Solutii oficiale VARIANTE BAC M1

1. x = 4n + 1; 1 + 5 + 9 + ... + (4n + 1) = 231; $\frac{(4n + 2)(n + 1)}{2} = 231$; $2n^2 + 3n - 230 = 0$; n = 10, x = 41

pag. 1-100 l pag 101 - 200 ll

2.
$$x_1 = 1, x_2 = \frac{3}{2} ; x \in \left[1, \frac{3}{2}\right]$$

3.
$$y > 1$$
, $y = x^2 + 1$; $f^{-1}: (1, \infty) \to (0, \infty)$, $f^{-1}(x) = \sqrt{x - 1}$

4. Submulțimile cerute sunt de forma $\{1,a,b\}$, $a,b \in \{2,3,...,10\}$, adică $C_9^2 = 36$ submulțimi cu trei elemente

5.
$$\sqrt{(2-m)^2 + (2+m)^2} = 4$$
; $m \in \{\pm 2\}$

6.
$$\cos \frac{23\pi}{12} \sin \frac{\pi}{12} = \cos \left(2\pi - \frac{23\pi}{12} \right) = \cos \frac{\pi}{12} \sin \frac{\pi}{12} = \frac{1}{2} \sin \frac{\pi}{6} = \frac{1}{4}$$
.

1.
$$\left[\left(1 - i \right)^2 \right]^{12} = \left(-2i \right)^{12} = 2^{12} \in \mathbb{R}$$
.

2.
$$x^2 - 6x + 5 = 0$$
; $x \in \{1, 5\}$.

3.
$$f^{-1}:(1,\infty)\to\mathbb{R}$$
, $f^{-1}(x)=\ln(x-1)$.

4.
$$p = \frac{81}{90} = 0.9$$
.

5.
$$M(1,3)$$
 este mijlocul lui (BC) ; $AM = 5$.

6.
$$m(m-2)+3\cdot(-1)=0$$
; dar $m>0$, deci $m=3$.

1.
$$\left(\sqrt{2}\right)^{12} = 2^6 ; \left(\sqrt[3]{4}\right)^{12} = 4^4 ; \left(\sqrt[4]{5}\right)^{12} = 5^3 ; 2^6 < 5^3 < 4^4 ; \sqrt{2}, \sqrt[4]{5}, \sqrt[3]{4}$$

2.
$$\min f = -\frac{\Delta}{4a}$$
; $\min f = -3$

3.
$$x \in (1, \infty)$$
; $\lg(x-1)(6x-5) = \lg 100$; $x = 5$

4.
$$p = \frac{6}{90} = \frac{1}{15}$$

5. ecuația perpendicularei din A pe
$$d: 3x + 2y - 26 = 0$$

6.
$$\cos 2\alpha = 1 - \sin^2 \alpha = \frac{7}{9}$$

1.
$$\left(\frac{1}{1-i} - \frac{1}{1+i}\right)^2 = i^2 = -1$$

2.
$$V\left(-\frac{5}{2}, -\frac{21}{4}\right); x_V, y_V < 0 \Rightarrow V \in C_{III}$$

3.
$$3^x = t > 0 \Rightarrow 3t^2 - 10t + 3 = 0$$
, deci $t \in \left\{\frac{1}{3}; 3\right\}$, adică $x \in \left\{-1; 1\right\}$.

4. 9 · 9 numere
$$\overline{aab}$$
; 9 · 9 numere \overline{aba} , 9 · 9 numere \overline{baa} ; $p = 0,27$

5.
$$-a(5a-1)+2(a+1)=0$$
; $a \in \left\{1; -\frac{2}{5}\right\}$

6.
$$\frac{6 \cdot 10 \cdot \sin A}{2} = 15\sqrt{3}$$
; $\sin A = \frac{\sqrt{3}}{2}$; $\cos A = \frac{1}{2}$; $BC = 2\sqrt{19}$

1.
$$\frac{2}{5}$$

2.
$$x \in [5 - \sqrt{13}, 5 + \sqrt{13}]; x \in \{2, 3, 4, 5, 6, 7, 8\}$$

3.
$$f(x) = y \Leftrightarrow 3\log_2 x = y \Leftrightarrow x = 2^{\frac{y}{3}} \Leftrightarrow x = \sqrt[3]{2^y} > 1 \Leftrightarrow y > 0$$
 (adevărat), deci $f^{-1}: (0, \infty) \to (1, \infty), f^{-1}(x) = \sqrt[3]{2^x}$.

- **4.** Numărul căutat e dat de numărul funcțiilor $g:\{1,2,3\} \rightarrow \{1,2,3,4\}; 4^3=64$ funcții
- **5.** E centrul paralelogramului E(3,3); $\frac{x_B + x_D}{2} = 3$, $\frac{y_B + y_D}{2} = 3$; D(-1,10)

6.
$$\frac{AC}{\sin B} = 2R$$
; $AC = \sqrt{3}$

2.
$$f(x) = ax^2 + bx + c$$
; $a - b + c = 1$, $c = 1$, $a + b + c = 3$; $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x + 1$

3.
$$\cos 2x \sin x = 0$$
; $x \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\}$

4.
$$A_4^3 = 24$$

5.
$$AB = \sqrt{17}, BC = 2\sqrt{17}, AC = 5; \cos B = \frac{15}{17}$$

6.
$$R = \frac{c}{2\sin C}$$
; $R = 6$

2.
$$\max f = -\frac{\Delta}{4a}$$
; $\max f = 0$

3.
$$x = (-1)^k \arcsin\left(-\frac{1}{2}\right) + k\pi$$
; $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$; $x \in \left\{\frac{7\pi}{6}, \frac{11\pi}{6}\right\}$.

4.
$$C_n^2 = 120$$
; $n = 16$

5.
$$ABDC$$
 paralelogram; $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$; $AD = CB$; $ABDC$ dreptunghi; $A = \frac{\pi}{2}$

6. Triunghiul este dreptunghic;
$$S = 6$$
, $p = 6$; $r = 1$

1.
$$z^4 = -4 \Leftrightarrow (z+2i)(z-2i) = 0 \Rightarrow z_1 = -2i, z_2 = 2i$$
.

2.
$$f(1) = 2$$
, $f(0) = 3$; $c = 3$, $a = -2$

3.
$$\sqrt[3]{7x+1} = x+1$$
; $x^3 + 3x^2 - 4x = 0$; $x \in \{-4,1,0\}$

4.
$$A_5^4 = 120$$

5.
$$\overrightarrow{AF} = \overrightarrow{AE} + \overrightarrow{EF}$$
; $\overrightarrow{FC} = \overrightarrow{FD} + \overrightarrow{DC}$; $\overrightarrow{FC} = 2\overrightarrow{AF}$; A, F, C coliniare

6.
$$p = 21$$
, $S = 84$; $\frac{56}{5}$.

Solutie

1.
$$a_1 = 1$$
, $a_n = a_1 + (n-1)r = 2n - 1 = x$. $S_n = \frac{n(1+x)}{2} = n^2 = 225 \Rightarrow n = 15 \Rightarrow x = 29$.

2.
$$\Delta = m^2 + 8m > 0$$
 și $|x_1 - x_2| = 3 \Leftrightarrow s^2 - 4p = 9 \Leftrightarrow m^2 + 8m - 9 = 0 \Rightarrow m \in \{-9;1\}$.

3.
$$2^x = 2^{-x+1} + 1 \Rightarrow t = 2 \Rightarrow x = 1$$
.

4.
$$C_{17}^{15} = C_{17}^2 < C_{17}^3$$
.

5.
$$|\overrightarrow{AC} + \overrightarrow{BD}| = |\overrightarrow{AB} + 2\overrightarrow{BC} + \overrightarrow{CD}| = |\overrightarrow{AD} + \overrightarrow{BC}| = |3\overrightarrow{BC}| = 3 \cdot 4 = 12$$
.

6. Avem
$$\sin^2 1^\circ + \sin^2 2^\circ + ... + \sin^2 90^\circ = (\sin^2 1^\circ + \cos^2 1^\circ) + ... + (\sin^2 44^\circ + \cos^2 44^\circ) + \cos^2 45^\circ + 1 = \frac{91}{2}$$

1.
$$z^2 + z + 1 = 0 \Rightarrow z^3 = 1 \Rightarrow z^4 = z$$
, $z \neq 0$. Deci $z^4 + \frac{1}{z^4} = z + \frac{1}{z} = \frac{z^2 + 1}{z} = -1$.

2.
$$f(x) = ax + b, a \ne 0$$
; $f(f(x)) = a^2x + ab + b$; $2f(x) + 1 = 2ax + 2b + 1$; $f(x) = 2x + 1$.

3.
$$\lg \frac{x+1}{9} = \lg \frac{10}{x}$$
; $x = 9$.

4.
$$T_{k+1} = C_{10}^k \cdot 3^{10-k} \cdot 3^{\frac{k}{3}} \in \mathbb{Q} \Leftrightarrow 3^{\frac{k}{3}} \in \mathbb{Q} \Leftrightarrow k : 3$$
, cum $k \in \{0,1,2,...,10\}$ rezultă $k \in \{0,3,6,9\}$, deci 4 termeni raționali.

5.
$$G\left(\frac{1}{3}; \frac{1}{3}\right)$$
.

6.
$$\vec{u} \cdot \vec{v} = -2$$
; $\cos(\vec{u}, \vec{v}) = \frac{-2}{\sqrt{41} \cdot \sqrt{13}}$.

1.
$$a^2 = 2b$$
; $a + 2 = 2.17$; $a = 32$, $b = 512$.

2.
$$-3(-3x+2)+2=0$$
; $x=\frac{4}{9}$.

3.
$$tg(-x) = -tgx$$
; $tgx = 1$; $x \in \left\{ \frac{\pi}{4}, \frac{5\pi}{4} \right\}$.

4. 9 funcții.

5.
$$AD = 2DB$$
; $AE = 2EC \Rightarrow \frac{AD}{DB} = \frac{AE}{EC} = 2 \Rightarrow DE \parallel BC$.

6.
$$C = \frac{7\pi}{12}$$
; $\sin C = \sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$; $R = \frac{c}{2\sin C}$; $R = 3(\sqrt{6} - \sqrt{2})$.

2.
$$\frac{2x^2 + 8x + 7}{x^2 + 5x + 6} = \frac{7}{6}$$
; $x \in \left\{-\frac{13}{5}, 0\right\}$

3.
$$2x = \pm \arccos \frac{1}{2} + 2k\pi, k \in \mathbb{Z}$$
; $x \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$

4.
$$T_7 = C_{12}^6 \cdot \sqrt{a}$$
; $a = 4$

5.
$$m_d = \frac{2}{3}, m_{d'} = \frac{2}{3}; M(1,1) \in d, M' = s_A(M) \Rightarrow M'(-7,7); y - 7 = \frac{2}{3}(x+7); d': 2x - 3y + 35 = 0$$

6.
$$\frac{4}{3}$$

1.
$$(1+i\sqrt{3})^2 + (1-i\sqrt{3})^2 = -4 \in \mathbb{Z}$$

2.
$$x, y$$
 sunt rădacinile ecuației $a^2 - 4a + 3 = 0$, $a \in \{1, 3\}$; $(x, y) \in \{(1, 3), (3, 1)\}$

3.
$$6\sqrt{x-2} = x+6$$
; $x^2 - 24x + 108 = 0$; $x \in \{6,18\}$

4.
$$T_{k+1} = C_9^k x^{18-3k}$$
; $T_7 = 84$

5.
$$d' \perp d, d' : 4x + 3y - 12 = 0$$
; $d' \cap d = \{A'\}, A' \left(\frac{9}{5}, \frac{8}{5}\right)$; $d(A, d) = 2$

6.
$$\cos B = \frac{1}{8}$$
, $\cos C = \frac{3}{4}$, $\cos 2C = \frac{1}{8}$; $\cos B = \cos 2C \Rightarrow m(< B) = 2m < (C)$

1.
$$\lg\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{99}{100}\right) = \lg\frac{1}{100} = -2$$

2.
$$a-3<0$$
 și $\Delta<0 \Rightarrow \begin{cases} a \in (-\infty;3) \\ a \in (0;\frac{12}{5}) \end{cases}$, deci $a \in (0;\frac{12}{5})$

3.
$$x = \frac{1}{3}$$

4.
$$C_n^2 = 45$$
; $n = 10$

5.
$$m_{AB} = -\frac{1}{7}$$
; $y - 3 = -\frac{1}{7}(x - 2)$; $x + 7y - 23 = 0$

6.
$$\frac{AC}{\sin B} = 2R$$
; $B = \frac{\pi}{3}$

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluții

1.
$$\log_3 (5 - \sqrt{7})(5 + \sqrt{7}) = \log_3 18 = 2 + \log_3 2$$
; deci rezultatul este 2.

2.
$$f(x) = ax^2 + bx + c$$
, $f(0) = 2$, $f(1) = 0$, $\Delta = 0$; $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 - 4x + 2$

3.
$$tgx = -1; x \in \left\{ \frac{3\pi}{4}, \frac{7\pi}{4} \right\}$$

4. Numărul cerut este dat de numărul funcțiilor $f:\{1,2,3,4\} \rightarrow \{1,3,5,7,9\}$; $5^4=625$

5.
$$m_{CD} = \frac{4}{3}$$
; $y - 2 = \frac{4}{3}(x + 2)$; $4x - 3y + 14 = 0$

6.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$
; $\sin \alpha = -\frac{12}{13}$

2.
$$x^2 + ax + 2 \ge 0$$
, $\forall x \in \mathbb{R}$; $\Delta \le 0$; $a \in \left[-2\sqrt{2}, 2\sqrt{2} \right]$

3.
$$\arcsin \frac{1}{2} = \frac{\pi}{6}$$
; $x = \frac{1}{2}$.

4.
$$8!(n-8)! = 10!(n-10)!$$
; $n^2 - 17n - 18 = 0$; $n = 18$

5.
$$AB = 5$$
, $BC = 4$, $CA = \sqrt{41}$; $B = \frac{\pi}{2}$

6.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$
; $\cos \alpha = -\frac{4}{5}$; $\sin 2\alpha = -\frac{24}{25}$

$$\mathbf{1.}\left(1+i\sqrt{3}\right)^3=-8\in\mathbb{Z}$$

2.
$$x^2 - x + 2 - y = 0$$
; $\Delta \ge 0$; Im $f = \left[\frac{7}{4}, +\infty \right]$

3.
$$x = -12$$

4.
$$p = \frac{4}{90} = \frac{2}{45}$$

5.
$$m_d = \frac{5}{4}$$
; d' : $y - 1 = -\frac{4}{5}(x - 1)$; $4x + 5y - 1 = 0$

6.
$$AC = 6\sqrt{2}$$
; $BC = 3(\sqrt{2} + \sqrt{6})$; $P = 3(2 + 3\sqrt{2} + \sqrt{6})$

1.
$$x \in \{1 \pm i\sqrt{3}\}$$

2.
$$\Delta = 1$$
, min $f = -\frac{1}{4}$

3.
$$\arccos \frac{1}{\sqrt{2}} = \frac{\pi}{4}$$
; $\arcsin x = \frac{\pi}{4}$; $x = \frac{\sqrt{2}}{2}$

4.
$$C_7^0 = C_7^7 = 1$$
, $C_7^1 = C_7^6 = 7$, $C_7^2 = C_7^5 = 21$, $C_7^3 = C_7^4 = 35$; doar 7 este prim, deci 2 cazuri favorabile; $p = \frac{1}{4}$

5.
$$\vec{u}$$
 și \vec{v} coliniari $\Leftrightarrow \frac{a}{4} = \frac{3}{a+4} \Rightarrow a \in \{-6, 2\}$

6.
$$\overrightarrow{AB}(7,-7); \overrightarrow{AC}(4,-2); \overrightarrow{BC}(-3,5); -14$$

1.
$$(\sqrt{3})^{12} = 3^6 : (\sqrt[3]{5})^{12} = 5^4 : (\sqrt[4]{8})^{12} = 8^3 : \sqrt[4]{8} < \sqrt[3]{5} < \sqrt{3}$$
.

2.
$$g(1) = 0$$
; $f(x) = ax + b$, $f(1) = 0$; $g(0) = 3 \Rightarrow f(2) = 3$; $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x - 3$.

3.
$$3^x = y$$
, $3y^2 - 30y + 27 = 0$; $y \in \{1, 9\}$; $x \in \{0, 2\}$.

4.
$$9 \cdot 10 \cdot 10 = 900$$
 cazuri posibile; $4 \cdot 5 \cdot 5 = 100$ cazuri favorabile; $p = \frac{1}{9}$.

5.
$$A'(2,-1)$$
; $m_{AA'} = -3$; $m_a : y - 2 = -3(x-1)$; $3x + y - 5 = 0$.

6.
$$\frac{\text{ctg1} - \text{tg1}}{2} = \frac{\frac{1}{\text{tg1}} - \text{tg1}}{2} = \frac{1 - \text{tg}^2 1}{2 \text{tg1}} = \frac{\cos 2}{\sin 2} = \text{ctg2}.$$

1.
$$2 < \sqrt{5}$$
, $\log_3 4 < 2$

2.
$$x \in \{1 \pm i\}$$

3.
$$\sin^2 x + \cos^2 x + 2\sin x \cos x = 1$$
; $\sin x \cos x = 0, x \in \left[0, 2\pi\right) \implies x \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\}$; $x \in \left\{\pi, \frac{3\pi}{2}\right\}$

5.
$$\frac{AM}{MB} = \frac{AN}{NC} = 4 \Rightarrow CN = \frac{1}{5}AC \Rightarrow \overrightarrow{CN} = -\frac{1}{5}\overrightarrow{AC}$$
, deci $m = -\frac{1}{5}$

6.
$$OA = \sqrt{5}$$
; $AB = \sqrt{2}$; $OB = \sqrt{13} \Rightarrow P = \sqrt{2} + \sqrt{13} + \sqrt{5}$

1.
$$x_{1,2} = 4 \pm 3i$$

2.
$$\Delta > 0$$
, $\Delta = 5a^2 - 8a + 13$; $a \in (-\infty, 1) \cup (\frac{13}{5}, \infty) \setminus \{-1\}$

$$3. \left| \sqrt{x - 1} - 3 \right| = 1 \; ; \; x \in \{5, 17\}$$

5.
$$d': y-2=1(x-1); d': x-y+1=0$$

6.
$$\frac{7}{9}$$

2.
$$g(x) = y$$
; $f(y) = 0$, $y^2 - 3y + 2 = 0$; $y \in \{1, 2\}$; $x \in \{1, \frac{3}{2}\}$

3.
$$x > -\frac{3}{7}$$
; $\lg(x+9)(7x+3) = \lg\left[10(x^2+9)\right] \Rightarrow 3x^2 - 66x + 63 = 0$, deci $x \in \{1, 21\}$

4.
$$n(n-1) < 20$$
; $n \in \{2,3,4\}$

5.
$$A\left(\frac{1}{2},0\right) \in d_2; d\left(d_1,d_2\right) = d\left(A,d_1\right); d\left(A,d_1\right) = \frac{\sqrt{5}}{10}; d\left(d_1,d_2\right) = \frac{\sqrt{5}}{10}$$

6.
$$\sin 75^0 = \frac{\sqrt{6} + \sqrt{2}}{4}$$
; $\sin 15^0 = \frac{\sqrt{6} - \sqrt{2}}{4}$; $\frac{\sqrt{6}}{2}$

1.
$$r = 2$$
; $a_1 = 2$; $S_{20} = \frac{20(a_1 + 19r)}{2} = 400$

2.
$$x^2 - 2x - 4 = 0$$
; $x \in \{1 \pm \sqrt{5}\}$

3.
$$\operatorname{tg}\left(\frac{\pi}{2} - \operatorname{arctg}\frac{1}{2}\right) = \operatorname{ctg}\left(\operatorname{arctg}\frac{1}{2}\right)$$
; $\operatorname{ctg}\left(\operatorname{arctg}\frac{1}{2}\right) = 2$

4. Probabilitatea este
$$p = \frac{20}{40} = \frac{1}{2}$$
.

5.
$$G\left(\frac{7}{3}, \frac{5}{3}\right)$$

6.
$$\sin 4\alpha = \frac{2 \operatorname{tg} 2\alpha}{1 + \operatorname{tg}^2 2\alpha} = \frac{2 \frac{2 \operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha}}{1 + \left(\frac{2 \operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha}\right)^2} = -\frac{24}{25}$$

2.
$$f(x) = ax^2 + bx + c \Rightarrow f(1) = f(-1) = 0$$
, $f(2) = 6 \Rightarrow a = 2 = -c$; $b = 0$, deci $f(x) = 2x^2 - 2$.

3.
$$\log_2 x + \frac{1}{2} \log_2 x + \frac{1}{3} \log_2 x = \frac{11}{6}$$
; $\log_2 x = 1$; $x = 2$

4.
$$(1+x)^2 + (1-x)^2 = 2 + 2x^2$$
; $|x| \ge 1 \Rightarrow x^2 \ge 1 \Rightarrow 2 + 2x^2 \ge 4$

5.
$$m_{AC} = -\frac{12}{5}$$
, $m_h = \frac{5}{12}$; $h: y+1=\frac{5}{12}(x-2)$; $h: 5x-12y-22=0$

6.
$$(2\vec{i} + 5\vec{j}) \cdot (3\vec{i} - 4\vec{j}) = -14$$

1.
$$-3 + 4i$$

2. Se ajunge la ecuația
$$ax^2 + (a-3)x - 3 = 0$$
, și cum $\Delta = (a+3)^2 \ge 0$, $\forall a \in \mathbb{R}^*$

3.
$$2^x = y$$
; $y^2 - 6y + 8 = 0$; $y \in \{2,4\}$; $x \in \{1,2\}$

4.
$$\overline{ab} \in \{10,11,12,...,40\}$$
 și $(a+b):3 \Rightarrow p = \frac{10}{31}$

5. M, N, P sunt mijloacele laturilor triunghiului, $HM \perp BA$ si analoagele; HM mediatoarea [BA] si analoagele; H este centrul cercului circumscris $\triangle ABC$

6.
$$2\sin\frac{\pi}{6}\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

Solutie

1.
$$\Delta < 0 \Rightarrow z_{1,2} \in \mathbb{C} - \mathbb{R}$$
 și conjugate. $z_1 \cdot z_2 = z_1 \cdot \overline{z_1} = |z_1|^2$, dar $z_1 \cdot z_2 = 25 \Rightarrow |z_1| + |z_2| = 10$.

2.
$$f(f(f(x))) = -8x + 3$$
, $\forall x \in \mathbb{R}$, deci f este strict descrescătoare.

3. Ecuația dată se scrie
$$3^{2x} + 3^x - 2 = 0$$
. Notând $3^x = y$ obținem ecuația $y^2 + y - 2 = 0$ cu soluțiile -2 și 1. Cum $3^x > 0$, convine doar $3^x = 1$, deci $x = 0$.

4.
$$f$$
 bijectivă $\Rightarrow f$ surjectivă $\Rightarrow \text{Im}(f) = A$. Atunci $f(-2) + f(-1) + f(0) + f(1) + f(2) = 0$.

5. Mijlocul segmentului
$$[AB]$$
 este $M(0;1)$. Punctul $P(x,y)$ aparține mediatoarei segmentului $[AB]$ dacă și numai dacă $\overrightarrow{AB} \cdot \overrightarrow{MP} = 0$. Avem $\overrightarrow{AB} = 2\overrightarrow{i} - 4\overrightarrow{j}$ iar $\overrightarrow{MP} = x\overrightarrow{i} + (y-1)\overrightarrow{j}$.

Ecuația mediatoarei lui
$$[AB]$$
 va fi : $2x-4(y-1)=0 \iff x-2y+2=0$.

6. Avem
$$\alpha \in \left(\frac{\pi}{2}; \pi\right) \Rightarrow \cos \alpha < 0 \Rightarrow \cos \alpha = -\sqrt{1 - \frac{1}{9}} = -\frac{2\sqrt{2}}{3}$$
.

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{\sqrt{2}}{4}$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$z=1+i+i^2+i^3+...+i^6=1+i-1-i+1+i-1=i \Rightarrow |z|=1$$
.

2.
$$f$$
 este funcție de gradul 2 cu $\Delta = 1$. Valoarea maximă a funcției f este $-\frac{\Delta}{4a} = \frac{1}{8}$.

3. Notând
$$\lg x = y$$
 obţinem ecuația $y^2 + 5y - 6 = 0$ cu soluțiile -6 și 1.

$$\lg x = -6 \Leftrightarrow x = \frac{1}{10^6}$$
, iar $\lg x = 1 \Leftrightarrow x = 10$.

4. O funcție
$$f:\{0,1,2,3\} \rightarrow \{0,1,2,3\}$$
 cu proprietatea $f(0)=f(1)=2$ este unic determinată de un tabel de tipul

х	0	1	2	3
f(x)	2	2	а	b

unde $a,b \in \{0,1,2,3\}$. Vor fi $4^2 = 16$ funcții cu proprietatea cerută.

5.
$$\overrightarrow{OA} = \overrightarrow{i} + 2\overrightarrow{j}$$
 și $\overrightarrow{OB} = 3\overrightarrow{i} + \overrightarrow{j}$, rezultă că $\|\overrightarrow{OA}\| = \sqrt{5}$, $\|\overrightarrow{OB}\| = \sqrt{10}$ și $\overrightarrow{OA} \cdot \overrightarrow{OB} = 5$. $\cos \theta = \frac{\sqrt{2}}{2} \Rightarrow \theta = \frac{\pi}{4}$.

6.
$$(\sin \alpha + \cos \alpha)^2 = \frac{1}{9} \Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha = \frac{1}{9} \Rightarrow \sin 2\alpha = -\frac{8}{9}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$(1+i)^{10} + (1-i)^{10} = \left[(1+i)^2 \right]^5 + \left[(1-i)^2 \right]^5 = (2i)^5 + (-2i)^5 = 0$$
.

- **2.** Funcția f este strict descrescătoare pe intervalul $[1, +\infty)$. $\sqrt{2} < \sqrt{3} < 2 \implies f\left(\sqrt{2}\right) > f\left(\sqrt{3}\right) > f\left(2\right)$.
- 3. Se impune condiția $x \ge \frac{1}{2}$. Prin ridicare la pătrat, ecuația devine $2x 1 = 9 \iff x = 5$.
- **4.** $f(0) \in \{1,3\}$. Dacă $f(0) = 1 \Rightarrow 4^3 = 64$ de funcții. Dacă $f(0) = 3 \Rightarrow 128$ de funcții.

5.
$$\frac{BM}{MC} = \frac{1}{2} \Rightarrow \frac{BM}{BC} = \frac{1}{3}$$
; $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + \frac{BM}{BC}$ \overrightarrow{BC} ; $\overrightarrow{AM} = \overrightarrow{AB} + \frac{1}{3} (\overrightarrow{AC} - \overrightarrow{AB}) = \frac{2}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC}$.

6.
$$\alpha \in \left(\frac{\pi}{2}; \pi\right) \Rightarrow \cos \alpha < 0; \cos \alpha = -\sqrt{1 - \frac{9}{25}} = -\frac{4}{5}; \operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{3}{4}.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$\sqrt{7 \pm 4\sqrt{3}} = 2 \pm \sqrt{3}$$
, deci $a = 4$.

2.
$$f(2x) \le 0 \Rightarrow 4x^2 - 5x + 1 \le 0 \Rightarrow x \in \left[\frac{1}{4}; 1\right]$$

3.
$$x \in [0;2], x_1 = 1 \in [0;2], x_2 = -2 \notin [0;2].$$

4. Mulțimea A are $2^6 - 1$ submulțimi nevide dintre care $2^3 - 1$ au toate elementele impare.

Probabilitatea cerută este $\frac{2^3-1}{2^6-1} = \frac{7}{63} = \frac{1}{9}$.

5.
$$\sin C = \frac{1}{\sqrt{65}}$$
.

6. Avem $x + \frac{1}{x} \ge 2$, $\forall x > 0$, cu egalitate numai pentru x = 1.

Cum $\alpha \in \left(0; \frac{\pi}{2}\right) \Rightarrow \operatorname{tg} \alpha > 0$ și atunci $\operatorname{tg} \alpha + \frac{1}{\operatorname{tg} \alpha} = 2 \Rightarrow \operatorname{tg} \alpha = 1 \Rightarrow \alpha = \frac{\pi}{4} \Rightarrow \sin 2\alpha = \sin \frac{\pi}{2} = 1$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$\frac{1}{\sqrt{k} + \sqrt{k+1}} = \frac{\sqrt{k} - \sqrt{k+1}}{-1}$$

Fie *a* numărul din enunț. Avem $a = \frac{\sqrt{1} - \sqrt{2} + \sqrt{2} - \sqrt{3} + ... + \sqrt{99} - \sqrt{100}}{-1} = -\sqrt{1} + \sqrt{100} = 9$, deci $a \in \mathbb{N}$.

- **2.** Graficul funcției f intersectează axa Ox în două puncte distincte dacă și numai dacă ecuația f(x) = 0 are două soluții reale $\Leftrightarrow \Delta > 0 \Leftrightarrow m^2 8 > 0 \Leftrightarrow m \in (-\infty; -2\sqrt{2}) \cup (2\sqrt{2}; +\infty)$.
- 3. Se impune condiția $x \in (-1; +\infty)$. Ecuația dată este echivalentă cu $\log_3[(x+1)(x+3)] = \log_3 3 \Leftrightarrow x^2 + 4x = 0$ cu soluțiile 0 și -4. Cum $x \in (-1; \infty)$, rezultă că x = 0 este unica soluție a ecuației date.
- **4.** Mulțimea *A* are $2^5 1$ submulțimi nevide. $120 = 2 \cdot 3 \cdot 4 \cdot 5 = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$, deci 2 cazuri favorabile. Probabilitatea = $\frac{2}{31}$.
- **5.** Fie $G(x_G, y_G)$ centrul de greutate al triunghiului ABC.

Avem
$$x_G = \frac{x_A + x_B + x_C}{3} = \frac{4}{3}$$
 și $y_G = \frac{y_A + y_B + y_C}{3} = \frac{5}{3}$.

6. Folosim relația $\left|\sin x\right| = \sqrt{\frac{1-\cos 2x}{2}}$.

Cum
$$\frac{\pi}{8} \in \left(0; \frac{\pi}{2}\right) \Rightarrow \sin\frac{\pi}{8} > 0$$
. Atunci $\sin\frac{\pi}{8} = \sqrt{\frac{1 - \cos\left(2 \cdot \frac{\pi}{8}\right)}{2}} = \frac{\sqrt{2 - \sqrt{2}}}{2}$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$\log_{16} 24 = \frac{\log_2(2^3 \cdot 3)}{\log_2(2^4)} = \frac{3 + \log_2 3}{4} = \frac{3 + \frac{1}{\log_3 2}}{4} = \frac{3 + \frac{1}{a}}{4} = \frac{1 + 3a}{4a}$$
.

2. Fie a și b numerele căutate. Avem $\begin{cases} a+b=1 \\ a\cdot b=-1 \end{cases}$.

Numerele a și b vor fi soluțiile ecuației de gradul al doilea $x^2 - x - 1 = 0$, adică $\frac{1+\sqrt{5}}{2}$ și $\frac{1-\sqrt{5}}{2}$.

- **3.** Ecuația se scrie $2 \cdot 2^{2x} + 4 \cdot 2^x = 160 \iff 2^{2x} + 2 \cdot 2^x = 80 \iff (2^x + 1)^2 = 81$ și cum $2^x + 1 > 0$ obținem $2^x + 1 = 9$, de unde x = 3.
- **4.** Putem alege 3 fete din cele 12 în C_{12}^3 moduri. La fiecare alegere a fetelor putem alege 2 băieți din cei 10 în C_{10}^2 moduri. Comitetul clasei poate fi ales în $C_{12}^3 \cdot C_{10}^2 = 9900$ moduri.
- **5.** Avem $\overrightarrow{AB} = -3\overrightarrow{i} + 2\overrightarrow{j}$. Ecuația paralelei prin C la AB este $\frac{x-1}{-3} = \frac{y-3}{2}$, adică 2x + 3y 11 = 0.
- **6.** Deoarece $6 \in \left(\frac{3\pi}{2}; 2\pi\right)$, rezultă că numărul real 6 se reprezintă pe cercul trigonometric în cadranul IV. În concluzie $\sin 6 < 0$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Solutie

1. Numerele
$$1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots, \frac{1}{2^{2009}}$$
 sunt în progresie geometrică cu rația $\frac{1}{2}$.

Rezultă că
$$s = \frac{\frac{1}{2^{2010}} - 1}{\frac{1}{2} - 1} = 2 - \frac{1}{2^{2009}}$$
 și de aici $1 < s < 2$.

2.
$$f(x) = g(x) \Leftrightarrow 2x - 1 = -4x + 1 \Leftrightarrow x = \frac{1}{3}$$
. Punctul de intersecție cerut este $M(\frac{1}{3}; -\frac{1}{3})$.

3. Utilizând relația $\sin^2 x + \cos^2 x = 1$, ecuația devine $\sin^2 x + \sin x - 2 = 0$.

Notăm $\sin x = y$ și obținem ecuația $y^2 + y - 2 = 0$ cu soluțiile 1 și -2.

Ecuația
$$\sin x = -2$$
 nu are soluții (pentru că $-1 \le \sin x \le 1$), iar $\sin x = 1 \iff x_k = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$.

4. Sunt 5^3 moduri de alegere a valorilor f(0), f(1), f(2), deci 125 de funcții.

5. Patrulaterul convex ABCD este paralelogram dacă și numai dacă diagonalele sale au același mijloc.

Mijlocul lui
$$[AC]$$
 este $M\left(\frac{3}{2};1\right)$. Fie $D(x,y)$. Mijlocul lui $[BD]$ este $M'\left(\frac{-1+x}{2};\frac{1+y}{2}\right)$.

$$M = M' \Leftrightarrow \frac{-1+x}{2} = \frac{3}{2}$$
 şi $\frac{1+y}{2} = 1 \Rightarrow D(4,1)$.

6. Deoarece
$$x \in \left(\frac{\pi}{2}; \pi\right) \implies \cos x < 0$$
 și atunci $\cos x = -\sqrt{1 - \sin^2 x} = -\frac{4}{5}$

Deoarece
$$\frac{x}{2} \in \left(\frac{\pi}{4}; \frac{\pi}{2}\right) \Rightarrow \sin \frac{x}{2} > 0$$
, deci $\sin \frac{x}{2} = +\sqrt{\frac{1-\cos x}{2}} = \frac{3\sqrt{10}}{10}$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$\log_4 16 + \log_3 9 + \sqrt[3]{27} = 2 + 2 + 3 = 7 \in \mathbb{N}$$
.

2. Funcția f este funcție de gradul al doilea cu $\Delta = -8$ și a = 3 > 0.

Valoarea minimă a funcției f este $-\frac{\Delta}{4a} = \frac{8}{12} = \frac{2}{3}$.

3. Notând $4^x = y$ obținem ecuația $y^2 + 3y - 4 = 0$ cu soluțiile -4 și 1.

Cum $4^x > 0$, convine doar $4^x = 1$, deci x = 0.

4. Dacă $n \in \mathbb{N}$, atunci $\sqrt{n} \in \mathbb{Q} \iff n$ este pătrat perfect.

În mulțimea $\{0, 1, 2, ..., 99\}$ sunt 100 de elemente dintre care 10 sunt pătrate perfecte: 0^2 , 1^2 , 2^2 , ..., 9^2 .

Probabilitatea cerută este $\frac{10}{100} = \frac{1}{10} = 0.1$.

5. Avem
$$\overrightarrow{AB} = -3\overrightarrow{i} + 2\overrightarrow{j}$$
 și $\overrightarrow{CD} = (a-1)\overrightarrow{i} + \overrightarrow{j}$. Atunci $AB \parallel CD \iff \frac{a-1}{-3} = \frac{1}{2} \iff a = -\frac{1}{2}$.

6.
$$\operatorname{tg}\left(x + \frac{\pi}{3}\right) = \frac{\operatorname{tg} x + \operatorname{tg} \frac{\pi}{3}}{1 - \operatorname{tg} x \cdot \operatorname{tg} \frac{\pi}{3}} = \frac{\frac{1}{2} + \sqrt{3}}{1 - \frac{\sqrt{3}}{2}} = 8 + 5\sqrt{3}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Solutie

1. Avem
$$|3+4i| = \sqrt{9+16} = \sqrt{25} = 5$$
 și atunci $|z| = |(3+4i)^4| = |3+4i|^4 = 5^4 = 625$.

2. Fie
$$V(x_V, y_V)$$
 vârful parabolei $\Rightarrow x_V = -\frac{b}{2a} = -\frac{1}{2}, \ y_V = -\frac{\Delta}{4a} = \frac{1}{2}$. Evident $x_V + y_V = 0$.

3. Ecuația devine $\sin x (1 - 2\cos x) = 0 \Leftrightarrow \sin x = 0$ sau $1 - 2\cos x = 0$.

Cum $x \in [0, 2\pi)$, avem $\sin x = 0 \iff x = 0$ şi $x = \pi$, iar $\cos x = \frac{1}{2} \iff x = \frac{\pi}{3}$ şi $x = \frac{5\pi}{3}$, deci 4 soluţii.

4. Numărul funcțiilor bijective $g:\{2,3,4,5\} \rightarrow \{1,3,4,5\}$ este $4!=1\cdot 2\cdot 3\cdot 4=24$.

5. Avem $\overrightarrow{AB} = -3\overrightarrow{i} + 2\overrightarrow{j}$ și $\overrightarrow{CD} = (a-1)\overrightarrow{i} + \overrightarrow{j}$.

Atunci
$$AB \perp CD \iff \overrightarrow{AB} \cdot \overrightarrow{CD} = 0 \iff -3(a-1) + 2 = 0 \iff a = \frac{5}{3}$$
.

6. Avem
$$\sin x + \cos x = \sin x + \sin\left(\frac{\pi}{2} - x\right) = 2\sin\frac{\pi}{4}\cos\left(x - \frac{\pi}{4}\right) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$$
.

Atunci
$$\sin B + \cos B = \sin C + \cos C \implies \sqrt{2} \cos \left(B - \frac{\pi}{4} \right) = \sqrt{2} \cos \left(C - \frac{\pi}{4} \right).$$

Cum $B, C \in \left(0; \frac{\pi}{2}\right)$ obținem B = C, adică triunghiul ABC este isoscel.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$z = (2+i)^3 + (2-i)^3 = 2^3 + 3 \cdot 2^2 i + 3 \cdot 2i^2 + i^3 + 2^3 - 3 \cdot 2^2 i + 3 \cdot 2i^2 - i^3 = 4$$
, deci $|z| = 4$.

2.
$$f(x) = ax^2 + bx + c \Rightarrow c = 1$$
; $b = -3$; $a = -1$, deci $f(x) = -x^2 - 3x + 1 \Rightarrow f(2) = -9$.

3. Ecuația se scrie
$$2 \cdot 3^{2x} + 2^x \cdot 3^x - 3 \cdot 2^{2x} = 0$$
 și împărțind prin 2^{2x} se obține $2 \cdot \left(\frac{3}{2}\right)^{2x} + \left(\frac{3}{2}\right)^x - 3 = 0$.

Notăm
$$y = \left(\frac{3}{2}\right)^x \implies 2y^2 + y - 3 = 0 \implies y_1 = 1$$
 și $y_2 = -\frac{3}{2}$.

Cum
$$\left(\frac{3}{2}\right)^x > 0$$
, convine doar $\left(\frac{3}{2}\right)^x = 1 \Leftrightarrow x = 0$.

4. Mulțimea A are 2010 elemente, iar numărul celor divizibile cu 402. Probabilitatea cerută este $\frac{1}{5}$.

5. Triunghiul AOB este dreptunghic în O. Avem AO = 3, BO = 4, AB = 5.

Fie *x* distanța de la *O* la dreapta *AB*. Atunci $AO \cdot OB = x \cdot AB \implies x = \frac{AO \cdot OB}{AB} \implies x = \frac{12}{5}$.

6.
$$m(ADC) = 135^{\circ} \Rightarrow m(BAD) = 45^{\circ}$$
.

Aria paralelogramului este $AB \cdot AD \cdot \sin \widehat{BAD} = 24\sqrt{2}$.

Solutie

1. Prin împărțire se obține că $\frac{1}{7} = 0$, (142857). Atunci $a_{60} = 7$.

2. Avem
$$(f \circ g)(x) = f(g(x)) = 2 - g(x) = -3x$$
, iar $(g \circ f)(x) = g(f(x)) = 3f(x) + 2 = 8 - 3x$.
Atunci $(f \circ g)(x) - (g \circ f)(x) = -3x - (8 - 3x) = -8$, $\forall x \in \mathbb{R}$.

- **3.** Fie $f(x) = f(y) \Rightarrow 3x^3 + 1 = 3y^3 + 1 \Rightarrow x = y$. Rezultă că funcția f este injectivă.
- **4.** Sunt 900 de numere de trei cifre, iar numărul celor divizibile cu 50 este dat de numărul k-urilor cu proprietatea $k \in \mathbb{N}$, $100 \le 50k < 1000$ adică $2 \le k < 20$. Probabilitatea cerută este $\frac{18}{900} = \frac{1}{50}$.
- **5.** Ecuația dreptei AB este: y = x 3. Punctele A, B, C sunt coliniare $\iff C \in AB \iff a = -4$.
- **6.** Din teorema cosinusului obținem $\cos A = \frac{AB^2 + AC^2 BC^2}{2AB \cdot AC} = -\frac{1}{2}$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluție

1. Numerele 1, 4, 7, ..., 100 sunt 34 termeni consecutivi ai unei progresii aritmetice cu rația 3.

Atunci $1+4+7+...+100 = \frac{(1+100)\cdot 34}{2} = 1717$.

- **2.** $\operatorname{Im}(f) = \{ y \in \mathbb{R} \mid \exists x \in \mathbb{R} \text{ astfel încât } f(x) = y \}$. Avem $f(x) = y \Leftrightarrow x^2 + x + 1 y = 0$. Această ecuație are soluții reale dacă și numai dacă $\Delta \ge 0$. $\Delta = 1 4(1 y)$; $\Delta \ge 0 \Leftrightarrow y \ge \frac{3}{4}$. În concluzie, $\operatorname{Im}(f) = \left[\frac{3}{4}; \infty \right]$.
- 3. $E = \sin\left(\arcsin\frac{1}{2}\right) + \sin\left(\arccos\frac{\sqrt{3}}{2}\right) = \frac{1}{2} + \sin\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2} = 1$.
- **4.** Termenii dezvoltării sunt $T_{k+1} = C_5^k \left(\sqrt{2}\right)^{5-k} \cdot 1^k = C_5^k \sqrt{2^{5-k}}$, $k \in \{0,1,2,3,4,5\}$. Deoarece

 $C_5^k \in \mathbb{N}$ avem $T_{k+1} \in \mathbb{Q} \Leftrightarrow 5-k = \text{par} \Leftrightarrow k \in \{1,3,5\}$. Dezvoltarea are trei termeni raționali.

- **5.** \overrightarrow{ABCD} pătrat $\Rightarrow \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC} \Rightarrow \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}$. Atunci $\|\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}\| = 2 \cdot \|\overrightarrow{AC}\| = 2\sqrt{2}$.
- **6.** $\sin 105^{\circ} = \sin \left(45^{\circ} + 60^{\circ}\right) = \sin 60^{\circ} \cdot \cos 45^{\circ} + \cos 60^{\circ} \cdot \sin 45^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. Avem $2 < 3 < 4 \Rightarrow \log_2 2 < \log_2 3 < \log_2 4 \Rightarrow 1 < \log_2 3 < 2 \Rightarrow \log_2 3 \in (1,2)$.

2.
$$x^2 + 3x + m > 0$$
, oricare ar fi $x \in \mathbb{R} \iff \Delta < 0 \iff 9 - 4m < 0 \iff m > \frac{9}{4} \iff m \in \left(\frac{9}{4}, \infty\right)$.

3. Avem
$$\sin x + \cos x = \sin x + \sin\left(\frac{\pi}{2} - x\right) = 2\sin\frac{\pi}{4}\cos\left(x - \frac{\pi}{4}\right) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right)$$

Ecuația devine
$$\cos\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \iff x - \frac{\pi}{4} = \pm \frac{\pi}{4} + 2k\pi, \ k \in \mathbb{Z}.$$

Mulțimea soluțiilor ecuației inițiale este: $\left\{2k\pi \ / \ k \in \mathbb{Z}\right\} \cup \left\{\frac{\pi}{2} + 2k\pi \ / \ k \in \mathbb{Z}\right\}$.

4.
$$\forall n \in \mathbb{N}, n \ge 3 \text{ avem } C_n^2 + C_n^3 = \frac{n!}{2!(n-2)!} + \frac{n!}{3!(n-3)!} = \frac{3n! + (n-2)n!}{3!(n-2)!} = \frac{n!(n+1)}{3!(n-2)!} = \frac{(n+1)!}{3!(n-2)!} = \frac{C_{n+1}^3}{3!(n-2)!} = \frac{(n+1)!}{3!(n-2)!} = \frac{(n+1)!}{3!$$

5. Avem
$$d_1 \cap d_2 = \{A(1;-1)\}$$
. Atunci $A \in d_3 \Leftrightarrow 1-1+a=0 \Leftrightarrow a=0$.

6. Din teorema cosinusului,
$$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos A \implies BC = \sqrt{13}$$
.

Perimetrul triunghiului *ABC* este $AB + BC + AC = 7 + \sqrt{13}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$z^2 = \left(\frac{-1 + i\sqrt{3}}{2}\right)^2 = \frac{1 - 2i\sqrt{3} - 3}{4} = \frac{-1 - i\sqrt{3}}{2} = \frac{-1}{2}$$
.

2. Considerăm funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = -x^2 + 4x - 3$. Tabelul de semn al lui g este:

3. Avem
$$f(x) = f(y) \Rightarrow \frac{x^2 + 1}{x} = \frac{y^2 + 1}{y} \Rightarrow (x - y)(xy - 1) = 0 \Rightarrow x = y \text{ sau } xy = 1.$$

Dar
$$x, y \in (1, \infty) \Rightarrow xy > 1$$
. Avem $\begin{cases} x, y \in (1, \infty) \\ f(x) = f(y) \end{cases} \Rightarrow x = y$, deci f este injectivă.

4. O funcție $f:\{1,2,3\} \rightarrow \{0,1,2,3\}$ pentru care f(1) este număr par este unic determinată de un tabel de tipul

X	1	2	3	unde $a \in \{0, 2\}$ iar $b, c \in \{0, 1, 2, 3\}$.
f(x)	а	b	С	Vor fi $2 \cdot 4 \cdot 4 = 32$ funcții cu proprietatea cerută.

5. Din teorema cosinusului, avem $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos A$.

Atunci
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \cdot AC \cos A = \frac{AB^2 + AC^2 - BC^2}{2} = \frac{5}{2}$$
.

6.
$$\sin 15^{\circ} = \sin \left(45^{\circ} - 30^{\circ}\right) = \sin 45^{\circ} \cdot \cos 30^{\circ} - \cos 45^{\circ} \cdot \sin 30^{\circ}$$

$$\sin 15^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. Avem
$$z = \frac{4a}{4+a^2} + \frac{4-a^2}{4+a^2}i$$
. Atunci $z \in \mathbb{R} \iff \operatorname{Im}(z) = 0 \iff 4-a^2 = 0 \iff a = \pm 2$.

2. Rezolvăm sistemul
$$\begin{cases} 2x+3=y\\ x^2-4x+12=y \end{cases}$$
 și obținem o singură soluție:
$$\begin{cases} x=3\\ y=9 \end{cases}$$

3. Se impun condițiile
$$2x-1 \ge 0$$
 și $x \ge 0$, adică $x \in \left[\frac{1}{2}, \infty\right]$.

Prin ridicare la pătrat ecuația devine $2x-1=x^2 \Leftrightarrow (x-1)^2=0 \Leftrightarrow x=1$.

4. Produsul cartezian
$$A \times A$$
 are 36 de elemente: $A \times A = \{(1, 1), (1, 2), ..., (6, 6)\}$.

Cazurile favorabile sunt (1,5), (5,1), (2,4), (4,2) și (3,3). Probabilitatea cerută este $\frac{5}{36}$.

5.
$$\overrightarrow{MA} = -\overrightarrow{i} + 3\overrightarrow{j}$$
, $\overrightarrow{MB} = 2\overrightarrow{i} + 2\overrightarrow{j} \implies \overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{i} + 5\overrightarrow{j} \implies \left\| \overrightarrow{MA} + \overrightarrow{MB} \right\| = \sqrt{26}$.

6. Avem succesiv:
$$\sin(a+b) \cdot \sin(a-b) = (\sin a \cos b + \cos a \sin b)(\sin a \cos b - \cos a \sin b) =$$

= $\sin^2 a \cos^2 b - \cos^2 a \sin^2 b = \sin^2 a (1 - \sin^2 b) - (1 - \sin^2 a) \sin^2 b = \sin^2 a - \sin^2 b$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. Avem
$$100^{\lg 2} + \sqrt[3]{-27} = (10^{\lg 2})^2 + \sqrt[3]{(-3)^3} = 2^2 + (-3) = 1$$
.

2. Im
$$(f) = \{ y \in \mathbb{R} / \exists x \in \mathbb{R} \text{ aşa încât } f(x) = y \}.$$

Pentru y=0 avem f(0)=0, iar pentru $y\neq 0$ avem: $f(x)=y \Leftrightarrow yx^2-2x+y=0$. Această ecuație are soluții reale dacă și numai dacă $\Delta \geq 0 \Leftrightarrow 4-4y^2 \geq 0$, adică $y \in [-1; 1]$. În concluzie, $\operatorname{Im}(f)=[-1; 1]$.

3. Notând
$$3^x = y$$
 ecuația devine: $3y = -y + 8$ de unde obținem $y = 2$. Avem $3^x = 2 \iff x = \log_3 2$.

4.
$$f(1) = 3$$
, $f(3) = 4 \Rightarrow$ există 16 funcții $g: \{2,3\} \rightarrow \{1,2,3,4\}$. $f(1) = 4$, $f(3) = 3 \Rightarrow$ încă 16 funcții, deci în total 32 funcții.

5. Fie
$$d$$
 drepta ce trece prin $O(0, 0)$ și este paralelă cu dreapta AB .

Un vector director al dreptei d este $\overrightarrow{AB} = -3\overrightarrow{i} + 2\overrightarrow{j}$. Ecuația dreptei d este $\frac{x}{-3} = \frac{y}{2} \iff 2x + 3y = 0$.

$$\cos^2 a + \cos^2 b + 2\cos a\cos b = \frac{1}{4}$$
 și $\sin^2 a + \sin^2 b + 2\sin a\sin b = 1$. Adunând membru cu membru aceste

două egalități obținem
$$2+2(\cos a\cos b+\sin a\sin b)=\frac{5}{4}$$
, adică $2+2\cos(a-b)=\frac{5}{4}$ de unde rezultă

$$\cos\left(a-b\right) = -\frac{3}{8}.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. Fie
$$a=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}$$
. Prin calcul direct obţinem $a=\frac{20}{27} \Rightarrow [a]=0$.

2. Scăzând cele două ecuații obținem $x^2 + 4x + 3 = 0$ de unde x = -1 sau x = -3. Sistemul are două soluții: $\begin{cases} x = -1 \\ y = 5 \end{cases}$ și $\begin{cases} x = -3 \\ y = 19 \end{cases}$.

3. Avem
$$\arctan x = \frac{\pi}{2} - \arctan \frac{1}{3}$$
, de unde $x = \operatorname{tg}\left(\frac{\pi}{2} - \operatorname{arcctg}\frac{1}{3}\right) \Leftrightarrow x = \operatorname{ctg}\left(\operatorname{arcctg}\frac{1}{3}\right) \Leftrightarrow x = \frac{1}{3}$.

4.
$$T_{k+1} = C_{100}^k \cdot 5^{\frac{100-k}{4}} \Rightarrow k : 4 \Rightarrow k \in \{0, 4, ..., 100\}$$
. Deci sunt 26 termeni raționali.
5. Avem $\overrightarrow{AB} = 2\overrightarrow{i} - 4\overrightarrow{j}$, $\overrightarrow{AC} = 4\overrightarrow{i} - 8\overrightarrow{j} \Rightarrow \overrightarrow{AC} = 2\overrightarrow{AB} \Rightarrow A, B, C$ sunt coliniare.

5. Avem
$$\overrightarrow{AB} = 2\overrightarrow{i} - 4\overrightarrow{j}$$
, $\overrightarrow{AC} = 4\overrightarrow{i} - 8\overrightarrow{j} \Rightarrow \overrightarrow{AC} = 2\overrightarrow{AB} \Rightarrow A, B, C$ sunt coliniare.

6. Aria triunghiului dat este
$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
 unde $a = 4$, $b = 5$, $c = 7$ și $p = \frac{a+b+c}{2}$.

Obținem
$$p = 8$$
 și $S = 4\sqrt{6}$. Atunci $r = \frac{S}{p} \implies r = \frac{\sqrt{6}}{2}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. Fie $a = \sqrt{2}$ şi $b = -\sqrt{2}$. Avem $a, b \in \mathbb{R} \setminus \mathbb{Q}$ şi $a + b = 0 \in \mathbb{Q}$. Afirmaţia din enunţ este falsă.

2.
$$f(f(x)) = f^2(x) \Rightarrow x + 4 = x^2 + 4x + 4 \Rightarrow x \in \{-3,0\}$$
.

3. Notăm $2^x = y$ și obținem ecuația $y^2 - y - 12 = 0$ cu soluțiile $y_1 = -3$ și $y_2 = 4$.

 $2^x = -3$ nu are soluții, iar $2^x = 4 \iff x = 2$.

4. Produsul cartezian $A \times A$ are 36 de elemente: $A \times A = \{(1, 1), (1, 2), \dots, (6, 6)\}$.

Fie $(a,b) \in A \times A$. Produsul $a \cdot b$ este impar dacă și numai dacă a și b sunt impare.

Cazurile favorabile sunt: (1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (5,1), (5,3) şi (5,5).

Probabilitatea cerută este $\frac{9}{36} = \frac{1}{4} = 0,25$.

5. $AC = 2\sqrt{2} \Rightarrow$ latura pătratului este 2, deci aria este 4.

6. Avem $\sin 105^{\circ} + \sin 75^{\circ} = 2\sin 75^{\circ} = 2\sin \left(45^{\circ} + 30^{\circ}\right) = 2 \cdot \left(\frac{\sqrt{2}}{2} \cdot \frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{6} + \sqrt{2}}{2}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$z = \frac{(1-i)^2}{(1+i)(1-i)} = \frac{1-2i+i^2}{1-i^2} = -i \implies \operatorname{Re}(z) = 0$$
.

2. Avem
$$x^2 + mx + 1 \ge 0$$
, $\forall x \in \mathbb{R} \iff \Delta \le 0 \iff m^2 - 4 \le 0 \iff m \in [-2, 2]$.

3.
$$\arcsin 2x = -\frac{1}{2} \iff 2x \in [-1, 1]$$
 și $\sin\left(-\frac{1}{2}\right) = 2x$. Soluția ecuației este $x = -\frac{1}{2}\sin\frac{1}{2}$.

4. Mulțimea A conține 5 elemente pare și 5 impare. Dacă o submulțime cu 5 elemente a lui A conține două elemente pare, rezultă că celelalte trei elemente sunt impare. Putem alege 2 elemente pare din cele 5 în C_5^2 moduri, iar 3 elemente impare din cele 5 pot fi alese în C_5^3 . Numărul cerut în enunț este $C_5^2 \cdot C_5^3 = 100$.

5. Ecuația dreptei *BC* este
$$4x + 3y - 2 = 0$$
. Atunci $d(O, BC) = \frac{|4 \cdot 0 + 3 \cdot 0 - 2|}{\sqrt{4^2 + 3^2}} = \frac{2}{5}$.

6.
$$\alpha \in \left(\frac{\pi}{2}; \pi\right) \Rightarrow \cos \alpha < 0$$
 și atunci $\cos \alpha = -\sqrt{1 - \frac{9}{25}} = -\frac{4}{5}$.

$$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha} \implies \operatorname{ctg} \alpha = -\frac{4}{3}.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$\frac{7}{5\sqrt{2}-1} = \frac{7(5\sqrt{2}+1)}{50-1} = \frac{5\sqrt{2}+1}{7} \in (1, 2) \Rightarrow \left[\frac{7}{5\sqrt{2}-1}\right] = 1.$$

2.
$$\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 x_2} = \frac{(x_1 + x_2)^2 - 2x_1 x_2}{x_1 x_2} = \frac{(-1)^2 - 2(-1)}{-1} = -3 \in \mathbb{Z}$$
.

3. Ecuația este echivalentă cu $2 \cdot 3^x + \frac{3}{3^x} = 7$. Făcând substituția $y = 3^x$ obținem ecuația $2y^2 - 7y + 3 = 0$

cu soluțiile 3 și $\frac{1}{2}$. Avem $3^x = 3 \Leftrightarrow x = 1$, iar $3^x = \frac{1}{2} \Leftrightarrow x = -\log_3 2$.

