Übung "Grundbegriffe der Informatik"

26.10.2012 Willkommen zur zweiten Übung zur Vorlesung Grundbegriffe der Informatik

Matthias Janke email: matthias.janke ät kit.edu

Ansage

- Donnerstag, 1. November ist Feiertag!
- ► Tutorien finden an diesem Tag **nicht** statt!
- Besuchen Sie andere Tutorien!
- ► Erwarten Sie keine Rückgabe der korrigierten Übungsblätter!

Überblick

Aussagenlogik

Prädikatenlogik

Wörter

Vollständige Induktion

$$\begin{array}{c|cccc} (\mathcal{A}\Rightarrow\mathcal{B})\Rightarrow\mathcal{B} \colon & & & & \\ \hline \mathcal{A} & \mathcal{B} & (\mathcal{A} & \Rightarrow & \mathcal{B}) & \Rightarrow & \mathcal{B} \\ \hline \text{falsch} & \text{falsch} & & \text{wahr} \\ \text{falsch} & \text{wahr} & & \text{wahr} \\ \text{wahr} & \text{falsch} & & \text{falsch} \\ \text{wahr} & \text{wahr} & & \text{wahr} \\ \end{array}$$

5/62

$(\mathcal{A}\Rightarrow\mathcal{B})\Rightarrow\mathcal{B}$:							
${\cal A}$	${\cal B}$	$ $ (\mathcal{A}	\Rightarrow	$\mathcal{B})$	\Rightarrow	${\cal B}$	
falsch	falsch		wahr		falsch		
falsch	wahr		wahr		wahr		
wahr	falsch		falsch		wahr		
wahr	wahr		wahr		wahr		

Äquivalent zu $\mathcal{A} \vee \mathcal{B}$.

Aussagenlogik

Äquivalent zu $\mathcal{A} \vee \mathcal{B}$.

$$\mathsf{lst}\ (\mathcal{A} \Rightarrow \mathcal{B}) \Rightarrow \mathcal{B}\ \mathsf{\ddot{a}quivalent}\ \mathsf{zu}\ \mathcal{A} \Rightarrow (\mathcal{B} \Rightarrow \mathcal{B})?$$

10/62 Aussagenlogik

Formel: $(A \wedge B) \wedge (C \wedge D)$

Wann wahr, wann falsch?

Α	В	C	D	$(A \wedge B)$	\wedge	$(C \wedge D)$
falsch	falsch	falsch	falsch	falsch	?	falsch
falsch	falsch	falsch	wahr	falsch	?	falsch
falsch	falsch	wahr	falsch	falsch	?	falsch
falsch	falsch	wahr	wahr	falsch	?	wahr
falsch	wahr	falsch	falsch	falsch	?	falsch
falsch	wahr	falsch	wahr	falsch	?	falsch
falsch	wahr	wahr	falsch	falsch	?	falsch
falsch	wahr	wahr	wahr	falsch	?	wahr
wahr	falsch	falsch	falsch	falsch	?	falsch
wahr	falsch	falsch	wahr	falsch	?	falsch
wahr	falsch	wahr	falsch	falsch	?	falsch
wahr	falsch	wahr	wahr	falsch	?	wahr
wahr	wahr	falsch	falsch	wahr	?	falsch
wahr	wahr	falsch	wahr	wahr	?	falsch
wahr	wahr	wahr	falsch	wahr	?	falsch
wahr	wahr	wahr	wahr	wahr	?	wahr
				•		

