ENTRANCE EXAMINATION-2017

MASTER OF COMPUTER APPLICATION (M.C.A) (5 M I)

SET D

ROLL NO.

Signature of Invigilator

Total Marks: 100

Time: 3 Hours

Instructions to Candidates

- 1. Do not write your name or put any other mark of identification anywhere in the OMR Answer Sheet. IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR ANSWER SHEET, the OMR sheet will be cancelled, and will not be evaluated.
- 2. This Question Booklet contains this cover page and a total of 100 Multiple Choice Questions of 1mark, Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough work.
- 3. Each correct answer carries one mark.
- There is negative marking for Multiple Choice Questions. For each wrong answer, 0.25 marks will be deducted.
- USE OF CALCULATOR IS NOT PERMITTED.
- 6. USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, pager ETC. is not permitted.
- 7. Candidate should check the serial order of questions at the beginning of the test. If any question is found missing in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be torn out from this question booklet.
- 8. Answers must be marked in the OMR answer sheet which is provided separately. OMR answer sheet must be handed over to the invigilator before you leave the seat.
- The OMR answer sheet should not be folded or wrinkled. The folded or wrinkled OMR/Answer Sheet will not be evaluated.
- 10. Write your Roll Number in the appropriate space (above) and on the OMR Answer Sheet. Any other details, if asked for, should be written only in the space provided.
- 11. There are four alternative answers to each question marked A, B, C and D. Select one of the answers you consider most appropriate and fill up the corresponding oval/circle in the OMR Answer Sheet provided to you. The correct procedure for filling up the OMR Answer Sheet is mentioned below.
- 12. Use Black or Blue Ball Pen only for filling the ovals/circles in OMR Answer Sheet while answering the Questions, For your Choice of answers darken the correct oval/circle completely. If the correct answer is 'B', the corresponding oval/circle should be completely fill and darkened as shown below.

WRONG METHOD $\triangle \mathscr{O} \bigcirc \bigcirc$ lacktriangleAXC0(0)(D)

