Package 'SACCR'

August 24, 2020

Type Package

Title SA Counterparty Credit Risk under CRR2

Version 3.0

Date 2020-08-11

Author Tasos Grivas

Maintainer Tasos Grivas <info@openriskcalculator.com>

Description Computes the Exposure-At-Default based on the standardized approach

of CRR2 (SA-CCR). The simplified version of SA-

CCR has been included, as well as the OEM methodology.

Multiple trade types of all the five major asset classes are being supported includ-

ing the 'Other' Exposure and, given the inheritance-

based structure of the application, the addition of further trade types

is straightforward. The application returns a list of trees per Counterparty and CSA after automatically separating the trades based on the Counterparty, the CSAs, the hedging sets, the

netting sets and the risk factors. The basis and volatility transactions are

also identified and treated in specific hedging sets whereby the corresponding

penalty factors are applied. All the examples appearing on the

regulatory papers (both for the margined and the un-margined workflow) have been

implemented including the latest CRR2 developments.

License GPL-3

Imports methods, data.tree, jsonlite, Trading

URL https://openriskcalculator.com/

Collate 'CalcAddon.R' 'CalcEAD.R' 'CalcPFE.R' 'CalcRC.R'

'ExampleBasisVol.R' 'ExampleComm.R' 'ExampleCredit.R'

'ExampleFX.R' 'ExampleIRD.R' 'ExampleIRDCommMargined.R'

'ExampleIRDCredit.R' 'HandleBasisVol.R' 'LoadSupervisoryData.R'

'runExampleCalcs.R' 'CalculateFactorMult.R'

'CreateTradeGraph.R' 'GroupCommTrades.R' 'GroupCreditTrades.R'

 $'Group Equity Trades.R'\ 'Group FXT rades.R'\ 'Group IRD Trades.R'$

'GroupTrades.R' 'SACCRCalculator.R' 'SingleTradeAddon.R'

'onLoad.R' 'DetermineCCRMethodology.R' 'GroupOtherTrades.R'

NeedsCompilation no

2 CalcAddon

RoxygenNote 7.1.1

Repository CRAN

Repository/R-Forge/Project ccr

Repository/R-Forge/Revision 39

Repository/R-Forge/DateTimeStamp 2020-08-12 18:52:08

Date/Publication 2020-08-24 09:10:02 UTC

R topics documented:

	CalcAddon	2
	CalcEAD	3
	CalcPFE	4
	CalcRC	5
	CreateTradeGraph	5
	DetermineCCRMethodology	6
	ExampleBasisVol	7
	ExampleComm	7
	ExampleCredit	8
	ExampleFX	9
	ExampleIRD	9
	ExampleIRDCommMargined	10
	ExampleIRDCredit	11
	HandleBasisVol	11
	LoadSupervisoryData	12
	SACCRCalculator	12
	SingleTradeAddon	13
Index		15

CalcAddon

Calculates the Addon amount

Description

Calculates the amount of the addon for each heding/nettting set

Usage

```
CalcAddon(trades_tree, MF, simplified = FALSE, OEM = FALSE)
```

CalcEAD 3

Arguments

trades_tree A tree structure with the input trades

MF (Optional) The Maturity Factor based on the collateral agreement

simplified (optional) When TRUE, the add-ons will be calculated as per the simplified SA-

CCR

OEM (optional) When TRUE, the add-ons will be calculated as per the Original Ex-

posure Method

Value

The aggregate amount of the addon summed up for all the asset classes

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

CalcEAD Calculates the EAD

Description

Calculates the Exposure at Default

Usage

CalcEAD(RC, PFE)

Arguments

RC the replacement cost

PFE the projected future exposure

Value

The Exposure-at-Default

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

4 CalcPFE

Examples

```
#returns 1.4*(60+500) = 784
EAD <- CalcEAD(60,500)
```

CalcPFE

Calculates the PFE

Description

Calculates the Projected Future Exposure (PFE) after applying the relevant multiplier. The purpose of this multiplier is to lessen the risk stemming from the addons in case of excess collateral

Usage

```
CalcPFE(V_C, Addon_Aggregate, simplified)
```

Arguments

V_C the difference between the sum of the MtMs and the collateral

Addon_Aggregate

the aggregate amount of the Addon

simplified (optional) When TRUE, the multiplier will be set to 1 as per the simplified &

OEM approach

Value

The Projected Future Exposure (PFE)

Author(s)

Tasos Grivas <info@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

CalcRC 5

CalcRC	Calculates the RC	
--------	-------------------	--

Description

Calculates the Replacement Cost(RC) and the sum of the MtMs for all the trades

Usage

```
CalcRC(trades, csa, collaterals, simplified)
```

Arguments

trades The full list of the Trade Objects
csa (Optional) The CSA objects
collaterals (Optional) The collaterals Objects

simplified (optional) When TRUE, collaterals will be ignored as per the simplified & OEM

approach

Value

The replacement Cost and the sum of the MtMs

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

CreateTradeGraph	Creates a tree-like structure of a list of trades
------------------	---

Description

Creates a tree-like structure describing the various hedging sets / risk factors that that the input trades can be broken into

Usage

CreateTradeGraph(trades)

Arguments

trades The full list of the Trade Objects

Value

A tree structure based on hedging/netting sets and basis/volatility transactions

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

DetermineCCRMethodology

Specifies the CCR methodology

Description

Determines the CCR methodology that the institution is eligible to utilize. The regulator allows the institutions to select less complicated methodologies when the derivatives trading business is negligible

