บทที่ 3

วิธีดำเนินการวิจัย

การวิจัยในครั้งนี้เป็นการวิจัยเพื่อหาแนวทางพัฒนาการเรียนการสอนเรื่อง ฟังก์ชัน ตรีโกณมิติ ระดับชั้นมัธยมศึกษาปีที่ 4 โดยใช้แบบจำลองการวิจัยเชิงปฏิบัติการที่นำเสนอโดย Kemmis and McTaggart (อ้างใน ผ่องพรรณ ตรัยมงคลกูล, 2543, หน้า 33) ซึ่งประกอบด้วยขั้น ตอน 3 ขั้นตอน คือ ขั้นวางแผน (Plan) ขั้นปฏิบัติตามแผนและสังเกตผลการปฏิบัติ (Act and Observe) และ ขั้นสะท้อนความคิด (Reflect) กลุ่มที่ใช้ในการวิจัยครั้งนี้ คือ นักเรียนระดับชั้น มัธยมศึกษาปีที่ 4/1 โรงเรียนแม่แจ่ม อำเภอแม่แจ่ม จังหวัดเชียงใหม่ จำนวน 38 คน ในภาคเรียน ที่ 2 ปีการศึกษา 2545 โดยมีขั้นตอนการวิจัย 2 ขั้นตอนหลัก คือขั้นเตรียมการและขั้นดำเนินการ ดังรายละเอียดต่อไปนี้

ขั้นเตรียมการ

ขั้นเตรียมการเป็นขั้นที่ผู้วิจัยเตรียมเครื่องมือและวิธีการก่อนทำการเก็บรวบรวมข้อมูล โดยแบ่งออกเป็น 4 หัวข้อ ดังต่อไปนี้

1. ออกแบบกิจกรรมการเรียนการสอนเพื่อแก้ปัญหาการวิจัย

จากปัญหาในการจัดกิจกรรมการเรียนการสอน เรื่อง ฟังก์ชันตรีโกณมิติ ที่กล่าวมา ข้างต้น ผู้วิจัยได้กำหนดแนวทางในการแก้ปัญหา ดังนี้

1.1 จัดเรียงลำดับเนื้อหาใหม่ที่เป็นการเชื่อมโยงความรู้เดิมกับความรู้ใหม่ การจัดเรียง ลำดับเนื้อหาเรื่องฟังก์ชันตรีโกณมิติในหนังสือแบบเรียน เริ่มจากวงกลมหนึ่งหน่วยและความยาว ของส่วนโค้ง จากนั้นให้นิยามฟังก์ชันตรีโกณมิติของจำนวนจริงและสูตรต่าง ๆ ในการหาค่า ของฟังก์ชันตรีโกณมิติ แล้วจึงกล่าวถึงฟังก์ชันตรีโกณมิติของมุมในระบบเรเดียนและการแปลง มุมจากระบบเรเดียนเป็นระบบองสา จากนั้นจะกล่าวถึงอัตราส่วนตรีโกณมิติของมุมในสามเหลี่ยม มุมจาก และตารางค่าฟังก์ชันตรีโกณมิติ สุดท้ายจะกล่าวถึงกราฟของฟังก์ชันตรีโกณมิติ ซึ่ง สามารถนำเสนอการจัดลำดับเนื้อหาในแบบเรียนโดยใช้แผ่นภาพได้ดังนี้

ซึ่งจะเห็นได้ว่าเนื้อหาในหนังสือแบบเรียนให้เรียนฟังก์ชันตรีโกฉมิติของจำนวนจริงก่อน ฟังก์ชันตรีโกรมิติของมุม ซึ่งการวิจัยครั้งนี้ผู้วิจัยได้จัดเรียงลำดับเนื้อหาใหม่ที่เป็นการเชื่อมโยง ความรู้เดิมกับความรู้ใหม่โดยเริ่มจากทบทวนความรู้พื้นฐานในเรื่องทฤษฎีบทปีทาโกรัส เพื่อ ช่วยในการหาความยาวของด้านของรูปสามเหลี่ยมมุมฉาก ก่อนที่จะนำไปสู่อัตราส่วนตรีโกฉมิติ ของมุมและการแก้ปัญหาเกี่ยวกับสามเหลี่ยมมุมฉาก ซึ่งนักเรียนเคยเรียนผ่านมาบ้างแล้วใน ระดับมัธยมศึกษาปี่ที่ 3 แล้วจึงให้ความรู้เกี่ยวกับฟังก์ชันตรีโกฉมิติของมุมในตำแหน่งมาตรฐาน โดยอาศัยพิกัดของจุดบนด้านสิ้นสุดของมุมที่ได้จากความยาวของด้านประกอบมุมฉากของรูป สามเหลี่ยมมุมฉากที่วางทาบไปบนระนาบแกนพิกัดฉาก จากนั้นจึงให้เรียนรู้เกี่ยวกับมุมใน ระบบเรเดียนเชื่อมต่อไปยังฟังก์ชันตรีโกฉมิติของจำนวนจริง โดยผ่านความยาวส่วนโด้งของวง กลมหนึ่งหน่วยที่รองรับมุมในตำแหน่งมาตรฐาน จากนั้นเป็นเนื้อหาเกี่ยวกับตารางค่าฟังก์ชัน ตรีโกฉมิติ และกราฟของฟังก์ชันตรีโกฉมิติซึ่งเป็นเนื้อหาสุดท้าย สามารถนำเสนอการจัดลำดับ เนื้อหาใหม่ได้จับเก็บอาพาลไปนี้

ระบบเรเดียนเชื่อมต่อไปยังฟังก์ชันตรีโกณมิติของจำนวนจริง โดยผ่านความยาวส่วนโค้งของวง กลมหนึ่งหน่วยที่รองรับมุมในตำแหน่งมาตรฐาน จากนั้นเป็นเนื้อหาเกี่ยวกับตารางค่าฟังก์ชัน ตรี โกณมิติ และกราฟของฟังก์ชันตรี โกณมิติซึ่งเป็นเนื้อหาสุดท้าย สามารถนำเสนอการจัดลำดับ ้เนื้อหาใหม่ได้ดังแผ่นภาพต่อไปนี้ b อัตราส่วนตรีโกณมิติของมุมในสามเหลี่ยมมุมฉาก (a,b) ฟังก์ชันตรี โกณมิติของมุมในตำแหน่งมาตรฐาน การวัดมุมในระบบเรเดียน

1.2 จัดทำตารางค่าฟังก์ชันตรีโกณมิติใหม่โดยใช้คอมพิวเตอร์ช่วยสร้าง เป็น ตารางที่แสดงค่าของฟังก์ชันตรีโกณมิติทั้ง 6 ฟังก์ชัน เรียงลำดับจากค่าฟังก์ชันของมุม 0 องศา หรือ 0 เรเคียน ถึง 90 องศา หรือ ประมาณ 1.5708 เรเคียน จากบนลงล่าง ดังตัวอย่าง

