Basic Counting Principle Combinatorics

Bongobondhu Sheikh Mujibur Rahman Science and Technology University

14 April, 2020

Fulfilment

1 5.1

2 5.2

Now we on...

1 5.1

2 5.2

Product Rule

- Product Rule
- Sum Rule

- Product Rule
- Sum Rule

Product Rule: Suppose that a procedure can be broken down into a sequence of two tasks. If there are n_1 ways to do the first task and for each of these ways of doing the first task, there are n_2 ways to do the second task, then there are $n_1 n_2$ ways to do the procedure.

- Product Rule
- Sum Rule

Product Rule: Suppose that a procedure can be broken down into a sequence of two tasks. If there are n_1 ways to do the first task and for each of these ways of doing the first task, there are n_2 ways to do the second task, then there are $n_1 n_2$ ways to do the procedure.

Sum Rule: If a task can be done either in one of n_1 ways or in one of n_2 ways, where none of the set of n_1 ways is same as the any of set n_2 ways. Then there are $n_1 + n_2$ ways to do the task.

Inclusion-Exclusion Principle

Suppose that a task can be done in n_1 ways or in n_2 ways, but that some of the set of n_1 ways is same as some of the set of n_2 ways.

To correctly count the ways to do the two task:

We add

• The number of ways to do it in one way

then subtract.

So. . .

The number of ways to do the task in a way that is both among the set of n_1 ways and the set of n_2 ways.

This technique is called Inclusion-Exclusion.

Inclusion-Exclusion Principle

Suppose that a task can be done in n_1 ways or in n_2 ways, but that some of the set of n_1 ways is same as some of the set of n_2 ways.

To correctly count the ways to do the two task:

We add

- The number of ways to do it in one way
- The number of ways to do it in another way

then subtract.

So. . .

The number of ways to do the task in a way that is both among the set of n_1 ways and the set of n_2 ways.

This technique is called Inclusion-Exclusion.

Now we on...

1 5.1

2 5.2

The pigeonhole principle

Let's consider that, there are 10 pigeon and 9 pigeonhole at your home. So, there must a hole that contains two pigeon.

The pigeonhole principle

Let's consider that, there are 10 pigeon and 9 pigeonhole at your home. So, there must a hole that contains two pigeon.

W.	
	()

The pigeonhole principle

Let's consider that, there are 10 pigeon and 9 pigeonhole at your home. So, there must a hole that contains two pigeon.

W.	

Principle:

k is a positive integer. There are n objects (n > k) placed in k boxes, then there are at least one box containing two or more objects.

Corollary 1

A function (f) from set with k+1 of more elements to a set of k elements, not one-to-one.

Proof: We can proof this by pigeonhole principle. Suppose elements of x is pigeon(Domain), y elements are pigeonhole(Co-domain). Then there are at least one pigeonhole(Co-domain) that contains more than one element. That's mean, the function is not one - to - one.

Generalized Pigeonhole Principle

If N objects are placed into K boxes, then there is at least one box that containing at least ceil(N/K) elements.

Generalized Pigeonhole Principle

If N objects are placed into K boxes, then there is at least one box that containing at least ceil(N/K) elements.

Pohela Boishakh