CE3-08 - Process Model Solution and Optimization

Problem Sheet for Topic #2

1. The bisection method is a slow, yet simple and robust, method for solving scalar nonlinear equations. In this question, you are to develop and test an implementation of this method. Consider the following incomplete MATLABTM function, named (bisection.m), which is inspired from the bisection method algorithm on Slide #9 of Lecture 2. (This incomplete m-file is given on Blackboard.)

```
_ bisection.m _
 1
                      function xm = bisection( f, xl, xu, eps, maxit )
 2
 3
                      % STEP O: INITIALIZATION
 4
                      fl = f(xl);
                      fu = f(xu);
 5
                                                                                                                % <- TO BE COMPLETED
                      if(
 6
                                                                                                                % <- TO BE COMPLETED
 7
                      end
 8
 9
                      % DISPLAY
10
                      fprintf( '%4s %12s %12s %12s %12s %12s %12s \n',...
11
12
                                                'it','xl','xm','xu','f(xl)','f(xm)','f(xu)','err');
13
                      % MAIN LOOP
14
                      for it = 0:
                                                                                                               % <- TO BE COMPLETED
15
16
                                   if( it>0 )
17
                                               xm0 = xm;
18
                                   end
19
20
                                   % STEP 1: CALCULATE MID-POINT
21
22
                                   xm =
                                                                                                               % <- TO BE COMPLETED
                                  fm =
                                                                                                                % <- TO BE COMPLETED
23
24
                                   % DISPLAY
25
                                   if( it==0 )
26
                                               fprintf( '%4d %12.4e %12.4e %12.4e %12.4e %12.4e \n',...
27
                                               it+1, xl, xm, xu, fl, fm, fu );
28
                                   else
29
                                               fprintf( '%4d %12.4e %12.4e %12.4e %12.4e %12.4e %12.4e \%12.4e \%12.4
30
                                               it+1, xl, xm, xu, fl, fm, fu, abs((xm-xm0)/xm));
31
32
33
                                   \% STEP 2a: ROOT TO THE LEFT OF xm
34
                                                                                                               % <- TO BE COMPLETED
                                   if(
35
                                                                                                                % <- TO BE COMPLETED
36
                                               xu =
                                                                                                                % <- TO BE COMPLETED
                                               fu =
37
38
                                   % STEP 2b: ROOT TO THE RIGHT OF xm
39
40
41
                                               x1 =
                                                                                                                % <- TO BE COMPLETED
42
                                               fl =
                                                                                                                % <- TO BE COMPLETED
                                   end
```

The input arguments of this function are as follows:

- f, the nonlinear function to be solved, $f(x^*) = 0$
- x1, a lower bound on the actual root, $x_{\ell}^{(0)} < x^*$
- xu, an upper bound on the actual root, $x_{\rm u}^{(0)} > x^*$
- eps, the user tolerance for terminating the iterations, $\left|f(x_{\mathrm{m}}^{(k)})\right| < \epsilon_{\mathrm{tol}}$
- maxit, the maximum allowed number of iterations

On successful completion, xm should contain an estimate of the root $x_{\rm m} \approx x^*$ within the specified tolerance $\epsilon_{\rm tol}$.

- (a) Complete the foregoing m-file implementing to bisection method.
- (b) Debug and test your m-file by considering the same problem as on slide #10 of Lecture 2:

Find x such that
$$\exp(x) = 2 - x$$
, for $x \in [0, 1]$

2. The Ergun equation

$$\frac{\Delta P \, \rho}{G_0^2} \frac{D_p}{L} \frac{\epsilon^3}{1 - \epsilon} = 150 \frac{1 - \epsilon}{\frac{D_p \, G_0}{\mu}} + 1.75$$

is used to describe the flow of a fluid through a packed bed. In this equation, ΔP stands for the pressure drop, ρ for the density of the fluid, G_o for the mass velocity (i.e., the mass flow rate divided by cross-sectional area), D_p for the diameter of the particles within the bed, μ for the fluid viscosity, L for the length of the bed, and ϵ for the void fraction of the bed.

In this problem, you are to find the void fraction of the bed, given the dimensionless quantities $\frac{D_p G_o}{\mu} = 1000$ and $\frac{\Delta P \rho D_p}{G_o^2 L} = 20$.

