Lecture 7: inference and hypothesis testing

What we will do today

- Chapter 5
 - Confidence intervals
 - For 0/1 categorical variables (e.g., did you vote for Romney, did you graduate from college)
- Chapter 6
 - Hypothesis testing for quantitative variables

Review: sampling distribution

- Imagine we want to estimate mean enrollment the population of colleges and universities
 - Draw the three pictures
- Questions
 - In each picture, what does each observation represent?
 - In each picture, what is the unit of analysis?
 - In each picture, what does the X-axis represent?
 - What does standard deviation represent?
 - What does standard error represent?

Review: Bias and efficiency

- Variable=total enrollments at college
- Bias
 - Show unbiased sample; show biased sample
 - Questions
 - How would picture of sampling distribution change if we exclude "less than 2yr for-profit" colleges?
- Efficiency
 - What is efficiency?
 - What would happen to the sampling distribution if we increased the sample size?

Real world application

- Monthly employment figures released on Friday
- What is the national unemployment rate in the U.S. population?
 - Data: Current Population Survey (CPS), a random sample of households
 - Calculate sample mean unemployment rate $= \frac{number\ of\ unemployed\ working\ age\ adults}{total\ \#\ of\ working\ age\ adults\ "in\ the\ labor\ marekt"}$
 - Excludes people not looking for work. Question: Is that problematic?
- Net job creation in the last month
 - Data: Current Employment Statistics (CES) survey
 - Surveys 141,000 business and govt agencies out of an approximate population of 486,000 worksites

Confidence intervals for proportions

Means vs. Proportion (for this book)

Mean

 Refers to a quantitative variable (income, number of siblings, number of years married, etc.)

Proportion

- Refers to a categorical variable with two categories (will you vote for Obama?; did you graduate from college? Are you male? Are you white?)
- These are often called "0/1 variables" where, for example, voting for Obama=1 and not voting for Obama=0; graduating from college=1 and not graduating from college=0.
- Statistical methods for means differ from statistical methods for proportions

Notation for proportions

- Population proportion (we usually don't know)
 - $-\pi = population proportion ("pi")$
- Sample proportion (we know)
 - $-\hat{\pi} = sample \ proportion$ ("pi hat")
- Confidence interval
 - we use the sample proportion, $\hat{\pi}$, to make a confidence interval for the population proportion, π
 - e.g., we are 95% sure that the population proportion, π , of people who prefer Obama is between .49 and .53

Show Proportion in Stata

- IPEDS dataset of colleges and universities
- Variable called "public": is the institution private or public
 - 0= private; 1=public
- Show histogram of population distribution
- Show frequency distribution (tabulate command)
- Show mean (summarize command)
- Important fact:
 - If you code the variable 0="not public" and 1="public", then relative frequency of observations that are public (tabulate command) is equal to the mean of the variable public (summarize command)
 - This is why we use the numeric values 0/1 for "proportion" variables like "public"

- Variable called "Obama": Do you plan to vote for Obama (0= No; 1= Yes)
- Imagine we asked 200 registered voters whether they planned to vote for Obama
 - 110 said "yes" out of 200
 - Sample proportion= $\hat{\pi} = \frac{number\ that\ said\ "yes"}{sample\ size} = \frac{110}{200} = .55$
- Goal
 - We want to create a 95% confidence interval (CI) for the value of the population proportion, π
 - 95% CI = $\hat{\pi} \pm margin \ of \ error$

- Variable called "Obama": Do you plan to vote for Obama
 - 0= No; 1= Yes
- Show three pictures
 - Population distribution (unknown)
 - Sample distribution (known for one sample)
 - Sampling distribution (unknown)
- Question for students
 - Is the population distribution of the variable normally distributed?
 - Is the sample distribution of the variable normally distributed?
 - What does each observation of the sampling distribution represent?
 - Is the sampling distribution normally distributed (assume sample size is large)?
 - Why is this the case?

