GAM Day 3

Quadrilaterals and Similar Polygons

Quiz: From the last lesson

- 1. What are the 3 ways of proving triangles congruent?
- 2. What is a median, an altitude, and an angle bisector?
- 3. What is CPCTC? When is CPCTC used?
- 4. What is concurrent?
- 5. What is a transversal?
- 6. How can you prove that two lines are parallel?
- 7. What is the sum of interior angles of a 10-side polygon

Answer

- 1. SAS, ASA, and SSS
- CPCTC: Corresponding Parts of Congruent Triangles are Congruent
- 3. CPCTC is used after you have proved two triangles are congruent
- 4. Two or more lines are <u>concurrent</u> if they intersect in one and only one point.

Answer

- 5. A <u>transversal</u> is a line that intersects two or more distinct lines in different points.
- 6. Alternate interior/exterior angles are congruent
- 7. S = (10-2) 180 = 1440

Chapter 4

Quadrilaterals

4.1 Parallelograms

- A <u>quadrilateral</u> is a four sided polygon.
- A <u>parallelogram</u> is a quadrilateral whose opposite sides are parallel.
- The symbol _____ represents the word parallelogram.

4.1 Parallelograms

Th. 4.1 Each diagonal divides a parallelogram into two congruent triangles.

- Cor. 4.2 The opposite sides and opposite angles of a parallelogram are congruent.
- Th. 4.3 Consecutive angles of a parallelogram are supplementary.

Theorems on Parallelograms

 Th. 4.4 The diagonals of a parallelogram bisect each other.

 Th. 4.5 If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. (Use this to prove a quad. is a parallelogram.)

Theorems to use to prove a quad. is a parallelogram.

- Th. 4.6 If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- Th. 4.7 If two opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.
- Th. 4.8 If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

To prove a quadrilateral is a parallelogram:

- Show both pair of opposite sides are parallel.
- 2. Show both pairs of opposite sides congruent.
- 3. Show both pairs of opposite angles congruent.
- 4. Show one pair of opposite sides congruent and parallel
- 5. Show diagonals bisect each other.

Summary-Properties of a Parallelogram

Parallelogram

- Opposite sides are congruent
- Opposite angles are congruent
- Diagonals bisect each other
- Consecutive angles between parallel sides are supplementary

4.2 Rhombus

- A <u>rhombus</u> is a parallelogram that has two equal adjacent congruent sides.
- Th. 4.9 All four sides of a rhombus are congruent.
- Th. 4.10 The diagonals of a rhombus are perpendicular.

Rhombus Theorems

 Th. 4.11 If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.

 Th. 4.12 The diagonals of a rhombus bisect the angles of the rhombus.

Summary-Properties of a Rhombus

- 1. Opposite sides are parallel.
- 2. Diagonals divide it into two congruent Δ 's.
- 3. Opposite sides are congruent.
- 4. Opposite <'s are congruent.
- 5. Consecutive <'s are supplementary
- 6. Diagonals bisect each other.
- 7. All sides are congruent.
- 8. Diagonals are perpendicular.
- 9. Diagonals bisect angles of the rhombus.

4.3 Rectangles

- Def- A <u>rectangle</u> is a parallelogram with one right angle.
- Th. 4.15 All angles of a rectangle are right angles.

Theorems on Rectangles

 Th. 4.16 The diagonals of a rectangle are congruent.

 Th. 4.17 If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

Summary-Properties of a Rectangle

Rectangle

- All angles are congruent
- All angles are right angles
- The diagonals of a rectangle are congruent
- Has all the properties of a parallelogram

Squares

 A <u>square</u> is a rhombus with one right angle.

 A square has all the properties of a rhombus and a rectangle.

 Th. 4.18 Two parallel lines are always the same distance apart.

Summary-Properties of a Square

Square

 Has all the properties of the rhombus and rectangles

New Theorem on Triangles

 Th. 4.19 The segment joining the midpoints of two sides of a triangle is parallel to the third side and its length is one-half the length of the third side.

D is the midpoint of AC

E is the midpoint of CB

DE || AB

 $DE=\frac{1}{2}AB$

Proof of Theorem 4.19

Extend DE to DF with DE = EF

Connect BF

$$\triangle DCE \stackrel{\triangle}{=} \triangle FBE$$
 (SAS)

4.4 Trapezoids

A <u>trapezoid</u> is a quadrilateral with exactly one pair of parallel sides. The parallel sides are called <u>bases</u> and the nonparallel sides are called <u>legs</u>.

 A pair of angles of a trapezoid are called <u>base angles</u> if they include the same base.

Isosceles Trapezoid

 If the legs of a trapezoid are congruent, the trapezoid is an isosceles trapezoid.

Theorems on Trapezoids

Th. 4.20 The base angles of an isosceles trapezoid are congruent.

 Th. 4.21 The diagonals of an isosceles trapezoid are congruent.

Median of a Trapezoid

Def. The segment joining the midpoints of the legs of a trapezoid is the <u>median</u> of the trapezoid.

