

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	16.49 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.73	$C_s =$
	0.90	$C_e =$
	1.20	$C_t =$

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- portou	=	-1 100	approd and morn are carrace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>266.96</u>	<u>6994.15</u>	k
Compressive Load =	3110.08	4995.82	k
Lateral Load =	<u>8.56</u>	4281.29	k
Moment (Weak Axis) =	0.02	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 189808.4 in-lbs Resisting Force Required = 2654.66 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4424.44 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 988.38 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2470.95 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 988.38 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Baliast Width				
	<u>35 in</u>	<u>36 in</u>	37 in	<u>38 in</u>	
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs	

ASD LC	1.0D + 1.0S 1.0D + 0.6W				1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W								
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	878 lbs	878 lbs	878 lbs	878 lbs	1282 lbs	1282 lbs	1282 lbs	1282 lbs	1525 lbs	1525 lbs	1525 lbs	1525 lbs	-116 lbs	-116 lbs	-116 lbs	-116 lbs
FB	844 lbs	844 lbs	844 lbs	844 lbs	2157 lbs	2157 lbs	2157 lbs	2157 lbs	2159 lbs	2159 lbs	2159 lbs	2159 lbs	-3223 lbs	-3223 lbs	-3223 lbs	-3223 lbs
F _V	97 lbs	97 lbs	97 lbs	97 lbs	1767 lbs	1767 lbs	1767 lbs	1767 lbs	1388 lbs	1388 lbs	1388 lbs	1388 lbs	-1977 lbs	-1977 lbs	-1977 lbs	-1977 lbs
P _{total}	9281 lbs	9497 lbs	9713 lbs	9929 lbs	10999 lbs	11215 lbs	11431 lbs	11647 lbs	11244 lbs	11460 lbs	11676 lbs	11892 lbs	1197 lbs	1326 lbs	1456 lbs	1586 lbs
M	2343 lbs-ft	2343 lbs-ft	2343 lbs-ft	2343 lbs-ft	3167 lbs-ft	3167 lbs-ft	3167 lbs-ft	3167 lbs-ft	3879 lbs-ft	3879 lbs-ft	3879 lbs-ft	3879 lbs-ft	5809 lbs-ft	5809 lbs-ft	5809 lbs-ft	5809 lbs-ft
е	0.25 ft	0.25 ft	0.24 ft	0.24 ft	0.29 ft	0.28 ft	0.28 ft	0.27 ft	0.35 ft	0.34 ft	0.33 ft	0.33 ft	4.85 ft	4.38 ft	3.99 ft	3.66 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft
f _{min}	233.1 psf	232.7 psf	232.3 psf	231.9 psf	270.6 psf	269.1 psf	267.7 psf	266.4 psf	267.3 psf	265.9 psf	264.6 psf	263.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	301.0 psf	298.7 psf	296.5 psf	294.4 psf	362.3 psf	358.3 psf	354.5 psf	350.9 psf	379.7 psf	375.2 psf	370.9 psf	366.9 psf	247.8 psf	186.7 psf	159.9 psf	145.5 psf

D = II = = 4 \A/: = IAI=

Maximum Bearing Pressure = 380 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 817.9 \text{ ft-lbs}$

Resisting Force Required = 560.87 lbs S.F. = 1.67 Weight Required = 934.78 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width	35 in				35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	206 lbs	462 lbs	206 lbs	569 lbs	1451 lbs	569 lbs	60 lbs	135 lbs	60 lbs		
F _V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	9565 lbs	7560 lbs	9565 lbs	9478 lbs	7560 lbs	9478 lbs	2797 lbs	7560 lbs	2797 lbs		
М	4 lbs-ft	0 lbs-ft	4 lbs-ft	12 lbs-ft	0 lbs-ft	12 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	275.0 psf	217.5 psf	275.0 psf	272.0 psf	217.5 psf	272.0 psf	80.4 psf	217.5 psf	80.4 psf		
f _{max}	275.4 psf	217.5 psf	275.4 psf	273.4 psf	217.5 psf	273.4 psf	80.5 psf	217.5 psf	80.5 psf		

Maximum Bearing Pressure = 275 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.392 k	Maximum Axial Load =	4.714 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>32%</u>	Utilization =	<u>64%</u>
Diagonal Strut			
Maximum Axial Load =	2.888 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>39%</u>		
		Struts under compression are	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 60.93 in

Allowable Story Drift for All Other
Structures, Δ = {

Max Drift, $\Delta_{MAX} =$ 0.011 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 75 \text{ in}$$

$$J = 0.432$$

$$207.485$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 75 \\ \mathsf{J} &= 0.432 \\ &= 131.948 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= 29.6 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.7 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$C_0 = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b[Bbr-mDbr^*h/t]$$

$$\varphi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

 $M_{max}St =$

Sx =

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

$$\begin{array}{ll} \textbf{3.4.16.1} & \underline{\textbf{Used}} \\ \textbf{Rb/t} = & \textbf{18.1} \\ S1 = \left(\frac{Bt - 1.17 \frac{\theta_{\mathcal{Y}}}{\theta_{b}} Fcy}{1.6Dt}\right)^{2} \\ \textbf{S1} = & \textbf{1.1} \\ S2 = C_{t} \\ \textbf{S2} = & \textbf{141.0} \\ \phi \textbf{F}_{L} = & \phi \textbf{b} [\textbf{Bt-Dt}^{*} \sqrt{(\textbf{Rb/t})}] \end{array}$$

31.1 ksi

 $\phi F_L =$

h/t =

S1 =

m =

 $C_0 =$

Bbr -

16.2

36.9

0.65

40

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

$$Cc = 40$$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L W k = 33.3 \text{ ksi}$
 $\phi F_L W k = 32.2 \text{ ksi}$
 $\phi F_L W$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1 $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$ S1 = 6.87 S2 = 131.3 $\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\varphi F_L = 31.09 \text{ ksi}$ $\varphi F_L = 31.09 \text{ ksi}$ $A = 1215.13 \text{ mm}^2$ 1.88 in^2

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_{y}}{\theta_{h}}Fcy\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$c = cob[Rc, 1.6]$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2)})]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$S2 = 46[Bo 1.6Do*_{1}/(1.6So)$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

$$\varphi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 28.2 \text{ ksi} \\ lx &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ y &= & 27.5 \text{ mm} \\ Sx &= & 0.621 \text{ in}^3 \\ M_{max} St &= & 1.460 \text{ k-ft} \end{aligned}$$

$$\begin{aligned} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ \text{Sy} &= & 0.621 \text{ in}^3 \\ M_{\text{max}} W k &= & 1.460 \text{ k-ft} \end{aligned}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

	<u>Weak Axis:</u> 3.4.14
$L_b = 98.03 \text{ in}$	$L_{b} = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.4 \text{ ksi}$	$\varphi F_{L} = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \varphi cc = & 0.89749 \\ & \varphi F_L = & (\varphi cc Fcy)/(\lambda^2) \\ & \varphi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$\begin{aligned} \text{h/t} &=& 24.5 \\ S1 &=& \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &=& 36.9 \\ \text{m} &=& 0.65 \\ \text{C}_0 &=& 27.5 \\ \text{Cc} &=& 27.5 \\ \text{S2} &=& \frac{k_1 Bbr}{mDbr} \\ \text{S2} &=& 77.3 \\ \text{\phiF}_L &=& 1.3 \text{\phiyFcy} \\ \text{\phiF}_L &=& 43.2 \text{ ksi} \end{aligned}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 78.35 in $L_b =$ 78.35 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 29.8 \text{ ksi}$ 29.8

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 B b r}{m D b r}$$

$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$

$$φF_LSt=$$
 28.2 ksi
 $lx =$ 279836 mm⁴
0.672 in⁴
 $y =$ 27.5 mm
 $Sx =$ 0.621 in³

$$\begin{aligned} \phi F_L St &= & 28.2 \text{ ksi} \\ lx &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ y &= & 27.5 \text{ mm} \\ Sx &= & 0.621 \text{ in}^3 \\ M_{\text{max}} St &= & 1.460 \text{ k-ft} \end{aligned}$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83375 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46.866	-46.866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-151.652	-151.652	0	0
2	M14	V	-151.652	-151.652	0	0
3	M15	V	-243.962	-243.962	0	0
4	M16	V	-243.962	-243.962	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	342.866	342.866	0	0
2	M14	V	263.743	263.743	0	0
3	M15	V	145.059	145.059	0	0
4	M16	V	145 059	145 059	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	_		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	985.239	2	1332.539	2	.341	1	.001	1	Ō	1	0	1
2		min	-1155.489	3	-1810.425	3	.019	15	0	15	0	1	0	1
3	N7	max	.016	9	865.176	1_	326	15	0	15	0	1	0	1
4		min	289	2	-31.479	3	-6.587	1	013	1	0	1	0	1
5	N15	max	.015	9	2392.372	2	0	3	0	3	0	1	0	1
6		min	-2.515	2	-205.351	3	0	2	0	10	0	1	0	1
7	N16	max	2977.792	2	3842.94	2	0	11	0	2	0	1	0	1
8		min	-3293.298	3	-5380.118	3	0	3	0	3	0	1	0	1
9	N23	max	.016	9	865.176	1	6.587	1	.013	1	0	1	0	1
10		min	289	2	-31.479	3	.326	15	0	15	0	1	0	1
11	N24	max	985.239	2	1332.539	2	019	15	0	15	0	1	0	1
12		min	-1155.489	3	-1810.425	3	341	1	001	1	0	1	0	1
13	Totals:	max	4945.175	2	10584.388	2	0	3	·					
14		min	-5604.544	3	-9269.277	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	37.019	1	418.647	2	-6.028	15	0	15	.103	1	0	2
2			min	1.818	15	-805.491	3	-127.89	1	011	3	.005	15	0	3
3		2	max	37.019	1	291.052	2	-4.602	15	0	15	.025	1	.478	3
4			min	1.818	15	-571.155	3	-97.125	1	011	3	002	10	246	2
5		3	max	37.019	1	163.456	2	-3.176	15	0	15	.007	3	.793	3
6			min	1.818	15	-336.82	3	-66.361	1	011	3	032	1	404	2
7		4	max	37.019	1	35.86	2	-1.75	15	0	15	0	3	.946	3
8			min	1.818	15	-102.485	3	-35.596	1	011	3	067	1	473	2
9		5	max	37.019	1	131.85	3	1.667	10	0	15	003	12	.936	3
10			min	1.818	15	-91.736	2	-6.213	3	011	3	081	1	454	2
11		6	max	37.019	1	366.185	3	25.933	1	0	15	003	15	.763	3
12			min	1.818	15	-219.331	2	-4.039	3	011	3	074	1	346	2
13		7	max	37.019	1	600.521	3	56.698	1	0	15	002	15	.427	3
14			min	1.818	15	-346.927	2	-1.864	3	011	3	045	1	149	2
15		8	max	37.019	1	834.856	3	87.463	1	0	15	.009	2	.136	2
16			min	1.818	15	-474.523	2	.31	3	011	3	011	3	071	3
17		9	max	37.019	1	1069.191	3	118.227	1	0	15	.076	1	.51	2
18			min	1.818	15	-602.119	2	2.03	12	011	3	01	З	733	3
19		10	max	37.019	1	1303.526	3	96.485	9	.01	2	.169	1	.972	2
20			min	1.818	15	-729.714	2	-148.992	1	011	3	008	3	-1.556	3
21		11	max	37.019	1	602.119	2	-2.03	12	.011	3	.076	1	.51	2
22			min	1.818	15	-1069.191	3	-118.227	1	0	15	01	3	733	3
23		12	max	37.019	1	474.523	2	31	3	.011	3	.009	2	.136	2
24			min	1.818	15	-834.856	3	-87.463	1	0	15	011	3	071	3
25		13	max	37.019	1	346.927	2	1.864	3	.011	3	002	15	.427	3
26			min	1.818	15	-600.521	3	-56.698	1	0	15	045	1	149	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec	1 1	Axial[lb]		y Shear[lb]									
27		14	max	<u>37.019</u>	1	219.331	2	4.039	3	.011	3_	003	15	.763	3
28			min	1.818	15	-366.185	3	-25.933	1	0	15	074	1	346	2
29		15	max	37.019	1	91.736	2	6.213	3	.011	3_	003	12	.936	3
30			min	1.818	15	-131.85	3	-1.667	10	0	15	081	1	454	2
31		16	max	37.019	1_	102.485	3	35.596	1	.011	3	0	3	.946	3
32			min	1.818	15	-35.86	2	1.75	15	0	15	067	1	473	2
33		17	max	37.019	1	336.82	3	66.361	1	.011	3	.007	3	.793	3
34			min	1.818	15	-163.456	2	3.176	15	0	15	032	1	404	2
35		18	max	37.019	1	571.155	3	97.125	1	.011	3	.025	1	.478	3
36			min	1.818	15	-291.052	2	4.602	15	0	15	002	10	246	2
37		19	max	37.019	1	805.491	3	127.89	1	.011	3	.103	1	0	2
38			min	1.818	15	-418.647	2	6.028	15	0	15	.005	15	0	3
39	M14	1	max	27.25	1	524.837	2	-6.336	15	.016	3	.13	1	0	2
40			min	1.324	15	-683.757	3	-134.353	1	016	2	.006	15	0	3
41		2	max	27.25	1	397.241	2	-4.91	15	.016	3	.047	1	.413	3
42			min	1.324	15	-504.369	3	-103.589	1	016	2	0	10	32	2
43		3	max	27.25	1	269.646	2	-3.483	15	.016	3	.009	3	.701	3
44		J	min	1.324	15	-324.98	3	-72.824	1	016	2	014	1	552	2
45		4		27.25	1	142.05	2	-2.057	15	.016	3	.002	3	.864	3
		4	max												
46		-	min	1.324	15	-145.591	3	-42.059	1	016	2	054	1	<u>695</u>	2
47		5	max	27.25	1	33.797	3	1.024	10	.016	3_	002	12	.903	3
48			min	1.324	15	507	9	-11.295	1	016	2	073	1	749	2
49		6	max	27.25	1	213.186	3	19.47	1	.016	3_	003	15	.817	3
50			min	1.324	15	-113.141	2	-4.76	3	016	2	07	1	715	2
51		7	max	27.25	1	392.575	3	50.235	1	.016	3	002	15	.607	3
52			min	1.324	15	-240.737	2	-2.586	3	016	2	046	1	592	2
53		8	max	27.25	1	571.963	3	80.999	1	.016	3	.006	2	.272	3
54			min	1.324	15	-368.333	2	412	3	016	2	011	3	38	2
55		9	max	27.25	1	751.352	3	111.764	1	.016	3	.067	1	.003	9
56			min	1.324	15	-495.929	2	1.565	12	016	2	01	3	188	3
57		10	max	27.25	1	930.741	3	142.529	1	.016	2	.155	1	.308	2
58			min	1.324	15	-623.524	2	-20.723	10	016	3	008	3	772	3
59		11	max	27.25	1	495.929	2	-1.565	12	.016	2	.067	1	.003	9
60			min	1.324	15	-751.352	3	-111.764	1	016	3	01	3	188	3
61		12	max	27.25	1	368.333	2	.412	3	.016	2	.006	2	.272	3
62			min	1.324	15	-571.963	3	-80.999	1	016	3	011	3	38	2
63		13	max	27.25	1	240.737	2	2.586	3	.016	2	002	15	.607	3
64			min	1.324	15	-392.575	3	-50.235	1	016	3	046	1	592	2
65		14	max	27.25	1	113.141	2	4.76	3	.016	2	003	15	.817	3
66			min	1.324	15	-213.186	3	-19.47	1	016	3	07	1	715	2
67		15	max	27.25	1	.507	9	11.295	1	.016	2	002	12	.903	3
68		13	min	1.324	15	-33.797	3	-1.024	10	016	3	073	1	749	2
69		16	max	27.25	1	145.591	3	42.059	1	.016	2	.002	3	.864	3
70		10	min	1.324	15	-142.05	2	2.057	15	016	3	054	1	695	2
71		17		27.25	1	324.98	3	72.824	1	.016	2	.009	3	095 .701	3
72		17	max	1.324		-269.646	2	3.483	15		3		1		2
		10	min		15	504.369				016		014	_	<u>552</u>	
73		18	max	27.25	1 1 5		3	103.589	1	.016	2	.047	10	.413	3
74		40	min	1.324	15	-397.241	2	4.91	15	016	3	0	10	32	2
75		19	max	27.25	1	683.757	3	134.353	1	.016	2	.13	1	0	2
76	N44.5	4	min	1.324	15	-524.837	2	6.336	15	016	3	.006	15	0	3
77	M15	1	max	-1.39	15	741.519	2	-6.332	15	.017	2	.13	1	0	2
78			min	-28.227	1	-406.916	3	-134.415	1_	013	3	.006	15	0	3
79		2	max	<u>-1.39</u>	15	549.819	2	-4.906	15	.017	2	.047	1	.249	3
80			min	-28.227	1	-309.947	3	-103.651	1_	013	3	0	10	448	2
81		3	max	-1.39	15	358.119	2	-3.479	15	.017	2	.008	3	.43	3
82			min	-28.227	1	-212.977	3	-72.886	1	013	3	014	1	764	2
83		4	max	-1.39	15	166.419	2	-2.053	15	.017	2	.002	3	.545	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
84			min	-28.227	1	-116.008	က	-42.121	1	013	3	054	1	946	2
85		5	max	-1.39	15	045	15	.863	10	.017	2	002	12	.592	3
86			min	-28.227	1	-25.281	2	-11.357	1	013	3	073	1	995	2
87		6	max	-1.39	15	77.93	3	19.408	1	.017	2	003	15	.571	3
88			min	-28.227	1	-216.981	2	-4.23	3	013	3	07	1	911	2
89		7	max	-1.39	15	174.899	3	50.172	1	.017	2	002	15	.483	3
90			min	-28.227	1	-408.68	2	-2.055	3	013	3	046	1	693	2
91		8	max	-1.39	15	271.869	3	80.937	1	.017	2	.006	2	.328	3
92			min	-28.227	1	-600.38	2	.119	3	013	3	01	3	343	2
93		9	max	-1.39	15	368.838	3	111.702	1	.017	2	.067	1	.14	2
94			min	-28.227	1	-792.08	2	1.885	12	013	3	009	3	0	15
95		10	max	-1.39	15	465.807	3	142.466	1	.013	3	.155	1	.757	2
96			min	-28.227	1	-983.78	2	3.334	12	017	2	007	3	184	3
97		11	max	-1.39	15	792.08	2	-1.885	12	.013	3	.067	1	.14	2
98			min	-28.227	1	-368.838	3	-111.702	1	017	2	009	3	0	15
99		12	max	-1.39	15	600.38	2	119	3	.013	3	.006	2	.328	3
100		12	min	-28.227	1	-271.869	3	-80.937	1	017	2	01	3	343	2
101		13	max	-1.39	15	408.68	2	2.055	3	.013	3	002	15	.483	3
102		10	min	-28.227	1	-174.899	3	-50.172	1	017	2	046	1	693	2
103		14	max	-1.39	15	216.981	2	4.23	3	.013	3	003	15	.571	3
104		14	min	-28.227	1	-77.93	3	-19.408	1	017	2	003	1	911	2
105		15	max	-1.39	15	25.281	2	11.357	1	.013	3	002	12	.592	3
106		13		-28.227	1	.045	15	863	10	017	2	002	1	995	2
107		16	min			116.008	3	42.121	1		3	.002	3		3
		16	max	-1.39	15				_	.013				.545	
108		47	min	-28.227	1	-166.419	2	2.053	15	017	2	054	1	946	2
109		17	max	-1.39	15	212.977	3	72.886	1	.013	3	.008	3	.43	3
110		40	min	-28.227	1_	-358.119	2	3.479	15	017	2	014	1	764	2
111		18	max	-1.39	15	309.947	3	103.651	1	.013	3	.047	1	.249	3
112			min	-28.227	1	-549.819	2	4.906	15	017	2	0	10	448	2
113		19	max	-1.39	15	406.916	3	134.415	1	.013	3	.13	1	0	2
114			min	-28.227	1	-741.519	2	6.332	15	017	2	.006	15	0	3
115	M16	1	max	-2.059	15	642.574	2	-6.043	15	.003	1	.105	1	0	2
116			min	-42.288	1	-312.804	3	-128.653	1	011	3	.005	15	0	3
117		2	max	-2.059	15	450.875	2	-4.617	15	.003	1	.027	1	.184	3
118			min	-42.288	1	-215.835	3	-97.888	1	011	3	0	10	38	2
119		3	max	-2.059	15	259.175	2	-3.191	15	.003	1_	.004	3	.3	3
120			min	-42.288	1	-118.866	3	-67.124	1	011	3	03	1	626	2
121		4	max	-2.059	15	67.475	2	-1.764	15	.003	1_	001	12	.349	3
122			min	-42.288	1	-21.897	3	-36.359	1	011	3	066	1	74	2
123		5	max	<u>-2.059</u>	15	75.073	3	1.097	10	.003	1	003	12	.33	3
124			min	-42.288	1	-124.225		-5.594	1	011	3	081	1	72	2
125		6	max		15	172.042	3	25.17	1	.003	1	003	15	.244	3
126			min	-42.288	1	-315.925	2	-2.399	3	011	3	074	1	567	2
127		7	max	-2.059	15	269.011	3	55.935	1	.003	1	002	15	.091	3
128			min		1	-507.625	2	225	3	011	3	046	1	281	2
129		8	max	-2.059	15	365.98	3	86.699	1	.003	1	.007	2	.138	2
130			min	-42.288	1	-699.325	2	1.565	12	011	3	008	3	129	3
131		9	max		15	462.949	3	117.464	1	.003	1	.074	1	.69	2
132			min		1	-891.025	2	3.014	12	011	3	006	3	417	3
133		10	max	-2.059	15	612.714	10	148.229	1	.011	3	.167	1	1.375	2
134			min	-42.288	1	-1082.725	2	-20.797	10	003	1	002	3	772	3
135		11	max	-2.059	15	891.025	2	-3.014	12	.011	3	.074	1	.69	2
136				-42.288	1	-462.949		-117.464		003	1	006	3	417	3
137		12	max	-2.059	15	699.325	2	-1.565	12	.011	3	.007	2	.138	2
138			min	-42.288	1	-365.98	3	-86.699	1	003	1	008	3	129	3
139		13	max	-2.059	15	507.625	2	.225	3	.011	3	002	15	.091	3
140				-42.288	1	-269.011	3	-55.935	1	003	1	046	1	281	2
							_								