SET-DM54/4

SET-D

MCA, Test Paper-2017

1. If 20^{th} term of an A.P. is 30 and its 30^{th} term is 20, then its 10^{th} term is											
(A) $\frac{4\lambda^{3}}{(C)}$ (C) 20 (D) 30 (C) 20. (D) 30 (C) 20. (D) 30	1.	If 20th	term of a	n A.P. is 30 ar	nd its 3	0 th term is 2	20, then	its 10 th term is	•••••	1119d	= 30
(C) 20 Let sum of n terms of an A.P. is $2n(n-1)$, then sum of their squares is (A) $8n(n-1)(2n-1)$ (B) $8n(n-1)(2n-1)$ (C) $n(n+1)(2n+1)$ (D) $\frac{8n(n+1)(2n+1)}{3}$ (C) $\frac{n(n+1)(2n+1)}{6}$ (D) $\frac{8n(n+1)(2n+1)}{3}$ (D) $\frac{4}{3}$ (D) $\frac{8n(n+1)(2n+1)}{3}$ (D) $\frac{4}{3}$ (D) $\frac{8n(n+1)(2n+1)}{3}$ (D) $\frac{4}{3}$ (D) $\frac{4}{3}$ (E) $\frac{1}{3}$ (D) $\frac{1}{3}$ (E) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$ (E) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$ (E) $\frac{1}{3}$ (D) $\frac{1}{3}$ (E) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) $\frac{1}{3}$ (D) None of these		(A)	40				(B)	10		0+ 29d	= 10
2. Let sum of n terms of an A.P. is $2n(n-1)$, then sum of their squares is		(C)					` `			- 100	
(A) $\frac{8n(n-1)(2n-1)}{3}$ (B) $\frac{8n(n-1)(2n-1)}{6}$ (C) $\frac{n(n+1)(2n+1)}{6}$ (D) $\frac{8n(n+1)(2n+1)}{3}$ (D) $8n(n+1)(2n+$	2.	Let su	m of n ter	ms of an A.P.	is 2n(n-1), then si	um of th	eir squares is			0=
3 (C) $\frac{n(n+1)(2n+1)}{6}$ (D) $\frac{8n(n+1)(2n+1)}{3}$ (Ω + 9 9 3 4 4 9 9 4 6 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							(B)	8n(n-1)(2n-1)	<u>1)</u>	a-1	94 = 3
6 3. For what value of x, the $\log_2(5 \cdot 2^x + 1)$, $\log_4(2^{1-x} + 1)$, and 1 are in A.P.? (A) $\log_2 5$ (B) $\log_5 2$ (C) $1 + \log_2 5$ (D) $1 - \log_2 5$ 4. If the ratio of sum of m terms and n terms of an A.P. be $m^2:n^2$, then the ration of its m^{th} and n^{th} terms will be			3								9 = 9
For what value of x, the $\log_2(5 \cdot 2^x + 1)$, $\log_4(2^{1-x} + 1)$, and 1 are in A.P.? (A) $\log_2 5$ (B) $\log_5 2$ (C) $1 + \log_2 5$ (D) $1 - \log_2 5$ (B) $\log_5 2$ (C) $1 + \log_2 5$ (D) $1 - \log_2 5$ (If the ratio of sum of m terms and n terms of an A.P. be $m^2:n^2$, then the ration of its m^{th} and n^{th} terms will be		(C)	n(n+1)(2	2n+1)			(D)	8n(n+1)(2n+1)	<u>1)</u>	9	9
(A) $\log_2 5$ (B) $\log_5 2$ (C) $1 + \log_2 5$ (D) $1 - \log_2 5$ If the ratio of sum of m terms and n terms of an A.P. be $m^2:n^2$, then the ration of its m^{th} and n^{th} terms will be			U					3		49	2 7 14
(A) $\log_2 5$ (B) $\log_5 2$ (C) $1 + \log_2 5$ (D) $1 - \log_2 5$ If the ratio of sum of m terms and n terms of an A.P. be $m^2:n^2$, then the ration of its m^{th} and n^{th} terms will be	3.	For w	hat value	of x, the $\log_2($	$(5\cdot 2^x -$	$+1$), $\log_4(2^1)$	-x + 1), a	nd 1 are in A.P.?	?	7	1
If the ratio of sum of m terms and n terms of an A.P. be $m^2:n^2$, then the ration of its m^{th} and n^{th} terms will be		1								2	
If the ratio of sum of m terms and n terms of an A.P. be $m^2:n^2$, then the ration of its m^{th} and n^{th} terms will be		(C)	1 + log	5			(D)($1 - \log_2 5$			
will be					and n	torms of ar			ration of i	its m th and n th	terms
5. The value of $9^{\frac{1}{3}} \times 9^{\frac{1}{9}} \times 9^{\frac{1}{27}} \times \dots \times \infty$ is	4.	will b	e	ım oi m terms	and n	ternis or ar	1 A.I . UC	in .ii , then the		8 m-12	(20)
5. The value of $9^{\frac{1}{3}} \times 9^{\frac{1}{3}} \times 9^{\frac{1}{27}} \times \dots \times 1$ (B) 9 (C) 1 (D) ∞ 6. If α and β are the roots of equation $x^2 + px + p^2 + q = 0$, then the value of $\alpha^2 + \alpha \beta + \beta^2$ (A) p (B) -p (C) q (D) -q 7. If the roots of x^2 -bx+c=0 are two consecutive numbers, then b^2 - 4c is equal to (A) 1 (B) 2 (D) 4 8. The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (A) 0 (B) 1 (C) 2 (D) 3 9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non-zero common root, then λ is equal to		(A)	m:n				(B)	2m-1:2n-1		16 X	65
(A) 3 (B) 9 (D) ∞ 6. If α and β are the roots of equation $x^2 + px + p^2 + q = 0$, then the value of $\alpha^2 + \alpha \beta + \beta^2$		(C)	m+n:n+1	l			(D)	n:m		1 1 N	24
(A) 3 (B) 9 (D) ∞ 6. If α and β are the roots of equation $x^2 + px + p^2 + q = 0$, then the value of $\alpha^2 + \alpha \beta + \beta^2$	5.	Thou	value of 0	$\frac{1}{3} \times 0^{\frac{1}{27}} \times 0^{\frac{1}{27}} \times 0^{\frac{1}{27}}$	· · · · · · · · ·	ois			%	105/2	
(C) 1 (D) ∞ 6. If α and β are the roots of equation $x^2 + px + p^2 + q = 0$, then the value of $\alpha^2 + \alpha \beta + \beta^2$ (A) p (B) -p (C) q (D) -q 7. If the roots of x^2 -bx+c=0 are two consecutive numbers, then b^2 - 4c is equal to (A) 1 (B) 2 (C) 3 (D) 4 8. The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (A) 0 (B) 1 (C) 2 (D) 3 9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2 + 2x + 3\lambda = 0$ and $2x^2 + 3x + 5\lambda = 0$ have a non-zero common root, then λ is equal to		1		. x 9 x 9 x	(· 15	(B)	9		19 10	M/2/5
6. If α and β are the roots of equation x²+px+p²+q=0, then the value of α² + αβ + β²									,	2) [
(A) p (C) q (D) -q 7. If the roots of x²-bx+c=0 are two consecutive numbers, then b²- 4c is equal to (A) 1 (B) 2 (C) 3 (D) 4 8. The number of real roots of equation (x-1)² + (x-2)² + (x-3)² = 0 is (A) 0 (B) 1 (C) 2 (D) 3 9. If the roots of equation (b-c)x²+ (c-a)x + (a-b) = 0 be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations x²+2x+3λ=0 and 2x²+3x+5λ=0 have a non-zero common root, then λ is equal to	6			ne roots of equ	ation x	$x^2 + nx + n^2 + a$	` '	the value of α^2 +	$\alpha\beta + \beta^2$.	•••••	
(C) q (D) -q 7. If the roots of x^2 -bx+c=0 are two consecutive numbers, then b^2 - 4c is equal to (A) 1 (B) 2 (C) 3 (D) 4 8. The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (A) 0 (B) 1 (C) 2 (D) 3 9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 (B) 2 (C) 3 (D) 4 (D) 3	0.			ic roots or equ	ation A	r · pr··p · · q					
 7. If the roots of x²-bx+c=0 are two consecutive numbers, then b²- 4c is equal to			-				. ,	-			
8. The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is	7			c^2 -bx+c=0 are 1	wo co	nsecutive nu		•	al to		
8. The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (A) 0 (B) 1 (C) 2 (D) 3 9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 S $\frac{1}{3} = \frac{2}{3} = \frac{34}{54}$ (B) -1	/•	1	1								
8. The number of real roots of equation $(x-1)^2 + (x-2)^2 + (x-3)^2 = 0$ is (A) 0 (B) 1 (C) 2 (D) 3 9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 S $\frac{1}{3} = \frac{2}{3} = \frac{34}{34}$ (B) -1		- ' '	3				(D)	4			
(A) 0 (B) 1 (C) 2 (D) 3 9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 $5 \frac{1}{3} = \frac{2}{3} = \frac{24}{34}$ (B) -1	8	1 ' '		real roots of e	quation	$\frac{1}{(x-1)^2 + (x-1)^2}$	$(-2)^2 + (x^2 + x^2)^2 + (x^$	$-3)^{2} = 0$ is	,		
(C) 2 (D) 3 9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 $5 \frac{1}{3} = \frac{2}{3} = \frac{24}{34}$ (B) -1	0.				•	` , , .		_			
9. If the roots of equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ be equals, then a, b, c are in (A) H.P. (B) G.P. (C) A.P. (D) None of these 10. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 $5\frac{1}{4}=\frac{2}{3}=\frac{34}{3}$ (B) -1							(D)	3			
(A) H.P. (B) G.P. (C) A.P. (D) None of these (D) If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to	9.			quation (b-c)x	2°+ (c-	a)x + (a-b) =	= 0 be eq	uals, then a, b, c	are in		
(D) None of these 10. If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 $5\frac{1}{\sqrt{3}} = \frac{2}{3} = \frac{34}{3}$ (B) -1				• ` ` ′	L,						
If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common root, then λ is equal to (A) 1 $5 \frac{1}{3} = \frac{2}{3} = \frac{34}{57}$ (B) -1							(D)	None of these			
(A) 1 $54=64$ $\frac{1}{2}=\frac{34}{5}$ (B) -1	10.			$x^2+2x+3\lambda=0$	and 2x	$^2+3x+5\lambda=0$	have a n	on-zero commor	root, the	n λ is equal to	
(C) 2 (D) -2 11. If ${}^{n}P_{r} = {}^{n}P_{r+1}$ and ${}^{n}C_{r} = {}^{n}C_{r-1}$, then (n, r) is		1	_								
11. If ${}^{n}P_{r} = {}^{n}P_{r+1}$ and ${}^{n}C_{r} = {}^{n}C_{r-1}$, then (n, r) is				6,23)	×3 کا ا	(D)	-2		1 /	
(A) $(2,3)$ -(B) $(3,2)$	11.	1 '		$\overline{d}^{n}C_{r} = {}^{n}C_{r-1}, t$	nen (n,	r) is			1	1)	1.010
(0) (1.2)		l					←(B)	(3, 2)	10.	141 =	#
[[(C) (4, 3)		(C)	(4, 3)				(D)	(3, 4)			

