Графиком функции двух переменных f(x,y) является некоторая поверхность. Для ее построения в трехмерном пространстве требуется квадратная таблица (NxN), пример которой изображен ниже:

			X			
Y		1	2	3	4	5
	1	f(1,1)	f(1,2)	f(1,3)	f(1,4)	f(1,5)
	2	f(2,1)	f(2,2)	f(2,3)	f(2,4)	f(2,5)
	3	f(3,1)	f(3,2)	f(3,3)	f(3,4)	f(3,5)
	4	f(4,1)	f(4,2)	f(4,3)	f(4,4)	f(4,5)
	5	f(5,1)	f(5,2)	f(5,3)	f(5,4)	f(5,5)

На рисунке ниже изображен график функции $y = \frac{10\sin(\sqrt{x^2 + y^2})\cos^2(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$:

Таблица состоит из значений функции на интервалах X и Y от -10 до 10.

Очевидно, что на некоторых интервалах функции наблюдаются локальные экстремумы:

Если плоскость, параллельная плоскости XOY пересекает поверхность, заданную функцией f(x,y), то линия пересечения будет представлять собой некоторую (возможно, замкнутую) кривую, которая называется *линией уровня* (или эквипотенциальной линией). Для демонстрации метода поиска экстремума спроецируем несколько получившихся линий уровня на плоскость XOY (рисунок ниже — произвольный пример и не соответствует продемонстрированному графику функции):

На этом рисунке $\bar{\mathbf{e}}_{x}$ и $\bar{\mathbf{e}}_{y}$ — базисные векторы с координатами (1,0) и (0,1) соответственно.

Для поиска экстремума зададим:

- начальный вектор $\overline{\mathbf{a}}$ (x,y),
- начальное значение приращения \mathbf{h} ,
- погрешность поиска ${f d}$

Поскольку вектор $\overline{\mathbf{a}}$ имеет две координаты, то f(x,y) можно представить как функцию одной векторной переменной: $F(\overline{X})$

Суть метода Хука-Дживса (рассматриваем поиск минимума) состоит в том, что если выполнить приращение вектора $\bar{\bf a}$ вдоль какой-либо из осей, получив вектор $\bar{\bf a}_1$ и значение функции будет ближе к минимуму, т. е., $F(\bar{\bf a}_1) < F(\bar{\bf a})$, то можно повторять выбранное приращение до тех пор, пока указанная тенденция сохраняется. В точке, где тенденция прервалась, снова выполняется поиск нужного направления приращения, и т.д.

Таким образом, главный цикл алгоритма состоит из двух этапов:

- 1. Выбор одного из четырех вариантов направления приращения:
 - $\mathbf{a_1} = \mathbf{a} + \mathbf{he_x}$
 - $\overline{\mathbf{a}}_1 = \mathbf{a} \mathbf{h} \mathbf{e}_x$
 - $\mathbf{a_1} = \mathbf{a} + \mathbf{he_y}$
 - $\mathbf{a_1} = \mathbf{a} \mathbf{he_v}$

таким образом, чтобы $F(\bar{\mathbf{a}}_1) < F(\bar{\mathbf{a}})$. Если нужный вектор $\bar{\mathbf{a}}_1$ не найден, то уменьшаем \mathbf{h} . Если \mathbf{h} меньше \mathbf{d} , то координаты вектора $\bar{\mathbf{a}}$ — найденный экстремум функции $F(\bar{\mathbf{X}})$ и алгоритм завершается¹.

Как только нужный вектор $\overline{\mathbf{a}}_1$ найден, начинаем «движение в выбранном направлении», которое выглядит следующим образом:

До тех пор, пока $F(2*a_1 - a) < F(a_1)$:

- перемещаем вектор \mathbf{a} в вектор \mathbf{a}_1
- вектору ${\bf a}_1$ присваиваем значение $2*{f a}_1 {f a}$

Как только тенденция приближения к минимуму прервалась, т. е. описанный выше цикл завершился, перемещаем вектор $\bar{\bf a}$ в вектор $\bar{\bf a}$ 1 и снова возвращаемся к выбору приращения.

¹ визуально это можно представить в виде нахождения на Северном полюсе: направление в любую сторону - южное. Так же и в нашем случае: если удаление в любую сторону дает нам возрастание функции, очевидно мы в точке минимума.

Одна итерация алгоритма показана на рисунке ниже: вектор $h_{\mathbf{e}_x}^-$ — выбранное приращение. Зеленый пунктирный вектор — результат «движения в заданном направлении». Красный пунктирный вектор — попытка «отдалиться» от минимума (видно, что он пересекает эквипотенциальную линию в обратном направлении).

Вектором $\bar{\bf a}$ по окончании итерации станет зеленый пунктирный вектор $(2^*\bar{\bf a}_1 - \bar{\bf a})$.

Общая блок-схема:

