

Deep Graph Infomax

Petar Veličković et al.

안중찬

CONTENTS

- **01 INTRODUCTION**
- **02** DGI METHODOLOGY
- **03** CLASSIFICATION PERFORMANCE
- **04 CONCLUSION**
- **05** ADDITIONAL INFORMATION
- **06 IMPLEMENTATION**

- Unsupervised graph learning ⇒ Random walk-based algorithms are dominant. (nodes that are 'close' → 'close' in the representation space)

Known limitations

- 1. Over-emphasize proximity information at the expense of structural information
- 2. Performance is highly dependent on hyperparameter choice
- 3. Unclear whether random-walk objectives actually provide any useful signal with stronger encoder models

Alternative objective for unsupervised graph learning:

Mutual Information!

Mutual Information

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log(\frac{p(x,y)}{p(x)p(y)})$$

$$I(X;Y) = \int_{Y} \int_{X} p(x,y) \log(\frac{p(x,y)}{p(x)p(y)}) dx dy$$

cf. Donsker-Varadhan representation

$$I(X;Z) \ge I_{\Theta}(X,Z), \quad I_{\Theta}(X,Z) = \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{XZ}}[T_{\theta}] - \log(\mathbb{E}_{\mathbb{P}_{X} \otimes \mathbb{P}_{Z}}[e^{T_{\theta}}]). \quad \to \mathsf{MINE}$$

Mutual Information Neural Estimation(MINE, Belghazi et al., 2018)

- Statistical network as a classifier
- Joint distribution of two random variables and their product of marginals

Deep InfoMax(DIM, Hjelm et al., 2018)

- Representation learning of high-dimensional data
- Maximize the mutual information between a "global" representation and "local" parts of the input

Deep Graph InfoMax (DGI)

Related Work

Contrastive methods

- scoring function
- increase the score on "real" input (positive examples)
- decrease the score on "fake" input (negative samples)

Sampling strategies

- how to draw positive and negative samples
- local contrastive loss
- positive = short random walks
- negative = sampling random pairs

Predictive coding

- Contrastive predictive coding: structurally-specified parts
- contrast global/local parts of a graph simultaneously
- matrix factorization-style losses

2.1 Graph-based unsupervised learning

Set of node features, $X = {\vec{x}_1, \vec{x}_2, \vec{x}_3, ..., \vec{x}_N}$

Adjacency matrix, $A \in \mathbb{R}^{N*N}$ $A_{ij} = 1$ if there exists an edge $i \to j$ in the graph, $A_{ij} = 0$ otherwise

Encoder,
$$\mathcal{E}: \mathbb{R}^{N*F} \times \mathbb{R}^{N*N} \to \mathbb{R}^{N*F'}, \mathcal{E}(\mathbf{X}, \mathbf{A}) = \mathbf{H} = \{\vec{h}_1, \vec{h}_2, \vec{h}_3, \dots, \vec{h}_N\}$$

2.2 Local-Global mutual information maximization

Summary vectors, $\vec{s} = \mathcal{R}(\mathcal{E}(X, A))$ Corruption function, $\mathcal{C} : \mathbb{R}^{N*F} \times \mathbb{R}^{N*N} \to \mathbb{R}^{M*F} \times \mathbb{R}^{M*M}$

Readout function, $\mathcal{R}: \mathbb{R}^{N*F} \to \mathbb{R}^F$ Negative samples: $\mathcal{C}(X, A) = (\widetilde{X}, \widetilde{A}), \ \overrightarrow{\widetilde{h_j}}$

Discriminator, $\mathcal{D}: \mathbb{R}^F \times \mathbb{R}^F \to \mathbb{R}$ proxy for maximizing the local mutual information

objective (Jensen-Shannon divergence)

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_{i}, \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\tilde{h}}_{j}, \vec{s} \right) \right) \right] \right)$$

2.3 Theoretical Motivation

Lemma 1. Let $\{\mathbf{X}^{(k)}\}_{k=1}^{|\mathbf{X}|}$ be a set of node representations drawn from an empirical probability distribution of graphs, $p(\mathbf{X})$, with finite number of elements, $|\mathbf{X}|$, such that $p(\mathbf{X}^{(k)}) = p(\mathbf{X}^{(k')}) \ \forall k, k'$. Let $\mathcal{R}(\cdot)$ be a deterministic readout function on graphs and $\vec{s}^{(k)} = \mathcal{R}(\mathbf{X}^{(k)})$ be the summary vector of the k-th graph, with marginal distribution $p(\vec{s})$. The optimal classifier between the joint distribution $p(\mathbf{X}, \vec{s})$ and the product of marginals $p(\mathbf{X})p(\vec{s})$, assuming class balance, has an error rate upper bounded by $\text{Err}^* = \frac{1}{2} \sum_{k=1}^{|\mathbf{X}|} p(\vec{s}^{(k)})^2$. This upper bound is achieved if \mathcal{R} is injective.

