

Lab 4 - Practice - BFS

CS208 Algorithm Design and Analysis
Yang Xu
xuyang@sustech.edu.cn

Slides adapted from Yao Zhao zhaoy6@sustech.edu.cn

Question 1:

- ► FluffyT, the super bunny, successfully escaped from Satori's bunny shop. She then ran into an alley with N check points.
- As FluffyT is a super bunny, she can build a portal between check point i and a_i using 1 second and travel through within no time. However, she cannot travel in the opposite direction (from a_i to i). Also, she can run from check point i to check point i-1 and i+1 using 1 second.
- ► FluffyT is currently at check point 1. Can you tell her the minimum time to get to each check point?

minimum time

Sample Input 1

3 3 Check point 1: 1->1

Check point 2:
$$\begin{cases} 1 - > 2 & 1 \\ 1 - > \alpha 1 = 2 & 1 \end{cases}$$

- Check point 3:
$$\begin{cases} 1->2->3 & 2\\ 1->\alpha 1=2->3 & 2 \end{cases}$$

Sample Output **0 1 2**

minimum time

Sample Input 2

Check point 1:1 0

Check point 2: 1->2

Check point 3: 1->2 ->3 2

Check point 4: 1->2->3->4 3

Check point 5: 1->2->3->4->5 4

Sample Output 2 **0 1 2 3 4**

minimum time

Sample Input 3

Check point 1: 1 0

Check point 2: 1->2

Check point 3: 1->2 ->3 2

Check point 4: 1->a1:4

Check point 5: 1-> a1:4->5 2

Check point 6: 1-> a1:4 ->5 ->6 3

Check point 7: 1-> a1:4 ->5 ->a5:7 3

Hint: Try BFS on the graph

Sample Output 3 **0 1 2 1 2 3 3**

Analysis

Check point:1	2	3	
ai:2	2	3	

1	2	3	4	5	6	7
a i:4	4	4	4	7	7	7

Question 2:

A knight has 8 possible moves it can make, as illustrated below. Each move is two squares in a cardinal direction, then one square in an orthogonal direction.

▶ On a n*n chess board, given the starting point (x1, y1) and the ending point (x2, y2), calculate the minimum number of moves a knight needs to make from the starting point to the ending point. If the knight cannot reach the ending point, return -1.

Example 1:

Input: n = 4, x1 = 0, y1 = 0, x2 = 2, y2 = 1

Output: 1

Explanation: $[0, 0] \rightarrow [2, 1]$

Example 2:

Input: n = 8, x1 = -1, y1 = -1, x2 = 4, y2 = 4

Output: 4

Explanation: $[-1, -1] \rightarrow [1, 0] \rightarrow [3, 1] \rightarrow [2, 3] \rightarrow [4, 4]$

Analysis

Knight can move to 8 different positions

1.
$$(x-1, y+2) ==> (-1, +2)$$

2.
$$(x+1, y+2) ==> (+1, +2)$$

3.
$$(x+2, y+1) ==> (+2, +1)$$

4.
$$(x+2, y-1) ==> (+2, -1)$$

5.
$$(x+1, y-2) ==> (+1, -2)$$

6.
$$(x-1, y-2) ==> (-1, -2)$$

7.
$$(x-2, y-1) ==> (-2, -1)$$

8.
$$(x-2, y+1) ==> (-2, +1)$$

Analysis

- When it reaches position
 2 (for example)
- From there it can move the next seven places.

Grading

- You can choose a problem to implement, the remaining one only describes the idea of solving the problem.
- Total point: 1