ELEMENTS BOOK 12

Proportional Stereometry[†]

 $^{^{\}dagger}$ The novel feature of this book is the use of the so-called *method of exhaustion* (see Prop. 10.1), a precursor to integration which is generally attributed to Eudoxus of Cnidus.

 Σ ΤΟΙΧΕΙ Ω N \mathfrak{g} '.

α'.

Τὰ ἐν τοῖς κύκλοις ὅμοια πολύγωνα πρὸς ἄλληλά ἐστιν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα.

Έστωσαν κύκλοι οἱ ABΓ, ZHΘ, καὶ ἐν αὐτοῖς ὅμοια πολύγωνα ἔστω τὰ ABΓΔΕ, ZHΘΚΛ, διάμετροι δὲ τῶν κύκλων ἔστωσαν BM, HN· λέγω, ὅτι ἐστὶν ὡς τὸ ἀπὸ τῆς BM τετράγωνον πρὸς τὸ ἀπὸ τῆς HN τετράγωνον, οὕτως τὸ ABΓΔΕ πολύγωνον πρὸς τὸ ZHΘΚΛ πολύγωνον.

Έπεζεύχθωσαν γὰρ αἱ ΒΕ, ΑΜ, ΗΛ, ΖΝ. καὶ ἐπεὶ ὄμοιον τὸ ΑΒΓΔΕ πολύγωνον τῷ ΖΗΘΚΛ πολυγώνῳ, ἴση ἐστὶ καὶ ἡ ὑπὸ ΒΑΕ γωνία τῆ ὑπὸ ΗΖΛ, καί ἐστιν ὡς ἡ ΒΑ πρὸς τὴν ΑΕ, οὕτως ἡ ΗΖ πρὸς τὴν ΖΛ. δύο δὴ τρίγωνά έστι τὰ ΒΑΕ, ΗΖΛ μίαν γωνίαν μιᾶ γωνία ἴσην ἔχοντα τὴν ύπὸ ΒΑΕ τῆ ὑπὸ ΗΖΛ, περὶ δὲ τὰς ἴσας γωνίας τὰς πλευρὰς ἀνάλογον· ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΕ τρίγωνον τῷ ΖΗΛ τριγώνω. ἴση ἄρα ἐστὶν ἡ ὑπὸ ΑΕΒ γωνία τῆ ὑπὸ ΖΛΗ. ἀλλὶ ή μεν ύπο ΑΕΒ τῆ ύπο ΑΜΒ ἐστιν ἴση: ἐπὶ γὰρ τῆς αὐτῆς περιφερείας βεβήκασιν ή δὲ ὑπὸ ΖΛΗ τῆ ὑπὸ ΖΝΗ καὶ ἡ ύπὸ ΑΜΒ ἄρα τῆ ὑπὸ ΖΝΗ ἐστιν ἴση. ἔστι δὲ καὶ ὀρθὴ ή ὑπὸ ΒΑΜ ὀρθῆ τῆ ὑπὸ ΗΖΝ ἴση· καὶ ἡ λοιπὴ ἄρα τῆ λοιπῆ ἐστιν ἴση. ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΜ τρίγωνον τῷ ΖΗΝ τρίγωνω. ἀνάλογον ἄρα ἐστὶν ὡς ἡ ΒΜ πρὸς τὴν ΗΝ, οὕτως ἡ ΒΑ πρὸς τὴν ΗΖ. ἀλλὰ τοῦ μὲν τῆς ΒΜ πρὸς τὴν ΗΝ λόγον διπλασίων ἐστὶν ὁ τοῦ ἀπὸ τῆς ΒΜ τετραγώνου πρὸς τὸ ἀπὸ τῆς ΗΝ τετράγωνον, τοῦ δὲ τῆς ΒΑ πρὸς τὴν ΗΖ διπλασίων ἐστὶν ὁ τοῦ ΑΒΓΔΕ πολυγώνου πρὸς τὸ ΖΗΘΚΛ πολύγωνον καὶ ὡς ἄρα τὸ ἁπὸ τῆς ΒΜ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΗΝ τετράγωνον, οὕτως τὸ ΑΒΓΔΕ πολύγωνον πρός τὸ ΖΗΘΚΛ πολύγωνον.

Τὰ ἄρα ἐν τοῖς κύκλοις ὅμοια πολύγωνα πρὸς ἄλληλά ἐστιν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα· ὅπερ ἔδει δεῖξαι.

β'.

Οἱ κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα.

 $^{\circ}$ Εστωσαν χύχλοι οἱ $AB\Gamma\Delta$, $EZH\Theta$, διάμετροι δὲ αὐτ $\widetilde{\omega}$ ν

Proposition 1

Similar polygons (inscribed) in circles are to one another as the squares on the diameters (of the circles).

Let ABC and FGH be circles, and let ABCDE and FGHKL be similar polygons (inscribed) in them (respectively), and let BM and GN be the diameters of the circles (respectively). I say that as the square on BM is to the square on GN, so polygon ABCDE (is) to polygon FGHKL.

For let BE, AM, GL, and FN have been joined. And since polygon ABCDE (is) similar to polygon FGHKL, angle BAE is also equal to (angle) GFL, and as BAis to AE, so GF (is) to FL [Def. 6.1]. So, BAE and GFL are two triangles having one angle equal to one angle, (namely), BAE (equal) to GFL, and the sides around the equal angles proportional. Triangle ABE is thus equiangular with triangle FGL [Prop. 6.6]. Thus, angle AEB is equal to (angle) FLG. But, AEB is equal to AMB, and FLG to FNG, for they stand on the same circumference [Prop. 3.27]. Thus, AMB is also equal to FNG. And the right-angle BAM is also equal to the right-angle GFN [Prop. 3.31]. Thus, the remaining (angle) is also equal to the remaining (angle) [Prop. 1.32]. Thus, triangle ABM is equiangular with triangle FGN. Thus, proportionally, as BM is to GN, so BA (is) to GF[Prop. 6.4]. But, the (ratio) of the square on BM to the square on GN is the square of the ratio of BM to GN, and the (ratio) of polygon ABCDE to polygon FGHKLis the square of the (ratio) of BA to GF [Prop. 6.20]. And, thus, as the square on BM (is) to the square on GN, so polygon ABCDE (is) to polygon FGHKL.

Thus, similar polygons (inscribed) in circles are to one another as the squares on the diameters (of the circles). (Which is) the very thing it was required to show.

Proposition 2

Circles are to one another as the squares on (their) diameters.

Let ABCD and EFGH be circles, and [let] BD and

[ἔστωσαν] αἱ $B\Delta$, $Z\Theta$ · λέγω, ὅτι ἐστὶν ὡς ὁ $AB\Gamma\Delta$ κύκλος πρὸς τὸν $EZH\Theta$ κύκλον, οὕτως τὸ ἀπὸ τῆς $B\Delta$ τετράγωνον πρὸς τὸ ἀπὸ τῆς $Z\Theta$ τετράγωνον.

Εἰ γὰρ μή ἐστιν ὡς ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ, οὕτως τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ, ἔσται ώς τὸ ἀπὸ τῆς ${\rm B}\Delta$ πρὸς τὸ ἀπὸ τῆς ${\rm Z}\Theta$, οὕτως ὁ ΑΒΓΔ κύκλος ήτοι πρὸς ἔλασσόν τι τοῦ ΕΖΗΘ κύκλου χωρίον ἢ πρὸς μεῖζον. ἔστω πρότερον πρὸς ἔλασσον τὸ Σ. και ἐγγεγράφθω εἰς τὸν ΕΖΗΘ κύκλον τετράγωνον τὸ ΕΖΗΘ. τὸ δὴ ἐγγεγραμμένον τετράγωνον μεῖζόν ἐστιν ἢ τὸ ημισυ τοῦ ΕΖΗΘ κύκλου, ἐπειδήπερ ἐὰν διὰ τῶν Ε, Ζ, Η, Θ σημείων ἐφαπτομένας [εὐθείας] τοῦ κύκλου ἀγάγωμεν, τοῦ περιγραφομένου περί τὸν κύκλον τετραγώνου ἥμισύ ἐστι τὸ ΕΖΗΘ τετράγωνον, τοῦ δὲ περιγραφέντος τετραγώνου έλάττων ἐστίν ὁ κύκλος. ὥστε τὸ ΕΖΗΘ ἐγγεγραμμένον τετράγωνον μεῖζόν ἐστι τοῦ ἡμίσεως τοῦ ΕΖΗΘ κύκλου. τετμήσθωσαν δίχα αἱ ΕΖ, ΖΗ, ΗΘ, ΘΕ περιφέρειαι κατὰ τὰ Κ, Λ, Μ, Ν σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΕΚ, ΚΖ, ZΛ, ΛH, HM, MΘ, ΘN, NΕ καὶ ἔκαστον ἄρα τῶν EKZ, ΖΛΗ, ΗΜΘ, ΘΝΕ τριγώνων μεῖζόν ἐστιν ἢ τὸ ἤμισυ τοῦ καθ' ξαυτό τμήματος τοῦ κύκλου, ἐπειδήπερ ἐὰν διὰ τῶν Κ, Λ, Μ, Ν σημείων ἐφαπτομένας τοῦ κύκλου ἀγάγωμεν καὶ ἀναπληρώσωμεν τὰ ἐπὶ τῶν ΕΖ, ΖΗ, ΗΘ, ΘΕ εὐθειῶν παραλληλόγραμμα, ἕκαστον τῶν ΕΚΖ, ΖΛΗ, ΗΜΘ, ΘΝΕ τριγώνων ήμισυ ἔσται τοῦ καθ' ἑαυτὸ παραλληλογράμμου, άλλὰ τὸ καθ' ἑαυτὸ τμῆμα ἔλαττόν ἐστι τοῦ παραλληλογράμμου ἄστε ἕκαστον τῶν ΕΚΖ, ΖΛΗ, ΗΜΘ, ΘΝΕ τριγώνων μεῖζόν ἐστι τοῦ ἡμίσεως τοῦ καθ' ἑαυτὸ τμήματος τοῦ χύχλου. τέμνοντες δή τὰς ὑπολειπομένας περιφερείας δίγα καὶ ἐπιζευγνύντες εὐθείας καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κύκλου, ἃ ἔσται ἐλάσσονα τῆς ὑπεροχῆς, ἤ ὑπερέχει ὁ ΕΖΗΘ κύκλος τοῦ Σ χωρίου. FH [be] their diameters. I say that as circle ABCD is to circle EFGH, so the square on BD (is) to the square on FH.

For if the circle ABCD is not to the (circle) EFGH, as the square on BD (is) to the (square) on FH, then as the (square) on BD (is) to the (square) on FH, so circle ABCD will be to some area either less than, or greater than, circle EFGH. Let it, first of all, be (in that ratio) to (some) lesser (area), S. And let the square EFGH have been inscribed in circle EFGH [Prop. 4.6]. So the inscribed square is greater than half of circle EFGH, inasmuch as if we draw tangents to the circle through the points E, F, G, and H, then square EFGH is half of the square circumscribed about the circle [Prop. 1.47], and the circle is less than the circumscribed square. Hence, the inscribed square EFGH is greater than half of circle EFGH. Let the circumferences EF, FG, GH, and HE have been cut in half at points K, L, M, and N(respectively), and let EK, KF, FL, LG, GM, MH, HN, and NE have been joined. And, thus, each of the triangles EKF, FLG, GMH, and HNE is greater than half of the segment of the circle about it, inasmuch as if we draw tangents to the circle through points K, L, M, and N, and complete the parallelograms on the straight-lines EF, FG, GH, and HE, then each of the triangles EKF, FLG, GMH, and HNE will be half of the parallelogram about it, but the segment about it is less than the parallelogram. Hence, each of the triangles EKF, FLG, GMH, and HNE is greater than half of the segment of the circle about it. So, by cutting the circumferences remaining behind in half, and joining straight-lines, and doing this continually, we will (even-

έδείχθη γὰρ ἐν τῷ πρώτῳ θεωρήματι τοῦ δεκάτου βιβλίου, ότι δύο μεγεθῶν ἀνίσων ἐκκειμένων, ἐὰν ἀπὸ τοῦ μείζονος ἀφαιρεθῆ μεῖζον ἢ τὸ ἤμισυ καὶ τοῦ καταλειπομένου μεῖζον ἢ τὸ ἥμισυ, καὶ τοῦτο ἀεὶ γίγνηται, λειφθήσεταί τι μέγεθος, \mathring{o} ἔσται ἔλασσον τοῦ ἐχχειμένου ἐλάσσονος μεγέ ϑ ους. λελείφθω οὖν, καὶ ἔστω τὰ ἐπὶ τῶν ΕΚ, ΚΖ, ΖΛ, ΛΗ, ΗΜ, ΜΘ, ΘΝ, ΝΕ τμήματα τοῦ ΕΖΗΘ κύκλου ἐλάττονα τῆς ὑπεροχῆς, ἤ ὑπερέχει ὁ ΕΖΗΘ κύκλος τοῦ Σ χωρίου. λοιπὸν ἄρα τὸ ΕΚΖΛΗΜΘΝ πολύγωνον μεῖζόν ἐστι τοῦ Σ χωρίου. ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΕΚΖ-ΛΗΜΘΝ πολυγώνω ὄμοιον πολύγωνον τὸ ΑΞΒΟΓΠΔΡ· ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ τετράγωνον, οὕτως τὸ ΑΞΒΟΓΠΔΡ πολύγωνον πρὸς τὸ ${
m EKZ}\Lambda {
m HM}\Theta {
m N}$ πολύγωνον. ἀλλὰ καὶ ὡς τὸ ἀπὸ τῆς ${
m B}\Delta$ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ, οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸ Σ χωρίον· καὶ ὡς ἄρα ὁ $AB\Gamma\Delta$ κύκλος πρὸς τὸ Σ χωρίον, οὕτως τὸ ΑΞΒΟΓΠΔΡ πολύγωνον πρὸς τὸ ΕΚΖ-ΛΗΜΘΝ πολύγωνον ἐναλλὰξ ἄρα ὡς ὁ ΑΒΓΔ κύκλος πρός τὸ ἐν αὐτῷ πολύγωνον, οὕτως τὸ Σ χωρίον πρὸς τὸ ΕΚΖΛΗΜΘΝ πολύγωνον. μείζων δὲ ὁ ΑΒΓΔ κύκλος τοῦ ἐν αὐτῷ πολυγώνου· μεῖζον ἄρα καὶ τὸ Σ χωρίον τοῦ ΕΚΖΛΗΜΘΝ πολυγώνου. άλλὰ καὶ ἔλαττον ὅπερ ἐστὶν άδύνατον. οὐκ ἄρα ἐστὶν ὡς τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς $Z\Theta$, οὕτως ὁ $AB\Gamma\Delta$ χύχλος πρὸς ἔλασσόν τι τοῦ ΕΖΗΘ κύκλου χωρίον. ὁμοίως δὴ δείξομεν, ὅτι οὐδὲ ώς τὸ ἀπὸ ΖΘ πρὸς τὸ ἀπὸ ΒΔ, οὕτως ὁ ΕΖΗΘ κύκλος πρὸς ἔλασσόν τι τοῦ ΑΒΓΔ κύκλου χωρίον.

Λέγω δή, ὅτι οὐδὲ ὡς τὸ ἀπὸ τῆς $B\Delta$ πρὸς τὸ ἀπὸ τῆς $Z\Theta$, οὕτως ὁ $AB\Gamma\Delta$ κύκλος πρὸς μεῖζόν τι τοῦ $EZH\Theta$ κύκλου χωρίον.

Εἰ γὰρ δυνατόν, ἔστω πρὸς μεῖζον τὸ Σ. ἀνάπαλιν ἄρα [ἐστὶν] ὡς τὸ ἀπὸ τῆς ΖΘ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΔΒ, οὕτως τὸ Σ χωρίον πρὸς τὸν ΑΒΓΔ χύκλον. ἀλλ' ὡς τὸ Σ χωρίον πρὸς τὸν ΑΒΓΔ χύκλον, οὕτως ὁ ΕΖΗΘ χύκλος πρὸς ἔλαττόν τι τοῦ ΑΒΓΔ χύκλου χωρίον καὶ ὡς ἄρα τὸ ἀπὸ τῆς ΖΘ πρὸς τὸ ἀπὸ τῆς ΒΔ, οὕτως ὁ ΕΖΗΘ χύκλος πρὸς ἔλασσόν τι τοῦ ΑΒΓΔ χύκλου χωρίον. ὅπερ ἀδύνατον ἑδείχθη, οὐκ ἄρα ἐστὶν ὡς τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ, οὕτως ὁ ΑΒΓΔ χύκλος πρὸς μεῖζόν τι τοῦ ΕΖΗΘ χύκλου χωρίον. ἐδείχθη δέ, ὅτι οὐδὲ πρὸς ἔλασσον· ἔστιν ἄρα ὡς τὸ ἀπὸ τῆς ΒΔ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΖΘ, οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸ ἀπὸ τῆς ΖΘ, οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸ ἀπὸ τῆς ΖΘ, οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον.

Οἱ ἄρα κύκλοι πρὸς ἀλλήλους εἰσὶν ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα ὅπερ ἔδει δεῖξαι.

tually) leave behind some segments of the circle whose (sum) will be less than the excess by which circle EFGHexceeds the area S. For we showed in the first theorem of the tenth book that if two unequal magnitudes are laid out, and if (a part) greater than a half is subtracted from the greater, and (if from) the remainder (a part) greater than a half (is subtracted), and this happens continually, then some magnitude will (eventually) be left which will be less than the lesser laid out magnitude [Prop. 10.1]. Therefore, let the (segments) have been left, and let the (sum of the) segments of the circle EFGH on EK, KF, FL, LG, GM, MH, HN, and NEbe less than the excess by which circle EFGH exceeds area S. Thus, the remaining polygon EKFLGMHN is greater than area S. And let the polygon AOBPCQDR, similar to the polygon EKFLGMHN, have been inscribed in circle ABCD. Thus, as the square on BD is to the square on FH, so polygon AOBPCQDR (is) to polygon EKFLGMHN [Prop. 12.1]. But, also, as the square on BD (is) to the square on FH, so circle ABCD(is) to area S. And, thus, as circle ABCD (is) to area S, so polygon AOBPGQDR (is) to polygon EKFLGMHN[Prop. 5.11]. Thus, alternately, as circle ABCD (is) to the polygon (inscribed) within it, so area S (is) to polygon EKFLGMHN [Prop. 5.16]. And circle ABCD (is) greater than the polygon (inscribed) within it. Thus, area S is also greater than polygon EKFLGMHN. But, (it is) also less. The very thing is impossible. Thus, the square on BD is not to the (square) on FH, as circle ABCD (is) to some area less than circle EFGH. So, similarly, we can show that the (square) on FH (is) not to the (square) on BD as circle EFGH (is) to some area less than circle ABCD either.

So, I say that neither (is) the (square) on BD to the (square) on FH, as circle ABCD (is) to some area greater than circle EFGH.

For, if possible, let it be (in that ratio) to (some) greater (area), S. Thus, inversely, as the square on FH [is] to the (square) on DB, so area S (is) to circle ABCD [Prop. 5.7 corr.]. But, as area S (is) to circle ABCD, so circle EFGH (is) to some area less than circle ABCD (see lemma). And, thus, as the (square) on FH (is) to the (square) on BD, so circle EFGH (is) to some area less than circle ABCD [Prop. 5.11]. The very thing was shown (to be) impossible. Thus, as the square on BD is to the (square) on FH, so circle ABCD (is) not to some area greater than circle EFGH. And it was shown that neither (is it in that ratio) to (some) lesser (area). Thus, as the square on BD is to the (square) on FH, so circle ABCD (is) to circle EFGH.

Thus, circles are to one another as the squares on

(their) diameters. (Which is) the very thing it was required to show.

Λῆμμα.

Λέγω δή, ὅτι τοῦ Σ χωρίου μείζονος ὄντος τοῦ ΕΖΗΘ κύκλου ἐστὶν ὡς τὸ Σ χωρίον πρὸς τὸν $AB\Gamma\Delta$ κύκλον, οὕτως ὁ ΕΖΗΘ κύκλος πρὸς ἔλαττόν τι τοῦ $AB\Gamma\Delta$ κύκλου χωρίον.

Γεγονέτω γὰρ ὡς τὸ Σ χωρίον πρὸς τὸν ΑΒΓΔ κύκλον, οὕτως ὁ ΕΖΗΘ κύκλος πρὸς τὸ Τ χωρίον. λέγω, ὅτι ἔλαττόν ἐστι τὸ Τ χωρίον τοῦ ΑΒΓΔ κύκλου. ἐπεὶ γάρ ἐστιν ὡς τὸ Σ χωρίον πρὸς τὸν ΑΒΓΔ κύκλον, οὕτως ὁ ΕΖΗΘ κύκλος πρὸς τὸ Τ χωρίον, ἐναλλάξ ἐστιν ὡς τὸ Σ χωρίον πρὸς τὸν ΕΖΗΘ κύκλον, οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸ Τ χωρίον. μεῖζον δὲ τὸ Σ χωρίον τοῦ ΕΖΗΘ κύκλου· μεῖζων ἄρα καὶ ὁ ΑΒΓΔ κύκλος τοῦ Τ χωρίου. ὥστε ἐστὶν ὡς τὸ Σ χωρίον πρὸς τὸν ΑΒΓΔ κύκλον, οὕτως ὁ ΕΖΗΘ κύκλος πρὸς ἔλαττόν τι τοῦ ΑΒΓΔ κύκλου χωρίον· ὅπερ ἔδει δεῖξαι.

γ′.

Πᾶσα πυραμίς τρίγωνον ἔχουσα βάσιν διαιρεῖται εἰς δύο πυραμίδας ἴσας τε καὶ ὁμοίας ἀλλήλαις καὶ [ὁμοίας] τῆ ὅλῆ τριγώνους ἐχουσας βάσεις καὶ εἰς δύο πρίσματα ἴσα· καὶ τὰ δύο πρίσματα μείζονά ἐστιν ἢ τὸ ἤμισυ τῆς ὅλης πυραμίδος.

 $^{\circ}$ Εστω πυραμίς, ῆς βάσις μέν ἐστι τὸ $AB\Gamma$ τρίγωνον, χορυφὴ δὲ τὸ Δ σημεῖον λέγω, ὅτι ἡ $AB\Gamma\Delta$ πυραμὶς διαιρεῖται εἰς δύο πυραμίδας ἴσας ἀλλήλαις τριγώνους βάσεις ἐχούσας καὶ ὁμοίας τῆ ὅλῆ καὶ εἰς δύο πρίσματα ἴσα καὶ τὰ δύο πρίσματα μείζονά ἐστιν ἢ τὸ ἤμισυ τῆς ὅλης πυραμίδος.

Τετμήσθωσαν γὰρ αἱ AB, BΓ, ΓΑ, AΔ, ΔΒ, ΔΓ δίχα κατὰ τὰ Ε, Ζ, Η, Θ, Κ, Λ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΘΕ, ΕΗ, ΗΘ, ΘΚ, ΚΛ, ΛΘ, ΚΖ, ΖΗ. ἐπεὶ ἴση ἐστὶν ἡ μὲν ΑΕ τῆ ΕΒ, ἡ δὲ ΑΘ τῆ ΔΘ, παράλληλος ἄρα ἐστὶν ἡ ΕΘ τῆ ΔΒ. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΘΚ τῆ ΑΒ παράλληλός ἐστιν.

Lemma

So, I say that, area S being greater than circle EFGH, as area S is to circle ABCD, so circle EFGH (is) to some area less than circle ABCD.

For let it have been contrived that as area S (is) to circle ABCD, so circle EFGH (is) to area T. I say that area T is less than circle ABCD. For since as area S is to circle ABCD, so circle EFGH (is) to area T, alternately, as area S is to circle EFGH, so circle ABCD (is) to area T [Prop. 5.16]. And area S (is) greater than circle EFGH. Thus, circle ABCD (is) also greater than area T [Prop. 5.14]. Hence, as area S is to circle SETG (is) to some area less than circle SETG (Which is) the very thing it was required to show.

Proposition 3

Any pyramid having a triangular base is divided into two pyramids having triangular bases (which are) equal, similar to one another, and [similar] to the whole, and into two equal prisms. And the (sum of the) two prisms is greater than half of the whole pyramid.

Let there be a pyramid whose base is triangle ABC, and (whose) apex (is) point D. I say that pyramid ABCD is divided into two pyramids having triangular bases (which are) equal to one another, and similar to the whole, and into two equal prisms. And the (sum of the) two prisms is greater than half of the whole pyramid.

For let AB, BC, CA, AD, DB, and DC have been cut in half at points E, F, G, H, K, and L (respectively). And let HE, EG, GH, HK, KL, LH, KF, and FG have been joined. Since AE is equal to EB, and AH to DH,

παραλληλόγραμμον ἄρα ἐστὶ τὸ ΘΕΒΚ: ἴση ἄρα ἐστὶν ἡ ΘΚ τῆ ΕΒ. ἀλλὰ ἡ ΕΒ τῆ ΕΑ ἐστιν ἴση· καὶ ἡ ΑΕ ἄρα τῆ ΘΚ ἐστιν ἴση. ἔστι δὲ καὶ ἡ $A\Theta$ τῆ $\Theta\Delta$ ἴση \cdot δύο δὴ αἱ $EA,\,A\Theta$ δυσὶ ταῖς $ext{K}\Theta,\,\Theta\Delta$ ἴσαι εἰσὶν ἑκατέρα ἑκατέρ $\mathfrak a$ · καὶ γωνία ἡ ύπὸ ΕΑΘ γωνία τῆ ὑπὸ ΚΘΔ ἴση· βάσις ἄρα ἡ ΕΘ βάσει τῆ ${
m K}\Delta$ ἐστιν ἴση. ἴσον ἄρα καὶ ὅμοιόν ἐστι τὸ ${
m AE}\Theta$ τρίγωνον τῷ $\Theta K \Delta$ τριγώνῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ $A\Theta H$ τρίγωνον τῷ $\Theta\Lambda\Delta$ τριγώνῳ ἴσον τέ ἐστι καὶ ὅμοιον. καὶ ἐπεὶ δύο εὐθεῖαι ἀπτόμεναι ἀλλήλων αἱ ΕΘ, ΘΗ παρὰ δύο εὐθείας άπτομένας ἀλλήλων τὰς $K\Delta$, $\Delta\Lambda$ εἰσιν οὐκ ἐν τῷ αὐτῷ ἐπιπέδω οὖσαι, ἴσας γωνίας περιέξουσιν. ἴση ἄρα ἐστὶν ἡ ὑπὸ ΕΘΗ γωνία τῆ ὑπὸ ΚΔΛ γωνία. καὶ ἐπεὶ δύο εὐθεῖαι αἱ ΕΘ, Θ Η δυσὶ ταῖς $K\Delta$, $\Delta\Lambda$ ἴσαι εἰσὶν ἑκατέρα εκατέρα, καὶ γωνία ή ὑπὸ ${
m E}\Theta{
m H}$ γωνία τῆ ὑπὸ ${
m K}\Delta\Lambda$ ἐστιν ἴση, βάσις ἄρα ἡ ${
m E}{
m H}$ βάσει τῆ $K\Lambda$ [ἐστιν] ἴση· ἴσον ἄρα καὶ ὅμοιόν ἐστι τὸ $E\Theta H$ τρίγωνον τ $\widetilde{\wp}$ Κ $\Delta\Lambda$ τριγών \wp . διὰ τὰ αὐτὰ δ $\mathring{\eta}$ καὶ τὸ ΛEH τρίγωνον τῷ $\Theta \mathrm{K} \Lambda$ τριγώνῳ ἴσον τε καὶ ὅμοιόν ἐστιν. ἡ ἄρα πυραμίς, ής βάσις μέν έστι τὸ ΑΕΗ τρίγωνον, χορυφή δὲ τὸ Θ σημεῖον, ἴση καὶ ὁμοία ἐστὶ πυραμίδι, ῆς βάσις μέν ἐστι τὸ Θ ΚΛ τρίγωνον, κορυφή δὲ τὸ Δ σημεῖον. καὶ ἐπεὶ τριγώνου τοῦ ΑΔΒ παρὰ μίαν τῶν πλευρῶν τὴν ΑΒ ἢκται ἡ ΘΚ, ἰσογώνιόν ἐστι τὸ ΑΔΒ τρίγωνον τῷ ΔΘΚ τριγώνῳ, καὶ τὰς πλευρὰς ἀνάλογον ἔχουσιν· ὅμοιον ἄρα ἐστὶ τὸ ΑΔΒ τρίγωνον τῷ ΔΘΚ τριγώνω. διὰ τὰ αὐτὰ δὴ καὶ τὸ μὲν $\Delta \mathrm{B}\Gamma$ τρίγωνον τῷ $\Delta \mathrm{K}\Lambda$ τριγώνῳ ὅμοιόν ἐστιν, τὸ δὲ $\mathrm{A}\Delta\Gamma$ τῷ ΔΛΘ. καὶ ἐπεὶ δύο εὐθεῖαι ἀπτόμεναι ἀλλήλων αἱ ΒΑ, $A\Gamma$ παρὰ δύο εὐθείας ἁπτομένας ἀλλήλων τὰς $K\Theta$, $\Theta\Lambda$ εἰσιν ούχ ἐν τῷ αὐτῷ ἐπιπέδω, ἴσας γωνίας περιέξουσιν. ἴση ἄρα ἐστὶν ἡ ὑπὸ ΒΑΓ γωνία τῆ ὑπὸ ΚΘΛ. καί ἐστιν ὡς ἡ ΒΑ πρὸς τὴν $A\Gamma$, οὕτως ἡ $K\Theta$ πρὸς τὴν $\Theta\Lambda$ · ὅμοιον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον τῷ ΘΚΛ τριγώνῳ. καὶ πυραμὶς ἄρα, ῆς βάσις μέν ἐστι τὸ ΑΒΓ τρίγωνον, κορυφὴ δὲ τὸ Δ σημεῖον, όμοία ἐστὶ πυραμίδι, ἤς βάσις μέν ἐστι τὸ ΘΚΛ τρίγωνον, κορυφή δὲ τὸ Δ σημεῖον. ἀλλὰ πυραμίς, ής βάσις μέν [ἐστι] τὸ $\Theta \mathrm{K} \Lambda$ τρίγωνον, χορυφή δὲ τὸ Δ σημεῖον, ὁμοία ἐδείχ ϑ η πυραμίδι, ής βάσις μέν έστι τὸ ΑΕΗ τρίγωνον, κορυφή δὲ τὸ Θ σημεῖον. ἑχατέρα ἄρα τῶν ΑΕΗΘ, ΘΚΛΔ πυραμίδων όμοία ἐστὶ τῆ ὅλη τῆ ΑΒΓΔ πυραμίδι.

