Hypothesis tests

Aldo Solari Statistical Inference II PhD in Economics, Statistics and Data Science University of Milano-Bicocca

XXXVII cycle

Outline

Simple null hypotheses

Composite null hypotheses

Main references

– Cox and Hinkley (1976) Theoretical Statistics. Chapman and Hall/CRC, $\S 4, \, \S 5$

The Neyman–Pearson formulation of hypothesis testing requires to fix the probability of rejecting H_0 when it is true, denoted by α , aiming to maximize the probability of rejecting H_1 when false.

This approach demands the explicit formulation of the *alternative* $hypothesis H_1$.

The decision procedure, i.e. rejecting or not H_0 , is called the *test* of H_0 against H_1 .

Suppose *Y* has distribution $f_Y(y; \theta)$ for $\theta \in \Theta$

Formulate a null hypothesis $H_0: \theta \in \Theta_0$ and an alternative hypothesis $H_1: \theta \in \Theta_1$ with $\Theta_0 \cup \Theta_1 = \Theta$ and $\Theta_0 \cap \Theta_1 = \emptyset$

A *test* or *critical function* $\phi = \phi(Y)$ assigns to each possible value y one of these two decisions

$$\phi: \mathcal{Y} \mapsto \{0,1\}$$

where 1 denotes the decision of rejecting H_0 and 0 denotes the decision of not rejecting H_0 , and thereby partition the sample space \mathcal{Y} into two complementary regions \mathcal{Y}_0 and \mathcal{Y}_1

When performing a test one may arrive at the correct decision, or one may commit one of two errors: rejecting H_0 when it is true (*type I error*) or not rejecting it when it is false (*type II error*).

Critical region

Unfortunately, the probabilities of the two types of error cannot be controlled simultaneously

Choose the *level of significance* $\alpha \in (0, 1)$, and control the probability of type I error at α , i.e.

$$\operatorname{pr}_{\theta}(Y \in \mathcal{Y}_1) \le \alpha \quad \forall \ \theta \in \Theta_0$$

The *size* of the test is

$$\sup_{\theta \in \Theta_0} \operatorname{pr}_{\theta}(Y \in \mathcal{Y}_1)$$

If, for all α , the size of the test is α , we call \mathcal{Y}_1 a *critical region of size* α , denoted by \mathcal{Y}_{α}

Power function

Subject to

$$\sup_{\theta \in \Theta_0} \operatorname{pr}_{\theta}(Y \in \mathcal{Y}_{\alpha}) = \alpha$$

it is desired to maximize

$$\operatorname{pr}_{\theta}(Y \in \mathcal{Y}_{\alpha}) \quad \forall \ \theta \in \Theta_1$$

Considered as a function of θ , this probability is called the *power* function of the test

$$pow(\theta; \alpha) = pr_{\theta}(Y \in \mathcal{Y}_{\alpha}; \theta)$$

p-value

If we require that the rejection regions \mathcal{Y}_{α} and $\mathcal{Y}_{\tilde{\alpha}}$ are *nested* in the sense that

$$\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\tilde{\alpha}}$$
 if $\alpha < \tilde{\alpha}$

the p-value is defined as the smallest significance level at which the null hypothesis would be rejected for the given observation:

$$p_{\text{obs}} = \inf\{\alpha : y \in \mathcal{Y}_{\alpha}\}\$$

Table of Contents

Simple null hypotheses

Composite null hypotheses

In the present section we consider only the case where H_0 is a simple hypothesis

It is best to begin with a simple alternative hypothesis H_1

$$H_0: Y \sim f_0(y) = f(y; \theta_0), \quad H_1: Y \sim f_1(y) = f(y; \theta_1)$$

Let \mathcal{Y}_{α} and \mathcal{Y}'_{α} be two critical region of size α , i.e.

$$\operatorname{pr}_0(Y \in \mathcal{Y}_\alpha) = \operatorname{pr}_0(Y \in \mathcal{Y}'_\alpha)$$
 (1)

We regard \mathcal{Y}_{α} as preferable to \mathcal{Y}'_{α} for the alternative H_1 if

$$\operatorname{pr}_1(Y \in \mathcal{Y}_{\alpha}) > \operatorname{pr}_1(Y \in \mathcal{Y}'_{\alpha})$$
 (2)

The region \mathcal{Y}_{α} is called the *best critical region* of size α if (2) is satisfied for all other \mathcal{Y}'_{α} satisfying the size condition (1).

We call $\operatorname{pr}_1(Y \in \mathcal{Y}_\alpha)$ the *size* α *power* of the test against H_1

Neyman-Pearson lemma

For simplicity, suppose that the likelihood ratio $lr(Y) = f_1(Y)/f_0(Y)$ is, under H_0 , a continuous random variable such that for all α , there exists a unique c_{α} such that

$$\operatorname{pr}_0(\operatorname{lr}(Y) \ge c_\alpha) = \alpha$$

We call the region defined by

$$lr(y) \ge c_{\alpha}$$

the size α likelihood ratio critical region

A fundamental result, called the Neyman-Pearson lemma, is that, for any size α , the likelihood ratio critical region is the best critical region.

