

On the brink of extinction: a new freshwater amphipod Jesogammarus acalceolus (Anisogammaridae) from Japan

Ko Tomikawa¹, Naoya Kimura²

l Hiroshima University, Graduate School of Humanities and Social Sciences, 1-1-1 Kagamiyama, Higashihiroshima, 739-8524, Japan **2** Tokiwazaka 1-7-18, Hirosaki, Aomori, 036-8263, Japan

Corresponding author: Ko Tomikawa (tomikawa@hiroshima-u.ac.jp)

Academic editor: Rachael Peart | Received 16 July 2021 | Accepted 19 August 2021 | Published 26 October 2021

http://zoobank.org/629D364D-946E-4F18-B5E0-DC12C40E7F98

Citation: Tomikawa K, Kimura N (2021) On the brink of extinction: a new freshwater amphipod *Jesogammarus acalceolus* (Anisogammaridae) from Japan. ZooKeys 1065: 81–100. https://doi.org/10.3897/zookeys.1065.71687

Abstract

Freshwater habitats, especially cold springs, are environments in which the risk of extinction faced by organisms remains high due to human activities. To conserve endangered species, it is important to describe and name them. Here, a new, endangered freshwater anisogammarid amphipod species, *Jesogammarus* (*Jesogammarus*) acalceolus sp. nov., found in a spring in Aomori Prefecture, Japan, is described which is potentially the sole remaining habitat of this species. Both morphological and molecular phylogenetic results strongly support the nesting of the new species within *Jesogammarus*. *Jesogammarus* (*J.*) acalceolus sp. nov. is the first species of genus *Jesogammarus* that was found to lack a calceolus, a sensory organ located on male antenna 2. Thus, the diagnostic criteria for this genus required amendment. A reconstruction of ancestral calceoli, based on a molecular phylogenetic tree, revealed that the common ancestor of *Jesogammarus* possessed calceoli, which were secondarily lost in *J.* (*J.*) acalceolus sp. nov. Our results indicate that this new species, which is key to clarifying the evolution of the calceolus, is of high conservation significance.

Keywords

Ancestral state reconstruction, molecular phylogeny, systematics

Introduction

Fresh water is indispensable to human life. It is also an important habitat for many aquatic organisms. Fresh water accounts for ca. 2.5% of all water on Earth (Lehner

and Döll 2004). Approximately 9.5% of all known species live in fresh water (Balian et al. 2008). Deterioration of freshwater environments due to human activities remains a worldwide issue (Martínuzzí et al. 2014; Reid et al. 2019). Species inhabiting freshwater habitats are reported to be at a greater risk of extinction compared to marine and terrestrial species (Dudgeon et al. 2006; Collen et al. 2009, 2014).

Spring water is ground water that collects in soil due to rain and snow in mountainous areas. Recently, deterioration of spring water environments, leading to the depletion of spring water, caused by an inflow of domestic drainage and agricultural chemicals. Additionally, excessive pumping of groundwater for drinking and agricultural purposes has become an issue of worldwide proportions. Therefore, of the species inhabiting freshwater habitats, those that depend on spring water are considered to be at an even higher risk of extinction (Fluker et al. 2010). However, currently available taxonomic data on invertebrates inhabiting spring water appear to be insufficient, with many species remaining undescribed (Murphy et al. 2009). Although the discovery rate of species appears to be increasing, many species go unrecognized before becoming extinct (Mora et al. 2011). Thus, conducting taxonomic studies as well as naming and describing species is essential for conserving endangered species (Stork 1993; McKinney 1999; Giam et al. 2012; Coleman 2015; Costello et al. 2015).

The order Amphipoda comprises peracarid crustaceans belonging to the class Malacostraca. Of the more than 10,000 amphipod species that have been described globally, ca. 20% occur in freshwater (Väinölä et al. 2008; Horton et al. 2021). Freshwater amphipods generally prefer cool environments (Väinölä et al. 2008), and cold spring water and flowing spring water are the best habitats for them. Springs in the Japanese archipelago reportedly harbour diverse endemic amphipods (Tomikawa and Morino 2003; Tomikawa et al. 2003; Tomikawa 2017). The anisogammarid genus, Jesogammarus Bousfield, 1979, is the most diverse group among Japanese freshwater amphipods. Jesogammarus was established by Bousfield (Bousfield 1979), with Anisogammarus jesoensis Schellenberg, 1937 as the type species. In the same paper as that which described this type species, Bousfield established Annanogammarus Bousfield, 1979 and Ramellogammarus Bousfield, 1979 with Gammarus annandalei Tattersall, 1922 and Gammarus ramellus Weckel, 1907 as type species, respectively. Annanogammarus was later classified as a subgenus under Jesogammarus (Morino 1985). At present, Jesogammarus is known to contain 22 species from the Japanese Archipelago, the Korean Peninsula, and the Chinese mainland (Tomikawa et al. 2017). Jesogammarus is morphologically similar to Ramellogammarus, which is endemic to North American coastal fresh waters; these genera are considered to be closely related (Bousfield 1979, 1981). The former is distinguished from the latter mainly by having an antennal sensory organ termed the calceolus (Morino 1985; Bousfield and Morino 1992). However, though molecular phylogenetic studies have been conducted previously on Anisogammaridae, the phylogenetic relationship between Jesogammarus and Ramellogammarus has not yet been fully clarified (Macdonald III 2005; Tomikawa et al. 2010; Li et al. 2020).

Recently, a population of *Jesogammarus* species, lacks a calceolus on male antenna 2, was found in a spring in the Aomori Prefecture of Japan, which is potentially the sole

remaining habitat of this species (Fig. 1). We describe this species as *J.* (*J.*) acalceolus sp. nov. Describing and naming this species, as have been done here, can be considered important first steps leading to its conservation. In addition, we investigated the evolution of calceoli in *Jesogammarus* species with molecular phylogenetic analyses and ancestral state reconstruction.

Materials and methods

Sample collection

Specimens of *J.* (*J.*) acalceolus sp. nov. were collected from Haguro Shrine Spring, Hirosaki, Aomori Prefecture, Japan (40.6153°N, 140.3854°E). Amphipods were collected by a fine-mesh hand net from fallen leaves and mosses. Specimens were fixed in 99% ethanol on the site.

Morphological observation

Appendages of the examined amphipods were dissected using needles under a stereomicroscope (Olympus SZX7) and mounted in gum-chloral medium on glass slides. Prepared specimens were examined by a light microscope (Nikon Eclipse Ni) and illustrated using the aid of a camera lucida attached to the light microscope. The body length was measured from the tip of the rostrum to the base of the telson along the dorsal curvature to the nearest 0.1 mm following Tomikawa et al. (2017). The specimens have been deposited in the Tsukuba Collection Center of the National Museum of Nature and Science, Tokyo (NSMT).

PCR and DNA sequencing

Genomic DNA was extracted from the pleopod muscle of the specimens following procedures detailed by Tomikawa et al. (2014). The primer sets for PCR and cycle sequencing reactions used in this study were as follows: for 28S rRNA (28S), 28SF and 28SR (Tomikawa et al. 2012); for cytochrome c oxidase subunit I (COI), Am-COI-H and Am-COI-T (Tomikawa 2015); and for 16S rRNA (16S), 16STf (Macdonald III 2005) and 16Sbr (Palumbi 1996). PCR and DNA sequencing were performed using the method detailed by Tomikawa (2015). The newly obtained DNA sequence has been deposited in the International Nucleotide Sequence Database Collaboration (IN-SDC) through the DNA Data Bank of Japan (DDBJ) (Table 1).

Molecular phylogenetic analyses

The phylogenetic analyses were conducted based on sequences of nuclear 28S rRNA and mitochondrial COI and 16S rRNA genes. The alignment of COI was trivial, as no indels were observed. The sequences of 28S and 16S were aligned using the Muscle

Table 1. Samples used for molecular analyses with voucher/isolate number, collection locality, and NCBI GenBank accession number. Sequences marked with an asterisk (*) were obtained for the first time in this study.

Species	Voucher or	Locality	NCBI	GenBank ac	c. nos.
•	isolate #	·	28S rRNA	COI	16S rRNA
Anisogammarus pugettensis	G1500	Akkeshi Bay, Hokkaido, Japan	LC624749*	LC624757*	LC624742*
Barrowgammarus macginitiei	G37	Akkeshi Bay, Hokkaido, Japan	LC624750*	LC624758*	LC624743*
Eogammarus kygi	G1	Naibetsu River, Hokkaido, Japan	LC214759	LC052229	LC052250
E. possjeticus	G3	Lake Akkeshi, Hokkaido, Japan	LC214760*	LC052230	LC052251
Jesogammarus (Annanogammarus) annandalei	G1162	Lake Biwa, Shiga, Japan	LC214786	LC052248	LC052269
J. (A.) debilis	IZCAS-I-A0325	Fangshan, Beijing, China	EF582997		EF582846
J. (A.) fluvialis	G83	Samegai, Shiga, Japan	LC214766	LC052236	LC052257
J. (A.) koreaensis	G1376	Deoksin-ri, Onsan-eup, Ulju-gun, Ulsan, Korea	LC624751*	LC624759*	
J. (A.) naritai	G1167	Lake Biwa, Shiga, Japan	LC214787	LC052249	LC052270
J. (A.) suwaensis	G88	Lake Suwa, Nagano, Japan	LC214767	LC052237	LC052258
Jesogammarus (Jesogammarus)	NSMT-Cr 29008	Haguro Shrine Spring, Aomori,	LC624752*	LC624760*	LC624744*
acalceolus sp. nov.	(G1625)	Japan			
J. (J.) acalceolus sp. nov.	NSMT-Cr 29005 (G1845)	Haguro Shrine Spring, Aomori, Japan	LC624753*	LC624761*	LC624745*
J. (J.) bousfieldi	KUZ Z1799	Aburato, Tsuruoka, Yamagata, Japan	LC214778	LC214538	LC214795
J. (J.) fujinoi	G17	Yamagata, Japan	LC214762	LC052232	LC052253
J. (J.) hebeiensis	IZCAS-I-A0294	Yanqing, Beijing, China	EF582998		EF582847
J. (J.) hinumensis	G52	Lake Hinuma, Ibaraki, Japan	LC214765	LC052235	LC052256
J. (J.) hokurikuensis	G1838	Shimizucho, Fukui, Japan	LC624754*	LC624762*	LC624746*
J. (J.) ikiensis	G515	Iki, Nagasaki, Japan	LC214772	LC052242	LC052263
J. (J.) jesoensis	G164	Sapporo, Hokkaido, Japan	LC214769	LC052239	LC052260
J. (J.) mikadoi	G13	Rokugo, Akita, Japan	LC214761	LC052231	LC052252
J. (J.) paucisetulosus	G1037	Mito, Ibaraki, Japan	LC214780	LC052247	LC052268
J. (J.) shonaiensis	G192	Sakata, Yamagata, Japan	LC214770	LC052240	LC052261
J. (J.) spinopalpus	G32	Onjuku, Chiba Prefecture, Japan	LC214763	LC052233	LC052254
J. (J.) uchiyamaryui	KUZ Z1803	Tanie River, Iki, Nagasaki, Japan	LC214773	LC214533	LC214790
Ramellogammarus oregonensis	G1537	Willamette River, Corvallis, Oregon, USA	LC624755*		
R. similimanus	G1540	Alice Springs, Portland, Oregon, USA	LC624756*		
Spasskogammarus spasskii	G35	Akkeshi Bay, Hokkaido, Japan	LC214764*	LC052234	LC052255
Gammarus mukudai	G858	Iki, Nagasaki, Japan	AB893234	LC624763*	LC624747*
G. nipponensis	G797	Kiyotaki, Kyoto, Japan		LC624764*	

algorithm implemented in MEGA X (Kumar et al. 2018). Phylogenetic relationships were reconstructed via Maximum Likelihood (ML) and Bayesian Inference (BI). The best evolutionary models were selected based on the corrected Akaike Information Criterion (AIC) for ML and Bayesian Information Criterion (BIC) for BI using MEGA X (Kumar et al. 2018). ML phylogenies were conducted using MEGA X (Kumar et al. 2018) under the substitution model GTR+G+I, and 1,000 bootstrap replications (Felsenstein 1985) were performed to estimate statistical support for branching patterns. BI analyses were estimated using MrBayes v3.2.6 (Ronquist et al. 2012) under the substitution model GTR+G+I, with Markov chains of 10 million generations. Parameter estimates and convergence were checked using Tracer v1.7.1 (Rambaut et al. 2018), and the first 1 million trees were discarded as burn-in. Two gammarid species, *Gammarus mukudai* Tomikawa, Soh, Kobayashi & Yamaguchi, 2014 and *G. nipponensis* Uéno, 1966, were included in the analyses as outgroup taxa.

Figure 1. Habitat and live specimens of *Jesogammarus* (*Jesogammarus*) acalceolus sp. nov. **A** the type locality, Haguro Shrine Spring, Hirosaki, Aomori Prefecture, Japan **B** mate guarding pair, male is upper and female is lower, photographed by Ryu Uchiyama.

