

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet ²)	Price (\$1000)		
$\rightarrow x$	$y \leftarrow$		
2104	460		
1416	232		
1534	315		
852	178		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••		•••	

Multiple features (variables).

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
_	\times_1	Xz	* 3	**	9)
	2104	5	1	45	460
	7 1416	3	2	40	232 / M= 47
	1534	3	2	30	315
	852	2	1	36	178
			•••		
No	otation:	*	1	1	$\chi^{(2)} = \begin{bmatrix} 1416 \\ 3 \end{bmatrix}$
_	<i>→ n</i> = nu	mber of fea	atures	n=4	<u>'</u>
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.					
$\longrightarrow x_j^{(i)}$ = value of feature j in i^{th} training example. \checkmark_3 = 2					

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$.

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^{n+1} \qquad 0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{n+1} \qquad 0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0$$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T \underline{x} = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

Cost function:

$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{J(\theta_0)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Gradient Descent

Previously (n=1):

$$= \theta_0 - o \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \right]$$

$$\left[rac{\partial}{\partial heta_0} J(heta)
ight]$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

7 New algorithm
$$(n \ge 1)$$
:

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

(simultaneously update
$$\overline{\theta}_j$$
 for $j=0,\dots,n$)

$$\frac{m}{\sum_{i=0}^{m} (h_i(a_i^{(i)}))}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

Feature Scaling

Get every feature into approximately a

$$\underbrace{-1 \leq x_i \leq 1}_{\text{range.}}$$
 range.

Mean normalization

Replace \underline{x}_i with $\underline{x}_i - \mu_i$ to make features have approximately zero mean (Do not apply to $\underline{x}_0 = 1$).

E.g.
$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

$$x_1 \leftarrow \frac{x_1 - \mu_1}{5}$$

$$x_2 \leftarrow \frac{x_1 - \mu_2}{5}$$

$$x_3 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_4 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_4 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_5 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_1 \leftarrow \frac{x_2 - \mu_3}{5}$$

$$x_2 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_3 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_4 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_5 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_1 \leftarrow \frac{x_2 - \mu_3}{5}$$

$$x_2 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_3 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_4 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x_5 \leftarrow \frac{x_1 - \mu_3}{5}$$

$$x$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge where α

To choose α , try

$$\dots, \underbrace{0.001}_{3 \times}, \underbrace{0.01}_{3 \times}, \underbrace{0.01}_{3 \times}, \underbrace{0.01}_{3 \times}, \underbrace{0.1}_{3 \times}, \underbrace{0.1}$$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Polynomial regression

 $\rightarrow x_3 = (size)^3$

Choice of features

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\text{Set}}{\partial \phi} O$$
Solve for ϕ

$$\frac{\theta \in \mathbb{R}^{n+1}}{\frac{\partial}{\partial \theta_j} J(\theta)} = \frac{J(\theta_0, \theta_1, \dots, \theta_m)}{\frac{\partial}{\partial \theta_j} J(\theta)} = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	
1	2104	5	1	45	460	
1	1416	3	2	40	232	
1	1534	3	2	30	315	
1	852	2	_1	__ 36	178	ك
$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$ $M \times (n+i)$ $\theta = (X^T X)^{-1} X^T y \leftarrow$					232 315	Ventor

m training examples, n features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

$$(X^TX)^{-1} \xrightarrow{\mathsf{n} \times \mathsf{n}} O(\mathsf{n}^3)$$

• Slow if n is very large.

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X)*X'*y

What if X^TX is non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

$$x_2 = \text{size in m}^2$$

$$x_1 = (3.28)^2 \times 2$$

$$x_2 = (3.28)^2 \times 2$$

$$x_3 = (3.28)^2 \times 2$$

- Too many features (e.g. $m \le n$).
 - Delete some features, or use regularization.

Hồi quy đa biến

Trong tập dữ liệu tôi gửi bao gồm 17000 hàng và 9 cột, trong đó:

- 17000 hàng là số lượng dữ liệu (m)
- 9 cột: 8 cột đầu (n) là các đặc trưng (x), cột cuối cùng là giá nhà (y)

Các bạn làm các công việc sau:

- 1. Chuẩn hóa dữ liệu: scale dữ liệu, format kích thước dữ liệu
- 2. Viết chương trình cho phép học các tham số của mô hình hồi quy tuyến tính đa biến
- 3. Tính J ở mỗi vòng lặp, và vẽ biểu đồ J ở các giá trị learning rate khác nhau sau khi chạy hết các vòng lặp.
- 4. Kiểm chứng các theta mà các bạn tìm được bằng phương pháp gradient descent với phương pháp normal equation.

Hồi quy đa bậc

Trong tập dữ liệu tôi gửi bao gồm 84 hàng và 2 cột, trong đó:

- 84 hàng là số lượng dữ liệu (m)
- 2 cột: cột đầu là đặc trưng (x), cột cuối là nhãn (y)

Các bạn làm các công việc sau:

- 1. Biểu diễn dữ liệu
- 2. Chọn mô hình "h" phù hợp (bậc bao nhiêu?)
- 3. Chuyển bài toán đa bậc thành bài toán đa biến và chuẩn hóa dữ liệu: scale dữ liệu, format kích thước dữ liệu
- 4. Viết chương trình cho phép học các tham số của mô hình hồi quy tuyến tính đa biến
- 5. Tính J ở mỗi vòng lặp, và vẽ biểu đồ J ở các giá trị learning rate khác nhau sau khi chạy hết các vòng lặp.
- 6. Biển diễn đường cong học được và dữ liệu trên cùng 1 hình ảnh.