4. Funcția f este strict crescătoare $\Leftrightarrow f(1) < f(2) < f(3) < f(4)$.

Orice submulțime a lui B poate fi ordonată crescător într-un singur mod. Numărul funcțiilor strict crescătoare $f: A \to B$ este egal cu numărul submulțimilor cu 4 elemente ale mulțimii B, adică $C_6^4 = 15$.

5. Ecuația dreptei BC este 2x - y + 5 = 0. Lungimea înălțimii duse din vârful A în triunghiul ABC este

$$d(A, BC) = \frac{|2 \cdot 1 - 3 + 5|}{\sqrt{2^2 + (-1)^2}} = \frac{4\sqrt{5}}{5}.$$

6.
$$E = 2\left(\sin 75^{\circ} - \sin 15^{\circ}\right) = 4\sin \frac{75^{\circ} - 15^{\circ}}{2}\cos \frac{75^{\circ} + 15^{\circ}}{2} = 4\sin 30^{\circ}\cos 45^{\circ} = 4\cdot \frac{1}{2}\cdot \frac{\sqrt{2}}{2} = \sqrt{2}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- **1.** Fie *r* rația progresiei. Avem $a_6 = a_3 + 3r$ și $a_{16} = a_{19} 3r$, deci $a_6 + a_{16} = a_3 + a_{19} \implies a_6 + a_{16} = 10$.
- 2. Ecuația dată are două rădăcini reale distincte dacă și numai dacă $\Delta > 0$. Avem $\Delta = m^2 + 4m 4$.

 $\Delta > 0 \iff m \in \left(-\infty, -2 - 2\sqrt{2}\right) \cup \left(-2 + 2\sqrt{2}, +\infty\right).$

3. Făcând substituția $\lg x = y$, ecuația devine $y^2 + y - 6 = 0$ de unde obținem $y_1 = 2$, $y_2 = -3$.

Avem $\lg x = 2 \Leftrightarrow x = 100$, iar $\lg x = -3 \Leftrightarrow x = \frac{1}{1000}$.

- **4.** $f(1) > f(2) > f(3) = 1 \Rightarrow$ numărul funcțiilor f este egal cu numărul funcțiilor $g:\{1,2\} \rightarrow \{2,3,4,5\}$ strict descrescătoare, adică $C_4^2 = 6$.
- **5.** Fie Q(a,b). Avem $\overrightarrow{MQ} = (a-2)\overrightarrow{i} + (b+1)\overrightarrow{j}$ și $\overrightarrow{NP} = \overrightarrow{i} + 2\overrightarrow{j}$.

MNPQ este paralelogram $\Leftrightarrow \overrightarrow{MQ} = \overrightarrow{NP} \Leftrightarrow a-2=1$ şi b+1=2. Punctul căutat este Q(3,1).

6. Fie *M* mijlocul lui [BC]. Avem $\overrightarrow{AM} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC}) \Rightarrow \overrightarrow{AM}^2 = \frac{1}{4} (\overrightarrow{AB} + \overrightarrow{AC})^2$ de unde obținem

 $AM^{2} = \frac{1}{4} \left(AB^{2} + AC^{2} + 2\overrightarrow{AB} \cdot \overrightarrow{AC} \right) = \frac{1}{4} \left(AB^{2} + AC^{2} + 2 \left\| \overrightarrow{AB} \right\| \cdot \left\| \overrightarrow{AC} \right\| \cdot \cos A \right).$ Din teorema cosinusului

avem $BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot \cos A \Rightarrow 2AB \cdot AC \cdot \cos A = AB^2 + AC^2 - BC^2$.

Atunci $AM^2 = \frac{2(AB^2 + AC^2) - BC^2}{4}$, de unde $AM = \frac{\sqrt{10}}{2}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$(2+i)^4 + (2-i)^4 = ((2+i)^2)^2 + ((2-i)^2)^2 = (3+4i)^2 + (3-4i)^2 = -7 + 24i - 7 - 24i = -14$$
.

2. Sistemul
$$\begin{cases} y = x^2 + x + 1 \\ y = 2x + 1 \end{cases}$$
 are două soluții:
$$\begin{cases} x = 0 \\ y = 1 \end{cases}$$
 și
$$\begin{cases} x = 1 \\ y = 3 \end{cases}$$
. Dreapta de ecuație $y = 2x + 1$ intersectează

parabola de ecuație $y = x^2 + x + 1$ în punctele A(0, 1) și B(1, 3).

3.
$$x \le \frac{11}{2}$$
; $\sqrt{16 + x^2} = 11 - 2x$, prin ridicare la pătrat, rezultă $3x^2 - 44x + 105 = 0 \Rightarrow x_1 = 3$, $x_2 = \frac{35}{3}$, în final $x = 3$.

4. Sunt 9000 de numere naturale cu 4 cifre. Numărul celor divizibile cu 9 este dat de numărul k-urilor cu $1000 \le 9k \le 9999 \iff 111, (1) \le k \le 1111$, deci există 1000 astfel de numere. Probabilitatea cerută este $\frac{1}{9}$

5. Centrul de greutate al triunghiului
$$ABC$$
 este $G\left(\frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3}\right)$, adică $G(1, 2)$.

Ecuația dreptei OG este $\frac{x}{1} = \frac{y}{2} \iff y = 2x$.

6.
$$2(\cos 75^{\circ} + \cos 15^{\circ}) = 4\cos \frac{75^{\circ} - 15^{\circ}}{2}\cos \frac{75^{\circ} + 15^{\circ}}{2} = 4\cos 30^{\circ}\cos 45^{\circ} = 4\cdot \frac{\sqrt{3}}{2}\cdot \frac{\sqrt{2}}{2} = \sqrt{6}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. Fie
$$z$$
 numărul din enunț. Avem $z = 2^6 \cdot \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)^6 = 2^6 \cdot \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)^6$. Folosind formula lui Moivre, obținem: $z = 2^6 \cdot \left(\cos\pi + i\sin\pi\right) = -2^6 \Rightarrow \text{Re}(z) = -64$.

2.
$$(f \circ f)(512) = f(f(512)) = \frac{1}{\sqrt[3]{f(512)}} = \sqrt[9]{512} = \sqrt[9]{2^9} = 2$$
.

3. Utilizând formula $\cos 2x = 1 - 2\sin^2 x$, ecuația devine $2\sin^2 x - \sin x - 1 = 0$. Notăm $y = \sin x$ și obținem ecuația $2y^2 - y - 1 = 0$ cu soluțiile $-\frac{1}{2}$ și 1.

$$\sin x = 1 \iff x = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$$
, iar $\sin x = -\frac{1}{2} \iff x = (-1)^{k+1} \frac{\pi}{6} + k\pi, \ k \in \mathbb{Z}$.

- **4.** Fiecare submulțime cu trei elemente a lui M poate fi ordonată strict crescător într-un singur mod. Numărul tripletelor (a,b,c) cu proprietatea că $a,b,c \in M$ și a < b < c este egal cu numărul submulțimilor cu trei elemente ale mulțimii M, adică $C_6^3 = 20$.
- 5. Punctul A(0,3) se află pe dreapta d_1 . Atunci distanța cerută este

$$d(d_1, d_2) = d(A, d_2) = \frac{|2 \cdot 0 + 4 \cdot 3 - 11|}{\sqrt{2^2 + 4^2}} = \frac{1}{\sqrt{20}} = \frac{\sqrt{5}}{10}.$$

6. Avem
$$\overrightarrow{AD}^2 = \|\overrightarrow{AD}\|^2 = 4$$
, iar $\overrightarrow{AB} \cdot \overrightarrow{AD} = \|\overrightarrow{AB}\| \cdot \|\overrightarrow{AD}\| \cdot \cos 60^\circ = 1$.

Atunci
$$\overrightarrow{AC} \cdot \overrightarrow{AD} = (\overrightarrow{AB} + \overrightarrow{AD}) \cdot \overrightarrow{AD} = \overrightarrow{AB} \cdot \overrightarrow{AD} + \overrightarrow{AD}^2 \implies \overrightarrow{AC} \cdot \overrightarrow{AD} = 5$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$\log_9 \sqrt{3} + \log_4 \sqrt{2} = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$$
.

2.
$$m < 0$$
 și $\Delta \le 0$, rezultă $m \in (-\infty; 0)$.

3.
$$2^x + 2^{x+1} + 2^{x-1} = 56 \Leftrightarrow 2^x \left(1 + 2 + \frac{1}{2}\right) = 56 \Leftrightarrow 2^x = 16 \Leftrightarrow x = 4$$
.

4. Dacă
$$n \in \mathbb{N}$$
, atunci $\sqrt[3]{n} \in \mathbb{Q} \Leftrightarrow n$ este cub perfect. În mulțimea A sunt 10 cuburi perfecte: 1^3 , 2^3 , ..., 10^3 . Probabilitatea cerută este $\frac{10}{1000} = \frac{1}{100} = 0,01$.

5. Cum
$$\overrightarrow{MC} = -3\overrightarrow{MB}$$
, rezultă că $M \in (BC)$ și $\frac{BM}{MC} = \frac{1}{3} \cdot \overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + \frac{BM}{BC} \overrightarrow{BC}$.

$$\overrightarrow{AM} = \overrightarrow{AB} + \frac{1}{4} \left(\overrightarrow{AC} - \overrightarrow{AB} \right) = \frac{3}{4} \overrightarrow{AB} + \frac{1}{4} \overrightarrow{AC} = \frac{3}{4} \overrightarrow{AB} - \frac{1}{4} \overrightarrow{CA} \; .$$

6.
$$\sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x} = \frac{3}{5}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.
$$2(2^{-a+2}+1)=2^{a-1}+2^{a+1}+1 \Rightarrow 5t^2-2t-16=0 \Rightarrow t=2 \Rightarrow a=1$$
.

2.
$$\begin{cases} x_V = -a + \frac{1}{2} \\ y_V = a - \frac{1}{4} \end{cases}$$
. Deci $x_V + y_V = \frac{1}{4}$.

3.
$$z^2 + 2z + 4 = 0$$
 $(z-2) \Rightarrow z^3 = 8$. Aşadar $z^2 - \frac{8}{z} = \frac{z^3 - 8}{z} = 0$.

4. Mulțimea dată are 40 de elemente, dintre care divizibile cu 2 și cu 5, deci cu 10, sunt numerele 10,20,30 și 40. Probabilitatea este egală cu $\frac{1}{10}$.

5. Fie
$$\{O\} = AC \cap BD$$
 şi $MN \perp AB$, $O \in (MN), M \in (DC), N \in (AB)$. Atunci $|\overrightarrow{AC} + \overrightarrow{BD}| = |(\overrightarrow{AO} + \overrightarrow{BO}) + (\overrightarrow{OC} + \overrightarrow{OD})| = |2\overrightarrow{NO} + 2\overrightarrow{OM}| = 2NM = 8$.

6.
$$\alpha \in \left(0, \frac{\pi}{2}\right) \Rightarrow \cos \alpha > 0$$
; $\cos \alpha = \frac{5}{13} \Rightarrow \operatorname{tg} \alpha = \frac{12}{5}$; $\operatorname{tg} 2\alpha = \frac{2\operatorname{tg} \alpha}{1 - \operatorname{tg}^2 \alpha} = -\frac{120}{119}$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Solutie

1.
$$A - B = (-3; 1] \Rightarrow (A - B) \cap \mathbb{Z} = \{-2; -1; 0; 1\} \Rightarrow card((A - B) \cap \mathbb{Z}) = 4$$
.

2.
$$2x+1=x^2-x+3 \Rightarrow x^2-3x+2=0 \Rightarrow x \in \{1;2\} \Rightarrow (x;y) \in \{(1;3),(2;5)\}$$
, deci punctele sunt $A(1;3),B(2;5)$.

3.
$$\begin{cases} x-1 \ge 0 \\ 2-x \ge 0 \end{cases} \Rightarrow x \in [1;2] \Rightarrow x-1+2-x+2\sqrt{(x-1)(2-x)} = 1 \Rightarrow x \in \{1;2\}.$$

4.
$$x! < 7, x \in \mathbb{N} \Rightarrow x \in \{0;1;2;3\}$$

5.
$$d(A;d) = \frac{|5 \cdot 1 + 12 \cdot 1 - 4|}{\sqrt{5^2 + 12^2}} \Rightarrow d(A;d) = 1.$$

6.
$$tga = \frac{1}{2}, tgb = \frac{1}{5} \Rightarrow tg(a+b) = \frac{\frac{1}{2} + \frac{1}{5}}{1 - \frac{1}{2} \cdot \frac{1}{5}} = \frac{7}{9}.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$|4x-8| = 4|x-2|, |4-2x| = 2|x-2| \Rightarrow f(x) = 0, \forall x \in \mathbb{R}$$
.

2.
$$x^2 - 2x + a - 1 = 2x + 3 \Rightarrow x^2 - 4x + a - 4 = 0 \Rightarrow \Delta > 0 \Rightarrow a \in (-\infty, 8)$$
.

3.
$$\sqrt[3]{x-1} = x-1 \Rightarrow x-1 = (x-1)^3 \Rightarrow (x-1)(x^2-2x) = 0 \Rightarrow x \in \{0; 1; 2\}.$$

4.
$$(\sqrt{3}+1)^9 = (1+\sqrt{3})^9$$
, $T_{k+1} = C_9^k (\sqrt{3})^k \in \mathbb{Q} \Rightarrow \frac{k}{2} \in \mathbb{N}$

Numărul termenilor iraționali este $10 - \left(\left[\frac{9}{2} \right] + 1 \right) = 5$.

5.
$$\frac{m+1}{m-1} = \frac{8}{-4} \Rightarrow m = \frac{1}{3}$$
.

6.
$$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC} \Rightarrow \cos A = \frac{1}{2} \Rightarrow m(A) = 60^\circ$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar **Solutie**

1.
$$\left[\sqrt{2008}\right] = 44, \left\{-\frac{1}{3}\right\} = \frac{2}{3} \Rightarrow \left[\sqrt{2008}\right] + 3 \cdot \left\{-\frac{1}{3}\right\} = 46.$$

2.
$$x_v = -\frac{b}{2a} = 2 \in [2; 3], f(1) = f(3) = 0, f(2) = -1 \Rightarrow f([2; 3]) = [-1; 0].$$

2.
$$x_v = -\frac{b}{2a} = 2 \in [2; 3], f(1) = f(3) = 0, f(2) = -1 \Rightarrow f([2; 3]) = [-1; 0].$$

3.
$$\begin{cases} x + 8 \ge 0 \\ x \ge 0 \end{cases} \Rightarrow x \in [0; \infty), \sqrt{x + 8} = 2 + \sqrt{x} \Rightarrow x + 8 = 4 + 4\sqrt{x} + x \Rightarrow x = 1.$$

4.
$$D_{56} = \{1, 2, 4, 7, 8, 14, 28, 56\} \Rightarrow p = \frac{4}{8} = \frac{1}{2}$$
.

5.
$$6\vec{i} + 2\vec{j} = p(\vec{i} + \vec{j}) + r(\vec{i} - \vec{j}) \Rightarrow \begin{cases} p + r = 6 \\ p - r = 2 \end{cases} \Rightarrow (p; r) = (4; 2).$$

6.
$$S = \sqrt{p(p-a)(p-b)(p-c)}$$
, $p = \frac{5+7+8}{2} = 10$, $S = 10\sqrt{3} \Rightarrow R = \frac{abc}{4S} \Rightarrow R = \frac{7\sqrt{3}}{3}$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluție

1.
$$(\sqrt{3} + \sqrt{7})^2 = 3 + 2\sqrt{21} + 7 = 10 + 2\sqrt{21}$$
; $4, 5 < \sqrt{21} < 4, 6 \Rightarrow 9 < 2\sqrt{21} < 9, 2$, deci $\left\lceil (\sqrt{3} + \sqrt{7})^2 \right\rceil = 19$.

2.
$$1-x \neq 0, 1-2x \neq 0 \Rightarrow x \in \mathbb{R} \setminus \left\{1, \frac{1}{2}\right\}; \frac{2x-1}{1-x} - \frac{3x+2}{1-2x} \ge 0 \Rightarrow \frac{x^2-3x+3}{(x-1)(2x-1)} \le 0 \Rightarrow x \in \left(\frac{1}{2}, 1\right).$$

3.
$$\sqrt[3]{2-x} = 2-x \Rightarrow 2-x = (2-x)^3 \Rightarrow (2-x)(x^2-4x+3) = 0 \Rightarrow x \in \{1;2;3\}$$
.

4.
$$T_{k+1} = C_{49}^k \left(x^{\frac{2}{3}}\right)^{49-k} y^{\frac{k}{2}}; \frac{2(49-k)}{3} = \frac{k}{2} \Rightarrow k = 28 \Rightarrow T_{29} = C_{49}^{28} x^{14} y^{14}.$$

5.
$$\overrightarrow{r_G} = \frac{\overrightarrow{r_A} + \overrightarrow{r_B} + \overrightarrow{r_C}}{3} \Rightarrow \overrightarrow{r_G} = 2\overrightarrow{i} + 2\overrightarrow{j}$$
.

6.
$$\sin A = \frac{\sqrt{3}}{2}, \frac{a}{\sin A} = 2R \Rightarrow R = \sqrt{3}.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$\left[-\sqrt{8} \right] = -3, \{-2, 8\} = 0, 2 \Rightarrow -3, 2$$
.

2.
$$\begin{cases} s = 5 \\ s^2 - 2p = 13 \end{cases} \Rightarrow \begin{cases} s = 5 \\ p = 6 \end{cases} \Rightarrow (x, y) \in \{(2, 3), (3, 2)\}.$$

3.
$$2^x = t$$
, $t^2 - 10t + 16 = 0 \Rightarrow t \in \{2; 8\} \Rightarrow x \in \{1; 3\}$.

4.
$$C_x^2 = \frac{x(x-1)}{2}, A_x^2 = x(x-1), x \ge 2, \frac{x(x-1)}{2} + x(x-1) = 30 \Rightarrow x = 5.$$

5.
$$\overrightarrow{OA} = 2\overrightarrow{i} + \overrightarrow{j}, \overrightarrow{OB} = -2\overrightarrow{i} + \overrightarrow{j} \Rightarrow \overrightarrow{OA} \cdot \overrightarrow{OB} = |\overrightarrow{OA}| \cdot |\overrightarrow{OB}| \cos(\widehat{\overrightarrow{OA}, \overrightarrow{OB}}) \cdot \cos(\widehat{\overrightarrow{OA}, \overrightarrow{OB}}) = \frac{2 \cdot (-2) + 1 \cdot 1}{\sqrt{2^2 + 1^2} \sqrt{2^2 + 1^2}}, \cos(\widehat{\overrightarrow{OA}, \overrightarrow{OB}}) = \frac{-3}{5}$$

6. ctg
$$x=3 \Rightarrow$$
 tg $x = \frac{1}{3} \Rightarrow$ tg $2x = \frac{2 \cdot \frac{1}{3}}{1 - \frac{1}{9}} = \frac{3}{4}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Solutie

1.
$$2(a-bi)+a+bi=3+4i \Rightarrow z=1-4i$$
.

2.
$$s(s^2-3p)=-18$$
.

3.
$$5^x = t > 0 \Rightarrow 1 + t - 2t^2 = 0 \Rightarrow t = 1 \Rightarrow x = 0$$
.

4.
$$T_{k+1} = C_9^k \left(a^2\right)^{9-k} \left(\frac{1}{\sqrt[3]{a}}\right)^k, 2(9-k) - \frac{k}{3} = 4 \Rightarrow k = 6 \Rightarrow T_7$$
.

5.
$$\vec{u}^2 - \vec{v}^2 = (\vec{u} - \vec{v})(\vec{u} + \vec{v}), (3\vec{i} + 2\vec{j})(2\vec{i} + 3\vec{j}) = 3 \cdot 2 + 2 \cdot 3 = 12$$
.

6.
$$BC = \sqrt{AC^2 + AB^2} = 13 \Rightarrow R = \frac{BC}{2} = \frac{13}{2}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Solutie

1.
$$\sqrt{7+4\sqrt{3}} - \sqrt{3} = \sqrt{(\sqrt{3}+2)^2} - \sqrt{3} = 2 \in \mathbb{N}$$
.

2.
$$x^2 + 4x + 5 = (x+2)^2 + 1 \ge 1$$
, $\forall x \in \mathbb{R}$, $x^2 + 2x + 2 = (x+1)^2 + 1 \ge 1$, $\forall x \in \mathbb{R} \Rightarrow (x^2 + 4x + 5)(x^2 + 2x + 2) \ge 1$, $\forall x \in \mathbb{R}$.

3.
$$x > 0$$
, $\log_2(4x) = \log_2 4 + \log_2 x = 2 + \log_2 x$, $\log_2 x = t$, $t^2 + t - 2 = 0 \Rightarrow t \in \{1; -2\}; x \in \{2; \frac{1}{4}\}$.

4.
$$T_{k+1} = C_{200}^k \left(\sqrt[3]{x} \right)^{200-k} \left(\frac{2}{\sqrt{x}} \right)^k, k \in \{0;1;2;...;200\}, \frac{200-k}{3} - \frac{k}{2} = 0 \Rightarrow k = 80 \Rightarrow T_{81} = C_{200}^{80} \cdot 2^{80}$$
.

5.
$$m = -\frac{4}{-8} = \frac{1}{2} \Rightarrow y - 1 = \frac{1}{2}(x - 2) \Rightarrow x - 2y = 0$$
.

6.
$$m_a^2 = \frac{2(b^2 + c^2) - a^2}{4}$$
, $a^2 = b^2 + c^2 - 2bc \cos A \Rightarrow a^2 = 12$, $m_a = \sqrt{7}$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluție

1.
$$z = \frac{1+4i}{4+7i} = \frac{32+9i}{65} \Rightarrow \text{Re } z = \frac{32}{65}$$

2.
$$x_v = -\frac{b}{2a} \Rightarrow x = 1$$
.

3.
$$3^x = t, t > 0, 3t + \frac{3}{t} = 10 \Rightarrow t \in \left\{\frac{1}{3}; 3\right\} \Rightarrow x \in \{-1; 1\}.$$

4. Numărul cazurilor posibile este 2010:2=1005. Numărul cazurilor favorabile = 335, deci $p=\frac{335}{1005}=\frac{1}{3}$.

5.
$$m_d = -2 \Rightarrow m = -\frac{1}{-2}, y - 2 = \frac{1}{2}(x - 3) \Rightarrow x - 2y + 1 = 0$$
.

6. M mijlocul lui [BC]. $GM = \frac{1}{3}AM$, AM este înălțime $AM^2 = AB^2 - BM^2 \Rightarrow AM = 4$.

Deci
$$GM = \frac{4}{3}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluție

1.
$$\lg\left(\frac{1}{2} \cdot \frac{2}{3} \cdot \dots \cdot \frac{99}{100}\right) = \lg \frac{1}{100} = -2$$
.

2.
$$x < 3 \Rightarrow -x + 3 - x + 4 = 1 \Rightarrow x \in \emptyset$$
, $x \in [3,4) \Rightarrow x - 3 - x + 4 = 1 \Rightarrow x \in [3,4)$, $x \ge 4 \Rightarrow x - 3 + x - 4 = 1 \Rightarrow x = 4$. Deci $x \in [3,4]$.

3.
$$\log_3 x = t$$
, $t + \frac{1}{t} = \frac{5}{2} \Rightarrow t \in \left\{2; \frac{1}{2}\right\} \Rightarrow x \in \left\{9; \sqrt{3}\right\}$

4. Numărul cazurilor posibile
$$2010: 2 = 1005$$
. Numărul cazurilor favorabile $251. p = \frac{251}{1005}$.

5.
$$\sqrt{(m-2)^2 + (-2-m)^2} = 4 \cdot m \in \{-2; 2\}$$
.

6.
$$\operatorname{ctg} x = 6 \Rightarrow \frac{\cos x}{\sin x} = 6 \Rightarrow \frac{1 - \sin^2 x}{\sin^2 x} = 36 \Rightarrow \sin^2 x = \frac{1}{37}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$1+3+3^2+...+3^8 = \frac{3^9-1}{3-1} = \frac{3^9-1}{2} \Rightarrow 2\frac{3^9-1}{2} = 3^9-1 < 3^9$$
.

2.
$$x_1^3 + x_2^3 = s(s^2 - 3p)$$
, $s = -5$, $p = -7 \Rightarrow x_1^3 + x_2^3 = -5(25 - 3(-7)) = -230 \in \mathbb{Z}$.

3.
$$\log_5 x = t$$
, $t + \frac{1}{t} = \frac{5}{2} \Rightarrow t \in \left\{2; \frac{1}{2}\right\} \Rightarrow x \in \left\{25; \sqrt{5}\right\}$.

4.
$$2x-3 \ge 2$$
, $\frac{(2x-3)(2x-4)}{2} = 3 \Rightarrow x = 3$. $C_3^2 = 3$. Deci $x = 3$.

5.
$$M\left(-\frac{1}{2};\frac{1}{2}\right)$$
 este mijlocul segmentului AB . $m_{AB}=1 \Rightarrow m_d=-1$, d fiind mediatoarea segmentului AB , deci

$$d: y - \frac{1}{2} = -\left(x + \frac{1}{2}\right) \Rightarrow d: x + y = 0.$$

6.
$$\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cos(\langle (\vec{u}; \vec{v})) \Rightarrow \cos(\langle (\vec{u}; \vec{v})) = \frac{5}{6}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$2(1-x) = x+1+4 \Rightarrow x=-1$$

2.
$$f(0) = -6$$
, $f(x) = 0 \Rightarrow x \in \{1, -6\} \Rightarrow A(0, -6)$, $B(1, 0)$, $C(-6, 0)$

3.
$$\sin x = -\frac{1}{2}, x \in \left\{ \left(-1\right)^k \arcsin\left(-\frac{1}{2}\right) + k\pi | k \in \mathbb{Z} \right\}, \text{dar } x \in \left[0, 2\pi\right] \Rightarrow x \in \left\{ \frac{7\pi}{6}; \frac{11\pi}{6} \right\}.$$

4. Numărul cazurilor posibile este
$$2^6$$
. Numărul cazurilor favorabile este

$$C_6^2 = 15 \cdot p = \frac{15}{64}$$
.

5.
$$\overrightarrow{r_G} = \frac{\overrightarrow{r_A} + \overrightarrow{r_B} + \overrightarrow{r_C}}{3} \Rightarrow \overrightarrow{r_C} = 6\overrightarrow{i} + 6\overrightarrow{j}$$
.

6.
$$(2\vec{u} + \vec{v}) \cdot (2\vec{v} - \vec{u}) = 4\vec{u}\vec{v} - 2\vec{u}^2 + 2\vec{v}^2 - \vec{u}\vec{v} = 3\vec{u}\vec{v} - 2\vec{u}^2 + 2\vec{v}^2$$
,

$$3\vec{u}\vec{v} - 2\vec{u}^2 + 2\vec{v}^2 = 3 \cdot 1 \cdot 2 \cdot \frac{1}{2} - 2 \cdot 1 + 2 \cdot 2^2, (2\vec{u} + \vec{v}) \cdot (2\vec{v} - \vec{u}) = 9.$$

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluție

1.
$$6^2 = x(x-5) \Rightarrow x=9$$
.

2.
$$f(-1) = -2 \Rightarrow f(2 \cdot (-2)) = 10 \Rightarrow f(2 \cdot (f(-1))) = 10$$
.

3.
$$2x + \frac{\pi}{2} = x - \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \Rightarrow x = \pi(2k-1), k \in \mathbb{Z} \text{ sau } 2x + \frac{\pi}{2} = -x + \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z} \Rightarrow x = \frac{2k\pi}{3}, k \in \mathbb{Z}$$
.

În final,
$$x \in \{\pi(2k-1) | k \in \mathbb{Z}\} \cup \{\frac{2k\pi}{3} | k \in \mathbb{Z}\}.$$

4.
$$C_{2n}^n = \frac{(2n)!}{(n!)^2} \in \mathbb{N} \Rightarrow (n!)^2$$
 divide $(2n)!$.

5.
$$2x_M = x_A + x_N, 2x_N = x_B + x_M \Rightarrow x_M = 4, x_N = 5;$$

 $2y_M = y_A + y_N, 2y_N = y_B + y_M \Rightarrow y_M = 3, y_N = 4$, deci $M(4; 3), N(5; 4)$.

6.
$$-1 < \frac{a^2 + (a+1)^2 - (a+2)^2}{2a(a+1)} < 0, a \in \mathbb{N}^* \Rightarrow a = 2$$
. Doar pentru $a = 2$ se obține triunghi.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Solutie

1.
$$a_{n+1} - a_n = \frac{4(n+1)}{n+4} - \frac{4n}{n+3} = \frac{12}{(n+3)(n+4)} \Rightarrow a_{n+1} - a_n > 0, \forall n \in \mathbb{N} \Rightarrow \text{ sirul este crescător }.$$

2.
$$x^2 + x + 1 = -x^2 - 2x + 6 \Rightarrow 2x^2 + 3x - 5 = 0 \Rightarrow x \in \left\{-\frac{5}{2}, 1\right\} \Rightarrow A\left(-\frac{5}{2}, \frac{19}{4}\right), B(1,3).$$

3.
$$x - \frac{\pi}{4} = 3x + \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \Rightarrow x = \frac{4k - 1}{4}\pi, k \in \mathbb{Z}, x - \frac{\pi}{4} = -3x - \frac{\pi}{4} + (2k + 1)\pi, k \in \mathbb{Z} \Rightarrow x = \frac{2k + 1}{4}\pi, k \in \mathbb{Z}$$
.

În final, $x \in \left\{\frac{4k - 1}{4}\pi \mid k \in \mathbb{Z}\right\} \cup \left\{\frac{2k + 1}{4}\pi \mid k \in \mathbb{Z}\right\}$.

4.
$$2^n = 32 \Rightarrow n = 5$$
, $T_4 = C_5^3 (2x^2)^2 (-5y)^3 \Rightarrow T_4 = -5000x^4y^3$.

5.
$$d_1 \cap d_2 \neq \emptyset \Leftrightarrow \frac{m}{2} \neq \frac{3}{1} \Leftrightarrow m \neq 6$$
.

6.
$$\overrightarrow{AC} \cdot \overrightarrow{BD} = 0 \Rightarrow AC \perp BD \Rightarrow AB^2 = OB^2 + OA^2$$
, $CD^2 = OD^2 + OC^2$,
 $AD^2 = OD^2 + OA^2$, $BC^2 = OC^2 + OB^2 \Rightarrow AB^2 + CD^2 = AD^2 + BC^2$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Solutie

1.
$$a_{n+1} - a_n = (n+1)^2 - (n+1) - n^2 + n$$
, $a_{n+1} - a_n = 2n$, $a_{n+1} - a_n > 0$, $\forall n \in \mathbb{N}^* \Rightarrow (a_n)_{n \in \mathbb{N}^*}$ este strict monoton.

2.
$$f(x) = (x+1)^2$$
, $(f \circ g)(x) = (x-2009+1)^2 = (x-2008)^2 \ge 0$, $\forall x \in \mathbb{R}$.

3.
$$x + \frac{\pi}{3} = \frac{\pi}{2} - x + k\pi, k \in \mathbb{Z} \Rightarrow x + \frac{\pi}{3} = \frac{\pi}{2} - x + k\pi, k \in \mathbb{Z}$$
, deci $x = \frac{\pi}{12} + \frac{k\pi}{2}, k \in \mathbb{Z}$.

Cum
$$x \in (0,\pi) \Rightarrow x \in \left\{ \frac{\pi}{12}, \frac{7\pi}{12} \right\}.$$

4.
$$x \ge 3$$
, $C_x^{x-1} = C_x^1 = x$, $C_{x-1}^{x-3} = C_{x-1}^2 = \frac{(x-1)(x-2)}{2}$, $x^2 - x - 16 \le 0 \Rightarrow x \in \{3, 4\}$.

5.
$$\frac{m}{m+2} = \frac{m+2}{4m} \neq \frac{-1}{-8} \implies m \in \left\{2; -\frac{2}{3}\right\}.$$

6.
$$tgC = tg\left(\pi - (A+B)\right) = -tg\left(A+B\right), tg\left(A+B\right) = \frac{tgA + tgB}{1 - tgAtgB} \Rightarrow tgC = 1 \Rightarrow C = \frac{\pi}{4}.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1. Rația este :
$$17 - 13 = 4$$
. $a_2 = a_3 - 4 = 9 \Rightarrow a_1 = a_2 - 4 = 5$.

2.
$$f(-x) = (-x)^3 + 2\sin(-x) = -f(x), \forall x \in \mathbb{R} \Rightarrow \text{funcția } f \text{ este impară }.$$

3.
$$tgx = -\frac{\sqrt{3}}{3} \Rightarrow x \in \left\{ -\frac{\pi}{6} + k\pi | k \in \mathbb{Z} \right\}.$$

4. Numărul cazurilor posibile este 900 .
$$a+b+c=2 \Rightarrow \overline{abc} \in \{110;101;200\} \Rightarrow p=\frac{1}{300}$$
.

5.
$$-\frac{m}{3} \cdot \left(-\frac{12}{2}\right) = -1 \Rightarrow m = \frac{-1}{2}$$
.

6.
$$\sin \alpha = \frac{2tg\frac{\alpha}{2}}{1+tg^2\frac{\alpha}{2}} \Rightarrow \sin \alpha = \frac{\sqrt{3}}{2}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$(2+i)(3-2i)=8-i, (1-2i)(2-i)=-5i \Rightarrow 8+4i$$
.

2.
$$f(x) = 3x - [3x]$$
,

$$f(x+\frac{1}{3}) = \left\{3\left(x+\frac{1}{3}\right)\right\} = \left\{3x+1\right\} = 3x+1-\left[3x+1\right] = 3x+1-\left[3x\right]-1 = 3x-\left[3x\right] = \left\{3x\right\} = f(x), \forall x \in \mathbb{R} \Rightarrow 1$$

 $\Rightarrow \frac{1}{3}$ este o perioadă a funcției f .

3.
$$x = \pi$$
 verifică ecuația. $tg \frac{x}{2} = t \Rightarrow \sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2}, t = \frac{1}{\sqrt{3}} \Rightarrow x \in \left\{\frac{\pi}{3}, \pi\right\}.$

4.
$$\frac{C_{20}^{10}}{C_{20}^9} = \frac{20!}{10!10!} \cdot \frac{9!11!}{20!} = \frac{11}{10}$$
.

5.
$$m+4=2+2, n+5=3+2 \Rightarrow (m,n)=(0,0)$$
.

6.
$$\frac{\sin x}{\cos x} = 4 \Rightarrow \frac{1 - \cos^2 x}{\cos^2 x} = 16 \Rightarrow \cos^2 x = \frac{1}{17}$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.
$$b_3^2 = 6 \cdot 24 \Rightarrow b_3 = 12$$
 $q = \frac{b_3}{b_2} = 2 \Rightarrow b_1 = 3$.

2.
$$3-m^2 > 0 \Rightarrow m \in (-\sqrt{3}; \sqrt{3}).$$

3.
$$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}, \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2} \Rightarrow \sin\frac{3\pi}{3} = 0, \sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2},$$

 $\sin\frac{\pi}{3} + \sin\frac{2\pi}{3} + \sin\frac{3\pi}{3} + \sin\frac{4\pi}{3} = \frac{\sqrt{3}}{2}.$

4. Numărul cazurilor posibile este: 3^3 . Numărul cazurilor favorabile este $3! = 6 \Rightarrow p = \frac{2}{9}$.

5.
$$\frac{GP}{AB} = \frac{1}{3}$$
, $\overrightarrow{GP} = \frac{1}{3} \overrightarrow{AB} \Rightarrow m = \frac{1}{3}$.

6.
$$\cos 2\alpha = 2\cos^2 \alpha - 1 \Rightarrow \cos 2\alpha = \frac{-7}{9}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$\frac{25(4-3i)}{25} + \frac{25(4+3i)}{25} = 8$$
.

2.
$$m^2 - 2 < 0 \Rightarrow m \in \left(-\sqrt{2}; \sqrt{2}\right)$$
.

3.
$$arctg \frac{1}{\sqrt{3}} = \frac{\pi}{6} \Rightarrow arctg \frac{x}{3} = \frac{\pi}{6} \Rightarrow x = \sqrt{3}$$
.

4. Numărul cazurilor posibile este : 90:2=45. Numărul cazurilor favorabile se obține din

$$4 \cdot 3, 4 \cdot 4, \dots, 4 \cdot 24$$
, adică 22. $p = \frac{22}{45}$.

5.
$$\overrightarrow{AN} + \overrightarrow{NC} = \overrightarrow{AC}$$
, $\overrightarrow{AN} = 3\overrightarrow{NC}$ și $\overrightarrow{AM} = 3\overrightarrow{MB} \Rightarrow \overrightarrow{MN} \parallel \overrightarrow{BC}$.

6.
$$\sin \frac{11\pi}{12} = \sin \left(\pi - \frac{\pi}{12}\right) = \sin \frac{\pi}{12} = \sqrt{\frac{1 - \cos \frac{\pi}{6}}{2}} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$z + 7i = 6z, z = x + yi; x, y \in \mathbb{R}, z = x - yi, x - yi + 7i = 6(x + yi) \Rightarrow x = 0, y = 1 \Rightarrow z = i$$
.

2.
$$f(1) + f(2) + f(3) + ... + f(50) = \frac{(3+101)50}{2} = 2600.$$

- **3.** Dacă f ar fi surjectivă, atunci ar exista $x_0 \in \mathbb{N}$ astfel încât $f(x_0) = 0.3x_0 + 1 = 0 \Rightarrow x_0 = -\frac{1}{3} \notin \mathbb{N}$. Deci f nu e surjectivă $\Rightarrow f$ nu este bijectivă $\Rightarrow f$ nu este inversabilă.
- **4.** $x!(x+1-1) \le 100 \Rightarrow x! \ x \le 100, 0! \ 0, 1! \ 1, 2! \ 2, 3! \ 3, 4! \ 4 \le 100, x! \ x > 100, \forall x > 4, p = \frac{5}{10} = \frac{1}{2}.$
- **5.** Punctul lor de intersecție este $M(0,1) \in Oy$. Punctele $A(-1,-1) \in d_1$, $B(1,-1) \in d_2$ sunt simetrice față de Oy, deci dreptele sunt simetrice față de Oy.

6.
$$\cos \frac{7\pi}{12} = \cos \left(\frac{\pi}{3} + \frac{\pi}{4} \right) = \cos \frac{\pi}{3} \cos \frac{\pi}{4} - \sin \frac{\pi}{3} \sin \frac{\pi}{4}, \cos \frac{7\pi}{12} = \frac{\sqrt{2} - \sqrt{6}}{4}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluție

1.
$$(1+i)^{20} = [(1+i)^2]^{10} = (2i)^{10} = -1024$$
.

2.
$$f(f(x)) = f(\frac{1}{x}) = x, (-10) + (-9) + ... + (-1) + 1 + ... + 10 = 0$$
.

3. Funcția este strict crescătoare, fiind compunere de funcții strict crescătoare, deci funcția f este injectivă.

4.
$$\frac{5!}{2!} - 6 \cdot \frac{5!}{3!2!} = 0$$
.

5.
$$\frac{\left|3m-4(m+1)-1\right|}{\sqrt{3^2+4^2}}=1 \Rightarrow m \in \{-10;0\}.$$

6.
$$\cos 75^{\circ} - \cos 15^{\circ} = -2\sin 45^{\circ} \sin 30^{\circ}, \sin 45^{\circ} = \frac{\sqrt{2}}{2}, \sin 30^{\circ} = \frac{1}{2} \Rightarrow \cos 75^{\circ} - \cos 15^{\circ} = -\frac{\sqrt{2}}{2}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.
$$\log_7 2009 - \log_7 287 - 1 = \log_7 \frac{2009}{287} - 1 = \log_7 7 - 1 = 0$$
.

2.
$$f(-x) = (-x)^2 - \frac{1}{(-x)^2}$$
, $(-x)^2 - \frac{1}{(-x)^2} = x^2 - \frac{1}{x^2}$, $f(-x) = f(x)$, $\forall x \in \mathbb{R}^* \Rightarrow \text{ funcția } f \text{ este pară.}$

3.
$$x \neq 0 \Rightarrow x^4 > 0 \Rightarrow 3 - x^4 < 3$$
, $f(0) = 3 \Rightarrow f(x) \leq f(0)$, $\forall x \in \mathbb{R}$, deci valoarea maximă este $f(0)$.

4.
$$3n + 2\frac{n(n-1)}{2} = 8 \Rightarrow n = 2$$
.

5.
$$\frac{A'C}{A'B} = 2$$
, $\frac{C'B}{C'A} = \frac{1}{3}$, $\frac{B'A}{B'C} = \frac{3}{2}$, $\frac{A'C}{A'B} \cdot \frac{C'B}{C'A} \cdot \frac{B'A}{B'C} = 2 \cdot \frac{1}{3} \cdot \frac{3}{2} = 1 \Rightarrow AA'$, BB' și CC' sunt concurente.

6.
$$\begin{cases} 2x + y - 2 = 0 \\ x - y + 2 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 2 \end{cases}$$
, ecuația este $y = 2$.

inisterul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

1.
$$\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^{100} = \cos\frac{100\pi}{4} + i\sin\frac{100\pi}{4} = -1 \in \mathbb{R}$$
.

2.
$$f(-x) = (-x)^3 - \frac{1}{-x}, (-x)^3 - \frac{1}{-x} = -x^3 + \frac{1}{x} = -(x^3 - \frac{1}{x}), f(-x) = -f(x), \forall x \in \mathbb{R}^* \Rightarrow f \text{ impară.}$$

3.
$$x_v = \frac{1}{2} \notin [1; 4], f(1) = 0, f(4) = 12 \Rightarrow f([1,4]) = [0,12] \Rightarrow A = [0,12]$$
.

4.
$$(5-4)^{2009} = 1$$
.

5.
$$m_d = -\frac{4}{-2} \Rightarrow m = -\frac{1}{2}, y - 2 = -\frac{1}{2}(x - 1) \Rightarrow x + 2y - 5 = 0$$
.

6.
$$\sin 75^{\circ} \cdot \cos 15^{\circ} = \frac{\sin 90^{\circ} + \sin 60^{\circ}}{2}$$
, $\sin 90^{\circ} = 1$, $\sin 60^{\circ} = \frac{\sqrt{3}}{2} \Rightarrow \frac{2 + \sqrt{3}}{4}$.

1.
$$|5-12i| = \sqrt{5^2 + (-12)^2} = 13$$
, $|12+5i| = \sqrt{12^2 + 5^2} = 13$, $|5-12i| - |12+5i| = 0$.

2.
$$f(1) = 0$$
, $f(0) = 0$, $(f \circ f \circ f \circ f)(1) = 0$.

3.
$$2^x = t > 0 \Leftrightarrow t^2 + t - 20 = 0 \Rightarrow t \in \{-5, 4\} \Rightarrow x = 2$$

- 4. Numărul cazurilor posibile este 403. Dintre acestea divizibile cu 25 sunt 81. Deci $p = \frac{81}{403}$.
- 5. Direcția bisectoarei este dată de $\vec{u} = \frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} = \frac{\overrightarrow{AB}}{c} + \frac{\overrightarrow{AC}}{b} = \frac{b\overrightarrow{AB} + c\overrightarrow{AC}}{bc}$ Deci $\overrightarrow{AD} = b\overrightarrow{cu} \Rightarrow$ semidreapta [AD este bisectoarea unghiului $\angle BAC$.
- 6. $\cos 2\alpha = 2\cos^2 \alpha 1$, $\cos^2 \alpha = \frac{3}{4} \Rightarrow \alpha \in \left(\frac{\pi}{2}; \pi\right) \Rightarrow \cos \alpha = -\frac{\sqrt{3}}{2}$.

1.
$$z_1 = \frac{-3 - i\sqrt{7}}{2}, z_2 = \frac{-3 + i\sqrt{7}}{2}$$
.

- 2. Fie g prelungirea funcției f în punctul $x_0=0$. Condiția este $g\left(0\right)=-2m+2\geq 0 \Rightarrow m\in\left(-\infty;1\right]$.
- 3. $2-x \ge 0 \Rightarrow x \in (-\infty; 2)$. $\sqrt{2-x} = \sqrt[3]{x-2}$. Notăm $\sqrt[6]{2-x} = t \ge 0 \Rightarrow t^3 = t^2 \Rightarrow t \in \{0;1\} \Rightarrow x \in \{1;2\}$.
- 4. Ambii membri sunt egali cu $\frac{(a+b)!}{a!b!}$.
- 5. $\frac{2m-2}{1-m-4} = \frac{3-2}{3-4} \Rightarrow m=5$.
- 6. $\alpha \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \sin \alpha > 0, \cos 2\alpha = 1 2\sin^2 \alpha \Rightarrow \sin \alpha = \frac{\sqrt{3}}{2}$

Soluție

1.
$$a = -3$$
, $b = -4$, $c = -2$. Deci $b < a < c$.

2.
$$\begin{cases} \Delta < 0 \\ a > 0 \end{cases} \Rightarrow m^2 + 8m < 0 \Rightarrow m \in (-8,0).$$

- 3. $x^2 + x 2 > 0$. $\sqrt{x^2 + x 2} = 2 \Rightarrow x^2 + x 6 = 0 \Rightarrow x \in \{-3, 2\}$, care verifică condiția de existență.
- **4.** Numărul triunghiurilor este egal cu $4C_3^2 + 3C_4^2 = 30$.
- **5.** Dacă D este simetricul lui A față de mijlocul lui (BC), atunci ABDC este paralelogram, deci $x_A + x_D = x_B + x_C$ și $y_A + y_D = y_B + y_C$, de unde D(-1, -7).
- **6.** $A_{ABC} = 2A_{AMC} = MC \cdot AM \cdot \sin 150^{\circ} = 4$.

1. Avem
$$\sqrt{3-2\sqrt{2}} = \sqrt{2} - 1 \in \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$$
, pentru $a = -1 \in \mathbb{Z}$ și $b = 1 \in \mathbb{Z}$.

2.
$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = 3^2 - 2 = 7 \in \mathbb{N}.$$

3.
$$\frac{1}{\sqrt{3}}$$
.

4.
$$C_{2n}^n = C_{2n-1}^n + C_{2n-1}^{n-1} = 2 \cdot C_{2n-1}^n$$

4.
$$C_{2n}^{n} = C_{2n-1}^{n} + C_{2n-1}^{n-1} = 2 \cdot C_{2n-1}^{n}$$
.
5. $\vec{u} + \vec{v} = 3\vec{i} + 3\vec{j}$, deci $|\vec{u} + \vec{v}| = 3\sqrt{2}$.

6. Avem
$$\cos \alpha = -\frac{4}{5}$$
, deci $\operatorname{tg} \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = 3$.

1.
$$2a_1 + 5 \cdot 2 = 8 \implies a_1 = -1$$
.

3.
$$2^x = 8$$
, deci $x = 3$.

5.
$$\overrightarrow{GM} = \frac{1}{3}\overrightarrow{AC}$$
, de unde cerința.

6.
$$\frac{3}{\sqrt{7}}$$
.

1.
$$7-7=0$$
.

2.
$$x \in \left[\frac{1}{2}, 1\right]$$
.

3. $f = x(\log_3 2 - 1)$ este funcție de grad 1, deci este injectivă.

4.
$$C_8^2 - 8 = 20$$
.

5.
$$\overrightarrow{BP} = \frac{2}{3}\overrightarrow{BD} = \frac{2}{3}(\overrightarrow{BA} + \overrightarrow{BC}).$$

6.
$$1 = \operatorname{tg} \frac{\pi}{4} = \operatorname{tg} (a+b) = \frac{\operatorname{tg} a + \operatorname{tg} b}{1 - \operatorname{tg} a \cdot \operatorname{tg} b}$$
, de unde cerința.

1.
$$\frac{3}{2} < \log_2 3 \Leftrightarrow 2^{\frac{3}{2}} < 3 \Leftrightarrow 8 < 9$$
 (A).

- **2.** 1 și 3.
- **3.** x = 0; x = 1.
- 4. $\frac{C_{n+1}^3}{C_n^3} = \frac{n+1}{n-2} = 1 + \frac{3}{n-2} \in \mathbb{N} \Rightarrow n \in \{3,5\}.$
- 5. $\frac{3}{\sqrt{2}}$.
- **6.** $\cos^2 x = \frac{1}{1 + \lg^2 x} = \frac{1}{7}$.

- **1.** Al patrulea factor este 0, deci produsul este 0.
- 2. f(g(x))=1-g(x)=-2x+2 este descrescătoare.
- 3. $x \in [-1,1]$.
- **4.** Numărul cerut este egal cu numărul funcțiilor injective. $g:\{1;2;3\} \rightarrow \{1;2;3;4;5\}$ minus numărul funcțiilor injective $h:\{2;3\} \rightarrow \{2;3;4;5\}$, adică $A_5^3 A_4^2 = 48$.
- 5. x-2y-6=0.
- **6.** Ridicăm la pătrat $\sin x \cos x = \frac{1}{2} \Rightarrow 1 \sin 2x = \frac{1}{4} \Rightarrow \sin 2x = \frac{3}{4}$.

- **1.** 8.
- **2.** $1 = (x_1 + x_2)^2 4x_1x_2 = 4 4m \Rightarrow m = \frac{3}{4}$.
- 3. x = 0.
- **4.** 2¹⁵.
- 5. a = -3.
- **6.** $\sin 2a + \sin 2b = 2\sin(a+b)\cos(a-b) = 2\sin\frac{\pi}{2}\cos(a-b) = 2\cos(a-b)$.

- 1. $(1+i)^4 = (2i)^2 = -4$, deci este rădăcină a ecuației $z^4 + 4 = 0$.
- **2.** $x_V = 2$, $y_V = 5$, deci x + y = 7.
- 3. f(1), f(2), f(3) sunt distincte, deci sunt 4,5,6 -- eventual permutate. Suma este 4+5+6=15.
- **4.** *M* are 90 de elemente, cifre impare sunt 5, iar numere cu cifre impare 25. Probabilitatea e $\frac{25}{90} = \frac{5}{18}$.
- **5.** $\overrightarrow{AB} = \overrightarrow{i} + 3\overrightarrow{j}$, $\overrightarrow{AC} = -2\overrightarrow{i} + 4\overrightarrow{j} \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} = 10$.
- **6.** $\sin 3a = 3\sin a 4\sin^3 a = \frac{11}{16}$.

1.
$$\sqrt{2} < \sqrt[3]{3} \Leftrightarrow 8 < 9$$
; $\sqrt[3]{3} < 2 = \log_2 4 < \log_2 5$.

$$2. \quad \Delta = 9 - 4m \le 0 \implies m \ge \frac{9}{4}.$$

3.
$$\cos\left(\frac{\pi}{3} - x\right) = \sin\left(x + \frac{\pi}{6}\right) \Rightarrow \text{ecuația devine } \sin\left(x + \frac{\pi}{6}\right) = \frac{1}{2} \Rightarrow x \in \left\{2k\pi \mid k \in \mathbb{Z}\right\} \cup \left\{\frac{2\pi}{3} + 2k\pi \mid k \in \mathbb{Z}\right\}.$$

4. Sunt 7 pătrate. Probabilitatea este
$$\frac{7}{49} = \frac{1}{7}$$
.

5.
$$\vec{u} \cdot \vec{v} = 0 \Leftrightarrow 2m - 12 = 0 \Leftrightarrow m = 6$$
.

6.
$$P = \text{tg } 1^{\circ} \cdot \text{tg } 2^{\circ} \cdot \text{tg } 3^{\circ} \cdot \dots \cdot \text{tg } 89^{\circ} = (\text{tg } 1^{\circ} \cdot \text{tg } 89^{\circ}) \cdot (\text{tg } 2^{\circ} \cdot \text{tg } 88^{\circ}) \cdot \dots \cdot (\text{tg } 44^{\circ} \cdot \text{tg } 46^{\circ}) \cdot \text{tg } 45^{\circ} = 1.$$

- **1.** Avem $3(z+\overline{z}) \in \mathbb{R}, \forall z \in \mathbb{R}, \text{ deci } z=3z+3\overline{z}-(2z+3\overline{z}) \in \mathbb{R}.$
- **2.** $f(x) = -\frac{9}{2}x^2 \frac{3}{2}x + 4$.
- 3. Ecuația $f(x) = y, y \in (1,3) \Rightarrow x = \frac{3-y}{y-1} \in (0,\infty)$ are soluție unică.
- **4.** n = 8.
- 5. $\overrightarrow{AC} + \overrightarrow{DB} = (\overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{DC} + \overrightarrow{CB}) = \overrightarrow{AB} + \overrightarrow{DC} = \vec{0}.$
- **6.** $\cos a = \cos(b + \pi) = -\cos a$, deci $\cos a \cdot \cos b = -\cos^2 a \le 0$.

- **1.** Fie z = a + bi, $a, b \in \mathbb{R}$. Avem $i(z \overline{z}) = i(a + bi a + bi) = -2b \in \mathbb{R}$.
- **2.** $\Delta = (m-1)^2 = 0 \Rightarrow m = 1$.
- 3. x = 3 este unica soluție.
- **4.** $T_{k+1} = C_7^k \cdot 2^k$, $k = \overline{1,6}$ se divid cu 2 si 7, deci cu 14; iar primul si ultimul termen nu. Sunt 6 termeni.
- 5. $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \cdot AC \cdot \cos A = 2 \cdot 2 \cdot \cos \frac{\pi}{3} = 2.$
- **6.** $\sin 2a \sin 2b = 2\sin(a-b)\cos(a+b) = 2\sin(a-b)\cos\frac{3\pi}{2} = 0.$

www.bacmatematica.ro & www.mateinfo.ro

1. Prin calcul obținem
$$-\frac{8}{5}$$
.

2. Avem
$$\frac{a^2 + b^2}{ab} = \frac{(a+b)^2}{ab} - 2 = \frac{21}{2}$$
.

3. Cum
$$\cos\left(x - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{2} - \left(x - \frac{\pi}{6}\right)\right) = \sin\left(\frac{2\pi}{3} - x\right) = \sin\left(\pi - \left(\frac{2\pi}{3} - x\right)\right) = \sin\left(x + \frac{\pi}{3}\right) \Rightarrow \text{ ecuația este verificată de orice } x \in \mathbb{R}.$$

- **4.** Sunt 4 elemente în *A* și 3 multipli de 7.
- 5. $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AC}$, deci modulul este $2AC = 6\sqrt{5}$.

6.
$$\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos 179^{\circ} =$$

$$\left(\cos 1^{\circ} + \cos 179^{\circ}\right) + \left(\cos 2^{\circ} + \cos 178^{\circ}\right) + ... + \left(\cos 89^{\circ} + \cos 91^{\circ}\right) + \cos 90^{\circ} = 0$$

1.
$$1+z+z^2=\frac{1-z^3}{1-z}=\frac{1-1}{1-z}=0.$$

- **2.** $x \in \{-3, -2, -1, 0, 1, 2\}.$
- 3. Observăm că $\forall y \in (2, \infty), \exists ! x \in (1, \infty), x = \sqrt{y+1}$ astfel ca f(x) = y.
- **4.** Avem 4 numere divizibile cu 24, anume 24, 48, 72, 96.

5.
$$\frac{a}{3} = \frac{a+1}{5} \Rightarrow a = \frac{3}{2}$$
.

6. Semiperimetrul și aria sunt $p = \frac{15}{2}$, $S = \frac{15\sqrt{3}}{4} \Rightarrow r = \frac{S}{p} = \frac{\sqrt{3}}{2}$.

Solutie

1.
$$a = \lg \frac{2}{20} = \lg \frac{1}{10} = -1$$
, $b = -C_3^1 = -3$, $c = -\sqrt[3]{4 \cdot 2} = -2 \Rightarrow b < c < a$.

2.
$$V(-1; a-1)$$
. Rezultă $a = 0$ sau $a = 2$.

3.
$$\arctan y = \arctan \frac{1}{x} \Rightarrow x \cdot y = 1$$

4.
$$A_n^3 = 6C_n^3 = n(n-1)(n-2) \Rightarrow 3 \mid A_n^3$$
.

5. Avem
$$EGFH$$
 paralelogram, pentru că $\overrightarrow{EG} = \overrightarrow{HF} = \frac{1}{2}\overrightarrow{CA} \Rightarrow \overrightarrow{EF} + \overrightarrow{HG} = \overrightarrow{EG} + \overrightarrow{GF} + \overrightarrow{HF} + \overrightarrow{FG} = 2\overrightarrow{EG} = \overrightarrow{CA}$.

6. Cum
$$2x \in \left(\frac{3\pi}{2}, 2\pi\right) \Rightarrow \cos 2x < 0$$
. Deci $\cos 2x = -\sqrt{1-\sin^2 2x} = -\frac{4}{5} \Rightarrow \operatorname{tg} x = \frac{\sin 2x}{1+\cos 2x} = -3$.

1.
$$z = -\frac{3}{7}i$$
.

2.
$$x = 5$$
 şi $x = -1$.

