Collective Table of Formulas

Discrete Fourier transforms (DFT) Pairs and Properties

click here for more formulas

Discrete Fourier Transform Pairs and Properties (info)

Definition Discrete Fourier Transform and its Inverse

Let x[n] be a periodic DT signal, with period N.

N-point Discrete Fourier Transform $X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi \frac{kn}{N}}$

Inverse Discrete Fourier Transform $x[n] = (1/N) \sum_{k=0}^{N-1} X[k]e^{j2\pi \frac{kn}{N}}$

Discrete Fourier Transform Pairs (info)

$$x[n] \text{ (period } N) \longrightarrow X_N[k] \text{ (}N \text{ point DFT)}$$

$$\sum_{k=-\infty}^{\infty} \delta[n+Nk] = \begin{cases} 1, & \text{if } n=0,\pm N,\pm 2N, \dots \\ 0, & \text{else.} \end{cases}$$
 1 (period N)

1 (period N)
$$N \sum_{m=-\infty}^{\infty} \delta[k+Nm] = \begin{cases} N, & \text{if } n=0,\pm N,\pm 2N, \dots \\ 0, & \text{else.} \end{cases}$$

$$e^{j2\pi k_0 n} \qquad \qquad N\delta[((k-k_0))_N]$$

$$\cos(\frac{2\pi}{N}k_0n)$$
 $\frac{N}{2}(\delta[((k-k_0))_N] + \delta[((k+k_0))_N])$

Discrete Fourier Transform Properties

$$x[n]$$
 $\longrightarrow X[k]$
Linearity $ax[n] + by[n]$ $aX[k] + bY[k]$
Circular Shift $x[((n-m))_N]$ $X[k]e^{(-j\frac{2\pi}{N}km)}$
Duality $X[n]$ $NX[((-k))_N]$

Multiplication
$$x[n]y[n]$$
 $\frac{1}{N}X[k] \otimes Y[k]$, \otimes denotes the circular convolution

Convolution
$$x(t) \otimes y(t)$$
 $X[k]Y[k]$ $X^*[n]$ $X^*[((-k))_N]$ $X^*[k]$

$$jI\{x[n]\}$$
 $X_{op}[k] = \frac{1}{2} \{X[((k))_N] - X^*[((-k))_N]\}$

$$x_{ep}[n] = \frac{1}{2} \{x[n] + x^*[((-n))_N]\}$$
 R \{X[k]\}

$$x_{op}[n] = \frac{1}{2} \{x[n] - x^*[((-n))_N]\}$$
 jI\{X[k]\}

Other Discrete Fourier Transform Properties

Parseval's Theorem
$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2$$

Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 538

Back to Collective Table

2 of 2 10/8/2016 2:11 PM