Model-independent measurement of γ using $B^\pm \to [h^+h^-\pi^+\pi^-]_D h^\pm$ decays

Sneha Malde ¹, Jonas Rademacker ², **Martin Tat**^{1,4}, Ben Westhenry ², Mark Whitehead ³, Guy Wilkinson ¹

¹University of Oxford, ²University of Bristol, ³University of Glasgow, ⁴Heidelberg University

5th September 2024

Outline

- 1 Introduction to γ and CP violation
- 2 Strong-phase inputs from BESIII
- 3 Analysis: Global fit
- 4 Analysis: CP fit
- 5 Analysis: Interpretation
- 6 Conclusion and future prospects

Introduction to γ and *CP* violation

- ullet CPV in SM is described by the Unitary Triangle, with angles lpha, eta, γ
- The angle $\gamma = \arg \left(\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right)$ is very important:
 - Negligible theoretical uncertainties: Ideal SM benchmark
 - Accessible at tree level: Indirectly probe New Physics that enter loops
 - 3 Compare with a global CKM fit: Is the Unitary Triangle a triangle?

(a) Tree level: $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$

(b) Loop level: $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005), updated results and plots available at: http://ckmfitter.in2p3.fr

Sensitivity through interference

Measure γ through interference effects in $B^{\pm} \rightarrow DK^{\pm}$

- ullet Superposition of D^0 and $ar{D^0}$
 - ullet Consider $D^0/\bar{D^0}$ decays to the same final state, such as $D\to K^+K^-$
- $b o u \bar c s$ and $b o c \bar u s$ interference o Sensitivity to γ $\mathcal{A}(B^-) = \mathcal{A}_B \left(\mathcal{A}_{D^0} + r_B e^{i(\delta_B \gamma)} \mathcal{A}_{\bar{D^0}} \right)$ $\mathcal{A}(B^+) = \mathcal{A}_B \left(\mathcal{A}_{\bar{D^0}} + r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0} \right)$

Multi-body charm decays

In this presentation, four-body charm decays are considered:

$$D^0
ightarrow K^+ K^- \pi^+ \pi^-$$

$$D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$$

Note: Such decays have a five-dimensional phase space!

Degrees of freedom for an N-body decay

4N (momentum components)

$$-N(E_i^2-p_i^2=m_i^2)$$

— 4 (energy-momentum conservation)

- 3 (choice of frame)

=3N-7 degrees of freedom

Previous studies of γ with $B^{\pm} \to DK^{\pm}$, $D \to K^+K^-\pi^+\pi^-$

- First proposed by J. Rademacker and G. Wilkinson:
 - Physics Letters B 647 (2007) 400
 - Amplitude model by FOCUS
 - ullet Expected γ precision from amplitude fit with 1000 candidates: 14 $^\circ$
- CLEO amplitude analysis:
 - Phys. Rev. D 85 (2012) 122002
 - ullet Expected γ precision from amplitude fit with 2000 candidates: 11°
- State of the art amplitude analysis by LHCb:
 - JHEP **02** (2019) 126
- Model-dependent measurement by LHCb:
 - Eur. Phys. J. C 83 547 (2023)
 - Optimised binning scheme using LHCb amplitude model

Previous studies of γ with $B^{\pm} \to DK^{\pm}$, $D \to \pi^+\pi^-\pi^+\pi^-$

- CLEO amplitude analysis:
 - JHEP **05** (2017) 143
- 2 CLEO-c strong-phase measurement:
 - JHEP **01** (2018) 144
 - Expected γ statistical (systematic) precision with 2 \times 5 bins is 9.7° (7.4°)
- Recent work by Bristol group:
 - B2OC meeting, 18th April 2024
- For this LHCb publication:
 - New amplitude model from BESIII arXiv:2312.02524
 - Joint effort to analysis of LHCb data by Oxford/Bristol using an optimal binning scheme based on new model
 - Comparison between BESIII and CLEO-c binning scheme

