Variational Oblique Predictive Clustering Trees

Viktor Andonovikj

Jožef Stefan Institute & Jožef Stefan International Postgraduate School

December 13, 2024

Outline

- Key Idea
- Introduction to Structured Output Prediction
- Variational SPYCT
- Experimental Setting
- Data
- Results
- Interpretability
- Conclusion

Key Idea

- We focus on decision tree type of models popular due to their interpretability and simplicity.
- We aim to combine the predictive power of ensemble methods with the interpretability of a single decision tree.
- Variational SPYCT incorporates Bayesian inference to enhance both predictive performance and decision-making transparency.

Introduction to Structured Output Prediction (SOP)

- Structured Output Prediction (SOP) involves predicting multiple interdependent outputs.
- SOP tasks include simultaneous prediction of:
 - Multiple continuous values.
 - Multiple discrete values.
 - Hierarchically organized discrete values.

Real-world applications:

- Drug discovery: predicting multiple biological properties of molecules.
- Recommender systems: predicting user preferences across multiple items.
- Genomics: predicting gene functions based on interdependent traits.

Predictive Clustering Framework

 Predictive Clustering: Combines clustering and prediction by treating prediction as a hierarchical clustering task where similar instances are grouped and predictions are made for each cluster.

Characteristics:

- Supports both supervised and semi-supervised learning.
- State-of-the-art performance via ensemble learning.
- Offers interpretable models through feature importance analysis.
- Provides a unified framework for predictive modeling across multiple tasks.

Predictive Clustering Trees (PCT) vs Oblique Predictive Clustering Trees (SPYCT)

Figure: A) Learned split - SPYCT in blue, PCT in red B) PCT C) SPYCT [1]

- PCT: Uses axis-aligned splits (based on single features), fully interpretable models.
- SPYCT: Uses oblique splits (linear combinations of features), more flexibility for high-dimensional and sparse data, suited for more complex tasks with intricate decision boundaries.

Introduction to Variational SPYCT

Figure: Ensemble of SPYCTs vs Variational SPYCT

Introduction to Variational SPYCT

- Motivation: Variational SPYCT (VSPYCT) integrates variational Bayes for improved decision-making within a single model, eliminating the need for ensembles.
- Uncertainty quantification: Embeds Bayesian inference directly into the decision tree structure, providing insight into decision processes and confidence levels.
- Novelty: VSPYCT introduces probabilistic treatment of oblique splits, offering a paradigm shift toward interpretable, and reliable machine learning models.

Optimization through Variational Bayes

Bayes' Theorem:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

• The primary computational challenge lies in calculating the posterior $p(\theta|x)$, where the denominator p(x) requires:

$$p(x) = \int_{\theta} p(x|\theta)p(\theta) d\theta$$

• Variational Bayes (VB) approximates the posterior with $q_{\omega^*}(\theta)$, minimizing the KL divergence:

$$\omega^* = \arg\min_{\omega \in \Omega} \mathit{KL}(q_\omega(\theta) \parallel \mathit{p}(\theta|x))$$

 The Evidence Lower Bound (ELBO) is maximized to improve the approximation:

$$\mathit{KL}(q_{\omega}(\theta) \parallel p(\theta|x)) = -\mathbb{E}_q[\log p(x,\theta) - \log q_{\omega}(\theta)] + \log p(x)$$

 VB's computational efficiency surpasses methods like MCMC, though it introduces bias based on the choice of the variational family Q.

Optimization through Variational Bayes

Figure: Optimisation process of finding the closest variational distribution $q_{\omega}(\theta)$ over the set of latent variables ω .

Methodology Overview

- VSPYCT follows SPYCT's tree-based architecture, but replaces fixed parameters with random variables.
- Key difference: VSPYCT uses variational Bayes (VB) for probabilistic split optimization, improving handling of noisy data and uncertainty.
- Split parameters (weights w and bias b) are modeled as random variables, allowing uncertainty estimation.

$$f(\mathbf{x}) = \sigma\left(\mathbf{w}^{\top}\mathbf{x} + b\right)$$

Learning Splits through Variational Bayes

• Weights **w** and bias b have Gaussian priors:

$$\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad b \sim \mathcal{N}(0, 1)$$

Variational Bayes approximates the posterior distribution with:

$$q(\mathbf{w}, b|\mathcal{D}) = \mathcal{N}(\mathbf{w}|\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w) \mathcal{N}(b|\mu_b, \sigma_b^2)$$

ELBO maximization:

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_{q(\mathbf{w}, b \mid \mathcal{D})}[\log p(\mathcal{D} | \mathbf{w}, b)] - \mathit{KL}(q(\mathbf{w}, b \mid \mathcal{D}) \parallel p(\mathbf{w}, b))$$

Algorithm for Learning a Split

Algorithm 1 Variational Learning of Split Parameters

```
1: Input: \mathcal{D} = \{\mathbf{X}, \mathbf{Y}\}, \ \theta = \{\mathbf{w}_0, b_0\}, \ E \text{ (epochs)}, \ \lambda \text{ (learning)}
      rate), \beta (batch size), \sigma (selection probability)
 2: Output: \Theta = \{ \mu_w, \Sigma_w, \mu_b, \sigma_b^2 \} (variational parameters)
 3: procedure LearnSplit(\mathcal{D}, \theta, E, \lambda, \beta, \sigma)
            Initialize \Theta = \{ \boldsymbol{\mu}_{w}, \boldsymbol{\Sigma}_{w}, \mu_{b}, \sigma_{b}^{2} \}
 5:
            for e \in \{1, ..., E\} do
                   for each mini-batch \mathcal{B} \subseteq \mathcal{D} of size \beta do
 6:
                         Sample \mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}_{w}, \boldsymbol{\Sigma}_{w}), \ b \sim \mathcal{N}(\boldsymbol{\mu}_{b}, \sigma_{b}^{2})
 7:
                         Compute impurity \Omega(X, Y; w, b)
 8:
                         Compute ELBO \mathcal{L}(\mathcal{B}; \Theta)
 9:
                         Update \Theta
10:
                   end for
11:
            end for
12:
13:
            return ⊖
14: end procedure
```

Deriving the Impurity Function

• For a given split node *i*, we define the fuzzy membership:

$$FM_i = \sigma(\mathbf{x}^{\top}\mathbf{w_i} + b_i), \quad 1 - FM_i = \text{right group membership}$$

The split fitness function is the following:

$$f(\mathbf{w_i}, b_i) = Z \cdot imp(FM) + (L + U - Z) \cdot imp(1 - FM)$$

Impurity is given by the variances of the target Y and features
 X:

$$imp(FM) = \sum_{k=1}^{N} \sigma_{\bar{X}_k}^2 + \sum_{k=1}^{T} \sigma_{\bar{Y}_k}^2$$

 In VSPYCT, we minimize this impurity by observing a target impurity of impurity/2 at each step using Variational Bayes.

Making a Prediction

- Prediction involves traversing the tree, making probabilistic decisions at each node.
- The split is determined by evaluating the function:

$$f(\mathbf{x}) = \sigma\left(\mathbf{w}^{\top}\mathbf{x} + b\right)$$

• The final prediction \hat{y} is the prototype value at the reached leaf:

$$\hat{y} = \frac{1}{|\mathbf{Y}|} \sum_{i=1}^{|\mathbf{Y}|} y_i$$

Prediction Process in VSPYCT

Algorithm 2 Prediction using Monte Carlo Sampling

- 1: **Input:** Feature vector \mathbf{x} , tree T, samples M
- 2: **Output:** Prediction \hat{y}
- 3: Initialize $\hat{y}_{sum} = 0$
- 4: **for** m = 1 to M **do**
- 5: Traverse T from root to leaf with sampled $\mathbf{w}^{(m)}, b^{(m)}$
- 6: $\hat{y}_{\mathsf{sum}} \leftarrow \hat{y}_{\mathsf{sum}} + \mathsf{prediction}$ at leaf
- 7: end for
- 8: **return** $\hat{y} = \frac{\hat{y}_{\text{sum}}}{M}$

Feature Importance

- Feature importance in VSPYCT: Calculated as the influence of features across all splits.
- The importance of a feature is determined by:

$$Imp(T) = \sum_{s \in T} \left(\frac{s_n}{N}\right) \left(\frac{\mathbb{E}[\mathbf{w}_s]}{|\mathbb{E}[\mathbf{w}_s]|_1}\right)$$

 Weights w are sampled from the posterior distribution, and importance is aggregated over all splits.

Time Complexity Analysis

• Time complexity of learning a split in VSPYCT:

$$\mathcal{O}(MNI_{vb}(D+K))$$

 M: Number of Monte Carlo samples, N: Data points, D: Features, K: Clustering attributes, I_{VB}: Number of optimization iterations.

Experimental Setting

- Comparison: VSPYCT vs SPYCT (single tree and ensemble).
- **Tasks**: Single-target and multi-target regression, binary and multi-class classification.
- Goal: Evaluate predictive performance of VSPYCT across different modeling scenarios.