ตารางค่าฟังก์ชันตรีโกณมิติ

Degree	e	Radians	sine	Cosine	tangent	cosecant	secant	cotangen
0	0	0.0000	0.0000	1.0000	0.0000	หาค่าไม่ได้	1.0000	หาค่าไม่ได้
	10	0.0029	0.0029	1.0000	0.0029	344.8276	1.0000	344.827
	20	0.0058	0.0058	1.0000	0.0058	172.4138	1.0000	172.413
	30	0.0087	0.0087	1.0000	0.0087	114.9425	1.0000	114.942
	40	0.0116	0.0116	0.9999	0.0116	86.2069	1.0001	86.2069
	50	0.0145	0.0145	0.9999	0.0145	68.9655	1.0001	68.9655
1	0	0.0175	0.0175	0.9998	0.0175	57.1429	1.0002	57.1429
• 1	10	0.0204	0.0204	0.9998	0.0204	49.0196	1.0002	49.0196
	20	0.0233	0.0233	0.9997	0.0233	42.9185	1.0003	42.9185
		•	. 4	•	9	•	•	
		Q.	h. T	Š	r.e	S.A	.	e. o
							•	
90	0	1.5708	1.0000	0.0000	หาค่าไม่ได้	1.0000	หาค่าไม่ได้	0.0000

1.3 ใช้หลักการจัดกิจกรรมการเรียนการสอนที่เน้นผู้เรียนเป็นสำคัญ โดยการ พยายามให้นักเรียนสรุปมโนมติต่างๆด้วยตนเองหรือร่วมกันในกลุ่ม ประกอบกับครูผู้สอนใช้ วิธีสอนทั้งแบบอุปนัยและแบบนิรนัย เช่น เมื่อกำหนดสูตรหรือนิยามให้แล้วยกตัวอย่างเกี่ยวกับ การนำสูตรหรือนิยามไปใช้ให้หลาย ๆ ตัวอย่างที่แตกต่างกัน เพื่อให้นักเรียนสังเกตวิธีการหรือ กระบวนการในการคิด ดังตัวอย่างการหาค่าฟังก์ชันไซน์ โคไซน์ และแทนเจนต์ ของมุมใน ตำแหน่งมาตรฐาน โดยกำหนดนิยามให้ดังนี้

เมื่อ P(a,b) เป็นจุดใด ๆ บนด้านสิ้นสุดของมุม θ (แขนของมุม θ) และ $r=\sqrt{a^2+b^2}$ แล้ว $\sin\theta=\frac{b}{r}$, $\cos\theta=\frac{a}{r}$, $\tan\theta=\frac{b}{a}$; $a\neq 0$ คังเช่น เมื่อ (-2,2) เป็นจุดบนด้านสิ้นสุดของมุม θ จะหาค่า $\sin\theta$, $\cos\theta$, $\tan\theta$ ได้คังนี้

จากนิยามจะ ได้ว่า
$$r = \sqrt{(-2)^2 + 2^2} = 2\sqrt{2}$$
ดังนั้น $\sin \theta = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$
 $\cos \theta = \frac{-2}{2\sqrt{2}} = \frac{-1}{\sqrt{2}}$
นละ $\tan \theta = \frac{2}{-2} = -1$

1.4 ใช้การฝึกทักษะย่อยเป็นส่วนหนึ่งของกิจกรรมการเรียนการสอนในชั้นเรียน เพื่อให้นักเรียนเข้าใจในมโนมติของแต่ละเนื้อหามากขึ้นก่อนที่จะให้นักเรียนทำแบบฝึกหัด เช่น หลังจากที่กรูผู้สอนได้ทบทวนความรู้เกี่ยวกับอัตราส่วนตรีโกณมิติให้แก่นักเรียน ให้นักเรียนได้ ฝึกทักษะการหาอัตราส่วนตรีโกณมิติของมุมแหลมในสามเหลี่ยมมุมฉาก โดยกำหนดรูป สามเหลี่ยมมุมฉากที่มีความยาวของค้านแต่ละค้านและมุมที่แตกต่างกันให้ แล้วให้นักเรียนได้ ฝึกการหาอัตราส่วนตรีโกณมิติของมุมในสามเหลี่ยมมุมฉากตามที่โจทย์กำหนดให้ เมื่อนักเรียน สามารถหาอัตราส่วนตรีโกณมิติของมุมในสามเหลี่ยมมุมฉากได้แล้วให้นักเรียนสรุปอัตราส่วน ตรีโกณมิติของมุมในสามเหลี่ยมมุมฉาก เป็นต้น ส่วนแบบฝึกหัดนั้นจะมอบ เพื่อให้จำอัตราส่วนตรีโกณมิติของมุมในสามเหลี่ยมมุมฉาก เป็นต้น ส่วนแบบฝึกหัดนั้นจะมอบ หมายให้เป็นงานนอกชั้นเรียนหรือเป็นการบ้านเพื่อให้นักเรียนใช้เวลาอย่างอิสระตามระดับ ความสามารถของแต่ละคน

- 1.5 จัดทำเอกสารประกอบการเรียนการสอนให้สอดคล้องกับการจัดกิจกรรม การเรียนการสอนและความสามารถของนักเรียน เพื่อให้นักเรียนได้สรุปสาระความรู้ด้วยตนเอง ในแต่ละคาบเรียน เอกสารประกอบการเรียนการสอนประกอบด้วยเอกสารความรู้ เอกสาร ฝึกทักษะ เอกสารใบงาน เอกสารฝึกหัด ของแต่ละแผนการสอน สำหรับการแจกเอกสาร ประกอบการเรียนการสอนจะแจกให้นักเรียนทุกครั้งก่อนที่จะเริ่มเรียนตามหัวข้อใน คาบเรียน นั้น ๆ เพื่อให้นักเรียนได้สึกษาเอกสารไปพร้อม ๆ กับได้ฟังครูอธิบายตัวอย่างได้อย่างเต็มที่โดย ไม่ต้องกังวลกับการจดบันทึกในสิ่งที่ครูอธิบายบนกระดาน และนักเรียนสามารถเขียนเพิ่มเติม ได้ทันทีในเอกสาร หรือถ้าหากเรียนในห้องเรียนไม่เข้าใจ นักเรียนก็สามารถนำเอกสารประกอบ การเรียนการสอนไปศึกษาเพิ่มเติมได้
- 1.6 ใช้การประเมินตามสภาพจริงในระหว่างการจัดกิจกรรมการเรียนการสอน หลายรูปแบบ เช่น การสังเกตจากการตอบคำถาม การทำงานกลุ่ม และ การแก้ปัญหาโจทย์ การตรวจการทำเอกสารฝึกทักษะ ใบงาน เอกสารฝึกหัด ในแต่ละคาบเรียน และ การเขียนบันทึก การเรียนรู้ของนักเรียนแต่ละคน

2. จัดทำแผนการสอน

สร้างแผนการสอนวิชาคณิตศาสตร์ (ค 012) เรื่อง ฟังก์ชันตรีโกณมิติ ระดับชั้นมัธยม ศึกษาปีที่ 4 ตามแนวทางในการแก้ปัญหาที่กำหนดไว้ ซึ่งแต่ละแผนการสอนประกอบด้วย จุดประสงค์การเรียนรู้ เนื้อหาและกิจกรรมการเรียนการสอน สื่อการเรียนการสอน การวัดและ ประเมินผล บันทึกหลังการสอน รวมทั้งหมด 20 แผน ใช้เวลาสอนแผนละ 1 คาบเรียน คาบ เรียนละ 50 นาที ผู้วิจัยได้จัดลำดับการจัดกิจกรรมการเรียนการสอนตามคาบเรียนดังต่อไปนี้

