5. Operační systémy

Metody měření zastoupení OS na trhu

- **Analytické odhady** (Gartner, IDC): Vyhodnocují data o prodejích, tržní statistiky a uživatelské průzkumy.
- **Reporty výrobců** (Microsoft, Apple, výrobci Android zařízení): Údaje o prodejích a instalované bázi.
- **Statistiky přístupu na web** (StatCounter, NetMarketShare): Zaznamenávají, jaké OS používají návštěvníci webových stránek.

Nejpoužívanější OS

Desktopové OS

Windows (nejčastěji Windows 10, 11)

macOS (pro počítače Apple)

Linux (různé distribuce, oblíbený pro servery i náročné uživatele)

Mobilní OS

Android (nejrozšířenější pro telefony a tablety od různých výrobců)

iOS (pro zařízení Apple)

Servery

Linux (dominuje v oblasti serverů, web hosting, databáze)

Windows Server (firemní prostředí s ekosystémem Microsoft)

Unix (AIX, HP-UX, Solaris)

Embedded a real-time OS

Specializované systémy pro jednoúčelová zařízení (routery, IoT, průmyslové stroje).

Např. FreeRTOS, VxWorks apod.

Definice OS a jeho cíle

Operační systém (OS) je systémový software, který spravuje hardwarové a softwarové prostředky počítače. Vytváří **abstrakci** pro aplikační programy (API) a **interface** pro uživatele.

Cíle:

- Umožňuje uživatelům komunikovat s počítačem prostřednictvím grafického uživatelského rozhraní (GUI) nebo rozhraní příkazového řádku (CLI).
- Přiděluje a spravuje hardwarové zdroje jako jsou procesor, paměť, úložná zařízení a vstupně-výstupní zařízení tak, aby se využívaly efektivně.
- Chrání systém před neoprávněným přístupem a zabezpečuje, aby chyby v jednom programu neovlivnily celý systém.
- Zjednodušuje vývoj softwaru tím, že poskytuje standardizované rozhraní na přístup k hardwaru.

Komponenty počítačového systému

Hardware: CPU, paměť (RAM, HDD, SSD), I/O zařízení (klávesnice, myš, monitor).

Operační systém (OS): Spravuje hardware, poskytuje služby.

Aplikační programy: Textové editory, prohlížeče, databáze atd.

Uživatelé: Lidé nebo systémy interagující s počítačem.

Základní funkce OS

Ovládání počítače: Spouštění programů, zadávání vstupů, získávání výstupů.

Abstrakce hardwaru: Tvorba aplikačních rozhraní (API) pro ovládání zařízení a funkcí.

Správa prostředků: Přidělování a uvolňování paměti, CPU času, I/O.

Zabezpečení systému: Ochrana proti neoprávněnému přístupu, izolace procesů.

Základní části OS

Jádro (Kernel): Nejnižší úroveň OS, přistupuje přímo k hardwaru a řídí vše podstatné (správa paměti, procesů, ovladače).

Systémové služby: Vyšší úroveň než jádro (např. správa souborů, ověřování uživatelů).

Pomocné nástroje: Správce úloh, nástroje pro zálohování, aktualizace, diagnostiku atd.

Typy OS

- Single-tasking: Spouští pouze jednu úlohu (např. starší DOS).
- Multitasking: Více procesů (Windows, Linux).
- **Single-user**: Jen jeden uživatel současně (dříve např. DOS).
- Multi-user: Více uživatelů sdílí systém (Unix).
- **Distribuované**: OS pro skupinu propojených počítačů (správa síťových zdrojů).
- **Embedded**: Specifické zařízení (routery, IoT).

Evoluce OS

- 1. Dávkové (Batch) systémy: Zpracování úloh v dávkách (bez interakce uživatele).
- 2. Multiprogramové systémy: Paralelní spuštění více programů sdílením času CPU.
- 3. **Sdílení času (Time-Sharing)**: Interaktivní režim, více uživatelů připojených přes terminály.
- 4. **Desktopové a mobilní systémy**: OS pro osobní počítače, notebooky, smartphony.
- 5. Cloud a virtualizace, kontejnery: Trendy v moderním IT (flexibilní využití zdrojů).