Let \mathcal{Y}_{α} be the likelihood ratio critical region and let \mathcal{Y}_{1} be any other critical region, both being of size α . Then

$$\alpha = \int_{\mathcal{V}_0} f_0(y) dy = \int_{\mathcal{V}_1} f_0(y) dy$$

so that

$$\int_{\mathcal{Y}_{\alpha} \setminus \mathcal{Y}_{1}} f_{0}(y) dy = \int_{\mathcal{Y}_{1} \setminus \mathcal{Y}_{\alpha}} f_{0}(y) dy$$

since
$$\int_{\mathcal{Y}_{\alpha}} f_0(y) dy = \int_{\mathcal{Y}_{\alpha} \setminus \mathcal{Y}_1} f_0(y) dy + \int_{\mathcal{Y}_{\alpha} \cap \mathcal{Y}_1} f_0(y) dy$$

Now, if $y \in \mathcal{Y}_{\alpha} \setminus \mathcal{Y}_{1}$, which is inside \mathcal{Y}_{α} , $f_{1}(y) \geq c_{\alpha}f_{0}(y)$, while if $y \in \mathcal{Y}_{1} \setminus \mathcal{Y}_{\alpha}$, which is outside \mathcal{Y}_{α} , $c_{\alpha}f_{0}(y) > f_{1}(y)$.

We have that

$$\int_{\mathcal{Y}_{\alpha}\setminus\mathcal{Y}_{1}} f_{1}(y)dy \geq c_{\alpha} \int_{\mathcal{Y}_{\alpha}\setminus\mathcal{Y}_{1}} f_{0}(y)dy = c_{\alpha} \int_{\mathcal{Y}_{1}\setminus\mathcal{Y}_{\alpha}} f_{0}(y)dy \geq \int_{\mathcal{Y}_{1}\setminus\mathcal{Y}_{\alpha}} f_{1}(y)dy$$

with strict inequality unless the regions are equivalent

Then

$$\int_{\mathcal{Y}_{\alpha}} f_1(y) dy \ge \int_{\mathcal{Y}_1} f_1(y) dy$$

thus the power of \mathcal{Y}_{α} is at least that of \mathcal{Y}_{1}

Note that if \mathcal{Y}_1 had been of size less than α the final inequality holds

Normal mean with known variance

Let Y_1, \ldots, Y_n be i.i.d. $N(\mu, 1)$. Consider

$$H_0: \mu = \mu_0, \quad H_1: \mu = \mu_1$$

with $\mu_1 > \mu_0$.

$$lr(y) = \exp\left\{n\bar{y}(\mu_1 - \mu_0) - \frac{1}{2}n\mu_1^2 + \frac{1}{2}n\mu_0^2\right\}$$

Because all quantities, except for \bar{y} , are fixed constants, and because $\mu_1 - \mu_0 > 0$, a critical region of the form $\ln(y) \ge c_\alpha$ is equivalent to one of the form $\bar{y} \ge d_\alpha$. Since $\bar{Y} \stackrel{H_0}{\sim} N(\mu_0, 1/n)$

$$d_{\alpha} = \mu_0 + \frac{z_{\alpha}}{\sqrt{n}}$$

where z_{α} is the $1-\alpha$ quantile of N(0,1), and

$$\mathcal{Y}_{\alpha}^{+} = \{y_1, \ldots, y_n : \sqrt{n}(\bar{y} - \mu_0) \geq z_{\alpha}\}$$

Suppose we have an observation from $N(\mu, 1)$ and that the hypotheses are $H_0: \mu = 0$ and $H_1: \mu = 10$.

We observe $y_{\rm obs}=3$. Then $p_{\rm obs}=1-\Phi(y_{\rm obs})=0.0013$ for testing H_0 against H_1 .

On the other hand, $p_{\rm obs} = \Phi(y_{\rm obs} - 10) < 0.0001$ for testing H_1 against H_0 .

Exponential family

Let Y_1, \ldots, Y_n be i.i.d. in the single parameter exponential family

$$\exp\{a(\theta)b(y) + c(\theta) + d(y)\}\$$

among them the normal, gamma, binomial and Poisson distribution, and that the hypotheses are $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$.

Then the likelihood ratio involves the data only through the sufficient statistic $S = \sum b(Y_j)$ and the best critical region has the form

$$\exp\{a(\theta_1) - a(\theta_0)\} s \ge e_\alpha$$

If $a(\theta_1)-a(\theta_0)>0$, this is equivalent to $s\geq \tilde{e}_\alpha$, the critical region being the same for all such θ_1

Poisson mean

Let $Y \sim \text{Poisson}(\lambda)$. Consider

$$H_0: \lambda = 1, \quad H_1: \lambda = \lambda_1 > 1$$

The likelihood critical regions have the form $y \ge d_{\alpha}$

However, because *Y* is discrete, the only critical regions are of the form $y \ge r$, where *r* is an integer

If α is one of the values above, a likelihood ratio region of the required size does exist.