Καὶ ἐπεὶ ἴση ἐστὶν ἡ ΒΖ τῆ ΖΓ, διπλάσιόν ἐστι τὸ ΕΒΖΗ παραλληλόγραμμον τοῦ ΗΖΓ τριγώνου. καὶ ἐπεὶ, ἐὰν ἢ δύο πρίσματα ἰσοῦψῆ, καὶ τὸ μὲν ἔχη βάσιν παραλληλόγραμμον, τὸ δὲ τρίγωνον, διπλάσιον δὲ ἢ τὸ παραλληλόγραμμον τοῦ τριγώνου, ἴσα ἐστὶ τὰ πρίσματα, ἴσον ἄρα ἐστὶ τὸ πρίσμα τὸ περιεχόμενον ὑπὸ δύο μὲν τριγώνων τῶν ΒΚΖ, ΕΘΗ, τριῶν δὲ παραλληλογράμμων τῶν ΕΒΖΗ, ΕΒΚΘ, ΘΚΖΗ τῷ πρισματι τῷ περιεχομένῳ ὑπὸ δύο μὲν τριγώνων τῶν ΗΖΓ, ΘΚΛ, τριῶν δὲ παραλληλογράμμων τῶν ΚΖΓΛ, ΛΓΗΘ, ΘΚΖΗ. καὶ φανερόν, ὅτι ἑκάτρον τῶν πρισμάτων, οὕ τε βάσις τὸ ΕΒΖΗ παραλληλόγραμμον, ἀπεναντίον δὲ ἡ ΘΚ εὐθεῖα, καὶ οὕ βάσις τὸ ΗΖΓ τρίγωνον, ἀπεναντίον δὲ τὸ ΘΚΛ τρίγωνον, μεῖζόν ἐστιν ἑκατέρας

EH is thus parallel to DB [Prop. 6.2]. So, for the same (reasons), HK is also parallel to AB. Thus, HEBK is a parallelogram. Thus, HK is equal to EB [Prop. 1.34]. But, EB is equal to EA. Thus, AE is also equal to HK. And AH is also equal to HD. So the two (straight-lines) EA and AH are equal to the two (straight-lines) KHand HD, respectively. And angle EAH (is) equal to angle KHD [Prop. 1.29]. Thus, base EH is equal to base KD [Prop. 1.4]. Thus, triangle AEH is equal and similar to triangle HKD [Prop. 1.4]. So, for the same (reasons), triangle AHG is also equal and similar to triangle HLD. And since EH and HG are two straight-lines joining one another (which are respectively) parallel to two straight-lines joining one another, KD and DL, not being in the same plane, they will contain equal angles [Prop. 11.10]. Thus, angle EHG is equal to angle KDL. And since the two straight-lines EH and HG are equal to the two straight-lines KD and DL, respectively, and angle EHG is equal to angle KDL, base EG [is] thus equal to base KL [Prop. 1.4]. Thus, triangle EHG is equal and similar to triangle KDL. So, for the same (reasons), triangle AEG is also equal and similar to triangle HKL. Thus, the pyramid whose base is triangle AEG, and apex the point H, is equal and similar to the pyramid whose base is triangle HKL, and apex the point D[Def. 11.10]. And since HK has been drawn parallel to one of the sides, AB, of triangle ADB, triangle ADBis equiangular to triangle DHK [Prop. 1.29], and they have proportional sides. Thus, triangle ADB is similar to triangle DHK [Def. 6.1]. So, for the same (reasons), triangle DBC is also similar to triangle DKL, and ADC to DLH. And since two straight-lines joining one another, BA and AC, are parallel to two straight-lines joining one another, KH and HL, not in the same plane, they will contain equal angles [Prop. 11.10]. Thus, angle BAC is equal to (angle) KHL. And as BA is to AC, so KH (is) to HL. Thus, triangle ABC is similar to triangle HKL[Prop. 6.6]. And, thus, the pyramid whose base is triangle ABC, and apex the point D, is similar to the pyramid whose base is triangle HKL, and apex the point D[Def. 11.9]. But, the pyramid whose base [is] triangle HKL, and apex the point D, was shown (to be) similar to the pyramid whose base is triangle AEG, and apex the point H. Thus, each of the pyramids AEGH and HKLDis similar to the whole pyramid ABCD.

And since BF is equal to FC, parallelogram EBFG is double triangle GFC [Prop. 1.41]. And since, if two prisms (have) equal heights, and the former has a parallelogram as a base, and the latter a triangle, and the parallelogram (is) double the triangle, then the prisms are equal [Prop. 11.39], the prism contained by the two

τῶν πυραμίδων, ὧν βάσεις μὲν τὰ ΑΕΗ, ΘΚΛ τρίγωνα, κορυφαί, δὲ τὰ Θ, Δ σημεῖα, ἐπειδήπερ [καί] ἐὰν ἐπιζεύξωμεν τὰς ΕΖ, ΕΚ εὐθείας, τὸ μὲν πρίσμα, οὕ βάσις τὸ ΕΒΖΗ παραλληλόγραμμον, ἀπεναντίον δὲ ἡ ΘΚ εὐθεῖα, μεῖζόν ἐστι τῆς πυραμίδος, ἤς βάσις τὸ ΕΒΖ τρίγωνον, κορυφὴ δὲ τὸ Κ σημεῖον. ἀλλ' ή πυραμίς, ής βάσις τὸ ΕΒΖ τρίγωνον, κορυφή δὲ τὸ Κ σημεῖον, ἴση ἐστὶ πυραμίδι, ῆς βάσις τὸ ΑΕΗ τρίγωνον, κορυφή δὲ τὸ Θ σημεῖον ὑπὸ γὰρ ἴσων καὶ ὁμοίων ἐπιπέδων περιέχονται. ὥστε καὶ τὸ πρίσμα, οὕ βάσις μὲν τὸ ΕΒΖΗ παραλληλόγραμμον, ἀπεναντίον δὲ ἡ ΘΚ εὐθεῖα, μεῖζόν ἐστι πυραμίδος, ἤς βάσις μὲν τὸ ΑΕΗ τρίγωνον, χορυφή δὲ τὸ Θ σημεῖον. ἴσον δὲ τὸ μὲν πρίσμα, οὕ βάσις τὸ ΕΒΖΗ παραλληλόγραμμον, ἀπεναντίον δὲ ἡ ΘΚ εὐθεῖα, τῷ πρίσματι, οὕ βάσις μὲν τὸ ΗΖΓ τρίγωνον, ἀπεναντίον δὲ τὸ ΘΚΛ τρίγωνον ἡ δὲ πυραμίς, ῆς βάσις τὸ ΑΕΗ τρίγωνον, κορυφή δὲ τὸ Θ σημεῖον, ἴση ἐστὶ πυραμίδι, ῆς βάσις τὸ $\Theta K \Lambda$ τρίγωνον, χορυφή δὲ τὸ Δ σημεῖον. τὰ ἄρα εἰρημένα δύο πρίσματα μείζονά ἐστι τῶν εἰρημένων δύο πυραμίδων, ὧν βάσεις μὲν τὰ ΑΕΗ, ΘΚΛ τρίγωνα, χορυφαὶ δὲ τὰ Θ , Δ σημεῖα.

Ή ἄρα ὅλη πυραμίς, ῆς βάσις τὸ $AB\Gamma$ τρίγωνον, χορυφὴ δὲ τὸ Δ σημεῖον, διήρηται εἴς τε δύο πυραμίδας ἴσας ἀλλήλαις [χαὶ ὁμοίας τῆ ὅλη] χαὶ εἰς δύο πρίσματα ἴσα, χαὶ τὰ δύο πρίσματα μείζονά ἐστιν ἢ τὸ ῆμισυ τῆς ὅλης πυραμίδος· ὅπερ ἔδει δεῖξαι.

 δ' .

Έὰν ἄσι δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος τριγώνους ἔχουσαι βάσεις, διαιρεθῆ δὲ ἑκατέρα αὐτῶν εἴς τε δύο πυραμίδας ἴσας ἀλλήλαις καὶ ὁμοίας τῆ ὅλη καὶ εἰς δύο πρίσματα ἴσα, ἔσται ὡς ἡ τῆς μιᾶς πυραμίδος βάσις πρὸς τὴν τῆς ἐτέρας πυραμίδος βάσιν, οὕτως τὰ ἐν τῆ μιᾳ πυραμίδι πρίσματα πάντα πρὸς τὰ ἐν τῆ ἑτάρα πυραμίδι πρίσματα πάντα ἰσοπληθῆ.

Έστωσαν δύο πυραμίδες ὑπὸ τὸ αὐτὸ ὕψος τριγώνους ἔχουσαι βάσεις τὰς ABΓ, ΔΕΖ, κορυφὰς δὲ τὰ Η, Θ σημεῖα, καὶ διηρήσθω ἑκατέρα αὐτῶν εἴς τε δύο πυραμίδας ἴσας ἀλλήλαις καὶ ὁμοίας τῆ ὅλη καὶ εἰς δύο πρίσματα ἴσα· λέγω,

triangles BKF and EHG, and the three parallelograms EBFG, EBKH, and HKFG, is thus equal to the prism contained by the two triangles GFC and HKL, and the three parallelograms KFCL, LCGH, and HKFG. And (it is) clear that each of the prisms whose base (is) parallelogram EBFG, and opposite (side) straight-line HK, and whose base (is) triangle GFC, and opposite (plane) triangle HKL, is greater than each of the pyramids whose bases are triangles AEG and HKL, and apexes the points H and D (respectively), inasmuch as, if we [also] join the straight-lines EF and EK then the prism whose base (is) parallelogram EBFG, and opposite (side) straight-line HK, is greater than the pyramid whose base (is) triangle EBF, and apex the point K. But the pyramid whose base (is) triangle EBF, and apex the point K, is equal to the pyramid whose base is triangle AEG, and apex point H. For they are contained by equal and similar planes. And, hence, the prism whose base (is) parallelogram EBFG, and opposite (side) straightline HK, is greater than the pyramid whose base (is) triangle AEG, and apex the point H. And the prism whose base is parallelogram EBFG, and opposite (side) straight-line HK, (is) equal to the prism whose base (is) triangle GFC, and opposite (plane) triangle HKL. And the pyramid whose base (is) triangle AEG, and apex the point H, is equal to the pyramid whose base (is) triangle HKL, and apex the point D. Thus, the (sum of the) aforementioned two prisms is greater than the (sum of the) aforementioned two pyramids, whose bases (are) triangles AEG and HKL, and apexes the points H and D (respectively).

Thus, the whole pyramid, whose base (is) triangle ABC, and apex the point D, has been divided into two pyramids (which are) equal to one another [and similar to the whole], and into two equal prisms. And the (sum of the) two prisms is greater than half of the whole pyramid. (Which is) the very thing it was required to show.

Proposition 4

If there are two pyramids with the same height, having trianglular bases, and each of them is divided into two pyramids equal to one another, and similar to the whole, and into two equal prisms then as the base of one pyramid (is) to the base of the other pyramid, so (the sum of all the prisms in one pyramid will be to (the sum of all) the equal number of prisms in the other pyramid.

Let there be two pyramids with the same height, having the triangular bases ABC and DEF, (with) apexes the points G and H (respectively). And let each of them have been divided into two pyramids equal to one an-

ότι ἐστὶν ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως τὰ ἐν τῆ ΑΒΓΗ πυραμίδι πρίσματα πάντα πρὸς τὰ ἐν τῆ ΔΕΖΘ πυραμίδι πρίσματα ἰσοπληθῆ.

Έπεὶ γὰρ ἴση ἐστὶν ἡ μὲν ΒΞ τῆ ΞΓ, ἡ δὲ ΑΛ τῆ ΛΓ, παράλληλος ἄρα ἐστὶν ἡ ΛΞ τῆ ΑΒ καὶ ὅμοιον τὸ ΑΒΓ τρίγωνον τῷ $\Lambda \Xi \Gamma$ τριγώνῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ ΔEZ τρίγωνον τῷ ΡΦΖ τριγώνῳ ὅμοιόν ἐστιν. καὶ ἐπεὶ διπλασίων ἐστὶν ἡ μὲν ΒΓ τῆς ΓΞ, ἡ δὲ ΕΖ τῆς ΖΦ, ἔστιν ἄρα ὡς ἡ ΒΓ πρὸς τὴν ΓΞ, οὕτως ἡ ΕΖ πρὸς τὴν ΖΦ. καὶ άναγέγραπται ἀπὸ μὲν τῶν ΒΓ, ΓΞ ὅμοιά τε καὶ ὁμοίως κείμενα εὐθύγραμμα τὰ ΑΒΓ, ΛΞΓ, ἀπὸ δὲ τῶν ΕΖ, ΖΦ όμοιά τε καὶ ὁμοίως κείμενα [εὐθύγραμμα] τὰ ΔΕΖ, ΡΦΖ· ἔστιν ἄρα ὡς τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΛΞΓ τρίγωνον, οὕτως τὸ ΔΕΖ τρίγωνον πρὸς τὸ ΡΦΖ τρίγωνον ἐναλλὰξ ἄρα ἐστὶν ὡς τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ [τρίγωνον], ούτως τὸ ΛΞΓ [τρίγωνον] πρὸς τὸ ΡΦΖ τρίγωνον. ἀλλί ώς τὸ ΛΞΓ τρίγωνον πρὸς τὸ ΡΦΖ τρίγωνον, οὕτως τὸ πρίσμα, οὕ βάσις μέν [ἐστι] τὸ ΛΞΓ τρίγωνον, ἀπεναντίον δὲ τὸ ΟΜΝ, πρὸς τὸ πρίσμα, οὖ βάσις μὲν τὸ ΡΦΖ τρίγωνον, ἀπεναντίον δὲ τὸ ΣΤΥ καὶ ὡς ἄρα τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον, οὕτως τὸ πρίσμα, οὕ βάσις μὲν τὸ ΛΞΓ τρίγωνον, ἀπεναντίον δὲ τὸ ΟΜΝ, πρὸς τὸ πρίσμα, οὕ βάσις μέν τὸ ΡΦΖ τρίγωνον, ἀπεναντίον δὲ τὸ ΣΤΥ. ὡς δὲ τὰ εἰρημένα πρίσματα πρὸς ἄλληλα, οὕτως τὸ πρίσμα, οὕ βάσις μέν τὸ ΚΒΞΛ παραλληλόγραμμον, ἀπεναντίον δὲ ἡ ΟΜ εὐθεῖα, πρὸς τὸ πρίσμα, οὖ βάσις μὲν τὸ ΠΕΦΡ παραλληλόγραμμον, ἀπεναντίον δὲ ἡ ΣΤ εὐθεῖα. καὶ τὰ δύο ἄρα πρίσματα, οὕ τε βάσις μὲν τὸ ΚΒΞΛ παραλληλόγραμμον, ἀπεναντίον δὲ ἡ OM, καὶ οὕ βάσις μὲν τὸ ΛΞΓ, ἀπεναντίον δὲ τὸ ΟΜΝ, πρὸς τὰ πρίσματα, οὖ τε βάσις μὲν τὸ ΠΕΦΡ, ἀπεναντίον δὲ ἡ ΣΤ εὐθεῖα, καὶ οὔ βάσις μὲν τὸ ΡΦΖ τρίγωνον, ἀπεναντίον δὲ τὸ ΣΤΥ. καὶ ὡς ἄρα ἡ ΑΒΓ βάσις πρός τὴν ΔΕΖ βάσιν, οὕτως τὰ εἰρημένα δύο πρίσματα πρὸς τὰ εἰρημένα δύο πρίσματα.

Καὶ ὁμοίως, ἐὰν διαιρεθῶσιν αἱ ΟΜΝΗ, ΣΤΥΘ πυραμίδες εἴς τε δύο πρίσματα καὶ δύο πυραμίδας, ἔσται ὡς ἡ

other, and similar to the whole, and into two equal prisms [Prop. 12.3]. I say that as base ABC is to base DEF, so (the sum of) all the prisms in pyramid ABCG (is) to (the sum of) all the equal number of prisms in pyramid DEFH.

For since BO is equal to OC, and AL to LC, LO is thus parallel to AB, and triangle ABC similar to triangle LOC [Prop. 12.3]. So, for the same (reasons), triangle DEF is also similar to triangle RVF. And since BC is double CO, and EF (double) FV, thus as BC (is) to CO, so EF (is) to FV. And the similar, and similarly laid out, rectilinear (figures) ABC and LOC have been described on BC and CO (respectively), and the similar, and similarly laid out, [rectilinear] (figures) DEF and RVF on EF and FV (respectively). Thus, as triangle ABC is to triangle LOC, so triangle DEF (is) to triangle RVF [Prop. 6.22]. Thus, alternately, as triangle ABC is to [triangle] DEF, so [triangle] LOC (is) to triangle RVF [Prop. 5.16]. But, as triangle LOC (is) to triangle RVF, so the prism whose base [is] triangle LOC, and opposite (plane) PMN, (is) to the prism whose base (is) triangle RVF, and opposite (plane) STU(see lemma). And, thus, as triangle ABC (is) to triangle DEF, so the prism whose base (is) triangle LOC, and opposite (plane) PMN, (is) to the prism whose base (is) triangle RVF, and opposite (plane) STU. And as the aforementioned prisms (are) to one another, so the prism whose base (is) parallelogram KBOL, and opposite (side) straight-line PM, (is) to the prism whose base (is) parallelogram QEVR, and opposite (side) straightline ST [Props. 11.39, 12.3]. Thus, also, (is) the (sum of the) two prisms—that whose base (is) parallelogram KBOL, and opposite (side) PM, and that whose base (is) LOC, and opposite (plane) PMN—to (the sum of) the (two) prisms—that whose base (is) QEVR, and opposite (side) straight-line ST, and that whose base (is) triangle RVF, and opposite (plane) STU [Prop. 5.12]. And, thus, as base ABC (is) to base DEF, so the (sum

ΟΜΝ βάσις πρὸς τὴν ΣΤΥ βάσιν, οὕτως τὰ ἐν τῆ ΟΜΝΗ πυραμίδι δύο πρίσματα πρὸς τὰ ἐν τῆ ΣΤΥΘ πυραμίδι δύο πρίσματα. ἀλλ' ὡς ἡ ΟΜΝ βάσις πρὸς τὴν ΣΤΥ βάσιν, οὕτως ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν ἴσον γὰρ ἑκάτερον τῶν ΟΜΝ, ΣΤΥ τριγώνων ἑκατέρω τῶν ΛΕΓ, ΡΦΖ. καὶ ὡς ἄρα ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως τὰ τέσσαρα πρίσματα πρὸς τὰ τέσσαρα πρίσματα. ὁμοίως δὲ κᾶν τὰς ὑπολειπομένας πυραμίδας διέλωμεν εἴς τε δύο πυραμίδας καὶ εἰς δύο πρίσματα, ἔσται ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως τὰ ἐν τῆ ΑΒΓΗ πυραμίδι πρίσματα πάντα πρὸς τὰ ἐν τῆ ΔΕΖΘ πυραμίδι πρίσματα πάντα ἰσοπληθῆ· ὅπερ ἔδει δεῖξαι.

Λῆμμα.

Ότι δέ έστιν ώς τὸ $\Lambda \Xi \Gamma$ τρίγωνον πρὸς τὸ $P\Phi Z$ τρίγωνον, οὕτως τὸ πρίσμα, οὕ βάσις τὸ $\Lambda \Xi \Gamma$ τρίγωνον, ἀπεναντίον δὲ τὸ OMN, πρὸς τὸ πρίσμα, οὕ βάσις μὲν τὸ $P\Phi Z$ [τρίγωνον], ἀπεναντίον δὲ τὸ $\Sigma T\Upsilon$, οὕτω δεικτέον.

Έπὶ γὰρ τῆς αὐτῆς καταγραφῆς νενοήσθωσαν ἀπὸ τῶν Η, Θ κάθετοι ἐπὶ τὰ ΑΒΓ, ΔΕΖ ἐπίπεδα, ἴσαι δηλαδὴ τυγχάνουσαι διὰ τὸ ἰσοϋψεῖς ὑποχεῖσθαι τὰς πυραμίδας. καὶ ἐπεὶ δύο εὐθεῖαι ἥ τε ΗΓ καὶ ἡ ἀπὸ τοῦ Η κάθετος ύπὸ παραλλήλων ἐπιπέδων τῶν ΑΒΓ, ΟΜΝ τέμνονται, εἰς τούς αὐτούς λόγους τμηθήσονται. καὶ τέτμηται ή ΗΓ δίχα ύπὸ τοῦ ΟΜΝ ἐπιπέδου κατὰ τὸ Ν΄ καὶ ἡ ἀπὸ τοῦ Η ἄρα κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΟΜΝ ἐπιπέδου. διὰ τὰ αὐτὰ δὴ καὶ ἡ ἀπὸ τοῦ Θ κάθετος ἐπὶ τὸ ΔΕΖ ἐπίπεδον δίχα τμηθήσεται ὑπὸ τοῦ ΣΤΥ ἐπιπέδου. καί εἰσιν ἴσαι αἱ ἀπὸ τῶν Η, Θ κάθετοι ἐπὶ τὰ ΑΒΓ, ΔΕΖ ἐπίπεδα: ἴσαι ἄρα καὶ αἱ ἀπὸ τῶν ΟΜΝ, ΣΤΥ τριγώνων ἐπὶ τὰ ΑΒΓ, ΔΕΖ κάθετοι. ἰσοϋψῆ ἄρα [ἐστὶ] τὰ πρίσματα, ών βάσεις μέν εἰσι τὰ ΛΞΓ, ΡΦΖ τρίγωνα, ἀπεναντίον δὲ τὰ ΟΜΝ, ΣΤΥ. ὤστε καὶ τὰ στερεὰ παραλληλεπίπεδα τὰ ἀπὸ τῶν εἰρημένων πρισμάτων ἀναγραφόμενα ἰσοϋψῆ καὶ πρὸς ἄλληλά [εἰσιν] ὡς αἱ βάσεις· καὶ τὰ ἡμίση ἄρα ἐστὶν ώς ή ΛΕΓ βάσις πρὸς τὴν ΡΦΖ βάσιν, οὕτως τὰ εἰρημένα πρίσματα πρὸς ἄλληλα. ὅπερ ἔδει δεῖξαι.

of the first) aforementioned two prisms (is) to the (sum of the second) aforementioned two prisms.

And, similarly, if pyramids PMNG and STUH are divided into two prisms, and two pyramids, as base PMN (is) to base STU, so (the sum of) the two prisms in pyramid PMNG will be to (the sum of) the two prisms in pyramid STUH. But, as base PMN (is) to base STU, so base ABC (is) to base DEF. For the triangles PMN and STU (are) equal to LOC and RVF, respectively. And, thus, as base ABC (is) to base DEF, so (the sum of) the four prisms (is) to (the sum of) the four prisms [Prop. 5.12]. So, similarly, even if we divide the pyramids left behind into two pyramids and into two prisms, as base ABC (is) to base DEF, so (the sum of) all the prisms in pyramid ABCG will be to (the sum of) all the equal number of prisms in pyramid DEFH. (Which is) the very thing it was required to show.

Lemma

And one may show, as follows, that as triangle LOC is to triangle RVF, so the prism whose base (is) triangle LOC, and opposite (plane) PMN, (is) to the prism whose base (is) [triangle] RVF, and opposite (plane) STU.

For, in the same figure, let perpendiculars have been conceived (drawn) from (points) G and H to the planes ABC and DEF (respectively). These clearly turn out to be equal, on account of the pyramids being assumed (to be) of equal height. And since two straight-lines, GC and the perpendicular from G, are cut by the parallel planes ABC and PMN they will be cut in the same ratios [Prop. 11.17]. And GC was cut in half by the plane PMN at N. Thus, the perpendicular from G to the plane ABC will also be cut in half by the plane PMN. So, for the same (reasons), the perpendicular from H to the plane DEF will also be cut in half by the plane STU. And the perpendiculars from G and H to the planes ABC and DEF (respectively) are equal. Thus, the perpendiculars from the triangles PMN and STU to ABC and DEF(respectively, are) also equal. Thus, the prisms whose bases are triangles LOC and RVF, and opposite (sides) PMN and STU (respectively), [are] of equal height. And, hence, the parallelepiped solids described on the aforementioned prisms [are] of equal height and (are) to one another as their bases [Prop. 11.32]. Likewise, the halves (of the solids) [Prop. 11.28]. Thus, as base LOC is to base RVF, so the aforementioned prisms (are) to one another. (Which is) the very thing it was required to show.

 Σ ΤΟΙΧΕΙΩΝ \mathfrak{g}' . ELEMENTS BOOK 12

ε'.

Αἱ ὑπὸ τὸ αὐτὸ ὕψος οὕσαι πυραμίδες καὶ τριγώνους ἔχουσαι βάσεις πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις.

