Mathematics and Statistics of Algorithmic Trading¹ University of Oxford

Álvaro Cartea

alvaro.cartea@maths.ox.ac.uk http://www.cartea.net

February 25, 2016

¹Notes based on textbook "Algorithmic and High-Frequency Trading" with Sebastian Jaimungal and Jose Penalva.

Optimal Execution

- ► How do we trade in or out of a large position when Order-Flow affects prices?
- Optimal Execution with Temporary Impact and Inventory Control

Permanent Impact

We assume a linear relationship between net order-flow and changes in the midprice, thus for every trading day we perform the regression

$$\Delta S_n = b \,\mu_n + \varepsilon_n \tag{1}$$

where $\Delta S_n = S_{n\tau} - S_{(n-1)\tau}$ is the change in the midprice, μ_n is net order-flow defined as the difference between the volume of buy and sell MOs during the time interval $[(n-1)\tau,\,n\tau]$, and ε_n is the error term (assumed normal). In the empirical analysis we choose $\tau=5\,\mathrm{min}$.

Temporary Impact

- Assume that temporary price impact is linear in the rate of trading so the difference between the execution price that the investor receives and the midprice is $k \nu$,
- ▶ To do this we take a snapshot of the LOB each second,
- Determine the price per share for various volumes (by walking through the LOB),
- ► Compute the difference between the price per share and the best quote at that time,
- Perform a linear regression.

Parameters

Table: Permanent and temporary price impact parameters for Nasdaq stocks, average volume of MOs, average midprice, σ volatility (hourly) of arithmetic price changes, mean arrival (hourly) of MOs λ^{\pm} , and average volume of MOs $\mathbb{E}[\eta^{\pm}]$. Data are from Nasdaq 2013.

	FARO		SMH		NTAP	
	mean	stdev	mean	stdev	mean	stdev
ADV	23,914	14,954	233,609	148,580	1,209,628	642,376
midprice	40.55	6.71	37.90	2.44	38.33	3.20
σ	0.151	0.077	0.067	0.039	0.078	0.045
Ь	1.41E-04	9.61E-05	5.45E-06	4.20E-06	5.93E-06	2.31E-06
k	1.86E-04	2.56E-04	8.49E-07	8.22E-07	3.09E-06	1.75E-06
b/k	1.02	0.83	7.43	6.24	2.04	0.77
λ^+	16.81	9.45	47.29	28.13	300.52	144.48
$\mathbb{E}[\eta^+]$	103.56	21.16	377.05	118.05	308.45	53.09
λ^{-}	17.62	10.69	46.37	27.62	293.83	136.13
$\mathbb{E}[\eta^-]$	104.00	21.79	381.70	126.74	312.81	49.86

Figure: Order-Flow and effect on the drift of midprice of INTC. The first picture shows

Figure: An illustration of how the temporary impact may be estimated from snapshots of the LOB using INTC on Nov 1, 2013. The first panel is at 11:00am, the second from 11:00am to 11:01am and the third contains the entire day.

Figure: Price Impact INTC using daily observations for 2013.

The Model

Inventory (investor is liquidating)

$$dQ_t^{\nu} = -\nu_t \, dt \,, \qquad \qquad Q_0^{\nu} = \mathfrak{N} \,, \tag{2}$$

Midprice

$$dS_t^{\nu} = b(\mu_t - \nu_t) dt + \sigma dW_t, \qquad (3)$$

where $\mu_t = \mu_t^+ - \mu_t^-$ is net order-flow of other market participants.

Execution price

$$\hat{S}_t^{\nu} = S_t^{\nu} - \left(\frac{1}{2}\Delta + k\,\nu_t\right), \qquad (4)$$

Cash

$$dX_t^{\nu} = \hat{S}_t^{\nu} \nu_t dt, \qquad X_0^{\nu} = x.$$
 (5)

Value Function

$$H^{\nu}() = \mathbb{E}_{t,x,S,\mu,q} \left[X_{\tau^{\nu}} + Q_{\tau^{\nu}}^{\nu} \left(S_{\tau^{\nu}}^{\nu} - \frac{1}{2} \Delta - \alpha Q_{\tau^{\nu}}^{\nu} \right) - \phi \int_{t}^{\tau^{\nu}} (Q_{u}^{\nu})^{2} du \right]$$
(6)

where $\tau^{\nu}=T\wedge\inf\{t: Q_t^{\nu}=0\}$, and $\pmb{\mu}=\{\mu^+,\mu^-\}$. Her value function is

$$H(t, x, S, \mu, q) = \sup_{\nu \in \mathcal{A}} H^{\nu}(t, x, S, \mu, q),$$
 (7)

