Optimization in Machine Learning

First order methods Step size and optimality

Learning goals

- Impact of step size
- Fixed vs. adaptive step size
- Exact line search
- Armijo rule & Backtracking
- Bracketing & Pinpointing

CONTROLLING STEP SIZE: FIXED & ADAPTIVE

- Iteration t: Choose not only descent direction $\mathbf{d}^{[t]}$, but also step size $\alpha^{[t]}$
- ullet First approach: **Fixed** step size $lpha^{[t]}=lpha>0$
 - $\bullet~$ If α too small, procedure may converge very slowly (left)
 - \bullet If α too large, procedure may not converge \rightarrow "jumps" around optimum (middle)
- Adaptive step size $\alpha^{[t]}$ can provide better convergence (right)

Steps of line searches for $f(\mathbf{x}) = 10x_1^2 + x_2^2/2$

STEP SIZE CONTROL: DIMINISHING STEP SIZE

- How can we adaptively control step size?
- ullet A natural way of selecting $lpha^{[t]}$ is to decrease its value over time
- Example: GD on

$$f(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } |x| \le \delta, \\ \delta \cdot (|x| - 1/2 \cdot \delta) & \text{otherwise.} \end{cases}$$

GD with small constant (**red**), large constant (**green**), and diminishing (**blue**) step size

STEP SIZE CONTROL: EXACT LINE SEARCH

• Use **optimal** step size in each iteration:

$$\alpha^{[t]} = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}_{>0}} g(\alpha) = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}_{>0}} f(\mathbf{x}^{[t]} + \alpha \mathbf{d}^{[t]})$$

- Need to solve a univariate optimization problem in each iteration

 univariate optimization methods
- Problem: Expensive, prone to poorly conditioned problems
- But: No need for optimal step size. Only need a step size that is "good enough".
- **Reason:** Effort may not pay off, but in some cases slows down performance.

ARMIJO RULE

- Inexact line search: Minimize objective "sufficiently" without computing optimal step size exactly
- Common condition to guarantee "sufficient" decrease: Armijo rule

ARMIJO RULE

• Fix $\gamma_1 \in (0,1)$. α satisfies **Armijo rule** in **x** for descent direction **d** if

$$f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x}) + \gamma_1 \alpha \nabla f(\mathbf{x})^{\top} \mathbf{d}.$$

• Note: $\nabla f(\mathbf{x})^{\top} \mathbf{d} < 0$ (d descent dir.) $\implies f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x})$.

ARMIJO RULE

• Feasibility: For descent direction ${\bf d}$ and $\gamma_1 \in (0,1)$, there exists $\alpha>0$ fulfilling Armijo rule.In many cases, Armijo rule guarantees local convergence of GD and is therefore frequently used.

BACKTRACKING LINE SEARCH

- Procedure to meet the Armijo rule: **Backtracking** line search
- Idea: Decrease α until Armijo rule is met

Algorithm Backtracking line search

- 1: Choose initial step size $\alpha=\alpha_{\rm init},$ 0 < $\gamma_{\rm 1}$ < 1 and 0 < τ < 1
- 2: while $f(\mathbf{x} + \alpha \mathbf{d}) > f(\mathbf{x}) + \gamma_1 \alpha \nabla f(\mathbf{x})^{\top} \mathbf{d}$ do
- 3: Decrease α : $\alpha \leftarrow \tau \cdot \alpha$
- 4: end while

(Source: Martins and Ning. Engineering Design Optimization, 2021.)

WOLFE CONDITIONS

- Backtracking is simple and shows good performance in practice
- But: Two undesirable scenarios
 - Initial step size α_{init} is too large \Rightarrow need multiple evaluations of f
 - Step size is too small with highly negative slopes
- Solution for small step sizes:
 - Fix γ_2 with $0 < \gamma_1 < \gamma_2 < 1$.
 - ullet α satisfies sufficient curvature condition in x for d if

$$|\nabla f(\mathbf{x} + \alpha \mathbf{d})^{\top} \mathbf{d}| \leq \gamma_2 |\nabla f(\mathbf{x})^{\top} \mathbf{d}|.$$

Armijo rule + sufficient curvature condition = **Wolfe conditions**

WOLFE CONDITIONS

- Algorithm for finding a Wolfe point (point satisfying Wolfe conditions):
 - Bracketing: Find interval containing Wolfe point
 - Pinpointing: Find Wolfe point in interval from bracketing

Left: Bracketing.**Right:** Pinpointing. (Source: Martins and Ning. *EDO*, 2021.)

BRACKETING & PINPOINTING

• Example:

- Large initial step size results in quick bracketing but multiple pinpointing steps (left).
- Small initial step size results in multiple bracketing steps but quick pinpointing (right).

