VERNIER CALIPERS

AIM:

To measure the diameter of a small spherical body using vernier callipers and find its volume.

APPARATUS:

Vernier calliper, Spherical body, Magnifying glass

THEORY:

The least measurement that can be taken by an instrument is called Least Count (LC)

$$Least Count = \frac{magnitude \ of \ one \ main \ scale \ division}{No.of \ divisions \ on \ Vernier \ scale} = = \frac{1 \ MSD}{N}$$

The measured value in vernier callipers is given by,

MSR = Main Scale Reading (The reading of the main scale just before the zero of vernier scale is taken as MSR)

VSR = Vernier Scale Reading (The vernier scale division which coincides with any of the main scale division is taken as VSR)

Volume of sphere=
$$\frac{4\Pi r^3}{3}$$

PROCEDURE:

- 1. Determine the least count of vernier calipers.
- 2. Open the jaws of vernier calipers by loosening the screws and hold the given sphere between the jaws in a gentle way. Do not apply too much pressure on jaws.

- 3. Gently tighten the screw to clamp the instrument in this position.
- 4. Record the reading on main scale just before the zero of the vernier scale.Let us assume it as 'N' cm
- 5. Look for the number of divisions on the vernier scale which is coinciding with division on the main scale. Let us assume this as 'n' division.
- 6. Repeat these steps for about 5 times to obtain the diameter of the sphere at different positions.
- 7. Record your observation and calculate the mean to get the diameter of the sphere.

RESULT:

- 1. The diameter of given sphere=.....m
- 2. Volume of the given spherical body=..... m^3 .

PRECAUTION:

- 1. The jaws should be pressed gently.
- 2. Position your eyes directly over the division mark to avoid parallax error.
- 3. Motion of vernier scale or main scale should be made smooth.
- 4. Least count and zero error should be determined carefully and properly.

SOURCES OF ERROR:

- 1. Loose fitting of vernier scale on main scale.
- 2. Improper alignment between the jaws and the main scale.
- 3. Incorrect and unclear graduation in scale.
- 4. Possible parallax error

DIAGRAM

OBSERVATION:

To find the diameter of the given spherical body (D)

NO	MSR(N) (cm)	VC(n) (Div)	VSR=(n*LC) (cm)	TR=(N+(n*LC)) (cm)	Mean
1					
2					
3					
4					
5					
6					

cm

CALCULATIONS:

Diameter of the sphere,D=.....cm

Radius of the sphere, $r = \frac{D}{2} = \dots$ cm

Volume of the sphere, $V = \frac{4\Pi r^3}{3} =$