

Laurent Pautet

Laurent.Pautet@enst.fr

Version 1.0

Contexte

- Les systèmes embarqués temps réel sont répartis (acteurs, capteurs, calculs distants)
 - Systèmes de transports
 - Systèmes multimédia
- Les nœuds sont organisés autour de boucles de contrôle reliées par des bus ou réseaux
- Le bus ou le réseau devient une donnée critique car partagée par des nœuds critiques

Topologie d'un réseau automobile

CAN Controller area network

GPS Global Positioning System

GSM Global System for Mobile Communications

LIN Local interconnect network

MOST Media-oriented systems transport

Contraintes et Services

- Les services à assurer sont
 - Transmissions efficaces de petites données
 - Transmission de capteurs et d'actionneurs simples
 - Transmissions périodiques contrôlées en temps
 - Petites périodes, faibles latences, faibles gigues
 - Transmissions apériodiques
 - Transmissions rapides d'alarmes
 - Transmissions non temps réel de larges données
 - Journalisation, images
 - Transmissions de type diffusion

Interfaces, Messages, Transactions

- Le bus ou le réseau se constitue de
 - Une infrastructure matérielle
 - Des couches logicielles
 - Des interfaces de communication (CNI)
- Le message contient les données transmises
 - Mais contient aussi des informations de contrôle
 - Implique une transaction ou séquence d'actions
- L'efficacité du réseau dépend du ratio entre
 - Les données réelle et la surcharge introduite

Comportement temporel et fonctionnel

- Sources de variations temporelles
 - Délais fixes (temps d'accès au médium)
 - Délais variables (encombrement du médium)
 - Tampon de régulation (problèmes de débit)
 - Perte de message (médium peu fiable)
- Types de messages
 - Les événements sont ordonnés dans une file d'attente et retirés après lecture
 - Les états ou données partagées sont lus plusieurs fois et écrasés par l'état ou la donnée suivants

Architecture

- Les architectures réseaux (comme systèmes) sont dirigées par les événements ou le temps
- Par événement
 - Exemple : la vitesse a été augmentée de +dv
 - Il ne faut pas perdre les événements
 - Peu déterministe, plus flexible
- Par le temps
 - Exemple : à la date t, la vitesse est de v
 - Il faut supporter un flot important de donnée
 - Plus déterministe, moins flexible

Modèle OSI

- Couches OSI (réseau traditionnel)
 - Application (service offerts, FTP, HTTP ...)
 - Présentation (traitement données, compression ...)
 - Session (traitement contrôle, séquence d'action ...)
 - Transport (transfert des données, TCP, UDP ...)
 - Réseau (routage, adresse logique)
 - Liaison (accès au médium, collision, arbitrage ...)
 - Physique (transmission physique, cuivre ...)

Problèmes du modèle OSI

- Chaque couche ajoute une surcharge due aux informations de contrôle (enveloppe)
- Le modèle OSI s'adresse à des applications très générales alors que les systèmes temps réel embarqués sont des applications dédiées
- Applications (et donc données) bien définies (nécessité de présentation ?)
- Transmission dans un seul domaine (nécessité de la couche réseau ?)

Modèle OSI réduit

- Pour les besoins du temps réel, il faut éviter toutes les surcharges introduites par toutes ces couches
- La couche Applications interagit directement avec la couche Liaison qui devient la Communication Network Interface (CNI)
- Ces réseaux s'appellent alors Bus de Terrain (Fieldbuses)

Couche Physique

- Les 2 couches restantes varient suivant les domaines et les applications
- La couche Physique
 - Topologie en anneau, bus, arbre, étoile, ...
 - Matériel en cuivre, fibre, radio, infra-rouge ...
 - Caractéristiques différentes (débit, erreur, ...)
 - Contraintes industrielles (prix, température, ...)

Couche Liaison (1/2)

- L'adresse du receveur ou de l'émetteur est déterminée sur mesure
 - Identificateur du récepteur donné à la conception
 - Récepteur connu à la date de transmission
 - Récepteur connu par la nature de la donnée reçue
- Le contrôle du lien logique
 - Envoi avec acquittement immédiat
 - Envoi sans acquittement
 - Communication par connexion (ie TCP vs UDP)
 - ... selon les besoins de performances

la reception des identificateurs n'est par forcement utile: quand On reçoit une donée à un containtemps: On sait de qui ga vient

Couche Liaison (2/2)

- Le contrôle d'erreur de transmission
 - Code correcteur d'erreur
 - Répétition en cas d'erreur signalée par le récepteur
 - Répétition en l'absence d'acquittement par émetteur
- Le contrôle d'accès au médium ou Medium Access Control (MAC)
 - Maitre / Esclave
 - Jeton circulant
 - Contrôle par le temps
 - Arbitrage de collision

MAC: Maître/Esclaves

- Le maître invite chaque esclave à émettre pendant un laps de temps
- L'esclave utilise l'invitation pour émettre
- 1 message émis => +1 message de contrôle

Bus FIP

- Réseau pour la productique
- Topologie en bus ou étoile
- Orienté variables ou messages
- Schéma producteur / consommateur
- Le maître émet une requête d'émission de variable
- L'esclave concerné émet la valeur de la variable
- Les autres esclaves lisent la valeur de la variable
- Table de diffusion des variables périodiques en fonction de leur période et leur durée de transmission
- Demande d'émission des variables apériodiques dans les temps libres du bus

