Exercícios - Cálculo IV - Aula 12 - Semana 09/11 - 13/11 Séries de Fourier

1 Introdução às Séries de Fourier

Uma série de Fourier é uma série do tipo

$$s(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx) + \sum_{n=1}^{+\infty} b_n \sin(nx)$$

em que $\{a_n\}$ e $\{b_n\}$ são sequências numéricas reais. As sequências $\{a_n\}$ e $\{b_n\}$ são chamadas de **coeficientes de Fourier da série**.

De forma geral, vamos inicialmente estudar os seguintes problemas e suas consequências:

- 1) Qual tipo de função pode ser escrita como uma série de Fourier?
- 2) Dada uma função $f:I\to\mathbb{R}$ como encontrar seus coeficientes de Fourier?
- 3) Quais propriedades (contínua, derivável, integrável, etc) tem uma série de Fourier?

Para iniciar esse estudo vamos lembrar alguns resultados do cálculo e da álgebra linear.

Deste ponto em diante vamos estar considerando que as funções estarão definidas em **intervalos simétricos pela origem** do tipo I = [-L, L] ou (-L, L) ou \mathbb{R} , para algum L > 0. Em outras palavras, isso significa que I tem a propriedade de simetria:

$$x \in I \Rightarrow -x \in I$$
.

Por exemplo, os conjuntos [-1,1], $(-\pi,\pi)$, ou \mathbb{R} têm essa propriedade. Para verificar isso no intervalo [-1,1] lembre que $[-1,1]=\{x\in\mathbb{R}:|x|\leq 1\}$. Logo,

por definição, $x \in [-1,1]$ se e somente se $|x| \le 1$. Portanto, se $x \in [-1,1]$ temos que $|-x| = |x| \le 1$ e segue que $-x \in [-1,1]$.

Definição. Seja I um intervalo simétrico pela origem e $f:I\to\mathbb{R}$ uma função. Diremos que:

- (i) f é par se, para todo $x \in I$ temos que f(-x) = f(x);
- $(i)\ f$ é ímpar se, para todo $x\in I$ temos que f(-x)=-f(x). Em particular, f(0)=0.

Exercício. Para cada função abaixo considere que seu domínio seja algum intervalo simétrico pela origem I. Mostre que:

- i) as funções $g_0(x) = c$ -constante, $g_1(x) = |x|, g_2 = x^2$ e $g(x) = \cos(x)$ são funções pares.
 - ii) as funções $h_1(x) = x$, $h_2(x) = x^3$, $h_3(x) = \sin(x)$ são funções impares.
- iii) se f e g forem funções pares, então f.g e f+g são também funções pares.
- iv) se f e g forem funções ímpares, então f.g é uma função par e f+g é uma função ímpar.
 - v) se f for par e g for impar, então f.g é função impar.

Observação. Considerado o sistema de coordenadas retangulares xOy no plano cartesiano, obtemos geometricamente que o gráfico de uma função par é simétrico com respeito ao eixo Oy, e da função ímpar é simétrico com relação a origem (0,0).

Exercício. Dada $f:[-L,L] \to \mathbb{R}$ uma função contínua.

a) Se
$$f$$
 for par, então $\int_{-L}^{L} f(x)dx = 2 \int_{0}^{L} f(x)dx$;

b) Se
$$f$$
 for impar, então $\int_{-L}^{L} f(x)dx = 0$.

Vamos lembrar também as seguintes fórmulas trigonométricas que vão ser importantes:

Exercício. Mostre que:

c) $2\cos(\alpha).\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta)$. Em particular, $2\cos^2(\alpha) = 1 + \cos(2\alpha)$;

d) $2\sin(\alpha) \cdot \sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$. Em particular, $2\sin^2(\alpha) = 1 - \cos(2\alpha)$;

Utilize essas fórmulas trigonométricas para resolver o seguinte exercício.

