Киевский национальный университет имени Тараса Шевченко Таврический национальный университет имени В. И. Вернадского

> М. А. МУРАТОВ В. Л. ОСТРОВСКИЙ Ю. С. САМОЙЛЕНКО

КОНЕЧНОМЕРНЫЙ ЛИНЕЙНЫЙ АНАЛИЗ І. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В КОНЕЧНОМЕРНЫХ ГИЛЬБЕРТОВЫХ (УНИТАРНЫХ) ПРОСТРАНСТВАХ (Н)

Учебное пособие

Киев «Центр учебной литературы» 2012 УДК 512.64 ББК 22.143 М91

Рекомендовано министерством образования и науки Украины как учебное пособие для студентов высших учебных заведений (письмо №1/11-4851 от 10.04.2012)

Рецензенты:

Горбачук Мирослав Львович, доктор физ.-мат. наук, член-корреспондент НАН Украины, профессор, зав. отделом дифференциальных уравнений с частными производными института математики НАН Украины.

Копаческий Николай Дмитриевич, доктор физ.-мат. наук, профессор, зав. кафедрой математического анализа Таврического национального университета им. В. И. Вернадского.

Шевчук Игорь Александрович, доктор физ.-мат. наук, профессор, заведующий кафедрой математического анализа Киевского национального университета имени Тараса Шевченко.

Муратов М.А.

М91 Конечномерный линейный анализ. І. Линейные операторы в конечномерных гильбертовых (унитарных) пространствах (Н): Учебное пособие / Муратов М.А., Островский В.Л., Самойленко Ю.С. — Киев: Центр учебной литературы, 2012. — 174 с.

ISBN 978-966-2578-29-4

Учебное пособие I(H) посвящено теории линейных операторов в конечномерных гильбертовых пространствах. Основано на курсах, которые читались авторами в Киевском национальном университете имени Тараса Шевченко и Таврическом национальном университете имени В.И.Вернадского.

Для математиков, физиков, а также аспирантов и студентов соответствующих специальностей.

Библиография: 17 назв.

УДК 512.64 ББК 22.143

Оглавление

Π	Предисловие				
Введение					
1	Унитарные пространства				
	1.1	Конечномерные гильбертовы (унитарные) пространства	7		
	1.2	Ортогональные системы векторов. Базисы	10		
	1.3	Подпространства гильбертова пространства	19		
	1.4	Системы векторов. Матрица Грама	24		
2	Линейные операторы в Н и их матрицы 2				
	2.1	Линейные операторы в Н	29		
	2.2	Норма линейного оператора в Н. Свойства нормы	32		
	2.3	Резольвента. Спектральный радиус	35		
	2.4	Матричное представление линейного оператора в ортонор-			
		мированном базисе	45		
	2.5	Сопряженный линейный оператор	48		
3	Самосопряженные операторы				
	3.1	Самосопряженные операторы в H и их матрицы	52		
	3.2	Ортопроекторы	55		
	3.3	Собственные значения и собственные векторы самосопря-			
		женного оператора	63		
	3.4	Спектральная теорема для самосопряженного оператора	65		
	3.5	Коммутирующие самосопряженные операторы	69		
	3.6	Неотрицательные операторы в $\mathcal{B}(\mathbf{H})$ и их спектр	72		
	3.7	Функциональное исчисление для самосопряженного оператора	77		
4	Унитарные операторы				
	4.1	Унитарные операторы и изометрии	92		

	4.2	Спектральная теорема для унитарного оператора	98
	4.3	Функциональное исчисление для унитарного оператора	104
	4.4	Однопараметрические группы унитарных операторов	108
5	Hop	омальные операторы	113
	5.1	Нормальные операторы и пары коммутирующих самосопря-	
		женных операторов	113
	5.2	Спектральная теорема для нормального оператора	115
	5.3	Функциональное исчисление для нормального оператора	122
	5.4	Операторы, коммутирующие с нормальным оператором	123
6	Hec	самосопряженные операторы	128
	6.1	Частичные изометрии	129
	6.2	Полярное разложение линейного оператора	
	6.3	Центрированные операторы	138
	6.4	Треугольное представление матрицы линейного оператора .	144
	6.5	Сингулярные числа линейного оператора	149
7	*-A	лгебры. Инволюции в алгебрах $B(\mathbf{H})$ и $\mathcal{M}_n(\mathbb{C})$	157
	7.1	Понятие *-алгебры. *-Идеалы	157
	7.2	Инволюции на конечномерных алгебрах	
	7.3	Инволюции в алгебре $\mathcal{M}_n(\mathbb{C})$	162
Лı	итер	атура	167
Предметный указатель			

Предисловие

- 1. Первоначальная цель авторов была написать ряд учебных пособий, посвященных линейным операторам, наборам линейных операторов и наборам линейных подпространств в конечномерных гильбертовых (унитарных) пространствах (пособия с пометкой (Н)). Но начав работу, мы пришли к мысли, что эти пособия являются частью единого текста, состоящего из пособий с пометкой (L), посвященных операторам, наборам операторов и наборам подпространств в конечномерных линейных пространствах и соответствующих пособий с пометкой (Н).
- 2. Основная цель авторов написать ряд учебных пособий (L) по структурной теории операторов, наборов операторов и наборов подпространств в конечномерных линейных пространствах, и (H) по структурной теории линейных операторов, наборов операторов и наборов подпространств в конечномерных гильбертовых пространствах.

Настоящее пособие I(H) содержит материал, посвященный изложению основ гильбертового анализа в конечномерных гильбертовых (унитарных) пространствах. Его текст содержит упражнения, которые позволяют читателю убедиться в понимании изложенного материала и дополняют его.

3. Главная же цель авторов — написать ряд пособий, понятных и полезных студентам, аспирантам и научным работникам.

Мустафа Абдурешитович Муратов Василий Львович Островский Юрий Стефанович Самойленко

Введение

Основная цель авторов — пособие (H), посвященное наборам линейных операторов и наборам подпространств в конечномерных гильбертовых (унитарных) пространствах. Её нельзя реализовать без соответствующего изложения основ теории линейных операторов в конечномерных гильбертовых (унитарных) пространствах. Поэтому пособие (H) содержит часть I, посвященную более или менее стандартным темам конечномерного функционального анализа, часть II, посвященную структурной теории наборов операторов в H, и часть III, посвященную наборам подпространств в H.

Главы 1–5 настоящего пособия I(H) содержат материал, посвященный стандартным темам теории линейных операторов в конечномерном гильбертовом (унитарном) пространстве, включая спектральные разложения самосопряженных, унитарных и нормальных операторов. Главы 6–7 пособия I(H) содержат менее стандартный материал, посвященный классам линейных операторов в конечномерном гильбертовом пространстве: частично изометрическим, центрированным операторам и др., и их свойствам, а также материал об инволютивных алгебрах и инволюциях в алгебре $\mathcal{M}_n(\mathbb{C})$.

Текст каждой главы содержит упражнения, которые дополняют его. При использовании ссылок на другие части пособия указывается также номер части, например, теорема I(L).2.3.3 — это теорема 2.3.3 пособия I(L).

Глава 1

Унитарные пространства

1.1 Конечномерные гильбертовы (унитарные) пространства

Пусть V — конечномерное векторное пространство над полем $\mathbb C$ комплексных чисел.

Определение 1.1.1. Числовая функция

$$(\cdot,\cdot)\colon \mathbf{V}\times\mathbf{V}\to\mathbb{C}$$

называется $\mathit{cкалярным}$ $\mathit{npoussedehuem}$ в \mathbf{V} , если она удовлетворяет следующим аксиомам:

- (i) $(\mathbf{x}, \mathbf{x}) \ge 0$ для любого $\mathbf{x} \in \mathbf{V}, \ (\mathbf{x}, \mathbf{x}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{0};$
- (ii) $(\mathbf{x}, \mathbf{y}) = \overline{(\mathbf{y}, \mathbf{x})}, \ \mathbf{x}, \mathbf{y} \in \mathbf{V};$

(iii)
$$(\alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z}) = \alpha(\mathbf{x}, \mathbf{z}) + \beta(\mathbf{y}, \mathbf{z}), \ \mathbf{x}, \mathbf{y}, \mathbf{z}, \in \mathbf{V}, \ \alpha, \beta \in \mathbb{C}.$$

Определение 1.1.2. Конечномерное векторное пространство **V** со скалярным произведением (\cdot,\cdot) называется *унитарным пространством* или конечномерным гильбертовым пространством.

Мы будем в дальнейшем конечномерные гильбертовы (унитарные) пространства обозначать через **H**.

Рассмотрим примеры скалярных произведений в конкретных векторных пространствах.

Пример 1.1.3. $\mathbf{H} = \mathbb{C}^n$. Если $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n, \mathbf{x} = (\alpha_1, \dots, \alpha_n), \mathbf{y} = (\beta_1, \dots, \beta_n),$

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \alpha_i \bar{\beta}_i.$$

Пример 1.1.4. $\mathbf{H} = \mathcal{P}_n[a,b]$ — множество всех полиномов вида

$$p(t) = \alpha_n t^n + \alpha_{n-1} t^{n-1} + \dots + \alpha_1 t + \alpha_0,$$

 $t \in [a, b] \subset \mathbb{R}, \ \alpha_i \in \mathbb{C}, \ i = 0, \dots, n$, степени которых не превосходят n, с обычными операциями сложения полиномов и умножения их на комплексное число. Если $p(t), \ q(t) \in \mathcal{P}_n[a, b]$, то

$$(p,q) = \int_{a}^{b} p(t) \overline{q(t)} dt.$$

Отметим, что скалярные произведения в этих пространствах можно задавать по другому. Например:

$$(\mathbf{x}, \mathbf{y})_p = \sum_{i=1}^n p \,\alpha_i \bar{\beta}_i, \quad p > 0, \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^n;$$
$$(p, q)_\tau = \int_a^b p(t) \,\overline{q(t)} \,\tau(t) dt, \quad p(t), q(t) \in \mathcal{P}_n[a, b],$$

где $\tau(t)$ — измеримая интегрируемая функция на [a,b], такая, что $\tau(\cdot)>0$ почти везде на [a,b].

Упражнение 1.1.5. Найти общий вид скалярного произведения в пространствах \mathbb{C} и \mathbb{C}^2 .

Определение 1.1.6. Число

$$\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}$$

называется нормой вектора $\mathbf{x} \in \mathbf{H}$.

Замечание 1.1.7. Функция $\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}$ удовлетворяет аксиомам нормы, т.е.

(i)
$$\|\mathbf{x}\| \ge 0$$
, $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$;

- (ii) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$;
- (iii) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Упражнение 1.1.8. Доказать, что для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ имеет место следующее поляризационное тождество:

$$(\mathbf{x}, \mathbf{y}) = \frac{1}{4} \{ (\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2) + i(\|\mathbf{x} + i\mathbf{y}\|^2 - \|\mathbf{x} - i\mathbf{y}\|^2) \}.$$

Определение 1.1.9. Векторы $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ называются *ортогональными* (обозначение: $\mathbf{x} \perp \mathbf{y}$), если

$$(\mathbf{x}, \mathbf{y}) = 0.$$

Определение 1.1.10. Пусть $\mathbf{x}, \mathbf{y} \in \mathbf{H}$. Число

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

называется расстоянием между векторами ${\bf x}$ и ${\bf y}$.

Утверждение 1.1.11. Функция $d: \mathbf{H} \times \mathbf{H} \mapsto [0, +\infty)$ удовлетворяет следующим условиям:

- (i) $d(\mathbf{x}, \mathbf{y}) \ge 0$, $d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$, $\mathbf{x}, \mathbf{y} \in \mathbf{H}$;
- (ii) $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}), \ \mathbf{x}, \mathbf{y} \in \mathbf{H};$
- (iii) $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y}), \ \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{H}.$

Доказательство. Условия (i) и (ii) очевидны. Для (iii) имеем:

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \|(\mathbf{x} - \mathbf{z}) + (\mathbf{z} - \mathbf{y})\| \le \|\mathbf{x} - \mathbf{z}\| + \|\mathbf{z} - \mathbf{y}\| =$$
$$= d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y}).$$

Упражнение 1.1.12. Проверить следующие свойства скалярного произведения.

• $(\mathbf{x}, \mathbf{y}) = 0$ тогда и только тогда, когда для любых $\alpha, \beta \in \mathbb{C}$ имеет место равенство

$$\|\alpha \mathbf{x} + \beta \mathbf{y}\|^2 = \|\alpha \mathbf{x}\|^2 + \|\beta \mathbf{y}\|^2;$$

ullet Для любых $\mathbf{x},\,\mathbf{y}\in\mathbf{H}$ имеет место неравенство

$$|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||;$$

• Для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ имеет место "равенство параллелограмма":

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$$

ullet Доказать, что для любых $\mathbf{x},\,\mathbf{y}\in\mathbf{H}$ имеет место неравенство:

$$|(\mathbf{x}, \mathbf{y})| \le \|\mathbf{x}\| \, \|\mathbf{y}\| \quad ($$
неравенство Коши-Буняковского $).$

1.2 Ортогональные системы векторов. Базисы

Определение 1.2.1. Система ненулевых векторов $\mathbf{G} \subset \mathbf{H}$ называется *ортогональной*, если $(\mathbf{x},\mathbf{y})=0$ для любых $\mathbf{x},\mathbf{y} \in \mathbf{G}, \ \mathbf{x} \neq \mathbf{y}.$

Определение 1.2.2. Система векторов $G \subset H$ называется *ортонормированной*, если для любых $\mathbf{x}, \mathbf{y} \in G$

$$(\mathbf{x}, \mathbf{y}) = \delta_{\mathbf{x}, \mathbf{y}} = \begin{cases} 1, & \text{если } \mathbf{x} = \mathbf{y}, \\ 0, & \text{если } \mathbf{x} \neq \mathbf{y}. \end{cases}$$

Определение 1.2.3. Ортогональная система векторов $\mathbf{G} \subset \mathbf{H}$ называется nonhoù, если она не содержится ни в какой другой ортогональной системе.

Утверждение 1.2.4. Любая ортогональная система векторов G в H является линейно независимой и содержит не более чем $\dim H$ элементов.

Доказательство. Пусть $\mathbf{G} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subset \mathbf{H}$ — ортогональная система векторов. Если линейная комбинация этих векторов равна нулю:

$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_k \mathbf{x}_k = \mathbf{0},$$

то скалярно умножая справа это равенство последовательно на $\mathbf{x}_1, \dots, \mathbf{x}_k$, получим:

$$\begin{cases} \lambda_1(\mathbf{x}_1, \mathbf{x}_1) = 0, \\ \lambda_2(\mathbf{x}_2, \mathbf{x}_2) = 0, \\ \dots \\ \lambda_k(\mathbf{x}_k, \mathbf{x}_k) = 0. \end{cases}$$

Так как векторы $\mathbf{x}_1, \ldots, \mathbf{x}_k$ ненулевые, то

$$\lambda_1 = \cdots = \lambda_k = 0$$
,

т.е. векторы $\mathbf{x}_1, \ldots, \mathbf{x}_k$ линейно независимы. Осталось заметить, что число линейно независимых векторов гильбертова пространства \mathbf{H} не может быть больше, чем $\dim \mathbf{H}$.

Утверждение 1.2.5. Пусть $G = \{x_1, \dots, x_k\} \subset H$ — ортонормированная система векторов и $x \in H$. Тогда имеет место неравенство

$$\sum_{i=1}^k |(\mathbf{x}, \mathbf{x}_i)|^2 \le \|\mathbf{x}\|^2, \quad (\textit{Неравенство Бесселя})$$

причем вектор $\mathbf{x}' = \mathbf{x} - \sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i) \mathbf{x}_i$ ортогонален подпространству

$$l(\mathbf{x}_1,\ldots,\mathbf{x}_k)=\mathbb{C}\langle\mathbf{x}_1,\ldots,\mathbf{x}_k\rangle.$$

Доказательство. Пусть $\mathbf{G} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subset \mathbf{H}$ — ортонормированная система, $\mathbf{x} \in \mathbf{H}$, $\alpha_i = (\mathbf{x}, \mathbf{x}_i)$ и $\mathbf{x}' = \mathbf{x} - \sum_{i=1}^k \alpha_i \mathbf{x}_i$. Тогда

$$0 \leq \|\mathbf{x}'\|^2 = \left(\mathbf{x} - \sum_{i=1}^k \alpha_i \mathbf{x}_i, \mathbf{x} - \sum_{j=1}^k \alpha_j \mathbf{x}_j\right) =$$

$$= (\mathbf{x}, \mathbf{x}) - \sum_{i=1}^k \alpha_i (\mathbf{x}_i, \mathbf{x}) - \sum_{j=1}^k \bar{\alpha}_j (\mathbf{x}, \mathbf{x}_j) + \sum_{i,j=1}^k \alpha_i \bar{\alpha}_j (\mathbf{x}_i, \mathbf{x}_j) =$$

$$= \|\mathbf{x}\|^2 - \sum_{i=1}^k \alpha_i \bar{\alpha}_i - \sum_{j=1}^k \bar{\alpha}_j \alpha_j + \sum_{i=1}^k \alpha_i \bar{\alpha}_i = \|\mathbf{x}\|^2 - \sum_{i=1}^k |\alpha_i|^2.$$

Следовательно,

$$\sum_{i=1}^k |\alpha_i|^2 \le ||\mathbf{x}||^2.$$

Осталось показать, что $\mathbf{x}' \perp l(\mathbf{x}_1,\ldots,\mathbf{x}_k) = \mathbb{C}\langle \mathbf{x}_1,\ldots,\mathbf{x}_k \rangle$. Действительно,

$$(\mathbf{x}', \mathbf{x}_j) = \left(\mathbf{x} - \sum_{i=1}^k \alpha_i \mathbf{x}_i, \mathbf{x}_j\right) = (\mathbf{x}, \mathbf{x}_j) - \sum_{i=1}^k \alpha_i (\mathbf{x}_i, \mathbf{x}_j) =$$
$$= \alpha_j - \sum_{i=1}^k \alpha_i (\mathbf{x}_i, \mathbf{x}_j) = \alpha_j - \alpha_j = 0.$$

Следовательно, $\mathbf{x}' \perp \mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_k \rangle$.

Теорема 1.2.6. Пусть $G = \{x_1, \dots, x_k\} \subset H$ — ортонормированная система векторов. Следующие условия эквивалентны:

- (i) $\mathbf{G} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ полная;
- (ii) Если $\mathbf{x} \in \mathbf{H}$ и $(\mathbf{x}_i, \mathbf{x}) = 0$ для кажедого i = 1, ..., k, то $\mathbf{x} = \mathbf{0}$;
- (iii) $\mathbb{C}\langle \mathbf{G} \rangle = \mathbf{H}$;
- (iv) Для любого $\mathbf{x} \in \mathbf{H}$ имеет место разложение

$$\mathbf{x} = \sum_{i=1}^{k} (\mathbf{x}, \mathbf{x}_i) \mathbf{x}_i;$$

(v) Для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ имеет место равенство

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{k} (\mathbf{x}, \mathbf{x}_i)(\mathbf{x}_i, \mathbf{y});$$

(vi) Для любого $\mathbf{x} \in \mathbf{H}$ имеет место равенство

$$\|\mathbf{x}\|^2 = \sum_{i=1}^k |(\mathbf{x}, \mathbf{x}_i)|^2$$
 (Равенство Парсеваля).

Доказательство. (i) \Rightarrow (ii). Допустим, что $\mathbf{x} \in \mathbf{H}$, $(\mathbf{x}_i, \mathbf{x}) = 0$ для каждого $i = 1, \ldots, k$, но $\mathbf{x} \neq \mathbf{0}$. Тогда

$$\mathbf{G}_1 = \{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}\}$$

— ортогональная система векторов, которая содержит полную ортогональную систему \mathbf{G} , что невозможно. Следовательно, $\mathbf{x} = \mathbf{0}$.

(ii) \Rightarrow (iii). Если $\mathbf{x} \in \mathbf{H}$ и $\mathbf{x} \notin \mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_k \rangle$, то вектор

$$\mathbf{x}' = \mathbf{x} - \sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i) \mathbf{x}_i
eq \mathbf{0}$$

и $\mathbf{x}' \perp \mathbf{x}_i$ для любого $i = 1, \ldots, k$. Но тогда, по (ii), $\mathbf{x}' = \mathbf{0}$. Противоречие показывает, что $\mathbb{C}\langle \mathbf{G} \rangle = \mathbf{H}$.

 $(iii)\Rightarrow (iv).$ Так как $\mathbb{C}\langle \mathbf{G}\rangle=\mathbf{H},$ то любой вектор $\mathbf{x}\in\mathbf{H}$ представим в виде

$$\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i.$$

Тогда

$$(\mathbf{x}, \mathbf{x}_j) = \left(\sum_{i=1}^k \alpha_i \mathbf{x}_i, \mathbf{x}_j\right) = \sum_{i=1}^k \alpha_i (\mathbf{x}_i, \mathbf{x}_j) = \alpha_j, \quad j = 1, \dots, k,$$

т.е.

$$\mathbf{x} = \sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i) \mathbf{x}_i.$$

 $(iv) \Rightarrow (v)$. Пусть $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ и $\mathbf{x} = \sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i) \mathbf{x}_i$. Тогда

$$(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i) \mathbf{x}_i, \mathbf{y}\right) = \sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i) (\mathbf{x}_i, \mathbf{y}).$$

 $(v) \Rightarrow (vi)$. Полагая в предыдущем равенстве $\mathbf{x} = \mathbf{y}$, получим

$$\|\mathbf{x}\|^2 = \sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i)(\mathbf{x}_i, \mathbf{x}) = \sum_{i=1}^k (\mathbf{x}, \mathbf{x}_i) \overline{(\mathbf{x}, \mathbf{x}_i)} = \sum_{i=1}^k |(\mathbf{x}, \mathbf{x}_i)|^2.$$

 $(vi) \Rightarrow (i)$. Если бы ортонормированная система $\mathbf{G} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ содержалась в большей ортогональной системе $\mathbf{G}_1 = \{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}_0\}$, то для любых $i = 1, \dots, k$ выполнялись бы равенства $(\mathbf{x}_0, \mathbf{x}_i) = 0$, причем $\mathbf{x}_0 \neq \mathbf{0}$. Но тогда

$$\|\mathbf{x}_0\|^2 = \sum_{i=1}^k |(\mathbf{x}_0, \mathbf{x}_i)|^2 = 0,$$

т.е., $\mathbf{x}_0 = \mathbf{0}$. Противоречие показывает, что система $\mathbf{G} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ полная.

Из теоремы 1.2.6 следует, что любая полная ортонормированная система **G** является базисом конечномерного гильбертова пространства **H** и содержит ровно dim **H** элементов. Следовательно, все полные ортонормированные системы векторов конечномерного гильбертова пространства **H** содержат одинаковое число элементов. Число элементов полной ортонормированной системы векторов **H** называется его *гильбертовой размерностью*. Таким образом, гильбертова и векторная размерности пространства **H** совпадают.

Полную ортонормированную систему называют *ортонормированным* $\mathit{базисом}$ гильбертова пространства \mathbf{H} .

Система векторов $\mathbf{G} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ является ортонормированным базисом конечномерного гильбертова пространства \mathbf{H} , если

- ullet эта система является полной: $\mathbb{C}\langle \mathbf{G} \rangle = \mathbf{H};$
- эта система является ортонормированной:

$$(\mathbf{e}_i, \mathbf{e}_j) = \delta_{ij} = \begin{cases} 1, & \text{если } i = j, \\ 0, & \text{если } i \neq j. \end{cases}$$

Теорема 1.2.7. В каждом конечномерном гильбертовом пространстве Н существует ортонормированный базис.

Доказательстве используется процесс ортогонализации Грама—Шмидта.

Пусть $\{\mathbf{x}_1,\dots,\mathbf{x}_n\}$ — произвольный базис гильбертова пространства \mathbf{H} . Обозначим

$$\mathbf{e}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|}.$$

Найдем вектор $\mathbf{z}_2 = \mathbf{x}_2 + \alpha \mathbf{e}_1$, удовлетворяющий условию $(\mathbf{z}_2, \mathbf{e}_1) = 0$, т.е., $(\mathbf{x}_2 + \alpha \mathbf{e}_1, \mathbf{e}_1) = 0$. Тогда $(\mathbf{x}_2, \mathbf{e}_1) + (\alpha \mathbf{e}_1, \mathbf{e}_1) = 0$ и

$$\alpha = -\frac{(\mathbf{x}_2, \mathbf{e}_1)}{(\mathbf{e}_1, \mathbf{e}_1)} = -(\mathbf{x}_2, \mathbf{e}_1).$$

Следовательно,

$$\mathbf{z}_2 = \mathbf{x}_2 - (\mathbf{x}_2, \mathbf{e}_1)\mathbf{e}_1.$$

Так как векторы \mathbf{x}_1 и \mathbf{x}_2 линейно независимы, то $\mathbf{z}_2 \neq \mathbf{0}$. Полагаем

$$\mathbf{e}_2 = \frac{\mathbf{z}_2}{\|\mathbf{z}_2\|}.$$

Остальные векторы $\{\mathbf{e}_i\}_{i>3}$, будем строить по индукции.

Допустим, что векторы $\mathbf{e}_1, \dots, \mathbf{e}_{k-1}, k \geq 3$, уже построены, где $\|\mathbf{e}_i\| = 1$, $(\mathbf{e}_i, \mathbf{e}_j) = 0$ при $i \neq j$ и $\mathbf{e}_i \in l(\mathbf{x}_1, \dots, \mathbf{x}_i), i = 1, \dots, k-1$.

Найдем вектор $\mathbf{z}_k = \mathbf{x}_k + \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \lambda_{k-1} \mathbf{e}_{k-1}$, ортогональный векторам $\mathbf{e}_1, \ldots, \mathbf{e}_{k-1}$. Коэффициенты $\lambda_1, \ldots, \lambda_{k-1}$ находим из условия ортогональности:

$$\begin{cases} (\mathbf{x}_k + \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \lambda_{k-1} \mathbf{e}_{k-1}, \mathbf{e}_1) = 0, \\ \dots \\ (\mathbf{x}_k + \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \lambda_{k-1} \mathbf{e}_{k-1}, \mathbf{e}_{k-1}) = 0. \end{cases}$$

Так как векторы $\mathbf{e}_1, \ldots, \mathbf{e}_{k-1}$ попарно ортогональны и имеют единичные нормы, то эти равенства преобразуются к виду:

$$\begin{cases} (\mathbf{x}_k, \mathbf{e}_1) + \lambda_1 = 0, \\ \dots \\ (\mathbf{x}_k, \mathbf{e}_{k-1}) + \lambda_{k-1} = 0. \end{cases}$$

Отсюда

$$\lambda_1 = -(\mathbf{x}_k, \mathbf{e}_1), \quad \dots, \quad \lambda_{k-1} = -(\mathbf{x}_k, \mathbf{e}_{k-1}).$$

Следовательно,

$$\mathbf{z}_k = \mathbf{x}_k - \sum_{i=1}^{k-1} (\mathbf{x}_k, \mathbf{e}_i) \mathbf{e}_i.$$

Ясно, что $\mathbf{z}_k \neq \mathbf{0}$, так как в противном случае вектор \mathbf{x}_k принадлежал бы линейной комбинации векторов $\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}$, что не так. Кроме того, $\mathbf{z}_k \perp \mathbf{e}_j, \ j=1,\ldots, \ k-1$. Осталось положить

$$\mathbf{e}_k = \frac{\mathbf{z}_k}{\|\mathbf{z}_k\|}.$$

Продолжая этот процесс, пока не будут исчерпаны все векторы $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ выбранного базиса, получим n отличных от нуля попарно ортогональных векторов $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, имеющих единичные нормы, т.е. ортонормированный базис в \mathbf{H} .

Определение 1.2.8. Пусть $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ — ортонормированный базис пространства $\mathbf{H},\,\mathbf{x}\in\mathbf{H}$ и

$$\mathbf{x} = \sum_{i=1}^{n} (\mathbf{x}, \mathbf{e}_i) \mathbf{e}_i.$$

Числа $c_i = (\mathbf{x}, \mathbf{e}_i)$ называются координатами или коэффициентами Фурье вектора \mathbf{x} в ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$.

3амечание 1.2.9. Пусть $\{{\bf e}_1,\dots,{\bf e}_n\}$ — ортонормированный базис в ${\bf H},$ ${\bf x}\in {\bf H}$ и

$$\mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{e}_i,$$

где $c_i = (\mathbf{x}, \mathbf{e}_i)$ — коэффициенты Фурье вектора \mathbf{x} . Тогда в силу утверждения 1.2.5 и теоремы 1.2.6 имеем:

• Если $\{{\bf e}_1,\ldots,{\bf e}_k\}\subseteq \{{\bf e}_1,\ldots,{\bf e}_n\},\,k\le n$, то

$$\sum_{i=1}^{k} |c_i|^2 \le \|\mathbf{x}\|^2, \quad \text{(Неравенство Бесселя)}$$

причем при k < n вектор $\mathbf{x}' = \mathbf{x} - \sum_{i=1}^k c_i \mathbf{e}_i$ ортогонален подпространству $\mathbf{M} = l(\mathbf{e}_1, \dots, \mathbf{e}_k) = \mathbb{C}\langle \mathbf{e}_1, \dots, \mathbf{e}_k \rangle$.

ullet Если $\mathbf{y} \in \mathbf{H}, \, \mathbf{y} = \sum_{i=1}^n c_i' \mathbf{e}_i, \, \mathrm{то}$

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} c_i \bar{c}'_i;$$

• Выполнено равенство

$$\|\mathbf{x}\|^2 = \sum_{i=1}^n |c_i|^2$$
 (Равенство Парсеваля).

Приведем примеры ортогональных базисов.

Пример 1.2.10. Пусть $\mathbf{H} = \mathcal{P}_n[-1,1]$ — пространство полиномов степени не выше чем n над полем \mathbb{C} , определенных на [-1,1], со скалярным произведением

$$(p,q) = \int_{-1}^{1} p(t)\overline{q(t)} dt.$$

Возьмем линейный базис $1, t, \ldots, t^n$. Процесс ортогонализации приводит нас к последовательности полиномов:

$$\frac{1}{\sqrt{2}}$$
, $\frac{\sqrt{3}t}{\sqrt{2}}$, $\frac{\sqrt{5}(3t^2-1)}{2\sqrt{2}}$, $\frac{\sqrt{7}(5t^3-3t)}{2\sqrt{2}}$, ...

Эти полиномы, с точностью до множителей, совпадают с полиномами

$$P_0(t) = 1$$
, $P_k(t) = \frac{1}{2^k k!} \frac{d^k (t^2 - 1)^k}{dt^k}$, $k > 1$,

которые называются *полиномами Лежандра*. (Сами полиномы Лежандра образуют ортогональный, но не ортонормированный базис в \mathbf{H}).

Пример 1.2.11. Пусть **H** — пространство полиномов степени не выше чем n над полем \mathbb{C} , определенных на [-1,1], со скалярным произведением

$$(p,q) = \int_{-1}^{1} \frac{1}{\sqrt{1-t^2}} p(t) \overline{q(t)} dt.$$

Возьмем линейный базис $1, t, \ldots, t^n$. Процесс ортогонализации приводит нас к последовательности (ортогональных, но не нормированных) полиномов

$$T_k(t) = \frac{1}{2^{k-1}}\cos(n\arccos t),$$

которые называются полиномами Чебышева первого рода.

Пример 1.2.12. Пусть **H** — пространство всех полиномов не выше чем n над полем \mathbb{C} , определенных на $(-\infty, +\infty)$, со скалярным произведением

$$(p,q) = \int_{-\infty}^{+\infty} p(t)\overline{q(t)}e^{-t^2}dt.$$

Возьмем линейный базис $1, t, \ldots, t^n$. Процесс ортогонализации приводит нас к последовательности (ортогональных, но не нормированных) полиномов

$$H_k(t) = (-1)^k e^{t^2} \frac{d^k e^{-t^2}}{dt^k},$$

которые называются полиномами Чебышева-Эрмита.

Пример 1.2.13. Пусть $\mathbf{H} - (2n+1)$ -мерное пространство тригонометрических полиномов полиномов n-го порядка на $(0,2\pi)$:

$$p(t) = \frac{a_0}{2} + a_1 \cos t + b_1 \sin t + \dots + a_n \cos nt + b_n \sin nt,$$

где $a_0, a_i, b_i \in \mathbb{C}$, со скалярным произведением

$$(p,q) = \int_{0}^{2\pi} p(t)\overline{q(t)}dt.$$

Система функций

$$\{1, \cos t, \sin t, \dots, \cos nt, \sin nt\}$$

образуют ортогональный базис в Н.

Так как

$$\int_{0}^{2\pi} \sin^2 kt \, dt = \int_{0}^{2\pi} \cos^2 kt \, dt = \pi, \ k = 1, 2, \dots, \int_{0}^{2\pi} 1 \, dt = 2\pi,$$

то функции

$$\left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos t, \frac{1}{\sqrt{\pi}}\sin t, \dots, \frac{1}{\sqrt{\pi}}\cos nt, \frac{1}{\sqrt{\pi}}\sin nt \right\}$$

образуют в Н ортонормированный базис.

Пример 1.2.14. Пусть **H** — пространство всех комплексных функций f(t) вещественного аргумента, кусочно-непрерывных на $[0, 2\pi]$. Скалярное произведение двух функций f(t) и g(t) определяется формулой:

$$(f,g) = \int_{0}^{2\pi} f(t)\overline{g(t)} dt.$$

В частности,

$$||f||^2 = (f, f) = \int_0^{2\pi} |f(t)|^2 dt.$$

Функции $\{e^{ikt}\}_{k=-\infty}^{+\infty}$ образуют ортогональный базис в ${\bf H}$:

$$(e^{ikt}, e^{imt}) = \int_{0}^{2\pi} e^{ikt} e^{-imt} dt = \begin{cases} 0, & \text{при } k \neq m \\ 2\pi, & \text{при } k = m. \end{cases}$$

Поэтому функции $\left\{\frac{1}{\sqrt{2\pi}}e^{ikt}\right\}, k=0,\pm 1,\pm 2,\ldots,$ образуют ортонормированный базис в **H**.

Пусть $\mathfrak{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ и $\mathfrak{B}' = \{\mathbf{e}'_1, \dots, \mathbf{e}'_n\}$ — два различных базиса гильбертова пространства **H**. Разложим каждый из векторов $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ базиса \mathfrak{B} по базису \mathfrak{B}' :

$$\mathbf{e}_k = \sum_{k=1}^n \gamma_{jk} \mathbf{e}'_j, \quad \gamma_{jk} = (\mathbf{e}_k, \mathbf{e}'_j) \quad j, k = 1, \dots, n,$$

$$(1.1)$$

при этом матрица перехода $[\Gamma] = (\gamma_{jk})_{j,k=1}^n$ от базиса $\mathfrak B$ к базису $\mathfrak B'$ невырождена.

Пусть вектор $\mathbf{x} \in \mathbf{H}$ имеет в базисах \mathfrak{B} и \mathfrak{B}' разложения

$$\mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{e}_i, \quad \mathbf{x} = \sum_{i=1}^{n} c'_i \mathbf{e}'_i, \tag{1.2}$$

где $c_i = (\mathbf{x}, \mathbf{e}_i), c'_i = (\mathbf{x}, \mathbf{e}'_i), i = 1, \ldots, n$. Подставляя (1.1) в (1.2), получим, что координаты вектора \mathbf{x} относительно базисов \mathfrak{B} и \mathfrak{B}' удовлетворяют соотношению:

$$c_j' = \sum_{k=1}^n \gamma_{jk} c_k. \tag{1.3}$$

Найдем условия, которым должны удовлетворять коэффициенты γ_{jk} , $j, k = 1, \ldots, n$ в разложении (1.1). Скалярно умножая каждое из равенств (1.1) последовательно на векторы $\mathbf{e}_i, i = 1, \ldots, n$, получим:

$$(\mathbf{e}_k, \mathbf{e}_i) = \sum_{k=1}^n \gamma_{jk} (\mathbf{e}'_j, \mathbf{e}_i) = \sum_{k=1}^n \gamma_{jk} \overline{\gamma_{ji}}, \quad k, j = 1, \dots, n.$$

Так как базис $\mathfrak{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ ортонормированный, то

$$\sum_{k=1}^{n} \gamma_{jk} \bar{\gamma}_{jk} = \sum_{k=1}^{n} |\gamma_{jk}|^2 = 1, \quad i = k,$$

$$\sum_{k=1}^{n} \gamma_{jk} \bar{\gamma}_{ji} = 0, \quad i \neq k.$$

Преобразования, обратные к (1.1) и (1.3) имеют вид:

$$\mathbf{e}'_j = \sum_{k=1}^n \hat{\gamma}_{kj} \mathbf{e}_k, \quad c_k = \sum_{j=1}^n \hat{\gamma}_{kj} c'_j,$$

где $[\hat{\Gamma}] = (\hat{\gamma}_{jk})_{j,k=1}^n$ — матрица, обратная к матрице $[\Gamma]$. Ясно, что

$$\sum_{i=1}^{n} \hat{\gamma}_{ji} \gamma_{ik} = \sum_{i=1}^{n} \gamma_{ji} \hat{\gamma}_{ik} = \delta_{jk} = \begin{cases} 1, & j=k, \\ 0, & j \neq k. \end{cases}$$

1.3 Подпространства гильбертова пространства

Пусть \mathbf{M} — линейное подпространство в \mathbf{H} и $\mathbf{x} \in \mathbf{H}$.

Определение 1.3.1. *Расстоянием* от вектора ${\bf x}$ до подпространства ${\bf M}$ называется число

$$d(\mathbf{x}, \mathbf{M}) = \inf\{\|\mathbf{x} - \mathbf{y}\| \colon \mathbf{y} \in \mathbf{M}\}.$$

Теорема 1.3.2. Пусть $\mathbf{x} \in \mathbf{H}$. Тогда для любого подпространства \mathbf{M} в \mathbf{H} существует единственный вектор $\mathbf{y_M} \in \mathbf{M}$ такой, что

$$d(\mathbf{x}, \mathbf{M}) = \min\{\|\mathbf{x} - \mathbf{y}\| \colon \mathbf{y} \in \mathbf{M}\} = \|\mathbf{x} - \mathbf{y}_{\mathbf{M}}\|.$$

Доказательство. Пусть $\{{\bf e}_1,\dots,{\bf e}_m\}$ — ортонормированный базис в ${\bf M}$. Дополним его до ортонормированного базиса

$$\{\mathbf{e}_1,\ldots,\mathbf{e}_m,\mathbf{e}_{m+1},\ldots,\mathbf{e}_n\}$$

в Н. Тогда для любого

$$\mathbf{y} = \sum_{i=1}^{m} \alpha_i \mathbf{e}_i \in \mathbf{M}$$

имеем:

$$\|\mathbf{x} - \mathbf{y}\|^{2} = \left(\mathbf{x} - \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \mathbf{x} - \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}\right) =$$

$$= (\mathbf{x}, \mathbf{x}) - \left(\mathbf{x}, \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}\right) - \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \mathbf{x}\right) + \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}\right) =$$

$$= \|\mathbf{x}\|^{2} - \left(\sum_{i=1}^{m} c_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}\right) - \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} c_{i} \mathbf{e}_{i}\right) + \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}\right) =$$

$$= \|\mathbf{x}\|^{2} - \left(\sum_{i=1}^{m} c_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} c_{i} \mathbf{e}_{i}\right) + \left(\sum_{i=1}^{m} c_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} c_{i} \mathbf{e}_{i}\right) + \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} c_{i} \mathbf{e}_{i}\right) -$$

$$- \left(\sum_{i=1}^{m} c_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}\right) - \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} c_{i} \mathbf{e}_{i}\right) + \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}, \sum_{i=1}^{m} \alpha_{i} \mathbf{e}_{i}\right) =$$

$$= \|\mathbf{x}\|^{2} - \sum_{i=1}^{m} |c_{i}|^{2} + \left(\sum_{i=1}^{m} (c_{i} - \alpha_{i}) \mathbf{e}_{i}, \sum_{i=1}^{m} (c_{i} - \alpha_{i}) \mathbf{e}_{i}\right) =$$

$$= \|\mathbf{x}\|^{2} - \sum_{i=1}^{m} |c_{i}|^{2} + \sum_{i=1}^{m} |c_{i} - \alpha_{i}|^{2},$$

где $c_i = (\mathbf{x}, \mathbf{e}_i)$ — коэффициенты Фурье вектора \mathbf{x} в ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$. Минимум $\|\mathbf{x} - \mathbf{y}\|^2$ достигается, когда последнее слагаемое равно нулю:

$$\sum_{i=1}^{m} |c_i - \alpha_i|^2 = 0,$$

т.е. при $\alpha_i = c_i, \ i = 1, \ \dots, \ m$. Обозначим $\mathbf{y_M} = \sum_{i=1}^m c_i \mathbf{e}_i$. Тогда

$$d(\mathbf{x}, \mathbf{M}) = \min\{\|\mathbf{x} - \mathbf{y}\| : \mathbf{y} \in \mathbf{M}\} = \|\mathbf{x} - \mathbf{y}_{\mathbf{M}}\| = \|\mathbf{x}\|^2 - \sum_{i=1}^m |c_i|^2.$$

Замечание 1.3.3. Вектор $\mathbf{y_M}$, на котором достигается расстояние $d(\mathbf{x}, \mathbf{M})$ от вектора \mathbf{x} до подпространства \mathbf{M} , однозначно определяется коэффициентами Фурье $c_i = (\mathbf{x}, \mathbf{e_i}), i = 1, \ldots, m$ вектора \mathbf{x} по ортонормированному базису $\{\mathbf{e_1}, \ldots, \mathbf{e_n}\}$:

$$\mathbf{y_M} = \sum_{i=1}^m c_i \mathbf{e}_i.$$

Этот вектор $\mathbf{y_M}$ называется *ортогональной проекцией* вектора \mathbf{x} на подпространство \mathbf{H} .

Пусть M — подпространство в H. Легко видеть, что множество

$$\mathbf{M}^{\perp} = \{ \mathbf{x} \in \mathbf{H} \colon (\mathbf{x}, \mathbf{y}) = 0$$
 для любого $\mathbf{y} \in \mathbf{M} \}$

тоже является в подпространством в Н.

Определение 1.3.4. Подпространство \mathbf{M}^{\perp} называется *ортогональным* дополнением к подпространству \mathbf{M} .

Замечание 1.3.5. Если ${\bf N}$ — подпространство ${\bf H}$, такое, что ${\bf N}\subseteq {\bf M}^\perp$, то прямую сумму подпространств ${\bf M}$ и ${\bf N}$ обозначают

$$\dot{\mathbf{M}+\mathbf{N}} = \mathbf{M} \oplus \mathbf{N}$$

и называют *ортогональной суммой* подпространств ${\bf M}$ и ${\bf N}$.

Теорема 1.3.6. Если $\mathbf{M} - no\partial npocmpaнcmso$ в \mathbf{H} , mo

$$\mathbf{M}^{\perp\perp}=(\mathbf{M}^\perp)^\perp=\mathbf{M}$$

 $u \mathbf{H} = \mathbf{M} \oplus \mathbf{M}^{\perp}.$

Доказательство. Пусть $\{\mathbf{e}_1, \dots, \mathbf{e}_m\}$ — ортонормированный базис в \mathbf{M} и $\mathbf{z} \in \mathbf{H}$. Если $\mathbf{x} = \sum_{i=1}^m (\mathbf{z}, \mathbf{e}_i) \mathbf{e}_i$, то $\mathbf{x} \in \mathbf{M}$ и, в силу утверждения 1.2.5, $\mathbf{y} = \mathbf{z} - \mathbf{x} \perp \mathbf{M}$. Следовательно, $\mathbf{z} = \mathbf{x} + \mathbf{y}$, где $\mathbf{x} \in \mathbf{M}$, $\mathbf{y} \in \mathbf{M}^{\perp}$.

Очевидно, $\mathbf{M} \cap \mathbf{M}^{\perp} = \{\mathbf{0}\}$. Далее,

$$(\mathbf{z},\mathbf{x}) = (\mathbf{x}+\mathbf{y},\mathbf{x}) = (\mathbf{x},\mathbf{x}) = \|\mathbf{x}\|^2, \quad (\mathbf{z},\mathbf{y}) = (\mathbf{x}+\mathbf{y},\mathbf{y}) = (\mathbf{y},\mathbf{y}) = \|\mathbf{y}\|^2.$$

Поэтому, если $\mathbf{z} \in \mathbf{M}^{\perp \perp}$, то $(\mathbf{z},\mathbf{y})=0$, откуда $\mathbf{y}=\mathbf{0}$ и потому

$$z = x + y = x \in M$$
.

Так как, очевидно, $\mathbf{M} \subseteq \mathbf{M}^{\perp\perp}$, то $\mathbf{M}^{\perp\perp} = \mathbf{M}$.

Упражнение 1.3.7. Пусть M и N- подпространства в H. Тогда

- (i) $(M + N)^{\perp} = M^{\perp} \cap N^{\perp}$;
- (ii) $(\mathbf{M} \cap \mathbf{N})^{\perp} = \mathbf{M}^{\perp} + \mathbf{N}^{\perp}$;
- (iii) $\dim \mathbf{M} + \dim \mathbf{M}^{\perp} = \dim \mathbf{H}$.

Обозначим через \mathbf{H}^* векторное пространство, сопряженное к \mathbf{H} , т.е. пространство всех линейных функционалов на \mathbf{H} .

Определение 1.3.8. Взаимно однозначное отображение

$$\psi \colon \mathbf{H} \to \mathbf{H}^*$$

называется сопряженным изоморфизмом, если

- (i) $\psi(\mathbf{x} + \mathbf{y}) = \psi(\mathbf{x}) + \psi(\mathbf{y}), \mathbf{x}, \mathbf{y} \in \mathbf{H};$
- (ii) $\psi(\alpha \mathbf{x}) = \overline{\alpha}\psi(\mathbf{x}), \mathbf{x} \in \mathbf{H}, \alpha \in \mathbb{C}.$

Имеет место следующая теорема.

Теорема 1.3.9 (Теорема Рисса). Отображение

$$\mathbf{H} \ni \mathbf{y} \stackrel{\psi}{\longrightarrow} f_{\mathbf{v}} \in \mathbf{H}^*,$$

определяемое равенством

$$\psi(\mathbf{y})(\mathbf{x}) = f_{\mathbf{y}}(\mathbf{x}) = (\mathbf{x}, \mathbf{y})$$

для любого $\mathbf{x} \in \mathbf{H}$, является сопряженным изоморфизмом.

Доказательство. 1). Пусть $\mathbf{y} \in \mathbf{H}$ и $f_{\mathbf{y}}(\mathbf{x}) = (\mathbf{x}, \mathbf{y})$. Тогда

$$f_{\mathbf{y}}(\mathbf{x}_1 + \mathbf{x}_2) = (\mathbf{x}_1 + \mathbf{x}_2, \mathbf{y}) = (\mathbf{x}_1, \mathbf{y}) + (\mathbf{x}_2, \mathbf{y}) = f_{\mathbf{y}}(\mathbf{x}_1) + f_{\mathbf{y}}(\mathbf{x}_2),$$

$$f_{\mathbf{y}}(\alpha \mathbf{x}) = (\alpha \mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y}) = \alpha f_{\mathbf{y}}(\mathbf{x}).$$

Поэтому $f_{\mathbf{y}}$ — линейный функционал на \mathbf{H} .

2). Пусть $f \in \mathbf{H}^*$. Покажем, что тогда существует такой вектор $\mathbf{y} \in \mathbf{H}$, что $f(\mathbf{x}) = f_{\mathbf{y}}(\mathbf{x}) = (\mathbf{x}, \mathbf{y})$ для любого $\mathbf{x} \in \mathbf{H}$.

Если f = 0, то достаточно положить $\mathbf{y} = \mathbf{0}$.

Если $f \neq 0$, то рассмотрим линейное подпространство

$$\mathbf{M} = \operatorname{Ker} f = \{ \mathbf{x} \in \mathbf{H} : f(\mathbf{x}) = 0 \}.$$

Выберем некоторый вектор $\mathbf{z} \in \mathbf{M}^{\perp}$, $\|\mathbf{z}\| = 1$, и положим

$$\mathbf{y} = \overline{f(\mathbf{z})}\mathbf{z}.$$

Ясно, что $\mathbf{y} \in \mathbf{M}^{\perp}$ и

$$(\mathbf{z}, \mathbf{y}) = (\mathbf{z}, \overline{f(\mathbf{z})}\mathbf{z}) = f(\mathbf{z})(\mathbf{z}, \mathbf{z}) = f(\mathbf{z}).$$

Если $\mathbf{x} \in \mathbf{M}$, то

$$(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \overline{f(\mathbf{z})}\mathbf{z}) = 0 = f(\mathbf{x}).$$

Для любого $\mathbf{x} \in \mathbf{H}$ положим:

$$\mathbf{z}_0 = \mathbf{x} - \frac{f(\mathbf{x})}{f(\mathbf{z})} \mathbf{z}.$$

Так как

$$f(\mathbf{z}_0) = f(\mathbf{x}) - \frac{f(\mathbf{x})}{f(\mathbf{z})} f(\mathbf{z}) = 0,$$

то $\mathbf{z}_0 \in \mathbf{M}$. Тогда

$$\mathbf{x} = \mathbf{z}_0 + \frac{f(\mathbf{x})}{f(\mathbf{z})}\mathbf{z}$$

И

$$(\mathbf{x}, \mathbf{y}) = \left(\mathbf{z}_0 + \frac{f(\mathbf{x})}{f(\mathbf{z})}\mathbf{z}, \mathbf{y}\right) = (\mathbf{z}_0, \mathbf{y}) + \frac{f(\mathbf{x})}{f(\mathbf{z})}(\mathbf{z}, \mathbf{y}) = 0 + \frac{f(\mathbf{x})}{f(\mathbf{z})}f(\mathbf{z}) = f(\mathbf{x}).$$

3). Покажем, что для любого $f \in \mathbf{H}^*$ существует единственный $\mathbf{y} \in \mathbf{H}$, что $f(\mathbf{x}) = (\mathbf{x}, \mathbf{y})$ для любого $\mathbf{x} \in \mathbf{H}$. Действительно, если $\mathbf{y}_1, \mathbf{y}_2$ — такие элементы, что

$$f(\mathbf{x}) = (\mathbf{x}, \mathbf{y}_1) = (\mathbf{x}, \mathbf{y}_2)$$

то $(\mathbf{x}, \mathbf{y}_1 - \mathbf{y}_2)$ для любого $\mathbf{x} \in \mathbf{H}$. Но тогда $\mathbf{y}_1 = \mathbf{y}_2$.

4). Осталось заметить, что

$$\psi(\alpha \mathbf{y})(\mathbf{x}) = (\mathbf{x}, \alpha \mathbf{y}) = \bar{\alpha}(\mathbf{x}, \mathbf{y}) = \bar{\alpha}\psi(\mathbf{y})(\mathbf{x}),$$

то есть $f_{\alpha \mathbf{y}} = \bar{\alpha} f_{\mathbf{y}}$.

Замечание 1.3.10. В пространстве \mathbf{H}^* можно ввести скалярное произведение

$$(f_{\mathbf{y}_1}, f_{\mathbf{y}_2}) = (\mathbf{y}_1, \mathbf{y}_2),$$

которое превращает \mathbf{H}^* в гильбертово пространство.

1.4 Системы векторов. Матрица Грама

1.4.1 Матрица Грама и ее основные свойства

Пусть $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ — система векторов n-мерного гильбертова пространства \mathbf{H} .

Определение 1.4.1. Матрица

$$[\Gamma(\mathbf{x}_1,\ldots,\mathbf{x}_m)] = egin{pmatrix} (\mathbf{x}_1,\mathbf{x}_1) & \ldots & (\mathbf{x}_1,\mathbf{x}_m) \ dots & \ddots & dots \ (\mathbf{x}_m,\mathbf{x}_1) & \ldots & (\mathbf{x}_m,\mathbf{x}_m) \end{pmatrix}$$

называется матрицей Грама системы векторов $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$, а ее определитель $|\Gamma(\mathbf{x}_1, \dots, \mathbf{x}_m)|$ — определителем Грама.

