Tracing of curve

- (1) Tracing of cartisiancurve:
 - (a) Symmetric:
- (i) If f(x, y) be a given curve and the power of x is even then it is symmetric about y- axis.
 - (ii) If f(x, y) be a given curve and the power of y is even power then it is symmetric about x-axis.
 - (iii) If power of x & y both even then this curve is symmetric about x & y axis.

(b) Curve passing through origin:

If f(x, y) be a given curve and f(0, 0) = 0 then this curve passes through origin.

(c) Intersection with coordinate axis:

- If we put y = 0 in given curve then we get intersection point of curve and x-axis.
- (ii) If we put x = 0 in given curve we get intersection point of curve and y-axis

(d) **Asymtote**:

If f(x, y) is a curve

- (i) At x = a, if we get $y = \infty$, then Asymtote is parallel to y-axis.
- (ii) At y = a, if we get x = ∞, then Asymtote is parallel to x-axis.

Curve tracing of polar form:

(1) Symmetry:

(i) If $f(r, \theta) = f(r, -\theta)$

Then this curve is symmetric about initially line (i.e. $\theta = 0$ line)

(ii) If $f(r, \theta) = f(r, \pi - \theta)$

Then this curve is symmetric about $\theta = \frac{\pi}{2}$

line.

- (iii) Pole: Put r = 0, then find value of θ . Hence (r, θ) is a pole.
- (iv) Tangent at pole: Put r = 0, then value of θ is tangent at pole.

(v) Table:

r			-	2//	9				
θ	0	30	45	60	90	120	135	150	180

(vi) Asymtotes:

For any value of θ if r become ∞ , then a curve has asymtotes.

Q.1. The curve $ay^2 = x^2 (a - x)$ is passing through

(a)(0,1)

(b)(0,0)

(c)(1,0)

(d)(1,2)

Q.2. The cardiod $r = a(1 + \cos\theta)$ is symmetric about

(a)
$$\theta = 0$$
 line

(b)
$$\theta = \pi/4$$
 line

(c)
$$\theta = \pi/2$$
 line

(d) none of these

The tangent at origin of the curve $2y^2 = x^2(2 - x)$ is Q.3.

(a)
$$x = +2y$$
 and $x=-2y$ (b) $y = 2x$ and $y=-2x$

(b)
$$y = 2x$$
 and $y = -2x$

(c)
$$x = y$$
 and $x=-y$

(d) none of these

Double Integrals

Let f(x, y) is a function of two variable then double integral of f(x, y) is denoted by $\iint f(x, y) dx dy$ or $\iint f(x, y) dy dx$.

Note:

- (1) For $\iint f(x,y) dxdy$, f(x,y) is first integrated w.r.t. x and then it is integrated w.r.t. y.
- (2) For $\iint f(x, y) dy dx$, f(x, y) is first integrated w.r.t. y and then it is integrated w.r.t. x.

Find limit by a given curve:

(a) If the region A is bounded by the curves $y = f_1(x)$ & = $f_2(x)$ and the coordinate x = a and x = b.

Then strip is parallel to y-axis

Then
$$\iint_A f(x, y) dA = \int_{x=a}^b \int_{y=f_1(x)}^{y=f_2(x)} f(x, y) dy dx$$

(b) If the region A is the area bounded by the curve $x = \phi_1(y) & x = \phi_2(y)$ and coordinate y = a and y = b.

Then strip is parallel to x-axis

So,
$$\iint_A f(x, y) dA = \int_{y=a}^{y=b} \int_{x=\phi_1(y)}^{x=\phi_2(y)} f(x, y) dx dy$$

Dr.Gajendra Purohit (PhD,NET)
Referral Code FPSIR

Q.1. The value of $\iint xe^{y^2} dxdy$, where R is the region bounded by the line x = 0, y = 1 and the parabola $y = x^2$. IIT JAM-2006

(a)
$$-\frac{1}{4}[e-1]$$

(b)
$$\frac{1}{4}[e-1]$$

(c)
$$\frac{1}{4}[e+1]$$

(d) None

Q.2. The value of $\iint xy(x+y)dxdy$ over the area between $y^2 = x$ and y = x

(a)
$$\frac{1}{56}$$

(b)
$$\frac{3}{56}$$

(c)
$$\frac{5}{56}$$

(d)
$$\frac{3}{55}$$

The value of $\iint_R xy dx dy$, where R is the quadrant of the circle $x^2 + y^2 = a^2$ Q.3.

- (a) $a^4/8$ (b) $a^2/8$

- (c) a/8 (d) 3a/2