Support Vector Machines

Mingmin Chi

SCS Fudan University, Shanghai, China

Outline

- Linear Separable Support Vector Machines
 - Large Margin Classifiers
 - Solution of SVMs
- 2 Linear Non-Separable SVMs
- Non-Linear SVMs
- Multi-Class Classification Problems

- Linear Separable Support Vector Machines
 - Large Margin Classifiers
 - Solution of SVMs
- 2 Linear Non-Separable SVMs
- Non-Linear SVMs
- Multi-Class Classification Problems

- Linear Separable Support Vector Machines
 - Large Margin Classifiers
 - Solution of SVMs
- 2 Linear Non-Separable SVMs
- Non-Linear SVMs
- Multi-Class Classification Problems

Decision Boundary of Perceptron

Mingmin Chi (Fudan Univ.)

Convergence of the Perceptron

• Suppose that there exists the optimal solution (\mathbf{w}^*, b^*) , which defines a decision boundary correctly classifying all the training samples, and every training sample is at least distance $\rho > 0$ from the decision boundary, i.e.,

Convergence of the Perceptron

• Suppose that there exists the optimal solution (\mathbf{w}^*, b^*) , which defines a decision boundary correctly classifying all the training samples, and every training sample is at least distance $\rho > 0$ from the decision boundary, i.e.,

$$|f(\mathbf{x}_i)| = |\mathbf{w}^*^{\top} \mathbf{x}_i + b^*| = \rho$$

• Suppose that there exists a $\rho > 0$, and a weight vector \mathbf{w}^* satisfying $||\mathbf{w}^*|| = 1$, and a threshold b^* , such that

4D> 4A> 4B> 4B> B 990

Convergence of the Perceptron

• Suppose that there exists the optimal solution (\mathbf{w}^*, b^*) , which defines a decision boundary correctly classifying all the training samples, and every training sample is at least distance $\rho > 0$ from the decision boundary, i.e.,

$$|f(\mathbf{x}_i)| = |\mathbf{w}^*^{\top} \mathbf{x}_i + b^*| = \rho$$

• Suppose that there exists a $\rho > 0$, and a weight vector \mathbf{w}^* satisfying $||\mathbf{w}^*|| = 1$, and a threshold b^* , such that

$$\forall_{i+1}^n, y_i f(\mathbf{x}_i) \geq \rho$$

• Then the perceptron algorithm converges after no more than $(b^{*2}+1)(R^2+1)/\rho^2$ updates, where $R=\max_i ||\mathbf{x}_i||$. [Novikov, 1962]

Distance From Decision Boundary

Mingmin Chi (Fudan Univ.)

SVM

• The quantity ρ plays a crucial role for the perceptron as it determines

• The quantity ρ plays a crucial role for the perceptron as it determines (1) how well the two classes can be separated;

- The quantity ρ plays a crucial role for the perceptron as it determines (1) how well the two classes can be separated; (2) How fast the perceptron learning algorithm converges
- This quantity ρ is henceforth what we call a *margin*

- The quantity ρ plays a crucial role for the perceptron as it determines (1) how well the two classes can be separated; (2) How fast the perceptron learning algorithm converges
- This quantity ρ is henceforth what we call a *margin*
- **Definition:** Denote by $f: \mathbb{R}^d \to \mathbb{R}$ used for the classification, then

$$\rho_f(\mathbf{x}, \mathbf{y}) := \mathbf{y} f(\mathbf{x})$$

- The quantity ρ plays a crucial role for the perceptron as it determines (1) how well the two classes can be separated; (2) How fast the perceptron learning algorithm converges
- ullet This quantity ho is henceforth what we call a *margin*
- **Definition:** Denote by $f: \mathbb{R}^d \to \mathbb{R}$ used for the classification, then

$$\rho_f(\mathbf{x}, \mathbf{y}) := \mathbf{y} f(\mathbf{x})$$

• Denote the minimum margin over the whole samples

$$\rho_f := \min_{1 < i < n} \rho_f(\mathbf{x}_i, \mathbf{y}_i)$$

- It is desirable to have an estimator with a large margin
- Question?

- It is desirable to have an estimator with a large margin
- Question? Whether there exists such estimator with maximum margin,

- It is desirable to have an estimator with a large margin
- Question? Whether there exists such estimator with maximum margin, i.e., whether some f* exists with

$$f^* := \arg \max_{f} \rho_f = \arg \max_{f} \min_{i} \rho_f(\mathbf{x}_i, y_i)$$

- It is desirable to have an estimator with a large margin
- Question? Whether there exists such estimator with maximum margin, i.e., whether some f* exists with

$$f^* := \arg \max_{f} \rho_f = \arg \max_{f} \min_{i} \rho_f(\mathbf{x}_i, y_i)$$

 Without the constraints on the size of w, this maximum does not exist

Maximum Margin Hyperplane (Contd)

• If we define $f: \mathbb{R}^d \to \mathbb{R}$ by

$$f(\mathbf{x}) = \frac{\mathbf{w}^{\top}\mathbf{x} + b}{||\mathbf{w}||},$$

then the maximum margin f is defined by the weight vector and threshold that satisfy

$$\mathbf{w}^*, b^* = \arg\max_{\mathbf{w}, b} \min_{i=1}^m \frac{y_i(\mathbf{w}^\top \mathbf{x}_i + b)}{||\mathbf{w}||}$$
(1)

Maximum Margin Hyperplane (Contd)

• If we define $f: \mathbb{R}^d \to \mathbb{R}$ by

$$f(\mathbf{x}) = \frac{\mathbf{w}^{\top}\mathbf{x} + b}{||\mathbf{w}||},$$

then the maximum margin f is defined by the weight vector and threshold that satisfy

$$\mathbf{w}^*, b^* = \arg\max_{\mathbf{w}, b} \min_{i=1}^m \frac{y_i(\mathbf{w}^\top \mathbf{x}_i + b)}{||\mathbf{w}||}$$

$$= \arg\max_{\mathbf{w}, b} \min_{i=1}^m y_i \operatorname{sgn}(\mathbf{w}^\top \mathbf{x}_i + b) \left\| \frac{\mathbf{w}^\top \mathbf{x}_i}{||\mathbf{w}||^2} \mathbf{w} + \frac{b}{||\mathbf{w}||^2} \mathbf{w} \right\|$$
(1)

Maximum Margin Hyperplane (Cont)

• The Equ.(1) is equivalent to

$$\mathbf{w}^*, b^*,
ho^* = \arg\max_{\mathbf{w}, b,
ho}
ho \quad \text{s.t.} \quad \frac{y_i(\mathbf{w}^{\top}\mathbf{x}_i + b)}{||\mathbf{w}||} \geq \rho$$

Maximum Margin Hyperplane (Cont)

• The Equ.(1) is equivalent to

$$\mathbf{w}^*, b^*, \rho^* = \arg\max_{\mathbf{w}, b, \rho} \rho \quad \text{s.t.} \quad \frac{y_i(\mathbf{w}^\top \mathbf{x}_i + b)}{||\mathbf{w}||} \ge \rho$$
$$= \arg\max_{\mathbf{w}, b, \rho} \rho \quad \text{s.t.} \quad ||\mathbf{w}|| = 1 \text{ and } y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge \rho$$

Maximum Margin Hyperplane (Cont)

• The Equ.(1) is equivalent to

$$\mathbf{w}^*, b^*, \rho^* = \arg\max_{\mathbf{w}, b, \rho} \rho \quad \text{s.t.} \quad \frac{y_i(\mathbf{w}^\top \mathbf{x}_i + b)}{||\mathbf{w}||} \ge \rho$$

$$= \arg\max_{\mathbf{w}, b, \rho} \rho \quad \text{s.t.} \quad ||\mathbf{w}|| = 1 \text{ and } y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge \rho$$

$$= \arg\max_{\mathbf{w}, b} ||\mathbf{w}||^2 \quad \text{s.t.} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1$$

where 1 < i < n

Canonical Hyperplanes

• **Definition:** The hyperplane is in *canonical* form w.r.t. **X** if $\min_{\mathbf{x}_i \in \mathbf{X}} |\mathbf{w}^\top \mathbf{x}_i + b| = 1$

