Использование model checking для тестирования распределенных систем в фреймворке DSLab

Амеличев Константин, БПМИ195

Академический руководитель: Сухорослов Олег Викторович, ФКН

Решаемая проблема

Тестировать распределенные системы сложно, нужно учитывать редкие случаи.

При проведении курса "Распределенные системы" требуется автоматически проверять решения на корректность и эффективность.

Текущие тесты (симуляция + fault injection + chaos monkey) на основе фреймворка dslib не дают уверенности в корректности алгоритма — симуляция может пропустить ситуацию, если вероятность ее возникновения была мала.

Также dslib больше не поддерживается, вместо него развивается более функциональный симуляционный фреймворк DSLab

Цель работы

• Улучшение тестов к заданиям в DSLab на основе model checking (MC).

Поставленные задачи

- Изучение МС и его применения для тестирования РС
- Улучшение ядра МС в DSLab
- Разработка тестов к заданиям курса РС с использованием МС
- Тестирование архивных решений и анализ найденных багов

Требования

- Интерпретируемость ошибок
- Воспроизводимость ошибок
- Тесты работают не более нескольких минут.

Методы формальной верификации

- Спецификация
 - o TLA+ [1]
 - O Verdi [2]
- Model checking
 - FlyMC [3]
 - CDSchecker [4]
 - MaceMC [5]

Model checking использует только исходный код, явно обходит граф состояний системы и лучше подходит для тестирования заданий.

¹⁾ Lamport L. Specifying systems: the TLA+ language and tools for hardware and software engineers.

²⁾ Wilcox, James R., et al. "Verdi: a framework for implementing and formally verifying distributed systems."

³⁾ Lukman J. F. et al. Flymc: Highly scalable testing of complex interleavings in distributed systems

⁴⁾ Norris B., Demsky B. CDSchecker: checking concurrent data structures written with C/C++ atomics

Model checking в образовательных проектах

- DSLabs [1]
 - Другой набор заданий (см. таблицу)
 - В сложных заданиях используется отсечение по времени
- Курс по РС в Columbia University [2]
 - Одно задание
 - Требуется составить тесты в режиме МС

Название	Статус model checking	Размер решения, LOC	
0-pingpong	полный	10	
1-clientserver	полный	75	
2-primarybackup	полный	300	
3-paxos	неполный	400	
4-shardedstore	неполный	1050	

¹⁾ Michael E. et al. Teaching rigorous distributed systems with efficient model checking

²⁾ Columbia University, Distributed Systems Fundamentals, Assignment 5

Работа над МС в ВШЭ

- dslib_[1,2]
 - Нацелен исключительно на курс по РС
 - Были работы по внедрению МС, но результаты не были применимы для тестирования студенческих решений
- DSLab_[3]
 - Фреймворк для симуляции более общего характера
 - Ядро МС перенесено из dslib с некоторыми улучшениями
- 1) Удовиченко А., Реализация поддержки model checking в рамках фреймворка dslib. --- НИУ ВШЭ, 2022.
- 2) Ильговский Р., Разработка фреймворка для практических заданий по распределенным системам --- НИУ ВШЭ, 2021.
- 3) DSLab, проектная группа ФКН, https://github.com/osukhoroslov/dslab

Ядро МС

Поддерживается модель распределенной системы, идентичная модели в DSLab-MP.

Можно применить любое событие (таймер/сообщение) из множества доступных. Как результат, могут появиться новые события.

Обход графа состояний системы делается стратегией, которая пользуется заданными предикатами Invariant, Goal, Prune.

Схема работы стратегии

Улучшение ядра МС: зависимые события

Изучены критерии, по которым события оказываются связаны happened-before.

Событие недоступно, если оно зависит от неслучившегося события.

