第4节 高考中双曲线常用的二级结论(★★☆)

内容提要

解析几何中存在无数的二级结论,本节筛选出了一些在高考中比较常用的双曲线二级结论,记住这些结论可适当缩短解题时间.

1. 焦点三角形面积公式: 如图 1,设 P 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 上一点, $F_1(-c,0)$, $F_2(c,0)$ 分别是 双曲线的左、右焦点, $\angle F_1 P F_2 = \theta$,则 $S_{\Delta P F_1 F_2} = c \left| y_P \right| = \frac{b^2}{\tan \frac{\theta}{2}}$.

证明: 一方面, ΔPF_1F_2 的边 F_1F_2 上的高 $h = |y_P|$, 所以 $S_{\Delta PF_1F_2} = \frac{1}{2}|F_1F_2| \cdot h = \frac{1}{2} \cdot 2c \cdot |y_P| = c|y_P|$;

另一方面,记 $|PF_1|=m$, $|PF_2|=n$,则|m-n|=2a ①,

在 ΔPF_1F_2 中,由余弦定理, $|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2| \cdot \cos \angle F_1PF_2$,

所以 $4c^2 = m^2 + n^2 - 2mn\cos\theta = (m-n)^2 + 2mn - 2mn\cos\theta = (m-n)^2 + 2mn(1-\cos\theta)$ ②,

将式①代入式②可得: $4c^2 = 4a^2 + 2mn(1-\cos\theta)$, 所以 $mn = \frac{4c^2 - 4a^2}{2(1-\cos\theta)} = \frac{2b^2}{1-\cos\theta}$,

故
$$S_{\Delta PF_1F_2} = \frac{1}{2}mn\sin\theta = \frac{1}{2}\cdot\frac{2b^2}{1-\cos\theta}\cdot\sin\theta = b^2\cdot\frac{\sin\theta}{1-\cos\theta} = b^2\cdot\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = \frac{b^2}{\tan\frac{\theta}{2}}.$$

2. 基于双曲线第三定义的斜率积结论: 如上图 2,设 A,B 分别是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右顶点,P 是双曲线上不与 A,B 重合的任意一点,则 $k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$.

注:上述结论中A,B是双曲线的左、右顶点,可将其推广为双曲线上关于原点对称的任意两点,如上图

3,只要直线 *PA*,*PB*的斜率都存在,就仍然满足 $k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$,下面给出证明.

证明: 设 $A(x_1, y_1)$, $P(x_2, y_2)$, 则 $B(-x_1, -y_1)$, 所以 $k_{PA} \cdot k_{PB} = \frac{y_2 - y_1}{x_2 - x_1} \cdot \frac{y_2 + y_1}{x_2 + x_1} = \frac{y_2^2 - y_1^2}{x_2^2 - x_1^2}$ ①,

因为点 A 在双曲线上,所以 $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$,故 $y_1^2 = b^2(\frac{x_1^2}{a^2} - 1) = \frac{b^2}{a^2}(x_1^2 - a^2)$,同理, $y_2^2 = \frac{b^2}{a^2}(x_2^2 - a^2)$,

所以
$$y_2^2 - y_1^2 = \frac{b^2}{a^2}(x_2^2 - a^2 - x_1^2 + a^2) = \frac{b^2}{a^2}(x_2^2 - x_1^2)$$
,代入①得: $k_{PA} \cdot k_{PB} = \frac{b^2}{a^2}$;

在上述条件中令A(-a,0),B(a,0),即得内容提要第 2 点的特殊情况下的结论.

3. 中点弦斜率积结论: 如图 4, AB 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的一条不与坐标轴垂直且不过原点的弦, M 为 AB 中点,则 $k_{AB} \cdot k_{OM} = \frac{b^2}{a^2}$,此结论可用下面的点差法来证明.