- Variable called "Obama": Do you plan to vote for Obama; 0= No; 1= Yes
- Ask about sampling distribution (assume no bias):
 - What percentage of observations will be within one standard deviation of the population proportion?
 - What percentage of sample proportions will be within one standard error of the population proportion?
 - What percentage of sample proportions will be within 1.96 standard errors of the population proportion?

• Problem:

- We don't know the population distribution or the sampling distribution
- We have one sample and the sample proportion for that sample could be far away from population proportion
- Solution: We think of our sample as being randomly chosen from the sampling distribution
 - 95% of sample proportions (from the sampling distribution) will be within 1.96 standard deviations of the population proportion (show picture)
 - Equivalently, if we select a random sample and calculate the sample proportion, there is a 95% chance that the population proportion will be within 1.96 standard deviations of the sample proportion (show picture)

Calculating confidence intervals

Calculating CI for proportions

- 95% Confidence interval (CI)
 - -95% CI = $\hat{\pi} \pm \text{some margin of error}$
 - $-\hat{\pi} \pm 1.96 * se$
 - Where $\hat{\pi}$ = sample proportion

•
$$\hat{\pi} = \frac{number\ that\ said\ "yes"}{sample\ size} = \frac{110}{200} = .55$$

- se= sample standard error
- General Confidence interval (CI)
 - $-\hat{\pi} \pm z * se$
 - Where z=z=score associated with desired confidence level
 - Question: where can we find the z-scores associated with each CI?

Calculating sample std. err. For proportions

- Confidence interval (CI) is $\hat{\pi} \pm z * se$
- Population parameters
 - Standard deviation, σ , of the probability distribution

•
$$\sigma = \sqrt{\pi(1-\pi)}$$

– Standard error of sample proportion, $\sigma_{\widehat{\pi}}$

•
$$\sigma_{\widehat{\pi}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{\pi(1-\pi)}{n}}$$

- but $\sigma_{\widehat{\pi}}$ uses π , which is an unknown population parameter
- Sample Statistic
 - Sample standard error of the sample proportion, se

•
$$se = \sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}}$$

 In words: sample standard error, se, is our estimate for how much a random sample proportion differs from the true population proportion

Calculating CI for proportions

- Confidence interval (CI)
 - $-\hat{\pi} \pm z * se$, where:

$$-se = \sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}}$$

- z=z-score of desired confidence level
 - Z=1.645 for 90% CI; Z=1.96 for 95% CI; Z=2.58 for 99% CI
- Recommended steps when calculating CI for proportions
 - First, calculate $\hat{\pi}$ = (# of "successes")/n
 - Second, calculate se
 - Third, calculate confidence interval

Calculating CI for proportions, Example

- 200 people sampled; 110 say they will vote for Obama; find 95% CI
 - Sample size=n=200

$$-\hat{\pi} = \frac{110}{200} = .55;$$

$$-se = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}} = \sqrt{\frac{.55(1-.55)}{200}} = \sqrt{\frac{.2475}{200}} = \sqrt{.0012375} = .03518$$

- Confidence interval (CI)
 - $-\hat{\pi} \pm z * se = .55 \pm 1.96 * .03518 = .55 \pm .069$
 - Lower bound of 95% CI=.55-.069=.481
 - Upper bound of 95% CI=.55+.069=.619
 - We are 95% sure that the pop proportion of people who will vote for Obama lies somewhere between .481 and .619

Confidence Interval Mechanics

- Do we think a confidence interval of .481 to .619 is good enough when trying to predict the proportion of people who will vote for Obama?
- What are two ways we get "more narrow" confidence intervals?

