Assignment 6: Solutions

Virat Chauhan

December 21, 2024

Solution 1:

Problem Statement: Let $f: X \to Y$ be a continuous map of topological spaces, and $\mathscr{G} \in Sh_Y$. Then the inverse image $f^{-1}\mathscr{G}$ of \mathscr{G} is the sheaf on X obtained from the fibre-product $X \times_Y \mathscr{E}(\mathscr{G})$ consisting of points $(x,e) \in X \times \mathscr{E}(\mathscr{G})$ such that $f(x) = \pi_{\mathscr{G}}(e)$, where $\pi = \pi_{\mathscr{G}} : \mathscr{E}(\mathscr{G}) \to Y$ is the standard projection map. The space $X \times \mathscr{E}(\mathscr{G})$ is given the product topology, and $X \times_Y \mathscr{E}(\mathscr{G})$ the subspace topology. It is easy to see that the natural map $X \times_Y \mathscr{E}(\mathscr{G}) \to X$ makes $X \times_Y \mathscr{E}(\mathscr{G})$ into an étale space over X and hence gives a sheaf, which we denote $f^{-1}\mathscr{G}$. Equivalently, consider the presheaf $f^{\#}\mathscr{G}$ given by

$$U \mapsto \varinjlim_{V \supseteq f(U)} \mathscr{G}(V),$$

where the direct limit is taken over open subsets V of Y containing f(U). Then $f^{-1}\mathscr{G}$ is the sheafification of $f^{\#}\mathscr{G}$. It is not hard to show that f^{-1} is a left adjoint to f_* , i.e. one has a bifunctorial isomorphism

$$\operatorname{Hom}_{\operatorname{Sh}_{\mathsf{Y}}}(f^{-1}\mathscr{G},\mathscr{H})\cong \operatorname{Hom}_{\operatorname{Sh}_{\mathsf{Y}}}(\mathscr{G},f_{*}\mathscr{H}).$$

The (easy) details may be found in

https://www.cmi.ac.in/~pramath/random_notes/upper-lower-star.

- 1. Let $f: X \to Y$ be a continuous map of topological spaces.
 - (a) Show that f^{-1} is exact. Using this, show that $f_*\mathscr{E}$ is an injective sheaf on Y if \mathscr{E} is injective on X.
 - (b) Given $x \in X$ and y = f(x), show that for any sheaf \mathscr{G} on Y, there is a functorial map $\mathscr{G}_y \to (f^{-1}\mathscr{G})_x$.
 - (c) Show that a map of ringed spaces $(f, f^{\#}): (X, \mathscr{A}) \to (Y, \mathscr{B})$ is equivalent to the data (f, f^{\flat}) with $f^{\flat}: f^{-1}\mathscr{B} \to \mathscr{A}$ a map of sheaves of rings. Show further that if (X, \mathscr{A}) and (Y, \mathscr{B}) are locally ringed spaces, then $(f, f^{\#})$ is a map of locally ringed spaces if and only if for every $x \in X$, with y = f(x), the composite

$$\mathscr{B}_y \to (f^{-1}\mathscr{B})_x \xrightarrow{f_x^{\flat}} \mathscr{A}_x$$

is a local homomorphism.

Solution: (a) The functor f^{-1} is defined as the composition of:

• *f*[#]: A presheaf functor given by

$$f^{\#}\mathscr{G}(U) = \underset{V \supseteq f(U)}{\underline{\lim}} \mathscr{G}(V),$$

where $U \subset X$ is open and V ranges over open neighborhoods of f(U) in Y,

• Sheafification of the resulting presheaf, denoted as $f^{-1}\mathcal{G}$.

To show that f^{-1} is exact, we use the characterization of exactness in Sh_X . A complex

$$\mathscr{F} \to \mathscr{G} \to \mathscr{H}$$

is exact at \mathcal{G} if and only if for all $x \in X$, the complex of stalks

$$\mathscr{F}_{\mathtt{Y}} o \mathscr{G}_{\mathtt{Y}} o \mathscr{H}_{\mathtt{Y}}$$

is exact at \mathcal{G}_{χ} .

The stalks of $f^{-1}\mathcal{G}$ at $x \in X$ are given by

$$(f^{-1}\mathscr{G})_x = \varinjlim_{V\ni f(x)} \mathscr{G}(V),$$

where the direct limit is taken over open neighborhoods V of f(x). Thus, for a complex of sheaves $0 \to \mathscr{G}' \to \mathscr{G} \to \mathscr{G}'' \to 0$ on Y, the exactness of the stalks

$$\mathscr{G}'_y \to \mathscr{G}_y \to \mathscr{G}''_y$$

at y = f(x) implies the exactness of the complex

$$(f^{-1}\mathcal{G}')_x \to (f^{-1}\mathcal{G})_x \to (f^{-1}\mathcal{G}'')_x$$

at x.

