数学分析报告 Γ函数的定义与性质探究

XenonWZH

2025年6月26日

摘要

本文通过探究 Γ 函数的定义与性质, 说明了其作为阶乘函数在实数域上延拓的合理性. 首先介绍 Γ 函数的定义及两种等价形式, 包括 Weierstrass 的定义及基于广义积分的形式. 接着推导了 Γ 函数的性质: 非负性, 递推性质, $\log \Gamma(x)$ 的凸性和可导性. 然后推导了 Γ 函数的余元公式和倍元公式, 给出了计算其非整点的值的方案. 最后, 通过证明 Γ 函数在特定条件下的唯一性, 进一步确立了其作为阶乘函数延拓的合理性.

关键词: 数学分析; Γ 函数; 函数项级数

目录 2

目录

1	问题	陈述		3
2	内容分析			
	2.1	等价形	岁式证明	3
		2.1.1	Weierstrass 提出的定义	3
		2.1.2	基于广义积分的形式	4
	2.2	性质挤	系究	4
		2.2.1	非负性	4
		2.2.2	递推性质	5
		2.2.3	凸函数性质	6
		2.2.4	可导性	6
		2.2.5	余元公式	7
		2.2.6	倍元公式	8
	2.3	唯一性	赴证明	9
3	总结	Ī		11

1 问题陈述 3

1 问题陈述

我们知道 Γ 函数有定义

$$\frac{1}{\Gamma(x)} = x \prod_{n=1}^{\infty} \left(1 + \frac{x}{n} \right) \left(1 + \frac{1}{n} \right)^{-x}, \quad \forall x \notin \mathbb{Z}_{\leq 0}.$$
 (1)

该定义很好地体现了其为阶乘函数在 \mathbb{R} 的延拓, 即 $\Gamma(x)$ 在定义域上连续, 且满足 $\Gamma(x) = (x-1)!, \ x \in \mathbb{Z}_{>0}.$

在此,我们将进一步探究该函数的性质,说明其为阶乘函数延拓的合理性,并证明 其的等价形式以解决原本定义难以解决的问题.

2 内容分析

2.1 等价形式证明

我们已经知道了由 Euler 提出的 Γ 函数的定义, 即式 (1). 实际上, 该函数有以下等价形式.

2.1.1 Weierstrass 提出的定义

定义 2.1. 定义 Γ 函数

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^{\infty} \left(1 + \frac{x}{n} \right) e^{-\frac{x}{n}}, \quad \forall x \notin \mathbb{Z}_{\leq 0}.$$
 (2)

其中 γ 为欧拉常数.

证明. 有欧拉常数定义

$$\gamma = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \frac{1}{i} - \log n \right).$$

于是有

$$\log n = \sum_{i=1}^{n} \frac{1}{i} - \gamma + o(1), \quad n \to \infty.$$

带入 (1) 有

$$\frac{1}{\Gamma(x)} = x \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) \left(1 + \frac{1}{n}\right)^{-x}$$

$$= x \lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right) \left(\frac{k+1}{k}\right)^{-x}$$

$$= x \lim_{n \to \infty} (n+1)^{-x} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right)$$

$$= x \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{-x} n^{-x} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right)$$

$$= x \lim_{n \to \infty} \exp(-x \log n) \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right)$$

$$= x \lim_{n \to \infty} \exp\left(-\sum_{i=1}^{n} \frac{x}{i} + \gamma x + o(1)\right) \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right)$$

$$= x \lim_{n \to \infty} e^{o(1)} e^{\gamma x} \left(\prod_{k=1}^{n} e^{-\frac{x}{k}}\right) \left(\prod_{k=1}^{n} \left(1 + \frac{x}{k}\right)\right)$$

$$= x \lim_{n \to \infty} e^{\gamma x} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}$$

$$= x e^{\gamma x} \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) e^{-\frac{x}{n}}.$$

2.1.2 基于广义积分的形式

命题 2.2. Г函数满足

$$\Gamma(s) = \int_0^{+\infty} e^{-x} x^{s-1} \, \mathrm{d}x, \quad \forall s > 0.$$
 (3)

证明见 [1, 308 页].

需要注意该等价形式不能作为 Γ 函数的定义. 该形式的定义域为 $\mathbb{R}_{>0}$, 与 Γ 函数的定义域 $\mathbb{R}\setminus\mathbb{Z}_{\leq 0}$ 不同.

