Freitag, 3. Mai 2024

10.52

03.05.2024: TKA_Mo_240503_1_(MethT_V11)

SE-Meth - Thermodynamisches Modell Methanisierung - V11

- Umstellung zur besseren Lauffähigkeit analog zu TKA Mo 240417 1 (AmmT V8)
 - Änderung der Fugazitätsberechnung: TKA_Mo_240503_2_fugacity_coefficient_V2
 - vgl. TKA Mo 240320 1 fugacity coefficient V1 für Berechnungdetails
 - hier: Umstellung auf Methanisierungssystem
 - Quelle: Soave, Giorgio (1972): Equilibrium constants from a modified Redlich-Kwong equation of state. In: Chemical Engineering Science 27 (6), S. 1197–1203. DOI: 10.1016/0009-2509(72)80096-4
 - Parameter:

Species	<i>T</i> _c / K	p _c / bar	ω/1	Source
CO ₂	304.21	73.9	0.224	Perry's
H ₂	33.19	13.2	-0.215	Perry's
CH ₄	190.564	45.9	0.011	Perry's
H ₂ O	647.13	219.4	0.343	Perry's
СО	132.92	34.9	0.048	Perry's
He	5.2	2.3	-0.388	Perry's
Ar	150.86	49.0	0.000	Perry's
N ₂	126.2	33.9	0.037	Perry's

Green, Don W.; Perry, Robert H. (2003): Perry's chemical engineers' handbook. 7th ed., internat. ed., [Nachdr.]. New York: McGraw-Hill.

- weitere Änderungen:
 - Funktion g_T:
 - \Box Einfügen einer Korrektur auf 10^{-20} mol bei negativer Stoffmenge oder Stoffmenge = 0
 - Berechnung der Stoffmengenanteile in der Gasphase außerhalb der Zielfunktion
 - Herausnehmen der nicht konvergierten Simulationen aus dem Ergebnis-Array / Plot
 - Berechnung und Ausgabe der "Degree of conversion"
- Fazit:
 - Konvergenz deutlich schwieriger als bei NH₃
 - Ergebnisse aber auch bei nicht konvergierten Simulationen in Übereinstimmung mit Validierungsdaten
 - Durch Verringern der Toleranz (ftol) und Erhöhung der T-Stellen kann die Konvergenzrate erhöht werden
- Validierung Gao (https://www.doi.org/10.1039/c2ra00632d)
 - ➤ <u>Validierungssimulationen:</u>
 - TKA_S_240503_2_(MethT_V11):
 - □ CO-Methanisierung Gao
 - p = 1 atm = 1.01325 bar
 - \Box T = 200 800 °C
 - $x_{in.CO} = 0.25$

- $x_{in,H2} = 0.75$
- \Box Konvergenz: 99.9 % bei 1001 T-Punkten und ftol = 10^{-6}

- TKA_S_240503_1_(MethT_V11):
 - □ CO₂-Methanisierung Gao
 - p = 1 atm = 1.01325 bar
 - \Box $T = 200 800 \,^{\circ}\text{C}$
 - □ $x_{in,CO2} = 0.2$
 - $x_{in,H2} = 0.8$
 - \Box Konvergenz: 98.3 % bei 1001 T-Punkten und ftol = 10^{-6}

