iota24 Team Note

deuslovelt, max804, palilo

_		_	
2	Mathematics	1	
3	Data structures	1	
4	Numerical	4	
5	Number theory	6	
6	Combinatorial	8	
7	Graph	9	
8	Geometry	13	
9	Strings	17	
10	10 Various		

Contest (1)

template.cpp

#define ce(t)

#endif

1 Contest

<pre>#include <bits stdc++.h=""></bits></pre>
using namespace std;
<pre>#define rep(i, a, b) for(int i = a; i < (b); ++i)</pre>
<pre>#define all(x) begin(x), end(x)</pre>
<pre>#define sz(x) (int)(x).size()</pre>
typedef long long 11;
<pre>typedef pair<int, int=""> pii;</int,></pre>
<pre>typedef vector<int> vi;</int></pre>
#ifdef OHSOLUTION
<pre>#define ce(t) cerr<<t< pre=""></t<></pre>
#define AT cerr << "\n========ANS=======\r
#define AE cerr << "\n========\r
#define DB(a) cerr < <line "="" ":="" #a="" (a)<="" <<="" td=""></line>
endl;
#definebuiltin_popcountpopcnt
#definebuiltin_popcount11popcnt64
const LL LNF = 0x3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f
<pre>const int INF = 0x3f3f3f3f;</pre>
template <typename t,="" typename="" u=""> void ckmax(T& a, U b) { a =</typename>
<pre></pre>
<pre>template<typename t,="" typename="" u=""> void ckmin(T& a, U b) { a =</typename></pre>
<pre>> D ? D : a; } template<typename t,="" typename="" u=""> void MOD(T& a, U b) { a += k</typename></pre>
if (a >= mod) a -= mod; };
#else
#define AT
#define AF

Mathematics (2)

2.1 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.2 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.3 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.3.1 Discrete distributions

Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$u = \lambda, \sigma^2 = \lambda$$

2.3.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is $\mathrm{U}(a,b),\ a < b.$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null-type. **Time:** $\mathcal{O}(\log N)$

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but $\sim 3x$ faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
Usage: hash_map<int, int> table({}, {}, {}, {}, {}, {1 < 16}, 16});
#include <bits/extc++.h>
struct splitmix64_hash {
    // http://xorshift.di.unimi.it/splitmix64.c
    static uint64 t splitmix64 (uint64 t x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    size_t operator()(uint64_t x) const {
        return splitmix64(x + 0x2425260000242526);
};
template <typename K, typename V>
using hash_map = __gnu_pbds::gp_hash_table<K, V,</pre>
     splitmix64 hash>;
template <typename K>
using hash_set = hash_map<K, __gnu_pbds::null_type>;
```

LazySegmentTree.h

Description: Segment tree with ability to add or set values of large intervals, and compute max of intervals. apply: for each x in [l, r) a[x] = b * a[x] + c prod: range sum

```
Usage: 'e', 'off' : identity element
'op': unite two nodes
'mapping': apply tag to node
'composition': unite two tags
be careful for setting value 'e', it will used for ...
1. dummy nodes (out of range)
2. initial value in 'prod' and 'op'
Time: \mathcal{O}(\log N).
                                                      ca9638, 81 lines
template <typename node_t, typename tag_t>
class lazy_segtree {
    const node t e {};
                             // change it
    const tag_t off {1, 0}; // change it
    const size_t n, height, size;
    vector<node t> tree;
    vector<tag_t> lazy;
    lazy\_segtree(size\_t n) : n(n), height(n ? \__lg(n - 1) + 1 :
          0), size(1 << height),
                              tree(size << 1, e), lazy(size, off
                                  ) {}
    node_t& operator[](size_t i) { return tree[size + i]; }
    void build() {
        for (size_t i = size; i--;) {
            pull(i);
    void apply(size_t l, size_t r, tag_t f) {
        apply(1, r, f, 0, size, 1);
   node_t prod(size_t l, size_t r) {
        return prod(1, r, 0, size, 1);
private:
#define lson (i << 1)
#define rson (i << 1 | 1)
    inline int get_index(node_t& node) const { return &node -
         tree.data(); }
    inline int get_depth(node_t& node) const { return __lg(
         get_index(node)); }
    inline int get_height(node_t& node) const { return height -
          get_depth(node); }
    inline int get_length(node_t& node) const { return 1 <<</pre>
         get height(node); }
    inline int get_first(node_t& node) const {
        int idx = get_index(node);
        int dep = __lg(idx);
int len = 1 << height - dep;</pre>
        return len * (idx ^ 1 << dep);
    void apply(size_t ql, size_t qr, tag_t f, size_t l, size_t
        r, size_t i) {
        if (qr <= 1 || r <= ql) return;
        if (ql <= 1 && r <= qr) {
            all_apply(i, f);
            return;
        if (lazy[i] != off) push(i);
        const auto m = (1 + r) \gg 1;
        apply(gl, gr, f, l, m, lson), apply(gl, gr, f, m, r,
             rson);
        pull(i);
    node_t prod(size_t ql, size_t qr, size_t l, size_t r,
         size t i) {
```

```
if (qr <= 1 || r <= ql) return e;
        if (ql <= 1 && r <= qr) return tree[i];
        if (lazy[i] != off) push(i);
        const auto m = (1 + r) >> 1;
        return op(prod(ql, qr, l, m, lson), prod(ql, qr, m, r,
             rson));
    void pull(size_t i) {
        tree[i] = op(tree[lson], tree[rson]);
    void push(size t i) {
        all_apply(lson, lazy[i]);
        all_apply(rson, lazy[i]);
        lazy[i] = off;
    void all_apply(size_t i, tag_t f) {
        mapping(tree[i], f);
        if (i < size) composition(lazy[i], f);</pre>
    node_t op(node_t lhs, node_t rhs) const {
        // return lhs + rhs;
    void mapping(node_t& node, tag_t f) {
        // node = node * f.first + get\_length(node) * <math>f.second;
    void composition(tag_t& tag, tag_t f) {
        // tag.first *= f.first;
        // tag.second = tag.second * f.first + f.second;
};
LazySegmentTree-GoldMine.h
Description: Lazy Segment Tree - Gold Mine
Usage: 'e' : identity element
'op': unite two nodes
Time: \mathcal{O}(\log N).
                                                      46a7fd, 62 lines
struct node t {
    11 lmax, cmax, rmax, sum;
};
template <typename node_t>
class segtree {
    const node_t e {}; // change
    const size_t n, height, size;
    vector<node_t> tree;
public:
    segtree(size_t n) : n(n), height(n ? __lg(n - 1) + 1 : 0),
         size(1 << height), tree(size << 1, e) {}
    node_t& operator[](size_t i) { return tree[size + i]; }
    void build() {
        for (size_t i = size; i--;) {
            pull(i);
    void set(size t idx, node t val) {
        assert(0 <= idx and idx < n);
        tree[idx += size] = val;
        while (idx >>= 1) pull(idx);
    node_t prod(size_t l, size_t r) const {
        assert (0 \le 1 \text{ and } 1 \le r \text{ and } r \le n);
        node_t lval = e, rval = e;
        for (1 += size, r += size; 1 != r; 1 >>= 1, r >>= 1) {
            if (1 & 1) lval = op(lval, tree[1++]);
            if (r & 1) rval = op(tree[--r], rval);
```

DisjointSet Matrix LineContainer

```
return op(lval, rval);
    11 all_prod() const {
        return tree[1].cmax;
    void clear() {
        fill(tree.begin(), tree.end(), e);
private:
    inline int get_index(node_t& node) const { return &node -
         tree.data(); }
    inline int get_depth(node_t& node) const { return __lg(
         get_index(node)); }
    inline int get_height(node_t& node) const { return height -
          get_depth(node); }
    inline int get_length(node_t& node) const { return 1 <<</pre>
         get_height(node); }
    inline int get_first(node_t& node) const {
        int idx = get_index(node);
        int dep = __lg(idx);
       int len = 1 << height - dep;
        return len * (idx ^ 1 << dep);
    void pull(size_t i) {
        tree[i] = op(tree[i << 1], tree[i << 1 | 1]);</pre>
    node_t op(node_t l, node_t r) const {
        // return node_t {
               .lmax = max(l.lmax, l.sum + r.lmax),
               .cmax = max(\{l.cmax, r.cmax, l.rmax + r.lmax\}),
               .rmax = max(r.rmax, r.sum + l.rmax),
               .sum = l.sum + r.sum;
};
```

DisjointSet.h

Description: Disjoint-set data structure with undo?

Usage: TOTO Time: TODO

```
f90a56, 93 lines
struct disjoint_set {
    vector<int> par, enemy;
    \label{eq:disjoint_set} \mbox{disjoint\_set(int n) : } par(n, -1), \ \mbox{enemy}(n, -1) \ \{\}
    int find(int u) {
        return par[u] < 0 ? u : par[u] = find(par[u]);</pre>
    int merge(int u, int v) {
        if (u == -1) return v:
        if (v == -1) return u;
        u = find(u), v = find(v);
        if (u == v) return u;
        if (par[u] > par[v]) swap(u, v);
        par[u] += par[v];
        par[v] = u;
        return u;
    bool ack(int u, int v) {
        u = find(u), v = find(v);
        if (enemy[u] == v) return false;
        int a = merge(u, v), b = merge(enemy[u], enemy[v]);
        enemv[a] = b;
        if (\sim b) enemy [b] = a;
        return true;
    bool dis(int u, int v) {
        u = find(u), v = find(v);
```

