

Departamento de Matemática da Universidade de Aveiro

Matemática Discreta 2020/2021 - UC 47166 (1ºAno/2ºSem)

EXAME - Exemplo de Resolução

07/07/2021 - Duração: 2h 30m

Nome:

NMec:

Curso:

1. Sejam, A um conjunto e \mathcal{R} uma relação binária definida em $\mathcal{P}(A)$ (conjuntos das partes de A) por

$$X \mathcal{R} Y$$
 se e só se $X \cup \{3\} = Y \cup \{3\},$

para quaisquer $X, Y \in \mathcal{P}(A)$.

- [1.5] (a) Mostre que \mathcal{R} é uma relação de equivalência.
- [1.5] (b) Considere $A = \{1, 2, 3\}$. Determine $\mathcal{P}(A)/\mathcal{R}$.

1.(a)

Dado $X \in \mathcal{P}(A)$, verifica-se $X \cup \{3\} = X \cup \{3\}$, logo, para qualquer $X, X \mathcal{R} X$ e, portanto, \mathcal{R} é reflexiva.

Dados $X, Y \in \mathcal{P}(A)$, tem-se que, se $X \cup \{3\} = Y \cup \{3\}$, então $Y \cup \{3\} = X \cup \{3\}$. Ou seja, se $X \mathcal{R} Y$, então $Y \mathcal{R} X$. Logo, \mathcal{R} é simétrica.

Dados $X,Y,Z\in\mathcal{P}(A)$, tais que $X\mathcal{R}Y$ e $Y\mathcal{R}Z$, tem-se que $X\cup\{3\}=Y\cup\{3\}$ e $Y\cup\{3\}=Z\cup\{3\}$. Consequentemente, $X\cup\{3\}=Z\cup\{3\}$. Logo, para quaisquer $X,Y,Z\in\mathcal{P}(A)$, se $X\mathcal{R}Y$ e $Y\mathcal{R}Z$, então $X\mathcal{R}Z$, ou seja, \mathcal{R} é transitiva.

1.(b)

Com
$$A = \{1, 2, 3\}$$
, tem-se $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

Para determinar o conjunto quociente, $\mathcal{P}(A)/\mathcal{R}$, ou seja, o conjunto de todas as classes de equivalência, é necessário obter cada classe de equivalência $[X]_{\mathcal{R}}$, para qualquer $X \in \mathcal{P}(A)$.

Por definição,

$$\begin{split} [X]_{\mathcal{R}} &= & \{Y \in \mathcal{P}(A) \mid X\mathcal{R}Y\} \\ &= & \{Y \in \mathcal{P}(A) \mid X \cup \{3\} = Y \cup \{3\}\} \;. \end{split}$$

Ora, tem-se que $\emptyset \cup \{3\} = \{3\} = \{3\} \cup \{3\}$, donde $[\emptyset]_{\mathcal{R}} = [\{3\}]_{\mathcal{R}}$.

Como $\{1\} \cup \{3\} = \{1,3\} = \{1,3\} \cup \{3\}$, então $[\{1\}]_{\mathcal{R}} = [\{1,3\}]_{\mathcal{R}}$

$$E\{2\} \cup \{3\} = \{2,3\} = \{2,3\} \cup \{3\}, \text{ pelo que } [\{2\}]_{\mathcal{R}} = [\{2,3\}]_{\mathcal{R}}.$$

Atendendo a que $\{1,2\} \cup \{3\} = \{1,2,3\} = \{1,2,3\} \cup \{3\}$, vem $[\{1,2\}]_{\mathcal{R}} = [\{1,2,3\}]_{\mathcal{R}}$.

Assim,

$$\begin{split} \mathcal{P}(A)/\mathcal{R} &= \{[\emptyset]_{\mathcal{R}}, [\{1\}]_{\mathcal{R}}, [\{2\}]_{\mathcal{R}}, [\{1,2\}]_{\mathcal{R}} \} \\ &= \{\{\emptyset, \{3\}\}, \{\{1\}, \{1,3\}\}, \{\{2\}, \{2,3\}\}, \{\{1,2\}, \{1,2,3\}\} \} \; . \end{split}$$

- 2. Admita que o universo do discurso é o conjunto de todas as pessoas. Sejam x, y, z, símbolos de variáveis e considere definidos os seguintes predicados:
 - $B(x) \equiv "x \text{ \'e um barbeiro"};$
 - $S(x,y) \equiv$ "x barbeia y";
- [1.5] (a) Usando os predicados definidos exprima na lógica de primeira ordem (LPO) as afirmações:
 - i. Todo o barbeiro faz a barba de todas as pessoas que não se barbeiam.

$$\forall x \ (B(x) \Rightarrow \forall y \ (\neg S(y, y) \Rightarrow S(x, y)))$$

ii. Nenhum barbeiro faz a barba de uma pessoa que se barbeia a si própria.

$$\neg \exists x \ (B(x) \land \exists y \ (S(y,y) \land S(x,y)))$$

[2.5] (b) Na LPO considere que são válidas as seguintes fórmulas:

F1: $\forall x \ \forall y \ (S(x,y) \Rightarrow S(y,x)),$

F2: $\forall x \ \forall y \ \forall \ z \ ((S(x,y) \land S(y,z)) \Rightarrow S(x,z)),$

F3: $\forall x \; \exists y \; S(x,y),$

T: $\forall x \ S(x,x)$.

