TAREA 3

- 1. Para cada una de las funciones $f_1(x) = x$; $f_2(x) = x^2 + x$; $f_3(x) = e^x 1$ halle la constante de Lipschitz para f'(x) en el intervalo [-a, a], con $a > 0 \in R$.
- 2. Sea $f(x) = \frac{1}{2} ||F(x)||^2$ donde $F: \mathbb{R}^n \to \mathbb{R}^n$, $F \in \mathbb{C}^1$. Considere $x_{k+1} = x_k \lambda_k (F'(x_k))^{-1} F(x_k)$ y suponga que F'(x) es no singular $\forall x \in \mathbb{R}^n$.

Pruebe que si en la condición de Armijo usamos $\alpha = \frac{1}{2}$, entonces $\frac{f(x_{k+1})}{f(x_k)} \le 1 - \lambda_k$.

OJO: F'(x) es el Jacobiano de F en x. Es decir, usando la notación de clase, $J_F(x) = F'(x)$.

3. Implemente en Matlab o Fortran el método del gradiente con busqueda lineal inexacta, esto es:

$$x_{k+1} = x_k - \lambda_k \nabla f(x_k)$$

donde, λ_k satisface la condición de Armijo (use 'backtracking' y diga cuales son las escogencias de los parámetros η y ρ). Considere como condición de parada para el código que $\|\nabla f(x_k)\|_2 \le 10^{-05}$ Utilice el algoritmo anterior para hallar la solución de los siguientes problemas:

a)
$$\min f(x) = 3x_1^2 + 2x_1x_2 + x_2^2$$
,

partiendo de $x_0 = (1,1)^T$.

b)
$$\min f(x) = 1/2(x_1^2 - x_2)^2 + 1/2(1 - x_1)^2$$
,

partiendo de $x_0 = (2,2)^T$ y cualquiere otro punto alejado de la solución.

c)
$$\min f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
,

partiendo de $x_0 = (1,2,1,2)^T$ y $x_0 = (-1,2,1)^T$.

- 4. Haga una tabla con los resultados obtenidos para las tres funciones y los distintos iterados iniciales, donde se refleje: iteración (k), x_k , $||x_k x_*||_2$, $||\nabla f(x_k)||_2$ para las 10 últimas iteraciones. En base a los resultados obtenidos escriba conclusiones acerca de la convergencia global del método y de la estrategia de globalización.
- 5. Verifique si los puntos obtenidos con el algoritmo son mínimos o puntos estacionarios (puntos donde el gradiente de la función se anula) de las distintas funciones.