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

141		Member	Sec	T	Axial[lb]			LC		LC	Torque[k-ft]	LC			z-z Mome	LC
144			14													
144				min		_1_						_				
146			15	max		<u> 15</u>				1	.011	3		12		
146	144			min	-42.288	1	-75.073	3	-1.097	10	003	1	081	1	72	2
148	145		16	max	-2.059	15	21.897	3	36.359	1	.011	3	001	12	.349	3
148	146			min	-42.288	1	-67.475	2	1.764	15	003	1	066	1	74	2
148	147		17	max	-2.059	15	118.866	3	67.124	1	.011	3	.004	3	.3	3
149	148			min						15	003					
151			18	max		15						3	.027	1		
151										15				10		
152			19			•							_			
155																
155		M2	1													
155		IVIZ														
156			2													
157																
158			2									_				_
159			3													
160			4										_			_
161			4					_							_	
162			_			_						_	_			
163			5												_	
164																
1665			6										_		_	
166						3		15		15	0		0	15	003	
167			7	max		2	1.599		.203	1	0	3	0		0	15
168	166			min	-1579.433	3	.376	15	.01	15	0	1	0	15	004	4
169	167		8	max	1106.891	2	1.528	4	.203	1	0	3	0	1	001	15
170	168			min	-1579.036	3	.359	15	.01	15	0	1	0	15	004	4
170	169		9	max	1107.42	2	1.457	4	.203	1	0	3	0	1	001	15
171				min	-1578.639			15		15	0		0	15	005	
172			10			2			.203		0	3	0			_
173	172							15		15			0	15	006	
174			11									3	0			
175																
176			12									3				
177			12													
178			13									_				-
179 14 max 1110.067 2 1.102 4 .203 1 0 3 0 1 002 15 180 min -1576.655 3 .235 12 .01 15 0 1 0 15 007 4 181 15 max 1110.596 2 1.041 2 .203 1 0 3 .001 1 002 15 182 min -1576.258 3 .207 12 .01 15 0 1 0 15 008 4 183 16 max 1111.125 2 .986 2 .203 1 0 3 .001 1 002 15 184 min -1575.861 3 .179 12 .01 15 0 1 0 15 008 4 185 17 max 1111.654 2			13													
180			11			_						_				_
181 15 max 1110.596 2 1.041 2 .203 1 0 3 .001 1 002 15 182 min -1576.258 3 .207 12 .01 15 0 1 0 15 008 4 183 16 max 1111.125 2 .986 2 .203 1 0 3 .001 1 002 15 184 min -1575.861 3 .179 12 .01 15 0 1 0 15 008 4 185 17 max 1111.654 2 .93 2 .203 1 0 3 .001 1 002 15 186 min -1575.464 3 .152 12 .01 15 0 1 0 15 008 4 187 18 max 1112.184 2 <th< td=""><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			14					_								
182 min -1576.258 3 .207 12 .01 15 0 1 0 15 008 4 183 16 max 1111.125 2 .986 2 .203 1 0 3 .001 1 002 15 184 min -1575.861 3 .179 12 .01 15 0 1 0 15 008 4 185 17 max 1111.654 2 .93 2 .203 1 0 3 .001 1 002 15 186 min -1575.464 3 .152 12 .01 15 0 1 0 15 008 4 187 18 max 1112.184 2 .875 2 .203 1 0 3 .001 1 002 15 188 min -1575.067 3 .124 <			15										_			
183 16 max 1111.125 2 .986 2 .203 1 0 3 .001 1 002 15 184 min -1575.861 3 .179 12 .01 15 0 1 0 15 008 4 185 17 max 1111.654 2 .93 2 .203 1 0 3 .001 1 002 15 186 min -1575.464 3 .152 12 .01 15 0 1 0 15 008 4 187 18 max 1112.184 2 .875 2 .203 1 0 3 .001 1 002 15 188 min -1575.067 3 .124 12 .01 15 0 1 0 15 009 4 189 19 max 1112.713 2 .82 2 .203 1 0 3 .001 1 002 15			15													
184 min -1575.861 3 .179 12 .01 15 0 1 0 15 008 4 185 17 max 1111.654 2 .93 2 .203 1 0 3 .001 1 002 15 186 min -1575.464 3 .152 12 .01 15 0 1 0 15 008 4 187 18 max 1112.184 2 .875 2 .203 1 0 3 .001 1 002 15 188 min -1575.067 3 .124 12 .01 15 0 1 0 15 009 4 189 19 max 1112.713 2 .82 2 .203 1 0 3 .001 1 0 15 002 15 190 min -1574.67 3			40									_				
185 17 max 1111.654 2 .93 2 .203 1 0 3 .001 1 002 15 186 min -1575.464 3 .152 12 .01 15 0 1 0 15 008 4 187 18 max 1112.184 2 .875 2 .203 1 0 3 .001 1 002 15 188 min -1575.067 3 .124 12 .01 15 0 1 0 15 009 4 189 19 max 1112.713 2 .82 2 .203 1 0 3 .001 1 002 15 190 min -1574.67 3 .096 12 .01 15 0 1 0 15 009 4 191 M3 1 max 897.74 2 8.877 4 .178 1 0 5 0 1 .009 4 193 2 max 897.569 2			16													
186 min -1575.464 3 .152 12 .01 15 0 1 0 15 008 4 187 18 max 1112.184 2 .875 2 .203 1 0 3 .001 1 002 15 188 min -1575.067 3 .124 12 .01 15 0 1 0 15 009 4 189 19 max 1112.713 2 .82 2 .203 1 0 3 .001 1 002 15 190 min -1574.67 3 .096 12 .01 15 0 1 0 15 009 4 191 M3 1 max 897.74 2 8.877 4 .178 1 0 5 0 1 .009 4 192 min -1021.088 3 2.087 </td <td></td> <td></td> <td>4-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>			4-										_			
187 18 max 1112.184 2 .875 2 .203 1 0 3 .001 1 002 15 188 min -1575.067 3 .124 12 .01 15 0 1 0 15 009 4 189 19 max 1112.713 2 .82 2 .203 1 0 3 .001 1 002 15 190 min -1574.67 3 .096 12 .01 15 0 1 0 15 002 15 191 M3 1 max 897.74 2 8.877 4 .178 1 0 5 0 1 .009 4 192 min -1021.088 3 2.087 15 .009 15 0 1 0 15 .002 15 193 2 max 897.569 2			17													
188 min -1575.067 3 .124 12 .01 15 0 1 0 15 009 4 189 19 max 1112.713 2 .82 2 .203 1 0 3 .001 1 002 15 190 min -1574.67 3 .096 12 .01 15 0 1 0 15 009 4 191 M3 1 max 897.74 2 8.877 4 .178 1 0 5 0 1 .009 4 192 min -1021.088 3 2.087 15 .009 15 0 1 0 15 .002 15 193 2 max 897.569 2 8.008 4 .178 1 0 5 0 1 .005 2 194 min -1021.215 3 1.882			4.0													-
189 19 max 1112.713 2 .82 2 .203 1 0 3 .001 1 002 15 190 min -1574.67 3 .096 12 .01 15 0 1 0 15 009 4 191 M3 1 max 897.74 2 8.877 4 .178 1 0 5 0 1 .009 4 192 min -1021.088 3 2.087 15 .009 15 0 1 0 15 .002 15 193 2 max 897.569 2 8.008 4 .178 1 0 5 0 1 .005 2 194 min -1021.215 3 1.882 15 .009 15 0 1 0 15 0 12 195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678			18													
190 min -1574.67 3 .096 12 .01 15 0 1 0 15 009 4 191 M3 1 max 897.74 2 8.877 4 .178 1 0 5 0 1 .009 4 192 min -1021.088 3 2.087 15 .009 15 0 1 0 15 .002 15 193 2 max 897.569 2 8.008 4 .178 1 0 5 0 1 .005 2 194 min -1021.215 3 1.882 15 .009 15 0 1 0 15 0 12 195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678											_					_
191 M3 1 max 897.74 2 8.877 4 .178 1 0 5 0 1 .009 4 192 min -1021.088 3 2.087 15 .009 15 0 1 0 15 .002 15 193 2 max 897.569 2 8.008 4 .178 1 0 5 0 1 .005 2 194 min -1021.215 3 1.882 15 .009 15 0 1 0 15 0 12 195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678 15 .009 15 0 1 0 15 001 3			19													
192 min -1021.088 3 2.087 15 .009 15 0 1 0 15 .002 15 193 2 max 897.569 2 8.008 4 .178 1 0 5 0 1 .005 2 194 min -1021.215 3 1.882 15 .009 15 0 1 0 15 0 12 195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678 15 .009 15 0 1 0 15 001 3				min								_	0			
193 2 max 897.569 2 8.008 4 .178 1 0 5 0 1 .005 2 194 min -1021.215 3 1.882 15 .009 15 0 1 0 15 0 12 195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678 15 .009 15 0 1 0 15 001 3		M3	1	max		2					0	5	0			\perp
194 min -1021.215 3 1.882 15 .009 15 0 1 0 15 0 12 195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678 15 .009 15 0 1 0 15 001 3	192			min	-1021.088	3	2.087	15	.009	15	0		0	15	.002	
194 min -1021.215 3 1.882 15 .009 15 0 1 0 15 0 12 195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678 15 .009 15 0 1 0 15 001 3	193		2	max	897.569	2	8.008	4	.178		0	5	0		.005	2
195 3 max 897.399 2 7.139 4 .178 1 0 5 0 1 .002 2 196 min -1021.343 3 1.678 15 .009 15 0 1 0 15 001 3						3		15	.009	15		1	0	15		
196 min -1021.343 3 1.678 15 .009 15 0 1 0 15001 3			3									5			.002	
														15		
			4													