Theorems on Trapezoids

 Th.4.22 The median of a trapezoid is parallel to the bases and equal to one-half their sum.

E is the midpoint of AD F is the midpoint of BC

Then

$$EF = \frac{1}{2} (DC + AB)$$

Summary-Properties of a Trapezoid

Trapezoid

 Consecutive angles between parallel sides are supplementary

Kite

- A <u>kite</u> is a quadrilateral with exactly two distinct pairs of congruent consecutive sides.
- A kite is not a parallelogram!

Theorems on Kites

 Th. 4.13 If a quadrilateral is a kite, one pair of opposite angles is congruent.

Theorems on Kites

 Th. 4.14 If a quadrilateral is a kite, one diagonal is the perpendicular bisector of the other diagonal.

Summary-Properties of Kites

- 1. It is a quadrilateral but not a parallelogram with two pair of congruent, consecutive sides.
- One pair of opposite angles are congruent.
- One diagonal is the perpendicular bisector of the other diagonal.
- One diagonal bisects two of the kite's angles.

Transversal

 Th. 4.23 If three or more parallel lines intercept congruent segments on one transversal, then they intercept congruent segments on all transversals.

Summary - Properties of Polygons

Trapezoid

 Consecutive angles between parallel sides are supplementary

Parallelogram

- Opposite sides are congruent
- Opposite angles are congruent
- Diagonals bisect each other
- Consecutive angles between parallel sides are supplementary

Properties of Polygons (Cont.)

Rhombus

- Diagonals are perpendicular to each other
- Diagonals bisect each other
- Diagonals bisect opposite angles
- Consecutive angles between parallel sides are supplementary
- Diagonals are perpendicular
- Diagonals bisects opposite angles

Properties of Polygons (cont.)

Rectangle

- All angles are congruent
- All angles are right angles
- Has all the properties of a parallelogram

Square

 Has all the properties of the rhombus and rectangles

Chapter 5

Similar Polygons and the Pythagorean Theorem

5.1 Ratio and Proportion

The <u>ratio</u> of one number a to another number b, $b \neq 0$, is the fraction a/b.

 The ratio of a to b is sometimes written as a:b and read "a is to b."

 \circ a : b = a/b (where b \neq 0)

Proportions

 An equation showing that two ratios are equal is called a <u>proportion</u>.

$$\frac{a}{b} = \frac{c}{d}$$
 is a proportion (where b\neq 0, d\neq 0)

The number a and d are called the <u>extremes</u> and b and c are called the <u>means</u>.

Solve the following problem

```
If (x - 1) : 2 = 3x : 7 what is x?
```

Means-Extremes Property

 Th. 5.1: In a proportion, the product of the means is equal to the product of the extremes.

If
$$a:b=c:d$$

Then $ad = bc$

Solve the following problem

```
If (2x-1): (x + 2) = 5: 3
What is x?
```

Geometric Mean or Mean Proportional

- Definition: In the proportion a: b = b: c, b is called the <u>geometric mean</u> or mean proportional between a and c.
- If b is the geometric mean between a and c, then $b^2 = ac$
- Since 4:10 = 10:25, 10 is the geometric mean between 4 and 25

Solve the following problem

1. What is the geometric mean between 25 and 49?

2. What is the arithmetic mean between 25 and 49

Reciprocal Property of Proportions

Th 5.2:

If
$$a = c$$
 b

Then
$$b = d$$

a c

If
$$a:b=c:d$$
, then $b:a=d:c$

Means Property of Proportions

Th: 5.3: If
$$\frac{a}{b} = \frac{c}{d}$$

Then

$$a = b$$

================

If a:b=c:d

Then a:c=b:d

Extremes Property of Proportions

Th 5.4: If
$$\frac{a}{b} = \frac{c}{d}$$

Then

$$\frac{d}{b} = \frac{c}{a}$$

If
$$a:b=c:d$$

Then
$$d:b=c:a$$

Addition Property of Proportions

Th 5.5: If
$$\frac{a}{b} = \frac{c}{d}$$

$$\frac{a+b}{b} = \frac{c+d}{d}$$

Subtraction Property of Proportions

$$\frac{a}{b} = \frac{c}{d}$$

Then

$$\begin{array}{ccc} a - b & = & c - d \\ \hline b & & d \end{array}$$

Extended ratios

- An <u>extended ratio</u> compares more than two quantities and is written as a:b:c.
- o If a:b:c = p:q:r then a:p = b:q = c:r
- Example: If the sides of a triangle are 8. 10 and 12 inches long then the sides are in the ratio of 4 to 5 to 6.
 - 8:10:12 = 4:5:6 or
 - 8:4 = 10:5 = 12:6

Proportional segments

- If lengths of segments are proportional, the segments are called <u>proportional segments</u>.

Complete 12-26 odd on p. 223.

Review

- Today you learned
 - Properties of Quadrilaterals
 - Ratio and proportions

Assignments

- Read Chapter 4 (omit kite)
- Read chapter 5.1

Assignments

- Read the following chapters for next class
 - Chapter 5.2 5.4
 - Chapter 6

END