

Features and Unification

By:

B. Senthil Kumar

Sr. Lecturer, CSE

SSN College of Engineering

Overview

- Feature Structures
- Unification of Feature Structures
- Features Structures in the Grammar

Feature – Introduction

- View grammatical categories like 3sgNP, Non3sgAux, and grammatical rules like S → NP VP as objects that have complex sets of properties associated with them
- The information in these properties is represented by constraints, and models are called constraint-based formalisms
- Grammatical phenomena such as agreement and subcategorization lead to over generation Non3sgVPto, NPmass, 3sgNP, Non3sgAux
- These new categories led to an explosion in the number of grammar rules

Refer noun-phrase / verb-phrase from previous slides

Feature – Introduction

- A constraint-based representation scheme will allow to represent information about:
 - number and person,
 - Agreement,
 - subcategorization, as well as
 - semantic categories like mass / count
- Property NUMBER is used to distinguish singular or plural
 - NP like this flight and those flights can be distinguished

Det [NUMBER = SG] \rightarrow this

Det [NUMBER = PL] \rightarrow those

 $N[NUMBER = SG] \rightarrow flight$

 $N [NUMBER = PL] \rightarrow flights$

Feature Structures

- Feature structure the representation used to capture the kind of grammatical properties
- A Feature structure is a set of feature-value pairs where
 - Features are unanalyzable atomic symbols drawn from finite set
 - Values are atomic symbols or feature structures
- Feature structures are illustrated with matrix-like diagram called attribute-value matrix or AVM

An Example

NUMBER SG

NUMBERSGPERSON3

CAT NP
NUMBER SG
PERSON 3

Feature structure associated with 3sgNP

Feature Bundles

- Features can also have other feature structures as their values
- Useful to bundle a set of feature-value pairs together
- For example: AGREEMENT feature consists of NUMBER and PERSON feature-value pairs as its value

Feature Path [DAG]

- A feature path is a list of features through a feature structure leading to a particular value
- For example <AGREEMENT NUMBER> path leads to the value
 SG, while <AGREEMENT PERSON> path leads to the value 3

Reentrant structures

- Features in a feature structures can share some feature structure as a value - reentrant structures
- They share precisely the same feature structure (or node in graph)
- Shared structures will be denoted in matrix by adding numerical indexes that signal the values to be shared

Reentrant DAG

Two feature paths lead to the same node in the structure

Unification of Feature Structures

- So what do we want to do with these things...?
- Two key operations on feature structures
 - check the compatibility of two structures
 - merge the information in two structures
- We can do both with a single operation called *Unification*
- Unifying two feature structures produces a new feature structure that is more specific (has more information) than, or is identical to, each of the input feature structures

[NUMBER SG] ∐ [NUMBER SG] = [NUMBER SG]

[NUMBER SG] ∐ [NUMBER PL] Fails!

[NUMBER SG] ∐ [NUMBER []] = [NUMBER SG]

Unification of Reentrant

$$\begin{bmatrix} AGREEMENT & \langle 1 \rangle \begin{bmatrix} NUMBER & SG \\ PERSON & 3 \end{bmatrix} \\ SUBJECT & \begin{bmatrix} AGREEMENT & \langle 1 \rangle \end{bmatrix} \end{bmatrix}$$

 \prod

$$\begin{bmatrix} SUBJECT & \begin{bmatrix} AGREEMENT & \begin{bmatrix} PERSON & 3 \\ NUMBER & SG \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} AGREEMENT & \langle 1 \rangle \begin{bmatrix} NUMBER & SG \\ PERSON & 3 \end{bmatrix} \\ SUBJECT & \begin{bmatrix} AGREEMENT & \langle 1 \rangle \end{bmatrix} \end{bmatrix}$$

Values following [1] index in first argument matches with second argument Value of the AGREEMENT feature is shared with the SUBJECT feature