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
198			min	-1021.471	3	1.474	15	.009	15	0	1	0	15	003	3
199		5	max	897.058	2	5.401	4	.178	1	0	5	0	1	001	15
200			min	-1021.599	3	1.27	15	.009	15	0	1	0	15	004	4
201		6	max	896.888	2	4.532	4	.178	1	0	5	0	1	002	15
202			min	-1021.726	3	1.065	15	.009	15	0	1	0	15	007	4
203		7	max	896.717	2	3.663	4	.178	1	0	5	0	1	002	15
204			min	-1021.854	3	.861	15	.009	15	0	1	0	15	009	4
205		8	max	896.547	2	2.794	4	.178	1	0	5	0	1	002	15
206			min	-1021.982	3	.657	15	.009	15	0	1	0	15	01	4
207		9	max	896.377	2	1.925	4	.178	1	0	5	0	1	003	15
208			min	-1022.11	3	.453	15	.009	15	0	1	0	15	011	4
209		10	max	896.206	2	1.057	4	.178	1	0	5	0	1	003	15
210			min	-1022.237	3	.248	15	.009	15	0	1	0	15	012	4
211		11	max	896.036	2	.327	2	.178	1	0	5	0	1	003	15
212			min	-1022.365	3	138	3	.009	15	0	1	0	15	012	4
213		12	max	895.866	2	16	15	.178	1	0	5	.001	1	003	15
214			min	-1022.493	3	681	4	.009	15	0	1	0	15	012	4
215		13	max	895.695	2	364	15	.178	1	0	5	.001	1	003	15
216			min	-1022.621	3	-1.55	4	.009	15	0	1	0	15	012	4
217		14	max	895.525	2	569	15	.178	1	0	5	.001	1	003	15
218			min	-1022.748	3	-2.419	4	.009	15	0	1	0	15	011	4
219		15	max	895.355	2	773	15	.178	1	0	5	.001	1	002	15
220			min	-1022.876	3	-3.288	4	.009	15	0	1	0	15	009	4
221		16	max	895.184	2	977	15	.178	1	0	5	.001	1	002	15
222			min	-1023.004	3	-4.157	4	.009	15	0	1	0	15	008	4
223		17	max	895.014	2	-1.181	15	.178	1	0	5	.001	1	001	15
224			min	-1023.132	3	-5.026	4	.009	15	0	1	0	15	006	4
225		18	max	894.844	2	-1.386	15	.178	1	0	5	.002	1	0	15
226			min	-1023.26	3	-5.895	4	.009	15	0	1	0	15	003	4
227		19	max	894.673	2	-1.59	15	.178	1	0	5	.002	1	0	1
228			min	-1023.387	3	-6.764	4	.009	15	0	1	0	15	0	1
229	M4	1	max	862.11	1	0	1	326	15	0	1	.001	1	0	1
230			min	-33.779	3	0	1	-6.745	1	0	1	0	15	0	1
231		2	max	862.28	1	0	1	326	15	0	1	0	1	0	1
232			min	-33.651	3	0	1	-6.745	1	0	1	0	15	0	1
233		3	max	862.451	1	0	1	326	15	0	1	0	15	0	1
234			min	-33.523	3	0	1	-6.745	1	0	1	0	1	0	1
235		4	max	862.621	1	0	1	326	15	0	1	0	15	0	1
236			min	-33.396	3	0	1	-6.745	1	0	1	001	1	0	1
237		5	max	862.791	1	0	1	326	15	0	1	0	15	0	1
238			min	-33.268	3	0	1	-6.745	1	0	1	002	1	0	1
239		6	max	862.962	1	0	1	326	15	0	1	0	15	0	1
240			min	-33.14	3	0	1	-6.745	1	0	1	003	1	0	1
241		7		863.132	1	0	1	326	15	0	1	0	15	0	1
242			min	-33.012	3	0	1	-6.745	1	0	1	003	1	0	1
243		8	max	863.302	1	0	1	326	15	0	1	0	15	0	1
244			min	-32.884	3	0	1	-6.745	1	0	1	004	1	0	1
245		9	max	863.473	1	0	1	326	15	0	1	0	15	0	1
246			min		3	0	1	-6.745	1	0	1	005	1	0	1
247		10	max		1	0	1	326	15	0	1	0	15	0	1
248			min	-32.629	3	0	1	-6.745	1	0	1	006	1	0	1
249		11	max	863.813	1	0	1	326	15	0	1	0	15	0	1
250			min	-32.501	3	0	1	-6.745	1	0	1	006	1	0	1
251		12	max	863.984	1	0	1	326	15	0	1	0	15	0	1
252			min	-32.373	3	0	1	-6.745	1	0	1	007	1	0	1
253		13		864.154	1	0	1	326	15	0	1	0	15	0	1
254			min	-32.246	3	0	1	-6.745	1	0	1	008	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	864.324	1	0	1	326	15	0	1	0	15	0	1
256			min	-32.118	3	0	1	-6.745	1	0	1	009	1	0	1
257		15	max	864.495	1	0	1	326	15	0	1	0	15	0	1
258			min	-31.99	3	0	1	-6.745	1	0	1	01	1	0	1
259		16	max	864.665	1	0	1	326	15	0	1	0	15	0	1
260			min	-31.862	3	0	1	-6.745	1	0	1	01	1	0	1
261		17	max	864.835	1	0	1	326	15	0	1	0	15	0	1
262			min	-31.735	3	0	1	-6.745	1	0	1	011	1	0	1
263		18	max	865.006	1	0	1	326	15	0	1	0	15	0	1
264			min	-31.607	3	0	1	-6.745	1	0	1	012	1	0	1
265		19	max	865.176	1	0	1	326	15	0	1	0	15	0	1
266			min	-31.479	3	0	1	-6.745	1	0	1	013	1	0	1
267	M6	1	max	3177.061	2	2.29	2	0	1	0	1	0	1	0	1
268			min	-4713.517	3	.228	12	0	1	0	1	0	1	0	1
269		2	max	3177.59	2	2.235	2	0	1	0	1	0	1	0	12
270			min	-4713.12	3	.201	12	0	1	0	1	0	1	0	2
271		3	max	3178.119	2	2.179	2	0	1	0	1	0	1	0	12
272			min	-4712.723	3	.166	3	0	1	0	1	0	1	002	2
273		4	max	3178.649	2	2.124	2	0	1	0	1	0	1	0	12
274			min	-4712.326	3	.125	3	0	1	0	1	0	1	002	2
275		5		3179.178	2	2.069	2	0	1	0	1	0	1	0	3
276			min	-4711.929	3	.083	3	0	1	0	1	0	1	003	2
277		6	max	3179.707	2	2.013	2	0	1	0	1	0	1	0	3
278			min		3	.042	3	0	1	0	1	0	1	004	2
279		7		3180.237	2	1.958	2	0	1	0	1	0	1	0	3
280			min	-4711.135	3	0	3	0	1	0	1	0	1	005	2
281		8		3180.766	2	1.903	2	0	1	0	1	0	1	0	3
282			min	-4710.738	3	041	3	0	1	0	1	0	1	005	2
283		9		3181.295	2	1.847	2	0	1	0	1	0	1	0	3
284			min	-4710.341	3	083	3	0	1	0	1	0	1	006	2
285		10		3181.824	2	1.792	2	0	1	0	1	0	1	0	3
286		10	min	-4709.944	3	124	3	0	1	0	1	0	1	007	2
287		11		3182.354	2	1.737	2	0	1	0	1	0	1	0	3
288		.	min		3	166	3	0	1	0	1	0	1	007	2
289		12		3182.883	2	1.681	2	0	1	0	1	0	1	0	3
290		12	min		3	207	3	0	1	0	1	0	1	008	2
291		13		3183.412	2	1.626	2	0	1	0	1	0	1	0	3
292		15	min	-4708.753	3	249	3	0	1	0	1	0	1	008	2
293		14		3183.942	2	1.571	2	0	1	0	1	0	1	0	3
294		17	min	-4708.356	3	29	3	0	1	0	1	0	1	009	2
295		15		3184.471		1.515	2	0	1	0	1	0	1	0	3
296		10	min		3	332	3	0	1	0	1	0	1	01	2
297		16	max		2	1.46	2	0	1	0	1	0	1	0	3
298		10	min		3	373	3	0	1	0	1	0	1	01	2
299		17		3185.529	2	1.405	2	0	1	0	1	0	1	0	3
300		17	min	-4707.165	3	415	3	0	1	0	1	0	1	011	2
301		10		3186.059	2	1.349	2	0	1	0	1	0	1	0	3
302		10	min		3	456	3	0	1	0	1	0	1	011	2
		10							1		1		1		
303		19		3186.588 -4706.371	2	1.294	3	0	1	0	1	0	1	0	2
304	N /1 7	1	min		3	498 9.904		•	1	0	1	0	1	012	
305	<u>M7</u>			2731.012	2	8.894	4	0	-	0	<u> </u>	0		.012	2
306		_	min	-2886.101	3	2.089	15	0	1	0	1	0	1	0	3
307		2		2730.842	2	8.025	4	0	1	0	1	0	1	.008	2
308			min		3	1.885	15	0	1	0	1	0	1	003	3
309		3		2730.672	2	7.156	4	0	1	0	1	0	1	.005	2
310			min	-2886.357	3	1.681	15	0	1	0	1	0	1	005	3
311		4	max	2730.501	2	6.287	4	0	1	0	1	0	1	.002	2

Model Name

Schletter, Inc. HCV

.

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2886.485	3	1.476	15	0	1	0	1	0	1	006	3
313		5	max	2730.331	2	5.418	4	0	1	0	_1_	0	_1_	0	2
314			min	-2886.612	3	1.272	15	0	1	0	1	0	1	007	3
315		6	max	2730.161	2	4.549	4	0	1	0	1	0	1	002	15
316			min	-2886.74	3	1.068	15	0	1	0	1	0	1	008	3
317		7	max	2729.99	2	3.68	4	0	1	0	_1_	0	1	002	15
318			min	-2886.868	3	.864	15	0	1	0	1	0	1	009	3
319		8	max	2729.82	2	2.812	4	0	1	0	1	0	1	002	15
320			min	-2886.996	3	.66	15	0	1	0	1	0	1	01	4
321		9	max	2729.65	2	2.043	2	0	1	0	_1_	0	1	003	15
322			min	-2887.123	3	.323	12	0	1	0	1	0	1	011	4
323		10	max	2729.479	2	1.366	2	0	1	0	1	0	1	003	15
324			min	-2887.251	3	095	3	0	1	0	1	0	1	012	4
325		11	max	2729.309	2	.689	2	0	1	0	1	0	1	003	15
326			min	-2887.379	3	602	3	0	1	0	1	0	1	012	4
327		12	max	2729.139	2	.012	2	0	1	0	1	0	1	003	15
328			min	-2887.507	3	-1.11	3	0	1	0	1	0	1	012	4
329		13	max	2728.968	2	362	15	0	1	0	1	0	1	003	15
330			min	-2887.634	3	-1.618	3	0	1	0	1	0	1	012	4
331		14	max	2728.798	2	566	15	0	1	0	1	0	1	003	15
332			min	-2887.762	3	-2.402	4	0	1	0	1	0	1	011	4
333		15	max	2728.627	2	77	15	0	1	0	1	0	1	002	15
334			min	-2887.89	3	-3.271	4	0	1	0	1	0	1	009	4
335		16	max	2728.457	2	974	15	0	1	0	1	0	1	002	15
336			min	-2888.018	3	-4.14	4	0	1	0	1	0	1	008	4
337		17		2728.287	2	-1.179	15	0	1	0	1	0	1	001	15
338			min	-2888.145	3	-5.008	4	0	1	0	1	0	1	006	4
339		18		2728.116	2	-1.383	15	0	1	0	1	0	1	0	15
340		1	min	-2888.273	3	-5.877	4	0	1	0	1	0	1	003	4
341		19		2727.946	2	-1.587	15	0	1	0	1	0	1	0	1
342		1.0	min	-2888.401	3	-6.746	4	0	1	0	1	0	1	0	1
343	M8	1		2389.306	2	0	1	0	1	0	1	0	1	0	1
344	1110		min	-207.651	3	0	1	0	1	0	1	0	1	0	1
345		2		2389.477	2	0	1	0	1	0	1	0	1	0	1
346		_	min	-207.523	3	0	1	0	1	0	1	0	1	0	1
347		3		2389.647	2	0	1	0	1	0	1	0	1	0	1
348			min	-207.395	3	0	1	0	1	0	1	0	1	0	1
349		4		2389.817	2	0	1	0	1	0	1	0	1	0	1
350			min	-207.267	3	0	1	0	1	0	1	0	1	0	1
351		5		2389.988	2	0	1	0	1	0	1	0	1	0	1
352				-207.14	3	0	1	0	1	0	1	0	1	0	1
353		6		2390.158	2	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		2390.328	2	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		2390.499		0	1	0	1	0	1	0	1	0	1
358			min			0	1	0	1	0	1	0	1	0	1
359		9		2390.669	2	0	1	0	1	0	1	0	1	0	1
360		 		-206.629		0	1	0	1	0	1	0	1	0	1
361		10		2390.839	2	0	1	0	1	0	1	0	1	0	1
362		10		-206.501	3	0	1	0	1	0	1	0	1	0	1
363		11		2391.01	2	0	1	0	1	0	1	0	1	0	1
364					3	0	1	0	1	0	1	0	1	0	1
365		12	min				1		1		1	_	1		1
		12		2391.18	2	0	1	0	1	0	1	0	1	0	1
366		40	min	-206.245	3	0		0		0		0		0	_
367		13		2391.35	2	0	1	0	1	0	1	0	1	0	1
368			min	-206.118	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:___