By a mathematical artifice, it is, however, possible to achieve likelihood ratio critical regions with other values of α

Suppose that $\alpha=0.05$. The region $y\geq 4$ is too small, whereas the region $y\geq 3$ is too large. All values $y\geq 4$ are put in the critical region, whereas if y=3 we regard the data as in the critical region with probability π such that

$$\mathrm{pr}_0(\mathit{Y} \geq 4) + \pi \cdot \mathrm{pr}_0(\mathit{Y} = 3) = 0.05$$

leading to $\pi=0.51$. This is a randomized critical region of size 0.05.

The randomized definition of p_{obs} corresponding to Y = y is

$$\operatorname{pr}_0(Y > y) + U \cdot \operatorname{pr}_0(Y = y)$$

where $U \sim \text{Uniform}(0, 1)$, independently of Y. The corresponding random variable is, under H_0 , Uniform(0, 1).

Observation with two possible precision

Suppose that a random variable Y is equally likely to be $N(\mu, \sigma_1^2)$ or $N(\mu, \sigma_2^2)$, where σ_1^2 and σ_2^2 are different and known.

A random variable C is observed, taking the value 1 or 2 according to whether Y has the first or second distribution. Thus it is known from which distribution y comes.

Then the likelihood of the data (c, y) is

$$f_{C,Y}(c,y) = \frac{1}{2} (2\pi\sigma_c^2)^{-\frac{1}{2}} \exp\{-(y-\mu)^2/(2\sigma_c^2)\}$$

so that S = (C, Y) is sufficient for μ with σ_1^2 and σ_2^2 known.

Because $\operatorname{pr}(C=1)=\operatorname{pr}(C=2)=1/2$ independent of μ , C is ancillary

Suppose $\sigma_1^2=1$ and $\sigma_2^2=10^6$ and consider $H_0:\mu=0$ and $H_1:\mu=\mu_1>0$

If we work conditionally on c, the size α critical region is

$$\mathcal{Y}_{\alpha} = \left\{ \begin{array}{ll} y > z_{\alpha} & c = 1 \\ y > 10^{3} z_{\alpha} & c = 2 \end{array} \right.$$

That is, we require

$$\operatorname{pr}(Y \in \mathcal{Y}_{\alpha} | C; H_0) = \alpha$$

and, subject to this, we require maximum power.

Conditional p-value

$$pr(Y \ge y_{\text{obs}}|C = c; H_0) = 1 - \Phi(y_{\text{obs}}/\sigma_c)$$

On the other hand, if we don't impose the conditional size condition, we apply the Neyman-Pearson lemma directly, we obtain a likelihood ratio critical region with more power.

The conclusion is that the requirement of using a conditional distribution cannot be deduced from that of maximum power and the two requirements may conflict.

Composite alternatives

Suppose $H_0: \theta = \theta_0$ and $H_1: \theta \in \Theta_1$. Two cases now arise.

- We get the same size α best critical region for all $\theta \in \Theta_1$. Then we say that the region is *uniformly most powerful* size α region. If this holds for each α , then the test itself is called uniformly most powerful (UMP).
- The best critical region depends on the particular θ ∈ Θ₁. Then
 no uniformly most powerful exists. One possibility is to take
 θ ∈ Θ₁ very close to θ₀, to maximize the power locally near the
 null hypothesis.

 Y_1, \ldots, Y_n be i.i.d. $N(\mu, 1)$. Test $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ with critical region $\mathcal{Y}_{\alpha}^+ = \{y_1, \ldots, y_n: \sqrt{n}(\bar{y} - \mu_0) \geq z_{\alpha}\}$ $pow(\mu; \alpha) = \Phi(\sqrt{n}(\mu - \mu_0) - z_{\alpha})$

Two-sided tests

Let Y_1, \ldots, Y_n be i.i.d. $N(\mu, 1)$. Test $H_0: \mu = \mu_0$ against $H_1: \mu < \mu_0$ with critical region $\mathcal{Y}_{\alpha}^- = \{y_1, \ldots, y_n: \sqrt{n}(\bar{y} - \mu_0) \leq -z_{\alpha}\}$

Suppose now that we wish to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$.

The critical region

$$\mathcal{Y}_{\alpha} = \mathcal{Y}_{\alpha}^{-} \cup \mathcal{Y}_{\alpha}^{+}$$

has size 2α , and no uniformly more powerful test exists for the two-sided alternative.

Unbiased tests

A critical region \mathcal{Y}_{α} of size α is called *unbiased* if

$$\operatorname{pr}(Y \in \mathcal{Y}_{\alpha}; \theta) \ge \operatorname{pr}(Y \in \mathcal{Y}_{\alpha}; \theta_0) = \alpha \quad \forall \ \theta \in \Theta_1$$

One may restrict attention to unbiased regions and among these look for the one with maximum power

A test which is uniformly most powerful amongst the class of all unbiased tests is *uniformly most powerful unbiased* (UMPU)

Type III error

Consider the problem of testing $H_0: \theta = \theta_0$ versus $H_0: \theta \neq \theta_0$.

If H_0 is rejected, then a decision is to be made as to whether $\theta > \theta_0$ or $\theta < \theta_0$.

We say that a Type III (or directional) error is made when it is declared that $\theta > \theta_0$ when in fact $\theta < \theta_0$ (or vice-versa).

Normal mean vector with known variance-covariance matrix

Suppose $Y = (Y_1, \dots, Y_m)^t$ is multivariate normal with mean vector $\mu = (\mu_1, \dots, \mu_m)^t \geq 0$ and known nonsingular covariance matrix Σ

For testing $H_0: \mu = 0$ against $H_1: \mu = \mu_1$, the most powerful test rejects for large values of

$$\mu_1^t \Sigma^{-1} Y$$

In particular, no UMP test exists

For testing $H_0: \mu=0$ against $H_1: \mu=(k,\ldots,k)^t$ for k>0, a UMP test exists and rejects for large values of the sum of the components of $\Sigma^{-1}Y$. If, in particular, Σ has diagonal elements 1 and off-diagonal elements ρ , then the test rejects when

$$\sum_{i} Y_i \ge z_{\alpha} (m + m(m-1)\rho)^{1/2}$$

Locally most powerful tests

Denote the pdf of the vector Y by $f_Y(y; \theta)$ and consider $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_0 + \epsilon$ for small $\epsilon > 0$

$$\log \operatorname{lr}(y) = \log f_{Y}(y; \theta_{0} + \epsilon) - \log f_{Y}(y; \theta_{0})
= \left[\log f_{Y}(y; \theta_{0}) + \epsilon \frac{\partial \log f_{Y}(y; \theta_{0})}{\partial \theta_{0}} + \dots \right] - \log f_{Y}(y; \theta_{0})
= \epsilon \frac{\partial \log f_{Y}(y; \theta_{0})}{\partial \theta_{0}} + \dots$$

Thus, for sufficiently small positive ϵ , we obtain the likelihood ratio critical region from large values of the *score* statistic

$$U = u(Y; \theta_0) = \frac{\partial \log f_Y(Y; \theta_0)}{\partial \theta_0}$$

In regular problems,

$$E(u(Y;\theta_0);\theta_0) = 0$$

 $\operatorname{Var}(u(Y;\theta_0);\theta_0) = i(\theta_0) = \operatorname{E}\left[-\frac{\partial^2 \log f_Y(Y;\theta_0)}{\partial \theta_0^2};\theta_0\right]$

where $i(\theta)$ the Fisher information about θ contained in Y

If Y_1, \ldots, Y_n are independent, then

$$U = \sum_{j=1}^{n} U_j \text{ with } U_j = \frac{\partial \log f_{Y_j}(Y_j; \theta_0)}{\partial \theta_0}$$

$$i(\theta_n) = \sum_{i=1}^n i(\theta_n)$$
 with $i(\theta_n) = \text{Var}(u(V, \theta_n), \theta_n)$

$$i(\theta_0) = \sum_{i=1}^n i_i(\theta_0)$$
 with $i_i(\theta_0) = \text{Var}(u(Y_i; \theta_0); \theta_0)$

In large samples from regular models the null distribution of U is approximately normal with mean zero and variance equal to the Fisher information, so a locally most powerful critical region has form

$$\mathcal{Y}_{\alpha} = \{y_1, \dots, y_n : u(y, \theta_0) \ge i(\theta_0)^{1/2} z_{\alpha} \}$$

Under the alternative hypothesis $H_1: \theta = \theta_0 + \epsilon$

$$E(U; \theta_0 + \epsilon) \approx \epsilon i(\theta_0)$$

 $Var(U; \theta_0 + \epsilon) \approx i(\theta_0)$

hence the local power of the score test is

$$\operatorname{pr}_1\{u(y,\theta_0) \geq i(\theta_0)^{1/2} z_{\alpha}\} \approx \Phi(\epsilon i(\theta_0)^{1/2} - z_{\alpha})$$

Exponential families

Suppose that Y_1 has the pdf in the single exponential family density

$$f_{Y_1}(y;\theta) = \exp\{a(\theta)b(y) + c(\theta) + d(y)\}\$$

and that $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$. Then

$$\frac{\partial \log f_{Y_1}(y;\theta_0)}{\partial \theta_0} = a'(\theta_0)b(y) + c'(\theta_0)$$
$$-\frac{\partial^2 \log f_{Y_1}(y;\theta_0)}{\partial \theta_0^2} = -a''(\theta_0)b(y) - c''(\theta_0)$$

It follows that for this single observation

$$U_1 = a'(\theta_0)b(y) + c'(\theta_0)$$

$$i_1(\theta_0) = -a'(\theta_0)\frac{d}{d\theta_0} \left\{ \frac{c'(\theta_0)}{a'(\theta_0)} \right\}$$