คาบที่ 1-2 เรื่อง อัตราส่วนตรี โกณมิติ

คาบที่ 3 เรื่อง การแก้ปัญหาเกี่ยวกับสามเหลี่ยมมุมฉาก

คาบที่ 4 เรื่อง ฟังก์ชันของมุมในตำแหน่งมาตรฐาน

คาบที่ 5 เรื่อง ค่าฟังก์ชันไซน์ โคไซน์ และแทนเจนของมุม 0°,90°,180°,270°,360°

คาบที่ 6 เรื่อง ค่าฟังก์ชันใชน์ โคไซน์ และแทนเจน ของมุมบางมุม

คาบที่ 7 – 10 เรื่อง ค่าฟังก์ชันไซน์ โคไซน์ และแทนเจน ของมุมใดๆ

คาบที่ 11 เรื่องการวัดมุมในระบบเรเดียน

คาบที่ 12 – 14 เรื่อง ค่าฟังก์ชันของมุมในระบบเรเดียน

คาบที่ 15 เรื่อง ฟังก์ชันตรี โกณมิติอื่นๆ

คาบที่ 16 – 17 เรื่อง การหาค่าฟังก์ชันตรี โกณมิติจากตาราง

คาบที่ 18 – 20 เรื่อง กราฟของฟังก์ชันตรี โกณมิติ

3. เตรียมเครื่องมือในการเก็บรวบรวมข้อมูล

การวิจัยในครั้งนี้ผู้วิจัยเตรียมเครื่องมือในการเก็บรวบรวมข้อมูล ซึ่งประกอบไปด้วย

- 3.1 แบบบันทึกการสัมภาษณ์นักเรียน ใช้บันทึกผลการสัมภาษณ์ เกี่ยวกับความรู้ ความเข้าใจหรือข้อบกพร่องของนักเรียนขณะจัดกิจกรรมการเรียน หรือ หลังจากการตรวจ แบบฝึกหัด แบบทดสอบ และการอ่านบันทึกการเรียนรู้ของนักเรียนแล้วพบว่านักเรียนมีปัญหา ในการเรียนการสอน (ดูรายละเอียดได้ในภาคผนวก ข หน้า 328)
- 3.2 แบบบันทึกผลการตรวจแบบฝึกหัด ใบงาน และ แบบฝึกทักษะ โดยบันทึก แยกเป็นรายบุคคล เพื่อดูผล โดยรวมของนักเรียนแต่ละคน และ บันทึกข้อบกพร่องของแต่ละคน ใน 3 ด้านคือ ด้านความคิดรวบยอด ด้านการคิดคำนวณ และด้านการนำความรู้ไปประยุกต์ใช้ เพื่อนำมาเป็นข้อมูลในการจัดกิจกรรมการเรียนการสอนต่อไป (ดูรายละเอียดได้ในภาคผนวก ข หน้า 326 327)
- 3.3 แบบบันทึกการเรียนรู้ เป็นแบบบันทึกที่ให้นักเรียนบันทึกหลังการเรียนใน แต่ละวงจร ซึ่งจะมีคำถามดังนี้ นักเรียนใด้ความรู้อะไรบ้างในการเรียนวงจรนี้ มีปัญหาเกิดขึ้น ในการเรียนวงจรนี้หรือไม่ อย่างไร ต้องการให้ครูช่วยเหลืออย่างไรบ้าง มีข้อเสนอแนะใน การเรียนครั้งต่อไปอย่างไร (ดูรายละเอียดในภาคผนวก ข หน้า 329)
- 3.4 แบบบันทึกผลการปฏิบัติการสอน ใช้บันทึกผลการจัดกิจกรรมการเรียน การสอน ปัญหาและอุปสรรคที่เกิดขึ้นในแต่ละแผน โดยบันทึกภายหลังการสอนในแต่ละ กาบเรียน (คูรายละเอียดในภาคผนวก ข หน้า 325)
- 3.5 แบบทคสอบ ใช้วัดผลสัมฤทธิ์ทางการเรียนทั้งหมดของนักเรียนเมื่อเรียน กรบทั้ง 20 คาบเรียน โดยเป็นการวัดผลสัมฤทธิ์ในด้านความรู้ ความเข้าใจ ทักษะการคิดคำนวณ และการนำความรู้ไปใช้ ในเรื่องฟังก์ชันตรี โกณมิติ (ดูรายละเอียดในภาคผนวก ง หน้า 345-349)

4. กำหนดวิธีการวิเคราะห์ข้อมูล

นำข้อมูลที่ได้จากการสังเกต การสัมภาษณ์ แบบบันทึกผลการปฏิบัติการสอน แบบบันทึกการตรวจแบบฝึกหัด ใบงาน แบบฝึกทักษะ และจากการอ่านบันทึกการเรียนรู้ของ นักเรียนในแต่ละวงจรมาจัดหมวดหมู่ตามเป้าหมายของการวิจัย แล้ววิเคราะห์ข้อมูล โดยการหาค่า ร้อยละและการวิเคราะห์เนื้อหา จากนั้นจึงนำเสนอผลการวิจัยในลักษณะพรรณนาความ

ขั้นดำเนินการ

ผู้วิจัยดำเนินการเก็บรวบรวมข้อมูลตามขั้นตอนการวิจัยเชิงปฏิบัติการของ Kemmis and McTaggart ซึ่งประกอบด้วย 3 ขั้นตอน คือ ขั้นวางแผน (Plan) ขั้นปฏิบัติตามแผนและสังเกต ผลการปฏิบัติ (Act and Observe) และขั้นสะท้อนความคิด (Reflect) โดยผู้วิจัยแบ่งขั้นตอน การดำเนินการวิจัยออกเป็น 5 วงจร ซึ่งการดำเนินการวิจัยในแต่ละวงจรมีรายละเอียด ดังนี้

วงจรที่ 1

ขั้นวางแผน

ในวงจรที่ 1 เป็นการจัดกิจกรรมการเรียนรู้ เรื่อง อัตราส่วนตรีโกณมิติ ซึ่งมี เนื้อหาครอบคลุมถึงเรื่อง การแก้ปัญหาเกี่ยวกับสามเหลี่ยมมุมฉาก ตามแผนการจัดการเรียนรู้ คาบที่ 1 – 3 เพื่อแก้ปัญหาการเรียนการสอนที่พบว่านักเรียนไม่สามารถหาความยาวของด้านของ สามเหลี่ยมมุมฉากได้ กล่าวคือ เมื่อกำหนดรูปสามเหลี่ยมมุมฉากที่กำหนดความยาวด้านให้ 2 ด้าน แล้วให้บอกอัตราส่วนตรีโกณมิติของมุมแหลมในสามเหลี่ยมมุมฉากนั้น นักเรียนส่วนใหญ่ไม่ สามารถหาความยาวของด้านที่เหลือได้ถูกต้อง และส่งผลให้ไม่สามารถบอกอัตราส่วนตรีโกณมิติ ได้ถูกต้องตามไปด้วย และยังพบอีกว่านักเรียนไม่สามารถแก้ปัญหาโจทย์เกี่ยวกับสามเหลี่ยมมุมฉากได้ เมื่อนักเรียนต้องแก้ปัญหาโจทย์เกี่ยวกับสามเหลี่ยมมุมฉากได้ เมื่อนักเรียนต้องแก้ปัญหาโจทย์เกี่ยวกับสามเหลี่ยมมุมฉากได้ เมื่อนักเรียนไม่สามารถหาคำตอบที่ ถูกต้องออกมาได้ ซึ่งอาจมีสาเหตุมาจากการจัดการเรียนการสอนที่ขาดการทบทวนความรู้เดิมที่ ไม่ได้เน้นให้นักเรียนได้สรุปความกิดรวบยอดด้วยตนเอง มีตัวอย่างที่ไม่หลากหลาย ขาดการฝึก ทักษะเฉพาะเรื่อง และไม่ได้เน้นให้นักเรียนได้ลงมือปฏิบัติจริง

