UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

ECUACIONES DIFERENCIALES II

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Quinto o sexto

CLAVE: **0163**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Análisis Matemático I, Ecuaciones Di-

ferenciales I, Variable Compleja I.

SERIACIÓN INDICATIVA SUBSECUENTE: Biología Matemática I, Ecuaciones Di-

ferenciales III.

OBJETIVO(S): Este curso tiene como objetivo extender los conocimiento del estudiante en el tema de la Teoría Cualitativa de las Ecuaciones Diferenciales y elementos de Teoría Asintótica. El propósito es iniciar al estudiante en el estudio de ecuaciones diferenciales no lineales, lineales con coeficientes periódicos y en problemas con condiciones a la frontera. En este curso se hace un énfasis especial en el estudio de las ecuaciones diferenciales en el plano.

NUM. HORAS	UNIDADES TEMÁTICAS
10	1. Introducción y motivación al tema de Teoría Cualitativa
	1.1 Problemas de mecánica clásica: oscilaciones, problema de fuerzas
	centrales, circuitos no lineales, etc.
	1.2 Problemas de ciencias de la vida: modelos de poblaciones de va-
	rias especies, epidemiología, modelos fisiológicos, modelos de cinética
	química, etc.
10	2. Teoremas fundamentales
	2.1 Teorema de existencia y unicidad, continuidad y diferenciabilidad
	ante variación de parámetros y condiciones iniciales.
	2.2 Problemas con valores a la frontera.
	2.3 Teorema de existencia y unicidad para un sistema de n ecuaciones
	lineales.
	2.4 Equivalencia topológica de ecuaciones diferenciales lineales.

10	3. Sistemas lineales, teoría de Floquet
	3.1 Solución general del problema homogéneo de ecuaciones diferen-
	ciales lineales, matriz fundamental.
	3.2 Clasificación de los puntos fijos en el plano y en más dimensiones.
	3.3 Sistemas lineales con coeficientes periódicos, teorema de Floquet,
	estudio de la ecuación de Mathieu y el problema de estabilidad (Len-
	guas de Arnold).
10	4. Teoría cualitativa en el plano
	4.1 Órbitas y curvas solución de las ecuaciones diferenciales en cam-
	pos vectoriales en el plano, clasificación de puntos fijos.
	4.2 Índice de puntos fijos y órbitas periódicas en el plano.
	4.3 Conjuntos límites: α y ω límites, criterio de Bendixon.
	4.4 Teorema de Poincaré–Bendixon.
	4.5 Oscilaciones autosostenidad, ecuación de Van der Pol.
10	5. Teoría de estabilidad
	5.1 Estabilidad de Lyapunov, estabilidad orbital, estabilidad global.
	5.2 Teorema de Grobmann-Hartman para puntos atractores.
10	6. Oscilaciones no lineales y Teoría de Perturbaciones
	6.1 Dinámica no lineal en el plano: puntos fijos, conexiones homoclíni-
	cas y heteroclínicas. Ejemplos: ecuaciones del péndulo, ecuación de
	Duffing.
	6.2 Método de Promedios: oscilador no lineal perturbado y resonan-
	cias no lineales.
	6.3 Bifurcaciones elementales.
8	7. Sistemas conservativos (optativo)
	7.1 Sistemas mecánicos, ecuaciones de Lagrange y de Hamilton. Teo-
	rema de Liouville.
	7.2 Oscilaciones no lineales, método de Poincaré–Lindstedt. Teorema
	de Liouville.
6	8. Flujo global en el plano (optativo)
	8.1 Proyección del plano en la esfera.
	8.2 Proyección en el horizonte.
	8.3 Índice de puntos fijos en el infinito y descripción global del flujo.
6	9. Problemas con valores a la frontera (optativo)
	9.1 Introducción a la teoría de Sturm–Liouville.

BIBLIOGRAFÍA BÁSICA:

- 1. Brauer, F., Nohel, J. A., *The Qualitative Theory of Ordinary Differential Equations.*An Introduction, New York: Dover Pub., 1989.
- 2. Hirsch, M. W., Smale, S., Differential Equations, Dynamical Systems and Linear Algebra, New York: Academic Press, 1974.
- 3. Jordan, D. W., Smith, P., *Nonlinear Ordinary Differential Equations*, Oxford: Oxford Univ. Press, 1994.
- 4. Verhulst, F., Nonlinear Differential Equation and Dynamical Systems, New York: Springer-Verlag, 1980.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Arnold, V.I., Ordinary Differential Equations, 3rd, New York: Springer-Verlag, 1991.
- 2. Arrowsmith, D. K., Place, C. M., *Dynamical Systems, Differential Equations, Maps and Chaotic Behaviour*, New York: Chapman and Hall, 1998.
- 3. Cronin, J., Differential Equations, Introduction and Qualitative Theory, New York: M. Dekker, 1985.
- 4. Hale, J., Kocak, H., Dynamics and Bifurcations, New York: Springer-Verlag, 1991.
- 5. Perko, L., Differential Equations and Dinamical Systems, Text in Applied Maths., New York: Springer-Verlag, 1990.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.