Chapter 4. Electric Fields in Matter

4	Electric Fields in Matter		
	4.1	Polariz	zation
		4.1.1	Dielectrics
		4.1.2	Induced Dipoles
		4.1.3	Alignment of Polar Molecules
		4.1.4	Polarization
	4.2	The Fi	eld of a Polarized Object
		4.2.1	Bound Charges
		4.2.2	Physical Interpretation of Bound Charges
		4.2.3	The Field Inside a Dielectric
	4.3	The El	ectric Displacement
		4.3.1	Gauss's Law in the Presence of Dielectrics
		4.3.2	A Deceptive Parallel
		4.3.3	Boundary Conditions
	4.4	Linear	Dielectrics
		4.4.1	Susceptibility, Permittivity, Dielectric Constant
		4.4.2	Boundary Value Problems with Linear Dielectrics
		4.4.3	Energy in Dielectric Systems
		4.4.4	Forces on Dielectrics

4.2 The Field of a Polarized Object

What is the field produced by P in a polarized material? (not the field that may have caused the polarization, but the field the polarization itself causes)

4.2.1 Bound Charges

The polarization **P** can produces **bound volume and surface charges**.

4.2.1 Bound Charges

For a single dipole **p**, the potential is, $V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{\hat{z}} \cdot \mathbf{p}}{\hbar^2}$

A dipole moment in each volume element $d\tau$: $\mathbf{p} = \mathbf{P} d\tau'$

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\hat{\mathbf{z}} \cdot \mathbf{P}(\mathbf{r}')}{r^2} d\tau'$$

 $\nabla'\left(\frac{1}{r}\right) = \frac{\hat{k}}{r^2}$ \the the differentiation is with respect to the source coordinates (r')

$$V = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \mathbf{P} \cdot \mathbf{\nabla}' \left(\frac{1}{\imath}\right) d\tau'$$

Integrating by parts, $V = \frac{1}{4\pi\epsilon_0} \left[\int_{\Sigma} \nabla' \cdot \left(\frac{\mathbf{P}}{\imath} \right) d\tau' - \int_{\Sigma} \frac{1}{\imath} (\nabla' \cdot \mathbf{P}) d\tau' \right]$

Using the divergence theorem, $V = \frac{1}{4\pi\epsilon_0} \oint \frac{1}{\imath} \mathbf{P} \cdot d\mathbf{a}' - \frac{1}{4\pi\epsilon_0} \int \frac{1}{\imath} (\mathbf{\nabla}' \cdot \mathbf{P}) d\tau'$

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \oint_{\mathcal{S}} \frac{\sigma_b}{\imath} da' + \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\rho_b}{\imath} d\tau' \qquad \rho_b \equiv -\nabla \cdot \mathbf{P} : \text{Volume charge density}$$

$$\sigma_b \equiv \mathbf{P} \cdot \hat{\mathbf{n}} : \text{Surface charge density}$$

Potential induced by polarization

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \oint_{\mathcal{S}} \frac{\sigma_b}{r} da' + \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\rho_b}{r} d\tau' \qquad \rho_b \equiv -\nabla \cdot \mathbf{P} \qquad \sigma_b \equiv \mathbf{P} \cdot \hat{\mathbf{n}}$$

Example 4.2 Find the electric field produced by a uniformly polarized sphere of radius *R*.

$$\rho_b = 0$$
, since **P** is uniform. $\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}} = P \cos \theta$

$$\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}} = P \cos \theta$$

From Eqs. (3.85), (3.86), and (3.87) in Example 3.9,

qs. (3.85), (3.86), and (3.87) in Example 3.9,
$$V(r,\theta) = \begin{cases} \frac{P}{3\epsilon_0} r \cos \theta, & \text{for } r \leq R, \\ \frac{P}{3\epsilon_0} \frac{R^3}{r^2} \cos \theta, & \text{for } r \geq R. \end{cases}$$

The *field* inside the sphere is uniform, since $r \cos \theta = z$.

$$\mathbf{E} = -\nabla V = -\frac{P}{3\epsilon_0}\hat{\mathbf{z}} = -\frac{1}{3\epsilon_0}\mathbf{P}, \quad \text{for } r < R.$$

Outside the sphere the potential is identical to that of a perfect dipole at the origin,

$$V = \frac{1}{4\pi\epsilon_0} \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{r^2}, \quad \text{for } r \ge R, \quad \mathbf{p} = \frac{4}{3}\pi R^3 \mathbf{P}$$

4.2.2 Physical Interpretation of Bound Charges

If the ends have been sliced off perpendicularly,

For an oblique cut, $A = A_{\text{end}} \cos \theta$,

$$\sigma_b = \frac{q}{A} = P$$

$$\sigma_b = \frac{q}{A_{\rm end}} = P\cos\theta = \mathbf{P} \cdot \hat{\mathbf{n}}$$

If the polarization is nonuniform, we get accumulations of bound charge within the material.

