Differentiation of functions of single variable

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

October 20, 2020

Agenda

Chapter 1: Functions

Nguyen Th Huong

Introductio

Function

Monotone functions

Even and odd

Periodic function Composition of

Inverse function

Elementary functions

Number seauences 1 Introduction

2 Functions

3 Elementary functions

4 Number sequences

Outline

- 1 Introduction
- 2 Functions
- 3 Elementary functions
- 4 Number sequences

Recall

Chapter 1: Functions

Nguyen Thu Huong

Introduction

Functions

Bounded functions

Monotone function

Even and odd functions Periodic functions Composition of functions

Elementarı functions

Number sequence

Definition

A proposition is a declarative sentence that is either true or false.

Given two propositions P and Q.

- Negation operator \bar{P} .
- Implication operator $P \Rightarrow Q$. The implication proposition is false when P is true, Q is false.

Ex:
$$P = {X_n}$$
 is a convergent sequence"; $Q = {X_n}$ is a bounded sequence".

■ Biconditional operator $P \Leftrightarrow Q$.

Ex:
$$P =$$
" $\lim_{n \to \infty} x_n = 0$ "; $Q =: \lim_{n \to \infty} (x_n + 1) = 1$ ".

Types of mathematical proof - Logical reasoning

Chapter 1: Functions

Nguyen Th Huong

Introduction

Functions

Bounded functions

Monotone functions

Even and odd
functions

Periodic functions

Composition of
functions

Elementarı functions

Number sequences ■ Direct proof $P \Rightarrow Q$.

Ex. Prove that if a, b are consecutive integers, then a + b is an odd number.

Transitivity philosophy: $(P \Rightarrow Q, Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$.

- Proof by contradiction $(P \Rightarrow Q) \Leftrightarrow (\bar{Q} \Rightarrow \bar{P})$. Ex. Prove that if n^2 is an odd number, then n is an odd number.
- Proof by induction. We want to show the property T(n) for all $n \in \mathbb{N}^*$.
 - **1** If k = 1, T(1) is true.
 - 2 If T(k) is true, then T(k+1) is true.

Then T(n) holds for all $n \in \mathbb{N}$.

Ex.Show that for all
$$n \in \mathbb{N}$$
: $1+2+\ldots+n=\frac{n(n+1)}{2}$.

Absolute values and properties

Chapter 1: Functions

Huong

Introduction

Function

Bounded functions

Monotone functions

functions

Periodic function Composition of

functions

Flamentar

functions

lumber equences

Definition

$$|a| = \begin{cases} a & \text{when } a \ge 0, \\ -a & \text{when } a < 0. \end{cases}$$

Proposition (Properties)

- $|x| < a \Leftrightarrow -a < x < a$.
- $|x| > b > 0 \Leftrightarrow (x > b) \text{ or } (x < -b).$

Outline

- 1 Introduction
- 2 Functions
- 3 Elementary functions
- 4 Number sequences

Definition

Chapter 1: Functions

Huong

Introductio

Functions

Monotone functions

Even and odd

Periodic function Composition of functions

Elementary unctions

Number sequenc

Definition

Let $X \subset \mathbb{R}$. A function $f: X \to \mathbb{R}$ is a rule that assigns to each element $x \in X$ a unique value $y = f(x) \in \mathbb{R}$

$$f: X \to \mathbb{R}, x \mapsto y = f(x).$$

X is called the domain of f, and $f(X) = \{f(x), x \in X\}$ is called the range of f.

$$\Gamma(f) = \{(x, f(x)) \mid x \in X\}$$
 is the graph of f .

Examples

Chapter 1: Functions

Huong

Introductio

Functions

Monotone functions
Even and odd
functions
Periodic functions
Composition of

Elementary functions

Number

Notation:

$$\mathbb{R}_{+} = \{ x \in \mathbb{R} \mid x \ge 0 \}, \, \mathbb{R}^{*} = \{ x \in \mathbb{R} \mid x \ne 0 \}.$$

- **1** $f(x) = a^x$, $0 < a \ne 1$, with the domain $\mathbb R$ and the range $\mathbb R_+^*$.
- 2 $f(x) = \log_a x$, $0 < a \neq 1$, the domain is \mathbb{R}_+^* .
- **3** $f(x) = x^{\alpha}$ has domains that are dependent on $\alpha \in \mathbb{R}$.

