Outline

- Compare the growth rate of functions
- 2 Limit Test
- 3 L'Hospital Rule
- 4 Stirling Formula
- Summations
- Integration Method
- Solving Linear Recursive Equations

• We have two algorithms A_1 and A_2 for solving the same problem, with runtime functions $T_1(n)$ and $T_2(n)$, respectively. Which algorithm is more efficient?

- We have two algorithms A_1 and A_2 for solving the same problem, with runtime functions $T_1(n)$ and $T_2(n)$, respectively. Which algorithm is more efficient?
- We compare the growth rate of $T_1(n)$ and $T_2(n)$.

- We have two algorithms A_1 and A_2 for solving the same problem, with runtime functions $T_1(n)$ and $T_2(n)$, respectively. Which algorithm is more efficient?
- We compare the growth rate of $T_1(n)$ and $T_2(n)$.
- If $T_1(n) = \Theta(T_2(n))$, then the efficiency of the two algorithms are about the same (when n is large).

- We have two algorithms A_1 and A_2 for solving the same problem, with runtime functions $T_1(n)$ and $T_2(n)$, respectively. Which algorithm is more efficient?
- We compare the growth rate of $T_1(n)$ and $T_2(n)$.
- If $T_1(n) = \Theta(T_2(n))$, then the efficiency of the two algorithms are about the same (when n is large).
- If $T_1(n) = o(T_2(n))$, then the efficiency of the algorithm A_1 will be better than that of algorithm A_2 (when n is large).

- We have two algorithms A_1 and A_2 for solving the same problem, with runtime functions $T_1(n)$ and $T_2(n)$, respectively. Which algorithm is more efficient?
- We compare the growth rate of $T_1(n)$ and $T_2(n)$.
- If $T_1(n) = \Theta(T_2(n))$, then the efficiency of the two algorithms are about the same (when n is large).
- If $T_1(n) = o(T_2(n))$, then the efficiency of the algorithm A_1 will be better than that of algorithm A_2 (when n is large).
- By using the definitions, we can directly show whether $T_1(n) = O(T_2(n))$, or $T_1(n) = \Omega(T_2(n))$. However, it is not easy to prove the relationship of two functions in this way.

Outline

- Compare the growth rate of functions
- 2 Limit Test
- 3 L'Hospital Rule
- Stirling Formula
- Summations
- Integration Method
- Solving Linear Recursive Equations

Limit Test

Limit Test is a powerful method for comparing functions.

Limit Test

Let $T_1(n)$ and $T_2(n)$ be two functions. Let $c=\lim_{n\to\infty} \frac{T_1(n)}{T_2(n)}$.

- **1** If c is a constant > 0, then $T_1(n) = \Theta(T_2(n))$.
- 2 If c = 0, then $T_1(n) = o(T_2(n))$.
- 3 If $c = \infty$, then $T_1(n) = \omega(T_2(n))$.
- 4 If c does not exists (or if we do not know how to compute c), the limit test fails.

Limit Test

Limit Test is a powerful method for comparing functions.

Limit Test

Let $T_1(n)$ and $T_2(n)$ be two functions. Let $c = \lim_{n \to \infty} \frac{T_1(n)}{T_2(n)}$.

- If c is a constant > 0, then $T_1(n) = \Theta(T_2(n))$.
- 2 If c = 0, then $T_1(n) = o(T_2(n))$.
- If c does not exists (or if we do not know how to compute c), the limit test fails.

Proof of (1): $c = \lim_{n \to \infty} \frac{T_1(n)}{T_2(n)}$ means: $\forall \epsilon > 0$, there exists $n_0 \ge 0$ such that for any $n \ge n_0$: $\left| \frac{T_1(n)}{T_2(n)} - c \right| \le \epsilon$; or equivalently: $c - \epsilon \le \frac{T_1(n)}{T_2(n)} \le c + \epsilon$. Let $\epsilon = c/2$ and let $c_1 = c - \epsilon = c/2$ and $c_2 = c + \epsilon = 3c/2$, we have

$$c_1T_2(n) \leq T_1(n) \leq c_2T_2(n)$$

for all $n \ge n_0$. Thus $T_1(n) = \Theta(T_2(n))$ by definition.

Example 1

$$T_1(n) = 10n^2 + 15n - 60, T_2(n) = n^2$$

$$\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{10n^2 + 15n - 60}{n^2} = \lim_{n \to \infty} (10 + \frac{15}{n} - \frac{60}{n^2}) = 10 + 0 - 0 = 10$$

Since 10 is a constant > 0, we have $T_1(n) = \Theta(T_2(n)) = \Theta(n^2)$ by the statement 1 of Limit Test (as expected).

Log function

The log functions are very useful in algorithm analysis.

Log function

The log functions are very useful in algorithm analysis.

$$lg = log_2 n$$

$$log n = log_{10} n$$

$$ln n = log_e n$$

($\ln n$ is the log function with the natural base e = 2.71828...).

Log base change formula

For any
$$1 < a, b$$
, $\log_b n = \frac{\log_a n}{\log_a b} = \log_b a \cdot \log_a n$.

Proof: Let $k = \log_b n$. By definition: $n = b^k$.

Log base change formula

For any
$$1 < a, b$$
, $\log_b n = \frac{\log_a n}{\log_a b} = \log_b a \cdot \log_a n$.

Proof: Let $k = \log_b n$. By definition: $n = b^k$.

Take \log_a on both sides: $\log_a n = \log_a(b^k) = k \cdot \log_a b$

Log base change formula

For any
$$1 < a, b$$
, $\log_b n = \frac{\log_a n}{\log_a b} = \log_b a \cdot \log_a n$.

Proof: Let $k = \log_b n$. By definition: $n = b^k$.

Take \log_a on both sides: $\log_a n = \log_a(b^k) = k \cdot \log_a b$

This implies: $\log_b n = k = \frac{\log_a n}{\log_a b}$.

Log base change formula

For any
$$1 < a, b$$
, $\log_b n = \frac{\log_a n}{\log_a b} = \log_b a \cdot \log_a n$.

Proof: Let $k = \log_b n$. By definition: $n = b^k$.

Take \log_a on both sides: $\log_a n = \log_a(b^k) = k \cdot \log_a b$

This implies: $\log_b n = k = \frac{\log_a n}{\log_a b}$.

Let n = a in this formula and note $1 = \log_a a$:

$$\log_b a = \frac{\log_a a}{\log_a b} = \frac{1}{\log_a b}$$

Log base change formula

For any
$$1 < a, b$$
, $\log_b n = \frac{\log_a n}{\log_a b} = \log_b a \cdot \log_a n$.

