

IIC1253 — Matemáticas Discretas — 1' 2022

PAUTA INTERROGACIÓN 1

Pregunta 1

Demuestre la siguiente equivalencia lógica en lógica de predicados para toda fórmula α y β :

$$\exists x.(\alpha \lor \beta) \equiv (\exists x.\alpha) \lor (\exists x.\beta)$$

Solución:

Para esta pregunta, se debía demostrar que $\exists x(\alpha(x) \lor \beta(x)) \Leftrightarrow \exists x(\alpha(x)) \lor \exists x(\beta(x))$. Demostraremos ambas direcciones

(=>)

Partimos de la suposición de que $I \models \exists x(\alpha(x) \lor \beta(x))$, luego desarrollamos:

$$I \vDash \exists x(\alpha(x) \lor \beta(x))$$

$$\Rightarrow \exists a \in I(Dom)(I \vDash \alpha(a) \lor \beta(a))$$

$$\Rightarrow \exists a \in I(Dom)(I \vDash \alpha(a)) \text{ S.P.D.G}$$

$$\Rightarrow I \vDash \exists x\alpha(x)$$

$$\Rightarrow I \vDash \exists x\alpha(x) \lor \exists x\beta(x)$$

 (\leq) Ahora veremos el otro lado, partiendo de la suposición $I \models (\exists x \alpha(x)) \lor (\exists x \beta(x))$

$$I \vDash (\exists x \alpha(x)) \lor (\exists x \beta(x))$$

$$\Rightarrow I \vDash \exists x \alpha(x) \text{ S.P.D.G}$$

$$\Rightarrow \exists a \in I(Dom)(I \vDash \alpha(a))$$

$$\Rightarrow \exists a \in I(Dom)(I \vDash \alpha(a) \lor \beta(a))$$

$$\Rightarrow \exists x (\alpha(x) \lor \beta(a))$$

Es importante notar que los pasos no son bidireccionales, ya que el SPDG ocurre en etapas distintas en cada dirección. En la primera dirección, ocurre en el paso 3, y en la segunda ocurre en el paso 2.

Dado lo anterior el puntaje asignado es el siguiente:

- (3 Puntos) por lado si se demuestra correctamente
- (2 Puntos) por lado si olvidan el SPDG
- (1 Puntos) en total si hay bidireccionalidad entre las expresiones
- (0 Puntos) si la demostración es incorrecta

Pregunta 2

Suponga la siguiente interpretación \mathcal{I} de los símbolos de predicados L(x,y), S(x,y,z), M(x,y,z) y x=y sobre el dominio de los naturales:

$$\begin{split} \mathcal{I}(dom) &:= \mathbb{N} \\ \mathcal{I}(L) &:= x < y \\ \mathcal{I}(S) &:= x + y = z \\ \mathcal{I}(M) &:= x \times y = z \\ \mathcal{I}(=) &:= x = y \end{split}$$

Pregunta 2.1

Para la siguiente fórmula de predicados:

$$\forall x. \exists y. \exists z. \neg \big(\forall u. \neg (x=u) \rightarrow L(x,u) \big) \land \neg \big(\forall v. \neg (y=v) \rightarrow L(y,v) \big) \land \exists r. \exists s. M(r,r,y) \land M(s,s,z) \land S(y,z,x)$$

diga si es verdadera o falsa en la interpretación \mathcal{I} explicando su significado. Demuestre su respuesta.

Solución:

De la anterior fórmula de predicados podemos interpretar lo siguiente (recordar que la interpretación es sobre los números naturales):

"Todo natural x es la suma de dos cuadrados perfectos (i.e $x = y^2 + z^2$) tal que $x \neq 0$ y $y \neq 0$ ".

Demostraremos que la fórmula de predicados en la interpretación \mathcal{I} es falsa mediante un contra-ejemplo. Tomemos x=3, notemos que $x\neq 0$ e $y\neq 0$. Es fácil ver que no existe forma de que x sea la suma de dos cuadrados perfectos dadas las condiciones:

$$2^{2} + 2^{2} \neq 3$$
 $2^{2} + 1^{2} \neq 3$ $2^{2} + 0^{2} \neq 3$ $1^{2} + 2^{2} \neq 3$ $1^{2} + 0^{2} \neq 3$ $1^{2} + 0^{2} \neq 3$

Queda demostrado entonces que la fórmula de predicados es falsa.

