MATH7049 – PRESENTATION

JOEL THOMAS 44793203

- Introduction to the fully implicit finite different scheme
- Consistency
- Stability
- Application option on underlying with continuous dividends

- Introduction to the fully implicit finite different scheme
- Consistency
- Stability
- Application option on underlying with continuous dividends

Introduction

Given a general untransformed BS PDE:

$$\frac{\partial C}{\partial \tau} + f(S, \tau) \frac{\partial^2 C}{\partial S^2} + g(S, \tau) \frac{\partial C}{\partial S} + h(S, \tau)C = 0$$

The implicit FD scheme is given by discretising the above PDE at (S_i, τ_n) as follows:

$$\frac{C_{n+1}^{j} - C_{n}^{j}}{\Delta \tau} + f_{n+1}^{j} \frac{C_{n+1}^{j+1} - 2C_{n+1}^{j} + C_{n+1}^{j-1}}{(\Delta S)^{2}} + g_{n+1}^{j} \frac{C_{n+1}^{j+1} - C_{n+1}^{j-1}}{2\Delta S} + h_{n+1}^{j} C_{n+1}^{j} = 0$$

where

$$f_n^j = f(S_j, \tau_n), \qquad g_n^j = g(S_j, \tau_n), \qquad h_n^j = h(S_j, \tau_n)$$

Notes

Compared to the fully explicit FD scheme:

$$\frac{C_{n+1}^{j} - C_{n}^{j}}{\Delta \tau} + f_{n}^{j} \frac{C_{n}^{j+1} - 2C_{n}^{j} + C_{n}^{j-1}}{(\Delta S)^{2}} + g_{n}^{j} \frac{C_{n}^{j+1} - C_{n}^{j-1}}{2\Delta S} + h_{n}^{j} C_{n}^{j} = 0$$

- Since using τ instead of usual t, solve the computational grid from left to right (as opposed to right to left).
- Now $C_n o$ want C_{n+1} , harder than explicit FD scheme because requires solving a linear system of 2J-1 equations in 2J-1 unknowns.

Application – option on underlying with continuous dividends

Consistency

- ▶ Mathematically prove implicit scheme has accuracy $O(\Delta \tau) + O(\Delta S)^2$ using Taylor analysis
- Local truncation error:

$$= \frac{C(S,\tau)}{\Delta\tau} + f(S,\tau + \Delta\tau) - C(S,\tau) + f(S,\tau + \Delta\tau) \frac{C(S + \Delta S,\tau + \Delta\tau) - 2C(S,\tau + \Delta\tau) + C(S - \Delta S,\tau + \Delta\tau)}{(\Delta S)^2} + g(S,\tau + \Delta\tau) \frac{C(S + \Delta S,\tau + \Delta\tau) - C(S - \Delta S,\tau + \Delta\tau)}{2\Delta S} + h(S,\tau + \Delta\tau)C(S,\tau + \Delta\tau)$$

► Taylor expansion of PDE solution C about $(S, \tau + \Delta \tau)$:

$$C(S, \tau + \Delta \tau) = C$$

$$C(S, \tau + \Delta \tau - \Delta \tau) = C(S, \tau) = C - (\Delta \tau)C_{\tau} + (\Delta \tau)^{2}C_{\tau\tau} + O(\Delta \tau)^{3}$$

$$C(S \pm \Delta S, \tau + \Delta \tau) = C \pm (\Delta S)C_S + (\Delta S)^2C_{SS} \pm (\Delta S)^3C_{SSS} + (\Delta S)^4C_{SSSS} \pm (\Delta S)^5C_{SSSSS} + O(\Delta S)^6$$

- ▶ Hey, wait a minute! This is starting to get really ugly, why's that?
 - Because we're using the untransformed BS PDE to prove these properties.
 - ▶ Using the model problem (heat/diffusion PDE) makes things much cleaner.
- Let's split each of the expressions in $L(S,\tau)$ on the previous slide into 4 terms
- (2) $f(S, \tau + \Delta \tau) \frac{C(S + \Delta S, \tau + \Delta \tau) 2C(S, \tau + \Delta \tau) + C(S \Delta S, \tau + \Delta \tau)}{(\Delta S)^2}$
- (3) $g(S, \tau + \Delta \tau) \frac{C(S + \Delta S, \tau + \Delta \tau) C(S \Delta S, \tau + \Delta \tau)}{2\Delta S}$
- $(4) h(S, \tau + \Delta \tau) C(S, \tau + \Delta \tau)$