OS pro mainframe

- Typicky IBM z/OS.
- Vysoká spolehlivost, bezpečnost, škálovatelnost.
- Používá se ve velkých organizacích (banky, vlády).

Dávkové (batch) OS

- Zpracovávají velké úlohy bez interaktivního vstupu.
- **Výhody**: Efektivní využití CPU.
- **Nevýhody**: Žádná okamžitá interakce s uživatelem.

Multiprogramové OS

- Současné vykonávání více programů sdílením času CPU.
- Vylepšuje využití zdrojů, protože CPU není nečinné při čekání na I/O.

OS se sdílením procesorového času (Time-Sharing)

- Více uživatelů pracuje interaktivně na jednom počítači.
- Unix a některé verze Windows NT byly navrženy pro tento model.

Desktopové OS

- Určené pro osobní počítače a pracovní stanice.
- Typicky Windows, macOS, různé Linux distribuce.
- Zaměření na uživatelské rozhraní a širokou škálu aplikací.

Jádro OS a jeho funkce

- Zajišťuje základní systémové funkce:
 - 1. Správa paměti (alokace, paging, segmentace).
 - 2. Plánování procesů (který proces poběží, kdy se přepne).
 - 3. Správa I/O (disky, síť, tiskárny).
 - 4. Komunikace mezi procesy (IPC).

Architektury jádra

Architektura jádra určuje, jak jsou základní komponenty operačního systému organizovány a jak spolu komunikují. Jádro je nejdůležitější část operačního systému: zajišťuje správu paměti, procesů, souborů, ovladačů zařízení a komunikaci s hardwarem.

Rozlišujeme tři hlavní typy architektury jádra:

1. Monolitické jádro

• Charakteristika:

Všechny základní služby OS (správa paměti, procesů, souborový systém, ovladače) běží **společně ve stejném adresovém prostoru jádra**.

• Výhody:

- Vysoký výkon přímé volání funkcí bez nutnosti přepínání kontextu mezi procesy.
- Všechny služby jsou vzájemně rychle dostupné.

Nevýhody:

- **Nižší stabilita a bezpečnost** chyba v jednom modulu (např. ovladači) může shodit celý systém.
- o Změny nebo aktualizace modulů často vyžadují restart systému.

• Typické použití:

 Používá se například v operačním systému Linux (většina distribucí), starší verze Unixu.

2. Mikrojádro

• Do jádra je zahrnuto **jen minimum funkcí** – nejčastěji správa paměti, plánování procesů a komunikace mezi procesy (IPC).

Ostatní služby (např. ovladače zařízení, souborové systémy) jsou přesunuty do **uživatelského prostoru** a běží jako samostatné procesy.

• Výhody:

- **Vyšší stabilita a bezpečnost** pád nebo chyba služby v uživatelském prostoru neohrozí celé jádro.
- Snadnější aktualizace a modularita, menší jádro je jednodušší na testování a správu.

Nevýhody:

 Nižší výkon – nutnost častého přepínání mezi jádrem a uživatelskými procesy (vyšší režie při komunikaci).

• Typické použití:

 Mikrojádra se používají například v systémech MINIX, QNX, nebo některé verze macOS (XNU má mikrojádrové jádro Mach).

3. Hybridní jádro

• Charakteristika:

Kombinuje vlastnosti **monolitického i mikrojádra** – některé služby běží v jádře, jiné v uživatelském prostoru.

Snaží se spojit výkon monolitického jádra s modularitou a bezpečností mikrojádra.

Výhody:

 Může nabídnout vyšší výkon než čisté mikrojádro a zároveň větší stabilitu/modularitu než čistě monolitické jádro.

• Nevýhody:

 Pokud není dobře navržené, může nést nevýhody obou přístupů – např. složitost nebo vyšší riziko chyb.

• Typické použití:

 Používá jej například Windows NT (a tedy i všechny moderní Windows), nebo macOS (kombinuje Mach mikrojádro a BSD subsystém).

Kritická chyba jádra operačního systému

Kritická chyba jádra (kernel panic v Linuxu, BSOD ve Windows) je situace, kdy selže jádro OS. Způsobuje pád systému a vyžaduje obvykle restart. Nejčastějšími příčinami jsou chyby ovladačů, poškození paměti nebo hardwaru.