Corollary 1. From now on, assume that the readout function used, \mathcal{R} , is injective. Assume the number of allowable states in the space of \vec{s} , $|\vec{s}|$, is greater than or equal to $|\mathbf{X}|$. Then, for \vec{s}^* , the optimal summary under the classification error of an optimal classifier between the joint and the product of marginals, it holds that $|\vec{s}^*| = |\mathbf{X}|$.

2.3 Theoretical Motivation

Theorem 1. $\vec{s}^* = \operatorname{argmax}_{\vec{s}} \operatorname{MI}(\mathbf{X}; \vec{s})$, where MI is mutual information.

Theorem 2. Let $\mathbf{X}_i^{(k)} = \{\vec{x}_j\}_{j \in n(\mathbf{X}^{(k)},i)}$ be the neighborhood of the node i in the k-th graph that collectively maps to its high-level features, $\vec{h}_i = \mathcal{E}(\mathbf{X}_i^{(k)})$, where n is the neighborhood function that returns the set of neighborhood indices of node i for graph $\mathbf{X}^{(k)}$, and \mathcal{E} is a deterministic encoder function. Let us assume that $|\mathbf{X}_i| = |\mathbf{X}| = |\vec{s}| \geq |\vec{h}_i|$. Then, the \vec{h}_i that minimizes the classification error between $p(\vec{h}_i, \vec{s})$ and $p(\vec{h}_i)p(\vec{s})$ also maximizes $\mathrm{MI}(\mathbf{X}_i^{(k)}; \vec{h}_i)$.

- Classifier between samples from the joint and the product of marginals
- Binary cross-entropy(BCE) loss to optimize

2.4 Overview of DGI

Figure 1: A high-level overview of Deep Graph Infomax. Refer to Section 3.4 for more details.

3.1 Dataset

Dataset	Task	Nodes	Edges	Features	Classes	Train/Val/Test Nodes
Cora	Transductive	2,708	5,429	1,433	7	140/500/1,000
Citeseer	Transductive	3,327	4,732	3,703	6	120/500/1,000
Pubmed	Transductive	19,717	44,338	500	3	60/500/1,000
Reddit	Inductive	231,443	11,606,919	602	41	151,708/23,699/55,334
PPI	Inductive	56,944 (24 graphs)	818,716	50	121 (multilbl.)	44,906/6,514/5,524 (20/2/2 graphs)

- Transductive learning:

Figure 1. Node classification in transductive setting. At training time, the learning algorithm has access to all the nodes and edges including nodes for which labels are to be predicted.

- Inductive learning:

3.2 Experimental Setup – encoder & corruption functions

(1) Transductive learning(Cora, Citeseer, and Pubmed)

$$\mathcal{E}(\mathbf{X}, \mathbf{A}) = \sigma \left(\hat{\mathbf{D}}^{-\frac{1}{2}} \hat{\mathbf{A}} \hat{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \mathbf{\Theta} \right)$$

$$\widehat{A} = A + I_N$$

 \hat{D} : degree matrix

 σ : parametric ReLU(PReLU)

O: learnable linear transformation

 $F' = 512 (256 \ on \ Pubmed)$

- preserves the original adjacency matrix $(\widetilde{A} = A)$
- corrupted features (\widetilde{X}) obtained by row-wise shuffling of X

3.2 Experimental Setup – encoder & corruption functions

(2) Inductive learning on large graphs(Reddit)

three-layer mean-pooling model with skip connections

$$\begin{split} MP(\mathbf{X},\mathbf{A}) &= \hat{\mathbf{D}}^{-1}\hat{\mathbf{A}}\mathbf{X}\boldsymbol{\Theta} \\ \widetilde{MP}(\mathbf{X},\mathbf{A}) &= \sigma\left(\mathbf{X}\boldsymbol{\Theta}'\|\mathbf{MP}(\mathbf{X},\mathbf{A})\right) \\ \mathcal{E}(\mathbf{X},\mathbf{A}) &= \widetilde{MP}_3(\widetilde{MP}_2(\widetilde{MP}_1(\mathbf{X},\mathbf{A}),\mathbf{A}),\mathbf{A}) \\ \text{(GraphSAGE-GCN(Hamilton et al.. 2017)} \\ \text{(Const-GAT(Veličković et al.. 2017)} \end{split}$$