Location parameter of a Cauchy distribution

Let Y_1, \ldots, Y_n be i.i.d. in the Cauchy distribution

$$\frac{1}{\pi[1+(y-\theta)^2]}$$

For the null hypothesis $H_0: \theta = \theta_0$ the score from Y_1 is

$$U_1(\theta_0) = \frac{2(Y_1 - \theta_0)}{1 + (Y_1 - \theta_0)^2}$$

and the information from a single observation is

$$i_1(\theta_0) = \frac{1}{2}$$

The test statistic is thus

$$U(\theta_0) = 2\sum_{i=1}^{n} \frac{(Y_i - \theta_0)}{1 + (Y_i - \theta_0)^2}$$

Its null distribution has mean o and variance n/2

Table of Contents

Simple null hypotheses

Composite null hypotheses

A first type of composite null hypothesis is when we have a single parametric family of densities $f(y;\theta)$ with $\theta \in \Theta$ and

$$H_0: \theta \in \Theta_0 \subset \Theta, \quad H_1: \theta \in \Theta \setminus \Theta_0$$

e.g. Y_1, \ldots, Y_n i.i.d. $N(\mu, 1)$, and

$$H_0: \mu \leq \mu_0 \text{ vs } H_1: \mu > \mu_0$$

$$H_0: \mu \in [-\Delta, \Delta] \text{ vs } H_1: \mu \in (-\infty, -\Delta) \cup (\Delta, \infty) \text{ for some } \Delta > 0$$

$$H_0: \mu \in (-\infty, -\Delta] \cup [\Delta, \infty) \text{ vs } H_1: \mu \in (-\Delta, \Delta)$$

A second type of composite null hypothesis is when we have a single parametric family of densities $f(y;\theta)$ where $\theta=(\psi,\lambda)$ and $\Theta=\Psi\times\Lambda$, and

$$H_0: \psi = \psi_0, \quad H_1: \psi \in \Psi \setminus \psi_0$$

e.g. Y_1, \ldots, Y_n i.i.d. $N(\mu, \sigma^2)$ with σ^2 unknown, and

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$$

UMP tests

In the one-parameter exponential family, a UMP test exists for testing

- the one-sided null hypothesis $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$
- the interval null hypothesis $H_0: \theta \le \theta_1 \cup \theta \ge \theta_2$ against $H_1: \theta_1 < \theta < \theta_2$

A UMP test does not exist for testing

– the two-sided null hypothesis $H_0: \theta_1 \le \theta \le \theta_2$ against $H_1: \theta < \theta_1 \cup \theta > \theta_2$

Let Y_1, \ldots, Y_n be i.i.d. $N(\mu, 1)$, and $H_0: \mu \in (-\infty, -\Delta] \cup [\Delta, \infty)$ against $H_1: \mu \in (-\Delta, \Delta)$ for some pre-specified $\Delta > 0$.

The best critical region of size α is given by

where c_{α} is the α quantile of $\chi_1^2(n\Delta^2)$

It satisfies
$$(V \subseteq V) = nr(V \subseteq V)$$

$$\operatorname{pr}_{-\Delta}(Y \in \mathcal{Y}_{\alpha}) = \operatorname{pr}_{\Delta}(Y \in \mathcal{Y}_{\alpha}) = \alpha$$

$$\operatorname{pr}_{-\Delta}(Y \in \mathcal{Y}_{\alpha}) = \operatorname{pr}_{\Delta}(Y \in \mathcal{Y}_{\alpha}) = \alpha$$

$$\operatorname{pr}_{-\Delta}(Y \in \mathcal{Y}_{\alpha}) = \operatorname{pr}_{\Delta}(Y \in \mathcal{Y}_{\alpha}) = \alpha$$

$$\operatorname{pr}_{-\Delta}(1 \in \mathcal{Y}_{\alpha}) - \operatorname{pr}_{\Delta}(1 \in \mathcal{Y}_{\alpha}) = 0$$

$$\operatorname{pr}_{-\Delta}(Y \in \mathcal{Y}_{\alpha}) = \operatorname{pr}_{\Delta}(Y \in \mathcal{Y}_{\alpha}) = \alpha$$

$$\mathbf{P}^{-}\Delta(\mathbf{r} \in \mathbf{J}\alpha) \quad \mathbf{P}^{-}\Delta(\mathbf{r} \in \mathbf{J}\alpha)$$

$$\mathbf{r} = \Delta(\mathbf{r} + \mathbf{r} + \mathbf{r}) \mathbf{r} + \Delta(\mathbf{r} + \mathbf{r} + \mathbf{r})$$

$$\mathcal{Y}_{\alpha} = \{(y_1, \ldots, y_n) : -\sqrt{c_{\alpha}/n} \leq \bar{y} \leq \sqrt{c_{\alpha}/n}\}$$

of size
$$\alpha$$
 is given by

Three-sided testing

Goeman, J.J., Stijnen, T. and Solari, A. (2010) Three-Sided Hypothesis Testing: Simultaneous Testing of Superiority, Equivalence and Inferiority. Statistics in Medicine, 29, 2117–2125.

$$\begin{array}{lll} H_0 & : & -\Delta \leq \mu \leq \Delta & & \text{(equivalence)} \\ H_+ & : & \mu > \Delta & & \text{(superiority)} \\ H_- & : & \mu < -\Delta & & \text{(inferiority)}. \end{array}$$

Simultaneously test H_0 , H_+ and H_- at level α using one-sided tests for H_+ and H_- , and a two-sided test for H_0 .