Теорема 1.4.2. Для того, чтобы система векторов $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ п-мерного гильбертова пространства \mathbf{H} была линейно зависимой, необходимо и достаточно, чтобы определитель Γ рама $|\Gamma(\mathbf{x}_1, \dots, \mathbf{x}_m)|$ этой системы векторов был равен нулю.

Доказательство. Пусть векторы $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ линейно зависимы. Тогда существую такие не равные одновременно нулю числа $\{\lambda_1, \dots, \lambda_m\}$, что

$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m = \mathbf{0}.$$

Умножая последовательно обе части этого равенства слева скалярно на $\mathbf{x}_1, \ldots, \mathbf{x}_m$ соответственно, получим:

$$\begin{cases}
(\mathbf{x}_{1}, \mathbf{x}_{1})\bar{\lambda}_{1} + \dots + (\mathbf{x}_{1}, \mathbf{x}_{m})\bar{\lambda}_{m} = 0, \\
\dots \\ (\mathbf{x}_{m}, \mathbf{x}_{1})\bar{\lambda}_{1} + \dots + (\mathbf{x}_{m}, \mathbf{x}_{m})\bar{\lambda}_{m} = 0.
\end{cases} (1.4)$$

Рассматривая числа $\{\bar{\lambda}_1,\dots,\bar{\lambda}_m\}$ как ненулевое решение системы однородных линейных уравнений с определителем

$$|\Gamma(\mathbf{x}_1,\ldots,\mathbf{x}_m)| = egin{array}{cccc} (\mathbf{x}_1,\mathbf{x}_1) & \ldots & (\mathbf{x}_1,\mathbf{x}_m) \ dots & \ddots & dots \ (\mathbf{x}_m,\mathbf{x}_1) & \ldots & (\mathbf{x}_m,\mathbf{x}_m) \ \end{pmatrix},$$

получаем, что определитель Грама $|\Gamma(\mathbf{x}_1,\ldots,\mathbf{x}_m)|=0.$

Обратно, пусть определитель Грама $|\Gamma(\mathbf{x}_1,\ldots,\mathbf{x}_m)|=0$. Тогда система уравнений (1.4) имеет ненулевое решение $\{\bar{\lambda}_1,\ldots,\bar{\lambda}_m\}$. Систему (1.4) можно переписать в виде

$$\begin{cases}
(\mathbf{x}_1, \lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m) = 0, \\
\dots \\
(\mathbf{x}_m, \lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m) = 0.
\end{cases}$$
(1.5)

Умножая почленно эти равенства соответственно на $\lambda_1, \ldots, \lambda_m$ и складывая, получим:

$$(\lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m, \lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m) = 0,$$

т.е.,

$$\|\lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m\|^2 = 0,$$

откуда $\lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m = \mathbf{0}$. Следовательно, векторы $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ линейно зависимы.

Утверждение 1.4.3. Любая матрица Грама обладает следующими свойствами.

- (i) Матрица Грама $[\Gamma] = [\Gamma(\mathbf{x}_1, \dots, \mathbf{x}_m)] = (\alpha_{ij})_{i,j=1}^m$ эрмитово симметрична, т.е. $\alpha_{ji} = \bar{\alpha}_{ij}, i, j = 1, \dots, m$.
- (ii) Матрица Грама $[\Gamma(\mathbf{x}_1,\ldots,\mathbf{x}_m)]=(\alpha_{ij})_{i,j=1}^m$ неотрицательно определена, т.е.

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{ij} \xi_i \bar{\xi}_j \ge 0$$

для любого вектора $\mathbf{y} = \{\xi_1, \dots, \xi_m\} \in \mathbb{C}^m$.

(iii) Если некоторый главный минор определителя Грама $|\Gamma(\mathbf{x}_1, \dots, \mathbf{x}_m)|$ равен нулю, то равен нулю и сам определитель Грама.

Доказательство. (i). Так как $\alpha_{ij} = (\mathbf{x}_i, \mathbf{x}_j)$, то

$$\alpha_{ji} = (\mathbf{x}_j, \mathbf{x}_i) = \overline{(\mathbf{x}_i, \mathbf{x}_j)} = \bar{\alpha}_{ij}.$$

(ii). Рассмотрим вектор

$$\mathbf{x} = \sum_{i=1}^{m} \xi_i \mathbf{x}_i.$$

Тогда

$$0 \le (\mathbf{x}, \mathbf{x}) = \left(\sum_{i=1}^m \xi_i \mathbf{x}_i, \sum_{j=1}^m \xi_j \mathbf{x}_j\right) = \sum_{i=1}^m \sum_{j=1}^m \xi_i \bar{\xi}_j (\mathbf{x}_i, \mathbf{x}_j) = \sum_{i=1}^m \sum_{j=1}^m \xi_i \bar{\xi}_j \alpha_{ij}.$$

Следовательно, матрица Грама $[\Gamma(\mathbf{x}_1,\ldots,\mathbf{x}_m)]=(\alpha_{ij})_{i,j=1}^m$ неотрицательно определена.

(ііі). Главный минор определителя Грама является определителем Грама для части векторов системы $\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$. Если он равен нулю, то эта подсистема векторов линейно зависима. Но тогда линейно зависима и вся система $\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$. Следовательно, $|\Gamma(\mathbf{x}_1,x\ldots,\mathbf{x}_m)|=0$.

Замечание 1.4.4. Если система векторов $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ ортонормированная, то определитель Грама $|\Gamma(\mathbf{x}_1, \dots, \mathbf{x}_m)| = 1$.

1.4.2 Ортогональное проектирование на подпространство

Рассмотрим в n-мерном гильбертовом пространстве **H** m-мерное подпространство **M** и вектор **x**, не принадлежащий **M**. Как следует из утверждения 1.2.5, вектор **x** можно представить в виде суммы

$$\mathbf{x} = \mathbf{x_M} + \mathbf{x_N},$$

где вектор $\mathbf{x_M} \in \mathbf{M}$, а вектор $\mathbf{x_N} \in \mathbf{M}^{\perp}$. Так как $\mathbf{H} = \mathbf{M} \oplus \mathbf{M}^{\perp}$ (см. теорему 1.3.6), то такое разложение единственное. Построим векторы $\mathbf{x_M}$ и $\mathbf{x_N}$ с помощью определителя Грама.

Пусть $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ — базис подпространства \mathbf{M} . Тогда определитель Грама $|\Gamma(\mathbf{x}_1, \dots, \mathbf{x}_m)| \neq 0$. Будем искать вектор $\mathbf{x}_{\mathbf{M}} \in \mathbf{M}$ в виде:

$$\mathbf{x_M} = \lambda_1 \mathbf{x}_1 + \dots + \lambda_m \mathbf{x}_m,$$

где $\{\lambda_1, \dots, \lambda_m\}$ — некоторые комплексные числа. Для определения этих чисел будем исходить из соотношений:

$$(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_i) = (\mathbf{x} - \mathbf{x}_{\mathbf{M}}, \mathbf{x}_i) = 0, \quad i = 1, \dots, m.$$

Получим систему уравнений:

$$\begin{cases} (\mathbf{x}_1, \mathbf{x}_1)\lambda_1 + \dots + (\mathbf{x}_m, \mathbf{x}_1)\lambda_m + (\mathbf{x}, \mathbf{x}_1)(-1) = 0, \\ \dots \\ (\mathbf{x}_1, \mathbf{x}_m)\lambda_1 + \dots + (\mathbf{x}_m, \mathbf{x}_m)\lambda_m + (\mathbf{x}, \mathbf{x}_m)(-1) = 0, \\ \mathbf{x}_1\lambda_1 + \dots + \mathbf{x}_m\lambda_m + \mathbf{x}_{\mathbf{M}}(-1) = 0. \end{cases}$$

Рассматривая эту систему равенств как однородную систему линейных уравнений, имеющую ненулевое решение

$$\{\lambda_1,\ldots,\lambda_m,-1\},\$$

получим, что определитель матрицы коэффициентов этой системы равен нулю, т.е.

$$\begin{vmatrix} (\mathbf{x}_1, \mathbf{x}_1) & \dots & (\mathbf{x}_m, \mathbf{x}_1) & (\mathbf{x}, \mathbf{x}_1) \\ \vdots & \ddots & \vdots & \vdots \\ (\mathbf{x}_1, \mathbf{x}_m) & \dots & (\mathbf{x}_m, \mathbf{x}_m) & (\mathbf{x}, \mathbf{x}_m) \\ \mathbf{x}_1 & \dots & \mathbf{x}_m & \mathbf{x}_M \end{vmatrix} = 0,$$

а значит равен нулю и определитель транспонированной матрицы:

$$\begin{vmatrix} (\mathbf{x}_1, \mathbf{x}_1) & \dots & (\mathbf{x}_1, \mathbf{x}_m) & \mathbf{x}_1 \\ \vdots & \ddots & \vdots & \vdots \\ (\mathbf{x}_m, \mathbf{x}_1) & \dots & (\mathbf{x}_m, \mathbf{x}_m) & \mathbf{x}_m \\ (\mathbf{x}, \mathbf{x}_1) & \dots & (\mathbf{x}, \mathbf{x}_m) & \mathbf{x}_M \end{vmatrix} = 0.$$

Поэтому

или

$$\mathbf{x}_{\mathbf{M}} = -\frac{\begin{vmatrix} \mathbf{x}_1 \\ \Gamma \\ \vdots \\ \mathbf{x}_m \\ |\Gamma(\mathbf{x}_1) \dots (\mathbf{x}, \mathbf{x}_m) & 0 \end{vmatrix}}{|\Gamma(\mathbf{x}_1, \dots, \mathbf{x}_m)|}.$$

Наконец, находим вектор $\mathbf{x}_{\mathbf{N}}$:

$$\mathbf{x_N} = \mathbf{x} - \mathbf{x_M} = \frac{\begin{vmatrix} \mathbf{x_1} \\ \Gamma & \vdots \\ \mathbf{x_m} \\ |(\mathbf{x}, \mathbf{x_1}) & \dots & (\mathbf{x}, \mathbf{x_m}) & \mathbf{x} \end{vmatrix}}{|\Gamma(\mathbf{x_1}, \dots, \mathbf{x_m})|}$$

Вычислим длину вектора $\mathbf{x_N} = \mathbf{x} - \mathbf{x_M}$:

Определение 1.4.5. Вектор $\mathbf{x_M}$ называется ортогональной проекцией вектора \mathbf{x} на подпространство \mathbf{M} , а вектор $\mathbf{x_N}$ — проектирующим вектором.

Замечание 1.4.6. Длина вектора $\mathbf{x_N}$ имеет следующую геометрическую интерпретацию. Если на векторах $\{\mathbf{x_1}, \dots, \mathbf{x_m}, \mathbf{x}\}$ построить (m+1)-мерный параллелепипед, то $\|\mathbf{x_N}\|$ будет равна длине высоты этого параллелепипеда, опущенной из конца вектора \mathbf{x} на m-мерное основание \mathbf{M} .

Утверждение 1.4.7. Если y — произвольный вектор подпространства M, отличный от x_M , то

$$\|\mathbf{x} - \mathbf{y}\| > \|\mathbf{x} - \mathbf{x_M}\|$$

Доказательство. Так как $\mathbf{y}, \mathbf{x_M} \in \mathbf{M},$ то $\mathbf{x_M} - \mathbf{y} \in \mathbf{M},$ и следовательно,

$$(\mathbf{x}_{\mathbf{M}} - \mathbf{y}, \mathbf{x}_{\mathbf{N}}) = (\mathbf{x}_{\mathbf{M}} - \mathbf{y}, \mathbf{x} - \mathbf{x}_{\mathbf{M}}) = 0.$$

Поэтому

$$\begin{split} \|\mathbf{x} - \mathbf{y}\|^2 &= \|[\mathbf{x} - \mathbf{x}_{\mathbf{M}}] + [\mathbf{x}_{\mathbf{M}} - \mathbf{y}]\|^2 = \\ &= ([\mathbf{x} - \mathbf{x}_{\mathbf{M}}] + [\mathbf{x}_{\mathbf{M}} - \mathbf{y}], [\mathbf{x} - \mathbf{x}_{\mathbf{M}}] + [\mathbf{x}_{\mathbf{M}} - \mathbf{y}]) = \\ &= (\mathbf{x} - \mathbf{x}_{\mathbf{M}}, \mathbf{x} - \mathbf{x}_{\mathbf{M}}) + (\mathbf{x}_{\mathbf{M}} - \mathbf{y}, \mathbf{x}_{\mathbf{M}} - \mathbf{y}) = \\ &= \|\mathbf{x} - \mathbf{x}_{\mathbf{M}}\|^2 + \|\mathbf{x}_{\mathbf{M}} - \mathbf{y}\|^2 > \|\mathbf{x} - \mathbf{x}_{\mathbf{M}}\|^2, \end{split}$$

так как $\mathbf{x_M} \neq \mathbf{y}$. Следовательно,

$$\|x-y\|>\|x-x_M\|.$$

Замечание 1.4.8. В приведенных выше рассуждениях не требовалось ортонормированности базиса $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ подпространства **M**. В случае ортонормированного базиса результаты сравнимы с с теоремой 1.3.2.

Глава 2

Линейные операторы в **H** и их матрицы

2.1 Линейные операторы в Н

2.1.1 Линейные операторы в Н

Пусть \mathbf{H} — гильбертово пространство.

Определение 2.1.1. Отображение $A \colon \mathbf{H} \to \mathbf{H}$ называется линейным оператором, если

$$A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}.$$

для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}, \alpha, \beta \in \mathbb{C}$.

Обозначим через $\mathcal{B}(\mathbf{H})$ множество всех линейных операторов в гильбертовом пространстве \mathbf{H} . В $\mathcal{B}(\mathbf{H})$ определены следующие алгебраические операции:

$$(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x}, \quad A, B \in \mathcal{B}(\mathbf{H}), \ \mathbf{x} \in \mathbf{H};$$

 $(\lambda A)\mathbf{x} = \lambda A\mathbf{x}, \quad A \in \mathcal{B}(\mathbf{H}), \ \lambda \in \mathbb{C}, \ \mathbf{x} \in \mathbf{H};$
 $(AB)\mathbf{x} = A(B\mathbf{x}), \quad A, B \in \mathcal{B}(\mathbf{H}), \ \mathbf{x} \in \mathbf{H}.$

Относительно введенных операций $\mathcal{B}(\mathbf{H})$ является алгеброй с единицей. Роль единицы в $\mathcal{B}(\mathbf{H})$ играет тождественный оператор I:

$$I\mathbf{x} = \mathbf{x}, \quad \mathbf{x} \in \mathbf{H},$$

а роль нуля — нулевой оператор:

$$0\mathbf{x} = \mathbf{0}, \quad \mathbf{x} \in \mathbf{H}.$$

Заметим, что если dim $\mathbf{H} > 1$, то алгебра $\mathcal{B}(\mathbf{H})$ — некоммутативная, так как в общем случае $AB \neq BA$. Операторы A и B из $\mathcal{B}(\mathbf{H})$ называются коммутирующими, если AB = BA. Оператор

$$[A, B] = AB - BA$$

называется *коммутатором* операторов A и B.

Степень оператора $A \in \mathcal{B}(\mathbf{H})$ определяется обычным образом:

$$A^0 = I$$
, $A^1 = A$, $A^2 = AA$, ..., $A^{k+1} = A^kA$.

Легко видеть, что для любых натуральных m, n

$$A^{m+n} = A^m A^n$$
.

Если $A \in \mathcal{B}(\mathbf{H})$, то для любого полинома

$$p(z) = \alpha_0 + \alpha_1 z + \alpha_2 z^2 + \dots + \alpha_k z^k \in \mathcal{P}[\mathbb{C}]$$

определен оператор

$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \dots + \alpha_k A^k \in \mathcal{B}(\mathbf{H}).$$

Упражнение 2.1.2. Пусть $A, B \in \mathcal{B}(\mathbf{H})$. Если [A, B] = 0, то для любых полиномов $p(z), q(z) \in \mathcal{P}[\mathbb{C}]$ имеет место:

$$[p(A), q(B)] = 0.$$

Утверждение 2.1.3 (Поляризационное тождество). Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ и для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ имеет место тождество:

$$(A\mathbf{x}, \mathbf{y}) = \frac{1}{4} \{ [(A(\mathbf{x} + \mathbf{y}), \mathbf{x} + \mathbf{y}) - (A(\mathbf{x} - \mathbf{y}), \mathbf{x} - \mathbf{y})] + i[(A(\mathbf{x} + i\mathbf{y}), \mathbf{x} + i\mathbf{y}) - (A(\mathbf{x} - i\mathbf{y}), \mathbf{x} - i\mathbf{y})] \}.$$

Доказательство.

$$(A(\mathbf{x}+\mathbf{y}), \mathbf{x}+\mathbf{y}) = (A\mathbf{x}, \mathbf{x}) + (A\mathbf{y}, \mathbf{x}) + (A\mathbf{x}, \mathbf{y}) + (A\mathbf{y}, \mathbf{y}),$$

$$(A(\mathbf{x}-\mathbf{y}), \mathbf{x}-\mathbf{y}) = (A\mathbf{x}, \mathbf{x}) - (A\mathbf{y}, \mathbf{x}) - (A\mathbf{x}, \mathbf{y}) + (A\mathbf{y}, \mathbf{y}),$$

$$(A(\mathbf{x}+i\mathbf{y}), \mathbf{x}+i\mathbf{y}) = (A\mathbf{x}, \mathbf{x}) + i(A\mathbf{y}, \mathbf{x}) - i(A\mathbf{x}, \mathbf{y}) + (A\mathbf{y}, \mathbf{y}),$$

$$(A(\mathbf{x}-i\mathbf{y}), \mathbf{x}-i\mathbf{y}) = (A\mathbf{x}, \mathbf{x}) - i(A\mathbf{y}, \mathbf{x}) + i(A\mathbf{x}, \mathbf{y}) + (A\mathbf{y}, \mathbf{y}).$$

Поэтому

$$(A(\mathbf{x} + \mathbf{y}), \mathbf{x} + \mathbf{y}) - (A(\mathbf{x} - \mathbf{y}), \mathbf{x} - \mathbf{y}) = 2[(A\mathbf{y}, \mathbf{x}) + (A\mathbf{x}, \mathbf{y})],$$

$$(A(\mathbf{x} + i\mathbf{y}), \mathbf{x} + i\mathbf{y}) - (A(\mathbf{x} - i\mathbf{y}), \mathbf{x} - i\mathbf{y}) = 2i[(A\mathbf{y}, \mathbf{x}) - (A\mathbf{x}, \mathbf{y})].$$

Следовательно,

$$[(A(\mathbf{x} + \mathbf{y}), \mathbf{x} + \mathbf{y}) - (A(\mathbf{x} - \mathbf{y}), \mathbf{x} - \mathbf{y})] +$$

$$+ i[(A(\mathbf{x} + i\mathbf{y}), \mathbf{x} + i\mathbf{y}) - (A(\mathbf{x} - i\mathbf{y}), \mathbf{x} - i\mathbf{y})] =$$

$$= 2[(A\mathbf{y}, \mathbf{x}) + (A\mathbf{x}, \mathbf{y})] - 2[(A\mathbf{y}, \mathbf{x}) - (A\mathbf{x}, \mathbf{y})] = 4(A\mathbf{x}, \mathbf{y}).$$

Поляризационное тождество приводит к важному следствию.

Следствие 2.1.4. Пусть $A, B \in \mathcal{B}(\mathbf{H})$.

- (i) A = 0 тогда и только тогда, когда $(A\mathbf{x}, \mathbf{x}) = 0$ для любого $\mathbf{x} \in \mathbf{H}$;
- (ii) A = B тогда и только тогда, когда $(A\mathbf{x}, \mathbf{x}) = (B\mathbf{x}, \mathbf{x})$ для любого $\mathbf{x} \in \mathbf{H}$.

2.1.2 Обратный оператор

Понятие обратного оператора в случае конечномерного гильбертова пространства повторяет соответствующее определение в линейном случае. При этом имеют место аналогичные утверждения, которые мы приводим без доказательств (см. I(L)).

Определение 2.1.5. Оператор $B \in \mathcal{B}(\mathbf{H})$ называется *обратным* к оператору $A \in \mathcal{B}(\mathbf{H})$, если

$$BA = AB = I$$
.

Если оператор A имеет обратный, то он называется *обратимым*.

Оператор, обратный к оператору $A \in \mathcal{B}(\mathbf{H})$, обозначается через A^{-1} . Ясно, что оператор A^{-1} тоже обратим и

$$(A^{-1})^{-1} = A.$$

Очевидно, что тождественный оператор I обратим и $I^{-1}=I$. Кроме того, если $A,\ B\in\mathcal{B}(\mathbf{H})$ обратимы, то операторы $AB,\ BA,\ \alpha A,\ \alpha\neq 0$ тоже обратимы и

$$(AB)^{-1} = B^{-1}A^{-1}, \quad (\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}.$$

Замечание 2.1.6. Как и в линейном случае, не всякий линейный оператор $A \in \mathcal{B}(\mathbf{H})$ имеет обратный.

Утверждение 2.1.7. Следующий условия эквивалентны:

- (i) One pamop $A \in \mathcal{B}(\mathbf{H})$ of pamum;
- (ii) $Ker A = \{0\};$
- (iii) $\operatorname{Ran} A = \mathbf{H}$.

Следствие 2.1.8. Следующие условия эквивалентны:

- (i) One pamop $A \in \mathcal{B}(\mathbf{H})$ of pamum;
- (ii) Существует оператор $B \in \mathcal{B}(\mathbf{H})$ такой, что BA = I;
- (iii) Существует оператор $C \in \mathcal{B}(\mathbf{H})$ такой, что AC = I.

Обозначим множество всех обратимых операторов из $\mathcal{B}(\mathbf{H})$ через $\mathbf{G}_{\mathcal{B}(\mathbf{H})}$.

Упражнение 2.1.9. Доказать, что $G_{\mathcal{B}(\mathbf{H})}$ — группа операторов в $\mathcal{B}(\mathbf{H})$ (группа обратимых операторов).

Утверждение 2.1.10. *Если* $(AB) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}, \ mo \ A, \ B \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}.$

Доказательство. Пусть $(AB) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$. Так как

$$A(B(AB)^{-1}) = (AB)(AB)^{-1} = I, \quad ((AB)^{-1}A)B = (AB)^{-1}(AB) = I,$$

то в силу следствия 2.1.8, операторы $A, B \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$.

2.2 Норма линейного оператора в H. Свойства нормы

Линейный оператор $A \in \mathcal{B}(\mathbf{H})$ называется *ограниченным*, если существует такое число K > 0, что для всех $\mathbf{x} \in \mathbf{H}$ выполняется неравенство:

$$||A\mathbf{x}|| \le K||\mathbf{x}||.$$

Линейный оператор $A \in \mathcal{B}(\mathbf{H})$ называется nenpepuвным, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что $||A\mathbf{x} - A\mathbf{y}|| < \varepsilon$ для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ таких, что $||\mathbf{x} - \mathbf{y}|| < \delta$.

Ясно, что любой ограниченный оператор $A \in \mathcal{B}(\mathbf{H})$ непрерывен.

Утверждение 2.2.1. Любой оператор $A \in \mathcal{B}(\mathbf{H})$ в конечномерном гильбертовом пространстве **H** является ограниченным, а потому и непрерывным.

Доказательство. Пусть $A \in \mathcal{B}(\mathbf{H})$, $\dim \mathbf{H} = n$, $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ — ортонормированный базис в $\mathbf{H}, \mathbf{x} \in \mathbf{H}$ и

$$\mathbf{x} = \sum_{k=1}^{n} (\mathbf{x}, \mathbf{e}_k) \mathbf{e}_k$$

— его разложение по базису. Обозначим

$$K = \max\{||A\mathbf{e}_1||, \dots, ||A\mathbf{e}_n||\}.$$

Тогда

$$||A\mathbf{x}|| = \left\| \sum_{k=1}^{n} (\mathbf{x}, \mathbf{e}_k) A \mathbf{e}_k \right\| \le \sum_{k=1}^{n} |(\mathbf{x}, \mathbf{e}_k)| ||A \mathbf{e}_k|| \le$$

$$\le \sum_{k=1}^{n} ||\mathbf{x}|| ||\mathbf{e}_k|| ||A \mathbf{e}_k|| = ||\mathbf{x}|| \sum_{k=1}^{n} ||A \mathbf{e}_k|| \le nK ||\mathbf{x}||.$$

Следовательно, оператор A ограничен.

Замечание 2.2.2. Если гильбертово пространство **H** конечномерно, то каждый оператор $A \in \mathcal{B}(\mathbf{H})$ является ограниченным (см. утверждение 2.2.1). Для бесконечномерного гильбертова пространства **H** изучение классов ограниченных операторов, а также возникающих в этом случае классов неограниченных операторов, существенно усложняет изложение теории операторов.

Определение 2.2.3. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ число

$$||A|| = \sup_{\|\mathbf{x}\|=1} ||A\mathbf{x}|| = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{\|\mathbf{x}\|}$$

называется *нормой* оператора A.

Замечание 2.2.4. Пусть I — единичный оператор в $\mathcal{B}(\mathbf{H})$, а 0 — нулевой. Тогда $\|I\|=1, \|0\|=0$.

Утверждение 2.2.5. Норма оператора обладает следующими свойствами.

- (i) $||A|| \ge 0$ для любого оператора $A \in \mathcal{B}(\mathbf{H}); ||A|| = 0$ лишь при A = 0;
- (ii) $\|\lambda A\| = |\lambda| \|A\|$ для любых $A \in \mathcal{B}(\mathbf{H})$ и $\lambda \in \mathbb{C}$;
- (iii) $||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||$ для любых $A \in \mathcal{B}(\mathbf{H})$ $u \mathbf{x} \in \mathbf{H}$;
- (iv) |(Ax, y)| < ||A|| ||x|| ||y|| для любых $A \in \mathcal{B}(\mathbf{H})$ $u \ x, y \in \mathbf{H}$;
- (v) $||A + B|| \le ||A|| + ||B||$ для любых $A, B \in \mathcal{B}(\mathbf{H})$;
- (vi) $||AB|| \le ||A|| \, ||B|| \, \partial \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{B} \in \mathcal{B}(\mathbf{H}).$

 $\begin{subarray}{ll} \mathcal{A} оказательство. Свойства (i)–(iii) следуют непосредственно из определения, свойство (iv) — из неравенства Коши–Шварца, свойства (v) и (vi) из неравенств:$

$$||(A+B)\mathbf{x}|| = ||A\mathbf{x} + B\mathbf{x}|| \le ||A\mathbf{x}|| + ||B\mathbf{x}|| \le (||A|| + ||B||)||\mathbf{x}||,$$

$$||AB\mathbf{x}|| = ||A(B\mathbf{x})|| < ||A|| ||B\mathbf{x}|| < ||A|| ||B|| ||\mathbf{x}||.$$

Упражнение 2.2.6. Пусть $A \in \mathcal{B}(\mathbf{H})$ и $\sigma(A)$ — его спектр (см. пособие I(L), стр. 73).

(i) Доказать, что норму оператора A можно вычислять по одной из следующих формул:

$$||A|| = \inf\{K > 0 : ||Ax|| \le K ||\mathbf{x}||, \mathbf{x} \in \mathbf{H}\};$$

$$||A|| = \sup_{\|\mathbf{x}\| = \|\mathbf{y}\| = 1} |(A\mathbf{x}, \mathbf{y})|, \quad \mathbf{x}, \mathbf{y} \in \mathbf{H};$$

$$||A|| = \sup_{\mathbf{x}, \mathbf{y} \neq 0} \frac{|(A\mathbf{x}, \mathbf{y})|}{\|\mathbf{x}\| \|\mathbf{y}\|}, \quad \mathbf{x}, \mathbf{y} \in \mathbf{H}.$$

- (ii) Если $\lambda \in \sigma(A)$, то $|\lambda| \leq ||A||$.
- (ііі) Оператор $A \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$ тогда и только тогда, когда существует такое число K>0, что

$$\|A\mathbf{x}\| \ge K\|\mathbf{x}\|$$

для любого $\mathbf{x} \in \mathbf{H}$.

(iv) Если $A \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$, то ||A|| > 0 и $||A^{-1}|| > 0$.

Упражнение 2.2.7. Доказать, что

$$\max_{\|\mathbf{x}\|=1} |(A\mathbf{x}, \mathbf{x})| \le \|A\| \le 2 \max_{\|\mathbf{x}\|=1} |(A\mathbf{x}, \mathbf{x})|.$$

Упражнение 2.2.8. Пусть dim $\mathbf{H} = n > 1$. Привести пример такого оператора $A \in \mathcal{B}(\mathbf{H})$, что

$$||A|| = 1, \quad \max_{\|\mathbf{x}\|=1} |(A\mathbf{x}, \mathbf{x})| = \frac{1}{2}.$$

Упражнение 2.2.9. Вычислить норму клетки Жордана $A = J_n(\lambda)$.

2.3 Резольвента. Спектральный радиус

2.3.1 Резольвента оператора

Утверждение 2.3.1. Пусть $A \in \mathcal{B}(\mathbf{H})$.

- (i) Если $\lambda \in \sigma(A)$, то оператор $(A \lambda I)$ необратим.
- (ii) Ecnu $\mu \notin \sigma(A)$, mo one pamo $(A \mu I) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$.

Доказательство. (i). Пусть $A \in \mathcal{B}(\mathbf{H}), \ \lambda \in \sigma(A)$ и $\mathbf{x} \in \mathbf{H}, \ \mathbf{x} \neq \mathbf{0}$ — соответствующий собственный вектор. Тогда

$$(A - \lambda I)\mathbf{x} = \mathbf{0},$$

т.е. $\operatorname{Ker}(A - \lambda I) \neq \{0\}$. Поэтому оператор $(A - \lambda I)$ необратим.

(ii). Если $\mu \not\in \sigma(A)$, то не существует ненулевого вектора $\mathbf{x} \in \mathbf{H}$, для которого выполнялось бы равенство:

$$A\mathbf{x} = \mu\mathbf{x}.$$

Следовательно,

$$Ker(A - \mu I) = \{\mathbf{0}\}.$$

Поэтому, в силу теоремы I(L).2.3.3, оператор $(A - \mu I) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$.

Определение 2.3.2. Комплексное число λ называется регулярной точкой оператора $A \in \mathcal{B}(\mathbf{H})$, если оператор $(A - \lambda I)$ обратим. Множество всех регулярных точек оператора A называется резольвентным множеством этого оператора и обозначается r(A).

Замечание 2.3.3. Как показывает утверждение 2.3.1,

$$r(A) = \mathbb{C} \setminus \sigma(A), \quad A \in \mathcal{B}(\mathbf{H}).$$

Поэтому резольвентное множество r(A) любого оператора $A \in \mathcal{B}(\mathbf{H})$ является открытым подмножеством в \mathbb{C} .

Определение 2.3.4. Пусть $A \in \mathcal{B}(\mathbf{H})$ и $\lambda \in r(A)$. Оператор

$$R_{\lambda}(A) = R(A, \lambda) = A_{\lambda} = (A - \lambda I)^{-1}$$

называется резольвентой оператора A.

Замечание 2.3.5. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ резольвента $R(A, \lambda)$ представляет собой функцию комплексного переменного λ , определенную на резольвентном множестве $r(A) = \mathbb{C} \setminus \sigma(A)$. Эта функция является рациональной функцией от λ , полюсы которой принадлежат $\sigma(A)$. На бесконечности она регулярна и обращается в нуль.

Утверждение 2.3.6 (Тождество Гильберта). *Если* $\lambda, \mu \in r(A)$, то имеет место равенство

$$A_{\lambda} - A_{\mu} = (\lambda - \mu) A_{\lambda} A_{\mu}.$$

Доказательство. Умножая равенство

$$(A - \mu I) - (A - \lambda I) = (\lambda - \mu)I$$

слева на A_{λ} , а справа на A_{μ} , последовательно получим:

$$A_{\lambda}(A - \mu I)A_{\mu} - A_{\lambda}(A - \lambda I)A_{\mu} = A_{\lambda}(\lambda - \mu)A_{\mu},$$

$$A_{\lambda} - A_{\mu} = (\lambda - \mu)A_{\lambda}A_{\mu}.$$

Упражнение 2.3.7. Доказать, что если $\lambda, \mu \in r(A)$, то

- (i) $[A_{\lambda}, A_{\mu}] = A_{\lambda}A_{\mu} A_{\mu}A_{\lambda} = 0;$
- (ii) $[A, A_{\lambda}] = AA_{\lambda} A_{\lambda}A = 0;$
- (iii) $I + \lambda A_{\lambda} = AA_{\lambda}$;
- (iv) $\lambda A_{\lambda} \mu A_{\mu} = (\lambda \mu) A_{\lambda} A A_{\mu}$.

Утверждение 2.3.8. Если $A \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$ и оператор $B \in \mathcal{B}(\mathbf{H})$ такой, что

$$||B|| < \frac{1}{||A^{-1}||},$$

то операторы $(A \pm B) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$.

Доказательство. Допустим, что $\mathrm{Ker}(A+B) \neq \{\mathbf{0}\}$. Тогда существует ненулевой вектор $\mathbf{y} \in \mathbf{H}$ такой, что

$$(A+B)\mathbf{y} = A\mathbf{y} + B\mathbf{y} = \mathbf{0}.$$

Следовательно,

$$||B|| = \sup_{\mathbf{x} \neq 0} \frac{||B\mathbf{x}||}{||\mathbf{x}||} \ge \frac{||B\mathbf{y}||}{||\mathbf{y}||} = \frac{||A\mathbf{y}||}{||\mathbf{y}||} = \frac{||\mathbf{z}||}{||A^{-1}\mathbf{z}||} \ge \frac{||\mathbf{z}||}{||A^{-1}||||\mathbf{z}||} = \frac{1}{||A^{-1}||},$$

где $\mathbf{z} = A\mathbf{y} \neq \mathbf{0}$. Полученное противоречие показывает, что

$$Ker(A+B) = \{\mathbf{0}\},\$$

и потому, в силу утверждения 2.1.7, $(A + B) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$.

Случай оператора (A-B) рассматривается аналогично.

Следствие 2.3.9. Пусть $A \in \mathcal{B}(\mathbf{H})$ такой, что ||A|| < 1. Тогда:

- (i) Операторы $(A \pm I) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}, m.e. \pm 1 \in r(A),$
- (ii) $(I A)^{-1} = \sum_{k=0}^{\infty} A^k$.

Доказательство. (i). Так как $I \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$ и $||I|| = ||I^{-1}|| = 1$, то в силу утверждения 2.3.8, операторы $(I \pm A) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$, и потому $(A \pm I) \in \mathbf{G}_{\mathcal{B}(\mathbf{H})}$.

(ii). Так как ||A|| < 1, то

$$\sum_{k=0}^{\infty} ||A^k|| \le \sum_{k=0}^{\infty} ||A||^k < \infty.$$

Поэтому $\sum_{k=0}^{\infty} A^k \in \mathcal{B}(\mathbf{H})$. Кроме того, для любого m имеем:

$$(I-A)\sum_{k=0}^{m} A^k = \sum_{k=0}^{m} (I-A)A^k = I - A^{m+1}.$$

Переходя к пределу при $m \to \infty$, и учитывая, что $||A^{m+1}|| \le ||A||^{m+1} \to 0$, получаем:

$$(I - A) \sum_{k=0}^{\infty} A^k = \sum_{k=0}^{\infty} (I - A) A^k = I.$$

Следовательно, $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$.

Упражнение 2.3.10. Пусть $A \in \mathcal{B}(\mathbf{H})$ такой, что $\|A\| < 1$. Доказать, что

$$||(A-I)^{-1}|| \le \frac{1}{1-||A||}.$$

Утверждение 2.3.11. Пусть $\{A_k\}_{k=1}^{\infty} \subset \mathcal{B}(\mathbf{H})$ — такая последовательность, что $1 \in r(A_k)$ для любого $k = 1, 2, \ldots$ Тогда следующие условия эквивалентны:

- (i) $A_k \to 0 \text{ npu } k \to \infty$;
- (ii) Начиная с некоторого номера K операторы $(I A_k)$ обратимы при $k \geq K$, $u(I - A_k)^{-1} \rightarrow I \ npu \ k \rightarrow \infty$.

Доказательство. (i) \Rightarrow (ii). Пусть $A_k \to 0$ при $k \to \infty$, т.е. $\lim_{k \to \infty} ||A_k|| = 0$. Следовательно, существует такой номер K, что при всех $k \geq K$ нормы $||A_k|| < 1$, и потому, в силу следствия 2.3.9, операторы $(I - A_k)$ обратимы и

$$\|(I - A_k)^{-1} - I\| = \left\| \sum_{m=0}^{\infty} A_k^m - I \right\| = \left\| \sum_{m=1}^{\infty} A_k^m \right\| \le$$

$$\le \sum_{m=0}^{\infty} \|A_k^m\| \le \sum_{m=0}^{\infty} \|A_k\|^m = \frac{\|A_k\|}{1 - \|A_k\|}.$$

Таким образом,
$$\lim_{k\to\infty}(I-A_k)^{-1}=I.$$
 (ii) \Rightarrow (i). Пусть $\lim_{k\to\infty}(I-A_k)^{-1}=I.$ Тогда

$$B_k = I - (I - A_k)^{-1} \to 0.$$

Тогда, по уже доказанному,

$$(I-B_k)^{-1} \to I$$

Следовательно, $I - (I - B_k)^{-1} = I - (I - A_k) = A_k \to 0$ при $k \to \infty$.

2.3.2Спектральный радиус оператора

Пусть $A \in \mathcal{B}(\mathbf{H})$.

Определение 2.3.12. Спектральным радиусом оператора A называется число

$$\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|.$$

Утверждение 2.3.13. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ выполняется неравенство:

$$0 \le \rho(A) \le ||A||.$$

Доказательство. Левая часть неравенства очевидна. Пусть $\lambda \in \sigma(A)$ и $\mathbf{0} \neq \mathbf{y} \in \mathbf{H}$ — соответствующий собственный вектор, $A\mathbf{y} = \lambda \mathbf{y}$. Тогда имеем:

$$||A|| = \sup_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||}{||\mathbf{x}||} \ge \frac{||A\mathbf{y}||}{||\mathbf{y}||} = \frac{||\lambda\mathbf{y}||}{||\mathbf{y}||} = |\lambda|.$$

Следовательно,

$$||A|| \ge \max_{\lambda \in \sigma(A)} |\lambda| = \rho(A).$$

Спектральный радиус оператора, вообще говоря, не зависит от нормы оператора. Однако его можно выразить в терминах нормы. Для этого нам понадобится следующее утверждение.

Утверждение 2.3.14. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ существует предел

$$\lim_{k \to \infty} \sqrt[k]{\|A^k\|} = \inf \left\{ \sqrt[k]{\|A^k\|}, k \in \mathbb{N} \right\}.$$

Доказательство. Рассмотрим числовую последовательность

$$\{a_k\}_{k=1}^{\infty}, \quad a_k = ||A^k||, \quad k = 1, 2, \dots$$

Пусть k_1, k_2 — любые натуральные числа. Тогда

$$a_{k_1+k_2} = ||A^{k_1+k_2}|| = ||A^{k_1}A^{k_2}|| \le ||A^{k_1}|| \, ||A_2^k|| = a_{k_1}a_{k_2}.$$

Такую последовательность $\{\alpha_k\}_{k=1}^{\infty}$ называют nonyaddumuehoù.

1). Если $a_{k_0}=0$ для некоторого k_0 , то $a_k=0$ для любого $k>k_0$. В этом случае

$$\lim_{k \to \infty} a_k = \inf_k a_k = 0$$

И

$$\lim_{k \to \infty} \sqrt[k]{\|A^k\|} = \inf \left\{ \sqrt[k]{\|A^k\|}, k \in \mathbb{N} \right\} = 0.$$

2). Пусть теперь $a_k>0$ для любого $k=1,\,2,\,\ldots$ Зафиксируем некоторое натуральное число m. Для каждого натурального числа k однозначно определены числа p_k и q_k такие, что

$$k = p_k m + q_k, \quad 0 \le q_k < m.$$

Тогда

$$a_k = a_{p_k m + q_k} \le a_{p_k m} a_{q_k} \le a_m^{p_k} a_{q_k},$$

И

$$a_k^{1/k} \le a_m^{p_k/k} a_{q_k}^{1/k}.$$

Так как

$$\frac{1}{m} = \frac{p_k}{k} + \frac{q_k}{km},$$

TO

$$\lim_{k \to \infty} \frac{p_k}{k} = \frac{1}{m}.$$

Поэтому

$$\overline{\lim}_{k \to \infty} a_k^{1/k} \le a_m^{1/m}.$$

Так как число m было произвольным, то

$$\overline{\lim}_{k \to \infty} a_k^{1/k} \le \inf_m a_m^{1/m} \le \underline{\lim}_{k \to \infty} a_k^{1/k}.$$

Следовательно, существует предел

$$\lim_{k \to \infty} a_k^{1/k} = \inf_k a_k^{1/k}.$$

Таким образом, существует предел

$$\lim_{k \to \infty} \sqrt[k]{\|A^k\|} = \inf \left\{ \sqrt[k]{\|A^k\|}, k \in \mathbb{N} \right\}.$$

Теорема 2.3.15 (Формула Гельфанда). Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ имеет место равенство:

$$\rho(A) = \lim_{k \to \infty} \sqrt[k]{\|A^k\|} = \inf_{k} \sqrt[k]{\|A^k\|}.$$

Доказательство. Пусть $\lambda \in \sigma(A)$. Тогда $\lambda^k \in \sigma(A^k)$ для любого $k \in \mathbb{N}$. Следовательно,

$$|\lambda^k| = |\lambda|^k \le \rho(A^k) \le ||A^k||.$$

Поэтому,

$$|\lambda| \le \sqrt[k]{\|A^k\|}, \quad \lambda \in \sigma(A),$$

откуда следует, что $\rho(A) \leq \sqrt[k]{\|A^k\|}$ и

$$\rho(A) \leq \lim_{k \to \infty} \sqrt[k]{\|A^k\|}.$$

Для доказательства противоположного неравенства рассмотрим резольвенту

$$R(A,\lambda) = (A - \lambda I)^{-1}$$

и разложим ее в сходящийся ряд Лорана в окрестности бесконечно удаленной точки при $|\lambda| > ||A||$ (см. следствие 2.3.9):

$$R(A, \lambda) = (A - \lambda I)^{-1} = -\frac{1}{\lambda} \left(I - \frac{A}{\lambda} \right)^{-1} = -\sum_{k=0}^{\infty} \frac{A^k}{\lambda^{k+1}}.$$

На самом деле, этот ряд сходится в более широкой области $|\lambda| > \rho(A)$, так как в этой области у резольвенты нет особых точек. По формуле Коши-Адамара для радиуса сходимости этого ряда имеем:

$$\lim_{k \to \infty} \sqrt[k]{\|A^k\|} \le \rho(A).$$

Таким образом,

$$\rho(A) = \lim_{k \to \infty} \sqrt[k]{\|A^k\|} = \inf_k \sqrt[k]{\|A^k\|}.$$

Утверждение 2.3.16. Спектральный радиус оператора $A \in \mathcal{B}(\mathbf{H})$ обладает следующими свойствами:

- (i) $\rho(\alpha A) = |\alpha|\rho(A)$;
- (ii) $\rho(A^m) = (\rho(A))^m$ для любого натурального числа m.

Доказательство. (і).

$$\begin{split} \rho(\alpha A) &= \lim_{k \to \infty} \sqrt[k]{\|(\alpha A)^k\|} = \lim_{k \to \infty} \sqrt[k]{\|\alpha^k A^k\|} = \\ &= \lim_{k \to \infty} \sqrt[k]{|\alpha^k| \, \|A^k\|} = |\alpha| \lim_{k \to \infty} \sqrt[k]{\|A^k\|} = |\alpha| \rho(A). \end{split}$$

(ii).

$$\rho(A^m) = \lim_{k \to \infty} \sqrt[k]{\|(A^m)^k\|} = \lim_{k \to \infty} \sqrt[k]{\|A^{mk}\|} = \lim_{k \to \infty} \left[\sqrt[m]{\|A^{mk}\|}\right]^m =$$

$$= \left[\lim_{k \to \infty} \sqrt[mk]{\|A^{mk}\|}\right]^m = (\rho(A))^m.$$

Упражнение 2.3.17. Докажите утверждения.

- Если $|\mu| > \rho(A)$, то $\mu \in r(A)$;
- Если $|\mu| > ||A||$, то $\mu \in r(A)$.

Утверждение 2.3.18. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ следующие условия эквивалентны:

- (i) $\rho(A) = ||A||;$
- (ii) $||A^k|| = ||A||^k$ для любого $k = 2, 3, \dots$

Доказательство. (i) \Rightarrow (ii). Пусть $\rho(A) = \|A\|$. По утверждению 2.2.5(vi) $\|A^k\| \leq \|A\|^k$. Допустим, что для некоторого $k=2,3,\ldots$ выполнено строгое неравенство

$$||A^k|| < ||A||^k.$$

Тогда

$$\sqrt[k]{\|A^k\|} < \sqrt[k]{\|A\|^k} = \|A\|.$$

Поэтому

$$\rho(A) = \inf_{k} \sqrt[k]{\|A^k\|} < \|A\|,$$

что противоречит нашему предположению. Таким образом, $\|A^k\| = \|A\|^k$ для любого $k=2,\,3,\,\ldots$

(ii) \Rightarrow (i). Пусть $\|A^k\| = \|A\|^k$ для любого $k=2,\,3,\,\ldots$ Тогда

$$\rho(A) = \lim_{k \to \infty} \sqrt[k]{\|A^k\|} = \lim_{k \to \infty} \sqrt[k]{\|A\|^k} = \|A\|.$$

Пример 2.3.19. Пусть dim $\mathbf{H}=2$ и $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Так как $A^2=0$, то $\rho(A)=0$. С другой стороны, $\|A\|=1$.

Утверждение 2.3.20. *Если операторы* $A, B \in \mathcal{B}(\mathbf{H})$ *коммутируют:* [AB] = AB - BA = 0, mo

- (i) $\rho(A+B) \le \rho(A) + \rho(B)$;
- (ii) $\rho(AB) \le \rho(A)\rho(B)$.

Доказательство. (і). Так как

$$\rho(A) = \lim_{k \to \infty} \sqrt[k]{\|A^k\|} = \inf_k \sqrt[k]{\|A^k\|},$$

то для любого сколь угодно малого числа $\varepsilon > 0$ найдется такое натуральное число N_A , что для любого $k > N_A$ выполняется неравенство

$$\rho(A) \le \sqrt[k]{\|A^k\|} < \rho(A) + \varepsilon.$$

Аналогично, для оператора B, найдется такое натуральное число N_B , что для любого $k>N_B$ выполняется неравенство

$$\rho(B) \le \sqrt[k]{\|B^k\|} < \rho(B) + \varepsilon.$$

Пусть $N = \max\{N_A, N_B\}$. Тогда для любого k > N выполняются оба

приведенных неравенства. Для $k \ge 2N+2$ имеем:

$$\begin{split} \|(A+B)^k\| &= \Big\| \sum_{m=0}^k C_k^m A^{k-m} B^m \Big\| \le \sum_{m=0}^k C_k^m \|A^{k-m}\| \|B^m\| = \\ &= \sum_{m=0}^N C_k^m \|A^{k-m}\| \|B^m\| + \sum_{m=N+1}^{k-N-1} C_k^m \|A^{k-m}\| \|B^m\| + \\ &+ \sum_{m=k-N}^k C_k^m \|A^{k-m}\| \|B^m\| < \\ &< \sum_{m=0}^N C_k^m [\rho(A) + \varepsilon]^{k-m} \|B^m\| + \\ &+ \sum_{m=N+1}^{k-N-1} C_k^m [\rho(A) + \varepsilon]^{k-m} [\rho(B) + \varepsilon]^m + \\ &+ \sum_{m=k-N}^k C_k^m \|A^{k-m}\| [\rho(B) + \varepsilon]^m \le \\ &\le \sum_{m=0}^N C_k^m [\rho(A) + \varepsilon]^{k-m} \|B^m\| + [\rho(A) + \rho(B) + 2\varepsilon]^k + \\ &+ \sum_{m=0}^N C_k^m [\rho(A) + \varepsilon]^{k-m} \|B^m\| + [\rho(A) + \rho(B) + 2\varepsilon]^k + \\ &+ \sum_{m=0}^N C_k^m \|A^m\| [\rho(B) + \varepsilon]^{k-m} = \\ &= [\rho(A) + \rho(B) + 2\varepsilon]^k \times \\ &\times \left[1 + \sum_{m=0}^N C_k^m \frac{[\rho(A) + \varepsilon]^k}{[\rho(A) + \rho(B) + 2\varepsilon]^k} \frac{\|B^m\|}{[\rho(A) + \rho(B) + 2\varepsilon]^k} \right] = \\ &= [\rho(A) + \rho(B) + 2\varepsilon]^k [1 + c_1 q_1^k + c_2 q_2^k], \end{split}$$

где

$$c_{1} = \sum_{m=0}^{N} C_{k}^{m} \frac{\|B^{m}\|}{[\rho(A) + \varepsilon]^{m}}, \qquad q_{1} = \frac{\rho(A) + \varepsilon}{\rho(A) + \rho(B) + 2\varepsilon},$$

$$c_{2} = \sum_{m=0}^{N} C_{k}^{m} \frac{\|A^{m}\|}{[\rho(B) + \varepsilon]^{m}}, \qquad q_{2} = \frac{\rho(B) + \varepsilon}{\rho(A) + \rho(B) + 2\varepsilon}.$$

Следовательно,

$$\rho(A+B) = \lim_{k \to \infty} \sqrt[k]{\|(A+B)^k\|} \le$$

$$\le [\rho(A) + \rho(B) + 2\varepsilon] \lim_{k \to \infty} \sqrt[k]{1 + c_1 q_1^k + c_2 q_2^k} = \rho(A) + \rho(B) + 2\varepsilon,$$

так как $0 \le q_1 < 1$ и $0 \le q_2 < 1$. Ввиду произвольности $\varepsilon > 0$, получаем:

$$\rho(A+B) \le \rho(A) + \rho(B)$$
.

(ii). Имеем

$$\rho(AB) = \lim_{k \to \infty} \sqrt[k]{\|(AB)^k\|} = \lim_{k \to \infty} \sqrt[k]{\|A^k B^k\|} \le \lim_{k \to \infty} \sqrt[k]{\|A^k\| \|B^k\|} = \lim_{k \to \infty} \sqrt[k]{\|A^k\|} \lim_{k \to \infty} \sqrt[k]{\|B^k\|} = \rho(A)\rho(B).$$

Замечание 2.3.21. Если операторы A и B не коммутируют, то неравенство $\rho(A+B) \leq \rho(A) + \rho(B)$ может не выполняться.

Пример 2.3.22. Пусть $\dim \mathbf{H} = 2$ и

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$
$$[A, B] = AB - BA = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq 0.$$

Так как $A^2 = B^2 = 0$, то $\rho(A) = \rho(B) = 0$. С другой стороны,

$$A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad (A + B)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad (A + B)^3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \dots$$

Поэтому $\rho(A+B)=1$.

Упражнение 2.3.23. Пусть $A \in \mathcal{B}(\mathbf{H})$.

- Доказать, что $\max_{\|\mathbf{x}\|=1} |(A\mathbf{x}, \mathbf{x})| = \|A\|$ тогда и только тогда, когда $\rho(A) = \|A\|$;
- Найти спектральный радиус оператора $A = J_n(\lambda);$
- Доказать, что $\rho(A)=0$ тогда и только тогда, когда оператор A нильпотентный.

