MA5233 Computational Mathematics

Lecture 22: Time-dependent PDEs

Simon Etter

2019/2020

Introduction

Last two topics:

- ▶ ODEs \approx differential equations in time.
- ▶ PDEs \approx differential equations in space.

New topic: differential equations in both space and time.

Heat equation

Given $u_0:[0,1]\to\mathbb{R}$, find $u:[0,1]\times[0,T]\to\mathbb{R}$ such that for all $x\in[0,1]$ and $t\in[0,T]$ it holds

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t), & \text{(PDE)} \\ u(x,0) = u_0(x), & \text{(initial conditions)} \\ u(0,t) = u(1,t) = 0. & \text{(boundary conditions)} \end{cases}$$

Heat equation is the simplest time-dependent PDE and serves as a role model for more complicated equations.

See Lecture 5 for physical interpretation of this equation.

Discretisation of time-dependent PDEs

Most numerical methods for time-dependent PDEs are derived according to the following scheme.

0. Original PDE:

Find
$$u:[0,1]\times[0,T]\to\mathbb{R}$$
 such that $\frac{\partial u}{\partial t}(x,t)=\frac{\partial^2 u}{\partial x^2}(x,t).$ (1)

1. Discretise in space using finite differences / Galerkin method. This replaces (1) with

Find
$$u:[0,T]\to\mathbb{R}^n$$
 such that $\frac{\partial u}{\partial t}(t)=Au(t)$. (2)

where $u(t) \in \mathbb{R}^n$ is the vector of point values for finite differences or vector of expansion coefficients for Galerkin's method.

2. Discretise in time using Runge-Kutta / multistep method. This replaces (2) with

Find
$$(u_k : \mathbb{R}^n)_{k=0}^m$$
 such that $u_{k+1} = u_k + B u_k \frac{T}{m}$.

where $u_k \approx u(T\frac{k}{m})$.

The next slides demonstrate this procedure using FD and explicit Euler.

Finite difference and explicit Euler discretisation of heat equation

- 0. Original PDE: $\frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t)$
- 1. Finite difference discretisation (assuming $(x_k := \frac{k}{n+1})_{k=0}^{n+1}$):

$$\frac{\partial u}{\partial t}(x_k,t) \approx (n+1)^2 \left(u(x_{k-1},t) - 2 u(x_k,t) + u(x_{k+1},t) \right).$$

Let us write this as $\frac{\partial u}{\partial t}(t) = Au(t)$.

2. Explicit Euler time-stepping (assuming $(t_{\ell} := T \frac{\ell}{m})_{\ell=0}^{m})$:

$$u(t_{\ell+1}) \approx u(t_{\ell}) + Au(t_{\ell}) \frac{T}{m}$$
.

See example() in 22_time_dependent_pdes.jl.

Error analysis

Same setup as for Runge-Kutta methods:

- ▶ Exact time propagator $\Phi_t : u(x,0) \mapsto u(x,t)$.
- Numerical time propagator $\tilde{\Phi}_t : u(x_k, 0) \mapsto \tilde{u}(x_k, t)$.

Note that Φ_t maps functions to functions, while $\tilde{\Phi}_t$ maps point-values to point-values. As before, we assume that functions are implicitly converted to point-values if this is required by context.

Assumptions on numerical propagator:

- ► Consistency: $\|\tilde{\Phi}_t(u) \Phi_t(u)\| = \mathcal{O}(t(t^p + n^{-q}))$ for some p, q > 0.
- ▶ Stability: $\|\tilde{\Phi}_t(u_2) \tilde{\Phi}_t(u_1)\| \le (1 + \tilde{L}\,t) \|u_2 u_1\|$ for some $\tilde{L} > 0$.

Main new ingredient:

- ▶ space-discretised ODE $\frac{\partial u}{\partial t} = Au(t)$ is only an approximation to the exact equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}(t)$.
- ▶ Hence, consistency error involves a spatial component $\mathcal{O}(t \, n^{-q})$ and a temporal component $\mathcal{O}(t^{-p-1})$.

Theorem

Under the assumptions on previous slide, we have

$$\|\tilde{u}(T) - u(T)\| = \mathcal{O}(m^{-p} + n^{-q})$$

where u(T) denotes the vector of point-values of the exact solution and $\tilde{u}(T)$ is the numerically computed approximation using m equidistant steps in time and n equispaced grid points in space.

Proof. The proof is a minor modification of what we have done for the Runge-Kutta schemes in Lecture 16. As before, let us introduce the shorthand notation

$$\Phi(u) := \Phi_{T/m}(u), \quad \tilde{\Phi}(u) := \tilde{\Phi}_{T/m}(u), \quad u_k := u(\tfrac{Tk}{m}), \quad \tilde{u}_k := \tilde{u}(\tfrac{Tk}{m}).$$

Both u_k and \tilde{u}_k are vectors of point values.

