– INF01147 –Compiladores

Análise Sintática Parser LR(0)

Prof. Lucas M. Schnorr

– Universidade Federal do Rio Grande do Sul –

Introdução à Análise Ascendente

(revisão)

Algoritmo Empilha-Reduz — Funcionamento

► Considerando a gramática de operações aritméticas

 $\begin{array}{ccc} \mathsf{E} & \to & \mathsf{E} + \mathsf{T} \, | \, \mathsf{T} \\ \mathsf{T} & \to & \mathsf{T} \, {}^*\mathsf{F} \, | \, \mathsf{F} \\ \mathsf{F} & \to & \big(\, \mathsf{E} \, \big) \, | \, \mathsf{id} \end{array}$

► Ações Empilha-Reduz para id*id

Pilha	Entrada	Ação
\$	$id_1 * id_2 $ \$	empilha
$\$ id_1	*id ₂ \$	$reduz\;F o id$
\$ F	*id2 \$	$reduz\;T\toF$
\$ T	*id ₂ \$	empilha
\$ T*	id ₂ \$	empilha
$T*id_2$	\$	$reduz\;F o id$
\$ T * F	\$	$reduz\;T\to \mathit{T}*\mathit{F}$
\$ T	\$	$reduz\;E\toT$
\$ E	\$	aceita

Conflitos Empilha-Reduz

- ► Duas situações onde ocorrem conflitos
 - ► Conflito Reduz-Reduz ⇒ mais de uma redução possível
 - ► Conflito Empilha-Reduz ⇒ gramática ambígua
- ► Exemplo

```
\begin{array}{ccc} \mathsf{stmt} & \to & \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathsf{stmt} \\ & \mathsf{if} \; \mathsf{expr} \; \mathsf{then} \; \mathsf{stmt} \; \mathsf{else} \; \mathsf{stmt} \\ & \mathsf{other} \end{array}
```

► O que fazer nesta situação?

Pilha		Entrada
\$	if expr then stmt	else \$

Análise Ascendente

- ► Funcionamento: derivação mais à direita reversa
- ► Permite "adiar decisões" na pilha, sendo mais sofisticado
- ► Principal método de análise sintática

Plano da Aula de Hoje

- ► Análise LR
- ► LR(0)

Análise LR

- ► LR, uma classe de gramáticas onde
 - ► Entrada lida da esquerda para a direita
 - ► Aplica-se uma derivação mais à direita

- L de left-to-right R de rightmost
- ► Usa um autômato de estados finitos com pilha
- ▶ Componentes
 - Pilha contém estados (ao invés de símbolos)
 - ► Tabela de ações/transições (com terminais e não-terminais)

Análise LR – Tabela de Ação/Transição

- ► Tabela de ações/transições, a partir de um estado s
 - ► Ação [s, t] sendo t um terminal
 - ► Transição [s, X] sendo X um não-terminal

- ▶ Ação [s, t] pode indicar
 - ► (Empilha e), onde e é um estado para empilhar
 - ightharpoonup (Reduz ho), onde ho é a regra de produção para a redução
 - ► (Aceita)
- ► Transição [s, X] pode indicar
 - ► (Empilha e), onde e é um estado

Análise LR – Exemplo com entrada id*id+id

	•			·
$\begin{array}{cccc} (1) & E & \to & E + \\ (2) & E & \to & T \end{array}$	- T (3) - (4)	$T \rightarrow T * F$ $T \rightarrow F$	(5) F (6) F	ightarrow (E) $ ightarrow$ id
Estado	id + *	() 9	E T	F
0	e5	e4	1 2	3
1	e6	ā	a	
2	r2 e7	r2 r	2	
3	r4 r4	r4 r	4	
4	e5	e4	8 2	3
5	r6 r6	r6 r	6	
6	e5	e4	9	3
7	e5	e4		10
8	e6	e11		
0	r1 _o 7	r1 r	1	

r3 r3 r3 r3

r5

r5

10

Evolução de Parsers LR

- ► Donald Knuth propõem parser LR(1) (em 1965) LR Canônico
 - Reconhece qualquer gramática livre de contexto determinista
 - ▶ Tempo de análise linear

- ► Versões simplificadas (1969) sobre LR(0)
 - ► LALR
 - ► SLR
- ► Diferem em como se calcula o conjunto de símbolos a frente

