Genuine and Imposter Scores

Example: 2 users, A & B, each has 5 samples (A_i, B_i are feature vectors)

Genuine Scores: (Similarity measure, S)

User A:

S_A	A_1	A_2	A_3	A_4	A_5
A_1	8	a_{12}	a_{13}	a_{14}	a_{15}
A_2	a_{21} a_{31} a_{41} a_{51}	∞	a_{23}	a_{24}	a_{25}
A_3	a_{31}	a_{32}	∞	a_{34}	a_{35}
A_4	a_{41}	a_{42}	a_{43}	∞	a_{45}
A_5	a_{51}	a_{52}	a_{53}	a_{54}	∞

$ S_B $	B_1	B_2	B_3	B_4	B_5	
B_1	∞	b_{12}	b_{13}	b_{14}	b_{15}	
B_2	b_{21}	∞	b_{23}	b_{24}	b_{25}	
B_3	b_{31}	b_{32}	∞	b_{34}	b_{35}	
B_4	b_{41}	$b_{_{42}}$	b_{43}	∞	b_{45}	
B_5	b_{51}	b_{52}	b_{53}	b_{54}	∞	
	$egin{array}{c} B_1 \ B_2 \ B_3 \end{array}$	$egin{array}{c c} B_1 & \infty \ B_2 & b_{21} \ B_3 & b_{31} \ \end{array}$	$egin{array}{c cccc} B_1 & \infty & b_{12} \ B_2 & b_{21} & \infty \ B_3 & b_{31} & b_{32} \ \end{array}$	$egin{array}{c cccc} B_1 & \infty & b_{12} & b_{13} \ B_2 & b_{21} & \infty & b_{23} \ B_3 & b_{31} & b_{32} & \infty \ \end{array}$	$egin{array}{c ccccc} B_1 & \infty & b_{12} & b_{13} & b_{14} \ B_2 & b_{21} & \infty & b_{23} & b_{24} \ B_3 & b_{31} & b_{32} & \infty & b_{34} \ \end{array}$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

Imposter Scores: A & B:

S_{AB}	B_1	B_2	B_3	B_4	$B_{\scriptscriptstyle 5}$
A_2	ab_{21}	ab_{22}	ab_{23}	ab_{24}	ab_{25}
A_3	ab_{11} ab_{21} ab_{31}	ab_{32}	ab_{33}	ab_{34}	ab_{35}
A_4	ab_{41}	ab_{42}	ab_{43}	ab_{44}	ab_{45}
A_5	$ab_{41} \ ab_{51}$	ab_{52}	ab_{53}	ab_{54}	ab_{55}

Genuine and Imposter Scores

```
Set X = \{X_1, \ldots, X_M\}, is a set of M match (genuine) scores.

Example: \{a_{12}, a_{13}, \ldots, a_{45}, b_{12}, b_{13}, \ldots, b_{45}\}, M = 20

Set Y = \{Y_1, \ldots, Y_N\}, is a set of N non match (imposter) scores.

Example: \{ab_{11}, ab_{12}, \ldots, ab_{55}\}, N = 25
```


These two systems (matchers) have the same d-prime values But their ROC are quite different. Which is better?

Representation: Hand Geometry features

Vector of 17 features

- Finger length (FL) 4
- Finger width (FW) 8
- Palm width (PW)
- Palm Length (PL)
- Hand Length (HL)
- Hand Contour (HC)
- Hand Area (HA)

Examples of Feature Vector – Hand Geometry

User 1:

Sample1:

320, 365, 354, 292, 113, 89, 111, 89, 112, 95, 103, 91, 914, 470, 584, 4275, 413574

Sample2:

320,378,361,298,113,89,109,90,113,93,105,90,926,469,590,4478,426774

User 2:

Sample1:

346,387,349,278,92,80,95,87,86,78,78,70,868,428,538,4279,365147

Sample2:

335,382,349,277,93,84,93,85,87,78,78,69,871,432,542,4241,367027

User 3:

Sample1:

315,402,380,294,97,79,94,89,88,82,80,75,911,451,544,4519,396858

Sample2:

334,400,382,298,92,80,95,90,97,87,80,75,884,444,519,4421,383321

User 4:

314,371,359,294,92,77,99,82,107,88,87,73,875,445,544,4175,365795 313,375,361,294,94,79,102,84,104,88,87,72,879,447,545,4187,368345

Matching Score Distribution

Distance Measure - 100 users, 10 samples each, 29 features

Estimation of the no. of scores from a given set of data

For a given set of feature vector, we have assumed

- set $X = \{X_1, \dots, X_M\}$, is a set of M match (genuine) scores.
- set $Y = \{Y_1, \dots, Y_N\}$, is a set of N non match (imposter) scores.

Q: What are the values of M and N, say for a database of 100 users and 10 samples each?

Estimation of the no. of scores from a given set of data

For a given set of feature vector, we have assumed

- set $X = \{X_1, \ldots, X_M\}$, is a set of M match (genuine) scores.
- set $Y = \{Y_1, \ldots, Y_N\}$, is a set of N non match (imposter) scores.

$$100 \times C_{10}^{2} = 100 \times \frac{(10)!}{(10-2)!(2)!} = 4,500$$

For
$$Q$$
 users, P samples each, M :

$$Q \times C_P^2 = Q \times \frac{(P)!}{(P-2)!(2)!}$$

$$C_{100}^{2} \times 10 \times 10 = \frac{(100)!}{(100-2)!(2)!} \times 100 = 495,000$$

$$C_Q^2 \times P \times P = \frac{(Q)!}{(Q-2)!(2)!} \times p^2$$

$$C_{Q\times P}^2-M$$