Survival Ensembles

Torsten Hothorn^{1,*}, Peter Bühlmann², Sandrine Dudoit³, Annette Molinaro⁴ and Mark J. van der Laan³

 1 Institut für Medizininformatik, Biometrie und Epidemiologie Friedrich-Alexander-Universität Erlangen-Nürnberg Waldstraße 6, D-91054 Erlangen, Germany Tel: ++49–9131–8522707

Fax: ++49-9131-8525740

 ${\tt Torsten.Hothorn@R-project.org}$

 $^2 {\rm Seminar}$ für Statistik, ETH Zürich, CH-8032 Zürich, Switzerland buhlmann@stat.math.ethz.ch

³Division of Biostatistics, University of California, Berkeley 140 Earl Warren Hall, #7360, Berkeley, CA 94720-7360, USA sandrine@stat.Berkeley.EDU laan@stat.Berkeley.EDU

⁴Division of Biostatistics, Epidemiology and Public Health Yale University School of Medicine, 206 LEPH 60 College Street PO Box 208034, New Haven CT 06520-8034 annette.molinaro@yale.edu

1 Illustrations and Applications

This document reproduces the data analyses presented in Hothorn et al. (2006). For a description of the theory behind applications shown here we refer to the original manuscript.

1.1 Acute myeloid leukemia

Data preprocessing Compute IPC weights, define risk score and set up learning sample:

```
R> AMLw <- IPCweights(Surv(clinical$time, clinical$event))
R> risk <- rep(0, nrow(clinical))
R> rlev <- levels(clinical[, "Cytogenetic.group"])</pre>
```

```
R> risk[clinical[, "Cytogenetic.group"] %in% rlev[c(7,
         8, 4)]] <- "low"
R> risk[clinical[, "Cytogenetic.group"] %in% rlev[c(5,
         9)]] <- "intermediate"
R> risk[clinical[, "Cytogenetic.group"] %in% rlev[-c(4,
         5, 7, 8, 9)]] <- "high"
R> risk <- as.factor(risk)</pre>
R> AMLlearn <- cbind(clinical[, c("time", "Sex",</pre>
         "Age", "LDH", "WBC", "FLT3.aberration.", "MLL.PTD",
         "Tx.Group.")], risk = risk, iexpressions[,
         colnames(iexpressions) %in% selgenes[["Clone.ID"]]])
R> cc <- complete.cases(AMLlearn)</pre>
R> AMLlearn <- AMLlearn[AMLw > 0 & cc, ]
R > AMLw < - AMLw[AMLw > 0 & cc]
Model fitting Fit random forest for censored data
R> ctrl <- cforest_control(mincriterion = 0.1, mtry = 5,
         minsplit = 5, ntree = 250)
R> AMLrf <- cforest(I(log(time)) ~ ., data = AMLlearn,</pre>
         control = ctrl, weights = AMLw)
and L_2Boosting for censored data
R> AML12b <- glmboost(I(log(time)) ~ ., data = AMLlearn,</pre>
         weights = AMLw, control = boost_control(mstop = 5000))
   Compute fitted values
R> AML12b <- AML12b[mstop(aic)]</pre>
R> cAML <- coef(AML12b)</pre>
R > cAML[abs(cAML) > 0]
     (Intercept)
                                                  WBC
                                Age
      0.03094981
                        0.00854937
                                         -0.00364371
                                         {\tt Tx.Group.IC}
      MLL.PTDyes
                     Tx.Group.AUTO
     -0.50709786
                        0.90185340
                                          0.04037578
                                      `IMAGE:145643`
    Tx.Group.Ind riskintermediate
     -1.86134842
                        0.11825619
                                          0.19788355
 `IMAGE:2542486`
                                      `IMAGE:377560`
                    `IMAGE:345601`
      0.00442375
                        0.02935101
                                          0.11000322
                   `IMAGE:2043415`
  `IMAGE:428782`
                                     `IMAGE:1584563`
      0.01010658
                        0.05911671
                                         -0.17883619
  `IMAGE:347035`
                    `IMAGE:262695`
                                      `IMAGE:950479`
     -0.03307600
                        0.00080156
                                          0.09049309
  `IMAGE:898305`
                   IMAGE: 1472689
                                      `IMAGE: 150702`
      0.00523016
                        0.03498572
                                          0.01367553
                     `IMAGE:66507`
                                      `IMAGE:786302`
 `IMAGE:1526826`
```