Chapter 1: Functions

Nguyen Thi Huong

Introduction

Functions

Monotone function Even and odd functions

Periodic function Composition of functions

Inverse functions

Number

- 3 $f(x) = x^{\alpha}$ has domains that are dependent on $\alpha \in \mathbb{R}$.
 - When $\alpha \in \mathbb{N}$, the domain is \mathbb{R} .
 - When $\alpha \in \mathbb{Z}_-$, the domain is \mathbb{R}^* .
 - When $\alpha = \frac{1}{p}$, $p \in \mathbb{N}^*$, the domain is \mathbb{R}_+ when p is even, and is \mathbb{R} when p is odd.
 - When $\alpha \in \mathbb{R}, \alpha > 0$, the domain is \mathbb{R}_+ . When $\alpha < 0$ the domain is \mathbb{R}_+^* .

Examples

Chapter 1: Functions

Nguyen Thi Huong

Introduction

Functions

Monotone function

Even and odd

functions Periodic function

Composition of functions

Inverse function

functions

Number sequences Find the domain of the following functions

$$1 y = \sqrt{\log x}.$$

$$y = \frac{\log_2(3^x - 9)}{\sqrt[5]{3 - x}}.$$

Bounded functions

Chapter 1: Functions

Huong

Introduction

_ .

Bounded functions

Monotone functions

functions
Periodic functions

Composition of functions

Elementar functions

Number

Definition

A function $f: X \to \mathbb{R}$ is said to be bounded if there exists a constant M such that

$$\forall x \in X \Rightarrow -M \leq f(x) \leq M.$$

Example

- 1 $y = \sin x, x \in \mathbb{R}$, $y = \cos \frac{1}{x}, x \in \mathbb{R}^*$, is bounded by 1.
- $y = \tan x$, $y = \cot x$ are unbounded on their domains.

Monotone functions

Chapter 1: Functions

Nguyen The Huong

Introductio

Functions

Bounded functio

Monotone functions Even and odd functions Periodic functions Composition of

Elementary functions

Number sequences

Definition

Given a function $f: X \to \mathbb{R}$, an interval $I \subset X$.

f is called increasing on I if

$$f(x_1) \le f(x_2)$$
 whenever $x_1 < x_2, \forall x_1, x_2 \in I$.

f is called decreasing on I if

$$f(x_1) \ge f(x_2)$$
 whenever $x_1 < x_2, \, \forall x_1, x_2 \in I$.

f is strictly increasing/decreasing if the strict inequality occurs.

- 1 $y = \sin x$, $x \in [0, \frac{\pi}{2}]$ is an increasing function.
- 2 $y = \sin x$, $x \in \left[\frac{\pi}{2}, \pi\right]$, $y = \cot x$, $x \in (0, \pi)$ are decreasing functions.

Even functions. Odd functions

Chapter 1: Functions

Nguyen Th Huong

Introduction

....

Bounded function

Monotone function Even and odd

Periodic function Composition of functions

Elementary functions

Number

Definition

A function $f: X \to \mathbb{R}$ is called an even function if

- \blacksquare X is symmetric about the origin O.
- f(-x) = f(x) for all $x \in X$.

A function $f: X \to \mathbb{R}$ is called an odd function if

- X is symmetric about O.
- $f(-x) = -f(x) \text{ for all } x \in X.$

Graphs of even functions are symmetric about *Oy*. Graphs of odd functions are point symmetric with center *O*.

Chapter 1: Functions

Nguyen Th Huong

Introduction

Functions

Monotone function

Monotone functions

Even and odd

Even and odd functions

Periodic functio Composition of functions

Elementary functions

Number sequences

Example

- \blacksquare sin x, tan x, cot x are odd functions. cos x is an even function.
- $y = x^{2n}$ are even functions, $y = x^{2n+1}$ are odd functions, $n \in \mathbb{N}^*$.
- $f(x) = \sqrt[3]{(1-x)^2} + \sqrt[3]{(1+x)^2}.$
- $f(x) = \sin x + \cos x.$

Periodic functions

Chapter 1: Functions

Huong

Introductio

Functions

Bounded functions

Monotone functions

Monotone functions
Even and odd
functions

Periodic functions
Composition of

Composition of functions Inverse functions

Elementar functions

Number sequence

Definition

A function $f:X\to\mathbb{R}$ is said to be periodic if there exists a p>0 such that

- for all $x \in X$, $x + p \in X$,
- f(x) = f(x + p) for all $x \in X$.

The smallest possible value of p is called the period T of f.

In literature, such p is also called "period", then T is called fundamental/primitive/basic period.

Graph of a periodic function

Chapter 1: Functions

Nguyen Th Huong

Introduction

Functions

Bounded function

Even and odd

functions
Periodic functions

Composition of

Inverse function

_.