Результат: порядок

срабатывания событий корректен

Улучшение ядра МС: Оптимизации обхода

- Добавлено кеширование эквивалентных состояний
- Задан порядок обработки дублирующихся сообщений

	Без кеширования	С кешированием
# goal	677	87
# prune	1422	196

	До ограничения	После ограничения	
# goal	222	87	
# prune	629	196	

Тесты оптимизаций на задании Ping Pong

Результат: Обход графа состояний

ускорен в несколько раз

Улучшение ядра МС: дополнительные режимы

- Instant Mode: временем доставки сообщения можно пренебречь.
 - Результат: удобный режим для детекторов отказов
- Collect Mode: позволяет сделать серию последовательных запусков model checking.
 - Результат: возможность тестирования произвольных сценариев (Пример: kv-хранилище, GET + PUT)

Разработка тестов: общий цикл

- 1. Выделение гарантий в задании
- 2. Выбор сценария (отказ узла, разделение сети, ...)
- 3. Hастройка goal + invariant
- 4. Оптимизация обхода через **prune**
- 5. Анализ архивных решений
- 6. Если в решении баг, баг документируется
- 7. Если ошибка в тесте, тест чинится

Результат: 20 тестов для 7 заданий, проанализированы на архиве из ~80 решений к каждому заданию.

Таблица 4.1: Тесты для ping-pong

Тест	Goal	Invariant	Prune
mc reliable	Получение 2 сооб-	Имеющиеся отве-	Каждый из узлов отпра-
network	щений	ты верны	вил не больше 4 сообщений
mc unreliable	Получение 2 сооб-	Имеющиеся отве-	Глубина состояния не боль-
network	щений	ты верны	ше 7
mc limited drops	Получение 2 сооб-	Имеющиеся отве-	Не больше 3 потерь сооб-
	щений	ты верны	щения, узел отправил не
			больше 5 сообщений

Пример тестов в режиме Collect: Broadcast

Таблица 4.6: Тест mc_sender_crash

Этап	Goal	Invariant	Prune	Collect
До отказа	Сообщение до-	Соблюден фор-	Глубина не более	Хотя бы один
	ставлено всеми	мат доставленных	4	узел получил
	корректными	клиенту сообще-		сообщение
	узлами	ний		
Выведение из	-	-	-	-
строя отпра-				
вителя				
Доставка по-	Сообщение до-	Соблюден фор-	Каждый узел	-
сле отказа	ставлено всеми	мат доставленных	отправил не боль-	
	корректными	клиенту сообще-	ше 4 сообщений,	
	узлами	ний	эквивалентные	
			состояния иг-	
			норируются,	
			глубина не более	
			6	

Найденные ошибки: примеры (1)

Решение чистит ресурсы (чтобы пройти тесты на оптимизацию работы с памятью), но делает это слишком рано и нарушает требование на доставку сообщения в конечном итоге.

Найденные ошибки: примеры (2)

Решение делает массовую рассылку сообщения и поддерживает счетчик количества ответов, но не инициализирует счетчик, пока не получит ответ от самого себя.

Найденные ошибки: примеры (3)

Решение ставит два таймера вплотную и между срабатыванием первого и второго находится в некорректном состоянии.

Найденные ошибки: примеры (4)

Решение некорректно реализует разрешение конфликтов при работе с кворумом (Last Write Wins). В симуляции РUТ-запросы отрабатывали корректно на всех трех репликах, и такая ситуация не возникала.

Разработка тестов: выводы

- МС-тесты помогают найти сценарии для стандартных тестов
 - Может быть полезно для системы бонусов на курсе РС
- Ограничение времени работы МС через prune лучше, чем явное ограничение по времени
 - Ограничение по времени: чем медленнее обход состояний, тем выше шанс пройти тесты
 - Ограничение через prune: чем больше состояний порождает система, тем меньше шанс пройти тесты

Результаты

Практические:

- Перенос заданий курса PC: dslib → DSLab
- Улучшение ядра MC: DependencyResolver, Collect mode, ... (~700 LOC)
- 20 новых тестов ко всем заданиям курса (~2400 LOC)
- Найдено 19 различных ошибок в архивных решениях

Новизна:

- Полученные МС-тесты не требуют отсечений по времени, достаточно отсечений на обход графа состояний
- Punctuated search (DSLabs) → Collect mode
- Опыт исследования архива студенческих решений

Ссылки на программный код

- Совместная работа по преносу ядра MC dslib DSLab: https://github.com/osukhoroslov/dslab/pull/172
- Улучшения ядра МС: https://github.com/KiK0S/dslab/pull/12
- Тесты к заданиям курса PC: https://github.com/KiK0S/dslab/pull/5, https://github.com/KiK0S/dslab/pull/6, https://github.com/KiK0S/dslab/pull/9, https://github.com/KiK0S/dslab/pull/9, https://github.com/KiK0S/dslab/pull/11, https://github.com/KiK0S/dslab/pull/11