Proof: Let $k = \log_b n$. By definition: $n = b^k$.

Take \log_a on both sides: $\log_a n = \log_a(b^k) = k \cdot \log_a b$

This implies: $\log_b n = k = \frac{\log_a n}{\log_a b}$.

Let n = a in this formula and note $1 = \log_a a$:

$$\log_b a = \frac{\log_a a}{\log_a b} = \frac{1}{\log_a b}$$

This proves the second part of the formula.

Outline

- Compare the growth rate of functions
- 2 Limit Test
- 3 L'Hospital Rule
- 4 Stirling Formula
- Summations
- Integration Method
- Solving Linear Recursive Equations

L'Hospital Rule

L'Hospital Rule

• If $\lim_{n\to\infty} f(n) = 0$ and $\lim_{n\to\infty} g(n) = 0$, then

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

L'Hospital Rule

L'Hospital Rule

• If $\lim_{n\to\infty} f(n) = 0$ and $\lim_{n\to\infty} g(n) = 0$, then

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

• If $\lim_{n\to\infty} f(n) = \infty$ and $\lim_{n\to\infty} g(n) = \infty$, then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

Example 2

$$T_1(n) = n^2 + 6$$
, $T_2(n) = n \lg n$. (Recall: $\lg n = \log_2 n$.)

$$\begin{split} \lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} &= \lim_{n \to \infty} \frac{n^2 + 6}{n \lg n} = \lim_{n \to \infty} \frac{n + \frac{6}{n}}{\lg n} \\ &= \lim_{n \to \infty} \frac{1 - \frac{6}{n^2}}{\frac{1}{\ln 2 \cdot n}} \text{ (by L'Hospital Rule)} \\ &= \ln 2 \lim_{n \to \infty} (n - \frac{6}{n}) = \ln 2(\infty - 0) = \infty \end{split}$$

By Limit Test, we have $n^2 + 6 = \omega(n \lg n)$.

Example 3

 $T_1(n) = (\ln n)^k$, $T_2(n) = n^{\epsilon}$, where k > 0 is any (large) constant and $\epsilon > 0$ is any (small) constant. (Recall: $\ln n = \log_{\epsilon} n$.)

$$\begin{split} &\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{(\ln n)^k}{n^\epsilon} \text{ (use L'Hospital Rule)}\\ &=\lim_{n\to\infty}\frac{k(\ln n)^{k-1}\times (1/n)}{\epsilon n^{(\epsilon-1)}}\\ &=\frac{k}{\epsilon}\lim_{n\to\infty}\frac{(\ln n)^{k-1}}{n^\epsilon} \text{ (use L'Hospital Rule again and simplify)}\\ &=\frac{k(k-1)}{\epsilon^2}\lim_{n\to\infty}\frac{(\ln n)^{k-2}}{n^\epsilon} \text{ (use L'Hospital Rule }k \text{ times)}\\ &\dots\\ &=\frac{k(k-1)\cdots 2\cdot 1}{\epsilon^k}\lim_{n\to\infty}\frac{1}{n^\epsilon}=0 \end{split}$$

Example 3

 $T_1(n) = (\ln n)^k$, $T_2(n) = n^{\epsilon}$, where k > 0 is any (large) constant and $\epsilon > 0$ is any (small) constant. (Recall: $\ln n = \log_{\epsilon} n$.)

$$\begin{split} &\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{(\ln n)^k}{n^\epsilon} \text{ (use L'Hospital Rule)}\\ &=\lim_{n\to\infty}\frac{k(\ln n)^{k-1}\times (1/n)}{\epsilon n^{(\epsilon-1)}}\\ &=\frac{k}{\epsilon}\lim_{n\to\infty}\frac{(\ln n)^{k-1}}{n^\epsilon} \text{ (use L'Hospital Rule again and simplify)}\\ &=\frac{k(k-1)}{\epsilon^2}\lim_{n\to\infty}\frac{(\ln n)^{k-2}}{n^\epsilon} \text{ (use L'Hospital Rule }k \text{ times)}\\ &\dots\\ &=\frac{k(k-1)\cdots 2\cdot 1}{\epsilon^k}\lim_{n\to\infty}\frac{1}{n^\epsilon}=0 \end{split}$$

So by Limit Test, $(\ln n)^k = o(n^\epsilon)$ for any k and ϵ . For example, take k=100 and $\epsilon=0.01$, we have $(\ln n)^{100}=o(n^{0.01})$.

Example 4

 $T_1(n)=n^k$, $T_2(n)=a^n$, where k>0 is any (large) constant and a>1 is any constant bigger than 1.

$$\begin{split} &\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{n^k}{a^n}\text{ (using L'Hospital Rule)}\\ &=\lim_{n\to\infty}\frac{k\cdot n^{k-1}}{\ln a\cdot a^n}=\frac{k}{\ln a}\lim_{n\to\infty}\frac{n^{k-1}}{a^n}\text{ (using L'Hospital Rule }k\text{ times)}\\ &=\frac{k(k-1)\cdots 2\cdot 1}{(\ln a)^k}\lim_{n\to\infty}\frac{n^0}{a^n}\\ &=\frac{k(k-1)\cdots 2\cdot 1}{(\ln a)^k}\lim_{n\to\infty}\frac{1}{a^n}=0 \end{split}$$

Example 4

 $T_1(n)=n^k,\,T_2(n)=a^n,$ where k>0 is any (large) constant and a>1 is any constant bigger than 1.

$$\begin{split} &\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{n^k}{a^n}\text{ (using L'Hospital Rule)}\\ &=\lim_{n\to\infty}\frac{k\cdot n^{k-1}}{\ln a\cdot a^n}=\frac{k}{\ln a}\lim_{n\to\infty}\frac{n^{k-1}}{a^n}\text{ (using L'Hospital Rule }k\text{ times)}\\ &=\frac{k(k-1)\cdots 2\cdot 1}{(\ln a)^k}\lim_{n\to\infty}\frac{n^0}{a^n}\\ &=\frac{k(k-1)\cdots 2\cdot 1}{(\ln a)^k}\lim_{n\to\infty}\frac{1}{a^n}=0 \end{split}$$

So by Limit Test, $n^k = o(a^n)$ for any k > 0 and a > 1. For example, take k = 1000 and a = 1.001, we have $n^{1000} = o((1.001)^n)$.

Example 5

 $T_1(n) = \log_a n$, $T_2(n) = \log_b n$, where a > 1 and b > 1 are any two constants bigger than 1.

