SEQUENCE LISTING

THE DOTAGE

<110> BASF AKTIENGESELLSCHAFT et al.

<120> METHODS FOR THE PREPARATION OF A FINE CHEMICAL BY FERMENTATION

<130> BGI-160PC2											
<150> PCT/IB2003/006435 <151> 2003-12-18											
<160> 15											
<170> FastSEQ for Windows Version 4.0											
<210> 1 <211> 1660 <212> DNA <213> Corynebacterium glutamicum											
<220> <221> CDS <222> (301)(1563)											
<pre><400> 1 tcggcatcct ctggggtagc gtcaacgcaa tcctcggaac cgtcatcgca gaaaacttcg 60 cacctgaggt ccgctacacc ggcgctaccc tgggttacca agtcggagca gcactcttcg 12 gcggtaccgc acccattatc gcagcatggc tgttcgaaat ctccggcgga caatggtggc 18 caatcgccgt ctacgtcgct gcatgttgcc ttctctctgt gatcgcctcg ttcttcatcc 24 aacgcgtcgc gcaccaagag aactaaaatc taagtaaaac ccctccgaaa ggaaccaccc 30 atg gtg aaa cgt caa ctg ccc aac ccc gca gaa cta ctc gaa ctc atg Met Val Lys Arg Gln Leu Pro Asn Pro Ala Glu Leu Leu Glu Leu Met 1 5 10 15</pre>	000										
aag ttc aaa aag cca gag ctc aac ggc aag aaa cga cgc cta gac tcc 39 Lys Phe Lys Lys Pro Glu Leu Asn Gly Lys Lys Arg Arg Leu Asp Ser 20 25 30	96										
gcg ctc acc atc tac gac ctg cgt aaa att gct aaa cga cgc acc cca 44 Ala Leu Thr Ile Tyr Asp Leu Arg Lys Ile Ala Lys Arg Arg Thr Pro 35 40 45	14										
gct gcc gcg ttc gac tac acc gac ggc gca gcc gag gcc gaa ctc tca 49 Ala Ala Ala Phe Asp Tyr Thr Asp Gly Ala Ala Glu Ala Glu Leu Ser 50 55 60	92										
atc aca cgc gca cgt gaa gca ttc gaa aac atc gaa ttc cac cca gac Ile Thr Arg Ala Arg Glu Ala Phe Glu Asn Ile Glu Phe His Pro Asp 65 70 75 80	40										
atc ctc aag cct gca gaa cac gta gac acc acc caa atc ctg ggc 5 Ile Leu Lys Pro Ala Glu His Val Asp Thr Thr Thr Gln Ile Leu Gly 85 90 95	88										
gga acc tcc tcc atg cca ttc ggc atc gca cca acc ggc ttc acc cgc 6 Gly Thr Ser Ser Met Pro Phe Gly Ile Ala Pro Thr Gly Phe Thr Arg 100 105 110	36										

ctc Leu	atg Met	cag Gln 115	acc Thr	gaa Glu	ggt Gly	gaa Glu	atc Ile 120	gca. Ala	ggt Gly	gcc Ala	gga Gly	gct Ala 125	gca Ala	ggc Gly	gct Ala	684
gca Ala	gga Gly 130	att Ile	cct Pro	ttc Phe	acc Thr	ctg Leu 135	tcc Ser	acc Thr	ctg Leu	ggc Gly	act Thr 140	acc Thr	tcc Ser	atc Ile	gaa Glu	732
gac Asp 145	gtc Val	aag Lys	gcc Ala	acc Thr	aac Asn 150	ccc Pro	aac Asn	ggc	cga Arg	aac Asn 155	tgg Trp	ttc Phe	cag Gln	ctc Leu	tac Tyr 160	780
gtc Val	atg Met	cgc Arg	gac Asp	cgc Arg 165	gaa Glu	atc Ile	tcc Ser	tac Tyr	ggc Gly 170	ctc Leu	gtc Val	gaa Glu	cgc Arg	gca Ala 175	gcc Ala	828
aaa Lys	gca Ala	gga Gly	ttc Phe 180	gac Asp	acc Thr	ctg Leu	atg Met	ttc Phe 185	acc Thr	gtg Val	gat Asp	acc Thr	ccc Pro 190	atc Ile	gcc Ala	876
ggc Gly	tac Tyr	cgc Arg 195	Ile	cgc Arg	gat Asp	tcc Ser	cgc Arg 200	aac Asn	gga Gly	ttc Phe	tcc Ser	atc Ile 205	ccg Pro	cca Pro	cag Gln	924
ctg Leu	acc Thr 210	cca Pro	tcc Ser	acc Thr	gtg Val	ctc Leu 215	aat Asn	gca Ala	atc Ile	cca Pro	cgc Arg 220	Pro	tgg Trp	tgg Trp	tgg Trp	972
atc Ile 225	Asp	ttc Phe	ctg Leu	acc Thr	acc Thr 230	Pro	acc Thr	ctt Leu	gag Glu	ttc Phe 235	Ala	tcc Ser	ctt Leu	tcc Ser	s tcg Ser 240	1020
acc Thr	ggc Gly	gga gga	aco Thr	gtg Val 245	Gly	gac Asp	cto Leu	ctc Leu	aac Asn 250	Ser	gcg Ala	atg Met	gat Asp	255	acc Thr	1068
att Ile	tct Ser	tac Tyr	gaa Glu 260	ı Asp	cto Leu	aag Lys	gto Val	atc Ile 265	Arg	gaa g Glu	atg Met	g tgg Trp	cca Pro 270	GT2	aag Lys	1116
cto Lei	gta Val	gto Val 27	Lys	g ggt s Gly	gto Val	cag Glr	aac Asr 280	ı Val	gaa Glu	a gad 1 Asp	c tco Sei	gto Val 285	. Lys	te Le	c ctc u Leu	1164
gad Asp	caa Glr 290	n Gl	c gto y Vai	c gad l Asp	ggo Gl	c cto / Let 295	ı Ile	c cto e Lev	tco Sei	c aad c Ası	c cad n His 300	s GT	gg(c cg	t caa g Gln	1212
Let 30	u Asj	c cg o Ar	c gc. g Al	a cca a Pro	a gto Val 310	l Pro	a tto Pho	c cad e His	c cto Le	c cto u Len 31	u Pro	a caq o Gli	g gta n Vai	a cg l Ar	c aag g Lys 320	
ga Gl	a gto u Va	c gg l Gl	a tc y Se	t gaa r Gli 32	u Pro	a acc	c ato	c ato e Me	g ate 110 33	e As	c ac p Th	c ggg r Gl	c ato	c at e Me 33	g aac t Asn 5	1308
GJ GG	c gc y Al	c ga a As	c at p Il 34	e Va	c gca l Ala	a gc	c gt a Va	a gco 1 Ala 34!	a Me	g gg t Gl	c gc y Al	t ga a As	c tt p Ph 35	e Th	c cto r Lev	: 1356 I
at	c gg	t cg	t go	c ta	c ct	c ta	c gg	a ct	c at	g gc	c gg	a gg	c cg	c ga	a ggo	1404

