735

Table A-9 Critical Values of Spearman's Rank Correlation Coefficient r_s

n	α = 0.10	α = 0.05	α = 0.02	α = 0.01
5	.900	-	-	_
6	.829	.886	.943	-
7	.714	.786	.893	.929
8	.643	.738	.833	.881
9	.600	.700	.783	.833
10	.564	.648	.745	.794
11	.536	.618	.709	.755
12	.503	.587	.678	.727
13	.484	.560	.648	.703
14	.464	.538	.626	.679
15	.446	.521	.604	.654
16	.429	.503	.582	.635
17	.414	.485	.566	.615
18	.401	.472	.550	.600
19	.391	.460	.535	.584
20	.380	.447	.520	.570
21	.370	.435	.508	.556
22	.361	.425	.496	.544
23	.353	.415	.486	.532
24	.344	.406	.476	.521
25	.337	.398	.466	.511
26	.331	.390	.457	.501
27	.324	.382	.448	.491
28	.317	.375	.440	.483
29	.312	.368	.433	.475
30	.306	.362	.425	.467

NOTES:

- For n > 30 use r_s = ±z/√n 1, where z corresponds to the level of significance. For example, if α = 0.05, then z = 1.96.
- If the absolute value of the test statistic r_s exceeds the positive critical value, then reject H₀: ρ_s = 0 and conclude that there is a correlation.

Based on data from *Biostatistical Analysis*, 4th edition © 1999, by Jerrold Zar, Prentice Hall, Inc., Upper Saddle River, New Jersey, and "Distribution of Sums of Squares of Rank Differences to Small Numbers with Individuals," *The Annals of Mathematical Statistics*, Vol. 9, No. 2.