TECNOLÓGICO DE MONTERREY

Computational intelligence

Homework 4

Student:
Jacob Rivera

Professor: Dr. José Carlos BAYLISS

September 18, 2019

Problems

1. Tournament selection

	Population	f
A	010111000	-1
В	011101001	4
\mathbf{C}	111000110	-2
D	100001000	1
\mathbf{E}	010101000	-1

- How many copies of each chromosome are present in the mating pool?
 - A: 0
 - B: 3
 - C: 0
 - D: 2
 - E: 0
- What is the average fitness of the chromosomes in the mating pool?

2.8

• If the tournament size is reduced to one, what is the probability that the chromosome 100001000 appears in the mating pool?

100%

• If the tournament size is increased to five, and both crossover and mutation rate are set to zero, what is the probability that the chromosome 010111000 survives to the next population?

0%

2. Whole arithmetic crossover

$$x = \{0.18, 0.75, 0.92, 0.26, 0.44\}$$
$$y = \{0.36, 0.77, 0.62, 0.13, 0.51\}$$

$$c_{.5}^{1} = \{0.27, .76, .77, .195, .475\}$$

$$c_{.5}^{2} = \{0.27, .76, .77, .195, .475\}$$

$$c_{.1}^{2} = \{0.342, 0.768, 0.65, 0.143, 0.503\}$$

$$c_{.5}^{2} = \{0.198, 0.752, 0.89, 0.247, 0.447\}$$

3. Exponential ranking selection

	Population	f
A	6661166703	5
В	3306772232	5
\mathbf{C}	0489794549	4
D	2660088784	4
\mathbf{E}	3578647359	3

- 4. Schemata
- 5. Practical case
- 6. Analysis