Canonical Hyperplanes

- **Definition:** The hyperplane is in *canonical* form w.r.t. **X** if $\min_{\mathbf{x}_i \in \mathbf{X}} |\mathbf{w}^{\top} \mathbf{x}_i + b| = 1$
- For canonical hyperplanes, the distance of the closest point to the hyperplane ("margin") is 1/||w||: Assume we have two points on the two margins: i.e., x⁺ on the positive margin and x⁻ on the negative margin, so we have

$$f(\mathbf{X}^{+}) = <\frac{\mathbf{w}}{\|\mathbf{w}\|}, \mathbf{X}^{+} > +\frac{b}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$
$$f(\mathbf{X}^{-}) = <\frac{\mathbf{w}}{\|\mathbf{w}\|}, \mathbf{X}^{-} > +\frac{b}{\|\mathbf{w}\|} = -\frac{1}{\|\mathbf{w}\|}$$

then the geometric margin ρ is then the functional margin of the resulting classifier

$$\rho = \frac{1}{2} \left(f(\mathbf{x}^+) - f(\mathbf{x}^-) \right) = \frac{1}{\|\mathbf{w}\|}$$

Minomin Chi (Fudan Univ.) SVM Lecture for ML 12 / 48

Separable (Hard-Margin) SVMs

Mingmin Chi (Fudan Univ.)

Separable (Hard-Margin) SVMs

For the ease of computation, finally we can write down the objective function with the constraints:

$$\min_{\mathbf{w}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 \right\}$$
s.t.
$$\forall_{i=1}^n : y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \ge 1$$

This problem can be solved in the primal and dual formulations. usually dealt with by the Lagrange theory, where we can introduce Lagrange multipliers $\alpha_i \geq 0$ and a *Lagrangian* as follows:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1 \right)$$

Mingmin Chi (Fudan Univ.)

- Linear Separable Support Vector Machines
 - Large Margin Classifiers
 - Solution of SVMs
- 2 Linear Non-Separable SVMs
- Non-Linear SVMs
- Multi-Class Classification Problems

Dual Problems

- This problem is usually transformed to its corresponding dual form by introducing Lagrange multipliers $\alpha_i \geq 0$.
- The primal Lagrangian is:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1 \right),$$

here, we define **w** and *b* as the *primal variables* and α_i as the *dual variables*

 The corresponding dual is found by differentiating with respect to the primal variables w and b due to the Karush-Kuhn-Tucher (KKT) conditions

Dual Problems (Contd)

- According to the KKT conditions, at the optimal point, the derivatives of the Lagrangian $L(\mathbf{w}, b, \alpha)$ with respect to the primal variables must vanish
- Hence we have:

$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0 \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

and
$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{n} \alpha_i y_i = 0$$

Dual Lagrangian

Substituting

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
 and $\sum_{i=1}^{n} \alpha_i y_i = 0$

into the primal
$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 \right),$$

to obtain

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} y_i y_l \alpha_i \alpha_l < \mathbf{x}_i, \mathbf{x}_l >$$
s.t.
$$\begin{cases} \alpha_i \ge 0, 1 \le i \le n \\ \sum_{i=1}^{n} y_i \alpha_i = 0 \end{cases}$$

- ◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久(^)

Computing b

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b$$

Since any support vector \mathbf{x}_j satisfies $y_j f(x_j) = 1$, we have

$$y_j f(\mathbf{x}_j) = y_j \left(\sum_{i \in \mathcal{S}} \alpha_i y_i \mathbf{x}_i^\top \mathbf{x}_j + b \right) = 1$$

$$\Rightarrow f(\mathbf{x}_j) = \sum_{i \in \mathcal{S}} \alpha_i y_i \mathbf{x}_i^\top \mathbf{x}_j + b = y_j$$

By averaging these over all support vectors

$$b^* = \frac{1}{N_S} \sum_{j \in S} \left(y_j - \sum_{i \in S} \alpha_i y_i \mathbf{x}_i^\top \mathbf{x}_j \right)$$

Decision Function

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

The decision function

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$
$$= \operatorname{sgn} \left[\sum_{i=1}^{n} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}^{\top} \mathbf{x} + b^{*} \right]$$

Support Vectors

Karush-Kuhn-Tuck (KKT) conditions:

$$\alpha_i \ge 0$$
 $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1$
 $\alpha_i \left(y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) - 1\right) = 0$

Data points are

- **1** no support vectors if $\alpha_i = 0$: $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) > 1$
- 2 support vectors if $\alpha_i > 0$: $y_i(\mathbf{w}^\top \mathbf{x}_i + b) = 1$

Support Vectors (Contd)

Mingmin Chi (Fudan Univ.)