000	Member	Sec	1	Axial[lb]						Torque[k-ft]	LC	J* *	LC		LC
369		14		2391.521	2	0	1_	0	1	0	1_4	0	1	0	1
370		4.5	min	-205.99	3	0	1_	0	1_	0	1_	0	1	0	1
371		15		2391.691	2	0	1	0	<u>1</u> 1	0	<u>1</u> 1	0	1	0	1
372		4.0		-205.862	3	0		0	1	0		0	1	0	1
373		16		2391.861	2	0	1	0	1	0	<u>1</u> 1	0	1	0	1
374		17		-205.734	3	0		0		0	_	0	1	0	1
375		17		2392.032	2	0	1	0	1	0	1	0		0	-
376		40	min	-205.607	3	0	1_	0	1_	0	1_	0	1	0	1
377		18		2392.202	2	0	1	0	1_	0	1	0	1	0	1
378		40	min	-205.479	3	0	1_	0	1_	0	1_	0	1_	0	1
379		19		2392.372	2	0	1	0	1	0	1	0	1	0	1
380			min	-205.351	3	0	1	0	1_	0	1	0	1	0	1
381	M10	1		1103.186	2	2.025	4	01	<u>15</u>	0	1	0	2	0	1
382			min	-1581.815	3	.476	15	203	1_	0	3	0	3	0	1
383		2		1103.715	2	1.954	4	01	<u>15</u>	0	1	0	10	0	15
384			min		3	.459	15	203	_1_	0	3	0	1_	0	4
385		3		1104.244	2	1.883	4	01	15	0	1	0	10	0	15
386			min	-1581.021	3	.443	15	203	<u>1</u>	0	3	0	1	001	4
387		4		1104.774	2	1.812	4	01	15	0	1	0	15	0	15
388			min	-1580.624	3	.426	15	203	1_	0	3	0	1	002	4
389		5	max	1105.303	2	1.741	4	01	15	0	_1_	0	15	0	15
390			min	-1580.227	3	.409	15	203	1_	0	3	0	1	003	4
391		6		1105.832	2	1.67	4	01	15	0	_1_	0	15	0	15
392			min	-1579.83	3	.393	15	203	1	0	3	0	1	003	4
393		7	max	1106.362	2	1.599	4	01	15	0	1	0	15	0	15
394			min	-1579.433	3	.376	15	203	1	0	3	0	1	004	4
395		8	max	1106.891	2	1.528	4	01	15	0	1	0	15	001	15
396			min	-1579.036	3	.359	15	203	1	0	3	0	1	004	4
397		9	max	1107.42	2	1.457	4	01	15	0	1	0	15	001	15
398			min	-1578.639	3	.343	15	203	1	0	3	0	1	005	4
399		10	max	1107.949	2	1.386	4	01	15	0	1	0	15	001	15
400			min	-1578.242	3	.326	15	203	1	0	3	0	1	006	4
401		11	max	1108.479	2	1.315	4	01	15	0	1	0	15	001	15
402				-1577.845	3	.309	15	203	1	0	3	0	1	006	4
403		12		1109.008	2	1.244	4	01	15	0	1	0	15	002	15
404			min		3	.29	12	203	1	0	3	0	1	006	4
405		13		1109.537	2	1.173	4	01	15	0	1	0	15	002	15
406				-1577.052	3	.262	12	203	1	0	3	0	1	007	4
407		14		1110.067	2	1.102	4	01	15	0	1	0	15	002	15
408				-1576.655	3	.235	12	203	1	0	3	0	1	007	4
409		15		1110.596	2	1.041	2	01	15	0	1	0	15	002	15
410			min	-1576.258	3	.207	12	203	1	0	3	001	1	008	4
411		16		1111.125	2	.986	2	01	15	0	1	0	15	002	15
412		10		-1575.861	3	.179	12	203	1	0	3	001	1	002	4
413		17		1111.654	2	.93	2	203	15	0	<u> </u>	0	15	002	15
414		17		-1575.464	3	.152	12	203	1	0	3	001	1	002	4
415		18		1112.184	2	.875	2	203 01	15	0	1	0	15	002	15
416		10		-1575.067	3	.124	12	203	1	0	3	001	1	002	4
417		10		1112.713		.82	2	203 01	15	0	<u>ာ</u> 1	0	15	009	_
		19			2						3				15
418	N/4.4	4		-1574.67	3	.096	12	203	1_	0		001	15	009	4
419	<u>M11</u>	1	max	897.74	2	8.877	4 1E	009	<u>15</u>	0	1	0	15	.009	4
420		_	min	-1021.088	3	2.087	15	178	1_	0	5	0	1_	.002	15
421		2	max		2	8.008	4	009	<u>15</u>	0	1_	0	15	.005	2
422				-1021.215	3	1.882	15	178	1_	0	5	0	1_	0	12
423		3	max		2	7.139	4	009	<u>15</u>	0	1_	0	15	.002	2
424			min	-1021.343	3	1.678	15	178	1_	0	5	0	1_	001	3
425		4	max	897.229	2	6.27	4	009	15	0	_1_	0	15	0	2

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
426			min	-1021.471	3	1.474	15	178	1	0	5	0	1	003	3
427		5	max	897.058	2	5.401	4	009	15	0	1	0	15	001	15
428			min	-1021.599	3	1.27	15	178	1	0	5	0	1	004	4
429		6	max	896.888	2	4.532	4	009	15	0	1	0	15	002	15
430			min	-1021.726	3	1.065	15	178	1	0	5	0	1	007	4
431		7	max	896.717	2	3.663	4	009	15	0	1	0	15	002	15
432			min	-1021.854	3	.861	15	178	1	0	5	0	1	009	4
433		8	max	896.547	2	2.794	4	009	15	0	1	0	15	002	15
434			min	-1021.982	3	.657	15	178	1	0	5	0	1	01	4
435		9	max	896.377	2	1.925	4	009	15	0	1	0	15	003	15
436			min	-1022.11	3	.453	15	178	1	0	5	0	1	011	4
437		10	max	896.206	2	1.057	4	009	15	0	1	0	15	003	15
438			min	-1022.237	3	.248	15	178	1	0	5	0	1	012	4
439		11	max	896.036	2	.327	2	009	15	0	1	0	15	003	15
440			min	-1022.365	3	138	3	178	1	0	5	0	1	012	4
441		12	max	895.866	2	16	15	009	15	0	1	0	15	003	15
442			min	-1022.493	3	681	4	178	1	0	5	001	1	012	4
443		13	max	895.695	2	364	15	009	15	0	1	0	15	003	15
444			min	-1022.621	3	-1.55	4	178	1	0	5	001	1	012	4
445		14	max	895.525	2	569	15	009	15	0	1	0	15	003	15
446			min	-1022.748	3	-2.419	4	178	1	0	5	001	1	011	4
447		15	max	895.355	2	773	15	009	15	0	1	0	15	002	15
448			min	-1022.876	3	-3.288	4	178	1	0	5	001	1	009	4
449		16	max	895.184	2	977	15	009	15	0	1	0	15	002	15
450			min	-1023.004	3	-4.157	4	178	1	0	5	001	1	008	4
451		17	max	895.014	2	-1.181	15	009	15	0	1	0	15	001	15
452			min	-1023.132	3	-5.026	4	178	1	0	5	001	1	006	4
453		18	max	894.844	2	-1.386	15	009	15	0	1	0	15	0	15
454			min	-1023.26	3	-5.895	4	178	1	0	5	002	1	003	4
455		19	max	894.673	2	-1.59	15	009	15	0	1	0	15	0	1
456			min	-1023.387	3	-6.764	4	178	1	0	5	002	1	0	1
457	M12	1	max	862.11	1	0	1	6.745	1	0	1	0	15	0	1
458			min	-33.779	3	0	1	.326	15	0	1	001	1	0	1
459		2	max	862.28	1	0	1	6.745	1	0	1	0	15	0	1
460			min	-33.651	3	0	1	.326	15	0	1	0	1	0	1
461		3	max	862.451	1	0	1	6.745	1	0	1	0	1	0	1
462			min	-33.523	3	0	1	.326	15	0	1	0	15	0	1
463		4	max	862.621	1	0	1	6.745	1	0	1	.001	1	0	1
464			min	-33.396	3	0	1	.326	15	0	1	0	15	0	1
465		5	max	862.791	1	0	1	6.745	1	0	1	.002	1	0	1
466			min	-33.268	3	0	1	.326	15	0	1	0	15	0	1
467		6	max	862.962	1	0	1	6.745	1	0	1	.003	1	0	1
468			min	-33.14	3	0	1	.326	15	0	1	0	15	0	1
469		7	max	863.132	1	0	1	6.745	1	0	1	.003	1	0	1
470			min	-33.012	3	0	1	.326	15	0	1	0	15	0	1
471		8		863.302	1	0	1	6.745	1	0	1	.004	1	0	1
472			min	-32.884	3	0	1	.326	15	0	1	0	15	0	1
473		9	max	863.473	1	0	1	6.745	1	0	1	.005	1	0	1
474			min		3	0	1	.326	15	0	1	0	15	0	1
475		10	max		1	0	1	6.745	1	0	1	.006	1	0	1
476			min	-32.629	3	0	1	.326	15	0	1	0	15	0	1
477		11		863.813	1	0	1	6.745	1	0	1	.006	1	0	1
478			min	-32.501	3	0	1	.326	15	0	1	0	15	0	1
479		12	max	863.984	1	0	1	6.745	1	0	1	.007	1	0	1
480			min	-32.373	3	0	1	.326	15	0	1	0	15	0	1
481		13		864.154	1	0	1	6.745	1	0	1	.008	1	0	1
482			min	-32.246	3	0	1	.326	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

402	Member	Sec	m 014	Axial[lb]			LC 1			Torque[k-ft]	LC 1			_	LC 1
483 484		14	max	864.324 -32.118	3	0	1	6.745 .326	15	0	1	.009	1 15	0	1
485		15	max	864.495	1	0	1	6.745	1	0	1	.01	1	0	1
486		13	min	-31.99	3	0	1	.326	15	0	1	0	15	0	1
487		16	max	864.665	<u> </u>	0	1	6.745	1	0	1	.01	1	0	1
488		10	min	-31.862	3	0	1	.326	15	0	1	0	15	0	1
489		17	max	864.835	1	0	1	6.745	1	0	1	.011	1	0	1
490		17	min	-31.735	3	0	1	.326	15	0	1	.011	15	0	1
491		18		865.006	1	0	1	6.745	1	0	1	.012	1	0	1
491		10	max		3		1		15	-	1		15	0	1
		10	min	-31.607		0	1	.326		0	1	0			1
493		19	max	865.176	1	0		6.745	1	0	1	.013	1	0	1
494	N./.4	4	min	-31.479	3	0	1	.326	15	0		0	15	0	_
495	M1	1	max	127.894	1	805.375	3	-1.818	15	0	2	.103	1_	0	15
496			min	6.028	15	-417.806	2	-36.975	1_	0	3	.005	15	011	3
497		2	max	128.737	1	804.28	3	-1.818	15	0	2	.08	1_	.25	2
498			min	6.283	15	-419.265	2	-36.975	1_	0	3	.004	15	51	3
499		3	max	660.743	3	580.087	2	-1.808	15	0	3	.057	1_	.499	2
500			min	-395.961	2	-649.32	3	-36.843	1_	0	2	.003	15	993	3
501		4	max	661.375	3	578.628	2	-1.808	15	0	3	.034	1	.14	2
502		_	min	-395.118	2	-650.414	3	-36.843	1_	0	2	.002	15	59	3
503		5	max	662.006	3	577.169	2	-1.808	15	0	3	.011	1	005	15
504			min	-394.276	2	-651.509	3	-36.843	1_	0	2	0	15	219	2
505		6	max	662.638	3	575.71	2	-1.808	15	0	3	0	15	.219	3
506			min	-393.434	2	-652.603	3	-36.843	1	0	2	012	1_	577	2
507		7	max	663.27	3	574.251	2	-1.808	15	0	3	002	15	.624	3
508			min	-392.591	2	-653.697	3	-36.843	1	0	2	034	1	933	2
509		8	max	663.902	3	572.792	2	-1.808	15	0	3	003	15	1.03	3
510			min	-391.749	2	-654.792	3	-36.843	1	0	2	057	1	-1.289	2
511		9	max	680.165	3	53.174	2	-3.132	15	0	9	.039	1	1.195	3
512			min	-338.38	2	.445	15	-64.123	1	0	3	.002	15	-1.468	2
513		10	max	680.796	3	51.715	2	-3.132	15	0	9	0	10	1.174	3
514			min	-337.538	2	.005	15	-64.123	1	0	3	0	1_	-1.501	2
515		11	max	681.428	3	50.256	2	-3.132	15	0	9	002	15	1.152	3
516			min	-336.695	2	-1.793	4	-64.123	1	0	3	04	1	-1.532	2
517		12	max	697.163	3	448.536	3	-1.742	15	0	2	.057	1	1.015	3
518			min	-283.078	2	-688.095	2	-35.9	1	0	3	.003	15	-1.362	2
519		13	max	697.795	3	447.441	3	-1.742	15	0	2	.034	1	.737	3
520			min	-282.236	2	-689.554	2	-35.9	1	0	3	.002	15	935	2
521		14	max	698.427	3	446.347	3	-1.742	15	0	2	.012	1	.46	3
522			min	-281.393	2	-691.013	2	-35.9	1	0	3	0	15	507	2
523		15		699.059	3	445.253	3	-1.742	15	0	2	0	15	.183	3
524			min	-280.551	2	-692.472	2	-35.9	1	0	3	01	1	086	1
525		16	max	699.691	3	444.158	3	-1.742	15	0	2	002	15	.353	2
526			min	-279.709	2	-693.931	2	-35.9	1	0	3	033	1	093	3
527		17	max	700.322	3	443.064	3	-1.742	15	0	2	003	15	.784	2
528			min	-278.866	2	-695.39	2	-35.9	1	0	3	055	1	368	3
529		18	max	-6.297	15	644.783	2	-2.059	15	0	3	004	15	.398	2
530			min	-129.492	1	-311.881	3	-42.33	1	0	2	079	1	183	3
531		19	max		15	643.324	2	-2.059	15	0	3	005	15	.011	3
532				-128.649	1	-312.975	3	-42.33	1	0	2	105	1	003	1
533	M5	1	max		1	2607.042	3	0	1	0	1	0	1	.022	3
534			min	6.961	12	-1456.254	2	0	1	0	1	0	1	0	15
535		2	max		1	2605.948	3	0	1	0	1	0	1	.924	2
536			min		12	-1457.713	2	0	1	0	1	0	1	-1.596	3
537		3		1927.206	3	1403.632	2	0	1	0	1	0	1	1.798	2
538		Ĭ		-1160.048	2	-1747.273	3	0	1	Ö	1	0	1	-3.165	3
539		4		1927.838	3	1402.173		0	1	0	1	0	1	.928	2
										-					

