Gradual Typing for Functional Languages

Jeremy Siek and Walid Taha (presented by Lindsey Kuper)

Introduction

What we want

- Static and dynamic typing: both are useful! (If you're here, I assume you agree.)
- So, we want a type system that...
 - ...lets us choose the degree to which we want to annotate programs with types.
 - ...lets us write programs in a dynamically typed style (no explicit coercions to/from type Dynamic).
 - ...uses type annotations for static type checking, not just improving run-time performance.
 - ...behaves just like a static type system on completely annotated programs.
- Siek and Taha's gradual type system fulfills all these desires.

Contributions

- Siek and Taha present $\lambda^?_{\rightarrow}$ ("lambda-dyn") and show that:
 - $\lambda^?_{\rightarrow}$, with its gradual type system, is equivalent to the STLC for fully-annotated programs. (Theorem 1)
 - They extend the language with references and assignment to show that it's suitable for imperative languages as well.
 - $\lambda^?_{\rightarrow}$ is type safe: if evaluation terminates, the result is either a value of the expected type or a cast error, but not a type error. (Theorem 2)
 - On the way to Theorem 2, they prove an interesting result about $\lambda^?_{\rightarrow}$: the run-time cost of dynamism in the language is "pay-as-you-go".
- The proofs are all mechanically verified with Isabelle.

Introduction to Gradual Typing

Syntax of $\lambda^?$

- The syntax of $\lambda^?_{\rightarrow}$ is simple. We have:
 - variables x
 - ground types γ
 - constants c
 - types $T := \gamma \mid ? \mid T \longrightarrow T$
 - expressions $e = c | x | \lambda x : T . e | e e | \lambda x . e = \lambda x : ? . e$
- We indicate the unknown portions of a type with ?, so a type number x ? is a pair of a number and an element of unknown type.
- Programming in a dynamically-typed style in this language is easy. Just leave off the type annotations on parameters. (A λ with no parameter type annotation is sugar for one that has parameter type ? .)

What the type system does: Easy first-order example

- "The job of the type system is to reject programs that have inconsistencies in the known parts of types."
- ((lambda (x : number) (succ x)) #t)
 - This program is rejected because it's an application of a function of type number → number to an argument of type boolean.
 - But ((lambda (x) (succ x)) #t) is accepted by the static type system (and the type error is caught at run-time).

What the type system does: Fancy higher-order example

map : (number \rightarrow number) \times number list \rightarrow number list (map (lambda (x) (succ x)) (list I 2 3))

- We'd like (lambda (x) (succ x)) to be accepted by our type system, but it has type ? → number and map expects type number → number. How do we design the type system to not reject this program?
 - Intuition: require known portions of the two types ? \rightarrow number and number \rightarrow number to be equal; ignore the unknown parts.
 - In effect, we're delaying comparison of unknown parts until run-time.
 - Analogy with partial functions: two partial functions are consistent when every element in the domain of both functions maps to the same result.

Type consistency rules

- Also known as compatibility rules.
- Just four simple rules:
 - CREFL: Every type is consistent with itself.
 - CFUN: If $\sigma_1 \sim \tau_1$ and $\sigma_2 \sim \tau_2$, then $\sigma_1 \longrightarrow \sigma_2 \sim \tau_1 \longrightarrow \tau_2$.
 - CUNL: Every type is consistent with ?.
 - CUNR: ? is consistent with every type.
- Reflexive and symmetric, but not transitive.

Typing rules

- Rules for variables, constants, λ expressions: exactly like STLC.
- Rules for application:
 - (GAPPI) If the operator's type is ?, the type of the entire expression is ?.
 - (GAPP2) If the operator's type is $T \rightarrow T'$ and the operand's type is consistent with T, then the type of the entire expression is T'.
- (Theorem I) For STLC terms (aka fully-annotated terms), \vdash_G typing judgments are just like STLC typing judgments.
 - Proof sketch: throw out any typing rules that mention ? . We're left with the STLC's typing rules.
 - (Corollary I) If an STLC term isn't well-typed under STLC typing rules, it isn't well-typed under \vdash_G typing rules, either.

Run-time semantics

Adding explicit casts

- $\lambda^?_{\rightarrow}$ doesn't make programmers write explicit casts; instead, it inserts them itself, producing an intermediate language we call $\lambda^{\langle \tau \rangle}_{\rightarrow}$ ("lambda-cast"). $\lambda^{\langle \tau \rangle}_{\rightarrow}$ is the language we'll actually evaluate.
- The translation to $\lambda_{\rightarrow}^{\langle \tau \rangle}$ only requires casts to be inserted for certain kinds of application expressions:
 - (CAPPI) For function applications where the function's type is ?, just insert a cast to $T_2 \rightarrow ?$ where T_2 is the argument's type.
 - (CAPP2) For function applications where the function's type is $T \to T'$ and the argument's type is T_2 , which is \sim with T, we just cast the argument to T.
- $\lambda \stackrel{\langle \tau \rangle}{\longrightarrow}$'s typing rules are much like STLC's, but with a rule added for expressions containing an explicit cast.

Useful properties of $\lambda_{\rightarrow}^{\langle \tau \rangle}$

- Lemma I. Inversion lemmas for $\lambda \stackrel{\langle \tau \rangle}{\rightarrow}$'s typing rules. (These lemmas, which "invert" the typing rules, come in handy for some of the other lemmas.)
- Lemma 2. Every $\lambda_{\rightarrow}^{\langle \tau \rangle}$ expression has a unique type.
- Lemma 3. Cast insertion produces well-typed $\lambda_{\rightarrow}^{\langle \tau \rangle}$ terms.
- Lemma 4. Cast insertion does nothing to STLC terms.