 $\widehat{D}^{-1}: performs normalized sum$

Figure 2: The DGI setup on large graphs (such as Reddit). Summary vectors, \vec{s} , are obtained by combining several subsampled patch representations, \vec{h}_i (here obtained by sampling three and two neighbors in the first and second level, respectively).

- row-wise shuffle the feature matrices within a subsampled patch

3.2 Experimental Setup – encoder & corruption functions

(3) Inductive learning on multiple graphs(PPI)

three-layer mean-pooling model with dense skip connections

$$egin{aligned} \mathbf{H}_1 &= \sigma\left(\mathsf{MP}_1(\mathbf{X}, \mathbf{A})\right) \ \mathbf{H}_2 &= \sigma\left(\mathsf{MP}_2(\mathbf{H}_1 + \mathbf{X}\mathbf{W}_{\mathsf{skip}}, \mathbf{A})\right) \ \mathcal{E}(\mathbf{X}, \mathbf{A}) &= \sigma\left(\mathsf{MP}_3(\mathbf{H}_2 + \mathbf{H}_1 + \mathbf{X}\mathbf{W}_{\mathsf{skip}}, \mathbf{A})\right) \end{aligned}$$

 W_{skip} : learnable projection matrix

- randomly sampled training graphs

3.2 Experimental Setup – Readout, discriminator, and additional training details

- Glorot initialization
- Adam SGD (learning rate = 0.001)
- Transductive: early stopping with a patience of 20 epochs
- 150 on Reddit, 20 on PPI

3.3 Results

Table 2: Summary of results in terms of classification accuracies (on transductive tasks) or micro-averaged F_1 scores (on inductive tasks). In the first column, we highlight the kind of data available to each method during training (X: features, A: adjacency matrix, Y: labels). "GCN" corresponds to a two-layer DGI encoder trained in a supervised manner.

Transductive

Available data	Method	Cora	Citeseer	Pubmed
X A, Y A X, A	Raw features LP (Zhu et al., 2003) DeepWalk (Perozzi et al., 2014) DeepWalk + features	$47.9 \pm 0.4\%$ 68.0% 67.2% $70.7 \pm 0.6\%$	$49.3 \pm 0.2\%$ 45.3% 43.2% $51.4 \pm 0.5\%$	$69.1 \pm 0.3\%$ 63.0% 65.3% $74.3 \pm 0.9\%$
X, A X, A	Random-Init (ours) DGI (ours)	$69.3 \pm 1.4\%$ 82.3 $\pm 0.6\%$	$61.9 \pm 1.6\%$ 71.8 $\pm 0.7\%$	$69.6 \pm 1.9\%$ $76.8 \pm 0.6\%$
$egin{aligned} \mathbf{X}, \mathbf{A}, \mathbf{Y} \\ \mathbf{X}, \mathbf{A}, \mathbf{Y} \end{aligned}$	GCN (Kipf & Welling, 2016a) Planetoid (Yang et al., 2016)	81.5% 75.7%	70.3% 64.7%	79.0% 77.2%

Inductive

Available data	Method	Reddit	PPI
X	Raw features	0.585	0.422
${f A}$	DeepWalk (Perozzi et al., 2014)	0.324	_
\mathbf{X}, \mathbf{A}	DeepWalk + features	0.691	_
$\overline{\mathbf{X}, \mathbf{A}}$	GraphSAGE-GCN (Hamilton et al., 2017a)	0.908	0.465
\mathbf{X}, \mathbf{A}	GraphSAGE-mean (Hamilton et al., 2017a)	0.897	0.486
\mathbf{X}, \mathbf{A}	GraphSAGE-LSTM (Hamilton et al., 2017a)	0.907	0.482
\mathbf{X}, \mathbf{A}	GraphSAGE-pool (Hamilton et al., 2017a)	0.892	0.502
$\overline{\mathbf{X}, \mathbf{A}}$	Random-Init (ours)	0.933 ± 0.001	0.626 ± 0.002
\mathbf{X}, \mathbf{A}	DGI (ours)	0.940 ± 0.001	0.638 ± 0.002
$\overline{\mathbf{X}, \mathbf{A}, \mathbf{Y}}$	FastGCN (Chen et al., 2018)	0.937	_
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	Avg. pooling (Zhang et al., 2018)	0.958 ± 0.001	0.969 ± 0.002

