148.

V/V	e1	e2	e3	e4	e5	e6	e7	e8	е9	e10	e11	e12
e1	0	4	2	1	1	4						
e2	4	0			2		4		4		3	
e3	2		0	4		3	4	3	4	1	4	
e4	1		4	0		1	1		4	4	3	
e5	1	2			0	4	4	2	1	3		
e6	4		3	1	4	0		1	4	1	5	2
e7		4	4	1	4		0	4	1		4	4
e8			3		2	1	4	0			5	1
e9		4	4	4	1	4	1		0			
e10			1	4	3	1				0	4	
e11		3	4	3		5	4	5		4	0	2
e12						2	4	1			2	0

Включаем в S вершину x_1 . $S = \{x_1\}$ Возможные вершины:

- $x2. S={x1,x2}$
- $x_5. S = \{x_1, x_2, x_5\}$
- $x_6. S=\{x_1,x_2,x_5,x_6\}$
- $X3. S = \{X1, X2, X5, X6, X3\}$
- $x_4. S = \{x_1, x_2, x_5, x_6, x_3, x_4\}$
- $x7. S = \{x1, x2, x5, x6, x3, x4, x7\}$
- $x8. S={x1,x2,x5,x6,x3,x4,x7,x8}$
- $X11. S = \{X1, X2, X5, X6, X3, X4, X7, X8, X11\}$
- $x_{10}. S = \{x_{1}, x_{2}, x_{5}, x_{6}, x_{3}, x_{4}, x_{7}, x_{8}, x_{11}, x_{10}\}$

Гамильтонов цикл найден. $S=\{X1,X2,X5,X6,X3,X9,X7,X8,X12,X11,X10,X4\}$

Матрица смежности с перенумерованными вершинами

0	1	1	1	1	0	0	0	0	0	0	1
1	0	1	0	0	1	1	0	0	1	0	0
1	1	0	1	0	1	1	1	0	0	1	0
1	0	1	0	1	1	0	1	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1
0	1	1	1	1	0	1	0	0	0	0	1
0	1	1	0	1	1	0	1	1	1	0	1
0	0	1	1	1	0	1	0	1	1	0	0
0	0	0	1	0	0	1	1	0	1	0	0
0	1	0	1	1	0	1	1	1	0	1	1
0	0	1	1	1	0	0	0	0	1	0	1
1	0	0	1	1	1	1	0	0	1	1	0
	•	•	•	•	•	•	•				

до перенумерации $x_1 \ x_2 \ x_5 \ x_6 \ x_3 \ x_9 \ x_7 \ x_8 \ x_{12} \ x_{11} \ x_{10} \ x_4$ после перенумерации $x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ x_9 \ x_{10} \ x_{11} \ x_{12}$

Построение графа пересечений G'

Определим p210, для чего в матрице R выделим подматрицу R210.

Ребро (x2x10) пересекается с (x1x3),(x1x4),(x1x5)

Определим p27, для чего в матрице R выделим подматрицу R27.

Ребро (x2x7) пересекается c(x1x3),(x1x4),(x1x5)

Определим p26, для чего в матрице R выделим подматрицу R26.

Ребро (х2х6) пересекается с (х1х3),(х1х4),(х1х5)

Определим p311, для чего в матрице R выделим подматрицу R311.

Ребро (x3x11) пересекается с (x1x4),(x1x5),(x2x6),(x2x7),(x2x10)

Определим p38, для чего в матрице R выделим подматрицу R38.

Ребро (х3х8) пересекается с (х1х4),(х1х5),(х2х6),(х2х7)

Определим p37, для чего в матрице R выделим подматрицу R37.

Ребро (х3х7) пересекается с (х1х4),(х1х5),(х2х6)

Определим p36, для чего в матрице R выделим подматрицу R36.

Ребро (x3x6) пересекается с (x1x4),(x1x5)

Определим p412, для чего в матрице R выделим подматрицу R412.

Ребро (х4х12) пересекается с

(x1x5),(x2x6),(x2x7),(x2x10),(x3x6),(x3x7),(x3x8),(x3x11)

Определим p411, для чего в матрице R выделим подматрицу R411.

