

物理实验数学中心

Physics Expeiment Center

Measuring low-resistances using double bridge

Li Bin

NJUPT

Experiment purpose

- Know the meaning of four probe method and structure of double bridge;
- Learn to use double bridge to measure low resistance;
- Learn to measure resistivity of conductor_o

Principles

Four Probe Method

Measuring resistance
 using Voltammetry,
 contact resistance,
 conductor resistance, If r₂
 and r₃>=R_X, we can not
 use this circuit to measure

low resistance R_X->two
Current contact C-C,
two Voltage contact P-P.
Four-Probe Method

measuring low resistance using double bridge

$$R_{x} = \frac{R}{R_{1}}R_{s} + \frac{r \cdot R_{2}}{r + R^{'} + R_{2}}(\frac{R}{R_{1}} - \frac{R^{'}}{R_{2}})$$

> Experimental apparatus

> Operation

1. Circuit diagram

2. Initial adjustment

adjustment of double bridge

Switch一》"double bridge" (双桥)

adjustment of galvanometer

Galvanometer
switch gear-> "zeroadjustment (调
零)",turn the
zero-adjustment
knob to adjust

After zeroadjustment, switch gear-> maximum range "30mV"

adjustment of standard resistance

Generally, standard resistance -> " 0.1Ω " , According to the actual situation to make corresponding adjustments during measurement. The selected principle: double bridge: 5 effective number, no more than the measurement range of double bridge.

adjustment of resistance

By adjusting the sliding side to select resistance's length to be measured, choose two types of length (200mm, 400mm) to measure.

Just measure copper rod!

Notes: to ensure good contact with metal rods, tightening knobs during experiment.

3. Measurements (take 200mm copper rod as an example)

- ① insert copper bar at four terminal resistance box, adjusting the sliding side to 200mm.
- ② After zero-adjustment, switch gear-> maximum range "30mV"
- ③ Turn off reversing switch, adjust double bridge, Make the galvanometer indicated as *zero*, adjust double bridge.
- 4 Adjust the galvanometer to "3mV", adjust double bridge once more, make the galvanometer indicated as zero. Adjust gradually until galvanometer-> " $30\mu V$ ", Balance indicator->0. Record R resistance of double bridge .
- ⑤ Turn the reversing switch to the other side, backward current, adjust bridge balance once more according to ③、④, record R.

Table I: Diameters of the copper rod

NO.	1	2	3	4	5	Average d
d (mm)	3.986	3.988	3.987	3.989	4.000	

Table II: Resistance and resistivity

 $R1=R2=10000 \Omega$

	L	R_{S}	R		\overline{D}	D	O	$\overline{\rho}$
	(mm)		+	-	R	$\kappa_{\rm X}$		ρ
Copper	200	0.1	119.21	119.61				
Copper rod	400	0.1	239.44	239.74				

$$R_{x} = \frac{R}{R_{1}} R_{s};$$

 $\rho = \pi d^2 R_x/4L$, d: diameter of copper rod,L:length of rod(200mm,400mm);

$$U_{\rho} = \rho. \sqrt{(\frac{U_{R_{\chi}}}{R_{\chi}})^2 + 4(\frac{U_d}{\overline{d}})^2 + (\frac{U_L}{L})^2}; \frac{U_{R_{\chi}}}{R_{\chi}} = 0.005, U_L = 1mm,$$

$$U_d = \sqrt{{U_A}^2 + {U_B}^2}, U_A = s.\frac{t}{\sqrt{n}}, U_B = 0.004mm, (\frac{t}{\sqrt{n}} = 1.24, s = \sqrt{\frac{\sum (d_i - \overline{d})^2}{n - 1}}, n = 5)$$

END