More on this site Neuroscience Deep Learning Research

Neurons

Artificial Neuron

$$\left[\begin{array}{c} (\mathcal{X}_{2}) \\ (\mathcal{X}_{2}) \end{array} \right] = \chi_{1} \mathcal{W}_{1} + \chi_{1} \mathcal{W}_{1} + \chi_{2} \mathcal{W}_{2}$$

Artificial Neural Networks

Activation Function

Activation Function

$$w^{T} \times \rightarrow \sigma(w^{T} \times)$$

Activation Function

$$w^{T} \times \rightarrow \sigma(w^{T} \times)$$

$$W^{T} \times \neg \sigma(W^{T} \times) \qquad \sigma(x) = \frac{1}{1+c^{-x}}$$

$$y_0 = \sigma \left(\sigma \left(\sigma \left(x_0 w_0 \right) w_1 \right) w_2 \right) w_3$$

Learning the weights

Learning the weights

Learning the weights

Activation functions

$$\sigma(x) = \frac{e^x}{1+e^x}$$

ReLU: Rectificed Linear Unit

Activation functions

$$\sigma(x) = \frac{e^x}{1 + e^x}$$

ReLU: Rectificed Linear Unit

ReLU variants

Leaky ReLU Parametric ReLU

(Exponential Linear Unit)

Loss functions

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y-\hat{y})^2$$
 (lassification)

NSE = $\frac{1}{n} \sum_{i=1}^{n} (y-\hat{y})^2$ (lassification)

Predicted

input hidden output layer

layer

Loss functions

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y-\hat{g})^2$$

Softmax function

Multi-label classification

One more thing: do we really need deep models?

Training loss	Validation loss		
High	High	Underfitting:	increase capacity
Low	High	Overfitting:	decrease capacity
Low	Low	Good fit:	run test
High	Low	Unlikely:	debug

What's next?

SUBSCRIBE

Hyperparameters

- # of training iterations
- # of layers (depth)
- # of hidden units (width)
- types of layers
- regularization methods
- regularization strength
- optimization algorithm
- learning rate
- batch size
- ٥

Regularization and Data Augmentation Fewer parameters demand less computational power

Best performing models tend to be large but trained in a way that restricts the utilization of their entire potential

Regularization

- encourages models to have a preference towards simpler models
- reduces the risk of overfitting

L2 Regularization

Minimize
$$\left(\left(\frac{1}{2}\left(y_{i}-\hat{y}_{i}\right)^{2}+\alpha\right)\left(\frac{1}{2}\omega_{i}^{2}\right)\right)$$

Scroll for details

Ridge Regression

L1 Regularization **LASSO** Leads to sparser results

Data Augmentation

Original Image

Scaled Image

Mirrored Image

Translated Image

Scroll for details

Brightness / Contrast Shifted Image

Rotated Image

Noise Added Image

Regularization methods introduce additional information such as

- smaller weights are better
- parameter sharing is useful
- distorting the input in some ways shouldn't change the results

Prevent overfitting

- limit model capacity
- get more data

Data augmentation

Dataset Bias data can be biased no matter how big it is

Models used for medical, financial, and legal purposes affect people's lives

Biased models can further reinforce biases

Subjective Studies

Surveys

Games

Crowdsourcing

Data collection guidelines

- Ask unbiased questions
- Design an easy to use interface
- Make it fun for the users
- Ensure that the entire process is ethical

Data Imputation

Caveat: data might not be missing at random

Gender	Likes
М	Cats
M	Dogs
F	Missing
M	Cats
F	Dogs
F	Dogs
F	Cats

Classes	
Cats	
Dogs	
Missing	

Feature scaling

Variable	Range of values	
Age	0 - 100+	
Annual income	0 - 1,000,000+	
Years of experience	0 - 40+	

$$\hat{X} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

$$age = \frac{age - 18}{99 - 18}$$

Standardization

$$\dot{\chi} = \frac{2}{\chi - \mu}$$

Data Imbalance

Classes	Number of samples
Cats	5000
Dogs	5000
Tigers	150
Caracals	50
Axolotis	25

Undersampling

Classes	# samples
Cats	25
Dogs	25
Tigers	25
Caracals	25
Axolotls	25

Oversampling

Classes	# samples
Cats	5000
Dogs	5000
Tigers	5000
Caracals	5000
Axolotls	5000

Class-weighted loss function

Settings

Receptive field

□ Convolutional Neural Networks Explained Kernel size

Padding

input

Padding='VALID'

input

Stride

Dilation rate

dilated convolution atrous convolution à trous convolution

Building blocks of CNNs

- Convolution
- Pooling

Hyperparameters

- Kernel size, stride, dilation rate
- Number of filters, number of layers
- Pooling size & type
- Padding type
- The way we arrange the layers

What's next?

