Valószínűségszámítás és Statisztika

9. előadás 2020. április 14.

T10G9T

Hipotézisvizsgálat

- H_0 nullhipotézis (jelezni akarjuk, ha nem igaz) $\theta \in \Theta_0$.
- H_1 ellenhipotézis $\theta \in \Theta_1$.
- Elsőfajú hiba: H₀ igaz, de elutasítjuk
- Másodfajú hiba: H₀ hamis, de elfogadjuk

Lehetséges döntések táblázata

		Aktuális helyzet				
		A nullhipotézis igaz	A nullhipotézis hamis			
Döntés	Elfogadjuk a nullhipotézist	Helyes döntés	Másodfajú hiba			
	Elutasítjuk a nullhipotézist	Elsőfajú hiba	Helyes döntés			

Alapfogalmak

- Emlékeztető: X mintatér: a minta lehetséges értékeinek halmaza.
- $\mathbf{X} = \mathbf{X}_e \cup \mathbf{X}_k$
- \mathbf{X}_k : azon lehetséges értékek halmaza, amelyek megfigyelése esetén elutasítjuk a nullhipotézist.
- Gyakran statisztika segítségével határozzuk meg:

$$T(\mathbf{x}) = \begin{cases} 1 & , \mathbf{x} \in \mathbf{X}_k \\ 0 & , \mathbf{x} \notin \mathbf{X}_k \end{cases}$$

Elsőfajú hiba valószínűsége

 α a próba terjedelme, ha minden $\theta \in \Theta_0$ -ra

$$P_{\mathcal{G}}(\xi \in X_k) \leq \alpha$$

 α a próba szignifikanciaszintje

(másképp: a próba pontos terjedelme),

$$\sup_{\mathcal{G}\in\Theta_0} P_{\mathcal{G}}(\xi \in X_k) = \alpha$$

Erőfüggvénye A próba erőfüggvénye

$$\beta(\mathcal{G}) = P_{\mathcal{G}}(\xi \in X_k) = 1 - P_{\mathcal{G}}(\xi \in X_e), \mathcal{G} \in \Theta_1$$

Próbák a normális eloszlás várható értékére: u-próba.

• H_0 : $m=m_0$, H_1 : $m\neq m_0$. Ha ismert a szórás (upróba):

$$U = \sqrt{n} \frac{\bar{X} - m_0}{\sigma}$$

- Kritikus tartomány: $|u| > u_{1-\alpha/2}$. $(u_{1-\alpha/2}$ a standard normális eloszlás $1 \alpha/2$ kvantilise)
- Ha egyoldali az ellenhipotézis, akkor a kritikus tartomány $u > u_{1-\alpha}(m > m_0)$, illetve $u < -u_{1-\alpha}$ alakú $(m < m_0)$. Ezek legerősebb próbák!

Próbák a normális eloszlás várható értékére: t próba.

• H_0 : $m=m_0$, H_1 : $m\neq m_0$. Ha nem ismert a szórás (t-próba):

$$t = \sqrt{n} \, \frac{\overline{X} - m_0}{\hat{\sigma}}$$

ahol

$$\hat{\sigma} = \sqrt{\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2 / (n-1)}$$

- Kritikus tartomány: $|t| > t_{1-\alpha/2} \cdot n-1$.
- H₀ esetén a próbastatisztika n-1 szabadságfokú, t-eloszlású.

Megjegyzések

 Ha egyoldali az ellenhipotézis, akkor a kritikus tartomány

$$t > t_{1-\alpha,n-1}(m > m_0)$$

illetve

$$t < -t_{1-\alpha,n-1}$$
alakú $(m < m_0)$.

Megjegyzések

- Ezek is legerősebb próbák!
- A kétoldali esetre kapott próba nem a legerősebb (ilyenkor nincs is ilyen).
- Ha a minta elemszáma nagy, a t-próba helyett az u-próba is használható (ekkor még a normális eloszlásúságra sincs szükség a centrális határeloszlás tétel miatt).

Kétoldali próbák és konfidencia intervallumok

A normális eloszlásnál a várható értékre vonatkozó
α terjedelmű próbánál láttuk, hogy a

$$H_0$$
: $m = m_0$

hipotézist a

$$H_1$$
: $m \neq m_0$

hipotézissel szemben pontosan akkor fogadjuk el, ha m_0 benne van az $1-\alpha$ megbízhatóságú konfidencia intervallumban.