Suppose that our parameter of interest is μ , and that we have an estimate $\hat{\mu}$ of μ , which has standard error s.

Suppose we have a *t*-test statistic

$$T_m = \frac{\hat{\mu} - m}{s}$$

for $H_{0,m}: \mu = m$.

Let t_{α} be the α quantile of the distribution of T_m under $H_{0,m}$.

- 1. reject H_+ if $T_{\Delta} < t_{\alpha}$
- 2. reject H_- if $T_{(-\Delta)} \geq t_{1-\alpha}$, and
- 3. reject H_0 if either $T_{\Delta} \geq t_{1-\alpha/2}$ or if $T_{(-\Delta)} \leq t_{\alpha/2}$.

Figure: Rejection regions for three-sided testing based on the t-test, as a function of Δ and $\hat{\mu}$, for fixed s. Legend: $a = st_{\alpha/2}$, $b = st_{\alpha}$, $c = st_{1-\alpha}$, $d = st_{1-\alpha/2}$.

Figure: Confidence intervals consistent with three-sided testing (shading), compared with the classical confidence interval (dashed lines), based on the t-test. The thick gray lines indicate the "inclusive" part of the confidence interval. The thick black line illustrates how a confidence interval may be read off the graph for an observed value of $\hat{\mu}$. Legend: $a = st_{\alpha/2}$, $b = st_{\alpha}$, $c = st_{1-\alpha}$, $d = st_{1-\alpha/2}$.

For testing hypotheses about the parameter of interest ψ in the presence of nuisance parameters λ , a naive approach would be to fix λ at an arbitrary value, say λ^*

We can then test $H_0: \psi = \psi_0$, obtaining a value of $p_{\rm obs}$ that will be a function of λ^*

We may hope that for $\lambda^* \in \Lambda$, this value of p_{obs} does not vary greatly

Suppose that Y_1, \ldots, Y_n are i.i.d. $N(\mu, \sigma^2)$ and $H_0: \mu = 0$ vs $H_1: \mu > 0$. Then p_{obs} is

$$\operatorname{pr}(\bar{Y} \geq \bar{y}; H_0, \sigma^*) = 1 - \Phi(\sqrt{n}\bar{y}/\sigma^*)$$

This probability varies between 1 and 1/2 if $\bar{y} < 0$, and between 0 and 1/2 if $\bar{y} > 0$; if $\bar{y} = 0$ it is 1/2

Similar regions

We require that for all $\lambda \in \Lambda$

$$\operatorname{pr}(Y \in \mathcal{Y}_{\alpha}; \psi_0, \lambda) = \alpha$$

A region satisfying the above is called a similar region of size α

Suppose that, given $\psi = \psi_0$, S_{λ} is sufficient for the nuisance parameter λ . Then the conditional distribution of Y given $S_{\lambda} = s$ does not depend on λ when H_0 is true

If S_{λ} is boundedly complete, then any similar region of size α must be of size α conditionally on $S_{\lambda} = s$ for almost all s. We call a critical region \mathcal{Y}_{α} with this property

$$\operatorname{pr}(Y \in \mathcal{Y}_{\alpha} | S_{\lambda} = s; \psi_0) = \alpha$$

for all s, a region of Neyman structure

UMPS tests

Suppose that S_{λ} is boundedly complete. By the Neyman-Pearson lemma, we can find the similar test with maximum power for a particular alternative hypothesis $\psi=\psi_1, \lambda=\lambda_1$, obtaining the best critical region

$$\left\{y: rac{f_{Y\mid S_{\lambda}}(y\mid s;\psi_{1},\lambda_{1})}{f_{Y\mid S_{\lambda}}(y\mid s;\psi_{0})}\geq c_{lpha}
ight\}$$

If this same region applies to all ψ_1 and λ_1 , then we call the region uniformly most powerful similar

Comparison of Poisson means

Suppose that Y_1 and Y_2 are independent Poisson random variables with means μ_1 and μ_2 , and $H_0: \mu_1 = \psi_0 \mu_2$ where ψ_0 is a given constant. Here we reparametrize so that $\psi = \mu_1/\mu_2$ and $\lambda = \mu_2$

Under $H_0: \psi = \psi_0$, we have that $S_{\lambda} = Y_1 + Y_2$ is a complete sufficient statistic for λ

The conditional distribution of (Y_1, Y_2) given $S_{\lambda} = s$ is

$$f_{Y_1,Y_2|S_{\lambda}}(y_1,y_2|s;\psi,\lambda) = {s \choose y_1} (1+\psi)^{-s} \psi^{y_1}$$

If $H_1: \psi > \psi_0$, the likelihood ratio test rejects H_0 for large y_1 .

$$\operatorname{pr}(Y_1 \ge r | S_{\lambda} = s; \psi_0) = \sum_{s=r}^{s} {s \choose y_1} (\frac{\psi_0}{1 + \psi_0})^s (\frac{1}{1 + \psi_0})^{s-s}$$

The test is uniformly most powerful similar

Normal mean with unknown variance

Let Y_1, \ldots, Y_n be i.i.d. in $N(\mu, \sigma^2)$, both parameters unknown. Consider $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$.

