Chapter 2: Applications of Unique Factorization

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise. If $\frac{a}{b} \in \mathbb{Z}_p$ is not a unit, prove that $\frac{a}{b} + 1$ is a unit.

Proof. $\frac{a}{b} \in \mathbb{Z}_p$ is not a unit iff $p \mid a$ and $p \nmid b$. Thus $p \nmid (a+b)$. That is, $\frac{a}{b} + 1 = \frac{a+b}{b} \in \mathbb{Z}_p$ is a unit. \square

Exercise 2.6. (p-adic valuation.) For a rational number r let [r] be the largest integer less than or equal to r, e.g., $[\frac{1}{2}] = 0$, [2] = 2, $[3\frac{1}{3}] = 3$. Prove

$$ord_p n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots$$

Notice that $\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots$ is a finite sum.

Proof. For any k=1,2,...,n, we can express k as $k=p^st$ where $s=\operatorname{ord}_p k$ is a non-negative integer and (t,p)=1. There are $\left\lceil \frac{n}{p^a} \right\rceil$ numbers such that $p^a \mid k$ for a=1,2,... Therefore, there are

$$\left[\frac{n}{p^a}\right] - \left[\frac{n}{p^{a+1}}\right]$$

numbers such that $\operatorname{ord}_{p}k = a$ for $a = 1, 2, \dots$ Hence,

$$\operatorname{ord}_{p} n! = \left(\left[\frac{n}{p} \right] - \left[\frac{n}{p^{2}} \right] \right) + 2 \left(\left[\frac{n}{p^{2}} \right] - \left[\frac{n}{p^{3}} \right] \right) + 3 \left(\left[\frac{n}{p^{3}} \right] - \left[\frac{n}{p^{4}} \right] \right) + \cdots$$
$$= \left[\frac{n}{p} \right] + \left[\frac{n}{p^{2}} \right] + \left[\frac{n}{p^{3}} \right] + \cdots$$

Supplement. Related problems.

(1) Prove that

$$\frac{(m+n)!}{m!n!}$$

is an integer for all non-negative integers m and n.

Proof. It is sufficient to show that

$$\operatorname{ord}_{p}(m+n)! \ge \operatorname{ord}_{p}m! + \operatorname{ord}_{p}n!$$

for any prime p, or show that

$$\left[\frac{m+n}{p^k}\right] \ge \left[\frac{m}{p^k}\right] + \left[\frac{n}{p^k}\right]$$

for any prime p and $k \in \mathbb{Z}^+$ by Exercise 4.6, or show that

$$[x+y] \ge [x] + [y]$$

for any rational (or real) numbers x and y. It is trivial by considering that the sum of two fractional parts $\{x\} = x - [x]$ might be greater than or equal to 1, so [x + y] = [x] + [y] or [x] + [y] + 1. \square

Note. $\frac{(m+n)!}{m!n!}$ is a binomial coefficient. Similarly, a multinomial coefficient is

$$\frac{(n_1+n_2+\cdots+n_k)!}{n_1!n_2!\cdots n_k!}.$$

We can show that the multinomial coefficient is an integer by using the above argument.

(2) Prove that

$$\frac{(2m)!(2n)!}{m!n!(m+n)!}$$

is an integer for all non-negative integers m and n.

Proof. Similar to (1), it is sufficient to show that

$$[2x] + [2y] \ge [x] + [y] + [x+y]$$

for any rational (or real) numbers x and y. Notice that $[2x] = [x] + [x + \frac{1}{2}]$, and thus we might show that $[x + \frac{1}{2}] + [y + \frac{1}{2}] \ge [x + y]$. Again it is trivial and we omit the tedious calculation. \square

(3) Hermite's identity: $[nx] = \sum_{k=0}^{n-1} [x + \frac{k}{n}]$ for $n \in \mathbb{Z}^+$.

Let n=2 and we can get $[2x]=[x]+[x+\frac{1}{2}]$ too.

Proof. Consider the function $f(x) = \sum_{k=0}^{n-1} [x + \frac{k}{n}] - [nx]$. Notice that $f(x + \frac{1}{n}) = f(x)$. f has period $\frac{1}{n}$. It then suffices to prove that f(x) = 0 on $[0, \frac{1}{n})$. But in this case, the integral part of each summand in f is equal to 0. Therefore f = 0 on \mathbb{R} . \square

$$\frac{(5m)!(5n)!}{m!n!(3m+n)!(3n+m)!}$$

is an integer for all non-negative integers m and n.

Try to deduce the inequality $[5x] + [5y] \ge [x] + [y] + [3x + y] + [3y + x]$.

