1.43 02	;
		7.2V/100B	1	7.2	0.1	1	:	1.004 0	1.485	1.72 02	;
		8.44/1008	1	8.4	0.1	1	;	1.004 0	1.730	2.01 02	:
		9.6V/100B	1	9.6	0.1	}	:	1.004 0	1.975	2.29 oz	;
		10.8V/1008	;	10.3	0.1	;	:	1.004 0	2.220	2.57 02	;
		12.0V/1008	:	12	0.1	:	;	1.004 0	2.465	2.86 oz	;
		2.4V/1508	ş j	2.4	0.15	;	:	1.004 0	0.545	0.65 oz	;
		3.6V/1508	:	3.6	0.15	;	;	1.004 0	0.810	0.97 02	;
		4.BV/150B	;	8.4	0.15	;	:	1.004 0	1.975	1.29 02	;
		6.0V/1508	ŀ	9	0.15	;	;	1.004 0	1.340	1.61 02	;
		7.2V/1508	:	7.2	0.15	;	;	1.004 0	1.605	1.93 oz	;
		8.44/1508	;	8.4	0.15	;	;	1.004 D	1.870	2.25 oz	:
		9.64/1508	:	9.6	0.15	1	;	1.004 0	2.135	2.67 oz	;
		10.84/1508	:	10.8	0.15	;	:	1.004 0	2.400	2.90 oz	:
		12.0V/150B	;	12	0.15	;	;	1.004 0	2.665	3.22 oz	;
		2.4V/2258	:	2.4	0.225	;	:	1.004 D	0.703	0.85 oz	:
		3.6V/2258	:	3.6	0.225	;	:	1.004 0	1.047	1.29 oz	:
		4.8V/2258	!	4.0	0.225	1	:	1.004	1.391	1.73 oz	:
		6.0V/2258	:	9	0.225	:	:	1.004 0	1.735	2.17 oz	i
		7.7V/2258	;	7.2	0.225	;	;	1.004 0	2.079	2.60 oz	:
		8.4V/2258	:	8.4	0.225		;	1.004 0	2.423	3.04 oz	;
		9.64/2258	:	9.6	0.225	;	1	1.004 0	2.767	3.48 oz	•
		10.8V/2258	:	10.8	0.225	;	:	1.004 0	3.111	3.92 oz	;
		12.0V/2258	ţ	12	0.225	;	;	1.004 0	3.455	4.35 oz	8
		2.4Y/225BH	;	2.4	0 225						

TABLE 0-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Color Colo		-		,	Potential,	Capacity.	Rate,	Dime	Dimensions, in.	1		
1.00 1.00	Manuractorer	Make	Hode	lype	>	amp-:	ř	ength	Width	Height	Weight	Application
4.8/Y,228H	Gould-National	‡	3.6V/2258H	;	3.6	0.225	;	1		1.068	1.39 oz	•
2258H 6 0.225 1.004 0 1.770 2.32 oz 2258H 3.4 0.225 1.004 0 2.121 2.79 oz 2258H 3.4 0.225 1.004 0 2.812 3.25 oz 2258H 10.8 0.225 1.004 0 2.823 4.75 oz 2258H 12 0.225 1.004 0 2.823 4.75 oz 2258H 12 0.225 1.004 0 3.174 4.19 oz 2258H 12 0.225 1.004 0 3.173 4.19 oz 4508 2.4 0.45 1.004 0 3.173 4.19 oz 4508 2.45 1.004 0 3.173 4.56 oz 4508 2.45 1.709 0 1.231 4.56 oz 4508 1.2 1.	satteries, inc.		4.8V/225BH	1	4.8	0.225	!	1	1.004 0	1.419	1.86 oz	;
2258H 7.2 0.225 1.004 0 2.121 2.79 oz 2258H 9.6 0.225 1.004 0 2.472 3.25 oz 2258H 9.6 0.225 1.004 0 2.472 3.25 oz 2258H 10.8 0.225 1.004 0 3.525 4.65 oz 1256B 12 0.225 1.004 0 3.525 4.65 oz 1508 2.4 0.45 1.004 0 3.525 4.65 oz 1508 2.4 0.45 1.004 0 3.525 2.72 oz 1508 2.4 0.45 1.004 0 3.525 2.72 oz 1508 3.6 0.45 1.004 0 3.525 2.72 oz 1508 4.8 0.45 1.004 0 3.525 2.72 oz 1508 4			6.0V/225ВН	1	9	0.225	1	;	1.004 0	1.770	2.32 oz	•
2258H 9.4 0.225 1.004 0 2.472 3.25 oz 2258H 9.6 0.225 1.004 0 2.823 4.72 oz 2258H 10.8 0.225 1.004 0 3.525 4.65 oz 12258H 12 0.225 1.004 0 3.525 4.65 oz 1508 2.4 0.45 1.709 0 0.623 2.27 oz 1508 3.6 0.45 1.709 0 0.623 2.70 oz 1508 4.8 0.45 1.709 0 1.231 4.59 oz 1508 1.7 1.709 0 1.632 5.75 oz 5.75 oz 1508 1.7 1.709 0 1.63 oz 5.75 oz 5.75 oz 1508 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7			7.2V/2258H	1	7.2	0.225	1	;	1.004 0	2.121	2.79 oz	;
22.8H 9.6 0.225 1.004 0 3.174 4.19 0.2 22.5BH 10.8 0.225 1.004 0 3.174 4.19 0.2 22.5BH 12 0.225 1.004 0 3.55 4.65 0.2 1508 3.6 0.45 1.709 0 0.23 2.27 0.2 1508 4.8 0.45 1.709 0 0.23 2.27 0.2 1508 4.8 0.45 1.709 0 1.33 6.25 0.2			8,4V/2258Н	1	9.4	0.225	1	;	1.004 0	2.472	3.25 oz	i
15.58H			9.6V/2258H	!	9.6	0.225	1	1	1.004 0	2.823		:
1508 0.225			10.8V/225ВН	:	10.8	0.225	1	ı	1.004 E	3.174	4.19 oz	:
1508 2.4 0.45 1.799 0.623 2.27 oz 1508 3.6 0.45 1.7390 0.927 3.43 oz 1508 4.8 0.45 1.739 0.1231 4.59 oz 1508 6 0.45 1.709 0.1231 4.59 oz 1508 0.45 1.709 0.133 6.92 oz 1508 0.45 1.709 0.143 8.08 6.75 oz <td></td> <td></td> <td>12.0V/225EH</td> <td>;</td> <td>12</td> <td>0.225</td> <td>1</td> <td>1</td> <td>1.004 D</td> <td>3.525</td> <td>4.65 oz</td> <td>;</td>			12.0V/225EH	;	12	0.225	1	1	1.004 D	3.525	4.65 oz	;
4508 3.6 0.45 1.7590 0.927 3.43 oz 4508 4.8 0.45 1.7590 1.231 4.59 oz 4508 0.45 1.709 O 1.231 4.59 oz 4508 0.45 1.709 O 1.839 6.92 oz 4508 0.45 1.709 O 2.143 8.08 oz 4508 0.45 1.709 O 2.143 8.08 oz 4508 10.8 0.45 1.709 O 2.143 8.08 oz 4508 10.8 0.45 1.709 O 2.143 8.08 oz 4508 10.8 0.45 1.709 O 2.741 9.24 oz 4508 1.2 0.45 1.709 O 2.7			2.44/4508	i	2.4	6.45	1	1	1.709 0	0.623	2.27 02	;
1508 4.8 0.45 1.709 1.231 4.59 2.55			3.6V/4508	;	3.6	0.45	1	1	1.7390	0.927	3.43 oz	:
1508 6 0.45 1.799 1.535 5.75 oz 1508 7.2 0.45 1.709 1.839 6.92 oz 1508 9.5 0.45 1.709 0 2.143 8.08 oz 1508 9.5 0.45 1.709 0 2.143 8.08 oz 4508 10.8 0.45 1.709 0 2.44 9.24 oz 4508 1.7 1.709 0 2.751 10.4 oz 44508 1.7 1.709 0 2.751 10.4 oz 44508 1.7 1.709 0 2.751 10.4 oz 44508 1.7 1.709 0 2.751 10.4 oz 5008H 2.4 0.5 1.361 1.755 2.75 oz			4.8V/4508	1	4.8	0.45	;	;	1.709 0	1.231	4.59 oz	;
1508 7.2 0.45 1.709 0 1.839 6.92 oz 1508 8.4 0.45 1.709 0 2.143 8.08 oz 1508 10.8 0.45 1.709 0 2.147 9.24 oz 4508 12 0.45 1.709 0 2.751 10.4 oz 4508 12 0.45 1.709 0 2.751 10.4 oz 4508H 2.4 0.5 1.361 0.75 1.85 oz 500BH 4.8 0.5 1.361 0.75 1.85 oz 500BH 6 0.5 1.361 0.75 1.85 oz 500BH 10.8 0.5 1.361 1.361 2.73 oz 500BH			6.0V/4508	1	9	0.45	1	;	1.739 0	1.535	5.75 oz	:
4508 8.4 0.45 1.709 0 2.143 8.08 oz 4508 9.5 0.45 1.709 0 2.447 9.24 oz 4508 10.8 0.45 1.709 0 2.447 9.24 oz 4508 12 0.45 1.709 0 2.477 0.24 oz 4508H 1.2 1.361 0 1.179 2.79 oz 5008H 4.8 0.5 1.361 1.179 2.79 oz 5008H 4.8 0.5 1.361 1.179 2.79 oz 5008H 6 0.5 1.361 1.179 2.79 oz 5008H 10.8 0.5 1.361 3.70 8.38 oz 5008H 10.8 0.5 1.361 3.70 8.38 oz 50			7.2V/4508	1	7.2	0.45	:	:	1.709 D	1.839	6.92 oz	ł
4508 9.5 0.45 1.729 0 2.44 9.24 oz 4508 10.8 0.45 1.709 0 2.751 10.4 oz 4508 12 0.45 1.709 0 2.751 10.4 oz 5008H 3.6 0.5 1.361 0 2.79 2.79 oz 5008H 4.8 0.5 1.361 1.179 2.79 oz 5008H 6 0.5 1.361 1.185 2.79 oz 5008H 6 0.5 1.361 1.75 2.20 oz 5008H 8.4 0.5 1.361 2.731 6.52 oz 5008H 9.6 0.5 1.361 2.731 6.75 oz 5008H			8.4V/4508	!	8.4	0.45	;	;		2.143	8.08 oz	:
4508 10.8 0.45 1.709 0 2.751 10.4 oz 4508 12 0.45 1 1.709 0 3.055 11.57 oz 5008H 2.4 0.5 1 1.361 0 0.75 1.85 oz 5008H 4.8 0.5 1 1.361 0 1.567 3.7 oz 5008H 6 0.5 1 1.361 0 1.567 3.7 oz 5008H 1 7.2 0.5 1 1.361 0 1.567 3.7 oz 5008H 8.4 0.5 1 1.361 0 1.567 3.7 oz 5008H 1 1.2 0.5 1 1.361 0 1.955 4.55 oz 5008H 1 2.0 0.5 1 1.361 0 3.119 7.45 oz 5008H 1 0.8 0.5 1 1.361 0 3.119 7.45 oz 5008H 1 10.8 0.5 1 1.361 0 3.119 7.45 oz 5008H 1 2 0.5 1 1.361 0 3.119 7.45 oz 5008H 1 2 0.5 1 1.361 0 3.119 7.45 oz 6008H 1 2 0.5 1 1.361 0 3.119 7.45 oz 6008H 1 2 0.5 1 1.361 0 3.119 7.45 oz 6008H 1 1 0.8 0.5 1 1.361 0 3.195 7.75 oz 6008H 1 1 0.8 0.5 1 1.361 0 3.895 9.32 oz 6008H 1 1 0.8 0.5 1 1.02 0 0.96 1.12 oz 6008H 1 1.8 1 1.02 0 1.952 2.44 oz 6008H 1 1.8 1 1.292 0 1.51 2.75 oz			9.6V/4508	;	9.c	0.45	!	;	1.709 0	2.447	9.24 oz	;
4450B			10.84/4508	1	10.8	0.45	1	;	1.709 0	2.751	10.4 oz	:
5008H 2.4 0.5 1.361 0.757 1.850 z 5008H 4.8 0.5 1.361 0.757 1.850 z 5008H 4.8 0.5 1.361 0.157 3.7° oz 5008H 6 0.5 1.361 1.955 4.55 oz 5008H 6 0.5 1.361 2.343 5.88 oz 5008H 8.4 0.5 1.361 2.343 5.58 oz 5008H 9.6 0.5 1.361 2.731 6.52 oz 5008H 9.6 0.5 1.361 3.119 7.45 oz 5008H 10.8 0.5 1.361 3.507 8.38 oz 5500BH 12 0.4 1.361 3.507 8.38 oz 5500BH 12			12.0V/4508	i	12	0.45	;	;	1.709 0	3.055	11.57 02	1
50/08H 3.6 0.5 1.361 U 1.179 2.79 oz 5008H 4.8 0.5 1.361 D 1.567 3.7° oz 5008H 6 0.5 1.361 D 1.567 3.7° oz 5008H 7.2 0.5 1.361 D 2.343 5.58 oz 5008H 8.4 0.5 1.361 D 2.343 5.58 oz 5008H 8.4 0.5 1.361 D 3.119 7.45 oz 5008H 9.6 0.5 1.361 D 3.507 8.38 oz 5008H 12 0.5 1.361 D 3.507 8.38 oz 5008H 12 0.5 1.361 D 3.507 8.38 oz 5008H 12 0.5 1.361 D 3.507 8.38 oz 5008H			2.4V/5008H	:	2.4	0.5	1	:	1.361 0	.52.0	1.85 02	1
5008H — 4.8 — 0.5 — — 1.361 D 1.567 3.7° ог 5008H — 6 — 0.5 — — 1.361 D 1.955 4.55 ог 5008H — 7.2 — 0.5 — — 1.361 D 2.343 5.58 ог 5008H — 8.4 — 0.5 — — 1.361 D 2.731 6.32 ог 5008H — 9.6 — 0.5 — — 1.361 D 3.119 7.45 ог 5008H — 10.8 — 0.5 — — 1.361 D 3.507 8.38 ог 5008H — 12 — 0.5 — — 1.361 D 3.895 9.32 ог — — — 0.475 — — 0.55 D 1.952 0.75 ог — — — 0.75 — — 0.61 D 1.95 D 0.96 1.12 ог — — 1.02 D 0.997 1.72 ог — — 2.3 — 1.292 D 1.51 2.75 ог			3.6V/5018H	;	3.6	0.5	1	ł	1.361 ມ	1.179	2.79 oz	:
5008H 6 0.5 1.361 1.955 4.55 oz 5008H 7.2 0.5 1.361 2.343 5.58 oz 5008H 8.4 0.5 1.361 2.731 6.52 oz 5008H 9.6 6.5 1.361 3.119 7.45 oz 5008H 10.8 0.5 1.361 3.19 7.45 oz 5008H 12 0.5 1.361 3.895 9.32 oz 5008H 12 0.5 1.361 3.895 9.32 oz 5008H 12 0.5 1.361 9.35 7.75 oz 0.475 0.65 oz 1.95 7.75 oz 0.75 0.617 1.95 1.72 oz 0.75 <td< td=""><td></td><td></td><td>4.8V/500BH</td><td>1</td><td>4.8</td><td>0.5</td><td>1</td><td>;</td><td>1.361 0</td><td>1.567</td><td></td><td>;</td></td<>			4.8V/500BH	1	4.8	0.5	1	;	1.361 0	1.567		;
9008Н 7.2 0.5 1.361 Г 2.343 5.58 0z 9008Н 8.4 0.5 1.361 Г 2.731 6.52 0z 9008Н 9.6 6.5 1.361 О 3.119 7.45 0z 5008Н 10.8 0.5 1.361 О 3.119 7.45 0z 5008Н 12 0.5 1.361 О 3.19 7.45 0z 5008Н 12 0.5 1.361 О 3.895 9.32 0z 5008Н 12 0.475 0.55 О 1.952 О 7.75 0z 0.6 0.617 С 1.96 0.76 0z 0.75 1.02 D 1.73 0z 1.72 0z 1.02 D 1.952 D 2.44 0z 2.75 0z			6.0V/500ВН	:	9	0.5	i	;	1.361	1.955	4.55 oz	i
1008H — 8.4 0.5 — — 1.361 р. 2.731 6.52 ог осови — 9.6 0.5 — — 1.361 0 3.119 7.45 ог ог осови — 10.8 0.5 — — 1.361 0 3.119 7.45 ог ог осови — 12 0.5 — — 1.361 0 3.895 9.32 ог ог осови — 12 0.475 — — 0.55			7.2V/500BH	1	7.2	0.5	:	;	1.361 B	2.343	5.58 oz	ļ
1.361 3.119 7.45 oz 1.5008H			8.4V/500BH	1	8.4	0.5	1	;	1.361 n	2.731		;
5008H			9.6V/50СВН	:	9.6	6.5	i	1	1.361 0	3.119	7.45 oz	+
1500BH			10.8V/50CBH	1	10.8	0.5	1	:	1.367 0	3.507	8.38 oz	1
0.475 0.55° D 1 952 '.75 oz 0.6 0.61° D 1.96 0.76 oz 0.75 1.02 D 0.98 1.12 oz 1.2 0.893 D 1.73 9 1.72 oz 1.8 1.292 D 1.51 2.75 oz			12.0V/5008H	1	12	0.5	1	1	1.361 0	3.895	9.32 oz	í
0.6 0.61° C 1.96 0.76 0z 0.75 1.02 U 0.96° 1.12 0z 1.2 0.893 0 1.739 1.72 0z 1.8 1.02 D 1.952 2.44 0z 2.3 1.292 D 1.51 2.75 0z			475SC	:	1	0.475	;	1	0.55 0	1 952		Cell
0.75 1.02 U 0.96 1.12 oz 1.2 0.893 U 1.739 1.72 oz 1.02 U 1.952 2.44 oz 2.3 1.292 D 1.51 2.75 oz			28009	1	:	9.0	;	:	0.617 D	1.95	0.76 oz	Cell
0.893 0 1.739 1.72 oz 1.8 1.02 0 1.952 2.44 oz 2.3 1.292 0 1.51 2.75 oz			750SC	1	:	0.75	1	;	1.02 D	0.98		(e)]
1.8 1.02 D 1.952 2.44 oz 2.3 1.292 D 1.51 2.75 oz			1.250	1	:	7:5	;	;	0.893 0	1.739	1.72 02	Cell
2.3 1.292 0 1.51 2.75 02			1.850	1	1	1.8	;	:	1.02 0	1.952	2.44 oz	Cell
			2.380	1	;	2.3	:	;	1.292 0	1.51	2.75 02	Cell