Under H_0 , $V(\mu_0) = \sum_{i=1}^n (Y_i - \mu_0)^2$ is a complete sufficient statistic for σ^2 .

The likelihood ratio region for all alternatives $\mu_1 > \mu_0$ takes the form

$$\{y: \sum_{i=1}^{n} (Y_i - \mu_0) \ge c_{\alpha} \{v(\mu_0)\}^{1/2} \}$$

This is the one-sided Student *t* test, which is UMPS

If the alternatives are $\mu \neq 0$, then we are led to the two-sided Student t test

Invariant tests

Suppose that *Y* has probability density $f(y; \theta)$ with parameter space Θ , and $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1 = \Theta \setminus \Theta_0$.

The hypothesis testing problem is then said to be invariant under a group \mathcal{G} of transformations acting on the sample space if for any trasformation $g \in \mathcal{G}$, the distribution of gY is obtained from the distribution of Y by replacing θ by $g^*\theta$, such that the collection \mathcal{G}^* of all such induced parameter trasformations g^* is a group on the parameter space preserving both Θ_0 and Θ_1 , i.e.

for any $g \in \mathcal{G}$ and all sets \mathcal{A} in the sample space

$$pr(gY \in A; \theta) = pr(Y \in A; g^*\theta)$$

for some $g^* \in \mathcal{G}^*$ satisfying $g^*\Theta = \Theta$, $g^*\Theta_0 = \Theta_0$, $g^*\Theta_1 = \Theta_1$.

A test with critical region \mathcal{Y}_{α} is an *invariant test* if

$$Y \in \mathcal{Y}_{\alpha}$$
 implies $gY \in \mathcal{Y}_{\alpha}$ for all $g \in \mathcal{G}$

Mean of multivariate normal distribution

Let Y_1, \ldots, Y_n be a random sample from the m-variate normal distribution $N_m(\mu, \Sigma)$ with Σ unknown, and $H_0: \mu = 0$ vs $H_1: \mu \neq 0$.

Let G be the group of all non-singular $m \times m$ matrices A, so that

$$gY_i = AY_i, \quad i = 1, \ldots, n$$

The induced transformation on the parameter space is defined by

$$g^*(\mu, \Sigma) = (A\mu, A\Sigma A^t)$$

because AY_i has m-variate normal distribution $N_m(A\mu, A\Sigma A^t)$

Hotelling's test

If n > m, for testing $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$, the Hotelling test statistic is

$$n(\bar{Y} - \mu_0)^t S^{-1}(\bar{Y} - \mu_0)$$

where \bar{Y} is the sample mean vector and

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})(Y_i - \bar{Y})^t$$

is the sample variance/covariance matrix

Under H_0 , the test statistic follows Hotelling (m, n - 1), i.e.

$$\frac{m(n-1)}{n-m}F_{m,n-m}$$

where $F_{m,n-m}$ is the F distribution with parameters m and n-m

Squared Student and Hotelling test statistics have a similar form:

$$(\text{uvn})(\frac{\text{Chisquared}}{\text{df}})^{-1}(\text{uvn}) = \sqrt{n}(\bar{y} - \mu_0)[s^2]^{-1}\sqrt{n}(\bar{y} - \mu_0)$$
$$(\text{mvn})^t(\frac{\text{Wishart}}{\text{df}})^{-1}(\text{mvn}) = \sqrt{n}(\bar{Y} - \mu_0)^t[S]^{-1}\sqrt{n}(\bar{Y} - \mu_0)$$

where under H_0

$$\sqrt{n}(\bar{y} - \mu_0)/\sigma \sim N(0, 1)$$

$$s^2 = \sum_{i=1}^n (y_i - \bar{y})^2/(n-1) \text{ with } (n-1)s^2/\sigma^2 \sim \chi_{n-1}^2,$$

$$\sqrt{n}\Sigma^{-1/2}(\bar{Y} - \mu_0) \sim N_m(0, I_m)$$

 $(n-1)\Sigma^{-1/2}S\Sigma^{-1/2} \sim \text{Wishart}(I_m, n-1)$

Hotelling's test is the most powerful test in the class of tests that are invariant to non-singular linear transformations

$$Y_i \mapsto AY_i + b$$

for a non-singular $m \times m$ matrix A and any $m \times 1$ vector b

Invariance here means that no direction away from μ_0 should receive special emphasis. Hotelling's test is equally powerful in all directions of the μ space, which is a strong condition.

