Question answering: Structured vs Unstructured

Al project - Academic year 2020/2021

https://github.com/rpo19/AIQuestionAnswering

Christian Bernasconi 816423 Gabriele Ferrario 817518 Riccardo Pozzi 807857 Marco Ripamonti 806785

Objectives

- Explore Open Domain Question Answering approaches for both Knowledge
 Graph Question Answering (KGQA) and Free Text Question Answering (FTQA)
- Implementation of a KGQA approach (structured data)
- Implementation of a FTQA approach (unstructured data)
- Comparison between the two approaches

What is Question Answering?

Information Retrieval + Natural Language Processing

Domain, papers and references

Reference papers - KGQA

- 1. Bin Fu , Yunqi Qiu, Chengguang Tang, Yang Li, Haiyang Yu, Jian Sun, "A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges" 2020 https://arxiv.org/pdf/2007.13069.pdf
- Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi, Jens Lehmann, Asja Fischer, "Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs" 2019 -https://arxiv.org/pdf/1907.09361.pdf
- 3. Weiguo Zheng, Mei Zhang, "Question Answering over Knowledge Graphs via Structural Query Patterns" 2019 https://arxiv.org/pdf/1910.09760.pdf
- 4. Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, Tiejun Zhao "Constraint-Based Question Answering with Knowledge Graph" https://www.aclweb.org/anthology/C16-1236.pdf
- 5. Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann, "LC-QuAD: A Corpus for Complex Question Answering over Knowledge Graphs" http://lc-quad.sda.tech/static/ISWC2017 paper 152.pdf

About Knowledge Graph QA

Information from a **Knowledge Graph**.

Three main categories:

- Traditional methods
- Information retrieval based
- Neural

KGQA approaches

- Traditional methods:
 - use of rules or templates (manually defined)
 - works well with simple questions

Simple question: Was Obama born in Hawaii?

Information retrieval based

- NER + NEL → subgraphs as candidate answers → most relevant answer
- no manually defined templates + can't handles complex questions

Neural

- Classification based: relation classification + entity prediction (NER + NEL)
 - works well with simple questions
- Ranking based: most probable formal query wrt question, then ranked with a Neural Network.
 - can answer complex queries + need to reduce possible queries' set cardinality
- Translation based: machine translation task (e.g. seq2seq / Transformers)
 - simplified pipeline + need a large fully annotated dataset + not flexible to KB's changes

Benchmark datasets

- **WebQuestions**: questions fetched from the Google Suggest API. Only provides annotated answers without a formal query. Used as a benchmarking dataset for KGQA on **Freebase**
- QALD-1to9: from QALD-1 with easier questions to QALD-9 with more complex questions including comparative, superlative and inference constraints. Used as a benchmarking dataset for KGQA on DBPedia
- **LC-QuAD**: LargeScale Complex Question Answering Dataset is a benchmarking dataset for KGQA on **DBPedia**. It comprises 5000 pairs of question and its corresponding SPARQL query and 82% of its questions are complex questions.

```
"_id": "1501",
    "_id": "1501",
    "corrected_question": "How many movies did Stanley Kubrick direct?",
    "intermediary_question": "How many <movies> are there whose <director> is <Stanley Kubrick>?",
    "sparql_query": "SELECT DISTINCT COUNT(?uri) WHERE {?uri <http://dbpedia.org/ontology/director> <http://dbpedia.org/resource/Stanley_Kubrick> . }",
    "sparql_template_id": 101
},
```

^{[2] &}quot;Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs"

^{[5] &}quot;LC-QuAD: A Corpus for Complex Question Answering over Knowledge Graphs"

Reference papers - FTQA

- 6. Zahra Abbasiantaeb, Saeedeh Momtazi, "Text-based question answering from information retrieval and deep neural network perspectives: A survey" 2021 https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1412
- 7. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding" 2018 https://arxiv.org/abs/1810.04805
- 8. Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf, "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter" 2020 https://arxiv.org/abs/1910.01108
- 9. Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, Percy Liang "SQuAD: 100,000+Questions for Machine Comprehension of Text" 2016 https://arxiv.org/abs/1606.05250

