CIS580 Problem Set 7

Sheil Sarda <sheils@seas.upenn.edu> CIS580 Spring 2021

Contents

1	Scale Invariant Detection			
	1.1 Laplacian of Gaussian		cian of Gaussian	1
	1.2	Appro	eximating a LoG by a DoG	2
		1.2.1	Difference of Gaussians	2
		1.2.2	DoG gets closer to LoG as $k \to 1$	
		1.2.3	Dropping the normalizing factor	3

1 Scale Invariant Detection

1.1 Laplacian of Gaussian

1.2 Approximating a LoG by a DoG

1.2.1 Difference of Gaussians

The plots obtained indicate that as k increases from $1 \to 2$, the Difference of Gaussians approximation is scaled down in magnitude.

Figure 3

1.2.2 DoG gets closer to LoG as $k \to 1$

We expect this to happen because in the provided expression, as $k \to 1$, the LoG will approach the DoG.

$$LoG_{\sigma} = \frac{1}{(k-1)\sigma^2} DoG_{\sigma}$$

1.2.3 Dropping the normalizing factor

We intentionally forget the normalizing factor and just use the difference of Gaussians because the product of a scalar and a Normal distribution will simply apply the constant as a scaling factor to both terms in the DoG expression.