Тема 4. Дослідження функцій за допомогою похідних

Лекція 4.2.

План

- 1. Монотонність функції.
- 2. Екстремум функції.
- 3. Дослідження функцій на опуклість і вгнутість.
- 4. Асимптоти кривих.
- 5. Загальна схема побудови графіків.

1. Монотонність функції

Теорема 1. (достатні умови строгої монотонності). Якщо функція f(x) диференційована на інтервалі (a,b) і f'(x) > 0 (f'(x) < 0) всюди, крім, можливо, скінченного числа точок, в яких f'(x) = 0 на (a,b), то функція f(x) зростає (спадає) на (a,b).

Теорема без доведення.

Зауваження. Коли $f'(x) \ge 0$ ($f'(x) \le 0$) на інтервалі (a,b), то функція на цьому інтервалі не спадає (не зростає).

Теорема 2. (необхідна умова зростання). Якщо диференційована на інтервалі (a,b) зростає, то $f'(x) \ge 0$ на інтервалі (a,b).

Теорема без доведення.

Інтервали монотонності можуть відділятися один від одного або точками, де похідна дорівнює нулеві (ці точки називають *стаціонарними точками*), або точками, де похідна не існує. Точки, в яких похідна дорівнює нулеві, або не існує, називаються *критичними точками*, або *критичними точками першого роду*.

Щоб знайти інтервали монотонності функції f(x), необхідно:

- 1) знайти область визначення функції.
- 2) Знайти похідну даної функції.
- 3) Знайти критичні точки з рівняння f'(x) = 0 та з умови, що f'(x) не існує.
- 4) Розділити критичними точками область визначення на інтервали і у кожному з них визначити знак похідної. На інтервалах, де похідна додатна, функція зростає, а де від'ємна спадає.

2. Екстремум функції

Локальний екстремум функції. Точка x_0 називається точкою локального максимуму (мінімуму) функції f(x), якщо існує такий окіл $0 < |x - x_0| < \delta$ точки x_0 , який належить області визначення функції, і для всіх x з цього околу виконується нерівність $f(x) < f(x_0)$ (або $f(x) > f(x_0)$).

Точки локального максимуму і локального мінімуму називаються *точками* локального екстремуму, а значення функції в цих точках називаються відповідно локальним максимумом і локальним мінімумом або локальним екстремумом.

Теорема 1. (необхідна умова локального екстремуму). Якщо функція f(x) має в точці x_0 локальний екстремум і диференційована в цій точці, то $f'(x_0) = 0$.

Теорема без доведення.

Повну необхідну умову локального екстремуму можна сформулювати так: якщо функція має в точці локальний екстремум, то ця точка є критичною. Обернене твердження невірне.

Точки локального екстремуму можуть бути серед точок, в яких f'(x) = 0, і серед точок, в яких f'(x) не існує.

Інколи критичні точки називають точками можливого екстремуму.

Теорема 2. (перша достатня умова локального екстремуму). *Нехай* x_0 - критична точка функції f(x), яка в цій точці неперервна, і нехай існує окіл $(x_0 - \delta; x_0 + \delta)$ точки x_0 , в якому функція має похідну f'(x), крім, можливо, точки x_0 , тоді:

- 1) якщо в інтервалі $(x_0 \delta; x_0)$ похідна f'(x) > 0, а в інтервалі $(x_0; x_0 + \delta)$ похідна f'(x) < 0, то x_0 є точкою локального максимуму функції f(x);
- 2) якщо в інтервалі $(x_0 \delta; x_0)$ похідна f'(x) < 0, а в інтервалі $(x_0; x_0 + \delta)$ похідна f'(x) > 0, то $x_0 \in$ точкою локального мінімуму функції f(x);
- 3) якщо в обох інтервалах $(x_0-\delta;x_0)$ і $(x_0;x_0+\delta)$ похідна f'(x) має той самий знак, то x_0 не є екстремальною точкою функції f(x).

Теорема без доведення.