		-											•			
Ile	Gly	Arg 355	Ala	Tyr	Leu	Tyr :	Gly 360	Leu	Met	Ala	Gly	Gly 365	Arg	Glu	Gly	
gtc Val	gac Asp 370	cgc Arg	acc Thr	atc Ile	gcc Ala	att Ile 375	ctc Leu	cgc Arg	agc Ser	gag Glu	atc Ile 380	acc Thr	cgc Arg	acc Thr	atg Met	1452
gct Ala 385	ctc Leu	ctc Leu	ggt Gly	gtt Val	tcc Ser 390	tcc Ser	ctc Leu	gaa Glu	gaa Glu	ctc Leu 395	gag Glu	cca Pro	cgc Arg	cac His	gtc Val 400	1500
acc Thr	cag Gln	ctg Leu	gcc Ala	aag Lys 405	atg Met	gtt Val	cca Pro	gtt Val	tct Ser 410	gac Asp	gca Ala	act Thr	cgt Arg	tct Ser 415	gca Ala	1548
		gag Glu		taa *	aagt	ttct	ct o	ectta	agcta	at ta	aaaag	ggtgo	:	atccg	gttt	1603
ggat	ggg	cac c	ettet	cgtt	ct ct	tgca	aatc	g gça	atati	tcag	tca	aaaaa	atg 1	ttgaa	aat	1660
<210> 2 <211> 420 <212> PRT <213> Corynebacterium glutamicum																
)> 2	_			_	_	_		22-	~ 1	.	T	01	T	M-+	
Met 1	Val	Lys		Gln 5	Leu	Pro	Asn	Pro	10 10	GIu		ьeu	GIU	ьеи 15	Met	•
Lys	Phe	Lys	Lys 20	Pro	Glu	Leu	Asn	Gly 25	Lys	ГÀЗ	Arg	Arg	Leu 30	Asp	Ser	
Ala	Leu	Thr		Tyr	Asp	Leu	Arg 40		Ile	Ala	Lys	Arg 45	Arg	Thr	Pro	
Ala	Ala 50	Ala	Phe	Asp	Tyr	Thr 55		Gly	Ala	Ala	Glu 60		Glu	Leu	Ser	
Ile		Arg	Ala	Arg	Glu		Phe	Glu	Asn			Phe	His	Pro		
65 Ile	Leu	Lys	Pro	Ala	70 Glu	His	Val	Asp	Thr	75 Thr	Thr	Gln	Ile	Leu	80 Gly	
Glv	Thr	Ser	Ser	85 Met	Pro	Phe	Glv	Ile	90 Ala	Pro	Thr	Gly	Phe	95 Thr	Arg	
		Gln	100					105					110			
		115					120					125				
Ala	Gly 130	Ile	Pro	Phe	Thr	Leu 135		Thr	Leu	. Gly	Thr 140		Ser	· Ile	GLu	
_		Lys	Ala	Thr	Asn 150	Pro	Asn	Gly	Arg	Asn 155		Phe	Gln	Leu	Tyr 160	
145 Val		Arg	Asp	_	Glu	Ile	Ser	Tyr		Leu		Glu	Arg		Ala	
Lys	Ala	Gly	Phe			Leu	Met	Phe 185			. Asp	Thr	Pro		Ala	
Gly	Tyr	Arg	Ile		Asp	Ser	Arg 200		Gly	Phe	Ser	lle 205		Pro	Gln	
Leu		Pro		Thr	Val		Asn		Ile	Pro	220	Pro		Trp	Trp	
Ile	210 Asp		Leu	Thr	Thr	215 Pro		Leu	Glu	ı _. Phe			Let	ı Ser	Ser	
225					230					235	5				240	
				245					250)			•	255		
Ile	Ser	Tyr	Glu 260		Leu	Lys	: Val	. Ile 265		g Gli	ı Met	Trp	270		Lys	

```
Leu Val Val Lys Gly Val Gln Asn Val Glu Asp Ser Val Lys Leu Leu
                            280
Asp Gln Gly Val Asp Gly Leu Ile Leu Ser Asn His Gly Gly Arg Gln
                                             300
                        295
Leu Asp Arg Ala Pro Val Pro Phe His Leu Leu Pro Gln Val Arg Lys
                    310
                                         315
Glu Val Gly Ser Glu Pro Thr Ile Met Ile Asp Thr Gly Ile Met Asn
                                     330
                325
Gly Ala Asp Ile Val Ala Ala Val Ala Met Gly Ala Asp Phe Thr Leu
                                345
Ile Gly Arg Ala Tyr Leu Tyr Gly Leu Met Ala Gly Gly Arg Glu Gly
                            360
                                                 365
Val Asp Arg Thr Ile Ala Ile Leu Arg Ser Glu Ile Thr Arg Thr Met
                        375
                                             380
Ala Leu Leu Gly Val Ser Ser Leu Glu Glu Leu Glu Pro Arg His Val
                    390
                                         395
Thr Gln Leu Ala Lys Met Val Pro Val Ser Asp Ala Thr Arg Ser Ala
                                     410
                                                         415
                405
Ala Ala Glu Ile
            420
<210> 3
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 3
                                                                    35
gagagagaga cgcgtcccag tggctgagac gcatc
<210> 4
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 4
                                                                    34
ctctctctgt cgacgaattc aatcttacgg cctg
<210> 5
<211> 4323
 <212> DNA
<213> Corynebacterium glutamicum
 <400> 5
 tcgagaggcc tgacgtcggg cccggtacca cgcgtcatat gactagttcg gacctaggga 60
 tatcgtcgac atcgatgctc ttctgcgtta attaacaatt gggatcctct agacccggga 120
 tttaaatcgc tagcgggctg ctaaaggaag cggaacacgt agaaagccag tccgcagaaa 180
 cggtgctgac cccggatgaa tgtcagctac tgggctatct ggacaaggga aaacgcaagc 240
 gcaaagagaa agcaggtagc ttgcagtggg cttacatggc gatagctaga ctgggcggtt 300
 ttatggacag caagcgaacc ggaattgcca gctggggcgc cctctggtaa ggttgggaag 360
 ccctgcaaag taaactggat ggctttcttg ccgccaagga tctgatggcg caggggatca 420
 agatctgatc aagagacagg atgaggatcg tttcgcatga ttgaacaaga tggattgcac 480
 gcaggttctc cggccgcttg ggtggagagg ctattcggct atgactgggc acaacagaca 540
 ateggetget etgatgeege egtgtteegg etgteagege aggggegeee ggttettttt 600
 qtcaaqaccq acctqtccgq tgccctgaat gaactgcagg acgaggcagc gcggctatcg 660
```

taaataaaa	caacaaacat	teettacaca	actatactca	acgttgtcac	tgaagggga	720
cggccggcca	tactattaga	casactacca	addcadatc	tcctgtcatc	tcaccttgct	780
agggactggc	agetateggg	cgaagcgccg	gggcuggacc	ggctgcatac	acttastaca	840
cctgccgaga	aagtatttat	catggctgat	gcaacgcggc	aggragagaga	tactcccata	900
getaeetgee	tartegacca	ccaagcgaaa	caccycaccy	agegageacg	cacceggaeg	960
gaageeggte	etgtegatea	ggatgatetg	gacgaagagc	atcaggggct	cgcgccagcc	1020
gaactgttcg	ccaggeteaa	ggcgcgcatg	eccgacggcg	aggatetegt	egtgacccat	1020
ggcgatgcct	gcttgccgaa	tatcatggtg	gaaaatggcc	gcttttctgg	acceatigat	1140
tgtggccggc	tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	ccgtgatatt	1140
gctgaagagc	ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	tategeeget	1200
cccgattcgc	agcgcatcgc	cttctatcgc	cttcttgacg	agttcttctg	agcgggactc	1260
tggggttcga	aatgaccgac	caagcgacgc	ccaacctgcc	atcacgagat	ttcgattcca	1320
ccgccgcctt	ctatgaaagg	ttgggcttcg	gaatcgtttt	ccgggacgcc	ggctggatga	1380
tcctccagcg	cggggatctc	atgctggagt	tcttcgccca	cgctagcggc	gcgccggccg	1440
gcccggtgtg	aaataccgca	cagatgcgta	aggagaaaat	accgcatcag	gegetettee	1500
gcttcctcgc	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	1560
cactcaaagg	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	1620
tgagcaaaag	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	1680
cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	1740
aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	1800
cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	1860
gcgctttctc	atagctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	tcgctccaag	1920
ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	cggtaactat	1980
cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	2040
aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	gtggcctaac	2100
tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	agttaccttc	2160
ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	cggtggtttt	2220
tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttgatc	2280
ttttctacqq	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	tttggtcatg	2340
agattatcaa	aaaggatctt	cacctagatc	cttttaaagg	ccggccgcgg	ccgccatcgg	2400
cattttcttt	tgcgttttta	tttqttaact	gttaattgtc	cttgttcaag	gatgctgtct	2460
ttgacaacag	atgttttctt	acctttaata	ttcagcagga	agctcggcgc	aaacgttgat	2520
tatttatcta	catagaatcc	tctatttatc	atatagettg	taatcacgac	attgtttcct	2580
ttcacttaaa	gtacagcgaa	gtgtgagtaa	gtaaaggtta	catcgttagg	atcaagatcc	2640
atttttaaca	caaggccagt	tttgttcagc	ggcttgtatg	ggccagttaa	agaattagaa	2700
acataaccaa	gcatgtaaat	atcottagac	gtaatgccgt	caatcgtcat	ttttgatccg	2760
cadaatcaa	tgaacaggta	ccatttacca	ttcattttaa	agacgttcgc	gcgttcaatt	2820
tratricta	ctatattaga	tacaatcaac	ggtttcatca	ctttttcag	tototaatca	2880
teatttaget	castcatacc	asasacaca	tttgctaact	cagccgtgcg	ttttttatcq	2940
ctttqcaqaa	gtttttgact	ttcttgacgg	aagaatgatg	tgcttttgcc	atagtatgct	3000
ttattaaata	aggettette	accttaataa	ccatcttcag	ttccagtgtt	tocttcaaat	3060
actaactatt	tataacettt	atcttctaco	tagtgaggat	ctctcagcgt	atgattatca	3120
actaagtatt	agttgccttc	atcostosac	tactatacat	tttgatacgt	ttttccqtca	3180
ceegageege	ttaatttata	atogatgaac	ccattastat	tcaaagagct	atctastact	3240
cegecaaaga	cttatacaat	tatceatatt	tatttaccat	aatgtttacc	ggagaaatca	3300
gacacgccaa	aacconstttt	tecateagat	ataaatataa	ctgaacctga	ccattcttgt	3360
gtgtagaata	ttaggatte	atgatttgga	transtttat	cgctgtcttt	seaccacaa	3420
guugguuu	taggataga	accaccegea	tegeceactt	tttgatagaa	catotaaato	3480
ccagegeeee	cedagetgte	aacayaagcc	ccgccgaccc	. cccgacagaa	ataggggatga	3540
gatgtgtcat	cegeattet	aggateteeg	getaatgeaa	agacgatgtg	gtageegega	3500
				tgtcccaaac		
tttgcagaag	agatatttt	aattgtggad	gaaccaaacc	cagaaacttg	acactectea	3720
ttttttgct	gttcagggat	ttgcagcata	. teatggegtg	taatatggga	aacgccgcac	3720
				cttgagttgc		
agcagtgcgg	tagtaaaggt	taatactgtt	gcttgttttg	caaactttt	gatgttcatc	3840
gttcatgtct	cctttttat	gtactgtgtt	ageggtetge	ttcttccagc	cctcctgttt	3900
gaagatggca	agttagttac	gcacaataaa	aaaagaccta	aaatatgtaa	ggggtgacgc	3960
caaagtatac	actttgccct	ttacacattt	. taggtcttgc	ctgctttatc	agtaacaaac	4020
ccgcgcgatt	tacttttcga	cctcattcta	ttagactctc	gtttggattg	caactggtct	4080
attttcctct	tttgtttgat	agaaaatcat	aaaaggattt	gcagactacg	ggcctaaaga	4140
actaaaaaat	ctatctgttt	cttttcattc	tctgtatttt	: ttatagtttc	tgttgcatgg	4200
gcataaagtt	gcctttttaa	tcacaattca	gaaaatatca	taatatctca	tttcactaaa	4260
taatagtgaa	cggcaggtat	atgtgatggg	, ttaaaaagga	teggeggeeg	ctcgatttaa	4320
			_		•	