3. Ecuația $f(x) = y \Leftrightarrow 4yx^2 - x + y = 0$ are soluții reale dacă și numai dacă

$$y \in \left[-\frac{1}{4}, \frac{1}{4} \right] \Rightarrow \text{Im } f = \left[-\frac{1}{4}, \frac{1}{4} \right].$$

- **4.** Sunt $C_4^3 = 4$ funcții strict crescătoare și tot 4 strict descrescătoare. În total sunt 8 funcții strict monotone.
- 5. $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD} \Leftrightarrow \overrightarrow{MA} \overrightarrow{MB} = -\overrightarrow{MC} + \overrightarrow{MD} \Leftrightarrow \overrightarrow{BA} = \overrightarrow{CD}$, evident.
- **6.** $\sin 2a \sin 2b = 2\sin(a-b)\cos(a+b) = \sin(a-b)$, de unde cerința.

1.
$$150 = \frac{2a_1 + 9 \cdot 3}{2} \cdot 10 \Rightarrow a_1 = \frac{3}{2}$$
.

- **2.** Notând s = a + b, p = ab avem $s^2 2p = 1$, s = 2, de unde s = 2, p = 1 și $a = b = 1 \Rightarrow (a,b) = (1,1)$.
- 3. Avem $x \in \left(0, \frac{9}{2}\right)$ iar ecuația se scrie x(9-2x)=10. Obținem soluțiile x=2 și x=2,5.
- **4.** Sunt 100 de numere in multimea M si 14 multiplii cu 7; probabilitatea este $\frac{86}{100} = \frac{43}{50}$.
- 5. y = -2x + 2.
- 6. Este partea reală a sumei rădăcinilor de ordin 5 ale unității. Alternativ, înmulțim suma cu $\sin \frac{\pi}{5}$

1.
$$|z| = |\sqrt{2} - 1 + i(\sqrt{2} + 1)|^2 = 6.$$

2.
$$(1-2y)^2 - 6y^2 = 1 \Rightarrow -4y - 2y^2 = 0 \Rightarrow y = 0$$
 sau $y = -2$. Obținem $x = 1, y = 0$ și $x = 5, y = -2$.

- **3.** De exemplu, f(0) = 1 = f(-1).
- **4.** $C_{10}^3 C_9^3 = C_9^2 = 36$.
- 5. $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ și $\overrightarrow{AB} \overrightarrow{AD} = \overrightarrow{DB}$, deci AC = BD, de unde cerința.
- **6.** $\sin 40^{\circ} \cdot \sin \left(180^{\circ} 140^{\circ}\right) = \sin^2 40^{\circ} = \cos^2 50^{\circ} = \cos^2 130^{\circ}$.

www.bacmatematica.ro & www.mateinfo.ro

1. Fie q rația progresiei. Avem
$$a(q^3-1)=7$$
, $aq(q-1)=2$, de unde $q=2$.

2.
$$mx^2 + x - 2 \le 0, \forall x \in \mathbb{R} \Leftrightarrow m < 0$$
 şi $\Delta = 1 + 8m \le 0$. Rezultă $m \le -\frac{1}{8}$.

3.
$$2x + \frac{\pi}{6} \in \left\{ \left(-1\right)^k \arcsin\left(-\frac{1}{2}\right) + k\pi | k \in \mathbb{Z} \right\} \Rightarrow x \in \left\{ -\frac{\pi}{12} - \left(-1\right)^k \frac{\pi}{12} + \frac{k\pi}{2} | k \in \mathbb{Z} \right\} \cap \left(0, 5\right) = \left\{ \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2} \right\}.$$

$$\textbf{4.} \quad n = C_{10}^0 - C_{10}^2 + C_{10}^4 - C_{10}^6 + C_{10}^8 = C_{10}^0 + \left(C_{10}^2 - C_{10}^8\right) - \left(C_{10}^6 - C_{10}^4\right) = 1 - 0 - 0 = 1 \,.$$

5.
$$0 = \vec{u} \cdot \vec{v} = a^2 - 1 + 2a + 2 \Rightarrow a = -1$$
.

6.
$$\sin \alpha = -\frac{2\sqrt{2}}{3} \Rightarrow \sin 2\alpha = 2 \cdot \left(-\frac{1}{3}\right) \cdot \left(-\frac{2\sqrt{2}}{3}\right) = \frac{4\sqrt{2}}{9}$$
.

1.
$$z=1\pm\sqrt{3}i \Rightarrow |z|=2$$
.

2.
$$f(x) = ax + b, a > 0 \Rightarrow f(f(x)) = a^2x + ab + b \Rightarrow a = 2, b = 1.$$

3.
$$x = 2$$
.

4.
$$\frac{10}{1000} = \frac{1}{100}$$
.

5. Dreapta AB are ecuatia
$$x - y + 1 = 0$$
. Distanta este $\frac{1}{\sqrt{2}}$.

6. Avem $\sin \alpha = 0$ sau $\cos \alpha = 1$, deci $x = \pi$.

1.
$$(1+i)^4 = -4$$
.

2.
$$f(-x) = \ln \frac{1+x}{1-x} = -\ln \frac{1-x}{1+x} = -f(x)$$
.

3.
$$5^x + 5^{-x} = 2 \Leftrightarrow (5^x - 1)^2 = 0 \Rightarrow x = 0.$$

- 4. Sunt 4 cifre prime, anume 2,3,5,7, deci sunt 400 de numere cu proprietatea cerută. Probabilitatea este $\frac{4}{9}$
- **5.** Punctele B, C, O sunt coliniare și O este mijlocul segmentului BC. Rezultă că BC este diametru al cercului circumscris, deci $A = 90^{\circ}$.
- **6.** $(\sin \alpha + \cos \alpha)^2 = 1 \Rightarrow \sin 2\alpha = 0 \Rightarrow \operatorname{tg} 2\alpha = 0.$

- 1. $\frac{10}{\sqrt{2}-1} = 10(\sqrt{2}+1) \in (24;25)$, deci partea întreagă este 24.
- **2.** Ecuația se scrie 1 = (1 x)|1 + x|. Obținem x = 0 și $x = -\sqrt{2}$.
- **3.** Funcțiile $g,h:(0,\infty)\to\mathbb{R}, f(x)=2009^x, g(x)=\log_{2009}x$, sunt strict crescătoare, deci funcția f=g+h este strict crescătoare.
- **4.** Numărul numerelor \overline{abc} cu $a \cdot b \cdot c$ impar $\Leftrightarrow a,b,c \in \{1,3,5,7,9\}$ este $5^3 = 125$, deci $p = \frac{5}{36}$.
- 5. $\vec{u} \cdot \vec{v} = 3 + 3a + a^2 > 0, \forall a \in \mathbb{R}.$
- **6.** $\sin x + \sin 5x = 2\cos 2x \cdot \sin 3x$, de unde cerința.

www.bacmatematica.ro & www.mateinfo.ro

- 1. Avem $b^2 = ac$. Dacă prin absurd nu toate numerele sunt pare, din a+b+c par rezultă că un număr este par și două impare. Atunci unul din membrii relației $b^2 = ac$ este par și celălalt par, fals.
- **2.** $f(a) + f(a+1) = 2(a+2)^2 \ge 0$.
- 3. $\log_2 x + \log_4 x = \frac{3}{2} \log_2 x > 3 \Rightarrow x > 4$.
- **4.** $C_n^1 + C_n^2 = 120 \Rightarrow n(n+1) = 240 \Rightarrow n = 15.$ **5.** $\vec{u} \cdot \vec{v} = 2 a < 0 \Leftrightarrow a > 2.$
- **6.** Avem $B = 90^{\circ}$, $A = 30^{\circ}$, deci $BA = 4\sqrt{3}$ și aria triunghiului este $8\sqrt{3}$.

www.bacmatematica.ro & www.mateinfo.ro

1.
$$\sqrt[3]{100} < \sqrt[3]{125} = 5 = \log_2 32 < 3! = 6.$$

2. Privind ca trinom în x avem
$$\Delta = 9y^2 - 12y^2 = -3y^2 \le 0$$
, de unde cerința.

3.
$$\sin 2x = \cos x \Rightarrow \cos x = 0$$
 sau $\sin x = \frac{1}{2} \Rightarrow x \in \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\} \cup \left\{ \left(-1\right)^k \frac{\pi}{6} + k\pi \mid k \in \mathbb{Z} \right\}.$

4.
$$A_5^3 - 4 \cdot C_6^2 = 5 \cdot 4 \cdot 3 - 4 \cdot \frac{6 \cdot 5}{2} = 0.$$

5.
$$\overrightarrow{OC} = 2\overrightarrow{OB} - \overrightarrow{OA} \Rightarrow C(3,7)$$
.

6.
$$\sin A = \frac{4}{5} \Rightarrow R = \frac{BC}{2\sin A} = \frac{8}{\frac{8}{5}} = 5.$$

- **1.** Avem $a + bi + 2a 2bi = 3 + i \Rightarrow a = 1, b = -1 \Rightarrow |z| = \sqrt{2}$.
- **2.** $x^2 3 = 0$.
- 3. $\log_x 2 + \log_{\sqrt{x}} 2 = 9 \implies 3\log_x 2 = 9 \implies x = \sqrt[3]{2}$.
- **4.** Sunt $C_5^3 = 10$ submulțimi cu 3 elemente ale lui A, iar singura fără elemente pare este $\{1,3,5\}$; rămân 9 submulțimi.
- 5. a = b = -1.
- **6.** $\cos a = -\frac{4}{5} \Rightarrow \tan a = -\frac{3}{4}$.

- **1.** Avem $n = \sqrt{3} + \sqrt{2} \in (3,4) \Rightarrow [n] = 3$.
- $\mathbf{2.}\ f$ este funcție strict monotonă, iar compunerea a două funcții de aceeași monotonie este strict crescătoare.
- 3. $3^x = t > 0 \Rightarrow 9t^2 + 9t 4 = 0 \Rightarrow t = \frac{1}{3} \Rightarrow x = -1$.
- **4.** Exact două valori ale funcției sunt 1, celelalte fiind 0, deci sunt $C_{10}^2 = 45$ de funcții.
- **5.** $\overrightarrow{MN} \cdot \overrightarrow{MP} = (\overrightarrow{i} + 3\overrightarrow{j})(2\overrightarrow{i} + (m-2)\overrightarrow{j}) = 3m-4 \Rightarrow m=3.$
- **6.** Funcția cos este descrescătoare pe intervalul $[0,\pi]$, deci cel mai mare este cos 1.

- 1. a = 2; b = 1.
- **2.** x = 0.
- 3. $|x-1|=3-x \Rightarrow x=2$.
- **4.** Fiecare termen se divide cu 11.
- **5.** C(3,9).

6.
$$\sin^2 a = \frac{\operatorname{tg}^2 a}{1 + \operatorname{tg}^2 a} = \frac{4}{29} \Rightarrow \left| \sin a \right| = \frac{2}{\sqrt{29}}.$$

Soluții

- 1. a) Se verifică prin calcul.
- **b**) Se demonstrează prin inducție după $n \in \mathbb{N}^*$.
- c) Din ipoteză rezultă $X \cdot \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \cdot X$, iar din **a**), că există $u, v \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} u & v \\ v & u \end{pmatrix}$.

Folosind **b**) găsim
$$\begin{cases} \frac{(u+v)^3 + (u-v)^3}{2} = 2\\ \frac{(u+v)^3 - (u-v)^3}{2} = 1 \end{cases}$$
 și soluția: $X = \begin{pmatrix} \frac{\sqrt[3]{3} + 1}{2} & \frac{\sqrt[3]{3} - 1}{2}\\ \frac{\sqrt[3]{3} - 1}{2} & \frac{\sqrt[3]{3} + 1}{2} \end{pmatrix}$.

- 2. a) Se verifică prin calcul.
- **b)** Calcul direct, $-\widehat{16} = \widehat{5}$ în \mathbb{Z}_7 .
- c) Pentru $a \in \mathbb{Z}_7$, $a \neq \hat{0}$, $\forall x \in \mathbb{Z}_7$, $f(x) = \hat{6} + a \cdot x$. Avem $f(a^{-1}) = \hat{0}$, deci f este reductibil.

Pentru $a = \hat{0}$, $f = (X^3 + \hat{4}) \cdot (X^3 + \hat{3})$, deci f este reductibil.

1. a) Se verifică prin calcul. Se obține a = 3.

b)
$$B = A - A^{t} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
. Se obține $B^{2009} = B$.

c)
$$\det(X) = 0 \Rightarrow X^5 = t^4 \cdot X$$
, unde $t = trX$. Deci $t^5 = 3$, $t \in \mathbb{R} \Rightarrow t = \sqrt[5]{3}$ și $X = \frac{1}{\sqrt[5]{3^4}}A$, care verifică.

2. a) Pentru
$$a, b \in M$$
, avem $e^a + e^b - 1 \ge 1$, deci $a * b \in [0, \infty) = M$.

b) Pentru
$$a,b,c \in M$$
 se demonstrează că $(a*b)*c = a*(b*c) = \ln(e^a + e^b + e^c - 2)$.

c) Se demonstrează prin inducție că
$$\underbrace{a*a*...*a}_{de\ n\ ori\ a} = \ln\left(n\cdot e^a - (n-1)\right)$$
.

Se obțin apoi soluțiile a = 0 și $a = \ln(n-1)$.

Solutii

1. a)
$$A^2 - A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} - \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = 2I_3.$$

- **b**) Cum $A(A-I_3) = (A-I_3)A = 2I_3$ rezultă că $A^{-1} = \frac{1}{2}(A-I_3)$.
- c) $A^2 + A = 2(A + I_2) \Rightarrow A^3 + A^2 = 2^2(A + I_3)$. Prin inducție rezultă concluzia.
- 2. a) Se folosește definiția elementului neutru.
- **b)** Deoarece $\begin{cases} f(3) = 0 \\ f(4) = 1 \end{cases}$, obținem $\begin{cases} a = 1 \\ b = -3 \end{cases}$ și se verifică apoi faptul că funcția $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x 3 este izomorfismul căutat.
- c) Se demonstrează prin inducție că $\underbrace{x \circ x \circ ... \circ x}_{\text{de } 2009 \text{ ori } x} = (x-3)^{2009} + 3$.

Se obțin apoi soluția x = 5.

Solutie

- **1.** a) Se arată că rang(A) = 2.
- **b**) Calcul direct, sau, deoarece $rang(A^t \cdot A) \le rang(A) = 2$, rezultă că $det(A^t \cdot A) = 0$.
- c) De exemplu $\begin{pmatrix} 2 & 0 \\ -1 & 0 \\ 2 & 0 \end{pmatrix}$.
- **2.** a) $4 \circ 5 \circ 6 = 9$.
- **b**) Se demonstrează că funcția f este bijectivă și $\forall x, y \in (0, \infty), f(x \cdot y) = f(x) \circ f(y)$.
- c) Fie $q \in \mathbb{Q}$, q > 3. Atunci, există $m, n \in \mathbb{N}^*$ astfel încât $q = 3 + \frac{m}{n}$.

 $\forall t \in \mathbb{N}^*$, avem $k = 3 + t \in H$ și deoarece H este subgrup al lui G, rezultă că și simetricul $k' = \frac{1}{t} + 3 \in H$.

Deci
$$m+3, \frac{1}{n}+3 \in H$$
, de unde şi $(m+3) \circ \left(\frac{1}{n}+3\right) = \frac{m}{n}+3 = q \in H$.

www.bacmatematica.ro & www.mateinfo.ro

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1. a) Se arată că
$$\begin{vmatrix} 1 & 1 & 1 \\ x_A & x_B & x_C \\ y_A & y_B & y_C \end{vmatrix} = 0$$
, deci punctele A, B, C sunt coliniare.

b) Între linii există relația $L_3 = 6L_1 - 2L_2$. Rangul este 2.

c)
$$\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$$
, deci rang $(M) \geq 2$.

Dacă unul dintre minorii de ordinul trei ai lui M care conțin ultima coloană este nul, atunci punctul D(a,b) este coliniar cu două dintre punctele A, B și C.

Din a) rezultă că punctele A, B, C, D sunt coliniare, deci toți ceilalți minori de ordinul 3 ai matricei M sunt nuli. Așadar rang(M) = 2.

2. a) Se verifică prin calcul.

b) Se arată că elementul neutru este e = -1.

Dacă $x \in \mathbb{Z}$, evident $5x + 6 \neq 0$.

$$x \text{ este simetrizabil} \iff \exists x' \in \mathbb{Z}, \ xx' = x'x = -1 \iff x' = -\frac{6x+7}{5x+6} \in \mathbb{Z}, \text{ deci } 5x' = -6 + \frac{1}{5x+6} \in \mathbb{Z},$$

așadar $5x+6 \in \{-1,1\}$. Se obține că unicul element simetrizabil în raport cu legea "*" este elementul neutru e=-1.

c) Din ecuație rezultă că x este inversabil și din b) rezultă x = -1, care verifică relația.

www.bacmatematica.ro & www.mateinfo.ro

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. a) Deoarece
$$\sigma^6 = e$$
, rezultă că $\sigma^{2009} = \sigma^5 = \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$.

b) Alegem, de exemplu,
$$\tau \in S_5$$
 astfel încât $\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix}$. Obținem

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix} \cdot \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{pmatrix} \text{ (sau alegem } \tau = \sigma^2 \text{)}.$$

c) Cum
$$\tau^1, \tau^2, ..., \tau^{121} \in S_5$$
, $\exists q \ge r$ cu $\tau^q = \tau^r$. Luăm $p = q - r$.

2. a) Se arată că soluțiile ecuației sunt
$$x \in \left\{1, \frac{1-i\sqrt{3}}{2}, \frac{1+i\sqrt{3}}{2}\right\}$$
.

b) Utilizând relațiile lui Viète obținem $S = x_1^2 + x_2^2 + x_3^2 = 0$.

Dacă ecuația ar avea mai mult de o rădăcină reală, deoarece ea are coeficienți reali, ea ar avea toate rădăcinile reale. Deoarece S=0, obținem $x_1=x_2=x_3=0$, fals.

c) Utilizând relațiile lui Viète, obținem $\Delta = (x_1 + x_2 + x_3)((x_1 + x_2 + x_3)^2 - 3(x_1x_2 + x_2x_3 + x_3x_1)) = -4$.

- **1.** a) Se arată că rang(A) = 3.
- $\mathbf{b)} \ \ \text{Se arată uşor că mulțimea soluțiilor este} \ \ S = \Big\{ \left(0,\alpha,1-2\alpha,\alpha\right) \, \Big| \, \alpha \in \mathbb{C} \, \Big\} \, .$
- c) Presupunem că sistemul are soluția $X = (x \ y \ z) \in \mathcal{M}_{1,3}(\mathbb{C})$. Se obține sistemul $\begin{cases} x = 0 \\ 2x + y = 0 \\ 3x + 2y + z = 0 \\ 4x + 3y + 2z = 1 \end{cases}$

Sistemul omogen format din primele trei ecuații are doar soluția x = y = z = 0, care nu verifică a patra ecuație a sistemului, contradicție.

- 2. a) Se verifică prin calcul.
- **b**) Din a) rezultă că "·" este lege de compoziție pe H_t .

Deoarece pentru $t \in \mathbb{Z}$, simetrica din grupul (G, \cdot) a matricei $A(k \cdot t - 1)$ este matricea $A(-k \cdot t - 1)$, rezultă că $A(h \cdot t - 1) \cdot A(-k \cdot t - 1) = A((h - k)t - 1) \in H_t$, $\forall h, k \in \mathbb{Z}$.

c) Fie funcția $f: G \to \mathbb{Z}$, f(A(k)) = k+1, $\forall k \in \mathbb{Z}$.

Se demonstrează că f este bijectivă și că este un morfism de grupuri.

www.bacmatematica.ro & www.mateinfo.ro

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1. a) $\det(A) = -4$.

b) Pentru
$$n=1$$
, $A^2 = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} = A + 2I_3$, deci $P(1)$ este adevărată.

Dacă P(n) este adevărată atunci

$$A^{2(n+1)} = A^{2n} \cdot A^2 = \left(\frac{2^{2n}-1}{3}A + \frac{2^{2n}+2}{3}I_3\right)(A+2I_3) = \frac{2^{2(n+1)}-1}{3}A + \frac{2^{2(n+1)}+2}{3}I_3.$$

c) Se arată că
$$A^{-1} = \frac{1}{2} (A - I_3)$$
 deci $A^{-1} = \frac{1}{2} \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$.

2. a)
$$(x_1 + 1)(x_2 + 1)(x_3 + 1) = -(-x_1 - 1)(-x_2 - 1)(-x_3 - 1) = -P(-1) = -a$$
 sau se folosesc relațiile lui Viète.

b)
$$x_1 = 2 \implies a = -6$$
. Celelalte rădăcini sunt soluțiile ecuației $x^2 + 2x + 3 = 0$, deci $x_{2,3} = -1 \pm \sqrt{2} \cdot i$.

c) a = 0 este soluție.

Pentru
$$a \neq 0$$
, din primele două relații ale lui Viète rezultă
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 x_2 + \left(x_1 + x_2\right) \cdot x_3 = -1 \end{cases}$$

Se obține
$$x_1^2+x_1x_2+x_2^2-1=0$$
. Din $\Delta_{x_1}\geq 0$ și $x_2\neq 0$ rezultă $x_2^2=1$.

Rezultă $x_3 = 0$, fals. Așadar a = 0 este unica soluție.

Soluție

1. a)
$$\begin{vmatrix} x_A & 2x_A & 1 \\ x_B & 2x_B & 1 \\ x_C & 2x_C & 1 \end{vmatrix} = 0.$$

b) $\det(M) = \pm 2S_{ABC} = \pm 1$.

c) Fie
$$M^{-1} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$
. Din $M^{-1} \cdot M = I_3$, rezultă $a_1 + b_1 + c_1 = 0$, $a_2 + b_2 + c_2 = 0$, $a_3 + b_3 + c_3 = 1$, de unde

concluzia

2. a)
$$X = \begin{pmatrix} m & n \\ -3n & m \end{pmatrix}$$
, $Y = \begin{pmatrix} p & q \\ -3q & p \end{pmatrix} \Rightarrow X + Y = \begin{pmatrix} u & v \\ -3v & u \end{pmatrix}$, cu $u = m + p \in \mathbb{Z}$, $v = n + q \in \mathbb{Z}$.

- **b)** $XY = O_2 \Rightarrow \det(X) \cdot \det(Y) = 0$ deci, luând X, Y ca mai sus, $m^2 + 3n^2 = 0$ sau $p^2 + 3q^2 = 0$, de unde m = n = 0 sau p = q = 0.
- c) Unitatea inelului este I_2 . Dacă $X, Y \in A$ și $XY = I_2$, atunci $\det(X) \cdot \det(Y) = 1$ și $\det(X), \det(Y) \in \mathbb{Z}$, deci $\det(X) = \pm 1$. Rezultă $X = \pm I_2$; aceste două elemente sunt inversabile în inelul dat.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- **1.** a) Se arată că $\alpha^3 = e$.
- **b**) Deoarece $\alpha^3 = e$ rezultă că $\alpha^{2009} = \alpha^2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Ecuația devine $\alpha^2 \cdot x = e$, cu unica soluție

$$x = \alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \alpha.$$

c) Fie $\sigma = \sigma_1 \cdot \sigma_2 \cdot \sigma_3 \cdot \sigma_4 \cdot \sigma_5 \cdot \sigma_6$ o ordonare oarecare a factorilor.

c) Fie
$$\sigma = \sigma_1 \cdot \sigma_2 \cdot \sigma_3 \cdot \sigma_4 \cdot \sigma_5 \cdot \sigma_6$$
 o ordonare oarecare a factorilor.

$$\varepsilon(\sigma) = \varepsilon(\sigma_1) \cdot \varepsilon(\sigma_2) \cdot \varepsilon(\sigma_3) \cdot \varepsilon(\sigma_4) \cdot \varepsilon(\sigma_5) \cdot \varepsilon(\sigma_6) = (-1)^{m(\sigma_1) + m(\sigma_2) + m(\sigma_3) + m(\sigma_4) + m(\sigma_5) + m(\sigma_6)} = -1.$$

- **2.** a) $z = \sqrt{2}(1+i)$.
- **b**) Dacă $z = a + bi \in \mathbb{Z}[i]$ este inversabil, atunci $a^2 + b^2 = 1$, deci $a = \pm 1$ și b = 0 sau a = 0 și $b = \pm 1$. Rezultă că $z \in \{\pm 1; \pm i\}$. Cum ± 1 și $\pm i$ sunt inversabile în $\mathbb{Z}[i]$, rezultă concluzia.
- c) z = a + bi cu $a,b \in \mathbb{Z}$ aparține lui $H \Leftrightarrow 2/(a+b)$. Dacă a+bi, $c+di \in H$ rezultă $(a+bi)(c+di) \in H$ decarece 2/c(a+b)+d(a-b).

Solutie

1. a)
$$\det(A) = 4$$
.

- **b)** Se arată prin calcul direct.
- c) $A \neq 0_4 \iff$ cel puţin unul dintre numerele $a, b, c, d \in \mathbb{R}$ este nenul \iff

$$\Leftrightarrow \alpha = a^2 + b^2 + c^2 + d^2 \neq 0$$
. Folosind unicitatea inversei, deducem că $A^{-1} = \frac{1}{\alpha} \cdot A^{-1}$.

2. a)
$$|a| = |-a| = |x_1 + x_2 + x_3| \le |x_1| + |x_2| + |x_3| \le 3$$
.

b)
$$f(0) = c < 0$$
, $\lim_{x \to \infty} f(x) = +\infty$.

Funcția polinomială asociată lui f este continuă pe $[0,\infty)$, deci ea (și polinomul f) are cel puțin o rădăcină în $(0,\infty)$.

c)
$$x_1x_2x_3 = 1$$
, de unde rezultă $|x_1| = |x_2| = |x_3| = 1$.

Deoarece c=-1<0, din punctul **b**) rezultă că f are rădăcina $x_1\in (0,\infty)$.

Cum
$$|x_1|=1$$
, obținem $x_1=1$.

Folosind relațiile lui Viète, obținem $x_2 = x_3 = -1$ și apoi b = -1.

Soluții

1. a) Se verifică prin calcul.

b) Se demonstrează prin calcul direct, ținând cont de faptul că

$$\forall k \in \{1, 2\}, \quad x_k \cdot g(x_k) = a \cdot x_k^3 + b \cdot x_k^2 + c \cdot x_k = a + b \cdot x_k^2 + c \cdot x_k \text{ și}$$
$$x_k^2 \cdot g(x_k) = a \cdot x_k^4 + b \cdot x_k^3 + c \cdot x_k^2 = a \cdot x_k + b + c \cdot x_k^2.$$

c) Din **b**) se obține $\det(A) = g(1) \cdot g(x_1) \cdot g(x_2)$.

 $\det(A) = 0 \iff \text{cel puţin unul dintre numerele } 1, x_1, x_2 \implies \text{este rădăcină şi pentru } g.$

Obţinem a+b+c=0 sau a=b=c.

2. a)
$$f(\hat{0}) = f(\hat{1}) = \hat{0}$$
.

- **b**) Cum f nu e injectivă, iar domeniul său este o mulțime finită și coincide cu codomeniul, rezultă că f nu este surjectivă.
- c) Singurele rădăcini ale polinomului sunt $x_1 = \hat{0}$ și $x_2 = \hat{1}$.

Descompunerea în factori ireductibili a polinomului peste \mathbb{Z}_5 este $X^4 + \hat{4}X = X(X + \hat{4})(X^2 + X + \hat{1})$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1. a) Determinantul sistemului este $\Delta = 2 \cdot (1 - m)$.

Pentru $m \in \mathbb{R} \setminus \{1\}$ sistemul este compatibil determinat.

b) Pentru
$$m=1$$
, $\Delta_p = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \neq 0$ și $\Delta_c = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 3 \\ 1 & 1 & 3 \end{vmatrix} = 0$, deci sistemul este compatibil.

c) Dacă
$$m=1$$
, sistemul are mulțimea soluțiilor $S_1=\left\{\left(x,1,2-x\right)\,\middle|\,x\in\mathbb{R}\right\}$ și

$$x^{2} + 1^{2} + (2 - x)^{2} = 2x^{2} - 4x + 5$$
.

Funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 2x^2 - 4x + 5$ are minimul $g(x_V) = g(1) = 3$.

2. a) Se verifică prin calcul.

b) Dacă
$$X, Y \in G$$
, $\det(X \cdot Y) = \det(X) \cdot \det(Y) = 1$, $\det(X \cdot Y) \in G$.

Se verifică că dacă $X \in G$, atunci și $X^{-1} \in G$.

c)
$$C = A \cdot B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} = -I_2 + D$$
, unde $D = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Decoarece $D^2 = 0_2$, obţinem $\forall n \in \mathbb{N}^*$, $C^n = (-1)^n \cdot I_2 + n \cdot (-1)^{n-1} \cdot D \neq I_2$.

- **1.** a) Se arată că rang(A) = 1.
- **b**) Se arată că $A^2 = d \cdot A$, cu d = a + 2b + 3c.
- c) Se verifică că pentru $K = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ și $L = \begin{pmatrix} a & b & c \end{pmatrix}$, avem $A = K \cdot L$.
- 2. a) Se verifică prin calcul.
- **b)** Rădăcinile ecuației $t^2 4t + 16 = 0$ sunt $t_{1,2} = 2 \pm 2\sqrt{3} \cdot i$.

Mulțimea rădăcinilor lui f este $\left\{\sqrt{3}+i,\sqrt{3}-i,-\sqrt{3}+i,-\sqrt{3}-i\right\}$.

c) Singura descompunere în factori a polinomului, în $\mathbb{R}[X]$, este $f = (X^2 - 2\sqrt{3}X + 4)(X^2 + 2\sqrt{3}X + 4)$.

Nici unul dintre polinoamele $X^2 - 2\sqrt{3}X + 4$ și $X^2 + 2\sqrt{3}X + 4$ nu poate fi descompus în $\mathbb{Q}[X]$.

Solutie

1. a)
$$\det(A) = (a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ c & a & b \\ b & c & a \end{vmatrix} = \frac{1}{2}(a+b+c)\left[(a-b)^2 + (b-c)^2 + (c-a)^2\right]$$
 sau $\det(A) = a^3 + b^3 + c^3 - 3abc$.

- **b)** Deoarece $\det(A) = 0$ și $a+b+c \neq 0$, rezultă a=b=c.
- c) Determinantul matricei sistemului $\begin{vmatrix} 2a-1 & 2b & 2c \\ 2c & 2a-1 & 2b \\ 2b & 2c & 2a-1 \end{vmatrix}$ este o sumă de 5 termeni pari și unul impar,

deci este un număr impar și, în consecință, nenul.

- **2. a)** Folosind relațiile lui Viéte, se obține $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} = 0$.
- **b)** Notând $x^2 = t$ obținem ecuația $t^2 5t + 5 = 0$, cu soluțiile $t_{1,2} = \frac{5 \pm \sqrt{5}}{2} > 0$, deci ecuația inițială are toate rădăcinile reale.
- c) Dacă $\operatorname{grad}(g) > 4$, atunci $\lim_{x \to \infty} \left| \frac{g(x)}{f(x)} \right| = +\infty$, dar din ipoteză rezultă $\lim_{x \to \infty} \left| \frac{g(x)}{f(x)} \right| \le 1$, contradicție. În consecință, $\operatorname{grad}(g) \le 4$. Din ipoteză deducem că $\forall k \in \{1, 2, 3, 4\}$, $|g(x_k)| \le |f(x_k)| = 0$, deci $|g(x_k)| = 0$, de unde rezultă $g(x_k) = 0$, adică $g = a \cdot f$, cu $a \in \mathbb{R}$. Înlocuind în relația din enunț, obținem că $|a| \le 1$. Așadar, soluțiile sunt polinoamele $g = a \cdot f$, cu $a \in [-1, 1]$.

Solutie

1. a) Dacă
$$A, B \in G$$
, $A = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix}$, cu $a, a' \in (0, \infty)$ și $b, b' \in \mathbb{R}$, atunci
$$AB = \begin{pmatrix} a \cdot a' & a \cdot b' + b \\ 0 & 1 \end{pmatrix}$$
 și $a \cdot a' \in (0, \infty)$, $a \cdot b' + b \in \mathbb{R}$.

- **b**) De exemplu, pentru $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ și $D = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$, se arată că $CD \neq DC$.
- c) Se arată că $I_2 A + A^2 = \begin{pmatrix} \alpha & ab \\ 0 & 1 \end{pmatrix}$, cu $\alpha = 1 a + a^2 > 0$.
- **2.** a) Utilizând eventual relațiile lui Viète, se obține că a=0, b=-3 și c=2.
- **b**) Dacă f are rădăcina $\sqrt{2}$, atunci $2a+c+(b+2)\cdot\sqrt{2}=0$, de unde rezultă b=-2 și c=-2a.

Apoi, $f = X^3 + aX^2 - 2X - 2a = (X + a)(X^2 - 2)$, cu rădăcina rațională $x_1 = -a$.

c) Presupunem că f are rădăcina $k \in \mathbb{Z}$. Rezultă că există $q \in \mathbb{Q}[X]$, astfel încât $f = (X - k) \cdot q$. Mai mult, coeficienții lui q sunt numere întregi. Folosind ipoteza, obținem că numerele $(-k) \cdot q(0)$ și $(1-k) \cdot q(1)$ sunt impare, ceea ce este fals, deoarece (-k)(1-k) este un număr par.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Soluție

1. a) Prin calcul direct, rezultă $A^2 - B^2 = 0_2$.

b) Se arată că
$$I_2 + A + A^2 + A^3 + A^4 = I_2 + 2 \cdot (A + A^2) = \begin{pmatrix} 5 & 6 \\ 0 & 1 \end{pmatrix}$$
,

Atunci, $\det(I_2 + A + A^2 + A^3 + A^4) = 5$.

- c) Pentru $n \in \mathbb{Z}$ oarecare, fie $X_n = \begin{pmatrix} 1 & n \\ 0 & -1 \end{pmatrix}$. Se arată că $X_n^2 = I_2$.
- **2.** a) Restul căutat este polinomul r = 2X + 3.
- **b)** Avem $f = (X x_1) \cdot (X x_2) \cdot (X x_3) \cdot (X x_4)$, deci $(1 x_1) \cdot (1 x_2) \cdot (1 x_3) \cdot (1 x_4) = f(1) = 5$.
- c) $g(x_1) \cdot g(x_2) \cdot g(x_3) \cdot g(x_4) = (1-x_1)(1-x_2)(1-x_3)(1-x_4)(-1-x_1)(-1-x_2)(-1-x_3)(-1-x_4),$ deci $g(x_1) \cdot g(x_2) \cdot g(x_3) \cdot g(x_4) = f(1) \cdot f(-1) = 5.$

Solutie

1. a) Prin calcul direct, obţinem $A^3 = 0_3$.

b)
$$I_3 + A + A^t = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, deci $rang(I_3 + A + A^t) = 1$.

c) Se arată că
$$(I_3 + A)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
, sau prin calcul direct, sau observând că $I_3 = I_3 + A^3 = (I_3 + A)(I_3 - A + A^2)$.

2. a) Se arată că mulțimea rădăcinilor lui f este $\{0, -4-2i, -4+2i\}$.

b)
$$S_1 = x_1 + x_2 + x_3 = -4a$$
 și $S_2 = x_1x_2 + x_2x_3 + x_1x_3 = 20$.

Suma din enunț este $S = 2S_1^2 - 6S_2 = 8(4a^2 - 15)$.

c) Deoarece $x_2 = x_3 = -a$, din prima relație a lui Viète obținem $x_1 = -2a$ și înlocuind în a doua relație a lui Viète rezultă $a \in \{-2, 2\}$.

Pentru a=-2, obținem $b=2a^3=-16$, iar pentru a=2, obținem $b=2a^3=16$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Solutie

- 1. a) Scădem prima linie din celelalte și obținem $\det(A) = -8$.
- **b**) Scădem pe rând prima ecuație din celelalte și obținem $y = z = t = \frac{1}{2}$ și apoi $x = -\frac{1}{2}$.

c) Se obține
$$A^{-1} = \frac{1}{2} \cdot \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}$$
.

- **2. a)** Se obține $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} = \frac{S_3}{S_4} = 2$.
- b) Se verifică prin calcul.
- c) Observăm că x = 0 nu este rădăcină pentru f. Ecuația f(x) = 0 este echivalentă cu ecuația

$$t^2 + 2t + a + 2 = 0$$
, unde $t = x - \frac{1}{x}$. Pentru orice $t \in \mathbb{R}$, ecuația $f(x) = 0$ are toate rădăcinile reale.

Ecuația $t^2 + 2t + a + 2 = 0$ are rădăcinile reale dacă și numai dacă $a \le -1$.

Solutie

- **1. a)** Determinantul sistemului este $\Delta = -120$. Se obține soluția unică $x = \frac{4}{5}$, $y = \frac{3}{5}$, z = 0.
- **b**) Determinantul sistemului este $\Delta = \begin{vmatrix} b & a & 0 \\ c & 0 & a \\ 0 & c & b \end{vmatrix} = -2abc \neq 0$, deci sistemul are soluție unică.
- c) Folosind formulele lui Cramer, obținem $x_0 = \frac{\Delta_x}{\Delta} = \frac{b^2 + c^2 a^2}{2bc} = \cos A$.
- \hat{A} fiind unghi al triunghiului ABC, avem $A \in (0, \pi)$, deci $x_0 = \cos A \in (-1, 1)$.

Analog obţinem $y_0 = \cos B \in (-1, 1)$ şi $z_0 = \cos C \in (-1, 1)$.

- **2.** a) Deoarece $a \neq b$ iau independent câte trei valori, există $3 \cdot 3 = 9$ matrice în mulțimea G.
- b) Se verifică prin calcul..
- c) $\det(A) = (a-b)(a+b)$. $(\mathbb{Z}_3, +, \cdot)$ fiind corp, $\dim(a-b)(a+b) = \hat{0}$ rezultă a=b sau a=-b. În total, există 5 matrice în G care au determinantul nul.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. a) Se verifică prin calcul.

b) Tripletul (0,1,0) e soluție a sistemului, $\forall a,b,c \in \mathbb{R}$, deci acesta este compatibil.

Dacă $a+b+c\neq 0$ și $a^2+b^2+c^2\neq ab+bc+ca$, atunci soluția precedentă este unică.

c) Din ipoteză rezultă că a = b = c.

Cum
$$a=b=c\neq 0$$
, rezultă
$$\begin{cases} x+y+z=1\\ x^2+y^2=z-1 \end{cases} \Leftrightarrow \begin{cases} z=1-x-y\\ \left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=\left(\frac{\sqrt{2}}{2}\right)^2. \end{cases}$$

A doua ecuație din sistem are o infinitate de soluții, care sunt coordonatele punctelor de pe cercul de centru

A doua ecuație din sistem are o infinitate de soluții, care sunt coordonatele punctelor de pe cerc
$$Q\left(-\frac{1}{2},-\frac{1}{2}\right) \text{ și rază } r = \frac{\sqrt{2}}{2} \text{ . Soluțiile sistemului sunt} \begin{cases} x_t = -\frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \cos t \\ y_t = -\frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \sin t \end{cases}, \text{ cu } t \in \left[0,2\pi\right).$$

2. a) Deoarece a, b, c pot lua arbitrar câte 4 valori, există $4 \cdot 4 \cdot 4 = 64$ matrice în mulțimea G.

b) De exemplu, matricea $A = \begin{pmatrix} \hat{2} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$ are proprietățile cerute.

c) Fie
$$X = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in G$$
. $X^2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix} \iff \begin{cases} a^2 = \hat{1} \\ b(a+c) = \hat{0} \end{cases} \Rightarrow \begin{cases} a \in \{\hat{1}, \hat{3}\} \\ c \in \{\hat{0}, \hat{2}\} \end{cases}$, deci $a+c \in \{\hat{1}, \hat{3}\}$.

Rezultă $b = \hat{0}$. Obținem patru matrice.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- 1. a) Se verifică prin calcul.
- **b**) Sistemul este compatibil determinat. Se obține soluția $x = \frac{c b}{\det(A)}$, $y = \frac{a c}{\det(A)}$, $z = \frac{b a}{\det(A)}$.
- c) Avem că rangul matricei sistemului este 2 și rangul matricei extinse este 3, de unde rezultă concluzia.
- **2. a**) Se arată că f(1)=1 și f(2)=2 și apoi că f(5)=5.
- **b)** Folosind ipoteza, se deduce că $f(a_{n+1}) = (f(a_n))^2 + 1$, $\forall n \in \mathbb{N}$ și apoi, folosind această relație, se demonstrează prin inducție concluzia.
- c) Se consideră $g \in \mathbb{R}[X]$, g = f X. Din b) avem că $g(a_n) = 0$, $\forall n \in \mathbb{N}$, deci g este polinomul nul, așadar f = X.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1. a) Se verifică prin calcul.

b) Fie
$$Y = \begin{pmatrix} a & 5b \\ b & a \end{pmatrix} \in C(A)$$
, cu $Y^2 = 0_2$. Obţinem sistemul $\begin{cases} a^2 + 5b^2 = 0 \\ ab = 0 \end{cases}$, cu unica soluţie $a = b = 0$, deci

c) Fie
$$Z = \begin{pmatrix} a & 5b \\ b & a \end{pmatrix} \in C(A)$$
, $Z \neq O_2$, cu $a, b \in \mathbb{Q}$.

Presupunem că $\det(Z) = 0$, deci $a^2 - 5b^2 = 0$. Dacă b = 0, atunci a = 0, deci $Z = 0_2$, fals. Dacă $b \neq 0$, rezultă că $\sqrt{5} \in \mathbb{Q}$, fals.

2. a)
$$f(\hat{0}) + f(\hat{1}) + f(\hat{2}) = \hat{3}a + \hat{1} = \hat{1}$$
.

b)
$$f = X^3 + \hat{2}X^2 + \hat{2}$$
 are singura rădăcină $x = \hat{2}$.

c) Deoarece
$$\operatorname{grad}(f) = 3$$
, f este ireductibil peste $\mathbb{Z}_3 \Leftrightarrow f$ nu are rădăcini în \mathbb{Z}_3 . Așadar $a \neq \hat{0}$ și $\hat{1} + a \neq \hat{0}$, deci $a = \hat{1}$.

Solutie

1. a) Se verifică prin calcul.

b)
$$\det(A - A^t) = \det(A - A^t)^t = \det(A^t - A) = -\det(A - A^t)$$
, $\det(A - A^t) = 0$.

c) $A - A^t \neq 0_3$, şi în consecință, rang $(A - A^t) \geq 1$.

Dacă
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
, atunci $A - A^t = \begin{pmatrix} 0 & b - d & c - g \\ d - b & 0 & f - h \\ g - c & h - f & 0 \end{pmatrix}$.

Dacă am avea $\operatorname{rang}(A-A^{t})=1$, atunci toți minorii de ordinul doi ai matricei ar fi nuli.

Obținem
$$b-d=h-f=c-g=0$$
, deci $A=\begin{pmatrix} a & b & c \\ b & e & f \\ c & f & i \end{pmatrix}$, adică $A=A^t$, fals.

Aşadar $\operatorname{rang}(A-A^t) \ge 2$ şi cum $\operatorname{det}(A-A^t) = 0$, rezultă $\operatorname{rang}(A-A^t) = 2$.

2. a) Notând $x^2 = t$ obținem ecuația $t^2 - 5t + 4 = 0$, cu soluțiile $t_1 = 1$ și $t_2 = 4$. Rădăcinile lui f sunt $x_1 = -2$, $x_2 = -1$, $x_3 = 1$, $x_4 = 2$.

b)
$$\exists a \in \mathbb{Q}$$
 astfel ca $h = a \left(X + \frac{1}{2} \right) \left(X - \frac{1}{2} \right) (X + 1) (X - 1)$. Obţinem $h = 4X^4 - 5X^2 + 1$.

c) Din g(-2) = g(-1) = g(1) = g(2) = 2 deducem că există polinomul cu coeficienți întregi q, astfel încât $g(X) = f(X) \cdot q(X) + 2$. Presupunem contrariul, deci că există $n \in \mathbb{Z}$, astfel încât g(n) = 0. Obținem $(n-2)(n-1)(n+1)(n+2) \cdot q(n) = -2$.

Egalitatea anterioară având loc în mulțimea \mathbb{Z} , divizorii întregi ai lui -2 fiind -2, -1, 1, 2, obținem că două dintre numerele n-2, n-1, n+1, n+2 coincid, fals.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. a)
$$\varepsilon(\sigma) = (-1)^{m(\sigma)} = (-1)^2 = 1$$
.

- **b**) Avem $\sigma^3 = e$, unde e este permutarea identică. Evident, σ comută cu permutările e, σ, σ^2 . Se arată, prin calcul direct, că σ nu comută cu celelalte 3 permutări din S_3 .
- c) Dacă $x \in S_3$ este o permutare impară (deci o transpoziție), evident, $x^2 = e \neq \sigma$.

Obținem unica soluție $x = \sigma^2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$.

- 2. a) Se verifică prin calcul.
- **b**) Se arată că înmulțirea matricelor este lege de compoziție pe G. Se verifică axiomele grupului abelian. Elementul neutru este matricea X(0), iar simetrica lui $X(a) \in G$ este matricea $X\left(-1 + \frac{1}{a+1}\right) \in G$.
- c) Se demonstrează prin inducție că

$$\forall n \in \mathbb{N}^*, \ \forall a_1, a_2, ..., a_n \in \mathbb{R} \setminus \{-1\}, \ X(a_1) \cdot X(a_2) \cdot ... \cdot X(a_n) = X((a_1+1) \cdot (a_2+1) \cdot ... \cdot (a_n+1)-1).$$
 Pentru $n = 2009$ și $a_k = k$, $\forall k \in \{1, 2, ..., 2009\}$, obținem $t = 2010$!

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

- 1. a) Se verifică prin calcul.
- **b)** Se demonstrează prin inducție după $n \in \mathbb{N}^*$.
- c) Fie X o soluție. Din punctul a) deducem că $X = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Cum $\det(X^2) = 1 \Rightarrow \det(X) = 1$, deci există

$$t \in \left[0; 2\pi\right], \ X = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}. \ X^2 = A \Leftrightarrow \cos 2t = 0 \ \text{ si } \sin 2t = 1 \Leftrightarrow t \in \left\{\frac{\pi}{4}; \frac{5\pi}{4}\right\}.$$

- **2. a)** Folosind relațiile lui Viète, se obține $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} = a$.
- **b)** Din teorema împărțirii cu rest, $\exists \alpha, \beta \in \mathbb{R}$ și $q \in \mathbb{R}[X]$, $f = (X-1)^2 \cdot q + \alpha X + \beta$.

Din
$$\begin{cases} f(1) = \alpha + \beta \\ f'(1) = \alpha \end{cases}$$
, se obține $\begin{cases} \alpha = a + 8 \\ \beta = -7 \end{cases}$. Restul împărțirii este: $r = (a + 8)X - 7$.

c)
$$\sum_{k=1}^{4} x_k^2 = \left(\frac{2}{3}\right)^2 - 2 \cdot \frac{1}{3} = -\frac{2}{9} < 0$$
, deci ecuația nu are toate rădăcinile reale

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

- **1.** a) rang $(A + I_2) = 2$.
- b) Se demonstrează prin calcul direct.
- c) Presupunem că ecuația are soluția $Y \in \mathcal{M}_2(\mathbb{C})$. Atunci, $A \cdot Y = Y \cdot A$ și din **b**) deducem că există

$$x, y \in \mathbb{C}$$
, astfel încât $Y = \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}$. Cum $\det(Y) = 0$, obținem $x = 0$ și apoi $Y^2 = 0_2$, fals.

- 2. a) Se verifică prin calcul.
- **b**) Se verifică prin calcul.

c) Se arată prin inducție că
$$\forall n \in \mathbb{N}^*$$
, $\forall x_1, x_2, ..., x_n \in \mathbb{R}$, $x_1 * x_2 * ... * x_n = (x_1 + 1)(x_2 + 1) \cdot ... \cdot (x_n + 1) - 1$.
Obținem $1 * \frac{1}{2} * \frac{1}{3} * ... * \frac{1}{2008} * \frac{1}{2009} = 2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot ... \cdot \frac{2009}{2008} \cdot \frac{2010}{2009} - 1 = 2009$.

- **1. a)** Se arată că $\det(A xI_2) = 0 \iff x \in \{1, 8\}$.
- b) Se verifică prin calcul.
- c) Fie $Y \in \mathcal{M}_2(\mathbb{C})$, o soluție a ecuației. Atunci, $A \cdot Y = Y \cdot A$.

Din **b**) rezultă că există $x, y \in \mathbb{C}$, astfel încât $Y = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$. Obținem $\begin{cases} x^3 = 1 \\ y^3 = 8 \end{cases}$, deci există 9 soluții în $\mathcal{M}_2(\mathbb{C})$.

- **2.** a) Se arată că $f_{-1,2} \circ f_{-1,2} = f_{1,0}$.
- b) Se arată că operația de compunere este lege de compoziție pe G. Se verifică axiomele grupului. Se demonstrează că elementul neutru este funcția identică, $f_{1,0}$, iar pentru funcția $f_{a,b} \in G$, simetrica sa

este
$$f_{a',b'} \in G$$
, unde $a' = \frac{1}{a}$ și $b' = -\frac{b}{a}$.

c) Elementele $f_{-1,-b}$ au ordin 2, $\forall b \in \mathbb{R}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

- **1. a)** Se arată că $\det(A) = 0 \iff m \in \{1, 2\}$.
- **b**) Dacă $m \notin \{1, 2\}$, sistemul este de tip Cramer, deci este compatibil

Se arată că dacă $m \in \{1, 2\}$, atunci sistemul este compatibil 1-nedeterminat.

- c) Dacă $m \notin \{1; 2\}$, soluția unică este (1; 0; -1), ceea ce nu convine. Dacă m = 1, soluțiile sunt $(1 \lambda; \lambda; -1)$, $\lambda \in \mathbb{R}$, iar dacă m = 2, soluțiile sunt $(1; \mu; -1 \mu)$, $\mu \in \mathbb{R}$. Deci m = 2.
- **2. a)** Dacă $x = y = \hat{0}$, atunci $x^2 + y^2 = \hat{0}$.

 $\forall \ x \in \mathbb{Z}_3, \ \ x^2 \in \left\{ \, \hat{0}, \hat{1} \, \right\} \ \ \text{si dacă} \ \ x \neq \hat{0} \ \ \text{sau} \ \ y \neq \hat{0}, \ \text{se arată că} \ \ x^2 + y^2 \in \left\{ \, \hat{1}, \hat{2} \, \right\}.$

b) Dacă $X = A(a,b) \in H$ și $Y = A(c,d) \in H$, $X \cdot Y = A(ac + 2bd, bc + ad) \in H$

Dacă $X = A(a,b) \in H$, atunci $d = a^2 + b^2 \in \{\hat{1},\hat{2}\}$ și $X^{-1} = A(ad^{-1},\hat{2}bd^{-1}) \in H$

c)
$$X^2 = I_2 \Leftrightarrow \begin{cases} a^2 + \hat{2}b^2 = \hat{1} \\ ab = \hat{0} \end{cases}$$
.

Pentru $a = \hat{0}$ ecuația $\hat{2}b^2 = \hat{1}$ nu are soluții.

Pentru $b = \hat{0}$ rezultă $\hat{a} \in \{\hat{1}, \hat{2}\}$ și soluțiile $X_1 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$ și $X_2 = \begin{pmatrix} \hat{2} & \hat{0} \\ \hat{0} & \hat{2} \end{pmatrix}$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1. a) Se verifică prin calcul.

b)
$$B = A + \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ 2a & 2b & 2c \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ 3 & 3 & 3 \end{vmatrix} = A$$
.

c) Fie $A_1(a, f(a))$, $A_2(b, f(b))$ și $A_3(c, f(c))$ cele trei puncte, cu $a \le b \le c$.

$$S[A_1A_2A_3] = \frac{1}{2}|B|^{a)} = \frac{(b-a)(c-b)(c-a)(a+b+c)}{2}.$$

Cel puțin două dintre cele trei numere a,b,c au aceeași paritate, deci cel puțin unul dintre numerele b-a,c-b,c-a este par. Rezultăcă $S\left[A_1A_2A_3\right]\in\mathbb{N}$. Se arată că f(a), f(b) și f(c) sunt multipli de 3, deci B este divizibil cu 3, adică $S\left[A_1A_2A_3\right]$ este divizibilă cu 3.

2. a) Se verifică prin calcul.

b) Se arată că
$$\forall X(a), X(b) \in H$$
, cu $a, b \in \mathbb{R} \setminus \left\{ \frac{1}{10} \right\}$, $a+b-10ab \neq \frac{1}{10}$, deci $X(a)X(b) \in H$.

c) Pentru
$$X = X(a) \in G$$
, $X^2 = I_2 \iff X(2a - 10a^2) = X(0)$.

Se obțin soluțiile
$$X_1 = I_2$$
 și $X_2 = \frac{1}{5} \cdot \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}$.

Soluție

1. a) Se verifică prin calcul.

b) Se obține
$$\left(8x^3 + 2x\right)A(x) = O_2$$
 și apoi $x \in \left\{-\frac{i}{2}, \frac{i}{2}, 0\right\}$.

c) Presupunem că ecuația are soluția $X=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$. Atunci $X^4=\left(A(0)\right)^2=O_2$.

Rezultă det(X) = 0 și $X^2 = t \cdot X$, unde t = a + d.

Se demonstrează că $X^4 = t^3 \cdot X$, deci $X = O_2$ sau t = 0. În ambele cazuri rezultă $X^2 = O_2$, fals.

2. a) $a_{100} = 2$ și $a_{99} = 0$.

b) Din teorema împărțirii cu rest, există și sunt unice $q \in \mathbb{C}[X]$ și $a, b \in \mathbb{C}$, astfel încât $f = (X^2 - 1) \cdot q + aX + b$. Obținem $a = \frac{f(1) - f(-1)}{2}$ $b = \frac{f(1) + f(-1)}{2}$.

Cum $f(1) = f(-1) = -2^{51}$, restul împărțirii polinomului f la $X^2 - 1$ este $r = -2^{51}$.

c) Fie $z \in \mathbb{C}$ rădăcină a lui f. Atunci $(z+i)^{100} = -(z-i)^{100}$, de unde rezultă |z+i| = |z-i| și înlocuindu-l pe $z = a+b \cdot i$, cu $a,b \in \mathbb{R}$ în relația precedentă, deducem b=0, deci $z \in \mathbb{R}$.

Solutie

1. a)
$$\begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a+2) \begin{vmatrix} 1 & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = (a+2) \begin{vmatrix} 1 & 1 & 1 \\ 0 & a-1 & 0 \\ 0 & 0 & a-1 \end{vmatrix} = (a+2)(a-1)^2$$

- b) Cum sistemul este compatibil determinat rezultă $a \in \mathbb{R} \setminus \{-2;1\}$. Deoarece (0;0;1) este soluție pentru orice $a \in \mathbb{R}$, rezultă că (0;0;1) este soluția unică a sistemului.
- c) Sistemul este compatibil nedeterminat și are soluția $(\alpha; \alpha; 1 + \alpha)$.

2. a) Pentru
$$a = 19 \in \mathbb{Q}$$
, $b = 6 \in \mathbb{Q}$, avem $a^2 - 10b^2 = 1$, deci $A = \begin{pmatrix} 19 & 10 \cdot 6 \\ 6 & 19 \end{pmatrix} \in G$.

b) Pentru
$$X = \begin{pmatrix} a & 10b \\ b & a \end{pmatrix} \in G$$
 şi $Y = \begin{pmatrix} a' & 10b' \\ b' & a' \end{pmatrix} \in G$, avem $XY = \begin{pmatrix} a'' & 10b'' \\ b'' & a'' \end{pmatrix}$, unde $a'' = a \cdot a' + 10b \cdot b' \in \mathbb{Q}$ şi $b'' = b \cdot a' + a \cdot b' \in \mathbb{Q}$ şi $\det(XY) = \det(X) \det(Y) = 1$.

c) Se arată inductiv că pentru orice
$$n \in \mathbb{N}^*$$
, există $a_n, b_n \in \mathbb{N}^*$, astfel încât $A^n = \begin{pmatrix} a_n & 10 \cdot b_n \\ b_n & a_n \end{pmatrix} \in G$.

Cum $b_n > 0$, rezultă că $\forall n \in \mathbb{N}^*$, $A^n \neq I_2$ și apoi că puterile matricei A sunt o infinitate de elemente distincte ale grupului (G, \cdot) .

Solutie

1. a) Se arată că
$$B^3 = I_3$$

b)
$$B^{-1} = B^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

c) Obţinem
$$(a+b+c) \cdot \det(A) = \frac{1}{2} \cdot (a+b+c)^2 \cdot ((a-b)^2 + (b-c)^2 + (c-a)^2) \ge 0$$
.

- 2. a) Se verifică prin calcul.
- **b**) $\hat{0} = \hat{0}^2 + \hat{0}^2$, $\hat{1} = \hat{0}^2 + \hat{1}^2$, $\hat{2} = \hat{1}^2 + \hat{1}^2$, $\hat{3} = \hat{1}^2 + \hat{3}^2$, $\hat{4} = \hat{0}^2 + \hat{2}^2$, $\hat{5} = \hat{1}^2 + \hat{2}^2$, $\hat{6} = \hat{2}^2 + \hat{3}^2$. **c**) Se arată inductiv că $\forall n \in \mathbb{N}^*$, $\left\{ x^{2n} \mid x \in \mathbb{Z}_7 \right\} = H$, de unde rezultă concluzia.

