

: 2 displacement = 2 curerents (ie) 2 loops F X X X 1 F => one voltage source

Using Mesh analysis & taking L.T we get

$$0 = -bX_{m}(s) + (b+\frac{k}{s})x_{i}(s) - (2) = X_{i}(s) = bX_{m}(s)(\frac{s}{sb+k})$$

$$= \sum \frac{F(b)}{Xm(b)} = Motb - \frac{b^2}{ktbb} = \sum \frac{Xm(b)}{Ktbb} = \frac{xm(b)}{xm(b)} = \frac{$$

(i) F-) I; one F =) one current source

Using rodal analysis & taking L.T we get

$$0 = -b \times m(0) + \times (3) \left[b + \frac{k}{\delta} \right]$$
 . yields same temples function.

From the T.F of Xmld) we have

$$\omega_{\Lambda} = \sqrt{\frac{k}{M}} = \sqrt{\frac{5}{3}}$$

$$25\omega_n = \frac{5}{b}$$
 \Rightarrow $\delta = \frac{\sqrt{15}}{2b} > 0$ (when $b > 0$)

given K=5 , m=633

Mechanical translation al

Taking Laplace transform. Laskuning zero initial whitims.

Ms2x(s) + bsx(s) + kx(s)= F(s)

$$S_{1,2} = \frac{-b}{2m} \pm \frac{\sqrt{b^2 - 4km}}{am}$$

b) For system to be underdamped:

. 1. The Analogy from the given bystems

b2 < 4km 62 4 4x5x3. b < 560 6 4 7.7

1	1
	(V)
	(I)
	Rosistance
1	0

	Electrical 1	Mechanic	Mechanical	
1	D	Force voltage	Force curren	
1	(v)	Voltage	Force, f.	
	(I)	Foraf,	velocity V.	
	Rosistance R.	/ b	₽ b.	
1	Capacitance c	~	1/4.	
	L.	1/K	m.	

$$V = L \frac{di}{dt} + iR + \frac{1}{C} \int_{C} f dt$$

$$V = L \frac{d^{2}q}{dt^{2}} + \frac{Rdq}{dt} + \frac{q}{C}$$

(1) Force - Current analogy