atc 4323

<400> 6 cccggtacca cgcgtcccag tggctgagac gcatccgcta aagccccagg aaccctgtgc 60 agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt 120 aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg 180 cggttcctcg cttgagagtg cggaacgcat tagaaacgtc gctgaacgga tcgttgccac 240 caagaaggct ggaaatgatg tcgtggttgt ctgctccgca atgggagaca ccacggatga 300 acttctagaa cttgcagcgg cagtgaatcc cgttccgcca gctcgtgaaa tggatatgct 360 cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg 420 cgcagaagcc caatetttca cgggetetca ggetggtgtg etcaccaccg agegecacgg 480 aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa 540 gatctgcatt gttgctggtt tccagggtgt taataaagaa acccgcgatg tcaccacgtt 600 gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt 660 gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa 720 tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc 780 caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt 840 acgctcgtct tatagtaatg atcccggcac tttgattgcc ggctctatgg aggatattcc 900 tgtggaagaa gcagtcctta ccggtgtcgc aaccgacaag tccgaagcca aagtaaccgt 960 tctgggtatt tccgataagc caggcgaggc tgcgaaggtt ttccgtgcgt tggctgatgc 1020 agaaatcaac attgacatgg ttctgcagaa cgtctcttct gtagaagacg gcaccaccga 1080 catcacette acetgeeete gtteegaegg eegeegegeg atggagatet tgaagaaget 1140 tcaggttcag ggcaactgga ccaatgtgct ttacgacgac caggtcggca aagtctccct 1200 cgtgggtgct ggcatgaagt ctcacccagg tgttaccgca gagttcatgg aagctctgcg 1260 cgatgtcaac gtgaacatcg aattgatttc cacctctgag attcgtattt ccgtgctgat 1320 cgaagacgaa gccgtcgttt atgcaggcac cggacgctaa agttttaaag gagtagtttt 1440 acaatgacca ccatcgcagt tgttggtgca accggccagg tcggccaggt tatgcgcacc 1500 cttttggaag agegeaattt cccagetgae actgttegtt tetttgette cccaegttee 1560

caaqqqaaaa cqcaaqcqca aagagaaagc aggtagcttg cagtgggctt acatggcgat 1800 agctagactg ggcggtttta tggacagcaa gcgaaccgga attgccagct ggggcgccct 1860 ctggtaaggt tgggaagccc tgcaaagtaa actggatggc tttcttgccg ccaaggatct 1920 gatggcgcag gggatcaaga tctgatcaag agacaggatg aggatcgttt cgcatgattg 1980 aacaagatgg attgcacgca ggttctccgg ccgcttgggt ggagaggcta ttcggctatg 2040 actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg 2100 ggcgcccggt tctttttgtc aagaccgacc tgtccggtgc cctgaatgaa ctgcaggacg 2160 aggcagegeg getategtgg etggeeacga egggegttee ttgegeaget gtgetegaeg 2220 ttgtcactga agcgggaagg gactggctgc tattgggcga agtgccgggg caggatctcc 2280 tgtcatctca ccttgctcct gccgagaaag tatccatcat ggctgatgca atgcggcggc 2340 tgcatacgct tgatccggct acctgcccat tcgaccacca agcgaaacat cgcatcgagc 2400 gaqcacgtac teggatggaa geeggtettg tegateagga tgatetggae gaagageate 2460 aggggetege gecageegaa etgttegeea ggeteaagge gegeatgeee gaeggegagg 2520 atctcgtcgt gacccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct 2580 tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgctatcag gacatagcgt 2640 tggctacccg tgatattgct gaagagettg geggegaatg ggctgaccgc ttcctcgtgc 2700 tttacggtat cgccgctccc gattcgcagc gcatcgcctt ctatcgcctt cttgacgagt 2760 tcttctgagc gggactctgg ggttcgaaat gaccgaccaa gcgacgccca acctgccatc 2820 acgagatttc gattccaccg ccgccttcta tgaaaggttg ggcttcggaa tcgttttccg 2880 ggacgccggc tggatgatcc tccagcgcgg ggatctcatg ctggagttct tcgcccacgc 2940 tagcggcgcg ccggccggcc cggtgtgaaa taccgcacag atgcgtaagg agaaaatacc 3000 gcatcaggcg ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 3060 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 3120

gcaggccgta agattgaatt cgtcgacatc gatgctcttc tgcgttaatt aacaattggg 1620 atcctctaga cccgggattt aaatcgctag cgggctgcta aaggaagcgg aacacgtaga 1680 aagccagtcc gcagaaacgg tgctgacccc ggatgaatgt cagctactgg gctatctgga 1740

```
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 3180
cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 3240
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 3300
getecetegt gegetetect gtteegacee tgeegettae eggatacetg teegeettte 3360
tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt 3420
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg 3480
cettatecqq taactategt ettgagteca acceggtaag acaegaetta tegecaetgg 3540
caqcaqccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 3600
tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc tgcgctctgc 3660
tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg 3720
ctggtagcgg tggtttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc 3780
aaqaaqatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt 3840
aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaaggccg 3900
gccgcggccg ccatcggcat tttcttttgc gtttttattt gttaactgtt aattgtcctt 3960
gttcaaggat gctgtctttg acaacagatg ttttcttgcc tttgatgttc agcaggaagc 4020
tcggcgcaaa cgttgattgt ttgtctgcgt agaatcctct gtttgtcata tagcttgtaa 4080
tcacgacatt gtttcctttc gcttgaggta cagcgaagtg tgagtaagta aaggttacat 4140
cgttaggatc aagatccatt tttaacacaa ggccagtttt gttcagcggc ttgtatgggc 4200
cagttaaaga attagaaaca taaccaagca tgtaaatatc gttagacgta atgccgtcaa 4260
tcgtcatttt tgatccgcgg gagtcagtga acaggtacca tttgccgttc attttaaaga 4320
cgttcgcgcg ttcaatttca tctgttactg tgttagatgc aatcagcggt ttcatcactt 4380
ttttcagtgt gtaatcatcg tttagctcaa tcataccgag agcgccgttt gctaactcag 4440
ccgtgcgttt tttatcgctt tgcagaagtt tttgactttc ttgacggaag aatgatgtgc 4500
ttttgccata gtatgctttg ttaaataaag attcttcgcc ttggtagcca tcttcagttc 4560
cagtgtttgc ttcaaatact aagtatttgt ggcctttatc ttctacgtag tgaggatctc 4620
tcagcgtatg gttgtcgcct gagctgtagt tgccttcatc gatgaactgc tgtacatttt 4680
gatacgtttt tecgteaceg teaaagattg atttataate etetacaceg ttgatgttea 4740
aagagctgtc tgatgctgat acgttaactt gtgcagttgt cagtgtttgt ttgccgtaat 4800
gtttaccgga gaaatcagtg tagaataaac ggatttttcc gtcagatgta aatgtggctg 4860
aacctgacca ttcttgtgtt tggtctttta ggatagaatc atttgcatcg aatttgtcgc 4920
tgtctttaaa gacgcggcca gcgtttttcc agctgtcaat agaagtttcg ccgacttttt 4980
gatagaacat gtaaatcgat gtgtcatccg catttttagg atctccggct aatgcaaaga 5040
cgatgtggta gccgtgatag tttgcgacag tgccgtcagc gttttgtaat ggccagctgt 5100
cccaaacgtc caggcctttt gcagaagaga tatttttaat tgtggacgaa tcaaattcag 5160
aaacttgata tttttcattt ttttgctgtt cagggatttg cagcatatca tggcgtgtaa 5220
tatgggaaat gccgtatgtt tccttatatg gcttttggtt cgtttctttc gcaaacgctt 5280
gagttgcgcc tcctgccagc agtgcggtag taaaggttaa tactgttgct tgttttgcaa 5340
actttttgat gttcatcgtt catgtctcct tttttatgta ctgtgttagc ggtctgcttc 5400
ttccagccct cctgtttgaa gatggcaagt tagttacgca caataaaaaa agacctaaaa 5460
tatgtaaggg gtgacgccaa agtatacact ttgcccttta cacattttag gtcttgcctg 5520
ctttatcagt aacaaacccg cgcgatttac ttttcgacct cattctatta gactctcgtt 5580
tggattgcaa ctggtctatt ttcctctttt gtttgataga aaatcataaa aggatttgca 5640
gactacgggc ctaaagaact aaaaaatcta tctgtttctt ttcattctct gtattttta 5700
tagtttctgt tgcatgggca taaagttgcc tttttaatca caattcagaa aatatcataa 5760
tatctcattt cactaaataa tagtgaacgg caggtatatg tgatgggtta aaaaggatcg 5820
                                                                   5860
gcggccgctc gatttaaatc tcgagaggcc tgacgtcggg
<210> 7
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
 <400> 7
cggcaccacc gacatcatct tcacctgccc tcgttccg
                                                                   38
 <210> 8
```

