Lecture 1.5 and 1.6

- Regression
 - Linear Regression
 - Intuition
 - Loss Function
- Regularization
 - Lasso Regularization
 - Ridge Regularization

Regression

- Regression is a statistical method for modeling the relationship between a dependent variable (target) and one or more independent variables (predictors)
- In linear regression, the relationship is modeled as a straight line
- Intuition in regression is the idea of using a linear approach to predict a continuous value for a data point by generalizing over the data

Linear Regression

- Linear regression assumes a linear relationship between the dependent variable y and the independent variable(s) x
- The equation of a simple linear regression model is

$$y = mx + c$$

 $m(w_1)$: slope of the line (weight of the predictor)

 $c(or w_0)$: y-intercept

x: input feature(s)

y: predicted output (target)

For multiple predictors (features), the equation becomes

$$y = w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$

Loss Function

 The performance of the linear regression model is evaluated using the cost function, commonly the Mean Squared Error (MSE)

$$E(w_0, w_1, ..., w_n) = \frac{1}{2N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2$$
 where,

E: Loss function

N: Number of data points

 $\widehat{y_i}$:Predicted value

 y_i : Actual value

Example 1

SL No.	x (data)	Yactual
1	1	2
2	2	3

$$y = w_1 x + w_0$$

Initial Setup

$$w_0 = 0$$

$$w_1 = 0$$

Learning rate $(\eta) = 0.1$

Loss function:
$$E(w_0, w_1, ..., w_n) = \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

$$w_{0} = 0, w_{1} = 0, E(w_{0}, w_{1}, ..., w_{n}) = \frac{1}{2N} \sum_{i=1}^{N} (w_{1}x_{i} + w_{0} - y_{i})^{2}$$

$$\frac{\delta E}{\delta w_{0}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i})$$

$$\frac{\delta E}{\delta w_{0}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i})x_{i}$$

$$\frac{\delta E}{\delta w_{0}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i}) = \frac{1}{2}(-2 + -3) = -2.5$$

$$\frac{\delta E}{\delta w_{1}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_{i} - y_{i})x_{i} = \frac{1}{2}(-2 \times 1 + -3 \times 2) = -4$$

x (data)	Yactual	$\hat{y} = w_1 x + w_0$	Residual Error	$w_1 = w_1 - \eta \nabla E(w_1)$	$w_0 = w_0 - \eta \nabla E(w_0)$
1	2	$0 \times 1 + 0 = 0$	0 – 2 = -2	0 01:4-	0.04.35
2	3	$0 \times 2 + 0 = 0$	0 - 3 = -3	0 - 0.1x-4= 0.4	0 – 0.1x-2.5= 0.25

$$\frac{\delta E}{\delta w_0} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) = \frac{1}{2} (-1.35 - 1.95) = -1.65$$

$$\frac{\delta E}{\delta w_1} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i = \frac{1}{2} (-1.35 \times 1 - 1.95 \times 2) = -2.625$$

x (data)	Yactual	$\hat{y} = w_1 x + w_0$	Residual Error	$w_1 = w_1 - \eta \nabla E(w_1)$	$w_0 = w_0 - \eta \nabla E(w_0)$
1	2	0.4 x 1 + 0.25 = 0.65	0.65 – 2 = -1.35	0.4 - 0.1x-2.625= 0.6625	0 .25- 0.1x-1.65= 0.415
2	3	0.4 x 2 + 0.25 = 1.05	1.05 – 3 = -1.95	0.0023	0.413

• $w_0 = 0.7322, w_1 = 1.1411,$

$$y = 1.1411x + 0.7322$$

Regularization

- Regularization is a technique used in machine learning and statistics to prevent overfitting of models by adding a penalty term to the model's loss function
- Regularization provides this increased generalizability at the sake of increased training error
- Regularization is a technique used to reduce errors by fitting the function appropriately on the given training set and avoiding overfitting. The commonly used regularization techniques are:
 - Lasso Regularization L1 Regularization
 - Ridge Regularization L2 Regularization

