НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет систем управления и робототехники

Электротехника

Лабораторная работа №2 ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ ДВУХПОЛЮСНИКОВ

Вариант 3R382

Студент: Кирбаба Д.Д.

Группа: R3338

Преподаватель: Китаев Ю.В.

г. Санкт-Петербург 2023

Цель работы

Исследование режимов работы и экспериментальное определение параметров линейной схемы, подключенной к источнику питания синусоидального тока.

Ход работы

R = 1052 Ohm	R = Rk = 50 Ohm	R = Rk = 1 Ohm
C = 57 nF	C = 674 nF	C = 351 nF
L = 129 mH	L = 68 mH	L = 110 mH
Схемы 1, 2, 7	Схема 8	Схема 9

Рис. 1: Начальные данные.

Проведем моделирование для 7 различных типов двухполюсников, используя данный шаблон:

Рис. 2: Схема моделирования для первых 7 типов.

№	Схема двухполюсника	Расчётные соотношения
1	Res (17)0 log ((4))0 (og (4))0 (og ($I = U/Z, X = 0, Z = R$ $\varphi = arctg(0/R) = 0$
2	Carde In	$ \mathbf{I} = \mathbf{U}/\mathbf{Z}, \mathbf{R} = 0, \mathbf{X} = -\mathbf{X}_{C} = -1/(\omega \cdot \mathbf{C}) $ $ \mathbf{Z} = \mathbf{X}_{C}, \phi = \operatorname{arctg}(\mathbf{X}/\mathbf{R}) = -\pi/2 $
3	The A	$I = U/Z, R = 0, X = X_L = \omega \cdot L$ $Z = X_L, \varphi = \operatorname{arctg}(X/R) = \pi/2$
4	RC	$I = U/Z, X = -X_C = -1/(\omega \cdot C)$ $Z = \sqrt{R^2 + X^2}, \varphi = \operatorname{arctg}(X/R)$
5	tan(20) Rivor	$I = U/Z, X = X_L = \omega \cdot L$ $Z = \sqrt{R^2 + X^2}, \varphi = arctg(X/R)$
6	Rival lastical as	$I = U \cdot Y, G = 1/R, B = -B_C = -\omega \cdot C$ $Y = \sqrt{G^2 + B^2}, \varphi = \operatorname{arctg}(B/G)$
7	R ₁ L	$I = U \cdot Y, G = G_1 + G_k, G_1 = 1/R_1$ $G_k = R_k / (R_k^2 + X_L^2), B = B_k - B_1$ $B_1 = 0, B_k = X_L / (R_k^2 + X_L^2)$ $Y = \sqrt{G^2 + B^2}, \phi = arctg(B/G)$

Рис. 3: Двухполюсники и расчетные формулы.

Заполним таблицу результатами измерений, вычислений и параметров двухполюсников:

Номер	Параметры двухполюсников			Результаты измерений			Результаты вычислений		
	R_I	R_k	L	С	U	I	phi	I	phi
цепи	Ом		мГн нФ	нФ	В	мА	град	MΑ	град
1	1052	-	-	-	7,07	6,72	0	6,720532319	0
2	-	-	-	57	7,071	0,253	-88,992	0,253242491	-90
3	-	-	129	-	7,071	87,24	89,892	87,23891248	90
4	1052	_	_	57	7,071	0,253066	-88,092	0,25306294	-87,842106
5	1052	-	129	-	7,071	6,701	4,3956	6,701621186	4,40574461
6	1052	-	-	57	7,071	6,726	-2,63736	6,726251853	-2,1576834
7	1052	1052	129	-	7,071	13,411	1,97802	13,41318425	2,19961118

Рис. 4: Расчетная таблица для первых 7 типов двухполюсников.

Для исследования последовательного резонанса, будем использовать следующую схему моделирования с последовательной RLC цепочкой:

Рис. 5: Схема моделирования последовательного резонанса.

Рассчитаем резонансную частоту:

$$f_0 = \frac{1}{2\pi\sqrt{(LC)}} = 743 \ Hz$$

Теперь установим вычисленную резонансную частоту на генераторе напряжения:

Рис. 6: Осциллограммы при последовательном резонансе.