-7-

```
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 8
                                                                  38
cggaacgagg gcaggtgaag atgatgtcgg tggtgccg
<210> 9
<211> 1263
<212> DNA
<213> Corynebacterium glutamicum
qtqqccctqq tcqtacaqaa atatgqcqqt tcctcgcttg agagtgcgga acgcattaga 60
aacgtcgctg aacggatcgt tgccaccaag aaggctggaa atgatgtcgt ggttgtctgc 120
tccgcaatgg gagacaccac ggatgaactt ctagaacttg cagcggcagt gaatcccgtt 180
ccgccagctc gtgaaatgga tatgctcctg actgctggtg agcgtatttc taacgctctc 240
gtcgccatgg ctattgagtc ccttggcgca gaagcccaat ctttcacggg ctctcaggct 300
ggtgtgctca ccaccgagcg ccacggaaac gcacgcattg ttgatgtcac tccaggtcgt 360
gtgcgtgaag cactcgatga gggcaagatc tgcattgttg ctggtttcca gggtgttaat 420
aaagaaaccc gcgatgtcac cacgttgggt cgtggtggtt ctgacaccac tgcagttgcg 480
ttggcagctg ctttgaacgc tgatgtgtgt gagatttact cggacgttga cggtgtgtat 540
accgctgacc cgcgcatcgt tcctaatgca cagaagctgg aaaagctcag cttcgaagaa 600
atqctggaac ttgctgctgt tggctccaag attttggtgc tgcgcagtgt tgaatacgct 660
cgtgcattca atgtgccact tcgcgtacgc tcgtcttata gtaatgatcc cggcactttg 720
attgccggct ctatggagga tattcctgtg gaagaagcag tccttaccgg tgtcgcaacc 780
gacaagtccg aagccaaagt aaccgttctg ggtatttccg ataagccagg cgaggctgcg 840
aaggttttcc gtgcgttggc tgatgcagaa atcaacattg acatggttct gcagaacgtc 900
tettetgtag aagaeggeac caeegacate acetteacet geeetegtte egaeggeege 960
cgcgcgatgg agatcttgaa gaagcttcag gttcagggca actggaccaa tgtgctttac 1020
gacgaccagg tcggcaaagt ctccctcgtg ggtgctggca tgaagtctca cccaggtgtt 1080
accgcagagt tcatggaagc tctgcgcgat gtcaacgtga acatcgaatt gatttccacc 1140
tctgagattc gtatttccgt gctgatccgt gaagatgatc tggatgctgc tgcacgtgca 1200
ttgcatgagc agttccagct gggcggcgaa gacgaagccg tcgtttatgc aggcaccgga 1260
cgc
<210> 10
<211> 5860
<212> DNA
<213> Corynebacterium glutamicum
<400> 10
cccggtacca cgcgtcccag tggctgagac gcatccgcta aagccccagg aaccctgtgc 60
agaaagaaaa cactcctctg gctaggtaga cacagtttat aaaggtagag ttgagcgggt 120
aactgtcagc acgtagatcg aaaggtgcac aaaggtggcc ctggtcgtac agaaatatgg 180
cggttcctcg cttgagagtg cggaacgcat tagaaacgtc gctgaacgga tcgttgccac 240
caagaagget ggaaatgatg tegtggttgt etgeteegea atgggagaea ceaeggatga 300
acttctagaa cttgcagcgg cagtgaatcc cgttccgcca gctcgtgaaa tggatatgct 360
cctgactgct ggtgagcgta tttctaacgc tctcgtcgcc atggctattg agtcccttgg 420
cgcagaagcc caatctttca cgggctctca ggctggtgtg ctcaccaccg agcgccacgg 480
aaacgcacgc attgttgatg tcactccagg tcgtgtgcgt gaagcactcg atgagggcaa 540
gatctgcatt gttgctggtt tccagggtgt taataaagaa acccgcgatg tcaccacgtt 600
gggtcgtggt ggttctgaca ccactgcagt tgcgttggca gctgctttga acgctgatgt 660
gtgtgagatt tactcggacg ttgacggtgt gtataccgct gacccgcgca tcgttcctaa 720
tgcacagaag ctggaaaagc tcagcttcga agaaatgctg gaacttgctg ctgttggctc 780
caagattttg gtgctgcgca gtgttgaata cgctcgtgca ttcaatgtgc cacttcgcgt 840
acgctcgtct tatagtaatg atcccggcac tttgattgcc ggctctatgg aggatattcc 900
```

