Network, Signals & Systems

Introduction

NeSS

• Hybrid course

Network theory / circuit analysis

Signals & Systems

What are systems?

Examples of systems

An example of a complex system

https://predictabledesigns.com/whats-inside-a-smartphone/

• https://www.electronics-notes.com/articles/connectivity/cellular-mobile-phone/how-cellphone-works-inside-components.php

What are signals?

Examples of signals

Network as an example of system

Study of Signals in NeSS

Study of Systems in NeSS

Scope of NeSS

- Focus on linear systems
- Role of mathematics
- Generality of ECE subjects
- Example CD & CD player

Signals

- Independent vs dependent variable
- Classification of signals
- Complex numbers overview
- Sinusoidal signal
- Fourier series representation

Classification of signals

Continuous-time vs discrete-time

Analog vs Digital

• Deterministic vs Random

Periodic vs A-periodic

Sinusoidal signal

• Parameters – amplitude, frequency, initial phase

Analogy to vectors

- Vector algebra
- Basis vectors
- Dot product or Inner product
- Orthogonality of vectors

• Signals as infinite dimensional vectors

Fourier series (FS) representation

- Sinusoids as basis sum of sinusoids
- Frequency & harmonics

Signals as infinite dimensional vectors

- Inner product definition for signals
- Inner product of sinusoids

Fourier series analysis & synthesis

Analysis equations – find FS coefficients

• Synthesis equation – reconstruction using FS coefficients

• Example: x = 5 given x = 2 given x = 10 x = 10 x = 10

Fourier series analysis

Fourier series synthesis

Square wave FS

https://www.jezzamon.com/fourier/

Fourier series

Odd & Even signals

- Half-wave symmetry
 - https://www.allaboutcircuits.com/technical-articles/the-effect-of-symmetry-on-the-fourier-coefficients/

- Various forms of FS representation
 - Trigonometric
 - Compact trigonometric
 - Complex exponential

Fourier series

- Complex FS & Trigonometric FS
 - Euler's formula

Spectrum

Complex Fourier series

Orthogonality of complex sinusoids

Complex FS symmetry for real signals

Dual representation – Time domain vs Frequency domain

• Examples – square wave, sin(t), cos(t), etc.

Fourier series convergence

- When does the summation converge?
- Valid for ALL* periodic signals?

- Dirichlet conditions
 - Absolutely integrable
 - Finite maxima & minima
 - Finite discontinuities

• Points of discontinuity – Gibbs phenomenon

Fourier series properties

- Linearity
- Time shift
- Time reversal
- Time scaling
- Parseval's relation
- Derivative

Examples

Systems

- How to describe a system? Representation
- Given input to the system, how to find the output? Analysis
- Given input-output description, how to design a system? Design

- System building using basic blocks example systems
 - Scalar
 - Delay
 - Integrator/Accumulator
 - Adder

Elementary signals for system analysis

- Unit impulse signal
 - Dirac delta function
 - Intuition using a limiting pulse

- Impulse input to systems
 - Integrator, scalar, delay

- Unit step signal
 - Relation with unit impulse

Elementary signals for system analysis

Unit impulse & unit step signals

Shifted and scaled impulses

- Properties of unit impulse
 - Sifting property
- System response to unit impulse

Properties of systems

- Memory
- Causality
- Stability
- Linearity (L)
- Time-invariance (TI)

Unit impulse signal

Linear & Time-invariant (LTI) systems

NeSS - Monsoon 2023

Impulse input to an LTI system & convolution

Convolution operator

Convolution properties

Convolution example

Convolution example continued...

Convolution example continued...

Impulse response & convolution representation

• Impulse response can be found using the given system description

• LTI systems fully described by their impulse response

• LTI systems have convolution representation

Non LTI systems will not have this representation

System properties – BIBO stability

BIBO stability of LTI systems

Causality of LTI systems

LTI system eigenfunctions

Laplace transform & LTI systems

Laplace transform basis signals

LT examples

LT examples

LT – poles and zeros

•	Rational		0,	- place		,,47,51	OF N							
		<u>\</u>	x (s)	$=\frac{A}{B}$	(z) (z)		pc	slyno	omial	3 1	n <u>5</u>	s var	i able	
	v60t3	of	the	polyno	mial	2	4 <i>(s</i>	۷ (l B	(s)	are	, jw	portan	7
	roots of	A(s)	r.e.	Y (2)	= 0)	Zei	ros					
	roots of	B(5)	i.e.	B (5)	=0		>	polo	క					
	poles	ore	impo	or tant	ю	deci	de	R	OC					

	*		standard example signals and their LT $ \begin{array}{cccccccccccccccccccccccccccccccccc$
		Se-	$-e^{at}u(-t) \stackrel{LT}{\longleftrightarrow} \frac{1}{S+a} \qquad l Re(S) \leftarrow -a a \in \mathbb{R}$
Laplace		*	S(t) (LT) 1 & complete s-plane
transfor example		*	5 (t-to) (LT) ēsto (
Схаттріс		*	$e^{j\omega t}$ $u(t)$ $\stackrel{L7}{\longleftarrow}$ $\frac{1}{5-j\omega}$ \mathcal{A} $Re(s) > 0$ $\omega \in \mathbb{R}$
		*	$e^{-at}u(t)$ (LT) $\frac{1}{S+a}$ L $Re(5) > -Re(a)$, a complex

Properties of Laplace transform

- Linearity
- Time shift
- Frequency shift
- Time reversal
- Time scaling
- Derivative in time, derivative in frequency
- Integration
- Convolution

Laplace transform – causality & stability

LTI systems – transfer function H(s)

- Causal system
- Stable system
- Causal & Stable systems

Solve the RC circuit using Laplace transform