泛函分析 笔记

任云玮

目录

2 Normed Spaces. Banach Spaces

 $\mathbf{2}$

2 Normed Spaces. Banach Spaces

- **p58.** Normed Spaces and metric spaces 首先它们的共同点在于在其上都定义了"距离"的概念,而不同点在于,metric space 的定义中就包含了"距离"metric,而对于normed space,它**首先**是一个向量空间,而对应的"距离"也是通过向量的"长度"norm 来定义的.
- **p68.** Schauder basis and Hamel basis 在 Hamel basis 的语境下,张成是指用**有限** 的线性组合来张成,即 $x = \sum_{i=1}^{n} \alpha_i b_i$. 而在 Schauder basis 的语境中,我们利用范数定义了收敛级数的概念,这允许我们用 **可数无限** 的线性组合来张成,即 $x = \sum_{n=1}^{\infty} \alpha_i b_i$.
- **p72.** Lemma 2.4-1 这一定理的用处在于,通过范数得到各个坐标(及其和)的上界. 关于证明:
 - 1. 假设存在 $||y_m|| \to 0$,得到坐标向量各个分量序列的有界性.
 - 2. 利用有界性逐次得到一个坐标向量所有分量都收敛的子列 (y_{m_n}) , 设收敛于 y.
 - 3. 利用范数的连续性推出矛盾.
- **p75.** 注意一个拓扑空间即为一个集合 X 和由它的满足一定性质的子集组成的集合 T. 例如一个度量空间和其中的开集全体. 而这里的意思是,对于两个等价范数,对应的拓扑空间是相同的.
- **p78. F. Riesz's Lemma** 考虑 $X = Z = \mathbb{R}^2$, $Y = \operatorname{span}(x)$, 则这一引理即是在说:在单位圆上我们可以找到一个点 z,使得它离 x 轴上的任意点都有一定距离. 这一例子对于理解证明的思路也是很有帮助的.
- **p118.** Proof of Theorem 2.10-2 利用 Y 的完备性逐点地定义 T, 证明 $T \in B(X,Y)$ 且 $T_n \to T$.
- **p121. Examples** 在这些例子总所做的事情是: (1) 求出 dual space 中对应的 norm; (2) 构造一个的线性双射. (3) 证明该双射保 norm. 其中 (1) 和 (2) 的顺序可以互换,而 (1) 时常被并入 (3). 另外注意在此并没有 dual Schauder basis 的概念.
- **p121. 2.10-6** 首先,我们构造从 $l^{1'}$ 到 l^{∞} 的双射. 设 $(e_k) = (\delta_{kj})$ 为 l^1 的一个 Schauder 基,则对于任意 $f \in l^{1'}$,定义 $Tf = (\gamma_k) = (f(e_k))$. 易得 T 是线性映射. 由于 f 的有界性,有

$$\sup_{k} |f(e_k)| \le \sup_{k} ||f|| ||e_k|| \le ||f||, \tag{1}$$

从而 $(\gamma_k) \in l^{\infty}$. 同时对于任意 $(\beta_k) \in l^{\infty}$,我们可以定义 $g(x) = \sum_{k=1}^{\infty} x_k \beta_k \in l^{1*}$. 同时由于 $|x_k \beta_k| \leq (\sup_k \beta_k) |x_k|$ 而 $\sum |x_k| < \infty$,所以 $g \in l^{1'}$. 因此 T 是一个线性双射.

接下来我们求出 $l^{1'}$ 上的对应范数. 首先注意到级数 $\sum x_k f(e_k)$ 的收敛是一致的且 f 是连续的, 从而有 $f(x) = f(\sum x_k e_k) = \sum x_k f(e_k)$. 因此

$$||f|| = \sup_{\|x\|=1} |f(x)| = \sup_{\|x\|=1} \left| \sum_{k=1}^{\infty} x_k f(e_k) \right| \le \sup_{k} |f(e_k)| \sum_{k=1}^{\infty} |x_k| = \sup_{k} |f(e_k)|.$$

而同时根据 (1), 有 $||f|| = \sup_{k} |f(e_k)|$.

最后显然线性双射 T 是保范数的,从而它是一个同构.因此 l^1 的对偶空间为 l^{∞} .

p122. 2.10-7 首先和之前一样,取 (e_k) 作为 l^p 的一组 Schauder 基,对于任意 $f \in l^{p'}$,定义 $Tf = (f(e_k))$. 首先我们证明 $(\gamma_k) = (f(e_k)) \in l^q$. 即证明 $\sum_{k=1}^n |\gamma_k|^q$ 关于 n 有界. 注意对于任意 x,有

$$||f|||x|| \ge |f(x)| = \sum_{k=1}^{\infty} \xi_k \gamma_k.$$

所以我们只需要取如(11)所示的 x_n ,即可使得不等式两边有所需的形式. 从而得 $(\gamma_k) \in l^q$. 而反之对于 $b = (\beta_k) \in l^q$,定义 $g(x) = \sum_{k=1}^{\infty} \xi_k \beta_k$. g 的线性性是显然的,而 有界性有 Hölder 不等式保证. 所以 T 是一个双射,而 T 的线性性是显然的. 剩余的证明略.