

CLRS Notes

MIT 6.046J

Author: Haopeng Li

Date: July 27, 2022

Contents

Chapter	1 Analysis of Algorithms	1
1.1	The problem of sorting	1
1.2	Insertion Sort	1
1.3	Running time	1
1.4	Merge Sort	3
Chapter	· 2 Asymptotic Notation & Recurrences	5
2.1	Asymptotic notation	5
2.2	Solving recurrences	6

Chapter 1 Analysis of Algorithms

Introduction

Insertion sort

Merge sortRecurrences

Definition 1.1 (Algorithms)

☐ Asymptotic analysis

The theoretical study of computer-program performance and resource usage.

Note Why study algorithms and performance?

- Algorithms help us to understand scalability.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a language for talking about program behavior.
- Performance is the currency of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

1.1 The problem of sorting

Problem 1.1(The problem of sorting)

- Input:sequence $\langle a_1, a_2, \cdots, a_n \rangle$ of numbers.
- Output: permutation $< a_1', a_2', \cdots, a_n' > \text{such that } a_1' \le a_2' \le \cdots \le a_n'$

1.2 Insertion Sort

```
Insertion-Sort(A,n)
  for j <- 2 to n
    do key <- A[j]
    i <- j - 1
    while i > 0 and A[i] > key
        do A[i+1] <- A[i]
        i<- i-1
        A[i+1] = key</pre>
```

1.3 Running time

- The running time depends on the input:an already sorted sequence is easier to sort.
- Parameterize the running time by the size of the input, since short sequences are easier to sort than long
- Generally, we seek upper bounds on the running time, because everybody likes a guarantee.

1.3.1 Kinds of Analysis

Definition 1.2 (Worst-Case(usually))

T(n) = maximum time of algorithm on any input of size n.

.

Definition 1.3 (Average-Case(Sometimes))

- T(n) =expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Definition 1.4 (Best-case: (bogus))

Cheat with a slow algorithm that works fast on some input.

- **Note** What is insertion sort's worst-case time?
 - It depends on the speed of our computer:
 - relative speed (on the same machine),
 - absolute speed (on different machines).

Note BIG IDEA:

- 1. Ignore machine-dependent constants.
- 2. look at the growth of T(n) as $n \to \infty$
- 3. "Asymptotic Analysis"

1.3.2 Θ -Notation

Definition 1.5 (Θ -Notation)

 $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Note Engineering: Drop low-order terms; Ignore leading constants.

Example 1.1

$$3n^3 + 90n^2 - 5n + 6046 = \Theta\left(n^3\right)$$

1.3.3 Asymptotic performance

Note When n gets large enough, $a \Theta(n^2)$ algorithm always beats $a \Theta(n^3)$ algorithm.

Note

- We shouldn't ignore asymptotically slower algorithms, however.
- Real-world design situations often call for a careful balancing of engineering objectives.
- Asymptotic analysis is a useful tool to help to structure our thinking.

1.3.4 Insertion sort analysis

Worst case

Input reverse sorted

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^{2})$$

Average case

All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^{2})$$

\$

Note Is insertion sort a fast sorting algorithm?

- Moderately so, for small n
- Not at all, for large n

1.4 Merge Sort

Merge-Sort A[1..n]

- 1. If n = 1, done
- 2. Recurisively sort $A[1...\lceil n/2]$ and $A[\lceil n/2\rceil+1...n]$
- 3. Merge the 2 sorted lists.

Note Key subroutine: MERGE

1.4.1 Analyzing Merge Sort

Time = $\Theta(n)$ to merge a total of n elements (linear time).

$$T(n) \qquad \text{MERGE-SORT } A[1 \dots n]$$

$$\Theta(1) \qquad 1. \text{ If } n = 1, \text{ done.}$$

$$2T(n/2) \qquad 2. \text{ Recursively sort } A[1 \dots \lceil n/2 \rceil]$$
 and
$$A[\lceil n/2 \rceil + 1 \dots n].$$

$$\Theta(n) \qquad 3. \text{ "Merge" the 2 sorted lists}$$

Note Sloppiness: 2T(n/2) should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

1.4.2 Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1\\ 2T(n/2) + \Theta(n) \text{ if } n > 1 \end{cases}$$

Note

- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- CLRS and Lecture 2 provide several ways to find a good upper bound on T(n).

1.4.3 Recursion tree

Example 1.2 Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

1.4.4 Conclusions

- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- \bullet In practice, merge sort beats insertion sort for n>30 or so.

