# How about doing an ER design interactively? Suggest an application to be modeled.

#### Making E/R Models

- To make an E/R model you need to identify
  - Enitities
  - Attributes
  - Relationships
  - Cardinality ratios
- from a description

- General guidelines
  - Since entities are things or objects they are often nouns in the description
  - Attributes are facts or properties, and so are often nouns also
  - Verbs often describe relationships between entities

#### Example

A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

#### Example - Entities

A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

#### Example - Relationships

A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enrol in a particular course and take modules towards the completion of that course. Each module is taught by a lecturer from the appropriate department, and each lecturer tutors a group of students

Entities: Department, Course, Module, Lecturer, Student

Department

Course

Module

Lecturer

Student

Each department offers several courses



Lecturer

Student

BANERJEE; Dept of CSE; partha.banerjee@juet.ac.in

A number of modules make up each courses



Lecturer

Student

BANERJEE; Dept of CSE; partha.banerjee@juet.ac.in

#### Students enrol in a particular course



Lecturer

Students ... take modules



Lecturer

Each module is taught by a lecturer



BANERJEE; Dept of CSE; partha.banerjee@juet.ac.in

a lecturer from the appropriate department



each lecturer tutors a group of students



BANERJEE; Dept of CSE; partha.banerjee@juet.ac.in



#### **Entities and Attributes**

- Sometimes it is hard to tell if something should be an entity or an attribute
  - They both represent objects or facts about the world
  - They are both often represented by nouns in descriptions

- General guidelines
  - Entities can have attributes
     but attributes have no smaller
     parts
  - Entities can have relationships between them, but an attribute belongs to a single entity

#### Example

We want to represent information about products in a database. Each product has a description, a price and a supplier. Suppliers have addresses, phone numbers, and names. Each address is made up of a street address, a city, and a postcode.

#### Example - Entities/Attributes

- Entities or attributes:
  - product
  - description
  - price
  - supplier
  - address
  - phone number
  - name
  - street address
  - city
  - postcode

- Products, suppliers, and addresses all have smaller parts so we can make them entities
- The others have no smaller parts and belong to a single entity



#### Example - Relationships

- Each product has a supplier
  - Each product has a single supplier but there is nothing to stop a supplier supplying many products
  - A many to one relationship

- Each supplier has an address
  - A supplier has a single address
  - It does not seem sensible for two different suppliers to have the same address
  - A one to one relationship



#### Design Techniques: Some Tips

- 1. Avoid redundancy.
- 2. Limit the use of weak entity sets.
- 3. Don't use an entity set when an attribute will do.

#### **Avoiding Redundancy**

- Redundancy = saying the same thing in two (or more) different ways.
- Wastes space and (more importantly) encourages inconsistency.
  - Two representations of the same fact become inconsistent if we change one and forget to change the other.
  - Recall anomalies due to FD's.

#### **Example:** Good



This design gives the address of each manufacturer exactly once.

#### **Example:** Bad



This design states the manufacturer of a beer twice: as an attribute and as a related entity.

#### **Example:** Bad



This design repeats the manufacturer's address once for each beer and loses the address if there are temporarily no beers for a manufacturer.

#### Keys

- A *super key* of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
  - Customer-id is candidate key of customer
  - account-number is candidate key of account
- Although several candidate keys may exist, one of the candidate keys is selected to be the *primary key*.

#### Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
  - (customer-id, account-number) is the super key of depositor
  - NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.
    - E.g. if we wish to track all access-dates to each account by each customer, we cannot assume a relationship for each access. We can use a multivalued attribute though
- Must consider the mapping cardinality of the relationship set when deciding the what are the candidate keys
- Need to consider semantics of relationship set in selecting the primary key in case of more than one candidate key

#### E-R Diagram with a Ternary Relationship



# Cardinality Constraints on Ternary

Relationship

- We allow at most one arrow out of a ternary (or greater degree) relationship to indicate a cardinality constraint
- E.g. an arrow from works-on to job indicates each employee works on at most one job at any branch.
- If there is more than one arrow, there are two ways of defining the meaning.
  - E.g a ternary relationship R between A, B and C with arrows to B and C could mean
  - 1. each A entity is associated with a unique entity from B and C or
  - 2. each pair of entities from (A, B) is associated with a unique C entity,
     and each pair (A, C) is associated with a unique B
  - Each alternative has been used in different formalisms
  - To avoid confusion we outlaw more than one arrow

#### Binary Vs. Non-Binary Relationships

- Some relationships that appear to be nonbinary may be better represented using binary relationships
  - E.g. A ternary relationship parents, relating a child to his/her father and mother, is best replaced by two binary relationships, father and mother
    - Using two binary relationships allows partial information (e.g. only mother being know)
  - But there are some relationships that are naturally non-binary
    - E.g. works-on

#### Converting Non-Binary Relationships to Binary Form

- In general, any non-binary relationship can be represented using binary relationships by creating an artificial entity set.
  - Replace R between entity sets A, B and C by an entity set E, and three relationship sets:
    - 1.  $R_{\Delta}$ , relating E and A

 $2.R_B$ , relating E and B

- 3. R<sub>C</sub>, relating E and C
- Create a special identifying attribute for E
- Add any attributes of R to E
- For each relationship  $(a_i, b_i, c_i)$  in R, create
  - 1. a new entity  $e_i$  in the entity set E 2. add  $(e_i, a_i)$  to  $R_{\Delta}$

3. add  $(e_i, b_i)$  to  $R_R$ 

4. add  $(e_i, c_i)$  to  $R_c$ 



BANERJEE; Dept of CSE; partha.banerjee@juet.ac.in

# Converting Non-Binary Relationships (Cont.)

- Also need to translate constraints
  - Translating all constraints may not be possible
  - There may be instances in the translated schema that cannot correspond to any instance of R
    - Exercise: add constraints to the relationships  $R_A$ ,  $R_B$  and  $R_C$  to ensure that a newly created entity corresponds to exactly one entity in each of entity sets A, B and C
  - We can avoid creating an identifying attribute by making E a weak entity set (described shortly) identified by the three relationship sets

#### Design Issues

- Use of entity sets vs. attributes
   Choice mainly depends on the structure of the
   enterprise being modeled, and on the semantics
   associated with the attribute in question.
- Use of entity sets vs. relationship sets
   Possible guideline is to designate a relationship set to describe an action that occurs between entities
- Binary versus n-ary relationship sets
   Although it is possible to replace any nonbinary (n-ary, for n > 2) relationship set by a number of distinct binary relationship sets, a n-ary relationship set shows more clearly that several entities participate in a single relationship.
- Placement of relationship attributes