Proof (continued). We compute

$$\begin{split} \|\tilde{u}(T) - u(T)\| &= \|\tilde{\Phi}(\tilde{u}_{m-1}) - \Phi(u_{m-1})\| \\ &\leq \|\tilde{\Phi}(\tilde{u}_{m-1}) - \tilde{\Phi}(u_{m-1})\| + \|\tilde{\Phi}(u_{m-1}) - \Phi(u_{m-1})\| \\ &\leq (1 + \frac{\tilde{L}T}{m}) \|\tilde{u}_{m-1} - u_{m-1}\| + \mathcal{O}(m^{-1} (m^{-p} + n^{-q})) \\ &\leq \cdots \\ &\leq 0 + \left(\sum_{k=0}^{m-1} (1 + \frac{\tilde{L}T}{m})^k\right) \mathcal{O}(m^{-1} (m^{-p} + n^{-q})) \\ &\leq (1 + \frac{\tilde{L}T}{m})^{m-1} \mathcal{O}(m^{-p} + n^{-q}) \end{split}$$

Claim follows after observing that since $1 + x \le \exp(x)$, we have

$$(1+\frac{\tilde{L}T}{m})^{m-1} \leq \exp\bigl(\tilde{L}\;T\,\tfrac{m-1}{m}\bigr) \leq \exp\bigl(\tilde{L}\;T\bigr).$$

Consistency of FD + explicit Euler

$$\tilde{u}(t) = u(0) + Au(0) t$$

$$u(t) = u(0) + \frac{\partial u}{\partial t}(0) t + \mathcal{O}(t^2)$$

Since

$$\tfrac{\partial u}{\partial t}(x_k,0) = \tfrac{\partial^2 u}{\partial x^2}(x_k,0) = (Au)_k + \mathcal{O}\big(n^{-2}\big),$$

we have $\tilde{u}(t) - u(t) = \mathcal{O}(t(t + n^{-2}))$.

Stability of FD + explicit Euler

$$\|\tilde{\Phi}_t(u_2) - \tilde{\Phi}_t(u_1)\| \le \|u_2 - u_1\| + t \|Au_2 - Au_1\|$$

 $\le (1 + \|A\|t) \|u_2 - u_1\|.$

Conclusion

Error for FD+EE discretisation with m equidistant time-steps and n mesh points is given by

$$error = \mathcal{O}(m^{-1} + n^{-2}).$$

Discussion

- ▶ Solving time-dependent PDEs involves two limits $m, n \to \infty$.
- Analysis shows that error can effectively be decomposed into temporal and spatial components.
- ▶ Optimal efficiency is achieved if these two components are of equal magnitude, i.e. if $m^{-p} \approx n^{-q}$.

Concrete examples (assuming finite difference discretisation in space):

- ► For explicit or implicit Euler, choose $m \propto n^2$.
- ► For explicit or implicit midpoint, choose $m \propto n$.

See convergence().

Observation

For explicit methods, solution blows up if m is too small compared to n.

Asymptotic behaviour of heat equation

Physical intuition: $u(x,t) \to 0$ for $t \to \infty$ due to boundary conditions. Mathematical analysis:

- ▶ If $u_0(x) = \sin(\pi kx)$, then $u(x, t) = \sin(\pi kx) \exp(-(\pi k)^2 x)$.
- ▶ Heat equation is linear: if $u_k(x,t)$ solves heat equation with initial conditions $u_{0,k}(x)$ for $k \in \{1,2\}$, then $u_1(x,t) + u_2(x,t)$ solves heat equation for initial conditions $u_{0,1}(x) + u_{0,2}(x)$.
- ▶ Fourier theory: any (reasonable) $u_0(x)$ can be written as

$$u_0(x) = \sum_{k=1}^{\infty} \hat{u}_k \sin(\pi kx).$$

Conclusion:

$$u(x,t) = \sum_{k=1}^{\infty} \hat{u}_k \sin(\pi kx) \exp(-(\pi k)^2 t),$$

i.e. solutions decay exponentially in time.

Asymptotic behaviour of Runge-Kutta methods

Runge-Kutta with time-step Δt applied to the ODE $\dot{u}=Au$ produces solutions \tilde{u}_k which go to zero for $k\to\infty$ if and only if the stability function R(z) satisfies $|R(\lambda \Delta t)|<1$ for all eigenvalues λ of A.

Time step constraint for FD + explicit Runge-Kutta method

- ▶ We showed in Lecture 5 that the eigenvalues of the finite difference matrix A satisfy $\lambda_k \in (-4(n+1)^2, 0)$.
- ▶ We showed in Lecture 17 that stability functions R(z) for explicit Euler and midpoint rule satisfy $|R(z)| \ge 1$ for $z \in \mathbb{R} \setminus (-2,0)$.

Conclusion: stability constraint $|R(\lambda \Delta t)| < 1$ is satisfied if and only if

$$4(n+1)^2 \Delta t \leq 2 \quad \iff \quad \Delta t \leq \frac{1}{2}(n+1)^{-2}.$$

Discussion

- ► Time step constraint is acceptable for explicit Euler method since convergence anyway requires $\Delta t \propto n^{-2}$.
- ► Time step constraint means explicit midpoint offers no advantage over explicit Euler: for convergence, $\Delta t \propto n^{-1}$ would be enough, but stability imposes $\Delta t \propto n^{-2}$.