Since f^{-1} preserves the stalkwise exactness of the complex, f^{-1} is exact.

Suppose \mathscr{E} is an injective sheaf on X. We want to show that $f_*\mathscr{E}$ is injective on Y.

Let $0 \to \mathcal{G}' \to \mathcal{G} \to \mathcal{G}'' \to 0$ be a short exact sequence on Y. To prove the injectivity of $f_*\mathcal{E}$, we need to show that:

$$0 \to \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}', f_*\mathscr{E}) \to \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}, f_*\mathscr{E}) \to \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}'', f_*\mathscr{E}) \to 0$$

is exact.

By the adjunction property of f^{-1} and f_* , we have:

$$\operatorname{Hom}_{Sh_{Y}}(\mathscr{G}, f_{*}\mathscr{E}) \cong \operatorname{Hom}_{Sh_{X}}(f^{-1}\mathscr{G}, \mathscr{E}).$$

Since \mathscr{E} is injective, the sequence:

$$0 \to \operatorname{Hom}_{\operatorname{Sh}_{\mathbf{X}}}(f^{-1}\mathscr{G}',\mathscr{E}) \to \operatorname{Hom}_{\operatorname{Sh}_{\mathbf{X}}}(f^{-1}\mathscr{G},\mathscr{E}) \to \operatorname{Hom}_{\operatorname{Sh}_{\mathbf{X}}}(f^{-1}\mathscr{G}'',\mathscr{E}) \to 0$$

is exact.

Therefore, the adjunction ensures that:

$$0 \to \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}', f_*\mathscr{E}) \to \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}, f_*\mathscr{E}) \to \operatorname{Hom}_{\operatorname{Sh}_Y}(\mathscr{G}'', f_*\mathscr{E}) \to 0$$

is also exact, proving that $f_*\mathscr{E}$ is injective.

(b) Let $x \in X$ and y = f(x). The stalk of a sheaf $\mathscr G$ on Y at y is given by

$$\mathscr{G}_{y} = \varinjlim_{y \in V} \mathscr{G}(V),$$

where V ranges over all open neighborhoods of y, and $\mathscr{G}(V)$ is the set of sections of \mathscr{G} over V. An element $g \in \mathscr{G}_y$ is represented by a family of sections $g_V \in \mathscr{G}(V)$, with g_V restricting to $g_{V'}$ whenever $V' \subseteq V$.

The stalk of the pullback sheaf $f^{-1}\mathcal{G}$ at $x \in X$ is given by

$$(f^{-1}\mathscr{G})_x = \varinjlim_{x \in U} f^{-1}\mathscr{G}(U),$$

where *U* ranges over all open neighborhoods of *x*. Since $f^{-1}\mathcal{G}$ is defined by

$$f^{-1}\mathscr{G}(U) = \lim_{V \supseteq f(U)} \mathscr{G}(V),$$

we have

$$(f^{-1}\mathscr{G})_x = \varinjlim_{V \ni f(x)} \mathscr{G}(V).$$

Given $g \in \mathcal{G}_y$, represented by sections $g_V \in \mathcal{G}(V)$, there exists a natural map to $(f^{-1}\mathcal{G})_x$. For any open set U containing x, where $f(U) \subseteq V$, the section g_V determines a corresponding element in $f^{-1}\mathcal{G}(U)$. Taking the direct limit over all $U \ni x$, this defines an element in $(f^{-1}\mathcal{G})_x$.

This process defines a map

$$\mathcal{G}_y \to (f^{-1}\mathcal{G})_x$$

where each $g \in \mathcal{G}_y$ is sent to its corresponding element in $(f^{-1}\mathcal{G})_x$. The map is functorial because it respects the restriction of sections. If $g_V \in \mathcal{G}(V)$ restricts to $g_{V'} \in \mathcal{G}(V')$ for $V' \subseteq V$, the corresponding elements in $(f^{-1}\mathcal{G})_x$ are consistent. Moreover, the map respects morphisms of sheaves: for any morphism $\phi : \mathcal{G} \to \mathcal{H}$, the diagram

$$\mathcal{G}_{y} \longrightarrow (f^{-1}\mathcal{G})_{x}$$

$$\downarrow^{\phi_{y}} \qquad \qquad \downarrow^{f^{-1}\phi_{x}}$$

$$\mathcal{H}_{y} \longrightarrow (f^{-1}\mathcal{H})_{x}$$

commutes.