12.	The number of arrangements of the letters of the word adjacently is	BANANA in which the two N's do not appear
	(A) 40 (B)	60
	(C) 80 (D)	100
13.	The sum of (n+1) terms of the series $\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{4}$	$\frac{c_3}{5} + \cdots$ is
	$(A) \frac{1}{n+1} \tag{B}$	1
	n+1	$\frac{1}{n+2}$
	(C) <u>1</u> (D)	1
	n(n+1)	$\overline{(n+1)(n+2)}$
14.	$\begin{bmatrix} 1 & \omega & \omega^2 \end{bmatrix}$	
	If ω is a cube root of unity, then $\begin{bmatrix} 1 & \omega^2 & 1 \end{bmatrix}$ is equal	to
	If ω is a cube root of unity, then $\begin{vmatrix} 1 & \omega & \omega \\ 1 & \omega^2 & 1 \\ \omega & 1 & \omega^2 \end{vmatrix}$ is equal	
	(C) 1	$\frac{\omega^2}{-3}$
15.		
	If $A = \begin{bmatrix} x & 2 \\ 2 & x \end{bmatrix}$ and $ A^2 = 0$, then x is equal to	27 July 2009-1118
	(1) 10 1	±3
	(C) 1 (D)	4
16.	Let $\vec{A} = i - j + k$, $\vec{C} = -i - j$ be two vectors. Which	of the following is the vector \vec{R} such that
	$\vec{A} \times \vec{B} = \vec{C}$ and $\vec{A} \cdot \vec{B} = 1$?	of the following is the vector B such that
	(A) i	<i>k</i>
		i + j
17.	A point P on y-axis is equidistant from the points A(-5,	
		(0, 4/3)
		(0, 7/3)
18.	The area of the triangle with vertices A(a, b+c), B(b, c+	a), C(c, a+b) is equal to
	(A) 0 (B)	ab+bc+ca
,	(C) a+b+c (D)	a+b-c
19.	Two dices are thrown simultaneously. The probability of	of obtaining a total score of 5 is
	(A) 1/12 (B)	1/36
	(D)	
20.	Three of the six vertices of a regular hexagon are ch	osen at random. The probability that triangle
	formed with these chosen vertices is equilateral, equal t	0
		1/10
	(C) 1/5 (D)	1/20