Data

- Datasets cover regression and classification tasks.
- Number of examples (N), features (D), targets (T), and classes (C).

Table: Summary of the datasets used in the experiments.

Dataset	Type of Task	N	D	Т	С
rf1 [2]	Multi-target regression	9125	64	8	_
rf2 [2]	Multi-target regression	9125	576	8	_
atp1d [2]	Multi-target regression	337	411	6	_
atp7d [2]	Multi-target regression	296	411	6	-
scm1d [2]	Multi-target regression	9803	280	16	-
house_8L [3]	Single-target regression	22784	8	1	_
puma8NH [3]	Single-target regression	8192	8	1	_
diabetes [3]	Binary classification	768	8	1	2
banknote [3]	Binary classification	1372	4	1	2
gas-drift [3]	Multi-class classification	13910	128	1	6
balance [3]	Multi-class classification	625	4	1	3

Evaluation Metrics

• Regression: Mean Absolute Error (MAE).

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

- **Classification**: F1 score (macro-averaged for multi-class tasks).
- Cross-validation: 5-fold cross-validation used to reduce bias.

Regression Results

Table: MAE Scores for Regression Datasets

Dataset	SPYCT-single tree	SPYCT-ensemble	VSPYCT
rf1	29.38	29.34	29.37
rf2	29.37	29.49	29.36
atp1d	95.17	70.93	77.24
atp7d	115.54	73.08	91.28
scm1d	205.99	206.01	205.72
house_8L	25378.02	19817.56	22992.24
puma8NH	2.80	2.62	2.74

- VSPYCT outperforms or closely matches the SPYCT ensemble on several datasets (rf2, scm1d).
- Ensemble methods generally achieve lower MAE, but VSPYCT provides competitive results.

Classification Results

Table: F1 Scores for Classification Datasets

Dataset	SPYCT-single tree	SPYCT-ensemble	VSPYCT
diabetes	0.53	0.60	0.59
banknote	0.97	0.99	0.98
gas-drift	0.98	0.99	0.99
balance	0.60	0.66	0.73

- VSPYCT achieves competitive performance across datasets, often matching or surpassing ensembles.
- In the balance dataset, VSPYCT achieves the best F1 score.

Interpretability - An example with real dataset

- Dataset: Unemployment dataset from the Slovenian Public Employment Service (PES), consisting of 74,086 anonymized instances.
- Features: Age, gender, education, work experience, and other personal/professional characteristics.
- Target: Time until the jobseeker becomes employed or exits the study (measured in days). Some records are right-censored (event not observed).
- **Goal:** Predict the time-to-event (employment) with censored data, using a semi-supervised learning approach for handling the inherent missing information.
- **Challenges:** Diverse attribute types (categorical, numerical, temporal) and the presence of censored data.

Structure of the learned VSPYCT model

Figure: VSPYCT tree structure. Colors represent different feature groups (e.g., education, profession).

Predicted Survival Curve

Figure: Predicted survival curve for a jobseeker. Blue: mean prediction; shaded area: confidence interval; vertical line: true event time.

 The confidence interval captures the uncertainty behind the predictions.

Feature Importance

Figure: Feature importance from the VSPYCT model. "Months of work experience" is the most important factor in the model's decisions.

Conclusion

- VSPYCT Model: Combines oblique splits, variational Bayes, and Bayesian inference in an interpretable predictive framework.
- Key Characteristic: Balances the performance of ensemble models with the interpretability of single decision trees, while introducing uncertainty quantification.
- Results: Competitive performance, sometimes surpassing ensembles of SPYCT.
- Uncertainty Quantification: Enhances decision-making reliability, making the model applicable to domains where certainty in predictions is critical.
- **Future Work:** Further performance improvements and extending applications to diverse predictive tasks.

References I

- [1] T. Stepišnik and D. Kocev, "Oblique predictive clustering trees," *Knowledge-Based Systems*, vol. 227, p. 107 228, Sep. 2021, ISSN: 0950-7051. DOI: 10.1016/j.knosys.2021.107228. [Online]. Available: http://dx.doi.org/10.1016/j.knosys.2021.107228.
- [2] Mulan, Mulan: A java library for multi-label learning, http://mulan.sourceforge.net/datasets.html, Accessed: 2020-04-15.
- [3] OpenML, *Openml*, https://www.openml.org, Accessed: 2020-04-15.

Thank You

 ${\sf Questions?}$