Calculating CI for proportions, Example

 2,000 people sampled; 1,110 say they will vote for Obama; find 95% CI

- Sample size=
$$n=2000$$
; $\hat{\pi} = \frac{1,100}{2,000} = .55$;

$$-se = \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}} = \sqrt{\frac{.55(1-.55)}{2000}} = \sqrt{\frac{.2475}{2000}} = \sqrt{.00012375} = .01112$$

- Confidence interval (CI)
 - $-\hat{\pi} \pm z * se = .55 \pm 1.96 * .01112 = .55 \pm .022$
 - Lower bound of 95% CI=.55-.022=.528
 - Upper bound of 95% CI=.55+.022=.572
 - We are 95% sure that the pop proportion of people who will vote for Obama lies somewhere between .528 and .572

Properties of Confidence Intervals

- Width of confidence interval decreases as sample size increases
- Width of confidence interval increases as desired confidence level increases
- Sample size considerations
 - Z-distribution is for "large" sample sizes
 - To use z-distribution to calculate CI of proportions, you sample should have at least 15 observations in each category
 - e.g., proportion vegetarian; sample must have at least 15 vegetarians and 15 non-vegetarians to use z-score table

In Class Exercise (answer on next pg)

• CI:
$$\hat{\pi} \pm z * se = \hat{\pi} \pm z * \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

- Proportion on Facebook; sample=193; 90 people on facebook
 - What is 95% CI? What is 99% CI?
- Proportion on Facebook; sample=976; 423 people on Facebook
 - What is 95% CI? What is 99% CI?

In Class Exercise: Answers

- $\hat{\pi} \pm z * se$;
- sample=193; 90 people on facebook
 - $-\hat{\pi}$ =0.466321244; se= 0.035909049
 - 95% CI: 0.466321244 +- 0.070381736
 - 99% CI: 0.466321244 +- 0.092645346
- sample=976; 423 people on Facebook
 - $-\hat{\pi}$ = 0.433401639; se= 0.015862003
 - 95% CI: 0.433401639 +- 0.031089526
 - 99% CI: 0.433401639 +- 0.040923967

- Assumptions for confidence interval of a mean
 - (1) sample is a random sample from population
 - (2) population distribution of variable is normal

"Robust"

- A statistical method is robust with respect to a particular assumption, when it performs adequately even when that assumption is violated
- Statisticians have shown that CI for a mean is robust against violations of normal population assumption, especially when sample size > 30

Why is CI for mean robust to normal population assumption?

Central limit theorem:

— when sample size is large, the sampling distribution of the sample mean, \bar{y} , is approximately normal, even if the population distribution of the variable is not normal

Why?

- Because confidence interval about a statistic (e.g., the mean) is based on the shape of the sampling distribution, not the shape of population distribution of the variable; the shape of the population distribution will be normal as long as sample size is sufficiently large
- If sample size is small (and population distribution is not normal), then sampling distribution is not normal, and we probably shouldn't trust the z-table to create confidence interval
- How large is large enough?
 - If population distribution is normal then sampling distribution is normal for any sample size
 - If population distribution is not normal, sample size of about 30 is sufficient

- Assumptions for confidence interval of a mean:
 - Assumption (1): The sample is a random sample from the population
- Do you think the CI for the mean is "robust" to violations of assumption (1)?
 - Why or why not?

Chapter 5: Significance tests

Hypotheses

- Science and social science often proceeds by testing hypotheses
- What is a hypothesis?
 - In statistics, a hypothesis is a declarative statement about a population.
 - It is usually a prediction that a parameter (e.g., population mean) takes a particular numerical value or falls in a certain range
 - Example hypotheses:
 - Average household income in the U.S. is \$50,000
 - Men get paid more than women
- Remember:
 - We make hypotheses about the population, but we use sample data to test hypotheses
- What are some other hypotheses you can think of?

Hypotheses

- Example hypotheses:
 - Men get paid more than women
 - Holding job title constant, men get paid more than women
 - Public universities increase out of state enrollments when state appropriations decline
 - The mean score on a test will be 80%
 - Holding other factors constant, prestigious institutions will produce more master's degrees than non prestigious institutions

Why are hypotheses useful?

