A Tutorial on Gradient Descend

Richard Xu

August 29, 2022

1 Implicit bias of gradient descend

This section explains [1]. The big picture here is to show the gradient $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) \neq \mathbf{0}$ (section of 1.3.2), the loss function $\mathcal{L}(\mathbf{w})$ will continue to decrease using gradient descent. This makes $\|\mathbf{w}(t)\| \to \infty$ as $t \to \infty$. As a result, the weights of the few dominant linear combination terms correspond to the weights associated with the support vectors.

1.1 classifier without max-margin

looking at support vector machine term below:

$$\min\left(\frac{1}{2}\|\mathbf{w}\|^2\right)$$
subject to: $1 - y_i(\mathbf{w}^\top x_i + w_0) \le 0 \quad \forall i$

If we were not trying to solve a max-margin problem: if we were just trying to express the problem as a linear classier. Then, the objective (for a single \mathbf{x}_i, y_i pair can be written as):

$$y_i(\mathbf{w}^\top \mathbf{x}_i + w_0) > 0 \tag{2}$$

to make things even simpler, drop the w_0 :

$$y_i(\mathbf{w}^\top \mathbf{x}_i) > 0 \tag{3}$$

1.1.1 smooth loss

smooth loss function used to penalize incorrect classification, for example:

$$\ell(u) = \exp^{-u}$$

$$\implies \ell(\mathbf{w}^{\top} \mathbf{x}_i y_i) = \exp^{\left(-\mathbf{w}^{\top} \mathbf{x}_i y_i\right)}$$
(4)

in words, we must "push" value of $\mathbf{w}^{\top}\mathbf{x}_iy_i$ to be large +ve value (for correctly classified data/label pairs) when smooth loss function is assigned to

1.2 use gradient descend

when gradient descend is used to minimize the objective below (note analytical solution available for svm):

$$\min \mathcal{L}(\mathbf{w})$$

$$= \min \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \mathbf{x}_{i} y_{i})$$

$$= \min \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \tilde{\mathbf{x}}_{i}) \quad \text{let } \tilde{\mathbf{x}}_{i} = \mathbf{x}_{i} y_{i}$$
(5)

1.2.1 gradient for generic loss \mathcal{L}

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \nabla_{\mathbf{w}} \sum_{i=1}^{n} \ell(\mathbf{w}^{\top} \tilde{\mathbf{x}}_{i})$$

$$= \sum_{i=1}^{n} \ell'(\mathbf{w}^{\top} \tilde{\mathbf{x}}_{i}) \tilde{\mathbf{x}}_{i}$$
(6)

substitute into gradient descend:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla_{\mathbf{w}(t)} \mathcal{L}(\mathbf{w}(t))$$

$$= \mathbf{w}(t) - \eta \sum_{i=1}^{n} \ell'(\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i}) \tilde{\mathbf{x}}_{i}$$
(7)

we are interested in the behavior of $\mathbf{w}(t) \to \infty$

1.3 magnitude: $\|\mathbf{w}(t)\| \to \infty$

1.3.1 no finite critical points $\nabla_{\mathbf{w}(t)} \mathcal{L}(\mathbf{w}(t)) = 0$

It's difficult to show from the gradient directly why the expression $\sum_{i=1}^n \ell'(\mathbf{w}(t)^\top \tilde{\mathbf{x}}_i) \tilde{\mathbf{x}}_i$ never reach 0, i.e.,

to show why
$$\lim_{t \to \infty} \sum_{i=1}^{n} \ell' (\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_i) \tilde{\mathbf{x}}_i \neq 0$$
 (8)

Note that people may be confused to think if we let $\ell(u) = \exp^{-u}$, then $\ell'(u) \neq 0$ anyway. right? However, since we have a sum and not just a term. Making the gradient zero may still seems "possible". To illustrate, when we let n=2, we may obtain a situation where:

$$\ell'(\mathbf{w}^{\top}\tilde{\mathbf{x}}_1)\tilde{\mathbf{x}}_1 = -\ell'(\mathbf{w}^{\top}\tilde{\mathbf{x}}_2)\tilde{\mathbf{x}}_2$$
 for some \mathbf{w} (9)

1.3.2 show $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}(t))$ won't be a zero vector

Let's assume $\exists w^{\star} \neq 0$ making data separable (if data is separable). looking at the following expression:

$$\mathbf{w}^{\star \top} \eta \nabla_{\mathbf{w}(t)} \mathcal{L}(\mathbf{w}(t)) = \mathbf{w}^{\star \top} \sum_{i=1}^{n} \ell'(\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i}) \tilde{\mathbf{x}}_{i}$$

$$= \sum_{i=1}^{n} \underbrace{\ell'(\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i})}_{<0} \underbrace{\tilde{\mathbf{x}}_{i}^{\top} \mathbf{w}^{\star}}_{>0}$$
(10)

Obviously, since:

$$\ell'(\mathbf{w}(t)^{\top}\tilde{\mathbf{x}}_{i})\tilde{\mathbf{x}}_{i}^{\top}\mathbf{w}^{*} < 0 \text{ and } \mathbf{w}^{*} \neq \mathbf{0}$$

$$\implies \ell'(\mathbf{w}(t)^{\top}\tilde{\mathbf{x}}_{i})\tilde{\mathbf{x}}_{i} \neq \mathbf{0} \quad \forall i$$

$$\implies \nabla_{\mathbf{w}}\mathcal{L}(\mathbf{w}(t)) \neq \mathbf{0}$$
(11)

Explain each two terms:

1. $\mathbf{w}^{*\top} \tilde{\mathbf{x}}_i > 0 \quad \forall i \text{ if all data are all correctly classified/linearly separable:}$

$$y_i(\mathbf{w}^{*\top}\mathbf{x}_i) > 0 \tag{12}$$

note that up to here, we made no reference with max-margin

- 2. l'(.) < 0 as long as we choose a monotonically decreasing l which means its gradient < 0
- 3. also note that in here, we merely assumed $\exists \mathbf{w}^*$. Don't get confused, it is not where $\mathbf{w}(t)$ converges to!
- 4. also note if it's possible for $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}(t)) = \mathbf{0}$, it means the gradient descend will not run indefinitely.

