Fundamental Concepts in Computational and Applied Mathematics

Juan Meza School of Natural Sciences University of California, Merced

Fall 2014

Bayes Formula

Combine (prior) information you have with new data, D, to update your understanding of a model:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{\int P(D|\theta)P(\theta)d\theta}$$
 (1)

where

- ullet $P(\theta|D)$ is called the *posterior*
- $P(D|\theta)$ is called the *likelihood*
- $P(\theta)$ is called the *prior*

The term

$$m(x) = \int P(D|\theta)P(\theta)d\theta$$

is called the *marginal density* of the random variable X.

Basic Idea

- Replaced quantity of interest (posterior) with something that we are more likely to be able to compute
- The prior represents our state of the knowledge before we analyze the data
- The likelihood modifies this state once we've analyzed the new experimental data
- is just a normalization constant in most cases

Bayes

Of interest are various functions of the posterior (e.g. moments, quantiles, etc.), which can be expressed as expectations of functions of θ :

$$E[f(\theta)|D] = \frac{\int f(\theta)P(D|\theta)P(\theta)d\theta}{\int P(D|\theta)P(\theta)d\theta}$$
(2)

- Computation of the integrals have been the computational bottlenecks
- In most applications no analytic expressions for the posterior are impossible

Example

Summary

- blah
- blah
- blah