# ¿Cómo realizar la limpieza y análisis de datos?

Autores: Eduardo Mora González y Diego Sánchez De La Fuente

### Enero 2023

## Contents

| CARGA DEL FICHERO DE DATOS                                                    | 1        |
|-------------------------------------------------------------------------------|----------|
| Preprocesado y gestión de características                                     | <b>2</b> |
| Valores nulos del conjunto de los datos                                       | 2        |
| Normalización del conjunto de los datos                                       | 3        |
| body { text-align: justify}                                                   |          |
| Instalamos y cargamos las librerías necesarias.                               |          |
| <pre>if (!require('readr')) install.packages('readr'); library('readr')</pre> |          |

## CARGA DEL FICHERO DE DATOS

```
datos <- read_csv("./fichero_original_datos.csv")</pre>
```

Ahora vamos a ver las estructura del juego de datos

#### str(datos)

```
## spec_tbl_df [918 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                  : num [1:918] 40 49 37 48 54 39 45 54 37 48 ...
## $ Sex
                    : chr [1:918] "M" "F" "M" "F" ...
## $ ChestPainType : chr [1:918] "ATA" "NAP" "ATA" "ASY" ...
##
   $ RestingBP : num [1:918] 140 160 130 138 150 120 130 110 140 120 ...
  $ Cholesterol : num [1:918] 289 180 283 214 195 339 237 208 207 284 ...
##
  $ FastingBS
                    : num [1:918] 0 0 0 0 0 0 0 0 0 ...
##
  $ RestingECG
                    : chr [1:918] "Normal" "Normal" "ST" "Normal" ...
  $ MaxHR
                    : num [1:918] 172 156 98 108 122 170 170 142 130 120 ...
##
   $ ExerciseAngina: chr [1:918] "N" "N" "N" "Y" ...
  $ Oldpeak : num [1:918] 0 1 0 1.5 0 0 0 0 1.5 0 ...
$ ST_Slope : chr [1:918] "Up" "Flat" "Up" "Flat" ...
##
                    : chr [1:918] "Up" "Flat" "Up" "Flat" ...
## $ ST Slope
## $ HeartDisease : num [1:918] 0 1 0 1 0 0 0 0 1 0 ...
  - attr(*, "spec")=
     .. cols(
##
```

```
Age = col_double(),
##
         Sex = col_character(),
##
         ChestPainType = col_character(),
##
##
         RestingBP = col_double(),
         Cholesterol = col_double(),
##
##
         FastingBS = col_double(),
         RestingECG = col_character(),
         MaxHR = col_double(),
##
         ExerciseAngina = col_character(),
##
##
         Oldpeak = col_double(),
         ST_Slope = col_character(),
         HeartDisease = col_double()
##
##
   - attr(*, "problems")=<externalptr>
```

Vamos ahora a sacar estadísticas básicas

### summary(datos)

| ## | Age              | Sex              | ${\tt ChestPainType}$ | RestingBP         |
|----|------------------|------------------|-----------------------|-------------------|
| ## | Min. :28.00      | Length:918       | Length:918            | Min. : 0.0        |
| ## | 1st Qu.:47.00    | Class :character | Class :character      | 1st Qu.:120.0     |
| ## | Median :54.00    | Mode :character  | Mode :character       | Median :130.0     |
| ## | Mean :53.51      |                  |                       | Mean :132.4       |
| ## | 3rd Qu.:60.00    |                  |                       | 3rd Qu.:140.0     |
| ## | Max. :77.00      |                  |                       | Max. :200.0       |
| ## | Cholesterol      | FastingBS        | RestingECG            | MaxHR             |
| ## | Min. : 0.0       | Min. :0.0000     | Length:918            | Min. : 60.0       |
| ## | 1st Qu.:173.2    | 1st Qu.:0.0000   | Class :character      | 1st Qu.:120.0     |
| ## | Median :223.0    | Median :0.0000   | Mode :character       | Median :138.0     |
| ## | Mean :198.8      | Mean :0.2331     |                       | Mean :136.8       |
| ## | 3rd Qu.:267.0    | 3rd Qu.:0.0000   |                       | 3rd Qu.:156.0     |
| ## | Max. :603.0      | Max. :1.0000     |                       | Max. :202.0       |
| ## | ExerciseAngina   | Oldpeak          | ST_Slope              | HeartDisease      |
| ## | Length:918       | Min. :-2.600     | 00 Length:918         | Min. :0.0000      |
| ## | Class : characte | r 1st Qu.: 0.000 | 00 Class :characte    | er 1st Qu.:0.0000 |
| ## | Mode :characte   | r Median : 0.600 | 00 Mode :characte     | er Median :1.0000 |
| ## |                  | Mean : 0.887     | 74                    | Mean :0.5534      |
| ## |                  | 3rd Qu.: 1.500   | 00                    | 3rd Qu.:1.0000    |
| ## |                  | Max. : 6.200     | 00                    | Max. :1.0000      |

