

Numerical Study of the Effect of the Wall to Gas Temperature Ratio on the Transition

Riccardo Rubini

Supervisor: Tony Arts Advisor: Roberto Maffulli

von Karman Institute for Fluid Dynamics

19 June 2017

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

Laminar to Turbulent Transition

Unsteady Three Dimensional Stochastic Phenomena

Low disturbance Natural Transition

:

- High Disturbance Bypass Transition
- High Disturbance Separation Induced Transition

Turbomachinery \rightarrow High Levels of Tu

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Transition in Turbomachinery

Why so important?

- 75% of profile losses are attributed to the Suction Side boundary layer
- Thermal and Aerodynamic fields strongly coupled

A reliable transitional boundary layer prediction model could help to...

- Improve aerodynamic and thermal performances
- Improve design strategies
- High spatial resolution

General

Transition in Turbomachinery

Outline of the Project

Methodology

Results from

 $\gamma - Re_{\theta}$

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Previous Studies

VKI

- Experimental study
- Reconstruction of intermittency through the wall heat flux

Some effects seem to be present

Literature

- Numerical study
- Framework of natural transition

Heating of the flow causes destabilization

Results valid only for natural transition

General

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

From the experimental side

- Experimental campaign at VKI underlines alteration of the location of transition varying the T_{ratio}
- Experimental results on bypass transition from [6] underline the appearance of turbulent spots increasing $\frac{T_0}{T_{und}}$

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

From the experimental side

- Experimental campaign at VKI underlines alteration of the location of transition varying the T_{ratio}
- Experimental results on bypass transition from [6] underline the appearance of turbulent spots increasing $\frac{T_0}{T_{und}}$
- However it is a very difficult phenomenon to observe and interpret

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

From the experimental side

- Experimental campaign at VKI underlines alteration of the location of transition varying the T_{ratio}
- Experimental results on bypass transition from [6] underline the appearance of turbulent spots increasing $\frac{T_0}{T_{n-1}}$
- However it is a very difficult phenomenon to observe and interpret

From the numerical side

- Linear Stability Theory underlines that Temperature has some effects on natural transition [4]
- Turbulence Transition models seem to see some effects on T_w on the transition [1]

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

From the experimental side

- Experimental campaign at VKI underlines alteration of the location of transition varying the T_{ratio}
- Experimental results on bypass transition from [6] underline the appearance of turbulent spots increasing $\frac{T_0}{T_{n-1}}$
- However it is a very difficult phenomenon to observe and interpret

From the numerical side

- Linear Stability Theory underlines that Temperature has some effects on natural transition [4]
- Turbulence Transition models seem to see some effects on T_w on the transition [1]
- It is unclear the effect and if this effect is physical or not

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from

 $\gamma - Re_{\theta}$ Results

 $k - k_{l} - \omega$ Results

Conclusions and Future

Backup

Main Tool and Objective

Main Objective

 Understand the capabilities and the limitation of the transition models in case of thermal field

Approach

Numerical simulation compared with experimental results

Limitation

- Transition model tuned on simple benchmark cases
- Validation on airfoil only aerodynamic
- No reliable validation in case of strong thermal field

General overview

Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$

Results

Conclusions and Future works

Backup

Test Case and Approach

Experimental Approach

Numerical Approach

Same *Re* and *Mach*, we reach the same temperature ratio:

- Keeping the $T_{wall} = const$ and changing T_0
- Keeping Free Stream constant and varying the T_{wall} = const

We have same *Reynolds*, *Mach* and T_{ratio} in both cases, we expect a similar behaviour.

General overview

Turbomachinery

Outline of the Project

Methodology

Results from

 $\gamma - Re_{\theta}$

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

....

Simulation set up

• INLET: P_0, T_0, Tu, L_0

• OUTLET: P_{static}

Mesh Prop

• $y+\sim 1$ first cell node

 Non matching periodicity → avoid high skeweness

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Bibliography

Looking for good working conditions

Parameters affect transition

- $\lambda \propto \frac{1}{U_{\infty}} \frac{dU_{\infty}}{ds}$
- Re
- FSTI

T influence $\ll \frac{dp}{ds}$ influence

Good working point

- $Re = 0.9 \cdot 10^6$
- $Mach_{2iso} = 0.55$

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_{l} - \omega$ Results

Conclusions and Future

Backup

Bibliography

Trade off between: Avoiding too big pressure gradients and preserve compressibility

Trends from experiments

$$Mach = 0.55 Re = 9.5 \cdot 10^5 Tu = 0.8\%$$

Experimental Results

The Temperature ratio seems to have some effects on the transition

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

$\gamma - Re_{\theta}$ Results Mach = 0.55 $Re = 9.5 \cdot 10^5$, Tu = 0.8%

Constant Blade Temperature

Constant Free Stream Conditions

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Bibliography

1 H 7 1 1 F 7 1 H

Insight $\gamma - Re_{\theta}$

Starting point $\rightarrow k - \omega - SST$

Introduction of 2 new variables $\gamma - Re_{\theta}$

Evolution of
$$\tilde{Re_{\theta}}$$

$$Re_{\theta c} \stackrel{\downarrow}{=} f(\tilde{Re_{\theta}})$$

$$P_{\gamma} \sim \stackrel{\downarrow}{F_{onset}} \sim rac{\max(\mathit{Re_v})}{\mathit{Re_{ heta_c}}}$$