2.4 Матричное представление линейного оператора в ортонормированном базисе

2.4.1 Матричное представление линейного оператора

Пусть $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ — ортонормированный базис гильбертова пространства \mathbf{H} и A — линейный оператор в \mathbf{H} . Тогда каждый вектор $A\mathbf{e}_j,\ j=1,\ldots,n,$ раскладывается в линейную комбинацию базисных векторов:

$$A\mathbf{e}_j = \alpha_{1j}\mathbf{e}_1 + \dots + \alpha_{nj}\mathbf{e}_n, \quad j = 1,\dots, n.$$

Числа $\alpha_{ij}, i=1,\ldots,n, j=1,\ldots,n,$ образуют матрицу, которая обозначается через

$$[A] = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix},$$

и называется матрицей линейного оператора A в базисе $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$.

Замечание 2.4.1. При фиксированном базисе гильбертова пространства ${\bf H}$ соответствие между операторами A и их матрицами [A] взаимно однозначное. Действительно, если

$$A\mathbf{e}_j = \alpha_{1j}\mathbf{e}_1 + \dots + \alpha_{nj}\mathbf{e}_n, \quad j = 1,\dots, n,$$

И

$$A\mathbf{e}_j = \alpha'_{1j}\mathbf{e}_1 + \dots + \alpha'_{nj}\mathbf{e}_n, \quad j = 1,\dots, n,$$

ТО

$$(\alpha_{1j} - \alpha'_{1j})\mathbf{e}_1 + \dots + (\alpha_{nj} - \alpha_{nj})\mathbf{e}_n = 0, \quad j = 1,\dots, n.$$

Так как векторы базиса $\{{\bf e}_1,\ldots,{\bf e}_n\}$ линейно независимы, то

$$\alpha_{ij} = \alpha'_{ij}, \quad i = 1, \dots, n, \quad j = 1, \dots, n.$$

Обратно, если бы матрице

$$[A] = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}$$

в фиксированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ соответствовало бы два оператора A_1 , $A_2 \in \mathcal{B}(\mathbf{H})$, то

$$A_1\mathbf{e}_j = A_2\mathbf{e}_j, \quad j = 1, \dots, n.$$

Поэтому $A_1\mathbf{x} = A_2\mathbf{x}$ для любого $\mathbf{x} \in \mathbf{H}$. Следовательно, $A_1 = A_2$.

Базис $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}$ ортонормированный, поэтому скалярно умножая каждое из равенств

$$A\mathbf{e}_j = \alpha_{1j}\mathbf{e}_1 + \dots + \alpha_{nj}\mathbf{e}_n, \quad j = 1,\dots, n,$$

справа последовательно на векторы базиса $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$, получим:

$$\alpha_{ij} = (A\mathbf{e}_j, \mathbf{e}_i), \quad i = 1, \dots, n, \quad j = 1, \dots, n.$$

Поэтому матрица [A] оператора A в ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ имеет вид:

$$[A] = \begin{pmatrix} (A\mathbf{e}_1, \mathbf{e}_1) & \dots & (A\mathbf{e}_n, \mathbf{e}_1) \\ \vdots & \ddots & \vdots \\ (A\mathbf{e}_1, \mathbf{e}_n) & \dots & (A\mathbf{e}_n, \mathbf{e}_n) \end{pmatrix}.$$

2.4.2 Связь между матрицами линейного оператора в различных базисах

Пусть $\mathfrak{B}=\{\mathbf{e}_1,\dots,\mathbf{e}_n\}$ и $\mathfrak{B}'=\{\mathbf{e}_1',\dots,\mathbf{e}_n'\}$ — два различных базиса гильбертова пространства \mathbf{H} и

$$\mathfrak{B} \stackrel{C}{\to} \mathfrak{B}'$$

где $[C] = (c_{ij})_{i,j=1}^n$ — невырожденная матрица перехода от первого базиса ко второму, т.е.

Матрица [C] является матрицей оператора $C \in \mathcal{B}(\mathbf{H})$ такого, что

$$C\mathbf{e}_k = \mathbf{e}'_k, \quad k = 1, \dots, n,$$

в базисе $\mathfrak{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$:

$$c_{ij} = (C\mathbf{e}_j, \mathbf{e}_i) = (\mathbf{e}'_j, \mathbf{e}_i), \quad i, j = 1, \dots, n.$$

Найдем условия, которым должна удовлетворять матрица [C]. Скалярно умножая последовательно каждое из равенств системы (2.1) справа на вектор \mathbf{e}'_j , $j=1,\ldots,n$, получим:

$$(\mathbf{e}'_k, \mathbf{e}'_j) = \sum_{i=1}^n c_{ik}(\mathbf{e}_i, \mathbf{e}'_j) = \sum_{i=1}^n c_{ik}\bar{c}_{ij}, \quad k, j = 1, \dots, n.$$

Так как базис $\mathfrak{B}' = \{\mathbf{e}_1', \dots, \mathbf{e}_n'\}$ ортонормированный, то

$$\sum_{i=1}^{n} c_{ik} \bar{c}_{ik} = \sum_{i=1}^{n} |c_{ik}|^{2} = 1,$$

$$\sum_{i=1}^{n} c_{ik} \bar{c}_{ij} = 0, \quad j \neq k.$$

Матрицы, удовлетворяющие таким условиям, называются *унитарными*, а соответствующие операторы — *унитарными*. Подробнее такие матрицы и операторы будут рассмотрены в главе 3.

Пусть теперь A — произвольный линейный оператор из $\mathcal{B}(\mathbf{H})$, имеющий в базисах $\mathfrak{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ и $\mathfrak{B}' = \{\mathbf{e}'_1, \dots, \mathbf{e}'_n\}$ матрицы [A] и [A'] соответственно:

$$[A] = \begin{pmatrix} (A\mathbf{e}_{1}, \mathbf{e}_{1}) & \dots & (A\mathbf{e}_{n}, \mathbf{e}_{1}) \\ \vdots & \ddots & \vdots \\ (A\mathbf{e}_{1}, \mathbf{e}_{n}) & \dots & (A\mathbf{e}_{n}, \mathbf{e}_{n}) \end{pmatrix},$$
$$[A'] = \begin{pmatrix} (A\mathbf{e}'_{1}, \mathbf{e}'_{1}) & \dots & (A\mathbf{e}'_{n}, \mathbf{e}'_{1}) \\ \vdots & \ddots & \vdots \\ (A\mathbf{e}'_{1}, \mathbf{e}'_{n}) & \dots & (A\mathbf{e}'_{n}, \mathbf{e}'_{n}) \end{pmatrix}.$$

Матрицы [A] и [A'] оператора A удовлетворяют равенству:

$$[A'] = [C]^{-1}[A][C],$$

или [C][A'] = [A][C], где [C] — унитарная матрица.

Определение 2.4.2. Квадратная матрица [A] называется унитарно эквивалентной матрице [B], если найдется такая унитарная матрица [C], что

$$[B] = [C]^{-1}[A][C].$$

Замечание 2.4.3. Матрицы линейного оператора в различных ортонормированных базисах унитарно эквивалентны.

Упражнение 2.4.4. Показать, что единственная матрица, унитарно эквивалентная нулевой матрице, есть она сама. Аналогичное утверждение имеет место для единичной матрицы.

Определение 2.4.5. Операторы A и B из $\mathcal{B}(\mathbf{H})$ называются унитарно эквивалентными, если найдется такой унитарный оператор $C \in \mathcal{B}(\mathbf{H})$, что

$$B = C^{-1}AC.$$

Упражнение 2.4.6. Доказать, что для того, чтобы операторы A и B были унитарно эквивалентными, необходимо и достаточно, чтобы для любого ортонормированного базиса \mathfrak{B}_1 гильбертова пространства \mathbf{H} существовал такой ортонормированный базис \mathfrak{B}_2 , что матрица оператора B в базисе \mathfrak{B}_2 была бы равна матрице оператора A в базисе \mathfrak{B}_1 .

2.5 Сопряженный линейный оператор

Пусть $\mathbf{H} - n$ -мерное гильбертово пространство и оператор $A \in \mathcal{B}(\mathbf{H})$. Тогда для любого $\mathbf{y} \in \mathbf{H}$ функция

$$\mathbf{x} \mapsto (A\mathbf{x}, \mathbf{y})$$

определяет линейный функционал $f_{\mathbf{y}} \in \mathbf{H}^*$. По теореме Рисса 1.3.9 существует единственный вектор $\mathbf{y}_1 \in \mathbf{H}$, такой, что

$$f_{\mathbf{y}}(\mathbf{x}) = (A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{y}_1).$$

Определим оператор $\mathbf{H} \ni \mathbf{y} \mapsto \mathbf{y}_1 \in \mathbf{H}$, который обозначим через

$$A^*\mathbf{y} = \mathbf{y}_1.$$

Утверждение 2.5.1. A^* — линейный оператор.

Доказательство. Так как $(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^*\mathbf{y})$ для любого $\mathbf{y} \in \mathbf{H}$, то для $\mathbf{y}, \mathbf{z} \in \mathbf{H}, \alpha, \beta \in \mathbb{C}$ имеем

$$(A\mathbf{x}, \alpha\mathbf{y} + \beta\mathbf{z}) = (A\mathbf{x}, \alpha\mathbf{y}) + (A\mathbf{x}, \beta\mathbf{z}) = \bar{\alpha}(A\mathbf{x}, \mathbf{y}) + \bar{\beta}(A\mathbf{x}, \mathbf{z}) =$$
$$= \bar{\alpha}(\mathbf{x}, A^*\mathbf{y}) + \bar{\beta}(\mathbf{x}, A^*\mathbf{z}) = (\mathbf{x}, \alpha A^*\mathbf{y} + \beta A^*\mathbf{z}),$$

T.e.
$$A^*(\alpha \mathbf{y} + \beta \mathbf{z}) = \alpha A^* \mathbf{y} + \beta A^* \mathbf{z}$$
.

Определение 2.5.2. Линейный оператор A^* , определяемый равенством

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^*\mathbf{y}), \quad \mathbf{x}, \mathbf{y} \in \mathbf{H},$$

называется *сопряженным* к оператору A.

Так как по теореме Рисса 1.3.9 для каждого $\mathbf{y} \in \mathbf{H}$ вектор $\mathbf{y}_1 \in \mathbf{H}$, такой, что

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{y}_1),$$

определяется однозначно, то для любого оператора $A \in \mathcal{B}(\mathbf{H})$ сопряженный ему оператор $A^* \in \mathcal{B}(\mathbf{H})$ определен корректно и однозначно.

Определение 2.5.3. Отображение

$$\mathcal{B}(\mathbf{H}) \ni A \to A^* \in \mathcal{B}(\mathbf{H})$$

называется инволюцией в $\mathcal{B}(\mathbf{H})$.

Утверждение 2.5.4. Инволюция в $\mathcal{B}(\mathbf{H})$ обладает следующими свойствами:

- (i) $(AB)^* = B^*A^*$;
- (ii) $(A^*)^* = A$;
- (iii) $(A+B)^* = A^* + B^*;$
- (iv) $(\lambda A)^* = \overline{\lambda} A^*$;
- (v) $I^* = I$;
- (vi) $Ecnu A \neq B$, $mo A^* \neq B^*$.

Доказательство. (i). Пусть $A, B \in \mathcal{B}(\mathbf{H}), \mathbf{x}, \mathbf{y} \in \mathbf{H}$. Тогда

$$(AB\mathbf{x}, \mathbf{y}) = (A(B\mathbf{x}), \mathbf{y}) = (B\mathbf{x}, A^*\mathbf{y}) = (\mathbf{x}, B^*(A^*\mathbf{y})) = (\mathbf{x}, B^*A^*\mathbf{y}).$$

С другой стороны,

$$(AB\mathbf{x}, \mathbf{y}) = ((AB)\mathbf{x}, \mathbf{y}) = (\mathbf{x}, (AB)^*\mathbf{y}).$$

Следовательно, для любых $x, y \in H$ имеет место равенство:

$$(\mathbf{x}, B^*A^*\mathbf{y}) = (\mathbf{x}, (AB)^*\mathbf{y}),$$

откуда $(AB)^*\mathbf{y} = B^*A^*\mathbf{y}$ для любого $\mathbf{y} \in \mathbf{H}$, т.е. $(AB)^* = B^*A^*$.

(ii). Пусть $A \in \mathcal{B}(\mathbf{H}), \mathbf{x}, \mathbf{y} \in \mathbf{H}$. Тогда

$$(A\mathbf{x},\mathbf{y}) = (\mathbf{x},A^*\mathbf{y}) = \overline{(A^*\mathbf{y},\mathbf{x})} = \overline{(\mathbf{y},(A^*)^*\mathbf{x})} = ((A^*)^*\mathbf{x},\mathbf{y}).$$

Следовательно, $A\mathbf{x} = (A^*)^*\mathbf{x}$ для любого $\mathbf{x} \in \mathbf{H}$, т.е. $(A^*)^* = A$. Остальные свойства проверяются непосредственно.

Утверждение 2.5.5. Для любого $A \in \mathcal{B}(\mathbf{H})$ имеет место равенство:

$$||A^*|| = ||A||.$$

Доказательство. Для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ имеем

$$|(A^*\mathbf{y}, \mathbf{x})| = |(\mathbf{y}, A\mathbf{x})| \le ||\mathbf{y}|| ||A|| ||\mathbf{x}||.$$

Следовательно,

$$||A^*\mathbf{y}|| \le ||A|| ||\mathbf{y}||,$$

откуда $\|A^*\| \le \|A\|$. Так как $A^{**} = A$, то $\|A\| \le \|A^*\|$ и следовательно $\|A^*\| = \|A\|$.

Утверждение 2.5.6. Если подпространство $\mathbf{M} \subset \mathbf{H}$ инвариантно относительно оператора $A \in \mathcal{B}(\mathbf{H})$, то его ортогональное дополнение \mathbf{M}^{\perp} инвариантно относительно сопряженного оператора A^* .

Доказательство. Пусть $\mathbf{x} \in \mathbf{M}, \mathbf{y} \in \mathbf{M}^{\perp}$. Тогда

$$(\mathbf{x}, A^*\mathbf{y}) = (A\mathbf{x}, \mathbf{y}) = 0,$$

так как $A\mathbf{x} \in \mathbf{M}$ для любого $\mathbf{x} \in \mathbf{M}$. Следовательно, $A^*\mathbf{y} \in \mathbf{M}^{\perp}$ для любого $\mathbf{y} \in \mathbf{M}^{\perp}$, т.е. подпространство \mathbf{M}^{\perp} инвариантно относительно сопряженного оператора A^* .

Упражнение 2.5.7. Доказать, что:

- Ran $A^* = (\operatorname{Ker} A)^{\perp}$, $\operatorname{Ker} A^* = (\operatorname{Ran} A)^{\perp}$.
- $\operatorname{rg} A^* = \operatorname{rg} A$, $\operatorname{def} A^* = \operatorname{def} A$.
- ullet Если оператор A обратим, то оператор A^* тоже обратим и

$$(A^*)^{-1} = (A^{-1})^*.$$

ullet Если AB=BA, то $A^*B^*=B^*A^*$.

Рассмотрим, как связаны матрицы сопряженных друг другу операторов.

Пусть $A \in \mathcal{B}(\mathbf{H})$ и

$$[A] = (\alpha_{ij})_{i,j=1}^n = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}$$

— матрица, отвечающая этому оператору в ортонормированном базисе $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}$. Тогда

$$A\mathbf{e}_j = \alpha_{1j}\mathbf{e}_1 + \dots + \alpha_{nj}\mathbf{e}_n = \sum_{i=1}^n \alpha_{ij}\mathbf{e}_i, \quad j = 1,\dots, n.$$

Следовательно, $(A\mathbf{e}_j, \mathbf{e}_i) = \alpha_{ij}$.

Пусть теперь сопряженному оператору A^* в этом базисе отвечает матрица $[A^*] = (\alpha_{ij}^*)_{i,j=1}^n$. Тогда

$$\alpha_{ij}^* = (A^* \mathbf{e}_j, \mathbf{e}_i) = \overline{(\mathbf{e}_i, A^* \mathbf{e}_j)} = \overline{(A\mathbf{e}_i, \mathbf{e}_j)} = \overline{\alpha}_{ji},$$

т.е., матрица $[A^*]$ является транспонированной к матрице $[\bar{A}]$, элементы которой соответственно комплексно сопряжены элементам матрицы [A]. Такую матрицу называют *сопряженной* к матрице [A]. Таким образом,

$$[A^*] = \begin{pmatrix} \alpha_{11}^* & \dots & \alpha_{1n}^* \\ \vdots & \ddots & \vdots \\ \alpha_{n1}^* & \dots & \alpha_{nn}^* \end{pmatrix} = \begin{pmatrix} \bar{\alpha}_{11} & \dots & \bar{\alpha}_{n1} \\ \vdots & \ddots & \vdots \\ \bar{\alpha}_{1n} & \dots & \bar{\alpha}_{nn} \end{pmatrix} = [\bar{A}]^\top$$

Отметим, что

$$\det[A^*] = \det[\bar{A}]^\top = \det[\bar{A}] = \overline{\det[A]}.$$

Замечание 2.5.8. Для того, чтобы два оператора $A, B \in \mathcal{B}(\mathbf{H})$ были сопряжены друг другу, необходимо и достаточно, чтобы в любом ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ им соответствовали сопряженные друг другу матрицы.

Утверждение 2.5.9. Если линейные операторы $A, A^* \in \mathcal{B}(\mathbf{H})$ имеют общий собственный вектор \mathbf{x} , то характеристические числа этих операторов, отвечающие вектору \mathbf{x} , комплексно сопряжены.

Доказательство. Пусть $A\mathbf{x}=\lambda\mathbf{x}$ и $A^*\mathbf{x}=\mu\mathbf{x}$, где $\mathbf{x}\neq\mathbf{0}$. Тогда

$$\lambda(\mathbf{x}, \mathbf{x}) = (\lambda \mathbf{x}, \mathbf{x}) = (A\mathbf{x}, \mathbf{x}) = (\mathbf{x}, A^*\mathbf{x}) = (\mathbf{x}, \mu \mathbf{x}) = \bar{\mu}(\mathbf{x}, \mathbf{x}),$$

откуда следует, что $\lambda = \bar{\mu}$.

Упражнение 2.5.10. Пусть $A \in \mathcal{B}(\mathbf{H})$. Тогда

- $\sigma(A^*) = \overline{\sigma(A)};$
- $\operatorname{tr} A^* = \overline{\operatorname{tr} A}$.

Глава 3

Самосопряженные операторы

3.1 Самосопряженные операторы в H и их матрицы

Определение 3.1.1. Линейный оператор $A \in \mathcal{B}(\mathbf{H})$ называется *самосо-пряженным* (или *эрмитовым*), если $A = A^*$, т.е. если для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ имеет место равенство:

$$(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A\mathbf{y}).$$

Обозначим через $\mathcal{B}_h(\mathbf{H})$ множество всех самосопряженных операторов из $\mathcal{B}(\mathbf{H})$.

Утверждение 3.1.2. Пусть $A \in \mathcal{B}(\mathbf{H})$. Оператор $A \in \mathcal{B}_h(\mathbf{H})$ тогда и только тогда, когда $(A\mathbf{x}, \mathbf{x}) \in \mathbb{R}$ для любого $\mathbf{x} \in \mathbf{H}$.

$$(A\mathbf{x}, \mathbf{x}) = (\mathbf{x}, A^*\mathbf{x}) = (\mathbf{x}, A\mathbf{x}) = \overline{(A\mathbf{x}, \mathbf{x})},$$

T.e. $(A\mathbf{x}, \mathbf{x}) \in \mathbb{R}$.

Обратно, пусть $(A\mathbf{x}, \mathbf{x}) \in \mathbb{R}$ для любого $\mathbf{x} \in \mathbf{H}$. Тогда

$$(A\mathbf{x}, \mathbf{x}) = \overline{(A\mathbf{x}, \mathbf{x})} = \overline{(\mathbf{x}, A^*\mathbf{x})} = (A^*\mathbf{x}, \mathbf{x}).$$

В силу следствия 2.1.4(ii), $A = A^*$.

Упражнение 3.1.3. Доказать, что

• Для любого $A \in \mathcal{B}(\mathbf{H})$ операторы A^*A и AA^* принадлежат $\mathcal{B}_h(\mathbf{H})$;

• $A^*A = 0$ тогда и только тогда, когда $A^* = A = 0$.

Упражнение 3.1.4. Пусть $A, B \in \mathcal{B}_h(\mathbf{H})$. Доказать, что

- $A + B \in \mathcal{B}_h(\mathbf{H})$;
- $\alpha A \in \mathcal{B}_h(\mathbf{H})$ для любого вещественного $\alpha \in \mathbb{R}$;
- Если оператор A обратим, то оператор $A^{-1} \in \mathcal{B}_h(\mathbf{H})$;
- Для того, чтобы оператор $AB \in \mathcal{B}_h(\mathbf{H})$, необходимо и достаточно, чтобы операторы A и B коммутировали, т.е. AB = BA;
- Операторы AB + BA и i(AB BA) принадлежат $\mathcal{B}_h(\mathbf{H})$.

Замечание 3.1.5. Множество $\mathcal{B}_h(\mathbf{H})$ является вещественным подпространством (векторным пространством над полем \mathbb{R} действительных чисел) в $\mathcal{B}(\mathbf{H})$.

Утверждение 3.1.6. Каждый линейный оператор $A \in \mathcal{B}(\mathbf{H})$ однозначно представим в виде

$$A = A_1 + iA_2, (3.1)$$

 $r \partial e A_1, A_2 \in \mathcal{B}_h(\mathbf{H}).$

Доказательство. Рассмотрим операторы

$$A_1 = \frac{A + A^*}{2}, \quad A_2 = \frac{A - A^*}{2i}.$$

Тогда

$$A_1 + iA_2 = \frac{A + A^*}{2} + i\frac{A - A^*}{2i} = A,$$

$$A_1^* = \left(\frac{A + A^*}{2}\right)^* = \frac{A^* + A^{**}}{2} = \frac{A^* + A}{2} = A_1,$$

$$A_2^* = \left(\frac{A - A^*}{2i}\right)^* = -\frac{A^* - A^{**}}{2i} = -\frac{A^* - A}{2i} = A_2,$$

т.е. операторы A_1 и A_2 самосопряжены.

Пусть теперь оператор $A \in \mathcal{B}(\mathbf{H})$ представим в виде $A = A_1' + iA_2'$, где A_1' , $A_2' \in \mathcal{B}_h(\mathbf{H})$. Тогда $A^* = A_1' - iA_2'$, откуда

$$A'_1 = \frac{A + A^*}{2} = A_1, \quad A'_2 = \frac{A - A^*}{2i} = A_2.$$

Представление оператора $A \in \mathcal{B}(\mathbf{H})$ в виде (3.1) называется декартовым представлением оператора A. Операторы A_1 и A_2 называются действительной и мнимой частью оператора A и обозначаются

$$A_1 = \operatorname{Re} A, \quad A_2 = \operatorname{Im} A.$$

Таким образом, любой оператор $A \in \mathcal{B}(\mathbf{H})$ однозначно представим в виде

$$A = \operatorname{Re} A + i \operatorname{Im} A$$
,

где Re A, Im $A \in \mathcal{B}_h(\mathbf{H})$.

Определение 3.1.7. Матрица $(\alpha_{ij})_{i,j=1}^n \in \mathcal{M}_n(\mathbb{C})$ называется самосопряженной или эрмитовой, если

$$\alpha_{ij} = \bar{\alpha}_{ji}, \quad i, j = 1, \dots, n.$$

Утверждение 3.1.8. Для того, чтобы оператор $A \in \mathcal{B}_h(\mathbf{H})$, необходимо и достаточно, чтобы его матрица в каком-либо ортонормированном базисе была самосопряженной.

Доказательство. Пусть $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ — ортонормированный базис в $\mathbf{H},$ $A\in\mathcal{B}(\mathbf{H})$ и

$$[A] = (\alpha_{ij})_{i,j=1}^n = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}$$

— матрица, отвечающая этому оператору в данном базисе. Тогда сопряженному оператору A^* в этом базисе отвечает матрица

$$[A^*] = (\bar{\alpha}_{ji})_{i,j=1}^n = \begin{pmatrix} \bar{\alpha}_{11} & \dots & \bar{\alpha}_{n1} \\ \vdots & \ddots & \vdots \\ \bar{\alpha}_{1n} & \dots & \bar{\alpha}_{nn} \end{pmatrix} = [\bar{A}]^\top.$$

Так как $A=A^*$ тогда и только тогда, когда $[A]=[A^*]$, т.е. $\alpha_{ij}=\bar{\alpha}_{ji}$, то $A\in\mathcal{B}_h(\mathbf{H})$ тогда и только тогда, когда $[A]=(\alpha_{ij})_{i,j=1}^n$ — самосопряженная матрица.

3.2 Ортопроекторы

Определение 3.2.1. Пусть \mathbf{H} — гильбертово пространство, \mathbf{M} — линейное подпространство в \mathbf{H} , $\mathbf{H} = \mathbf{M} \oplus \mathbf{M}^{\perp}$. Тогда любой вектор $\mathbf{x} \in \mathbf{H}$ однозначно представим в виде

$$x = y + z$$

где $\mathbf{y} \in \mathbf{M}, \, \mathbf{z} \in \mathbf{M}^{\perp}$.

Линейный оператор $P_{\mathbf{M}} \in \mathcal{B}(\mathbf{H})$ такой, что

$$P_{\mathbf{M}}\mathbf{x} = \mathbf{y},$$

называется *ортопроектором на подпространство* \mathbf{M} . Ясно, что $P_{\mathbf{M}}$ является проектором на подпространство \mathbf{M} параллельно подпространству \mathbf{M}^{\perp} .

Обозначим множество всех ортопроекторов гильбертова пространства \mathbf{H} через $\mathcal{P}(\mathbf{H})$.

Утверждение 3.2.2. Справедливы следующие утверждения.

(i) Пусть $\mathbf{H}=\mathbf{M}\oplus\mathbf{M}^\perp$ и $P_{\mathbf{M}}$ — ортопроектор на подпространство \mathbf{M} . Тогда

$$P_{\mathbf{M}}^2 = P_{\mathbf{M}}^* = P_{\mathbf{M}}.$$

(ii) Если $P \in \mathcal{B}(\mathbf{H})$ такой, что $P^2 = P^* = P$, то $P = P_{\mathbf{M}}$, где

$$\mathbf{M} = \{ P\mathbf{x} : \mathbf{x} \in \mathbf{H} \}.$$

Доказательство. (i). Пусть $\mathbf{H}=\mathbf{M}\oplus\mathbf{M}^\perp,\ P_{\mathbf{M}}$ — ортопроектор на подпространство $\mathbf{M},\ \mathbf{x},\mathbf{u}\in\mathbf{H}$ и

$$x = y + z$$
, $u = v + w$,

где $\mathbf{y}, \mathbf{v} \in \mathbf{M}, \ \mathbf{z}, \mathbf{w} \in \mathbf{M}^{\perp}$. Тогда $P_{\mathbf{M}}\mathbf{x} = \mathbf{y}$ и $P_{\mathbf{M}}\mathbf{u} = \mathbf{v}$. Следовательно,

$$(P_{\mathbf{M}}\mathbf{x}, \mathbf{u}) = (\mathbf{y}, \mathbf{u}) = (\mathbf{y}, \mathbf{v} + \mathbf{w}) = (\mathbf{y}, \mathbf{v}) + (\mathbf{y}, \mathbf{w}) = (\mathbf{y}, \mathbf{v}) = (\mathbf{y}, \mathbf{v}) + (\mathbf{z}, \mathbf{v}) = (\mathbf{x}, \mathbf{v}) = (\mathbf{x}, P_{\mathbf{M}}\mathbf{u}),$$

т.е. $P_{\mathbf{M}}^* = P_{\mathbf{M}}$.

Кроме того, $\mathbf{y} = P_{\mathbf{M}}\mathbf{x} \in \mathbf{M}$ и $P_{\mathbf{M}}\mathbf{y} = \mathbf{y}$. Поэтому

$$P_{\mathbf{M}}^{2}\mathbf{x} = P_{\mathbf{M}}(P_{\mathbf{M}}\mathbf{x}) = P_{\mathbf{M}}\mathbf{y} = \mathbf{y} = P_{\mathbf{M}}\mathbf{x}.$$

Следовательно, $P_{\mathbf{M}}^2 = P_{\mathbf{M}}$.

(ii). Пусть $P \in \mathcal{B}(\mathbf{H})$ такой, что $P^2 = P^* = P$ и $\mathbf{x} \in \mathbf{H}$. Тогда для любого $\mathbf{y} \in \mathbf{H}$ имеем:

$$(\mathbf{x} - P\mathbf{x}, P\mathbf{y}) = (P(\mathbf{x} - P\mathbf{x}), \mathbf{y}) = (P\mathbf{x} - P^2\mathbf{x}, \mathbf{y}) = (P\mathbf{x} - P\mathbf{x}, \mathbf{y}) = 0.$$

Следовательно, $\mathbf{x} - P\mathbf{x} \in \mathbf{M}^{\perp}$, где $\mathbf{M} = \{P\mathbf{y} : \mathbf{y} \in \mathbf{H}\}$. Таким образом,

$$\mathbf{x} = P\mathbf{x} + (\mathbf{x} - P\mathbf{x}),$$

где $P\mathbf{x} \in \mathbf{M}$, а $\mathbf{x} - P\mathbf{x} \in \mathbf{M}^{\perp}$, т.е. $P = P_{\mathbf{M}}$.

Утверждение 3.2.3. *Если* $P \in \mathcal{P}(\mathbf{H})$, то для любого $x \in \mathbf{H}$ имеет место неравенство:

$$||P\mathbf{x}|| \le ||\mathbf{x}||.$$

Доказательство. Так как $P \in \mathcal{P}(\mathbf{H})$, то $P = P_{\mathbf{M}}$ — ортопроектор на подпространство $\mathbf{M} = \{P\mathbf{x}, \mathbf{x} \in \mathbf{H}\}$, и $\mathbf{H} = \mathbf{M} \oplus \mathbf{M}^{\perp}$.

Для произвольного вектора $\mathbf{x} \in \mathbf{H}$ имеем:

$$\mathbf{x} = \mathbf{y} + \mathbf{z}, \quad \mathbf{y} = P\mathbf{x} \in \mathbf{M}, \quad \mathbf{z} \in \mathbf{M}^{\perp}.$$

Тогда

$$\|\mathbf{x}\|^2 = (\mathbf{x}, \mathbf{x}) = (\mathbf{y} + \mathbf{z}, \mathbf{y} + \mathbf{z}) = (\mathbf{y}, \mathbf{y}) + (\mathbf{z}, \mathbf{z}) = (P\mathbf{x}, P\mathbf{x}) + (\mathbf{z}, \mathbf{z}) =$$

= $\|P\mathbf{x}\|^2 + \|\mathbf{z}\|^2 > \|P\mathbf{x}\|^2$,

откуда следует неравенство $||P\mathbf{x}|| \le ||\mathbf{x}||$.

Утверждение 3.2.4. *Если* $P \in \mathcal{P}(\mathbf{H}), \ P \neq 0, \ mo \ \|P\| = 1.$

Доказательство. В силу утверждения 3.2.3 имеем: $||P\mathbf{x}|| \le ||\mathbf{x}||$ для любого $\mathbf{x} \in \mathbf{H}$. Кроме того, $||P\mathbf{y}|| = ||\mathbf{y}||$ для любого $\mathbf{y} \in \mathbf{M} = \{P\mathbf{x} : \mathbf{x} \in \mathbf{H}\}$. Следовательно,

$$||P|| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||P\mathbf{x}||}{||\mathbf{x}||} = 1.$$

Утверждение 3.2.5. Для ортопроекторов выполнены следующие свойства.

- (i) Ecau $P_{\mathbf{M}} \in \mathcal{P}(\mathbf{H})$, mo $I P_{\mathbf{M}} = P_{\mathbf{M}^{\perp}}$.
- (ii) Если $P_{\mathbf{M}}$, $P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$, то $P_{\mathbf{M}} + P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$ тогда и только тогда, когда $P_{\mathbf{M}}P_{\mathbf{N}} = 0$, т.е. $\mathbf{M} \perp \mathbf{N}$. В этом случае $P_{\mathbf{M}} + P_{\mathbf{N}} = P_{\mathbf{M} \oplus \mathbf{N}}$.

- (iii) Если $P_{\mathbf{M}}$, $P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$, то $P_{\mathbf{M}}P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$ тогда и только тогда, когда $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}P_{\mathbf{M}}$. В этом случае $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{M}\cap\mathbf{N}}$.
- (iv) Если $P_{\mathbf{M}}$, $P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$, то $P_{\mathbf{M}} P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$ тогда и только тогда, когда $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}$, т.е. $\mathbf{M} \supseteq \mathbf{N}$. В этом случае $P_{\mathbf{M}} P_{\mathbf{N}} = P_{\mathbf{M} \ominus \mathbf{N}}$.

Доказательство. (i). Если $P_{\mathbf{M}} \in \mathcal{P}(\mathbf{H})$, то

$$(I - P_{\mathbf{M}})^2 = I - 2P_{\mathbf{M}} + P_{\mathbf{M}}^2 = I - 2P_{\mathbf{M}} + P_{\mathbf{M}} = I - P_{\mathbf{M}},$$

 $(I - P_{\mathbf{M}})^* = I - P_{\mathbf{M}}.$

Следовательно, в силу теоремы 3.2.2(ii), $I-P_{\mathbf{M}}=P_{\mathbf{N}}$, где

$$\mathbf{N} = \{ (I - P_{\mathbf{M}})\mathbf{x} : \mathbf{x} \in \mathbf{H} \}.$$

Пусть $(I - P_{\mathbf{M}})\mathbf{x} = \mathbf{x} - P_{\mathbf{M}}\mathbf{x} \in \mathbf{N}$. Так как $\mathbf{H} = \mathbf{M} \oplus \mathbf{M}^{\perp}$, то

$$\mathbf{x} = \mathbf{y} + \mathbf{z}, \quad \mathbf{y} \in \mathbf{M}, \ \mathbf{z} \in \mathbf{M}^{\perp}.$$

Тогда

$$P_{\mathbf{M}}\mathbf{x} = \mathbf{y} = P_{\mathbf{M}}\mathbf{y}.$$

Следовательно,

$$\mathbf{x} - P_{\mathbf{M}}\mathbf{x} = \mathbf{x} - \mathbf{y} = \mathbf{z} \in \mathbf{M}^{\perp}.$$

Таким образом, $\mathbf{N} \subseteq \mathbf{M}^{\perp}$.

С другой стороны, если $\mathbf{z} \in \mathbf{M}^{\perp}$, то $P_{\mathbf{M}}\mathbf{z} = 0$. Поэтому

$$\mathbf{z} = \mathbf{z} - P_{\mathbf{M}}\mathbf{z} = (I - P_{\mathbf{M}})\mathbf{z} \in \mathbf{N},$$

т.е., $\mathbf{M}^{\perp} \subseteq \mathbf{N}$. Следовательно, $\mathbf{N} = \mathbf{M}^{\perp}$ и

$$I - P_{\mathbf{M}} = P_{\mathbf{M}^{\perp}}.$$

(ii). Пусть $P_{\mathbf{M}}, P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$. Тогда

$$(P_{\mathbf{M}} + P_{\mathbf{N}})^{2} = P_{\mathbf{M}}^{2} + P_{\mathbf{M}}P_{\mathbf{N}} + P_{\mathbf{N}}P_{\mathbf{M}} + P_{\mathbf{N}}^{2} =$$

= $P_{\mathbf{M}} + P_{\mathbf{M}}P_{\mathbf{N}} + P_{\mathbf{N}}P_{\mathbf{M}} + P_{\mathbf{N}}.$

Если $P_{\mathbf{M}} + P_{\mathbf{N}}$ — ортопроектор, то

$$(P_{\mathbf{M}} + P_{\mathbf{N}})^2 = P_{\mathbf{M}} + P_{\mathbf{N}}.$$

Следовательно, $P_{\mathbf{M}}P_{\mathbf{N}}+P_{\mathbf{N}}P_{\mathbf{M}}=0$. Умножая это равенство слева и справа на $P_{\mathbf{N}}$, получим

$$0 = P_{\mathbf{N}}(P_{\mathbf{M}}P_{\mathbf{N}} + P_{\mathbf{N}}P_{\mathbf{M}})P_{\mathbf{N}} = P_{\mathbf{N}}P_{\mathbf{M}}P_{\mathbf{N}} + P_{\mathbf{N}}P_{\mathbf{M}}P_{\mathbf{N}},$$

откуда

$$P_{\mathbf{N}}P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}P_{\mathbf{M}}P_{\mathbf{M}}P_{\mathbf{N}} = (P_{\mathbf{M}}P_{\mathbf{N}})^*(P_{\mathbf{M}}P_{\mathbf{N}}) = 0.$$

Следовательно, для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$((P_{\mathbf{M}}P_{\mathbf{N}})^*(P_{\mathbf{M}}P_{\mathbf{N}})\mathbf{x}, \mathbf{x}) = ((P_{\mathbf{M}}P_{\mathbf{N}})\mathbf{x}, (P_{\mathbf{M}}P_{\mathbf{N}})\mathbf{x}) = 0,$$

т.е., $(P_{\mathbf{M}}P_{\mathbf{N}})\mathbf{x}=0$ для любого $\mathbf{x}\in\mathbf{H}$. Таким образом, $P_{\mathbf{M}}P_{\mathbf{N}}=0$. Заметим, что аналогично можно установить равенство $P_{\mathbf{N}}P_{\mathbf{M}}=0$.

Обратно, пусть $P_{\mathbf{M}}P_{\mathbf{N}}=0$, а значит и $P_{\mathbf{N}}P_{\mathbf{M}}=0$. Тогда

$$(P_{\mathbf{M}} + P_{\mathbf{N}})^2 = P_{\mathbf{M}} + P_{\mathbf{N}} = (P_{\mathbf{M}} + P_{\mathbf{N}})^*.$$

Следовательно, $P_{\mathbf{M}} + P_{\mathbf{N}}$ — ортопроектор.

Рассмотрим произвольные $\mathbf{y} \in \mathbf{M}$ и $\mathbf{z} \in \mathbf{N}$. Тогда

$$(\mathbf{y}, \mathbf{z}) = (P_{\mathbf{M}}\mathbf{y}, P_{\mathbf{N}}\mathbf{z}) = (\mathbf{y}, P_{\mathbf{M}}P_{\mathbf{N}}\mathbf{z}) = (\mathbf{y}, \mathbf{0}) = 0.$$

Следовательно, $(\mathbf{y}, \mathbf{z}) = 0$ для любых $\mathbf{y} \in \mathbf{M}$ и $\mathbf{z} \in \mathbf{N}$. Поэтому подпространство, на которое проектирует $P_{\mathbf{M}} + P_{\mathbf{N}}$, имеет вид

$$\{(P_{\mathbf{M}} + P_{\mathbf{N}})\mathbf{x} : \mathbf{x} \in \mathbf{H}\} = \{P_{\mathbf{M}}\mathbf{x} + P_{\mathbf{N}}\mathbf{x} : \mathbf{x} \in \mathbf{H}\} = \mathbf{M} \oplus \mathbf{N}.$$

(iii). Пусть $P_{\mathbf{M}}, P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$. Если $P_{\mathbf{M}}P_{\mathbf{N}}$ — ортопроектор, то

$$P_{\mathbf{M}}P_{\mathbf{N}} = (P_{\mathbf{M}}P_{\mathbf{N}})^* = P_{\mathbf{N}}P_{\mathbf{M}},$$

т.е., $P_{\mathbf{M}}$ и $P_{\mathbf{N}}$ коммутируют.

Обратно, если $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}P_{\mathbf{M}}$, то

$$\begin{split} &(P_{\mathbf{M}}P_{\mathbf{N}})^2 = P_{\mathbf{M}}P_{\mathbf{N}}P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{M}}P_{\mathbf{M}}P_{\mathbf{N}}P_{\mathbf{N}} = P_{\mathbf{M}}P_{\mathbf{N}}, \\ &(P_{\mathbf{M}}P_{\mathbf{N}})^* = P_{\mathbf{N}}P_{\mathbf{M}} = P_{\mathbf{M}}P_{\mathbf{N}}. \end{split}$$

Следовательно, $P_{\mathbf{M}}P_{\mathbf{N}}$ — ортопроектор на подпространство

$$\{P_{\mathbf{M}}P_{\mathbf{N}}\mathbf{x}:\mathbf{x}\in\mathbf{H}\}.$$

Но если $\mathbf{y} = P_{\mathbf{M}}P_{\mathbf{N}}\mathbf{x} = P_{\mathbf{N}}P_{\mathbf{M}}\mathbf{x}$, то $\mathbf{y} = P_{\mathbf{M}}\mathbf{x}_1 = P_{\mathbf{N}}\mathbf{x}_2$, где $\mathbf{x}_1 = P_{\mathbf{N}}\mathbf{x}$, $\mathbf{x}_2 = P_{\mathbf{M}}\mathbf{x}$. Следовательно, $\mathbf{y} \in \mathbf{M}$ и $\mathbf{y} \in \mathbf{N}$, т.е. $\mathbf{y} \in \mathbf{M} \cap \mathbf{N}$.

С другой стороны, если $\mathbf{y} \in \mathbf{M} \cap \mathbf{N}$, то $\mathbf{y} = P_{\mathbf{M}} P_{\mathbf{N}} \mathbf{y}$. Следовательно,

$$P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{M} \cap \mathbf{N}}.$$

(iv). Пусть $P_{\mathbf{M}}, P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$.

Если $P_{\mathbf{M}} - P_{\mathbf{N}}$ — ортопроектор, то согласно пункту (i),

$$I - (P_{\mathbf{M}} - P_{\mathbf{N}}) = (I - P_{\mathbf{M}}) + P_{\mathbf{N}}$$

тоже ортопроектор. Поэтому, в силу пункта (іі),

$$(I - P_{\mathbf{M}})P_{\mathbf{N}} = P_{\mathbf{N}} - P_{\mathbf{M}}P_{\mathbf{N}} = 0.$$

Следовательно, $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}$.

С другой стороны, если $P_{\mathbf{M}}P_{\mathbf{N}}=P_{\mathbf{N}}$, то

$$(P_{\mathbf{M}} - P_{\mathbf{N}})^{2} = P_{\mathbf{M}} - P_{\mathbf{M}} P_{\mathbf{N}} - P_{\mathbf{N}} P_{\mathbf{M}} + P_{\mathbf{N}} =$$

$$= P_{\mathbf{M}} - P_{\mathbf{N}} - P_{\mathbf{N}} + P_{\mathbf{N}} = P_{\mathbf{M}} - P_{\mathbf{N}},$$

$$(P_{\mathbf{M}} - P_{\mathbf{N}})^{*} = P_{\mathbf{M}} - P_{\mathbf{N}},$$

т.е. $P_{\mathbf{M}} - P_{\mathbf{N}}$ — ортопроектор.

Пусть теперь $\mathbf{K} = \{(P_{\mathbf{M}} - P_{\mathbf{N}})\,\mathbf{x} : \mathbf{x} \in \mathbf{H}\}$. Покажем, что

$$\mathbf{K} \perp \mathbf{N} = \{ P_{\mathbf{N}} \, \mathbf{y} : \mathbf{y} \in \mathbf{H} \}.$$

Действительно,

$$((P_{\mathbf{M}} - P_{\mathbf{N}})\mathbf{x}, P_{\mathbf{N}}\mathbf{y}) = (P_{\mathbf{N}}(P_{\mathbf{M}} - P_{\mathbf{N}})\mathbf{x}, \mathbf{y}) = ((P_{\mathbf{N}} - P_{\mathbf{N}})\mathbf{x}, \mathbf{y}) = 0.$$

Кроме того, если $\mathbf{x} \in \mathbf{M}$, то

$$x = P_{\mathbf{M}}\mathbf{x} = P_{\mathbf{M}}\mathbf{x} - P_{\mathbf{N}}\mathbf{x} + P_{\mathbf{N}}\mathbf{x} = (P_{\mathbf{M}} - P_{\mathbf{N}})\mathbf{x} + P_{\mathbf{N}}\mathbf{x}$$

И

$$P_{\mathbf{M}}((P_{\mathbf{M}} - P_{\mathbf{N}})\mathbf{x} + P_{\mathbf{N}}\mathbf{y}) = (P_{\mathbf{M}} - P_{\mathbf{N}})\mathbf{x} + P_{\mathbf{N}}\mathbf{y}.$$

Следовательно, $\mathbf{K} \oplus \mathbf{N} = \mathbf{M}$ и $\mathbf{K} = \mathbf{M} \ominus \mathbf{N}$.

Замечание 3.2.6. При доказательстве пункта (ii) теоремы 3.2.5 было установлено, что если $P_{\mathbf{M}}P_{\mathbf{N}}=0$, то подпространства \mathbf{M} и \mathbf{N} ортогональны.

Определение 3.2.7. Ортопроекторы $P_{\mathbf{M}}$ и $P_{\mathbf{N}}$ называются взаимно ортогональными, если $P_{\mathbf{M}}P_{\mathbf{N}}=0$. В этом случае $\mathbf{M}\subseteq \operatorname{Ker} P_{\mathbf{N}}$ и $\mathbf{N}\subseteq \operatorname{Ker} P_{\mathbf{M}}$.

Упражнение 3.2.8. Привести пример такого оператора P, что $P^2 = P$, $P^* \neq P$ и ||P|| > 1.

Упражнение 3.2.9. Пусть $P_{\mathbf{M}}, P_{\mathbf{N}} \in \mathcal{P}(\mathbf{H})$. Доказать, что $P_{\mathbf{M}}P_{\mathbf{N}}P_{\mathbf{M}} \in \mathcal{P}(H)$ тогда и только тогда, когда $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}P_{\mathbf{M}}$.

Утверждение 3.2.10. Если $P_{\mathbf{M}}$ и $P_{\mathbf{N}}$ ортопроекторы на подпространства \mathbf{M} и \mathbf{N} соответственно и $\|P_{\mathbf{M}} - P_{\mathbf{N}}\| < 1$, то

$$\dim \mathbf{M} = \dim \mathbf{N}.$$

Доказательство. Пусть $\dim \mathbf{M} = m, \dim \mathbf{N} = k$ и $\{\mathbf{x}_1, \dots, \mathbf{x}_m\}$ — базис подпространства \mathbf{M} . Рассмотрим векторы

$$\{P_{\mathbf{N}}\mathbf{x}_1,\ldots,P_{\mathbf{N}}\mathbf{x}_m\}$$

и покажем, что они линейно независимы.

Пусть линейная комбинация

$$\sum_{i=1}^{m} \alpha_i P_{\mathbf{N}} \mathbf{x}_i = \alpha_1 P_{\mathbf{N}} \mathbf{x}_1 + \dots + \alpha_m P_{\mathbf{N}} \mathbf{x}_m = \mathbf{0}.$$

Тогда

$$P_{\mathbf{N}}\left(\sum_{i=1}^{m}\alpha_{i}\mathbf{x}_{i}\right)=\mathbf{0}.$$

Если $\sum_{i=1}^m \alpha_i \mathbf{x}_i \neq \mathbf{0}$, то

$$\left\| (P_{\mathbf{M}} - P_{\mathbf{N}}) \sum_{i=1}^{m} \alpha_{i} \mathbf{x}_{i} \right\| = \left\| P_{\mathbf{M}} \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{x}_{i} \right) - P_{\mathbf{N}} \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{x}_{i} \right) \right\| = \left\| P_{\mathbf{M}} \left(\sum_{i=1}^{m} \alpha_{i} \mathbf{x}_{i} \right) \right\| = \left\| \sum_{i=1}^{m} \alpha_{i} \mathbf{x}_{i} \right\|.$$

С другой стороны

$$\left\| (P_{\mathbf{M}} - P_{\mathbf{N}}) \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \right\| \le \|P_{\mathbf{M}} - P_{\mathbf{N}}\| \left\| \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \right\| < \left\| \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \right\|.$$

Поэтому приходим к неравенству

$$\left\| \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \right\| < \left\| \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \right\|,$$

что невозможно. Следовательно, $\sum_{i=1}^m \alpha_i \mathbf{x}_i = \mathbf{0}$ и потому

$$\alpha_1 = \cdots = \alpha_m = 0.$$

Следовательно, векторы $\{P_{\mathbf{N}}\mathbf{x}_1,\dots,P_{\mathbf{N}}\mathbf{x}_m\}$ линейно независимы и принадлежат подпространству **N**. Таким образом,

$$m = \dim \mathbf{M} \le \dim \mathbf{N} = k.$$

Противоположное неравенство доказывается аналогично.

Утверждение 3.2.11. *Если* $P_1, \ldots, P_k \in \mathcal{P}(\mathbf{H}), mo \ one pamop$

$$P = P_1 + \cdots + P_k$$

является ортопроектором тогда и только тогда, когда $P_i P_j = 0$ при $i \neq j, i, j = 1, \ldots, k$.

Доказательство. Если $P_iP_j=0$ при $i\neq j,\,i,j=1,\,\ldots,\,k,$ то

$$P^{2} = (P_{1} + \dots + P_{k}, P_{1} + \dots + P_{k}) = P_{1} + \dots + P_{k} = P.$$

Так как, очевидно, $P^* = P$, то P — ортопроектор.

Обратно, пусть $P = P_1 + \dots + P_k$ — ортопроектор. Зафиксируем произвольное $1 \le i \le k$. Тогда для любого $\mathbf{x} \in \{P_i\mathbf{y} : \mathbf{y} \in \mathbf{H}\}$ имеем:

$$\|\mathbf{x}\|^{2} \ge \|P\mathbf{x}\|^{2} = (P\mathbf{x}, P\mathbf{x}) = (P\mathbf{x}, \mathbf{x}) = \left(\sum_{j=1}^{k} P_{j}\mathbf{x}, \mathbf{x}\right) = \sum_{j=1}^{k} (P_{j}\mathbf{x}, \mathbf{x}) = \sum_{j=1}^{k} (P_{j}\mathbf{x}, P_{j}\mathbf{x}) = \sum_{j=1}^{k} \|P_{j}\mathbf{x}\|^{2} \ge \|P_{i}\mathbf{x}\|^{2} = \|\mathbf{x}\|^{2}.$$

Следовательно,

$$\sum_{j=1}^{k} ||P_j \mathbf{x}||^2 = ||P_i \mathbf{x}||^2,$$

т.е. $\|P_j\mathbf{x}\|^2=0$, и потому $P_j\mathbf{x}=\mathbf{0}$ при $j\neq i$. Таким образом, для любого $\mathbf{y}\in\mathbf{H}$ при $j\neq i$

$$P_j P_i \mathbf{y} = \mathbf{0}.$$

Поэтому, $P_j P_i = 0$ при $j \neq i$.

Определение 3.2.12. Система попарно ортогональных ортопроекторов $\{P_i\}_{i=1}^k \subset \mathcal{P}(\mathbf{H})$ называется *ортогональной системой* ортопроекторов.

Таким образом, если $P_1, \ldots, P_k \in \mathcal{P}(\mathbf{H})$, и оператор

$$P = P_1 + \dots + P_k$$

является ортопроектором, то $\{P_i\}_{i=1}^k$ — ортогональная система ортопроекторов. При этом, если $P_i=P_{\mathbf{M}_i}$, то

$$P = P_{\mathbf{M}_1 \oplus \mathbf{M}_2 \oplus \cdots \oplus \mathbf{M}_k}.$$

Следствие 3.2.13. *Если* $P_1, \ldots, P_k \in \mathcal{P}(\mathbf{H})$ *и*

$$P_1 + \cdots + P_k = I$$
,

то $\{P_i\}_{i=1}^k$ — ортогональная система ортопроекторов. При этом, если $P_i=P_{\mathbf{M}_i},$ то

$$\mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_k = \bigoplus_{i=1}^k \mathbf{M}_i = \mathbf{H}.$$

Определение 3.2.14. Ортогональная система ненулевых ортопроекторов $\{P_i\}_{i=1}^k$ называется разложением единицы или ортогональным разложением единицы, если

$$P_1 + \cdots + P_k = I$$
.

Рассмотрим матричное представление ортопроектора $P = P_{\mathbf{M}}$.

