

5

States of Matter

Gas's Law

Boyle's law:

$$V \propto \frac{1}{P}(n, T = const) \boxed{P_1 V_1 = P_2 V_2}$$

Charle's law:

$$V \propto T(n, P = const) \frac{V_2}{V_1} = \frac{T_2}{T_1}$$

Gay lussac's law:

$$P \propto T(n, V = const) \frac{P_2}{P_1} = \frac{T_2}{T_1}$$

Avogadro's law:

 $V \varpropto moles \varpropto number \ of \ molecules \ (P,T=const)$ Ideal gas equation PV=nRT

 $R = 0.0821 L \ atm \ mol^{-1} \ K^{-1}$

$$\begin{split} R &= 8.314 \; J \; K^{-1} \; mol^{-1} \\ R &= 2cal \; K^{-1} \; mol^{-1}, \; R = 8.314 \times 10^7 erg \; K^{-1} \; mol^{-1} \end{split}$$

Graham's Diffusion Law

It is applicable for non reacting gases

$$r \propto \frac{1}{\sqrt{d}}; \, r \propto \frac{1}{\sqrt{VD}}; \, r \propto \frac{1}{\sqrt{M_w}}(P,T=constant)$$

$$VD = \frac{d_{gas}}{d_{H_2}} = \frac{M_w}{2}$$

Rate of diffusion

$$r = \frac{\mathit{l}_{diffused\,gas}}{t_{time\,taken}}; r = \frac{V_{diffused\,gas}}{t_{time\,taken}}; r = \frac{n_{diffused\,gas}}{t_{time\,taken}}$$

(When, l = distance traveled by diffused gas)

Kinetic Gas Equation : $PV = 1/3 \text{ mN V}_{rms}^2$	
Dalton's Law of Partial Pressure	Average Kinetic Energy (KE _{av})
$P_{\text{mixture}} = P_1 + P_2 + P_3 \dots (T \& V \text{ const.})$ Partial pressure	$K.E_{av} = \frac{3}{2} nRT \text{ (n moles)}$ $K.E_{av} = \frac{3}{2} RT \text{ (1 mol or } N_A \text{ molecules)}$
$\mathbf{P}_{\text{moist gas}} = \mathbf{P}_{\text{dry gas}} + \mathbf{P}_{\text{water vapours}}$	2
It is applicable for non reacting gases.	$K.E_{av} = \frac{3}{2}KT$ (1 molecule)
Methods of determination of partial pressure	$K_{\rm B} = 1.38 \times 10^{-23} \rm J K^{-1} molecule^{-1}$
(P _A & P _B are partial pressure)	K _B is called Boltzmann constant
♦ From ideal gas equation $P_AV = n_A RT & P_BV = n_B RT$	$u_{ii} = \sqrt{\frac{v_{ii}^{ii} + v +v}{N}}$
❖In the form of mole fraction. n N D N D N D N D N D N D N D N D N D N	$u_{av} = \frac{v_1 + v_2 + v_3v_n}{N}$
$P_{A} = X_{A}P_{T} = \frac{n_{A}}{n_{T}}P_{T};$	$u_{rms} = \sqrt{\frac{3RT}{Mw}} ; u_{av} = \sqrt{\frac{8}{\pi} \frac{RT}{Mw}} ; u_{mp} = \sqrt{\frac{2RT}{Mw}}$
$P_{B} = X_{B}P_{T} = \frac{n_{B}}{n_{T}} P_{T}$	$u_{rms} = \sqrt{\frac{3PV}{Mw}}$; $u_{av} = \sqrt{\frac{8}{\pi} \frac{PV}{Mw}}$; $u_{mp} = \sqrt{\frac{2PV}{Mw}}$
$[X_A + X_B = 1]$ $P_T = \text{sum of partial pressure of all gases}$	$u_{rms} = \sqrt{\frac{3P}{d}}$; $u_{av} = \sqrt{\frac{8}{\pi} \frac{P}{d}}$; $u_{mp} = \sqrt{\frac{2P}{d}}$

❖In the form of volume fraction.

$$P_{\scriptscriptstyle A} = \frac{V_{\scriptscriptstyle A}}{V} P_{\scriptscriptstyle T} \& P_{\scriptscriptstyle B} = \frac{V_{\scriptscriptstyle B}}{V} P_{\scriptscriptstyle T}$$

*If individual pressure and individual volume are given

$$P_{A} = \frac{V_{A}}{V} P_{1}$$
 and $P_{B} = \frac{V_{B}}{V} P_{2}$

 P_1, P_2 = pressure of gases before mixing

 P_A , P_B = pressure of gases after mixing

$$u_{rms}$$
: u_{av} : $u_{mp} = \sqrt{3} : \sqrt{\frac{8}{\pi}}$: $\sqrt{2}$

=1 : 0.92 : 0.82

$$u_{mp}$$
: u_{av} : $u_{rms} = \sqrt{2} : \sqrt{\frac{8}{\pi}}$: $\sqrt{3}$

=1 : 1.128 : 1.224

Compressibility factor

$$(z) = \frac{(V_{\rm m})obs}{V_{\rm l}} = \frac{P(V_{\rm m})obs}{RT}$$

IF z = 1, the gas show ideal gas behaviour.

IF z > 1, the gas show positive deviation.

IF z < 1, the gas show negative deviation.

Vanderwaal's Equation

$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$

$$P_i = P_R + \frac{an^2}{V^2} \Longrightarrow P_i > P_R$$

a increases force of attraction increases

liquification increases;

b increases effective size of molecule increases, incompressible volume increases,

compressible vol. decreases

Vanderwaal's Equation

❖ At high pressure, Vanderwaal's eqn is

$$PV_m - Pb = RT$$

*At low pressure or Moderate pressure vanderwaal's eqn is

$$PV_{m} + \frac{a}{V_{m}} = RT$$

*At very low pressure, high temp. Vanderwaal's Equation is

$$VP = nRT$$

Ideal gas behaviour.

❖Gases having higher value of a; will have higher T_C; higher rate of liquefaction.