$12a_{1157} (K12a_{1157})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{19} + u^{18} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{19} + u^{18} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{10} - 7u^{8} + 16u^{6} - 13u^{4} + u^{2} + 1 \\ u^{10} - 6u^{8} + 11u^{6} - 8u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{11} + 8u^{9} - 22u^{7} + 24u^{5} - 9u^{3} + 2u \\ -u^{13} + 9u^{11} - 29u^{9} + 40u^{7} - 22u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{18} + 12u^{16} - 57u^{14} + 138u^{12} - 185u^{10} + 142u^{8} - 62u^{6} + 12u^{4} - u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $4u^{14} - 44u^{12} + 184u^{10} - 364u^8 + 4u^7 + 344u^6 - 24u^5 - 136u^4 + 40u^3 + 16u^2 - 16u - 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{19} - 7u^{18} + \dots + 72u - 41$
$c_2, c_3, c_8 \\ c_9$	$u^{19} + u^{18} + \dots - 2u - 1$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{11} \\ c_{12}$	$u^{19} + u^{18} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 17y^{18} + \dots + 26586y - 1681$
$c_2, c_3, c_8 \\ c_9$	$y^{19} + 23y^{18} + \dots - 2y - 1$
$c_4, c_5, c_6 \\ c_7, c_{10}, c_{11} \\ c_{12}$	$y^{19} - 29y^{18} + \dots - 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.845643 + 0.288890I	-10.86190 + 3.90709I	-14.5654 - 4.4789I
u = -0.845643 - 0.288890I	-10.86190 - 3.90709I	-14.5654 + 4.4789I
u = 0.747058 + 0.191235I	-2.97563 - 2.48429I	-13.4435 + 6.6309I
u = 0.747058 - 0.191235I	-2.97563 + 2.48429I	-13.4435 - 6.6309I
u = 1.35365	-7.74124	-9.76410
u = -1.387880 + 0.077610I	-10.14090 + 3.44117I	-14.0567 - 4.3682I
u = -1.387880 - 0.077610I	-10.14090 - 3.44117I	-14.0567 + 4.3682I
u = -0.604746	-1.09372	-8.26920
u = 1.43278 + 0.12906I	-18.5196 - 5.4586I	-15.6445 + 3.0996I
u = 1.43278 - 0.12906I	-18.5196 + 5.4586I	-15.6445 - 3.0996I
u = 0.263289 + 0.450878I	-7.42738 - 1.46197I	-9.51323 + 3.95730I
u = 0.263289 - 0.450878I	-7.42738 + 1.46197I	-9.51323 - 3.95730I
u = -0.156591 + 0.294132I	-0.229049 + 0.841361I	-5.82037 - 7.86296I
u = -0.156591 - 0.294132I	-0.229049 - 0.841361I	-5.82037 + 7.86296I
u = -1.83296	-19.7038	-10.2700
u = 1.83960 + 0.01849I	17.2008 - 3.9150I	-14.0216 + 3.6447I
u = 1.83960 - 0.01849I	17.2008 + 3.9150I	-14.0216 - 3.6447I
u = -1.85060 + 0.03225I	8.56699 + 6.28958I	-15.7829 - 2.5323I
u = -1.85060 - 0.03225I	8.56699 - 6.28958I	-15.7829 + 2.5323I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{19} - 7u^{18} + \dots + 72u - 41$
$c_2, c_3, c_8 \ c_9$	$u^{19} + u^{18} + \dots - 2u - 1$
c_4, c_5, c_6 c_7, c_{10}, c_{11} c_{12}	$u^{19} + u^{18} + \dots - 2u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 17y^{18} + \dots + 26586y - 1681$
$c_2,c_3,c_8 \ c_9$	$y^{19} + 23y^{18} + \dots - 2y - 1$
c_4, c_5, c_6 c_7, c_{10}, c_{11} c_{12}	$y^{19} - 29y^{18} + \dots - 2y - 1$