Έστωσαν ὑπὸ τὸ αὐτὸ ὕψος πυραμίδες, ὧν βάσεις μὲν τὰ ABΓ, ΔΕΖ τρίγωνα, κορυφαὶ δὲ τὰ Η, Θ σημεῖα· λέγω, ὅτι ἐστὶν ὡς ἡ ABΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως ἡ ABΓΗ πυραμὶς πρὸς τὴν ΔΕΖΘ πυραμίδα.

Εἰ γὰρ μή ἐστιν ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, ούτως ή ΑΒΓΗ πυραμίς πρός την ΔΕΖΘ πυραμίδα, ἔσται ὡς ή ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως ή ΑΒΓΗ πυραμίς ήτοι πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεὸν ἢ πρὸς μεῖζον. ἔστω πρότερον πρὸς ἔλασσον τὸ Χ, καὶ διηρήσθω ή ΔΕΖΘ πυραμίς εἴς τε δύο πυραμίδας ἴσας ἀλλήλαις καὶ όμοίας τῆ ὄλη καὶ εἰς δύο πρίσματα ἴσα· τὰ δὴ δύο πρίσαμτα μείζονά ἐστιν ἢ τὸ ἤμισυ τῆς ὅλης πυραμίδος. καὶ πάλιν αἱ ἐκ τῆς διαιρέσεως γινόμεναι πυραμίδες ὁμοίως διηρήσθωσαν, καὶ τοῦτο ἀεὶ γινέσθω, ἔως οὖ λειφθῶσί τινες πυραμίδες ἀπὸ τῆς ΔΕΖΘ πυραμίδος, αἴ εἰσιν ἐλάττονες τῆς ὑπεροχῆς, ἤ ύπερέχει ή $\Delta ext{EZ}\Theta$ πυραμίς τοῦ $ext{X}$ στερεοῦ. λελείφhetaωσαν καὶ ἔστωσαν λόγου ἕνεκεν αἱ ΔΠΡΣ, ΣΤΥΘ΄ λοιπὰ ἄρα τὰ ἐν τῆ ΔΕΖΘ πυραμίδι πρίσματα μείζονά ἐστι τοῦ Χ στερεοῦ. διηρήσθω καὶ ή ΑΒΓΗ πυραμὶς όμοίως καὶ ἰσοπληθῶς τῆ ΔΕΖΘ πυραμίδι: ἔστιν ἄρα ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως τὰ ἐν τῆ ΑΒΓΗ πυραμίδι πρίσματα πρὸς τὰ ἐν τῆ ΔΕΖΘ πυραμίδι πρίσματα, ἀλλὰ καὶ ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως ἡ ΑΒΓΗ πυραμίς πρὸς τὸ Χ στερεόν καὶ ὡς ἄρα ἡ ΑΒΓΗ πυραμὶς πρὸς τὸ Χ στερεόν, οὕτως τὰ ἐν τῆ ΑΒΓΗ πυραμίδι πρίσματα πρὸς τὰ ἐν τῆ ΔΕΖΘ πυραμίδι πρίσματα έναλλὰξ ἄρα ὡς ἡ ΑΒΓΗ πυραμὶς πρὸς τὰ ἐν αὐτῆ πρίσματα, οὕτως τὸ Χ στερεὸν πρὸς τὰ ἐν τῆ ΔΕΖΘ πυραμίδι πρίσματα. μείζων δὲ ἡ ΑΒΓΗ πυραμὶς τῶν έν αὐτῆ πρισμάτων μεῖζον ἄρα καὶ τὸ Χ στερεὸν τῶν ἐν τῆ $\Delta EZ\Theta$ πυραμίδι πρισμάτων. ἀλλὰ καὶ ἔλαττον· ὅπερ ἐστὶν άδύνατον, οὐκ ἄρα ἐστὶν ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως ή ΑΒΓΗ πυραμίς πρὸς ἔλασσόν τι τῆς ΔΕΖΘ πυραμίδος στερεόν. όμοίως δή δειχθήσεται, ὅτι οὐδὲ ὡς ἡ ΔΕΖ βάσις πρὸς τὴν ΑΒΓ βάσιν, οὕτως ἡ ΔΕΖΘ πυραμίς πρὸς ἔλαττόν τι τῆς ΑΒΓΗ πυραμίδος στερεόν.

Λέγω δή, ὅτι οὐχ ἔστιν οὐδὲ ὡς ἡ ABΓ βάσις πρὸς τὴν ΔEZ βάσιν, οὕτως ἡ ABΓΗ πυραμὶς πρὸς μεῖζόν τι τῆς $\Delta EZ\Theta$ πυραμίδος στερεόν.

Proposition 5

Pyramids which are of the same height, and have triangular bases, are to one another as their bases.

Let there be pyramids of the same height whose bases (are) the triangles ABC and DEF, and apexes the points G and H (respectively). I say that as base ABC is to base DEF, so pyramid ABCG (is) to pyramid DEFH.

For if base ABC is not to base DEF, as pyramid ABCG (is) to pyramid DEFH, then base ABC will be to base DEF, as pyramid ABCG (is) to some solid either less than, or greater than, pyramid DEFH. Let it, first of all, be (in this ratio) to (some) lesser (solid), W. And let pyramid DEFH have been divided into two pyramids equal to one another, and similar to the whole, and into two equal prisms. So, the (sum of the) two prisms is greater than half of the whole pyramid [Prop. 12.3]. And, again, let the pyramids generated by the division have been similarly divided, and let this be done continually until some pyramids are left from pyramid DEFHwhich (when added together) are less than the excess by which pyramid DEFH exceeds the solid W [Prop. 10.1]. Let them have been left, and, for the sake of argument, let them be DQRS and STUH. Thus, the (sum of the) remaining prisms within pyramid DEFH is greater than solid W. Let pyramid ABCG also have been divided similarly, and a similar number of times, as pyramid DEFH. Thus, as base ABC is to base DEF, so the (sum of the) prisms within pyramid ABCG (is) to the (sum of the) prisms within pyramid DEFH [Prop. 12.4]. But, also, as base ABC (is) to base DEF, so pyramid ABCG (is) to solid W. And, thus, as pyramid ABCG (is) to solid W, so the (sum of the) prisms within pyramid ABCG(is) to the (sum of the) prisms within pyramid DEFH[Prop. 5.11]. Thus, alternately, as pyramid ABCG (is) to the (sum of the) prisms within it, so solid W (is) to the (sum of the) prisms within pyramid DEFH [Prop. 5.16]. And pyramid ABCG (is) greater than the (sum of the) prisms within it. Thus, solid W (is) also greater than the (sum of the) prisms within pyramid *DEFH* [Prop. 5.14]. But, (it is) also less. This very thing is impossible. Thus, as base ABC is to base DEF, so pyramid ABCG (is)

Εἰ γὰρ δυνατόν, ἔστω πρὸς μεῖζον τὸ Χ· ἀνάπαλιν ἄρα ἐστὶν ὡς ἡ ΔΕΖ βάσις πρὸς τὴν ΑΒΓ βάσιν, οὕτως τὸ Χ στερεὸν πρὸς τὴν ΑΒΓΗ πυραμίδα. ὡς δὲ τὸ Χ στερεὸν πρὸς τὴν ΑΒΓΗ πυραμίδα, οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλασσόν τι τῆς ΑΒΓΗ πυραμίδος, ὡς ἔμπροσθεν ἐδείχθη· καὶ ὡς ἄρα ἡ ΔΕΖ βάσις πρὸς τὴν ΑΒΓ βάσιν, οὕτως ἡ ΔΕΖΘ πυραμὶς πρὸς ἔλασσόν τι τῆς ΑΒΓΗ πυραμίδος· ὅπερ ἄτοπον ἐδείχθη. οὐκ ἄρα ἐστὶν ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως ἡ ΑΒΓΗ πυραμὶς πρὸς μεῖζόν τι τῆς ΔΕΖΘ πυραμίδος στερεόν. ἐδείχθη δέ, ὅτι οὐδὲ πρὸς ἔλασσον. ἔστιν ἄρα ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως ἡ ΑΒΓΗ πυραμὶς πρὸς τὴν ΔΕΖ βάσιν, οὕτως ἡ ΑΒΓΗ πυραμὶς πρὸς τὴν ΔΕΖ βάσιν, οὕτως ἡ ΑΒΓΗ πυραμὶς πρὸς τὴν ΔΕΖΘ πυραμίδα· ὅπερ ἔδει δεῖξαι.

₹'.

Αἱ ủπὸ τὸ αὐτὸ ὕψος οὕσαι πυραμίδες καὶ πολυγώνους ἔχουσαι βάσεις πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις.

Έστωσαν ὑπὸ τὸ αὐτὸ ὕψος πυραμίδες, ὧν [αί] βάσεις μὲν τὰ ΑΒΓΔΕ, ΖΗΘΚΛ πολύγωνα, κορυφαὶ δὲ τὰ Μ, Ν σημεῖα· λέγω, ὅτι ἐστὶν ὡς ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν, οὕτως ἡ ΑΒΓΔΕΜ πυραμὶς πρὸς τὴν ΖΗΘ-ΚΛΝ πυραμίδα.

Ἐπεζεύχθωσαν γὰρ αἱ ΑΓ, ΑΔ, ΖΘ, ΖΚ. ἐπεὶ οὕν δύο πυραμίδες εἰσὶν αἱ ΑΒΓΜ, ΑΓΔΜ τριγώνους ἔχουσαι βάσεις καὶ ὕψος ἴσον, πρὸς ἀλλήλας εἰσὶν ὡς αἱ βάσεις ἔστιν ἄρα ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΑΓΔ βάσιν, οὕτως ἡ ΑΒΓΜ πυραμὶς πρὸς τὴν ΑΓΔΜ πυραμίδα. καὶ συνθέντι ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΑΓΔ βάσιν, οὕτως ἡ ΑΒΓΔΜ

not to some solid less than pyramid DEFH. So, similarly, we can show that base DEF is not to base ABC, as pyramid DEFH (is) to some solid less than pyramid ABCG either.

So, I say that neither is base ABC to base DEF, as pyramid ABCG (is) to some solid greater than pyramid DEFH.

For, if possible, let it be (in this ratio) to some greater (solid), W. Thus, inversely, as base DEF (is) to base ABC, so solid W (is) to pyramid ABCG [Prop. 5.7. corr.]. And as solid W (is) to pyramid ABCG, so pyramid DEFH (is) to some (solid) less than pyramid ABCG, as shown before [Prop. 12.2 lem.]. And, thus, as base DEF (is) to base ABC, so pyramid DEFH (is) to some (solid) less than pyramid ABCG [Prop. 5.11]. The very thing was shown (to be) absurd. Thus, base ABC is not to base DEF, as pyramid ABCG (is) to some solid greater than pyramid DEFH. And, it was shown that neither (is it in this ratio) to a lesser (solid). Thus, as base ABC is to base DEF, so pyramid ABCG (is) to pyramid DEFH. (Which is) the very thing it was required to show.

Proposition 6

Pyramids which are of the same height, and have polygonal bases, are to one another as their bases.

Let there be pyramids of the same height whose bases (are) the polygons ABCDE and FGHKL, and apexes the points M and N (respectively). I say that as base ABCDE is to base FGHKL, so pyramid ABCDEM (is) to pyramid FGHKLN.

For let AC, AD, FH, and FK have been joined. Therefore, since ABCM and ACDM are two pyramids having triangular bases and equal height, they are to one another as their bases [Prop. 12.5]. Thus, as base ABC is to base ACD, so pyramid ABCM (is) to pyramid ACDM. And, via composition, as base ABCD

πυραμίς πρός τὴν ΑΓΔΜ πυραμίδα. ἀλλὰ καὶ ὡς ἡ ΑΓΔ βάσις πρὸς τὴν ΑΔΕ βάσιν, οὕτως ἡ ΑΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα. δι' ἴσου ἄρα ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΑΔΕ βάσιν, οὕτως ἡ ΑΒΓΔΜ πυραμὶς πρὸς τὴν ΑΔΕΜ πυραμίδα. καὶ συνθέντι πάλιν, ὡς ἡ ΑΒΓΔΕ βάσις πρὸς τὴν ΑΔΕ βάσιν, οὕτως ή ΑΒΓΔΕΜ πυραμίς πρὸς τὴν ΑΔΕΜ πυραμίδα. ὁμοίως δὴ δειχθήσεται, ὅτι καὶ ὡς ἡ ΖΗΘΚΛ βάσις πρὸς τὴν ΖΗΘ βάσιν, οὕτως καὶ ἡ ΖΗΘΚΛΝ πυραμὶς πρός τὴν ΖΗΘΝ πυραμίδα. καὶ ἐπεὶ δύο πυραμίδες είσὶν αἱ ΑΔΕΜ, ΖΗΘΝ τριγώνους ἔχουσαι βάσεις καὶ ὕψος ἴσον, ἔστιν ἄρα ὡς ἡ ΑΔΕ βάσις πρὸς τὴν ΖΗΘ βάσιν, οὕτως ή ΑΔΕΜ πυραμίς πρὸς τὴν ΖΗΘΝ πυραμίδα. ἀλλ' ὡς ἡ ΑΔΕ βάσις πρὸς τὴν ΑΒΓΔΕ βάσιν, οὕτως ῆν ἡ ΑΔΕΜ πυραμίς πρός τὴν ΑΒΓΔΕΜ πυραμίδα. καὶ δι' ἴσου ἄρα ὡς ή ΑΒΓΔΕ βάσις πρὸς τὴν ΖΗΘ βάσιν, οὕτως ἡ ΑΒΓΔΕΜ πυραμίς πρός τὴν ΖΗΘΝ πυραμίδα. ἀλλὰ μὴν καὶ ὡς ἡ ΖΗΘ βάσις πρὸς τὴν ΖΗΘΚΛ βάσιν, οὕτως ῆν καὶ ἡ ΖΗΘΝ πυραμίς πρός τὴν ΖΗΘΚΛΝ πυραμίδα, καὶ δι' ἴσου ἄρα ὡς ἡ $AB\Gamma\Delta E$ βάσις πρὸς τὴν $ZH\Theta K\Lambda$ βάσιν, οὕτως ἡ $AB\Gamma\Delta EM$ πυραμίς πρός την ΖΗΘΚΛΝ πυραμίδα όπερ έδει δεῖξαι.

۲'.

Πᾶν πρίσμα τρίγωνον ἔχον βάσιν διαιρεῖται εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις τριγώνους βάσεις ἐχούσας.

Έστω πρίσμα, οὕ βάσις μὲν τὸ $AB\Gamma$ τρίγωνον, ἀπεναντίον δὲ τὸ ΔEZ · λέγω, ὅτι τὸ $AB\Gamma\Delta EZ$ πρίσμα διαιρεῖται εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις τριγώνους ἐχούσας βάσεις.

Έπεζεύχθωσαν γὰρ αἱ $B\Delta$, $E\Gamma$, $\Gamma\Delta$. ἐπεὶ παραλληλόγραμμόν ἐστι τὸ $ABE\Delta$, διάμετρος δὲ αὐτὸῦ ἐστινή $B\Delta$, ἴσον ἄρα ἐστι τὸ $AB\Delta$ τρίγωνον τῷ $EB\Delta$ τρίγωνων

(is) to base ACD, so pyramid ABCDM (is) to pyramid ACDM [Prop. 5.18]. But, as base ACD (is) to base ADE, so pyramid ACDM (is) also to pyramid ADEM [Prop. 12.5]. Thus, via equality, as base ABCD(is) to base ADE, so pyramid ABCDM (is) to pyramid ADEM [Prop. 5.22]. And, again, via composition, as base ABCDE (is) to base ADE, so pyramid ABCDEM(is) to pyramid *ADEM* [Prop. 5.18]. So, similarly, it can also be shown that as base FGHKL (is) to base FGH, so pyramid FGHKLN (is) also to pyramid FGHN. And since ADEM and FGHN are two pyramids having triangular bases and equal height, thus as base ADE (is) to base FGH, so pyramid ADEM (is) to pyramid FGHN[Prop. 12.5]. But, as base ADE (is) to base ABCDE, so pyramid ADEM (was) to pyramid ABCDEM. Thus, via equality, as base ABCDE (is) to base FGH, so pyramid ABCDEM (is) also to pyramid FGHN [Prop. 5.22]. But, furthermore, as base FGH (is) to base FGHKL, so pyramid FGHN was also to pyramid FGHKLN. Thus, via equality, as base ABCDE (is) to base FGHKL, so pyramid ABCDEM (is) also to pyramid FGHKLN[Prop. 5.22]. (Which is) the very thing it was required to show.

Proposition 7

Any prism having a triangular base is divided into three pyramids having triangular bases (which are) equal to one another.

Let there be a prism whose base (is) triangle ABC, and opposite (plane) DEF. I say that prism ABCDEF is divided into three pyramids having triangular bases (which are) equal to one another.

For let BD, EC, and CD have been joined. Since ABED is a parallelogram, and BD is its diagonal, triangle ABD is thus equal to triangle EBD [Prop. 1.34].

καὶ ἡ πυραμὶς ἄρα, ῆς βάσις μὲν τὸ ΑΒΔ τρίγωνον, κορυφή δὲ τὸ Γ σημεῖον, ἴση ἐστὶ πυραμίδι, ἤς βάσις μέν έστι τὸ ΔΕΒ τρίγωνον, χορυφή δὲ τὸ Γ σημεῖον. ἀλλὰ ή πυραμίς, ής βάσις μέν ἐστι τὸ ΔΕΒ τρίγωνον, κορυφή δὲ τὸ Γ σημεῖον, ἡ αὐτή ἐστι πυραμίδι, ἤς βάσις μέν ἐστι τὸ ΕΒΓ τρίγωνον, κορυφή δὲ τὸ Δ σημεῖον ὑπὸ γὰρ τῶν αὐτῶν ἐπιπέδων περιέχεται. καὶ πυραμὶς ἄρα, ἤς βάσις μέν έστι τὸ $AB\Delta$ τρίγωνον, χορυφή δὲ τὸ Γ σημεῖον, ἴση ἐστὶ πυραμίδι, ής βάσις μέν έστι τὸ ΕΒΓ τρίγωνον, χορυφή δὲ τὸ Δ σημεῖον. πάλιν, ἐπεὶ παραλληλόγραμμόν ἐστι τὸ ΖΓΒΕ, διάμετρος δέ ἐστιν αὐτοῦ ἡ ΓΕ, ἴσον ἐστὶ τὸ ΓΕΖ τρίγωνον τῷ ΓΒΕ τριγώνῳ. καὶ πυραμὶς ἄρα, ῆς βάσις μέν ἐστι τὸ ΒΓΕ τρίγωνον, χορυφή δὲ τὸ Δ σημεῖον, ἴση ἐστὶ πυραμίδι, ής βάσις μέν ἐστι τὸ ΕΓΖ τρίγωνον, χορυφή δὲ τὸ Δ σημεῖον. ἡ δὲ πυραμίς, ῆς βάσις μέν ἐστι τὸ ${\rm B}{\rm \Gamma}{\rm E}$ τρίγωνον, χορυφή δὲ τὸ Δ σημεῖον, ἴση ἐδείχθη πυραμίδι, ῆς βάσις μέν ἐστι τὸ ΑΒΔ τρίγωνον, κορυφή δὲ τὸ Γ σημεῖον καὶ πυραμὶς ἄρα, ῆς βάσις μέν ἐστι τὸ ΓΕΖ τρίγωνον, κορυφή δὲ τὸ Δ σημεῖον, ἴση ἐστὶ πυραμίδι, ἤς βάσις μέν [ἐστι] τὸ ΑΒΔ τρίγωνον, χορυφή δὲ τὸ Γ σημεῖον διήρηται ἄρα τὸ $AB\Gamma\Delta EZ$ πρίσμα εἰς τρεῖς πυραμίδας ἴσας ἀλλήλαις τριγώνους έχούσας βάσεις.

Καὶ ἐπεὶ πυραμίς, ῆς βάσις μέν ἐστι τὸ $AB\Delta$ τρίγωνον, κορυφὴ δὲ τὸ Γ σημεῖον, ἡ αὐτή ἐστι πυραμίδι, ῆς βάσις τὸ ΓAB τρίγωνον, κορυφὴ δὲ τὸ Δ σημεῖον· ὑπὸ γὰρ τῶν αὐτῶν ἐπιπέδων περιέχονται· ἡ δὲ πυραμίς, ῆς βάσις τὸ $AB\Delta$ τρίγωνον, κορυφὴ δὲ τὸ Γ σημεῖον, τρίτον ἐδείχθη τοῦ πρίσματος, οὕ βάσις τὸ $AB\Gamma$ τρίγωνον, ἀπεναντίον δὲ τὸ ΔEZ , καὶ ἡ πυραμὶς ἄρα, ῆς βάσις τὸ $AB\Gamma$ τρίγωνον, κορυφὴ δὲ τὸ Δ σημεῖον, τρίτον ἐστὶ τοῦ πρίσματος τοῦ ἔχοντος βάσις τὴν αὐτὴν τὸ $AB\Gamma$ τρίγωνον, ἀπεναντίον δὲ τὸ ΔEZ .

Πόρισμα.

Έχ δὴ τούτου φανερόν, ὅτι πᾶσα πυραμὶς τρίτον μέρος ἐστὶ τοῦ πρίσματος τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῆ καὶ ὕψος ἴσον· ὅπερ ἔδει δεῖξαι.

η'.

Αἱ ὅμοιαι πυραμίδες καὶ τριγώνους ἔχουσαι βάσεις ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν.

Έστωσαν ὅμοιαι καὶ ὁμοίως κείμεναι πυραμίδες, ῶν βάσεις μέν εἰσι τὰ ΑΒΓ, ΔΕΖ τρίγωνα, κορυφαὶ δὲ τὰ Η, Θ σημεῖα· λέγω, ὅτι ἡ ΑΒΓΗ πυραμὶς πρὸς τὴν ΔΕΖΘ πυραμίδα τριπλασίονα λόγον ἔγει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ.

And, thus, the pyramid whose base (is) triangle ABD, and apex the point C, is equal to the pyramid whose base is triangle DEB, and apex the point C [Prop. 12.5]. But, the pyramid whose base is triangle DEB, and apex the point C, is the same as the pyramid whose base is triangle EBC, and apex the point D. For they are contained by the same planes. And, thus, the pyramid whose base is ABD, and apex the point C, is equal to the pyramid whose base is EBC and apex the point D. Again, since FCBE is a parallelogram, and CE is its diagonal, triangle CEF is equal to triangle CBE [Prop. 1.34]. And, thus, the pyramid whose base is triangle BCE, and apex the point D, is equal to the pyramid whose base is triangle ECF, and apex the point D [Prop. 12.5]. And the pyramid whose base is triangle BCE, and apex the point D, was shown (to be) equal to the pyramid whose base is triangle ABD, and apex the point C. Thus, the pyramid whose base is triangle CEF, and apex the point D, is also equal to the pyramid whose base [is] triangle ABD, and apex the point C. Thus, the prism ABCDEF has been divided into three pyramids having triangular bases (which are) equal to one another.

And since the pyramid whose base is triangle ABD, and apex the point C, is the same as the pyramid whose base is triangle CAB, and apex the point D. For they are contained by the same planes. And the pyramid whose base (is) triangle ABD, and apex the point C, was shown (to be) a third of the prism whose base is triangle ABC, and opposite (plane) DEF, thus the pyramid whose base is triangle ABC, and apex the point D, is also a third of the pyramid having the same base, triangle ABC, and opposite (plane) DEF.

Corollary

And, from this, (it is) clear that any pyramid is the third part of the prism having the same base as it, and an equal height. (Which is) the very thing it was required to show.

Proposition 8

Similar pyramids which also have triangular bases are in the cubed ratio of their corresponding sides.

Let there be similar, and similarly laid out, pyramids whose bases are triangles ABC and DEF, and apexes the points G and H (respectively). I say that pyramid ABCG has to pyramid DEFH the cubed ratio of that BC (has) to EF.

Συμπεπληρώσθω γὰρ τὰ ΒΗΜΛ, ΕΘΠΟ στερεὰ παραλληλεπίπεδα. καὶ ἐπεὶ ὁμοία ἐστὶν ἡ ΑΒΓΗ πυραμὶς τῆ ΔΕΖΘ πυραμίδι, ἵση ἄρα ἐστὶν ἡ μὲν ὑπὸ ΑΒΓ γωνία τῆ ὑπὸ ΔΕΖ γωνία, ή δὲ ὑπὸ ΗΒΓ τῆ ὑπὸ ΘΕΖ, ή δὲ ὑπὸ ΑΒΗ τῆ ὑπὸ ΔΕΘ, καί ἐστιν ὡς ἡ ΑΒ πρὸς τὴν ΔΕ, οὕτως ἡ ΒΓ πρὸς τὴν ΕΖ, καὶ ἡ ΒΗ πρὸς τὴν ΕΘ. καὶ ἐπεί ἐστιν ὡς ἡ ΑΒ πρὸς τὴν ΔE , οὕτως ἡ $B\Gamma$ πρὸς τὴν EZ, καὶ περὶ ἴσας γωνίας αί πλευραὶ ἀνάλογόν είσιν, ὅμοιον ἄρα ἐστὶ τὸ ΒΜ παραλληλόγραμμον τῷ ΕΠ παραλληλογράμμῳ. διὰ τὰ αὐτὰ δὴ καὶ τὸ μὲν ΒΝ τῷ ΕΡ ὅμοιόν ἐστι, τὸ δὲ ΒΚ τῷ ΕΞ΄ τὰ τρία άρα τὰ ΜΒ, ΒΚ, ΒΝ τρισὶ τοῖς ΕΠ, ΕΞ, ΕΡ ὅμοιά ἐστιν. άλλὰ τὰ μὲν τρία τὰ ΜΒ, ΒΚ, ΒΝ τρισὶ τοῖς ἀπεναντίον ἴσα τε καὶ ὅμοιά ἐστιν, τὰ δὲ τρία τὰ ΕΠ, ΕΞ, ΕΡ τρισὶ τοῖς ἀπεναντίον ἴσα τε καὶ ὅμοιά ἐστιν. τὰ ΒΗΜΛ, ΕΘΠΟ ἄρα στερεὰ ὑπὸ ὁμοίων ἐπιπέδων ἴσων τὸ πλῆθος περιέχεται. όμοιον ἄρα ἐστὶ τὸ ΒΗΜΛ στερεὸν τῷ ΕΘΠΟ στερεῷ. τὰ δὲ ὄμοια στερεὰ παραλληλεπίπεδα ἐν τριπλασίονι λόγῳ ἐστὶ τῶν ὁμολόγων πλευρῶν. τὸ ΒΗΜΛ ἄρα στερεὸν πρὸς τὸ ΕΘΠΟ στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ ὁμόλογος πλευρά ή ΒΓ πρός την δμόλογον πλευράν την ΕΖ. ώς δὲ τὸ ΒΗΜΛ στερεὸν πρὸς τὸ ΕΘΠΟ στερεόν, οὕτως ἡ ΑΒΓΗ πυραμίς πρός τὴν ΔΕΖΘ πυραμίδα, ἐπειδήπερ ἡ πυραμίς ἔχτον μέρος ἐστὶ τοῦ στερεοῦ διὰ τὸ καὶ τὸ πρίσμα ἤμισυ ον τοῦ στερεοῦ παραλληλεπιπέδου τριπλάσιον εἶναι τῆς πυραμίδος. καὶ ἡ ΑΒΓΗ ἄρα πυραμὶς πρὸς τὴν ΔΕΖΘ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖόπερ έδει δεῖξαι.

Πόρισμα.

Έχ δὴ τούτου φανερόν, ὅτι καὶ αἱ πολυγώνους ἔχουσαι βάσεις ὅμοιαι πυραμίδες πρὸς ἀλλήλας ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ὁμολόγων πλευρῶν. διαιρεθεισῶν γὰρ αὐτῶν εἰς τὰς ἐν αὐταῖς πυραμίδας τριγώνους βάσεις ἐχούσας τῷ καὶ τὰ ὅμοια πολύγωνα τῶν βάσεων εἰς ὅμοια τρίγωνα διαιρεῖσθαι καὶ ἴσα τῷ πλήθει καὶ ὁμόλογα τοῖς ὅλοις ἔσται

For let the parallelepiped solids BGML and EHQPhave been completed. And since pyramid ABCG is similar to pyramid DEFH, angle ABC is thus equal to angle DEF, and GBC to HEF, and ABG to DEH. And as ABis to DE, so BC (is) to EF, and BG to EH [Def. 11.9]. And since as AB is to DE, so BC (is) to EF, and (so) the sides around equal angles are proportional, parallelogram BM is thus similar to paralleleogram EQ. So, for the same (reasons), BN is also similar to ER, and BK to EO. Thus, the three (parallelograms) MB, BK, and BN are similar to the three (parallelograms) EQ, EO, ER (respectively). But, the three (parallelograms) MB, BK, and BN are (both) equal and similar to the three opposite (parallelograms), and the three (parallelograms) EQ, EO, and ER are (both) equal and similar to the three opposite (parallelograms) [Prop. 11.24]. Thus, the solids BGML and EHQP are contained by equal numbers of similar (and similarly laid out) planes. Thus, solid BGML is similar to solid EHQP [Def. 11.9]. And similar parallelepiped solids are in the cubed ratio of corresponding sides [Prop. 11.33]. Thus, solid BGML has to solid EHQP the cubed ratio that the corresponding side BC (has) to the corresponding side EF. And as solid BGML (is) to solid EHQP, so pyramid ABCG (is) to pyramid DEFH, inasmuch as the pyramid is the sixth part of the solid, on account of the prism, being half of the parallelepiped solid [Prop. 11.28], also being three times the pyramid [Prop. 12.7]. Thus, pyramid ABCG also has to pyramid DEFH the cubed ratio that BC (has) to EF. (Which is) the very thing it was required to show.

Corollary

So, from this, (it is) also clear that similar pyramids having polygonal bases (are) to one another as the cubed ratio of their corresponding sides. For, dividing them into the pyramids (contained) within them which have triangular bases, with the similar polygons of the bases also being divided into similar triangles (which are)

ώς [ή] ἐν τῆ ἑτέρα μία πυραμὶς τρίγωνον ἔχουσα βάσιν πρὸς τὴν ἐν τῆ ἑτέρα μίαν πυραμίδα τρίγωνον ἔχουσαν βάσιν, οὕτως καὶ ἄπασαι αὶ ἐν τῆ ἑτέρα πυραμίδι πυραμίδες τριγώνους ἔχουσαι βάσεις πρὸς τὰς ἐν τῆ ἑτέρα πυραμίδι πυραμίδις πυραμίδας τριγώνους βάσεις ἐχούσας, τουτέστιν αὐτὴ ἡ πολύγωνον βάσιν ἔχουσαν πυραμίς πρὸς τὴν πολύγωνον βάσιν ἔχουσαν πυραμὶς πρὸς τὴν τρίγωνον βάσιν ἔχουσαν ἐν τριπλασίονι λόγω ἐστὶ τῶν ὁμολόγον πλευρῶν. καὶ ἡ πολύγωνον ἄρα βάσιν ἔχουσαν πρὸς τὴν ὁμοίαν βάσιν ἔχουσαν τριπλασίονα λόγον ἔχει ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν.

 ϑ' .

Τῶν ἴσων πυραμίδων καὶ τριγώνους βάσεις ἐχουσῶν ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· καὶ ῶν πυραμίδων τριγώνους βάσεις ἐχουσῶν ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν, ἴσαι εἰσὶν ἐκεῖναι.

μεστωσαν γὰρ ἴσαι πυραμίδες τριγώνους βάσεις ἔχουσαι τὰς $AB\Gamma$, ΔEZ , πορυφὰς δὲ τὰ H, Θ σημεῖα λέγω, ὅτι τῶν $AB\Gamma H$, $\Delta EZ\Theta$ πυραμίδων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν, καἱ ἐστιν ὡς ἡ $AB\Gamma$ βάσις πρὸς τὴν ΔEZ βάσιν, οὕτως τὸ τῆς $\Delta EZ\Theta$ πυραμίδος ὕψος πρὸς τὸ τῆς $\Delta B\Gamma H$ πυραμίδος ὕψος.

Συμπεπληρώσθω γὰρ τὰ ΒΗΜΛ, ΕΘΠΟ στερεὰ παραλληλεπίπεδα. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΑΒΓΗ πυραμὶς τῆ ΔΕΖΘ πυραμίδι, καί ἐστι τῆς μὲν ΑΒΓΗ πυραμίδος ἑξαπλάσιον τὸ ΒΗΜΛ στερεόν, τῆς δὲ ΔΕΖΘ πυραμίδος ἑξαπλάσιον τὸ ΕΘΠΟ στερεόν, ἴσον ἄρα ἐστὶ τὸ ΒΗΜΛ στερεὸν τῷ ΕΘΠΟ στερεῷ. τῶν δὲ ἴσων στερεῶν παραλληλεπιπώδων

both equal in number, and corresponding, to the wholes [Prop. 6.20]. As one pyramid having a triangular base in the former (pyramid having a polygonal base is) to one pyramid having a triangular base in the latter (pyramid having a polygonal base), so (the sum of) all the pyramids having triangular bases in the former pyramid will also be to (the sum of) all the pyramids having triangular bases in the latter pyramid [Prop. 5.12]—that is to say, the (former) pyramid itself having a polygonal base to the (latter) pyramid having a polygonal base. And a pyramid having a triangular base is to a (pyramid) having a triangular base in the cubed ratio of corresponding sides [Prop. 12.8]. Thus, a (pyramid) having a polygonal base also has to to a (pyramid) having a similar base the cubed ratio of a (corresponding) side to a (corresponding) side.

Proposition 9

The bases of equal pyramids which also have triangular bases are reciprocally proportional to their heights. And those pyramids which have triangular bases whose bases are reciprocally proportional to their heights are equal.

For let there be (two) equal pyramids having the triangular bases ABC and DEF, and apexes the points G and H (respectively). I say that the bases of the pyramids ABCG and DEFH are reciprocally proportional to their heights, and (so) that as base ABC is to base DEF, so the height of pyramid DEFH (is) to the height of pyramid ABCG.

For let the parallelepiped solids BGML and EHQP have been completed. And since pyramid ABCG is equal to pyramid DEFH, and solid BGML is six times pyramid ABCG (see previous proposition), and solid EHQP (is) six times pyramid DEFH, solid BGML is

ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· ἔστιν ἄρα ὡς ἡ ΒΜ βάσις πρὸς τὴν ΕΠ βάσιν, οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος. ἀλλ' ὡς ἡ ΒΜ βάσις πρὸς τὴν ΕΠ, οὕτως τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον. καὶ ὡς ἄρα τὸ ΑΒΓ τρίγωνον πρὸς τὸ ΔΕΖ τρίγωνον, οὕτως τὸ τοῦ ΕΘΠΟ στερεοῦ ὕψος πρὸς τὸ τοῦ ΒΗΜΛ στερεοῦ ὕψος. ἀλλὰ τὸ μὲν τοῦ ΕΘΠΟ στερεοῦ ὕψος τὸ αὐτὸ ἐστι τῷ τῆς ΔΕΖΘ πυραμίδος ὕψει, τὸ δὲ τοῦ ΒΗΜΛ στερεοῦ ὕψος τὸ αὐτό ἐστι τῷ τῆς ΑΒΓΗ πυραμίδος ὕψει· ἔστιν ἄρα ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως τὸ τῆς ΔΕΖΘ πυραμίδος ὕψος πρὸς τὸ τῆς ΑΒΓΗ πυραμίδος ὕψος. τῶν ΑΒΓΗ, ΔΕΖΘ ἄρα πυραμίδων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν.

Άλλὰ δὴ τῶν ΑΒΓΗ, ΔΕΖΘ πυραμίδων ἀντιπεπονθέτωσαν αἱ βάσεις τοῖς ὕψεσιν, καὶ ἔστω ὡς ἡ ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως τὸ τῆς ΔΕΖΘ πυραμίδος ὕψος πρὸς τὸ τῆς ΑΒΓΗ πυραμίδος ὕψος· λέγω, ὅτι ἴση ἐστὶν ἡ ΑΒΓΗ πυραμὶς τῆ ΔΕΖΘ πυραμίδι.

Tῶν γὰρ αὐτῶν κατασκευασθέντων, ἐπεί ἐστιν ὡς ἡ $AB\Gamma$ βάσις πρὸς τὴν ΔEZ βάσιν, οὕτως τὸ τῆς $\Delta EZ\Theta$ πυραμίδος ύψος πρὸς τὸ τῆς ΑΒΓΗ πυραμίδος ύψος, ἀλλ' ὡς ή ΑΒΓ βάσις πρὸς τὴν ΔΕΖ βάσιν, οὕτως τὸ ΒΜ παραλληλόγραμμον πρός τὸ ΕΠ παραλληλόγραμμον, καὶ ὡς ἄρα τὸ ΒΜ παραλληλόγραμμον πρὸς τὸ ΕΠ παραλληλόγραμμον, οὕτως τὸ τῆς ΔΕΖΘ πυραμίδος ὕψος πρὸς τὸ τῆς ΑΒΓΗ πυραμίδος ὕψος. ἀλλὰ τὸ [μὲν] τῆς ΔΕΖΘ πυραμίδος ὕψος τὸ αὐτό ἐστι τῷ τοῦ ΕΘΠΟ παραλληλεπιπέδου ὕψει, τὸ δὲ τῆς ΑΒΓΗ πυραμίδος ὕψος τὸ αὐτό ἐστι τῷ τοῦ ΒΗΜΛ παραλληλεπιπέδου ύψει έστιν ἄρα ώς ή ΒΜ βάσις πρός τὴν ΕΠ βάσιν, οὕτως τὸ τοῦ ΕΘΠΟ παραλληλεπιπέδου ύψος πρὸς τὸ τοῦ ΒΗΜΛ παραλληλεπιπέδου ύψος. ὧν δὲ στερεῶν παραλληλεπιπέδων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν, ἴσα ἐστὶν ἐχεῖνα· ἴσον ἄρα ἐστὶ τὸ ΒΗΜΛ στερεόν παραλληλεπίπεδον τῷ ΕΘΠΟ στερεῷ παραλληλεπιπέδω. καί ἐστι τοῦ μὲν ΒΗΜΛ ἔκτον μέρος ἡ ΑΒΓΗ πυραμίς, τοῦ δὲ ΕΘΠΟ παραλληλεπιπέδου ἔχτον μέρος ἡ ΔΕΖΘ πυραμίς: ἴση ἄρα ἡ ΑΒΓΗ πυραμίς τῆ ΔΕΖΘ πυραμίδι.

Τῶν ἄρα ἴσων πυραμίδων καὶ τριγώνους βάσεις ἐχουσῶν ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· καὶ ὧν πυραμίδων τριγώνους βάσεις ἐχουσῶν ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν, ἴσαι εἰσὶν ἐκεῖναι· ὅπερ ἔδει δεῖξαι.

ι΄.

Πᾶς κῶνος κυλίνδρου τρίτον μέρος ἐστὶ τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον.

Έχέτω γὰρ κῶνος κυλίνδρῷ βάσιν τε τὴν αὐτὴν τὸν

thus equal to solid EHQP. And the bases of equal parallelepiped solids are reciprocally proportional to their heights [Prop. 11.34]. Thus, as base BM is to base EQ, so the height of solid EHQP (is) to the height of solid BGML. But, as base BM (is) to base EQ, so triangle ABC (is) to triangle DEF [Prop. 1.34]. And, thus, as triangle ABC (is) to triangle DEF, so the height of solid EHQP (is) to the height of solid BGML [Prop. 5.11]. But, the height of solid EHQP is the same as the height of pyramid DEFH, and the height of solid BGML is the same as the height of pyramid ABCG. Thus, as base ABC is to base DEF, so the height of pyramid DEFH (is) to the height of pyramid ABCG. Thus, the bases of pyramids ABCG and DEFH are reciprocally proportional to their heights.

And so, let the bases of pyramids ABCG and DEFH be reciprocally proportional to their heights, and (thus) let base ABC be to base DEF, as the height of pyramid DEFH (is) to the height of pyramid ABCG. I say that pyramid ABCG is equal to pyramid DEFH.

For, with the same construction, since as base ABCis to base DEF, so the height of pyramid DEFH (is) to the height of pyramid ABCG, but as base ABC (is) to base DEF, so parallelogram BM (is) to parallelogram EQ [Prop. 1.34], thus as parallelogram BM (is) to parallelogram EQ, so the height of pyramid DEFH (is) also to the height of pyramid ABCG [Prop. 5.11]. But, the height of pyramid DEFH is the same as the height of parallelepiped EHQP, and the height of pyramid ABCGis the same as the height of parallelepiped BGML. Thus, as base BM is to base EQ, so the height of parallelepiped EHQP (is) to the height of parallelepiped BGML. And those parallelepiped solids whose bases are reciprocally proportional to their heights are equal [Prop. 11.34]. Thus, the parallelepiped solid BGML is equal to the parallelepiped solid EHQP. And pyramid ABCG is a sixth part of BGML, and pyramid DEFH a sixth part of parallelepiped EHQP. Thus, pyramid ABCG is equal to pyramid DEFH.

Thus, the bases of equal pyramids which also have triangular bases are reciprocally proportional to their heights. And those pyramids having triangular bases whose bases are reciprocally proportional to their heights are equal. (Which is) the very thing it was required to show.

Proposition 10

Every cone is the third part of the cylinder which has the same base as it, and an equal height.

For let there be a cone (with) the same base as a cylin-

 Σ ΤΟΙΧΕΙΩΝ \mathfrak{g}' . ELEMENTS BOOK 12

 $AB\Gamma\Delta$ χύχλον καὶ ὕψος ἴσον· λέγω, ὅτι ὁ κῶνος τοῦ κυλίνδρου τρίτον ἐστὶ μέρος, τουτέστιν ὅτι ὁ κύλινδρος τοῦ κώνου τριπλασίων ἐστίν.

Εἰ γὰρ μή ἐστιν ὁ κύλινδρος τοῦ κώνου τριπλασίων, ἔσται ὁ κύλινδρος τοῦ κώνου ἤτοι μείζων ἢ τριπλασίων ἢ ἐλάσσων ἢ τριπλασίων. ἔστω πρότερον μείζων ἢ τριπλασίων, καὶ ἐγγεγράφθω εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ ΑΒΓΔ· τὸ δὴ ΑΒΓΔ τετράγωνον μείζόν ἐστιν ἢ τὸ ήμισυ τοῦ ${
m AB}\Gamma\Delta$ χύχλου. χαὶ ἀνεστάτω ἀπὸ τοῦ ${
m AB}\Gamma\Delta$ τετραγώνου πρίσμα ἰσοϋψὲς τῷ χυλίνδρῳ. τὸ δὴ ἀνιστάμενον πρίσμα μεῖζόν ἐστιν ἢ τὸ ἤμισυ τοῦ χυλίνδου, ἐπειδήπερ κἂν περί τὸν ΑΒΓΔ κύκλον τετράγωνον περιγράψωμεν, τὸ ἐγγεγραμμένον εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον ημισύ έστι τοῦ περιγεγραμμένου· καί έστι τὰ ἀπ' αὐτῶν άνιστάμενα στερεά παραλληλεπίπεδα πρίσματα ἰσοϋψῆ· τὰ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντα στερεὰ παραλληλεπίπεδα πρὸς ἄλληλά ἐστιν ὡς αἱ βάσεις· καὶ τὸ ἐπὶ τοῦ ΑΒΓΔ ἄρα τετραγώνου ἀνασταθέν πρίσμα ἥμισύ ἐστι τοῦ ἀνασταθέντος πρίσματος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου καί ἐστιν ὁ κύλινδρος ἐλάττων τοῦ πρίσματος τοῦ ἀνατραθέντος ἀπὸ τοῦ περὶ τὸν ΑΒΓΔ κύκλον περιγραφέντος τετραγώνου· τὸ ἄρα πρίσμα τὸ ἀνασταθὲν ἀπὸ τοῦ ${\rm AB}\Gamma\Delta$ τετραγώνου ἰσοϋψὲς τῷ κυλίνδρῳ μεῖζόν ἐστι τοῦ ἡμίσεως τοῦ χυλίνδρου. τετμήσθωσαν αἱ ΑΒ, ΒΓ, $\Gamma\Delta$, ΔA περιφέρειαι δίχα κατά τὰ E, Z, H, Θ σημεῖα, καὶ ἐπεζεύχθωσαν αί ΑΕ, ΕΒ, ΒΖ, ΖΓ, ΓΗ, ΗΔ, ΔΘ, ΘΑ· καὶ ἔκαστον ἄρα τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων μειζόν ἐστιν ἢ τὸ ἤμισυ τοῦ καθ' ἑαυτὸ τηήματος τοῦ ΑΒΓΔ κύκλου, ώς ἔμπροσθεν ἐδείκνυμεν. ἀνεστάτω ἐφὸ έκάστου τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων πρίσματα ἰσοϋψῆ τῷ κυλίνδρῳ. καὶ ἔκαστον ἄρα τῶν ἀνασταθέντων πρισμάτων μεῖζόν ἐστιν ἢ τὸ ἤμισυ μέρος τοῦ καθ' ἑαυτὸ τμήματος τοῦ χυλίνδρου, ἐπειδήπερ ἐὰν διὰ τῶν Ε, Ζ, Η, Θ σημείων παραλλήλους ταῖς ΑΒ, ΒΓ, ΓΔ, ΔΑ ἀγάγωμεν, καὶ συμπληρώσωμεν τὰ ἐπὶ τῶν ΑΒ, ΒΓ, ΓΔ, ΔΑ παραλder, (namely) the circle *ABCD*, and an equal height. I say that the cone is the third part of the cylinder—that is to say, that the cylinder is three times the cone.

For if the cylinder is not three times the cone then the cylinder will be either more than three times, or less than three times, (the cone). Let it, first of all, be more than three times (the cone). And let the square ABCD have been inscribed in circle ABCD [Prop. 4.6]. So, square ABCD is more than half of circle ABCD [Prop. 12.2]. And let a prism of equal height to the cylinder have been set up on square ABCD. So, the prism set up is more than half of the cylinder, inasmuch as if we also circumscribe a square around circle ABCD [Prop. 4.7] then the square inscribed in circle ABCD is half of the circumscribed (square). And the solids set up on them are parallelepiped prisms of equal height. And parallelepiped solids having the same height are to one another as their bases [Prop. 11.32]. And, thus, the prism set up on square ABCD is half of the prism set up on the square circumscribed about circle ABCD. And the cylinder is less than the prism set up on the square circumscribed about circle ABCD. Thus, the prism set up on square ABCD of the same height as the cylinder is more than half of the cylinder. Let the circumferences AB, BC, CD, and DA have been cut in half at points E, F, G, and H. And let AE, EB, BF, FC, CG, GD, DH, and HA have been joined. And thus each of the triangles AEB, BFC, CGD, and DHA is more than half of the segment of circle ABCD about it, as was shown previously [Prop. 12.2]. Let prisms of equal height to the cylinder have been set up on each of the triangles AEB, BFC, CGD, and DHA. And each of the prisms set up is greater than the half part of the segment of the cylinder about it—inasmuch as if we draw (straight-lines) parallel to AB, BC, CD, and DA through points E, F, G, and H

ληλόγραμμα, καὶ ἀπ' αὐτῶν ἀναστήσωμεν στερεὰ παραλληλεπίπεδα ἰσοϋψῆ τῷ χυλίνδρῳ, ἑχάσου τῶν ἀνασταθέντων ήμίση ἐστὶ τὰ πρίσματα τὰ ἐπὶ τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων καί ἐστι τὰ τοῦ κυλίνδρου τμήματα ἐλάττονα τῶν ἀνασταθέντων στερεῶν παραλληλεπιπέδων. ὥστε καὶ τὰ ἐπὶ τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων πρίσματα μείζονά ἐστιν ἢ τὸ ἤμισυ τῶν καθ' ἑαυτὰ τοῦ κυλίνδρου τμημάτων. τέμνοντες δή τὰς ὑπολειπομένας περιφερείας δίγα καὶ ἐπιζευγνύντες εὐθείας καὶ ἀνιστάντες ἐφ᾽ ἑκάσου τῶν τριγώνων πρίσματα ἰσοϋψῆ τῷ κυλίνδρῳ καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κυλίνδρου, ἃ ἔσται ἐλάττονα τῆς ὑπεροχῆς, ἤ ὑπερέχει ὁ χυλίνδρος τοῦ τριπλασίου τοῦ χώνου. λελείφθω, χαὶ ἔστω τὰ ΑΕ, ΕΒ, ΒΖ, ΖΓ, ΓΗ, ΗΔ, ΔΘ, ΘΑ λοιπὸν ἄρα τὸ πρίσμα, οὕ βάσις μὲν τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ χυλίνδρῷ, μεῖζόν ἐστὶν ἢ τριπλάσιον τοῦ χώνου. ἀλλὰ τὸ πρίσμα, οὖ βάσις μὲν ἐστὶ τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, ύψος δὲ τὸ αὐτὸ τῷ χυλίνδρῳ, τριπλάσιόν ἐστι τῆς πυραμίδος, ής βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, κορυφή δὲ ἡ αὐτή τῷ κώνω καὶ ἡ πυραμὶς ἄρα, ῆς βάσις μέν [ἐστι] τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, κορυφή δὲ ἡ αὐτή τῷ κώνῳ, μείζων ἐστὶ τοῦ κώνου τοῦ βάσιν ἔχοντες τὸν ${
m AB}\Gamma\Delta$ κύκλον. ἀλλὰ καὶ ἐλάττων \cdot ἐμπεριέχεται γὰρ ὑπ $^\circ$ αὐτοῦ· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ἐστὶν ὁ κύλινδρος τοῦ χώνου μεῖζων ἢ τριπλάσιος.

 Λ έγω δή, ὅτι οὐδὲ ἐλάττων ἐστὶν ἢ τριπλάσιος ὁ κύλινδρος τοῦ κώνου.

Εί γὰρ δυνατόν, ἔστω ἐλάττων ἢ τριπλάσιος ὁ κύλινδρος τοῦ χώνου· ἀνάπαλιν ἄρα ὁ χῶνος τοῦ χυλίνδρου μεῖζων ἐστὶν ἢ τρίτον μέρος. ἐγγεγράφθω δὴ εἰς τὸν ΑΒΓΔ κύκλον τετράγωνον τὸ ΑΒΓΔ· τὸ ΑΒΓΔ ἄρα τετράγωνον μεῖζόν έστιν ή τὸ ήμισυ τοῦ ΑΒΓΔ κύκλου. καὶ ἀνεστάτω ἀπὸ τοῦ ΑΒΓΔ τετραγώνου πυραμίς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνω. ή ἄρα ἀνασταθεῖσα πυραμίς μείζων ἐστίν ἢ τὸ ἤμισυ μέρος τοῦ χώνου, ἐπειδήπερ, ὡς ἔμπροσθεν ἐδείχνυμεν, ὅτι ἐὰν περὶ τὸν κύκλον τετράγωνον περιγράψωμεν, ἔσται τὸ ΑΒΓΔ τετράγωνον ἤμισυ τοῦ περὶ τὸν κύκλον περιγεγραμμένου τετραγώνου καὶ ἐὰν ἀπὸ τῶν τετραγώνων στερεὰ παραλληλεπίπεδα ἀναστήσωμεν ἰσοϋψῆ τῷ κώνῳ, ἂ καὶ καλεῖται πρίσματα, ἔσται τὸ ἀνασταθὲν ἀπὸ τοῦ ΑΒΓΔ τετραγώνου ήμισυ τοῦ ἀνασταθέντος ἀπὸ τοῦ περὶ τὸν κύκλον περιγραφέντος τετραγώνου. πρός ἄλληλα γάρ εἰσιν ώς αἱ βάσεις. ὤστε καὶ τὰ τρίτα καὶ πυραμὶς ἄρα, ῆς βάσις τὸ ΑΒΓΔ τετράγωνον, ἥμισύ ἐστι τῆς πυραμίδος τῆς άνασταθείσης ἀπὸ τοῦ περὶ τὸν κύκλον περιγραφέντος τετραγώνου. καί ἐστι μείζων ἡ πυραμὶς ἡ ἀνασταθεῖσα ἀπὸ τοῦ περὶ τὸν χύχλον τετραγώνου τοῦ χώνου. ἐμπεριέγει γὰρ αὐτόν. ἡ ἄρα πυραμὶς, ῆς βάσις τὸ ΑΒΓΔ τετράγωνον, κορυφή δὲ ή αὐτή τῷ κώνῳ, μείζων ἐστὶν ἢ τὸ ἤμισυ τοῦ κώνου. τετμήσθωσαν αἱ ΑΒ, ΒΓ, ΓΔ, ΔΑ περιφέρειαι δίχα κατά τὰ Ε, Ζ, Η, Θ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ

(respectively), and complete the parallelograms on AB, BC, CD, and DA, and set up parallelepiped solids of equal height to the cylinder on them, then the prisms on triangles AEB, BFC, CGD, and DHA are each half of the set up (parallelepipeds). And the segments of the cylinder are less than the set up parallelepiped solids. Hence, the prisms on triangles AEB, BFC, CGD, and DHA are also greater than half of the segments of the cylinder about them. So (if) the remaining circumferences are cut in half, and straight-lines are joined, and prisms of equal height to the cylinder are set up on each of the triangles, and this is done continually, then we will (eventually) leave some segments of the cylinder whose (sum) is less than the excess by which the cylinder exceeds three times the cone [Prop. 10.1]. Let them have been left, and let them be AE, EB, BF, FC, CG, GD, DH, and HA. Thus, the remaining prism whose base (is) polygon AEBFCGDH, and height the same as the cylinder, is greater than three times the cone. But, the prism whose base is polygon AEBFCGDH, and height the same as the cylinder, is three times the pyramid whose base is polygon AEBFCGDH, and apex the same as the cone [Prop. 12.7 corr.]. And thus the pyramid whose base [is] polygon AEBFCGDH, and apex the same as the cone, is greater than the cone having (as) base circle ABCD. But (it is) also less. For it is encompassed by it. The very thing (is) impossible. Thus, the cylinder is not more than three times the cone.

So, I say that neither (is) the cylinder less than three times the cone.

For, if possible, let the cylinder be less than three times the cone. Thus, inversely, the cone is greater than the third part of the cylinder. So, let the square ABCD have been inscribed in circle ABCD [Prop. 4.6]. Thus, square ABCD is greater than half of circle ABCD. And let a pyramid having the same apex as the cone have been set up on square ABCD. Thus, the pyramid set up is greater than the half part of the cone, inasmuch as we showed previously that if we circumscribe a square about the circle [Prop. 4.7] then the square ABCD will be half of the square circumscribed about the circle [Prop. 12.2]. And if we set up on the squares parallelepiped solids—which are also called prisms—of the same height as the cone, then the (prism) set up on square ABCD will be half of the (prism) set up on the square circumscribed about the circle. For they are to one another as their bases [Prop. 11.32]. Hence, (the same) also (goes for) the thirds. Thus, the pyramid whose base is square ABCDis half of the pyramid set up on the square circumscribed about the circle [Prop. 12.7 corr.]. And the pyramid set up on the square circumscribed about the circle is greater

AE, EB, BZ, ZΓ, ΓΗ, Η Δ , $\Delta\Theta$, Θ A· καὶ ἕκαστον ἄρα τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων μεῖζόν ἐστιν ἢ τὸ ήμισυ μέρος του καθ' έαυτὸ τμήματος τοῦ ΑΒΓΔ κύκλου. καὶ ἀνεστάτωσαν ἐφ᾽ ἑκάστου τῶν ΑΕΒ, ΒΖΓ, ΓΗΔ, ΔΘΑ τριγώνων πυραμίδες τὴν αὐτὴν κορυφὴν ἔχουσαι τῷ κώνῳ. καὶ ἑκάστη ἄρα τῶν ἀνασταθεισῶν πυραμίδων κατὰ τὸν αὐτὸν τρόπον μείζων ἐστὶν ἢ τὸ ἤμισυ μέρος τοῦ καθ έαυτὴν τμήματος τοῦ κώνου. τέμνοντες δὴ τὰς ὑπολειπομένας περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ άνιστάντες ἐφ᾽ ἑκάστου τῶν τριγώνων πυραμίδα τὴν αὐτὴν κορυφήν ἔχουσαν τῷ κώνω καὶ τοῦτο ἀεὶ ποιοῦτες καταλείψομέν τινα ἀποτμήματα τοῦ κώνου, ἃ ἔσται ἐλάττονα τῆς ὑπεροχῆς, ἤ ὑπερέχει ὁ κῶνος τοῦ τρίτου μέρους τοῦ κυλίνδρου. λελείφθω, καὶ ἔστω τὰ ἐπὶ τῶν ΑΕ, ΕΒ, ΒΖ, ΖΓ, $\Gamma H, H\Delta, \Delta\Theta, \Theta A^{\cdot}$ λοιπὴ ἄρα ἡ πυραμίς, ής βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, κορυφή δὲ ἡ αὐτὴ τῷ κώνῳ, μείζων ἐστίν ἢ τρίτον μέρος τοῦ χυλίνδρου. ἀλλ' ἡ πυραμίς, ῆς βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, χορυφὴ δὲ ή αυτή τῷ κώνῳ, τρίτον ἐστὶ μέρος τοῦ πρίσματος, οὖ βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρω· τὸ ἄρα πρίσμα, οὖ βάσις μέν ἐστι τὸ ΑΕΒΖΓΗΔΘ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ χυλίνδρῳ, μεῖζόν ἐστι τοῦ κυλίνδρου, οὖ βάσις ἐστὶν ὁ ΑΒΓΔ κύκλος. ἀλλὰ καὶ ἔλαττον εμπεριέχεται γὰρ ὑπ' αὐτοῦ. ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ὁ χύλινδρος τοῦ χώνου ἐλάττων ἐστὶν ἢ τριπλάσιος. έδείχθη δέ, ὅτι οὐδὲ μείζων ἢ τριπλάσιος τριπλάσιος ἄρα ὁ κύλινδρος τοῦ κώνου. ὥστε ὁ κῶνος τρίτον ἐστὶ μέρος τοῦ

Πᾶς ἄρα κῶνος κυλίνδρου τρίτον μέρος ἐστὶ τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον· ὅπερ ἔδει δεῖξαι.

ια'.

Οἱ ὑπο τὸ αὐτὸ ὕψος ὄντες κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους εἰσὶν ὡς αἱ βάσεις.

Έστωσαν ὑπὸ τὸ αὐτὸ ὕψος χῶνοι χαὶ χύλινδροι, ὧν βάσεις μὲν [εἰσιν] οἱ ΑΒΓΔ, ΕΖΗΘ χύχλοι, ἄξονες δὲ οἱ ΚΛ, ΜΝ, διάμετροι δὲ τῶν βάσεων αἱ ΑΓ, ΕΗ· λέγω, ὅτι ἐστὶν ὡς ὁ ΑΒΓΔ χύχλος πρὸς τὸν ΕΖΗΘ χύχλον, οὕτως ὁ ΑΛ χῶνος πρὸς τὸν ΕΝ χῶνον.

than the cone. For it encompasses it. Thus, the pyramid whose base is square ABCD, and apex the same as the cone, is greater than half of the cone. Let the circumferences AB, BC, CD, and DA have been cut in half at points E, F, G, and H (respectively). And let AE, EB, BF, FC, CG, GD, DH, and HA have been joined. And, thus, each of the triangles AEB, BFC, CGD, and DHA is greater than the half part of the segment of circle ABCD about it [Prop. 12.2]. And let pyramids having the same apex as the cone have been set up on each of the triangles AEB, BFC, CGD, and DHA. And, thus, in the same way, each of the pyramids set up is more than the half part of the segment of the cone about it. So. (if) the remaining circumferences are cut in half, and straightlines are joined, and pyramids having the same apex as the cone are set up on each of the triangles, and this is done continually, then we will (eventually) leave some segments of the cone whose (sum) is less than the excess by which the cone exceeds the third part of the cylinder [Prop. 10.1]. Let them have been left, and let them be the (segments) on AE, EB, BF, FC, CG, GD, DH, and HA. Thus, the remaining pyramid whose base is polygon AEBFCGDH, and apex the same as the cone, is greater than the third part of the cylinder. But, the pyramid whose base is polygon AEBFCGDH, and apex the same as the cone, is the third part of the prism whose base is polygon AEBFCGDH, and height the same as the cylinder [Prop. 12.7 corr.]. Thus, the prism whose base is polygon AEBFCGDH, and height the same as the cylinder, is greater than the cylinder whose base is circle ABCD. But, (it is) also less. For it is encompassed by it. The very thing is impossible. Thus, the cylinder is not less than three times the cone. And it was shown that neither (is it) greater than three times (the cone). Thus, the cylinder (is) three times the cone. Hence, the cone is the third part of the cylinder.

Thus, every cone is the third part of the cylinder which has the same base as it, and an equal height. (Which is) the very thing it was required to show.

Proposition 11

Cones and cylinders having the same height are to one another as their bases.

Let there be cones and cylinders of the same height whose bases [are] the circles ABCD and EFGH, axes KL and MN, and diameters of the bases AC and EG (respectively). I say that as circle ABCD is to circle EFGH, so cone AL (is) to cone EN.

Εἰ γὰρ μή, ἔσται ὡς ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον, οὕτως ὁ ΑΛ κῶνος ἤτοι πρὸς ἔλασσόν τι τοῦ ΕΝ κώνου στερεὸν ἢ πρὸς μεῖζον. ἔστω πρότερον πρὸς ἔλασσον τὸ Ξ, καὶ ὧ ἔλασσόν ἐστι τὸ Ξ στερεὸν τοῦ ΕΝ κώνου, έχείνω ἴσον ἔστω τὸ Ψ στερεόν· ὁ ΕΝ χῶνος ἄρα ἴσος ἐστὶ τοῖς Ξ, Ψ στερεοῖς. ἐγγεγράφθω εἰς τὸν ΕΖΗΘ κύκλον τετράγωνον τὸ ΕΖΗΘ· τὸ ἄρα τετράγωνον μεῖζόν ἐστιν ἢ τὸ ἥμισυ τοῦ κύκλου. ἀνεστάτω ἀπὸ τοῦ ΕΖΗΘ τετραγώνου πυραμίς ἰσοϋψής τῷ χώνῳ. ἡ ἄρα ἀνασταθεῖσα πυραμίς μείζων έστιν ή τὸ ήμισυ τοῦ κώνου, ἐπειδήπερ ἐὰν περιγράψωμεν περί τὸν κύκλον τετράγωνον, καὶ ἀπ' αὐτοῦ άναστήσωμεν πυραμίδα ἰσοϋψῆ τῷ κώνῳ, ἡ ἐγγραφεῖσα πυραμίς ήμισύ έστι τῆς περιγραφείσης πρὸς ἀλλήλας γάρ εἰσιν ώς αἱ βάσεις· ἐλάττων δὲ ὁ κῶνος τῆς περιγραφείσης πυραμίδος. τετμήσθωσαν αί ΕΖ, ΖΗ, ΗΘ, ΘΕ περιφέρειαι δίγα κατά τὰ Ο, Π, Ρ, Σ σημεῖα, καὶ ἐπεζεύγθωσαν αἱ Θ O, OE, EΠ, ΠΖ, ZP, PH, ΗΣ, Σ Θ. ἔκαστον ἄρα τῶν ΘΟΕ, ΕΠΖ, ΖΡΗ, ΗΖΘ τριγώνων μεῖζόν ἐστιν ἢ τὸ ἤμισυ τοῦ καθ' ἑαυτὸ τμήματος τοῦ κύκλου. ἀνεστάτω ἐ ϕ ' έκάστου τῶν ΘΟΕ, ΕΠΖ, ΖΡΗ, ΗΣΘ τριγώνων πυραμίς ἰσοϋψής τῷ κώνῳ· καὶ ἑκάστη ἄρα τῶν ἀνασταθεισῶν πυραμίδων μείζων έστιν ἢ τὸ ἤμισυ τοῦ καθ' ἑαυτὴν τμήματος τοῦ κώνου. τέμνοντες δὴ τὰς ὑπολειπομένας περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ ἀνιστάντες ἐπὶ ἑκάστου τῶν τριγώνων πυραμίδας ἰσοϋψεῖς τῷ κώνῳ καὶ ἀεὶ τοῦτο ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κώνου, ἃ ἔσται ἐλάσσονα τοῦ Ψ στερεοῦ. λελείφθω, καὶ ἔστω τὰ ἐπὶ τῶν ΘΟΕ, ΕΠΖ, ΖΡΗ, ΗΣΘ· λοιπὴ ἄρα ἡ πυραμίς, ῆς βάσις τὸ ΘΟΕΠΖΡΗΣ πολύγωνον, ὕψος δὲ τὸ αὐτὸ τῷ κώνω, μείζων ἐστὶ τοῦ Ξ στερεοῦ. ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΘΟΕΠΖΡΗΣ πολυγώνῳ ὅμοιόν τε καὶ όμοίως κείμενον πολύγωνον τὸ ΔΤΑΥΒΦΓΧ, καὶ ἀνεστάτω ἐπ' αὐτοῦ πυραμὶς ἰσοϋψής τῷ ΑΛ κώνω. ἐπεὶ οὖν ἐστιν ὡς τὸ ἀπὸ τῆς ΑΓ πρὸς τὸ ἀπὸ τῆς ΕΗ, οὕτως τὸ ΔΤΑΥΒΦΓΧ πολύγωνον πρὸς τὸ ΘΟΕΠΖΡΗΣ πολύγωνον, ὡς δὲ τὸ ἀπὸ τῆς ΑΓ πρὸς τὸ ἀπὸ τῆς ΕΗ, οὕτως ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον, καὶ ὡς ἄρα ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον, οὕτως τὸ ΔΤΑΥΒΦΓΧ πολύγωνον πρὸς τὸ ΘΟΕΠΖΡΗΣ πολύγωνον. ὡς δὲ ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον, οὕτως ὁ ΑΛ κῶνος πρὸς τὸ Ξ στερεόν, ώς δὲ τὸ ΔΤΑΥΒΦΓΧ πολύγωνον πρὸς τὸ ΘΟ-ΕΠΖΡΗΣ πολύγωνον, οὕτως ἡ πυραμίς, ἤς βάσις μὲν τὸ ΔΤΑΥΒΦΓΧ πολύγωνον, κορυφή δὲ τὸ Λ σημεῖον, πρὸς

For if not, then as circle ABCD (is) to circle EFGH, so cone AL will be to some solid either less than, or greater than, cone EN. Let it, first of all, be (in this ratio) to (some) lesser (solid), O. And let solid X be equal to that (magnitude) by which solid O is less than cone EN. Thus, cone EN is equal to (the sum of) solids Oand X. Let the square EFGH have been inscribed in circle EFGH [Prop. 4.6]. Thus, the square is greater than half of the circle [Prop. 12.2]. Let a pyramid of the same height as the cone have been set up on square EFGH. Thus, the pyramid set up is greater than half of the cone, inasmuch as, if we circumscribe a square about the circle [Prop. 4.7], and set up on it a pyramid of the same height as the cone, then the inscribed pyramid is half of the circumscribed pyramid. For they are to one another as their bases [Prop. 12.6]. And the cone (is) less than the circumscribed pyramid. Let the circumferences EF, FG, GH, and HE have been cut in half at points P, Q, R, and S. And let HP, PE, EQ, QF, FR, RG, GS, and SH have been joined. Thus, each of the triangles HPE, EQF, FRG, and GSH is greater than half of the segment of the circle about it [Prop. 12.2]. Let pyramids of the same height as the cone have been set up on each of the triangles HPE, EQF, FRG, and GSH. And, thus, each of the pyramids set up is greater than half of the segment of the cone about it [Prop. 12.10]. So, (if) the remaining circumferences are cut in half, and straight-lines are joined, and pyramids of equal height to the cone are set up on each of the triangles, and this is done continually, then we will (eventually) leave some segments of the cone (the sum of) which is less than solid X [Prop. 10.1]. Let them have been left, and let them be the (segments) on HPE, EQF, FRG, and GSH. Thus, the remaining pyramid whose base is polygon HPEQFRGS, and height the same as the cone, is greater than solid O [Prop. 6.18]. And let the polygon DTAUBVCW, similar, and similarly laid out, to polygon HPEQFRGS, have been inscribed in circle ABCD. And on it let a pyramid of the same height as cone AL have been set up. Therefore, since as the (square) on AC is to the (square) on EG, so polygon DTAUBVCW (is) to polygon HPEQFRGS [Prop. 12.1], and as the (square) on AC (is) to the (square) on EG, so circle ABCD (is)

τὴν πυραμίδα, ἤς βάσις μὲν τὸ ΘΟΕΠΖΡΗΣ πολύγωνον, κορυφὴ δὲ τὸ Ν σημεῖον. καὶ ὡς ἄρα ὁ ΑΛ κῶνος πρὸς τὸ Ξ στερεόν, οὕτως ἡ πυραμίς, ἤς βάσις μὲν τὸ ΔΤΑΥΒΦΓΧ πολύγωνον, κορυφὴ δὲ τὸ Λ σημεῖον, πρὸς τὴν πυραμίδα, ἤς βάσις μὲν τὸ ΘΟΕΠΖΡΗΣ πολύγωνον, κορυφὴ δὲ τὸ Ν σημεῖον ἐναλλὰζ ἄρα ἐστὶν ὡς ὁ ΑΛ κῶνος πρὸς τὴν ἐν αὐτῷ πυραμίδα, οὕτως τὸ Ξ στερεὸν πρὸς τὴν ἐν τῷ ΕΝ κώνῳ πυραμίδα. μείζων δὲ ὁ ΑΛ κῶνος τῆς ἐν αὐτῷ πυραμίδος μεῖζον ἄρα καὶ τὸ Ξ στερεὸν τῆς ἐν αὐτῷ πυραμίδος ἀλλὰ καὶ ἔλασσον ὅπερ ἄτοπον. οὐκ ἄρα ἐστὶν ὡς ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον, οὕτως ὁ ΑΛ κῶνος πρὸς ἔλασσόν τι τοῦ ΕΝ κώνου στερεόν. ὁμοίως δὲ δείξομεν, ὅτι οὐδέ ἐστιν ὡς ὁ ΕΖΗΘ κύκλος πρὸς τὸν ΑΒΓΔ κύκλον, οὕτως ὁ ΕΝ κῶνος πρὸς ἔλασσόν τι τοῦ ΑΛ κώνου στερεόν.

Λέγω δή, ὅτι οὐδέ ἐστιν ὡς ὁ $AB\Gamma\Delta$ κύκλος πρὸς τὸν $EZH\Theta$ κύκλον, οὕτως ὁ $A\Lambda$ κῶνος πρὸς μεῖζόν τι τοῦ EN κώνου στερεόν.

Εἰ γὰρ δυνατόν, ἔστω πρὸς μεῖζον τὸ Ξ· ἀνάπαλιν ἄρα ἐστὶν ὡς ὁ ΕΖΗΘ κύκλος πρὸς τὸν ΑΒΓΔ κύκλον, οὕτως τὸ Ξ στερεὸν πρὸς τὸν ΑΛ κῶνον. ἀλλ᾽ ὡς τὸ Ξ στερεὸν πρὸς τὸν ΑΛ κῶνον, οὕτως ὁ ΕΝ κῶνος πρὸς ἔλασσόν τι τοῦ ΑΛ κώνου στερεόν· καὶ ὡς ἄρα ὁ ΕΖΗΘ κύκλος πρὸς τὸν ΑΒΓΔ κύκλον, οὕτως ὁ ΕΝ κῶνος πρὸς ἔλασσόν τι τοῦ ΑΛ κώνου στερεόν· ὅπερ ἀδύνατον ἐδείχθη. οὐκ ἄρα ἐστὶν ὡς ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον, οὕτως ὁ ΑΛ κῶνος πρὸς μεῖζόν τι τοῦ ΕΝ κώνου στερεόν· ἐδείχθη δέ, ὅτι οὐδὲ πρὸς ἔλασσον· ἔστιν ἄρα ὡς ὁ ΑΒΓΔ κύκλος πρὸς τὸν ΕΖΗΘ κύκλον, οὕτως ὁ ΑΛ κῶνος πρὸς τὸν ΕΧΗΘ κύκλον, οὕτως ὁ ΑΛ κῶνος πρὸς τὸν ΕΝ κῶνον.

Αλλ' ὡς ὁ κῶνος πρὸς τὸν κῶνον, ὁ κύλινδρος πρὸς τὸν κύλινδρον τριπλασίων γὰρ ἑκάτερος ἑκατέρου. καὶ ὡς ἄρα ὁ $AB\Gamma\Delta$ κύκλος πρὸς τὸν $EZH\Theta$ κύκλον, οὕτως οἱ ἐπ' αὐτῶν ἰσοϋψεῖς.

Οἱ ἄρα ὑπὸ τὸ αὐτὸ ὕψος ὄντες κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους εἰσὶν ὡς αἱ βάσεις· ὅπερ ἔδει δεῖξαι.

ιβ'.

Οἱ ὅμοιοι κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους ἐν τριπλασίονι λόγω εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων.

Έστωσαν ὅμοιοι κῶνοι καὶ κύλινδροι, ὧν βάσεις μὲν οἱ ΑΒΓΔ, ΕΖΗΘ κύκλοι, διάμετροι δὲ τῶν βάσεων αἱ ΒΔ, ΖΘ, ἄξονες δὲ τῶν κώνων καὶ κυλίνδρων οἱ ΚΛ, ΜΝ· λέγω,

to circle EFGH [Prop. 12.2], thus as circle ABCD (is) to circle EFGH, so polygon DTAUBVCW also (is) to polygon HPEQFRGS. And as circle ABCD (is) to circle EFGH, so cone AL (is) to solid O. And as polygon DTAUBVCW (is) to polygon HPEQFRGS, so the pyramid whose base is polygon DTAUBVCW, and apex the point L, (is) to the pyramid whose base is polygon HPEQFRGS, and apex the point N [Prop. 12.6]. And, thus, as cone AL (is) to solid O, so the pyramid whose base is DTAUBVCW, and apex the point L, (is) to the pyramid whose base is polygon HPEQFRGS, and apex the point N [Prop. 5.11]. Thus, alternately, as cone ALis to the pyramid within it, so solid O (is) to the pyramid within cone EN [Prop. 5.16]. But, cone AL (is) greater than the pyramid within it. Thus, solid O (is) also greater than the pyramid within cone EN [Prop. 5.14]. But, (it is) also less. The very thing (is) absurd. Thus, circle ABCD is not to circle EFGH, as cone AL (is) to some solid less than cone EN. So, similarly, we can show that neither is circle EFGH to circle ABCD, as cone EN (is) to some solid less than cone AL.

So, I say that neither is circle ABCD to circle EFGH, as cone AL (is) to some solid greater than cone EN.

For, if possible, let it be (in this ratio) to (some) greater (solid), O. Thus, inversely, as circle EFGH is to circle ABCD, so solid O (is) to cone AL [Prop. 5.7 corr.]. But, as solid O (is) to cone AL, so cone EN (is) to some solid less than cone AL [Prop. 12.2 lem.]. And, thus, as circle EFGH (is) to circle ABCD, so cone EN (is) to some solid less than cone AL. The very thing was shown (to be) impossible. Thus, circle ABCD is not to circle EFGH, as cone AL (is) to some solid greater than cone EN. And, it was shown that neither (is it in this ratio) to (some) lesser (solid). Thus, as circle ABCD is to circle EFGH, so cone AL (is) to cone EN.

But, as the cone (is) to the cone, (so) the cylinder (is) to the cylinder. For each (is) three times each [Prop. 12.10]. Thus, circle ABCD (is) also to circle EFGH, as (the ratio of the cylinders) on them (having) the same height.

Thus, cones and cylinders having the same height are to one another as their bases. (Which is) the very thing it was required to show.

Proposition 12

Similar cones and cylinders are to one another in the cubed ratio of the diameters of their bases.

Let there be similar cones and cylinders of which the bases (are) the circles ABCD and EFGH, the diameters of the bases (are) BD and FH, and the axes of the cones

 Σ ΤΟΙΧΕΙΩΝ \mathfrak{g}' . ELEMENTS BOOK 12

ὅτι ὁ κῶνος, οὕ βάσις μέν [ἐστιν] ὁ ΑΒΓΔ κύκλος, κορυφὴ δὲ τὸ Λ σημεῖον, πρὸς τὸν κῶνον, οὕ βάσις μέν [ἐστιν] ὁ ΕΖΗΘ κύκλος, κορυφὴ δὲ τὸ Ν σημεῖον, τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΔ πρὸς τὴν ΖΘ.

Εἰ γὰρ μὴ ἔχει ὁ ΑΒΓΔΛ κῶνος πρὸς τὸν ΕΖΗΘΝ κῶνον πριπλασίονα λόγον ἤπερ ἡ ΒΔ πρὸς τὴν ΖΘ, ἔξει ό ΑΒΓΔΛ κῶνος ἢ πρὸς ἔλασσόν τι τοῦ ΕΖΗΘΝ κώνου στερεὸν τριπλασίονα λόγον ἢ πρὸς μεῖζον. ἐχέτω πρότερον πρὸς ἔλασσον τὸ Ξ, καὶ ἐγγεγράφθω εἰς τὸν ΕΖΗΘ κύκλον τετράγωνον τὸ ΕΖΗΘ· τὸ ἄρα ΕΖΗΘ τετράγωνον μεῖζόν έστιν ἢ τὸ ἤμισυ τοῦ ΕΖΗΘ κύκλου. καὶ ἀνεστάτω ἐπὶ τοῦ ΕΖΗΘ τετραγώνου πυραμίς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ χώνῳ. ἡ ἄρα ἀνασταθεῖσα πυραμίς μείζων ἐστίν ἢ τὸ ημισυ μέρος τοῦ κώνου. τετμήσθωσαν δη αί EZ, ZH, ΗΘ, ΘΕ περιφέρειαι δίχα κατά τὰ Ο, Π, Ρ, Σ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΕΟ, ΟΖ, ΖΠ, ΠΗ, ΗΡ, ΡΘ, ΘΣ, ΣΕ. καὶ ἔκαστον ἄρα τῶν ΕΟΖ, ΖΠΗ, ΗΡΘ, ΘΣΕ τριγώνων μεῖζόν έστιν ἢ τὸ ἤμισυ μέρος τοῦ καθ' ἑαυτὸ τμήματος τοῦ ΕΖΗΘ κύκλου. καὶ ἀνεστάτω ἐφ' ἑκάστου τῶν ΕΟΖ, ΖΠΗ, ΗΡΘ, ΘΣΕ τριγώνων πυραμίς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνω· καὶ ἑκάστη ἄρα τῶν ἀνασταθεισῶν πυραμίδων μείζων έστιν ἢ τὸ ἤμισυ μέρος τοῦ καθ' ἑαυτὴν τμήματος τοῦ κώνου. τέμνοντες δή τὰς ὑπολειπομένας περιφερείας δίχα καὶ ἐπιζευγνύντες εὐθείας καὶ ἀνιστάντες ἐφ' ἑκάστου τῶν τριγώνων πυραμίδας τὴν αὐτὴν κορυφὴν ἐχούσας τῷ κώνῳ καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομέν τινα ἀποτμήματα τοῦ κώνου, ἃ ἔσται ἐλάσσονα τῆς ὑπεροχῆς, ἤ ὑπερέχει ὁ ΕΖΗΘΝ κῶνος τοῦ Ξ στερεοῦ. λελείφθω, καὶ ἔστω τὰ ἐπὶ τῶν ΕΟ, ΟΖ, ΖΠ, ΠΗ, ΗΡ, ΡΘ, ΘΣ, ΣΕ΄ λοιπὴ ἄρα ἡ πυραμίς, ής βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφή δὲ τὸ Ν σημεῖον, μείζων ἐστὶ τοῦ Ξ στερεοῦ. ἐγγεγράφθω καὶ εἰς τὸν ΑΒΓΔ κύκλον τῷ ΕΟΖΠΗΡΘΣ πολυγώνω ὄμοιόν τε καὶ ὁμοίως κείμενον πολύγωνον τὸ ΑΤΒΥΓΦΔΧ, καὶ ἀνεστάτω ἐπὶ τοῦ ΑΤΒΥΓΦΔΧ πολυγώνου πυραμίς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ, καὶ τῶν μὲν περιεχόντων τὴν πυραμίδα, ἤς βάσις μέν ἐστι τὸ ΑΤΒΥΓΦΔΧ πολύγωνον, κορυφή δὲ τὸ Λ σημεῖον, εν τρίγωνον έστω τὸ ΛΒΤ, τῶν δὲ περειχόντων τὴν πυραμίδα, ής βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, and cylinders (are) KL and MN (respectively). I say that the cone whose base [is] circle ABCD, and apex the point L, has to the cone whose base [is] circle EFGH, and apex the point N, the cubed ratio that BD (has) to FH.

For if cone ABCDL does not have to cone EFGHNthe cubed ratio that BD (has) to FH then cone ABCDLwill have the cubed ratio to some solid either less than, or greater than, cone EFGHN. Let it, first of all, have (such a ratio) to (some) lesser (solid), O. And let the square EFGH have been inscribed in circle EFGH [Prop. 4.6]. Thus, square EFGH is greater than half of circle EFGH[Prop. 12.2]. And let a pyramid having the same apex as the cone have been set up on square EFGH. Thus, the pyramid set up is greater than the half part of the cone [Prop. 12.10]. So, let the circumferences EF, FG, GH, and HE have been cut in half at points P, Q, R, and S (respectively). And let EP, PF, FQ, QG, GR, RH, HS, and SE have been joined. And, thus, each of the triangles EPF, FQG, GRH, and HSE is greater than the half part of the segment of circle EFGH about it [Prop. 12.2]. And let a pyramid having the same apex as the cone have been set up on each of the triangles EPF, FQG, GRH, and HSE. And thus each of the pyramids set up is greater than the half part of the segment of the cone about it [Prop. 12.10]. So, (if) the the remaining circumferences are cut in half, and straight-lines are joined, and pyramids having the same apex as the cone are set up on each of the triangles, and this is done continually, then we will (eventually) leave some segments of the cone whose (sum) is less than the excess by which cone EFGHN exceeds solid O [Prop. 10.1]. Let them have been left, and let them be the (segments) on EP, PF, FQ, QG, GR, RH, HS, and SE. Thus, the remaining pyramid whose base is polygon EPFQGRHS, and apex the point N, is greater than solid O. And let the polygon ATBUCVDW, similar, and similarly laid out, to polygon EPFQGRHS, have been inscribed in circle ABCD [Prop. 6.18]. And let a pyramid having the same apex as the cone have been set up on polygon ATBUCVDW.

