Bases de Dados 2017/2018

Apoio à 7^a Aula (**POWER DESIGNER**, www.sybase.com)

O PowerDesigner é uma ferramenta poderosa que, entre outras funcionalidades, permite desenhar diagramas de entidade-relacionamento. Fornece todas as vantagens de uma abordagem a dois níveis (a nível conceptual e a nível físico).

Além de outras funcionalidades, o PowerDesigner permite:

- Modelar um sistema de informação através dos diagramas de entidaderelacionamento (CDM – Conceptual Data Model)
- Gerar o Modelo Físico (PDM Physical Data Model) correspondente, para um determinado sistema de gestão de Bases de Dados (SGBD).
- Alterar o PDM tendo em conta os parâmetros físicos e considerações de desempenho
- Gerar os scripts SQL para criação das Bases de Dados para o SGBD escolhido.
- A impressão de relatórios dos modelos conceptual e físico.

Breve descrição de algumas das ferramentas do Modelo Conceptual

Ferra	amenta	Descrição
13	Ponteiro	Selector de objectos
-	Laço	Selector dos objectos que se encontram dentro da área
(3	Grabber	Seleccionar e mover todos os objectos
\oplus	Zoom In	Zoom In da janela actual
	Zoom Out	Zoom Out da janela actual
\varkappa	Tesoura	Elimina os objectos
	Entidade	Insere uma entidade
립	Relacionamento	Insere um Relacionamento entre entidades
靐	Herança	Insere um relacionamento de Herança entre entidades
Θ	Associação	Insere uma associação entre entidades (para ternárias)
1	Propriedades	Mostra as propriedades do objecto
•	Texto	Insere Texto
	Linha	Insere uma linha
	Rectângulo	Insere um rectângulo

 Usando o PowerDesigner, elabore o Diagrama E/R do exercício "Pãezinhos Quentes" da aula Teórica-Prática.

A empresa de panificação "Pãezinhos Quentes S.A" pretende desenvolver uma BD relacional para armazenar a informação relativa às suas actividades.

Esta empresa fabrica diversas qualidades de pão. A qualquer momento, podem ser introduzidas novas qualidades de pão. A empresa fornece padarias mediante encomendas feitas com um dia de antecedência. Estas encomendas são todas armazenadas para referência futura. Nas encomendas, são discriminados os tipos e quantidade de pão pretendido. O transporte das

encomendas é
feito através de
uma frota de
veículos da
empresa. Cada
veículo transporta
diariamente várias

encomendas a diferentes destinos.

Para definir os atributos de uma entidade, faça um duplo clique sobre a respectiva entidade e seleccione a pasta *Attributes*.

As CheckBoxes M (mandatory), P (pertence á chave primária) e (display), permitem definir respectivamente que o atributo é mandatory (obrigatório, admite nulos), faz parte da chave primária e se este atributo deve aparecer na figura anterior (útil quando uma entidade possui muitos atributos e apenas se pretende que apareçam os mais relevantes).

Standard Data Types X Para definir o tipo de dados de cada C Binary Integer Characters atributo, deve C Long binary Short integer Variable characters Long characters Long integer seleccionar o item C Byte Long var characters Data Type Data Type Number C Text C Bitmap N4 🔻 🔤 Decimal Multibyte Image C Float O OLE Variable multibyte. C Short float ... Ao clicar em C Date Long float aparecerá esta C Other ○ Money C Time Undefined Serial Date & time janela, e aí pode C Boolean Timestamp facilmente definir o Code: N Length: 4 Precision: tipo de dados do atributo. OΚ Cancel Help

2. Após a configuração de cada entidade (e os respectivos atributos), deve-se de seguida definir quais os relacionamentos existentes entre entidades. Para definir um relacionamento, seleccione a ferramenta , seleccione a primeira entidade e mantendo o botão esquerdo do rato pressionado, arraste o rato até á segunda entidade. O Diagrama deve ficar com o seguinte aspecto.

Para definir o nome, obrigatoriedade e a cardinalidade do relacionamento, basta fazer um duplo clique sobre o relacionamento e aparecerá uma janela similar a esta.

Notação usada na descrição dos relacionamentos entre entidades

Relações			Descrição
		Obrigatoriedade	
-	1	Obrigatório	Relacionamento 1:X com obrigatoriedade
+	N	Obrigatório	Relacionamento N:X com obrigatoriedade
├	1	Não Obrigatório	Relacionamento 1:X sem obrigatoriedade
\triangleright	N	Não Obrigatório	Relacionamento N:X sem obrigatoriedade

3. Como existe um atributo (quantidade de pão) do relacionamento contém entre as entidades Encomenda e Pão. Coloque o atributo quantidade no relacionamento. Para o conseguir, seleccione o relacionamento contém e com o botão direito do rato,

selecciona a opção Change to Entity -

> Standard,

que transformará o relacionamento numa entidade dependente.

