

北京邮电大学研究生课程

数字超大规模集成电路分析与设计 第三讲 互连线模型

梁利平

集成电路学院 2023年9月26日

第三讲 互连线模型

本讲主要内容

- □(一)电阻、电容和电感
- □(二)互连模型

2.1 电阻、电容和电感

□ 导线

schematics

physical

2.2 电阻、电容和电感

□ 导线模型

忽略电感的电容模型

当导线的电阻很大或者外加信号的上升 或下降时间很慢

当导线很短、导线的截面很大或互连材 料电阻率很低

Capacitance-only

2.3 电阻、电容和电感

□ 连线电容

2.4 电阻、电容和电感

□ 平板电容模型

$$c_{int} = \frac{\mathcal{E}_{di}}{t_{di}} WL$$

□ 各种材料的相对介电常数

Material	ϵ_r
Free space	1
Aerogels	~1.5
Polyimides (organic)	3-4
Silicon dioxide	3.9
Glass-epoxy (PC board)	5
Silicon Nitride (Si ₃ N ₄)	7.5
Alumina (package)	9.5
Silicon	11.7

气凝胶 有机聚合物

2.6 电阻、电容和电感

(b)

□ 边缘电容

对于较大的W/H值,总电容接近平板电容模型 当W/H小于1.5时,边缘电容变成了主要部分

2.7 电阻、电容和电感

□ 线间的电容

2.8 电阻、电容和电感

□ 线间电容的影响

2.9 电阻、电容和电感

□ 电容举例(0.25um CMOS工艺)

平板电容aF/um2 边缘电容aF/um

	Field	Active	Poly	Al1	Al2	Al3	Al4
Poly	88						
	54						
Al1	30	41	57				
	40	47	54				
Al2	13	15	17	36			
	2.5	27	29	45			
Al3	8.9	9.4	10	15	41		
	18	19	20	27	49		
Al4	6.5	6.8	7	8.9	15	35	
	14	15	15	18	27	45	
Al5	5.2	5.4	5.4	6.6	9.1	14	38
	12	12	12	14	19	27	52

阴影栏部分为边缘电容

2.10 电阻、电容和电感

□ 导线电阻

□ 互连的电阻率(20摄氏度)

Material	ρ (Ω-m)
Silver (Ag)	1.6×10^{-8}
Copper (Cu)	1.7×10^{-8}
Gold (Au)	2.2×10^{-8}
Aluminum (Al)	2.7×10^{-8}
Tungsten (W)	5.5×10^{-8}

2.12 电阻、电容和电感

- □ 如何减小电阻?
 - · 线长
 - 电导率

2.12 电阻、电容和电感

- □ 硅化物栅(先进工艺)
 - 硅化物是用硅和一种难熔金属形成的合成材料,具有高导电性且耐受高温工艺步骤而不会融化。

Silicides: WSi₂, TiSi₂, PtSi₂ and TaSi

Conductivity: 8-10 times better than Poly

□ 方块电阻(薄层电阻)

Material	Sheet Resistance (Ω/□)
n- or p-well diffusion	1000 - 1500
n^+ , p^+ diffusion	50 – 150
n^+ , p^+ diffusion with silicide	3 – 5
n^+ , p^+ polysilicon	150 - 200
n^+ , p^+ polysilicon with silicide	4-5
Aluminum	0.05 - 0.1

2.14 电阻、电容和电感

□ 互连举例

2.15 电阻、电容和电感

□ 0.25um工艺举例

5 metal layers Ti/Al - Cu/Ti/TiN Polysilicon dielectric

LAYER	PITCH	THICK	A.R.
Isolation	0.67	0.40	-
Polysilicon	0.64	0.25	-
Metal 1	0.64	0.48	1.5
Metal 2	0.93	0.90	1.9
Metal 3	0.93	0.90	1.9
Metal 4	1.60	1.33	1.7
Metal 5	2.56	1.90	1.5
	μm	μm	

Layer pitch, thickness and aspect ratio

第三讲 互连线模型

本讲主要内容

- □(一)电阻、电容和电感
- □(二)互连模型

- □ 集总模型(The Lumped Model)
 - 导线电阻部分很小且开关频率在低到中间范围,分布电容可以集总为单个电容

2.2 互连模型

- □ 集总RC模型(The Lumped RC-Model)
 - 长度超过几毫米的片上金属具有明显电阻
 - Elmore延时(The Elmore Delay)

$$R_{ik} = \sum R_j \Rightarrow (R_j \in [path(s \to i) \cap path(s \to k)])$$

$$\tau_{Di} = \sum_{k=1}^{N} C_k R_{ik}$$

2.3 互连模型

☐ The Elmore Delay RC Chain

$$\tau_{N} = \sum_{i=1}^{N} R_{i} \sum_{j=i}^{N} C_{j} = \sum_{i=1}^{N} C_{i} \sum_{j=1}^{N} R_{j}$$

2.4 互连模型

☐ Wire Model

• Assume: Wire modeled by N equal-length segments

$$\tau_{DN} = \left(\frac{L}{N}\right)^2 (rc + 2rc + \dots + Nrc) = (rcL^2) \frac{N(N+1)}{2N^2} = RC \frac{N+1}{2N}$$

For large values of N:

$$\tau_{DN} = \frac{RC}{2} = \frac{rcL^2}{2}$$

导线的延时是长度的二次函数

2.5 互连模型

□ 分布式RC线

2.6 互连模型

□ 电阻-电容导线的阶跃响应

Step-response of RC wire as a function of time and space

2.7 互连模型

□ RC模型

Voltage Range	Lumped RC- network	Distributed RC-network
0→50% (t _p)	0.69 RC	0.38 RC
0→63% (7)	RC	0.5 RC
10%→90% (t _r)	2.2 RC	0.9 RC

Step Response of Lumped and Distributed RC Networks:

Points of Interest.

2.8 互连模型

☐ Driving an RC-line

$$t_p = 0.69R_s C_w + 0.38R_w C_w$$

$$Rw = rL$$

$$Cw = cL$$

2.9 互连模型

□ 设计经验规则

 \square rc delays should only be considered when $t_{\text{pRC}} >> t_{\text{pgate}}$ of the driving gate

$$Lcrit >> \sqrt{t_{pgate}/0.38rc}$$
 临界长度

□ rc delays should only be considered when the rise (fall) time at the line input is smaller than RC, the rise (fall) time of the line

$$t_{\rm rise} < {
m RC}$$

• when not met, the change in the signal is slower than the propagation delay of the wire

讨论

□ 树状网络的延迟?

谢谢!

欢迎指正!