Soluție

- **1.** a) Se arată că suma elementelor matricei A este S = 90.
- b) Se verifică prin calcul.
- c) Se arată inductiv că $A^n = 32^{n-1} \cdot A$, $\forall n \in \mathbb{N}^*$. Rezultă că $rang(A^n) = 1$, $\forall n \in \mathbb{N}^*$.
- 2. a) Se verifică prin calcul.
- **b**) $e \in \mathbb{R}$ este element neutru al legii ,,*" $\Leftrightarrow \forall x \in \mathbb{R}$, $(ae-2) \cdot x = e-6 \Leftrightarrow e=6$ şi $a = \frac{1}{3}$
- c) $6*6 \in [0;6] \Rightarrow 36a-6 \in [0;6] \Rightarrow a \in \left[\frac{1}{6};\frac{1}{3}\right].$

Soluție

1. a) Dacă
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{C})$$
, ecuația e echivalentă cu sistemul $\begin{cases} x + 2y - z = 2 \\ 2x + 2y = 1 \\ x + 4y - 3z = 5 \end{cases}$. Sistemul este

compatibil nedeterminat, deoarece rangul matricei sistemului este egal cu 2, ca și rangul matricei extinse.

b) Se verifică prin calcul.
c) Se arată că
$$A^* = \begin{pmatrix} -6 & 2 & 2 \\ 6 & -2 & -2 \\ 6 & -2 & -2 \end{pmatrix}$$
. Rezultă $rang(A^*) = 1$.
2. a) $7^2 - 2 \cdot 5^2 = -1$, deci $7 + 5\sqrt{2} \in A$

2. a)
$$7^2 - 2 \cdot 5^2 = -1$$
, deci $7 + 5\sqrt{2} \in A$

b) Se verifică prin calcul.

c) Avem
$$f(7+5\sqrt{2})=-1$$
. Mai mult, $f(7+5\sqrt{2})^{2n+1}=(f(7+5\sqrt{2}))^{2n+1}=-1$, $\forall n \in \mathbb{N}$, iar şirul $(x_n)_{n\in\mathbb{N}}=(7+5\sqrt{2})^{2n+1}$ are termenii distincți, în $\mathbb{Z}[\sqrt{2}]$.

Soluție

1. a) Din $A^2 = 0_2$ obținem sistemul: $\begin{cases} a^2 + bc = 0 \\ b(a+d) = 0 \\ c(a+d) = 0 \\ (a-d)(a+d) = 0 \end{cases}$. Presupunem că $a+d \neq 0$. Rezultă b=c=0

și a=d. Din prima și din ultima ecuație obținem a=d=0, deci a+d=0, contradicție.

- **b**) Se arată că $(I_2 + A)(I_2 A) = I_2$, deci $(I_2 + A)^{-1} = I_2 A$.
- c) Matricele de forma $X = \alpha A$, $\alpha \in \mathbb{R}$ sunt soluții.
- **2.** a) Se arată că f(a) = 0.
- **b**) Notând $x^2=t$ obținem ecuația $t^2-2t+9=0$, ale cărei soluții au $|t_1|=|t_2|=3$. Rezultă $|x_1|=|x_2|=\sqrt{|t_1|}=\sqrt{3}$, $|x_3|=|x_4|=\sqrt{3}$ și suma căutată este egală cu $4\sqrt{3}$.
- c) Evident, $B \subset A$. Fie $\alpha = g(a) \in A$. Din teorema împărțirii cu rest, există și sunt unice $q, h \in \mathbb{Q}[X]$, cu $\operatorname{grad}(h) \leq 3$, astfel încât $g = (X^4 2X^2 + 9) \cdot q + h$. Rezultă $\alpha = g(a) = h(a) \in B$, deci $A \subset B$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curri</u>culum și Evaluare în Învățământul Preuniversitar

Soluție

1. a) Se verifică prin calcul.

b)
$$\det(A - A^t) = \det(A - A^t) = \det(A - A^t) = \det(A - A^t) \det(A - A^t) = 0$$

c) Minorul
$$\begin{vmatrix} b & b+1 \\ 1 & 1 \end{vmatrix} = -1$$
 este nenul.

2. a) Pentru orice
$$x \in [0, \infty)$$
, avem $f(x) = x^3 + p \cdot x^2 + q \cdot x + r > 0$.

b)
$$S_1 = x_1 + x_2 + x_3 = -p$$
, $S_2 = x_1x_2 + x_1x_3 + x_2x_3 = q$.

$$x_1^3 + x_2^3 + x_3^3 = -p \cdot (S_1^2 - 2S_2) - q \cdot S_1 - 3r = -p^3 + 3pq - 3r$$
.

c) Fie polinomul $g \in \mathbb{R}[X]$, $g = X^3 - (a+b+c)X^2 + (ab+bc+ca)X - abc$, cu rădăcinile a,b,c. Deoarece p = -(a+b+c) > 0, q = ab+bc+ca > 0 și r = -abc > 0, din punctul a) rezultă că rădăcinile a,b,c ale lui g nu sunt în intervalul $[0,\infty)$. Așadar, $a,b,c \in (-\infty,0)$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1. a) Se arată că $A^3 = 0_3$.

1. a) Se arată că
$$A^3 = 0_3$$
.
b) Dacă $X = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} \in \mathcal{M}_3(\mathbb{C})$, din $A \cdot X = X \cdot A$ rezultă $g = 0$, $d + g = 0$, $a = e + h$, $d = h$,

a+b=f+i, d+e=i şi g+h=0. Se obţine g=d=h=0, a=e=i şi b=f.

c) Presupunem că există $X \in \mathcal{M}_3(\mathbb{C})$, astfel încât $X^2 = A$.

Rezultă
$$A \cdot X = X \cdot A$$
. Din **b**), există $a, b, c \in \mathbb{C}$, astfel încât $X = \begin{pmatrix} a & 0 & 0 \\ b & a & 0 \\ c & b & a \end{pmatrix}$.

Din
$$X^2 = A$$
, rezultă că $\det(X) = 0$, deci $a = 0$. Se obține $X^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ b^2 & 0 & 0 \end{pmatrix} \neq A$.

2. a)
$$f(3) - f(1) = a(3^4 - 1) + b(3 - 1)$$
 și rezultă concluzia.

b) Se obține
$$f(x) - f(y) = (x - y)(a(x + y)(x^2 + y^2) + b)$$
.

c) Cum
$$b-1$$
 divide 1 rezultă $b \in \{0,2\}$. Dacă $b=0 \Rightarrow a=1$, $c=3$. Dacă $b=2 \Rightarrow a=-\frac{1}{15} \notin \mathbb{Z}$.

Soluții

- **1. a)** Se calculează $\det(A) = (a-b)(b-c)(c-a)$.
- **b)** Se arată că unica soluție este x = y = z = 0.
- c) Se obțin soluțiile $(\alpha, -\alpha, 0)$, cu $\alpha \in \mathbb{C}$.
- **2.** a) $9, 4 \in \mathbb{Z}$ şi $9^2 5 \cdot 4^2 = 1$, deci $z \in M$
- $\mathbf{b)} \ \ \text{Se arată uşor că} \ \ \forall \ z_1, z_2 \in M \ \ , \ \ \text{avem} \ \ z_1 \cdot z_2 \in M \quad \text{și} \quad z_1^{-1} \in M \ .$
- c) Se demonstrează că pentru $z = 9 + 4\sqrt{5} \in M$, $\forall k, n \in \mathbb{N}^*$, cu $n \neq k$, avem $z^n \neq z^k$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

- **1. a)** Se arată că $S = 0_3$.
- **b**) Se calculează $A^2 = 14 \cdot A$, apoi $B \cdot C = I_3 + (15a + 1) \cdot A$ și se obține $a = -\frac{1}{15}$.
- c) Se folosește relația $A^2 = 14 \cdot A$ și se demonstrează prin inducție matematică.
- **2. a)** Deoarece $0=\epsilon^3-1=\left(\epsilon-1\right)\left(\epsilon^2+\epsilon+1\right)$ și $\epsilon\in\mathbb{C}\setminus\mathbb{R}$, rezultă concluzia.
- **b**) Determinantul sistemului este $\Delta = (\varepsilon 1)(\varepsilon^2 1)(\varepsilon^2 \varepsilon) \neq 0$, deci sistemul are doar soluția nulă x = y = z = 0.
- $\mathbf{c}) \ \ \text{Din ipoteză, există} \quad g \in \mathbb{C}\left[X\right], \ \ \text{astfel încât} \quad f_1\left(X^3\right) + X f_2\left(X^3\right) + X^2 f_3\left(X^3\right) = \left(X^3 1\right) \cdot g\left(X\right).$

Deoarece numerele $1, \varepsilon$ și ε^2 sunt rădăcinile polinomului X^3-1 , se obține sistemul

$$\begin{cases} a_1 + a_2 + a_3 = 0 \\ a_1 + a_2 \cdot \varepsilon + a_3 \cdot \varepsilon^2 = 0, \text{ unde } a_k = f_k(1), \forall k \in \{1, 2, 3\}. \\ a_1 + a_2 \cdot \varepsilon^2 + a_3 \cdot \varepsilon = 0 \end{cases}$$

Folosind punctul **b**) se deduce că $f_k(1) = 0$, $\forall k \in \{1, 2, 3\}$, de unde rezultă concluzia.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u> Soluții

- 1. a) Se verifică prin calcul.
- **b)** Prin calcul direct se obține unica soluție $\begin{cases} x = pqr \\ y = -(pq + qr + rp) \\ z = p + q + r \end{cases}$
- c) Numerele p, q, r verifică aceeași ecuație de grad trei $x^3 x^2 x + 1 = 0$, cu soluțiile $x_1 = x_2 = 1$, $x_3 = -1$, deci p = q = 1 sau p = r = 1 sau q = r = 1.
- **2. a)** *A* are 25 de elemente.

b) Dacă
$$X = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
 atunci $X^2 = I_2 \Leftrightarrow \begin{pmatrix} a^2 - b^2 & \hat{2}ab \\ -\hat{2}ab & a^2 - b^2 \end{pmatrix} = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix} \Leftrightarrow a^2 - b^2 = \hat{1}$ și $ab = \hat{0}$.

Dacă $a = \hat{0} \Rightarrow b^2 = \hat{4} \Rightarrow b \in \{\hat{2}, \hat{3}\}$. Dacă $b = \hat{0} \Rightarrow a^2 = \hat{1} \Rightarrow a \in \{\hat{1}, \hat{4}\}$.

Obţinem matricele
$$\begin{pmatrix} \hat{0} & \hat{2} \\ \hat{3} & \hat{0} \end{pmatrix}$$
, $\begin{pmatrix} \hat{0} & \hat{3} \\ \hat{2} & \hat{0} \end{pmatrix}$, $\begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$, $\begin{pmatrix} \hat{4} & \hat{0} \\ \hat{0} & \hat{4} \end{pmatrix}$

c) Matricea $Y = \begin{pmatrix} \hat{1} & \hat{2} \\ \hat{3} & \hat{1} \end{pmatrix} \neq O_2$ are determinantul $\hat{0}$, deci nu e inversabilă.

Soluție

- **1. a)** $rang(A_0) = 1$.
- b) Se verifică prin calcul.
- c) Pentru orice $n \in \mathbb{N}$, $n \ge 2$,

$$C_n \stackrel{not}{=} A^n B - B A^n = A^{n-1} \left(A B - B A \right) + \left(A^{n-1} B - B A^{n-1} \right) A \stackrel{ip}{=} A^{n-1} \cdot A + C_{n-1} \cdot A \; .$$

Folosind relația anterioară, se demonstrează prin inducție concluzia.

- **2.** a) Avem f(-1) = f(1) = 0 și obținem a = -4 și b = 12.
- **b**) Deoarece ecuația are coeficienți reali, dacă admite rădăcina $x_1 = i$, va avea și rădăcina $\overline{x_2} = -i$, deci polinomul f se va divide cu $(X i)(X + i) = X^2 + 1$, adică a = 4 și b = -12.
- c) Rădăcinile x_1, x_2, x_3 sunt în progresie aritmetică, deci există $z, r \in \mathbb{C}$ astfel încât $x_1 = z r$, $x_2 = z$ și $x_3 = z + r$. Obținem $x_1 + x_2 + x_3 = 3z = 3$, deci z = 1.

$$x_1^2 + x_2^2 + x_3^2 = (1 - r)^2 + 1 + (1 + r)^2 = 11$$
, deci $r \in \{-2, 2\}$, iar rădăcinile sunt $-1, 1, 3$.
În final, $a = 4 \cdot (x_1 x_2 + x_2 x_3 + x_3 x_1) = -4$ și $b = -4x_1 x_2 x_3 = 12$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. Patru matrice, și anume
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

b)
$$\det(A) = 1 \neq 0$$
, deci matricea A este inversabilă. Se obține $A^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} \notin M$.

c) Fie
$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M$$
 inversabilă, cu $B^{-1} = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in M$. $B \cdot B^{-1} = I_2 \iff \begin{cases} ax + bz = 1 \\ ay + bt = 0 \\ cx + dz = 0 \end{cases}$. $cy + dt = 1$

Deoarece $a,b,c,d\in\mathbb{N}$, se obțin soluțiile $B_1=I_2=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ și $B_2=\begin{pmatrix}0&1\\1&0\end{pmatrix}$.

2. a) Adunând relațiile lui Viète,
$$x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 = \frac{a}{1}$$
 și $x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4 = -\frac{8}{1}$ și grupând, obținem concluzia.

- **b**) Avem $x_1 + x_4 = x_2 + x_3 = 4$. Folosind a treia relație a lui Viète, obținem $x_1x_4 + x_2x_3 = -2$. Din a doua relație a lui Viète, obținem a = 14.
- c) x_1, x_2, x_3, x_4 sunt în progresie aritmetică, deci există $z, r \in \mathbb{C}$, astfel încât $x_1 = z 3r$, $x_2 = z r$, $x_3 = z + r$ și $x_4 = z + 3r$. Avem $x_1 + x_4 = x_2 + x_3 = 4$, deci z = 2 și din b) obținem a = 14 și $x_1x_4 + x_2x_3 = -2$. Rezultă $x_1^2 = 1$ și $x_1^2 = 1$ și $x_2^2 = 1$ și $x_2^2 = 1$ și $x_1^2 = 1$ și $x_2^2 = 1$ și $x_2^2 = 1$ și $x_1^2 = 1$ și $x_1^2 = 1$ și $x_2^2 = 1$ și $x_1^2 = 1$ și $x_2^2 = 1$ și $x_1^2 = 1$

- **1.** a) Se arată că $AB = BA = O_4$, deci $AB + BA = O_4$
- **b)** Se arată că rang (A + B) = 2 și rang A = rang B = 1.
- c) Se demonstrează folosind faptul că $AB = BA = O_4$ și binomul lui Newton.
- **2.** a) Deoarece f(-1) = 0, se obține a = 6.
- **b**) Observăm că $x_0 = 0$ nu este rădăcină pentru f.

Pentru $i \in \{1, 2, 3, 4\}$, x_i e rădăcină a lui $f \Leftrightarrow x_i^4 + ax_i^3 + 4x_i^2 + 1 = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + 4\frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^2} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} + \frac{1}{x_i^4} = 0 \Leftrightarrow 1 + a \cdot \frac{1}{x_i} + \frac{1}{x_i^4} +$

$$\Leftrightarrow \frac{1}{x_i}$$
 este rădăcină a lui g

c) Din $\sum_{i=1}^{4} \frac{1}{x_i^2} = -8 < 0$ rezultă concluzia.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Solutii

1. a) Se arată că
$$AB = BA = \begin{pmatrix} 2 & 0 \\ 5 & 2 \end{pmatrix}$$
.

- **b)** Se verifică prin calcul.
- c) Dacă X este o soluție a ecuației, obținem că $X \in C(A)$, deci există $x, y \in \mathbb{R}$, astfel încât $X = \begin{pmatrix} x & 0 \\ y & x \end{pmatrix}$. Rezultă

$$\begin{pmatrix} x^2 + x & 0 \\ 2xy + y & x^2 + x \end{pmatrix} = A, \text{ deci } \begin{cases} x^2 + x - 2 = 0 \\ (2x + 1)y = 3 \end{cases}, \text{ adică } \begin{cases} x = 1 \\ y = 1 \end{cases} \text{ sau } \begin{cases} x = -2 \\ y = -1 \end{cases}. \text{ Se obțin soluțiile } X_1 = B,$$

$$X_2 = \begin{pmatrix} -2 & 0 \\ -1 & -2 \end{pmatrix}.$$

- 2. a) Fie $x, y \in G$. Avem $1 + xy \in (0, 2)$, deci 1 + xy > 0. Atunci, $x * y \in G \iff \begin{cases} (x+1)(y+1) > 0 \\ (x-1)(y-1) > 0 \end{cases}$, adevărat.
- b) Se verifică prin calcul
- c) $f(x) = f\left(\frac{1}{2} * \frac{1}{3} * ... * \frac{1}{9}\right) = f\left(\frac{1}{2}\right) \cdot f\left(\frac{1}{3}\right) \cdot ... \cdot f\left(\frac{1}{9}\right) = \frac{1}{3} \cdot \frac{2}{4} \cdot \frac{3}{5} \cdot ... \cdot \frac{8}{10} = \frac{1}{45}$. Din $\frac{1-x}{1+x} = \frac{1}{45}$ rezultă $x = \frac{22}{23}$.

Soluții

1. a) Se verifică prin calcul.

b) Din
$$A^2 = 0_2$$
 obţinem sistemul:
$$\begin{cases} a^2 + bc = 0 \\ b(a+d) = 0 \\ c(a+d) = 0 \end{cases}$$
. Presupunem că $a+d \neq 0$. Rezultă $b=c=0$ şi $(a-d)(a+d)=0$

a=d. Din prima și din ultima ecuație din sistem rezultă a=d=0, deci a+d=0, contradicție.

- c) Din punctul b) avem că a+d=0 și din $A^2=0_2$ deducem $\det \left(A-x\cdot I_2\right)=x^2$. Obținem $\det \left(A+2I_2\right)=4$.
- **2.** a) $(a,15) \in G \iff a^2 3 \cdot 15^2 = 1$. Se obține $a \in \{-26, 26\}$.
- **b)** Pentru $(a,b),(c,d) \in G$, avem ac + 3bd, $ad + bc \in \mathbb{Z}$ şi $(ac + 3bd)^2 3(ad + bc)^2 = (a^2 3b^2)(c^2 3d^2) = 1$.
- c) Se verifică axiomele grupului. Se arată că elementul neutru este $(1,0) \in G$ și $\forall (a,b) \in G$, simetricul acestuia este $(a,-b) \in G$.

Soluție

- **1.** a) $\det(A) = -2 \neq 0$, $\det(A) = 2$.
- **b)** Se arată că $f(B) = \begin{pmatrix} -3 & -3 \\ 0 & 3 \end{pmatrix}$.
- c) Dacă $X \in \mathcal{M}_2(\mathbb{R})$ și f(X) = B atunci tr(AX XA) = tr(B), deci 0 = 2 fals.
- **2.** a) $x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 2(x_1x_2 + x_1x_3 + x_2x_3) = -2a^2$.
- **b)** x_1 e o rădăcină a polinomului $f \Leftrightarrow f(x_1) = 0 \Leftrightarrow x_1^3 + a^2x_1 a = 0 \Leftrightarrow 1 + \frac{a^2}{x_1^2} \frac{a}{x_1^3} = 0 \Leftrightarrow \frac{1}{x_1}$ este o rădăcină a polinomului g.
- c) Notăm cu $\frac{1}{x_1}$, $\frac{1}{x_2}$ și $\frac{1}{x_3}$ rădăcinile polinomului g. Deoarece $x_1^2 + x_2^2 + x_3^2 = -2a^2 < 0$, rezultă că f are o singură rădăcină reală, de exemplu x_1 . Atunci, $\frac{1}{x_1} \in \mathbb{R}$ este unica rădăcină reală a lui g.

Presupunem că $x_1 = \frac{1}{x_1}$, deci că $x_1 \in \{-1,1\}$. Dacă $x_1 = -1$ este rădăcina comună a polinoamelor, din f(-1) = 0 deducem $a^2 + a + 1 = 0$, fals. Dacă $x_1 = 1$ este rădăcina comună a polinoamelor, din f(1) = 0 deducem $a^2 - a + 1 = 0$, fals.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- **1. a)** Determinantul sistemului este $\Delta = -5a + 20$. Obținem a = 4.
- **b)** Dacă $\Delta \neq 0$, sistemul este de tip Cramer, deci este compatibil.

Pentru $\Delta = 0$, deci pentru a = 4, un minor principal este $\Delta_p = \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix}$, iar sistemul este incompatibil dacă

și numai dacă $\Delta_c=\begin{vmatrix}1&2&1\\2&-1&1\\7&-1&b\end{vmatrix}\neq 0$, adică pentru $b\neq 4$.

- c) Din x+z=2y și din prima ecuație rezultă $y=\frac{1}{4}$. Din primele două ecuații deducem $x=\frac{3}{4}$, $z=-\frac{1}{4}$ și din ecuația a treia, singura condiție este a+4b=20, verificată de o infinitate de perechi $(a,b)\in \left\{ \left(20-4b,b\right) \mid b\in\mathbb{R} \right\}$.
- 2. a) Se verifică prin calcul.
- **b**) Cum $\sin t \in \mathbb{Z}$, $\cos t \in \mathbb{Z}$ şi $\sin^2 t + \cos^2 t = 1$ rezultă că $\sin t = 0$ şi $\cos t = \pm 1$ sau $\sin t = \pm 1$ şi $\cos t = 0$. Deci $t = k\frac{\pi}{2}$, $k \in \mathbb{Z}$.
- c) Se verifică axiomele grupului. Elementul neutru este $X(0) = I_2$ și pentru $X(t) \in G$, $(X(t))^{-1} = X(-t) \in G$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. a) Determinantul este
$$\begin{vmatrix} 1 & a & 0 \\ 0 & 1 & a \\ 1 & 0 & 1 \end{vmatrix} = 1 + a^2 \neq 0$$
.

b) Se obține soluția
$$x_0 = \frac{1}{a^2 + 1}$$
, $y_0 = \frac{a}{a^2 + 1}$, $z_0 = \frac{a^2}{a^2 + 1}$, cu $y_0^2 = x_0 \cdot z_0$.

c) După calcule, se obține
$$A^{-1} = \begin{pmatrix} \frac{1}{a^2 + 1} & \frac{-a}{a^2 + 1} & \frac{a^2}{a^2 + 1} \\ \frac{a}{a^2 + 1} & \frac{1}{a^2 + 1} & \frac{-a}{a^2 + 1} \\ \frac{-1}{a^2 + 1} & \frac{a}{a^2 + 1} & \frac{1}{a^2 + 1} \end{pmatrix}$$
.

- 2. a) Se obtine e = 6.
- b) Se arată că corespondența este o lege de compoziție pe G. Se verifică apoi axiomele grupului.

Se obține că elementul neutru este e = 6, iar simetricul lui $x \in G$ este $x' = 5 + \frac{1}{x - 5} \in G$.

c) Notăm
$$\begin{cases} x-5=a>0 \\ y-5=b>0 & \text{și obținem sistemul} \\ z-5=c>0 \end{cases} \begin{cases} ab=c \\ bc=a, & \text{cu unica soluție } a=b=c=1. \\ ca=b \end{cases}$$

Singura soluție a sistemului inițial este x = y = z = 6.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1. a)
$$A^{t} = \begin{pmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3} \end{pmatrix}$$
 și obținem $B = \begin{pmatrix} a_{1}^{2} + a_{2}^{2} + a_{3}^{2} & a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} \\ a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} & b_{1}^{2} + b_{2}^{2} + b_{3}^{2} \end{pmatrix} = \begin{pmatrix} 14 & 28 \\ 28 & 56 \end{pmatrix}$.

b) Se obține
$$\det(B) = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}^2 + \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}^2 + \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}^2 \ge 0$$

c) Punctele
$$P_1, P_2, P_3, O$$
 sunt coliniare $\Leftrightarrow \begin{vmatrix} a_k & a_t \\ b_k & b_t \end{vmatrix} = 0, \ \forall k, t \in \{1, 2, 3\}.$

$$\det(B) = 0 \iff \begin{vmatrix} a_k & a_t \\ b_k & b_t \end{vmatrix} = 0, \ \forall t, k \in \{1, 2, 3\}, \ t \neq k \quad \text{si rezultă concluzia.}$$
2. a) Numărul elementelor mulțimii este $|\mathbb{Z}_5|^{|L|} = 5^2 = 25$, unde $L = \{a, b\} \subset \mathbb{Z}_5$.
b) Se verifică prin calcul

- **b)** Se verifică prin calcul.
- c) Se verifică axiomele grupului. Pentru $a, b \in \mathbb{Z}_5$, notăm $A(a, b) = \begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix}$.

Elementul neutru este $I_3 = A(\hat{0}, \hat{0})$, iar simetrica matricei A(a, b) este matricea A(-a, -b).

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Soluție

1.a)
$$A^2 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = A + I_2$$
.

b)
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Din $A \cdot X = X \cdot A$, rezultă $b = c$, $d = a - b$ deci $X = \begin{pmatrix} a & b \\ b & a - b \end{pmatrix}$.

Dacă $\det(X) = 0 \Rightarrow a^2 - ab - b^2 = 0$. Dacă $b = 0 \Rightarrow a = 0 \Rightarrow X = 0_2$, contradicție. Dacă $b \neq 0$, împărțind prin $b \Rightarrow t^2 - t - 1 = 0, t = \frac{a}{b} \in \mathbb{Q}$, fals. Deci $\det X \neq 0$, adică X este inversabilă.

- c) $F_2 = 1$. Demonstrăm prin inducție. Verificare. n = 1; $A = \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Presupunem adevărată pentru n și demonstrăm pentru n+1. $A^{n+1} = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix}$.
- **2.a)** $\sigma \cdot \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}, \pi \cdot \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 5 & 4 \end{pmatrix}$. Cum aceste permutări nu comută, rezultă concluzia.
- **b**) Prin calcul direct se obține că ord(π)=3 .Deci $H = \left\{e, \pi, \pi^2\right\}$.
- c) Fie π^i , $\pi^j \in H \Rightarrow \pi^{i+j} \in H$. Cum H este finită, rezultă H este subgrup al lui S_5 .

Solutie

1.a)
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 4 & 2 & 3 & 5 \end{pmatrix}$$
.

b)
$$m(\sigma) = 7 \ m(\sigma^{-1}) = 7.$$

c)
$$\varepsilon(\sigma) = -1$$
 Dacă ar exista o soluție x atunci $\varepsilon(x^4) = \varepsilon(\sigma)$ sau $1 = -1$ contradicție.

2.a)
$$x > 1, y > 1 \Rightarrow xy - x - y + 2 > 1$$
, decarece $(x - 1) \cdot (y - 1) > 0$.

b)
$$f(xy) = xy - 1$$
; $f(x) \circ f(y) = (x+1) \circ (y+1) = xy + 1$.

c) Fie
$$\,f^{-1}:G \to \left(0,\infty\right)\,$$
 care este izomorfism , $\,f^{-1}=g\,$ și deci

$$\underbrace{x * x * \dots * x}_{10} = 1025 \Rightarrow (g(x))^{10} = g(1025) \Leftrightarrow (g(x))^{10} = 1024 \Leftrightarrow (x-1)^{10} = 1024 \Rightarrow x \in \{-1, 3\}$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$A \cdot (X + Y) = A \cdot X + A \cdot Y = X \cdot A + Y \cdot A = (X + Y) \cdot A \Rightarrow X + Y \in C(A)$$
.

b) Fie
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Din $A \cdot E_1 = E_1 \cdot A$, $A \cdot E_2 = E_2 \cdot A \Rightarrow a = d$, $c = b = 0 \Rightarrow A = a \cdot I_2$.

c) Dacă oricare trei se află în C(A) atunci există $\alpha \in \mathbb{C}$, $A = \alpha \cdot I_2 \Rightarrow$ a patra matrice se află în C(A).

2.a)
$$x = a^{-1} \cdot b$$
, $x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$.

b)
$$a \cdot b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$
; ord $(ab) = 5$.

c) ord(b) =
$$6 \Rightarrow b^k = e$$
 echivalent cu $6 \mid k$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Soluție

1.a)
$$A \cdot B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
; $B \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$; $A \cdot B \neq B \cdot A$.

b) Prin calcul direct.

c) Notăm
$$C = A \cdot B \cdot C^2 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$
 apoi prin inducție completă se arată că $C^n = \begin{pmatrix} 1 & -n \\ 0 & 1 \end{pmatrix}$, $\forall n \in \mathbb{N}^*$ deci răspunsul este negativ.

2a)
$$X^3 - 2 \cdot X - 1 = (X + 1) \cdot P$$
.

b)
$$Q_3 = X^3 - 2 \cdot X - 1$$
 are trei rădăcini reale : $x_1 = -1$, $x_2 = \frac{1}{2} + \frac{\sqrt{5}}{2}$, $x_3 = \frac{1}{2} - \frac{\sqrt{5}}{2}$.

c) Prin inducție completă după n .Pentru n=2, $Q_2=P$: P. Presupunem afirmația adevărată pentru n și o demonsrăm pentru n+1. $Q_{n+1}=X^{n+1}-F_{n+1}\cdot X-F_n=X\cdot \left(X^n-F_n\cdot X-F_{n-1}\right)+F_n\cdot \left(X^2-X-1\right)$, de unde rezultă afirmația .

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$x_{n+1} = a \cdot x_n - b \cdot y_n$$
, $y_{n+1} = b \cdot x_n + a \cdot y_n$. Deci $x_{n+1}^2 + y_{n+1}^2 = \left(a^2 + b^2\right) \cdot \left(x_n^2 + y_n^2\right)$

b) Şirurile $(x_n)_n$, $(y_n)_n$ sunt mărginite $\Leftrightarrow (d_n)_n$, $d_n = x_n^2 + y_n^2$, $\forall n \in \mathbb{N}$ este mărginit.

$$d_{n+1} = \left(a^2 + b^2\right) \cdot d_n \underset{\text{deci}}{} d_n = \left(a^2 + b^2\right)^n \cdot \left(x_0^2 + y_0^2\right). \text{ Dacă } a^2 + b^2 \leq 1 \Rightarrow d_n \leq x_0^2 + y_0^2 \text{ , } \forall n \in \mathbb{N}.$$

Dacă $a^2 + b^2 > 1$ șirul (d_n) este nemărginit.

$$\mathbf{c}) A = 2 \cdot \begin{pmatrix} \cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\ \sin \frac{\pi}{3} & \cos \frac{\pi}{3} \end{pmatrix}; \begin{pmatrix} x_n \\ y_n \end{pmatrix} = A^n \cdot \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \Rightarrow x_n = 2^n \cdot \left(x_0 \cdot \cos \frac{n\pi}{3} - y_0 \cdot \sin \frac{n\pi}{3} \right)$$

De aici rezultă relația cerută.

2.a)
$$\hat{1}^2 = \hat{10}^2 = \hat{1}^2$$
, $\hat{2}^2 = \hat{9}^2 = \hat{4}$, $\hat{3}^2 = \hat{8}^2 = \hat{9}$, $\hat{4}^2 = \hat{7} = \hat{5}$, $\hat{5}^2 = \hat{6}^2 = \hat{3} \Rightarrow$ ecuația nu are soluții în \mathbb{Z}_{11}

- **b)** Numărul este $10 \cdot 11^2 = 1210$.
- c) Dacă polinomul are o soluție $a \in \mathbb{Z}_{11}$, atunci $a^2 + a + \hat{1} = \hat{0}$, deci $(\hat{2}a + \hat{1})^2 = \hat{8}$, fals. Cum polinomul dat are gradul doi și nu are rădăcini în \mathbb{Z}_{11} , rezultă concluzia.

Soluție

1.a)
$$f(A) = A^2 = I_2$$
.

b)
$$f(X + f(X)) = A \cdot (X + A \cdot X) = A \cdot X + A^2 \cdot X = A \cdot X + X = X + f(X)$$
.

c) Fie $f(X_1) = f(X_2) \Rightarrow A \cdot X_1 = A \cdot X_2 \Rightarrow X_1 = X_2$, deoarece A este inversabilă, deci f este injectivă. Fie

 $Y \in M_2(\mathbb{R})$. $X = A^{-1} \cdot Y$ este o preimagine a lui Y. Rezultă f este surjectivă, deci f este bijectivă.

2.a)
$$X, Y \in M \Rightarrow A \cdot X = X \cdot A, A \cdot Y = Y \cdot A \Rightarrow A \cdot (X \cdot Y) = (A \cdot X) \cdot Y = (X \cdot A) \cdot Y = X \cdot (A \cdot Y) = X \cdot (Y \cdot A) = (X \cdot Y) \cdot A$$
.

b) Fie $X, Y \in G \Rightarrow \det(X) \neq 0, \det(Y) \neq 0, \det(X \cdot Y) \neq 0$ şi $X \cdot Y \in M \Rightarrow X \cdot Y \in G$.

$$X \in M$$
 şi $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow X = \begin{pmatrix} a & 0 \\ c & a \end{pmatrix}$. Cum $\det(X) \neq 0 \Rightarrow a \neq 0$. $X^{-1} = \begin{pmatrix} \frac{1}{a} & 0 \\ -\frac{c}{a^2} & \frac{1}{a} \end{pmatrix} \in G$

c) Fie
$$X = \begin{pmatrix} a & 0 \\ c & a \end{pmatrix}$$
, $X^2 = I_2 \Rightarrow c = 0, a = \pm 1$. Deci există un element de ordin doi $X = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Soluție

1.a)
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = A \cdot \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \Rightarrow x_1 = 3, y_1 = 2; \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = A \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix} \Rightarrow x_2 = 17, y_2 = 12.$$

b)Demonstrăm prin inducție. $x_0 + y_0 \cdot \sqrt{2} = 1$, $x_1 + y_1 \cdot \sqrt{2} = 3 + 2\sqrt{2}$. Presupunem adevărat pentru n și demonstrăm pentru n+1.

$$x_{n+1} + y_{n+1} \cdot \sqrt{2} = 3 \cdot x_n + 4 \cdot y_n + \left(2x_n + 3y_n\right)\sqrt{2} = \left(3 + 2\sqrt{2}\right) \cdot \left(x_n + y_n\sqrt{2}\right) = \left(3 + 2\sqrt{2}\right)^{n+1}.$$

c)
$$x_{n+2} = 3 \cdot x_{n+1} + 4 \cdot y_{n+1} \$$
; Deci $x_{n+2} = 6 \cdot x_{n+1} + x_n = 0, \forall n \ge 0 \ .$

2.a)
$$\hat{3}x^2 = \hat{3} \Rightarrow x^2 = \hat{1} \Rightarrow x \in \{\hat{1}, \hat{6}\}$$

b) ord
$$\binom{6}{3} = 6$$

c) Presupunem că f este un morfism de grupuri. $f\left(0\right) = \hat{1}; f\left(0\right) = f\left(2+2+2\right) = \hat{3}^3 = \hat{6} = \hat{1}$, contradicție.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$d = \frac{bc}{a} \Rightarrow f(x) = \frac{a\left(x + \frac{b}{a}\right)}{c\left(x + \frac{d}{c}\right)} = \frac{a}{c}$$

- **b**) Fie $x_1, x_2 > 0$ a.î. $f(x_1) = f(x_2) \Rightarrow x_1(ad bc) = x_2(ad bc)$, deci $x_1 = x_2$, adică f este injectivă.
- c) Inducție după n. Pentru $n=1 \Rightarrow f(x) = \frac{ax+b}{cx+d} = \frac{a_1x+b_1}{c_1x+d_1}$. Presupunem adevărată pentru n și demonstrăm

pentru
$$n+1$$
. $\underbrace{\left(f\circ f\circ ...\circ f\right)}_{\text{de }n\text{ ori}}(x) = \frac{a_n f\left(x\right) + b_n}{c_n f\left(x\right) + d_n} = \frac{a_{n+1} x + b_{n+1}}{c_{n+1} x + d_{n+1}}$, deoarece $A^{n+1} = A^n \cdot A = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \cdot A$.

2a) Fie
$$X \in G$$
, $X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a+1 & b \\ 0 & 1 \end{pmatrix} \Rightarrow \det X = a+1 \neq 0$.

b)
$$A^2 = A, B^2 = 0_2, A \cdot B = B, B \cdot A = 0_2$$
. Fix $X_1, X_2 \in G$; $X_1 = I_2 + aA + bB$, $X_2 = I_2 + a'A + b'B$.

$$X_1 \cdot X_2 = I_2 + (a + a' + aa')A + (b + b' + bb')B$$
, $a + a' + aa' \neq -1$. $(X_1)^{-1} = I_2 - \frac{a}{a+1}A - \frac{b}{a+1}B$, deci G este un grup.

c)
$$X^2 = I_2 \Rightarrow X = I_2 - 2A + bB, b \in \mathbb{R}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$\Delta = 14m - 4 \neq 0 \Rightarrow m \in \mathbb{R} \setminus \left\{ \frac{2}{7} \right\}.$$

b)
$$m = \frac{2}{7}$$
.

c)
$$d_2 \cap d_3 = \{(7, -3)\}; (7, -3) \in d_1 \Rightarrow m = \frac{2}{7}$$
.

2.a) det $A = m \in \{\pm \hat{1}\}$. Cum $(\mathbb{Z}_5, +, \cdot)$ este un corp comutativ, rezultă că A este inversabilă. Se arată că ABA = B.

$$\mathbf{b)} \mid H \mid = 10 \text{ . Fie } X_1, X_2 \in H \Rightarrow X_1 = \begin{pmatrix} m & n \\ & & \\ & & \\ 0 & 1 \end{pmatrix}, X_2 = \begin{pmatrix} m' & n' \\ & & \\ & & \\ 0 & 1 \end{pmatrix} \text{. } X_1 \cdot X_2 = \begin{pmatrix} mm' & mn' + n \\ & & \\ & & \\ 0 & 1 \end{pmatrix} \in H \text{ , deoarece } X_1 = \begin{pmatrix} mm' & mn' + n \\ & & \\ & & \\ 0 & 1 \end{pmatrix}$$

$$mm' \in \left\{ \pm \mathring{1} \right\}.$$

$$\mathbf{c}) \ \ X_1^2 = I_2, X_1 \neq I_2 \Rightarrow \begin{pmatrix} m^2 & mn+n \\ \mathring{0} & \mathring{0} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathring{1} & \mathring{0} \\ \mathring{0} & \mathring{1} \end{pmatrix} \Rightarrow m^2 = \mathring{1} \\ \text{si} \ \ n \\ \begin{pmatrix} m+\mathring{1} \end{pmatrix} = \mathring{0} \\ \text{.Pentru} \ \ m = \mathring{1}, n = \mathring{0} \\ \Rightarrow X_1 = I_2 \\ \text{, fals.}$$

Pentru $m = -\stackrel{\wedge}{1}, n \in \mathbb{Z}_5 \Rightarrow 5$ soluții.

Solutie

1.a)
$$f(A) = A^2 = 0_2$$
.

b)
$$f(f(X)) = f(AX) = A^2X = 0_2$$
.

c) Presupunem
$$f(X) + f(Y) = I_2 \Rightarrow A(X + Y) = I_2$$
 și aplicăm pe $f \Rightarrow f(A(X + Y)) = f(I_2) \Rightarrow A^2(X + Y) = A$
 $\Rightarrow 0_2 = A$, contradicție.

2a)
$$A^t = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow AA^t = I_2$$
, deci $A \in P$.

b) Fie
$$A, B \in P, A \cdot A^t = I_2 \Rightarrow \det(A \cdot A^t) = 1 \Rightarrow \det(A) \cdot \det(A^t) = 1 \Rightarrow \det(A) \neq 0 \Rightarrow A$$
 inversabilă

$$\Rightarrow A^t = A^{-1} \Rightarrow P = GL_2(\mathbb{R}) = \text{grup}.$$

c)
$$X = A^{-1} \cdot B$$
; $\det(X) = (\det A^{-1}) \cdot (\det B) \neq 0 \Rightarrow X \in GL_2(\mathbb{R}) = P$.

Solutie

$$\textbf{1.a)} \ \ M_{a,b} \cdot M_{c,d} = \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & c & d \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+c & b+d \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = M_{a+c,b+d}$$

b) $M_{0,0} = I_3$ este elementul neutru .Pentru orice matrice $M_{a,b} \in G$, există matricea $M_{-a,-b} \in G$ a.î.

$$M_{a,b} \cdot M_{-a,-b} = M_{0,0} = M_{-a,-b} \cdot M_{a,b}. \quad M_{c,d} \cdot M_{a,b} = M_{c+a,d+b} = M_{a+c,b+d} = M_{a,b} \cdot M_{c,d}.$$

c)
$$M_{a,b} - M_{a,b}^t = M = \begin{pmatrix} 0 & a & b \\ -a & 0 & 0 \\ -b & 0 & 0 \end{pmatrix} \Rightarrow \det(M) = 0$$
. Dacă $a = 0, b \in \mathbb{R}^* \Rightarrow rang(M) = 2$.

Dacă $a = 0, b = 0 \Rightarrow rang(M) = 0$. Dacă $a \in \mathbb{R}^* \Rightarrow rang(M) = 2$.

- **2a)** ord(e) = 1, ord(a) = ord(b) = ord(c) = 2. Deci x = e este unica soluție.
- **b**) $\forall x \in K, x^2 = e \Rightarrow K$ este comutativ. Dacă $ab = a \Rightarrow b = e$, fals. Dacă $ab = b \Rightarrow a = e$, fals. Dacă $ab = e \Rightarrow b = a^{-1} = a$, fals. Deci ab = c.
- c) Nu sunt izomorfe deoarece K nu este ciclic și \mathbb{Z}_4 este ciclic fiind generat de $\hat{1}$.

Soluție

1.a)
$$B^2 = \begin{pmatrix} 6 & 2 \\ -6 & -2 \end{pmatrix} = 2B.$$

b) $A^2 = 2A \Rightarrow a^2 + bc = 2a$; b(a+d) = 2b; c(a+d) = 2c; $bc + d^2 = 2d$. Dacă $b \neq 0 \Rightarrow a+d=2$, contradicție. Deci b=0. Analog c=0. $a^2 = 2a$, $d^2 = 2d$, $a+d \neq 2 \Rightarrow A=O_2$ sau $A=2I_2$.

c)
$$d = 2 - a$$
; $det(A) = ad - bc = a(2 - a) - bc = 0$.

2.a) Aplicăm algoritmul lui Eucid.
$$x^6 - 1 = (x^4 - 1) \cdot x^2 + (x^2 - 1) \cdot x^4 - 1 = (x^2 - 1) \cdot (x^2 + 1)$$
, deci $(f, g) = x^2 - 1$.

b) 8 soluții distincte.

c)
$$f(x) = (x-1) \cdot (x+1) \cdot (x^2+1)$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}; A^t = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} = A \Rightarrow A \in P ; B = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}; B^t = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} = -B \Rightarrow B \in Q.$$

b) Fie
$$A, B \in Q \Rightarrow A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}. AB = \begin{pmatrix} -ab & 0 \\ 0 & -ab \end{pmatrix} = (AB)^t \Rightarrow AB \in P.$$

$$\mathbf{c}) \ \ X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; X^t = -X \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} \Rightarrow a = d = 0; c = -b \ . \ X = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}; \det \begin{pmatrix} X \end{pmatrix} = b^2 \ge 0 \ .$$

2a) $f'(x) = 3x^2 + 4x + 3 > 0, \forall x \in \mathbb{R} \Rightarrow f$ este strict crescătoare.

 $\lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to \infty} f(x) = \infty, f \text{ este continuă deci are P.D.} \Rightarrow f(x) = 0 \text{ are o unică soluție reală.}$

b)
$$\hat{f}(\hat{0}) = \hat{1}, \hat{f}(\hat{1}) = \hat{1}$$

c) Dacă $f = gh, grad(h) \ge 1, grad(h) \ge 1 \Rightarrow \hat{f} = \hat{g} \cdot \hat{h}$, deci \hat{f} este reductibil, contradicție.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a) Fie
$$Y = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
; $AX = XA \Rightarrow t = x, y = 3z$.

b)
$$\operatorname{Det}(X) = x^2 - 3y^2 = 0$$
; $\operatorname{Dac\check{a}} y = 0 \Rightarrow x = 0 \Rightarrow X = 0_2$. $\operatorname{Dac\check{a}} y \neq 0 \Rightarrow \left(\frac{x}{y}\right)^2 = 3 \Rightarrow \frac{x}{y} \in \left\{\pm\sqrt{3}\right\}$, contradicție.

c) Dacă
$$X = \begin{pmatrix} a & 3b \\ b & a \end{pmatrix}, Y = \begin{pmatrix} c & 3d \\ d & c \end{pmatrix}, a,b,c,d \in \mathbb{Z} \Rightarrow XY = \begin{pmatrix} ac + 3bd & 3(bc + ad) \\ bc + ad & ac + 3bd \end{pmatrix}.$$

Utilizând metoda inducției matematice, rezultă concluzia.

2a)
$$f(1) = 0$$
.

b)
$$\left(\sum_{i=1}^{5} x_i\right)^2 - 2 \left(\sum_{1 \le i < j \le 5} x_i x_j\right) = -5.$$

c)
$$f(x) = (x-1)(x^4 + 3x^2 + 2x + 2); x^4 + 3x^2 + 2x + 2 = (x^2 + 1)^2 + (x+1)^2 > 0.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$a = 2, b = 0$$
.

b)
$$a = 4, b \neq -2$$
.

c)
$$a \neq 4; b = -a + 2 \Rightarrow x, y, z \in \mathbb{Z}$$
. Pentru $a = 4, b = -2$.

2.a) Cum $a,b,c\in\mathbb{Z}_2$ și variază independent , rezultă că A are 8 elemente.

$$\mathbf{b}) \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ b & c & a \end{pmatrix} \cdot \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ b & c & a \end{pmatrix} = \begin{pmatrix} a^2 & 0 & 0 \\ 0 & a^2 & 0 \\ 0 & 0 & a^2 \end{pmatrix}. \text{Dacă } a = \hat{0} \Rightarrow X^2 = O_3. \text{Dacă } a = \hat{1} \Rightarrow X^2 = I_3.$$

(b c a) (b c a) (0 0 a²)

c) În egalitatea
$$X^2 = 0_3$$
 trecând la determinant se obține $a = \hat{0}$. Cum $X = \begin{pmatrix} \hat{0} & \hat{0} & \hat{0} \\ \hat{0} & \hat{0} & \hat{0} \\ b & c & \hat{0} \end{pmatrix}$, $b, c \in \mathbb{Z}_2$ verifică

egalitatea $X^2 = 0_3$, rezultă că avem 4 soluții.

Solutie

1.a) m = 7.

b)
$$M_1(1,1); M_2\left(\frac{4m-3}{25}, \frac{3m+4}{25}\right); M_3\left(\frac{2m-9}{5}, \frac{12-m}{5}\right), m \in \mathbb{Z}. \text{ Considerăm } m = 25k+7, k \in \mathbb{Z}.$$

c)
$$S = \frac{1}{2} \cdot |\Delta|, \Delta = \frac{1}{25} (-m+7) (14-2m); S = 1 \iff m \in \{2,12\}.$$

2.a)
$$f(-1) = 0$$
.

b)
$$f(x) = (x+1)(2x^2 - (a+2)x + 2)$$
; rădăcinile sunt reale pentru $a \in (-\infty, -6] \cup [2, \infty)$.

$$\mathbf{c}) \ \ x_1 = -1; x_3 = \frac{1}{x_2}; \mid x_2 \mid + \mid x_3 \mid = 2 \Longleftrightarrow \mid x_2 \mid = 1 \Longleftrightarrow a \in [-6, 2].$$

Soluție

1.a) det
$$A = (m-1)^2$$
.

- **b)** Dacă $m \ne 1 \Rightarrow rangA = 3$. Dacă $m = 1 \Rightarrow rangA = 1$.
- c) Caz de incompatibilitate m = 1.

$$\operatorname{Dac\check{a}} m \in \mathbb{Z} \setminus \left\{1\right\} \Longrightarrow x = 1 + \frac{3}{m-1}; y = 0; z = \frac{-3}{m-1}. \operatorname{Deci} m \mid 3 \Longrightarrow m \in \left\{-2, 0, 2, 4\right\}.$$

- 2a) Se verifică prin calcul.
- **b**) $\alpha = [1234], \beta = [1342].$
- c) $x \cdot \beta^{-1} = \alpha^{-1} \cdot x \Leftrightarrow \alpha \cdot x = x \cdot \beta$. $\gamma = x$.

Soluție

1.a)
$$B^t = A^t + A = B$$
,

b) Din ipoteză rezultă
$$A = \begin{pmatrix} 1 & x & y \\ -x & 1 & z \\ -y & -z & 1 \end{pmatrix}$$
, $x, y, z \in \mathbb{R}$, deci det $(A) = 1 + x^2 + y^2 + z^2 \ge 1$.

c) Dacă
$$x + y = 0 \Rightarrow y = -x \Rightarrow B = x(A - A^t) \Rightarrow \det B = 0$$
.

2.a)
$$x(x^2+1)=0 \Rightarrow x_1=0, x_2=i, x_3=-i$$
.

b)
$$i(p+2)+p+q-2=0, p,q \in \mathbb{R} \Rightarrow p=-2,q=4$$
.

$$S_n = x_1^n + x_2^n + x_3^n, n \in \mathbb{N}. S_n = -pS_{n-2} - qS_{n-3}, \forall n \ge 3.$$

c)
$$S_0 = 3, S_1 = 0, S_2 = -2p, S_3 = -3q, S_4 = 2p^2, S_5 = 5pq.$$

$$S_6 = -2p^3 + 3q^2, S_7 = -7p^2q.$$

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Soluție

1.a)
$$A^2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; A^3 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
. Se verifică relația.

b)
$$A^3 - A = A^2 - I_3$$
; $A^5 - A^3 = A^4 - A^2$; $A^7 - A^5 = A^6 - A^4$;..., $A^{2n+1} - A^{2n-1} = A^{2n} - A^{2n-1}$

Prin însumare obținem: $A^{2n+1} - A = A^{2n} - I_3$; $A^{2n+2} - A^2 = A^{2n+1} - A \Rightarrow$

$$A^{2n} - A^2 = A^{2n-1} - A \Rightarrow A^{2n+1} - A^{2n-1} = A^2 - A = I_3$$
; $A^{2n+2} - A^{2n} = A^2 - I_3$

c) Demonstrăm prin inducție. Verificăm pentru n = 1, n = 2. Presupunem adevărată pentru toate valorile $\le n - 1$ și demonstrăm pentru n. Utilizând relația $A^n = A^{n-2} + A^2 - I_2$, rezultă concluzia.

2.a)
$$x^4 - 1 = 0$$
 are soluțiile complexe: $x_1 = 1, x_2 = -1, x_3 = i, x_4 = -i$

b)
$$P_3 = (x-1)(x-\varepsilon_1)(x-\varepsilon_2)$$
 unde $\varepsilon_{1,2} = \frac{-1 \pm i\sqrt{3}}{2}$

c)
$$x^6 - 1 = (X - 1)(X + 1)(X^2 - X + 1)(X^2 + X + 1)$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$[A, A^2] = A^3 - A^3 = 0_2$$
.

b) Fie
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
; $A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. $A \cdot A^* = A^* \cdot A$.

c) [A, BC - CB] = ABC - ACB - BCA + CBA. Prin permutări circulare se obțin celelalte două relații. Adunând se obține egalitatea.

2.a)
$$0 < a < 1, 0 < b < 1 \Rightarrow ab \in (0,1), (1-a)(1-b) \in (0,1)$$

b)
$$f'(x) = \frac{1}{(x+1)^2} > 0, \forall x > 0 \Rightarrow f$$
 strict crescătoare, deci injectivă. f este continuă deci are P.D.,

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = 0, \lim_{\substack{x \to \infty \\ x \to 0}} f(x) = 1 \Rightarrow \text{Im } f = (0,1) \Rightarrow f \text{ surjectivă, deci bijectivă. Se verifică egalitatea.}$$

c)
$$f(1) = \frac{1}{2}$$
; $\exists ! y > 0$, $f(y) = x$; $f(y^3) = x \circ x \circ x = f(1) \Rightarrow y^3 = 1 \Rightarrow y = 1 \Rightarrow x = \frac{1}{2}$.

Soluție

1.a)
$$D_2 = 3$$
; $D_3 = 4$.

- b) Se dezvoltă determinantul după prima linie.
- c) Se demonstrează prin inducție. Verificare pentru n=2, n=3. Dacă este adevărată pentru $2 \le k \le n-1, D_n=2n-(n-1)=n+1$.

$$\textbf{2.a)} \ \ \mathbb{Z}_2 \times \mathbb{Z}_2 = \left\{ \!\! \begin{pmatrix} \hat{0}, \hat{0} \\ \hat{0}, \hat{1} \end{pmatrix} \!\!, \!\! \begin{pmatrix} \hat{0}, \hat{1} \\ \hat{0}, \hat{1} \end{pmatrix} \!\!, \!\! \begin{pmatrix} \hat{1}, \hat{0} \\ \hat{1}, \hat{1} \end{pmatrix} \!\! \right\} . \\ \text{Se completează tabla operației de adunare .}$$

b)
$$(xy)^2 = e, x^2y^2 = ee = e$$
.

c)
$$x = x^{-1}, \forall x \in G; \forall a, b \in G \Rightarrow (ab)^{-1} = ab = b^{-1}a^{-1} = ba$$
.

Soluție

1.a)
$$A^2 = 3A; x = -\frac{1}{9}.$$

b)
$$B = \frac{1}{\sqrt{3}} A$$
.

c) Prin calcul direct.

2.a)
$$x_1 = 2; x_{2,3} = -1 \pm i\sqrt{2}.$$

b)
$$S_n = x_1^n + x_2^n + x_3^n$$
, $\forall n \ge 0$; $S_0 = 3$, $S_1 = 0$, $S_2 = 2$, $S_3 = 18$, $S_4 = 2$. **c**) Se scriu relațiile lui Viète, se obține $m = 0$.

Soluție

1.a)
$$A_M(1,1)$$
.

b)
$$y' = 2x'$$
.

c)
$$x_1 = ax_1 + by_1$$
, $y_1 = cx_1 + dy_1$; $x_2 = ax_2 + by_2$ $y_2 = cx_2 + dy_2$; $x_3 = ax_3 + by_3$, $y_3 = cx_3 + dy_3$.

Se utilizează proprietăți ale determinanților.

2.a) 16.

- b) Se verifică prin calcul direct.
- c) $X = I_3$ sau $X = O_3$.

Soluție

1.a)
$$\det A = 0$$

- b) Se verifică prin calcul.
- c) $\det(I_3 + xA^2) = (1 6x)^2 \ge 0, \forall x \in \mathbb{R}.$
- **2.a)** $x_1 = -1, x_2 = i, x_3 = -i.$
- **b**) $p(1) = 0, p'(1) = 0 \Rightarrow a = -2, b = 0.$
- c) Singurele rădăcini raționale ale polinomului $p(x) = x^3 + ax^2 + x + 1$ sunt $x = \pm 1 \Rightarrow a \in \{-3,1\}$.

Soluție

1.a)
$$AB = 0_3$$

- **b**) $A^2 = 3A, AB = BA = 0_3, B^2 = 3B$. Se verifică relația.
- c) $\forall x \in \mathbb{R}^* \Rightarrow M_x$ este inversabilă, deci $\det(M_x) \neq 0$.
- **2.a**) Aplicăm relațiile lui Viète, $\sum_i x_i = a, x_1 x_2 x_3 x_4 = 1, \sum_{i < j < k} x_i x_j x_k = a.$
- **b**) Dacă se divide, atunci p(1) = 0, $p(-1) = 0 \Rightarrow a = 1 = -1$, contradicție.
- c) Se împarte ecuția reciprocă f(x) = 0 prin x^2 , se notează $x + \frac{1}{x} = t$ etc.

Soluție

1.a) Se dezvoltă determinantul; se obține det $A = 1 + a^2 + b^2 + c^2$.

b)
$$A \cdot A^* = \det A \cdot I_3 \Rightarrow \det A \cdot \det (A^*) = (\det A)^3 \Rightarrow \det A \cdot \det (A^*) = (\det A)^3$$
.

Cum det $A \neq 0 \Rightarrow \det(A^*) = (\det A)^2$.

c) Avem
$$A - I_3 = \begin{pmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{pmatrix}$$
 și se observă că orice minor de ordin 2 al matricei A este nul. Ca urmare,

rangul matricei $A - I_3$ este cel mult 1.

2.a) Dacă $f(x) = f(y) \Rightarrow ax = ay \Rightarrow a^{-1}(ax) = a^{-1}(ay) \Rightarrow x = y$, adică f este injectivă.

