ECE 6213 – Design of VLSI Circuits

Fall 2022 - The George Washington University - Dr. Jerry Wu

Osama Yousuf - HW 2

Problem 1 – 35 points

• Obtain the equation and simplify it accordingly

The equation is: $O_{dynamic} = [\sim (A \& B) | (C \& \sim B)] \& B$. My work is attached below:

The simplified expressions are: $O_{static} = \sim A \mid \sim B = \sim (AB)$, and $O_{dynamic} = \sim AB$. My working is below:

• Discuss the possible issue with the original circuit

Let's calculate the timing delays for the two outputs:

$$Temp_0 = 2 nS$$

$$Temp_2 = 0.8 \, nS$$

$$Temp_1 = 0.8 + 2 = 2.8 \, nS$$

$$O_{static} = 1.5 + 2.8 \, nS$$
 (longer delay out of its two inputs) = 4.3 nS

$$B_{delay} = 0.8 + 0.8 = 1.6 \, nS$$

$$O_{dynamic} = 2 + 4.3 = 6.3 \, nS$$

The issue thus in the circuit is that even though we wanted the B_{delay} to be the critical path for $O_{dynamic}$, the gate delay for O_{static} is greater and thus instead the total delay is longer than intended.

Problem 2 – 55 points

• Create a truth table for "excess-5" code to BCD

Excess-5 input			BCD output				
w	X	y	Z	a	b	c	d
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	1
0	1	1	1	0	0	1	0
1	0	0	0	0	0	1	1
1	0	0	1	0	1	0	0
1	0	1	0	0	1	0	1
1	0	1	1	0	1	1	0
1	1	0	0	0	1	1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	1

Rest of the cases are don't care X.

• Derive and optimize each output (a, b, c, d) as a function of the inputs (by K-maps based on your truth table)

K-Maps:

Output		y, z				
a		00	01	11	10	
	00	X	X	X	X	
	01	X				
w, x	11		1	X	1	
	10					

$$a(w, x, y, z) = wxz + wxy$$

Verilog: assign a = (w & x & z) | (w & x & y);

Output		y, z				
b		00	01	11	10	
00		X	X	X	X	
	01	X				
w, x	11	1		X		
	10		1	1	1	

$$b(w, x, y, z) = x'y + x'z + xy'z'$$

Verilog: assign $b = (\sim x \& z) | (\sim x \& y) | (x \& \sim y \& \sim z);$

Output		y, z				
С		00	01	11	10	
	00	X	X	X	X	
	01	X		1		
w, x	11	1		X		
	10	1		1		

$$c(w, x, y, z) = y'z' + yz$$

Verilog: assign $c = (y \& z) | (\sim y \& \sim z);$

Output		y, z				
d		00	01	11	10	
	00	X	X	X	X	
	01	X			1	
w, x	11	1		X	1	
	10	1			1	

$$d(w, x, y, z) = z'$$

Verilog: assign $d = \sim z$;

• Model a converter circuit at gate level in structural style

```
module p2_gates(w, x, y, z, a, b, c, d);
     input w, x, y, z;
     output a, b, c, d;
13 \vee wire t1, t2, t3
         // model output a
         and g1(t1, w, x);
                              // t1 = wx
         and g2(t2, t1, y);
                             // t2 = wxy
         and g3(t3, t1, z); // t3 = wxz
         or g4(a, t2, t3);
                              // a = wxy + wxz
         // model output b
         not g5(t4, x);
                                  // t4 = x'
                                  // t5 = x'y
         and g6(t5, t4, y);
         and g7(t6, t4, z);
                                  // t6 = x'z
         not g8(t7, y);
                                  // t7 = y'
         not g9(t8, z);
                                  // t8 = z'
                                  // t9 = xy'
         and g10(t9, x, t7);
         and g11(t10, t9, t8);
                                  // t10 = xy'z'
         or g12(t11, t5, t6);
                                  // t11 = x'y + x'z
         or g13(b, t11, t10);
                                  // b = x'y + x'z + xy'z'
         // model output c
         and g14(t12, t7, t8);
                                  // t12 = y'z'
         and g15(t13, y, z);
                                  // t13 = yz
                                  // c = y'z' + yz
         or g16(c, t12, t13);
         // model output d
                                  // d = z'
42
         not g17(d, z);
     endmodule
```

Problem 3 – 10 points

• Following is incomplete Verilog code, please finish based on the synthesis result on the attached schematic.

F = A & B & AND_OR_Bits(E)

Y1 = F & C

 $Y2 = F \mid D$