Multiple non-linear regression

Jiří Kléma

Department of Computer Science, Czech Technical University in Prague

Lecture based on ISLR book and its accompanying slides

http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

Agenda

Linear regression

- a model with single predictor and its extension toward multiple linear regression,
- parameters, interpretation, hypotheses testing,
- special issues: qualitative predictors, outliers, collinearity,
- linear model selection and regularization
 - subset selection,
 - regularization = shrinkage, lasso, ridge regression,
 - choosing the optimal model, estimating test error,

moving beyond linearity

- basically via basis expansion,
- polynomial regression, step functions,
- splines, local regression,
- generalized additive models.

Moving Beyond Linearity

- The truth is never linear! Or almost never!
- When the linearity assumption is not good enough . . .
 - polynomials
 - * expansion up to the n-th degree polynomial,
 - step functions
 - * cut the predictor into distinct regions, construct stepwise models,
 - splines
 - * piecewise polynomials with constraints,
 - local regression
 - * fit many local (typically linear) models along the range of the predictor.
 - generalized additive models
 - * extension of multiple linear regression to non-linear elements.
- offer a lot of flexibility,
- without losing the ease and interpretability of linear models.

Polynomial regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \epsilon_i$$

Degree-4 Polynomial

Polynomial regression

- ullet Create new variables $X_1=X$, $X_2=X^2$, etc. and then treat as multiple linear regression,
- not really interested in the coefficients,
- lacktriangle more interested in the fitted function values at any value x_0

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \dots + \hat{\beta}_d x_0^d$$

- Since $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_\ell$
 - pointwise-variances $Var[\hat{f}(x_0)]$ at any value x_0 can be estimated,
 - in the previous figure, $\hat{f}(x_0) \pm 2se[\hat{f}(x_0)]$ is shown,
- we either fix the degree d at some reasonably low value, else use cross-validation to choose d.

Step functions

- cut the independent variable into distinct regions, construct stepwise models,
- example of dummy variables:

$$C_0(X) = I(X < 35), \ C_1(X) = I(35 \le X < 50), \ \dots, \ C_K(X) = I(X \ge 35)$$

linear model with the dummy variables as predictors

$$y_i = \beta_0 + \beta_1 C_1(x_i) + \beta_2 C_2(x_i) + \dots + \beta_K C_K(x_i) + \epsilon_i$$

Piecewise Constant

Step functions

- Easy to work with, creates a series of dummy variables representing groups,
- useful way of creating interactions that are easy to interpret,
- for example, interaction effect of Year and Age:

$$I(Year < 2005) \cdot Age, \ I(Year \ge 2005) \cdot Age$$

- would allow for different linear functions in each age category.
- In R: I(year < 2005) or cut(age, c(18, 25, 40, 65, 90)),
- choice of cutpoints or knots can be problematic,
- For creating nonlinearities, smoother alternatives such as splines are available.

Piecewise polynomials

- Instead of a single polynomial in X over its whole domain,
- we can rather use different polynomials in regions defined by knots
 - knots = the points where the models/coefficients change,
- an example of a piecewise cubic polynomial (without constraints)

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c_i \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c_i \end{cases}$$

- better to add constraints to the polynomials, e.g. continuity,
- splines have the "maximum" amount of continuity
 - degree-d spline is a piecewise degree-d polynomial with the constraints of continuity as well as continuity in derivatives up to degree d-1 at each knot.

Piecewise polynomials

Difficult predictive tasks and risk of overfitting ...

- Guess the most difficult predictive task
 - 1. where and when a major earthquake strikes,
 - 2. tornado warnings for timely evacuation,
 - 3. presidential elections.

Difficult predictive tasks and risk of overfitting ...

