

PYTHON PROGRAMMING ON MATRICES

K.Pavan Kumar r170850@rguktrkv.ac.in IITH Future Wireless Communication (FWC)

1

Matrix: Circle

Contents

1 Problem

2 Construction

3 Solution

1 Problem

If one of the diameters of the circle, given by the equation, $x^2+y^2-4x+6y-12=0$., is a chord of a circle S, whose centre is at (-3, 2),Then find the radius of S.

2 Construction

Figure of construction

3 Solution

Given circle equation : $x^2 + y^2 - 4x + 6y - 12 = 0$ The standard equation of the conics is given as :

$$\mathbf{x}^{\top}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0$$

The given circle can be expressed in conics as

$$\mathbf{u} = \begin{pmatrix} -2\\3 \end{pmatrix}, f = -12 \tag{2}$$

Radius and Centre are

$$r = \sqrt{\mathbf{u}^{\mathsf{T}}\mathbf{u} - f}, \mathbf{C} = -u \tag{3}$$

The steps for constructing above figure are :

- 1. Generate a circle of radius r with centre ${f C}$.
- 2. Locate center of another circle as S, Join C and S.
- ${\bf 1}$ 3. Find the Directional vector which is orthogonal to ${\bf S}-{\bf C}$ say ${\bf m}.$
 - 4. Find the points of intersection of a line ${\bf x}={\bf q}+\mu{\bf m}$ with conic passing through ${\bf C}$,say ${\bf A}$ and ${\bf B}$.
 - 5. Generate a circle of radius $\|S-A\|$ or $\|S-B\|$ with centre ${\bf S}.$

The input parameters for this construction are

Symbol	Value	Description
C	$\begin{pmatrix} 2 \\ -3 \end{pmatrix}$	center of circle ${f C}$
S	$\begin{pmatrix} -3\\2 \end{pmatrix}$	center of circle ${f S}$
r	5	Radius of circle C

Theorem: A line drawn from the centre of a circle to bisect a chord is perpendicular to the chord.

Baudhayana Theorem:In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

$$In \triangle SCA : \angle SCA = 90^{\circ} \tag{4}$$

By baudhayana theorem,

$$\|\mathbf{S} - \mathbf{A}\|^2 = \|\mathbf{A} - \mathbf{C}\|^2 + \|\mathbf{S} - \mathbf{C}\|^2$$
 (5)

 $\|\mathbf{S}-\mathbf{A}\|$ gives the radius of circle \mathbf{S} . . Radius of circle $\mathbf{S}=\!5\sqrt{3}$

termux commands :

bash circle.sh.....using shell command

Below python code realizes the above construction :

(1) https://github.com/FWC_module1/blob/main/matrices/circle/codes/circle.py