: Schletter, Inc. : HCV

Job Number : Standard

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
540			min	-1159.206	2	-1748.367	3	0	1	0	1	0	1	-2.08	3
541		5	max	1928.47	3	1400.714	2	0	1	0	1	0	1	.082	1
542			min	-1158.363	2	-1749.462	3	0	1	0	1	0	1	995	3
543		6	max	1929.102	3	1399.255	2	0	1	0	1	0	1	.091	3
544			min	-1157.521	2	-1750.556	3	0	1	0	1	0	1	811	2
545		7	max	1929.733	3	1397.796	2	0	1	0	1	0	1	1.178	3
546			min	-1156.679	2	-1751.65	3	0	1	0	1	0	1	-1.679	2
547		8	max	1930.365	3	1396.337	2	0	1	0	1	0	1	2.265	3
548			min	-1155.836	2	-1752.745	3	0	1	0	1	0	1	-2.546	2
549		9	max	1938.874	3	183.764	2	0	1	0	1	0	1	2.613	3
550			min	-1028.487	2	.437	15	0	1	0	1	0	1	-2.929	2
551		10	max	1939.506	3	182.304	2	0	1	0	1	0	1	2.52	3
552			min	-1027.644	2	003	15	0	1	0	1	0	1	-3.043	2
553		11	max	1940.138	3	180.845	2	0	1	0	1	0	1	2.426	3
554			min	-1026.802	2	-1.75	4	0	1	0	1	0	1	-3.156	2
555		12	max	1949.703	3	1131.189	3	0	1	0	1	0	1	2.116	3
556			min	-899.949	2	-1759.697	2	0	1	0	1	0	1	-2.819	2
557		13	max	1950.334	3	1130.094	3	0	1	0	1	0	1	1.414	3
558			min	-899.107	2	-1761.156	2	0	1	0	1	0	1	-1.727	2
559		14	max	1950.966	3	1129	3	0	1	0	1	0	1	.713	3
560			min	-898.264	2	-1762.615	2	0	1	0	1	0	1	633	2
561		15	max	1951.598	3	1127.906	3	0	1	0	1	0	1	.461	2
562			min	-897.422	2	-1764.074	2	0	1	0	1	0	1	002	12
563		16	max	1952.23	3	1126.811	3	0	1	0	1	0	1	1.556	2
564			min	-896.579	2	-1765.534	2	0	1	0	1	0	1	687	3
565		17	max	1952.861	3	1125.717	3	0	1	0	1	0	1	2.653	2
566			min	-895.737	2	-1766.993	2	0	1	0	1	0	1	-1.386	3
567		18	max	-9.348	12	2169.2	2	0	1	0	1	0	1	1.349	2
568			min	-297.307	1	-1119.03	3	0	1	0	1	0	1	716	3
569		19	max	-8.926	12	2167.741	2	0	1	0	1	0	1	.006	1
570			min	-296.465	1	-1120.124	3	0	1	0	1	0	1	021	3
571	M9	1	max	127.894	1	805.375	3	36.975	1	0	3	005	15	0	15
572			min	6.028	15	-417.806	2	1.818	15	0	2	103	1	011	3
573		2	max	128.737	1	804.28	3	36.975	1	0	3	004	15	.25	2
574			min	6.283	15	-419.265	2	1.818	15	0	2	08	1	51	3
575		3	max	660.743	3	580.087	2	36.843	1	0	2	003	15	.499	2
576			min	-395.961	2	-649.32	3	1.808	15	0	3	057	1	993	3
577		4	max	661.375	3	578.628	2	36.843	1	0	2	002	15	.14	2
578			min	-395.118	2	-650.414	3	1.808	15	0	3	034	1	59	3
579		5	max	662.006	3	577.169	2	36.843	1	0	2	0	15	005	15
580						-651.509			15	0	3	011	1		2
581		6	max	662.638	3	575.71	2	36.843	1_	0	2	.012	1	.219	3
582			min		2	-652.603		1.808	15	0	3	0	15	577	2
583		7	max	663.27	3	574.251	2	36.843	1	0	2	.034	1	.624	3
584			min	-392.591	2	-653.697	3	1.808	15	0	3	.002	15	933	2
585		8		663.902	3	572.792	2	36.843	1	0	2	.057	1	1.03	3
586			min	-391.749	2	-654.792	3	1.808	15	0	3	.003	15	-1.289	2
587		9		680.165	3	53.174	2	64.123	1	0	3	002	15	1.195	3
588			min	-338.38	2	.445	15	3.132	15	0	9	039	1	-1.468	2
589		10	max		3	51.715	2	64.123	1	0	3	0	1	1.174	3
590					2	.005	15	3.132	15	0	9	0	10	-1.501	2
591		11		681.428	3	50.256	2	64.123	1	0	3	.04	1	1.152	3
592					2	-1.793	4	3.132	15	0	9	.002	15	-1.532	2
593		12	max	697.163	3	448.536	3	35.9	1	0	3	003	15	1.015	3
594			min	-283.078	2	-688.095	2	1.742	15	0	2	057	1	-1.362	2
595		13		697.795	3	447.441	3	35.9	1	0	3	002	15	.737	3
596			min	-282.236	2	-689.554	2	1.742	15	0	2	034	1	935	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	698.427	3	446.347	3	35.9	1	0	3	0	15	.46	3
598			min	-281.393	2	-691.013	2	1.742	15	0	2	012	1	507	2
599		15	max	699.059	3	445.253	3	35.9	1	0	3	.01	1	.183	3
600			min	-280.551	2	-692.472	2	1.742	15	0	2	0	15	086	1
601		16	max	699.691	3	444.158	3	35.9	1	0	3	.033	1	.353	2
602			min	-279.709	2	-693.931	2	1.742	15	0	2	.002	15	093	3
603		17	max	700.322	3	443.064	3	35.9	1	0	3	.055	1	.784	2
604			min	-278.866	2	-695.39	2	1.742	15	0	2	.003	15	368	3
605		18	max	-6.297	15	644.783	2	42.33	1	0	2	.079	1	.398	2
606			min	-129.492	1	-311.881	3	2.059	15	0	3	.004	15	183	3
607		19	max	-6.043	15	643.324	2	42.33	1	0	2	.105	1	.011	3
608			min	-128.649	1	-312.975	3	2.059	15	0	3	.005	15	003	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.235	2	.013	3 1.624e-2	2	NC	1_	NC	1
2			min	0	15	082	3	008	2 -5.663e-3	3	NC	1	NC	1
3		2	max	0	1	.198	2	.015	3 1.686e-2	2	NC	4	NC	1
4			min	0	15	.004	15	006	2 -4.991e-3	3	1407.677	3	NC	1
5		3	max	0	1	.171	2	.018	3 1.748e-2	2	NC	4	NC	2
6			min	0	15	.004	15	004	10 -4.32e-3	3	767.878	3	7775.076	1
7		4	max	0	1	.172	3	.026	1 1.809e-2	2	NC	4	NC	2
8			min	0	15	.003	15	005	10 -3.649e-3	3	589.878	3	5427.248	1
9		5	max	0	1	.196	3	.029	1 1.871e-2	2	NC	4	NC	2
10			min	0	15	.003	15	006	10 -2.977e-3	3	540.423	3	4848.071	1
11		6	max	0	1	.187	2	.029	3 1.932e-2	2	NC	4	NC	2
12			min	0	15	.004	15	007	10 -2.306e-3	3	564.876	3	5334.57	1
13		7	max	0	1	.222	2	.032	3 1.994e-2	2	NC	2	NC	2
14			min	0	15	.004	15	01	2 -1.634e-3	3	667.077	3	7600.032	1
15		8	max	0	1	.264	2	.034	3 2.055e-2	2	NC	4	NC	1
16			min	0	15	.005	15	017	2 -9.63e-4	3	890.97	3	6997.863	3
17		9	max	0	1	.299	2	.035	3 2.117e-2	2	NC	4	NC	1
18			min	0	15	.006	15	023	2 -2.916e-4	3	1303.209	3	6647.928	3
19		10	max	0	1	.315	2	.036	3 2.179e-2	2	NC	4	NC	1
20			min	0	1	.006	15	025	2 3.798e-4	3	1659.353	3	6547.475	3
21		11	max	0	15	.299	2	.035	3 2.117e-2	2	NC	4	NC	1
22			min	0	1	.006	15	023	2 -2.916e-4	3	1303.209	3	6647.928	3
23		12	max	0	15	.264	2	.034	3 2.055e-2	2	NC	4	NC	1
24			min	0	1	.005	15	017	2 -9.63e-4	3	890.97	3	6997.863	3
25		13	max	0	15	.222	2	.032	3 1.994e-2	2	NC	2	NC	2
26			min	0	1	.004	15	01	2 -1.634e-3	3	667.077	3	7600.032	1
27		14	max	0	15	.187	2	.029	3 1.932e-2	2	NC	4	NC	2
28			min	0	1	.004	15	007	10 -2.306e-3	3	564.876	3	5334.57	1
29		15	max	0	15	.196	3	.029	1 1.871e-2	2	NC	4	NC	2
30			min	0	1	.003	15	006	10 -2.977e-3	3	540.423	3	4848.071	1
31		16	max	0	15	.172	3	.026	1 1.809e-2	2	NC	4	NC	2
32			min	0	1	.003	15	005	10 -3.649e-3	3	589.878	3	5427.248	1
33		17	max	0	15	.171	2	.018	3 1.748e-2	2	NC	4	NC	2
34			min	0	1	.004	15	004	10 -4.32e-3	3	767.878	3	7775.076	1
35		18	max	0	15	.198	2	.015	3 1.686e-2	2	NC	4	NC	1
36			min	0	1	.004	15	006	2 -4.991e-3	3	1407.677	3	NC	1
37		19	max	0	15	.235	2	.013	3 1.624e-2	2	NC	1	NC	1
38			min	0	1	082	3	008	2 -5.663e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.511	3	.011	3 8.711e-3	2	NC	1	NC	1
40			min	0	15	687	2	007	2 -7.483e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
41		2	max	0	1	.664	3	.012	3	9.702e-3	2	NC	5	NC	1
42			min	0	15	838	2	006	2	-8.444e-3	3	976.217	3	NC	1
43		3	max	0	1	.803	3	.015	3	1.069e-2	2	NC	5	NC	1
44			min	0	15	976	2	004	10	-9.406e-3	3	513.842	3	NC	1
45		4	max	0	1	.915	3	.02	1	1.168e-2	2	NC	5	NC	2
46			min	0	15	-1.094	2	004	10	-1.037e-2	3	368.469	2	6836.74	1
47		5	max	0	1	.994	3	.024	1	1.267e-2	2	NC	5	NC	2
48			min	0	15	-1.186	2	005	10	-1.133e-2	3	300.838	2	5806.964	1
49		6	max	0	1	1.039	3	.025	3	1.367e-2	2	NC	5	NC	2
50			min	0	15	-1.249	2	007	10	-1.229e-2	3	267.026	2	6181.164	1
51		7	max	0	1	1.053	3	.028	3	1.466e-2	2	NC	15	NC	2
52			min	0	15	-1.285	2	009	2	-1.325e-2	3	250.916	2	8587.519	
53		8	max	0	1	1.044	3	.03	3	1.565e-2	2	NC	15	NC	1
54			min	0	15	-1.299	2	015	2	-1.421e-2	3	245.296	2	8020.151	3
55		9	max	0	1	1.026	3	.031	3	1.664e-2	2	NC	15	NC	1
56		3	min	0	15	-1.298	2	021	2	-1.517e-2	3	245.528	2	7552.448	-
57		10	max	0	1	1.015	3	.031	3	1.763e-2	2	NC	15	NC	1
58		10		0	1	-1.295	2	023	2	-1.613e-2		246.888		7415.953	
		4.4	min								3		2		
59		11	max	0	15	1.026	3	.031	3	1.664e-2	2	NC 245 520	15	NC 7550 440	1
60		40	min	0	-	-1.298	2	021	2	-1.517e-2	3	245.528	2	7552.448	3
61		12	max	0	15	1.044	3	.03	3	1.565e-2	2	NC 045,000	15	NC 0000 454	1
62		10	min	0	1	-1.299	2	015	2	-1.421e-2	3	245.296	2	8020.151	3
63		13	max	0	15	1.053	3	.028	3	1.466e-2	2	NC	15	NC	2
64			min	0	1	-1.285	2	009	2	-1.325e-2	3	250.916	2	8587.519	
65		14	max	0	15	1.039	3	.025	3	1.367e-2	2	NC	5	NC	2
66			min	0	1	-1.249	2	007	10	-1.229e-2	3	267.026	2	6181.164	1
67		15	max	0	15	.994	3	.024	1	1.267e-2	2	NC	5	NC	2
68			min	0	1	-1.186	2	005	10	-1.133e-2	3	300.838	2	5806.964	1
69		16	max	0	15	.915	3	.02	1	1.168e-2	2	NC	5	NC	2
70			min	0	1	-1.094	2	004	10	-1.037e-2	3	368.469	2	6836.74	1
71		17	max	0	15	.803	3	.015	3	1.069e-2	2	NC	5	NC	1
72			min	0	1	976	2	004	10	-9.406e-3	3	513.842	3	NC	1
73		18	max	0	15	.664	3	.012	3	9.702e-3	2	NC	5	NC	1
74			min	0	1	838	2	006	2	-8.444e-3	3	976.217	3	NC	1
75		19	max	0	15	.511	3	.011	3	8.711e-3	2	NC	1	NC	1
76			min	0	1	687	2	007	2	-7.483e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.521	3	.01	3	6.445e-3	3	NC	1	NC	1
78	IWITO		min	0	1	685	2	007	2	-9.089e-3	2	NC	1	NC	1
79		2	max	0	15	.645	3	.012	3	7.259e-3	3	NC	5	NC	1
80			min	0	1	861	2	005	2	-1.013e-2	2	853.079	2	NC	1
81		3	max	0	15	.758	3	.014	3	8.072e-3	3	NC	5	NC	1
82		3	min	0	1	-1.02	2	004	10	-1.117e-2	2	447.851	2	NC	1
		4		<u> </u>	15	.856	3	.021	1	8.885e-3	3	NC	5	NC NC	2
83		4	max	0	1	-1.151	2			-1.222e-2		322.419		6776.355	
84		E	min		-			004			2		2		
85		5	max	0	15	.933	3	.025	1	9.698e-3	3	NC	5	NC 5749 576	2
86			min	0	1	-1.245	2	005		-1.326e-2	2	267.97	2	5748.576	
87		6	max	0	15	.987	3	.023	3	1.051e-2	3	NC 040,040	5	NC coop Foc	2
88			min	0	1	-1.302	2	006	10	-1.43e-2	2	243.249	2	6099.596	
89		7	max	0	15	1.02	3	.026	3	1.132e-2	3	NC OCA 7	15	NC 0.405.000	2
90			min	0	1	-1.324	2	008	2	-1.535e-2	2	234.7		8405.302	1
91		8	max	0	15	1.035	3	.028	3	1.214e-2	3	NC	15	NC	1
92			min	0	1	-1.321	2	014	2	-1.639e-2	2	236.049	2	8651.498	3
93		9	max	0	15	1.037	3	.029	3	1.295e-2	3	NC	15	NC	1
94			min	0	1	-1.304	2	019	2	-1.743e-2	2	242.284	2	8177.61	3
95		10	max	0	1	1.035	3	.029	3	1.376e-2	3	NC	5	NC	1
96			min	0	1	-1.294	2	022	2	-1.847e-2	2	246.486	2	8042.794	3
97		11	max	0	1	1.037	3	.029	3	1.295e-2	3	NC	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