Unification of Reentrant

$$\begin{bmatrix} AGREEMENT & [1] \\ SUBJECT & [AGREEMENT & [1]] \end{bmatrix}$$

$$\begin{bmatrix} U \\ SUBJECT & [AGREEMENT & [PERSON & 3] \\ NUMBER & SG \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} AGREEMENT & [1] \\ SUBJECT & [AGREEMENT & [1]] \\ AGREEMENT & [1] & [PERSON & 3] \\ NUMBER & SG \end{bmatrix}$$

Value found in <SUBJECT AGREEMENT> is copied over to first argument
The AGREEMENT feature of 1st argument receives a value because of index [1]

Unification

$$\begin{bmatrix} AGREEMENT & [NUMBER & SG] \\ SUBJECT & [AGREEMENT & [NUMBER & SG]] \end{bmatrix}$$

$$= \begin{bmatrix} SUBJECT & AGREEMENT & PERSON & 3 \\ NUMBER & SG \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} AGREEMENT & [NUMBER & SG] \\ SUBJECT & AGREEMENT & [NUMBER & SG] \\ PERSON & 3 \end{bmatrix}$$

No index, linking the <AGREEMENT> to the <SUBJECT AGREEMENT> feature, hence the information is not added to the value of the AGREEMENT feature

Unification

$$\begin{bmatrix} AGREEMENT & \langle 1 \rangle \begin{bmatrix} NUMBER & SG \\ PERSON & 3 \end{bmatrix} \\ SUBJECT & \begin{bmatrix} AGREEMENT & \langle 1 \rangle \end{bmatrix} \end{bmatrix}$$

 \prod

$$\begin{bmatrix} AGREEMENT & NUMBER & SG \\ PERSON & 3 \end{bmatrix}$$

$$SUBJECT \begin{bmatrix} AGREEMENT & NUMBER & PL \\ PERSON & 3 \end{bmatrix}$$

= ?

Unification

$$\begin{bmatrix} AGREEMENT & \langle 1 \rangle \begin{bmatrix} NUMBER & SG \\ PERSON & 3 \end{bmatrix} \\ SUBJECT & \begin{bmatrix} AGREEMENT & \langle 1 \rangle \end{bmatrix} \end{bmatrix}$$

Ц

= FAILS!

Values found at the respective <SUBJECT AGREEMENT NUMBER> paths differ

Subsumption

- A less specific (more abstract) feature structure subsumes an equal or more specific one
- Subsumption is represented by ⊆.

 $11.1 \subseteq 11.3$ [11.1 subsumes 11.3]

 $11.2 \subseteq 11.3$

11.1 does not subsumes 11.2 or vice versa

B.E. VII – Natural Language Processing

Feature Structures in Grammar

• Number agreement:

$$S \rightarrow NP VP *Ram walk$$
[NP NUMBER] [VP NUMBER]

$$NP \rightarrow det$$
 N * those flight [DET NUMBER] [N NUMBER]

Without this check, we'd have more ambiguity:

Flying planes is dangerous.

Flying planes are dangerous.

Feature Structures in Grammar

- Feature structures and unification operations are integrated with the grammar specification
- Context-free grammars are augmented with attachments that specify:
 - feature structures for the constituents
 - appropriate unification operation that express constraints on those constituents
- To denote the grammar augmentations:

```
\beta_0 \rightarrow \beta_1...\beta_n } grammar rule 
{ set of constraints } where the constraints have one of following forms: 
\langle \beta_0 \text{ feature path} \rangle = \text{Atomic value}
\langle \beta_i \text{ feature path} \rangle = \langle \beta_j \text{ feature path} \rangle
B.E. VII – Natural Language Processing
```

Feature Structures in Grammar

- Number agreement : the number of the NP is equal to the number of the VP
- The rule can be expressed as follows:

```
S \rightarrow NP VP
\langle NP NUMBER \rangle = \langle VP NUMBER \rangle
```

- In CFG concatenate an NP to a VP
- By augmenting with feature, this concatenation must be accompanied by a successful unification operation
- Elements of CFG rules will have feature-based constraints associated with them

- Application of unification constraints to four linguistic phenomena:
 - Agreement
 - Grammatical heads
 - Subcategorization
 - Long-distance dependencies