Aussagenlogik 12/62

Α	В	С	D	$(A \wedge B)$	\wedge	$(C \wedge D)$
falsch	falsch	falsch	falsch	falsch	falsch	falsch
falsch	falsch	falsch	wahr	falsch	falsch	falsch
falsch	falsch	wahr	falsch	falsch	falsch	falsch
falsch	falsch	wahr	wahr	falsch	falsch	wahr
falsch	wahr	falsch	falsch	falsch	falsch	falsch
falsch	wahr	falsch	wahr	falsch	falsch	falsch
falsch	wahr	wahr	falsch	falsch	falsch	falsch
falsch	wahr	wahr	wahr	falsch	falsch	wahr
wahr	falsch	falsch	falsch	falsch	falsch	falsch
wahr	falsch	falsch	wahr	falsch	falsch	falsch
wahr	falsch	wahr	falsch	falsch	falsch	falsch
wahr	falsch	wahr	wahr	falsch	falsch	wahr
wahr	wahr	falsch	falsch	wahr	falsch	falsch
wahr	wahr	falsch	wahr	wahr	falsch	falsch
wahr	wahr	wahr	falsch	wahr	falsch	falsch
wahr	wahr	wahr	wahr	wahr	wahr	wahr

Aussagenlogik 13/62

Überblick

Aussagenlogik

Prädikatenlogik

Wörte

Vollständige Induktion

 $R \subseteq M \times N$ Relation

- $\exists x \in M : \forall y \in N : xRy \Rightarrow \forall y \in N : \exists x \in M : xRy$

Prädikatenlogik 15/62

 $R \subseteq M \times N$ Relation

 $\exists x \in M : \forall y \in N : xRy \Rightarrow \forall y \in N : \exists x \in M : xRy$

Erste Formel: Irgendwie offensichtlich wahr.

Prädikatenlogik 16/62

 $R \subseteq M \times N$ Relation

- $\exists x \in M : \forall y \in N : xRy \Rightarrow \forall y \in N : \exists x \in M : xRy$

Erste Formel: Irgendwie offensichtlich wahr.

Zweite Formel: Falsch! (siehe $M=N=\mathbb{N}_0, R=<$)

Prädikatenlogik 17/62

$$R \subseteq M \times N$$
 Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.

Prädikatenlogik 18/62

$$R \subseteq M \times N$$
 Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

- ▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.
- ▶ Sei $x_0 \in M$ so gewählt, dass $\forall y \in N : xRy$ wahr ist.

Prädikatenlogik 19/62

 $R \subseteq M \times N$ Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

- ▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.
- ▶ Sei $x_0 \in M$ so gewählt, dass $\forall y \in N : x_0 Ry$ wahr ist.
- ▶ Sei $y_0 \in N$ beliebig, aber fest gewählt.

 $R \subseteq M \times N$ Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

- ▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.
- ▶ Sei $x_0 \in M$ so gewählt, dass $\forall y \in N : x_0 Ry$ wahr ist.
- ▶ Sei $y_0 \in N$ beliebig, aber fest gewählt.

Prädikatenlogik 21/62

 $R \subseteq M \times N$ Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

- ▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.
- ▶ Sei $x_0 \in M$ so gewählt, dass $\forall y \in N : x_0 R y$ wahr ist.
- ▶ Sei $y_0 \in N$ beliebig, aber fest gewählt.
- ▶ Dann gilt x_0Ry_0 .

 $R \subseteq M \times N$ Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

- ▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.
- ▶ Sei $x_0 \in M$ so gewählt, dass $\forall y \in N : x_0 R y$ wahr ist.
- ▶ Sei $y_0 \in N$ beliebig, aber fest gewählt.
- ▶ Dann gilt $x_0Ry_0 \Rightarrow \exists x \in M : xRy_0$

$$R \subseteq M \times N$$
 Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

- ▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.
- ▶ Sei $x_0 \in M$ so gewählt, dass $\forall y \in N : x_0Ry$ wahr ist.
- ▶ Sei $y_0 \in N$ beliebig, aber fest gewählt.
- ▶ Dann gilt $x_0Ry_0 \Rightarrow \exists x \in M : xRy_0$
- ▶ Da y_0 beliebig gewählt war, gilt $\forall y \in N : \exists x \in N : xRy$.

