LAB 3 INSTRUCTIONS

DS8003 - MGT OF BIG DATA AND TOOLS

Ryerson University

Upload Dataset to the Sandbox

- Download the dataset: shakespeare_100.txt to you local machine (WINDOWS MACHINE If you are in the LAB)—
- The file is available on D2L Brightspace under Datasets & Scripts -> under Shakespeare
- Upload the dataset via Filezilla (Lab Computer already has this software installed)
- If you don't have FileZilla, download and install here:
 https://filezilla-project.org
- Open Filezilla

Connect to Virtual box using Filezilla

- Open Filezilla
- Enter Host: sftp://127.0.0.1
- Port: 2222
- Username & Password same as your virtual box
- Click QuickConnect

Upload Dataset to the Sandbox

- After connecting to the Sandbox access node in Filezilla...
 - The left side shows directories of your local computer (WINDOWS COMPUTER IF USING LAB MACHINE)
 - The right side box shows directories of your remote machine on Linux
 - In this case the HDP Sandbox (Virtual Box)
- Upload shakespeare_100.txt to Sandbox
 - On the right-side box, navigate to /root/lab
 - On the left-side box, navigate and find the shakespeare_100.txt file you downloaded and drag it to /root/lab on the right to the Sandbox

Upload few more files to /root/lab

Download wc_mapper-2.py and wc-reducer-2.py from D2L undero Week 3=> MapReduce-Lab => Python MapReduce scripts and upload to VirtualBox

Copy Shakespere_100.txt into HDFS

Using the "-put" command we practiced last week

```
[root@sandbox lab] # hdfs dfs -ls /user/root
Found 3 items
drwx----- - root root 0 2016-09-05 17:54 /user/root/.staging
rw-r--r- 3 root root 318 2016-09-05 17:43 /user/root/test.txt
 rw-r--r-- 3 root root
                              318 2016-09-05 17:54 /user/root/test copy.txt
[root@sandbox lab] # hdfs dfs -put shakespeare 100.txt /user/root
[root@sandbox lab] # hdfs dfs -ls /user/root
                               0 2016-09-05 17:54 /user/root/.staging
drwx----- - root root
-rw-r--r- 3 root root 5589917 2016-09-17 14:33 /user/root/shakespeare 100.
-rw-r--r-- 3 root root
                             318 2016-09-05 17:43 /user/root/test.txt
rw-r--r-- 3 root root
                              318 2016-09-05 17:54 /user/root/test copy.txt
[root@sandbox lab]#
```

 The data files have to be in HDFS for MapReduce to start processing

MapReduce

- Today's Lab
 - Java MapReduce WordCount
 - Python Streaming WordCount

WordCount: This is similar to the Apples, Strawberries, and Oranges example we saw in class except that it is counting the occurrences of words in text file

Java MapReduce WordCount

- 1. Find your mapreduce-example jar file
 - □ [root@sandbox ~]# find /usr -name *hadoop-mapreduce-example*
- 2. Find the list of examples that can be run:
 - [root@sandbox lab]# hadoop jar /usr/hdp/2.4.0.0-169/hadoop-mapreduce/hadoop-mapreduce-examples-2.7.1.2.4.0.0-169.jar

 Make sure this *.jar file path
- 3. Run java M/R wordcount example
 - [root@sandbox]# hadoop jar/usr/hdp/2.4.0.0-169/hadoop-mapreduce/hadoop-mapreduce-examples-2.7.1.2.4.0.0-169.jar wordcount /user/root/shakespeare_100.txt /user/root/shakespeare_100_out

matches with the result from

- View results
- [root@sandbox]# hadoop fs -ls /user/root/shakespeare_100_out
- [root@sandbox]# hadoop fs -cat /user/root/shakespeare_100_out/part-r-00000 | tail -n 50

```
[root@sandbox lab]# hadoop fs -cat /user/root/shakespeare-out-java/part-r-00000 | tail -n 5
zone, 1
zounds! 1
zounds, 1
zwagger'd 1
} 2
[root@sandbox lab]#
```