Пусть $\dim \mathbf{M} = k$ и $\{\mathbf{e}_1, \dots, \mathbf{e}_k, \mathbf{e}_{k+1}, \dots, \mathbf{e}_n\}$ — такой ортонормированный базис гильбертова пространства \mathbf{H} , что $\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ — ортонормированный базис в \mathbf{M} . Тогда матрица [P] ортопроектора P имеет вид:

$$[P] = \begin{pmatrix} (P\mathbf{e}_{1}, \mathbf{e}_{1}) & \dots & (P\mathbf{e}_{k}, \mathbf{e}_{1}) & (P\mathbf{e}_{k+1}, \mathbf{e}_{1}) & \dots & (P\mathbf{e}_{n}, \mathbf{e}_{1}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (P\mathbf{e}_{1}, \mathbf{e}_{k}) & \dots & (P\mathbf{e}_{k}, \mathbf{e}_{k}) & (P\mathbf{e}_{k+1}, \mathbf{e}_{k}) & \dots & (P\mathbf{e}_{n}, \mathbf{e}_{k}) \\ (P\mathbf{e}_{1}, \mathbf{e}_{k+1}) & \dots & (P\mathbf{e}_{k}, \mathbf{e}_{k+1}) & (P\mathbf{e}_{k+1}, \mathbf{e}_{k+1}) & \dots & (P\mathbf{e}_{n}, \mathbf{e}_{k+1}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (P\mathbf{e}_{1}, \mathbf{e}_{n}) & \dots & (P\mathbf{e}_{k}, \mathbf{e}_{n}) & (P\mathbf{e}_{k+1}, \mathbf{e}_{n}) & \dots & (P\mathbf{e}_{n}, \mathbf{e}_{n}) \end{pmatrix}.$$

Так как

$$P\mathbf{e}_i = \left\{ \begin{array}{ll} \mathbf{e}_i, & i = 1, \dots, k, \\ \mathbf{0}, & i = k+1, \dots, n, \end{array} \right.$$

ТО

$$[P] = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix},$$

или

$$[P] = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix},$$

где I_k — единичная матрица размерности k. Отметим, что элементы матрицы I_k могут быть сдвинуты вдоль главной диагонали, если векторы ортонормированного базиса подпространства \mathbf{M} занимают другие места в общем ортонормированном базисе \mathbf{H} .

3.3 Собственные значения и собственные векторы самосопряженного оператора

Утверждение 3.3.1. Собственные значения самосопряженного оператора вещественны.

Доказательство. Пусть $A \in \mathcal{B}_h(\mathbf{H})$ и $A\mathbf{x} = \lambda \mathbf{x}, \mathbf{x} \neq 0$. Тогда для любого $\mathbf{y} \in \mathbf{H}$ имеем $(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A\mathbf{y})$. Следовательно,

$$\lambda(\mathbf{x}, \mathbf{x}) = (\lambda \mathbf{x}, \mathbf{x}) = (A\mathbf{x}, \mathbf{x}) = (\mathbf{x}, A\mathbf{x}) = (\mathbf{x}, \lambda \mathbf{x}) = \bar{\lambda}(\mathbf{x}, \mathbf{x}).$$

Таким образом, $\lambda = \bar{\lambda}$.

Утверждение 3.3.2. Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

Доказательство. Пусть $A \in \mathcal{B}_h(\mathbf{H}), A\mathbf{x}_1 = \lambda_1\mathbf{x}_1, A\mathbf{x}_2 = \lambda_2\mathbf{x}_2, \lambda_1 \neq \lambda_2, \mathbf{x}_1, \mathbf{x}_2 \neq 0$. Тогда

$$\lambda_1(\mathbf{x}_1, \mathbf{x}_2) = (A\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1, A\mathbf{x}_2) = \lambda_2(\mathbf{x}_1, \mathbf{x}_2).$$

Таким образом, $(\mathbf{x}_1, \mathbf{x}_2) = 0$.

Утверждение 3.3.3. Подпространство $\mathbf{M} \subseteq \mathbf{H}$ инвариантно относительно самосопряженного оператора $A \in \mathcal{B}_h(\mathbf{H})$ тогда и только тогда, когда ортогональное дополнение \mathbf{M}^{\perp} этого подпространства инвариантно относительно оператора A.

Доказательство. Пусть подпространство $\mathbf{M} \subseteq \mathbf{H}$ инвариантно относительно самосопряженного оператора $A \in \mathcal{B}(\mathbf{H})$. Тогда, в силу утверждения 2.5.6, ортогональное дополнение \mathbf{M}^{\perp} этого подпространства инвариантно относительно оператора $A^* = A$. Обратное утверждение следует из того же утверждения 2.5.6 и равенств $A^{**} = A^* = A$ и $\mathbf{M}^{\perp \perp} = \mathbf{M}$.

Следствие 3.3.4. Пусть $\dim \mathbf{H} = n$, оператор $A \in \mathcal{B}_h(\mathbf{H})$ и $\mathbf{x}_1 \neq 0$ — его собственный вектор. Тогда

$$\mathbf{H}_1 = \{ \mathbf{x} \in \mathbf{H} : (\mathbf{x}, \mathbf{x}_1) = 0 \}$$

является (n-1)-мерным подпространством в **H**, инвариантным относительно оператора A.

Доказательство. Ясно, что множество \mathbf{H}_1 векторов, ортогональных вектору \mathbf{x}_1 , образует (n-1)-мерное подпространство в \mathbf{H} . Обозначим через

$$\mathbf{M} = \{ \mathbf{x} \in \mathbf{H} : \mathbf{x} = \alpha \mathbf{x}_1, \ \alpha \in \mathbb{C} \}$$

одномерное подпространство в \mathbf{H} , порожденное вектором \mathbf{x}_1 . Тогда \mathbf{M} — инвариантное относительно оператора A подпространство и $\mathbf{H}_1 = \mathbf{M}^{\perp}$. Поэтому, в силу утверждения 3.3.3, \mathbf{H}_1 инвариантно относительно A. \square

Упражнение 3.3.5. Если \mathbf{M} — инвариантное подпространство самосопряженного оператора $A \in \mathcal{B}_h(\mathbf{H})$, то индуцированный оператор $A \upharpoonright_{\mathbf{M}}$ является самосопряженным оператором в $\mathcal{B}(\mathbf{M})$.

Утверждение 3.3.6. Если оператор $A \in \mathcal{B}_h(\mathbf{H})$, то существует n попарно ортогональных собственных векторов оператора A.

Доказательство. Согласно теореме I(L).4.2.2, существует хотя бы один собственный вектор $\mathbf{x}_1 \in \mathbf{H}$ оператора A. В силу следствия 3.3.4, подпространство

$$\mathbf{H}_1 = \{\mathbf{x} \in \mathbf{H} : (\mathbf{x}, \mathbf{x}_1) = 0\}$$

является (n-1)-мерным инвариантным подпространством оператора A. Для оператора $A \upharpoonright_{\mathbf{H}_1}$, в силу той же теоремы I(L).4.2.2, существует хотя бы один собственный вектор $\mathbf{x}_2 \in \mathbf{H}_1$ оператора $A \upharpoonright_{\mathbf{H}_1}$, который, очевидно,

является собственным вектором оператора A. В свою очередь, подпространство

$$\mathbf{H}_2 = {\mathbf{x} \in \mathbf{H}_1 : (\mathbf{x}, \mathbf{x}_2) = 0}$$

является (n-2)-мерным инвариантным подпространством оператора A. Продолжая процесс, получим n попарно ортогональных собственных векторов $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ оператора A.

Заметим, что в силу утверждения 3.3.1 все собственные значения $\{\lambda_1, \ldots, \lambda_n\}$ оператора A, соответствующие построенным выше ортогональным собственным векторам $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$, вещественны.

3.4 Спектральная теорема для самосопряженного оператора

Теорема 3.4.1 (Спектральная теорема для самосопряженного оператора). Если оператор $A \in \mathcal{B}_h(\mathbf{H})$, то существует ортонормированный базис пространства \mathbf{H} , состоящий из собственных векторов оператора A. Матрица [A] оператора A в этом базисе диагональна, вещественна и имеет вид

$$[A] = D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix},$$

где $\lambda_1, \ldots, \lambda_n$ — собственные значения оператора A (среди $\lambda_1, \ldots, \lambda_n$ могут быть равные).

Доказательство. Выберем в качестве базиса пространства **H** построенные в доказательстве утверждения 3.3.6 попарно ортогональные ненулевые собственные векторы $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ оператора A и положим

$$\mathbf{e}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|}, \quad \dots, \quad \mathbf{e}_n = \frac{\mathbf{x}_n}{\|\mathbf{x}_n\|}.$$

Тогда для любого $k=1,\ldots,n$

$$A\mathbf{e}_k = A\left(\frac{\mathbf{x}_k}{\|\mathbf{x}_k\|}\right) = \frac{1}{\|\mathbf{x}_k\|} A\mathbf{x}_k = \frac{1}{\|\mathbf{x}_k\|} \lambda_k \mathbf{x}_k = \lambda_k \frac{\mathbf{x}_k}{\|\mathbf{x}_k\|} = \lambda_k \mathbf{e}_k,$$

и потому $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ — ортонормированный базис пространства \mathbf{H} , состоящий из собственных векторов оператора A. Матрица [A] оператора A в

этом базисе имеет вид

$$[A] = D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix},$$

где все числа $\lambda_1, \ldots, \lambda_n$ вещественны.

Замечание 3.4.2. Верно и обратное утверждение, т.е., если в некотором ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ матрица оператора $A \in \mathcal{B}(\mathbf{H})$ диагональна и вещественна, то оператор A самосопряжен, а базис $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ состоит из собственных векторов оператора A. Такой ортонормированный базис называется собственным базисом оператора A.

Замечание 3.4.3. Пусть $\{{\bf e}_1,\ldots,{\bf e}_n\}$ — собственный базис самосопряженного оператора A и ${\bf x}\in {\bf H}$. Тогда

$$\mathbf{x} = \sum_{k=1}^{n} (\mathbf{x}, \mathbf{e}_k) \mathbf{e}_k.$$

И

$$A\mathbf{x} = \sum_{k=1}^{n} \lambda_k(\mathbf{x}, \mathbf{e}_k) \mathbf{e}_k.$$

В этом случае удобно писать:

$$A = \sum_{k=1}^{n} \lambda_k(\cdot, \mathbf{e}_k) \mathbf{e}_k.$$

Замечание 3.4.4. Как следует непосредственно из теоремы 3.4.1, любой самосопряженный оператор $A \in \mathcal{B}_h(\mathbf{H})$ подобен диагональному, т.е. является оператором простой структуры (см. I(L), теорема 4.3.5).

Теорема 3.4.5. Пусть оператор $A \in \mathcal{B}_h(\mathbf{H})$,

$$\alpha(A) = \inf\{(A\mathbf{x}, \mathbf{x}) : \mathbf{x} \in \mathbf{H}, ||\mathbf{x}|| = 1\}$$

u

$$\beta(A) = \sup \bigl\{ (A\mathbf{x}, \mathbf{x}) : \mathbf{x} \in \mathbf{H}, \|\mathbf{x}\| = 1 \bigr\}.$$

Тогда

$$||A|| = \max\{|\alpha(A)|, |\beta(A)|\} = \sup\{|(A\mathbf{x}, \mathbf{x})| : \mathbf{x} \in \mathbf{H}, ||\mathbf{x}|| = 1\}.$$

Доказательство. Легко видеть, что если оператор A=0, то утверждение теоремы очевидно. Пусть теперь оператор A ненулевой. Обозначим

$$K = \max\{|\alpha(A)|, |\beta(A)|\} = \sup\{|(A\mathbf{x}, \mathbf{x})| : \mathbf{x} \in \mathbf{H}, ||\mathbf{x}|| = 1\}.$$

В силу утверждения 2.2.5(iv), для $\mathbf{x} \in \mathbf{H}$, $\|\mathbf{x}\| = 1$ имеем:

$$|(A\mathbf{x}, \mathbf{x})| \le ||A\mathbf{x}|| ||\mathbf{x}|| \le ||A|| ||\mathbf{x}||^2 = ||A||.$$

Следовательно, $K \leq ||A||$.

С другой стороны,

$$\{(A\mathbf{x}, \mathbf{x}), \mathbf{x} \in \mathbf{H}, \|\mathbf{x}\| = 1\} = \left\{\frac{(A\mathbf{y}, \mathbf{y})}{\|\mathbf{y}\|^2} : \mathbf{y} \in \mathbf{H}, \|\mathbf{y}\| \neq \mathbf{0}\right\}.$$

Поэтому для любого $\mathbf{y} \in \mathbf{H}$, $\|\mathbf{y}\| \neq \mathbf{0}$,

$$(A\mathbf{y}, \mathbf{y}) = \|\mathbf{y}\|^2 \left(A\left(\frac{\mathbf{y}}{\|\mathbf{y}\|}\right), \frac{\mathbf{y}}{\|\mathbf{y}\|} \right) \le$$

$$\le \sup\{ |(A\mathbf{x}, \mathbf{x})| : \mathbf{x} \in \mathbf{H}, \|\mathbf{x}\| = 1 \} \|\mathbf{y}\|^2 \le K \|\mathbf{y}\|^2.$$

Очевидно, это неравенство верно и для $\mathbf{y} = \mathbf{0}$, а значит, для любого $\mathbf{y} \in \mathbf{H}$. Для произвольного отличного от нуля элемента $\mathbf{z} \in \mathbf{H}$, $\mathbf{z} \notin \operatorname{Ker} A$, положим:

$$\lambda = \sqrt{\frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|}}$$
 и $\mathbf{u} = \frac{1}{\lambda}A\mathbf{z}$.

Тогда

$$\begin{split} \|A\mathbf{z}\|^2 &= (A\mathbf{z}, A\mathbf{z}) = (A\mathbf{z}, \lambda \mathbf{u}) = \lambda(A\mathbf{z}, \mathbf{u}) = (A(\lambda \mathbf{z}), \mathbf{u}) = \\ &= \frac{1}{4}[(A(\lambda \mathbf{z} + \mathbf{u}), \lambda \mathbf{z} + \mathbf{u}) - (A(\lambda \mathbf{z} - \mathbf{u}), \lambda \mathbf{z} - \mathbf{u})] \le \\ &\le \frac{1}{4}K[\|\lambda \mathbf{z} + \mathbf{u}\|^2 + \|\lambda \mathbf{z} - \mathbf{u}\|^2] = \frac{1}{2}K[\|\lambda \mathbf{z}\|^2 + \|\mathbf{u}\|^2] = \\ &= \frac{1}{2}K\left[\lambda^2\|\mathbf{z}\|^2 + \frac{1}{\lambda^2}\|A\mathbf{z}\|^2\right] = \frac{1}{2}K[\|\mathbf{z}\|\|A\mathbf{z}\| + \|\mathbf{z}\|\|A\mathbf{z}\|] \\ &= K\|\mathbf{z}\|\|A\mathbf{z}\|. \end{split}$$

Следовательно, $||A\mathbf{z}|| \le K||\mathbf{z}||$, и потому $||A|| \le K$. Таким образом,

$$||A|| = K = \sup\{|(A\mathbf{x}, \mathbf{x})| : \mathbf{x} \in \mathbf{H}, ||\mathbf{x}|| = 1\} = \max\{|\alpha(A)|, |\beta(A)|\}.$$

Теорема 3.4.6 (Спектральная теорема для самосопряженного оператора в форме разложения единицы). Если $A \in \mathcal{B}_h(\mathbf{H})$, то существуют такие числа $\{\lambda_1, \ldots, \lambda_r\} \subset \mathbb{R}$ и ненулевые ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H})$, $r \leq n$, что

- (i) $\lambda_1 < \cdots < \lambda_r$;
- (ii) Ортопроекторы P_1, \ldots, P_r попарно ортогональны;
- (iii) $\sum_{k=1}^{r} P_k = I;$
- (iv) $A = \sum_{k=1}^{r} \lambda_k P_k$.

Условия (i)-(iv) определяют числа $\lambda_1, \ldots, \lambda_r$ однозначно.

Доказательство. Покажем, что спектр $\sigma(A)=\{\lambda_1,\ldots,\lambda_r\}$ оператора A, где $\lambda_1<\cdots<\lambda_r$, и ортопроекторы $P_k=P_{\mathbf{N}_{\lambda_k}}$ на собственные подпространства

$$\mathbf{N}_{\lambda_k} = {\mathbf{x} \in \mathbf{H} : A\mathbf{x} = \lambda_k \mathbf{x}}$$

удовлетворяют условиям теоремы. Условия (i) и (ii) следуют из выбора $\{\lambda_1, \ldots, \lambda_r\}$ и утверждения 3.3.2.

Условие (iii) следует из теоремы 3.3.6 существования собственного базиса самосопряженного оператора A и равенства

$$\mathbf{H} = \bigoplus_{k=1}^r \mathbf{N}_{\lambda_k}.$$

Наконец, если теперь $\mathbf{x} \in \mathbf{H}$ и $\mathbf{x}_k = P_k \mathbf{x} \in \mathbf{N}_{\lambda_k}$, то $A\mathbf{x}_k = \lambda_k \mathbf{x}_k$ и

$$A\mathbf{x} = A\left(\sum_{k=1}^{r} P_k\right)\mathbf{x} = A\sum_{k=1}^{r} P_k\mathbf{x} = \sum_{k=1}^{r} A\mathbf{x}_k =$$
$$= \sum_{k=1}^{r} \lambda_k \mathbf{x}_k = \sum_{k=1}^{r} \lambda_k P_k \mathbf{x} = \left(\sum_{k=1}^{r} \lambda_k P_k\right)\mathbf{x}.$$

Следовательно, $A = \sum_{k=1}^{r} \lambda_k P_k$.

При выполнении условий (i)–(iv) множество $\{\lambda_1, \ldots, \lambda_r\}$ совпадает со спектром $\sigma(A)$ оператора A. Поэтому условия (i)–(iv) определяют числа $\lambda_1, \ldots, \lambda_r$ однозначно.

Следствие 3.4.7. Если оператор $A \in \mathcal{B}(\mathbf{H})$ представим в виде

$$A = \sum_{k=1}^{r} \lambda_k P_k,$$

где $\{\lambda_1,\ldots,\lambda_r\}=\sigma(A)\subset\mathbb{R}$ и ненулевые ортопроекторы $P_1,\ldots,P_r,\,r\leq n$ такие, что

- (i) $\lambda_k \neq \lambda_i \ npu \ k \neq j$;
- (ii) Ортопроекторы P_1, \ldots, P_r попарно ортогональны;
- (iii) $\sum_{k=1}^{r} P_k = I,$

то оператор A самосопряжен.

 \mathcal{A} оказательство. Если $A=\sum_{k=1}^r \lambda_k P_k$, где $\{\lambda_1,\dots,\lambda_r\}=\sigma(A)\subset\mathbb{R}$, то

$$A^* = \sum_{k=1}^r \bar{\lambda}_k P_k = \sum_{k=1}^r \lambda_k P_k = A,$$

т.е., оператор A самосопряжен.

Упражнение 3.4.8. Если $A \in \mathcal{B}_h(\mathbf{H})$, то tr $A \in \mathbb{R}$.

Определение 3.4.9. Представление оператора $A \in \mathcal{B}_h(\mathbf{H})$ в виде

$$A = \sum_{k=1}^{r} \lambda_k P_k,$$

где $\{\lambda_1, \ldots, \lambda_r\} = \sigma(A)$ и ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n$, ненулевые и удовлетворяют условиям (i)–(iii), называется спектральным разложением самосопряженного оператора A.

Если $A = \sum_{k=1}^{r} \lambda_k P_k$ — спектральное разложение самосопряженного оператора $A \in \mathcal{B}_h(\mathbf{H})$, то его матрица в собственном базисе имеет вид

$$[A] = \begin{pmatrix} \lambda_1 I_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r I_r \end{pmatrix}.$$

3.5 Коммутирующие самосопряженные операторы

Пусть $A, B \in \mathcal{B}(\mathbf{H})$. Операторы A и B называются коммутирующими или перестановочными, если

$$AB = BA$$

Если существует ортонормированный базис пространства \mathbf{H} , в котором матрицы [A] и [B] операторов $A, B \in \mathcal{B}(\mathbf{H})$ коммутируют, то AB = BA.

Упражнение 3.5.1. Путь $A, B \in \mathcal{B}_h(\mathbf{H})$.

• Доказать, что если AB = BA, то

$$[p(A), q(B)] = p(A)q(B) - q(B)p(A) = 0$$

для любых полиномов p(t) и q(t).

• Доказать, что если операторы A и B обратимы и $(AB)^2=A^2B^2$, то AB=BA.

Утверждение 3.5.2. Пусть $A, B \in \mathcal{B}(\mathbf{H})$ и операторы A и B коммутируют.

- (i) Если $\lambda \in \sigma(A)$ и $\mathbf{N}_{\lambda} = \{\mathbf{x} \in \mathbf{H} : A\mathbf{x} = \lambda \mathbf{x}\}$ собственное подпространство оператора A, соответствующее собственному значению λ , то подпространство \mathbf{N}_{λ} инвариантно относительно оператора B.
- (ii) Π одпространства $\operatorname{Ker} A u \operatorname{Ran} A$ инвариантны относительно oneратора B.

Доказательство. (i). Пусть $x \in \mathbf{N}_{\lambda}$. Тогда $A\mathbf{x} = \lambda \mathbf{x}$ и

$$A(B\mathbf{x}) = B(A\mathbf{x}) = B(\lambda\mathbf{x}) = \lambda B\mathbf{x}.$$

Следовательно, $B\mathbf{x} \in \mathbf{N}_{\lambda}$. Таким образом, подпространство \mathbf{N}_{λ} инвариантно относительно оператора B.

(ii). Пусть $\mathbf{x} \in \operatorname{Ker} A$. Тогда

$$A(B\mathbf{x}) = B(A\mathbf{x}) = 0,$$

T.e. $B\mathbf{x} \in \operatorname{Ker} A$.

Далее, если $\mathbf{x} \in \operatorname{Ran} A$ то существует $\mathbf{y} \in \mathbf{H}$, что $\mathbf{x} = A\mathbf{y}$. Тогда

$$B\mathbf{x} = BA\mathbf{y} = A(B\mathbf{y}) \in \operatorname{Ran} A.$$

Утверждение 3.5.3. Любые два коммутирующих оператора A, B из $\mathcal{B}(\mathbf{H})$ имеют общий собственный вектор.

Доказательство. Пусть $AB=BA,\,\lambda\in\sigma(A)$ и

$$\mathbf{N}_{\lambda} = \{ \mathbf{x} \in \mathbf{H} : A\mathbf{x} = \lambda \mathbf{x} \}.$$

По утверждению 3.5.2, подпространство \mathbf{N}_{λ} инвариантно относительно оператора B. Следовательно, существует вектор $\mathbf{x} \in \mathbf{N}_{\lambda}, \mathbf{x} \neq \mathbf{0}$, который является собственным вектором оператора B: $B\mathbf{x} = \mu\mathbf{x}$. Так $A\mathbf{x} = \lambda\mathbf{x}$, то \mathbf{x} — общий собственный вектор операторов A и B.

Замечание 3.5.4. Если операторы A и B коммутируют, то, вообще говоря, не всякий собственный вектор оператора A является собственным вектором оператора B. Если, например, A = I, $B \neq I$, то AB = BA, любой вектор $\mathbf{x} \in \mathbf{H}$ является собственным вектором оператора A, что неверно относительно оператора B.

Утверждение 3.5.5. Ортопроекторы P_1 , P_2 из $\mathcal{P}(\mathbf{H})$ коммутируют тогда и только тогда, когда $P_1P_2P_1$ — ортопроектор, т.е.

$$P_1P_2P_1P_2P_1 = P_1P_2P_1$$
.

Доказательство. Очевидно, что если ортопроекторы P_1 и P_2 коммутируют, то $P_1P_2P_1=P_2P_1=P_1P_2$ — также ортопроектор.

Пусть теперь $P_1P_2P_1$ — ортопроектор. Обозначим $A=P_1(P_1P_2-P_2P_1)$. Тогда $A^*=(P_2P_1-P_1P_2)P_1$ и

$$AA^* = P_1(P_1P_2 - P_2P_1)(P_2P_1 - P_1P_2)P_1 =$$

$$= P_1P_2P_1 - P_1P_2P_1P_2P_1 - P_1P_2P_1P_2P_1 + P_1P_2P_1P_2P_1 =$$

$$= P_1P_2P_1 - P_1P_2P_1P_2P_1 = 0,$$

откуда имеем $A=A^*=0$, или $P_1P_2=P_1P_2P_1$, $P_2P_1=P_1P_2P_1$, т.е.

$$P_1P_2 = P_1P_2P_1 = P_2P_1.$$

3.5.1 Спектральная теорема для пары коммутирующих самосопряженных операторов

Теорема 3.5.6 (Спектральная теорема для пары коммутирующих самосопряженных операторов). Пусть $A, B \in \mathcal{B}_h(\mathbf{H})$. Для того, чтобы существовал ортонормированный базис, в котором матрицы [A] и [B] этих операторов одновременно были диагональными, необходимо и достаточно, чтобы они коммутировали.

$$[A][B] = [B][A]$$

и потому операторы A и B коммутируют.

Достаточность. Пусть операторы A и B коммутируют. Тогда, в силу утверждения 3.5.3, существует вектор \mathbf{e}_1 , $\|\mathbf{e}_1\|=1$, собственный и для оператора A, и для оператора B, т.е.

$$A\mathbf{e}_1 = \lambda_1 \mathbf{e}_1, \quad B\mathbf{e}_1 = \mu_1 \mathbf{e}_1.$$

Подпространство

$$\mathbf{H}_1 = \{ \mathbf{x} \in \mathbf{H} : (\mathbf{x}, \mathbf{e}_1) = 0 \}$$

инвариантно относительно каждого из операторов A и B и имеет размерность $\dim \mathbf{H}_1 = n-1$. Поэтому, рассматривая операторы $A \upharpoonright_{\mathbf{H}_1}$ и $B \upharpoonright_{\mathbf{H}_1}$, получим, что существует вектор $\mathbf{e}_2 \in \mathbf{H}_1$, $\|\mathbf{e}_2\| = 1$, собственный и для операторов A и B, т.е.

$$A\mathbf{e}_2 = \lambda_2 \mathbf{e}_2, \quad B\mathbf{e}_2 = \mu_2 \mathbf{e}_2.$$

Продолжая процесс, получим ортонормированный базис пространства \mathbf{H} , состоящий из собственных векторов операторов A и B, в котором матрицы [A] и [B] имеют диагональную форму:

$$[A] = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}, \quad [B] = \begin{pmatrix} \mu_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mu_n \end{pmatrix}.$$

Следствие 3.5.7. Справедливы утверждения.

- (i) Любое множество $\{A_j\}_{j=1}^k \subset \mathcal{B}(\mathbf{H})$ попарно коммутирующих операторов имеет общий собственный вектор.
- (ii) Для того, чтобы существовал ортонормированный базис, в котором матрицы $[A_j]$ операторов $\{A_j\}_{j=1}^k \subset \mathcal{B}_h(\mathbf{H})$ одновременно имели бы диагональную форму, необходимо и достаточно, чтобы они попарно коммутировали.

3.6 Неотрицательные операторы в $\mathcal{B}(\mathbf{H})$ и их спектр

3.6.1 Неотрицательные и положительные операторы

Определение 3.6.1. Самосопряженный оператор $A \in \mathcal{B}_h(\mathbf{H})$ называется *неотрицательным*, если

$$(A\mathbf{x}, \mathbf{x}) \ge 0$$

для любого $\mathbf{x} \in \mathbf{H}$. Множество всех неотрицательных операторов из $\mathcal{B}_h(\mathbf{H})$ обозначают $\mathcal{B}_+(\mathbf{H})$. Для оператора $A \in \mathcal{B}_+(\mathbf{H})$ пишут: $A \geq 0$.

Определение 3.6.2. Самосопряженный оператор $A \in \mathcal{B}_+(\mathbf{H})$ называется *положительным* (A > 0), если

$$(A\mathbf{x}, \mathbf{x}) > 0$$

для любого $\mathbf{x} \in \mathbf{H}, \ \mathbf{x} \neq \mathbf{0}.$

Пример 3.6.3. Если $P \in \mathcal{B}(\mathbf{H})$ — ортопроектор, то для любого $\mathbf{x} \in \mathbf{H}$

$$(P\mathbf{x}, \mathbf{x}) = (P\mathbf{x}, P\mathbf{x}) = ||P\mathbf{x}||^2 \ge 0.$$

Следовательно, $P \geq 0$ и потому $\mathcal{P}(\mathbf{H}) \subset \mathcal{B}_{+}(\mathbf{H})$.

Упражнение 3.6.4. Доказать, что ортопроектор P>0 тогда и только тогда, когда P=I.

Утверждение 3.6.5. Оператор $A \in \mathcal{B}_h(\mathbf{H})$ является неотрицательным тогда и только тогда, когда

$$\sigma(A) \subset \mathbb{R}_+ = [0, +\infty).$$

Доказательство. Пусть A — неотрицательный оператор, $\lambda \in \sigma(A)$, $A\mathbf{x} = \lambda \mathbf{x}, \mathbf{x} \neq \mathbf{0}$. Тогда

$$(A\mathbf{x}, \mathbf{x}) = (\lambda \mathbf{x}, \mathbf{x}) = \lambda (\mathbf{x}, \mathbf{x}) = \lambda ||\mathbf{x}||^2 \ge 0.$$

Следовательно, $\lambda \geq 0$. Таким образом, $\sigma(A) \subset \mathbb{R}_+$.

Обратно, пусть $\sigma(A) \subset \mathbb{R}_+$ и $A = \sum_{k=1}^r \lambda_k P_k$ — спектральное разложение оператора A. Тогда для любого $\mathbf{x} \in \mathbf{H}$

$$(A\mathbf{x}, \mathbf{x}) = \left(\sum_{k=1}^{r} \lambda_k P_k \mathbf{x}, \mathbf{x}\right) = \sum_{k=1}^{r} \lambda_k (P_k \mathbf{x}, \mathbf{x}) \ge 0.$$

Следовательно, A — неотрицательный оператор.

Упражнение 3.6.6. Докажите утверждения.

- Если оператор $A \in \mathcal{B}_h(\mathbf{H})$ неотрицательный, то $\operatorname{tr} A \in [0, +\infty)$;
- Если оператор $A \in \mathcal{B}_h(\mathbf{H})$ положительный, то $\operatorname{tr} A \in (0, +\infty)$;
- Оператор $A \in \mathcal{B}_h(\mathbf{H})$ является положительным тогда и только тогда, когда $\sigma(A) \subset (0, +\infty)$.

3.6.2 Матрица неотрицательного оператора

Выясним, какими свойствами обладает матрица неотрицательного оператора $A \in \mathcal{B}_+(\mathbf{H})$ в ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$.

Утверждение 3.6.7. Для того, чтобы оператор $A \in \mathcal{B}_h(H)$ был неотрицательным, необходимо и достаточно, чтобы его матрица [A] в любом ортонормированном базисе была неотрицательно определенной.

Доказательство. Пусть $\{\mathbf{e}_1,\dots,\mathbf{e}_n\}$ — ортонормированный базис в гильбертовом пространстве \mathbf{H} и

$$A\mathbf{e}_j = \sum_{i=1}^n \alpha_{ij} \mathbf{e}_i.$$

Условие самосопряженности оператора A равносильно тому, что $\alpha_{ij} = \bar{\alpha}_{ji}$ для любых $i, j = 1, \ldots, n$. Если $\mathbf{x} \in \mathbf{H}$ и

$$\mathbf{x} = \sum_{j=1}^{n} \beta_j \mathbf{e}_j,$$

ТО

$$(A\mathbf{x}, \mathbf{x}) = \left(A\left(\sum_{j=1}^{n} \beta_{j} \mathbf{e}_{j}\right), \sum_{j=1}^{n} \beta_{j} \mathbf{e}_{j}\right) = \left(\sum_{j=1}^{n} \beta_{j} A \mathbf{e}_{j}, \sum_{j=1}^{n} \beta_{j} \mathbf{e}_{j}\right) =$$

$$= \left(\sum_{j=1}^{n} \beta_{j} \sum_{i=1}^{n} \alpha_{ij} \mathbf{e}_{i}, \sum_{j=1}^{n} \beta_{j} \mathbf{e}_{j}\right) = \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{ij} \beta_{j} \bar{\beta}_{i}.$$

Следовательно, оператор $A \in \mathcal{B}_h(\mathbf{H})$ неотрицателен тогда и только тогда, когда его матрица $[A] = (\alpha_{ij})_{i,j=1}^n$ в ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ обладает свойствами:

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{ij} \beta_{j} \bar{\beta}_{i} \geq 0, \quad \forall \beta_{1}, \dots, \beta_{n} \in \mathbb{C},$$

$$\alpha_{ij} = \bar{\alpha}_{ji}, \quad i, j = 1, \dots, n.$$

Упражнение 3.6.8. Для того, чтобы оператор $A \in \mathcal{B}_h(H)$ был положительным, необходимо и достаточно, чтобы в любом ортонормированном базисе его матрица $[A] = (\alpha_{ij})_{i,j=1}^n$ была положительно определенной, т.е.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \xi_i \bar{\xi}_j > 0$$

для любого вектора $\mathbf{y} = \{\xi_1, \dots, \xi_n\} \in \mathbb{C}^n$.

Определим частичный порядок на множестве $\mathcal{B}_h(\mathbf{H})$ всех самосопряженных операторов из $\mathcal{B}(\mathbf{H})$, полагая

$$A > B \iff A - B > 0$$

где $A, B \in \mathcal{B}_h(\mathbf{H})$.

Таким образом, $A \ge B \iff (A - B) \in \mathcal{B}_+(\mathbf{H}).$

В следующем утверждении приведены некоторые свойства частичного порядка " \geq ".

Утверждение 3.6.9. Пусть $A, B, C, D \in \mathcal{B}_h(\mathbf{H})$

- (i) Ecnu $A \ge B$ u $B \ge A$, mo A = B;
- (ii) $Ecnu A \geq B \ u B \geq C, mo A \geq C;$
- (iii) Если $A \geq B$, то $\alpha A \geq \alpha B$ для любого неотрицательного $\alpha \in \mathbb{R}$;
- (iv) Echu $A \ge B$ u $C \ge D$, mo $A + C \ge B + D$.

Доказательство. (i). Если $A \geq B$ и $B \geq A$, то для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$((A - B)\mathbf{x}, \mathbf{x}) \ge 0,$$

$$((B - A)\mathbf{x}, \mathbf{x}) = -((A - B)\mathbf{x}, \mathbf{x}) \ge 0.$$

Следовательно, $((A - B)\mathbf{x}, \mathbf{x}) = 0$ для любого $\mathbf{x} \in \mathbf{H}$, т.е. A = B.

(ii). Если $A \geq B$ и $B \geq C$, то

$$((A - B)\mathbf{x}, \mathbf{x}) = (A\mathbf{x}, \mathbf{x}) - (B\mathbf{x}, \mathbf{x}) \ge 0,$$

$$((B - C)\mathbf{x}, \mathbf{x}) = (B\mathbf{x}, \mathbf{x}) - (C\mathbf{x}, \mathbf{x}) \ge 0.$$

Следовательно, $(A\mathbf{x}, \mathbf{x}) \ge (B\mathbf{x}, \mathbf{x}) \ge (C\mathbf{x}, \mathbf{x})$, т.е. $A \ge C$.

(iii). Если $A \geq B$, то для любого неотрицательного числа $\alpha \in \mathbb{R}$ и для любого $x \in \mathbf{H}$ имеем:

$$((\alpha A - \alpha B)\mathbf{x}, \mathbf{x}) = (\alpha (A - B)\mathbf{x}, \mathbf{x}) = \alpha ((A - B)\mathbf{x}, \mathbf{x}) \ge 0,$$

T.e., $\alpha A \geq \alpha B$.

(iv). Если $A,B,C,D\in\mathcal{B}_h(\mathbf{H}),\ A\geq B$ и $C\geq D,$ то для любого $\mathbf{x}\in\mathbf{H}$ имеем:

$$(((A+C)-(B+D)){\bf x},{\bf x})=((A-B){\bf x},{\bf x})+((C-D){\bf x},{\bf x})\geq 0,$$

 r.e., $A+C\geq B+D$.

Всюду в дальнейшем мы, как обычно, считаем, что $B \leq A$ тогда и только тогда, когда $A \geq B$.

Теорема 3.6.10. Пусть $P_{\mathbf{M}}$ и $P_{\mathbf{N}}$ — ортопроекторы на подпространства \mathbf{M} и \mathbf{N} соответственно. Следующие условия эквивалентны:

- (i) $P_{\mathbf{N}} \leq P_{\mathbf{M}}$;
- (ii) $||P_{\mathbf{N}}\mathbf{x}|| \le ||P_{\mathbf{M}}\mathbf{x}||$ для любого $\mathbf{x} \in \mathbf{H}$;
- (iii) $\mathbf{N} \subseteq \mathbf{M}$;
- (iv) $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}P_{\mathbf{M}} = P_{\mathbf{N}};$

$$0 \le ((P_{\mathbf{M}} - P_{\mathbf{N}})\mathbf{x}, \mathbf{x}) = (P_{\mathbf{M}}\mathbf{x}, \mathbf{x}) - (P_{\mathbf{N}}\mathbf{x}, \mathbf{x}) =$$
$$= (P_{\mathbf{M}}\mathbf{x}, P_{\mathbf{M}}\mathbf{x}) - (P_{\mathbf{N}}\mathbf{x}, P_{\mathbf{N}}\mathbf{x}) = ||P_{\mathbf{M}}\mathbf{x}||^2 - ||P_{\mathbf{N}}\mathbf{x}||^2.$$

Следовательно, $||P_{\mathbf{N}}\mathbf{x}|| \le ||P_{\mathbf{M}}\mathbf{x}||$.

 $(ii) \Rightarrow (iii)$. Пусть $\mathbf{x} \in \mathbf{N}$. Тогда

$$\|\mathbf{x}\| = \|P_{\mathbf{N}}\mathbf{x}\| \le \|P_{\mathbf{M}}\mathbf{x}\| \le \|\mathbf{x}\|.$$

Следовательно, $\|P_{\mathbf{M}}\mathbf{x}\| = \|\mathbf{x}\|$ для любого $\mathbf{x} \in \mathbf{N}$. Значит

$$\|(I - P_{\mathbf{M}})\mathbf{x}\|^2 = ((I - P_{\mathbf{M}})\mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathbf{x}) - (P_{\mathbf{M}}\mathbf{x}, \mathbf{x}) = 0,$$

т.е. $\mathbf{x} = P_{\mathbf{M}}\mathbf{x} \in \mathbf{M}$. Таким образом, $\mathbf{N} \subseteq \mathbf{M}$.

Импликация (iii) \Rightarrow (iv) очевидна.

$$(iv) \Rightarrow (i)$$
. Пусть $P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{N}}P_{\mathbf{M}} = P_{\mathbf{N}}$. Тогда

$$(I - P_{\mathbf{N}})P_{\mathbf{M}} = P_{\mathbf{M}} - P_{\mathbf{N}}P_{\mathbf{M}} = P_{\mathbf{M}} - P_{\mathbf{M}}P_{\mathbf{N}} = P_{\mathbf{M}}(I - P_{\mathbf{N}}).$$

Поэтому, в силу теоремы 3.2.5(ііі), $P_{\mathbf{M}}(I-P_{\mathbf{N}})$ — ортопроектор. Следовательно, для любого $\mathbf{x} \in \mathbf{H}$

$$((P_{\mathbf{M}} - P_{\mathbf{N}})\mathbf{x}, \mathbf{x}) = (P_{\mathbf{M}}\mathbf{x}, \mathbf{x}) - (P_{\mathbf{N}}\mathbf{x}, \mathbf{x}) = (P_{\mathbf{M}}\mathbf{x}, \mathbf{x}) - (P_{\mathbf{M}}P_{\mathbf{N}}\mathbf{x}, \mathbf{x}) = (P_{\mathbf{M}}(I - P_{\mathbf{N}})\mathbf{x}, \mathbf{x}) \ge 0.$$

Таким образом, $P_{\mathbf{N}} \leq P_{\mathbf{M}}$.

Упражнение 3.6.11. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$

(i) Операторы A^*A и AA^* принадлежат $\mathcal{B}_+(\mathbf{H})$;

- (ii) Следующие условия эквивалентны:
 - Оператор $A \in \mathcal{B}(\mathbf{H})$ обратим;
 - $A^*A > 0$;
 - $AA^* > 0$.
- (ііі) Имеют место равенства:
 - $\operatorname{Ker}(A^*A) = \operatorname{Ker} A$, $\operatorname{Ran}(A^*A) = \operatorname{Ran} A$;
 - $\operatorname{Ker}(AA^*) = \operatorname{Ker} A^*, \operatorname{Ran}(AA^*) = \operatorname{Ran} A^*;$
 - $\operatorname{rg}(A^*A) = \operatorname{rg} A^* = \operatorname{rg} A = \operatorname{rg} AA^*$.
- (iv) Если в некотором ортонормированном базисе $\{e_1, \ldots, e_n\}$ гильбертова пространства **H** матрица оператора A имеет вид:

$$[A] = (\alpha_{ij})_{i,j=1}^n = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix},$$

ТО

$$\operatorname{tr}(AA^*) = \operatorname{tr}(A^*A) = \sum_{i,j=1}^{n} |\alpha_{ij}|^2.$$

3.7 Функциональное исчисление для самосопряженного оператора

Определение 3.7.1. Пусть оператор $A \in \mathcal{B}(\mathbf{H})$ и

$$p(z) = \alpha_0 + \alpha_1 z + \dots + \alpha_k z^k$$

какой-нибудь полином. Оператор

$$B = p(A) = \alpha_0 I + \alpha_1 A + \dots + \alpha_k A^k$$

называется полиномом от оператора А или полиномиальным.

Утверждение 3.7.2. Пусть $A = \sum_{k=1}^{r} \lambda_k P_k$ — спектральное разложение самосопряженного оператора A. Тогда существуют вещественные полиномы $p_k(t)$, $1 \le k \le r$, такие, что

$$p_k(\lambda_j) = \delta_{kj} = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases}$$

 $u p_k(A) = P_k$.

 \mathcal{A} оказательство. Пусть $A = \sum_{k=1}^r \lambda_k P_k$. Так как

$$P_k P_j = \begin{cases} P_k^2 = P_k, & k = j, \\ 0, & k \neq j, \end{cases}$$

ТО

$$A^{2} = \left(\sum_{k=1}^{r} \lambda_{k} P_{k}\right) \left(\sum_{j=1}^{r} \lambda_{j} P_{j}\right) = \sum_{k=1}^{r} \lambda_{k}^{2} P_{k}.$$

Аналогично,

$$A^n = \sum_{k=1}^r \lambda_k^n P_k.$$

Рассмотрим полиномы

$$p_k(t) = \prod_{j \neq k} \frac{t - \lambda_j}{\lambda_k - \lambda_j}.$$

Тогда

$$p_k(\lambda_j) = \delta_{kj} = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases}$$

И

$$p_k(A) = \prod_{j \neq k} \frac{A - \lambda_j I}{\lambda_k - \lambda_j} = \prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \left(\sum_{i=1}^r \lambda_i P_i - \lambda_j \sum_{i=1}^r P_i \right) =$$

$$= \prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \left(\sum_{i=1}^r (\lambda_i - \lambda_j) P_i \right) = \left(\prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \right) \left(\sum_{i=1}^r \left(\prod_{j \neq k} (\lambda_i - \lambda_j) \right) P_i \right)$$

$$= \left(\prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \right) \left(\prod_{j \neq k} (\lambda_k - \lambda_j) P_k \right) = P_k.$$

Пусть оператор $A \in \mathcal{B}_h(\mathbf{H})$ и $A = \sum_{k=1}^r \lambda_k P_k$ — его спектральное разложение. Для любой функции $f \colon \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A, определим оператор

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k.$$

Оператор B = f(A) называется функцией от оператора $A \in \mathcal{B}_h(\mathbf{H})$.

Упражнение 3.7.3. Пусть $A \in \mathcal{B}_h(\mathbf{H})$ и B = f(A). Показать, что операторы A и B коммутируют.

Если
$$f(z) = p(z) = \alpha_0 + \alpha_1 z + \dots + \alpha_m z^m = \sum_{j=0}^m \alpha_j z^j$$
 — полином, то

$$p(A) = \sum_{k=1}^{r} p(\lambda_k) P_k = \sum_{k=1}^{r} \left(\sum_{j=0}^{m} \alpha_j \lambda_k^j \right) P_k = \sum_{j=1}^{m} \alpha_m \left(\sum_{k=0}^{r} \lambda_k^j P_k \right) =$$

$$= \alpha_0 \sum_{k=1}^{r} P_k + \alpha_1 \sum_{k=1}^{r} \lambda_k P_k + \dots + \alpha_k \sum_{k=1}^{r} \lambda_k^r P_k =$$

$$= \alpha_0 I + \alpha_1 A + \dots + \alpha_k A^k.$$

Таким образом, оператор B = p(A) — полиномиальный и для полиномов введенное определение функции от самосопряженного оператора совпадает с определением 3.7.1.

Замечание 3.7.4. Для любого оператора $A \in \mathcal{B}_h(\mathbf{H})$ и любой функции $f: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A, существует полином p(z) такой, что

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k = p(A),$$

т.е. оператор f(A) — полиномиальный.

Действительно, рассмотрим интерполяционный полином Лагранжа функции f:

$$p(z) = \sum_{k=1}^{r} \prod_{j \neq k} \frac{z - \lambda_j}{\lambda_k - \lambda_j} f(\lambda_k) = \sum_{k=1}^{r} p_k(z) f(\lambda_k).$$

Тогда

$$p(A) = \sum_{k=1}^{r} p_k(A) f(\lambda_k) = \sum_{k=1}^{r} f(\lambda_k) P_k = f(A).$$

Утверждение 3.7.5. Для того, чтобы оператор

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k.$$

был самосопряженным, необходимо и достаточно, чтобы функция $f(\lambda)$ была вещественной на спектре $\sigma(A) = \{\lambda_1, \dots, \lambda_r\}$ оператора A.

Доказательство. Пусть оператор

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k$$

самосопряжен. Тогда

$$f(A)^* = \sum_{k=1}^r \overline{f(\lambda_k)} P_k = f(A).$$

Поэтому $f(\lambda_k) = \overline{f(\lambda_k)}$, т.е. функция $f(\lambda)$ является вещественной на спектре $\sigma(A)$. Обратно, если функция $f(\lambda)$ вещественна на спектре $\sigma(A)$, то в силу теоремы I(L).6.6.7.(i),

$$\sigma(f(A)) = \{f(\lambda_1), \dots, f(\lambda_r)\} \subset \mathbb{R},$$

T.e.
$$f(A) \in \mathcal{B}_h(\mathbf{H})$$
.

Рассмотрим несколько примеров функций от самосопряженного оператора $A \in \mathcal{B}_h(\mathbf{H})$. Пусть $A \in \mathcal{B}_h(\mathbf{H})$ и $A = \sum_{k=1}^r \lambda_k P_k$ — его спектральное разложение.

Пример 3.7.6. Если

$$f(z) = \chi_{\{\lambda_j\}} = \begin{cases} 1, & z = \lambda_j, \\ 0, & z \neq \lambda_j, \end{cases}$$

ТО

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k = P_j.$$

Пример 3.7.7. Если $0 \not\in \sigma(A)$, то оператор A обратим и для функции $f(t) = t^{-1}$ имеем:

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k = \sum_{k=1}^{r} \lambda_k^{-1} P_k = A^{-1}.$$

Таким образом,

$$\sigma(A^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(A)\} \subset \mathbb{R},$$

т.е. оператор A^{-1} тоже самосопряжен.

Пример 3.7.8. Если $f(z) = e^z$, то

$$e^A = \sum_{k=1}^r e^{\lambda_k} P_k$$

Пример 3.7.9. Если оператор A неотрицательный и $f(t) = \sqrt{t}$, то

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k = \sum_{k=1}^{r} \sqrt{\lambda_k} P_k.$$

Этот оператор обозначается

$$f(A) = A^{1/2} = \sqrt{A}$$

$$A^{1/2} \ge 0$$
 и $(A^{1/2})^2 = A$.

Замечание 3.7.10. Условия

$$A^{1/2} \ge 0$$
 и $(A^{1/2})^2 = A$

определяют неотрицательный квадратный корень из неотрицательного оператора A однозначно.

Теорема 3.7.11. Справедливы следующие свойства корня из самосопряженного оператора.

- (i) Для любого оператора $A \in \mathcal{B}_{+}(\mathbf{H})$ существует единственный оператор $B \in \mathcal{B}_{+}(\mathbf{H})$ такой, что $B^2 = A$.
- (ii) Следующие условия эквивалентны:
 - Существует самосопряженный оператор $B \in \mathcal{B}_h(\mathbf{H})$ такой, что $A = B^2$;
 - Cyществует оператор $C \in \mathcal{B}(\mathbf{H})$ такой, что $A = C^*C$;
 - $A \in \mathcal{B}_h(\mathbf{H})$ $u (A\mathbf{x}, \mathbf{x}) \geq 0$ для любого $\mathbf{x} \in \mathbf{H}$.
- (iii) Если $A, B \in \mathcal{B}_{+}(\mathbf{H})$, то $AB \in \mathcal{B}_{+}(\mathbf{H})$ тогда и только тогда, когда операторы A и B коммутируют.

Доказательство. (i). Пусть $A \in \mathcal{B}_+(\mathbf{H})$ и $A = \sum_{k=1}^r \lambda_k P_k$. Так как

$$\{\lambda_1,\ldots,\lambda_r\}=\sigma(A)\subset\mathbb{R}_+,$$

то существует оператор

$$A^{1/2} = \sqrt{A} = \sum_{k=1}^{r} \sqrt{\lambda_k} P_k \in \mathcal{B}_+(\mathbf{H})$$

такой что $(A^{1/2})^2 = A$. Без ограничения общности, можно считать, что

$$\lambda_1 < \cdots < \lambda_r$$
.

Допустим, что существует еще один оператор $B\in\mathcal{B}_+(\mathbf{H})$ такой, что $B^2=A$. Если $B=\sum_{j=1}^s\beta_jQ_j$ — его спектральное разложение, где

$$\beta_1 < \cdots < \beta_s$$

то из равенства $B^2 = A$ следует, что

$$\sum_{j=1}^{s} \beta_j^2 Q_j = \sum_{k=1}^{r} \lambda_k P_k.$$

Из однозначности спектрального разложения (с точностью до порядка слагаемых) следует, что $s=r, \, \beta_k^2=\lambda_k, \, Q_k=P_k, \, \text{где } k=1,\ldots,\, r.$ Поэтому $\beta_k=\sqrt{\lambda_k}, \, k=1,\ldots,\, r,\, \text{т.e.}$

$$B = A^{1/2} = \sqrt{A}.$$

(ii). Если $A=B^2$, где $B^*=B$, то полагая C=B, получим:

$$A = BB = B^*B = C^*C.$$

Далее,

$$A^* = (C^*C)^* = C^*C^{**} = C^*C = A,$$

т.е. оператор A — самосопряженный. Кроме того, для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$(A\mathbf{x}, \mathbf{x}) = (C^*C\mathbf{x}, \mathbf{x}) = (C\mathbf{x}, C\mathbf{x}) = ||C\mathbf{x}||^2 > 0,$$

и потому $A \geq 0$. Наконец, применяя пункт (i), получим, что $A = B^2$ для оператора $B = \sqrt{A}$.

(iii). Если оператор $AB \ge 0$, то он самосопряжен и потому

$$AB = (AB)^* = B^*A^* = BA.$$

Обратно, если $A, B \in \mathcal{B}_+(\mathbf{H})$, то по пункту (i), существуют неотрицательный операторы $A^{1/2}$ и $B^{1/2}$. В силу замечания 3.7.4, операторы $A^{1/2}$ и $B^{1/2}$ полиномиальные, т.е. $A^{1/2} = p(A)$ и $B^{1/2} = q(B)$. Поэтому из AB = BA следует, что $A^{1/2}B^{1/2} = B^{1/2}A^{1/2}$. Следовательно,

$$AB = A^{1/2}A^{1/2}B^{1/2}B^{1/2} = A^{1/2}B^{1/2}A^{1/2}B^{1/2} = (A^{1/2}B^{1/2})^2.$$

Таким образом, в силу пункта (ii), AB — самосопряженный оператор и AB>0.