The DPP suggests that $H(t, x, S, \mu, q)$ satisfies

$$0 = \left(\partial_{t} + \frac{1}{2}\sigma^{2}\partial_{SS}\right)H + \mathcal{L}^{\mu}H - \phi q^{2} + \sup_{\nu}\left\{\left(\nu\left(S - \frac{1}{2}\Delta - k\nu\right)\partial_{x} + b\left(\mu - \nu\right)\partial_{S} - \nu\partial_{q}\right)H\right\}$$
(8)

for q > 0, subject to the terminal condition.

$$H(T,x,S,\boldsymbol{\mu},q) = x + q \left(S - \frac{1}{2}\Delta\right) - \alpha q^{2}.$$

Solving the DPE.

The DPE (8) admits the solution

$$H(t,x,S,\mu,q) = x+q \left(S-\frac{1}{2}\Delta\right) + h_0(t,\mu) + q h_1(t,\mu) + q^2 h_2(t), \qquad q>0,$$

where

$$h_2(t) = \sqrt{k\phi} \frac{1 + \zeta e^{2\gamma(T-t)}}{1 - \zeta e^{2\gamma(T-t)}} - \frac{1}{2}b,$$
 (9a)

$$h_1(t, \boldsymbol{\mu}) = b \int_t^T \left(\frac{e^{-\gamma(T-u)} - \zeta e^{\gamma(T-u)}}{e^{-\gamma(T-t)} - \zeta e^{\gamma(T-t)}} \right) \mathbb{E}_{t, \boldsymbol{\mu}} \left[\mu_u \right] du, \qquad (9b)$$

$$h_0(t, \mu) = \frac{1}{4k} \int_t^T \mathbb{E}_{t,\mu} \left[h_1^2(t, \mu_u) \right] du,$$
 (9c)

with the constants γ and ζ :

$$\gamma = \sqrt{\frac{\phi}{k}}, \quad \text{and} \quad \zeta = \frac{\alpha - \frac{1}{2}b + \sqrt{k\phi}}{\alpha - \frac{1}{2}b - \sqrt{k\phi}}.$$

Proof

To solve (8) we make the ansatz

$$H(t,x,S,\mu,q)=x+q\left(S-\frac{1}{2}\Delta\right)+h(t,\mu,q),$$

and upon substitution of the ansatz in the DPE $h(t, \mu, q)$ satisfies

$$\partial_t h + \mathcal{L}^{\mu} h + b \,\mu \,q - \phi \,q^2 + \sup_{\nu} \left\{ -k \,\nu^2 - \left(b \,q + \partial_q h \right) \nu
ight\} = 0 \,, \qquad q > 0 \,,$$

subject to $h(T, \mu, q) = -\alpha q^2$, so

$$\nu^* = -\frac{1}{2k} \left(b \, q + \partial_q h \right) \,. \tag{10}$$

Upon substitution back into the DPE we find that h satisfies

$$(\partial_t + \mathcal{L}^{\mu}) h + b \mu q - \phi q^2 + \frac{1}{4k} (b q + \partial_q h)^2 = 0, \qquad q > 0.$$
 (11)

Proof (cont)

Due to the existence of linear and quadratic terms in q in (11), and its terminal conditions, we expect $h(t, \mu, q)$ to be a quadratic form in q, and we assume the ansatz

$$h(t, \mu, q) = h_0(t, \mu) + q h_1(t, \mu) + q^2 h_2(t, \mu).$$

Inserting this into (11) and collecting like terms in q leads to

$$(\partial_t + \mathcal{L}^{\mu}) h_0 + \frac{1}{4k} h_1^2 = 0,$$
 (12a)

$$(\partial_t + \mathcal{L}^{\mu}) h_1 + b \mu + \frac{1}{2k} h_1 (b + 2h_2) = 0,$$
 (12b)

$$(\partial_t + \mathcal{L}^{\mu}) h_2 - \phi + \frac{1}{4k} (b + 2h_2)^2 = 0,$$
 (12c)

subject to the terminal conditions

$$h_0(T, \mu) = 0, \quad h_1(T, \mu) = 0, \quad h_2(T, \mu) = -\alpha.$$

Proof (cont)

