Logical Aspects of Artificial Intelligence Introduction to DLs & Properties

Stéphane Demri demri@lsv.fr https://cv.archives-ouvertes.fr/stephane-demri

September 21th, 2022

Plan of the lecture

- Recapitulation of the previous lecture.
- \blacktriangleright More \mathcal{ALC} extensions.
- Relationships with first-order logic.
- Tree interpretation property.
- A decision procedure using model-theoretical properties.
- ► Tableaux proof system for ALC (Part I).
- Exercises session.

Recapitulation of the Previous Lecture

ALC in a nutshell

$$C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C$$

- ▶ Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$.
- ▶ TBox $\mathcal{T} = \{C \sqsubseteq D, \ldots\}$.
- ► ABox $A = \{a : C, (b, b') : r, ...\}.$
- ► Knowledge base K = (T, A). (a.k.a. ontology)
- ▶ Decision problems include concept satisfiability, knowledge base consistency, and other problems for classification.

A few properties about ALC

- Concept satisfiability problem is PSPACE-complete.
- Knowledge base consistency problem is EXPTIME-complete.
- ALC has many well-known fragments and extensions, some of them to deal with
 - inverse roles,
 - number restrictions,
 - etc..

Extensions of ALC (Part II)

▶ Concepts in ALC

$$C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C$$

... but individual names a (as in the concept assertion a: C) are not concepts in ALC.

Concepts in ALC

$$C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C$$

- ▶ ... but individual names a (as in the concept assertion a: C) are not concepts in ALC.
- How to express the concept "the courses taught by Mary"?

Course ∏∃Teaches -. Mary

▶ Concepts in ALC

$$C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C$$

- ▶ ... but individual names a (as in the concept assertion a: C) are not concepts in ALC.
- ▶ How to express the concept "the courses taught by Mary" ?

Nominals in hybrid (modal) logics: propositional variables true in only one world of the domain.

▶ Concepts in ALC

$$C ::= \top \mid \bot \mid A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists r.C \mid \forall r.C$$

- ▶ ... but individual names a (as in the concept assertion a: C) are not concepts in ALC.
- How to express the concept "the courses taught by Mary"?

- Nominals in hybrid (modal) logics: propositional variables true in only one world of the domain.
- ▶ **Nominals** in DLs: individual names inside concepts, written $\{a\}$, where $a \in N_I$ with $\{a\}^{\mathcal{I}} \stackrel{\text{def}}{=} \{a^{\mathcal{I}}\}$.
- $ilde{ hinspace}$ Syntactic trick $\{\cdot\}$: Course \sqcap \exists Teaches $^-$. $\{$ Mary $\}$.

Nominals in DLs

▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{O}$ is defined as \mathfrak{L} except that nominals are added.

Nominals in DLs

- ▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{O}$ is defined as \mathfrak{L} except that nominals are added.
- ► Concept satisfiability for ALCOQ is PSPACE-complete and knowledge base consistency is EXPTIME-complete.
- ...but concept satisfiability for ALCOI is EXPTIME-complete.

Role \mathcal{H} ierarchies

▶ ALC is not able to express complex role constraints such that a relation is included in another relation.

(GCIs are concept inclusions though!)

➤ Typically, the interpretation of Attends should include the interpretation of AttendsActively.

Role \mathcal{H} ierarchies

▶ ALC is not able to express complex role constraints such that a relation is included in another relation.

(GCIs are concept inclusions though!)

- ➤ Typically, the interpretation of Attends should include the interpretation of AttendsActively.
- ▶ Role inclusion axiom (RIA) of the form $r \sqsubseteq s$ with

$$\mathcal{I} \models r \sqsubseteq s \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$$

▶ Given a logic \mathfrak{L} , $\mathfrak{L}\mathcal{H}$ is defined as \mathfrak{L} except that role inclusion axioms are added (in the TBox $_{\Lambda}$).

Role \mathcal{H} ierarchies

▶ ALC is not able to express complex role constraints such that a relation is included in another relation.

(GCIs are concept inclusions though!)

- ➤ Typically, the interpretation of Attends should include the interpretation of AttendsActively.
- ▶ Role inclusion axiom (RIA) of the form $r \sqsubseteq s$ with

$$\mathcal{I} \models r \sqsubseteq s \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$$

Given a logic £, £H is defined as £ except that role inclusion axioms are added (in the TBox Λ).

► Concept satisfiability for ALCH is PSPACE-complete and knowledge base consistency is EXPTIME-complete.

A local version

▶ A **role value map** is an atomic concept of the form $r \sqsubseteq s$:

$$(r \sqsubseteq s)^{\mathcal{I}} \stackrel{\mathsf{def}}{=} \{\mathfrak{a} \in \Delta^{\mathcal{I}} \mid r^{\mathcal{I}}(\mathfrak{a}) \subseteq s^{\mathcal{I}}(\mathfrak{a})\}$$

1

A local version

▶ A **role value map** is an atomic concept of the form $r \sqsubseteq s$:

$$(r \sqsubseteq s)^{\mathcal{I}} \stackrel{\mathsf{def}}{=} \{\mathfrak{a} \in \Delta^{\mathcal{I}} \mid r^{\mathcal{I}}(\mathfrak{a}) \subseteq s^{\mathcal{I}}(\mathfrak{a})\}$$

Role value maps are local variants of role inclusion axioms (RIAs).

1

A local version

▶ A **role value map** is an atomic concept of the form $r \sqsubseteq s$:

$$(r \sqsubseteq s)^{\mathcal{I}} \stackrel{\mathsf{def}}{=} \{\mathfrak{a} \in \Delta^{\mathcal{I}} \mid r^{\mathcal{I}}(\mathfrak{a}) \subseteq s^{\mathcal{I}}(\mathfrak{a})\}$$

Role value maps are local variants of role inclusion axioms (RIAs).

▶ The RIA $r \sqsubseteq s$ can be encoded by the GCI $\top \sqsubseteq (r \sqsubseteq s)$.

Transitive roles

- ► Many natural relations are transitive (AncestorOf, HasPart, etc.) but this cannot be expressed in ALCH.
- ▶ **Transitivity axioms** are of the form Trans(*r*):

$$\mathcal{I} \models \mathtt{Trans}(r) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad r^{\mathcal{I}} \circ r^{\mathcal{I}} \subseteq r^{\mathcal{I}}$$

Transitive roles

- ► Many natural relations are transitive (AncestorOf, HasPart, etc.) but this cannot be expressed in ALCH.
- ▶ **Transitivity axioms** are of the form Trans(*r*):

$$\mathcal{I} \models \mathtt{Trans}(r) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad r^{\mathcal{I}} \circ r^{\mathcal{I}} \subseteq r^{\mathcal{I}}$$

 $\begin{tabular}{ll} \hline \textbf{Extensions of \mathcal{ALC} with transitivity axioms in TBoxes is} \\ \hline \textbf{obtained by replacing \mathcal{ALC} by \mathcal{S}.} \\ \hline \hline \end{tabular} \begin{tabular}{ll} \hline \textbf{new naming rule} \\ \hline \end{tabular}$

Transitive roles

- ► Many natural relations are transitive (AncestorOf, HasPart, etc.) but this cannot be expressed in ALCH.
- ► **Transitivity axioms** are of the form Trans(*r*):

$$\mathcal{I} \models \mathtt{Trans}(r) \quad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad r^{\mathcal{I}} \circ r^{\mathcal{I}} \subseteq r^{\mathcal{I}}$$

- Extensions of \mathcal{ALC} with transitivity axioms in TBoxes is obtained by replacing \mathcal{ALC} by \mathcal{S} . (new naming rule)
- ► Concept satisfiability for S is PSPACE-complete and EXPTIME-complete for knowledge base consistency.
- ► Other properties are included in knowledge bases such as reflexivity, irreflexivity, symmetry, functionality, . . .

Syntactic sugar

Syntax	DL syntax	Equivalent axioms
DisjointWith	Dis(C, D)	$C \sqcap D \sqsubseteq \perp$
DisjointUnionOf		$C \equiv C_1 \sqcup \cdots \sqcup C_n + Dis(C_i, C_j)$
EquivalentTo	$r \equiv s$	$r \sqsubseteq s, s \sqsubseteq r$
Domain	$Dom(r) \sqsubseteq C$	$\exists r. \top \sqsubseteq C$
Range	$Ran(r) \sqsubseteq C$	$\top \sqsubseteq \forall r.C$

A selection of complexity results

http://www.cs.man.ac.uk/~ezolin/dl/

Tree model

property

Yes

Complexity of reasoning in Description Logics

Note: the information here is (always) incomplete and $\underline{\text{updated}}$ often

Base description logic: Attributive Language with Complements

ACC::= | | T | A | ¬C | C | D | C | D | ¬R C | ∀R

		$\mathcal{ALC} ::= \bot \mid T \mid A \mid \neg C \mid$	$ C \cap D C \cup D \exists R.C \forall R.C$		
Concept constructors:			Role constructors:		
□ \mathcal{F} - functionality ² : (≤1 R) □ \mathcal{F} - (unqualified) number restrictions: (≥ n R), (≤ n R) Q = qualified number restrictions: (≥ n R .C), (≤ n R .C) □ n 0 nominals: (a) or (a ₁ ,, a _n) ("one-of")					
\Box μ – least fixpoint operator: μ X. C					
Forbid ⋄ complex roles ⁵ in number restrictions ⁶					
TBox (concept axioms): • empty TBox • acyclic TBox (A = C, A is a concept name; no cycles) • general TBox (C ⊆ D, for arbitrary concepts C and D)			RBox (role axioms): □ Sr role transitivity: Tr(R) □ H role hierarchy: R ∈ S R - complex role inclusions: R ◦ S ∈ R, R ◦ S ∈ S □ S - some additional features (click to see them)		
Reset	You have selected a Description Logic: ALC				
Complexity ^Z of reasoning problems ⁸					
Concept satisfiability	PSpace-complete	Hardness for ALC: see [80]. Upper bound for ALCQ: see [12, Theorem 4.6].			
ABox consistency	PSpace-complete	Hardness follows from that for concept satisfiability. Upper bound for ACCQO. see [12, Appendix A].			
Important properties of the Description Logic					
Finite model property	Yes	\mathcal{ALC} is a notational variant of the multi-modal logic \mathbf{K}_m (cf. [72]), for which the finite model property can be f Sect. 2.3].			