Pentru orice $y \in G$, considerând $x = a^{-1}y \in G$, rezultă f(x) = y, deci f este surjectivă

$$\mathbf{b})\ \left(f_a\circ f_b\right)\left(x\right)=f_a\left(f_b\left(x\right)\right)=a\cdot f_b\left(x\right)=a\left(bx\right)=\left(ab\right)x=f_{ab}\left(x\right),\ \forall x\in G\ .$$

c) Compunerea funcțiilor este asociativă. Elementul neutru este $1_G = f_e \in \mathcal{F}(G)$, unde e este elementul neutru din G. Dacă a^{-1} este simetricul lui $a \in G$, atunci $f_{a^{-1}}$ este simetricul elementului $f_a \in \mathcal{F}(G)$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- **1.** a) Prin calcul direct rezultă det $A = 3(1 m^2)$.
 - **b**) Dacă $m \in \mathbb{R} \setminus \{-1,1\}$ rezultă det $A \neq 0$, deci rang (A) = 3.

Pentru m=1 sau m=-1, există cel puțin un minor de ordin doi nenul în A, deci rang (A)=2.

c) Dacă $m \in \mathbb{R} \setminus \{-1,1\}$, sistemul este compatibil determinat.

Pentru
$$m = 1 \Rightarrow \overline{A} = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 3 & 3 & -1 \end{pmatrix}$$
, care are rangul 2, egal cu rangul lui A, deci sistemul este compatibil

(nedeterminat).

Pentru
$$m = -1 \Rightarrow \overline{A} = \begin{pmatrix} 1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 2 \\ -1 & 3 & 3 & -1 \end{pmatrix}$$
, care are rangul 3, şi cum rang $A = 2$, rezultă sistemul este

incompatibil.

- **2.** a) Se verifică prin calcul direct că $x * y \in G_2$, $\forall x, y \in G_2$, adică operația "*" este corect definită pe G_2 . Folosind definiția se verifică și asociativitatea și comutativitatea operației. Elementul neutru este $e = \frac{7}{2}$, iar simetricul oricărui element $x \in G_2$ este $x' = \frac{18x - 35}{9(x - 2)} = 2 + \frac{1}{9(x - 2)} \in (2, \infty) = G_2$.
 - **b**) Se arată că f este bijectivă și că $f(x * y) = f(x) \cdot f(y)$, $\forall x, y \in G_2$.
 - c) Dacă $x, y \in (\alpha, \infty)$ și $\alpha \ge 2$, atunci $x * y = 3(x-2)(y-2) + 6(\alpha-2) + \alpha \ge \alpha$, deci G_{α} este parte stabilă a lui \mathbb{R} în raport cu operația "*".

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

- **1. a**) Din primele două ecuații rezultă că dacă $(x_0, y_0, 0, 0)$ este soluție, atunci $x_0 = 0$, $y_0 = \frac{1}{3}$. Din a treia ecuatie rezultă p = -2.
- **b**) Matricea sistemului, notată A, conține minorul $\begin{vmatrix} 2 & -3 \\ 1 & 9 \end{vmatrix} = 21 \neq 0$, deci rang $A \geq 2$, $\forall m, n \in \mathbb{R}$.
- c) Dacă rang A = 2, orice minor de ordin 3 al matricei A este nul. Se obține astfel m = 2, n = -12. Alegând minorul principal $\begin{vmatrix} 2 & -3 \\ 1 & 9 \end{vmatrix} = 21 \neq 0$, din teorema Rouché rezultă p = -2.
- **2. a**) Se verifică prin calcul direct asociativitatea și comutativitatea. Elementul neutru este (1,0) iar simetricul unui element (q,k) este elementul $\left(\frac{1}{q},-k\right) \in G$.
- **b**) (1,1)*(1,2)*...*(1,10) = (1,1+2+...+10) = (1,55).
- c) $\underline{f \text{ morfism}}$: $f((q_1, k_1) * (q_2, k_2)) = q_1 q_2 2^{k_1 + k_2} = f(q_1, k_1) \cdot f(q_2, k_2), \forall (q_1, k_1), (q_2, k_2) \in G$.

 \underline{f} injectivă: Fie $(q_1,k_1),(q_2,k_2) \in G$, $q_1 = \frac{m_1}{n_1}$ și $q_2 = \frac{m_2}{n_2}$, $m_1,n_1,m_2,n_2 \in \mathbb{Z}$ impare astfel încât

 $f\left(q_1,k_1\right)=f\left(q_2,k_2\right)$. Dacă $k_1 \neq k_2$, fără a restrânge generalitatea, putem presupune $k_1 < k_2$. Atunci, din $q_1 \cdot 2^{k_1} = q_2 \cdot 2^{k_2}$, rezultă $m_1 n_2 = 2^{k_2 - k_1} m_2 n_1$, contradicție, deoarece membrul stâng este impar, iar membrul drept este par. Ca urmare, $k_1 = k_2$, de unde $q_1 = q_2$.

<u>f surjectivă</u>: pentru orice număr rațional $r = \frac{m}{n}$, $m, n \in \mathbb{Z}^*$, există $m_1, n_1 \in \mathbb{Z}$ impare și $a, b \in \mathbb{N}$ astfel încât $m = 2^a m_1$ și $n = 2^b n_1$. Notând $q = \frac{m_1}{n_1}$, k = a - b, rezultă $f(q, k) = \frac{m}{n}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a) Sistemul are soluție unică dacă determinatul matricei A a sistemului este nenul. Cum det $A = m^2 - 6m + 5$, sistemul are soluție unică pentru $m \in \mathbb{R} \setminus \{1,5\}$.

b) Pentru $m \in \mathbb{R} \setminus \{1,5\}$ sistemul este compatibil determinat. Pentru m=1, rang $A=\operatorname{rang} \overline{A}=2$, adică sistemul este compatibil nedeterminat. Pentru m=5 rezultă rang A=2 și rang $\overline{A}=3$, deci sistemul este incompatibil.

c) Pentru m = 1 se obține soluția $x = 1 - \alpha$, $y = \alpha$, z = 0, unde $\alpha \in \mathbb{R}$. Înlocuind în relația $2x_0^2 - y_0^2 + 3z_0^2 = 14$, rezultă $\alpha \in \{-2, 6\}$. Soluțiile căutate sunt (3, -2, 0) și (-5, 6, 0).

2.a)
$$\frac{2}{3} * \frac{3}{4} = \left\{ \frac{2}{3} + \frac{3}{4} \right\} = \frac{5}{12}$$
.

b) Comutativitatea este imediată. Asociativitatea: folosind relația $\{x+n\} = \{x\}, \ \forall \ x \in \mathbb{R}, \ n \in \mathbb{Z}, \ rezultă:$

$$(x*y)*z = \{x*y+z\} = \{\{x+y\}+z\} = \{x+y-[x+y]+z\} = \{x+y+z\} \text{ și}$$
$$x*(y*z) = \{x+y*z\} = \{x+\{y+z\}\} = \{x+y+z-[y+z]\} = \{x+y+z\}.$$

Elementul neutru este e = 0, simetricul lui 0 este 0, iar simetricul oricărui element $x \in (0,1)$ este 1-x.

c) Ecuația se poate scrie sub forma $\{3x\} = \frac{1}{2}$. Cum $0 \le 3x < 3$, rezultă $3x \in \left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\right\} \iff x \in \left\{\frac{1}{6}, \frac{1}{2}, \frac{5}{6}\right\}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$m(\sigma) = 4$$
.

- **b**) Prin calcul direct rezultă $\sigma^5 = e$, deci $A = \{e, \sigma, \sigma^2, \sigma^2, \sigma^3, \sigma^4\}$. A are 5 elemente.
- c) Cum $\tau \sigma^2 = \sigma^2 \tau \Rightarrow \tau \sigma^4 = \sigma^4 \tau$, deci $\tau \sigma^{-1} = \sigma^{-1} \tau$, adică $\tau \sigma = \sigma \tau$.
- **2.a**) Trebuie demonstrat că $f(x-T) = f(x), \forall x \in \mathbb{R}$

Pentru orice $x \in \mathbb{R}$ avem $f(x-T) = f((x-T)+T) = f(x) \Rightarrow -T \in H$.

$$\mathbf{b}) \text{ Fie } T_1,T_2 \in H \Rightarrow f\left(x+\left(T_1+T_2\right)\right) = f\left(\left(x+T_1\right)+T_2\right) \overset{T_2 \in H}{=} f\left(x+T_1\right) \overset{T_1 \in H}{=} f\left(x\right), \text{ deci } T_1+T_2 \in H.$$

Dacă $T \in H$, atunci $-T \in H$, deci H este subgrup al lui $(\mathbb{R},+)$.

c) Din
$$f(T) = f(0) \Rightarrow T \in \mathbb{Z}$$
. Apoi, $f(x+T) = f(x)$, $\forall T \in \mathbb{Z}$. Astfel $H = \mathbb{Z}$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Soluție

1.a)
$$\det(M) = \begin{vmatrix} m & 1 & 1 \\ 1-m & 2 & 1 \\ 2m+1 & 2m+1 & 1 \end{vmatrix} = -4m^2 + m - 1.$$

b)
$$-4m^2 + m - 1 = -(4m^2 - m + 1) \neq 0, \forall m \in \mathbb{R}$$
.

c)
$$|\det(M)| = (2m - \frac{1}{4})^2 + \frac{15}{16} \ge \frac{15}{16} \Rightarrow S_{ABC} \ge \frac{15}{32}$$
.

2.a)
$$M = \begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix}$$
.

$$\mathbf{b}) \begin{pmatrix} \hat{2} & \hat{1} \\ -\hat{1} & \hat{2} \end{pmatrix} \cdot \begin{pmatrix} \hat{3} & \hat{1} \\ -\hat{1} & \hat{3} \end{pmatrix} = O_2.$$

c) Dacă
$$X = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
, atunci $X^2 = \begin{pmatrix} a^2 - b^2 & \hat{2}ab \\ -\hat{2}ab & a^2 - b^2 \end{pmatrix}$. $a^2, b^2 \in \{\hat{0}, \hat{1}, \hat{4}\}$. Cum $a^2 - b^2 = \hat{2} \Rightarrow a^2 = \hat{1}$ și

$$b^2 = \hat{4} \text{, adică } a \in \left\{\hat{1}, \hat{4}\right\} \text{ și } b \in \left\{\hat{2}, \hat{3}\right\}. \text{ Cum } ab = \hat{3} \text{ rezultă soluțiile } X_1 = \begin{pmatrix} \hat{1} & \hat{3} \\ -\hat{3} & \hat{1} \end{pmatrix} \text{ și } X_2 = \begin{pmatrix} \hat{4} & \hat{2} \\ -\hat{2} & \hat{4} \end{pmatrix}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Soluție

- **1.a**) Cu regula lui Sarrus sau prin aplicarea proprietăților determinaților rezultă det A = 0.
- **b**) Cum det A = 0, sistemul admite soluții nenule.
- c) Scăzând prima ecuație a sistemului din a doua, rezultă $(b-a)(y_0-z_0)=0$, deci $y_0=z_0$. Rangul matricei sistemului este egal cu 2; z este necunoscută secundară, $z=\lambda$, $\lambda\in\mathbb{R}$. Obținem $y=\lambda$, $x=-(a+b+c)\lambda$.

Cum (1,1,1) soluție implică a+b+c=-1, soluțiile sistemului sunt $(\lambda,\lambda,\lambda)$ $\lambda \in \mathbb{R}$.

2.a) Notând
$$A_{x,y} = \begin{pmatrix} x & iy \\ iy & x \end{pmatrix} \Rightarrow A_{x_1,y_1} \cdot A_{x_2,y_2} = \begin{pmatrix} x_1x_2 - y_1y_2 & i(x_1y_2 + x_2y_1) \\ i(x_1y_2 + x_2y_1) & x_1x_2 - y_1y_2 \end{pmatrix}$$
. În plus,
$$(x_1x_2 - y_1y_2)^2 + (x_1y_2 + x_2y_1)^2 = (x_1^2 + y_1^2)(x_2^2 + y_2^2) \neq 0 \Rightarrow A_{x_1,y_1} \cdot A_{x_2,y_2} \in G$$

b) Comutativitatea este consecință a punctului a), iar asociativitatea este proprietate generală a înmulțirii din

$$\mathcal{M}_2(\mathbb{C})$$
. Elementul neutru este matricea $A_{1,0} = I_2$, iar inversa matricei $A_{x,y}$ este $A_{x',y'} = \begin{pmatrix} x' & iy' \\ iy' & x' \end{pmatrix}$,

$$\operatorname{cu} x' = \frac{x}{x^2 + y^2}$$
 şi $y' = -\frac{y}{x^2 + y^2}$.

c) Evident
$$f$$
 este funcție bijectivă. $f \varphi$ morfism: $f(x_1+iy_1)\cdot\varphi(x_2+iy_2) = \begin{pmatrix} x_1 & iy_1 \\ iy_1 & x_1 \end{pmatrix} \begin{pmatrix} x_2 & iy_2 \\ iy_2 & x_2 \end{pmatrix} = A_{x_1,y_1}\cdot A_{x_2,y_2} = A_{x_1,y_2}\cdot A_{x_2,y_2}$

$$=A_{x_{1}x_{2}-y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}}. \text{ Concluzia rezultă din faptul că } \left(x_{1}+iy_{1}\right)\cdot\left(x_{2}+iy_{2}\right)=x_{1}x_{2}-y_{1}y_{2}+i\left(x_{1}y_{2}+x_{2}y_{1}\right).$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a) Notând cu A matricea sistemului, rezultă det $A = m^2 (m-1)$. Sistemul admite soluție unică dacă și numai dacă det $A \neq 0$, adică $m \in \mathbb{R} \setminus \{0,1\}$.

b) Dacă
$$m = 0$$
 rezultă $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 2 & -2 & 2 \end{pmatrix}$, $\overline{A} = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 2 \\ 2 & -2 & 2 & 3 \end{pmatrix}$, rang $A = 1$ și rang $\overline{A} = 2$.

Pentru
$$m = 1$$
 rezultă $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 2 \\ 2 & -2 & 4 \end{pmatrix}, \overline{A} = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & -1 & 2 & 2 \\ 2 & -2 & 4 & 3 \end{pmatrix}, \text{ rang } A = 2 \text{ și } \text{ rang } \overline{A} = 3.$

c) Fie $(x_0, y_0, z_0) \in \mathbb{R}^3$ o soluție a sistemului; atunci $m \in \mathbb{R} \setminus \{0,1\}$. Scăzând a doua ecuație a sistemului din a treia, rezultă că $x_0 - y_0 + (m+1)z_0 = 1$. Din prima ecuație, conduce la $mz_0 = 0$ deci $z_0 = 0$. Rezultă $x_0 - y_0 = 1$, deci $x_0 - y_0 + 2009z_0 = 1$.

2.a)
$$H = \{\hat{0}, \hat{1}, \hat{2}, \hat{4}\}.$$

- **b**) Din tabla adunării elementelor din H, rezultă că dacă $x, y \in H$ astfel încât $x + y = \hat{0}$ atunci $x = y = \hat{0}$.
- c) Se verifică relația $A \cdot B \in G$ pentru orice $A, B \in G$.

Asociativitatea este proprietate generală a înmulțirii din $\mathcal{M}_2(\mathbb{Z}_7)$, iar elementul neutru este $I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$.

Dacă $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in G$, condiția $a \neq \hat{0}$ sau $b \neq \hat{0}$ este echivalentă cu $\det A \neq \hat{0}$, conform punctului anterior.

Inversa matricei
$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in G$$
 este $A^{-1} = \begin{pmatrix} c & -d \\ d & c \end{pmatrix}$, cu $c = (\det A)^{-1} \cdot a$, $d = (\det A)^{-1} \cdot (-b)$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- **1.a**) Se înlocuiesc $x_0 = 2$, $y_0 = 2$, $z_0 = 1$ în ecuațiile sistemului și se obține m = 3 și n = 2.
- **b**) Sistemul admite soluție unică dacă determinantul matricei sistemului este nenul. Cum det A = 3 n, rezultă $n \in \mathbb{R} \setminus \{3\}$.
- c) Dacă $n \in \mathbb{R} \setminus \{3\}$, sistemul este compatibil determinat. Dar sistemul trebuie să fie compatibil nedeterminat; ca urmare, n = 3. Rangul matricei sistemului este 2 și deoarece sistemul este compatibil, rangul matricei extinse trebuie să fie 2. Obținem m=1.
- **2. a)** Fiecare matrice din G este determinată de o pereche $(a,b) \in \mathbb{Z}_3 \times \mathbb{Z}_3$, deci G are 9 elemente.
- **b**) Înmulțirea este corect definită pe G: $\begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \cdot \begin{pmatrix} \hat{1} & c & d \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} = \begin{pmatrix} \hat{1} & a+c & b+d \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \in G .$

Înmulțirea matricelor este asociativă pe $\mathcal{M}_3(\mathbb{Z}_3)$, deci și pe G. Elementul neutru este I_3 , iar inversa matricei

$$A = \begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \in G \text{ este } A^{-1} = \begin{pmatrix} \hat{1} & -a & -b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix}.$$

$$A = \begin{bmatrix} \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{bmatrix} \in G \text{ este } A^{-1} = \begin{bmatrix} \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{bmatrix}.$$

$$\mathbf{c}) \text{ Dacă } X = \begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix}, X^{2} = \begin{pmatrix} \hat{1} & a+a & b+b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} \text{ si } X^{3} = \begin{pmatrix} \hat{1} & a+a+a & b+b+b \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} = \begin{pmatrix} \hat{1} & \hat{0} & \hat{0} \\ \hat{0} & \hat{1} & \hat{0} \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix} = I_{3}.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Soluție

- **1.a**) $\det A = -5m$
- b) Sistemul admite soluții nenule dacă determinantul matricei sistemului este nul, deci m = 0
- c) Pentru m=0 sistemul are soluții nebanale: $x=\lambda, y=3\lambda, z=-5\lambda$, unde $\lambda \in \mathbb{R}$. Înlocuind, rezultă

$$\frac{z_0^2 + y_0^2 + x_0^2}{z_0^2 - y_0^2 - x_0^2} = \frac{7}{3}.$$

2.a) f(i) = b - 5 + i(a + 4) = 0, de unde a = -4, b = 5.

b)

$$(x_1 - 1)^2 + (x_2 - 1)^2 + (x_3 - 1)^2 + (x_4 - 1)^2 = \sum_{k=1}^4 x_k^2 - 2\sum_{k=1}^4 x_k + 4 = \left(\sum_{k=1}^4 x_k\right)^2 - 2\sum_{1 \le k < j \le 4} x_k x_j - 2\sum_{k=1}^4 x_k + 4 = 0$$

c) Dacă polinomul are toate rădăcinile reale, ținând cont de relația obținută la punctul anterior, rezultă $(x_1 - 1)^2 = (x_2 - 1)^2 = (x_3 - 1)^2 = (x_4 - 1)^2 = 0$, deci $x_1 = x_2 = x_3 = x_4 = 1$. Obținem a = -4, b = 1.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- **1.a**) Determinantul matricei sistemului este $\Delta = ab(b-a)(a-1)(b-1)$.
 - **b**) Sistemul este compatibil determinat dacă $\Delta \neq 0$. Rezultă $a,b \in \mathbb{R} \setminus \{0,1\}$, $a \neq b$.
 - c) Evident rang $A \le \operatorname{rang} \overline{A}$. Coloana termenilor liberi este aceeași cu a treia coloană a matricei sistemului, deci orice minor al matricei extinse este și minor al matricei sistemului. Ca urmare, $\operatorname{rang} \overline{A} \le \operatorname{rang} A$, deci $\operatorname{rang} A = \operatorname{rang} \overline{A}$, adică sistemul este compatibil, $\forall a, b \in \mathbb{R}$.
- **2.a**) $f^2 = (\hat{2}X + \hat{1})^2 = \hat{1}$, polinom care are gradul 0.
 - **b**) Cum $f \cdot f = \hat{1}$, f este element inversabil al inelului $(\mathbb{Z}_4[X], +, \cdot)$ și $f^{-1} = f$.
 - c) Fie $g \in \mathbb{Z}_4[X]$, g = ax + b, $a \neq \hat{0}$, astfel încât $g^2 = \hat{1}$. Rezultă $\begin{cases} a^2 = \hat{0} \\ \hat{2}ab = \hat{0} \end{cases}$. Obținem $b = \hat{1}$ sau $b = \hat{3}$ și $a = \hat{2}$. $b^2 = \hat{1}$

Obținem două polinoame cu proprietatea cerută în enunț: $g_1 = \hat{2}X + \hat{1}$ și $g_2 = \hat{2}X + \hat{3}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a) Se verifică prin calcul.

b)
$$A^3 = 9A \Rightarrow I_3 + A^3 = \begin{pmatrix} 10 & 9 & 9 \\ 9 & 10 & 9 \\ 9 & 9 & 10 \end{pmatrix} \Rightarrow \det(I_3 + A^3) = 28$$

c) Fie
$$B = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \\ a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \\ a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \end{pmatrix}$$

b)
$$A^3 = 9A \Rightarrow I_3 + A^3 = \begin{pmatrix} 10 & 9 & 9 \\ 9 & 10 & 9 \\ 9 & 9 & 10 \end{pmatrix} \Rightarrow \det(I_3 + A^3) = 28.$$
c) Fie $B = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \\ a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \\ a_1 + b_1 + c_1 & a_2 + b_2 + c_2 & a_3 + b_3 + c_3 \end{pmatrix}$
 $BA = \begin{pmatrix} a_1 + a_2 + a_3 & a_1 + a_2 + a_3 & a_1 + a_2 + a_3 \\ b_1 + b_2 + b_3 & b_1 + b_2 + b_3 & b_1 + b_2 + b_3 \\ c_1 + c_2 + c_3 & c_1 + c_2 + c_3 & c_1 + c_2 + c_3 \end{pmatrix}$. Egalând elementele aflate pe poziții corespondente, obținem

2.a)
$$\varepsilon^2 = -1 - \varepsilon \in \mathbb{Q}(\varepsilon)$$
.

b)
$$(a+b\varepsilon)(a+b\varepsilon^2) = a^2 - ab + b^2 \neq 0$$
, deci inversul lui $a+b\varepsilon$ este $\frac{a-b}{a^2 - ab + b^2} - \frac{b}{a^2 - ab + b^2} \varepsilon \in \mathbb{Q}(\varepsilon)$.

c)
$$(a^2 - ab + b^2)(c^2 - cd + d^2) = |(a + b\varepsilon)(c + d\varepsilon)|^2 = x^2 - xy + y^2$$
, unde $x = ac - bd \in \mathbb{Z}$ şi $y = ad + bc - bd \in \mathbb{Z}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1. a)
$$\det(A) = 3m^2 + m - 1$$
.

b)
$$\det(A) \neq 0 \Leftrightarrow m \in \mathbb{R} \setminus \left\{ \frac{-1 \pm \sqrt{13}}{6} \right\}.$$

c)
$$A^{-1} = A^* \Leftrightarrow \det(A) = 1 \Leftrightarrow 3m^2 + m - 2 = 0 \Leftrightarrow m \in \left\{-1, \frac{2}{3}\right\}$$
.

- **2. a)** Rădăcinile lui f sunt $\hat{0}$, $\hat{1}$, $\hat{2}$.
- **b**) $g(\hat{0}) = g(\hat{1}) = g(\hat{2}) = \hat{2} \neq \hat{0}$. Cum gradul lui g este 3 rezultă concluzia.
- c) h(x) = g(x), $\forall x \in \mathbb{Z}_3 \Leftrightarrow (h-g) : (X^3 X) \Leftrightarrow h = (X^3 X) \cdot c + g$ cu $c \in \{\hat{0}, \hat{1}\}$ de unde $h = \hat{2}X^3 + X + \hat{2}$ sau h = g.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

compatibil.

1.a) Fie A matricea sistemului: $A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \Rightarrow \operatorname{rang} A = 3$. Avem $\operatorname{rang} \overline{A} = 3 = \operatorname{rang} A$, deci sistemul este

b) Rezolvând sistemul obținem:
$$x_1 = \frac{1+a-b-2\lambda}{2}, \ x_2 = \frac{1-a-b-2\lambda}{2}, \ x_3 = b+\lambda, \ x_4 = \lambda, \ \lambda \in \mathbb{R}$$
.

Punând condițiile ca x_1, x_2, x_3, x_4 și $x_1 + x_2$ să fie în progresie aritmetică, rezultă $a = b = -\frac{1}{18}$

c) Din
$$x_4 > 0 \Rightarrow \lambda > 0$$
. Apoi, $x_2 > 0 \Rightarrow 1 - a - b - 2\lambda > 0$, deci $1 - a - b > 2\lambda > 0 \Rightarrow a + b < 1$

2. a)
$$(1-x_1)(1-x_2)(1-x_3) = 1-(x_1+x_2+x_3)+(x_1x_2+x_2x_3+x_3x_1)-x_1x_2x_3 = 4.$$

b) Presupunând că f are o rădăcină întreagă a, atunci a este divizor al termenului liber al polinomului, adică $a \in \{-1,1\}$. Cum f(-1) = -8, f(1) = 4, nici 1, nici -1 nu sunt rădăcini ale lui f, deci f nu are rădăcini întregi.

c)
$$x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2 = (x_1 + x_2 + x_3)(x_1^2 + x_2^2 + x_3^3) - (x_1^3 + x_2^3 + x_3^3)$$

Avem
$$x_1 + x_2 + x_3 = 3$$
 şi $x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_3x_1) = -1$.

Avem
$$x_k^3 - 3x_k^2 + 5x_k + 1 = 0$$
, $k = 1, 2, 3$ şi adunând, rezultă $x_1^3 + x_2^3 + x_3^3 = -21$.

În concluzie,
$$x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2 = 18$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. a)
$$\sum_{j=1}^{3} (a_{ij} + b_{ij}) = \sum_{j=1}^{3} a_{ij} + \sum_{j=1}^{3} b_{ij} = 0, \forall i \in \{1, 2, 3\}.$$

b) Dacă $A \in M \Rightarrow \det(A) = 0$.

c) Fie
$$A = (a_{ij}) \in M$$
 și $A^2 = (c_{ij})$ unde $c_{ij} = \sum_{k=1}^{3} a_{ik} a_{kj}$. Pentru fiecare $i \in \{1, 2, 3\}$ avem

$$c_{i1} + c_{i2} + c_{i3} = \sum_{k=1}^{3} (a_{ik}a_{k1} + a_{ik}a_{k2} + a_{ik}a_{k3}) = \sum_{k=1}^{3} a_{ik} (a_{k1} + a_{k2} + a_{k3}) = 0.$$

2.a)
$$x_{1,2} = \pm (1 + \sqrt{2}) \in \mathbb{Z} \lceil \sqrt{2} \rceil$$
.

b)
$$\mathbb{Z} \subset \mathbb{Z}\left[\sqrt{2}\right]$$
, $\mathbb{Z} \subset \mathbb{Z}\left[\sqrt{3}\right] \Rightarrow \mathbb{Z} \subset \mathbb{Z}\left[\sqrt{2}\right] \cap \mathbb{Z}\left[\sqrt{3}\right]$. Fie

 $x = a + b\sqrt{2} = c + d\sqrt{3}$ cu $a,b,c,d \in \mathbb{Z} \Rightarrow b\sqrt{2} - d\sqrt{3} \in \mathbb{Z}$ și prin ridicare la pătrat rezultă $bd\sqrt{6} \in \mathbb{Z} \Rightarrow bd = 0$. Deci b = 0 sau d = 0, de unde $x \in \mathbb{Z}$.

c) Presupunem că există $f: \mathbb{Z}\sqrt{2} \to \mathbb{Z}\sqrt{3}$ morfism de inele. Cum f(1)=1 rezultă că f(2)=f(1)+f(1)=2.

Atunci
$$2 = f\left(\sqrt{2}^2\right) = f^2\left(\sqrt{2}\right)$$
, deci $f\left(\sqrt{2}\right) = \pm\sqrt{2} \notin \mathbb{Z}\left[\sqrt{3}\right]$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1. a)
$$A^2 = 5A \Rightarrow \begin{pmatrix} 1+2x & 10 \\ 5x & 2x+16 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 5x & 20 \end{pmatrix} \Rightarrow x = 2.$$

b) Pentru x = 2, conform punctului anterior, rezultă $A^2 = 5A$. Prin inducție, rezultă $A^n = 5^{n-1}A$, pentru orice $n \in \mathbb{N}^*$, de unde $A^{2009} = 5^{2008}A$.

c)
$$A + A^t = \begin{pmatrix} 2 & x+2 \\ x+2 & 8 \end{pmatrix} \Rightarrow \operatorname{rang}(A + A^t) = 1 \operatorname{dacă} \operatorname{şi} \operatorname{numai} \operatorname{dacă} \operatorname{det}(A + A^t) = 0, \operatorname{adică} x \in \{-6, 2\}.$$

2.a)
$$f(-1) = a^2 - 2a + 7 = 10 \Rightarrow a \in \{-1, 3\}.$$

b)
$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = (x_1 + x_2 + x_3 + x_4)^2 - 2\sum_{1 \le i < j \le 4} x_i x_j$$
. Cum $x_1 + x_2 + x_3 + x_4 = 1 - a$ şi $\sum_{1 \le i < j \le 4} x_i x_j = \frac{a^2 + 3}{2}$,

rezultă
$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = -2a - 2$$

c) Avem
$$\sum_{1 \le i < j \le 4}^{2} (x_i - x_j)^2 = 3 \sum_{1 \le i < j \le 4}^{2} x_i^2 - 2 \sum_{1 \le i < j \le 4}^{2} x_i x_j = -a^2 - 6a - 9$$
. Dacă f are toate rădăcinile reale

$$\Rightarrow \sum_{1 \le i < j \le 4} \left(x_i - x_j \right)^2 \ge 0 \Rightarrow -a^2 - 6a - 9 \ge 0 \Rightarrow a = -3.$$

Egalitatea are loc dacă
$$x_1 = x_2 = x_3 = x_4 = \frac{x_1 + x_2 + x_3 + x_4}{4} = \frac{1 - a}{4} = 1$$
. Obținem $a = -3$, $b = -8$, $c = 2$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$A \cdot (X + Y) \cdot A^{t} = A \cdot X \cdot A^{t} + A \cdot Y \cdot A^{t} = 0_{2} \Rightarrow X + Y \in G$$
.

b) Fie
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$$
; at unci $A \cdot X \cdot A^t = \begin{pmatrix} a+b+c+d \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

Este evident că dacă $A \cdot X \cdot A^t = 0_2$, atunci a + b + c + d = 0.

- c) det $X = 0 \Rightarrow X^2 = tX$, unde $t = \operatorname{tr}(A)$. Prin inducție rezultă $X^n = t^{n-1}X$, pentru orice $n \in \mathbb{N}$, $n \ge 1$. Atunci $A \cdot X^n \cdot A^t = t^{n-1} (A \cdot X \cdot A^t) = 0_2 \Rightarrow X^n \in G$.
- **2. a)** Prin împărțire se obține câtul $X^2 4X + 5$ și restul 0.
- **b**) $f = (X^2 2X + 5)(X^2 4X + 5)$. Rădăcinile polinomului sunt $x_{1,2} = 1 \pm 2i$, $x_{3,4} = 2 \pm i$, niciuna nefiind reală.
- c) Prin calcul direct, folosind rezultatele obținute la punctul anterior, rezultă $|x_k| = \sqrt{5}$, k = 1, 2, 3, 4.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a) Prin calcul direct rezultă $A^3 = \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix}$.

b)
$$A \cdot A^t = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \Rightarrow \left(A \cdot A^t \right)^{-1} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}.$$

c) Fie
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Cum $X^3 = AX = XA$, rezultă $a = d$ și $b = 0$. Înlocuind apoi $X = \begin{pmatrix} a & 0 \\ c & a \end{pmatrix}$ în ecuația

$$X^2 = A$$
, rezultă $a^2 = 1$ și $ac = 1$. Obținem soluțiile $X_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}$.

2.a) Restul împărțirii polinomului f la X+1 este f(-1)=b-5, care nu depinde de a.

b) Fie
$$g = f - X$$
; atunci $X^2 - X \mid g$. Rezultă $g(0) = g(1) = 0$, de unde $a = 0$, $b = 0$.

c)
$$(X-1)^2 | f \Rightarrow f(1) = f'(1) = 0$$
. Avem $f(1) = 0 \Rightarrow 2a + b + 1 = 0$ şi $f'(1) = 0 \Rightarrow 11a - 15 = 0$; obţinem $a = \frac{15}{11}, b = -\frac{41}{11}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a) Det $(A) = abc \neq 0$.

b) Prin inducție după n.

c)
$$A^{-1} = \begin{pmatrix} a^{-1} & a^{-1} - b^{-1} & a^{-1} - b^{-1} \\ 0 & b^{-1} & b^{-1} - c^{-1} \\ 0 & 0 & c^{-1} \end{pmatrix}$$
.

- **2.a**) Pentru x = -1 rezultă $f(-1) = f^2(-1) + 3f(-1) + 1$, deci f(-1) = -1.
- **b**) Restul împărțirii polinomului f la X-5 este f(5). Pentru x=0 rezultă $f(1)=f^2(0)+3f(0)+1=1$. Pentru x=1 rezultă $f(5)=f^2(1)+3f(1)+1=5$.
- c) Fie şirul de numere reale $(a_n)_{n\geq 0}$ definit prin $a_0=0$ şi $a_{n+1}=a_n^2+3a_n+1, \forall n\geq 0$.

Prin inducție rezultă $f(a_n) = a_n$ și $a_n < a_{n+1}$ pentru orice $n \in \mathbb{N}$, deci șirul are o infinitate de termeni diferiți. Ca urmare, polinomul h = f - X se anulează în fiecare dintre termenii șirului, adică de o infinitate de ori, deci f - X = 0, adică f = X.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$2A_2 = 2 \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} \Rightarrow \det(2A_2) = 12.$$

b)
$$A_3 + xI_3 = \begin{pmatrix} 2+x & 1 & 1 \\ 1 & 2+x & 1 \\ 1 & 1 & 2+x \end{pmatrix} \Rightarrow \det(A+xI_3) = (x+4)(x+1)^2 \cdot \det(A+xI_3) = 0 \Rightarrow x \in \{-4,-1\}.$$

c) det
$$A_4 = 5 \neq 0$$
, deci A_4 este inversabilă. Fie $B = \frac{1}{5} \begin{pmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{pmatrix}$. Prin calcul direct se arată că

 $AB = BA = I_4$, deci $B = A^{-1}$.

- **2.a)** $x_2 = 1 + i \Rightarrow x_3 = 1 i$. Folosind relațiile lui Viete, obținem $a = x_1 + x_2 + x_3$, $b = x_1x_2 + x_1x_3 + x_2x_3$ și $c = x_1x_2x_3$, adică a = 4, b = 6, c = 4.
- **b**) Presupunem că există $a,b,c \in \mathbb{R}$ astfel ca resturile împărțirii polinomul f la $(X-1)^2$ și $(X-2)^2$ sunt egale cu $r \in \mathbb{R}[X]$, grad $r \le 1$. Fie g = f r; atunci grad g = 3. Atunci $(X-1)^2 \mid g$ și $(X-2)^2 \mid g$. Rezultă $(X-1)^2 \mid (X-2)^2 \mid g \Rightarrow \operatorname{grad} g \ge 4$, contradicție
- c) Presupunem că $x_1 \le 0$. Pe rând, rezultă $x_1^3 \le 0$, $-ax_1^2 \le 0$, $bx_1 \le 0$, -c < 0. Adunând, obținem $0 = f(x_1) < 0$, contradicție.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1. a)
$$A^2 = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix}$$
. Se verifică prin calcul că $A^2 - \text{tr}(A) \cdot A + \det A \cdot I_2 = 0_2$.

b)
$$\operatorname{tr}(A) = 0 \Rightarrow A^2 = -\det A \cdot I_2$$
. At unci $A^2 \cdot B = B \cdot A^2 = -(\det A) \cdot B$

c)
$$A^2 - \operatorname{tr}(A) \cdot A + \det A \cdot I_2 = 0_2 \Rightarrow A^2 B - \operatorname{tr}(A) \cdot AB + (\det A) \cdot B = 0_2$$
 (prin înmulțire la dreapta cu B).
 $A^2 - \operatorname{tr}(A) \cdot A + \det A \cdot I_2 = 0_2 \Rightarrow BA^2 - \operatorname{tr}(A) \cdot BA + (\det A) \cdot B = 0_2$ (prin înmulțire la stânga cu B).
 Scăzând relațiile de mai sus rezultă $\operatorname{Tr}(A) \cdot (AB - BA) = 0_2 \Rightarrow AB = BA$.

2. a)
$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = (x_1 + x_2 + x_3 + x_4)^2 - 2 \sum_{1 \le i < j \le 4} x_i x_j = 10.$$

b)
$$(X-1)(X-3) | f \Rightarrow f(1) = f(3) = 0$$
. Obţinem $a = -14, b = 6$.

c) Fie u,v cele două rădăcini duble ale polinomului f; din relațiile lui Viète rezultă 2(u+v)=6 și $u^2+v^2+4uv=13$. Atunci uv=2; u=1, v=2, de unde a=-12, b=4.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar Solutie

1.a)
$$\det(A \cdot A^t) = \det(A) \cdot \det(A^t) = \det^2(A) \ge 0$$
.

b)
$$A \cdot A^t = A^t \cdot A \Leftrightarrow ac + bd = ab + cd \Leftrightarrow (a - d)(c - b) = 0$$
.

c)
$$A - A^t = \begin{pmatrix} 0 & b - c \\ c - b & 0 \end{pmatrix} = \begin{pmatrix} b - c \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
. Cum $(A - A^t)^{2008} = (b - c)^{2008} \cdot I_2$, rezultă

$$\left(A - A^{t}\right)^{2009} = \left(b - c\right)^{2008} \cdot \left(A - A^{t}\right) \Rightarrow A - A^{t} = O_{2} \text{ sau } \left(b - c\right)^{2008} = 1 \text{ . Se obtine } b - c \in \left\{0, 1, -1\right\}, \text{ deci} \\ |b - c| \in \left\{0, 1\right\}.$$

2.a)
$$x = \hat{2}^{-1} \cdot \hat{3} = \hat{5}$$
.

b)
$$x^2 \in \{\hat{0}, \hat{1}, \hat{2}, \hat{4}\}, \ \forall x \in \mathbb{Z}_7, \ \text{deci} \ 2x^2 \in \{\hat{0}, \hat{1}, \hat{2}, \hat{4}\}.$$

c)
$$f(x+y) = \hat{2}(x+y) = \hat{2}x + \hat{2}y = f(x) + f(y)$$
, $\forall x, y \in \mathbb{Z}_7$. $f(x) = f(y) \Rightarrow \hat{2}x = \hat{2}y \Rightarrow x = y$, deci f este injectivă. Cum \mathbb{Z}_7 este mulțime finită rezultă că f este surjectivă.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a) Matricea sistemului *A* conține un minor nenul de ordin 2 (spre exemplu $\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$), deci rang $A \ge 2$.

Dacă A are rangul 2, atunci $\det A = 0$ (singurul minor de ordin 3). Avem $\det A = 2(m-1)$, deci $\det A = 0 \Rightarrow m = 1$.

- **b**) Dacă $x_0 + y_0 + z_0 = 4$, din a treia ecuație a sistemului rezultă $x_0 = 2$, $y_0 + z_0 = 2$. Folosind și a doua ecuație rezultă $y_0 = z_0 = 1$. Atunci, din prima ecuație a sistemului rezultă $m = \frac{1}{2}$
- c) Sistemul are soluție unică dacă det $A \neq 0 \Rightarrow m \neq 1$.

Aplicând regula lui Cramer, rezultă $x = -\frac{1}{m-1}$, y = 1, $z = -\frac{m}{m-1}$. $(x_0, y_0, z_0) \in \mathbb{Z}^3 \Rightarrow m-1 \mid 1 \Rightarrow m \in \{0, 2\}$ **2.a)** $X + 1 \mid f \Rightarrow f(-1) = 0$. Cum $f(-1) = 5 + p \Rightarrow p = -5$.

- **b**) Dacă $\alpha \in \mathbb{R}$ este rădăcină dublă, atunci $f(\alpha) = f'(\alpha) = 0$. Din $f'(\alpha) = 0 \Rightarrow 4(\alpha^3 1) = 0 \Rightarrow \alpha = 1$. Din $f(\alpha) = 0 \Rightarrow p = 3$.
- c) Cum $x_1^2 + x_2^2 + x_3^2 + x_4^2 = (x_1 + x_2 + x_3 + x_4)^2 2\sum_{1 \le i < j \le 4} x_i x_j = 0$, dacă polinomul ar avea toate rădăcinile reale, atunci acestea ar fi toate egale cu 0, contradicție.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a)
$$A \cdot A^t = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}.$$

b)
$$f(0) = \det(A \cdot A^t + 0 \cdot B) = \det(A \cdot A^t) = \det(A) \cdot \det(A^t) = (\det A)^2 \ge 0$$
.

c) Fie
$$f(x) = \begin{vmatrix} a^2 + b^2 + x & ac + bd + x \\ ac + bd + x & c^2 + d^2 + x \end{vmatrix} = (a^2 + b^2 + c^2 + d^2 - 2ac - 2bd)x + (ad - bc)^2.$$

Afirmația din enunț este adevărată: $m = a^2 + b^2 + c^2 + d^2 - 2ac - 2bd$, $n = (ad - bc)^2$.

2.a) Pentru
$$q = \frac{1}{3} \Rightarrow \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = \frac{1}{2} + i \frac{\sqrt{3}}{2} \in G$$
.

b) Fie
$$x = \cos q\pi + i\sin q\pi$$
, $y = \cos r\pi + i\sin r\pi$, $q, r \in \mathbb{Q}$. At unci $xy = \cos (q+r)\pi + i\sin (q+r)\pi \in G$.

c) Rădăcinile polinomului
$$f$$
 sunt numerele complexe $z_k = \cos\frac{2k\pi}{6} + i\sin\frac{2k\pi}{6} = \cos\frac{k\pi}{3} + i\sin\frac{k\pi}{3}$, $k = 0,1,...,5$.

Cum
$$\frac{k}{3} \in \mathbb{Q}$$
, pentru orice $k = 0,1,...,5$, rezultă că f are toate rădăcinile în G .

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$I_2 + A = \begin{pmatrix} 4 & -1 \\ 7 & -3 \end{pmatrix} \Rightarrow (I_2 + A)^2 = \begin{pmatrix} 4 & -1 \\ 7 & -3 \end{pmatrix} = I_2 + A.$$

b)
$$A^2 = -A$$
, $A^3 = A^2 \cdot A = -A \cdot A = -A^2 = A$. Prin inducție matematică rezultă că $A^n = (-1)^{n-1} A$, $\forall n \in \mathbb{N}^*$, deci $\left\{A^n \middle| n \in \mathbb{N}^*\right\} = \left\{-A, A\right\}$.

c)
$$X^3 = A \Rightarrow \det(X^3) = \det(A) \Rightarrow \det(X) = 0$$
. Dacă $t = tr(X) \Rightarrow X^3 = t^2 X$. Din $t^2 X = A \Rightarrow t^3 = -1$, deci $t = -1$. Deci $X = A$.

2.a)
$$f(1) + f(-1) = a_n(1 + (-1)^n) + a_{n-1}(1 + (-1)^{n-1}) + ... + a_1(1 + (-1)) + 2a_0$$
.

Avem $1+(-1)^k \in \{0,2\}$, pentru orice $k \in \{1,2,...,n\}$, deci f(1)+f(-1) este număr par

b) Presupunem că ecuația f(x) = 0 are o rădăcină întreagă k; atunci f(x) = (x-k)g(x), unde g este un polinom cu coeficienți întregi. f(2) = (2-k)g(2) este impar, deci 2-k este impar.

f(3) = (3-k)g(3) este impar, deci 3-k este impar. Atunci 2-k+3-k=5-2k este par, contradicție.

c) Dacă polinomul $g = X^3 - X + 3a + 1$ ar putea fi descompus în produs de două polinoame neconstante, cu coeficienți întregi, unul dintre aceste polinoame ar fi de gradul 1, deci g ar avea o rădăcină rațională $x_0 = \frac{p}{q}$, unde $p,q \in \mathbb{Z}, q \ge 1, (p,q) = 1$, astfel încât $p \mid 1$ și $q \mid 1$. Rezultă $x_0 \in \{-1,1\}$.

Pentru $x_0 = -1 \Rightarrow g(-1) = 3a + 1 = 0$ dacă și numai dacă $a = -\frac{1}{3}$, care nu este număr întreg, contradicție.

Pentru $x_0 = 1 \Rightarrow g(1) = 3a + 1 = 0$ dacă și numai dacă $a = -\frac{1}{3}$, care nu este număr întreg, contradicție.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Solutii

1.a) Cum
$$\lim_{x \to -\infty} \left(\frac{f(x)}{x} \right) = -a$$
 și $\lim_{x \to -\infty} (f(x) + a \cdot x) = 0$, dreapta $y = -a \cdot x$ este asimptota oblică spre $-\infty$.

- **b)** $x = \ln a$ este punct de minim.
- c) Din ipoteză avem că $f(x) \ge f(0)$, $\forall x \in \mathbb{R}$, deci x = 0 este punct de minim pentru f. Din T. Fermat deducem că $f'(0) = 0 \Leftrightarrow a = 1$; se verifică faptul că a = 1 convine.
- **2.a)** F este derivabila pe $(0, \infty)$. $F'(x) = \frac{1}{\sqrt{x}} (\ln x 2) + 2 \cdot \sqrt{x} \cdot \frac{1}{x} = f(x), x > 0$.
 - **b**) *G* primitivă \Rightarrow G este derivabilă. $G'(x) = f(x) \ge 0, \forall x \ge 1 \Rightarrow$ concluzia.

c) Aria =
$$\int_{\frac{1}{e}}^{e} |f(x)| dx = \int_{\frac{1}{e}}^{1} -f(x) dx + \int_{1}^{e} f(x) dx = -F(x) \Big|_{\frac{1}{e}}^{1} + F(x) \Big|_{1}^{e} = -2\sqrt{e} - \frac{6}{\sqrt{e}} + 8$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

- 1.a) Se demonstrează prin inducție matematică.
 - **b)** $a_{n+1} a_n = -a_n \cdot \sqrt{a_n} < 0 \Rightarrow$ şirul dat este strict descrescător.
 - c) Cum $a_k^2 < a_k \sqrt{a_k} = a_k a_{k+1}, \ \forall k \in \mathbb{N}^*$, însumând se deduce relația cerută.
- **2.a)** *F* este derivabilă pe \mathbb{R} . $F'(x) = \frac{2\sqrt{3}}{3} \cdot \frac{1}{1 + \left(\frac{2x+1}{\sqrt{3}}\right)^2} \cdot \frac{2}{\sqrt{3}} = f(x)$.
 - **b**)Aria cerută este $A = \int_0^1 \frac{2x+1}{x^2+x+1} dx = \ln\left(x^2+x+1\right)\Big|_0^1 = \ln 3$.
 - c)Limita cerută este $L = \lim_{n \to \infty} \left(F(n) F(-n) \right) = \frac{2\sqrt{3}}{3} \left(\frac{\pi}{2} + \frac{\pi}{2} \right) = \frac{2\pi\sqrt{3}}{3}.$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a)
$$f'(x) = \frac{36 \cdot x^2 - 1}{x}, x > 0 \Rightarrow f$$
 este strict descrescătoare pe $\left(0, \frac{1}{6}\right]$ și strict crescătoare pe $\left[\frac{1}{6}, \infty\right)$.

b) Din **a**) avem că
$$f(x) \ge f(\frac{1}{6}) = \frac{1}{2} + \ln 6, \forall x > 0, \text{ deci } a \in (-\infty, \frac{1}{2} + \ln 6].$$

- c) Deoarece $\lim_{x \to 0} f(x) = \lim_{x \to \infty} f(x) = \infty$, utilizând a) avem ca pentru $m < \frac{1}{2} + \ln 6 = m_0$ ecuația are 0 rădăcini reale, pentru $m = m_0$ ecuația are o rădăcină reală, iar pentru $m > m_0$ ecuația are două rădăcini reale.
- **2.a**) Funcția este continuă, deci are primitive. Daca F este o primitivă pentru f_a , atunci $F'(x) = f_a(x) > 0$, $\forall x \in \mathbb{R}$. Așadar funcția F este strict crescătoare pe \mathbb{R} .

b)
$$\int_0^3 \frac{1}{|x-2|+3} dx = \int_0^2 \frac{1}{5-x} dx + \int_2^3 \frac{1}{x+1} dx = \ln \frac{20}{9}$$
.

c)
$$\lim_{a \to \infty} \int_0^3 f(x) dx = \lim_{a \to \infty} \int_0^3 \frac{1}{a - x + 3} dx = \lim_{a \to \infty} \ln \frac{a + 3}{a} = 0$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1.a) y = 0 este asimptota orizontală la ∞ și la $-\infty$. Dreptele x = 0, x = -1 sunt asimptote verticale.

b)
$$f'(x) = \frac{-2(3x^2 + 3x + 1)}{x^3(x+1)^3} \neq 0$$
, $\forall x \in \mathbb{R} \setminus \{-1,0\}$, de unde se obține concluzia.

c)
$$\sum_{k=1}^{n} f(k) = \sum_{k=1}^{n} \left(\frac{1}{k^2} - \frac{1}{(k+1)^2} \right) = 1 - \frac{1}{(n+1)^2}$$
. Limita cerută este $\frac{1}{e}$

2.a)
$$I_1 = \int_1^2 \left(1 - \frac{1}{x+1}\right) dx = 1 - \ln \frac{3}{2}$$
.

b)
$$I_n = \int_1^2 \frac{x^n}{1+x^n} dx \le \int_1^2 dx = 1.$$

c)
$$I_n = \int_1^2 \left(1 - \frac{1}{1 + x^n} \right) dx = 1 - \int_1^2 \frac{1}{1 + x^n} dx$$
, iar $0 \le J_n = \int_1^2 \frac{1}{1 + x^n} dx \le \int_1^2 \frac{1}{x^n} dx = \frac{1}{n - 1} \left(1 - \frac{1}{2^{n - 1}} \right) \Rightarrow J_n \to 0$
 $\Rightarrow I_n \to 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1.a)
$$f'(x) = \frac{1}{x} - \frac{4}{(x+1)^2} = \frac{(x-1)^2}{x \cdot (x+1)^2}, x > 0$$

b)
$$f'(x) = \frac{2}{9} \Leftrightarrow 2x^3 - 5x^2 + 20x - 9 = 0 \Leftrightarrow (2x - 1)(x^2 - 2x + 9) = 0 \Leftrightarrow x = \frac{1}{2}$$
.

Deoarece $f\left(\frac{1}{2}\right) = -\ln 2 + \frac{2}{3} \Rightarrow A\left(\frac{1}{2}; -\ln 2 + \frac{2}{3}\right)$ este punctul căutat.

- c) Din subpunctul a) deducem ca f'(x) > 0, $\forall x > 1$. Deoarece funcția f este strict crescătoare pe $[1, \infty)$ și
- f(1) = 0, rezultă că $f(x) \ge 0, \forall x \in [1, \infty)$, de unde se deduce inegalitatea de demonstrat.
- **2.a**) Se arată că *f* este strict descrescătoare. Se aplică teorema de medie (sau teorema lui Lagrange pentru o primitivă a funcției *f*).

b)
$$\int_1^n f(x)dx = \int_1^n x^{-2}dx = \frac{-1}{x}\Big|_1^n = 1 - \frac{1}{n}$$
. Limita cerută este egală cu 1.

c) Deoarece $\int_{1}^{n} f(x)dx = \sum_{k=1}^{n-1} \int_{k}^{k+1} f(x)dx$ adunând inegalitățile de la **a**) obținem:

$$\sum_{k=2}^{n} f(k) \le \int_{1}^{n} f(x) dx \Rightarrow a_{n} - f(1) \le \int_{1}^{n} f(x) dx \Rightarrow a_{n} \le \int_{1}^{n} f(x) dx + 1 \to 2, \text{ deci sirul este m\u00e4rginit superior.}$$

Şirul fiind şi crescător, este convergent.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Soluții

1.a)
$$f'(x) = e^{x \ln x} \cdot (x \ln x)' = f(x) \cdot (\ln x + 1), x > 0$$
.

b) Funcția f este descrescătoare pe $\left(0; \frac{1}{e}\right]$ și crescătoare pe $\left[\frac{1}{e}, \infty\right)$, deci ea este marginită inferior de numărul

$$f\left(\frac{1}{e}\right)$$
. Minimul cerut este $e^{\frac{-1}{e}}$.

c) $f''(x) = f(x) \cdot \left((1 + \ln x)^2 + \frac{1}{x} \right) > 0$, deci f este convexă pe $(0, \infty)$.

2.a)
$$\int_0^1 g_2(x) dx = \int_0^1 \left(1 - x + x^2 - x^3 + \frac{x^4}{1 + x}\right) = \int_0^1 \frac{1}{1 + x} dx = \ln(x + 1) \Big|_0^1 = \ln 2$$
.

b) $x \in [0;1] \Rightarrow 0 \le \frac{x^{2n}}{1+x} \le x^{2n}$ și integrând aceste inegalități de la 0 la 1, obținem inegalitățile cerute.

c) Integrând functia g_n obținem:

$$\int_0^1 \frac{1}{1+x} dx = \int_0^1 \left(1 - x + x^2 - \dots - x^{2n-1} + \frac{x^{2n}}{1+x} \right) dx \Rightarrow \ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{2n} + \int_0^1 \frac{x^{2n}}{1+x} dx$$
, utilizând şi **b**) găsim că limita este $\ln 2$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a) x = 0 este asimptota verticala. Functia f nu admite alte asimptote, pentru că f este continuă,

$$\lim_{x \to \infty} \frac{f(x)}{x} = 0 \text{ si } \lim_{x \to \infty} f(x) = \infty.$$

- **b**) Aplicăm T.Lagrange funcției f pe [k, k+1] și stabilim inegalitățile cerute.
- c) Adunând inegalitățile de la **b**) obținem $x_n > \ln(n+1) \ln n > 0, n \in \mathbb{N}^*$. Apoi, $x_{n+1} x_n = \frac{1}{n+1} \ln(n+1) + \ln n$ și folosind **b**) se deduce că șirul este descrescător.

2.a)
$$F'(x) = f(x), \forall x > -1 \Leftrightarrow \frac{a}{x+1} + \frac{2bx}{x^2+1} + \frac{c}{x^2+1} = \frac{2x}{(x+1)(x^2+1)}, \forall x > -1 \Leftrightarrow a = -1, b = \frac{1}{2}, c = 1.$$

b)
$$\int_0^1 f(x) dx = F(x) \Big|_0^1 = \left(-\ln(x+1) + \frac{1}{2}\ln(x^2+1) + \arctan(x) \right) \Big|_0^1 = -\frac{1}{2}\ln 2 + \frac{\pi}{4}$$
.

c) F'(x) = f(x), x > -1. Observăm că F'(x) < 0, $x \in (-1;0)$ și F'(x) > 0, x > 0, de unde deducem monotonia.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

- **1.a**) $f'(x) = 1 \sin x \ge 0$, deci are loc concluzia.
 - b) Se demonstrează prin inducție, folosind monotonia funcției.
 - c) Șirul este crescător și folosind b), șirul este convergent. Concluzia rezultă trecând la limită în relația de recurență.

2.a)
$$I_1 = \sin x \Big|_{0}^{\frac{\pi}{2}} = 1.$$

b)
$$I_{n+1} - I_n = \int_0^{\frac{\pi}{2}} \cos^n x (\cos x - 1) dx \le 0$$
, de unde se obține concluzia.

$$\mathbf{c}) \ I_n = \int_0^{\frac{\pi}{2}} (\sin x)' \cdot \cos^{n-1} x dx; I_n = (n-1) \int_0^{\frac{\pi}{2}} (1 - \cos^2 x) \cdot \cos^{n-2} x dx; I_n = (n-1) I_{n-2} - (n-1) I_n,$$

$$\mathrm{deci}\ nI_n = (n-1)I_{n-2} \Rightarrow nI_nI_{n-1} = (n-1)I_{n-1}I_{n-2} = \dots = 1I_1I_0 = \frac{\pi}{2}\,.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

- **1.a**) $f'(x) = 1 \cos x \ge 0$, $x \in \mathbb{R}$, deci funcția f este crescătoare pe \mathbb{R} .
- **b**) Din ipoteză rezultă că $x_n = \sin x_n + n \ge n 1$. Rezultă că şirul (x_n) este nemărginit.
- c) $\frac{x_n}{n} \in \left[\frac{n-1}{n}, \frac{n+1}{n}\right]$. Limita cerută este egală cu 1 (teorema cleștelui).

2.a)
$$\int_0^2 \frac{1-x^2}{1-x} dx = \int_0^{\frac{1}{2}} (1+x) dx = \left(x+\frac{x^2}{2}\right) \Big|_0^{\frac{1}{2}} = \frac{5}{8}.$$

b)
$$t \in \left[0; \frac{1}{2}\right] \Rightarrow 0 \le g_n(t) \le g_n\left(\frac{1}{2}\right)$$
 deoarece funcția g_n este crescătoare pe $\left[0, \frac{1}{2}\right]$.