A UMPS test will not exist, because any specific alternative μ_1 indicates a preferred direction in which the t test based on $\mu_1^t \bar{Y}$ is uniformly most powerful.

Pulmonary data

Changes in pulmonary function of 12 workers after 6 hours of exposure to cotton dust.

A data frame with 12 observations on the following 3 variables:

- FVC : change in FVC (forced vital capacity) after 6 hours.
- FEV : change in FEV_3 (forced expiratory volume) after 6 hours.
- CC : change in CC (closing capacity) after 6 hours.

Test $H_0: \mu = 0$ vs $H_1: \mu \neq 0: t_{\text{obs}} = 14.018, p_{\text{obs}} = 0.0512$

i	1	2	3	4	5	6	7	8	9	10	11	12
FVC	-0.11	0.02	-0.02	0.07	-0.16	-0.42	-0.32	-0.35	-0.10	0.01	-0.10	-0.26
FEV	-0.12	0.08	0.03	0.19	-0.36	-0.49	-0.48	-0.30	-0.04	-0.02	-0.17	-0.30
CC	-4.30	4.40	7.50	-0.30	-5.8o	14.50	-1.90	17.30	2.50	-5.60	2.20	5.50

Confidence region

The $(1 - \alpha)$ confidence region is a hyperellipsoid centered at \bar{Y}

$$C_{\alpha} = \left\{ \mu : n(\bar{Y} - \mu)^t S^{-1}(\bar{Y} - \mu) \le \frac{m(n-1)}{n-m} F_{m,n-m,\alpha} \right\}$$

Let $X_i = a^t Y_i$ for i = 1, ..., n and $a = (a_1, ..., a_m)^t \in \mathbb{R}^m$. Then X_i is normal with $\mu_x = \mathrm{E}(X_i) = a^t \mu$ and $\sigma_x^2 = \mathrm{Var}(X_i) = a^t \Sigma a$

The squared Student t statistic is

$$\frac{(\bar{X}-\mu_x)^2}{s_x^2/n} = \frac{n(a^t\bar{Y}-a^t\mu)^2}{a^tSa}$$

The invariant Hotelling statistic is the largest of all such squared Student *t* statistics

$$\max_{a} \frac{n(a^{t}\bar{Y} - a^{t}\mu)^{2}}{a^{t}Sa} = n(\bar{Y} - \mu)^{t}S^{-1}(\bar{Y} - \mu)$$

which occurs when $a \propto S^{-1}(\bar{Y} - \mu)$

Simultaneous confidence interval

A $(1 - \alpha)$ confidence interval for $\mu_x = a^t \mu$ is

$$\bar{x} - \frac{s_x}{\sqrt{n}} c_\alpha \le \mu_x \le \bar{x} + \frac{s_x}{\sqrt{n}} c_\alpha$$

where $c_{\alpha} = t_{n-1:\alpha/2}$

A $(1 - \alpha)$ simultaneous confidence interval for all $\mu_x = a^t \mu$ with $a \in \mathbb{R}^p$ is

$$\bar{x} - \frac{s_x}{\sqrt{n}} d_{\alpha} \le \mu_x \le \bar{x} + \frac{s_x}{\sqrt{n}} d_{\alpha}$$

where $d_{\alpha}^2 = \frac{m(n-1)}{n-m} f_{m,n-m;\alpha}$. It guarantees

$$\operatorname{pr}(\tilde{L}_{\alpha} \leq \mu_{x} \leq \tilde{U}_{\alpha}, \forall a \in \mathbb{R}^{p}) \geq 1 - \alpha$$

	\bar{y}	L_{α}	U_{α}	L_{α}	U_{α}	
FVC	-0.14	-0.16	-0.13	-0.17	-0.12	
FEV	-0.16	-0.20	-0.13	-0.22	-0.11	

CC 3.00 -31.98 37.98 -56.82 62.82

Prediction region for a future observation

Suppose Y_i i.i.d. $N_m(\mu, \Sigma)$, and \bar{Y} and S have been calculated from a sample of n observations

If Y_{n+1} is some new observation sampled from $N_m(\mu, \Sigma)$, then

$$\frac{n}{n+1}(Y_{n+1}-\bar{Y})^t S^{-1}(Y_{n+1}-\bar{Y}) \sim \frac{(n-1)m}{n-m} F_{m,n-m}$$

given that
$$\operatorname{Var}(Y_{n+1} - \bar{Y}) = \operatorname{Var}(Y_{n+1}) + \operatorname{Var}(\bar{Y}) = \frac{n+1}{n}\Sigma$$

The $(1 - \alpha)$ prediction ellipsoid is given by all y that satisfy

$$(y - \bar{Y})^t S^{-1}(y - \bar{Y}) \le \frac{(n^2 - 1)m}{n(n - m)} f_{m, n - m; \alpha}$$