Maintained by: Evgeny Zolin Any comments are M

Proposition 2.151.

ALC is a notational variant of the multi-modal logic ${f K_m}$ (cf. [77]), for which the tree model property can be for

- ► SROIQ agrees with the ontology language OWL 2 DL.
- ► SROIQ contains more than one might think from its name.

- ► SROIQ agrees with the ontology language OWL 2 DL.
- SROIQ contains more than one might think from its name.
- ► Its knowledge bases contain a **role box (RBox)** to specify constraints about the interpretation of **role expressions**.

- ► SROIQ agrees with the ontology language OWL 2 DL.
- SROIQ contains more than one might think from its name.
- Its knowledge bases contain a role box (RBox) to specify constraints about the interpretation of role expressions.
- ► The set of roles **R** is made of role names r, its converses r^- and the **universal role** U with $U^{\mathcal{I}} \stackrel{\text{def}}{=} \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.
- ▶ New atomic concept ∃R.Self with

$$(\exists R.\mathsf{Self})^\mathcal{I} \stackrel{\mathsf{def}}{=} \{ \mathfrak{a} \mid (\mathfrak{a},\mathfrak{a}) \in R^\mathcal{I} \}$$

- ► SROIQ agrees with the ontology language OWL 2 DL.
- SROIQ contains more than one might think from its name.
- Its knowledge bases contain a role box (RBox) to specify constraints about the interpretation of role expressions.
- ► The set of roles **R** is made of role names r, its converses r^- and the **universal role** U with $U^{\mathcal{I}} \stackrel{\text{def}}{=} \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.
- ▶ New atomic concept ∃R.Self with

$$(\exists R.\mathsf{Self})^{\mathcal{I}} \stackrel{\mathsf{def}}{=} \{ \mathfrak{a} \mid (\mathfrak{a},\mathfrak{a}) \in R^{\mathcal{I}} \}$$

- ▶ Role assertions (a, b): ¬R are allowed in the ABox.
- + ingredients from its name (nominals, qualified number restrictions, inverse).

Role axioms in the RBox

▶ Complex role inclusion axioms (CRIA) $R_1 \circ \cdots \circ R_n \sqsubseteq R$.

(
$$R$$
 instead r because R not nece

A regularity constraint is required on the set of CRIAs (unspecified here).

Role axioms in the RBox

▶ Complex role inclusion axioms (CRIA) $R_1 \circ \cdots \circ R_n \sqsubseteq R$.

(
$$R$$
 instead r because R not nece

- A regularity constraint is required on the set of CRIAs (unspecified here).
 - Role axioms specifying disjointness, transitivity, reflexivity, irreflexivity, symmetry, asymmetry.
 - ▶ The knowledge base consistency problem for \mathcal{SROIQ} is N2ExpTime-complete.

How SROIQ is related to the semantic web

- Semantic web:
 - A vision of a computer-understandable Web.
 - Distributed knowledge and data in reusable form.
 - XML, RDF and OWL are part of the story.

How SROIQ is related to the semantic web

- Semantic web:
 - A vision of a computer-understandable Web.
 - Distributed knowledge and data in reusable form.
 - XML, RDF and OWL are part of the story.
- Principles towards a semantic Web of data
 - Give a name to everything.
 - Relationships form a graph between the entities.
 - The names are addresses on the Web.
 - Provide a formal semantics so that knowledge is encoded in a machine interpretable way.

OWL based on description logics

- OWL: Web Ontology Language.
- Motivated by semantic web activities: add meaning to web content by annotating it with terms defined in ontologies.
- It is a World Wide Web (W3C) standard.
- OWL has an explicit formal semantics . . .
 - ... based on description logics such as \mathcal{SROIQ} .

DLs and ontology languages

- ▶ W3C's OWL 2 is based on SROIQ.
- ▶ OWL was based on SHOIN.

(gue

DLs and ontology languages

- ► W3C's OWL 2 is based on SROIQ.
- ▶ OWL was based on SHOIN.

(gue

- An OWL ontology is a mixed set containing TBox axioms and ABox assertions.
- More on complexity/scalability:
 - ▶ OWL (SHOIN) is NEXPTIME-complete.
 - OWL 2 EL is PTIME-complete.

OWL RDF/XML exchange syntax

Person ∏∀Teaches.Course

OWL reasoners and Protégé

- OWL reasoners: implement decision procedures for consistency and ontology classification.
- Open-source ontology editor Protégé.
 - Interaction with DL reasoners (FaCT++, Pellet, Racer).
 - Show results about ontology classification.
 - Helpful to work with toy ontologies.

More on OWL reasoners in S. Borgwardt's slides

OWL 2 Reasoners

OWL 2 DL:

Konclude

Pellet

FaCT++HermiT

PAGOdA

OWL 2 EL:

• ELK

OWL 2 OL:

ontop

MastroOWL 2 RL:

RDFox

http://derivo.de/en/products/konclude/ https://github.com/stardog-union/pellet/

https://bitbucket.org/dtsarkov/factplusplus/https://github.com/phillord/hermit-reasoner/

https://www.cs.ox.ac.uk/isg/tools/PAGOdA/

https://github.com/liveontologies/elk-reasoner/ https://lat.inf.tu-dresden.de/systems/cel/

> https://github.com/ontop/ontop/ http://www.dis.uniroma1.it/~mastro/

http://www.cs.ox.ac.uk/isg/tools/RDFox/

Logic-Based Ontology Engineering, Part 1: Introduction Chair of Automata Theory // © Stefan Borgwardt

lide 66 of 78

Relationships with First-Order Logic

Foreign language for modal/classical logicians

- Description logics can be understood as fragments of first-order logics.
- Similarly, reasoning tasks for description logics can be understood as decision problems for modal logics.

Foreign language for modal/classical logicians

- Description logics can be understood as fragments of first-order logics.
- Similarly, reasoning tasks for description logics can be understood as decision problems for modal logics.
- This can be made precise and sometimes results for modal/first-oder logics can be used.
- Specificity of DLs: many fragments, many extensions and numerous original reasoning tasks (non-exhaustive presentation in this course).

► Late 80s: description logics developed as logical formalisms for semantic networks.

- Late 80s: description logics developed as logical formalisms for semantic networks.
- ▶ In the 1990s: relationships with first-order logic, modal logics, PDL-like logics, etc.

(PDL = Propositional Dynamic Logic)

- Late 80s: description logics developed as logical formalisms for semantic networks.
- ▶ In the 1990s: relationships with first-order logic, modal logics, PDL-like logics, etc.

(PDL = Propositional Dynamic Logic)

Logical basis for the Web Ontology Language OWL.

- Late 80s: description logics developed as logical formalisms for semantic networks.
- ► In the 1990s: relationships with first-order logic, modal logics, PDL-like logics, etc.

(PDL = Propositional Dynamic Logic)

- Logical basis for the Web Ontology Language OWL.
- Analogies between ontologies and databases lead also to relationships with query answering languages.

From concepts to first-order formulae

▶ Interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ understood as first-order models.

From concepts to first-order formulae

- Interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ understood as first-order models.
- Translation of non-logical symbols.

Description logics		First-order logic
individual name $a \in N_I$	\approx	constant a
concept name $A \in N_{\mathbf{C}}$	\approx	unary predicate A
role name $r \in N_{\mathbf{R}}$	\approx	binary predicate <i>r</i>

Translation of concepts, assertions and GCIs by internalising the DL semantics.

Example of translation

A small knowledge base.

 $\exists Attends.T \sqsubseteq Person$

Teacher ≡ Person ∏∃Teaches.Course

Alice: Teacher

Example of translation

A small knowledge base.

```
\exists Attends.T \sqsubseteq Person \exists Teaches.Course
```

Alice: Teacher

Its translation in FOL:

$$\forall \; x \; (\exists \; y \; Attends(x,y) \Rightarrow Person(x)) \; \land \\ \forall \; x \; (Teacher(x) \Leftrightarrow (Person(x) \land \exists \; y (Teaches(x,y) \land Course(y)))) \; \land \\ \\ Teacher(Alice)$$

Example of translation

A small knowledge base.