By the Log Base Change Formula: $\log_b n = \log_b a \cdot \log_a n$

Example 5

 $T_1(n) = \log_a n$, $T_2(n) = \log_b n$, where a > 1 and b > 1 are any two constants bigger than 1.

By the Log Base Change Formula: $\log_b n = \log_b a \cdot \log_a n$ Thus: $\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \frac{\log_a n}{\log_b a \cdot \log_a n} = \frac{1}{\log_b a}$

Example 5

 $T_1(n) = \log_a n$, $T_2(n) = \log_b n$, where a > 1 and b > 1 are any two constants bigger than 1.

By the Log Base Change Formula: $\log_b n = \log_b a \cdot \log_a n$ Thus: $\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \frac{\log_a n}{\log_b a \cdot \log_a n} = \frac{1}{\log_b a}$

Since $\frac{1}{\log_b a} > 0$ is a constant, we have $\log_a n = \Theta(\log_b n)$ by Limit Test.

Example 5

 $T_1(n) = \log_a n$, $T_2(n) = \log_b n$, where a > 1 and b > 1 are any two constants bigger than 1.

By the Log Base Change Formula: $\log_b n = \log_b a \cdot \log_a n$ Thus: $\lim_{n \to \infty} \frac{T_1(n)}{T_2(n)} = \lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \frac{\log_a n}{\log_b a \cdot \log_a n} = \frac{1}{\log_b a}$

Since $\frac{1}{\log_b a} > 0$ is a constant, we have $\log_a n = \Theta(\log_b n)$ by Limit Test.

So: the growth rates of the \log functions are the same for any base > 1.

Example 6

 $T_1(n) = a^n$, $T_2(n) = b^n$, where 1 < a < b are any two constants.

We have: $\lim_{n\to\infty} \frac{T_1(n)}{T_2(n)} = \lim_{n\to\infty} \frac{a^n}{b^n} = \lim_{n\to\infty} (\frac{a}{b})^n = 0$.

Example 6

 $T_1(n) = a^n$, $T_2(n) = b^n$, where 1 < a < b are any two constants.

We have: $\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{a^n}{b^n}=\lim_{n\to\infty}(\frac{a}{b})^n=0.$

Thus: $a^n = o(b^n)$ (for any 1 < a < b) by Limit Test.

Example 6

 $T_1(n) = a^n$, $T_2(n) = b^n$, where 1 < a < b are any two constants.

We have: $\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{a^n}{b^n}=\lim_{n\to\infty}(\frac{a}{b})^n=0.$

Thus: $a^n = o(b^n)$ (for any 1 < a < b) by Limit Test.

The list of common functions:

The following list shows the functions commonly used in algorithm analysis, in the order of increasing growth rate (a,b,c,d,k,ϵ) are positive constants, $\epsilon < 1, k > 1, d > 1$ and a < b):

Example 6

 $T_1(n) = a^n$, $T_2(n) = b^n$, where 1 < a < b are any two constants.

We have: $\lim_{n\to\infty}\frac{T_1(n)}{T_2(n)}=\lim_{n\to\infty}\frac{a^n}{b^n}=\lim_{n\to\infty}(\frac{a}{b})^n=0.$

Thus: $a^n = o(b^n)$ (for any 1 < a < b) by Limit Test.

The list of common functions:

The following list shows the functions commonly used in algorithm analysis, in the order of increasing growth rate (a,b,c,d,k,ϵ) are positive constants, $\epsilon < 1, k > 1, d > 1$ and a < b):

$$c, \log_d n, (\log_d n)^k, n^\epsilon, n, n^k, a^n, b^n, n!, n^n$$

in the sense that if f(n) and g(n) are any two consecutive functions in the list, we have f(n) = o(g(n))

Example 7

$$T_1(n) = n!$$
 and $T_2(n) = a^n$ $(a > 1)$

Example 7

$$T_1(n) = n!$$
 and $T_2(n) = a^n$ $(a > 1)$

$$\bullet \lim_{n\to\infty} \frac{a^n}{n!} = ?$$

Example 7

$$T_1(n) = n!$$
 and $T_2(n) = a^n$ $(a > 1)$

- $\lim_{n\to\infty}\frac{a^n}{n!}=?$
- L'Hospital Rule doesn't help: We don't know how to take derivative of n!

Example 7

$$T_1(n) = n!$$
 and $T_2(n) = a^n (a > 1)$

- $\lim_{n\to\infty}\frac{a^n}{n!}=?$
- L'Hospital Rule doesn't help: We don't know how to take derivative of n!

$$\frac{a^n}{n!} = \underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{2\lceil a \rceil}}_{2\lceil a \rceil \text{ terms}} \cdot \underbrace{\frac{a}{2\lceil a \rceil + 1} \cdots \frac{a}{n}}_{(n-2\lceil a \rceil) \text{ terms}}$$

Example 7

$$T_1(n) = n!$$
 and $T_2(n) = a^n (a > 1)$

- $\lim_{n\to\infty}\frac{a^n}{n!}=?$
- L'Hospital Rule doesn't help: We don't know how to take derivative of n!

$$\frac{a^n}{n!} = \underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{2\lceil a \rceil}}_{2\lceil a \rceil \text{ terms}} \cdot \underbrace{\frac{a}{2\lceil a \rceil + 1} \cdots \frac{a}{n}}_{(n-2\lceil a \rceil) \text{ terms}}$$

The first part is a constant c > 0. In the second part, each term < 1/2. So:

Example 7

$$T_1(n) = n!$$
 and $T_2(n) = a^n (a > 1)$

- $\lim_{n\to\infty}\frac{a^n}{n!}=?$
- L'Hospital Rule doesn't help: We don't know how to take derivative of n!

$$\frac{a^n}{n!} = \underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{2\lceil a \rceil}}_{2\lceil a \rceil \text{ terms}} \cdot \underbrace{\frac{a}{2\lceil a \rceil + 1} \cdots \frac{a}{n}}_{(n-2\lceil a \rceil) \text{ terms}}$$

The first part is a constant c > 0. In the second part, each term < 1/2. So:

$$0 \le \lim_{n \to \infty} \frac{a^n}{n!} \le c \cdot \lim_{n \to \infty} (\frac{1}{2})^{(n-2\lceil a \rceil)} = 0$$

Example 7

$$T_1(n) = n!$$
 and $T_2(n) = a^n (a > 1)$

- $\lim_{n\to\infty}\frac{a^n}{n!}=?$
- L'Hospital Rule doesn't help: We don't know how to take derivative of n!

$$\frac{a^n}{n!} = \underbrace{\frac{a}{1} \cdot \frac{a}{2} \cdots \frac{a}{2\lceil a \rceil}}_{2\lceil a \rceil \text{ terms}} \cdot \underbrace{\frac{a}{2\lceil a \rceil + 1} \cdots \frac{a}{n}}_{(n-2\lceil a \rceil) \text{ terms}}$$

The first part is a constant c > 0. In the second part, each term < 1/2. So:

$$0 \leq \lim_{n \to \infty} \frac{a^n}{n!} \leq c \cdot \lim_{n \to \infty} (\frac{1}{2})^{(n-2\lceil a \rceil)} = 0$$

By Limit Test: $a^n = o(n!)$.