21.	Let A	and B are two disjoint subsets of a universa	l set E	The $(A \cup B) \cap B$ is equal to
	ρ(A)	Е	(B)	φ
	(€)	A	(D)	В
22.	(A -)	B) – A is equal to	medico respuéblica matematica	may be a play and consisted to the second se
	(A)	ф	(B)	A
	(C)	В	(D)	$A \cap B$
23.	Let 10) is the cardinality of set A. The number of b	ijectiv	ve mapping from set A to itself is
	(A)	10	(B)	55
	(C)	100	(D)	3628800
24.	Let n	be a positive decimal integer. The number of	digit	s in <i>n</i> is equal to
	(A)	$\lceil \log_{10} n \rceil + 1$	(B)	$\lfloor \log_{10} n \rfloor + 1$
	(C)	$\lfloor \log_{10} n \rfloor$	(D)	$\lceil \log_{10} n \rceil$
25.	Let ca	ardinality of set A and B are 2 and 5 respective	elv. T	The number of relations from A to B is
	(A)	1024	(B)	1000
	(C)	1010	(D)	1025
26.	Let f:	$R \rightarrow R$, g: $R \rightarrow R$ be two functions given by f(x	, ,	3 and $g(x)=x/2$. The $(fog)^{-1}(x)$ is equal to
	1	(x+3)/2	(B)	x+3
	(C)	2x+3	(D)	2x-4
27.	Let f:	$R \rightarrow R$ is defined by $f(x)=x^2+5$, then value of	f ¹ (4) i	is equal to
	(A)	+1	(B)	-1
	⟨C)	ф	(D)	20
28.	If g:R	\rightarrow R is defined by g(x)=x ² -2, then value of g	¹ (23)	is equal to y < u-3
	,(A)	±5	(B)	25 n= 2 7+
	(C)	±4	(D)	527 = 24.73
29.		ardinality of A and B are 3 and 10 respectivel	y. The	e number of one to one functions from A to l
	is	2^{10}	(B)	2^2
	(A)		(D)	720
20	(C)	$= \{1, 2, 3, 4\} \text{ and } B = \{a, b\} \text{ are two sets. The } B$		
30.			(B)	16
	(A) (€)	28	(D)	8!
31.				
31.	Let z	$=\sqrt{3}+i$ be a complex number and \bar{z} be its co	mjuga	tie. The $ \arg z + \arg z $ is equal to
	(A)	$\frac{\pi}{}$	(B)	$\frac{2\pi}{}$
		3	-	3
	(C)	$\frac{\pi}{\epsilon}$	(D)	$\frac{2\pi}{3}$ $\frac{\pi}{4}$ $2 = \sqrt{3} + i, \tilde{z} = \sqrt{3} - i$ $100 = 3$
, , ,	·	6		4 By Jul- S