Its translation in FOL:

$$\forall \; x \; (\exists \; y \; Attends(x,y) \Rightarrow Person(x)) \; \land \\ \forall \; x \; (Teacher(x) \Leftrightarrow (Person(x) \land \exists \; y (Teaches(x,y) \land Course(y)))) \; \land \\ \\ Teacher(Alice)$$

Concepts can be understood as first-order formulae with one free variable.

Internalisation of ALC semantics

$$\begin{array}{lll} \mathfrak{t}(A, \mathbb{x}) & \stackrel{\mathsf{def}}{=} & A(\mathbb{x}) \\ \mathfrak{t}(\top, \mathbb{x}) \, / \, \mathfrak{t}(\bot, \mathbb{x}) & \stackrel{\mathsf{def}}{=} & \top \, / \, \bot \\ \mathfrak{t}(\neg C, \mathbb{x}) & \stackrel{\mathsf{def}}{=} & \neg \mathfrak{t}(C, \mathbb{x}) \\ \mathfrak{t}(C_1 \sqcap C_2, \mathbb{x}) & \stackrel{\mathsf{def}}{=} & \mathfrak{t}(C_1, \mathbb{x}) \wedge \mathfrak{t}(C_2, \mathbb{x}) \\ \mathfrak{t}(C_1 \sqcup C_2, \mathbb{x}) & \stackrel{\mathsf{def}}{=} & \mathfrak{t}(C_1, \mathbb{x}) \vee \mathfrak{t}(C_2, \mathbb{x}) \\ \mathfrak{t}(\exists r. C, \mathbb{x}) & \stackrel{\mathsf{def}}{=} & \exists \ y \ r(\mathbb{x}, \mathbb{y}) \wedge \mathfrak{t}(C, \mathbb{y}) \\ \mathfrak{t}(\forall r. C, \mathbb{x}) & \stackrel{\mathsf{def}}{=} & \forall \ y \ r(\mathbb{x}, \mathbb{y}) \Rightarrow \mathfrak{t}(C, \mathbb{y}) \end{array}$$

where y is a fresh variable.

Internalisation of ALC semantics

$$\begin{array}{lll} \mathfrak{t}(A, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & A(\mathbf{x}) \\ \mathfrak{t}(\top, \mathbf{x}) / \mathfrak{t}(\bot, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \top / \bot \\ \mathfrak{t}(\neg C, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \neg \mathfrak{t}(C, \mathbf{x}) \\ \mathfrak{t}(C_1 \sqcap C_2, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \mathfrak{t}(C_1, \mathbf{x}) \wedge \mathfrak{t}(C_2, \mathbf{x}) \\ \mathfrak{t}(C_1 \sqcup C_2, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \mathfrak{t}(C_1, \mathbf{x}) \vee \mathfrak{t}(C_2, \mathbf{x}) \\ \mathfrak{t}(\exists r. C, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \exists \ y \ r(\mathbf{x}, \mathbf{y}) \wedge \mathfrak{t}(C, \mathbf{y}) \\ \mathfrak{t}(\forall r. C, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \forall \ y \ r(\mathbf{x}, \mathbf{y}) \Rightarrow \mathfrak{t}(C, \mathbf{y}) \end{array}$$

where y is a fresh variable.

▶ Given
$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
, $\mathfrak{a} \in C^{\mathcal{I}}$ iff $\mathcal{I}, \rho[\mathbf{x} \leftarrow \mathfrak{a}] \models \mathfrak{t}(C, \mathbf{x})$.

Many-one reduction from ALC satisfiability problem to FOL satisfiability.
(why?)

Translating knowledge bases

$$\begin{array}{lll} \mathfrak{t}(C \sqsubseteq D) & \stackrel{\mathsf{def}}{=} & \forall \times \mathfrak{t}(C, \times) \Rightarrow \mathfrak{t}(D, \times) \\ \mathfrak{t}(C \equiv D) & \stackrel{\mathsf{def}}{=} & \forall \times \mathfrak{t}(C, \times) \Leftrightarrow \mathfrak{t}(D, \times) \\ \mathfrak{t}(a : C) & \stackrel{\mathsf{def}}{=} & \mathfrak{t}(C, \times)[a/\times] \\ \mathfrak{t}((a, b) : r) & \stackrel{\mathsf{def}}{=} & r(a, b) \end{array}$$

where $\varphi[a/x]$ (also written $\varphi(a)$) is the formula obtained from φ by replacing the free occurrences of x by a.

Translating knowledge bases

$$\begin{array}{lll} \mathfrak{t}(C \sqsubseteq D) & \stackrel{\mathsf{def}}{=} & \forall \ x \ \mathfrak{t}(C, x) \Rightarrow \mathfrak{t}(D, x) \\ \mathfrak{t}(C \equiv D) & \stackrel{\mathsf{def}}{=} & \forall \ x \ \mathfrak{t}(C, x) \Leftrightarrow \mathfrak{t}(D, x) \\ \mathfrak{t}(a : C) & \stackrel{\mathsf{def}}{=} & \mathfrak{t}(C, x)[a/x] \\ \mathfrak{t}((a, b) : r) & \stackrel{\mathsf{def}}{=} & r(a, b) \end{array}$$

where $\varphi[a/x]$ (also written $\varphi(a)$) is the formula obtained from φ by replacing the free occurrences of x by a.

• $\mathfrak{t}(\mathcal{K})$ is defined as the conjunction

$$\bigwedge_{\alpha \in \mathcal{T}} \mathfrak{t}(\alpha) \wedge \bigwedge_{\alpha \in \mathcal{A}} \mathfrak{t}(\alpha)$$

Translating knowledge bases

$$\begin{array}{lll} \mathfrak{t}(C \sqsubseteq D) & \stackrel{\mathsf{def}}{=} & \forall \ x \ \mathfrak{t}(C, x) \Rightarrow \mathfrak{t}(D, x) \\ \mathfrak{t}(C \equiv D) & \stackrel{\mathsf{def}}{=} & \forall \ x \ \mathfrak{t}(C, x) \Leftrightarrow \mathfrak{t}(D, x) \\ \mathfrak{t}(a : C) & \stackrel{\mathsf{def}}{=} & \mathfrak{t}(C, x)[a/x] \\ \mathfrak{t}((a, b) : r) & \stackrel{\mathsf{def}}{=} & r(a, b) \end{array}$$

where $\varphi[a/x]$ (also written $\varphi(a)$) is the formula obtained from φ by replacing the free occurrences of x by a.

• $\mathfrak{t}(\mathcal{K})$ is defined as the conjunction

$$\bigwedge_{\alpha \in \mathcal{T}} \mathfrak{t}(\alpha) \wedge \bigwedge_{\alpha \in \mathcal{A}} \mathfrak{t}(\alpha)$$

- ▶ Given $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, $\mathcal{I} \models \mathcal{K}$ iff $\mathcal{I} \models \mathfrak{t}(\mathcal{K})$.
- \blacktriangleright \mathcal{K} is consistent iff $\mathfrak{t}(\mathcal{K})$ is satisfiable.

The definition of $\mathfrak{t}(C, x)$ can be optimised to recycle variables and to use only two variables x_0 and x_1 .

The definition of $\mathfrak{t}(C, x)$ can be optimised to recycle variables and to use only two variables x_0 and x_1 .

$$\begin{array}{lll} \mathfrak{t}(\exists r.C, \times_i) & \stackrel{\mathsf{def}}{=} & \exists \times_{1-i} r(\times_i, \times_{1-i}) \wedge \mathfrak{t}(C, \times_{1-i}) \\ \mathfrak{t}(\forall r.C, \times_i) & \stackrel{\mathsf{def}}{=} & \forall \times_{1-i} r(\times_i, \times_{1-i}) \Rightarrow \mathfrak{t}(C, \times_{1-i}) \end{array}$$

The definition of $\mathfrak{t}(C, x)$ can be optimised to recycle variables and to use only two variables x_0 and x_1 .

$$\begin{array}{lll} \mathfrak{t}(\exists r.C, \mathbf{x}_i) & \stackrel{\mathsf{def}}{=} & \exists \ \mathbf{x}_{1-i} \ r(\mathbf{x}_i, \mathbf{x}_{1-i}) \land \mathfrak{t}(C, \mathbf{x}_{1-i}) \\ \mathfrak{t}(\forall r.C, \mathbf{x}_i) & \stackrel{\mathsf{def}}{=} & \forall \ \mathbf{x}_{1-i} \ r(\mathbf{x}_i, \mathbf{x}_{1-i}) \Rightarrow \mathfrak{t}(C, \mathbf{x}_{1-i}) \end{array}$$

► FO2 (FOL restricted to two individual variables) satisfiability is NEXPTIME-complete.

The definition of $\mathfrak{t}(C, x)$ can be optimised to recycle variables and to use only two variables x_0 and x_1 .

$$\begin{array}{lll} \mathfrak{t}(\exists r.C, \mathbf{x}_i) & \stackrel{\mathsf{def}}{=} & \exists \ \mathbf{x}_{1-i} \ r(\mathbf{x}_i, \mathbf{x}_{1-i}) \land \mathfrak{t}(C, \mathbf{x}_{1-i}) \\ \mathfrak{t}(\forall r.C, \mathbf{x}_i) & \stackrel{\mathsf{def}}{=} & \forall \ \mathbf{x}_{1-i} \ r(\mathbf{x}_i, \mathbf{x}_{1-i}) \Rightarrow \mathfrak{t}(C, \mathbf{x}_{1-i}) \end{array}$$

- ► FO2 (FOL restricted to two individual variables) satisfiability is NEXPTIME-complete.
- ▶ Actually, recycling of variables in $\mathfrak{t}(C, \times)$ leads to the guarded fragment GF restricted to two variables (GF2), whose satisfiability is EXPTIME-complete.