Usando o princípio da resolução mostre que T é consequência lógica de F1, F2 e F3.

Para mostrar que T é consequência lógica de F1, F2 e F3, vamos mostrar que

$$\neg ((\mathbf{F1} \wedge \mathbf{F2} \wedge \mathbf{F3}) \Rightarrow \mathbf{T}) \equiv \mathbf{F1} \wedge \mathbf{F2} \wedge \mathbf{F3} \wedge \neg \mathbf{T}$$

é uma contradição, ou seja, que o conjunto de fórmulas

$$\{F1, F2, F3, \neg T\}$$

é inconsistente.

Ora,

$$\neg \mathbf{T} \equiv \exists x \ \neg S(x, x).$$

Temos de transformar todas as fórmulas na forma normal de Skolem.

A fórmula **F1** é equivalente a

$$\forall x \ \forall y \ (\neg S(x,y) \lor S(y,x)),$$

e de F2 tem-se

$$\forall x \ \forall y \ \forall \ z \ (\neg S(x,y) \lor \neg S(y,z) \lor S(x,z)).$$

Introduzindo um símbolo de função f de um argumento, a partir de ${\bf F3}$ obtém-se

$$\forall x \ S(x, f(x)).$$

Finalmente, introduzindo uma constante c, a partir de $\neg \mathbf{T}$ tem-se

$$\neg S(c,c)$$
.

Assim, renomeando os símbolos de variáveis, obtêm-se as cláusulas

$$\underbrace{\neg S(x,y) \lor S(y,x)}_{C_1}, \quad \underbrace{\neg S(u,v) \lor \neg S(v,w) \lor S(u,w)}_{C_2}, \quad \underbrace{S(z,f(z))}_{C_3}, \quad \underbrace{\neg S(c,c)}_{C_4}.$$

Um unificador mais geral (u.m.g.) de $\{S(x,y), S(z,f(z))\}$ é a substituição $\sigma_1 = \{z/x, f(z)/y\}$, e a resolvente binária das cláusulas $C_1\sigma_1$ e C_3 é a cláusula C_5 :

$$C_1\sigma_1: \neg S(z, f(z)) \lor S(f(z), z)$$
 $C_3: S(z, f(z))$
 $C_5: S(f(z), z)$

Um u.m.g. de $\{S(u,v), S(z,f(z))\}$ é a substituição $\sigma_2 = \{z/u, f(z)/v\}$, e a resolvente binária das cláusulas $C_2\sigma_2$ e C_3 é a cláusula C_6 :

$$C_2\sigma_2: \neg S(z, f(z)) \lor \neg S(f(z), w) \lor S(z, w)$$

$$C_3: S(z, f(z))$$

$$C_6: \neg S(f(z), w) \vee S(z, w)$$

Um u.m.g. de $\{S(f(z), z), S(f(z), w)\}$ é a substituição $\sigma_3 = \{z/w\}$, e a resolvente binária das cláusulas C_5 e $C_6\sigma_3$ é a cláusula C_7 :

$$C_5:$$
 $S(f(z),z)$ $C_6\sigma_3:$ $\neg S(f(z),z) \lor S(z,z)$ $C_7:$ $S(z,z)$

Finalmente, um u.m.g. de $\{S(z,z), S(c,c)\}$ é a substituição $\sigma_4 = \{c/z\}$, e a resolvente binária das cláusulas $C_7\sigma_4$ e C_4 é a cláusula vazia \Diamond (=falso):

$$C_7\sigma_4: S(c,c)$$

 $C_4: \neg S(c,c)$

 \Diamond

Donde, provamos que o conjunto de cláusulas $S = \{C_1, C_2, C_3, C_4\}$ é inconsistente, isto é, que

$$\mathbf{F1} \wedge \mathbf{F2} \wedge \mathbf{F3} \wedge \neg \mathbf{T}$$

é uma contradição.

Logo,

$$(\mathbf{F1} \wedge \mathbf{F2} \wedge \mathbf{F3}) \Rightarrow \mathbf{T}$$

é uma tautologia, ou seja, T é consequência lógica de F1, F2 e F3.

Formulário:
$$\sum_{n=0}^{\infty} \alpha^n x^n = \frac{1}{1-\alpha x} \; , \qquad \sum_{n=0}^{\infty} \binom{n+m-1}{n} \alpha^n x^n = \frac{1}{(1-\alpha x)^m} \; .$$

[2.5] 3. De quantas maneiras se podem colocar 15 bolas iguais em 5 caixas, de modo que fique pelo menos uma bola na primeira caixa e no máximo 3 na segunda caixa, não havendo restrições nas restantes caixas? Justifique devidamente.