- How to design a CNN
- Popular CNN architectures

No human intervention in deep learning?

humans are still in the loop!

Grid search on all hyperparameters?

- too many hyperparameters
- infinitely many ways to design a network

Designing a deep neural network involves

- human expertise
- trial and error

➡ How to Design a Convolutional Neural Network How to design a ConvNet?

TL;DR

- you don't design
- pick something that works and use it

Working on novel problems?

- borrow ideas from successful models
- design your own model

How do choose the number of layers and units?

- start small
- · gradually increase model size
- smallest model: linear regression
- deeper:

wider:

Fully Convolutional Networks

building blocks of the ResNet architecture

Fully Convolutional Networks

Figure credit: Long and Shelhamer (2015)

How to choose kernel size?

• 3x3 and 1x1 kernels usually work the best

Pointwise (1x1) filters

- channel-wise dense layers
- learn cross-channel features

Inception module

Pointwise (1x1) filters

Dimensionality reduction

Pointwise (1x1) filters

Depthwise separable convolution

Pointwise (1x1) filters

Depthwise separable convolution

Separable convolution

How to choose stride?

- Stride 1: preserve spatial resolution
- Stride 2: downsample
- Fractional stride (1/2): upsample
 - transposed convolution
 - deconvolution

How to choose pooling parameters?

- A very common setting
 - max pooling
 - pooling size: 2x2
 - same padding
- Global average pooling / pooling to fixed size
 - handles variable-sized inputs

How to choose activation functions?

- Short answer: choose ReLU
- For more information:

What type of regularization to use?

- Short answer: use L2 weight decay and dropout
- For more information:

How to choose the batch size?

- Image recognition tasks
 - batch size: 32
- Noisy gradient?
 - use larger batches
- Stuck in local minima? Out of memory?
 - use smaller batches

Optimization

What we want to achieve:

Maximize accuracy = (#correct samples) / (#all samples) on a test set

What we actually do:

Minimize cross entropy = $\sum p \log(q)$

True class probabilities

Predicted class probabilities

Vanilla Stochastic Gradient Descent

Momentum

(new weights) <- (old weights) - (learning rate) (gradient)

Momentum

```
(new weights) <- (old weights) - (learning rate) (gradient) + past gradients
```

```
(accumulator) <- (old accumulator) (momentum) + (gradient)
```

(new weights) <- (old weights) - (learning rate) (accumulator)

Learning rate schedules

(new weights) <- (old weights) - (learning rate) (gradient)

Adaptive Methods

AdaGrad

- Large gradient: decrease α faster
- Small gradient: decrease α slower

RMSProp

Moving average of gradients

Adam

- Adaptive Moment Estimation
- RMSProp + Momentum

Batch Normalization

Subtract batch mean Divide by standard deviation

Scale and shift

Initialization

- Biases
 - Initialize to zero (or another small constant)
- Weights
 - Initialize to zero? No!
 - Break the symmetry
 - Random values

Initialization

Glorot (Xavier) initializer

$$W \sim Uniform(-r,r) \qquad r = \sqrt{\frac{6}{n_{in} + n_{out}}}$$

Feedforward vs Recurrent

Sequential Data

- Audio
- Video
- Text
- · Biomedical data

Types of Inputs and Outputs

Task	Input	Output
Machine translation	Text	Text
Speech recognition	Audio	Text
Speech synthesis	Text	Audio
Sentiment analysis	Text	Categorical variable
Text generator	Random number	Text

Types of RNNs

Exploding Gradients

Gated Modules

- LSTM (Long Short Term Memory)
- GRU (Gated Recurrent Unit)