Proces v OS

- **Proces**: Instanci běžícího programu se svým vlastním adresním prostorem.
- Má **programový kód**, data a **stav** (registr, program counter).

Stavy procesů a jejich přechody

Proces během svého života přechází mezi několika stavy:

- Nový (new): vytváří se.
- Připravený (ready): čeká na přidělení CPU.
- Běžící (running): právě vykonává instrukce na CPU.
- Čekající (waiting): čeká na I/O nebo událost.
- Ukončený (terminated): proces skončil a jeho prostředky jsou uvolněny.

Vlákno vs. proces

- **Proces**: Má vlastní adresní prostor, prostředky (files, paměť).
- Vlákno: "Lehčí" jednotka; vlákna se dělí o paměť procesu.
- Rychlejší **přepínání kontextu** u vláken než mezi procesy.

Přepínání kontextu

- Uložení stavu (registrů, PC, paměťových map) aktuálního procesu a načtení stavu jiného procesu/vlákna.
- Umožňuje **multitasking** a sdílení CPU.

Multitasking

- Schopnost operačního systému provozovat více úloh současně. Rozlišujeme:
- Preemptivní multitasking: OS může proces kdykoli přerušit (Windows, Linux).
- Kooperativní multitasking: Proces předává řízení sám (starší macOS).

Plánování procesu

- Algoritmy: FCFS, SJF, Round Robin, prioritní plánování.
- Určuje **pořadí** a **alokaci CPU** pro procesy (kdo poběží jako první, jak dlouho).

Přerušení (interrupt)

- Signál pro CPU, že nastala nějaká událost (I/O, timer, software).
- Hardwarová přerušení: např. klávesnice, síťová karta.
- Softwarová přerušení: system call, výjimky.

Privilegovaný režim

- Režim pro jádro OS s neomezeným přístupem k hardwaru.
- Aplikace běží v **uživatelském režimu**, aby neohrozily chod systému.

Paralelní vs. distribuované OS

- Paralelní více procesorů sdílí jednu paměť (SMP).
- **Distribuovaný** více počítačů propojených sítí, sdílení zdrojů.

Multiprocessing

- Více procesorů nebo jader vykonává úlohy současně.
- Symetrický (SMP) všechny CPU rovnocenné.
- Asymetrický (AMP) hlavní CPU řídí ostatní.

Multicore procesory a hyperthreading

- **Multicore** více jader v jednom fyzickém CPU, každý může běžet paralelně.
- **Hyperthreading** (Intel) každé jádro zpracovává více vláken najednou.

Základní operace Task Manageru v OS Windows

- Monitorování výkonu (CPU, RAM, disk, síť).
- Správa procesů (ukončení, změna priority).
- Zobrazení a správa služeb (services).

Služby (Windows Service)

- Programy běžící na pozadí (např. DHCP Client, Windows Update).
- Mohou se spouštět automaticky po startu systému nebo manuálně.

Kybernetická bezpečnost a mechanismy zabezpečení OS

Kybernetická bezpečnost zahrnuje ochranu OS proti útokům, virům, malwaru.

Základními mechanismy jsou:

- Antivir, firewall, řízení uživatelských účtů.
- Pravidelné aktualizace a záplaty.
- Dodržování bezpečnostních zásad (hesla, šifrování).

Trusted Platform Module (TPM)

- Kryptografický čip pro bezpečné uložení klíčů.
- Podpora šifrování disku (BitLocker), bezpečného bootování.

Implementace bezpečnostních mechanismů v OS Windows

- Windows Hello (biometrika, PIN).
- BitLocker (šifrování disku).
- Windows Defender Firewall (síťová ochrana).
- Windows Defender (antivirus).
- Event Log (audit přihlášení a událostí).

Virtualizace hardware a OS

- Spouštění více virtuálních strojů na jednom fyzickém serveru.
- Efektivní využití zdrojů, snadná správa, izolace jednotlivých VM.
- Hypervizor (Type 1 nebo Type 2) řídí virtuální stroje.

