

[Chapter 1]
Algorithms :
Efficiency, Analysis,
And Order

Goals of the Course

Design

- Problem solving method
- 5 design methods: divide-and-conquer, dynamic programming, greedy approach, backtracking, branch-andbound

Analysis

- Efficiency analysis through computational complexity
- Lower bounds for sorting and searching problems
- Intractability (NP-completeness)

Example

Problem

- Determine whether the number x is in the list of S of n numbers. The answer is yes if x is in S and no if it is not.
- Problem instance
 - S = [10, 7, 11, 5, 13, 8], n = 6, x = 8
 - Solution to this instance is, "Yes, x is in S"

Algorithm

Starting with the first item in S, compare x with each item in S in sequence until x is found or S is exhausted. If x is found, answer yes; if x is not found, answer no.

Analysis

Any better algorithm to get the same solution?

Problem Description

Problem

 May contain variables that are assigned specific values in the statement of the problem description.

Parameters

■ Those variables are called parameters. For example, to describe a search problem, we need 3 variables: S, n, x.

Instance

- If those parameters are specified, we call it an instance.
- S = [10, 7, 11, 5, 13, 8], n = 6, x = 8
- Solution to an instance of a problem is the answer to the question asked by the problem in that instance.
 - Solution to the above instance is, "yes, x is in S"

Algorithm Description

- Natural languages
- Programming languages
- Pseudo-code
 - similar, but not identical, to C++/Java.
 - Notable exceptions: unlimited array index, variable-sized array, mathematical expressions, use of arbitrary types, convenient control structure, and etc.
- In this lecture, algorithms will be represented by pseudo-code similar to C++.

Pseudo-code vs. C++ (1/2)

- Use of arrays
 - In C++, starting at 0
 - In pseudo-code, arrays indexed by other integers are ok.
- Variable-sized array size

```
(e.g) void example (int n){ keytype S[2..n];....
```

keytype S[low..high]

Pseudo-code vs. C++ (2/2)

- Mathematical expression
 - low <= x && x <= high \Rightarrow low \leq x \leq high
 - temp = x; x = y; $y = temp \Rightarrow$ exchange x and y
- Use of arbitrary type
 - Index
 - Number
 - Bool
- Control structure
 - (e.g.) repeat (n times) { ... }

Sequential Search

- Problem
 - Is the key x in the array S of n keys?
- Inputs (parameters)
 - Positive integer n, array of keys S indexed from 1 to n.
- Outputs
 - The location of x in S. (0 if x is not in S.)
- Algorithm
 - Starting with the first item in S, compare x with each item in S in sequence until x is found or S is exhausted. If x is found, answer yes; if x is not found, answer no.

4

Sequential Search (Psedo-code)

```
void segsearch (int n,
                              // Input(1)
               const keytype S[], // (2)
                            // (3)
               keytype x,
               index € location) { // Output
  location = 1;
  while (location <= n && S[location] != x)
    location++;
  if (location > n)
    location = 0;
```

Review: sequential search

- How many comparisons for searching x in S?
 - Depends on the location of x in S
 - In worst case, we should compare () times.
 - In best case,
- Any better algorithm to get the same solution?
 - No, we can't, unless there is an extra information in S.

Binary Search

- Problem
 - Is the key x in the array S of n keys?
 - Determine whether x is in the sorted array S of n keys.
- Inputs (parameters)
 - Positive integer n, sorted (non-decreasing order) array of keys S indexed from 1 to n, a key x.
- Outputs
 - The location of x in S. (0 if x is not in S.)

Binary Search (Psedo-code)

```
void binsearch (int n,
                    // Input(1)
              const keytype S[], // (2)
              keytype x, // (3)
              index& location) { // Output
 index low, high, mid;
  low = 1; high = n;
 location = 0;
while (low <= high && location == 0) {
   mid = (low + high) / 2; // integer div
   if (x == S[mid]) location = mid;
   else if (x < S[mid]) high = mid - 1;
   else low = mid + 1;
```

Review: binary search algorithm

- How many comparisons for searching x in S?
 - S is already sorted. We know it.
 - For each statement in a while-loop, the number of searching targets will be half.
 - In worst case, we should compare () times.
 - (e.g.) n = 32. S[16], S[16+8], S[24+4], S[28+2], S[30+1]. S[32]
 - In best case, trivial to answer.
- Any better algorithm to get the same solution?
 - Hmmm. Very gooooood question.
 - But, wait to see the answer until we get to Chap. 7-8.

