Particle spectrograph

Wave operator and propagator

000000	1	04:01:01
SO(3) Irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	П
$\tau_{0}^{\#1} - 2 \bar{l} k \sigma_{0}^{\#1} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	е
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	е
$\tau_1^{\#1}\alpha\beta == 0$	$\partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} ==$	ĸ
	$\partial_{\chi}\partial^{\alpha}t^{\chi\beta} + \partial_{\chi}\partial^{\beta}t^{\alpha\chi} + \partial_{\chi}\partial^{\chi}t^{\beta\alpha}$	
$\sigma_1^{\#_2^2\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	3
$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} \partial^{\epsilon} +$	2
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta \varepsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} \partial^{\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha\delta\epsilon} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\beta\delta}$	
$\tau_{2}^{\#1}\alpha\beta=0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} == 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \iota^{\chi\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \iota^{\alpha\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \iota^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$	
Total constraints/gauge	-	25

	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	$\sigma_{1}^{\#2}{}_{\alpha\beta}~\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1^{+}\alpha}^{\#2}$	$\tau_{1^{-}\alpha}^{\#1}$	$\tau_{1^{-}\alpha}^{\#2}$
$\sigma_1^{\#1} + \alpha \beta$	$\frac{1}{k^2\left(2r_3+r_5\right)}$	0	0	0	0	0	0
$\sigma_1^{\#2} + \alpha^{\beta}$	0	0	0	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1} + ^{lpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} + ^{\alpha}$	0	0	0	$-\frac{4 \tilde{l}}{k (1 + 2 k^2) (r_3 + 2 r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2 (r_3 + 2r_5) + 8t_3}{(1 + 2k^2)^2 (r_3 + 2r_5)t_3}$

	I					<u> </u>					
σ_{0}^{ij}	$\frac{1}{(1+2k^2)^2t_3}$	(1+			$\omega_{0}^{\#1}$	<i>t</i> ₃	$i\sqrt{2}kt_3$		0		
	$\sigma_{0}^{\#1} +$	$\tau_{0}^{#1}$ †	$\tau_{0}^{#2}$ †	$\sigma_{0}^{\#1}\dagger$		$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ \dagger	$f_{0}^{#2}$ †	$\omega_{0^{\text{-}}}^{\#1}\dagger$		
(Quadra	atic (f	ree)	acti	on						
,	$S = \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - \frac{1}{2} r_3 (\partial_{\beta}\omega_{i\theta}^{\theta} \partial^{i}\omega^{\alpha\beta}_{\alpha} + \partial_{i}\omega_{\beta\theta}^{\theta} \partial^{i}\omega^{\alpha\beta}_{\alpha} +$										
	$\partial_{\alpha}\omega^{\alpha\beta}\partial_{\theta}\omega_{\beta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $										
	$2\partial'\omega^{lphaeta}_{lpha}\partial_{ heta}\omega_{{}_{\prime}eta}^{eta}+8\partial_{eta}\omega_{{}_{\prime}etalpha}\partial^{ heta}\omega^{lphaeta\prime})$ -										
	$\frac{2}{3}t_3(\omega^{\alpha_I}_{\alpha}\omega_I^{\kappa}-2\omega_{\alpha\kappa}^{\kappa}\partial_I f^{\alpha_I}+2\omega_I^{\kappa}\partial^I f^{\alpha}_{\alpha}-$										
	$\partial_{i}f_{\kappa}^{\kappa}\partial_{i}f_{\alpha}^{\alpha}-\partial_{i}f_{\alpha}^{\alpha i}\partial_{\kappa}f_{\alpha}^{\kappa}+2\partial_{i}f_{\alpha}^{\alpha}\partial_{\kappa}f_{i}^{\kappa})+$										
	$r_5 \left(\partial_{\iota} \omega_{\theta}^{\ \kappa} \partial^{\theta} \omega^{\alpha \iota}_{\ \alpha} - \partial_{\theta} \omega_{\iota}^{\ \kappa} \partial^{\theta} \omega^{\alpha \iota}_{\ \alpha} - (\partial_{\alpha} \omega^{\alpha \iota \theta} - 2 \partial^{\theta} \omega^{\alpha \iota}_{\ \alpha}) \right)$										
	$(\partial_{\kappa}\omega_{l\theta}^{\kappa}-\partial_{\kappa}\omega_{\thetal}^{\kappa})))[t,x,y,z]dzdydxdt$										

 ω_{0-1}^*

0 0 0

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

 $\frac{1}{3}\,\vec{l}\,\sqrt{2}\,kt_3$

0

 $+ r_5) + \frac{+ r_5}{3} - \frac{\sqrt{2} t_3}{3}$ 0 $\frac{2 i k t_3}{3}$

0

0

0

0

0

 $k^2 \left(\frac{73}{2} \right)$

0

0

0

 $\omega_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $\omega_{1}^{#2} + \alpha \beta$ $\omega_{1}^{#1} + \alpha \beta$ $\omega_{1}^{#1} + \alpha$ $\omega_{1}^{#2} + \alpha$ $f_{1}^{#1} + \alpha$ $f_{1}^{#2} + \alpha$

0

0

 $\begin{array}{c|c}
0 & 0 \\
\frac{\sqrt{2}t_3}{3} & \frac{t_3}{3}
\end{array}$

0

0 0

0 0 0

0

 $k^2 (2 r_3$

0 $\frac{2k^2t_3}{3}$

 $0 \sqrt{2} kt_3$

0

0

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$