BIG DATA TECHNOLOGIES (CS 583-C)

FINAL PROJECT

ANTI-MONEY LAUNDERING DETECTION

ARUN KASHYAP

M.S Data Science Stevens Institute of Technology Fall 2024

OOO PROBLEM STATEMENT

OBJECTIVE:

- To detect money laundering activities, a multi-billion-dollar issue by analyzing high-volume transactional data.
- Develop a scalable and efficient fraud detection system leveraging distributed big data frameworks.

PROBLEM STATEMENT:

- Money laundering is a multi-billion-dollar global issue, enabling criminal networks and disrupting economies.
- Detection is notoriously difficult as criminals work hard to cover their tracks.
- Challenges in Detection Systems

OOO DATASET

- SOURCE:
 - IBM Transactions for Anti Money Laundering (AML)
 - The dataset (~3GB) contains synthetic financial transactions labeled for anti-money laundering (AML) detection. (31 Million rows)
 - Key features like timestamp, sender, receiver, amount, currency, and is_laundering.
 - Available in various sizes (700MB to 17GB) and includes a range of transaction amounts.
 - Dataset used in this project belongs to **Group LI**, characterized by a relatively lower ratio of illicit transactions.

Timestamp	From Bank	Account	To Bank	Account.1	Amount Received	Receiving Currency	Amount Paid	Payment Currency	Payment Format	Is Laundering
9/1/2022 0:29	123878	82E2AA140	123878	82E2AA140	5.08	Euro	5.08	Euro	Reinvestn	0
9/10/2022 22:59	718	8005B38B0	215893	807A48510	136.19	US Dollar	136.19	US Dollar	Cheque	0
9/16/2022 7:45	66015	830E590E0	1146077	8439C5060	860.94	US Dollar	860.94	US Dollar	Cheque	0
9/13/2022 1:40	16932	80392AD10	2597	803A7B870	369.03	US Dollar	369.03	US Dollar	Cheque	0
9/1/2022 12:54	70	10042B660	7049	805DBDFE0	2414.27	US Dollar	2414.27	US Dollar	Credit Car	0
9/14/2022 11:53	2136660	84CB70F00	188829	84DF88D00	1033.48	US Dollar	1033.48	US Dollar	Cheque	0

OOO BIG DATA INFRASTRUCTURE

1. AWS EMR CLUSTER CONFIGURATION:

- Primary Node: 1 x m5.xlarge (4 vCPUs, 16 GiB RAM, 64 GiB EBS).
- Core Nodes: 1 x m5.xlarge (4 vCPUs, 16 GiB RAM, 64 GiB EBS).
- Task Nodes: 2 x m5.xlarge (4 vCPUs, 16 GiB RAM each).

2. STORAGE:

• Dataset stored in an Amazon S3 bucket for scalable and durable storage.

3. TOOLS AND ENVIRONMENT:

- PySpark: Used for distributed data processing on EMR.
- PuTTY: For secure SSH connection to the EMR cluster.
- JupyterHub: Deployed on the primary node for developing and running PySpark code.

OOO EXPLORATORY DATA ANALYSIS (EDA)

DISTRIBUTION OF Is_Laundering:

• Non-laundering transactions dominate the dataset (99.95%), with only 0.05% labeled as laundering.

DISTRIBUTION OF PAYMENT FORMAT:

 Cheques and Credit Cards are the most common payment formats, with Bitcoin and Wire transfers being the least frequent.

OOO EXPLORATORY DATA ANALYSIS (EDA)

FEATURE CORRELATION HEATMAP:

- Features like PatternTypeIndex have a notable correlation with isLaundering (0.68), indicating a potential risk of data leakage.
- Other features (FanOut, AvgAmountSent) show weaker correlations with isLaundering.

000 DATA PREPROCESSING

FEATURE ENGINEERING:

- Extracted temporal features from timestamp (e.g., hour, day, day_of_week).
- Derived features like fan_out, fan_in, and average_amount_sent.

LAUNDERING PATTERN MAPPING:

• A .txt file that outlines laundering patterns such as scatter-gather strategy was mapped to its corresponding laundering pattern (if applicable).

```
root
|-- Timestamp: string (nullable = true)
|-- From_Bank: string (nullable = true)
|-- From_Account: string (nullable = true)
|-- To_Bank: string (nullable = true)
|-- To_Account: string (nullable = true)
|-- Amount_Received: float (nullable = true)
|-- Receiving_Currency: string (nullable = true)
|-- Amount_Paid: float (nullable = true)
|-- Payment_Currency: string (nullable = true)
|-- Payment_Format: string (nullable = true)
|-- Pattern_Type: string (nullable = true)
|-- isLaundering: integer (nullable = true)
```

Schema of the joined dataset

• Grouped the dataset by the 'is_laundering' column to generate a total count of transactions for laundering vs. non-laundering cases.

```
+-----+
|isLaundering| count|
+-----+
| 1| 9862|
| 0|31241621|
```

OOO DATA PREPROCESSING

HANDLING DATA IMBALANCE:

Steps Taken:

• Dropped 50% of the majority class records to reduce the imbalance.

```
+-----+
|isLaundering| count|
+-----+
| 1| 9862|
| 0|15618450|
+-----+
```

• Applied SMOTE (Synthetic Minority Oversampling Technique) to generate synthetic samples for the minority class, increasing its size to 1.2 million records.

```
| isLaundering | count |
| toundering | count |
| 0 | 15618450 |
| 1 | 1183440 |
| toundering | count |
```

OOO MODEL SELECTION AND TRAINING

CHOSEN MODEL: RANDOM FOREST

REASON FOR SELECTION:

- Handles imbalanced datasets effectively.
- Provides feature importance insights.
- Performs well on classification tasks with tabular data.