```
if (u == v) return false;
        int a = merge(u, enemy[v]), b = merge(v, enemy[u]);
       enemv[a] = b, enemv[b] = a;
       return true;
};
// offline dynamic connectivity
struct disjoint_set {
   vector<int> par;
   vector<pair<int, int>> stk;
    disjoint_set(int n) : par(n, -1) {}
    int find(int u) {
        while (par[u] >= 0) u = par[u];
        return u;
   bool merge(int u, int v) {
       u = find(u), v = find(v);
       if (u == v) return false;
        if (par[u] > par[v]) swap(u, v);
       stk.emplace_back(v, par[v]);
       par[u] += par[v];
       par[v] = u;
       return true;
    void roll_back(size_t check_point) {
        for (; stk.size() != check_point; stk.pop_back()) {
            const auto& [u, sz] = stk.back();
            par[par[u]] -= sz, par[u] = sz;
// minimize maximum weight in path
template <typename T, typename F = less<T>>
class disjoint_set {
    const T e = 0x3f3f3f3f; // change this
    const F cmp {};
    const int n;
   vector<int> par;
    vector<T> weight;
    disjoint\_set(int n) : n(n), par(n, -1), weight(n, e) {}
    int find(int u) {
        while (par[u] >= 0) u = par[u];
        return u;
    void unite(int u, int v, T w) {
       u = find(u), v = find(v);
       if (u == v) return;
       if (par[u] > par[v]) swap(u, v);
       par[u] += par[v];
       par[v] = u;
       weight[v] = w;
   T query(int u, int v) {
       T ret = e;
        for (; u != v; u = par[u]) {
           if (cmp(weight[v], weight[u])) swap(u, v);
            ret = weight[u];
       return ret;
};
```

Matrix.h

```
Description: Basic operations on square matrices.
Usage: Matrix<int, 3> A;
A.d = \{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\}\};
vector < int > vec = \{1, 2, 3\};
vec = (A^N) * vec;
                                                        c43c7d, 26 lines
template < class T, int N> struct Matrix {
 typedef Matrix M;
 array<array<T, N>, N> d{};
 M operator*(const M& m) const {
    rep(i,0,N) rep(j,0,N)
      rep(k, 0, N) \ a.d[i][j] += d[i][k] * m.d[k][j];
 vector<T> operator*(const vector<T>& vec) const {
    vector<T> ret(N);
    rep(i,0,N) rep(j,0,N) ret[i] += d[i][j] * vec[j];
    return ret;
 M operator^(ll p) const {
    assert(p >= 0);
    M a, b(*this);
    rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
      if (p\&1) a = a*b;
      b = b*b;
      p >>= 1;
    return a;
```

LineContainer.h

};

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

```
Time: \mathcal{O}(\log N)
                                                      8ec1c7, 30 lines
struct Line {
 mutable ll k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
 // (for doubles, use inf = 1/.0, div(a,b) = a/b)
 static const ll inf = LLONG MAX;
 ll div(ll a, ll b) { // floored division
   return a / b - ((a ^ b) < 0 && a % b); }
 bool isect(iterator x, iterator y) {
    if (y == end()) return x -> p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
 void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(v, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
      isect(x, erase(y));
 ll query(ll x) {
    assert(!empty());
    auto 1 = *lower_bound(x);
    return 1.k * x + 1.m;
```

BinaryIndexedTree.h

void add(int id) {}

BinaryIndexedTree MoQueries Polynomial PolyRoots

```
Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and
updates single elements a[i], taking the difference between the old and new
value.
Usage: TODO
Time: Both operations are \mathcal{O}(\log N).
                                                         806f55, 47 lines
template <typename T>
class binary_indexed_tree {
    const size t n:
    vector<T> tree;
public:
    binary_indexed_tree(size_t n) : n(n), tree(n + 1) {}
    // a[i] += val
    void update(size_t i, T val) {
        assert(0 \le i and i \le n);
        for (++i; i <= n; i += i & -i)
            tree[i] += val;
    // return the sum of the range [0, i)
    T query(size t i) const {
        assert(0 \le i and i \le n);
        T ret = 0:
        for (; i; i &= i - 1)
            ret += tree[i];
        return ret:
    // return the sum of the range (l, r)
    T query(size_t l, size_t r) const {
        return query(r) - query(1);
    // return a[i]
    T get(size_t i) const {
        assert(0 \le i and i \le n);
        return i & 1 ? query(i, i + 1) : tree[i + 1];
    // return minimum i s.t. sum[0...i] >= k
    size t lower bound(T k) const {
        size t x = 0;
        for (size_t pw = 1 << 25; pw; pw >>= 1)
             if ((x | pw) <= n && tree[x | pw] < k)</pre>
                 k \rightarrow tree[x \mid = pw];
        return x;
    // return minimum i s.t. sum[0...i] > k
    size_t upper_bound(T k) const {
        size_t x = 0;
        for (size_t pw = 1 << 25; pw; pw >>= 1)
             if ((x | pw) <= n && tree[x | pw] <= k)</pre>
                 k \rightarrow tree[x \mid = pw];
        return x;
};
MoQueries.h
Description: Answer interval or tree path queries by finding an approx-
imate TSP through the queries, and moving from one query to the next
by adding/removing points at the ends. record in time and out time in
dfs. the path of (u, v), in_u \leq \in_v is ... if u = lca, [in_u, in_v]. if u \neq lca,
[out_u, in_v] + in_{lca}
Usage: if array: just use add(), del().
if tree: NEVER USE add(), del(). only use flip() for both
Time: \mathcal{O}\left(N\sqrt{Q}\right)
struct query_t {
    int 1, r, id, lca;
```

```
void del(int id) {}
int calc() {}
// < if tree >
vector<int> adj[MX_N];
int sz[MX_N], in[MX_N], out[MX_N], par[MX_N], top[MX_N], tour[
    MX N << 1];
int tick;
bitset<MX_N> visited {};
// </if tree >
void dfs(int u) {
   sz[u] = 1;
    for (auto& v : adj[u]) {
        par[v] = u;
        adj[v].erase(find(adj[v].begin(), adj[v].end(), u)); //
              if\ bidirectional
        dfs(v);
        sz[u] += sz[v];
        if (sz[v] > sz[adj[u][0]]) {
            swap(v, adj[u][0]);
   }
void hld(int u) {
   in[u] = tick, tour[tick] = u;
    ++tick;
   bool heavy = true;
    for (const auto& v : adj[u]) {
       top[v] = heavy ? top[u] : v;
       hld(v);
       heavy = false;
    out[u] = tick, tour[tick] = u;
    ++tick;
int get lca(int u, int v) {
    for (; top[u] != top[v]; u = par[top[u]]) {
        if (sz[top[u]] > sz[top[v]])
            swap(u, v);
    return in[u] < in[v] ? u : v;
void flip(int id) {
    // if tree
    visited[id] ? del(id) : add(id);
    visited[id].flip();
int main() {
    // example of Mo's on tree
    // how to initialize queries
    vector<querv t> q(m);
    for (int i = 0, u, v; i < m; ++i) {
       cin >> u >> v;
        if (in[u] > in[v]) swap(u, v);
        auto lca = get_lca(u, v);
       u == lca ? (q[i].l = in[u], q[i].lca = -1) : (q[i].l =
            out[u], q[i].lca = lca);
        q[i].r = in[v] + 1, q[i].id = i;
    // how to sort...
    constexpr int sq = 350;
    sort(q.begin(), q.end(), [&](auto& a, auto& b) {
        if (a.1 / sq != b.1 / sq) return a.1 < b.1;
        return a.1 / sq & 1 ? a.r > b.r : a.r < b.r;
```

```
// how to calculate answer...
    vector<int> ans(m);
    int pl = q[0].1, pr = q[0].1;
    for (const auto [1, r, id, lca] : q) {
        while (1 < pl) flip(tour[--pl]);</pre>
        while (pr < r) flip(tour[pr++]);</pre>
        while (pl < 1) flip(tour[pl++]);</pre>
        while (r < pr) flip(tour[--pr]);</pre>
        if (~lca) flip(lca);
        ans[id] = calc();
        if (~lca) flip(lca);
Numerical (4)
4.1 Polynomials and recurrences
Polynomial.h
                                                      c9b7b0, 17 lines
struct Poly {
  vector<double> a;
  double operator()(double x) const {
    double val = 0:
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val:
  void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
    a.pop_back();
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for (int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots (\{\{2,-3,1\}\},-1e9,1e9) // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
                                                      b00bfe, 23 lines
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
  vector<double> ret;
  Poly der = p;
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push_back(xmin-1);
  dr.push_back(xmax+1);
  sort(all(dr));
  rep(i, 0, sz(dr) -1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^ (p(h) > 0)) {
      rep(it, 0, 60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f <= 0) ^ sign) 1 = m;
        else h = m;
      ret.push_back((1 + h) / 2);
```

return ret;

BerlekampMassev.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after bruteforcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2} Time: $\mathcal{O}(N^2)$

```
96548<u>b</u>, 20 lines
"../number-theory/ModPow.h"
vector<ll> berlekampMassey(vector<ll> s) {
 int n = sz(s), L = 0, m = 0;
  vector < 11 > C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
  rep(i, 0, n) \{ ++m;
   ll d = s[i] % mod;
    rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
    if (!d) continue;
   T = C; 11 coef = d * modpow(b, mod-2) % mod;
    rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
  C.resize(L + 1); C.erase(C.begin());
  for (11& x : C) x = (mod - x) % mod;
  return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_{j} S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey.

Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number Time: $\mathcal{O}\left(n^2 \log k\right)$

```
f4e444, 26 lines
typedef vector<ll> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
  int n = sz(tr);
  auto combine = [&](Poly a, Poly b) {
   Poly res(n \star 2 + 1);
   rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
   for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
   res.resize(n + 1);
   return res;
  };
 Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
   e = combine(e, e);
 11 \text{ res} = 0;
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
 return res:
```

Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix.

```
Time: \mathcal{O}(N^3)
                                                       bd5cec, 15 lines
double det(vector<vector<double>>& a) {
 int n = sz(a); double res = 1;
 rep(i,0,n) {
    int b = i;
    rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
    if (i != b) swap(a[i], a[b]), res *= -1;
    res *= a[i][i];
    if (res == 0) return 0;
```

if (v != 0) rep(k, i+1, n) a[j][k] -= v * a[i][k];

IntDeterminant.h

return res;

rep(j,i+1,n) {

double v = a[i][i] / a[i][i];

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

```
Time: \mathcal{O}(N^3)
                                                        3<u>313dc</u>, <u>18 lines</u>
const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
 int n = sz(a); ll ans = 1;
 rep(i,0,n) {
    rep(j,i+1,n) {
      while (a[j][i] != 0) { // gcd step }
        ll t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
          a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1:
    ans = ans * a[i][i] % mod;
    if (!ans) return 0;
 return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. Time: $\mathcal{O}\left(n^2m\right)$

```
44c9ab, 38 lines
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
   double v, bv = 0;
   rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
   if (bv <= eps) {
     rep(j,i,n) if (fabs(b[j]) > eps) return -1;
     break:
    swap(A[i], A[br]);
   swap(b[i], b[br]);
   swap(col[i], col[bc]);
   rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
    rep(j, i+1, n) {
```

```
double fac = A[j][i] * bv;
    b[j] -= fac * b[i];
    rep(k,i+1,m) A[j][k] -= fac*A[i][k];
  rank++;
x.assign(m, 0);
for (int i = rank; i--;) {
  b[i] /= A[i][i];
  x[col[i]] = b[i];
  rep(j, 0, i) b[j] -= A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)
```

SolveLinearBinarv.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. Time: $\mathcal{O}\left(n^2m\right)$

fa2d7a, 34 lines

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
 assert(m \le sz(x));
 vi col(m); iota(all(col), 0);
  rep(i,0,n) {
    for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
    if (br == n) {
      rep(j,i,n) if(b[j]) return -1;
      break;
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j, 0, n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
    rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
      A[j] ^= A[i];
    rank++;
  x = bs();
  for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
    rep(j,0,i) b[j] ^= A[j][i];
 return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

rep(i,0,n) {

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step. Time: $\mathcal{O}\left(n^3\right)$

ebfff6, 35 lines int matInv(vector<vector<double>>& A) { int n = sz(A); vi col(n); vector<vector<double>> tmp(n, vector<double>(n)); rep(i, 0, n) tmp[i][i] = 1, col[i] = i;

```
int r = i, c = i;
  rep(j,i,n) rep(k,i,n)
   if (fabs(A[j][k]) > fabs(A[r][c]))
     r = j, c = k;
  if (fabs(A[r][c]) < 1e-12) return i;
 A[i].swap(A[r]); tmp[i].swap(tmp[r]);
 rep(j,0,n)
   swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
  swap(col[i], col[c]);
 double v = A[i][i];
  rep(j,i+1,n) {
   double f = A[j][i] / v;
   A[j][i] = 0;
   rep(k, i+1, n) A[j][k] -= f*A[i][k];
   rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
 rep(j,i+1,n) A[i][j] /= v;
 rep(j,0,n) tmp[i][j] /= v;
 A[i][i] = 1;
for (int i = n-1; i > 0; --i) rep(j,0,i) {
 double v = A[i][i];
 rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
```

MatrixInverse-mod.h

Description: Invert matrix A modulo a prime. Returns rank; result is stored in A unless singular (rank < n). For prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
"../number-theory/ModPow.h"
                                                       a6f68f, 36 lines
int matInv(vector<vector<11>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<ll>> tmp(n, vector<ll>(n));
  rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n) if (A[j][k]) {
     r = j; c = k; goto found;
    return i:
found:
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n) swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c
        ]);
    swap(col[i], col[c]);
    11 v = modpow(A[i][i], mod - 2);
    rep(j,i+1,n) {
     11 f = A[j][i] * v % mod;
     A[j][i] = 0;
     rep(k, i+1, n) A[j][k] = (A[j][k] - f*A[i][k]) % mod;
     rep(k, 0, n) tmp[j][k] = (tmp[j][k] - f*tmp[i][k]) % mod;
    rep(j, i+1, n) A[i][j] = A[i][j] * v % mod;
    rep(j, 0, n) tmp[i][j] = tmp[i][j] * v % mod;
   A[i][i] = 1;
  for (int i = n-1; i > 0; --i) rep(j,0,i) {
    11 v = A[j][i];
    rep(k,0,n) tmp[j][k] = (tmp[j][k] - v*tmp[i][k]) % mod;
```

4.3 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: $\operatorname{conv}(a, b) = c$, where $c[x] = \sum_x a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum_i a_i^2 + \sum_i b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod. **Time:** $\mathcal{O}(N \log N)$ with N = |A| + |B| ($\sim 1s$ for $N = 2^{22}$)

```
00ced6, 35 lines
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
 int n = sz(a), L = 31 - _builtin_clz(n);
 static vector<complex<long double>> R(2, 1);
 static vector<C> rt(2, 1); // (^ 10% faster if double)
 for (static int k = 2; k < n; k \neq 2) {
   R.resize(n); rt.resize(n);
    auto x = polar(1.0L, acos(-1.0L) / k);
   rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
 vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - \underline{\quad} builtin_clz(sz(res)), n = 1 << L;
 vector<C> in(n), out(n);
 copy(all(a), begin(in));
 rep(i, 0, sz(b)) in[i].imag(b[i]);
  for (C& x : in) x *= x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
 return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

```
"FastFourierTransform.h" b82773, 22 In
typedef vector<11> v1;
template<int M> v1 convMod(const v1 &a, const v1 &b) {
   if (a.empty() || b.empty()) return {};
   v1 res(sz(a) + sz(b) - 1);
   int B=32-_builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));
   vector<C> L(n), R(n), outs(n), outl(n);
   rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
```

```
rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
fft(L), fft(R);
rep(i,0,n) {
   int j = -i & (n - 1);
   out1[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
   outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
}
fft(out1), fft(outs);
rep(i,0,sz(res)) {
   ll av = ll(real(out1[i])+.5), cv = ll(imag(outs[i])+.5);
   ll bv = ll(imag(out1[i])+.5) + ll(real(outs[i])+.5);
   res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
}
return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_x a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form 2^ab+1 , where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. $\operatorname{conv}(a, b) = c$, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in $[0, \operatorname{mod})$.

```
Time: \mathcal{O}(N \log N)
```

```
"../number-theory/ModPow.h"
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> vl;
void ntt(vl &a) {
  int n = sz(a), L = 31 - \underline{builtin_clz(n)};
  static vl rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
    rt.resize(n);
    ||z|| = \{1, modpow(root, mod >> s)\};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  vi rev(n);
  rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(i, 0, k) {
      11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
      a[i + j + k] = ai - z + (z > ai ? mod : 0);
      ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
  if (a.empty() || b.empty()) return {};
  int s = sz(a) + sz(b) - 1, B = 32 - _builtin_clz(s), n = 1
      << B;
  int inv = modpow(n, mod - 2);
  vl L(a), R(b), out(n);
  L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i, 0, n) out[-i \& (n - 1)] = (11)L[i] * R[i] % mod * inv %
      mod:
  ntt(out):
  return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

Time: $\mathcal{O}(N \log N)$

464cf3, 16 lines

```
void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
      int &u = a[j], &v = a[j + step]; tie(u, v) =
          inv ? pii(v - u, u) : pii(v, u + v); // AND
      inv ? pii(v, u - v) : pii(u + v, u); // OR
      pii(u + v, u - v);
    }
  }
  if (inv) for (int& x : a) x /= sz(a); // XOR only
}
vi conv(vi a, vi b) {
  FST(a, 0); FST(b, 0);
  rep(i,0,sz(a)) a[i] *= b[i];
  FST(a, 1); return a;</pre>
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
35bfea, 18 lines
const 11 mod = 17; // change to something else
struct Mod {
 11 x;
  Mod(ll xx) : x(xx) \{ \}
  Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
  Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
  Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
  Mod operator/(Mod b) { return *this * invert(b); }
  Mod invert (Mod a) {
   11 x, y, g = euclid(a.x, mod, x, y);
    assert(g == 1); return Mod((x + mod) % mod);
  Mod operator^(ll e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
    return e&1 ? *this * r : r;
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime. 6f684f, 3 lines

```
const 11 mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

b83e45, 8 lines

```
const 11 mod = 1000000007; // faster if const

11 modpow(11 b, 11 e) {
    11 ans = 1;
    for (; e; b = b * b % mod, e /= 2)
        if (e & 1) ans = ans * b % mod;
    return ans;
}
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. $\operatorname{modLog}(a,1,m)$ can be used to calculate the order of a.

