Convex Optimization: Geometric Programming

course project by

DMITRII GUREV M03-201

Optimization in Machine Learning, Fall 2022

Table of contents

Geometric Programming

- Monomials and posynomials
- Geometric program
- Convex optimization problem
- Geometric program in convex form
- Applications
- Current state of the art

Examples

- Frobenius norm diagonal scaling
- Maximum area of a rectangle
- Design of a cantilever beam

Geometric Programming

Monomials and posynomials

For
$$x \in \mathbf{R}_{++}^n$$

Monomial:
$$f(x) = cx_1^{a_1}x_2^{a_2} \dots x_n^{a_n}$$
 with $c > 0$

Posynomial:
$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}$$
 with $c_k > 0$

Geometric program

```
minimize f_0(x)

subject to f_i(x) \leq 1, \quad i = 1, \dots, m

h_i(x) = 1, \quad i = 1, \dots, p,
```

where f_0, \ldots, f_m are posynomials and h_1, \ldots, h_p are monomials (the constraint $x \succ 0$ is implicit)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

where f_0, \ldots, f_m are convex functions

6 / 33

Geometric program in convex form

Change of variables:
$$y_i = \log x_i$$

Monomial:
$$f(x) = c (e^{y_1})^{a_1} (e^{y_2})^{a_2} \dots (e^{y_n})^{a_n}$$

= $e^{a^T y + b}$, $b = \log c$

Posynomial:
$$f(x) = \sum_{k=1}^{K} e^{a_k^T y + b_k}$$

Geometric program in convex form

minimize
$$\sum_{k=1}^{K_0} e^{a_{0k}^T y + b_{0k}}$$
 subject to
$$\sum_{k=1}^{K_i} e^{a_{ik}^T y + b_{ik}} \le 1, \quad i = 1, \dots, m$$

$$e^{g_i^T y + h_i} = 1, \quad i = 1, \dots, p.$$

Geometric program in convex form

minimize
$$\tilde{f}_0(y) = \log \left(\sum_{k=1}^{K_0} e^{a_{0k}^T y + b_{0k}} \right)$$

subject to $\tilde{f}_i(y) = \log \left(\sum_{k=1}^{K_i} e^{a_{ik}^T y + b_{ik}} \right) \le 0, \quad i = 1, \dots, m$
 $\tilde{h}_i(y) = g_i^T y + h_i = 0, \quad i = 1, \dots, p.$

Applications

Component sizing

Huang, Chia-Hui. "Engineering design by geometric programming." *Mathematical problems in engineering* 2013 (2013).

Aircraft design

Hoburg, Warren, and Pieter Abbeel. "Geometric programming for aircraft design optimization." *AIAA Journal* 52.11 (2014): 2414-2426.

Applications

Electronic circuit design

Boyd, Stephen, Seung Jean Kim, and S. Mohan. "Geometric programming and its applications to EDA problems." date tutorial (2005).

Optimal control

Jefferson, T. R., and C. H. Scott. "Generalized geometric programming applied to problems of optimal control: I. Theory." *Journal of Optimization Theory and Applications* 26.1 (1978): 117-129.

Current state of the art

Interior-point methods (e.g. barrier method)

Approaching efficiency of linear programming solvers:

- 1,000 variables, 10,000 monomial terms: few seconds
- 10,000 variables, 100,000 monomial terms: minute
- 1,000,000 variables, 10,000,000 monomial terms: hour

these are order-of-magnitude estimates, on simple PC

Boyd, Stephen, Seung Jean Kim, and S. Mohan. "Geometric programming and its applications to EDA problems." date tutorial (2005).

Examples

Linear function
$$y = Mu$$

Scaling $\tilde{u} = Du$ $\tilde{y} = Dy$ $\tilde{y} = DMD^{-1}\tilde{u}$

D is a diagonal matrix with $D_{ii} = d_i > 0$

minimize
$$||DMD^{-1}||_{\mathrm{F}}^{2} = \mathbf{tr} \left((DMD^{-1})^{T} (DMD^{-1}) \right)$$

$$= \sum_{i,j=1}^{n} (DMD^{-1})_{ij}^{2}$$

$$= \sum_{i,j=1}^{n} M_{ij}^{2} d_{i}^{2} / d_{j}^{2}.$$

In convex form:

minimize
$$\log \left(\sum_{i,j=1}^{n} e^{2x_i - 2x_j + \log M_{ij}^2} \right), \quad x_i = \log d_i$$

Gradient descent:

$$x_{k+1} = x_k - \alpha \nabla f(x_k), \quad \alpha = Const$$

Newton's method:

$$x_{k+1} = x_k - H(x_k)^{-1} \nabla f(x_k)$$

For
$$M = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$$

the solution obtained is $d = (0.529, 0.373, 0.314, 0.283)^T$

$$||M||_{\rm F} = 38,678$$
 $||DMD^{-1}||_{\rm F} = 36,289$

maximize
$$S(a,b) = ab$$

subject to $a+b \le \frac{p}{2}$.

