ГОСУДАРСТВЕННЫЙ НОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТНРЫТИЯМ ПРИ ГННТ СССР

(51)5 C 07 D 471/04//A 61 K 31/54 (C 07 D 471/04, 221:00, 215:22)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н ПАТЕНТУ

29390

- $(21)^{-}4028796/23-04$
- (22) 15.01.87
- (31) P 3601567.9
- (32) 21.01.86
- (33) DE
- (46) 23.01.90. Бюл. № 3
- (71) Байер АГ (DE)
- (72) Уве Петерсен, Клаус Гроге, Томас Шенке, Германн Гагеманн, Ганс-Йоахим Цейлер и Карл Георг Метцгер (DE)
 - (53) 547.831.9.07(088.8)
 - (56) Патент Великобритании № 2085875, кл. С 07 D 401/04, опублик. 06.05.82.

- (54) СПОСОБ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ Т ХИНОЛИН- ИЛИ НАФТИРИДИНКАРБОНОВОЙ КИСЛОТЫ ИЛИ ИХ КИСЛОТНО-АДДИТИВНЫХ СОЛЕЙ, ИЛИ ИХ ГИДРАТОВ
- (57) Изобретение касается производных хинолин- или нафтиридинкарбоновой кислоты, в частности соединений

общей формулы: $CH=CX_1-CR_3=A-C=C-C(0)-C[C(0)-0R_2]=CH-NR_1$, где R_1 -этил, ци-клопропил, метиламино, 4-фторфенил, 2,4-дифторфенил; R_2 - H или этил; R_3 - H-, или одно-, или дизамещенный ра-дикал.:

 R_4 - CH_3 , бензил; X_1 - F или NO_2 , A-азот или CR_5 при R_5 = H, F, C1, NO_2 ; или R_4 и A = -O- CH_2 -CH- $(CH)_3$, причем если X_4 = F; R_2 =H и A=CF или N, R_4 = C_2 H_5 или циклопропил, или R_6 с R_4 ==-O- CH_2 -CH- (CH_3) -, то R_3 радикалу "б"; если X_4 = F, R_2 =H A = -CH-, -CC1-, -CF-, или A и R_4 = -O- CH_2 -CH- (CH_3) , то R_3 \neq радикалу "б" или "A" C R_4 = CH_3 , или их кислотно-аддитивных солей или гидратов, обладающих антибактериаль-

зовано в медицине. Синтез ведут из соединения общей ф-лы, где вместо R_3 находится галоид, который обрабатывают R_3 Н или его гидро- или дигидро-хлоридом, при необходимости, в присутствии кислотосвязывающего средства с последующим выделением целевого продукта в свободном виде или в виде необходимых солей или гидратов. Новые соединения имеют улучшенную антибактериальную активность. 1 табл.

Изобретение относится к способу получения новых соединений с антибактериальным действием, в частности к

способу получения производных хинолин- или нафтиридинкарбоновой кислоЦелью изобретения является способ получения новых производных хинолинили нафтиридинкарбоновой кислоты с улучшенной антибактериальной активностью.

Пример 1.

.: K 8.1 г (30 ммоль) 1-циклопропил--6,7-дифтор-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты в 60 мл ацетонитрила и 90 мл диметилформамида. прибавляют 3,4 г (30 ммоль) 1,4-ди-азабицикло [3,2,1] октана и 6,6 г (59 ммоль) 1,4-диа забицикло [2,2,2] октана и в течение 6 ч нагревают с обратным холодильником. После охлаждения смесь сгущают, остаток перемешивают с водой и нерастворенный бетаин отсасывают (т.пл. приблизительно начиная с 258°C, разложение). Бетаин горячо растворяют в 5 мл полуконцентрированной соляной кислоты, фильтруют, прибавляют 40 мл этанола и охлаждают льдом. Выделившийся гидрохлорид отсасывают, промывают этанолом и высушивают. Получают 5,3 г (45% теории) гидрохлорида 1-циклопропил-7-(1,4-диазабицикло) 3,2,1 окт-4-ил)-6-фтор-1,4-дигидро-4-оксо--3-хинолинкарбоновой кислоты с т.пл. 322°C (разложение).