Ancestral state reconstruction

The ancestral states of the calceolus on male antenna 2 were reconstructed on the tree (Fig. 2) via the likelihood model using Mesquite v3.61 (Maddison and Maddison 2019). The Markov K-state 1 parameter model was used for likelihood reconstruction at each ancestral node with equal probability for all particular character state changes.

Results

Molecular phylogenetic analyses

The monophyly of *Jesogammarus* was inferred with maximum (100% bootstrap support [BS]) and relatively low (0.85 posterior probability [PP]) support values in the maximum likelihood (ML) and Bayesian inference tree (BI) trees, respectively (Fig. 2). Although *Jesogammarus* formed a sister group with *Barrowgammarus* Bousfield, 1979 (87% BS), their relationship was not supported by BI analyses. The new species collected in this study, *J. (J.) acalceolus*, was nested within *Jesogammarus* and clustered with *J. (J.) hinumensis* Morino, 1993 and *J. (J.) ikiensis* Tomikawa, 2015. In this study, the phylogenetic position of *J. (A.) koreaensis* Lee & Seo, 1990 was also clarified for the first time: this species formed a sister group with *J. (A.) debilis* Hou & Li, 2005, with high support values (98% BS, 1.0 PP). Of the 22 species of *Jesogammarus*, 20, excluding *J. (J.) fontanus* Hou & Li, 2004 and *J. (J.) ilhoii* Lee & Seo, 1992, were included in the molecular phylogenetic analyses of this study.

Ancestral state reconstruction

The likelihood reconstruction (Fig. 2) demonstrated that the calceolus on male antenna 2 was an ancestral character state of the most recent common ancestor (MRCA) of the *Jesogammarus* species, with 0.96 proportional likelihood (PL). The character

Figure 2. Maximum likelihood tree and ancestral state reconstructions for calceolus on male antenna 2. Filled circles at each species represent states of habitat; pie charts at internal nodes present proportional likelihoods of reconstruction. Key nodes are labelled with the proportional likelihood of the presence or absence of the calceolus on male antenna 2, which was reconstructed as most likely to be at that node.

state of the MRCA of *J.* (*J.*) acalceolus sp. nov. + *J.* (*J.*) hinumensis and *J.* (*J.*) acalceolus sp. nov. + *J.* (*J.*) hinumensis + *J.* (*J.*) ikiensis was the presence of calceolus, with 0.92 and 0.99 PL, respectively. The character state of the MRCA of Barrowgammarus + Eogammarus + Jesogammarus + Ramellogammarus was the presence of calceolus, with 0.52 PL.

Taxonomic account

Family Anisogammaridae Bousfield, 1977

Genus Jesogammarus Bousfield, 1979

Type species. Anisogammarus jesoensis Schellenberg, 1937

Diagnosis. Pleonites not carinate dorsally, with slender and robust setae (robust setae often lacking). Dorsal margins of urosomites with 4 (3), 4 (2), 2 (4) clusters of setae or single robust seta; urosomite 2 without prominent median tooth. Antenna 1 longer than antenna 2; article 1 of peduncle subequal to or slightly longer than article 2. Male antenna 2, flagellum with or without calceoli. Maxilla 1, palp article 1 without

setae. Female gnathopods 1 and 2 strongly dissimilar. Coxal gills on gnathopod 2 and pereopods 3–7, gills 2–5 each with 2 accessory lobes, gills 6 and 7 each with 1 accessory lobe. Uropods 1 and 2, rami extending beyond peduncle of uropod 3. Uropod 3, inner ramus not longer than 0.4 times of that of outer ramus; terminal article distinct. Brood plate 2 of female broadly expanded anteroproximally.

Remarks. The presence of a calceolus on the flagellum of male antenna 2 is a major diagnostic feature of *Jesogammarus*, which distinguishes it from *Ramellogammarus* (Bousfield 1979; Morino 1985). However, the discovery of the new species, *J. acalceo*lus, which lacks a calceolus, indicated that the calceolus was not critical for diagnosis. The genus Jesogammarus is distinguishable from Ramellogammarus by the dissimilar female gnathopods 1 and 2 and the expanded brood plates of the female. The genus Jesogammarus shares a similar coxal gill type with marine Locustogammarus Bousfield, 1979 and Spasskogammarus Bousfield, 1979 but differs from these two genera in terms of the following features (features of *Locustogammarus* and *Spasskogammarus* in parentheses): from Locustogammarus, in terms of longer antenna 1 than antenna 2 (subequal in Locustogammarus), dissimilar female gnathopods 1 and 2 (similar in Locustogammarus), uropods 1 and 2 with rami extending beyond the peduncle of uropod 3 (not extending in *Locustogammarus*), and a distinct terminal article of uropod 3 (very small in Locustogammarus); from Spasskogammarus, in terms of dorsal margins of pleonites with slender setae (lacking in Spasskogammarus), longer antenna 1 than antenna 2 (subequal in *Spasskogammarus*), and slender pereopods 5–7 (short in *Spasskogammarus*).

Jesogammarus (J.) acalceolus sp. nov.

http://zoobank.org/43EABC71-3F5A-48ED-9982-6320B94C6CAC

[New Japanese name: Shitsuko-yokoebi]

Figures 1B, 3-5

Material examined. Holotype: male (7.4 mm, NSMT-Cr 29003), Haguro Shrine Spring, Hirosaki, Aomori Prefecture, Japan (40.6153°N, 140.3854°E), collected by A. Ohtaka, N. Kimura, and K. Tomikawa on 10 December 2020. Paratypes: two females (7.3 mm, NSMT-Cr 29004; 6.7 mm, NSMT-Cr 29005 [G1845]), two male (7.7 mm, NSMT-Cr 29006; 7.5 mm, NSMT-Cr 29007 [G1844]), data same as for the holotype; male (6.8 mm, NSMT-Cr 29008 [G1625]), same locality of the holotype, collected by A. Ohtaka on 23 December 2018; 3 males (7.3–7.6 mm, NSMT-Cr 29009) and three females (6.4–7.3 mm, NSMT-Cr 29009), same locality of the holotype, collected by A. Ohtaka on 17 June 2018; 3 males (5.8-8.0 mm, NSMT-Cr 29009) and three females (5.3-6.4 mm, NSMT-Cr 29009), same locality of the holotype, collected by N. Kimura on 23 December 2018; seven males (7.6–8.8 mm, NSMT-Cr 29009) and three females (5.6–6.6 mm, NSMT-Cr 29009), same locality of the holotype, collected by N. Kimura on 10 December 2020; 10 males (6.9-9.9 mm, NSMT-Cr 29009) and 11 females (5.9-8.3 mm, NSMT-Cr 29009), same locality of the holotype, collected by N. Kimura on 12 December 2020.

Figure 3. Jesogammarus (Jesogammarus) acalceolus sp. nov., male (7.4 mm), NSMT-Cr 29003 **A** habitus, lateral view **B–D** dorsal margins of pleonites 1–3, respectively, dorsal views **E–G** dorsal margins of urosomites 1–3, respectively, dorsal views **H** peduncular articles 1–3, accessory flagellum, and flagellar articles 1–4 of antenna 1, medial view **I** aesthetasc and associate setae on the flagellum of antenna 1, medial view **J** peduncular articles 1–5 and flagellar articles 1–3 of antenna 2, medial view **K** upper lip, posterior view **L** right mandible, medial view **M–N** incisor and lacinia mobilis of left and right mandibles, medial views **O** lower lip, ventral view **P** maxilla 1, medial view **Q** serrate robust setae on outer plate of maxilla 1, medial view.

Diagnosis. Dorsal surface of pereonites smooth. Pleonites 1–3 each with fewer than three dorsal setae. Antenna 1 without robust seta on posterodistal corner of peduncular article 1. Male antenna 2 without calceoli. Mandible with palp article 1 lacking setae. Uropod 3 without plumose setae on outer ramus.

Figure 4. *Jesogammarus* (*Jesogammarus*) *acalceolus* sp. nov., male (7.4 mm), NSMT-Cr 29003 **A** maxilla 2, medial view **B** maxilliped, dorsal view **C** gnathopod 1, medial view **D** palmar margin of propodus and dactylus of gnathopod 1, medial view, some setae omitted **E** gnathopod 2, medial view **F** palmar margin of propodus and dactylus of gnathopod 2, medial view, some setae omitted **G-I** coxa-ischium of pereopods 5–7, respectively, lateral views **J-O** coxal gills on gnathopod 2–pereopod 7, respectively, lateral views **P** pleopod 1, lateral view, distal parts of rami omitted **Q** retinacula on peduncle of pleopod 1, lateral view **R-S** uropods 1–2, respectively, dorsal views **T** uropod 3, ventral view **U** distal part of proximal article and terminal article of outer ramus of uropod 3, ventral view **V** telson, dorsal view.

Description. Male [7.4 mm, NSMT-Cr 29003].

Body. Head (Fig. 3), rostrum short; lateral cephalic lobe with ventral margin weakly concave; antennal sinus rounded; eyes small, subreniform, major axis 0.3 × head height. Pereonites, dorsal surfaces smooth (Fig. 3). Pleonites 1–3 (Fig. 3B–D), dorsal margins each with three, two, and two setae. Epimeral plate 1 with rounded posterior margin bearing seta, seta on posteroventral corner (Fig. 3A); epimeral plate 2 with posterior margin almost straight bearing three setae, seta on weakly produced posteroventral corner, two and one robust setae on ventral margin and submargin, respectively (Fig. 3A); epimeral plate 3 with posterior margin almost straight bearing three setae, seta on quadrate posteroventral corner, three robust setae on ventral margin (Fig. 3A). Urosomite 1 (Fig. 3E) with dorsal margin bearing a pair of lateral robust setae and a middle cluster of robust setae; urosomite 2 (Fig. 3F) with dorsal margin bearing a pair of lateral robust setae and clusters of robust setae; urosomite 3 (Fig. 3G) with dorsal margin bearing a pair of robust setae.

Antennae. Antenna 1 (Fig. 3H) 0.6 ×length of body; length ratio of peduncular articles 1–3 in 1.0: 0.9: 0.6; peduncular article 1 with posterodistal corner lacking robust seta, posterior margin with three pairs of setae and single seta; peduncular article 2 with posterior margin bearing six clusters of setae; peduncular article 3 with posterior margin bearing four clusters of setae; accessory flagellum comprising four articles; primary flagellum comprising 20 articulate, aesthetasc on each article. Antenna 2 (Fig. 3J) 0.7 × length of antenna 1; article 4 of peduncular 1.1 × article 5; peduncular articles 4 and 5 with posterior margins each bearing five setal clusters; flagellum comprising 12 articles, calceoli absent.

Mouth parts. Upper lip (Fig. 3K) with fine seta on rounded distal margin. Mandibles (Fig. 3L-N), left and right incisors comprising five and four teeth, respectively, left lacinia mobilis comprising four teeth, right lacinia mobilis bifid with many denticles; molar process triturative with plumose seta; left and right mandibles with seven and five blade-like setae on accessory setal rows, respectively; palp comprising 3 articles with length ratio of 1.0 : 3.3 : 2.8; article 1 of palp without setae; article 2 with 25 setae; article 3 bearing pair of setae on inner surface, three clusters of setae and single seta on outer surface. Lower lip (Fig. 3O), outer lobes broad, inner lobes indistinct. Maxilla 1 (Fig. 3P) with medial margin of inner plate bearing 20 plumose setae; eleven serrate robust setae on outer plate apically (Fig. 3Q); palp comprising 2 articles, article 1 marginally bare, apical margin of article 2 with five robust setae and two slender seta. Maxilla 2 (Fig. 4A) with inner plate bearing oblique inner row of 17 plumose setae. Maxilliped (Fig. 4B) with inner plate bearing three apical and two inner marginal robust setae; outer plate, apical margin with plumose setae and inner margin with robust setae; palp comprising four articles, inner margin and submargin of article 2 with rows of setae, article 3 bearing facial setae, slightly curved article 4 with slender nail.

Gnathopods. Gnathopod 1 (Fig. 4C, D) with coxa bearing marginal setae ventrally; basis with long setae on anterior and posterior margins; length of carpus $1.4 \times \text{width}$, with seta on anterior margin; length of propodus $1.3 \times \text{carpus}$ and $1.4 \times \text{width}$, bearing two clusters of setae on anterior margin, propodus with oblique and weakly convex palmar margin bearing six medial and ten lateral peg-like robust

Figure 5. Jesogammarus (Jesogammarus) acalceolus sp. nov., female (7.3 mm), NSMT-Cr 29004 **A** peduncular articles 1–3, accessory flagellum, and flagellar articles 1–4 of antenna 1, medial view **B** peduncular articles 1–5 and flagellar articles 1–3 of antenna 2, medial view **C** ischium-dactylus of gnathopod 1, medial view **D** palmar margin of propodus and dactylus of gnathopod 1, medial view, some setae omitted **E** ischium-dactylus of gnathopod 2, medial view **F** palmar margin of propodus and dactylus of gnathopod 2, medial view, some setae omitted **G–I** coxa-ischium of pereopods 5–7, respectively, lateral views **J** brood plate on gnathopod 2, lateral view **K** uropod 3, ventral view.

setae; dactylus weakly curved, as long as palmar margin. Gnathopod 2 (Fig. 4E, F) with coxa bearing marginal setae ventrally; basis with anterior and posterior margins bearing long setae; length of carpus 1.8 × width, bearing setae on anterior margin; length of propodus 1.1 × carpus and 1.6 × width, respectively, with two clusters of setae on anterior margin, propodus with oblique and weakly convex anterior margin bearing eight medial and five lateral peg-like robust setae; dactylus weakly curved, as long as palmar margin.