Prädikatenlogik 24/62

$$R \subseteq M \times N$$
 Relation $(\exists x \in M : \forall y \in N : xRy) \Rightarrow (\forall y \in N : \exists x \in M : xRy)$

- ▶ Wir gehen davon aus, dass $\exists x \in M : \forall y \in N : xRy$ wahr ist.
- ▶ Sei $x_0 \in M$ so gewählt, dass $\forall y \in N : x_0Ry$ wahr ist.
- ▶ Sei $y_0 \in N$ beliebig, aber fest gewählt.
- ▶ Dann gilt $x_0Ry_0 \Rightarrow \exists x \in M : xRy_0$
- ▶ Da y_0 beliebig gewählt war, gilt $\forall y \in N : \exists x \in N : xRy \square$

► Formel (I): $0 \notin A \vee \exists n \in \mathbb{N}_0 : (n \in A \wedge n + 1 \notin A)$

Behauptung: (I) gilt genau dann, wenn $\mathbb{N}_0 \not\subseteq A$ gilt.

Was bedeutet $\mathbb{N}_0 \not\subseteq A$?

► Formel (I): $0 \notin A \vee \exists n \in \mathbb{N}_0 : (n \in A \wedge n + 1 \notin A)$

Behauptung: (I) gilt genau dann, wenn $\mathbb{N}_0 \not\subseteq A$ gilt.

Was bedeutet $\mathbb{N}_0 \not\subseteq A$?

$$(\mathbb{N}_0 \not\subseteq A \iff \exists n \in \mathbb{N}_0 : n \notin A).$$

27/62

► Formel (I): $0 \notin A \vee \exists n \in \mathbb{N}_0 : (n \in A \wedge n + 1 \notin A)$

Idee: Statt "(I) gilt genau dann, wenn $\mathbb{N}_0 \not\subseteq A$ gilt", benutzen wir:

Negation von (I) $\iff \mathbb{N}_0 \subseteq A$.

- ▶ $0 \in A \land \forall n \in \mathbb{N}_0 : (\neg(n \in A) \lor n + 1 \in A)$
- $\blacktriangleright \iff 0 \in A \land \forall n \in \mathbb{N}_0 : (n \in A \Rightarrow n+1 \in A)$

► Formel (I): $0 \notin A \vee \exists n \in \mathbb{N}_0 : (n \in A \wedge n + 1 \notin A)$

Idee: Statt "(I) gilt genau dann, wenn $\mathbb{N}_0 \not\subseteq A$ gilt", benutzen wir:

Negation von (I) $\iff \mathbb{N}_0 \subseteq A$.

- ▶ $0 \in A \land \forall n \in \mathbb{N}_0 : (\neg(n \in A) \lor n + 1 \in A)$
- $\blacktriangleright \iff 0 \in A \land \forall n \in \mathbb{N}_0 : (n \in A \Rightarrow n+1 \in A)$

Überblick

Aussagenlogik

Prädikatenlogik

Wörter

Vollständige Induktion

Wörter 29/62

Zwei Abbildungen:

$$f(0) = S, f(1) = t, f(2) = u, f(3) = d, f(4) = i, f(5) = u, f(6) = m$$

 $g(0) = S, g(1) = t, g(2) = u, g(3) = d, g(4) = i, g(5) = u, g(6) = m$

Wörter 30/62

Zwei Abbildungen:

$$f(0) = S, f(1) = t, f(2) = u, f(3) = d, f(4) = i, f(5) = u, f(6) = m$$

 $g(0) = S, g(1) = t, g(2) = u, g(3) = d, g(4) = i, g(5) = u, g(6) = m$

► f = g ???

Wörter 31/62

Zwei Abbildungen:

$$f(0) = S, f(1) = t, f(2) = u, f(3) = d, f(4) = i, f(5) = u, f(6) = m$$

 $g(0) = S, g(1) = t, g(2) = u, g(3) = d, g(4) = i, g(5) = u, g(6) = m$

- ightharpoonup f = g ???
- ▶ Was bedeutet f = g eigentlich?