Thus, for any sheaf \mathcal{G} on Y, there exists a natural, functorial map

$$\mathscr{G}_y \to (f^{-1}\mathscr{G})_x$$
.

(c)

A ringed space (X, \mathscr{A}) consists of a topological space X equipped with a sheaf of rings \mathscr{A} . A morphism of ringed spaces $(f, f^{\sharp}) : (X, \mathscr{A}) \to (Y, \mathscr{B})$ consists of:

1. A continuous map
$$f: X \to Y$$
,

2. A morphism of sheaves of rings $f^{\#}: \mathscr{B} \to f_{*}\mathscr{A}$,

where $f_* \mathscr{A}$ is the pushforward sheaf on Y.

Using the adjunction between f^{-1} and f_* , a morphism of sheaves $\mathscr{B} \to f_*\mathscr{A}$ is equivalent to a morphism $f^{-1}\mathscr{B} \to \mathscr{A}$ on X. Concretely, the adjunction provides a bijection:

$$\operatorname{Hom}_{\operatorname{Sh}(Y)}(\mathscr{B}, f_*\mathscr{A}) \cong \operatorname{Hom}_{\operatorname{Sh}(X)}(f^{-1}\mathscr{B}, \mathscr{A}).$$

Thus, given $f^{\sharp}: \mathscr{B} \to f_{*}\mathscr{A}$, we obtain a unique map $f^{\flat}: f^{-1}\mathscr{B} \to \mathscr{A}$, and conversely, given f^{\flat} , we can construct f^{\sharp} .

The data of (f, f^{\sharp}) is therefore equivalent to the data of (f, f^{\flat}) , where $f^{\flat}: f^{-1}\mathscr{B} \to \mathscr{A}$ is a morphism of sheaves of rings.

For locally ringed spaces, recall that (X, \mathscr{A}) is a ringed space such that at every point $x \in X$, the stalk \mathscr{A}_x is a local ring. A morphism of locally ringed spaces $(f, f^{\#})$: $(X, \mathscr{A}) \to (Y, \mathscr{B})$ must satisfy the condition that the induced map on stalks:

$$f_x^{\#}:\mathscr{B}_{f(x)}\to\mathscr{A}_x$$

is a local homomorphism of rings. To verify this condition, consider the composite map:

$$\mathscr{B}_{y} \to (f^{-1}\mathscr{B})_{x} \to \mathscr{A}_{x},$$

where y = f(x), \mathcal{B}_y is the stalk of \mathcal{B} at y, and $(f^{-1}\mathcal{B})_x$ is the stalk of $f^{-1}\mathcal{B}$ at x.

The first map $\mathscr{B}_y \to (f^{-1}\mathscr{B})_x$ is the natural map from the stalk of \mathscr{B} at y to the stalk of the pullback sheaf $f^{-1}\mathscr{B}$ at x. The second map $(f^{-1}\mathscr{B})_x \to \mathscr{A}_x$ is induced by $f^{\flat}: f^{-1}\mathscr{B} \to \mathscr{A}$ on stalks. The composite:

$$\mathscr{B}_{y} \to (f^{-1}\mathscr{B})_{x} \to \mathscr{A}_{x}$$

must be a local homomorphism, meaning: 1. $f_x^\#$ maps the maximal ideal $m_{\mathscr{B}_y}$ of \mathscr{B}_y into the maximal ideal $m_{\mathscr{A}_x}$ of \mathscr{A}_x , 2. The induced map on residue fields is well-defined.

Since the composite $\hat{\mathscr{B}}_y \to \mathscr{A}_x$ factors through $(f^{-1}\mathscr{B})_x$, the condition that $f_x^{\#}$ is a local homomorphism is equivalent to the map:

$$\mathscr{B}_{y} \to (f^{-1}\mathscr{B})_{x} \to \mathscr{A}_{x}$$

being a local homomorphism.

A morphism of ringed spaces (f, f^{\sharp}) is therefore equivalent to the data (f, f^{\flat}) , where $f^{\flat}: f^{-1}\mathscr{B} \to \mathscr{A}$ is a morphism of sheaves of rings. For locally ringed spaces, the condition that (f, f^{\sharp}) is a morphism of locally ringed spaces is equivalent to requiring that for every $x \in X$, with y = f(x), the composite:

$$\mathscr{B}_y \to (f^{-1}\mathscr{B})_x \to \mathscr{A}_x$$

is a local homomorphism of rings.

