Four Bit Adder Report

Mayur Ware, 19D070070

EE-214, WEL, IIT Bombay

January 28, 2021

Overview of the experiment

- The purpose of the experiment is to make a digital device which can add two 4 bit numbers and will return the 4 bit sum along with carry-out.
- I used Full_Adder and Half_Adder as components in a sequence to perform this experiment.
- The report contains a handmade diagram which describes my approach, some important extracts of VHDL code and the output waveforms.

Approach to the experiment

I used 3 Full Adders and 1 Half Adder in the design which give the sum and send carry-out to the immediate next Adder. The sum bits will be the sum of the two numbers and the carry-out of the last Full Adder will be it's carry-out.

Design document and VHDL code if relevant

Full_Adder:

```
entity Full_Adder is
```

port (A, B, Cin: in std_logic; S, Cout: out std_logic); -Assigned Ports

end entity Full_Adder;

architecture Equations of Full_Adder is

begin

 $S \le (A \text{ xor } B) \text{ xor Cin};$

Cout \leq (A and B) or ((A or B) and Cin);

end Equations;

Four_Bit_Adder:

entity Four_Bit_Adder is

port (B3, A3, B2, A2, B1, A1, B0, A0: in std_logic; R3, R2, R1, R0, Cout: out std_logic); -Assigned Ports

end entity Four_Bit_Adder;

architecture Struct of Four_Bit_Adder is

signal C3, C2, C1: std_logic;

begin

HA1: Half_Adder port map (A \Rightarrow B0, B \Rightarrow A0, S \Rightarrow R0, C \Rightarrow C1); —Half_Adder Instance

FA1: Full_Adder port map (A => B1 , B => A1, Cin => C1, S => R1, Cout => C2); -Full_Adder Instance

FA2: Full_Adder port map (A => B2 , B => A2, Cin => C2, S => R2, Cout => C3); -Full_Adder Instance

FA3: Full_Adder port map (A => B3 , B => A3, Cin => C3, S => R3, Cout => Cout); -Full_Adder Instance

end Struct;

RTL View

DUT Input/Output Format

B3, A3, B2, A2, B1, A1, B0, A0: in std_logic; -Input Bits R3, R2, R1, R0, Cout: out std_logic);

-Output Bits

11101 11101111 11111

-Input Bits, Output Bits, Mask Bits

RTL Simulation

Gate-level Simulation

Krypton board*

Map the logic circuit to the Krypton board and attach the images of the pin assignment and output observed on the board (switches/LEDs).

Observations*

You must summarize your observations, either in words, using figures and/or tables.

References

EE224: Digital Design by Prof. Virendra Singh Video Lectures for understanding the design of 4 bit adder.

* To be submitted after the tutorial on "Using Krypton.