1. Prove that any countable set is measurable.

proof

Saying that a set is countable implies that we can index the elements of the set. And so we say that our countable set $E = \{e_1, e_2, \dots\}$. This is equivalent to saying $E = \bigcup_{i=1}^n \{e_i\}$ with $n \in \mathbb{N}$ or $E = \bigcup_{i=1}^\infty \{e_i\}$. We know that the measure of a singleton is 0 and we know that the union of some sets has a measure no larger than the sum of the measures of those sets. And so $m * (\bigcup_{i=1}^\infty \{e_i\}) \leq \sum_{i=1}^\infty m * (\{e_i\}) = \sum_{i=1}^\infty 0 = 0$. And because we touched on countable but non-infinite sets, for completeness sake, $m * (\bigcup_{i=1}^n \{e_i\}) \leq \sum_{i=1}^n m * (\{e_i\}) \sum_{i=1}^n 0 = 0$. Now we have proved not only that any countable set is measurable, but that any countable set has measure 0. \square

2. Prove that the Cantor set has measure 0.

proof

We'll call the Cantor set C and observe that $C \subset [0,1]$. I'll also say $C' = C^C \cap [0,1]$. That is, all the elements in [0,1] that aren't in the Cantor set are in C'. Obviously these two sets span [0,1] and are disjoint. That is to say $C \cup C' = [0,1]$ and $C \cap C' = \emptyset$. We also know that m*([0,1]) = 1. So Cantor showed us that if we spend too long thinking about his set, then we will go mad. Lets try to avoid this.

$$\begin{split} m*([0,1]) &= 1 \\ m*([0,1]) &= m*(C \cup C') \\ m*([C \cup C']) &= m*(C) + m*(C') \text{ because they are disjoint} \\ m*(C) &+ m*(C') &= 1 \\ m*(C) &= 1 - m*(C') \end{split}$$

Yes, we can ignore C(razy). Now I know that $(\frac{1}{3}, \frac{2}{3}) \subset C'$ and that $(\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9}) \subset C'$ and so on. Now notice that all the parts we cut out of [0,1] to make the Cantor set are disjoint. And so the measure of their unions is the same as the sum of their measures. Now every time we take a chunk out, we leave behind two chunks that are a third of the original chunk. And so

$$m*(C') = \sum_{i=1}^{\infty} 2^{i-1} m*\left(\left(\frac{1}{3^i}, \frac{2}{3^i}\right)\right)$$

$$= \frac{1}{2} \sum_{i=1}^{\infty} 2^i \left(\frac{2}{3^i} - \frac{1}{3^i} \right)$$
$$= \frac{1}{2} \sum_{i=1}^{\infty} \left(\frac{2}{3} \right)^i$$

using the formula for geometric series we get

$$m*(C') = \frac{1}{2} \cdot \frac{\frac{2}{3}}{1 - \frac{2}{3}} = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{1} = 1$$

Well that is way better than going the way of Cantor. Just to be clear m*(C)=1-m*(C')=1-1=0. \square

References

https://theoremoftheweek.wordpress.com/2010/09/30/theorem-36-the-cantor-set-is-an-uncountable-set-with-zero-measure/