HOCHSCHULE ALBSTADT-SIGMARINGEN Studiengang Technische Informatik

Praktikum Elektrotechnik

Versuch 1

Stromversorgung

Inhaltsverzeichnis

1	Einv	vegglei	chrichtung	3				
	1.1	Einwe	ggleichrichtung mit ohmscher Belastung ohne Kondensator	3				
		1.1.1	Messaufgaben	3				
		1.1.2	Auswertung	4				
	1.2	Einwe	ggleichrichtung mit Glättungskondensator	4				
		1.2.1	Messaufgaben	5				
		1.2.2	Auswertung	5				
2	Brü	Brückengleichrichtung						
	2.1	Brück	engleichrichtung ohne Glättungskondensator	6				
		2.1.1	Messaufgaben	6				
		2.1.2	Auswertung	7				
	2.2	Brück	engleichrichtung mit Glättungskondensator	7				
		2.2.1	Messaufgaben	8				
		2.2.2	Auswertung	8				
3	Sieb	Siebschaltungen 1						
	3.1	RC-Sie	ebung	10				
		3.1.1	Messaufgaben	10				
4	Spa	nnungs	stabilisierung	12				
	4.1	Spann	ungsserienstabilisierung mit einem längsgeregeltem DC/DC-Wandler	12				
		4.1.1	Messaufgaben	12				
		4.1.2	Auswertung					

1 Einweggleichrichtung

1.1 Einweggleichrichtung mit ohmscher Belastung ohne Kondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \Omega$
- 1 Diode V1, Typ 1N4001

1.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Skizzieren Sie die Spannungs- und Stromverläufe $U_1(t)$, $U_2(t)$ und $I_1(t)$.

Durchführung: Schaltung aufbauen. $U_1 = 16 \text{ V}$ einstellen mit Regler am roten Netztrafo. Oszillograph anschließen. Messen Sie den Diodenstrom $I_D(t)$ indirekt am Messwiderstand R_m .

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

Tabelle 1.1: Messergebnisse Einweggleichrichtung ohne Kondensator

Messgröße		Messergebnis
Frequenz der Eingangsspannung	f	
Brummspannungsfrequenz	f_{br}	
Scheitelwerte	$U_{1_{max}}$	
Scheitelwert	$U_{2_{max}}$	
Stromflusswinkel	$\alpha[^{\circ}]$	
Brummspannung	U_{brmax}	
Effektivwert	U_1	
Gleichspannung	U_{2-}	

1.1.2 Auswertung

Aufgabe 1: Berechnen Sie aus den Messwerten das Verhältnis $\frac{U_1}{U_{2-}}$. Geben Sie den gemessenen und den theoretischen Wert an (mit Herleitung).

1.2 Einweggleichrichtung mit Glättungskondensator

Messaufbau

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- $\bullet\,$ 1 Diode V1, Typ 1N4001
- 1 Kondensator $C = 100 \,\mu F$, $40 \, VElektrolyt$

1.2.1 Messaufgaben

Messaufgabe 1

Aufgabe: Messen Sie die Spannungs- und Stromverläufe $U_1(t), U_2(t), \frac{I_2(t)}{R} = \frac{U_2(t)}{R}$ mit dem Oszillographen.

Durchführung: Schaltung aufbauen. $U_1 = 16 V$ einstellen.

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

Tabelle 1.2: Messergebnisse Einweggleichrichtung mit Kondensator

Messgröße		Messergebnis
Frequenz der Eingangsspannung	f	
${\bf Brummspannungs frequenz}$	f_{br}	
Scheitelwerte	$U_{1_{max}}$	
Scheitelwert	$U_{2_{max}}$	
Stromflusswinkel	$\alpha[^{\circ}]$	
Brummspannung	U_{brmax}	
Effektivwert	U_1	
Gleichspannung	U_{2-}	

1.2.2 Auswertung

Aufgabe 1: Bestätigen Sie die Näherung $U_2 \approx \sqrt{2} \cdot (U_1 - 0, 65) \cdot \cos(\frac{a}{2})$

Aufgabe 2: Bestimmen Sie den Glättungsfaktor G

$$\mathbf{G} = 2 \cdot 3, 14 \cdot f \cdot \mathbf{C} \cdot \mathbf{R}$$

mit Lastwiderstand $R = 1 k\Omega$,

Kapazität des Glättungskondensator $C = 100 \mu F$ und

Frequenz der Eingangswechselspannung $f=50~\mathrm{Hz}$

2 Brückengleichrichtung

2.1 Brückengleichrichtung ohne Glättungskondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- \bullet Brückengleichrichter Typ B80 C1000/1500

2.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Zeichnen Sie die Spannungs- und Stromveräufe $U_1(t), U_2(t)$ und $I_2(t)$ auf

Durchführung: Schaltung aufbauen. $U_1 = 16 \,\mathrm{V}$ einstellen. Oszillograph anschließen.