99		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
100	98			min		15	-1.304	2	019	2 -1.743e-2	2	242.284	2	8177.61	3
101			12												1_
102					· ·										
103			13												2
104			4.4												1
105			14		_										2
106			4.5		_										
107			15		_	_									2
108			16												
17 max			10			_				1 8.8856-3					1
110			17												1
111			17												1
112			1Ω		· ·										1
113			10							2 -1 0130-2					1
114			19												1
115 M16			10		_										1
116		M16	1		_										1
117		WITO	Ė												1
118			2										4		1
119										2 -1.379e-2					1
120			3			15							4		2
121 4 max 0 15 .065 1 .027 1 1.462e-2 3 NC 4 NC 122 min 0 1 146 3 003 10 -1.398e-2 2 955.067 2 5352.834 123 5 max 0 15 .064 1 .03 1 1.528e-2 3 NC 4 NC 124 min 0 1 155 3 003 10 -1.408e-2 2 930.902 2 4738.999 125 6 max 0 15 .082 1 .028 1 .1408e-2 2 930.902 2 4738.999 125 6 max 0 15 .082 1 .028 1 .1479e-2 2 1086.291 2 5138.659 127 7 max 0 15 .116 1 .023 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>10 -1.388e-2</td><td></td><td></td><td>2</td><td></td><td>1</td></td<>								3		10 -1.388e-2			2		1
122 min 0 1 146 3 003 10 -1.398e-2 2 955.067 2 5352.834 123 5 max 0 15 .064 1 .03 1 1.528e-2 3 NC 4 NC 124 min 0 1 155 3 003 10 -1.408e-2 2 930.902 2 4738.999 125 6 max 0 15 .082 1 .028 1 1.593e-2 3 NC 3 NC 126 min 0 1 177 3 005 10 -1.417e-2 2 1086.291 2 5138.659 127 7 max 0 15 .116 1 .023 3 1.659e-2 3 NC 4 NC 128 min 0 1 207 3 007 10 -1.427e-2 2 <	121		4	max	0	15	.065	1	.027	1 1.462e-2	3	NC	4	NC	2
124 min 0 1 155 3 003 10 -1.408e-2 2 930.902 2 4738.999 125 6 max 0 15 .082 1 .028 1 1.593e-2 3 NC 3 NC 126 min 0 1 177 3 005 10 -1.417e-2 2 1086.291 2 5138.659 127 7 max 0 15 .116 1 .023 3 1.659e-2 3 NC 4 NC 128 min 0 1 207 3 007 10 -1.427e-2 2 1599.874 2 7088.876 129 8 max 0 15 .17 2 .024 3 1.724e-2 3 NC 1 NC 130 min 0 1 241 3 012 2 -1.437e-2 2 <	122			min	0	1	146	3	003		2	955.067	2	5352.834	1
125 6 max 0 15 .082 1 .028 1 1.593e-2 3 NC 3 NC 126 min 0 1 177 3 005 10 -1.417e-2 2 1086.291 2 5138.659 127 7 max 0 15 .116 1 .023 3 1.659e-2 3 NC 4 NC 128 min 0 1 207 3 007 10 -1.427e-2 2 1599.874 2 7088.876 129 8 max 0 15 .17 2 .024 3 1.724e-2 3 NC 1 NC 130 min 0 1 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 131 9 max 0 1 27 3 017 2 -1.447e-2 <t< td=""><td>123</td><td></td><td>5</td><td>max</td><td>0</td><td>15</td><td>.064</td><td>1</td><td>.03</td><td></td><td>3</td><td>NC</td><td>4</td><td>NC</td><td>2</td></t<>	123		5	max	0	15	.064	1	.03		3	NC	4	NC	2
126 min 0 1 177 3 005 10 -1.417e-2 2 1086.291 2 5138.659 127 7 max 0 15 .116 1 .023 3 1.659e-2 3 NC 4 NC 128 min 0 1 207 3 007 10 -1.427e-2 2 1599.874 2 7088.876 129 8 max 0 15 .17 2 .024 3 1.724e-2 2 1599.874 2 7088.876 129 8 max 0 15 .17 2 .024 3 1.724e-2 3 NC 1 NC 130 min 0 1 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 131 9 max 0 1 .241 2 .025 3 1.855e-2	124			min	0	1	155	3	003		2	930.902	2	4738.999	1
127 7 max 0 15 .116 1 .023 3 1.659e-2 3 NC 4 NC 128 min 0 1 207 3 007 10 -1.427e-2 2 1599.874 2 7088.876 129 8 max 0 15 .17 2 .024 3 1.724e-2 2 1599.874 2 7088.876 129 8 max 0 15 .17 2 .024 3 1.724e-2 3 NC 1 NC 130 min 0 1 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 131 9 max 0 1 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 133 10 max 0 1 .241 2 .025 3 <			6	max	0	15	.082	_	.028	1 1.593e-2	3		3		2
128 min 0 1 207 3 007 10 -1.427e-2 2 1599.874 2 7088.876 129 8 max 0 15 .17 2 .024 3 1.724e-2 3 NC 1 NC 130 min 0 1 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 131 9 max 0 15 .219 2 .025 3 1.79e-2 3 NC 2 NC 132 min 0 1 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 133 10 max 0 1 .241 2 .025 3 1.855e-2 3 NC 4 NC 134 min 0 1 .219 2 .025 3 1.79e-2 3 NC </td <td></td> <td></td> <td></td> <td>min</td> <td>0</td> <td>1</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>1</td>				min	0	1		3					2		1
129 8 max 0 15 .17 2 .024 3 1.724e-2 3 NC 1 NC 130 min 0 1 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 131 9 max 0 15 .219 2 .025 3 1.79e-2 3 NC 2 NC 132 min 0 1 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 133 10 max 0 1 .241 2 .025 3 1.855e-2 3 NC 4 NC 134 min 0 1 283 3 02 2 -1.456e-2 2 1572.618 3 9379.695 135 11 max 0 1 .219 2 .025 3 1.79e-2 3 NC 2 NC 136 min 0 15 27 <			7	max		15		-							2
130 min 0 1 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 131 9 max 0 15 .219 2 .025 3 1.79e-2 3 NC 2 NC 132 min 0 1 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 133 10 max 0 1 .241 2 .025 3 1.855e-2 3 NC 4 NC 134 min 0 1 283 3 02 2 -1.456e-2 2 1572.618 3 9379.695 135 11 max 0 1 .219 2 .025 3 1.79e-2 3 NC 2 NC 136 min 0 15 27 3 017 2 -1.447e-2 2 18				min		•									
131 9 max 0 15 .219 2 .025 3 1.79e-2 3 NC 2 NC 132 min 0 1 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 133 10 max 0 1 .241 2 .025 3 1.855e-2 3 NC 4 NC 134 min 0 1 283 3 02 2 -1.456e-2 2 1572.618 3 9379.695 135 11 max 0 1 .219 2 .025 3 1.79e-2 3 NC 2 NC 136 min 0 15 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 137 12 max 0 1 .17 2 .024 3 1.724e-2 3 <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3 1.724e-2</td> <td></td> <td></td> <td></td> <td></td> <td>1_</td>			8							3 1.724e-2					1_
132 min 0 1 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 133 10 max 0 1 .241 2 .025 3 1.855e-2 3 NC 4 NC 134 min 0 1 283 3 02 2 -1.456e-2 2 1572.618 3 9379.695 135 11 max 0 1 .219 2 .025 3 1.79e-2 3 NC 2 NC 136 min 0 15 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 137 12 max 0 1 .17 2 .024 3 1.724e-2 2 1812.436 3 9463.408 137 12 max 0 1 .17 2 .024 3 1.724e-2			_		· ·								_		3
133 10 max 0 1 .241 2 .025 3 1.855e-2 3 NC 4 NC 134 min 0 1 283 3 02 2 -1.456e-2 2 1572.618 3 9379.695 135 11 max 0 1 .219 2 .025 3 1.79e-2 3 NC 2 NC 136 min 0 15 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 137 12 max 0 1 .17 2 .024 3 1.724e-2 3 NC 1 NC 138 min 0 15 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 139 13 max 0 1 .116 1 .023 3 1.659e-2 3 NC 4 NC			9												1
134 min 0 1 283 3 02 2 -1.456e-2 2 1572.618 3 9379.695 135 11 max 0 1 .219 2 .025 3 1.79e-2 3 NC 2 NC 136 min 0 15 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 137 12 max 0 1 .17 2 .024 3 1.724e-2 3 NC 1 NC 138 min 0 15 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 139 13 max 0 1 .116 1 .023 3 1.659e-2 3 NC 4 NC			10												
135 11 max 0 1 .219 2 .025 3 1.79e-2 3 NC 2 NC 136 min 0 15 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 137 12 max 0 1 .17 2 .024 3 1.724e-2 3 NC 1 NC 138 min 0 15 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 139 13 max 0 1 .116 1 .023 3 1.659e-2 3 NC 4 NC			10		_										1
136 min 0 15 27 3 017 2 -1.447e-2 2 1812.436 3 9463.408 137 12 max 0 1 .17 2 .024 3 1.724e-2 3 NC 1 NC 138 min 0 15 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 139 13 max 0 1 .116 1 .023 3 1.659e-2 3 NC 4 NC			4.4												_
137 12 max 0 1 .17 2 .024 3 1.724e-2 3 NC 1 NC 138 min 0 15 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 139 13 max 0 1 .116 1 .023 3 1.659e-2 3 NC 4 NC			11		_										1
138 min 0 15 241 3 012 2 -1.437e-2 2 2779.581 3 9821.759 139 13 max 0 1 .116 1 .023 3 1.659e-2 3 NC 4 NC			40												
139 13 max 0 1 .116 1 .023 3 1.659e-2 3 NC 4 NC			12							3 1.7246-2					1
			12												2
1401 min 0 15 207 2 007 10 1 407 ₀ 2 2 1500 074 2 7000 076	140		13		0	15	207	3	023 007	10 -1.427e-2	2	1599.874	2	7088.876	
			11												2
141			14												
142			15		_										2
144 min 0 15155 3003 10 -1.408e-2 2 930.902 2 4738.999			13			_									
145			16												2
146 min 0 15146 3003 10 -1.398e-2 2 955.067 2 5352.834			10												
147			17												2
148 min 0 1515 3003 10 -1.388e-2 2 1199.044 2 7723.404			''			-		-							
149			18												1
150 min 0 15165 3003 2 -1.379e-2 2 2155.102 2 NC			1.5												1
151			19												1
152 min 0 15187 3006 2 -1.369e-2 2 NC 1 NC			T Š												1
153 M2 1 max .008 2 .013 2 .005 1 -5.092e-6 15 NC 1 NC		M2	1		•								1		1
154 min012 3019 3 0 15 -1.03e-4 1 6097.475 2 NC											1		2		1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio) LC
155		2	max	.008	2	.011	2	.004	1	-4.846e-6	15	NC	1	NC	1
156			min	011	3	018	3	0	15	-9.806e-5	1	7039.053	2	NC	1
157		3	max	.007	2	.009	2	.004	1	-4.6e-6	15	NC	1	NC	1
158			min	01	3	018	3	0	15	-9.308e-5	1	8305.773	2	NC	1
159		4	max	.007	2	.008	2	.004	1	-4.355e-6	15	NC	1	NC	1
160			min	01	3	017	3	0	15	-8.811e-5	1	NC	1	NC	1
161		5	max	.006	2	.006	2	.003	1	-4.109e-6		NC	1	NC	1
162			min	009	3	016	3	0	15		1	NC	1	NC	1
163		6		.006	2	.005	2	.003	1		15	NC	1	NC	1
164		0	max	008	3	016	3	<u>.003</u>	15		1	NC	1	NC NC	1
		7	min												_
165		7	max	.006	2	.003	2	.003	1	-3.618e-6	<u>15</u>	NC	1	NC	1
166			min	008	3	015	3	0	15		<u>1</u>	NC	_1_	NC NC	1
167		8	max	.005	2	.002	2	.002	1	-3.372e-6	15	NC	_1_	NC	1
168			min	007	3	014	3	0	15	-6.82e-5	1_	NC	1_	NC	1
169		9	max	.005	2	0	2	.002	1	-3.127e-6	<u>15</u>	NC	_1_	NC	1
170			min	007	3	013	3	0	15	-6.323e-5	1	NC	1	NC	1
171		10	max	.004	2	0	2	.002	1	-2.881e-6	15	NC	1	NC	1
172			min	006	3	012	3	0	15	-5.825e-5	1	NC	1	NC	1
173		11	max	.004	2	001	2	.001	1	-2.635e-6	15	NC	1	NC	1
174			min	005	3	011	3	0	15		1	NC	1	NC	1
175		12	max	.003	2	002	2	0	1	-2.39e-6	15	NC	1	NC	1
176		i -	min	005	3	01	3	0	15	-4.83e-5	1	NC	1	NC	1
177		13	max	.003	2	002	15	0	1	-2.144e-6	15	NC	1	NC	1
178		13	min	004	3	009	3	0	15	-4.333e-5	1	NC	1	NC	1
179		14		.002	2	009	15	0	1	-1.899e-6		NC	1	NC	1
180		14	max min	003	3	002	3	0	15		<u>15</u> 1	NC NC	1	NC NC	1
		4.5								-3.835e-5					_
181		15	max	.002	2	001	15	0	1	-1.653e-6		NC	1	NC	1
182		10	min	003	3	006	3	0	15		<u>1</u>	NC	1_	NC NC	1
183		16	max	.001	2	001	15	0	1		15	NC	1_	NC	1
184			min	002	3	005	3	0	15	-2.84e-5	<u>1</u>	NC	1_	NC	1
185		17	max	0	2	0	15	0	1	-1.162e-6	<u>15</u>	NC	_1_	NC	1
186			min	001	3	003	4	0	15	-2.342e-5	1	NC	1	NC	1
187		18	max	0	2	0	15	0	1	-9.161e-7	15	NC	1	NC	1
188			min	0	3	002	4	0	15	-1.845e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	-6.705e-7	15	NC	1	NC	1
190			min	0	1	0	1	0	1	-1.347e-5	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	2.77e-6	1	NC	1	NC	1
192			min	0	1	0	1	0	1	1.382e-7	15	NC	1	NC	1
193		2	max	0	3	0	15	0	15	1.511e-5	1	NC	1	NC	1
194			min	0	2	003	4	0	1	7.339e-7	15	NC	1	NC	1
195		3	max	.001	3	003 001	15	0		2.745e-5	1	NC	1	NC	1
		<u> </u>		0	2		4		1	1.33e-6	_	NC	-	NC	1
196		4	min			006		0			<u>15</u>		<u>1</u> 1	NC NC	
197		4	max	.002	3	002	15	0	15		4.5	NC NC			1
198		_	min	001	2	009	4	0	1	1.925e-6	<u>15</u>	NC NC	1_	NC NC	1
199		5_	max	.002	3	003	15	0	10	5.213e-5	1_	NC 0005.054	1_	NC	1
200			min	002	2	012	4	0	1	2.521e-6		8395.854	4	NC	1
201		6	max	.003	3	004	15	0	10	6.447e-5	_1_	NC	2	NC	1
202			min	002	2	015	4	0	1	3.116e-6	15	6812.404	4	NC	1
203		7	max	.003	3	004	15	0	10	7.682e-5	_1_	NC	5	NC	1
204			min	003	2	018	4	0	1	3.712e-6	15	5858.341	4	NC	1
205		8	max	.004	3	005	15	0	10	8.916e-5	1	NC	5	NC	1
206			min	003	2	02	4	0	1	4.308e-6	15	5270.075	4	NC	1
207		9	max	.004	3	005	15	0	1	1.015e-4	1	NC	5	NC	1
208			min	004	2	021	4	0	3	4.903e-6	15	4923.51	4	NC	1
209		10	max	.005	3	005	15	0	1	1.138e-4	1	NC	5	NC	1
210		10	min	004	2	022	4	0	3	5.499e-6		4758.541	4	NC	1
211		11		.006	3	022	15	0	1	1.262e-4	1	NC	5	NC	1
<u> </u>		<u> </u>	max	.000	⊥ J	005	LIU	U		1.2026-4		INC	Ü	INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
212			min	005	2	022	4	0	15	6.095e-6	15	4750.952	4	NC	1
213		12	max	.006	3	005	15	0	1	1.385e-4	_1_	NC	5	NC	1
214			min	005	2	021	4	0	15	6.69e-6	15	4903.13	4	NC	1
215		13	max	.007	3	005	15	.001	1	1.509e-4	_1_	NC	5	NC	1