1.3.3 why $\|\mathbf{w}(t)\| \to \infty$?

We know gradient descend on a smooth loss will converge to a minimum. This will be illustrated in the β -smooth section. Since ℓ is a smooth function, so is $\mathcal{L}\big(\mathbf{w}(t)\big) = \sum_{i=1}^n \ell(\mathbf{w}(t)^\top \tilde{\mathbf{x}}_i)$:

$$\|\nabla \mathcal{L}(x) - \nabla \mathcal{L}(y)\| = \left\| \frac{1}{n} \sum_{i} \nabla \ell_{i}(x) - \frac{1}{n} \sum_{i} \nabla \ell_{i}(y) \right\|$$

$$= \frac{1}{n} \left\| \sum_{i} (\nabla \ell_{i}(x) - \nabla \ell_{i}(y)) \right\|$$

$$\leq \frac{1}{n} \sum_{i} \left\| \nabla \ell_{i}(x) - \nabla \ell_{i}(y) \right\| \quad \text{triangle inequality}$$

$$\leq \frac{1}{n} \sum_{i} (\beta_{i} \| x - y \|)$$

$$= \left(\frac{1}{n} \sum_{i} \beta_{i} \right) \| x - y \|$$

$$(13)$$

However, the above says there is no critical points. Putting above two arguments together, and look at the objective $\sum_{i=1}^n \ell(\mathbf{w}^\top \tilde{\mathbf{x}}_i)$, we can see that, since the gradient descend algorithm continues to run (and the loss will continuously becoming smaller):

$$\left(\mathcal{L}(\mathbf{w}(t)) = \sum_{i=1}^{n} \ell(\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i})\right) \to 0 \implies \mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i} \to \infty \quad \text{think } \exp(-u) \quad (14)$$

Since $\tilde{\mathbf{x}}_i$ is fixed, then $\|\mathbf{w}(t)\| \to \infty$. Note that this is why we need to show there is **no** critical points first.

The norm is needed as $y_i \in \{1, -1\}$, it means:

$$\lim_{t \to \infty} \|\mathbf{w}(t)\| = \infty$$
 or equivalently $\|\mathbf{w}(t)\| \to \infty$ (15)

1.4 what about direction of w(t)?

To characterize direction, we look at normalized $\lim_{t \to \infty} \frac{\mathbf{w}(t)}{\|\mathbf{w}(t)\|}$

Theorem 1 under assumption as $t \to \infty$, Gradient descend behaves as:

$$\mathbf{w}(t) \approx \frac{\mathbf{w}_{svm}}{\|\mathbf{w}_{svm}\|} \tag{16}$$

1.4.1 explanation

when $\mathbf{w}(t) \to \infty$, it has the same direction of the SVM solution, i.e., its normalized version $\frac{\mathbf{w}(t)}{\|\mathbf{w}(t)\|}$ becomes that of the \mathbf{w}_{svm}

 \mathbf{w}_{svm} gives max-margin classifier which has better generalization!

1.5 proof of theorem

consider exponential loss $\mathcal{L}(u) = \exp(-u)$, gradient descend in asymptotic regime in shown in Eq.(14):

$$\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_i \to \infty \quad \forall i \tag{17}$$

1.5.1 what is asymptotic "simplification" convergence?

The definition of the notation $a_n \to b_n$ is designed to mean that $a_n \approx b_n$ for large n, where the fit gets better and better as n gets larger, for example:

$$\lim_{x \to \infty} x^2 + x + 1 = x^2 \tag{18}$$

and,

$$u(x+h) = u(x) + u'(x)h + \frac{u''(x)}{2}h^2 + \dots$$

$$u(x+h) - u(x) + u'(x)h = \frac{u''(x)}{2}h^2 + \dots$$

$$\left| \frac{u(x+h) - u(x)}{h} - u'(x) \right| = \left| \frac{u''(x)}{2}h + \frac{u'''(x)}{3!}h^2 \dots \right| \quad \text{divided by } h$$

$$\implies \lim_{h \to 0} \left| \frac{u(x+h) - u(x)}{h} - u'(x) \right| = \left| \frac{u''(x)}{2}h \right|$$
(19)

1.5.2 asymptotic convergence of $\frac{\mathbf{w}(t)}{\|\mathbf{w}(t)\|}$

we express $\mathbf{w}(t)$ as a linear function in terms of \mathbf{w}_{∞} (the remaining work is to find what \mathbf{w}_{∞} is):

$$\mathbf{w}(t) = \underbrace{m(t)}_{\text{magnitude}} \mathbf{w}_{\infty} + \underbrace{\mathbf{b}(t)}_{\text{residual}}$$
(20)

assume $\exists \mathbf{w}_{\infty}$ (which is a unit vector), the limit of the normalization $\frac{\mathbf{w}(t)}{\|\mathbf{w}(t)\|} \to \mathbf{w}_{\infty}$, under assumptions of both already stated, and new ones:

- 1. $\lim_{t\to\infty}\frac{\mathbf{b}(t)}{m(t)}=0$ as $\|\mathbf{b}(t)\|$ is relatively smaller compare with $\|\mathbf{w}(t)\|$, as $t\to\infty$
- 2. $m(t) \to \infty$ makes sense as $\|\mathbf{w}(t)\| \to \infty$

since m(t) is the magnitude, then $m(t) \geq 0$. Looking at the gradient again:

$$\nabla_{\mathbf{w}(t)} \mathcal{L}(\mathbf{w}(t)) = \sum_{i=1}^{n} \ell'(\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i}) \tilde{\mathbf{x}}_{i}$$

$$= -\sum_{i=1}^{n} \exp^{\left(-\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i}\right)} \tilde{\mathbf{x}}_{i} \quad \text{substitute } \ell'(u) = -\exp(-u)$$

$$\implies -\nabla_{\mathbf{w}(t)} \mathcal{L}(\mathbf{w}(t)) = \sum_{i=1}^{n} \exp^{\left(-\mathbf{w}(t)^{\top} \tilde{\mathbf{x}}_{i}\right)} \tilde{\mathbf{x}}_{i}$$

$$= \sum_{i=1}^{n} \exp^{\left(-\left(m(t)\mathbf{w}_{\infty} + \mathbf{b}(t)\right)^{\top} \tilde{\mathbf{x}}_{i}\right)} \tilde{\mathbf{x}}_{i} \quad \text{substitute } \mathbf{w}(t) = m(t)\mathbf{w}_{\infty} + \mathbf{b}(t)$$

$$= \sum_{i=1}^{n} \exp^{-m(t)\mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_{i}} \tilde{\mathbf{x}}_{i} \times \exp^{-\mathbf{b}(t)^{\top} \tilde{\mathbf{x}}_{i}} \tilde{\mathbf{x}}_{i}$$

$$\approx \sum_{i=1}^{n} \exp^{-m(t)\mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_{i}} \tilde{\mathbf{x}}_{i} \quad \because \lim_{t \to \infty} \frac{\mathbf{b}(t)}{m(t)} = 0$$

$$= \sum_{i=1}^{n} \underbrace{\exp^{\left(-m(t)\mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_{i}\right)}_{\alpha_{i}} \tilde{\mathbf{x}}_{i}}$$

$$(21)$$

so gradient step would be some non-negative linear combination of $\tilde{\mathbf{x}}_i$, i.e.,:

$$-\nabla_{\mathbf{w}(t)}\mathcal{L}(\mathbf{w}(t)) = \sum_{i=1}^{n} \alpha_i \tilde{\mathbf{x}}_i$$
 (22)

1.5.3 dominate terms

assumes \mathbf{w}_{∞} classifies the linearly separable data correctly, then:

$$\mathbf{w}_{\infty}^{\top}\tilde{\mathbf{x}}_i > 0 \tag{23}$$

since $m(t) \to \infty$, we have only a few dominate terms in $\{\tilde{\mathbf{x}}_i\}$ (multiply by ∞ makes they dominate!). since these $\tilde{\mathbf{x}}_i$ are closest to (and on the) decision boundary, then they are precisely support vectors! So the set is support vector set s.v.!

Note that if mulitple $\tilde{\mathbf{x}}_i$ and $\tilde{\mathbf{x}}_j$ are the closest, i.e., $\mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_i = \mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_j$, then, they both are part of the support vector set!

$$-\nabla_{\mathbf{w}(t)} \mathcal{L}(\mathbf{w}(t)) \approx \sum_{\tilde{\mathbf{x}}_i \in s. \ v.} \alpha_i \tilde{\mathbf{x}}_i$$

$$= \sum_{\mathbf{x}_i \in s. \ v.} \alpha_i \mathbf{x}_i y_i$$
(24)

As each of the gradient step is a linear combination of $x_i \in \text{s.v.}$, then, so is \mathbf{w}_{∞} , i.e.,

$$\mathbf{w}_{\infty} = \sum_{\mathbf{x}_i \in \text{s.v.}} \alpha_i' \tilde{\mathbf{x}}_i \qquad \text{for some } \alpha_i' \neq \alpha_i$$
 (25)

since $\|\mathbf{w}(t)\| \to \infty$, then the initial $\mathbf{w}(0)$ value won't matter any more. There is one remaining issue though: $\mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_i \neq 1 \quad \forall \mathbf{x}_i \in \text{s.v.}$ so look at the next section:

1.5.4 from w_{∞} to obtain w_{svm}

lastly, we need to scale w_{∞} to become w_{svm} . let's see what if we perform $\frac{w_{\infty}}{\text{some constant}}$. Now let's have $\tilde{x}_{\text{s.v.}}$ such that:

$$\mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_{\text{s.v.}} = \min_{i} \{ \mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_{i} \}$$
 (26)

although the picking of the "some constant" is arbitrary, but we pick $\min_i \{ \mathbf{w}_{\infty}^{\top} \tilde{\mathbf{x}}_i \}$ to reflect the SVM solution:

$$\widehat{\mathbf{w}} = \frac{\mathbf{w}_{\infty}}{\text{some constant}}$$

$$= \frac{\mathbf{w}_{\infty}}{\mathbf{w}_{\infty}^{\top} \widetilde{\mathbf{x}}_{\text{s.v.}}}$$
(27)