เป้าหมายการวิจัยในวงจรนี้ จึงอยู่ที่การมุ่งให้นักเรียนมีมโนมติของทฤษฎีบท ปีทาโกรัส อัตราส่วนตรีโกณมิติ และสามารถนำความรู้เกี่ยวกับอัตราส่วนตรีโกณมิติไปใช้ได้ อย่างถูกต้อง ด้วยการทบทวนความรู้เรื่องทฤษฎีบทปีทาโกรัส อัตราส่วนตรีโกณมิติ โดยใช้ เอกสารประกอบการเรียนการสอนรวมทั้งใช้คำถามช่วยกระตุ้นให้นักเรียนเกิดการเรียนรู้ แล้ว สรุปมโนมติได้ด้วยตนเอง และให้นักเรียนลงมือปฏิบัติจริงในการหาความยาวหรือความสูงของ สิ่งของที่อยู่รอบตัว

ขั้นปฏิบัติตามแผนและสังเกตผลการปฏิบัติ

ผู้วิจัยได้ดำเนินการจัดกิจกรรมการเรียนการสอนตามที่วางแผนไว้ ซึ่งเน้นให้ นักเรียนได้สรุปมโนมติของอัตราส่วนตรีโกณมิติ แล้ว นำความรู้ที่ได้ไปใช้ในการแก้ปัญหา เกี่ยวกับสามเหลี่ยมมุมฉาก และ แก้ปัญหาในชีวิตประจำวัน ในคาบเรียนที่ 1 นั้นผู้วิจัยได้ทบทวน ความรู้เดิมเกี่ยวกับทฤษฎีบทปีทาโกรัสและอัตราส่วนตรีโกณมิติ เริ่มจากการกำหนดรูป สามเหลี่ยมมุมฉากให้นักเรียนและใช้คำถามเพื่อกระตุ้นให้นักเรียนได้เกิดการเรียนรู้และบอก ส่วนประกอบของรูปสามเหลี่ยมมุมฉาก แล้วนำไปสู่ทฤษฎีบทปีทาโกรัส เมื่อนักเรียนเข้าใจใน มโนมติของทฤษฎีบทปีทาโกรัสแล้วผู้วิจัยได้ให้นักเรียนฝึกทักษะโดยการหาความยาวของด้าน ที่เหลือเมื่อกำหนดกวามยาวของด้านของรูปสามเหลี่ยมให้ 2 ด้าน เมื่อนักเรียนเข้าใจในมโนมติ ของทฤษฎีบทปีทาโกรัสแล้วก็นำเข้าสู่อัตราส่วนตรีโกณมิติ โดยเริ่มจากการใช้คำถามประกอบ รูปภาพในเอกสารประกอบการเรียนการสอนเพื่อตรวจสอบความรู้เดิมของนักเรียน แล้วใช้ คำถามกระตุ้นให้นักเรียนได้เกิดการเรียนรู้โดยให้นักเรียนได้ตอบคำถามถงในเอกสารประกอบ การเรียนการสอน และสรุปมโนมติเกี่ยวกับทฤษฎีบทปีทาโกรัสและอัตราส่วนตรีโกณมิติด้วย ตนเอง จากนั้นให้นักเรียนฝึกทักษะการหาอัตราส่วนตรีโกณมิติของสามเหลี่ยมมุมฉากที่กำหนด ให้ ในเอกสารประกอบการเรียนการสอน ในคาบเรียนที่ 2 เป็นการฝึกการวิเคราะห์โจทย์ใน เอกสารประกอบการเรียนการสอนและพิจารณาตามหัวข้อคังนี้ คือ โจทย์กำหนดอะไรให้บ้าง โจทย์ต้องการหาอะไร จากโจทย์สามารถหาอะไรได้บ้าง และมีวิธีการหาอย่างไร จากนั้นให้ นักเรียนได้ฝึกทักษะจากการทำโจทย์ไปพร้อมๆกันในชั้นเรียน แล้วให้นักเรียนนำความรู้ไปใช้ แก้ปัญหาเกี่ยวกับสามเหลี่ยมมุมฉากในเอกสารฝึกหัด คาบเรียนที่ 3 เป็นการเรียนรู้จากการ ปฏิบัติจริง โดยแบ่งนักเรียนออกเป็น 9 กลุ่ม กลุ่มละ 4 – 5 คน กำหนดให้ 2 กลุ่มหาความสูงของ เสาธง 2 กลุ่มหาความสูงของอาคารเรียน 2 กลุ่มหาความสูงของหอประชุม 2 กลุ่มหาความยาว ของเชือกที่ใช้ชักธงชาติ และ 1 กลุ่มหาความสูงของต้นไม้ โดยทั้งสองกลุ่มนั้นใช้มุมการวัดที่ ต่างกัน (ใช้มุม 45°,60°) แล้วให้แต่ละกลุ่มเขียนสรุปวิธีการหาความสูง ความยาว ที่แต่ละกลุ่มได้ ลงมือปฏิบัติในการแก้ปัญหาในกระคาษบรู๊ฟที่แจกให้พร้อมกับส่งตัวแทนนำเสนอวิธีการ แก้ปัญหานั้น แล้วให้นักเรียนแต่ละคนได้นำความรู้ที่ได้ในคาบเรียนนี้ไปประยุกต์ใช้ในการหา ความสูงของบ้านของตนเองพร้อมทั้งวาครูปประกอบ คังภาพ 2

ภาพ 2 กระดาษคำตอบแสดงการหาความสูงของบ้านนักเรียน

ผู้วิจัยได้บันทึกผลการปฏิบัติการสอน ปัญหาหรืออุปสรรคที่เกิดขึ้นจากการสังเกต พฤติกรรมการเรียนของนักเรียน ในด้านการตอบคำถามในชั้นเรียน การทำกิจกรรมในชั้นเรียน ลงในแบบบันทึกหลังการสอนในแต่ละคาบเรียนส่วนผลการตรวจแบบฝึกหัดการบ้านได้บันทึก ลงในแบบบันทึกความค้าวหน้า ตอนท้ายของคาบเรียนที่ 3 ให้นักเรียนได้เขียนบันทึกการเรียนรู้ ซึ่งมีข้อคำถามเกี่ยวกับความรู้ที่ได้รับ ปัญหาที่เกิดขึ้นในการเรียน ต้องการความช่วยเหลืออย่างไร และข้อเสนอแนะในการเรียนครั้งต่อไป

