CPE201 Digital Design

By Benjamin Haas

Class 18: Flip-Flops

Vocabulary

- Bistable Multivibrator
 - 2 States
- Synchronous
 - There is a clock
- Clock
 - Signal that alternates H/L at a set interval

Vocab

- Edge Triggered
 - State changes on edg
 - Positive or rising edge

Negative or falling ed

D

D Flip-Flop

(b) *D* = 0 flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

Truth table for a positive edge-triggered D flip-flop.

Inputs		Outputs		
\boldsymbol{D}	CLK	Q	$\overline{oldsymbol{arrho}}$	Comments
0	↑ ↑	0	1 0	RESET SET

↑ = clock transition LOW to HIGH

Example

Edge Detection

Output

Circuit

G₃ and G₄ are NANDs (like from latches)

Circuit Walkthrough

Truth table for a 2-input NAND gate.

Inp	outs	Output		
\boldsymbol{A}	В	X		
0	0	1		
0	1	1		
1	0	1		
1	1	0		

J-K Flip-Flop

• S-R Latch+

Truth table for a positive edge-triggered J-K flip-flop

Inputs			Outputs		
J	K	CLK	Q	$\overline{\mathcal{Q}}$	Comments
0	0	<u> </u>	Q_0	\overline{Q}_0	No change
0	1	\uparrow	0	1	RESET
1	0	\uparrow	1	0	SET
1	1	1	\overline{Q}_0	Q_0	Toggle

 $\uparrow = \text{clock transition LOW to HIGH}$ $Q_0 = \text{output level prior to clock transition}$

Example

Circuit

Asynchronous Set and Reset

- Independent on clock
 - Initialization on startup
 - Override
- Also called Preset and Clear

Circuit

Preset and Clear

- Reaches into the Latch portion of the circuit
- Can also be done in J-K Flip-Flop
- Active Low inputs
 - Normal operation is both high
 - Both low creates latch invalid state

Example

Application – Data Storage

- Parallel storage
- Data on lines stored at each clock
- Covered more later

Application - Frequency Division

- Divide by 2
- Good for running multiple subsystems

Application - Counting

- Like freq division
- Line up the divisic to count in binary CLK
- Counts clock cycle
- J-Ks instead of Ds

Real Chips - 74HC74 and

Single block logic symbol Note: The S and R inside the block indicate that \overline{PRE} SETS and \overline{CLR} RESETS.

Individual logic symbols

Single block logic symbol

The 74HC112 dual negative edge-triggered J-K flip-flop.

Propagation Delays

Setup Time

Data time on the line BEFORE clocking it in

Hold Time

Data time on the line AFTER clocking it in

Reading

- This lecture
 - Sections 7.2-7.4
- Next lecture
 - Sections 7.5-7.7