凸包围多面体生成算法及应用

(申请清华大学工学硕士学位论文答辩报告)

学生:唐磊

指导教师: 雍 俊 海 教授

计算机辅助设计图形学与可视化研究所 二〇一五年六月

- 1 基于 k-CBP 的碰撞检测算法
 - k-CBP 间的相交测试
 - 三角网格间的相交测试
 - 基于 k-CBP 的碰撞检测算法
 - 实验结果及分析

- 1 基于 k-CBP 的碰撞检测算法
 - *k*-CBP 间的相交测试
 - 三角网格间的相交测试
 - 基于 k-CBP 的碰撞检测算法
 - ■实验结果及分析

AABB 树法

将生成的 k-CBP 视为普通的三角网格,实现简单,适用于模型较小的静止碰撞检测场景

GJK 法

计算凸多面体之间的最近距离的 GJK 算法。

Minkowski 差,即 $\mathbb{A} - \mathbb{B} = \{a - b | a \in \mathbb{A}, b \in \mathbb{B}\}$ 。GJK 算法的核心基础在于若两个凸多边相交,则凸多边形顶点的 Minkowski 差所围成的多边形必包含原点,因为若 \mathbb{A} 和 \mathbb{B} 相交即 \mathbb{A} 和 \mathbb{B} 必含有公共交集,即至少含有一点同时属于 \mathbb{A} 和 \mathbb{B} ,该点的 Minkowski 差即为原点 O(0,0)。

二维 GJK 算法示例

GJK 算法

18: end function

```
算法 1 基于 GJK 的 k-CBP 相交检测算法
输入: 两个 k-CBP k-CBP1, k-CBP2
输出: k-CBP 是否相交
 1: function KCBPDetectionBasedOnGJK(k-CBP1, k-CBP2)
       d \leftarrow INITNORMAL()
       \mathbf{D} \leftarrow \text{SUPPORT}(k-CBP_1, k-CBP_2, \mathbf{d})
       S \leftarrow \{p\}
       iter \leftarrow 1. \mathbf{d} \leftarrow -\mathbf{d}
       while inter + + < MaxIter do
           \mathbf{D} \leftarrow \text{SUPPORT}(k-CBP_1, k-CBP_2, \mathbf{d})
           if \mathbf{D} \cdot \mathbf{d} < 0 then
               return False
1∩-
           end if
           S \leftarrow S \cup D
11:
           contains ← CHECKCONTAINUPDATE(S, d) // 检测是否包含原点,
12:
    对集合 S 进行规约, 并获取下一次迭代的方向 d
           if contains then
13:
14:
               return True // 包含原点,直接返回相交,否则继续迭代
           end if
15:
       end while
16
```

return False // 达到最大迭代次数,根据需求返回相交或者不相交

三角网格间的相交测试

- 1 基于 k-CBP 的碰撞检测算法
 - k-CBP 间的相交测试
 - 三角网格间的相交测试
 - 基于 k-CBP 的碰撞检测算法
 - ■实验结果及分析

0000

三角网格间的相交测试

Figure 1: 两个非共面三角形的位置关系

三角形 T_1, T_2 点坐标 \Rightarrow 平面方程 $\Pi_1, \Pi_2 \Rightarrow T_2$ 到 Π_1 的有向距离 $I_{1i}, i \in \{1, 2, 3\}$,

- (1) 若 $\forall i \in \{1,2,3\}, I_{1i} = 0$,即三角形 T_2 的三个顶点到三角形 T_1 所在 Π_1 的距离都 为 0,则两个三角形共面; \Rightarrow 共面三角形求交
- (2) 若 $\forall i \in \{1,2,3\}, I_{1i} > 0$ 或 $\forall i \in \{1,2,3\}, I_{1i} < 0$,即三角形 T_2 的三个顶点到三角 形 T_1 所在 Π_1 的有向距离同号,则 T_2 在 Π_1 的同一侧,可立即排除相交;
- (3) 其他情况,三角形 T_2 必交 Π_1 于一条线段。⇒ 判断两个区间线段 D_1,D_2 是否相 交。

- 1 基于 k-CBP 的碰撞检测算法
 - k-CBP 间的相交测试
 - 三角网格间的相交测试
 - 基于 k-CBP 的碰撞检测算法
 - ■实验结果及分析

Figure 2: k-CBP 应用于碰撞检测示例

图中模型 1 与 2、2 与 3 的包围盒分别相交, 而其 16-CBP 仅 1 与 2 相交, 实际模型 仅 1 与 2 相交.

Figure 3: Bunny 模型的 AABB 树形结构 (部分) → 动态图

Figure 4: 基于 k-CBP 的碰撞检测算法流程图

运动场景碰撞检测算法

Figure 5: AABB 更新策略图

将变换矩阵 $\mathbf{M} = \mathbf{R}(\mathbf{n}, \theta) \cdot \mathbf{T}(\mathbf{t})$ 应用于 GJK 顶点、AABB 顶 点。

Figure 6: 运动场景碰撞检测示例 → 动态图

实验结果及分析

- 1 基于 k-CBP 的碰撞检测算法
 - k-CBP 间的相交测试
 - 三角网格间的相交测试
 - 基于 k-CBP 的碰撞检测算法
 - 实验结果及分析

实验结果及分析

实验结果: k-CBP 的有效性

Table 1: k-CBP 和包围盒应用于碰撞检测结果对比

n	CT(Box) (ms)	CT(16-CBP) (ms)	DT(Box) (ms)	DT(16-CBP) (ms)	r(Box) (%)	r(k-CBP) (%)	DP(Model) (对)
10	0.1	1.8	26.0	0.1	0.00	100.00	0
30	0.2	2.9	134.0	70.0	45.45	83.33	5
50	0.5	4.8	506.0	255.2	46.34	86.36	19
70	0.4	4.8	901.1	492.5	44.16	80.95	34
90	0.7	5.7	1324.0	734.7	41.82	73.02	46
100	0.7	7.8	1481.0	870.7	43.31	75.34	55
150	1.0	9.8	4153.1	2473.0	42.98	70.75	150
200	1.6	12.8	8049.3	4430.9	41.02	71.32	281

其中模型和凸包围多面体是否相交都采用了 AABB 树的方式进行判断。

000

实验结果及分析

实验结果: 不同包围体对比

构造时间上基本满足:凸包 > k-CBP > k-DOP > Sphere \approx Box,包围体命中率基本满足:凸包 > k-CBP > k-DOP > Box > Sphere