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{\rm to-1} (ki+c)$ %m. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

5c5bc5, 16 lines

19a793, 24 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
   ull res = k / m * sumsq(to) + c / m * to;
   k % = m; c % = m;
   if (!k) return res;
   ull to2 = (to * k + c) / m;
   return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
}

ll modsum(ull to, ll c, ll k, ll m) {
   c = ((c % m) + m) % m;
   k = ((k % m) + m) % m;
   return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
}
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(1.L / M * a * b);
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull modpow(ull b, ull e, ull mod) {
    ull ans = 1;
    for (; e; b = modmul(b, b, mod), e /= 2)
        if (e & 1) ans = modmul(ans, b, mod);
    return ans;
}
```

ModSqrt.h

"ModPow.h"

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

```
ll sqrt(ll a, ll p) {
    a %= p; if (a < 0) a += p;
    if (a == 0) return 0;
    assert (modpow(a, (p-1)/2, p) == 1); // else no solution
    if (p % 4 == 3) return modpow(a, (p+1)/4, p);
    // a^(n+3)/8 or 2^(n+3)/8 * 2^(n-1)/4 works if p % 8 == 5
    ll s = p - 1, n = 2;
    int r = 0, m;
    while (s % 2 == 0)
    ++r, s /= 2;
    while (modpow(n, (p - 1) / 2, p) != p - 1) ++n;
```

```
11 x = modpow(a, (s + 1) / 2, p);
11 b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r = m) {
   11 t = b;
   for (m = 0; m < r && t != 1; ++m)
        t = t * t % p;
   if (m == 0) return x;
   11 gs = modpow(g, 1LL << (r - m - 1), p);
   g = gs * gs % p;
   x = x * gs % p;
   b = b * g % p;
}
</pre>
```

5.2 Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM. **Time:** $\mathcal{O}(N)$

efbce1, 19 lines

```
const int LIM = 1e6;
vector<int> pr; // prime set
int sp[LIM]; // minimum prime
int cnt[LIM]; // 2 ^ (prime_num)
int mu[LIM];

void get_sieve() {
  cnt[1] = 1;
  for(int i = 2; i<LIM;++i) {
    if (!sp[i]) pr.push_back(i), cnt[i] = 2, mu[i] = -1;
    for (auto& x : pr) {
        if (x * i >= LIM) break;
        sp[x * i] = x;
        cnt[x * i] = i % x == 0 ? cnt[i] : cnt[i]+1;
        mu[x * i] = (i % x != 0) * (-mu[i]);
        if (i % x == 0) break;
    }
};
```

PrimalityTest.h

Description: Miller-Rabin and Pollard's rho

Time: isprime(n) : $\mathcal{O}(\log n)$, factorize(n) : $\mathcal{O}\left(n^{1/4}\right)$

5bdb20, 61 lines

```
class primality_test {
 using num = unsigned long long;
 const vector<num> base_small = {2, 7, 61},
           base_large = {2, 325, 9375, 28178, 450775, 9780504,
                 1795265022};
public:
 bool is_prime(num n) const {
   if (n < 2) return false;
   if (n == 2 || n == 3) return true;
   if (n % 6 != 1 && n % 6 != 5) return false;
    const auto& base = n < 4759123141ULL ? base_small :
        base_large;
   const int s = __builtin_ctzll(n - 1);
   const num d = n >> s;
    for (const auto& b : base) {
     if (b >= n) break;
     if (check_composite(n, b, d, s)) return false;
   return true;
 vector<num> factorize(num n) const {
   if (n == 1) return {};
    if (is prime(n)) return {n};
```

euclid CRT phiFunction multinomial

```
const num x = pollard(n);
    auto 1 = factorize(x), r = factorize(n / x);
    decltype(l) ret(l.size() + r.size());
    merge(1.begin(), 1.end(), r.begin(), r.end(), ret.begin());
    return ret;
private:
  num pow_mod(num a, num p, num m) const {
   num ret = 1;
    for (; p; p >>= 1) {
     if (p & 1) ret = mul_mod(ret, a, m);
     a = mul\_mod(a, a, m);
    return ret;
  num mul_mod(num a, num b, num m) const {
    int64_t ret = a * b - m * num(1.L / m * a * b);
    return ret + m * (ret < 0) - m * (ret >= int64_t(m));
  bool check_composite(num n, num x, num d, int s) const {
    x = pow_mod(x, d, n);
    if (x == 1 \mid \mid x == n - 1) return false;
    while (--s) {
     x = mul\_mod(x, x, n);
     if (x == n - 1) return false;
    return true;
  num pollard(num n) const {
    auto f = [\&] (num x) \{ return mul\_mod(x, x, n) + 1; \};
    num x = 0, y = 0, prd = 2, i = 1, q;
    for (int t = 30; t++ % 40 || gcd(prd, n) == 1; x = f(x), y
         = f(f(y))
      if (x == y) x = ++i, y = f(x);
     if ((q = mul\_mod(prd, x > y ? x - y : y - x, n))) prd = q
    return gcd(prd, n);
};
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in $_\gcd$ instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
11 euclid(11 a, 11 b, 11 &x, 11 &y) {
   if (!b) return x = 1, y = 0, a;
   11 d = euclid(b, a % b, y, x);
   return y -= a/b * x, d;
}
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod m$, $x \equiv b \pmod n$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m,n)$. Assumes $mn < 2^{62}$. Time: $\log(n)$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ then $\phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$. $\phi(n) = n \cdot \prod_{p|n} (1-1/p)$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \leq k \leq n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$ **Euler's thm:** a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$. **Fermat's little thm:** p prime $\Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a$.

```
const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
  rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
  for (int i = 3; i < LIM; i += 2) if(phi[i] == i)
      for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}</pre>
```

5.4 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1 000 000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.5 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\begin{array}{l} \sum_{d|n}\mu(d)=[n=1] \text{ (very useful)} \\ \\ g(n)=\sum_{n|d}f(d) \Leftrightarrow f(n)=\sum_{n|d}\mu(d/n)g(d) \\ \\ g(n)=\sum_{1\leq m\leq n}f(\left\lfloor\frac{n}{m}\right\rfloor) \Leftrightarrow f(n)=\sum_{1\leq m\leq n}\mu(m)g(\left\lfloor\frac{n}{m}\right\rfloor) \end{array}$$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

n	1 2 3	4	5 6	7	8	9	10	
n!	1 2 6	24 1	20 720	5040	40320 3	362880	3628800	
n	11	12	13	14	15	16	17	
n!	4.0e7	4.8e	8.6.2e9	8.7e1	.0 1.3e1	2 2.1e13	3.6e14	
n							171	
n!	2e18	2e25	3e32 8	8e47.3e	e64 9e1	57 6e26	2 >dbl_m	AX

6.1.2 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

6.2.2 Binomials

multinomial.h

```
Description: Computes \binom{k_1 + \dots + k_n}{k_1, k_2, \dots, k_n} = \frac{(\sum k_i)!}{k_1! k_2! \dots k_n!}.

11 multinomial(vi& v) {
    11 c = 1, m = v.empty() ? 1 : v[0];
    rep(i,1,sz(v)) rep(j,0,v[i])
    c = c * ++m / (j+1);
    return c;
```

6.3 General purpose numbers

6.3.1 Bernoulli numbers

```
EGF of Bernoulli numbers is B(t) = \frac{t}{e^t - 1} (FFT-able). B[0,...] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42},...]
```

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

$$c(8,k) = 8,0,5040,13068,13132,6769,1960,322,28,1$$

 $c(n,2) = 0,0,1,3,11,50,274,1764,13068,109584,...$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) > j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n, n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = $1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, \dots$ For p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_n C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

SPFA.h

Description: Calculates shortest paths from st in a graph that might have negative edge weights. Return false if the graph has a negative cycle. 2001ea. 34 lines

```
constexpr 11 INF = 99999999999999999;
vector<pair<int, ll>> g[1001];
11 dst[1001];
bool ing[1001];
int n, cycle[1001];
bool spfa(int st) {
    for (int i = 0; i < n; ++i) dst[i] = INF;
    dst[st] = 0;
    queue<int> q;
   q.push(st);
    while(q.empty() == false) {
        int cur = q.front();
        q.pop();
        inq[cur] = false;
        for(auto& nx : g[cur]) {
            int nxt = nx.first;
            11 cost = nx.second;
            if(dst[nxt] > dst[cur] + cost) {
                dst[nxt] = dst[cur] + cost;
                if(inq[nxt] == false) {
                    q.push(nxt);
                    inq[nxt] = true;
                cycle[nxt]++;
                if(cycle[nxt] > n) {
                    return false;
```

```
return true;
```

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
Time: \mathcal{O}(|V| + |E|)
```

66a137, 14 lines

```
vi topoSort(const vector<vi>& qr) {
 vi indeg(sz(gr)), ret;
 for (auto& li : gr) for (int x : li) indeg[x]++;
 queue<int> q; // use priority_queue for lexic. largest ans.
 rep(i, 0, sz(gr)) if (indeg[i] == 0) q.push(i);
 while (!q.emptv()) {
   int i = q.front(); // top() for priority queue
   ret.push back(i);
   q.pop();
    for (int x : qr[i])
     if (--indeg[x] == 0) q.push(x);
 return ret;
```

Network flow

Dinic.h

Description: Dinic algorithm

85a76f, 58 lines

