Docente/i

Luigi Orsina / Adriana Garroni

Limiti di funzioni

Teorema Ponte

Valgono tutti i teoremi già visti con i limiti di successioni

I TEOREMI VALGONO <u>FORMALMENTE</u> A + ∞ , QUINDI SE ANDIAMO A $-\infty$ DOBBIAMO USARE IL CAMBIO DI VARIABILE y=-x

Cambio di variabile

Se ad esempio ho:

$$\lim_{x \to 3} \frac{sen(3x)}{3x} \text{ poniamo } t = x - 3 \text{ cioè } x \to 3, \ t = 3 - 3 = 0$$

$$\lim_{t\to 0} \frac{sen(t)}{t} = 1 \text{ per il teorema dei limiti notevoli } se \ a_n \to 0, \frac{sen(a_n)}{a_n} = 1$$

Esistenza di un punto

$$\lim_{x \to x_0^-} f(x) \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

Continuità su X

$$f: \Re \to \Re x_0 \in \Re \text{ Allora } f \text{ è continua in } x_0 \text{ se } \lim_{x \to x_0} f(x) = f(x_0)$$

cioè deve valere
$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

Continuità su R/E

$$f \colon \Re \to \Re x_0 \in \Re$$

Allora f è continua su \Re/E se è continua in x_0 , $\forall x_0 \in \Re/E$

$$\Rightarrow \forall x_0 \in \Re/E, \lim_{x \to x_0} f(x) = f(x_0)$$

Operazioni tra funzioni continue

Se $f \ e \ g$ sono due funzioni continue allora lo sono anche

$f \pm g$	f * g	$\frac{f}{g}$, $g \neq 0$
f^{g}	$f\left(g(x)\right)$	

Esistenza degli 0

Sia $f: [a, b] \to \Re$ continua in [a, b]Se f(a) * f(b) < 0 allora $\exists_c \in [a, b]: f(c) = 0$

Weierstrass

Sia $f: [a,b] \to \Re$ una funzione <u>continua</u> in [a,b] <u>intervallo chiuso e limitato</u> Allora $\exists_{x_m x_M} \in [a,b]$: $min(f(x)) = m = f(x_m) \leq f(x_M) = M = max(f(x))$ Con $max \ e \ min \ riferiti \ ad \ [a,b]$

Valori intermedi generalizzato

Se
$$f: \Re \to \Re$$
 è continua e $\lim_{x \to +\infty} f(x) = \pm \infty; \lim_{x \to -\infty} f(x) = \overline{+} \infty$ allora $f(\Re) = \Re$ cioè $f(x)$ è suriettiva cioè $\forall t \in \Re$, $\exists x_t \in \Re$: $f(x_t) = t$

Derivate

Definizione

La derivata è il limite di h (incremento) che tende a 0 del rapporto incrementale:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Regole

Moltiplicazione per costante	Dkf(x) = kf'(x)
Somma / Differenza	$D f(x) \pm g(x) = f'(x) \pm g'(x)$
Moltiplicazione	D f(x)g(x) = f(x)g'(x) + f'(x)g(x)
Divisione	$D \frac{f(x)}{g(x)} = \frac{f(x)g'(x) - f'(x)g(x)}{g(x)^2}$

_			
Fun	zione	com	nosta
i di	210110	00111	poota

$$D f(g(x) = f'(g(x))g'(x)$$

Elementari (log = ln)

$D[x^n] = nx^{n-1}, n \in \aleph$	$D[tg(x)] = \frac{1}{\cos^2(x)}$
$D[x^{\alpha}] = \alpha x^{\alpha-1}, \ \alpha \in \Re$	$D[log(x)] = \frac{1}{x}$
$D[e^x] = e^x$	$D[arctg(x)] = \frac{1}{x^2 + 1}$
D[sen(x)] = cos(x)	$D[arcsen(x)] = \frac{1}{\sqrt{1-x^2}}$
D[cos(x)] = - sen(x)	$D[arccos(x)] = -\frac{1}{\sqrt{1-x^2}}$

Continuità e derivabilità

Se una funzione è derivabile in un punto allora sicuramente è continua Se è continua però non è sicuramente derivabile

o piccolo

Si dice o(h) [o piccolo di h] una qualsiasi quantità tale che $\lim_{h\to 0} \frac{o(h^m)}{h^n} = 0$

Esempio

$$\lim_{h \to 0} \frac{h^{2}}{h} = \lim_{h \to 0} h = 0, h^{2} = o(h)$$

$$\lim_{h\to 0} \frac{h}{h} = 1, h \neq o(h)$$

Se
$$\exists_m \in \Re: f(x_0 + h) = f(x_0) + mh + o(h) \Rightarrow f$$
 è derivabile in x_0 e $m = f'(x_0)$