Evolution of γ

Turbomachi-

Outline of the Project

Results from

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$

and Future

$\frac{D(\rho k)}{D_{\tau}} = \frac{\gamma}{\gamma} \cdot P_{k_T} - \frac{\gamma}{\gamma} \cdot D_{k_T} + DIFF(k_T)$

Final result $\gamma \to \text{Production of turbulent kinetic energy}$

Case $T_{wall} = const$: Massflow and ν

•
$$\frac{T_{\infty}}{T_{wall}} = 1.53$$
 _____ $\frac{T_{\infty}}{T_{wall}} = 1.18$

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

experiments

$\begin{array}{l} \gamma - \mathit{Re}_{\theta} \\ \mathsf{Results} \end{array}$

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Case $T_{wall} = const$: Intermittency and Re_{θ}

•
$$\frac{T_{\infty}}{T_{wall}} = 1.53$$
 _____ $\frac{T_{\infty}}{T_{wall}} = 1.18$

Momentum Thickness Reynolds Number

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

$\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

Case FreeStream = const: Massflow and ν

•
$$\frac{T_{\infty}}{T_{wall}} = 1.53$$
 _____ $\frac{T_{\infty}}{T_{wall}} = 1.18$

eneral verview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

$\begin{array}{l} \gamma - \mathit{Re}_{\theta} \\ \mathsf{Results} \end{array}$

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Case FreeStream = const: γ and Re_{θ}

•
$$\frac{T_{\infty}}{T_{wall}} = 1.53$$
 _____ $\frac{T_{\infty}}{T_{wall}} = 1.18$

Momentum Thickness Reynolds Number

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

$\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

Explanation 1 Re_{Vorticity}

$$\frac{T_{\infty}}{T_{wall}} = 1.53 \quad \underline{T_{\infty}}_{T_{wall}} = 1.18$$

Transition triggered by $F_{onset} \sim \frac{max(Re_v)}{R_{\theta c}}$

$$Re_{\nu} = \frac{d^2S}{\nu}$$

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

$\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Explanation 2 $Re_{\theta c}$

•
$$\frac{\dot{T}_{\infty}}{T_{wall}} = 1.53$$
 _____ $\frac{T_{\infty}}{T_{wall}} = 1.18$

Transition triggered by $F_{onset} \sim \frac{max(Re_v)}{R_{\theta c}}$

Turbomachinery

Outline of the Project

Methodology

Results from experiments

$\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

and Future works

$k - k_l - \omega$ Physical Meaning

Model Composed by 3 equations

- Original $k \omega SST$
 - 1 eq for **k**_T
 - 1 eq for ω

Growth of ki

• 1 eq for the evolution of k_I laminar kinetic energy

How laminar kinetic energy is transferred from a scale to the others

Breakdown

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k-k_{l}-\omega$

Results

and Future works

Backup

. Bibliography

Turbulent Flow k_T

¹DNS from Tamer Zaki's Research Group

Implementation

overview

Turbomachi-

Outline of the Project

Methodology

$$\frac{D(\rho k_T)}{Dt} = P_{k_T} + D_{k_T} + TRANS_{k_l \to k_T} + DIFF(k_T) \tag{1}$$

$$\frac{D(\rho k_l)}{Dt} = P_{k_l} + D_{k_l} - TRANS_{k_l \to k_T} + DIFF(k_l)$$
 (2)

TRANS_{$k_1 \rightarrow k_T$} regulate the passage of energy

$$ag{TRANS}_{k_l o k_T} \quad \sim \quad eta = 1 - e^{-rac{\phi}{A}} \quad \sim \quad egin{align} \phi = ext{max} [rac{k_T}{
u\Omega} - extstyle C_{BP}, 0] \end{array}$$

$$\sim$$

$$\phi = \max[\frac{k_T}{\nu\Omega} - C_{BP}, 0]$$

2

kI develops

$$\frac{k_T}{\mu \Omega} > C_{BP} \rightarrow \phi_{BP} > 0$$

 $k_I \rightarrow k_T$

 $k - k_l - \omega$ Results

and Future

²DNS from Tamer Zaki's Research Group

$$k - k_l - \omega$$
 Results
Mach = 0.55 Re = 9.5 · 10⁵ Tu = 0.8%

Constant Blade Temperature

Constant Free Stream Conditions

overview

Turbomachinery

Outline of the Project

Methodology

Results

 $k - k_l - \omega$ Results

and Future

Bibliography

Remarkable fact \rightarrow Same behaviour in both cases

Case $T_{wall} = const$: Massflow and ν

•
$$\frac{T_{\infty}}{T_{wall}} = 1.53$$
 _____ $\frac{T_{\infty}}{T_{wall}} = 1.18$

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$

Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Model's Quantities

$$\frac{T_{\infty}}{T_{wall}} = 1.53$$
 _____ $\frac{T_{\infty}}{T_{wall}} = 1.18$