Outline

- Compare the growth rate of functions
- 2 Limit Test
- 3 L'Hospital Rule
- Stirling Formula
- Summations
- Integration Method
- Solving Linear Recursive Equations

Stirling Formula

Stirling Formula

$$\sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n+1}} \leq n! \leq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\frac{1}{12n}}$$

or:
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

When n = 10;

- n! = 3628800.
- $\sqrt{2\pi n} \left(\frac{n}{e}\right)^n = 3598696, 99\%$ accurate.

Example 7 (another solution)

$$T_1(n) = n!$$
 and $T_2(n) = a^n$ $(a > 1)$

$$\lim_{n \to \infty} \frac{n!}{a^n} \ge \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{ae}\right)^n = \lim_{n \to \infty} \sqrt{2\pi n} \cdot \lim_{n \to \infty} \left(\frac{n}{ae}\right)^n$$

Example 7 (another solution)

$$T_1(n) = n!$$
 and $T_2(n) = a^n$ $(a > 1)$

$$\lim_{n \to \infty} \frac{n!}{a^n} \ge \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{ae}\right)^n = \lim_{n \to \infty} \sqrt{2\pi n} \cdot \lim_{n \to \infty} \left(\frac{n}{ae}\right)^n$$

The first limit is ∞ . The second limit goes to ∞^{∞} . So it's also ∞ . Thus $\lim_{n\to\infty}\frac{n!}{a^n}=\infty$ and $n!=\omega(a^n)$ by limit test.

Example 7 (another solution)

$$T_1(n) = n!$$
 and $T_2(n) = a^n$ $(a > 1)$

$$\lim_{n \to \infty} \frac{n!}{a^n} \ge \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{ae}\right)^n = \lim_{n \to \infty} \sqrt{2\pi n} \cdot \lim_{n \to \infty} \left(\frac{n}{ae}\right)^n$$

The first limit is ∞ . The second limit goes to ∞^{∞} . So it's also ∞ . Thus $\lim_{n\to\infty}\frac{n!}{a^n}=\infty$ and $n!=\omega(a^n)$ by limit test.

Example 8

$$T_1(n) = n^n \text{ and } T_2(n) = n!$$

By using similar method as in Example 7, we can show: $n! = o(n^n)$

Outline

- Compare the growth rate of functions
- 2 Limit Test
- 3 L'Hospital Rule
- 4 Stirling Formula
- Summations
- Integration Method
- Solving Linear Recursive Equations

Summations

Consider the following simple program:

- 1: for i = 1 to n do
- 2: the loop body takes $\Theta(i^k)$ time
- 3: end for

What's the runtime of this program? It should be:

$$T(n) = \sum_{i=1}^{n} \Theta(i^k) = c \sum_{i=1}^{n} i^k$$
 (for some constant c)

Thus, it is important to know the sum of the form $\sum_{i=1}^{n} i^{k}$.

Summation formulas

$$\sum_{i=1}^{n} i^{1} = 1 + 2 \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$
 (1)

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$
 (2)

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 \dots + n^3 = \frac{n^2(n+1)^2}{4} = \Theta(n^4)$$
 (3)

Summation formulas

$$\sum_{i=1}^{n} i^{1} = 1 + 2 \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$
 (1)

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$
 (2)

$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 \dots + n^3 = \frac{n^2(n+1)^2}{4} = \Theta(n^4)$$
 (3)

In general, for any k > 0, the following is true.

$$\sum_{k=1}^{n} i^{k} = \Theta(n^{k+1}) \tag{4}$$

Summations:

By using these formulas, we can compute the runtime of nested loops.

Example

```
\begin{array}{l} \text{for } i=1 \text{ to } n \text{ do} \\ \text{for } j=i \text{ to } n \text{ do} \\ \text{for } k=i \text{ to } j \text{ do} \\ (\dots \text{ loop body takes } \Theta(1) \text{ time.}) \\ \text{end for} \\ \text{end for} \\ \text{end for} \end{array}
```

Since the inner loop body takes $\Theta(1)$ time, we only need to count the number D(n) of the inner loop iterations. Then $T(n) = D(n) \cdot \Theta(1) = \Theta(D(n))$.

$$D(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1 = \sum_{i=1}^{n} \sum_{j=i}^{n} (j-i+1)$$

Calculate D(n)

To calculate the second sum, let t = j - i + 1. When j = i, t = 1. When j = n, t = n - i + 1. Thus

$$\sum_{j=i}^{n} (j-i+1) = \sum_{t=1}^{n-i+1} t = 1 + 2 + \dots + (n-i+1) = \frac{(n-i+2)(n-i+1)}{2}$$

Calculate D(n)

To calculate the second sum, let t = j - i + 1. When j = i, t = 1. When j = n, t = n - i + 1. Thus

$$\sum_{j=i}^{n} (j-i+1) = \sum_{t=1}^{n-i+1} t = 1 + 2 + \dots + (n-i+1) = \frac{(n-i+2)(n-i+1)}{2}$$

Next we calculate: $\sum_{i=1}^{n} \frac{(n-i+2)(n-i+1)}{2}$. Let s=n-i+1. When i=1, s=n. When i=n, s=1. Thus:

$$\sum = \sum_{s=1}^{n} \frac{(s+1)s}{2} = \frac{1}{2} \{ \sum_{s=1}^{n} s^2 + \sum_{s=1}^{n} s \}$$
$$= \frac{1}{2} \{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \} = \Theta(n^3)$$

More Summations:

The following summation formulas are useful.

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \begin{cases} \frac{1 - a^{n+1}}{1 - a} &= \Theta(1) & \text{if } 0 < a < 1\\ n + 1 &= \Theta(n) & \text{if } a = 1\\ \frac{a^{n+1} - 1}{a - 1} &= \Theta(a^{n}) & \text{if } 1 < a \end{cases}$$
 (5)

 $\sum_{i=0}^{n} a^{i}$ is called geometric series.

More Summations:

The following summation formulas are useful.