- Force the researcher to make their predictions explicit
- Helps the researcher organize their analysis
 - I organize my literature review, conceptual framework, methods section, and results around the hypotheses I test
 - Example of current research project
- Helps the research community identify what relationships are significant
 - If prior research does not test hypotheses, hard to accumulate knowledge about a field

Null and alternative hypotheses

- Imagine we want to want to know whether the mean number of hours worked (by people who work) is 40
- Null hypothesis (H_o)
 - A statement that the population parameter has a specific value
 - (in words) H_o : the population mean number of hours worked is 40
 - (using symbols) H_o : $\mu = \mu_0 = 40$)
 - μ_0 is the parameter value associated with the null hypothesis (null pop mean)
- Alternative hypothesis (H_a)
 - A statement that the parameter falls in some alternative range of values
 - Two-sided alternative hypothesis
 - (in words) H_a : the population mean number of hours worked is not equal to 40
 - (using symbols) H_a : $\mu \neq 40$
 - One-sided alternative hypothesis (mean is greater than 40)
 - (in words) H_a : the population mean number of hours worked is greater than 40
 - (using symbols) H_a : $\mu > 40$
 - One-sided alternative hypothesis (mean is less than 40)

Null and alternative hypotheses

- Is the proportion of people who believe in global warming = .5?
- Null hypothesis (H_o)
 - (in words) H_o : the population proportion of people who believe in global warming equals .5
 - (using symbols) H_o : $\pi = \pi_0 = .5$
 - π_0 = parameter value associated with the null hypothesis (null pop proportion)
- Alternative hypothesis (H_a)
 - Two-sided alternative hypothesis
 - H_a : the population proportion of people who believe in global warming is not equal to .5
 - (using symbols) H_a : $\pi \neq .5$
 - One-sided alternative hypothesis (mean is greater than 40)
 - H_a :the population proportion of people who believe in global warming is greater than .5
 - (using symbols) H_a : $\pi > .5$
 - One-sided alternative hypothesis (mean is less than 40)
 - H_a :the population proportion of people who believe in global warming is less than .5
 - (using symbols) H_a : $\pi < .5$

In Class exercise (didn't have time to write answers)

- For each research question, write:
 - The null hypothesis
 - Write in words and write in symbols
 - All three alternative hypotheses
 - Write in words and write in symbols
- Question (1):
 - Is the population mean average SAT score equal to 1000?
- Question (2):
 - Is the population proportion of people who think that samesex couples should have the right to marry equal to .5?

In Class exercise answers

- Note: I didn't have time to write answers
- Question (1): Is the population mean average SAT score equal to 1000?
 - Null hypothesis
 - Alternative hypotheses
 - Two-sided
 - One-sided (greater than)
 - One-sided (less than)
- Question (2): Is the population proportion of people who think that same-sex couples should have the right to marry equal to .5?
 - Null hypothesis
 - Alternative hypotheses
 - Two-sided
 - One-sided (greater than)
 - One-sided (less than)

Significance tests

- Significance tests:
 - a significance test uses data to summarize the evidence about a hypothesis.
 - It does this by comparing point estimates (e.g., sample mean) to the parameter values (e.g., population mean) predicted by the hypothesis.
- There are 5 parts to a significance test
 - (1) assumptions
 - (2) hypotheses
 - (3) test statistic
 - (4) p-value (means probability value)
 - (5) conclusion

Example 1

- Research question: Is the population mean number of hours worked (for those who work) equal to 40?
 - (Test a two sided alternative hypothesis)
- summarize hrs1
 - Sample size=n=2,820
 - Sample mean=40.483
 - Sample std deviation=14.850

Significance tests

- 5 parts of a significance test
 - -(1) assumptions
 - (2) specify null and alternative hypotheses
 - (3) test statistic
 - (4) p-value
 - (5) conclusion

(1) Assumptions

- Assumptions
 - The variable is a "quantitative" variable
 - Our data is a random sample from the population
 - The population distribution of this variable has a normal distribution
 - Note: This assumption is robust to violations if sample size is sufficiently large (say n>=30)
 - Do you think the variable "number of hours worked" fulfills these criteria?