Утверждение 3.7.12. Пусть $A \in \mathcal{B}_h(\mathbf{H})$ и $A = \sum_{k=1}^r \lambda_k P_k$ — его спектральное разложение. Оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A тогда и только тогда, когда он коммутирует с каждым ортопроектором P_k , $k = 1, \ldots, r$.

Доказательство. Если $BP_k = P_k B$ для любого $k = 1, \ldots, r$, то

$$BA = B\sum_{k=1}^{r} \lambda_k P_k = \sum_{k=1}^{r} \lambda_k BP_k = \sum_{k=1}^{r} \lambda_k P_k B = AB.$$

Обратно, если BA = AB, то Bp(A) = p(A)B для любого полинома p(t). В силу утверждения 3.7.2, существуют вещественные полиномы $p_k(t)$, $1 \le k < r$, такие, что

$$p_k(\lambda_j) = \delta_{kj} = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases}$$

и $p_k(A) = P_k$. Следовательно,

$$BP_k = Bp_k(A) = p_k(A)B = P_kB, \quad k = 1, \dots, r.$$

Следствие 3.7.13. Пусть $A \in \mathcal{B}_h(\mathbf{H})$ — самосопряженный оператор. Оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A тогда и только тогда, когда он коммутирует с каждым оператором f(A) для любой функции $f: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A.

 $\ensuremath{\mathcal{A}\!o\kappa asame necession}$. Докажем необходимость.

Пусть $A = \sum_{k=1}^r \lambda_k P_k$ — спектральное разложение оператора A. Тогда для любой функции $f: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k.$$

Если оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A, то по утверждению 3.7.12, он коммутирует с каждым ортопроектором P_k , $k = 1, \ldots, r$, и потому

$$f(A)B = \left(\sum_{k=1}^{r} f(\lambda_k) P_k\right) B = \sum_{k=1}^{r} f(\lambda_k) P_k B = \sum_{k=1}^{r} f(\lambda_k) B P_k =$$
$$= B\left(\sum_{k=1}^{r} f(\lambda_k) P_k\right) = Bf(A).$$

Упражнение 3.7.14. Пусть $A, B \in \mathcal{B}_h(\mathbf{H})$ — самосопряженные операторы.

- Показать, что если [A,B]=0, то [f(A),g(B)]=0 для любой функции $f\colon \mathbb{C}\to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A, и для любой функции $g\colon \mathbb{C}\to \mathbb{C}$, определенной на спектре $\sigma(B)$ оператора B.
- Привести пример самосопряженных операторов $A, B \in \mathcal{B}_h(\mathbf{H})$, функции $f: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A, и функции $g: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(B)$ оператора B, для которых [f(A), g(B)] = 0, но $[A, B] \neq 0$.
- Показать, что если [f(A), g(B)] = 0, где $f: \mathbb{C} \to \mathbb{C}$ монотонная функция, определенная на спектре $\sigma(A)$ оператора A, а $g: \mathbb{C} \to \mathbb{C}$ монотонная функция, определенной на спектре $\sigma(B)$ оператора B, то [A, B] = 0.

Пример 3.7.15. Пусть $A \in \mathcal{B}_h(\mathbf{H})$ и $A = \sum_{k=1}^r \lambda_k P_k$ — его спектральное разложение.

Если

$$p_{+}(t) = \max\{0, t\}, \quad p_{-}(t) = \max\{0, -t\},$$

то операторы

$$A_{+} = p_{+}(A)$$
 и $A_{-} = p_{-}(A)$

неотрицательны и $A = A_+ - A_-$. Операторы A_+ и A_- называются положительной и отрицательной частью оператора A.

Если $A = \sum_{k=1}^{r} \lambda_k P_k$ — спектральное разложение оператора A, то

$$A_+ = \sum_{\lambda_k > 0} \lambda_k P_k, \quad A_- = -\sum_{\lambda_k < 0} \lambda_k P_k.$$

Упражнение 3.7.16. Показать, что операторы A, A_+ и A_- попарно коммутируют.

3.7.1 Теорема Фишера-Куранта

Если $A \in \mathcal{B}_h(\mathbf{H})$ — самосопряженный оператор, то он порождает вещественнозначный функционал

$$K_A(\mathbf{x}) = (A\mathbf{x}, \mathbf{x}), \quad \mathbf{x} \in \mathbf{H}.$$

Оказывается, что собственные значения оператора A могут быть описаны ка экстремумы функционала $K_A(\mathbf{x})$ на единичной сфере $\|\mathbf{x}\| = 1$.

Пусть A — самосопряженный оператор, $A \neq 0$. Так как его собственные значения $\lambda_1, \ldots, \lambda_n$ вещественны, то их можно занумеровать в убывающем порядке с учетом кратностей: каждое собственное значение учитывается столько раз, какова его алгебраическая кратность:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
.

Соответствующим образом занумеруем векторы собственного ортонормированного базиса оператора A, которые отвечают этим собственным значениям: $\mathbf{e}_1, \ldots, \mathbf{e}_n$.

Теорема 3.7.17. Имеют место соотношения:

$$\lambda_1 = \max_{\|\mathbf{x}\|=1} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_1, \mathbf{e}_1), \quad \lambda_n = \min_{\|\mathbf{x}\|=1} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_n, \mathbf{e}_n).$$

Доказательство. Пусть $\mathbf{x} \in \mathbf{H}, \, \mathbf{x} \neq \mathbf{0}$ и

$$\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$$

— его разложение по базису $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$. Тогда

$$(A\mathbf{x}, \mathbf{x}) = (A(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n), x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) =$$

$$= (x_1\lambda_1\mathbf{e}_1 + \dots + x_n\lambda_n\mathbf{e}_n, x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) =$$

$$= \lambda_1|x_1|^2 + \dots + \lambda_n|x_n|^2.$$

Так как $\lambda_1 \ge \dots \ge \lambda_n$ и $\|\mathbf{x}\|^2 = (\mathbf{x}, \mathbf{x}) = |x_1|^2 + \dots + |x_n|^2$, то

$$\lambda_1 \|\mathbf{x}\|^2 \ge (A\mathbf{x}, \mathbf{x}) \ge \lambda_n \|\mathbf{x}\|^2.$$

Следовательно,

$$\lambda_1 \ge \frac{(A\mathbf{x}, \mathbf{x})}{\|\mathbf{x}\|^2} \ge \lambda_n,$$

откуда

$$\lambda_1 \ge \max_{\mathbf{x} \ne \mathbf{0}} \frac{(A\mathbf{x}, \mathbf{x})}{\|\mathbf{x}\|^2} = \max_{\|\mathbf{x}\|=1} (A\mathbf{x}, \mathbf{x}), \quad \min_{\|\mathbf{x}\|=1} (A\mathbf{x}, \mathbf{x}) = \min_{\mathbf{x} \ne \mathbf{0}} \frac{(A\mathbf{x}, \mathbf{x})}{\|\mathbf{x}\|^2} \ge \lambda_n.$$

C другой стороны, $(A\mathbf{e}_1,\mathbf{e}_1)=\lambda_1,\,(A\mathbf{e}_n,\mathbf{e}_n)=\lambda_n.$ Поэтому

$$\lambda_1 = \max_{\|\mathbf{x}\|=1} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_1, \mathbf{e}_1), \quad \lambda_n = \min_{\|\mathbf{x}\|=1} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_n, \mathbf{e}_n).$$

Замечание 3.7.18. Экстремальные векторы могут быть полностью описаны. Напомним, что вектор $\mathbf{x} \in \mathbf{H}$ называется *нормированным*, если $\|\mathbf{x}\| = 1$.

(i) Множество нормированных векторов **x**, для которых

$$(A\mathbf{x},\mathbf{x})=\lambda_1,$$

совпадает с множеством собственных нормированных векторов $\mathbf{x} \in \mathbf{N}_{\lambda_1}(A)$.

(ii) Множество нормированных векторов **x**, для которых

$$(A\mathbf{x},\mathbf{x})=\lambda_n,$$

совпадает с множеством собственных нормированных векторов $\mathbf{x} \in \mathbf{N}_{\lambda_n}(A)$.

Утверждение 3.7.19. Пусть $\mathbf{E}_k = \langle \mathbf{e}_1, \dots, \mathbf{e}_k \rangle - noд n p o c m p a h c m b e k m o p a m u <math>\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ собственного ортонормированного базиса оператора $A, k = 2, \dots, n, a$ $\mathbf{F}_k = \langle \mathbf{e}_k, \dots, \mathbf{e}_n \rangle - nod n p o c m p a h c m b o n o p o c d e h o e k m o p a m u <math>\{\mathbf{e}_k, \dots, \mathbf{e}_n\}, k = 1, \dots, n-1$. Тогда

(i)
$$\lambda_k = \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{E}_k} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_k, \mathbf{e}_k), \quad k = 2, \dots, n,$$

(ii)
$$\lambda_k = \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{F}_k} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_k, \mathbf{e}_k), \quad k = 1, \dots, n-1.$$

Доказательство. (i). Пусть $\mathbf{x} \in \mathbf{E}_k$, $\|\mathbf{x}\| = 1$ и

$$\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_k \mathbf{e}_k + 0 \cdot \mathbf{e}_{k+1} + \dots + 0 \cdot \mathbf{e}_n$$

— его разложение по базису $\{\mathbf e_1,\dots,\mathbf e_n\}$. Тогда

$$(A\mathbf{x}, \mathbf{x}) = \lambda_1 |x_1|^2 + \dots + \lambda_k |x_k|^2.$$

Так как $\lambda_1 \ge \cdots \ge \lambda_k$ и $\|\mathbf{x}\|^2 = |x_1|^2 + \cdots + |x_k|^2 = 1$, то

$$(A\mathbf{x}, \mathbf{x}) \ge \lambda_k ||\mathbf{x}||^2 = \lambda_k.$$

Следовательно,

$$\lambda_k \leq \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{E}_k} (A\mathbf{x}, \mathbf{x}).$$

C другой стороны, $\mathbf{e}_k \in \mathbf{E}_k$ и $(A\mathbf{e}_k, \mathbf{e}_k) = \lambda_k$. Поэтому

$$\lambda_k = \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{E}_k} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_k, \mathbf{e}_k).$$

(ii). Пусть $\mathbf{x} \in \mathbf{F}_k$, $\|\mathbf{x}\| = 1$ и

$$\mathbf{x} = 0 \cdot \mathbf{e}_1 + \dots + 0 \cdot \mathbf{e}_{k-1} + x_k \cdot \mathbf{e}_k + \dots + x_n \cdot \mathbf{e}_n$$

— его разложение по базису $\{\mathbf e_1,\dots,\mathbf e_n\}$. Тогда

$$(A\mathbf{x}, \mathbf{x}) = \lambda_k |x_k|^2 + \dots + \lambda_n |x_n|^2.$$

Так как $\lambda_k \geq \cdots \geq \lambda_n$ и $\|\mathbf{x}\|^2 = |x_k|^2 + \cdots + |x_n|^2 = 1$, то

$$(A\mathbf{x}, \mathbf{x}) \le \lambda_k ||\mathbf{x}||^2 = \lambda_k.$$

Следовательно,

$$\lambda_k \ge \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{F}_k} (A\mathbf{x}, \mathbf{x}).$$

C другой стороны, $\mathbf{e}_k \in \mathbf{F}_k$ и $(A\mathbf{e}_k, \mathbf{e}_k) = \lambda_k$. Поэтому

$$\lambda_k = \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{F}_k} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_k, \mathbf{e}_k).$$

3амечание 3.7.20. Рассмотрим случан k=1 и k=n.

(i) Для k=1 имеем: $\mathbf{E}_1=\langle \mathbf{e}_1\rangle$ и $\mathbf{F}_1=\mathbf{H}$. Поэтому любой вектор $\mathbf{x}\in\mathbf{E}_1$ имеет вид $\mathbf{x}=\alpha\mathbf{e}_1$. Следовательно, $\|\mathbf{x}\|=1$ тогда и только тогда, когда $|\alpha|=1$. Но тогда

$$(A\mathbf{x}, \mathbf{x}) = |\alpha|^2 (A\mathbf{e}_1, \mathbf{e}_1) = \lambda_1.$$

Поэтому и для k = 1 имеет место равенство:

$$\lambda_1 = \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{E}_1} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_1, \mathbf{e}_1).$$

(ii) Для k=n имеем: $\mathbf{F}_n=\langle \mathbf{e}_n\rangle$ и $\mathbf{E}_n=\mathbf{H}$. Поэтому любой вектор $\mathbf{x}\in\mathbf{F}_n$ имеет вид $\mathbf{x}=\beta\mathbf{e}_n$. Следовательно, $\|\mathbf{x}\|=1$ тогда и только тогда, когда $|\beta|=1$. Но тогда

$$(A\mathbf{x}, \mathbf{x}) = |\beta|^2 (A\mathbf{e}_n, \mathbf{e}_n) = \lambda_n.$$

Поэтому и для k = n имеет место равенство:

$$\lambda_n = \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{F}_n} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_n, \mathbf{e}_n).$$

Утверждение 3.7.21. Пусть \mathbf{L}_k — произвольное подпространство гильбертова пространства \mathbf{H} такое, что $\dim \mathbf{L}_k^{\perp} \leq k-1$. Тогда

(i)
$$\lambda_k \leq \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}_k} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n,$$

(ii)
$$\lambda_{n-k+1} \ge \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}_k} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

Доказательство. (i). Пусть, как и выше, $\mathbf{E}_k = \langle \mathbf{e}_1, \dots, \mathbf{e}_k \rangle$ — подпространство, порожденное векторами $\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ собственного ортонормированного базиса оператора $A, \ k=2, \dots, \ n$. Так как

$$\dim \mathbf{E}_k = k, \quad \dim \mathbf{L}_k \ge n - k + 1,$$

то существует вектор $\mathbf{x} \in \mathbf{E}_k \cap \mathbf{L}_k$ такой, что $\|\mathbf{x}\| = 1$. Так как $\mathbf{x} \in \mathbf{E}_k$, то

$$\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_k \mathbf{e}_k.$$

и потому

$$(A\mathbf{x}, \mathbf{x}) = \lambda_1 |x_1|^2 + \dots + \lambda_k |x_k|^2 \ge \lambda_k (|x_1|^2 + \dots + |x_k|^2) = \lambda_k.$$

Следовательно,

$$\lambda_k \leq \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{E}_k \cap \mathbf{L}_k} (A\mathbf{x}, \mathbf{x}) \leq \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}_k} (A\mathbf{x}, \mathbf{x}).$$

(ii). Так как $\dim \mathbf{L}_k \geq n-k+1$, а $\dim \mathbf{F}_{n-k+1} = k$, где $\mathbf{F}_{n-k+1} -$ подпространство, порожденное векторами $\{\mathbf{e}_{n-k+1}, \dots, \mathbf{e}_n\}$, $k=1, \dots, n-1$, то существует вектор $\mathbf{x} \in \mathbf{F}_{n-k+1} \cap \mathbf{L}_k$ такой, что $\|\mathbf{x}\| = 1$. Так как $\mathbf{x} \in \mathbf{F}_{n-k+1}$, то

$$\mathbf{x} = x_{n-k+1}\mathbf{e}_{n-k+1} + \dots + x_n\mathbf{e}_n,$$

и потому

$$(A\mathbf{x}, \mathbf{x}) = \lambda_{n-k+1} |x_{n-k+1}|^2 + \dots + \lambda_n |x_n|^2 \le$$

$$< \lambda_{n-k+1} (|x_{n-k+1}|^2 + \dots + |x_n|^2) = \lambda_{n-k+1}.$$

Следовательно,

$$\lambda_{n-k+1} \ge \min_{\substack{\|\mathbf{x}\|=1,\\\mathbf{x} \in \mathbf{F}_{n-k+1} \cap \mathbf{L}_k}} (A\mathbf{x}, \mathbf{x}) \ge \min_{\|\mathbf{x}\|=1,\mathbf{x} \in \mathbf{L}_k} (A\mathbf{x}, \mathbf{x}).$$

Теорема 3.7.22. Пусть \mathfrak{L}_k — семейство всех подпространств \mathbf{L} гильбертова пространства \mathbf{H} таких, что $\dim \mathbf{L}^{\perp} \leq k-1$. Тогда

(i)
$$\lambda_k = \min_{\mathbf{L} \in \mathfrak{L}_k} \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \ldots, n,$$

(ii)
$$\lambda_{n-k+1} = \max_{\mathbf{L} \in \mathfrak{L}_k} \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

Доказательство. (i). В силу утверждения 3.7.21(i) для любого подпространства $\mathbf{L} \in \mathfrak{L}_k$ имеет место неравенство:

$$\lambda_k \le \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

Следовательно,

$$\lambda_k \leq \min_{\mathbf{L} \in \mathfrak{L}_k} \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

 \mathbf{C} дугой стороны, $\mathbf{F}_k \in \mathfrak{L}_k$ и

$$\lambda_k = \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{F}_k} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_k, \mathbf{e}_k), \quad k = 2, \dots, n.$$

Поэтому имеет место противоположное неравенство:

$$\lambda_k \ge \min_{\mathbf{L} \in \mathfrak{L}_k} \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}),$$

откуда следует равенство

$$\lambda_k = \min_{\mathbf{L} \in \mathfrak{L}_k} \max_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

(ii). В силу утверждения 3.7.21(ii) для любого подпространства $\mathbf{L} \in \mathfrak{L}_k$ имеет место неравенство:

$$\lambda_{n-k+1} \ge \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

Следовательно,

$$\lambda_{n-k+1} \ge \max_{\mathbf{L} \in \mathfrak{L}_k} \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

 \mathbf{C} дугой стороны, $\mathbf{E}_{n-k+1} \in \mathfrak{L}_k$ и

$$\lambda_{n-k+1} = \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{E}_{n-k+1}} (A\mathbf{x}, \mathbf{x}) = (A\mathbf{e}_{n-k+1}, \mathbf{e}_{n-k+1}), \quad k = 2, \dots, n,$$

Поэтому имеет место противоположное неравенство:

$$\lambda_{n-k+1} \leq \max_{\mathbf{L} \in \mathfrak{L}_k} \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}),$$

откуда следует равенство

$$\lambda_{n-k+1} = \max_{\mathbf{L} \in \mathfrak{L}_k} \min_{\|\mathbf{x}\|=1, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}), \quad k = 2, \dots, n.$$

Утверждение 3.7.23. Пусть $A, B \in \mathcal{B}_h(\mathbf{H}), A \leq B$. Тогда

$$\lambda_k(A) \le \lambda_k(B), \quad k = 1, \dots, n,$$

где $\{\lambda_1(A), \ldots, \lambda_n(A)\}$ и $\{\lambda_1(B), \ldots, \lambda_n(B)\}$ — собственные значения операторов A и B, занумерованные в убывающем порядке c учетом кратностей. Для того, чтобы во всех этих соотношениях одновременно имело место равенство, необходимо и достаточно, чтобы операторы A и B были равны.

Доказательство. Так как $A \leq B$, то $(A\mathbf{x}, \mathbf{x}) \leq (B\mathbf{x}, \mathbf{x})$ для любого вектора $\mathbf{x} \in \mathbf{H}$. Поэтому, в силу теоремы 3.7.17,

$$\lambda_1(A) = \max_{\|\mathbf{x}\|=1} (A\mathbf{x}, \mathbf{x}) \le \max_{\|\mathbf{x}\|=1} (B\mathbf{x}, \mathbf{x}) = \lambda_1(B),$$

а в силу теоремы 3.7.22,

$$\lambda_k = \min_{\mathbf{L} \in \mathfrak{L}_k} \max_{\|\mathbf{x}\| = 1, \, \mathbf{x} \in \mathbf{L}} (A\mathbf{x}, \mathbf{x}) \le \min_{\mathbf{L} \in \mathfrak{L}_k} \max_{\|\mathbf{x}\| = 1, \, \mathbf{x} \in \mathbf{L}} (B\mathbf{x}, \mathbf{x}) = \lambda_k(B),$$

k = 2, ..., n. Наконец, $\lambda_k(A) = \lambda_k(B)$ тогда и только тогда, когда $(A\mathbf{x}, \mathbf{x}) = (B\mathbf{x}, \mathbf{x})$ для любого вектора $\mathbf{x} \in \mathbf{H}$, т.е. когда A = B.

Замечание 3.7.24. Если самосопряженный оператор A представлен в виде

$$A = A_+ - A_-,$$

(см. пример 3.7.15), то $\{\lambda_k(A_+)\}_{k=1}^n$ являются неотрицательными собственными значениями оператора A, причем

$$\lambda_k(A_+) = \begin{cases} \lambda_k(A), & \text{если } \lambda_k(A) > 0, \\ 0, & \text{если } \lambda_k(A) \le 0. \end{cases}$$

В свою очередь, $\{\lambda_k(A_-)\}_{k=1}^n$ являются модулями неположительных собственных значений оператора A, причем

$$\lambda_k(A_-) = \begin{cases} -\lambda_{n-k+1}(A), & \text{если } \lambda_{n-k+1}(A) < 0, \\ 0, & \text{если } \lambda_{n-k+1}(A) \ge 0. \end{cases}$$

Утверждение 3.7.25. Пусть самосопряженный оператор $A \in \mathcal{B}_h(\mathbf{H})$ представлен в виде разности неотрицательных операторов B_1 и B_2 из $\mathcal{B}_+(\mathbf{H})$:

$$A = B_1 - B_2.$$

Tог ∂a

$$\lambda_k(A_+) \le \lambda_k(B_1), \quad \lambda_k(A_-) \le \lambda_k(B_2), \quad k = 1, \dots, n,$$

где $\{\lambda_k(A_+)\}$, $\{\lambda_k(A_-)\}$, $\{\lambda_k(B_1)\}$ и $\{\lambda_k(B_2)\}$ — собственные значения операторов A_+ , A_- , B_1 и B_2 соответственно, занумерованные в убывающем порядке с учетом кратности.

Доказательство. Для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$(B_1\mathbf{x},\mathbf{x}) = (A\mathbf{x},\mathbf{x}) + (B_2\mathbf{x},\mathbf{x}) \ge (A\mathbf{x},\mathbf{x}).$$

В силу утверждения 3.7.23, $\lambda_k(B_1) \ge \lambda_k(A)$, $k = 1, \ldots, n$. Отсюда следует, что

$$\lambda_k(B_1) \ge \lambda_k(A_+).$$

С другой стороны, $B_2 - B_1 = -A$, откуда

$$(B_2\mathbf{x}, \mathbf{x}) = (B_1\mathbf{x}, \mathbf{x}) + (-A\mathbf{x}, \mathbf{x}) \ge (-A\mathbf{x}, \mathbf{x}).$$

Следовательно, в силу утверждения 3.7.23, $\lambda_k(B_2) \geq \lambda_k(-A), k = 1, \ldots, n$. Наконец, отсюда следует, что

$$\lambda_k(B_2) \ge \lambda_k(A_-).$$

Глава 4

Унитарные операторы

4.1 Унитарные операторы и изометрии

Определение 4.1.1. Оператор $U \in \mathcal{B}(\mathbf{H})$ называется *унитарным*, если

$$UU^* = U^*U = I,$$

т.е. если $U^* = U^{-1}$,

Определение 4.1.2. Оператор $U \in \mathcal{B}(\mathbf{H})$ называется *изометрическим или изометрией*, если

$$U^*U = I$$
.

Определение 4.1.3. Оператор $U \in \mathcal{B}(\mathbf{H})$ называется *коизометрическим или коизометрией*, если

$$UU^* = I$$
.

Утверждение 4.1.4. Следующие свойства оператора $U \in \mathcal{B}(\mathbf{H})$ эквиваленты:

- (і) Оператор U изометрический;
- (ii) $(U\mathbf{x}, U\mathbf{y}) = (\mathbf{x}, \mathbf{y})$ для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$;
- (iii) $||U\mathbf{x}|| = ||\mathbf{x}||$ для любого $\mathbf{x} \in \mathbf{H}$.

Доказательство. (i) \Rightarrow (ii). Пусть оператор U изометрический, т.е. $U^*U=I$. Тогда для любых $\mathbf{x},\,\mathbf{y}\in\mathbf{H}$

$$(U\mathbf{x}, U\mathbf{y}) = (U^*U\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{y}).$$

 $(ii) \Rightarrow (iii)$. Для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$||U\mathbf{x}||^2 = (U\mathbf{x}, U\mathbf{x}) = (\mathbf{x}, \mathbf{x}) = ||\mathbf{x}||^2,$$

T.e. $||U\mathbf{x}|| = ||\mathbf{x}||$.

 $(iii) \Rightarrow (i)$. Для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$(\mathbf{x}, \mathbf{x}) = (U\mathbf{x}, U\mathbf{x}) = (U^*U\mathbf{x}, \mathbf{x}).$$

В силу следствия $2.1.4, U^*U = I$, т.е. оператор U изометрический.

Упражнение 4.1.5. Доказать, что оператор $U \in \mathcal{B}(\mathbf{H})$ изометрический тогда и только тогда, когда оператор U^* — коизометрический.

В конечномерных гильбертовых пространствах классы изометрических и унитарных операторов совпадают.

Утверждение 4.1.6. Для того, чтобы оператор $U \in \mathcal{B}(\mathbf{H})$ был унитарным, необходимо и достаточно, чтобы он был изометрическим.

Доказательство. Очевидно, каждый унитарный оператор является изометрическим. Обратно, пусть оператор $U \in \mathcal{B}(\mathbf{H})$ изометрический, т.е. $U^*U = I$. Тогда, в силу следствия $\mathrm{I}(\mathrm{L}).2.3.4$, оператор U обратим и $U^{-1} = U^*$. Поэтому

$$UU^* = UU^{-1} = I.$$

т.е. U — унитарный оператор.

Заметим, что свойства (i), (ii) и (iii) утверждения 4.1.4 можно принять за определение унитарного оператора.

Обозначим через $\mathcal{U}(\mathbf{H})$ множество всех унитарных оператора U в $\mathcal{B}(\mathbf{H})$. Легко видеть, что тождественный оператор $I \in \mathcal{U}(\mathbf{H})$.

Утверждение 4.1.7. Для унитарных операторов справедливы утверждения.

- (i) Ecau $U, V \in \mathcal{U}(\mathbf{H}), mo \ UV \in \mathcal{U}(\mathbf{H});$
- (ii) Ecnu $U \in \mathcal{U}(\mathbf{H})$, mo $U^{-1} \in \mathcal{U}(\mathbf{H})$.

Доказательство. (i). Пусть $U, V \in \mathcal{U}(\mathbf{H})$. Тогда

$$(UV)(UV)^* = UVV^*U^* = U(VV^*)U^* = UU^* = I,$$

T.e. $UV \in \mathcal{U}(\mathbf{H})$.

(ii). Пусть $U \in \mathcal{U}(\mathbf{H})$. Тогда оператор U обратим и

$$U^{-1}(U^{-1})^* = U^*(U^*)^* = U^*U = I,$$

T.e.
$$U^{-1} \in \mathcal{U}(\mathbf{H})$$
.

Утверждение 4.1.7 показывает, что множество всех унитарных операторов $\mathcal{U}(\mathbf{H})$ образует группу, которая называется унитарной группой или группой унитарных операторов.

Упражнение 4.1.8. Пусть $U \in \mathcal{U}(\mathbf{H}), \alpha \in \mathbb{C}$. Показать, что $\alpha U \in \mathcal{U}(\mathbf{H})$ тогда и только тогда, когда $|\alpha| = 1$.

Утверждение 4.1.9. Пусть $U \in \mathcal{U}(\mathbf{H})$. Тогда

- (i) ||U|| = 1;
- (ii) ||A|| = ||UA|| = ||AU|| для любого оператора $A \in \mathcal{B}(\mathbf{H})$.

Доказательство. (i). Так как, в силу утверждения 4.1.4(iii), $||U\mathbf{x}|| = ||\mathbf{x}||$ для любого $\mathbf{x} \in \mathbf{H}$, то

$$||U|| = \sup_{\|\mathbf{x}\|=1} ||U\mathbf{x}|| = 1.$$

(ii). В силу утверждения 2.2.3(v),

$$||AU|| \le ||A|| ||U|| = ||A||, \quad ||UA|| \le ||U|| ||A|| = ||A||.$$

С другой стороны, $A = (AU)U^{-1}$ и $A = U^{-1}(UA)$. Поэтому

$$||A|| = ||(AU)U^{-1}|| \le ||AU||, \quad ||A|| = ||U^{-1}(UA)|| \le ||UA||.$$

П

Следовательно, ||A|| = ||UA|| = ||AU||.

Упражнение 4.1.10. Доказать, что $||A|| = ||UAU^*||$ для любого оператора $A \in \mathcal{B}(\mathbf{H})$ и любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$.

Утверждение 4.1.11. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ и любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$

$$\sigma(A) = \sigma(UAU^*).$$

Доказательство. Пусть $\lambda \in \sigma(A)$ и $\mathbf{x} \neq \mathbf{0}$ — соответствующий собственный вектор. Тогда $A\mathbf{x} = \lambda \mathbf{x}$ и

$$UA\mathbf{x} = \lambda U\mathbf{x}$$
.

Обозначим $U\mathbf{x} = \mathbf{y} \neq \mathbf{0}$. Тогда $\mathbf{x} = U^*\mathbf{y}$, и потому

$$UA\mathbf{x} = UAU^*\mathbf{y} = \lambda\mathbf{y},$$

т.е. $\lambda \in \sigma(UAU^*)$ и следовательно, $\sigma(A) \subseteq \sigma(UAU^*)$. Обратное вложение следует из равенства: $A = U^*(UAU^*)U$. Упражнение 4.1.12. Докажите утверждения.

• Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ и любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$

$$tr(A) = tr(UAU^*).$$

- Если оператор $A \in \mathcal{B}_h(\mathbf{H})$, то для любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$ оператор $U^*AU \in \mathcal{B}_h(\mathbf{H})$.
- Если $P \in \mathcal{P}(\mathbf{H})$, то для любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$ оператор U^*PU тоже ортопроектор.

Выясним, каким условиям удовлетворяет матрица [U] унитарного оператора U в некотором ортонормированном базисе $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ в \mathbf{H} . Пусть

$$[U] = (\alpha_{ij})_{i,j=1}^n = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}$$

— матрица, отвечающая оператору U в данном базисе . Тогда сопряженному оператору U^* в этом базисе соответствует матрица

$$[U^*] = (\bar{\alpha}_{ji})_{i,j=1}^n = \begin{pmatrix} \bar{\alpha}_{11} & \dots & \bar{\alpha}_{n1} \\ \vdots & \ddots & \vdots \\ \bar{\alpha}_{1n} & \dots & \bar{\alpha}_{nn} \end{pmatrix}.$$

Условие унитарности $UU^* = I$ означает, что произведение матриц [U] и $[U^*]$ есть единичная матрица I. Таким образом,

$$\sum_{k=1}^{n} \alpha_{ik} \bar{\alpha}_{ik} = \sum_{k=1}^{n} |\alpha_{ik}|^2 = 1,$$

$$\sum_{k=1}^{n} \alpha_{ik} \bar{\alpha}_{jk} = 0, \quad j \neq i.$$

$$(4.1)$$

Итак, условие унитарности $UU^* = I$ в ортонормированном базисе означает, что сумма произведений элементов какой-либо строки матрицы [U] на элементы, сопряженные к элементам другой строки, равна нулю, а сумма квадратов модулей элементов любой строки равна единице. Такие матрицы (как уже отмечалось в параграфе 2.4.2) принято называть унитарными. Множество $U(n, \mathbb{C})$ всех унитарных матриц в $\mathcal{M}_n(\mathbb{C})$ образует группу, изоморфную группе $U(\mathbf{H})$.

Так как $U^*U = I$ — тоже есть условие унитарности, то

$$\sum_{k=1}^{n} \bar{\alpha}_{ki} \alpha_{ki} = \sum_{k=1}^{n} |\alpha_{ki}|^2 = 1,$$

$$\sum_{k=1}^{n} \bar{\alpha}_{ki} \alpha_{kj} = 0, \quad j \neq i.$$

$$(4.2)$$

Рассмотрим геометрический смысл условия (4.2). Так как

$$U\mathbf{e}_j = \alpha_{1j}\mathbf{e}_1 + \dots + \alpha_{nj}\mathbf{e}_n,$$

 $U\mathbf{e}_i = \alpha_{1i}\mathbf{e}_1 + \dots + \alpha_{ni}\mathbf{e}_n$

то их скалярное произведение равно

$$(U\mathbf{e}_j, U\mathbf{e}_i) = \begin{cases} 1, & j = i, \\ 0, & j \neq i. \end{cases}$$

Другими словами, векторы $\{U\mathbf{e}_1,\ldots,U\mathbf{e}_n\}$ тоже образуют ортонормированный базис пространства **H**. Оказывается, это свойство является характеристическим свойством унитарного оператора.

Утверждение 4.1.13. Для того чтобы оператор $U \in \mathcal{B}(\mathbf{H})$ был унитарным, необходимо и достаточно, чтобы он переводил любой ортонормированный базис $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ в ортонормированный базис $\{U\mathbf{e}_1, \dots, U\mathbf{e}_n\}$.

Доказательство. Пусть $U \in \mathcal{B}(\mathbf{H})$ — унитарный оператор и $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ — ортонормированный базис в \mathbf{H} . Тогда

$$(U\mathbf{e}_i, U\mathbf{e}_j) = (\mathbf{e}_i, \mathbf{e}_j) = \delta_{ij}.$$

Если вектор $\mathbf{x} \in \mathbf{H}$ ортогонален каждому из векторов $\{U\mathbf{e}_1, \dots, U\mathbf{e}_n\}$, то для любого $i=1,\dots,n$

$$0 = (\mathbf{x}, U\mathbf{e}_i) = (U^*\mathbf{x}, \mathbf{e}_i).$$

Следовательно, $U^*\mathbf{x} = 0$, откуда следует, что $\mathbf{x} = \mathbf{0}$. Таким образом, $\{U\mathbf{e}_1, \dots, U\mathbf{e}_n\}$ — ортонормированный базис в \mathbf{H} .

Обратно, пусть оператор U переводит любой ортонормированный базис $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ в ортонормированный базис $\{U\mathbf{e}_1,\ldots,U\mathbf{e}_n\}$. Тогда

$$(U\mathbf{e}_i, U\mathbf{e}_j) = \delta_{ij} = (\mathbf{e}_i, \mathbf{e}_j), \quad i, j = 1, \dots, n.$$

Следовательно, по линейности, для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$

$$(U\mathbf{x}, U\mathbf{y}) = (\mathbf{x}, \mathbf{y}),$$

откуда, в силу утверждения 4.1.4, U — унитарный оператор.

Определение 4.1.14. Оператор $U \in \mathcal{B}(\mathbf{H})$, который одновременно является унитарным и самосопряженным, т.е. $U = U^* = U^{-1}$, называется *отражением*.

Утверждение 4.1.15. Оператор $U \in \mathcal{B}(\mathbf{H})$ является отражением тогда u только тогда, когда U унитарный u $U^2 = I$.

Доказательство. Пусть U — отражение, т.е. $U=U^*=U^{-1}$. Тогда $UU^*=U^*U=I$ и

$$U^2 = UU = UU^{-1} = I.$$

Обратно, пусть U — унитарный оператор и $U^2 = UU = I$. Тогда, в силу следствия I(L).2.3.4, оператор U обратим и $U^{-1} = U$. Кроме того, из равенства $U^*U = I$ и единственности обратного оператора следует, что

$$U^{-1} = U^* = U$$
,

т.е. оператор U — отражение.

Существует простая связь между отражениями и ортопроекторами.

Утверждение 4.1.16. $P \in \mathcal{P}(\mathbf{H})$ тогда и только тогда, когда оператор U = 2P - I является отражением.

Доказательство. Пусть $P \in \mathcal{P}(\mathbf{H})$ и U = 2P - I. Тогда

$$U^* = (2P - I)^* = 2P - I = U,$$

т.е. оператор U самосопряжен. Кроме того,

$$U^*U = (2P - I)^*(2P - I) = (2P - I)(2P - I) = 4P - 2P - 2P + I = I,$$

т.е., $U \in \mathcal{U}(\mathbf{H})$. Поэтому оператор U = 2P - I — отражение. Обратно, пусть U = 2P - I — отражение. Тогда

$$P = \frac{1}{2}(U+I).$$

Поэтому

$$P^* = \frac{1}{2}(U^* + I^*) = \frac{1}{2}(U + I) = P,$$

и, в силу утверждения 4.1.15,

$$P^{2} = \left(\frac{1}{2}(U+I)\right)\left(\frac{1}{2}(U+I)\right) = \frac{1}{4}(U^{2}+2U+I) = \frac{1}{4}(2U+2I) = \frac{1}{2}(U+I) = P,$$

T.e. $P \in \mathcal{P}(\mathbf{H})$.

Заметим, что $\sigma(P) \subset \{0,1\} \Leftrightarrow \sigma(2P-I) \subset \{-1,1\}$

4.2 Спектральная теорема для унитарного оператора

Утверждение 4.2.1. Если $U \in \mathcal{U}(\mathbf{H})$ и $\lambda \in \sigma(U)$, то $|\lambda| = 1$.

Доказательство. Пусть $\lambda \in \sigma(U)$ и $\mathbf{x} \in \mathbf{H}, \ \mathbf{x} \neq \mathbf{0}$ — соответствующий собственный вектор. Тогда

$$\|\mathbf{x}\|^2 = (\mathbf{x}, \mathbf{x}) = (U\mathbf{x}, U\mathbf{x}) = (\lambda \mathbf{x}, \lambda \mathbf{x}) = \lambda \bar{\lambda}(\mathbf{x}, \mathbf{x}) = |\lambda|^2 \|\mathbf{x}\|^2.$$

Следовательно, $|\lambda|=1$.

Таким образом, в силу утверждения 4.2.1, все собственные значения $\{\lambda_1,\ldots,\lambda_n\}$ унитарного оператора U, соответствующие его собственным векторам $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$, лежат на единичной окружности: $|\lambda_k|=1,\ k=1,\ldots,n$.

Замечание 4.2.2. Так как для любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$ $\sigma(U) \subset \{\lambda : |\lambda| = 1\}$, то его спектральный радиус $\rho(U) = 1$.

Утверждение 4.2.3. Собственные векторы унитарного оператора $U \in \mathcal{U}(\mathbf{H})$, отвечающие различным собственным значениям, ортогональны.

Доказательство. Пусть $U \in \mathcal{U}(\mathbf{H}), \lambda_1, \lambda_2 \in \sigma(U), \lambda_1 \neq \lambda_2$ и $\mathbf{x}_1, \mathbf{x}_2 \neq \mathbf{0}$ — соответствующие собственные векторы:

$$U\mathbf{x}_1 = \lambda_1\mathbf{x}_1, \quad U\mathbf{x}_2 = \lambda_2\mathbf{x}_2.$$

Тогда

$$(\mathbf{x}_1, \mathbf{x}_2) = (U\mathbf{x}_1, U\mathbf{x}_2) = \lambda_1 \bar{\lambda}_2(\mathbf{x}_1, \mathbf{x}_2),$$

причем $|\lambda_1| = |\bar{\lambda}_2| = 1$. Следовательно, $(\mathbf{x}_1, \mathbf{x}_2) = 0$.

Утверждение 4.2.4. Подпространство $\mathbf{M} \subseteq \mathbf{H}$ инвариантно относительно унитарного оператора $U \in \mathcal{U}(\mathbf{H})$ тогда и только тогда, когда ортогональное дополнение \mathbf{M}^{\perp} этого подпространства инвариантно относительно этого оператора U.

Доказательство. Пусть подпространство $\mathbf{M} \subseteq \mathbf{H}$ инвариантно относительно оператора $U \in \mathcal{U}(\mathbf{H})$, размерность $\dim \mathbf{M} = k$ и $\{\mathbf{e}_1, \dots, \mathbf{e}_k, \mathbf{e}_{k+1}, \dots, \mathbf{e}_n\}$ — ортонормированный базис в \mathbf{H} , такой что $\{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ — ортонормированный базис в \mathbf{M} , а $\{\mathbf{e}_{k+1}, \dots, \mathbf{e}_n\}$ — ортонормированный базис в \mathbf{M}^{\perp} . Тогда векторы

$$\{U\mathbf{e}_1,\ldots,U\mathbf{e}_k,U\mathbf{e}_{k+1},\ldots,U\mathbf{e}_n\}$$

тоже образуют ортонормированный базис в **H**. Но **M** инвариантно относительно оператора U, поэтому $\{U\mathbf{e}_1,\ldots,U\mathbf{e}_k\}$ — ортонормированный базис в **M**. Следовательно, $\{U\mathbf{e}_{k+1},\ldots,U\mathbf{e}_n\}$ — ортонормированный базис в \mathbf{M}^{\perp} , т.е. подпространство \mathbf{M}^{\perp} инвариантно относительно оператора U.

Обратное утверждение следует из инвариантности \mathbf{M}^{\perp} относительно унитарного оператора U^* (см. утверждение 2.5.6).

Следствие 4.2.5. Пусть $\dim \mathbf{H} = n$, оператор $U \in \mathcal{U}(\mathbf{H})$ и $\mathbf{x}_1 \neq 0$ — его собственный вектор. Тогда

$$\mathbf{H}_1 = \{ \mathbf{x} \in \mathbf{H} : (\mathbf{x}, \mathbf{x}_1) = 0 \}$$

является (n-1)-мерным подпространством в **H**, инвариантным относительно оператора U.

Доказательство. Ясно, что множество \mathbf{H}_1 векторов, ортогональных вектору \mathbf{x}_1 , образует (n-1)-мерным подпространством в \mathbf{H} .

Обозначим через

$$\mathbf{M} = \{ \mathbf{x} \in \mathbf{H} : \mathbf{x} = \alpha \mathbf{x}_1, \ \alpha \in \mathbb{C} \}$$

одномерное подпространство в \mathbf{H} , порожденное вектором \mathbf{x}_1 . Ясно, что \mathbf{M} — инвариантное относительно оператора U подпространство и $\mathbf{H}_1 = \mathbf{M}^{\perp}$. Поэтому, в силу утверждения 4.2.4, \mathbf{H}_1 инвариантно относительно оператора U.

Если \mathbf{M} — инвариантное подпространство унитарного оператора U, то сужение $U \upharpoonright_{\mathbf{M}}$ оператора U на \mathbf{M} является унитарным оператором в $\mathcal{B}(\mathbf{M})$. Поэтому имеет место следующая теорема:

Теорема 4.2.6 (Спектральная теорема для унитарного оператора). Если $U \in \mathcal{U}(\mathbf{H})$, то существует ортонормированный базис $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ пространства \mathbf{H} , состоящий из собственных векторов оператора U, соответствующих собственным значениям $\{\lambda_1, \dots, \lambda_n\}$. Матрица [U] оператора U в этом базисе имеет диагональный вид:

$$[U] = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}. \tag{4.3}$$

Доказательство. Покажем сначала, что если $U \in \mathcal{U}(\mathbf{H})$, то существует n попарно ортогональных собственных векторов оператора U. Действительно, согласно теореме I(L).4.2.3, существует хотя бы один собственный вектор $\mathbf{x}_1 \in \mathbf{H}$ оператора U. В силу теоремы 4.2.5 подпространство

$$\mathbf{H}_1 = \{ \mathbf{x} \in \mathbf{H} : (\mathbf{x}, \mathbf{x}_1) = 0 \}$$

является (n-1)-мерным инвариантным подпространством оператора U. В силу той же теоремы I(L).4.2.3, существует хотя бы один собственный вектор $\mathbf{x}_2 \in \mathbf{H}_1$ оператора $U \upharpoonright_{\mathbf{H}_1}$, который, очевидно, является собственным вектором оператора U. В свою очередь, подпространство

$$\mathbf{H}_2 = \{\mathbf{x} \in \mathbf{H}_1 : (\mathbf{x}, \mathbf{x}_2) = 0\}$$

является (n-2)-мерным инвариантным подпространством оператора U. Продолжая процесс, получим n попарно ортогональных собственных векторов $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ оператора U, отвечающих собственным значениям $\{\lambda_1,\ldots,\lambda_n\}$, т.е. базис пространства \mathbf{H} .

Теперь положим $\mathbf{e}_1 = \mathbf{x}_1/\|\mathbf{x}_1\|, \ldots, \mathbf{e}_n = \mathbf{x}_n/\|\mathbf{x}_n\|$. Тогда для любого $k=1,\ldots,n$

$$U\mathbf{e}_k = U\left(\frac{\mathbf{x}_k}{\|\mathbf{x}_k\|}\right) = \frac{1}{\|\mathbf{x}_k\|}U(\mathbf{x}_k) = \lambda_k \frac{\mathbf{x}_k}{\|\mathbf{x}_k\|} = \lambda_k \mathbf{e}_k,$$

и потому $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ — ортонормированный базис пространства \mathbf{H} , состоящий из собственных векторов оператора U. Матрица [U] оператора U в этом базисе имеет диагональный вид:

$$[U] = D = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix},$$

 $\lambda_1,\ldots,\lambda_n$ — собственные значения оператора $U,\,|\lambda_k|=1,\,k=1,\ldots,n.$

Замечание 4.2.7. (i). Верно и обратное утверждение, т.е., если в некотором ортонормированном базисе матрица оператора $U \in \mathcal{B}(\mathbf{H})$ имеет вид (4.3), то U — унитарный оператор, а соответствующий базис — собственный базис оператора U.

(іі). Как следует непосредственно из теоремы 4.2.6, любой унитарный оператор $U \in \mathcal{U}(\mathbf{H})$ подобен диагональному. Более того, для любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$ существует унитарный оператор $V \in \mathcal{U}(\mathbf{H})$ такой, что

$$U = VDV^{-1},$$

где

$$D = \begin{pmatrix} \lambda_1 I_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r I_r \end{pmatrix},$$

и $\lambda_1, \ldots, \lambda_r$ — попарно различные собственные значения оператора U, $|\lambda_k|=1, \, k=1, \ldots, \, r.$

(ііі). Как уже отмечалось в замечании 3.4.2, любой самосопряженный оператор $A \in \mathcal{B}_h(\mathbf{H})$ подобен диагональному. Более того, для любого самосопряженного оператора $A \in \mathcal{B}_h(\mathbf{H})$ существует унитарный оператор $U \in \mathcal{U}(\mathbf{H})$ такой, что

$$A = UDU^{-1},$$

где

$$D = \begin{pmatrix} \lambda_1 I_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r I_r \end{pmatrix},$$

 $\lambda_1, \ldots, \lambda_r$ — попарно различные собственные значения оператора A.

Упражнение 4.2.8. Докажите следующее утверждение. Пусть $U, V \in \mathcal{U}(\mathbf{H})$. Если UV = VU, то операторы U и V имеют общий собственный вектор.

Утверждение 4.2.9. Пусть $\{U_{\alpha}\}_{{\alpha}\in J}\subset \mathcal{U}(\mathbf{H})$ произвольное семейство попарно коммутирующих унитарных операторов. Существует ортонормированный базис $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$, в котором матрицы $[U_{\alpha}]$ операторов U_{α} одновременно имеют диагональный вид.

Доказательство. Сначала рассмотрим случай двух коммутирующих унитарных операторов $U_1, U_2 \in \mathcal{B}(\mathbf{H})$. Пусть λ — собственное значение оператора $U_1, \mathbf{N}_{\lambda}(U_1)$ — соответствующее ему собственное подпространство.

Для любого $\mathbf{x} \in \mathbf{N}_{\lambda}(U_1)$ имеем

$$U_1U_2\mathbf{x} = U_2U_1\mathbf{x} = \lambda U_2\mathbf{x},$$

поэтому $U_2\mathbf{x} \in \mathbf{N}_{\lambda}(U_1)$. Умножая равенство $U_1U_2 = U_2U_1$ справа и слева на U_2^* , получим равенство $U_2^*U_1 = U_1U_2^*$, из которого следует, что $U_2^*\mathbf{x} \in \mathbf{N}_{\lambda}(U_1)$. Тогда подпространства $\mathbf{N}_{\lambda}(U_1)$ и $\mathbf{N}_{\lambda}(U_1)^{\perp}$ — инвариантные подпространства оператора U_2 . Следовательно, $U_2 |_{\mathbf{N}_{\lambda}(U_1)}$ — унитарный оператор в $\mathbf{N}_{\lambda}(U_1)$. Применяя спектральную теорему 4.2.6, выберем собственный базис для сужения U_2 на $\mathbf{N}_{\lambda}(U_1)$, который, очевидно, будет состоять из собственных векторов для U_1 . Сужения операторов U_1, U_2 на $\mathbf{N}_{\lambda}(U_1)^{\perp}$ — коммутирующие унитарные операторы, поэтому к ним применима описанная процедура. Продолжая процесс, построим общий собственный базис для операторов U_1, U_2 во всем пространстве \mathbf{H} .

Случай любого конечного набора коммутирующих унитарных операторов U_1, \ldots, U_m доказывается аналогично.

Пусть теперь $\{U_{\alpha}\}_{\alpha\in J}\subset \mathcal{U}(\mathbf{H})$ — произвольное семейство попарно коммутирующих унитарных операторов. Поскольку $\mathcal{U}(\mathbf{H})\subset \mathcal{B}(\mathbf{H})$, а $\mathcal{B}(\mathbf{H})$ — линейное пространство размерности n^2 , $n=\dim \mathbf{H}$, то среди операторов $\{U_{\alpha}\}_{\alpha\in J}\subset \mathcal{U}(\mathbf{H})$ существует только конечное число линейно независимых $U_1,\ldots,U_m,\ m< n^2$, а все остальные являются их линейными комбинациями,

$$U_{\alpha} = \sum_{j=1}^{m} c_{\alpha_j} U_j, \quad \alpha \in J.$$

Тогда базис пространства **H**, являющийся собственным базисом для каждого из операторов U_1, \ldots, U_m , будет, очевидно, собственным базисом также для каждого из операторов $\{U_\alpha\}_{\alpha\in J}$, и в этом базисе соответствующие матрицы будут диагональными.

Теорема 4.2.10 (Спектральная теорема для унитарного оператора в форме разложения единицы). Если $U \in \mathcal{U}(\mathbf{H})$ — унитарный оператор, то существуют такие числа $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ и ненулевые ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n$, такие, что

- (i) $|\lambda_k|=1$ для любого $k=1,\,\ldots,\,r,\,\lambda_k\neq\lambda_j\,$ при $k\neq j;$
- (ii) Ортопроекторы P_1, \ldots, P_r попарно ортогональны;
- (iii) $\sum_{k=1}^{r} P_k = I;$
- (iv) $U = \sum_{k=1}^{r} \lambda_k P_k$.

Условия (i)–(iv) определяют числа $\lambda_1, \ldots, \lambda_r$ однозначно.

Доказательство. Покажем, что спектр $\sigma(U)=\{\lambda_1,\ldots,\lambda_r\}$, где $\lambda_k\neq\lambda_j$ при $k\neq j$, и ортопроекторы $P_k=P_{\mathbf{N}_{\lambda_k}}$ на собственные подпространства

$$\mathbf{N}_{\lambda_k} = \{ \mathbf{x} \in \mathbf{H} : U\mathbf{x} = \lambda_k \mathbf{x} \}$$

удовлетворяют условиям теоремы. Условия (i) и (ii) следуют из выбора $\{\lambda_1, \ldots, \lambda_r\}$ и утверждения 4.2.3.

Условие (iii): $\sum_{k=1}^{r} P_k = I$, следует из теоремы 4.2.6 и равенства

$$\mathbf{H} = \bigoplus_{k=1}^r \mathbf{N}_{\lambda_k}.$$

Условие (iv). Если $\mathbf{x} \in \mathbf{H}$ и $\mathbf{x}_k = P_k \mathbf{x} \in \mathbf{N}_{\lambda_k}$, то $U\mathbf{x}_k = \lambda_k \mathbf{x}_k$ и

$$U\mathbf{x} = U\left(\sum_{k=1}^{r} P_k\right)\mathbf{x} = U\left(\sum_{k=1}^{r} P_k\mathbf{x}\right) = \sum_{k=1}^{r} U\mathbf{x}_k =$$
$$= \sum_{k=1}^{r} \lambda_k \mathbf{x}_k = \sum_{k=1}^{r} \lambda_k P_k \mathbf{x} = \left(\sum_{k=1}^{r} \lambda_k P_k\right)\mathbf{x}.$$

Следовательно, $U = \sum_{k=1}^{r} \lambda_k P_k$.

