

Steady RANS Simulation of TUDa Compressor with an In-house Code

Tian, Cheng Wang, Xinzui Fu, Song

04 September 2024, Chania in Crete, GPPS Workshop

- **□** Research Object
- □ Numerical Method
- **□** Result
- **□** Summary

Research Object

□ TUDa-GLR-OpenStage

Parameters	Values		
Rotor tip Mach number	1.17		
Rotor mean aspect ratio	0.94		
Rotor hub-to-tip ratio	0.51		
Rotor tip gap-to-chord ratio	0.80%		
Rotor tip radius (mm)	190		
Rotor tip chord length (mm)	94		
Rotor design speed (RPM)	20000		
Stage flow coefficient	0.37		
Stage loading coefficient	0.4		
Stage mass flow (kg/s)	16		
Stage total pressure ratio	1.5		
Number of blades	16/29/5		

He X, Zhu M, Xia K, et al. Validation and verification of RANS solvers for TUDa-GLR-OpenStage transonic axial compressor[J]. Journal of the Global Power and Propulsion Society, 2023, 7: 13-29.

- **□** Research Object
- □ Numerical Method
- **□** Result
- **□** Summary

Numerical Method

☐ CFD solver: TRANS (in-house)

1. Axial Compressor Rotor
Single Passage, RANS

3. Centrifugal Impeller Annulus, IDDES Designed by Tsinghua University

Numerical Method

☐ Mesh for CFD

- Offical grid: fine
- No pinched rotor casing
- No stator hub cavity
- Rotor + Stator + OGV, Single passage

Total grid: 5.68M

Blade Row Name	Grid Number		
Rotor	3.18 M		
Stator	1.62 M		
Outlet Guide Vane (OGV)	0.88 M		

He X, Zhu M, Xia K, et al. Validation and verification of RANS solvers for TUDa-GLR-OpenStage transonic axial compressor[J]. Journal of the Global Power and Propulsion Society, 2023, 7: 13-29.

Numerical Method

Numerical Scheme (2nd Order Accuracy)

- > Cell-centered finite-volume scheme on structured grid
- ➤ Inviscid flux: 3rd-order MUSCL reconstruction + rotated Roe scheme
- > Viscid flux: 2nd-order central scheme
- > Steady simulation: implicit LU-SGS scheme with iterations in pseudo time

Rotor/Stator Interface

- Rotor in rotating frame,Stator in static frame
- Interface: Mixing Plane

Rotational Speed

> 100% (20000 rpm)

Mixing Plane Method

- 2021 An Liu, Yaping Ju, Chuhua Zhang
- Characteristic variable perturbations

Boundary Conditions

- > Solid walls: no-slip and adiabatic condition
- Inlet: P_0 =101325 Pa, T_0 =288 K, pure axial; Turbulent intensity=0.1, μ_t/μ =100.0
- ➤ Outlet: radial equilibrium backpressure
- Rotational period boundary

Turbulence Model

> Standard SST k-ω Model

Fluid Model

> Ideal gas

$$dc_1 = -\overline{a}^2 d\rho + dp$$

$$dc_2 = \overline{\rho} \overline{a} dv_\theta$$

$$dc_3 = \overline{\rho} \overline{a} dv_t$$

$$dc_4 = \overline{\rho} \overline{a} dv_n + dp$$

$$dc_5 = -\overline{\rho} \overline{a} dv_n + dp$$

- **□** Research Object
- □ Numerical Method
- **□** Result
- **□** Summary

□ Convergence History (Mass Flow Rate)

Inlet: ME15

Rotor exit: ME21

Stator exit: ME30

Rotational Speed: 100% (20000 rpm)

Peak Efficiency

Near Stall

Rotational Speed: 100% (20000 rpm)

□ Compressor Characteristic

Stator Exit ME30 / Inlet ME15

Operating Point	Peak Efficiency			Near Stall		
Characteristic	Pressure	Efficiency	Temperature	Pressure	Efficiency	Temperature
EXP	1.491	0.869	1.141	1.557	0.831	1.164
CFD	1.505	0.883	1.141	1.591	0.864	1.165
Relative Error	0.94%	1.63%	0.00%	2.22%	3.90%	0.09%

□ Radial Profile at ME21 (rotor exit)

Operating Point: Peak Efficiency

CFD: No pinched rotor casing

Rotational Speed: 100% (20000 rpm)

100% (20000 rpm)

□ Radial Profile at ME30 (stator exit)

Total Pressure Ratio

Total Temperature Ratio

- **□** Research Object
- □ Numerical Method
- **□** Result
- **□** Summary

- ➤ In-house CFD code "TRANS"
- > Steady RANS of TUDa compressor, mixing plane
- Rotational Speed: 100% (20000 rpm)
- Official fine grid, no pinched rotor casing, no stator hub cavity
- > 2nd-order accuracy numerical scheme, MUSCL+Roe+LUSGS, SST model
- Relative error in characteristic (Near Stall)

For pressure ratio: 2.2%

For isentropic efficiency: 3.9%

THANKS FOR LISTRENING!

Tian, Cheng

email: tianc19@mails.tsinghua.edu.cn