(2) Hypotheses

- Generate hypotheses from research question:
 - Research question: Is the population mean number of hours worked (for those who work) equal to 40?
 - Remember that hypotheses are about population mean, μ
- Null hypothesis (H_o)
 - $-H_o$: $\mu = \mu_o = 40$
- Two sided alternative hypothesis (H_a)
 - Two-sided: H_a : $\mu \neq 40$

(3) Test Statistic

- We conduct a test to see whether we should reject the null hypothesis
- Very important to remember:
 - We conduct our test under the assumption that the null hypothesis is true
- Test-statistic:
 - If null hypothesis is true, how unlikely would it be to randomly draw a sample mean equal to the observed sample mean
- Draw picture

(3) Test Statistic

- Test statistic is based on measuring the distance between μ_0 (associated with the null hypothesis) and \bar{y} (the sample mean we actually observed)
- Test statistic: t-score
 - We conduct a test to see whether we should reject the null hypothesis

$$-t = \frac{\overline{y} - u_0}{se}$$
, where $se = sample \ std \ err = \frac{sample \ std \ dev}{\sqrt{n}}$

Hours worked example

$$-$$
 n=2,820; \bar{y} =40.483; $\mu_0=40$; s=sample std. dev=14.850

$$-se = \frac{sample \, std \, dev}{\sqrt{n}} = \frac{14.850}{\sqrt{2820}} = .2796$$

•
$$t = \frac{\bar{y} - u_0}{se} = \frac{40.483 - 40}{.2796} = \frac{.483}{.2796} = 1.73$$

(4) P-value

P-value

- Under the assumption that H_0 is true, the p-value is the probability that the test statistic equals the observed value or a value even more extreme in the direction predicted by H_a
- Small p-value means that it would be unusual to find the observed data if H_0 were true.
- t= value of your t-test
- Two-sided hypothesis $(H_a: \mu \neq \mu_0)$
 - Pr(obs>t) + pr(obs<-t)
- Use z-score table to find probabilties
- Draw picture

(4) P-value

- P-value
 - Under the assumption that H_0 is true, the p-value is the probability that the test statistic equals the observed value or a value even more extreme in the direction predicted by H_a
- P-value=.0418+.0418=.0813
- Interpretation of p-value
 - Under the assumption that H_0 is true, the probability of observing a test statistic even more extreme than 1.73 (i.e., greater than 1.73 or less than -1.73) is equal to .0813

(4) Rejection Region

Rejection region

- $-\alpha \ level$ (alpha level) is a number such that we reject H_0 if the observed p-value is less than or equal to the alpha level.
- We reject the null hypothesis if the observed pvalue is less than or equal to the rejection region
- In practice, most common alpha levels are .05 or .01
- So if we choose α *level* of .05 and find a p-value of .02, we reject H_0

(4) P-value: rejection region

- Hours worked example
- Assume we choose a rejection region of .05
- We find a p-value of .0836
- Should we reject the null hypothesis?

(5) Conclusion

- H_0 : $\mu = \mu_0 = 40$
- H_a : $\mu \neq \mu_0$
- Alpha level= rejection region=.05
- P-value=.0836
- Conclusion:
 - do not reject H_0 .
 - We do not have sufficient evidence to reject the null hypothesis that population mean hours worked is equal to 40 hours per week.

Conclusion (continued)

 How to write your conclusion in terms of null and alternative hypotheses

	Conclusion	
P-value	H_0	H_a
P<=.05	Reject H_0	Accept H_a
P>.05	Do not reject H_0	Do not accept H_a

• Note that we never say "Accept H_0 " or "Reject H_a "

Example 2

- Research question: Is the population mean number of hours worked (for those who work) equal to 40?
 - This time test the one-sided alternative hypothesis that mean hours worked is greater than 40
 - Choose α level (i.e., rejection region) of .05
 - So reject if observed p-value <=.05
- summarize hrs1
 - Sample size=n=2,820
 - Sample mean=40.483
 - Sample std deviation=14.850

(1) Assumptions

- Assumptions
 - The variable is a "quantitative" variable
 - Our data is a random sample from the population
 - The population distribution of this variable has a normal distribution
 - Note: This assumption is robust to violations if sample size is sufficiently large (say n>=30)
 - Do you think the variable "number of hours worked" fulfills these criteria?