- Linear Separable Support Vector Machines
 - Large Margin Classifiers
 - Solution of SVMs
- 2 Linear Non-Separable SVMs
- Non-Linear SVMs
- Multi-Class Classification Problems

Question?

Soft-Margin SVMs

 To overcome the sensitivity to the noisy data, a standard approach is to allow for the possibility of example violating the critical constraints by introducing "slack variable":

$$\xi_i \ge 0$$
, for all $1 \le i \le n$, (2)

along with the relaxed constraints:

$$y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \ge 1 - \xi_i, \text{ for all } 1 \le i \le n$$
 (3)

• By making ξ_i large enough, the constraint on (\mathbf{x}_i, y_i) can always be met.

Soft-Margin SVMs (Contd)

- In order not to obtain the trivial solution where all ξ_i take on large values, we thus need to penalize them in the objective function.
- To this end, a term $\sum_{i} \xi_{i}$ is included in the objective function as

$$\min_{\mathbf{w},\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.
$$\forall_{i=1}^n: y_i\left(\mathbf{w}^{\top}\mathbf{x}_i + b\right) \geq 1 - \xi_i, \xi_i \geq 0$$

Dual Problems

By introducing Lagrange multipliers $\alpha_i \geq 0$ and $\mu_i \geq 0$. The primal *Lagrangian* is:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i \right) - \sum_{i=1}^n \mu_i \xi_i$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\frac{\partial L}{\partial \varepsilon_{i}} = 0 \quad \Rightarrow \quad \alpha_{i} = C - \mu_{i}$$

Solution

With the Lagrange theory and the KKT conditions, we can obtain the dual Lagrangian:

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} y_i y_l \alpha_i \alpha_l \mathbf{x}_i^{\top} \mathbf{x}_l$$
s.t.
$$\begin{cases} \mathbf{C} \ge \alpha_i \ge 0, 1 \le i \le n \\ \sum_{i=1}^{n} y_i \alpha_i = 0 \end{cases}$$

- the box constraint
- ullet the optimal value of w in terms of the optimal value of $lpha^*$

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

Support Vectors

with KKT conditions:

$$\alpha_i \geq 0$$
; $\mu_i \geq 0$; $\xi_i \geq 0$; $\mu_i \xi_i = 0$
 $y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) - 1 + \xi_i \geq 0$
 $\alpha_i \left(y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) - 1 + \xi_i \right) = 0$
 $\alpha_i = C - \mu_i$

The data points are

- no contribution to **w** if $\alpha_i = 0$
- **2** support vectors if $\alpha_i > 0 \implies y_i(\mathbf{w}^\top \mathbf{x}_i + b) = 1 \xi_i$
 - $\alpha_i < C \Rightarrow \xi_i = 0$, on the margin
 - $\alpha_i = C \Rightarrow \xi_i > 0$
 - **1** correctly classified if $\xi_i \leq 1$
 - 2 misclassified if $\xi_i > 1$

Soft-Margin SVMs: Geometric Illustration

Soft-Margin SVMs: Geometric Illustration (cont)

- Linear Separable Support Vector Machines
 - Large Margin Classifiers
 - Solution of SVMs
- 2 Linear Non-Separable SVMs
- Non-Linear SVMs
- 4 Multi-Class Classification Problems

Nonlinear Mapping

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(\mathbf{x}_1, \mathbf{x}_2) \to (\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3) : (\mathbf{x}_1^2, \sqrt{2}\mathbf{x}_1\mathbf{x}_2, \mathbf{x}_2^2)$$

Feature Spaces

Preprocess the data with

$$\phi: \mathbf{X} \to \mathcal{H}$$
 $\mathbf{x} \to \phi(\mathbf{x}),$

where \mathcal{H} is a dot product space and learn the mapping from $\phi(\mathbf{x})$ to the output \mathbf{y}

• Usually, $dim(\mathbf{X}) \ll dim(\mathcal{H})$

Dual Lagrangian with Kernels

• In linear separable case, the dual formulation is

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} y_i y_l \alpha_i \alpha_l \mathbf{x}_i^{\top} \mathbf{x}_l$$
s.t.
$$\begin{cases} \alpha_i \ge 0, 1 \le i \le n \\ \sum_{i=1}^{n} y_i \alpha_i = 0 \end{cases}$$