A solução do problema é dada pelo coeficiente de x^i x^j x^k x^l x^m , com $i=1,2,3,\ldots,15$ (possibilidades para o número de bolas na primeira caixa), j=0,1,2,3 (possibilidades para o número de bolas na segunda caixa), $k,l,m=0,1,2,3,\ldots,14$ (possibilidades para o número de bolas nas restantes caixas), tal que, i+j+k+l+m=15, no desenvolvimento em série de potências de x da função geradora $\mathcal{F}(x)$:

$$\mathcal{F}(x) = (x + x^2 + \dots + x^{15}) (1 + x + x^2 + x^3) (1 + x + x^2 + \dots + x^{14})^3$$

Ou seja, pretende-se determinar o coeficiente de x^{15} em $\mathcal{F}(x)$:

$$\mathcal{F}(x) = \frac{x(1-x^{15})}{1-x} \frac{1-x^4}{1-x} \left(\frac{1-x^{15}}{1-x}\right)^3$$

$$= (x-x^5) \frac{1}{(1-x)^5} (1-x^{15})^4$$

$$= (x-x^5) \sum_{n=0}^{\infty} {n+5-1 \choose n} x^n \sum_{k=0}^{4} {4 \choose k} 1^{4-k} (-x^{15})^k$$

$$= (x-x^5) \sum_{n=0}^{\infty} {n+4 \choose 4} x^n \left(1 + \sum_{k=1}^{4} {4 \choose k} 1^{4-k} (-x^{15})^k\right)$$

$$= \sum_{n=0}^{\infty} {n+4 \choose 4} x^{n+1} - \sum_{n=0}^{\infty} {n+4 \choose 4} x^{n+5} + \dots$$

$$= \sum_{n=1}^{\infty} {n+3 \choose 4} x^n - \sum_{n=5}^{\infty} {n-1 \choose 4} x^n + \dots$$

Ora, com n = 15 tem-se o coeficiente de x^{15} em $\mathcal{F}(x)$:

$$\mathcal{F}(x) = \dots + \left[\begin{pmatrix} 18 \\ 4 \end{pmatrix} - \begin{pmatrix} 14 \\ 4 \end{pmatrix} \right] x^{15} + \dots$$

Logo, a resposta é

$$\binom{18}{4} - \binom{14}{4} .$$

4. Considere o grafo G=(V,E,W)) com custos nas arestas representado na figura seguinte: (sendo a matriz de custos, $W=(w_{ij})$, com $i,j\in V,\ ij\in E$)

- $[1.0] \text{ (a) Designando por } \alpha \text{ a aresta } ef \text{ de } G, \text{ determine } G\left[\{b,c,d,e,f\}\right] \alpha \quad \text{e} \quad G\left[\{b,c,d,e,f\}\right] /\!\!/ \alpha.$
 - O subgrafo induzido pelo conjunto de vértices $\{b,c,d,e,f\},\,G\left[\{b,c,d,e,f\}\right]$ é

O grafo $G\left[\left\{ b,c,d,e,f\right\} \right]-\alpha$ é

O grafo $G\left[\left\{ b,c,d,e,f\right\} \right]/\!/\alpha$ é

[3.5] (b) Aplicando o algoritmo de Prim, determine uma árvore abrangente de custo mínimo, T, para G. Notando, (ij, w_{ij}) cada par (aresta, custo), $e^* = i^*j^*$ a aresta de menor custo, Árvore T o desenho da árvore de custo mínimo obtida em cada Iteração, utilize uma tabela adequada com o cabeçalho:

| Iteração | Vértices
$$V'$$
 | Arestas E' | $(ij, w_{ij}), i \in V', j \in V \setminus V'$ | $e^* = i^*j^*$ | Árvore $T = (V', E')$ |

Escolhemos o vértice a para começar o algoritmo:

Iteração	Vértices V'	Arestas E'	$\left \begin{array}{c} (ij, w_{ij}), \\ i \in V', j \in V \setminus V' \end{array} \right $	$e^* = i^*j^*$	Árvore $T = (V', E')$
1	<i>{a}</i>	Ø	(ab,1)(ac,5)	ab	a_{ullet}
2	$\{a,b\}$	$\{ab\}$	(ac, 5) (bc, 4) (bd, 8) (be, 7)	bc	
3	$\{a,b,c\}$	$\{ab,bc\}$	(bd, 8) (be, 7) (cd, 6) (cf, 2)	cf	
4	$\{a,b,c,f\}$	$ \{ab, bc, \\ cf\} $	(bd, 8) (be, 7) (cd, 6) (fd, 9) (fe, 3) (fg, 12)	fe	
5	$\{a,b,c,e,f\}$	$\{ab, bc, \\ cf, fe\}$	(bd, 8) (ed, 11) (cd, 6) (fd, 9) (eg, 10) (fg, 12)	cd	
6	$\{a, b, c, d, e, f\}$	$\{ab, bc, cf, \\ fe, cd\}$	(eg, 10) (fg, 12)	eg	
7	$\{a,b,c,\\d,e,f,g\}$	$\{ab, bc, cf, fe, cd, eg\}$	STOP! $V' = V$		

A árvore abrangente de custo mínimo é $T=G[E']=G[\{ab,bc,cf,fe,cd,eg\}],$ com custo total 1+4+2+3+6+10=26.