The definition of $\mathfrak{t}(C, x)$ can be optimised to recycle variables and to use only two variables x_0 and x_1 .

$$\begin{array}{lll} \mathfrak{t}(\exists r.C, \mathbf{x}_i) & \stackrel{\mathsf{def}}{=} & \exists \ \mathbf{x}_{1-i} \ r(\mathbf{x}_i, \mathbf{x}_{1-i}) \land \mathfrak{t}(C, \mathbf{x}_{1-i}) \\ \mathfrak{t}(\forall r.C, \mathbf{x}_i) & \stackrel{\mathsf{def}}{=} & \forall \ \mathbf{x}_{1-i} \ r(\mathbf{x}_i, \mathbf{x}_{1-i}) \Rightarrow \mathfrak{t}(C, \mathbf{x}_{1-i}) \end{array}$$

- ► FO2 (FOL restricted to two individual variables) satisfiability is NEXPTIME-complete.
- ▶ Actually, recycling of variables in $\mathfrak{t}(C, \times)$ leads to the guarded fragment GF restricted to two variables (GF2), whose satisfiability is EXPTIME-complete.
- Which additional DL features can be translated
 - ▶ into FOL?
 - into a decidable fragment of FOL?

More translations into FOL

$$\mathfrak{t}(\exists r^{-}.C, \mathbf{x}) \qquad \stackrel{\mathsf{def}}{=} \exists \mathbf{y} \ r(\mathbf{y}, \mathbf{x}) \wedge \mathfrak{t}(C, \mathbf{y})$$

More translations into FOL

```
\begin{array}{lll} \mathfrak{t}(\exists r^-.C, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \exists \ \mathbf{y} \ r(\mathbf{y}, \mathbf{x}) \wedge \mathfrak{t}(C, \mathbf{y}) \\ \mathfrak{t}(\{a\}, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & ? ? \\ \mathfrak{t}((\geq n \ r \cdot C), \mathbf{x}) & \stackrel{\mathsf{def}}{=} & \exists^{\geq n} \ \mathbf{y} \ r(\mathbf{x}, \mathbf{y}) \wedge \mathfrak{t}(C, \mathbf{y}) \\ \mathfrak{t}(\exists r.\mathsf{Self}, \mathbf{x}) & \stackrel{\mathsf{def}}{=} & ? ? ? \end{array}
```

More translations into FOL

Properties About Interpretations

About tree interpretations

- $ightharpoonup \mathcal{I}$ is a tree interpretation for C with respect to \mathcal{T} iff the conditions below hold:
 - ▶ $\mathbf{t}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, \bigcup_{r} r^{\mathcal{I}})$ is a tree,
 - the root of $\mathbf{t}_{\mathcal{I}}$ belongs to $C^{\mathcal{I}}$,
 - $ightharpoonup \mathcal{I} \models \mathcal{T}.$

About tree interpretations

- $ightharpoonup \mathcal{I}$ is a tree interpretation for C with respect to \mathcal{T} iff the conditions below hold:
 - ▶ $\mathbf{t}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, \bigcup_{r} r^{\mathcal{I}})$ is a tree,
 - ▶ the root of $\mathbf{t}_{\mathcal{I}}$ belongs to $C^{\mathcal{I}}$,
 - $ightharpoonup \mathcal{I} \models \mathcal{T}.$
- ALC has the tree interpretation property and the finite interpretation property.

About tree interpretations

- $ightharpoonup \mathcal{I}$ is a tree interpretation for C with respect to \mathcal{T} iff the conditions below hold:
 - ightharpoonup $\mathbf{t}_{\mathcal{I}} = (\Delta^{\mathcal{I}}, \bigcup_{r} r^{\mathcal{I}})$ is a tree,
 - ▶ the root of $\mathbf{t}_{\mathcal{I}}$ belongs to $C^{\mathcal{I}}$,
 - $ightharpoonup \mathcal{I} \models \mathcal{T}.$
- ALC has the tree interpretation property and the finite interpretation property.
- ▶ **Path** in \mathcal{I} : finite sequence $(\mathfrak{a}_1, \ldots, \mathfrak{a}_n) \in (\Delta^{\mathcal{I}})^+$ such that for all $i \in [1, n-1]$, we have $(\mathfrak{a}_i, \mathfrak{a}_{i+1}) \in \bigcup_r r^{\mathcal{I}}$.
- ightharpoonup a-path: path such that $a_1 = a$.

Unravelling an interpretation with a single role

- ▶ Unravelling of \mathcal{I} at $\mathfrak{a} \in \Delta^{\mathcal{I}}$: $\mathcal{U} = (\Delta^{\mathcal{U}}, \mathcal{U})$ with
 - $ightharpoonup \Delta^{\mathcal{U}}$ is the set of \mathfrak{a} -paths in \mathcal{I} .
 - ► For all A, $A^{\mathcal{U}} \stackrel{\text{def}}{=} \{(\mathfrak{a}_1, \dots, \mathfrak{a}_n) \in \Delta^{\mathcal{U}} \mid \mathfrak{a}_n \in A^{\mathcal{I}}\}$,
 - For all role names *r*, we have

$$r^{\mathcal{U}} \stackrel{\text{def}}{=} \{ ((\mathfrak{a}_1, \dots, \mathfrak{a}_n), (\mathfrak{a}_1, \dots, \mathfrak{a}_n, \mathfrak{a}_{n+1})) \mid (\mathfrak{a}_n, \mathfrak{a}_{n+1}) \in r^{\mathcal{I}} \}$$

Unravelling an interpretation with a single role

- ▶ Unravelling of \mathcal{I} at $\mathfrak{a} \in \Delta^{\mathcal{I}}$: $\mathcal{U} = (\Delta^{\mathcal{U}}, \cdot^{\mathcal{U}})$ with
 - $ightharpoonup \Delta^{\mathcal{U}}$ is the set of \mathfrak{a} -paths in \mathcal{I} .
 - ► For all A, $A^{\mathcal{U}} \stackrel{\text{def}}{=} \{(\mathfrak{a}_1, \dots, \mathfrak{a}_n) \in \Delta^{\mathcal{U}} \mid \mathfrak{a}_n \in A^{\mathcal{I}}\}$,
 - For all role names *r*, we have

$$r^{\mathcal{U}} \stackrel{\text{def}}{=} \{ ((\mathfrak{a}_1, \dots, \mathfrak{a}_n), (\mathfrak{a}_1, \dots, \mathfrak{a}_n, \mathfrak{a}_{n+1})) \mid (\mathfrak{a}_n, \mathfrak{a}_{n+1}) \in r^{\mathcal{I}} \}$$

ightharpoonup C is satisfiable with respect to a TBox $\mathcal T$ implies C has a tree interpretation with respect to $\mathcal T$.

Subconcepts (towards small interpretation pro

► Set of **subconcepts** sub(*C*) and **size** size(*C*):

Concept C	sub(C)	size(C)
Α	{ <i>A</i> }	1
	{⊤}/{⊥}	1
$\neg C_1$	$sub(C_1) \cup \{\neg C_1\}$	$1 + \operatorname{size}(C_1)$
$C_1 \sqcap C_2$	$sub(\mathit{C}_1) \cup sub(\mathit{C}_2) \cup \{\mathit{C}_1 \sqcap \mathit{C}_2\}$	$1 + \operatorname{size}(C_1) + \operatorname{size}(C_2)$
$C_1 \sqcup C_2$	$sub(\mathit{C}_1) \cup sub(\mathit{C}_2) \cup \{\mathit{C}_1 \sqcup \mathit{C}_2\}$	$1 + \operatorname{size}(C_1) + \operatorname{size}(C_2)$
∃ <i>r</i> . <i>C</i> ₁	$sub(C_1) \cup \{\exists r.C_1\}$	$1 + \operatorname{size}(C_1)$
$\forall r.C_1$	$\operatorname{sub}(C_1) \cup \{ \forall r.C_1 \}$	$1 + \operatorname{size}(C_1)$

Subconcepts (towards small interpretation pro

► Set of **subconcepts** sub(*C*) and **size** size(*C*):

Concept C	sub(C)	size(C)
Α	{ <i>A</i> }	1
	{⊤}/{⊥}	1
$\neg C_1$	$sub(C_1) \cup \{\neg C_1\}$	$1 + \operatorname{size}(C_1)$
$C_1 \sqcap C_2$	$sub(\mathit{C}_1) \cup sub(\mathit{C}_2) \cup \{\mathit{C}_1 \sqcap \mathit{C}_2\}$	$1 + \operatorname{size}(C_1) + \operatorname{size}(C_2)$
$C_1 \sqcup C_2$	$sub(\mathit{C}_1) \cup sub(\mathit{C}_2) \cup \{\mathit{C}_1 \sqcup \mathit{C}_2\}$	$1 + \operatorname{size}(C_1) + \operatorname{size}(C_2)$
∃ <i>r</i> . <i>C</i> ₁	$sub(\mathit{C}_1) \cup \{\exists r.\mathit{C}_1\}$	$1 + \operatorname{size}(C_1)$
$\forall r.C_1$	$\operatorname{sub}(C_1) \cup \{ \forall r.C_1 \}$	$1 + \operatorname{size}(C_1)$

$$\operatorname{sub}(\mathcal{T}) = \bigcup_{C \sqsubseteq D \in \mathcal{T}} \operatorname{sub}(C) \cup \operatorname{sub}(D) \quad \operatorname{sub}(\mathcal{A}) = \bigcup_{a: C \in \mathcal{A}} \operatorname{sub}(C)$$

ightharpoonup size(\mathcal{T}), size(\mathcal{A}): sum of the sizes of its elements.