Пример 2.

3,3 г (9,2 ммоль) 1-циклопропил-7-(1,4-диазабицикло[3,2,1]-октан-4-ил)-6-фтор-Г,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты (бетаин из
примера 1) и 1,8 г (4,6 ммоль) эмбоновой кислоты в 35 мл простого гликольмонометилового эфира в течение
4 ч нагревают с обратным холодильником. Суспензию охлаждают, кристаллы
отсасывают, промывают этанолом и высушивают в вакууме при 120°С. Получают 4,7 г гемиэмбоната 1-циклопропил-7-(1,4-диазабицикло [3,2,1] окт-4-

-ил)-6-фтор-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты с т.пл. начиная с 217°С (разложение).

Пример 3.

$$\begin{array}{c|c}
F & O \\
\hline
 & COOH \\
 & HC1 \cdot H_2O
\end{array}$$

По методике примера 1, используя в качестве исходного 8-хлор-1-цикло-пропил-6,7-дифтор-1,4-дигидро-4-оксо-3-хинолинкарбоновую кислоту, получают гидрат гидрохлорида 8-хлор-1-циклопропил-7-(1,4-диазабицикло[3,2,1]-окт-4-ил)-6-фтор-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты с т.пл. 310°С (разложение).

Пример 4. F О СООН N N F N × HC1

По примеру 1, используя в качестве исходного 1-циклопропил-6,7,8-трифтор-1,4-дигидро-4-оксо-3-хинолин-карбоновую кислоту, получают гидрохлорид-1-циклопропил-7-(1,4-диазабицикло [3,2,1] окт-4-ил)-6,8-дифтор-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты с т.пл.>310°С, разложение (начиная приблизительно с 260°С вещество медленно становится темным).

Пример 5.

$$02N \xrightarrow{O} COOH \times HC1$$

Повторяют пример 1, исходя из 7-хлор-1-циклопропил-6-фтор-1,4-ди-гидро-4-оксо-1,8-нафтгидрин-3-карбоновой кислоты. Получают гидрохлорид 1-циклопропил-7-(1,4-диазабицикло—[3,2,1]-окт-4-ил)-6-фтор-1,4-дигидро-4-оксо-1,8-нафтгидрин-3-карбоновой кислоты с т.пл. 303-307°C (разложение).

Пример 6.

10

20

25

45

50

Повторяют пример 1, исходя из 7--хлор-1-циклопропил-6-фтор-1,4-дигидро-4-оксо-1,8-нафтгидрин-3-карбоновой кислоты. Получают гидрохлорид 1--циклопропил-7-(1,4-диазабицикло [3,4 2,1\окт-4-ил)-6-фтор-1,4-дигидро-4--оксо-1,8-нафтгидрин-3-карбоновой кислоты с т.пл.>300°С (разложение). Пример 7.

$$\begin{array}{c|c}
 & O \\
 & COOH \\
 & N & F & C_2H_5
\end{array}$$

Повторяют пример 1, исходя из 1-·-этил-6, 7, 8-трифт op-1, 4-дигидро-4--оксо-3-хинолинкарбоновой кислоты. Получают гидрохлорид 7-(1,4-диазабицикло [3,2,1]окт-4-ил)-1-этил-6,8--дифтор-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты с т.пл. 308-312°С (разложение).

