Emerging Properties in Self-Supervised Vision Transformers

School of Industrial and Management Engineering, Korea University

Jong Kook, Heo

Contents

Background

* Research Purpose

Overview

* Experimental Results

Conclusion

Background

Self-Supervsied Learning

- What is Self-Supervised Learning?
 - Pre-training method which exploits abundant unlabeled data with pseudo-labels defined by users, to learn good representations
 - ✓ Pretext task: 문제를 직접 정의하는 방식 ex) Rotation, Jigsaw Puzzle
 - ✓ Contrastive Learning: Noise Contrastive Estimation 방식 ex) MoCo, SimCLR, PIRL
 - ✓ Non-Constrastive Learning: Negative Sample 없이 학습하는 방식 ex) BYOL

Jigsaw MoCo BYOL

Background

Knowledge Distillation

- What is Knowledge Distillation??
 - Propagating the knowledge of "teacher model" to lightweight "student model" with reducing performance degradation
 - ✓ Hard Distillation: Teacher Model 의 예측 값을 따르도록 학습
 - ✓ Soft Distillation: Teacher Model 의 예측 분포에 유사하도록 학습

Research Purpose

- DINO : Distillation with no-labels
 - VIT 아키텍처에 Self-supervised Learning 을 접목
 - 2021 CVPR 에서 발표, 2021.07.07 기준 인용횟수 18회

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron^{1,2} Hugo Touvron^{1,3} Ishan Misra¹ Hervé Jegou¹ Julien Mairal² Piotr Bojanowski¹ Armand Joulin¹

¹ Facebook AI Research ² Inria* ³ Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8 × 8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

Research Purpose

DINO(Self-Distillation with No-Labels)

Motivation

- ViT 는 기존 CNN 모델에 비해 명확한 이점을 가지지 못하였음(연산량과 데이터도 더 많이 요구되었음)
- 저자는 Transformer 가 NLP 에서 큰 성공을 거둔 주된 요소는 self-supervised pretraining 이라고 주장함
 - ✓ BERT : Masked Language Model, Next Sentence Prediction
 - ✓ GPT : Autoregressive Language Modeling
- Teacher Network 의 output 을 직접 예측하는 self-supervised Learning 방법론 제시
 - ✓ 저자는 이를 Pretrained teacher model 과 labeled data 가 필요하지 않는 knowledge distillation, 즉 DINO(Self-Distillation with No labels) 라고 명명
 - ✓ 기존의 momentum encoder(mean teacher) 방식을 쓰며 negative sample 이 필요하지 않아서 BYOL 과 매우 유사

DINO 는 BYOL과 거의 유사하나 augmentation, loss function, collapse avoiding strategy 에서 차이를 보인다.

Interesting properties of DINO

- Self-supervised ViT features are...
 - 객체의 경계나 배경을 잘 탐지한다
 - ✓ [CLS] 토큰에 대한 last layer self-attention map 이 segmentation mask 와 매우 유사.
 - ✓ 각 self-attention head 가 서로 다른 물체나 경계를 집중적으로 잘 포착함

Fig 1: DINO 를 통해 레이블없이 모델이 자동적으로 class-specific feature 를 학습할 수 있으며, 이를 통해 unsupervised object segmentation 이 가능하다고 주장.

Fig 3: attention head 마다 다른 색깔로 [CLS] Token 에 대한 score map 계산. 이를 통해 각 head 가 서로 다른 물체나 파츠를 보고 있는 것을 알 수 있음

Interesting properties of DINO

- Self-supervised ViT features are...
 - Fine-tuning 이나 hyper-parameter tuning 없이 k NN Classifier 로도 높은 성능을 보여줌
 - ✓ Multi-crop augmention 과 momentum encoder 가 있어야 k NN 성능에 크게 기여
 - ✓ 패치 사이즈가 작아질수록 throughtput 은 작아지지만 더 좋은 질의 feature 를 추출함
 - ✓ 기존 Convnet 에서도 해당 방법론을 사용할 수는 있지만 VT 계열과 궁합이 더 잘 맞음