TABLE 0-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	Туре	vocential.	amp-hr	hr.	Length	Length Width	Height	Weight	Application
Goul d-National	:	4.0SC	ł	:	4	:		1.29 0	2.38	4.56 oz	Çe3
Batteries, Inc.		7.0SC	:	:	7	:	:	1.29 0	3.56	7.6 02	Cell
		MP 201	:	9	9.0	;	3.437	0.687	2.25	5.8 02	;
		HP 202	:	12	9.0	!	3.437	1.375	7 25	11.6 02	:
		PP 203	:	12	9.0	1	6.875	0.687	2.35	11.6 02	1 2
		HP 205	:	54	9.0	1	3.437	2.75	2.25	23.2 02	:
		HP 207	i	54	9.0	:	6.875	1.375	2.25	23.2 02	:
		HP 401	:	:	1.2	;	2	-	1.95	10.5 oz	;
		HP 402	;	:	1.2	;	S	2	1.95	20.5 02	;
		HP 403	:	:	1.2	;	01	_	1.95	20.5 oz	;
		HP 405	;	;	1.2	:	S	4	1.95	41.5 02	
		HP 407	:	:	1.2	:	10	2	1.95	41.5 02	•
		1094	;	:	2.3	:	7.031	1.406	1.843	18.4 02	:
		MP 602	:	;	2.3	;	7.031	2.812	1.843	36.5 02	i
		HF603	:	ŀ	2.3	;	14.062	1.406	1.843	36.7 02	*
		HP 605	:	:	2.3	;	7.031	5.425	1.843	72.2 02	:
		FP 607	:	;	2,3	!	14.062	2.812	1.843	72.2 02	:
		107.4	;	:	-	:	7.031	1.406	2.625	29 02	:
		HP 702	:	:	4	:	7.031	2.813	2.625	58 02	;
		HP 703	:	:	-	;	14.063	1.406	2.625	58 02	:
		30 July 20 S	:	;	-	:	7.031	5.625	2.625	115 02	;
		10791	:	;	~	;	14.063	2.813	2.625	115 02	:
		CS 202	:	2.4	9.0	ł	i	0.613 0	3.875	1.5 02	:
		C5203	:	3.6	9.0	;	;	0.613 0	5.R28	2.3 02	:
		CS 204	:	4.8	9.0	¦	i	0.6130	7.781	3,1 02	:
		CS 205	:	9	9.0	:	:	0.6130	9.734	3.9 02	
		CS 302	:	2.4	0.75	ł	;	1.02 0	1.859	2.2 02	;
		CS 303	:	3.6	0.75	;	;	1.02 0	2.781	3.3 02	-;
		CS 304	:	4.8	0.75	:	;	1.02 0	3.718	4.4 02	:
		CS 305	;	9	0.75	1	ŀ	1.02 0	4.656	5.5 02	
		CS 402	:	2.4	1.2		;	0 893 0	27.2	2 6 02	

TABLE 0-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATYZRIES/CTORAGE CELLS) (continued)

Menufacturer	Make	Model	Type	v v	Lapacity.	A T		Length Width	Height Weight	Weight	Application
Gould-National	;	CS403	1	3.6	1.2	:	:	0.893.0	5.03	5 2 03	
Batteries, Inc.		CS 404	ł	8.4	1.2	;	;	0.893	6.703	7 1 07	!
		CS 405	!	9	1.2	:	ŀ	0.693.0	8.375		•
		CS 502	;	2.4	1.8	;	;	1.02 0	3.812		1
		CS 503	:	3.6	80	;	L	1.02 0	5.718		:
		CS 504	:	8.8	80	1	;	1.02 0	7.64	10.6 cz	;
		CS505	:	9	1.8	1	1	1.02 0	9.546	13.2 oz	1
		CS602	1	2.4	2.3	;	;	1.292 0	2.8.2	5.6 02	;
		C2603	:	3.6	2.3	;	;	1.292 D	4.328	8.4 02	;
		CS 604	1	œ.	2.3	i	;	1.292 D	5.781	11.2 02	;
		50953	;	9	2.3	:	;	1.292 0	7.218	14 GZ	;
		CS 702	:	2.4	ক্	;	;	1.29 0	4.625	9.3 02	;
		CS 703	;	3.6	7.37	:	1	1.29 0	6.953	14 oz	;
		52704	;	6.8	4	;	;	1.29 0	9.265	18.6 oz	;
		CS 705	:	9	•	;	:	1.29 0	11.593	23.2 oz	-;
	Silver Pac	SZR-1L8	Ag-Zn	1	-	;	1.08	0.54	1.56	0.047 16	1
		SZR-ZLC	Ag-Zn	:	2	;	1.08	0.54	2.02	0.069 16	;
		SZR-4LE	Ag-Zn	;	4	;	1.72	0.59	2.89	0.187 15	:
		SZR-5LF	Ag-Zn	1	2	;	1.72	0.59	3.36	0.231 16	
		SZR-716	49-Zn	:	2	;	2.08	8.0	2.91	0.281 1b	;
		SZR-13LK	Ag-Zn	;	···	;	2.32	0.75	4.79	0.61 lb	-
		SZR-25LN	Ag-Zn	•	52	;	11.2	0.88	6.8	0.85 16	;
		82R-25-LN	Ag-Zn	1	25	1	2.15	3.36	8.9	3.25 16	1
		SZR-25LP	Ag-Zn	;	52	ļ	5.06	1.74	4.53	0.9 lb	;
		SZR-30LS	A9-2n	;	30	3	3.23	0.39	7.02	1.06 16	:
		SZR-40LU	43-Zn	;	40	;	3.23	1.01	6.85	1.43 15	;
		SZR-50-5LW	A9-Zn	;	20	;	5.3	3.23	6.4	8.2 lb	:
		SZR-140L4	Ag-In	;	140	:	3.29	2.2	6.91	3.5 lb	i
		SZR-1HB	Ag-Zn	;	_	;	1.08	0.54	1.56	0.047 16	;
		SZR-ZHC	Ag-Zn	:	2	:	1.08	0.54	2.02	0.069 16	;
		SZR-5HE	Ag-Zn	;	2	ŀ	1.72	0.59	2.89	0.187 16	:
		SZR-6HF	An. 7n		4		1 70	02.0			

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Hake	Hode !	Type	Potential,	capacity,	, are	1000	Utmensions, in.	n.	407.00	Anna Market
							reinge.	1001	חבושונ	me i gnt	Application
Gould-National	Silver Pac	52R-8HG	A9-Zn	:	œ	:	2.08	8.0	2.91	0.3 lb	:
		SZR-18HK	Ag-Zn	:	18	:	2.32	0.75	4.79	0.6 15	;
		52R-30HN	A9-Zn	:	30	1	2.11	0.88	6.8	0.85 1b	:
		SZR-30-4HN	Ag-Zn	:	30	1	2.15	3.36	6.8	3.35 1b	:
		52R-30HP	Ag-Zn	;	8	;	2.06	1.74	4.53	0.9 Jb	:
		52R-40HS	A9-2n	:	9	;	3.23	0.89	7.02	1.2 lb	:
		52R-55HU	A9-Zn	;	55	!	3.23	1.01	6.85	1.5 36	;
		52R-60-5HW	Ag-2n	:	3	;	m u	3.23	6.4	8.3 lb	:
		SZR150HY	A9-2n	:	150	;	3.29	2.2	16.9	3.44 1b	:
		52FA-1HB	A9-Zn	;	-	:	1.08	0.54	1.56	0.061 1b	;
		52FA-2HC	A9-2n	:	2	;	1.08	0.54	2.02	0.073 1b	:
		SZFA-6HE	A9-Zn	:	9	:	1.72	0.59	2.89	0.208 1b	;
		52FA-7HF	Ag-Zn	:	7	;	1.72	65.0	3.36	0.231 1b	:
		SZFA-10HG	A9-2n	;	10	;	2.08	8.0	2.91	0.406 1b	:
		52FA-25HK	A9-Zn	;	52	;	2.32	0.75	4.79	0.656 1b	;
		SZF4-35HN	A9-Zn	1	35	;	2.11	98.0	8.9	0.85 16	;
		52FA-35-4HN	A9-Zn	;	35	;	5.15	3.36	6.9	3.5 lb	:
		52FA-40HP	Ag-Zn	:	40	;	2.06	1.74	4.53	0.9 lb	:
		SZI'A-SOMS	A9-2n	:	20	•	3.23	68.0	7.02	1.2 16	;
		SZFA-65HU	Ag-Zn	:	99	;	3.23	1.01	6.85	1.5 16	;
		SZFA-70-5HW	A9-Zn	;	20	1	5.3	3.23	6.4	8.3 16	;
		52FA-180M	A9-Zn	i	180	:	3.29	2.2	6.91	3.7 lb	;
		5ZP-1.5 HB	A9-Zn	1	1.5	;	1.08	0.54	1.56	0.054 1b	;
		SZIP-3HC	A9-Zn	:	m	ŀ	1.08	0.54	2.02	0.095 lb	:
		SZIP-7HC	Ag-Zn	;	7	:	:.72	0.59	2.89	0.219 1b	;
		SZIP-BHF	Ag-Zn	:	80	1	1.72	0.59	3.36	0.271 16	:
		SZIP-12HG	Ag-Zn	;	12	;	2.08	8.0	2.91	0.438 16	;
		5ZMP-30HK	Ag-Zn	:	8	;	2.35	0.75	4.79	0.75 16	;
			Ag-2n	1	04	:	2.1	0.88	6.8	1.05 16	;
		52MP-40-4HN	Ag-Zn	:	C.F		21 6	200			

TABLE D-11. SUPPARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	Type	^	amp-hr	hr	Length dth	Idth	Height	Weight	Application
Sould-National Batteries, Inc.	Silver Pac	923P-45HP	A9-Zn	:	45	:	2.06	1.74	4.53	1.13 16	
		SZMP-55H5	A9-Zn	;	\$;	:	3.23	0.89	7.02	1 45 1h	
		SZMP-75HU	Ag-Zn	;	75	;	3.23	1.01	6.85	1.77 lb	: ;
		NHS-06-44ZS	Ag-Zn	:	8	;	5.3	3.23	₽.9	9.35 lb	:
		SZMP-220HY	A9-Zn	:	220	1	3.29	2.2	6.91	4.03 16	:
Mallory Battery Co.	;	RM-1	Н 9	₹.	_	1	:	0.622 0	0.645	0.43 02	:
		RM-4	Н9	₹.	3.4	;	:	1.19 0	0.645	1.46 02	:
		M-1400	Manganese	1.5	5	;	:	1.105 0	1.93	2.34 02	ł
Mat'l. Automated Inds. Inc.	Mf-T-Cel	L145	;	13	;	ł	•	1.125	0.438	J 02	Toys, games, small
Sonotone Corp.	:	5-101	NI-Cd	:	0.39	1	:	0.55 0	1.947	0.7 07	Cell
		5-102	N1-Cd	:	0.71	+	:	1.022 0	1.005	1.2 02	
		5-103	Ni-Cd	:	4	:	;	1.333 5	2.385	5.5 02	
		5-104	N1-Cd	:	1.8	;	:	1.022 0	1.93	2.6 02	-
		S-106	N1-Cd	:	2.8	;	i	1.022 0	3.055	4 02	
		8-108	Ni-Cd	:	9.9		:	1.333 0	3.49	8.3 02	
		5-113	N1-Cd	:	1.2	;	:	0.365 0	1.65	1.6 02	
		5-114	N1-Cd	:	0,43	;	;	1.922 0	0.695	0.78 oz	
		5-115	N1-Cd		9.0	;	:	1.242 0	0.745	1.5 02	
		5-116	Ni-Cd	;	0.09	1	;	0.53 0	0.605	0.25 oz	
		5-117	N1-Cd	•	1.7	;	:	1.333 0	1.155	2.6 02	· · ·
		121-5	N1-Cd	;	1.4	1	;	1.242 0	1.05	2.3 02	
		971-5	N1-Cd	;	0.17	+	:	0.625 0	9.0	0.4 oz	
		5-131	N1-Cd	;	0.225	:	:	0.49 0	0.35	0.46 oz	
		5-132	N1-Cd	:	0.15	;	:	0.99 0	0.25	0.34 oz	-
		5-133	N1-Cd		0.5	;	:	1.35 0	0.36	J nz	
		5-134	N1-Cd	:	0.05	ļ	:	0.45 0	0.2	0.05 oz	
		5-140	NI-Cd	:	0.57	;	:	0.59 0	1.905	1 02	_
		5-142	N1-Cd	:	1.4	;	:	1 0	1.26	1.9 02	
		5-143	N1-Cd	;	1.2	;	;	1 0	1.15	1.7 02	\rightarrow
		5-5-113	N1-Cd	7	1		•				