tgtggaagaa gcagtcctta ccggtgtcgc aaccgacaag tccgaagcca aagtaaccgt 960 tctgggtatt tccgataagc caggcgaggc tgcgaaggtt ttccgtgcgt tggctgatgc 1020 agaaatcaac attgacatgg ttctgcagaa cgtctcttct gtagaagacg gcaccaccga 1080 catcatcttc acctgccctc gttccgacgg ccgccgcgcg atggagatct tgaagaagct 1140 tcaggttcag ggcaactgga ccaatgtgct ttacgacgac caggtcggca aagtctccct 1200 cgtgggtgct ggcatgaagt ctcacccagg tgttaccgca gagttcatgg aagctctgcg 1260 cgatgtcaac gtgaacatcg aattgatttc cacctctgag attcgtattt ccgtgctgat 1320 cgaagacgaa gccgtcgttt atgcaggcac cggacgctaa agttttaaaag gagtagtttt 1440 acaatgacca ccatcgcagt tgttggtgca accggccagg tcggccaggt tatgcgcacc 1500 cttttggaag agcgcaattt cccagctgac actgttcgtt tctttgcttc cccacgttcc 1560 gcaggccgta agattgaatt cgtcgacatc gatgctcttc tgcgttaatt aacaattggg 1620 atcctctaga cccgggattt aaatcgctag cgggctgcta aaggaagcgg aacacgtaga 1680 aagccagtcc gcagaaacgg tgctgacccc ggatgaatgt cagctactgg gctatctgga 1740 caaqqqaaaa cgcaagcgca aagagaaagc aggtagcttg cagtgggctt acatggcgat 1800 agctagactg ggcggtttta tggacagcaa gcgaaccgga attgccagct ggggcgccct 1860 ctggtaaggt tgggaagccc tgcaaagtaa actggatggc tttcttgccg ccaaggatct 1920 qatqqcqcaq gggatcaaga tctgatcaag agacaggatg aggatcgttt cgcatgattg 1980 aacaaqatqq attgcacgca ggttctccgg ccgcttgggt ggagaggcta ttcggctatg 2040 actgggcaca acagacaatc ggctgctctg atgccgccgt gttccggctg tcagcgcagg 2100 ggcgcccggt tetttttgtc aagaccgacc tgtccggtgc cctgaatgaa ctgcaggacg 2160 aggcagegeg getategtgg etggecaega egggegttee ttgegeaget gtgetegaeg 2220 ttgtcactga agcgggaagg gactggctgc tattgggcga agtgccgggg caggatctcc 2280 tgtcatctca ccttgctcct gccgagaaag tatccatcat ggctgatgca atgcggcggc 2340 tgcatacgct tgatccggct acctgcccat tcgaccacca agcgaaacat cgcatcgagc 2400 gagcacgtac teggatggaa geeggtettg tegateagga tgatetggae gaagagcate 2460 aggggctcgc gccagccgaa ctgttcgcca ggctcaaggc gcgcatgccc gacggcgagg 2520 atctcgtcgt gacccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct 2580 tttctggatt catcgactgt ggccggctgg gtgtggcgga ccgctatcag gacatagcgt 2640 tggctacccg tgatattgct gaagagcttg.gcggcgaatg.ggctgaccgc ttcctcgtgc 2700 tttacggtat cgccgctccc gattcgcagc gcatcgcctt ctatcgcctt cttgacgagt 2760 tcttctgagc gggactctgg ggttcgaaat gaccgaccaa gcgacgccca acctgccatc 2820 acgagatttc gattccaccg ccgccttcta tgaaaggttg ggcttcggaa tcgttttccg 2880 ggacgccggc tggatgatcc tccagcgcgg ggatctcatg ctggagttct tcgcccacgc 2940 tageggegeg ceggeeggee eggtgtgaaa tacegeacag atgegtaagg agaaaatace 3000 gcatcaggcg ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc 3060 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 3120 acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 3180 cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct 3240 caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa 3300 getecetegt gegeteteet gtteegaeee tgeegettae eggataeetg teegeettte 3360 tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt 3420 aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg 3480 cettateegg taactategt ettgagteea acceggtaag acaegaetta tegecaetgg 3540 cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct 3600 tgaagtggtg gcctaactac ggctacacta gaaggacagt atttggtatc tgcgctctgc 3660 tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg 3720 ctggtagcgg tggtttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc 3780 aagaagatcc tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt 3840 aaqqqatttt ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaaggccg 3900 gccgcggccg ccatcggcat tttcttttgc gtttttattt gttaactgtt aattgtcctt 3960 gttcaaggat gctgtctttg acaacagatg ttttcttgcc tttgatgttc agcaggaagc 4020 tcggcgcaaa cgttgattgt ttgtctgcgt agaatcctct gtttgtcata tagcttgtaa 4080 tcacgacatt gtttcctttc gcttgaggta cagcgaagtg tgagtaagta aaggttacat 4140 cgttaggatc aagatccatt tttaacacaa ggccagtttt gttcagcggc ttgtatgggc 4200 cagttaaaga attagaaaca taaccaagca tgtaaatatc gttagacgta atgccgtcaa 4260 tcgtcatttt tgatccgcgg gagtcagtga acaggtacca tttgccgttc attttaaaga 4320 cgttcgcgcg ttcaatttca tctgttactg tgttagatgc aatcagcggt ttcatcactt 4380 ttttcagtgt gtaatcatcg tttagctcaa tcataccgag agcgccgttt gctaactcag 4440 ccgtgcgttt tttatcgctt tgcagaagtt tttgactttc ttgacggaag aatgatgtgc 4500 ttttgccata gtatgctttg ttaaataaag attcttcgcc ttggtagcca tcttcagttc 4560

```
cagtgtttgc ttcaaatact aagtatttgt ggcctttatc ttctacgtag tgaggatctc 4620
  tcagcgtatg gttgtcgcct gagctgtagt tgccttcatc gatgaactgc tgtacatttt 4680
  gatacgtttt tccgtcaccg tcaaagattg atttataatc ctctacaccg ttgatgttca 4740
  aagagetgte tgatgetgat aegttaaett gtgeagttgt eagtgtttgt ttgeegtaat 4800
  gtttaccgga gaaatcagtg tagaataaac ggatttttcc gtcagatgta aatgtggctg 4860
  aacctgacca ttcttgtgtt tggtctttta ggatagaatc atttgcatcg aatttgtcgc 4920
  tqtctttaaa gacgcggcca gcgtttttcc agctgtcaat agaagtttcg ccgacttttt 4980
  gatagaacat gtaaatcgat gtgtcatccg catttttagg atctccggct aatgcaaaga 5040
  cgatgtggta gccgtgatag tttgcgacag tgccgtcagc gttttgtaat ggccagctgt 5100
  cccaaacgtc caggcctttt gcagaagaga tatttttaat tgtggacgaa tcaaattcag 5160
  aaacttgata tttttcattt ttttgctgtt cagggatttg cagcatatca tggcgtgtaa 5220
  tatgggaaat gccgtatgtt tccttatatg gcttttggtt cgtttctttc gcaaacgctt 5280
  gagttgcgcc tcctgccagc agtgcggtag taaaggttaa tactgttgct tgttttgcaa 5340
  actititique gitcategit catgiciect tittitatgia cigigitage ggictgette 5400
  ttccagcct cctgtttgaa gatggcaagt tagttacgca caataaaaaa agacctaaaa 5460
  tatqtaaqqq qtqacqccaa agtatacact ttgcccttta cacattttag gtcttgcctg 5520
  ctttatcagt aacaaacccg cgcgatttac ttttcgacct cattctatta gactctcgtt 5580
  tggattgcaa ctggtctatt ttcctctttt gtttgataga aaatcataaa aggatttgca 5640
  gactacgggc ctaaagaact aaaaaatcta tctgtttctt ttcattctct gtattttta 5700
   tagtttctgt tgcatgggca taaagttgcc tttttaatca caattcagaa aatatcataa 5760
   tatctcattt cactaaataa tagtgaacgg caggtatatg tgatgggtta aaaaggatcg 5820
   geggeegete gatttaaate tegagaggee tgacgteggg
   <210> 11
   <211> 27
   <212> DNA
                                   en de la composition de la composition
La composition de la
 <213> Artificial Sequence
∵ <220>
   <223> Oligonucleotide
   <400> 11
                                                                          27
   ctagctagcc attgtccttc tggcagt
   <210> 12
   <211> 28
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Oligonucleotide
   <400> 12
                                                                          28
   ctaqtctaqa cgctcgtgtt cctttaga
   <210> 13
   <211> 5720
   <212> DNA
   <213> Corynebacterium glutamicum
   <400> 13
   ggtcgactct agaggatccc cgggtaccga gctcgaattc actggccgtc gttttacaac 60
   gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca catccccctt 120
   tegecagetg gegtaatage gaagaggeee geacegateg ceetteecaa eagttgegea 180
   geetgaatgg egaatggega taagetaget teacgetgee geaageacte agggegeaag 240
   ggctgctaaa ggaagcggaa cacgtagaaa gccagtccgc agaaacggtg ctgacccgg 300
   atgaatgtca gctactgggc tatctggaca agggaaaacg caagcgcaaa gagaaagcag 360
   gtagcttgca gtgggcttac atggcgatag ctagactggg cggttttatg gacagcaagc 420
   gaaccggaat tgccagctgg ggcgccctct ggtaaggttg ggaagccctg caaagtaaac 480
   tggatggctt tcttgccgcc aaggatctga tggcgcaggg gatcaagatc tgatcaagag 540
```