Run-time semantics of $\lambda \stackrel{\langle \tau \rangle}{\rightarrow}$

- The result of evaluating a $\lambda \xrightarrow{\langle \tau \rangle}$ term can either be a value, a CastError, a TypeError, or a KillError.
 - There are two kinds of run-time type errors: those that cause undefined behavior (like what happens when we have a buffer overflow in C) and those that are caught by the run-time system (like in Scheme). We say that the former are *TypeErrors* and the latter are *CastErrors*.
 - We need *KillError* because of a technicality in the type safety proof. It could have been avoided if we'd been using a small-step semantics rather than a big-step semantics for $\lambda \stackrel{\langle \tau \rangle}{\longrightarrow}$.

That canonical forms lemma that we said would be interesting

- Canonical forms lemmas always say something like "If
 v is of type T, then it must be...".
 - For instance, if v is of type boolean, then it must be either #t or #f.
- Handy for compiler optimizations: we can use an efficient unboxed representation for every value whose type is completely known at compile time.
 - And we get these efficient representations
 proportionally to the amount that we use type
 annotations in our programs: we "pay as we go" for
 efficiency.

Evaluation of $\lambda \stackrel{\langle \tau \rangle}{\rightarrow}$

- $\lambda \xrightarrow{\langle \tau \rangle}$ has an operational semantics defined in *big-step* style, where each rule completely evaluates the expression to a result. For instance...
 - (ECsTG) If we evaluate e for n steps, producing a result v, and v (unboxed if necessary) has type v, then e cast to v can be evaluated for n+1 steps to produce v.
 - (ECSTE) If e evaluates to v and v has type σ, which is inconsistent with T, then a cast of e to T will result in a runtime CastError.
- This big-step semantics is unusual and prevents us from using a more typical progress-and-preservation-style proof of type safety.

Examples

- Our original example ((lambda (x) (succ x)) #t) produces a CastError at run-time.
- Our higher-order example

```
((lambda (f : ? \rightarrow number) (f I))
(lambda (x : number) (succ x)))
```

evaluates to the result 2.

A few more lemmas on the way to type safety

- Lemma 6 (Environment Expansion and Contraction). If a term
 e has type T under environment Γ...
 - ...and we extend \(\Gamma\) with a binding for a fresh variable, \(\mathbf{e}\) still has type \(\Tau\). (Pierce calls this weakening.)
 - ...and we remove something we don't need from the environment, e still has type T.
 - ...and we swap in a new store typing for the old one, as long as they agree on the types of all locations, e still has type T.
- Lemma 7 (Substitution preserves typing). If e has type T under Γ and we substitute some subexpression x of e with another subexpression e' of the same type as x, e still has type T.

Finally, a proof of type safety

- Lemma 8 (Soundness of evaluation). If an $\lambda \stackrel{\langle \tau \rangle}{\rightarrow}$ expression e is well-typed with type T (which can include?), it will evaluate to a result r, which will be either a value, a *CastError*, or a *KillError*.
- Theorem 2 (Type safety). If a $\lambda^?$ expression e with type T can be converted to a $\lambda^{\langle \tau \rangle}$ expression e' with type T, it will evaluate to a result r, which will be either a value, a *CastError*, or a *KillError*.
 - Proof: Lemma 3 (cast insertion produces well-typed $\lambda_{\rightarrow}^{\langle \tau \rangle}$ terms) followed by Lemma 8.

Adding references to $\lambda^?$

- A couple of additions to the syntax:
 - types T := ... | ref T
 - expressions e ≔ ... | ref e | !e | e ← e
 - ref e creates; le dereferences; $e \leftarrow e$ assigns and returns the value of the expression on the left after the assignment has happened.
- Interesting typing rules:
 - (GDEREFI) If e's type is ? then !e's type is ? .
 - (GASSIGNI) If e_1 's type is ? and e_2 's type is T, then $e_1 \leftarrow e_2$ has type ref T.
 - (GASSIGN2) If e_1 's type is ref τ and e_2 's type is σ , and $\sigma \sim \tau$, then $e_1 \leftarrow e_2$ has type ref τ .
- Types of locations can't change, or type safety is compromised.

Related work

- We're probably reading these two papers within the next I-2 weeks:
 - Quasi-static typing (Section 3)
 - Abadi et al.'s language of explicit casts (Section 6)
- Languages with some degree of gradual typing, previously not formalized: Cecil, Boo, Bigloo, proposed extensions to VB.NET/C# and Java, ... (and since the paper came out: Typed Racket, and maybe also JavaScript)
- Languages with optional type annotations for run-time performance improvement only: Common Lisp, Dylan, ...
- Soft Typing: type inference for run-time performance improvement
- Lots of others!

Conclusion

Main points

- It's no fun to start writing code in a dynamic language only to have to translate to a static language midway through. Ideally, you could keep the same language, and the language would have a type system that supports gradual addition of static types. Gradual typing gives us that.
- In $\lambda^?_{\rightarrow}$, all programs are type-safe in the sense that non-type-safe actions can't be completed, either because of static type checking or because of run-time exceptions.
- $\lambda^?_{\rightarrow}$ is pay-as-you-go: the degree to which one or the other mechanism enforces the type safety of a particular program corresponds to the degree to which that program has type annotations. (And we get as much efficiency as we pay for, too.)

Possible directions for future work

- Add support for lists, arrays, ADTs, implicit coercions (such as between numeric types in Scheme) to a gradual type system.
- Investigate relationship between gradual typing and...
 - ...parametric polymorphism.
 - ...Hindley-Milner type inference.
- Incorporate gradual typing into a mainstream dynamic language (Python?) and find out if it really benefits programmer productivity.
- Everything else we're going to talk about in this course...

(exit)