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \begin{cases} \frac{1 - a^{n+1}}{1 - a} &= \Theta(1) & \text{if } 0 < a < 1\\ n + 1 &= \Theta(n) & \text{if } a = 1\\ \frac{a^{n+1} - 1}{a - 1} &= \Theta(a^{n}) & \text{if } 1 < a \end{cases}$$
 (5)

 $\sum_{i=0}^{n} a^{i}$ is called geometric series.

$$H(n) = 1 + 1/2 + 1/3 + \dots + 1/n = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n)$$
 (6)

H(n) is called Harmonic series.

More Summations:

The following summation formulas are useful.

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \begin{cases} \frac{1 - a^{n+1}}{1 - a} &= \Theta(1) & \text{if } 0 < a < 1\\ n + 1 &= \Theta(n) & \text{if } a = 1\\ \frac{a^{n+1} - 1}{a - 1} &= \Theta(a^{n}) & \text{if } 1 < a \end{cases}$$
 (5)

 $\sum_{i=0}^{n} a^{i}$ is called geometric series.

$$H(n) = 1 + 1/2 + 1/3 + \dots + 1/n = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n)$$
 (6)

H(n) is called Harmonic series.

How to compute H(n)?

Outline

- Compare the growth rate of functions
- 2 Limit Test
- 3 L'Hospital Rule
- 4 Stirling Formula
- Summations
- Integration Method
- Solving Linear Recursive Equations

Integration Method

Let f(x) be an increasing function. Then for any $a \le b$:

$$\int_{a-1}^{b} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a}^{b+1} f(x)dx$$

Integration Method

Let f(x) be an increasing function. Then for any $a \le b$:

$$\int_{a-1}^{b} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a}^{b+1} f(x)dx$$

In the Fig, \sum = the area of the staircase region. The first \int = the area of the shaded region. Since f(x) is increasing, the first \leq holds.

In the Fig, \sum is the area of the staircase region. The second \int is the area of the shaded region. Since f(x) is increasing, the second \leq holds.

In the Fig, \sum is the area of the staircase region. The second \int is the area of the shaded region. Since f(x) is increasing, the second \leq holds.

Similarly:

Let f(x) be a decreasing function. Then for any $a \le b$:

$$\int_{a-1}^{b} f(x)dx \ge \sum_{i=a}^{b} f(i) \ge \int_{a}^{b+1} f(x)dx$$

Example

For any k > 0, $f(x) = x^k$ is an increasing function. Let a = 1 and b = n.

$$\int_{0}^{n} x^{k} dx \le \sum_{i=1}^{n} i^{k} \le \int_{1}^{n+1} x^{k} dx$$

Example

For any k > 0, $f(x) = x^k$ is an increasing function. Let a = 1 and b = n.

$$\int_{0}^{n} x^{k} dx \le \sum_{i=1}^{n} i^{k} \le \int_{1}^{n+1} x^{k} dx$$

Example

For any k > 0, $f(x) = x^k$ is an increasing function. Let a = 1 and b = n.

$$\int_{0}^{n} x^{k} dx \le \sum_{i=1}^{n} i^{k} \le \int_{1}^{n+1} x^{k} dx$$

$$\int_0^n x^k dx = \frac{1}{k+1} x^{k+1} \Big|_{x=0}^{x=n} = \frac{n^{k+1}}{k+1};$$

Example

For any k > 0, $f(x) = x^k$ is an increasing function. Let a = 1 and b = n.

$$\int_{0}^{n} x^{k} dx \le \sum_{i=1}^{n} i^{k} \le \int_{1}^{n+1} x^{k} dx$$

$$\int_0^n x^k dx = \frac{1}{k+1} x^{k+1} \Big|_{x=0}^{x=n} = \frac{n^{k+1}}{k+1}; \quad \int_1^{n+1} x^k dx = \frac{1}{k+1} x^{k+1} \Big|_{x=1}^{x=n+1} = \frac{(n+1)^{k+1} - 1}{k+1}$$

Thus:

Example

For any k > 0, $f(x) = x^k$ is an increasing function. Let a = 1 and b = n.

$$\int_0^n x^k dx \le \sum_{i=1}^n i^k \le \int_1^{n+1} x^k dx$$

$$\int_0^n x^k dx = \frac{1}{k+1} x^{k+1} \Big|_{x=0}^{x=n} = \frac{n^{k+1}}{k+1}; \quad \int_1^{n+1} x^k dx = \frac{1}{k+1} x^{k+1} \Big|_{x=1}^{x=n+1} = \frac{(n+1)^{k+1} - 1}{k+1}$$

Thus:

$$\frac{n^{k+1}}{k+1} \le \sum_{i=1}^{n} i^k \le \frac{(n+1)^{k+1} - 1}{k+1}$$

Example

For any k > 0, $f(x) = x^k$ is an increasing function. Let a = 1 and b = n.

$$\int_0^n x^k dx \le \sum_{i=1}^n i^k \le \int_1^{n+1} x^k dx$$

$$\int_0^n x^k dx = \frac{1}{k+1} x^{k+1} \Big|_{x=0}^{x=n} = \frac{n^{k+1}}{k+1}; \qquad \int_1^{n+1} x^k dx = \frac{1}{k+1} x^{k+1} \Big|_{x=1}^{x=n+1} = \frac{(n+1)^{k+1} - 1}{k+1}$$

Thus:

$$\frac{n^{k+1}}{k+1} \le \sum_{i=1}^{n} i^k \le \frac{(n+1)^{k+1} - 1}{k+1}$$

By limit test, both lower and upper bounds $= \Theta(n^{k+1})$. Thus $\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$.

$$f(x) = \frac{1}{x}$$
 is a decreasing function. Let $a = 1$ and $b = n$.

$$\int_{0}^{n} \frac{dx}{x} \ge \sum_{i=1}^{n} \frac{1}{i} \ge \int_{1}^{n+1} \frac{dx}{x}$$

 $f(x) = \frac{1}{x}$ is a decreasing function. Let a = 1 and b = n.

$$\int_{0}^{n} \frac{dx}{x} \ge \sum_{i=1}^{n} \frac{1}{i} \ge \int_{1}^{n+1} \frac{dx}{x}$$

 $\int_0^n \frac{dx}{x} = \ln x \, |_0^n = \ln n - (-\infty) = \infty$. This doesn't work! Try a = 2 and b = n:

 $f(x) = \frac{1}{x}$ is a decreasing function. Let a = 1 and b = n.

$$\int_{0}^{n} \frac{dx}{x} \ge \sum_{i=1}^{n} \frac{1}{i} \ge \int_{1}^{n+1} \frac{dx}{x}$$

 $\int_0^n \frac{dx}{x} = \ln x \, |_0^n = \ln n - (-\infty) = \infty$. This doesn't work! Try a = 2 and b = n:

$$\int_{1}^{n} \frac{dx}{x} \ge \sum_{i=2}^{n} \frac{1}{i} \ge \int_{2}^{n+1} \frac{dx}{x}$$

This gives: $(\ln n - \ln 1) \ge \sum_{i=2}^{n} \frac{1}{i} \ge (\ln(n+1) - \ln 2)$.