acaggatgag gatcgtttcg catgattgaa caagatggat tgcacgcagg ttctccggcc 600 gettgggtgg agaggetatt eggetatgae tgggeacaac agacaategg etgetetgat 660 geegeegtgt teeggetgte agegeagggg egeeeggtte tittigteaa gaeegaeetg 720 tccggtgccc tgaatgaact ccaagacgag gcagcgcggc tatcgtggct ggccacgacg 780 ggcgttcctt gcgcagctgt gctcgacgtt gtcactgaag cgggaaggga ctggctgcta 840 ttgggcgaag tgccggggca ggatctcctg tcatctcacc ttgctcctgc cgagaaagta 900 tocatcatgg ctgatgcaat gcggcggctg catacgcttg atccggctac ctgcccattc 960 gaccaccaag cgaaacatcg catcgagcga gcacgtactc ggatggaagc cggtcttgtc 1020 gatcaggatg atctggacga agagcatcag gggctcgcgc cagccgaact gttcgccagg 1080 ctcaaggcgc ggatgcccga cggcgaggat ctcgtcgtga cccatggcga tgcctgcttg 1140 ccgaatatca tggtggaaaa tggccgcttt tctggattca tcgactgtgg ccggctgggt 1200 gtggcggacc gctatcagga catagcgttg gctacccgtg atattgctga agagcttggc 1260 ggcgaatggg ctgaccgctt cctcgtgctt tacggtatcg ccgctcccga ttcgcagcgc 1320 ategeettet ategeettet tgaegagtte ttetgagegg gaetetgggg ttegetagag 1380 gatcgatcct ttttaaccca tcacatatac ctgccgttca ctattattta gtgaaatgag 1440 atattatgat attttctgaa ttgtgattaa aaaggcaact ttatgcccat gcaacagaaa 1500 ctataaaaaa tacagagaat gaaaagaaac agatagattt tttagttctt taggcccgta 1560 gtctgcaaat ccttttatga ttttctatca aacaaaagag gaaaatagac cagttgcaat 1620 ccaaacgaga gtctaataga atgaggtcga aaagtaaatc gcgcgggttt gttactgata 1680 aagcaggcaa gacctaaaat gtgtaaaggg caaagtgtat actttggcgt caccccttac 1740 atattttagg tettttttta ttgtgegtaa etaaettgee atetteaaac aggagggetg 1800 gaagaagcag accgctaaca cagtacataa aaaaggagac atgaacgatg aacatcaaaa 1860 agtttgcaaa acaagcaaca gtattaacct ttactaccgc actgctggca ggaggcgcaa 1920 ctcaagcgtt tgcgaaagaa acgaaccaaa agccatataa ggaaacatac ggcatttccc 1980 atattacacg ccatgatatg ctgcaaatcc ctgaacagca aaaaaatgaa aaatatcaag 2040 tttctgaatt tgattcgtcc acaattaaaa atatctcttc tgcaaaaggc ctggacgttt 2100 gggacagetg gccattacaa aacgetgacg gcaetgtege aaactateae ggetaceaea 2160 tcgtctttgc attagccgga gatcctaaaa atgcggatga cacatcgatt tacatgttct 2220 atcaaaaagt cggcgaaact tctattgaca gctggaaaaa cgctggccgc gtctttaaag 2280 acagcgacaa attcgatgca aatgattcta teetaaaaga ecaaacacaa gaatggtcag 2340 gttcagccac atttacatct gacggaaaaa tccgtttatt ctacactgat ttctccggta 2400 aacattacgg caaacaaaca ctgacaactg cacaagttaa cgtatcagca tcagacagct 2460 ctttgaacat caacggtgta gaggattata aatcaatctt tgacggtgac ggaaaaacgt 2520 atcaaaatgt acagcagttc atcgatgaag gcaactacag ctcaggcgac aaccatacgc 2580 tgagagatcc tcactacgta gaagataaag gccacaaata cttagtattt gaagcaaaca 2640 ctggaactga agatggctac caaggcgaag aatctttatt taacaaagca tactatggca 2700 aaagcacatc attcttccgt caagaaagtc aaaaacttct gcaaagcgat aaaaaacgca 2760 cggctgagtt agcaaacggc gctctcggta tgattgagct aaacgatgat tacacactga 2820 aaaaagtgat gaaaccgctg attgcatcta acacagtaac agatgaaatt gaacgcgcga 2880 acgtetttaa aatgaaegge aaatggtaee tgtteaetga eteeegegga teaaaaatga 2940 cgattgacgg cattacgtct aacgatattt acatgcttgg ttatgtttct aattctttaa 3000 ctggcccata caagccgctg aacaaaactg gccttgtgtt aaaaatggat cttgatccta 3060 acgatgtaac ctttacttac tcacacttcg ctgtacctca agcgaaagga aacaatgtcg 3120 tgattacaag ctatatgaca aacagaggat tctacgcaga caaacaatca acgtttgcgc 3180 cgagcttcct gctgaacatc aaaggcaaga aaacatctgt tgtcaaagac agcatccttg 3240 aacaaggaca attaacagtt aacaaataaa aacgcaaaag aaaatgccga tgggtaccga 3300 gcgaaatgac cgaccaagcg acgcccaacc tgccatcacg agatttcgat tccaccgccg 3360 ccttctatga aaggttgggc ttcggaatcg ttttccggga cgccctcgcg gacgtgctca 3420 tagtccacga cgcccgtgat tttgtagccc tggccgacgg ccagcaggta ggccgacagg 3480 ctcatgccgg ccgccgccgc cttttcctca atcgctcttc gttcgtctgg aaggcagtac 3540 accttgatag gtgggctgcc cttcctggtt ggcttggttt catcagccat ccgcttgccc 3600 tcatctgtta cgccggcggt agccggccag cctcgcagag caggattccc gttgagcacc 3660 gccaggtgcg aataagggac agtgaagaag gaacacccgc tcgcgggtgg gcctacttca 3720 cctatcctgc ccggctgacg ccgttggata caccaaggaa agtctacacg aaccctttgg 3780 caaaatcctg tatatcgtgc gaaaaaggat ggatataccg aaaaaatcgc tataatgacc 3840 ccgaagcagg gttatgcagc ggaaaagcgc tgcttccctg ctgttttgtg gaatatctac 3900 cgactggaaa caggcaaatg caggaaatta ctgaactgag gggacaggcg agagacgatg 3960 ccaaagagct cctgaaaatc tcgataactc aaaaaaatacg cccggtagtg atcttatttc 4020 attatggtga aagttggaac ctcttacgtg ccgatcaacg tctcattttc gccaaaagtt 4080 ggcccagggc ttcccggtat caacagggac accaggattt atttattctg cgaagtgatc 4140

```
ttccqtcaca qqtatttatt cqqcqcaaaq tgcgtcgggt gatgctgcca acttactgat 4200
ttagtgtatg atggtgtttt tgaggtgctc cagtggcttc tgtttctatc agctcctgaa 4260
aatctcqata actcaaaaaa tacqcccqqt aqtqatctta tttcattatg gtgaaagttg 4320
gaacetetta egtgeegate aaegteteat tttegeeaaa agttggeeca gggetteeeg 4380
gtatcaacag ggacaccagg atttatttat tctgcgaagt gatcttccgt cacaggtatt 4440
tatteggege aaagtgegte gggtgatget gecaacttae tgatttagtg tatgatggtg 4500
tttttgaggt gctccagtgg cttctgtttc tatcagggct ggatgatcct ccagcgcggg 4560
gatctcatgc tggagttctt cgcccacccc aaaaggatct aggtgaagat cctttttgat 4620
aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta 4680
gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa 4740
acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt 4800
tttccgaagg taactggctt cagcagagcg cagataccaa atactgttct tctagtgtag 4860
ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta 4920
atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca 4980
agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag 5040
cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa 5100
agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga 5160
acaqqaqaqc qcacqaqqqa qcttccagqq qqaaacqcct ggtatcttta tagtcctgtc 5220
qqqtttcqcc acctctqact tqaqcqtcqa tttttqtqat gctcqtcagg ggggcggagc 5280
ctatqqaaaa acqccaqcaa cqcqqccttt ttacggttcc tggccttttg ctggcctttt 5340
qctcacatqt tctttcctqc qttatcccct gattctgtgg ataaccgtat taccgccttt 5400
gagtgagetg ataccgeteg eegcageega acgaeegage geagegagte agtgagegag 5460
gaageggaag agegeecaat aegeaaaceg ceteteceeg egegttggee gatteattaa 5520
tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat 5580
gtgagttagc tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg 5640
ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac 5700
gccaagcttg catgcctgca
```

<210>. 14 ·

<211> 6693

<212> DNA

<213> Corynebacterium glutamicum

<400> 14

accatttccq ttcatttaaa qacqttcqcq cgtcaatttc atctgtactg tgtagatgca 60 tcagcggttt catcactttt ttcagtgtga atcatcgttt agctcaatca taccgagagc 120 gccgtttgct aactcaaccg tgcgtttttt atcgctttgc agaagttttt gactttcttg 180 acggaagaat gatgtgcttt tgccatagta tgctttgtta aataaagatt cttcgccttg 240 gtagccatct tcagttccag tgtttgcttc aaatactaag tatttgtggc ctttatcttc 300 tacgtagtga ggatctctca gcgtatggtt gtcgcctgag ctgtagttgc cttcatcgat 360 gaactgctgt acattttgat acgtttttcc gtcaccgtca aagattgatt tataatcctc 420 tacaccgttg atgttcaaag agctgtctga tgctgatacg ttaacttgtg cagttgtcag 480 tgtttgtttg ccgtaatgtt taccggagaa atcagtgtag aataaacgga tttttccgtc 540 aqatqtaaat qtqqctqaac ctqaccattc ttgtgtttgg tcttttagga tagaatcatt 600 tqcatcqaat ttqtcqctqt ctttaaaqac qcqqccaqcq tttttccaqc tgtcaataga 660 agtttcqccq actttttqat agaacatqta aatcgatgtg tcatccgcat ttttaggatc 720 teeggetaat geaaagaega tgtggtagee gtgatagttt gegacagtge egteagegtt 780 ttgtaatggc cagctgtccc aaacgtccag gccttttgca gaagagatat ttttaattgt 840 ggacgaatca aattcagaaa cttgatattt ttcatttttt tgctgttcag ggatttgcag 900 catatcatgg cgtgtaatat gggaaatgcc gtatgtttcc ttatatggct tttggttcgt 960 ttetttegea aaegettgag ttgegeetee tgeeageagt geggtagtaa aggttaatae 1020 tgttgcttgt tttgcaaact ttttgatgtt catcgttcat gtctcctttt ttatgtactg 1080 tgttagcggt ctgcttcttc cagccctcct gtttgaagat ggcaagttag ttacgcacaa 1140 taaaaaaaga cctaaaatat gtaaggggtg acgccaaagt atacactttg ccctttacac 1200 attttaggtc ttgcctgctt tatcagtaac aaacccgcgc gatttacttt tcgacctcat 1260 tctattagac tctcgtttgg attgcaactg gtctattttc ctcttttgtt tgatagaaaa 1320 tcataaaagg atttgcagac tacgggccta aagaactaaa aaatctatct gtttcttttc 1380 attetetgta ttttttatag tttetgttge atgggeataa agttgeettt ttaateacaa 1440 ttcagaaaat atcataatat ctcatttcac taaataatag tgaacggcag gtatatgtga 1500 tgggttaaaa aggatcgatc ctctagcgaa ccccagagtc ccgctcagaa gaactcgtca 1560 agaaggcgat agaaggcgat gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg 1620