Ребро (х4х11) пересекается с (х1х5),(х2х6),(х2х7),(х2х10),(х3х6),(х3х7),(х3х8)

Определим p410, для чего в матрице R выделим подматрицу R410.

Ребро (x4x10) пересекается с (x1x5),(x2x6),(x2x7),(x3x6),(x3x7),(x3x8)

Определим р49, для чего в матрице R выделим подматрицу R49.

Ребро (х4х9) пересекается с (х1х5),(х2х6),(х2х7),(х3х6),(х3х7),(х3х8)

Определим p48, для чего в матрице R выделим подматрицу R48.

Ребро (x4x8) пересекается с (x1x5),(x2x6),(x2x7),(x3x6),(x3x7)

Найдено 15 пересечений

	p 13	p 2 10	p1 4	p 1 5	p ₂ 7	p 2 6	p 3 11	p 3 8	p 3 7	p3 6	p 4 12	p 4 11	p 4 10	p 4 9	p4 8
p 1 3	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0
p ₂ 10	1	1	1	1	0	0	1	0	0	0	1	1	0	0	0
p1 4	0	1	1	0	1	1	1	1	1	1	0	0	0	0	0
p 1 5	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1
p 2 7	1	0	1	1	1	0	1	1	0	0	1	1	1	1	1
p ₂ 6	1	0	1	1	0	1	1	1	1	0	1	1	1	1	1
p 3 11	0	1	1	1	1	1	1	0	0	0	1	0	0	0	0
p 38	0	0	1	1	1	1	0	1	0	0	1	1	1	1	0
p 3 7	0	0	1	1	0	1	0	0	1	0	1	1	1	1	1
p 3 6	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1
p4 12	0	1	0	1	1	1	1	1	1	1	1	0	0	0	0
p4 11	0	1	0	1	1	1	0	1	1	1	0	1	0	0	0
p4 10	0	0	0	1	1	1	0	1	1	1	0	0	1	0	0
p 4 9	0	0	0	1	1	1	0	1	1	1	0	0	0	1	0
p4 8	0	0	0	1	1	1	0	0	1	1	0	0	0	0	1

Построение семейства ф

```
В 1 строке ищем первый нулевой элемент - r1 3. Записываем дизъюнкцию
M1 3=r1Vr3=110011000000000V0110111111100000=1110111111100000 В строке М1 3 находим номера
нулевых элементов, составляем список Ј'={4,11,12,13,14,15}. Записываем дизъюнкцию
ψ1={u1 3,u1 4,u1 5} Записываем дизъюнкцию
номера нулевых элементов, составляем список Ј'={12,13,14,15}. Записываем дизъюнкцию
находим номера нулевых элементов, составляем список Ј'={13,14,15}. Записываем дизъюнкцию
М1 3 11 12 13 находим номера нулевых элементов, составляем список Ј'={14,15}. Записываем
строке М1 3 11 12 13 14 находим номера нулевых элементов, составляем список Ј'={15}. Записываем
дизъюнкцию
M1 3 11 12 13 14 15 все 1. Построено ψ2={u1 3,u1 4,u4 12,u4 11,u4 10,u4 9,u4 8} Записываем дизъюнкцию
М1 3 11 12 13 15 остались незакрытые 0. Записываем дизъюнкцию
М1 3 11 12 14 находим номера нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет ноль
на 13 позиции. Записываем дизъюнкцию
М1 3 11 12 15 остались незакрытые 0. Записываем дизъюнкцию
находим номера нулевых элементов, составляем список Ј'={14,15}. Строки 14, 15 не закроют ноль на 12
позиции. Записываем дизъюнкцию
находим номера нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет нули на позициях
12, 13 Записываем дизъюнкцию
остались незакрытые 0. Записываем дизъюнкцию
номера нулевых элементов, составляем список Ј'={13,14,15}. Строки 13, 14, 15 не закроют ноль на 11
позиции. Записываем дизъюнкцию
номера нулевых элементов, составляем список Ј'={14,15}. Строки 14, 15 не закроют нули на позициях 11,
строке М1 3 14 находим номера нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет нули
на позициях 11, 12, 13 Записываем дизъюнкцию
незакрытые 0. Записываем дизъюнкцию
М1 7 находим номера нулевых элементов, составляем список Ј'={8,9,10,12,13,14,15}. Записываем
находим номера нулевых элементов, составляем список Ј'={9,10,15}. Записываем дизъюнкцию
номера нулевых элементов, составляем список Ј'={10}. Записываем дизъюнкцию
1. Построено ψ3={u1 3,u3 11,u3 8,u3 7,u3 6} Записываем дизъюнкцию
незакрытые 0. Записываем дизъюнкцию
Построено \psi4={u1 3,u3 11,u3 8,u4 8} Записываем дизъюнкцию
нулевых элементов, составляем список Ј'={10}. Строка 10 не закроет ноль на 8 позиции. Записываем
```

