

Lycée BILLES

Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

TS1/ Limite-continuité-Dérivabilité/ compléments Exercice 1

Soit f une fonction continue sur [0;1], telle $f([0;1]) \subset [0;1]$.

Démontrer qu'il existe un réel x_0 de [0;1] tel que $f(x_0) = x_0$.

Exercice 2

1. Soit f une fonction continue sur [a;b] tel que $f([a;b]) \subset [a;b]$.

Montrer qu'il existe c dans [a ; b] tel que f(c) = c. 2. Soit f une fonction continue sur [0 ; 1] tel que f(0) = f(1).

Montrer qu'il existe α dans $\left[0; \frac{1}{2}\right]$ tel que $f(\alpha) = f\left(\alpha + \frac{1}{2}\right)$.

Exercice 3

Soit f une fonction continue sur l'intervalle [a; b]. Soit $x_1, x_2, ..., x_n$ des nombres réels de [a; b]. Montrer qu'il existe un réel c tel que :

$$f(c) = \frac{1}{n} [f(x_1) + f(x_2) + f(x_n)].$$

Exercice 4

1. Soit la fonction u définie par :

$$u(x) = f\left(x + \frac{1}{n}\right) - f(x)$$
, $n \in IN^*$.

Montrer que $\sum_{k=0}^{n-1} u\left(\frac{k}{n}\right) = 0.$

- 2. Montrer que l'équation u(x) = 0 admet au moins une solution sur $\left[0; 1 \frac{1}{n}\right]$.
- 4. Déduire de ce qui précède que : pour tout $n \in IN^*$, il existe un réel x_0 de $\left[0;1\right]$ tel que $f\left(x_0 + \frac{1}{n}\right) = f(x_0)$.

Exercice 5

On considère la fonction f définie sur IR par : $f(x) = x - \cos x$.

- 1. Montrer que f(x) = 0 admet une unique solution x_0 et que $x_0 \in \left| \frac{\pi}{6} \right|$.
- 2. Démontrer qu'il existe un réel c de $\left] x_0 ; \frac{\pi}{4} \right[$ tel que : $f\left(\frac{\pi}{4}\right) = \left(\frac{\pi}{4} x_0\right) f'(c)$.
- 3. Montrer que f'(c) > $\frac{3}{2}$ et en déduire que $\frac{\pi}{4} \frac{2}{3}$ f $\left(\frac{\pi}{4}\right) < x_0 < \frac{\pi}{4}$

Exercice 6

Soient f et g deux fonctions continues sur [a, b],

dérivables sur] a , b [. On suppose que $f(a) \neq f(b)$ et $g(a) \neq g(b)$.

En appliquant le Théorème des accroissements finis à la fonction :

h:
$$x \mapsto [g(a) - g(b)]f(x) - [f(a) - f(b)]g(x)$$
,

montrer qu'il existe un réel c de]a, b[tel que :

$$\frac{f'(c)}{f(a)-f(b)} = \frac{g'(c)}{g(a)-g(b)}.$$

Exercice 7

Soit g la fonction définie sur l'intervalle $[-1; +\infty[$ par $g(x) = \sqrt{x+1}$.

- 1. Etudier la dérivabilité de g sur l'intervalle $[-1; +\infty[$.
- 2. Calculer g'(x) pour tout x appartenant à $]-1; +\infty[$
- 3. Encadrer g'(x) pour tout x réel de $[0, \frac{1}{2}]$.
- 4. En déduire que pour tout x appartenant à $[0, \frac{1}{2}]$ on a : $1 + \frac{x}{6} \le g(x) \le 1 + \frac{x}{2}$.

Soit g la fonction définie sur l'intervalle $[-1; +\infty[$ par $g(x) = \sqrt{x+1}$.

- 5. Etudier la dérivabilité de g sur l'intervalle $[-1; +\infty[$.
- 6. Calculer g'(x) pour tout x appartenant à $]-1; +\infty[$
- 7. Encadrer g'(x) pour tout x réel de $[0, \frac{1}{2}]$.
- 8. En déduire que pour tout x appartenant à $[0,\frac{1}{2}]$ on a : $1 + \frac{x}{6} \le g(x) \le 1 + \frac{x}{2}$.