▶ Dealing with (1) $\frac{C(S,\tau+\Delta\tau)-C(S,\tau)}{\Delta\tau}$:

$$= \frac{C - C + (\Delta \tau)C_{\tau} - (\Delta \tau)^{2}C_{\tau\tau} + O(\Delta \tau)^{3}}{\Delta \tau}$$
$$= C_{\tau} - (\Delta \tau)C_{\tau\tau} + O(\Delta \tau)^{2}$$

Dealing with (2) $f(S, \tau + \Delta \tau) \frac{C(S + \Delta S, \tau + \Delta \tau) - 2C(S, \tau + \Delta \tau) + C(S - \Delta S, \tau + \Delta \tau)}{(\Delta S)^2}$:

$$=f(S,\tau+\Delta\tau)\frac{C+(\Delta S)C_S+(\Delta S)^2C_{SS}+(\Delta S)^3C_{SSS}+(\Delta S)^4C_{SSSS}+(\Delta S)^5C_{SSSSS}+O(\Delta S)^6-2C+C-(\Delta S)C_S+(\Delta S)^2C_{SS}-(\Delta S)^3C_{SSS}+(\Delta S)^4C_{SSSS}-(\Delta S)^5C_{SSSSS}+O(\Delta S)^6}{(\Delta S)^2}$$

$$= f(S, \tau + \Delta \tau) \frac{(\Delta S)^{2} C_{SS} + \frac{(\Delta S)^{4}}{12} C_{SSSS} + O(\Delta S)^{6}}{(\Delta S)^{2}}$$
$$= f(S, \tau + \Delta \tau) \left(C_{SS} + \frac{(\Delta S)^{2}}{12} C_{SSSS} + O(\Delta S)^{4} \right)$$

▶ Dealing with (3) $g(S, \tau + \Delta \tau) \frac{C(S + \Delta S, \tau + \Delta \tau) - C(S - \Delta S, \tau + \Delta \tau)}{2\Delta S}$:

$$= g(S, \tau + \Delta \tau) \frac{C + (\Delta S)C_S + (\Delta S)^2C_{SS} + (\Delta S)^3C_{SSS} + (\Delta S)^4C_{SSSS} + (\Delta S)^5C_{SSSSS} + O(\Delta S)^6 - C + (\Delta S)C_S - (\Delta S)^2C_{SS} + (\Delta S)^3C_{SSS} - (\Delta S)^4C_{SSSS} + O(\Delta S)^6}{2(\Delta S)}$$

$$= 2g(S, \tau + \Delta \tau) \frac{(\Delta S)C_S + \frac{(\Delta S)^3}{6}C_{SSS} + \frac{(\Delta S)^5}{120}C_{SSSSS} + O(\Delta S)^6}{2(\Delta S)}$$

$$= 2g(S, \tau + \Delta \tau) \left(C_S + \frac{(\Delta S)^2}{6}C_{SSS} + \frac{(\Delta S)^4}{120}C_{SSSS} + O(\Delta S)^5\right)$$

Dealing with (4) $h(S, \tau + \Delta \tau)C(S, \tau + \Delta \tau)$: = $h(S, \tau + \Delta \tau)C$

Combining expressions:

$$L(S, \tau) = (1) + (2) + (3) + (4)$$

$$L(S,\tau) = C_{\tau} - (\Delta\tau)C_{\tau\tau} + O(\Delta\tau)^{2} + f(S,\tau + \Delta\tau)\left(C_{SS} + \frac{(\Delta S)^{2}}{12}C_{SSSS} + O(\Delta S)^{4}\right) + g(S,\tau + \Delta\tau)\left(C_{S} + \frac{(\Delta S)^{2}}{6}C_{SSS} + \frac{(\Delta S)^{4}}{120}C_{SSSSS} + O(\Delta S)^{5}\right) + h(S,\tau + \Delta\tau)C_{TS}$$

$$L(S,\tau) = C_{\tau} + f(S,\tau + \Delta\tau)C_{SS} + g(S,\tau)C_{S} + h(S,\tau)C - (\Delta\tau)C_{\tau\tau} + (\Delta S)^{2} \left[\frac{g(S,\tau + \Delta\tau)}{6}C_{SSS} + \frac{f(S,\tau + \Delta\tau)}{12}C_{SSSS} \right] + \frac{(\Delta S)^{4}g(S,\tau + \Delta\tau)}{120}C_{SSSS} + O(\Delta\tau)^{2} + O(\Delta S)^{4}$$

$$L(S,\tau) = -(\Delta\tau)C_{\tau\tau} + (\Delta S)^{2} \left[\frac{g(S,\tau + \Delta\tau)}{6} C_{SSS} + \frac{f(S,\tau + \Delta\tau)}{12} C_{SSSS} \right] + \frac{(\Delta S)^{4} g(S,\tau + \Delta\tau)}{120} C_{SSSS} + O(\Delta\tau)^{2} + O(\Delta S)^{4}$$

$$\therefore L(S,\tau) = O(\Delta\tau) + O(\Delta S)^2 \text{ as } \Delta\tau, \Delta S \to 0$$