						2:1/3
		7				(3+i)33
1	32.	The !	$\frac{\sqrt{3}+i)^{17}}{(1-i)^{50}}$ is equal to			
			$(1-i)^{s_0}$			Continue Maria
		(A)	$-1-\sqrt{3}i$	(B)	$1+\sqrt{3}i$	(3 + (3,0)
			$\frac{-1-\sqrt{3}i}{2^9}$. ,	$\frac{1+\sqrt{3}i}{2^9}$	(3 x (3.7)
		(C)	$\frac{-1-\sqrt{3}i}{2^8}$	(D)	1 + /2;	(4)
			$\frac{1}{2^8}$		$\frac{1+\sqrt{3}i}{2^8}$	
	33.		/. N			
		For w	which of the following value of x, the $\left(\frac{1+i}{1-i}\right)^x$	=1?		1+1 x 1+1
		(A)	29			1421-1
		. ,		(B)	35	1 41 (1)
	24	(C)	34	∠(Đ)		
	34.	1	s a cube root of unity, then the value of (1 - o			
		(A)	2	*(B)	4	2122 = 4.
		(C)	ω	(D)	ω^2	1- (autur)
1	35.	Let z	be a complex number. Which of the following	ng is a	solution of $ z $	-z = 1 + 2i?
1			3	(B)	$2 - \frac{3}{2}i$ $2 + \frac{3}{2}i$	2 5 + 4 2 - 3 + 4
			$\frac{3}{2} + 2i$ $\frac{3}{2} - 2i$	(2)	$2-\frac{3}{2}i$	2 4 3 - 2+0
	1	(es	3	(D)	3	2(1+24)
			$\frac{1}{2}$	` '	$2+\frac{1}{2}i$	4×^ =0
	36.	If sine	$\theta + \csc\theta = 2$, then $\sin^n \theta + \csc^n \theta$ is equal	to	••••	
		(A)	1	(B)	2	(8in Bat cu 27 3 =]
		(C)	2 ⁿ	(D)	2 ⁿ -1	(Simple Con it
	37.		alue of $\sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$ is equal			76 62
	57.		3	(B)	2	Coi Ata Byana
		(A)		` '		+ 2 m
		(C)	1	(D)	0	M - 22
	38.	If x =	$a \cos^2\theta \sin\theta$ and $y = a \sin^2\theta \cos\theta$, then (x^2+y)	_		4
	ı	(A)	a^2x^2	•	$a^2x^2y^2$	14 5 44
	,	(C)	$a^2(y^2-x^2)$	(D)	$a^2(x^2-y^2)$	7 7 4 7 4
	39.	The m	inimum value of $3\cos\theta + 4\sin\theta + 10$ is equ	al to		2
100		(A)	5	(B)	9	
		(C)	7	(D)	3	
p	40.	-	in42 ⁰ sin66 ⁰ sin78 ⁰ is equal to			
		(A)	1/32	(B)	1716	3
	7	(C)		(D)	1/4	29)
	100	(C)	1/8	(L)) 1/ 1	~/ A X X X X

