О длине некоторых периодических функций пятизначной логики в классе поляризованных полиномиальных форм

Гордеев Михаил Михайлович

Cmyдент

Факультет ВМК МГУ имени М. В. Ломоносова, Москва, Россия E-mail: gordmisha@gmail.com

Одним из стандартных способов задания функций k-значной логики являются поляризованные полиномиальные формы (ППФ). В ППФ каждая переменная имеет определенную поляризацию. попарно различных слагаемых в ней. Практическое применение ППФ нашли при построении программируемых логических матриц (ПЛМ) [1], сложность ПЛМ напрямую зависит от длины ППФ, по которой она построена. Поэтому в ряде работ исследуется сложность ППФ различных функций [2-4].

Пусть $k\geqslant 2$ — натуральное число, $E_k=\{0,1,\ldots,k-1\}$, отображение $f^{(n)}:E_k^n\to E_k$ называется функцией k-значной логики. Обозначим через P_k^n множество всех функций k-значной логики, зависящих от n переменных. Поляризованным мономом K^δ по вектору поляризации $\delta=(d_1,\ldots,d_n)\in E_k^n$, назовем выражение вида $(x_{i_1}+d_{i_1})^{m_1}\cdots (x_{i_r}+d_{i_r})^{m_r}$. Поляризованная полиномиальная нормальная форма (ППФ) по вектору поляризации δ — это выражение вида $\sum_{i=1}^l c_i \cdot K_i^\delta$, где $c_i \in E_k \setminus \{0\}$, и $K_i^\delta \neq K_j^\delta$ при $i \neq j$. Число l называется длиной ППФ.

Известно, что при каждом простом k каждая функция k-значной логики $f(x_1,\ldots,x_n)$ задается однозначной ППФ $P^\delta(f)$ по каждому вектору поляризации $\delta\in E_k^n$. Пусть l(P) обозначает длину ППФ $P,\ l(f)$ обозначает наименьшую длину среди всех ППФ, представляющих функцию k-значной логики f. Введем функцию Шеннона $L_k(n)$ длины функций k-значной логики в классе ППФ: $L_k(n)=\max_{f\in P_k^n}\min_{\delta\in E_k^n}l(P^\delta(f))$. Перязев Н. А. в 1995 г. получил точное значение

функции Шеннона для функций алгебры логики: $L_2(n) = \left[\frac{2^{n+1}}{3}\right]$. Селезнева С. Н. в 2002 г. нашла верхнюю оценку функции Шеннона для функций k-значной логики при простых k: $L_k(n) < \frac{k(k-1)}{k(k-1)+1}k^n$. Маркелов Н. К. в 2012 г. получил нижнюю оценку функции Шеннона для функций трехзначной логики: $L_3(n) \geqslant \left[\frac{3}{4}3^n\right]$.

 Φ ункция k-значной логики $f(x_1,\ldots,x_n)$ называется симметри-

ческой, если $f(\pi(x_1),\ldots,\pi(x_n))=f(x_1,\ldots,x_n)$ для произвольной перестановки π на множестве переменных $\{x_1,\ldots,x_n\}$. Симметрическая функция $f_{\tau}^{(n)}$ называется периодической с периодом $\tau=(\tau_0\tau_1\ldots\tau_{T-1})\in E_k^T$, если $f(\alpha)=\tau_j$ при $|\alpha|=j\pmod T$ для всех $\alpha=(a_1,\ldots,a_n)\in E_k^n$, $|\alpha|=\sum_{i=1}^n a_i$. Пусть $T\geqslant 1$, $\Pi=\{\tau_1,\ldots,\tau_s|\tau_i\in E_k^T\}$, $A_{\Pi}=\{f_{\tau}^{(n)}|\tau\in\Pi,n\geqslant 1\}$. Класс A_{Π} называется вырожденным, если для всех периодов $\tau\in\Pi$ верно, что $l(f_{\tau}^{(n)})=\bar{o}(k^n)$ при $n\to\infty$.

Рассмотрим периодические симметрические функции $f_n = f_{(1,1,4,4)}^{(n)} \in P_5^n$ и $g_n = f_{(1,4,4,1)}^{(n)} \in P_5^n$ с периодами (1,1,4,4) и (1,4,4,1) соответственно, $n \geqslant 1$. Введем класс \mathcal{A} функций пятизначной логики вида $a \cdot f_n + b \cdot g_n$, $a,b \in E_5$, $a \neq 0$ или $b \neq 0$. И его подкласс \mathcal{F} , состоящий из функций $c \cdot f_n$, $c \cdot g_n$, $c \cdot (f_n + g_n)$, $c \cdot (f_n + 4g_n)$, $c \in \{1,2,3,4\}$.

В работе получены следующие результаты.

Теорема 1. Если $n\geqslant 1,$ $\varphi_n=f_n+2$ $g_n\in P_5^n$ или $\varphi_n=f_n+3$ $g_n\in P_5^n$

 P_5^n , то для любого вектора поляризации $\delta=(d_1,\ldots,d_n)\in E_5^n$ верно

$$l(P^{\delta}(\varphi_n)) = 5^{n-m} \cdot 4^m,$$

где $m = \begin{cases}$ количество «4» в векторе $\delta, \$ если $\varphi_n = f_n + 2 \ g_n; \$ количество «2» в векторе $\delta, \$ если $\varphi_n = f_n + 3 \ g_n. \$

Теорема 2. Если $n \geqslant 1$, $\varphi_n(x_1, \ldots, x_n) \in \mathcal{F}$ и n четно, то

$$l(\varphi_n) \leqslant 5^n \left(2 \cdot \left(\frac{4}{5} \right)^{\frac{n}{2}} - \left(\frac{4}{5} \right)^n \right).$$

Следствие. Класс функций А является вырожденным.

Литература

- 1. Sasao T., Besslich P. On the complexity of mod-2 sum PLA's. IEEE Trans.on Comput. 39. №2. 1990. P. 262–266.
- 2. Перязев Н. А. *Сложность булевых функций в классе полино-миальных поляризованных форм.* Алгебра и логика. 34. №3. 1995. С. 323–326.
- 3. Селезнева С. Н. *О сложности представления функций многозначных логик поляризованными полиномами.* Дискретная математика. 14. №2. 2002. С. 48–53.

4. Маркелов Н. К. *Нижняя оценка сложности функций трех- значной логики в классе поляризованных полиномов.* Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика. № 3. 2012. С. 40–45.