κορυφή δὲ τὸ Ν σημεῖον, εν τρίγωνον ἔστω τὸ ΝΖΟ, καὶ ἐπεζεύχθωσαν αἱ ΚΤ, ΜΟ. καὶ ἐπεὶ ὅμοιός ἐστιν ὁ ΑΒΓΔΛ κῶνος τῷ ΕΖΗΘΝ κώνῳ, ἔστιν ἄρα ὡς ἡ ΒΔ πρὸς τὴν $Z\Theta$, οὕτως ὁ $K\Lambda$ ἄξων πρὸς τὸν MN ἄξονα. ὡς δὲ ἡ $B\Delta$ πρὸς τὴν ΖΘ, οὕτως ἡ ΒΚ πρὸς τὴν ΖΜ· καὶ ὡς ἄρα ἡ ΒΚ πρὸς τὴν ΖΜ, οὕτως ἡ ΚΛ πρὸς τὴν ΜΝ. καὶ ἐναλλὰξ ὡς ή ΒΚ πρὸς τὴν ΚΛ, οὕτως ή ΖΜ πρὸς τὴν ΜΝ. καὶ περὶ ΐσας γωνίας τὰς ὑπὸ ΒΚΛ, ΖΜΝ αἱ πλευραὶ ἀνάλογόν εἰσιν όμοιον ἄρα ἐστὶ τὸ ΒΚΛ τρίγωνον τῷ ΖΜΝ τριγώνῳ. πάλιν, έπεί ἐστιν ὡς ἡ ΒΚ πρὸς τὴν ΚΤ, οὕτως ἡ ΖΜ πρὸς τὴν ΜΟ, καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΒΚΤ, ΖΜΟ, ἐπειδήπερ, δ μέρος ἐστὶν ἡ ὑπὸ ΒΚΤ γωνία τῶν πρὸς τῷ Κ κέντρῳ τεσσάρων ὀρθῶν, τὸ αὐτὸ μέρος ἐστὶ καὶ ἡ ὑπὸ ΖΜΟ γωνία τῶν πρὸς τῷ M κέντρῳ τεσσάρων ὀρθῶν· ἐπεὶ οὖν περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν εἰσιν, ὅμοιον ἄρα ἐστι τὸ ΒΚΤ τρίγωνον τῷ ΖΜΟ τριγώνῳ. πάλιν, ἐπεὶ ἐδείχθη ὡς ἡ ΒΚ πρὸς τὴν ΚΛ, οὕτως ἡ ΖΜ πρὸς τὴν ΜΝ, ἴση δὲ ἡ μὲν ΒΚ τῆ ΚΤ, ἡ δὲ ΖΜ τῆ ΟΜ, ἔστιν ἄρα ὡς ἡ ΤΚ πρὸς τὴν ΚΛ, οὕτως ἡ ΟΜ πρὸς τὴν ΜΝ. καὶ περὶ ἴσας γωνίας τὰς ὑπὸ ΤΚΛ, ΟΜΝ ορθαὶ γάρ αἱ πλευραὶ ἀνάλογόν εἰσιν όμοιον ἄρα ἐστὶ τὸ ΛΚΤ τρίγωνον τῷ ΝΜΟ τριγώνῳ. καὶ έπει διά τὴν ὁμοιότητα τῶν ΛΚΒ, ΝΜΖ τριγώνων ἐστὶν ώς ή ΛΒ πρὸς τὴν ΒΚ, οὕτως ή ΝΖ πρὸς τὴν ΖΜ, διὰ δὲ τὴν ὁμοιότητα τῶν ΒΚΤ, ΖΜΟ τριγώνων ἐστὶν ὡς ἡ ΚΒ πρὸς τὴν ΒΤ, οὕτως ἡ ΜΖ πρὸς τὴν ΖΟ, δι' ἴσου ἄρα ὡς ή ΛΒ πρὸς τὴν ΒΤ, οὕτως ἡ ΝΖ πρὸς τὴν ΖΟ. πάλιν, ἐπεὶ διὰ τὴν ομοιότητα τῶν ΛΤΚ, ΝΟΜ τριγώνων ἐστὶν ὡς ἡ ΛΤ πρὸς τὴν ΤΚ, οὕτως ἡ ΝΟ πρὸς τὴν ΟΜ, διὰ δὲ τὴν όμοιότητα τῶν ΤΚΒ, ΟΜΖ τριγώνων ἐστὶν ὡς ἡ ΚΤ πρὸς τὴν ΤΒ, οὕτως ἡ ΜΟ πρὸς τὴν ΟΖ, δι᾽ ἴσου ἄρα ὡς ἡ ΛΤ πρὸς τὴν ΤΒ, οὕτως ἡ ΝΟ πρὸς τὴν ΟΖ. ἐδείχθη δὲ καὶ ώς ή ΤΒ πρὸς τὴν ΒΛ, οὕτως ή ΟΖ πρὸς τὴν ΖΝ. δι' ἴσου ἄρα ὡς ἡ ΤΛ πρὸς τὴν ΛΒ, οὕτως ἡ ΟΝ πρὸς τὴν ΝΖ. τῶν ΛΤΒ, ΝΟΖ ἄρα τριγώνων ἀνάλογόν εἰσιν αἱ πλευραί· ἰσογώνια ἄρα ἐστὶ τὰ ΛΤΒ, NOZ τρίγωνα· ὥστε καὶ ὅμοια. καὶ πυραμὶς ἄρα, ῆς βάσις μὲν τὸ ΒΚΤ τρίγωνον, κορυφή δὲ τὸ Λ σημεῖον, ὁμοία ἐστὶ πυραμίδι, ἤς βάσις μὲν τὸ ΖΜΟ τρίγωνον, κορυφή δὲ τὸ Ν σημεῖον ὑπὸ γὰρ ὅμοίων ἐπιπέδων περιέχονται ἴσων τὸ πλῆθος. αἱ δὲ ὅμοιαι πυραμίδες καὶ τριγώνους ἔχουσαι βάσεις ἐν τριπλασίονι λόγω εἰσὶ τῶν ὁμολόγων πλευρῶν. ἡ ἄρα ΒΚΤΛ πυραμὶς πρὸς τὴν ΖΜΟΝ πυραμίδα τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΚ πρὸς τὴν ZM. ὁμοίως δὴ ἐπιζευγνύντες ἀπὸ τῶν $A, X, \Delta, \Phi, \Gamma, \Upsilon$ ἐπὶ τὸ K εὐθείας καὶ ἀπὸ τῶν $E, \Sigma, \Theta, P, H, \Pi$ ἐπὶ τὸ M καὶ άνιστάντες ἐφ' ἑχάστου τῶν τριγώνων πυραμίδας τὴν αὐτὴν κορυφήν ἐχούσας τοῖς κώνοις δείξομεν, ὅτι καὶ ἑκάστη τῶν όμοταγῶν πυραμίδων πρὸς ἑκάστην όμοταγῆ πυραμίδα τριπλασίονα λόγον έξει ήπερ ή ΒΚ δμόλογος πλευρά πρός τὴν ZM δμόλογον πλευράν, τουτέστιν ήπερ ή $B\Delta$ πρὸς τὴν $Z\Theta$. καὶ ὡς εν τῶν ἡγουμένων πρὸς εν τῶν ἑπομένων, οὕτως ἄπαντα τὰ ἡγούμενα πρὸς ἄπαντα τὰ ἑπόμενα· ἔστιν ἄρα

And let LBT be one of the triangles containing the pyramid whose base is polygon ATBUCVDW, and apex the point L. And let NFP be one of the triangles containing the pyramid whose base is triangle EPFQGRHS, and apex the point N. And let KT and MP have been joined. And since cone ABCDL is similar to cone EFGHN, thus as BD is to FH, so axis KL (is) to axis MN [Def. 11.24]. And as BD (is) to FH, so BK (is) to FM. And, thus, as BK (is) to FM, so KL (is) to MN. And, alternately, as BK (is) to KL, so FM (is) to MN [Prop. 5.16]. And the sides around the equal angles BKL and FMN are proportional. Thus, triangle BKL is similar to triangle FMN [Prop. 6.6]. Again, since as BK (is) to KT, so FM (is) to MP, and (they are) about the equal angles BKT and FMP, inasmuch as whatever part angle BKTis of the four right-angles at the center K, angle FMP is also the same part of the four right-angles at the center M. Therefore, since the sides about equal angles are proportional, triangle BKT is thus similar to traingle FMP [Prop. 6.6]. Again, since it was shown that as BK (is) to KL, so FM (is) to MN, and BK (is) equal to KT, and FM to PM, thus as TK (is) to KL, so PM (is) to MN. And the sides about the equal angles TKL and PMN—for (they are both) right-angles—are proportional. Thus, triangle LKT (is) similar to triangle NMP [Prop. 6.6]. And since, on account of the similarity of triangles LKB and NMF, as LB (is) to BK, so NF(is) to FM, and, on account of the similarity of triangles BKT and FMP, as KB (is) to BT, so MF (is) to FP[Def. 6.1], thus, via equality, as LB (is) to BT, so NF(is) to FP [Prop. 5.22]. Again, since, on account of the similarity of triangles LTK and NPM, as LT (is) to TK, so NP (is) to PM, and, on account of the similarity of triangles TKB and PMF, as KT (is) to TB, so MP (is) to PF, thus, via equality, as LT (is) to TB, so NP (is) to PF [Prop. 5.22]. And it was shown that as TB (is) to BL, so PF (is) to FN. Thus, via equality, as TL (is) to LB, so PN (is) to NF [Prop. 5.22]. Thus, the sides of triangles LTB and NPF are proportional. Thus, triangles LTB and NPF are equiangular [Prop. 6.5]. And, hence, (they are) similar [Def. 6.1]. And, thus, the pyramid whose base is triangle BKT, and apex the point L, is similar to the pyramid whose base is triangle FMP, and apex the point N. For they are contained by equal numbers of similar planes [Def. 11.9]. And similar pyramids which also have triangular bases are in the cubed ratio of corresponding sides [Prop. 12.8]. Thus, pyramid BKTL has to pyramid FMPN the cubed ratio that BK(has) to FM. So, similarly, joining straight-lines from (points) A, W, D, V, C, and U to (center) K, and from (points) E, S, H, R, G, and Q to (center) M, and set-

καὶ ὡς ἡ ΒΚΤΛ πυραμὶς πρὸς τὴν ΖΜΟΝ πυραμίδα, οὕτως ή ὄλη πυραμίς, ής βάσις τὸ ΑΤΒΥΓΦΔΧ πολύγωνον, κορυφή δὲ τὸ Λ σημεῖον, πρὸς τὴν ὅλην πυραμίδα, ῆς βάσις μέν τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφή δὲ τὸ Ν σημεῖον ώστε καὶ πυραμίς, ης βάσις μὲν τὸ ΑΤΒΥΓΦΔΧ, κορυφὴ δὲ τὸ Λ, πρὸς τὴν πυραμίδα, ῆς βάσις [μὲν] τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφή δὲ τὸ Ν σημεῖον, τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΔ πρὸς τὴν ΖΘ. ὑπόκειται δὲ καὶ ὁ κῶνος, οὕ βάσις [μὲν] ὁ ΑΒΓΔ κύκλος, κορυφή δὲ τὸ Λ σημεῖον, πρὸς τὸ Ξ στερεὸν τριπλασίονα λόγον ἔχων ἤπερ ἡ $\mathrm{B}\Delta$ πρὸς τὴν ΖΘ· ἔστιν ἄρα ὡς ὁ κῶνος, οὕ βάσις μέν ἐστιν ὁ ΑΒΓΔ κύκλος, κορυφή δὲ τὸ Λ, πρὸς τὸ Ξ στερεόν, οὕτως ή πυραμίς, ής βάσις μὲν τὸ ΑΤΒΥΓΦΔΧ [πολύγωνον], κορυφή δὲ τὸ Λ, πρὸς τὴν πυραμίδα, ῆς βάσις μέν ἐστι τὸ ΕΟΖ-ΠΗΡΘΣ πολύγωνον, κορυφή δὲ τὸ N· ἐναλλὰξ ἄρα, ὡς ὁ κῶνος, οὖ βάσις μὲν ὁ ΑΒΓΔ κύκλος, κορυφὴ δὲ τὸ Λ, πρὸς τὴν ἐν αὐτῷ πυραμίδα, ῆς βάσις μὲν τὸ ΑΤΒΥΓΦΔΧ πολύγωνον, χορυφή δὲ τὸ Λ, οὕτως τὸ Ξ [στερεὸν] πρὸς τὴν πυραμίδα, ής βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφή δὲ τὸ Ν. μείζων δὲ ὁ εἰρημένος κῶνος τῆς ἐν αὐτῷ πυραμίδος εμπεριέχει γάρ αὐτὴν. μεῖζον ἄρα καὶ τὸ Ξ στερεὸν τῆς πυραμίδος, ἦς βάσις μέν ἐστι τὸ ΕΟΖΠΗΡΘΣ πολύγωνον, κορυφή δὲ τὸ Ν. ἀλλὰ καὶ ἔλαττον ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα ὁ κῶνος, οὖ βάσις ὁ ${
m AB}\Gamma\Delta$ κύκλος, κορυφή δὲ τὸ Λ [σημεῖον], πρὸς ἔλαττόν τι τοῦ κώνου στερεόν, οὕ βάσις μὲν ὁ ΕΖΗΘ κύκλος, κορυφὴ δὲ τὸ Ν σημεῖον, τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΔ πρὸς τὴν ΖΘ. ὁμοίως δὴ δείξομεν, ὅτι οὐδὲ ὁ ΕΖΗΘΝ κῶνος πρὸς ἔλαττόν τι τοῦ ΑΒΓΔΛ κώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΖΘ πρὸς τὴν ΒΔ.

Λέγω δή, ὅτι οὐδὲ ὁ $AB\Gamma\Delta\Lambda$ κῶνος πρὸς μεῖζόν τι τοῦ $EZH\ThetaN$ κώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Delta$ πρὸς τὴν $Z\Theta$.

Εἰ γὰρ δυνατόν, ἐχέτω πρὸς μεῖζον τὸ Ξ. ἀνάπαλιν ἄρα τὸ Ξ στερεὸν πρὸς τὸν $AB\Gamma\Delta\Lambda$ χῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ $Z\Theta$ πρὸς τὴν $B\Delta$. ὡς δὲ τὸ Ξ στερεὸν πρὸς τὸν $AB\Gamma\Delta\Lambda$ χῶνον, οὕτως ὁ $EZH\ThetaN$ χῶνος πρὸς ἔλαττόν τι τοῦ $AB\Gamma\Delta\Lambda$ χώνου στερεόν. χαὶ ὁ $EZH\ThetaN$ ἄρα χῶνος πρὸς ἔλαττόν τι τοῦ $AB\Gamma\Delta\Lambda$ χώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ $Z\Theta$ πρὸς τὴν $B\Delta$ · ὅπερ ἀδύνατον ἐδείχθη. οὐχ ἄρα ὁ $AB\Gamma\Delta\Lambda$ χῶνος πρὸς μεῖζόν τι τοῦ $EZH\ThetaN$ χώνου στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Delta$ πρὸς τὴν $Z\Theta$. ἐδείχθη δέ, ὅτι οὐδὲ πρὸς ἔλαττον. ὁ $AB\Gamma\Delta\Lambda$ ἄρα χῶνος πρὸς τὸν $EZH\ThetaN$ χῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Delta$ πρὸς τὸν $EZH\ThetaN$ χῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Delta$ πρὸς τὸν $EZH\ThetaN$ χῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Delta$ πρὸς τὴν $Z\Theta$.

 Ω ς δὲ ὁ χῶνος πρὸς τὸν χῶνον, ὁ χύλινδρος πρὸς τὸν χύλινδρον· τριπλάσιος γὰρ ὁ χύλινδρος τοῦ χώνου ὁ ἐπὶ τῆς αὐτῆς βάσεως τῷ χώνῳ χαὶ ἰσοϋψὴς αὐτῷ. χαὶ ὁ χύλινδρος ἄρα πρὸς τὸν χύλινδρον τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Delta$ πρὸς τὴν $Z\Theta$.

Οἱ ἄρα ὅμοιοι κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους ἐν

ting up pyramids having the same apexes as the cones on each of the triangles (so formed), we can also show that each of the pyramids (on base ABCD taken) in order will have to each of the pyramids (on base EFGHtaken) in order the cubed ratio that the corresponding side BK (has) to the corresponding side FM—that is to say, that BD (has) to FH. And (for two sets of proportional magnitudes) as one of the leading (magnitudes is) to one of the following, so (the sum of) all of the leading (magnitudes is) to (the sum of) all of the following (magnitudes) [Prop. 5.12]. And, thus, as pyramid BKTL (is) to pyramid FMPN, so the whole pyramid whose base is polygon ATBUCVDW, and apex the point L, (is) to the whole pyramid whose base is polygon EPFQGRHS, and apex the point N. And, hence, the pyramid whose base is polygon ATBUCVDW, and apex the point L, has to the pyramid whose base is polygon EPFQGRHS, and apex the point N, the cubed ratio that BD (has) to FH. And it was also assumed that the cone whose base is circle ABCD, and apex the point L, has to solid O the cubed ratio that BD (has) to FH. Thus, as the cone whose base is circle ABCD, and apex the point L, is to solid O, so the pyramid whose base (is) [polygon] ATBUCVDW, and apex the point L, (is) to the pyramid whose base is polygon EPFQGRHS, and apex the point N. Thus, alternately, as the cone whose base (is) circle ABCD, and apex the point L, (is) to the pyramid within it whose base (is) the polygon ATBUCVDW, and apex the point L, so the [solid] O (is) to the pyramid whose base is polygon EPFQGRHS, and apex the point N [Prop. 5.16]. And the aforementioned cone (is) greater than the pyramid within it. For it encompasses it. Thus, solid O (is) also greater than the pyramid whose base is polygon EPFQGRHS, and apex the point N. But, (it is) also less. The very thing is impossible. Thus, the cone whose base (is) circle ABCD, and apex the [point] L, does not have to some solid less than the cone whose base (is) circle EFGH, and apex the point N, the cubed ratio that BD (has) to EH. So, similarly, we can show that neither does cone EFGHN have to some solid less than cone ABCDL the cubed ratio that FH (has) to BD.

So, I say that neither does cone ABCDL have to some solid greater than cone EFGHN the cubed ratio that BD (has) to FH.

For, if possible, let it have (such a ratio) to a greater (solid), O. Thus, inversely, solid O has to cone ABCDL the cubed ratio that FH (has) to BD [Prop. 5.7 corr.]. And as solid O (is) to cone ABCDL, so cone EFGHN (is) to some solid less than cone ABCDL [12.2 lem.]. Thus, cone EFGHN also has to some solid less than cone ABCDL the cubed ratio that FH (has) to BD. The very

τριπλασίονι λόγφ εἰσὶ τῶν ἐν ταῖς βάσεσι διαμέτρων ὅπερ ἔδει δεῖξαι.

thing was shown (to be) impossible. Thus, cone ABCDL does not have to some solid greater than cone EFGHN the cubed ratio than BD (has) to FH. And it was shown that neither (does it have such a ratio) to a lesser (solid). Thus, cone ABCDL has to cone EFGHN the cubed ratio that BD (has) to FG.

And as the cone (is) to the cone, so the cylinder (is) to the cylinder. For a cylinder is three times a cone on the same base as the cone, and of the same height as it [Prop. 12.10]. Thus, the cylinder also has to the cylinder the cubed ratio that BD (has) to FH.

Thus, similar cones and cylinders are in the cubed ratio of the diameters of their bases. (Which is) the very thing it was required to show.

ιγ΄.

Έὰν κύλινδρος ἐπιπέδω τμηθῆ παραλλήλω ὅντι τοῖς ἀπεναντίον ἐπιπέδοις, ἔσται ὡς ὁ κύλινδρος πρὸς τὸν κύλινδρον, οὕτως ὁ ἄξων πρὸς τὸν ἄξονα.

Κύλινδρος γὰρ ὁ $A\Delta$ ἐπιπέδω τῷ $H\Theta$ τετμήσθω παραλλήλῳ ὅντι τοῖς ἀπεναντίον ἐπιπέδοις τοῖς AB, $\Gamma\Delta$, καὶ συμβαλλέτω τῷ ἄξονι τὸ $H\Theta$ ἐπίπεδον κατὰ τὸ K σημεῖονλέγω, ὅτι ἐστὶν ὡς ὁ BH κύλινδρος πρὸς τὸν $H\Delta$ κύλινδρον, οὕτως ὁ EK ἄξων πρὸς τὸν KZ ἄξονα.

Έκβεβλήσθω γὰρ ὁ ΕΖ ἄξων ἐφ' ἑκάτερα τὰ μέρη ἐπὶ τὰ Λ, Μ σημεῖα, καὶ ἐκκείσθωσαν τῷ ΕΚ ἄξονι ἴσοι ὁσοιδηποτοῦν οἱ ΕΝ, ΝΛ, τῷ δὲ ΖΚ ἴσοι ὁσοιδηποτοῦν οἱ ΖΞ, ΕΜ, καὶ νοείσθω ὁ ἐπὶ τοῦ ΛΜ ἄξονος κύλινδρος ὁ ΟΧ, οῦ βάσεις οἱ ΟΠ, ΦΧ κύκλοι. καὶ ἐκβεβλήσθω διὰ τῶν Ν, Ξ σημείων ἐπίπεδα παράλληλα τοῖς ΑΒ, ΓΔ καὶ ταῖς βάσεσι τοῦ ΟΧ κυλίνδρου καὶ ποιείτωσαν τοὺς ΡΣ, ΤΥ κύκλους περί τὰ Ν, Ξ κέντρα. καὶ ἐπεὶ οἱ ΛΝ, ΝΕ, ΕΚ άξονες ἴσοι εἰσὶν ἀλλήλοις, οἱ ἄρα ΠΡ, ΡΒ, ΒΗ κύλινδροι πρὸς ἀλλήλους εἰσὶν ὡς αἱ βάσεις. ἴσαι δέ εἰσιν αἱ βάσεις: ἴσοι ἄρα καὶ οἱ ΠΡ, PB, BH κύλινδροι ἀλλήλοις. επεὶ οὖν οί ΛΝ, ΝΕ, ΕΚ ἄξονες ἴσοι εἰσὶν ἀλλήλοις, εἰσὶ δὲ καὶ οί ΠΡ, ΡΒ, ΒΗ κύλινδροι ἴσοι ἀλλήλοις, καί ἐστιν ἴσον τὸ πληθος τῷ πλήθει, ὁσαπλασίων ἄρα ὁ ΚΛ ἄξων τοῦ ΕΚ άξονος, τοσαυταπλασίων ἔσται καὶ ὁ ΠΗ κύλινδρος τοῦ ΗΒ κυλίνδρου. διὰ τὰ αὐτὰ δὴ καὶ ὁσαπλασίων ἐστὶν ὁ ΜΚ ἄξων τοῦ ΚΖ ἄξονος, τοσαυταπλασίων ἐστὶ καὶ ὁ ΧΗ κύλινδρος τοῦ ΗΔ χυλίνδρου. χαὶ εἰ μὲν ἴσος ἐστὶν ὁ ΚΛ ἄξων τῷ ΚΜ ἄξονι, ἴσος ἔσται καὶ ὁ ΠΗ κύλινδρος τῷ ΗΧ κυλίνδρῳ,

Proposition 13

If a cylinder is cut by a plane which is parallel to the opposite planes (of the cylinder) then as the cylinder (is) to the cylinder, so the axis will be to the axis.

For let the cylinder AD have been cut by the plane GH which is parallel to the opposite planes (of the cylinder), AB and CD. And let the plane GH have met the axis at point K. I say that as cylinder BG is to cylinder GD, so axis EK (is) to axis KF.

For let axis EF have been produced in each direction to points L and M. And let any number whatsoever (of lengths), EN and NL, equal to axis EK, be set out (on the axis EL), and any number whatsoever (of lengths), FO and OM, equal to (axis) FK, (on the axis KM). And let the cylinder PW, whose bases (are) the circles PQ and VW, have been conceived on axis LM. And let planes parallel to AB, CD, and the bases of cylinder PW, have been produced through points N and O, and let them have made the circles RS and TU around the centers N and O (respectively). And since axes LN, NE, and EK are equal to one another, the cylinders QR, RB, and BG are to one another as their bases [Prop. 12.11]. But the bases are equal. Thus, the cylinders QR, RB, and BG (are) also equal to one another. Therefore, since the axes LN, NE, and EK are equal to one another, and the cylinders QR, RB, and BG are also equal to one another, and the number (of the former) is equal to the number (of the latter), thus as many multiples as axis KL

εἰ δὲ μείζων ὁ ἄξων τοῦ ἄξονος, μείζων καὶ ὁ κύλινδρος τοῦ κυλίνδρου, καὶ εἰ ἐλάσσων, ἐλάσσων. τεσσάρων δὴ μεγεθῶν ὄντων, ἀξόνων μὲν τῶν ΕΚ, ΚΖ, κυλίνδρων δὲ τῶν ΒΗ, ΗΔ, εἴληπται ἰσάκις πολλαπλάσια, τοῦ μὲν ΕΚ ἄξονος καὶ τοῦ ΒΗ κυλίνδρου ὅ τε ΛΚ ἄξων καὶ ὁ ΠΗ κύλινδρος, τοῦ δὲ ΚΖ ἄξονες καὶ τοῦ ΗΔ κυλίνδρου ὅ τε ΚΜ ἄξων καὶ ὁ ΗΧ κύλινδρος, καὶ δέδεικται, ὅτι εἰ ὑπερέχει ὁ ΚΛ ἄξων τοῦ ΚΜ ἄξονος, ὑπερέχει καὶ ὁ ΠΗ κύλινδρος τοῦ ΗΧ κυλίνδρου, καὶ εἰ ἴσος, ἴσος, καὶ εὶ ἐλάσσων, ἐλάσσων. ἔστιν ἄρα ὡς ὁ ΕΚ ἄξων πρὸς τὸν ΚΖ ἄξονα, οὕτως ὁ ΒΗ κύλινδρος πρὸς τὸν ΗΔ κύλινδρον ὅπερ ἔδει δεῖξαι.

ιδ΄.

Οἱ ἐπὶ ἴσων βάσεων ὄντες κῶνοι καὶ κύλινδροι πρὸς αλλήλους εἰσὶν ὡς τὰ ὕψη.

Έστωσαν γὰρ ἐπὶ ἴσων βάσεων τῶν AB, ΓΔ κύκλων κύλινδροι οἱ EB, ZΔ· λέγω, ὅτι ἐστὶν ὡς ὁ EB κύλινδρος πρὸς τὸν ZΔ κύλινδρον, οὕτως ὁ HΘ ἄξων πρὸς τὸν ΚΛ ἄξονα.

Έκβεβλήσθω γὰρ ὁ ΚΛ ἄξων ἐπὶ τὸ Ν σημεῖον, καὶ κείσθω τῷ ΗΘ ἄξονι ἴσος ὁ ΛΝ, καὶ περὶ ἄξονα τὸν ΛΝ κύλινδρος νενοήσθω ὁ ΓΜ. ἐπεὶ οὕν οἱ ΕΒ, ΓΜ κύλινδροι ὑπὸ τὸ αὐτὸ ὕψος εἰσίν, πρὸς ἀλλήλους εἰσίν ὡς αἱ βάσεις. ἴσαι δέ εἰσίν αἱ βάσεις ἀλλήλαις· ἴσοι ἄρα εἰσὶ καὶ οἱ ΕΒ, ΓΜ κύλινδροι. καὶ ἐπεὶ κύλινδρος ὁ ΖΜ ἐπιπέδω τέτμηται τῷ ΓΔ παραλλήλῳ ὄντι τοῖς ἀπεναντίον ἐπιπέδοις, ἔστιν ἄρα ὡς ὁ ΓΜ κύλινδρος πρὸς τὸν ΖΔ κύλινδρον, οὕτως ὁ ΛΝ ἄξων πρὸς τὸν ΚΛ ἄξονα. ἴσος δέ ἐστιν ὁ μὲν ΓΜ κύλινδρος τῷ ΕΒ κυλίνδρος, πρὸς τὸν ΖΔ κύλινδρον, οὕτως ὁ ΗΘ ἄξων πρὸς τὸν ΚΛ ἄξονα. ὡς δὲ ὁ ΕΒ κύλινδρος πρὸς τὸν ΖΔ

is of axis EK, so many multiples is cylinder QG also of cylinder GB. And so, for the same (reasons), as many multiples as axis MK is of axis KF, so many multiples is cylinder WG also of cylinder GD. And if axis KL is equal to axis KM then cylinder QG will also be equal to cylinder GW, and if the axis (is) greater than the axis then the cylinder (will also be) greater than the cylinder, and if (the axis is) less then (the cylinder will also be) less. So, there are four magnitudes—the axes EK and KF, and the cylinders BG and GD—and equal multiples have been taken of axis EK and cylinder BG—(namely), axis LK and cylinder QG—and of axis KF and cylinder GD—(namely), axis KM and cylinder GW. And it has been shown that if axis KL exceeds axis KM then cylinder QG also exceeds cylinder GW, and if (the axes are) equal then (the cylinders are) equal, and if (KL is) less then (QG is) less. Thus, as axis EK is to axis KF, so cylinder BG (is) to cylinder GD [Def. 5.5]. (Which is) the very thing it was required to show.

Proposition 14

Cones and cylinders which are on equal bases are to one another as their heights.

For let EB and FD be cylinders on equal bases, (namely) the circles AB and CD (respectively). I say that as cylinder EB is to cylinder FD, so axis GH (is) to axis KL.

For let the axis KL have been produced to point N. And let LN be made equal to axis GH. And let the cylinder CM have been conceived about axis LN. Therefore, since cylinders EB and CM have the same height they are to one another as their bases [Prop. 12.11]. And the bases are equal to one another. Thus, cylinders EB and CM are also equal to one another. And since cylinder FM has been cut by the plane CD, which is parallel to its opposite planes, thus as cylinder CM is to cylinder ED, so axis ED (is) to axis ED (is) to axis ED (is) axis ED (is)

κύλινδρον, ούτως ὁ ABH κῶνος πρὸς τὸν $\Gamma\Delta K$ κῶνον. καὶ ὡς ἄρα ὁ $H\Theta$ ἄξων πρὸς τὸν $K\Lambda$ ἄξονα, οὕτως ὁ ABH κῶνος πρὸς τὸν $\Gamma\Delta K$ κῶνον καὶ ὁ EB κύλινδρος πρὸς τὸν $Z\Delta$ κύλινδρον· ὅπερ ἔδει δεῖξαι.

ιε΄.

Τῶν ἴσων κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· καὶ ὧν κώνων καὶ κυλίνδρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν, ἴσοι εἰσὶν ἐκεῖνοι.

Έστωσαν ἴσοι χῶνοι χαὶ χύλινδροι, ὧν βάσεις μὲν οἱ ABΓΔ, ΕΖΗΘ χύχλοι, διάμετροι δὲ αὐτῶν αἰ AΓ, ΕΗ, ἄξονες δὲ οἱ ΚΛ, MN, οἴτινες χαὶ ὕψη εἰσὶ τῶν χώνων ἢ χυλίνδρων, χαὶ συμπεπληρώσθωσαν οἱ ΑΞ, ΕΟ χύλινδροι. λέγω, ὅτι τῶν ΑΞ, ΕΟ χυλίνδρων ἀντιπεπόνθασιν αὶ βάσεις τοῖς ὕψεσιν, χαὶ ἐστιν ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ βάσιν, οὕτως τὸ MN ὕψος πρὸς τὸ ΚΛ ὕψος.

Τὸ γὰρ ΛΚ ὕψος τῷ ΜΝ ὕψει ἤτοι ἴσον ἐστὶν ἢ οὔ. ἔστω πρότερον ἴσον. ἔστι δὲ καὶ ὁ ΑΞ κύλινδρος τῷ ΕΟ κυλίνδρω ἴσος. οἱ δὲ ὑπὸ τὸ αὐτὸ ὕψος ὄντες κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους εἰσὶν ὡς αἱ βάσεις. ἴση ἄρα καὶ ή ΑΒΓΔ βάσις τῆ ΕΖΗΘ βάσει. ὤστε καὶ ἀντιπέπονθεν, ώς ή ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ βάσιν, οὕτως τὸ ΜΝ ύψος πρὸς τὸ ΚΛ ὕψος. ἀλλὰ δὴ μὴ ἔστω τὸ ΛΚ ὕψος τῷ ΜΝ ἴσον, ἀλλ' ἔστω μεῖζον τὸ ΜΝ, καὶ ἀφηρήσθω ἀπὸ τοῦ ΜΝ ὕψους τῷ ΚΛ ἴσον τὸ ΠΝ, καὶ διὰ τοῦ Π σημείου τετμήσθω ὁ ΕΟ κύλινδρος ἐπιπέδω τῷ ΤΥΣ παραλλήλω τοῖς τῶν ΕΖΗΘ, ΡΟ κύκλων ἐπιπέδοις, καὶ ἀπὸ βάσεως μὲν τοῦ ΕΖΗΘ κύκλου, ὕψους δὲ τοῦ ΝΠ κύλινδρος νενοήσθω ό ΕΣ. καί ἐπεὶ ἴσος ἐστὶν ὁ ΑΞ κύλινδρος τῷ ΕΟ κυλίνδρω, ἔστιν ἄρα ώς ὁ $A\Xi$ χύλινδρος πρὸς τὸν $E\Sigma$ χυλίνδρον, οὕτως δ ${
m EO}$ κύλινδρος πρὸς τὸν ${
m E\Sigma}$ κύλινδρον. ἀλλ' ὡς μὲν δ ${
m A\Xi}$ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον, οὕτως ἡ ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ· ὑπὸ γὰρ τὸ αὐτὸ ὕψος εἰσὶν οἱ ΑΞ, ΕΣ κύλινδροι ώς δὲ ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ, οὕτως τὸ ΜΝ ὕψος πρὸς τὸ ΠΝ ὕψος ὁ γὰρ ΕΟ χύλινδρος ἐπιπέδω τέτμηται παραλλήλω ὄντι τοῖς ἀπεναντίον ἐπιπέδοις. ἔστιν ἄρα καὶ ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ βάσιν, οὕτως τὸ ΜΝ ὕψος πρὸς τὸ ΠΝ ὕψος. ἴσον δὲ τὸ ΠΝ ὕψος τῷ ΚΛ ὕψει· ἔστιν ἄρα ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ βάσιν, οὕτως τὸ ΜΝ ὕψος πρὸς τὸ ΚΛ ὕψος. τῶν ἄρα ΑΞ, ΕΟ χυλίνδρων ἀντιπεπόνθασιν αί βάσεις τοῖς ὕψεσιν.

to axis KL. And as cylinder EB (is) to cylinder FD, so cone ABG (is) to cone CDK [Prop. 12.10]. Thus, also, as axis GH (is) to axis KL, so cone ABG (is) to cone CDK, and cylinder EB to cylinder FD. (Which is) the very thing it was required to show.

Proposition 15

The bases of equal cones and cylinders are reciprocally proportional to their heights. And, those cones and cylinders whose bases (are) reciprocally proportional to their heights are equal.

Let there be equal cones and cylinders whose bases are the circles ABCD and EFGH, and the diameters of (the bases) AC and EG, and (whose) axes (are) KL and MN, which are also the heights of the cones and cylinders (respectively). And let the cylinders AO and EP have been completed. I say that the bases of cylinders AO and EP are reciprocally proportional to their heights, and (so) as base ABCD is to base EFGH, so height MN (is) to height KL.

For height LK is either equal to height MN, or not. Let it, first of all, be equal. And cylinder AO is also equal to cylinder EP. And cones and cylinders having the same height are to one another as their bases [Prop. 12.11]. Thus, base ABCD (is) also equal to base EFGH. And, hence, reciprocally, as base ABCD (is) to base EFGH, so height MN (is) to height KL. And so, let height LKnot be equal to MN, but let MN be greater. And let QN, equal to KL, have been cut off from height MN. And let the cylinder EP have been cut, through point Q, by the plane TUS (which is) parallel to the planes of the circles EFGH and RP. And let cylinder ES have been conceived, with base the circle EFGH, and height NQ. And since cylinder AO is equal to cylinder EP, thus, as cylinder AO (is) to cylinder ES, so cylinder EP (is) to cylinder ES [Prop. 5.7]. But, as cylinder AO (is) to cylinder ES, so base ABCD (is) to base EFGH. For cylinders AO and ES (have) the same height [Prop. 12.11]. And as cylinder EP (is) to (cylinder) ES, so height MN (is) to height QN. For cylinder EP has been cut by a plane which is parallel to its opposite planes [Prop. 12.13]. And, thus, as base ABCD is to base EFGH, so height MN (is) to height QN [Prop. 5.11]. And height QN

Άλλὰ δὴ τῶν ΑΞ, ΕΟ χυλίνδρων ἀντιπεπονθέτωσαν αἱ βάσεις τοῖς ὕψεσιν, καὶ ἔστω ὡς ἡ $AB\Gamma\Delta$ βάσις πρὸς τὴν $EZH\Theta$ βάσιν, οὕτως τὸ MN ὕψος πρὸς τὸ $K\Lambda$ ὕψος λέγω, ὅτι ἴσος ἐστὶν ὁ $A\Xi$ χύλινδρος τῷ EO χυλίνδρω.

Τῶν γὰρ αὐτῶν κατασκευασθέντων ἐπεί ἐστιν ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ βάσιν, οὕτως τὸ ΜΝ ὕψος πρὸς τὸ ΚΛ ὕψος, ἴσον δὲ τὸ ΚΛ ὕψος τῷ ΠΝ ὕψει, ἔσται ἄρα ὡς ἡ ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ βάσιν, οὕτως τὸ ΜΝ ὕψος πρὸς τὸ ΠΝ ὕψος. ἀλλ' ὡς μὲν ἡ ΑΒΓΔ βάσις πρὸς τὴν ΕΖΗΘ βάσιν, οὕτως ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον ὑπὸ γὰρ τὸ αὐτὸ ὕψος εἰσίν ὡς δὲ τὸ ΜΝ ὕψος πρὸς τὸ ΠΝ [ὕψος], οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον ἔστιν ἄρα ὡς ὁ ΑΞ κύλινδρος πρὸς τὸν ΕΣ κύλινδρον, οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρος, οὕτως ὁ ΕΟ κύλινδρος πρὸς τὸν ΕΣ κύλινδρος τῷ ΕΟ κυλίνδρος πρὸς τὸν ΕΣ ἔσος ἄρα ὁ ΑΞ κύλινδρος τῷ ΕΟ κυλίνδρω. ὡσαύτως δὲ καὶ ἐπὶ τῶν κώνων ὅπερ ἔδει δεῖξαι.

۱Ŧ'.

 Δ ύο χύχλων περὶ τὸ αὐτὸ χέντρον ὄντων εἰς τὸν μείζονα χύχλον πολύγωνον ἰσόπλευρόν τε καὶ ἀρτιόπλευρον ἐγγράψαι μὴ ψαῦον τοῦ ἐλάσσονος χύχλου.

Έστωσαν οἱ δοθέντες δύο κύκλοι οἱ $AB\Gamma\Delta$, $EZH\Theta$ περὶ τὸ αὐτὸ κέντρον τὸ K^{\cdot} δεῖ δὴ εἰς τὸν μείζονα κύκλον τὸν $AB\Gamma\Delta$ πολύγωνον ἰσόπλευρόν τε καὶ ἀρτιόπλευρον ἐγγράψαι μὴ ψαῦον τοῦ $EZH\Theta$ κύκλου.

ηχθω γὰρ διὰ τοῦ K κέντρου εὐθεῖα ἡ $BK\Delta$, καὶ ἀπὸ τοῦ H σημείου τῆ $B\Delta$ εὐθεία πρὸς ὀρθὰς ἤχθω ἡ HA καὶ διήχθω ἐπὶ τὸ Γ · ἡ $A\Gamma$ ἄρα ἐφάπτεται τοῦ $EZH\Theta$ κύκλου. τέμνοντες δὴ τὴν $BA\Delta$ περιφέρειαν δίχα καὶ τὴν ἡμίσειαν αὐτῆς δίχα καὶ τοῦτο ἀεὶ ποιοῦντες καταλείψομεν περιφέρειαν ἐλάσσονα τῆς $A\Delta$. λελείφθω, καὶ ἔστω ἡ $A\Delta$, καὶ ἀπὸ τοῦ Λ ἐπὶ τὴν $B\Delta$ κάθετος ἤχθω ἡ ΛM καὶ διήχθω

(is) equal to height KL. Thus, as base ABCD is to base EFGH, so height MN (is) to height KL. Thus, the bases of cylinders AO and EP are reciprocally proportional to their heights.

And, so, let the bases of cylinders AO and EP be reciprocally proportional to their heights, and (thus) let base ABCD be to base EFGH, as height MN (is) to height KL. I say that cylinder AO is equal to cylinder EP.

For, with the same construction, since as base ABCD is to base EFGH, so height MN (is) to height KL, and height KL (is) equal to height QN, thus, as base ABCD (is) to base EFGH, so height MN will be to height QN. But, as base ABCD (is) to base EFGH, so cylinder AO (is) to cylinder ES. For they are the same height PC [Prop. 12.11]. And as height PC (is) to PC [Prop. 12.13]. Thus, as cylinder PC (is) to cylinder PC [Prop. 5.11]. Thus, cylinder PC (is) equal to cylinder PC [Prop. 5.9]. In the same manner, (the proposition can) also (be demonstrated) for the cones. (Which is) the very thing it was required to show.

Proposition 16

There being two circles about the same center, to inscribe an equilateral and even-sided polygon in the greater circle, not touching the lesser circle.

Let ABCD and EFGH be the given two circles, about the same center, K. So, it is necessary to inscribe an equilateral and even-sided polygon in the greater circle ABCD, not touching circle EFGH.

Let the straight-line BKD have been drawn through the center K. And let GA have been drawn, at right-angles to the straight-line BD, through point G, and let it have been drawn through to C. Thus, AC touches circle EFGH [Prop. 3.16 corr.]. So, (by) cutting circumference BAD in half, and the half of it in half, and doing this continually, we will (eventually) leave a circumference less

ἐπὶ τὸ N, καὶ ἐπεζεύχθωσαν αἱ $\Lambda\Delta$, Δ N· ἴση ἄρα ἐστὶν ἡ $\Lambda\Delta$ τῆ Δ N. καὶ ἐπεὶ παράλληλός ἐστιν ἡ Λ N τῆ Λ Γ, ἡ δὲ Λ Γ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου, ἡ Λ N ἄρα οὐκ ἐφάπτεται τοῦ ΕΖΗΘ κύκλου· πολλῷ ἄρα αἱ $\Lambda\Delta$, Δ N οὐκ ἐφάπτονται τοῦ ΕΖΗΘ κύκλου. ἐὰν δὴ τῆ $\Lambda\Delta$ εὐθείᾳ ἴσας κατὰ τὸ συνεχὲς ἐναρμόσωμεν εἰς τὸν Λ ΒΓ Δ κύκλον, ἐγγραφήσεται εἰς τὸν Λ ΒΓ Δ κύκλον πολύγωνον ἰσόπλευρόν τε καὶ ἀρτιόπλευρον μὴ ψαῦον τοῦ ἐλάσσονος κύκλου τοῦ ΕΖΗΘ· ὅπερ ἔδει ποιῆσαι.

than AD [Prop. 10.1]. Let it have been left, and let it be LD. And let LM have been drawn, from L, perpendicular to BD, and let it have been drawn through to N. And let LD and DN have been joined. Thus, LD is equal to DN [Props. 3.3, 1.4]. And since LN is parallel to AC [Prop. 1.28], and AC touches circle EFGH, LN thus does not touch circle EFGH. Thus, even more so, LD and DN do not touch circle EFGH. And if we continuously insert (straight-lines) equal to straight-line LD into circle ABCD [Prop. 4.1] then an equilateral and even-sided polygon, not touching the lesser circle EFGH, will have been inscribed in circle ABCD. † (Which is) the very thing it was required to do.

ιζ'.

 Δ ύο σφαιρῶν περὶ τὸ αὐτὸ κέντρον οὐσῶν εἰς τὴν μείζονα σφαῖραν στερεὸν πολύεδρον ἐγγράψαι μὴ ψαῦον τῆς ἐλάσσονος σφαίρας κατὰ τὴν ἐπιφάνειαν.

Νενοήσθωσαν δύο σφαῖραι περὶ τὸ αὐτὸ κέντρον τὸ A^{\cdot} δεῖ δὴ εἰς τὴν μείζονα σφαῖραν στερεὸν πολύεδρον ἐγγράψαι μὴ ψαῦον τῆς ἐλάσσονος σφαίρας κατὰ τὴν ἐπιφάνειαν.

Τετμήσθωσαν αἱ σφαῖραι ἐπιπέδῳ τινὶ διὰ τοῦ κέντρου ἔσονται δὴ αἱ τομαὶ κύκλοι, ἐπειδήπερ μενούσης τῆς διαμέτρου καὶ περιφερομένου τοῦ ἡμικυκλίου ἐγιγνετο ἡ σφαῖρα· ὥστε καὶ καθ' οἴας ἂν θέσεως ἐπινοήσωμεν τὸ ἡμικύκλιον, τὸ δι' αὐτοῦ ἐκβαλλόμενον ἐπίπεδον ποιήσει ἐπὶ τῆς ἐπιφανείας τῆς σφαίρας κύκλον. καὶ φανερόν, ὅτι καὶ μέγιστον, ἐπειδήπερ ἡ διάμετρος τῆς σφαίρας, ἤτις

Proposition 17

There being two spheres about the same center, to inscribe a polyhedral solid in the greater sphere, not touching the lesser sphere on its surface.

Let two spheres have been conceived about the same center, A. So, it is necessary to inscribe a polyhedral solid in the greater sphere, not touching the lesser sphere on its surface.

Let the spheres have been cut by some plane through the center. So, the sections will be circles, inasmuch as a sphere is generated by the diameter remaining behind, and a semi-circle being carried around [Def. 11.14]. And, hence, whatever position we conceive (of for) the semi-circle, the plane produced through it will make a

 $^{^\}dagger$ Note that the chord of the polygon, LN, does not touch the inner circle either.

έστὶ καὶ τοῦ ἡμικυκλίου διάμετρος δηλαδή καὶ τοῦ κύκλου, μείζων ἐστὶ πασῶν τῶν εἰς τὸν κύκλον ἢ τὴν σφαῖραν διαγομένων [εὐθειῶν]. ἔστω οὖν ἐν μὲν τῆ μείζονι σφαίρα κύκλος ὁ ΒΓΔΕ, ἐν δὲ τῆ ἐλάσσονι σφαίρα κύκλος ὁ ΖΗΘ, καὶ ἤχθωσαν αὐτῶν δύο διάμετροι πρὸς ὀρθὰς ἀλλήλαις αἱ ΒΔ, ΓΕ, καὶ δύο κύκλων περὶ τὸ αὐτὸ κέντρον ὄντων τῶν $B\Gamma\Delta E$, $ZH\Theta$ εἰς τὸν μείζονα κύκλον τὸν $B\Gamma\Delta E$ πολύγωνον ἰσόπλευρον καὶ ἀρτιόπλευρον ἐγγεγράφθω μὴ ψαῦον τοῦ έλάσσονος κύκλου τοῦ ΖΗΘ, οὕ πλευραὶ ἔστωσαν ἐν τῷ ΒΕ τεταρτημορίω αἱ ΒΚ, ΚΛ, ΛΜ, ΜΕ, καὶ ἐπιζευχθεῖσα ἡ ΚΑ διήχθω ἐπὶ τὸ Ν, καὶ ἀνεστάτω ἀπὸ τοῦ Α σημείου τῷ τοῦ ΒΓΔΕ κύκλου ἐπιπέδω πρὸς ὀρθὰς ἡ ΑΞ καὶ συμβαλλέτω τῆ ἐπιφανείᾳ τῆς σφαίρας κατὰ τὸ Ξ, καὶ διὰ τῆς ΑΞ καὶ έκατέρας τῶν $\mathrm{B}\Delta$, KN ἐπίπεδα ἐκβεβλήσθω· ποιήσουσι δὴ διὰ τὰ εἰρημένα ἐπὶ τῆς ἐπιφανείας τῆς σφαίρας μεγίστους κύκλους. ποιείτωσαν, ὧν ἡμικύκλια ἔστω ἐπὶ τῶν ΒΔ, ΚΝ διαμέτρων τὰ ΒΞΔ, ΚΞΝ. καὶ ἐπεὶ ἡ ΞΑ ὀρθή ἐστι πρὸς τὸ τοῦ ΒΓΔΕ κύκλου ἐπίπεδον, καὶ πάντα ἄρα τὰ διὰ τῆς ΞΑ ἐπίπεδά ἐστιν ὀρθὰ πρὸς τὸ τοῦ ΒΓΔΕ κύκλου ἐπίπεδον: ώστε καὶ τὰ ΒΞΔ, ΚΞΝ ἡμικύκλια ὀρθά ἐστι πρὸς τὸ τοῦ $B\Gamma\Delta E$ κύκλου ἐπίπεδον. καὶ ἐπεὶ ἴσα ἐστὶ τὰ $BE\Delta$, $B\Xi\Delta$, ΚΞΝ ἡμικύκλια· ἐπὶ γὰρ ἴσων εἰσὶ διαμέτρων τῶν ΒΔ, ΚΝ· ἴσα ἐστὶ καὶ τὰ ΒΕ, ΒΞ, ΚΞ τεταρτημόρια ἀλλήλοις. ὄσαι ἄρα εἰσὶν ἐν τῷ ΒΕ τεταρτημορίω πλευραὶ τοῦ πολυγώνου, τοσαῦταί εἰσι καὶ ἐν τοῖς ΒΞ, ΚΞ τεταρτημορίοις ἴσαι ταῖς ΒΚ, ΚΛ, ΛΜ, ΜΕ εὐθείαις. ἐγγεγράφθωσαν καὶ ἔστωσαν αί ΒΟ, ΟΠ, ΠΡ, ΡΞ, ΚΣ, ΣΤ, ΤΥ, ΥΞ, καὶ ἐπεζεύχθωσαν αἱ ΣΟ, ΤΠ, ΥΡ, καὶ ἀπὸ τῶν Ο, Σ ἐπὶ τὸ τοῦ ΒΓΔΕ κύκλου ἐπίπεδον κάθετοι ἤχθωσαν. πεσοῦνται δὴ ἐπὶ τὰς κοινάς τομάς τῶν ἐπιπέδων τὰς ΒΔ, ΚΝ, ἐπειδήπερ καὶ τὰ τῶν ΒΞΔ, ΚΞΝ ἐπίπεδα ὀρθά ἐστι πρὸς τὸ τοῦ ΒΓΔΕ κύκλου ἐπίπεδον. πιπτέτωσαν, καὶ ἔστωσαν αἱ ΟΦ, ΣΧ, καὶ ἐπεζεύχθω ἡ ΧΦ. καὶ ἐπεὶ ἐν ἴσοις ἡμικυκλίοις τοῖς $B\Xi\Delta$, $K\Xi N$ ἴσαι ἀπειλημμέναι εἰσὶν αἱ BO, $K\Sigma$, καὶ κάθετοι ἠγμέναι εἰσὶν αἱ $\mathrm{O}\Phi$, $\Sigma\mathrm{X}$, ἴση [ἄρα] ἐστὶν ἡ μὲν $\mathrm{O}\Phi$ τῆ $\Sigma\mathrm{X}$, ή δὲ ΒΦ τῆ ΚΧ. ἔστι δὲ καὶ ὅλη ἡ ΒΑ ὅλη τῆ ΚΑ ἴση καὶ λοιπή ἄρα ἡ ΦΑ λοιπῆ τῆ ΧΑ ἐστιν ἴση: ἔστιν ἄρα ὡς ἡ ΒΦ πρὸς τὴν ΦΑ, οὕτως ἡ ΚΧ πρὸς τὴν ΧΑ· παράλληλος ἄρα ἐστὶν ἡ $X\Phi$ τῆ KB. καὶ ἐπεὶ ἑκατέρα τῶν $O\Phi$, ΣX ὀρ ϑ ή έστι πρὸς τὸ τοῦ ΒΓΔΕ κύκλου ἐπίπεδον, παράλληλος ἄρα ἐστὶν ἡ $O\Phi$ τῆ ΣX . ἐδείχθη δὲ αὐτῆ καὶ ἴση· καὶ αἱ $X\Phi$, ΣO ἄρα ἴσαι εἰσὶ καὶ παράλληλοι. καὶ ἐπεὶ παράλληλός ἐστιν ή ΧΦ τῆ ΣΟ, ἀλλὰ ἡ ΧΦ τῆ ΚΒ ἐστι παράλληλος, καὶ ή ΣΟ ἄρα τῆ ΚΒ ἐστι παράλληλος. καὶ ἐπιζευγνύουσιν αὐτὰς αἱ ΒΟ, ΚΣ· τὸ ΚΒΟΣ ἄρα τετράπλευρον ἐν ἑνί ἐστιν ἐπιπέδω, ἐπειδήπερ, ἐὰν ὧσι δύο εὐθεῖαι παράλληλοι, καὶ ἐφ᾽ ἑκατέρας αὐτῶν ληφθῆ τυχόντα σημεῖα, ἡ ἐπὶ τὰ σημεῖα ἐπιζευγνυμένη εὐθεῖα ἐν τῷ αὐτῷ ἐπιπέδῳ ἐστὶ ταῖς παραλλήλοις. διὰ τὰ αὐτὰ δὴ καὶ ἑκάτερον τῶν ΣΟΠΤ, ΤΠΡΥ τετραπλεύρων ἐν ἑνί ἐστιν ἐπιπέδω. ἔστι δὲ καὶ τὸ ΥΡΞ τρίγωνον ἐν ἑνὶ ἑπιπέδω. ἐὰν δὴ νοήσωμεν ἀπὸ

circle on the surface of the sphere. And (it is) clear that (it is) also a great (circle), inasmuch as the diameter of the sphere, which is also manifestly the diameter of the semi-circle and the circle, is greater than all of the (other) [straight-lines] drawn across in the circle or the sphere [Prop. 3.15]. Therefore, let BCDE be the circle in the greater sphere, and FGH the circle in the lesser sphere. And let two diameters of them have been drawn at right-angles to one another, (namely), BD and CE. And there being two circles about the same center—(namely), BCDE and FGH—let an equilateral and even-sided polygon have been inscribed in the greater circle, BCDE, not touching the lesser circle, FGH [Prop. 12.16], of which let the sides in the quadrant BE be BK, KL, LM, and ME. And, KA being joined, let it have been drawn across to N. And let AOhave been set up at point A, at right-angles to the plane of circle BCDE. And let it meet the surface of the (greater) sphere at O. And let planes have been produced through AO and each of BD and KN. So, according to the aforementioned (discussion), they will make great circles on the surface of the (greater) sphere. Let them make (great circles), of which let BOD and KON be semi-circles on the diameters BD and KN (respectively). And since OAis at right-angles to the plane of circle BCDE, all of the planes through OA are thus also at right-angles to the plane of circle BCDE [Prop. 11.18]. And, hence, the semi-circles BOD and KON are also at right-angles to the plane of circle BCDE. And since semi-circles BED, BOD, and KON are equal—for (they are) on the equal diameters BD and KN [Def. 3.1]—the quadrants BE, BO, and KO are also equal to one another. Thus, as many sides of the polygon as are in quadrant BE, so many are also in quadrants BO and KO equal to the straight-lines BK, KL, LM, and ME. Let them have been inscribed, and let them be BP, PQ, QR, RO, KS, ST, TU, and UO. And let SP, TQ, and UR have been joined. And let perpendiculars have been drawn from P and S to the plane of circle BCDE [Prop. 11.11]. So, they will fall on the common sections of the planes BDand KN (with BCDE), inasmuch as the planes of BODand KON are also at right-angles to the plane of circle BCDE [Def. 11.4]. Let them have fallen, and let them be PV and SW. And let WV have been joined. And since BP and KS are equal (circumferences) having been cut off in the equal semi-circles BOD and KON [Def. 3.28], and PV and SW are perpendiculars having been drawn (from them), PV is [thus] equal to SW, and BV to KW[Props. 3.27, 1.26]. And the whole of BA is also equal to the whole of KA. And, thus, as BV is to VA, so KW(is) to WA. WV is thus parallel to KB [Prop. 6.2]. And

τῶν Ο, Σ, Π, Τ, Ρ, Υ σημείων ἐπὶ τὸ Α ἐπίζευγνυμένας εὐθείας, συσταθήσεταί τι σχῆμα στερεὸν πολύεδρον ματαξὺ τῶν ΒΞ, ΚΞ περιφερειῶν ἐκ πυραμίδων συγκείμενον, ὧν βάσεις μὲν τὰ ΚΒΟΣ, ΣΟΠΤ, ΤΠΡΥ τετράπλευρα καὶ τὸ ΥΡΞ τρίγωνον, κορυφὴ δὲ τὸ Α σημεῖον. ἐὰν δὲ καὶ ἐπὶ ἑκάστης τῶν ΚΛ, ΛΜ, ΜΕ πλευρῶν καθάπερ ἐπὶ τῆς ΒΚ τὰ αὐτὰ κατασκευάσωμεν καὶ ἔτι τῶν λοιπῶν τριῶν τεταρτημορίων, συσταθήσεταί τι σχῆμα πολύεδρον ἐγγεγραμμένον εἰς τὴν σφαῖραν πυραμίσι περιεχόμενον, ὧν βάσιες [μὲν] τὰ εἰρημένα τετράπλευρα καὶ τὸ ΥΡΞ τρίγωνον καὶ τὰ ὁμοταγῆ αὐτοῖς, κορυφὴ δὲ τὸ Α σημεῖον.