O Diagrama de Entidade-relacionamento deve ficar com a seguinte estrutura

Notação usada na descrição dos relacionamentos entre entidades com relacionamentos dependentes

Relações Dependentes			Descrição
		Obrigatoriedade	
<u></u>	1	Obrigatório	Relacionamento 1:X com obrigatoriedade
	N	Obrigatório	Relacionamento N:X com obrigatoriedade
	1	Não Obrigatório	Relacionamento 1:X sem obrigatoriedade
	N	Não Obrigatório	Relacionamento N:X sem obrigatoriedade

4. Após fazer o Diagrama de Entidade-Relacionamento utilize a opção *Tools->* Generate Physical Model para obter o respectivo diagrama físico do diagrama.
Nota: Escolha como Database o SGBD Oracle 11g, para obter os atributos com o tipo de dados existentes no Oracle 11g.

- **5.** Após fazer obter o diagrama físico pode obter o Script de construção das respectivas tabelas, para isso utilize a opção *Database->Generate Database.*
- 6. Analise o código SQL gerado pela aplicação.
- **7.** Experimente agora gerar o código para outro motor de bases de dados, e analise o respectivo código.
- **8. Atenção:** para cada relacionamento deve verificar se foram geradas as tabelas desejadas (segundo as regras). Caso contrário deve corrigir o modelo físico.
 - i. Relacionamento (1 obrigatório: 1 obrigatório)

Problema: devia gerar uma só tabela, mas o PowerDesigner gera 2 tabelas. Cada uma dessas tabelas possui uma referência para a outra tabela.

Solução: alteração manual das tabelas.

ii. Relacionamento (1 obrigatório: 1 não obrigatório)

Problema: devia gerar duas tabelas, o PowerDesigner gera as 2 tabelas, mas cada uma dessas tabelas possui uma referência para a outra tabela. **Solução:** Isto pode ser automaticamente corrigido, se no relacionamento for especificado qual o *Dominant Role*. Ou pode ser corrigido manualmente retirando a referência que não devia existir.

iii. Relacionamento (1 não obrigatório: 1 não obrigatório)

Problema: devia gerar três tabelas, mas o PowerDesigner gera 2 tabelas. Cada uma dessas tabelas possui uma referência para a outra tabela. **Solução:** alteração manual das tabelas.

iv. Relacionamento (1 obrigatório: N não obrigatório)

Problema: devia gerar três tabelas, mas o PowerDesigner gera 2 tabelas. Cada uma dessas tabelas possui uma referência para a outra tabela. **Solução:** alteração manual das tabelas.

- **9.** Construa um modelo conceptual de ER e gere o modelo físico de ER correspondente que, considerando as entidades **Veiculo** e **Motor**, registe quais os motores que cada veiculo possui. Desenhe o ER para cada uma das seguintes restrições, e obtenha o modelo físico correspondente (atenção aos problemas descritos no ponto 8, e resolva-os):
- a) Um veículo obrigatoriamente possui um motor, e um motor obrigatoriamente é colocado num veículo

Modelo físico

b) Um veículo obrigatoriamente possui um motor, e um motor não precisa de estar obrigatoriamente colocado num veículo (ex. são registados motores sobresselentes).

Modelo físico

c) Um veículo não é obrigatório possuir um motor (ex. bicicleta), e um motor não precisa de estar obrigatoriamente colocado num veículo (ex. são registados motores sobresselentes).

Modelo físico

d) Um veículo obrigatório possui obrigatoriamente um ou mais motores (ex. veículos elétricos possuem um motor em cada roda), e um motor não precisa de estar obrigatoriamente colocado num veículo (ex. são registados motores sobresselentes).

O modelo físico

10. Construa um modelo conceptual de ER e gere o modelo físico de ER correspondente, com três entidades à sua escolha do tipo M:N:P.

O modelo físico

11. Construa um modelo conceptual de ER que englobe um relacionamento de herança entre uma entidade mãe e duas entidades filhos, à sua escolha, e gere os modelos físicos de ER correspondentes, para cada um dos tipos de herança possíveis (total, incompleta, disjunta, ...).

Herança completa

Herança incompleta

