CS6462 Probabilistic and Explainable AI

Lesson 12 Bayesian Generalized Linear Models *

Likelihood and Maximum Likelihood Principles

Linear Regression

Regression: a statistical model of relationship between a dependent variable and independent variables (one or more) – recall independent variables.

Linear regression: regression with one independent variable and a linear relationship between the independent and dependent variable

$$y = \beta_0 + \beta_1 * x$$

- $y = \beta_0 + \beta_1 * x$ β_0, β_1 : scale factor
 goal: find the best values for β_0, β_1

$$C(x) = \frac{1}{n} \sum_{i=1}^{n} (pred_i - y_i)^2$$

- Cost function: difference between the predicted values and real values
 n – number of data points

 - Mean Squared Error (MSE)

Predictions for LR: solving the equation for a specific set of inputs (use learning alg.)

Example: predict weight y from height x

$$eta_0$$
 is bias coefficient

•
$$\beta_0$$
, = 0.1, β_1 = 0.5

•
$$x = 182 \text{ cm}$$

•
$$Y = 0.1 + 0.5*182 = 91.1 \text{ kg}$$

Generalized Linear Models

Definition:

- determines the causal relationship between multiple independent variables and the dependent variable
- the distribution of dependent variables is not only a Normal distribution but can be Normal, Binomial, Poisson, Categorical, Multinomial, Beta, etc.

$$y = f(\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 \dots \beta_n * x_n)$$

$$F(Y) = \mu = g^{-1}(X\beta) \text{ where } Y = \{y_1, y_2, \dots, y_k\}, X = \{X_1, X_2, \dots, X_n\}, X_i = \{x_1, x_2, \dots, x_k\}$$

- \blacksquare F(Y) probability distribution family, e.g., Normal, Binomial, Poisson, Categorical, etc.
- $\eta = X\beta$ linear predictor, i.e., a linear function of the predictor algorithm (predicted values $pred_i$)
- g link function:
 - $g(\mu) = \eta$ maps the expected values μ to the linear predictors $X\beta$
 - $\mu = g^{-1}(\eta)$ inverse link function (mean function) maps the linear predictors to the mean
 - g and g^{-1} translate η from $(-\infty, +\infty)$ to the proper range for the probability distribution F(Y) and back again

Maximum Likelihood Estimation

Bayesian GLM: data is fixed, and model parameters are random -> requires prior distribution of parameters

Likelihood theory: part of Bayesian Inference (how data is used by the distribution model)

- Fisher principle: the amount of information that an observable random variable X ($X \equiv data$) carries about an unknown parameter $\theta \in \Theta$ ($\Theta \equiv \beta$) of a distribution that models X
- P(Θ | data) ~ P(data | Θ) * P(Θ) recall Bayesian Inference for fixed data
 Posterior ~ Likelihood × Prior

Maximum Likelihood Estimator: aims to maximize the probability of every value point of X occurring given a set of probability distribution parameters Θ

Maximum Likelihood Estimation (cont.)

Maximum Likelihood Estimator: aims to maximize the probability of every value point of X occurring given a set of probability distribution parameters Θ

- random sample $X = \{X_1, X_2, ..., X_n\}$ with assumed probability distribution P(X) that depends on some unknown parameter θ
- find linear predictor $\eta(X_1, X_2, ..., X_n)$ such that $\eta(x_1, x_2, ..., x_n)$ is an estimate of θ with maximum P(X) where $(x_1, x_2, ..., x_n)$ are the observed values of the random sample
- $f(x_i; \theta)$ the probability density (or mass) function of each X_i
- joint probability (mass) function): likelihood function $\mathbf{L}(\boldsymbol{\theta})$

$$L(\theta) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = f(x_1; \theta) * f(x_2; \theta) *, ..., * f(x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

objective: consider the likelihood function $L(\theta)$ as a function of θ , and find the value of θ that maximizes it

$$\hat{\theta} = argmax(L(\theta)) \rightarrow \hat{\theta} = argmax(\ln(L(\theta))) \rightarrow \ln(L(\theta)) = \ln(\prod_{i=1}^{n} f(x_i; \theta)) = \sum_{i=1}^{n} \ln(f(x_i; \theta))$$

• $\hat{\theta}$ - estimate "^"

Maximum Likelihood Estimation (cont.)