About Free Text QA

^{[6] &}quot;Text-based question answering from information retrieval and deep neural network perspectives: A survey"

About Free Text QA

Answer extraction: compute the similarity of the question and the answer

Information Retrieval:

• Language Model based: *P(Q|A)*

Deep Learning:

- Representation based: fixed-dimensional vector representation for both the question and the candidate answer sentences separately
- Interaction based: compute the interaction between each term of the question and the candidate answer sentences
- Hybrid (Representation + Interaction)

About Free Text QA - BERT for Question Answering

"Bert Model with a span classification head on top"[10] for Question Answering

^{[7] &}quot;Bert: Pre-training of deep bidirectional transformers for language understanding"

^[10] https://huggingface.co/transformers/model_doc/bert.html?highlight=bertforquestionanswering#bertforquestionanswering

Benchmark datasets

- WikiQA: from Bing query logs
- TREC-QA: from the Text REtrieval Conference (TREC) 8–13 QA dataset
- MovieQA: from diverse data sources
- InsuranceQA: insurance domain (close domain)
- Yahoo! Dataset: collected from Yahoo! Answers QA system. Yahoo!
- **SQuAD**: questions posed by crowdworkers on a set of **Wikipedia** articles

```
"title":"Super_Bowl_50",
"context":"Super Bowl 50 was an American football game ...",
"question":"Which NFL team represented the AFC at Super Bowl 50?",
"answers":[
    "..."
]
```

Methodology - KGQA

Implementation of a KGQA approach

Question Answering over Knowledge Graphs via **Structural Query Patterns** is the implementation adopted for this project.

- Implementation was **feasible** with respect to other approaches (even though it was still hard to implement the whole pipeline)
- Performance achieved by the approach are pretty good on state of the art benchmarking datasets

Method	LC-QuAD			QALD-8			QALD-9		
	Precision	Recall	F1-Measure	Precision	Recall	F1-Measure	Precision	Recall	F1-Measure
Frankenstein	0.480	0.490	0.485	(Mari	=	_	-	_	<u>=</u>
qaSearch	0.357	0.336	0.344	0.243	0.243	0.243	0.198	0.191	0.193
qaSQP	0.748	0.704	0.718	0.439	0.439	0.439	0.401	0.413	0.405
qaSQP-CE	0.835	0.813	0.827	0.558	0.663	0.620	0.522	0.625	0.568

KGQA via Structural Query Patterns

The idea of the approach is to aid the construction of the query graph with the structural pattern of the given input question.

KGQA via Structural Query Patterns

Q: "Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"

The first step of the process is the identification and **classification** of what is referenced as "**Structural Query Pattern**" of the question given as input.

Example:

Q: "What university campuses are situated in Indiana?"

SPARQL query:

```
SELECT DISTINCT ?uri WHERE {
    ?uri dbo:campus dbr:Indiana .
    ?uri rdf:type dbo:University .
}
```

The first step of the process is the identification and **classification** of what is referenced as "**Structural Query Pattern**" of the question given as input.

Example:

Q: "What university campuses are situated in Indiana?"

SPARQL query:

The first step of the process is the identification and **classification** of what is referenced as "**Structural Query Pattern**" of the question given as input.

Example:

Q: "What university campuses are situated in Indiana?"

SPARQL query:

```
SELECT DISTINCT ?uri WHERE {
    ?uri dbo:campus dbr:Indiana .
    ?uri rdf:type dbo:University .
}
```


[3] Weiguo Zheng, Mei Zhang

Ensamble: LSTM with attention + CNN on text

Pattern

^{[3] &}quot;Question Answering over Knowledge Graphs via Structural Query Patterns"

[7] "Bert: Pre-training of deep bidirectional transformers for language understanding"

KGQA via Structural Query Patterns

Q: "Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"

KGQA - NER and NEL

How to keep only useful entities for the query graph construction?