Phase-space integrated CP observables

Phase-space integrated study of γ : Charged asymmetries measured for $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^-$ in Eur. Phys. J. C **83** 547 (2023)

$$D \rightarrow K^+K^-\pi^+\pi^-$$

- $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$ asymmetries:
 - $D \rightarrow K^+K^-\pi^+\pi^-$: $A = 0.095 \pm 0.023 \pm 0.002$
 - $D \rightarrow \pi^+\pi^-\pi^+\pi^-$: $A = 0.061 \pm 0.013 \pm 0.002$

Phase-space integrated CP observables

Phase-space integrated study of γ : Charged asymmetries measured for $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^-$ in Eur. Phys. J. C **83** 547 (2023)

$$D \rightarrow \pi^+\pi^-\pi^+\pi^-$$

- $B^{\pm} \rightarrow [h^+ h^- \pi^+ \pi^-]_D h^{\pm}$ asymmetries:
 - $D \rightarrow K^+K^-\pi^+\pi^-$: $A = 0.095 \pm 0.023 \pm 0.002$
 - $D \rightarrow \pi^+\pi^-\pi^+\pi^-$: $A = 0.061 \pm 0.013 \pm 0.002$

Multi-body D decays

Main focus of this talk: Discuss phase-space binned analysis of $D \to h^+h^-\pi^+\pi^-$

- Strong-phase difference δ_D is a function of phase space
- Compare yields of B^+ and B^- and determine the asymmetry in local phase space regions, known as phase-space bins

The BPGGSZ method

Event yield in bin i

$$\begin{aligned} N_i^- &= h_{B^-} \big(F_i + (x_-^2 + y_-^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_- c_i + y_- s_i) \big) \\ N_{-i}^+ &= h_{B^+} \big(F_i + (x_+^2 + y_+^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_+ c_i + y_+ s_i) \big) \end{aligned}$$

- CP observables:
 - $\begin{array}{l} \bullet \ \ x_{\pm}^{DK} = r_B^{DK} \cos \left(\delta_B^{DK} \pm \gamma\right), \quad \ y_{\pm}^{DK} = r_B^{DK} \sin \left(\delta_B^{DK} \pm \gamma\right) \\ \bullet \ \ x_{\xi}^{D\pi} = \mathrm{Re}(\xi^{D\pi}), \ y_{\xi}^{D\pi} = \mathrm{Im}(\xi^{D\pi}) \qquad \left(\xi^{D\pi} = \frac{r_B^{D\pi}}{r_B^{DK}} e^{i(\delta_B^{D\pi} \delta_B^{DK})}\right) \end{array}$
- Fractional bin yield:
 - $F_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}{\sum_i \int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}$
 - ullet Floated in the fit, mostly constrained by $B^\pm o D \pi^\pm$
- Amplitude-averaged strong phases:

$$c_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \cos(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi |\mathcal{A}(\bar{D^0})|^2}} \quad s_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \sin(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi |\mathcal{A}(\bar{D^0})|^2}}$$

$D^0 o K^+ K^- \pi^+ \pi^-$ binning scheme

- \bullet Interpretation of γ from the multi-body charm decays require external inputs of the charm strong-phase differences
- Measure model-independent strong-phases at a charm factory, such as BESIII, using an optimised binning scheme

$$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$$
 binning scheme

Model-dependent measurement with $D \to K^+K^-\pi^+\pi^-$

From the phase-space binned asymmetries, we obtain:

$$\gamma = (116^{+12}_{-14})^{\circ}$$

Eur. Phys. J. C 83, 547 (2023)

How will this evolve with model-independent BESIII inputs? Will the 3σ tension reduce?

Motivation for this analysis

What is new from previous analysis of $K^+K^-\pi^+\pi^-$?