The net bound charge $\int \rho_b d\tau$ in a given volume is equal and opposite to the amount that has been pushed out through the surface:

$$\int_{\mathcal{V}} \rho_b \, d\tau = -\oint_{\mathcal{S}} \mathbf{P} \cdot d\mathbf{a} = -\int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{P}) \, d\tau$$

Electric field produced by a uniformly polarized sphere

Example 4.3 Another way of analyzing the uniformly polarized sphere. (Example 4.2) Electric field produced by a uniformly polarized sphere.

Consider two spheres of charge: A positive sphere and a negative sphere.

The field inside a uniformly charged sphere is

$$\oint \mathbf{E} \cdot d\mathbf{a} = E \cdot 4\pi r^2 = \frac{1}{\epsilon_0} Q_{\text{enc}} = \frac{1}{\epsilon_0} \frac{4}{3} \pi r^3 \rho.$$

$$\longrightarrow \mathbf{E} = \frac{1}{3\epsilon_0} \rho r \hat{\mathbf{r}}$$

$$\mathbf{E} = -\frac{1}{3\epsilon_0}\mathbf{P}$$

The field in the region of overlap between two uniformly charged spheres is

$$\mathbf{E} = \frac{\rho}{3\epsilon_0}(\mathbf{r}_+ - \mathbf{r}_-) = \frac{\rho}{3\epsilon_0}\mathbf{d} \longrightarrow \mathbf{E} = -\frac{1}{4\pi\epsilon_0}\frac{q\mathbf{d}}{R^3}$$

$$\mathbf{p} = q\mathbf{d} = (\frac{4}{3}\pi R^3)\mathbf{P} \longrightarrow \mathbf{E} = -\frac{1}{3\epsilon_0}\mathbf{P}$$

4.2.3 The Field Inside a Dielectric

The electric field inside matter must be very complicated, on the microscopic level

Moreover, an instant later, as the atoms move about, the field will have altered entirely.

→ This true microscopic field would be utterly impossible to calculate!

Therefore, consider the **macroscopic field** defined as the *average* field over regions large enough to contain many thousands of atoms.

→ The field inside matter means the macroscopic field in usual.

Suppose the macroscopic field at some point r within a dielectric.

For a small sphere about **r**, of radius, say, a thousand times the size of a molecule. The macroscopic field at **r**, then, consists of two parts:

$$\mathbf{E} = \mathbf{E}_{out} + \mathbf{E}_{in}$$
 \rightarrow the average field over the sphere due to all charges *outside*, \rightarrow plus the average due to all charges *inside*:

Inside the sphere, we know already the field: $\mathbf{E}_{\text{in}} = -\frac{1}{3\epsilon_0}\mathbf{P}$

Outside the sphere, the potential is
$$V_{\text{out}} = \frac{1}{4\pi\epsilon_0} \int_{\text{outside}} \frac{\hat{\mathbf{z}} \cdot \mathbf{P}(\mathbf{r}')}{\imath^2} \, d\tau' \longrightarrow \mathbf{E}_{\text{out}} = -\frac{1}{3\epsilon_0} \mathbf{P}$$

by assumption the sphere is small enough that P does not vary significantly over volume,

The macroscopic field, then, is given by the potential:
$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\mathbf{z}} \cdot \mathbf{P}(\mathbf{r}')}{\imath^2} d\tau'$$

The Field Inside a Dielectric

The field inside matter means the macroscopic field in usual.

→ The macroscopic field, then, is given by the potential:

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\mathbf{r}} \cdot \mathbf{P}(\mathbf{r}')}{r^2} d\tau'$$
 where the integral runs over the *entire* volume.

- → The macroscopic field is certainly independent of the geometry of the averaging region.
- → Therefore, the field inside a dielectric can be determined from Eq. (4.13):

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \oint_{\mathcal{S}} \frac{\sigma_b}{r} da' + \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\rho_b}{r} d\tau'$$

Problem 4.10 A sphere of radius R carries a polarization $P(\mathbf{r}) = k\mathbf{r}$

$$\sigma_b = \mathbf{P} \cdot \hat{\mathbf{n}} = \begin{bmatrix} kR; \end{bmatrix} \qquad \rho_b = -\mathbf{\nabla} \cdot \mathbf{P} = -\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 k r) = -\frac{1}{r^2} 3k r^2 = \begin{bmatrix} -3k. \end{bmatrix}$$
For $r < R$, $\mathbf{E} = \frac{1}{3\epsilon_0} \rho r \, \hat{\mathbf{r}}$, so $\mathbf{E} = \begin{bmatrix} -(k/\epsilon_0) \, \mathbf{r}. \end{bmatrix}$
For $r > R$, $Q_{\text{tot}} = (kR)(4\pi R^2) + (-3k)(\frac{4}{3}\pi R^3) = 0$, so $\mathbf{E} = \mathbf{0}$.