```
using flow t = int;
struct edge {
 int v, rev;
  flow t capa;
  edge(int _v, int _rev, flow_t _capa) : v(_v), rev(_rev), capa
       (_capa) {}
};
const flow t FLOW MAX = numeric limits<flow t>::max();
int n, src = -1, sink = -1;
vector<vector<edge>> adj(n);
vector<int> level(n), ptr(n);
void add_edge(int u, int v, flow_t c) {
 assert (0 \leq u and u \leq n and 0 \leq v and v \leq n);
 adj[u].emplace_back(v, adj[v].size(), c);
 adj[v].emplace_back(u, adj[u].size() - 1, 0);
int bfs() {
 fill(level.begin(), level.end(), 0);
 level[src] = 1;
  queue<int> q;
  g.emplace(src);
  while (!q.empty()) {
    const auto u = q.front();
    for (const auto& [v, rev, capa] : adj[u])
      if (capa && !level[v]) {
        level[v] = level[u] + 1;
        q.emplace(v);
 return level[sink];
```

MinCostMaxFlow MCMF-OH MinCut GlobalMinCut

```
flow t dfs(int u, flow t f) {
 if (u == sink) return f;
  for (int &i = ptr[u], sz = adj[u].size(); i < sz; ++i) {
    auto& [v, rev, capa] = adj[u][i];
   if (capa && level[u] + 1 == level[v])
     if (flow_t d = dfs(v, min(f, capa)); d) {
       capa -= d;
       adj[v][rev].capa += d;
       return d:
  return 0;
flow_t max_flow() {
  flow_t ret = 0;
  for (flow_t f; bfs();) {
    fill(ptr.begin(), ptr.end(), 0);
   while ((f = dfs(src, FLOW_MAX))) ret += f;
  return ret;
MinCostMaxFlow.h
Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double
```

edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}(E^2)$

fe85cc, 81 lines

```
#include <bits/extc++.h>
const 11 INF = numeric limits<11>::max() / 4;
typedef vector<ll> VL:
struct MCMF {
 int N:
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen:
  VL dist, pi;
  vector<pii> par;
  MCMF (int N) :
   N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
    seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from);
  void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
    dist[s] = 0; ll di;
    __gnu_pbds::priority_queue<pair<11, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({0, s});
    auto relax = [&](int i, ll cap, ll cost, int dir) {
     11 val = di - pi[i] + cost;
     if (cap && val < dist[i]) {
       dist[i] = val;
       par[i] = \{s, dir\};
```

```
if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
       else q.modify(its[i], {-dist[i], i});
   };
   while (!q.empty()) {
     s = q.top().second; q.pop();
     seen[s] = 1; di = dist[s] + pi[s];
      for (int i : ed[s]) if (!seen[i])
       relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (int i : red[s]) if (!seen[i])
       relax(i, flow[i][s], -cost[i][s], 0);
   rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
 pair<11, 11> maxflow(int s, int t) {
   11 \text{ totflow} = 0, \text{ totcost} = 0;
   while (path(s), seen[t]) {
     11 fl = INF;
     for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       if (r) flow[p][x] += fl;
       else flow[x][p] -= fl;
   rep(i, 0, N) rep(j, 0, N) totcost += cost[i][j] * flow[i][j];
    return {totflow, totcost};
 // If some costs can be negative, call this before maxflow:
 void setpi(int s) { // (otherwise, leave this out)
    fill(all(pi), INF); pi[s] = 0;
    int it = N, ch = 1; 11 v;
   while (ch-- && it--)
     rep(i,0,N) if (pi[i] != INF)
       for (int to : ed[i]) if (cap[i][to])
         if ((v = pi[i] + cost[i][to]) < pi[to])
           pi[to] = v, ch = 1;
   assert(it >= 0); // negative cost cycle
};
MCMF-OH.h
Description: Dinic-style Min-cost max-flow.
                                                     2321e8, 76 lines
```

```
struct edge {
 int a, b, cap, flow, cost;
};
vector<edge> ve;
vector<int> adj[max_v];
int idx[max_v], dist[max_v],inq[max_v],vist[max_v],S,T;
// addedge (u, v, capicity, cost)
// then run
auto addedge = [&] (int a, int b, int cap, int cost) {
 edge e1 = { a,b,cap,0,cost };
 edge e2 = { b,a,0,0,-cost };
 adj[a].push_back(ve.size());
 ve.push_back(e1);
  adj[b].push back(ve.size());
 ve.push_back(e2);
auto spfa = [&]() {
 memset(dist, 0x3f, sizeof(dist));
```

```
memset(inq, 0, sizeof(inq));
  queue<int> bq; bq.push(S);
  dist[S] = 0; inq[S] = 1;
  while (bq.size()) {
   int u = bq.front(); bq.pop(); inq[u] = 0;
    for (auto& v : adj[u]) {
      auto c = ve[v];
     if (c.flow < c.cap && (dist[c.b] > dist[u] + c.cost)) {
       dist[c.b] = dist[u] + c.cost;
        if (!inq[c.b])bq.push(c.b), inq[c.b] = 1;
 return dist[T] != INF;
};
function<int(int, int)> dfs = [&](int u, int f) {
 if (!f) return 0;
 vist[u] = 1;
 if (u == T) return f;
  for (; idx[u] < adj[u].size(); ++idx[u]) {</pre>
   int v = adj[u][idx[u]];
    auto c = ve[v];
    if (dist[c.b] != dist[u] + c.cost || vist[c.b]) continue;
    if (int flow = dfs(c.b, min(f, c.cap - c.flow))) {
      ve[v].flow += flow;
      ve[v ^ 1].flow -= flow;
      return flow;
 return 0;
};
auto run = [&]() {
 int total cost = 0;
 int total_flow = 0;
 while (spfa()) {
    memset(idx, 0, sizeof(idx));
    memset(vist, 0, sizeof(vist));
    while (int f = dfs(S, INF)) {
      total cost += dist[T] * f;
      total flow += f;
      memset(vist, 0, sizeof(vist));
};
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to tis given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

```
Time: \mathcal{O}(V^3)
```

8b0e19, 21 lines

```
pair<int, vi> globalMinCut(vector<vi> mat) {
 pair<int, vi> best = {INT_MAX, {}};
 int n = sz(mat);
```

1e0fe9, 31 lines

```
vector<vi> co(n);
rep(i, 0, n) co[i] = {i};
rep(ph,1,n) {
 vi w = mat[0];
  size_t s = 0, t = 0;
  rep(it,0,n-ph) { // O(V^2) \rightarrow O(E log V) with prio. queue}
   w[t] = INT_MIN;
   s = t, t = max_element(all(w)) - w.begin();
   rep(i, 0, n) w[i] += mat[t][i];
 best = min(best, \{w[t] - mat[t][t], co[t]\});
 co[s].insert(co[s].end(), all(co[t]));
  rep(i,0,n) mat[s][i] += mat[t][i];
 rep(i,0,n) mat[i][s] = mat[s][i];
 mat[0][t] = INT_MIN;
return best;
```

Matching

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i]will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); hopcroftKarp(q, btoa);

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
                                                       f612e4, 42 lines
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
 if (A[a] != L) return 0;
 A[a] = -1;
  for (int b : g[a]) if (B[b] == L + 1) {
   if (btoa[b] == -1 \mid | dfs(btoa[b], L + 1, q, btoa, A, B))
      return btoa[b] = a, 1;
 return 0;
int hopcroftKarp(vector<vi>& g, vi& btoa) {
 int res = 0:
  vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
   fill(all(B), 0);
   cur.clear();
    for (int a : btoa) if (a !=-1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay++) {
     bool islast = 0;
     next.clear();
      for (int a : cur) for (int b : g[a]) {
       if (btoa[b] == -1) {
          B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && !B[b]) {
          B[b] = lay;
          next.push_back(btoa[b]);
      if (islast) break;
      if (next.empty()) return res;
      for (int a : next) A[a] = lay;
      cur.swap(next);
    rep(a, 0, sz(g))
```

```
res += dfs(a, 0, g, btoa, A, B);
DFSMatching-PO.h
Usage: vi btoa(m, -1); dfsMatching(g, btoa);
Time: \mathcal{O}(VE)
                                                     7810e6, 60 lines
int n, m;
vector<vector<int>> adj(n);
vector<int> match(n), rev(m);
vector<bool> visited(n);
bool dfs(int u) {
   visited[u] = true;
    for (const auto& v : adj[u]) {
       if (rev[v] == -1 || (!visited[rev[v]] && dfs(rev[v])))
            match[u] = v, rev[v] = u;
            return true;
    return false;
int maximum matching() {
    for (bool update = true; update;) {
        fill(visited.begin(), visited.end(), false);
        update = false;
        for (int i = 0; i < n; ++i)
            if (match[i] == -1 && dfs(i))
                update = true;
    return n - count(match.begin(), match.end(), -1);
// if index >= 0 -> left group
     index < 0 \rightarrow right group
vector<int> minimum vertex cover() {
    vector<char> check(m);
    auto bfs = [&](int src) {
        queue<int> q;
       g.emplace(src);
       visited[src] = true;
        while (!q.empty()) {
            const auto u = q.front();
            q.pop();
            for (const auto& v : adj[u])
                if (~rev[v] && !visited[rev[v]] && match[u] !=
                     V) {
                    check[v] = 1;
                    visited[rev[v]] = true;
                    q.emplace(rev[v]);
    fill(visited.begin(), visited.end(), false);
    for (int i = 0; i < n; ++i)
        if (match[i] == -1 && !visited[i])
            bfs(i);
    vector<int> ret;
    ret.reserve(n - count(match.begin(), match.end(), -1));
    for (int i = 0; i < n; ++i)
        if (!visited[i])
            ret.emplace_back(int(i));
    for (int i = 0; i < m; ++i)
        if (check[i])
            ret.emplace_back(~int(i));
    return ret;
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Time: $\mathcal{O}\left(N^2M\right)$

