```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        # 1. Read the file
        file_path = 'seeds_dataset.csv'
        data = pd.read_csv(file_path)
        # 2. Show the first lines
        print("Step 2 First 5 rows of the dataset:")
        print(data.head())
        # 3. Calculate descriptive statistics
        print("Step 3 Statisticas:")
        stats = data.describe()
        median = data.median()
        print("\nEstatísticas Descritivas:")
        print(stats)
        print("\nMediana de cada valor:")
        print(median)
        # 4. Visualize the distribution of features
        # Histograms
        print("Step 4 - Histogramas:")
        data.hist(bins=15, figsize=(15, 10), color='skyblue', edgecolor='black')
        plt.suptitle('Histogramas dos componentes', fontsize=16)
        plt.show()
        # Boxplots
        print("Step 4 - Boxplots:")
        plt.figure(figsize=(15, 6))
        sns.boxplot(data=data)
        plt.title('Boxplots dos componentes', fontsize=16)
        plt.xticks(rotation=45)
        plt.show()
        # 5. Scatter plots to identify possible relationships
        print("Step 5 - Possíveis relacionamentos:")
        sns.pairplot(data, diag_kind='kde', hue='Target', markers=["o", "s", "D"])
        plt.suptitle('Gráfico de dispersão dos componentes', fontsize=16)
        plt.show()
        # 6. Identify and handle missing values
        print("Step 6 - Identificando valores faltantes:")
        missing_values = data.isnull().sum()
        print("\nValores faltantes em cada componente:")
        print(missing values)
        if missing_values.any():
            print("\nPreenchendo os valores faltantes com a média, caso necessário")
            data.fillna(data.mean(), inplace=True)
```

```
# 7. Assess the need for scaling and normalization
print("Step 7 - Normalização - se necessário:")
print("\nVerificando o intervalo para dimensionamento:")
print(data.max() - data.min())

# Applying normalization (Min-Max Scaling)
normalized_data = (data - data.min()) / (data.max() - data.min())

# Applying standardization (Z-score Scaling)
standardized_data = (data - data.mean()) / data.std()

# Display normalized and standardized samples
print("\nAmostra do dado normalizado:")
print(normalized_data.head())
print("\nAmostra do dado padronizado:")
print(standardized_data.head())
```

Step 2 First 5 rows of the dataset:

	Area	Perimetro	Compacidade	Comprimento	Largura	Assimetria	Nucleo	\
0	15.26	14.84	0.8710	5.763	3.312	2.221	5.220	
1	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	
2	14.29	14.09	0.9050	5.291	3.337	2.699	4.825	
3	13.84	13.94	0.8955	5.324	3.379	2.259	4.805	
4	16.14	14.99	0.9034	5.658	3.562	1.355	5.175	

Target

0 1

1 1

2 1

3 1 4 1

Step 3 Statisticas:

Estatísticas Descritivas:

	Area	Perimetro	Compacidade	Comprimento	Largura	\
count	210.000000	210.000000	210.000000	210.000000	210.000000	
mean	14.847524	14.559286	0.870999	5.628533	3.258605	
std	2.909699	1.305959	0.023629	0.443063	0.377714	
min	10.590000	12.410000	0.808100	4.899000	2.630000	
25%	12.270000	13.450000	0.856900	5.262250	2.944000	
50%	14.355000	14.320000	0.873450	5.523500	3.237000	
75%	17.305000	15.715000	0.887775	5.979750	3.561750	
max	21.180000	17.250000	0.918300	6.675000	4.033000	

	Assimetria	Nucleo	Target
count	210.000000	210.000000	210.000000
mean	3.700201	5.408071	2.000000
std	1.503557	0.491480	0.818448
min	0.765100	4.519000	1.000000
25%	2.561500	5.045000	1.000000
50%	3.599000	5.223000	2.000000
75%	4.768750	5.877000	3.000000
max	8.456000	6.550000	3.000000

Mediana de cada valor:

Area 14.35500
Perimetro 14.32000
Compacidade 0.87345
Comprimento 5.52350
Largura 3.23700
Assimetria 3.59900
Nucleo 5.22300
Target 2.00000

dtype: float64

Step 4 - Histogramas:

Histogramas dos componentes

Step 5 - Possíveis relacionamentos:

Step 6 - Identificando valores faltantes:

```
Valores faltantes em cada componente:
Area
              0
Perimetro
              0
Compacidade
              0
Comprimento
              0
Largura
              0
Assimetria
              0
Nucleo
Target
              0
dtype: int64
Step 7 - Normalização - se necessário:
Verificando o intervalo para dimensionamento:
Area
              10.5900
Perimetro
               4.8400
Compacidade
               0.1102
Comprimento
               1.7760
Largura
               1.4030
Assimetria
               7.6909
Nucleo
               2.0310
Target
               2.0000
dtype: float64
Amostra do dado normalizado:
      Area Perimetro Compacidade Comprimento
                                               Largura Assimetria \
0 0.440982
             0.502066
                         0.570780
                                      0.486486 0.486101
                                                           0.189302
1 0.405099
             0.446281
                         0.662432
                                      0.368806 0.501069
                                                           0.032883
2 0.349386 0.347107
                         0.879310
                                      0.220721 0.503920
                                                           0.251453
3 0.306893
             0.316116
                         0.793103
                                      0.239302 0.533856
                                                           0.194243
4 0.524079
             0.533058
                         0.864791
                                      0.427365 0.664291
                                                           0.076701
    Nucleo Target
0 0.345150
               0.0
1 0.215165
               0.0
2 0.150665
               0.0
3 0.140817
               0.0
4 0.322994
               0.0
Amostra do dado padronizado:
      Area Perimetro Compacidade Comprimento
                                               Largura Assimetria \
0 0.141759 0.214949
                         0.000060
                                      0.303493 0.141364 -0.983801
                                                         -1.783904
1 0.011161
             0.008204
                         0.427494
                                     -0.168223 0.196962
2 -0.191609 -0.359342
                         1.438945
                                    -0.761817 0.207552
                                                         -0.665888
3 -0.346264 -0.474200
                         1.036904
                                     -0.687336 0.318747
                                                          -0.958528
4 0.444196
             0.329807
                         1.371233
                                      0.066507 0.803240
                                                         -1.559768
    Nucleo
              Target
0 -0.382663 -1.221825
1 -0.919816 -1.221825
2 -1.186357 -1.221825
3 -1.227051 -1.221825
4 -0.474223 -1.221825
```

In []: