codility

Training center

Check out Codility training tasks

TASKS DETAILS

1. FrogJmp

Count

minimal number of jumps from position X

Task Score 44%

Correctness

Performance

100% 0%

Task description

to Y.

A small frog wants to get to the other side of the road. The frog is currently located at position X and wants to get to a position greater than or equal to Y. The small frog always jumps a fixed distance, D.

Count the minimal number of jumps that the small frog must perform to reach its target.

Write a function:

def solution(X, Y, D)

that, given three integers X, Y and D, returns the minimal number of jumps from position X to a position equal to or greater than Y.

For example, given:

X = 10

Y = 85

D = 30

the function should return 3, because the frog will be positioned as follows:

- after the first jump, at position 10 + 30 = 40
- after the second jump, at position 10 + 30 + 30 = 70
- after the third jump, at position 10 + 30
 + 30 + 30 = 100

Assume that:

 X, Y and D are integers within the range [1..1,000,000,000];

Solution

Programming language used: Python

Total time used: 1 minutes

Effective time used: 1 minutes

Notes: not defined yet

Task timeline

•

Code: 01:25:08 UTC, py, show code in pop-up final, score: 44

1 def solution(X, Y, D):
2 count = 0
3 while X < Y:
4 count += 1
5 X += D
6 return count

Analysis summary

X ≤ Y.

Complexity:

- expected worst-case time complexity is O(1);
- expected worst-case space complexity is O(1).

Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Test results - Codility

The following issues have been detected: timeout errors.

For example, for the input (3, 999111321, 7) the solution exceeded the time limit.

Analysis ?

Detected time complexity: O(Y-X)

expa	and all	Example tes	ts	
>	example example test			OK
expa	expand all Correctness tests			
•	simple1 simple test		V	OK
•	simple2		•	OK
•	extreme_posino jump needed	ition	•	OK
•	small_extrem one big jump	ie_jump	•	OK
expand all Performance tests				
	many_jump1 many jumps, D =	2	X	running time: >6.00 sec., time limit: 0.14 sec.
•	many_jump2 many jumps, D =	99	X	TIMEOUT ERROR running time: >6.00 sec., time limit: 0.14 sec.
•	many_jump3 many jumps, D =	1283	X	TIMEOUT ERROR running time: >6.00 sec., time limit: 0.14 sec.
>	big_extreme_ maximal number	-	X	TIMEOUT ERROR running time: >6.00 sec., time limit: 0.14 sec.
•	small_jumps many small jump	os	X	TIMEOUT ERROR running time: >6.00 sec., time limit: 0.14 sec.