Subconcepts (towards small interpretation pro

► Set of **subconcepts** sub(*C*) and **size** size(*C*):

Concept C	sub(C)	size(C)
Α	{ A }	1
丁/丄	$\{\top\}/\{\bot\}$	1
$\neg C_1$	$sub(C_1) \cup \{\neg C_1\}$	$1 + \operatorname{size}(C_1)$
$C_1 \sqcap C_2$	$sub(C_1) \cup sub(C_2) \cup \{C_1 \sqcap C_2\}$	$1 + \operatorname{size}(C_1) + \operatorname{size}(C_2)$
$C_1 \sqcup C_2$	$sub(C_1) \cup sub(C_2) \cup \{C_1 \sqcup C_2\}$	$1 + \operatorname{size}(C_1) + \operatorname{size}(C_2)$
∃ <i>r</i> . <i>C</i> ₁	$sub(C_1) \cup \{\exists r.C_1\}$	$1 + \operatorname{size}(C_1)$
$\forall r.C_1$	$\operatorname{sub}(C_1) \cup \{ \forall r. C_1 \}$	$1 + \operatorname{size}(C_1)$

$$\mathsf{sub}(\mathcal{T}) = \bigcup_{C \sqsubseteq D \in \mathcal{T}} \mathsf{sub}(C) \cup \mathsf{sub}(D) \quad \mathsf{sub}(\mathcal{A}) = \bigcup_{a:C \in \mathcal{A}} \mathsf{sub}(C)$$

- ▶ size(\mathcal{T}), size(\mathcal{A}): sum of the sizes of its elements.
- ▶ $card(sub(T) \cup sub(A)) \le size(T) + size(A)$.

Type

- A set of concepts X is closed under subconcepts iff sub(X) = X.
- ▶ sub(C), sub(T), sub(A) are closed under subconcepts.

Type

- A set of concepts X is closed under subconcepts iff sub(X) = X.
- ▶ sub(C), sub(T), sub(A) are closed under subconcepts.
- **X-type** of \mathfrak{a} in \mathcal{I} :

$$\mathsf{type}_{X}(\mathfrak{a}) \stackrel{\mathsf{def}}{=} \{C \in X \mid \mathfrak{a} \in C^{\mathcal{I}}\}$$

▶ If *X* is finite, then

$$\operatorname{card}(\{\operatorname{type}_X(\mathfrak{a})\mid \mathfrak{a}\in\Delta^{\mathcal{I}}\})\leq 2^{\operatorname{card}(X)}$$

Type

- A set of concepts X is closed under subconcepts iff sub(X) = X.
- ▶ sub(C), sub(T), sub(A) are closed under subconcepts.
- **X-type** of \mathfrak{a} in \mathcal{I} :

$$\mathsf{type}_X(\mathfrak{a}) \stackrel{\mathsf{def}}{=} \{C \in X \mid \mathfrak{a} \in C^\mathcal{I}\}$$

▶ If X is finite, then

$$\operatorname{card}(\{\operatorname{type}_X(\mathfrak{a})\mid \mathfrak{a}\in\Delta^{\mathcal{I}}\})\leq 2^{\operatorname{card}(X)}$$

Small interpretation property is established by showing that no need to keep too many individuals with the same X-type with $X = \operatorname{sub}(C) \cup \operatorname{sub}(\mathcal{T}) \cup \operatorname{sub}(\mathcal{A})$.

The filtration technique

▶ Set *X* closed under subconcepts, interpretation \mathcal{I} .

• $\mathfrak{a} \approx_X \mathfrak{b} \stackrel{\text{def}}{\Leftrightarrow} \operatorname{type}_X(\mathfrak{a}) = \operatorname{type}_X(\mathfrak{b})$, and equivalence class $[\mathfrak{a}]_X$.

The filtration technique

- ▶ Set *X* closed under subconcepts, interpretation \mathcal{I} .
- $\bullet \ \mathfrak{a} \approx_X \mathfrak{b} \ \stackrel{\mathsf{def}}{\Leftrightarrow} \ \mathsf{type}_X(\mathfrak{a}) = \mathsf{type}_X(\mathfrak{b}), \, \mathsf{and} \, \, \mathsf{equivalence} \, \, \mathsf{class} \\ [\mathfrak{a}]_X.$
- ightharpoonup X-filtration $\mathcal{J}=(\Delta^{\mathcal{J}},\cdot^{\mathcal{J}})$: (quotient structure)
 - $\Delta^{\mathcal{J}} \stackrel{\text{def}}{=} \{ [\mathfrak{a}]_X \mid \mathfrak{a} \in \Delta^{\mathcal{I}} \}.$
 - $-A^{\mathcal{I}}\stackrel{\text{def}}{=}\{[\mathfrak{a}]_X\mid \text{ there is }\mathfrak{a}'\in[\mathfrak{a}]_X \text{ such that }\mathfrak{a}'\in A^{\mathcal{I}}\}. \quad (A\in X)$
 - $r^{\mathcal{J}} \stackrel{\text{def}}{=} \{ ([\mathfrak{a}]_X, [\mathfrak{b}]_X) \mid \text{ there is } \mathfrak{a}' \in [\mathfrak{a}]_X, \mathfrak{b}' \in [\mathfrak{b}]_X$ such that $(\mathfrak{a}', \mathfrak{b}') \in r^{\mathcal{I}} \}.$ $(\mathcal{J} \quad \mathcal{J} \text{ well-defined?})$
- ▶ $\operatorname{card}(\Delta^{\mathcal{J}}) \leq 2^{\operatorname{card}(X)}$.

The filtration technique

- ▶ Set *X* closed under subconcepts, interpretation \mathcal{I} .
- $\bullet \ \mathfrak{a} \approx_X \mathfrak{b} \ \stackrel{\mathsf{def}}{\Leftrightarrow} \ \mathsf{type}_X(\mathfrak{a}) = \mathsf{type}_X(\mathfrak{b}), \, \mathsf{and} \, \, \mathsf{equivalence} \, \, \mathsf{class} \\ [\mathfrak{a}]_X.$
- ightharpoonup X-filtration $\mathcal{J}=(\Delta^{\mathcal{J}},\cdot^{\mathcal{J}})$: (quotient structure)
 - $\Delta^{\mathcal{J}} \stackrel{\text{def}}{=} \{ [\mathfrak{a}]_X \mid \mathfrak{a} \in \Delta^{\mathcal{I}} \}.$
 - $-A^{\mathcal{I}}\stackrel{\text{def}}{=}\{[\mathfrak{a}]_X\mid \text{ there is }\mathfrak{a}'\in[\mathfrak{a}]_X \text{ such that }\mathfrak{a}'\in A^{\mathcal{I}}\}. \quad (A\in X)$
 - $r^{\mathcal{J}} \stackrel{\text{def}}{=} \{ ([\mathfrak{a}]_X, [\mathfrak{b}]_X) \mid \text{ there is } \mathfrak{a}' \in [\mathfrak{a}]_X, \mathfrak{b}' \in [\mathfrak{b}]_X$ such that $(\mathfrak{a}', \mathfrak{b}') \in r^{\mathcal{I}} \}.$ $(\mathcal{J} \quad \mathcal{J} \text{ well-defined?})$
- ▶ $\operatorname{card}(\Delta^{\mathcal{J}}) \leq 2^{\operatorname{card}(X)}$.
- ▶ For all $C \in X$ and $\mathfrak{a} \in \Delta^{\mathcal{I}}$, we have $\mathfrak{a} \in C^{\mathcal{I}}$ iff $[\mathfrak{a}]_X \in C^{\mathcal{I}}$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r. C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ($[\mathfrak{a}]_X$, $[\mathfrak{b}]_X$) ∈ $r^{\mathcal{J}}$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ($[\mathfrak{a}]_X$, $[\mathfrak{b}]_X$) ∈ $r^{\mathcal{J}}$.
 - As X closed under subconcepts and by (IH), $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ($[\mathfrak{a}]_X$, $[\mathfrak{b}]_X$) ∈ $r^{\mathcal{J}}$.
 - As X closed under subconcepts and by (IH), $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, we get $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{I}}$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ($[\mathfrak{a}]_X$, $[\mathfrak{b}]_X$) ∈ $r^{\mathcal{J}}$.
 - As X closed under subconcepts and by (IH), $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, we get $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{I}}$.
- ▶ Suppose that $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is $[\mathfrak{b}]_X$ such that $([\mathfrak{a}]_X, [\mathfrak{b}]_X) \in r^{\mathcal{I}}$ and $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ($[\mathfrak{a}]_X$, $[\mathfrak{b}]_X$) ∈ $r^{\mathcal{J}}$.
 - As X closed under subconcepts and by (IH), $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, we get $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{I}}$.
- ▶ Suppose that $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{J}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is $[\mathfrak{b}]_X$ such that $([\mathfrak{a}]_X, [\mathfrak{b}]_X) \in r^{\mathcal{I}}$ and $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of $r^{\mathcal{I}}$, there is $(\mathfrak{a}',\mathfrak{b}') \in r^{\mathcal{I}}$ such that $\mathfrak{a}' \in [\mathfrak{a}]_X$ and $\mathfrak{b}' \in [\mathfrak{b}]_X$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ($[\mathfrak{a}]_X$, $[\mathfrak{b}]_X$) ∈ $r^{\mathcal{J}}$.
 - As X closed under subconcepts and by (IH), $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{I} , we get $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{I}}$.
- ▶ Suppose that $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{J}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is $[\mathfrak{b}]_X$ such that $([\mathfrak{a}]_X, [\mathfrak{b}]_X) \in r^{\mathcal{I}}$ and $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of $r^{\mathcal{I}}$, there is $(\mathfrak{a}',\mathfrak{b}') \in r^{\mathcal{I}}$ such that $\mathfrak{a}' \in [\mathfrak{a}]_X$ and $\mathfrak{b}' \in [\mathfrak{b}]_X$.
 - As X closed under subconcepts and by (IH), $\mathfrak{b} \in C^{\mathcal{I}}$ and as $\mathfrak{b}' \in [\mathfrak{b}]_X$, $\mathfrak{b}' \in C^{\mathcal{I}}$ too.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r. C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ([\mathfrak{a}]_X,[\mathfrak{b}]_X) ∈ $r^{\mathcal{J}}$.
 - As X closed under subconcepts and by (IH), $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{I} , we get $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{I}}$.
- ▶ Suppose that $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{J}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is $[\mathfrak{b}]_X$ such that $([\mathfrak{a}]_X, [\mathfrak{b}]_X) \in r^{\mathcal{I}}$ and $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of $r^{\mathcal{I}}$, there is $(\mathfrak{a}',\mathfrak{b}') \in r^{\mathcal{I}}$ such that $\mathfrak{a}' \in [\mathfrak{a}]_X$ and $\mathfrak{b}' \in [\mathfrak{b}]_X$.
 - As X closed under subconcepts and by (IH), $\mathfrak{b} \in C^{\mathcal{I}}$ and as $\mathfrak{b}' \in [\mathfrak{b}]_X$, $\mathfrak{b}' \in C^{\mathcal{I}}$ too.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, we get $\mathfrak{a}' \in (\exists r.C)^{\mathcal{I}}$.