Щоб знайти локальні екстремуми функції f(x) необхідно:

1) знайти критичні точки функції f(x). Для цього необхідно розв'язати рівняння f'(x) = 0 і серед його розв'язків вибрати тільки ті дійсні корені,

які є внутрішніми точками області існування функції; знайти точки, в яких похідна f'(x) не існує;

- 2) якщо критичних точок функція не має, то вона не має і екстремумів. Якщо критичні точки є, то треба дослідити знак похідної в кожному з інтервалів, на які розбивається область існування цими критичними точками. Для цього достатньо визначити знак похідної в якій-небудь одній точці інтервалу, оскільки похідна може змінити знак лише при переході через критичну точку;
- 3) за зміною знака f'(x) при переході через критичні точки зліва направо визначити точки максимумів та мінімумів і обчислити значення функції f(x) в цих точках.

Теорема 3. (друга достатня умова локального екстремуму). *Нехай* x_0 - стаціонарна точка функції f(x), тобто f'(x) = 0, і в околі точки x_0 існує друга неперервна похідна, причому $f''(x) \neq 0$. Якщо f''(x) > 0, то x_0 - точка локального мінімуму; якщо f''(x) < 0, то x_0 - точка локального максимуму.

Теорема без доведення.

Теорема 4. (третя достатня умова локального екстремуму). *Нехай в околі* стаціонарної точки x_0 існує неперервна похідна $f^{(n)}(x)$, причому $f^{(n)}(x_0) \neq 0$,

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0.$$

Тоді:

- 1) якщо n парне i $f^{(n)}(x_0) < 0$, то f(x) має в x_0 локальний максимуму;
- 2) якщо n парне i $f^{(n)}(x_0) > 0$, то f(x) має в x_0 локальний мінімум;
- 3) якщо n непарне, то f(x) в x_0 локального екстремуму не має.

Теорема без доведення.

Найбільше і найменше значення функції.

Нехай функція f(x) неперервна на відрізку [a,b]. Така функція досягає своїх найбільшого і найменшого значень, які називають абсолютними екстремумами функції на цьому відрізку і позначають відповідно $M = \max_{a \le x \le b} f(x)$

$$, m = \min_{a \le x \le b} f(x).$$

Для точки x_0 , де функція досягає свого найбільшого або найменшого значень, можливі лише три випадки: 1) $x_0 = a$; 2) $x_0 \in (a;b)$; 3) $x_0 = b$. Якщо $x_0 \in (a;b)$, то точку потрібно шукати серед критичних точок даної функції.

Щоб знайти найбільше (найменше) значення функції f(x), яка неперервна на відрізку [a,b], необхідно:

- 1) знайти критичні точки функції f(x), які належать інтервалу (a;b);
- 2) обчислити значення функції f(x) у знайдених критичних точках і точках a і b і серед цих значень вибрати найбільше (найменше).

3. Дослідження функцій на опуклість і вгнутість

Опуклість і вгнутість кривих.

Означення. Крива y = f(x) називається *опуклою* на інтервалі, якщо всі її точки, крім точки дотику, лежать нижче довільної її дотичної на цьому інтервалі.

Означення. Крива y = f(x) називається вгнутою на інтервалі, якщо всі її точки, крім точки дотику, лежать вище довільної її дотичної на цьому інтервалі.

Означення. Точкою перегину називається така точка кривої, яка відділяє її опуклу частину від вгнутої.

Теорема 1. Нехай функція y = f(x) є двічі диференційованою на інтервалі (a;b), тоді:

- 1) якщо $f''(x) < 0, x \in (a;b)$, то крива y = f(x) опукла на (a;b);
- 2) якщо $f''(x) > 0, x \in (a;b),$ то крива y = f(x) вгнута на (a;b).

Теорема без доведення.

Точки, в яких друга похідна f''(x) дорівнює нулеві або не існує, називаються критичними точками другого роду.

Теорема 2. Нехай x_0 - критична точка другого роду функції y = f(x). Якщо при переході через точку x_0 похідна f''(x) змінює знак, то точка $(x_0; f(x_0)) \epsilon$ точкою перегину кривої y = f(x).

