

Data Analysis & Visualisation

CSC3062

BEng (CS & SE), MEng (CS & SE), BIT & CIT

Dr Reza Rafiee 23rd September 2019

About me

- Expert in Data Analytics and Machine Learning
 - BEng (in computer science), MSc (in AI & Robotics) and PhD (in machine learning) & more than 5 years post-PhD research experience in data analytics, machine learning, bioinformatics and software development
- Passionate about machine learning based software development (specifically medical applications)

This course aims to ...

- Explain how data analytics is used in industry and research
- Demonstrate the ability to obtain, process and clean data for analysis
- Use existing tools to visualise and analyse data
- Formulate and test theories about data
- Communicate discoveries effectively

What we learn in this course

- Introduction to data analysis and visualisation
- Data pre-processing
 - Harmonising
 - Missing data
 - Feature & Sample evaluation
- Projection & reducing dimensions of data
 - PCA (Principal Component Analysis)
 - NMF (Non-negative Matrix Factorisation)
 - t-SNE (t-Stochastic Neighbour Embedding)
- Summarising and visualising data
 - Unsupervised learning (clustering) methods
- Supervised learning (an introduction)
 - Support vector machine classifier
- Interactive graphics with Shiny
 - A practical web-based application

Textbooks and resources

R Programming

- An Introduction to R https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
- R for Data Science https://r4ds.had.co.nz/index.html
- Shiny https://rstudio.github.io/shiny/tutorial/#welcome
- GitHub repository https://github.com/RRafiee/Data-Analysis-and-Visualisation

Web references and articles

- PCA:
 - A step by step explanation of Principal Component Analysis by Zakaria Jaadi; https://builtin.com/data-science/step-step-explanation-principal-component-analysis
 - PCA helps you interpret your data, but it will not always find the important patterns by Jake Lever, Marin Krzywinski & Naomi Altman, Nature Methods 14, pages641-642 (2017); https://www.nature.com/articles/nmeth.4346
- **NMF**: Learning the parts of objects by non-negative matrix factorization by Daniel D. Lee & H. Sebastian Seung, *Nature* volume 401, pages 788–791 (1999); https://www.nature.com/articles/44565

Textbooks and resources

- **t-SNE**: Visualizing Data using t-SNE by Laurens van der Maaten & Geoffrey Hinton; *Journal of Machine Learning Research*, *Volume* 9, pages 2579-2605 (2008); https://lvdmaaten.github.io/tsne/
- Pattern Recognition by Sergios Theodoridis, Konstantinos
 - Clustering
 - Supervised learning methods (SVM & Random Forest)
- For further study and not limited to -:
 - Pattern Recognition and Machine Learning by Christopher M. Bishop
 - Pattern Classification by Richard O. Duda; Peter E. Hart; David G. Stork
 - Introduction to Machine Learning by Ethem Alpaydin

Where (Lectures and Practical)?

• Monday **9:00-10:00** (BEng/MEng CS, BEng/MEng SE, BIT & CIT) at CSB/02/027

Practical

- Tuesday **12:00-14:00** (BEng/MEng CS, BEng/MEng SE) at CSB/01/020
- Thursday **13:00-15:00** (BIT & CIT) at CSB/G/028

- Thursday **15:00-16:00** (BEng/MEng CS, BEng/MEng SE, BIT & CIT) at CSB/02/027
- Friday 11:00-12:00 (BEng/MEng CS, BEng/MEng SE, BIT & CIT) at CSB/02/027

Module content (lecture)

Week	Date	Topic	Notes
1		Introduction to "data" & "data analytics"	
2		Data preparation & pre-processing	Plus R programming
3		Data preparation & pre-processing	Plus R programming
4		Interactive graphics with Shiny	
5		Projection & reducing dimensions of data	
6		Projection & reducing dimensions of data	
7		Summarising and visualising data using clustering	
8		Summarising and visualising data using clustering	
9		Supervised learning	
10		Supervised learning	
11		Interactive graphics with Shiny	
12		Revision	

Module content (practical)

Week	Assignments	Topic	Notes
1			
2	Practical assignment 1	Introduction to R programming	Familiarity with R by examples
3	Practical assignment 2	Set up a practical medical dataset	R programming
4		Data preparation & pre-processing	Addressing missing data
5	Practical assignment 3	Projection & reducing dimensions of data	PCA & NMF
6			t-SNE
7	Practical assignment 4	Unsupervised learning (Clustering)	K-means & HC
8			AP & GMM
9	Practical assignment 5	Supervised learning & classification	SVM
10			Random Forest
11	Practical assignment 6	Interactive graphics with Shiny	Web-based application
12			

Practical assignments

Week	Assignments	Mark	Deadline (Date Due)
1			
2	Practical assignment 1	Pass-Fail*	Week 2
3	Practical assignment 2		
4		Pass-Fail	Week 4
5	Practical assignment 3		
6		Pass-Fail	Week 6
7	Practical assignment 4		
8		Pass-Fail	Week 8
9	Practical assignment 5		
10		Pass-Fail	Week 10
11	Practical assignment 6		
12		Pass-Fail	Week 11

^{*}Students must complete the assignment at each lab session to get a "Pass" mark for that lesson

Be Focused, passionate and driven

Assessment

Week	Assignments	Mark	Deadline (Date Due)
1			
2			
3			
4	Individual coursework 1	20%	18/10/19 (23:59)
5			
6			
7			
8	Individual coursework 2	40%	15/11/19 (23:59)
9			
10			
11			
12	Individual coursework 3	40%	09/12/19 (23:59)

Discussion and questions