Table 1.1 The number of comparisons done by Sequential Search and Binary Search when x is larger than all the array items

Array Size	Number of Comparisons by Sequential Search	Number of Comparisons by Binary Search
128	128	8
1,024	1,024	11
1,048,576	1,048,576	21
4,294,967,296	4,294,967,296	33

The Fibonacci Sequence

Problem

Determine the *n*-th term in the Fibonacci sequence.

$$f_0 = 0$$

$$f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} \quad \text{for } n \ge 2$$

Inputs

- A non-negative integer n.
- Outputs
 - The *n*-th term of the Fibonacci sequence.

1st Solution to the n-th Fib. Number (Recursive version)

```
int fib (int n) {
  if (n <= 1)
    return n;
  else
    return fib(n-1) + fib(n-2);
}</pre>
```


Review: recursive solution to Fib.

- How many computations to get the n-th number?
 - $2^{n/2}$.
 - No difference between the worst and best cases.
 - Awkwardly slow algorithm. Why?
- Any better algorithm to get the same solution?
 - If we know the problem exactly, we can solve it.
 - What is the cause of the slowness?

The recursion tree when computing the fifth Fibonacci term.

4

Counting the number of calls needed in fib(n)

```
T(n) = the number of terms in the recursion tree for n
T(0) = 1
T(1) = 1
T(n) = T(n-1) + T(n-2) + 1
                                          for n \ge 2
                                          because T(n-1) > T(n-2)
     > 2 \times T(n-2)
     > 2^2 \times T(n - 4)
     > 2^3 \times T(n - 6)
     > 2^{n/2} \times T(0)
     = 2^{n/2}
```

Theorem 1.1 $T(n) > 2^{n/2}$

Proof by mathematical induction

Induction base:

$$T(2) = T(1) + T(0) + 1 = 3 > 2 = 2^{2/2}$$

$$T(3) = T(2) + T(1) + 1 = 5 > 2.83 \approx 2^{3/2}$$

Induction Hypothesis:

For all integer m, suppose $T(m) > 2^{m/2}$ holds.

Induction Step: To show that $T(n) > 2^{n/2}...$

$$T(n) = T(n-1) + T(n-2) + 1$$

> $2^{(n-1)/2} + 2^{(n-2)/2} + 1$, according to I.H.
> $2^{(n-2)/2} + 2^{(n-2)/2}$
= $2 \times 2^{(n/2)-1}$
= $2^{n/2}$

2nd Solution to the n-th Fib. Number (Iterative version)

```
int fib2 (int n) {
  index i;
  int f[0..n];
  f[0] = 0;
  if (n > 0) {
    f[1] = 1;
    for (i = 2; i \le n; i++)
      f[i] = f[i-1] + f[i-2];
  return f[n];
```

Review: iterative solution to Fib.

- Iterative version is much faster than recursive one
 - Why faster?
 - How faster
- Time complexity
 - T(n) = n + 1

A comparison of two Fib. Algorithms

	11 = 111	2 S 26 Links	e the seath series to be	Lower Bound on
			Execution Time	Execution Time
n	n+1	$2^{n/2}$	Using Algorithm 1.7	Using Algorithm 1.6
40	41	1,048,576	41 ns*	$1048~\mu s^{\dagger}$
60	61	1.1×10^{9}	61 ns	1 s
80	81	1.1×10^{12}	81 ns	18 min
100	101	1.1×10^{15}	101 ns	13 days
120	121	1.2×10^{18}	121 ns	36 years
160	161	1.2×10^{24}	161 ns	$3.8 \times 10^7 \text{ years}$
200	201	1.3×10^{30}	201 ns	$4 \times 10^{13} \text{ years}$

Analysis of Algorithms (1/2)

- Time complexity analysis
 - Determination of how many times the basic operation is done for each value of the input size.
 - Should be independent of CPU, OS, Programming languages...