Usage

DetermineCCRMethodology(trades_filename, total_assets)

Arguments

trades_filename

the file holding the trades of the portfolio

total_assets the total assets of the institution in mio EUR

Value

The CCR methodology that the institution is eligible to utilize

Author(s)

Tasos Grivas <info@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

ExampleBasisVol 7

ExampleBasisVol

Basis+Volatility trades Example

Description

Calculates the Exposure at Default for a trade set containing basis and volatility transactions

Usage

```
ExampleBasisVol(JSON = FALSE)
```

Arguments

JSON

(optional) if TRUE it returns a json string

Value

The exposure at default

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

ExampleComm

Commodities Example

Description

Calculates the Exposure at Default for the Commodities example as given in the Basel III regulatory paper

Usage

```
ExampleComm(JSON = FALSE)
```

Arguments

JSON

(optional) if TRUE it returns a json string

Value

The exposure at default (expected value based on the Basel paper is 5406)

8 ExampleCredit

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

ExampleCredit

Credit Products Example

Description

Calculates the Exposure at Default for the Credit example as given in the Basel III regulatory paper

Usage

```
ExampleCredit(JSON = FALSE)
```

Arguments

JSON

(optional) if TRUE it returns a json string

Value

The exposure at default (expected value based on the Basel paper is 381)

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

ExampleFX 9

ExampleFX

FX Example

Description

Calculates the Exposure at Default for the FX product type

Usage

```
ExampleFX(JSON = FALSE)
```

Arguments

JSON

(optional) if TRUE it returns a json string

Value

The exposure at default

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

ExampleIRD

IRDs Example

Description

Calculates the Exposure at Default for the IRD example as given in the Basel III regulatory paper

Usage

```
ExampleIRD(JSON = FALSE)
```

Arguments

JSON

(optional) if TRUE it returns a json string

Value

The exposure at default (expected value based on the Basel paper is 569)

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

 ${\tt ExampleIRDCommMargined}$

Margined IRDs+Commodity Example

Description

Calculates the Exposure at Default for the margined IRDs + Commodity example as given in the Basel III regulatory paper

Usage

ExampleIRDCommMargined(JSON = FALSE)

Arguments

JSON

(optional) if TRUE it returns a json string

Value

The exposure at default (expected value based on the Basel paper is 1879)

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

ExampleIRDCredit 11

ExampleIRDCredit

IRDs+Commodity Example

Description

Calculates the Exposure at Default for the IRDs + Commodity example as given in the Basel III regulatory paper

Usage

```
ExampleIRDCredit(JSON = FALSE)
```

Arguments

JSON

(optional) if TRUE it returns a json string

Value

The exposure at default (expected value based on the Basel paper is 936)

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Basel Committee: The standardised approach for measuring counterparty credit risk exposures http://www.bis.org/publ/bcbs279.htm

HandleBasisVol

Splits trades in being basis, volatility or 'normal' transactions

Description

Receives a list of trades and splits them according to being basis, volatility or 'normal' transactions

Usage

```
HandleBasisVol(trades)
```

Arguments

trades

The full list of the Trade Objects

Value

A list depicting which trade IDs fall under each hedging set.

12 SACCRCalculator

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

LoadSupervisoryData Supervisory Data Loading

Description

Loads the supervisory data (factors, correlation and option volatility) for each Asset Class and SubClass

Usage

```
LoadSupervisoryData()
```

Value

A data frame with the required data

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/8

SACCRCalculator SA-CCR Calculator

Description

Returns a tree structure depicting the add-on calculations on different hedging/netting sets

Usage

```
SACCRCalculator(
   trades_filename,
   csa_filename,
   coll_filename,
   JSON = FALSE,
   simplified = FALSE,
   OEM = FALSE,
   export_results = FALSE
)
```

SingleTradeAddon 13

Arguments

trades_filename

a .csv file containing the trades

csa_filename a .csv file containing CSAs coll_filename a .csv file containing collaterals

JSON (optional) if TRUE it returns a json string

simplified (optional) if TRUE, the simplified SA-CCR is being calculated

OEM (optional) if TRUE, the Original Exposure Method is being calculated

export_results (optional) if TRUE, a csv with the exposure at the top level will be exported

Value

The relevant exposure trees

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/876

SingleTradeAddon Calculates the addon information

Description

Calculates the addon information (including Adj notional, superv delta etc) for each trade

Usage

```
SingleTradeAddon(trade, MF)
```

Arguments

trade A trade object

MF (Optional) The Maturity Factor based on the collateral agreement

Value

A list of addon information

Author(s)

Tasos Grivas <tasos@openriskcalculator.com>

14 SingleTradeAddon

References

Regulation (EU) 2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/876 of the European Parliament and of the Council of 20 May 2019 http://data.europa.eu/eli/reg/2019/876

Index

```
CalcAddon, 2
CalcEAD, 3
CalcPFE, 4
CalcRC, 5
CreateTradeGraph, 5
DetermineCCRMethodology, 6
ExampleBasisVol, 7
ExampleComm, 7
{\tt ExampleCredit}, 8
ExampleFX, 9
ExampleIRD, 9
ExampleIRDCommMargined, 10
{\tt ExampleIRDCredit}, {\tt 11}
HandleBasisVol, 11
LoadSupervisoryData, 12
SACCRCalculator, 12
SingleTradeAddon, 13
```