TABLE D-11. SUMMARY OF CHARACTERISTICS OF PCHER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	Type	>	ame-hr	'n	en th	en th Width	Height	Weight	Application
Sonotone Cc.p.	ł	10-5-113	NI-Cd	12	4.	S.	2	2	1.75	1.5 lb	Module battery
		20-5-113	Ni-Cd	24	4.1	2	10	2	1.75	3 1b	
		20-5-113	NI-Cd	24	1.4	2	2	•	1.75	3 1b	-
		5-5-104	N1-Cd	9	1.9	2	5.938	1.188	2	1.25 lb	
		10-5-104	N1-Cd	12	1.9	2	5.938	2.375	2	2.5 lb	direction
		20-5-104	NI-Cd	24	1.9	2	11.88	2.375	2	5 16	
		20-5-104	NI-Cd	24	1.9	2	5.938	4.75	2	5 1b	
		5-5-103	Ni-Cd	9	4	2	7.5	1.5	2.5	2.25 1L	and the same of th
		10-5-173	NI-Cd	12	4	2	7.5	٣	2.5	4.5 lb	
		20-5-103	Ni-Cd	24	4	2	15	er;	2.5	9 16	
		20-5-103	NI-Cd	24	ঝ	2	7.5	9	2.5	9 16	
		1,8103	NI-Cd	2	4	2	2.688	2.688	3.875	1.75 ib	Lantern battery
		18168	Ni-Cd	2	6.5	2	2.688	2.688	3.875	2.5 lb	Lantern battery
		1H12G	Ni-Cd	:	0.8	;	1.16	0.68	2.258	1.7 02	Vented battery cell
		2H120	N1-Cd	1	2	;	1.16	0.675	3.89	3.2 02	
		28H120	NI-Cd	;	2.5	;	1.16	0.68	4	3.3 02	
		3H120	Ni-Cd	:	4	;	2.145	0.65	4.016	5.8 02	
		5H120	Ni-Cd	;	6.5	;	2.18	6.955	4.06	9.1 02	
		124120	NI-Cd	:	13	;	2.74	1.195	4.75	1.25 15	
		12H120	NI-Cd	:	13	;	2.419	1.08	6.95	1.25 15	
		20H120	MI-Cd	:	51	:	3.11	1.657	5.446	2 1b	
		24H120	N1-Cd	:	24	;	3.18	1.075	8.278	2.25 1b	
		36H120	Ni-Cd	:	36	:	3.135	1.39	9.4	3.5 16	wh a
		41H120	71-Cd	1	40	;	11.3	_	8.5	3.9 lb	ujjade 0
		65H120	NI-Cd	;	72	;	4.98	1.35	11.375	6.6 lb	
		81H12O	NI-Cd	:	80	;	5.12	1.924	8.51	6.6 lb	
		58M220	NI-CO	:	5.5	:	11.2	0.85	3.875	9.1 02	
		167230	Ni-Cd	:	13.5	;	2.419	1.08	6.95	1.25 16	
		24M220	NI-Cd	:	52	1	3.18	1.075	8.278	2.1 16	-
		36M220	NI-Cd	:	36	;	3.135	1.39	9.4	3.5 lb	-
		65M220	N1-Cd	:	72	;	4.98	1.35	11.375	6.6 lb	

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	Make	Model	Type	votential,	amp-hr	Rate.	Dimensions, Length Width	Width 1	in. He taht	Weight	Application
Sonotune Corp.	!	280M220	N1-Cd	ŀ	260	:	9 126	3 666	3000		
		15M320	NS-Cd	:	16	į	2 217	1 063	2.75		vented battery cell
		20M320	N5_CA	;	90			60.	0.0	90.	
		0000		,	5	:		1.65/	5.446	2.06 1b	ne tama appleme
		2500	P)-1K	:	7	;	4.05	1.66	7.437	3.9 16	
		60M320	Ni-Cd	;	28	;	4.718	1.77	8.542	5 1b	
		100M320	N1-Cd	:	121	;	6.813	2.172	0.73	11.1 16	
		3.420	Nt-Cd	;	4.7	:	2.145	0.65	4.016	6.3 02	Andrew Anna
		51420	N1-C3	i	7.5	;	2.185	0.955	4.06	9.4 07	
		581.420	Ni-Cd	ŀ	9	;	2.11	0.85	3.875	9.3 oz	general states designed
		101420	Ni-Cd	;	15	;	2.74	1.195	4.75	1.2 16	-
		201.420	Ni-Cd	:	52	:	3.11	1.657	5.548	2.06 lb	A
		601.420	N-Cd	:	7.0	;	4.718	1.771	8.542	5.2 lb	
		2101420	Nf-Cd	ļ.	230	;	8.14	3.17	9.41	30 Jb	>
		75	Ni-cd	24	52	2	10.5	7.813	8.75		Commercial afreraft
		5-5 5	Nf-Cd	7	8	ď	30.5	920	30 01	4 2	battery
		C4-7	Ni-Cd	24	13	, ru	8 375	7 75	27.75	2 2 2	
		CA-9	Ni-d	24	25	ĸ	10.5	7.813	8 75	45 75	
		CA-10N	Ni-Cd	24	13	ĸ	12.75	5.688	5 275	41 76	
		CA-15	Nt-cd	12	15	œ	7.938	3.875	7.625	1 4	
		CA-20	N1-Cd	24	24	2	12	9.813	6.625	50 16	
		CA-20H	N1-Cd	24	8	2	12	9.813	6.625	49 lb	
		CA-24A	NI-Cd	12	56	2	6	4.685	8.625	26 16	
		CA-248	PJ-W	12	97	2	6	4.688	8.625	24 16	
		C4-3 +	N1-Cd	24	•	2	14.12	2.375	4.5	10 Jb	
		CA-40	N1-Cd	24	42	2	15	10.38	9.625	95 16	_
		G-44A	N1-Cd	12	4	2	12.88	6.125	10.81	48 1b	-
		CA-448	NI-Cd	12	44	2	12.83	6.125	10.31	44 16	
		CA-51H	Ni-Cd	24	7	2	10.06	4.75	4.625	16 16	
		CA-53	Ni-Cd	24	7	15	10.06	4.75	4.625	16 16	
		CA-89A	Ni-cd	12	8	2	13.94	7.25	10.81	df 99	
		CA-888	Nf-Cd	12	6		12 04	7 25	.0		d

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

	Pake	Pode	Twe	, ocentral,	capacity,	rate.	E	ensions,	n.		
			2/1/		amp-hr	Ē	Length	Length Width	Height	Height	Application
Sonotone Corp.	:	CA-101H	Ni-Cd	24	13	u	13				
		101 47			2	n	7.7	5.525	5.562	26 1b	Commercial aircraft
		121-5	N1-CD	56	13	S	9.438	7.938	7.75	17 14	battery
		CA-727-3	Ni-Cd	24	25	S	16.5	7.93R	75	3	
		₩ -2	Ni-Cd	24	8	^	=	17 12	20.00	0 00	\rightarrow
		MA-4	N.S. CA				•	71.11	17.75	200	Military aircraft battery
		3		\$	77	2	10.5	7.812	8.75	55 1b	dississ
		<u>.</u>	NI-CA	24	ੜ	2	10.5	9.938	10.25	90 34	
		14 -7	Ni-Cd	24	Ξ	2	8.375	7.75	7 75	2 2	
		8-1	Ni-Cd	24	22	~	10.5	7 812	34. 0	2 ; 5 ;	
		14 -9	N1-Cd	24	33	, ,		710.1	0.73	01 00	
					73	7	5.0	7.812	8.75	55 1b	
			D)-LN	*2	22	7	10.5	7.812	8.75	55 lb	alle con eg
		M-300H	Ni-Cd	7.	3.6	2	6	3.562	5.25	10 5 14	
		₩-500H	PJ-IN	54	5.7	2	11.31	4.75	A 625	15 14	
		BB-406/U	NI-Cd	18	6.5	5	8.25	12.06	6 079		> :
		BB-407/U	Ni-Cd	18	6.5	40	25	12.06	966		Special purpose battery
		BB-421/U	N1-Cd	26.5	6.5		12 23	20.31	0.930	2 ;	
		20-5-102	Ni-Cd	24	0.62	· u	7 276	5 004	718.4	2 6	
		BB-422/U	NfaCd	**		, ,	6/6.7	0.034	57.7	2.5 ib	
		BR-424/11		\$ 8	13.5	n	11.22	5.25	7.5	31 16	
		0/525-00	N1-14	*	25	S	12.62	7.125	8.625	52 1b	
		0/614-99	MI-Cd	9	15	S	5.688	2.438	f. 25	7 16	
		88-426/0	Ni-Cd	54	1.2	2	10.125	3.06	10.5	14.14	
		BB-429/U	Ni-Cd	9	15	2	7.812	2.469	£ 25	41.	
		CE-1	NI-C3	24	8.0	5	4.75	7.875		2 .	
		CR-3	Ni-Cd	24	53	\$	13.125	10.2	ري ري	35 Jh	
		CR-1	Ni-cd	4	4.7	2	5.06	2.25	4.06	15.1	
		CR-2	N1-Cd	9	2.5	2	4.938	2.312	4.188	2 4 5	
		2-5	Ni-Cd	13	4.0	2	609.6	3.797	1.5	3.5	
		5	Ni-Cd	24	22	2	17.05	8.5	,	41 39	
		CH-2	Ni-Cd	54	4.0	2	13.75	5.25	2.531	2 4	
		CS-1A	NI-Cd	3.6	0.13	2	:	0.672 0	4.06	41.10	
		S-3	NI-Cd	7.2	0.17	2	:	0.672 0	2.156	4(6 0	
			Ni-Cd	7.2	1.4	2	5.109	1.828	0.9219	0.5 16	
			PJ-IN	8	13	5	17	7.25	5.438	35 16	_
			N1-Cd	54	*	uc.	•	5 312	A 75		

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	hake	Model	Туре	Potential,	amp-hr	T.	Length Width		He ight	Hefaht	Application
Sonotone Corp.	:	£ -	N1-Cd	12	0.8	5	3.344	2.312	2.312	1.2 lb	Special number hattery
		F-4	N1-Cd	28	4	S	7.875	4.312	4.031	9 16	
		14 -5	N1-Cd	28	13	2	12.25	11.06	5.25	35 1b	
		9-1-6	Nf-Cd	28	0.25	S	5.5	٣	3.5	3 fb	
		1 -7	N1-Cd	<u> </u>	•	2	7	•		4.5 lb	
		8-1	N1-Cd	7	•	u,	5.562	•		4.5 lb	
		1	Ni-Cd	12	8.0	2	7.562	2.5		5.5 lb	
		₩ -10	Ni-Cd	8	4.5	2	24.25	6.5		63 16	
		#	NI-Cd	37.5	13	\$	14.125	8.125		40 16	
		FF-12	Ni-Cd	28	6.5	S	12.81	6.656		15 16	
		∓ 13	Ni-Cd	35	901	S	29.75	10.125		450 1b	
		71-14	Ni-Cd	9	250	s	21.59	9.781		130 1b	
		9'-1	Nf-Cd	28	2.5	2	9.438	2.5		7.5 16	
		E -1	N1-Cd	28	2	2	7.735	3.875		7.25 1b	
		HE-2	NI-Cd	24	9.0	S	4.875	4.5		3.5 lb	
		· · · · · · · · · · · · · · · · · · ·	NI-Cd	3.6	0.51	2	2.781	1.219		0.3 lb	
		H2-5	N1-Cd	8.2	0.51	2	•	2.781		1 16	
		F2-3	NI-Cd	24	1.2	2	7.062	3.047		2.5 13	
		HS-4	NI-Cd	3.6	٣	2	3.016	2.031		0.13 16	
		HS-5	N1-Cd	8	1.9	2	7.436	4.875		3.75 lb	\rightarrow
Yardney	Silvercel	HR-01	;	;	0.1	;	0.22	0.63		0.15 02	:
		HR-02	:	i	0.2	!	0.22	0.63		0.23 02	ì
		HR-05	:	:	0.5	:	0.54	1.08		0.8 nz	:
		HR-1	:	:	-	;	0.54	1.08		1.1 02	:
		HR-1.5	:	:	1.5	;	9.54	30.1		1.4 02	2 6
		HR-2	:	:	2	:	0.59	1.72		2.4 oz	:
		HR-3	:	:	e	:	0.59	1.72		3.2 02	:
		¥-X	:	:	•	1	0.59	1.72		3.7.02	:
		HR-5	:	ŀ	٠c	:	0.79	5.08		4.5 02	:
		HR-10	:	:	01	;	0.74	2.32		8.2 oz	;
		HR-15	:	:	15	;	8.0	2.31		10 oz	;
		43-1P	:	:	20	:	0.81	2.31		13.1 02	;
		11K-20	:	:	2	1	2 05	1 73		14 0.	

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

Manufacturer	My.ke	Model	Type	, v	amp-hr "r	1	Length Width		Height	Weight	Application
Yardney	Silvercel	HR-21	:	:	20	:	0.8	2.3	7.53	15.5 oz	:
		HR-40	:	;	40	1	0.99	3.25	7.09	25 02	:
		HR-58	!	;	9	:	1.27	3.25	7.25	31.8 02	;
		HR-60	:	1	9	;	2.36	2.73	4.5	33 02	:
		HR-70	:	;	70	;	7.	3.64	6.25	40 oz	:
		HR-72	:	:	72	H	1.56	3.13	9.44	52 02	:
		HR-80	:	1	8	;	1.75	2.81	8.5	48 oz	;
		HR-85	;	:	100	;	1.81	2.81	9.44	58 02	;
		HR 90	:	;	06	;	2.16	3.26	7.06	54 02	;
		HR-190	1	1	100	ł	2.78	3.44	4.81	45 c.	•
		HR-115	:	:	115	:	2.26	3.25	7.31	20 19	;
		HR-135	:	:	135	:	2.26	3.25	7.31	62 02	:
		LR-05	:	:	0.5	;	0.54	1.08	1.56	0.8 02	;
		LR-1	:	;	-	;	0.54	1.06	2.02	1.1 02	1
		LR-2	:	;	2	1	0.59	1.72	2.53	2.3 02	;
		LR-3	:	;	٣	;	0.59	1.72	2.86	3 02	;
		LR-4	:	;	4	:	0.59	1.72	3.36	3.6 02	:
		10 10	;	;	S	:	0.79	5.08	16.5	4.5 02	:
		£8-10	:	;	0	;	0.74	2.32	4.81	8.2 07	;
		LR-20	9	:	20	:	1.73	2.05	4.28	14 02	:
		LR-21	:	1	20	:	8.0	2.3	7.53	15.5 02	+
		LR-40	:	1	40	;	0.99	3.25	7.09	23 02	i
		2R-60	;	;	9	;	2.36	2.73	4.5	29 02	:
		!R-70	:	!	70	;	1.41	3.64	6.25	40 02	:
		LR-85	ŀ	1	100	:	1.81	2.81	9.44	62 02	:
		LR-100	;	;	100	;	2.78	3.44	4.81	44 02	:
		LR-200	:	;	200	;	1.31	5.87	11.3	102.5 02	:
		LR-330	:	1	300	;	1.78	4.19	17.5	150 02	:
	Silcad	Y5-01	:	:	0.1	;	0.22	0.63	1.38	0.18 cz	;
		¥5-05	ł	;	0.5	;	0.54	1.08	1.55	0.75 02	;
		YS-1	!	;	_	+	0.54	1.08	2.02	1.2 02	•
		Y5-2	;	;	•	1	0	- 40			

TABLE D-11. SUMMARY OF CHARACTERISTICS OF POWER SOURCES (BATTERIES/STORAGE CELLS) (continued)

יים ומושני הווים	Hake	E Parte	1	Potential, Capacif	Capacity.	Rate.	Dime	IS IONS,	n.		
			7.15	•	amp-hr	ż	Length	Width	Helaht	Weight	Application
ardey	Silcad	YS-3	1	:	m	:	0.59	1.72	2.86	3.2 02	ţ
		YS-5	:	:	'n	t	0.79	2.08	2.91	5 02	;
		rs-10	:	1	00	:	0.74	2.32	4.81	9.2 oz	;
		YS-18	:	;	18	;	0.81	2.13	7	13 02	;
		VS-20	:	:	20	:	2.05	1.73	4,28	15.1 02	;
		YS-40	!	;	40	:	0.99	3.25	7.05	26.3 03	:
		YS-60	1	;	8	;	2.36	2.73		42 5 93	į
		22-70	:	:	70	;	1.41	3.64	6 25	42 02	:
		YS-100	i	;	901	:	3.44	2.78	4.81	53 03	i
		YS-300	;	:	300	ŀ	1.78	4.19	17.5	183 oz	: :

TABLE D-12. SUMMARY OF CHARACTERISTICS OF ORIVE TRAINS (TRANSMISSIONS) (a)

Manufacturer Ma	Make	Model	HP & RFW	Gear Selection	15	Lubrication	Gear Ratio	Description
Fairbanks Morse	:	14 850 001	12 @ 36PC	Fwd, n, rev	24	Oil bath	:	Transmission
		14 890 001	5 @ 3600	Fwd, n, rev	4	:	Fwd 1:1; rev 2:1	Transmission
		14 890 002	5 @ 3600	Fwd, n, rev	4	:	Fwd 1:1; rev 2:1	Transmission
		14 890 003		Fwd, n, rev	4	:	Fwd 1:1; rev 2:1	Transmission
		14 850 004	5 A 3600	Fwd, n, rev	4	:	Fwd 1:1; rev 2:1	Transmission
		14 850 076	39 @ 1200	:	30	Oil bath	1:1	Bevel gear drive
		14 850 051	30 @ 1200	:	28	Oil bath	1:1	Revel gear drive
		14 856 026	3.5 € 3600	;	15	:	27:1	Transfer case
		151 058 +	1.5 @ 3600	;	S	Permanent	18:1	Gear reducer
		14 850 101	10 @ 2400	2 fwd, 2 n, 1 rev	&	Oil bath	Fwd 17.9:1, 5.85:1; rev 29.8:1	2-speed transaxle transmission
		14 850 103	10 @ 2400	2 fwd, 2 n,1 rev	8	Oil bath	Fwd 13.5:1, 5.85:1; rev 22.4:1	2-speed transawle transmission
		14 850 104	10 @ 2406	2 fwd, 2 n, 1 rev	8	Oil bath	Fwd 17.9:1, 5.85:1; rev 29.8:1	2-speed transaxle transmission
Gravely	;	Genini 1	25 9 3600	8 fwd, 1 rev	185	SAE 90	;	Transmission
		Geminf II	15 3 3600	4 fwd, 4 rev	9	SAE 90W EP	Fwd 87.21:1, 58.14:1, 38.76:1, 25.84:1; rev 196.23:1 130.82:1, 87.21:1, 58.14:1	Transmission
Tecumseh Products Co. Per	Peerless	Series 200	:	2 fwd	9	Permanent	0.840:1, 1.190:1	2-speed transmission
		Series 350	1900	3 fwd, 1 rev	*	EP Li grease	Fwd 6.2:1, 4.1:1, 3.0:1; rev 3.45:1	Transmission
		Series 400	1900	3 fwd, 1 rev	7	Oil bath	Fwd 6.2:1, 4.1:1, 3.0:1; rev 3.45:1	Transmission
		Series 600	1900	3 fwd, 1 rev	8	Oil bath	Fwd 26.6:1, 13.6:1, 9.1:1, rev 19.5:1	Transaxle
		Series 1200	0 3600	3 fwd, 1 rev	20	Oil bath	Fwd 58.5:1, 32.7:1, 22.2:1; rev 42.5:1	Transaxle
		Series 1300	0 3600	;	30	Oil bath	22.2:1 or 19.7:1	Hydrostatic gear reducer
		Series 1400	0 3600	3 fed, 1 rev	20	Oil bath	Fwd 58.5:1, 32.7:1, 22.2:1; rev 42.5:1	Transaxle
		:	7 @ 3600	:	9	Permanent	1:1	Right angle drive

SUMMARY OF CHARACTERISTICS OF DRIVE TRAINS (VARIABLE MOTOR DRIVES) TABLE D-13.

