Quantum Assisted Secure Multiparty Computation

Manuel Batalha dos Santos

Thesis defence 16 January 2025

Motivation and outcomes

Motivation and outcomes

• Quantum and classical oblivious transfer

Motivation and outcomes

• Quantum and classical oblivious transfer

Private phylogenetic trees

Motivation and outcomes

Quantum and classical oblivious transfer

Private phylogenetic trees

Quantum oblivious linear evaluation

SMC

Arithmetic

SMC

SMC

Primitive

SMC

Primitive Oblivious Transfer

SMC

Primitive Oblivious Transfer

Oblivious Linear Evaluation

Outcomes

Outcomes

Outcomes

Oblivious Transfer

Comparable structure?
Corresponding phases with same technology?
Any practical insight?

Corresponding phases with same technology?

Any practical insight?

Corresponding phases with same technology? \bigcirc Any practical insight?

Classic

Base OT

OT Extension

Quantum [BBCS'91]

Classic

Base OT

OT Extension

Quantum [BBCS'91]

Issue: PK operations

Classic

Base OT

OT Extension

Issue: PK operations

Quantum [BBCS'91]

Classic

Base OT OT Extension

OT/s

[NP'01] 56
SimpleOT 1375 < [ALSZ'13] 2.68 s
NTRU-OT 728
Kyber-OT 41

Quantum [BBCS'91]

Classic		Quantum
	OT Extension	[BBCS'91]

	OT/s			10	М ОТ
[NP'01] SimpleOT NTRU-OT Kyber-OT	56 1 375 728 41	<	[ALSZ'13] [KOS'15]	:	2.68 s 3.35 s

Base OT

Online phase for *m* OTs

	Computation	Communication	
[ALSZ'13]	$O^{ALSZ} - O^{BBCS} > m \log m$	$C^{ALSZ} - C^{BBCS} = 0$	
			BBCS
[KOS'15]	$O^{KOS} - O^{BBCS} > m \log m + 5ml$	$C^{KOS} - C^{BBCS} \gtrsim 0$	

Shows the evolutionary relationship between **DNA** sequences in a tree.

Results summary

• Tailored SMC protocol for phylogenetic trees algorithms

- Tailored SMC protocol for phylogenetic trees algorithms
- Classical implementation
 - CBMC-GC: circuit generation
 - MPC-Benchmark: yao protocol based on Libscapi
 - PHYLIP: phylogeny analysis

- Tailored SMC protocol for phylogenetic trees algorithms
- Classical implementation
 - CBMC-GC: circuit generation
 - MPC-Benchmark: yao protocol based on Libscapi
 - PHYLIP: phylogeny analysis
- Integrate BBCS based protocol into Libscapi

- Tailored SMC protocol for phylogenetic trees algorithms
- Classical implementation
 - CBMC-GC: circuit generation
 - MPC-Benchmark: yao protocol based on Libscapi
 - PHYLIP: phylogeny analysis
- Integrate BBCS based protocol into Libscapi
- Benchmark classical and quantum approaches

Performance evaluation

Primitive | Secure auctions |

Setup:

- **3 parties:** VMs running Ubuntu 16.04.3
- 30 SARS-CoV-2 genome sequences* with 32 000 length

Boolean circuit:

- ~3 minutes (CBMC-GC)
- ~2.2 million gates
- 128 000 input wires

Performance evaluation

Primitive | SPM21 | Classic | Classi

Setup:

- **3 parties:** VMs running Ubuntu 16.04.3
- 30 SARS-CoV-2 genome sequences* with 32 000 length

Performance evaluation

Setup:

- **3 parties:** VMs running Ubuntu 16.04.3
- 30 SARS-CoV-2 genome sequences* with 32 000 length

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Primitive Ocasion Classic Clas

- Oblivious Linear Evaluation (OLE)
- Vector OLE

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Results summary

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Alice

OLE

$$f(x) = ax + b$$

Bob

Results summary

- Oblivious Linear Evaluation (OLE)
- Vector OLE

Alice

VOLE

$$f(x) = ax + b$$

Bob

Quantum OLE | Main tool

Primitive Octavia Classic Clas

In an Hilbert space of dimension d

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e^x_r\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

Definition:

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs

$$\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{a-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice, (a,b) Bob, x

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice, (a,b)

Bob, x

 $|e_r^x\rangle$

Definition:

$$\mathcal{B}_{1} = \{ |\phi_{1}\rangle, \dots, |\phi_{d}\rangle \}$$

$$\mathcal{B}_{0} = \{ |\psi_{1}\rangle, \dots, |\psi_{d}\rangle \}$$

$$|\langle \psi_{i} | \phi_{j}\rangle | = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{a-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice, (a,b) Bob, x $|e_r^x\rangle$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{a-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice,
$$(a,b)$$
 Bob, x $|e_r^x\rangle$ $V_a^b\,|e_r^x\rangle$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Alice, (a,b) Bob, x $|e_r^x\rangle$ $|e_{ax-b+r}^x\rangle$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{a-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, V_a^b

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

In an Hilbert space of dimension d, there exists a set of MUBs $\{|e_r^x\rangle\}_{r\in\mathbb{Z}_d}$

which, upon the action of the Heisenberg-Weyl operators, ${\cal V}_a^b$

$$V_a^b \left| e_r^x \right\rangle = c_{a,b,x,r} \left| e_{ax-b+r}^x \right\rangle$$

Definition:

$$\mathcal{B}_1 = \{ |\phi_1\rangle, \dots, |\phi_d\rangle \}$$

$$\mathcal{B}_0 = \{ |\psi_1\rangle, \dots, |\psi_d\rangle \}$$

$$|\langle \psi_i | \phi_j \rangle| = \frac{1}{\sqrt{d}}$$

$$V_a^b := V_0^b V_a^0 = \sum_{l=0}^{d-1} \omega^{(l+a)b} |l+a\rangle\langle l|$$

Alice, (a,b) Bob, x

Alice, (a,b)	· ~ []	Bob, x
r	i \in $[m]$ \cdots	
I		$\left e_{r_{i}}^{x_{i}^{0}}\right\rangle$
I I		$ e_{r_i} $
i		1 /
		1
1		
I		i
I I		!
·		

Alice, (a,b)	$i \in [m]$	Bob, x
$\left e_{r_{i}}^{x_{i}^{0}} ight angle$	<i>t</i> ∈[<i>nt</i>]	$\left e_{r_{i}}^{x_{i}^{0}} ight angle$
$\left e_{a_i^0 x_i^0 - b_i^0 + r_i}^{x_i^0} \right\rangle$		
$T \subset [m]$	← Commit-and-open phase —	$ exttt{commit}(i, x_i^0, r_i)_{i \in [m]} \ exttt{open}(i, x_i^0, r_i)_{i \in T}$
$\left e_{a_i^0 x_i^0 - b_i^0 + r_i}^{x_i^0} \right\rangle$		$\left e_{a_i^0x_i^0-b_i^0+r_i}^{x_i^0}\right\rangle$

Thank you

I acknowledge Fundação para a Ciência e a Tecnologia (FCT, Portugal) for its support through the PhD grant SFRH/BD/ 144806/2019 in the context of the Doctoral Program in the Information Security (IS).

Quantum Assisted Secure Multiparty Computation

Manuel Batalha dos Santos

Thesis defence 16 January 2025