41.	If $y = \tan^{-1} \left\{ \frac{1+x}{1-x} \right\}$, then $\frac{dy}{dx}$ is equal to	M=	dy = 1+1+m 2.
	(A) $\frac{2}{1+x^2}$	(D)	(1-m)2.
	(C) $\frac{1+x^2}{1+x^2}$	$(B) \frac{2}{1+2x^2}$	$= \frac{(1-n)^{2}+(1+n)^{2}}{(1-n)^{2}+(1+n)^{2}}$ $= \frac{1+n^{2}-2n}{1+n^{2}-2n+1}$ $= \frac{1+n^{2}-2n}{2(1+n)^{2}}$
42.	$\frac{1+x^2}{1+x^2}$ If y=log(tan x), then dy/dx is equal to	$(D) \frac{1}{1+x^2}$	- 1+ m2 -
	(A) 2cosec 2x	(B) 2sec 2x	2(1tm)
43.	(C) $2\sin 2x$	(D) 2cos 2x	= ()
	If $y = \cos^{-1} x$ and $z = \sin^{-1} \sqrt{1 - x^2}$, then $\frac{dy}{dz}$	is equal to	dy = 1 sec
	(A) $1/(1-x^2)$ (C) $x/(1+x^2)$	(B) 1 (D) $x/(1-x^2)$	= Egg X
44.	If $y = e^{2x}$, then $\frac{d^2y}{dx^2} \cdot \frac{d^2x}{dy^2}$ is equal to		$=\frac{2}{26}$
	$(A) -2e^{x}$ $(C) -2e^{-2x}$	(B) $-2e^{2x}$	2 fr = 1 2 fr
45.		(D) $-2e^{-x}$	= 2005
-	If $\sqrt{x+y} + \sqrt{y-x} = \sqrt{2}$, then $\frac{d^2y}{dx^2}$ is equal to		$y = e^{2u}$, log
	(A) 1 (C) 1/2	(B) 2 (D) -2	\$ dt = e2 x 2 / 4
46.	$\lim_{x\to 0} \frac{1-\cos x}{x^2}$ is equal to		dry = 4e2 -1
	(A) 0	(B) 1/2	dry x den
47.	(C) $1/4$ $\lim_{x \to \sqrt{x^2 + x}} \text{is equal to}$	(D) 1	dy ay
₩.	$\lim_{x \to \infty} (x - \sqrt{x^2 + x}) $ is equal to	(B) 1	XX
	(C) -1	(D) -1/2	+21
48.	$\int \frac{dx}{x \log x \log(\log x)}$ is equal to		/ 20/ 55
	(A) log x	(B) log(log x(D) (log(log	/
40	$\int x^{x} (1 + \log x) dx \text{ is equal to}$	(2) (3.3	24 + 2 Jely-n2+
49.	$\int x^{x} (1 + \log x) dx = 0$	(B) $x^x \log x$	0/4 // 2/ //
9	$(C) x^{x}/\log x$	(D) $x^x / (1+x)$	x) The Tylus