- \blacktriangleright So the implicit FD scheme is accurate to first order in $\Delta \tau$ and second order in ΔS .
- The rate of convergence is given by $O(\Delta \tau) + O(\Delta S)^2$ (provided stability holds).

- ▶ Introduction to the fully implicit finite different scheme
- Consistency
- Stability
- Application option on underlying with continuous dividends

Stability

From the lecture slides, know that the implicit FD scheme is unconditionally stable but only when applied to the standard untransformed BS PDE where:

$$f(S,\tau) = -\frac{1}{2}\sigma^2 S^2$$
, $g(S,\tau) = -rS$, $h(S,\tau) = r$

- When we have different choices of $f(S,\tau),g(S,\tau)$ and $h(S,\tau)$, then the implicit FD scheme may become unstable.
 - ▶ This means a modified variant of the BS PDE (which may not have a closed form solution).
 - ▶ Too difficult to prove for the general case.

Stability via Fourier analysis

We look for solutions to the FD scheme of the form:

$$C_n^j = \lambda_k^n e^{\frac{i\pi kj}{J}}, k = -J, ..., J$$

Substituting this into the discretised untransformed BS PDE:

$$\frac{\lambda_{k}^{n+1}e^{\frac{i\pi kj}{J}} - \lambda_{k}^{n}e^{\frac{i\pi kj}{J}}}{\Delta \tau} + f_{n+1}^{j} \frac{\lambda_{k}^{n+1}e^{\frac{i\pi k(j+1)}{J}} - 2\lambda_{k}^{n+1}e^{\frac{i\pi kj}{J}} + \lambda_{k}^{n+1}e^{\frac{i\pi k(j-1)}{J}}}{(\Delta S)^{2}} + g_{n+1}^{j} \frac{\lambda_{k}^{n+1}e^{\frac{i\pi k(j+1)}{J}} - \lambda_{k}^{n+1}e^{\frac{i\pi k(j-1)}{J}}}{2\Delta S} + h_{n+1}^{j}\lambda_{k}^{n+1}e^{\frac{i\pi kj}{J}} = 0$$

Factor out $\lambda_k^n e^{rac{i\pi kj}{J}}$:

$$\lambda_{k}^{n} e^{\frac{i\pi k j}{J}} \left[\frac{\lambda_{k} - 1}{\Delta \tau} + f_{n+1}^{j} \lambda_{k} \frac{e^{\frac{i\pi k}{J}} - 2 + e^{-\frac{i\pi k}{J}}}{(\Delta S)^{2}} + g_{n+1}^{j} \lambda_{k} \frac{e^{\frac{i\pi k}{J}} - e^{-\frac{i\pi k}{J}}}{2\Delta S} + h_{n+1}^{j} \lambda_{k} \right] = 0$$

Since exp() is always > 0:

$$\frac{\lambda_{k} - 1}{\Delta \tau} + f_{n+1}^{j} \lambda_{k} \frac{e^{\frac{i\pi k}{J}} - 2 + e^{-\frac{i\pi k}{J}}}{(\Delta S)^{2}} + g_{n+1}^{j} \lambda_{k} \frac{e^{\frac{i\pi k}{J}} - e^{-\frac{i\pi k}{J}}}{2\Delta S} + h_{n+1}^{j} \lambda_{k} = 0$$

$$\frac{\lambda_{k}}{\Delta \tau} + f_{n+1}^{j} \lambda_{k} \frac{e^{\frac{i\pi k}{J}} - 2 + e^{-\frac{i\pi k}{J}}}{(\Delta S)^{2}} + g_{n+1}^{j} \lambda_{k} \frac{e^{\frac{i\pi k}{J}} - e^{-\frac{i\pi k}{J}}}{2\Delta S} + h_{n+1}^{j} \lambda_{k} = \frac{1}{\Delta \tau}$$

