Национальный исследовательский Университет ИТМО Мегафакультет компьютерных технологий и управления Факультет программной инженерии и компьютерной техники

Информационные системы и базы данных

Курсовой проект

Работу

выполнили:

Н. В. Кулаков,

Н.К. Нестеров

Группа: Р33312

Преподаватель:

Д. М. Шешуков

 ${
m Caнкт-}\Pi{
m e}{
m Te}{
m p}{
m fypr}$ 2022

Содержание

1.	Этап 1 3			
	1.1.	Описал	ние предметной области	3
	1.2.	Описал	ние бизнес процессов	3
	1.3.	Списон	к сущностей и их классификации	3
2.	Эта	п 2		4
	2.1.	Инфол	погическая модель	4
	2.2.	Датало	огическая модель	5
3.	Эта	п 3		5
	3.1.	Запрос	Сы	5
		3.1.1.	Для администраторов системы	5
		3.1.2.	Для поставщика	5
		3.1.3.	Для владельца кафе	5
		3.1.4.	Для пользователя	6
	3.2.	Создан	ние объектов	6
		3.2.1.	Таблицы	6
		3.2.2.	Функции	7
		3.2.3.	Триггеры	7
		3.2.4.	Процедуры	9
	3.3.	Удален	ние объектов	9
		3.3.1.	Таблицы	9
		3.3.2.	Функции	9
		3.3.3.	Процедуры	9
	3.4	Скрип	TLI	Q

1. Этап 1

1.1. Описание предметной области

В мире существует множество кофеен, которые объединяются в целые сети. Владельцам таких заведений нужно иметь возможность мотиторить их состояние и управлять ими, а покупателям (которые знают SQL, конечно же) всегда удобнее, когда у кофейни доступно актуальное меню в виде БД!

Без такой системы владельцы тратят миллионы на товары, которые в конце концов будут выброшены, так как успели просрочится. А покупателям приходится неделями стоять в очереди за любимым блюдом иил напитком, в ожидании того, что кофейня закупит нужные ингредиенты.

1.2. Описание бизнес процессов

Владелец может для каждой конкретной кафешки записывать доступное количество ингредиентов, изменять его при использовании ингредиентов, смотреть цены на разные товары у поставщиков, пополнять запасы.

Владелец может создавать меню с различными блюдами, привязанными к конкретному заведению и менять их в зависимости от необходимости. Эти меню будут видны и покупателям.

Продавцы продуктов могут выставлять свои товары, которые будут доступны для покупки в любом заведении, подключенном к этой системе.

1.3. Список сущностей и их классификации

Стержневые сущности:

- Поставщик товаров (название, описание)
- Кафе (адрес, комментарий)
- Меню (название, комментарий)
- Рецепт (название, описание, информация о питательных свойствах)
- Ингредиент (название, комментарий, еденицы изменения)

Ассоциативные сущности:

- Цена ингредиента (количество, цена за единицу) Поставщик М-М Ингредиент
- Ингредиент рецепта (количество, обязательность) Рецепт М-М Ингредиент
- Запас продукта (количество, срок годности, дата покупки) Кафе М-М Ингредиент
- Меню кафе Кафе М-М Меню
- Пункт меню (цена) Меню М-М Рецепт

Характеристические сущности:

• Единицы измерения (название) - к ингредиентам

Характеристическая сущность (характеристика) — связь вида "многие-корной" или "одна-к-одной" между двумя сущностями (частный случай ассоциации). Цель характеристики - описание или уточнении некоторой другой сущности.

2. Этап 2

2.1. Инфологическая модель

2.2. Даталогическая модель

3. Этап 3

3.1. Запросы

3.1.1. Для администраторов системы

- Редактирование доступных едениц измерения
- Редактирование доступных ингредиентов

3.1.2. Для поставщика

- Создание и удаление аккаунта поставщика
- Размещение цен на товары

3.1.3. Для владельца кафе

- Добавление, изменение, удаление кафе
- Добавление, удаление, изменение меню
- Добавление, удаление меню в кафе
- Добавление, изменение, удаление рецептов
- Добавление, удаление рецептов в меню
- Поиск товаров у поставщиков
- Покупка товара у поставщиков

- Получение информации о купленных товаров, т.е. кассового чека, и обновление склада при изменении статуса чека на получено
- Редактирование и удаление записей об инвенторе