Method	Mom.	SK	MC	Loss	Pred.	k-NN	Lin.
1 DINO	✓	X	✓	CE	X	72.8	76.1
2	×	X	\checkmark	CE	X	0.1	0.1
3	\checkmark	✓	\checkmark	CE	X	72.2	76.0
4	\checkmark	X	X	CE	×	67.9	72.5
5	\checkmark	X	✓	MSE	×	52.6	62.4
6	\checkmark	X	\checkmark	CE	✓	71.8	75.6
7 BYOL	✓	X	Х	MSE	✓	66.6	71.4
8 MoCov2	\checkmark	X	X	INCE	×	62.0	71.6
9 SwAV	X	✓	✓	CE	X	64.7	71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE

Table 7. Momentum encoder, Loss, Predictor, Multi-Crop 등 방법론에 대한 ablation study

Fig 5. patch size 가 작아지면 throughput 은 작아지지만 성능은 좋아짐

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [14]	RN50	23	1237	71.1	61.9
InfoMin [64]	RN50	23	1237	73.0	65.3
BarlowT [78]	RN50	23	1237	73.2	66.0
OBoW [25]	RN50	23	1237	73.8	61.9
BYOL [28]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	DeiT-S	21	1007	79.8	79.8
BYOL* [28]	DeiT-S	21	1007	71.4	66.6
MoCov2* [14]	DeiT-S	21	1007	72.7	64.4
SwAV* [10]	DeiT-S	21	1007	73.5	66.3
DINO	DeiT-S	21	1007	77.0	74.5
Comparison act	ross architectures				
SCLR [12]	RN50w4	375	117	76.8	69.3
SwAV [10]	RN50w2	93	384	77.3	67.3
BYOL [28]	RN50w2	93	384	77.4	_
DINO	ViT-B/16	85	312	78.2	76.1
SwAV [10]	RN50w5	586	76	78.5	67.1
BYOL [28]	RN50w4	375	117	78.6	_
BYOL [28]	RN200w2	250	123	79.6	73.9
DINO	DeiT-S/8	21	180	79.7	78.3
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1
DINO	ViT-B/8	85	63	80.1	77.4

Table 2. backbone 에 상관없이 DINO 가 SSL 방법론보다 우수함을 보여줌. Backbone 은 ConvNet 보다 ViT 계열이 더 궁합이 좋음

Process

- Augmentation & Forward
 - SWaV(Caron et al, 2020) 의 Multi-crop 에서 차용
 - 원본 이미지에서 2개의 Global View(원본 크기의 50% ↑), n 개의 Local View(원본 크기의 50% 미만↓) 생성
 - 각 view 는 독립적으로 crop 후 augmentation 진행(ex: Global view: 224 x 224, Local view: 96 x 96)
 - ✓ Teacher network 는 2개의 Global View 를 입력으로 받음
 - ✓ Student network 는 2개의 Global View 와 n 개의 Local View 모두 입력으로 받음
 - ✓ 각 네트워크는 이후 3 층의 layer 로 구성된 MLP 와 Layer norm 을 거쳐 K dimensional vector 를 뱉음

- p₂ log p₁

centering

teacher got

softmax

student gas

Process

- Softmax with Centering
 - Teacher Representation $g_{\theta_t}(x)$: Softmax + sharpening+ centering
 - Student Representation $g_{\theta_{\mathcal{S}}}(x)$: Softmax + sharpening
 - Centering 과 sharpening 이 model Collapse 를 방지할 수 있다고 주장

$$P_t(x)^i = Softmax \left(\frac{g_{\theta_t}(x) - C}{\tau_t} \right)_i \qquad P_s(x)^i = Softmax \left(\frac{g_{\theta_s}(x)}{\tau_s} \right)$$

 $-p_2 \log p_1$

centering

teacher got

softmax

student $g_{\theta s}$

Softmax over k dimension per each view

 τ_t : teacher model temperature τ_s : student model temperature *C* : centering factor

Process

- Calcualte Loss and Gradient
 - Cross Entropy Loss 를 계산(Target 값에 대해서는 stop gradient!!)
 - 같은 view 에 대해서는 loss 를 계산하지 않음

$$\min_{\theta_s} \sum_{\substack{x \in \{x_1^g, x_2^g\} \\ x' \neq x}} \sum_{\substack{\text{call views} \\ x' \neq x}} -P_t(x) log P_s(x')$$

Don't Calculate on same view pairs!!