Proprietà o piccolo

$$h^{k} * o(x^{n}) = o(x^{n+k})$$

 $o(x^{k}) * o(x^{n}) = o(x^{n+k})$
 $o(x^{n}) \pm o(x^{n}) = o(x^{n})$
 $Mo(x^{n}) = o(x^{n}), M \in \Re$

Funzioni non derivabili

1.
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} \notin \Re$$
, f non è derivabile in x_0

2.
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \to \pm \infty f$$
 non è derivabile in x_0

Se una funzione è definita in un punto non bisogna mai derivare in quel punto

Lagrange

Sia $f: [a, b] \to \Re$ una funzione <u>continua</u> e <u>derivabile</u> in [a, b]Allora $\exists_c \in [a, b]: f'(c) = \frac{f(b) - f(a)}{b - a}$

Rollè

Sia f una funzione continua in [a, b], derivabile in (a, b). Se $f(a) = f(b) \Rightarrow \exists_c \in (a, b): f'(c) = 0$

Monotonia

f è crescente se:

$$\frac{f(x) - f(y)}{x - y} \ge 0 \ \forall x \ne y \in [a, b]$$

f è decrescente se:

$$\frac{f(x) - f(y)}{x - y} \le 0 \ \forall x \ne y \in [a, b]$$

Cioè:

f è crescente e derivabile $\Leftrightarrow f'(x) \ge 0$ f è decrescente e derivabile $\Leftrightarrow f'(x) \le 0$

Esistenza dei massimi e minimi

Se $f: \Re \to \Re$ continua

• $\lim_{x \to +\infty} f(x) = \pm \infty$; $\lim_{x \to -\infty} f(x) = \mp \infty \Rightarrow f(\Re) = \Re \Rightarrow$

Generalizzazione valori intermedi

• $\lim_{x \to \pm \infty} f(x) = + \infty$, $\exists_m = \min(\{f(x), x \in \Re\}) \Rightarrow f(\Re) = [m, + \infty] \Rightarrow$

Generalizzazione Weierstrass

 $\bullet \quad \lim_{x \to \pm \infty} f(x) = - \infty, \ \exists_{M} = \max(\{f(x), \ x \in \Re\}) \ \Rightarrow f(\Re) = [- \infty, \ M] \Rightarrow$

Generalizzazione Weierstrass

Massimi e minimi assoluti e relativi su un intervallo

In un intervallo [a, b] dopo aver studiato il segno della derivata prima possiamo conoscere massimi e minimi assoluti e relativi.

I massimi e minimi relativi sono i punti stazionari.

I massimi e minimi assoluti vanno calcolati studiando:

f(a), f(b), $f(x_0)$, $f(x_1)$..., $f(x_n)$ dove x_n sono i punti stazionari presenti nell'intervallo.

Il massimo assoluto sarà il valore più grande $max(\{f(x), x \in [a, b]\})$ e il minimo assoluto $min(\{f(x), x \in [a, b]\})$

Retta tangente

Equazione: $y = f(x_0) + f'(x_0)(x - x_0) \cos x_0$ valore dato.

Taylor

Polinomio

Il polinomio di Taylor di un polinomio è rappresentato da tutti i monomi di grado inferiore o uguale al polinomio di Taylor richiesto.

Formula Generica

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n)$$

Taylor di grado superiore al grado massimo

Se ho un polinomio di grado n, tutti i polinomi di Taylor di ordine maggiore di n sono uguali a T_n .

Esempio

$$f(x) = 3x^{2} - 3x + 7$$

$$T_{2}(f(x); 0) = 3^{2} - 3x + 7$$

$$T_{2} = T_{3} = T_{4} = T_{5} = T$$

VALE SOLO CON POLINOMI DELLA FORMA STANDARD!

Esempio non vale con $e^{6x} - sen(2x) \Rightarrow T_1 \neq T_2$

Notevoli (con $x_0 = 0$)

e^x	$1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n!} + o(x^n)$
sin x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$
cos x	$1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$
tan x	$x + \frac{x^3}{3} + \frac{2}{15}x^5 + \frac{17}{315}x^7 + o(x^8)$
log(1 + x)	$x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$
$\frac{1}{1-x}$	$1 + x + x^2 + \ldots + x^n + o(x^n)$
arcsin x	$x + \frac{x^3}{6} + \frac{3}{40}x^5 + \dots + \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} + o(x^{2n} + 2)$
arccos x	$\frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3}{40}x^5 - \dots - \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} + o(x^{2n} + 2)$
arctan x	$x - \frac{x^3}{3} + \frac{x^5}{5} + \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n} + 2)$

 $\left(1+x\right)^{\alpha} \qquad \left[1+\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+\ldots+\frac{\alpha}{n}x^n+o(x^n)\right]$