N. .

Figure: Graph of a periodic function. Source: wikipedia.

Examples

Chapter 1: Functions

Nguyen Th Huong

Introductio

Function

Monotone function

Even and odd

Periodic functions

Composition of functions
Inverse functions

Elementary functions

Number seauences

- If $y = \sin x$, $y = \cos x$ are periodic functions with period 2π .
- 2 $y = \tan x$, $y = \cot x$ are periodic functions with period π .
- 3 $y = \sin 2x + \cos 3x$ is a periodic function whose period is the least common multiple of π and $\frac{2\pi}{3}$, $T = 2\pi$.

Composite functions

Chapter 1: Functions

Huong

Introductio

Functions

Bounded functions

Monotone functions

Even and odd functions

Periodic functions

Composition of

Elementary functions

functions

Number sequence:

Definition

Let X, Y be subsets of $\mathbb R$ and $f\colon X\to Y$, $g\colon Y\to \mathbb R$ be two functions. Then the rule assigning x to g[f(x)] is the so-called the composition of g and f

$$g \circ f \colon X \to \mathbb{R},$$

 $x \mapsto z = g[f(x)].$

Inverse functions

Chapter 1: Functions

Huong

Introductio

Functions

Bounded functions

Monotone functions

Monotone functions Even and odd functions

Periodic function Composition of functions

Inverse functions

Elementary functions

Number

Definition

Let $f: X \to Y$ be a bijection. Then to each element $y \in Y$, there exists a unique element $x \in X$ such that y = f(x). Therefore, $y \mapsto x$ determines a function

$$g: Y \to X,$$

 $y \mapsto x, y = f(x).$

g is called the inverse function of f.

sequence

Example (Inverse trigonometric functions)

- **1** $y = \sin x$: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ is a bijection, its inverse is the function $\arcsin x$: $\left[-1, 1\right] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 2 $y = \cos x \colon [0,\pi] \to [-1,1]$ is a bijection, its inverse is the function $\arccos x \colon [-1,1] \to [0,\pi]$.
- 3 $y = \tan x : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ is a bijection, its inverse is the function $\arctan x : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- 4 $y = \cot x \colon (0, \pi) \to \mathbb{R}$ is a bijection, its inverse is the function $\operatorname{arccot} x \colon \mathbb{R} \to (0, \pi)$.

 $y = \arcsin x$ and $y = \arctan x$ are increasing functions. $y = \arccos x$ and $y = \operatorname{arccot} x$ are decreasing functions.

Remark

Chapter 1: Functions

Nguyen Thu Huong

Introductio

Function

Bounded function

Even and odd

Periodic function

Composition of functions

Inverse functions

functions

Number sequences The graphs of f and g are symmetric about the line y = x.

$$(x, f(x)) \in \Gamma(f) \Leftrightarrow (g(y), y) \in \Gamma(f).$$

Figure: Graphs of $y = \cos x$ and $y = \arccos x$. Source: Wikipedia

Outline

- 1 Introduction
- 2 Functions
- 3 Elementary functions
- 4 Number sequences

Elementary functions

Chapter 1: Functions

Nguyen Th Huong

Introduction

Functions

Bounded functions

Monotone functions

Even and odd
functions

Periodic function Composition of functions

Inverse functions

Elementary functions

Number sequences Essential functions: exponential, logarithmic, power, trigonometric and inverse trigonometric functions.

$$a^{x}, x^{\alpha}, \log_{a} x,$$

 $\sin x, \cos x, \tan x, \cot x,$

 $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arccot} x$.

Hyperbolic functions

Chapter 1: Functions

Nguyen Thu Huong

Introductio

Functions

Monotone functions

functions
Periodic functions

Composition of functions

Elementary

functions

sequence

Definition

Hyperbolic sine: $\sinh x = \frac{e^x - e^{-x}}{2}$

Hyperbolic cosine: $\cosh x = \frac{e^x + e^{-x}}{2}$.

Hyperbolic tangent: $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Apperbolic cotangent: coth $x = \frac{e^x + e^{-x}}{e^x + e^{-x}}$

Hyperbolic cotangent: $\coth x = \frac{e^{-r} \cdot e^{-x}}{e^x - e^{-x}}, x \neq 0$

Source: Wikipedia

Periodic function:
Composition of functions

Elementary functions

Vumber

Elementary functions are functions of one variable built from essential functions using the four elementary operations (sum, subtraction, product, division), composition of mappings and inverse functions.