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n-1);
  rep(i,1,n) {
    p[0] = i;
    int j0 = 0; // add "dummy" worker 0
    vi dist(m, INT_MAX), pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
      done[j0] = true;
      int i0 = p[j0], j1, delta = INT_MAX;
      rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
        if (cur < dist[j]) dist[j] = cur, pre[j] = j0;</pre>
        if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      rep(j,0,m) {
        if (done[j]) u[p[j]] += delta, v[j] -= delta;
        else dist[j] -= delta;
      j0 = j1;
    } while (p[j0]);
    while (j0) { // update alternating path
     int j1 = pre[j0];
      p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return {-v[0], ans}; // min cost
```

7.4 DFS algorithms

if(ret == d[cur]) {

sccs.push_back({});

auto& scc = sccs.back();

int top;

do {

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice

```
Usage: scc(g, n);
sccIdx[node] or sccs({0, 1, 3}, {2, 4}, ...)
Time: \mathcal{O}\left(E+V\right)
                                                         b39228, 27 lines
vector<vi> sccs;
vi d, st, sccIdx;
int dNum;
int dfs(vector<vi>& q, int cur) {
    d[cur] = dNum++;
    st.push_back(cur);
    int ret = d[cur];
    for(int nxt : g[cur]) {
         if(sccIdx[nxt] < 0) ret = min(ret, d[nxt] ? : dfs(q,</pre>
```

BCC 2sat EulerWalk BinaryLifting HLD

```
} while(top != cur);
    return ret;
void scc(vector<vi>& q, int n)
    d.assign(n, 0); sccIdx.assign(n, -1); dNum = 1;
    rep(i,0,n) if (sccIdx[i] < 0) dfs(q, i);
BCC.h
Time: \mathcal{O}\left(E+V\right)
                                                       f80e60, 37 lines
int dfn[max_v], low[max_v], cn, ccn;
vector<int> adi[max v];
vector<vector<int>> bcc;
vector<pair<int, int>> st;
function<void(int, int)> dfs = [&](int u, int p)
  dfn[u] = low[u] = cn++;
  for (auto& v : adj[u]) if (v != p)
    if (dfn[v] < dfn[u]) st.push_back({ u,v });</pre>
    if (dfn[v]) ckmin(low[u], dfn[v]);
    else
      dfs(v, u);
      ckmin(low[u], low[v]);
      if (low[v] >= dfn[u])
        if (st.back().first == u && st.back().second == v) bcc[
             ccn].push_back(v);
        while (1)
          pair<int, int> cur = st.back(); st.pop_back();
          bcc[ccn].push_back(cur.first);
          if (cur.first == u && cur.second == v) break;
        ++ccn;
for(int i=0;i<n;++i) if (!dfn[i]) dfs(i, -1);</pre>
```

top = st.back(); st.pop_back();

sccIdx[top] = sccs.size();

scc.push_back(top);

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions $(-\infty)$.

Usage: TwoSat ts(number of boolean variables); ts.either(0, \sim 3); // Var 0 is true or var 3 is false ts.setValue(2); // Var 2 is true ts.atMostOne($\{0,\sim1,2\}$); // <= 1 of vars 0, \sim 1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0.N-1] holds the assigned values to the vars

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
 int N:
  vector<vi> gr;
 vi values; // 0 = false, 1 = true
 TwoSat(int n = 0): N(n), gr(2*n) {}
  int addVar() { // (optional)
    gr.emplace_back();
    gr.emplace_back();
    return N++;
  void either(int f, int j) {
    f = \max(2*f, -1-2*f);
    j = \max(2*j, -1-2*j);
    gr[f].push_back(j^1);
    gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
    if (sz(li) <= 1) return;
    int cur = \simli[0];
    rep(i,2,sz(li)) {
      int next = addVar();
      either(cur, ~li[i]);
      either(cur, next);
      either (~li[i], next);
      cur = ~next;
    either(cur, ~li[1]);
  vi val, comp, z; int time = 0;
 int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    for(int e : gr[i]) if (!comp[e])
      low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
      x = z.back(); z.pop_back();
      comp[x] = low;
      if (values[x>>1] == -1)
        values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
 bool solve() {
    values.assign(N, -1);
    val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1:
};
// a^b = (\sim a \mid \mid \sim b) \& (a \mid \mid b)
// a eq b = (\sim a \mid \mid b) \mathcal{E}(a \mid \mid \sim b)
// a \rightarrow b = (\sim a \mid \mid b)
// (a+b+c <=1) == (\sim a \mid \mid \sim b) \& (\sim a \mid \mid \sim c) \& (\sim b \mid \mid \sim c)
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret.

```
Time: O(V + E)

vi eulerWalk(vector<vector<pii>$\sigma$ gr, int nedges, int src=0) {
   int n = sz(gr);
   vi D(n), its(n), eu(nedges), ret, s = {src};
   D[src]++; // to allow Euler paths, not just cycles
   while (!s.empty()) {
    int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
    if (it == end) { ret.push_back(x); s.pop_back(); continue; }
        tie(y, e) = gr[x][it++];
        if (!eu[e]) {
            D[x]--, D[y]++;
            eu[e] = 1; s.push_back(y);
        }
        for (int x : D) if (x < 0 || sz(ret) != nedges+1) return {};
        return {ret.rbegin(), ret.rend()};
    }

7.5 Coloring</pre>
```

7.6 Trees

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

```
bfce85, 25 lines
```

```
vector<vi> treeJump(vi& P){
 int on = 1, d = 1;
 while (on < sz(P)) on *= 2, d++;
 vector<vi> jmp(d, P);
 rep(i,1,d) rep(j,0,sz(P))
   jmp[i][j] = jmp[i-1][jmp[i-1][j]];
 return jmp;
int jmp(vector<vi>& tbl, int nod, int steps){
 rep(i,0,sz(tbl))
   if(steps&(1<<i)) nod = tbl[i][nod];</pre>
 return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
 if (depth[a] < depth[b]) swap(a, b);</pre>
 a = jmp(tbl, a, depth[a] - depth[b]);
 if (a == b) return a;
 for (int i = sz(tbl); i--;) {
   int c = tbl[i][a], d = tbl[i][b];
   if (c != d) a = c, b = d;
 return tbl[0][a];
```

HLD.h

Usage: dfs(0); hld(0);

```
if (sz[v] > sz[adj[u][0]]) {
     swap(v, adj[u][0]);
void hld(int u) {
 in[u] = tick++;
 bool heavy = true;
  for (const auto& v : adj[u]) {
   top[v] = heavy ? top[u] : v;
   hld(v);
   heavy = false;
int query_path(int u, int v) {
  // int ret = 0;
  for (; top[u] != top[v]; u = par[top[u]]) {
    if (sz[top[u]] > sz[top[v]])
     swap(u, v);
    // ret += query(in[top[u]], in[u] + 1);
  if (in[u] > in[v]) swap(u, v);
  // ret \neq query(in[u], in[v] + 1); if vertex
  // ret += query(in[u] + 1, in[v] + 1); if edge
 // return u;
                                          if lca
int query_subtree(int u) {
  // return query(in[u], in[u] + sz[u]);
```

7.7 Math

7.7.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.7.2 Erdős-Gallai theorem

Source: https://en.wikipedia.org/wiki/ErdTest: stress-tests/graph/erdos-gallai.cpp A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$.

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template <class T> int sqn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
 typedef Point P;
 T x, y;
 explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
 P operator+(P p) const { return P(x+p.x, y+p.y); }
 P operator-(P p) const { return P(x-p.x, y-p.y); }
 P operator*(T d) const { return P(x*d, y*d); }
 P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
 T dist2() const { return x*x + y*y; }
 double dist() const { return sqrt((double)dist2()); }
 // angle to x-axis in interval [-pi, pi]
 double angle() const { return atan2(y, x); }
 P unit() const { return *this/dist(); } // makes dist()=1
 P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
 P rotate (double a) const {
   return P(x*\cos(a)-y*\sin(a),x*\sin(a)+y*\cos(a)); }
 friend ostream& operator<<(ostream& os, P p) {</pre>
   return os << "(" << p.x << "," << p.y << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.