- ▶ First, suppose that $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is \mathfrak{b} such that $(\mathfrak{a}, \mathfrak{b}) \in r^{\mathcal{I}}$ and $\mathfrak{b} \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{J} , ($[\mathfrak{a}]_X$, $[\mathfrak{b}]_X$) ∈ $r^{\mathcal{J}}$.
 - As X closed under subconcepts and by (IH), $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of \mathcal{I} , we get $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{I}}$.
- ▶ Suppose that $[\mathfrak{a}]_X \in (\exists r.C)^{\mathcal{J}}$.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, there is $[\mathfrak{b}]_X$ such that $([\mathfrak{a}]_X, [\mathfrak{b}]_X) \in r^{\mathcal{I}}$ and $[\mathfrak{b}]_X \in C^{\mathcal{I}}$.
 - ▶ By definition of $r^{\mathcal{I}}$, there is $(\mathfrak{a}',\mathfrak{b}') \in r^{\mathcal{I}}$ such that $\mathfrak{a}' \in [\mathfrak{a}]_X$ and $\mathfrak{b}' \in [\mathfrak{b}]_X$.
 - As X closed under subconcepts and by (IH), $\mathfrak{b} \in C^{\mathcal{I}}$ and as $\mathfrak{b}' \in [\mathfrak{b}]_X$, $\mathfrak{b}' \in C^{\mathcal{I}}$ too.
 - ▶ By definition of $\cdot^{\mathcal{I}}$, we get $\mathfrak{a}' \in (\exists r.C)^{\mathcal{I}}$.
 - As $\mathfrak{a}' \in [\mathfrak{a}]_X$, $\mathfrak{a} \in (\exists r.C)^{\mathcal{I}}$.

▶ C, K = (T, A), X closed under subconcepts with $(\operatorname{sub}(C) \cup \operatorname{sub}(T) \cup \operatorname{sub}(A)) \subseteq X$.

- ▶ C, K = (T, A), X closed under subconcepts with $(\operatorname{sub}(C) \cup \operatorname{sub}(T) \cup \operatorname{sub}(A)) \subseteq X$.
- ▶ If *C* is satisfiable w.r.t. \mathcal{K} , then there is an interpretation \mathcal{J} such that $\mathcal{J} \models \mathcal{K}$, $C^{\mathcal{J}} \neq \emptyset$ and $\operatorname{card}(\Delta^{\mathcal{J}}) \leq 2^{\operatorname{card}(X)}$.

- C, $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, X closed under subconcepts with $(\operatorname{sub}(C) \cup \operatorname{sub}(\mathcal{T}) \cup \operatorname{sub}(\mathcal{A})) \subseteq X$.
- ▶ If C is satisfiable w.r.t. \mathcal{K} , then there is an interpretation \mathcal{J} such that $\mathcal{J} \models \mathcal{K}$, $C^{\mathcal{J}} \neq \emptyset$ and $\operatorname{card}(\Delta^{\mathcal{J}}) \leq 2^{\operatorname{card}(X)}$.
- ▶ \mathcal{J} is an X-filtration based on some interpretation \mathcal{I} such that for all $a: C \in \mathcal{A}$, we have $a^{\mathcal{I}} \stackrel{\text{def}}{=} [a^{\mathcal{I}}]_X$.
- The equivalence " $\mathfrak{a} \in C^{\mathcal{I}}$ iff $[\mathfrak{a}]_X \in C^{\mathcal{I}}$ " leads to the satisfaction of \mathcal{K} in \mathcal{J} .

- C, $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, X closed under subconcepts with $(\operatorname{sub}(C) \cup \operatorname{sub}(\mathcal{T}) \cup \operatorname{sub}(\mathcal{A})) \subseteq X$.
- ▶ If C is satisfiable w.r.t. \mathcal{K} , then there is an interpretation \mathcal{J} such that $\mathcal{J} \models \mathcal{K}$, $C^{\mathcal{J}} \neq \emptyset$ and $\operatorname{card}(\Delta^{\mathcal{J}}) \leq 2^{\operatorname{card}(X)}$.
- ▶ \mathcal{J} is an X-filtration based on some interpretation \mathcal{I} such that for all $a: C \in \mathcal{A}$, we have $a^{\mathcal{I}} \stackrel{\text{def}}{=} [a^{\mathcal{I}}]_X$.
- ▶ The equivalence " $\mathfrak{a} \in C^{\mathcal{I}}$ iff $[\mathfrak{a}]_X \in C^{\mathcal{I}}$ " leads to the satisfaction of \mathcal{K} in \mathcal{J} .
- $ightharpoonup \mathcal{K}$ consistent implies there is \mathcal{I} such that $\mathcal{I} \models \mathcal{K}$ and $\operatorname{card}(\Delta^{\mathcal{I}}) < 2^{\operatorname{size}(\mathcal{K})}$.

Generalities about decision procedures

A decision problem P is a subset of Σ*.
 (Σ is a finite alphabet)

▶ Alternatively, given $\mathfrak{w} \in \Sigma^*$, is \mathfrak{w} in P?

Generalities about decision procedures

A decision problem P is a subset of Σ*.
 (Σ is a finite alphabet)

- ▶ Alternatively, given $\mathfrak{w} \in \Sigma^*$, is \mathfrak{w} in P?
- An algorithm for P is **sound** if whenever it answers " $\mathfrak{w} \in P$ ", then $\mathfrak{w} \in P$.
- An algorithm for P is **complete** if whenever $w \in P$, it answers " $w \in P$ ".
- An algorithm for P is **terminating** if it stops after finitely many steps for all $w \in \Sigma^*$.

Generalities about decision procedures

- A decision problem P is a subset of Σ*.
 (Σ is a finite alphabet)
- ▶ Alternatively, given $\mathfrak{w} \in \Sigma^*$, is \mathfrak{w} in P?
- An algorithm for P is **sound** if whenever it answers " $\mathfrak{w} \in P$ ", then $\mathfrak{w} \in P$.
- An algorithm for P is **complete** if whenever $w \in P$, it answers " $w \in P$ ".
- An algorithm for P is **terminating** if it stops after finitely many steps for all $w \in \Sigma^*$.
- Decision procedure: sound, complete and terminating.

► Concept consistency with respect to a knowledge base.

▶ Input: C, K = (T, A).

- Concept consistency with respect to a knowledge base.
- ▶ Input: C, K = (T, A).
- ▶ Guess an interpretation \mathcal{I} such that $\operatorname{card}(\Delta^{\mathcal{I}}) \leq 2^{\operatorname{card}(X)}$ with $X = \operatorname{sub}(C) \cup \operatorname{sub}(\mathcal{T}) \cup \operatorname{sub}(\mathcal{A})$.