Example

$$1 f(x) = \sqrt[3]{\tan x} + x\sqrt{x}e^x$$

$$g(x) = \frac{\sqrt{\cos x}}{\tan \sqrt{x}}$$

Outline

- 1 Introduction
- 2 Functions
- 3 Elementary functions
- 4 Number sequences

Chapter 1: Functions

Nguyen Th Huong

Introductio

Bounded functions

Monotone functions

Even and odd functions Periodic functions Composition of

Elementar functions

Number sequences

Definition

A number sequence is a function $f: \mathbb{N}^* \to \mathbb{R}$, $n \mapsto f(n) =: a_n$.

We denote $\{a_n\}_{n\geq 1}$.

Definition

The sequence $\{a_n\}$ is said to converge to $L < \infty$ when $n \to \infty$ if and only if for all $\varepsilon > 0$, there exists $N_0(\varepsilon)$ such that

 $|a_n-L|<\varepsilon$ for all $n\geq N_0$.

We write
$$\lim_{n\to\infty} a_n = L < \infty$$
.

Properties

Chapter 1: Functions

Nguyen Th Huong

Introduction

Functions

Bounded functions

Monotone functions

Even and odd
functions

Periodic functions

Composition of
functions

Inverse functions

Elementary functions

Number sequences

- If the limit $\lim_{n\to\infty} a_n$ exists, then it is unique.
- If the sequence $\{a_n\}$ is convergent, then it is bounded, i.e. there exists M > 0 such that $|a_n| \le M$, for all n.
- 3 If $a_n \ge A$ for all n, then $\lim_{n \to \infty} a_n \ge A$.
- 4 If $\lim_{n\to\infty} a_n \neq 0$, then $a_n \neq 0$ for n large enough.

Limits law

Chapter 1: Functions

Huong

Introductio

Functions Rounded funct

Monotone functions

Even and odd

Periodic function Composition of functions

Elementan

Number

Number sequences

Proposition

Assume that $\lim_{n \to \infty} a_n = L_1$, $\lim_{n \to \infty} b_n = L_2$, then we have

- $\lim_{n\to\infty}(a_n\pm b_n)=L_1+\pm L_2.$
- $\blacksquare \lim_{n\to\infty} a_n.b_n = L_1.L_2.$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L_1}{L_2}, \ (L_2 \neq 0, b_n \neq 0).$

We can also define infinite limits, i.e. $L = \infty$.

Squeeze theorem

Chapter 1: Functions

Nguyen Thi Huong

Introductio

Function

Bounded functions

Monotone functions

Periodic functio
Composition of

Inverse function

Inverse function

Number sequences

Theorem

Let
$$\{a_n\}, \{b_n\}, \{c_n\}$$
 be sequences that $a_n \leq b_n \leq c_n$ for $n \geq N_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$. Then $\lim_{n \to \infty} b_n = L$.

Convergence criterion

Chapter 1: Functions

Nguyen Thi Huong

Introduction

Functions

Bounded functions
Monotone functions
Even and odd
functions
Periodic functions

Composition of functions

Elementa

Number sequences

Theorem (Cauchy's criterion)

The sequence $\{a_n\}$ is convergent if and only if it is a Cauchy sequence, i.e.

$$\forall \varepsilon>0, \exists \textit{N}_{0}(\varepsilon) \textit{ such that } |\textit{a}_{\textit{m}}-\textit{a}_{\textit{n}}|<\varepsilon, \, \forall \textit{m}, \textit{n}\geq \textit{N}_{0}.$$

Chapter 1: Functions

Huong

Introductio

.....

Functions

Bounded functions

Monotone functions

Even and odd
functions

Periodic functions

Even and odd functions Periodic functions Composition of functions Inverse functions

Elementarı functions

Number sequences

Definition

A sequence $\{a_n\}$ is said to be **increasing** if $a_n \leq a_{n+1}$, $\forall n \in \mathbb{N}$. A sequence $\{a_n\}$ is said to be **decreasing** if $a_n \geq a_{n+1}$, $\forall n \in \mathbb{N}$.

Theorem (Monotone convergence theorem)

If a sequence is increasing and bounded from above, then it is convergent.

If a sequence is decreasing and bounded from below, then it is convergent.

Chapter 1: Functions

Huong

Introduction

Functions

Monotone functions

Even and odd functions

Composition of

Inverse function

Elementary functions

Number sequences

Test for convergence of the following sequences

$$a_n = \frac{\sin n}{\sqrt{n^2 + 1}}.$$

$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}.$$

$$a_n = \left(1 + \frac{1}{n}\right)^n.$$

This sequence is increasing and converges to e = 2,7182...