Pereopods. Pereopods 3 and 4 (Fig. 3A) similar, coxa of pereopod 3 subrectangular with ventral setae; coxa of pereopod 4 expanded with posterior concavity, anterodistal corner and ventral margin with setae. Pereopod 5 (Figs 3A, 4G) with bilobed coxa bearing apical seta on anterior lobe, two robust setae on ventral margin of posterior lobe, posterodistal corner of posterior lobe rounded with robust

seta; basis with weakly expanded posterior margin bearing setae, posterodistal corner not lobate. Pereopod 6 (Figs 3A, 4H) with bilobed coxa bearing anteroproximal setae and apical seta on anterior lobe, two robust setae on ventral margin of posterior lobe, posterodistal corner of posterior lobe quadrate with robust seta; basis with weakly expanded posterior margin bearing setae, posterodistal corner not lobate. Pereopod 7 (Figs 3A, 4I) with weakly concave coxa in ventral margin bearing setae; basis with weakly expanded posterior margin bearing setae, posterodistal corner not lobate with robust and slender setae.

Coxal gills (Fig. 4J–O) with two accessory lobes on gills 2–5, posterior lobes longer than or equal to anterior ones, one accessory lobe on gills 6 and 7.

Pleopods 1–3 (Fig. 4P) with peduncle bearing paired retinacula (Fig. 4Q) on inner margin; inner ramus with inner basal margin bearing bifid plumose setae.

Uropods. Uropod 1 (Fig. 4R) with peduncle bearing basofacial robust seta, two robust setae on inner and outer margins, one and two robust setae on inner and outer distal corners, respectively; length of inner ramus $0.8 \times$ that of peduncle, inner margin of inner ramus with two robust setae; length of outer ramus $0.9 \times$ that of inner ramus, inner margin of outer ramus with robust seta. Uropod 2 (Fig. 4S) with peduncle bearing two robust setae on inner and outer margins, respectively, and robust seta on inner and outer distal corners; length of inner ramus $0.9 \times$ that of peduncle, inner margin of inner ramus with two robust seta; length of outer ramus $0.8 \times$ that of inner ramus, inner margin of outer ramus with robust seta. Uropod 3 (Fig. 4T, U) with peduncle length $0.3 \times$ that of outer ramus; length of inner ramus $0.3 \times$ that of outer ramus, inner ramus with slender setae on inner margin and setae apically; outer ramus comprising two articles, proximal article with two clusters of setae on inner and outer margins, some of which robust, lacking plumose setae, length of terminal article $0.2 \times$ that of proximal article, apical part of terminal article with simple setae.

Telson (Fig. 4V) 0.8 times as long as wide, cleft for 67% of length, with robust seta and slender setae on each lobe.

Female [7.3 mm, NSMT-Cr 29004].

Antennae. Antenna 1 (Fig. 5A), length ratio of peduncular articles 1–3 in 1.0: 0.8: 0.6; peduncular article 1 with pair of setae and single seta on posterior margin; peduncular article 2 with five clusters of setae on posterior margin; accessory flagellum comprising three articles; primary flagellum comprising 17 articles. Antenna 2 (Fig. 5B) with peduncular article 4 bearing six clusters or single setae on posterior margin; peduncular article 5 with five clusters or single setae on posterior margin; flagellum comprising eleven articles, lacking calceoli.

Gnathopods. Gnathopod 1 (Fig. 5C, D) with carpus bearing cluster of setae on anterior margin; length of propodus 1.2 × that of carpus and 1.5 × width; propodus with eight medial and two lateral robust setae on palmar margin. Gnathopod 2 (Fig. 5E, F) with carpus bearing cluster of setae on anterior margin; propodus and carpus approximately the same length, propodus with three medial and two lateral robust setae and one medial and one lateral pectinate robust setae on palmar margin.

Pereopods 5–7 with more expanded posterior margin of bases than those of male (Fig. 5G–I).

Brood plates (= oostegites) (Fig. 5J) wide, with numerous setae on its margins. **Uropod 3** (Fig. 5K), length of peduncle $0.4 \times$ that of outer ramus; length of inner ramus $0.2 \times$ that of outer ramus.

Variations. Although almost all specimens have a pleonite 1 with a pair of setae on the dorsal margin, a few specimens have three setae. Some specimens have a urosomite 1 with a pair of lateral robust setae and a pair of clusters of robust setae on its dorsal margin. The numbers of setal clusters on the posterior margins of the peduncular articles 1–3 of antenna 1 ranged from two to four, six or seven, and two to four, respectively. The number of setal clusters on the posterior margins of the peduncular articles 4 and 5 ranged from five or six and four or five, respectively. Some specimens have robust setae on the outer margin of the outer ramus of uropod 1 and lack robust setae on the inner margin of the outer ramus of uropod 2. Some specimens have a telson with 2 robust setae on each lobe. The number of eggs is up to 9.

Etymology. The new specific name derived from the absence of calceolus.

Remarks. Jesogammarus (J.) acalceolus sp. nov. differs from its congeners by lacking a calceolus on the flagellum of antenna 2 in male. This new species is similar to J. (J.) bousfieldi Tomikawa, Hanzawa & Nakano, 2017 and J. (J.) paucisetulosus Morino, 1984 in having the following features: eyes are small; antenna 1 lacks robust setae on the posterodistal corner of the peduncular article 1; antennae 1 and 2 have many long setae on the posterior margins of the peduncular articles; maxilla 1 lacks setae on the outer margin of the palp article 2; and gnathopods 1 and 2 have few setae on the ventral margins of the coxae in female. In addition to the absence of a calceolus, J. (J.) acalceolus sp. nov. is distinguished from J. (J.) bousfieldi by the pleonites 1–3 each with less than three setae on the dorsal margins (vs. more than four setae in J. (J.) bousfieldi).