Messaufgabe 2

Aufgabe: Messen sie mit dem Oszillograph und Multimeter

Tabelle 2.1: Messergebnisse Brückengleichrichtung ohne Glättungskondensator

Messgröße		Messergebnis
Frequenz der Eingangsspannung	f	
${\bf Brummspannungs frequenz}$	f_{br}	
Scheitelwerte	$U_{1_{max}}$	
Scheitelwert	$U_{2_{max}}$	
Stromflusswinkel	$\alpha[^{\circ}]$	
Brummspannung	U_{brmax}	
Effektivwert	U_1	
Gleichspannung	U_{2-}	

2.1.2 Auswertung

Aufgabe 1: Berechnen Sie aus den Messwerten das Verhältnis $\frac{U_1}{U_{2-}}$. Geben Sie den theoretischen Wert an (Herleitung, Diodenspannung vernachlässigt).

2.2 Brückengleichrichtung mit Glättungskondensator

Messaufbau:

- 1 Widerstand $R = 1 k\Omega$
- 1 Widerstand $R_m = 10 \,\Omega$
- 1 Kondensator C = 33 μ F, 40 V
- 1 Kondensator $C = 100 \mu F$, 40 V
- 1 Kondensator $C = 220 \mu F$, 40 V
- 1 Kondensator C = 1000 μ F, 40 V
- \bullet Brückengleichrichter Typ B80 C1000/1500

2.2.1 Messaufgaben

Messaufgabe 1

Aufgabe: Messen und skizzieren Sie für C mit 33 μ F die Spannungs- und Stromverläufe von $U_2(t)$ und $I_2(t)$ auf.

Durchführung: Schaltung aufbauen. $U_1 = 16 \text{ V}$ einstellen. Werte messen und aufschreiben.

Messaufgabe 2

Aufgabe: Protokollieren Sie die Werte für verschiedene Größen des Kondensators C1 in u.a. Tabelle. (Setzen Sie abwechseln die verschiedenen Kondensatoren in die Schaltung ein).

2.2.2 Auswertung

Aufgabe 1: Berechnen Sie die Verhältnisse $\frac{U_1}{U_2}$, $W = \frac{U_{2w}}{U_2}$, sowie den Glättungsfaktor G für obige Messreihe. Rechnen Sie mit $U_{2w} = \frac{U_{2brss}}{2,828}$. Beurteilen Sie die Ergebnisse in Bezug auf die Dimensionierung von Stromversorgungsschaltungen.

Stromversorgungsschaltungen sollten immer einen Kondensator im Verhältnis $\frac{R_{Last}}{C} = \frac{1}{10^{-6}}$ besitzen.

Tabelle 2.2: Messwertetabelle Brückengleichrichtung mit Glättungskondensator $C[\mu E] = \frac{1}{33} \mu E + \frac{1}{100} \mu E + \frac{1}{220} \mu E + \frac{1}{1000} \mu E$

$C [\mu F]$	$33\mu\mathrm{F}$	$100\mu\mathrm{F}$	$220\mu\mathrm{F}$	$1000\mu\mathrm{F}$
$f_{Eingang}[\mathrm{Hz}]$				
$f_{br}[\mathrm{Hz}]$				
$U_{brss}[{ m V}]$				
$rac{U_1}{U_2}$				
$W (10^{-2})$				
$U_1[V]$				
$U_2[{ m V}]$				
G				

3 Siebschaltungen

3.1 RC-Siebung

Messaufbau:

- 1 Widerstand $R = 470 \,\Omega$
- 1 Widerstand $R_s = ? \Omega$
- 1 Kondensator $C_1 = 22 \,\mu\text{F}, 40 \,\text{V}$
- 1 Kondensator $C_s = ? \mu F, 40 V$
- Brückengleichrichter Typ B80 C 1000/1500

