

Each flip-flop is initially reset

Lacii iiip	nop i	J IIIICIGI	ily rese					
CLK	J_0K_0	J_1K_1	J_2K_2	J_3K_3	Q_0	Q_1	Q_2	Q_3
1	1	0	0	0	1	0	0	0
2	1	1	0	0	0	1	0	0
3	1	0	0	0	1	1	0	0
4	1	1	1	0	0	0	1	0
5	1	0	0	0	1	0	1	0
6	1	1	0	0	0	1	1	0
7	1	0	0	0	1	1	1	0
8	1	1	1	1	0	0	0	1
9	1	0	0	0	1	0	0	1
10	1	0	0	1	0	0	0	0

FIGURE 8-4

See Figure 8-7.

11. See Figure 8-6.

14. See Figure 8-9.

15 See Figure 8-10.

	Q_2	Q_1	Q_0	D_2	D_1	D_0
Initially	0	0	0	0	0	1
At CLK 1	0	0	1	0	1	1
At CLK 2	0	1	1	1	1	1
At CLK 3	1	1	1	1	1	0
At CLK 4	1	1	0	1	0	0
At CLK 5	1	0	0	0	0	1
At CLK 6	0	0	1	0	1	1

The sequence is 000 to 001 to 011 to 111 to 110 to 100 and back to 001, etc.

ı		
	1	

	FF3	FF2	FF1	FF0	Q_3	Q_2	Q_1	Q_0
Initially	Tog	Tog	Tog	Tog	0	0	0	0
After CLK 1	NC	NC	NC	Tog	1	1	1	1
After CLK 2	NC	NC	Tog	Tog	1	1	1	0
After CLK 3	NC	Tog	Tog	Tog	1	1	0	1
After CLK 4	Tog	Tog	Tog	Tog	1	0	1	0
After CLK 5	Tog	Tog	Tog	Tog	0	1	0	_1_

Tog = toggle, NC = no change

The counter locks up in the 1010 and 0101 states, alternating between them.

18. NEXT-STATE TABLE

Preser	nt State	Next	State
Q_1	Q_0	Q_1	Q_0
0	0	1	0
1	0	0	1
0	1	1	1
1	1	0	0

TRANSITION TABLE

	Transitions to next state)	Flip-Flop Inputs					
Q_1	Q_0	J_1	K_1	J_0	K_0		
0 to 1	0 to 0	[1]	X	0	X		
1 to 0	0 to 1	X	1	1	X		
0 to 1	1 to 1	1	X	X	0		
1 to 0	1 to 0	X	1	X	1		

See Figure 8-13.

∖. NEXT-STATE TABLE

Pre	esent St	ate	Next State				
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0		
0	0	1	1	0	0		
1	0	0	0	1	1		
0	1	1	1	0	1		
1	0	1	1	1	1		
1	1	1	1	1	0		
1	1	0	0	1	0		
0	1 /	0	0	0	1		

TRANSITION TABLE

•	State Tra		Flip-flop Inputs								
Q_2	t state to no	O_0	J_2	K_2	J_1	K_1	J_0	K_0			
0 to 1	0 to 0	1 to 0	1	X	0	X	X	1			
1 to 0	0 to 1	0 to 1	X	1	1	X	1	X			
0 to 1	1 to 0	1 to 1	1	X	X	1	X	0			
1 to 1	0 to 1	1 to 1	X	0	1	X	X	0			
1 to 1	1 to 1	1 to 0	X	0	X	0	X	1			
0 to 0	1 to 0	0 to 1	0	X	X	1	1	X			
1 to 0	1 to 1	0 to 0	X	1	X	0	0	\mathbf{X}			

See Figure 8-14.

2 NEXT-STATE TABLE

P	resen	t Sta	te]	Next	State	
Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0
0	0	0	0	1	0	0	1
1	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0
1	0	0	0	0	0	1	0
0	0	1	0	0	1	1	1
0	1	1	1	0	0	1	1
0	0	1	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	0	0	0

TRANSITION TABLE

Out	put State	e Transi	tion			F	lip-fl	op Inputs		
(Pres	ent State	to next s	state)							
Q_3	Q_2	Q_1	Q_0	J_3	K_3	J_2	K_2	$J_1 K_1$	J_0	K_0
0 to 1	0 to 0	0 to 0	0 to 1	1	X	0	X	0 X	1	X
1 to 0	0 to 0	0 to 0	0 to 1	X	1	0	X	0 X	X	0
0 to 1	0 to 0	0 to 0	1 to 0	1	X	0	X	0 X	X	1
1 to 0	0 to 0	0 to 1	0 to 0	X	1	0	X	1 X	0	X
0 to 0	0 to 1	1 to 1	0 to 1	0	X	1	X	X 0	1	X
0 to 0	1 to 0	1 to 1	1 to 1	0	X	X	1	X 0	X	0
0 to 0	0 to 1	1 to 1	1 to 0	0	X	1	X	X 0	X	1
0 to 0	1 to 1	1 to 0	0 to 0	0	X	X	0	X 1	0	X
0 to 0	1 to 1	0 to 0	0 to 1	0	X	X	0	0 X	1	X
0 to 0	1 to 0	0 to 0	1 to 0	0	X	X	1	0 X	X	1

Binary states for 10, 11, 12, 13, 14, and 15 are unallowed and can be represented by don't cares.