aagcggtcag cccattcgcc gccaagctct tcagcaatat cacgggtagc caacgctatg 1680 tectgatage ggteeqeeac acceageegg ceacagtega tgaateeaga aaageggeea 1740 ttttccacca tgatattcgg caagcaggca tcgccatggg tcacgacgag atcctcgccg 1800 tegggeatee gegeettgag eetggegaae agtteggetg gegegageee etgatgetet 1860 tegtecagat catectgate gacaagaceg gettecatee gagtaegtge tegetegatg 1920 cgatgtttcg cttggtggtc gaatgggcag gtagccggat caagcgtatg cagccgccgc 1980 attgcatcag ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc 2040 tgccccggca cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc 2100 acagetgege aaggaacgee egtegtggee agecaegata geegegetge etegtettgg 2160 agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct 2220 gacagccgga acacggcggc atcagagcag ccgattgtct gttgtgccca gtcatagccg 2280 aatagcctct ccacccaagc ggccggagaa cctgcgtgca atccatcttg ttcaatcatg 2340 cgaaacgatc ctcatcctgt ctcttgatca gatcttgatc ccctgcgcca tcagatcctt 2400 ggcggcaaga aagccatcca gtttactttg cagggcttcc caaccttacc agagggcgcc 2460 ccagctggca attccggttc gcttgctgtc cataaaaccg cccagtctag ctatcgccat 2520 gtaagcccac tgcaagctac ctgctttctc tttgcgcttg cgttttccct tgtccagata 2580 gcccagtagc tgacattcat ccggggtcag caccgtttct gcggactggc tttctacgtg 2640 ttccgcttcc tttagcagcc cttgcgccct gagtgcttgc ggcagcgtga agctagccat 2700 tgtccttctg gcagttgctt gcgccgccct cgttgccacc atctggatgc cactgttcgg 2760 atcettetee gacegegtea accgtgeagt getetacagg atetgtgeat cegeaaccat 2820 cgtgctgatt gtcccttact acttggtcct caacaccggc gaaatttggg cactgtttat 2880 cactaccgtg attggcttcg gcatcctctg gggtagcgtc aacgcaatcc tcggaaccgt 2940 categeagaa aacttegeac etgaggteeg etacacegge getaceetgg gttaceaagt 3000 cggagcagca ctcttcggcg gtaccgcacc cattatcgca gcatggctgt tcgaaatctc 3060 cggcggacaa tggtggccaa tcgccgtcta cgtcgctgca tgttgccttc tctctgtgat 3120 cgcctcgttc ttcatccaac gcgtcgcgca ccaagagaac taaaatctaa gtaaaacccc 3180 tecgaaagga accaeceatg gtgaaaegte aactgeecaa eeeegeagaa etaetegaae 3240 tcatgaagtt caaaaagcca gagctcaacg gcaagaaacg acgcctagac tccgcgctca 3300 ccatctacga cctgcgtaaa attgctaaac gacgcacccc.agctgccgcg ttcgactaca 3360 ccgacggcgc agccgaggcc gaactctcaa tcacacgcgc acgtgaagca ttcgaaaaca 3420 tegaagegaa ggegtegace geaceatege catteteege agegagatea ceegcaceat 3480 ggctctcctc ggtgtttcct ccctcgaaga actcgagcca cgccacgtca cccagctggc 3540 caagatggtt ccagtttctg acgcaactcg ttctgcagcg gcggagattt aaaagtttct 3600 ctccttagct attaaaaggt gcccatccgt ttggatgggc accttctcgt ttcttgcaat 3660 cggcatattc agtcaaaaaa tgttgaaatc agcactttca atttgggaca tctactctta 3720 ggagaaaagc cacaaacctt tcccacccca caaccgtgtg ttctgcagtc gacccagttt 3780 agaggaaaca tgagtgactt cacggaaaat acttggactg tccactacga cgaagatggt 3840 gatttcccaa aattcttcaa ctctctaaag gaacacgagc gtctagagtc gacctgcagg 3900 catgcaaget tggcgtaate atggtcatag etgttteetg tgtgaaattg ttateegete 3960 acaattccac acaacatacg agccggaagc ataaagtgta aagcctgggg tgcctaatga 4020 gtgagctaac tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg 4080 tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 4140 egetetteeg etteeteget eaetgacteg etgegetegg tegttegget geggegageg 4200 gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga 4260 aaqaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 4320 gegtttttcc ataggetccg ccccctgac gagcatcaca aaaatcgacg ctcaagtcag 4380 aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc 4440 gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg 4500 ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 4560 cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 4620 ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc 4680 actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 4740 tggcctaact acggctacac tagaagaaca gtatttggta tctgcqctct gctgaaqcca 4800 gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc 4860 ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 4920 cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt 4980 ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttgggggtg ggcgaagaac 5040 tccagcatga gatccccgcg ctggaggatc atccagccct gatagaaaca gaagccactg 5100 qaqcacctca aaaacaccat catacactaa atcagtaagt tggcagcatc acccgacgca 5160 ctttgcgccg aataaatacc tgtgacggaa gatcacttcg cagaataaat aaatcctggt 5220 gtccctgttg ataccgggaa gccctgggcc aacttttggc gaaaatgaga cgttgatcgg 5280

```
cacqtaaqag gttccaactt tcaccataat gaaataagat cactaccggg cgtatttttt 5340
gagttatcga gattttcagg agctgataga aacagaagcc actggagcac ctcaaaaaca 5400
ccatcataca ctaaatcagt aagttggcag catcacccga cgcactttgc gccgaataaa 5460
tacctgtgac ggaagatcac ttcgcagaat aaataaatcc tggtgtccct gttgataccg 5520
qqaaqccctq qqccaacttt tggcgaaaat gagacgttga tcggcacgta agaggttcca 5580
actttcacca taatqaaata agatcactac cgggcgtatt ttttgagtta tcgagatttt 5640
caqqagctct ttggcatcgt ctctcgcctg tcccctcagt tcagtaattt cctgcatttg 5700
cctgtttcca gtcggtagat attccacaaa acagcaggga agcagcgctt ttccgctgca 5760
taaccctgct tcggggtcat tatagcgatt ttttcggtat atccatcctt tttcgcacga 5820
tatacaggat tttgccaaag ggttcgtgta gactttcctt ggtgtatcca acggcgtcag 5880
ccgggcagga taggtgaagt aggcccaccc gcgagcgggt gttccttctt cactgtccct 5940
tattcgcacc tggcggtgct caacgggaat cctgctctgc gaggctggcc ggctaccgcc 6000
ggcgtaacag atgagggcaa gcggatggct gatgaaacca agccaaccag gaagggcagc 6060
ccacctatca aggtgtactg ccttccagac gaacgaagag cgattgagga aaaggcggcg 6120
gcggccggca tgagcctgtc ggcctacctg ctggccgtcg gccagggcta caaaatcacg 6180
ggcgtcgtgg actatgagca cgtccgcgag ggcgtcccgg aaaacgattc cgaagcccaa 6240
cctttcatag aaggcggcgg tggaatcgaa atctcgtgat ggcaggttgg gcgtcgcttg 6300
gtcggtcatt tcgctcggta cccatcggca ttttcttttg cgtttttatt tgttaactgt 6360
taattgtcct tgttcaagga tgctgtcttt gacaacagat gttttcttgc ctttgatgtt 6420
cagcargaag ctcggcgcaa acgttgattg tttgtctgcg tagaatcctc tgtttgtcat 6480
atagcttgta atcacgacat tgtttcctty tcgcttgagg tacagcgaag tgtgagtaag 6540
taaraggtta catcgttagg atcaagatcc attcttaaca caaggccagt tttgttcagc 6600
ggcttgtatg ggccagttaa agaattataa acataaccaa gcatgtaaat atcgttagac 6660
gtaatgccgt caatcgtcat tattgatccg cgg
```

<210> 15

<211> 7561

<212> DNA :

.

<213> Corynebacterium glutamicum

<400> 15 accatttccg ttcatttaaa gacgttcgcg cgtcaatttc atctgtactg tgtagatgca 60 tcagcggttt catcactttt ttcagtgtga atcatcgttt agctcaatca taccgagagc 120 qccqtttgct aactcaaccg tgcgtttttt atcgctttgc agaagttttt gactttcttg 180 acggaagaat gatgtgcttt tgccatagta tgctttgtta aataaagatt cttcgccttg 240 qtaqccatct tcagttccag tgtttgcttc aaatactaag tatttgtggc ctttatcttc 300 tacqtaqtqa qqatctctca qcgtatggtt gtcgcctgag ctgtagttgc cttcatcgat 360 quactoctot acattttoat acottttcc otcaccotca augustgatt tataatcctc 420 tacaccgttg atgttcaaag agctgtctga tgctgatacg ttaacttgtg cagttgtcag 480 tgtttgtttg ccgtaatgtt taccggagaa atcagtgtag aataaacgga tttttccgtc 540 agatgtaaat gtggctgaac ctgaccattc ttgtgtttgg tcttttagga tagaatcatt 600 tgcatcgaat ttgtcgctgt ctttaaagac gcggccagcg tttttccagc tgtcaataga 660 agtttcgccg actttttgat agaacatgta aatcgatgtg tcatccgcat ttttaggatc 720 tccggctaat gcaaagacga tgtggtagcc gtgatagttt gcgacagtgc cgtcagcgtt 780 ttgtaatggc cagctgtccc aaacgtccag gccttttgca gaagagatat ttttaattgt 840 ggacgaatca aattcagaaa cttgatattt ttcatttttt tgctgttcag ggatttgcag 900 catatcatgg cgtgtaatat gggaaatgcc gtatgtttcc ttatatggct tttggttcgt 960 ttctttcgca aacgcttgag ttgcgcctcc tgccagcagt gcggtagtaa aggttaatac 1020 tgttgcttgt tttgcaaact ttttgatgtt catcgttcat gtctcctttt ttatgtactg 1080 tqttaqcqqt ctgcttcttc cagccctcct gtttgaagat ggcaagttag ttacgcacaa 1140 taaaaaaaga cctaaaatat gtaaggggtg acgccaaagt atacactttg ccctttacac 1200 attttaggtc ttgcctgctt tatcagtaac aaacccgcgc gatttacttt tcgacctcat 1260 tctattagac tctcgtttgg attgcaactg gtctattttc ctcttttgtt tgatagaaaa 1320 tcataaaagg atttgcagac tacgggccta aagaactaaa aaatctatct gtttcttttc 1380 attototgta tittitatag titotgtigo atgggoataa agitgootti tiaatoacaa 1440 ttcagaaaat atcataatat ctcatttcac taaataatag tgaacggcag gtatatgtga 1500 tgggttaaaa aggatcgatc ctctagcgaa ccccagagtc ccgctcagaa gaactcgtca 1560 agaaggcgat agaaggcgat gcgctgcgaa tcgggagcgg cgataccgta aagcacgagg 1620 aagcggtcag cccattcgcc gccaagctct tcagcaatat cacgggtagc caacgctatg 1680 tcctgatagc ggtccgccac acccagccgg ccacagtcga tgaatccaga aaagcggcca 1740 ttttccacca tgatattcgg caagcaggca tcgccatggg tcacgacgag atcctcgccg 1800