Example:

Q: "What is the <u>lake</u> of the <u>city</u> of <u>Lecco?"</u>

NER: Lecco

NEL: , http://dbpedia.org/resource/Lecco">http://dbpedia.org/resource/Lecco

RESULT: http://dbpedia.org/resource/Lecco

KGQA via Structural Query Patterns

Q: "Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"

Input:

- empty query graph: →
- question: "Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"
- entities:
 - dbr:Rashid_Behbudov_State_Song_Theatre
 - dbr:Baku_Puppet_Theatre

Output:

labeled query graph:

Non-redundancy assumption: The entity $e \in G$ identified for the question q is not an intermediate node in the structural query pattern p

→ Select non-intermediate nodes NS

Identify type of relation of NS: outgoing

→ Extract all possible relations according to a candidate entity ce and the relations direction. The query contains the entire pattern p.

```
http://dbpedia.org/ontology/abstract

http://dbpedia.org/ontology/address

http://dbpedia.org/ontology/alternativeName

dbr:Baku_Puppet_Theatre ?pred ?obj.

?1 ?2 ?obj.

FILTER( ... )

http://dbpedia.org/ontology/seatingCapacity

http://dbpedia.org/ontology/architect

http://dbpedia.org/ontology/city

http://dbpedia.org/ontology/country

http://dbpedia.org/ontology/type

http://dbpedia.org/ontology/type
```

 \rightarrow Find the most similar relation r with respect to the question

birthDate → [birth, date] where → place when → date

Entities are removed from text.

http://dbpedia.org/ontology/abstract

http://dbpedia.org/ontology/address

http://dbpedia.org/ontology/alternativeName

http://dbpedia.org/ontology/seatingCapacity

http://dbpedia.org/ontology/architect

http://dbpedia.org/ontology/city

http://dbpedia.org/ontology/country

http://dbpedia.org/ontology/type

http://www.w3.org/ns/prov#wasDerivedFrom

→ Assemble ce and r into the graph

If an entity is present in the question it will be used to label the node. Otherwise it will be considered as a query variable.

 \rightarrow If p has unlabeled edges start a **new iteration** considering NS as the adjacent node to the explored graph B and all entities found as object for the first relation

- ... repeat procedure ...
- Finally, when all edges are labeled, assemble last entities in the remaining node

KGQA via Structural Query Patterns

Q: "Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"

KGQA - Query Construction

Input:

- labeled query graph:
- question: "Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"

dbo:country

dbr:Rashid_Behbudov_State_Song_Theatre

Output:

Query:

```
SELECT DISTINCT ?target WHERE {
   dbr:Rashid_Behbudov_State_Song_Theatre dbo:country ?target.
   dbr:Baku_Puppet_Theatre dbo:country ?target.
}
```

dbr:Baku_Puppet_Theatre

KGQA - Query Construction

→ Target variable identification

→ Body construction via generation of triple for each edge

```
dbr:Rashid_Behbudov_State_Song_Theatre dbo:country ?target.
   dbr:Baku_Puppet_Theatre dbo:country ?target.
}
```

KGQA - Query Construction

→ Head construction

"Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"

SELECT DISTINCT ?target WHERE

Other cases:

- "How many ...?" / "What is the number of ...?" / "Give me a count of ...?"
 - → SELECT COUNT (DISTINCT ?target)
- "Is Barack Obama ... ?" → ['VBZ', 'NNP', 'NNP', ...] →

 ASK

KGQA via Structural Query Patterns

Q: "Rashid Behbudov State Song Theatre and Baku Puppet Theatre can be found in which country?"

Methodology - FTQA

The idea of the approach tries to answer questions using **Wikipedia** as retrieval base and an **extractive QA model**.

Document retrieval

Document processing

Model answer prediction

Q: "How did Gandhi die?"

Document retrieval

Document processing

Model answer prediction

FTQA - Document retrieval

Modality 1: use Wikipedia search API

FTQA - Document retrieval

Modality 2: use NER and NEL with DBPedia Spotlight to locate the Wikipedia resource

Example:

Q: "In which city of the <u>Hawaii</u> was <u>Barack Obama</u> born?"

Noun chunks: prepositional complement - prepositional object - subject

Main entity: http://dbpedia.org/resource/Barack_Obama → https://en.wikipedia.org/wiki/Barack_Obama

^{*} https://spacy.io/usage/linguistic-features#noun-chunks

Q: "How did Gandhi die?"

