Introduction to Rings and Modules

Lecture 15, Monday June 12 2023 Ari Feiglin

Definition 15.0.1:

Let R be a ring, an R-module M is cyclic if it is generated by a single element. Ie. M is cyclic if and only if there exists an $m \in M$ such that

$$M = \langle m \rangle = \{ rm \mid r \in R \}$$

Note that submodules of R (when viewed as a module over itself), are cyclic if and only if they are principal ideals.

Proposition 15.0.2:

Let M be an R-module, then M is cyclic if and only if there exists a left ideal $I \leq R$ such that $M \cong {}^R/_I$ as modules.

Note that R_I is not necessarily a ring, but since $I \subseteq R$ is a submodule of R, R_I is a module over R.

Proof:

If $M \cong {}^R/_I$ then it is sufficient to show that ${}^R/_I$ is cyclic. This is trivial as everything in the quotient can be generated by 1 + I.

If M is cyclic, let us define a module homomorphism $f: R \longrightarrow M$ by f(r) = rm where m generates M. This is a module homomorphism as $f(r_1 + r_2) = (r_1 + r_2)m = r_1m + r_2m = f(r_1) + f(r_2)$ and $f(r_1r_2) = r_1r_2m = r_1f(r_2)$ as required. This is surjective and so

$$R/_{\operatorname{Ker} f} \cong M$$

and $\operatorname{Ker} f$ is a submodule of R and thus a left ideal.

Suppose R is a commutative ring, what is a module over the ring R[x]? Let M be a module over R[x], thus M is an abelian group, and it has left multiplication defined by polynomials in R[x]. Since constants are polynomials in R[x], left multiplication on M by R is defined. So every module over R[x] is a module over R (a linear space). Thus far, this is true for rings in general.

Note since if R is commutative, the mapping

$$\varphi \colon M \longrightarrow M, \quad m \mapsto xm$$

is a module homomorphism for $x \in R$, since $\varphi(m_1 + m_2) = x(m_1 + m_2) = xm_1 + xm_2 = \varphi(m_1) + \varphi(m_2)$, and $\varphi(rm) = xrm = rxm = r\varphi(m)$. Let us call this the "scalar multiplication mapping of x".

Thus if we are given a module M over R[x] as a module over M and the scalar multiplication mapping of $x \varphi \colon M \longrightarrow M$, this is enough to define the operations of M over R[x]. In other words, a module over R[x] is a module over R and the definition of $x \cdot m$ for $m \in M$.

This is because for $m \in M$ and $f = a_n x^n + \cdots + a_0 \in R[x]$ we have

$$fm = a_n x^n m + \dots + a_0 m$$

and since we have the definition of xm for every $m \in M$, we have the definition of x^nm inductively as $x^nm = x^{n-1}(xm)$. Or in other words $x^nm = \varphi^n(m)$, where φ is the scalar multiplication mapping of x.

And for the converse, if M is a module over a commutative ring R, and $\varphi \colon M \longrightarrow M$ is a module homomorphism, if we define $x \cdot m = \varphi(m)$ then this defines a module over R[x]:

Thus we get the following

Proposition 15.0.3:

If R is a commutative ring, then R[x] modules are equivalent to R-modules with a module homomorphism over themselves.

Example 15.0.4:

Let R be a commutative ring, we will investigate the R-module

$$M = \frac{R[x]}{((x-\lambda)^n)}$$

for $n \in \mathbb{N}$. Since this is a quotient of the ring R[x], M is cyclic. By polynomial division, for any $f \in R[x]$ we have that

$$f = q \cdot (x - \lambda)^n + r$$

for deg r < n. Thus as we know, $R[x]/((x-\lambda)^n)$ is the set of classes whose representatives are polynomials of degree < n: $a_{n-1}x^{n-1} + \cdots + a_0$. Such a set induces a natural R-module, where we simply scale each polynomial (this is independent of the representative of the class, since if $f - g \in ((x - \lambda)^n)$ then so is rf - rg).

We take the basis $B = \{(x - \lambda)^k + I \mid 0 \le k < n\}$ (where $I = ((x - \lambda)^n)$). This is a generating set as we can induct on the degree of $f \in I$. If f is constant, then it is a multiple of $(x - \lambda)^0$. Otherwise we can take the degree of f, f, and we have $f = q(x - \lambda)^m + r$ where $\deg r < m$ and thus induct on f (since f must be constant as otherwise the degree of f and f would be more than f must be a linearly independent since any sum f and f in contradiction. And so if we let f be the scalar multiplication mapping of f

$$\varphi((x-\lambda)^{n-1} + I) = x((x-\lambda)^{n-1} + I) = x(x-\lambda)^{n-1} + I = (x-\lambda)^n + \lambda(x-\lambda)^{n-1} + I = \lambda(x-\lambda)^{n-1} + I$$

and in general

$$\varphi((x-\lambda)^k + I) = ((x-\lambda)^{k+1} + I) + \lambda((x-\lambda)^k + I)$$

So the matrix representing this homomorphism (relative to the basis B) is the Jordan block of size n (we count $(x - \lambda)^{n-1} + I$ as the first element in the basis, and go in reverse).

Example 15.0.5:

Let us now look at the cyclic module

$$M = \frac{R[x]}{(p)}$$

for some $p \in F[x]$. We assume that p has a leading coefficient which is 1, and thus elements of M can be represented as polynomials of degree less than that of p's. We similarly denote I = (p).

But now let us focus on the basis $B = (1 + I, x + I, \dots, x^{n-1} + I)$ where $n = \deg p$. Then

$$\varphi(x^k + I) = x^{k+1} + I$$

If

$$p = x^n + a_{n-1}x^{n-1} + \dots + a_0$$

then we have that

$$x^{n} + I = x^{n} - p + I = -a_{n-1}x^{n-1} - \dots - a_0 + I$$

and so the matrix of φ is of the form

$$\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 & -a_0 \\
1 & 0 & 0 & \cdots & 0 & -a_1 \\
0 & 1 & 0 & \cdots & 0 & -a_2 \\
0 & 0 & 1 & \cdots & 0 & -a_3 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -a_{n-1}
\end{pmatrix}$$

This is called the **companion matrix** of p and is denote C_p .

Definition 15.0.6:

If M and N are R-modules, then we can define the R-module $M \times N$ by defining $r \cdot (m, n) = (rm, rn)$.

Theorem 15.0.7 (Classification Theorem):

Let R be a PID, and M be a finitely generated R-module. Then

(1) There exist $d_1, \dots, d_n \in R$ which are unique up to friends where

$$M \cong R/(d_1) \times \cdots \times R/(d_n)$$

and $d_i | d_{i+1}$ for every $1 \le i < n$. These are called invariant elements.

(2) There exist p_1, \dots, p_t irreducible elements, unique up to friends and $r, n_1, \dots, n_t \geq 0$ such that

$$M \cong R^r \times R/(p_1^{n_1}) \times \cdots \times R/(p_t^{n_t})$$

Note that if $R = \mathbb{Z}$, then we get the classification theorem for abelian groups.