Estimativa para Software

João Carlos Testi Ferreira

Faculdade SENAI

Florianópolis, 2016

Sumário

- 1 Estimar
 - Porque medir
 - A escolha das estimativas
 - Estimativa
- 2 сосомо п
 - Modelos
 - Submodelos
 - Sítio
- 3 Resumo
 - Estimar
 - Referências usadas

Porque medir

Medidas

Medir por medir, ou sem um objetivo bem definido pode levar a esforço inútil.

Porque medir

Objetivo

O objetivo da medida estabelece o que medir e quando medir.

Porque medir

Forma de medir

A medida, suas características e precisão também dependem do uso que faremos delas.

A escolha das estimativas

Como escolher

A escolha das estimativas a serem usadas depende do que se quer saber.

A escolha das estimativas

Como escolher

O Balanced ScoreCard orienta na definição dos parâmetros a serem avaliados. Com isso definido, a escolha das estimativas fica mais simples.

A escolha das estimativas

Melhores estimativas

As melhores estimativas são aquelas que podem ser comparadas com dados do processo. Estes dados devem ser naturais, ou seja, produzidos sem esforço ou com o mínimo de esforço possível.

Estimativa

Uso de estimativa

As estimativas são usadas para o planejamento do projeto e também para o controle.

Estimativa

Precisão de estimativa

As estimativas são tão mais precisas quanto mais informações temos. A forma de medir que será usada para obter a estimativa também afeta diretamente sua precisão.

Estimativa

Estimativa de esforço

A fórmula para cálculo de esforço é: $Esforco = A \times Tamanho^B \times M$

Modelos

Modelo de estimativa

O modelo mais usado para produzir estimativas para software é o COCOMO II. Ele possui quatro submodelos, conforme sua destinação.

Modelos

Aplicação

Ele se aplica em várias circunstâncias e interesses. Para obter a aplicabilidade em diferentes contextos ele apresenta um conjunto de submodelos.

Modelos

COCOMO II

Composição de aplicações

Modela o esforço para desenvolver sistemas à partir de componentes reusáveis, scripts ou programação de banco de dados.

Composição de aplicações

Suas estimativas baseiam-se em pontos da aplicação (número de telas, quantidade de scripts, linhas de programação em banco, ...) e na fórmula simples tamanho/produtividade.

Composição de aplicações

Pondera os pontos da aplicação com seu grau de dificuldade. A produtividade depende da experiência dos desenvolvedores e do uso de ferramentas de apoio.

Composição de aplicações

Para calcular a quantidade de pessoas mês usamos:

$$PM = (NAP \times (1 - \%reuso \div 100))/Prod$$

- NAP = Número de pontos da aplicação
- Prod = Produtividade (tabela)

Projeto preliminar

Usado em fases iniciais, assim que tenham sido estabelecidos requisitos. Usa a fórmula padrão de estimativa. $Esforço = A \times Tamanho^B \times M$

Projeto preliminar

A medição é em pontos de função que são convertidos em linhas de código e tamanho será em milhares de linhas de código.

Projeto preliminar

O coeficiente A é 2,94. O expoente B refere-se ao esforço necessário na medida em que aumenta o projeto, podendo variar de 1,1 para 1,24 dependendo da novidade do projeto, da flexibilidade de desenvolvimento,

os processos de resolução de risco, da coesão da equipe e do nível de maturidade do processo.

Projeto preliminar

O multiplicador M baseia-se em sete atributos: confiabilidade e complexidade de produto (RCPX), reúso requerido (RUSE), dificuldade de plataforma (PDIF), capacidade de pessoal (PERS), experiência de pessoal (PREX), cronograma (SCED) e recursos de apoio

(FCIL). Seus valores variam de 1 a 6.

Métricas de Software

Projeto preliminar

A fórmula fica assim:

$$PM = 2,94 \times \textit{Tamanho}^{(1,1 \mapsto 1,24)} \times \textit{M}$$

Reúso

Usado
para calcular o esforço necessário
para integrar componentes ou
programa gerado automaticamente.
Geralmente usado em conjunto
com o modelo de pós-arquitetura

Reúso

Para o COCOMO II temos dois tipos de código reusável: o código pronto que pode ser usado sem compreensão ou alteração (caixa preta) e quele que precisa de adaptações. O caixa preta não representa esforço.

Reúso

O esforço refere-se ao entendimento e modificação. Para códigos gerados a fórmula é:

$$PM_{AUTO} = (ASLOC \times AT \div 100) \div ATPROD$$

- ASLOC = número de linhas de código reusado e/ou gerado automaticamente
- AT = porcentagem de cóidigos reusados gerados automaticamente
- ATPROD = Produtividade na integração

Pós-arquitetura

É uma estimativa mais precisa, que usa a fórmula padrão, mas inclui 17 multiplicadores, que refletem a capacidade pessoal, o produto e características de projeto. Esforço = A × Tamanho^B × M

Pós-arquitetura

A estimativa de tamanho do código usa três parâmetros: número total de linhas, custo de reúso e alterações que serão necessárias em função de mudanças em requisitos.

Pós-arquitetura

O expoente B, referente a complexidade, usa cinco parâmetros: precedência, flexibilidade de desenvolvimento, arquitetura/resolução de riscos, coesão de equipe e maturidade de processo.

Sítio

University of Southern California

O sítio da Universidade do Sul da Califórnia contém orientações e aplicações que favorecem o uso do COCOMO II. http://csse.usc.edu/csse/research/COCOMOII/cocomo main.html

Métricas de Software

Sítio

University of Southern California

A aplicação para uso do COCOMO II. http://csse.usc.edu/tools/COCOMOII.php

Precisão da estimativa

A precisão da estimativa depende de quanta informação temos disponível para estimar e da precisão das medidas que adotamos. Em função da necessidade da estimativa pode ser necessário maior esforço para obtê-la.

Custo da estimativa

O custo da estimativa deve ser o menor possível. Para isso buscamos as informações de elementos do próprio processo. Além de reduzir o custo (de produção de informação), as informações são mais confiáveis.

As estimativas

Uma estimativa pode ser usada para planejamento e para controle. A criação e manutenção das estimativas deve ser bem planejada, deve atender a um propósito bem definido e ser esclarecedora. São estes elementos que fazem a estimativa gerar valor.

Esforço

Um dos usos mais comuns de uso de estimativa é para calcular esforço. Um dos modelos mais usados para este fim é o COCOMO II.

Referências usadas

Para saber mais ...

SOMMERVILLE, I. *Engenharia de Software*: Uma abordagem profissional. 9. ed. São Paulo: Pearson Prentice Hall, 2011. ISBN 9788579361081.