				Speed Rat	Speed Ratios Available	a			
		2:1	3:1	4:1	5:1	6:1	Maximum 8:1	Maximum 10:1	§ _
Manufacturer	全		Highes	Highest and Lowest Maximum Output Speed Available (a)	aximum Outpu	t Speed Avail	able(a)		
Eaton, Yale & Towne inc.	0.25	4660 to 20	4660 to 25	4660 to 30-	30 30	4660 to 37	ŀ	4660 to 68	68
	0.50		4660 to 30		4660 to 37	to 37	ł	4660 to 68	89
	0.75		4660 to 37		4660 to 45	4660 to 56	!	4660 to 100	9
	_			3750 to 1.2			3940 to 1.6	-	
	1.50	*		3600 to 1.2			3600 to 1.6	1	
	2			3600 to 1.5			3600 to 1.6	1	
	က			3600 to 2.2		Î	3600 to 2.4	1	
	വ			3220 t	3220 to 3.3 ——			;	
	7.50			3220 to 5	5 05		1	i	
	10			3220 to /.5	5./ 05			:	
	15			3220 to 11 —	Valency op sy desidentation with with appropriate the majoraneous operator		1	1	
	20	eller, grannen and an array on	- 2630 to 13.5		1	1	1	!	
	25		- 2630 to 16.5-	1	1	**	ļ	}	
	30			2150 to 30		1	ļ	+	
	40	ļ		2150 to 30		!	+	1	

(a) For minimum speeds available, divide maximum speeds by speed ratio.

TABLE 0-14. SUMMARY OF CHARACTERISTICS OF ORIVE TRAINS (TORQUE CONVERTERS)

		Maxim 4-Cycle	1UM HP 2-Cvcle	Drive Ratio	atio	Ofamet	Sheave	Shea	Sheave	Engagement	Speed, rpm	
anufacturer	Model	(3600 RPM)	(5500 RPM)	High	104	Orive Or	Oriven	Orive	Driven	(3600 RPM)	(5500 RFM)	Speed, rpm
alsbury Corp.	330	S	ω	1:1	2.5:1	4-1/2	9	2-1/2	1-3/4	2000	3100	8500
	200	7	6	Ξ	3:1	5-1/2		4-3/4	6-1/4	1350	1900	5500
	900	12	1		3:1	7-1/8	8-1/2	11-1/3	7-1/4	1400	1	4000
	700	00	15	1:1	4:1	7-7/32		5-1/5	9-1/4	1400	1900	5500
	705	10	17	Ξ	4:1	7-1/4		5-1/5	10-3/4	1400	1900	0009
	770	0.1	17	Ξ:	3:1	7-7/32		5-1/2	9-1/4	1400	1500	5500
	775	12	19	Ξ	3:1	7-7/32		5-1/2	10-3/4	1400	1900	5500
	780	12	25	1:1.16	3.76:1	7-7/32		5-1/4	00	1600	2300	5500
	790	10	19	1:1.5	3:1	7-7/32		5-1/2	- α	1400	1500	5500
	795	12	25	1:1.5	3:1	7-7/32		5-1/2	10-3/4	1400	1900	5500
	880	1	25	1:13	3.2:1	8-3/8		10-1/2	9-1/2		2000	5500
	910	18	32	1:1.28	3.14:1	7-3/4		7-1/2	00	;	2800	5500
	1190	24	20	1:1.27	2.88:1	8-5/16	9-7/8	=	9-1/4	1500	2800	2500
	1195	24	20	1:1.27	2.88:1	8-5/16	9-1/8	=	11-3/4	1500	2800	5500

TABLE D-15. CUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (TRANSMITTERS)

			R. noe	Stonal	Power Supply	17.6	Poser	L				
Manufacturer	Model	Frequency, Miz	miles	Type	Type	Ė	Input Output	Jutput	Size	Size, in. Weight	We fight	Descripti
Confc Corp.	CTM-UHF-10V	CTM-UHF-10V 22G0-2300 (S), 1710-1850 (10w S), 1435-1540 (L)	1	æ	1	:	112 w	<u>0</u>	112 w 10 w 5.62 x 4.62 x 1.4 35 oz	2 x 1.4	35 oz	FM video trans
Hydro Products	ST206	26.95, 27.045, 27.095, 27.095, 27.145, and 27.195	10	AM 27-MHz VS 300 carrier battery	VS 300 battery	0	₩ 90	1	1.5 0 × 10.75	.75	1.5 16	1.5 lb Submersible
	ST206-20	26.95, 27.045, 27.095, 27.095, 27.145, and 27.195	01	AN 27-Miz carrier	AM 27-MHz l alkaline carrier C battery	50	100 PM	1	1.5 0 × 11.25	.25	1.6 lb	1.6 lb Submersible
	ST206-100	26.95, 27.045, 27.095, 27.095, 27.145, and 27.195	1574	AM 27-Miz carrier	AM 27-MHz 4 alkaline carrier C batteries	8	100	11	1.5 D x 16.75	.75	2.44 lb	2.44 lb Submersible

TABLE D-16. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (RATE GYROS AND SWITCHES) (4)

Manufacturer	Model	Range	Frequency,	T pe	Pick-Off Excitation	Motor Power
			Rate Gyros			
American Gyro	5H025-1	0.25 rad	09	Microsyn	12 v, 900 cy. 1a	:
	5H01.5-1	1.5 rad	:	Microsyn	12 v, 900 cy, 14	:
	R29A10-1	10°/sec	:	Microsyn	26 v, 400 cy, 15	115 v. 400 cv. 34
	R27A12-2	12°/sec	!	Microsyn		115 v, 400 cv, 3e
	14860	12°/sec	!	:	:	:
	R21A20-1	20°/sec	:	Microsyn	:	115 v, 400 cy, 3¢
	S20A	20°/sec	;	:	115 v, 400 cy, 1¢	115 v, 400 cy, 3¢
	A30	30°/sec	:	Var. rel.		26 v, 400 cy, 30
	R21A30-1	30°/sec	;	Microsyn	:	115 v, 400 cy, 3a
	R29A60-1	60°/sec	;	Microsvn	26 v, 400 cy, 1¢	115 v, 400 cy, 3¢
	R59890-2	90°/sec	25	5K pot.	35 v	•
	A150	150°/sec	ì	Var. rel.	115 v, 400 cy, 14	26 v, 400 cy, 3¢
	58150	150°/sec	8	bk pot.	:	115 v, 400 cy, 36
	R21A300-1	300°/sec	1	Microsyn	:	115 v, 400 cy, 30
	SH10-1	577°/3ec	35	Microsyn	12 v, 900 cy, 1¢	•
	R598720-1	720°/sec	20	5K pot.	35 v	;
Daystrom Gyro	R27512-2	12º/sec	:	Microsyn	:	1:5 v, 400 cy, 3a
Giannini	3662E ZMSN-18-1.25	12.5°/sec	1	AC ind.	26 v, 800 cy, 1¢	25 v, 800 cy, le
	36628AM-12-4	40°/50C	;	AC ind.	26 v, 400 cy, 1¢	200 v, 400 cy, 36
	36628AM-14-4	40°/sec	+	Var. rel.	115 v, 400 cy, 1¢	200 v, 400 cy, 3e
	36129M-6M-15	150°/sec	;	6K pot.	:	200 v, 400 cy, 3e
	361281-6-40	400°/sec	:	4K pot.	1	115 v, 400 cy, 36
	36128VN-5-1D	100°/sec	1	5K pot.	:	26 v 0C
Gyro Dynamics	101A	20°/sec	;	AC ind.	28 v, 400 cy, 1¢	115 v. 400 cv. 39
Gyromechanism	RG222	6°/sec	:	:		
	RG224	6°/sec	;	AC ind.	:	:
	RG223	12*/sec	;	ŀ	:	:
Lear	97.75	Je /sec	16	AC ind	30 v 400 cv 14	

TABLE D-16. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTMOL SYSTEMS (RATE GYROS AND SWITCHES) (a) (continued)

. .

Manufacturer	No. de 1	6	Frequency,		Pick-Off	
	7000	Kange	cps	Type	Excitation	Motor Power
Minn. Honeywell	JRT106	9°/sec	25	;	26 v, 400 cy	115 v. 400 cv. 34
	JRT116	10°/sec	:	;	26 v, 400 cy	115 v. 400 cv. 34
	JRT117	10°/sec	17	:	26 v, 400 cy	115 v. 400 cv 34
	JRS125A2	10°/sec	12-18	;	26 v, 400 cy	115 v. 400 cv 3
	JRS101A2	12°/sec	25	i	26 v, 400 cv. 36	115 v. 400 cv 3v
	JRT38	12°/sec	;	;	:	A 16
	JRT109	12*/sec	25	:	26 v. 400 cv	115 v 400 cv 3v
	JRT114	12°/sec	25	;	26 v. 400 cv	115 v 400 cy 1:
	JR21	100°/sec	32-38	;	25 v. 400 cv	30 × 400 cu 3.
Whittaker	R170-512675	0.5 rad	35	Microsyn		200 " 400 5" 36
	8170-513825	10 rad	6			500 to 400 cy. 3\$
		,	5	microsyn	:	200 v, 400 cy, 34
		<i>-</i>	Kate Switches			
Airesearch	RG210-14-1	22.5°/sec	:	ŀ	•	26 30 82
Daystrom	RS22N0-1	22.5°/sec	:	;		30 A DC-02
Gyno Dynamics	55-2	0.5°/sec	;	:	:	28 V UC
	155-2	22.5°/sec	;	:	:	28 v UC
Summers	351A	0.5°/sec	2.5	;	111	28 V UC

(a) Abbreviations used:

cy = cycle ind. = inductive

var. rel. = variable reluctance

pot. = potentiometer.

TABLE D-17. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC TO AC CONVERTERS) (continued)

Manufacturer	Model	Volts	S Amps	AC Output (115 v, 60 cycles), w	Description	Size, in.	Weight, 1b
Carter	E1040C8	24	3.5	40	Super converter	8-1/4 x 4-1/2 x 5	13
	E1060C8	24	4.3	69	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	E1080C8	54	9	80	Super converter	8-1/4 x 4-1/2 x 5	13
	E1010CB	24	8.3	100	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	E1015CB	24	10	150	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	E1025CP	24	18	250	Custom converter	11-5/8 x 6-11/16 x 7-1/4	;
	E1030CP	24	22	300	Custom converter	11-5/8 x 6-11/16 x 7-1/4	38
	E1040CP	24	28	470	Custom converter	12-5/8 x 6-11/16 x 7-1/4	47
	E1050CP	24	33	200	Custom converter	12-5/8 x 6-71/16 x 7-1/4	47
	E1075CP	24	4	750	Custom converter	13-7/8 x 6-11/16 x 7-1/4	28
	J1040C8	28	r-,	40	Super converter	o-1/4 × 4-1/2 × 5	13
	J1060CB	28	4	09	Super converter	8-1/4 x 4-1/2 x 5	13
	J1080C8	28	5.5	80	Super converter	8-1/4 x 4-1/2 x 5	13
	J1010C8	82	7	100	Super converter	8-1/4 x 4-1/2 x 5	13
	J1015C8	28	6	150	Super converter	8-1/4 x 4-1/2 x 5	13
	J1021CP	28	14	210	Lustom converter	11-5/8 x 6-11/1° x 7-1/4	•
	J1025CP	88	19	250	Custom converter	11-5/8 x 6-11/16 x 7-1/4	;
	J1030CP	82	20	300	Custom converter	11-5/8 x 6-11/16 x 7-1/4	æ
	31040CP	88	24	400	Custom converter	12-5/8 x 6-11/16 x 7-1/4	47
	J1050CP	88	88	200	Custom converter	12-5/8 x 6-11/16 x 7-1/4	47
	J1075CP	28	38	750	Custom converter	13-7/8 x 6-11/16 x 7-1/4	28
	C1040C8	32	n	40	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	C1060CB	32	4	09	Super converter	$8-i/4 \times 4-1/2 \times 5$	13
	C1080CB	32	S	8	Super converter	8-1/4 x 4-1/2 x 5	13
	C1010CB	32	5.5	100	Super converter	8-1/4 x 4-1/2 x 5	13
	C1015CB	32	7.4	150	Super converter	8-1/4 x 4-1/2 x 5	13
	C1025CP	32	15	250	Custom converter	11-5/8 x 6-14/16 x 7-1/4	:
	C1030CP	32	19	300	Custom converter	11-5/8 x 6-1/16 x 7-1/4	38
	C1040CP	32	12	400	Custom converter	12-5/8 x 6-'i/16 x 7-1/4	47
	C1050CP	35	52	200	Justom converter	12-5/8 × 6-11/16 × 7-1/4	47
	C1075CP	22	32	750	Cuetom connecton	112 7/9 " 5/1/15 " 5/7 51	-

TABLE D-17. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC TO AC CONVERTERS)

Manufacturer	Model	Volts	DC Input Its Amps	AC Output (115 v. 60 cycles), h	Description	Size, in.	Wefaht. 1b
Carter	1020LB	12	4	50	Geneverter	7-3/8 . 4-3/4 . 3-1/9	10.
	104018	12	v	9		× +/0-+ ×	*/ : 01
	10501			2 (oene verter	x 4-3/4 X	10-1/4
	LOOULB	2	0.00	8	Geneverter	7-3/8 x 4-3/4 v 3-1/8	10-1/4
	1020LE	25	2	20	Geneverter	7-3/8 x 4-3/4 x 3-1/8	10-1/4
	1040LE	24	ო	40	Geneverter	7-3/8 x 4-3/4 x 3-1/8	10-1/4
	1050LE	24	4.3	09	Geneverter	7-3/8 x 4-3/4 x 3-1/8	10-1/4
	1020LC	32	1.5	20	Geneverter	4-3/4 x	10-1/4
	1040LC	32	2.3	40	Geneverter	x 4-3/4 x	10-1/4
	1060LC	35	3.2	09	Geneverter	×	10-1/4
	1020LW	48	1.2	20	Geneverter	7-3/8 x 4-3/4 x 3-1/8	10-1/4
	1040LW	48	1.5	40	Geneverter	7-3/8 x 4-3/4 x 3-1/8	10-1/4
	1060LW	48	2	09	Geneverter	×	10-1/4
	1020LG	115	0.4	20	Geneverter	x 4-3/4 x	10-1/4
	1040LD	115	9.0	40	Geneverter	×	10-1/4
	10601	115	0.85	93	Geneverter	7-3/8 x 4-3/4 x 3-1/8	10-1/4
	A104 -78	9	15	40	Super converter	8-1/4 x 4-1/2 x 5	13
	A1060CB	ø	19	09	Super converter	8-1/4 x 4-1/2 x 5	13
	A1080CB	9	52	80	Super converter	8-1/4 x 4-1/2 x 5	13
	A1010CB	9	27	100	Super converter	8-1/4 × 4-1/2 × 5	
	A1015CB	9	46	150	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	B1040CB	12	00	40	Super converter	8-1/4 × 4-1/2 × 5	13
	B1060CB	12	10	09	Super converter	8-1/4 x 4-1/2 x 5	13
	B1080CB	12	74	80	Super converter	8-1/4 × 4-1/2 × 5	
	8101008	12	15	100	Super converter	8-1/4 × 4-1/2 × 5	13
	B1015CD	12	23	150	Super converter		<u> </u>
	B1021CP	12	53	210	Custom converter	11-5/8 x 6-11/16 x 7-1/4	:
	B1025CP	12	35	250	Custom converter	11-5/8 × 6-11/16 × 7-1/4	;
	B1030CP	12	45	300	Custom converter	×	ro c
	BS1040CP	12	13	400	Cistom conduction		1 :

