互评作业1:数据探索性分析与数据预处理:wine-reviews

学号: 1120183560 姓名: 刘文楷

1. 数据集: wine-reviews

两个csv文件:

- winemag-data first150k.csv 10列15万行评论
- winemag-data-130k-v2.csv 10列13万行评论

读取数据:

```
%matplotlib inline
import matplotlib
import numpy as np
import pandas as pd

In [2]:

dirpath_150k = "wine-data/winemag-data_first
dirpath_130k = "wine-data/winemag-data-130k-data_150k = pd.read_csv(dirpath_150k)
data_130k = pd.read_csv(dirpath_130k)
```

数据属性:

In [3]:

数据类型

data_150k.dtypes

int64
object
object
object
int64
float64
object

In [4]: data_150k.head(10)

	Unnamed: 0	country	description	desig
0	0	US	This tremendous 100% varietal wine hails from	Marth Vineya
1	1	Spain	Ripe aromas of fig, blackberry and cassis are	Carodo Selecc Especi Reserv
2	2	US	Mac Watson honors the memory of a wine once ma	Specia Selecto Harves
3	3	US	This spent 20 months in 30% new French oak, an	Reserv
4	4	France	This is the top wine from La Bégude, named aft	La Brû
5	5	Spain	Deep, dense and pure from the opening bell, th	Numa
6	6	Spain	Slightly gritty black- fruit aromas include a s	San Rc

	Unnamed: 0	country	description	desig
7	7	Spain	Lush cedary black-fruit aromas are luxe and of	Carod Único Crianz
8	8	US	This re- named vineyard was formerly bottled as	Silice
9	9	US	The producer sources from two blocks	Gap's Vineya

2. 数据分析

2.1 数据可视化和摘要

2.1.1 country属性

标称属性,后面所有的属性都和country—样

```
attribute = "country"
d150kvc = data_150k[attribute].value_counts(
d150kvc
```

US	62397
Italy	23478
France	21098
Spain	8268
Chile	5816
Argentina	5631
Portugal	5322
Australia	4957
New Zealand	3320
Austria	3057
Germany	2452
South Africa	2258
Greece	884
Israel	630
Hungary	231
Canada	196
Romania	139
Slovenia	94
Uruguay	92
Croatia	89
Bulgaria	77
Moldova	71
Mexico	63
Turkey	52
Georgia	43
Lebanon	37
Cyprus	31
Brazil	25
Macedonia	16
Serbia	14
Morocco	12
England	9
Luxembourg	9
Lithuania	8
India	8

Czech Republic	6
NaN	5
Ukraine	5
Bosnia and Herzegovina	4
Switzerland	4
South Korea	4
Egypt	3
Slovakia	3
China	3
Albania	2
Tunisia	2
Japan	2
Montenegro	2
US-France	1
Name: country dtype: int6/	

Name: country, dtype: int64

可视化

```
In [6]:

# 仅显示前10个,数据太大画不了

d150kvc[:10].plot(kind = "bar", figsize = (1
```

<AxesSubplot:>

2.1.2 designation属性

同country

```
attribute = "designation"
d150kvc = data_150k[attribute].value_counts(
d150kvc
```

NaN	45735	
Reserve	2752	
Reserva	1810	
Estate	1571	
Barrel sample	1326	
Mostly	1	
Clos des Rocs Monopole	1	
Eternity Sparkling Cuvée	1	
Gueta-Lupia	1	
Ramona Pinot Noir	1	
Name: designation, Length:	30622,	dtyp
e: int64		

```
In [9]:
```

```
# 仅显示前10个,数据太大画不了
```

```
d150kvc[:10].plot(kind = "bar", figsize = (1
```


2.1.3 province属性

```
In [10]:
attribute = "province"
d150kvc = data_150k[attribute].value_counts(
print(d150kvc)
# 仅显示前10个,数据太大画不了
d150kvc[:10].plot(kind = "bar", figsize = (1
```

California	44508			
Washington	9750			
Tuscany	7281			
Bordeaux	6111			
Northern Spain	4892			
	• • •			
Pannon	1			
Beni M'Tir	1			
Stirling	1			
Nevada	1			
Rose Valley	1			
Name: province,	Length:	456,	dtype:	in
t64				

2.1.4 region_1

```
In [11]:
attribute = "region_1"
d150kvc = data 150k[attribute].value counts(
print(d150kvc)
# 仅显示前10个,数据太大画不了
d150kvc[:10].plot(kind = "bar", figsize = (1
 NaN
 25060
 Napa Valley
 6209
 Columbia Valley (WA)
 4975
 Mendoza
 3586
 Russian River Valley
 3571
 Vin de Pays des Coteaux de Murviel
 Sonoma County-Monterey County
 Fara
 1
 Central Valley
 1
 Geelong
 Name: region_1, Length: 1237, dtype: i
 nt64
 <AxesSubplot:>
```


2.1.4 region_2

```
In [12]:
attribute = "region_2"
d150kvc = data_150k[attribute].value_counts(
print(d150kvc)
# 仅显示前10个,数据太大画不了
d150kvc[:10].plot(kind = "bar", figsize = (1
```

NaN	89977
Central Coast	13057
Sonoma	11258
Columbia Valley	9157
Napa	8801
California Other	3516
Willamette Valley	3181
Mendocino/Lake Counties	2389
Sierra Foothills	1660
Napa-Sonoma	1645
Finger Lakes	1510
Central Valley	1115
Long Island	771
Southern Oregon	662
Oregon Other	661
North Coast	632
Washington Other	593
South Coast	198
New York Other	147

Name: region_2, dtype: int64

<AxesSubplot:>

2.1.5 variety

```
In [13]:
attribute = "variety"
d150kvc = data_150k[attribute].value_counts(
print(d150kvc)
# 仅显示前10个,数据太大画不了
d150kvc[:10].plot(kind = "bar", figsize = (1
```

Chardonnay	14482
Pinot Noir	14291
Cabernet Sauvignon	12800
Red Blend	10062
Bordeaux-style Red Blend	7347
	• • •
Pinela	1
Silvaner-Traminer	1
Sideritis	1
Merlot-Petite Verdot	1
Morava	1
Name: variety, Length: 632,	<pre>dtype: int</pre>
64	

<AxesSubplot:>

2.1.6 winery

```
In [14]:
attribute = "winery"
d150kvc = data_150k[attribute].value_counts(
print(d150kvc)
# 仅显示前10个,数据太大画不了
d150kvc[:10].plot(kind = "bar", figsize = (1
```

Williams Selyem	374		
Testarossa	274		
DFJ Vinhos	258		
Chateau Ste. Michelle	225		
Columbia Crest	217		
	• • •		
Kilroy Was Here!	1		
Bjorn	1		
La Greña	1		
Donna Anita	1		
Au Contraire	1		
Name: winery, Length:	14810,	dtype:	in
t64			

2.1.7 points

由于points为数值属性,所以给出5组数据概括,并绘制盒图

```
attribute = "points"
for i in range(0,5):
    print("Q:%d %.2f"%(i, data_150k[attribut
p = data_150k.boxplot([attribute],return_typ
```

Q:0 80.00

Q:1 86.00

Q:2 88.00

Q:3 90.00

Q:4 100.00

检查离散群点

```
print(p['fliers'][0].get_ydata())
print("MIN: ",end="")
print(min(p['fliers'][0].get_ydata()))
```

MIN: 97

2.1.8 price

同points

```
attribute = "price"
for i in range(0,5):
    print("Q:%d %.2f"%(i, data_150k[attribut
p = data_150k.boxplot([attribute],return_typ
```

Q:0 4.00 Q:1 16.00

Q:2 24.00

Q:3 40.00

Q:4 2300.00


```
print(p['fliers'][0].get_ydata())
print("MIN: ",end="")
print(min(p['fliers'][0].get_ydata()))

[235.0 110.0 90.0 ... 83.0 100.0 87.0]
MIN: 77.0
```

综上, price中大于等于77的项被识别为离群点。

2.2 处理数据缺失

统计所有数据的缺失值

```
In [23]:
print(data_150k.isnull().sum(axis=0))
```

```
Unnamed: 0
                    0
country
                     5
description
                    0
designation
                45735
points
price
                13695
province
                     5
region 1
                25060
region 2
                89977
variety
                     0
winery
                     0
dtype: int64
```

2.2.1 处理country属性缺失

原因:可能为人为因素,我们通过属性的相关关系来填补缺失 值,使用designation的属性来判断所属国家

根据空值的分布,定义一个从designation到country的转换字

```
In [24]:
attribute = "country"
designation2country = {
     "Shah": "US",
     "Askitikos": "Greece",
    "Piedra Feliz": "Chile",
}
```

```
In [25]:

data_150k_new = data_150k.iloc[:,:]

for i in range(0,len(data_150k_new)):
    tmp = data_150k_new.iloc[i,1]
    if pd.isnull(tmp):
        designation = data_150k_new.iloc[i,3
        data_150k_new.iloc[i,1] = designatio
data_150k_new[attribute].value_counts(dropna)
```

US	62398
Italy	23478
France	21098
Spain	8268
Chile	5819
Argentina	5631
Portugal	5322
Australia	4957
New Zealand	3320
Austria	3057
Germany	2452
South Africa	2258
Greece	885
Israel	630
Hungary	231
Canada	196
Romania	139
Slovenia	94
Uruguay	92
Croatia	89
Bulgaria	77
Moldova	71
Mexico	63
Turkey	52
Georgia	43
Lebanon	37
Cyprus	31
Brazil	25