- The two main types of English agreement phenomena:
 - subject-verb agreement
 - determiner-nominal agreement
 - This flight serves breakfast.
 - Does this flight serve breakfast ?
 - Do these flights serve breakfast ?
- AGREEMENT feature takes care of PERSON and NUMBER feature
- $S \rightarrow NP VP$

 $\langle NP AGREEMENT \rangle = \langle VP AGREEMENT \rangle$

• In yes-no questions, the subject NP must agree with aux.verb rather than the main verb:

Does this flight

 $S \rightarrow Aux NP VP$

 $\langle Aux AGREEMENT \rangle = \langle NP AGREEMENT \rangle$

• Agreement between determiners and nominals in NP:

 $NP \rightarrow Det Nominal$

 $\langle \text{Det AGREEMENT} \rangle = \langle \text{Nominal AGREEMENT} \rangle$

 $\langle NP AGREEMENT \rangle = \langle Nominal AGREEMENT \rangle$

this flight those flights

Do these flights

- The lexical constituents receive values for their agreement features directly from the lexicon:
- Aux \rightarrow do \langle Aux AGREEMENT NUMBER \rangle =PL \langle Aux AGREEMENT PERSON \rangle =3
- Aux → does
 ⟨Aux AGREEMENT NUMBER⟩=SG
 ⟨Aux AGREEMENT PERSON⟩=3
- Determiner → this
 \(\begin{align*} \text{Determiner AGREEMENT NUMBER} \right) = SG
- Determiner → these
 \(\sqrt{Determiner AGREEMENT NUMBER}\) = PL

 Non-lexical constituents can acquire values for at least some of their features from their component constituents:

Grammar: $VP \rightarrow Verb NP$

- Verb → serve
 ⟨Verb AGREEMENT NUMBER⟩=PL
- Verb → serves
 ⟨Verb AGREEMENT NUMBER⟩=SG
 ⟨Verb AGREEMENT PERSON⟩=3
- VP \rightarrow Verb NP $\langle \text{VP AGREEMENT} \rangle = \langle \text{Verb AGREEMENT} \rangle$
- Nominal → Noun
 ⟨Nominal AGREEMENT⟩=⟨Noun AGREEMENT⟩

Head Features

- Features for grammatical categories are copied from one of the children to the parent
- The child that provides the features is called the head of the phrase and the features copied are referred to as head features
- Consider the following three rules:

```
• VP \rightarrow Verb \ NP | head of the phrase \langle VP \ AGREEMENT \rangle = \langle Verb \ AGREEMENT \rangle | head of the phrase NP \rightarrow Det \ Nominal | \langle Det \ AGREEMENT \rangle = \langle Nominal \ AGREEMENT \rangle | \langle NP \ AGREEMENT \rangle = \langle Nominal \ AGREEMENT \rangle | \langle Nominal \rightarrow Noun | \langle Nominal \ AGREEMENT \rangle = \langle Noun \ AGREEMENT \rangle
```

Head Features

 Rewrite the rules by placing agreement feature structure under HEAD feature:

```
• VP \rightarrow Verb \ NP head of the phrase \langle VP \ HEAD \rangle = \langle Verb \ HEAD \rangle
```

• $NP \rightarrow Det\ Nominal$ $\langle NP\ HEAD \rangle = \langle Nominal\ HEAD \rangle$ $\langle Det\ HEAD\ AGREEMENT \rangle = \langle Nominal\ HEAD\ AGREEMENT \rangle$

• Nominal \rightarrow Noun $\langle \text{Nominal HEAD} \rangle = \langle \text{Noun HEAD} \rangle$

Head Features

Similarly, the lexical rules must reflect HEAD notion:

```
Noun \rightarrow flights
\langle \text{Noun HEAD AGREEMENT NUMBER} \rangle = \text{PL}
\text{Verb} \rightarrow serve
\langle \text{Verb HEAD AGREEMENT NUMBER} \rangle = \text{PL}
\text{Verb} \rightarrow serves
\langle \text{Verb HEAD AGREEMENT NUMBER} \rangle = \text{SG}
\langle \text{Verb HEAD AGREEMENT NUMBER} \rangle = 3
```