TABLE 0-17. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC TO AC CONVERTERS) (continued)

Manufacturer	Model	VOITS	Its Arr,	60 cycles), w	Description	Size, in.	He toht 1h
Carter	W1040CB	48	2	40			
	MIDENCE	40	, ,	2	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	0000011	Ç.	1.7	09	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	WI USOCB	48	3.5	8	Super converter		2 5
	W1010CB	48	4.2	001	Sugar convertar	0 1/4 : 4: 0	<u>.</u>
	W1015C8	84	5.8	150	Current Country Country	0-1/4 x 4-1/2 x 5	13
	W1025CP	49	c		Super converser	$8-1/4 \times 4-1/2 \times 5$	13
	2020 H	÷ •	h (250	Custom converter	11-5/8 x 6-11/16 x 7-1/4	ł
	110000	0	2	300	Custom converter	11-5/8 x 6-11/16 x 7-1/4	88
	1040Ch	et ev	13	400	Custom converter		43
	WI 050CP	84	16	200	Custom converter	12-5/8 x 6-11/16 × 3 × 4	÷ :
	W1075CP	48	27	750	Custom converter	13 7/9 6 11/10 X /-1/4	à
	H1040C8	64	1.5	40	Super converter	9 1/1 × 0-11/10 × 0-11/4	28
	H1060CB	99	2	9	Super converter		13
	H1080CB	64	2.2	e G	Super converter		13
	H1010C8	49	2.5	8 2	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	H1015CB	3		00	Super converter	8-1/4 x 4-1/2 x 5	13
	HJOSECD	5 5	· ·	00	Super converter	8:74 x 4-1/2 x 5	13
	JC20111	3	œ. /	250	Custom converter	11-5/8 x 6-11/16 x 7-1/4	
	H1030CP	9	8.5	300	Custom converter	11-5/8 x 6-11/16 x 7-1/4	,
	H1040CP	9	0	400	Custom converter	12 5/9 5 5/4/5 5 5/5/5/	۶ <u>۱</u>
	H1050CP	25	12.5	200	Custom convertor	12 5/8 × 8-1; In × /-1/4	47
	41075CP	64	16	750	Custom converter	4/1-7 x 91/1/6 x 8/c-3/	47
	D1040C8	115	67	•	במזרמוו כמוואהונהו	$13-7/8 \times 6-11/16 \times 7-1/4$	28
	0106019	115		2	Super converter	$8-1/4 \times 4-1/2 \times 5$	13
	DIOBOCE	21.		9	Super converter	8-1/4 x 4-i/2 x 5	13
	930010		-	08	Super converter	8-1/4 x 4-1/2 x 5	13
	010100	115	1.7	100	Super converter	8-1/4 x 4-1/2 v 5	
	01015CB	115	2	150	Super converter		2 .
	01021CP	115	2.5	210	Custom convertor	33 5/5 × 5/1-5 × 5/1-0	<u>~</u>
	D1025CP	115	3.5	250	Custom converter	11-5/8 × 6-11/16 × 7-1/4	!
	01030CP	115	4.6	00.	Custom converter	$11-5/8 \times 6-11/16 \times 7-1/4$	1
	D1040CP	115	4		custom converter	$11-5/8 \times 6-11/16 \times 7-1/4$	38
	01050CP	115	7		custom converter	$12-5/8 \times 6-11/16 \times 7-1/4$	47
	01075CP	2 1			Custom converter	12-5/8 x 6-11/16 x 7-1/4	47
	71040CBA	2 2	20.00		Custom converter	13-7/8 × 6-11/16 × 7-1/4	28
	20000	230	4.0	40	Super converter	8-1/4 - 4 1/2 5	

TABLE D-17. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC TO AC CONVERTERS) (continued)

Manufacturer	Model	Volts Am	Amps	AC Output (115 v. 60 cycles), k	Description	Size, in.	Weight, 16
Carter	K1060CBA	230	0.5	09	Super converte:	8-1/4 x 4-1/2 x 5	13
	K1080CBA	230	9.0	80	Super converter	8-1/4 × 4-1/2 × 5	13
	K1010CBA	230	_	100	Super converter	$8-1/4 \times 4-1/2 \times 5$	12
	K1015CBA	230	1.2	150	Super converter	8-1/4 × 4-1/2 × 5	13
	K1025CP	230	1.8	250	Custom converter	$11-5/8 \times 6-11/16 \times 7-1/4$;
	K1030CP	230	2.3	300	Custom converter	$11-5/8 \times 6-11/16 \times 7-1/4$	38
	K1040CP	230	2.8	400	Custom converter	$12-5/8 \times 6-11/16 \times 7-1/4$	47
	K1050CP	230	3.5	200	Custom converter	12-5/8 x 5-11/16 x 7-1/4	47
	K1075C?	230	4.4	750	Custom converter	13-7/8 x 6-11/16 x 7-1/4	58
	ESX1020C5P	23/26	14	200	Industrial converter	12-5/8 × 6-11/16 × 7-1/4	47
	CSX1029C5P	33/37	6	200	Industrial converter	12-5/8 x 6-11/16 x 7-1/4	47
	WSX1020C5P	45/50	7.5	200	Industrial converter	12-5/8 x 6-11/16 x 7-1/4	47
	HSX1020C5P	67/74	νn	200	Industrial converter	12-5/8 x 6-11/16 x 7-1/4	47
	DSX1020C5P	118/132	5.6	200	Industrial converter	$12-5/8 \times 6-11/16 \times 7-1/4$	47
	KSX1026C5P	236/264	1.3	200	Industrial converter	12-5/8 x 6-11/16 x 7-1/4	47

TABLE 0-18. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (VARIABLE SPEED CONTROLS)

		Basic	Speed Pange.	Continuous Torone	J			Oimens!	Oimensions, in.	
Hanufacturer	Pode	KPK		in02	Vol tage	Geared	Diameter	Length	Diameter	Shaft Fr Length
Globe	25A540	10000	1200-12000	0.5	12	2	1.157	1 750	201.0	275 0
Delco	5074368	12000	1300-13500	9.0	12	S.	1" 50	2.0	21.0	25.0
Chic	DC8-A552	23000	3000-27900	0.35	24	No	0.750	1 275	0 126	0.300
Oelco	5067125	10000	1000-10000	0.5	24	2	1" 50.	2.0		2
Globe	C3A541	17500	2006-23000	9.0	24	No.	1 167	1 750	301.0	0000
	C3A683	13000	1600-16000	9.0	24	No.	1.187	1.750	67 70	0.300
	A9A608	16500	3000-18000	9.0	24	S.	1.250	1.875	0 125	0.50
	5A1419	18	61-9	06	12	Yes	1.250	2.53	0 312	0.30
	43A1043	C	8-65	10	15	Yes	0.890	2.406	0.187	0.477
	/3A1028	8	40-125	S	12	Yes	0.875	3.250	0.187	0.250
	5A1269	0.25	0.125-0.55	1900	24	Yes	1.250	3.406	0.312	0.500
•	5A569-7	_	0.125-1.6	800	24	, es	1.250	3.312	0.312	0.500
American	3602-1	2	0.5-2.5	995	24	Yes	1.187	2.812	0.250	0.500
	3255P	4	0.5-5.5	300	**	Yes	1.187	3.312	0.312	0.500
Globe	C5A1106	4	0.5-5.5	300	24	Yes	1.187	3.312	0.312	0 500
American	3255M	7	1.0-10.5	200	24	Yes	1.187	3.312	0.312	0 500
Globe	SA1452	7	1.5-11.5	250	24	Yes	1.250	3,187	0.312	0.50
	5A1036	91	4.0-25	175	24	Yes	1.250	2.828	0.312	9
	\$4119¢	17	4.0-28	150	24	Yes	1.250	2.828	0.312	0.500
	3	18	7-36	100	24	Yes	1.250	3.312	0.187	05
	GA 1456	52	5.0-42	100	24	Yes	1.250	3.828	9.250	00.400
	2	35	5.0-45	001	24	Yes	1.250	2.828	0.312	0.750
Barb. Cole.	FLW73512-1	43	10-60	20	24	Yes	1.250	4.375	0.250	0.500
Globe	134671	45	15-85	25	24	Yes	1.187	3.187	0.187	0.375
	24155	45	10-75	40	24	Yes	1.187	3.187	0.157	0 218
	284715	S	16-78	20	24	Yes	1.250	2.875	0.750	0.812
	2000	\$	15-75	75	24	Yes	1.250	3.656	0.312	0.500
	200	9	16-32	100	24	Yes	1.250	4.500	0.312	0.500
	15714	20	20-100	100	24	Yes	1.250	3.343	0.312	0.500
	Bred /	75	20-105	25	74	700	1 260			

TABLE D-18. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (VARIABLE SPEED CONTROLS) (continued)

		Racin	Speed	Continuous	1				Dimensions, in.	
Manufacturer	*ode]	NO.	range.	iorque,	3	,	Bc	Body		Shaft
			100	1n02	Voltage	Gearred	Diameter	Length	Diameter	Length
Rowe	5105×300	00 L	30-125	10	24	Yes	1 125	0	301.0	0.00
Globe	5A1290	100	32-145	50	2.	200	100		0.125	0.250
	298636	136		8 8	5	S D	1.18/	7.250	0.312	0.500
		66	30-170	20	24	Yes	1.250	2.828	0.250	0.500
Uster	13R9102-05	150	24-150	25	24	Yes	1.250	3.500	0 187	0 375
Globe	5A1267	160	140-625	25	24	Yes	1.250	3 500	0.250	0.27.0
	434144-1	160	20-170	15	24	Yes	0 975	2 063	0.2.0	0.730
Delco	5067127	250	60-360	01	24	2 3	20.0	6.933	0.312	0.500
	5069600	250	0 0		5	S C	1.3/5	5.875	0.250	0.375
	00000	007	60-325	0	24	Yes	1.375	2.875	0.250	0.375
Matrin. Gear	PSBZAR3	250	60-450	50	24	Yes	1.250	3.0	0.312	0.375
Globe	C3A741	275	80-75ņ	25	24	Yes	1.250	3.500	215	0 500
	A9A621	350	45-475	01	24	Yes	1.250	3.0	0 187	2000
	A9A193	350	120-500	01	24	Yes	1.062	2 547	701.0	2000
	B3A701	400	100-425	10	24	, A	1 250	2 235	0.167	0.375
	C6A982	AED	140 550			r U	067.1	3.3/3	0.250	0.312
	COApra		140-550	۲.۶	24	Yes	1.250	3.0	0.187	0.375
	L34853	525	160-800	9	24	Yes	1.250	3.0	0.187	0.375
	B3A/42	525	160-800	9	24	Yes	1.250	3.0	0.187	0.375
	C5A1067	650	200-1100	2	24	Yes	1.250	3.500	0.312	0.500
	29A / 31	820	250-1200	00	24	Yes	1.250	3.234	6.187	1.500
	541335	000	350-1450	7.5	24	Yes	1.250	3.250	0.250	1.125
	342138	50:	475-1600	9	24	Yes	1.250	3.500	0.250	1.750
	4 34491	1900	300-2000	2	24	Yes	2000	030 0		

TABLE D-19. SUPPARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (POTENTIONETERS)

					E113 10:115 171.		
Manufacturer	Model	Res I'rce, ohms	Linearity, percent	Diameter/ Width	r/ Height/ Thickness	Length	Linear Travel, in.
Aeropot	AP 20C	812/6K	ŀ	2 0	•	:	:
Anton	K300BV	20K	0.1	3 D	8 1	ł	:
Borg.	19608	2.4K	;	11/16 0	;	7-1/4	3.5
	80999	3KCT	:	0 91/11	:	5-1/8	2.5
Bourns	156105	10K/10K	0.1	11/16	1-1/16	m	1.7
	2001083001	2.5K	0.5	7/8	11/16	6-3/8	
	2001083604	3 K	0.5	1:/16	3/4	•	· ~
Computer Instr.	105	25K	:	1-1/8 D	:	:	:
	205	¥	:	2 D	:	:	:
De Jur	HP 502	11.4K/11.4K	:	5 0	;	:	:
	HP 504	3x4.7K/11.4K	:	5 0	:	:	1
Duncan	1800-640	4x300K/3.2K/50K	:	3.0	:	!	:
	1800-648	100K/10K	4/0.6	3.0	:	:	;
Edcliff	3-24-2	25KCT	0.5	1-1/4 0	:	4-3/4	1.8/5
	3-40	25KCT	0.5	7/8 5	10	4-3/4	1.875
	A-8002925	·~	0.75	11/16	3/4	4-9/32	1.328
Fairchild	741	10K/2K/10K	1/0.5/1	1-1/8 0	1	:	
	746	¥09	2	1-5/8 0	1;	;	:
	747F	17.5K/17.5K	:	2 0	:	:	;
Gen. Controls	RPH123	10K	0.2	1-5/16 D	1	:	:
Glannini	10625130	5K/5K	0.3	1-1/16 0	;	:	:
	10625133	5K/5K	5.1	2 0	;	;	:
Helipot	2099	10K	0.15	2 0	:	:	;
	5617-409	16K	0.5	2 D	;	:	:
	1175	200	9.5	3 D	:	:	:
	5713-251-0	2K/2K	0.3	3.0	:	:	:
	-213-637-1	100K/10K	4/0.6	3.0	;	:	:
	5713-548	5K/50K/50K	0.1	3 0	!	:	:
	ø	100	0.5	1-5/16	:	:	:
	y	002	0.5	1-5/16	;	:	:
	u	2.0K	9.0	1-5/16	:	i	:
	S62858	5,	0.5	1-5/16	:	:	:
	56471	505	u -	1 5/16			

TABLE D-19. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (POTENTIOMETERS) (continued)

		Recictance	4	-	Ulmensions, in.		
Manufacturer	Mode]	ohms	percent	Nidth Width	Height/ Thickness	Length	Linear Travel, in
Helipot	56491	×	0.5	1-5/16	1	:	:
	SG776	×	0.5	1-5/16	;	:	;
	99658	30	0.1	1-5/16	·	;	;
	5,336	100/30K/10K	0.25/0.5/0.15	2 0	;	:	= ;
	76CS	20K	0.15	2 0	ł	;	;
	5,343	¥5	0.5	2 0	1		;
	SJ474D	5×	0.2	5 0	!	i	:
	57500	230/10K/10K	25/0.15/0.25	2 D	11	;	
	SL142	10K	0.5	3 D	;	:	;
	SL143	10K/10K	0.2/0.2	3.0	:	:	ŀ
	SL 4548	10K/10K/50K	:	1-7/8 0	= :	;	;
Humphrey	RP01-0109-1	10K/10K	LC.	3/4 D		7-1/2	2.5
	RP04-0101-1	30K	0.2	5/8 D	i	7-5/8	4.13
IRC	7501-5465A	50K	0.1	3/4 0	;	;	:
Markite	CT2279298	50K	0.8	5/8	15/16	ო	1-1/4
Spectrol	901	20	0.2	1.312 0	;	:	:
	100-357	30KCT	0.5	1-5/16 0	i	;	:
	100-8016	100/100	0.1	1-5/16 0	i	;	;
	130-12	901	0.3	1.312 0	!	1	= ;
	130-45	2K	0.5	1-5/16 D	;	;	;
	130-54	200	0.5	1-1/4 0	;	1	;
	150	50K	;	1/2 C	}	:	;
	200-15	3.8K	4	1-3/4 D	:	:	1
	200-262	2.5K	_	1-3/4 0	:	i	:
	300-119	200/200	0.3/0.3	2 0	;	:	:
	400-612	20K	0.05	3.0	i	;	;
	200	200	0.5	0 3/2	ŀ	1;	= ;
	200	2.5k	0.5	0.875 0	;	;	1
Spirotech	171-108	20K	0.15	1-3/4 0	Ī	;	;
Tech. Instru. Corp.	RVTS 5129C	50K/50KCT	0.5	1-1/4	1-1/4	3-3/4	2.625
TIC	RV1-313-1	50r	:	1-1/16 0	;	:	:
	RV7/8-S399	10K/10K	0.5	7/8 P	1	;	1
Topp industries	LB140	2K	:	3/4	1/2	2-5/8	1 275