04 CONCLUSION

4.1 Qualitative analysis

Figure 3: t-SNE embeddings of the nodes in the Cora dataset from the raw features (**left**), features from a randomly initialized DGI model (**middle**), and a learned DGI model (**right**). The clusters of the learned DGI model's embeddings are clearly defined, with a Silhouette score of 0.234.

04 CONCLUSION

Deep Graph Infomax

- New approach for learning unsupervised representations on graph-structured data
- Leveraging local mutual information maximization across the graph's patch representations
- Obtain node embeddings that are mindful of the global structural properties of the graph
- Competitive performance across a variety of tasks

05 ADDITIONAL INFORMATION

- Robustness to choice of corruption function

Figure 7: DGI also works under a corruption function that modifies only the adjacency matrix $(\widetilde{\mathbf{A}} \neq \mathbf{A})$ on the Cora dataset. The left range $(\rho \to 0)$ corresponds to no modifications of the adjacency matrix—therein, performance approaches that of the randomly initialized DGI model. As ρ increases, DGI produces more useful features, but ultimately fails to outperform the feature-shuffling corruption function. **N.B.** log scale used for ρ .

 ρ : corruption rate

Figure 8: DGI is stable and robust under a corruption function that modifies *both* the feature matrix $(\mathbf{X} \neq \widetilde{\mathbf{X}})$ and the adjacency matrix $(\widetilde{\mathbf{A}} \neq \mathbf{A})$ on the Cora dataset. Corruption functions that preserve sparsity $(\rho \approx \frac{1}{N})$ perform the best. However, DGI still performs well even with large disruptions (where edges are added or removed with probabilities approaching 1). **N.B.** log scale used for ρ .

- O PyTorch PyTorch geometric

```
class GCN(nn.Module):
   def __init__(self, ft_in, n_fts):
        super(GCN, self).__init__()
        self.conv = GCNConv(ft_in, n_fts)
        self.act = nn.PReLU(n_fts)
   def forward(self, x, edge_index):
        x = self.conv(x, edge_index)
        x = self.act(x)
        return x
def corruption(x, edge_index):
    return x[torch.randperm(x.size(0))], edge_index
def summary(h, *args, **kwargs):
    return torch.mean(h, dim=0)
```

```
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
       model = DeepGraphInfomax(hidden_channels=512,
                                encoder=GCN(data.num_features, 512),
                                summary=summary,
                                corruption=corruption).to(device)
       optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)
in [10]: def train():
           model.train()
           optimizer.zero_grad()
           pos_z, neg_z, summary = model(data.x, data.edge_index)
           loss = model.loss(pos_z, neg_z, summary)
           loss.backward()
           optimizer.step()
           return loss.item()
```

Results

Name	#nodes	#edges	#features	#classes	#train/val/test
Cora	2,708	10,556	1,433	7	140/500/1000
CiteSeer	3,327	9,104	3,703	6	120/500/1000
PubMed	19,717	88,648	500	3	60/500/1000

Cora

Epoch: 10, Loss: 0.9537 Epoch: 20, Loss: 0.6639 Epoch: 30, Loss: 0.4968 Epoch: 40, Loss: 0.3886 Epoch: 50, Loss: 0.3447 Epoch: 60, Loss: 0.3199 Epoch: 70, Loss: 0.3020 Epoch: 80, Loss: 0.2888 Epoch: 90, Loss: 0.2401 Epoch: 100, Loss: 0.2267 Accuracy: 0.8290

CiteSeer

Epoch:	10,	Loss:	1.2206		
Epoch:	20,	Loss:	0.8322		
Epoch:	30,	Loss:	0.4920		
Epoch:	40,	Loss:	0.3300		
Epoch:	50,	Loss:	0.2627		
Epoch:	60,	Loss:	0.2438		
Epoch:	70,	Loss:	0.2997		
Epoch:	80,	Loss:	0.2786		
Epoch:	90,	Loss:	0.3120		
Epoch:	100,	Loss	: 0.2219		
Accurac	Accuracy: 0.7140				