```
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
  return (double) (b-a).cross(p-a)/(b-a).dist();
}
```

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

```
Usage: Point < double > a, b(2,2), p(1,1); bool on Segment = segDist(a,b,p) < le-10;
```


SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<II> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

```
e1
e e2
r1
s s1 s2
```

```
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter) == 1)
cout << "segments intersect at " << inter[0] << endl;</pre>
"Point.h", "OnSegment.h"
template<class P> vector<P> segInter(P a, P b, P c, P d) {
 auto oa = c.cross(d, a), ob = c.cross(d, b),
       oc = a.cross(b, c), od = a.cross(b, d);
  // Checks if intersection is single non-endpoint point.
  if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
   return { (a * ob - b * oa) / (ob - oa) };
  set<P> s;
 if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
  if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
  return {all(s)};
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists $\{1, \text{ point}\}$ is returned. If no intersection point exists $\{0, (0,0)\}$ is returned and if infinitely many exists $\{-1, (0,0)\}$ is returned. The wrong position will be returned if P is Point<|| > and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or ll. Usage: auto res = lineInter(s1,e1,s2,e2);

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow left/on line/right$. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p)<=epsilon) instead when using Point<double>.

```
"Point.h" c597e8, 3 lines
template<class P> bool onSegment(P s, P e, P p) {
  return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;
}</pre>
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,
 const P& q0, const P& q1, const P& r) {
 P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
 return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
}

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted int j = 0; rep(i,0,n) \{ while (v[j] < v[i].t180()) ++j; \} // sweeps j such that (j-i) represents the number of positively oriented triangles with vertices at 0 and i 0f0602.35 lines
```

```
struct Angle {
 int x, y;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
   assert(x || y);
   return y < 0 \mid | (y == 0 \&\& x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return \{-x, -y, t + half()\}; }
  Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a. dist2() and b. dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (ll)b.x) <
         make_tuple(b.t, b.half(), a.x * (l1)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b - angle a}
  int tu = b.t - a.t; a.t = b.t;
  return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

```
repoint.h" 84d6d3, 11 lines

typedef Point<double> P;
bool circleInter(P a,P b,double r1,double r2,pair<P, P>* out) {
   if (a == b) { assert(r1 != r2); return false; }
   P vec = b - a;
   double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
        p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
   if (sum*sum < d2 || dif*dif > d2) return false;
   P mid = a + vec*p, per = vec.perp() * sqrt(fmax(0, h2) / d2);
   *out = {mid + per, mid - per};
   return true;
}
```

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents - 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}(n)$

```
alee63, 19 lines
"../../content/geometry/Point.h"
typedef Point < double > P:
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
 auto tri = [&](P p, P q) {
   auto r2 = r * r / 2;
   P d = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (det <= 0) return arg(p, q) * r2;
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 \mid \mid 1 \le s) return arg(p, q) * r2;
   P u = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
 auto sum = 0.0;
 rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum;
```

circumcircle.h

Description:

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
  return (B-A).dist()*(C-B).dist()*(A-C).dist()/
      abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
  P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}(n)$

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

Usage: vector $\langle P \rangle$ v = $\{P\{4,4\}, P\{1,2\}, P\{2,1\}\};$

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
"Point.h" f12300, 6 lines template<class T>
```

```
T polygonArea2(vector<Point<T>>& v) {
  T a = v.back().cross(v[0]);
  rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
  return a;
}
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}\left(n\right)$

"Point.h" 9706dc, 9 lines

typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
 P res(0, 0); double A = 0;
 for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
 res = res + (v[i] + v[j]) * v[j].cross(v[i]);
 A += v[j].cross(v[i]);
 }
 return res / A / 3;
}</pre>

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Time: $\mathcal{O}(n \log n)$

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

"Point.h" c571b8, 12 lines

```
typedef Point<11> P;
```

```
array<P, 2> hullDiameter(vector<P> S) {
   int n = sz(S), j = n < 2 ? 0 : 1;
   pair<11, array<P, 2>> res({0, {S[0], S[0]}});
   rep(i,0,j)
   for (;; j = (j + 1) % n) {
      res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});
      if ((S[(j + 1) % n] - S[j]).cross(S[i + 1] - S[i]) >= 0)
          break;
   }
   return res.second;
}
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

"Point.h", "sideOf.h", "OnSegment.h"

```
typedef Point<ll> P;

bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)
    return false;
while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
  }
  return sgn(1[a].cross(1[b], p)) < r;
}</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side (i,i+1), \bullet (i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i,i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
"Point.h"
#define cmp(i,j) sqn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
 if (extr(0)) return 0;
 while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
    (ls < ms | | (ls == ms && ls == cmp(lo, m)) ? hi : lo) = m;
 return lo;
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
 int endA = extrVertex(poly, (a - b).perp());
 int endB = extrVertex(poly, (b - a).perp());
 if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
   return {-1, -1};
 array<int, 2> res;
 rep(i, 0, 2) {
    int lo = endB, hi = endA, n = sz(poly);
```

```
while ((lo + 1) % n != hi) {
    int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
    (cmpL(m) == cmpL(endB) ? lo : hi) = m;
}
res[i] = (lo + !cmpL(hi)) % n;
swap(endA, endB);
}
if (res[0] == res[1]) return {res[0], -1};
if (!cmpL(res[0]) && !cmpL(res[1]))
switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
    case 0: return {res[0], res[0]};
    case 2: return {res[1], res[1]};
}
return res;
}</pre>
```

8.4 Misc. Point Set Problems

ClosestPair.h

71446b, 14 lines

Description: Finds the closest pair of points.

```
Time: \mathcal{O}(n \log n)
```

```
"Point.h"
                                                      ac41a6, 17 lines
typedef Point<11> P;
pair<P, P> closest (vector<P> v) {
  assert (sz(v) > 1);
  set<P> S;
  sort(all(v), [](P a, P b) { return a.y < b.y; });
  pair<11, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
  int j = 0;
  for (P p : v) {
    P d{1 + (ll) sqrt (ret.first), 0};
    while (v[j].y \le p.y - d.x) S.erase(v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
      ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
    S.insert(p):
  return ret.second:
```

kdTree.h

Description: KD-tree (2d, can be extended to 3d)

```
"Point.h"
                                                     bac5b0, 63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }
struct Node {
  P pt; // if this is a leaf, the single point in it
  T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
  Node *first = 0, *second = 0;
  T distance (const P& p) { // min squared distance to a point
   T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node(vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
```

FastDelaunay PolyhedronVolume Point3D 3dHull

```
// split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
 Node* root;
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return \{INF, P()\};
     return make_pair((p - node->pt).dist2(), node->pt);
   Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best;
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
  pair<T, P> nearest(const P& p) {
    return search(root, p);
};
```

FastDelaunav.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                        eefdf5, 88 lines
typedef Point<ll> P;
typedef struct Ouad* O;
typedef __int128_t 111; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Quad {
  Q rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  Q& r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) \starC + p.cross(b,c) \starA + p.cross(c,a) \starB > 0;
Q makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{0}}}};
  H = r - > 0; r - > r() - > r() = r;
```

```
rep(i, 0, 4) r = r -> rot, r -> p = arb, r -> o = i & 1 ? r : r -> r();
 r->p = orig; r->F() = dest;
 return r;
void splice(Q a, Q b) {
 swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
 Q = makeEdge(a->F(), b->p);
 splice(q, a->next());
 splice(q->r(), b);
 return q;
pair<Q,Q> rec(const vector<P>& s) {
 if (sz(s) <= 3) {
    Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
    Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 Q A, B, ra, rb;
 int half = sz(s) / 2;
 tie(ra, A) = rec({all(s) - half});
 tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B\rightarrow p.cross(H(A)) < 0 \&\& (A = A\rightarrow next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
 Q base = connect(B->r(), A);
 if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) {
     0 t = e \rightarrow dir; \
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e->o = H; H = e; e = t; \setminus
  for (;;) {
    DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
    if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
     base = connect(base->r(), LC->r());
 return { ra, rb };
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};</pre>
 O e = rec(pts).first;
 vector<Q> q = {e};
 int qi = 0;
 while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
 q.push\_back(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++]) \rightarrow mark) ADD;
 return pts;
```

$8.5 \quad 3D$

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

3058c3, 6 lines

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
}
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

8058ae, 32 lines

```
template<class T> struct Point3D {
 typedef Point3D P;
 typedef const P& R;
 T x, y, z;
 explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
 bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
 bool operator == (R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
 P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
 P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
 P operator*(T d) const { return P(x*d, y*d, z*d); }
 P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
   return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
 double dist() const { return sqrt((double)dist2()); }
 //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T) dist(); } //makes dist()=1
 //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate(double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

3dHull.l

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}\left(n^2\right)
```

```
vector < vector < PR >> E(sz(A), vector < PR > (sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
  auto mf = [\&] (int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
  rep(i, 4, sz(A)) {
   rep(j,0,sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop back();
    int nw = sz(FS);
    rep(j,0,nw) {
     F f = FS[i];
\#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
  for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) \ll 0) swap(it.c, it.b);
  return FS:
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

KMP.h

Time: $\mathcal{O}(n)$

Description: KMP algorithm

vector<int> lps(const string& s) {
 vector<int> vt(s.size());
 for (int i = 1, j = 0; i < int(s.size()); ++i) {
 while (j && s[i] != s[j]) j = vt[j - 1];
 if (s[i] == s[j]) vt[i] = ++j;
}</pre>

```
return vt;
}

vector<int> match(const string& s, const string& k) {
   const auto fail = lps(k);
   const int n = s.size(), m = k.size();
   vector<int> ret;
   for (int i = 0, j = 0; i < n; ++i) {
      while (j && s[i] != k[j]) j = fail[j - 1];
      if (s[i] == k[j] && ++j == m) {
        ret.emplace_back(i - m + 1);
        j = fail[m - 1];
      }
   }
   return ret;
}</pre>
```

Zfunc.h

Time: $\mathcal{O}(n)$

Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301)

```
vi Z(string S) {
  vi z(sz(S));
  int 1 = -1, r = -1;
  rep(i,1,sz(S)) {
    z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
    while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
    z[i]++;
  if (i + z[i] > r)
    1 = i, r = i + z[i];
  }
  return z;
```

Manacher l

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, <math>p[1][i] = longest odd (half rounded down). **Time:** $\mathcal{O}(N)$

```
array<vi, 2> manacher(const string& s) {
   int n = sz(s);
   array<vi, 2> p = {vi(n+1), vi(n)};
   rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) {
     int t = r-i+!z;
     if (i<r) p[z][i] = min(t, p[z][1+t]);
     int L = i-p[z][i], R = i+p[z][i]-!z;
     while (L>=1 && R+1<n && s[L-1] == s[R+1])
        p[z][i]++, L--, R++;
     if (R>r) l=L, r=R;
}
return p;
}
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+minRotation(v), v.end()); **Time:** O(N)