- New binned strong-phase analyses of $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^-$ have recently been made public by BESIII
 - $D^0 \to KK\pi\pi$: arXiv:2502.12873
 - $D^0 \to \pi\pi\pi\pi$: Phys. Rev. D **110** (2024) 112008
 - For $D \to \pi^+\pi^-\pi^+\pi^-$, these improve in precision on earlier binned study made with CLEO-c data JHEP **01** (2018) 144
- Make first binned model-independent measurement with $D \to K^+ K^- \pi^+ \pi^-$, updating earlier LHCb model-dependent analysis
- Use same strategy for $D \to \pi^+\pi^-\pi^+\pi^-$ with a joint Oxford-Bristol selection
- After checking for compatibility, perform joint analysis

BESIII preliminary $D^0 \to K^+K^-\pi^+\pi^-$ strong-phase results

First binned strong-phase analysis of $D^0 \to K^+K^-\pi^+\pi^-$, which uses the 2×4 binning scheme with 20 fb⁻¹ $\psi(3770)$ data

$$c_1 = -0.22 \pm 0.08 \pm 0.01$$

$$s_1 = -0.47 \pm 0.22 \pm 0.04$$

$$c_2 = +0.79 \pm 0.04 \pm 0.01$$

$$s_2 = -0.17 \pm 0.16 \pm 0.04$$

$$c_3 = +0.862 \pm 0.029 \pm 0.008$$

$$\textit{s}_{3} = +~0.26 \pm 0.14 \pm 0.02$$

$$c_4 = -0.39 \pm 0.08 \pm 0.01$$

$$s_4 = +0.52 \pm 0.24 \pm 0.04$$

Measured values (black) are consistent and close to LHCb model predictions (blue), so central values are not expected to change much

BESIII preliminary $D^0 \to \pi^+\pi^-\pi^+\pi^-$ strong-phase results

Small differences between model prediction and measurement, but data points are generally close to the unit circle

$$c_1 = +0.12 \pm 0.09 \pm 0.02$$

 $s_1 = -0.42 \pm 0.21 \pm 0.04$
 $c_2 = +0.74 \pm 0.04 \pm 0.02$
 $s_2 = -0.39 \pm 0.16 \pm 0.06$
 $s_3 = -0.25 \pm 0.12 \pm 0.03$
 $c_3 = +0.81 \pm 0.03 \pm 0.01$
 $c_4 = +0.42 \pm 0.06 \pm 0.02$
 $s_4 = +0.86 \pm 0.19 \pm 0.07$
 $c_5 = -0.27 \pm 0.09 \pm 0.03$
 $s_5 = -0.22 \pm 0.25 \pm 0.08$

The HyperPlot software is used (binary lookup tree in 5D phase space)

Global fit

Global fit of $K^+K^-\pi^+\pi^-$ remains as in model-dependent publication:

- $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$ signal yield:
 - $B^{\pm} \to DK^{\pm}$: 3280 ± 41
 - $B^{\pm} \to D\pi^{\pm}$: 47610 ± 231

Global fit

Global fit of $\pi^+\pi^-\pi^+\pi^-$ has a good fit quality:

- $B^{\pm} \rightarrow [\pi^+\pi^-\pi^+\pi^-]_D h^{\pm}$ signal yield:
 - $B^{\pm} \to DK^{\pm}$: 9172 ± 110
 - $B^{\pm} \rightarrow D\pi^{\pm}$: 132246 ± 394

CP fit

After global fit, perform a "CP fit" to study CP violation:

- Split candidates by:
 - \bullet B^+ and B^- charges
 - 2 $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ decays
 - O phase-space bins
- Combinatorial and low-mass backgrounds are floating in each category
- Parameterise signal yields in terms of x_{\pm}^{DK} , y_{\pm}^{DK} , $x_{\xi}^{D\pi}$, $y_{\xi}^{D\pi}$
- 2N-1 floating F_i parameters
- c; and s; are Gaussian constrained

CP fit bin asymmetry

Example of bin asymmetry in $D \to K^+K^-\pi^+\pi^-$ bin -3:

CP fit bin asymmetry

Example of bin asymmetry in $D \to \pi^+\pi^-\pi^+\pi^-$ bin +5:

Bin asymmetries

$$B^\pm o [K^+K^-\pi^+\pi^-]_D h^\pm$$
 bin asymmetries

$${\cal B}^\pm o {\cal D}{\cal K}^\pm$$

Bin asymmetries

$$B^{\pm} \rightarrow [\pi^+\pi^-\pi^+\pi^-]_D h^{\pm}$$
 bin asymmetries

$$B^{\pm} \rightarrow DK^{\pm}$$
 $B^{\pm} \rightarrow D\pi^{\pm}$

Likelihood scan of CP observables

x_{\pm}^{DK} agree well between likelihood scan and Hesse approximation

Likelihood scan of CP observables

y_{\pm}^{DK} diverges from Hesse approximation outside 1σ

Likelihood scan of CP observables

What do the likelihood scans tell us?

