



# Lectura de Apoyo: "Los Pilares de la Termodinámica: Un Viaje por los Procesos Fundamentales"

Esta lectura de apoyo complementa las sesiones presenciales del tema de **Procesos Termodinámicos** correspondiente a la **Unidad IV** de la asignatura E-TEA-3. Su objetivo es proporcionar una comprensión sólida de las **transformaciones fundamentales de energía** que constituyen los bloques básicos de construcción de los ciclos termodinámicos.

# INTRODUCCIÓN: LOS BLOQUES DE CONSTRUCCIÓN DE LAS MÁQUI-NAS TÉRMICAS

¡Hola de nuevo! En nuestro viaje anterior, exploramos el Ciclo de Carnot, el modelo ideal de eficiencia. Ahora, vamos a dar un paso atrás para entender sus componentes básicos: los **procesos termodinámicos**.

Un proceso termodinámico es cualquier transformación en la que un sistema (como un gas en un pistón) cambia de un estado a otro (Cengel & Boles, 2002). Imagina que son los "movimientos" individuales que, combinados, crean el "baile" completo de un ciclo de motor o un refrigerador.

Nos centraremos en cuatro procesos idealizados que son la base de casi todos los ciclos termodinámicos: **isotérmico**, **isobárico**, **isocórico** y **adiabático**. ¡Comencemos!

## 1. PROCESO ISOTÉRMICO: A TEMPERATURA CONSTANTE

Un proceso isotérmico es aquel que ocurre manteniendo la temperatura constante (T =constante).

#### ¿Qué sucede?

Para que la temperatura no cambie mientras el gas se expande (y realiza trabajo) o se comprime (y se le aplica trabajo), el sistema debe estar en perfecto contacto con un **depósito de calor** (un foco caliente o frío).

**En expansión:** El gas tiende a enfriarse al expandirse. Para mantener la temperatura, absorbe calor (Q) del depósito.

**En compresión:** El gas tiende a calentarse al ser comprimido. Para mantener la temperatura, cede calor (*Q*) al depósito.

#### La Clave es la Lentitud

Este proceso debe ser muy lento (cuasiestático) para que el calor tenga tiempo de fluir y mantener la temperatura uniforme y constante.

#### Primera Ley de la Termodinámica

 $\Delta U=Q-W$ : Para un gas ideal, la energía interna ( $\Delta U$ ) solo depende de la temperatura (Wark, 2001). Si la temperatura es constante,  $\Delta U=0$ . Por lo tanto, la ley se simplifica a:

$$Q = W$$

Esto significa que todo el calor que entra se convierte en trabajo de expansión, y todo el trabajo de compresión se convierte en calor que sale.





## Diagrama Presión-Volumen (P-V)

Se representa como una curva suave llamada **hipérbola**. A medida que el volumen aumenta, la presión disminuye proporcionalmente.

## 2. PROCESO ISOBÁRICO: A PRESIÓN CONSTANTE

Un proceso isobárico es aquel que ocurre manteniendo la presión constante (P =constante).

## ¿Qué sucede?

Imagina un pistón libre de moverse pero con un peso constante encima. Si calentamos el gas, este se expandirá y levantará el pistón (y el peso), pero la presión ejercida por el peso y la atmósfera no cambiará.

- Si se añade calor (Q), el gas se expande  $(\Delta V$  es positivo) y realiza trabajo (W). Su temperatura y energía interna también aumentan.
- Si se retira calor, el gas se contrae y su temperatura y energía interna disminuyen.

#### Primera Ley de la Termodinámica

Aquí, ningún término es necesariamente cero. El calor añadido se reparte entre aumentar la energía interna y realizar trabajo:

$$\Delta U = Q - W$$

El trabajo es fácil de calcular, ya que la presión es constante:

$$W = P \cdot \Delta V = P \cdot (V_{\text{final}} - V_{\text{inicial}})$$

#### Diagrama P-V

Se representa como una línea horizontal. El volumen cambia, pero la presión se mantiene en el mismo nivel.

## 3. PROCESO ISOCÓRICO: A VOLUMEN CONSTANTE

Un **proceso isocórico** (o isométrico) es aquel que ocurre manteniendo el volumen constante (V= constante).

#### ¿Qué sucede?

El sistema está en un contenedor rígido. Como las paredes no se mueven, el gas no puede expandirse ni comprimirse. Por lo tanto, no se realiza trabajo.

- Si se añade calor (Q), toda esa energía se invierte en aumentar la energía interna del gas  $(\Delta U)$ , lo que se traduce en un aumento de su temperatura y presión.
- Si se retira calor, la energía interna, la temperatura y la presión disminuyen.