Factoring out λ_k :

$$\lambda_{k} \left[\frac{1}{\Delta \tau} + f_{n+1}^{j} \frac{e^{\frac{i\pi k}{J}} - 2 + e^{-\frac{i\pi k}{J}}}{(\Delta S)^{2}} + g_{n+1}^{j} \frac{e^{\frac{i\pi k}{J}} - e^{-\frac{i\pi k}{J}}}{2\Delta S} + h_{n+1}^{j} \right] = \frac{1}{\Delta \tau}$$

Use Euler's formula for $\cos(\theta) = \frac{1}{2} (e^{i\theta} + e^{-i\theta}), \sin(\theta) = \frac{1}{2i} (e^{i\theta} - e^{-i\theta}), \theta = \frac{\pi k}{J}$.

$$\lambda_k \left[\frac{1}{\Delta \tau} + f_{n+1}^j \frac{2\cos\left(\frac{\pi k}{J}\right) - 2}{(\Delta S)^2} + ig_{n+1}^j \frac{\sin\left(\frac{\pi k}{J}\right)}{\Delta S} + h_{n+1}^j \right] = \frac{1}{\Delta \tau}$$

▶ Use Double Angle formula for $\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$, $2\theta = \frac{\pi k}{J} \to \theta = \frac{\pi k}{2J}$.

$$\lambda_{k} \left[\frac{1}{\Delta \tau} - 4f_{n+1}^{j} \frac{\sin^{2} \left(\frac{\pi k}{2J} \right)}{(\Delta S)^{2}} + ig_{n+1}^{j} \frac{\sin \left(\frac{\pi k}{J} \right)}{\Delta S} + h_{n+1}^{j} \right] = \frac{1}{\Delta \tau}$$

$$\lambda_{k} = \frac{1}{1 - 4\frac{\Delta\tau}{(\Delta S)^{2}} f_{n+1}^{j} \sin^{2}\left(\frac{\pi k}{2J}\right) + i\frac{\Delta\tau}{\Delta S} g_{n+1}^{j} \sin\left(\frac{\pi k}{J}\right) + \Delta\tau h_{n+1}^{j}}$$

Converting from $\frac{1}{a+bi}$ to the form $\frac{a}{a^2+b^2} + \frac{b}{a^2+b^2}i$ by multiplying and dividing with its complex conjugate:

$$\lambda_{k} = \frac{1 - 4\frac{\Delta\tau}{(\Delta S)^{2}}f_{n+1}^{j}\sin^{2}\left(\frac{\pi k}{2J}\right) + \Delta\tau h_{n+1}^{j}}{\left(1 - 4\frac{\Delta\tau}{(\Delta S)^{2}}f_{n+1}^{j}\sin^{2}\left(\frac{\pi k}{2J}\right) + \Delta\tau h_{n+1}^{j}\right)^{2} + \left(\frac{\Delta\tau}{\Delta S}g_{n+1}^{j}\sin\left(\frac{\pi k}{J}\right)\right)^{2}} + \frac{\frac{\Delta\tau}{\Delta S}g_{n+1}^{j}\sin\left(\frac{\pi k}{J}\right)}{\left(1 - 4\frac{\Delta\tau}{(\Delta S)^{2}}f_{n+1}^{j}\sin^{2}\left(\frac{\pi k}{2J}\right) + \Delta\tau h_{n+1}^{j}\right)^{2} + \left(\frac{\Delta\tau}{\Delta S}g_{n+1}^{j}\sin\left(\frac{\pi k}{J}\right)\right)^{2}}i$$

- Require $|\lambda_k| \le 1$ for stability to hold and results to not blow up: $|\lambda_k| \le 1 + 0i$
- Because λ_k is complex, we need to compare real part: $|Re\{\lambda_k\}| \le 1$

"Your homework isn't that complex"
Homework:

- Looks like this is getting really complicated!
- ▶ Too difficult to find expressions for arbitrary choices of $f(S,\tau)$, $g(S,\tau)$ and $h(S,\tau)$.
- Instead prove the implicit FD scheme is unconditionally stable for the standard untransformed BS PDE:

$$f(S,\tau) = -\frac{1}{2}\sigma^2 S^2$$
, $g(S,\tau) = -rS$, $h(S,\tau) = r$

Proving relevant bounds on different terms:

$$1 - 4 \frac{\Delta \tau}{(\Delta S)^{2}} f_{n+1}^{j} \sin^{2} \left(\frac{\pi k}{2J} \right) + \Delta \tau h_{n+1}^{j} = 1 + 4\alpha S_{j}^{2} \sin^{2} \left(\frac{\pi k}{2J} \right) + \Delta \tau r, \qquad \alpha = \frac{1}{2} \sigma^{2} \frac{\Delta \tau}{(\Delta S)^{2}}$$