tegggeatee gegeettgag eetggegaac agtteggetg gegegageee etgatgetet 1860 tegtecagat cateetgate gacaagaceg gettecatee gagtacgtge tegetegatg 1920 cgatgtttcg cttggtggtc gaatgggcag gtagccggat caagcgtatg cagccgccgc 1980 attgcatcag ccatgatgga tactttctcg gcaggagcaa ggtgagatga caggagatcc 2040 tgccccggca cttcgcccaa tagcagccag tcccttcccg cttcagtgac aacgtcgagc 2100 acagetgege aaggaacgee egtegtggee agecaegata geegegetge etegtettgg 2160 agttcattca gggcaccgga caggtcggtc ttgacaaaaa gaaccgggcg cccctgcgct 2220 gacagccgga acacggcggc atcagagcag ccgattgtct gttgtgccca gtcatagccg 2280 aatagcctct ccacccaagc ggccggagaa cctgcgtgca atccatcttg ttcaatcatg 2340 cgaaacgatc ctcatcctgt ctcttgatca gatcttgatc ccctgcgcca tcagatcctt 2400 ggcggcaaga aagccatcca gtttactttg cagggcttcc caaccttacc agagggcgcc 2460 ccagctggca attccggttc gcttgctgtc cataaaaccg cccagtctag ctatcgccat 2520 gtaageceae tgeaagetae etgetttete tttgegettg egtttteeet tgteeagata 2580 gcccagtagc tgacattcat ccggggtcag caccgtttct gcggactggc tttctacgtg 2640 ttccgcttcc tttagcagcc cttgcgccct gagtgcttgc ggcagcgtga agctagccat 2700 tgtccttctg gcagttgctt gcgccgccct cgttgccacc atctggatgc cactgttcgg 2760 atcettetee gacegegtea accgtgeagt getetacagg atetgtgeat eegeaaceat 2820 cgtgctgatt gtcccttact acttggtcct caacaccggc gaaatttggg cactgtttat 2880 cactaccgtg attggcttcg gcatcctctg gggtagcgtc aacgcaatcc tcggaaccgt 2940 catcgcagaa aacttcgcac ctgaggtccg ctacaccggc gctaccctgg gttaccaagt 3000 cggagcagca ctcttcggcg gtaccgcacc cattatcgca gcatggctgt tcgaaatctc 3060 cggcggacaa tggtggccaa tcgccgtcta cgtcgctgca tgttgccttc tctctgtgat 3120 cgcctcgttc ttcatccaac gcgtcgcgca ccaagagaac taaaatctaa gtaaaacccc 3180 tccgaaagga accacccatg gtgaaacgtc aactgcccaa ccccgcagaa ctactcgaac 3240 tcatgaagtt caaaaagcca gagctcaacg gcaagaaacg acgcctagac tccgcgctca 3300 ccatctacga cctgcgtaaa attgctaaac gacgcacccc agctgccgcg ttcgactaca 3360 ccgacggcgc agccgaggcc gaactctcaa tcacacgcgc acgtgaagca ttcgaaaaca 3420 togaattoca cocagacato otcaagootg cagaacacgt agacaccaco acccaaatco 3480 tgggcggaac ctcctccatg ccattcggca tcgcaccaac cggcttcacc cgcctcatgc 3540 agaccgaagg tgaaatcgca ggtgccggag ctgcaggcgc tgcaggaatt cctttcaccc 3600 tgtccaccct gggcactacc tccatcgaag acgtcaaggc caccaacccc aacggccgaa 3660 actggttcca gctctacgtc atgcgcgacc gcgaaatctc ctacggcctc gtcgaacgcg 3720 cagccaaagc aggattcgac accctgatgt tcaccgtgga tacccccatc gccggctacc 3780 gcatccgcga ttcccgcaac ggattctcca tcccgccaca gctgacccca tccaccgtgc 3840 tcaatgcaat cccacgccca tggtggtgga tcgacttcct gaccacccca acccttgagt 3900. tcgcatccct ttcctcgacc ggcggaaccg tgggcgacct cctcaactcc gcgatggatc 3960 ccaccatttc ttacgaagac ctcaaggtca tccgtgaaat gtggccaggc aagctcgtag 4020 tcaagggtgt ccagaacgtt gaagactccg tcaaactcct cgaccaaggc gtcgacggcc 4080 tcatcctctc caaccacggt ggccgtcaac tcgaccgcgc accagtccca ttccacctcc 4140 tgccacaggt acgcaaggaa gtcggatctg aaccaaccat catgatcgac accggcatca 4200 tgaacggcgc cgacatcgtc gcagccgtag ccatgggcgc tgacttcacc ctcatcggtc 4260 gtgcctacct ctacggactc atggccggag gccgcgaagg cgtcgaccgc accatcgcca 4320 ttctccgcag cgagatcacc cgcaccatgg ctctcctcgg tgtttcctcc ctcgaagaac 4380 tegagecacg ceaegteace cagetggeca agatggttee agtttetgae geaactegtt 4440 ctgcagcggc ggagatttaa aagtttctct ccttagctat taaaaggtgc ccatccgttt 4500 ggatgggcac cttctcgttt cttgcaatcg gcatattcag tcaaaaaatg ttgaaatcag 4560 cactttcaat ttgggacatc tactcttagg agaaaagcca caaacctttc ccaccccaca 4620 accepted t ctgcagtcga cccagtttag aggaaacatg agtgacttca cggaaaatac 4680 ttggactgtc cactacgacg aagatggtga tttcccaaaa ttcttcaact ctctaaagga 4740 acacgagcgt ctagagtcga cctgcaggca tgcaagcttg gcgtaatcat ggtcatagct 4800 gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacgag ccggaagcat 4860 aaagtgtaaa gcctggggtg cctaatgagt gagctaactc acattaattg cgttgcgctc 4920 actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg 4980 cgcggggaga ggcggtttgc gtattgggcg ctcttccgct tcctcgctca ctgactcgct 5040 gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt 5100 atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc 5160 caggaaccgt aaaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga 5220 gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata 5280 ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac 5340 cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg 5400 taggtatete agtteggtgt aggtegtteg etceaagetg ggetgtgtge acgaaceece 5460

cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	5520
acacgactta	tcgccactgg	cagcagccac	tggtaacagg	at'tagcagag	cgaggtatgt	5580
aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	ggctacacta	gaagaacagt	5640
atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	5700
atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	5760
gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	ctgacgctca	5820
gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	ttatcaaaaa	ggatcttcac	5880
		cgaagaactc				
ccagccctga	tagaaacaga	agccactgga	gcacctcaaa	aacaccatca	tacactaaat	6000
		ccgacgcact				
tcacttcgca	gaataaataa	atcctggtgt	ccctgttgat	accgggaagc	cctgggccaa	6120
cttttggcga	aaatgagacg	ttgatcggca	cgtaagaggt	tccaactttc	accataatga	6180
aataagatca	ctaccgggcg	tatttttga	gttatcgaga	ttttcaggag	ctgatagaaa	6240
cagaagccac	tggagcacct	caaaaacacc	atcatacact	aaatcagtaa	gttggcagca	6300
tcacccgacg	cactttgcgc	cgaataaata	cctgtgacgg	aagatcactt	cgcagaataa	6360
ataaatcctg	gtgtccctgt	tgataccggg	aagccctggg	ccaacttttg	gcgaaaatga	6420
gacgttgatc	ggcacgtaag	aggttccaac	tttcaccata	atgaaataag	atcactaccg	6480
ggcgtatttt	ttgagttatc	gagattttca	ggagctcttt	ggcatcgtct	ctcgcctgtc	6540
ccctcagttc	agtaatttcc	tgcatttgcc	tgtttccagt	cggtagatat	tccacaaaac	6600
agcagggaag	cagcgctttt	ccgctgcata	accctgcttc	ggggtcatta	tagcgatttt	6660
ttcggtatat	ccatcctttt	tcgcacgata	tacaggattt	tgccaaaggg	ttcgtgtaga	6720
ctttccttgg	tgtatccaac	ggcgtcagcc	gggcaggata	ggtgaagtag	gcccacccgc	6780
gagcgggtgt	tccttcttca	ctgtccctta	ttcgcacctg	gcggtgctca	acgggaatcc	6840
tgctctgcga	ggctggccgg	ctaccgccgg	cgtaacagat	gagggcaagc	ggatggctga	6900
tgaaaccaag	ccaaccagga	agggcagccc	acctatcaag	gtgtactgcc	ttccagacga	6960
		aggcggcggc				
		aaatcacggg				
cgtcccggaa	aacgattccg	aagcccaacc	·tttcatagaa	ggcggcggtg	gaatcgaaat	7140 ·
		gtcgcttggt				
		ttaactgtta				
		ttgatgttca				
		tttgtcatat				
		tgagtaagta				
tcttaacaca	aggccagttt	tgttcagcgg	cttgtatggg	ccagttaaag	aattataaac	
ataaccaagc	atgtaaatat	cgttagacgt	aatgccgtca	atcgtcatta	ttgatccgcg	
g						7561