Kétmintás eset: párosított megfigyelések

Példa: Van-e különbség Budapest és Cegléd napi átlaghőmérséklete között?

$$H_0$$
: $m_1 = m_2$ a nullhipotézis.

Ha ugyanazon napokról van megfigyelésünk mindkét helyen: nem függetlenek a minták. Ekkor a párok tagjai közötti különbséget vizsgálva, az előző egymintás esetre vezethető vissza a feladat.

 H_0^* : m = 0, H_1^* : $m \neq 0$ az új hipotézisek.

Kétmintás eset: független minták

Ha ismert a szórás: (X n elemű, σ_1 szórású, Y k elemű, σ_2 szórású), alkalmazható a kétmintás u-próba

$$u = \frac{\bar{X} - \bar{Y}}{\sqrt{{\sigma_1}^2/n + {\sigma_2}^2/k}}$$

Kritikus tartomány: mint az egymintás esetben

Ha ismeretlenek, de azonosak a szórások:

$$t_{n+k-2} = \sqrt{\frac{nk(n+k-2)}{n+k}} \frac{\bar{X} - \bar{Y}}{\sqrt{\sum (X_i - \bar{X})^2 + \sum (Y_i - \bar{Y})^2}}$$

A szórás vizsgálata kétmintás esetben: F-próba

- H_0 : $\sigma_1 = \sigma_2$
- Két független, n, illetve k elemű normális eloszlású minta alapján a próbastatisztika: (a korrigált tapasztalati $F = \max(\frac{S_1}{S_2}, \frac{S_2}{S_1})$ szórásnégyzetek hányadosa)
- Kritikus érték: az n-1, k-1 szabadságfokú F eloszlás $1-\alpha/2$ kvantilise

(n a számlálóbeli, k pedig a nevezőbeli minta elemszáma).

Kétmintás t-próba ismét

- Alkalmazható, ha az F-próba elfogadja a szórások azonosságát.
- Ha nem, akkor Welch-próba:

$$t' = \frac{\overline{X} - \overline{Y}}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}}$$

 H₀ esetén közelítőleg t eloszlású f szabadságfokkal, ahol

$$\frac{1}{f} = \frac{c^2}{n-1} + \frac{(1-c)^2}{m-1} \qquad c = \frac{s_1^2/n}{s_1^2/n + s_2^2/m}$$

χ-négyzet próba

- H_0 hipotézis: az A_1, A_2, \dots, A_r teljes eseményrendszerre
- teljesül $P(A_1) = p_1, P(A_2) = p_2, ..., P(A_r) = p_r$ A tesztstatisztika: $\sum_{i=1}^{r} \frac{(v_i np_i)^2}{np_i}$
 - ami aszimptotikusan r-1 szabadságfokú χ -négyzet eloszlású, ha igaz a nullhipotézis.
- Kritikus tartomány: ha a statisztika értéke nagyobb, mint az r-1 szabadságfokú χ -négyzet eloszlás $1-\alpha$ kvantilise, elutasítjuk a nullhipotézist.

χ-négyzet próba (folytatás)

Miért is ez a határeloszlás?

r = 2, $H_0: P(A) = p$, v: A gyakorisága n kísérletből

$$\chi^{2} = \frac{(v - np)^{2}}{np} + \frac{((n - v) - n(1 - p))^{2}}{n(1 - p)} = \frac{(v - np)^{2}}{np} + \frac{(v - np)^{2}}{n(1 - p)} = \frac{(v - np)^{2}}{np(1 - p)}$$

 $\xi_i = 1$, ha az i. kísérletnél A bekövetkezik, 0 különben

$$v = \sum_{i=1}^{n} \xi_i, E\xi_i = p, D^2 \xi_i = p(1-p),$$

$$\chi^{2} = \left(\frac{\sum_{i=1}^{n} \xi_{i} - nE\xi_{1}}{\sqrt{nD\xi_{1}}}\right)^{2} \xrightarrow{n \to \infty, \text{eloszlásban}} \chi_{1}^{2}$$