 $f(x) = \frac{1}{x}$ is a decreasing function. Let a = 1 and b = n.

$$\int_0^n \frac{dx}{x} \ge \sum_{i=1}^n \frac{1}{i} \ge \int_1^{n+1} \frac{dx}{x}$$

 $\int_0^n \frac{dx}{x} = \ln x \, |_0^n = \ln n - (-\infty) = \infty$. This doesn't work! Try a = 2 and b = n:

$$\int_1^n \frac{dx}{x} \ge \sum_{i=2}^n \frac{1}{i} \ge \int_2^{n+1} \frac{dx}{x}$$

This gives: $(\ln n - \ln 1) \ge \sum_{i=2}^{n} \frac{1}{i} \ge (\ln(n+1) - \ln 2)$.

Note $\ln 1 = 0$. Add 1 to the above: $1 + \ln n \ge \sum_{i=1}^{n} \frac{1}{i} \ge (\ln(n+1) - \ln 2 + 1)$.

 $f(x) = \frac{1}{x}$ is a decreasing function. Let a = 1 and b = n.

$$\int_{0}^{n} \frac{dx}{x} \ge \sum_{i=1}^{n} \frac{1}{i} \ge \int_{1}^{n+1} \frac{dx}{x}$$

 $\int_0^n \frac{dx}{x} = \ln x \, |_0^n = \ln n - (-\infty) = \infty$. This doesn't work! Try a = 2 and b = n:

$$\int_{1}^{n} \frac{dx}{x} \ge \sum_{i=2}^{n} \frac{1}{i} \ge \int_{2}^{n+1} \frac{dx}{x}$$

This gives: $(\ln n - \ln 1) \ge \sum_{i=2}^{n} \frac{1}{i} \ge (\ln(n+1) - \ln 2)$.

Note $\ln 1 = 0$. Add 1 to the above: $1 + \ln n \ge \sum_{i=1}^{n} \frac{1}{i} \ge (\ln(n+1) - \ln 2 + 1)$.

By limit test, both lower and upper bounds $= \Theta(\ln n)$. So $H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n)$

 $f(x) = \frac{1}{x}$ is a decreasing function. Let a = 1 and b = n.

$$\int_{0}^{n} \frac{dx}{x} \ge \sum_{i=1}^{n} \frac{1}{i} \ge \int_{1}^{n+1} \frac{dx}{x}$$

 $\int_0^n \frac{dx}{x} = \ln x \, |_0^n = \ln n - (-\infty) = \infty$. This doesn't work! Try a = 2 and b = n:

$$\int_{1}^{n} \frac{dx}{x} \ge \sum_{i=2}^{n} \frac{1}{i} \ge \int_{2}^{n+1} \frac{dx}{x}$$

This gives: $(\ln n - \ln 1) \ge \sum_{i=2}^{n} \frac{1}{i} \ge (\ln(n+1) - \ln 2)$.

Note $\ln 1 = 0$. Add 1 to the above: $1 + \ln n \ge \sum_{i=1}^{n} \frac{1}{i} \ge (\ln(n+1) - \ln 2 + 1)$.

By limit test, both lower and upper bounds = $\Theta(\ln n)$. So $H(n) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\ln n)$

Note: $\lim_{n\to\infty} (\ln n - \sum_{i=1}^n \frac{1}{i}) = c$, where c = 0.577... is Euler constant.

Outline

- Compare the growth rate of functions
- 2 Limit Test
- 3 L'Hospital Rule
- 4 Stirling Formula
- Summations
- Integration Method
- Solving Linear Recursive Equations

$$\mathsf{Fib}_0 = 0$$
, $\mathsf{Fib}_1 = 1, \ldots$, $\mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$

Fibonacci number

$$\mathsf{Fib}_0 = 0$$
, $\mathsf{Fib}_1 = 1, \ldots$, $\mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$

Fibonacci number

$$\mathsf{Fib}_0 = 0, \, \mathsf{Fib}_1 = 1, \dots, \, \mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$$

$$\mathsf{Fib}_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Fibonacci number

$$\mathsf{Fib}_0 = 0, \, \mathsf{Fib}_1 = 1, \dots, \, \mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$$

How to compute Fib_n directly from n?

$$\mathsf{Fib}_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

• $\frac{1\pm\sqrt{5}}{2}$ are the two roots of the equation: $x^2 = x + 1$.

Fibonacci number

$$\mathsf{Fib}_0 = 0, \, \mathsf{Fib}_1 = 1, \dots, \, \mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$$

$$\mathsf{Fib}_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

- $\frac{1\pm\sqrt{5}}{2}$ are the two roots of the equation: $x^2 = x + 1$.
- Since $\left|\frac{1-\sqrt{5}}{2}\right| < 1$, the second term $\to 0$. So Fib_n $\approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$. $(\alpha = \frac{1+\sqrt{5}}{2} = 1.618...$ is called the golden ratio.)

Fibonacci number

$$\mathsf{Fib}_0 = 0, \, \mathsf{Fib}_1 = 1, \dots, \, \mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$$

$$\mathsf{Fib}_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

- $\frac{1\pm\sqrt{5}}{2}$ are the two roots of the equation: $x^2 = x + 1$.
- Since $\left|\frac{1-\sqrt{5}}{2}\right| < 1$, the second term $\to 0$. So Fib_n $\approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$. $(\alpha = \frac{1+\sqrt{5}}{2} = 1.618... \text{ is called the golden ratio.})$
- For n = 8, Fib₈ = 21 where $\frac{1}{\sqrt{5}}\alpha^n = 21.0095$.

