

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Mechatronisches Design

Semesterprojekt - Team 1

Einleitung

- Hardware und Software vom Vorsemester übernommen
- Aufgabe:
 - Nordimpuls verbessern
 - IR-Reflexionen vermindern
- Reale Probleme:
 - IR-Abstrahlwinkel nicht entsprechend der Spezifikation
 - eigentlich keine Probleme mit Reflexionen
 - Nordimpuls nicht zuverlässig
 - zwei vollkommen verschiedene Empfänger
 - Code ohne Versionskontrolle

Das Funktionsprinzip

- im Prinzip wie das sog. VOR in der Luftfahrt
- technisch gesehen hier nur ein Funkturm
- Winkelbereich jedoch auf drei Türme am Rand des Spielfelds aufgeteilt
- Nordimpuls auf 433 MHz
- IR-LEDs und Empfänger
- Mikrocontroller Arduino nano

Das VOR-Prinzip

- VOR: VHF Omnidirectional Radio Range
 - Drehfunkfeuer
- unsere Implementation:
 - umlaufender IR-Strahl
 - periodischer Funkimpuls, wenn Strahl bei Nord
 - Nordimpuls zur Synchronisation
- Peilung zum Funkfeuer aus Zeitdifferenz zwischen Nordimpuls und IR-Stahl

Die Hardware

- Drei Sender
 - ein Master, der Nordimpuls (50 Hz) aussendet
 - zwei Slaves, die auf Nordimpuls synchronisieren
 - Funkstrecke mit 433 MHz
 - 8 IR-LEDs pro 90°-Segment, je ein Schieberegister
 - Arduino nano
- zwei baugleiche Empfänger
 - 8 IR-Empfänger im Kreis angeordnet
 - 433 MHz Funkempfänger
 - Arduino nano

Die Hardware

- Sender vom Vorsemester übernommen
- Empfänger vereinheitlicht bzw. neu erstellt

- Hier sieht man die Lösung des größten Problems:
 - Abstrahlwinkel der IR-LEDs
 - Datenblatt: 11°
 - Realität: deutlich mehr
- Lösung:
 - einschränken des Abstrahlwinkels mit Schrumpfschlauch

- Prototyp des Empfängers
- es war viel Fehlersuche nötig, daher werden einige Pins herausgeführt

Positionsgenauigkeit

- Winkelgenauigkeit von 11,25°
- theoretische Positionsgenauigkeit von ca. 20x20 cm (optimistisch)
- Raster von 11,25° im Idealfall
- Problem:
 - nicht immer wird nur eine LED empfangen
 - dadurch deutlicher Genauigkeitsverlust
- Sonderfall, wenn Stahlen (nahezu) parallel beachten!

Der Code - Sender

- Master:
 - Sendet Nordimpuls (50 Hz)
 - Steuert umlaufend die vier 90°-Segmente an
- Slave:
 - wartet auf steigende flanke vom Nordimpuls
 - Steuert umlaufend die vier 90°-Segmente an
- Alle Türme steuern alle vier 90°-Segmente an, auch wenn nicht alle Schieberegister angeschlossen sind.
- Dadurch weniger Unterscheidungen zwischen Türmen nötig

Der Code - Empfänger

- Wartet auf Nordimpuls
- Wenn steigende Flanke Nordimpuls:
 - Timer starten
 - wenn irgendein IR-Empfänger anschlägt
 - aus Timerwert Winkel ausrechnen
 - entsprechenden Turm nach dem Winkel auswählen
 - Winkel in das Turmobjekt speichern
- bei jedem fünften Nordimpuls:
 - Position aus den gemittelten Winkeln errechnen
 - Sonderfall für parallele Strahlen beachten
 - Sonderfall, wenn nur zwei von drei Türmen empfangen
 - Position nach Mittelung von fünf Positionswerten übertragen
- detaillierte Informationen in der Dokumentation

Code - Probleme

- Empfänger tastet IR-Signal ab
 - dadurch unbekannter Versatz zwischen realer Flanke und abgetasteter Flanke
 - Lösung: möglichst hoher Abtastfrequenz erreichen
 - Abfrage der Eingänge (IR-Empfänger) nicht mir Arduino-Funktion, sondern direkt aus den Registern
 - Ausführungszeit 30% schneller
- Zeitpunkt für Berechnung war im Originalcode nicht fest definiert
 - Dadurch Abtastrate variabel —> siehe oben
 - Lösung: eine Nord-Periodendauer nur für die Berechnung
- Parallelen:
 - Positionsberechnung als Mittelwert aus drei Schnittpunkten
 - nahezu parallele Strahlen führen zu großen Fehlern bei der Positionsberechnung
 - Lösung: Sonderfall bei der Berechnung einführen

Probleme

- Nordimpuls:
 - Nordimpuls in den ersten Wochen komplett ohne Probleme
 - Zum Ende des Projekts immer mehr Signalprobleme
 - Lösung aufgrund der kurzen Zeit:
 - Türme per Kabel synchronisieren
 - da ohne synchrone Sender gar nichts möglich
 - Empfänger kann Fehler im Nordimpuls besser handhaben
- Batteriespannung hat anscheinend einen erheblichen Einfluss auf die Positionsbestimmung

Ausblick und Erkenntnisse

- Traue keinem Datenblatt. Immer die entscheidenden Parameter nachmessen
- 433 MHz Funkstrecken sind für dauerhafte Übertragung (Impulse zu Synchronisation) anscheinend nicht geeignet. Einzelnen Nachrichten sind passend, dauerhaftes Senden aber nicht.
 - kompliziertere Nordimpulse sind aber in dieser Hardware nicht machbar, da die Ausführungszeit einer Schleife sonst zu hoch wird (zumindest auf einem Arduino).
- Die für das VOR verwendete Technik (IR-LEDs und 433 MHz) sind für eine Genauigkeit von < 10 cm nicht geeignet!

Dokumentation

- Code und Dokumentation:
 - https://github.com/HAW-MT-Jg2013/HAW_W15-MD_Team1