Questions de cours.

- 1. Unicité de la limite
- 2. TVI et algorithme de dichotomie.
- 3. L'image d'un intervalle par une application continue est un intervalle.
- 4. Les applications lipschitzienne sur un intervalle sont continues.

Exercices.

Exercice 1. Étudiez les limites suivantes lorsque $x \to +\infty$

- 1. $3x^2 e^x$
- $2. \ \frac{\sqrt{x^2 + x + 1}}{x + 1}$
- 3. $xe^{\sqrt{x}}$
- $4. \ \frac{x\cos\left(e^x\right)}{x^2+1}$
- 5. $\frac{1}{x} \lfloor x \rfloor$
- 6. $x^2 + x \sin x$

Exercice 2. Étudiez les limites suivantes lorsque $x \to 0^+$

- 1. $\frac{1}{x} + \ln x$
- $2. \ x^{\sqrt{x}}$
- 3. $|\ln(x)|^{\frac{1}{\ln x}}$
- 4. $\frac{\sin x}{r}$
- 5. $x \sin(\ln(x))$
- 6. $\frac{1}{x} \lfloor x \rfloor$

Exercice 3. Soit $f: \mathbf{R} \to \mathbf{R}$ strictement décroissante. On suppose que f admet une limite finie en $+\infty$. Montrer que f est toujours strictement supérieure à la limite.

Exercice 4. Soit $f: \mathbf{R}^+ \to \mathbf{R}$ une fonction continue. On suppose que f admet une limite finie en $+\infty$. Montrer que f est bornée. Atteint-elle nécessairement ses bornes?

Exercice 5. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction.

- 1. Rappeler les définitions de l'image réciproque et d'une partie bornée.
- 2. Montrer que :

 $|f| \underset{\pm \infty}{\longrightarrow} \infty \iff f^{-1}(B)$ est bornée pour toute partie bornée $B \subset \mathbf{R}$

Exercice 6. TVI généralisé. Soit f une fonction admettant comme limites -1 en $-\infty$ et 1 en $+\infty$. Montrer que f s'annule.

Exercice 7. On pose pour tout $x \in \mathbf{R} : f(x) = \lfloor x \rfloor + (x - \lfloor x \rfloor)^2$. Montrer que f est continue.

Exercice 8. Soient $f,g:\mathbf{R}\to\mathbf{R}$ deux fonctions continues. Montrer que $h=\max(f,g)$ est continue.

Exercice 9. Soient $f, g : \mathbf{R} \to \mathbf{R}$ deux fonctions continues. On suppose que pour tout $r \in \mathbf{Q} : f(r) = g(r)$. Montrer que f = g.

 $\pmb{Exercice\ 10.}$ Déterminer les fonctions $f:\mathbf{R}\to\mathbf{R}$ continues en 0 telles que :

$$\forall x \in \mathbf{R} : f(2x) = f(x)$$

Exercice 11. Déterminer les fonctions $f: \mathbf{R} \to \mathbf{R}$ continues en 0 telles que :

$$\forall x, y \in \mathbf{R} : f(x+y) = f(x) + f(y)$$

Exercice 12. On considère $f:[0,1] \longrightarrow \mathbf{R}$ une fonction continue vérifiant f(0)=f(1). Montrer qu'il existe $c \in [0,1-\frac{1}{n}]$ tel que

$$f(c) = f(c + \frac{1}{n})$$

Exercice 13. Soit $f: I \to \mathbf{R}$ une fonction continue. On suppose que f n'est ni majorée ni minorée. Montrer que f est surjective.

Exercice 14. Dans cet exercice, on se propose de montrer que si une fonction continue est nulle sur une partie dense de \mathbf{R} , alors elle nulle sur \mathbf{R} tout entier. Soit f une telle fonction et soit E une partie dense de \mathbf{R} , c'est à dire que pour tout $x \in \mathbf{R}$ et pour tout $\varepsilon > 0 : |x - \varepsilon, x + \varepsilon| \cap E \neq \emptyset$

- 1. Montrer que pour tout $x \in \mathbf{R}$, il existe une suite $(e_n)_{n\geq 0} \in E^{\mathbf{N}}$ telle que $e_n \longrightarrow x$.
- 2. En déduire le résultat voulu.