LR (Motivação)

- ► Como construir a tabela de ações e transições?
- ► Como detectar um handle? Considerando a gramática

$$\begin{array}{ccc} \mathbf{E} & \rightarrow & \mathsf{E} + \mathsf{T} \mid \mathsf{T} \\ \mathsf{T} & \rightarrow & \mathsf{T} * \mathsf{F} \mid \mathsf{F} \\ \mathsf{F} & \rightarrow & (\mathsf{E}) \mid \mathsf{id} \end{array}$$

► Supondo a análise de id*id

Pilha	Entrada	Ação
\$	$id_1 * id_2 $ \$	empilha
$\$ id_1	*id ₂ \$	reduz F $ ightarrow$ id
\$ <i>F</i>	*id ₂ \$	$reduz\;T\toF$
\$ T	*id ₂ \$	

- ▶ Devo reduzir $T \rightarrow E$ ou empilhar o *?
- ► Manter estados para saber onde se encontra na análise
 - ► Um estado representa um conjunto de itens

LR(0) – Item

- ▶ Definição de Item LR(0) de uma gramática
 - ► É uma produção com um em alguma posição no corpo
 - ► Indica o quanto já foi visto de uma produção
- ▶ Supondo a produção $A \rightarrow \beta \gamma$, três itens possíveis
 - $\begin{array}{c} \blacktriangleright \ \ \, A \rightarrow \bullet \beta \gamma \\ \hbox{Um item que \'e uma possibilidade} \end{array}$
 - $A \rightarrow \beta \bullet \gamma$ (Progredimos reconhecendo β)
 Um item parcialmente completo
 - $\begin{array}{c} \blacktriangleright \ A \to \beta \gamma \bullet \\ \beta \gamma \ \ \text{estão empilhados} \\ \text{Um item completo} \end{array}$
- lacktriangle A produção $A
 ightarrow \epsilon$ gera um item A ightarrow lacktriangle

LR(0) – Item (Exemplo)

► Considerando a gramática de parênteses balanceados

$$\begin{array}{ccc} \mathsf{S'} & \to & \mathsf{S} \\ \mathsf{S} & \to & (\mathsf{S}) \mathsf{S} \mid \epsilon \end{array}$$

Esta gramática tem oito itens (possibilidades)

Autômato Finito para LR(0)

- ► Quais são as transições do autômato de itens LR(0)?
 - ▶ Consideramos o item A $\rightarrow \alpha \bullet \gamma$
 - Consideramos que γ começa com X, temos então A $\rightarrow \alpha$ X η

- ▶ Analisando X
 - ▶ é terminal ⇒ simboliza uma ação de empilhar
 - ▶ é não-terminal
 - ▶ Considerar todas as produções $X \to \beta$ e os items $X \to \bullet \beta$

Autômato Finito para LR(0) – Exemplo

► Considerando a gramática de parênteses balanceados

$$\begin{array}{ccc} \mathsf{S'} & \to & \mathsf{S} \\ \mathsf{S} & \to & \mathsf{(S)S} \mid \epsilon \end{array}$$

lacktriangle Construir o autômato a partir de S' ightarrow lacktriangle S

- ► Qual o problema deste autômato? E qual a solução?
 - ▶ Indeterminismo
 - Algoritmo de Subconjuntos
 - ▶ Fechamento- $\epsilon(\mathsf{T})$
 - Fechamento- ϵ (Movimento(T,a))

LR(0): uma reflexão

- ► Partimos da gramática estendida
- ► Criamos o autômato finito não determinístico
- ► Aplicamos o algoritmo de subconjuntos
- ► Construímos a tabela de análise correspondente

► Será que não há uma forma mais rápida?

