Segon Lliurament de Càlcul de Diverses Variables i Optimització

Arnau Mas

8 de Gener de 2018

1 Problema 1

Sen's demana de resoldre una equació diferencial en derivades parcials fent servir un canvi de coordenades. L'equació en qüèstió és

$$f_{xx}(x,y,z) - f_{yy}(x,y,z) + f_{zz}(x,y,z) - 2f_{xz}(x,y,z) = (y+z)(x+z).$$
 (1)

La solució $f: \mathbb{R}^3 \to \mathbb{R}$ suposarem que és una funció de classe $C^2(\mathbb{R}^3)$. El canvi que sen's proposa ve donat per

$$\Psi \colon \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (x + y, y + z, z + x).$$
 (2)

Denotem les components de Ψ per u, v i w. És clar que Ψ és una bijecció lineal i per tant un difeomorfisme. Definim $g = f \circ \Psi^{-1}$. D'aquesta manera es compleix $f = g \circ \Psi$ i podem, fent servir la regla de la cadena, reescriure l'equació diferencial en termes de les noves coordenades.

$$f_x = g_u u_x + g_v v_x + g_w w_x = g_u + g_w$$

$$f_y = g_u u_y + g_v v_y + g_w w_y = g_u + g_v$$

$$f_z = g_u u_z + g_v v_z + g_w w_z = g_v + g_w.$$
(3)

Tornem a derivar:

$$\begin{split} f_{xx} &= g_{uu}u_x + g_{uv}v_x + g_{uw}w_x + g_{wu}u_x + g_{wv}v_x + g_{ww}w_x \\ &= g_{uu} + 2g_{uw} + g_{ww} \\ f_{yy} &= g_{uu}u_x + g_{uv}v_x + g_{uw}w_x + g_{vu}u_x + g_{vv}v_x + g_{vw}w_x \\ &= g_{uu} + 2g_{uv} + g_{vv} \\ f_{zz} &= g_{vu}u_z + g_{vv}v_z + g_{vw}w_z + g_{wu}u_z + g_{wv}v_z + g_{ww}w_z \\ &= g_{vv} + 2g_{vw} + g_{ww} \\ f_{xz} &= g_{uu}u_z + g_{uv}v_z + g_{uw}w_z + g_{wu}u_z + g_{wv}v_z + g_{ww}w_z \\ &= g_{uv} + g_{uv} + g_{wv} + g_{ww}. \end{split}$$

I per tant

$$f_{xx} + f_{yy} + f_{zz} - 2f_{xz} = -4g_{uv}. (4)$$

Així doncs, l'equació diferencial en les noves coordenades és

$$g_{uv}(u,v,w) = -\frac{1}{4}vw. (5)$$

En aquesta forma, podem solucionar 5 de forma immediata per integració:

$$g(u, v, w) = -\frac{1}{8}uwv^{2} + A(v, w) + B(u, w),$$
(6)

on A i B són funcions arbitràries que compleixen $A_u = B_v = 0$. I en les coordenades originals, la solució és

$$f(x,y,z) = -\frac{1}{8}(x+y)(x+z)(y+z)^2 + A(y+z,x+z) + B(x+y,x+z).$$
 (7)

Un cop tenim la solució general podem trobar la solució particular que sen's demana aplicant les condicions inicials. Tenim que, en el pla x + y = 0 es compleix $f_y + f_z - f_x = 0$. Fent servir 3 veiem que aquesta condició, traduïda a les noves coordenades, és equivalent a $g_v = 0$ en els punts del pla u = 0. A partir de 6 tenim que $g_u(u, v, w) = -\frac{1}{4}uvw + A_v(v, w)$. Per tant, per tots els punts que compleixen u = 0 tenim que $A_v(v, w) = 0$, i per tant que

Sabem també que f=0 restringida als punts del pla x=0. Traduït a les noves coordenades, g=0 als punts del pla v=u+w. Per tant, per tot $u,w\in\mathbb{R}$ es compleix

$$-\frac{1}{8}uw(u+w)^{2} + A(w) + B(u,w) = 0,$$

i per tant la solució que busquem és $g(u, v, w) = \frac{1}{8}uw((u+w)^2 - v^2)$.

Per veure que és única considerem dues potencials solucions, g_1 i g_2 i la seva diferència $h=g_1-g_2$. Per linealitat tenim que h compleix $h_{uv}=0$. Això ens dóna que h=A+B amb $A_u=B_v=0$. La funció h clarament també compleix les condicions inicials que compleixen g_1 i g_2 . Així tenim, que en el pla u=0, $h_v(0,v,w)=A_v(v,w)=0$, per tant que A només depèn de w. Per la segona condició, sabem que h és nul·la restringida als punts que compleixen v=u+w. És a dir h(u,u+w,w)=0 per tot $u,w\in\mathbb{R}$. Però com que h no depèn de v concloem que h és idènticament zero i per tant $g_1=g_2$, com volíem.