

Physique: Interrogation n°4

Lundi 7 Mai

Durée: 1h30

CORRIGE

	CORRIGE
EXER	CCICE 1:
1)	Tracé des rayons **E Les interférences se forment sur la lame semi-réfléchissante. On pout les charges par le la lame semi-réfléchissante.
	On peut les observer sur un écran avec une lentille.
2)	$\delta = 2x\sin(\varepsilon)n_{air} \approx 2x\varepsilon n_{air}$
	La différence de marche dépend de x, donc les franges sont rectilignes perpendiculaires à l'axe Ox.
3)	Les franges brillantes d'ordre p sont données par $\delta = 2x_p \varepsilon n_{air} = p\lambda$ Donc l'interfrange vaut $i = x_{p+1} - x_p = \frac{\lambda}{2\varepsilon n_{air}}$ AN 152,5 µm
4)	Dans une zone avec dépôt $\delta' = (2x\varepsilon - 2e)n_{air}$
5)	Pour la frange d'ordre p, dans une zone sans dépôt $x_p = \frac{p\lambda}{2\varepsilon n_{air}}$
	Dans une zone avec dépôt $x_p' = \frac{p\lambda + 2n_{air}e}{2\varepsilon n_{air}}$
	$\Delta = \frac{e}{\varepsilon}$ AN e=0,0017 µm
6)	On augmente ε , l'interfrange et Δ diminuent

EXERCICE 2: Diffraction

- D'après le principe d'Huygens Fresnel, chaque point M recevant une onde se comporte comme une source secondaire qui réémet une onde sphérique de même fréquence et d'amplitude proportionnelle à l'amplitude de l'onde incidente (l'important est source secondaire ou formulation équivalente).
 - L'onde diffractée à l'infini résulte donc des interférences des ondes issues de chacune de ces sources (ondes cohérentes)

2)	Source (onde plane) + plaque trouée + 2 rayons qui sortent d'une ouverture (la même ou différente) avec un même angle theta puis lentille et écran à la distance focale
	L'onde plane est soit créée par un laser de faisceau assez large pour l'ouverture ou source ponctuelle dans plan focal d'une lentille
3)	Observation de la forme de la figure de diffraction : anneaux concentriques, avec un deuxieme anneau de faible intensité par rapport au premier,
	donc diffraction générée par une ouverture ciculaire (trou)
4)	Mesure du rayon (r_mes) du premier cercle pour lequel l'intensité diffractée s'annule. Prise en compte de l'échelle : diviser par 2 la mesure, (r_reel)
	détermination de l'angle θ correspondant en utilisant: $\tan \theta = \frac{r}{f}$.
	theta et r(r_reel) doivent apparaitre explicitement sur le schema
	En utilisant $\tan(\text{theta}) \sim \sin \theta = 1,22 \frac{\lambda}{\phi}$. (dans l'enoncé)
	On trouve $\phi = 1.22 \frac{\lambda f'}{r_{reel}}$
	Pour un rayon du cercle avec I = 0 de r-mes=27 mm, (accepter 2.7 < r_mes < 3cm) on trouve un diamètre d'ouverture 5,8 μm (compter juste AN coherente mm si r_mes faux)
	Avec les hypothèses retenues, on obtient facilement : $\phi = 1,22 \frac{\lambda f}{r}, \Delta \phi = 1,22 \frac{\lambda f}{r^2} \Delta r$
	Autre méthode : on calcule d'abord l'incertitude relative qui donne $\frac{\Delta \phi}{\phi} = \frac{\Delta r}{r}$, autre methode : par
	encadrement (methode 1A) 1.22 $\frac{\lambda f'}{r_{reelmax}} < \phi < 1.22 \frac{\lambda f'}{r_{reelmin}}$ La mesure du rayon du cercle pour lequel l'intensité s'annule est délicate (plus facile verticalement) et une gamme de mesure acceptable est de 24 à 30 mm, soit une incertitude de 2 ou 3 mm, ce qui donne une incertitude sur ϕ de l'ordre de 0,5 μ m
5)	Système de franges verticales et horizontales : positionnement des trous sur la plaque aux sommets d'un rectangle de dimensions a (selon l'axe x horizontal) et b (selon l'axe y vertical). On note que $a > b$.
	Les étudiants pourraient penser à un autre positionnement : losange avec diagonale de longueur a et b respectivement. Après calcul, la figure de diffraction obtenue ne serait pas compatible avec celle de l'énoncé. On peut néanmoins compter les points
i	Mesure des interfranges en x et y entre les interférences destructives, plus précis : 7 (6,5 à 7,5) et 11 (10,5 à 11,5) mm respectivement selon x et y sur l'image.
	L'interfrange entre deux trous espacés d'une distance a vaut $f' \mathcal{N} a$, ce qui permet de trouver : $a=18$ μm (gamme acceptable 16,5 à 19,5) et $b=11,5$ μm (11 à 12 mm) respectivement
	Justification l'expression de l'interfrange : dessin avec des rayons qui partent de deux ouvertures séparées d'une distance a et qui convergent vers un même point de l'écran ou autre démonstration précise $(0,5 \text{ pour } \delta = f(\theta), 0,5 \text{ pour } \theta = f(f', x) \text{ et } 0,5 \text{ pour lien entre i et } \delta)$
6)	-Si la plaque était translatée de 1 cm perpendiculairement à l'axe optique : aucune modification de la figure de diffraction car la source n'est pas modifiée
	- Si la plaque métallique subit une rotation d'un angle $+\pi/2$ (sens trigonométrique) autour de l'axe z, la figure d'interférences subit une rotation, mais pas de modification pour la diffraction
	- Si le laser éclaire la plaque avec un angle d'incidence alpha + 10° (sens trigo) dans le plan (x, z) , il y a translation de la figure de diffraction vers le haut (x positifs)
7)	Au centre de la figure d'interférences : $I_{\text{max}} = 16I_0$ ($A_{\text{max}} = 4A_0$) et $I_{\text{min}} = 0$