При выполнении условий (i)–(iv) $\{\lambda_1,\ldots,\lambda_r\}=\sigma(U)$. Поэтому условия (i)–(iv) определяют числа $\lambda_1,\ldots,\lambda_r$ однозначно.

Определение 4.2.11. Представление оператора $U \in \mathcal{U}(\mathbf{H})$ в виде $U = \sum_{k=1}^{r} \lambda_k P_k$, где $\{\lambda_1, \ldots, \lambda_r\} = \sigma(U)$ и ненулевые ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n$ удовлетворяют условиям (ii)–(iv), называется спектральным разложением оператора U.

Замечание 4.2.12. Так как любое число $z \in \mathbb{C}$ такое, что |z|=1, представимо в виде $z=e^{i\theta}$, то любое $\lambda_k \in \sigma(U)$ можно записать в виде $\lambda_k=e^{i\theta_k}$, $k=1,\ldots,r$. В этом случае спектральное разложение унитарного оператора U имеет вид:

$$U = \sum_{k=1}^{r} e^{i\theta_k} P_k,$$

где $\{\theta_1, \ldots, \theta_r\}$ не равные друг другу вещественные числа, а ненулевые ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n$ удовлетворяют условиям (ii)—(iv). Более того, можно считать, что

$$0 < \theta_1 < \dots < \theta_r < 2\pi$$
.

Следствие 4.2.13. Если оператор $U \in \mathcal{B}(\mathbf{H})$ представим в виде

$$U = \sum_{k=1}^{r} e^{i\theta_k} P_k,$$

где $\{\theta_1, \ldots, \theta_r\}$ — вещественные числа, а ненулевые ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n$ удовлетворяют условиям (ii)-(iv), то U — унитарный оператор.

Доказательство. Если $U=\sum_{k=1}^r e^{i\theta_k}P_k$, то $U^*=\sum_{k=1}^r e^{-i\theta_k}P_k$. Поэтому

$$U^*U = \sum_{k=1}^r e^{-i\theta_k} P_k \sum_{m=1}^r e^{i\theta_m} P_m = \sum_{k=1}^r \sum_{m=1}^r e^{-i\theta_k + i\theta_m} P_k P_m = \sum_{k=1}^r P_k = I.$$

Следовательно, U — унитарный оператор.

4.3 Функциональное исчисление для унитарного оператора

Установим непосредственную связь между унитарными и самосопряженными операторами. Это можно сделать по крайней мере двумя способами. первый способ основан на преобразовании Кэли, использующем дробнолинейное преобразование

$$\zeta = \frac{\lambda + i}{\lambda - i}.$$

Утверждение 4.3.1 (Преобразование Кэли). *Справедливы утверждения*.

(i) Ecau $A \in \mathcal{B}_h(\mathbf{H})$, mo onepamop

$$U = (A - iI)(A + iI)^{-1}$$
(4.4)

унитарен;

(ii) Ecnu onepamop $U \in \mathcal{U}(\mathbf{H})$ u $1 \notin \sigma(U)$, mo onepamop

$$A = i(I+U)(I-U)^{-1} (4.5)$$

самосопряжен.

Доказательство. (i). Так как A — самосопряженный оператор, то $Ker(A+iI)=\{\mathbf{0}\}$. Поэтому, в силу теоремы I(L).2.3.3, оператор (A+iI) обратим. Следовательно, оператор $U=(A-iI)(A+iI)^{-1}$ существует. Тогда имеем:

$$U^*U = [(A - iI)(A + iI)^{-1}]^*[(A - iI)(A + iI)^{-1}] =$$

$$= [(A - iI)^{-1}(A + iI)][(A - iI)(A + iI)^{-1}] =$$

$$= (A - iI)^{-1}(A + iI)(A - iI)(A + iI)^{-1} =$$

$$= (A - iI)^{-1}(A - iI)(A + iI)(A + iI)^{-1} = I.$$

Следовательно, оператор U унитарен.

(ii). Так как $1 \notin \sigma(U)$, то оператор (U-I) обратим и оператор A имеет вид: $A = i(I+U)(I-U)^{-1}$. Рассмотрим произвольные $\mathbf{x}, \mathbf{y} \in \mathbf{H}$ и положим $\mathbf{f} = (I-U)\mathbf{x}, \ \mathbf{g} = (I-U)\mathbf{y}$. Тогда

$$A\mathbf{f} = i(I+U)(I-U)^{-1}(I-U)\mathbf{x} = i(I+U)\mathbf{x},$$

 $A\mathbf{g} = i(I+U)(I-U)^{-1}(I-U)\mathbf{y} = i(I+U)\mathbf{y}.$

Поэтому, в силу $(\mathbf{x}, \mathbf{y}) = (U\mathbf{x}, U\mathbf{y})$, имеем:

$$(A\mathbf{f}, \mathbf{g}) = (i(I+U)\mathbf{x}, (I-U)\mathbf{y}) =$$

$$= i[(\mathbf{x}, \mathbf{y}) + (U\mathbf{x}, \mathbf{y}) - (\mathbf{x}, U\mathbf{y}) - (U\mathbf{x}, U\mathbf{y})] =$$

$$= i[(U\mathbf{x}, \mathbf{y}) - (\mathbf{x}, U\mathbf{y})],$$

$$(\mathbf{f}, A\mathbf{g}) = ((I-U)\mathbf{x}, i(I+U)\mathbf{y}) =$$

$$= -i[(\mathbf{x}, \mathbf{y}) - (U\mathbf{x}, \mathbf{y}) + (\mathbf{x}, U\mathbf{y}) - (U\mathbf{x}, U\mathbf{y})] =$$

$$= -i[(-U\mathbf{x}, \mathbf{y}) + (\mathbf{x}, U\mathbf{y})] = i[(U\mathbf{x}, \mathbf{y}) - (\mathbf{x}, U\mathbf{y})].$$

Следовательно, $(A\mathbf{f}, \mathbf{g}) = (\mathbf{f}, A\mathbf{g})$. Так как $\operatorname{Ran}(I - U) = \mathbf{H}$, то $A^* = A$. \square

Определение 4.3.2. Преобразованием Кэли самосопряженного оператора $A \in \mathcal{B}_h(\mathbf{H})$ называется унитарный оператор

$$U = (A - iI)(A + iI)^{-1}.$$

Преобразованием Кэли унитарного оператора $U \in \mathcal{U}(\mathbf{H})$, спектр $\sigma(U)$ которого не содержит 1, называется самосопряженный оператор

$$A = i(I + U)(I - U)^{-1}$$
.

Замечание 4.3.3. Отметим некоторые свойства преобразования Кэли.

(i) Зная преобразование Кэли самосопряженного оператора $A \in \mathcal{B}_h(\mathbf{H})$, можно этот оператор восстановить по формуле (4.5).

Действительно, пусть $U=(A-iI)(A+iI)^{-1}, \mathbf{x} \in \mathbf{H}$ и $\mathbf{y}=(A+iI)\mathbf{x}$. Тогда

$$U\mathbf{y} = (A - iI)(A + iI)^{-1}(A + iI)\mathbf{x} = (A - iI)\mathbf{x}.$$

Поэтому

$$(I+U)\mathbf{y} = \mathbf{y} + U\mathbf{y} = (A+iI)\mathbf{x} + (A-iI)\mathbf{x} = 2A\mathbf{x},$$

 $(I-U)\mathbf{y} = \mathbf{y} - U\mathbf{y} = (A+iI)\mathbf{x} - (A-iI)\mathbf{x} = 2i\mathbf{x}.$

Если $(I-U)\mathbf{y}=\mathbf{0}$, то $\mathbf{x}=\mathbf{0}$ и значит $\mathbf{y}=(A+iI)\mathbf{x}=\mathbf{0}$. Следовательно, оператор (I-U) обратим. Поэтому

$$2A\mathbf{x} = (I+U)\mathbf{y} = (I+U)(I-U)^{-1}2i\mathbf{x}.$$

T.e.
$$A = i(I + U)(I - U)^{-1}$$
.

(ii) Зная преобразование Кэли унитарного оператора $U \in \mathcal{U}(\mathbf{H})$, для которого $1 \notin \sigma(U)$, можно этот оператор восстановить по формуле (4.4). Действительно, пусть $A = i(I+U)(I-U)^{-1}$, $\mathbf{x} \in \mathbf{H}$ и $\mathbf{y} = (I-U)\mathbf{x}$. Тогда

$$A\mathbf{y} = i(I+U)(I-U)^{-1}(I_U)\mathbf{x} = i(I+U)\mathbf{x} = i\mathbf{x} + iU\mathbf{x},$$

$$iI\mathbf{y} = i\mathbf{y} = i(I-U)\mathbf{x} = i\mathbf{x} - iU\mathbf{x}.$$

Поэтому

$$(A - iI) = 2iU\mathbf{x}, \quad (A + iI)\mathbf{y} = 2i\mathbf{x}.$$

Если $(A+iI)\mathbf{y}=\mathbf{0}$, то $\mathbf{x}=\mathbf{0}$ и значит $\mathbf{y}=(I-U)\mathbf{x}=0$. Следовательно, оператор (A+iI) обратим. Поэтому

$$2iU\mathbf{x} = (A - iI)\mathbf{y} = (A - iI)(A + iI)^{-1}2i\mathbf{x},$$

T.e.,
$$U = (A - iI)(A + iI)^{-1}$$
.

- (iii) Преобразование Кэли устанавливает взаимно однозначное соответствие между самосопряженными операторами и унитарными операторами, спектр которых не содержит точки 1.
- (iv) Преобразования Кэли самосопряженного оператора $A \in \mathcal{B}(\mathbf{H})$ и унитарного оператора $U \in \mathcal{U}(\mathbf{H}), 1 \notin \sigma(U)$, можно определить более общим образом, полагая:

$$U = (A - \bar{\omega}I)(A + \omega I)^{-1},$$

И

$$A = (\omega I + \bar{\omega}U)(I - U)^{-1},$$

где $\operatorname{Im} \omega \neq 0$.

Другой способ перехода от самосопряженных операторов к унитарным основан на экспоненциальном отображении $\zeta=e^{i\lambda}$.

Пусть A — самосопряженный оператор и

$$A = \sum_{k=1}^{r} \lambda_k P_k$$

— его спектральное разложение (см. теорему 3.4.6). Для функции

$$f\colon \mathbb{C} \to \mathbb{C}$$

такой, что $f(\lambda)=e^{i\lambda},$ определим оператор f(A):

$$f(A) = e^{iA} = \sum_{k=1}^{r} e^{i\lambda_k} P_k.$$

Утверждение 4.3.4. Оператор

$$e^{iA} = \sum_{k=1}^{r} e^{i\lambda_k} P_k$$

является унитарным.

Доказательство следует из вещественности спектра $\{\lambda_1, \dots, \lambda_r\}$ самосопряженного оператора A и следствия 4.2.13.

Утверждение 4.3.5. Для любого унитарного оператора U существует самосопряженный оператор A такой, что $U=e^{iA}$.

Доказательство. Пусть

$$U = \sum_{k=1}^{r} e^{i\theta_k} P_k$$

— спектральное разложение оператора U. Рассмотрим оператор

$$A = \sum_{k=1}^{r} \theta_k P_k.$$

Тогда, в силу следствия 3.4.7 и замечания 3.4.2, оператор A самосопряжен и

$$U = \sum_{k=1}^{r} e^{i\theta_k} P_k = e^{iA}.$$

Замечание 4.3.6. Так как $e^{i\theta_k} = e^{i(\theta_k + 2\pi n_k)}$, где n_k — произвольное целое число, то самосопряженный оператор A по унитарному оператору U определяется неоднозначно. Для получения взаимно однозначного соответствия требуют, чтобы спектр $\sigma(A)$ оператора A лежал на полуинтервале $[0, 2\pi)$.

4.4 Однопараметрические группы унитарных операторов

Пусть $U \in \mathcal{U}(\mathbf{H})$ и

$$U = \sum_{k=1}^{r} \lambda_k P_k = \sum_{k=1}^{r} e^{i\theta_k} P_k$$

— его спектральное разложение.

Для любого действительного числа $t \in \mathbb{R} = (-\infty, +\infty)$ определим унитарный оператор

$$U_t = \sum_{k=1}^r e^{it\theta_k} P_k.$$

Утверждение 4.4.1. Семейство $\{U_t\}_{t\in\mathbb{R}}\subset\mathcal{U}(\mathbf{H})$ является непрерывной однопараметрической группой унитарных операторов, т.е.

- (i) $U_tU_s = U_{t+s}$;
- (ii) $U_0 = I$;
- (iii) $U_t^{-1} = U_t^* = U_{-t};$
- (iv) $\lim_{s \to t} ||U_s U_t|| = 0.$

Доказательство. Условия (i) и (ii) проверяются непосредственно:

(i).

$$U_t U_s = \sum_{k=1}^r e^{it\theta_k} P_k \sum_{m=1}^r e^{it\theta_m} P_m = \sum_{k=1}^r e^{i(t+s)\theta_k} P_k = U_{t+s}.$$

(ii).

$$U_0 = \sum_{k=1}^r P_k = I.$$

(ііі). В силу (і) справедливо равенство

$$U_t U_{-t} = U_{-t} U_t = U_0 = I.$$

Кроме того,

$$U_t^* = \left(\sum_{k=1}^r e^{it\theta_k} P_k\right)^* = \sum_{k=1}^r e^{-it\theta_k} P_k = U_{-t}.$$

(iv). Справедлива оценка

$$||U_s - U_t|| = \left\| \sum_{k=1}^r [e^{is\theta_k} - e^{it\theta_k}] P_k \right\| \le \sum_{k=1}^r |e^{is\theta_k} - e^{it\theta_k}| ||P_k|| = \sum_{k=1}^r |e^{is\theta_k} - e^{it\theta_k}|.$$

Так как функция $f(x)=e^{ix}$ непрерывна на $\mathbb{R},$ то для любого $k=1,\,\ldots,\,r$

$$\lim_{s \to t} |e^{is\theta_k} - e^{it\theta_k}| = 0.$$

Поэтому
$$\lim_{s\to t} ||U_s - U_t|| = 0.$$

Замечание 4.4.2. Группа $\{U_t\}_{t\in\mathbb{R}}$ коммутативна, т.е.

$$U_t U_s = U_s U_t, \quad t, s \in \mathbb{R}.$$

Следствие 4.4.3. Пусть $A \in \mathcal{B}_h(H), A = \sum_{k=1}^r \lambda_k P_k$ — его спектральное разложение, u

$$U_t(A) = \sum_{k=1}^r e^{it\lambda_k} P_k, \quad t \in \mathbb{R}.$$

Тогда $\{U_t(A)\}_{t\in\mathbb{R}}$ является непрерывной однопараметрической группой унитарных операторов.

Доказательство следует непосредственно из утверждений 4.3.4 и 4.4.1.

Следующая теорема — конечномерный аналог теоремы М. Стоуна о представлении однопараметрической группы унитарных операторов.

Теорема 4.4.4. Пусть $\{U_t\}_{t\in\mathbb{R}}\subset\mathcal{U}(\mathbf{H})$ — однопараметрическая группа унитарных операторов, т.е. семейство операторов, удовлетворяющих условиям:

- (i) $U_tU_s = U_{t+s}$;
- (ii) $U_0 = I$:
- (iii) $U_t^{-1} = U_t^* = U_{-t};$
- (iv) $(U_t \mathbf{x}, \mathbf{y})$ является непрерывной функцией параметра t для любых $\mathbf{x}, \mathbf{y} \in \mathbf{H}$.

Тогда существует такой самосопряженный оператор $A \in \mathcal{B}_h(\mathbf{H})$, что

$$U_t = U_t(A) = e^{itA}, \quad t \in \mathbb{R}.$$

Доказательство. Так как группа $\{U_t\}_{t\in\mathbb{R}}$ коммутативная, то согласно утверждению 4.2.9 существует ортонормированный базис $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ гильбертова пространства \mathbf{H} , в котором для любого $t\in\mathbb{R}$ матрицы $[U_t]$ имеют диагональный вид:

$$[U_t] = \begin{pmatrix} f_1(t) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & f_n(t) \end{pmatrix}.$$

Таким образом, $\sigma(U_t) = \{f_1(t), \dots, f_n(t)\}$ и операторы U_t имеют спектральные разложения

$$U_t = \sum_{k=1}^n f_k(t) P_k.$$

Из условий теоремы следует, что для любого $k=1,\ldots,n$

$$f_k(t)f_k(s) = f_k(t+s), \quad |f_k(t)| = 1,$$

и функции $f_k(t)$ непрерывны на \mathbb{R} . Покажем, что непрерывное решение такого функционального уравнения имеет вид $f_k(t) = e^{a_k t}$. Доказательство проведем для некоторого фиксированного $k = 1, \ldots, n$, полагая $f_k(t) = f(t)$.

Пусть $\varphi(t)$ — бесконечно дифференцируемая финитная (т.е. равная нулю вне некоторого конечного интервала) функция, такая, что

$$\int_{-\infty}^{+\infty} f(t)\varphi(t)dt \neq 0.$$

Умножим обе части равенства f(t)f(s)=f(t+s) на $\varphi(s)$ и проинтегрируем по s от $-\infty$ до $+\infty$:

$$f(t) \int_{-\infty}^{+\infty} f(s)\varphi(s)ds = \int_{-\infty}^{+\infty} f(t+s)\varphi(s)ds = |s_1 = t+s| = 0$$

$$= \int_{-\infty}^{+\infty} f(s_1)\varphi(s_1 - t)ds_1 = \int_{-\infty}^{+\infty} f(s)\varphi(s - t)ds.$$

Так как функция $\varphi(s)$ финитная, то все интегралы являются сходящимися. Кроме того, в силу бесконечной дифференцируемости функции $\varphi(s-t)$ по переменной t, правая часть полученного равенства бесконечно дифференцируема по t. Поэтому бесконечно дифференцируемой по t является и левая часть равенства, т.е. функция f(t).

Продифференцируем обе части уравнения f(t)f(s) = f(t+s) по s:

$$f(t)f'(s) = f'(s+t).$$

Подставляя s=0 и полагая f'(0)=a, получим дифференциальное уравнение

$$f'(t) = af(t),$$

решение которого имеет вид

$$f(t) = Ce^{at}$$
.

Подставляя это решение в наше функциональное уравнение, получим:

$$Ce^{at}Ce^{as} = C^2e^{a(t+s)} = Ce^{a(t+s)}$$
.

откуда следует, что C=1 и потому $f(t)=e^{at}$, где a=f'(0). Далее, $|f(t)|=|e^{at}|=1$. Поэтому

$$e^{at}\overline{e^{at}} = 1.$$

Пусть $a = \alpha + i\beta$. Тогда

$$e^{at}\overline{e^{at}} = e^{\alpha t + i\beta t}\overline{e^{\alpha t + i\beta t}} = e^{2\alpha t}[\cos(\beta t) + i\sin(\beta t)][\cos(\beta t) - i\sin(\beta t)] =$$

$$= e^{2\alpha t}[\cos^2(\beta t) + \sin^2(\beta t)] = e^{2\alpha t} = 1.$$

Следовательно, $\alpha = 0$, и потому $a = \beta i$. Таким образом, решение нашего функционального уравнения имеет вид:

$$f(t) = e^{i\beta t}.$$

Обозначим решение уравнения $f_k(t)f_k(s)=f_k(t+s),\ k=1,\ldots,\ n$ через $f_k(t)=e^{i\theta_kt}.$ Тогда для любого $t\in\mathbb{R}$ матрицы $[U_t]$ имеют вид:

$$[U_t] = \begin{pmatrix} e^{i\theta_1 t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{i\theta_n t} \end{pmatrix}.$$

Рассмотрим оператор

$$A = \sum_{k=1}^{n} \theta_k P_k,$$

где P_k — проектор на одномерное подпространство, порожденное базисным вектором $\mathbf{e}_k,\,k=1,\,\ldots,\,n.$ Тогда, в силу следствия 3.4.7 и замечания 3.4.2, оператор A самосопряжен и

$$U_t = U_t(A) = \sum_{k=1}^n e^{i\theta_k t} P_k = e^{itA}.$$

Глава 5

Нормальные операторы

5.1 Нормальные операторы и пары коммутирующих самосопряженных операторов

Определение 5.1.1. Оператор $A \in \mathcal{B}(\mathbf{H})$ называется *нормальным*, если

$$A^*A = AA^*$$
.

Рассмотрим примеры нормальных операторов.

• Если оператор $A \in \mathcal{B}(\mathbf{H})$ самосопряжен, то

$$AA^* = A^2 = A^*A,$$

и потому A — нормальный оператор.

• Если оператор $U \in \mathcal{U}(H)$, то

$$UU^* = I = U^*U.$$

и потому U — нормальный оператор.

Пусть оператор $A \in \mathcal{B}(\mathbf{H})$ и

$$A = A_1 + iA_2$$
, $A_1 = \operatorname{Re} A = \frac{A + A^*}{2}$, $A_2 = \operatorname{Im} A = \frac{A - A^*}{2i}$

— его декартово представление.

Утверждение 5.1.2. Для того, чтобы линейный оператор $A \in \mathcal{B}(\mathbf{H})$ был нормальным, необходимо и достаточно, чтобы операторы $A_1 = \operatorname{Re} A$ и $A_2 = \operatorname{Im} A$ коммутировали.

Доказательство. Пусть оператор A нормальный, т.е. $AA^* = A^*A$. Тогда

$$A_1 A_2 = \frac{A + A^*}{2} \frac{A - A^*}{2i} = \frac{A^2 + A^* A - A A^* - (A^*)^2}{4i} = \frac{A^2 - (A^*)^2}{4i},$$

$$A_2 A_1 = \frac{A - A^*}{2i} \frac{A + A^*}{2} = \frac{A^2 + A A^* - A^* A - (A^*)^2}{4i} = \frac{A^2 - (A^*)^2}{4i},$$

T.e. $A_1A_2 = A_2A_1$.

Обратно, если $A_1A_2 = A_2A_1$, то

$$0 = \frac{A + A^*}{2} \frac{A - A^*}{2i} - \frac{A - A^*}{2i} \frac{A + A^*}{2} =$$

$$= \frac{A^2 + A^*A - AA^* - (A^*)^2}{4i} - \frac{A^2 + AA^* - A^*A - (A^*)^2}{4i} =$$

$$= \frac{A^*A - AA^*}{2i},$$

откуда $A^*A = AA^*$, т.е. оператор A нормален.

Упражнение 5.1.3. Проверьте справедливость утверждений.

• Если $A \in \mathcal{B}(\mathbf{H}), \ \alpha, \beta \in \mathbb{C}$ такие, что $|\alpha| = |\beta|$, то оператор $\alpha A + \beta A^*$ нормален.

 \bullet ЕслиA — нормальный оператор, то для любого полинома

$$p(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_k t^k$$

оператор p(A) является нормальным.

Утверждение 5.1.4. Если оператор А нормальный, то

- (i) Для любого $\mathbf{x} \in \mathbf{H} \|A\mathbf{x}\| = \|A^*\mathbf{x}\|;$
- (ii) $\operatorname{Ker} A^* = \operatorname{Ker} A$.

Доказательство. (i). Для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$||A\mathbf{x}||^2 = (A\mathbf{x}, A\mathbf{x}) = (A^*A\mathbf{x}, \mathbf{x}) = (AA^*\mathbf{x}, \mathbf{x}) = (A^*\mathbf{x}, A^*\mathbf{x}) = ||A^*\mathbf{x}||^2,$$

откуда $||A\mathbf{x}|| = ||A^*\mathbf{x}||.$

(ii). Согласно (i),
$$A\mathbf{x} = 0$$
 тогда и только тогда, когда $A^*\mathbf{x} = 0$.

Упражнение 5.1.5. Если оператор $A \in \mathcal{B}(\mathbf{H})$ нормальный, то для любого унитарного оператора $U \in \mathcal{U}(\mathbf{H})$ оператор U^*AU тоже нормальный.

5.2 Спектральная теорема для нормального оператора

Утверждение 5.2.1. Если оператор $A \in \mathcal{B}(\mathbf{H})$ нормальный и $\lambda \in \sigma(A)$, то подпространства \mathbf{N}_{λ} и $\mathbf{N}_{\lambda}^{\perp}$ инвариантны относительно A.

Доказательство. Пусть $\mathbf{x} \in \mathbf{N}_{\lambda} = \{\mathbf{x} \in \mathbf{H} : A\mathbf{x} = \lambda \mathbf{x}\}$. Тогда

$$A(A\mathbf{x}) = A(\lambda\mathbf{x}) = \lambda A\mathbf{x},$$

$$A(A^*\mathbf{x}) = A^*A\mathbf{x} = A^*(\lambda\mathbf{x}) = \lambda A^*\mathbf{x}.$$

Следовательно, \mathbf{N}_{λ} инвариантно относительно операторов A и A^* . Поэтому, в силу утверждения 2.5.6, подпространство $\mathbf{N}_{\lambda}^{\perp}$ инвариантно относительно $(A^*)^* = A$.

Утверждение 5.2.2. Если ${\bf x}$ — собственный вектор нормального оператора A с собственным значением λ , то ${\bf x}$ — собственный вектор оператора A^* с собственным значением $\bar{\lambda}$.

Доказательство. Пусть \mathbf{N}_{λ} — собственное подпространство оператора A, соответствующее собственному значению λ . Как следует из утверждения 5.2.1, пространство \mathbf{H} раскладывается в ортогональную прямую сумму $\mathbf{H} = \mathbf{N}_{\lambda} \oplus \mathbf{N}_{\lambda}^{\perp}$ инвариантных относительно A подпространств. В этом разложении матрица оператора A имеет блочно-диагональную структуру

$$[A] = \begin{pmatrix} [A_1] & 0 \\ 0 & [A_2] \end{pmatrix}.$$

Поскольку \mathbf{N}_{λ} — собственное подпространство оператора A, соответствующее собственному значению λ , имеем $[A_1] = \lambda I$. Поскольку A^* также имеет блочно-диагональную структуру

$$[A^*] = \begin{pmatrix} [A_1^*] & 0\\ 0 & [A_2^*] \end{pmatrix}$$

и $[A_1^*] = \bar{\lambda}I$, заключаем, что \mathbf{N}_{λ} — собственное подпространство оператора A^* , соответствующее собственному значению $\bar{\lambda}$, т.е. $A^*\mathbf{x} = \bar{\lambda}\mathbf{x}$.

Утверждение 5.2.3. Если оператор $A \in \mathcal{B}(\mathbf{H})$ нормальный, $\lambda_k, \lambda_j \in \sigma(A)$, $\lambda_k \neq \lambda_j$, то собственные подпространства \mathbf{N}_{λ_k} и \mathbf{N}_{λ_j} оператора A ортогональны.

Доказательство. Пусть $\mathbf{x} \in \mathbf{N}_{\lambda_k}$ и $\mathbf{y} \in \mathbf{N}_{\lambda_j}$. Тогда, в силу нормальности оператора A и утверждения 5.2.2, имеем

$$\lambda_k(\mathbf{x}, \mathbf{y}) = (\lambda_k \mathbf{x}, \mathbf{y}) = (A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A^*\mathbf{y}) = (\mathbf{x}, \bar{\lambda}_i \mathbf{y}) = \lambda_i(\mathbf{x}, \mathbf{y}).$$

Так как $\lambda_k \neq \lambda_j$ при $k \neq j$, то $(\mathbf{x}, \mathbf{y}) = 0$, т.е. $\mathbf{N}_{\lambda_k} \perp \mathbf{N}_{\lambda_j}$.

Теорема 5.2.4 (Спектральная теорема для нормального оператора). Для любого нормального оператора $A \in \mathcal{B}(\mathbf{H})$ существует ортонормированный базис, в котором матрица [A] оператора A имеет диагональный вид:

$$[A] = \begin{pmatrix} \lambda_1 I_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r I_r \end{pmatrix},$$

где $\lambda_1, \ldots, \lambda_r$ — попарно различные собственные значения оператора A.

Доказательство. Пусть A — нормальный оператор и

$$A = A_1 + iA_2 = \frac{A + A^*}{2} + i\frac{A - A^*}{2i}$$

— его декартово представление. Так как самосопряженные операторы A_1 и A_2 коммутируют, то в силу теоремы 3.5.6, существует ортонормированный базис $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ пространства \mathbf{H} , в котором матрицы $[A_1]$ и $[A_2]$ диагональны и вещественны:

$$[A_1] = \begin{pmatrix} a_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_n \end{pmatrix}, \quad [A_2] = \begin{pmatrix} b_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & b_n \end{pmatrix},$$

 $a_k, b_k \in \mathbb{R}, k = 1, \ldots, n.$

Следовательно, в этом базисе матрица [A] оператора A имеет вид:

$$[A] = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix},$$

где
$$\lambda_k = a_k + ib_k, \ k = 1, \dots, n.$$

Заметим, что базис $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ пространства \mathbf{H} , относительно которого матрица [A] нормального оператора A диагональна, есть собственный базис оператора A, и

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)$$

(среди чисел $\lambda_1, \ldots, \lambda_n$ могут быть равные). Кроме того,

$${a_1, \ldots, a_n} = \sigma(A_1), \quad {b_1, \ldots, b_n} = \sigma(A_2)$$

(аналогично, среди чисел a_1, \ldots, a_n и, соответственно, среди b_1, \ldots, b_n , могут быть равные).

Теорема 5.2.5 (Спектральная теорема для нормального оператора в форме разложения единицы). Если $A \in \mathcal{B}(\mathbf{H})$ — нормальный оператор, то существуют такие числа $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ и такие ненулевые ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n$, что

- (i) $\lambda_k \neq \lambda_j \ npu \ k \neq j$;
- (ii) Ортопроекторы P_1, \ldots, P_r попарно ортогональны;
- (iii) $\sum_{k=1}^{r} P_k = I$;
- (iv) $A = \sum_{k=1}^{r} \lambda_k P_k$.

Условия (i)-(iv) определяют числа $\lambda_1, \ldots, \lambda_r$ однозначно.

Доказательство. Покажем, что спектр $\sigma(A)=\{\lambda_1,\ldots,\lambda_r\}$, где $\lambda_k\neq\lambda_j$ при $k\neq j$, и ортопроекторы $P_k=P_{\mathbf{N}_{\lambda_k}}$ на собственные подпространства

$$\mathbf{N}_{\lambda_k} = \{ \mathbf{x} \in \mathbf{H} : A\mathbf{x} = \lambda_k \mathbf{x} \}$$

оператора A удовлетворяют условиям теоремы.

Действительно, условия (i) и (ii) следуют из выбора $\{\lambda_1,\ldots,\lambda_r\}$ и утверждения 5.2.3.

Предположим теперь, что $\sum_{k=1}^r P_k \neq I$. Тогда $P = \sum_{k=1}^r P_k$ — ортопроектор на подпространство $\mathbf{M} = \bigoplus_{k=1}^r \mathbf{N}_{\lambda_{\mathbf{k}}}$, которое, в силу утверждения 5.2.1, инвариантно относительно A. Рассмотрим подпространство

$$\mathbf{M}^{\perp} = \bigcap_{k=1}^{r} \mathbf{N}_{\lambda_k}^{\perp}.$$

В силу того же утверждения 5.2.1, подпространства $\mathbf{N}_{\lambda_k}^{\perp}, \ k=1, \ldots, r$ инвариантны относительно оператора A. Поэтому и подпространство \mathbf{M}^{\perp}

инвариантно относительно A. Следовательно, оператор $A \upharpoonright_{\mathbf{M}^{\perp}} \in \mathcal{B}(\mathbf{M}^{\perp})$ не имеет собственных значений, что невозможно. Противоречие показывает, что $\sum_{k=1}^r P_k = I$.

Пусть теперь $\mathbf{x} \in \mathbf{H}$ и $\mathbf{x}_k = P_k \mathbf{x} \in \mathbf{N}_{\lambda_k}$. Тогда $A\mathbf{x}_k = \lambda_k \mathbf{x}_k$ и

$$A\mathbf{x} = A\left(\sum_{k=1}^{r} P_k\right)\mathbf{x} = A\left(\sum_{k=1}^{r} P_k\mathbf{x}\right) = \sum_{k=1}^{r} A\mathbf{x}_k =$$
$$= \sum_{k=1}^{r} \lambda_k \mathbf{x}_k = \sum_{k=1}^{r} \lambda_k P_k \mathbf{x} = \left(\sum_{k=1}^{r} \lambda_k P_k\right)\mathbf{x}.$$

Следовательно, $A = \sum_{k=1}^{r} \lambda_k P_k$.

Покажем, что при выполнении условий (i)–(iv) семейство $\{\lambda_1, \dots, \lambda_r\}$ совпадает со спектром $\sigma(A)$ оператора A: $\{\lambda_1, \dots, \lambda_r\} = \sigma(A)$.

Так как ортопроекторы $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n$, ненулевые и попарно ортогональные, то для любого фиксированного k существует ненулевой вектор $\mathbf{x} \in \{P_k \mathbf{y} : \mathbf{y} \in \mathbf{H}\}$. Тогда $P_k \mathbf{x} = \mathbf{x}$ и $P_j \mathbf{x} = \mathbf{0}$ для любого $j \neq k$. Следовательно,

$$A\mathbf{x} = \sum_{j=1}^{r} \lambda_j P_j \mathbf{x} = \lambda_k \mathbf{x},$$

T.e. $\lambda_k \in \sigma(A)$.

Обратно, если $\lambda \in \sigma(A)$ и $\mathbf{x} \neq \mathbf{0}$ такой, что $A\mathbf{x} = \lambda \mathbf{x}$, то

$$A\mathbf{x} = \lambda \left(\sum_{k=1}^{r} P_k\right)\mathbf{x} = \lambda \sum_{k=1}^{r} \mathbf{x}_k,$$

где $\mathbf{x}_k = P_k \mathbf{x}$. С другой стороны,

$$A\mathbf{x} = \sum_{k=1}^{r} \lambda_k P_k \mathbf{x} = \sum_{k=1}^{r} \lambda_k \mathbf{x}_k.$$

Таким образом,

$$\sum_{k=1}^{r} (\lambda - \lambda_k) \mathbf{x}_k = 0.$$

Так как векторы $\mathbf{x}_1, \ldots, \mathbf{x}_r$ принадлежат попарно ортогональным подпространствам, то либо $\mathbf{x}_k = \mathbf{0}$, либо $\lambda - \lambda_k = 0$ (при $\mathbf{x}_k \neq \mathbf{0}$). Но $\mathbf{x} \neq \mathbf{0}$, поэтому существует хотя бы одно значение j, для которого $\mathbf{x}_j \neq \mathbf{0}$. Следовательно, $\lambda = \lambda_j$ и значит $\lambda \in \sigma(A)$. Таким образом, $\{\lambda_1, \ldots, \lambda_r\} = \sigma(A)$.

Следствие 5.2.6. Если оператор $A \in \mathcal{B}(\mathbf{H})$ представим в виде

$$A = \sum_{k=1}^{r} \lambda_k P_k,$$

где $\{\lambda_1,\ldots,\lambda_r\}=\sigma(A)$ и ненулевые ортопроекторы $P_1,\ldots,P_r\in\mathcal{P}(\mathbf{H}),$ $r\leq n,$ такие, что

- (i) $\lambda_k \neq \lambda_j \ npu \ k \neq j$;
- (ii) Ортопроекторы P_1, \ldots, P_r попарно ортогональны;
- (iii) $\sum_{k=1}^{r} P_k = I,$

 $mo\ A\ -\ нормальный\ onepamop.$

 \mathcal{A} оказательство. Если $A=\sum_{k=1}^r \lambda_k P_k$, то $A^*=\sum_{k=1}^r \bar{\lambda}_k P_k$ и

$$AA^* = \sum_{k=1}^r \lambda_k P_k \sum_{m=1}^r \bar{\lambda}_m P_m = \sum_{k=1}^r \sum_{m=1}^r \lambda_k \bar{\lambda}_m P_k P_m = \sum_{k=1}^r |\lambda_k|^2 P_k = A^*A. \quad \Box$$

Представление нормального оператора $A \in \mathcal{B}(\mathbf{H})$ в виде

$$A = \sum_{k=1}^{r} \lambda_k P_k,$$

где $\{\lambda_1, \ldots, \lambda_r\} = \sigma(A)$ и $P_1, \ldots, P_r \in \mathcal{P}(\mathbf{H}), r \leq n,$ — ненулевые ортопроекторы, удовлетворяющие условиям (i)–(iii), называется спектральным разложением оператора A.

Теорема 5.2.7. Пусть $A \in \mathcal{B}(\mathbf{H})$ — нормальный оператор.

- (i) A обратимый оператор тогда и только тогда, когда $0 \not\in \sigma(A)$.
- (ii) A- унитарный оператор тогда и только тогда, когда

$$\sigma(A) \subset \{z \in \mathbb{C} : |z| = 1\}.$$

(iii) A-uдемпотентный оператор тогда и только тогда, когда

$$\sigma(A) \subset \{0,1\}.$$

Доказательство. Необходимость. Пусть $A \in \mathcal{B}(\mathbf{H})$ — нормальный оператор.

(i). Если оператор A обратим, $\lambda \in \sigma(A)$ и $A\mathbf{x} = \lambda \mathbf{x}, \, \mathbf{x} \neq \mathbf{0}$, то

$$\mathbf{x} = A^{-1}A\mathbf{x} = A^{-1}(\lambda \mathbf{x}) = \lambda A^{-1}\mathbf{x}.$$

Следовательно, $\lambda \neq \mathbf{0}$. Таким образом, $\mathbf{0} \notin \sigma(A)$.

- (ii). Доказано в утверждении 4.2.1.
- (ііі). Если A идемпотентный оператор, т.е. $A^2=A,\,\lambda\in\sigma(A)$ и $A\mathbf{x}=\lambda\mathbf{x},\,\mathbf{x}\neq\mathbf{0},$ то

$$\lambda \mathbf{x} = A\mathbf{x} = A^2\mathbf{x} = A(A\mathbf{x}) = A(\lambda \mathbf{x}) = \lambda^2\mathbf{x}.$$

Следовательно, $\lambda^2=\lambda$. Таким образом, $\lambda\in\{0,1\}$, т.е. $\sigma(A)\subset\{0,1\}$.

Достаточность. Пусть $A = \sum_{k=1}^{r} \lambda_k P_k$ — спектральное разложение нормального оператора A, где $\{\lambda_1, \dots, \lambda_r\} = \sigma(A)$.

(i). Пусть $0 \notin \sigma(A)$. Рассмотрим оператор

$$B = \sum_{k=1}^{r} \lambda_k^{-1} P_k \in \mathcal{B}(\mathbf{H}).$$

Тогда

$$BA = \left(\sum_{k=1}^{r} \lambda_k^{-1} P_k\right) \left(\sum_{k=1}^{r} \lambda_k P_k\right) = \sum_{k=1}^{r} P_k = I.$$

Следовательно, в силу следствия I(L).2.3.4, оператор A обратим.

(ii). Пусть $\sigma(A)\subset\{z\in\mathbb{C}:|z|=1\}$. Тогда

$$A^*A = \left(\sum_{k=1}^r \bar{\lambda}_k P_k\right) \left(\sum_{k=1}^r \lambda_k P_k\right) = \sum_{k=1}^r |\lambda_k|^2 P_k = \sum_{k=1}^r P_k = I.$$

Следовательно, A — унитарный оператор.

(iii). Пусть $\sigma(A) \subset \{0,1\}$. Тогда

$$A^{2} = \sum_{k=1}^{r} \lambda_{k}^{2} P_{k} = \sum_{k=1}^{r} \lambda_{k} P_{k} = A,$$

так как $\lambda^2 = \lambda$. Следовательно, A — идемпотентный оператор.

Утверждение 5.2.8. Пусть $A = \sum_{k=1}^{r} \lambda_k P_k$ — спектральное разложение нормального оператора A. Тогда существуют вещественные полиномы $p_k(t), 1 \le k \le r$, такие, что

$$p_k(\lambda_j) = \delta_{kj} = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases}$$

 $u p_k(A) = P_k$.

Доказательство. Пусть $A = \sum_{k=1}^{r} \lambda_k P_k$. Тогда

$$A^{2} = \left(\sum_{k=1}^{r} \lambda_{k} P_{k}\right) \left(\sum_{j=1}^{r} \lambda_{j} P_{j}\right) = \sum_{k=1}^{r} \lambda_{k}^{2} P_{k},$$

так как $P_k P_j = \delta_{jk} P_k$. Аналогично $A^n = \sum_{k=1}^r \lambda_k^n P_k$ и для любого полинома q(t)

$$q(A) = \sum_{k=1}^{r} q(\lambda_k) P_k.$$

Рассмотрим полиномы

$$p_k(t) = \prod_{j \neq k} \frac{t - \lambda_j}{\lambda_k - \lambda_j}.$$

Тогда

$$p_k(\lambda_j) = \delta_{kj} = \begin{cases} 1, & k = j, \\ 0, & k \neq j, \end{cases}$$

И

$$p_k(A) = \prod_{j \neq k} \frac{A - \lambda_j I}{\lambda_k - \lambda_j} = \prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \left(\sum_{i=1}^r \lambda_i P_i - \lambda_j \sum_{i=1}^r P_i \right) =$$

$$= \prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \left(\sum_{i=1}^r (\lambda_i - \lambda_j) P_i \right) = \left(\prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \right) \left(\sum_{i=1}^r \left(\prod_{j \neq k} (\lambda_i - \lambda_j) \right) P_i \right)$$

$$= \left(\prod_{j \neq k} \frac{1}{\lambda_k - \lambda_j} \right) \left(\prod_{j \neq k} (\lambda_k - \lambda_j) P_k \right) = P_k.$$

5.3 Функциональное исчисление для нормального оператора

Пусть $A \in \mathcal{B}(\mathbf{H})$ — нормальный оператор и $A = \sum_{k=1}^r \lambda_k P_k$ — его спектральное разложение. Для любой функции $f \colon \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A, определим оператор

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k.$$

Оператор B = f(A) называется функцией от оператора A.

Упражнение 5.3.1. Пусть оператор $A \in \mathcal{B}(\mathbf{H})$ нормальный и B = f(A). Показать, что операторы A и B коммутируют.

Если
$$f(z) = p(z) = \alpha_0 + \alpha_1 z + \dots + \alpha_m z^m = \sum_{j=0}^m \alpha_j z^j$$
 — полином, то

$$p(A) = \sum_{k=1}^{r} p(\lambda_k) P_k = \sum_{k=1}^{r} \left(\sum_{j=0}^{m} \alpha_j \lambda_k^j \right) P_k = \sum_{j=1}^{m} \alpha_m \left(\sum_{k=0}^{r} \lambda_k^j P_k \right) =$$

$$= \alpha_0 \left(\sum_{k=1}^{r} P_k \right) + \alpha_1 \left(\sum_{k=1}^{r} \lambda_k P_k \right) + \dots + \alpha_m \left(\sum_{k=1}^{r} \lambda_k^m P_k \right) =$$

$$= \alpha_0 I + \alpha_1 A + \dots + \alpha_m A^m.$$

Таким образом, p(A) — полиномиальный оператор и определение функции от оператора согласуется с определением полинома от оператора.

3амечание 5.3.2. Для любой функции $f:\mathbb{C}\to\mathbb{C}$ и для любого нормального оператора $A\in\mathcal{B}(\mathbf{H})$ оператор

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k.$$

— полиномиальный оператор.

Действительно, рассмотрим интерполяционный полином Лагранжа функции f:

$$p(z) = \sum_{k=1}^{r} \prod_{j \neq k} \frac{z - \lambda_j}{\lambda_k - \lambda_j} f(\lambda_k) = \sum_{k=1}^{r} p_k(z) f(\lambda_k).$$

Тогда

$$p(A) = \sum_{k=1}^{r} p_k(A) f(\lambda_k) = \sum_{k=1}^{r} f(\lambda_k) P_k = f(A).$$

Рассмотрим несколько примеров функций от нормального оператора $A \in \mathcal{B}(\mathbf{H})$, имеющего спектральное разложение $A = \sum_{k=1}^{r} \lambda_k P_k$.

• Если $0 \not\in \sigma(A)$, то оператор A — обратим и для функции $f(t) = t^{-1}$ имеем:

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k = \sum_{k=1}^{r} \lambda_k^{-1} P_k = A^{-1}.$$

Таким образом, $\sigma(A^{-1}) = \{\lambda^{-1} : \lambda \in \sigma(A)\}.$

• Если $f(z) = \bar{z}$, то

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k = \sum_{k=1}^{r} \overline{\lambda}_k P_k = A^*.$$

5.4 Операторы, коммутирующие с нормальным оператором

Утверждение 5.4.1. Пусть $A = \sum_{k=1}^{r} \lambda_k P_k$ — спектральное разложение нормального оператора A. Тогда

- (i) Оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A тогда и только тогда, когда он коммутирует с каждым ортопроектором P_k , $k = 1, \ldots, r$.
- (ii) Оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A тогда и только тогда, когда он коммутирует с оператором A^* .

Доказательство. (i). Если $BP_k = P_k B$ для любого $k = 1, \ldots, r$, то

$$BA = B\sum_{k=1}^{r} \lambda_k P_k = \sum_{k=1}^{r} \lambda_k B P_k = \sum_{k=1}^{r} \lambda_k P_k B = AB$$

Обратно, если BA = AB, то Bp(A) = p(A)B для любого полинома p(t), в частности, для всех полиномов

$$p_k(t) = \prod_{j \neq k} \frac{t - \lambda_j}{\lambda_k - \lambda_j}, \quad k = 1, \dots, r.$$

В силу утверждения 5.2.8, $p_k(A) = P_k$, и потому

$$BP_k = Bp_k(A) = p_k(A)B = P_kB, \quad k = 1, \dots, r.$$

(ii). Так как $A^* = \sum_{k=1}^r \bar{\lambda}_k P_k$ — спектральное разложение оператора A^* , то, в силу пункта (i), BA = BA тогда и только когда, когда $BA^* = A^*B$.

Следствие 5.4.2. Пусть $A \in \mathcal{B}(\mathbf{H})$ — нормальный оператор. Оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A тогда и только тогда, когда он коммутирует с каждым оператором f(A) для любой функции $f: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A.

Доказательство. Достаточность утверждения очевидна. Докажем необходимость.

Пусть $A = \sum_{k=1}^r \lambda_k P_k$ — спектральное разложение оператора A. Тогда

$$f(A) = \sum_{k=1}^{r} f(\lambda_k) P_k.$$

Если оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A, то по утверждению 5.4.1(i) он коммутирует с каждым ортопроектором P_k , $k=1,\ldots,r$ и потому

$$f(A)B = \left(\sum_{k=1}^{r} f(\lambda_k) P_k\right) B = \sum_{k=1}^{r} f(\lambda_k) P_k B =$$

$$= \sum_{k=1}^{r} f(\lambda_k) B P_k = B\left(\sum_{k=1}^{r} f(\lambda_k) P_k\right) = Bf(A).$$

Упражнение 5.4.3. Пусть $A, B \in \mathcal{B}(\mathbf{H})$ — нормальные операторы.

- Показать, что если [A, B] = 0, то [f(A), g(B)] = 0 для любой функции $f \colon \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A, и для любой функции $g \colon \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(B)$ оператора B.
- Привести пример функции $f: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(A)$ оператора A, и функции $g: \mathbb{C} \to \mathbb{C}$, определенной на спектре $\sigma(B)$ оператора B, для которых [f(A), g(B)] = 0, но $[A, B] \neq 0$.
- Показать, что если [f(A), g(B)] = 0, где $f: \mathbb{C} \to \mathbb{C}$ монотонная функция, определенная на спектре $\sigma(A)$ оператора A, а $g: \mathbb{C} \to \mathbb{C}$ монотонная функция, определенной на спектре $\sigma(B)$ оператора B, то [A, B] = 0.

Рассмотрим полином от двух переменных

$$p(z, w) = \alpha_{00} + \alpha_{10}z + \alpha_{01}w + \alpha_{20}z^2 + \alpha_{11}zw + \alpha_{02}w^2 + \dots + \alpha_{nk}z^nw^k,$$

и для операторов $A, B \in \mathcal{B}(\mathbf{H})$ положим

$$p(A, B) = \alpha_{00}I + \alpha_{10}A + \alpha_{01}B + \alpha_{20}A^2 + \alpha_{11}AB + \alpha_{02}B^2 + \dots + \alpha_{nk}A^nB^k.$$

Для некоммутирующих операторов можно определять оператор p(A, B) также по-другому, например, полагая

$$p(A,B) = \alpha_{00}I + \alpha_{10}A + \alpha_{01}B + \alpha_{20}A^2 + \alpha_{11}BA + \alpha_{02}B^2 + \dots + \alpha_{nk}B^kA^n,$$

или выбирая симетризованные однородные полиномы, но в случае коммутирующих операторов A и B они все приводят к одинаковому результату.

Пусть A и B — нормальные коммутирующие операторы и

$$A = \sum_{i=1}^{r} \alpha_i P_i, \quad B = \sum_{j=1}^{s} \beta_j Q_j$$

— их спектральные разложения. Для каждой функции двух переменных

$$F: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$$

определим оператор

$$F(A,B) = \sum_{i=1}^{r} \sum_{j=1}^{s} F(\alpha_i, \beta_j) P_i Q_j.$$

Так как операторы A и B коммутируют, то коммутируют и ортопроекторы P_i и Q_j . Поэтому операторы P_iQ_j являются ортопроекторами для любых $i=1,\ldots,r,\,j=1,\ldots,s,$ и F(A,B) является нормальным оператором, который называется функцией от коммутирующих нормальных операторов A и B.

Рассмотрим нормальный оператор

$$C = \sum_{i=1}^{r} \sum_{j=1}^{s} [(i-1)s + j] P_i Q_j = \sum_{i=1}^{r} \sum_{j=1}^{s} \lambda_{ij} P_i Q_j,$$

где $\lambda_{ij} = (i-1)s + j$. Тогда для полиномов

$$p_{ij}(t) = \prod_{k \neq i, l \neq j} \frac{t - \lambda_{kl}}{\lambda_{ij} - \lambda_{kl}} = \prod_{k \neq i, l \neq j} \frac{t - (k-1)s - l}{(i-k)s - l + j}$$

получим, что $p_{ij}(C) = P_i Q_j$, а для полинома

$$p(t) = \sum_{i=1}^{r} \sum_{j=1}^{s} \prod_{k \neq i, l \neq j} \frac{t - \lambda_{kl}}{\lambda_{ij} - \lambda_{kl}} F(\alpha_i, \beta_j) =$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} \prod_{k \neq i, l \neq j} \frac{t - (k-1)s - l}{(i-k)s - l + j} F(\alpha_i, \beta_j)$$

получим, что p(C) = F(A, B).

Теорема 5.4.4. Пусть $A, B \in \mathcal{B}(\mathbf{H})$ — нормальные операторы. Операторы A и B коммутируют тогда и только тогда, когда существует нормальный оператор $C \in \mathcal{B}(\mathbf{H})$ и функции $f, g: \mathbb{C} \to \mathbb{C}$ такие, что

$$A = f(C), \quad B = g(C).$$

При этом существует такая функция $h: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, что C = h(A, B).

