Γotal No. of Questions : 4]	200	SEAT No. :
P8571		[Total No. of Pages :

Oct-22/TE/Insem-549 T.E.(E & Tc) DIGITAL COMMUNICATION (2019 Pattern) (Semester - I) (304181)

		DIGITAL COMMUNICATION	
(2019 Pattern) (Semester - I) (304181)			
Time: 1	Hour]	[Max.	<i>Marks</i> : 30
Instructi	ons to	the candidates:	
1)	Ans	wer any one Question out of Q.No. 1 or 2 and Q.No. 3 or 4.	
2)		t diagrams must be drawn wherever necessary.	
3)	Figu	ures to the right side indicate full marks.	
4)	Assı	ume suitable data if necessary.	
	,9	6.	
Q1) a)	Wit	h help of mathematical expression explain stationary rando	om process,
	non	n-stationary random process & wide sense stationary pro	ocesses and
	Erg	godic processes.	[8]
b)	Tho	e random process $X(t) = X$, where X is a random variable	a uniformly
U)		ributed in $(-1,1)$. Find mean and autocorrelation funct	•
		cess and check whether the process is wide sense stationar	
	proc	cess and eneck whether the process is wide sense stational	y of not.[5]
c)	Def	fine White noise.	[2]
		OR	
		6. OK	
Q2) a)	Exp	plain the following terms with mathematical expressions:	5
	:)	Many	· ×
	i)	Mean	3
	ii)	Autocorrelation function)°

	iii)	OR Clain the following terms with mathematical expressions: Mean Autocorrelation function Autocovariance function	
	iv)	Auto covariance function	[8]

b) A wide sense stationary random processes X(t) is applied to input of an LTI system with impulse response $h(t) = 3e^{-2}u(t)$. Find the mean value of output Y(t) of system if E[X(t)] = 2. [7]

P.T.O.

Q3) a) Explain with a neat block diagram and waveforms generation of Offset QPSK. Also draw signal space diagram for QPSK. Compare BPSK. BFSK & QPSK with respect to following parameters. b) i) Mathematical expression ii) Bits per symbol Bandwidth iii) Probability of error iv) Euclidean distance Symbol duration Applications **[7]** OR With a neat block diagram and mathematical expression explain the generation and coherent detection of BFSK. A binary data is transmitted at a rate of 10⁶ Mbps over a channel whose b) Total Control of the state of t bandwidth is 6 MHz. Final signal energy per bit at a receiver input for coherent BPSK to achieve probability error. Pe $\leq 10^{-4}$ assume No/2 = 10^{-10} W/Hz. Erf (2.6) = 0.9998