LR(0) - Autômato Finito Determinístico

- ► Definir uma gramática estendida
- ▶ Vamos utilizar duas funções
 - ► Fechamento ~> Ações da tabela LR
 - ► Transição ~> Transições da tabela LR

- ▶ Gramática estendida
 - ▶ Se S é o símbolo inicial de uma gramática GEntão G' é a gramática estendida, com $S' \to S$
 - ► Simplifica o processo de aceitação da sentença

Função de Fechamento

- ► Se I é um conjunto de itens, Fechamento(I) é
 - ► Todos os itens de I fazem parte do Fechamento(I)
 - ▶ Se $A \to \alpha \bullet B\beta \in \mathsf{Fechamento}(\mathsf{I})$ e existe a produção $B \to \gamma$ Então $B \to \bullet \gamma$ faz parte do Fechamento(I)
- Exemplo, considerando a gramática já estendida

$$\begin{array}{ccc} \mathsf{E}' & \to & \mathsf{E} \\ \mathsf{E} & \to & \mathsf{E} + \mathsf{T} \mid \mathsf{T} \\ \mathsf{T} & \to & \mathsf{T} * \mathsf{F} \mid \mathsf{F} \\ \mathsf{F} & \to & \big(\, \mathsf{E} \, \big) \, \big| \, \mathsf{id} \end{array}$$

- ▶ Defina o Fechamento({E' → E})
 - ► Acabamos de definir o conjunto de itens inicial
 → Estado inicial do autômato LR(0)
- ► Itens de base versus itens derivados

Função de Transição

- ► Ela define as transições do autômato
- ► Transição(I, X)
 - ► Um conjunto de itens I
 - ► Símbolo X da gramática
- ► Retorna um conjunto de itens já existente ou não
- ▶ Transição(I, X) é
 - Fechamento do conjunto dos items $A \to \alpha X \bullet \beta$ tais que $A \to \alpha \bullet X \beta$ está em I
- ► Informalmente
 - Mover para a direita nos itens de I onde precede X
 A → α Xβ em I
 A → αX β, calculando seu fechamento

Função de Transição (Exemplo)

- ► Transição(I, X) é
 - ► Fechamento do conjunto dos items
 - A
 ightarrow lpha X ullet eta tais que A
 ightarrow lpha ullet Xeta está em I
 - ► Examinar somente produções onde X está logo depois de •
- ► Exemplo, considerando a gramática já estendida

$$\begin{array}{cccc} \mathsf{E}' & \to & \mathsf{E} \\ \mathsf{E} & \to & \mathsf{E} + \mathsf{T} \mid \mathsf{T} \\ \mathsf{T} & \to & \mathsf{T} * \mathsf{F} \mid \mathsf{F} \\ \mathsf{F} & \to & \big(\; \mathsf{E} \; \big) \; | \; \mathsf{id} \end{array}$$

- ▶ Se I = { $[E' \rightarrow E \bullet]$, $[E \rightarrow E \bullet + T]$ }
 - ▶ Qual o conjunto de transição(I, +) ?
 - ► Qual o conjunto de transição(I, \$) ?

Função de Transição (Resposta do Exemplo)

▶ Transição(I, \$) ~> Aceita

Construindo um exemplo completo

► Gramática de parênteses balanceados com um a no meio

$$A \rightarrow (A) \mid a$$

- ▶ Utilizando as funções de fechamento e transição
 - ► Construa o autômato finito determinístico LR(0)

Tabela LR(0)

- ▶ Representação tabular do autômato LR(0)
- Regras de construção da parte Ação
 - ► Se [A $\rightarrow \alpha$ a β] ∈ I_i e Transição(I_i , a) = I_j defina Ação(I_i , a) como "Empilha j"
 - ▶ Se $[A \to \alpha \bullet] \in I_i$ defina Ação(i, a) como "Reduz A $\to \alpha$ "
 - Se [S' → S •] ∈ I_i (Ação de aceitação)
 defina Ação(i, \$) como "Aceita"
- ▶ Regras de construção da parte Transição
 - ▶ Para todos os não-terminais A
 Se Transição(I_i, A) = I_j, então Transição(i, A) = j
- ▶ Estado inicial é aquele construído a partir de $[S' \rightarrow \bullet S]$

Construindo a tabela (Exemplo)

► Considerando o autômato LR(0) para a gramática de parênteses balanceados com um a no meio

$$\begin{array}{ccc}
0 & A' \rightarrow A \\
1 & A \rightarrow (A) \\
2 & A \rightarrow a
\end{array}$$

► Resposta

► Analisando a entrada ((a))

Conclusão

- ► Leituras Recomendadas
 - ▶ Livro do Dragão

- ► Próxima Aula
 - ► SLR(1) e LR(1)