Доказательство. Необходимость. Пусть A и B — нормальные коммутирующие операторы и

$$A = \sum_{i=1}^{r} \alpha_i P_i, \quad B = \sum_{j=1}^{s} \beta_j Q_j$$

— их спектральные разложения. Тогда коммутируют и ортопроекторы P_i и Q_j :

$$P_i Q_j = Q_j P_i, \quad i = 1, \dots, r, \ j = 1, \dots, s.$$

Рассмотрим произвольную функцию $h: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$, все значения $h(\alpha_i, \beta_j)$ которой различны, $i = 1, \ldots, r, j = 1, \ldots, s$. Тогда оператор

$$C = h(A, B) = \sum_{i=1}^{r} \sum_{j=1}^{s} h(\alpha_i, \beta_j) P_i Q_j$$

нормален. Выберем функции $f, g: \mathbb{C} \to \mathbb{C}$ так, чтобы для любых $i=1,\ldots,r,\,j=1,\ldots,s$ выполнялись равенства:

$$f(h(\alpha_i, \beta_j)) = \alpha_i, \quad g(h(\alpha_i, \beta_j)) = \beta_j.$$

Тогда

$$f(C) = \sum_{i=1}^{r} \sum_{j=1}^{s} f(h(\alpha_i, \beta_j)) P_i Q_j = \sum_{i=1}^{r} \sum_{j=1}^{s} \alpha_i P_i Q_j =$$

$$= \sum_{i=1}^{r} \alpha_i P_i \sum_{j=1}^{s} Q_j = \sum_{i=1}^{r} \alpha_i P_i = A,$$

$$g(C) = \sum_{i=1}^{r} \sum_{j=1}^{s} g(\mathbf{h}(\alpha_{i}, \beta_{j})) P_{i} Q_{j} = \sum_{i=1}^{r} \sum_{j=1}^{s} \beta_{j} P_{i} Q_{j} =$$

$$= \sum_{i=1}^{r} P_{i} \sum_{j=1}^{s} \beta_{j} Q_{j} = \sum_{j=1}^{s} \beta_{j} Q_{j} = B.$$

Достаточность. Пусть существует нормальный оператор C и функции $f,g:\mathbb{C}\to\mathbb{C}$ такие, что A=f(C), B=g(C) и спектральное разложение оператора C имеет вид:

$$C = \sum_{k=1}^{l} \gamma_k R_k.$$

Тогда

$$A = f(C) = \sum_{k=1}^{l} f(\gamma_k) R_k, \quad B = g(C) = \sum_{k=1}^{l} g(\gamma_k) R_k,$$

и поэтому операторы A и B коммутируют.

Замечание 5.4.5. Отметим, что функции f, g могут выбираться как полиномы одной комплексной переменной, а функция h — как полином двух комплексных переменных.

Теорема 5.4.6. Оператор $A \in \mathcal{B}(\mathbf{H})$ является нормальным тогда и только тогда, когда для любого оператора $B \in \mathcal{B}(\mathbf{H})$ следующие условия эквивалентны:

- (i) AB = BA;
- (ii) $A^*B = BA^*$.

Доказательство. Пусть A — нормальный оператор. Тогда, в силу утверждения 5.4.1(ii), оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A тогда и только тогда, когда он коммутирует с оператором A^* .

Обратно, пусть оператор $B \in \mathcal{B}(\mathbf{H})$ коммутирует с оператором A тогда и только тогда, когда он коммутирует с оператором A^* . Тогда, полагая B = A, получим, что $AA^* = A^*A$, то есть оператор A нормален.

Глава 6

Несамосопряженные операторы

В предыдущих главах было показано, что для классов самосопряженных, унитарных и более широкого класса нормальных операторов существуют спектральные разложения, позволяющие указать для таких операторов каноническую форму. А именно, было показано, что для таких операторов существует собственный ортонормированный базис, или, другими словами, что матрица произвольного нормального (самосопряженного, унитарного) оператора унитарными преобразованиями может быть сведена к диагональной матрице.

Матрицу произвольного оператора *преобразованиями подобия* можно свести к нормальной жордановой форме, которая является канонической (однозначно определенной с точностью до перестановки жордановых клеток) формой в случае, когда в линейном пространстве нет скалярного произведения или по тем или иным соображениям при приведении матрицы не нужно следить за унитарностью преобразований.

В случае же, когда допускаются только преобразования, сохраняющие длины векторов и углы между ними (т.е. унитарные преобразования), задача приведения матрицы линейного оператора к канонической форме становится чрезвычайно сложной и в настоящее время не имеет удовлетворительного решения. (Более того, эта задача используется в качестве эталона сложности для классификационных задач подобного типа — является стандартной "дикой" задачей).

В этой главе мы изучим некоторые общие свойства операторов, которые не приводят к спектральным разложениям, но оказываются полезными при решении различных задач.

Полезным представлением для оператора является его полярное разложение, являющееся операторным аналогом полярного разложения ком-

плексного числа в произведение аргумента и модуля. В операторном случае в качестве аргумента (фазы) выступает частично изометрический оператор, поэтому изложение материала о полярных разложениях операторов (параграф 6.2) мы начнем с определения и изучения свойств частично изометрических операторов (параграф 6.1).

Изучение частичных изометрий, любая степень которых тоже является частичной изометрией, приводит к выделению класса центрированных частичных изометрий и общего класса центрированных операторов, основные свойства которых изложены в параграфе 6.3.

В параграфе 6.4 мы покажем, как унитарными преобразованиями матрицу произвольного оператора можно привести к верхнетреугольной форме. Такое приведение неоднозначно, поэтому треугольная форма не может считаться канонической формой матрицы линейного оператора. Вместе с тем эта форма оказывается удобной в приложениях.

Параграф 6.5 содержит некоторые свойства *s*-чисел линейного оператора, которые позволяют получать оценки модулей собственных значений и строить представление Шмидта для произвольного линейного оператора.

6.1 Частичные изометрии

6.1.1 Частичные изометрии и их свойства

Определение 6.1.1. Оператор $V \in \mathcal{B}(\mathbf{H})$ называется *частично изометрическим*, если для некоторого разложения $\mathbf{H} = \mathbf{M} \oplus \mathbf{M}^{\perp}$

$$||V\mathbf{x}|| = \begin{cases} ||\mathbf{x}||, & \mathbf{x} \in \mathbf{M}, \\ 0, & \mathbf{x} \in \mathbf{M}^{\perp}. \end{cases}$$

Подпространство \mathbf{M} называется начальным подпространством или областью изометричности, а подпространство

$$\mathbf{N} = \operatorname{Ran}(V) = \{V\mathbf{x} : \mathbf{x} \in \mathbf{H}\}\$$

— конечным подпространством частичной изометрии V. Ортопроектор $P_{\mathbf{M}}$ называется начальным ортопроектором, а $P_{\mathbf{N}}$ — конечным ортопроектором частичной изометрии V.

Теорема 6.1.2. $Ecnu\ V$ — частично изометрический оператор c начальным подпространством \mathbf{M} и конечным подпространством \mathbf{N} , то

(i)
$$V^*V = P_{\mathbf{M}}$$
;

- (ii) V^* частично изометрический оператор начальным подпространством ${\bf N}$ и конечным подпространством ${\bf M}$;
- (iii) $VV^* = P_N$.

Доказательство. (i). Пусть V — частично изометрический оператор с областью изометричности ${\bf M}$ и конечным подпространством ${\bf N}$. Тогда для любого ${\bf x} \in {\bf H}$

$$(V^*V\mathbf{x}, \mathbf{x}) = (V\mathbf{x}, V\mathbf{x}) = (V(P_{\mathbf{M}} + P_{\mathbf{M}^{\perp}})\mathbf{x}, V(P_{\mathbf{M}} + P_{\mathbf{M}^{\perp}})\mathbf{x}) =$$

$$= (VP_{\mathbf{M}}\mathbf{x}, VP_{\mathbf{M}}\mathbf{x}) = ||VP_{\mathbf{M}}\mathbf{x}||^2 = ||P_{\mathbf{M}}\mathbf{x}||^2 =$$

$$= (P_{\mathbf{M}}\mathbf{x}, P_{\mathbf{M}}\mathbf{x}) = (P_{\mathbf{M}}\mathbf{x}, \mathbf{x}).$$

Следовательно, $V^*V = P_{\mathbf{M}}$.

(ii). Если $\mathbf{y} \in \mathbf{N} = \{V\mathbf{x} : \mathbf{x} \in \mathbf{H}\}, \mathbf{y} \neq \mathbf{0}$, то существует вектор $\mathbf{x} \in \mathbf{M}$ такой, что $\mathbf{y} = V\mathbf{x}$. Тогда, поскольку по доказанному выше $V^*V = P_{\mathbf{M}}$, имеем

$$V^*\mathbf{y} = V^*V\mathbf{x} = P_{\mathbf{M}}\mathbf{x}$$

и $||V^*\mathbf{y}|| = ||\mathbf{x}|| = ||V\mathbf{x}|| = ||\mathbf{y}||$, т.е. оператор V^* изометрический на \mathbf{N} . Так как, с другой стороны,

$$\operatorname{Ker} V^* = \mathbf{H} \ominus \operatorname{Ran} V = \mathbf{H} \ominus \mathbf{N},$$

 $\operatorname{Ran} V^* = \mathbf{H} \ominus \operatorname{Ker} V = \mathbf{H} \ominus \mathbf{M}^{\perp} = \mathbf{M}.$

ТО

$$||V^*\mathbf{y}|| = \begin{cases} ||\mathbf{y}||, & \mathbf{y} \in \mathbf{N}, \\ 0, & \mathbf{y} \in \mathbf{N}^{\perp}, \end{cases}$$

и V^* — частично изометрический оператор с начальным подпространством ${f M}$ и конечным подпространством ${f N}.$

Теорема 6.1.3. Следующие условия эквивалентны:

- $(i) \ V$ частично изометрический оператор;
- (ii) $V^*V = P opmonpoe\kappa mop;$
- (iii) $VV^*V = V$.

Доказательство. Импликация (i) \Rightarrow (ii) следует из теоремы 6.1.2. При этом $V^*V=P=P_{\mathbf{M}}$ — начальный ортопроектор частичной изометрии V.

(ii) \Rightarrow (i). Положим $\mathbf{M} = (\mathrm{Ker}(V^*V))^{\perp}$. Поскольку V^*V — ортопроектор, то $V^*V = P_{\mathbf{M}}$ (ортопроектор однозначно определяется своим ядром). Тогда, очевидно, справедливо разложение

$$\mathbf{H} = \mathbf{M} \oplus \operatorname{Ker}(V^*V) = \mathbf{M} \oplus \mathbf{M}^{\perp}.$$

Для $\mathbf{x} \in \mathbf{M}$ имеем

$$||V\mathbf{x}||^2 = (V\mathbf{x}, V\mathbf{x}) = (V^*V\mathbf{x}, \mathbf{x}) = (P_{\mathbf{M}}\mathbf{x}, \mathbf{x}) = (\mathbf{x}, \mathbf{x}) = ||\mathbf{x}||^2,$$

а для $\mathbf{x} \in \mathbf{M}^\perp$ имеем

$$||V\mathbf{x}||^2 = (V\mathbf{x}, V\mathbf{x}) = (V^*V\mathbf{x}, \mathbf{x}) = (P_{\mathbf{M}}\mathbf{x}, \mathbf{x}) = 0,$$

т.е. V — частичная изометрия с начальным подпространством ${f M}$

(i) \Rightarrow (iii). Пусть V — частично изометрический оператор. Как показано в теореме 6.1.2, $VV^* = P_{\mathbf{N}}$ — проектор на конечное подпространство $\mathbf{N} = \{V\mathbf{x} : \mathbf{x} \in \mathbf{H}\}$. Поэтому для любого $\mathbf{y} \in \mathbf{N}$ имеем: $VV^*\mathbf{y} = P_{\mathbf{N}}\mathbf{y} = \mathbf{y}$. Поскольку для любого $\mathbf{x} \in \mathbf{H}$ имеем $V\mathbf{x} \in \mathbf{N}$, то

$$VV^*V\mathbf{x} = P_{\mathbf{N}}V\mathbf{x} = V\mathbf{x}.$$

(iii) \Rightarrow (ii). Пусть $VV^*V = V$. Тогда

$$V^*V = V^*VV^*V = (V^*V)^2.$$

Так как, очевидно, $(V^*V)^* = V^*V^{**} = V^*V$, то получаем, что $V^*V = P$ — ортопроектор. \Box

Замечание 6.1.4. Отметим несколько фактов, связанных с частичными изометриями.

- (i) V частичная изометрия тогда и только тогда, когда $V^*VV^* = V^*$.
- (ii) Любую частичную изометрию V можно продолжить до унитарного оператора U, т.е. существует такой унитарный оператор U, что

$$UV^*V = V$$
.

(iii) Оператор V^*V является ортопроектором тогда и только тогда когда VV^* — ортопроектор.

Утверждение 6.1.5. Если V — ненулевая частичная изометрия, то

$$||V|| = 1.$$

Доказательство. Если V — частично изометрический оператор с начальным подпространством $\mathbf{M} \neq \{0\}$, то

$$||V\mathbf{x}|| = \begin{cases} ||\mathbf{x}||, & \mathbf{x} \in \mathbf{M}, \\ 0, & \mathbf{x} \in \mathbf{M}^{\perp}. \end{cases}$$

Поэтому

$$||V|| = \sup_{\|\mathbf{x}\|=1} ||V\mathbf{x}|| = \sup_{\mathbf{x} \in \mathbf{M}, \|\mathbf{x}\|=1} ||V\mathbf{x}|| = 1.$$

6.1.2 Примеры частичных изометрий

Пример 6.1.6. Любой унитарный оператор U является частичной изометрией.

Упражнение 6.1.7. Доказать, что частичная изометрия V обратима тогда и только тогда, когда она является унитарным оператором.

Упражнение 6.1.8. Найти начальное и конечное подпространства частичной изометрии U, являющейся унитарным оператором.

Замечание 6.1.9. Для унитарного оператора U любая его степень U^n является унитарным оператором, а следовательно, и частичной изометрией. Для произвольной частичной изометрии это не так.

Пример 6.1.10. Оператор

$$S = \begin{pmatrix} 0 & c_1 & s_1 & 0 \\ 0 & 0 & 0 & c_2 \\ 0 & 0 & 0 & s_2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

где $0 < c_1, c_2, s_1, s_2 < 1, c_1^2 + s_1^2 = 1, c_2^2 + s_2^2 = 1,$ является частичной изометрией, но S^2 не является частичной изометрией при $c_1 \neq c_2$.

Упражнение 6.1.11. Найти начальное и конечное подпространства частичной изометрии S.

Замечание 6.1.12. Непосредственно проверяется, что построенный в примере 6.1.10 оператор S удовлетворяет соотношению: $S^3=0$, т.е. является нильпотентным. Таким образом, существуют частичные изометрии, являющиеся нильпотентными операторами.

Пример 6.1.13. Нильпотентный оператор вида

$$T = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ & & & \ddots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

является частичной изометрией, причем при любом натуральном n оператор T^n также является частично изометрическим.

Упражнение 6.1.14. Найти начальное и конечное подпространства частичной изометрии T.

6.2 Полярное разложение линейного оператора

Теорема 6.2.1. Любой оператор $A \in \mathcal{B}(\mathbf{H})$ однозначно представим в виде

$$A = VB$$
,

где V — частично изометрический оператор с начальным подпространством $\mathrm{Ran}(B)$ и конечным подпространством $\mathrm{Ran}(A)$, а B — неотрицательный оператор.

Доказательство. Существование. Рассмотрим оператор

$$|A| = (A^*A)^{\frac{1}{2}} = \sqrt{A^*A}.$$

Так как оператор A^*A неотрицательный, то, в силу теоремы 3.7.11, оператор |A| существует.

Определим частично изометрический оператор

$$V \colon \operatorname{Ran}(|A|) \to \operatorname{Ran}(A)$$

полагая

$$V\mathbf{y} = \begin{cases} A\mathbf{x}, & \mathbf{y} = |A|\mathbf{x} \in \text{Ran}(|A|), \\ \mathbf{0}, & \mathbf{y} \in \text{Ran}(|A|)^{\perp}. \end{cases}$$

Так как для $\mathbf{y} = |A| \mathbf{x}$

$$||V\mathbf{y}||^2 = (A\mathbf{x}, A\mathbf{x}) = (A^2\mathbf{x}, \mathbf{x}) = (A^*A\mathbf{x}, \mathbf{x}) = (|A|^2\mathbf{x}, \mathbf{x}) = ||A|\mathbf{x}||^2,$$

TO

$$||V\mathbf{y}|| = |||A|\mathbf{x}|| = ||\mathbf{y}||$$

на Ran(|A|). Поэтому частично изометрический оператор V определен корректно. По построению оператора V, для любого $\mathbf{x} \in \mathbf{H}$ и $\mathbf{y} = |A|\mathbf{x}$ имеем:

$$A\mathbf{x} = V\mathbf{y} = V|A|\mathbf{x}.$$

Таким образом,

$$A = V|A|$$
,

где V — частично изометрический оператор с начальным подпространством $\operatorname{Ran}(|A|)$ и конечным подпространством $\operatorname{Ran}(A)$, и $|A| = \sqrt{A^*A} \ge 0$.

 $E \partial u h c m b e h h o c m b e h o c m e$

$$A = V_1 B$$
,

где V_1 — частично изометрический оператор с начальным подпространством $\mathrm{Ran}(B)$ и конечным подпространством $\mathrm{Ran}(A)$, а B — неотрицательный оператор. Тогда

$$A = V|A| = V_1B, \quad A^* = |A|V^* = BV_1^*,$$

И

$$B^{2} = BP_{\text{Ran}(B)}B = B(V_{1}^{*}V_{1})B = (BV_{1}^{*})(V_{1}B) =$$

$$= (|A|V^{*})(V|A|) = |A|P_{\text{Ran}(|A|)}|A| = |A|^{2} = A^{*}A.$$

В силу единственности квадратного корня из неотрицательного оператора A*A (теорема 3.7.11(i)), имеем:

$$B = \sqrt{A^*A} = |A|.$$

Следовательно, V и V_1 два частично изометрических оператора с начальным подпространством $\mathrm{Ran}(|A|)$ и конечным подпространством $\mathrm{Ran}(A)$, причем для любого $\mathbf{x} \in \mathbf{H}$

$$V_1|A|\mathbf{x} = A\mathbf{x} = V|A|\mathbf{x}.$$

Таким образом, $V_1 = V$.

Определение 6.2.2. Представление оператора $A \in \mathcal{B}(\mathbf{H})$ в виде

$$A = V|A|,$$

где V — частично изометрический оператор с начальным подпространством $\mathrm{Ran}(|A|)$ и конечным подпространством $\mathrm{Ran}(A)$, а $|A| = \sqrt{A^*A}$, называется полярным разложением оператора A. Оператор |A| называется модулем оператора A.

Следствие 6.2.3. Для того чтобы оператор $A \in \mathcal{B}(\mathbf{H})$ был обратимым, необходимо и достаточно, чтобы в полярном разложении оператора A

$$A = V|A|$$

частично изометрический оператор V был унитарным.

Доказательство. Необходимость. Пусть оператор A обратим. Рассмотрим оператор $U = |A|A^{-1}$. Тогда

$$U^*U = (A^{-1})^*|A||A|A^{-1} = (A^{-1})^*(A^*A)A^{-1} = [(A^{-1})^*A^*][AA^{-1}] = I.$$

Следовательно, U — унитарный оператор. Кроме того,

$$A^{-1}U^*|A| = A^{-1}(A^{-1})^*|A||A| = A^{-1}(A^{-1})^*A^*A =$$

= $A^{-1}[(A^{-1})^*A^*]A = I$,

поэтому оператор |A| обратим и $|A|^{-1}=A^{-1}U^*$. Следовательно, оператор

$$U^* = U^{-1} = (|A|A^{-1})^{-1} = A|A|^{-1}$$

унитарный и

$$A = (A|A|^{-1})|A|$$

— полярное разложение оператора A.

Достаточность. Пусть A=V|A| — полярное разложение оператора A, и V — унитарный оператор. Так как $VV^*=I=P_{\mathrm{Ran}(A)}$, то $\mathrm{Ran}(A)=\mathbf{H}$ и потому оператор A обратим.

Замечание 6.2.4. Поскольку оператор V в полярном разложении A = V|A| есть частичная изометрия с начальным подпространством Ran(|A|), ортопроектор V^*V коммутирует с |A|:

$$V^*V|A| = |A|V^*V.$$

Замечание 6.2.5. Если A=V|A| — полярное разложение оператора A, то частично изометрический оператор V можно продолжить до унитарного оператора U такого, что

$$UV^*V = V$$
.

Тогда разложение A = U|A| называют полярным разложением оператора A с унитарным оператором U. Однако, если оператор |A| в этом разложении определен однозначно, то унитарный оператор U — не единственный. В силу следствия 6.2.3, этот унитарный оператор определяется однозначно только для обратимого оператора A.

Следствие 6.2.6. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ существует единственный оператор $C \in \mathcal{B}_+(\mathbf{H})$ и (в общем случае не единственный) унитарный оператор $U_1 \in \mathcal{U}(\mathbf{H})$ такие, что

$$A = CU_1$$
.

Доказательство. Пусть $A^* = W|A^*|$ —полярное разложение оператора A^* с унитарным оператором W. Тогда

$$A = |A^*|W^* = CU_1,$$

где $C = |A^*| \in \mathcal{B}_+(\mathbf{H})$ и $U_1 = W^* \in \mathcal{U}(\mathbf{H})$, при этом оператор C как модуль оператора A^* определен однозначно.

Следствие 6.2.7. Пусть A = U|A| — полярное разложение оператора $A \in \mathcal{B}(\mathbf{H})$ с унитарным оператором U. Для того, чтобы оператор A был нормальным, необходимо и достаточно, чтобы операторы |A| и U коммутировали.

Доказательство. Необходимость. Пусть A — нормальный оператор. Тогда

$$AA^* = U|A||A|U^* = U|A|^2U^{-1},$$

 $A^*A = |A|U^*U|A| = |A|^2.$

Так как $AA^* = A^*A$, то

$$U|A|^2U^{-1} = |A|^2.$$

Следовательно, $U|A|^2 = |A|^2 U$. Но

$$|A| = f(|A|^2) = (|A^2|)^{1/2}.$$

Поэтому U коммутирует также с |A|: U|A| = |A|U. Достаточность. Пусть A = U|A| и U|A| = |A|U. Тогда

$$AA^* = U|A||A|U^* = |A|^2UU^* = |A|^2 = A^*A,$$

П

т.е. A — нормальный оператор.

Теорема 6.2.8. Для любого линейного оператора $A \in \mathcal{B}(\mathbf{H})$ существуют унитарные операторы $V, W \in \mathcal{U}(\mathbf{H})$ и диагональный оператор $D \in \mathcal{B}(\mathbf{H})$ такие, что

$$A = VDW$$
.

Доказательство. Пусть A = U|A| — полярное разложение оператора A, где $U \in \mathcal{U}(\mathbf{H})$. Так как оператор |A| самосопряжен, то в силу замечания $4.2.7(\mathrm{iii})$, существует унитарный оператор $W \in \mathcal{U}(\mathbf{H})$ такой, что

$$|A| = W^{-1}DW,$$

где

$$D = \begin{pmatrix} \lambda_1 I_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r I_r \end{pmatrix},$$

 $\lambda_1, \ldots, \lambda_r$ — попарно различные собственные значения оператора |A|. Следовательно,

$$A = UW^{-1}DW = VDW,$$

где $V = UW^{-1}$ — унитарный оператор.

Теорема 6.2.9. Если самосопряженные операторы $A, B \in \mathcal{B}_h(\mathbf{H})$ подобны:

$$CA = BC$$
.

u C = U|C| —полярное разложение обратимого оператора C, то

$$UA = BU$$
,

то есть операторы А и В унитарно подобны.

Доказательство. Пусть CA = BC и C = U|C|. Тогда

$$U|C|A = BU|C|$$
.

Следовательно,

$$|C|A = U^{-1}BU|C|, \quad A = |C|^{-1}U^{-1}BU|C| \quad \text{if} \quad B = U|C|A|C|^{-1}U^{-1}.$$

Так как $B^* = B$, то

$$B = (U|C|A|C|^{-1}U^{-1})^* = U|C|^{-1}A|C|U^{-1}.$$

Поэтому

$$|C|^2 A = |C|(|C|A) = |C|U^{-1}BU|C| =$$

$$= |C|U^{-1}(U|C|^{-1}A|C|U^{-1})U|C| = A|C|^2.$$

Следовательно, оператор A коммутирует с самосопряженным оператором $|C|^2$. Поэтому, в силу следствия 3.7.13, |C|A = A|C|. Тогда

$$U|C|A = UA|C| = BU|C|.$$

Оператор |C| — обратим. Поэтому UA = BU.

6.3 Центрированные операторы

6.3.1 Определение центрированного оператора

Определение 6.3.1. Оператор $B \in \mathcal{B}(\mathbf{H})$ называется *центрированным*, если операторы $B^k(B^*)^k$, $(B^*)^kB^k$ образуют коммутативное семейство, т.е. для всех $k, j \in \mathbb{N}$ выполняются соотношения:

$$[B^{k}(B^{*})^{k}, B^{j}(B^{*})^{j}] = B^{k}(B^{*})^{k}B^{j}(B^{*})^{j} - B^{j}(B^{*})^{j}B^{k}(B^{*})^{k} = 0,$$

$$[B^{k}(B^{*})^{k}, (B^{*})^{j}B^{j}] = B^{k}(B^{*})^{k}(B^{*})^{j}B^{j} - (B^{*})^{j}B^{j}B^{k}(B^{*})^{k} = 0,$$

$$[(B^{*})^{k}B^{k}, (B^{*})^{j}B^{j}] = (B^{*})^{k}B^{k}(B^{*})^{j}B^{j} - (B^{*})^{j}B^{j}(B^{*})^{k}B^{k} = 0.$$

Приведем примеры центрированных операторов.

Пример 6.3.2. Пусть $A = A^*$ — самосопряженный оператор в **H**. Тогда A является центрированным. Действительно, в этом случае $A^k(A^*)^k = (A^*)^k A^k = A^{2k}$ и центрированность следует из того, что степени оператора коммутируют между собой.

Пример 6.3.3. Пусть N — нормальный оператор. Тогда N является центрированным. Действительно, для нормального оператора

$$N^k(N^*)^k = (N^*)^k N^k = (NN^*)^k, \quad k = 1, 2, \dots,$$

и центрированность следует из коммутации степеней оператора NN^* .

В частности, всякий унитарный оператор является центрированным.

Упражнение 6.3.4. Проверить, что оператор

$$B = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix}$$

является центрированным при любых $a, b \in \mathbb{C}$.

Упражнение 6.3.5. Проверить, что оператор

$$B = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

не является центрированным.

6.3.2 Центрированные частичные изометрии

Лемма 6.3.6. Если V- такой частично изометрический оператор, что для любого $k=1,2,\ldots$ оператор V^k тоже является частично изометрическим (т.е. V порождает полугруппу частичных изометрий), то V- центрированный оператор.

Доказательство. Обозначим

$$P_k = V^k (V^*)^k$$
, $Q_k = (V^*)^k V^k$, $k = 1, 2, \dots$

Поскольку V^k — частично изометрический оператор, то, в силу теоремы 6.1.3, операторы $\{P_k\}_{k=1}^\infty$ и $\{Q_k\}_{k=1}^\infty$ являются ортопроекторами. Для доказательства центрированности оператора V нужно показать, что семейство ортопроекторов

$$\{P_k, Q_k, k = 1, 2, \dots\}$$

коммутативно.

Покажем сначала, что каждое из семейств $\{P_k\}_{k=1}^{\infty}$ и $\{Q_k\}_{k=1}^{\infty}$, $k=1,\ 2,\ \dots$ коммутативно. Для этого достаточно, в силу утверждения $3.2.5(\mathrm{iii})$, показать, что

$$P_k P_l = P_l$$
, $Q_k Q_l = Q_l$ для $k < l$.

Действительно, пусть k < l. Тогда

$$P_k P_l = P_k V^l (V^*)^l = P_k V^k V^{l-k} (V^*)^l.$$

Поскольку P_k — проектор на образ V^k , т.е. $P_k = V^k (V^*)^k$ и V^k — частичная изометрия, то $P_k V^k = V^k (V^*) V^k = V^k$. Поэтому,

$$P_k P_l = V^k V^{l-k} (V^*)^l = P_l.$$

Следовательно, $P_k P_l = P_l P_k$ для любых $k, l = 1, 2, \dots$ Для ортопроекторов $\{Q_k\}_{k=1}^\infty$ коммутативность доказывается аналогично.

Покажем теперь, что

$$P_k Q_l = Q_l P_k, \quad k, l = 1, 2, \dots$$

Имеем:

$$Q_{k+l} = (V^*)^{k+l} V^{k+l} = (V^*)^k Q_l V^k.$$

Так как Q_{k+l} — ортопроектор, то $Q_{k+l} = Q_{k+l}^2$, поэтому

$$(V^*)^k Q_l V^k = (V^*)^k Q_l V^k (V^*)^k Q_l V^k = (V^*)^k Q_l P_k Q_l V^k.$$

Умножая это равенство на V^k с
лева и на $(V^*)^k$ справа, получим:

$$P_k Q_l P_k = P_k Q_l P_k Q_l P_k = (P_k Q_l P_k)^2,$$

что, согласно утверждению 3.5.5, возможно тогда и только тогда, когда ортопроекторы P_k и Q_l коммутируют. \square

6.3.3 Критерий центрированности

Класс центрированных операторов может быть определен в других терминах. А именю, пусть степени оператора B имеют полярные разложения

$$B^k = V_k C_k, \quad k = 1, 2, \dots,$$

где V_k — частично изометрические, а C_k — неотрицательные операторы.

Ниже мы покажем, что оператор B является центрированным тогда и только тогда, когда изометрические компоненты V_k в полярном разложении $B^k = V_k C_k$ образуют полугруппу:

$$V_k V_l = V_{k+l}$$
 $k, l = 1, 2 \dots,$

т.е. имеем $V_k = V^k$, где $V_1 = V$.

В следующей теореме приведен критерий центрированности оператора.

Теорема 6.3.7. Пусть B = VC - nолярное разложение оператора B. Оператор B является центрированным тогда и только тогда, когда для любого $k = 1, 2, \ldots$ полярное разложение оператора B^k имеет вид

$$B^k = V^k C_k,$$

где C_k — неотрицательные операторы.

Доказательство. Пусть оператор B=VC центрирован. Так как оператор C неотрицателен и

$$(VCV^*)^2 = (VCV^*)(VCV^*) = (VC)(CV^*) = BB^*,$$

то оператор VCV^* является (однозначно определенным) неотрицательным квадратным корнем из оператора BB^* . Поскольку оператор B центрирован, то BB^* коммутирует с B^*B , и следовательно, операторы VCV^* и $C=|B|=\sqrt{B^*B}$ коммутируют как функции от коммутирующих операторов (см. упражнение 3.7.14). Кроме того, согласно свойствам полярного разложения (замечание 6.2.4),

$$C = V^*VC = CV^*V$$
.

Поэтому

$$B^2 = VCVC = (VCV)C = (VCV)(CV^*V) = V(C)(VCV^*)V =$$
$$= V(VCV^*)CV = V^2(CV^*CV).$$

Покажем, что оператор CV^*CV является модулем оператора B^2 . Действительно, этот оператор самосопряжен:

$$CV^*CV = (V^*V)CV^*CV = V^*(VCV^*)(C)V = V^*C(VCV^*)V = V^*CVC = (CV^*CV)^*.$$

Более того, поскольку операторы VCV^* и C являются коммутирующими неотрицательными операторами, то их произведение также является неотрицательным оператором (теорема 3.7.11(iii)), а следовательно, оператор

$$V^*C(VCV^*)V = CV^*CV$$

также неотрицателен. Снова пользуясь равенствами $C = V^*VC = CV^*V$ и коммутацией VCV^* и C, находим, что квадрат этого оператора равен

$$(CV^*CV)(CV^*CV) = CV^*C(VCV^*)(C)V = CV^*C^2(VCV^*)V =$$

= $CV^*C^2VC = CV^*CV^*VCVC = (B^*)^2B^2$.

Следовательно, $C_2 = CV^*CV$.

Покажем, что $\operatorname{Ker} B^2 = \operatorname{Ker} V^2 = \operatorname{Ker} C_2$. То, что $\operatorname{Ker} B^2 = \operatorname{Ker} C_2$ следует из только что установленного равенства $(B^*)^2B^2 = C_2^2$. Покажем, что $\operatorname{Ker} B^2 = \operatorname{Ker} V^2$. Для произвольного вектора f имеем: $f \in \operatorname{Ker} B^2$ тогда и только тогда, когда $Bf \in \operatorname{Ker} B$, или CBf = 0, поскольку $\operatorname{Ker} B = \operatorname{Ker} C$. Последнее условие эквивалентно

$$0 = CVCf = CVCV^*Vf = VCV^*CVf = BV^*CVf,$$

которое, в силу равенства $\operatorname{Ker} B = \operatorname{Ker} V = \operatorname{Ker} C$, в свою очередь, эквивалентно $0 = VV^*CV$ f = CV f или V^2 f = 0.

Таким образом, мы показали, что полярное разложение оператора B^2 имеет вид $B^2 = V^2 C_2$.

Аналогично, по индукции, получим:

$$B^{n} = BB^{n-1} = VCV^{n-1}C_{n-1} = V^{n}C_{n-1}(V^{*})^{n-1}CV^{n-1},$$

где

$$C_n = C_{n-1}(V^*)^{n-1}CV^{n-1} = (V^*)^{n-1}CV^{n-1}C_{n-1}$$

— неотрицательный самосопряженный оператор, квадрат которого равен $(B^*)^n B^n$, и $\operatorname{Ker} B^n = \operatorname{Ker} C_n = \operatorname{Ker} V^n$.

Обратно, пусть для всех $n=1, 2, \ldots$ полярное разложение B^n имеет вид $B^n=V^nC_n$. Тогда V^n — частичные изометрии. Как было показано в лемме 6.3.6, порожденная ими полугруппа является полугруппой центрированных операторов. Из соотношения $B^lB^k=B^{l+k}$ имеем:

$$V^{k}C_{k}V^{l}C_{l} = V^{k+l}C_{k+l}. (6.1)$$

Домножая это равенство на $(V^*)^l(V^*)^k$ справа, имеем:

$$(V^*)^l C_k V^l C_l = C_{k+l}. (6.2)$$

Поскольку оператор C_{k+l} самосопряжен, переходя в последнем равенстве к сопряженным операторам, получим:

$$(V^*)^l C_k V^l C_l = C_l (V^*)^l C_k V^l, (6.3)$$

т.е., операторы $V_l^*C_kV_l$ и C_l коммутируют. Тогда для k>l, согласно (6.2) и (6.3), имеем:

$$C_k C_l = C_{l+(k-l)} C_l = (V^*)^l C_{k-l} V^l C_l C_l = C_l (V^*)^l C_{k-l} V^l C_l = C_l C_k,$$

T.e. $[(B^*)^k B^k, (B^*)^l B^l] = 0.$

Домножая (6.1) на $(V^*)^k$ справа и на $(V^*)^l$ слева, получим:

$$C_k V^l C_l (V^*)^l = V^l C_{k+l} (V^*)^l.$$
 (6.4)

Правая часть (6.4) — самосопряженный оператор. Переходя к сопряженным операторам, получим, что операторы C_k и $V^lC_l(V^*)^l$ коммутируют, т.е.

$$[(B^*)^k B^k, B^l (B^*)^l] = 0.$$

Наконец, применяя (6.4), для k > l имеем:

$$\begin{split} V^l C_l (V^*)^l V^k C_k (V^*)^k &= V^l C_l V^{k-l} C_k (V^*)^k = \\ &= V^l C_l (V^{k-l} C_{(k-l)+l} (V^*)^{k-l}) (V^*)^l = \\ &= V^l C_l (V^{k-l} C_{k-l} (V^*)^{k-l} C_l) (V^*)^l = \\ &= V^l (C_l V^{k-l} C_{k-l} (V^*)^{k-l}) C_l (V^*)^l = \\ &= V^l V^{k-l} C_k (V^*)^{k-l} C_l (V^*)^l = V^k C_k (V^*)^k V^l C_l (V^*)^l, \end{split}$$

что приводит к $[B^l(B^*)^l, B^k(B^*)^k] = 0$. Таким образом, оператор B центрирован.

Следствие 6.3.8. Оператор V в полярном разложении B = VC центрированного оператора B является центрированной частичной изометрией.

Доказательство. По доказанной теореме 6.3.7 оператор $(V^*)^n V^n$ является ортопроектором на коядро оператора B^n , а $V^n (V^*)^n$ является ортопроектором на коядро оператора $(B^*)^n$.

Замечание 6.3.9. Если $(C_k)_{k=1}^{\infty}$ — также полугруппа, $C_k = C^k$, то оператор C_k коммутирует с V_k , и $(B^k)_{k=1}^{\infty}$ является полугруппой нормальных операторов. Обратно, если $(B^k)_{k=1}^{\infty}$ — полугруппа нормальных операторов, то операторы $(B^k)_{k=1}^{\infty}$ центрированы, причем $(V_k)_{k=1}^{\infty}$ и $(C_k)_{k=1}^{\infty}$ являются полугруппами.

6.4 Треугольное представление матрицы линейного оператора

Теорема 6.4.1 (Теорема Шура). Пусть $A \in \mathcal{B}(\mathbf{H})$, $[A] \in \mathcal{M}_n(\mathbb{C})$ — матрица оператора A в некотором ортонормированном базисе $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ и $\{\lambda_1, \ldots, \lambda_n\}$ — точки его спектра с учетом алгебраической кратности (корни характеристического полинома). Тогда существует такая унитарный оператор $U \in \mathcal{U}(\mathbf{H})$, что матрица оператора U^*AU имеет верхнетреугольный вид:

$$[U^*AU] = [T] = (t_{ij})_{i,j=1}^n, \quad t_{ii} = \lambda_i, \ t_{ij} = 0 \ npu \ i > j; \ i, j = 1, \dots, n.$$

Доказательство. Проведем доказательство методом математический индукции по порядку матрицы [A].

Для n = 1 теорема очевидна.

Допустим, что она верна для матриц, порядок которых меньше n. Пусть теперь матрица $[A] \in \mathcal{M}_n(\mathbb{C})$. Выберем какой-либо нормированный собственный вектор \mathbf{x}_1 оператора A, отвечающий собственному значению λ_1 (такой вектор всегда существует, см. I(L).4.2.3):

$$A\mathbf{x}_1 = \lambda_1 \mathbf{x}_1, \quad \|\mathbf{x}_1\| = 1.$$

Дополним вектор \mathbf{x}_1 произвольным образом до некоторого ортонормированного базиса $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ и рассмотрим унитарный оператор V, отображающий ортонормированный базис $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ в ортонормированный базис $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$. Пусть

$$[A] = (\alpha_{ij})_{i,j=1}^n = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}, \quad [V] = (\xi_{ij})_{i,j=1}^n = \begin{pmatrix} \xi_{11} & \dots & \xi_{1n} \\ \vdots & \ddots & \vdots \\ \xi_{n1} & \dots & \xi_{nn} \end{pmatrix},$$

где

$$\mathbf{x}_j = \xi_{1j}\mathbf{e}_1 + \dots + \xi_{nj}\mathbf{e}_n, \quad j = 1, 2, \dots$$

Тогда

$$[V^*] = (\bar{\xi}_{ji})_{i,j=1}^n = \begin{pmatrix} \bar{\xi}_{11} & \dots & \bar{\xi}_{n1} \\ \vdots & \ddots & \vdots \\ \bar{\xi}_{1n} & \dots & \bar{\xi}_{nn} \end{pmatrix}$$

И

$$[V^*AV] = \begin{pmatrix} \bar{\xi}_{11} & \dots & \bar{\xi}_{n1} \\ \vdots & \ddots & \vdots \\ \bar{\xi}_{1n} & \dots & \bar{\xi}_{nn} \end{pmatrix} \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix} \begin{pmatrix} \xi_{11} & \dots & \xi_{1n} \\ \vdots & \ddots & \vdots \\ \xi_{n1} & \dots & \xi_{nn} \end{pmatrix} =$$

$$=\begin{pmatrix} \bar{\xi}_{11} & \cdots & \bar{\xi}_{n1} \\ \vdots & \ddots & \vdots \\ \bar{\xi}_{1n} & \cdots & \bar{\xi}_{nn} \end{pmatrix} \begin{pmatrix} \lambda_1 \xi_{11} & \gamma_{12} & \cdots & \gamma_{1n} \\ \lambda_1 \xi_{21} & \gamma_{22} & \cdots & \gamma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1 \xi_{n1} & \gamma_{n2} & \cdots & \gamma_{nn} \end{pmatrix} = \begin{pmatrix} \lambda_1 & \beta_{12} & \cdots & \beta_{1n} \\ 0 & \beta_{22} & \cdots & \beta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \beta_{n2} & \cdots & \beta_{nn} \end{pmatrix},$$

где

$$\gamma_{ij} = \sum_{k=1}^{n} \alpha_{ik} \xi_{kj}, \quad \beta_{ij} = \sum_{k=1}^{n} \bar{\xi}_{ki} \gamma_{kj} \quad i = 1, \dots, n, \ j = 2, \dots, n.$$

Таким образом,

$$[V^*AV] = \begin{pmatrix} \lambda_1 & \beta_{12} & \dots & \beta_{1n} \\ \hline 0 & & & \\ \vdots & & & [B] & \end{pmatrix},$$

где [B] — матрица порядка (n-1), имеющая корнями характеристического полинома числа $\lambda_2, \ldots, \lambda_n$ (см. I(L).5.1.2). По предположению индукции, существует унитарная матрица $[W_1]$ порядка (n-1) такая, что

$$[W_1^*BW_1] = \begin{pmatrix} \lambda_2 & * \\ \vdots & \ddots & \\ 0 & \dots & \lambda_n \end{pmatrix} = (t_{ij})_{i,j=1}^n,$$

где $t_{ii} = \lambda_i, \, t_{ij} = 0$ при $i > j; \, i, \, j = 2, \, \dots, \, n.$

Рассмотрим теперь унитарную матрицу

$$[W] = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \hline 0 & & & \\ \vdots & & [W_1] & \\ 0 & & & \end{pmatrix}.$$

Тогда

$$[W^*] \begin{pmatrix} \lambda_1 & \beta_{12} & \dots & \beta_{1n} \\ \hline 0 & & & \\ \vdots & & [B] & \\ 0 & & & \end{pmatrix} [W] = \begin{pmatrix} \lambda_1 & & & * \\ 0 & \lambda_2 & & \\ \vdots & & \ddots & \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Обозначим U = VW. Тогда

$$[U^*AU] = [W^*V^*AVW] = \begin{pmatrix} \lambda_1 & & * \\ \vdots & \ddots & \\ 0 & \dots & \lambda_n \end{pmatrix} = (t_{ij})_{i,j=1}^n,$$

где $t_{ii} = \lambda_i, t_{ij} = 0$ при i > j; i, j = 1, ..., n.

Построенный ортонормированный базис гильбертова пространства \mathbf{H} называется базисом треугольного представления оператора A или базисом Шура, а само представление [T] — треугольной формой Шура матрицы линейного оператора A или представлением Шура.

Замечание 6.4.2. Треугольное представление матрицы линейного оператора, вообще говоря, не единственно.

Упражнение 6.4.3. Показать, что матрицы

$$[A_1] = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \quad [A_2] = \begin{pmatrix} a & \alpha b \\ 0 & c \end{pmatrix}, \quad |\alpha| = 1,$$

унитарно эквивалентны.

Замечание 6.4.4. В случае нормального (самосопряженного, унитарного) оператора базис Шура является собственным базисом и треугольная форма Шура совпадает с каноническим диагональным представлением, которое дается спектральной теоремой.

Теорема 6.4.5 (Неравенство Шура). Пусть $A \in \mathcal{B}(\mathbf{H})$, $[A] = (\alpha_{ij})_{i,j=1}^n$ — матрица оператора A в некотором ортонормированном базисе $\{\mathbf{e}_1,...,\mathbf{e}_n\}$ и $\{\lambda_1,\ldots,\lambda_n\}$ — точки его спектра с учетом алгебраической кратности. Тогда

$$\sum_{k=1}^{n} |\lambda_k|^2 \le \sum_{i,k=1}^{n} |\alpha_{ki}|^2,$$

причем равенство достигается тогда и только тогда, когда оператор A нормальный.

$$[U^*AU] = [T] = \begin{pmatrix} \lambda_1 & \tau_{12} & \dots & \tau_{1n} \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & & \ddots & \tau_{n-1n} \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Тогда

$$TT^* = (U^*AU)(U^*AU)^* = (U^*AU)(U^*A^*U) = U^*AA^*U.$$

Следовательно,

$$\operatorname{tr}[TT^*] = \operatorname{tr}[U^*AA^*U] = \operatorname{tr}[AA^*]$$

Но

$$\operatorname{tr}[AA^*] = \sum_{i,k=1}^n |\alpha_{ki}|^2, \quad \operatorname{tr}[TT^*] = \sum_{k=1}^n |\lambda_k|^2 + \sum_{k< i}^n |\tau_{ki}|^2.$$

Поэтому

$$\sum_{k=1}^{n} |\lambda_k|^2 \le \sum_{i,k=1}^{n} |\alpha_{ki}|^2.$$

Равенство имеет место тогда и только тогда, когда

$$\sum_{k< i}^{n} |\tau_{ki}|^2 = 0,$$

т.е. когда [T] — диагональная матрица. Но в этом случае A — нормальный оператор. \Box

Рассмотрим декартово представление оператора $A \in \mathcal{B}(\mathbf{H})$:

$$A = A_1 + iA_2 = \operatorname{Re} A + i\operatorname{Im} A,$$

где

$$A_1 = \text{Re } A = \frac{A + A^*}{2}, \quad A_2 = \text{Im } A = \frac{A - A^*}{2i}.$$

Пусть в некотором ортонормированном базисе $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ матрицы операторов $A,\ A_1$ и A_2 равны соответственно

$$[A] = (\alpha_{kj})_{i,j=1}^n, \quad [A_1] = (\beta_{kj})_{i,j=1}^n, \quad [A_2] = (\gamma_{kj})_{i,j=1}^n, \quad \alpha_{kj} = \beta_{kj} + i\gamma_{kj}.$$

Утверждение 6.4.6. Пусть $A \in \mathcal{B}(\mathbf{H})$ и $\{\lambda_1, \dots, \lambda_n\}$ — точки его спектра с учетом алгебраической кратности. Тогда имеют место неравенства:

$$\sum_{k=1}^{n} |\operatorname{Re} \lambda_{k}|^{2} \leq \sum_{i,k=1}^{n} |\beta_{ki}|^{2}, \quad \sum_{k=1}^{n} |\operatorname{Im} \lambda_{k}|^{2} \leq \sum_{i,k=1}^{n} |\gamma_{ki}|^{2}.$$

Доказательстве теоремы 6.4.5, U — такой унитарный оператор, что

$$[U^*AU] = [T] = \begin{pmatrix} \lambda_1 & \tau_{12} & \dots & \tau_{1n} \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & & \ddots & \tau_{n-1n} \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$

Тогда

$$U^*A_1U = U^*\frac{A+A^*}{2}U = \frac{T+T^*}{2} = \frac{1}{2} \begin{pmatrix} \lambda_1 + \bar{\lambda}_1 & \tau_{12} & \dots & \tau_{1n} \\ \bar{\tau}_{12} & \lambda_2 + \bar{\lambda}_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \tau_{n-1} \\ \bar{\tau}_{1n} & \dots & \bar{\tau}_{n-1n} & \lambda_n + \bar{\lambda}_n \end{pmatrix},$$

И

$$U^*A_2U = U^*\frac{A - A^*}{2i}U = \frac{T - T^*}{2i} = \frac{1}{2i} \begin{pmatrix} \lambda_1 - \bar{\lambda}_1 & \tau_{12} & \dots & \tau_{1n} \\ -\bar{\tau}_{12} & \lambda_2 - \bar{\lambda}_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \tau_{n-1} \\ -\bar{\tau}_{1n} & \dots & -\bar{\tau}_{n-1n} & \lambda_n - \bar{\lambda}_n \end{pmatrix}.$$

Следовательно,

$$\operatorname{tr} A_1^2 = \operatorname{tr}(U^* A_1 U)^2 = \sum_{k,j=1}^n |\beta_{kj}|^2 = \sum_{k=1}^n \left| \frac{\lambda_k + \bar{\lambda}_k}{2} \right|^2 + \frac{1}{2} \sum_{k < j} |\tau_{kj}|^2,$$

$$\operatorname{tr} A_2^2 = \operatorname{tr}(U^* A_2 U)^2 = \sum_{k,j=1}^n |\gamma_{kj}|^2 = \sum_{k=1}^n \left| \frac{\lambda_k - \bar{\lambda}_k}{2} \right|^2 + \frac{1}{2} \sum_{k < j} |\tau_{kj}|^2,$$

и потому

$$\sum_{k=1}^{n} |\operatorname{Re}(\lambda_k)|^2 \le \sum_{k,j=1}^{n} |\beta_{kj}|^2,$$

И

$$\sum_{k=1}^{n} |\operatorname{Im}(\lambda_k)|^2 \le \sum_{k,j=1}^{n} |\gamma_{kj}|^2.$$

Из утверждения 6.4.6 непосредственно следует такой факт.

Следствие 6.4.7 (Неравенства Гирша-Бендиксона). Пусть $A \in \mathcal{B}(\mathbf{H})$ и $\{\lambda_1, \ldots, \lambda_n\}$ — точки его спектра с учетом алгебраической кратности. Тогда для любого $m = 1, \ldots, n$ имеют место неравенства:

$$|\lambda_m| \le n \max_{k,j=\overline{1,n}} |\alpha_{kj}|,$$

$$|\operatorname{Re}(\lambda_m)| \le n \max_{k,j=\overline{1,n}} |\beta_{kj}|,$$

$$|\operatorname{Im}(\lambda_m)| \le n \max_{k,j=\overline{1,n}} |\gamma_{kj}|.$$

Доказательство. Данные неравенства следуют из неравенств

$$\sum_{k=1}^{n} |\lambda_{k}|^{2} \leq \sum_{i,k=1}^{n} |\alpha_{ki}|^{2} \leq n^{2} \max_{k,j=\overline{1,n}} |\alpha_{kj}|^{2},$$

$$\sum_{k=1}^{n} |\operatorname{Re}(\lambda_{k})|^{2} \leq \sum_{k,j=1}^{n} |\beta_{kj}|^{2} \leq n^{2} \max_{k,j=\overline{1,n}} |\beta_{kj}|^{2},$$

$$\sum_{k=1}^{n} |\operatorname{Im}(\lambda_{k})|^{2} \leq \sum_{k,j=1}^{n} |\gamma_{kj}|^{2} \leq n^{2} \max_{k,j=\overline{1,n}} |\gamma_{kj}|^{2}.$$

Упражнение 6.4.8. Показать, что если [A] — вещественная матрица, то для любого $m=1,\ldots,n$ имеют место неравенства:

$$|\operatorname{Im}(\lambda_m)| \le \sqrt{\frac{n(n-1)}{2}} \max_{k,j=\overline{1,n}} |\gamma_{kj}|.$$

6.5 Сингулярные числа линейного оператора

6.5.1 Определение и свойства *s*-чисел

Пусть оператор $A \in \mathcal{B}(\mathbf{H})$ и A = V|A| — его полярное разложение, где V — частично изометрический оператор, а $|A| = (A^*A)^{1/2} \in \mathcal{B}_+(\mathbf{H})$.

Определение 6.5.1. Собственные значения оператора |A| называются *s-числами* или *сингулярными числами* оператора A.

Замечание 6.5.2. Так как оператор |A| — неотрицательный, то $\sigma(|A|)$ лежит на полуоси $[0, +\infty)$ и поэтому его собственные значения можно нумеровать в порядке их убывания с учетом кратности. Обозначая эти собственные значения через $\lambda_1(|A|), \ldots, \lambda_n(|A|)$, а s-числа оператора A — через $s_1(A), \ldots, s_n(A)$,получим, что

$$s_k(A) = \lambda_k(|A|), \quad k = 1, \dots, n,$$

и $s_1(A) \ge \cdots \ge s_n(A) \ge 0$.