2.2 性质探究

通过 $\Gamma(x)$ 的定义, 我们可推出以下性质.

2.2.1 非负性

命题 2.3. 对任意的 $x \in \mathbb{R}_{>0}$, 均有 $\Gamma(x) > 0$. 且 $\Gamma(1) = 1$.

证明. $\Gamma(x) > 0$ 可由 (1) 直接得出. 且有

$$\frac{1}{\Gamma(1)} = \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) \left(1 + \frac{1}{n} \right)^{-1} = 1.$$

故
$$\Gamma(1) = 1$$
.

利用该性质和以下提到的递推性质, 我们不难推出对任意的 $x \in \mathbb{Z}_{>0}$, 有

$$\Gamma(x) = (x-1)\Gamma(x-1)$$

$$= (x-1)(x-2)\Gamma(x-2)$$

$$= (x-1)(x-2)\cdots 1 \cdot \Gamma(1)$$

$$= (x-1)!.$$

即说明了 $\Gamma(x)$ 在 $\mathbb{Z}_{>0}$ 的限制为 (x-1)!.

2.2.2 递推性质

命题 2.4. 对任意的 $x \notin \mathbb{Z}_{<0}$, 均有 $\Gamma(x+1) = x\Gamma(x)$.

证明. 令

$$\Pi(x) = x\Gamma(x) = \prod_{k=1}^{\infty} \left(1 + \frac{x}{k}\right)^{-1} \left(1 + \frac{1}{k}\right)^{x}.$$

即证 $\Pi(x+1) = (x+1)\Pi(x)$. 有

$$\Pi(x+1) = \prod_{k=1}^{\infty} \left(1 + \frac{x+1}{k}\right)^{-1} \left(1 + \frac{1}{k}\right)^{x+1}$$

$$= \prod_{k=1}^{\infty} \left(1 + \frac{x}{k}\right)^{-1} \left(1 + \frac{1}{k}\right)^{x} \left(\frac{k+1}{k} \cdot \frac{x+k}{x+k+1}\right)$$

$$= \Pi(x) \lim_{n \to \infty} \prod_{k=1}^{n} \frac{k+1}{k} \cdot \frac{x+k}{x+k+1}$$

$$= \Pi(x) \lim_{n \to \infty} \frac{(n+1)(x+1)}{x+n+1}$$

$$= \Pi(x) \lim_{n \to \infty} \frac{(n+1)(x+1) - n(x+1)}{(x+n+1) - (x+n)}$$

$$= (x+1)\Pi(x).$$

该性质与阶乘函数性质 (x+1)! = (x+1)x! 对应, 且在更大的定义域 $\mathbb{R} \setminus \mathbb{Z}_{\geq 0}$ 成立, 进一步说明了其为阶乘函数的延拓的合理性.

2.2.3 凸函数性质

命题 2.5. $\log \Gamma(x)$ 是 $(0,+\infty)$ 上的凸函数.

证明. 由(2)得

$$\log \Gamma(x) = -\left(\log x + \gamma x + \sum_{n=1}^{\infty} \left(\log\left(1 + \frac{x}{n}\right) - \frac{x}{n}\right)\right)$$
$$= \sum_{n=1}^{\infty} \left(\frac{x}{n} - \log\left(1 + \frac{x}{n}\right)\right) - \log x - \gamma x.$$

设 $x \in [a, b] \subseteq (0, +\infty)$, 有 $\frac{x}{n} - \log(1 + \frac{x}{n}) > 0$, 且

$$\sum_{n=1}^{\infty} \left(\frac{x}{n} - \log\left(1 + \frac{x}{n}\right) \right) < \sum_{n=1}^{\infty} \left(\frac{b}{n} - \log\left(1 + \frac{b}{n}\right) \right)$$

$$= \sum_{n=1}^{\infty} \left(\frac{b}{n} - \frac{b}{n} + \frac{b^2}{2n^2} + o\left(\frac{1}{n^2}\right) \right)$$

$$= \frac{b^2}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} + \sum_{n=1}^{\infty} o\left(\frac{1}{n^2}\right)$$

$$= O(1).$$

故该函数项级数内闭一致收敛. 求导得

$$(\log \Gamma(x))' = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{\frac{1}{n}}{1 + \frac{x}{n}} \right) - \frac{1}{x} - \gamma = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{x+n} \right) - \frac{1}{x} - \gamma.$$