Overfitting

Role of Regularization

- Complexity Control: Regularization helps control model complexity by preventing overfitting to training data, resulting in better generalization to new data.
- Preventing Overfitting: One way to prevent overfitting is to use regularization, which penalizes large coefficients and constrains their magnitudes, thereby preventing a model from becoming overly complex and memorizing the training data instead of learning its underlying patterns.
- Balancing Bias and Variance: Regularization can help balance the trade-off between model bias (underfitting) and model variance (overfitting) in machine learning, which leads to improved performance.
- Feature Selection: Some regularization methods, such as L1 regularization (Lasso), promote sparse solutions that drive some feature coefficients to zero. This automatically selects important features while excluding less important ones.
- Handling Multicollinearity: When features are highly correlated (multicollinearity), regularization can stabilize the model by reducing coefficient sensitivity to small data changes.
- **Generalization**: Regularized models learn underlying patterns of data for better generalization to new data, instead of memorizing specific examples.

L1 (LASSO) Regularization

- A regression model which uses the L1 Regularization technique is called LASSO(Least Absolute Shrinkage and Selection Operator) regression
- Lasso Regression adds the "absolute value of magnitude" of the coefficient as a penalty term to the loss function(L)

$$E(w_0, w_1, \dots, w_n) = \frac{1}{2N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{m} |w_i|$$

λ: Regularization parameter

 $\mid w_i \mid$: Absolute value of the i-th weight (coefficient) of the model

m: Number of features

How it affects the gradient?

- In Lasso regularization, the gradient of the cost function with respect to a parameter w includes the term λ ·sign(w)
- When computing the gradient of the cost function with respect to ww, the derivative of the absolute value is not defined at w=0, but it is approximated using the sign function:

$$\frac{\delta|w|}{\delta w} = sign(w)$$

When w>0, λ pushes w to decrease

When w<0, λ pushes w to increase

When w=0, the penalty term does not contribute to the gradient

Example 2

SL No.	x (data)	Yactual
1	1	2
2	2	3

$$y = w_1 x + w_0$$

Initial Setup

$$w_0 = 0$$

$$w_1 = 0$$

Learning rate $(\eta) = 0.1$

Regularization Parameter $(\lambda) = 0.1$

Loss function:

$$E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{m} |w_i|$$

$$w_0 = 0, w_1 = 0,$$

 $E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (w_1 x_i + w_0 - y_i)^2 + \lambda(|w_0| + |w_1|)$

$$\frac{\delta E}{\delta w_0} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) + \lambda \operatorname{sign}(w_0)$$

$$\frac{\delta E}{\delta w_1} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i + \lambda \operatorname{sign}(w_1)$$

$$\frac{\delta E}{\delta w_0} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) = \frac{1}{2} (-2 + -3) + 0.1 \times 0 = -2.5$$

$$\frac{\delta E}{\delta w_1} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i = \frac{1}{2} (-2 \times 1 + -3 \times 2) + 0.1 \times 0 = -4$$

x (data)	Yactual	$\hat{y} = w_1 x + w_0$	Residual Error	$w_1 = w_1 - \eta \nabla E(w_1)$	$w_0 = w_0 - \eta \nabla E(w_0)$
1	2	$0 \times 1 + 0 = 0$	0 – 2 = -2	0.04.4	0 0435-
2	3	$0 \times 2 + 0 = 0$	0 - 3 = -3	0 - 0.1x-4= 0.4	0 - 0.1x-2.5= 0.25
			Dr. Mainak Biswas		

$$\frac{\delta E}{\delta w_0} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) = \frac{1}{2} (-1.35 - 1.95) + 0.1 \times 1 = -1.55$$

$$\frac{\delta E}{\delta w_1} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i = \frac{1}{2} (-1.35 \times 1 - 1.95 \times 2) + 0.1 \times 1 = -2.525$$

x (data)	Yactual	$\hat{y} = w_1 x + w_0$	Residual Error	$w_1 = w_1 - \eta \nabla E(w_1)$	$w_0 = w_0 - \eta \nabla E(w_0)$
1	2	0.4 x 1 + 0.25 = 0.65	0.65 - 2 = -1.35	0.4 - 0.1x-2.525= 0.6525	0 .25- 0.1x-1.55= 0.405
2	3	0.4 x 2 + 0.25 = 1.05	1.05 – 3 = -1.95	0.0323	0.403