Bus FIP

Message	Capacité	Période	
M1	5ms	10ms	
M2	3ms	20ms	
M3	1ms	40ms	

00ms - 10ms	M1	M1	M1	M1	M1	M2	M2	M2	M3	
10ms - 20ms	M1	M1	M1	M1	M1					
20ms – 30ms	M1	M1	M1	M1	M1	M2	M2	M2		
30ms – 40ms	M1	M1	M1	M1	M1					

MAC: Anneau à jeton

- Le jeton permet d'émettre pendant un laps de temps
- Le jeton circule en boucle entre les nœuds
- Le nœud doit rendre le jeton après échéance

Bus ProFiBus

- Un jeton circule parmi certains nœuds qui se comportent comme des maîtres et émettent auprès de certains esclaves
- Chaque maître dispose de compteurs et de timers précisant le temps de rotation et le temps de possession du jeton
- Ces données permettent notamment de détecter la perte du jeton et de forcer la libération du jeton
- Tout nœud n'est pas forcément maître.
- Le jeton ne circule que parmi peu de maîtres pour réduire les temps de rotation et les pertes de jeton

MAC: Division temporelle

- Time-Division Multiple Access (TDMA)
- Fenêtres de temps attribuées aux nœuds
- Table statique périodique d'attribution
- Synchronisation par trame ou horloge globale

Time Triggered Protocol

- Ordonnancement statique off line par construction d'une table
- Les sites sont identifiés par la date d'émission: il n'y a pas de champ adresse dans les trames
- Chaque site dispose de «slots» exclusifs sur le bus, l'ordonnancement peut donc être testé indépendamment sur chaque site
- Voir la présentation de systèmes à temps cadencé (Time Triggered)

MAC: Arbitrage de collision

- Carrier-Sense Multiple Access (CSMA)
- Emission lorsque le médium semble libre
- Pas de prévention de collision
- Ré-émission en cas de collision
- Fonctionnement limité en cas de temps réel
 - CA : Collision Arbitration / Avoidance
 - Un mécanisme (priorité) évite la collision pour un émetteur
 - Les autres réémettent ultérieurement
 - CD : Collision Detection
 - Lors de collision, réémission pour tous après un temps aléatoire déterminé indépendamment pour chacun

Controller Area Network (CAN)(1/2)

- Bus de terrain pour l'automobile
- Lorsque le bus est libre, émission bit par bit de l'identifiant du nœud
- Chaque émetteur lit bit par bit ce qui est transmit
- En cas de différence il devient récepteur
- La priorité est donnée en fonction de l'identifiant
- Le nœud à petit identifiant est le plus prioritaire
- Lors de rejet, réémission lorsque le bus est libre
- Le calcul de temps d'accès est similaire au calcul d'un temps de réponse de tâche avec RMS non préemptif

Controller Area Network (CAN)(2/2)

- Dans notre exemple le bus CAN est dit wired AND
- Si un nœud envoie un bit 0, tous les nœuds reçoivent le bit 0
- Si un nœud émet un bit (récessif) 1, mais lit un bit (dominant) 0 il perd l'accès au bus et devient récepteur

AFDX

t rain

- Avionic Full DupleX switched Ethernet
 - Plus un réseau Ethernet qu'un bus de terrain
 - Respecte le standard ARINC 664
- Couche Physique
 - Différent d'Ethernet « ouvert » car pas de collision
 - 2 paires torsadées Rx/Tx entre deux nœuds reliés
 - Switchs avec tampons pour des nœuds distants
 - Redondance pour sûreté et gestion des duplicats
 - Configuration des liens réels et des switchs pour assurer des liens virtuels de 2 nœuds quelconques
 - Multiplexage et gestion des trames pour assurer la cohabitation de plusieurs liens virtuels par nœud

Calcul de temps de réponse

- Tâches
- Processeur
- Capacité

- Temps d'interférence
- Temps de réponse

- Messages
- Médium de comm.
- Temps
 - de transmission
 - de propagation
 - de traversée
- Temps d'accès
- Temps de comm.

Différentes délais

- Durées d1 et d7 de traversée dans l'application
- Durées d2 et d6 d'accès au medium
 - Difficile à déterminer car dépend du protocole d'accès
- Durées d3 et d5 de transmission
 - Facile à déterminer avec le débit et la taille des données
- Durée d4 de propagation

Calcul des réveils et échéances de tâches avec précédence

- Pour calculer les dates de réveil (maximum):
 - $r_i^* = \max(r_i, \max\{r_j^* + C_j + d_{j->i}\})$
 - Pour tout j qui précède i
- Pour calculer les échéances (minimum):
 - $D_{i}^{*} = \min (D_{i}, \min \{D_{j}^{*} C_{j}\})$
 - Pour tout j que i précède
- Pour calculer les temps de réponse de nœud:

$$r_i(t) = J_i + w_i \text{ avec } w_i = C_i + \sum_{j>i} C_j \left[\frac{w_i + J_j}{P_j} \right]$$

	T1	T2	T3	T4	T5
Réveil	0	250	0	0	0
Calcul	50	100	100	50	150
Echéance	250	350	250	500	600

Ordonnançabilité sur un exemple (2/2)

	T1	T2	Т3	T4	T5
Réveil	0	250	0	0	0
Réveil max	0	250	50+0	350+0 50+d1	400+d4 100+d1+d4 150+d3
Calcul	50	100	100	50	150
Echéance	250	350	250	500	600
Échéance min	150	350	250	450	600

Laurent Pautet