Process

Update

- Student Model: Teacher Model Representation 과의 KL Divergence 로 업데이트
- Teacher Model: student 모델의 가중치를 통해 모멘텀 업데이트(exponential moving avg like BYOL)
- Centering Factor: teacher output 의 batch center 를 통해 업데이트(exponential moving avg)

Student Model

$$\min_{\theta_{S}} \sum_{x \in \{x_{1}^{g}, x_{2}^{g}\}} \sum_{\substack{x' \in \text{all views} \\ x' \neq x}} -P_{t}(x) \log P_{S}(x')$$

Teacher Model

$$\theta_t \leftarrow \lambda \theta_t + (1 - \lambda)\theta_s,$$

$$\lambda = 0.996 \rightarrow 1(cosine\ schedule)$$

Centering factor

$$c \leftarrow mc + (1 - m)c \frac{1}{B} \sum_{i=1}^{B} g_{\theta_t}(x_i)$$

 au_t : teacher model temperature au_s : student model temperature au_s : centering factor au_s : rate parameter

 $-p_2 \log p_1$

centering

teacher $g_{\theta t}$

softmax

student gos

 \mathbf{x}_1

Details: Centering and Sharpening

- ❖ How to avoid Collapse in DINO
 - 기존의 SSL 방법론들 Contrastive Loss, Clustering Constraints, Predictor, BatchNorm 등을 통해 Collapse 를 방지
 - DINO 에서는 momentum teacher output 에 **Centering 과 Sharpening**만 적용해도 Collapse 를 방지할 수 있다고 주장!!
 - ✓ Centering: K 차원 중 특정 차원이 dominate 하는 것을 방지하지만, uniform distribution 으로 collapse 시킬 수 있음
 - ✓ Centering 은 teacher output 에 bias term 을 붙이는 것으로 해석 될 수 있음
 - ✓ 이 bias term 은 teacher output 의 1st order batch statistic 에 영향을 받음
 - \checkmark Sharpening(Temperature scaling **where 0** < au < **1)**: Centering 과 반대의 효과

$$P_t(x)^i = Softmax \left(\frac{g_{\theta_t}(x) - C}{\tau_t} \right)_i$$

Teacher output with centering and sharpening

$$c \leftarrow mc + (1 - m)c \frac{1}{B} \sum_{i=1}^{B} g_{\theta_t}(x_i)$$

C 는 teacher output 의 batch mean 으로 모멘텀 업데이트

Details: Centering and Sharpening

- How to avoid Collapse in DINO
 - 만약 Centering 이나 Sharpening 둘 중 하나가 없다면 오른 쪽 그림과 같이 teacher 와 student 사이의 KL divergence 가 0으로 수렴(Collapse)
 - 왼쪽 그림은 Centering 이 없을 때 teacher model entropy 가 0으로, Sharpening 이 없을 때는 log K 로 가는 것을 나타내며 두 operation 이 각각 다른 Collapse 를 유발하는 것을 나타낸다.
 - 오른쪽 그림에서 둘 다 사용했을 경우, KL divergence 가 적절하게 감소하는 것을 알 수 있다.

Figure 7: **Collapse study.** (**left**): evolution of the teacher's target entropy along training epochs; (**right**): evolution of KL divergence between teacher and student outputs.

Total Review

- Reminder : Pseudo Code
 - 해당 pseudo code 는 multi-crop 이 포함되지 않은 코드(multi-crop augmentation 이 들어간 pseudo code 는 논문에 기재 Ⅺ

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
# gs, gt: student and teacher networks
# C: center (K)
# tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = gs(x1), gs(x2) # student output n-by-K
    t1, t2 = gt(x1), gt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(gs) # SGD
    qt.params = 1*qt.params + (1-1)*qs.params
    C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

Experimental Results

Other experiments

❖ 기타실험장표

• Image Retrieval and Copy Detection

Table 3: Image retrieval. We compare the performance in retrieval of off-the-shelf features pretrained with supervision or with DINO on ImageNet and Google Landmarks v2 (GLDv2) dataset. We report mAP on revisited Oxford and Paris. Pretraining with DINO on a landmark dataset performs particularly well. For reference, we also report the best retrieval method with off-the-shelf features [55].