Java MapReduce WordCount

Launching a job:

```
[root@sandbox lab] # hadoop jar /usr/hdp/2.4.0.0-169/hadoop-mapreduce/hadoop-mapr ^ educe-examples-2.7.1.2.4.0.0-169.jar wordcount /user/root/shakespeare_100.txt /user/root/shakespeare_100_out
WARNING: Use "yarn jar" to launch YARN applications.
16/09/17 14:38:38 INFO impl.TimelineClientImpl: Timeline service address: http://sandbox.hortonworks.com:8188/ws/v1/timeline/
16/09/17 14:38:39 INFO client.RMProxy: Connecting to ResourceManager at sandbox.hortonworks.com/10.0.2.15:8050
16/09/17 14:38:41 INFO input.FileInputFormat: Total input paths to process: 1
```

Monitor a job: http://127.0.0.1:8088/cluster

Java MapReduce WordCount

Look at results

```
root@sandbox:~/lab
[root@sandbox lab]# hdfs dfs -ls /user/root/shakespeare 100 out
Found 2 items
-rw-r--r- 3 root root 0 2016-09-17 14:40 /user/root/shakespeare 100
out/ SUCCESS
-rw-r--r- 3 root root 721004 2016-09-17 14:40 /user/root/shakespeare 100
out/part-r-00000
[root@sandbox lab]# hdfs dfs -getmerge /user/root/shakespeare 100 out shakespear
e wordcount
[root@sandbox lab]# ls
dept course.txt shakespeare 100.txt test two copies.txt
dept salary.txt shakespeare wordcount test.txt
integer list.txt test copy.txt
[root@sandbox lab] # head -5 shakespeare wordcount
       241
"'Tis 1
"AS-IS".
"Air," 1
[root@sandbox lab]#
```

MapReduce

- □ Today's Lab
 - Java MapReduce WordCount
 - Python Streaming WordCount

Python Streaming WordCount

- We will use the wc_mapper-2.py and wc_reducer-2.py we uploaded previously
- 2. Find your mapreduce-example jar file
 - [root@sandbox lab]# find /usr -name *hadoop-streaming*
- 3. Run Hadoop streaming wordcount
 - [root@sandbox lab]# hadoop jar /usr/hdp/2.4.0.0-169/hadoop-mapreduce/hadoop-streaming-2.7.1.2.4.0.0-169.jar -file /root/lab/wc_mapper-2.py -mapper wc_mapper-2.py -file /root/lab/wc_reducer-2.py -reducer wc_reducer-2.py -input /user/root/shakespeare_100.txt -output /user/root/shakespeare_streaming_out
- 4. View results
 - [root@sandbox lab]# hadoop fs -ls /user/root/shakespeare_streaming_out
 - [root@sandbox lab]# hadoop fs -cat /user/root/shakespeare_streaming_out/part-00000 | tail -n 15

Python Streaming WordCount

Launching a job

```
root@sandbox:~/lab
[root@sandbox lab] # hadoop jar /usr/hdp/2.4.0.0-169/hadoop-mapreduce/hadoop-stre
aming-2.7.1.2.4.0.0-169.jar -file /root/lab/wc mapper-2.py -mapper wc mapper-2.p
y -file /root/lab/wc reducer-2.py -reducer wc reducer-2.py -input /user/root/sha
kespeare 100.txt -output /user/root/shakespeare streaming out
WARNING: Use "yarn jar" to launch YARN applications.
16/09/17 14:55:29 WARN streaming.StreamJob: -file option is deprecated, please u
se generic option -files instead.
packageJobJar: [/root/lab/wc mapper-2.py, /root/lab/wc reducer-2.py] [/usr/hdp/2
.4.0.0-169/hadoop-mapreduce/hadoop-streaming-2.7.1.2.4.0.0-169.jar] /tmp/streamj
ob4173614868856968256.jar tmpDir=null
16/09/17 14:55:32 INFO impl.TimelineClientImpl: Timeline service address: http:/
/sandbox.hortonworks.com:8188/ws/v1/timeline/
16/09/17 14:55:32 INFO client.RMProxy: Connecting to ResourceManager at sandbox.
hortonworks.com/10.0.2.15:8050
16/09/17 14:55:33 INFO impl.TimelineClientImpl: Timeline service address: http:/
/sandbox.hortonworks.com:8188/ws/v1/timeline/
16/09/17 14:55:33 INFO client.RMProxy: Connecting to ResourceManager at sandbox.
hortonworks.com/10.0.2.15:8050
16/09/17 14:55:33 INFO mapred.FileInputFormat: Total input paths to process : 1
16/09/17 14:55:34 INFO mapreduce. JobSubmitter: number of splits:2
16/09/17 14:55:34 INFO mapreduce.JobSubmitter: Submitting tokens for job: job 14
74116507668 0003
16/09/17 14:55:35 INFO impl. YarnClientImpl: Submitted application application 14
74116507668 0003
```

