Key ID: 027

Name:

1. Problem

An experiment has $n_1 = 7$ plants in the treatment group and $n_2 = 5$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5	value6	value7
sample 1: sample 2:			1.08	1.05	0.86 1.46	1.29	0.6

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 98% confidence interval.
- (c) Determine SE.
- (d) Determine a lower bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 98% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail p-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.02? (yes or no)

(b) 3 . 7 5 0 (c) 0 . 1 1 1 1 (d) 0 . 0 1 4 (e) 0 . 8 4 6 (f) 3 . 8 6 7 (g) 0 . 0 1 0								
(c) 0 . 1 1 1 (d) 0 . 0 1 4 (e) 0 . 8 4 6 (f) 3 . 8 6 7 (g) 0 . 0 1 0	١.	(a)			4	. 0	0	0
(d) 0 . 0 1 2 (e) 0 . 8 4 6 (f) 3 . 8 6 7 (g) 0 . 0 1 0		(b)			3	. 7	5	0
(e) 0 . 8 4 6 (f) 3 . 8 6 7 (g) 0 . 0 1 ((c)			0	. 1	1	1
(f) 3 . 8 6 7 (g) 0 . 0 1 ((d)			0	. 0	1	4
(g) 0 . 0 1 C		(e)			0	. 8	4	6
		(f)			3	8	6	7
		(g)			0	. 0	1	0
(h) 0 . 0 2 0		(h)			0	. 0	2	0

(i) yes

Key ID: 027

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 1$$

$$\overline{X_2} = 1.43$$

$$S_1 = 0.218$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

 $s_2 = 0.167$

$$df = \min(n_1, n_2) - 1 = \min(7, 5) - 1 = 4$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.98$

$$t^* = 3.75$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(0.218)^2}{7} + \frac{(0.167)^2}{5}} = 0.111$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (0.014, 0.846)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(1.43 - 1) - 0}{0.111} = 3.87$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 3.87$$

We use the table to determine bounds on *p*-value. Remember, df = 4 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.01 < p$$
-value < 0.02

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| > t^{\star}$$

$$p$$
-value $< \alpha$

Thus, we reject the null hypothesis. Also notice the confidence interval does not contain 0.

- (a) 4
- (b) 3.75
- (c) 0.111
- (d) 0.014
- (e) 0.846
- (f) 3.867
- (g) 0.01
- (h) 0.02
- (i) yes