## Preprocesado y gestión de características

## Valores nulos del conjunto de los datos

De tipo numérico

### colSums(is.na(datos))

| ## | Age | Sex | ${\tt ChestPainType}$ | RestingBP | Cholesterol |
|----|-----|-----|-----------------------|-----------|-------------|
| ## | 0   | 0   | 0                     | 0         | 0           |

| ## | FastingBS | RestingECG   | MaxHR | ExerciseAngina | Oldpeak |
|----|-----------|--------------|-------|----------------|---------|
| ## | 0         | 0            | 0     | 0              | 0       |
| ## | ST_Slope  | HeartDisease |       |                |         |
| ## | 0         | 0            |       |                |         |

De tipo cadena

| colSums(datos=="") |           |                   |               |                |             |  |  |
|--------------------|-----------|-------------------|---------------|----------------|-------------|--|--|
| ##                 | Age       | Sex               | ChestPainType | RestingBP      | Cholesterol |  |  |
| ##                 | 0         | 0                 | 0             | 0              | 0           |  |  |
| ##                 | FastingBS | ${	t RestingECG}$ | MaxHR         | ExerciseAngina | Oldpeak     |  |  |
| ##                 | 0         | 0                 | 0             | 0              | 0           |  |  |
| ##                 | ST_Slope  | HeartDisease      |               |                |             |  |  |
| ##                 | 0         | 0                 |               |                |             |  |  |

Como se puede comprobar, tenemos la "suerte" de no tener ningún valor nulo o vacío en los dos juegos de datos.

## Normalización del conjunto de los datos

### • EDAD

#Histograma de la característica edad del primer conjunto de datos h1 <- hist(datos\$Age, xlab="Edad", col="ivory", ylab="Cantidad", main="EDAD ", ylim = c(0, 225), xlim = text(h1\$mids,h1\$counts,labels=h1\$counts, adj=c(0.5, -0.5))

## **EDAD**



Como se puede observar, la franja de entre los 50 y 60 años son donde más datos existen, mientras que los extremos donde menos datos.

#### • SEXO

Normalizamos para tenerlo de tipo numérico todas la variables

```
#Cambiamos las letras por los números
datos$Sex [datos$Sex == "M"] <- 1
datos$Sex [datos$Sex == "F"] <- 0

#Pasamos de carácter a numérico
datos$Sex <- as.numeric(datos$Sex)</pre>
```

Una vez normalizada la característica , analizamos el conjunto de los datos contemplados en esta.

```
h1 <- hist(datos$Sex, xlab="Sexo", col=c("ivory", "lightcyan"), ylab="Cantidad", main="SEXO", breaks =
text(h1$mids,h1$counts,labels=h1$counts, adj=c(0.5, -0.5))
axis(1, at =c(0.25, 0.75), cex.axis=1, labels = c("Mujeres", "Hombres"))
axis(2)</pre>
```