$$1 - 4 \frac{\Delta \tau}{(\Delta S)^{2}} f_{n+1}^{j} \sin^{2} \left(\frac{\pi k}{2J} \right) + \Delta \tau h_{n+1}^{j} \ge 1$$

$$\therefore \left(1 - 4 \frac{\Delta \tau}{(\Delta S)^{2}} f_{n+1}^{j} \sin^{2} \left(\frac{\pi k}{2J} \right) + \Delta \tau h_{n+1}^{j} \right)^{2} \ge 1 - 4 \frac{\Delta \tau}{(\Delta S)^{2}} f_{n+1}^{j} \sin^{2} \left(\frac{\pi k}{2J} \right) + \Delta \tau h_{n+1}^{j} \ge 1$$

$$\frac{\Delta \tau}{\Delta S} g_{n+1}^{j} \sin\left(\frac{\pi k}{J}\right) = -r \frac{\Delta \tau}{\Delta S} S_{j} \sin\left(\frac{\pi k}{J}\right)$$
$$\therefore \left(\frac{\Delta \tau}{\Delta S} g_{n+1}^{j} \sin\left(\frac{\pi k}{J}\right)\right)^{2} \ge 0$$

$$|Re\{\lambda_k\}| = \left| \frac{1 + 4\alpha S^2 \sin^2\left(\frac{\pi k}{2J}\right) + \Delta \tau r}{\left(1 + 4\alpha S^2 \sin^2\left(\frac{\pi k}{2J}\right) + \Delta \tau r\right)^2 + \left(-r\frac{\Delta \tau}{\Delta S}S\sin\left(\frac{\pi k}{J}\right)\right)^2} \right| \le 1$$

- So we have proved that $|\lambda_k| \leq 1$ as required.
- So for the standard untransformed BS PDE, having consistency and unconditional stability for the implicit FD scheme implies the scheme is indeed convergent as required.

- ▶ Introduction to the fully implicit finite different scheme
- Consistency
- Stability
- Application option on underlying with continuous dividends

Application – continuous dividends

- Wanted to originally test the scheme on an option on futures but issues with code.
- Instead chose option on underlying with continuous dividends
 - Closed form solution exists.
 - ▶ Simple modification of standard BS equation/PDE solution.
 - ▶ All relevant formulae for this section obtained from Cvitanic & Zapatero (2004), see references.

Application continued

Skipping intermediate steps to arrive at the modified pricing PDE:

$$\frac{\partial C}{\partial \tau} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} + (r - q)S \frac{\partial C}{\partial S} - rC = 0$$

$$f(S, \tau) = -\frac{1}{2}\sigma^2 S^2, \qquad g(S, \tau) = -(r - q)S, \qquad h(S, \tau) = r$$

- ▶ Only difference is in $g(S,\tau) = -(r-q)S$ where q = the continuous dividend yield.
- Consistency and rate of convergence is still $O(\Delta \tau) + O(\Delta S)^2$ because not dependent on choices of $f(S,\tau), g(S,\tau)$ and $h(S,\tau)$.

Application continued

Unconditionally stable because:

$$\frac{\Delta \tau}{\Delta S} g_{n+1}^{j} \sin\left(\frac{\pi k}{J}\right) = -(r - q) \frac{\Delta \tau}{\Delta S} S \sin\left(\frac{\pi k}{J}\right)$$
$$\therefore \left(\frac{\Delta \tau}{\Delta S} g_{n+1}^{j} \sin\left(\frac{\pi k}{J}\right)\right)^{2} \ge 0$$

- From slide 19, $|Re\{\lambda_k\}| \le 1$ and so we have $|\lambda_k| \le 1$ as required.
- Consistency + Stability → Convergence!

Application continued

Closed form solution for European call option (to compare against numerical solution):

$$C(S,\tau) = Se^{-q\tau}N(d_1) - Ke^{-r\tau}N(d_2)$$

$$d_{1,2} = d_{+,-} = \frac{\log\left(\frac{Se^{(r-q)\tau}}{K}\right)}{\sigma\sqrt{\tau}} \pm \frac{\sigma\sqrt{\tau}}{2}$$

Run final demonstration in MATLAB.

References

Jaksa Cvitanic & Fernando Zapatero, 2004, Introduction to the Economics and Mathematics of Financial Markets, viewed 28/10/2020.