При последовательном резонансе осциллограммы A и B XCS2 будут совпадать по фазе и амплитуде, так как напряжения на ёмкости и катушке будут находиться в противофазе, равны по амплитуде и, следовательно, компенсировать друг друга.

А также амплитуда напряжения на индуктивности будет значительно превышать амплитуду напряжения генератора XFG2.

Заполним следующую таблицу значениями входного тока I и углами сдвига фаз ϕ между напряжением и током:

f	Pac	чет	Эксперимент		
Г	phi	I	phi	I	
Гц	град	Α	град	Α	
0.1 f_0 = 74	-89,0931	0,002238	-89,05752	0,00238	
0.25 f_0 = 186	-87,594	0,005936	-88,98984	0,05937	
0.5 f_0 = 371	-84,0278	0,014714	-84,2947913	0,014715	
0.75 f_0 = 557	-74,9501	0,036721	-74,6846766	0,036733	
f_0 = 743	-0,41216	0,141416	0	0,14142	
1.25 f_0 = 929	70,69526	0,046752	70,89325344	0,046699	
1.5 f_0 = 1114	79,27517	0,026317	79,72755408	0,02629	
1.75 f_0 = 1300	82,38093	0,01875	82,390464	0,01873	
2 f_0 = 1486	84,00331	0,014774	84,5718264	0,014756	

Рис. 7: Расчетная таблица для последовательного резонанса.

Теперь смоделируем параллельную RLC цепочку:

Рис. 8: Параллельная RLC цепочка.

Резонансная частота будет та же:

$$f_0 = \frac{1}{2\pi\sqrt(LC)} = 743 \ Hz$$

Теперь установим вычисленную резонансную частоту на генераторе напряжения:

Рис. 9: Осциллограмма при параллельном резонансе.

Можем наблюдать, что точки в ветвях равны по модулю и противоположны по фазе.

Заполним следующую таблицу значениями входного тока I и углами сдвига фаз ϕ между напряжением и током:

f	Pac	чет	Эксперимент		
'	phi	-	phi	I	
Гц	град	Α	град	Α	
0.1 f_0 = 74	88,87017	0,137073	88,52472	0,135278	
0.25 f_0 = 186	89,52799	0,052102	89,79336	0,052095	
0.5 f_0 = 371	89,70457	0,02179	89,8371306	0,022285	
0.75 f_0 = 557	89,65429	0,009682	89,85581928	0,00943	
f_0 = 743	88,79781	0,002183	88,51501656	0,001855	
1.25 f_0 = 929	-89,2276	0,003475	89,77740804	0,003496	
1.5 f_0 = 1114	-89,6177	0,008188	89,65529928	0,008533	
1.75 f_0 = 1300	-89,6908	0,012403	89,257896	0,012769	
2 f_0 = 1486	-89,7091	0,016289	89,6940684	0,016769	

Рис. 10: Расчетная таблица для параллельного резонанса.

Экспериментальное смещение не совпало с расчетным (после точки резонансной частоты экспериментальное смещение должно было иметь противоположный знак, однако этого не наблюдалось).

Это произошло из-за того, что осциллограф XSC1 подключен после индуктивности, а в расчетах мы учитываем целую цепочку.

Выводы

В ходе первой части работы были рассмотрены двухполюсники в цепи синусоидального тока. Были вычислены действующие значения тока и разность фаз входного напряжения и тока при наличии в цепи резистора, конденсатора и/или катушки индуктивности. Полученные значения схожи с расчетными значениями.

В ходе выполнения второй части данной работы был рассмотрен RLC-контур в диапазоне частот, содержащем частоту, соответствующую состоянию резонанса напряжений. Были получены действующие значения тока, напряжения на резисторе, на конденсаторе и на катушке индуктивности, значения разности фаз входного напряжения и тока, для которых построенные соответствующие зависимости от частоты колебаний напряжения в цепи.

Было рассмотрено два типа: параллельная и последовательная RLC-цепочка и, соответственно, два типа резонанса.

Все полученные данные имеют небольшое отличие с расчётными значениями, что свидетельствует о верности выполнения данной части работы.