Permit Number 152787

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission	Rates
			lbs/hour	TPY (4)
ENG1	Caterpillar G3512LE	NO _x	4.43	19.41
		СО	2.99	13.10
		SO ₂	<0.01	0.02
		PM	PM 0.08	0.37
		PM ₁₀	0.08	0.37
		PM _{2.5}		0.37
		VOC	0.70	3.07
ENG5	Caterpillar G3516LE	NO _x	4.78	20.95
		со	3.95	17.29
		SO ₂	0.01	0.02
		PM	0.09	0.41
		PM ₁₀	0.09	0.41
		PM _{2.5}	0.09	0.41
		VOC	0.74	3.25
ENG6	Caterpillar G3606LE	NO _x	2.15	9.43
		со	3.23	14.14
		SO ₂	0.01	0.03
		PM	0.13	0.59
		PM ₁₀	0.13	0.59
		PM _{2.5}	0.13	0.59
		VOC	1.74	7.63

ENG7	Caterpillar G3606LE	NO _x	2.15	9.43
		СО	3.23	14.14
		SO ₂	0.01	0.03
		PM	0.13	0.59
		PM_{10}	0.13	0.59
		PM _{2.5}	0.13	0.59
		VOC	1.57	6.86
ENG8	Caterpillar G3606LE	NO _x	2.15	9.43
		СО	3.23	14.14
		SO ₂	0.01	0.03
		PM	0.13	0.59
		PM ₁₀	0.13	0.59
		PM _{2.5}	0.13	0.59
		VOC	1.57	6.86
ENG9	Caterpillar G3606LE	NO _x	2.15	9.43
		СО	3.23	14.14
		SO ₂	0.01	0.03
		PM	0.13	0.59
		PM ₁₀	0.13	0.59
		PM _{2.5}	0.13	0.59
		VOC	1.57	6.86

ENG10	Caterpillar CG137-12	NO_x	0.93	4.06
		CO	2.65	11.59

•				
		SO ₂	<0.01	0.01
		PM	0.05	0.22
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.05	0.22
		VOC	0.93	4.06
ENG11	Caterpillar G3606LE	NO _x	2.15	9.43
		СО	3.23	14.14
		SO ₂	0.01	0.03
		PM	0.13	0.59
		PM ₁₀	0.13	0.59
		PM _{2.5}	0.13	0.59
		VOC	1.74	7.63
ENG12	Caterpillar G3606LE	NO _x	2.15	9.43
		СО	3.23	14.14
		SO ₂	0.01	0.03
		PM	0.13	0.59
		PM ₁₀	0.13	0.59
		PM _{2.5}	0.13	0.59
		VOC	1.74	7.63

ENG13	Caterpillar G3606LE	NO _x	2.15	9.43
		СО	3.23	14.14
		SO ₂	0.01	0.03
		PM	0.13	0.59

		PM_{10}	0.13	0.59
		PM _{2.5}	0.13	0.59
		VOC	1.74	7.63
ENG15	Caterpillar CG137-12	NO _x	0.93	4.06
		СО	2.65	11.59
		SO ₂	<0.01	0.01
		PM	0.05	0.22
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.05	0.22
		VOC	0.93	4.06
TURB1	5 Combined Capstone C200NG Microturbines	NO _x	0.46	1.99
	CZOONG MICIOLUIDINES	СО	1.20	5.27
		SO ₂	<0.01	0.02
		PM	0.08	0.33
		PM_{10}	0.08	0.33
		PM _{2.5}	0.08	0.33
		VOC	0.11	0.48

TURB2	5 Combined Capstone C200NG Microturbines	NO_x	0.46	1.99
	OZOGIVO IVIICIOILAI BIITOS	СО	1.20	5.27
		SO ₂	<0.01	0.02
		PM	0.08	0.33
		PM_{10}	0.08	0.33
		PM _{2.5}	0.08	0.33

		VOC	0.11	0.48
HT1	Amine Reboiler	NO _x	1.47	6.44
		СО	1.24	5.41
		SO ₂	0.01	0.04
		PM	0.11	0.49
		PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49
		VOC	0.08	0.35
HT2A	Glycol Reboiler 1 Gas Combustion	NO _x	0.07	0.32
	Combustion	СО	0.06	0.27
		SO ₂	<0.01	<0.01
		PM	0.01	0.02
		PM ₁₀	0.01	0.02
		PM _{2.5}	0.01	0.02
		VOC	<0.01	0.02
HT2A	Glycol Reboiler 1 Uncombusted Still	VOC	0.38	1.67
	Vent	H ₂ S	<0.01	<0.01
	-			

HT2B	HT2B Glycol Reboiler 2 Gas Combustion	NO_x	0.10	0.43
	Combustion	СО	0.08	0.36
		SO ₂	<0.01	<0.01
		PM	0.01	0.03
		PM_{10}	0.01	0.03
		PM _{2.5}	0.01	0.03
		VOC	0.01	0.02
HT2B	Glycol Reboiler 2 Uncombusted Still	VOC	0.38	1.67