(2) Hypotheses

- Generate hypotheses from research question:
 - Research question: Is the population mean number of hours worked (for those who work) equal to 40?
 - Remember that hypotheses are about population mean, μ
- Null hypothesis (H_o)
 - $-H_0$: $\mu = \mu_0 = 40$
- Two sided alternative hypothesis (H_a)
 - Two-sided: H_a : $\mu > 40$

(3) Test Statistic

- Question:
 - Does calculation of test statistic change now that we are testing a one sided alternative hypothesis?
- Test statistic: t-score

$$-t=rac{ar{y}-u_0}{se}$$
, where $se=sample\ std\ err=rac{sample\ std\ dev}{\sqrt{n}}$

Hours worked example

$$-$$
 n=2,820; \bar{y} =40.483; $\mu_0 = 40$; s=sample std. dev=14.850

$$-se = \frac{sample \, std \, dev}{\sqrt{n}} = \frac{14.850}{\sqrt{2820}} = .2796$$

•
$$t = \frac{\bar{y} - u_0}{se} = \frac{40.483 - 40}{.2796} = \frac{.483}{.2796} = 1.73$$

(4) two-sided vs. one-sided p-value

- P-value
 - Small p-value means that it would be unusual to find the observed data if H_0 were true.
- Two-sided. H_a : $\mu \neq \mu_0$ [Example 1]
 - Under the assumption that H_0 is true, the p-value is the probability of finding sample mean at least as far away from μ_0 as \bar{y} (in either direction).
- One sided. H_a : $\mu > \mu_0$ [Example 2]
 - Under the assumption that H_0 is true, the p-value is the probability of finding sample mean at least large \bar{y}
- One sided. H_a : $\mu < \mu_0$
 - Under the assumption that H_0 is true, the p-value is the probability of finding sample mean as small or smaller than \bar{y}
- Draw picture

(5) Conclusion

- H_0 : $\mu = \mu_0 = 40$
- H_a : $\mu > \mu_0$
- Alpha level= rejection region=.05
- P-value=.0418
- Conclusion: reject H_0 ; accept H_a
 - We reject the null hypothesis that population mean hours worked is 40
 - We accept the alternative hypothesis that population mean hours worked is greater than 40

One-sided or two-sided hypotheses?

- The data in example 1 and example 2 were exactly the same
 - Example 1 was a two-sided hypothesis
 - We did not reject H_0
 - Example 2 was a one-sided hypothesis
 - We rejected H_0
 - Show picture of p-values
- You need stronger evidence (i.e., larger t-score) to reject H_0 in a two-sided hypothesis
- Generally, researchers prefer two-sided hypotheses because this is seen as a more conservative approach to hypothesis testing (i.e., only reject H_0 when you have strong evidence)

one-sided vs. two-sided rejection region

- Rejection region
 - $-\alpha\ level$ (alpha level) is a number such that we reject if the observed p-value is less than or equal to the alpha level. This is something we decide before we calculate test statistic
 - Show picture of two-sided .05 alpha level
 - Show picture of one-sided .05 alpha level
- Two-sided hypotheses require a more extreme t-score (larger absolute value) in order to reject H_0 than one sided hypotheses. E.g., α level = .05:
 - One sided hypothesis: reject H_0 if t>1.645
 - Two sided hypothesis: reject H_0 if t>1.96 or if t<-1.96

In class exercise (answer on next page)

- A random sample of 400 students take the SAT; sample mean is 1030; sample std dev is 300
- Research question: is the population mean SAT score equal to 1,000
- (1) test the research question using a two sided alternative hypothesis
 - Assume alpha level=.05; Show all five parts of the significance test
- (2) test the research question using the one-sided alternative hypothesis that the population mean SAT score is greater than 1,000
 - Assume alpha level=.05; Show all five parts of the significance test

In class exercise (answers): Question 1

- (1) Assumptions
 - (a) quantitative variable; (b) random sampling (c) normal population distribution (robust to this assumption because large sample size)
- (2) hypothesis
 - H_0 : $\mu = \mu_0 = 1,000$; H_a : $\mu \neq 1,000$
- (3) test statistic

$$- se = \frac{sample std dev}{\sqrt{n}} = \frac{300}{\sqrt{400}} = \frac{300}{20} = 15$$

$$\bar{v} = v_0 = 1030 - 1000 = 30$$

$$- t = \frac{\bar{y} - u_0}{se} = \frac{1030 - 1000}{15} = \frac{30}{15} = 2$$

- (4) p-value
 - Two-sided p-value is Pr(t>2)+Pr(t<-2)</p>
 - On z-score table, probability of finding z-score>2 is .0228
 - P-value for two-sided hypothesis = Pr(z>2)*2=.0228*2=.0456
- (5) conclusion
 - P-value of .0456 is less than alpha level of .05
 - Reject H_0 ; Accept H_a ; we accept the alternative hypothesis that the population mean SAT score is not equal to 1,000

In class exercise (answers): Question 2

- (1) Assumptions
 - (a) quantitative variable; (b) random sampling (c) normal population distribution (robust to this assumption because large sample size)
- (2) hypothesis
 - H_0 : $\mu = \mu_0 = 1,000$; H_a : $\mu > 1,000$
- (3) test statistic

$$- se = \frac{sample std dev}{\sqrt{n}} = \frac{300}{\sqrt{400}} = \frac{300}{20} = 15$$

$$\bar{v} - u_0 = 1030 - 1000 = 30$$

$$- t = \frac{\bar{y} - u_0}{se} = \frac{1030 - 1000}{15} = \frac{30}{15} = 2$$

- (4) p-value
 - One-sided p-value is Pr(t>2)
 - On z-score table, probability of finding z-score>2 is .0228
 - P-value=.0228
- (5) conclusion
 - P-value of .0228 is less than alpha level of .05
 - Reject H_0 ; Accept H_a ; We accept the alternative hypothesis that the population mean SAT score is greater than 1,000

Equivalence between confidence interval and two-sided significance test

- Confidence interval for value of population parameter, μ
 - Goal of CI: some range of values between which we believe the population parameter, μ , lies.
 - Confidence interval: $\bar{y} \pm t * se$
 - -95% CI: $\bar{y} \pm 1.96 * se$
 - Assume sample size is greater than 100
- (1) Construct 95 % CI; (2) Construct a two-sided significance test with alpha=.05

Relationship between confidence interval and two-sided significance test

- Show picture
- If p-value<=.05 (i.e., reject H_0)
 - If p-value<=.05 in a two-sided test, a 95% CI for μ does not contain μ_0
 - Equivalently, if 95% CI for μ does not contains μ_0 then we reject H_0
- If p-value>.05 (i.e., do not reject H_0)
 - When p-value>.05 in a two-sided test, the 95% CI for μ contains μ_0 (associated with null hypothesis, H_0)
 - Equivalently, if 95% CI for μ contains μ_0 then we do not reject H_0

CI and significance test

- Example: Hours per week on internet
 - $-H_0$: $\mu = \mu_0 = 10$; H_a : $\mu \neq 10$
 - Imagine that we reject H_0 using an alpha level of .05
 - Question: does 95% CI include the value 10?
 - Imagine we fail to reject H_0 using an alpha level of .05
 - Question: does 95% CI include the value 10?
- Example: Credit score
 - Imagine that 95% CI for population mean credit score is 600 to 700
 - Question (imagine two-sided hypothesis, alpha level =.05:
 - Would we reject H_0 : $\mu = \mu_0 = 610$?
 - Would we reject H_0 : $\mu = \mu_0 = 720$?

Cls vs. significance tests

- Confidence intervals better than significance tests
 - "Most statisticians believe [significance tests] have been overemphasized in social science research....A test merely indicates whether the particular value in H_0 is plausible. It does not tell us which other potential values are plausible. The confidence interval, by contrast, displays all plausible potential values. It shows the extent to which H_0 may be false by showing whether the values in the interval are far from the H_0 value." (Agresti, p. 164)