Gate-Level Minimization

Chun-Jen Tsai National Chiao Tung University 10/11/2012

Gate-Level Minimization

- □ The design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.
- □ Logic minimization approaches:
 - Algebraic approaches: lack specific rules
 - The Karnaugh map (or K-map):
 - a pictorial form of a truth table of a 2-D array of squares
 - each square represents one minterm
 - Certain patterns of adjacent squares have an equivalent (simpler) Boolean expression

Goal of Minimization

- ☐ We assume that the simplest algebraic expression is an algebraic expression with:
 - A minimum number of terms
 - The smallest number of literals in each term
- □ Note that
 - The simplified expression may not be unique
 - In practice, the best expression depends on the target technology used to implement the digital circuit

Two-Variable Map (1/2)

- ☐ A K-map is a truth table illustrated in square diagram
- ☐ Example: a two-variable map
 - A two-variable Boolean function has four minterms
 - \blacksquare x' shows up in row 0; x shows up in row 1
 - \blacksquare y' shows up in column 0; y shows up in column 1

Two-Variable Map (2/2)

- Mapping functions to K-maps:
 - xy is m_3 , thus we put a 1 in the square of m_3 when the canonical form of the function contains m_3 .
 - \blacksquare x + y = x'y + xy' + xy, put 1's in the squares of m_1 , m_2 , and m_3 .

Three-Variable Map

- □ A three-variable Boolean function has eight minterms
- ☐ The minterm squares are arranged in the K-map by Gray code sequence
 - Any two adjacent squares in the map differ by one variable (i.e, primed in one square and unprimed in the other)
 → they can be merged into one term
 - Example: m_5 and m_7 can be simplified to xz.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a)

Example: Function Simplification

$$\Box F(x, y, z) = \Sigma(2,3,4,5) \rightarrow F = x'y + xy'$$

Simplification across Boundaries

- ☐ Merging of minterms can go across the boundaries
- \square Example: m_0 and m_2 as well as m_4 and m_6 are adjacent

$$m_0 + m_2 = x'y'z' + x'yz' = x'z'(y'+y) = x'z'$$

$$m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz'$$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a)

Example: $F(x, y, z) = \Sigma(3, 4, 6, 7)$

 \square *F* contains four minterms, or two merged terms:

$$F(x, y, z) = (m_3 + m_7) + (m_6 + m_4) = yz + xz'$$

Four-Square Simplification

☐ Four adjacent squares can be simplified as well:

$$m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz'$$

$$= x'z'(y' + y) + xz'(y' + y)$$

$$= x'z' + xz' = z'$$

$$m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz$$

$$= x'z(y' + y) + xz(y' + y)$$

$$= x'z + xz = z$$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

(a)

\ vz			<i>y</i>		
x	00	01	11	10	
0		x'y'z	m_3 $x'yz$	m_2 $x'yz'$	
$x \left\{ 1 \right\}$	m_4 $xy'z'$	m_5 $xy'z$	m_7 xyz	m_6 xyz'	
(b)					

Example: $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$

 \Box *F* contains five minterms, with two overlapping areas, thus, the simplified function becomes F = z' + xy'

Equivalent Function Discovery

- ☐ K-Map can be used to find various forms of the same Boolean expression.
- \square Example: F = A'C + A'B + AB'C + BC
 - Express it in sum of minterms: $m_1 + m_2 + m_3 + m_5 + m_7$
 - Find the minimal sum of products expression: A'B + C

Four-Variable Maps (1/2)

- ☐ A four-variable Boolean function has 16 minterms
- ☐ There are sums of 2, 4, 8, and 16 adjacent squares

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

Four-Variable Maps (2/2)

- □ Simplification rules of adjacent squares that has 1's in the K-map are as follows
 - a 1-square represents one minterm with four literals
 - a 2-square reduces to a product term with three literals
 - a 4-square reduces to a product term with two literals
 - a 8-square reduces to a product term with one literal
 - a 16-square reduces to a constant 1
- Note:
 - There are usually more than one ways to simplify a function
 - Overlapping of *n*-squares do not affect the rules
- ☐ Goal: find the minimal number of *n*-squares that can cover all the 1's in the K-map

Example: Sum of 11 minterms

 $\Box F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ $\to F = y' + w'z' + xz'$

Note: w'y'z' + w'yz' = w'z'xy'z' + xyz' = xz'

Example: F = A'B'C' + B'CD' + A'B'CD' + AB'C'

- $\square F \rightarrow B'D' + B'C' + A'CD'$:
 - Four corners: A'B'C'D'+A'B'CD'+AB'C'D'+AB'CD'=B'D'.
 - 4-squares on the left: B'C'.
 - 2-squares on the top-right: A'CD'.

