Topics in International Economic History I: Historical Financial Research

Jan Besler

Eberhardt Karls University of Tübingen

13.01.2024

- Paper Review
 - Size Effect Definition
 - Paper Summary
- Methodology
 - Idea
 - Statistical Methods
 - Data
- Results
 - Descriptive Analysis
 - Cluster
 - Size Effect.

- Paper Review
 - Size Effect Definition
 - Paper Summary
- Methodology
 - Idea
 - Statistical Methods
 - Data
- Results
 - Descriptive Analysis
 - Cluster
 - Size Effect

Size Effect

Definition:

- The Size Effect theory posits that smaller firms with lower market capitalization on average tend to outperform larger companies
- the prevalent theory explaining this phenomenon is that firm size is a proxy for risk, smaller firms tend to have greater risk than larger firms
 [2]
- First observed in 1981 by Banz [1]
- since 1980's no effect measurable in several empirical Studies [4, 3]

Baten Paper

Data

- Three Subperiods: pre-WWI, WWI and aftermath & post-WWII
- 775 companies from five different German stock exchanges
- challenges:
 - survivor bias

limited availability of data

Methodology

Sharpe-Lintner Capital Asset Pricing Model (CAPM)

$$R_{pt} - R_{ft} = \alpha_p + \beta_p \cdot (R_{mt} - R_{ft}) + \varepsilon_{pt}$$

Results

 during times of uncertainty (wars, crises), investors favor large established companies

Jan Besler Historical Financial Research 13.01.2024 5 / 19

- - Size Effect Definition
 - Paper Summary
- Methodology
 - Idea
 - Statistical Methods
 - Data
- - Descriptive Analysis
 - Cluster
 - Size Effect

Idea

No Regression-Analysis

Regression analysis **not suitable**, since almost no information besides price and number of shares.

- compare development of average prices for Large-Cap vs Micro- & Small-Cap
 - $\begin{tabular}{ll} \hline \bullet & identify quarters where Large-Cap Companies outperform Market \\ \hline (+10\%) \\ \hline \end{tabular}$
 - 2 compare average Micro- & Small-Cap for explicit quarters
- ullet mean growth of Micro- & Small-Cap > Large-Cap \to Size Effect

only short time spans

Entirety of duration neglected, because than comes down to decisions in single companies and thus not suited for generalisation.

Statistical Methods

- Cluster Analysis
 - investigate if certain companies share growth characteristics
 - explain solely those groups
 - otherwise no obvious similarity in growth patterns
- perform Size Effect Analysis across all companies
 - identify significant quarters
 - calculate mean & variance for each capitalisation category
 - compare growth rates
 - repeat for extreme losses

Data

Data (from API using python library bf4py [5]) includes:

- stock prices from boerse-frankfurt.de
- 320 publicly traded German companies
- end-of-day prices for last 13 years
- ullet number of shares o market capitalisation

separation into four categories (in €):

- Micro-Cap: < €30 M
- Medium-Cap: €200 1.000 M
- Small-Cap: €30 200 M
- **Large-Cap**: > €1 B

Data Engineering

Problem stock splits

Only relative price changes are used. If a stock split occurs, the "growth" rate is exponential. Therefor the values are interpolated.

After interpolation, the quarterly changes are almost normally distributed:

- Paper Review
 - Size Effect Definition
 - Paper Summary
- Methodology
 - Idea
 - Statistical Methods
 - Data
- Results
 - Descriptive Analysis
 - Cluster
 - Size Effect.

Descriptive Analysis

Cluster

Interesting observation, one cluster almost without Large-Cap

Cluster II

• focusing on k = [2, 3] since they have the highest score

- 2 groups: Large-Cap vs Micro- & Small-Cap
- 3 groups: Large-Caps vs Micro-Cap vs Small-Cap

Cluster III

- no obvious differences between clusters in either graph
- more similarities with random walk
- hence no additional information to be gained

Size Effect

Quarter	Size Effect	No Size Effect
Growth		
2020-09-30		X
2021-03-31		X
2023-03-31		X
Loss		
2022-09-30		X

- evident that beneficial to invest in larger corporations in 4 out of 4 cases
- no Size Effect measurable under given criteria

Size Effect II

 no divergence for mean identifiable variance explodes for Small- & Micro-Cap

Size Effect III

Quarter	Large-Caps Sharpe Ratio	Small-Caps Sharpe Ratio
Growth		
2020-09-30	0.623	0.254
2021-03-31	0.589	0.743
2023-03-31	0.632	0.190
Loss		
2022-09-30	-1.137	-1.031

Table: Sharpe Ratios for Large-Caps and Small-Caps during Growth and Loss Periods

Sources

- [1] Rolf W Banz. "The relationship between return and market value of common stocks". In: *Journal of financial economics* 9.1 (1981), pp. 3–18.
- [2] Michael A Crain. "A literature review of the size effect". In: Available at SSRN 1710076 (2011).
- [3] E Dimson, P Marsh, and M Stuanton. "Investment style: Size, value and momentum". In: *Credit Suisse global investment returns sourcebook* (2011), pp. 41–54.
- [4] Eugene F Fama and Kenneth R French. "Size, value, and momentum in international stock returns". In: *Journal of financial economics* 105.3 (2012), pp. 457–472.
- [5] joqueka. bf4py. https://github.com/joqueka/bf4py. 2021.