3.1.4. Для пользователя

- Просмотр меню кафе
- Просмотр рецептов блюд

3.2. Создание объектов

3.2.1. Таблицы

```
-- Characteristic
-- NOTE: mb replace with enum
create table unit(
 id serial primary key,
 name varchar(255) not null unique
);
-- Core
create table supplier(
  id serial primary key,
 name varchar(255) not null,
 description text
);
create table cafe(
  id serial primary key,
  name varchar(255) not null,
 description text,
 address text not null,
 menu_count integer not null
);
create table menu(
 id serial primary key,
 name varchar(255) not null,
 description text,
 recipe_count integer not null
create table recipe(
  id serial primary key,
  name varchar(255) not null,
 description text,
  calories integer
    check(calories >= 0)
);
create table ingredient(
  id serial primary key,
 name varchar(255) not null,
 description text,
 unit_id integer not null references unit
    on update cascade on delete cascade
);
-- Associative
```

```
create table ingredient_price(
  id serial primary key,
  supplier_id integer not null references supplier
    on update cascade on delete cascade,
  ingredient_id integer not null references ingredient
    on update cascade on delete cascade,
  amount integer not null
    check(amount >= 0),
  price integer not null
    check(price >=0)
);
create table recipe_item(
  id serial primary key,
  recipe_id integer not null references recipe
    on update cascade on delete cascade,
  ingredient_id integer not null references ingredient
    on update cascade on delete cascade,
 amount integer default 1 not null
    check(amount >= 0),
  required boolean default false not null
);
create table stock(
  id serial primary key,
  cafe_id integer not null references cafe
    on update cascade on delete cascade,
  ingredient_id integer not null references ingredient
    on update cascade on delete cascade,
  amount integer not null
    check(amount >= 0),
  bought_date timestamp with time zone not null,
  expiry_date timestamp with time zone not null,
  constraint stock_bought_expiry_date CHECK(bought_date < expiry_date)</pre>
);
create table cafe2menu(
  id serial primary key,
 cafe_id integer not null references cafe,
    -- on update cascade on delete cascade,
 menu_id integer not null references menu
    -- on update cascade on delete cascade
);
create table menu2recipe(
  id serial primary key,
  menu_id integer not null references menu
    on update cascade on delete cascade,
  recipe_id integer not null references recipe
    on update cascade on delete cascade,
  price integer not null
    check(price >= 0)
```

3.2.2. Функции

3.2.3. Триггеры

```
-- table cafe triggers
-- NOTE: if cafe_menu relations contain menu_id that are not present in table menu
```

```
create or replace function func_cafe_menu_count()
returns trigger
language plpgsql
as $$
begin
 select count(id) into NEW.menu_count from cafe2menu where cafe2menu.menu_id = NEW.id;
 return NEW;
end
$$;
create or replace trigger trigger cafe menu count
before insert on cafe
for each row execute procedure func_cafe_menu_count();
create or replace function func_cafe_update_count()
returns trigger
language plpgsql
as $$
begin
  if (TG_OP = 'INSERT') then
   update cafe set menu_count = menu_count + 1 where id = NEW.cafe_id;
  elseif (TG_OP = 'DELETE') then
    update cafe set menu_count = menu_count - 1 where id = OLD.cafe_id;
    return OLD; -- we need to delete old otherwise no rows will be deleted
  end if;
 return NEW;
end
$$;
create or replace trigger trigger_cafe_update_count
before insert or delete on cafe2menu
for each row execute procedure func_cafe_update_count();
-- table menu triggers
-- NOTE: if menu_item relations contain item_id that are not present in table menu
create or replace function func_menu_recipe_count()
returns trigger
language plpgsql
as $$
begin
  select count(id) into NEW.recipe_count from menu2recipe where menu2recipe.menu_id = NEW
   .id;
 return NEW;
end
$$;
create or replace trigger trigger_menu_recipe_count
before insert on menu
for each row execute procedure func_menu_recipe_count();
create or replace function func_menu_update_count()
returns trigger
language plpgsql
as $$
begin
  if (TG_OP = 'INSERT') then
update menu set recipe_count = recipe_count + 1 where id = NEW.menu_id;
```

```
elseif (TG_OP = 'DELETE') then
    update menu set recipe_count = recipe_count - 1 where id = OLD.menu_id;
    return OLD; -- we need to delete old otherwise no rows will be deleted
end if;
    return NEW;
end
$$;

create or replace trigger trigger_menu_update_count
before insert or delete on menu2recipe
for each row execute procedure func_menu_update_count();
```

3.2.4. Процедуры

3.3. Удаление объектов

3.3.1. Таблицы

```
drop table if exists
  unit,
  supplier,
  cafe,
  menu,
  recipe,
  ingredient,
  ingredient_price,
  recipe_item,
  stock,
  cafe2menu,
  menu2recipe
cascade;
```

3.3.2. Функции

```
-- Functions trigger functions
drop function if exists
  func_menu_recipe_count,
  func_cafe_menu_count
cascade;
```

3.3.3. Процедуры

3.4. Скрипты