• $w_0 = 0.6874, w_1 = 1.1227$

$$y = 1.1227x + 0.6874$$

Dr. Mainak Biswas

L2 (Ridge) Regularization

- Ridge regression, also known as L2 regularization, is a technique used to improve the performance and generalization of linear regression models
- It penalizes large coefficients to reduce overfitting while ensuring that all features contribute to the prediction

$$E(w_0, w_1, \dots, w_n) = \frac{1}{2N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{m} w_i^2$$

λ: Regularization parameter

 w_i^2 : square of the magnitude of coefficients

m: Number of features

How it affects the gradient?

- If λ =0: Ridge regression reduces to ordinary least squares (OLS) regression with no regularization
- If λ is very large: Coefficients shrink significantly, which may lead to Underfitting (model is too simple)
- Optimal λ : A balance between overfitting and Underfitting is achieved through cross-validation to determine the best λ

Example 3

SL No.	x (data)	Yactual
1	1	2
2	2	3

$$y = w_1 x + w_0$$

Initial Setup

$$w_0 = 0$$

$$w_1 = 0$$

Learning rate $(\eta) = 0.1$

Regularization Parameter $(\lambda) = 0.1$

Loss function:

$$E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2 + \lambda \sum_{i=1}^{m} w_i^2$$

$$w_0 = 0, w_1 = 0,$$

 $E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (w_1 x_i + w_0 - y_i)^2 + \lambda (w_0^2 + w_1^2)$

$$\frac{\delta E}{\delta w_0} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) + 2\lambda w_0$$

$$\frac{\delta E}{\delta w_1} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i + 2\lambda w_1$$

$$\frac{\delta E}{\delta w_0} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) = \frac{1}{2} (-2 + -3) + 2 \times 0.1 \times 0 = -2.5$$

$$\frac{\delta E}{\delta w_1} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i = \frac{1}{2} (-2 \times 1 + -3 \times 2) + 2 \times 0.1 \times 0 = -4$$

x (data)	Yactual	$\hat{y} = w_1 x + w_0$	Residual Error	$w_1 = w_1 - \eta \nabla E(w_1)$	$w_0 = w_0 - \eta \nabla E(w_0)$
1	2	$0 \times 1 + 0 = 0$	0 – 2 = -2	0 01 1 4 -	0.0425
2	3	$0 \times 2 + 0 = 0$	0 - 3 = -3	0 - 0.1x-4= 0.4	0 - 0.1x-2.5= 0.25
			Dr. Mainak Biswas	0.4	

$$\frac{\delta E}{\delta w_0} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) = \frac{1}{2} (-1.35 - 1.95) + 2 \times 0.1 \times 0.25 = -1.60$$

$$\frac{\delta E}{\delta w_1} = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i) x_i = \frac{1}{2} (-1.35 \times 1 - 1.95 \times 2) + 2 \times 0.1 \times 0.4 = -2.545$$

x (data)	Yactual	$\hat{y} = w_1 x + w_0$	Residual Error	$w_1 = w_1 - \eta \nabla E(w_1)$	$w_0 = w_0 - \eta \nabla E(w_0)$
1	2	0.4 x 1 + 0.25 = 0.65	0.65 – 2 = -1.35	0.4 - 0.1x-2.545= 0.6545	0 .25- 0.1x-1.60= 0.41
2	3	0.4 x 2 + 0.25 = 1.05	1.05 – 3 = -1.95	0.0343	0.41

w0=3.5089 w1=0.8912