Λέγω ὅτι τὸ εἰρημένον πολύεδρον οὐκ ἐφάψεται τῆς ἐλάσσονος σφαίρας κατὰ τὴν ἐπιφάνειαν, ἐφ' ῆς ἐστιν ὁ $ZH\Theta$ κύκλος.

"Ήχθω ἀπὸ τοῦ Α σημείου ἐπὶ τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον κάθετος ἡ ΑΨ καὶ συμβαλλέτω τῷ ἐπιπέδω κατὰ τὸ Ψ σημεῖον, καὶ ἐπεζεύχθωσαν αἱ $\Psi \mathrm{B}, \Psi \mathrm{K}.$ καὶ ἐπεὶ ἡ ΑΨ ὀρθή ἐστι πρὸς τὸ τοῦ ΚΒΟΣ τετραπλεύρου ἐπίπεδον, καὶ πρὸς πάσας ἄρα τὰς ἁπτομένας αὐτῆς εὐθείας καὶ οὔσας ἐν τῷ τοῦ τετραπλεύρου ἐπιπέδω ὀρθή ἐστιν. ἡ ΑΨ ἄρα ὀρθή ἐστι πρὸς ἑκατέραν τῶν ΒΨ, ΨΚ. καὶ ἐπεὶ ἴση ἐστὶν ἡ AB τῆ AK, ἵσον ἐστὶ καὶ τὸ ἀπὸ τῆς AB τῷ ἀπὸ τῆς ΑΚ. καί ἐστι τῷ μὲν ἀπὸ τῆς ΑΒ ἴσα τὰ ἀπὸ τῶν $A\Psi$, ΨB · ὀρθὴ γὰρ ἡ πρὸς τῷ Ψ · τῷ δὲ ἀπὸ τῆς AK ἴσα τὰ ἀπὸ τῶν ΑΨ, ΨΚ. τὰ ἄρα ἀπὸ τῶν ΑΨ, ΨΒ ἴσα ἐστὶ τοῖς ἀπὸ τῶν ΑΨ, ΨΚ. κοινὸν ἀφηρήσθω τὸ ἀπὸ τῆς ΑΨ· λοιπὸν ἄρα τὸ ἀπὸ τῆς $\mathrm{B}\Psi$ λοιπῷ τῷ ἀπὸ τῆς $\Psi\mathrm{K}$ ἴσον ἐστίν \cdot ἴση ἄρα ἡ ΒΨ τῆ ΨΚ. ὁμοίως δὴ δείξομεν, ὅτι καὶ αἱ ἀπὸ τοῦ Ψ ἐπὶ τὰ Ο, Σ ἐπιζευγνύμεναι εὐθεῖαι ἴσαι εἰσὶν ἑκατέρα τῶν ΒΨ, ΨΚ. ὁ ἄρα κέντρω τῷ Ψ καὶ διαστήματι ἑνὶ τῶν ΨΒ, ΨK γραφόμενος κύκλος ήξει καὶ διὰ τῶν O, Σ , καὶ ἔσται ἐν κύκλφ τὸ ΚΒΟΣ τετράπλευρον.

Καὶ ἐπεὶ μείζων ἐστὶν ἡ ΚΒ τῆς ΧΦ, ἴση δὲ ἡ ΧΦ τῆ ΣΟ, μείζων ἄρα ἡ ΚΒ τῆς ΣΟ. ἴση δὲ ἡ ΚΒ ἑκατέρα τῶν ΚΣ, ΒΟ καὶ ἑκατέρα ἄρα τῶν ΚΣ, ΒΟ τῆς ΣΟ μείζων έστίν. καὶ ἐπεὶ ἐν κύκλῳ τετράπλευρόν ἐστι τὸ ΚΒΟΣ, καὶ ἴσαι αἱ KB, BO, $K\Sigma$, καὶ ἐλάττων ἡ $O\Sigma$, καὶ ἐκ τοῦ κέντρου τοῦ κύκλου ἐστὶν ἡ ΒΨ, τὸ ἄρα ἀπὸ τῆς ΚΒ τοῦ ἀπὸ τῆς ${
m B}\Psi$ μεῖζόν ἐστιν ἢ διπλάσιον. ἤχθω ἀπὸ τοῦ ${
m K}$ ἐπὶ τὴν ${
m B}\Phi$ κάθετος ή ΚΩ. καὶ ἐπεὶ ή ΒΔ τῆς ΔΩ ἐλάττων ἐστὶν ἢ διπλῆ, καί ἐστιν ὡς ἡ $B\Delta$ πρὸς τὴν $\Delta\Omega$, οὕτως τὸ ὑπὸ τῶν ΔΒ, ΒΩ πρὸς τὸ ὑπὸ [τῶν] ΔΩ, ΩΒ, ἀναγραφομένου ἀπὸ τῆς ΒΩ τετραγώνου καὶ συμπληρουμένου τοῦ ἐπὶ τῆς ΩΔ παραλληλογράμμου καὶ τὸ ὑπὸ ΔΒ, ΒΩ ἄρα τοῦ ὑπὸ ΔΩ, ΩB ἔλαττόν ἐστιν ἢ διπλάσιον. καί ἐστι τῆς $K\Delta$ ἐπιζευγνυμένης τὸ μὲν ὑπὸ ΔΒ, ΒΩ ἴσον τῷ ἀπὸ τῆς ΒΚ, τὸ δὲ ὑπὸ τῶν $\Delta\Omega$, $\Omega \mathrm{B}$ ἴσον τῷ ἀπὸ τῆς Κ Ω · τὸ ἄρα ἀπὸ τῆς Κ B τοῦ ἀπὸ τῆς ΚΩ ἔλασσόν ἐστιν ἢ διπλάσιον. ἀλλὰ τὸ ἀπὸ τῆς ΚΒ τοῦ ἀπὸ τῆς ΒΨ μεῖζόν ἐστιν ἢ διπλάσιον μεῖζον ἄρα τὸ ἀπὸ τῆς $m K\Omega$ τοῦ ἀπὸ τῆς $m B\Psi$. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΒΑ τῆ ΚΑ, ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΑ τῷ ἀπὸ τῆς ΑΚ. καί since PV and SW are each at right-angles to the plane of circle BCDE, PV is thus parallel to SW [Prop. 11.6]. And it was also shown (to be) equal to it. And, thus, WV and SP are equal and parallel [Prop. 1.33]. And since WV is parallel to SP, but WV is parallel to KB, SP is thus also parallel to KB [Prop. 11.1]. And BPand KS join them. Thus, the quadrilateral KBPS is in one plane, inasmuch as if there are two parallel straightlines, and a random point is taken on each of them, then the straight-line joining the points is in the same plane as the parallel (straight-lines) [Prop. 11.7]. So, for the same (reasons), each of the quadrilaterals SPQT and TQRU is also in one plane. And triangle URO is also in one plane [Prop. 11.2]. So, if we conceive straightlines joining points P, S, Q, T, R, and U to A then some solid polyhedral figure will have been constructed between the circumferences BO and KO, being composed of pyramids whose bases (are) the quadrilaterals KBPS, SPQT, TQRU, and the triangle URO, and apex the point A. And if we also make the same construction on each of the sides KL, LM, and ME, just as on BK, and, further, (repeat the construction) in the remaining three quadrants, then some polyhedral figure which has been inscribed in the sphere will have been constructed, being contained by pyramids whose bases (are) the aforementioned quadrilaterals, and triangle URO, and the (quadrilaterals and triangles) similarly arranged to them, and apex the point A.

So, I say that the aforementioned polyhedron will not touch the lesser sphere on the surface on which the circle FGH is (situated).

Let the perpendicular (straight-line) AX have been drawn from point A to the plane KBPS, and let it meet the plane at point X [Prop. 11.11]. And let XB and XK have been joined. And since AX is at right-angles to the plane of quadrilateral KBPS, it is thus also at rightangles to all of the straight-lines joined to it which are also in the plane of the quadrilateral [Def. 11.3]. Thus, AX is at right-angles to each of BX and XK. And since AB is equal to AK, the (square) on AB is also equal to the (square) on AK. And the (sum of the squares) on AXand XB is equal to the (square) on AB. For the angle at X (is) a right-angle [Prop. 1.47]. And the (sum of the squares) on AX and XK is equal to the (square) on AK [Prop. 1.47]. Thus, the (sum of the squares) on AXand XB is equal to the (sum of the squares) on AX and XK. Let the (square) on AX have been subtracted from both. Thus, the remaining (square) on BX is equal to the remaining (square) on XK. Thus, BX (is) equal to XK. So, similarly, we can show that the straight-lines joined from X to P and S are equal to each of BX and XK.

 Σ ΤΟΙΧΕΙΩΝ \mathfrak{g}' . ELEMENTS BOOK 12

ἐστι τῷ μὲν ἀπὸ τῆς BA ἴσα τὰ ἀπὸ τῶν $B\Psi$, ΨA , τῷ δὲ ἀπὸ τῆς KA ἴσα τὰ ἀπὸ τῶν $K\Omega$, ΩA · τὰ ἄρα ἀπὸ τῶν $B\Psi$, ΨA ἴσα ἐστὶ τοῖς ἀπὸ τῶν $K\Omega$, ΩA , ῶν τὸ ἀπὸ τῆς $K\Omega$ μεῖζον τοῦ ἀπὸ τῆς $B\Psi$ · λοιπὸν ἄρα τὸ ἀπὸ τῆς ΩA ἔλασσόν ἐστι τοῦ ἀπὸ τῆς ΨA . μείζων ἄρα ἡ $A\Psi$ τῆς $A\Omega$ · πολλῷ ἄρα ἡ $A\Psi$ μείζων ἐστὶ τῆς AH. καί ἐστιν ἡ μὲν $A\Psi$ ἐπὶ μίαν τοῦ πολυέδρου βάσιν, ἡ δὲ AH ἐπὶ τὴν τῆς ἐλάσσονος σφαίρας ἐπιφάνειαν· ὥστε τὸ πολύεδρον οὐ ψαύσει τῆς ἐλάσσονος σφαίρας κατὰ τὴν ἐπιφάνειαν.

 Δ ύο ἄρα σφαιρῶν περὶ τὸ αὐτὸ χέντρον οὐσῶν εἰς τὴν μείζονα σφαῖραν στερεὸν πολύεδρον ἐγγέγραπται μὴ ψαῦον τῆς ἐλάσσονος σφαίρας χατὰ τὴν ἐπιφάνειαν· ὅπερ ἔδει ποιῆσαι.

Thus, a circle drawn (in the plane of the quadrilateral) with center X, and radius one of XB or XK, will also pass through P and S, and the quadrilateral KBPS will be inside the circle.

And since KB is greater than WV, and WV (is) equal to SP, KB (is) thus greater than SP. And KB (is) equal to each of KS and BP. Thus, KS and BP are each greater than SP. And since quadrilateral KBPSis in a circle, and KB, BP, and KS are equal (to one another), and PS (is) less (than them), and BX is the radius of the circle, the (square) on KB is thus greater than double the (square) on BX. Let the perpendicular KY have been drawn from K to BV. And since BD is less than double DY, and as BD is to DY, so the (rectangle contained) by DB and BY (is) to the (rectangle contained) by DY and YB—a square being described on BY, and a (rectangular) parallelogram (with short side equal to BY) completed on YD—the (rectangle contained) by DB and BY is thus also less than double the (rectangle contained) by DY and YB. And, KD being joined, the (rectangle contained) by DB and BY is equal to the (square) on BK, and the (rectangle contained) by DY and YB equal to the (square) on KY [Props. 3.31, 6.8 corr.]. Thus, the (square) on KB is less than double the (square) on KY. But, the (square) on KB is greater than double the (square) on BX. Thus, the (square) on KY (is) greater than the (square) on BX. And since BA is equal to KA, the (square) on BA is equal to the (square) on AK. And the (sum of the squares) on BXand XA is equal to the (square) on BA, and the (sum of the squares) on KY and YA (is) equal to the (square) on KA [Prop. 1.47]. Thus, the (sum of the squares) on BXand XA is equal to the (sum of the squares) on KY and YA, of which the (square) on KY (is) greater than the (square) on BX. Thus, the remaining (square) on YAis less than the (square) on XA. Thus, AX (is) greater than AY. Thus, AX is much greater than AG. And AXis (a perpendicular) on one of the bases of the polyhedron, and AG (is a perpendicular) on the surface of the lesser sphere. Hence, the polyhedron will not touch the lesser sphere on its surface.

Thus, there being two spheres about the same center, a polyhedral solid has been inscribed in the greater sphere which does not touch the lesser sphere on its surface. (Which is) the very thing it was required to do.

[†] Since KB, BP, and KS are greater than the sides of an inscribed square, which are each of length $\sqrt{2}$ BX.

 $^{^{\}ddagger}$ Note that points Y and V are actually identical.

[§] This conclusion depends on the fact that the chord of the polygon in proposition 12.16 does not touch the inner circle.

Πόρισμα.

Έὰν δὲ καὶ εἰς ἑτάραν σφαῖραν τῷ ἐν τῇ ΒΓΔΕ σφαίρα στερεῷ πολυέδρῳ ὅμοιον στερεὸν πολύεδρον ἐγγραφῆ, τὸ έν τῆ ΒΓΔΕ σφαίρα στερεὸν πολύεδρον πρὸς τὸ ἐν τῆ έτέρα σφαίρα στερεόν πολύεδρον τριπλασίονα λόγον ἔχει, ήπερ ή τῆς ΒΓΔΕ σφαίρας διάμετρος πρὸς τὴν τῆς ἑτέρας σφαίρας διάμετρον. διαιρεθέντων γάρ τῶν στερεῶν εἰς τὰς ὁμοιοπληθεῖς καὶ ὁμοιοταγεῖς πυραμίδας ἔσονται αἱ πυραμίδες ὄμοιαι. αἱ δὲ ὄμοιαι πυραμίδες πρὸς ἀλλήλας ἐν τριπλασίονι λόγω εἰσὶ τῶν ὁμολόγων πλευρῶν. ἡ ἄρα πυραμίς, ής βάσις μέν ἐστι τὸ ΚΒΟΣ τετράπλευρον, κορυφή δὲ τὸ Α σημεῖον, πρὸς τὴν ἐν τῆ ἑτέρα σφαίρα ὁμοιοταγῆ πυραμίδα τριπλασίονα λόγον ἔχει, ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν, τουτέστιν ἤπερ ἡ AB ἐκ τοῦ κέντρου τῆς σφαίρας τῆς περὶ κέντρον τὸ Α πρὸς τὴν ἐκ τοῦ κέντρου τῆς ἑτέρας σφαίρας. ὁμοίως καὶ ἑκάστη πυραμὶς τῶν ἐν τῆ περὶ κέντρον τὸ Α σφαίρα πρὸς ἑκάστην ὁμοταγῆ πυραμίδα τῶν ἐν τῆ ἑτέρα σφαίρα τριπλασίονα λόγον ἔξει, ήπερ ή AB πρὸς τὴν ἐκ τοῦ κέντρου τῆς ἑτέρας σφαίρας. καὶ ὡς εν τῶν ἡγουμένων πρὸς εν τῶν ἑπομένων, οὕτως ἄπαντα τὰ ἡγούμενα πρὸς ἄπαντα τὰ ἑπόμενα. ὥστε ὅλον τὸ ἐν τῆ περὶ κέντρον τὸ Α σφαίρα στερεὸν πολύεδρον πρὸς ὅλον τὸ ἐν τῆ ἑτέρα [σφαίρα] στερεὸν πολύεδρον τριπλασίονα λόγον έξει, ήπερ ή ΑΒ πρὸς τὴν ἐκ τοῦ κέντρου τῆς ἑτέρας σφαίρας, τουτέστιν ἤπερ ἡ ΒΔ διάμετρος πρὸς τὴν τῆς ἐτέρας σφαίρας διάμετρον. ὅπερ ἔδει δεῖξαι.

ιη'.

Αἱ σφαῖραι πρὸς ἀλλήλας ἐν τριπλασίονι λόγῳ εἰσὶ τῶν ἰδίων διαμέτρων.

Corollary

And, also, if a similar polyhedral solid to that in sphere BCDE is inscribed in another sphere then the polyhedral solid in sphere BCDE has to the polyhedral solid in the other sphere the cubed ratio that the diameter of sphere BCDE has to the diameter of the other sphere. For if the solids are divided into similarly numbered, and similarly situated, pyramids, then the pyramids will be similar. And similar pyramids are in the cubed ratio of corresponding sides [Prop. 12.8 corr.]. Thus, the pyramid whose base is quadrilateral KBPS, and apex the point A, will have to the similarly situated pyramid in the other sphere the cubed ratio that a corresponding side (has) to a corresponding side. That is to say, that of radius AB of the sphere about center A to the radius of the other sphere. And, similarly, each pyramid in the sphere about center A will have to each similarly situated pyramid in the other sphere the cubed ratio that AB (has) to the radius of the other sphere. And as one of the leading (magnitudes is) to one of the following (in two sets of proportional magnitudes), so (the sum of) all the leading (magnitudes is) to (the sum of) all of the following (magnitudes) [Prop. 5.12]. Hence, the whole polyhedral solid in the sphere about center A will have to the whole polyhedral solid in the other [sphere] the cubed ratio that (radius) AB (has) to the radius of the other sphere. That is to say, that diameter BD (has) to the diameter of the other sphere. (Which is) the very thing it was required to show.

Proposition 18

Spheres are to one another in the cubed ratio of their respective diameters.

Νενοήσθωσαν σφαῖραι αἱ $AB\Gamma$, ΔEZ , διάμετροι δὲ αὐτῶν αἱ $B\Gamma$, EZ· λέγω, ὅτι ἡ $AB\Gamma$ σφαῖρα πρὸς τὴν ΔEZ σφαῖραν τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Gamma$ πρὸς τὴν EZ.

Εί γὰρ μὴ ἡ ΑΒΓ σφαῖρα πρὸς τὴν ΔΕΖ σφαῖραν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ, ἔξει ἄρα ἡ ΑΒΓ σφαῖρα πρὸς ἐλάσσονά τινα τῆς ΔΕΖ σφαίρας τριπλασίονα λόγον ἢ πρὸς μείζονα ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ. έχέτω πρότερον πρὸς ἐλάσσονα τὴν ΗΘΚ, καὶ νενοήσθω ἡ ΔΕΖ τῆ ΗΘΚ περὶ τὸ αὐτὸ κέντρον, καὶ ἐγγεγράφθω εἰς τὴν μείζονα σφαῖραν τὴν ΔΕΖ στερεὸν πολύεδρον μὴ ψαῦον τῆς ἐλάσσονος σφαίρας τῆς ΗΘΚ κατὰ τὴν ἐπιφάνειαν, έγγεγράφθω δὲ καὶ εἰς τὴν ΑΒΓ σφαῖραν τῷ ἐν τῆ ΔΕΖ σφαίρα στερεῷ πολυέδρῳ ὅμοιον στερεὸν πολύεδρον. τὸ άρα ἐν τῆ ΑΒΓ στερεὸν πολύεδρον πρὸς τὸ ἐν τῆ ΔΕΖ στερεὸν πολύεδρον τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ. ἔχει δὲ καὶ ἡ ΑΒΓ σφαῖρα πρὸς τὴν ΗΘΚ σφαῖραν τριπλασίονα λόγον ήπερ ή ΒΓ πρός τὴν ΕΖ. ἔστιν ἄρα ὡς ή ΑΒΓ σφαῖρα πρὸς τὴν ΗΘΚ σφαῖραν, οὕτως τὸ ἐν τῆ ΑΒΓ σφαίρα στερεὸν πολύεδρον πρὸς τὸ ἐν τῆ ΔΕΖ σφαίρα στερεὸν πολύεδρον: ἐναλλὰξ [ἄρα] ὡς ἡ ΑΒΓ σφαῖρα πρὸς τὸ ἐν αὐτῆ πολύεδρον, οὕτως ἡ ΗΘΚ σφαῖρα πρὸς τὸ ἐν τῆ ΔΕΖ σφαίρα στερεὸν πολύεδρον. μείζων δὲ ἡ ΑΒΓ σφαῖρα τοῦ ἐν αὐτῆ πολυέδρου· μείζων ἄρα καὶ ἡ ΗΘΚ σφαῖρα τοῦ ἐν τῆ ΔΕΖ σφαίρα πολυέδρου. ἀλλὰ καὶ ἐλάττων έμπεριέχεται γὰρ ὑπ' αὐτοῦ. οὐκ ἄρα ἡ ΑΒΓ σφαῖρα πρὸς έλάσσονα τῆς ΔΕΖ σφαίρας τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ διάμετρος πρὸς τὴν ΕΖ. ὁμοίως δὴ δείξομεν, ὅτι οὐδὲ ἡ ΔΕΖ σφαΐρα πρὸς ἐλάσσονα τῆς ΑΒΓ σφαίρας τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΒΓ.

Λέγω δή, ὅτι οὐδὲ ἡ $AB\Gamma$ σφαῖρα πρὸς μείζονά τινα τῆς ΔEZ σφαίρας τριπλασίονα λόγον ἔχει ἤπερ ἡ $B\Gamma$ πρὸς τὴν EZ.

Εἰ γὰρ δυνατόν, ἐχέτω πρὸς μείζονα τὴν ΛΜΝ· ἀνάπαλιν ἄρα ἡ ΛΜΝ σφαῖρα πρὸς τὴν ΑΒΓ σφαῖραν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ διάμετρος πρὸς τὴν ΒΓ διάμετρον. ὡς δὲ ἡ ΛΜΝ σφαῖρα πρὸς τὴν ΑΒΓ σφαῖραν, οὕτως ἡ ΔΕΖ σφαῖρα πρὸς ἐλάσσονά τινα τῆς ΑΒΓ σφαίρας, ἐπειδήπερ μείζων ἐστὶν ἡ ΛΜΝ τῆς ΔΕΖ, ὡς ἔμπροσθεν ἐδείχθη. καὶ ἡ ΔΕΖ ἄρα σφαῖρα πρὸς ἐλάσσονά τινα τῆς ΑΒΓ σφαίρας τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΖ πρὸς τὴν ΒΓ· ὅπερ ἀδύνατον ἐδείχθη. οὐκ ἄρα ἡ ΑΒΓ σφαῖρα πρὸς μείζονά τινα τῆς ΔΕΖ σφαίρας τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ. ἐδείχθη δέ, ὅτι οὐδὲ πρὸς ἐλάσσονα. ἡ ἄρα ΑΒΓ σφαῖρα πρὸς τὴν ΔΕΖ σφαῖραν τριπλασίονα λόγον ἔχει ἤπερ ἡ ΒΓ πρὸς τὴν ΕΖ· ὅπερ ἔδει δεῖξαι.

Let the spheres ABC and DEF have been conceived, and (let) their diameters (be) BC and EF (respectively). I say that sphere ABC has to sphere DEF the cubed ratio that BC (has) to EF.

For if sphere ABC does not have to sphere DEF the cubed ratio that BC (has) to EF then sphere ABC will have to some (sphere) either less than, or greater than, sphere DEF the cubed ratio that BC (has) to EF. Let it, first of all, have (such a ratio) to a lesser (sphere), GHK. And let DEF have been conceived about the same center as GHK. And let a polyhedral solid have been inscribed in the greater sphere DEF, not touching the lesser sphere GHK on its surface [Prop. 12.17]. And let a polyhedral solid, similar to the polyhedral solid in sphere DEF, have also been inscribed in sphere ABC. Thus, the polyhedral solid in sphere ABC has to the polyhedral solid in sphere DEF the cubed ratio that BC(has) to EF [Prop. 12.17 corr.]. And sphere ABC also has to sphere GHK the cubed ratio that BC (has) to EF. Thus, as sphere ABC is to sphere GHK, so the polyhedral solid in sphere ABC (is) to the polyhedral solid is sphere DEF. [Thus], alternately, as sphere ABC (is) to the polygon within it, so sphere GHK (is) to the polyhedral solid within sphere DEF [Prop. 5.16]. And sphere ABC (is) greater than the polyhedron within it. Thus, sphere GHK (is) also greater than the polyhedron within sphere DEF [Prop. 5.14]. But, (it is) also less. For it is encompassed by it. Thus, sphere ABC does not have to (a sphere) less than sphere DEF the cubed ratio that diameter BC (has) to EF. So, similarly, we can show that sphere *DEF* does not have to (a sphere) less than sphere ABC the cubed ratio that EF (has) to BC either.

So, I say that sphere ABC does not have to some (sphere) greater than sphere DEF the cubed ratio that BC (has) to EF either.

For, if possible, let it have (the cubed ratio) to a greater (sphere), LMN. Thus, inversely, sphere LMN(has) to sphere ABC the cubed ratio that diameter EF (has) to diameter BC [Prop. 5.7 corr.]. And as sphere LMN (is) to sphere ABC, so sphere DEF(is) to some (sphere) less than sphere ABC, inasmuch as LMN is greater than DEF, as was shown before [Prop. 12.2 lem.]. And, thus, sphere DEF has to some (sphere) less than sphere ABC the cubed ratio that EF(has) to BC. The very thing was shown (to be) impossible. Thus, sphere ABC does not have to some (sphere) greater than sphere DEF the cubed ratio that BC (has) to EF. And it was shown that neither (does it have such a ratio) to a lesser (sphere). Thus, sphere ABC has to sphere DEF the cubed ratio that BC (has) to EF. (Which is) the very thing it was required to show.