- Guess the most difficult predictive task
 - 1. where and when a major earthquake strikes,
 - 2. tornado warnings for timely evacuation,
 - 3. presidential elections.
- Fukushima 2011 nuclear disaster [Silver: The signal and the noise]

Linear splines

- A linear spline with knots at ξ_k , $k=1,\ldots,K$ is a piecewise linear polynomial continuous at each knot,
- we can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+1} b_{K+1}(x_i) + \epsilon_i$$

• where the b_k are basis functions

$$b_1(x_i) = x_i$$

 $b_{k+1}(x_i) = (x_i - \xi_k)_+ \quad k = 1, \dots, K$

■ where the ()₊ means positive part, i.e.

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Linear splines

Cubic splines

- A cubic spline with knots at ξ_k , $k=1,\ldots,K$ is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot,
- we can represent this model with truncated power basis functions

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i$$

• where the b_k are basis functions

$$b_1(x_i) = x_i$$

$$b_2(x_i) = x_i^2$$

$$b_3(x_i) = x_i^3$$

$$b_{k+1}(x_i) = (x_i - \xi_k)_+^3 \quad k = 1, \dots, K$$

where

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Cubic splines

Natural cubic splines

- A natural cubic spline extrapolates linearly beyond the boundary knots
 - this adds $4 = 2 \times 2$ extra constraints,
 - allows to put more internal knots for the same degrees of freedom as a regular cubic spline.

Natural cubic splines

- Fitting splines in R with the package splines
 - bs(x, ...) for any degree splines,
 - $-\operatorname{ns}(x, \ldots)$ for natural cubic splines.

Natural Cubic Spline

Knot placement

- lacktriangle One strategy is to decide K, the number of knots, and then place them at appropriate quantiles of the observed X,
- lacktriangle a cubic spline with K knots has K+4 parameters or degrees of freedom,
- lacksquare a natural spline with K knots has K degrees of freedom,
- below comparison of a degree-14 polynomial (poly(age, deg=14)) and a natural cubic spline (ns(age, df=14)), each with 15df.

Smoothing splines

lacktriangle Consider this criterion for fitting a smooth function g(x) to some data

$$\underset{g \in S}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- the first term is RSS, and tries to make g(x) match the data at each x_i ,
- the second term is a roughness penalty and controls how wiggly $g(\boldsymbol{x})$ is,
- roughness is modulated by the tuning parameter $\lambda \geq 0$
 - * the smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda=0$,
 - * As $\lambda \to \infty$, the function g(x) becomes linear,
- lacktriangle the solution is a natural cubic spline, with a knot at every unique value of x_i
 - however, smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen,
 - in R, the function smooth.spline() fits a smoothing spline,
 - this function enables to specify the number of effective dfs instead of λ .

Smoothing splines

Smoothing Spline

Local regression

- lacktriangle Build separate linear fits over the range of X by weighted least squares,
- employ a sliding weight function (kernel), in R call loess().

Local Regression

Blue – the model used to generate the data; orange – the local regression estimate of the model, red – a local fit

Generalized additive models

- Allows for flexible nonlinearities in several variables,
- the additive structure of linear models retained

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i$$

Generalized additive models

- Can fit a GAM simply using, e.g. natural splines
 - $lm(wage \sim ns(year, df = 5) + ns(age, df = 5) + education)$
- coefficients not that interesting; fitted functions are,
- the previous plot was produced using plot.gam(),
- can mix terms, some linear, some nonlinear
 - and use anova() to compare models,
- Can use smoothing splines or local regression as well

```
gam(wage \sim s(year, df = 5) + lo(age, span = .5) + education)
```

- low-order interactions can be included in GAM in a natural way
 - using, e.g. bivariate smoothers or interactions of the form ns(age,df=5):ns(year,df=5).

The main references

:: Resources (slides, scripts, tasks) and reading

- G. James, D. Witten, T. Hastie and R. Tibshirani: **An Introduction to Statistical Learning with Applications in R.** Springer, 2014.
- K. Markham: In-depth Introduction to Machine Learning in 15 hours of Expert Videos. Available at R-bloggers.