(a) In Matlab, plot the function

$$f(\varepsilon) = \frac{\Delta P \rho}{G_o^2} \frac{D_p}{L} \varepsilon^3 - 150 \frac{(1-\varepsilon)^2}{\frac{D_p G_o}{\mu}} - 1.75(1-\varepsilon),$$

for the void fraction $\varepsilon \in [0, 1]$.

(b) By inspection, choose an interval $[\varepsilon_{\ell}, \varepsilon_{\rm u}]$, of width $\varepsilon_{\rm u} - \varepsilon_{\ell} = 0.2$, bracketing the actual root ε^* to the Ergun equation.

- (c) Apply the **bisection method** to get a coarse estimate of the root ε^* . Start from the interval $[\varepsilon_{\ell}, \varepsilon_{\rm u}]$ chosen previously and perform 4 iterations only. Report **all** your intermediate calculations as well as the final root estimate—denoted by $\varepsilon^{(0)}$ subsequently.
- (d) Refine the estimate of the root ε^* by applying the **Newton-Raphson method**. Use the value $\varepsilon^{(0)}$ obtained previously as the initial guess and perform 3 iterations. Report **all** your intermediate calculations as well as the final root estimate. Compare this estimate with the root on your graph.
- (e) Repeat Question 2(d) by applying the **secant method**, in lieu of the Newton-Raphson method. In particular, use the value $\varepsilon^{(0)}$ obtained previously as the initial guess, along with the extra initial point $\varepsilon^{(-1)} = \varepsilon^{(0)} + 0.01$, and perform 3 iterations.
- (f) Check your results by comparing with Matlab's fzero function.
- 3. Newton's method is the basis for many advanced numerical methods for solution of nonlinear equations and optimization problems. The following Matlab function, named (newton.m), provides a basic implementation of this method (see Slide #38 of Lecture 2):

```
_ newton.m _
      function [x, f, it] = newton( g, dg, xini, eps, maxit )
1
2
      it = 0;
3
      x = xini;
4
      f = g(x);
      df = dg(x);
6
7
      fprintf('iter
                      ||dx||
                                   ||f(x)||\n');
8
      fprintf(',4d
                               - %11.4e\n', it, norm(f));
9
10
      while( norm(f) > eps && it <= maxit )</pre>
11
          x0 = x;
12
13
          dx = - df \setminus f;
14
          x = x0 + dx;
15
          f = g(x);
          df = dg(x);
16
          it = it+1;
^{17}
18
          fprintf('%4d %11.4e %11.4e\n', it, norm(dx), norm(f) );
19
      end
20
      end
21
```

The input arguments to this function are as follows:

- g , the vector-valued function calculating the residual of the nonlinear equation
- \bullet $\, dg$, the matrix-valued function calculating the Jacobian of the residual function
- xini, the initial guess
- eps, the user tolerance for terminating the iterations
- maxit, the maximum allowed number of iterations

On successful completion, the function returns:

- x, an (approximate) solution to the system of nonlinear equations
- f, the residual value at the approximate solution
- it, the iteration count

Consider the following system of nonlinear equation:

$$\begin{cases} 2(x_2)^2 \cos(x_1) + x_1 = 1\\ x_2 - 2 \exp(x_1) = 2 \end{cases}$$

(a) Perform 3 iterations by hand of Newton's method, starting from the initial point $x_1^{(0)}=x_2^{(0)}=0$.

Hint: Use Matlab's left division operator in your calculations of the Newton step $\Delta x!$

- (b) Check your results with the m-file newton.m above.
- (c) Compare the solution given by newton.m with the results of Matlab's intrinsic function fsolve. What is happening? Repeat the comparison for different initial points.
- (d) Modify the m-file newton.m to implement a simple linesearch (see Slides # 40 and #47 of Lecture 2). Call the new m-file newtonvar.m.
- (e) Test your new m-file newtonvar.m for the above example. Compare its behavior and performance with that of newton.m and fsolve.
- (f) Modify the m-file newtonvar.m to implement the Levenberg-Marquardt method (see Slides # 42-43 of Lecture 2). Call the new m-file levenberg.m. For simplicity, use a fixed relaxation parameter λ , which should be added to the list of input arguments of the function.
- (g) Test your new m-file levenberg.m for the above example. Compare its behavior and performance with that of newtonvar.m (after selecting the Levenberg-Marquardt algorithm).