Rezultă că $0 \le \int_0^{\frac{1}{2}} g_n(t) dt \le \int_0^{\frac{1}{2}} \frac{1}{2^{n-1}} dt = \frac{1}{2^n}, n \in \mathbb{N}^*$.

c) Avem :
$$\int_0^{\frac{1}{2}} \frac{1-x^n}{1-x} dx = \int_0^{\frac{1}{2}} \left(1+x+x^2+...+x^{n-1}\right) dx = \left(x+\frac{x^2}{2}+...+\frac{x^n}{n}\right)\Big|_0^{\frac{1}{2}} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 2^2} + \frac{1}{3\cdot 2^3} + ... + \frac{1}{n\cdot 2^n}$$

Limita cerută este $-\ln\left(1-x\right)\Big|_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} g_n\left(x\right) dx \rightarrow -\ln\frac{1}{2} = \ln 2.$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a)
$$f'(x) = \arctan x - \frac{x}{x^2 + 1}$$
; $f''(x) = \frac{2x^2}{(1 + x^2)^2} \ge 0$, deci f este convexă.

- **b)** $f''(x) \ge 0 \Rightarrow f'$ este crescătoare. Cum $\lim_{x \to -\infty} f'(x) = -\frac{\pi}{2}$, $\lim_{x \to \infty} f'(x) = \frac{\pi}{2}$, se obține concluzia.
- c) f'(0) = 0 şi f' crescătoare pe $\mathbb{R} \Rightarrow f'(x) \le 0$ pentru x < 0; $f'(x) \ge 0$ pentru x > 0. Deducem că x = 0 este punct de minim global pentru f, deci $f(x) \ge f(0) = 0$, $\forall x \in \mathbb{R}$.
- **2.a)** $I_1 = \int_0^1 \frac{x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) \Big|_0^1 = \frac{1}{2} \ln 2.$
- **b**) $x \in [0;1] \Rightarrow \frac{x^n}{1+x^{2n}} \le x^n$. Se integrează inegalitatea și se obține cerința problemei .
- c) $I_n \ge 0$, deoarece funcția de integrat este pozitivă. Folosind **b**) și teorema cleștelui se deduce că limita cerută este egală cu 0.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a) Avem că
$$f'_s(0) = -\frac{3}{4}$$
 și $f'_d(0) = \frac{1}{4}$, deci f nu e derivabilă în $x = 0$.

$$\mathbf{b}) \ f'(x) = \begin{cases} -\frac{e^{-x}(x+3)}{(x+2)^2}, x \in (-\infty, -2) \cup (-2, 0) \\ (x+2)^2, x \in (0, \infty) \end{cases} ; \ x = -3 \text{ este maxim } \$i \ x = 0 \text{ este minim.}$$

c) Şirul lui Rolle:

X	-∞	-3	-2	0	+∞
f(x)-m		$-m-e^3$	-∞ +∞	$\frac{1}{2}-m$	+8

pentru $m < -e^3 \Rightarrow 2$ rădăcini; $m = -e^3 \Rightarrow$ o rădăcină, x = -3; $m \in \left(-e^3, \frac{1}{2}\right) \Rightarrow$ nicio rădăcină;

$$m = \frac{1}{2} \Rightarrow$$
 o rădăcină, $x = 0$; $m > \frac{1}{2} \Rightarrow 2$ rădăcini.

2.a)
$$I = \frac{13}{24} - \cos 1$$
.

b)
$$g'(x) = \frac{-\sin x}{x} < 0$$
, $\forall x \in (0,1]$, deci are loc cerința problemei.

c) Avem
$$\frac{\sin t}{t} \ge 1 - \frac{t^2}{6}$$
, pentru $t > 0$, deci $g(x) \ge \int_x^1 \left(1 - \frac{t^2}{6}\right) dt = \frac{17}{18} - x + \frac{x^3}{6}$.

Atunci , limita cerută
$$L \ge \frac{17}{18} > 0,9$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1.a)
$$x_n \ln 2 + \ln \frac{3}{2} + ... + \ln \frac{n+1}{n} = \ln (n+1)$$
, deci $\lim_{n \to \infty} x_n = \infty$.

b) Folosind o regulă a lui L'Hospital, limita cerută este egală cu 0.

c)
$$f'(x) = \frac{x - (x+1)\ln(x+1)}{x^2(x+1)}$$
. Considerăm $g:[0,\infty) \to \mathbb{R}$, $g(x) = x - (x+1)\ln(x+1)$ și avem

$$g'\left(x\right) = -\ln\left(x+1\right) < 0, \ \forall x > 0 \text{ , deci } g\left(x\right) < g\left(0\right) = 0, \ \forall x > 0 \text{ adică } f'\left(x\right) < 0, \ \forall x > 0.$$

2.a) Integrănd prin părți se obține $f(2)=1-\frac{2}{e}$.

b)
$$f(x) = \int_0^1 e^{-t} t^{x-1} dt \le \int_0^1 t^{x-1} dt = \frac{1}{x}$$
.

c)
$$f(x+1) = \int_{0}^{1} (-e^{-t})' \cdot t^{x} dt = -e^{-t} \cdot t^{x} \Big|_{0}^{1} + \int_{0}^{1} e^{-t} \cdot x \cdot t^{x-1} dt = -\frac{1}{e} + x \cdot f(x), \ x > 1.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

- **1.a)** y = x + 1 este asimptota oblică spre ∞ .
- **b**) Deoarece $x^3 + 3x^2 4 = (x 1)(x + 2)^2 \neq 0$, $\forall x \in \mathbb{R} \setminus \{-2, 1\}$. Derivând relația $f^3(x) = x^3 + 3x^2 4$, obținem concluzia.
- c) $f'(x) = \frac{x}{\sqrt[3]{(x-1)^2(x+2)}}$, $\forall x \neq 1, x \neq -2$. Cum f continuă în $x_0 = -2$ rezultă $f'_s(-2) = +\infty$, $f'_d(-2) = -\infty$.
- **2.a)** $F_1(x) = \int_0^x (-e^{-t})' \cdot t dt = 1 (x+1) \cdot e^{-x}$.
- **b)** $F_n'(x) = x^n \cdot e^{-x}, x > 0$; $F_n''(x) = x^{n-1} \cdot e^{-x}(n-x), x > 0$, deci punctul de inflexiune este x = n.
- c) $F_2(x) = \int_0^x e^{-t} t^2 dt = \frac{-x^2}{e^x} \frac{2x}{e^x} \frac{2}{e^x} + 2$, de unde rezultă că limita cerută este egală cu 2.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1. a) $f_n'(x) = n \sin^{n-1} x \cos x$, apoi se obține relația cerută.

$$\mathbf{b}) \ f_n'''\left(x\right) = n \sin^{n-2} x \left(n - 1 - n \sin^2 x\right); \ \ f_n'''\left(x_n\right) = 0, \\ x_n \in \left(0, \frac{\pi}{2}\right) \Rightarrow n; \ \ \sin^2 x = n - 1 \Rightarrow \sin x_n = \sqrt{\frac{n-1}{n}} \ .$$

c)
$$L = \lim_{n \to \infty} (\sin x_n)^n = \lim_{n \to \infty} (1 + \sin x_n - 1) \frac{1}{\sin x_n - 1} \cdot n \cdot (\sin x_n - 1); \ L = e^{\lim_{n \to \infty} (\sqrt{\frac{n-1}{n}} - 1) \cdot n} = e^{-\frac{1}{2}}.$$

2.a)
$$F$$
 este derivabilă pe \mathbb{R} și $F'(x) = \frac{(2x+a)(x^2+1)-(x^3+ax^2+5x)}{(x^2+1)\sqrt{x^2+1}} = f(x)$.

b) Aria =
$$\int_{1}^{2} f(x) dx = \frac{x^2 + 2x + 5}{\sqrt{x^2 + 1}} \Big|_{1}^{2} = \frac{13}{\sqrt{5}} - \frac{8}{\sqrt{2}}$$
.

c) Cu schimbarea de variabilă t=-x, a doua integrală devine $\int_{-2}^{0} F(x) dx = \int_{0}^{2} F(-t) dt$. Relația din ipoteză devine

$$\int_0^2 (F(x) - F(-x)) dx = 2 \iff \int_0^2 \frac{2ax}{\sqrt{x^2 + 1}} dx = 2 \iff a \cdot \sqrt{x^2 + 1} \Big|_0^2 = 1 \Rightarrow a = \frac{\sqrt{5} + 1}{4}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Solutii

- **1.a**) $f_n'(x) = n \cdot (x^{n-1} 1)$, $f_n'(x) < 0$, pentru $x \in [0,1)$; $f_n'(x) > 0$, pentru x > 1, de unde rezultă concluzia.
- **b)** f_n este continuă, strict descrescătoare pe [0,1] și $f_n(0) \cdot f_n(1) < 0 \Rightarrow$ o rădăcină în (0,1). f_n este continuă, strict crescătoare pe $[1,\infty)$, $f_n(1) < 0$, $\lim_{x \to \infty} f_n(x) = \infty \Rightarrow$ o rădăcină în $(1,\infty)$.

$$\mathbf{c}) \ f_n\!\left(\frac{2}{n}\right) < 0, f_n\!\left(0\right) > 0 , \text{deci } a_n \in \!\left(0, \frac{2}{n}\right) \! \Rightarrow \lim_{n \to \infty} a_n = 0 \; .$$

2.a)
$$I_0 = \arctan x \Big|_0^1$$
, deci $I_0 = \frac{\pi}{4}$.

b)
$$I_{2n} + I_{2n-2} = \int_0^1 \frac{x^{2n-2} \cdot (x^2 + 1)}{x^2 + 1} dx$$
; $I_{2n} + I_{2n-2} = \frac{1}{2n-1}$, $n \ge 2$.

c) Din **b**) rezultă
$$I_{2n} \cdot \left(-1\right)^{n-1} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \dots + \left(-1\right)^{n-1} \cdot \frac{1}{2n-1} - I_0$$
. Din $0 \le I_n \le \int_0^1 x^n dx \le \frac{1}{n+1}$ rezultă $\lim_{n \to \infty} I_n = 0$, de unde concluzia.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

- **1.a**) Funcția este derivabila pe $\mathbb{R} \{0\}$ și $f'(0) = \lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right) = 0$.
- **b**) $f'(x) = 2x \cdot \sin\left(\frac{1}{x^2}\right) \frac{2}{x} \cdot \cos\left(\frac{1}{x^2}\right), x \in \mathbb{R} \{0\}$. Limita cerută este egală cu 0.
- c) Ştim că $\sin t \le t$, $\forall t \ge 0$, de unde $0 \le f(x) \le x^2 \cdot \frac{1}{x^2} = 1$, $\forall x \in \mathbb{R} \setminus \{0\}$.
- **2.a)** $\int_0^1 (1-x)^2 dx = \frac{1}{3}$.
- **b)** Cu substituția 1-x=t, se obține $\int_0^1 x \left(1-x\right)^n dx = \int_0^1 \left(t^n-t^{n+1}\right) dt = \left(\frac{t^{n+1}}{n+1}-\frac{t^{n+2}}{n+2}\right)\Big|_0^1$, de unde rezultă cerința.

c)
$$\int_0^1 \left(1 - \frac{x}{n}\right)^n dx = -n \frac{\left(1 - \frac{x}{n}\right)^{n+1}}{n+1} \Big|_0^1 = \frac{-n}{n+1} \left(1 - \frac{1}{n}\right)^{n+1} + \frac{n}{n+1}$$
, de unde rezultă că limita cerută este $1 - \frac{1}{e}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

- 1. a) Se demonstrează prin inducție.
- **b**) $x_{n+1} x_n = \frac{x_n^5 x_n}{4} < 0$. Şirul fiind descrescător şi mărginit este convergent.
- c) Avem ca $\lim_{n\to\infty} x_n = 0$, $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \lim_{n\to\infty} \frac{x_n^4 + 3}{4} = \frac{3}{4}$. Din $\frac{x_{n+2}}{x_n} = \frac{x_{n+2}}{x_{n+1}} \cdot \frac{x_{n+1}}{x_n}$ și relația anterioară, se deduce că limita cerută este $\left(\frac{3}{4}\right)^2$.
- **2. a)** Din ipoteză avem ca $x^2 \cdot f(x) = x \cdot \sin x$, $x \in \mathbb{R} \cdot I = \int_0^{\pi} x \sin x dx = -\int_0^{\pi} (\cos x)' x dx$. $I = -x \cos x \Big|_0^{\pi} + \int_0^{\pi} \cos x dx = \pi$.
- **b**) Funcția g(x) = f(x), $x \in I \{0\}$, g(0) = 1, I = [0,1], este continuă pe I deci integrabilă. Cum f diferă de g doar în x = 0, rezultă că și f este integrabilă pe I.
- c) Avem $\frac{\sin x}{x} < \frac{\sin x}{1}$, $\forall x \in \left(1, \frac{\pi}{2}\right]$. Rezultă $\int_{1}^{\frac{\pi}{2}} f(x) dx < \int_{1}^{\frac{\pi}{2}} \sin x dx = \cos 1$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

- **1.a**) Funcția f este continuă pe $[0,\infty)$, deci nu va avea asimptote verticale. Cum $\lim_{x\to\infty} f(x) = 2$, dreapta y = 2 este asimptota orizontală spre ∞ .
- **b)** Demonstrăm inductiv că $x_n > 1$, $\forall n \in \mathbb{N}$. Apoi, $x_{n+1} x_n = \frac{1 x_n^2}{x_n + 2} < 0$ deci șirul este descrescător. Astfel șirul este convergent și folosind recurența rezultă concluzia.

c)
$$y_{n+1} - y_n = x_{n+1} - 1$$
, deci şirul (y_n) este crescător. Avem $|x_n - 1| = |f(x_{n-1}) - 1| = \frac{|x_{n-1} - 1|}{|x_{n-1}|} \le \frac{|x_{n-1} - 1|}{2}$,

 $\text{de unde } \left| x_n - 1 \right| \leq \frac{x_0 - 1}{2^n} = \frac{1}{2^n} \text{ . Atunci } y_n \leq x_0 + \sum_{k=1}^n \left| x_k - 1 \right| \leq 2 + \sum_{k=1}^n \frac{1}{2^k} < 3 \text{ , deci şirul este şi mărginit superior.}$

- **2.a)** Avem că $I = \int_0^{\frac{\pi}{2}} (1 + \cos x) dx = (x + \sin x) \Big|_0^{\frac{\pi}{2}} = \frac{\pi}{2} + 1.$
- **b)** $F(x) = x \int_0^x (1 + \cos t) dt = x^2 + x \sin x$, de unde rezultă că F este o funcție pară.
- c) Dacă $0 \le x_1 < x_2$, atunci $0 \le \int_0^{x_1} f(t) dt \le \int_0^{x_2} f(t) dt$ deoarece f este pozitivă, deci F este crescătoare pe $[0, \infty)$. Cum F este o funcție pară , rezultă că F este descrescătoare pe $[-\infty, 0]$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1.a) f este continuă pe D, deci în aceste puncte nu avem asimptote verticale $f_d(-2) = -\infty$, $f_s(2) = \infty \Rightarrow x = -2$, x = 2 sunt asimptote verticale.

b)
$$f''(x) = \frac{8x}{(4-x^2)^2}$$
, deci $x = 0$ este punct de inflexiune.

c) Limita cerută este
$$L = \lim_{x \to \infty} x^a \cdot \ln \left(\frac{2 + \frac{1}{x}}{2 - \frac{1}{x}} \right) = \lim_{y \searrow 0} \frac{1}{y^a} \cdot \ln \frac{2 + y}{2 - y}$$
.

$$L = \lim_{y \searrow 0} \frac{1}{y^{a}} \cdot \frac{\ln\left(1 + \frac{2y}{2 - y}\right)}{\frac{2y}{2 - y}} \cdot \frac{2y}{2 - y} = \lim_{y \searrow 0} \frac{1}{y^{a - 1}} = \begin{cases} 0, a < 1 \\ 1, a = 1 \\ \infty, a > 1 \end{cases}$$

2.a)
$$I = \int_0^1 \left(-x + 2 - \frac{x}{x^2 + 4} \right) dx = \left(-\frac{x^2}{2} + 2x - \frac{1}{2} \cdot \ln\left(x^2 + 4\right) \right) \Big|_0^1 = \frac{3}{2} - \frac{1}{2} \ln\frac{5}{4}.$$

b) Avem că
$$I = \int_1^4 \frac{x^2}{\left(x^2 + 4\right)^2} dx = \frac{-1}{2} \cdot \int_1^4 \left(\frac{1}{x^2 + 4}\right)' \cdot x dx$$
. $I = \frac{1}{2} \cdot \frac{-x}{x^2 + 4} \Big|_1^4 + \frac{1}{4} \cdot \operatorname{arctg} \frac{x}{2} \Big|_1^4 = \frac{1}{4} \left(\operatorname{arctg} 2 - \operatorname{arctg} \frac{1}{2}\right)$.

c) Cu substituția
$$f^{-1}(x) = t$$
, $I = \int_{\frac{4}{5}}^{2} f^{-1}(x) dx = -\int_{0}^{1} t \cdot f'(t) dt = -t \cdot f(t) \Big|_{0}^{1} + \int_{0}^{1} f(t) dt = \frac{7}{10} - \frac{1}{2} \ln \frac{5}{4}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

- **1. a)** f este derivabilă pe $[0,\infty)$, $f'(x) = 2e^x + 6x 2$. $f'(x) \ge 0$, cu egalitate dacă x = 0, de unde se obține concluzia.
- **b)** Pentru x < 0, f'(x) < 0, deci 0 este punct de minim global, de unde $f(x) \ge f(0)$, $\forall x \in \mathbb{R}$.

c) Decarece
$$f'(x) = 2e^x + 6x - 2$$
, avem $\lim_{x \to \infty} \frac{f'(x)}{f(x)} = \lim_{x \to \infty} \frac{2e^x + 6x - 2}{2e^x + 3x^2 - 2x + 5} = 1$.

2. a)
$$I = \int_0^1 \frac{1}{1+t^2} dt = \operatorname{arctg} t \Big|_0^1 = \frac{\pi}{4}$$
.

b) Cu substitutia
$$\frac{1}{t} = y \Rightarrow J = \int_{\frac{1}{t}}^{1} f(t) dt = \int_{x}^{1} f\left(\frac{1}{y}\right) \cdot \left(\frac{-1}{y^2}\right) dy = \int_{1}^{x} \frac{1}{t^2} \cdot f\left(\frac{1}{t}\right) dt = \int_{1}^{x} t^3 f(t) dt$$
.

c)
$$A = \int_{\frac{1}{x}}^{x} f(t)dt = \int_{\frac{1}{x}}^{1} f(t)dt + \int_{1}^{x} f(t)dt = \int_{1}^{x} t^{3} f(t)dt + \int_{1}^{x} f(t)dt = \int_{1}^{x} (t^{3} + 1)f(t)dt$$
.

$$A = \int_{1}^{x} \frac{1}{1+t^2} dt = \arctan x - \arctan t$$
, deci limita ceruta este $\frac{\pi}{4}$.

<u>Ministerul Educației, Cercetării și Inovării</u> <u>Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar</u>

Soluții

1. a) Limita cerută este egală cu 1.

b)
$$\lim_{x \to \infty} f(x)^{\frac{1}{x}} = e^{\lim_{x \to \infty} \frac{\ln f(x)}{x}} = e^0 = 1.$$

c) f' este funcție polinomială de grad 3 deci ecuația va avea cel mult 3 rădacini reale. Aplicand T. lui Rolle funcției f pe [1,3],[3,5],[5,7], f' se anulează în cel puțin în 3 puncte.

2.a) Aria cerută este
$$A = \int_0^1 f_1(x) dx = \operatorname{arctg} x \Big|_0^1 = \frac{\pi}{4}$$
.

b)
$$I = \int_0^1 \frac{x}{\left(1 + x^2\right)^2} dx = \frac{1}{2} \int_0^1 \left(1 + x^2\right)' \left(1 + x^2\right)^{-2} dx = \frac{-1}{2\left(x^2 + 1\right)} \Big|_0^1 = \frac{1}{4}.$$

c) Şirul care ne interesează se scrie
$$a_n = n \cdot \sum_{k=1}^n \frac{1}{n^2 + k^2} = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k^2}{n^2}}$$
, deci $\lim_{n \to \infty} a_n = \int_0^1 \frac{1}{1 + x^2} dx = \frac{\pi}{4}$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1.a)
$$f'(x) = \frac{3(1-x^2)(1+x^2)}{(x^4+3)^2}, x \in \mathbb{R}.$$

b) x = 1 este punct de maxim, x = -1 este punct de minim; $\lim_{x \to -\infty} f(x) = 0 = \lim_{x \to \infty} f(x)$. Imaginea lui f este

$$\operatorname{Im} f = \left\lceil \frac{-1}{4}, \frac{1}{4} \right\rceil.$$

c) Dacă x = y avem egalitate. Dacă $x \neq y$, se aplică T.Lagrange, se arată că $f'(c) \leq 1$ și rezultă cerința.

2.a) Avem:
$$\int_2^3 f(x) dx = \int_2^3 \left(x^2 + x - 2\right) dx = \left(\frac{x^3}{3} + \frac{x^2}{2} - 2x\right)\Big|_2^3 = \frac{41}{6}$$
.

b) Se descompune în fracții simple funcția de integrat și se obține $\int_{-1}^{0} \frac{x^2 - 13}{x^2 - 3x + 2} dx =$

$$\int_{-1}^{0} \left(\frac{2}{x-1} - \frac{4}{\left(x-1\right)^{2}} - \frac{1}{x+2} \right) dx = -3\ln 2 - 2.$$

c)
$$g'(x) = 0 \Leftrightarrow 2x \cdot f(x^2) \cdot e^{x^2} = 0 \Leftrightarrow 2x \cdot e^{x^2}(x^2 + 2)(x^2 - 1)^2 = 0 \Leftrightarrow x \in \{0, 1, -1\}$$
. Doar $x = 0$ este punct de extrem.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a) f' > 0, $\forall x \in \mathbb{R} \Rightarrow f$ este strict crescatoare, deci f este injectivă.

 $\lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to \infty} f(x) = \infty, f \text{ continu} \exists \Rightarrow f \text{ surjectiv} \exists; \text{ deoarece } f \text{ este bijectiv} \exists, \text{ are loc cerin} \exists \text{ problemei.}$

b) Din
$$x_n^3 + x_n + 1 = 3 + \frac{1}{n+1} \Rightarrow x_n^3 + x_n - 2 = \frac{1}{n+1}$$
, deci $|x_n - 1| = \frac{1}{(n+1)(x_n^2 + x_n + 2)} \le \frac{1}{2(n+1)}$, pentru că

 $x_n > 1$, de unde rezultă concluzia.

c)
$$n(x_n-1) = \frac{n}{n+1} \cdot \frac{1}{x_n^2 + x_n + 2} \to 1 \cdot \frac{1}{4} = \frac{1}{4}$$
.

2.a)
$$f(x) = \int_0^a \frac{1}{t+1} dt = \ln(t+1)\Big|_0^a = \ln(a+1)$$
.

b) Cum $\sin t \le 1$, $\forall t \ge 0$, cu egalitate pentru $t = \frac{\pi}{2} + 2k\pi, k \in \mathbb{N}$, avem:

$$f(x) < \int_0^x \frac{1}{t+1} dt = \ln(t+1)\Big|_0^x = \ln(x+1)$$
.

c)
$$f(2\pi) - f(\pi) = \int_{\pi}^{2\pi} \frac{\sin t}{1+t} dt < 0$$
, decarece $t \in (\pi, 2\pi) \Rightarrow \frac{\sin t}{1+t} < 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutii

- **1.a**) $f'(x) = 1 \cos x \ge 0$, cu egalitate doar în punctele $2n\pi$, $n \in \mathbb{N}$.
- **b**) Funcția f este continuă pe \mathbb{R} , deci nu are asimptote verticale. $\lim_{x\to\infty} f(x) = \infty$, $\lim_{x\to-\infty} f(x) = -\infty$ deci funcția f

nu are asimptote orizontale. Deoarece $\lim_{x\to\infty}\frac{f\left(x\right)}{x}=1$, $\lim_{x\to\infty}\left(f\left(x\right)-x\right)=\lim_{x\to\infty}\left(-\sin x\right)$ și aceasta nu există, funcția nu are asimptotă oblică la ∞ . Analog spre $-\infty$.

c) Funcția este derivabilă pe $\mathbb{R} \setminus \{0\}$, deoarece $x \neq 0 \Rightarrow f(x) \neq 0$. Cum $g'(0) = \lim_{x \to 0} \sqrt[3]{\frac{x - \sin x}{x^3}} = \frac{1}{\sqrt[3]{6}}$,

deducem că g este derivabilă și în x = 0.

2.a) f continuă implică faptul că f are primitive.

b)
$$I = \int_0^1 \left(e^{-x} - e^{-2x} \right) dx = \left(-e^{-x} + \frac{1}{2} e^{-2x} \right) \Big|_0^1 = \frac{1}{2} - e^{-1} + \frac{1}{2} e^{-2}.$$

c) $f(t) \ge 0, \forall t \in [0; x], x > 0 \Rightarrow \int_0^x f(t)dt \ge 0$. Din ipoteză rezultă că $e^{-x} \ge -x + 1 \Rightarrow 1 - e^{-x} \le x \Rightarrow e^{-x} - e^{-2x} \le xe^{-x}$,

deci
$$\frac{e^{-x} - e^{-2x}}{x} \le e^{-x}, x > 0 \Rightarrow \int_0^x f(t)dt \le \int_0^x e^{-t}dt = 1 - e^{-x} < 1.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluții

1.a)
$$f'(x) = \frac{\ln x}{x}$$
, $f''(x) = \frac{1 - \ln x}{x^2} \ge 0$, $\forall x \in (0, e]$, de unde se obține concluzia.

b) Dreapta x = 0 este asimptotă verticală. Nu există alte asimptote, pentru că funcția este continuă și $\lim_{x \to \infty} \frac{f(x)}{x} = 0$, $\lim_{x \to \infty} f(x) = \infty$.

c)
$$a_{n+1} - a_n = \frac{\ln(n+1)}{n+1} - (f(n+1) - f(n)) = f'(n+1) - f'(c_n) < 0$$
.

2.a) Aria ceruta este
$$A = \int_0^{\frac{\pi}{2}} \cos dx = \sin x \Big|_0^{\frac{\pi}{2}} = 1$$
.

b)
$$V = \pi \cdot \int_0^{\frac{\pi}{2}} f^2(x) dx = \pi \cdot \int_0^{\frac{\pi}{2}} \cos^2 x dx = \frac{\pi}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_0^{\frac{\pi}{2}} = \frac{\pi^2}{4}$$
.

c)
$$L = \lim_{n \to \infty} 2 \sin^2 \left(\frac{1}{2\sqrt{n}} \right) \left(\sum_{k=1}^n \cos \frac{k}{n} \right) = \lim_{n \to \infty} \left(\frac{\sin \frac{1}{2\sqrt{n}}}{\frac{1}{2\sqrt{n}}} \right)^2 \cdot \frac{1}{2n} \sum_{k=1}^n \cos \frac{k}{n} = 1 \cdot \frac{1}{2} \cdot \int_0^1 \cos x dx = \frac{1}{2} \sin 1.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Rezolvare

- **1.** a) $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \arctan x \lim_{x \to \infty} \arctan x = \frac{\pi}{2} \Rightarrow y = \frac{\pi}{2}$ este asimptotă orizontală spre $+\infty$.
 - **b**) $f'(x) = \frac{2}{1+x^2} > 0$, $\forall x \in \mathbb{R} \Rightarrow f$ este strict crescătoare.
 - c) $x_2 = f\left(0\right) = -\frac{\pi}{2} \to x_1 > x_2$ și f este strict crescătoare $\Rightarrow \left(x_n\right)_{n\geq 1}$ este strict descrescător. $\left(x_n\right)_{n\geq 1}$ este mărginit inferior de $-\frac{3\pi}{2}$, deci conform Teoremei lui Weierstrass este convergent.
- **2.** a) g este continuă, deci are primitive, iar derivata oricărei primitive este pozitivă, deci orice primitivă este crescătoare.

b)
$$\int_0^{\frac{1}{2}} f(x) dx = f(x) x \Big|_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} \frac{x}{\sqrt{1-x^2}} = \frac{\pi}{12} + \sqrt{1-x^2} \Big|_0^{\frac{1}{2}} = \frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1.$$

c) $\int_0^1 xf(x)dx \le \int_0^1 \frac{\pi x}{2} dx$, de unde concluzia.

Ministerul Educației, Cercetării și Inovării Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Rezolvare

1. a)
$$\lim_{x \to 0} \frac{f(x)}{x^2 - x} = \lim_{x \to 0} \frac{\arcsin x}{x} = 1.$$

b)
$$x \in (-1,1) \to f'(x) = \arcsin x + \frac{x-1}{\sqrt{1-x^2}} = \arcsin x + \frac{x-1}{\sqrt{(1-x)(1+x)}} \cdot \lim_{x \to 1} f'(x) = \frac{\pi}{2} \Rightarrow f'(1) = \frac{\pi}{2}$$
.

f nu este derivabilă în -1.

c)
$$f''(x) = \frac{1}{\sqrt{1 - x^2}} - \frac{\sqrt{1 - x^2} - (x - 1) \cdot \frac{(-x)}{\sqrt{1 - x^2}}}{1 - x^2} = \frac{1}{\sqrt{1 - x^2}} + \frac{1 - x}{(1 - x^2) \cdot \sqrt{1 - x^2}} \ge 0 \Rightarrow f \text{ este convex}.$$

2. a) $F'(x) = f(x) = \frac{x^5 - 1}{x - 1}, \ \forall x \ne 1$ $\Rightarrow F'(x) > 0, \ \forall x \in \mathbb{R} \Rightarrow F \text{ este strict crescătoare pe } \mathbb{R}.$ $F'(1) = f(1) = 5$

2. a)
$$F'(x) = f(x) = \frac{x^5 - 1}{x - 1}, \ \forall x \neq 1$$
 $\Rightarrow F'(x) > 0, \ \forall x \in \mathbb{R} \Rightarrow F \text{ este strict crescătoare pe } \mathbb{R}.$

b)
$$F(x) = \frac{x^5}{5} + \frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2} + x$$
 deci $\lim_{x \to -\infty} F(x) = -\infty$ şi $\lim_{x \to +\infty} F(x) = +\infty$. F fiind continuă, rezultă că

c)
$$\int_0^a F^{-1}(x) dx = \int_0^1 t f(t) dt = \left(\frac{t^2}{2} + \frac{t^3}{3} + \frac{t^4}{4} + \frac{t^5}{5} + \frac{t^6}{6}\right) \Big|_0^1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{29}{20}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

- **1. a**) $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = 0$.
 - **b**) Funcția este continuă în punctele care nu sunt numere întregi, iar într-un punct $n \in \mathbb{Z}$ avem $\lim_{\substack{x \to n \\ x < n}} f(x) = 0$, $\lim_{\substack{x \to n \\ x > n}} f(x) = 0$ și f(x) = 0. Deci f este continuă pe intervalul [0, 3].
 - c) Explicitând funcția observăm că 1 și 2 sunt puncte unghiulare și f este derivabilă pe $[0,3]\setminus\{1,2\}$.

2. a)
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{2 - \sin x} dx = -\int_0^{\frac{\pi}{2}} \frac{\left(2 - \sin x\right)'}{2 - \sin x} dx = -\ln\left(2 - \sin x\right)\Big|_0^{\frac{\pi}{2}} = \ln 2.$$

- **b**) F'(x) = f(x) şi f(x) > 0 deoarece $2 \sin x \ge 1$, $\forall x \in \mathbb{R}$. Deci F este strict crescătoare.
- c) $\frac{1}{2-\sin t} \ge \frac{1}{3} \Rightarrow \int_0^x f(t)dt \ge \frac{t}{3}\Big|_0^x = \frac{x}{3} \Rightarrow \lim_{x \to +\infty} = +\infty.$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1. a)
$$f_n(x) = \frac{x^{2n+1} + 1}{x+1} = \frac{1}{x+1} g(x), \ \forall x \neq -1 \Rightarrow f_n'(x) = \frac{g_n'(x)}{x+1} - \frac{g_n(x)}{(x+1)^2}.$$

b)
$$\lim_{n \to \infty} f'_n \left(\frac{1}{2} \right) = \lim_{n \to \infty} \left[\frac{(2n+1) \cdot \left(\frac{1}{2} \right)^{2n}}{\frac{3}{2}} - \frac{\left(\frac{1}{2} \right)^{2n+1} + 1}{\frac{9}{4}} \right] = -\frac{4}{9}.$$

c)
$$f_n'(x) = \frac{h(x)}{(x+1)^2}$$
, cu $h(x) = (x+1)g_n'(x) - g_n(x) = 2nx^{2n+1} + (2n+1)x^{2n} - 1$. Deoarece h' este negativă pe $(-1,0)$ și pozitivă pe $(-\infty,-1) \cup (0,\infty)$, iar $h(-1) = 0$, $h(0) = -1$, $\lim_{x \to \infty} h(x) > 0$ reiese că există exact un punct $a \in (0,\infty)$, astfel încât f este strict descrescătoare pe $(-\infty,a]$ și strict crescătoare pe $[a,\infty)$.

2. a)
$$I_2 = \frac{1}{3} \int_0^1 \frac{\left(x^3 + 1\right)'}{x^3 + 1} dx = \frac{1}{3} \cdot \ln 2.$$

b)
$$I_{n+1} - I_n = \int_0^1 \frac{x^n (x-1)}{1+x^3} dx < 0.$$

c)
$$0 \le I_n \le \int_0^1 x^n dx = \frac{1}{n+1} \det \lim_{n \to \infty} I_n = 0.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Rezolvare

1. a)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 \left(\frac{1}{x^2} - \frac{1}{6} - \frac{\sin x}{x^3} \right) = +\infty$$
.

b)
$$f'(x) = 1 - \frac{x^2}{2} - \cos x$$
; $f''(x) = -x + \sin x$.

c)
$$f'''(x) = -1 + \cos x \le 0 \Rightarrow f''$$
 este strict descrescătoare $\Rightarrow f''(x) \le f''(0)$, $\forall x \ge 0 \to f''(x) \le 0 \to f''(x) \le 0$.

$$f'(x) \le 0 \to f$$
 este strict descrescătoare pe intervalul $[0, +\infty)$ şi $f(0) = 0 \to f(x) \le 0$, $\forall x \ge 0$.

2. a)
$$F'(x) = \frac{1}{1+x^2} + \frac{x}{x^2+1} = f(x)$$
.

b)
$$\int_0^1 f(x)dx = F(x)\Big|_0^1 = \frac{\pi}{4} + \frac{1}{2}\ln 2$$
.

c)
$$a_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2} = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$
 reprezintă sume Riemann asociate funcției f , diviziunilor

$$D_n = \left(0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n}\right)$$
 și punctelor intermediare $X_n = \left(\frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n}\right)$. Deoarece funcția este

integrabilă, fiind continuă, iar șirul normelor diviziunilor tinde la 0, șirul $(a_n)_n$ este convergent.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Rezolvare

1. a)
$$\lim_{x \to -\infty} \frac{f(x)}{x} = -1 = m$$
; $\lim_{x \to -\infty} \left(\sqrt{|x^2 - x|} + x \right) \frac{1}{2} = n \Rightarrow y = -x + \frac{1}{2}$ este asimptotă oblică spre $-\infty$.

b) f este derivabilă pe intervalul $\mathbb{R}\setminus\{0,1\}$ și 0 și 1 sunt puncte de întoarcere ale graficului.

c)
$$f'(x) = \frac{2x-1}{2\sqrt{x^2-x}}$$
; $x \in (-\infty, 0) \cup (1, +\infty)$ și $f'(x) = \frac{1-2x}{2\sqrt{x^2-x}}$; $x \in (0, 1)$. Pentru $x \in (-\infty, 0)$, f este

strict descrescătoare, iar pentru $x \in (1, +\infty)$, f este strict crescătoare. $f'\left(\frac{1}{2}\right) = 0$, deci 0 și 1 sunt puncte

de minim (şi de întoarcere), iar $\frac{1}{2}$ este punct de maxim.

2. a)
$$I_2 = \int_0^1 \frac{x^2 + 1 - 1}{x^2 + 1} dx = x \Big|_0^1 - \operatorname{arctg} x \Big|_0^1 = 1 - \frac{\pi}{4}.$$

b)
$$I_{n+2} + I_n = \int_0^1 \frac{x^n (x^2 + 1)}{x^2 + 1} dx = \frac{x^{n+1}}{n+1} \Big|_0^1 = \frac{1}{n+1}.$$

c) Din (b)
$$\Rightarrow \frac{1}{2(n+1)} \le I_n \le \frac{1}{2(n-1)}$$
, folosind monotonia lui $(I_n)_{n \ge 1}$. Conform criteriului cleştelui

avem
$$\lim_{n\to\infty} n I_n = \frac{1}{2}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Rezolvare

1. a)
$$f'(x) = \frac{1}{(x+2)^2+1} - \frac{1}{x^2+1}$$
.

b)
$$x + 2 > x \Rightarrow \arctan(x + 2) > \arctan x \Rightarrow f(x) > 0$$
.

f este strict crescătoare pe intervalul $(-\infty, -1)$ și strict descrescător are pe intervalul $[-1, \infty)$ deci -1 este maxim global. $f(-1) = \arctan(-1) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$.

c) Se arată că
$$g'(x) = 0$$
, $\forall x \in \mathbb{R}$.

2. a)
$$\int_{1}^{2} \frac{x^{2} - 1 + \frac{1}{1 + x^{2}}}{x} dx = \frac{x^{2}}{2} \Big|_{1}^{2} - \ln x \Big|_{1}^{2} - \frac{1}{2} \ln \left(x^{2} + 1\right) \Big|_{1}^{2} = \frac{3}{2} - \frac{1}{2} \ln 5 + \frac{1}{2} \ln 2.$$

b)
$$f(x) \ge \frac{x^3}{3} - x - \frac{\pi}{2} \to \int_0^x f(t) dt \ge \frac{x^4}{12} - \frac{x^2}{2} - \frac{\pi}{2} \cdot x$$
. Deci $\lim_{x \to \infty} \frac{\int_0^x f(t) dt}{x^3} = +\infty$.

c)
$$g(x) \ge f(x)$$
, $\forall x \in [0,1) \Rightarrow A = \int_0^1 (g(x) - f(x)) dx = \left(\frac{x^2}{2} - \frac{x^4}{12}\right) \Big|_0^1 = \frac{1}{2} - \frac{1}{12} = \frac{5}{12}$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1. a)
$$f'(x) = -\frac{1}{2x\sqrt{x}} \Rightarrow f''(x) = \frac{3}{4} \cdot \frac{1}{x^2 \sqrt{x}} > 0 \Rightarrow f'$$
 este strict crescătoare.

- b) Se poate demonstra prin calcul sau aplicând Teorema lui Lagrange.
- c) Se adună relațiile de la (b) de la k=1 până la k=n și astfel se obține marginea șirului $(a_n)_{n\geq 1}$. Șirul este evident crescător, deci este convergent conform Teoremei lui Weierstrass.

2. a)
$$f_1(x) = \int_0^1 t \cdot \operatorname{arctg} t = \frac{t^2}{2} \cdot \operatorname{arctg} t \Big|_0^x - \frac{1}{2} \int_0^x \frac{t^2 + 1 - 1}{t^2 + 1} dx = \frac{x^2}{2} \cdot \operatorname{arctg} x - \frac{x}{2} + \frac{1}{2} \cdot \operatorname{arctg} x.$$

b)
$$f_n(1) = \int_0^1 t^n \cdot \arctan t \, dt \le \frac{\pi}{4} \cdot \int_0^1 t^n \, dt = \frac{\pi}{4} \cdot \frac{1}{n+1}$$
.

$$\mathbf{c}) \ f_n(1) = \int_0^1 \left(\frac{t^{n+1}}{n+1}\right)' \cdot \operatorname{arctg} t \, dt = \frac{\pi}{4} \cdot \frac{1}{n+1} - \frac{1}{n+1} \int_0^1 \frac{t^{n+1}}{t^2+1} \, dt \cdot \lim_{n \to \infty} \frac{1}{n+1} \cdot \int_0^1 \frac{t^{n+1}}{t^2+1} \, dt = 0 \Rightarrow \lim_{n \to \infty} n \cdot f_n(1) = \frac{\pi}{4} \cdot \frac{1}{n+1} \cdot \frac{1$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Rezolvare

1. a)
$$f'(x) = -\frac{1}{(x+1)^2} - \frac{1}{x-\frac{3}{2}} + \frac{1}{x+\frac{1}{2}} > 0, \ \forall x > 0.$$

- **b**) Avem $\lim_{x \to \infty} f(x) = 0$ și cum f este strict crescătoare, rezultă că f(x) < 0, $\forall x > 0$.
- c) $a_{n+1} a_n = f(n)$ și, conform b), $(a_n)_{n \ge 1}$ este strict descrescător.
- **2. a**) $f_3'(x) = x^3 \arcsin x$.

b)
$$f_1\left(\frac{1}{2}\right) = \int_0^{\frac{1}{2}} t \cdot \arcsin t dt = \int_0^{\frac{\pi}{6}} (\sin x) \cdot x \cos x dx = \frac{1}{2} \int_0^{\frac{\pi}{6}} x \sin 2x dx = -\frac{x}{4} \cos 2x \left| \frac{\pi}{6} + \frac{1}{4} \int_0^{\frac{\pi}{6}} \cos 2x dx = -\frac{\pi}{48} + \frac{\sqrt{3}}{16} \right| dt$$

c) Deoarece f_2 este derivabilă, deci continuă, limita cerută este $f_2(1) = \int_0^1 t^2 \arcsin t dt = \frac{\pi}{6}$, deoarece

$$\int_0^x t^2 \arcsin t dt = \frac{x^3}{3} \arcsin x - \frac{1}{3} \int_0^x \frac{t^3}{\sqrt{1 - t^2}} dt = \frac{x^3}{3} \arcsin x + \frac{1}{3} \sqrt{1 - x^2} - \frac{1}{3} - \frac{1}{9} \sqrt{\left(1 - x^2\right)^3} + \frac{1}{9}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1. a)
$$f'(x) = 1 - \frac{e^x}{e^x + 1}$$
, $f''(x) = \frac{-e^x}{\left(e^x + 1\right)^2} < 0 \Rightarrow f'$ este strict descrescătoare pe \mathbb{R} .

b) Pentru
$$a \le 0$$
 este evident, iar pentru $a > 0$, $\lim_{x \to \infty} \frac{f(x)}{x^{-a}} = \lim_{x \to \infty} \frac{f'(x)}{-ax^{-a-1}} = \lim_{x \to \infty} \frac{-x^{a+1}}{a(e^x + 1)} = 0$.

c)
$$\lim_{x\to\infty} f(x) = \ln 1 = 0$$
. $\lim_{x\to-\infty} \frac{f(x)}{x} = 1 = m$. $\lim_{x\to-\infty} (f(x) - mx) = 0$, deci $y = 0$ este o asimptotă orizontală la $+\infty$ și $y = x$ este o asimptotă oblică la $-\infty$. Asimptotele verticale nu există, deoarece funcția este continuă pe \mathbb{R} .

2. a)
$$I_1 = \int_0^2 (2x - x^2) dx = x^2 \Big|_0^2 - \frac{x^3}{3} \Big|_0^2 = \frac{4}{3}$$

b)
$$I_n = \int_0^2 (2x - x^2)^n (x - 1)' dx = (2x - x^2)^n (x - 1) \Big|_0^2 - n \int_0^2 (2x - x^2)^{n-1} (2 - 2x) (x - 1) dx =$$

$$= -2n \int_0^2 (2x - x^2)^{n-1} (-x^2 + 2x - 1) dx = -2n \int_0^2 (2x - x^2)^n dx + 2n \int_0^2 (2x - x^2)^{n-1} \Rightarrow (2n + 1) I_n = 2n I_{n-1}.$$
c) Avem $I_n > 0$, $\forall n \in \mathbb{N}^*$ și din punctul **b**) $I_{n-1} = I_n + \frac{1}{2n} I_n > I_n$, $\forall n \ge 2$ (1). Astfel șirul $(I_n)_{n \in \mathbb{N}^*}$ tinde

$$l \ge 0$$
, iar $I_n \ge l$, $\forall n \in \mathbb{N}^*$. Adunând relațiile (1) avem $I_1 = \frac{1}{4}I_2 + \frac{1}{6}I_3 + ... + \frac{1}{2n}I_n \ge \frac{l}{2}\left(\frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}\right)$,

de unde
$$l \le \frac{2I_1}{\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}}$$
. Deoarece $\lim_{n \to \infty} \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = \infty$, deducem că $l = 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1. a)
$$f'(x) = \frac{4}{\left(\sqrt{3} - x\right)^2} > 0, \ \forall x \in \mathbb{R} \setminus \sqrt{3}.$$

- **b**) $\lim_{x \to \infty} f(x) = -\sqrt{3}$, $\lim_{x \to -\infty} f(x) = -\sqrt{3} \Rightarrow y = -\sqrt{3}$ este asimptotă orizontală la $\pm \infty$. $x = \sqrt{3}$ este asimptotă verticală.
- c) Avem $a_{3n}=2$ și $a_{3n+3}=-2$, $\forall n\in\mathbb{N}^*$, deci șirurile $\left(a_{3n}\right)_{n\in\mathbb{N}}$ și $\left(a_{3n+3}\right)_{n\in\mathbb{N}}$ au limite diferite.
- 2. a) $F'(x) = f(x) \Rightarrow F''(x) = e^{-x^2} \cdot (-2x) \Rightarrow 0$ este punct de inflexiune.

b)
$$\int_0^1 xf(x)dx = -\frac{1}{2}\int_0^1 e^{-x^2}(-x^2)'dx = \frac{1-e^{-1}}{2}$$
.

c)
$$\int_0^1 \mathbf{F}(x)(x)' dx = \mathbf{F}(x) \cdot x \Big|_0^1 - \int_0^1 f(x)x = -\frac{1 - e^{-1}}{2}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1. a)
$$f'(x) = 3\left(x^2 - 1 + \frac{1}{1 + x^2}\right) = 3 \cdot \frac{x^4}{1 + x^2} > 0.$$

- **b**) $\lim_{x\to\infty} f(x) = +\infty$; $\lim_{x\to-\infty} f(x) = -\infty$ și f este continuă, deci este surjectivă. Conform (a) f este injectivă.
 - c) Singura valoare pentru *a* este 3 și limita este 1.

2. a)
$$I_1 = \int_0^1 x e^x dx = x e^x \Big|_0^1 - \int_0^1 e^x dx = 1.$$

$$\mathbf{b}) \ \mathbf{I}_{n+1} - \mathbf{I}_n = \int_0^1 e^x \left(x^{n+1} - x^n \right) dx \leq 0, \ \mathrm{deci} \ \left(\mathbf{I}_n \right)_{n \geq 1} \ \mathrm{este} \ \mathrm{descrescător} \ \mathrm{si} \ \mathrm{mărginit} \ \mathrm{inferior} \ \mathrm{de} \ 0.$$

$$\mathbf{c}) \ \mathbf{I}_{n+1} = \int_0^1 x^{n+1} \left(e^x \right)' dx = e - \mathbf{I}_n - n \, \mathbf{I}_n \Rightarrow \lim_{n \to \infty} n \, \mathbf{I}_n = e, \text{ decarece } 0 \le I_n \le e \int_0^1 x^n dx = \frac{e}{n+1} \Rightarrow \lim_{n \to \infty} I_n = 0.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1. a)
$$f'(x) = 2 + \frac{2x+1}{x^2+x+1} = \frac{2x^2+4x+3}{x^2+x+1} > 0, \ \forall x \in \mathbb{R}.$$

- **b**) $\lim_{x\to\infty} f(x) = +\infty$, $\lim_{x\to\infty} f(x) = -\infty$, f este continuă pe \mathbb{R} , deci f este surjectivă, iar conform punctului **a**) este injectivă.
- c) $\lim_{x \to \infty} \frac{f(x)}{x} = 2 \operatorname{dar} \lim_{x \to \infty} (f(x) 2x) = +\infty.$
- **2. a)** $\int_0^1 f(x) dx = \int_0^1 x(1-x) dx = \frac{1}{6}$.
 - **b**) f este continuă pe \mathbb{R} (în fiecare număr punct întreg $l_s = l_d = f(a) = 0$).
 - c) Funcția $g: \mathbb{R} \to \mathbb{R}$, $g(a) = \int_a^{a+1} f(x) dx$ este derivabilă și g'(a) = f(a+1) f(a) = 0, deci g este constantă.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Rezolvare

1. a) $f'(x) = \ln x + 1$. Pe intervalul $\left(0, \frac{1}{e}\right]$, f este strict descrescătoare, iar intervalul $\left[\frac{1}{e}, +\infty\right)$, f este strict crescătoare.

b)
$$\lim_{x \to \infty} f(x) = +\infty$$
, $\lim_{x \to \infty} \frac{f(x)}{x} = +\infty$, $\lim_{x \to 0} f(x) = 0$. Deci f nu are asimptote.

c) Din $x_{n+1} = x_n^{x_n}$ rezultă inductiv că $x_n \in (0,1)$, $\forall n \in \mathbb{N}^*$. De aici obținem și $x_{n+1} > x_n$, $\forall n \in \mathbb{N}$.

2. a)
$$I_2 = \int_0^1 \frac{x^2}{4x+5} dx = \frac{1}{8} - \frac{5}{16} + \frac{25}{64} \cdot \ln \frac{9}{5} = -\frac{3}{16} + \frac{25}{64} \cdot \ln \frac{9}{5}.$$

b)
$$4I_{n+1} + 5I_n = \int_0^1 \frac{x^n (4x+5)}{4x+5} dx = \frac{1}{n+1}.$$

$$\mathbf{c}) \ \mathbf{I}_{n+1} - \mathbf{I}_n \le 0 \to \frac{1}{9(n+1)} \le \mathbf{I}_n \le \frac{1}{9n} \Longrightarrow \lim_{n \to \infty} n \, \mathbf{I}_n = \frac{1}{9}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Rezolvare

1. **a**)
$$f'(x) = \frac{x}{\sqrt{x^2 + 2}} - \frac{x}{\sqrt{x^2 + 1}} = x \left(\frac{1}{\sqrt{x^2 + 2}} - \frac{1}{\sqrt{x^2 + 1}} \right) > 0, \ \forall x < 0.$$

b)
$$f''(x) = \frac{2}{(x^2+2)\sqrt{(x^2+2)}} - \frac{1}{(x^2+1)\sqrt{(x^2+1)}} = \frac{2t \cdot \sqrt{t} - (t+1)\sqrt{t+1}}{(t+1) \cdot t \cdot \sqrt{t(t+1)}}$$
, unde $t = x^2 + 1$.

Se arată că există un singur t pentru care numărătorul este 0 și t > 1, deci două valori pentru x.

c)
$$\lim_{x \to -\infty} f(x) = 0 \Rightarrow y = 0$$
 este asimptotă la $-\infty$.

2. **a**)
$$F_1(\pi) = \int_0^{\pi} x \sin x dx = -x \cos x \Big|_0^{\pi} + \int_0^{\pi} \cos x = \pi$$
 (se integrează prin părți).

b)
$$F_{n+1}(1) - F_n(1) = \int_0^1 t \cdot \sin^2 t \cdot (\sin t - 1) dt < 0.$$

c) Deoarece
$$\sin t \le t$$
, $0 \le F_n(1) \le \int_0^1 t^{n+1} dt = \frac{1}{n+2} \Rightarrow \lim_{n \to \infty} F_n(1) = 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

rezolvare

1.a)
$$f'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x} < 0, \forall x > 0$$
.

b) Avem
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \left(\frac{\ln(1+x)}{x} - 1 \right) = \infty (0-1) = -\infty, \lim_{x \to 0} f(x) = \ln 1 = 0$$
. În plus, f este

continuă, deci are proprietatea lui Darboux. Astfel, mulțimea valorilor funcției este $(-\infty, 0)$.

c) Funcția este continuă, deci nu are asimptote verticale în punctele domeniului de definiție. În 0, $\lim_{x\to 0} f(x) = \ln 1 = 0$, deci nici aici nu există asimptotă verticală. Din a) rezultă că nu există

asimptotă orizontală. În sfârșit, $\lim_{x\to\infty}\frac{f(x)}{x}=-1$ și $\lim_{x\to\infty}(f(x)+x)=\lim_{x\to\infty}\ln(1+x)=\infty$, deci nu există asimptotă oblică spre ∞ .

2.a)
$$\int_0^1 f(x) dx = x \arctan \left(x \right)_0^1 - \int_0^1 \frac{x}{x^2 + 1} dx = \frac{\pi}{4} - \frac{1}{2} \ln(x^2 + 1) \Big|_0^1 = \frac{\pi - 2 \ln 2}{4}.$$

b)
$$\lim_{x \to \infty} \frac{1}{x} \int_{1}^{x} f(\ln t) dt = \lim_{x \to \infty} \frac{f(\ln x)}{1} = \lim_{x \to \infty} \arctan(\ln x) = \frac{\pi}{2}$$
, following regular lui l'Hospital pentru cazul

$$\frac{\infty}{\infty}$$
 și faptul că funcția $g:(0,\infty)\to\mathbb{R}, g(x)=\int_1^x f(\ln t)dt$ are derivata $g'(x)=f(\ln x)$.

$$\mathbf{c}) \quad s_n = \frac{1}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + f\left(\frac{3}{n}\right) + \ldots + f\left(\frac{n}{n}\right) \right) \quad \text{este} \quad \text{sumă} \quad \text{Riemann} \quad \text{atașată} \quad \text{funcției} \quad f \; ,$$

intervalului [0,1], diviziunii
$$D_n = \left(0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n}\right)$$
 și punctelor intermediare $X_n = \left(\frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n}\right)$.

Astfel,
$$\lim_{n \to \infty} s_n = \int_0^1 f(x) dx = \frac{\pi - 2\ln 2}{4}$$
.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

rezolvare

1.a)
$$f'(x) = \operatorname{arctg} x + \frac{x}{1+x^2}, f''(x) = \frac{1}{1+x^2} + \frac{1-x^2}{(1+x^2)^2} = \frac{2}{(1+x^2)^2} > 0, \forall x \in \mathbb{R}$$
.

$$\mathbf{b}) \quad \lim_{x \to -\infty} \frac{f(x)}{x} = -\frac{\pi}{2}, \quad \lim_{x \to -\infty} \left(f(x) + \frac{\pi}{2} x \right) = \lim_{x \to -\infty} \frac{\arctan x - \frac{\pi}{2}}{\frac{1}{x}} = \lim_{x \to -\infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}} = -1, \text{ folosind regula lui}$$

l'Hospital pentru cazul $\frac{0}{0}$. Obținem $y = -\frac{\pi}{2}x - 1$, ecuația asimptotei oblice spre $-\infty$.

c) Avem $x_2 = \frac{\pi}{4} < 1 = x_1$ și demonstrăm inductiv că șirul este strict descrescător. Cum el este și cu termeni pozitivi, rezultă că este convergent.

2.a)
$$\int_0^1 (x^2 - 2x^3 + x^4) dx = \frac{1}{30}$$
.

$$\mathbf{b}) I_n = \frac{2x-1}{2} (x-x^2)^n \Big|_0^1 + \int_0^1 \frac{n}{2} (2x-1)^2 (x-x^2)^{n-1} dx = \frac{n}{2} \int_0^1 \Big((x-x^2)^{n-1} - 4(x-x^2)^n \Big) dx = \frac{n}{2} I_{n-1} - 2n I_n .$$

$$\mathbf{c)} \; \mathrm{Din} \; \mathbf{b)}, \; I_n < \frac{1}{4}I_{n-1} \; . \; \mathrm{De} \; \mathrm{aici} \; \mathrm{rezult} \\ \mathrm{aici} \; \mathrm{aici} \; \mathrm{rezult} \\ \mathrm{aici} \; \mathrm{aici} \; \mathrm{rezult} \\ \mathrm{aic$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

rezolvare

1.a)
$$f'(x) = 1 - e^{-x} > 0, \forall x > 0$$
.

- **b**) Derivata este pozitivă pe $[0,\infty)$ și negativă pe $(-\infty,0]$, deci avem doar punctul de extrem 0.
- c) Din $\lim_{x\to\infty} f(x) = \infty$, $\lim_{x\to-\infty} f(x) = \infty$. Rezultă: dacă $m \in (1,\infty) \Rightarrow$ ecuația are 2 soluții reale diferite;

dacă $m=1 \Rightarrow$ ecuația are doar o soluție x=0; dacă $m \in (-\infty;1) \Rightarrow$ ecuația are nu are soluție.

