Note: Let Γ be an arbitrary indexing set (possibly infinite and possibly uncountable). A collection of subspaces indexed by Γ is $\{U_{\gamma} \mid \gamma \in \Gamma, U_{\gamma} \text{ is a subspace of } V\}$.

1. (§1.C #11) Prove that the intersection of every collection of subspaces of V is a subspace of V.

Definition:

We say that a vector space V is the direct sum of subspaces U_1, \ldots, U_n if the following hold true:

- (a) $U_i \neq \{0\}$ for each i = 1, ... n.
- (b) $U_i \cap (U_1 + \dots U_{i-1} + U_{i+1} + \dots U_n) = \{0\}$ for $i = 1, \dots n$.
- (c) $V = U_1 + \ldots + U_n$.

Denote this by $V = U_1 \oplus \ldots \oplus U_n$.

2. Prove the following theorem.

Theorem 0.1. If $U_1, \ldots U_n$ are non-trivial subspaces of V, then

$$V = U_1 \oplus \ldots \oplus U_n$$

if and only if every $v \in V$ has a unique representation of the form

$$v = u_1 + \ldots + u_n$$

where $u_i \in U_i$ for each i = 1, ..., n.

- 3. (§2.A # 14) Prove that V is infinite dimensional if and only if there is a sequence v_1, v_2, \ldots of vectors in V such that v_1, \ldots, v_m is linearly independent for every positive integer m.
- 4. ($\S 2.A \# 16$) Prove that the real vector space of all continuous real-valued functions on [0,1] is infinite dimensional.

5. (§2.B # 8) Suppose that U and W are subspaces of V such that $V = U \oplus W$. Suppose also that u_1, \ldots, u_m is a basis of U and w_1, \ldots, w_n is a basis of W. Prove that

$$u_1,\ldots u_m,w_1,\ldots,w_n$$

is a basis of V.