TEZ MALZEMELERI

HAKAN ERGÜL

1. TANIMLAR

Tanım 1 (sabit nokta). $f: X \to X$ bir fonksiyon olmak üzere f(x) = x şeklindeki $x \in X$ noktasına f fonksiyonunun sabit noktası denir.

Tanım 2 (periyodik nokta). $f: X \to X$ bir fonksiyon ve N > 1 bir doğal sayi olmak üzere $f^1(x) = f(x)$ ve $f^{N+1}(x) = f(f^N(x))$ şeklinde tanımlansın. $f^N(x) = x$ şeklindeki $x \in X$ noktasına f fonksiyonunun periyodik noktası denir. N = 1 için bu x noktası sabit noktadır. Ayrıca f^N nin sabit noktaları, f nin periyodik noktalarıdır.

Tanım 3 (lipschitz fonksiyon). (X, d) bir metrik uzay ve $f: X \to X$ bir fonksiyon olsun. Bir $\alpha > 0$ reel sayısı için f fonksiyonu

$$d(f(x), f(y)) \le \alpha d(x, y)$$

şartını sağlıyorsa bu fonksiyona lipschitz fonksiyonu, α reel sayısına da lipschitz sabiti denir.

Tanım 4 (daraltan fonksiyon). (X, d) bir metrik uzay ve $f: X \to X$ bir fonksiyon olsun. Bir $0 \le \alpha < 1$ reel sayısı için fonksiyonu

$$d(f(x), f(y)) \le \alpha d(x, y)$$

şartını sağlıyorsa bu fonksiyon daraltan fonksiyon denir. $\alpha = 1$ için bu şartı sağlayan f fonksiyonuna genişlemeyen fonksiyon denir.

Tanım 5 (kesin daraltan fonksiyon). (X, d) bir metrik uzay ve $f: X \to X$ bir fonksiyon olmak üzere $x \neq y$ için

şartını sağlıyorsa bu fonksiyona kesin daraltan fonksiyon denir.

 $daraltan \Longrightarrow kesin daraltan \Longrightarrow genişlemeyen \Longrightarrow Lipschitz$

Tanım 6 (mesafe değiştiren fonksiyon). $\psi:[0,+\infty)\to[0,+\infty)$ fonksiyonu

- ψ sürekli ve azalmayan(monoton artan)dir.
- $\psi(t) = 0 \iff t = 0$

şartlarıni sağlıyorsa bu fonksiyon mesafe değiştiren fonksiyon denir. Her mesafe değiştiren fonksiyon bir metriktir. Fakat tersi her zaman doğru değildir. Ters örnek: $\psi(t) = t^2$.

 $\textbf{Tanım 7} \text{ (asimptotik regulerlik). } (X,d) \text{ bir metrik uzay ve } f: X \rightarrow X \text{ bir dönüşüm olmak üzere bir } x_0 \in X \text{ noktası için}$

$$\lim_{n \to \infty} d(f^{n}(x_{0}), f^{n+1}(x_{0})) = 0$$

oluyorsa f dönüşümü x_0 noktasında asimptotik regulerdir denir.

Tanım 8 (alt yarısürekli). (X, d) bir metrik uzay ve $f: X \to \mathbb{R}$ bir dönüşüm olsun. $x_0 \in X$ olmak üzere her $x \in X$ için

$$\liminf_{x\to x_0} f(x)\geqslant f(x_0)$$

oluyorsa f dönüşümü x_0 noktasında alt yarısüreklidir denir. Veya X'teki x_0 'a yakınsayan her (x_n) dizisi için

$$\lim_{n\to\infty}x_n=x_0\Rightarrow \liminf_{n\to\infty}f(x_n)\geqslant f(x_0)$$

oluyorsa f dönüşümü x_0 noktasında alt yarısüreklidir denir.

Tanım 9 (üst yarısürekli). (X, d) bir metrik uzay ve $f: X \to \mathbb{R}$ bir dönüşüm olsun. $x_0 \in X$ olmak üzere her $x \in X$ için

$$\limsup f(x) \leqslant f(x_0)$$

oluyorsa f dönüşümü x_0 noktasında ust yarısüreklidir denir. Veya X'teki x_0 'a yakınsayan her (x_n) dizisi için

$$\lim_{n\to\infty} x_n = x_0 \Rightarrow \limsup_{n\to\infty} f(x_n) \leqslant f(x_0)$$

oluyorsa f
 dönüşümü \mathbf{x}_0 noktasında üst yarısüreklidir denir.