2.a)
$$\int_{1}^{\sqrt{3}} \frac{t}{1+t^2} dt = \frac{1}{2} \ln(1+t^2) \Big|_{1}^{\sqrt{3}} = \frac{1}{2} \ln 2$$
.

b) Dacă F este o primitivă a funcției $h(t) = \frac{t}{1+t^2}$, atunci $f(x) = F(\operatorname{tg} x) - F(1)$, deci

$$f'(x) = (1 + tg^2 x)F'(tg x) = tg x.$$

c) Raționând ca mai sus, $f'(x) + g'(x) = \operatorname{tg} x - \frac{1}{\operatorname{ctg} x} = 0$. Rezultă $f(x) + g(x) = \operatorname{constant} = 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

rezolvare

1.a)
$$f'(x) = \frac{a\sqrt{x^2 + x + 1} - (ax + b)\frac{2x + 1}{2\sqrt{x^2 + x + 1}}}{x^2 + x + 1} = \frac{(a - 2b)x + 2a - b}{2(x^2 + x + 1)\sqrt{x^2 + x + 1}}.$$

- **b**) Trebuie ca f'(x) > 0 pentru orice $x \in \mathbb{R}$, ceea ce se întâmplă dacă și numai dacă funcția liniară de la numărătorul derivatei este constantă si pozitivă, adică a = 2b > 0.
- c) Conform b), în acest caz funcția este strict crescătoare. Cum funcția este și continuă, iar $\lim_{x\to\infty} f(x) = 2$, $\lim_{x\to\infty} f(x) = -2$, mulțimea valorilor funcției este (-2,2).
- **2.a**) $f'(x) = e^{\arcsin x} > 0, \forall x \in [-1,1].$
- **b**) Cu schimbarea de variabilă $t = \sin u, dt = \cos u du$ obținem $f(x) = \int_0^{\arcsin x} e^u \cos u du$.
- $\mathbf{c}) \quad f(1) = \int_0^{\frac{\pi}{2}} e^u \cos u du = e^u \sin u \Big|_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} e^u \sin u du = e^{\frac{\pi}{2}} + e^u \cos u \Big|_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} e^u \cos u du = e^{\frac{\pi}{2}} 1 f(1).$

Rezultă $f(1) = \frac{1}{2}e^{\frac{\pi}{2}} - \frac{1}{2}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

rezolvare

1.a)
$$f'(x) = \frac{(2x+a)\sqrt{x^2+1} - \frac{x}{\sqrt{x^2+1}}(x^2+ax+5)}{x^2+1} = \frac{x^3-3x+a}{(x^2+1)\sqrt{x^2+1}}.$$

b)
$$\lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $\lim_{x \to \infty} (f(x) - x) = \lim_{x \to \infty} \frac{x^2 - x\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} + \lim_{x \to \infty} \frac{5}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{-x}{\sqrt{x^2 + 1}(x + \sqrt{x^2 + 1})} + 0 = 0$,

deci avem asimptota oblică spre ∞ de ecuație y = x.

c) Trebuie ca ecuația $x^3 - 3x = -a$ să aibă trei soluții. Pentru funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = x^3 - 3x$ avem

X	-∞	-1	1	∞
g '(x)	+	0	- 0	+
g(x)	-∞ /	2	<u></u>	7 ∞

Astfel, ecuația g(x) = -a are trei soluții pentru $a \in (-2,2)$. Se verifică imediat, folosind semnul lui f', că, în acest caz, funcția f are trei puncte de extrem.

2.a)
$$\int_{-1}^{1} x \sqrt{1 - x^2} dx = -\frac{1}{3} \left(1 - x^2 \right)^{\frac{3}{2}} \Big|_{-1}^{1} = 0 \text{ (sau observăm că este integrala unei funcții impare).}$$

b)
$$V = \pi \int_{-1}^{1} f^{2}(x) dx = \pi \left(x - \frac{1}{3} x^{3} \right) \Big|_{-1}^{1} = \frac{4\pi}{3}$$
.

c)
$$0 \le \int_0^1 x^n f(x) dx \le \int_0^1 x^n dx = \frac{1}{n+1}$$
, deci limita cerută, conform teoremei cleştelui, este 0.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

rezolvare

1.a)
$$f'_d(1) = \lim_{x \to 1} f'(x) = \lim_{x \to 1} \frac{2-x}{e^x} = \frac{1}{e}$$
 si $f'_s(1) = \lim_{x \to 1} f'(x) = \lim_{x \to 1} \frac{x-2}{e^x} = -\frac{1}{e}$.

b)

x	-∞		1		2		∞
f'(x)	_	-		+	0	_	_
f(x)	8	√ 0		7	$1/e^2$	7	0

Pentru m < 0 nu avem soluții, pentru m = 0 sau $m > 1/e^2$ avem o soluție, pentru $m = 1/e^2$ avem două soluții, iar pentru $0 < m < 1/e^2$ avem trei soluții.

c)
$$\frac{1}{e^2} + \frac{2}{e^3} + \dots + \frac{n-1}{e^n} = \left(\frac{1}{e^2} + \frac{1}{e^3} + \dots + \frac{1}{e^n}\right) + \left(\frac{1}{e^3} + \frac{1}{e^4} + \dots + \frac{1}{e^n}\right) + \dots + \left(\frac{1}{e^{n-1}} + \frac{1}{e^n}\right) + \frac{1}{e^n} = 1 + \frac{1}{e^n} +$$

$$=\frac{1}{e^2}\frac{1-\frac{1}{e^{n-1}}}{1-\frac{1}{e}}+\frac{1}{e^3}\frac{1-\frac{1}{e^{n-2}}}{1-\frac{1}{e}}+\ldots+\frac{1}{e^{n-1}}\frac{1-\frac{1}{e^2}}{1-\frac{1}{e}}+\frac{1}{e^n}\frac{1-\frac{1}{e}}{1-\frac{1}{e}}=\frac{1}{1-\frac{1}{e}}\left(\frac{1}{e^2}+\frac{1}{e^3}+\ldots+\frac{1}{e^n}\right)-\frac{n}{1-\frac{1}{e}}\frac{1}{e^n}\to\frac{1}{(e-1)^2}.$$

2.a)
$$F'(x) = (2a+c)x\cos x - ax^2\sin x + (c-b)\sin x \Rightarrow a = -1, b = c = 2.$$

b)
$$\int_{\frac{1}{\pi}}^{\frac{2}{\pi}} \frac{1}{4x^2} \sin \frac{1}{2x} = \frac{1}{2} \cos \frac{1}{2x} \begin{vmatrix} \frac{2}{\pi} \\ \frac{1}{\pi} \end{vmatrix} = \frac{\sqrt{2}}{4}.$$

c) Observăm că
$$f(x) < g(x)$$
, $\forall x \in \left(0, \frac{\pi}{2}\right)$, adică $x \sin x + x < \pi$, $\forall x \in \left(0, \frac{\pi}{2}\right)$. Avem $A = \int_{0}^{\frac{\pi}{2}} \left(g(x) - f(x)\right) dx = \int_{0}^{\frac{\pi}{2}} \left(g(x) - g(x)\right) dx$

$$= \left(\frac{\pi x^2}{2} - \frac{x^3}{3} + x^2 \cos x - 2x \sin x - 2 \cos x\right) \begin{vmatrix} \frac{\pi}{2} \\ \frac{\pi}{2} \end{vmatrix} = \frac{\pi^3}{12} - \pi + 2.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

rezolvare

1.a)
$$\lim_{\substack{x \to 1 \\ x > l}} f(x) = \lim_{x \to \infty} \arctan x = \frac{\pi}{2}$$

- **b**) Dreapta y = 0 este asimptotă orizontală spre $+\infty$.
- c) Deoarece arctg este funcție strict crescătoare, funcția dată are aceleași puncte de extrem local ca și funcția $g: \mathbb{R}\setminus\{-1,1\} \to \mathbb{R}, g(x) = \frac{1}{x^2-1}$, adică x=0.

2.a)
$$\int_0^{\frac{\pi}{2}} f(x) dx = \left(\sin x - x + \frac{x^3}{6} \right) \Big|_0^{\frac{\pi}{2}} = 1 - \frac{\pi}{2} + \frac{\pi^3}{48}.$$

b)
$$\lim_{x \to \infty} \frac{1}{x^2} \int_0^x f(t) dt = \lim_{x \to \infty} \frac{\sin x - x + \frac{x^3}{6}}{x^2} = +\infty.$$

c)
$$f'(x) = -\sin x + x$$
; $f''(x) = 1 - \cos x \Rightarrow f$ este strict crescătoare pe intervalul $[0, +\infty) \Rightarrow$

$$\Rightarrow \cos x^2 - 1 + \frac{x^4}{2} \ge 0 \Rightarrow \cos x^2 \ge 1 - \frac{x^4}{2} \Rightarrow \int_0^1 \cos\left(x^2\right) dx \ge \frac{9}{10}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

rezolvare

1.a)
$$\lim_{x \to +\infty} f(x) = \arcsin 0 = 0.$$

- **b**) Funcția este derivabilă pentru $-1 < \frac{2x}{1+x^2} < 1$, adică $x \in \mathbb{R} \setminus \{-1,1\}$. În punctele ± 1 , derivatele laterale sunt diferite, deci funcția nu este derivabilă.
- c) Deoarece arcsin este funcție strict crescătoare, punctele de extrem ale funcției f coincid cu cele ale funcției $g: \mathbb{R} \to \mathbb{R}, g(x) = \frac{2x}{x^2 + 1}$. Acestea sunt ± 1 .

2.a)
$$\int_0^1 x \sqrt{1-x^2} dx = -\frac{1}{3} (1-x^2)^{\frac{3}{2}} \Big|_0^1 = \frac{1}{3}.$$

b)
$$V = \pi \int_0^1 (1 - x^2) dx = \frac{2\pi}{3}$$
.

c) $a_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$ sunt sume Riemann pentru funcția f, diviziunile $D_n = \left(0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n}\right)$ și

punctele intermediare $X_n = \left(\frac{1}{n}, \frac{2}{n}, ..., \frac{n}{n}\right)$. Deoarece funcția este integrabilă și șirul normelor diviziunilor tinde la 0, șirul sumelor Riemann este convergent.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

rezolvare

- **1. a**) $\lim_{x\to\infty} f(x) = 0$, deci avem asimptota orizontală y=0 spre $+\infty$.
- **b**) $f'(x) = \frac{3x^2 12}{x^4}$ \Rightarrow funcția este strict descrescătoare pe [1,2] și strict crescătoare pe [2, ∞). Mulțimea valorilor funcției este [f(2), f(1)] = [-1,1].
- c) Funcția este derivabilă pe $(2, \infty)$, deoarece, pe acest interval, -1 < f(x) < 0, f este derivabilă și arccos este derivabilă. În punctul $2, g'(2) = \lim_{x \searrow 2} g'(x) = -\frac{\sqrt{3}}{2}$. În concluzie, funcția este derivabilă pe $[2, \infty)$.
- **2. a**) F'(x) = f(x)

b)
$$\pi \int_0^1 f^2(x) dx = \pi \left(\int_1^2 \left(\frac{1}{x^2} - \frac{1}{x^2 + 1} \right) dx \right) = \pi \left(\frac{1}{2} + \frac{\pi}{4} - \operatorname{arctg} 2 \right).$$

c)
$$F(x) < 0$$
, deci $A = -\int_{1}^{2} F(x) dx = -xF(x) \Big|_{1}^{2} + \int_{1}^{2} xf(x) dx = F(1) - 2F(2) + \ln(x + \sqrt{x^{2} + 1}) \Big|_{1}^{2} = -xF(x) + \ln(x + \sqrt{x^{$

$$= \ln \frac{\left(11 + 5\sqrt{5}\right)\left(3 - 2\sqrt{2}\right)}{2}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

1.a)
$$|f(x)| \le x \Rightarrow \lim_{x \to 0} f(x) = 0.$$

b)
$$f'(x) = \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x}$$

c)
$$\lim_{x \to \infty} f(x) = \lim_{t \to 0} \frac{\sin t}{t} = 1 \Rightarrow y = 1$$
 este asimptotă orizontală spre $+\infty$.

2.a)
$$I_2 = \int_{-1}^{1} (1 - 2x^2 + x^4) dx = \frac{16}{15}$$
.

b)
$$I_n - I_{n+1} = \int_{-1}^1 x^2 (1 - x^2)^n dx = -x \frac{(1 - x^2)^{n+1}}{2(n+1)} \Big|_{-1}^1 + \frac{1}{2(n+1)} \int_{-1}^1 (1 - x^2)^{n+1} dx = \frac{1}{2(n+1)} I_{n+1}.$$

c)
$$a_n = \sum_{k=0}^n \frac{(-1)^k C_n^k}{2k+1} = \int_{-1}^1 (1-x^2)^n dx = I_n$$
, iar şirul $(I_n)_n$ tinde descrescător către 0.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.b)
$$\lim_{x \to \infty} (x - f(x))^x = \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^x = \frac{1}{e}$$
.

- **b**) $f'(x) = \frac{x^2 1}{x^2}$. Deoarece $f'(x) > 0, \forall x \in [1, \infty)$, rezultă că funcția f este strict crescătoare.
- c) Funcția f este injectivă fiind strict crescătoare. Cum f este continuă pe $[1,\infty)$, f(1)=1 și $\lim_{x\to\infty} f(x)=\infty$, iar f este strict crescătoare, rezultă că imaginea funcției f este $[1,\infty)$, deci f este surjectivă.
- **2. a**) Funcția F trebuie să fie derivabilă. Din continuitatea în 1 rezultă a+b=1, iar din derivabilitatea în 1 rezultă a=0. Deci a=0 și b=1.
- **b**) Utilizăm schimbarea de variabilă $\ln x = t$. Rezultă $\int_{1}^{e} \frac{1}{xF(x)} dx = \int_{1}^{e} \frac{1}{x(1+\ln^2 x)} dx = \int_{0}^{1} \frac{1}{1+t^2} dt$.

Dar
$$\int_{0}^{1} \frac{1}{1+t^{2}} dt = arctgt \Big|_{0}^{1} = \frac{\pi}{4}$$
, deci $\int_{1}^{e} \frac{1}{xF(x)} dx = \frac{\pi}{4}$.

c)
$$\int_{1}^{\pi} h(x)h''(x)dx = \int_{1}^{\pi} h(x)(h'(x))'dx = h(x)h'(x)|_{1}^{\pi} - \int_{1}^{\pi} (h'(x)h'(x))dx$$
. Decoarece $h(1) = h(\pi) = 0$

rezultă
$$h(x)h'(x)|_{1}^{\pi} = 0$$
. Deci $\int_{a}^{b} h(x)h''(x) dx = -\int_{a}^{b} (h'(x))^{2} dx \le 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a) f este continuă pe (0,1] deoarece, pe acest interval, se obține prin operații cu funcții continue. Cum

$$\left|x\sin\frac{\pi}{x}\right| \le |x|$$
 și $\lim_{x\to 0} |x| = 0$, rezultă $\lim_{x\to 0} x\sin\frac{\pi}{x} = 0$. Deci $\lim_{x\to 0} f(x) = 0 = f(0)$. Prin urmare f este continuă și în 0. Rezultă că f este continuă pe $[0,1]$.

b) f este derivabilă pe (0,1] deoarece, pe acest interval, este produs de funcții derivabile.

Întrucât limita $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \sin \frac{\pi}{x}$ nu există, f nu este derivabilă în f.

c) Ecuația se scrie
$$g(x) = 0$$
, unde $g: \left[\frac{1}{n+1}, \frac{1}{n}\right] \to \mathbb{R}$, $g(x) = f(x) - \cos \frac{\pi}{x}$. Cum g este continuă,

$$g\left(\frac{1}{n+1}\right) = \left(-1\right)^{n+2}$$
 și $g\left(\frac{1}{n}\right) = \left(-1\right)^{n+1}$, rezultă că funcția g se anulează în cel puțin un punct din $\left(\frac{1}{n+1},\frac{1}{n}\right)$.

2.a)
$$\int_{0}^{1} f(\sqrt{x}) dx = \int_{0}^{1} \ln(1+x) dx = x \ln(1+x) \Big|_{0}^{1} - \int_{0}^{1} \frac{x}{1+x} dx = \ln 2 - x \Big|_{0}^{1} + \ln(1+x) \Big|_{0}^{1} = 2 \ln 2 - 1.$$

$$\mathbf{b}) \int_{0}^{1} g(x) dx = \int_{0}^{1} x \operatorname{arctg} x dx = \int_{0}^{1} \left(\frac{x^{2}}{2} \right)' \operatorname{arctg} x dx = \frac{\pi}{8} - \frac{1}{2} \int_{0}^{1} \frac{x^{2}}{1 + x^{2}} dx = \frac{\pi}{8} - \frac{1}{2} (x - \operatorname{arctg} x) \Big|_{0}^{1} = \frac{\pi}{4} - \frac{1}{2}.$$

c) Considerăm funcția
$$\varphi = f - g$$
. Atunci: $\varphi'(x) = \frac{x}{1+x^2} - \operatorname{arctg} x$ și $\varphi''(x) = -\frac{2x^2}{\left(1+x^2\right)^2}$.

Deoarece $\varphi''(x) \le 0$, rezultă că φ' este descrescătoare, deci $x \ge 0 \Rightarrow \varphi'(x) \le \varphi'(0) \Rightarrow \varphi'(x) \le 0$

Prin urmare φ este descrescătoare, de unde $x \ge 0 \Rightarrow \varphi(x) \le \varphi(0) \Rightarrow \varphi(x) \le 0 \Rightarrow f(x) \le g(x)$.

Ca atare aria căutată este
$$A = \int_{0}^{1} (g(x) - f(x)) dx = -\frac{\pi}{4} - \ln 2 + \frac{3}{2}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. a) Avem $f'(x) = 3x^2 - 3$, $f'(x) = 0 \Leftrightarrow x \in \{-1,1\}$ și următorul tabel de variație al funcției f:

Х		-1		1	
f'(x)	+++	0		0	+++
f(x)	7		7		7

Din tabelul de variație rezultă că -1 și 1 sunt punctele de extrem ale funcției f.

b) Deoarece f este continuă, f(1) = -2 < m și $\lim_{x \to \infty} f(x) = +\infty$, rezultă că ecuația are soluție în mulțimea

 $(1,\infty)$. Cum f este strict crescătoare pe $(1,\infty)$, rezultă că f este injectivă pe $(1,\infty)$, deci soluția este unică.

c) Deoarece $g(x) = f^2(x) = x^6 - 6x^4 + 9x^2$, rezultă $g'(x) = 6x^5 - 24x^3 + 18x$, de unde $g''(x) = 30x^4 - 72x^2 + 18$.

Pentru a rezolva ecuația g''(x) = 0, notăm $x^2 = t$ și rezultă $6(5t^2 - 12t + 3) = 0$ care are soluțiile

 $t_{1,2} = \frac{12 \pm \sqrt{84}}{10}$. Deci ecuația g''(x) = 0 are soluțiile $\pm \sqrt{t_1}$, $\pm \sqrt{t_2}$. Ținând cont de semnul funcției g'', rezultă că g are patru puncte de inflexiune.

2.a) $\lim_{x \nearrow 0} f(x) = \lim_{x \searrow 0} f(x) = f(0) \Rightarrow f$ continuă în 0. Rezultă f este continuă pe \mathbb{R} . f continuă pe \mathbb{R} \Rightarrow f admite primitive pe \mathbb{R} .

b) $\int xe^x dx = e^x (x-1) + C$, $\operatorname{iar} \int \sin x dx = -\cos x + C$.

Deci o primitivă a funcției f va fi de forma: $F(x) = \begin{cases} e^{x}(x-1) + c_{1}, & x \leq 0 \\ -\cos x + c_{2}, & x > 0 \end{cases}$.

Din condiția de continuitate a lui F rezultă $c_1 = c_2 = F(0) + 1 = 0$.

c) Deoarece F este o primitivă a lui f, rezultă $\int_{0}^{x} f(t) dt = F(x) - F(0)$, deci limita de calculat este

$$\lim_{x \searrow 0} \frac{F(x) - F(0)}{x^2}$$
. Cu regula lui l'Hôspital:
$$\lim_{x \searrow 0} \frac{F(x) - F(0)}{x^2} = \lim_{x \searrow 0} \frac{F'(x)}{2x}$$
. Apoi
$$\lim_{x \searrow 0} \frac{F'(x)}{2x} = \lim_{x \searrow 0} \frac{f(x)}{2x} = \lim_{x \searrow 0} \frac{\sin x}{2x} = \frac{1}{2}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$f'(x) = 1 \Leftrightarrow e^x - 1 = 1 \Leftrightarrow x = \ln 2$$
.

b) f' este negativă pe $(-\infty,0)$ și pozitivă pe $(0,\infty)$, deci valoarea minimă este f(0)=1.

c)
$$f'_d(0) = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \sqrt{\frac{e^x - 1 - x}{x^2}} = \frac{1}{\sqrt{2}}$$
 și $f'_s(0) = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \sqrt{\frac{e^x - 1 - x}{x^2}} = -\frac{1}{\sqrt{2}}$.

2. a)
$$f(3) = \int_{2}^{3} \frac{t^{2}}{t^{2} - 1} = \left(t + \frac{1}{2} \ln \left| \frac{t - 1}{t + 1} \right| \right) \Big|_{2}^{3} = 1 + \frac{1}{2} \ln \frac{3}{2}.$$

b)
$$g(x) = F\left(\ln \frac{x^2 - 1}{3}\right) - F(0)$$
, unde F este o primitivă a funcției $t \to \sqrt{3e^t + 1}$.

Rezultă
$$g'(x) = \sqrt{3}e^{\ln \frac{x^2 - 1}{3}} + 1 \cdot \left(\ln \frac{x^2 - 1}{3}\right)' = x \cdot \frac{2x}{x^2 - 1}, \ \forall x \in (1, \infty).$$

c) Avem
$$g'(x) = 2f'(x)$$
, deci $g(x) - 2f(x) = \text{constant} = g(2) - 2f(2) = 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a) Succesiv rezultă:

$$\lim_{x \to 1} \frac{f(x)}{x - 1} = \lim_{x \to 1} \frac{\sqrt[3]{x^3 - 3x + 2}}{x - 1} = \lim_{x \to 1} \sqrt[3]{\frac{(x - 1)^2 (x + 2)}{(x - 1)^3}} = -\infty.$$

b) Aplicând corect reguli de derivare, rezultă $f'(x) = \frac{x+1}{\sqrt[3]{(x-1)(x+2)^2}}$. Tabelul de variație al funcției f este:

χ	-∞	-2		-1		1	∞
f'(x)	+++++		+++++	0 -			+++++
f(x)	-∞	0	7	3√4	7	0	∕ ∞

Din tabelul de variație al funcției rezultă că -1 și 1 sunt punctele de extrem ale funcției f.

c) Funcția f este derivabilă în orice punct x care satisface condiția $x^3 - 3x + 2 \neq 0$. Deci domeniul de derivabilitate al funcției f este $\mathbb{R} \setminus \{-2,1\}$.

2. a) Descompunem în fracții simple: $\frac{1}{x(x+1)(x+2)} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x+2}$. $f(x) = \frac{1}{2x} + \frac{1}{x+1} + \frac{1}{2(x+2)}$. Deci

$$\int f(x)dx = \frac{1}{2} \int \frac{1}{x} dx - \int \frac{1}{x+1} dx + \frac{1}{2} \int \frac{1}{x+2} dx = \ln \frac{\sqrt{x(x+2)}}{x+1} + C.$$

b) Deoarece $t \in (1, \infty)$ rezultă $t > 1, t + 1 > 2, t + 2 > 3 \Rightarrow t(t + 1)(t + 2) > 6 \Rightarrow \frac{1}{t(t + 1)(t + 2)} < \frac{1}{6}$

Atunci, pentru x > 1 rezultă $\int_{1}^{x} \frac{1}{t(t+1)(t+2)} dt < \int_{1}^{x} \frac{1}{6} dt = \frac{x-1}{6}$. Egalitatea are loc dacă x = 1.

c) Utilizăm schimbarea de variabilă: $x^3 = t$. Rezultă $\int_0^1 \frac{x^2}{1+x^6} dx = \frac{1}{3} \int_0^1 \frac{3x^2}{1+x^6} dx = \frac{1}{3} \int_0^1 \frac{1}{1+t^2} dt$.

Dar
$$\int_{0}^{1} \frac{1}{1+t^2} dt = arctgt \Big|_{0}^{1} = \frac{\pi}{4}$$
. Rezultă $\int_{0}^{1} \frac{x^2}{1+x^6} dx = \frac{\pi}{12}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a) Deoarece $\lim_{x \to \infty} f(x) = \frac{2}{3}$, rezultă că dreapta de ecuație $y = \frac{2}{3}$ este asimptotă orizontală spre ∞ .

b) Avem
$$f(1) = 1$$
 și $0 < f(n) \le \frac{9}{10}$, $\forall n \ge 2$, deci $0 < a_n \le \left(\frac{9}{10}\right)^{n-1}$, de unde $\lim_{n \to \infty} a_n = 0$.

c)
$$g'(x) = -\frac{7e^x}{(3e^x + 4)^2}$$
, $g''(x) = \frac{7e^x(3e^x - 4)}{(3e^x + 4)^3}$. punctul de inflexiune este $\ln \frac{4}{3}$.

2 a)
$$\int_0^1 f(e^x) dx = \int_0^1 \sqrt{x} dx = \frac{2\sqrt{x^3}}{3} \Big|_0^1 = \frac{2}{3}$$
.

b)
$$V = \pi \int_{1}^{e} \ln x dx = (x \ln x - x) \Big|_{1}^{e} = \pi$$
.

c) Utilizăm schimbarea de variabilă $\sqrt{\ln x} = t$, apoi o integrare prin părți:

$$\int_{1}^{e} \sqrt{\ln x} dx = \int_{0}^{1} 2t^{2} e^{t^{2}} dt = \int_{0}^{1} \left(e^{t^{2}} \right)' t dt = t e^{t^{2}} \Big|_{0}^{1} - \int_{0}^{1} e^{t^{2}} dt = e - \int_{0}^{1} e^{t^{2}} dt = e - \int_{0}^{1} e^{x^{2}} dx.$$

Prin urmare
$$\int_{0}^{1} e^{x^{2}} dx + \int_{1}^{e} f(x) dx = \int_{0}^{1} e^{x^{2}} dx + e - \int_{0}^{1} e^{x^{2}} dx = e.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a) Avem $x_{n+1} - x_n = x_n^2 - x_n + 1 > 0, \forall n \ge 1$, deci șirul este strict crescător, de unde concluzia.

b) Funcția
$$g$$
 este derivabilă pe fiecare din intervalele $(-\infty, 0)$ și $(0, \infty)$ și $g'(x) = \begin{cases} 3x^2 + 1, & x < 0 \\ \frac{1}{x^2 + 1}, & x > 0 \end{cases}$

Cum g este continuă în 0 și $\lim_{x \nearrow 0} g'(x) = \lim_{x \searrow 0} g'(x) = 1$, rezultă că g este derivabilă în 0 și g'(0) = 1.

c) Numărul cerut este valoarea minimă a funcției $h:(0,\infty)\to\mathbb{R}, h(x)=x^2+1-2\ln x$. Acesta este h(1)=2.

2.a)
$$\int_{0}^{1} xf(x)dx = \int_{0}^{1} xe^{-x^{2}} dx = \frac{1}{2} \int_{0}^{1} e^{-t} dt = -\frac{1}{2} e^{-t} \Big|_{0}^{1} = \frac{1}{2} (1 - e^{-1}).$$

b) Aplicăm regula lui 1'Hôspital:

$$\lim_{x \to 0} \frac{F(\cos x) - F(1)}{x^2} = \lim_{x \to 0} \frac{-\sin x F'(\cos x)}{2x} = \lim_{x \to 0} \left(-\frac{\sin x}{2x} \cdot f(\cos x) \right) = -\frac{1}{2} f(1) = -\frac{1}{2} e^{-1}.$$

c)
$$g'(x) = F'(x) + f'(x) = f(x) - 2xe^{-x^2} = (1 - 2x)e^{-x^2}$$
, deci g are unicul punct de extrem $x = \frac{1}{2}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$\lim_{x \to \infty} (f(x)g(x)) = 0 \cdot \frac{\pi}{2} = 0$$
.

b) f este derivabilă și $f'(x) = \frac{1-x^2}{\left(1+x^2\right)^2}$, $\forall x \in \mathbb{R}$. Ținând cont de semnul derivatei, rezultă că – 1 este punct de

minim local, iar 1 este punct de maxim local.

c) Considerăm funcția
$$h: \mathbb{R} \to \mathbb{R}$$
, $h(x) = f(x) - g(x)$. Rezultă $h'(x) = -\frac{x^2}{\left(1 + x^2\right)^2}$. Deoarece

 $h'(x) < 0, \forall x \in (0, \infty)$, rezultă că h este descrescătoare pe $(0, \infty)$. Deci

$$h(x) < h(0), \forall x \in (0, \infty) \Rightarrow h(x) < 0, \forall x \in (0, \infty) \Rightarrow \frac{x}{1 + x^2} < \arctan x, \forall x \in (0, \infty)$$

- **2.a**) Funcția f este continuă pe [0,1], deci este integrabilă pe acest interval. Funcția $g:[1,2] \to \mathbb{R}$, $g(x) = x \ln x$ este continuă, deci este integrabilă pe [1,2]. Deoarece f(x) = g(x), $\forall x \in [1,2] \setminus \{1\}$, rezultă că f este integrabilă pe [1,2]. Fiind integrabilă pe [0,1] și pe [1,2], rezultă f integrabilă pe [0,2].
- **b**) Fie F o primitivă a funcției $\varphi:[1,\infty)\to\mathbb{R}$, $\varphi(t)=t\ln t$. Atunci: $\int_{1}^{x}t\ln tdt=F(x)-F(1)$.

Rezultă
$$\lim_{x \searrow 1} \frac{\int_{1}^{x} t \ln t dt}{x - 1} = \lim_{x \searrow 1} \frac{F(x) - F(1)}{x - 1} = F'_{d}(1)$$
. Deoarece $F'_{d}(1) = \varphi(1) = 0$ rezultă că limita este egală cu 0.

c) Arătăm că există
$$a \in [0,t)$$
 și $b \in (t,2]$ astfel încât $\int_{0}^{b} f(x)dx - \int_{0}^{a} f(x)dx = (b-a)f(t)$, adică

$$\int_{0}^{b} f(x)dx - bf(t) = \int_{0}^{a} f(x)dx - af(t). \text{ Considerăm funcția } g:[0,2] \to \mathbb{R}, g(y) = \int_{0}^{y} f(x)dx - yf(t). \text{ Avem}$$

g'(y) = f(y) - f(t), deoarece f este strict crescătoare, deci g este strict descrescătoare pe [0,t] și strict crescătoare pe [t,2]. Aceasta garantează existența numerelor a și b.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$\lim_{x \to \infty} \frac{f(x)}{f(x+1)} = \lim_{x \to \infty} \frac{x^3 + x}{(x+1)^3 + x + 1} = 1$$
.

b) Deoarece $f'(x) = 3x^2 + 1 > 0$, rezultă că f este strict crescătoare, deci este injectivă.

 $\operatorname{Cum}\lim_{x\to -\infty} f(x) = -\infty \text{ , } \lim_{x\to \infty} f(x) = \infty \text{ , } \operatorname{iar} f \text{ este strict crescătoare și continuă rezultă } \operatorname{Im} f = \mathbb{R} \text{ , } \operatorname{deci}$

f este surjectivă. Fiind injectivă și surjectivă f este bijectivă, deci este inversabilă.

c) Pentru
$$x \ge 1$$
, $f(\sqrt[3]{x}) = x + \sqrt[3]{x} > x$ și $f(\sqrt[3]{x}) - 1 = x - 3\sqrt[3]{x^2} + 4\sqrt[3]{x} - 2 = x - \sqrt[3]{x} \left(3\sqrt[3]{x} - 4 + \frac{2}{\sqrt[3]{x}}\right) < x$, deci

soluția ecuației f(y) = x se află între $\sqrt[3]{x} - 1$ și $\sqrt[3]{x}$. Astfel $1 - \frac{1}{\sqrt[3]{x}} < \frac{f^{-1}(x)}{\sqrt[3]{x}} < 1$, de unde $\lim_{x \to \infty} \frac{f^{-1}(x)}{\sqrt[3]{x}} = 1$.

2.a)
$$\int_{-\pi}^{\pi} f(x)dx = 0$$
, deoarece f este impară.

b)
$$\int_{1}^{3} \frac{f(x)}{\sin x} dx = \int_{1}^{3} x^{2} dx$$
. Dar $\int_{1}^{3} x^{2} dx = 2c^{2} \Leftrightarrow \frac{26}{3} = 2c^{2}$. Rezultă $c = \sqrt{\frac{13}{3}} \in (1,3)$.

c)
$$F(x) = (-x^2 + 2)\cos x + 2x\sin x$$
. Considerăm şirul $(x'_n)_{n\geq 1}$, $x'_n = 2n\pi$. Atunci $\lim_{n\to\infty} F(x'_n) = -\infty$.

Considerând șirul $(x_n'')_{n\geq 1}$, $x_n''=2n\pi+\frac{\pi}{2}$ rezultă $\lim_{n\to\infty}F\left(x_n''\right)=\infty$. Prin urmare funcția F nu are limită la ∞ .

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a) $f'(x) = 1 + \frac{x}{\sqrt{1 + x^2}} \neq 0$, $\forall x \in \mathbb{R}$ şi f'(0) > 0, deci f' are semn constant pozitiv. Astfel f este strict

crescătoare, continuă,
$$\lim_{x \to \infty} f(x) = \infty$$
 și $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\left(x^2 + 1\right) - x^2}{\sqrt{x^2 + 1} - x} = \lim_{x \to -\infty} \frac{1}{1 + \sqrt{1 + \frac{1}{x^2}}} = 0$, de unde

concluzia.

b) Cum
$$g'(x) = \frac{1}{\sqrt{1+x^2}}$$
 rezultă relația cerută.

c) Fie funcția $\varphi: \mathbb{R} \to \mathbb{R}$, $\varphi(x) = g(x) - x$. Rezultă $\varphi'(x) = \left(1 + x^2\right)^{-\frac{1}{2}} - 1$. Deoarece $\varphi'(x) < 0, \forall x \in \mathbb{R}$ rezultă φ strict descrescătoare pe \mathbb{R} . Prin urmare, pentru orice x > 0 rezultă $\varphi(x) < \varphi(0)$. Cum $\varphi(0) = 0$, se obține inegalitatea cerută.

2.a) Într-adevăr f este derivabilă și
$$f(0) = f(1) = 0$$
, iar $\int_{0}^{1} f(x)dx = \frac{x^4}{2} - x^3 + \frac{x^2}{2} \Big|_{0}^{1} = 0$.

b) Deoarece
$$f(x) = ax^3 + bx^2 + cx + d, a \ne 0$$
, rezultă $\int_{0}^{1} f(x)dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2} + d$ și

$$f(0) = d, f(1) = a + b + c + d$$
. Prin urmare, condiția $f \in M$ este echivalentă cu

$$\begin{cases} a+b+c=0\\ \frac{a}{4}+\frac{b}{3}+\frac{c}{2}=0 \end{cases}$$
, de unde: $a \in \mathbb{R}, a \neq 0, b=-\frac{3a}{2}, c=\frac{a}{2}, d \in \mathbb{R}$. Rezultă

$$f(x) = ax^3 - \frac{3a}{2}x^2 + \frac{a}{2}x + d, a \in \mathbb{R}, a \neq 0, d \in \mathbb{R}$$
. Atunci $f\left(\frac{1}{2}\right) = d = f(0)$.

c) Aplicăm teorema de medie: există $c \in (0,1)$ astfel încât $\int_{0}^{1} f(x)dx = f(c)$. Rezultă f(c) = f(0) și f(c) = f(1).

Conform teoremei lui Rolle, există $\alpha \in (0,c)$ și $\beta \in (c,1)$ astfel încât $f'(\alpha) = 0$, $f'(\beta) = 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Soluție

1.a) f este continuă pe fiecare dintre intervalele $(-\infty,1)$ și $(1,\infty)$, deoarece f este cât de funcții continue.

Deoarece $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{t \to 0} \frac{\ln (1 + t)}{t} = 1 = f(1)$ rezultă că f este continuă în 1.

b) Aplicăm regula lui l'Hôspital. Rezultă
$$\lim_{x\to 1} \frac{\ln x - (x-1)}{(x-1)^2} = \lim_{x\to 1} \frac{1-x}{2x(x-1)} = -\frac{1}{2}$$
.

c) Avem
$$f'(x) = \frac{x - 1 - x \ln x}{x(x - 1)^2}$$
 şi avem de arătat că $g(x) = x - 1 - x \ln x < 0$, $\forall x \in (0, \infty) \setminus \{1\}$. Cum $g'(x) = -\ln x$,

rezultă tabelul de variație următor, din care rezultă concluzia.

х	0	1		8
g'(x)	+++++	+++ 0		-
g(x)	7	0	7	

2.a) Fie $F: \mathbb{R} \to \mathbb{R}$ o primitivă pe \mathbb{R} a lui f. Atunci $F'(x) = \ln(1 + \sin^2 x), \forall x \in \mathbb{R}$.

Deoarece $1 + \sin^2 x \ge 1$ rezultă $F'(x) = \ln(1 + \sin^2 x) \ge 0, \forall x \in \mathbb{R}$.

b) Utilizăm schimbarea de variabilă $\sin x = t$. Rezultă $\int_0^{\pi} f(x) \cos dx = \int_0^0 \ln(1+t^2) dt = 0$.

c) Funcția
$$f$$
, fiind continuă pe \mathbb{R} , admite o primitivă. În plus, $g(x) = \int_{\frac{\pi}{4}}^{\arcsin x} f(t)dt = F(\arcsin x) - F(\frac{\pi}{4})$,

de unde
$$g'(x) = \arcsin' x \cdot F'(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} f(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} \ln(1 + x^2).$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$f_2'(x) = 2x + \frac{1}{x} > 0, \forall x \in (0, \infty)$$
.

b) Cum $f_n\left(\frac{1}{e}\right) \cdot f_n\left(1\right) = \left(\frac{1}{e^n} - 1\right) \cdot 1 < 0$ și f este continuă rezultă că ecuația $f_n(x) = 0$ are cel puțin o rădăcină reală, situată în intervalul $\left(\frac{1}{e},1\right)$. Cum f_n este strict crescătoare, rădăcina este unică.

c) Folosind de două ori regula lui l'Hospital:

$$\lim_{x \to 1} \left(\frac{3}{f_2(x) - 1} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{3x - 2 - x^2 - \ln x}{(x - 1)(x^2 + \ln x - 1)} = \lim_{x \to 1} \frac{-2 + \frac{1}{x^2}}{6x + \frac{1}{x} - 2 + \frac{1}{x^2}} = -\frac{1}{6}.$$

2. a) Considerăm funcțiile, $g:[-2\pi,0] \to \mathbb{R}$, $g(x) = x^3$ și $H:(0,\infty) \to \mathbb{R}$, $h:[0,2\pi] \to \mathbb{R}$, $h(x) = 1 + \sin x$. Deoarece f(x) = g(x), $\forall x \in [-2\pi,0] \setminus \{0\}$ și g este integrabilă pe $[-2\pi,0]$ rezultă f integrabilă pe $[-2\pi,0]$. Analog, deoarece f(x) = h(x), $\forall x \in [0,2\pi]$ și h este integrabilă pe $[0,2\pi]$ rezultă f integrabilă pe $[0,2\pi]$. Prin urmare f este integrabilă pe $[-2\pi,0] \cup [0,2\pi] = [-2\pi,2\pi]$.

b)
$$\int_{-1}^{\pi} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx = \int_{-1}^{0} x^{3} dx + \int_{0}^{\pi} (1 + \sin x) dx = \pi + \frac{7}{4}$$
.

c)
$$\int_0^{2\pi} (1+\sin x)^n dx \le \int_0^{2\pi} (1+\sin x) \cdot 2^{n-1} dx = 2^{n-1} (x-\cos x) \Big|_0^{2\pi} = 2^n \pi.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$|f(x)| \le \max(|x|, |x^3|) \le |x|, \forall x \in [-1, 1]$$

b) Din $|f(x)| \le |x|$, $\forall x \in [-1,1]$ rezultă $\lim_{x \to 0} f(x) = 0$. Cum f(0) = 0, rezultă că f este continuă în origine.

c) Fie
$$g(x) = \frac{f(x) - f(0)}{x - 0}$$
, $x \neq 0$. $\lim_{n \to \infty} g\left(\frac{1}{n}\right) = 1$, $\lim_{n \to \infty} g\left(\frac{1}{n\sqrt{2}}\right) = \lim_{n \to \infty} \frac{1}{2\sqrt{2}n^3} = 0$, deci f nu este derivabilă în f .

2.a) f trebuie să fie derivabilă, deci continuă. Din continuitatea lui f rezultă b = 0.

Apoi
$$f'(x) = ae^x + axe^x - 1, \forall x < 0 \text{ si } f'(x) = \cos x - x \sin x, \forall x > 0.$$

Cu o consecință a teoremei lui Lagrange rezultă $\lim_{x \to 0} f'(x) = \lim_{x \to 0} f'(x) = f'(0) \Leftrightarrow a-1=1 \Rightarrow a=2$.

b)
$$\int_{-1}^{\pi} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx = -\int_{-1}^{0} x dx + \int_{0}^{\pi} x \cos x dx = -\frac{x^{2}}{2} \Big|_{-1}^{0} + x \sin x \Big|_{0}^{\pi} + \cos x \Big|_{0}^{\pi} = -\frac{3}{2}.$$

c) Avem
$$I_n = \int_0^{\pi} x^{n+1} \cos x dx = x^{n+1} \sin x \Big|_0^{\pi} - (n+1) \int_0^{\pi} x^n \sin x dx = -(n+1) \int_0^{\pi} x^n \sin x dx$$
 şi

$$\int_0^{\pi} x^n \sin x dx = \int_0^{\frac{\pi}{2}} x^n \sin x dx + \int_{\frac{\pi}{2}}^{\pi} x^n \sin x dx \ge \int_{\frac{\pi}{2}}^{\pi} x^n \sin x dx = 1, \text{ deci } I_n \le -(n+1), \text{ de unde concluzia.}$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutii

1.a)
$$f(x) = \ln \frac{x+2}{x} = \ln |x+2| - \ln |x|, f'(x) = \frac{1}{x+2} - \frac{1}{x}, f''(x) = \frac{1}{x^2} - \frac{1}{(x+2)^2} = \frac{4x+4}{x^2(x+2)^2} < 0, \forall x \in (-\infty, -2).$$

b)
$$a_n = \ln\left(\frac{3}{1} \cdot \frac{4}{2} \cdot \frac{5}{3} \cdot \frac{6}{4} \cdot \dots \cdot \frac{n+1}{n-1} \cdot \frac{n+2}{n}\right) - \ln\frac{n(n+1)}{2} = \ln\frac{(n+1)(n+2)}{2} - \ln\frac{n(n+1)}{2} = \ln\frac{n+2}{n}$$
.

Rezultă $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \ln \frac{n+2}{n} = 0$

 $n \to \infty$ $n \to \infty$ Considerăm funcția $h: [1,2] \to \mathbb{R}, h(x) = (x-1)f(x)$. Aplicăm teorema lui Lagrange funcției $h: [1,2] \to \mathbb{R}$

există
$$c \in (0,1)$$
 astfel încât $h'(c) = \frac{h(2) - h(1)}{1}$, de unde $f(c) + (c-1)f'(c) = f(2)$.

2.a)
$$\int_{0}^{1} xf(x)dx = \int_{0}^{1} \frac{x}{1+x^{4}}dx = \frac{1}{2}arctg(x^{2})\Big|_{0}^{1} = \frac{\pi}{8}.$$

b) Se observă că $\frac{1}{1+x^2} \le \frac{1}{1+x^4} \le 1, \forall x \in [0,1]$. Aplicând proprietatea de monotonie a integralei rezultă

$$\int_{0}^{1} \frac{1}{1+x^{2}} dx \le \int_{0}^{1} \frac{1}{1+x^{4}} dx \le \int_{0}^{1} 1 dx, \text{ de unde } \frac{\pi}{4} \le \int_{0}^{1} f(x) dx \le 1.$$

c)
$$\int_{0}^{1} \frac{f(x)f''(x) - (f'(x))^{2}}{(f(x))^{2}} dx = \int_{0}^{1} \left(\frac{f'(x)}{f(x)}\right)' dt = \frac{f'(1)}{f(1)} - \frac{f'(0)}{f(0)} = -2, \text{ decarece } f'(x) = -\frac{4x^{3}}{(1+x^{4})^{2}}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a) Funcția f este strict crescătoare pe \mathbb{R} , deci este injectivă. Deoarece $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = \infty$ și f este continuă rezultă $\operatorname{Im} f = \mathbb{R}$, prin urmare f este surjectivă.

b) Fie funcția $h: \mathbb{R} \to \mathbb{R}$, $h(x) = x + e^x - (2x + 1) = e^x - x - 1$. $h'(x) = e^x - 1$, iar din tabelul de variație rezultă concluzia.

х	-8		0		∞
h'(x)			0 ++	+++++++++	+++
h(x)	8	7	0	7	8

c) Fie funcția $\theta: \mathbb{R} \to \mathbb{R}$, $0 \theta(x) = x + e^x - (mx + 1)$. Atunci $\theta(x) \ge \theta(0)$, $\forall x \in \mathbb{R}$, adică 0 este punct de minim a lui θ . Conform teoremei lui Fermat, $\theta'(0) = 0$. Deoarece $\theta'(x) = 1 + e^x - m$ rezultă $\theta'(0) = 2 - m = 0$, de unde m = 2.

2.a) Deoarece F este o primitivă pe \mathbb{R} a funcției f, atunci $F'(x) = f(x), \forall x \in \mathbb{R}$.

Deci $(4F(x))' = 4f(x) = 4\sin^3 x \cos x$. Apoi $(\sin^4 x)' = 4\sin^3 x \cos x$. Deci există $c \in \mathbb{R}$ astfel încât $4F(x) = \sin^4 x + c$. Fie $G: \mathbb{R} \to \mathbb{R}$, $G(x) = \frac{1}{4}\sin^4 x$. Cum G'(x) = f(x), $\forall x \in \mathbb{R}$, există $d \in \mathbb{R}$ astfel încât F(x) = G(x) + d, iar pentru c = 4d, rezultă concluzia.

b)
$$A = \int_0^{\frac{\pi}{2}} f(t)dt = \frac{1}{4}\sin^4 t \begin{vmatrix} \frac{\pi}{2} \\ 0 \end{vmatrix} = \frac{1}{4}.$$

c) Utilizăm schimbarea de variabilă $x = \pi - t$ și obținem

$$I = \int_0^{\pi} \sin^{6n+3} x \cos^{2n+1} x dx = \int_{\pi}^0 \sin^{6n+3} (\pi - t) \cos^{2n+1} (\pi - t) (-1) dt = \int_0^{\pi} \sin^{6n+3} t (-\cos t)^{2n+1} dt = -I, \text{ de unde } I = 0.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$f(x) = 1 - \sqrt{1 - x^2}$$
 și $f'(x) = \frac{x}{\sqrt{1 - x^2}}$, $\forall x \in (-1, 1)$.

b)
$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{1 - \sqrt{x^2 - 1}}{x} = \lim_{x \to \infty} \left(\frac{1}{x} - \sqrt{1 - \frac{1}{x}} \right) = -1.$$

$$n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} (x - \sqrt{x^2 - 1} + 1) = \lim_{x \to \infty} \left(\frac{1}{x + \sqrt{x^2 - 1}} + 1 \right) = 1.$$

Prin urmare, ecuația asimptotei spre $+\infty$ la graficul funcției f este y = -x + 1.

c) Pentru
$$x \in (0,1]$$
 avem $\frac{1-\sqrt{1-x^2}}{x^2} = \frac{1}{1+\sqrt{1-x^2}} \in [0,1]$. Pentru $x \in [1,\infty)$ avem $-x \le 1-x^2 \le 1$, deci

$$-\frac{1}{x} \le \frac{f(x)}{x^2} \le \frac{1}{x^2}, \text{ de unde } -1 \le \frac{f(x)}{x^2} \le 1, \ \forall x \ge 1. \text{ Astfel } -1 \le g(x) \le 1, \forall x \in (0, \infty)$$

2.a)
$$\int_0^{3/4} \frac{2t+1}{f(\sqrt{t})} dt = \int_0^{3/4} \frac{2t+1}{t^2+t+1} dt = \ln(t^2+t+1) \Big|_0^{3/4} = \ln\frac{37}{16}.$$

b) Utilizăm schimbarea de variabilă $g(x) = t \Leftrightarrow x = f(t)$.

Rezultă
$$\int_{1}^{3} g(x)dx = \int_{0}^{1} tf'(t)dt = tf(t)\Big|_{0}^{1} - \int_{0}^{1} f(t)dt = f(1) - \int_{0}^{1} f(x)dx = 3 - \int_{0}^{1} f(x)dx$$
, de unde concluzia.

c) Folosind **b**) avem
$$\int_{0}^{1} f(x)dx + \int_{1}^{\alpha} g(x)dx = 3 - \int_{1}^{3} g(x)dx + \int_{1}^{\alpha} g(x)dx = 3 - \int_{\alpha}^{3} g(x)dx$$
, aşa încât inegalitatea de

demonstrat este echivalentă cu
$$\int_{\alpha}^{3} g(x)dx \le 3 - \alpha$$
. Deoarece $g:[1,3] \to [0,1]$ rezultă $g(x) \le 1, \forall \alpha \in [\alpha,3]$ din

care prin integrare rezultă
$$\int_{0}^{3} g(x)dx \le 3 - \alpha$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a) într-adevăr, u este o funcție de două ori derivabilă, $u'(x) = e^x(\sin x + \cos x)$, deci u'(0) = 1 și f(0) = 0.

b) Avem
$$(1+f(x))^{\frac{1}{x}} = \left[(1+f(x))^{\frac{1}{f(x)}} \right]^{\frac{1}{f(x)}}$$
 şi $\lim_{x\to 0} (1+f(x))^{\frac{1}{f(x)}} = e$, deoarece $\lim_{x\to 0} f(x) = f(0) = 0$.

Apoi
$$\lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = f'(0) = 1.$$

c)
$$\lim_{x \to 0} \frac{f^n(x) - x^n}{x^{n+1}} = \lim_{x \to 0} \frac{f(x) - x}{x^2} \cdot \left(\frac{f^{n-1}(x)}{x^{n-1}} + \frac{xf^{n-2}(x)}{x^{n-1}} + \frac{x^{n-2}f(x)}{x^{n-1}} + \frac{x^{n-1}}{x^{n-1}} \right)$$
, iar

$$\lim_{x \to 0} \frac{f(x) - x}{x^2} = \lim_{x \to 0} \frac{f'(x) - 1}{2x} = \lim_{x \to 0} \frac{1}{2} \frac{f'(x) - f'(0)}{x - 0} = \frac{f''(0)}{2},$$

$$\lim_{x \to 0} \frac{f^{k}(x)}{x^{k}} = \lim_{x \to 0} \left(\frac{f(x) - f(0)}{x - 0} \right)^{k} = (f'(0))^{k} = 1, \ \forall k \in \{0, 1, 2, ..., n - 1\}.$$

2. a)
$$g(x) = \int_{0}^{x} f(t) dt = \int_{0}^{x} \frac{1}{1+t} dt = \ln(1+x)$$
.

b)
$$\int_0^1 f^2(x)g(x)dx = \int_0^1 \frac{\ln(1+x)}{(x+1)^2} dx = -\int_0^1 \left(\frac{1}{x+1}\right)' \ln(1+x) dx = -\frac{1}{2}\ln 2 + \int_0^1 \frac{1}{(x+1)^2} dx = \frac{1-\ln 2}{2}$$
.

c) Pentru
$$k \in \{0,1,2,...,n-1\}$$
 cu teorema de medie
$$\underbrace{\int_{\frac{k-1}{n}}^{k} f(x) dx}_{n} = \left(\frac{k}{n} - \frac{k-1}{n}\right) f(c_{k}), \text{ cu } c_{k} \in \left[\frac{k-1}{n}, \frac{k}{n}\right].$$

Apoi, deoarece
$$f$$
 este descrescătoare, $f(c_k) \ge f\left(\frac{k}{n}\right)$. Rezultă $\frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \le \sum_{k=1}^n \sum_{k=1}^n f\left(x\right) dx = \int_0^1 f\left(x\right) dx = \ln 2$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1. a)
$$f'(x) = -\frac{1}{(x+1)^2} + \frac{2}{2x+1} - \frac{2}{2x+3} = \frac{1}{(x+1)^2 (2x+1)(2x+3)}$$
.

b) Deoarece f'(x) > 0 rezultă că funcția f este strict crescătoare. Cum $\lim_{t \to \infty} f(t) = 0$, rezultă $f(x) < 0, \forall x \in (0, \infty)$.

c)
$$x_{n+1} - x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} - \ln\left(n + 1 + \frac{1}{2}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln\left(n + \frac{1}{2}\right)\right) = f\left(n\right) < 0.$$

2. a) Utilizăm schimbarea de variabilă
$$t = -u$$
. Rezultă $f(-x) = \int_{0}^{-x} e^{t^2} dt = -\int_{0}^{x} e^{u^2} du = -\int_{0}^{x} e^{t^2} dt = -f(x)$.

b) Concluzia rezultă din
$$f(x) = \int_{0}^{1} e^{t^2} dt + \int_{1}^{x} e^{t^2} dt > \int_{1}^{x} e^{t^2} dt > \int_{1}^{x} e^{t} dt = e^{x} - e$$
 și $\lim_{x \to \infty} (e^x - e) = \infty$.

$$\mathbf{c}) \ e^{t^2} \le e^t, \forall t \in [0,1].$$

Rezultă
$$\int_0^x e^{t^2} dt \le \int_0^x e^t dt$$
, $\forall x \in [0,1]$, deci $f(x) \le e^x - 1$, $\forall x \in [0,1]$.

Prin urmare
$$\int_{0}^{1} f(x) dx \le \int_{0}^{1} (e^{x} - 1) dx = e - 2$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1. a)
$$f'_s(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{3}{2\sqrt[3]{x}} = -\infty$$
, deci f nu este derivabilă în 0.

b) Deoarece funcția f este continuă pe intervalul [k,k+1] și derivabilă pe intervalul (k,k+1), aplicăm teorema lui Lagrange . Rezultă existența unui punct $c \in (k,k+1)$ astfel încât $f(k+1) - f(k) = f'(c) = \frac{1}{\sqrt[3]{c}}$.

c)
$$a_{n+1} - a_n = -f(n+1) + f(n) + \frac{1}{\sqrt[3]{n+1}} = \frac{1}{\sqrt[3]{n+1}} - \frac{1}{\sqrt[3]{c_n}} \text{ cu } c_n \in (n, n+1), \text{ deci } a_{n+1} - a_n < 0, \forall n \in \mathbb{N}^*.$$

2.a)
$$\int_{0}^{1} f(x) dx = \left(\frac{x^{2}}{2} - \frac{x^{3}}{6} + \frac{x^{4}}{12}\right) \Big|_{0}^{1} - (x+1)\ln(x+1) \Big|_{0}^{1} + x\Big|_{0}^{1} = -\frac{7}{12} - 2\ln 2...$$

b) Cum
$$F(0) = 0$$
, aplicăm regula lui l'Hôspital: $\lim_{x \to 0} \frac{F(x)}{x^5} = \lim_{x \to 0} \frac{F'(x)}{5x^4} = \lim_{x \to 0} \frac{f(x)}{5x^4}$. Dar

$$\lim_{x \to 0} \frac{f(x)}{5x^4} = \lim_{x \to 0} \frac{1 - x + x^2 - \frac{1}{1 + x}}{20x^3} = \lim_{x \to 0} \frac{x^3}{20x^3(1 + x)} = \frac{1}{20}.$$

c) $f'(x) = 1 - x + x^2 - \frac{1}{1+x} = \frac{x^3}{1+x}$. Cum, pe (-1,0) derivata f' este negativă, iar pe $(0,\infty)$ este pozitivă, rezultă că 0 este punct de minim absolut, deci $f(x) \ge f(0) = 0$.