216			min	006	2	02	4	0	15	7.286e-6	15	5246.185	4	NC	1
217		14	max	.007	3	004	15	.001	1_	1.632e-4	_1_	NC	5_	NC	1
218			min	006	2	018	4	0	15	7.882e-6	15	5855.955	4	NC	1
219		15	max	.008	3	004	15	.002	1	1.755e-4	1	NC	3	NC	1
220			min	007	2	015	4	0	15	8.477e-6	15	6900.076	4	NC	1
221		16	max	.008	3	003	15	.002	1	1.879e-4	1	NC	1	NC	1
222			min	007	2	012	4	0	15	9.073e-6	15	8784.208	4	NC	1
223		17	max	.009	3	002	15	.003	1	2.002e-4	1	NC	1	NC	1
224			min	008	2	008	4	0	15	9.669e-6	15	NC	1	NC	1
225		18	max	.009	3	001	15	.004	1	2.126e-4	1	NC	1	NC	1
226			min	008	2	005	3	0	15	1.026e-5	15	NC	1	NC	1
227		19	max	.01	3	0	10	.005	1	2.249e-4	1	NC	1	NC	1
228			min	009	2	002	3	0	15	1.086e-5	15	NC	1	NC	1
229	M4	1	max	.002	1	.009	2	0	15	8.861e-5	1	NC	1	NC	2
230			min	0	3	01	3	005	1	4.314e-6	15	NC	1	5471.776	
231		2	max	.002	1	.008	2	0	15	8.861e-5	1	NC	1	NC	2
232			min	0	3	01	3	004	1	4.314e-6	15	NC	1	5935.943	1
233		3	max	.002	1	.008	2	0	15	8.861e-5	1	NC	1	NC	2
234			min	0	3	009	3	004	1	4.314e-6	15	NC	1	6489.271	1
235		4	max	.002	1	.007	2	0	15	8.861e-5	1	NC	1	NC	2
236			min	0	3	009	3	003	1	4.314e-6	15	NC	1	7154.765	
237		5	max	.002	1	.007	2	<u>.003</u>	15	8.861e-5	1	NC	1	NC	2
238		_ <u> </u>	min	0	3	008	3	003	1	4.314e-6	15	NC	1	7963.697	1
239		6	max	.001	1	.006	2	<u>003</u>	15	8.861e-5	1	NC	1	NC	2
240			min	0	3	007	3	003	1	4.314e-6	15	NC	1	8959.442	1
241		7	max	.001	1	.006	2	003	15	8.861e-5	1	NC	1	NC	1
242			min	0	3	007	3	002	1	4.314e-6	15	NC	1	NC	1
243		8	max	.001	1	.005	2	0	15	8.861e-5	1	NC	1	NC	1
244		- 0	min	0	3	006	3	002	1	4.314e-6	15	NC	1	NC	1
245		9	max	.001	1	.005	2	<u>002</u> 0	15	8.861e-5	1	NC	1	NC	1
246		9		0	3	006	3	002	1	4.314e-6	15	NC NC	1	NC	1
247		10	min max	.001	1	.004	2	<u>002</u> 0	15	8.861e-5	1 <u>15</u>	NC NC	1	NC NC	1
248		10	min	0	3	005	3	001	1	4.314e-6	15	NC NC	1	NC	1
		11		-	1					8.861e-5		NC NC	1	NC NC	1
249			max	0	3	.004 005	3	0 001	15	4.314e-6	<u>1</u> 15	NC NC	1	NC NC	1
250		40	min	0	1				•				1		
251 252		12	max	0	3	.003	3	<u> </u>	15	8.861e-5	1_	NC NC	1	NC NC	1
		12	min			004				4.314e-6			•	NC NC	
253		13	max	0	1	.003	2	0		8.861e-5	1_	NC NC	1_	NC NC	1
254		4.4	min	0	3	003	3	0	1	4.314e-6	<u>15</u>	NC NC	1_	NC NC	1
255		14	max	0	1	.002	2	0	15	8.861e-5	1_	NC NC	1_	NC NC	1
256		4-	min	0	3	003	3	0	1_1	4.314e-6	<u>15</u>	NC NC	1_	NC NC	1
257		15	max	0	1	.002	2	0	15	8.861e-5	_1_	NC	1_	NC	1
258			min	0	3	002	3	0	1	4.314e-6	<u>15</u>	NC	1_	NC	1
259		16	max	0	1	.001	2	0	15	8.861e-5	1_	NC	1_	NC NC	1
260			min	0	3	002	3	0	1	4.314e-6	15	NC	1_	NC	1
261		17	max	0	1	0	2	0	15	8.861e-5	_1_	NC	_1_	NC	1
262			min	0	3	001	3	0	1	4.314e-6	15	NC	1_	NC	1
263		18	max	0	1	0	2	0	15	8.861e-5	_1_	NC	1_	NC	1
264			min	0	3	0	3	0	1	4.314e-6	15	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	8.861e-5	1_	NC	1_	NC	1
266			min	0	1	0	1	0	1	4.314e-6	15	NC	1	NC	1
267	M6	1	max	.024	2	.038	2	0	1	0	1	NC	3	NC	1
268			min	035	3	055	3	0	1	0	1	2018.888	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
269		2	max	.022	2	.035	2	0	1	0	1	NC	3	NC	1
270			min	033	3	052	3	0	1	0	1	2216.834	2	NC	1
271		3	max	.021	2	.032	2	0	1	0	1	NC	3	NC	1
272			min	031	3	049	3	0	1	0	1	2455.741	2	NC	1
273		4	max	.02	2	.028	2	0	1	0	1	NC	3	NC	1
274			min	029	3	046	3	0	1	0	1	2747.227	2	NC	1
275		5	max	.018	2	.025	2	0	1	0	1	NC	3	NC	1
276			min	027	3	043	3	0	1	0	1		2	NC	1
277		6	max	.017	2	.022	2	0	1	0	1	NC	3	NC	1
278			min	025	3	04	3	0	1	0	1	3559.591	2	NC	1
279		7	max	.016	2	.019	2	0	1	0	1	NC	1	NC	1
280			min	023	3	037	3	0	1	0	1	4137.464	2	NC	1
281		8	max	.014	2	.016	2	0	1	0	1	NC	1	NC	1
282			min	021	3	033	3	0	1	0	1	4892.489	2	NC	1
283		9	max	.013	2	.013	2	0	1	0	1	NC	1	NC	1
284			min	02	3	03	3	0	1	0	1	5905.703	2	NC	1
285		10	max	.012	2	.011	2	0	1	0	1	NC	1	NC	1
286		10	min	018	3	027	3	0	1	0	1		2	NC	1
287		11	max	.011	2	.008	2	0	1	0	1	NC	1	NC	1
288			min	016	3	024	3	0	1	0	1	9343.876	2	NC	1
289		12	max	.009	2	.006	2	0	1	0	1	NC	1	NC	1
290		14	min	014	3	021	3	0	1	0	1	NC	1	NC	1
291		13	max	.008	2	.004	2	0	1	0	1	NC	1	NC	1
292		13	min	012	3	018	3	0	1	0	1	NC	1	NC NC	1
293		14		.007	2	.003	2		1		1	NC	+	NC NC	1
294		14	max min	01	3	015	3	<u> </u>	1	0	1	NC NC	1	NC NC	1
		15			2				1	-	_	NC NC	_	NC NC	•
295		15	max	.005		.002	2	0	1	0	1	NC NC	1		1
296		10	min	008	3	012	3	0		0	1		1_	NC NC	
297		16	max	.004	2	0	2	0	1	0	1	NC NC	1	NC NC	1
298		47	min	006	3	009	3	0	1	0	1_	NC NC		NC NC	1
299		17	max	.003	2	0	2	0	1	0	1	NC NC	1	NC NC	1
300		40	min	004	3	006	3	0	1	0	1	NC NC	1_	NC NC	1
301		18	max	.001	2	0	2	0	1	0	1	NC	1	NC NC	1
302		1.0	min	002	3	003	3	0	1	0	1	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304		.	min	0	1	0	1	0	1	0	1	NC	1_	NC	1
305	<u>M7</u>	1_	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	<u>1</u>	NC	1_	NC	1
307		2	max	.002	3	0	15	0	1	0	1	NC	1_	NC	1
308		_	min	001	2	004	3	0	1	0	<u>1</u>	NC	1_	NC	1
309		3	max		3	001	15	0	1	0	1	NC	1_	NC NC	1
310			min	003	2	008	3	0	1	0	1	NC	1_	NC	1
311		4	max	.005	3	002	15	0	1	0	1	NC	1_	NC	1
312			min	004	2	011	3	0	1	0	1_	NC	1_	NC	1
313		5	max	.006	3	003	15	0	1	0	_1_	NC	1_	NC	1
314			min	006	2	014	3	0	1	0	1_	7981.222	3	NC	1
315		6	max	.008	3	004	15	0	1	0	1	NC	1_	NC	1
316			min	007	2	017	3	0	1	0	1		3	NC	1
317		7	max	.009	3	004	15	0	1	0	_1_	NC	2	NC	1
318			min	009	2	019	3	0	1	0	1	5914.791	4	NC	1
319		8	max	.011	3	005	15	0	1	0	_1_	NC	2	NC	1
320			min	01	2	021	3	0	1	0	1	5317.27	4	NC	1
321		9	max	.013	3	005	15	0	1	0	1	NC	5	NC	1
322			min	012	2	022	3	0	1	0	1	4964.807	4	NC	1
323		10	max	.014	3	005	15	0	1	0	1_	NC	5	NC	1
324			min	013	2	023	3	0	1	0	1	4796.187	4	NC	1
325		11	max	.016	3	005	15	0	1	0	1	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio) LC
326			min	015	2	023	3	0	1	0	1	4786.627	4	NC	1
327		12	max	.017	3	005	15	0	1	0	1	NC	5	NC	1
328			min	016	2	022	3	0	1	0	1_	4938.284	4	NC	1
329		13	max	.019	3	005	15	0	1	0	1_	NC	5	NC	1
330		4.4	min	018	2	021	3	0	1	0	1_	5282.301	4_	NC	1
331		14	max	.02	3	004	15	0	1	0	1	NC 5004.070	2	NC	1
332		45	min	019	2	02	3	0	1	0	1_	5894.878	4	NC NC	1
333		15	max	.022	3	004	15	0	1	0	1	NC COAA COA	1_	NC NC	1
334		10	min	021	2	<u>018</u>	3	0	1	0	1_	6944.601	4	NC NC	1
335		16	max	.024 022	2	003	15	<u>0</u> 	1	0	<u>1</u> 1	NC	1_1	NC NC	1
336		17	min	.025	3	015 002	3		1		•	8839.55 NC	<u>4</u> 1	NC NC	1
337		17	max	024	2	002 013	15	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
339		18	min	.027	3	013 001	15	0	1	0	1	NC NC	1	NC NC	1
340		10	max	025	2	001 01	3	0	1	0	1	NC	1	NC NC	1
341		19	max	.028	3	0	10	0	1	0	1	NC	1	NC	1
342		13	min	027	2	007	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	2	.026	2	0	1	0	1	NC	1	NC	1
344	IVIO	'	min	0	3	029	3	0	1	0	1	NC	1	NC	1
345		2	max	.005	2	.025	2	0	1	0	1	NC	1	NC	1
346		_	min	0	3	027	3	0	1	0	1	NC	1	NC	1
347		3	max	.005	2	.023	2	0	1	0	1	NC	1	NC	1
348			min	0	3	026	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	2	.022	2	0	1	0	1	NC	1	NC	1
350			min	0	3	024	3	0	1	0	1	NC	1	NC	1
351		5	max	.004	2	.02	2	0	1	0	1	NC	1	NC	1
352			min	0	3	023	3	0	1	0	1	NC	1	NC	1
353		6	max	.004	2	.019	2	0	1	0	1	NC	1	NC	1
354			min	0	3	021	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	2	.017	2	0	1	0	1_	NC	1_	NC	1
356			min	0	3	019	3	0	1	0	1	NC	1_	NC	1
357		8	max	.003	2	.016	2	0	1	0	1	NC	_1_	NC	1
358			min	0	3	018	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.003	2	.014	2	00	1	0	_1_	NC	_1_	NC	1
360			min	0	3	016	3	0	1	0	1_	NC	1_	NC	1
361		10	max	.003	2	.013	2	0	1	0	1	NC	_1_	NC	1
362			min	0	3	014	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.003	2	.012	2	0	1	0	1	NC	1_	NC	1
364		40	min	0	3	013	3	0	1	0	1_	NC	1_	NC	1
365		12	max	.002	2	.01	2	0	1	0	1	NC	1_	NC NC	1
366		40	min		3	011	3	0	1	0	1	NC NC	1	NC NC	1
367		13	max	.002	3	.009	2	0	1	0	1	NC NC	1_1	NC NC	1
368		1.1	min	0	_	01	3	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
369		14	max	.002	3	.007	3	0 0	1	0	1	NC NC	1	NC NC	1
370 371		15	min max	.001	2	008 .006	2	0	1	0	1	NC NC	1	NC NC	1
372		13	min	0	3	006	3	0	1	0	1	NC	1	NC NC	1
373		16	max	0	2	.004	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	005	3	0	1	0	1	NC	1	NC NC	1
375		17	max	0	2	.003	2	0	1	0	1	NC NC	1	NC NC	1
376		17	min	0	3	003	3	0	1	0	1	NC NC	1	NC NC	1
377		18	max	0	2	.003	2	0	1	0	1	NC	1	NC	1
378		10	min	0	3	002	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.5	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.008	2	.013	2	0	15	1.03e-4	1	NC	1	NC	1
382			min	012	3	019	3	005	1	5.092e-6	15	6097.475	2	NC	1
							_						_		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC	, ,) LC
383		2	max	.008	2	.011	2	0	15	9.806e-5	1_	NC	1	NC	1
384			min	011	3	018	3	004	1	4.846e-6	15	7039.053	2	NC	1
385		3	max	.007	2	.009	2	0	15	9.308e-5	1	NC	1	NC	1
386			min	01	3	018	3	004	1	4.6e-6	15	8305.773	2	NC	1
387		4	max	.007	2	.008	2	0	15	8.811e-5	1	NC	1	NC	1
388			min	01	3	017	3	004	1	4.355e-6	15	NC	1	NC	1
389		5	max	.006	2	.006	2	0	15	8.313e-5	1	NC	1	NC	1
390		—	min	009	3	016	3	003	1	4.109e-6	15	NC	1	NC	1
391		6		.006	2	.005	2	<u>.005</u>	15	7.816e-5	1	NC	1	NC	1
392		-	max	008	3	016	3	003	1	3.864e-6	15	NC	1	NC NC	1
		7	min		2			003 0	_			NC NC			1
393			max	.006		.003	2		15	7.318e-5	1_		1	NC	
394			min	008	3	015	3	003	1	3.618e-6	<u>15</u>	NC	1_	NC NC	1
395		8	max	.005	2	.002	2	0	15	6.82e-5	_1_	NC	_1_	NC	1
396			min	007	3	014	3	002	1	3.372e-6	15	NC	1_	NC	1
397		9	max	.005	2	0	2	0	15	6.323e-5	_1_	NC	_1_	NC	1
398			min	007	3	013	3	002	1	3.127e-6	15	NC	1	NC	1
399		10	max	.004	2	0	2	0	15	5.825e-5	1_	NC	1_	NC	1
400			min	006	3	012	3	002	1	2.881e-6	15	NC	1	NC	1
401		11	max	.004	2	001	2	0	15	5.328e-5	1	NC	1	NC	1
402			min	005	3	011	3	001	1	2.635e-6	15	NC	1	NC	1
403		12	max	.003	2	002	2	0	15	4.83e-5	1	NC	1	NC	1
404		T -	min	005	3	01	3	0	1	2.39e-6	15	NC	1	NC	1
405		13	max	.003	2	002	15	0	15	4.333e-5	1	NC	1	NC	1
406		10	min	004	3	009	3	0	1	2.144e-6	15	NC	1	NC	1
407		14	max	.002	2	002	15	0	15	3.835e-5	1	NC	1	NC	1
408		14	min	003	3	002	3	0	1	1.899e-6	15	NC	1	NC	1
		4.5													_
409		15	max	.002	2	001	15	0	15	3.337e-5	1_	NC	1	NC	1
410		1.0	min	003	3	006	3	0	1	1.653e-6	<u>15</u>	NC	1_	NC	1
411		16	max	.001	2	001	15	0	15	2.84e-5	_1_	NC	1_	NC	1
412			min	002	3	005	3	0	1	1.407e-6	15	NC	1_	NC	1
413		17	max	0	2	0	15	0	15	2.342e-5	_1_	NC	_1_	NC	1
414			min	001	3	003	4	0	1	1.162e-6	15	NC	1	NC	1
415		18	max	0	2	0	15	0	15	1.845e-5	1	NC	1	NC	1
416			min	0	3	002	4	0	1	9.161e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	1.347e-5	1	NC	1	NC	1
418			min	0	1	0	1	0	1	6.705e-7	15	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-1.382e-7	15	NC	1	NC	1
420			min	0	1	0	1	0	1	-2.77e-6	1	NC	1	NC	1
421		2	max	0	3	0	15	0	1	-7.339e-7	15	NC	1	NC	1
422			min	0	2	003	4	0		-1.511e-5	1	NC	1	NC	1
423		3	max	.001	3	003	15	0	1		15		1	NC	1
		J		0	2		4				1	NC	1	NC NC	1
424		1	min	_		006		0		-2.745e-5					
425		4	max	.002	3	002	15	0	1	-1.925e-6		NC	1	NC NC	1
426		_	min	001	2	009	4	0	15	-3.979e-5	1_	NC	1_	NC NC	1
427		5	max	.002	3	003	15	0	1	-2.521e-6		NC	1_	NC	1
428			min	002	2	012	4	0	1	-5.213e-5	_1_	8395.854	4	NC	1
429		6	max	.003	3	004	15	0	1	-3.116e-6	15	NC	2	NC	1
430			min	002	2	015	4	0	10	-6.447e-5	1_	6812.404	4	NC	1
431		7	max	.003	3	004	15	00	1	-3.712e-6	15	NC	5	NC	1
432			min	003	2	018	4	0	10	-7.682e-5	1	5858.341	4	NC	1
433		8	max	.004	3	005	15	0	1	-4.308e-6	15	NC	5	NC	1
434			min	003	2	02	4	0	10	-8.916e-5	1	5270.075	4	NC	1
435		9	max	.004	3	005	15	0	3	-4.903e-6		NC	5	NC	1
436		Ť	min	004	2	021	4	0	1	-1.015e-4	1	4923.51	4	NC	1
437		10	max	.005	3	005	15	0	3	-5.499e-6		NC	5	NC	1
438		10	min	004	2	022	4	0	1	-1.138e-4	1	4758.541	4	NC	1
439		11			3		15	0		-6.095e-6		NC	5	NC	1
438		<u> </u>	max	.006	⊥ວ	005	LIO	U	10	-0.090 E-0	10	INC	ິບ	INC	$\perp \perp \perp$