50.	***		(MAN)
	$\int \frac{1}{(1-r)^{3/4}} dx$ is equal to		311-00
and the second s) n loned
	(A) 12/5	(B)	-12/5
	(C) 16/5	(D)	-16/5 .
51.	z/OS is a		
	(A) PC operating system	(B)	Mainframe operating system -2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	(C) Mobile operating system	(D)	None of these
52.	Which of the following is a mobile operating sy	stem?	
	(A) Palm operating system	(B)	AVG
	(C) BeOS	(D)	None of these
53.	Intel 8086 is abit microprocessor.		
	(A) 4	(B)	8
	€) 16	(D)	32
54.	Which of the following is mainframe computer	?	Rabbit IBM System/360 Rabbit 18 27 5 x 7 + 16 19 4 4 0 × 16
	(A) Vtech	(B)	Rabbit YF 7 3 40 x/b
	(C) Dubna	(D)	IBM System/360
55.	Wellwer is a		
	(A) Operating System	(B)	Microprocessor None of these
	(C) Mobile company	(D)	None of these
56.	If $(500)_{10}=(x)_5$, then x is equal to		2×10= (1/2)
	(A) 400	.(B)	4000
	(C) 1000	(D)	None of these $1 \times 5^3 = 125$
57.	If $(780)_{10}$ = $(1056)_x$, then x is equal to		1 1 2 500
	(A) 7	(B)	5 2 07 6
	(C) 8	(D)	9 7×10 +80 = 780
58.	If $(2?1)_7 = (120)_{10}$, then the missing digit is		1 1 X X X X X X
	(A) 1	(B)	2 XXX DAGT
	(C) 3	(D)	None of these $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
59.	The 2's complement of the binary number (011	0100) ₂ is	5
	(A) 1001100	(B)	1101100
	(C) 1111100	(D)	1101011 0110100
60.	The 2's complement 10110010 represent the ne	egative n	umber in 8 hits system
The state of the s	(A) -50		-78 10011 00.
7.	(C) -77		-51
61.	Minimum number of two-input NAND gates u	sed to no	rform the function of the control of
	(A) One	(B)	Two
	(C) Three	(D)	
	<u> </u>	(D)	Scanned by JMIEntrance

62.	The time required for an electronic circuit to	change its	state is called					
	(A) Propagation time	(B)	Rise time					
	(C) Decay time	(D)	Changing time					
63.	Which of the following is not equivalent to x?							
	(A) x.x	- (B)	x+x					
	(C) x.1	- (D)	x+1					
64.	Which of the following is a sequential circui	t?						
	(A) Adder	(B)	Decoder					
	(C) Multiplexor	(D)	Flip flop					
65.	Which of the following will be the number of two bit number and produce the output cube	f output line of it?	es in a combinational circuit that takes input					
	(A) 3	(B)	4					
	(C) 5	(D)	6					
66.	Which of the following is a web browser?							
	(A) Avira	(B)	TrustPort					
	(€) Opera	(D)	None of these					
67.	Which of the following is an operating system	n?						
	(A) Baidu	(B)	Symbian					
	(C) AVG	(D)	None of these					
68.	Which of the following is antivirus software?)						
	(A) Symbian	(B)	Norton					
	(C) SCO		None of these					
69.	Which of the following is a web search engir							
	(A) Opera	(B)	Symbian					
	(C) AVG	-(Đ)	None of these					
70.	Which of the following is a social media web		Martin					
	(A) Instagram	(B)	Norton					
	(C) Symbian	(D)	None of these					
71.	123:9 :: 321:?	(D)	0					
	(A) 5	(B)	9					
	(C) 8	` ′	6					
72.	Which of the following is code for CAT in a							
	(A) 21	-(B)	24 (3					
	(C) 23	(D)	22					
73.	Which of the following is code for JMI in a c		0.0					
	(A) 10139	(B)	9128 217					
	(C) 10138	(D)	10129					