Упражнение 6.5.3. Показать, что

- $s_1(A) = ||A||$;
- Если A нормальный оператор, то $s_k(A) = |\lambda_k(A)|, k = 1, ..., n$;

- $s_k^2(A) = \lambda_k(A^*A), k = 1, ..., n;$
- Для любого $\alpha \in \mathbb{C}$ справедливо $s_k(\alpha A) = |\alpha| s_k(A), k = 1, \ldots, n.$

Утверждение 6.5.4. *s-числа оператора А обладают следующими свойствами:*

(i) s-числа операторов A и A^* совпадают,

$$s_k(A) = s_k(A^*), \quad k = 1, \dots, n;$$
 (6.5)

(ii) Для любого оператора $B \in \mathcal{B}(\mathbf{H})$ имеют место неравенства:

$$s_k(BA) \le ||B|| s_k(A), \quad k = 1, \dots, n;$$
 (6.6)

$$s_k(AB) \le ||B|| s_k(A), \quad k = 1, \dots, n.$$
 (6.7)

Доказательство. Свойство (i) мы получим ниже (следствие 6.5.8). Докажем свойство (ii).

По определению,

$$s_k^2(BA) = \lambda_k(A^*B^*BA), \quad s_k^2(A) = \lambda_k(A^*A).$$

С другой стороны,

$$(A^*B^*BA\mathbf{x}, \mathbf{x}) = ||BA\mathbf{x}||^2 < ||B||^2 ||A\mathbf{x}||^2 = ||B||^2 (A^*A\mathbf{x}, \mathbf{x}).$$

Поэтому

$$A^*B^*BA \le ||B||^2A^*A.$$

Следовательно, в силу утверждения 3.7.23,

$$s_k^2(BA) = \lambda_k(A^*B^*BA) \le \lambda_k(\|B\|^2A^*A) = \|B\|^2\lambda_k(A^*A) = \|B\|^2s_k^2(A),$$

откуда

$$s_k(BA) \le ||B|| s_k(A), \quad k = 1, \dots, n.$$

Далее, используя свойство (6.5) и приведенные выше рассуждения, получим:

$$s_k(AB) = s_k(B^*A^*) \le ||B^*||^2 s_k(A^*) = ||B||^2 s_k(A).$$

Упражнение 6.5.5. Показать, что

- Знак равенства в (6.6) имеет место для всех k = 1, ..., n в том и только в том случае, когда оператор B является изометрическим на $\operatorname{Ran}(A)$;
- Знак равенства в (6.7) имеет место для всех k = 1, ..., n в том и только в том случае, когда оператор B^* является изометрическим на $\operatorname{Ran}(A^*)$.

6.5.2 Разложение Шмидта линейного оператора

Теорема 6.5.6 (Разложение Шмидта). Для любого линейного оператора $A \in \mathcal{B}(\mathbf{H})$ существуют два ортонормированных базиса $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ и $\{\mathbf{e}_1', \dots, \mathbf{e}_n'\}$ гильбертова пространства \mathbf{H} такие, что оператор A представим в виде:

$$A\mathbf{x} = \sum_{k=1}^{n} s_k(A)(\mathbf{x}, \mathbf{e}_k)\mathbf{e}'_k, \quad \mathbf{x} \in \mathbf{H}.$$

Доказательство. Пусть оператор $A \in \mathcal{B}(\mathbf{H}), A = U|A|$ — его полярное разложение с унитарным оператором $U \in \mathcal{U}(\mathbf{H}),$ и $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ — ортонормированный базис гильбертова пространства \mathbf{H} , состоящий из собственных векторов оператора |A|, отвечающих собственным значениям $\lambda_k(|A|) = s_k(A)$. Тогда для любого $\mathbf{x} \in \mathbf{H}$ имеем (см. замечание 3.4.2):

$$|A|\mathbf{x} = \sum_{k=1}^{n} s_k(A)(\mathbf{x}, \mathbf{e}_k)\mathbf{e}_k,$$

т.е.

$$|A| = \sum_{k=1}^{n} s_k(A)(\cdot, \mathbf{e}_k)\mathbf{e}_k.$$

Применяя к обеим частям этого равенства оператор U, получим:

$$A = U|A| = \sum_{k=1}^{n} s_k(A)(\cdot, \mathbf{e}_k)U\mathbf{e}_k.$$

Так как U — унитарный оператор, то $\{U\mathbf{e}_1, \dots, U\mathbf{e}_n\}$ — тоже ортонормированный базис **H**. Полагая $U\mathbf{e}_k = \mathbf{e}'_k$, $k = 1, \dots, n$, получим:

$$A\mathbf{x} = \sum_{k=1}^{n} s_k(A)(\mathbf{x}, \mathbf{e}_k) \mathbf{e}'_k, \quad \mathbf{x} \in \mathbf{H}.$$

Следствие 6.5.7. Если

$$A = \sum_{k=1}^{n} s_k(A)(\cdot, \mathbf{e}_k)\mathbf{e}'_k, \tag{6.8}$$

mo

$$A^* = \sum_{k=1}^n s_k(A)(\cdot, \mathbf{e}_k')\mathbf{e}_k. \tag{6.9}$$

Доказательство. Так как

$$(A\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} s_k(A)(\mathbf{x}, \mathbf{e}_k) \mathbf{e}'_k, \mathbf{y}\right) = \sum_{k=1}^{n} s_k(A)(\mathbf{x}, \mathbf{e}_k) (\mathbf{e}'_k, \mathbf{y}) =$$
$$= \left(\mathbf{x}, \sum_{k=1}^{n} s_k(A)(\mathbf{y}, \mathbf{e}'_k) \mathbf{e}_k\right) = (\mathbf{x}, A^*\mathbf{y}),$$

TO

$$A^* = \sum_{k=1}^n s_k(A)(\cdot, \mathbf{e}'_k)\mathbf{e}_k.$$

Следствие 6.5.8. Для любого оператора $A \in \mathcal{B}(\mathbf{H})$ выполнено

$$s_k(A) = s_k(A^*), \quad k = 1, \dots, n.$$

Доказательство. Согласно (6.8) и (6.9) для любого j = 1, ..., n имеем:

$$A^* A \mathbf{e}_j = A^* \left(\sum_{k=1}^n s_k(A)(\mathbf{e}_j, \mathbf{e}_k) \mathbf{e}'_k \right) = A^* (s_j(A) \mathbf{e}'_j) =$$

$$= s_j(A) A^* (\mathbf{e}'_j) = s_j(A) \sum_{k=1}^n s_k(A) (\mathbf{e}'_j, \mathbf{e}'_k) \mathbf{e}_k = s_j^2(A) \mathbf{e}_j.$$

Аналогично, $AA^*\mathbf{e}_j' = s_j^2(A)\mathbf{e}_j'$. Следовательно, $s_j(A) = s_j(A^*)$.

Теорема 6.5.9. Пусть оператор $A \in \mathcal{B}(\mathbf{H})$ и \mathfrak{R}_k — множество всех операторов C из $\mathcal{B}(\mathbf{H})$ ранга $\operatorname{rg} C \leq k, \ k = 0, 1, \ldots, n-1$. Тогда

$$s_{k+1}(A) = \min_{C \in \mathfrak{R}_k} ||A - C||.$$

Доказательство. Пусть $C \in \mathfrak{R}_k$. Тогда из разложение Шмидта оператора C

$$C = \sum_{j=1}^{k} s_j(C)(\cdot, \mathbf{g}_j)\mathbf{g}_j'$$

следует, что $\dim(\mathbf{H} \ominus \operatorname{Ker} C) \leq k$, т.е. подпространство $\operatorname{Ker} C \in \mathfrak{L}_{k+1}$. Поэтому, в силу теоремы 3.7.22,

$$s_{k+1}^{2}(A) = \lambda_{k+1}(A^{*}A) = \min_{\mathbf{L} \in \mathfrak{L}_{k+1}} \max_{\mathbf{x} \in \mathbf{L} \setminus \{\mathbf{0}\}} \frac{(A^{*}A\mathbf{x}, \mathbf{x})}{(\mathbf{x}, \mathbf{x})} = \min_{\mathbf{L} \in \mathfrak{L}_{k+1}} \max_{\mathbf{x} \in \mathbf{L} \setminus \{\mathbf{0}\}} \frac{(A\mathbf{x}, A\mathbf{x})}{(\mathbf{x}, \mathbf{x})}$$
$$= \min_{\mathbf{L} \in \mathfrak{L}_{k+1}} \max_{\mathbf{x} \in \mathbf{L} \setminus \{\mathbf{0}\}} \frac{||A\mathbf{x}||^{2}}{||\mathbf{x}||^{2}} \leq \max_{\mathbf{x} \in \operatorname{Ker} C \setminus \{\mathbf{0}\}} \frac{||A\mathbf{x}||^{2}}{||\mathbf{x}||^{2}},$$

откуда

$$s_{k+1}(A) \le \max_{\mathbf{x} \in \text{Ker } C \setminus \{\mathbf{0}\}} \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|}.$$

Для любого $\mathbf{x} \in \operatorname{Ker} C$ имеем:

$$||A\mathbf{x}|| = ||(A - C)\mathbf{x}|| \le ||A - C|| \, ||\mathbf{x}||.$$

Поэтому

$$s_{k+1}(A) \le \max_{\mathbf{x} \in \text{Ker } C \setminus \{\mathbf{0}\}} \frac{\|A - C\| \|\mathbf{x}\|}{\|\mathbf{x}\|} = \|A - C\|.$$

Следовательно,

$$s_{k+1}(A) \le \min_{C \in \mathfrak{R}_k} ||A - C||.$$

 ${\bf C}$ другой стороны, если разложение Шмидта оператора A имеет вид

$$A = \sum_{j=1}^{n} s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}'_j$$

И

$$C_k = \sum_{j=1}^k s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}'_j,$$

TO $C_k \in \mathfrak{R}_k$,

$$A - C_k = \sum_{j=k+1}^n s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}_j'$$

и
$$||A - C_k|| = s_{k+1}(A)$$
. Следовательно, $s_{k+1}(A) = \min_{C \in \mathfrak{R}_k} ||A - C||$.

Замечание 6.5.10. Формула

$$s_{k+1}(A) = \min_{C \in \mathfrak{R}_k} ||A - C||.$$

означает, что $s_{k+1}(A)$ является расстоянием оператора A до множества \mathfrak{R}_k .

Утверждение 6.5.11. Для s-чисел имеют место следующие неравенства.

(i) Ecau $A, T \in \mathcal{B}(\mathbf{H})$ u $T \in \mathfrak{R}_r$, mo

$$s_{k+r}(A) \le s_k(A+T) \le s_{k-r}(A), \quad k+r \le n, \ k-r \ge 1;$$

(ii) $Ec_{A}u A, B \in \mathcal{B}(\mathbf{H}), mo$

$$s_{k+r+1}(A+B) \le s_{k+1}(A) + s_{r+1}(B), \quad k+r \le n-1;$$

(iii) $Ecnu\ A, B \in \mathcal{B}(\mathbf{H}), mo$

$$s_{k+r+1}(AB) \le s_{k+1}(A)s_{r+1}(B), \quad k+r \le n-1;$$

(iv) $Ec_{\Lambda}u A, B \in \mathcal{B}(\mathbf{H}), mo$

$$|s_k(A) - s_k(B)| \le ||A - B||, \quad k = 1, \dots, n.$$

Доказательство. (і). Пусть

$$A = \sum_{j=1}^{n} s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}'_j$$

- разложение Шмидта оператора A и

$$C_k = \sum_{j=1}^k s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}'_j.$$

Тогда $C_k \in \mathfrak{R}_k$, $T + C_k \in \mathfrak{R}_{k+r}$ и

$$s_{k+1}(A) = ||A - C_k|| = ||(A+T) - (T+C_k)|| \ge s_{k+r+1}(A+T),$$

откуда

$$s_k(A+T) < s_{k-r}(A),$$

где $k-r \ge 1$. Полагая $A_1 = A + T$ и $T_1 = -T$, получим:

$$s_{k+1}(A+T) = s_{k+1}(A_1) \ge s_{k+r+1}(A_1+T_1) = s_{k+r+1}(A),$$

откуда $s_{k+r}(A) \le s_k(A+T)$, где $k+r \le n$.

(ii). Пусть разложения Шмидта операторов A и B имеют вид:

$$A = \sum_{j=1}^{n} s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}'_j, \quad B = \sum_{j=1}^{n} s_j(B)(\cdot, \mathbf{f}_j)\mathbf{f}'_j,$$

И

$$C_k = \sum_{j=1}^k s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}'_j, \quad D_r = \sum_{j=1}^r s_j(B)(\cdot, \mathbf{f}_j)\mathbf{f}'_j.$$

Тогда $C_k \in \mathfrak{R}_k$, $D_r \in \mathfrak{R}_r$,

$$A - C_k = \sum_{j=k+1}^n s_j(A)(\cdot, \mathbf{e}_j)\mathbf{e}'_j, \quad B - D_r = \sum_{j=r+1}^n s_j(A)(\cdot, \mathbf{f}_j)\mathbf{f}'_j,$$

И

$$||A - C_k|| = s_{k+1}(A), \quad ||B - D_r|| = s_{r+1}(B).$$

Следовательно, $C_k + D_r \in \mathfrak{R}_{k+r}$ и

$$s_{k+r+1} \le \|(A+B) - (C_k + D_r)\| \le \|A - C_k\| + \|B - D_r\| = s_{k+1}(A) + s_{r+1}(B),$$

где $k + r \le n - 1$.

(ііі). Рассмотрим операторы C_k и D_r , построенные в доказательстве пункта (іі). Тогда

$$(A - C_k)(B - D_r) = AB - AD_r - C_k(B - D_r),$$

и оператор $AD_r + C_k(B - D_r)$ имеет ранг, не превосходящий k + r. Следовательно,

$$s_{k+r+1}(AB) \le ||AB - AD_r - C_k(B - D_r)|| \le \le ||A - C_k|| ||B - D_r|| = s_{k+1}(A)s_{r+1}(B),$$

где $k + r \le n - 1$.

(iv). В силу теоремы 6.5.9,

$$s_k(A) = \min_{C \in \mathfrak{R}_{k-1}} \|A - C\| = \min_{C \in \mathfrak{R}_{k-1}} \|(B - C) + (A - B)\| \le \min_{C \in \mathfrak{R}_{k-1}} \|B - C\| + \|A - B\| = s_k(B) + \|A - B\|.$$

Следовательно,

$$s_k(A) - s_k(B) \le ||A - B||.$$

Аналогично,

$$s_k(B) - s_k(A) \le ||B - A|| = ||A - B||.$$

Таким образом,

$$|s_k(A) - s_k(B)| \le ||A - B||.$$

Замечание 6.5.12. Отметим некоторые факты, относящиеся к *s*-числам.

(i) Если A и B — неотрицательные операторы, то

$$s_k(A) = \lambda_k(A), \quad s_k(B) = \lambda_k(B),$$

$$s_k(A+B) = \lambda_k(A+B), \quad k = 1, \dots, n.$$

Поэтому частным случаем формулы (ii) утверждения 6.5.11 является известное соотношение Γ . Вейля

$$\lambda_{k+r+1}(A+B) \le \lambda_{k+1}(A) + \lambda_{r+1}(B),$$

где $k + r \le n - 1$.

(ii) Если A и B — коммутирующие неотрицательные операторы, то оператор AB тоже неотрицательный (см. теорему 3.7.11(iv)). Поэтому частным случаем формулы (iii) утверждения 6.5.11 является соотношение

$$\lambda_{k+r+1}(AB) \le \lambda_{k+1}(A)\lambda_{r+1}(B),$$

где $k+r \le n-1$.

(iii) Если A и B — самосопряженные операторы, то

$$A = A_{+} - A_{-}, \quad B = B_{+} - B_{-}.$$

Поэтому

$$A + B = (A_{+} + B_{+}) - (A_{-} + B_{-}).$$

Тогда из утверждения 3.7.25 и пункта (і) следует, что

$$\lambda_{k+r+1}(A+B) \le \lambda_{k+1}(A) + \lambda_{r+1}(B),$$

где $k + r \le n - 1$.

Глава 7

*-Алгебры. Инволюции в алгебрах $B(\mathbf{H})$ и $\mathcal{M}_n(\mathbb{C})$

7.1 Понятие *-алгебры. *-Идеалы

Пусть \mathbf{A} — алгебра над полем \mathbb{C} .

Определение 7.1.1. *Инволюцией* (или операцией *сопряжения*) в алгебре ${\bf A}$ называется отображение

$$*: \mathbf{A} \to \mathbf{A},$$

такое, что:

- $\bullet \ (\mathbf{x}^*)^* = \mathbf{x}, \quad \mathbf{x} \in \mathbf{A};$
- $\bullet \ (\mathbf{x} + \mathbf{y})^* = \mathbf{x}^* + \mathbf{y}^*, \quad \mathbf{x}, \mathbf{y} \in \mathbf{A};$
- $(\lambda \mathbf{x})^* = \overline{\lambda} \mathbf{x}^*, \quad \mathbf{x} \in \mathbf{A}, \ \lambda \in \mathbb{C};$
- $\bullet \ (\mathbf{x}\mathbf{y})^* = \mathbf{y}^*\mathbf{x}^*, \quad \mathbf{x}, \mathbf{y} \in \mathbf{A}.$

Пара $(\mathbf{A},*)$ называется алгеброй с инволюцией (*-алгеброй, инволютивной алгеброй).

Упражнение 7.1.2. Пусть $(\mathbf{A},*)$ — алгебра с инволюцией. Доказать, что

- $0^* = 0$;
- Если \mathbf{e} единица алгебры \mathbf{A} , то $\mathbf{e}^* = \mathbf{e}$;
- Если элемент $\mathbf{x} \in \mathbf{A}$ обратим, то \mathbf{x}^* тоже обратим и $(\mathbf{x}^*)^{-1} = (x^{-1})^*$.

Пример 7.1.3. Приведем примеры алгебр с инволюцией:

• Алгебра С комплексных чисел является алгеброй с инволюцией относительно обычного комплексного сопряжения:

$$*: z \to \overline{z}, \quad z \in \mathbb{C}$$

• Алгебра $\mathcal{B}(\mathbf{H})$ является алгеброй с инволюцией относительно перехода к сопряженному оператору:

$$*: A \to A^*.$$

• Алгебра $\mathcal{M}_n(\mathbb{C})$ является алгеброй с инволюцией относительно перехода к сопряженной матрице:

$$*: [A] \to [\bar{A}]^\top.$$

Определение 7.1.4. Алгебра с инволюцией (A, *) называется *-изоморфной алгебре с инволюцией (B, \star) , если существует изоморфизм алгебр

$$\psi \colon \mathbf{A} \to \mathbf{B}$$

такой, что

$$\psi(A^*) = (\psi(A))^*, \quad A \in \mathbf{A}.$$

Теорема 7.1.5. Пусть $\dim \mathbf{H} = n \ u \ \{\mathbf{e}_1, \dots, \mathbf{e}_n\} - opmoнopмированный базис гильбертова пространства <math>\mathbf{H}$. Тогда отображение

$$\psi: A \to [A]$$

есть *-изоморфизм алгебр с инволюцией $(\mathcal{B}(\mathbf{H}),*)$ и $(\mathcal{M}_n(\mathbb{C}),*)$.

Доказательство. В силу теоремы I(L).3.2.7, ψ является изоморфизмом алгебр $\mathcal{B}(\mathbf{H})$ и $\mathcal{M}_n(\mathbb{C})$, т.е. для любых $A, B \in \mathcal{B}(\mathbf{H}), \lambda \in \mathbb{C}$

$$\psi(A + B) = [A + B] = [A] + [B] = \psi(A) + \psi(B),$$

 $\psi(\lambda A) = [\lambda A] = \lambda [A] = \lambda \psi(A),$
 $\psi(AB) = [AB] = [A][B] = \psi(A)\psi(B)$

Кроме того, поскольку

$$\psi(A^*) = [A^*] = [\bar{A}]^\top = (\psi(A))^*.$$

то ψ — *-изоморфизм инволютивных алгебр ($\mathcal{B}(\mathbf{H}),*$) и ($\mathcal{M}_n(\mathbb{C}),*$).

Напомним, что в алгебре $\mathcal{M}_n(\mathbb{C})$ базис образуют матрицы $[E_{ij}]$, у которых элемент $a_{ij}=1$, а все остальные элементы равны нулю. Матрицы $[E_{ij}]$ называются матричными единицами.

В следующем утверждении приведены свойства базиса $\{[E_{ij}]\}_{i,j=1}^n$ (см. I(L), \S 3.3.1).

Утверждение 7.1.6. Базис матричных единиц обладает свойствами:

- (i) $[E_{ij}][E_{kl}] = \delta_{jk}[E_{il}];$
- (ii) $\sum_{k=1}^{n} [E_{kk}] = I;$
- (iii) $[E_{kk}]^2 = [E_{kk}];$
- (iv) $[E_{kk}][E_{jj}] = \delta_{kj}[E_{kj}] = \delta_{kj}[E_{kk}] = \delta_{kj}[E_{jj}];$
- (v) Если $k \neq r$, то

$$([E_{kr}] + [E_{rk}] + \sum_{i \neq k, i \neq r} [E_{ii}])^2 = I;$$

- (vi) Матричные единицы $[E_{kk}]$ и $[E_{rr}]$ подобны;
- (vii) $[E_{jk}]^* = [E_{kj}].$

Базис $\{[E_{ij}]\}_{ij=1}^n$ алгебры $\mathcal{M}_n(\mathbb{C})$ является мультипликативным *-базисом, т.е. произведение элементов базиса является элементом базиса и элемент, сопряженный к $[E_{jk}]$, является элементом этого базиса.

Пример 7.1.7. Пусть $J \in \mathcal{B}(\mathbf{H})$ отражение, т.е.

$$J = J^{-1} = J^*.$$

Если

$$*_J: A \to A^{*_J} = JA^*J,$$

то $(\mathcal{B}(\mathbf{H}), *_J)$ является алгеброй с инволюцией .

Пример 7.1.8. Пусть $[J] \in \mathcal{M}_n(\mathbb{C})$ такая матрица, что

$$[J] = [J]^{-1} = [J]^*.$$

Если

$$*_{[J]}: [A] \to [A]^{*_{[J]}} = [J][\bar{A}]^{\top}[J],$$

то $(\mathcal{M}_n(\mathbb{C}), *_{[J]})$ является алгеброй с инволюцией.

Напомним, что подпространство ${\bf L}$ алгебры ${\bf A}$ называется

- правым идеалом, если из $A \in \mathbf{L}$, $B \in \mathbf{A}$ следует, что $AB \in \mathbf{L}$;
- левым идеалом, если из $A \in \mathbf{L}$, $B \in \mathbf{A}$ следует, что $BA \in \mathbf{L}$;
- *двусторонним идеалом*, если оно одновременно является и левым, и правым идеалом;
- *-идеалом, если оно является (правым или левым) идеалом и из $A \in \mathbf{L}$ следует, что $A^* \in \mathbf{L}$ (такой идеал всегда будет двусторонним идеалом).

Во всякой алгебре имеется два тривиальных идеала: нулевой — состоящий из единственного элемента $\mathbf{0}$, и сама алгебра \mathbf{A} . Все остальные идеалы алгебры \mathbf{A} называются $\mathit{нетривиальнымu}$.

В силу утверждения I(L).3.3.6, алгебра $\mathcal{B}(\mathbf{H})$ и $\mathcal{M}_n(\mathbb{C})$ являются простыми, т.е. не содержат нетривиальных двусторонних идеалов. Поэтому алгебры $(\mathcal{B}(\mathbf{H}), *_J)$ и $(\mathcal{M}_n(\mathbb{C}), *_{[J]})$ не содержат нетривиальных *-идеалов.

7.2 Инволюции на конечномерных алгебрах

Даже на конечномерной алгебре A бывает невозможно ввести инволюцию * так, чтобы пара (A,*) была *-алгеброй.

Пример 7.2.1. Пусть $\mathbf{A} = \mathbb{C}^2 = \{\mathbf{x} = (z_1, z_2) : z_1, z_2 \in \mathbb{C}\}$ — двумерная алгебра с умножением

$$\mathbf{x} \cdot \mathbf{x}' = (z_1, z_2) \cdot (z_1', z_2') = (z_1 z_1', z_2 z_1').$$

Легко видеть, что $\mathbf{e}_r = (1,0)$ — правая единица алгебры \mathbf{A} . Если бы на алгебре \mathbf{A} можно было ввести инволюцию *, то элемент $\mathbf{e}_r^* = (1,0)^*$ должен быть левой единицей, в то время как таковая в алгебре \mathbf{A} отсутствует.

Определение 7.2.2. Пусть $(\mathbf{A},*)$ — алгебра с инволюцией. Инволюция * называется *точной*, если из условия

$$x^*x = 0, x \in A,$$

следует, что $\mathbf{x} = \mathbf{0}$.

Пример 7.2.3. Пусть A — конечномерная алгебра с умножением

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{0}$$
 для любых $\mathbf{x}, \mathbf{y} \in \mathbf{A}$.

Выберем в алгебре **A** базис $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ и положим

$$(\lambda_1 \mathbf{e}_1 + \dots + \lambda_n \mathbf{e}_n)^* = \bar{\lambda}_1 \mathbf{e}_1 + \dots + \bar{\lambda}_n \mathbf{e}_n.$$

В построенной таким образом *-алгебре (A,*) для любого $\mathbf{x} \in \mathbf{A}$ имеет место равенство $\mathbf{x}^* \cdot \mathbf{x} = \mathbf{0}$. Таким образом, построенная инволюция не является точной.

Упражнение 7.2.4. Пусть *-алгебры (A, *) и (B, *) *-изоморфны. Доказать, что если инволюция * точная, то и инволюция * тоже точная (т.е., точность инволюции сохраняется при *-изоморфизме).

В конечномерных алгебрах возможны различные инволюции, т.е. такие инволюции, при которых соответствующие *-алгебры не *-изоморфны.

Пример 7.2.5. Пусть $\mathbf{A} = \mathbb{C}^2 = \{\mathbf{x} = (z_1, z_2) : z_1, z_2 \in \mathbb{C}\}$ — двумерная алгебра с покоординатным умножением

$$\mathbf{x} \cdot \mathbf{x}' = (z_1, z_2) \cdot (z_1', z_2') = (z_1 z_1', z_2 z_2').$$

Рассмотрим в алгебре A две инволюции * и \star , полагая:

$$\mathbf{x}^* = (z_1, z_2)^* = (\bar{z}_1, \bar{z}_2), \quad \mathbf{x}^* = (z_1, z_2)^* = (\bar{z}_2, \bar{z}_1).$$

Легко видеть, что $(\mathbb{C}^2,*)$ и (\mathbb{C}^2,\star) — *-алгебры.

Утверждение 7.2.6. *-Алгебры $(\mathbb{C}^2,*)$ и (\mathbb{C}^2,\star) не *-изоморфны.

Доказательство. Пусть $\mathbf{x}=(z_1,z_2)\in\mathbb{C}^2$. Тогда $\mathbf{x}^*=(\bar{z}_1,\bar{z}_2)$ и $\mathbf{x}^*=(\bar{z}_2,\bar{z}_1)$. Поэтому

$$\mathbf{x}^*\mathbf{x} = (|z_1|^2, |z_2|^2), \quad \mathbf{x}^*\mathbf{x} = (\bar{z}_2 z_1, \bar{z}_1 z_2).$$

Следовательно, инволюция в *-алгебре (\mathbb{C}^2 , *) является точной, а в *-алгебре (\mathbb{C}^2 , *) — нет. Так как точность инволюции сохраняется при *-изоморфизме, то *-алгебры (\mathbb{C}^2 , *) и (\mathbb{C}^2 , *) не *-изоморфны.

Утверждение 7.2.7. Инволюция $*: A \to A^*$ в алгебре $\mathcal{B}(\mathbf{H})$ является точной.

Доказательство. Пусть $A \in \mathcal{B}(\mathbf{H})$ такой, что $A^*A = 0$. Тогда, в силу следствия 2.1.4, для любого $\mathbf{x} \in \mathbf{H}$ имеем:

$$0 = (A^*A\mathbf{x}, \mathbf{x}) = (A\mathbf{x}, A\mathbf{x}) = ||A\mathbf{x}||^2.$$

Следовательно, $A\mathbf{x} = \mathbf{0}$ для любого $\mathbf{x} \in \mathbf{H}$, т.е. A = 0.

Определение 7.2.8. Пусть (A,*) алгебра с инволюцией и единицей **e**. Элемент $\mathbf{x} \in \mathbf{A}$ называется

- самосопряженным (или эрмитовым), если $\mathbf{x} = \mathbf{x}^*$. Обозначим через \mathbf{A}_h множество всех самосопряженных элементов из \mathbf{A} .
- *ортопроектором*, если $\mathbf{x}^2 = \mathbf{x}^* = \mathbf{x}$. Обозначим через $\mathcal{P}(\mathbf{A})$ множество всех ортопроекторов из \mathbf{A} .
- *отражением*, если $\mathbf{x} \in \mathbf{A}_h$ и $\mathbf{x}^2 = \mathbf{e}$. Обозначим через $\mathcal{O}(\mathbf{A})$ множество всех отражений из \mathbf{A} .
- унитарным, если $\mathbf{x}\mathbf{x}^* = \mathbf{x}^*\mathbf{x} = \mathbf{e}$. Обозначим через $\mathcal{U}(\mathbf{A})$ множество всех унитарных элементов из \mathbf{A} .
- *нормальным*, если $\mathbf{x}^*\mathbf{x} = \mathbf{x}\mathbf{x}^*$. Обозначим через \mathbf{A}_N множество всех нормальных операторов из \mathbf{A} .
- нильпотентным, если для некоторого натурального числа r выполняется равенство: $\mathbf{x}^r = 0$, Обозначим через $\mathcal{N}(\mathbf{A})$ множество всех нильпотентных операторов из \mathbf{A} .
- изометрическим, если $\mathbf{x}^*\mathbf{x} = \mathbf{e}$. и коизометрическим, если $\mathbf{x}\mathbf{x}^* = \mathbf{e}$. Обозначим через $\mathcal{I}(\mathbf{A})$ множество всех изометрических, а через $\mathcal{CI}(\mathbf{A})$ множество всех коизометрических элементов из \mathbf{A} .
- *частично изометрическим*, если $\mathbf{x}^*\mathbf{x} = \mathbf{p} \in \mathcal{P}(\mathbf{A})$. Обозначим через $\mathcal{V}(\mathbf{A})$ множество всех частично изометрических элементов из \mathbf{A} .
- *центрированным*, если элементы $\mathbf{x}^k(\mathbf{x}^*)^k$, $(\mathbf{x}^*)^k\mathbf{x}^k$ образуют коммутативное семейство, т.е. для всех $k, j \in \mathbb{N}$ выполняются соотношения:

$$[\mathbf{x}^k(\mathbf{x}^*)^k, \mathbf{x}^j(\mathbf{x}^*)^j] = \mathbf{x}^k(\mathbf{x}^*)^k \mathbf{x}^j(\mathbf{x}^*)^j - \mathbf{x}^j(\mathbf{x}^*)^j \mathbf{x}^k(\mathbf{x}^*)^k = 0,$$

$$[\mathbf{x}^k(\mathbf{x}^*)^k, (\mathbf{x}^*)^j \mathbf{x}^j] = \mathbf{x}^k(\mathbf{x}^*)^k (\mathbf{x}^*)^j \mathbf{x}^j - (\mathbf{x}^*)^j \mathbf{x}^j \mathbf{x}^k (\mathbf{x}^*)^k = 0,$$

$$[(\mathbf{x}^*)^k \mathbf{x}^k, (\mathbf{x}^*)^j \mathbf{x}^j] = (\mathbf{x}^*)^k \mathbf{x}^k (\mathbf{x}^*)^j \mathbf{x}^j - (\mathbf{x}^*)^j \mathbf{x}^j (\mathbf{x}^*)^k \mathbf{x}^k = 0.$$

7.3 Инволюции в алгебре $\mathcal{M}_n(\mathbb{C})$

Целью данного параграфа является описание с точностью до *-изоморфизма всех инволюций на алгебре $\mathcal{M}_n(\mathbb{C})$ и выделение среди них точных.

Стандартная инволюция в алгебре $\mathcal{M}_n(\mathbb{C})$ — переход к сопряженной матрице, т.е. для любой матрицы $[A] = (a_{ij})_{i,j=1}^n \in \mathcal{M}_n(\mathbb{C}), a_{ij} \in \mathbb{C},$

$$[A]^* = [\bar{A}]^\top = (\bar{a}_{ji})_{j,i=1}^n \in \mathcal{M}_n(\mathbb{C}),$$

является точной.

Утверждение 7.3.1. Если \star — инволюция в алгебре $\mathcal{M}_n(\mathbb{C})$, то существует обратимая матрица $[S] \in \mathcal{M}_n(\mathbb{C})$ такая, что $[S]^* = [S]$ и

$$[A]^* = [S]^{-1}[A]^*[S] \tag{7.1}$$

для любой матрицы $[A] \in \mathcal{M}_n(\mathbb{C})$.

Доказательство. Рассмотрим автоморфизм $\psi \colon \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ алгебры $\mathcal{M}_n(\mathbb{C})$, заданный по формуле

$$\psi([A]) = ([A]^*)^*.$$

Так как все автоморфизмы алгебры $\mathcal{M}_n(\mathbb{C})$ внутренние (см. I(L), теорема 3.3.10), то существует обратимая матрица $[B] \in \mathcal{M}_n(\mathbb{C})$, такая, что

$$\psi([A]) = ([A]^*)^* = [B]^{-1}[A][B]$$

для любой матрицы $[A] \in \mathcal{M}_n(\mathbb{C})$. Тогда

$$[A]^* = (([A]^*)^*)^* = (\psi([A]))^* = ([B]^{-1}[A][B])^* = [B]^*[A]^*([B]^{-1})^* = [B]^*[A]^*([B]^*)^{-1} = [C]^{-1}[A]^*[C],$$

где $[C] = ([B]^*)^{-1}$. Далее, так как

$$[A] = ([A]^*)^* = [C]^{-1}([A]^*)^*[C] = [C]^{-1}[C]^*[A]([C]^*)^{-1}[C],$$

ТО

$$[C]^{-1}[C]^*[A] = [A][C]^{-1}[C]^*$$

для любой матрицы $[A] \in \mathcal{M}_n(\mathbb{C})$. Следовательно, матрица $[C]^{-1}[C]^*$ принадлежит центру $Z(\mathcal{M}_n(\mathbb{C}))$ алгебры $\mathcal{M}_n(\mathbb{C})$. Но (см. I(L), теорема 3.3.11)

$$Z(\mathcal{M}_n(\mathbb{C})) = {\lambda I : \lambda \in \mathbb{C}}.$$

Поэтому $[C]^{-1}[C^*] = \alpha I$ для некоторого $\alpha \in \mathbb{C}$. Таким образом,

$$[C]^* = \alpha[C].$$

Так как

$$[C] = ([C]^*)^* = (\alpha[C])^* = \bar{\alpha}\alpha[C],$$

то $|\alpha|=1$ и потому $\alpha=e^{i\varphi},\ \varphi\in[0,2\pi).$ Положим $[S]=e^{i\varphi/2}[C].$ Тогда получим:

$$[S]^* = e^{-i\varphi/2}[C]^* = e^{i\varphi/2}[C] = [S]$$

И

$$[A]^* = [C]^{-1}[A]^*[C] = [S]^{-1}[A]^*[S],$$

т.е. любая инволюция в алгебре $\mathcal{M}_n(\mathbb{C})$ имеет вид (7.1).

Обратно, непосредственно проверяется, что любая обратимая матрица $[S] = [S]^* \in \mathcal{M}_n(\mathbb{C})$ задает по формуле (7.1) инволюцию в алгебре $\mathcal{M}_n(\mathbb{C})$.

Пример 7.3.2. Пусть \star — инволюция в алгебре $\mathcal{M}_n(\mathbb{C})$, определяемая равенством (7.1):

$$[A]^* = [S]^{-1}[A]^*[S], \quad [S]^* = [S], \quad [A] \in \mathcal{M}_n(\mathbb{C}).$$

Тогда существует унитарная матрица $U \in \mathcal{M}_n(\mathbb{C})$ такая, что

$$[U]^*[S][U] = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix},$$

где $\lambda_k \in \mathbb{R}, k = 1, ..., n$ — собственные значения матрицы [S] (см. замечание 4.2.7). Определим инволюцию \sharp в $\mathcal{M}_n(\mathbb{C})$ следующим образом:

$$[A]^{\sharp} = ([U]^*[S]^{-1}[U])[A]^*([U]^*[S][U]).$$

Непосредственно проверяется, что $(\mathcal{M}_n(\mathbb{C}),\sharp)$ — *-алгебра.

Утверждение 7.3.3. *-Алгебры $(\mathcal{M}_n(\mathbb{C}),\star)$ и $(\mathcal{M}_n(\mathbb{C}),\sharp)$ *-изоморфны.

Доказательство. Рассмотрим автоморфизм ψ алгебры $\mathcal{M}_n(\mathbb{C})$, определяемый формулой:

$$\psi([A]) = [U]^*[A][U].$$

Так как

$$\psi([A]^*) = [U]^*[A]^*[U] = [U]^*[S]^{-1}[A]^*[S][U] =$$

$$= ([U]^*[S]^{-1}[U])([U]^*[A]^*[U])([U][S][U]) =$$

$$= ([U]^*[S]^{-1}[U])([U]^*[A][U])^*([U][S][U]) = (\psi([A]))^{\sharp},$$

то
$$\psi$$
 — *-изоморфизм *-алгебр $(\mathcal{M}_n(\mathbb{C}),\star)$ и $(\mathcal{M}_n(\mathbb{C}),\sharp)$.

Так как свойство инволюции быть точной сохраняется при переходе к *-изоморфным *-алгебрам, то в дальнейшем матрицу [S] в формуле (7.1) будем считать диагональной. Полярное разложение матрицы [S] имеет вид:

$$[S] = [J_S][|S|] = [|S|][J_S],$$

где

$$[|S|] = \begin{pmatrix} |\lambda_1| & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & |\lambda_n| \end{pmatrix}, \quad [J_S] = \begin{pmatrix} e^{i \arg \lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{i \arg \lambda_n} \end{pmatrix}.$$

Матрица [S] самосопряженная, причем $|\lambda_k| > 0, k = 1, ..., n,$ и

$$e^{i \arg \lambda_k} = \pm 1, \quad k = 1, \dots, n.$$

Пример 7.3.4. Для любой матрицы $[A] \in \mathcal{M}_n(\mathbb{C})$ положим:

$$[A]^{\natural} = [J_S][A]^*[J_S]$$

Тогда $(\mathcal{M}_n(\mathbb{C}), \natural)$ — *-алгебра.

Утверждение 7.3.5. Автоморфизм ψ алгебры $\mathcal{M}_n(\mathbb{C})$, задаваемый формулой

$$\psi([A]) = [|S|]^{1/2} [A] [|S|]^{-1/2}, \quad [A] \in \mathcal{M}_n(\mathbb{C}),$$

является *-изоморфизмом *-алгебр $(\mathcal{M}_n(\mathbb{C}),\star)$ и $(\mathcal{M}_n(\mathbb{C}),\natural)$.

Доказательство. Так как

$$\psi([A]^*) = [|S|]^{\frac{1}{2}}[A]^*[|S|]^{-\frac{1}{2}} = [|S|]^{\frac{1}{2}}[S]^{-1}[A]^*[S][|S|]^{-\frac{1}{2}} =$$

$$= [|S|]^{\frac{1}{2}}[|S|]^{-1}[J_S][A]^*[J_S][|S|][|S|]^{-\frac{1}{2}} = [|S|]^{-\frac{1}{2}}[J_S][A]^*[J_S][|S|]^{\frac{1}{2}} =$$

$$= [J_S][|S|]^{-\frac{1}{2}}[A]^*[|S|]^{\frac{1}{2}}[J_S] = [J_S]([|S|]^{\frac{1}{2}}[A][|S|]^{-\frac{1}{2}})^*[J_S] =$$

$$= [J_S][\psi([A])]^*[J_S] = [\psi([A])]^{\natural},$$

то автоморфизм ψ является *-изоморфизмом *-алгебр $(\mathcal{M}_n(\mathbb{C}),\star)$ и $(\mathcal{M}_n(\mathbb{C}),\natural)$.

Замечание 7.3.6. Каждая *-алгебра $(\mathcal{M}_n(\mathbb{C}), \star)$ *-изоморфна *-алгебре $(\mathcal{M}_n(\mathbb{C}), *_{[J]})$, где [J] — диагональная матрица со свойствами:

$$[J] = [J]^* = [J]^{-1}.$$

Инволюция $*_{[J]}$ задается по формуле:

$$[A]^{*_{[J]}} = [J][A]^*[J].$$

Отметим, что инволюция $*_{[J]}$ равна инволюции $*_{-[J]}$.

Утверждение 7.3.7. Инволюция $*_{[J]}$ точная тогда и только тогда, когда [J] = I или [J] = -I.

Доказательство. Рассмотрим на алгебре $\mathcal{M}_2(\mathbb{C})$ инволюцию \star , задаваемую формулой:

$$[A]^* = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} [A]^* \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Для матрицы

$$[A_0] = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

имеем:

$$[A_0]^* = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} [A_0]^* \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} =$$
$$= \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

Поэтому

$$[A_0]^*[A_0] = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

в то время как $[A_0] \neq 0$. Следовательно, инволюция \star не является точной. Аналогичные рассуждения можно провести в случае n > 2. Осталось заметить, что при $[J] = \pm I$ инволюция \star является точной.

Таким образом, имеет место следующая теорема:

Теорема 7.3.8. (Описание инволюций на $\mathcal{M}_n(\mathbb{C})$).

- (i) Для любой инволюции \star на матричной алгебре $\mathcal{M}_n(\mathbb{C})$ существует такая диагональная матрица $[J] = [J]^{-1} = [J]^*$, что *-алгебры $(\mathcal{M}_n(\mathbb{C}), \star)$ и $(\mathcal{M}_n(\mathbb{C}), *_{[J]})$ *-изоморфны.
- (ii) Стандартная инволюция * на матричной алгебре $\mathcal{M}_n(\mathbb{C})$ является единственной с точностью до *-изоморфизма точной инволюцией.
- (iii) *-алгебры $(\mathcal{M}_n(\mathbb{C}), *_{[J]})$ и $(\mathcal{M}_n(\mathbb{C}), *_{[J']})$ *-изоморфны тогда и толь-ко тогда, когда матрица [J] унитарно эквивалентна матрице $\pm [J']$:

$$[J] \stackrel{U}{\sim} \pm [J'],$$

m.e. когда кратность (+1) в спектре матрицы [J] равна либо кратности (+1), либо кратности (-1) в спектре матрицы [J'].

Так как существует *-изоморфизм между *-алгебрами ($\mathcal{B}(\mathbf{H}),*$) и ($\mathcal{M}_n(\mathbb{C},*)$, то имеет место следующая теорема:

Теорема 7.3.9. (Описание инволюций на $\mathcal{B}(\mathbf{H})$).

- (i) Для любой инволюции \star на алгебре $\mathcal{B}(\mathbf{H})$ существует такой оператор $J = J^{-1} = J^*$, что *-алгебры ($\mathcal{B}(\mathbf{H}), \star$) и ($\mathcal{B}(\mathbf{H}), \star_J$) *-изоморфны.
- (ii) Стандартная инволюция * на алгебре $\mathcal{B}(\mathbf{H})$ является единственной с точностью до *-изоморфизма точной инволюцией.
- (iii) *-алгебры ($\mathcal{B}(\mathbf{H}), *_J$) и ($\mathcal{B}(\mathbf{H}), *_{J'}$) *-изоморфны тогда и только тогда, когда отражение J унитарно эквивалентно отражению $\pm J'$:

$$J \stackrel{U}{\sim} \pm J'$$
,

 $m.е.\ \kappa orda\ \kappa pam + ocm b\ (+1)\ в\ cne \kappa mpe\ one pam opa\ J\ paв + a\ либо\ \kappa pam + ocm u\ (+1),\ либо\ \kappa pam + ocm u\ (-1)\ в\ cne \kappa mpe\ one pam opa\ J'.$

Литература

- [1] А.Б. Антоневич, Я.В. Радыно. Функциональный анализ и интегральные уравнения Минск, БГУ, 2003. 430 с.
- [2] Р. Белман. Введение в теорию матриц Москва, Наука, 1969. 368 с.
- [3] Ю. М. Березанский, Г. Ф. Ус, З. Г. Шефтель. Функциональный анализ Киев: Вища школа, 1990. 600 с.
- [4] В. В. Воеводин. Линейная алгебра Москва: Наука, 1974. 336 с.
- [5] Ф. Р. Гантмахер. Теория матриц Москва: Тех.-теор. лит, 1953. 491 с.
- [6] И. М. Гельфанд. Лекции по линейной алгебре Москва: Наука, $1966.-280~\mathrm{c}.$
- [7] И. М. Глазман, Ю. И. Любич. Конечномерный линейный анализ Москва: Наука, 1969. 476 с.
- [8] Л. В. Канторович, Г. П. Акилов. Функциональный анализ Москва: Наука, 1984. 752 с.
- [9] П. Ланкастер. Теория матриц Москва: Наука, 1978. 280 с.
- [10] Г. Д. Луговая, А. Н. Шерстнев. Функциональный анализ. Специальные курсы Москва: Изд. ЛКИ, 2008. 256 с.
- [11] Л. А. Люстерник, В. И. Соболев. Элементы функционального анализа Москва, Наука, 1965. 520 с.
- [12] В. С. Мазорчук. Жорданова нормальна форма Киев: РВЦ "Київський університет", 1998. 119 с.
- [13] Ф. Ф. Султанбеков. Конечномерные алгебры операторов Казань: Изд. Казанского университета, 1986. 78 с.
- [14] П. Р. Халмош. Гильбертово пространство в задачах Москва: Мир, 1970. 352 с.

- [15] П. Р. Халмош. Конечномерные векторные пространства Москва: Физматгиз, 1963. 264 с.
- [16] В. С. Чарин. Линейные преобразования и выпуклые можества Киев, Вища школа, 1978. 192 с.
- [17] Г. Е Шилов. Введение в теорию линейных пространств Москва: Тех.-теор. лит, 1952. 384 с.

Предметный указатель

\mathbf{A}_h , 162	проекция на подпространство,
A_N , 162	21
$\mathcal{B}_{+}(\mathbf{H})$, 73	Векторы ортогональные, 9
$\mathcal{B}_h(\mathbf{H}), 52$	zemiepzi oproromanzuzzo, o
$\mathcal{CI}(\mathbf{A}), 162$	Гельфанда формула, 40
$\mathcal{I}(\mathbf{A}),162$	Группа
$\mathcal{N}(\mathbf{A}), 162$	обратимых операторов, 32
$\mathcal{O}(\mathbf{A})$, 162	унитарная $\mathcal{U}(\mathbf{H}),94$
$\mathcal{P}(\mathbf{A}), 162$	унитарных операторов, 94, 108
$\mathcal{P}(\mathbf{H})$, 55	
$\mathcal{U}(\mathbf{A}), 162$	Декартово представление
· /·	оператора, 54
*-Алгебра, 157	***
*-идеал, 160	Идеал
	двусторонний, 160
Алгебра	левый, 160
$\mathcal{B}(\mathbf{H}), 29$	правый, 160
инволютивная, 157	собственный, 160
с инволюцией, 157	Изометрия, 92
Базис	Изоморфизм
	алгебр, 158
*-мультипликативный, 159	сопряженный, 22
ортонормированный, 13	Инволюция, 49, 158
треугольного представления, 146	точная, 160
Шура, 147	Коизометрия, 92
	Коммутатор операторов, 30
Вектор	Координаты вектора, 15
координаты, 15	
коэффициенты Фурье, 15	Матрица
номированный, 86	Γ рама, 24
проектирующий, 28	линейного оператора, 45

неотрицательно определенная,	нулевой, 29
25	обратимый, 31
положительно определенная, 74	обратный, 31
самосопряженная, 54	ограниченный, 32
сопряженная, 51	отрицательная часть, 84
унитарная, 95	полиномиальный, 77
эрмитова, 54	полином $p(A)$, 30
эрмитово-симметричная, 25	положительная часть, 84
Матрицы	положительный, 73
унитарно эквивалентные, 47	полярное разложение, 135
Матричная единица, 159	регулярная точка, 35
Многочлены	резольвентное множество, 35
Лагранжа, 16	самосопряженный, 52
Чебышева, 16	сингулярные числа, 149
Чебышева-Эрмита, 17	собственный базис, 66
TT	сопряженный, 49
Неравенство	степень, 30
Бесселя, 11, 15	тождественный, 29
Коши-Буняковского, 9	унитарный, 92
Норма	центрированный, 138
вектора, 8	частично изометрический, 129
оператора, 33	эрмитов, 52
Нормальный оператор	Операторы
спектральное разложение, 119	коммутирующие, 30, 69
функция от оператора, 122	перестановочные, 69
Оператор	унитарно эквивалентные, 48
s-числа, 149	Определитель Грама, 24
действительная часть $\operatorname{Re} A, 54$	Ортогональная проекция, 21, 28
декартово представление, 54	Ортогональная сумма, 21
изометрический, 92	Ортогональное дополнение, 21
квадратный корень, 81	Ортогональные векторы, 9
коизометрический, 92	Ортонормированный базис, 13
линейный, 29	Ортопроектор, 55, 162
мнимая часть $\operatorname{Im} A$, 54	Ортопроекторы
модуль, 135	взаимно ортогональные, 59
неотрицательный, 73	ортогональная система, 62
непрерывный, 32	Отражение, 97, 162
норма, 33	
нормальный, 113	Парсеваля равенство, 12

Поляризационное тождество, 9	Спектральное разложение
Полярное разложение, 136	оператора
с унитарным оператором, 136	нормального, 119
Последовательность	самосопряженного, 69
полуаддитивная, 39	унитарного, 103
Представление	Спектральный радиус, 38
треугольное, 146	Th.
Шура, 146	Тождество
Преобразование Кэли оператора	Гильберта, 36
самосопряженного, 104	поляризационное, 9, 30
унитарного, 104	Унитарная эквивалентность, 48
Проекция, 21	Унитарное пространство, 7
ортогональная, 28	Унитарный оператор, 92
Произведение скалярное, 7	• •
Пространство	Формула Гельфанда, 40
конечномерное	Функция от оператора, 78, 122
гильбертово, 7	Частичная изометрия
унитарное, 7	-
	область изометричности, 129
Равенство	ортопроектор
Парсеваля, 12	конечный, 129 начальный, 129
параллелограмма, 9	•
Разложение единицы, 62	подпространство конечное, 129
ортогональное, 62	начальное, 129
Размерность	начальное, 129 Частичный порядок ≤, 75
гильбертова, 13	тастичный порядок \leq , 75
Резольвента, 36	Элемент алгебры
	изометрический, 162
Сингулярные числа, 149	коизометрический, 162
Система	нильпотентный, 162
ортогональная, 10	нормальный, 162
полная, 10	самосопряженный, 162
ортонормированная, 10	унитарный, 162
Скалярное произведение, 7	центрированный, 162
Сопряженный оператор, 49	частично изометрический, 162
Спектральная теорема оператора	эрмитовый, 162
нормального, 117	
самосопряженного, 67	
унитарного, 99, 102	

Учебное издание

Мустафа Абдурешитович Муратов Василий Львович Островский Юрий Стефанович Самойленко

Конечномерный линейный анализ І. Линейные операторы в конечномерных гильбертовых (унитарных) пространствах (Н)

Учебное пособие

Руководитель издательских проектов — Б.А. Сладкевич

Подписано в печать 05.06.2012. Формат 70x100/16. Печать офсетная. Гарнитура Computer Modern. Тираж 500.

Издательство "Центр учебной литературы". ул. Электриков, 23, г. Киев, 04176 Тел./факс 425-01-34, тел. 451-65-95, 425-04-47, 425-20-63 800-50168-00 (бесплатно в пределах Украины) e-mail: office@uabook.com

http://www.cul.com.ua Свидетельство ДК №2458 от 30.03.2006

Отпечатано в типографии "Мастер книг", г. Киев, ул. Выборгская 84, тел. (044) 458-09-35, e-mail: info@masterknyg.com.ua. Свидетельство ДК №3861 от 18.08.2010