pumping lemma per CFL

La forma normale di Chomsky (CNF) per le CFG prevede che tutte le produzioni siano:

A -> a, con a in T

A-> BC, con B e C variabili

non c'è ε!!

Teorema. Per ogni CFG G, esiste una CFG G' in CNF tale che $L(G')=L(G)-\{\epsilon\}$

ripuliamo la CFG

- --dai simboli inutili
- --dalle produzioni unitarie, i.e. A->B
- --dalla ε

un simbolo X è <u>utile</u> per una CFG se $S=>* \alpha X \beta =>* w$

un simbolo è generatore se X =>* w

è raggiungibile se $S = *\alpha X \beta$

prima di eliminano i non generatori e poi i non raggiungibili restano solo i simboli utili

esempio:

S-> AB | a

 $A \rightarrow b$

non generatori : B

resta S -> a e A -> b

ma A è diventato non raggiungibile, quindi

resta

S -> a

calcolo dei simboli generatori Π :

-base: i simboli terminali sono generatori, $\prod = T$ -induzione: aggiungiamo a \prod tutte le variabili X t.c. esiste $X \rightarrow \alpha$ in cui α ha solo simboli in \prod

fino a quando ∏ cambia

calcolo dell'insieme Z dei simboli che producono ϵ

base: $X \rightarrow \varepsilon X$ in Z induzione: aggiunguamo a Z ogni Y tale che $Y \rightarrow \alpha$ con i simboli di α tutti in Z

negli alberi di derivazione di una CFG in CNF è vero che se il cammino più lungo è di lunghezza n, allora il prodotto w è t.c. $|w| \le 2^{n-1}$

se m è il numero delle variabili: un almeno con prodotto w t.c. $|w|=2^m$ deve avere un cammino di lunghezza m+1

e allora su quel cammino almeno un terminale ripete

z = uvwxy

ma anche uvⁿwxⁿy, con n>=0, è generabile e quindi è nel linguaggio