note that $\|\mathbf{w}_{\infty}\|=1$, but $\|\hat{\mathbf{w}}\| \neq 1$! By this process, it scales $\widehat{\mathbf{w}}$ such that when applying to $\tilde{\mathbf{x}}_{\text{s.v.}}$:

$$\widehat{\mathbf{w}}^{\top} \widetilde{\mathbf{x}}_{s.v.} = \frac{\mathbf{w}_{\infty}}{\mathbf{w}_{\infty}^{\top} \widetilde{\mathbf{x}}_{s.v.}}^{\top} \widetilde{\mathbf{x}}_{s.v.}$$

$$= 1$$
(28)

and when it applies to other $\tilde{\mathbf{x}} \notin {\{\tilde{\mathbf{x}}_{s.v.}\}}$:

$$\widehat{\mathbf{w}}^{\top} \widetilde{\mathbf{x}} = \frac{\mathbf{w}_{\infty}}{\mathbf{w}_{\infty}^{\top} \widetilde{\mathbf{x}}_{s.v.}}^{\top} \widetilde{\mathbf{x}}$$

$$> 1$$
(29)

Does $\hat{\mathbf{w}}$ look familiar? Remember KKT condition is:

$$\widehat{\mathbf{w}} = \sum_{i=1}^{N} \lambda_i \widetilde{\mathbf{x}}_i \tag{30}$$

with complementary duality:

$$\begin{cases} \lambda_i > 0 & \widehat{\mathbf{w}}^\top \widetilde{\mathbf{x}}_i = 1 & \text{support vectors} \\ \lambda_i = 0 & \widehat{\mathbf{w}}^\top \widetilde{\mathbf{x}}_i > 1 & \text{non support vector} \end{cases}$$
(31)

compare with equation in SVM section, $\widehat{\mathbf{w}} = \mathbf{w}_{\text{svm}}$

Since we already prove $\widehat{\mathbf{w}}$ is proportional to \mathbf{w}_{∞} . Therefore, \mathbf{w}_{∞} is the SVM solution up to some constant!

2 Fenchel dual function

$$f^{*}(\mathbf{y}) = \sup_{\mathbf{x}} \left[\mathbf{x}^{\top} \mathbf{y} - f(\mathbf{x}) \right]$$
 (32)

2.1 property of Fenchel dual

2.1.1 visualization

visualization is achieved similarly to what was done previously in the genera dual function section: Consider $f^*(y)$ is a function on the "gradient space", except we now have parameter:

$$\lambda \to \mathbf{y}$$
 (33)

Just like the general dual function section, we can visualize by generating $f^*(\mathbf{y})$ from maximization of finite lines (in \mathbf{y}) defined by a finite set $\{\mathbf{x}\}$, and \mathbf{x} and $f(\mathbf{x})$ are treated like "constant line parameters". the alternative way to consider this is to rewrite Eq.(32) as:

$$f^{\star}(\mathbf{y}) = \sup_{\mathbf{x}} \left[-f(\mathbf{x}) + \mathbf{y}^{\top} \mathbf{x} \right]$$
 (34)

where the dual "constraint" $g(\mathbf{x}) \equiv \mathbf{y}^{\top} \mathbf{x}$. Note $f^*(\mathbf{y})$ is always convex.

Figure 1: simple demonstration of Fenchel dual function

imagine we picked a particular value of y = 3 in order to compute the value of $f^*(3)$, then we worked out:

$$f^{\star}(3) = \sup_{x} \left[3x - f(x) \right]$$
$$\hat{x}_{3} = \arg\max_{x} \left[3x - f(x) \right]$$
(35)

which is the red line segment, i.e., the line segment/difference between the line 3x (gradient 3, passing through origin), i.e., the blue line and the function $f(\mathbf{x})$, i.e., the brown line.

2.1.2 important observation

introducing $\arg\max$ variable $\hat{\mathbf{x}}_{\mathbf{y}},$ such that by given $\mathbf{y}:$

$$\hat{\mathbf{x}}_{\mathbf{y}} = \arg\max_{\mathbf{x}} \left[\mathbf{y}^{\top} \mathbf{x} - f(\mathbf{x}) \right]$$

$$\implies \nabla_{\mathbf{x}} \left(\hat{\mathbf{x}}_{\mathbf{y}}^{\top} \mathbf{y} - f(\hat{\mathbf{x}}_{\mathbf{y}}) \right) = 0$$

$$\implies \nabla_{\mathbf{x}} f(\hat{\mathbf{x}}_{\mathbf{y}}) = \mathbf{y}$$
(36)

It says that given \mathbf{y} , maximum of the line segment length between $\mathbf{y}^{\top}\mathbf{x}$ and $f(\mathbf{x})$ occurs at particular $\hat{\mathbf{x}}_{\mathbf{y}}$, where its gradient $\nabla_{\mathbf{x}} f(\hat{\mathbf{x}}_{\mathbf{y}}) = \mathbf{y}$. In our case, we picked y = 3, therefore $\nabla_{\mathbf{x}} f(\hat{x}_3) = 3$.

Visually, we see two parallel lines in blue and green as both have gradient y=3. So far, we express everything in tersm of gradients. However, they will be replaced by subgradients.