Document retrieval

Document processing

Model answer prediction

https://en.wikipedia.org/wiki/ Mahatma_Gandhi

Q: "How did Gandhi die?"

Q: "How did Gandhi die?"

FTQA - Model

As a core component of the approach **DistilBert** has been chosen:

- a distilled version of BERT for faster inference and smaller model size
- with a span classification head for extractive question-answering
- fine tuned on SQuAD

Rank	Model	EM	F1
	Human Performance	86.831	89.452
	Stanford University		
	(Rajpurkar & Jia et al. '18)		
1	FPNet (ensemble)	90.871	93.183
Feb 21, 2021	Ant Service Intelligence Team		
2	IE-NetV2 (ensemble)	90.860	93.100
May 16, 2021	RICOH_SRCB_DML		
Х	BERT		88.7
Υ	Distilbert		87.1

Q: "How did Gandhi die?"

Evaluation and comparison

KGQA - Evaluation on LC-QuAD

LC-QuAD test	Precision	Recall	F1
Pattern classification	0.815	0.786	0.800
Question type classification	0.949	0.952	0.950
NEL (avg ± stddev) *	0.604 ± 0.461	0.582 ± 0.453	0.585 ± 0.448
Predicates choice (avg ± stddev) *	0.204 ± 0.376	0.185 ± 0.348	0.189 ± 0.348

Problem:

*

dataset refers to *DBpedia 04-2016* → differences in the KBs → differences in entities/relations

KGQA - Evaluation on LC-QuAD

Problem: dataset refers to *DBpedia 04-2016* → differences in the KB → differences in answers

Proposed approach: try to <u>partially</u> avoid the problem by comparing labeled graphs

LC-QuAD test: predicted graph vs expected	Accuracy
Isomorphic graph	0.693
Permissive strict (different variable names accepted)	0.068
Permissive (variable instead of entity accepted)	0.092
Permissive (variable always accepted)	0.095
Permissive (variable always equal to variable)	0.068

FTQA - Evaluation on SQuAD

Problems:

- dataset refers to Wikipedia 2016 → differences in Wikipedia → differences in answers
- the actual implementation requires too much time for a test on an entire dataset

Comparison - FTQA vs KGQA

To make a **fair comparison** an ad-hoc test set has been constructed including **44 questions** that both the approaches have the **potential** to answer correctly.

	KG top1	FT span top1	FT wiki top1	FT wiki top3	FT nernel top1	FT nernel top3
avg *	1.205	1.300	0.659	1.0	0.5	0.932
percentages *	36.4 6.8 56.8	34.1 2.3 63.6	63.6 6.8 29.5	40.9 18.2 40.9	75.0 0 25.0	43.2 20.5 36.4
avg time	1.382	0.572	15.453		24.358	

Pros:

can answer to more complex questions

Pros:

- can answer to more complex questions
- can answer to count-based and binary questions

Pros:

- can answer to more complex questions
- can answer to count-based and binary questions

Cons:

patterns could be misclassified

Q:"What is the postal code of the capital of Italy?" Correct pattern: P2 Predicted pattern: P1 Q:"Who is the producer of album which has the song Smooth Criminal?" Smooth Criminal Correct pattern: P2 Predicted pattern: P4 Q:"What is the language spoken in the country of Machu Picchu?" Machu_Picchu Correct pattern: P2 Predicted pattern: P1

Pros:

- can answer to more complex questions
- can answer to count-based and binary questions

Cons:

- patterns could be misclassified
- correct relations could be missed

Q:"How many universities are there whose country's capital is Oslo?"

Problem: Oslo's relation should be *capital*

Q:"List the places where the relatives of Christian De Sica died?"

Problem: the second relation should be deathPlace

Q:"When did Mussolini die?"

Problem: date has a higher score than deathDate

Pros:

- can answer to more complex questions
- can answer to count-based and binary questions

Cons:

- patterns could be misclassified
- correct relations could be missed
- multiple entities identified instead of one

Q:"Who is the producer of Sweeney Todd: The Demon Barber Of Fleet Street?"