74.	If CAT mean 3, HE mean 2, DELHI mean 5, ther	SAD	is 18 11 -12
,	(A) 1	(B)	
	(€) 3	(D)	
75.	If 54+43=2, 60+5.1=10, 70+61=12, then 72+62=?	•	194 111 12
	(A) 14	(B)	13
	(C) 8	(D)	
76.	Which of the following is next number in the seri		
	(A) 39	(B)	40 (42)
	(C) 41	(D)	None of these
77.	Which of the following is next number in the serie	es 1, 8	, 27, 64, 125,?
	(A) 216	(B)	- 1 -
	(C) 210	(D)	None of these
78.	Which of the following is next number in the serie	es 3, 7	, 13, 21, 31,? 3x2t 4, 6
		√(B)	43
-	(C) 47	(D)	None of these
79.	Which of the following is next number in the serie	es 1, 2,	, 6, 42,? 42×OF7
	(A) 57	(B)	1805
	(C) 1806	(D)	None of these 188x
80.	Which of the following term is wrong in the series	s 1, 1,	
	(A) 2 nd	(B)	4th 121, 2, (3), 5, 0, 1
	(C) 5 th	(D)	
81.	Which of the following term is wrong in the series	5 2, 5,	
	(A) 1st	(B)	2 nd
	(C) 3 rd	(D)	4 th
82.	Which of the following term is wrong in the series	1, 4,	
-	(A) 6 th	(B)	5 th
	(C) 4 th	(D)	
83.	Which of the following term is wrong in the series		
	(A) 1 st	()	2 nd
	(C) 3^{rd}	(D)	
84.	Which of the following is the next term of the serie	es: A_1	B, BD_2 , D_3G , GK_4 ,? W
	(A) K_5M	(B)	K ₅ P
	(C) K ₅ O	(D)	K ₅ Q
85.	Which of the following is the next term of the serie	es: C ₁ Z	$Z, D_3Y, E_5X, F_7W,?$
	(A) G ₈ V	(B)	$G_{10}V$
	(C) G ₉ W	(D)	None of these

-		7 7 441
86.	Which of the following is the next term of the	series: ABZ, BDY, DFX, GHW,? LETV
	(A) KJV	(B) KIV C EF HIT
	(C) JJV	(D) JIV
87.	Which of the following is the next term of the	series: CAT, EBS, GCR, IDQ,?
	(A) KFP	(B) KEQ KEP.
	(C) KEP	(D) LEP
88.	If '234' is coded to '11', then '123' is coded to	0 (B) 5 (4) 2+3+7=11 (1) 2-13+7=11
	(A) 6	(B) 5 (4) 1+2+3 28.
	(C) 7	√(D) 8
89.	If : 123456' is coded to '615', then '214652' i	s coded to 21 12
	(A) 816	(B) <u>21</u> 34
	(C) 613	(D) 713
90.	234:24 :: 235:?	,
	(A) 9	(B) 56
	(C) 210	(D) 30
91.	Which of the following word is most nearly the	ne opposite in meaning as the word ABSTAIN?
	(A) Refrain	(B) Desist
	(C) Hoard	(D) Begin
92.	Which of the following word is most nearly the	ne opposite in meaning as the word MITIGATE?
	(A) Aggravate	(B) Reduce
	(C) Weaken	(D) Ease
93.	Which of the following word is most nearly the	ne opposite in meaning as the word AMBIGUOUS?
	(A) Opaque	(B) Clear
	(C) Obscure	(D) Vague
94.	There are views on the issue of giving b	·
	(A) independent	(B) divergent
	(C) modest	(D) adverse
95.	Before the of the Europeans in India,	
	(A) entry	(B) emigration
, ,	(C) advent	(D) immigration
96.	Which of the following is correctly spelt Engl	ish word?
	(A) Delineate	(B) Deleneat
	(C) Dileneate	(D) Deleneate

97.	Whic	h of the following is correctly spelt English v	vord?	
	(A)	Enemyty	(B)	Enemity
	₹C)	Enmity	(D)	Enmety
98.	Whic	h of the following word is most nearly the sa	me in	meaning as the word AMAZING?
	(A)	Beautiful	(B)	Good
	(C)	Astonishing	(D)	Famous
99.	Whic	h of the following word is most nearly the sa	me in	meaning as the word BRAVE?
	(A)	Courageous	(B)	Serene
	(C)	Aloof	(D)	Sob
100.	Whic	h of the following word is most nearly the sa	me in	meaning as the word DILIGENT?
	(A)	Fool	(B)	Unhappy
	(C)	Hardworking	(D)	Cool

<u>Uploaded on</u>: www.jmientrance.com

Contribute by: Shaquib Khan (MCA Student, JMI)