้ ขั้นสะท้อนความคิด

ผู้วิจัยนำข้อมูลที่ได้จากขั้นการปฏิบัติและสังเกตผลการปฏิบัติมาจัดกลุ่มตาม เป้าหมายของการวิจัยที่ระบุไว้ในขั้นวางแผนแล้ววิเคราะห์ เพื่อหาข้อสรุปของการดำเนินการ วิจัยในวงจรนี้ว่า นักเรียนมีความรู้ความเข้าใจในมโนมติเกี่ยวกับอัตราส่วนตรีโกณมิติเป็น อย่างไร มีทักษะในการคิดคำนวณและนำความรู้เรื่องอัตราส่วนตรีโกณมิติไปช่วยในการแก้ปัญหาได้หรือไม่ อย่างไร ซึ่งสามารถสรุปผลการวิจัยในวงจรที่ 1 ตามเป้าหมายของการวิจัยได้ดังนี้

1. นักเรียนประมาณ 80% มีความรู้ความเข้าใจที่ถูกต้องในมโนมติของทฤษฎีบท ปีทาโกรัส อัตราส่วนตรีโกณมิติ ซึ่งข้อมูลที่ได้จากการสังเกตพฤติกรรมในชั้นเรียน การตรวจ แบบฝึกหัด การอ่านบันทึกการเรียนรู้ของนักเรียนค่อนข้างสอดคล้องกัน เช่น จากการสังเกต พฤติกรรมของนักเรียน พบว่า นักเรียนเกือบทั้งชั้นสามารถตอบคำถามของครูได้ถูกต้อง สามารถ บอกความขาวของด้านที่เหลือของสามเหลี่ขมมุมฉากได้โดยใช้ทฤษฎีบทปีทาโกรัส และ สามารถบอกอัตราส่วนตรีโกณมิติของมุมแหลมในสามเหลี่ขมมุมฉากได้อย่างถูกต้องเป็น ส่วนใหญ่ จากการตรวจแบบฝึกหัดของนักเรียนพบว่า นักเรียนส่วนใหญ่สามารถใช้ทฤษฎีบท ปีทาโกรัสและอัตราส่วนตรีโกณมิติในการหาความขาวของด้านที่เหลือและหาอัตราส่วนตรีโกณมิติใค้ถูกต้อง และจากการอ่านบันทึกการเรียนรู้ของนักเรียน นักเรียนส่วนใหญ่เขียนบอกว่าได้รับ ความรู้เรื่องทฤษฎีบทปีทาโกรัสและอัตราส่วนตรีโกณมิติมากขึ้น ข้อมูลเหล่านี้ชี้ให้เห็นว่าการ จัดกิจกรรมการเรียนการสอนในวงจรที่ 1 สามารถทำให้นักเรียนส่วนใหญ่มีความรู้ ความเข้าใจ ที่ถูกต้องเกี่ยวกับทฤษฎีบทปีทาโกรัส และอัตราส่วนตรีโกณมิติ

แต่อย่างไรก็ตามยังมีนักเรียนประมาณ 5 – 6 คน ที่ยังต้องใช้คำถามเพิ่มเติมเพื่อเป็น แนวทางในการนำไปสู่คำตอบและความเข้าใจในมโนมติทฤษฎีบทปีทาโกรัส เช่น เมื่อกำหนด รูปสามเหลี่ยมมุมฉากให้หนึ่งรูปแล้วต้องการถามถึงด้านประกอบมุมฉาก ดังตัวอย่าง

และมีนักเรียนบางคนที่ยังสับสนในความหมายอัตราส่วนตรีโกณมิติ เช่น จำอัตราส่วนของไซน์ เป็นโคไซน์ เป็นต้น

2. ในส่วนของทักษะในการคิดคำนวณ นักเรียนประมาณ 80% มีทักษะในการบวก การถบ เลขยกกำลัง และการหารจำนวนจริงในรูปกรณฑ์ในระดับที่น่าพอใจ โดยดูได้จากการ ตอบคำถามของนักเรียนเกี่ยวกับความยาวของด้านที่เหลือของสามเหลี่ยมมุมฉากเมื่อกำหนด ความยาวให้สองด้าน การหาอัตราส่วนตรีโกณมิติของมุมแหลมในสามเหลี่ยมมุมฉาก และจาก การทำแบบฝึกหัด นักเรียนประมาณ 33 คนทำได้ถูกต้อง มีนักเรียนประมาณ 4-5 ที่สับสนในเรื่อง ของการยกกำลังสองของกรณฑ์ เช่น $\left(3\sqrt{2}\right)^2=12$ ผู้วิจัยได้ทำการอธิบายให้นักเรียนได้ฟังพร้อมกัน ทั้งชั้นเรียนก่อนที่จะเรียนในคาบเรียนต่อไปทำให้นักเรียนเข้าใจ และ หาผลลัพธ์ที่ถูกต้องได้ในที่สุด

3. ในส่วนของการนำความรู้เรื่องอัตราส่วนตรีโกณมิติไปช่วยในการแก้ปัญหา พอสรุปได้ว่า นักเรียนประมาณ 80% สามารถนำความรู้เกี่ยวกับอัตราส่วนตรีโกณมิติไปช่วยใน การแก้ปัญหาเกี่ยวกับสามเหลี่ยมมุมฉาก และแก้ปัญหาในชีวิตประจำวันได้ถูกต้อง โดยดูได้จาก การทำกิจกรรมกลุ่มในการหาความยาวของเชือกที่ใช้ชักธงชาติ ความสูงของเสาธง ความสูง ของอาคารเรียน ความสูงของหอประชุม ความสูงของต้นไม้ และจากการทำการบ้านของนักเรียน โดยการหาความสูงของบ้านของแต่ละคน มีนักเรียนบางคนที่ยังจำอัตราส่วนตรีโกณมิติไม่ได้ ผู้วิจัยจึงทบทวนความรู้เกี่ยวกับอัตราส่วนตรี โกณมิติให้อีกครั้งหนึ่งจนนักเรียนสามารถหา อัตราส่วนตรี โกณมิติได้ จากการสอบถามนักเรียนในห้องเรียนเกี่ยวกับการเรียนในเนื้อหานี้ว่ามี ปัญหาอะไรบ้าง ทราบว่ายังจำค่าของอัตราส่วนตรีโกณมิติของมุม 30°,45°,60° ผู้วิจัยจึงนัดสอน ซ่อมเสริมในเรื่องของค่าของฟังก์ชันตรีโกณมิติของมุมตั้งแต่ 0 ถึง 90 โดยใช้มือช่วยจำ ปรากฏ ว่านักเรียนจำค่าของฟังก์ชันตรี โกณมิติของมมตั้งแต่ 0° ถึง 90° ได้คีขึ้น เวลาถามถึงค่าฟังก์ชันของ ุมมต่างๆ นักเรียนสามารถตอบได้อย่างรวดเร็ว และมีนักเรียนประมาณ 4 – 5 คน ที่ยังสับสนใน การวัดระยะทางที่จะนำมาเป็นอัตราส่วนโดยนักเรียนเริ่มวัดระยะห่างจากจุดที่ นักเรียนยืนมอง ไปยังชายคาบ้านจากการใช้สามเหลี่ยมมมฉากไปจนถึงผนังบ้านแทนที่นักเรียนจะวัดระยะห่าง จากจุดยืนไปจนถึงชายคาบ้านจึงทำให้ผลลัพธ์ที่ได้คลาดเคลื่อน แต่ว่ากระบวนการคิดหาความ ้สูงของบ้านนั้นถูกต้อง ดังภาพ 3

