Welcome to

Seattle Area Single Cell (SASC) User Group March 13, 2025

Our disclosures

- BBI has a fee-for-service single-cell sequencing platform
 - We offer non-commercial combinatorial indexing methods
 - We work closely with the Trapnell Lab who develop Monocle3
- In the past, some of us have worked with 10X Genomics
 3' Gene Expression
 - Performed most analyses in the Bioconductor Single Cell Universe (e.g. Scater, Scran, Scuttle, DropletUtils)

SASC Goals

- We are striving for this user group meeting be technology (and software) agnostic
 - Focus on common challenges

Agenda

- Brief introduction to normalization
- Workshop/tutorial
- Networking (remaining time)
 - Refreshments sponsored by Illumina thank you!

Favorite online resources

https://bioconductor.org/books/release/OSCA/

Orchestrating Single-Cell Analysis with Bioconductor

https://www.sc-best-practices.org/preamble.html

Single-cell best practices

Awesome Single Cell

Community-curated list of software packages and data resources for single-cell, including RNA-seq, ATAC-seq, etc.

https://github.com/seandavi/awesome-single-cell?tab=readme-ov-file

Normalization

Great video on youtube: https://www.youtube.com/watch?v=huxkc2GH4lk
Many slides shamelessly lifted and condensed from Florian Wagner's video above!

Defining "normalization"

Scaling → removing correlation with sequencing depth

'Size Factor'

e.g. sum of UMI counts

Transformation → shift the weight

Raw data	_				
Kaw data	_				-
	_	3 3 6 /	_	-	_
	$\Gamma \sim c$	3 VV			_

Gene 1

Gene 2

Cell Type A	Cell Type B	Δ
1	2	1
100	200	100

Log₂ transform

Cell Type A	Cell Type B	Δ
0	1	1
6.64	7.64	1

- Simple log transformation → applied to each measurement independently
- Log transformation weights fold change, not expression level

Shifted logarithm, aka library size normalization

$$f(y) = \log\left(\frac{y}{s} + y_0\right)$$

- Y = raw counts
- S = size factor
- y_0 = pseudo-count

Deconvolution, aka pooling-based size factor

- Estimates size factors based on a linear regression over genes for pools of cells
- Aims to better account for differences in count depths/composition biases across
 Lun, Bach & Marioni (2016)

Pearson residuals (e.g. SCTransform)

- Each gene contributes to the analysis according to how much evidence there
 is that it is non-uniformly expressed
- Favors genes that are expressed in only a small fraction of cells
- Lowly expressed genes with very cell-type-specific expression patterns can contribute more to the analysis than highly expressed genes with broader expression patterns
- In principle, very useful for identification of rare cell types
- In practice, really depends on the dataset
 - subject to overcorrect especially on sparse data
 - computationally expensive

Noisy data!

Data: Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells (Klein et al., Cell 2015)

- Synthetic transcriptomes
- All variation is technical

True biological differences or technical noise?

The more highly expressed a gene, the more accurately it can be measured

Data: Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells (Klein et al., Cell 2015)

Tutorial

