

LOG2810

STRUCTURES DISCRÈTES

TD 8: INDUCTION ET RÉCURSIVITÉ

A2022

Directives pour la remise :

- Répondez directement sur ce document papier.
- La remise est individuelle, mais le travail en équipe est encouragé.
- La remise se fait à la fin de la séance de TD.
- Aucun retard ne sera accepté.
- Le non-respect des consignes entraînera automatiquement la note 0 pour ce TD.

Identification

Veuillez inscrire votre section, nom, prénom et matricule ainsi que les nom
des collègues avec lesquels vous avez collaboré pour le TD

des conlègues avec resqueis vous avez confasore pour le 15
Section:
Nom:
Prénom :
Matricule :
Collègues :

Exercice 1:

Supposons que P(n) soit une fonction propositionnelle. Déterminez pour quels entiers $n \in \mathbb{N}$ la proposition P(n) doit être vraie si:

a) P(0) est vraie. Pour tous les entiers $n \in \mathbb{N}$, si P(n) est vraie, alors P(n+2) est vraie.

Réponse:

Ces conditions nous disent que P(n) est vraie pour les valeurs paires de n, à savoir 0, 2, 4, 6, 8, De plus, il n'y a aucun moyen d'être sûr que P(n) est vraie pour les autres valeurs de n.

b) P(0) est vraie. Pour tous les entiers $n \in \mathbb{N}$, si P(n) est vraie, alors P(n+3) est vraie.

Réponse:

Ces conditions nous disent que P(n) est vraie pour les valeurs de n qui sont des multiples de 3, à savoir 0, 3, 6, 9, 12, De plus, il n'y a pas manière d'être sûr que P(n) est vraie pour les autres valeurs de n.

c) P(0) et P(1) sont vraies. Pour tout entier $n \in \mathbb{N}$, si P(n) et P(n+1) sont vraies, alors P(n+2) est vraie.

Réponse:

Ces conditions suffisent à prouver par induction que P(n) est vraie pour tout entier non négatif n.

d) P(0) est vraie. Pour tous les entiers $n \in \mathbb{N}$, si P(n) est vraie, alors P(n+2) et P(n+3) sont vraies.

Réponse:

Nous savons immédiatement que P(0), P(2) et P(3) sont vraies, et il n'y a aucun moyen d'être sûr que P(1) est vraie. Une fois que nous avons P(2) et P(3), le pas inductif P(n) \rightarrow P(n + 2) nous donne la vérité de P(n) pour tout n \geq 2.

Exercice 2:

Prouver par récurrence que $n^3 - n$ est divisible par 3 pour tout $n \in \mathbb{N}$.

Réponse:

Pour n = 0

$$n^3 - n = 0 - 0 = 0$$

0 est divisible par 3, donc $n^3 - n$ est divisible par 3.

Soit $n \in \mathbb{N}$, supposons que $n^3 - n$ est divisible par 3.

 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1$

 $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n - n$

 $(n+1)^3 - (n+1) = n^3 - n + 3(n^2 + n)$

 n^3 - n est divisible par 3 par hypothèse, et $3(n^2 + n)$ est divisible par 3 car un de ses facteurs est 3.

Donc $(n+1)^3 - (n+1)$ est divisible par 3.

 n^3 - n est divisible par 3 pour n=0 et si elle l'est pour n, alors elle l'est pour n+1 . Donc par récurrence, n^3 - n est divisible par 3 pour tout n \in N.

Exercice 3:

Prouver par induction que pour tout $n \in \mathbb{N}$, la propriété P(n) suivante est vraie :

$$\sum_{k=0}^{n} 2^k = 2^{(n+1)} - 1$$

Réponse:

Pour n = 0:

$$\sum_{k=0}^{n} 2^{k} = 2^{0} = 1$$
 Et $2^{(n+1)} - 1 = 2^{1} - 1 = 1$

Donc P(0) est vraie.

Supposons que pour un n quelconque, P(n) est vraie, et montrons que P(n+1) est vraie.

Autrement dit, on suppose $\sum_{k=0}^{n} 2^k = 2^{(n+1)} - 1$

Et on va montrer que $\sum_{k=0}^{n+1} 2^k = 2^{(n+2)} - 1$

On a
$$\sum_{k=0}^{n+1} 2^k = (\sum_{k=0}^n 2^k) + 2^{n+1}$$

Or, par hypothèse d'induction : $\sum_{k=0}^{n} 2^k = 2^{(n+1)} - 1$

Donc on a $\sum_{k=0}^{n+1} 2^k = 2^{(n+1)} - 1 + 2^{n+1}$

$$\sum_{k=0}^{n+1} 2^k = 2.2^{(n+1)} - 1$$

$$\sum_{k=0}^{n+1} 2^k = 2^{(n+1)+1} - 1$$

$$\sum_{k=0}^{n+1} 2^k = 2^{(n+2)} - 1$$

On vient de prouver que $P(n) \rightarrow P(n+1)$

Par induction, puisque P(0) et $P(n) \rightarrow P(n+1)$, P(n) est vrai pour tout n.