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio L	
440			min	005	2	022	4	0		1
441		12	max	.006	3	005	15	0		1
442			min	005	2	021	4	0		1
443		13	max	.007	3	005	15	0	15 -7.286e-6 15 NC 5 NC 1	1
444			min	006	2	02	4	001	1 1.0000 1 1 02 10.100 1 110	1
445		14	max	.007	3	004	15	0	15 -7.882e-6 15 NC 5 NC	1
446			min	006	2	018	4	001	1 -1.632e-4 1 5855.955 4 NC	1
447		15	max	.008	3	004	15	0	15 -8.477e-6 15 NC 3 NC	1
448			min	007	2	015	4	002	1 -1.755e-4 1 6900.076 4 NC	1
449		16	max	.008	3	003	15	0	15 -9.073e-6 15 NC 1 NC	1
450			min	007	2	012	4	002		1
451		17	max	.009	3	002	15	0	15 -9.669e-6 15 NC 1 NC	1
452			min	008	2	008	4	003		1
453		18	max	.009	3	001	15	0	15 -1.026e-5 15 NC 1 NC	1
454			min	008	2	005	3	004		1
455		19	max	.01	3	0	10	0		1
456			min	009	2	002	3	005		1
457	M12	1	max	.002	1	.009	2	.005		2
458	····-		min	0	3	01	3	0		1
459		2	max	.002	1	.008	2	.004		2
460		_	min	0	3	01	3	0		1
461		3	max	.002	1	.008	2	.004		2
462		<u> </u>	min	0	3	009	3	0	15 -8.861e-5 1 NC 1 6489.271	1
463		4	max	.002	1	.007	2	.003		2
464			min	0	3	009	3	0		1
465		5	max	.002	1	.007	2	.003		2
466			min	0	3	008	3	0		1
467		6	max	.001	1	.006	2	.003		2
468		0	min	0	3	007	3	0		1
469		7	max	.001	1	.006	2	.002		1
470		-	min	0	3	007	3	0		1
471		8	max	.001	1	.005	2	.002	1 -4.314e-6 15 NC 1 NC	•
472		-	min	0	3	006	3	0		1
473		9	max	.001	1	.005	2	.002	1 -4.314e-6 15 NC 1 NC	•
474		9		0	3	005	3	0		1
475		10	min	.001	1	.004	2	.001		1
		10	max	0	3	00 4	3	0		1
476		11			1		2	.001		<u>. </u>
477			max	0	3	.004				
478		40	min	0	1	005	3	0	10 0.0010 0 1 110 1 110	•
479		12	max	0	3	.003	3	0		<u>1</u> 1
480		12	min			004		0		
481		13	max	0	1	.003	2	0		1
482		4.4	min	0	3	003	3	0	10 0.00100 1 110 1 110	1
483		14	max	0	1	.002	2	0		1_
484		4.5	min	0	3	003	3	0	10 0.0010 0 1 110 1 110	1
485		15	max	0	1	.002	2	0		1
486			min	0	3	002	3	0	10 010010 0 1 110 1 110	1
487		16	max	0	1	.001	2	0		1
488			min	0	3	002	3	0	10 010010 0 1 110 1 110	1
489		17	max	0	1	0	2	0	1 1101 10 0 10 110 110	1
490			min	0	3	001	3	0	10 010010 0 1 110 1 110	1
491		18	max	0	1	0	2	0		1
492			min	0	3	0	3	0	10 0.00100 1 110 1 110	1
493		19	max	0	1	0	1	0	1 -4.314e-6 15 NC 1 NC '	1
494			min	0	1	0	1	0	1 0:0010 0 1 110	1
495	M1	1	max	.013	3	.235	2	0	1 4.632e-3 2 NC 1 NC 1	1
496			min	008	2	082	3	0	15 -1.324e-2 3 NC 1 NC	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio		` ') LC
497		2	max	.013	3	.113	2	0	15	2.275e-3	2	NC	5	NC	1
498			min	008	2	038	3	003	1	-6.575e-3	3	1115.775	2	NC	1
499		3	max	.013	3	.02	3	0	15	2.614e-5	10	NC	5	NC	1
500			min	008	2	015	2	005	1	-9.283e-5	3	542.263	2	NC	1
501		4	max	.012	3	.103	3	0	15	3.414e-3	2	NC	5	NC	1
502			min	008	2	156	2	004	1	-3.557e-3	3	346.948	2	NC	1
503		5	max	.012	3	.202	3	0	15	6.807e-3	2		15	NC	1
504		<u> </u>	min	008	2	3	2	003	1	-7.022e-3	3		2	NC	1
505		6	max	.012	3	.306	3	<u>.003</u>	15	1.02e-2	2		15	NC	1
506		-		008	2	439	2	001	1	-1.049e-2	3		2	NC	1
		7	min						•	1.359e-2					-
507			max	.012	3	.405	3	0	1		2		15	NC NC	1
508			min	008	2	<u>561</u>	2	0	3	-1.395e-2	3	170.234	2	NC NC	1
509		8	max	.011	3	.486	3	0	1	1.699e-2	2		15	NC_	1
510			min	007	2	658	2	0	15	-1.742e-2	3	151.862	2	NC	1
511		9	max	.011	3	.538	3	0	15	1.894e-2	2		15	NC	1
512			min	007	2	719	2	0	1	-1.809e-2	3	142.261	2	NC	1
513		10	max	.011	3	.558	3	0	1	1.992e-2	2	6703.722	15	NC	1
514			min	007	2	739	2	0	10	-1.689e-2	3	139.461	2	NC	1
515		11	max	.011	3	.545	3	0	1	2.09e-2	2	6843.255	15	NC	1
516			min	007	2	718	2	0	15	-1.57e-2	3		2	NC	1
517		12	max	.01	3	.5	3	0	15	1.991e-2	2		15	NC	1
518		T -	min	007	2	655	2	0	1	-1.387e-2	3	153.44	2	NC	1
519		13	max	.01	3	.427	3	0	10	1.596e-2	2		15	NC	1
520		10	min	007	2	553	2	0	1	-1.11e-2	3	173.89	2	NC	1
521		14		.01	3	.333	3	.001	1	1.201e-2	2		15	NC	1
522		14	max min	007	2	426	2	0	15	-8.323e-3	3		2	NC NC	1
		4.5										208.698			
523		15	max	.009	3	.227	3	.003	1	8.061e-3	2		15	NC NC	1
524		10	min	007	2	285	2	0	15	-5.549e-3	3	268.239	2	NC NC	1
525		16	max	.009	3	.116	3	.004	1	4.111e-3	2	NC	5	NC_	1
526			min	007	2	142	2	0	15	-2.775e-3	3	377.568	2	NC	1
527		17	max	.009	3	.007	3	.005	1	3.161e-4	_1_	NC	5	NC	1
528			min	006	2	008	2	0	15	-1.261e-6	3	609.076	2	NC	1
529		18	max	.009	3	.106	2	.003	1	4.365e-3	2	NC	5	NC	1
530			min	006	2	093	3	0	15	-1.377e-3	3	1282.443	2	NC	1
531		19	max	.009	3	.209	2	0	15	8.715e-3	2	NC	1	NC	1
532			min	006	2	187	3	0	1	-2.828e-3	3	NC	1	NC	1
533	M5	1	max	.036	3	.315	2	0	1	0	1	NC	1	NC	1
534			min	025	2	.006	15	0	1	0	1	NC	1	NC	1
535		2	max	.036	3	.15	2	0	1	0	1	NC	5	NC	1
536			min	025	2	.003	15	0	1	0	1	832.258	2	NC	1
537		3	max	.036	3	.056	3	0	1	0	1		5	NC	1
		3						_	<u> </u>	_	-				
538		4	min	025	2	041	2	0	1	0	1_	385.482	2	NC NC	1
539		4	max	.035	3	.182	3	0	1	0	1		15	NC NC	1
540		-	min	025	2	277	2	0	1	0	1_		2	NC NC	1
541		5	max	.034	3	.365	3	0	1	0	_1_		15	NC_	1
542			min	024	2	538	2	0	1	0	1_		2	NC	1
543		6	max	.033	3	.576	3	0	1	0	<u>1</u>		15	NC	1
544			min	024	2	801	2	0	1	0	1		2	<u>NC</u>	1
545		7	max	.032	3	.784	3	0	1	0	1_		15	NC	1
546			min	024	2	-1.041	2	0	1	0	1	100.677	2	NC	1
547		8	max	.032	3	.96	3	0	1	0	1		15	NC	1
548			min	023	2	-1.235	2	0	1	0	1	88.108	2	NC	1
549		9	max	.031	3	1.073	3	0	1	0	1		15	NC	1
550		Ĭ	min	023	2	-1.359	2	0	1	0	1		2	NC	1
551		10	max	.03	3	1.114	3	0	1	0	1		15	NC	1
552		10	min	022	2	-1.402	2	0	1	0	1		2	NC	1
		11			3		3		1		1		_		
553		11	max	.029	」 ろ	1.085	<u>5</u>	0	<u> </u>	0	<u> </u>	4339.432	15	NC	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Dec 1, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio I	LC	(n) L/z Rati	o LC
554			min	022	2	-1.36	2	0	1	0	1	82.036	2	NC	1
555		12	max	.029	3	.989	3	0	1	0	1_	4680.683	15	NC	1
556			min	022	2	-1.231	2	0	1	0	1	89.327	2	NC	1
557		13	max	.028	3	.834	3	0	1	0	1_	5348.669	15	NC	1
558			min	021	2	-1.024	2	0	1	0	1		2	NC	1
559		14	max	.027	3	.64	3	0	1	0	1		15	NC_	1
560			min	021	2	769	2	0	1	0	1_		2	<u>NC</u>	1
561		15	max	.026	3	.427	3	0	1	0	_1_		15	<u>NC</u>	1
562			min	02	2	497	2	0	1	0	1		2	NC_	1
563		16	max	.026	3	.213	3	0	1	0	_1_		15	NC_	1
564			min	02	2	238	2	0	1	0	1		2	NC	1
565		17	max	.025	3	.018	3	0	1	0	_1_		5	NC_	1
566			min	02	2	021	2	0	1	0	1_	495.658	2	NC_	1
567		18	max	.025	3	.129	2	0	1	0	_1_		5	NC	1
568			min	02	2	142	3	0	1	0	1_		3	NC	1
569		19	max	.025	3	.241	2	00	1	0	_1_		1	NC	1
570			min	02	2	283	3	0	1	0	1_		1	NC	1
571	<u>M9</u>	1_	max	.013	3	.235	2	0	15	1.324e-2	3_	NC	1	NC	1
572			min	008	2	082	3	0	1	-4.632e-3	2		1	NC	1
573		2	max	.013	3	.113	2	.003	1	6.575e-3	3_		5	NC_	1
574			min	008	2	038	3	0		-2.275e-3	2		2	NC	1
575		3	max	.013	3	.02	3	.005	1	9.283e-5	3		5	NC_	1
576			min	008	2	<u>015</u>	2	0	15	-2.614e-5		542.263	2	NC_	1
577		4	max	.012	3	.103	3	.004	1	3.557e-3	3		5	NC NC	1
578		_	min	008	2	1 <u>56</u>	2	0	15	-3.414e-3	2	0 .0.0 .0	2	NC NC	1
579		5	max	.012	3	.202	3	.003	1	7.022e-3	3_		15	NC NC	1
580			min	008	2	3	2	0	15	-6.807e-3	2		2	NC NC	1
581		6	max	.012	3	.306	3	.001	1_1	1.049e-2	3		15	NC_	1
582		-	min	008	2	439	2	0	15	-1.02e-2	2		2	NC NC	1
583		7	max	.012	3	.405	3	0	3	1.395e-2	3		15	NC NC	1
584		0	min	008	2	<u>561</u>	2	0	1	-1.359e-2 1.742e-2	2		2	NC NC	
585		8	max	.011	3	.486	3	0	15		3		15	NC NC	1
586			min	007	2	<u>658</u>	2	0	1	-1.699e-2	2		2	NC NC	1
587		9	max	.011	3	.538	3	0	1	1.809e-2	3		15	NC NC	1
588		10	min	007	3	719	3	0	15	-1.894e-2	2		2 15	NC NC	1 1
589		10	max	.011	2	.558		<u> </u>	10	1.689e-2	2		2	NC NC	1
590 591		11	min	007 .011	3	<u>739</u> .545	3		15	-1.992e-2 1.57e-2	3		<u> </u>	NC NC	
592			max	007	2	718	2	0 0	1	-2.09e-2	2		2	NC NC	1
593		12	min	007 .01	3	<u>7 10</u> .5	3	0	1	1.387e-2	3		15	NC NC	1
594		12	max min	007	2	655	2	0		-1.991e-2		153.44	2	NC NC	1
595		13		.01	3	<u>055</u> .427	3	0	1	1.11e-2	3		15	NC NC	1
596		13	max	007	2	553	2	0		-1.596e-2	2		2	NC NC	1
597		14		.01	3	.333	3	0	15	8.323e-3	3		15	NC NC	1
598		14	max	007	2	426	2	001	1	-1.201e-2	2		2	NC NC	1
599		15	max	.009	3	.227	3	<u>001</u> 0	15	5.549e-3	3		15	NC NC	1
600		13	min	007	2	285	2	003	1	-8.061e-3			2	NC	1
601		16	max	.009	3	.116	3	<u>003</u> 0	15	2.775e-3	3		5	NC NC	1
602		10	min	007	2	142	2	004	1	-4.111e-3			2	NC	1
603		17	max	.007	3	.007	3	004 0	15	1.261e-6	3		5	NC NC	1
604		17	min	006	2	008	2	005	1	-3.161e-4	1		2	NC NC	1
605		18	max	.009	3	.106	2	003	15	1.377e-3	3		5	NC	1
606		10	min	006	2	093	3	003	1	-4.365e-3			2	NC	1
607		19	max	.009	3	.209	2	<u>003</u> 0	1	2.828e-3	3	NC	1	NC NC	1
608		13	min	006	2	187	3	0		-8.715e-3			1	NC NC	1
000			1111111	000		101	J	U	IU	0.1 100-3		INC		INC	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	3/5				
Project:	Standard PVMax - Worst Case, 32-40 Inch Width						
Address:							
Phone:							
E-mail:							

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ť (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	† short-term	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{al}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{\text{ed},Na} \Psi_{g,Na} \Psi_{\text{ec},Na} \Psi_{p,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\Psi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	5/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.