# 数字逻辑第二章组合线路分析



信息科学与工程学院计算机系

杨永全

i@yangyongquan.com

### 基本概念

源极(S) 栅极(G) 漏极 (D) 栅极为高电位时,源极 和漏极 之间导通,为 低阻抗 栅极为低电位时,源极 和漏极 之间截止,为 高阻抗



### 简单逻辑门电路-与门

A、B任一输入端为低电位,则T<sub>1</sub>和T<sub>2</sub>必有一个截止状态,G<sub>3</sub>点为高电位,T<sub>3</sub>导通,输出F为低电位。

A、B输入端均为为高电位,则T<sub>1</sub>和T<sub>2</sub>管均导通,G<sub>3</sub>点为低电位, T<sub>3</sub>截止,输出F为高电位。



# 简单逻辑门电路-或门

A或B为高电位时, T<sub>1</sub> 或T<sub>2</sub>有一个管导通, G<sub>3</sub>点位低电位, T<sub>3</sub>管 截止, 输出F为高电位。

A和B 全为低电位时, T<sub>1</sub>、T<sub>2</sub>管截止, G<sub>3</sub>点 位高电位, T<sub>3</sub>管导通, 输出F为低电位。



# 简单逻辑门电路-非门

A为高电位时,T<sub>3</sub>管导通,输出F为低电位。

A为低电位时,T<sub>3</sub>管截止,输出F为高电位。



### 门电路的主要外特性参数

标称逻辑电平:电路中表示0、1的理想电平值为标称逻辑电平

关门电平V<sub>OFF</sub>:保证输出为标准低电平的<mark>最大</mark>输入低电平值(关门电平表示"0"的最大低电平值)

开门电平V<sub>ON</sub>:保证输出为标准高电平的<mark>最小</mark>输入高电平值(开门电平表示"1"的最小高电平值)

扇入系数NR和扇出系数NC

- 1. 扇入系数N<sub>R</sub>是门电路允许的输入端数目,一般小于8
- 2. 扇出系数N<sub>C</sub>是门电路能与下一级多少个输入端相 连

# 门电路的逻辑符号



| Α | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |





| Α | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

# 门电路的逻辑符号







| Α | F |
|---|---|
| 0 | 1 |
| 1 | 0 |





| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

# 门电路的逻辑符号

| 或目 | Εľ             |   | • |
|----|----------------|---|---|
| F= | $\overline{A}$ | + | B |



$$A \longrightarrow F$$
 $B \longrightarrow F$ 

| Α | В | F |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |





| Α | В | F |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

组合线路分析,就是确定给定组合线路的输出与输入之间的关系,进而判断该线路的逻辑功能。

给定组合线路 列写逻辑表达式 列真值表 指出线路的逻辑功能 对线路的评价与改进

在此之前, 先介绍另外一种方法: 逐级推导法。



要使F=1,则需要:  $X_1 = 0$ 或者  $X_2 = 0$ 要使  $X_1 = 0$ ,则需要: A=1 并且 B=1要使  $X_2 = 0$ ,则需要: A=0 并且 B=0

所以, 当A=B=1 或 A=B=0时, F=1

因此,这是一个判断AB是否相等的电路。

试用逐级推导法分析下面逻辑电路的功能。



# 试用逐级推导法分析下面逻辑电路的功能。



要使F=1,则需要:  $X_1 = 0$  或者  $X_2 = 0$ 要使  $X_1 = 0$ ,则需要: A=0, B=0 或 A=1, B=1要使  $X_2 = 0$ ,则需要: B=0, C=0 或 B=1,C=1

所以,当A=B=1或A=B=0时, F=1

因此,这是一个判断是否A=B或B=C。

### 试用列写逻辑表达式法分析下面逻辑电路的功能。



1. 写出逻辑表达式

$$F_{1} = \overline{\overline{AB}} = A\overline{B}$$

$$F_{2} = \overline{A} + \overline{B} = \overline{AB}$$

2. 写出真值表

| Α | В | $F_1$ | $F_2$ |
|---|---|-------|-------|
| 0 | 0 | 0     | 0     |
| 0 | 1 | 0     | 1     |
| 1 | 0 | 1     | 0     |
| 1 | 1 | 0     | 0     |

3. 分析功能。 电路的功能为判A、B的大小, A=B, F<sub>1</sub> F<sub>1</sub>为00; A<B, F<sub>1</sub> F<sub>2</sub>为 01; A>B, F<sub>1</sub> F<sub>2</sub>为10

试用列写逻辑表达式法分析下面逻辑电路的功能。



### 试用列写逻辑表达式法分析下面逻辑电路的功能。



3. 分析功能 多数输入变量为1,输出F为1 多数输入变量为0,输出F为0 这是一个三人表决电路。

### 1. 写出逻辑表达式

$$F = \overline{\overline{AB} \cdot \overline{BC} \cdot \overline{AC}}$$
$$= AB + BC + AC$$

