1.

	differential	Ackerman	Synchronous	XR4000	Mecanum
	drive	Drive	Drive	drive	Drive
cost	medium	low	low	high	high
degree of mobility	2	1	1	1	2
degree of mobility of	0	1	1	2	0
steerability					
degree of	2	2	2	3	2
maneuverability					
workload capacity	medium	high	high	medium	low
motion control	high	high	high	Low	medium
complexity					

Effects of different selections of goal:

If there is no limitation, there will be infinite suitable trajectory for a certain goal If there is limitations, we need to separate the goal into several sub-goal.

Effects of different selections of velocities:

Cause
$$(r+L/2)/v=L/(vr-v1)$$
; $v=(vr+v1)/2$
That is $[1 -1; 1 1]*[vr;v1]=[L*v/(r+L/2)$
 $2*v]$

when r, L, v is fixed, we can always generate different suitable vr and vl We conclude that with different velocities, we can keep the trajectory.