Wörter 32/62

Zwei Abbildungen:

$$f(0) = S, f(1) = t, f(2) = u, f(3) = d, f(4) = i, f(5) = u, f(6) = m$$

 $g(0) = S, g(1) = t, g(2) = u, g(3) = d, g(4) = i, g(5) = u, g(6) = m$

- \blacktriangleright $f: A \rightarrow B, g: C \rightarrow D;$
- $f = g \iff A = C \land B = D \land \forall x \in A : f(x) = g(x)$

Wörter 33/62

Zwei Abbildungen:

$$f(0) = S, f(1) = t, f(2) = u, f(3) = d, f(4) = i, f(5) = u, f(6) = m$$

 $g(0) = S, g(1) = t, g(2) = u, g(3) = d, g(4) = i, g(5) = u, g(6) = m$

- $f: \mathbb{G}_7 \to A_1, g: \mathbb{G}_7 \to A_2,$ A_1 englisches Alphabet, A_2 deutsches Alphabet mit Umlauten
- ightharpoonup f
 eq g

Wörter 34/62

 A_1 englisches Alphabet, A_2 deutsches Alphabet mit Umlauten

► $A_1^* \cap A_2^* = ?$

Wörter 35/62

 A_1 englisches Alphabet, A_2 deutsches Alphabet mit Umlauten

- ► $A_1^* \cap A_2^* = ?$
- ▶ Wörter wie "man" oder "die" sollten in $A_1^* \cap A_2^*$ liegen.

36/62 Wörter

 A_1 englisches Alphabet, A_2 deutsches Alphabet mit Umlauten

- ► $A_1^* \cap A_2^* = ?$
- ▶ Wörter wie "man" oder "die" sollten in $A_1^* \cap A_2^*$ liegen.
- Darum: Wörter surjektive Abbildungen auf Teilmengen des Alphabets, damit Wort eindeutig.

Wörter 37/62

Sind die hervorgehobenen Wörter gleich? "**Die** Biene summt herum."

Wörter 38/62

Sind die hervorgehobenen Wörter gleich?

"Die Biene summt herum."

"Die Wikinger entdeckten Amerika."

Wörter 39/62

Sind die hervorgehobenen Wörter gleich?

"Die Biene summt herum."

"Die Wikinger entdeckten Amerika."

"Die Bart Die"

Wörter 40/62

Sind die hervorgehobenen Wörter gleich?

"Die Biene summt herum."

"Die Wikinger entdeckten Amerika."

"Die Bart Die"

Alle drei das gleiche Wort (für uns Informatiker).

Wörter 41/62

rekursive Definitionen

- rekursive Definitionen sind für manche etwas gewöhnungsbedürftig
- aber speziell in der Informatik äußerst wichtig
- Beispiele
 - Akronym GNU : GNU is Not Unix
 - Fakultät berechnen: $n! = n \cdot (n-1) \dots 1$ n! = 1, für n = 0 $n! = n \cdot (n-1)!$, für n > 0
 - ▶ rekursive Definition von Worten mit Abbildung $R: A^* \rightarrow A^*$:

$$R(\varepsilon) = \varepsilon$$
$$\forall w \in A^* \ \forall x \in A : \ R(xw) = R(w)x$$

Wörter 42/62

rekursive Definitionen

$$R(\varepsilon) = \varepsilon$$
$$\forall w \in A^* \ \forall x \in A : \ R(xw) = R(w)x$$

Was macht das?