Solution 2:

The tensor product of sheaves of modules and the upper-star functor. Let (X, \mathcal{O}_X) be a ringed space, and let $\mathscr{F}, \mathscr{G} \in \operatorname{Mod}_{\mathscr{O}_X}$. We have a presheaf $\mathscr{F}^P \otimes_{\mathscr{O}_X} \mathscr{G}$ given by:

$$U \rightsquigarrow \mathscr{F}(U) \otimes_{\mathscr{O}_{\mathbf{X}}(U)} \mathscr{G}(U),$$

where U is an open subset of X. The tensor product $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G}$ is defined as the sheafification of $\mathscr{F}^p \otimes_{\mathscr{O}_X} \mathscr{G}$. Note that $\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G} \in \operatorname{Mod}_{\mathscr{O}_X}$.

Combining the universal property of sheafifications and the universal property of tensor products, we see that there is a universal \mathcal{O}_X -bilinear map:

$$\mathscr{F} \times \mathscr{G} \to \mathscr{F} \otimes_{\mathscr{O}_{\mathbf{X}}} \mathscr{G}$$
,

which is $\mathscr{O}_X(U)$ -bilinear over each open set $U \subseteq X$. This satisfies the following universal property: if $\mathscr{F} \times \mathscr{G} \to \mathscr{H}$ is a bilinear map of \mathscr{O}_X -modules, then there is a unique map:

$$\mathscr{F}\otimes_{\mathscr{O}_{\mathbf{Y}}}\mathscr{G}\to\mathscr{H}$$
,

in $Mod_{\mathscr{O}_X}$, such that the bilinear map factors through:

$$\mathscr{F} \times \mathscr{G} \xrightarrow{\text{universal}} \mathscr{F} \otimes_{\mathscr{O}_{\mathbf{X}}} \mathscr{G} \to \mathscr{H}.$$

If $f:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a map of ringed spaces, and $\mathscr{G}\in \operatorname{Mod}_{\mathscr{O}_Y}$, we define:

$$f^*\mathscr{G}=f^{-1}\mathscr{G}\otimes_{f^{-1}\mathscr{O}_Y}\mathscr{O}_X,$$

where \mathcal{O}_X is an $f^{-1}\mathcal{O}_Y$ -algebra via $f^{\#}$. Note that f^* is right exact but need not be exact. It is easy to see that:

$$\operatorname{Hom}_X(f^*\mathscr{G},\mathscr{H}) \cong \operatorname{Hom}_Y(\mathscr{G},f_*\mathscr{H}),$$

where $\operatorname{Hom}_X(-,-)$ is the Hom functor in $\operatorname{Mod}_{\mathscr{O}_X}$.

Problem Statement 2: Let $X = \operatorname{Spec} B$, $Y = \operatorname{Spec} A$, $f : X \to Y$ a map of schemes, and M an A-module. Show that $f^*\widetilde{M}$ is the sheafification of $M \otimes_A B$.

Solution: Let $f: X \to Y$ be a morphism of schemes, where $X = \operatorname{Spec}(B)$ and $Y = \operatorname{Spec}(A)$, and let M be an A-module. We aim to show that $f^*\widetilde{M}$ is the sheafification of $M \otimes_A B$.

Recall that for any morphism of schemes $f: X \to Y$, the pullback of a quasi-coherent sheaf \mathscr{F} on Y is defined as:

$$f^*\mathscr{F}=f^{-1}\mathscr{F}\otimes_{f^{-1}\mathscr{O}_Y}\mathscr{O}_X.$$

In our case, $\mathscr{F} = \widetilde{M}$, where \widetilde{M} is the quasi-coherent sheaf on $Y = \operatorname{Spec}(A)$ associated to the A-module M. Thus, we have:

$$f^*\widetilde{M} = f^{-1}\widetilde{M} \otimes_{f^{-1}\mathscr{O}_Y} \mathscr{O}_X.$$

