#### 1. Block Design

Terdiri dari IP XADC dan system ILA untuk debugging melihat nilai output ADC.



#### 2. Constraint

Menggunakan pin clk dan SWO untuk reset.

```
7 ##Clock signal
9 create clock -add -name sys clk pin -period 10.00 -waveform {0 5} [get ports { clk }]; #set
10
11 ##Switches
12 set property -dict { PACKAGE_PIN G15
                         IOSTANDARD LVCMOS33 } [get ports { rst_n }]; #IO L19N T3 VREF 35 Sch=SWO
13
14 ##Pmod Header JA (XADC)
18 #set property -dict ( PACKAGE PIN K14 IOSTANDARD LVCMOS33 ) [get ports ( Vaux6 v p )]; #IO L20P T3 AD6P 35 Sch=JA4 R P
19 set property -dict { PACKAGE_PIN N16 IOSTANDARD LVCMOS33 } [get ports { Vaux14_v_n }]; #IO L21N T3 DQS AD14N 35 Sch=JA1 R N
21 #set property -dict { PACKAGE PIN J16 IOSTANDARD LVCMOS33 } [get ports { Vaux15 v n }]; #IO L24N T3 AD15N 35 Sch=JA3 R N
22 #set property -dict ( PACKAGE PIN J14 IOSTANDARD LVCMOS33 ) [get ports ( Vaux6 v n )]; #IO L20N T3 AD6N 35 Sch=JA4 R N
```

# 3. Rangkaian Input untuk Test ADC

Maximum tegangan input XADC adalah **0V – 1V.** Jadi kita harus membuat pembagi tengangan untuk diinputkan sebagai sinyal input ke ADC. Pembagi berikut ini menghasilkan output 0.798V yang akan diinputkan ke ADC.



### 4. Debugging dengan ILA

Program Zybo dengan Hardware Manager di Vivado, kemudian tampilan ILA akan keluar. Buat sinyal virtual yang berisi data dari xadc\_wiz\_0\_m\_axis\_tdata mulai dari bit 15 sampai 4 menjadi adc[15:4]. Karena ADC memiliki spesifikasi 12-bit.





Sinyal output pada adc[15:4] adalah sekitar **3266-3270**. Data ADC valid ketika **xadc\_wiz\_0\_m\_axis\_tvalid bernilai 1.** Nilai perhitungan ADC = 0.798V \* 2^12 = 3268.608, sehingga hasil pembacaan ADC sudah benar.

# 5. Konfigurasi IP XADC









# 6. Konfigurasi System ILA