Exercício. Nos problemas abaixo considere que p e q são inteiros positivos:

a)
$$\int_0^{2\pi} \cos(px)dx = 0$$
, b) $\int_0^{2\pi} \sin(px)dx = 0$,

c)
$$\int_0^{2\pi} \cos(px) \cos(qx) dx = \begin{cases} 0, & \text{se } p \neq q \\ \pi, & \text{se } p = q \end{cases}$$

d)
$$\int_0^{2\pi} \sin(px) \sin(qx) dx = \begin{cases} 0, & \text{se } p \neq q \\ \pi, & \text{se } p = q \end{cases}$$

***** Lembrete da Álgebra Linear *****

Considere o intervalo J=[-L,L], para algum $0 < L \le \infty$. Vamos lembrar da álgebra linear que o espaço vetorial de todas as funções $\mathcal{F}(J)=\{f:J\to\mathbb{R}\}$ pode ser decomposto como **soma direta de dois subespaços vetoriais** $\mathcal{F}(J)=\mathcal{F}_P(J)\oplus\mathcal{F}_I(J)$ em que $\mathcal{F}_P(J)=\{g:J\to\mathbb{R},g$ é função par $\}$ e $\mathcal{F}_I(J)=\{h:J\to\mathbb{R},h$ é função ímpar $\}$. Consequentemente, dada qualquer função $f\in\mathcal{F}(J)$ existem únicas funções $g\in\mathcal{F}_P(J)$ e $h\in\mathcal{F}_I(J)$ tal que para cada $x\in J$ segue que f(x)=g(x)+h(x). Ou seja, a função pode ser escrita de forma única como soma de uma função par e uma função ímpar.

Suponha que uma série de Fourier $s(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx) + \sum_{n=1}^{+\infty} b_n \sin(nx)$ seja convergente em todo ponto de um intervalo simétrico pela origem I, logo podemos definir a função $s: I \to \mathbb{R}, x \mapsto s(x)$. Além disso, vamos assumir que no mesmo intervalo I as séries $\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx)$ e $\sum_{n=1}^{+\infty} b_n \sin(nx)$ também sejam convergentes.

Então, a série s(x) pode ser decomposta como soma de duas séries: uma série de funções pares $\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx)$, e uma série de funções ímpares $\sum_{n=1}^{+\infty} b_n \sin(nx)$.

Essa observação vai nos ajudar nos cálculos dos coeficientes de Fourier a

seguir.

2 Coeficientes de Fourier da série

Dada uma função $f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx) + \sum_{n=1}^{+\infty} b_n \sin(nx)$. Como podemos encontrar os coeficientes de Fourier a_n e b_n ?

Exercício. Considere que a série de Fourier f(x) acima possa ser integrada termo a termo. Mostre que $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$ para todo $n \geq 0$, e $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$, $n \geq 1$. (Dica: se tiver dúvidas assista a vídeo aula 3/5 da semana).

Exemplo. Encontre a série de Fourier da função $f: [-\pi, \pi] \to \mathbb{R}$, f(x) = x. Vamos lembrar que f é uma função impar, logo $a_n = 0$ para todo $n \ge 0$. Então, basta calcular os coeficientes $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx$, para todo $n \ge 1$. Usando **integração por partes** conclua que $b_n = \frac{2(-1)^{n+1}}{n}$ e, consequentemente, a série de Fourier de f(x) = x para $x \in [-\pi, \pi]$ é dada por $s(x) = \sum_{n=1}^{+\infty} \frac{2(-1)^{n+1}}{n} \sin(nx)$.

Exemplo. Encontre a série de Fourier da função $f: [-\pi, \pi] \to \mathbb{R}$, $f(x) = x^2$. Lembre que sendo f agora uma função par, então $b_n = 0$ para todo $n \ge 1$. Resta encontrar os coeficientes $a_n, n \ge 0$. Por cálculo direto obtemos que $a_0 = \frac{2\pi^2}{3}$ e $a_n = \frac{4(-1)^n}{n^2}, n \ge 1$, portanto a série de Fourier de f é dado por $s(x) = \frac{\pi^2}{3} + \sum_{n=1}^{+\infty} \frac{4(-1)^n}{n^2} \cos(nx)$.

