Homework 03 Solutions

ECE 449/590, Fall 2022

1. (30 points) Let $\{x^{(1)},\ldots,x^{(m)}\}$ be sampled i.i.d. from a Gaussian distribution of mean μ and variance σ^2 . Let $\hat{\mu}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$ be an estimator of Gaussian mean μ . Show that $\operatorname{Var}(\hat{\mu}_m) = \frac{\sigma^2}{m}$.

Answer:

$$\operatorname{Var}(\hat{\mu}_{m}) = \mathbb{E}\left(\left(\hat{\mu}_{m} - \mathbb{E}(\hat{\mu}_{m})\right)^{2}\right)$$

$$= \mathbb{E}\left(\left(\frac{1}{m}\sum_{i=1}^{m}x^{(i)} - \mu\right)^{2}\right)$$

$$= \mathbb{E}\left(\left(\frac{1}{m}\sum_{i=1}^{m}(x^{(i)} - \mu)\right)^{2}\right)$$

$$= \frac{1}{m^{2}}\left(\sum_{i=1}^{m}\mathbb{E}\left((x^{(i)} - \mu)^{2}\right) + \sum_{i \neq j}\mathbb{E}\left((x^{(i)} - \mu)(x^{(j)} - \mu)\right)\right)$$

$$= \frac{1}{m^{2}}\left(\sum_{i=1}^{m}\operatorname{Var}(x^{(i)}) + 0\right)$$

$$= \frac{\sigma^{2}}{m}$$

2. (70 points) Considering the following neural network with inputs (x_1, x_2) , outputs (z_1, z_2, z_3) , and parameters $\boldsymbol{\theta} = (a, b, c, d, e, f, i, j, k, l, m, n, o, p, q)$,

$$\begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix},$$

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \text{ReLU}(g_1) \\ \text{ReLU}(g_2) \end{pmatrix},$$

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} i & j \\ k & l \\ m & n \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + \begin{pmatrix} o \\ p \\ q \end{pmatrix}.$$

A. (15 points) For a minibatch containing a single training sample $(x_1, x_2, y = 2)$, apply softmax and write down the cross-entropy loss function $J(\boldsymbol{\theta})$ as a function of (z_1, z_2, z_3) . Compute $\frac{\partial J}{\partial z_1}$, $\frac{\partial J}{\partial z_2}$, $\frac{\partial J}{\partial z_3}$ as functions of (z_1, z_2, z_3) .

Answer: According to Lecture 19 Slide 13, note that y = 2:

$$\frac{\partial J}{\partial z_1} = \frac{\exp(z_1)}{\exp(z_1) + \exp(z_2) + \exp(z_3)},$$

$$\frac{\partial J}{\partial z_2} = \frac{\exp(z_2)}{\exp(z_1) + \exp(z_2) + \exp(z_3)} - 1,$$

$$\frac{\partial J}{\partial z_3} = \frac{\exp(z_3)}{\exp(z_1) + \exp(z_2) + \exp(z_3)}.$$

B. (20 points) Base on A., apply backprop to compute $\frac{\partial J}{\partial i}$, $\frac{\partial J}{\partial j}$, $\frac{\partial J}{\partial k}$, $\frac{\partial J}{\partial l}$, $\frac{\partial J}{\partial m}$, $\frac{\partial J}{\partial n}$, $\frac{\partial J}{\partial o}$, $\frac{\partial J}{\partial p}$, $\frac{\partial J}{\partial q}$, $\frac{\partial J}{\partial h_1}$, $\frac{\partial J}{\partial h_2}$.

Answer: According to Lecture 19 Slide 16, derivatives to weights are:

$$\begin{split} \frac{\partial J}{\partial i} &= h_1 \frac{\partial J}{\partial z_1}, & \frac{\partial J}{\partial j} &= h_2 \frac{\partial J}{\partial z_1}, \\ \frac{\partial J}{\partial k} &= h_1 \frac{\partial J}{\partial z_2}, & \frac{\partial J}{\partial l} &= h_2 \frac{\partial J}{\partial z_2}, \\ \frac{\partial J}{\partial m} &= h_1 \frac{\partial J}{\partial z_3}, & \frac{\partial J}{\partial n} &= h_2 \frac{\partial J}{\partial z_3}. \end{split}$$

Derivatives to bias are:

$$\frac{\partial J}{\partial o} = \frac{\partial J}{\partial z_1}, \qquad \qquad \frac{\partial J}{\partial p} = \frac{\partial J}{\partial z_2}, \qquad \qquad \frac{\partial J}{\partial q} = \frac{\partial J}{\partial z_3}.$$

Derivatives to inputs are:

$$\frac{\partial J}{\partial h_1} = i \frac{\partial J}{\partial z_1} + k \frac{\partial J}{\partial z_2} + m \frac{\partial J}{\partial z_3}, \qquad \frac{\partial J}{\partial h_2} = j \frac{\partial J}{\partial z_1} + l \frac{\partial J}{\partial z_2} + n \frac{\partial J}{\partial z_3}.$$

C. (20 points) Base on B., apply backprop to compute $\frac{\partial J}{\partial a}$, $\frac{\partial J}{\partial b}$, $\frac{\partial J}{\partial c}$, $\frac{\partial J}{\partial d}$, $\frac{\partial J}{\partial e}$, $\frac{\partial J}{\partial e}$, $\frac{\partial J}{\partial e}$, the compute $\frac{\partial J}{\partial x_1}$ and $\frac{\partial J}{\partial x_2}$. (Hint: use the step function u(x) as the derivative of ReLU(x).)

Answer: First of all, we need to apply backprop to ReLU according to Lecture 19 Slide 11:

$$\frac{\partial J}{\partial g_1} = u(g_1) \frac{\partial J}{\partial h_1}, \qquad \qquad \frac{\partial J}{\partial g_2} = u(g_2) \frac{\partial J}{\partial h_2}.$$

Similar to B., we have,

we have,
$$\frac{\partial J}{\partial a} = x_1 \frac{\partial J}{\partial g_1}, \qquad \frac{\partial J}{\partial b} = x_2 \frac{\partial J}{\partial g_1}, \\
\frac{\partial J}{\partial c} = x_1 \frac{\partial J}{\partial g_2}, \qquad \frac{\partial J}{\partial d} = x_2 \frac{\partial J}{\partial g_2}, \\
\frac{\partial J}{\partial e} = \frac{\partial J}{\partial g_1}, \qquad \frac{\partial J}{\partial f} = \frac{\partial J}{\partial g_2}.$$

There is no need to compute $\frac{\partial J}{\partial x_1}$ and $\frac{\partial J}{\partial x_2}$ because we have reached the first layer.

D. (15 points) For the learning rate ϵ , show the equation to apply the simple SGD algorithm to update $\boldsymbol{\theta}$ for this minibatch.

Answer: We now have:

The SGD update will be:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \nabla_{\boldsymbol{\theta}} J.$$