Пример

К смеси 2,8 г (10 ммоль) 9,10-дифтор-2,3-дигидро-3-метил-7-оксо-7Н--пиридо[1,2,3-de][1,4] бензоксазин-6--карбоновой кислоты и 1,2 г (10,7 ммоля) 1.4-диазабицикло [3,2,1]-октана в 25 мл диметилсульфоксида прибавляют 2,2 г (20 ммоль) 1,4-диазабицикло [2,2,2] октана и в течение 5 ч греют при 120°C. Смесь сгущают в вакууме, остаток смешивают с 40 мл ацетонитрила, нерастворенный остаток отсасывают и очищают путем хроматографии на силикагеле с помощью дихлорметана, метанола и 20%-ного аммиачного раствора в соотношении 2:4:1 в качестве разбавителя. Выделяют 1,2 г твердого продукта, который растворением в 8 мл полуконцентрированной соляной кислоты и осаждением при помощи 30 мл этанола переводят в гидрохлорид. Выход: 1,1 г гидрохлорида 10-(1,4-диазабицикло 3, 2, 1 окт-4-ил) -9-фтор-2, 3-дигидро-3-метил-7-оксо-7Н-пиридо [1,2,3--de] [1,4]-бензоксазин-б-карбоновой кислоты, т.пл. 355°C (разложение). Начиная с 290°С гидрохлорид становится более темным.

Пример

Повторяют пример 1, исходя из 6,7,8-трифтор-1-(4-фторфени**л)-1,4-**-дигидро-4-оксо-3-хинолинкарбоновой кислоты. Получают гидрохлорид 7-(1.4-15 -диазабицикло [3,2,1] окт-4-ил)-6,8--дифтор-1-(4-фторфенил)-1,4-дигидро--4-оксо-3-хинолинкарбоновой кислоты, т.пл. 310-314°C (разложение). Пример 10.

К 2,0 г (6 ммоль) 7-хлор-1-циклопропил-6-фтор-1,4-дигидро-8-нитро-4--оксо-3-хинолинкарбоновой кислоты в смеси из 10 мл ацетонитрила и 25 мл 30 диметилформамида прибавляют 0,7 г (6 ммоль) 1,4-диазабицикло [2,2,2] oктана и 0,7 г (6 ммоль) 1,4-диазаби-цикло [3,2,1] октана и в течение 2 ч нагревают с обратным холодильником. 35 Затем сгущают и прибавляют воду. Охлаждая льдом, дают выкристаллизовываться, отсасывают, промывают водой и высушивают. Выход: 1 г (41% теории) 1-циклопропил-7 (1,4-диа забицикло-40 [3,2,1] окт-4-ил)-6-фтор-1,4-дигидро-8-нитро-4-оксо-3-хинолинкарбоновой кислоты, т.пл. 215-232°C (разложение).

Пример 11.

530 мг (2 ммоль) 1-циклопропил- -6,7-дифтор-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты в 4 мл ацето. нитрила и 6 мл диметилформамида вместе с 530 мг (2 ммоль) 2-бензил-2,5--диазабицикло [2,2,1] гептан-дигидрохлорида и 880 мг (7,9 ммоль) 1,4-диазабицикло [2,2,2] октана в течение :

15

20

25

Повторяют пример 16, исходя из гидрохлорида 8-окса-3-аза-бицикло – [3,2,1] октана, причем получают 1-циклопропил-6-фтор-1,4-дигидро-7-(8-оксо-3-аза-бицикло [3,2,1] окт-3-ил)-4-оксо-3-хинолинкарбоновую кислоту с т.пл. $272-275^{\circ}$ С (разложение) (из гликольмонометилового эфира).

Пример 18.

Повторяют пример 16, исходя из гидрохлорида 3-окса-8-аза-бицикло - [3,2,1] октана. Получают 1-циклопропил-6-фтор-1,4-дигидро-7-(3-оксо-8-аза-бицикло [3,2,1] окт-8-ил)-4-оксо-3-хинолинкарбоновую кислоту с т.пл. 283-284°C, разложение (из гли-кольмонометилового эфира).

Пример 19.

$$N \longrightarrow N$$
 $N \longrightarrow N$
 $N \longrightarrow N$
 $N \longrightarrow N$
 $N \longrightarrow N$
 $N \longrightarrow N$

Повторяют пример 16, исходя из 2,2-диметил-1,4-диазабицикло- [3,2,1] 35 октана. Получают 1-циклопропил-6--фтор-1,4-дигидро-7-(2,2-диметил-1,4--диазабицикло[3,2,1] окт-4-ил)-4-ок-со-3-хинолинкарбоновую кислоту с т.пл. 242-246°С (разложение).