дизъюнкцию M1 7 10=M1 7Vr10=1111111100010000V001100000111111=111111100111111 В строке M1 7 10

```
остались незакрытые 0. Записываем дизъюнкцию
номера нулевых элементов, составляем список Ј'={13,14,15}. Записываем дизъюнкцию
находим номера нулевых элементов, составляем список Ј'={14,15}. Записываем дизъюнкцию
М1 7 12 13 14 находим номера нулевых элементов, составляем список Ј'={15}. Записываем дизъюнкцию
M1 7 12 13 14 15 все 1. Построено ψ5={u1 3,u3 11,u4 11,u4 10,u4 9,u4 8} Записываем дизъюнкцию
М1 7 12 13 15 остались незакрытые 0. Записываем дизъюнкцию
находим номера нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет ноль на 13 позиции.
В строке М1 7 12 15 остались незакрытые 0. Записываем дизъюнкцию
номера нулевых элементов, составляем список Ј'={14,15}. Строки 14, 15 не закроют ноль на 12 позиции.
строке М1 7 14 находим номера нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет нули
на позициях 12, 13 Записываем дизъюнкцию
незакрытые 0. Записываем дизъюнкцию
M1 8=r1Vr8=110011000000000V001111010011110=1111111010011110 В строке М1 8 находим номера
нулевых элементов, составляем список Ј'={9,10,15}. Строки 9, 10, 15 не закроют ноль на 7 позиции.
Записываем дизъюнкцию M1 9=r1Vr9=11001100000000V001101001011111=1111111001011111 В строке
М1 9 находим номера нулевых элементов, составляем список Ј'={10}. Строка 10 не закроет нули на
позициях 7, 8 Записываем дизъюнкцию
M1 10=r1Vr10=110011000000000V001100000111111=1111111000111111 В строке М1 10 остались незакрытые
строке М1 11 находим номера нулевых элементов, составляем список Ј'={12,13,14,15}. Строки 12, 13, 14,
15 не закроют ноль на 3 позиции. Записываем дизъюнкцию
нулевых элементов, составляем список Ј'={13,14,15}. Строки 13, 14, 15 не закроют нули на позициях 3, 7,
строке М1 13 находим номера нулевых элементов, составляем список Ј'={14,15}. Строки 14, 15 не закроют
нули на позициях 3, 7, 11, 12 Записываем дизъюнкцию
нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет нули на позициях 3, 7, 11, 12, 13
М1 15 остались незакрытые 0. В 2 строке ищем первый нулевой элемент - r2 5. Записываем дизъюнкцию
M2 5=r2Vr5=111100100011000V101110110011111=111110110011111 В строке M2 5 находим номера
нулевых элементов, составляем список Ј'={6,9,10}. Записываем дизъюнкцию
нулевых элементов, составляем список Ј'={10}. Записываем дизъюнкцию
Построено ψ6={u2 10,u2 7,u2 6,u3 6} Записываем дизъюнкцию
нулевых элементов, составляем список Ј'={10}. Записываем дизъюнкцию
Построено ψ7={u2 10,u2 7,u3 7,u3 6} Записываем дизъюнкцию
M2 5 10=M2 5Vr10=1111101100111111V001100000111111=111110110111111 В строке M2 5 10 остались
незакрытые 0. Записываем дизъюнкцию
M2 6=r2Vr6=111100100011000V1011011111011111=11110111111 В строке M2 6 находим номера
нулевых элементов, составляем список Ј'={10}. Строка 10 не закроет ноль на 5 позиции. Записываем
номера нулевых элементов, составляем список Ј'={9,10,15}. Записываем дизъюнкцию
нулевых элементов, составляем список Ј'={10}. Записываем дизъюнкцию
```

Построено ф8={u2 10,u3 8,u3 7,u3 6} Записываем дизъюнкцию

M2 9=r2Vr9=111100100011000V001101001011111=1111011010111111 В строке M2 9 находим номера нулевых элементов, составляем список J'={10}. Строка 10 не закроет нули на позициях 5, 8 Записываем дизъюнкцию M2 10=r2Vr10=111100100011000V001100000111111=111100100111111 В строке M2 10 остались незакрытые 0. Записываем дизъюнкцию


```
ψ1={u1 3,u1 4,u1 5}

ψ2={u1 3,u1 4,u4 12,u4 11,u4 10,u4 9,u4 8}

ψ3={u1 3,u3 11,u3 8,u3 7,u3 6}

ψ4={u1 3,u3 11,u3 8,u4 8}

ψ5={u1 3,u3 11,u4 11,u4 10,u4 9,u4 8}

ψ6={u2 10,u2 7,u2 6,u3 6}

ψ7={u2 10,u2 7,u3 7,u3 6}

ψ8={u2 10,u3 8,u3 7,u3 6}

ψ9={u2 10,u3 8,u4 8}

ψ10={u2 10,u4 10,u4 9,u4 8}

ψ11={u1 5}
```

Выделение из G' максимального двудольного подграфа Н'

Для каждой пары множеств вычислим значение критерия $\alpha_{\gamma\beta} = |\psi_{\gamma}| + |\psi_{\beta}| - |\psi_{\gamma} \cap \psi_{\beta}|$

	1	2	3	4	5	6	7	8	9	10	11
1	0	8	7	6	8	7	7	7	6	7	3
2		0	11	9	8	11	11	11	9	8	8
3			0	6	9	8	7	6	7	9	6
4				0	7	8	8	7	5	7	5
5					0	10	10	10	8	7	7
6						0	5	6	6	7	5
7							0	5	6	7	5
8								0	5	7	5
9									0	5	4
10										0	5
11											0

Max $\alpha \gamma \delta = \alpha_{23} = \alpha_{26} = \alpha_{27} = \alpha_{28} = 11$

Дают пары множеств:

 $\psi 2, \psi 3$

ψ2, ψ6

ψ2, ψ7

ψ2, ψ8

Возьмем множества ψ 2, ψ 3

 ψ 2={u1 3,u1 4,u4 12,u4 11,u4 10,u4 9,u4 8} ψ 3={u1 3,u3 11,u3 8,u3 7,u3 6} В сурграфе Н, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ 2, проводим внутри гамильтонова цикла, а в ψ 3 – вне его.

Удалим из $\Psi G'$ ребра, вошедшие в $\psi 2$ и $\psi 3$: $\psi 1 = \psi 11 = \{u15\}$ $\psi 6 = \{u210, u27, u26\}$ $\psi 7 = \{u210, u27\}$

 ψ 9= ψ 8 = ψ 10={u2 10}

Объединим одинаковые множества, остались нереализованные ребра

ψ1={u1 5}

 ψ 6={u2 10, u2 7, u2 6}

 ψ 7={u2 10, u2 7 }

 $\psi 8 = \{u2\ 10\}$

Мах αγδ = α16 = 4 дают пары множеств : ψ1 ψ6

	1	6	7	8
1	0	4	3	2
6		0	3	3
7			0	2
9				0

Возьмем множества ψ8={u5 12 } и ψ11={u2 6,u1 6,u6 12}

ψ1={u1 5} ψ6={u2 10, u2 7, u2 6}

В сурграфе Н, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ1, проводим внутри гамильтонова цикла, а в ψ6 – вне его.

Удалим из Ψ g' ребра, вошедшие в $\psi 1$ и $\psi 6$

Оставшихся нереализованных ребер нет. Толщина графа 2. Все ребра реализованы

