# Giant Pumpkins EDA

Mahsa Sarafrazi, Rowan Sivanandam, Shiva Jena, and Vanessa Yuen

November 20, 2021

## Exploratory Data Analysis of the Giant Pumpkins data set

## Summary of the data set

The data set of this project is from BigPumpkins.com. These statistics are from the Great Pumpkin Commonwealth's (GPC) Weighoff Results. It is sourced from the TidyTuesday Data project and the data set can be download here.

Each row of the data set represents a GPC weighoff result. Each row includes the id (year-type), place/ranking, grower name, city, state, country, gpc site and variety of the giant pumpkin. It also contains genetic info such as the seed mother and pollinator father. Measurements taken include the weight in lbs and ott in inches (Over the top measurement to estimate weight).

In the raw data, there are rows of 'seperator' inserted after the records of the same 'id'. We have removed these separator records and saved the processed data in the processed\_pumpkins.csv. A script file for this data processing can be found in here.

There are in total 28,011 observations and 14 features. Some null values found in the city, seed mother, pollinator father, ott, estimated weight, pct\_chart and variety features.

#### Partition the data set into Training and Test sets

We will split the data with 70% training data and 30% test data. After splitting, the number of observations in the training set and test set are 19,607 and 8,404 respectively.

### Exploratory Data Analysis on the Training set

We have plotted distribution of the target 'weight (Lbs)' and some features in the training set to explore if the features will be useful to predict the weight of the giant pumpkins.

The plots in the section Plots of Data Distribution and Relationship show that most of the observations are from the United States. The distribution of the GPC sites, city and state/province are more evenly distributed. We consider these columns are all good features to be used. Plots of the mean weight of giant pumpkins against different features (ott, country, city, state, gpc site) also suggest that these features relates to the target (weight).

From the Summary Statistics of the training set, it is noticed that the grower name, seed mother and pollinator father are free-text columns. We think this genetic information might be useful for the prediction of the weight. It is found from the GPC website that there is a naming convention for the seed / pollinator (Parent Weight: Grower Name: Year). We may consider to transform this data to separate features at later stage.

The number of non-null values in the variety column is very low. We will drop this column for training as the information may not be useful when there are so many null values.

## Plots of Data Distribution and Relationship





## **Summary Statistics**

|        | _df.describe(include="all") |       |              |             |            |            |               |                                             |                |                      |              |              |              |        |
|--------|-----------------------------|-------|--------------|-------------|------------|------------|---------------|---------------------------------------------|----------------|----------------------|--------------|--------------|--------------|--------|
|        | id                          | place | weight_lbs   | grower_name | city       | state_prov | country       | gpc_site                                    | $seed\_mother$ | $pollinator\_father$ | ott          | est_weight   | pct_chart    | variet |
| count  | 19607                       | 19607 | 19607.000000 | 19607       | 17645      | 19607      | 19607         | 19607                                       | 13679          | 12460                | 17382.000000 | 17382.000000 | 17382.000000 | 49     |
| unique | 54                          | 1780  | NaN          | 6510        | 2786       | 130        | 21            | 166                                         | 7640           | 3404                 | NaN          | NaN          | NaN          | 6      |
| top    | 2015-P                      | EXH   | NaN          | Kline, Todd | Steam Mill | Other      | United States | Ohio Valley Giant Pumpkin Growers Weigh-off | unknown        | open                 | NaN          | NaN          | NaN          | Big Za |
| freq   | 1417                        | 1309  | NaN          | 80          | 208        | 1572       | 11904         | 559                                         | 195            | 1861                 | NaN          | NaN          | NaN          | 246    |
| mean   | NaN                         | NaN   | 498.848803   | NaN         | NaN        | NaN        | NaN           | NaN                                         | NaN            | NaN                  | 202.238005   | 489.077436   | 0.608503     | NaN    |
| std    | NaN                         | NaN   | 503.200524   | NaN         | NaN        | NaN        | NaN           | NaN                                         | NaN            | NaN                  | 154.896698   | 531.495729   | 19.382001    | NaN    |
| min    | NaN                         | NaN   | 0.100000     | NaN         | NaN        | NaN        | NaN           | NaN                                         | NaN            | NaN                  | 0.000000     | 0.000000     | -100.000000  | NaN    |
| 25%    | NaN                         | NaN   | 86.225000    | NaN         | NaN        | NaN        | NaN           | NaN                                         | NaN            | NaN                  | 0.000000     | 0.000000     | -3.000000    | NaN    |
| 50%    | NaN                         | NaN   | 307.500000   | NaN         | NaN        | NaN        | NaN           | NaN                                         | NaN            | NaN                  | 233.000000   | 290.000000   | 0.000000     | NaN    |
| 75%    | NaN                         | NaN   | 828.500000   | NaN         | NaN        | NaN        | NaN           | NaN                                         | NaN            | NaN                  | 338.000000   | 873.000000   | 3.000000     | NaN    |
| max    | NaN                         | NaN   | 2702.900000  | NaN         | NaN        | NaN        | NaN           | NaN                                         | NaN            | NaN                  | 1132.000000  | 11033.000000 | 830.000000   | NaN    |

Figure 1: Output of Descriptive Summary of the Training Set from Jupyter Notebook