Assessment of conservation status. Jesogammarus (J.) acalceolus sp. nov. was found in a spring located 120 m above sea level, on the slope of the volcanic Mt. Iwaki, Aomori Prefecture, Japan. Although we conducted an intensive survey of inland waters at more than 400 sites in the Aomori Prefecture, this new species was present only in this one spring described above and not found in any others (unpublished data). In most of the freshwater habitats that were investigated, J. (J.) jesoensis Schellenberg, 1937, which is distributed in Hokkaido and northern Honshu, was present. Because J. (J.) acalceolus sp. nov. and J. (J.) jesoensis are not closely related (Fig. 2), it is expected that the current distributions of both species are a result of different evolutionary processes. As a positive aspect, the type locality of *J.* (*J.*) acalceolus sp. nov. is in the precincts of the Iwaki Haguro Shrine, built in AD 807, as a result of which this type locality has been treated with care by locals for more than 1,000 years (Sasaki 1995). Therefore, the environment of this spring has been preserved in good condition, allowing the present J. (J.) acalceolus sp. nov. population to survive. At present, this spring has an abundance of water (60 m³/day) (Yamamoto 1994), and its environment is stable. However, amphipods are known to be highly sensitive to chemicals, such as pesticides (Schulz 2003; Nyman et al 2013). This species inhabits only a few meters of a spring brooklet surrounded by apple plantations. Therefore, the deterioration of its habitat due to an inflow of agricultural chemicals into spring water may lead to its extinction.

Key to species of Jesogammarus based on Tomikawa et al. (2017)

1	Accessory lobes of coxal gills on gnathopod 2 and pereopods 3–5 well developed, both anterior and posterior lobes subequal in length or posterior lobe
	longer than anterior one; palmar margin of propodus of female gnathopod 2
	with pectinate setae
_	Accessory lobes of coxal gills on gnathopod 2 and pereopods 3–5 weakly de-
	veloped, anterior and posterior lobes unequal in length, often posterior lobe
	rudimentary; palmar margin of propodus of female gnathopod 2 without
	pectinate setae
2	Article 1 of mandibular palp with setae
_	Article 1 of mandibular palp with setae
3	Dorsal margin of pleonites 1–3 each with 1–2 setae; eye large; article 1 of
3	· · ·
	mandibular palp with 1 robust seta; female pereopods densely setose
	J. hinumensis Morino, 1993
_	Dorsal margin of pleonites 1–3 each with more than 4 setae; eye small to me-
	dium; article 1 of mandibular palp with 2 or 3 robust setae; female pereopods
,	not densely setose4
4	Peduncular article 1 of antenna 1 with robust seta on posterodistal corner
_	Peduncular article 1 of antenna 1 with slender seta on posterodistal corner5
5	Inner ramus of uropod 3 length 1/4 × outer ramus; inner margin of outer
	ramus of uropod 3 with 4–6 plumose setae J. fontanus Hou & Li, 2004
_	Inner ramus of uropod 3 length 1/3 × outer ramus; inner margin of outer
	ramus of uropod 3 with ca. 10 plumose setae
6	Male antenna 2 without calceoli
_	Male antenna 2 with calceoli7
7	Dorsal margin of pereonites 1–3 each with 2 long setae
_	Dorsal margin of pereonites 1–3 without setae
8	Posterodistal corner of peduncular article 1 of antenna 1 without robust seta;
	posterior margin of peduncular article 2 of antenna 1 with more than 5 se-
	tae and/or setal bundles; outer margin of palp article 2 of maxilla 1 without
	setae9
_	Posterodistal corner of peduncular article 1 of antenna 1 with robust seta
	(occasionally lacking); posterior margin of peduncular article 2 of antenna 1
	with less than 4 setae and/or setal bundles; outer margin of palp article 2 of
	maxilla 1 with setae10
9	Dorsal margins of pleonites 1–3 each with more than 4 setae
_	Dorsal margins of pleonites 1–3 each with 0–3 setae

10	Accessory lobes of coxal gills on gnathopod 2 and pereopods 3-5 short and
	straight
_	Accessory lobes of coxal gills on gnathopod 2 and pereopods 3-5 long and
	curved11
11	Dorsal margins of pleonites 1-3 each with 2 or 3 setae; posterior margin of
	peduncular article 2 of antenna 1 with 3 or 4 setae and/or setal bundls
_	Dorsal margins of pleonites 1-3 each with more than 7 setae; posterior margin of
	peduncular article 2 of antenna 1 with 2 setae and/or setal bundls12
12	Palmar margin of propodus of male gnathopod 2 without pectinate setae
_	Palmar margin of propodus of male gnathopod 2 with pectinate setae
13	Dorsal margin of pleonite 3 with robust setae; posterior margin of peduncu-
	lar articles 4 and 5 each with more than 5 long-setal bundles
_	Dorsal margin of pleonite 3 without robust setae; posterior margin of pedun-
	cular articles 4 and 5 each with less than 3 short-setal bundles14
14	Posterodistal corner of bases of pereopods 5–7 with long setae
_	Posterodistal corner of bases of pereopods 5–7 without short setae15
15	Dorsal margins of pleonites 1–3 each with 2–4 setae
_	Dorsal margins of pleonites 1–3 each with more than 10 setae
16	Posterodistal corner of peduncular article 1 of antenna 1 with robust seta;
	palmar margin of propodus of female gnathopod 2 with simple setae only
_	Posterodistal corner of peduncular article 1 of antenna 1 without robust seta;
	palmar margin of propodus of female gnathopod 2 with weakly pectinate
	setae

Discussion

Among freshwater habitats, springs have an especially high risk of extinction of species (Fluker et al. 2010). The highly diverse genus *Jesogammarus*, which is found in spring water habitats of the Japanese Archipelago, has a sensory organ termed the calceolus on male antenna 2. We described a new endangered freshwater amphipod species, *Jesogammarus* (*Jesogammarus*) *acalceolus* sp. nov., found in a spring in Aomori Prefecture, Japan, which is potentially the sole remaining habitat of this species.

Although the calceolus is thought to be a sensory organ, its function and evolution are not well understood (Lincoln and Hurley 1981; Godfrey et al. 1988; Read and Williams 1990; Dunn 1998). Therefore, the discovery of *J. (J.) acalceolus* sp. nov.,

which lacks calceoli, provides important clues regarding the function and evolution of calceoli. An ancestral reconstruction of calceoli via the molecular phylogenetic tree generated during this study revealed that the common ancestor of *Jesogammarus* possessed calceoli, which were secondarily lost in *J. (J.) acalceolus* sp. nov. (Fig. 2). Since *Jesogammarus* carried calceoli only on the flagellum of antenna 2 of males, it is considered that calceoli have a reproductive function (Bousfield and Shih 1994). Females of amphipods lay eggs just after moulting when the exoskeleton is soft. Therefore, some species display a reproductive behaviour termed "precopula", in which a male holds and guards a female for a couple of days till the female's moulting and subsequent laying eggs. Dunn (1998) reported that calceoli can be used to evaluate the moulting interval of females to find suitable females for mate guarding. In this study, *J. (J.) acalceolus* sp. nov., the males of which lack calceoli, was also found to practice precopulatory guarding, which suggested that calceoli are not always necessary for precopulatory guarding in *J. (J.) acalceolus* sp. nov.

