American Airlines

FLIGHT PATH

Flight Delay and Customer Experience Analysis for Operational Efficiency and Satisfaction

FLIGHT PATH

Deployment of Flight Delay Prediction System

AGENDA

- About the Project
- Feature Selection
- Model Development and Evaluation

- Gradio Interface
 Overview
- Deployment Workflow
- Results and Insights

About the Project

Brief overview of the goal: Predicting flight delays for American Airlines and Delta.

Objective: Minimize delays by providing actionable insights.

Key Focus: Machine learning-based prediction system deployed via Gradio.

Data Overview

Data source: Flight delay data extracted from Bureau of Transportation and Statistics, U.S. From **2014 to 2023**.

Comparison: American Airlines and Delta in 5 major US airports (ATL, ORD, DFW, DEN, LAX).

Baseline Model

- Feature Engineering and Selecting relevant features for regression.
- Train a Regression Model (RF).
- Evaluate the Model.

Feature Selection

Feature Selection

Selected Features

Date-related: "Day", "Month", "Year".

Operational Times: Taxi-Out time, Taxi-In time, Scheduled Elapsed Time.

Delay & Schedule: Departure delay, Scheduled departure hour.

Categorical: Origin Airport, Carrier Code.

Model Overview

Final Models Used:

- MLP Neural Network (deep learning approach).
- XGBoost (traditional tree-based method).
- Approach: Multiple Models run in Pycaret.

PyCaret \(\)

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
xgboost	Extreme Gradient Boosting	5.2643	52.3456	7.2348	0.5792	0.6705	0.8301
lightgbm	Light Gradient Boosting Machine	5.5776	57.0497	7.5529	0.5414	0.6945	0.8660
rf.	Random Forest Regressor	5.7253	59.7534	7.7298	0.5197	0.7107	0.8855
et	Extra Trees Regressor	5.7157	59.8784	7.7378	0.5187	0.7127	0.8857
gbr	Gradient Boosting Regressor	6.1442	67.2644	8.2013	0.4593	0.7275	0.9586

MLP Model

- Architecture: Multi-layer perceptron with several hidden layers.
- Large dataset: With 200K+ records, deep learning models benefit from more data and generalize better.
- Optimized: Regression tasks.

MLP Model Performance

Comparing Model Performance

Train MAE **5.11**

Test MAE

5.17

Train MAE

3.67

Test MAE

4.9

R² Train **0.63**

R² Test

0.63

R2 Train

0.79

R2 Test

0.63

MLP Model Evaluation

Consistent Generalization (Not Overfitting)

The train and test metrics are very close, especially R² (both **~0.63**) and MAE.

Prediction are accurate within the 95% Confidence Interval of ±14.18 min

95% Confidence Interval

Deployment Goals

Deliver a **user-friendly** interface for non-technical users.

Provide **real-time** predictions of flight arrival delays.

Offer actionable insights and recommendations for airlines.

User enters flight details System process data and apply models **Predictions and Insights displayed** in real-time

Gradio Interface Overview

Web-based application to interact with the models.

Input Fields:

- Flight date, taxi-out time, taxi-in time, etc.
- Dropdowns for selecting airport and carrier.

Output Fields:

- Predicted arrival delay, best and worst reviews.
- Al-generated operational recommendations.

User enters flight details

System processes the data, applies the models

Predictions and insights are displayed in real-time

Sentiment Analysis

- Best Comment
- Trip Verified | Arrived at airport to find a 2 hour delay which is going to make us miss our connecting flight from Chicago, house sitter. Guess no picnics for memorial day.
- Worst Comment

Not Verified | Rebooked my flight from Lubbock to Dallas stranding me in Dallas overnight. Fargo has very few flights from I

Real-time Prediction

Predicts the flight arrival delay with a **95%** confidence interval and expected error.

Confidence intervals provide clear expectations for delays.

Real-time Prediction

Al-based Recommendations

AI-Generated Recommendation

- Decrease the Departure Delay: Departure delay contributes significantly to the overall delay. In this case, it is 15 minutes aircraft.
- 2. Improving Taxi-Out Time: The taxi-out time, which is the time from gate departure to take-off, is 10 minutes. This duration
- 3. Realistic Scheduling: The scheduled elapsed time should be realistic and account for any possible contingencies. If the s

Overall, these changes require an integrated effort involving ground staff, flight crews, maintenance teams, as well as bette

Thank you!