Malware Analysis

ANALISI STATICA

Come possiamo vedere dall'interfaccia del disassembler **IDA** abbiamo 3 parametri e 4 variabili per la funzione Main. Questi sono facilmente riconoscibili in quanto i parametri hanno un valore offset positivo rispetto al **EBP** (argc = 8) mentre le variabili negativo (hModule = -11Ch).

I section headers e le librerie importate invece possiamo trovarli tramite CFF Explorer. Le sezioni importate sono (nell'immagine successiva):

.text = contiene le righe di codice che saranno eseguite dalla CPU una volta avviato il malware.

.rdata = sezione che contiene informazioni generali sulle librerie importate.

- .data = al interno troviamo i dati e le variabili globali dell'eseguibile.
- **.rsrc** = contiene risorse utilizzate dall'eseguibile che non sono parte dell'eseguibile stesso, come ad esempio l'icona o immagini.

Qui sotto invece possiamo vedere le librerie importate sempre grazie a CFF Explorer. Queste sono **KERNEL32.DLL** e **ADVAPI32.DLL**. La prima contiene le

principali funzioni per interagire con il sistema operativo mentre la seconda ha le funzioni per interagire con servizi e i registri di sistema Windows.

Su queste poche informazioni possiamo già intuire che il malware potrebbe essere in grado di ottenere persistenza sul sistema operativo grazie alle funzioni **RegCreateKeyExA** e **RegSetValueExA** della libreria ADVAPI32.dll. Infatti queste permettono al malware di creare e modificare le chiavi di registro in modo da avviarsi automaticamente ad ogni avvio. Come ad esempio **Software\\Microsoft\\Windows\\CurrentVersion\\Run**.

Possiamo vedere inoltre che dentro a KERNEL32.dll ci sono funzioni tipiche di un dropper come **FindResource** o **LoadResource**, che permettono al malware di andare a cercare un altro programma malevolo contenuto al suo interno. Il programma potrebbe anche caricare dinamicamente altre funzioni che non vediamo grazie a **LoadLibrary** e **GetProcAddress**.

Ovviamente queste supposizioni andranno verificate con l'analisi dinamica.

- Alla locazione di memoria **00401021** abbiamo la funzione RegCreateKeyExA che crea una chiave di registro. Se la chiave già esiste allora andrà ad aprirla.
- I parametri passano alla funzione tramite i push nelle precedenti istruzioni (da 00401004 a 0040101C). Questi sono, fra gli altri, IpdwDisposition (un puntatore che stabilisce se la chiave esiste o è stata creata), samDesired (una maschera che stabilisce i diritti d'accesso per creare la chiave), e così via.
- L'oggetto all'istruzione 00401017 rappresenta la subkey, cioè la sottochiave che la funzione andrà ad aprire o creare. Nel nostro caso si tratta di HKLM\
 \Software\\Microsoft\\Windows NT\\CurrentVersion\\Winlogon che serve per la configurazione del servizio Winlogon per tutti gli utenti.
- Fra le istruzioni **00401027** e **00401029** abbiamo un jump condizionale. L'istruzione **test** farà un AND su EAX per controllare se è 0. Se l'AND è 0 il **ZF** sarà 1 e quindi il salto sarà effettuato. Il costrutto in C potrebbe essere scritto così:

 Alla locazione 00401047 possiamo trovare la funzione RegSetValueExA che scriverà su una chiave un determinato valore. Il valore dell'oggetto ValueName sarà GinaDLL.

ANALISI DINAMICA

Dopo aver avviato il malware possiamo notare che, dentro alla cartella dove è contenuto, è stato creato un nuovo file chiamato **msgina32.dll.**

La chiave di registro che il malware apre è **HKLM\\Software\\Microsoft\ \Windows NT\\CurrentVersion\\Winlogon,** come abbiamo constatato nell'analisi

statica. A questa chiave assegna la sottochiave **GinaDLL.** Facendo doppio click vediamo che il percorso associato a questa sottochiave è proprio ~\msgina32.dll.

La funzione che crea il file msgina32.dll è CreateFile della libreria KERNEL32.dll.

A questo punto possiamo constatare che il malware in questione appartenga alla categoria dei dropper. Infatti sono presenti nel codice le funzioni FindResource, LoadResource, LockResource e SizeOfResource, tipiche di un malware che andrà ad estrarne un altro per salvarlo sul disco.

Il file "droppato" in questione è appunto **msgina32.dll**. Lo scopo di una DLL GINA è fornire procedure personalizzabili di identificazione e autenticazione dell'utente. Quindi il malware **ha creato persistenza** tramite la GinaDLL.

Riavviando il computer è possibile notare già una differente schermata di login rispetto al solito. Questo conferma la persistenza del malware tramite il servizio Winlogon.