Példa (kockadobás)

36 kockadobás eredménye

Szám	Megfigyelt	npi	$(v_i - np_i)^2$
			np_i
1	8	6	0.667
2	5	6	0.167
3	9	6	1.500
4	2	6	2.667
5	7	6	0.167
6	5	6	0.167

$$n = 36, r = 6$$

$$\sum_{i=1}^{6} \frac{\left(v_i - np_i\right)^2}{np_i} \sim \chi_5^2$$

$$\sum_{i=1}^{6} \frac{(v_i - np_i)^2}{np_i} = 5.333$$

$$P\left(\chi_5^2 > 5.333\right) = 0.377 \Longrightarrow$$

Nem tudjuk a szabályosság hipotézisét elutasítani!

Példa (számítógépek népszerűsége)

100 amerikai diák

Számí- tógép	Megfigyelt	np_i	$\frac{\left(v_i - np_i\right)^2}{np_i}$
IBM	47	33.333	5.604
Macintosh	36	33.333	0.213
Egyéb	17	33.333	8.003

$$n = 100, r = 3$$

$$\sum_{i=1}^{3} \frac{\left(v_i - np_i\right)^2}{np_i} \sim \chi_2^2$$

$$\sum_{i=1}^{3} \frac{\left(v_{i} - np_{i}\right)^{2}}{np_{i}} = 13.820$$

$$P\left(\chi_2^2 > 5.99\right) = 0.05 \Longrightarrow$$

Elutasítjuk az egyforma kedveltség hipotézisét!

χ-négyzet próba illeszkedésvizsgálatra

Illeszkedésvizsgálat:

$$H_0: \xi_1,...,\xi_n$$
 F eloszlásfüggvényűek

Visszavezetjük az előző esetre

$$A_i = \{ \xi \in C_i \}, i = 1, 2, ..., r, \bigcup_i C_i = \mathbf{R}$$

Diszkrét esetben gyakran: $A_i = \{\xi = x_i\}, i = 1, 2, ..., r$

Példa

- Mi lehet egy vezető által okozott károk számának eloszlása?
- Poisson eloszlású-e?

Kár- szám	0	1	2	3	4	5	6	7	>7	Össze- sen
Veze- tők száma	129524	16267	1966	211	31	5	1	1	0	148006

Becsléses χ-négyzet próba

• H_0 hipotézis: az A_1 , A_2 , ..., A_r teljes eseményrendszerre teljesül:

$$P(A_i) = p_i(\theta_1, ..., \theta_s), i = 1, 2, ..., r$$

 $\theta_1, ..., \theta_s$ ismeretlen paraméterek.

A tesztstatisztika:

$$\chi^{2} = \sum_{i=1}^{r} \frac{\left(\nu_{i} - n\hat{p}_{i}\right)^{2}}{n\hat{p}_{i}} \xrightarrow[n \to \infty]{} \chi^{2}_{r-s-1},$$

ahol

$$\hat{p}_i = p_i(\hat{\theta}_1, ..., \hat{\theta}_s).$$

Példa (folyt.)

Kár- szám	0	1	2	3	4	5	6	7	>7	Össze- sen
Veze- tők száma	129524	16267	1966	211	31	5	1	1	0	148006
np _i Poisson	128 433	18 218	1 292	61	2,2	0,06	0,001	3E-05	5E-07	
Np _i Neg. bin.	129 541	16 237	1 962	234	28	3,3	0,39	0,05	0,006	

$$n = 148006, r = 5$$

$$A_i = \{ \xi = i \}, i = 0, 1, 2, 3$$

$$A_4 = \{ \xi \ge 4 \}$$

Poisson eset:

$$\hat{\lambda} = 0.709$$

$$\sum_{i=0}^{4} \frac{\left(\nu_{i} - n\hat{p}_{i}\right)^{2}}{n\hat{p}_{i}} \sim \chi_{5-1-1}^{2}$$

$$\sum_{i=0}^{4} \frac{\left(v_i - n\hat{p}_i\right)^2}{n\hat{p}_i} > 200$$

$$P\left(\chi_3^2 > 17.7\right) = 0.05\% \Longrightarrow$$

Elutasítjuk Poisson eloszlás hipotézisét!