Chapter 2 Asymptotic Notation & Recurrences

Introduction

- \bigcirc $O-, \Omega-$, and $\Theta-$ notation
- ☐ Substitution method
- ☐ Iterating the recurrence
- ☐ Recursion tree
 - Master method

2.1 Asymptotic notation

2.1.1 *O*—**notation** (upper bounds)

Definition 2.1 (*O*-notation (upper bounds))

We write f(n) = O(g(n)) if there exist constants $c > 0, n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Example 2.1

$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$

Note Notice that in this equation, $2n^2$ are functions not values and the eqal sign is just "one-way" equality. Actually, it can be denoted more precisely:

$$2n^2 \in O\left(n^3\right)$$

Note Convention: A set in a formula representsan anonymous function in the set.

Example 2.2

$$n^2 + O(n) = O\left(n^2\right)$$

means for any $f(n) \in O(n)$, $n^2 + f(n) = h(n)$ for some $h(n) \in O(n^2)$

2.1.2 Ω - notation(lower bounds)

O-notation is an upper-bound notation. It makes no sense to say f(n) is at least $O(n^2)$.

Definition 2.2 (Ω — **notation(lower bounds))**

$$\Omega(g(n)) = \{f(n) : \text{there exist constants } c > 0, n_0 > 0 \text{ such that } 0 \le \operatorname{cg}(n) \le f(n) \text{ for all } n \ge n_0 \}$$

*

Example 2.3

$$\sqrt{n} = \Omega(\lg n) \quad (c = 1, n_0 = 16)$$

2.1.3 Θ -notation(tight bounds)

Definition 2.3 (⊖-notation(tight bounds))

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Example 2.4

$$\frac{1}{2}n^2 - 2n = \Theta\left(n^2\right)$$

2.1.4 o-notation and ω -notation

O-notation and Ω-notation are like \leq and \geq . *o*-notation and ω -notation are like < and >.

Definition 2.4 (*o*-notation)

 $o(g(n)) = \{f(n) : \text{for any constant } c > 0 \text{ ,there is a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$

Example 2.5

$$2n^2 = o\left(n^3\right) \quad (n_0 = 2/c)$$

Definition 2.5 (ω -notation)

 $o(g(n))=\{f(n):$ for any constant c>0 , there is a constant $n_0>0$ Such that $0\leq f(n)< cg(n)$ for all $n\geq n_0\}$

Example 2.6

$$\sqrt{n} = \omega(\lg n) \quad (n_0 = 1 + 1/c)$$

2.2 Solving recurrences

The analysis of merge sort from Lecture 1 required us to solve a recurrence. Recurrences are like solving integrals, differential equations, etc. Learn a few tricks.

2.2.1 Substitution method

Definition 2.6 (Substitution method)

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

Example 2.7

$$T(n) = 4T(n/2) + n$$

- Assume that $T(1) = \Theta(1)$.
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n
- Prove $T(n) \le cn^3$ by induction.

Solution

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$$

$$\leq cn^3 \leftarrow desired$$

whenever $(c/2)n^3 - n \ge 0$, for example, if $c \ge 2$ and $n \ge 1$

Note We must also handle the initial conditions, that is, ground the induction with base cases.

- 1. Base: $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- 2. For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

This bound is not tight!

Note A tighter upper bound? We shall prove that $T(n) = O(n^2)$

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$= O(n^{2})$$

Wrong! We must prove the I.H. $(T(k) \le ck^2)$

$$= cn^2 - (-n)$$

for no choice of c > 0. Lose!

Note IDEA: Strengthen the inductive hypothesis.(Subtract a low-order term.)

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

Solution

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$< c_1n^2 - c_2n \text{ if } c_2 > 1.$$

Pick c_1 big enough to handle the initial conditions.

2.2.2 Recursion-tree method

- A recursion tree models the costs(time)ofa recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...)
- The recursion-tree method promotes intuition, however.
- The recursion tree method is good for generating guesses for the substitution method.

Example 2.8 Solve

$$T(n) = T(n/4) + T(n/2) + n^2$$

2.2.3 The master method

The master method applies to recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1, b > 1$ and f is asymptotically positive.

Theorem 2.1 (Three common cases)

Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$

• f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).

Solution:

$$T(n) = \Theta\left(n^{\log_b a}\right)$$

2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$

• f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:

$$T(n) = \Theta\left(n^{\log_b a} \lg^{k+1} n\right)$$

3. $f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right)$ for some constant $\varepsilon > 0$

• f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor), and f(n) satisfies the regularity condition that $af(n/b) \leq cf(n)$ for some constant c < 1

Solution:

$$T(n) = \Theta(f(n))$$

C

Example 2.9

$$T(n) = 4T(n/2) + n^3$$

Solution

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3$$

CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$ and $4(n/2)^3 \le cn^3$ (reg. cond.) for c = 1/2.

$$T(n) = \Theta\left(n^3\right)$$

Example 2.10

$$T(n) = 4T(n/2) + n^2/\lg n$$

Solution

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2 / \lg n$$

Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

2.2.3.1 Idea of master theorem