- Concept consistency with respect to a knowledge base.
- ▶ Input: C, K = (T, A).
- ▶ Guess an interpretation \mathcal{I} such that $\operatorname{card}(\Delta^{\mathcal{I}}) \leq 2^{\operatorname{card}(X)}$ with $X = \operatorname{sub}(C) \cup \operatorname{sub}(\mathcal{T}) \cup \operatorname{sub}(\mathcal{A})$.
- ▶ Compute the set $C^{\mathcal{I}}$ using a labelling algorithm based on the definition of $\cdot^{\mathcal{I}}$ for complex concepts.

- Concept consistency with respect to a knowledge base.
- ▶ Input: C, K = (T, A).
- ▶ Guess an interpretation \mathcal{I} such that $\operatorname{card}(\Delta^{\mathcal{I}}) \leq 2^{\operatorname{card}(X)}$ with $X = \operatorname{sub}(C) \cup \operatorname{sub}(\mathcal{T}) \cup \operatorname{sub}(\mathcal{A})$.
- ▶ Compute the set $C^{\mathcal{I}}$ using a labelling algorithm based on the definition of $\cdot^{\mathcal{I}}$ for complex concepts.
- ▶ Check the satisfaction of $\mathcal{I} \models \mathcal{K}$ using again a labelling algorithm.
- ▶ Guessing \mathcal{I} and checking $C^{\mathcal{I}} \neq \emptyset$ and $\mathcal{I} \models \mathcal{K}$ can be done in NEXPTIME.

Labelling algorithm

▶ Given $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ with finite $\Delta^{\mathcal{I}}$ and a concept C, let us compute $C^{\mathcal{I}}$ in polynomial time in $size(\mathcal{I}) + size(C)$.

Labelling algorithm

- ▶ Given $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ with finite $\Delta^{\mathcal{I}}$ and a concept C, let us compute $C^{\mathcal{I}}$ in polynomial time in $size(\mathcal{I}) + size(C)$.
- Let C_1, \ldots, C_k be the subconcepts of C ordered by increasing size.
- In case of conflict, we make an arbitrary choice for the formulae of identical sizes.
 - $ightharpoonup C_k = C$,
 - ▶ C_1 is a concept name (or \bot/\top),
 - ▶ if C_i is a strict subconcept of C_j , then i < j,
 - ▶ $k \leq \text{size}(C)$.

Labelling algorithm

- ▶ Given $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ with finite $\Delta^{\mathcal{I}}$ and a concept C, let us compute $C^{\mathcal{I}}$ in polynomial time in $size(\mathcal{I}) + size(C)$.
- Let C_1, \ldots, C_k be the subconcepts of C ordered by increasing size.
- In case of conflict, we make an arbitrary choice for the formulae of identical sizes.
 - $ightharpoonup C_k = C,$
 - ▶ C_1 is a concept name (or \bot/\top),
 - if C_i is a strict subconcept of C_j , then i < j,
 - ▶ $k \leq \text{size}(C)$.
- **Labelling algorithm**: construction of **label** $I(\mathfrak{a})$ for each \mathfrak{a} .

Labelling algorithm: principles

- ▶ For every $a \in \Delta^{\mathcal{I}}$, we build a set of concepts I(a) such that
 - 1. for every $i \in [1, k]$, either $C_i \in I(\mathfrak{a})$, or $\neg C_i \in I(\mathfrak{a})$, but not both at the same time,
 - 2. for every $D \in \{C_1, \dots, C_k, \neg C_1, \dots, \neg C_k\}$, $D \in I(\mathfrak{a})$ iff $\mathfrak{a} \in D^{\mathcal{I}}$.

Labelling algorithm: principles

- ▶ For every $\mathfrak{a} \in \Delta^{\mathcal{I}}$, we build a set of concepts $I(\mathfrak{a})$ such that
 - 1. for every $i \in [1, k]$, either $C_i \in I(\mathfrak{a})$, or $\neg C_i \in I(\mathfrak{a})$, but not both at the same time,
 - 2. for every $D \in \{C_1, \dots, C_k, \neg C_1, \dots, \neg C_k\}$, $D \in I(\mathfrak{a})$ iff $\mathfrak{a} \in D^{\mathcal{I}}$.
- For all $i \in [1, k]$ and $\mathfrak{a} \in \Delta^{\mathcal{I}}$, we insert either C_i in $I(\mathfrak{a})$ or $\neg C_i$ dans $I(\mathfrak{a})$, following the above ordering of subformulae.
- ► For each $i \in [1, k]$, the insertion requires time quadratic in size(\mathcal{I}) (worst-case).

Labelling algorithm: principles

- ▶ For every $\mathfrak{a} \in \Delta^{\mathcal{I}}$, we build a set of concepts $I(\mathfrak{a})$ such that
 - 1. for every $i \in [1, k]$, either $C_i \in I(\mathfrak{a})$, or $\neg C_i \in I(\mathfrak{a})$, but not both at the same time,
 - 2. for every $D \in \{C_1, \dots, C_k, \neg C_1, \dots, \neg C_k\}$, $D \in I(\mathfrak{a})$ iff $\mathfrak{a} \in D^{\mathcal{I}}$.
- For all $i \in [1, k]$ and $\mathfrak{a} \in \Delta^{\mathcal{I}}$, we insert either C_i in $I(\mathfrak{a})$ or $\neg C_i$ dans $I(\mathfrak{a})$, following the above ordering of subformulae.
- ► For each $i \in [1, k]$, the insertion requires time quadratic in size(\mathcal{I}) (worst-case).
- ▶ Each set I(a) is initialized to the empty set.

Labelling algorithm: definition

We run the algorithm with increasing $i \in [1, k]$.

Case 1: C_i is a concept name.

For every $a \in \Delta^{\mathcal{I}}$, if $a \in C_i^{\mathcal{I}}$ by definition of \mathcal{I} , then insert C_i in I(a) otherwise insert $\neg C_i$ in I(a).

Labelling algorithm: definition

We run the algorithm with increasing $i \in [1, k]$.

Case 1: C_i is a concept name. For every $\mathfrak{a} \in \Delta^{\mathcal{I}}$, if $\mathfrak{a} \in C_i^{\mathcal{I}}$ by definition of \mathcal{I} , then insert C_i in $I(\mathfrak{a})$ otherwise insert $\neg C_i$ in $I(\mathfrak{a})$.

Case 2: $C_i = C_{i_1} \sqcap C_{i_2}$ for some $i_1, i_2 < i$. For every $\mathfrak{a} \in \Delta^{\mathcal{I}}$, insert C_i in $I(\mathfrak{a})$ if $\{C_{i_1}, C_{i_2}\} \subseteq I(\mathfrak{a})$ otherwise insert $\neg C_i$ in $I(\mathfrak{a})$.

Labelling algorithm: definition

We run the algorithm with increasing $i \in [1, k]$.

- Case 1: C_i is a concept name. For every $\mathfrak{a} \in \Delta^{\mathcal{I}}$, if $\mathfrak{a} \in C_i^{\mathcal{I}}$ by definition of \mathcal{I} , then insert C_i in $I(\mathfrak{a})$ otherwise insert $\neg C_i$ in $I(\mathfrak{a})$.
- Case 2: $C_i = C_{i_1} \sqcap C_{i_2}$ for some $i_1, i_2 < i$. For every $\mathfrak{a} \in \Delta^{\mathcal{I}}$, insert C_i in $I(\mathfrak{a})$ if $\{C_{i_1}, C_{i_2}\} \subseteq I(\mathfrak{a})$ otherwise insert $\neg C_i$ in $I(\mathfrak{a})$.
- Case 3: $C_i = \exists r. C_{i_1}$ for some $i_1 < i$. For every $\mathfrak{a} \in \Delta^{\mathcal{I}}$, if there is $\mathfrak{a}' \in r^{\mathcal{I}}(\mathfrak{a})$ such that C_{i_1} is in $I(\mathfrak{a}')$, then insert C_i in $I(\mathfrak{a})$, otherwise insert $\neg C_i$ in $I(\mathfrak{a})$.

This is a standard labelling algorithm as used for instance for the branching-time temporal logic CTL.

Tableaux Proof System for \mathcal{ALC}

Automated reasoning for non-classical logics

- Direct methods:
 - ▶ Analytical calculi: tableaux, sequents $(\Gamma \vdash \Delta)$, etc.
 - ▶ Resolution. $(\frac{L \lor C_1 \ \neg L' \lor C_2}{C_1 \sigma \lor C_2 \sigma} \text{ with } L \sigma = L' \sigma)$
 - ▶ Automata-based decision procedures. (φ sat. iff $L(\mathbb{A}_{\varphi}) \neq \emptyset$)

Automated reasoning for non-classical logics

- Direct methods:
 - ▶ Analytical calculi: tableaux, sequents $(\Gamma \vdash \Delta)$, etc.
 - ► Resolution. $\left(\frac{L \vee C_1}{C_1 \sigma \vee C_2 \sigma} \text{ with } L \sigma = L' \sigma\right)$
 - Automata-based decision procedures. $(\varphi \text{ sat. iff } L(\mathbb{A}_{\varphi}) \neq \emptyset)$
- Translation into
 - other modal logics (PDL, modal μ -calculus, ...)
 - decidable fragments of first-order logic (FO2, GF, CGF, ...)
 - second-order monadic logics (S2S, SωS, ...)

➤ Analytical method: the rules of the calculi perform a syntactic decomposition of the concepts (formulae, etc.).