Теорема без доведення.

4. Асимптоти кривих

Означення. Пряма називається асимптотою кривої, якщо відстань від змінної точки кривої до цієї прямої при віддаленні точки на нескінченність прямує до нуля.

Асимптоти можуть бути прямими і похилими.

Вертикальні асимптоти.

Із означення асимптоти випливає, що якщо $\lim_{x \to a+0} f(x) = \infty$ або $\lim_{x \to a-0} f(x) = \infty$, або $\lim_{x \to a} f(x) = \infty$, то прямая x = a – асимптота кривої y = f(x).

Похилі асимптоти.

Припустимо, що крива y = f(x) має похилу асимптоту y = kx + b.

Позначимо точку перетину кривої і перпендикуляра до асимптоти — M, P — точка перетину цього перпендикуляра з асимптотою. Кут між асимптотою і віссю Ox позначимо φ . Перпендикуляр MQ до осі Ox перетинає асимптоту в точці N.

Тоді MQ = y — ордината точки

кривої, $NQ=\bar{y}$ - ордината точки N на асимптоті.

За умовою:
$$\lim_{x\to\infty} |MP| = 0$$
, $\angle NMP = \varphi$, $|NM| = \frac{|MP|}{\cos\varphi}$.

Кут φ - сталий і не дорівнює 90°, тоді $\lim_{x\to\infty} |MP| = \lim_{x\to\infty} |NM| \cos\varphi = \lim_{x\to\infty} |NM| = 0$,

$$|NM| = ||MQ| - |QN|| = |y - \overline{y}| = |f(x) - (kx + b)|.$$

Тоді
$$\lim_{x\to\infty} [f(x)-(kx+b)]=0$$
.

Отже, пряма y = kx + b — похила асимптота кривої. Для точного визначення цієї прямої необхідно знайти спосіб відшукання коефіцієнтів k і b.

В отриманому виразі виносимо за дужки х:

$$\lim_{x \to \infty} x \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0.$$

Оскільки $x \to \infty$, то $\lim_{x \to \infty} \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$, оскільки b = const, то

$$\lim_{x \to \infty} \frac{b}{x} = 0; \quad \lim_{x \to \infty} k = k \ .$$

Тоді
$$\lim_{x\to\infty} \frac{f(x)}{x} - k - 0 = 0$$
, отже, $k = \lim_{x\to\infty} \frac{f(x)}{x}$.

Оскільки
$$\lim_{x\to\infty} [f(x)-(kx+b)]=0$$
, то $\lim_{x\to\infty} [f(x)-kx]-\lim_{x\to\infty} b=0$, відповідно,

$$b = \lim_{x \to \infty} [f(x) - kx].$$

Горизонтальні асимптоти ϵ частинним випадком похилих асимптот при k=0.

5. Загальна схема побудови графіків

Схема дослідження функції та побудова її графіка.

Щоб дослідити функцію та побудувати її графік необхідно:

- 1) знайти область існування функції;
- 2) знайти (якщо це можливо) точки перетину графіка з координатними осями;
- 3) дослідити функцію на періодичність, парність і непарність;
- 4) знайти точки розриву (якщо вони ϵ) та дослідити їх;
- 5) знайти інтервали монотонності, точки локальних екстремумів та значення функції в цих точках;
- 6) знайти інтервали опуклості, вгнутості та точки перегину;
- 7) знайти асимптоти кривої;
- 8) побудувати графік функції, враховуючи дослідження, проведені у пунктах 1-7.
- #Приклад. Дослідити методами диференціального числення функцію $y = \frac{x^3}{1-x^2} \, i \, noбудувати \, \ddot{\imath} \, графік.$
 - 1) Область існування вся числова вісь, крім точок $x = \pm 1$.
 - 2) Якщо x = 0, то y = 0, тому графік перетинає осі координат в точці O(0;0)
- 3) Функція не періодична. Оскільки $f(-x) = \frac{(-x)^3}{1 (-x)^2} = -\frac{x^3}{1 x^2} = -f(x), \text{ то функція}$

непарна, тому досліджуватимемо її лише для $x \ge 0$

- 4) Функція в точці x=1 має розрив другого роду і $\lim_{x\to 1\pm 0} f(x) = \mp \infty$.
 - 5) Похідна $y' = \frac{x^2(3-x^2)}{(1-x^2)^2}$ дорівнює нулю при

x = 0, $x = \pm \sqrt{3}$ і не існує в точках $x = \pm 1$, але останні не входять в область визначення, тому

Рис.1.