Beispielwort abbab

$$R(abbab) = R(a \cdot bbab) = R(bbab)a = R(bab)ba = R(ab)bba = R(b)abba = R(b\varepsilon)abba = R(\varepsilon)babba = \varepsilon babba = babba.$$

Wörter 43/62

Überblick

Aussagenlogik

Prädikatenlogik

Wörte

- Induktionsanfang (IA): Zeige, Aussage gilt für k=0 (Einsetzen der Definition ist oft 3/4 des Jobs).
- Induktionsvoraussetzung (IV): Für ein beliebiges aber festes $k \in \mathbb{N}_0$ gilt die Aussage. (Einfach nur hinschreiben.)
- ► Induktionsschluss (IS): Ausgehend von der IV zeigt man, dass für k + 1 die Aussage gilt. (Einsetzen der Definition und Einsetzen der IV ist oft 1/3 - 1/2 des Jobs.)

- Induktionsanfang (IA): Zeige, Aussage gilt für k = 0 (Einsetzen der Definition ist oft 3/4 des Jobs).
- Induktionsvoraussetzung (IV): Für ein beliebiges aber festes $k \in \mathbb{N}_0$ gilt die Aussage. (Einfach nur hinschreiben.)
- ▶ Induktionsschluss (IS): Ausgehend von der IV zeigt man, dass für k + 1 die Aussage gilt. (Einsetzen der Definition und Einsetzen der IV ist oft 1/3 - 1/2 des Jobs.)

- Induktionsanfang (IA): Zeige, Aussage gilt für k = 0 (Einsetzen der Definition ist oft 3/4 des Jobs).
- Induktionsvoraussetzung (IV): Für ein beliebiges aber festes $k \in \mathbb{N}_0$ gilt die Aussage. (Einfach nur hinschreiben.)
- ▶ Induktionsschluss (IS): Ausgehend von der IV zeigt man, dass für k+1 die Aussage gilt. (Einsetzen der Definition und Einsetzen der IV ist oft 1/3 1/2 des Jobs.)

- Induktionsanfang (IA): Zeige, Aussage gilt für k = 0 (Einsetzen der Definition ist oft 3/4 des Jobs).
- Induktionsvoraussetzung (IV): Für EIN BELIEBIGES ABER FESTES $k \in \mathbb{N}_0$ gilt die Aussage. (Einfach nur hinschreiben.)
- ▶ Induktionsschluss (IS): Ausgehend von der IV zeigt man, dass für k + 1 die Aussage gilt. (Einsetzen der Definition und Einsetzen der IV ist oft 1/3 - 1/2 des Jobs.)

Merke: Wenn eine Induktion über k durchgeführt wird, darf in der IV auf gar keinen Fall ein Allquantor vor dem k stehen.

Tip: Stellen Sie sich einen weiteren Quantor für "für ein beliebiges, aber festes …" vor: $\mathbb{B}k \in \mathbb{N}_0$ …, der bei der IV steht.

Alphabet A.

Aussage: $\forall w \in A^* : \forall n \in \mathbb{N}_0 : \forall m \in \mathbb{N}_0 : w^n w^m = w^{n+m}$.

Wähle beliebiges, aber festes $w \in A^*$, wähle beliebiges, aber festes $n \in \mathbb{N}_0$.

Induktion über m.

Zwei Schritte:

- ▶ Aussage gilt für m = 0.
- ▶ $\forall m \in \mathbb{N}_0$: Aussage gilt für $m \Rightarrow$ Aussage gilt für m+1.

Induktionsanfang: m = 0: $w^n w^0 = w^n \cdot \epsilon = w^n = w^{n+0}$ \checkmark

 $\forall m \in \mathbb{N}_0$: Aussage gilt für $m \Rightarrow$ Aussage gilt für m+1.

Wähle **beliebiges**, aber festes $m \in \mathbb{N}_0$.

Fall 1: Aussage gilt nicht für $m \Rightarrow$ Folgerung ist wahr.

Fall 2: Aussage gilt für $m \Rightarrow \mathsf{Dann}$ muss Aussage auch für m+1 gelten, oder Folgerung ist nicht für alle $m \in \mathbb{N}_0$ wahr.

