Putnam preparation

Inequalities, maxima and minima

Finding the maximum or minimum of a function: In the Putnam, it is important that your justification of a max or a min is rigorous. For instance, it is not enough to solve the equation f'(x) = 0 to find a maximum of a function f. Here are some techniques:

- Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable. If f'(x) > 0 for $x < x_0$ and f'(x) < 0 for $x > x_0$, then the maximum value of f(x) is $f(x_0)$.
- Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Then f achieves both its maximum and its minimum on [a,b]. These must occur at points x_0 where either $f'(x_0)=0$, $f'(x_0)$ does not exist, or $x_0=a$ or b.
- You may be able to show directly for instance that $f(x) \leq M$ for some M, and that $f(x_0) = M$, in which case M is the maximum.

Basic tools for inequalities:

- If $a \le b$ and $b \le c$, then $a \le c$ with equality if and only if a = b = c.
- If $a_1 \le b_1$ and $a_2 \le b_2$, then $a_1 + a_2 \le b_1 + b_2$, with equality if and only if $a_1 = b_1$ and $a_2 = b_2$.
- If $0 < a_1 \le b_1$ and $0 < a_2 \le b_2$, then $a_1 a_2 \le b_1 b_2$, with equality if and only if $a_1 = b_1$ and $a_2 = b_2$.
 - If $0 < a \le b$, then $\frac{1}{a} \ge \frac{1}{b}$.
 - If $0 < a \le b$ and $\alpha > 0$, then $a^{\alpha} \le b^{\alpha}$.
 - $a^2 \ge 0$, with equality if and only if a = 0.

 $Classical\ inequalities:$

• Arithmetic mean - geometric mean inequality [AM-GM] For a_1, a_2, \ldots, a_n nonnegative,

$$\sqrt[n]{a_1 \cdots a_n} \le \frac{a_1 + \cdots + a_n}{n}.$$

Equality holds if and only if $a_1 = a_2 = \cdots = a_n$.

• Power mean inequality For a_1, a_2, \ldots, a_n nonnegative, and $\alpha \in \mathbb{R}$, let

$$M_{\alpha}(a_1, a_2, \dots, a_n) := \begin{cases} \left(\frac{a_1^{\alpha} + a_2^{\alpha} + \dots + a_n^{\alpha}}{n}\right)^{\frac{1}{\alpha}} & \alpha \neq 0 \\ \sqrt[n]{a_1 \cdots a_n} & \alpha = 0 \end{cases}$$

Then M_{α} is an increasing function of α unless $a_1 = a_2 = \cdots = a_n$ in which case M_{α} is constant.

• Cauchy-Schwartz inequality For arbitrary real numbers $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$

$$(a_1b_1 + \dots + a_nb_n)^2 \le (a_1^2 + \dots + a_n^2)(b_1^2 + \dots + b_n^2).$$

Furthermore, equality holds if and only if the vectors (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) are proportional. The Cauchy-Schwartz inequality is equivalent to the triangle inequality for the 2-norm.

• Triangle inequality For any two vectors x, y in \mathbb{R}^n ,

$$||x+y||_2 \le ||x||_2 + ||y||_2$$
.

Here $x = (x_1, x_2, ..., x_n)$ and $||x||_2 = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$.

• **Definition** Suppose f is a continuous real-valued function defined on an interval, and for any points x, y in the interval

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}.$$

Then f is convex.

Note that f is convex if and only if for any points x, y in the interval, and any $0 \le t \le 1$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

If f is twice differentiable with continuous second derivative, and f'' > 0, then f is convex.

Convex functions have useful properties.

• Jensen's inequality If w_1, \ldots, w_n are positive numbers satisfying $w_1 + \cdots + w_n = 1$, and x_1, \ldots, x_n are any n points in an interval where f is convex, then

$$f(w_1x_1+\cdots+w_nx_n)\leq w_1f(x_1)+\cdots+w_nf(x_n).$$

(The typical case is $w_1 = \cdots = w_n = \frac{1}{n}$.)

• Points of maximum If f is convex on [a, b], then the maximum value of f is taken at one of the endpoints, i.e.

$$f(x) \le \max\{f(a), f(b)\}.$$

• Weighted AM-GM inequality If x_1, \ldots, x_n are nonnegative real numbers and w_1, \ldots, w_n are positive numbers satisfying $w_1 + \cdots + w_n = 1$, then

$$\prod_{i=1}^{n} x_i^{w_i} \le \sum_{i=1}^{n} w_i x_i.$$

Equality holds if and only if $x_1 = \cdots = x_n$.

• Young's inequality If a and b are nonnegative numbers and p, q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q},$$

with equality if and only if $a^p = b^q$.

• Hölder's inequality Let x_1, \ldots, x_n and y_1, \ldots, y_n be nonnegative real numbers, and let p, q > 1 satisfy $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_i^q\right)^{\frac{1}{q}}.$$

• Minkowski's inequality Let x_1, \ldots, x_n and y_1, \ldots, y_n be nonnegative real numbers, and $p \ge 1$, then

$$\left(\sum_{i=1}^{n} (x_i + y_i)^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} y_i^p\right)^{\frac{1}{p}}.$$

• Theorem (Hölder) Let $X = (X_{ij})$ be an $m \times n$ matrix with nonnegative elements and let w_1, \ldots, w_n be positive numbers satisfying $w_1 + \cdots + w_n = 1$, then

$$\sum_{i=1}^{m} \prod_{j=1}^{n} x_{ij}^{w_j} \le \prod_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right)^{w_j}.$$

• Rearrangement inequality Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be two sequences of real numbers and suppose $a_1 \leq a_2 \leq \cdots \leq a_n$. For each permutation π of $\{1, 2, \ldots, n\}$, let

$$\sum (\pi) := \sum_{k=1}^{n} a_k b_{\pi(k)}.$$

Then \sum is largest when $b_{\pi(1)} \leq b_{\pi(2)} \leq \cdots \leq b_{\pi(n)}$, and smallest when $b_{\pi(1)} \geq b_{\pi(2)} \geq \cdots \geq b_{\pi(n)}$.

• Chebychev's inequality Let $a_1 \ge \cdots \ge a_n > 0$, and $b_1 \ge \cdots \ge b_n > 0$, then

$$\left(\frac{\sum_{i=1}^{n} a_i b_i}{n}\right) \ge \left(\frac{\sum_{i=1}^{n} a_i}{n}\right) \left(\frac{\sum_{i=1}^{n} b_i}{n}\right)$$

with equality if and only if all the a_i are equal or all the b_i are equal.

Some tricks:

- Use logarithms to change products to sums.
- Differentiate or integrate and use the fundamental theorem of calculus.
- Make choices, e.g. constants, for values in the classical inequalities.
- Use Taylor series.
- Look for symmetries.