To solve for h_2 we note that since Equation (12c) for h_2 contains no source terms in μ and its terminal condition is independent of μ , the solution must be independent of μ , i.e. h_2 is a function only of time. In this case, (12c) is an ODE of Riccati type and can be solved explicitly:

$$h_2(t, \boldsymbol{\mu}) = \chi(t) - \frac{1}{2} b$$
, where $\chi(t) = \sqrt{k \phi} \frac{1 + \zeta e^{2\gamma(T-t)}}{1 - \zeta e^{2\gamma(T-t)}}$,

with the constants γ and ζ :

$$\gamma = \sqrt{\frac{\phi}{k}}, \quad \text{and} \quad \zeta = \frac{\alpha - \frac{1}{2}b + \sqrt{k\,\phi}}{\alpha - \frac{1}{2}b - \sqrt{k\,\phi}}.$$

Proof (cont)

Now we turn to solving (12b) which is a linear PIDE for h_1 where $h_2+\frac{1}{2}b$ acts as an effective discount rate and $b\,\mu$ is a source term. The general solution of such an equation can be represented using the Feynman-Kac theorem. Thus we write

$$h_1(t,\mu) = b \, \mathbb{E}_{t,\mu} \left[\int_t^T \exp \left\{ rac{1}{k} \int_t^u \left(h_2(s) + rac{1}{2} b
ight) \, ds
ight\} \, \mu_u \, du
ight]$$

which can be simplified to

$$h_1(t, \boldsymbol{\mu}) = b \int_t^T \left(\frac{e^{-\gamma(T-u)} - \zeta e^{\gamma(T-u)}}{e^{-\gamma(T-t)} - \zeta e^{\gamma(T-t)}} \right) \mathbb{E}_{t, \boldsymbol{\mu}} \left[\mu_u \right] du.$$
 (13)

Finally, we can solve for $h_0(t, \mu)$ by again noticing it is a linear PDE with non-linear source term and a straight forward application of Feynman-Kac, and interchanging integration and expectation, we obtain (9c).

Limiting cases

All shares must be liquidated, $\alpha \to \infty$, and the optimal trading speed simplifies to

$$\lim_{\alpha \to \infty} \nu_t^* = \gamma \frac{\cosh(\gamma (T - t))}{\sinh(\gamma (T - t))} Q_t^{\nu^*} - \frac{b}{2k} \int_t^T \frac{\sinh(\gamma (T - u))}{\sinh(\gamma (T - t))} \mathbb{E} \left[\mu_u | \mathcal{F}_t^{\mu} \right] du.$$
(14)

Another interesting limiting case is if the above limit is followed by letting $\phi \to 0$:

$$\lim_{\phi \to 0} \lim_{\alpha \to \infty} \nu_t^* = \frac{1}{(T-t)} Q_t^{\nu^*} - \frac{b}{2k} \int_t^T \frac{(T-u)}{(T-t)} \mathbb{E} \left[\mu_u | \mathcal{F}_t^{\mu} \right] du. \quad (15)$$

Model for Order-Flow

Order-flow μ_t^{\pm} satisfy the SDEs

$$d\mu_t^{\pm} = -\kappa \,\mu_t^{\pm} \,dt + \eta_{1+L_{t^-}}^{\pm} \,dL_t^{\pm} \,, \tag{16}$$

where L_t^\pm are independent Poisson processes with equal intensity λ , $\{\eta_1^\pm, \eta_2^\pm, \dots\}$.

