Pt

I.	Modélisation							
	À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.	3	Α				3	
	Même question avec Hz(p).	2	D				0,1	
	Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel EASYREG. On donnera la réponse théorique obtenue.	2	Α				2	
	Donner pour ce réglage les valeurs théoriques du temps de réponse à ±5%, ainsi que la valeur du premier dépassement.	1	Α				1	
	Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.	1	С				0,35	Quelle est la valeur de A ?
	Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	D				0,1	Quand on augmente la ventilation, la température baisse normalement. Je ne comprends pas l'enregistrement que vous avez fait.
II.	Tendance							
	Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.	2	Α				2	
	Déduire des questions 1 et 2 la valeur du gain de tendance.	2	Α				2	
	Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés.	2	D				0,1	
II.	Performances de la boucle de tendance							
	Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.	2	D				0,1	
	Comparer vos résultats à ceux obtenus en boucle simple.	1	D				0,05	
			Note: 10,8/20					

TP3 Aero

I. Modélisation

1/ À l'aide d'un essai, déterminer le modèle de Broïda de H(p). On expliquera la méthode précisément et on donnera tous les calculs et tracés nécessaires à la détermination du modèle.

Point de fonctionnement choisie : Θ

$$t0 = 20:34:15 = 0s$$

$$t1 = 20:35:31 = 76s$$

$$t2 = 20:36:01 = 96s$$

$$K=DeltaX/DeltaY = 5/10=1/2=0,5$$

 $T=2,8(76-0)-1,8(96-0)=40s$

t=5,5(96-76)=110s

2/ Même question avec H_z(p).

t0=21:21:02=0s

t1=21:22:00=58s

t2=21:22:20=78s

K=15,5/10=1,55

T=2,8(58-0)-1,8(78-0)=22s

t=5,5(78-58)=110s

Pour Hz(p)

3/ Déterminer un correcteur PI qui minimise le temps de réponse ainsi que le dépassement du système en boucle fermée, à l'aide du logiciel <u>EASYREG</u>. On donnera la réponse théorique obtenue.

T(p)=N(p)/D(p)

T(p)=C(p)*H(p)

 $H(p)=(0.5e^40p)/1+110p$

C(p)=A((1+110p)/(110p))

 $T(p)=(0.5A/110p)*e^{-40p}$

4/ Donner pour ce réglage les valeurs théoriques du temps de réponse à $\pm 5\%$, ainsi que la valeur du premier dépassement.

Dépassement = 0 car il n'y a pas de dépassement

Temps de réponse = 180s

5/ Déduire de la question 3 les valeurs de Xp, Ti et Td du régulateur mixte.

$$A*K=1,2$$

$$Ti=110s$$

$$Td=0s$$

0618ui1mn8261ikfeebpbttc76

N(p) = 1.2

D(p) = 110p

R = 40

Réponse indicielle en boucle fermée

6/ Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q.

XP	100.0	%
TI	99.99	
TD	0.00	

II. Tendance

1/Compléter le schéma fonctionnel, pour faire apparaître la correction de tendance.

2/Déduire des questions 1 et 2 la valeur du gain de tendance.

Pour H(p) on a K=0,5

Pour Hz(p) on a K=1,55

Gain de tendance : Hz(0)/H(0) = 1,55/0,5 = 3,1

3/Procéder au réglage de votre régulateur. Donner le nom et la valeur des paramètres modifiés

Sachant que A=Hz(0)/H(0)=3,1

Donc Xp=100/A=100/3,1=32,3

TimeBase	Secs	
XP	32.3	%

III. Performances de la boucle de tendance

1/Mesurer les performances de votre régulation vis à vis d'une augmentation du débit Q

2/ Comparer vos résultats à ceux obtenus en boucle simple.

22:47:30

24

22:46:00

22:46:30

22:47:00

On observe que en boucle simple la valeur de PV est plus faibles.

22:48:00

22:48:30

Heure (analyse)

22:49:00

22:49:30

22:50:00

22:50:30

22:51:00