Пример 20.

К 3,37 г (10 ммоль) 6,7,8-трифтор-1-(4-фтор-фенил)-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты в 30 мл
диметилсульфоксида прибавляют 2,7 г
(24 ммоль) 1,4-диазабицикло [2,2,2]
октана и 2,1 г (17 ммоль) 2-метил-1,4-диазабицикло [3,2,1] октана и в
течение 2 ч нагревают до 140°С. Рас-

творитель в высоком вакууме отгоняют и к остатку прибавляют воду (рН 7). Затем добавлением полуконцентрированной соляной кислоты устанавливают значение рН 7, прибавляют одинаковый объем этанола и гидрохлорид отсасывают. После перекристаллизации из воды/этанола получают 2,5 г гидрохлорида 6,8-дифтор-1-(4-фтор-фенил)-1,4-дигидро-7-(2-метил-1,4-диазабицикло[3,2,1]окт-4-ил)-4-оксо-3-хинолинкарбоновой кислоты с т.пл. 325-330°С (разложение).

Пример 21.

3,5 г (10 ммоль) 6,7,8-трифтор-1--(2,4-дифтор-фенил)-1,4-дигидро-4-оксо-3-хинолинкарбоновой кислоты в 30 мл диметилсульфоксида вместе с 2,7 г (24 ммоль) 1,4-диазабицикло [2,2,2]октана и 2,1 г (17 ммоль) 2--метил-1,4-диазабицикло [3,2,1] октана в течение 2 ч греют при 140°С. Перерабатывают согласно примеру 20. После перекристаллизации из воды получают 1,1 г гидрохлорида 6,8-дифтор--1-(2,4-дифторфенил)-1,4-дигидро-7--(2-метил-1,4-диазабицикло[3,2,1] окт-4-ил)-4-оксо-3-хинолинкарбоновой кислоты с т.пл. 278-280°С (разложение).

Пример 22.

$$\begin{array}{c|c}
F & O \\
N & F \\
CH_3
\end{array}$$

Повторяют пример 16, исходя из 2,8 г (10 ммоль) 1-циклопропил-6,7, 8-трифтор-1,4-дигидро-4-оксо-3-хино-линкарбоновой кислоты. Получают 1,3 г 1-циклопропил-6,8-дифтор-1,4-дигидро-7-(2-метил-1,4-диазабицикло[3,2,1] окт-4-ил)-4-оксо-3-хинолинкарбоновой кислоты с т.пл. 239-242°С, разложение (из простого гликольмонометилового эфира).

40

45

Аналогично получают соединение сложный этиловый эфир 1-циклопропил--7-(1,4-диа забицикло-[3,2,1] окт-4--ил)-6,8-дифтор-1,4-дигидро-4-оксо--3-хинолинкарбоновой кислоты с т.пл. 196-199°C (пример 23).

Биологический опыт. Определение минимальной концентрации торможения (МКТ).

Растворы исследуемых соединений различных концентраций смешивают с жидкой агаровой средой и вливают в чашки, после чего чашки заражают указанными в таблице бактериями. При этом 15 определяют ту концентрацию исследуемого соединения, которая обеспечивает торможение образования видимых колоний бактерий в течение 24 ч.

Исследуемые соединения, бактерии и результаты опыта сведены в таблицу.

В качестве сравнения использовано известное антибактериальное средство - 1-этил-6-фтор-1,4-дигидро-4-ок-со-7-(1,4-диазабицикло[3,2,2]нон-4-ил-3-хинолинкарбоновая кислота (патент СССР к заявке № 4028142/04, кл. С 07 D 487/18, 18.09.85.

Как видно из таблицы, новые производные хинолин- или нафтиридинкарбоновой кислоты по сравнению со структурным аналогом, обладают улучшенной антибактериальной активностью.