Exercice 8

Soit φ l'application de IR dans IR définie par φ (x) = π + $\frac{1}{3}$ sinx

1. Prouver que:

$$\forall (x,y) \in IR^2, |\varphi(x) - \varphi(y)| \le \frac{1}{3} |x - y|.$$

2. Soit (u_n) , $(n \in IN \text{ la suite définie par } u_{n+1} = \phi(u_n)$. Montrer que $\forall n \in IN$, $|u_n - \pi| \leq \frac{1}{3^n} |u_0 - \pi|$. Etudier la convergence de la suite (u_n) .

Lycée BILLES

Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

Exercice 9

On cherche à démontrer la convergence de la suite (u_n) la suite définie par $u_0=4$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2} \left(u_n + \frac{3}{u_n} \right)$.

1. Soit f la fonction définie sur]0;
$$+\infty$$
[par : $f(x) = \frac{1}{2}(x + \frac{3}{x})$.

Etudier les variations de f puis dresser son tableau de variation.

2. a. Montrer que : si
$$x \in [\sqrt{3}; +\infty[$$
, alors $f(x) \in [\sqrt{3}; +\infty[$.

b. Montrer que pour tout
$$x \in \left[\sqrt{3}; +\infty\right[$$

$$0 \le f'(x) \le \frac{1}{2}$$

c. En déduire que, pour tout
$$x \in \left[\sqrt{3}; +\infty\right[, 0 \le f(x) - \sqrt{3} \le \frac{1}{2} \left(x - \sqrt{3}\right).$$

3.a. Montrer par récurrence pour tout
$$n\in\mathbb{N}$$
,
$$u_n\in\left[\sqrt{3};+\infty\right[$$
 b. En déduire que pour tout $n\in\mathbb{N}$,

b. En déduire que pour tout
$$n \in \mathbb{N}$$

$$0 \le u_{n+1} - \sqrt{3} \le \frac{1}{2} (u_n - \sqrt{3})$$

c. Montrer par récurrence pour tout $n \in \mathbb{N}$,

$$0 \le u_n - \sqrt{3} \le \frac{1}{2^n} (u_0 - \sqrt{3})$$

a. En déduire que la suite (un) converge et déterminer sa limite.

Exercice 10

Soit f la fonction définie sur IR par $f(x) = \sqrt{1 + x^2}$.

- 1. Montrer que $\forall x \in IR$, $(1+x^2)f'(x) = xf(x)$.
- 2. Démontrer par récurrence que: $\forall n \in \mathbb{N}, \forall \in \mathbb{R}$:

$$(1+x^2)f^{(n+2)}(x) + (2n+1)xf^{(n+1)}(x) + (n^2-1)f^{(n)}(x) = 0.$$

3. Démontrer que les dérivées d'ordre impair sont nulles en 0.

Exercice 11

1. Montrer que

$$\frac{\sqrt{2}}{2}(y-x) \le \sin y - \sin x \le \frac{\sqrt{3}}{2}(y-x), \text{ pour tous } x \text{ et}$$

$$y \text{ de } \left[\frac{\pi}{6}, \frac{\pi}{4}\right], x < y.$$

2. En déduire que
$$\frac{\sqrt{2}}{12} \le \frac{\sqrt{2}-1}{\pi} \le \frac{\sqrt{3}}{12}$$
.

Exercice 12

Soit g la fonction définie sur R par

$$g(x) = 2x^3 + 3x^2 + 1$$
.

a. Etudier les variations de g.

b. Montrer que l'équation g(x) = 0 admet dans \mathbb{R} une unique solution a et donner une valeur approchée de α à 10^{-1} prés.

c. En déduire le signe de g.

2. Soit la fonction $f: x \mapsto \frac{x+x^3}{1-x^3}$ et C_f sa courbe

représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

a. Etudier les variations de f.

b. Déterminer une équation de la tangente T à la courbe C_f au point d'abscisse 0.

c. Préciser la position de Cf par rapport à T.

d. Tracer C_f et T.

Exercice 13

On considère la fonction g définie sur R

par
$$g(x) = 2x^3 + x - 2$$
.

a. Dresser le tableau de variation de g.

b. Montrer que l'équation g(x) = 0 admet une unique solution α dans \mathbb{R} .

c. Déterminer une valeur approchée de α

à
$$10^{-2}$$
 près.

d. Déterminer le signe de g.

2. On considère la fonction f définie sur R par $f(x) = \sqrt{x^4 + (x-2)^2}$.

 a. Montrer que f est dérivable sur R et déterminer sa fonction dérivée.

 b. Dresser le tableau de variation de f et tracer la courbe Cf de f dans un repère orthogonal.

c. Déterminer graphiquement l'intersection de Cf et de la droite d'équation y = x.