III ABAQUS

Introduction and Workflow

Outline of Module

- 1. FEA Workflow (Redux), Postprocessing
- 2. Meshing
- 3. Loading & Analysis
- 4. Coupling Physics
- 5. Materials & Modeling
- 6. Fracture & Contact FEA
- 7. Dynamic FEA (Standard v. Explicit)
- 8. Batch Jobs & Scripting

ABAQUS Ecosystem

Comparison of Implicit and Explicit

Quantity	ABAQUS/Standard	ABAQUS/Explicit
Element library	Extensive	Subset
Analysis procedures	General & linear perturbation	General
Material models	Wide range of material models	Wide range + failure material models
Contact . formulation	contact problems	complex contact problems
Solution technique	unconditionally stable stiffness- based solution technique	conditionally stable explicit integration solution technique
Disk space & memory	large with many iterations	small
Ideal Problem	smooth nonlinear problems etc.	brief transient dynamic events Computational Science

Comparison of Implicit and Explicit

Cost of Degrees of Freedom Refinement

Implicit: computational cost proportional to square of degrees of freedom (actually f(connectivity))

Explicit: computational cost proportional to number of elements, inversely proportional to smallest element dimension

ABAQUS Workflow

Preprocessing

ABAQUS/CAE

Modules:

Part, Property, Assemble, Step, Interaction, Load, Mesh

inp file

Simulation

ABAQUS/Standard ABAQUS/Explicit Module:

odb, fil, dat, res files

Postprocessing

ABAQUS/CAE Module:

png, txt, csv files, etc.

Computational Science and **Engineering**

ABAQUS Workflow

- 1. Draw 2D sketch and create 3D parts.
- 2. Assign Material and Section property.
- 3. Assemble the model; give interactions in form.
- 4. **Mesh** the frame.
- 5. Apply Load and boundary conditions.
- 6. Create job and configure output requests.
- 7. Submit it for analysis (Standard/Explicit).
- 8. Visualize the results of analysis.

ABAQUS Preprocessing

ABAQUS Solvers

ABAQUS/Standard

Solves system of equations **implicitly** at each solution "increment".

■ ABAQUS/Explicit

Marches solution forward through time **explicitly** in small time increments *without* solving coupled system of equations at each increment.

ABAQUS Solvers—Standard

ABAQUS/CAE

- Modeling
 Geometry
 Material Property
 Mesh
 Load & BC
 Job manage
- Result Viewing

ABAQUS Units

I A	ABA	QU	S	has	no
buil	t-in	uni	ts		
		_			

Specify all input data in consistent units

m	l	t	F	σ	E
kg	m	S	N	Pa	J
kg	cm	S	$10^{-2} N$		
kg	cm	ms	$10^4 \mathrm{N}$		
kg	cm	μs	$10^{10} N$		
kg	mm	ms	kN	GPa	$kN\cdot mm$
g	cm	S	dyne	dyne∙cm ⁻²	erg
g	cm	μs	$10^7 \mathrm{N}$	Mbar	$10^7 \text{N} \cdot \text{cm}$
g	mm	S	$10^{-6} N$	Pa	
g	mm	ms	N	MPa	N·mm
ton	mm	S	N	MPa	$N \cdot mm$
$\lim_f s^2 \cdot in^{-1}$	in	S	$\mathrm{lb}_{_f}$	psi	$lb_{\dot{f}}$ in
slug	ft	S	lb_f	psf	lb_{f} :ft
$kg_f \cdot s^2 \cdot mm^{-1}$	mm	S	\ker_f	$kg_f mm^{-2}$	kg_f mm
kg	mm	S	mN	kPa	·
g	cm	ms	$10^1 \mathrm{N}$	10 ⁵ Pa	

Suggested FEM Courses

ME 471—Introduction to Finite Element Analysis

ME 570—Nonlinear Solid Mechanical Design

CEE 470—Structural Analysis

CEE 570—Finite Element Methods

CEE 576—Nonlinear Finite Elements

CS 555—Numerical Methods for PDES

TAM 574—Advanced Finite Element Methods