3.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Für die Gleichrichterschaltung aus 2.2 ist ein RC-Siebglied auszulegen. Dimensionieren Sie den Serienwiderstand R_s (Widerstand, Leistung) und den Siebkondensator C_s so, dass der Siebfaktor $s=\frac{U_{2w}}{U_{3w}}$ ca. 10 beträgt. Rechnen Sie mit der im Anhang angegebenen Näherungsformel für RC-Siebung. Folgende Randbedingungen sind einzuhalten: der zusätzliche Spannungsabfall am Serienwiderstand Rs darf 10 % der Ausgangsspannung (bei Nennstrom) nicht überschreiten. maximale Ausgangslast $R=470\,\Omega$. Messen Sie die Verhältnisse bei einer Belastung von $R=470\,\Omega$ mit dem Oszillograph nach.

Durchführung: Schaltung aufbauen, Messwerte (Restwelligkeit) protokollieren und graphisch darstellen (U_1, U_2, U_3) .

Ergebnisse: Die Näherung für den Siebfaktor lässt sich so umstellen, dass der Kondensator richtig gewählt werden kann. Als Widerstand wählen wir $47\,\Omega$, damit haben wir $10\,\%$ Spannungsabfall.

4 Spannungsstabilisierung

4.1 Spannungsserienstabilisierung mit einem längsgeregeltem DC/DC-Wandler

Messaufbau:

- 1 Widerstand $R_{Last} = 56 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 220 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 470 \,\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_{Last} = 1.2 \,\mathrm{k}\Omega, 10 \,\%, 3 \,\mathrm{W}$
- 1 Widerstand $R_1 = 6.7 \Omega, 10 \%$
- 1 Kondensator $C_1 = 100 \,\mu\text{F}, 40 \,\text{V}$
- 1 Kondensator $C_2 = 22 \,\mu\text{F}, 40\,\text{V}$
- 1 Kondensator $C_3 = 0.47 \,\mu\text{F}, 40 \,\text{V}$
- Brückengleichrichter Typ B80 C 1000/1500
- Spannungsregler IC1, 7805

4.1.1 Messaufgaben

Messaufgabe 1

Aufgabe: Ausgangskennlinie $U_3 = f(R_{Last})$. Messen Sie mit dem Multimeter: U_{2-} und U_{3-} . Beobachten Sie mit dem Oszillograph Ausgangsspannung U_{3-} .

Durchführung: Schaltung aufbauen. $U_1 = 16 \,\mathrm{V}$ einstellen. Messwerte für die verschiedenen Widerstände in die Tabelle 4.1 eintragen.

Tabelle 4.1: Messwertetabelle Spannungsserienstabilisierung

$R_{Last}[\Omega]$	1200	470	220	56
$U_{2-}[\mathrm{V}]$				
$U_{3-}[\mathrm{V}]$				
$U_{3brss}[\mathrm{mV}]$				
$P_v[W]$				
Wirkungsgrad in $\%$				

Messaufgabe 2

Aufgabe: Spannungsregler - Wirkungsgrad. Lastwiderstand $R_{Last}=100\,\mathrm{V}$ Messen Sie mit dem Multimeter: U_{2-} und U_{3-} , Werte notieren.

Messaufgabe 3

Aufgabe: Ermitteln Sie die Eingangsspannung U1 bei der die Schaltung für $R_{Last} = 56 \Omega$ noch einwandfrei regelt und geben Sie den Spannungswert an. Beobachten Sie dazu die Ausgangsspannung $U_3(t)$ mit dem Oszillograph.

4.1.2 Auswertung

Aufgabe 1: Berechnen Sie zu allen Messwerten die Verlustleistung $P_v = P_{ce}$ und den Wirkungsgrad des Spannungsreglers (Eigenverbrauch vernachlässigt). Tragen Sie die Daten in die Tabelle 4.1 ein

Tabellenverzeichnis

Messergebnisse Einweggleichrichtung ohne Kondensator	
Messergebnisse Einweggleichrichtung mit Kondensator	
Messergebnisse Brückengleichrichtung ohne Glättungskondensator Messwertetabelle Brückengleichrichtung mit Glättungskondensator	
Messwertetabelle Spannungsserienstabilisierung	

Abbildungsverzeichnis