Metrics

- Basic operation
 - Comparisons, assignments, etc.
- Input size
 - The number of elements in an array
 - The length of a list
 - The number of columns and rows in a matrix
 - The number of vertices and edges in a graph

Analysis of Algorithms (2/2)

- Every-case analysis
- Worst-case analysis
- Average-case analysis
- Best-case analysis

Every-case analysis

- Regardless of the values of the numbers in the array, if there are same number of computational passes in a loop, then the basic operation is always done n times, T(n) = n.
 - (e.g.) Addition algorithm for n integers in an array

```
number sum (int n, const number S[]) {
  index i;
  number result;

  result = 0;
  for (i = 1; i <= n; i++)
     result = result + S[i];
  return result;
}</pre>
```

Every-case Analysis (Cont'd)

- (e.g.) Exchange sort
 - Basic operation: the comparison of S[i] and S[j]
 - Input size: the number of items to be sorted

```
void exchangesort (int n, keytype S[]) {
  index i, j;

  for (i = 1; i <= n-1; i++)
     for (j = i+1; j <= n; j++)
     if (S[j] < S[i])
      exchange S[i] and S[j];
}</pre>
```

Every-case Analysis (Cont'd)

- Time complexity analysis for Exchangesort()
 - For each j-th loop, the if-statement will be executed once.
 - The total number of if-statement

• i = 1 : n-1 times

• i = 2 : n-2 times

• i = 3 : n-3 times

• i = n-1 : n-(n-1) times

• Therefore,

$$T(n) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2}$$

Worst-case analysis

- Sequential search
 - Basic operation: (S[location] != x)
 - Input size: the number of items in an array, n
 - Worst case happens if x is in the last element of S[n]
 - Therefore, W(n) = n.
 - Every-case analysis is not possible for sequential search.

Average-case analysis

- Sequential search
 - Basic operation: (S[location] != x)
 - Input size: the number of items in an array, n
 - Average case
 - Assume each item in the array is distinctive
 - Case 1: when x is always in S[n]
 - The probability that x is the k-th element in $S[n] = \frac{1}{n}$
 - The number of operations if x is the k-th = k times
 - Therefore,

$$A(n) = \sum_{k=1}^{n} k \times \frac{1}{n} = \frac{1}{n} \times \sum_{k=1}^{n} k = \frac{1}{n} \times \frac{n(n+1)}{2} = \frac{n+1}{2}$$

Average-case analysis (Cont'd)

- Case 2: x is either in S[n] or not in S[n]
 - The probability that x is in S[n]: p
 - The probability that x is in the k-th position of S[n] = p/n
 - The probability that x is not in S[n] = 1 p

Therefore,
$$A(n) = \sum_{k=1}^{n} (k \times \frac{p}{n}) + n(1-p)$$

$$= \frac{p}{n} \times \frac{n(n+1)}{2} + n(1-p)$$

$$= n(1-\frac{p}{2}) + \frac{p}{2}$$

$$p = 1 \Rightarrow A(n) = (n+1)/2$$
$$p = 1/2 \Rightarrow A(n) = 3n/4 + 1/4$$

Best-case analysis

- Sequential search
 - Basic operation: (S[location] != x)
 - Input size: the number of items in an array, n
 - Best case happens if x is the first element of S[n], i.e. S[1]
 - Therefore, B(n) = 1.

Review: time complexity analysis

- Among four possible analysis, ECA, WCA, ACA, and BCA, which one is the right one?
- Think about ...
 - you are working for a nuclear power plant.
 - what if you are working for an internet shopping mall
- Which one do you think is the most useless?
- Which one do you think is the hardest to analyze?

Analysis of Correctness

- Efficiency analysis vs. Correctness analysis
- In this course, when I say an algorithm analysis, I mean an efficiency analysis
- We can also analyze the correctness of an algorithm by developing a mathematical proof that the algorithm actually does what it is supposed to do.
- An algorithm is incorrect...
 - if it does not stop for a given input or
 - if it gives a wrong answer for an input.