The calceolus is a typically club- or paddle-shaped structure found on the antennae of amphipods (Schmitz 1992). Although structures similar to the calceolus are also found in the antennal articles of Anaspidacea and Mysida, these are not considered to be homologous to amphipod calceoli (Bousfield and Shih 1994). Calceoli are used mainly as a taxonomic character in the higher taxa of amphipods (Lincoln and Hurley 1981; Holsinger 1992; Bousfield and Shih 1994). In Anisogammaridae, the presence or absence of calceoli is used as a genus-level taxonomic feature (Bousfield 1979). However, the molecular phylogenetic tree generated in this study confirmed that the non-calceolate species, J. (J.) acalceolus sp. nov., is nested in Jesogammarus, and not in Anisogammarus, Ramellogammarus or Spasskogammarus, the other Anisogammaridae with non-calceolate species (Fig. 2). These results indicated that the calceolus should no longer be used as a diagnostic feature of Jesogammarus and the genus needs to be redefined. Therefore, in this study, we have amended the diagnosis of Jesogammarus. In Gammarus, the seasonal variation of the presence or absence of calceoli was known (Karaman and Pinkster 1977), but J. (J.) acalceolus sp. nov., lacks calceoli year-round, suggesting that male antenna 2 lacking calceoli is a stable taxonomic feature.

Freshwater amphipods have low dispersal ability, and there thus exists a high tendency for endemic species to be distributed throughout each region (Tomikawa 2017). In addition, our taxonomic studies revealed a considerable presence of *Jesogammarus* fauna in the Japanese Archipelago (Tomikawa and Morino 2003; Tomikawa et al. 2003, 2017; Tomikawa 2015). For these reasons, it is unlikely that *J. (J.) acalceolus* sp. nov. will be found outside type localities, thereby limiting the current habitat of this species to a great extent. In the past, there have been many cold springs in Hirosaki with the type locality of this new species. However, recent, rapid urbanization has led to a depletion of such springs (Sasaki 1995). Besides, the habitat of this species may have been lost due to the disappearance of springs and/or environmental pollution caused by the use of agrochemicals, both of which were associated with apple plantations that flourished in this region. Thus, to conserve what is possibly the only remaining population of *J. (J.) acalceolus* sp. nov., it will be necessary to conduct further investigations into

risk factors and develop a conservation plan with the cooperation of local communities and policymakers. In conclusion, our results indicate that this new species, which is key to clarifying the evolution of the calceolus, is of high conservation significance.

Acknowledgements

We greatly appreciate Dr. Akifumi Ohtaka for his support in field surveys and his continuous support of this study. We thank Dr. Chi-Woo Lee for providing materials of *J.* (*A.*) *koreaensis* and Ryu Uchiyama for providing photographs of specimens of the new species. This work was partly supported by the Japan Society for the Promotion of Science KAKENHI grants JP17K15174 and JP17H00820 to KT.

References

- Balian EV, Segers H, Levéquè C, Martens K (2008) The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627–637. https://doi.org/10.1007/s10750-007-9246-3
- Bousfield EL (1979) The amphipod superfamily Gammaroidea in the northeastern Pacific region: systematics and distributional ecology. Bulletin of the Biological Society of Washington 3: 297–357.
- Bousfield EL (1981) Evolution in North Pacific coastal marine amphipod crustaceans In: Reveal JL, Scudder GGE (Eds) Evolution today, Proceedings of the Second International Congress of Systematic and Evolutionary Biology. Hunt Institute for Botanical Documentation, 68–89.
- Bousfield EL, Morino H (1992) The amphipod genus *Ramellogammarus* in fresh waters of western North America: systematics and distributional ecology. Contributions to Natural Science, British Columbia Museum 17: 1–21.
- Bousfield EL, Shih C (1994) The phylogenetic classification of amphipod crustaceans: problems in resolution. Amphipacifica 1: 76–134.
- Coleman CO (2015) Taxonomy in times of the taxonomic impediment examples from the community of experts on amphipod crustaceans. Journal of Crustacean Biology 35: 729–740. https://doi.org/10.1163/1937240X-00002381
- Collen B, Loh J, Whitmee S, McRae L, Amin R, Baillie JEM (2009) Monitoring change in vertebrate abundance: the Living Planet Index. Conservation Biology 23: 317–327. https://doi.org/10.1111/j.1523-1739.2008.01117.x
- Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Pollock C, Richman NI, Soulsby A, Böhm M (2014) Global patterns of freshwater species diversity, threat and endemism. Global Ecology and Biogeography 23: 40–51. https://doi.org/10.1111/geb.12096
- Costello MJ, Vanhoorne B, Appeltans W (2015) Conservation of biodiversity through taxonomy, data publication, and collaborative infrastructures. Conservation Biology 29: 1094–1099. https://doi.org/10.1111/cobi.12496

- Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological reviews of the Cambridge Philosophical Society 81: 163–182. https://doi.org/10.1017/S1464793105006950
- Dunn AM (1998) The role of calceoli in mate assessment and precopula guarding in *Gammarus*. Animal Behaviour 56: 1471–1475. https://doi.org/10.1006/anbe.1998.0916
- Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.2307/2408678
- Fluker BL, Kuhajda BR, Lang NJ, Harris PM (2010) Low genetic diversity and small long-term population sizes in the spring endemic watercress darter, *Etheostoma nuchale*. Conservation Genetics 11: 2267–2279. https://doi.org/10.1007/s10592-010-0111-y
- Giam X, Scheffers BR, Sodhi NS, Wilcove DS, Ceballos G, Ehrlich PR (2012) Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proceedings of the Royal Society B 279: 67–76. https://doi.org/10.1098/rspb.2011.0433
- Godfrey RB, Holsinger JR, Carson KA (1988) Comparison of the morphology of calceoli in the fresh water amphipods *Crangonyx richmondensis* sens. lat. (Crangonyctidae) and *Gammarus minus* (Gammaridae). Crustaceana Supplement 13: 115–121.
- Holsinger JR (1992) Sternophysingidae, a new family of subterranean amphipods (Gammaridea: Crangonyctoidea) from South Africa, with description of *Sternophysinx calceoli*, new species, and comments on phylogenetic and biogeographic relationships. Journal of Crustacean Biology 12: 111–124. https://doi.org/10.2307/1548726
- Horton, T, Lowry J, De Broyer C, et al. (2021) World Amphipoda Database. http://www.marinespecies.org/amphipoda
- Karaman GS, Pinkster S (1977) Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea–Amphipoda) Part 1. *Gammarus pulex*-group and related species. Bijdragen tot de Dierkunde 47: 1–97. https://doi.org/10.1163/26660644-04701001
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096
- Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296: 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028
- Li Y, Li S, Liu H, Kurenshchikov DK, Hou Z (2020) Eocene-Oligocene sea-level fall drove amphipod habitat shift from marine to freshwater in the Far East. Zoologica Scripta 49: 357–365. https://doi.org/10.1111/zsc.12409
- Lincoln RJ, Hurley DE (1981) The calceolus, a sensory structure of gammaridean amphipods (Amphipoda: Gammaridea). Bulletin of the British Museum, Natural history, Zoology 40: 103–116.
- Macdonald III KS, Yampolsky L, Duffy JE (2005) Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35: 323–343. https://doi.org/10.1016/j.ympev.2005.01.013