Fibonacci number

$$\mathsf{Fib}_0 = 0$$
, $\mathsf{Fib}_1 = 1, \ldots$, $\mathsf{Fib}_{n+2} = \mathsf{Fib}_{n+1} + \mathsf{Fib}_n$

$$\mathsf{Fib}_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

- $\frac{1\pm\sqrt{5}}{2}$ are the two roots of the equation: $x^2 = x + 1$.
- Since $\left|\frac{1-\sqrt{5}}{2}\right| < 1$, the second term $\to 0$. So Fib_n $\approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n$. $(\alpha = \frac{1+\sqrt{5}}{2} = 1.618...$ is called the golden ratio.)
- For n = 8, Fib₈ = 21 where $\frac{1}{\sqrt{5}}\alpha^n = 21.0095$.
- How to find such formula?

Linear recursive sequences

A sequence $\{f_0, f_1, \dots, f_n \dots\}$ is called a linear recursive sequence of order k if it is defined as follows:

Linear recursive sequences

A sequence $\{f_0, f_1, \dots, f_n \dots\}$ is called a linear recursive sequence of order k if it is defined as follows:

- $f_0, f_1, \ldots, f_{k-1}$ are given.
- For all $n \ge 0$, $f_{n+k} = c_{k-1}f_{n+k-1} + c_{k-2}f_{n+k-2} + \cdots + c_1f_{n+1} + c_0f_n$ where $c_{k-1}, c_{k-2}, \dots c_0$ are fixed constants.

Linear recursive sequences

A sequence $\{f_0, f_1, \dots, f_n \dots\}$ is called a linear recursive sequence of order k if it is defined as follows:

- $f_0, f_1, \ldots, f_{k-1}$ are given.
- For all $n \ge 0$, $f_{n+k} = c_{k-1}f_{n+k-1} + c_{k-2}f_{n+k-2} + \cdots + c_1f_{n+1} + c_0f_n$ where $c_{k-1}, c_{k-2}, \ldots c_0$ are fixed constants.

Example 1: $\{Fib_n\}$ is a linear recursive sequence of order 2 where $c_1 = 1$ and $c_0 = 1$.

Linear recursive sequences

A sequence $\{f_0, f_1, \dots, f_n \dots\}$ is called a linear recursive sequence of order k if it is defined as follows:

- $f_0, f_1, \ldots, f_{k-1}$ are given.
- For all $n \ge 0$, $f_{n+k} = c_{k-1}f_{n+k-1} + c_{k-2}f_{n+k-2} + \cdots + c_1f_{n+1} + c_0f_n$ where $c_{k-1}, c_{k-2}, \ldots c_0$ are fixed constants.

Example 1: $\{Fib_n\}$ is a linear recursive sequence of order 2 where $c_1 = 1$ and $c_0 = 1$.

Example 2: $f_0 = 1$, $f_1 = 2$, $f_2 = 4$ and for all $n \ge 0$, $f_{n+3} = 3f_{n+1} - 2f_n$ Then $\{f_n\}$ is a linear recursive sequence of order 3 where $c_2 = 0$, $c_1 = 3$ and $c_0 = -2$.

The characteristic equation of the linear recursive seq is:

$$x^{k} = c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + \dots + c_{1}x^{1} + c_{0}$$

The characteristic equation of the linear recursive seq is:

$$x^{k} = c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + \dots + c_{1}x^{1} + c_{0}$$

• Solve this equation for x. Let $\alpha_1, \ldots, \alpha_k$ be the roots.

The characteristic equation of the linear recursive seq is:

$$x^{k} = c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + \dots + c_{1}x^{1} + c_{0}$$

- Solve this equation for x. Let $\alpha_1, \ldots, \alpha_k$ be the roots.
- Assuming all roots are distinct. Then the solution of f_n has the form

$$f_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n + \dots + a_k(\alpha_k)^n$$

for some constants a_1, a_2, \ldots, a_k .

• The characteristic equation of the linear recursive seq is:

$$x^{k} = c_{k-1}x^{k-1} + c_{k-2}x^{k-2} + \dots + c_{1}x^{1} + c_{0}$$

- Solve this equation for x. Let $\alpha_1, \ldots, \alpha_k$ be the roots.
- Assuming all roots are distinct. Then the solution of f_n has the form

$$f_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n + \dots + a_k(\alpha_k)^n$$

for some constants a_1, a_2, \ldots, a_k .

• Plug in the initial values f_0, f_1, \dots, f_{k-1} , we get k equations. Solve them to find a_1, a_2, \dots, a_k .

$$F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_{n+1} + F_n$$

Fibonacci number

$$F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_{n+1} + F_n$$

• The characteristic equation is: $x^2 = x + 1$.

$$F_0 = 0, F_1 = 1$$
 and $F_{n+2} = F_{n+1} + F_n$

- The characteristic equation is: $x^2 = x + 1$.
- The roots are: $\alpha_1 = \frac{1+\sqrt{5}}{2}$ and $\alpha_2 = \frac{1-\sqrt{5}}{2}$

$$F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_{n+1} + F_n$$

- The characteristic equation is: $x^2 = x + 1$.
- The roots are: $\alpha_1 = \frac{1+\sqrt{5}}{2}$ and $\alpha_2 = \frac{1-\sqrt{5}}{2}$
- The solution has the form: $F_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n$

$$F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_{n+1} + F_n$$

- The characteristic equation is: $x^2 = x + 1$.
- The roots are: $\alpha_1 = \frac{1+\sqrt{5}}{2}$ and $\alpha_2 = \frac{1-\sqrt{5}}{2}$
- The solution has the form: $F_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n$
- Plug in initial value $F_0 = 0$ and $F_1 = 1$:

$$0 = F_0 = a_1 \alpha_1^0 + a_2 \alpha_2^0 = a_1 + a_2$$

$$1 = F_1 = a_1 \alpha_1^1 + a_2 \alpha_2^1 = a_1 \frac{1 + \sqrt{5}}{2} + a_2 \frac{1 - \sqrt{5}}{2}$$

Fibonacci number

$$F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_{n+1} + F_n$$

- The characteristic equation is: $x^2 = x + 1$.
- The roots are: $\alpha_1 = \frac{1+\sqrt{5}}{2}$ and $\alpha_2 = \frac{1-\sqrt{5}}{2}$
- The solution has the form: $F_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n$
- Plug in initial value $F_0 = 0$ and $F_1 = 1$:

$$0 = F_0 = a_1 \alpha_1^0 + a_2 \alpha_2^0 = a_1 + a_2$$

$$1 = F_1 = a_1 \alpha_1^1 + a_2 \alpha_2^1 = a_1 \frac{1 + \sqrt{5}}{2} + a_2 \frac{1 - \sqrt{5}}{2}$$

• Solving this equation system, we get: $a_1 = \frac{1}{\sqrt{5}}$ and $a_2 = -\frac{1}{\sqrt{5}}$.

