MA 450 Homework 12

Josh Park

Fall 2024

Exercise 12.2

We wish to find the unity in the ring $R = \{0, 2, 4, 6, 8\}$ under addition and multiplication modulo 10.

That is, we wish to find an element $u \in R$ such that $a \cdot u \equiv a \pmod{10}$. Notice that

$$0 \cdot 6 = 0 \equiv 0 \pmod{10}$$

$$2 \cdot 6 = 12 \equiv 2 \pmod{10}$$

$$4 \cdot 6 = 24 \equiv 4 \pmod{10}$$

$$6 \cdot 6 = 36 \equiv 6 \pmod{10}$$

$$8 \cdot 6 = 48 \equiv 8 \pmod{10}$$

By theorem, the unity of a ring is unique. Thus the unity of R is 6.

Exercise 12.6

Consider the ring \mathbb{Z}_6 .

The first property does not hold because $3^2 = 9 \equiv 3 \pmod{6}$.

The second property does not hold because $2 \cdot 3 = 12 \equiv 0 \pmod{6}$.

The third property does not hold because $2 \cdot 3 \equiv 4 \cdot 3 \equiv 0 \pmod{6}$ and $2 \neq 4$ but 3 = 3.

Thus n = 6. No, n = 6 is not prime.

Exercise 12.18

Let $a, b \in S$.

Then,
$$(a - b)x = ax - bx = 0 - 0 = 0$$
 and $(ab)x = a(bx) = a \cdot 0 = 0$ by def ring.

Thus, S is a subring of R by the subring test.

Exercise 12.22

By the one step test, we must show $ab^{-1} \in U(R)$ whenever $a, b \in U(R)$.

That is, we must show ab^{-1} is a unit in R whenever a, b are.

Let $a, b \in U(R)$. Then, $a^{-1}, b^{-1} \in U(R)$ by def unit.

To show ab^{-1} is a unit in R, we must show there exists some $c \in R$ such that $ab^{-1}c = 1$.

Let
$$c = ba^{-1}$$
. Then, $(ab^{-1})(ba^{-1}) = ab^{-1}ba^{-1} = aa^{-1} = 1$.

Thus U(R) is a group under the multiplication of R.

Exercise 12.23

Trivially we can see that ± 1 and $\pm i$ are units in $\mathbb{Z}[i]$.

Let $x \in \mathbb{Z}[i]$. By def $\mathbb{Z}[i]$, x = a + bi for some $a, b \in \mathbb{Z}$.

To find any other units, we must find $x \in \mathbb{Z}[i]$ such that $x^{-1} \in \mathbb{Z}[i]$ by def unit.

We know that $\mathbb{Z}[i]$ is a subring of \mathbb{C} , and we know how to find multiplicative inverse in \mathbb{C} .

$$x^{-1} = \frac{1}{a+bi} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi}$$
$$= \frac{a-bi}{a^2+b^2}$$
$$= \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

However, notice that $\frac{a}{a^2+b^2} \in \mathbb{Z} \iff a^2+b^2=1$, but this only holds for ± 1 and $\pm i$.

Thus $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}.$

Exercise 12.31

Consider the ring $R = M_2(\mathbb{Z})$. Let $a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Then,
$$ab = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$$
 and $ba = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq 0$.

Exercise 12.44

Since n is even, we know n = 2k for some $k \in \mathbb{Z}$.

By properties of rings, $(-a)^2 = (-a)(-a) = aa = a^2$.

Then,
$$a = (a)^n = a^{2k} = (a^2)k$$
 and $-a = (-a)^n = (-a)^{2k} = ((-a)^2)^k$.

Exercise 12.50

Let $a, b \in R$. Then, $a + b = (a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b$ by def R.

This implies $ab + ba = 0 \iff ab = -ba$.

By properties of rings and def R, $-ba = (-ba)^2 = (ba)^2 = ba$.

Thus ab = ba and R is commutative.