设 $x \in [a, b] \subseteq (0, +\infty)$, 有 $\frac{1}{n} - \frac{1}{x+n} > 0$, 且

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{x+n} \right) \le \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+[b]+1} \right) = \sum_{k=1}^{[b]+1} \frac{1}{k} = O(1).$$

故该函数项级数内闭一致收敛. 再次求导得

$$(\log \Gamma(x))'' = \sum_{n=1}^{\infty} \frac{1}{(x+n)^2} + \frac{1}{x^2} > 0.$$
 (4)

故 $\log \Gamma(x)$ 是 $(0, +\infty)$ 上的凸函数.

2.2.4 可导性

命题 2.6. $\Gamma(x)$ 在 $(0,+\infty)$ 任意阶可导.

证明. 由 (4) 得 $(\log \Gamma(x))''$ 为幂级数和初等函数的和, 则 $(\log \Gamma(x))''$ 在 $(0, +\infty)$ 任意 阶可导, 即 $\log \Gamma(x)$ 在 $(0, +\infty)$ 任意阶可导.

则
$$\Gamma(x) = \exp(\log \Gamma(x))$$
 在 $(0, +\infty)$ 任意阶可导.

2.2.5 余元公式

定理 2.7. 设 $x \notin \mathbb{Z}$, 有

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}.$$

证明. 由 [2, 习题 18.3 第 9 题] 知, 对任意的 $x \in \mathbb{R}$ 均有

$$\sin \pi x = \pi x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2} \right).$$

于是原命题即为

$$\frac{1}{\Gamma(x)\Gamma(1-x)} = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right).$$

由(1)得

$$\begin{split} \frac{1}{\Gamma(x)\Gamma(1-x)} &= x \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) \left(1 + \frac{1}{n}\right)^{-x} \cdot (1-x) \prod_{n=1}^{\infty} \left(1 + \frac{1-x}{n}\right) \left(1 + \frac{1}{n}\right)^{x-1} \\ &= x(1-x) \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) \left(1 + \frac{1-x}{n}\right) \left(1 + \frac{1}{n}\right)^{-1} \\ &= x(1-x) \lim_{n \to \infty} \prod_{k=1}^{n} \frac{k+x}{k} \cdot \frac{k+1-x}{k} \cdot \frac{k}{k+1} \\ &= x \lim_{n \to \infty} \frac{1-x}{1} \prod_{k=1}^{n} \frac{k+x}{k} \cdot \frac{k+1-x}{k+1} \\ &= x \lim_{n \to \infty} \frac{n+1-x}{n} \prod_{k=1}^{n} \frac{k+x}{k} \cdot \frac{k-x}{k} \\ &= x \lim_{n \to \infty} \frac{n+1-x}{n} \cdot \lim_{n \to \infty} \prod_{k=1}^{n} \frac{k^2-x^2}{k^2} \\ &= x \lim_{n \to \infty} \prod_{k=1}^{n} \left(1 - \frac{x^2}{n^2}\right) \\ &= x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right). \end{split}$$

利用此公式我们可以计算 $\Gamma\left(\frac{1}{2}\right)$ 的值. 带入 $x=\frac{1}{2}$ 有

$$\Gamma\left(\frac{1}{2}\right)\Gamma\left(1-\frac{1}{2}\right) = \frac{\pi}{\sin\frac{\pi}{2}}.$$

即

$$\Gamma\left(\frac{1}{2}\right)^2 = \pi.$$

由 $\Gamma(x)$ 的非负性得 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. 利用递推性质可求出更多非整点的值.

2.2.6 倍元公式

定理 2.8. 设 $x \notin \mathbb{Z}_{\leq 0}$, 有

$$\Gamma(x)\Gamma\left(x+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2x-1}}\cdot\Gamma(2x).$$

证明. 有 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$, 则原式即为

$$\frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(x)\Gamma\left(x+\frac{1}{2}\right)} = \frac{2^{2x-1}}{\Gamma(2x)}.$$