3 Convergência da série de Fourier

Definição. Seja $f:[a,b] \to \mathbb{R}$ uma função. Diremos que f é \mathcal{C}^1 por partes, se existir uma partição $P = \{a = x_0 < x_1 < \dots < x_n = b\}$ de [a,b], tal que para cada subintervalo $(x_{i-1},x_i), i=1,\dots,n$ as funções $f,f':(x_{i-1},x_i)\to\mathbb{R}$ são contínuas.

O resultado abaixo mostra condições suficientes para a convergência da série de Fourier para uma certa classe de função.

Teorema de convergência pontual de uma série de Fourier. Sejam $f: [-\pi, \pi] \to \mathbb{R}$ uma função e $P = \{-\pi = x_0 < x_1 < \dots < x_n = \pi\}$ uma partição do intervalo $[-\pi, \pi]$, no qual $f \in \mathcal{C}^1$ por partes e limitada. Suponha que nos pontos $x_i \in P$ os limites laterais de f sejam finitos. Então, a série de Fourier f(x) de f satisfaz:

- 1) f(x) = s(x) para cada $x \in]x_{i-1}, x_i[$,
- 2) para cada $x_i \in P = \{-\pi = x_0 < x_1 < \dots < x_n = \pi\}$ temos que $s(x_i) = \frac{\lim_{x \to x_i^+} f(x) + \lim_{x \to x_i^-} f(x)}{2}$,
- 3) A série de Fourier s(x) é 2π -períodica em \mathbb{R} ; ou seja, existe um p>0 tal que s(x+p)=s(x), para todo $x\in\mathbb{R}^{1}$

Vamos esclarecer abaixo alguns pontos do Teorema de convergência a partir de alguns exemplos.

Exemplo. As funções $f(x) = \cos(x), g(x) = \sin(x)$ são 2π -periódicas, e a função $h(x) = \cos(2\pi x)$ é 1-periódica.

Exemplo. A função $f: [-\pi, \pi] \to \mathbb{R}$, f(x) = |x| é claramente \mathcal{C}^1 por partes, visto que nos subintervalos $]-\pi, 0[$ a função é dada por f(x) = -x, e em $]0, \pi[$ a função é f(x) = x. Além disso, a função é limitada em $[-\pi, \pi]$ pois $|f(x)| \le \pi$. Faça o gráfico para comprovar essas afirmações.

Vamos encontrar a série de Fourier de f e para isso vamos calcular os coeficientes de Fourier. Sendo f uma função par segue que $b_n = 0$, para todo $n \ge 1$. Por outro lado, $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{1}{\pi} x^2 \Big|_{0}^{\pi} = \pi$. Além disso, para todo $n \ge 1$ segue que $a_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx$, e fazendo integração por partes obtemos a seguinte primitiva $\int x \cos(nx) dx = \frac{1}{n} \{x \sin(nx) + \frac{1}{n} \cos(nx)\} + C$, para C-constante. Concluímos que

 $^{^{1}\}mathbf{O}$ menor ppositivo no qual a função é períodica é chamado o **período**.

$$a_n = \frac{2}{n\pi} \{ x \sin(nx) + \frac{1}{n} \cos(nx) \} \Big|_0^{\pi} = \frac{2}{n\pi} \{ \frac{(-1)^n}{n} - \frac{1}{n} \} = \begin{cases} 0, & n \text{ par,} \\ -\frac{4}{\pi n^2}, & n \text{ impar.} \end{cases}$$

Portanto, a série de Fourier de f(x) = |x|em $[-\pi,\pi]$ é

$$s(x) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{\cos((2n-1)x)}{(2n-1)^2}.$$

Aplicando o Teorema da convergência pontual temos que

$$s(0) = \frac{\lim_{x \to 0^+} f(x) + \lim_{x \to 0^-} f(x)}{2} = 0.$$

Da série de Fourier temos que $0 = s(0) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2}$, e concluímos que

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

Exercício. Encontre a série de Fourier das funções abaixo no intervalo $[-\pi, \pi]$.

i)
$$g(x) = x^2$$
.

ii)
$$h(x) = \begin{cases} 1, & 0 \le x < \pi; \\ 0, & -\pi \le x < 0 \end{cases}$$
.

Exercício. Determine a soma das séries:

iii)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^2}$$
, iv) $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.