Transition in Turbomachinery

Outline of the Project

Methodology

experiments

$\gamma - Re_{\theta}$

$k - k_l - \omega$ Results

and Future works

Backup

Behaviour Explanation

T_{ratio} affects $rac{k_T}{ u\Omega}$ that leads a different values of $TRANS_{k_I o k_T}$

Seneral verview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k-k_{l}-\omega$ Results

Conclusions and Future works

Backup

Conclusions

Experiments

The flow results destabilized increasing the temperature ratio.

$$\gamma - Re_{\theta}$$

- Disagree with experimental results
- The behaviour is not conserved for the case at *Freetream* = *const*

 $F_{onset} \sim rac{max(Re_v)}{Re_{ heta}}$, noteworthy variation of $Re_{ heta}$ due to the Free Stream variation

$$k - k_I - \omega$$

- The temperature ratio seems to destabilize the flow
- Similar behaviour with the experimental results
- The behaviour is the same for both cases

Transition triggered by $\frac{k_T}{\nu\Omega} \rightarrow$ stronger dependency on physical quantities

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_{l} - \omega$ Results

Conclusions and Future works

Backup

Future Challenges

 Better understanding of the role of the temperature ratio from an experimental side. A lot of conjoint effects very difficult to decouple one from each other.

Outline of the Project

Methodology

 $k - k_l - \omega$

Conclusions and Future works

Bibliography

 Better understanding of the real limit of the transition model with a proper calibration for this kind of conditions.

 High order simulation to have a deeper insight on the physics of the process (LES...)

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from

experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$

Results

Conclusions and Future works

Backup

Flow Conditions : $Mach_{2iso} = 0.7 Re_{2iso} = 10^6$

- reasonably good agreement in the laminar and turbulent part
- some discrepancy [3]

• kinematic field quite good described

General

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

Grid Independence

	INLET	OUTLET
$T_0[k]$	408	-
M_{iso}	-	0.7
Reiso	-	10 ⁶
Tu %	1-6	-
$L_0[mm]$	8	-

	Grid Nodes
•	Exp
	50K
	80K
	120K
	200K

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Mesh Properties

- Structured mesh with 4HO Topology 120,000 cells
- $y+\sim 1$ in the first node cell

General

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Behaviour Explanation 1

value of $\frac{k_T}{\nu\Omega}$ influenced mainly by ν (guessed)

$$\Delta = |(\frac{k_T}{\nu\Omega})_{T_r=1.53} - (\frac{k_T}{\nu\Omega})_{T_r=1.18}|$$

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Insight $\gamma - Re_{\theta}$

overview

Turbomachinerv Outline of the Project

(4)

$$\partial_t(\rho\gamma) + \partial_j(\rho u_j\gamma) = P_\gamma - E_\gamma + \partial_j((\mu + \mu_T/\sigma)\partial_j\gamma)$$
 (3)

$$\partial_t(\rho \tilde{Re}_{\theta}) + \partial_j(\rho u_j \tilde{Re}_{\theta}) = P_{\theta} + \partial_j(\sigma(\mu + \mu_T)\partial_j \tilde{Re}_{\theta})$$

Basic Idea Methodology

$$\tilde{Re}_{\theta} \to P_{\gamma} = f(Re_{\theta}) \to \text{production } \gamma \to \text{production of k} \quad P_k \to P_k \gamma$$

$$\partial_t(\rho k) + \partial_j(\rho u_j k) = P_k + \partial_j(\sigma(\mu + \mu_T)\partial_j k)$$

$\partial_t(\rho k) + \partial_i(\rho u_i k) = P_k + \partial_i(\sigma(\mu + \mu_T)\partial_i k)$ (5)

Final result

 γ and Re_{θ} evolution $\rightarrow k \rightarrow turbulence$

 $k - k_l - \omega$

and Future works

Backup

Behaviour Explanation 3

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Effects on Momentum Thickness

$$\frac{ }{\frac{T_{\infty}}{T_{wall}}} = 1.6$$

$$\frac{\frac{T_{\infty}}{T_{wall}}}{\frac{T_{\infty}}{T_{wall}}} = 1.2$$

ieneral verview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Mesh Quality

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future works

Backup

Bibliography

- R.Maffulli L.He, : Impact of Wall Temperature On heat transfr coeficient and aereodynamics for 3-D turbine blade passage, 2016.
- D. Keith Walters Davor Cokljat, : A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow, 2008.
- Menter Langtry, : Correlation Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes, ANSYS, Germany, 2009.
- Ozgen, : Effect of heat transfer on stability and transition charatheristics of boundary layer, Middle east technical university, Turkey, 2004.
- Morata, Gourdain, Duchaine, Gicquel, : Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES, TURBOMECA, France, 2004.
- Costantini, Marco and Fey, Uwe and Henne, Ulrich and Klein, Christian :Nonadiabatic surface effects on transition measurements using temperature-sensitive paints

General overview

Transition in Turbomachinery

Outline of the Project

Methodology

Results from experiments

 $\gamma - Re_{\theta}$ Results

 $k - k_l - \omega$ Results

Conclusions and Future

Backup

