

SEQUENCE LISTING

B
JUN 19 2000
<110> Pinsky, David J.
Stern, David
Rose, Eric
Solomon, Robert A.
Schmidt, Ann Marie

<120> METHODS FOR TREATING AN ISCHEMIC DISORDER AND IMPROVING
STROKE OUTCOME

<130> 51917-B

<140> 09/053,871
<141> 1998-04-01

<160> 22

<170> PatentIn Ver. 2.1

<210> 1
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 1
tacagttcct ctannncccc ctggggtag

29

<210> 2
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of

174

79

the standard amino acids other than serine.

<400> 2

tacagttcct ctannncccc ctggggtaca

30

<210> 3

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 3

tacagttcct ctannncccc ctggggtaca a

31

<210> 4

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 4

gtacagttcc tctannnccc cctggggtag

30

<210> 5

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

Oligonucleotides for producing Factor IXmi.

✓ 79

80

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 5
gtacagttcc tctannnccc cctggggta a

31

<210> 6
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 6
gtacagttcc tctannnccc cctggggta aa

32

<210> 7
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 7
agttacagtt cctctannnc cccctggggta ac

32

<210> 8
<211> 33
<212> DNA
<213> Artificial Sequence

380
81

<220>

<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 8

agttacagtt cctctannnc cccctgggt aca

33

<210> 9

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than serine.

<400> 9

agttacagtt cctctannnc cccctgggt acaa

34

<210> 10

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 10

attcatgtta gtannntaac gcgaagacc

29

<210> 11

781

82

<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 11
attcatgttta gtnnnntaac gcgaagacct 30

<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 12
attcatgttta gtnnnntaac gcgaagacct t 31

<210> 13
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

1582

83

<400> 13

tattcatgtt agtannntaa cgcgaaagacc

30

<210> 14

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 14

tattcatgtt agtannntaa cgcgaaagacc t

31

<210> 15

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 15

tattcatgtt agtannntaa cgcgaaagacc tt

32

<210> 16

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:

183
84

Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 16

ttattcatgt tagtannnta acgcgaagac c

31

<210> 17

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 17

ttattcatgt tagtannnta acgcgaagac ct

32

<210> 18

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>

<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than aspartic acid
and cysteine.

<400> 18

ttattcatgt tagtannnta acgcgaagac ctt

33

<210> 19

184
85

<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotides for producing Factor IXmi.

<220>
<223> NNN=the complement to a DNA codon for any one of
the standard amino acids other than histidine and
cysteine.

<400> 19
ttacatttac gacggnnnac acaactttga cca

33

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:
Oligonucleotide Primer for producing Factor IXmi.

<400> 20
gtacagttcc tctacgaccc cctggggtag

30

<210> 21
<211> 461
<212> PRT
<213> Homo Sapien

<400> 21
Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Gly Leu Ile Thr
1 5 10 15

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu
20 25 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn
35 40 45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys
50 55 60

83
86

Met Glu Glu Lys Cys Ser Phe Glu Glu Ala Arg Glu Val Phe Glu Asn
65 70 75 80

Thr Glu Arg Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln
85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile
100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys
115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe
130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly
145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe
165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala
180 185 190

Glu Thr Val Phe Pro Asp Val Asp Tyr Val Asn Ser Thr Glu Ala Glu
195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Ser Thr Gln Ser Phe Asn Asp Phe
210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp
225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Gly Ser Ile
245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu
275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ile Ile Pro His His Asn
290 295 300

Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu Glu
305 310 315 320

✓ 86
87

Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys Ile
325 330 335

Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly Tyr
340 345 350

Val Ser Gly Trp Gly Arg Val Phe His Lys Gly Arg Ser Ala Leu Val
355 360 365

Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu Arg
370 375 380

Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe His
385 390 395 400

Glu Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His Val
405 410 415

Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp Gly
420 425 430

Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val Ser
435 440 445

Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr
450 455 460

<210> 22

<211> 2775

<212> DNA

<213> Homo Sapien

<400> 22

atgcagcgcg tgaacatgat catggcagaa tcaccaggcc tcatacaccat ctgcctttta 60
ggatatctac tcagtgtcga atgtacagtt tttcttgatc atgaaaacgc caacaaaatt 120
ctgaatcgcc caaagaggta taattcaggt aaatttggaaag agtttgtca agggAACCTT 180
gagagagaat gtatgaaaga aaagtgttagt tttgaaagaag cacgagaagt ttttggaaaac 240
actgaaagaa caactgaatt ttggaaacgag tatgttgatc gagatcagt tgagtccat 300
ccatgtttaa atggccgcag ttgcaggat gacattaatt cctatgaatg ttgggtgtccc 360
tttggatttg aaggaaagaa ctgtgaatta gatgtacat gtaacattaa gaatggcaga 420
tgcgagcagt tttgtaaaaa tagtgcgtat aacaagggtgg tttgccttg tactgaggaa 480
tatcgacttg cagaaaaacca gaagtctgtt gaaccaggcag tgccatttcc atgtggaaaga 540
gtttctgttt cacaacttc taagctcacc cgtgtgaga ctgttttcc tgatgtggac 600
tatgtaaatt ctactgaagc tgaaaccatt ttggataaca tcactcaaag cacccaatca 660
tttaatgact tcactcggtt tggtgggaa gaagatgccaa aaccaggta attcccttgg 720
caggttggtt tgaatggtaa agttgatgca ttctgtggag gctctatcgt taatgaaaaa 780
tggattgtaa ctgtgtccca ctgtgtgaa actgggttta aaattacagt tgtcgcaggt 840

10/87

88

gaacataata ttgaggagac agaacataca gagcaaaagc gaaatgtat tcgaattatt 900
cctcaccaca actacaatgc agctattaat aagtacaacc atgacattgc ccttctggaa 960
ctggacgaac ccttagtgct aaacagctac gttacaccta tttgcattgc tgacaaggaa 1020
tacacgaaca tcttcctcaa atttggatct ggctatgtaa gtggctgggg aagagtcttc 1080
cacaaaggga gatcagctt agttcttcag taccttagag ttccacttgt tgaccgagcc 1140
acatgtcttc gatctacaaa gttcaccatc tataacaaca tttctgtgc tggcttccat 1200
gaaggaggtt gagattcatg tcaaggagat agtgggggac cccatgttac tgaagtggaa 1260
gggaccagtt tcttaactgg aattattagc tggggtaag agtgtgcaat gaaaggcaaa 1320
tatggaatat ataccaaggt atccccgtat gtcactggaa ttaaggaaaa aacaaagctc 1380
acttaatgaa agatggatt ccaaggtaa ttcattggaa ttgaaaatta acagggcctc 1440
tcactaacta atcactttcc catctttgt tagatttcaa tatatacatt ctatgatecat 1500
tgcttttct ctttacaggg gagaatttca tattttacct gagcaaattt attagaaaaat 1560
ggaaccacta gaggaaatata atgtgttagg aaattacagt catttctaag ggcggcggcc 1620
ttgacaaaat tgtgaagttt aattctccac tctgtccatc agataactatg gttctccact 1680
atggcaacta actcactcaa tttccctcc ttagcagcat tccatcttcc cgatcttctt 1740
tgcttctcca accaaaaacat caatgtttat tagttctgtt tacagtacag gatcttttgt 1800
ctactctatc acaaggccag taccacactc atgaagaaag aacacaggag tagctgagag 1860
gctaaaactc atcaaaaaca ctactcctt tctctaccc tattcctcaa tcttttacct 1920
tttccaaatc ccaatccccca aatcaggaaaaat tctctttctt actccctctc tccctttac 1980
cctccatggc cgttaaaggaa gagatggggaa gcatcattct gttatacttc tgtacacagt 2040
tatacatgtc tatcaaaccctt agacttgctt ccatagtgaa gacttgctt tcagaacata 2100
gggatgaagt aagggtgcctg aaaagttgg gggaaaagtt tctttcagag agttaagttt 2160
ttttatatat ataatatata tataaaaatata ataatataca atataaatat atagtgttg 2220
tgtgtatgcg tgtgtgttaga cacacacgca tacacacata taatggaaagc aataagccat 2280
tctaagagct tgtatggta tggaggtctg actaggcatg atttcacgaa ggcaagattt 2340
gcatacattt gtaactaaaa aagctgacat tgacccagac atattgtact ctttctaaaa 2400
ataataataa taatgctaac agaaaagaaga gaaccgttcg tttgcaatct acagctagta 2460
gagactttga ggaagaatttca aacagtgtgt cttcagcagt gttcagagcc aagcaagaag 2520
ttgaagttgc ctagaccaga ggacataagt atcatgtctc ctttaacttag catacccgaa 2580
agtggagaag ggtgcagcag gctcaaaggc ataagtctt ccaatcagcc aactaagttt 2640
tcctttctg gttcgtgtt caccatggaa cattttgatt atagttatc cttctatctt 2700
gaatcttcta gagagttgtt gaccaactga cgtatgtttc ctttttgaa ttaataaact 2760
ggtgttctgg ttcat

2775

11
88
89