Definition

Seien v_1, v_2, \ldots, v_n Vektoren im VR V und $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$. Dann heisst

$$v = \sum_{i=1}^{n} \alpha_i v_i$$

Linearkombination (LK) der Vektoren v_1, v_2, \ldots, v_n .

Beispiel

Seien v_1, v_2, \ldots, v_n Vektoren im VR V. Dann ist

$$U := \left\{ \sum_{i=1}^{n} \alpha_i v_i : \alpha_i \in \mathbb{R} \right\}$$

ein UR von V. Dieser heisst der von v_1, v_2, \ldots, v_n aufgespannte oder erzeugte Unterraum und wird mit $\text{span}\{v_1, v_2, \ldots, v_n\}$ bezeichnet.

Definition

Falls für einen VR V gilt, dass span $\{v_1, v_2, \dots, v_n\} = V$, so heisst $\{v_1, v_2, \dots, v_n\}$ ein **Erzeugendensystem** von V. In diesem Fall heisst V endlichdimensional.

Beispiel

Sei
$$v_1 := \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
 und $v_2 := \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$.

- ▶ Dann ist $w_1 = \begin{pmatrix} 8 \\ 8 \\ 0 \end{pmatrix}$ eine LK von v_1, v_2 , denn das LGS $w_1 = x_1v_1 + x_2v_2$ hat eine Lösung: $x_1 = 2$, $x_2 = 1$.
- ▶ Aber $w_2 = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix}$ ist keine LK von v_1, v_2 , denn das LGS $w_2 = x_1v_1 + x_2v_2$ hat keine Lösung.

$$P_{4} = \{a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} : a_{i} \in \mathbb{R}\}$$

$$= \operatorname{span}\{1, x, x^{2}, x^{3}, x^{4}\}$$

$$= \operatorname{span}\left\{\binom{x}{0}, \binom{x}{1}, \binom{x}{2}, \binom{x}{3}, \binom{x}{4}\right\}$$

wobei
$$\binom{x}{k} = \frac{x(x-1)(x-2)...(x-k+1)}{k!}$$
.

Beispiel

Der UR der symmetrischen 2 × 2-Matrizen

$$\left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \subset \mathbb{R}^{2 \times 2}(\mathbb{R})$$

wird aufgespannt von $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ und $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Linear-

Sei
$$A = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 3 & 7 & 2 & -4 \\ -1 & -3 & 4 & 14 \\ 9 & 20 & 13 & 7 \end{pmatrix}$$
.

Mit Hilfe des Gauss-Algorithmus findet man für den

Unterraum von
$$\mathbb{R}^4$$

raum von
$$\mathbb{R}^4$$
 $\{x \in \mathbb{R}^4 : Ax = 0\} = \operatorname{span}\left\{ \begin{pmatrix} -17 \\ 7 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -4 \\ 19 \\ 0 \\ 1 \end{pmatrix} \right\}$

Beispiel

Der VR P aller Polynome ist unendlichdimensional, denn er besitzt kein endliches Erzeugendensystem.

Beispiel

Die Vektoren $v_1, v_2, \ldots, v_n \in \mathbb{R}^n$ sind genau dann ein Erzeugendensystem von \mathbb{R}^n , falls $\det(v_1 \ v_2 \ \dots \ v_n) \neq 0$.

Lemma

Seien $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ und $A = (v_1 v_2 \ldots v_k) \in \mathbb{R}^{n \times k}$. Dann sind äquivalent

- \triangleright v_1, v_2, \ldots, v_k sind ein Erzeugendensystem in \mathbb{R}^n .
- ▶ Jeder Vektor $b \in \mathbb{R}^n$ ist LK der v_1, v_2, \ldots, v_k .
- Für jeden Vektor $b \in \mathbb{R}^n$ besitzt $\sum_{i=1}^k x_i v_i = b$ eine Lösung.
- Für jeden Vektor $b \in \mathbb{R}^n$ besitzt das LGS Ax = b eine Lösung.
- ▶ Rang A = n.

Folgerung: Falls k < n ist, kann v_1, v_2, \ldots, v_k kein Erzeugendensystem von \mathbb{R}^n sein.

Repetition

Lineare Algebra

Linearkombinationen

Lineare Unabhängigkeit

Definition

Sei V ein VR. Die Vektoren $v_1, v_2, \ldots, v_n \in V$ heissen **linear** unabhängig, falls

 $\sum_{i=1} x_i v_i = 0$

nur die triviale Lösung $x_1 = \ldots = x_n = 0$ hat. Andernfalls heissen die Vektoren $v_1, v_2, \ldots, v_n \in V$ linear abhängig.

Anders gesagt: Falls der Nullvektor nur auf die triviale Art als LK der v_i dargestellt werden kann, so sind die v_i linear unabhängig. Und entsprechend: Falls der Nullvektor auf nichttriviale Art als LK der v_i dargestellt werden kann, so sind die v_i linear abhängig.

- ▶ Falls einer der Vektoren v_1, v_2, \ldots, v_n der Nullvektor ist, so sind diese Vektoren linear abhängig.
- \triangleright Zwei Vektoren v_1, v_2 sind linear abhängig genau dann, wenn ein Vektor ein Vielfaches des andern ist.

Geometrische Interpretation

In \mathbb{R}^2 :

Zwei kollineare Vektoren sind linear abhängig

Zwei nicht kollineare Vektoren sind linear unabhängig

In \mathbb{R}^3 :

Drei komplanare Vektoren sind linear abhängig

Drei nicht komplanare Vektoren sind linear unabhängig

Repetition

Lineare Algebra

Linearkombinationer

> Lineare Unabhängigkeit

Repetition

Lineare Algebra

Linearkombinationen

Lineare Unabhängigkeit

Beispiel

 $x_1 = x_2 = 0$.

Die Vektoren
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$ und $v_3 = \begin{pmatrix} 2 \\ 3 \\ 5 \\ 5 \end{pmatrix}$ sind linear abhängig, denn es gilt zum Beispiel $v_1 + v_2 - v_3 = 0$.