STAT479 Project1 Wenyan Zhou

Abstract

The goal of the project is to predict INTRDVX in the BLS data, amount of interest and dividends, from other variables(excluding variables that are functions of INTRDVX). I used cross validation to compare different methods for prediction, including GUIDE, xgboost, rpart, ctree, randomForest, and ranger. Among these methods, I made predictions using GUIDE with some specific options and randomForest.

Data description & preparation

In "data_complete.rdata", which contains the training data, there are 25822 observations and 653 variables. What we are interested in are observations whose INTRDVX are flagged with "D" or "T". After filtration, there are only 2922 observations left, and the scatter plot of INTRDVX is shown in Figure 1.1. We can see that observations flagged with "T" have extremely high INTRDVX, which is 98338.

Figure 1.1

It is easy for me to come up with an idea that we can first classify "D" and "T", and then predict them separately with different models. However, after some trials, the mean square does not decrease as expected, because once we make an error in classification, sum of squares will increase a lot, i.e. the error is cumulative. Considering it is a nonlinear model, I tried some tree-based methods. I first use GUIDE to do some preparation work:

Only keep important variables based on importance score. (part of them are listed below)
 Predictor variables sorted by importance scores
 Importance Scores

Scaled	Unscaled	Rank Variable	
100.0	2.53519E+01	1.00	STOCKX
94.5	2.39661E+01	2.00	STOCKYRX
92.6	2.34680E+01	3.00	FINCAT_X
92.4	2.34253E+01	4.00	FINCBT_X
87.5	2.21736E+01	5.00	CUTENURE
82.5	2.09138E+01	6.00	AGE_REF
72.0	1.82542E+01	7.00	RENTEQVX
71.5	1.81240E+01	8.00	STATE
60.1	1.52458E+01	9.00	PERSOT64
58.9	1.49342E+01	11.50	INCO_EY1
58.9	1.49342E+01	11.50	INC_RS1
58.9	1.49342E+01	11.50	INCN_NW1
58.9	1.49342E+01	11.50	OCCU_OD1
58.3	1.47711E+01	14.00	INCOMEY1
56.5	1.43175E+01	15.00	INCNONW1
54.6	1.38435E+01	16.00	RENT_QVX
54.5	1.38162E+01	17.00	AGE2
52.6	1.33389E+01	18.00	INC_HRS1
51.7	1.31011E+01	19.00	EARNCOMP
49.4	1.25284E+01	20.00	FSALARYX

^{2.} Impute missing values in training data.

GUIDE

I tried several combinations of options both in data imputation and cross validation, and obtained mean square errors in Table2.1.

Table2.1

imputation	Cross validation	mse	
constant	constant	137637659	
constant	polynomial	169464487	
constant	rforest	126677640	
polynomial	constant	135199405	
polynomial	polynomial	170474506	
polynomial	stepwise linear	163787587	
polynomial	rforest	121932561	
polynomial	bagging	139664369	
stepwise linear	rforest	123170268	
rforest	rforest	137962744	

From Table 2.1, we can see that all mean square errors have the same order of magnitudes. Because cv groups are chosen randomly, it is hard to say which one is better. However, we can still see that those using rforest for cross validation have relatively smaller mean square error, which is reasonable for it is an ensemble method. Here, I used polynomial & rforest to get the prediction on the test data.

Other models

For the following models, I used GUIDE to impute testing data for prediction.

Xgboost

Xgboost is also an ensemble method, which is very fast using sparse matrix. First, I used one-hot coding step to transform the data with categorical variables into a very sparse matrix of numeric features, and then perform 10-fold cross validation to obtain mean square error. After tuning parameters, the model is:

The mean square error is 59803411 in cross validation, which is much smaller. However, in prediction, there exists some negative predicted values. I am not sure whether it is a good idea to let these values equal 0. To be conservative, I will not choose to use the prediction.

Rpart

The model is:

The mean square error is 102943042, and variable importance are:

FINCBTAX	FSAL_RYX	FSALARYX	FINCBT_X	TOTXEST	FJSSDEDX	RETSURVM
327698392638	234592896216	224726387561	210015684236	199657666264	123247112570	107994657526
RETSURVX	RETPENPQ	PSU	INC_RANK	LUMPSUMX	RETSURV	DEFBENRP
107994657526	102377841860	76590003783	75791996905	55855447268	36718183559	32398397258
MISCTAXX	NETRENTX	OTHRINCX	UNISTRQ	OTHREGX_	NETR_NTX	PROPTXCQ
28939098008	24283899611	21598931505	19655703463	14741777597	14570339767	12151342962
IRAYRX	PROPTXPQ	RENTEQVX	INCNONW2	CASHCOCQ	OWNVACC	VOTHRLOC
11559868240	11559868240	9827851731	9629773688	8825492458	7285169883	7285169883
BEDROOMQ	PERINSPQ	INC_HRS2	EARNCOMP	ESHELTRC	HOUSCQ	MEDSUPCQ
6421161360	6421161360	4856779922	4815871020	2521569274	2521569274	2521569274
FDAWAYCQ						
1260784637						

The tree looks like:

Ctree

The model is:

fit_ctree <- ctree(mytrain\$INTRDVX ~ ., data = mytrain[,-ncol(mytrain)])</pre>

The mean square error is 101552174, and the tree looks like:

Randomforest

The model is:

fit_rf <- randomForest(mytrain\$INTRDVX ~ ., data = mytrain[,-ncol(mytrain)])</pre>

The mean square error is 73069480, some important variables are:

```
variable
                imp.score
1
    FINCBT_X 1.503279e+11
2
    FINCBTAX 4.958366e+10
3
         PSU 3.598470e+10
4
    FSALARYX 3.372601e+10
5
    RETSURVM 2.921292e+10
6
    RETSURVX 2.802310e+10
7
    FSAL_RYX 2.210272e+10
8
     STOCKX_ 2.075556e+10
9
     TOTXEST 2.025832e+10
10
   STOCKYRX 1.907386e+10
11
   FJSSDEDX 1.832040e+10
    RETS_RVX 1.487886e+10
    INC_RANK 1.386806e+10
13
14
    MISCTAXX 1.290500e+10
15
      STOCKX 1.219646e+10
     ETOTALP 1.125086e+10
16
17
    INC_HRS1 9.498915e+09
    ETOTAPX4 9.364961e+09
18
19
    NETRENTX 8.100744e+09
    NETR_NTX 8.069273e+09
```

The error plot is:

Ranger

The model is:

fit_ranger <- ranger(mytrain\$INTRDVX ~ ., data = mytrain[,-ncol(mytrain)])</pre>
The mean square error is 122875860.

Conclusion

MSE using cross validation of different models:

model	mse		
Xgboost	59803411		
Rpart	102943042		
Ctree	101552174		
Randomforest	73069480		
Ranger	122875860		

The lowest mean square error is given by xgboost, but there is still something ambiguous about it. Randomforest also performs well in cross validation, but it is really time consuming.

Finally, my two columns of prediction are given by GUIDE and Randomforest.