- Uncertainties from c_i and s_i are significant, which justifies Gaussian constraining c_i and s_i
- New strategy:
 - 1 Produce a likelihood function from CP fit
 - 2 Interpret CP observables in terms of γ , etc
 - Must profile all nuisance parameters (F_i , c_i , s_i , backgrounds yields, normalisation constants)
 - **9** Provide direct measurements of γ , δ_B and r_B

Summary of LHCb internal systematic uncertainties

Source	x_{-}^{DK}	y_{-}^{DK}	x_{+}^{DK}	y_+^{DK}	$x_{\xi}^{D\pi}$	$y_{\xi}^{D\pi}$
Statistical	2.87	3.40	2.51	3.05	4.24	5.17
Mass shape	0.02	0.02	0.03	0.06	0.02	0.04
Bin-dependent mass shape	0.11	0.05	0.10	0.19	0.68	0.16
PID efficiency	0.02	0.02	0.03	0.06	0.02	0.04
Low-mass background model	0.02	0.02	0.03	0.04	0.02	0.02
Charmless background	0.14	0.15	0.12	0.14	0.01	0.02
CP violation in low-mass background	0.01	0.10	0.08	0.12	0.07	0.26
Semi-leptonic b-hadron decays	0.05	0.27	0.06	0.01	0.07	0.19
Semi-leptonic charm decays	0.02	0.07	0.03	0.15	0.06	0.24
$D o K^-\pi^+\pi^-\pi^+$ background	0.11	0.05	0.07	0.04	0.09	0.05
$\Lambda_b o pD\pi^-$ background	0.01	0.25	0.14	0.04	0.06	0.34
$D o K^-\pi^+\pi^-\pi^+\pi^0$ background	0.30	0.05	0.19	0.07	0.05	0.01
Fit bias	0.06	0.05	0.13	0.02	0.06	0.13
Total LHCb systematic	0.37	0.43	0.34	0.32	0.70	0.57

Give systematic uncertainties in terms of CP observables (not γ) since these are more Gaussian and better behaved

Interpretation strategy

From CP fit, we have a (negative log) likelihood function with nuisance parameters n_k :

$$\mathcal{L}(x_{-}^{DK},y_{-}^{DK},x_{+}^{DK},y_{+}^{DK},x_{\xi}^{D\pi},y_{\xi}^{D\pi},\{n_{k}\})$$

Express in terms of physics parameters:

$$\mathcal{L}(\gamma, \delta_B^{DK}, r_B^{DK}, \delta_B^{D\pi}, r_B^{D\pi}, \{n_k\})$$

In this step, also add a Gaussian smearing term on CP observables to account for internal LHCb systematics (see backup)

Results from interpretation of $K^+K^-\pi^+\pi^-$, after correcting for biases in central values (not uncertainties):

Model independent

Model dependent

$$\gamma = (121 \pm 16)^{\circ} \qquad \gamma = (116^{+12}_{-14})^{\circ}$$

$$\delta^{DK}_{B} = (74 \pm 14)^{\circ} \qquad \delta^{DK}_{B} = (81^{+14}_{-13})^{\circ}$$

$$r^{DK}_{B} = (12.1 \pm 3.0) \times 10^{-2} \qquad r^{DK}_{B} = (11.0 \pm 2.0) \times 10^{-2}$$

$$\delta^{D\pi}_{B} = (243 \pm 116)^{\circ} \qquad \delta^{D\pi}_{B} = (298^{+62}_{-118})^{\circ}$$

$$r^{D\pi}_{B} = (1 \pm 6) \times 10^{-3} \qquad r^{D\pi}_{B} = (4^{+5}_{-4}) \times 10^{-3}$$

Central value of γ remains high...

