TEMA D'ESAME

Domanda A

Si dimostri per via algebrica che:

$$P \le f(x,y) \land Q \le g(x,y) \implies PQ \le f(x,y)g(x,y) \land PQ \le f(x,y) + g(x,y)$$

Qualunque sia la forma delle funzioni f(x, y) e g(x, y).

Domanda B

Dato un contatore Moebius a tre bit la cui uscita è il vettore $Q = [q_2 \ q_1 \ q_0]$, si svolgano i sequenti punti:

- 1. Si progetti la rete di transcodifica $\mathbf{z} = [\mathbf{z}_1 \ \mathbf{z}_0] = \mathbf{F}(\mathbf{Q})$ minima ed in forma SOP in grado di produrre la sequenza $\{00,00,11,11,10,01\}$.
- 2. Si realizzi la funzione **F(Q)** mediante soli multiplexer a due ingressi. Si utilizzi a tale scopo il numero minimo possibile di multiplexer.
- 3. Si modifichi la forma SOP della funzione F(Q) in modo da eliminare eventuali alee statiche.

Domanda C

Si consideri la macchina a stati finiti descritta dalla tabella di trasizione di stato riportata a lato, per la quale A è lo stato di reset. Si svolgano i seguenti punti:

- 1. Si individui l'insieme delle classi di massima compatibilità
- 2. Si identifichi la soluzione minima costituita da sole classi disgiunte, non necessariamente di massima compatibilità

	0	1
A	В/-	-/0
В	В/1	D/-
O	F/-	-/-
D	C/-	C/0
E	A/0	-/1
F	-/-	E/0

Domanda D

Si progetti una macchina a stati finiti che esegue la somma aritmetica di due parole \mathbf{x} ed \mathbf{y} in codifica binaria naturale. Tale macchina è dotata di due ingressi \mathbf{x} ed \mathbf{y} che ricevono i bit delle parole \mathbf{x} ed \mathbf{y} a partire dal bit meno significativo e producono, ad ogni colpo di clock, il bit di somma \mathbf{s} ed il bit di riporto \mathbf{c} . Si risolva il problema per via comportamentale, riportando il diagramma di transizione di stato, minimizzando – se necessario – tale diagramma ed infine sintetizzando la macchina minima mediante flip-flop di tipo T .