PH-105 Assignment Sheet - 1

Ashwin P. Paranjape

9. An observer O sees another observer A pass by him with a velocity v_1 . At this instant, the watches of O and A read zero. After time t_1 , O sees another observer passing by him with velocity v_2 . Sometime later, B catches A. At this instant watch of O reads 245 μ s and watch of A reads 173 μ s. According to B, the time difference between passing of O and catching of A is 100 μ s. Assume that the observers O, A and B are at the origins of their respective frames, calculate v_1 , v_2 and t_1 . Also calculate the relative velocity of B and A and the time in A's frame when B passes O.

Solution

Let us denote the 3 events (of the three persons passing each other) by subscripts OA,OB,AB. Also let the three quantities in each frame be denoted by superscripts O,A,B. Lets denote γ s of v_1 and v_2 by γ_1 and γ_2

Now we know $t_{OA}^O = t_{OA}^A = x_{OA}^O = x_{OA}^A$, which means lorentz tranform is applicable to space-time coordinates of any event happening in these two frames. There is no need for taking difference in coordinates

Also
$$t_{AB}^A=173\mu s,\, x_{AB}^A=0$$
 and $t_{AB}^O=245\mu s.$

Now by lorentz transformation between frames O and A on event AB, we have

$$t_{AB}^{O} = \gamma_1 (t_{AB}^{A} + \frac{vx_{AB}^{A}}{c^2})$$

$$245\mu s = \gamma_1 173\mu s$$

$$\gamma_1 = 245/173$$

$$\gamma_1 = 1.416184971$$

Thus, $v_1 = 0.7080c$.

Now $\Delta t_{OB-AB}^O = t_1$. In frame O, event AB occurs. Distances travelled by both A and B is the same in O's frame.

$$(245\mu s - t_1)v_2 = 245\mu s v_1$$

 $(245\mu s - t_1)v_2 = 173.481c\mu s$

Also now consider space-time interval between OB and AB in frames O and B. By lorentz transformation we have

$$\Delta t^{O} = \gamma_{2} (\Delta t^{B} - \frac{v_{2} \Delta x^{B}}{c^{2}})$$

$$(245\mu s - t_{1}) = \gamma_{2} 100\mu s)$$

$$173.481c/v_{2} = \gamma_{2} 100$$

$$\gamma_{2}v_{2} = 1.73481c$$

$$v_{2}^{2} (1 + 1.72481^{2}) = 1.72481^{2}c^{2}$$

$$v_{2} = 0.8651c$$

Thus we have $t_1 = 44.47 \mu s$

$$v_{AB} = \frac{v_A - v_B}{1 - (v_A v_B)/c^2}$$
$$v_{AB} = \frac{0.1571c}{0.39388}$$

$$v_{AB} = 0.4445$$

Consider the space-time interval between events OA and OB in frames O and A. By Lorentz transformation,

$$\Delta t^A = \gamma_1 (\Delta t^O - v \Delta x^O / c^2)$$

$$\Delta t^A = 1.4161(44.47)\mu s$$

$$\Delta t^A = 62.97 \mu s$$