Lecture 6: Bitcoin Safety

https://web3.princeton.edu/principles-of-blockchains/

Professor Pramod Viswanath Princeton University

This lecture:
Safety of the Bitcoin system

Mathematical model of mining and adversary action

Bitcoin Security

- Safety: A transaction/block confirmed by one user is soon confirmed by all other users and remains confirmed forever after.
 - Focus of this lecture
- **Liveness**: all (honest) transactions get included into blocks, and further that the blocks feature in the longest chain.
 - Next lecture

Spam protection

Truly permissionless: anyone can join and do anything

Network data: transactions and blocks

Both data types have inbuilt cryptographic resistance to spam

- Transaction: digital signature
- Blocks: PoW & syntax of the header

Protocol level attacks

- √ Create valid blocks
- **x** Mine on the tip of the longest chain
- x Publish the blocks once mined

We looked at one strategy called private attack

Longest Chain Protocol

Where should the mined block hash-point to?

Latest block?

Longest Chain Protocol

Where should the mined block hash-point to?

However, blockchain may have forks

because of network delays

because of adversarial action

Longest Chain Protocol

Where should the mined block hash-point to?

Blockchain may have forks

because of network delays because of adversarial action

tion

Longest chain protocol

attach the block to the leaf of the longest chain in the block tree

Double Spend Attack

Adversary can point its block to an older part of the chain Duplicate transaction inserted

Plausible Deniability

network latency

an offline user will not know which block came earlier blocks have no wall clock reference (time stamps).

k Deep Confirmation Rule

- A block is confirmed if it is buried k-deep in the longest chain
- An attacker would need more than k blocks to double spend

Mining as a Poisson Process

Time to a successful mining event is an exponential random variable

$$T \sim exp(\lambda)$$
 if $Pr(T \ge t) = e^{-\lambda t}$

Memoryless:

$$\Pr(T \ge t + t_0 | T \ge t_0) = \frac{\Pr(T \ge t + t_0)}{\Pr(T \ge t_0)} = \frac{e^{-\lambda(t + t_0)}}{e^{-\lambda t_0}} = e^{-\lambda t} = \Pr(T \ge t)$$

Number of mined blocks in time T is a Poisson random variable

$$X \sim Poi(\lambda T)$$
 if $Pr(X = k) = \frac{(\lambda T)^k e^{-\lambda T}}{k!}$

The mining process is a Poisson process with rate λ , proportional to hash power

Mining as a Poisson Process

Mathematical fact: The sum of multiple independent Poisson processes is still a Poisson process

Consequence: the honest/adversarial mining processes are independent

Poisson processes with constant mining rate

Honest mining: Poisson process with rate $(1 - \beta)\lambda$

Adversarial mining: Poisson process with rate $\beta\lambda$

Private attack

Balance attack

Private attack is the worst-case attack

 A_k = # adv blocks, H_k = # of honest blocks

$$A_k + H_k \ge 2k + 2$$

$$A_k \ge H_k$$
 $A_k \ge H_k$
 $A_k \ge M_k$

Number of adversarial blocks is enough to launch a private attack

Private Attack (With Honest Forking)

 Δ - synchronous network model: network delays bounded by Δ

Summary

- Model Bitcoin mining as Poisson processes
- Analysis against the private attack
- Safety analysis beyond the private attack all possible protocol attacks