критичними точками функції є точки $x_1 = -\sqrt{3}$, $x_2 = 0$, $x_3 = \sqrt{3}$.

На інтервалі $(0;\infty)$ маємо: якщо $x\in(0;1)$, то f'(x)>0 — функція зростає; якщо $x\in(1;\sqrt{3})$, то f'(x)>0 — функція зростає; якщо $x\in(\sqrt{3};+\infty)$, то f'(x)<0 — функція спадає; в точці $x=\sqrt{3}$ функція має локальний максимум: $y_{\max}=f(\sqrt{3})\approx -2,6$.

6) Знаходимо другу похідну:
$$y'' = \frac{2x(3+x^2)}{(1-x^2)^3}$$
. Похідна $f''(x) = 0$ при $x = 0$ і

не існує при $x = \pm 1$.

Оскільки точки $x = \pm 1$ не входять в область визначення, то $x = 0 - \epsilon$ дина критична точка. Маємо:

якщо $x \in (-1;0)$, то f''(x) < 0 – крива опукла; якщо $x \in (0;1)$, то f''(x) > 0 – крива вгнута;

якщо $x \in (1;+\infty)$, то f''(x) < 0 – крива опукла;

точка O(0;0) – точка перегину.

7) 3 п.4 випливає, що x = 1 – вертикальна асимптота кривої. Оскільки

$$\lim_{x \to \pm \infty} \frac{x^3}{(1-x^2)x} = -1; \quad \lim_{x \to \pm \infty} \left(\frac{x^3}{1-x^2} - (-1)x\right) = 0,$$

то при $x \to \pm \infty$ задана крива має похилу асимптоту y = -x.

8) Враховуючи проведене дослідження і непарність функції, будуємо графік (рис.1).

??? Контрольні питання

- 1. Яке правило називають правилом Лопіталя?
- 2. Які завдання дозволяє розв'язувати правило Лопіталя?
- 3. У чому полягає теорема Тейлора?
- 4. Яку формулу називають формулою Тейлора?
- 5. Яку формулу називають формулою Маклорена?
- 6. Які функції елементарні функції можна розкласти за допомогою формули Маклорена?
- 7. Що можна знайти за допомогою формул Тейлора?
- 8. З чого потрібно починати будь-яке дослідження функції?
- 9. Сформулювати достатні умови строгої монотонності.
- 10. Які функції називаються монотонно зростаючими у інтервалі?
- 11. Які функції називаються монотонно спадними у інтервалі?
- 12. Сформулювати правило відшукання інтервалів монотонності функції.
- 13. Що називається екстремумом функції?
- 14. Що називається максимумом функції?
- 15. Що називається мінімумом функції?
- 16. Які точки називаються критичними точками функції?
- 17. Сформулювати достатні умови існування екстремуму функції.
- 18. Що називається найбільшим значенням функції на відрізку?

- 19. Що називається найменшим значенням функції на відрізку?
- 20. Як знайти найбільше і найменше значення неперервних функцій на заданому відрізку?
- 21. Яка функція називається опуклою?
- 22. Яка функція називається вгнутою?
- 23. Які точки називаються точками перегину функції?
- 24. Сформулювати достатню умову опуклості функції.
- 25. Сформулювати правило відшукання інтервалів опуклості, вгнутості та точок перегину функції.
- 26. Що називається асимптотою кривої?
- 27. Як знайти вертикальну, горизонтальну, похилу асимптоти?
- 28. Описати схему дослідження функції та побудови її графіка.