Ref. No: EX/IEBT/T/126/2018

B.Tech (IEE) 1st Year Examination, 2018

(2nd Semester)

SUBJECT: LINEAR CONTROL SYSTEMS

so, of uestions	Answer any four	Marks
		į iviairks
i.	The following differential equation represents a linear time invariant system with an input of u(t)	
	and an output of y(t):	
	$\frac{d^2y(t)/dt^2 + 6dy(t)/dt + 8y(t) = du(t)/dt + 3u(t)}{4t + 3u(t)}$	
	(a) Assuming zero initial condition, obtain the transfer function $Y(s)/U(s)$.	•
	(b) From the transfer function as obtained in part (a), draw the signal flow graph of the	3
	(c) From the signal flow graph as obtained in part (b), obtain a state space model of the system.	7
		15
	Open loop transfer function of a system is given as:	
	G(s)H(s) = 5/(s(s+1)(s+6))	
	(a) Write down the sinusoidal transfer function and the corner frequencies.	
	(b) Draw the bode plot of $G(jw)H(jw)$ with proper corrections at corner frequencies.	5
	(c) From the graph obtain the gain and phase margins and the phase and gain cross-over	15
	frequencies.	5
:		
(A control system with unity feedback is characterized by an open-loop transfer function of	·
	G(s) = 16 / (s(s+6))	
	(a) Compute the closed loop pole locations, the undamped natural frequency and damping ratio.	
	(b) Calculate the steady state errors to unit step, unit ramp and unit parabolic inputs.	8
	(c) Compute the rise time, peak time, peak overshoot and 2% settling time of the system when	9
	excited by a unit ramp.	8

B.Tech (IEE) 1st Year Examination, 2018

(2nd Semester)

SUBJECT: LINEAR CONTROL SYSTEMS

Time: Three hours

Full Marks 100

No. of questions		Marks
4.	The characteristic equation of a closed loop system is given as:	
	1 + G(s)H(s) = 1 + K(s+3) / (s(s+1)(s+8)) = 0	
	(a) Find the range of values of K for which the system remains closed loop stable.	5
	(b) Draw the root locus of the closed loop system for $0 \le K \le \infty$.	20
5.	The open-loop sinusoidal transfer function of a system is given as:	
	G(jw)H(jw) = 10/(jw(jw+2)(jw+5))	
	(a) Draw the Nyquist contour and the corresponding Γ_{GH} contour.	5 + 15
	(b) Using Nyquist Stability Criterion, comment on the closed loop stability of the system.	5
6.	Write short notes on any two:	, 21/
	(a) Effect of feedback on system dynamics	12½ x
	(b) Routh Stability Criterion	
	(c) Lead Compensation	
	(d) Lag Compensation	
		;