2.1.3 Fenchel's inequality

for any x and y:

$$f(\mathbf{x}) + f^{\star}(\mathbf{y}) \ge \mathbf{x}^{\mathsf{T}} \mathbf{y} \tag{37}$$

the reason is because:

$$f^{\star}(\mathbf{y}) = \sup_{\mathbf{x}} \left[\mathbf{x}^{\top} \mathbf{y} - f(\mathbf{x}) \right]$$
$$\geq \mathbf{x}^{\top} \mathbf{y} - f(\mathbf{x})$$
$$\implies f(\mathbf{x}) + f^{\star}(\mathbf{y}) \geq \mathbf{x}^{\top} \mathbf{y}$$
 (38)

2.1.4 example

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + c$$

$$f^{*}(\mathbf{y}) = \sup_{\mathbf{x}} \left(\mathbf{y}^{\top} \mathbf{x} - \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} - \mathbf{q}^{\top} \mathbf{x} - c \right)$$
(39)

to find optimal \mathbf{x} :

$$\hat{\mathbf{x}}_{\mathbf{y}} - \mathbf{Q}\mathbf{x} - \mathbf{q} = \mathbf{0}$$

$$\hat{\mathbf{x}}_{\mathbf{y}} = \mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q})$$
(40)

substitute it back to $f^*(\mathbf{y})$:

$$f^{\star}(\mathbf{y}) = \mathbf{y}^{\top} (\mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q})) - \frac{1}{2} (\mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q}))^{\top} \mathbf{Q} (\mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q})) - \mathbf{q}^{\top} (\mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q})) - c$$

$$= (\mathbf{y} - \mathbf{q})^{\top} (\mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q})) - \frac{1}{2} (\mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q}))^{\top} \mathbf{Q} (\mathbf{Q}^{-1}(\mathbf{y} - \mathbf{q})) - c$$

$$= (\mathbf{y} - \mathbf{q})^{\top} \mathbf{Q}^{-1} (\mathbf{y} - \mathbf{q}) - \frac{1}{2} (\mathbf{y} - \mathbf{q})^{\top} \mathbf{Q}^{-1} (\mathbf{y} - \mathbf{q}) - c$$

$$= (\mathbf{y} - \mathbf{q})^{\top} \mathbf{Q}^{-1} (\mathbf{y} - \mathbf{q}) - \frac{1}{2} (\mathbf{y} - \mathbf{q})^{\top} \mathbf{Q}^{-1} (\mathbf{y} - \mathbf{q}) - c$$

$$= \frac{1}{2} (\mathbf{y} - \mathbf{q})^{\top} \mathbf{Q}^{-1} (\mathbf{y} - \mathbf{q}) - c$$

$$(41)$$

2.1.5 conjugate of conjugate function in general

In general, for any arbitary function f(x), conjugate of conjugate function is no greater than the original function:

$$f^{**}(\mathbf{x}) \le f(\mathbf{x}) \tag{42}$$

this can be easily proven:

$$f^{**}(\mathbf{x}) = \sup_{\mathbf{y}} \left[\mathbf{x}^{\top} \mathbf{y} - f^{*}(\mathbf{y}) \right]$$

$$= \sup_{\mathbf{y}} \left[\mathbf{x}^{\top} \mathbf{y} - \sup_{\mathbf{z}} \left[\mathbf{y}^{\top} \mathbf{z} - f(\mathbf{z}) \right] \right] \quad \text{need to use variable } \mathbf{z}$$

$$= \sup_{\mathbf{y}} \left[\mathbf{x}^{\top} \mathbf{y} + \inf_{\mathbf{z}} \left[-\mathbf{y}^{\top} \mathbf{z} + f(\mathbf{z}) \right] \right] \quad - \sup\{\mathbf{x}\} \Leftrightarrow + \inf\{-\mathbf{x}\}$$

$$= \sup_{\mathbf{y}} \left[\inf_{\mathbf{z}} \left[\mathbf{y}^{\top} (\mathbf{z} - \mathbf{x}) + f(\mathbf{z}) \right] \right]$$

$$\leq \inf_{\mathbf{z}} \left[\sup_{\mathbf{y}} \left[\mathbf{y}^{\top} (\mathbf{z} - \mathbf{x}) + f(\mathbf{z}) \right] \right]$$

$$= f(\mathbf{x})$$

$$(43)$$

the last line can be seen as \mathbf{y} is not bounded, so it can always be choosen that the inner term $\sup_{\mathbf{y}} \left[\mathbf{y}^{\top} (\mathbf{z} - \mathbf{x}) + f(\mathbf{z}) \right] \to \infty$, therefore, we can prevent this by having $\mathbf{z} = \mathbf{x}$. Note that this is used often in the context of min max or inf sup.

2.1.6 conjugate of conjugate function when $f(\mathbf{x})$ is convex

however, when $f(\mathbf{x})$ is convex:

$$f^{**}(\mathbf{x}) = f(\mathbf{x}) \tag{44}$$

we can exploit the above property:

$$f^{*}(\mathbf{y}) = \max_{\mathbf{x}} \left[\mathbf{x}^{\top} \mathbf{y} - f(\mathbf{x}) \right] \quad \forall \mathbf{y} \quad \text{by definition}$$

$$\implies f(\mathbf{x}) = f^{**}(\mathbf{x}) = \max_{\mathbf{y}} \left[\mathbf{x}^{\top} \mathbf{y} - f^{*}(\mathbf{y}) \right] \quad \forall \mathbf{x} \quad \text{by } f^{**}(\mathbf{x}) = f(\mathbf{x})$$
(45)

