Title

Dynamic response spectrum analysis of a 2-D, 3-story plane frame

Description

Assume that each floor is a rigid diaphragm.

Calculate the natural periods.

Perform a dynamic response spectrum analysis.

Determine the displacements at each floor and the reaction forces.

- · Rigid diaphragm at each floor
- · Master nodes: 3, 5 and 7

Structural geometry and analysis model

Model

Analysis Type

2-D response spectrum analysis

Unit System

in, kip

Dimension

Span 36×12 in Height 36×12 in Floor mass $M = 0.4 \text{ kips} \cdot \text{sec}^2/\text{in}$ Damping ratio $\xi = 0.05 (5 \%)$ Gravitational acceleration $g = 386.4 \text{ in/sec}^2$

Response spectrum data El Centro N-S component

Element

Beam element

Material

Modulus of elasticity E = 29500 ksi

Section Property

Columns Area $A = 1.0 \times 10^7 \text{ in}^2$

Moment of inertia $I_{vv} = 999.0 \text{ in}^4$

Beams Height H = 24.0 in

Moment of inertia $I_{vv} = 1.0 \times 10^9 \text{ in}^4$

Boundary Condition

Nodes 1 and 2 ; Constrain Dy, Dz and Rx.

Nodes 3, 5 and 7 ; Constrain Dy of all nodes at each floor to these nodes. (Master

nodes)

Analysis Case

Floor masses are assigned to the master nodes of each floor in the Y direction.

The response spectrum data of the EI Centro N-S component are imposed in the Y direction.

Number of natural frequencies to be computed = 3

Results

Eigenvalue Analysis Results

Node	Mode	U	x	U	Y	U	Z	R	×	R	Y	R	Z
EIGENVALUE ANALYSIS													
	Mode	Frequ		uency		Per	iod	Tolerance					
	No	(rad/	sec)	(cycle	/sec) (sec)		ance						
	1	10	,829931	1	,723637		,580169	7,26	98e-016				
	2	30	,344815	4	,829527		,207060	3,53	11e-014				
	3	43	,849568	ε	,978875		,143290	1,17	31e-013				
				MODAL	PARTIC	IPATION	MASSE	S(%) PR	INTOUT				
	Mode	TRAN-X		TRAN-Y		TRA	N-Z	ROT	N-X	ROT	N-Y	ROT	N-Z
	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
	1	0,00	0,00	91,41	91,41	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2	0,00	0,00	7,49	98,90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	3	0,00	0,00	1,10	100,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
					ΕI	GEN V	ECT	O R					

Displacements

	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
•	1	RY	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000
	2	RY	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000	0,0000000
	3	RY	0,0000000	1,5858575	1,0645275	5,9706375	0,0000000	0,0000000
	4	RY	0,0000000	1,5858575	1,0645275	5,9706375	0,0000000	0,0000000
	5	RY	0,0000000	2,8451981	1,5836307	4,1994856	0,0000000	0,0000000
	6	RY	0,0000000	2,8451981	1,5836307	4,1994856	0,0000000	0,0000000
	7	RY	0,0000000	3,5474620	1,7214968	1,5834502	0,0000000	0,0000000
	8	RY	0,0000000	3,5474620	1,7214968	1,5834502	0,0000000	0,0000000

Reaction Forces

Node	Load	FX (kip)	FY (kip)	FZ (kip)	MX (kip·in)	MY (kip·in)	MZ (kip·in)
1	RY	0,000000	187,821111	218,080154	13523,132188	0,000000	0,000000
2	RY	0,000000	187,821111	218,080154	13523,132188	0,000000	0,000000
		SUN	MMATION OF REA	ACTION FORCES	PRINTOUT		
	Load	FX (kip)	FY (kip)	FZ (kip)			
	RY	0,000000	375,642222	0,000000			

Comparison of Results

Natural periods

Unit: sec

Mode	Natural period				
Mode	Theoretical	MIDAS/Civil			
1 st	0.5802	0.5802			
2^{nd}	0.2071	0.2071			
3 rd	0.1433	0.1433			

Displacements and Reaction Forces

Unit : in, kip-in

			Omt.m, kip-m
Division	1	Theoretical	MIDAS/Civil
B: 1	$3^{\rm rd}$	3.547	3.547
Displacement at each level	2^{nd}	2.845	2.845
at each level	1 st	1.586	1.586
Reaction moment	Node 1	13523.1	13523.1

References

Przemieniecki, J.S., "Theory of Matrix Structural Analysis", McGraw-Hill, 1968.

Paz, M., "Structural Dynamics, Theory and Computations", Van Nostrand Reinhold, 1985.

Wilson, E. L., Kiureghian, A. D., and Bayo, E. P., "A Replacement for the SRSS Method in Seismic Analysis", Earthquake Engineering and Structural Dynamics, Vol. 9, 1981.

Response Spectrum Data

