CS301 Embedded System and Microcomputer Principle

Lecture 13: ADC

2023 Fall

Recap

Outline

- ADC introduction
- STM32 ADC

Analog-to-Digital Converter (ADC)

- ADC: a circuit that takes in an analog voltage and produces a digital representation of its value
 - To know nature phenomena, which is analog, and make it feasible for computer to handle, we need to convert it into digital signals
 - To transform the analog, continuous signals into digital ones, the ADC samples the input at fixed interval and do the conversion

Sampling

- Sampling rate:
 - How often analog signal is measured (samples per second, Hz),
 e.g. 100 Hz

Sampling

- Sampling resolution:
 - Number of bits to represent each sample (bit depth), e.g. 12 bit in STM32

Resolution

 If we use N bits to encode the magnitude of one of the discrete-time samples, we can capture 2^N possible values

V _M	AX		 7	15
sample voltage —		3		<u>14</u> 13
sample vorrage	1			12
		2	5 	10
		2	4	<u>9</u>
			3	
		1	2	5
	0			- <u>4</u>
		0		2
V _M	IN		0	0
quantized value	1	3	6	13
1	1-bit	2-bit	3-bit	4-bit

Resolution

- The ADC has n-bit resolution, where n can be 8, 10, 12, 16, or even 24 bits. Higher-resolution ADCs provide a smaller step size, where step size is the smallest change that can be discerned by an ADC.
- We can control the step size with the help of what is called Vref

n-bit	Number of steps	Step size		
8	256	5V /256 = 19.53 mV		
10	1024	5V /1024 = 4.88 mV		
12	4096	5V /4096 = 1.2 mV		
16	65,536	5V /65,536 = 0.076 mV		
$E.G.: V_{ref} = 5V$				

Resolution

Calculate digital data output

- Example
 - For a given 8-bit ADC, we have Vref = 2.56 V. Calculate the Dout if the analog input is: (a)1.7 V, and (b) 2.1 V.
 - step size = 2.56/256 = 10 mV
 - a)D_{Out} = $1.7V/10 \text{ mV} = 170_{\text{dec}} = 10101011_{\text{bin}}$,
 - b)D_{Out} = $2.1V/10 \text{ mV} = 210_{dec} = 11010010_{bin}$

ADC Overall Schematic

- If the input signal changes during the conversion, the final value Dout may be erroneous.
- We need a sample-and-hold circuit to sample the input voltage, and hold it to a constant value while the conversion is in progress.

ADC Architecture

- Popular ADC Architectures
 - Successive-approximation ADC(SAR):
 - Use binary search to determine the closest digital representation of the input signal, e.g., ADC12 to give 12 bits of output
 - Flash ADC:
 - Flash ADC directly converts an analog input signal into a digital output by using a set of comparators to rapidly compare the input against multiple reference voltages, yielding a high-speed conversion with low resolution, such as in the case of a 4-bit flash ADC.
 - etc

ADC Architecture

 Comparison of the speed/resolution characteristics of various ADCs

Successive-approximation (SAR)

- The principle of operation is analogous to binary search
- E.g. in 4 bits, it starts with 1000 (i.e. 8)
 - If the input is smaller, the next value is set as 0100 (i.e. 4)
 - If the input is larger, the next value is set at 1100 (i.e. 12).

Successive-approximation (SAR)

 SAR involves iteratively approximating the input analog voltage by comparing it with a series of binary-weighted voltage levels until a digital output is obtained.

Successive-approximation (SAR)

 Conversion time: number of iterations, usually N cycles for N-bit ADC. In STM32 12-bit ADC, T conversion = 12.5 cycles

Range: 0 ~ 1111

1st ite: 1000? Too low 2nd ite: 1100? Too high 3rd ite: 1010? Too low

4th ite: 1011 → done!

For 4 bits ADC, at

most 4 iterations

Flash ADC

- Aka. Parallel ADC
- A series of comparators, each one comparing the input signal to a unique reference voltage. The comparator outputs connect to the inputs of a priority encoder circuit, which then produces a binary output.

	Resolution	Sampling rate	Cost
SAR ADC	High	Low	Low
Flash ADC	Low	High	High

ADC working flow

 Provide continuous sampling of multiple analog inputs and store sampled data

Outline

- ADC introduction
- STM32 ADC

STM32 ADC

ADC Conversion Modes

- regular group: composed of up to 16 channels
- injected group: composed of up to 4 channels
- Injected group has higher priority

injected channel

Single conversion mode

Continuous conversion mode

regular channel

Scan mode

• E.g. continued scan mode

Discontinuous mode

Sample time

The total conversion time is calculated as follows:

$$T_{ADC} = T_{sampling} + T_{Conversion}$$

- Sampling time is defined in ADCx_SMPR register (1.5 ~ 239.5)
- Conversion time is 12.5 ADC clock cycles
- Example:
 - With an ADCCLK =14 MHz and a sampling time of 1.5 cycles:

•
$$T_{conv} = 1.5 + 12.5 = 14 \text{ cycles } = 1 \mu \text{s}$$

SMP	Sample time	SMP	Sample time
000	1.5 ADC clock cycles	100	41.5 ADC clock cycles
001	7.5 ADC clock cycles	101	55.5 ADC clock cycles
010	13.5 ADC clock cycles	110	71.5 ADC clock cycles
011	28.5 ADC clock cycles	111	239.5 ADC clock cycles

ADC with Polling

ADC with Interrupts

ADC Triggered by a Timer

ADC Triggered by a Timer with DMA