由(2)得

$$\begin{split} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(x)\Gamma\left(x+\frac{1}{2}\right)} &= \frac{xe^{\gamma x}\prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right)e^{-\frac{x}{n}}\cdot\left(x+\frac{1}{2}\right)e^{\gamma\left(x+\frac{1}{2}\right)}\prod_{n=1}^{\infty}\left(1+\frac{x+\frac{1}{2}}{n}\right)e^{-\frac{x+\frac{1}{2}}{n}}}}{\frac{1}{2}e^{\frac{\gamma}{2}}\prod_{n=1}^{\infty}\left(1+\frac{1}{2n}\right)e^{-\frac{1}{2n}}} \\ &= x(2x+1)e^{2\gamma x}\prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right)e^{-\frac{x}{n}}\cdot\left(1+\frac{2x+1}{2n}\right)e^{-\frac{2x+1}{2n}}}\\ &= x(2x+1)e^{2\gamma x}\prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right)\left[\left(1+\frac{2x+1}{2n}\right)\cdot\frac{2n}{2n+1}\right]e^{-\frac{2x}{n}}}\\ &= x(2x+1)e^{2\gamma x}\prod_{n=1}^{\infty}\left(1+\frac{x}{n}\right)\left(1+\frac{2x}{2n+1}\right)e^{-\frac{2x}{n}}\\ &= x(2x+1)e^{2\gamma x}\prod_{n=1}^{\infty}\left(1+\frac{2x}{2n}\right)e^{-\frac{2x}{2n}}\left(1+\frac{2x}{2n+1}\right)e^{-\frac{2x}{2n+1}}\cdot e^{-2x\left(\frac{1}{2n}-\frac{1}{2n+1}\right)}\\ &= x(2x+1)\left[e^{2\gamma x}\prod_{n=1}^{\infty}\left(1+\frac{2x}{n}\right)e^{-\frac{2x}{n}}\right]\prod_{n=1}^{\infty}e^{-2x\left(\frac{1}{2n}-\frac{1}{2n+1}\right)}\\ &= x(2x+1)\left[e^{2\gamma x}\prod_{n=2}^{\infty}\left(1+\frac{2x}{n}\right)e^{-\frac{2x}{n}}\right]\prod_{n=1}^{\infty}e^{-2x\left(\frac{1}{2n}-\frac{1}{2n+1}\right)}\\ &= \frac{e^{2x}}{2}\left[2xe^{2\gamma x}\prod_{n=1}^{\infty}\left(1+\frac{2x}{n}\right)e^{-\frac{2x}{n}}\right]\prod_{n=1}^{\infty}e^{-2x\left(\frac{1}{2n}-\frac{1}{2n+1}\right)}\\ &= \frac{e^{2x}}{2\Gamma(2x)}\prod_{n=1}^{\infty}e^{-2x\left(\frac{1}{2n}-\frac{1}{2n+1}\right)}\right]. \end{split}$$

2.3 唯一性证明

我们可以证明以下事实.

定理 2.9. 对于 $f: \mathbb{R}_{>0}$, 若其满足:

- 1. 对任意的 x > 0, 均有 f(x) > 0. 且 f(1) = 1;
- 2. f(x+1) = xf(x);
- $3. \log f(x)$ 是凸函数.

则 f(x) 唯一且为 $\Gamma(x)$.

证明. 不难验证 $\Gamma(x)$ 满足上述条件. 故只需证若有函数 f(x) 满足上述条件, 则有 $f(x) = \Gamma(x)$.

由条件 2 得, 对任意的 $n \in \mathbb{Z}_{>0}$, 有

$$g(n+1) = \log f(n+1)$$

$$= \log(nf(n))$$

$$= \log(n \cdot (n-1) \cdot f(n-1))$$

$$= \dots = \log(n(n-1) \cdot \dots \cdot 1 \cdot f(1))$$

$$= \log(n!).$$

且有 $g(1) = \log f(1) = \log 1 = \log(0!)$ 满足上述等式. 则对 $x \in (0,1)$, 有

$$g(x+n+1) = \log f(x+n+1)$$

$$= \log((x+n)f(x+n))$$

$$= \dots = \log((x+n)(x+n-1)\dots xf(x))$$

$$= \log f(x) + \log(x(x+1)\dots (x+n))$$

$$= g(x) + \log(x(x+1)\dots (x+n)).$$

又有
$$n < n + 1 < n + x + 1 < n + 2$$
, 则由条件 3 得

$$\frac{g(n+1) - g(n)}{n+1-n} \le \frac{g(n+x+1) - g(n+1)}{n+x+1 - (n+1)} \le \frac{g(n+2) - g(n+1)}{n+2 - (n+1)}$$