Dual Lagrangian with Kernels

In linear separable case, the dual formulation is

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{l=1}^{n} y_i y_l \alpha_i \alpha_l k(\mathbf{x}_i, \mathbf{x}_l)$$
s.t.
$$\begin{cases} \alpha_i \ge 0, 1 \le i \le n \\ \sum_{i=1}^{n} y_i \alpha_i = 0 \end{cases}$$

The solution

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i^* y_i \mathbf{x}^\top \mathbf{x}_i + b^*$$

can be formulated as

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i^* y_i k(\mathbf{x}, \mathbf{x}_i) + b^*$$

Positive Definite Kernels

• **Definition (Gram Matrix)**: Given a function $k: \mathcal{X}^2 \to \mathbb{K}$ (where $\mathbb{K} = \mathcal{C}$ or $\mathbb{K} = \mathbb{R}$) and patterns $(\mathbf{x}_i, \dots, \mathbf{x}_n) \in \mathcal{X}$, the $n \times n$ matrix **K** with elements:

$$\mathbf{K}_{ij} := k(\mathbf{x}_i, \mathbf{x}_j)$$

is called the Gram matrix (or kernel matrix) of k w.r.t $(\mathbf{x}_1, \dots, \mathbf{x}_n)$

 Definition (Positive Definite Matrix): A complex n × n matrix K satisfying

$$\sum_{ij} c_i \overline{c}_j \mathbf{K}_{ij} \geq 0$$

- **1** for all $c \in C$, the matrix **K** is called positive definite
- of or all $c \in \mathcal{R}$, the real symmetric $n \times n$ matrix \mathbf{K} is called positive definite

Positive Definite Kernels (Contd)

- **Definition (Positive Definite Kernel)**: Let \mathcal{X} be a nonempty set. A function k on $\mathcal{X} \times \mathcal{X}$ which for all $n \in \mathbb{N}$, and all $(\mathbf{x}_i, \dots, \mathbf{x}_n) \in \mathcal{X}$ gives rise to a positive definite Gram matrix is called a positive definite (pd) kernel
- A number of different terms are used for pd kernels, such as reproducing kernel, Mercer kernel, admissible kernel, Support Vector kernel, nonnegative definite kernel, and covariance function
- Conditions of kernels:
 - **1** positivity on the diagonal of **K**, i.e., $k(\mathbf{x}, \mathbf{x}) > 0$, for all $\mathbf{x} \in \mathcal{X}$
 - 2 Symmetry, i.e., $k(\mathbf{x}_i, \mathbf{x}_j) = \overline{k}(\mathbf{x}_j, \mathbf{x}_i)$ or $\mathbf{K}_{ij} = \overline{\mathbf{K}}_{ji}$

Mercer Theorem

• Mercer Theorem If k is a continuous kernel of a positive definite integral operator on $L_2(\mathcal{X})$,

$$\int_{\mathcal{X}^{2}} k(\mathbf{x}, \mathbf{x}') f(\mathbf{x}) f(\mathbf{x}') d\mathbf{x} d\mathbf{x}' \geq 0, \ \forall \ f$$

It can be expanded as

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \psi_i(\mathbf{x}) \psi_i(\mathbf{x}')$$

using eigenfunctions ψ_i and eigenvalues $\lambda_i \geq 0$

Mercer Theorem (Contd)

In this case,

$$\phi(\mathbf{x}) := \left(egin{array}{c} \sqrt{\lambda_1} \psi_1(\mathbf{x}) \ \sqrt{\lambda_2} \psi_2(\mathbf{x}) \ \vdots \ \vdots \ \vdots \ \end{array}
ight)$$

• Proposition (Mercer Kernel Map) If k is a kernel satisfying the above conditions (in the previous slide), we can construct a mapping ϕ into a space where k acts as a dot product,

$$<\phi(\mathbf{x}),\phi(\mathbf{x}^{'})>=\phi(\mathbf{x})^{\top}\phi(\mathbf{x}^{'})=k(\mathbf{x},\mathbf{x}^{'})$$

