Monty hall Problem:

Bayerian network: A,B, L = Doors

Contains Prize

A = 1/3

B = 1/3

c = 1/3

My Choice

A = 1/3

B = 1/3

C = 1/3

opened by officials

A = 1/3

B = 1/3

(= 1/3

Probability table Opened by Officials:

contain price	Door		A	Door B			Poor C		
My Choise	4	B	C	A			A		د
Open Door A	0	0	0	0	1/2	(0	١	1/2
open Door B	1/2	D	1	0	0	\mathcal{D}	(0	1/2
open Door C				1	1/2	0	0	0	0

the problem in symmetric, so indo the calculations for one scenario

My choice = A

P(A contains price) = 1/3

P(B contains price)= 1/3 P(C contains price)= 1/3 P(C contains price)= 1/3

P(Open B|A Prize) = 1/2 P(Open B|B Prize) = 0 P(Open B|C Prize) = 1

Bayes rure:

$$P(B,A) = \frac{P(B,A)}{P(A)} = \frac{P(A|B_r)P(B_r)}{\sum_{i=1}^{r} P(A|B_i)P(B_i)}$$

$$=\frac{1\cdot \frac{1}{3}}{\frac{1}{2}\cdot \frac{1}{3}+0+1\cdot \frac{1}{3}}=\frac{2}{3}$$

P(Aprize | OPEN B) = P(OPEN B | A Prize) P(A Prize)

P(Open B|Aprize) P(Apriz) + P(open B|Bprize)P(Bprize)
+ P(open B|Cprize) P(open

$$=\frac{1/2 \cdot 1/3}{1/2 \cdot 1/3 + 6 + 1 \cdot 1/3} = \frac{1}{3}$$

If i choose A and the hort open B, the chance that the prize in in $A \ge \frac{1}{3}$ and in $e = \frac{2}{3}$. So is should switch doors