Digital Electronics Final Homework Due: 4PM, June 21st

 $\mu_n C_{ox}$ = 200 μ A/V 2 , $\mu_p C_{ox}$ = 100 μ A/V 2 , NMOS V_{TH} = 0.4 V, PMOS V_{TH} = -0.4 V,

1 (40%) The degenerated stage showing below need to provide a voltage gain of 4 with a power budget of 2 mW. The voltage drop on the R_s is equal to 200 mv. Assume λ =0, If the overdrive voltage of the transistor is set to 100 mv and R_1 and R_2 must consume 5% of the allocated power, design the circuit by finding (1) I_{DS} of M_1 , (2) R_S , (3) R_D , (4) R_2 , (5) R_1 , (6) (W/L) of M_1 .

- 2. (40%) A CS stage with a degenerated PMOS current source. The degeneration must raise the output impedance of the current source to about $10r_{o1}$ such that the voltage gain remains nearly equal to the intrinsic gain of M_1 . Assume λ =0.1V⁻¹ for both transistors and a power budget of 2mW.
- (a) (20%) If V_B =1V, determine the values of (W/L)₂ and R_s so that the impedance seen into the drain of M_2 is equal to 10 r_{o1} .
- (b) (10%) Determine (W/L)¹ to achieve a voltage gain of 10.

3. (40%) Design a CG stage shown below such that it can accommodate an output swing of $500 \text{m} V_{pp}$ i.e. V_{out} can fall below its bias value by 250 mV without driving M_1 into the triode region. Assume a voltage gain of 4 and an input impedance of 50Ω . Select $R_s \approx 10/g_m$ and $R_1 + R_2 = 20 \text{k}\Omega$. Please find the $(1)g_{m_1}(2)R_{s_1}(3)(\text{W/L})$ of $M_{I_1}(4)R_{D_1}(5)R_{I_1}(6)R_{2_1}(7)I_{DS}$ of M_1 . (Hint: Since M_1 is biased 250 mV away from the triode region, we have