The solutions to (16), for s > t, are

$$\mu_s^{\pm} = e^{-\kappa^{\pm}(s-t)} \, \mu_t^{\pm} + \int_t^s e^{-\kappa^{\pm}(s-u)} \, \eta_{1+N_{u^-}}^{\pm} \, dL_u^{\pm} \,,$$

so that

$$\mathbb{E}[\mu_{s}^{\pm} | \mathcal{F}_{t}^{\mu}] = e^{-\kappa^{\pm}(s-t)} (\mu_{t}^{\pm} - \psi^{\pm}) + \psi^{\pm},$$

where

$$\psi^{\pm} = \frac{1}{\kappa^{\pm}} \, \lambda^{\pm} \, \mathbb{E}[\eta^{\pm}] \,.$$

Therefore, under this particular model for order-flow, we follow the optimal trading strategy

$$\lim_{\alpha \to \infty} \nu_t^* = \gamma \frac{\cosh\left(\gamma(T-t)\right)}{\sinh\left(\gamma(T-t)\right)} Q_t^{\nu^*}$$

$$-\frac{b}{2 k} \left[\ell_1^+(t) \left(\mu_t^+ - \psi^+\right) - \ell_1^-(t) \left(\mu_t^- - \psi^-\right) + \ell_0(t) \left(\psi^+ - \psi^-\right) \right]$$

where

$$\ell_0(t) = rac{1}{\gamma} rac{\cosh\left(\gamma(T-t)
ight) - 1}{\sinh\left(\gamma(T-t)
ight)} \,,$$

and

$$\ell_1^{\pm}(t) = \frac{1}{2} \left(\frac{e^{\gamma(T-t)} - e^{-\kappa^{\pm}(T-t)}}{\kappa^{\pm} + \gamma} - \frac{e^{-\gamma(T-t)} - e^{-\kappa^{\pm}(T-t)}}{\kappa^{\pm} - \gamma} \right) \middle/ \sinh\left(\gamma(T-t)\right)$$

Sims

- We assume that the trading horizon is T = 1 hour,
- the running inventory penalty parameter is $\phi = 10 \times k$,
- ▶ the liquidation target \mathfrak{N} shares is set to 1% of the expected traded volume over the trading window (including the investor's trades),
- run 10,000 simulations,
- the strategy trades at the same frequency as that of the arrival of market sell orders from all other agents

Use INTC with parameters

$$k = 2.50 \times 10^{-7}$$
, $b = 6.15 \times 10^{-}$, $\mathfrak{N} = 9,612$,
 $\lambda^{\pm} = 328$, $\kappa = 360$, $\eta \sim Exp(1,453 \times \kappa)$,
 $\sigma = 0.01$, $S_0 = 23.04$,

and $\eta \sim \textit{Exp}(\eta_0)$ denotes the exponential distribution with mean size $\mathbb{E}[\eta] = \eta_0$,

Histogram of the financial performance of the strategy relative to Almgren-Chriss. This performance is measured in basis points using

$$\frac{X_T^{\nu^*} - X_T^{AC}}{X_T^{AC}} \times 10^4 \tag{17}$$

where X_T^{AC} is the cash obtained from running the Almgren-Chriss strategy with the same level of ϕ .

Figure: The savings per share (INTC) measured in basis points, $(X_T^{\nu^*}-X_T^{AC})/X_T^{AC}\times 10^4$, from following the optimal strategy relative to Almgren-Chriss.

Table: Simulation performance relative to AC

				ν^*		
		FARO	SMH	NTAP	ORCL	INTC
quantile	mean	529	602	0.78	0.64	0.93
	stdev	739	708	3.71	3.02	3.78
	5%	-438	5	-4.70	-3.83	-4.48
	25%	151	157	-0.98	-0.82	-0.87
	50%	396	428	0.50	0.44	0.55
nb	75%	835	895	2.23	1.85	2.45
	95%	1862	1957	6.98	5.58	7.51
$\%$ t $ u_t^* < 0$		12.3%	17.2%	2.7%	2.6%	3.4%
$%X_{T} < X_{T}^{AC}$		10.2%	4.9%	38.9%	39.2%	38.5%

Table: Simulation performance relative to AC

		$max(\nu^*,0)$				
		FARO	SMH	NTAP	ORCL	INTC
ile	mean	615	670	1.12	0.91	1.43
	stdev	648	654	3.80	3.14	3.97
	5%	-1	42	-4.10	-3.46	-3.79
	25%	179	203	-0.79	-0.67	-0.58
quantile	50%	434	470	0.61	0.52	0.76
пb	75%	868	942	2.52	2.08	2.89
	95%	1887	1952	7.85	6.41	8.57
$%t \nu_t^* < 0$		0.0%	0.0%	0.0%	0.0%	0.0%
$%X_T < X_T^{AC}$		5.0%	0.1%	36.5%	37.0%	34.7%