#### Primera Ley de la Termodinámica

Como el cambio de volumen es cero, el trabajo ( $W=P\cdot \Delta V$ ) también es cero (Manrique Valadez, 2001). La ley se simplifica drásticamente:

$$\Delta U = Q$$

Todo el calor transferido afecta directamente a la energía interna del sistema.

#### Diagrama P-V

Se representa como una línea vertical. La presión cambia, pero el volumen permanece fijo.

## 4. PROCESO ADIABÁTICO: SIN INTERCAMBIO DE CALOR

Un **proceso adiabático** es aquel en el que no hay transferencia de calor entre el sistema y su entorno (Q=0) (Wikipedia, la enciclopedia libre, s.f.-a).

#### ¿Qué sucede?

El sistema está perfectamente aislado. Cualquier cambio en su energía se debe únicamente al trabajo. **Expansión adiabática:** Si el gas se expande, realiza trabajo utilizando su propia energía interna. Como resultado, el gas se enfría. (Ej: el aire que sale de una lata de aire comprimido se siente frío).

**Compresión adiabática:** Si se realiza trabajo sobre el gas para comprimirlo, esa energía se almacena como energía interna. Como resultado, el gas se calienta. (Ej: el bombín de una bicicleta se calienta al inflar una rueda rápidamente).

## La Clave es la Rapidez

A diferencia del proceso isotérmico, un proceso adiabático real suele ser muy rápido para que el calor no tenga tiempo de escapar.

## Primera Ley de la Termodinámica

Con Q = 0, la ley se simplifica a:

$$\Delta U = -W$$

El cambio en la energía interna es el negativo del trabajo realizado.

## Diagrama P-V

Se representa como una curva más pronunciada que una isoterma. Para la misma expansión, la presión en un proceso adiabático cae más rápido porque la temperatura también está bajando.





# TABLA RESUMEN DE LOS PROCESOS TERMODINÁMICOS

| Proceso    | Variable Constante | Transferencia<br>de Calor (Q) | Trabajo Reali-<br>zado (W) |                    |
|------------|--------------------|-------------------------------|----------------------------|--------------------|
| Isotérmico | Temperatura        | Q = W                         | Varía                      | $\Delta U = 0$     |
|            | $\mid (T)$         |                               |                            |                    |
| Isobárico  | Presión (P)        | Varía                         | $W = P \cdot \Delta V$     | $\Delta U = Q - W$ |
| Isocórico  | Volumen (V)        | $Q = \Delta U$                | W = 0                      | Varía              |
| Adiabático | Sin calor ( $Q =$  | Q = 0                         | $W = -\Delta U$            | Varía              |
|            | 0)                 |                               |                            |                    |

| Proceso    | Apariencia en Diagrama<br>P-V |  |
|------------|-------------------------------|--|
| Isotérmico | Curva Hiperbólica             |  |
| Isobárico  | Línea Horizontal              |  |
| Isocórico  | Línea Vertical                |  |
| Adiabático | Curva Pronunciada             |  |

# CONCLUSIÓN: EL ALFABETO DE LA ENERGÍA

Estos cuatro procesos son como el **alfabeto de la termodinámica** (Wikipedia, la enciclopedia libre, s.f.-b). Al combinarlos de diferentes maneras, podemos describir y analizar los ciclos que impulsan nuestro mundo, desde los **motores de los coches** (ciclos Otto y Diesel) hasta las **centrales eléctricas** (ciclo Rankine) y los **sistemas de refrigeración**.

Comprender cómo se comporta la energía en cada uno de estos pasos es fundamental para diseñar sistemas más eficientes y sostenibles.

La comprensión profunda de estos procesos fundamentales permite:

- Analizar el comportamiento de sistemas térmicos complejos
- Optimizar el diseño de motores y máquinas térmicas
- Predecir el rendimiento de ciclos termodinámicos
- Desarrollar tecnologías más eficientes y ambientalmente responsables

En las siguientes sesiones, aplicaremos estos conceptos fundamentales al análisis detallado de ciclos termodinámicos específicos utilizados en sistemas automotrices.

## Referencias

#### Referencias

Cengel, Y. A., & Boles, M. A. (2002). *Termodinámica – An Engineering Approach*. McGraw Hill. Manrique Valadez, J. A. (2001). *Termodinámica*. Oxford University Press Mexico. Wark, K. J. (2001). *Termodinámica*. McGraw Hill.





- Wikipedia, la enciclopedia libre. (s.f.-a). *Proceso adiabático* [ID de versión permanente: 166190687]. Consultado el 30 de julio de 2025, desde https://es.wikipedia.org/w/index.php?title=Proceso\_adiab% C3%A1tico&oldid=166190687
- Wikipedia, la enciclopedia libre. (s.f.-b). *Termodinámica* [ID de versión permanente: 167519991]. Consultado el 30 de julio de 2025, desde https://es.wikipedia.org/w/index.php?title=Termodin%C3% A1mica&oldid=167519991