- Verbs can be picky about the patterns of arguments that can appear along with
- Verb-with-S-comp → think
 VP → Verb-with-S-comp S

proliferation of categories

- Introduce feature structures to distinguish among various members of verb category
- Associate the feature SUBCAT with an appropriate value

- Example: Verb expects only one argument:
 - Verb → serves
 ⟨Verb HEAD AGREEMENT NUMBER⟩=SG
 ⟨Verb HEAD SUBCAT FIRST CAT⟩=NP
 ⟨Verb HEAD SUBCAT SECOND⟩=END
 - Verb with two arguments:

 $Verb \rightarrow leaves$

eaves leave Boston in the morning

serves dinner

⟨Verb HEAD AGREEMENT NUMBER⟩=SG
⟨Verb HEAD SUBCAT FIRST CAT⟩=NP
⟨Verb HEAD SUBCAT SECOND CAT⟩=PP
⟨Verb HEAD SUBCAT THIRD⟩=END

- Example: Verb phrase expects only one argument:

 - Verb's SUBCAT must match the category of constituent immediately following the verb
 - The form VPto subcategorized for want:
 - Verb → want
 ⟨Verb HEAD SUBCAT FIRST CAT⟩ = VP
 ⟨Verb HEAD SUBCAT FIRST FORM⟩ = INFINITIVE

Subcategorization frames for verbs

Noun Phrase Types		
There	nonreferential there	There is still much to learn
It	nonreferential it	It was evident that my ideas
NP	noun phrase	As he was relating his story
Preposition Phrase Types		
PP	preposition phrase	couch their message in terms
PPing	gerundive PP	censured him for not having intervened
PPpart	particle	turn it off
Verb Phrase Types		
VPbrst	bare stem VP	she could discuss it
VPto	to-marked infin. VP	Why do you want to know?
VPwh	wh-VP	it is worth considering how to write
VPing	gerundive VP	I would consider using it
Complement Clause types		
Finite Clause		
Sfin	finite clause	maintain that the situation was unsatisfactory
Swh	wh-clause	it tells us where we are
Sif	whether/if clause	ask whether Aristophanes is depicting a
Nonfinite Clause		
Sing	gerundive clause	see some attention being given
Sto	to-marked clause	know themselves to be relatively unhealthy
Sforto	for-to clause	She was waiting for him to make some reply
Sbrst	bare stem clause	commanded that his sermons be published
Other Types		
AjP	adjective phrase	thought it possible
Quo	quotes	asked "What was it like?"

Potential phrase types to create a set of potential subcategorization frames for verbs

Subcategorization pattern for the verb *ask* from BNC

Subcat Example

Quo asked [$_{Ouo}$ "What was it like?"]

NP asking[$_{NP}$ a question]

Swh asked[$_{Swh}$ what trades you're interested in]

Sto ask [$_{Sto}$ him to tell you]

PP that means asking [$_{PP}$ at home]

Vto asked [_{Vto} to see a girl called Evelyn]

NP Sif asked [$_{NP}$ him] [$_{Sif}$ whether he could make]

NP NP asked [$_{NP}$ myself] [$_{NP}$ a question]

NP Swh asked [$_{NP}$ him] [$_{Swh}$ why he took time off]

Subcategorization in other POS

Subcategorization in adjectives apparent, unimportant and the noun question

Example

It was apparent[pp from the way she rested her hand ...]

It was apparent[_{Sfin} that the kitchen was the only room ...]

It is unimportant[Swheth whether only a little bit is accepted]

the question[Swheth whether the authorities might have decided]

Long-Distance Dependencies

- The constituent which are subcategorized for by a verb may be realized apart from the verb, as a long-distance dependency
- S --> Wh-NP Aux NP VP
 Which flight do you want me to have the travel agent book?
- The wh-phrase which flight must fill the subcategorization requirements of the verb book despite two other (want, have) in between
- Feature GAP is used, which is passed up from phrase to phrase in the parse tree
- The filler (which flight) is put on the gap list and must be unified with sabcat frame of some verb

References

Speech and Language Processing, *Jurafsky and H.Martin* [Chapter 11. Features and Unification]

Thank You