step for regression model with statsmodel

```
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
```

import dataframe

df=pd.read_csv('https://github.com/YBI-Foundation/Dataset/raw/main/Fish.csv')
df.head()

	Category	Species	Weight	Height	Width	Length1	Length2	Length3
0	1	Bream	242.0	11.5200	4.0200	23.2	25.4	30.0
1	1	Bream	290.0	12.4800	4.3056	24.0	26.3	31.2
2	1	Bream	340.0	12.3778	4.6961	23.9	26.5	31.1
3	1	Bream	363.0	12.7300	4.4555	26.3	29.0	33.5
4	1	Bream	430.0	12.4440	5.1340	26.5	29.0	34.0

×

✓ 2s completed at 5:12 PM

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 159 entries, 0 to 158 Data columns (total 8 columns): Column Non-Null Count Dtype Category 159 non-null int64 159 non-null object Species 1 Weight 159 non-null float64 Height 159 non-null float64 Width float64 159 non-null 5 Length1 159 non-null float64

7 Length3 159 non-null float64
dtypes: float64(6), int64(1), object(1)

159 non-null

float64

memory usage: 10.1+ KB

Length2

get a summary statics

df.describe()

	Category	Weight	Height	Width	Length1	Length2	Length3
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	3.264151	398.326415	8.970994	4.417486	26.247170	28.415723	31.227044
std	1.704249	357.978317	4.286208	1.685804	9.996441	10.716328	11.610246
min	1.000000	0.000000	1.728400	1.047600	7.500000	8.400000	8.800000
25%	2.000000	120.000000	5.944800	3.385650	19.050000	21.000000	23.150000
50%	3.000000	273.000000	7.786000	4.248500	25.200000	27.300000	29.400000

75%	4.500000	650.000000	12.365900	5.584500	32.700000	35.500000	39.650000
max	7.000000	1650.000000	18.957000	8.142000	59.000000	63.400000	68.000000

get the shape

define y(depedent, lable or target variable) x(indepedent of feturs of independent variable)

```
y=df['Weight']

y.shape
(159,)

y

0 242.0
1 200 0
```

```
2 340.0

3 363.0

4 430.0

...

154 12.2

155 13.4

156 12.2

157 19.7

158 19.9

Name: Weight, Length: 159, dtype: float64
```

x=df[['Height', 'Width', 'Length1', 'Length2', 'Length3']]

use drop function to define x

```
x=df.drop(['Category', 'Species', 'Weight'],axis=1)
x.shape
  (159, 5)
```

X

	Height	Width	Length1	Length2	Length3
0	11.5200	4.0200	23.2	25.4	30.0
1	12.4800	4.3056	24.0	26.3	31.2
2	12.3778	4.6961	23.9	26.5	31.1
3	12.7300	4.4555	26.3	29.0	33.5
4	12.4440	5.1340	26.5	29.0	34.0

•••					
154	2.0904	1.3936	11.5	12.2	13.4
155	2.4300	1.2690	11.7	12.4	13.5
156	2.2770	1.2558	12.1	13.0	13.8
157	2.8728	2.0672	13.2	14.3	15.2
158	2.9322	1.8792	13.8	15.0	16.2

159 rows × 5 columns

add constant to feature (X) intercept estimation

```
import·statsmodels.api·as·sm
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is depre import pandas.util.testing as tm

```
x=sm.add_constant(x)
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning: In a future version of pandas x = pd.concat(x[::order], 1)

x.head()

	const	Height	Width	Length1	Length2	Length3
0	1.0	11.5200	4.0200	23.2	25.4	30.0
1	1.0	12.4800	4.3056	24.0	26.3	31.2
2	1.0	12.3778	4.6961	23.9	26.5	31.1
3	1.0	12.7300	4.4555	26.3	29.0	33.5

1 1.0 12.4440 5.1340 26.5 29.0 34.0

get train test split

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=2529)

x_train.shape,x_test.shape,y_train.shape,y_test.shape

((111, 6), (48, 6), (111,), (48,))
```

get model train

```
import statsmodels.api as sm
model=sm.OLS(y_train,x_train).fit()
```

get model prediction

```
y_pred=model.predict(x_test)
y_pred
6 485.768263
```

54	502.247209
80	94.723820
138	876.571171
91	184.078918
48	219.301305
52	322.325322
103	376.223260
57	372.357305
149	-182.675371
1 53 -	-160.604868
108	454.335862
90	159.597558
118	843.485252
131	587.216806
100	299.535214
15	597.729508
46	197.146054
132	639.890467
79	91.200679
64	150.954248
	-103.083206
133	627.197128
116	795.691769
31	814.687330
	-204.149651
53	329.987469
28	715.892880
1	359.756344
117	792.324392
9	532.703671
12	552.008323
	433.484727
	687.617503
	-204.763625
125	932.536683
120	810.742342
158	-80.062172
51	284.362879
34	907.080360
23	642.582834
127	959.338482
21	675 287923

```
113 718.863055

109 623.898492

101 376.483470

10 530.838281

157 -86.235707

dtype: float64

y_pred.shape

(48,)
```

get model evaluation

get model summary

print(model.summary())

OLS Regression Results

•	.891
atistic: 1	_
4015010.	181.2 5.84e-50 -689.20 1390.
(F-statistic): 5.84	
1	
1	407.
P> t [0.025 0.	==== 975]
0.000 -588.005 -450	.562
0.007 8.398 51	.330
0.931 -49.502 54	.020
0.266 -45.068 161	.743
0.869 -94.189 111	.256
0.095 -78.671 6	.367
in-Watson: 2	.008
	.993
• •	0824
•	331.
u (le-Bera (JB): 4 JB): 0.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

fig=sm.graphics.plot_partregress_grid(model)

fig=sm.graphics.plot_regress_exog(model, "Width")