Формула изобретения

Способ получения производных хинолин- или нафтиридинкарбоновой кислоты общей формулы

$$X_1$$
 R_3
 A
 N
 R_1

где R — этил, циклопропил, метиламино, 4-фторфенил, 2,4-дифторфенил;

> R₂ - водород, этил;
> R₃ - в кольцевой системе незамещенный или одно- или двукратно замещенный метилом радикал формулы

$$\begin{pmatrix}
N \\
N \\
N
\end{pmatrix}
, \quad
\begin{pmatrix}
N \\
N \\
N \\
R_4
\end{pmatrix}
, \quad
\begin{pmatrix}
N \\
N \\
N \\
R_4
\end{pmatrix}
, \quad
\begin{pmatrix}
N \\
N \\
N \\
N \\
N
\end{pmatrix}$$

где R₄ - метил или бензил;

X₄ - фтор или нитро; A - атом азота или C-R₅, где R₅водород, фтор, хлор или нитрогруппа, или совместно с R₁ может образовывать мостик, имеющий структуру -0-CH₂-CH-CH₃,

причем, если X_1^- — ϕ тор, R_2 — водород и A — CF или N, R_1 — этил или цик— лопропил, или R_5 с R_{11} образует мостик со структурой —0— CH_2 —CH— CH_3 , то R_3 не может означать радикал

$$R_4-N \sum N-$$

или, если X_1 - фтор, R_2 - водород, A - -CH-, CC1, CF, или совместно с R_1 может образовывать мостик, имеющий структуру -O-CH $_2$ -CH-CH $_3$, то R_3 не может означать редикал

$$CH_3-N$$
 $N-$ NAN CH_3-N $N-$

или их кислотно-аддитивных солей или их гидратов, о т л и ч а ю щ и й с я тем, что соединение общей формулы

$$X_1 \longrightarrow 0$$

$$X_2 \longrightarrow A$$

$$X_1 \longrightarrow COOR_2$$

$$R_1$$

где R_1, R_2, X_1 и A имеют указанные значения;

X₂- галоид, подвергают взаимодействию с соединением общей формулы

R₃H, где R₃ имеет указанные значения, или с его гидро- или дигидрохлоридом при необходимости в присутствии связывающего кислоту средства, с последующим выделением целевого продукта в свободном виде или в виде кислотно-аддитивных солей или их гидратов.

Минимальная концентрация торможения, (микг/мл),

	1 1 1 1 1 1 1 1 1 1 1 1							
Исследуемое соединемие согласно примеру	E.coli 455/7	Providenicia 12052	Staphylo- coccus aureus FK 422	Staphylo- coccus aureus 1756	Staphylococcus aureus 133	Streptococcus faecae 27101	Streptococcus faecae 9790	Pseudomonas serug.W.
-	2	1	0,25	0,25	0,125	0.25	0.25	. ·
m	0,5	œ	90.0	90.0	90°U	0.06	90 0	0,5
7	0,5	co	0,125	90,0	90 0	0,125	0,25	0.5
'	80 0	4	0,05	0,05	0,35	0,03	0,20	0, 125
7	0,15	9	0,35	0,12	0,25	0,015	0,35	0,250
œ	0,19	. 7	0,07	0,20	90,0	0,010	80.0	0,25
6	0,15	7	0,17	0,15	0,38	0,25	90,0	0,30
01	0,35	13	60,0	0,15	0,07	0,05	0,16	0,40
=	0,4	15	0,30	0,10	0,07	0,30	0,26	0,15
12	7	16	0,125	0,125	0,125	0, 10	0,125	0,5
14	5,0	9	0,20	0,30	0,012	0,040	0,250	0,25
. 16	0,32	7	0,35	0,25	0,12	0,030	0,125	0,315
17	0,38	9	90.0	0,20	0,10	0,015	0,038	050
18	0,45	6	0,05	0,15	0,18	0,20	0,35	07.0
21	0,39	17	0,12	0,10	0,38	0,25	0.20	0.20
22	0,15	15	0,20	0,12	0,30	0,20	0,15	0.15
Сравнительный	m	22	-	_		<u>.</u>	-	0.5
								•