Dado lo anterior el puntaje asignado es el siguiente:

- (0.3 Puntos) Identificar que $x \neq 0$ e $y \neq 0$.
- (1 Punto) Identificar que todo número natural es la suma de dos cuadrados perfectos.
- (0.5 Puntos) Mencionar que la fórmula de predicados es falsa.
- (1.2 Puntos) Demostrar correctamente que la fórmula de predicados es falsa.

Pregunta 2.2

Escriba la siguiente fórmula en lógica de predicados sobre \mathcal{I} .

"Para todo número n, existe un número mayor m que es divisible por al menos tres números distintos entre sí y a la vez distintos de 1 y m."

Justifique su respuesta.

Solución:

En base a lo pedido vamos a definir las fórmulas α_1 , α_d y α_D , tal que:

$$\alpha_1(x) = M(x, x, x) \land \neg S(x, x, x)$$

$$\alpha_d(x, y) = \exists k. \ M(x, k, y)$$

$$\alpha_D(x, y, z) = \neg (x = y) \land \neg (x = z) \land \neg (y = z)$$

En palabras, α_1 determina el número 1; tal que la fórmula es falsa para cualquier otro natural. α_d determina si y es divisible por x; tal que $x \cdot k = y$ y α_D determina si los números x, y, z son diferentes entre si. Luego, definimos la fórmula α , tal que:

$$\alpha = \forall n. \ \exists m. \ (n < m) \land \exists d_1. \ \exists d_2. \ \exists d_3. \ \left(\alpha_D(d_1, d_2, d_3) \land \bigwedge_{i=1}^3 \left(\alpha_d(d_i, m) \land \neg(d_i = m) \land \neg\alpha_1(d_i)\right)\right)$$

Es decir, "para todo número n, existe número mayor m que es divisible por los naturales d_1 , d_2 y d_3 , tal que: son distintos entre si, dividen a m, pero son distintos de m y tambien, diferentes de 1".

Dado lo anterior el puntaje asignado es el siguiente:

- (**0.3 Puntos**) Por afirmar que $\forall n$. $\exists m$. (n < m)
- (0.5 Puntos) Por afirmar, mediante una fórmula, que existen tres divisores distintos
- (0.5 Puntos) Por afirmar, mediante una fórmula, que los divisores dividen a m.
- (0.3 Puntos) Por afirmar, mediante una fórmula, que los divisores son distintos de m.
- (0.7 Puntos) Por afirmar, mediante una fórmula, que los divisores son distintos de 1.
- (0.7 Puntos) Por la explicación correcta de todos los incisos.

Pregunta 3

Un conjunto de fórmulas proposicionales Σ es redundante si existe una fórmula $\alpha \in \Sigma$ tal que $\Sigma \setminus \{\alpha\} \models \alpha$, es decir, si existe α tal que al extraerla del conjunto Σ , es consecuencia lógica del conjunto resultante.

Pregunta 3.a

Sea Σ un conjunto de fórmulas redundantes y sea $\alpha \in \Sigma$ una fórmula tal que $\Sigma \setminus \{\alpha\} \models \alpha$. Demuestre que para toda fórmula β se tiene que $\Sigma \models \beta$ si, y solo si, $\Sigma \setminus \{\alpha\} \models \beta$.

Solución: Se pide demostrar $\Sigma \models \beta \iff \Sigma \setminus \{\alpha\} \models \beta$, de modo que la demostración se divide en dos partes.

- $\Sigma \vDash \beta \Rightarrow \Sigma \setminus \{\alpha\} \vDash \beta$
 - Del enunciado se tiene que dado que Σ es redundante, existe un α particular tal que $\Sigma \setminus \{\alpha\} \models \alpha$. Luego es posible plantear una valuación \bar{v} tal que $\Sigma \setminus \{\alpha\}(\bar{v}) = 1$ y $\alpha(\bar{v}) = 1$, de lo anterior se tiene que $\Sigma(\bar{v}) = 1$. Finalmente considerando que $\Sigma \models \beta$, esta valuación \bar{v} también cumple que $\beta(\bar{v}) = 1$.
 - Entonces, dado que para \bar{v} se tiene que $\Sigma \setminus \{\alpha\}(\bar{v}) = 1$ y $\beta(\bar{v}) = 1$, queda demostrado que $\Sigma \vDash \beta \Rightarrow \Sigma \setminus \{\alpha\} \vDash \beta$.

Se cumple según propiedad vista en clases.