### 2. 写出真值表

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

试用列写逻辑表达式法分析下面逻辑电路的功能。



### 试用列写逻辑表达式法分析下面逻辑电路的功能。



$$\begin{cases} G_3 = B_3 \\ G_2 = B_3 \bigoplus B_2 \\ G_1 = B_2 \bigoplus B_1 \\ G_0 = B_1 \bigoplus B_0 \end{cases}$$

| $B_3$ | $B_2$ | $B_1$ | $B_0$ | $G_3$ | $G_2$ | $G_1$ | $G_0$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0     | 0     | 0     | 1     | 0     | 0     | 0     | 1     |
| 0     | 0     | 1     | 0     | 0     | 0     | 1     | 1     |
| 0     | 0     | 1     | 1     | 0     | 0     | 1     | 0     |
| 0     | 1     | 0     | 0     | 0     | 1     | 1     | 0     |
| 0     | 1     | 0     | 1     | 0     | 1     | 1     | 1     |
| 0     | 1     | 1     | 0     | 0     | 1     | 0     | 1     |
| 0     | 1     | 1     | 1     | 0     | 1     | 0     | 0     |
| 1     | 0     | 0     | 0     | 1     | 1     | 0     | 0     |
| 1     | 0     | 0     | 1     | 1     | 1     | 0     | 1     |
| 1     | 0     | 1     | 0     | 1     | 1     | 1     | 1     |
| 1     | 0     | 1     | 1     | 1     | 1     | 1     | 0     |
| 1     | 1     | 0     | 0     | 1     | 0     | 1     | 0     |
| 1     | 1     | 0     | 1     | 1     | 0     | 1     | 1     |
| 1     | 1     | 1     | 0     | 1     | 0     | 0     | 1     |
| 1     | 1     | 1     | 1     | 1     | 0     | 0     | 0     |

试用列写逻辑表达式法分析下面逻辑电路的功能。



### 试用列写逻辑表达式法分析下面逻辑电路的功能。



### 试用列写逻辑表达式法分析下面逻辑电路的功能。



1. 写出逻辑表达式

$$F = A \oplus B + \overline{A}C$$

2. 真值表:

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

# 全加器:用来计算一位二进制数相加。



- 1. 先温习一下十进制的加法
- 2. 再介绍一下二进制的加法
- 3. 看该电路如何实现

$$S = A \oplus B \oplus C_{i-1}$$

$$C = \overline{(A \oplus B)} C_{i-1} + AB$$

$$= AB + A\overline{B}C_{i-1} + \overline{A}BC_{i-1}$$

$$= A(B + C_{i-1}) + \overline{A}BC_{i-1}$$

$$= AB + (A + B)C_{i-1}$$

# 全加器:用来计算一位二进制数相加。



| Α | В | C <sub>i-1</sub> | S | С |
|---|---|------------------|---|---|
| 0 | 0 | 0                | 0 | 0 |
| 0 | 0 | 1                | 1 | 0 |
| 0 | 1 | 0                | 1 | 0 |
| 0 | 1 | 1                | 0 | 1 |
| 1 | 0 | 0                | 1 | 0 |
| 1 | 0 | 1                | 0 | 1 |
| 1 | 1 | 0                | 0 | 1 |
| 1 | 1 | 1                | 1 | 1 |

### 译码器:将一种编码格式变换成另外一种编码格式。



译码器:将一种编码格式变换成另外一种编码格式。

$$\begin{cases} F_0 = \overline{A} \, \overline{B} \, \overline{C} \\ F_1 = \overline{A} \, \overline{B} \, \overline{C} \\ F_2 = \overline{A} \overline{B} \, \overline{C} \\ F_3 = \overline{A} \overline{B} \, \overline{C} \\ F_4 = \overline{A} \overline{B} \, \overline{C} \\ F_5 = \overline{A} \overline{B} \, \overline{C} \\ F_5 = \overline{A} \overline{B} \, \overline{C} \\ F_6 = \overline{A} \overline{B} \, \overline{C} \\ F_7 = \overline{A} \overline{B} \, \overline{C} \end{cases}$$

### 译码器:将一种编码格式变换成另外一种编码格式。

$$\begin{cases} F_0 = \overline{A} \, \overline{B} \, \overline{C} \\ F_1 = \overline{A} \, \overline{B} \, \overline{C} \\ F_2 = \overline{A} \overline{B} \, \overline{C} \\ F_3 = \overline{A} \overline{B} \, \overline{C} \\ F_4 = \overline{A} \overline{B} \, \overline{C} \\ F_5 = \overline{A} \overline{B} \, \overline{C} \\ F_5 = \overline{A} \overline{B} \, \overline{C} \\ F_6 = \overline{A} \overline{B} \, \overline{C} \\ F_7 = \overline{A} \overline{B} \, \overline{C} \end{cases}$$