Macedonia	16
Serbia	14
Morocco	12
England	9
Luxembourg	9
India	8
Lithuania	8
Czech Republic	6
Ukraine	5
South Korea	4
Bosnia and Herzegovina	4
Switzerland	4
Egypt	3
Slovakia	3
China	3
Albania	2
Tunisia	2
Japan	2
Montenegro	2
US-France	1
Namo : country dtypo : int6/	

Name: country, dtype: int64

可视化对比

```
# 考虑到数据太大,我们这里只取前20列
attribute = "country"
matplotlib.pyplot.subplot(2,1,1)
data_150k[attribute].value_counts(dropna = F
matplotlib.pyplot.subplot(2,1,2)
data_150k_new[attribute].value_counts(dropna
```


2.2.2 designation

原因:同country,可能是人为因素

处理方法: 此处我们选择将缺失部分剔除

In [27]:

attribute = "designation"
data_150k.dropna(subset=[attribute])

	Unnamed: 0	country	description	de
0	0	US	This tremendous 100% varietal wine hails from	Ma Vir
1	1	Spain	Ripe aromas of fig, blackberry and cassis are	Car Sel Esp Res
2	2	US	Mac Watson honors the memory of a wine once ma	Sp Sel Ha
3	3	US	This spent 20 months in 30% new French oak, an	Res
4	4	France	This is the top wine from La Bégude, named aft	La
•••	•••		•••	•••
150923	150923	France	Rich and toasty, with tiny bubbles. The bouque	De

	Unnamed: 0	country	description	de
150924	150924	France	Really fine for a low- acid vintage, there's an	Dia
150926	150926	France	Offers an intriguing nose with ginger, lime an	Cu [·] Pre
150927	150927	Italy	This classic example comes from a cru vineyard	Ter
150928	150928	France	A perfect salmon shade, with scents of peaches	Gra Ro:

105195 rows × 11 columns

```
matplotlib.pyplot.subplot(2,1,1)
data_150k[attribute].value_counts(dropna = F
matplotlib.pyplot.subplot(2,1,2)
d150 = data_150k.dropna(subset=[attribute])
d150[attribute].value_counts(dropna = False)
```


2.2.3 处理price

原因:葡萄酒价格没法获取

处理: 用最高频率高来填补缺失值

0

```
attribute = "price"
mode = data_150k[attribute].mode()
d150f = data_150k[attribute].fillna(int(mode))
d150f
```

```
1
           110.0
2
            90.0
3
            65.0
4
            66.0
           . . .
150925
            20.0
150926
            27.0
            20.0
150927
150928
            52.0
150929
            15.0
Name: price, Length: 150930, dtype: fl
oat64
```

235.0

```
In [33]:
data_150k.boxplot([attribute],vert=False,fig
```

<AxesSubplot:>


```
In [36]:
```

matplotlib.pyplot.boxplot(d150f,vert=False)

2.2.4 处理region_1

原因:同price,region_1无法获取

处理: 用最高频率值来填补缺失值

```
attribute = "region_1"
mode = data_150k[attribute].mode()
d150f = data_150k[attribute].fillna(str(mode))
d150f
```

```
0
                 Napa Valley
1
                        Toro
             Knights Valley
2
          Willamette Valley
3
4
                      Bandol
          Fiano di Avellino
150925
                   Champagne
150926
150927
          Fiano di Avellino
                   Champagne
150928
                 Alto Adige
150929
Name: region_1, Length: 150930, dtype:
object
```

```
matplotlib.pyplot.subplot(2,1,1)
data_150k[attribute].value_counts(dropna = F
matplotlib.pyplot.subplot(2,1,2)
d150f.value_counts(dropna = False)[:20].plot
```


2.4.5 处理region_2

原因:这部分根本就不存在region_2数据

处理: 将这部分剔除

```
attribute = "region_2"
new_region_2 = data_150k.dropna(subset=[attr
new_region_2[attribute].value_counts(dropna
```

Central Coast	13057
Sonoma	11258
Columbia Valley	9157
Napa	8801
California Other	3516
Willamette Valley	3181
Mendocino/Lake Counties	2389
Sierra Foothills	1660
Napa-Sonoma	1645
Finger Lakes	1510
Central Valley	1115
Long Island	771
Southern Oregon	662
Oregon Other	661
North Coast	632
Washington Other	593
South Coast	198
New York Other	147
Name: region_2, dtype: int	64

localhost:8888/notebooks/作业/Untitled Folder/wine-reviews.ipynb

```
matplotlib.pyplot.subplot(2,1,1)
data_150k[attribute].value_counts(dropna = F
matplotlib.pyplot.subplot(2,1,2)
new_region_2[attribute].value_counts(dropna
```


In []: