

Try it yourself!

SampleMatch: Drum Sample Retrieval by Musical Context

Stefan Lattner

Sony Computer Science Laboratories (CSL), Paris

https://sites.google.com/view/samplematch

stefan.lattner@sony.com

Method

We train the encoders using a **contrastive loss** called NT-Xent, where $sim(\cdot, \cdot)$ is the cosine similarity:

$$\mathcal{X}(Z) = -\log \frac{\exp(\operatorname{sim}(\mathbf{u}_i, \mathbf{v}_j)/\tau)}{\sum_{l \neq j} \exp(\operatorname{sim}(\mathbf{u}_i, \mathbf{v}_l)/\tau)},$$
 (1)

where $\{\mathbf{u}_i, \mathbf{v}_j\}$ is the encoding of a positive pair, $Z \in \mathbb{R}^{n \times d}$ are all representations of a training batch, τ is the temperature parameter, and we adopt the decoupled contrastive learning variant, that has shown to work better for smaller batch sizes, by removing the positive pair from the denominator (i.e., $l \neq j$).

Regularizations

We combine the contrastive loss with the **variance and covariance regularization** used in VICReg. The variance regularization term is defined as a hinge function that penalizes variances of latent features along the batch dimension that are smaller than 1 as

$$V(Z) = \frac{1}{d} \sum_{j=1}^{d} \max(0, 1 - S(\mathbf{z}_{:,j}, \epsilon)),$$
 (2)

where Python slicing notation is used, and S is the regularized standard deviation

$$S(x,\epsilon) = \sqrt{\operatorname{Var}(x) + \epsilon}.$$
 (3)

The covariance regularization penalizes non-zero offdiagonal entries in the covariance matrix of each batch, leading to a decorrelation of the latent dimensions:

$$C(Z) = \frac{1}{d} \sum_{i \neq j} [C(Z)]_{i,j}^2, \tag{4}$$

where C is the covariance matrix.

Data

We used a dataset of **electronic music** (4830 "remix packs") and 885 **pop/rock songs** of 44.1 kHz sample rate for training and evaluation. From every percussion track in the dataset, we extract so-called "one-shots", single hits with the respective percussion instrument (63042 in total). Based on their filenames, we categorize the extracted drum samples into 6 categories which are {kick, snare, hihat, ride, crash, toms}.

Training

As encoders, we use the EfficientNet-B4 (pre-trained on the ImageNet dataset). We input log-mel spectrograms with an STFT window length of 2048, a hop length of 512, and 128 resulting mel bins, considering the whole frequency range (fmax = 22050). The encoders are trained by the ADAM optimizer, with a batch size of 190, a learning rate of 3e-4, and a weight decay factor of 3e-5. Data augmentation: Gaussian noise, time-stretch, reducing the gain, and time shift.

Results

User Study

Participants prefer the highly scored samples over random samples approximately twice as often.

Figure 1: Preference ratings of participants in the user study, separated by percussion type (the blue bar "Mean" shows the mean of all ratings). "best" are mixtures with samples that *scored highest* by our method, and "random" denotes mixtures with *random samples* from the data set. An "equal" rating means no particular preference.

Correlation Analysis

For interpretability, we perform correlation analyses between samples that are close in the learned space.

Figure 2: Correlations between perceptual and spectral features (and electronic / acoustic indicator) of Snare and Crash drum samples that are close in the latent space (i.e., scored to fit well in the same musical context).

Quantitative Evaluation

The main evaluation metric is the **Mean Normalized Rank** summarized as

$$R_{\text{mn}} = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{\text{rank}_i}{N}.$$
 (5)

Ablation studies of different model configurations unveils that VICReg regularization, pre-training, data augmentation and sparse mixing improves results.

	Queries: full mixtures					
Variant	\mathcal{X}	R_{mn}	R_{md}	L_q	L_k	
2Enc+PTrain+Aug+VCReg+SMix	3.614	0.105	0.032	0.9940	0.9767	
2Enc+PTrain+Aug+VCReg+SMix+QSInv	3.718	0.120	0.037	0.9900	0.9782	
2Enc+PTrain+Aug+VCReg	4.001	0.124	0.061	0.9825	0.9732	
2Enc+PTrain+VCReg+SMix	3.742	0.128	0.037	0.9945	0.9895	
2Enc+PTrain+Aug+SMix	3.575	0.116	0.032	0.9946	0.9774	
2Enc+Aug+VCReg+SMix	5.235	0.458	0.432	0.7268	0.7629	
2Enc+Aug+VCReg+SMix+QSInv	4.174	0.164	0.079	0.9826	0.9566	
PTrain+Aug+VCReg+SMix	3.853	0.121	0.047	0.9812	0.9809	
2Enc+PTrain	3.883	0.140	0.053	0.9925	0.9795	

	Queries: sparse mixtures				
Variant	$\overline{\mathcal{X}}$	R_{mn}	R_{md}	L_q	L_k
2Enc+PTrain+Aug+VCReg+SMix	3.761	0.124	0.043	0.9905	0.9763
2Enc+PTrain+Aug+VCReg+SMix+QSInv	3.818	0.136	0.047	0.9862	0.9768
2Enc+PTrain+Aug+VCReg	4.389	0.183	0.100	0.9635	0.9724
2Enc+PTrain+VCReg+SMix	3.780	0.137	0.042	0.9901	0.9898
2Enc+PTrain+Aug+SMix	3.812	0.135	0.043	0.9893	0.9790
2Enc+Aug+VCReg+SMix	5.237	0.470	0.451	0.7188	0.7480
2Enc+Aug+VCReg+SMix+QSInv	4.387	0.181	0.091	0.9768	0.9585
PTrain+Aug+VCReg+SMix	4.000	0.137	0.058	0.9768	0.9819
2Enc+PTrain	4.399	0.205	0.089	0.9821	0.9803

Table 1: Ablation study for different architectures and training scenarios tested on queries from full mixtures and queries from sparse mixtures (a sparse mixture is based on a random number n of stems, where n > 1).

PCA

When performing a PCA on the latent space, we see that acoustic and electronic samples are well-separated.

Figure 3: Principal Component Analysis (PCA) of drum sample encodings. Red dots indicate samples originating from electronic music and blue dots indicate samples originating from acoustic music.

Conclusion

Contrastive learning for drum samples and song mixes.

- VICReg regularizations, pre-training, augmentation and sparse mixing helps
- Users prefer automatically selected samples twice as often as random samples
- Correlation analysis unveils "rules"
- Electronic and acoustic samples well-separated

Future Work

• Extend to other instrument combinations