Sistemas de Inteligencia Artificial

Aprendizaje supervisado

TPE 2Redes Neuronales

Grupo 4Badi, Leonel
Farré, Lucas
Gómez, Jorge

Función sinh*cos(x²)

Red neuronal

Pesos y umbrales

Capa 1
$$w_1 = \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ a & b & c & d \end{bmatrix}$$

Capa 2
$$w_2 = \begin{pmatrix} u_{21} \\ e \\ f \\ g \\ h \end{pmatrix}$$

Función de activación

Elección de los parámetros

¿Cómo elegimos los parámetros adecuados?

Elección de los parámetros

Prueba y error, con y sin ayuda de scripts automatizados, modificando en este orden:

- 1. Cantidad de neuronas en la capa oculta
- **2.** El valor de η
- 3. El valor de α del momentum
- **4.** Los valores a y b de adaptación de η
- 5. Cantidad de capas ocultas

1 neurona en la capa oculta

2 neuronas en la capa oculta

3 neuronas en la capa oculta

Neuronas en la capa oculta

Menos flexibilidad

Indistinguibilidad de puntos

Mayor dificultad para aprender

Memorización

Comparación con momentum

Error dependiendo de los inputs

Neuronas	Input Pesado	Input Reducido	Input Uniforme
1	2.633577	0.879829	0.944424
2	0.191018	0.239681	1.111854
3	0.013454	0.062525	1.758705
4	0.011560	0.028750	0.012690
5	0.011898	0.027034	0.014153
6	0.009929	0.025518	0.013235
7	0.014037	0.024261	0.012661
8	0.014212	0.021872	0.012682
9	0.012102	0.032671	0.015582
10	0.014447	0.026864	0.012481

Error mínimo

η adaptativo para reducir el error

	a (etainc)	b (etadec)	Incrementos	Decrementos	Error
0.050000	0.040000	0.100000	15.750000	83.250000	0.010966
0.100000	0.030000	0.200000	33.250000	65.750000	0.011824
0.100000	0.040000	0.100000	16.000000	83.000000	0.012436
0.050000	0.050000	0.200000	24.250000	74.750000	0.012912
0.100000	0.040000	0.200000	24.000000	75.000000	0.013504
0.050000	0.030000	0.200000	30.250000	68.750000	0.013678
0.050000	0.020000	0.100000	35.750000	63.250000	0.013691
0.100000	0.020000	0.100000	29.250000	69.750000	0.013808
0.050000	0.030000	0.100000	26.250000	72.750000	0.015431
0.050000	0.050000	0.300000	22.250000	76.750000	0.016084

Problema de los extremos

Agregar capas ocultas

Extender el intervalo de trabajo

 Aumentar la cantidades de patrones en el extremo

Conclusiones

- No siempre agregar más neuronas a la red es conveniente, la misma puede perder performance.
- Es importante la buena elección del patrón de entrada, para que la red generalice el problema en la medida justa.
- Cambios muy simples de implementar como el momentum, pueden ser muy beneficiosos.
- La función de activación puede cambiar drásticamente la manera en que la red se comporta.
- Puede resultar muy difícil que la red aprenda los extremos de los intervalos de la función.

Preguntas...