Assignment 3

PM522b Introduction to the Theory of Statistics Part 2

Due: February 6, 2018

- 1. Suppose $X_1,...,X_n \stackrel{iid}{\sim} N(\sigma,\sigma)$ where $\sigma > 0$. a) Find a minimal sufficient statistic for σ . b) Show that (\bar{X}, S^2) is a sufficient statistic but not complete for σ .
- 2. Let $X_1, ..., X_n$ be a random sample with pdf $f(x) = e^{-(x-\theta)}, x > \theta$. Show that $X_{(1)}$ is a complete sufficient statistic for θ and $X_{(n)} X_{(1)}$ is an ancillary statistic.
- 3. CB 6.21
- 4. Using R, create a likelihood plot (similar to that shown in Slides 3.pdf) for μ and σ^2 from a normal distribution. Choose your own experiment, but please state all of your assumptions.
- 5. Let $X_1, ..., X_n$ be a random sample with pdf $f(x|\theta) = \theta x^{\theta-1}$ where $\theta > 0$ and 0 < x < 1, find the maximum likelihood estimator for θ .
- 6. Let $X_1, ..., X_n$ be a random sample with pdf $f(x|\theta) = (\theta + 1)x^{\theta}$ for 0 < x < 1 and $\theta > -1$, find the MLE for θ .