Week 4, lecture 2: Euler Phi function MA180/185/190 Algebra

Angela Carnevale

More on prime numbers

Euler's Phi function

Facts about prime numbers

Recall that an integer p > 1 is called **prime** if its only divisors are 1 and p itself. If p is a prime and a and b are any integers, then

- either p divides a, or gcd(a,p) = 1;
- if $p|a \cdot b$ then p|a or p|b.

Eunique up to reordering of the factors

Prime numbers are the "building blocks" of the integers:

Fundamental Theorem of Arithmetic

Each integer n > 1 has a prime power factorisation

$$n = p_1^{e_1} \cdots p_k^{e_k},$$

where p_1, \ldots, p_k are distinct primes and e_1, \ldots, e_k are positive integers.

An integer n > 1 that is not a prime is called a **composite** number.

Fermat's little theorem

The following result is helpful when computing powers of some integer modulo a prime number.

Fermat's little theorem

Let p be a prime and let $a \not\equiv 0 \pmod{p}$ be an integer. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Note. An easy consequence of this theorem is that $a^p \equiv a \pmod{p}$ if a is any integer and p is a prime.

Fermat's little theorem: proof

Fermat's little theorem

Let p be a prime and let $a \not\equiv 0 \pmod{p}$ be an integer. Then

$$a^{p-1} \equiv 1 \pmod{p}$$
.

be as in the statement of the theorem. troof. Let a and p Consider the numbers: a, 2.a, 3.a, ..., (p-1).a Intermediate claim: a, 2a, ...(p-1) a are all DISTINCT modulo p suppose instead that we find i and 's such that i.a = j.a (mod p) that is, (i.a-j.a) is divisible by p. But then this tells us that pla(i-j) By the properties of pines, this means either pla or pl(i-j) but we know by hypothesis that pla

Fermat's little theorem: proof

Fermat's little theorem

Let p be a prime and let $a \not\equiv 0 \pmod{p}$ be an integer. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

50 pl (i-j) so i='j mod j and because they are both they have to be equal. This proves our intermediate clark.
So the product
$$a \cdot 2a \cdot 3a \cdot ... \cdot (p-1)a = 1 \cdot 2 \cdot 3 \cdot ... \cdot (p-1) \pmod{p}$$
that is: $1 \cdot 2 \cdot 3 \cdot ... \cdot q^{p-1} = 1 \cdot 2 \cdot 3 \cdot ... \cdot (p-1) \pmod{p}$

50 $a^{p-1} = 1 \pmod{p}$

Fermat's little theorem: example

Example. Find
$$x \in \mathbb{Z}_{19}$$
 such that $x \equiv 2^{68} \pmod{19}$.

 $gcd(2,19)=1$ and 19 is a prime to use can apply flT .

 $2^{18} \equiv 1 \pmod{19}$

By the Remainder Harren $68 = 3.18 + 14$ so:

 $2^{68} = 2^{18.3 + 14} = (2^{18})^3 \cdot 2^{14}$. Now mod 19 :

 $2^{18} \equiv 2^{18} = (2^{18})^3 \cdot 2^{14} = (32)^2 \cdot 16 = (13)^2 \cdot 16$
 $2^{18} \equiv 2^{18} = (2^{18})^3 \cdot 2^{14} = (32)^2 \cdot 16 = (13)^2 \cdot 16$
 $2^{18} \equiv 2^{18} = (2^{18})^3 \cdot 2^{14} = (32)^2 \cdot 16 = (13)^2 \cdot 16$
 $2^{18} \equiv 2^{18} = (2^{18})^3 \cdot 2^{14} = (32)^2 \cdot 16 = (13)^2 \cdot 16$
 $2^{18} \equiv 2^{18} = (2^{18})^3 \cdot 2^{14} = (32)^2 \cdot 16 = (13)^2 \cdot 16$
 $2^{18} \equiv 2^{18} = (2^{18})^3 \cdot 2^{14} = (32)^2 \cdot 16 = (13)^2 \cdot 16$

Exercise. Find the least non-negative integer x such that $x \equiv 3^{91} \pmod{23}$.

More on prime numbers

Euler's Phi function

Euler's Phi function

We have seen that given a modulus \mathfrak{m} , the numbers in $\mathbb{Z}_{\mathfrak{m}}$ that are **coprime** to \mathfrak{m} are the only ones which have **inverses** modulo \mathfrak{m} .

Definition (Euler's Phi function)

Let m be a positive integer. We define $\Phi(m)$ to be the number of integers in \mathbb{Z}_m that are coprime to m.

Examples.

 $\Phi(p) = p - 1$ for any prime number p.

Computing Euler's Phi function

To compute Euler's Phi function of composite numbers, we can use the following useful facts:

• If m and n are **coprime**, then

$$\Phi(mn) = \Phi(m)\Phi(n)$$

$$10 = 2.5$$
 so $\phi(10) = \phi(2) \cdot \phi(5) = 1.4 = 4$

Computing Euler's Phi function

To compute Euler's Phi function of composite numbers, we can use the following useful facts:

• If m and n are **coprime**, then

$$\Phi(mn) = \Phi(m)\Phi(n)$$

• If p is a **prime number** and e is a positive integer, then

$$\Phi(p^e) = p^e - p^{e-1}$$

$$\phi(8) = \phi(2^3) = 2^3 - 2^2 = 8 - 4 = 4$$

Computing Euler's Phi function

To compute Euler's Phi function of composite numbers, we can use the following useful facts:

• If m and n are **coprime**, then

$$\Phi(mn) = \Phi(m)\Phi(n)$$

• If p is a **prime number** and e is a positive integer, then

$$\Phi(p^e) = p^e - p^{e-1}$$

Example. How many numbers in \mathbb{Z}_{26} have an inverse?

Euler's Phi function and powers

Theorem

If gcd(a, m) = 1 then

$$a^{\Phi(m)} \equiv 1 \pmod{m}$$
.

Note. In the special case in which m is a prime number, this is Fermat's little theorem.

Example. Determine the last two digits of 3^{176} .