... it seems that the large tension with the LHCb global result $\gamma = (64.6 \pm 2.8)^{\circ} \ {\rm remains}$

Results from interpretation of $h^+h^-\pi^+\pi^-$, after correcting for biases in central values (not uncertainties):

$$K^+K^-\pi^+\pi^-$$

$$\pi^+\pi^-\pi^+\pi^-$$

$$\gamma = (121 \pm 16)^{\circ}$$
 $\gamma = (45 \pm 10)^{\circ}$
 $\delta_{B}^{DK} = (74 \pm 14)^{\circ}$
 $\delta_{B}^{DK} = (115 \pm 9)^{\circ}$
 $r_{B}^{DK} = (12.1 \pm 3.0) \times 10^{-2}$
 $\delta_{B}^{DK} = (243 \pm 116)^{\circ}$
 $\delta_{B}^{D\pi} = (12.1 \pm 6) \times 10^{-3}$
 $\delta_{B}^{D\pi} = (12.1 \pm 6) \times 10^{-3}$
 $\gamma = (45 \pm 10)^{\circ}$
 $\delta_{B}^{DK} = (115 \pm 9)^{\circ}$
 $\delta_{B}^{DK} = (9.4 \pm 1.9) \times 10^{-2}$
 $\delta_{B}^{D\pi} = (194 \pm 74)^{\circ}$
 $\epsilon_{B}^{D\pi} = (0 \pm 4) \times 10^{-3}$

 $\pi^+\pi^-\pi^+\pi^-$ is in much better agreement with LHCb global result, but there is a tension with $K^+K^-\pi^+\pi^-...$

Results from interpretation of $h^+h^-\pi^+\pi^-$, after correcting for biases in central values (not uncertainties):

$$K^+K^-\pi^+\pi^-$$

$$\pi^+\pi^-\pi^+\pi^-$$

$$\gamma = (121 \pm 16)^{\circ}$$
 $\gamma = (45 \pm 10)^{\circ}$ $\delta_{B}^{DK} = (74 \pm 14)^{\circ}$ $\delta_{B}^{DK} = (115 \pm 9)^{\circ}$ $r_{B}^{DK} = (12.1 \pm 3.0) \times 10^{-2}$ $r_{B}^{DK} = (9.4 \pm 1.9) \times 10^{-2}$ $\delta_{B}^{D\pi} = (243 \pm 116)^{\circ}$ $\delta_{B}^{D\pi} = (194 \pm 74)^{\circ}$ $r_{B}^{D\pi} = (1 \pm 6) \times 10^{-3}$ $r_{B}^{D\pi} = (0 \pm 4) \times 10^{-3}$

 $\pi^+\pi^-\pi^+\pi^-$ is in much better agreement with LHCb global result, but there is a tension with $K^+K^-\pi^+\pi^-...$...but how Gaussian are these uncertainties?

We can also compare the statistical sensitivity of $\pi^+\pi^-\pi^+\pi^-$ between the CLEO-c and BESIII binning schemes (keep c_i and s_i fixed)

BESIII

CLEO-c

$$\gamma = (47 \pm 10)^{\circ}$$
 $\gamma = (51 \pm 20)^{\circ}$ $\delta_{B}^{DK} = (113 \pm 9)^{\circ}$ $\delta_{B}^{DK} = (109 \pm 19)^{\circ}$ $r_{B}^{DK} = (9.2 \pm 1.6) \times 10^{-2}$ $r_{B}^{DK} = (6.5 \pm 1.8) \times 10^{-2}$ $\delta_{B}^{D\pi} = (208 \pm 58)^{\circ}$ $\delta_{B}^{D\pi} = (310 \pm 508)^{\circ}$ $r_{B}^{D\pi} = (3.9 \pm 2.7) \times 10^{-3}$ $r_{B}^{D\pi} = (0 \pm 5) \times 10^{-3}$

Very good agreement!