- Analytical method: the rules of the calculi perform a syntactic decomposition of the concepts (formulae, etc.).
- Method developped initially by R. Smullyan for first-order logic (60's).
- Method developed by M. Fitting for intuitionistic and modal logics (circa 1975-1985).

- Analytical method: the rules of the calculi perform a syntactic decomposition of the concepts (formulae, etc.).
- Method developped initially by R. Smullyan for first-order logic (60's).
- Method developed by M. Fitting for intuitionistic and modal logics (circa 1975-1985).
- Close relationships with sequent-style proof systems.

- Analytical method: the rules of the calculi perform a syntactic decomposition of the concepts (formulae, etc.).
- Method developped initially by R. Smullyan for first-order logic (60's).
- Method developed by M. Fitting for intuitionistic and modal logics (circa 1975-1985).
- Close relationships with sequent-style proof systems.
- Modular approach as new conditions or new ingredients may correspond to the addition of new rules.

- Analytical method: the rules of the calculi perform a syntactic decomposition of the concepts (formulae, etc.).
- Method developped initially by R. Smullyan for first-order logic (60's).
- Method developed by M. Fitting for intuitionistic and modal logics (circa 1975-1985).
- Close relationships with sequent-style proof systems.
- Modular approach as new conditions or new ingredients may correspond to the addition of new rules.
- Labels are sometimes used in such proof systems.
 - Labels are interpreted as entities of the domain under construction.
 - Expressions external to the original logical language.
 - Labels can be also used as control data structures.

▶ Satisfiability of *C* by checking consistency of $A = \{a : C\}$.

- ▶ Satisfiability of *C* by checking consistency of $A = \{a : C\}$.
- ► First part dedicated to a tableaux calculus for checking the consistency status of ABoxes A.

- ▶ Satisfiability of *C* by checking consistency of $A = \{a : C\}$.
- ► First part dedicated to a tableaux calculus for checking the consistency status of ABoxes A.
- Second part presents an extension for checking the consistency status of a knowledge base $(\mathcal{T}, \mathcal{A})$.

- ▶ Satisfiability of *C* by checking consistency of $A = \{a : C\}$.
- ► First part dedicated to a tableaux calculus for checking the consistency status of ABoxes A.
- Second part presents an extension for checking the consistency status of a knowledge base $(\mathcal{T}, \mathcal{A})$.
- ➤ This leads to a decision procedure (terminating) for knowledge base consistency in which a few optimisations leads to ExpTIME (not presented herein).

- ▶ Satisfiability of *C* by checking consistency of $A = \{a : C\}$.
- ► First part dedicated to a tableaux calculus for checking the consistency status of ABoxes A.
- Second part presents an extension for checking the consistency status of a knowledge base $(\mathcal{T}, \mathcal{A})$.
- ➤ This leads to a decision procedure (terminating) for knowledge base consistency in which a few optimisations leads to ExpTIME (not presented herein).
- ▶ The proof system works by rewriting ABoxes. $(A \stackrel{*}{\rightarrow} A')$
- Our presentation follows the usual way to present tableaux-style proof systems for description logics.

Negation normal form

- ▶ C is in **negation normal form (NNF)** $\stackrel{\text{def}}{\Leftrightarrow}$ the concept negation \neg occurs only in front of concept names.
- Every concept has an equivalent concept in NNF:

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D \qquad \neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg \exists r. C \equiv \forall r. \neg C \qquad \neg \forall r. C \equiv \exists r. \neg C \qquad \neg \neg C \equiv C \qquad \neg \top \equiv \bot \qquad \neg \bot \equiv \top$$

Negation normal form

- ▶ C is in **negation normal form (NNF)** $\stackrel{\text{def}}{\Leftrightarrow}$ the concept negation \neg occurs only in front of concept names.
- Every concept has an equivalent concept in NNF:

$$\neg(C \sqcup D) \equiv \neg C \sqcap \neg D \qquad \neg(C \sqcap D) \equiv \neg C \sqcup \neg D$$

$$\neg \exists r. C \equiv \forall r. \neg C \quad \neg \forall r. C \equiv \exists r. \neg C \quad \neg \neg C \equiv C \quad \neg \top \equiv \bot \quad \neg \perp \equiv \top$$

➤ Transforming a concept into an equivalent concept in NNF takes polynomial time (only).

NNFs are not a must but this simplifies forthcoming developments.

Principles of the tableaux-style proof systems

- The calculus is made of rewriting rules that transform an ABox A into another ABox A' nondeterministically. (ex: □-rule)
- ABoxes A are understood as partial description of interpretations.

(individual name

➤ To guarantee termination, provisos are added to the application of the rules. (see the blocking technique)

Principles of the tableaux-style proof systems

- The calculus is made of rewriting rules that transform an ABox A into another ABox A' nondeterministically. (ex: □-rule)
- ABoxes A are understood as partial description of interpretations.

(individual name

- ➤ To guarantee termination, provisos are added to the application of the rules. (see the blocking technique)
- ▶ ABoxes with no contradiction and for which no rule application adds value correspond to interpretations.

Example: the □-rule

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

 $A \longrightarrow A \cup \{a : C, a : D\}$

Applying the rule can be viewed as repairing a defect.

Example: the □-rule

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

$$A \longrightarrow A \cup \{a : C, a : D\}$$

- Applying the rule can be viewed as repairing a defect.
- ► Condition $\{a: C, a: D\} \not\subseteq A$ rules out void rule applications.

Example: the □-rule

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

$$A \longrightarrow A \cup \{a : C, a : D\}$$

- Applying the rule can be viewed as repairing a defect.
- Condition {a : C, a : D} ⊈ A rules out void rule applications.
- The other rules are designed on the same pattern.

(gue U-rule)

Expansion rules for ALC ABox consistency

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

 $A \longrightarrow A \cup \{a : C, a : D\}$

 \sqcup -rule: If $a: C \sqcup D \in \mathcal{A}$ and $\{a: C, a: D\} \cap \mathcal{A} = \emptyset$ then

 $A \longrightarrow A \cup \{a : E\}$ for some $E \in \{C, D\}$

Expansion rules for ALC ABox consistency

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

$$A \longrightarrow A \cup \{a : C, a : D\}$$

 \sqcup -rule: If $a: C \sqcup D \in \mathcal{A}$ and $\{a: C, a: D\} \cap \mathcal{A} = \emptyset$ then

$$A \longrightarrow A \cup \{a : E\}$$
 for some $E \in \{C, D\}$

 \exists -rule: If $a: \exists r.C \in \mathcal{A}$ and there is no b such that

$$\{(a,b):r,b:C\}\subseteq\mathcal{A}$$
 then

$$A \longrightarrow A \cup \{(a, c) : r, c : C\}$$
 where c is fresh

Expansion rules for \mathcal{ALC} ABox consistency

 \sqcap -rule: If $a: C \sqcap D \in \mathcal{A}$ and $\{a: C, a: D\} \not\subseteq \mathcal{A}$ then

$$A \longrightarrow A \cup \{a : C, a : D\}$$

 \sqcup -rule: If $a: C \sqcup D \in \mathcal{A}$ and $\{a: C, a: D\} \cap \mathcal{A} = \emptyset$ then

$$A \longrightarrow A \cup \{a : E\}$$
 for some $E \in \{C, D\}$

 \exists -rule: If $a: \exists r.C \in \mathcal{A}$ and there is no b such that

$$\{(a,b):r,b:C\}\subseteq\mathcal{A}$$
 then

$$A \longrightarrow A \cup \{(a, c) : r, c : C\}$$
 where *c* is fresh

 \forall -rule: If $\{(a,b): r, a: \forall r.C\} \subseteq A$ and $b: C \notin A$, then

$$A \longrightarrow A \cup \{b : C\}$$

Complete and clash-free ABox

▶ An ABox \mathcal{A} contains a **clash** if $\{a : A, a : \neg A\} \subseteq \mathcal{A}$ or $a : \bot \in \mathcal{A}$.

Notion of clash to be extended if the concepts are not in NNF.

 \blacktriangleright An ABox \mathcal{A} is **clash-free** if it contains no clash.

Complete and clash-free ABox

▶ An ABox \mathcal{A} contains a **clash** if $\{a : A, a : \neg A\} \subseteq \mathcal{A}$ or $a : \bot \in \mathcal{A}$.

- ▶ An ABox A is **clash-free** if it contains no clash.
- ► An ABox A is complete if it contains a clash or if no rule is applicable (saturation).

Complete and clash-free ABox

▶ An ABox \mathcal{A} contains a **clash** if $\{a : A, a : \neg A\} \subseteq \mathcal{A}$ or $a : \bot \in \mathcal{A}$.

- \blacktriangleright An ABox \mathcal{A} is **clash-free** if it contains no clash.
- An ABox A is complete if it contains a clash or if no rule is applicable (saturation).

Objective: to show that \mathcal{A} is consistent iff $\mathcal{A} \xrightarrow{*} \mathcal{A}'$ for some complete and clash-free ABox \mathcal{A}' .

► The only nondeterministic rule is the ⊔-rule. (is it brue?)

Conclusion

- Today lecture:
 - Translation into first-order logic.
 - Basic model-theoretical properties.
 - ► Tableaux proof system for ALC (Part I).
- Next week lecture: Tableaux proof system for ALC