PubMed

Epoch: 10, Loss: 1.3811
Epoch: 20, Loss: 1.3460
Epoch: 30, Loss: 1.2444
Epoch: 40, Loss: 1.0822
Epoch: 50, Loss: 0.9635
Epoch: 60, Loss: 0.9102
Epoch: 70, Loss: 0.8739
Epoch: 80, Loss: 0.8437
Epoch: 90, Loss: 0.8260
Epoch: 100, Loss: 0.8061
Accuracy: 0.7160


```
def forward(self, x, edge_index):
                                                                x = self.conv(x, edge_index)
class DGI(nn.Module):
                                                                x = self.activation(x)
    def __init__(self, data, dim):
                                                                return x
        super(DGI, self).__init__()
        self.dim = dim
        self.data = Data(data.x, data.edge_index)
        self.loss = nn.BCEWithLogitsLoss()
        self.weight = nn.Parameter(torch.Tensor(self.dim, self.dim))
        nn.init.xavier_uniform_(self.weight)
    def discriminator(self, h, summary):
        value = torch.matmul(h, torch.matmul(self.weight, summary))
        return torch.sigmoid(value)
    def corruption(self, data):
        return Data(self.data.x[torch.randperm(self.data.x.size(0))], self.data.edge_index)
```

def __init__(self, in_ftr, out_ftr):

super(GCNlayer, self).__init__()

self.conv = GCNConv(in_ftr, out_ftr) self.activation = nn.PReLU(out_ftr)

```
def forward(self):
   pos_x = self.data
   neg_x = self.corruption(pos_x)
   encoder = GCNlayer(self.data.num_features, self.dim)
   pos_h = encoder(pos_x.x, pos_x.edge_index)
   neg_h = encoder(neg_x.x, neg_x.edge_index)
   summary = torch.sigmoid(torch.mean(pos_h, dim = 0))
   pos_h = self.discriminator(pos_h, summary)
   neg_h = self.discriminator(neg_h, summary)
   loss_pos = self.loss(pos_h, torch.ones_like(pos_h))
   loss_neg = self.loss(neg_h, torch.zeros_like(neg_h))
   return loss_pos + loss_neg
def predict(self, data):
    pos_x = data
   neg_x = self.corruption(pos_x)
   encoder = GCNlayer(self.data.num_features, self.dim)
   pos_h = encoder(pos_x.x, pos_x.edge_index)
   neg_h = encoder(neg_x.x, neg_x.edge_index)
   summary = torch.sigmoid(torch.mean(pos_h, dim = 0))
   return pos_h, neg_h, summary
```

Discussion

```
def loss(self, pos_h, neg_h, summary):
    pos_loss = -torch.log(self.discriminator(pos_h, summary)).mean()
    neg_loss = -torch.log(1-self.discriminator(neg_h,summary)).mean()
    return pos_loss + neg_loss
```

Cora

Epoch: 1, Loss: 1.4378 Epoch: 2, Loss: 1.4025 Epoch: 3, Loss: 1.3923 Epoch: 4, Loss: 1.3890 Epoch: 5, Loss: 1.3885 Epoch: 6, Loss: 1.3872 Epoch: 7, Loss: 1.3864 Epoch: 8, Loss: 1.3865 Epoch: 9, Loss: 1.3864 Epoch: 10, Loss: 1.3864 Accuracy: 0.7710

CiteSeer

```
Epoch: 1, Loss: 1.4346
Epoch: 2, Loss: 1.4010
Epoch: 3, Loss: 1.3916
Epoch: 4, Loss: 1.3889
Epoch: 5, Loss: 1.3874
Epoch: 6, Loss: 1.3865
Epoch: 7, Loss: 1.3866
Epoch: 8, Loss: 1.3864
Epoch: 9, Loss: 1.3864
Epoch: 10, Loss: 1.3863
Accuracy: 0.6230
```

PubMed

```
Epoch: 1, Loss: 1.4483
Epoch: 2, Loss: 1.4351
Epoch: 3, Loss: 1.4335
Epoch: 4, Loss: 1.4239
Epoch: 5, Loss: 1.4214
Epoch: 6, Loss: 1.4175
Epoch: 7, Loss: 1.4145
Epoch: 8, Loss: 1.4116
Epoch: 9, Loss: 1.4085
Epoch: 10, Loss: 1.4059
Accuracy: 0.7320
```

THANK YOU -