Number of Reducers

- Number of reducers (jobs) can be changed using the option "-D mapred.reduce.tasks=n". where n is the number of reducers
- □ If n=0 then there will be no reducers. Mappers output will be written out to HDFS
- You may want to use n=0 when you are perform tasks such as filtering
- hadoop jar /usr/hdp/2.4.0.0-169/hadoop-mapreduce/hadoop-streaming-2.7.1.2.4.0.0-169.jar -D mapred.reduce.tasks=4 -file /root/lab/wc_mapper-2.py mapper wc_mapper-2.py -file /root/lab/wc_reducer-2.py -reducer wc_reducer-2.py -input /user/root/shakespeare_100.txt -output /user/root/shakespeare_streaming_out_2

https://hadoop.apache.org/docs/r1.2.1/streaming.html #Specifying+the+Number+of+Reducers

Hadoop Streaming with Other Languages

- Using Linux Commands:
 - https://www.r-bloggers.com/using-hadoop-streaming-api-to-perform-a-word-count-job-in-r-and-c/
- Using Bash (Check D2L for sample code)
 - https://www.linkedin.com/pulse/20140706111754-176301000-hadoop-streaming-example-job-usingbash
- Using R (Check D2L for sample code)
 - https://coderwall.com/p/imxf6g/running-wordcounton-hadoop-using-r-script

Word Count in Linux

- [root@sandbox lab]# cat shakespeare_100.txt | head
- [root@sandbox lab]# cat shakespeare_100.txt | head -1
- [root@sandbox lab]# cat shakespeare_100.txt | tr '[:space:]' '\n' | sort | uniq -c | sort -rn |
 head -15
- [root@sandbox lab]# cat shakespeare_100.txt | tr '[:space:]' '\n'| sort | uniq -c | sort -rn | grep "zealous"

Try yourself

Map-Reduce – ODD/Even Number

- Input: A file containing a list of numbers
 - Input file is "integer_list.txt" that can be found downloaded from D2L Week 3=> MapReduce-Lab => Datasets
 - Upload file to VirtualBox.
 - Copy the file to "/user/root" in the hdfs
- Output: Count the number of odd numbers and even numbers
- Think about
 - How do you mathematically check if a number if even or odd?
 - Starting from the WordCount Example- What changes need to be made to the mapper or reducer for this problem?
- Helpful Python code:
 - Casting
 - D = '5'
 - \blacksquare A = int(D)
 - converts string "5" into the number 5
 - "%" is the modulo parameter;
 - **8%**4
 - will be equal to 0 because 8 is completely divisible by 4

Map-Reduce - Average

- Input: A file containing Department[SPACE]Salary
 - Input file is "dept_salary.txt" that you downloaded from D2L Week 3=> MapReduce-Lab => Datasets
 - Upload to VirtualBox.
 - Copy the file to "/user/root" in the hdfs
- Output: Department[SPACE]Average Salary
- Think about
 - What required to calculate an average?
 - Starting from the WordCount Example- What changes need to be made to the mapper or reducer for this problem?

Summary

- The two python scripts perform the mapper and reducer tasks. The underlying data shuffling/sorting is taken care of by the mapreduce framework
- Now that you've practiced hadoop filesystem commands and tried to run some mapreduce code, you're ready to move on to the fun part – Pig and Hive!

Recommended Readings

- Hadoop Streaming:
 http://www.devx.com/opensource/introduction-to-hadoop-streaming.html
- https://hadoop.apache.org/docs/r1.2.1/streaming. html