2.1.7 derivatives of conjugate function

when $f(\mathbf{x})$ is convex and differentiable, then Eq.(36) can be extended to both ways:

$$f(\mathbf{x}) + f^{*}(\mathbf{y}) = \mathbf{x}^{\top} \mathbf{y} \quad \forall \mathbf{x}, \mathbf{y}$$

$$\implies \nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{y} \quad \text{and} \quad \nabla_{\mathbf{y}} f^{*}(\mathbf{y}) = \mathbf{x}$$
(46)

note that we make the two equations of the last line having the same \mathbf{x} and \mathbf{y} , we call them $\hat{\mathbf{x}}_{\mathbf{y}}$ and $\hat{\mathbf{y}}_{\mathbf{x}}$:

$$\nabla_{\mathbf{x}} f(\hat{\mathbf{x}}_{\mathbf{y}}) = \hat{\mathbf{y}}_{\mathbf{x}} \quad \text{and} \quad \nabla_{\mathbf{y}} f^{*}(\hat{\mathbf{y}}_{\mathbf{x}}) = \hat{\mathbf{x}}_{\mathbf{y}}$$
 (47)

$$\nabla_{\mathbf{x}} f\left(\underbrace{\nabla_{\mathbf{y}} f^{*}(\hat{\mathbf{y}}_{\mathbf{x}})}_{\hat{\mathbf{x}}_{\mathbf{y}}}\right) = \hat{\mathbf{y}}_{\mathbf{x}}$$
(48)

therefore, for a corresponding pair $(\mathbf{x_y}, \mathbf{y_x})$, obtained from computing the conjugate dual:

$$\nabla_{\mathbf{x}} f(\hat{\mathbf{x}}_{\mathbf{y}}) = \hat{\mathbf{y}}_{\mathbf{x}} \iff \nabla_{\mathbf{y}} f^{*}(\hat{\mathbf{y}}_{\mathbf{x}}) = \hat{\mathbf{x}}_{\mathbf{y}}$$
(49)

This property says that the function argument $\hat{\mathbf{x}}_{\mathbf{y}}$ and its gradient through f, i.e., $\hat{\mathbf{y}}_{\mathbf{x}}$ have their roles switched if applied to the conjugate function f^* .

2.1.8 A practical implication

A practical implication of the above is when you need to find stationary point for an dual function $f^*(\cdot)$:

$$\hat{\mathbf{y}}_{\mathbf{x}} = \arg\max_{\mathbf{y}} \left[\mathbf{x}^{\top} \mathbf{y} - f^{\star}(\mathbf{y}) \right]$$
 (50)

and you know by definition, the following is true:

$$\nabla_{\mathbf{y}} f^{*}(\hat{\mathbf{y}}_{\mathbf{x}}) - \mathbf{x} = 0$$

$$\nabla_{\mathbf{y}} f^{*}(\hat{\mathbf{y}}_{\mathbf{x}}) = \mathbf{x}$$

$$= \hat{\mathbf{x}}_{\mathbf{y}}$$
(51)

one way to solve for $\hat{y}_{\mathbf{x}}$ is by taking the inverse of the Jacobian matrix:

$$\hat{\mathbf{y}}_{\mathbf{x}} = (\nabla_{\mathbf{y}} f^{\star})^{-1} (\hat{\mathbf{x}}_{\mathbf{y}}) \tag{52}$$

However, using the property in Eq.(47), we can compute $\hat{\mathbf{y}}_{\mathbf{x}}$ simply by:

$$\hat{\mathbf{y}}_{\mathbf{x}} = \nabla_{\mathbf{x}} f(\hat{\mathbf{x}}_{\mathbf{y}}) \tag{53}$$

2.1.9 derivatives of conjugate function when non-differentiable

what if $f(\mathbf{x})$ or $f^*(\mathbf{y})$ is **not** differentiable everywhere then the last two lines become:

$$\implies \mathbf{y} \in \partial f(\mathbf{x}) \quad \Longleftrightarrow \quad \mathbf{x} \in \partial f^*(\mathbf{y}) \tag{54}$$

in there $\partial f(\mathbf{x})$ is called **sub-differential**

2.1.10 what is sub-differential?

this is used when $f(\mathbf{x})$ is convex, but $f(\mathbf{x})$ is not differentiable at some \mathbf{x}

$$\partial f(x_0) := \left\{ m \in \mathbb{R} \mid f(x) \ge f(x_0) + m(x - x_0) \ \forall x \in \mathbb{R} \right\} \tag{55}$$

in words, it means for convex, but non-differentiable function, sub-gradients at point x_0 are the "collection of gradients" where the lines they represent touches the function at $f(x_0)$, but is $\leq f(x)$ everywhere else

Contrary to gradient, i.e., $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$, sub-differential returns a set of gradient values. If f is differentiable at x, then it can be seen as a special case, $\partial f(x)$ just contains a singleton, $\left\{\frac{df(x)}{dx}\right\}$:

$$\partial f(x) := \left\{ m \in \mathbb{R} \mid f(x) \ge f(x_0) + m(x - x_0) \ \forall x \in \mathbb{R} \right\} = \left\{ \frac{\mathrm{d}f(x)}{\mathrm{d}x} \right\} \tag{56}$$