TRAINING CONFIGURATION (FIRST RUN):

- Features: FanOut, FanIn, AvgAmountSent, Hour, DayOfWeek, CurrencyIndex, PaymentFormatIndex, PatternTypeIndex.
- Hyperparameters:
 - Number of Trees: 20.
 - Max Depth: 10.
 - Max Bins: 75.
- Target Variable: isLaundering.

TRAINING PROCESS:

- Dataset split into training (70%), validation (15%), and test (15%) sets.
- Used binary classification evaluator for performance evaluation on the validation set.

ooo FIRST RUN RESULTS

PERFORMANCE METRICS:

• F1 Score: 1.0

• ROC-AUC: 1.0

• Precision: 1.0

• Recall: 1.0

OBSERVATIONS:.

• Unrealistically high performance: Indicates potential data leakage due to the inclusion of the PatternTypeIndex feature, which may directly encode laundering information.

• INFERENCE:

• The feature PatternTypeIndex was identified as a cause of data leakage and removed in the subsequent training run.

••• MODEL TRAINING (SECOND RUN)

- UPDATED CONFIGURATION:
 - Removed Feature: PatternTypeIndex.
 - Features Used: FanOut, FanIn, AvgAmountSent, Hour, DayOfWeek, CurrencyIndex, PaymentFormatIndex.
- TRAINING PROCESS:
 - Same hyperparameters and dataset splits as the first run:
 - Number of Trees: 20.
 - Max Depth: 10.
 - Max Bins: 75.
- Evaluated using binary classification metrics.

ooo second run results

• PERFORMANCE METRICS:

• F1 Score: 0.90

• ROC-AUC: 0.95

• Precision: 0.97

• Recall: 0.98

• OBSERVATIONS:

- Metrics reflect realistic and reliable performance after resolving data leakage.
- Feature selection significantly improved model robustness.

OOO PERFORMANCE COMPARISON

No.	Metric	First Run	Second Run
1	F1-Score	1.0	0.90
2	ROC-AUC	1.0	0.95
3	Precision	1.0	0.97
4	Recall	1.0	0.98

KEY TAKEAWAY:

• Removing *PatternTypeIndex* resolved data leakage, leading to reliable model performance.

FEATURE IMPORTANCE:

- FanOut: Strongest predictor of laundering activity.
- AvgAmountSent: Highlights unusual transaction sizes.
- CurrencyIndex: Indicates laundering trends across currencies.

000 PERFORMANCE

PREDICTION CONFUSION MATRIX:

True Negatives (TN) (2337671):

- Actual class is 0.0 (not laundering) and predicted class is also 0.0.
- The model correctly identified these transactions as legitimate.

False Negatives (FN) (48764):

- Actual class is 1.0 (laundering) but predicted as 0.0 (not laundering).
- These are laundering transactions that were missed by the model.

False Positives (FP) (5865):

- Actual class is 0.0 (not laundering) but predicted as 1.0 (laundering).
- These are legitimate transactions that were incorrectly flagged as laundering.

True Positives (TP) (127961):

- Actual class is 1.0 (laundering) and predicted class is also 1.0.
- The model correctly identified these transactions as laundering.

ooo RESOURCE UTILIZATION

- Memory and vCores were efficiently allocated:
 - Memory Used: ~34.38 GiB (~72% utilization).
 - Physical Cores Used: 4 cores (~100% core efficiency on running tasks).
- Cluster remained stable with no unhealthy nodes or failed tasks during execution.

OOO SPARK JOBS AND PERFORMANCE METRICS

- Total Jobs Executed:
 - 79 (all completed successfully).
 - Execution Time: Majority of jobs completed in milliseconds to seconds.
 - Scheduling: FIFO mode ensured smooth execution of tasks in order of submission

OOO EXECUTORS AND PARALLEL PROCESSING

- Executors Overview
 - Active Executors: 4 (including the driver).
 - Task Distribution: Driver executed 420 MiB storage tasks.
 - Task nodes processed ~4.8 GiB each efficiently.
- Execution Time per Task: ~20 minutes, showcasing balanced distribution across nodes.

ooo CONCLUSION

KEY ACHIEVEMENTS

- Successfully processed 3GB transactional data using AWS EMR and PySpark.
- Addressed class imbalance using a combination of majority class reduction and synthetic data generation.
- Engineered key features like FanOut, FanIn, and AvgAmountSent for better laundering pattern detection.
- Achieved robust model performance:
 - ROC: 0.95, F1 Score: 0.90.

ooo FUTURE WORK

ENHANCEMENTS TO THE MODEL:

- Cross-Validation: Incorporate cross-validation during training to ensure more robust hyperparameter tuning and model evaluation.
- Advanced Models: Experiment with advanced algorithms like XGBoost, GNNs to reduce false positives and false negatives for more precise classification.

CLOUD OPTIMIZATION:

- Optimize the current cluster configuration for better cost-performance balance.
- Explore the feasibility of serverless architectures like AWS Lambda for specific workflows.

000

THANK YOU