Closure Properties of Kernel Functions

Constructing more complex kernels from simpler ones

Let $k_1(\mathbf{x}, \mathbf{y})$ and $k_2(\mathbf{x}, \mathbf{y})$ be the kernels functions. Then the following are all kernels:

- $\alpha k_1(\mathbf{x}, \mathbf{y}), \quad \alpha > 0 \quad \Leftarrow \quad \phi(\mathbf{x}) = \sqrt{\alpha}\phi_1(\mathbf{x})$
- **3** $k_1(\mathbf{x}, \mathbf{y})k_2(\mathbf{x}, \mathbf{y}) \leftarrow \phi(\mathbf{x})_{ij} = \phi_i(\mathbf{x})_i\phi_2(\mathbf{x})_i$ (tensor product)
- **5** $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{y}$, for $\mathbf{A} \succeq \mathbf{0} \leftarrow \phi(\mathbf{x}) = L^{\mathsf{T}} \mathbf{x}$ for $\mathbf{A} = LL^{\mathsf{T}}$ (Cholesky)

Kernel Tricks

- any algorithm that only depends on dot products can benefit from the kernel trick
- can be extended to non-vectorial data
- The kernel is as a nonlinear similarity measure (examples)
- Examples of common kernels used
 - **1** Gaussian kernels: $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} \mathbf{x}'\|^2}{2\sigma^2}\right)$
 - Polynomial kernels: $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^{\top} \mathbf{x}' + c)^d$

- Linear Separable Support Vector Machines
 - Large Margin Classifiers
 - Solution of SVMs
- 2 Linear Non-Separable SVMs
- Non-Linear SVMs
- Multi-Class Classification Problems

One-vs-Rest

 To get C-class binary classifiers, it is common to construct a set of binary classifiers f¹, · · · , f^C, each trained to separate one class from the rest, and combine them by doing the multi-class classification according to the maximal output before applying the sgn function; i.e., by taking:

$$\arg\max_{j=1,\dots,C} f^j(\mathbf{x}), \text{ where } f^j(\mathbf{x}) = \sum_{i=1}^n y_i \alpha^j k(\mathbf{x},\mathbf{x}_i) + b^j$$

One-vs-Rest: Objective Function

Multi-class objective functions

$$\begin{aligned} & \min_{\mathbf{w}^{j}, \boldsymbol{\xi}^{j}} \left\{ \frac{1}{2} ||\mathbf{w}^{j}||^{2} + C \sum_{i=1}^{n} \xi_{i}^{j} \right\} \\ & \text{s.t.} \quad \left\{ \begin{array}{l} <\mathbf{w}^{j}, \mathbf{x}_{i} > + b \ \geq \ 1 - \xi_{i}^{j}, \ y_{i} = j \\ <\mathbf{w}^{j}, \mathbf{x}_{i} > + b \ \leq \ -1 + \xi_{i}^{j}, \ y_{i} \neq j \\ \forall_{i=1}^{n} : \xi_{i}^{j} > 0, j = 1, \cdots, C \end{array} \right. \end{aligned}$$

One-vs-One

• This method constructs $C \times (C-1)/2$ classifiers where each one is trained on data from two classes. For training data from the *I*-th and the *j*-th classes, we solve the following binary classification problem:

$$\min_{\mathbf{w}^{ij}, \boldsymbol{\xi}^{ij}} \left\{ \frac{1}{2} ||\mathbf{w}^{ij}||^2 + C \sum_{i=1}^n \xi_i^{ij} \right\}$$
s.t.
$$\begin{cases} <\mathbf{w}^{ij}, \mathbf{x}_i > +b \geq 1 - \xi_i^{ij}, & y_i = I \\ <\mathbf{w}^{ij}, \mathbf{x}_i > +b \leq -1 + \xi_i^{ij}, & y_i = j \\ \forall_{i=1}^n : \xi_i^{ij} > 0, I, j = 1, \dots, C \end{cases}$$

One-vs-One

- Assume the voting strategy used
 - if $\operatorname{sgn}\left[\sum_{i=1}^{j}\alpha_{i}^{ij}y_{i}<\mathbf{x},\xi>+b^{ij}\right]$ says that the pattern \mathbf{x} belongs to the class j, then the vote for the class j is added by one. Otherwise the class l is added by one
 - 2 Then we predict the $\dot{\mathbf{x}}$ is in the class with the largest vote