Greatest common divisor Euclidean Algorithm

Arabic Animated Intuition

Greatest Common Divisor

The greatest common divisor (GCD), also called the greatest common factor, of two numbers is the largest number that divides them both.

find the gcd gcd(20,15) = 5

for the given two gcd(5,5)=5

numbers gcd(6,3)=3

gcd(7,5)=1

gcd(5,0)=5

a simple for loop for i=1 to min(a,b) will do the job time complexity o(min(a,b))

Greatest Common Divisor

can we do better?
let's notice

so we can do this using the prime factorization time complexity sqrt(max(a,b))

Euclidean Algorithm

let's find the gcd(20,15)

we will subtract the smaller number from the larger number

i encourge you to code this 20 15

5 15

5 10

55

95

so the gcd is 5

Euclidean Algorithm

why subtracting the smaller number from the larger number works?

intuitive way to understanding it:

this works because after the subtraction all what's left is always the wanted prime factors only

Euclidean Algorithm

from the modular arithmetic

video: A=B*Q+m

m=A-B*Q

so we can get that our subtraction was just getting the mod

time complexity is o(log(max(a,b)))

so we can say that

gcd(A,B)=gcd(B,A%B)

we will stop when B=0

we can easily code that using recursion but as we didn't discuss recursion yet we will code it by a for loop + the recursion takes more memory