The structure sheaf \mathcal{O}_Y on Y corresponds to the ring A, and \mathcal{O}_X on X corresponds to B. Under the equivalence of categories $Qcoh(Spec(A)) \simeq Mod(A)$, the sheaf \widetilde{M} corresponds to M, and for affine schemes, we identify:

$$\Gamma(U,\widetilde{M})=M\otimes_A\Gamma(U,\mathscr{O}_Y),$$

where $U \subseteq Y$ is an open affine subset. Pulling back to X, we have:

$$f^*\widetilde{M} = \widetilde{M \otimes_A B}.$$

To justify this isomorphism rigorously, note that f^* satisfies the adjunction:

$$\operatorname{Hom}_X(f^*\widetilde{M},\mathscr{G}) \cong \operatorname{Hom}_Y(\widetilde{M},f_*\mathscr{G}),$$

where \mathscr{G} is any \mathscr{O}_X -module. Under the equivalence $\mathsf{Qcoh}(\mathsf{Spec}(A)) \simeq \mathsf{Mod}(A)$ and $\mathsf{Qcoh}(\mathsf{Spec}(B)) \simeq \mathsf{Mod}(B)$, this adjunction corresponds to the usual adjunction between scalar restriction and scalar extension of modules:

$$\operatorname{Hom}_B(M \otimes_A B, N) \cong \operatorname{Hom}_A(M, N),$$

where N is a B-module.

Therefore, $f^*\widetilde{M} \cong M \otimes_A B$ as desired.

Solution 3:

Problem Statement 3: Suppose X is a scheme and \mathscr{A} a sheaf of \mathscr{O}_X -algebras on X such that, as an \mathscr{O}_X -module, \mathscr{A} is quasi-coherent. Show that there is an X-scheme $\mathbf{Spec}(\mathscr{A})$ such that the structure morphism $\Phi: \mathbf{Spec}(\mathscr{A}) \to X$ is an affine map, and such that $\Phi_*\mathscr{O}_{\mathbf{Spec}(\mathscr{A})}$ is canonically isomorphic to \mathscr{A} . Show further that the canonical map $\Phi^\#:\mathscr{O}_X\to v_*\mathscr{O}_{\mathbf{Spec}(\mathscr{A})}$ is, under this identification, the algebra map $\mathscr{O}_X\to\mathscr{A}$. Conversely, if $\Psi:S\to X$ is an affine map of schemes, show that $\mathbf{Spec}(\Psi_*\mathscr{O}_S)$ is canonically isomorphic to S and that under this identification, the structure map $\mathbf{Spec}(\Psi_*\mathscr{O}_S)\to X$ agrees with Ψ .

Solution: On any affine open subset $U \subseteq X$, we know that $\mathscr{A}|_U$ corresponds to a quasi-coherent $\mathscr{O}_X(U)$ -algebra $A = \mathscr{A}(U)$. The existence of Spec A as a scheme over U follows from the affine case. Using the uniqueness of gluing for quasi-coherent sheaves, we can construct a scheme $\mathbf{Spec}(\mathscr{A})$ that locally corresponds to $\mathbf{Spec}(A)$. Thus, we obtain a scheme $\mathbf{Spec}(\mathscr{A})$ equipped with a canonical structure morphism

$$\Phi : \mathbf{Spec}(\mathscr{A}) \to X$$
,

where Φ is affine because it is locally the spectrum of a ringed space over Spec A. For the first part, the pushforward of the structure sheaf satisfies

$$\Phi_*\mathscr{O}_{\mathbf{Spec}(\mathscr{A})}(U) = \mathscr{O}_{\mathbf{Spec}(\mathscr{A})}(\Phi^{-1}(U)) = A = \mathscr{A}(U).$$

Hence, $\Phi_*\mathscr{O}_{\mathbf{Spec}(\mathscr{A})}\cong \mathscr{A}$. The canonical map $\Phi^\#:\mathscr{O}_X\to \Phi_*\mathscr{O}_{\mathbf{Spec}(\mathscr{A})}$, under this identification, is the natural algebra homomorphism $\mathscr{O}_X\to \mathscr{A}$, which satisfies the required compatibility conditions.

For the converse, let $\Psi: S \to X$ be an affine morphism of schemes. Then, the pushforward sheaf $\Psi_* \mathscr{O}_S$ is a quasi-coherent \mathscr{O}_X -algebra. Locally, on an affine subset $U = \operatorname{Spec} B \subseteq X$, we have $S|_U \cong \operatorname{Spec} A$ for $A = \Psi_* \mathscr{O}_S(U)$. By the uniqueness of affine schemes associated with quasi-coherent algebras, we obtain a canonical isomorphism

$$\mathbf{Spec}(\Psi_*\mathscr{O}_S)\cong S.$$

Under this identification, the structure map $\mathbf{Spec}(\Psi_*\mathscr{O}_S) \to X$ agrees with Ψ , as both maps locally correspond to the ring homomorphisms induced by the algebra structure of $\Psi_*\mathscr{O}_S$ over \mathscr{O}_X .