$$F_0 = 0, F_1 = 1 \text{ and } F_{n+2} = F_{n+1} + F_n$$

- The characteristic equation is: $x^2 = x + 1$.
- The roots are: $\alpha_1 = \frac{1+\sqrt{5}}{2}$ and $\alpha_2 = \frac{1-\sqrt{5}}{2}$
- The solution has the form: $F_n = a_1(\alpha_1)^n + a_2(\alpha_2)^n$
- Plug in initial value $F_0 = 0$ and $F_1 = 1$:

$$0 = F_0 = a_1 \alpha_1^0 + a_2 \alpha_2^0 = a_1 + a_2$$

$$1 = F_1 = a_1 \alpha_1^1 + a_2 \alpha_2^1 = a_1 \frac{1 + \sqrt{5}}{2} + a_2 \frac{1 - \sqrt{5}}{2}$$

- Solving this equation system, we get: $a_1 = \frac{1}{\sqrt{5}}$ and $a_2 = -\frac{1}{\sqrt{5}}$.
- Thus:

$$\mathsf{F}_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

• The roots $\alpha_1, \ldots, \alpha_k$ of the characteristic equ are not distinct.

- The roots $\alpha_1, \ldots, \alpha_k$ of the characteristic equ are not distinct.
- Say $\alpha_1 = \alpha_2 = \ldots = \alpha_t$ repeats t times.
- Then in the solution formula, the portion

$$\cdots a_1(\alpha_1)^n + a_2(\alpha_2)^n + \cdots + a_t(\alpha_t)^n \cdots$$

is replaced by:

$$\cdots a_1(\alpha_1)^n + a_2n^1(\alpha_1)^n + \cdots + a_tn^{t-1}(\alpha_1)^n \cdots$$

Other steps are the same.

Example

 $F_0 = 1, F_1 = 2, F_2 = 4$ and for all $n \ge 0, F_{n+3} = 3F_{n+1} - 2F_n$

Example

$$F_0 = 1, F_1 = 2, F_2 = 4$$
 and for all $n \ge 0, F_{n+3} = 3F_{n+1} - 2F_n$

• The characteristic equation is: $x^3 = 3x - 2$ or $f(x) = x^3 - 3x + 2 = 0$.

Example

$$F_0 = 1, F_1 = 2, F_2 = 4$$
 and for all $n \ge 0, F_{n+3} = 3F_{n+1} - 2F_n$

- The characteristic equation is: $x^3 = 3x 2$ or $f(x) = x^3 3x + 2 = 0$.
- To solve f(x) = 0, try x = 1. We find x = 1 is a root. So (x 1) is a factor of f(x). Thus $f(x) = (x 1)(x^2 + x 2) = (x 1)(x 1)(x + 2)$.

Example

 $F_0 = 1, F_1 = 2, F_2 = 4$ and for all $n \ge 0, F_{n+3} = 3F_{n+1} - 2F_n$

- The characteristic equation is: $x^3 = 3x 2$ or $f(x) = x^3 3x + 2 = 0$.
- To solve f(x) = 0, try x = 1. We find x = 1 is a root. So (x 1) is a factor of f(x). Thus $f(x) = (x 1)(x^2 + x 2) = (x 1)(x 1)(x + 2)$.
- So the roots are $\alpha_1 = \alpha_2 = 1$ and $\alpha_3 = -2$.

Example

$$F_0 = 1, F_1 = 2, F_2 = 4$$
 and for all $n \ge 0, F_{n+3} = 3F_{n+1} - 2F_n$

- The characteristic equation is: $x^3 = 3x 2$ or $f(x) = x^3 3x + 2 = 0$.
- To solve f(x) = 0, try x = 1. We find x = 1 is a root. So (x 1) is a factor of f(x). Thus $f(x) = (x 1)(x^2 + x 2) = (x 1)(x 1)(x + 2)$.
- So the roots are $\alpha_1 = \alpha_2 = 1$ and $\alpha_3 = -2$.
- The solution has the form: $F_n = a_1 \cdot 1^n + a_2 \cdot n \cdot 1^n + a_3 \cdot (-2)^n$. Plug in initial values:

$$1 = F_0 = a_1 + 0 + a_3$$

$$2 = F_1 = a_1 + a_2 - 2a_3$$

$$4 = F_2 = a_1 + 2a_2 + 4a_3$$

Example

$$F_0 = 1, F_1 = 2, F_2 = 4$$
 and for all $n \ge 0, F_{n+3} = 3F_{n+1} - 2F_n$

- The characteristic equation is: $x^3 = 3x 2$ or $f(x) = x^3 3x + 2 = 0$.
- To solve f(x) = 0, try x = 1. We find x = 1 is a root. So (x 1) is a factor of f(x). Thus $f(x) = (x 1)(x^2 + x 2) = (x 1)(x 1)(x + 2)$.
- So the roots are $\alpha_1 = \alpha_2 = 1$ and $\alpha_3 = -2$.
- The solution has the form: $F_n = a_1 \cdot 1^n + a_2 \cdot n \cdot 1^n + a_3 \cdot (-2)^n$. Plug in initial values:

$$1 = F_0 = a_1 + 0 + a_3$$

$$2 = F_1 = a_1 + a_2 - 2a_3$$

$$4 = F_2 = a_1 + 2a_2 + 4a_3$$

• Solving this: $a_1 = 8/9$, $a_2 = 4/3$ and $a_3 = 1/9$

Example

$$F_0 = 1, F_1 = 2, F_2 = 4$$
 and for all $n \ge 0, F_{n+3} = 3F_{n+1} - 2F_n$

- The characteristic equation is: $x^3 = 3x 2$ or $f(x) = x^3 3x + 2 = 0$.
- To solve f(x) = 0, try x = 1. We find x = 1 is a root. So (x 1) is a factor of f(x). Thus $f(x) = (x 1)(x^2 + x 2) = (x 1)(x 1)(x + 2)$.
- So the roots are $\alpha_1 = \alpha_2 = 1$ and $\alpha_3 = -2$.
- The solution has the form: $F_n = a_1 \cdot 1^n + a_2 \cdot n \cdot 1^n + a_3 \cdot (-2)^n$. Plug in initial values:

$$1 = F_0 = a_1 + 0 + a_3$$

$$2 = F_1 = a_1 + a_2 - 2a_3$$

$$4 = F_2 = a_1 + 2a_2 + 4a_3$$

- Solving this: $a_1 = 8/9$, $a_2 = 4/3$ and $a_3 = 1/9$
- Thus: $F_n = \frac{8}{9} + \frac{4}{3}n + \frac{1}{9}(-2)^n$