			$\mathcal{R}Ox$		\mathcal{R} Par	
Pretrain	Arch.	Pretrain	M	Н	M	Н
Sup. [55]	RN101+R-MAC	ImNet	49.8	18.5	74.0	52.1
Sup.	DeiT-S/16	ImNet	33.5	8.9	63.0	37.2
DINO	ResNet-50	ImNet	35.4	11.1	55.9	27.5
DINO	DeiT-S/16	ImNet	41.8	13.7	63.1	34.4
DINO	DeiT-S/16	GLDv2	51.5	24.3	75.3	51.6

Table 4: **Copy detection.** We report the mAP performance in copy detection on Copydays "strong" subset [20]. For reference, we also report the performance of the multigrain model [5], trained specifically for particular object retrieval.

Method	Arch.	Dim.	Resolution	mAP
Multigrain [5] Multigrain [5]	ResNet-50 ResNet-50	2048 2048	224 ² largest side 800	75.1 82.5
Supervised [66]	ViT-B/16	1536	224^{2}	76.4
DINO	ViT-B/16	1536	224^{2}	81.7
DINO	ViT-B/8	1536	320^{2}	85.5

Experimental Results

Other experiments

- ❖ 기타실험장표
 - Fine tuning

Table 6: Transfer learning by finetuning pretrained models on different datasets. We report top-1 accuracy. Self-supervised pretraining with DINO transfers better than supervised pretraining.

	Cifar ₁₀	Cifar ₁₀₀	INat ₁₈	INat ₁₉	Flwrs	Cars	INet
DeiT-S/16							
Sup. [66]	99.0	89.5	70.7	76.6	98.2	92.1	79.9
DINO	99.0	90.5	72.0	78.2	98.5	93.0	81.5
ViT-B/16							
Sup. [66]	99.0	90.8	73.2	77.7	98.4	92.1	81.8
DINO	99.1	91.7	72.6	78.6	98.8	93.0	82.8

Experimental Results

Other experiments

- ❖ 기타실험장표
 - Update Options

Top-1
0.1
0.1
66.6
72.8

Conclusion

- ❖ 단순히 ViT 에 SSL을 적용한 것에 의의를 둔것이 해당 방법론을 적용 했을 때, Supervised ViT 나 ConvNet 에서 나타나지 않았던 현상을 발견한 것이 큰 의미가 있음
 - ✓ DINO 를 적용한 ViT 는 객체의 경계나 배경을 매우 잘 탐지하며, 이러한 특징들은 linear layer fine-tuning 없이 k NN classifier 로도 높은 성능을 나타냄
 - ✓ Segmentation 등의 다른 task를 주지 않고 positive sample 로 representation learning 만을 했을 뿐인데 결과가 기존 segmentation 방법론에 근접
 - ✓ 논문에서도 언급하듯이, Computer vision 에서도 GPT 나 BERT 같이 다른 분야의 태스크도 수행가능한 pre-trained model 이 더욱 발전되리라 기대됨

❖ 엄청나게 많은 실험을 진행

- ✓ 방법론의 타당성을 위해 Momentum Encoder, Loss 등 옵션에 대해 모두 ablation study 를 진행
- ✓ Predictor 나 Negative Sample 없이도 단순 연산만으로 Collapse 를 방지하였는 것은 굉장히 큰 의미가 있다고 봄
- ✓ 특히 Sharpening 과 Centering 가 서로 상충된 효과를 내지만 둘 중 하나가 없으면 서로 다른 방향으로 collapse 가 진행된다는 것을 보여준 것이 재밌었음

Reference

- Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., & Joulin, A. (2021).
 Emerging properties in self-supervised vision transformers. arXiv preprint arXiv:2104.14294.
- Noroozi, M., & Favaro, P. (2016, October). Unsupervised learning of visual representations by solving jigsaw puzzles. In *European conference on computer vision* (pp. 69-84). Springer, Cham.
- http://dmqa.korea.ac.kr/activity/seminar/310
 - ✓ Dive into BYOL