TABLE D-19. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (POTENTIONETERS) (continued)

Manufacturer Model Resistance, ohms Linearity, Diameter/ Height/ Linear Linear aters AP 1-1/16 2K. 1-3/16 D					O	mensions, in.		
AP 1-1/16 2K 1-3/16 D AP 1-1/8 25K/25K 2 1-7/32 D AP 1-1/8 100K 2 1-7/32 O RT 7/8 50K 2 1-1/16 D	Manufacturer	Model	Resistance, ohms	Linearity, percent	=	Height/ Thickness	Length	Linear Travel in
AP 1-1/8 25K/25K 2 1-3/16 D AP 1-1/8 100K 2 1-7/32 D RT 7/8 50K 2 1-1/16 D		31/1 T ON	76					
'8 25K/25K 2 1-7/32 0 '8 100K 2 1-7/32 0 50K 2 1-1/16 0		01/1-1		!	1-3/16 D	:	1	:
'8 100K 2 1-7/32 0 50K 2 1-1/16 D		-	25K/25K	2	1-7/32 0	;	:	1
50K 2 1-1/16 D		AP 1-1/8	100K	2	1-7/32 0	;	;	:
		RT 7/8	50K	2	1-1/16 D	;	;	;

TABLE 0-20. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC MOTORS)

Manufacturer						POVERTIEC		- 10.	Fuil Load or Rated	ater	Starting		
	Model	Voltage	Current, Speed,	rpm rpm	lorque, oz-in.	Voltage	Spee€,	lorque, oz-in.	Current,	rped,	oz-in.	Rotation	.ype
Kroker Eng. & Dev. Co.	SeaWasp 6	۵n	:	1	:	;	;	ŀ	15000	20000	:	:	;
	Sealdasp 12	16	ě	1	;	;	;	ł	15000	20000	1	:	š ,
Pittman	Boatmaster 10005	80	630	4500	:	ł	;	:	3500	2550	1	1	;
		10	650	2600	:	;	i	1	3500	3900	;	;	:
		12	800	6700	í	;	;	1	3500	2000	1	:	;
Barber Colman	BYQM 2020	12	40	ł	0.07-0.2	10-14	2400	;	;	:	0.45	3	Governed
	BYOM 2022	9	80	1	0.03-0.2	5.4-6.6	2400	:	;	:	0.5	3	Governed
	BYQM 2100	12	7.0	ł	0.07-0.2	9-13	1200	1	;	:	0.45	3	Governed
	BYQM 2109	9	80	;	0.03-0.2	5.4-6.5	1200	i	1	:	0.5	3	Governed
	BYQM 2184	9	80	2000	;	;	;	0.24	C2	4150	-:	Reversible	Ungoverned
	BYQM 2185	12	09	5400	;	1	1	0.3	160	4350	1.1	Reversible	Ungoverned
	BYQM 2675	24	30	5200	:	;	;	0.5	110	3800	1.2	Reversible	Ungoverned
	BYQM 2679	9	;	12	;	:	1	40	;	18	:	Reversible	Ungoverned
	BYQM 2764	12	;	23	:	:	;	54.4	;	18	;	;	Ungoverned
	BYQM 2962	12	-	99	;	:	;	16	+	47	;	:	Ungoverned
	BYQM 2968	12	;	550	;	;	1	2.4	:	445	1	;	Ungoverned
	8 'QM 3015	9	:	52	;	:	;	16	1	43	;	i	Ungoverned
	BYQM 3064	12	;	1740	;	:	;	0.3	;	1400	1	1	Ungoverned
	BYOM 3120	9	+	1615	1	1	;	1.0	:	1340	:	:	Ungoverned
	BYOM 3121	ø	;	510	;	;	1	1.9	1	:5:	i	1	Ungoverned
	BYQM 3122	9	:	163	;	:	•	5.4	i	136		;	Ungoverned
	BYQM 3123	12	;	177	;	:	1	6.7	;	142	1	1	Ungoverned
	BYQM 3124	9	ţ	17	+	;	1	16	:	15	1	;	Ungoverned
	BYQM 3125	12	;	16	-	1	1	91	;	17	1	1	Ungoverned
	BYQM 3126	9	ł	2	:	:	;	16	;	S	:	1	Ungoverned
	BYQM 3127	12	ł	9	;	:	1	16	1	9	i	ł	Ungoverned
	BYQM 3128	9	:	1.7	1	:	;	16	•	1.7	;	;	Ungoverned
	BYOM 3129	12	i	1.8	;	ł	1	16	;	1.8	1	1	Ungoverned
	BYQM 3130	·a·	:	0.5	;	:	1	91	1	0.5	;	;	Ungoverned
	BYOM 3131	12	;	9.0	:	:	;	91	:	0.6	:	i	Ungoverned

TABLE D-20. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC MDTORS) (continued)

			No Load	ad		Governed			Full Load or Rated	ed	Starting		
Manufacturer	Model	Voltage	Lurrent,	Tpm	oz-in.	Voltage	rpm	forque, oz-in.	Current, ma	rpm	Torque, oz-in.	Rotation	Type
Barber Colman	BYQM 3132	9	;	332	:	:	;	2.9	:	278	:	:	Unapvermed
	BYQM 3133	12	;	360	;	:	;	3.6	;	290	;	;	Unooverned
	BYQM 3134	9	;	169	1	:	ť	5.7	;	140	i	- 1	lingwerned
	8YQM 3135	12	;	180	1	:	;	7.2	;	149	;	:	lingoverned
	BY0# 3136	v	:	83	1			, O.		9			ougover ned
	BYON 2127	, ;		3 8	}	1		2	1	6	:	:	on 3 yerned
	610H 313/	7	:	3	1	:		<u></u>	:	72	:	:	Ungoverned
	87QM 3138	•	1	=	:	:	:	1.3	:	*	:	:	Ungoverned
	8YQM 3139	12	:	45	:	:	?	1.7	1	36	1	;	Ungoverned
	CYQM 23040	12	150	;	-	12	2400	;	:	:	4	3	Governed
	CYQM 23300	12	8	2750	;	:	1	9.0	200	2250	3.2 8	Reversible	Ungoverned
	CYQM 23410-31	21	8	69	:	:	1	16	190	15	;	:	Ungoverned
		24	82	138	;	1	1	32	285	102	;	;	Ungoverned
	CYQM 23410-41	12	88	20.5	:	1	:	49	190	15.4	;	•	Ungoverned
		54	82	45	;	:	;	86	. 285	31	;	1	Ungoverned
	CYQM 23410-51	12	8	9	1	;	1	148	190	4.6	;	:	Ungoverned
		24	82	12	:	;	:	240	250	10	1	;	Ungeverned
	CYQM 23410-61	12	8	1.85	;	:	;	2:3	150	1.6	:	;	Ungoverned
		5 ¢	82	3.7	:	:	;	240	150	3.7	:	;	Ungoverned
	CYQM 23610-31	12	40	4	1	i	1	9	75	31	:	;	Ungoverned
		54	45	85	•	:	;	20	120	<u>6</u> 2	:	:	Ungoverned
	CYQM 23610-41	12	40	12.4	;	;	;	93	75	9.5	:	;	Ungoversed
		24	45	24.8	;	:	!	09	120	18.5	:	:	Ungoverned
	CYQM 23610-51	12	04	3.7	;	:	:	90	75	2.7	1	;	Ungoverned
		5¢	45	4.	:	;	:	180	120	5.5	;	i	Ungoverned
	CYQH 42800	12	250	4900	:	:	i	1.5	750	3800	7 18	Reversible	Ungoverned
	CYQM 42810-31	1,2	190	147	:	;	;	26	950	112	1	1	Ungoverned
	CYQH 42810-41	12	190	\$:	;	ł	170	950	33	:	1	Ungoverned
	CYQM 43210-31	15	52	9	1	:	ŀ	32	180	20	;	;	Ungoverned
		54	8	120	;	:	1		315	80	:	;	Lngoverned
	CYQM 43210-41	75	55	18	:	;	:	75	180	15	1	:	l'nooverned

TABLE D-49. SUMMARY OF CHARACTERISTICS OF GUIOANCE AND CONTROL SYSTEMS (DC MOTORS) (continued)

			No Load	DE		Governed		Full	Full Load or Rated	ped	Stanting		
Manufacturer	Model	Voltage	Current,	Speed,	orque, oz-in.	Voltage	Speed, 1	Torque, oz-fn.	Current, Speed,	Speed,	Torque,	Potation	, ack
Barber Colman	CYQM 43210-41	24	09	37	;	;		150	1 2			1	
	CY2M 62800	12	00.5	3400	i			3 0	2	57	4	:	Ungoverned
	0YLM 43400-50	27		2000	!	:	ł	7	009	27 m	9	Reversible	Ungoverned
	OS COCCE MINO	ì	!	79000	:	:	:	0.59	009	12009	3.36	!	;
	UTLM /3300-50	27	;	25000	;	1	;	0.67	650	13500	6.24		1
	0YQM 63240-51	9	110	4750	;	;	•	0.26	340	3750	1 25	0	}
	DYQM 63580-51	12	65	2800	i	ł	;	€)	2000	2 6		reversible.	:
Air Associates Inc.	KS15042-L01	24	800	ur.	ł			2.5	027	4850	.03	Reversible	1
American Motor	3255P	26	200	• •		;	:	3	ł	:	1	Reversible	:
Jelco	5069525	2.	3	•	1 8	:		200	200	ł	:	Reversible	;
	5085170	27	;	: :	₹	:	120	:	;	;	!	!	Governed
0umpre	4063-210	115	;	412	:	:	!	:	;	;	1	Reversible	:
General Electric	5841041180	24.20	1 2	3	;	:	!	!	:	;	ļ	10 0	;
	58410E1424	07-47	3	: :	;	:	;	15	;	0[[1	:	ŧ
	4740101000	97	:	8	;	;	!	;	;	;	;		1
	56A10FJ441	77	;	300	;	;	ŀ	10	700	135			
GIODE	5A-1419	12	:	16.5-19	;	;	1	640		3		!	i
	43A-1043	12	275	25	;	;	,	α	45		:	;	9
	B3A-609	!	009	20	130			,	200	ñ	;	Reversible	;
	B3A-671	24		2 5	3	:	:	:	ţ.	;	;	Reversible	Governed
	B3A-701	i	2	3 5	۱ '	1 =	:	:	:	!	1	Reversible	;
	894-663	20	3	9 ,	ю	92	;	:	1	;	;	Reversible	Governed
	200 TEA 1026	5 3	:	0	:	;	;	;	•	i	;	Reversible	;
	CFA 1050	92	80	56	;	:	- 2	200	200	24	;	Reversible	;
	7601-WC2	62-12	:	22	:	1	;	20-45	ł	45	:	Revere thle	
	C5A-1054	24-29	;	9	;	;	:	00		2		a contract of the contract of	1
	C5A-1092	56	200	89	;	;		270		ħ	:	Keversible	;
Mission Western Eng. Inc. P5823R2	Inc. P5823R2	28	1000	450	;		3	2	200	:	;	Reversible	1
Potter Instrument Co.	5202-6391-1	110	4500	200	}		:	:	:	:	:	Reversible	!
Servo-Tek Products	A Series	v		2000	}	!	:	ŀ	:	;	1	Reversible	1
	B Series	· =	:	0000	;	:	:	0.72	;	7000	;	;	ì
	201120	= {	:	200	i	;	:	9.1	;	7600	ł	;	1
	o series	23	;	1000	;			•					

TABLE 0-20. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC MOTORS) (continued)

			יים רחשני	1		DOVETHED		3	Full Load or Rated	a ted	Chambian		
Manufacturer	fode	Voltage	ma	rpm r	Torque, oz-in.	Voltase	Speed,	orque,	Current,	Speed,	Torque,		
Stemens Corp.	RM_O1							04-111	9	Low	0Z-1n.	Rotation	Type
		10-15	1	:	1	;	:	:					
	BM-02	10-15	:		į					:	1	:	Variable speed
	20				1	;	;	0.21	170	2550-	:	;	Variable cond
	64-03	9-10	:	;	;					3450			ים יפטים אמני
	NO.					}	:	:	1	:	;	;	Variable cons
	10	10-15	;	;	:	ļ							and a long
	BM-05	9-10	i	1			;	:	1	;	i	;	Variable speed
				}	:	!	;	0.42	370	2550-	ļ		200
	BM-06	10-15								3450		:	Variable speed
			•	;	:	;	;	0.42	270	2550-			
	BM-07	30 00							i	3450	!	;	Variable speed
		0	:	!	;	;	;	0.42	044				
	200							7.0	430	-000	:	:	Variable speed
	80-FB	01-9	;	;	;					2000			
	BM-09	31_36			;	1	1	;	;	:	;	ļ	Wand of a
	2	07-17	;	;	1	;	;	1					variable speed
	0	21-26	!	;	į				!	;	:	;	Variable speed
					}	!	:	5.08	730	-009			Wender
	BM-11	8.5-9.5	1							9009		1	deridbie speed
	BM-12	0		i	:	!	:	!	;	:	;		
		0.0-2.0	!	:	:	;	;	0.42	370	0330	ı	:	variable spred
	BM-13	20 10							2	3550	:	:	Variable speed
		97-17	;	;	;	:							
	BM-14	21-26	;	ŀ	ł			;	1	;	;	;	Variable spend
						!	!	7	2750	-009	;		
	8M-15	21-26								0009		:	Variable speed
		3	ŀ	!	!	;	;	7	1530	3400			
	BM-16	10-15								4600		:	Variable speed
	200		:	;	;	;	ţ	30	270				
	/ I-MO	10-15	;	:	;	ļ		3		65-67	:	;	Variable speed
	BM-18	10-15	ł			;	:	901	270	8-9	;	;	Variable cree
	BM-19	31 01		;	!	;	:	17	270	50-70	ľ		paads algeria
		01-01	!	:	:	!	!	12				:	Variable speed
	02-10	10-15	;	;	;			7-	026	30-200	;	:	Variable speed
	BM-21	21-26	į			!	1	:	:	ı	;	;	Variable
	BM-22			:	!	:		;	;	!			מו ומחוב אלאפנו
		5	!	;	;	;	ł	15	750		}	!	Variable speed
	57-M	10-15	;	;	;	;				021-21	:	-	Variable speed

TABLE D-20. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (DC MDTORS) (continued)

w 2

Ī

			No Load	Dec		Coverned		Full	Load or R		Chambing		
Manufacturer	Model	Voltage	Current, Speed,	Speed,	Torque, oz-in.	Torque, Speed, oz-in. Voltage rpm	Speed,	Torque.	Torque, Current, Speed,		Torque,		
tomane Com											.ul - 70	KOLATION	, Abe
concerns corp.	87-14 81-74	10-15	:	;	;	;	}	4.3	450	48-480	:		Vanishio
	BM-26	01-9	:	1	1	;	1	0	200	1500		}	rar lable speed
								74.0	3	3005	;	;	Variable speed
	BM-27	21-26	ľ										
dectory Gaza	200000				!	:	1	714	730	2-20	;	*	Variable speed
מבינו הפפו	F3624K3	74	1500	250	:	:	;	45	1	1	!	Reversible	

TABLE D-21. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (GENERATORS)