2.2 proof for sub differential inverse

In addition to what was described in Section 2, let's look at the inverse from the sub differential perspective. Now we simplify our notation $\hat{y}_{\bf x} \to \hat{y}$ and $\hat{x}_{\bf y} \to \hat{x}$ instead:

$$f^{*}(\hat{\mathbf{y}}) \equiv \sup_{\mathbf{x}} \{\hat{\mathbf{y}}^{\top} \mathbf{x} - f(\mathbf{x})\}$$
 (57)

for a particular \hat{y} , assume we find \hat{x} to be optimum, for which iff:

$$\mathbf{0} \in \hat{\mathbf{y}} - \partial f(\hat{\mathbf{x}})$$

$$\implies \hat{\mathbf{y}} \in \partial f(\hat{\mathbf{x}})$$
(58)

by substitution $\mathbf{x} = \hat{\mathbf{x}}$ into Eq.(57), (we did not do anything else) we have:

$$f^{\star}(\hat{\mathbf{y}}) \equiv \hat{\mathbf{y}}^{\top} \hat{\mathbf{x}} - f(\hat{\mathbf{x}}) \tag{59}$$

looking at the equation without picking $\mathbf{y} \equiv \hat{\mathbf{y}}$ (we will add it back into it). For a generic \mathbf{y} :

$$f^{\star}(\mathbf{y}) = \sup_{\mathbf{x}} \{ \mathbf{y}^{\top} \mathbf{x} - f(\mathbf{x}) \}$$

$$\geq \mathbf{y}^{\top} \hat{\mathbf{x}} - f(\hat{\mathbf{x}}) \qquad \hat{\mathbf{x}} \quad \text{optimized for } \hat{\mathbf{y}}, \text{ not for generic } \mathbf{y}$$

$$= (\mathbf{y} - \hat{\mathbf{y}})^{\top} \hat{\mathbf{x}} - f(\hat{\mathbf{x}}) + \hat{\mathbf{y}}^{\top} \hat{\mathbf{x}} \quad \text{add and subtract } \hat{\mathbf{y}}^{\top} \hat{\mathbf{x}}$$

$$= f^{\star}(\hat{\mathbf{y}}) + (\mathbf{y} - \hat{\mathbf{y}})^{\top} \hat{\mathbf{x}} \quad \text{from Eq.(59)} \quad f^{\star}(\hat{\mathbf{y}}) \equiv \hat{\mathbf{y}}^{\top} \hat{\mathbf{x}} - f(\hat{\mathbf{x}})$$

$$= f^{\star}(\hat{\mathbf{y}}) + \langle \hat{\mathbf{x}}, \mathbf{y} - \hat{\mathbf{y}} \rangle$$
(60)

then, the moral of the story is that by looking at:

$$f^{\star}(\mathbf{y}) \ge f^{\star}(\hat{\mathbf{y}}) + \langle \hat{\mathbf{x}}, \mathbf{y} - \hat{\mathbf{y}} \rangle$$
 (61)

since we know $f^*(\mathbf{y})$ must be convex and using the definition of convex function, we know that it must be the case where $\hat{\mathbf{x}} \in \partial_{\mathbf{y}} f^*(\hat{\mathbf{y}})$

we have shown that:

$$\hat{\mathbf{y}} \in \partial f(\hat{\mathbf{x}}) \implies \hat{\mathbf{x}} \in \partial f^{\star}(\hat{\mathbf{y}})$$
 (62)

2.3 example of Fenchel/conjugate for $f(\cdot) \equiv ||\cdot||$

2.3.1 $f \equiv \|\cdot\|$ is a vector norm

$$f(\mathbf{x}) = \|\mathbf{x}\|$$

$$f^{\star}(\mathbf{y}) = \sup_{\mathbf{x}} \left\{ \mathbf{y}^{\top} \mathbf{x} - \|\mathbf{x}\| \right\}$$

$$\equiv \sup_{\mathbf{x}} \left\{ \langle \mathbf{y}, \mathbf{x} \rangle - \|\mathbf{x}\| \right\}$$
(63)

what is $f^*(\mathbf{y})$? It actually depends on the sign of $\langle \mathbf{y}, \mathbf{x} \rangle - ||\mathbf{x}||$, and interestingly, we can obtain this through dual norm $||\mathbf{y}||_*$ (for its computation, $||\mathbf{x}|| \le 1$):

1. case $\|\mathbf{y}\|_{\star} > 1$

using the definition of dual norm:

$$\|\mathbf{y}\|_{\star} = \sup_{\|\mathbf{x}\| \le 1} \langle \mathbf{y}, \mathbf{x} \rangle$$

$$\|\mathbf{y}\|_{\star} > 1 \implies \sup_{\|\mathbf{x}\| \le 1} \langle \mathbf{y}, \mathbf{x} \rangle > 1$$

$$\implies \exists \mathbf{x} \text{ s.t } \|\mathbf{x}\| \le 1 : \underbrace{\langle \mathbf{y}, \mathbf{x} \rangle}_{>1} > \underbrace{\|\mathbf{x}\|}_{\le 1}$$
(64)

therefore, when we apply this \mathbf{y} s.t., $\|\mathbf{y}\|_{\star} > 1$ to unconstrained \mathbf{x} in $\sup_{\mathbf{x}} \left\{ \langle \mathbf{y}, \mathbf{x} \rangle - \|\mathbf{x}\| \right\}$:

we can rewrite:

$$\mathbf{x} \to t\mathbf{x}$$
 (65)

i.e., now \mathbf{x} can have any norm, which is the case of $f^{\star}(\mathbf{y}) \equiv \sup_{\mathbf{x}} \big\{ \langle \mathbf{y}, \mathbf{x} \rangle - \|\mathbf{x}\| \big\}$, i.e., \mathbf{x} is unbounded:

$$\langle \mathbf{y}, t\mathbf{x} \rangle - ||t\mathbf{x}|| = t(\langle \mathbf{y}, \mathbf{x} \rangle - ||\mathbf{x}||)$$
 (66)

 $t \to \infty \implies \|\mathbf{y}\|_{\star}$ to be unbounded, so we have shown half of the dual norm:

$$f^{\star}(\mathbf{y}) = \mathbb{1}_{\|\mathbf{x}\|_{\star} \le 1}(\mathbf{x}) = \begin{cases} ? & \|\mathbf{y}\|_{\star} \le 1 \\ +\infty & \|\mathbf{y}\|_{\star} > 1 \end{cases}$$
 (67)

2. case $\|\mathbf{y}\|_{\star} \leq 1$

using the definition of dual norm:

$$\|\mathbf{y}\|_{\star} = \sup_{\|\mathbf{x}\| \le 1} \langle \mathbf{y}, \mathbf{x} \rangle$$

$$\|\mathbf{y}\|_{\star} \le 1 \implies \sup_{\|\mathbf{x}\| \le 1} \langle \mathbf{y}, \mathbf{x} \rangle \le 1$$

$$\implies \forall \mathbf{x} \text{ s.t } \|\mathbf{x}\| \le 1 : \quad \langle \mathbf{y}, \mathbf{x} \rangle - \|\mathbf{x}\| \le 0$$
(68)

since the term inside $\sup_{\mathbf{x}} \{ \langle \mathbf{y}, \mathbf{x} \rangle - ||\mathbf{x}|| \}$ is ≤ 0 , and therefore $\sup_{\mathbf{x}}$ makes it 0.

Combined the two, we have:

$$f^{\star}(\mathbf{y}) = \mathbb{1}_{\|\mathbf{y}\|_{\star} \le 1}(\mathbf{y}) = \begin{cases} 0 & \|\mathbf{y}\|_{\star} \le 1 \\ +\infty & \|\mathbf{y}\|_{\star} > 1 \end{cases}$$
 (69)

In general, indicator function of a convex set:

$$\mathbb{1}_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty & \text{otherwise} \end{cases}$$
 (70)

Also, it's important to note that $f(\mathbf{x}) = \|\mathbf{x}\|$ is un-constrained, but $f^*(\mathbf{y})$ is constrained to \mathcal{Y} , i.e., a unit ball of a norm $\|\cdot\| = \{\mathbf{y} : \|\mathbf{y}\| \le 1\}$.

2.3.2 $f = \|\cdot\|^2$ vector norm

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2 \implies f^*(\mathbf{y}) = \frac{1}{2} \|\mathbf{y}\|_{\star}^2$$
(71)

1. show $f^*(\mathbf{y}) \leq \frac{1}{2} ||\mathbf{y}||_{\star}^2$:

$$\mathbf{y}^{\top} \mathbf{x} \leq \|\mathbf{y}\|_{\star} \|\mathbf{x}\| \qquad \forall \mathbf{x}$$

$$\implies \mathbf{y}^{\top} \mathbf{x} - \frac{1}{2} \|\mathbf{x}\|^{2} \leq \|\mathbf{y}\|_{\star} \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^{2} \qquad \text{both sides } -\frac{1}{2} \|\mathbf{x}\|^{2}$$
(72)

R.H.S is quadratic function in terms of $\|\mathbf{x}\|$. After solving, it has max occur at $\|\mathbf{x}\| = \|\mathbf{y}\|_{\star}\|$, substituting into:

$$\max_{\|\mathbf{x}\|} \left(\|\mathbf{y}\|_{\star} \|\mathbf{x}\| - \frac{1}{2} \|\mathbf{x}\|^{2} \right) = \|\mathbf{y}\|_{\star}^{2} - \frac{1}{2} \|\mathbf{y}\|_{\star}^{2}$$

$$= \frac{1}{2} \|\mathbf{y}\|_{\star}^{2}$$

$$\implies f^{\star}(\mathbf{y}) = \mathbf{y}^{\top} \mathbf{x} - \frac{1}{2} \|\mathbf{x}\|^{2} \le \frac{1}{2} \|\mathbf{y}\|_{\star}^{2} \qquad \forall \mathbf{x}$$
(73)

2. $f^*(\mathbf{y}) \ge \frac{1}{2} ||\mathbf{y}||_{\star}^2$

Let \mathbf{x} be any chosen vector with $\mathbf{y}^{\top}\mathbf{x} = \|\mathbf{y}\|_{\star}\|\mathbf{x}\|$ (think this as when norm on the R.H.S is fixed, then one may choose the value of \mathbf{y} and \mathbf{x} to change the "direction". In $\|\cdot\|_2$ case, they should have $\cos(\theta) = 0$). W.l.o.g, we then scale so that $\|\mathbf{x}\| = \|\mathbf{y}\|_{\star}$. then we have, for this \mathbf{x} :

$$\|\mathbf{x}\| = \|\mathbf{y}\|_{\star}$$

$$\Rightarrow \mathbf{y}^{\top}\mathbf{x} = \|\mathbf{x}\|^{2} \quad : \mathbf{y}^{\top}\mathbf{x} = \|\mathbf{y}\|_{\star}\|\mathbf{x}\|$$

$$= \frac{1}{2}\|\mathbf{x}\|^{2} + \frac{1}{2}\|\mathbf{y}\|_{\star}^{2}$$

$$\Rightarrow \mathbf{y}^{\top}\mathbf{x} - \frac{1}{2}\|\mathbf{x}\|^{2} = \frac{1}{2}\|\mathbf{y}\|_{\star}^{2}$$

$$\Rightarrow f^{*}(\mathbf{y}) \geq \frac{1}{2}\|\mathbf{y}\|_{\star}^{2}$$
(74)

References

[1] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro, "The implicit bias of gradient descent on separable data," *The Journal of Machine Learning Research*, vol. 19, no. 1, pp. 2822–2878, 2018.