$$\iff \log(n!) - \log((n-1)!) \le \frac{g(n+x+1) - \log(n!)}{r} \le \log((n+1)!) - \log(n!)$$

$$\iff \log n \le \frac{g(n+x+1) - \log(n!)}{x} \le \log(n+1)$$

$$\iff x \log n \le q(n+x+1) - \log(n!) \le x \log(n+1)$$

$$\iff x \log n + \log(n!) \le q(n+x+1) \le x \log(n+1) + \log(n!)$$

$$\iff \log(n^x n!) \le g(x) + \log(x(x+1)\cdots(x+n)) \le \log((n+1)^x n!)$$

$$\iff \log \frac{n^x n!}{x(x+1)\cdots(x+n)} \le g(x) \le \log \frac{(n+1)^x n!}{x(x+1)\cdots(x+n)}.$$

对于右式,有

$$\log \frac{(n+1)^x n!}{x(x+1)\cdots(x+n)} = \log \left[\frac{n^x n!}{x(x+1)\cdots(x+n)} \cdot \left(\frac{n+1}{n}\right)^x \right]$$
$$= \log \frac{n^x n!}{x(x+1)\cdots(x+n)} + x \log \left(1 + \frac{1}{n}\right).$$

有 $\lim_{n\to\infty} x \log(1+\frac{1}{n}) = 0$. 故若 $\lim_{n\to\infty} \log \frac{n^x n!}{x(x+1)\cdots(x+n)}$ 存在,由极限保序性知

$$g(x) = \lim_{n \to \infty} \log \frac{n^x n!}{x(x+1)\cdots(x+n)}.$$

则对于 $x \in (0,1)$, 有

$$f(x) = e^{g(x)} = \lim_{n \to \infty} \exp\left(\log \frac{n^x n!}{x(x+1)\cdots(x+n)}\right) = \lim_{n \to \infty} \frac{n^x n!}{x(x+1)\cdots(x+n)}.$$

又由 (1) 得

$$\Gamma(x) = \frac{1}{x} \prod_{k=1}^{\infty} \left(1 + \frac{x}{k}\right)^{-1} \left(1 + \frac{1}{k}\right)^{x}$$

$$= \frac{1}{x} \lim_{n \to \infty} \prod_{k=1}^{n} \frac{k}{x+k} \left(\frac{k+1}{k}\right)^{x}$$

$$= \frac{1}{x} \lim_{n \to \infty} \frac{(n+1)^{x} n!}{(x+1)(x+2)\cdots(x+n)}$$

$$= \lim_{n \to \infty} \frac{(n+1)^{x} n!}{x(x+1)\cdots(x+n)}$$

$$= \lim_{n \to \infty} \frac{n^{x} n!}{x(x+1)\cdots(x+n)} \cdot \left(\frac{n+1}{n}\right)^{x}$$

$$= \lim_{n \to \infty} \frac{n^{x} n!}{x(x+1)\cdots(x+n)}.$$

故当 $x \in (0,1)$ 时有 $f(x) = \Gamma(x)$. 又有 $f(1) = \Gamma(1) = 1$, 故当 $x \in (0,1]$ 时有 $f(x) = \Gamma(x)$. 则由条件 2 得, 对任意的 $x \in \mathbb{R}_{>0}$, 均有 $f(x) = \Gamma(x)$.

3 总结 11

此定理进一步说明了 $\Gamma(x)$ 作为阶乘函数在实数集的延拓的合理性, 且通过唯一性说明了其为延拓的"唯一选项".

3 总结

综上, 我们得到了 Γ 函数的一些性质, 并论证了其唯一性. 在此, 我们看到了 Γ 作为阶乘函数在实数集延拓的合理性. 通过 Γ 函数及其等价形式, 我们可以解决更多广义积分和函数项级数的问题, 使问题解答更简洁直观. 通过函数性质, 余元公式和倍元公式, 我们可计算 Γ 函数在非整点的值. 同时, Γ 函数本身的性质也说明了其为形态优秀的函数, 可作为例子和有力工具供后续学习使用.

参考文献

- [1] 陆亚明. 数学分析入门 (上册) [M]. 北京: 高等教育出版社, 2022.
- [2] 陆亚明. 数学分析入门 (下册) [M]. 北京: 高等教育出版社, 2023.