Figure 1: AIC criterion for AML data.

```
-0.01805326
                        0.00399127
                                           0.08941300
  `IMAGE:243614`
                    `IMAGE:417884`
                                      `IMAGE:1592006`
     -0.05776062
                       -0.04890054
                                          -0.02269622
                    `IMAGE:884333`
                                       `IMAGE:133273`
 `IMAGE:1917063`
     -0.06536720
                        0.04189990
                                           0.06594787
  `IMAGE:950888`
                    `IMAGE:809533`
                                        `IMAGE:49389`
      0.02027810
                        -0.15986981
                                           0.06352703
  `IMAGE:789357`
                     `IMAGE:142139`
                                      `IMAGE:1558053`
     -0.01252187
                        0.00089307
                                           0.07795515
  `IMAGE:856174`
                    `IMAGE:504421`
                                       `IMAGE:435036`
      0.01115234
                        0.06861766
                                           0.06094620
  `IMAGE:491751`
                                        `IMAGE:52930`
                     `IMAGE:782835`
      0.04336285
                       -0.17924185
                                          -0.03503330
                                       `IMAGE:502664`
 `IMAGE: 2545705`
                    `IMAGE:756405`
     -0.09886616
                        0.07713650
                                           0.03620466
  `IMAGE:129032`
                    IMAGE: 1610168
                                       `IMAGE:327676`
     -0.31322459
                        0.01260374
                                          -0.02117310
   `IMAGE:69002`
                    `IMAGE:121551`
                                      `IMAGE:2019101`
     -0.41671336
                       -0.08107446
                                          -0.06531175
 `IMAGE:1456160`
                    `IMAGE:430318`
                                      `IMAGE:2566064`
     -0.10208684
                       -0.07297586
                                           0.06126683
                   `IMAGE: 1606557`
   `IMAGE:74537`
                                       IMAGE:306812
      0.04523784
                        0.14243526
                                           0.03504441
  `IMAGE:565083`
                    `IMAGE:843028`
                                        IMAGE: 68794
      0.29555347
                        0.05619983
                                           0.23722775
  `IMAGE:488505`
                    `IMAGE:167205`
                                       `IMAGE: 291756`
                                           0.04973319
      0.33464829
                        0.00217136
  `IMAGE:810801`
                   `IMAGE: 1702742`
                                       IMAGE:380462
      0.08725523
                       -0.04428190
                                          -0.13182519
  `IMAGE: 154472`
                    `IMAGE:302540`
                                       `IMAGE:135221`
     -0.24723347
                        0.17175129
                                          -0.01972168
 IMAGE: 1567220
                     `IMAGE:594630`
      0.02473376
                       -0.07396882
R> AMLprf <- predict(AMLrf, newdata = AMLlearn)</pre>
```

R> AMLpb <- predict(AML12b, newdata = AMLlearn)

1.2 Node-positive breast cancer

Data preprocessing Compute IPC weights and set up learning sample:

Figure 2: AML data: Reproduction of Figure 1.

Model fitting

```
R> LMmod <- lm(ltime ~ ., data = GBSG2learn, weights = GBSG2w)
R> LMerisk <- sum((GBSG2learn$ltime - predict(LMmod))^2 *</pre>
         GBSG2w)/n
R> TRmod <- rpart(ltime ~ ., data = GBSG2learn, weights = GBSG2w)
R> TRerisk <- sum((GBSG2learn$ltime - predict(TRmod))^2 *</pre>
         GBSG2w)/n
R> ctrl <- cforest_control(mincriterion = qnorm(0.95),</pre>
         mtry = 5, minsplit = 5, ntree = 100)
R> RFmod <- cforest(ltime ~ ., data = GBSG2learn,</pre>
         weights = GBSG2w, control = ctrl)
R> L2Bmod <- glmboost(ltime ~ ., data = GBSG2learn,
         weights = GBSG2w, control = boost_control(mstop = 250))
R> L2BHubermod <- glmboost(ltime ~ ., data = GBSG2learn,</pre>
         weights = GBSG2w, family = Huber(d = log(2)))
   Compute fitted values:
R> GBSG2Hp <- predict(L2BHubermod, newdata = GBSG2learn)</pre>
R> L2Berisk <- sum((GBSG2learn$ltime - predict(L2Bmod,</pre>
         newdata = GBSG2learn))^2 * GBSG2w)/n
R> RFerisk <- sum((GBSG2learn$ltime - predict(RFmod,</pre>
         newdata = GBSG2learn))^2 * GBSG2w)/n
```


Figure 3: AIC criterion for GBSG2 data.

Figure 4: GBSG-2 data: Reproduction of Figure 3.

Figure 5: GBSG-2 data: Reproduction of Figure 5.

Figure 6: GBSG-2 data: Reproduction of Figure 6.

Figure 7: GBSG-2 data: Reproduction of Figure 7.

References

T. Hothorn, P. Bühlmann, S. Dudoit, A. Molinaro, and M. van der Laan. Survival ensembles. *Biostatistics*, 7:355–373, 2006.