		4 10 10		Voltage/		Maximum Driving	Arma	Armature	Brush	
Manufacturer	Model	mergnt, 02	g-cm2	1000 RPM,	Maximum RPM	Torque, oz-in.	esistance, ohms	Inductance, henrys	Life,	Mounting
Servo-Tek Products	SA-740A-2	m	8.5	7	12.000	0 2	325	0,0	000	
	SA-7408-7	~	c				2,0	0.0	100,000	- ace
	(- VO - VO	י ר	0.0	9.7	12,000	0.2	38	0.024	100,000	Face
	SA-7406-1	4	15	20.8	3,000	0.2	880	0.56	100,000	Face
	SA-757A-	m	8.5	7	12,000	0.2	325	0.18	100 000	300
	SA-7578-1	S	15	20.8	8,000	0.2	880	0.56	100,000	5300
	SB-740A-2	e	8.5	7	12,000	0.2	325	0.18	100 000	ב מרב
	SB-740A-7	က	3.5	5.6	12,000	0.2	38	0.024	100.000	Flance
	SB-740B-1	4	5	20.8	8,000	0.2	880	0.56	000 001	Flance
	SB-757A-2	3	8.5	7	12,000	0.2	325	0.18	100 000	El ange
	SB-757B-1	2	15	20.8	8,000	0.2	980	0.56	100,000	Flange
	SN-763A-2	4	8.5	7	12,000	0.5	325	0.18	100.000	Automotive
	SN-763A-7	4	8.5	2.6	12,000	0.2	38	0.024	100 630	Automotive
	SN-763B-1	9	15	20.8	8,000	0.2	880	0.56	100 000	Automotive
	ST-7253A-2	4	8.5	7	12,000	0.2	1		000,000	בוביייים
	ST-7253A-7	4	u. 60	2.6	12 000	0			000,001	rlange
	ST-72538-1	L T	15	20.8	200	7 .	:	:	000,000	Flange
	ST-72530-1	ν. «) F	AF. 5	000	7.0	;	;	100,000	Flange
	CT_7336A_7		2	7	000,6	7.0	!	i	25,000	Flange
	7-W055/-15	າ ເ	g.,	5.6	12,000	0.7	:	;	100,000	Face
	51-/336A-2	m	8.5	Ľ	12,000	0.7	;	;	106,000	Face
	ST-73368-1	2	15	20.8	8,000	0.7	;	i	100.000	Face
	ST-7337A-2	3	8.5	7	12,000	_	:	;	100 001	200
	ST-73378-1	2	15	20.8	6,000	_	:		100,000	ומרב
	ST-7346D-1	8.5	30	45	5,000	_	i	1	25,000	בינו

TABLE D-22. SUMMERY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (LEDEX SIZE 2 SOLENOID)

				Duty Cycle (t = 'on' time in seconds)	time in seconds)	
		(Continuous		Internittent	
				t - 100	t ² 36	t 5.7
					Pulsed	
				t ² 162	t 5 44	t 1 8
		Maximum watts at 20°C Ampere turns at 20°C	425	14 602	28 849	70 1350
Awg.	Ohms	Turns	Volts DC	Volts DC	Volts DC	Volts DC
24	0.68	130	2.2	3.2	4.5	7.1
25	1.16	174	2.8	4.0	5.7	9.0
56	1.96	231	3.6	5.1	7.2	11.5
27	3.16	296	4.5	6.4	9.0	14.4
28	5.10	378	5.7	8.1	11.5	18.2
29	6.94	423	7.0	6.6	13.9	22
30	11.03	530	8.8	12.5	17.7	28
3	16.85	649	11.0	15.6	22	35
32	28.15	858	13.9	19.8	28	44
33	42.75	1036	17.5	52	35	99
34	69.56	1312	23	32	45	72
35	112	1674	62	40	57	16
36	148	1765	36	เร	11	113
37	222	2090	45	64	06	143
38	353	2650	22	80	113	180
39	568	3380	17	101	143	227
40	882	4200	88	126	178	283

TABLE D-23. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (LEDEX SIZE 2E SOLENOID)

				Duty Cycle (t	n	on time in seconds)	
			Continuous		Inte	Intermittent	
				t - 100	t - 36	t ≤ 7	t \$ 2.5
					- 1.	Pulsed	
				t = 162	t - 44	د 1 ک	t < 2.8
		Watts at 20°C Ampere turns at 20°C	425	14 602	28 849	1350	140
				Sta	Starting Torque, 1b-	lb-fn.	
		25° stroke 35° stroke	0.20	0.40			1.70
		45° stroke	0.10	0.30	0.36	1.10	2.30
AWG.	Ohms	Turns	Volts DC	Volts DC	Volts DC	Volts DC	Velts DC
24	0.68	130	2.2	3.2	4.5	1 2	9
25	1.16	174	2.8	4.0	7 3		10.0
92	1.96	231	3.6	5.1	7.2	7.6	17.7
27	3.16	296	4.5	4.9	0.6		7.91
28	5.10	378	5.7	8.3	11.5	. 0	8 %
59	6.94	423	7.0	6.6	13.9	2.0.	97
39	11.03	530	8.8	12.5	17.7	27 62	<u>.</u>
31	16.85	649	11.0	15.6	32	80 L	0 9
32	28.15	858	13.9	19.8	28 28	23	94 6
33	42.75	1036	17.5	25) <u> </u>	3	20 6
34	69.56	1312	23	32	45	2 22	50
35	112	1674	62	40	57	3. 6	138
36	148	1765	36	53		113	971
37	1.4.	2090	45	64	06	143	200
88	353	2650	57	08	113	190	202
39	568	3380	17	101	143	227	4 S
040	882	4200	89	126	178	283	320

1 2

TABLE D-24. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (LEDEX SIZE 5 EC SOLENOID)

		[Cuty Cycle (t = 'on' time in seconds)	time in seconds)	
			Continuous		Intermittent	
				t - 100	t ≤ 36 Pulsed	t ² 10
				t [≤] 160	t 5 44	t = 13
		Watts at 20°C Ampere turns at 20°C	21 1015	42 1449	84 2030	210 3210
Awg.	Ohms	Turns	Volts DC	Volts DC	Volts DC	Vol's DC
19	0.42	150	2.9	4.0	5.7	9.0
20	0.58	170	3.5	4.9	6.9	11.0
51	1.00	228	4.5	6.4	6.8	14.1
22	1.68	301	5.7	8.1	17.4	17.9
23	2.70	384	7.2	10.1	14.3	23.0
24	4.30	486	9.0	12.7	18.0	28.0
25	99.9	290	11.5	16.2	23.0	36.0
56	10.3	737	14.0	20.0	28.0	44.0
27	15.7	006	17.7	25.0	35.0	96.0
28	56.6	1190	23	32	45	72
56	38.0	1380	28	40	99	6 .
30	62.1	1768	%	51	12	113
3.	96.1	2166	45	2	8	143
32	157	2816	22	80	113	179
33	241	3432	ג	101	143	226
*	364	4108	06	128	180	285
35	999	4920	117	166	234	376
36	910	6340	146	207	292	462
37	1224	6800	183	260	366	;
88	2060	0006	233	330	465	;
39	3145	11000	290	412	:	;
40	(095	15550	366	:	;	ŧ

TABLE 0-25. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (LEDEX SIZE 5S SOLEMOID)

		•		Duty Cy	Duty Cycle (t = 'en' time in seconds)	e in seconds)	
			Continuous		Inter	Intermittent	
				t - 100	t ² 36	t ² 10	t ² 3.5
				X	Pu	Pulsed	
				t 5 160	t - 44	t 5 13	t = 4.6
		Matts at 20°C Ampere turns at 20°C	21 860	42 1220	1720	210	420 3853
				Sta	Starting Torque, 16-in.		
		25° stroke		4.1			13.2
		45° stroke		5.0	4.5	7.8	9.5
		67-1/2° strake			₩, c	6.3	6.9
			0.20	0.5	1.0	3.9 1.9	2.6
· Dail	Ohms	Turns	Volts DC	Volts DC	Volts DC	Volts DC	Volts 9C
19	0.31	110	2.4	3.5	•		
20	0.43		3.0		6.4	9 4	0.1.
12	0.74		00		9 6		13.3
22	1.26			י מי מי	0.7	12.1	17.0
23	2.03		? · •	n 4	7.6	15.4	22
24	3.20		7.6		1.5.1	2.61	27
25	4.91		9	13.6		₹ ?	3 , 1
56	7.72		12.1	2 -	3.61	- , (F .
22	11.12				\$ 6	æ, .	3
28	18.79		2 61	1.7	3 8	æ (67
53	30.48	_	37	3 7	ř.	ō	8
98	4.86		<u> </u>	\$ 2	\$ (11	
31	70.90		3 %	? 3	- F	£ ;	% %
32	109		£7	5 5	9 5	121	171
33	175		: Ç	à d	ç, <u>r</u>	150	212
*	270		2	3 2	121	26:	271
35	414			3 3	761	242	-
Y	019		66	0	198	314	443
3 2	010		7	771	250	397	999
à :	3		156	122	311	493	697
eg ;	1560		197	279	393	624	881
6	2545		246	348	491	780	1101
9	3960	11000	310	430	610		

TABLE D-26. SUMMARY OF CHARACTERISTICS OF GUIDANCE AND CONTROL SYSTEMS (LEDEX SIZE 5 SF SOLENOID)

	1	Continuous	Intermittent	Intermittent	
			t ² 100	t ² 36	t 5 10
				Pulsed	
			t [≤] 160	t = 44	t 🕹 13
	Watts at 20°C Ambere turns at 20°C	21	1220	84 1720	2730
0hms	Turns	Volts DC	Volts DC	Volts DC	Volts DC
0.31	110	2.4	3.5	6.4	7.8
0.43	125	3.0	4.2	0.9	. 9.5
0.74	168	3.8	5.4	7.6	12.1
1.26	224	8.4	6.9	9.7	15.4
2.03	288	6.1	8.6	12.1	19.2
3.20	360	7.6	10.8	15.3	24
4.91	440	9.6	13.6	19.2	31
7.72	550	12.1	17.1	24	38
11.12	929	15.0	12	30	84
18.79	840	19.2	27.	39	19
30.48	1088	24	34	48	11
44.86	1275	30	43	19	96
70.90	1596	38	9	9/	151
109	1974	47	29	95	150
175	2496	09	98	121	192
270	3042	9/	108	152	242
414	3600	66	140	198	314
019	4200	125	177	250	397
940	5200	156	221	311	493
1560	6820	197	279	393	624
2545	8910	246	348	491	780
3960	11000	310	439	619	983

APPENDIX E

TERRAIN AND WEATHER INFLUENCE ON MOBILITY

APPENDIA E

TERRAIN AND WEATHER INFLUENCE ON MOBILITY

Influence of Terrain and Weather on Land Vehicle Mobility

The missions outlined in Appendix B are not performed in a vacuum; they involve movement over real, and possibly quite difficult, terrain. A tremendous amount of effort has gone into quantizing te ain information for the purposes of off-road vehicle design and deployment, but this information is of little value here; most of the studies undertaken by the Land Locomotion Center or the Mobility Environmental Research Study (MERS) group or the Waterways Experimental Station (WES) or others were aimed at developing engineering information for design of full-scale vehicles: tanks, trucks, APC's and so on. Large-vehicle problems of ground failure, draw-bar pull and slippage assume less importance, and the questions of obstacle avoidance and gradability take on more importance when very small vehicles operating off-road are considered. A rut or rock wall may be a nuirence to a jeep or tank but a barrier to a much smaller vehicle. As a result, where large-vehicle mobility is generally cast in the framework of macro-terrain features (plains, rugged hills, marshes, etc.) and soll cone index readings*, small-vehicle designers would be concerned more with microfearures: maximum ditch dimensions (depth, width, side slopes), frequency of obstacles encountered, degree of entanglement expected (vines, brush, etc.), and soil cone index.

One means which the Army has used to come to grips with the problem of trafficability of various soils under various condition. is "Soil Trafficability Classification". (Chapter 9, MTrafficability", of U. S. Army Field Manual 30-10, has been reprinted here [see pp E-4 through E-9].)

Each military vehicle is assigned to one of seven categories based on the lowest soil rating cone index which will support the vehicle for 50 passes. This category number is entered on the abscissa of one of three soil trafficability classification charts corresponding to: high topography, wet

^{*} Numerical indication of the carrying ability (resistance to penetration by wheels and tracks of vehicles) of a soil.

season condition; low topography, wet season condition; and low topography, high moisture condition. The ordinate of each chart is a scale of soil types. The probability of the vehicle "going" on level terrain is found depending on which region of the graph the intersection of vehicle category and soil type fails (see Figur 60, p E-6.) As can be seen in Figure 60 a vehicle with a iow category number aiways stands a better chance of making it on any given terrain than one in a higher category. Table 3, Vehicle Categories (page E-8), states that, for Category I, "the M29 Weasel, M76 Otter, and Canadian snowmobile are the only known standard vehicles in this category". Unfortunately, a vehicle cone index is not available for the commercial ATV's, snowmobiles and other special-purpose vehicles described in Appendix D. The best that can be done is to estimate which category a given vehicle might fall into, and then compare it with others on this basis; and because they are generally "small" vehicles, additional emphasis must be given to the small-vehicle problems mentioned before: obstacle/vehicle relative size and frequency of encounter, maximum grades encountered, terrain microstructure (choppiness) and dagree of entanglement expected.

Influence of Sea State and Current on Water Vehicle Performance

The means by which the terrain is characterized for water-borne craft is somewhat more straightforward than for land vehicles. The term "sea state" has come to designate the roughness of the water and air environment under a wide range of wind velocities and wave heights, lengths, and periods. Sea state is an empirically derived numerical index, from 0 to 17 on the Beaufort scale, which correlates wind, waves, and swell into a composite which describes the conditions one would face at sea. The term was derived from observations of waves and wind on the open sea where the "fetch" or length over which a wind acts is very long. However, winds on lakes, ponds and rivers, coupled with currents in flowing waterways, produce surface conditions similar to sea states encountered on the open ocean. The main difference is the general absence of swell (long period waves) in enclosed waters, but swell at sea corresponds to macro-terrain on land and is relatively unimportant so far as small vehicles are concerned.

Thus, a statement that Vessei A can be driven through Sea State 4 while Vessel B can only stand Sea State 3 clearly shows that A Is more seaworthy

than B. Unfortunately, it is very difficult to make such statements accurately simply from observing the size, shape, and construction of a given craft. It may be possible, however, to point out particularly good or bad features on a given vessel which bear on its seaworthiness. The technical assessment of water vehicles concentrates on examining these particular features of the individual craft.

Influence of Terrain on Amphibious Vehicle Performance

Air-cushion vehicles (ACV's), alrboats and the more standard wheeled or tracked amphibious vehicles have been grouped together for our purposes under the generic title "Amphibious Vehicles". Probably the single terrain feature which presents the most difficulty to all of these vehicles equally is a vertical or near-vertical obstacle at the water's edge. This entrance or exit angle is extremely critical for all "classical" amphibious vehicles such as the Army DUKW, BARC, and so on, and becomes a real problem with ACV's when the obstacle height approaches the height of the air entrapment skirt. Other obstacles of a localized nature can usually be avoided by both types of amphibians without much troubie, but the water's edge obstacles - river banks, rice paddy dikes, beach escarpments, or rocky shore lines - can all act as line barriers to amphibious vehicles; this can defeat the mission. These were the major criteria used to judge the relative merits of the various amphibious craft.

Over flat land, the ACV's are capable of much higher speeds than the wheeled or tracked vehicles, which, in turn, have much better gradability than the ACV's.

CHAPTER 9

TRAFFICABILITY

169. Estimating Soils Trafficability

The purpose of this chapter is to assist intelligence and reconnaissance personnel to determine the trafficability of soils to support cross-country movement of military vehicles. Increased emphasis on the military concept of dispersion, which requires cross-country movement has increased the requirement for information on soil trafficability. Most information on trafficability pertains to military vehicles operating on various unfrozen soils in the temperate zones. The procedures for measurement of soil trafficability can also be applied to unfrozen soils that have been subjected to freeze-thaw cycles. An estimate of trafficability can be made with the aid of this chapter if something is known of the general weather conditions, the topography and the soils of the area.

170. Weather and Climate

Information about the weather and climate is available from meteorological vecords, and climatology textbooks, and by interrogation of prisoners. Only two general conditions of weather apply to trafficability estimates, the dry period and the wet period.

- a. Trafficability During Dry Period. During a dry period all soils usually are passable unless the area is low-lying and poorly drained or is kept wet by underground springs. Sand in a dry state is less trafficable than in a wetter condition (with the exception of quicksand).
- b. Trafficability During Wet Period. When moisture is added to a soil its strength is changed. Different soils are affected differently by moisture. During a wet period, all soils with the exception of clean sands and gravels provide poor trafficability. The relative trafficability ratings of soil types under set con-

ditions are given in figure 60. This figure is explained in paragraph 178.

