Departamento de Ciencias de la Computación e Inteligencia Artificial

Algorítmica Grado en Ingeniería Informática

Prácticas: Semana 1 Eficiencia: órdenes de eficiencia

1. Se dispone de un programa formado por dos bloques de código A y B, que se ejecutan de forma consecutiva, y cuyos tiempos de ejecución en instancias del caso peor vienen dados por las expresiones:

$$T_A(n) = 19*n^3 + n$$

 $T_B(n) = log_2(n) + n^4$

Para instancias del caso mejor, el tiempo de ejecución de cada bloque de código es:

$$T_A(n) = 400*n + log_2(n)$$

 $T_B(n) = 1235*n^2$

Se pide responder a las siguientes cuestiones:

- Haciendo uso de las propiedades de los órdenes de eficiencia, indique cuál es la eficiencia del programa.
- ¿Podría decirse que el programa es O(n⁵)?
- ¿Tiene el algoritmo orden exacto?
- 2. Existen diferentes algoritmos que resuelven un problema dado, con eficiencias respectivas en el caso peor de $O(n^5)$, O(n!), $O(2^n)$, $O(2^{n+1})$, $O(1.5^n)$, O(n*log(n)), O(log(n)). Ordene, de mejor a peor, los órdenes de eficiencia e indique cuál o cuáles son los mejores y peores algoritmos en el caso peor.
- 3. **(código de ejemplo ejercicio3.cpp)** Se trata de resolver el problema de buscar la posición de un elemento en un vector que ya está ordenado. Se dispone de dos algoritmos A y B que resuelven el problema, con eficiencia $A \in O(f(n))$ y $B \in O(g(n))$, donde f(n) = n y $g(n) = log_2(n)$. En ambos algoritmos, el caso peor se da cuando el elemento a buscar no se encuentra en el vector. Se pide:
 - Calcular la constante K del orden de eficiencia en ambos casos.

Departamento de Ciencias de la Computación e Inteligencia Artificial

- Mostrar gráficamente, para varios tamaños de casos, el tiempo de ejecución real de cada algoritmo frente al orden teórico-práctico estimado $K_1*f(n)$ para A, y $K_2*g(n)$ para B (puede usar Libreoffice Calc, Office Excel, GNUPlot, o cualquier software de visualización de gráficas para ello). ¿Qué irregularidad observa en el algoritmo B? ¿A qué puede deberse?
- Indique, a nivel teórico, cuál es el mejor algoritmo para resolver el problema, comparando los órdenes de eficiencia de ambos.
- ¿Cuánto tardaría (como mucho) el algoritmo A, atendiendo a la constante K calculada y el orden de eficiencia del algoritmo, en resolver una instancia del problema de tamaño 40000000?
- 4. Se dispone de dos algoritmos de ordenación: Burbuja y Selección, ambos con eficiencia O(n²). Generando varios vectores aleatorios a ordenar para diferentes tamaños de casos, se pide:
 - Calcular la constante K del orden de eficiencia en ambos casos.
 - Mostrar gráficamente, para varios tamaños de casos, el tiempo de ejecución real de cada algoritmo frente al orden teórico-práctico estimado K_1*n^2 para Burbuja, y K_2*n^2 para Selección, usando la misma herramienta de generación de gráficas del ejercicio anterior.
 - Indique, a nivel teórico, cuál es el mejor algoritmo para resolver el problema, comparando los órdenes de eficiencia de ambos.
 - Indique, a nivel práctico, cuál es el mejor algoritmo, justificando su respuesta en términos del orden y de las constantes ocultas calculadas.