Rezultă
$$x - \frac{x^2}{2} + \frac{x^3}{3} \ge \ln(1+x)$$
, din care se obține
$$\int_0^1 \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) dx \ge \int_0^1 \ln(1+x) dx$$

$$\operatorname{Dar} \int_{0}^{1} \left(x - \frac{x^{2}}{2} + \frac{x^{3}}{3} \right) dx = \frac{5}{12}, \det \int_{0}^{1} \ln(1+x) dx \le \frac{5}{12}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

- **1. a)** Prin inducție demonstrăm că, pentru orice $n \in \mathbb{N}^*$, $f_{n+1}(x) = 2^{n+1}e^{2x}$, $\forall x \in \mathbb{R}$. Într-adevăr $f_1(x) = f_0'(x) = 2e^{2x}$. Presupunem că $f_n(x) = 2^n e^{2x}$ și rezultă că $f_{n+1}(x) = 2^{n+1}e^{2x}$. Pentru n = 3 rezultă $f_3(x) = 8e^{2x}$, $\forall x \in \mathbb{R}$.
- **b**) Deoarece $\lim_{x \to -\infty} f_n(x) = \lim_{x \to -\infty} 2^n e^{2x} = 0$ rezultă că axa Ox este asimptotă orizontală

spre
$$-\infty$$
. Cum $\lim_{x \to \infty} f_n(x) = \lim_{x \to \infty} 2^n e^{2x} = \infty$ și $\lim_{x \to \infty} \frac{f_n(x)}{x} = \lim_{x \to \infty} \frac{2^n e^{2x}}{x} = \infty$ rezultă că f_n nu are alte asimptote.

$$\mathbf{c}) \lim_{n \to \infty} \frac{f_1(a) + f_2(a) + \dots + f_n(a)}{f_{n+1}(a)} = \lim_{n \to \infty} \frac{2e^{2a} + 2^2e^{2a} + \dots + 2^ne^{2a}}{2^{n+1}e^{2a}} = \lim_{n \to \infty} \frac{1 + 2 + 2^2 + \dots + 2^{n-1}}{2^n} = \lim_{n \to \infty} \frac{2^n - 1}{2^n} = 1.$$

2. a) Funcția f este continuă pe intervalul $(0, \infty)$ deoarece pe acest interval f este produs de funcții continue. Deoarece

$$\lim_{x \searrow 0} f(x) = \lim_{x \searrow 0} x \ln^2 x = \lim_{x \searrow 0} \frac{\ln^2 x}{\frac{1}{x}} = 0 = f(0), f \text{ este continuă în } 0. \text{ Rezultă } f \text{ continuă pe } [0, \infty) \text{ și prin urmare}$$

este integrabilă pe[0,1].

b) Deoarece funcția $F:[0,\infty)\to\mathbb{R},\ F(t)=\int_t^1f(x)dx$ este continuă, avem $\int_0^1f(x)dx=F(0)=\lim_{t\searrow 0}F(t)$. Cum

$$\int_{1}^{1} x \ln^{2} x dx = \left(\frac{x^{2}}{2} \ln^{2} x - \frac{x^{2}}{2} \ln x + \frac{x^{2}}{4}\right) \Big|_{t}^{1} = \frac{t^{2}}{2} \ln t - \frac{t^{2}}{2} \ln^{2} t + \frac{1}{4} - \frac{t^{2}}{4}, \text{ rezultă că } \int_{0}^{1} f(x) dx = \frac{1}{4}.$$

c)
$$\int_{1}^{e} \frac{1}{x} \ln^{2} \frac{1}{x} dx = \int_{1}^{e} \frac{1}{x} (-\ln x)^{2} dx = \int_{1}^{e} \frac{1}{x} \ln^{2} x dx = \frac{1}{3} \ln^{3} x \Big|_{1}^{e} = \frac{1}{3}$$
.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x}$$
.

b) Deoarece $f'(x) > 0, \forall x \in (0, \infty)$ rezultă că f este strict crescătoare pe $(0, \infty)$.

Din x > 0 şi f este strict crescătoare pe $(0, \infty)$, rezultă f(x) > f(0) = 0.

c)
$$f(x) = \ln e^x - \ln(1+x) = \ln \frac{e^x}{1+x}$$
. Deci $\lim_{x \to \infty} f(x) = \infty$.

2.a)
$$F(x) = \int_{1}^{2} t^{x} dt = \frac{t^{x+1}}{x+1} \Big|_{1}^{2} = \frac{2^{x+1}-1}{x+1}$$
, pentru $x \neq -1$, deci $1 + (x+1)F(x) = 2^{x+1}$, $\forall x \in \mathbb{R} \setminus \{-1\}$; pentru $x = -1$

relația se verifică direct.

b)
$$\lim_{x \to -1} F(x) = \lim_{x \to -1} \frac{2^{x+1} - 1}{x+1} = \lim_{x \to -1} 2^{x+1} \ln 2 = \ln 2$$
.

c) Din teorema de existență a primitivelor unei funcții continue, rezultă că F este primitiva funcției f pentru care F(0) = 1 (condiție care este îndeplinită). Deci $F'(x) = f(x), \forall x \in (-1, \infty)$.

Rezultă
$$f(x) = \left(\frac{2^{x+1}-1}{x+1}\right)' = \frac{(x\ln 2 + \ln 2 - 1)2^{x+1} + 1}{(x+1)^2}$$
.

Ministerul Educatiei, Cercetării și Inovării Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1. a) Ecuația asimptotei spre $+\infty$ la graficul funcției f este y = mx + n, unde:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + x + 1}{x^2 + x} = 1$$
 şi $n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \frac{1}{x + 1} = 0$.

b)
$$f'(x) = \frac{(x^2 + x + 1)' \cdot (x + 1) - (x^2 + x + 1) \cdot (x + 1)'}{(x + 1)^2} = \frac{x^2 + 2x}{(x + 1)^2}.$$

c) Cum
$$f''(x) = \frac{2}{(x+1)^3} < 0$$
, $\forall x \in (-\infty, -1)$ funcția f este concavă pe intervalul $(-\infty, -1)$.

2. a)
$$\int_0^{\pi} f_2(x) dx = \int_0^{\pi} \left| \sin 2x \right| dx = \int_0^{\pi/2} \sin 2x dx - \int_{\pi/2}^{\pi} \sin 2x dx = -\frac{\cos 2x}{2} \Big|_0^{\pi/2} + \frac{\cos 2x}{2} \Big|_{\pi/2}^{\pi} = 2.$$

b) Cum
$$\frac{\left|\sin(nx)\right|}{x} \le \frac{1}{x}$$
, $\forall x \in [\pi, 2\pi]$, rezultă $I_n = \int_{\pi}^{2\pi} \frac{\left|\sin(nx)\right|}{x} dx \le \int_{\pi}^{2\pi} \frac{1}{x} dx = \ln 2$.

c) Utilizăm schimbarea de variabilă nx = t și obținem $2n\pi + \cdots + 2n + (k+1)\pi + \cdots + (k+1)\pi +$

$$I_n = \int_{n\pi}^{2n\pi} \frac{|\sin t|}{nt} n dt = \sum_{k=n}^{2n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} dt \ge \sum_{k=n}^{2n-1} \frac{1}{(k+1)\pi} \int_{k\pi}^{(k+1)\pi} |\sin t| dt = \sum_{k=n}^{2n-1} \frac{2}{(k+1)\pi}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$(f(x))^x = \left(1 + \frac{x+a+1}{x^2-1}\right)^x = \left[\left(1 + \frac{x+a+1}{x^2-1}\right)^{\frac{x^2-1}{x+a+1}}\right]^{\frac{x^2+(a+1)x}{x^2-1}}$$
, deci limita este e .

b) Avem
$$f'(x) = -\frac{x^2 + 2(a+1)x + 1}{(x^2 - 1)^2}$$
, $x \ne \pm 1$. Dacă $x_0 = 3$ este punctul de extrem local și f este derivabilă

în 3, atunci f'(3) = 0, deci $a = -\frac{8}{3}$. Pentru $a = -\frac{8}{3}$, din semnul lui f' rezultă că $x_0 = 3$ este punct de extrem.

c) Fie $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + x + a$. Dacă $g(1) \neq 0$, $g(-1) \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \{-2, 0\}$ atunci f are două asimptote verticale, x = 1 și x = -1. Dacă a = 0 atunci $f(x) = \frac{x}{x-1}$, $x \neq \pm 1$, iar dacă a = -2, atunci $f(x) = \frac{x+2}{x+1}$, $x \neq \pm 1$ și în ambele cazuri f are o singură asimptotă verticală.

2. a)
$$f_1(x) = \int_0^x f_0(t) dt = \int_0^x 1 dt = x$$
, iar $f_2(x) = \int_0^x f_1(t) dt = \int_0^x t dt = \frac{x^2}{2}$.

b) Se demonstrează prin inducție că $f_n(x) = \frac{x^n}{n!}$. Prin urmare :

$$\frac{xf_n(x)+1}{f_{n+1}(x)+2} = \frac{(n+1)x^{n+1} + (n+1)!}{x^{n+1} + 2(n+1)!}. \text{ Rezultă } \lim_{x \to \infty} \frac{xf_n(x)+1}{f_{n+1}(x)+2} = n+1.$$

c)
$$V = \pi \int_0^{\pi} x^2 \sin^2 x dx \frac{\pi}{2} \int_0^{\pi} x^2 (1 - \cos 2x) dx = \frac{\pi}{2} \left(\frac{x^3}{3} - \frac{x^2 \sin 2x}{2} - \frac{x \cos 2x}{2} + \frac{\sin 2x}{4} \right) \Big|_0^{\pi} = \frac{\pi^4}{6} - \frac{\pi^2}{4}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a) Deoarece
$$\lim_{x \searrow -2} f(x) = \lim_{x \searrow -2} \ln \frac{2+x}{2-x} = -\infty$$
 și $\lim_{x \nearrow 2} f(x) = \lim_{x \nearrow 2} \ln \frac{2+x}{2-x} = \infty$, rezultă asimptotele verticale $x = -2$ și $x = 2$; alte asimptote nu există.

b) Deoarece
$$f'(x) = \frac{2-x}{2+x} \left(\frac{2+x}{2-x}\right)' = \frac{4}{4-x^2} > 0, \forall x \in (-2,2), \text{ deci } f \text{ este strict crescătoare pe } (-2,2).$$

c) Notăm
$$\frac{1}{x} = y$$
. Atunci $\lim_{x \to \infty} xf\left(\frac{1}{x}\right) = \lim_{y \to 0} \frac{1}{y} f(y) = f'(0) = 1$.

2.a)
$$f(t) = t^2 \int_{1}^{2} \frac{1}{x^2} dx - 2t \int_{1}^{2} \frac{e^x}{x} dx + \int_{1}^{2} e^{2x} dx = At^2 - 2Bt + C$$
, unde $C = \int_{1}^{2} e^{2x} dx = \frac{e^{2x}}{2} \Big|_{1}^{2} = \frac{e^4 - e^2}{2}$.

b) Deoarece
$$A = \int_{1}^{2} \frac{1}{x^2} dx = \frac{1}{2}$$
, rezultă $f(t) = \frac{1}{2}t(4B-t) + C$, de unde $f(2B+t) = f(2B-t) = \frac{1}{2}(4B^2-t^2) + C$.

c) Deoarece
$$f(t) = At^2 - 2Bt + C \ge 0, \forall t \in \mathbb{R}$$
, rezultă $4B^2 - 4AC \le 0$,

adică
$$B^2 \le AC$$
 din care rezultă $\left(\int_{1}^{2} \frac{e^x}{x} dx\right)^2 \le \left(\int_{1}^{2} e^{2x} dx\right) \left(\int_{1}^{2} \frac{1}{x^2} dx\right)$.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$f'(x) = \alpha (1+x)^{\alpha-1} - \alpha$$

Dacă x < 0 rezultă 1 + x < 1, deci rezultă $(1 + x)^{\alpha - 1} < 1$, de unde $\alpha (1 + x)^{\alpha - 1} < \alpha$ și în final f'(x) < 0.

Dacă x > 0 rezultă 1 + x > 1, deci rezultă $(1 + x)^{\alpha - 1} > 1$, de unde $\alpha (1 + x)^{\alpha - 1} > \alpha$ și în final f'(x) > 0.

Rezultă f strict descrescătoare pe (-1,0] și strict crescătoare pe $[0,\infty)$.

b) f este strict descrescătoare pe (-1,0], deci $x < 0 \Rightarrow f(x) > f(0) = 1$.

f este strict crescătoare pe $[0, \infty)$, deci $x > 0 \Rightarrow f(x) > f(0) = 1$.

Aşadar $f(x) > 1, \forall x \in (-1, \infty) \setminus \{0\}$, de unde rezultă cea ce trebuia demonstrat.

c)
$$f''(x) = \alpha(\alpha - 1)(1 + x)^{\alpha - 1} > 0, \forall x \in (-1, \infty)$$
. Rezultă f convexă pe $[0, \infty)$. Prin urmare

$$f\left(\frac{a+b}{2}\right) \le \frac{f(a)+f(b)}{2}, \forall a,b \in [0,\infty)$$
. Pentru $a=2x$ şi $b=2y$ rezultă inegalitatea din enunț.

2.a)
$$\int_0^1 f(x) dx = \int_0^1 \frac{x}{1+x} dx = \int_0^1 \left(1 - \frac{1}{1+x}\right) dx = \left(x - \ln\left(1+x\right)\right) \Big|_0^1 = 1 - \ln 2$$
.

b)
$$\int_{1}^{3} f^{2}(x)[x]dx = \int_{1}^{2} f^{2}(x)dx + 2\int_{2}^{3} f^{2}(x)dx = \left(x - 2\ln(1+x) - \frac{1}{1+x}\right)\Big|_{1}^{2} + 2\left(x - 2\ln(1+x) - \frac{1}{1+x}\right)\Big|_{2}^{3} = .$$

$$=\frac{16}{3}-6\ln 2+2\ln 3$$
.

c)
$$a_{n+1} - a_n = f(n+1) - \int_n^{n+1} f(x) dx$$
, iar $\int_n^{n+1} f(x) dx = (n+1-n) f(c_n) = f(c_n)$, cu $c_n \in (n,n+1)$, deci

$$a_{n+1} - a_n > 0$$
 deoarece f este strict descrescătoare. Apoi, din $\int_1^{k+1} f(x) dx = f(c_k)$, cu $c_k \in (k, k+1)$.

$$\int_{0}^{n} f(x) dx = \sum_{k=0}^{n-1} \int_{k}^{k+1} f(x) dx = \sum_{k=0}^{n-1} f(c_{k}) > f(0) + f(1) + \dots + f(n-1), \text{ de unde } a_{n} < f(n) - f(0) < 1, \text{ deci sirul este mărginit.}$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

1.a)
$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left(1 + \frac{\ln x}{x}\right) = 1$$
, $\lim_{x \to \infty} \left(f(x) - x\right) = \infty$.

- **b**) Funcția este strict crescătoare, este continuă și $f\left(\frac{1}{e}\right) = \frac{1}{e} 1 < 0, f(1) = 1 > 0$.
- c) Folosind regula lui l'Hôspital pentru cazul $\frac{0}{0}$ avem $l = \lim_{x \to x_0} \frac{xe^x 1}{x x_0} = \lim_{x \to x_0} (x + 1)e^x = (x_0 + 1)e^{x_0}$, din $f(x_0) = 0$ rezultă că $x_0 = -\ln x_0 = \ln \frac{1}{x_0}$, deci $e^{x_0} = \frac{1}{x_0}$ și $l = (x_0 + 1)\frac{1}{x_0} = 1 + \frac{1}{x_0} = f'(x_0)$.

2.a)
$$I_1 = \int_0^1 \frac{1}{x+1} \ln \left(x+1\right) dx = \frac{1}{2} \ln^2 \left(x+1\right) \Big|_0^1 = \frac{1}{2} \ln^2 2.$$

- **b)** Deoarece $x \in (0,1) \Rightarrow x^n > x^{n+1}$ şi $\frac{1}{x+1} > 0$, avem $\frac{\ln(1+x^n)}{x+1} > \frac{\ln(x^{n+1}+1)}{x+1}$, $\forall x \in (0,1)$ de unde concluzia.
- c) Avem $I_n \ge 0$ și $I_n \le \int_0^1 \frac{x^n}{1+x} dx \le \int_0^1 x^n dx = \frac{1}{n+1}$; concluzia rezultă din teorema cleștelui.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

1. a)
$$f(x) = \frac{e^x - 1}{x}$$
 dacă $x \ne 0$ și $f(0) = a$; $f(1) = e - 1$, $f'(1) = 1$, deci $y = x + e - 2$ este ecuația tangentei.

b)
$$\lim_{x\to 0} f(x) = 1$$
, deci f este continuă în $x = 0$ dacă și numai dacă $f(0) = a = 1$.

c) Evident
$$f$$
 este derivabilă pe $\mathbb{R} \setminus \{0\}$ și $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \frac{1}{2} = f'(0)$.

2.a)
$$I_1 = \int_1^2 (x-1)(2-x)dx = \left[-\frac{x^3}{3} + \frac{3x^2}{2} - 2x \right] |_1^2 = \frac{1}{6}$$
.

b)
$$I_n = \frac{1}{2} \int_{1}^{2} (2x-3)' \left(-x^2+3x-2\right)^n dx = \frac{1}{2} (2x-3) \left(-x^2+3x-2\right)^n \left|\frac{2}{1} + \frac{n}{2} \int_{1}^{2} (2x-3)^2 \left(-x^2+3x-2\right)^{n-1} dx = \frac{1}{2} \int_{1}^{2} (2x-3)' \left(-x^2+3x-2\right)^n dx = \frac{1}{2} \int_{1}^{2} (2x-3)' dx = \frac{1$$

$$=2n\int_{1}^{2} \left(x^{2}-3x+\frac{9}{4}\right)\left(-x^{2}+3x-2\right)^{n-1} dx = 2n\left(\frac{1}{4}I_{n-1}-I_{n}\right), \text{ de unde concluzia cerută.}$$

$$\mathbf{c}) \ 0 \leq (x-1)(2-x) \leq \frac{1}{4}, \ \ \forall \mathbf{x} \in [1;2] \ \text{, de unde} \ \ 0 \leq I_n \leq \int_1^2 \left(\frac{1}{4}\right)^n = \frac{1}{4^n} \ \text{, deci } \lim_{n \to \infty} I_n = 0 \ .$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

1.a)
$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
, $n = \lim_{x \to \infty} (f(x) - x) = 0$, deci $y = x$ asimptota oblică spre ∞ .

- **b**) Punctele de extrem sunt aceleași cu ale funcției $g : \mathbb{R} \to \mathbb{R}$, $g(x) = x^3 3x + 2$. Deoarece $g'(x) = 3(x^2 1)$, punctele de extrem sunt ± 1 .
- c) Folosind regula lui l'Hospital pentru cazul $\frac{0}{0} : \lim_{x \to \infty} \frac{2 \operatorname{arctg} f(x) \pi}{x 1} = \lim_{x \to \infty} \frac{\frac{2}{1 + f^2(x)} \frac{x + 1}{\sqrt[3]{(x 1)(x + 2)^2}}}{\frac{1}{x^2}} = -2.$

2.a)
$$\int_{0}^{\frac{\pi}{3}} \frac{1}{3 + \cos x} dx = \int_{0}^{\frac{\pi}{3}} \frac{1 + tg^{2} \frac{x}{2}}{2\left(2 + tg^{2} \frac{x}{2}\right)} dx = \int_{0}^{\frac{\sqrt{3}}{3}} \frac{1}{t^{2} + 2} dt = \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{\sqrt{6}}{6}.$$

- **b)** Dacă F este o primitivă, atunci $F'(x) = \frac{1}{3 + \cos x}$. Cum $\cos x \in [-1;1], F'(x) > 0, \ \forall x \in \mathbb{R}, \ \operatorname{deci} F$ este strict crescătoare.
- $\mathbf{c}) \text{ Avem } \frac{1}{4} \leq f(x) \leq \frac{1}{2}, \ \forall x \in \mathbb{R} \text{ , de unde } \frac{x}{4} < \int_0^x f(t)dt \leq \frac{x}{2}, \ \forall x > 0.$

Rezultă
$$\frac{1}{4x}<\frac{1}{x^2}\int_0^x f(t)dt \leq \frac{1}{2x}, \ \forall x>0$$
 , deci limita este egală cu $0.$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

- **1.a**) $f'(x) = 3e^{3x} + 2$, f(0) = 2, f'(0) = 5, deci ecuația cerută este y 2 = 5x.
- **b)** $f'(x) > 0 \Rightarrow f$ strict crescătoare $\Rightarrow f$ injectivă . $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to -\infty} = -\infty$, f continuă $\Rightarrow f$ surjectivă . Deci f este bijectivă $\Rightarrow f$ inversabilă .
- c) Suma este egală cu $e^{-3} + e^{-6} + ... + e^{-3n} = e^{-3} \frac{1 e^{-3n}}{1 e^{-3}}$ și are limita $\frac{1}{e^3 1}$.
- **2.a)** $a_1 = \int_0^1 \sin \pi x dx = -\frac{1}{\pi} \cos \pi x \Big|_0^1 = \frac{2}{\pi}$.
- **b**) Arătăm inductiv că $0 \le a_{n+1} \le a_n$, $\forall n \ge 0$. Cum $0 \le a_1 = \frac{2}{\pi} \le 1 = a_0$, presupunând că $0 \le a_n \le a_{n-1} \le ... \le a_0 = 1$ rezultă $0 \le \sin \pi x \le 1$, $\forall x \in [0, a_n]$, deci $0 \le a_{n+1} = \int_0^{a_n} \sin \pi x dx \le \int_0^{a_n} dx = a_n$. Deci $(a_n)_n$ este monoton și mărginit.
- c) Dacă $(a_n)_{n\geq 0}$ convergent către $x=\lim_{n\to\infty}a_n$, atunci obținem, prin trecere la limită, $x=\int_0^x\sin\pi tdt$.
- Fie $g: \mathbb{R} \to \mathbb{R}, \ g(x) = x \int_0^x \sin \pi t dt$. Avem g(0) = 0 și $g'(x) = 1 \sin \pi x \ge 0 \Rightarrow x = 0$ este soluție unică.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a) f este strict descrescătoare pe $(-\infty,0]$ și strict crescătoare pe $[0,\infty)$.

b)Avem
$$\sqrt{x^2 + 1}f'(x) = x$$
 și derivând $\frac{x}{\sqrt{x^2 + 1}}f'(x) + \sqrt{x^2 + 1}f''(x) = 1$, de unde $(x^2 + 1)f''(x) + xf'(x) = 1$

$$\mathbf{c})\,m = \lim_{x \to -\infty} \frac{f(x)}{x} = -1\,, n = \lim_{x \to -\infty} (f(x) + x) = 0\,, \, \mathrm{deci} \ \ y = -x \ \mathrm{este} \ \mathrm{asimptota} \ \mathrm{oblica} \ \mathrm{spre} \ -\infty\,.$$

$$\textbf{2.a)}\,I_1 = \int_0^1 \frac{x}{x+1} dx = \int_0^1 (1 - \frac{1}{x+1}) dx = (x - \ln(x+1)) \mid_0^1 = 1 - \ln 2\,.$$

b)
$$I_n = \int_0^1 x \frac{nx^{n-1}}{x^n + 1} dx = \int_0^1 x \left(\ln \left(x^n + 1 \right) \right)' dx = \ln 2 - \int_0^1 \ln \left(x^n + 1 \right) dx$$

c) Ştim că
$$\ln(1+t) \le t$$
, $\forall t \ge 0$, de unde $0 \le \int_0^1 \ln\left(1+x^n\right) dx < \int_0^1 x^n dx = \frac{1}{n+1}$.

Rezultă
$$\lim_{n\to\infty} \int_0^1 \ln\left(1+x^n\right) dx = 0$$
, de unde $\lim_{n\to\infty} I_n = \ln 2$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a)
$$f(1) = 0$$
, $f'(x) = e^{-\frac{1}{x}} \frac{x^2 + x - 1}{x^2}$, $f'(1) = \frac{1}{e}$, deci ecuația este $y = \frac{1}{e}(x - 1)$.

- **b**) f'(x) = 0 are rădăcinile $x_{1,2} = \frac{-1 \pm \sqrt{5}}{2}$. Din semnul derivatei rezultă că acestea sunt puncte de extrem local.
- c) $m = \lim \frac{f(x)}{x} = 1$, $n = \lim_{x \to \infty} (f(x) x) = \lim_{x \to \infty} x(e^{-\frac{1}{x}} 1) e^{-\frac{1}{x}} = -2$, deci y = x 2 este asimptotă oblică spre $+\infty$.
- **2.a**) Cum $f'(x) = x^3 \sqrt{x^2 + 1} \ge 0$, $\forall x \in \mathbb{R}$, rezultă concluzia.

b)
$$f(1) = \int_{0}^{1} t^{3} \sqrt{t^{2} + 1} dt = \int_{1}^{\sqrt{2}} \left(u^{4} - u^{2}\right) du = \left(\frac{u^{5}}{5} - \frac{u^{3}}{3}\right) \Big|_{1}^{\sqrt{2}} = \frac{2(\sqrt{2} + 1)}{15}.$$

c) Deoarece $\lim_{x\to\infty} \frac{f'(x)}{5x^4} = \frac{1}{5}$, din teorema lui l'Hôspital rezultă că limita cerută este $\frac{1}{5}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a) $a_1>a_0$, iar $\mathbf{a_{k+1}}>a_k\Rightarrow\mathbf{a_{k+2}}>a_{k+1}$, deci prin inducție $(\mathbf{a_n})_{n\geq 1}$ este crescător.

 $\textbf{b}) \text{Avem } a_0 < 2 \text{ si } a_k < 2 \Rightarrow a_{k+1} < 2 \text{ , deci inductiv } (a_n)_{n \geq 1} \text{ este m\"{a}rginit superior. Fiind si monoton } (a_n)_{n \geq 1} \text{ este convergent.}$

c) Avem
$$\lim_{n \to \infty} a_n = 2$$
 şi $\lim_{n \to \infty} \frac{a_{n+2} - a_{n+1}}{a_{n+1} - a_n} = \lim_{n \to \infty} \frac{1}{\sqrt{2 + a_{n+1}} + \sqrt{2 + a_n}} = \frac{1}{4}$.

$$\textbf{2.a)} \ f\left(\frac{\pi}{4}\right) = \int_0^{\frac{\pi}{4}} (tg^2t + tgt)dt = \int_0^{\frac{\pi}{4}} ((tgt)' + tgt - 1)dt = 1 - \frac{\pi}{4} + \frac{1}{2}\ln 2 \ .$$

b)
$$f'(x) = \frac{(\sin x + \cos x)\sin x}{\cos^2 x} > 0$$
, $\forall x \in \left[0, \frac{\pi}{2}\right]$, deci f este strict crescătoare.

c) Pentru cazul
$$\frac{0}{0}$$
, aplicând regula lui l'Hôspital, limita devine $\lim_{x \searrow 0} \frac{(\sin x + \cos x)\sin x}{2x\cos^2 x} = \frac{1}{2}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a). $\lim_{x \to 1} f(x) = +\infty$ deci dreapta de ecuație x = 1 este asimptota verticală la graficul funcției.

b)
$$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$$
 și $n = \lim_{x \to \infty} x \left(\sqrt{\frac{x+1}{x-1}} - 1 \right) = 1$, deci $y = x+1$ este asimptota oblică spre $+\infty$.

c) Funcția este derivabilă în punctele în care este definită și expresia de sub radical nu se anulează, adică pe $\mathbb{R} \setminus \{-1,1\}$. În punctul -1, derivatele laterale nu sunt finite, deci funcția nu este derivabilă.

2.a)
$$\int_{0}^{\frac{\pi}{2}} (\cos x + \sin x) dx = 2$$
.

b) Din
$$F'(x) = f_4(x)$$
 rezultă $F''(x) = 4 \sin x \cos x (\cos^2 x - \sin^2 x) f_4^2(x)$, deci $F''(x) = f_4^2(x) \sin 4x$.

c) Cu schimbarea de variabilă $y = \frac{\pi}{2} - x$,

$$I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3} x}{\sin x + \cos x} dx = \int_{\frac{\pi}{2}}^{0} \frac{\sin^{3} \left(\frac{\pi}{2} - y\right)}{\sin \left(\frac{\pi}{2} - y\right) + \cos\left(\frac{\pi}{2} - y\right)} (-1) dy = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{3} y}{\sin y + \cos y} dy = J, \text{ iar}$$

$$2I = I + J = \int_{0}^{\frac{\pi}{2}} \left(\sin^2 x - \sin x \cos x + \cos^2 x\right) dx = \frac{\pi}{2} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{\pi}{2} - \frac{1}{2}.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Soluție

1.a) $f'(x) = \frac{e^x(x-1)}{x^2}$, deci f este strict descrescătoare pe $(-\infty,0)$ și pe (0,1] și strict crescătoare pe $[1,\infty)$.

b)
$$\lim_{x \to \infty} f(x) = \infty$$
, $\lim_{x \to \infty} \frac{f(x)}{x} = \infty$, deci nu avem asimptotă spre $+\infty$.

 $\lim_{x \to -\infty} f(x) = 0$, deci y = 0 este asimptota orizontală spre $-\infty$.

$$\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$$
, $\lim_{\substack{x\to 0\\x<0}} f(x) = -\infty$, deci $x=0$ este asimptotă verticală.

c) Cu teorema lui Lagrange, $f(n+1) - f(n) = \frac{e^{c_n}(c_n-1)}{{c_n}^2}$, $c_n \in (n,n+1)$. Rezultă $\lim_{n \to \infty} n^2(f(n) - f(n+1) = 1)$

$$= \lim_{n \to \infty} \left(\frac{n}{c_n}\right)^2 (1 - c_n) e^{c_n} = \lim_{n \to \infty} (1 - c_n) e^{c_n} = -\infty.$$

2.a)
$$f(1) = \int_0^1 e^{-t} (t^2 - 3t + 2) dt = \int_0^1 e^{-t} (t - 1) (t - 2) dt > 0.$$

b) $f'(x) = e^{-x}(x^2 - 3x + 2)$. Din tabelul de variație reiese că x = 1 este punct de maxim local și x = 2 este punct de minim local.

c)
$$L = \lim_{x \to 0} \frac{f(x) + f(-x)}{x^2} = \lim_{x \to 0} \frac{f'(x) - f'(-x)}{2x} = \lim_{x \to 0} \frac{e^{-x} (x^2 - 3x + 2) - e^x (x^2 + 3x + 2)}{2x} = -5$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$\lim_{x \to \infty} f(x) = 1, \ y = 1$$
 este asimptota orizontală spre $+\infty$.

$$\lim_{x \to -\infty} f(x) = 1, \ y = 1 \ \text{este } \ \text{asimptota orizontală spre} \ -\infty$$
 .

$$\lim_{x \nearrow 0} f(x) = -\infty$$
, $\lim_{x \searrow 0} f(x) = +\infty$, $x = 0$ este asimptota verticală.

b)
$$f''(x) = \frac{e^{\frac{1}{x}}(2x+1)}{x}$$
, deci $x = -0.5$ este punct de inflexiune.

$$\mathbf{c}) \lim_{x \to \infty} x^2 (e^{\frac{1}{x+1}} - e^{\frac{1}{x}}) = \lim_{x \to \infty} e^{\frac{1}{x}} x^2 \left(e^{-\frac{1}{x(x+1)}} - 1 \right) = \lim_{x \to \infty} e^{\frac{1}{x}} \frac{e^{\frac{1}{x}} - x^2}{x(x+1)} \frac{e^{-\frac{1}{x(x+1)}} - 1}{-\frac{1}{x(x+1)}} = -1.$$

2.a)
$$I_1 = \int_0^{\frac{\pi}{4}} tg^2 x dx = \int_0^{\frac{\pi}{4}} (1 + tg^2 x) dx - \int_0^{\frac{\pi}{4}} 1 dx = tgx \mid_0^{\frac{\pi}{4}} -x \mid_0^{\frac{\pi}{4}} = 1 - \frac{\pi}{4}$$

$$\mathbf{b}) \ I_{n+1} = \int_0^{\frac{\pi}{4}} \mathsf{tg}^{2n+2} \ x dx = \int_0^{\frac{\pi}{4}} \left[\mathsf{tg}^{2n} \ x (\mathsf{tg}^2 \ x + 1) - \mathsf{tg}^{2n} \ x \right] dx = \frac{\mathsf{tg}^{2n+1} \ x}{2n+1} \Big|_0^{\frac{\pi}{4}} \ -I_n; \ I_{n+1} + I_n = \frac{1}{2n+1}.$$

$$\mathbf{c}) \text{ Cum } 0 \leq t g_x^{2n+2} \leq t g_x^{2n}, \ \forall x \in \left[0, \frac{\pi}{4}\right], \text{ rezultă că } 0 \leq I_{n+1} \leq I_n, \text{ deci şirul } \left(I_n\right)_{n \geq 1} \text{ este descrescător și mărginit.}$$

Dacă $l=\lim_{n\to\infty}I_n$, atunci din punctul **b**) rezultă concluzia.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$f'(x) = \frac{6x^2}{\left(x^3 + 1\right)^2}$$
, $f'(0) = 0$, $f(0) = -1$, deci ecuația este y+1=0.

b)
$$\lim_{x \to \infty} f(x) = 1, \ y = 1$$
 este asimptota orizontală spre $+\infty$.

$$\lim_{x \to -\infty} f(x) = 1, \ y = 1$$
 este asimptota orizontală spre $-\infty$.

$$\lim_{x \nearrow -1} f(x) = -\infty$$
, $\lim_{x \nearrow -1} f(x) = +\infty$, $x = -1$ este asimptota verticală.

$$\textbf{c)} \ \text{Din} \ \frac{\textbf{k}^3-1}{k^3+1} = \frac{(k-1)\big(k(k+1)+1\big)}{(k+1)\big(k(k-1)+1\big)}, \ \text{rezultă} \ \frac{3}{2} \, f(2)f(3)...f(n) = \frac{n^2+n+1}{n^2+n}, \ \text{de unde } \lim_{n\to\infty} \left(\frac{n^2+n+1}{n^2+n}\right)^{n^2} = e.$$

$$\textbf{2.a)} \ I_2 = \int_0^{\frac{\pi}{2}} \sin^2\!x dx = \int_0^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx = \left(\frac{x}{2} - \frac{\sin 2x}{4}\right)|_0^{\frac{\pi}{2}} = \frac{\pi}{4} \, .$$

b)
$$I_n = \int_0^{\frac{\pi}{2}} \sin^{n-1} x (-\cos x)' dx = -\sin^{n-1} x \cos x \Big|_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x dx$$

$$=(n-1)\int_0^{\frac{\pi}{2}}\sin^{n-2}x(1-\cos^2x)dx=(n-1)I_{n-2}-(n-1)I_n$$
 , de unde rezultă relația.

c)
$$0 \le \int_{0}^{\frac{\pi}{3}} \sin^{n} x dx \le \int_{0}^{\frac{\pi}{3}} \sin^{n} \frac{\pi}{3} dx = \frac{\pi}{3} \left(\frac{\sqrt{3}}{2} \right)^{n}$$
, deci limita cautată este 0.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

1.a)
$$f'(x) = \frac{1}{\sqrt{x^2 + 1}} > 0, \forall x \in \mathbb{R}.$$

b)
$$x_2 = f(x_1) = \ln(1 + \sqrt{2}) \in (0,1)$$
 şi, inductiv, $0 < x_{n+1} < x_n$, $\forall n \in \mathbb{N}^*$, deci şirul este descrescător şi mărginit.

c) Cu teorema lui Lagrange,
$$f(x+1) - f(x) = f'(c_x) = \frac{1}{\sqrt{1+c_x^2}} \le 1$$
.

2.a)
$$\int_{1}^{e} \ln x dx = x \ln \left| \frac{e}{1} - \int_{1}^{e} 1 dx = e - (e - 1) = 1.$$

b) Cu schimbarea de variabilă
$$x = 3 - t$$
, $\int_{1}^{2} f(x) dx = \int_{2}^{1} \frac{\ln t}{3 - t} (-1) dt = \int_{1}^{2} \frac{\ln t}{3 - t} dt = \int_{1}^{2} g(x) dx$.

c) Pentru
$$x \in (0,3)$$
 avem $\frac{\ln(3-x)}{x} > \frac{\ln 2}{x}$, deci $\int_{t}^{1} g(x) dx > \int_{t}^{1} \frac{\ln 2}{x} dx = \ln 2 \cdot (-\ln t)$. Concluzia rezultă din $\lim_{t \to 0} (-\ln 2 \ln t) = \infty$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$f(1) = \frac{\pi}{4}, f'(1) = \frac{1}{2}$$
, deci ecuația este $y - \frac{\pi}{4} = \frac{1}{2}(x - 1)$.

b)
$$\lim_{x \to 0} \frac{x - f(x)}{x^3} = \lim_{x \to 0} \frac{1 - f'(x)}{3x^2} = \frac{1}{3}$$

c) Avem
$$g'(x) = \arctan x + \frac{x-1}{x^2+1}$$
, $g''(x) = \frac{2(1-x)}{(x^2+1)^2}$. Rezultă că g' este strict crescătoare pe $(-\infty,1]$ și strict decrescătoare pe $[1,\infty)$. Din $g'(1) > 0$, $\lim_{x \to \infty} g'(x) > 0$ și $\lim_{x \to -\infty} g'(x) < 0$, reiese concluzia cerută.

2.a)
$$I_1 = \int_0^1 x \sin x = -\cos x \Big|_0^1 + \int_0^1 \cos x dx = \sin 1 - \cos 1.$$

$$\textbf{b)} \ \ x^n > x^{n+1} \Rightarrow I_n > I_{n+1}; \ \sin x > 0 \Rightarrow I_n > 0 \ ; \ (I_n)_{n \geq 1} \ \text{descrescător și mărginit, rezultă} \ \ (I_n)_{n \geq 1} \ \text{convergent.}$$

c)
$$I_{2n} = \int_0^1 x^{2n} (-\cos x)' dx = -x^{2n} \cos x \Big|_0^1 + 2n \int_0^1 x^{2n-1} (\sin x)' dx$$

$$= -\cos 1 + 2nx^{2n-1}\sin x \mid_0^1 -2n(2n-1)I_{n-1} = 2n\sin 1 - \cos 1 - 2n(2n-1)I_{2n-2}\,.$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$f_a(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{x+a}{x(x+1)}$$
.

b)
$$f_a''(x) = \frac{x(2a-1)+a}{x^2(x+1)^2}$$
. f convexă $\Leftrightarrow f''(x) \ge 0, \forall x > 0 \Leftrightarrow 2a-1 \ge 0$ și $\frac{a}{2a-1} > 0$, de unde $a \in \left[\frac{1}{2}; \infty\right]$.

c)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln(x+1) - \ln x}{\frac{1}{x+a}} = 1$$
, folosind regula lui l'Hôpital.

2.a)
$$I_2 = \int_0^{\frac{\pi}{2}} \cos^2 x dx = \int_0^{\frac{\pi}{2}} \frac{1 + \cos 2x}{2} dx = \frac{\pi}{4}.$$

b)
$$I_n = \int_{0}^{\frac{\pi}{2}} \cos^{n-1} x (\sin x) dx = (n-1) \int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \sin^2 x dx = (n-1) I_{n-2} - (n-1) I_n$$
, de unde $nI_n = (n-1) I_{n-2}$.

 \mathbf{c}) $\cos x \in [0;1]$ de unde $I_{n+1} < I_n$; în plus $I_n \ge 0$, deci șirul este descrescător și mărginit inferior.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

- **1.a).** $\lim_{x \to 0} (x + \ln x) = -\infty$, deci x = 0 este asimptotă verticală; $\lim_{x \to \infty} f(x) = \infty$, deci nu avem asimptotă orizontală; m = 1 dar n nu este finit, deci nu avem asimptotă oblică.
- **b**) $g_n(x) = x^n + x^{-n}$, $g_n(x) = n(n-1)x^{n-2} + n(n+1)x^{-n-2} > 0$, $\forall x > 0$, deci funcțiile sunt convexe.
- $\mathbf{c}) \ \ \mathrm{Din} \ \ f_n\left(1\right) < 2^n \ \mathrm{și} \ \ f_n\left(2\right) > 2^n \ , \ \mathrm{rezult\ \ a} \ \ c\ \ x_n \in \left(1,2\right), \ \mathrm{deci} \ \ \ln x_n \in \left(0,1\right). \ \mathrm{Deci} \ \sqrt[n]{2^n-1} < x_n < 2 \Rightarrow \lim_{n \to \infty} x_n = 2 \ .$

2.a)
$$I_2 = \int_0^a \frac{t^2}{t+1} dt = \int_0^a \left(t-1+\frac{1}{t+1}\right) dt = \frac{a^2}{2} - a + \ln(a+1)$$

b)
$$I_n + I_{n-1} = \int_0^a \frac{t^n + t^{n-1}}{t+1} dt = \int_0^a t^{n-1} dt = \frac{t^n}{n} \Big|_0^a = \frac{a^n}{n}$$
.

c)
$$\frac{t^n}{t+1} < t^n, \forall t \in [0; a], \ 0 < I_n < \int_0^a t^n dt = \frac{a^{n+1}}{n+1} \to 0, \ \forall a \in [0; 1], \ \text{de unde rezultă} \lim_{n \to \infty} I_n = 0$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

Solutie

1.a)
$$\lim_{x \to \infty} f(x) = \infty$$
, $\lim_{x \to \infty} \frac{f(x)}{x} = 2 = m$, $\lim_{x \to \infty} (f(x) - 2x) = 0 = n$, deci $y = 2x$ asimptota oblică spre ∞ .

$$\mathbf{b}) f'(x) = \frac{2x^4 + 6x^2}{\left(x^2 + 1\right)^2} \ge 0, \text{ deci } f \text{ este strict crescătoare, adică injectivă. } \lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to \infty} f(x) = \infty, \text{ sin}$$

f continuă, rezultă că f este surjectivă. Deoarece f este bijectivă rezultă că deci f este inversabilă.

c)
$$\lim_{x \to \infty} (f(e^x))^{\frac{1}{x}} = \lim_{x \to \infty} 2^{\frac{1}{x}} \cdot e^3 \cdot (e^{2x} + 1)^{-\frac{1}{x}} = e.$$

2.a) $F'(x) = e^{\sin^2 x} > 0$, de unde F este strict crescătoare

b)
$$\int_{0}^{\frac{\pi}{2}} \cos 2x F(x) dx = \frac{1}{2} \sin 2x F(x) \left| \frac{\pi}{2} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2x F'(x) dx = -\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2x e^{\sin^{2} x} dx = -\frac{1}{2} e^{\sin^{2} x} \left| \frac{\pi}{2} = \frac{1 - e}{2} \right|.$$

c) Conform teoremei l'Hôpital, pentru cazul $\frac{0}{0}$, avem $\lim_{x\to 0} \frac{F(x)}{x} = \lim_{x\to 0} f(x) = 1$.

Ministerul Educației, Cercetării și Inovării Centrul National pentru Curriculum și Evaluare în Învătământul Preuniversitar

$$\mathbf{1.a)}\,f\,'(x) = \frac{1}{x\ln x},\,f\,'(e) = \frac{1}{e},\,\,f(e) = 0\,,\,\mathrm{deci\ ecuația\ este}\ \ y = \frac{1}{e}(x-e)\,.$$

b)
$$f''(x) = -\frac{\ln x + 1}{(x \ln x)^2} < 0, \forall x > 1$$
, deci f este concavă

c) Conform teoremei lui Lagrange există $c_x \in (x, x+1)$ a.i. $f(x+1) - f(x) = f'(c_x) = \frac{1}{c_x \ln c_x}$.

Avem de calculat $\lim_{x\to\infty}\frac{x\ln x}{c_x\ln c_x}$. Cum $\frac{x\ln x}{(x+1)\ln(x+1)}<\frac{x\ln x}{c_x\ln c_x}<1$ limita căutată este 1.

2.a)
$$\int_{0}^{\frac{\pi}{2}} f(x) dx = \arctan(\sin x) \left| \frac{\pi}{2} = \frac{\pi}{4} \right|$$

b) Fie F o primitivă a lui f. Atunci $F'(x) = \frac{\cos x}{1 + \sin^2 x} \ge 0, (\forall) x \in [0, \frac{\pi}{2}],$ deci F este strict cresătoare pe $\left[0, \frac{\pi}{2}\right]$. **c)** Cu substituția $x = 2\pi - y$ obținem $I = \int_0^{2\pi} (2\pi - y) f(y) dy = 2\pi \int_0^{2\pi} f(y) dy - I$, de unde I = 0.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$f'(x) = 3x^2 + t^2$$

b) $f_t(x) = 3x^2 + t^2 > 0$ pentru orice x real, deci funcția este strict crescătoare. $\lim_{x \to \infty} f_t(x) = \infty$, $\lim_{x \to \infty} f_t(x) = \infty$,

 f_t continuă $\Rightarrow f_t$ surjectivă. Cum funcția este strict crescătoare, deci injectivă, înseamnă că ea este inversabilă.

c) Avem
$$g^3(t) + t^2g(t) = 1$$
, unde $1 \ge g(t) \ge 0$, $\forall t \in \mathbb{R}$, rezultă $\lim_{t \to 0} g(t) = \lim_{t \to 0} \sqrt[3]{1 - t^2g(t)} = 1 = g(0)$.

2a)
$$f(1) = \int_{0}^{1} (t^2 + 1) \sqrt{t} dt = \frac{20}{21}$$
.

b)
$$f(x) = \frac{2x^3\sqrt{|x|}}{7} + \frac{2x\sqrt{|x|}}{3}$$
, deci $f(-x) = -f(x)$, adică f este impară.

c) Conform teoremei lui Lagrange, există
$$c_x \in (x, x+1)$$
 astfel încât $f(x+1) - f(x) = f'(c_x) = (c_x^2 + 1)\sqrt{c_x}$

Cum
$$\frac{(x^2+1)\sqrt{x}}{x^2\sqrt{x}} < \frac{(c_x^2+1)\sqrt{c_x}}{x^2\sqrt{x}} < \frac{\left((x+1)^2+1\right)\sqrt{x+1}}{x^2\sqrt{x}}$$
, rezultă că limita căutată este 1.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

1.a)
$$\lim_{x \to \infty} f(x) = +\infty$$
 și $\lim_{x \to \infty} \frac{f(x)}{x} = +\infty$, deci f nu admite asimptotă spre $+\infty$.

b)
$$f'(x) = 0 \Leftrightarrow (n+1)x^n - (n+2) = 0$$
, deci avem punctul de extrem unic $x_n = \sqrt[n]{\frac{n+2}{n+1}}$.

c)
$$\lim_{n\to\infty} x_n^{n^2} = \lim_{n\to\infty} \left(1 + \frac{1}{n+1}\right)^n = e$$
.

$$\textbf{2.a)} \, I_1 = \int_0^1 \frac{x^2 + 1 - 1}{1 + x^2} dx = \int_0^1 \biggl(1 - \frac{1}{1 + x^2} \biggr) \! dx = \, x \mid_0^1 \, -arctg \left(x \right) \mid_0^1 = 1 - \frac{\pi}{4} \, .$$

b)
$$I_{n+1} + I_n = \int_0^1 \frac{x^{2n+2} + x^{2n}}{1 + x^2} dx = \int_0^1 x^{2n} dx = \frac{1}{2n+1}.$$

$$\mathbf{c}) \,\, \frac{x^{2n}}{1+x^2} \leq x^{2n}, \ \, \forall x \in \left[0,1\right] \Rightarrow 0 < I_n \leq \int_0^1 x^{2n} dx = \frac{1}{2n+1} \to 0 \,, \, \text{deci} \, \lim_{n \to \infty} I_n = 0 \,.$$

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

1.a)
$$\lim_{x \to \infty} f(x) = \frac{\pi}{2} \operatorname{deci} y = \frac{\pi}{2}$$
 este asimptotă orizontală spre $+\infty$.

b)
$$g'(x) = f'(x+1) - f'(x) - f'\left(\frac{1}{x^2 + x + 1}\right) \cdot \left(\frac{1}{x^2 + x + 1}\right)' = 0 \Rightarrow g = \text{constan} = g(0) = 0$$

$$\textbf{c}) \arctan \frac{1}{k^2+k+1} = \arctan(k+1) - \arctan k \text{ , deci } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ , iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n \arctan \frac{1}{k^2+k+1} = \arctan(n+1) - \frac{\pi}{4} \text{ . iar } \sum_{k=1}^n - \frac{\pi}{$$

$$\lim_{n \to \infty} (\arctan(n+1) - \frac{\pi}{4}) = \frac{\pi}{4}.$$

$$\lim_{n \to \infty} (a \operatorname{ceg}(n+1) - \frac{1}{4}) = \frac{1}{4}.$$
2.a) $I_1 = \int_0^1 e^{-x} x dx = \int_0^1 x(e^{-x})' dx = -xe^{-x} \Big|_0^1 + \int_0^1 e^{-x} dx = -e^{-1} - e^{-x} \Big|_0^1 = -2e^{-1} + 1.$

b)
$$I_n = \int_0^1 (-e^{-x})' x^n dx = -x^n e^{-x} \mid_0^1 + n \int_0^1 e^{-x} x^{n-1} dx = -e^{-1} + n I_{n-1}.$$

c) Avem
$$0 \le I_n \le \int_0^1 x^n dx = \frac{1}{n+1}$$
, deci $\lim_{n \to \infty} I_n = 0$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

- **1.a)** $\lim_{x \searrow k} f(x) = \infty$ și $\lim_{x \nearrow k} f(x) = -\infty$, $k \in \{1,2,...,2009\}$, deci x = k este asimptota verticală pentru $k \in \{1,2,...,2009\}$. $\lim_{x \to \infty} f(x) = 0 = \lim_{x \to -\infty} f(x) \Rightarrow y = 0$ este asimptota orizontală spre ∞ și spre $-\infty$.
 - **b)** f'(x) < 0, deci f este strict descrescătoare pe fiecare interval inclus în A. Din $\lim_{x \searrow k} f(x) = \infty$, $\lim_{x \nearrow k+1} f(x) = -\infty$ reiese că avem câte o soluție pe fiecare interval (k, k+1), $k \in \{1, 2, 3, ..., 2008\}$, adică 2008 soluții. Apoi, din $\lim_{x \searrow 2009} f(x) = \infty$, $\lim_{x \to \infty} f(x) = 0$, $\lim_{x \to \infty} f(x) = 0$, reiese că, pentru $a \ne 0$, mai avem și o soluție în $(-\infty, 1) \cup (2009, \infty)$.
- c) $f''(x) = \frac{2}{(x-1)^3} + \frac{2}{(x-2)^3} + ... + \frac{2}{(x-2009)^3}$ se anulează în (k, k+1) o singură dată, deci, avem 2008 puncte de inflexiune.
- **2.a)** $f'(x) = e^{-x^2} > 0$, $\forall x \in \mathbb{R} \Rightarrow f$ este strict crescătoare pe \mathbb{R} .
- **b)** $f''(x) = -2xe^{-x^2} \le 0$, $\forall x \in [0, \infty) \Rightarrow f$ este concavă pe $[0, \infty)$.
- $\mathbf{c}) \ f(n) = \int_0^n e^{-t^2} dt \ \text{si} \ f(n+1) f(n) = \int_n^{n+1} e^{-t^2} dt > 0 \Rightarrow (f_n)_{n \geq 1} \text{ crescător.} \ e^{-t^2} \leq e^{-t} \ \text{pentru} \ t \geq 1 \Rightarrow f\left(n\right) \leq \int_0^1 e^{-t^2} dt + \int_1^n e^{-t} dt \leq 1 + \left(e^{-1} e^{-n}\right) \leq 2 \Rightarrow \left(f_n\right)_{n \geq 1} \text{ este mărginit superior. Deci } \left(f_n\right)_{n \geq 1} \text{ este convergent.}$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1.a)
$$f'(x) = \frac{1}{1+x^2}$$
, $f''(x) = \frac{-2x}{(1+x^2)^2} \le 0$, $\forall x \in [0; ∞)$.

b)
$$L = \lim_{x \to \infty} x^2 (f(x+1) - f(x)) = \lim_{x \to \infty} \frac{\arctan(x+1) - \arctan x}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{1 + (x+1)^2} - \frac{1}{1 + x^2}}{\frac{2}{x^3}} = 1.$$

c) Fie $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) - x + \frac{x^3}{3}$, atunci $g'(x) = \frac{x^4}{1 + x^2} \ge 0$, deci g este strict crescătoare. Cum g(0) = 0, rezultă $g(x) < 0 \Leftrightarrow x \in (-\infty, 0)$.

2.a)
$$\int_{0}^{1} x(1+x^{2}) f(x) dx = \frac{1}{2} \ln(1+x^{2}) \Big|_{0}^{1} = \frac{1}{2} \ln 2.$$

b) $F'(x) = x^4 f(x) > 0$ pentru $x \in \mathbb{R}^*$, deci F este strict crescătoare pe \mathbb{R} .

c) Fie
$$A = \int_{1}^{a} f(x)dx$$
. Dacă $a < 1$, atunci $A < 0 < \frac{1}{4}$, iar dacă $a \ge 1$, atunci $A \le \int_{1}^{a} \frac{x}{(1+x^2)^2} dx = \frac{1}{4} - \frac{1}{2(1+a^2)} < \frac{1}{4}$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Soluție

1.a) $f'(x) = nx^{n-1} - n$ și $f''(x) = n(n-1)x^{n-2} \ge 0$, $\forall x \ge 0$, decif este convexă.

b) Şirul lui Rolle ataşat ecuației $x^n - nx - 1 = 0$, $x \ge 0$ este:

х	0	1	∞
f(x)	_	_	+

de unde concluzia.

c) Avem $f_n(1) < 0$ și $f_n(n) = n^n - n^2 - 1 > 0$ pentru $n \ge 3$, deci $1 < x_n < n$. Din $x_n = \sqrt[n]{1 + nx_n}$ rezultă $1 \le x_n \le \sqrt[n]{1 + n^2}$, de unde $\lim_{n \to \infty} x_n = 1$.

2.a)
$$\int_{0}^{1} f(x)dx = \ln(1 + e^{x}) \Big|_{0}^{1} = \ln\frac{1 + e}{2}.$$

b) $g'(x) = f(x)\cos x + f(-x)\cos x = \cos x$, deci g este crescătoare pe $\left[0, \frac{\pi}{2}\right]$ și descrescătoare pe $\left[\frac{\pi}{2}, \pi\right]$.

c) Din
$$g'(x) = \cos x$$
 și $g(0) = 0$, rezultă $g(x) = \sin x$, deci $g(\frac{\pi}{2}) = 1$.

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

Solutie

1. a)
$$f'(x) = \frac{3x^2 + 6x + 2}{3\sqrt[3]{(x^3 + 3x^2 + 2x + 1)^2}} - \frac{3x^2 - 1}{3\sqrt[3]{(x^3 - x + 1)^2}}$$

 $f(0) = 0, \ f'(0) = 1$, deci ecuatia este $y = x$.

b)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{3x^2 + 3x}{\sqrt[3]{(x^3 + 3x^2 + 2x + 1)^2} + \sqrt[3]{(x^3 + 3x^2 + 2x + 1)(x^3 - x + 1)} + \sqrt[3]{(x^3 - x + 1)^3}} = 1$$
, deci

y = 1 este asimptota spre $+\infty$.

c) Din
$$f(k) = \sqrt[3]{k(k+1)(k+2)+1} - \sqrt[3]{(k-1)k(k+1)+1}$$
 deducem $\sum_{k=1}^{n} f(k) = \sqrt[3]{n^3 + 3n^2 + 2n + 1} - 1$.

Limita cerută este de tipul 1° și devine $l=e^{\lim\limits_{n\to\infty}(\sqrt[3]{n^3+3n^2+2n+1}-n-1)}=e^0=1$.

2.a)
$$f_1(e) = \int_{\frac{1}{e}}^{e} \left(\frac{t^2}{2}\right)' \ln t dt = \frac{t^2 \ln t}{2} \Big|_{\frac{e}{e}}^{e} - \frac{1}{2} \int_{\frac{1}{e}}^{e} t dt = \frac{e^2}{4} + \frac{3}{4e^2}.$$

b)
$$f'_n(x) = x^n \ln x$$
, iar $x \in (0,1) \Rightarrow \ln x \le 0 \Rightarrow f'(x) \le 0$

$$\mathbf{c)} \ -1 \leq \ln t \leq 0 \ \forall \mathbf{x} \in \left[\frac{1}{\mathrm{e}}; 1\right], \ \text{rezult} \ \mathbf{\tilde{a}} \ -\int_{\frac{1}{\mathrm{e}}}^{1} t^{n} \leq f_{n}(1) \leq 0 \ , \ \mathrm{adic} \ \mathbf{\tilde{a}} - \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathrm{deci} \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq f_{n}(1) \leq 0 \ , \ \mathbf{\tilde{a}} = \frac{1}{n+1} + \frac{1}{(n+1)e^{n+1}} \leq$$

$$\lim_{n \to \infty} f_n(1) = 0$$

<u>Ministerul Educației, Cercetării și Inovării</u> Centrul Național pentru Curriculum și Evaluare în Învătământul Preuniversitar

- **1a**) $f'(x) = e^x + 3x^2 2x + 1 > 0, \forall x \in \mathbb{R}$, de unde rezultă că funcția este strict crescătoare
- **b**) Din punctul anterior rezultă ca functia este injectivă $\lim_{x\to\infty} f(x) = \infty$, $\lim_{x\to-\infty} f(x) = -\infty$, funcția este continuă, deci surjectivă, adică inversabilă.
- c) Cu substituția x = f(y) obținem $\lim_{x \to \infty} \frac{f^{-1}(x)}{\ln x} = \lim_{y \to \infty} \frac{y}{\ln(e^y + y^3 y^2 + y)} = 1$.

2a)
$$I_1 = \int_0^1 \frac{x}{x^2 + 3x + 2} dx = \int_0^1 \left(\frac{2}{x + 2} - \frac{1}{x + 1} \right) dx = 2 \ln 3 - 3 \ln 2$$
.

b)
$$I_{n+2} + 3I_{n+1} + 2I_n = \int_0^1 x^n dx = \frac{1}{n+1}$$
.

c)
$$nI_n = \int_0^1 nx^n \left(\frac{2}{x+2} - \frac{1}{x+1} \right) dx = \int_0^1 \frac{2x(x^n)'}{x+2} dx - \int_0^1 \frac{x(x^n)'}{x+1} dx = \frac{1}{6} - 4 \int_0^1 \frac{x^n}{(x+2)^2} dx + \int_0^1 \frac{x^n}{(x+1)^2} dx$$
, de unde

rezultă că
$$\lim_{n\to\infty} nI_n = \frac{1}{6}$$