BESIII binning scheme, which has more bins and values of c_i and s_i further from the origin, performs better

Likelihood scan of interpretation fit

In fact, a likelihood scan shows that $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^ 2\sigma$ contours overlap

When all biases, correlations and non-Gaussian uncertainties are accounted for, the tension with the LHCb average has reduced significantly

Likelihood scan of interpretation fit

In fact, a likelihood scan shows that $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^ 2\sigma$ contours overlap

However, with all the non-Gaussian behaviour, are we sure these contours cover 68% and 95% ?

Plugin/Feldman-Cousins method

Feldman-Cousins method, or Plugin, is a "brute-force" approach to assigning a confidence interval

At each scan point of γ , perform these fits to data:

- Fit with all parameters floating, and save the log-likelihood χ^2
- 2 Fit with γ fixed to scan point, and save $\chi^2_{\rm fix}$
- **3** Calculate $\Delta\chi^2_{\rm data} = \chi^2_{\rm fix} \chi^2$

We expect $\Delta\chi^2_{\rm data}$ to become large as we move away from best-fit value, but without direct knowledge of underlying PDF, we cannot determine any confidence intervals from this

Plugin/Feldman-Cousins method

Feldman-Cousins method, or Plugin, is a "brute-force" approach to assigning a confidence interval

At each scan point of γ , perform these fits to toy:

- ① Fix γ to scan point and generate 1000 toys
- f 2 Perform fits to each toy, with γ both floating and fixed
- **3** Calculate $\Delta\chi^2_{\rm toy}$

At each scan point, the fraction of toys with $\Delta\chi^2_{\rm toy} > \Delta\chi^2_{\rm data}$ is equal to $1-{\rm CL}$, and the exact 68% confidence interval can then be obtained using an interpolation between points

Plugin/Feldman-Cousins method

LHCb average within 2σ of $D \to K^+K^-\pi^+\pi^-$ Plugin result Combined fit shows good agreement between Plugin and Prob scans

Combined fit result: $\gamma = (53.9^{+9.5}_{-8.9})^{\circ}$ One of the most precise single measurements of $\gamma!$

Combining phase-space binned and integrated results

We can add phase-space integrated observables as a constraint:

The global asymmetries contain useful information!

Combining phase-space binned and integrated results

Run Plugin with phase-space integrated constraints:

Final measurement: $\gamma = (52.6^{+8.5}_{-6.4})^{\circ}$

Conclusion

- $\hbox{$\bullet$ Binned model-independent measurement of γ with $B^\pm\to [h^+h^-\pi^+\pi^-]_D h^\pm$ has been performed }$
 - Result: $\gamma = (53.9^{+9.5}_{-8.9})^{\circ}$
- 2 Can also combine with existing phase-space integrated measurements
 - Result: $\gamma = (52.6^{+8.5}_{-6.4})^{\circ}$
- **3** σ tension in $D \to K^+K^-\pi^+\pi^-$ has reduced

Future prospects

- Statistically limited measurement, but s_i uncertainties are large
- $\pi^+\pi^-\pi^+\pi^-$ inputs will become more precise:
 - Current analysis uses 3 fb⁻¹
 - Future updates will use the full 20 fb⁻¹ data set
- Minor improvements from BESIII are expected with $K^+K^-\pi^+\pi^-$:
 - \bullet Current analysis already uses 20 fb⁻¹
 - Charm mixing studies can improve s_i precision
- We believe the analysis is ready for approval to go to paper
 - You can find the TWiki here

Thanks for your attention!

Backup: CP fit toy studies

In toy studies biases in $D\pi$ observables are consistent with model-dependent analysis

Backup: CP fit toy studies

Minor biases in x_{\pm}^{DK} are seen but can be corrected for...

Backup: CP fit toy studies

...but y_{\pm}^{DK} pulls are now slightly asymmetric!

Backup: Likelihood scan of CP observables

x_{\pm}^{DK} agree well between likelihood scan and Hesse approximation

Backup: Likelihood scan of CP observables

y_{\pm}^{DK} diverges from Hesse approximation outside 1σ

Backup: Interpretation toys

We can perform toy studies on the interpretation fit, but we do <u>not</u> expect these to behave very Gaussian...

 γ pull distributions

Indeed, small but significant biases are observed!