PH126 Logic I · Lecture 2

Lecturer: s.butterfill@warwick.ac.uk

Identity: two principles

If b=c then whatever is true of b is also true of c

a=a is never false

Truth tables and some truth functional connectives

Rough guide:

'A' means and

'V' means or

'¬' means not

P	Q	$P \wedge Q$	PvQ
Т	T	T	Т
T	F	F	T
F	T	F	T
F	F	F	F

The *truth value* of a sentence is true (T) when the sentence is true and false (F) when the sentence is false.

Truth tables can be used to show that an argument is valid. For example:

Truth tables for this argument

Р	Q	$P \lor Q$	¬P	Q
Т	Т	Т	F	T
Т	F	Т	F	F
F	T	Т	Т	T
F	F	F	Т	F
		^ premise	^ premise	^ conclusion

Terminology

A *connective* joins one or more sentences to make a new sentence. E.g. 'because', '¬'

The sentences joined by a connective *constituent sentences*.

E.g. in ' $P \wedge Q$ ', \wedge is the connective P, Q are the constituent sentences

Complex Truth Tables: an example

Р	Q	$\neg (P \land Q)$
Т	T	F (T)
Т	F	T (F)
F	T	T (F)
F	F	T (F)

Logical Validity

Argument 3

Argument 3b

$$\begin{array}{c|c} 1. & & \\ 2. & & P \lor \neg P \end{array}$$

Argument 4

1.
$$\vdash P \land \neg P$$

2. $\vdash (P \land Q) \lor R$

 $P \lor \neg P$ is a *logical truth* (see p. 568)

 $P \land \neg P$ is a contradiction (see p. 564)