Tanım 10 (metrik uzay). X boş olmayan bir küme ve $d: X \times X \to \mathbb{R}$ bir fonksiyon olsun. Her $x, y, z \in X$ için

- $d(x,y) = 0 \iff x = y$
- d(x,y) = d(y,x)

1

HAKAN ERGÜL

• $d(x,y) \leq d(x,z) + d(z,y)$

2

şartları sağlanıyorsa d fonksiyonuna X üzerinde bir metrik ve d ile birlikte X'e metrik uzay denir ve bu metrik uzay (X, d) ile gosterilir.

 $\begin{array}{l} \textbf{Tanım 11} \ (\text{cauchy dizisi}). \ (X,d) \ \text{bir metrik uzay ve} \ \{x_n\} \ \text{de bu uzayda bir dizi olsun. Her} \ \epsilon > 0 \ \text{için} \ m,n > N \ \text{olduğunda} \\ d(x_n,x_m) < \epsilon \ \text{olacak bicimde} \ N(\epsilon) \in \mathbb{N} \ \text{sayısı varsa} \ \{x_n\} \ \text{dizisine} \ \text{Cauchy dizisi denir.} \end{array}$

Tanım 12 (tam metrik uzay). (X, d) metrik uzayındaki her cauchy dizisi yine bu uzayda bir noktaya yakınsıyorsa bu uzaya tam metrik uzay denir.

Tanım 13 (vektor(lineer) uzayı). V boş olmayan bir küme, F bir cisim ve $+: V \times V \to V$ ve $\cdot: F \times V \to V$ işlemleri aşağıdaki şartları sağlasin:

- V1. Her $x, y \in V$ için $x + y \in V$ dir.
- V2. Her $x, y, z \in V$ için x + (y + z) = (x + y) + z dir.
- V3. Her $x \in V$ için $x + \theta = \theta + x = x$ olacak bicimde $\theta \in V$ vardir.
- V4. Her $x \in V$ için $x + (-x) = (-x) + x = \theta$ olacak bicimde $-x \in V$ vardir.
- V5. Her $x, y \in V$ için x + y = y + x dir.
- V6. Her $x \in V$ ve her $\alpha \in F$ için $\alpha \cdot x \in V$ dir.
- V7. Her $x \in V$ ve her $\alpha, \beta \in F$ için $(\alpha\beta) \cdot x = \alpha(\beta \cdot x)$ dir.
- V8. Her $x \in V$ ve her $\alpha, \beta \in F$ için $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ dir.
- V9. Her $x, y \in V$ ve her $\alpha \in F$ için $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$ dir.
- V10. Her $x \in V$ için $1 \cdot x = x$ dir.

Bu şartları sağlaniyorsa V'ye F cismi üzerinde vektor uzayı denir. Ozel olarak $F = \mathbb{R}$ alınırsa reel vektör uzayı, \mathbb{C} alınırsa kompleks vektör uzayı denir.

Tanım 14 (normlu uzay). N, F cismi üzerinde bir vektör uzayı olsun. $\|\cdot\|: \mathbb{N} \to \mathbb{R}$ bir fonksiyon ve bu fonksiyonun bir $x \in \mathbb{N}$ 'deki değeri de $\|x\|$ ile gösterilsin. Her $x, y \in \mathbb{N}$ için

- N1 $||\mathbf{x}|| = 0 \iff \mathbf{x} = \mathbf{\theta}$
- N2 $\|\alpha \cdot \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \quad (\alpha \in F)$
- N3 $||x + y|| \le ||x|| + ||y||$

şartları sağlanıyorsa bu $\|\cdot\|$ fonksiyonuna norm, bu fonksiyonla birlikte N vektor uzayına normlu uzay denir.

Tanım 15 (Banach uzay). N bir normlu uzay ve d(x,y) = ||x-y|| şeklinde tanımlanan fonksiyon da gerçekten bir metriktir. Bu metriğe göre tam olan N normlu uzayına Banach uzayı denir.