Exercise 2.7. Deduce from Exercise 6 that $\operatorname{ord}_p n! \leq \frac{n}{p-1}$ and that $n!^{\frac{1}{n}} \leq \prod_{p|n!} p^{\frac{1}{p-1}}$.

Proof.

$$\operatorname{ord}_{p} n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^{2}}\right] + \left[\frac{n}{p^{3}}\right] + \cdots$$

$$\leq \frac{n}{p} + \frac{n}{p^{2}} + \frac{n}{p^{3}} + \cdots$$

$$= \frac{\frac{n}{p}}{1 - \frac{1}{p}}$$

$$= \frac{n}{p - 1}.$$

Thus,

$$n! = \prod_{p|n!} p^{\operatorname{ord}_p n!} \le \prod_{p|n!} p^{\frac{n}{p-1}} = \left(\prod_{p|n!} p^{\frac{1}{p-1}}\right)^n,$$
$$n!^{\frac{1}{n}} \le \prod p^{\frac{1}{p-1}}.$$

or

$$n!^{\frac{1}{n}} \le \prod_{p|n!} p^{\frac{1}{p-1}}.$$

Exercise 2.8. Use Exercise 7 to show that there are infinitely many primes. [Hint: $(n!)^2 \ge n^n$.] (This proof is due to Eckford Cohen.)

Claim. $(n!)^2 \ge n^n$.

Proof of Claim. Write $(n!)^2 = \prod_{k=1}^n k \prod_{k=1}^n (n+1-k) = \prod_{k=1}^n k(n+1-k)$, and $n^n = \prod_{k=1}^n n$. It suffices to show that $k(n+1-k) \ge n$ for each $1 \le k \le n$. Notice that $k(n+1-k)-n = (n-k)(k-1) \ge 0$ for $1 \le k \le n$. The inequality holds. \square

The inequality can be written as $(n!)^{\frac{1}{n}} \ge \sqrt{n}$.

Proof. By Exercise 7 and Claim,

$$\prod_{p|n!} p^{\frac{1}{p-1}} \ge (n!)^{\frac{1}{n}} \ge \sqrt{n}.$$

Assume that there are finitely many primes, the value $\prod_{p|n!} p^{\frac{1}{p-1}}$ is a finite number whenever the value of n. However, $\sqrt{n} \to \infty$ as $n \to \infty$, which leads to a contradiction. Hence there are infinitely many primes. \square

Exercise 2.27. Show that $\sum \frac{1}{n}$, the sum being over square free integers, diverges. Conclude that $\prod_{p\leq N}(1+\frac{1}{p})\to \infty$ as $N\to \infty$. Since $e^x>1+x$, conclude that $\sum_{p\leq N}\frac{1}{p}\to \infty$. (This proof is due to I. Niven.)

There are many proofs of $\sum_{p} \frac{1}{p}$ diverges.

Proof.

(1) For any positive integers n, we can write $n = a^2b$ where $a \in \mathbb{Z}^+$ and b is a square free integer. Given N,

$$\sum_{n \le N} \frac{1}{n} \le \left(\sum_{a=1}^{\infty} \frac{1}{a^2}\right) \left(\sum_{b \le N} {'\frac{1}{b}}\right).$$

Notices that $\sum_{a=1}^{\infty} \frac{1}{a^2}$ converges. Since $\sum_{n \leq N} \frac{1}{n} \to \infty$ as $N \to \infty$, $\sum_{b \leq N}' \frac{1}{b} \to \infty$ as $N \to \infty$.

(2) By the unique factorization theorem on $n \leq N$,

$$\prod_{p \le N} \left(1 + \frac{1}{p} \right) \ge \sum_{n \le N} {'\frac{1}{n}}.$$

Since $\sum_{n\leq N} \frac{1}{n} \to \infty$ as $N \to \infty$, $\prod_{p\leq N} (1+\frac{1}{p}) \to \infty$ as $N \to \infty$.

(3) By applying the inequality $e^x > 1 + x$ on any prime p,

$$\exp\left(\frac{1}{p}\right) > 1 + \frac{1}{p}.$$

Now multiplying the inequality over all primes $p \leq N$ and noticing that $\exp(x) \cdot \exp(y) = \exp(x + y)$, we have

$$\exp\left(\sum_{p\leq N}\frac{1}{p}\right) > \prod_{p\leq N}\left(1 + \frac{1}{p}\right).$$

So $\exp\left(\sum_{p\leq N}\frac{1}{p}\right)\to\infty$ as $N\to\infty,$ or $\sum_{p\leq N}\frac{1}{p}\to\infty$ as $N\to\infty.$