Correct entity:

dbr:Sweeney_Todd:_The_Demon_Barber_of_Fleet_Street_(2007_film)

Linked entities:

- dbr:Sweeney_Todd
- dbr:Etrigan_the_Demon
- dbr:Fleet_Street

Pros:

can understand well the type of question

Q:"Who is Cleopatra's father?"

A: Ptolemy XII Auletes, Juba II, Caesarion, Ptolemy XII...

Q:"Where was Mussolini born?"

A: Italy, Milan, Czechoslovakia, Israel, Dovia di Predappio...

Q:"When was Bill Gates born?"

A: 1974, 1997, 1975, October 28 - 1955...

Pros:

- can understand well the type of question
- text has more info for answering to more specific questions

Q:"What did gandhi study?"

A: law and jurisprudence

"At UCL, he studied law and jurisprudence and was invited to enroll at Inner Temple with the intention of becoming a barrister. His childhood shyness and self-withdrawal had continued through his teens. He retained these traits when he arrived in London, but joined a public speaking practice group and overcame his shyness sufficiently to practise law."

Observation: the more specific relation about his studies which can be found in DBPedia is *almaMater*:

dbo:almaMater

- dbr:University College London
- dbr:Inner_Temple

Pros:

- can understand well the type of question
- text has more info for answering to more specific questions

Cons:

difficulties in answering questions which require lists

Q:"What companies did Elon Musk found?"

A: Neuralink and OpenAl

"Elon Reeve Musk FRS (/ˈiːlɒn/ EE-lon; born June 28, 1971) is an entrepreneur and business magnate. He is the founder, CEO, and chief engineer at SpaceX; early stage investor,[note 1] CEO, and product architect of Tesla, Inc.; founder of The Boring Company; and co-founder of Neuralink and OpenAl. A centibillionaire, Musk is one of the richest people in the world."

Observation: answers should be contiguous in the text, but it isn't a sufficient condition

Pros:

- can understand well the type of question
- text has more info for answering to more specific questions

Cons:

- difficulties in answering questions which require lists
- can't answer to complex questions
- can't answer to binary questions
- can't answer to count-based questions

Conclusions & Future improvements

Conclusions

- implementing an open domain question answering system involves **many tasks and steps** (i.e. NER/NEL, predictive models, SPARQL, ...)
- all the steps should be very solid
- relation linking is a crucial step of KGQA
- FTQA is less suitable to **complex questions** (i.e. involving multiple entities)
- KGQA has fastest response time than FTQA

Future improvements

FTQA:

- improve relevant documents retrieval
- filter the most relevant sections

KGQA:

- NER and NEL improvements
- improve choice of most relevant relation
- handle more Structured Query Patterns
- handle more question types (e.g. "What is the highest mountain in Asia?")

Demo application

Demo application

Question answering Al project - Academic year 2020/2021 This demo contains a Knowledge Graph Question answering approach and a Text Based Question answering approach developed for the course of Artificial Intelligence of the academic year 2020/2021. Knowledge Graph DBPedia BERT Python Angular Authors: Christian Bernasconi - Gabriele Ferrario - Riccardo Pozzi - Marco Ripamonti GitLab repository: https://gitlab.com/unizzan/master_proj_ai Knowledge base question answering Free text question answering What award was won by the father of Angelina Jolie? Ask Angelina_Jolie <> SPARQL Answei http://dbpedia.org/resource/National_Medal_of_Arts

Demo application

Question answering Al project - Academic year 2020/2021 This demo contains a Knowledge Graph Question answering approach and a Text Based Question answering approach developed for the course of Artificial Intelligence of the academic year 2020/2021. Knowledge Graph DBPedia BERT Python Angular Authors: Christian Bernasconi - Gabriele Ferrario - Riccardo Pozzi - Marco Ripamonti GitLab repository: https://gitlab.com/unizzan/master_proj_ai 0 Knowledge base question answering Free text question answering NER and NEI Where was Barack Obama born? Ask Answer Section Span Honolulu, Hawaii 0.938 Barack Obama 441 -7 457 2 Kansas Family and personal life 414 -420 0.881 2448 -Indonesia Education 2457 Foreign policy 2424 Russia 2430

Thanks!