RAPPEL: dérivées des fonctions usuelles

fonction:

f(x) = K (constante) f(x) = ax + b $f(x) = x^n$ $f(x) = \frac{1}{x^n}$ $f(x) = \sqrt{x}$ $f(x) = \cos x$ $f(x) = \sin x$

fonction dérivée :

f'(x) = 0 f'(x) = a $f'(x) = nx^{n-1}$ $f'(x) = \frac{-n}{x^{n+1}}$ $f'(x) = \frac{1}{2\sqrt{x}}$ $f'(x) = -\sin x$ $f'(x) = \cos x$

Dans cette fiche, on va utiliser les formules suivantes :

- La fonction dérivée de u.v est la fonction u'.v + u.v'
- 4 La fonction dérivée de u² est la fonction 2.u'.u

EXERCICE 4B.1

Déterminer la dérivée de la fonction f (sous la forme u²) sur l'intervalle I.

L.	f (<i>x</i>)	=	(5

Donc f'(x) =

3.
$$f(x) = (2x^3 + 1)^2$$
, $I = \mathbb{R}$

Donc
$$f'(x) =$$

Donc
$$f'(x) =$$

4.
$$f(x) = \sin^2 x$$
, $I = \mathbb{R}$

5.
$$f(x) = \cos^2 x$$
, $I = \mathbb{R}$

6.
$$f(x) = (1 + \sqrt{x})^2$$
, $I = [0; +\infty[$

Donc f'(x) =

Donc f'(x) =

Donc f'(x) =

EXERCICE 4B.2

Déterminer la dérivée de la fonction f (sous la forme u.v) sur l'intervalle I.

$$\mathbf{1.} \ \mathsf{f}(x) = x\sqrt{x} \ ,$$

$$I = [0; +\infty[$$

2.
$$f(x) = x^2 \sqrt{x}$$
,

Donc f'(x) =

Donc f'(x) =

3.
$$f(x) = (2x - 3)(5x + 1)$$
, $I = \mathbb{R}$

4.
$$f(x) = x \cos x$$
, $I = [0; +\infty[$

Donc
$$f'(x) =$$

Donc
$$f'(x) =$$

5.
$$f(x) = x^3 \cos x$$
, $I = [0; +\infty[$

6.
$$f(x) = \sqrt{x} \sin x$$
, $I = [0; +\infty[$

$$u = \sqrt{x} \sin x$$

$$u' = u' = u'$$

v' =

Donc
$$f'(x) =$$

Donc
$$f'(x) =$$