The solution is well known:
$$a^* = \frac{p}{4}$$
, $b^* = \frac{p}{4}$

In convex form:

minimize
$$-\log e^{A+B} = -(A+B)$$

subject to $\log \left(e^{A+\log \frac{2}{p}} + e^{B+\log \frac{2}{p}} \right) \le 0,$
 $A = \log a, B = \log b$

Use the barrier method to eliminate the inequality constraint:

minimize
$$-A - B + I_{-} \left(\log \left[e^{A + \log \frac{2}{p}} + e^{B + \log \frac{2}{p}} \right] \right)$$

Indicator function
$$I_{-}(u) = \begin{cases} 0, & u \leq 0 \\ \infty, & u > 0 \end{cases}$$

Logarithmic barrier is a differentiable approximation of the indicator function

$$\hat{I}_{-}(u) = -\frac{1}{t}\log(-u),$$

$$\operatorname{dom} \hat{I}_{-}(u) = -\mathbf{R}_{++}$$

$$\operatorname{dom} \hat{I}_{-}(u) = -\mathbf{R}_{++}$$

Now the objective is to

minimize
$$-A - B - \frac{1}{t} \log \left(-\log \left[e^{A + \log \frac{2}{p}} + e^{B + \log \frac{2}{p}} \right] \right)$$

(merely an approximation of the original problem)

Solve a sequence of problems, increasing the parameter t (and therefore the accuracy of the approximation) at each step.

N segments of a unit length, width w_i and height h_i

Minimize the volume $w_1h_1 + \cdots + w_Nh_N$

Constraints:

$$w_{\min} \le w_i \le w_{\max}, \quad h_{\min} \le h_i \le h_{\max}, \quad i = 1, \dots, N$$

$$\frac{6iF}{w_i h_i^2} \le \sigma_{\max}, \quad i = 1, \dots, N$$
 maximum stress

$$y_1 \leq y_{\text{max}}$$
 maximum vertical deflection

The deflection can be found recursively

$$v_i = 12(i - 1/2)\frac{F}{Ew_i h_i^3} + v_{i+1}$$
 slope

$$y_i = 6(i - 1/3) \frac{F}{Ew_i h_i^3} + v_{i+1} + y_{i+1}$$
 deflection

$$v_{N+1} = y_{N+1} = 0$$

minimize
$$\sum_{i=1}^{N} w_i h_i$$
subject to
$$w_{\min} \leq w_i \leq w_{\max}, \quad i = 1, \dots, N$$

$$h_{\min} \leq h_i \leq h_{\max}, \quad i = 1, \dots, N$$

$$6iF/(w_i h_i^2) \leq \sigma_{\max}, \quad i = 1, \dots, N$$

$$y_1 \leq y_{\max}$$

For a 3-segment beam
$$y_1 = 4\frac{F}{Ew_1h_1^3} + 28\frac{F}{Ew_2h_2^3} + 76\frac{F}{Ew_3h_3^3}$$

The convex form can be derived analogously to the previous examples

```
Suppose N=3
               w_{\min} = h_{\min} = 0.1 \text{ m}
               w_{\rm max} = h_{\rm max} = 0.5 \text{ m}
               F = 3 \cdot 10^5 \text{ N}
               E = 2 \cdot 10^{11} \text{ Pa} (steel)
               \sigma_{\text{max}} = 10^8 \text{ Pa} (steel)
               y_{\rm max} = 0.01 \ {\rm m}
```

The optimal volume is 0.22 m³

Conclusions

Conclusions

Geometric programming

- comes up in a variety of contexts
- can be transformed to convex problems by a change of variables and a transformation of the objective and constraint functions
- admits fast, reliable solution of large-scale problems

Conclusions

Using Newton's method with the barrier method for eliminating inequality constraints, the following illustrative problems have been solved:

- Frobenius norm diagonal scaling
- Maximum area of a rectangle
- Design of a cantilever beam