Primer parcial

Estudiante: CABALLERO BURGOA, Carlos Eduardo

Carrera: Ingeniería Electromecánica

Correo: cijkb.j@gmail.com

1. A partir de la siguiente tabla, determinar la resistencia interna (con su error), la corriente de corto circuito (sin su error) y la FEM (con su error).

No.	1	2	3	4	5	6	7	8	9	10
I[mA]	30	34	38	42	46	50	54	58	62	66
V[V]	2.8	2.79	2.76	2.72	2.70	2.68	2.66	2.64	2.64	2.60

Solución:

Se obtiene el siguiente gráfico:

Por tanto, la ecuación de ajuste es:

$$V_{ab} = A + B \cdot I$$

Calculamos los parámetros de la recta por el método de los mínimos cuadrados, con la ayuda de los datos presentados.

i	I_i^2	V_i^2	I_iV_i	Y	d_i	$d_i^2(10^{-3})$
1	0.0009	7.8400	0.0840	2.7985	0.0015	0.0021
2	0.0012	7.7841	0.0949	2.7764	0.0136	0.1843
3	0.0014	7.6176	0.1049	2.7543	0.0057	0.0325
4	0.0018	7.3984	0.1142	2.7322	-0.0122	0.1484
5	0.0021	7.2900	0.1242	2.7101	-0.0101	0.1012
6	0.0025	7.1824	0.1340	2.6879	-0.0079	0.0630
7	0.0029	7.0756	0.1436	2.6658	-0.0058	0.0339
8	0.0034	6.9696	0.1531	2.6437	-0.0037	0.0137
9	0.0038	6.9696	0.1637	2.6216	0.0184	0.3395
10	0.0044	6.7600	0.1716	2.5995	0.0005	0.0003

$$n = 10$$

$$\sum I_i = 0.4800$$

$$\sum V_i = 26.9900$$

$$\sum I_i^2 = 0.0244$$

$$\sum V_i^2 = 72.8873$$

$$\sum I_i V_i = 1.2882$$

$$\Delta_1 = n \sum I_i^2 - \left(\sum I_i\right)^2 = 0.0132$$

$$\Delta_2 = n \sum V_i^2 - \left(\sum V_i\right)^2 = 0.4129$$

$$A = \frac{\sum V_i \sum I_i^2 - \sum I_i V_i \sum I_i}{\Delta_1} = 2.9645$$

$$B = \frac{n \sum I_i V_i - \sum I_i \sum V_i}{\Delta_1} = -5.5303$$

$$\sum d^2 = 9.1879 \times 10^{-4}$$

$$\sigma^2 = \frac{\sum d_i^2}{n-2} = 1.1485 \times 10^{-4}$$

$$\sigma_A = \sqrt{\frac{\sigma^2 \sum d_i^2}{\Delta_1}} = 0.0146$$

$$\sigma_B = \sqrt{\frac{\sigma^2 n}{\Delta_1}} = 0.2950$$

$$A = (2.96 \pm 0.01)[V]; 0.49 \%$$

$$B = (-5.5 \pm 0.3)[\Omega]; 5.33 \%$$

Siendo el coeficiente de correlación:

$$r = \frac{n \sum I_i V_i - (\sum I_i)(\sum V_i)}{\sqrt{\Delta_1 \Delta_2}} = -0.9888$$

La ecuación de la recta resultante es:

$$V_{ab} = 2.96 - 5.5 I$$

Resultado

$$\varepsilon = (2.96 \pm 0.01)[V]; 0.49\,\%$$

Resultado

$$r_i = (5.5 \pm 0.3)[\Omega]; 5.33\%$$

Por tanto:

Resultado

$$I_{cc} = \frac{\epsilon}{r_i} = 0.54[A]$$

2. A partir de los siguientes datos determinar la constante de la permisividad del vacío con su respectivo error. Considere las cargas iguales a: $4.2[\mu C]$ y $7.89[\mu C]$.

No.	1	2	3	4	5
d[m]	0.02	0.03	0.04	0.05	0.06
F[N]	719.0	320.1	179.9	115.0	80.0

Solución:

Se obtiene el siguiente gráfico:

Por tanto, la ecuación de ajuste es:

$$F = ax^b$$

Linealizando los valores:

No.	1	2	3	4	5
ln(d)	-3.9120	-3.5066	-3.2189	-2.9957	-2.8134
ln(F)	6.5779	5.7696	5.1924	4.7449	4.3820

Calculamos los parámetros de la recta por el método de los mínimos cuadrados, con la ayuda de los datos presentados.