Example:

Consider a random sample $X = \{X_1, X_2, ..., X_n\}$ of X employees where

- $X_i = 0$ if a randomly selected employee who does not own a house
- $X_i = 1$ if a randomly selected employee who does own a house
- X_i : independent Bernoulli random variables with unknown parameter θ ;
- find maximum likelihood estimator of θ , the proportion of employees who own a house

$$f(X_i; \theta) = \theta^{X_i} (1 - \theta)^{X_i - 1}$$
, for $X_i = \{0, 1\}$

$$L(\theta) = P(X_i) = \prod_{i=1}^n f(x_i; \theta) = \theta^{X_1} (1 - \theta)^{1 - X_1} * \theta^{X_2} (1 - \theta)^{1 - X_2} *, \dots, * \theta^{X_n} (1 - \theta)^{1 - X_n}$$

Simplifying, by summing up the exponents: $L(\theta) = \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$

$$\ln(L(\theta) = \left(\sum x_i\right) \ln(\theta) + \left(n - \sum x_i\right) \ln(1 - \theta) \qquad \text{find } \hat{\theta} = argmax(\ln(L(\theta)))$$

objective: consider the likelihood function $L(\theta)$ as a function of θ , and find the value of θ that maximizes it

Maximum Likelihood Estimation (cont.)

Example (cont.): objective is to maximize $L(\theta)$:

find
$$\hat{\theta} = argmax(\ln(L(\theta)))$$

- differentiate the likelihood function with respect to θ
- take the derivative of $\ln(L(\theta))$ (with respect to θ) rather than taking the derivative of $L(\theta)$

$$\ln(L(\theta) = \left(\sum x_i\right) \ln(\theta) + \left(n - \sum x_i\right) \ln(1 - \theta)$$

• taking the derivative of the logarithm likelihood, and setting to 0, we get:

$$\frac{\partial \ln(L(\theta))}{\partial \theta} = \frac{\sum x_i}{\theta} - \frac{(n - \sum x_i)}{1 - \theta} = 0$$

• multiplying through by $\theta(1-\theta)$:

$$\left(\sum x_i\right)(1-\theta) - \left(n - \sum x_i\right)\theta = 0$$

• simplifying: $\sum x_i - n * \theta = 0$

$$\hat{\theta} = \frac{\sum x}{x}$$

•
$$\hat{\theta}$$
 - estimate "^"

• $\hat{\theta}$ = 1, if all the employees own a house

Maximum Likelihood Estimation in ML

Maximum Likelihood Estimation:

- probabilistic technique for solving the problem of density estimation
- involves maximizing a likelihood function in order to find the probability distribution and parameters that best explain the observed data
- provides an approach to predictive modeling in machine learning where finding model parameters can be framed as an optimization problem:

$\hat{\theta} = argmax(ln(L(\theta;X)))$

- θ is the parameter space
- X is the observed data (the sample)
- $L(\theta;X)$ is the likelihood of the sample X, which depends on the parameter θ
- $\underset{\text{max}}{\operatorname{argmax}}$ function returns the parameter for which the log-likelihood $ln(L(\theta;X))$ attains its maximum value.

Summary

Bayesian Generalized Linear Models - Likelihood and Maximum Likelihood Principles:

- Linear Regression
- Generalized Linear Models
- Bayesian GLM: data is fixed, and model parameters are random -> requires prior distribution of parameters
 - Likelihood Theory: part of Bayesian Inference
 - Maximum Likelihood Estimation: probabilistic technique for solving the problem of density estimation
- Maximum Likelihood Estimation in ML: provides an approach to predictive modeling where finding model parameters can be framed as an optimization problem

Next Lesson:

Bayesian Generalized Linear Models - Exponential Family Form

Thank You!

Questions?