证明:设 $A(x_1,y_1)$, $B(x_2,y_2)$, $x_1 \neq x_2$, $y_1 \neq y_2$,因为A、B都在双曲线上,所以 $\begin{cases} \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1\\ \frac{x_2^2}{a^2} - \frac{y_2^2}{b^2} = 1 \end{cases}$

两式作差得:
$$\frac{x_1^2 - x_2^2}{a^2} - \frac{y_1^2 - y_2^2}{b^2} = 0$$
, 整理得: $\frac{y_1 - y_2}{x_1 - x_2} \cdot \frac{y_1 + y_2}{x_1 + x_2} = \frac{b^2}{a^2}$ ①,

注意到
$$\frac{y_1 - y_2}{x_1 - x_2} = k_{AB}$$
, $\frac{y_1 + y_2}{x_1 + x_2} = \frac{2y_M}{2x_M} = \frac{y_M}{x_M} = k_{OM}$,所以式①即为 $k_{AB} \cdot k_{OM} = \frac{b^2}{a^2}$.

注:中点弦结论和上面的第三定义斜率积结论的结果都是 $\frac{b^2}{a^2}$,这是巧合吗?不是,两者之间有必然的联系.如上图 5,设 B' 为 B 关于原点的对称点,则 B' 也在该双曲线上,且 O 为 BB' 中点,结合 M 为 AB 中点可得 OM//AB',所以 $k_{AB}\cdot k_{OM}=k_{AB}\cdot k_{AB'}$,于是又回到了双曲线上的点 A 与双曲线上关于原点对称的 B 和 B' 的连线的斜率积.

典型例题

类型 1: 焦点三角形面积

【例 1】(2020・新课标 I 卷)设 F_1 , F_2 是双曲线C: $x^2 - \frac{y^2}{3} = 1$ 的两个焦点,O 为原点,点P 在 C 上且 |OP| = 2,则 ΔPF_1F_2 的面积为(

(A) 7 (B) 3 (C)
$$\frac{5}{2}$$
 (D) 2

解法 1: 求焦点三角形面积可考虑代公式 $S = \frac{b^2}{\tan \frac{\theta}{2}}$,但本题未给 $\angle F_1 PF_2$,故先看能不能求出它,

如图,双曲线 C 的半焦距 $c = \sqrt{1+3} = 2 \Rightarrow |F_1F_2| = 4$,因为 |OP| = 2,所以 $|OP| = \frac{1}{2}|F_1F_2|$,

从而
$$\angle F_1 P F_2 = 90^{\circ}$$
,故 $S_{\Delta P F_1 F_2} = \frac{b^2}{\tan \frac{\theta}{2}} = \frac{3}{\tan 45^{\circ}} = 3$.

解法 2: 也可考虑代公式 $S = c |y_P|$ 求 ΔPF_1F_2 的面积,于是先算 y_P ,

因为|OP|=2,所以 $\sqrt{x_P^2+y_P^2}=2$ ①,又点P在双曲线C上,所以 $x_P^2-\frac{y_P^2}{3}=1$ ②,

联立①②解得: $y_P = \pm \frac{3}{2}$,双曲线 C 的半焦距 $c = \sqrt{1+3} = 2$,所以 $S_{\Delta PF_1F_2} = c|y_P| = 3$.

答案: B

【变式】已知 F_1 , F_2 是双曲线 $C: x^2 - \frac{y^2}{3} = 1$ 的左、右焦点,P 为双曲线 C 右支上的一点, $\angle F_1 P F_2 = 120^\circ$,则点P的纵坐标为____, $|PF_1| =$ ____.

解析: 给出 $\angle F_1PF_2$, 可由 $S = \frac{b^2}{\tan \frac{\theta}{2}}$ 求出 ΔPF_1F_2 的面积, 再由 $S = c|y_P|$ 解出 y_P ,

由题意,双曲线 C 的半焦距 c=2, $S_{\Delta PF_1F_2} = \frac{b^2}{\tan \frac{\theta}{2}} = \frac{3}{\tan 60^\circ} = \sqrt{3}$,

又
$$S_{\Delta PF_1F_2} = c|y_P| = 2|y_P|$$
,所以 $2|y_P| = \sqrt{3}$,解得: $y_P = \pm \frac{\sqrt{3}}{2}$;

再求 $|PF_1|$,可联想到由双曲线定义和 ΔPF_1F_2 的面积各建立一个关于 $|PF_1|$ 和 $|PF_2|$ 的方程,求解即可,如图,由双曲线定义, $|PF_1|-|PF_2|=2$ ①,