Induktionsvoraussetzung: Für ein **beliebiges, aber festes** $m \in \mathbb{N}_0$ gilt: $w^n w^m = w^{n+m}$. Induktionsschluss: $m \to m+1$: Zu zeigen: Dann gilt auch $w^n w^{m+1} = w^{n+(m+1)}$.

```
Induktionsvoraussetzung: Für ein beliebiges, aber festes m \in \mathbb{N}_0 gilt: w^n w^m = w^{n+m}. Induktionsschluss: m \to m+1: Zu zeigen: Dann gilt auch w^n w^{m+1} = w^{n+(m+1)}. w^n w^{m+1}
```

```
Induktionsvoraussetzung: Für ein beliebiges, aber festes m \in \mathbb{N}_0 gilt: w^n w^m = w^{n+m}. Induktionsschluss: m \to m+1: Zu zeigen: Dann gilt auch w^n w^{m+1} = w^{n+(m+1)}. w^n w^{m+1} \stackrel{=}{=} w^n (w^m \cdot w)
```

```
Induktionsvoraussetzung: Für ein beliebiges, aber festes m \in \mathbb{N}_0 gilt: w^n w^m = w^{n+m}. Induktionsschluss: m \to m+1: Zu zeigen: Dann gilt auch w^n w^{m+1} = w^{n+(m+1)}. w^n w^{m+1} \stackrel{Def}{=} w^n (w^m \cdot w) \stackrel{Assoziativ}{=} (w^n w^m) \cdot w
```

```
Induktionsvoraussetzung: Für ein beliebiges, aber festes m \in \mathbb{N}_0 gilt: w^n w^m = w^{n+m}. Induktionsschluss: m \to m+1: Zu zeigen: Dann gilt auch w^n w^{m+1} = w^{n+(m+1)}. w^n w^{m+1} \stackrel{Def}{=} w^n (w^m \cdot w) \stackrel{Assoziativ}{=} (w^n w^m) \cdot w \frac{IV}{W} w^{n+m} \cdot w
```

```
Induktionsvoraussetzung: Für ein beliebiges, aber festes m \in \mathbb{N}_0 gilt: w^n w^m = w^{n+m}. Induktionsschluss: m \to m+1: Zu zeigen: Dann gilt auch w^n w^{m+1} = w^{n+(m+1)}. w^n w^{m+1} \stackrel{Def}{=} w^n (w^m \cdot w) \stackrel{Assoziativ}{=} (w^n w^m) \cdot w \frac{IV}{=} w^{n+m} \cdot w \stackrel{Def}{=} w^{(n+m)+1}
```

```
Induktionsvoraussetzung: Für ein beliebiges, aber festes m \in \mathbb{N}_0 gilt: w^n w^m = w^{n+m}. Induktionsschluss: m \to m+1: Zu zeigen: Dann gilt auch w^n w^{m+1} = w^{n+(m+1)}. w^n w^{m+1} \stackrel{Def}{=} w^n (w^m \cdot w) \stackrel{Assoziativ}{=} (w^n w^m) \cdot w \frac{IV}{=} w^{n+m} \cdot w \stackrel{Def}{=} w^{(n+m)+1} - w^{n+(m+1)}
```

Induktionsvoraussetzung: Für ein **beliebiges**, **aber festes** $m \in \mathbb{N}_0$ gilt: $w^n w^m = w^{n+m}$. Induktionsschluss: $m \to m+1$: Zu zeigen: Dann gilt auch $w^n w^{m+1} = w^{n+(m+1)}$. $w^n w^{m+1} \stackrel{Def}{=} w^n (w^m \cdot w) \stackrel{Assoziativ}{=} (w^n w^m) \cdot w$ $\frac{lV}{=} w^{n+m} \cdot w \stackrel{Def}{=} w^{(n+m)+1} = w^{n+(m+1)} \sqcap$

Das wars für heute...

Themen für das zweite Übungsblatt:

- Wahrheitstabelle
- Prädikatenlogik
- Vollständige Induktion

Schönes Wochenende!