ภาพ 3 กระดาษคำตอบของนักเรียนที่วัดระยะผิด

จากบันทึกการเรียนรู้ของนักเรียน นักเรียนส่วนใหญ่เขียนแสดงความประทับใจต่อวิธี การจัดกิจกรรมการเรียนการสอนว่าเป็นวิธีสอนที่แปลกใหม่ไม่เหมือนเดิม ทำให้เข้าใจมากขึ้น และนักเรียนบางส่วนยังบอกว่าชอบที่มีสื่อและอุปกรณ์การเรียนการสอนที่เป็นแบบแผนและ เป็นระบบ โดยเฉพาะมีเอกสารประกอบการเรียนการสอนทำให้ไม่ต้องกังวลกับการบันทึกขณะ ที่ฟังครูอธิบาย มีเวลาในการฟังครูอธิบายได้อย่างเต็มที่

สิ่งที่นักเรียนให้ข้อเสนอแนะมาก็คืออยากให้ครูพูดให้ช้าลงอีกเพราะฟังไม่ทัน และ ให้ยกตัวอย่างให้มากกว่านี้ ผู้วิจัยนำข้อมูลที่ได้ไปปรับแผนสอนในส่วนของการยกตัวอย่างใน วงจรต่อไป

ข้อมูลเหล่านี้ชี้ให้เห็นว่าการจัดกิจกรรมการเรียนการสอนในวงจรที่ 1 สามารถทำให้ นักเรียนส่วนใหญ่มีความรู้ความเข้าใจที่ถูกต้องในมโนมติของอัตราส่วนตรีโกณมิติ และ สามารถนำความรู้เกี่ยวกับอัตราส่วนตรีโกณมิติไปใช้ในการแก้ปัญหาเกี่ยวกับสามเหลี่ยมมุมฉาก ได้ถูกต้อง

วงจรที่ 2

ขั้นวางแผน

ในวงจรที่ 2 เป็นการจัดกิจกรรมการเรียนการสอนในเรื่อง ฟังก์ชันตรีโกณมิติ ของมุมในตำแหน่งมาตรฐาน โดยมีเนื้อหาดังนี้ ฟังก์ชันไซน์ โคไซน์ แทนเจนต์ ของมุม 0°,90°,180°,270°,360° ฟังก์ชันไซน์ โคไซน์ แทนเจนต์ของมุมบางมุม และของมุมใดๆ ตามแผน การจัดกิจกรรมการเรียนรู้คาบที่ 4–10 เพื่อแก้ปัญหาการเรียนการสอนที่พบว่านักเรียนไม่ สามารถหาค่าของฟังก์ชันตรีโกณมิติของมุมที่มีขนาดน้อยกว่า 0° และมากกว่า 90° ได้ถูกต้อง กล่าวคือ เมื่อนักเรียนต้องการหาค่าของ cos 150° นักเรียนส่วนใหญ่ไม่สามารถบอกได้ว่า cos 150° = - cos 30° หรือ cos(-30°) = cos 30° ซึ่งอาจมีสาเหตุมาจากการจัดกิจกรรมการเรียน การสอนที่ไม่ต่อเนื่องกับความรู้เดิมที่นักเรียนเคยเรียนมาเกี่ยวกับอัตราส่วนตรีโกณมิติของ สามเหลี่ยมมุมฉาก ขาดการฝึกทักษะ และขาดการสรุปความรู้ด้วยตนเอง

ผู้วิจัยแก้ปัญหาในวงจรนี้ด้วยการจัดเรียงเนื้อหาใหม่และให้นักเรียนได้ฝึกทักษะ ในเอกสารประกอบการเรียนการสอน เริ่มจากผู้วิจัยให้ความรู้เรื่องมุมในตำแหน่งมาตรฐานก่อน แล้วให้นิยามฟังก์ชันไซน์ โคไซน์ และแทนเจนต์ของมุมในตำแหน่งมาตรฐาน จากนั้นให้ นักเรียนได้ฝึกทักษะในการนำนิยามไปใช้หาค่าของฟังก์ชันของมุมในตำแหน่งมาตรฐานใน เอกสารประกอบการเรียนการสอน ใช้คำถามและกระบวนการกลุ่มช่วยกระตุ้นให้นักเรียนเกิด

การเรียนรู้แล้วสรุปมโนมติด้วยตนเอง และใช้การฝึกทักษะทบทวนความรู้ในคาบเรียนที่ผ่านมา ก่อนที่จะเริ่มเรียนในคาบเรียนนั้นทุกครั้ง เช่น การถามถึงค่าฟังก์ชันของมุมในตำแหน่งมาตรฐาน และ เขียนมุมในตำแหน่งมาตรฐาน เป็นต้น แล้วให้นักเรียนได้นำความรู้ที่ได้ไปประยุกต์ใช้ใน การหาค่าฟังก์ชันตรีโกณมิติของมุมใด ๆ ในการทำแบบฝึกหัดต่อไป

ขั้นปฏิบัติและสังเกตผลการปฏิบัติ

ผู้วิจัยดำเนินการจัดกิจกรรมการเรียนการสอนคาบเรียนที่ 4–10 ซึ่งเน้นให้ นักเรียนสรุปมโนมตีเกี่ยวกับมุมในตำแหน่งมาตรฐาน ฝึกทักษะในการหาค่าฟังก์ชันของมุมใน ตำแหน่งมาตรฐาน แล้วนำความรู้ที่ได้ไปประยุกต์ใช้ในการหาค่าฟังก์ชันตรีโกณมิติของมุมใดๆ เริ่มจากผู้วิจัยให้ความรู้เกี่ยวกับมุมในตำแหน่งมาตรฐาน ด้วยการใช้คำถามและให้นักเรียนตอบ คำถามในเอกสารประกอบการเรียนการสอนและให้นิยามของฟังก์ชันตรีโกณมิติของมุมใน ตำแหน่งมาตรฐาน ดังเช่น ให้นักเรียนพิจารณารูปสามเหลี่ยมมุมฉากที่มีด้านประกอบมุมฉาก ด้านหนึ่งวางทับไปกับแกน X แล้วให้พิจารณาจุดยอดของสามเหลี่ยมหรือจุดตัดของด้านตรง ข้ามมุมฉากกับด้านประกอบมุมฉากว่าพิกัดของจุดได้มาอย่างไร แล้วบอกนักเรียนว่ามุมแหลม ในสามเหลี่ยมที่วัดจากแกน X ในทิศทางทวนเข็มนาฬิกาเรียกว่า มุมในตำแหน่งมาตรฐาน และ พิกัดของจุดที่ได้ เรียกว่า พิกัดของจุดบนด้านสิ้นสุดของมุม 0 ดังรูป

จากนั้นให้นิยามฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานโดยพิจารณาจากรูปของมุมใน ตำแหน่งมาตรฐาน โดยให้นิยามว่า เมื่อ P(a,b) เป็นจุดใด ๆ บนด้านสิ้นสุดของมุม θ (แขนของ มุม θ) และ $r = \sqrt{a^2 + b^2}$ แล้ว $\sin \theta = \frac{b}{r}$, $\cos \theta = \frac{a}{r}$, $\tan \theta = \frac{b}{a}$; $a \neq 0$ แล้วให้นักเรียนได้ ฝึกทักษะในการนำนิยามฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานไปใช้ โดยแบ่งกลุ่ม ฝึกทักษะเป็น 9 กลุ่ม กลุ่มละ 4-5 คน กำหนดให้ 3 กลุ่ม หาค่าฟังก์ชันตรีโกณมิติของมุม 30 โดยกำหนดพิกัดของจุดที่แตกต่างกัน เช่น