See Figure 8-15. Counter implementation is straightforward from input expressions.

NEXT-STATE TABLE

P	resen	nt State Next State						Next State				
				Y	T = 1 (U	Jp)		Y = 0 (Down)				
Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	Q_3	Q_2	Q_1	Q_0	
0	0	0	0	0	0	1	1	1	0	1	1	
0	0	1	1	0	1	0	1	0	0	0	0	
0	1	0	1	0	1	1	1	0	0	1	1	
0	1	1	1	1	0	0	1	0	1	0	1	
1	0	0	1	1	0	1	1	0	1	1	1	
1	0	1	1	0	0	0	0	1	0	0	1	

TRANSITION TABLE

Ou	tput State	Transit	ions	Y		Flip-flop	o Inputs	
(Pre	sent State	to next s	tate)					
Q_3	Q_2	Q_1	Q_0		J_3K_3	J_2K_2	J_1K_1	J_0K_0
0 to 1	0 to 0	0 to 1	0 to 1	0	1X	0X	1X	1X
0 to 0	0 to 0	0 to 1	0 to 1	1	0X	0X	1X	1X
0 to 0	0 to 0	1 to 0	1 to 0	0	0X	0X	X1	X1
0 to 0	0 to 1	1 to 0	1 to 1	1	0X	1X	X1	X0
0 to 0	1 to 0	0 to 1	1 to 1	0	0X	X1	1X	X0
0 to 0	1 to 1	0 to 1	1 to 1	1	0X	X0	1X	X0
0 to 0	1 to 1	1 to 0	1 to 1	0	0X	X0	X1	X0
0 to 1	1 to 0	1 to 0	1 to 1	1	1X	X1	X1	X0
1 to 0	0 to 1	0 to 1	1 to 1	0	X1	1X	1X	X0
1 to 1	0 to 0	0 to 1	1 to 1	1	X0	0X	1X	X0
1 to 1	0 to 0	1 to 0	1 to 1	0	X0	0X	X1	X0
1 to 0	0 to 0	1 to 0	1 to 0	1	X1	0X	X1	X1

See Figure 8-16.

Section 8-5 Cascaded Counters

24 (a) Modulus =
$$4 \times 8 \times 2 = 64$$

$$f_1 = \frac{1 \text{ kHz}}{4} = 250 \text{ Hz}$$

 $f_2 = \frac{250 \text{ Hz}}{8} = 31.25 \text{ Hz}$
 $f_3 = \frac{31.25 \text{ Hz}}{2} = 15.625 \text{ Hz}$

(b) Modulus =
$$10 \times 10 \times 10 \times 2 = 2000$$

$$f_1 = \frac{100 \text{ k}}{10}$$

(c)

(d)

$$f_1 = \frac{100 \text{ kHz}}{10} = 10 \text{ kHz}$$

$$f_2 = \frac{10 \text{ kHz}}{10} = 1 \text{ kHz}$$

$$f_3 = \frac{1 \text{ kHz}}{10} = 100 \text{ Hz}$$

 $f_4 = \frac{100 \text{ Hz}}{2} = 50 \text{ Hz}$

(c) Modulus =
$$3 \times 6 \times 8 \times 10 \times 10 = 14400$$

$$f_1 = \frac{21\,\mathrm{MHz}}{3} = 7\,\mathrm{MHz}$$

$$f_2 = \frac{7 \text{ MHz}}{6} = 1.167 \text{ MHz}$$

$$f_3 = \frac{1.167 \text{ MHz}}{8} = 145.875 \text{ kHz}$$

 $f_3 = \frac{145.875 \text{ kHz}}{8} = 145.875 \text{ kHz}$

$$f_4 = \frac{145.875 \text{ kHz}}{10} = 14.588 \text{ kHz}$$

 $f_5 = \frac{14.588 \text{ kHz}}{10} = 1.459 \text{ kHz}$

$$Modulus = 2 \times 4 \times 6 \times 8 \times 16 = 6144$$

$$f_1 = \frac{39.4 \text{ kHz}}{2} = 19.7 \text{ kHz}$$

$$f_2 = \frac{19.7 \text{ kHz}}{4} = 4.925 \text{ kHz}$$

$$f_2 = \frac{19.7 \text{ kHz}}{4} = 4.925 \text{ kHz}$$

$$f_3 = \frac{4.925 \text{ kHz}}{6} = 820.83 \text{ Hz}$$

$$f_4 = \frac{820.683}{8} = 102.6 \text{ Hz}$$

$$f_4 = \frac{820.683}{8} = 102.6 \text{ Hz}$$

$$f_5 = \frac{8}{102.6 \,\mathrm{Hz}} = 6.41 \,\mathrm{Hz}$$

3 , See Figure 8-22.

3 ψ. For the digital clock, the counter output frequencies are: **Divide-by-60 input counter:**

$$\frac{60\,\mathrm{Hz}}{60} = 1\,\mathrm{Hz}$$

Seconds counter:

$$\frac{1 \, Hz}{60} = 16.7 \text{ mHz}$$

Minutes counter:

$$\frac{16.7 \text{ mHz}}{60} = 278 \text{ } \mu\text{Hz}$$

Hours counter:

$$\frac{278 \,\mu\text{Hz}}{12} = 23.1 \,\mu\text{Hz}$$

$$35.53 + 37 - 22 = 68$$