- Maddison WP, Maddison DR (2019) Mesquite: a modular system for evolutionary analysis. Version 3.61. http://www.mesquiteproject.org
- Martínuzzí S, Januchowski-Hartley SR, Pracheil BM, McIntyre PB, Plantinga AJ, Lewis DJ, Radeloff VC (2014) Threats and opportunities for freshwater conservation under future land use change scenarios in the United States. Global Change Biology 20: 113–124. https://doi.org/10.1111/gcb.12383
- McKinney M (1999) High rates of extinction and threat in poorly studied taxa. Conservation Biology 13: 1273–1281.
- Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biology 9: e1001127. https://doi.org/10.1371/journal.pbio.1001127
- Morino H (1985) Revisional studies on *Jesogammarus-Annanogammarus* (Gammaroidea: Amphipoda) from central Japan. Publications of Itako Hydrobiological Station 2: 9–55.
- Murphy NP, Adams M, Austin AD (2009) Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia's Great Artesian Basin. Molecular Ecology 18: 109–122. https://doi.org/10.1111/j.1365-294X.2008.04007.x
- Nyman A, Hintermeister H, Schirmer K, Ashauer R (2013) The insecticide imidacloprid causes mortality of the freshwater amphipod *Gammarus pulex* by interfering with feeding behavior. PLoS ONE 8: e62472. https://doi.org/10.1371/journal.pone.0062472
- Palumbi SR (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK (Eds) Molecular Systematics. Second Edition. Sinauer Associates, Inc., 205–247.
- Rambaut A, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2018) Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/sys029
- Read AT, Williams DD (1990) The role of the calceoli in precopulatory behaviour and mate recognition of *Gammarus pseudolimnaeus* Bousfield (Crustacea, Amphipoda). Journal of Natural History 24: 351–359. https://doi.org/10.1080/00222939000770261
- Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden J, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological reviews of the Cambridge Philosophical Society 94: 849–873. https://doi.org/10.1111/brv.12480
- Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
- Sasaki S (1995) Visit to valuable water springs (31) Valuable water springs in Aomori Prefecture. Journal of Groundwater Hydrology 37: 317–328. https://doi.org/10.5917/jagh1987.37.317

- Schmitz EH (1992) Chapter 10: Amphipoda In: Harrison FW, Humes AG (Eds) Microscopic Anatomy of Invertebrates, volume 9 Crustacea. Wiley-Liss, New York, 443–528.
- Schulz R (2003) Using a freshwater amphipod in situ bioassay as a sensitive tool to detect pesticide effects in the field. Environmental Toxicology and Chemistry 22: 1172–1176. https://doi.org/10.1002/etc.5620220529
- Stork NF (1993) How many species are there? Biological Conservation 2: 215–232. https://doi.org/10.1007/BF00056669
- Tomikawa K, Morino H (2003) Two new freshwater species of the genus *Jesogammarus* (Crustacea: Amphipoda: Anisogammaridae) from northern Japan. Zoological Science 20: 229–241. https://doi.org/10.2108/zsj.20.229
- Tomikawa K (2015) A new species of *Jesogammarus* from the Iki Island, Japan (Crustacea, Amphipoda, Anisogammaridae). ZooKeys 530: 15–36. https://doi.org/10.3897/zookeys.530.6063
- Tomikawa K (2017) Species Diversity and Phylogeny of Freshwater and Terrestrial Gammaridean Amphipods (Crustacea) in Japan. In: Motokawa M, Kajihara H (Eds) Species Diversity of Animals in Japan. Springer, 249–266. https://doi.org/10.1007/978-4-431-56432-4_9
- Tomikawa K, Kobayashi N, Mawatari SF (2010) Phylogenetic relationships of superfamily Gammaroidea (Amphipoda) and its allies from Japan. Crustacean Research 39: 1–10. https://doi.org/10.18353/crustacea.39.0_1
- Tomikawa K, Kobayashi N, Morino H (2016) Reassessing the taxonomic subdivision of the *Jesogammarus jesoensis* complex (Crustacea: Amphipoda: Anisogammaridae) in northern and central Japan. Species Diversity 21: 55–64. https://doi.org/10.12782/sd.21.1.055
- Tomikawa K, Morino H, Mawatari SF (2003) A new freshwater species of the genus *Jesogammarus* (Crustacea: Amphipoda: Anisogammaridae) from northern Japan. Zoological Science 20: 925–933. https://doi.org/10.2108/zsj.20.925
- Tomikawa K, Nakano T, Hanzawa N (2017) Two new species of *Jesogammarus* from Japan (Crustacea, Amphipoda, Anisogammaridae), with comments on the validity of the subgenera *Jesogammarus* and *Annanogammarus*. Zoosystematics and Evolution 93: 189–210. https://doi.org/10.3897/zse.93.12125
- Tomikawa K, Tashiro S, Kobayashi N (2012) First record of *Gammarus koreanus* (Crustacea, Amphipoda, Gammaroidea) from Japan, based on morphology and 28S rRNA gene sequences. Species Diversity 17: 39–48. https://doi.org/10.12782/sd.17.1.039
- Tomikawa K, Kobayashi N, Kyono M, Ishimaru S, Grygier MJ (2014) Description of a new species of *Sternomoera* (Crustacea: Amphipoda: Pontogeneiidae) from Japan, with an analysis of the phylogenetic relationships among the Japanese species based on the 28S rRNA gene. Zoological Science 31: 475–490. https://doi.org/10.2108/zs140026
- Väinölä R, Witt JDS, Grabowski M, Bradbury JH, Jazdzewski K, Sket B (2008) Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595: 241–255. https://doi.org/10.1007/s10750-007-9020-6
- Yamamoto S (1994) Volcano slope springs on Mt. Iwaki. Tokyo Seitoku College Bulletin 27: 165–170.