Lab 5

Hermite interpolation

1. In the following table there are some data regarding a moving car. Use Hermite interpolation to estimate position and speed of the car when the time is t = 10.

Time	0	3	5	8	13
Distance	0	225	383	623	993
Speed	75	77	80	74	72

- 2. With $f(x) = \ln x$, calculate f(1.5) by cubic interpolation, using f(1) = 0, f(2) = 0.6931, f'(1) = 1, f'(2) = 0.5.
- 3. Plot, in the same figure, the graphs of the function $f: [-5,5] \to \mathbb{R}, f(x) =$ $\sin 2x$ and of the corresponding Hermite interpolation polynomial, considering 15 equidistant nodes in [-5, 5].

Facultative:

3. The data from the following table are generated using the function f(x) = $x \ln x$:

x	f(x)	f'(x)
8.3	17.56492	3.116256
8.6	18.50515	3.151762

Use the Hermite interpolation polynomial to approximate f(8.4) and find the absolute error.

- 4. Let $f(x) = 3xe^x e^{2x}$.
- a) Approximate f(1.03) by the Hermite interpolation polynomial of degree at most three, using $x_0 = 1$ and $x_1 = 1.05$ and find the absolute error.
- b) Repeat (a) with the Hermite interpolation polynomial of degree at most five, using $x_0 = 1$ and $x_1 = 1.05$ and $x_2 = 1.07$ and find the absolute error.
- c) Plot the graphs of the function f and of the interpolation polynomials from (a) and (b).