Deformations of Comonoids-in-Species, Coalgebras, Hopf Algebras and their Quasisymmetric Invariants

C.Y. Amy Pang

Department of Mathematics, Hong Kong Baptist University

Deformations of Quasisymmetric Invariants

Wanted: people who work with quasisymmetric invariants e.g. chromatic symmetric functions for graphs, Billera-Jia-Reiner invariant for matroids, Ehrenboug rank-generating function for posets, ...

Deformations of Quasisymmetric Invariants

Wanted: people who work with quasisymmetric invariants e.g. chromatic symmetric functions for graphs, Billera-Jia-Reiner invariant for matroids, Ehrenboug rank-generating function for posets, ...

- **Idea:** Quasisymmetric invariants are the image of the Aguiar-Bergeron-Sottile morphism: coalgebra $\rightarrow QSym$.
 - There is a general framework to q-deform the coalgebra $\rightarrow q$ -deformation of quasisymmetric invariants.
 - I would like applications for the deformed invariants.

Deformations of Quasisymmetric Invariants

Wanted: people who work with quasisymmetric invariants e.g. chromatic symmetric functions for graphs, Billera-Jia-Reiner invariant for matroids, Ehrenboug rank-generating function for posets, ...

- **Idea:** Quasisymmetric invariants are the image of the Aguiar-Bergeron-Sottile morphism: coalgebra $\rightarrow QSym$.
 - There is a general framework to q-deform the coalgebra $\rightarrow q$ -deformation of quasisymmetric invariants.
 - I would like applications for the deformed invariants.

Currently, each coalgebra deformation is calculated case-by-case (if the coalgebra is noncocommutative).

Dream: Find a uniform deformation formula.

Consider graphs on vertices labelled $\{1, 2, \dots, n\}$,

Consider graphs on vertices labelled $\{1, 2, \dots, n\}$,

Coalgebra structure:

$$\Delta_{\{2,4\},\{1,3,5\}}(x) = -1 -2 \otimes \frac{1}{1} - \frac{2}{2} - \frac{3}{3}$$

Consider graphs on vertices labelled $\{1, 2, \dots, n\}$,

Coalgebra structure:

Consider graphs on vertices labelled $\{1, 2, \dots, n\}$,

Coalgebra structure:

Define $\gamma_{S,T}(x) =$ number of edges s-t in x with s < t. Add $q^{\gamma_{S,T}}(x)$ as a coefficient in $\Delta_{S,T}(x)$.

$$\Delta_{\{2,4\},\{1,3,5\}}(x) = q \cdot 1 \qquad 2 \otimes \frac{1}{2} \qquad 3$$

Consider graphs on vertices labelled $\{1, 2, \dots, n\}$,

Coalgebra structure:

Define $\gamma_{S,T}(x) =$ number of edges s-t in x with s < t. Add $q^{\gamma_{S,T}}(x)$ as a coefficient in $\Delta_{S,T}(x)$.

$$\Delta_{\{2,4\},\{1,3,5\}}(x) = q \cdot 1 \qquad 2 \otimes 1$$

$$\Delta_{\{1,2,4\},\{3,5\}}(x) = q^3 \cdot 1 \qquad 2 \otimes 3$$

$$\Delta_{\{1,2,4\},\{3,5\}}(x) = q^3 \cdot 1 \qquad 2$$

both are disconnected graphs

 \therefore contributes $q^3x_1^3x_2^2$ to CQSF