```
int minRotation(string s) {
  int a=0, N=sz(s); s += s;
  rep(b,0,N) rep(k,0,N) {
    if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
    if (s[a+k] > s[b+k]) { a = b; break; }
}
  return a;
}
```

SuffixArray

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is *i*'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The 1cp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. Time: $O(n \log n)$

```
struct SuffixArray {
 vi sa, lcp;
 SuffixArray(string& s, int lim=256) { // or basic_string<int>
    int n = sz(s) + 1, k = 0, a, b;
    vi \times (all(s)), v(n), ws(max(n, lim)), rank(n);
    x.push_back(' \0');
    sa = lcp = v, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
      p = j, iota(all(y), n - j);
      rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
      fill(all(ws), 0);
      rep(i,0,n) ws[x[i]]++;
      rep(i, 1, lim) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
      for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

Hashing.h

H h = 0, pw = 1;

d07a42, 8 lines

Description: Self-explanatory methods for string hashing.

```
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
 // ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
 // "typedef ull H:" instead if you think test data is random.
// or work mod 10^9+7 if the Birthday paradox is not a problem.
struct H {
 typedef uint64_t ull;
 ull x; H(ull x=0) : x(x) {}
#define OP(O,A,B) H operator O(H o) { ull r = x; asm \
  (A "addq %%rdx, %0\n adcq $0,%0" : "+a"(r) : B); return r; }
 OP(+,,"d"(o.x)) OP(*,"mul %1\n", "r"(o.x): "rdx")
 H operator-(H o) { return *this + ~o.x; }
 ull get() const { return x + !~x; }
 bool operator==(H o) const { return get() == o.get(); }
 bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order ~ 3e9; random also ok)
struct HashInterval {
 vector<H> ha, pw;
 HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
     ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
 H hashInterval(int a, int b) { // hash (a, b)
    return ha[b] - ha[a] * pw[b - a];
vector<H> getHashes(string& str, int length) {
 if (sz(str) < length) return {};
```

753a4c, 19 lines

9155b4, 11 lines

```
rep(i,0,length)
  h = h * C + str[i], pw = pw * C;
vector<H> ret = {h};
rep(i,length,sz(str)) {
  ret.push_back(h = h * C + str[i] - pw * str[i-length]);
}
return ret;
}
H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with Aho-Corasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N= sum of length of patterns. find(x) is $\mathcal{O}(N)$, where N= length of x. findAll is $\mathcal{O}(NM)$.

```
struct AhoCorasick {
 enum {alpha = 26, first = 'A'}; // change this!
  struct Node {
   // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
 vector<Node> N;
 vi backp;
  void insert(string& s, int j) {
   assert(!s.emptv());
   int n = 0:
   for (char c : s) {
     int& m = N[n].next[c - first];
     if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
     else n = m:
   if (N[n].end == -1) N[n].start = j;
   backp.push_back(N[n].end);
   N[n].end = j;
   N[n].nmatches++;
  AhoCorasick(vector<string>& pat) : N(1, -1) {
   rep(i,0,sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emplace_back(0);
   queue<int> q;
   for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     rep(i,0,alpha) {
       int &ed = N[n].next[i], y = N[prev].next[i];
       if (ed == -1) ed = y;
       else {
         N[ed].back = y;
          (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
           = N[y].end;
         N[ed].nmatches += N[y].nmatches;
         q.push (ed);
 vi find(string word) {
   int n = 0;
   vi res; // ll count = 0:
```

```
for (char c : word) {
    n = N[n].next[c - first];
    res.push_back(N[n].end);
    // count += N[n].nmatches;
}
return res;
}
vector<vi> findAll(vector<string>& pat, string word) {
    vi r = find(word);
    vector<vi> res(sz(word));
    rep(i,0,sz(word)) {
        int ind = r[i];
        while (ind != -1) {
        res[i - sz(pat[ind]) + 1].push_back(ind);
        ind = backp[ind];
     }
}
return res;
}
```

$\underline{\text{Various}}$ (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: \mathcal{O}(\log N)
                                                     edce47, 23 lines
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
 auto it = is.lower_bound({L, R}), before = it;
 while (it != is.end() && it->first <= R) {</pre>
   R = max(R, it->second);
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
 auto r2 = it->second;
 if (it->first == L) is.erase(it);
 else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty). **Time:** $\mathcal{O}(N \log N)$

```
### Time: O(N log N)

9e9d8d, 19 lines

template<class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
    vi S(sz(I)), R;
    iota(all(S), 0);
    sort(all(S), [&] (int a, int b) { return I[a] < I[b]; });
    T cur = G.first;
```

```
int at = 0;
while (cur < G.second) { // (A)
  pair<T, int> mx = make_pair(cur, -1);
  while (at < sz(I) && I[S[at]].first <= cur) {
    mx = max(mx, make_pair(I[S[at]].second, S[at]));
    at++;
  }
  if (mx.second == -1) return {};
  cur = mx.first;
  R.push_back(mx.second);
}
return R;</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val){...}); 
 Time: \mathcal{O}(k \log \frac{n}{k})
```

```
template < class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {
    if (p == q) return;
    if (from == to) {
        g(i, to, p);
        i = to; p = q;
    } else {
        int mid = (from + to) >> 1;
        rec(from, mid, f, g, i, p, f(mid));
        rec(mid+1, to, f, g, i, p, q);
    }
}
template < class F, class G>
void constantIntervals(int from, int to, F f, G g) {
    if (to <= from) return;
    int i = from; auto p = f(i), q = f(to-1);
    rec(from, to-1, f, g, i, p, q);
    g(i, to, q);
}</pre>
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a, b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];});
Time: \mathcal{O}(\log(b-a))
```

```
template<class F>
int ternSearch(int a, int b, F f) {
   assert(a <= b);
   while (b - a >= 5) {
      int mid = (a + b) / 2;
      if (f(mid) < f(mid+1)) a = mid; // (A)
      else b = mid+1;
   }
   rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
   return a;
}</pre>
```

LIS.h

Description: Compute indices for the longest increasing subsequence. **Time:** $\mathcal{O}\left(N\log N\right)$

KnuthDP DivideAndConquerDP FastMod FastInput

10.5 Optimization tricks template<class I> vi lis(const vector<I>& S) { if (S.empty()) return {}; vi prev(sz(S));

```
__builtin_ia32_ldmxcsr(40896); disables denormals
typedef pair<I, int> p;
                                                               (which make floats 20x slower near their minimum value).
vector res;
rep(i, 0, sz(S)) {
 // change 0 -> i for longest non-decreasing subsequence
                                                               10.5.1 Bit hacks
 auto it = lower_bound(all(res), p{S[i], 0});
 if (it == res.end()) res.emplace_back(), it = res.end()-1;
                                                                 • x & -x is the least bit in x.
 *it = {S[i], i};
 prev[i] = it == res.begin() ? 0 : (it-1) -> second;
```

- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b, 0, K) rep(i, 0, (1 << K)) if (i & 1 << b) $D[i] += D[i^{(1 << b)]};$ computes all sums of subsets.

Dynamic programming

int L = sz(res), cur = res.back().second;

while (L--) ans[L] = cur, cur = prev[cur];

KnuthDP.h

vi ans(L);

return ans;

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[i][k])$ a[k][j] + f(i,j), where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \leq f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. Time: $\mathcal{O}(N^2)$

Description: Given $a[i] = \min_{lo(i) \leq k < hi(i)} (f(i, k))$ where the (minimal)

Time: $\mathcal{O}((N + (hi - lo)) \log N)$

d38d2b, 18 lines

```
struct DP { // Modify at will:
  int lo(int ind) { return 0; }
  int hi(int ind) { return ind; }
  11 f(int ind, int k) { return dp[ind][k]; }
  void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
  void rec(int L, int R, int LO, int HI) {
   if (L >= R) return;
   int mid = (L + R) \gg 1;
   pair<11, int> best(LLONG_MAX, LO);
   rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
     best = min(best, make_pair(f(mid, k), k));
    store (mid, best.second, best.first);
   rec(L, mid, LO, best.second+1);
   rec(mid+1, R, best.second, HI);
  void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
```

DivideAndConquerDP.h

optimal k increases with i, computes $\bar{a}[i]$ for i = L..R - 1.

Debugging tricks

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). GLIBCXX DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to a \pmod{b} in the range [0, 2b).

```
typedef unsigned long long ull;
struct FastMod {
 ull b, m;
 FastMod(ull b) : b(b), m(-1ULL / b) {}
 ull reduce(ull a) { // a % b + (0 or b)
   return a - (ull) ((__uint128_t(m) * a) >> 64) * b;
};
```

FastInput.h

Description: Read an integer from stdin. Usage requires your program to pipe in input from file.

Usage: ./a.out < input.txt</pre>

Time: About 5x as fast as cin/scanf.

7b3c70, 17 lines

```
inline char gc() { // like getchar()
 static char buf[1 << 16];
 static size_t bc, be;
 if (bc >= be) {
   buf[0] = 0, bc = 0;
   be = fread(buf, 1, sizeof(buf), stdin);
 return buf[bc++]; // returns 0 on EOF
int readInt() {
 int a, c;
 while ((a = gc()) < 40);
 if (a == '-') return -readInt();
```

```
while ((c = qc()) >= 48) a = a * 10 + c - 480;
return a - 48:
```

19