Dado lo anterior el puntaje asignado es el siguiente:

- (**0.5 Puntos**) por utilizar del enunciado $\Sigma \setminus \{\alpha\} \vDash \alpha$
- (**0.5 Puntos**) por asumir $\Sigma \vDash \beta$
- (1 Puntos) por plantear la valuación \bar{v} e indicar que dado que $\Sigma \setminus \{\alpha\}(\bar{v}) = 1$ y $\alpha(\bar{v}) = 1$ entonces $\Sigma(\bar{v}) = 1$
- (1 Puntos) por indicar que dado que $\Sigma(\bar{v}) = 1$ y $\Sigma \models \beta$ entonces $\beta(\bar{v}) = 1$ y concluir la demostración
- (3 Puntos) por señalar la propiedad explicada en clases para $\Sigma \models \beta \Leftarrow \Sigma \setminus \{\alpha\} \models \beta$

Pregunta 3.b

Una fórmula proposicional β se dice que es una cláusula disyuntiva si es de la forma $\beta = l_1 \vee l_2 \vee \ldots \vee l_k$ para algún $k \geq 1$ y cada l_i es un literal con $1 \leq i \leq k$, esto es, l_i es una variable proposicional o la negación de una variable proposicional.

Demuestre que si Σ es un conjunto de fórmulas NO redundante, entonces para toda fórmula $\alpha \in \Sigma$, existe una fórmula proposicional β que es una cláusula disyuntiva, tal que $\Sigma \models \beta$ y $\Sigma \setminus \{\alpha\} \not\models \beta$.

Solución:

Se nos pide demostrar que si tenemos un conjunto de fórmulas no redundante Σ , entonces para todo $\alpha \in \Sigma$ existe una cláusula disyuntiva β tal que $\Sigma \models \beta$ y $\Sigma \setminus \{\alpha\} \nvDash \beta$, por lo que a partir de un Σ y $\alpha \in \Sigma$ arbitrarios, construiremos β .

Como Σ es no redundante tenemos que $\Sigma \setminus \{\alpha\} \nvDash \alpha$, esto significa que existe \bar{v} tal que satisface $\Sigma \setminus \{\alpha\}$ pero $\alpha(\bar{v}) = 0$, entonces definimos β como:

$$\beta = \left(\bigvee_{i: \bar{vi} = 0} p_i\right) \vee \left(\bigvee_{i: \bar{vi} = 1} \neg p_i\right)$$

Donde los p_i son las variables o literales que componen \bar{v} .

De esta forma vemos que, dada una valuación \bar{u} , se cumplirá que $\beta(\bar{u}) = 1 \iff \bar{u} \neq \bar{v}$.

Ahora que ya tenemos β debemos verificar que cumpla lo pedido:

- 1. $\Sigma \models \beta$: Dado \bar{u} que satisface Σ , en particular satisface α y por tanto $\beta(\bar{u}) = 1$.
- 2. $\Sigma \setminus \{\alpha\} \nvDash \beta$: Por la forma en que escogemos \bar{v} , sabemos que satisface $\Sigma \setminus \{\alpha\}$ pero dado que $\beta(\bar{u}) = 1 \iff \bar{u} \neq \bar{v}$, tenemos que para la valuación \bar{v} no se satisface β .

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por concluir la existencia de \bar{v} y caracterizarlo.
- (1 Puntos) Por caracterizar β .
- (1 Puntos) Por construir β .
- (1 Puntos) Por concluir los casos para los que se satisface β .
- (1 Puntos) Por demostrar que $\Sigma \vDash \beta$.
- (1 Puntos) Por demostrar que $\Sigma \setminus \{\alpha\} \nvDash \beta$

Pregunta 4

Sea p_1, \ldots, p_n variables proposicionales.

Pregunta 4.1

Construya un conjunto de fórmulas proposicionales $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ tal que $\alpha_i \not\equiv \alpha_j$ para todo $i \not\equiv j$ con $i \not\equiv j$, $m = 2^{2^{n-1}}$ y Σ es satisfacible. Solución:

Sean $p_1, ..., p_n$ variables propocicionales. Por el hint del enunciado sabemos que existen 2^{2^n} tablas de verdad distintas

Fijando la valuación (0,0,0,...,0) como verdadera en todas las tablas, dado que b_i puede tomar el valor 0 o 1, se tiene que para $b=(1,b_2,b_3,...,b_{2^n})$ existen 2^{2^n-1} valores distintos, generando así 2^{2^n-1} tablas de verdad distintas:

		α_i	p_n	 p_3	p_2	p_1
_		1	0	 0	0	0
$\binom{n}{2^n-1}$)	b_2	0	 0	0	1
		b_2 b_3	0	 0	1	0
	\bigcup_{2}					
, 1	(-					
	J	b_{2^n}	1	 1	1	1

Sea $\vec{v_i}$ la valuación en la fila i de la tabla de verdad.