Exercice 4:

On considère la suite définie par :

$$\begin{cases} & U_0 = -1 \\ & U_1 = -1 \\ \forall n \in N. \, U_{n+2} = 5 U_{n+1} - 6 U_n \end{cases}$$

À l'aide du 1c), démontrer que $\forall n \in \mathbb{N}$, $U_n = 3^n - 2^{n+1}$.

Réponse:

On note P(n) la propriété « $U_n = 3^n - 2^{n+1}$ ».

Pour n = 0:

 $U_0 = 3^0 - 2^{0+1} = 1 - 2 = -1$ P(0) est vraie

Pour n = 1:

 $U_1 = 3^1 - 2^{1+1} = 3 - 4 = -1 P(1)$ est vraie

Soit $n \in \mathbb{N}$.

Supposons que P(n) et P(n+1) est vraie.

Montrons que P(n+2) est vrai.

 $U_{n+2} = 5U_{n+1} - 6U_n$

Or P(n) et P(n+1) sont vraies. Donc on peut Réécrire U_{n+2} :

 $U_{n+2} = 5(3^{n+1} - 2^{n+2}) - 6(3^n - 2^{n+1})$

 $U_{n+2} = 5.3^{n+1} - 5.2^{n+2} - 6.3^{n} - 6.(-2^{n+1})$

 $U_{n+2} = 5.3.3^{n} - 5.2.2^{n+1} - 6.3^{n} - 6.(-2^{n+1})$

 $U_{n+2} = 3^n (5.3 - 6) - .2^{n+1} (5.2 - 6)$

 $U_{n+2} = 3^n (15-6) - .2^{n+1} (10-6)$

 $U_{n+2} = 3^n (9) - .2^{n+1} (4)$

 $U_{n+2} = 3^n (3^2) - .2^{n+1} (2^2)$

 $U_{n+2} = 3^{n+2} - .2^{(n+2)+1}$

Donc P(n) $\wedge P(n+1) \rightarrow P(n+2)$

Par induction, puisque P(0) et P(1) sont vraies, et que P(n) \land P(n + 1) \rightarrow P(n+2), P(n) est vrai pour tout n \in N .

Exercice 5:

On définit une fonction f sur l'ensemble des entiers naturels non nuls comme suit :

- f(1) = 1
- f(n) = 2n 1 + f(n-1) pour n > 1
- a) Établissez une conjecture pour une formule explicite pour f(n), en l'exprimant uniquement en fonction de n.

Réponse:

```
f(1) = 1

f(2) = 2.2 - 1 + f(1) = 4-1+1 = 4

f(3) = 2.3 - 1 + f(2) = 6-1+4 = 9

f(4) = 2.4 - 1 + f(3) = 8-1+9 = 16

f(5) = 2.5 - 1 + f(4) = 10-1+16 = 25
```

Les résultats précédents nous permettent de conjecturer que $f(n) = n^2$.

b) Prouvez la conjecture par induction.

Réponse:

On procède par récurrence forte.

```
Pour n = 1:

f(1) = 1

f(1) = 1^2 = 1

La formule est vérifiée pour n = 1.
```

Supposons jusqu'au rang $n \ge 1$ que $f(n) = n^2$ et montrons que $f(n+1) = (n+1)^2$. Par définition, f(n) = 2n - 1 + f(n-1) f(n+1) = 2(n+1) - 1 + f(n+1-1), f(n+1) = 2n+1 + f(n) $f(n+1) = 2n+1 + n^2$ $f(n+1) = (n+1)^2$

On a f(1) =
$$1^2$$

De plus, (Soit $n \in \mathbb{N}$, \forall k tel que $1 \le k \le n$, f(k) = k^2) implique f(n+1) = $(n+1)^2$
D'où pour tout $n \ge 1$, f(n) = n^2

Exercice 6:

Proposez un algorithme récursif de calcul de la puissance n-ième (n $\in \mathbb{N}$) d'un nombre réel positif non nul a en supposant que les seules opérations de base dont vous disposez sont :

- le produit de deux réels a et b : a x b
- le retrait de 1 à un entier a : a -1
- la comparaison à 0 d'un entier a : a = 0

Réponse:

Exemple de pseudo-code d'algorithme.

```
Puissance (a : réel positif non nul, n : entier)
Si n=0, alors retourner 1
Sinon retourner (a x Puissance(a, n-1));
```