| Α | В | С | F <sub>o</sub> | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> | F <sub>4</sub> | <b>F</b> <sub>5</sub> | F <sub>6</sub> | F <sub>7</sub> |
|---|---|---|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|
| 0 | 0 | 0 | 1              | 0              | 0              | 0              | 0              | 0                     | 0              | 0              |
| 0 | 0 | 1 | 0              | 1              | 0              | 0              | 0              | 0                     | 0              | 0              |
| 0 | 1 | 0 | 0              | 0              | 1              | 0              | 0              | 0                     | 0              | 0              |
| 0 | 1 | 1 | 0              | 0              | 0              | 1              | 0              | 0                     | 0              | 0              |
| 1 | 0 | 0 | 0              | 0              | 0              | 0              | 1              | 0                     | 0              | 0              |
| 1 | 0 | 1 | 0              | 0              | 0              | 0              | 0              | 1                     | 0              | 0              |
| 1 | 1 | 0 | 0              | 0              | 0              | 0              | 0              | 0                     | 1              | 0              |
| 1 | 1 | 1 | 0              | 0              | 0              | 0              | 0              | 0                     | 0              | 1              |

奇偶校验器:检验特定的二进制序列内1的个数是否为奇数或偶数。



| $P = B_8$ | $\bigoplus$  | $B_{4}$ | $\bigoplus B$ | $\beta_2 \oplus$ | $B_1$ | $\bigoplus$ | 1 |
|-----------|--------------|---------|---------------|------------------|-------|-------------|---|
| - 0       | $\mathbf{U}$ | - 4     | $\mathbf{v}$  |                  |       |             | _ |

| B <sub>8</sub> | $B_4$ | B <sub>2</sub> | $B_1$ | Р |
|----------------|-------|----------------|-------|---|
| 0              | 0     | 0              | 0     | 1 |
| 0              | 0     | 0              | 1     | 0 |
| 0              | 0     | 1              | 0     | 0 |
| 0              | 0     | 1              | 1     | 1 |
| 0              | 1     | 0              | 0     | 0 |
| 0              | 1     | 0              | 1     | 1 |
| 0              | 1     | 1              | 0     | 1 |
| 0              | 1     | 1              | 1     | 0 |
| 1              | 0     | 0              | 0     | 0 |
| 1              | 0     | 0              | 1     | 1 |
| 1              | 0     | 1              | 0     | 1 |
| 1              | 0     | 1              | 1     | 0 |
| 1              | 1     | 0              | 0     | 1 |
| 1              | 1     | 0              | 1     | 0 |
| 1              | 1     | 1              | 0     | 0 |
| 1              | 1     | 1              | 1     | 1 |

奇偶校验器:检验特定的二进制序列内1的个数是否为奇数或偶数。



| $S = B_8 \oplus B_4 \oplus B_2 \oplus B_1 \oplus$ | $B_8 \oplus B_4 \oplus B_2 \in$ | $\oplus B_1$ | $\bigoplus P$ |
|---------------------------------------------------|---------------------------------|--------------|---------------|
|---------------------------------------------------|---------------------------------|--------------|---------------|

| B <sub>8</sub> | $B_4$ | B <sub>2</sub> | $B_1$ | Р | S |
|----------------|-------|----------------|-------|---|---|
| 0              | 0     | 0              | 0     | 1 | 1 |
| 0              | 0     | 0              | 1     | 0 | 1 |
| 0              | 0     | 1              | 0     | 0 | 1 |
| 0              | 0     | 1              | 1     | 1 | 1 |
| 0              | 1     | 0              | 0     | 0 | 1 |
| 0              | 1     | 0              | 1     | 1 | 1 |
| 0              | 1     | 1              | 0     | 1 | 1 |
| 0              | 1     | 1              | 1     | 0 | 1 |
| 1              | 0     | 0              | 0     | 0 | 1 |
| 1              | 0     | 0              | 1     | 1 | 1 |
| 1              | 0     | 1              | 0     | 1 | 1 |
| 1              | 0     | 1              | 1     | 0 | 1 |
| 1              | 1     | 0              | 0     | 1 | 1 |
| 1              | 1     | 0              | 1     | 0 | 1 |
| 1              | 1     | 1              | 0     | 0 | 1 |
| 1              | 1     | 1              | 1     | 1 | 1 |

数据选择器:有输入信号与控制信号,控制信号的取值,决定了输出哪一路输入。



数据选择器:有输入信号与控制信号,控制信号的取值,决定了输出哪一路输入。



$$f = a_0 \overline{x_0} \overline{x_1} + a_1 \overline{x_0} x_1 + a_2 x_0 \overline{x_1} + a_3 x_0 x_1$$

数据选择器:有输入信号与控制信号,控制信号的取值,决定了输出哪一路输入。



$$f = a_0 \overline{x_0} \overline{x_1} + a_1 \overline{x_0} x_1 + a_2 x_0 \overline{x_1} + a_3 x_0 x_1$$

| $X_1 X_2$ | f     |
|-----------|-------|
| 0 0       | $a_0$ |
| 0 1       | $a_1$ |
| 1 0       | $a_2$ |
| 1 1       | $a_3$ |