Dado el argumento anterior, se tienen 2^{2^n-1} tablas de verdad distintas tal que para la valuación 0,0,0,...,0 es verdadero.

Sean $T_1, ..., T_m$ con $m = 2^{2^n - 1}$ tablas distintas. Como se vio en clases, por cada tabla T_i es posible construir una fórmula α_i tal que $b_i = 1$ si, y solo si, $\alpha_i(\vec{v_i}) = 1$.

Nos queda demostrar los siguientes puntos sobre $\alpha_1, \ldots, \alpha_m$:

- 1. PD: $\alpha_i \not\equiv \alpha_j$ para todo $i \neq j$. Como T_i y T_j son distintas tablas de verdad entonces tenemos que existe una fila k tal que $T_i(\vec{v_k}) \neq T_j(\vec{v_k})$. Entonces $\alpha_i(\vec{v_k}) \not\equiv \alpha_j(\vec{v_k})$, lo que implica que $\alpha_i \not\equiv \alpha_j$.
- 2. PD: $m > 2^{2^{n-1}}$. Como $2^n 1 > 2^{n-1}$, entonces $2^{2^n 1} > 2^{2^{n-1}}$ y por lo tanto $m > 2^{2^{n-1}}$.
- 3. PD: $\Sigma = \{\alpha_1, ..., \alpha_m\}$ es satisfacible. Con la valuación (0, 0, 0, ..., 0) se cumple que $\alpha_i(0, 0, 0, ..., 0) = 1$ para todo i. Entonces Σ es satisfacible.

Dado lo anterior el puntaje asignado es el siguiente:

- (3 puntos) Por construir tabla fijando valuación.
- (2 puntos) Por concluir que hay 2^{2^n-1} tablas de verdad distintas y argumentar que para cada tabla existe una fórmula satisfacible.
- (0.5 puntos) Por demostrar correctamente que $\alpha_i \not\equiv \alpha_j$
- (0.5 puntos) Por demostrar correctamente que $\Sigma = \{\alpha_1, ..., \alpha_m\}$ es satisfacible.

Pregunta 4.2 (BONUS)

Demuestre que si se tiene un conjunto $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ tal que $m > 2^{2^n - 1}$ y $\alpha_i \not\equiv \alpha_j$ para todo i y j con $i \neq j$, entonces Σ no puede ser satisfacible.

En otras palabras, usted habrá demostrado que el conjunto más grande de fórmulas proposicionales no equivalentes y satisfacibles es a los más $2^{2^{n-1}}$.

 $\mathit{Hint:}$ Considere que para variables p_1,\ldots,p_n existen 2^{2^n} tablas de verdad distintas.

Solución:

Debido al error en enunciado, se otorgará 10 décimas a la nota final si el estudiante mencionó alguna de las siguientes dos respuestas:

- 1. No se puede demostrar lo pedido, pues existe $\Sigma = \{\alpha_1, ..., \alpha_m\}$ con $m = 2^{2^n-1}$ tal que Σ es satisfacible, y claramente $m > 2^{2^{n-1}}$.
- 2. Asumir que el enunciado hacia referencia a un $m=2^{2^n-1}$ y demostrar la idea original.

Supongamos por contradicción, que existe un $\Sigma = \{\alpha_1, ..., \alpha_m\}$ cumpliendo que $m > 2^{2^n-1}$ y $\alpha_i \not\equiv \alpha_j$, para todo $i \not\equiv j$, pero que este Σ si es satisfacible. Luego, existe una valuación \bar{v} tal que $\alpha_i(\bar{v}) = 1$ para todo $i \le m$. Del inciso anterior, se tiene que existen a lo más 2^{2^n-1} tablas de verdad distintas tal que la valuación/entrada \bar{v} es igual a 1. Luego, como tenemos $m > 2^{2^n-1}$ formulas, deben existir α_i y α_j con $i \ne j$ tales que tengan la misma tabla de verdad. Por lo tanto, $\alpha_i \equiv \alpha_j$ para $i \ne j$. Lo cual es una contradicción.

Dado lo anterior el puntaje asignado es el siguiente:

• (10 décimas a la nota final) Por mencionar alguno de los dos items.