		H2S	<0.01	<0.01
HT3	Condensate Stabilizer Heater 1	NO _x	0.25	1.07
	ricater 1	СО	0.21	0.90
		SO ₂	<0.01	0.01
		PM	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		VOC	0.01	0.06
HT4	Condensate Stabilizer Heater 2	NO _x	0.54	2.36
	ricater 2	СО	0.45	1.98
		SO ₂	<0.01	0.01
		PM	0.04	0.18
		PM ₁₀	0.04	0.18
		PM _{2.5}	0.04	0.18
		VOC	0.03	0.13

НТ6	HT6 Glycol Reboiler 3 Gas Combustion	NO _x	0.15	0.64
	Combustion	СО	0.12	0.54
		SO ₂	<0.01	<0.01
		PM	0.01	0.05
		PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
		VOC	0.01	0.04
HT6	HT6 Glycol Reboiler 3 Uncombusted Still Vent	VOC	0.57	2.51
		H ₂ S	<0.01	<0.01
HT7	Condensate Stabilizer Heater 3	NO _x	0.36	1.59

_				
		СО	1.24	5.41
		SO ₂	0.01	0.04
		PM	0.11	0.49
		PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49
		VOC	0.08	0.35
НТ8	Condensate Stabilizer Heater 4	NO _x	0.68	2.98
	nealei 4	СО	2.31	10.10
		SO ₂	0.02	0.07
		PM	0.21	0.91
		PM ₁₀	0.21	0.91
		PM _{2.5}	0.21	0.91
		VOC	0.15	0.66

FL1	Flare 1 Maximum Normal Emissions	NO _x	0.65	2.87
		СО	5.62	24.59
		SO ₂	55.22	241.86
		VOC	2.34	10.26
		H ₂ S	0.59	2.57
TB1	16 Fixed Roof Condensate Tanks Fuel Gas Blanket and mVRU	VOC	8.65	3.33
		H₂S	<0.01	<0.01
IFRTK1TK	IFR Tank 1	VOC	0.53	-
		H ₂ S	<0.01	-
IFRTK2TK	IFR Tank 2	VOC	0.53	-
		H ₂ S	<0.01	-
IFRTK3TK	IFR Tank 3	VOC	0.53	-

		H ₂ S	<0.01	-
GRP-IFR/Annual Group-Combined IFRTK1TK-IFRTK3TK Tanks —		VOC	-	6.09
		H ₂ S	-	<0.01
TK1	Produced/Slop Water	VOC	0.09	0.04
	Tank1 Fuel Gas Blanket mVRU	H₂S	<0.01	<0.01
TK2	Produced/Slop Water	VOC	0.09	0.04
	Tank2 Fuel Gas Blanket mVRU	H2S	<0.01	<0.01
TK3	Lube Oil Tank	VOC	0.01	0.01
TK4	AntiFreeze Tank	VOC	<0.01	<0.01
TK5	Amine Tank	VOC	<0.01	<0.01
TK6	Glycol Tank	VOC	<0.01	<0.01
TK7	Methanol Tank	VOC	0.20	0.20
TK8	Diesel Tank	VOC	0.01	0.01
TK9	Used Oil Tank	VOC	0.01	0.01
LD1	Produced Water Truck	VOC	<0.01	<0.01
	Loading	H ₂ S	<0.01	<0.01
LD1	Produced Water Truck	VOC	<0.01	<0.01
	Loading Fugitive Emissions	H ₂ S	<0.01	<0.01
LD2	Slop Oil & Water Truck	VOC	<0.01	<0.01
	Loading	H₂S	<0.01	<0.01
LD2	Slop Oil & Water Truck	VOC	<0.01	<0.01
	Loading Fugitive Emissions	H ₂ S	<0.01	<0.01
LD3	Condensate Truck	VOC	18.24	27.99
	Loading Lean Oil Unit Controlled Emissions	H ₂ S	<0.01	<0.01
FUG1 (5)	Facilities Fugitive	VOC	6.25	27.37
	Emissions	H₂S	<0.01	<0.01
neduled Maintena	nce Startup and Shutdown (MS	GS)		
FL2	Waste Streams	NO _x	104.9	14.55
	Emission Cap —	СО	209.41	29.06

_				
		SO ₂	5.76	0.86
		VOC	370.17	54.45
		H₂S	0.07	0.04
MSSVENT1	Inlet Gas Compressors MSS Vents to Atmosphere	VOC	22.80	1.71
		H₂S	0.01	<0.01
MSSVENT2	Off-Gas Compressor MSS Vents	VOC	78.34	15.04
		H ₂ S	0.01	<0.01
MSSVENT3	Non-Compressor Plant Equipment MSS Vents to Atmosphere	VOC	620.18	3.10
		H ₂ S	0.08	<0.01
MSSVENT4	Pig Receivers MSS Vents to Atmosphere	VOC	13.83	7.19
		H₂S	<0.01	<0.01
MSSVENT5	Internal Floating Roof Tanks MSS Vents to Atmosphere	VOC	52.32	1.51
		H₂S	0.01	<0.01
MSSVENT6	Y-Grade Hose Disconnections	VOC	0.36	0.13

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide H_2S - hydrogen sulfide

(4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

Date: September 23, 2019	