Tanım 16 (iç çarpım uzayı). N, F cismi üzerinde bir vektör uzayı olsun. $\langle \cdot, \cdot \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{F}$ de fonksiyonu her $x, y, z \in \mathbb{N}$ için

- $\dot{1}1 \langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\dot{1}2 \langle x, y \rangle = \langle y, x \rangle$
- I3 $\langle \alpha \cdot x, y \rangle = \alpha \langle x, y \rangle$, $(\alpha \in F)$
- İ4 $\langle \mathbf{x}, \mathbf{x} \rangle \geqslant 0$ ve $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = \mathbf{\theta}$

şartlarını sağlıyorsa bu fonksiyona iç çarpım fonksiyonu denir. Bu fonksiyonla birlikte N vektör uzayına iç çarpım uzayı veya ön-Hilbert uzayı denir.

Tanım 17 (Hilbert Uzayı). H bir iç çarpım uzayı olmak üzere $||x|| = \sqrt{\langle x, x \rangle}$ bir norm ve $d(x, y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$ bir metrik tanımlar. Bu metriğe göre tam olan H iç çarpım uzayına Hilbert uzayı denir.

Tanım 18 (sınırlı küme). (X, d) bir metrik uzay ve $B \subset X$ olmak üzere her $x, y \in B$ için $d(x, y) \le r$ olacak şekilde bir r > 0 sayısı varsa B kümesine sınırlı küme denir.

Tanım 19 (diameter-çap). (X,d) bir metrik uzay ve $B\subset X$ olmak üzere her $x,y\in B$ için $\sup_{x,y\in B}d(x,y)$ sayısına B kümesinin çapı denir.

Tanım 20 (totally bounded-tamamen sınırlı(precompact-önkompakt)). (X, d) bir metrik uzay ve $B \subset X$ olmak üzere her $\varepsilon > 0$ için

$$B\subseteq\bigcup_{n=1}^N B_\epsilon(\alpha_n),\quad \big(B_\epsilon(\alpha_n)=\{x:d(x,\alpha_n)<\epsilon\}\big)$$

olacak şekilde $a_1, a_2, \dots, a_N \in X$ sonlu sayıda nokta vardır. A uniformly continuous function maps totally bounded sets to totally bounded sets. A totally bounded set is geometrically 'finite', so an infinite sequence of points in a totally bounded set is caged in, so to speak, with nowhere to escape to: A set B is totally bounded \iff Every sequence in B has a Cauchy subsequence.

Tanım 21 (kompakt küme). (X, d) bir metrik uzay ve $K \subseteq X$ olsun. K kümesinin her açık örtüsünün yine K kümesini örten onlu bir alt örtüsü varsa K kümesine kompakt küme denir.

TEZ MALZEMELERI

Tanım 22 (convex-konveks). V bir vektör uzay ve $A \subseteq V$ olsun. Eğer $\lambda \in [0,1]$ olmak üzere her $u, v \in A$ için $\lambda u + (1-\lambda)v \in A$

oluyorsa A kümesine konveks küme denir.

Tanım 23 (convex hull). V bir vektör uzay ve $A \subseteq V$ olmak üzere A kümesini içeren tüm konveks kümelerin kesişimine (yani en küçük konveks kümeye) convex hull denir.

2. TEOREMLER

Teorem 1 (banach daralma ilkesi). (X, d) bir tam metrik uzay ve $f: X \to X$ bir daraltan fonksiyon olsun. f fonksiyonunun bu uzayda bir tek sabit noktası vardır. Dahası x noktasının f altındaki n-inci iterasyonu olan $f^n(x)$, $f^0(x) = x$, $f^{n+1}(x) = f(f^n(x))$ şeklinde tanımlansın. $\lim_{n\to\infty} f^n(x)$ bu fonksiyonun sabit noktasıdır.

Teorem 2. 3. ÖRNEKLER

Örnek 1 (sabit nokta). $f:[0,1] \to [0,1]$, $f(x) = x^2$ fonksiyonu için x = 0 ve x = 1 noktaları sabit noktalardır. Gerçekten f(0) = 0 ve f(1) = 1 dir.

Örnek 2 (sabit nokta). aaaaa