又
$$S_{\Delta PF_1F_2} = \frac{1}{2}|PF_1|\cdot|PF_2|\cdot\sin\angle F_1PF_2 = \frac{\sqrt{3}}{4}|PF_1|\cdot|PF_2| = \sqrt{3}$$
,所以 $|PF_1|\cdot|PF_2| = 4$ ②,

由①可得 $|PF_2| = |PF_1| - 2$,代入②整理得: $|PF_1|^2 - 2|PF_1| - 4 = 0$,解得: $|PF_1| = 1 + \sqrt{5}$ 或 $1 - \sqrt{5}$ (舍去).

答案:
$$\pm \frac{\sqrt{3}}{2}$$
, $1+\sqrt{5}$

【反思】从上面两道题可以看出,当题干给出 $\angle F_1PF_2$ 时,可用 $S_{\Delta PF_1F_2} = \frac{b^2}{\tan \frac{\theta}{2}}$ (其中 $\theta = \angle F_1PF_2$)来算焦点

三角形的面积;由 $S_{\Delta PF_1F_2} = c|y_P| = \frac{b^2}{\tan \frac{\theta}{2}}$ 还可以建立顶角 θ 和 $|y_P|$ 之间的等量关系.

类型 II: 第三定义、中点弦斜率积结论

【例 2】设双曲线 $C: \frac{x^2}{a^2} - y^2 = 1(a > 0)$ 与直线 y = kx 交于 A, B 两点, P 为 C 右支上的一动点,记直线 PA,

PB 的斜率分别为 k_{PA} , k_{PB} , C 的左、右焦点分别为 F_1 , F_2 ,若 $k_{PA} \cdot k_{PB} = \frac{1}{9}$,则下列说法正确的是()

- (A) $a = \sqrt{3}$
- (B) 双曲线 C 的渐近线方程为 $y = \pm \sqrt{3}x$
- (C) 若 $PF_1 \perp PF_2$, 则 ΔPF_1F_2 , 的面积为 2
- (D) 双曲线 C 的离心率为 $\frac{\sqrt{10}}{3}$

解析:由对称性可得A,B 关于原点对称,又涉及斜率之积 $k_{PA}\cdot k_{PB}$,故想到第三定义斜率积结论,

因为 $k_{PA} \cdot k_{PB} = \frac{1}{a^2} = \frac{1}{9}$,所以a = 3,从而双曲线 C的渐近线方程为 $y = \pm \frac{1}{3}x$,

离心率 $e = \frac{\sqrt{a^2 + 1}}{a} = \frac{\sqrt{10}}{3}$, 故 A 项和 B 项错误,D 项正确;

对于 C 项,求焦点三角形面积,代公式 $S = \frac{b^2}{\tan \frac{\theta}{2}}$ 即可,

当 $PF_1 \perp PF_2$ 时, $\angle F_1PF_2 = 90^\circ$,所以 $S_{\Delta PF_1F_2} = \frac{b^2}{\tan \frac{\theta}{2}} = \frac{1}{\tan 45^\circ} = 1$,故 C 项错误.

答案: D

【反思】涉及双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 上的点 P 与双曲线上关于原点对称的 A, B 两点连线的斜率之

积,考虑用第三定义斜率积结论 $k_{PA}\cdot k_{PB}=\frac{b^2}{a^2}$,其推导方法请参考本节内容提要.

【例 3】已知 A, B 是双曲线 $C: \frac{x^2}{2} - \frac{y^2}{3} = 1$ 上的两点,线段 AB 的中点是 M(2,1),则直线 AB 的方程为_____.

解析: 涉及弦中点,想到中点弦斜率积结论, $M(2,1) \Rightarrow k_{AB} \cdot k_{OM} = k_{AB} \cdot \frac{1}{2} = \frac{3}{2}$,所以 $k_{AB} = 3$,

如图,直线 AB 过点 M,故其方程为 y-1=3(x-2),整理得: 3x-y-5=0.

答案: 3x-y-5=0

【反思】在双曲线中,涉及弦中点的问题都可以考虑用中点弦斜率积结论来建立方程,求解需要的量.