i	d_i^2	F_i^2	d_iF_i	Y	δ_i	$\delta_i^2(10^{-5})$
1	15.3039	43.2683	-25.7327	6.5784	-0.0005	0.0260
2	12.2959	33.2771	-20.2280	5.7676	0.0011	0.1120
3	10.3612	26.9610	-16.7137	5.1923	0.0001	0.0009
4	8.9744	22.5144	-14.2145	4.7461	-0.0012	0.1346
5	7.9153	19.2022	-12.3284	4.3815	0.0005	0.0267

n=5

$$\sum d_{i} = -16.4466$$

$$\sum F_{i} = 26.6659$$

$$\sum d_{i}^{2} = 54.8507$$

$$\sum F_{i}^{2} = 145.2230$$

$$\sum d_{i}F_{i} = -89.2175$$

$$\Delta_{1} = n \sum I_{i}^{2} - \left(\sum I_{i}\right)^{2} = 3.7630$$

$$\Delta_{2} = n \sum V_{i}^{2} - \left(\sum V_{i}\right)^{2} = 15.0470$$

$$A = \frac{\sum V_{i} \sum I_{i}^{2} - \sum I_{i}V_{i} \sum I_{i}}{\Delta_{1}} = -1.2444$$

$$B = \frac{n \sum I_{i}V_{i} - \sum I_{i} \sum V_{i}}{\Delta_{1}} = -1.9997$$

$$\sum d^{2} = 3.0032 \times 10^{-6}$$

$$\sigma^{2} = \frac{\sum d_{i}^{2}}{n - 2} = 1.0011 \times 10^{-6}$$

$$\sigma_{A} = \sqrt{\frac{\sigma^{2} \sum d_{i}^{2}}{\Delta_{1}}} = 0.0038$$

$$\sigma_{B} = \sqrt{\frac{\sigma^{2} n}{\Delta_{1}}} = 0.0012$$

$$A = (-1.244 \pm 0.004)[u]; 0.31 \%$$

$$B = (-1.999 \pm 0.001)[u]; 0.06 \%$$

Siendo el coeficiente de correlación:

$$r = \frac{n\sum I_i V_i - (\sum I_i)(\sum V_i)}{\sqrt{\Delta_1 \Delta_2}} = -1.0000$$

La ecuación de la recta resultante es:

$$F' = -1.244 - 1.999d'$$

A partir de los parámetros de recta A y B, calculamos los parámetros a y b de la curva original y sus errores por el método de propagación de errores:

$$a = e^{A} = e^{-1.244} = 0.2881$$

$$b = B = 2.0$$

$$e_{a} = e^{A} e_{A} = e^{-1.244} 0.004 = 0.0011$$

$$e_{b} = e_{B} = 0.0012$$

Obteniendo finalmente los valores de la curva:

$$a = (0.288 \pm 0.001)[m^2N]; 0.38\%$$

 $b = (-2.000 \pm 0.001)[u]; 0.06\%$

La ecuación de la curva resultante es:

$$F = ad^b = 0.288 \, \frac{1}{d^2}$$

El valor de la permitividad del vacío:

$$\varepsilon_0 = \frac{|q_1 q_2|}{4\pi a}$$

Calculando el valor representativo:

$$\varepsilon_0 = \frac{|(4.20 \times 10^{-6})(7.89 \times 10^{-6})|}{4\pi (0.288)} = 9.1526 \times 10^{-12}$$

La derivada parcial es:

$$\frac{\partial \varepsilon_0}{\partial a} = -\frac{|q_1 q_2|}{4\pi a^2}$$

Siendo el error de la medición:

$$e_{\varepsilon} = \frac{|q_1 q_2|}{4\pi a^2} e_a = 3.4962 \times 10^{-14}$$

Resultando la medición:

$$\varepsilon_0 = (9.1526 \times 10^{-12} \pm 3.4962 \times 10^{-14})[C^2/m^2N]; 0.3820 \%$$

3. Explicar los procedimientos utilizados para la practica de mediciones de la resistencia.

Solución:

Existen 4 tipos de mediciones:

a) Ley de Ohm

Implica medir el voltaje y la corriente que pasa por la resistencia, y usar la ley de Ohm.

$$R = \frac{V}{I}$$

b) Óhmetro

Consta en usar un instrumento de medición de resistencia eléctrica (no se realizó en la practica).

c) Código de colores

Se utiliza la nomenclatura de colores de las resistencias para hallar el valor.

Existen resistencia de 4, 5 y hasta 6 bandas de color.

Las bandas de 4 colores se calculan como:

- 1ra banda: primer dígito de la resistencia.
- 2da banda: segundo dígito de la resistencia.
- 3ra banda: multiplicador de la resistencia.
- 4ta banda: tolerancia de la resistencia.

d) Puente de Wheatstone

Consta de tres resistencias conocidas y una desconocida.

Se arma el circuito de la figura, y se trata de conseguir un voltaje de 0[V] entre los puntos a y b.

Se usa la siguiente formula:

$$R_1 = \left(\frac{R_3}{R_4}\right) R_2$$

