Started on Sunday, 8 October 2023, 6:42 PM

State Finished

Completed on Sunday, 8 October 2023, 7:14 PM

Time taken 32 mins 34 secs

Grade 10.00 out of 10.00 (**100**%)

Question **1**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

Consider the fading channel estimation problem with $\bar{\mathbf{x}}$ denoting the real vector of transmitted pilot symbols and $\bar{\mathbf{y}}$ denoting the corresponding received real symbol vector. Let v(k) be i.i.d. Gaussian noise with zero-mean and variance σ^2 . The maximum likelihood estimate \hat{h} is,

Select one:

- $h\bar{\mathbf{x}}^T\bar{\mathbf{y}}$

Your answer is correct.

The correct answer is: $\frac{\overline{\mathbf{x}}^T\overline{\mathbf{y}}}{\overline{\mathbf{x}}^T\overline{\mathbf{x}}}$

Question **2**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Let $\bar{\mathbf{x}} = [1 \quad -1 \quad 1 \quad -1]^T$ denote the vector of transmitted pilot symbols and $\bar{\mathbf{y}} = [1 \quad -1 \quad -2 \quad 3]^T$ denote the corresponding received symbol vector. The maximum likelihood estimate of the channel coefficient h is,

Select one:

- $\frac{1}{2}$
- $-\frac{1}{2}$
- $-\frac{3}{4}$
- $\frac{1}{2}$

Your answer is correct.

The correct answer is: $-\frac{3}{4}$

Question **3**Correct

Mark 1.00 out of 1.00

Consider the fading channel estimation problem with i.i.d. Gaussian noise of zero-mean and variance $\sigma^2 = 2$ and pilot vector $\mathbf{\bar{x}} = [1 \quad -1 \quad 1 \quad -1]^T$. The variance of the ML estimate $\mathbf{\hat{h}}$ is,

Select one:

- 0 2
- 0 1
- $-\frac{1}{4}$
- \bigcirc $\frac{1}{2}$ \checkmark

Your answer is correct.

The correct answer is: $\frac{1}{2}$

Question ${f 4}$

1.00

Correct

Mark 1.00 out of

Consider the fading channel estimation problem $\bar{\mathbf{x}}$ denotes the complex vector of transmitted pilot symbols and $\bar{\mathbf{y}}$ denotes the corresponding received symbol vector. Let $\mathbf{v}(\mathbf{k})$ be i.i.d. symmetric complex Gaussian noise with zero-mean and variance σ^2 . The maximum likelihood estimate $\hat{\boldsymbol{h}}$ is

Select one:

- $h\bar{\mathbf{x}}^H\bar{\mathbf{y}}$
- $-\bar{\mathbf{x}}^T\bar{\mathbf{v}}$

Your answer is correct.

The correct answer is: $\frac{\overline{\mathbf{x}}^H\overline{\mathbf{y}}}{\overline{\mathbf{x}}^H\overline{\mathbf{x}}}$

Question **5**

Correct

Mark 1.00 out of 1.00

Flag question

Consider the fading channel estimation problem where $\bar{\mathbf{x}}$ denotes the complex vector of transmitted pilot symbols. Let $\mathbf{v}(\mathbf{k})$ be i.i.d. symmetric complex Gaussian noise with zero-mean and variance σ^2 . The variance of the maximum likelihood estimate \hat{h} is

Select one:

Your answer is correct.

The correct answer is: $\frac{\sigma^2}{\bar{\mathbf{x}}^H\bar{\mathbf{x}}}$

Question **6**

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

Consider the fading channel estimation problem with $ar{\mathbf{x}} = [1-j \quad -1-j \quad -1+j \quad 1-j]^T$ and

 $ar{\mathbf{y}} = [j \quad -1 \quad -j \quad 1]^T$. The maximum likelihood estimate of the channel coefficient h is,

Select one:

- $-\frac{1}{2}j$
- \bigcirc $\frac{1}{4}j \checkmark$

$$-\frac{1}{2}$$

Your answer is correct.

The correct answer is: $\frac{1}{4}j$

Question **7**

Correct

Mark 1.00 out of 1.00

Let $\bar{\mathbf{x}} = [1-j \quad -1-j \quad -1+j \quad 1-j]^T$ denote the vector of transmitted pilot symbols and v(k) be symmetric i.i.d. complex Gaussian noise with zero-mean and variance $\sigma^2 = 1$. The variance of the maximum likelihood estimate \hat{h} is,

Select one:

- \odot $\frac{1}{2}$
- $\frac{1}{2}$
- $\frac{1}{2}$
- $\frac{1}{16}$

Your answer is correct.

The correct answer is: $\frac{1}{8}$

Question **8**

Correct

Mark 1.00 out of 1.00

▼ Flag question

The Cramer-Rao Bound (CRB) is a

Select one:

- Oupper bound on variance of parameter estimation
- Lower bound on mean of parameter estimate
- Upper bound on mean of parameter estimate
- Lower bound on variance of parameter estimation

Your answer is correct.

The correct answer is: Lower bound on variance of parameter estimation

The Fisher information I(h) for estimation of a parameter h given the likelihood $p(\bar{y}; h)$ is

Question **9**

Correct

Mark 1.00 out of 1.00

▼ Flag question

Select one:

$$\bigcirc \frac{1}{E\left\{\left(\frac{\partial}{\partial h} \ln p(\overline{\mathbf{y}};h)\right)^{2}\right\}}$$

Your answer is correct.

The correct answer is: $E\left\{\left(\frac{\partial}{\partial h}\ln p(\bar{\mathbf{y}};h)\right)^2\right\}$

Question 10

Correct

Mark 1.00 out of 1.00

The Cramer-Rao Bound (CRB) for estimation of a parameter h given the likelihood $p(ar{\mathbf{y}};h)$ is

Your answer is correct.

The correct answer is:
$$\frac{1}{E\left\{\left(\frac{\partial}{\partial h}\ln p(\overline{\mathbf{y}};h)\right)^{2}\right\}}$$

Finish review