Hypervizor

- **Typ 1** běží přímo na hardwaru (např. Hyper-V, VMware ESXi).
- Typ 2 běží nad hostitelským OS (VirtualBox, VMware Workstation).

Nested virtualizace

- Možnost spustit virtuální stroj uvnitř dalšího virtuálního stroje.
- Důležité pro testování a komplexní vývojové prostředí.

Virtualizační komponenty v OS Windows

- **Hyper-V** nativní hypervizor, dostupný ve vyšších edicích Windows.
- Windows Subsystem for Linux (WSL) umožňuje spouštění aplikací Linuxu.
- Windows Sandbox bezpečné izolované prostředí pro testování.

Windows Subsystem for Linux

- Umožňuje provozovat linuxové distribuce na Windows.
- Překládá linuxové volání jádra do prostředí Windows, není to plná virtuální mašina.

Nejrozšířenější virtualizační platformy pro OS

- Hyper-V (Microsoft)
- VirtualBox (Oracle)
- VMware (Workstation, ESXi)
- KVM (Linux)

Windows Sandbox

- Lehká virtualizace pro otestování nedůvěryhodných aplikací.
- Při zavření se prostředí resetuje do původního stavu.

Modernizace monolitických aplikací

- Přechod k mikroslužbám pro lepší škálovatelnost a flexibilitu.
- DevOps přístupy (CI/CD), rychlejší nasazování verzí.

Kontejnery

- Odlehčená virtualizace na úrovni operačního systému.
- Docker, Kubernetes nejznámější platformy.
- Rychlé nasazení, izolace, snadné přesouvání aplikací.

Typy perzistentních úložišť

- Souborové systémy (lokální disky).
- Blokové úložiště (SAN).
- Objektové úložiště (Amazon S3).

Souborový systém

- Způsob organizace a ukládání dat na disku.
- Podpora žurnálování, šifrování, přístupových práv, verzování.

Uspořádání dat na HDD a SSD

- HDD magnetické plotny, sekvenční čtení/zápis, pomalejší vyhledávání.
- SSD paměť NAND flash, žádné pohyblivé části, rychlý náhodný přístup.

SAN vs. NAS

- **SAN (Storage Area Network)** je vysokorychlostní síť spojující bloková úložiště se servery, vhodná pro velké podnikové aplikace.
- NAS (Network Attached Storage) je zařízení poskytující sdílený přístup k souborům přes síť, vhodné pro domácnosti a menší firmy.

FAT, exFAT, NTFS, ReFS, EXT a Apple souborové systémy

- FAT: Jednoduchý FS, omezená velikost, vhodný pro starší média.
- **exFAT**: Vylepšený FAT, podporuje větší soubory, populární u flash disků.
- NTFS: Pokročilý FS pro Windows s podporou šifrování, žurnálování, přístupových práv.
- ReFS: Odolný proti chybám, pro servery a velká datová úložiště.
- EXT2/EXT3: Linuxové FS, EXT3 s žurnálováním.
- Apple: HFS+ (starší), APFS (moderní, podpora šifrování, snímků).

Fragmentace souborového systému

Fragmentace znamená rozdělení souborů do více nesouvislých částí, což zpomaluje čtení na HDD. Defragmentace je proces, který uspořádá soubory do souvislých bloků.

Atributy souborů v OS Windows vs. oprávnění souborů v POSIX

- **Windows**: Atributy jako Read-only, Hidden, System, plus Access Control List (ACL) pro detailní nastavení práv.
- **POSIX**: Práva na čtení, zápis a spuštění pro uživatele, skupinu a ostatní, spravovaná pomocí příkazů chmod a chown.

Access Control List (ACL)

ACL je seznam přesně definovaných oprávnění pro soubor nebo adresář, umožňuje granularitu přístupových práv pro konkrétní uživatele nebo skupiny, využíván jak v systémech Windows, tak v POSIX.

Správa uživatelských účtů v OS Windows

Správa uživatelů zahrnuje vytváření, mazání účtů, správu hesel a oprávnění. Nástroje jako User Account Control (UAC) zvyšují bezpečnost omezením práv běžných uživatelů, Microsoft Management Console (MMC) umožňuje pokročilou správu účtů a skupin.