ในทำนองเดียวกันอีก 6 กลุ่มที่เหลือหาค่าฟังก์ชันตรีโกณมิติของมุม 45,60 จากนั้นให้นักเรียน สรุปค่าฟังก์ชันของมุม 30,45,60 ในตำแหน่งมาตรฐานโดยเทียบค่ากับค่าฟังก์ชันของมุมแหลม ในสามเหลี่ยมมุมฉาก เมื่อนักเรียนมีความรู้ความเข้าใจในมโนมติของฟังก์ชันตรีโกณมิติของมุม ในตำแหน่งมาตรฐาน แล้วให้นักเรียนฝึกหาค่าฟังก์ชันตรีโกณมิติของมุมบางมุมในช่วง 0 – 360 จากการนำนิยามไปใช้โดยแบ่งฝึกทักษะเป็นกลุ่ม ๆ เมื่อแต่ละกลุ่มหาค่าของฟังก์ชันเสร็จแล้วให้ สรุปค่าที่ได้ลงในแผ่นภาพในเอกสารประกอบการเรียนการสอนที่แจกให้ ดังตัวอย่างแผ่นภาพ สรุปค่าฟังก์ชันตรีโกณมิติของมุม 0,90,180,270,360

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

จากนั้นผู้วิจัยให้นักเรียนใค้รู้จักกับการวัดมุมในทิศทางตามเข็มนาฬิกา เริ่มจากทำความเข้าใจใน การวัดมุมในตำแหน่งมาตรฐาน ให้นักเรียนเขียนแผ่นภาพสรุปค่าฟังก์ชันของมุม 30°,45°,60° และมุมในตำแหน่งสมมาตร แล้วพิจารณาค่าฟังก์ชันตรีโกณมิติของมุมในทิศทางตามเข็มนาฬิกา โดยให้พิจารณาแผ่นภาพเดิมของมุมในตำแหน่งมาตรฐาน เช่น

จากแผ่นภาพสรุปค่าฟังก์ชันตรีโกณมิติของมุม 30 ° จะได้ว่า

$$\sin(-30^\circ) = -\frac{1}{2} \qquad , \quad \cos(-30^\circ) = \frac{\sqrt{3}}{2} \qquad , \qquad \tan(-30^\circ) = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$$

$$\sin(-150^\circ) = -\frac{1}{2} \qquad , \quad \cos(-150^\circ) = -\frac{\sqrt{3}}{2} \qquad , \qquad \tan(-150^\circ) = \frac{-1}{-\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\sin(-210^\circ) = \frac{1}{2} \qquad , \quad \cos(-210^\circ) = -\frac{\sqrt{3}}{2} \qquad , \qquad \tan(-210^\circ) = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$$

$$\sin(-330^\circ) = \frac{1}{2} \qquad , \quad \cos(-330^\circ) = \frac{\sqrt{3}}{2} \qquad , \qquad \tan(-330^\circ) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

จากนั้นให้นักเรียนทำแบบฝึกหัดเป็นการบ้าน เมื่อนักเรียนมีความรู้ความเข้าใจในมโนมติค่า ฟังก์ชันตรีโกณมิติของมุมที่วัดในทิศทางทวนเข็มนาฬิกาและทิศทางตามเข็มนาฬิกาแล้ว ให้ นักเรียนได้เปรียบเทียบค่าฟังก์ชันตรีโกณมิติของมุมที่วัดในทิศทางทวนเข็มนาฬิกากับค่า ฟังก์ชันตรีโกณมิติของมุมที่วัดในทิศทางตามเข็มนาฬิกา แล้วสรุปเป็นสูตรการหาค่าฟังก์ชัน ตรีโกณมิติ ดังตัวอย่าง

 $\sin(-\theta)$ – $\sin\theta$

 $\cos(-\theta)$ $\cos \theta$

 $tan(-\theta)$ – $tan \theta$

จากนั้นให้นักเรียนวัดมุมที่มีขนาดมากกว่า 360 องศา พร้อมทั้งหาค่าฟังก์ชันตรีโกณมิติของมุม เหล่านั้นแล้วสรุปเป็นสูตรทั่วไป เช่น cos(n·360°+θ) = cosθ;0°≤θ≤90°เมื่อnเป็นจำนวน รอบของการวัดมุม ดังภาพ4

ภาพ 4 กระดาษคำตอบแสดงการสรุปสูตรฟังก์ชันตรีโกณมิติ

จากนั้นให้นักเรียนได้ฝึกทักษะการเขียนฟังก์ชันตรีโกณมิติของมุมใดๆ ให้อยู่ในรูปฟังก์ชัน ตรีโกณมิติของมุมที่มีขนาดมากกว่า 0 องศา แต่น้อยกว่า 90 องศา และให้ทำแบบฝึกหัดใน เอกสารประกอบการเรียนการสอนและเขียนบันทึกการเรียนรู้ในการเรียนวงจรนี้เป็นการบ้าน

ผู้วิจัยบันทึกข้อมูลจากการสังเกตการปฏิบัติการเรียนการสอน พฤติกรรมการเรียน ลงใน แบบบันทึกหลังการสอนของแต่ละคาบเรียน บันทึกข้อมูลการตรวจแบบฝึกทักษะ แบบฝึกหัด ลงในแบบบันทึกการตรวจการบ้านและแบบบันทึกความก้าวหน้า และอ่านบันทึกการเรียนรู้ของ นักเรียนที่เขียนเกี่ยวกับเนื้อหาที่เรียนในวงจรนี้

ขั้นสะท้อนความคิด

ผู้วิจัยนำข้อมูลที่ได้จากการสังเกตพฤติกรรมทางการเรียนของนักเรียน การตรวจ แบบฝึกทักษะ แบบฝึกหัด และจากการอ่านบันทึกการเรียนรู้ของนักเรียนมาวิเคราะห์ เพื่อหา ข้อสรุปในการดำเนินการวิจัยในวงจรนี้ว่า นักเรียนสามารถเข้าใจในมโนมติของมุมในตำแหน่ง มาตรฐาน ฟังก์ชันของมุมในตำแหน่งมาตรฐาน สรุปสูตรการหาค่าฟังก์ชันตรีโกณมิติของมุม ได้หรือไม่ อย่างไร นักเรียนสามารถคิดคำนวณหาค่าฟังก์ชันตรีโกณมิติของมุมในตำแหน่ง มาตรฐานได้หรือไม่ อย่างไร และนักเรียนสามารถใช้ความรู้เกี่ยวกับมุมในตำแหน่งมาตรฐาน ฟังก์ชันตรีโกณมิติของมุมใป

ใช้ในการแก้ปัญหาโจทย์ได้หรือไม่ อย่างไร ซึ่งสามารถสรุปผลการวิจัยในวงจรที่ 2 ตามเป้าหมาย ของการวิจัยได้ดังนี้