171. Topography

The effects of slopes on soil requirements for vehicle performance can be shown in quantitative units when actual measurements of the cone index (para 174d) can be made. but in estimates of trafficability only general statements concerning slopes are feasible. Slopes require better soil traction conditions for vehicle movement than does level terrain of a similar soil type. Other factors pertaining to trafficability that must be kept in mind are that ridges are generally more trafficable than the adjacent valley, that downhill travel is easier than uphill travel, and that low tire pressure increases traction. During the dry season, sand slopes of approximately 30 percent are impassable. Fine-grained soils and sands with fines which are poorly drained may be trafficable up to a 45 percent slope. During the wet season a 30 percent slope is the maximum that should be tried on any type soil.

172. Soils Maps

Two types of soils maps exist. One type classifies the soils according to the Unified Soil Classification System (USCS), as used in determining trafficability. The second type of soils map employs the agricultural system of soil classification (ASSC). This type is not used by the military. It is mentioned here to avoid confusing it with the USCS. Soils are formed by the action of the following factors: parent material, climate, age, chemical action, topography, and vegetation. A trained analyst can estimate the soil types by using a geologic map, providing he has a general knowledge of the climate, the topography, and the vegetation of the area.

173. Aerial Photographs

The full utilization of aerial photos in estimating trafficability is presently being studied. At present the following information pertaining to trafficability is obtained from aerial photographs.

- a. Topography. Aerial photographs are a good source of topographic information. Estimates of elevations and slopes can be made from stereopairs by properly instructed personnel. Accurate elevations and slopes can be obtained by trained operators using mechanical equipment such as Multiplex and Kelch plotters.
- b. Soils and Moisture Conditions. In the present stage of development, the techniques for identifying soils from airphotos are so complex that only well-trained technicians can employ them to their fullest extent. However, certain general facts may be used to advantage by personnel with a minimum of training. For instance, orchards usually are planted in welldrained, sandy soils; vertical cuts are an evidence of deep loessial (silty) soils; tile drains in agricultural areas indicate the presence of poorly drained soils, probably silts and clays. On a given photo, light color tones generally signify higher elevations, sandier soils, and lower moisture contents than do dark color tones. The same color tone does not always indicate the same soil conditions even on the same photo. Color tone may have entirely different significance on two separate photos. Also, natural tones are apt to be obscured and modified by tones created by vegetation (natural and cultivated), plowed fields, and shadows of clouds.
- c. Vegetation. Dense grass, especially if wet, will cause slipperiness. Tall grass will often restrict visibility. Heavier vegetation such as brush and trees will decrease trafficability if the vehicles must push aside this vegetation as they advance. The presence of vegetation in sands usually stabilizes the soil, thus increasing its trafficability. Decaying vegetation including the roots, found especially in the northern latitudes, adds to the support of the soil if the soil is weak. The limited testing that has been done shows that if the mat of partially decayed vegetation is 6 or more in hes thick

it will support 40 to 50 passes of very light vehicles such as the M29 amphibious cargo carrier. Heavier vehicles will break through after 2 or 3 passes.

d. Obstacles. A complete assessment of the trafficability of a given area must include an evaluation of obstacles such as forests, rivers, boulders, ditches, hedgerows, steep slopes and cliffs, and embankments. Aerial photographs are valuable in identifying these features.

174. Trafficability Terms

- a. Trafficability. The capacity of a soil to withstand traffic of willitary vehicles.
- b. Bearing Capacity. The ability of a soil to support a vehicle without excessive settlement of the vehicle. California Bearing Ratio is used in denoting design values.
- c. Traction Capacity. Ability of a soil to resist the vehicle tread thrust required for steering and propulsion.
- d. Cone Index. A numerical indication of the carrying ability (resistance to penetration by wheels and tracks of vehicles) of a soil. An index of the shearing resistance of soil obtained with the cone penetrometer; a dimensionless number representing resistance to penetration into the soil of a 30° cone with a ½-sq in. base area (actually load in peunds on cone base area in square inches). TM 5-530 discusses this in detail.
- e. Remolding. The changing or working of a soil by traffic, or by a remolding test. Remolding may have a beneficial, neutral, or detrimental effect on soil strength.
- f. Remolding Index. The ratio of remolded soil strength to original strength, determined in accordance with procedures described in TM 5-530.
- g. Rating Cone Index. The measured cone index multiplied by the remolding index; it expresses the soil-strength rating of an area.
- h. Critical Layer. The soil layer in which the rating cone index is considered a significant measure of trafficability, or the layer of soil which is regarded as being most pertinent to establishing relationship between soil strength and vehicle performance. Its depth varies with the weight and type of vehicle and the seil

profile, but it is normally the layer lying 6 or 12 inches below the surface.

- i. Vehicle Cone Index. The index assigned to a given vehicle that indicates the minimum soil strength in terms of rating cone index required to permit 50 passes of the vehicle.
- j. Stickiness. The ability of a soil to adhere to vehicles, wheels, and tracks.
- k. Slipperiness. Low traction capacity of a soil's surface due to its lubrication by water or mud.
- 1. Mobility Index. A dimensionless number which results from a consideration of certain vehicle characteristics.
- m. Maximum Tractive Effort. The maximum continuous towing force or pull a vehicle can exert expressed as a ratio or percentage of its own weight.
- n. Fine-Grained Soil. A soil of which more than 50 percent of the grains, by weight, will pass a No. 200 sieve (Unified Soils Classification System (USCS)).

a: Vehicle category and come index range are disea on table II.

Figure 60. Soil trafficability classification (USCS).

Applies only to wheeled rebicire without traction derices.

- o. Coarse-Grained Soil. A soil of which 50 percent or more of the grains, by weight, will be retained on a No. 200 sieve.
- p. Sand with Fines, Poorly Drained. A sand in which water content greatly influences the trafficability characteristics. These soils react to traffic in a manner similar to fine-grained soils. They usually contain 7 percent or more of material passing the No. 200 sieve, and little or no gravel.

175. Soil Trafficability Table

a. Soil Type Symbols. The soil type symbols used on figure 60 are those employed in the Unified Soil Classification System (USCS). The symbols are given on the extreme left of the figure and also in the graphic portion. The duplication aids in the reading of the graphs. These letter symbols are explained in table 2. Hyphenated letters indicate a mixture of types of soils.

Tabi	le 2.	Soils	Sum	bole

	zavie z. Dolla Dymoula
Symbols	
GW	gravel-sand mixtures, little or no fines.
CD	
GP	fines.
sw	gravelly sands, little or no fines.
8P	gravelly sands, little or no fines.
CR	inorganic clays of high plasticity, fat clays.
GC	gravel-sand-clay mixtures.
8C	sand-clay mixtures.
CL	clays of low to medium plasticity, lean clays, and silty clays.
GM	gravel-sand-silt mixtures.
	sand-silt mixtures.
ML	low plasticity silts.
	inorganic silts, micaceous or diato- maceous fine sandy or silty soils and elastic silts.
OL	of low plasticity.
OH	organic clays of medium to high plas-

ticity and organic silts.

Peat, muck, and awamp soils are not classified in the above list because such soils are almost always impassible except for light amphibious-type vehicles.

b. Strength Measurements. The probable ranges of the cone index (CI), the remolding index (RI), the rating cone index (RCI), and the mean rating cone index are given on figure

60 for those desiring this technical information. For most trafficability purposes this information may be folded out of view to simplify the reading of the remainder of the trafficability chart. Information on the strength measurements is given in TM 5-530.

176. Slipperiness and Stickiness

The information on figure 60 pertaining to stickiness and slipperiness is self-explanatory. The following is general information on each of these two tactors.

- a. Stickiness. No instrument for measuring the effects of stickiness on the performance of vehicles has been devised. Stickiness will occur in all fine-grained soils when they are comparatively wet. The greater the plasticity of soil, the more severe are the effects of stickiness. In general, stickiness will have adverse effect on the speed and facility of travel and steering of all vehicles. It will immobilize small tracked vehicles like the M29 weasel, but will not stop the larger and more powerful military vehicles. Removal of fenders will reduce stickiness effects on some vehicles.
- b. Slipperiness. Like stickiness, the effects of slipperiness cannot be measured quantitatively. Soils which are covered with water or a layer of soft plastic soil usually are slippery and often cause steering difficulty, especially to rubber-tired vehicles. They can often immobilize vehicles, especially when slipperiness is associated with low bearing capacity. Slipperiness effects assume greater significance on slopes. Sometimes slopes whose soil strength is adequate may not be passable because of slipperiness. The use of chains on rubber-tired vehicles usually will be of benefit in slippery conditions.

177. Vehicle Categories

Military vehicles are divided into seven categories according to a cone index range as shown in table 3. These vehicle categories, 1 through 7, are shown at the top of figure 60.

a. Vehicle Cone Index. This index is shown directly below the vehicle category range on figure 60. It is helpful in showing the trafficability of vehicles below category 1 and subdivides each of the seven vehicle categories, especially category 7.

Table 3. Vehicle Categories

Cabsory	Vehicle cone index range	Vehicles
1	20-29	The M29 weasel, M76 Otter, and Canadian snowmobile are the only known standard vehicles in this category.
2	30-49	Engineer and high-speed tractors with comparatively wide tracks and low contact pressures.
3	50-59	The tractors with average contact pressures, the tanks with comparatively low contact pressures and some trailed vehicles with very low contact pressures.
4	60–69	Most medium tauks, fractors with high contact pressures, and all wheel-drive trucks and trailed vehicles with low contact pres- sures.
5	70-79	Most all-wheel-drive trucks, a great number of trailed vehicles, and heavy tanks.
6	80-99	A great number of all-wheel-drive and rear-wheel-drive trucks, and trailed vehicles intended primarily for highway use.
7 100	or greater	Rear-wheel-drive vehicles and others that generally are not expected to operate off roads, especially in wet soils.

- b. Graphic Portion of Figure 60. The legend for the shading of the three graphic portions of figure 60 is given at the bottom part of the figure. The white indicates excellent trafficability, the stippled good, the striped fair, and the black indicates poor to intrafficable soil. The topography and soil conditions are shown in the following three graphs in figure 60.
 - (1) High topography, (higher areas of the terrion) wet-season condition.
 - (2) Low topography, (low areas of the terrain) wet-season condition (saturated).
 - (3) Low topography, high-moisture condition (wet, but below saturation point).

178. Use of Figure 60

a. Mission. You have a rear-wheel drive truck with which to deliver supplies cross country to another area. You have the following information:

- (1) Vehicle cone index: 85
- (2) Topography: level high topography
- (3) Type of soil: clayey sands (SC)
- b. Question. Is this trip feasible from the standpoint of trafficability?
 - c. Procedure in Determining Trafficability.
 - (1) You know that the vehicle cone index of the truck is 85. Table 3 shows the vehicle to be in category 6. The vehicle cone index range (80-99) to the right of the category in table 3 and the written description under vehicles verify the category of your truck.
 - (2) Locate vehicle category 6 at the top of figure 60.
 - (3) Find the vehicle cone index 85. The number 85 must be interpolated on the vehicle cone index line in the space between 80 to 100.
 - (4) Find the soil type SC. This is given under Soil type symbol in the figure, and more conveniently on the graphic portion of the figure.
 - (5) From the 85 (interpolated) on the vohicle cone index, move downward or the high topography, wet-search condition graphic rectangle to the area marked SC. This area is stippled. Your legend at the bottom of figure shows that the trafficability for your vehicle is good in this area. Therefore, the trip is feasible from the standpoint of trafficability. marking around the soil type area or the figure indicates that the trafficability interpretation on the chart has good reliability, as you may no'c in the legend. (Good reliabi"ty, based on analysis of data.)
- d. Trafficability for Same Truck and Soil Type on Low Topography, Wet-Season Condition. From the 85 (interpolated) on the vehicle cone index, move downward into the low topography, wet-season condition graphic restangle to soil type SC. Note that the trafficability is good, as indicated by the stippling Reliability of this trafficability interpretation is fair, based on judgment.
 - c. Trafficability for the Same Truck and

E-9 and E-10

Same Soil Type on Low Topography, High Moisture Condition. From the 85 (interpolated) on the vehicle cone index, move downward into the low topography, high-moisture condition graphic rectangle to soil type SC.

Note that the trafficability is only fair. Had the vehicle cone index been a few points higher, the trafficability would have been poor. The black on this graphic chart indicates poor trafficability and is a warning to "stay off."

151

APPENDIX F

HIGHLIGHTS OF CONFERENCE ON MINIATURE, REMOTELY

CONTROLLED LAND AND WATER VEHICLES

APPENDIX F

CONTROLLED LAND AND WATER VEHICLES

These highlights of the Conference, which was held on June 22, 1972, at Battelie-Columbus, do not reflect the official views of Battelle built rather, present the consensus of the opinion of the participants as well as of individual comments on various togics.

The Conference, attended by 13 individuals representing Government and industry, began with a few, brief Introductor/ remarks. The meeting was then opened to the discussion of remotely controlled (R/C) vehicles. The entire merning session was devoted to concept generation and discussion, while the afternoon was given over to directed discussion of R/C vehicle concepts and to general discussion of potentialities. The following items were covered during the Conference.

Land Vehicles

Mine Detector Mounted on R/C Vehicle. This concept was developed by the Ryan Aeronautical Co., and made use of a Jeep for the vehicle, aithough a more versatile vehicle could be used.

<u>Walking Vehicles</u>. Such a vehicle can be very small and may be used as a bunker invader or as a vehicle to enter places too small or dangerous for a person.

All-Terrain Vehicle (ATV) Capabilities. Problems and advantages of different types of ATV's were discussed. The aspects considered included vehicle size, tracks, wheels, speed, and reliability.

<u>Clandestine Surveillance</u>. The applicability of vehicles and their requirements for such missions were discussed.

Other Considerations. Discussions were conducted covering the use of R/vehicles for kamikaze missions, high-risk missions, EDD missions, engineering missions, and psy-war missions. Included was the use of these vehicles as mobile gun mounts, R/C ground targets, and "Terrastar"-type vehicles.

Water Vehicles

SKAMP-Type Vehicles. These vehicles represent a type which relies chiefly upon the wind for power.

<u>High-Speed Bomb Boats</u>. Although these can be detected by radar and by the eye, they are difficult gunnery targets.

<u>Decoy Boats</u>. Vehicles of this sort are used to disperse radar chaff and to draw fire.

KOMAR-Type Boats. These boats provide over-the-horizon missile platforms.

<u>Drift or Minimal-Control Vehicles</u>. This type of craft could be a drift bomb or could be used to set mines by R/C or to pick up UDT swImmers.

<u>Submersibles</u>. Submersibles are among the most complex of R/C water vehicles, with the communication link being the basic limitation.

Other Considerations. Discussions were conducted in the areas of water vehicle size requirements, model boat technology, and bottom-walker vehicle uses.

Amphibious Vehicles

Air-Cushion Vehicles (ACV). Although this type of vehicle has a speed advantage over conventional boats in marginal waterways, maneuverability is a problem, as is the capability of overcoming obstacles in the vehicle's path.

Air Boats of the Swamp Buggy Type. The ability to apply R/C is limited by problems associated with the boat's speed: water spray and the interaction of the remote pllot with the TV system.

F-3 and F-4

Marsh Screw Vehicles. This type of vehicle is limited to marsh and water, but does fill a mobility gap.

Other Considerations. Included here were comments about a man-lifting platform and a rugged vehicle, which could be washed ashore in surf to disgorge a R/C land vehicle.

R/C Military Vehicles

Both in the directed and general discussions, many pertinent comments were made on topics germane to the development and/or use of R/C military vehicles. The topics of comment and discussion included:

- (1) The use of arrays of R/C units, controlled from a master unit or performing common functions
- (2) The problems. Ilmitations, and capabilities of applying model technology to practical R/C vehicles, and the comparison of model technology to work with systems engineered vehicles
- (3) Problems of working to military specifications and requirements
- (4) The capabilities and limitations of various power sources
- (5) Problems and potential solutions concerned with running gear, command and control systems, the use of TV systems, and telemetry.

Two movies were shown to the attendees. One was a film from the Army Tank-Automotive Command (ATAC) on experimental R/C vehicles. The other was a film concerned with the general development of manipulators and, to some extent, their use with R/C vehicles.