Prime Implicants

- □ A prime Implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
 - A subset of a prime implicant is not a prime implicant. E.g., a 2-square contained in a 4-square is not a prime implicant.
- □ An essential prime implicant is the only prime implicant that covers certain minterms.
 - At least one of the minterms covered by the essential prime implicant is unique.
- □ A function can be simplified to summations of prime implicants.

Example: Prime Implicants

$$\Box$$
 $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15).$

$$\Box F = BD + B'D' + CD + AD = BD + B'D' + CD + AB'$$

$$= BD + B'D' + B'C + AD = BD + B'D' + B'C + AB'$$

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D'A'B'D' + AB'D' = B'D'

(a) Essential prime implicants *BD* and *B'D'*

(b) Prime implicants CD, B'C, AD, and AB'

Five-Variable Map

- Map for more than four variables becomes very complicated
- ☐ A possible way to draw five-variable map is to stack two four-variable maps together:

Product of Sum (PoS) Simplification

- □ K-map is designed for sum-of-product simplification
- ☐ To have simplified forms in product-of-sum, you can:
 - (1) Apply duality principle in K-map:
 - (x+y')(x+y) = x

- (2) Start with sum-of-product form, and follow the steps:
- Simplify F' in the form of sum-of-product
- Apply DeMorgan's theorem F = (F')' to turn sum-of-product into product-of-sum

Example: PoS Simplification (1/2)

- $\Box F = \Sigma(0, 1, 2, 5, 8, 9, 10) \rightarrow B'D' + B'C' + A'C'D$
- ☐ To get the simplified PoS form, we can combine zeros in the K-map to get the simplified form of F'
 - F' = AB + CD + BD', then F = (A'+B')(C'+D')(B'+D)

Example: PoS Simplification (2/2)

☐ Gate implementations of the simplified function

Summary Example

$$\Box$$
 $F = \Sigma(1, 3, 4, 6) = (\Sigma(0, 2, 5, 7))' = \Pi(0, 2, 5, 7)$

- To simplify $\Sigma(1, 3, 4, 6)$, we combine 1's: F = x'z + xz'
- To simplify $(\Sigma(0, 2, 5, 7))'$, we combine 0's: F' = xz + x'z'
- To simplify $\Pi(0, 2, 5, 7)$, we complement the function to draw K-map, then complement the simplified form of $(\Sigma(0, 2, 5, 7))'$

Truth Table of Function F

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Don't Care Conditions

- ☐ The value of a function is not specified for certain combinations of variables
 - In BCD codes; 1010 ~ 1111: don't care
- ☐ The don't care conditions can be utilized in logic minimization
 - can be implemented as 0 or 1

Example: Don't Care Conditions

- \square $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15), <math>d(w, x, y, z) = \Sigma(0, 2, 5)$
 - (a) : F = yz + w'x', from $F = \Sigma(0, 1, 2, 3, 7, 11, 15)$
 - (b) : F = yz + w'z, from $F = \Sigma(1, 3, 5, 7, 11, 15)$
 - Either expression is acceptable

NAND and NOR Implementation

- NAND gate is a universal gate
 - An universal gate can implement any digital system

☐ Two symbols for a NAND gate:

Two-level Implementation of Func.

- \Box Use two-level logic to implement F = AB + CD
 - Sum of products can be implemented by NAND-NAND logic
 - $\blacksquare F = AB + CD = ((AB)'(CD)')'$

Example: NAND Implementation

$$\square F(x, y, z) = \Sigma(1, 2, 3, 4, 5, 7) = xy' + x'y + z,$$

NAND Implementation Procedure

- □ To implement a function using NAND gates alone, execute the following procedure
 - Simplified in the form of sum of products
 - A NAND gate for each product term; the inputs to each NAND gate are the literals of the term
 - A single NAND gate for the second sum term
 - A single literal requires an inverter in the first level

Multilevel NAND Circuits

- ☐ Steps to convert AND-OR logic implementations to NAND-NAND logic implementations
 - AND → NAND + inverter-to-next-input
 - OR → inverted-input + OR (≡ NAND)

NAND Implementation

$$\Box F = (AB' + A'B)(C + D')$$

NOR Implementation

- NOR function is the dual of NAND function
 - The NOR gate is also universal

☐ Two symbols for a NOR gate:

Multilevel NOR Circuits

- ☐ Steps to convert AND-OR logic to NOR-NOR logic
 - AND → inverted-input + AND (≡ NOR)
 - \blacksquare OR \rightarrow NOR
- \square Example: F = (AB' + A'B)(C + D')

Other Two-level Implementations

- □ Two-level function implementation is the basic of digital computing, we have studied AND-OR, OR-AND, NAND-NAND, and NOR-NOR
- □ There are other possibilities of two-level implementations
 - Wired logic
 - Non-degenerate forms of NOR-OR, NAND-AND, OR-AND, and AND-OR

Wired Logic Implementation

- ☐ Some gates can use a wire connection of the outputs to "emulate an extra 2nd-level gate"
- □ Examples:
 - wire TTL NAND gates gives us wired-AND logic
 - \rightarrow AND-OR-INVERT function: F = (AB)'(CD)'
 - wire ECL NOR gates gives us wired-OR logic
 - \rightarrow OR-AND-INVERT function F = (A+B)' + (C+D)'

Non-degenerate Forms

- ☐ If four types of gates, AND, OR, NAND, NOR, are used for two-level logics, there are 16 combinations
- □ Eight of them are degenerate forms, i.e., equivalent to a single-level logic of multiple inputs
 - Examples: AND-AND → AND; OR-NOR → NOR
- ☐ The other eight non-degenerate forms are:
 - AND-OR, OR-AND, NAND-NAND, NOR-NOR, NAND-AND, AND-NOR, OR-AND, NOR-OR
- □ Popular forms:
 - AND-OR and NAND-NAND = sum of products
 - OR-AND and NOR-NOR = product of sums

AND-OR-INVERT Circuits

- □ AND-OR-INVERT (AOI) Implementation
 - AND-NOR = NAND-AND
 - $\blacksquare \quad F = (AB + CD + E)'$

OR-AND-INVERT Circuits

- □ OR-AND-INVERT (OAI) Implementation
 - OR-NAND = NOR-OR
 - F = ((A+B)(C+D)E)'

Summary of Two-Level Forms

☐ Implementation with other two-level forms:

Implementation with Other Two-Level Forms

Equivalent Nondegenerate Form		Implements	Simplify	To Get
(a)	(b)*	the Function	F' into	an Output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

Example:
$$F = x'y'z' + xyz'$$
 (1/2)

- \Box Compliment of the function is F' = (x+y+z)(x'+y'+z)
 - OAI expression: ((x+y+z)(x'+y'+z))'
- ☐ K-map of the function:

- \Box Complement of the simplified form is F' = x'y + xy' + z
 - F' is simplified by combining zeros in K-map
 - AOI expression: F = (x'y + xy' + z)'

Example: F = x'y'z' + xyz' (2/2)

☐ Gate Implementations:

■ OAI: F = ((x+y+z)(x'+y'+z))'

■ AOI: F = (x'y + xy' + z)'

Exclusive-OR Function

- □ Exclusive-OR (XOR): $x \oplus y = xy' + x'y$
- □ Exclusive-NOR (XNOR): $(x \oplus y)' = xy + x'y'$
- ☐ Some identities:
 - $\mathbf{x} \oplus 0 = x$
 - $\blacksquare x \oplus 1 = x'$
 - $\mathbf{x} \oplus x = 0$
 - $\mathbf{x} \oplus x' = 1$
 - $x \oplus y' = x' \oplus y = (x \oplus y)'$
- □ Commutative and associative
 - $\blacksquare A \oplus B = B \oplus A$
 - $\blacksquare (A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

Implementations

$$\Box x \oplus y = xy' + x'y = (x' + y')x + (x' + y')y$$

(a) Exclusive-OR with AND-OR-NOT gates

(b) Exclusive-OR with NAND gates

Odd Function

- □ Exclusive-OR can be used to determine whether the number of 1's is odd
- □ Example: $A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$ = $AB'C' + A'BC' + ABC + A'B'C = \Sigma(1, 2, 4, 7)$

(a) Odd function $F = A \oplus B \oplus C$

(b) Even function $F = (A \oplus B \oplus C)'$

Parity Generation and Checking

- XOR can be used for parity generation and checking
 - Parity bit of three variables: $P = x \oplus y \oplus z$
 - Parity check function: $C = x \oplus y \oplus z \oplus P$, if even parity is used
 - C = 1: an odd number of data bit error
 - C = 0: correct or an ever number of data bit error