【变式】已知双曲线 $C: x^2 - y^2 = 1$,过点 P(m,1)(m>0) 的直线 l 与双曲线 C 交于 A、B 两点,若 P 为线段 AB 的中点,则 m 的取值范围是_____.

解析: 涉及弦中点,想到中点弦斜率积结论,由题意, $k_{AB}\cdot k_{OP}=k_{AB}\cdot \frac{1}{m}=1$,所以 $k_{AB}=m$,

如图,直线 l 过点 P,故其方程为 y-1=m(x-m),整理得: $y=mx+1-m^2$,

直线 l 是随 m 而变化的动直线,且应满足 l 与 C 有两个交点,于是联立方程用 $\Delta > 0$ 来求 m 的范围,

联立
$$\begin{cases} y = mx + 1 - m^2 \\ x^2 - y^2 = 1 \end{cases}$$
 消去 y 整理得: $(1 - m^2)x^2 - 2m(1 - m^2)x + 2m^2 - 2 - m^4 = 0$,

因为直线 l 与双曲线 C 有 2 个交点,所以 $\begin{cases} 1-m^2 \neq 0 \text{ ①} \\ \Delta = 4m^2(1-m^2)^2 - 4(1-m^2)(2m^2-2-m^4) > 0 \text{ ②} \end{cases}$

由①可得 $m \neq \pm 1$,由②可得 $(1-m^2)[m^2(1-m^2)-2m^2+2+m^4)=(1-m^2)(2-m^2)>0$,所以 $m^2<1$ 或 $m^2>2$,结合 m>0 可得 0< m<1或 $m>\sqrt{2}$.

答案: (0,1) $\bigcup (\sqrt{2},+\infty)$

强化训练

1. (★) 设 F_1 , F_2 是双曲线C: $\frac{x^2}{4} - \frac{y^2}{5} = 1$ 的左、右焦点,P为C上一点,若 $PF_1 \perp PF_2$,则 ΔPF_1F_2 的面积为____.

- 2. (2022 辽宁模拟 ★★)设 F_1 , F_2 是双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)的左、右焦点, P 为双曲线右支上$ 一点,若 $\angle F_1 PF_2 = 90^\circ$,半焦距 c = 2, $S_{\Delta PF_1 F_2} = 3$,则双曲线的两条渐近线的夹角为()
 - (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

- 3. (2022 汉中模拟 ★★) 已知双曲线 $\frac{x^2}{4} \frac{y^2}{b^2} = 1(b > 0)$ 的左焦点为 F, 过 F 作斜率为 2 的直线与双曲线 交于 A, B 两点, P 是 AB 中点, O 为原点, 若直线 OP 的斜率为 $\frac{1}{4}$, 则双曲线的离心率为 ()
 - (A) $\frac{\sqrt{6}}{2}$ (B) 2 (C) $\frac{3}{2}$ (D) $\sqrt{2}$

- 4. (2022 长沙模拟 ★★★)已知 m+n=4 ,点 M(m,n) 是双曲线 $\frac{x^2}{8} \frac{y^2}{2} = 1$ 的一条弦 AB 的中点,则当 mn 取得最大值时,直线 AB 的方程为 .
- 5. (★★★) 已知 A, B 为双曲线 E 的左、右顶点,点 M 在 E 上, $\triangle ABM$ 为等腰三角形,且顶角为120°, 则 E 的离心率为 ()
- (A) $\sqrt{5}$ (B) 2 (C) $\sqrt{3}$ (D) $\sqrt{2}$
- 6. (2022 吉林模拟 •★★★★) 已知直线 $l: y = kx(k \neq 0)$ 与双曲线 $C: \frac{x^2}{4} y^2 = 1$ 相交于 P, Q 两点, $QH \perp x$ 轴于点 H,直线 PH 与双曲线 C 交于另一点 T,则下列选项中错误的是(
- (A) $-\frac{1}{2} < k < 0$ 或 $0 < k < \frac{1}{2}$ (B) $k_{PT} = \frac{k}{2}$ (C) $k_{PT} \cdot k_{QT} = \frac{1}{4}$ (D) $k_{PQ}^2 + k_{QT}^2$ 的最小值为 1

《一数•高考数学核心方法》