2017 级第一学期《高等数学》期中考试试卷 (A 类)

— 、	单项选择题(每小题3分,共15分	·):(每题有且只有一个正确的选项。)	
1.	当 $x \rightarrow 0$ 时, $2x + x^2 - \sin x$ 的主部是	()
	(A) x ; (B) $2x + x^2$;	(C) $x + x^2$; (D) $2x - \sin x$.	
2.	已知正数列 $\{a_n\}$ 和 $\{b_n\}$ 的部分和分别	为 S_n 和 T_n ,且 $a_n \le b_n$, $n \in \mathbf{Z}^+$,则()
	(A) $\{a_n\}$ 收敛时, $\{b_n\}$ 收敛;	(B) $\{b_n\}$ 收敛时, $\{a_n\}$ 收敛;	
	(C) $\{S_n\}$ 收敛时, $\{T_n\}$ 收敛;	(D) $\{T_n\}$ 收敛时, $\{S_n\}$ 收敛。	
3.	已知曲线 C 由方程 $y\sin x - \cos(x - y)$	$=0$ 所确定,那么 C 在点 $\left(0,\frac{\pi}{2}\right)$ 处的切织	线
	方程为	()
	(A) $y = -\frac{2+\pi}{2}x + \frac{\pi}{2}$;	(B) $y = \frac{2-\pi}{2}x + \frac{\pi}{2};$	
	(C) $y = \frac{2+\pi}{2}x + \frac{\pi}{2};$	(D) $y = \frac{\pi - 2}{2}x + \frac{\pi}{2}$.	
4.	设函数 $f(x)$ 在 R 上可导,且 $\forall x \in \mathbf{R}$, $f'(x)+f(x)>0$ 。对于下列两个命题	<u> </u>
	(I) $f(x)$ 至多只有一个零点;		
	(II) 若 $f(x)$ 存在最小值,则 $f(x)$ >	$>0(x\in\mathbf{R}),$	
	正确的选项是	()
	(A) 仅(I) 正确;	(B) 仅(II) 正确;	
	(C)(I)和(II)都正确;	(D)(I)和(II)都错误。	
5.	设函数 $f(x)$ 在点 $x=0$ 的某个邻域内可	可导,且 $f(0)=0$ 。已知下列两个条件	Ē:
	(I) $x \to 0$ 时, $f(x)$ 是 x 的高阶无穷	5小;	
	(II) $x \rightarrow 0$ 时, $f'(x)$ 是无穷小,		
	则条件(I)是条件(II)的	()
	(A) 充分但非必要条件;	(B) 必要但非充分条件;	
	(C) 充分且必要条件;	(D) 既非充分又非必要条件。	
Ξ,	填空题(每小题 3 分, 共 15 分)		
	函数 $f(x) = x - \arctan x$ 的零点的个数	为:。	
	函数 $y = \frac{x^2 + x}{x^2 - x} + x \ln^4 x $ 的第一类间断点是 $x = \underline{\hspace{1cm}}$ 。		
7.	函数 $y = \frac{1}{x^2 - x} + x \ln^4 x $ 的第一类间	断点是 <i>x</i> =。	
8.	若函数 $f(x)$ 满足 $f''(x)+f'(x)-a\cdot f$	$f'(x) = 0$ $f'(x) + f(x) = 2e^x$, 其中 a 是	非
	零常数,则 $f(x) =。$		
9.	已知 $f(x) = \frac{x^2 + 3x + 2}{x^4 + 1} + (x + 1)^x$,则 $f(x) = \frac{x^2 + 3x + 2}{x^4 + 1}$	$\left f \right _{x=0} = \underline{\hspace{1cm}}_{\circ}$	

10. 已知函数 y = f(x) 由参数方程 $\begin{cases} x = \arctan t \\ y = \ln(1+t^2) \end{cases}$ 确定,则 $\frac{d^2 y}{dx^2} = \underline{\qquad}$

三、(每小题8分,共16分)

- 11. 用极限定义验证: $\lim_{x\to 1} x\sqrt{x+3} = 2$ 。
- 12. 计算极限 $\lim_{x\to 0} \frac{\sqrt{1+x^2} \cos x x^2}{x^4}$ 。

四、(第13题8分, 第14题10分, 共18分)

13. 己知
$$f(x) = \begin{cases} x^2, & x \le 1 \\ ax + b, & x > 1 \end{cases}$$
 (a 和 b 是常数) 在**R**上可导,求 a , b 及 $f'(x)$ 。

14. 设函数
$$f(x) = \frac{\ln x}{x + e^2}$$
, $g(x) = x + e^2 - x \ln x$.

- (1) 证明: $x = e^2$ 是 g(x) = 0 的唯一解;
- (2) 求 f(x)的最大值; 当 f(x)=a有唯一解时,求 a的取值范围。

五、(每小题8分,共16分)

- 15. 设函数 $f(x) = (x+a)^2 \ln(x+a)$ (常数 a > 0),求 $f^{(n)}(a)$ (n = 1, 2, ...)。
- 16. 已知数列 $\{a_n\}$ 满足 $a_1 > 0$, $a_{n+1} = \frac{a_n + a_n^3}{2}$, $n = 1, 2, \cdots$,求极限 $\lim_{n \to \infty} a_n$ 。

六、(本题 12 分)

17. 全面讨论函数 $y = x^4 e^{-x}$ 的性态,并作出它的图形。 ($y' = (4x^3 - x^4)e^{-x}$, $y'' = (12x^2 - 8x^3 + x^4)e^{-x}$)

七、(本题8分)

18. 已知函数 f(x) 在闭区间[a,b]上二阶可导,且 f(a) = f'(a) = f''(a) = 0。

(1)
$$\Re \lim_{x \to a^+} \frac{f(x)}{(x-a)^2}$$
;

(2) 若 f(b) = 0, 证明: 存在 $\xi \in (a,b)$, 使得 $(\xi - a)^2 f''(\xi) - 2f(\xi) = 0$ 。