1. ด้านความรู้ความเข้าใจในมโนมติฟังก์ชันตรีโกณมิติของมุมในตำแหน่ง มาตรฐาน ข้อมูลที่ได้จากการสังเกตพฤติกรรมในชั้นเรียน พบว่า นักเรียนเกือบทั้งห้องเรียน สามารถตอบคำถามเกี่ยวกับมุมในตำแหน่งมาตรฐานได้ถูกต้อง เช่น เมื่อกำหนดจุด (-3,4) บน ด้านสิ้นสุดของมุม θ ให้ นักเรียนสามารถบอกได้ว่า $\mathbf{r}=5$, $\sin\theta=\frac{4}{5}$, $\cos\theta=\frac{-3}{5}$, $\tan\theta=\frac{4}{-3}$ และสามารถบอกได้อีกว่าจุดบนด้านสิ้นสุดของมุม –150° อยู่ในควอครันต์ที่ 3 ค่าของ $\sin(-150°)=-\sin 30°$, $\cos(-150°)=-\cos 30°$, $\tan(-150°)=\tan 30°$ ข้อมูลจากการตรวจ แบบฝึกหัด พบว่า นักเรียนประมาณ 31 – 32 คน สามารถหาค่าฟังก์ชันตรีโกณมิติได้ถูกต้อง มีนักเรียน 2 คนที่ทำแบบฝึกหัดผิด เพราะไม่สามารถถอดรากที่สองของจำนวนจริงได้ถูกต้องทำ ให้หาค่าฟังก์ชันตรีโกณมิติผิด และนักเรียนประมาณ 30 – 31 คน สามารถสรุปสูตรในการหาค่า ฟังก์ชันตรีโกณมิติได้ถูกต้อง มีนักเรียนประมาณ 5 – 6 คน ยังสรุปสูตรผิดส่วนใหญ่ผิดตรง เกรื่องหมาย เช่น $\sin(180°-\theta)=-\sin\theta$ จากการอ่านบันทึกการเรียนรู้ของนักเรียน นักเรียน ส่วนใหญ่เขียนแสดงความรู้สึกบอกว่าได้รับความรู้เกี่ยวกับมุมในตำแหน่งมาตรฐานมากขึ้น และ หาค่าฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานได้ถูกต้องมากขึ้น ยังมีประมาณ 4 – 5 คน ที่เขียนบอกว่ายังไม่สามารถบอกได้ว่าพิกัดหน้า พิกัดหลัง หามาได้อย่างไร

ข้อมูลเหล่านี้ชี้ให้เห็นว่าการจัดกิจกรรมในวงจรที่ 2 สามารถทำให้นักเรียนส่วนใหญ่ มีความรู้ ความเข้าใจที่ถูกต้องเกี่ยวกับฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐาน

2. ด้านทักษะในการคิดคำนวณหาค่าฟังก์ชันตรีโกณมิติของมุมในตำแหน่ง มาตรฐาน ข้อมูลจากการสังเกตพฤติกรรมขณะที่ทำกิจกรรมในชั้นเรียน พบว่า เมื่อกำหนด รูปภาพและพิกัดของจุดบนด้านสิ้นสุดของมุมให้ นักเรียนเกือบทั้งห้องเรียนสามารถแสดงวิธี การหาค่าฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานและบอกค่าฟังก์ชันของมุมในตำแหน่ง มาตรฐานได้ถูกต้อง มีนักเรียนประมาณ 4-5 กนที่ยังตอบคำถามผิดเนื่องจากคิดคำนวณผิด เช่น ถ้า $\mathbf{x}^2=25$ แล้ว $\mathbf{x}=\sqrt{5}$ จากการตรวจแบบฝึกทักษะและแบบฝึกหัด พบว่า จากแบบฝึกหัด จำนวน 6 ข้อ มีนักเรียน 18 คนสามารถทำได้ถูกต้องทุกข้อ มีนักเรียน 12 คน ทำถูกต้องตั้งแต่ 4-5 ข้อ มีนักเรียน 4 คน ทำถูกต้องตั้งแต่ 1-3 ข้อ และมีนักเรียน 3 คน ที่ทำแบบฝึกหัดผิดทั้ง 6 ข้อ ซึ่งเป็นเพราะการบวก ลบ รากที่สองผิด เช่น $\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=\frac{\sqrt{6}}{2}$ ในการหาค่าฟังก์ชันตรีโกณ มิติของมุมในตำแหน่งมาตรฐานที่มีการวัดมุมในทิสทางตามเข็มนาฬิกาโดยการเปรียบเทียบค่า ฟังก์ชันจากแผ่นภาพและค่าฟังก์ชันตรีโกณมิติของมมในตำแหน่งมาตรฐานที่มีการวัดมุมใน

ทิศทางทวนเข็มนาฬิกา พบว่ามีนักเรียน 33 คน ทำได้ถูกต้อง มีนักเรียนประมาณ 4 – 5 คน เขียน ค่าฟังก์ชันผิดซึ่งส่วนใหญ่จะผิดตรงค่าฟังก์ชันจากลบเป็นบวก หรือจากบวกเป็นลบ เช่น $\sin(-60^\circ) = \frac{\sqrt{3}}{2}$ เป็นต้น

จากข้อมูลสรุปได้ว่าในการจัดกิจกรรมในวงจรที่ 2 ทำให้นักเรียนส่วนใหญ่มีทักษะใน การกิดคำนวณหาค่าฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานได้ถูกต้อง

3. ด้านการนำความรู้เรื่องฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานไปใช้ ในการแก้ปัญหา ข้อมูลจากการสังเกตการทำกิจกรรมในชั้นเรียนและการตรวจแบบฝึกหัดให้ผล ที่สอดค้องกัน โดยพบว่า นักเรียนประมาณ 31 – 32 คน สามารถนำสูตรในการหาค่าฟังก์ชัน ตรีโกณมิติของมุมในตำแหน่งมาตรฐานไปช่วยในการหาค่าฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานที่มีขนาดน้อยกว่า 0 องศา และ มากกว่า 90 องศาได้ถูกต้อง และ มีนักเรียน ประมาณ 4 – 5 คนที่ยังนำสูตรไปใช้ไม่ถูกต้องทำให้เขียนฟังก์ชันตรีโกณมิติของมุมที่มีขนาด น้อยกว่า 0 องศา และมากกว่า 90 องศาในรูปฟังก์ชันตรีโกณมิติของมุมบวกที่ไม่เกิน 90 องศา ผิดพลาด ดังภาพ 5

ภาพ 5 กระดาษคำตอบของนักเรียนที่จำสูตรผิด

ข้อมูลเหล่านี้ชี้ให้เห็นว่าการจัดกิจกรรมการเรียนการสอนในวงจรที่ 2 สามารถทำให้ นักเรียนส่วนใหญ่มีความรู้ความเข้าใจที่ถูกต้องในมโนมติฟังก์ชันตรีโกณมติของมุมในตำแหน่ง มาตรฐาน มีทักษะการคิดคำนวณและสามารถนำความรู้เกี่ยวกับฟังก์ชันตรีโกณมติของมุมใน ตำแหน่งมาตรฐานไปใช้ในการหาค่าฟังก์ชันตรีโกณมติของมุมในตำแหน่งมาตรฐานที่อยู่ใน ควอครันต์ต่าง ๆ ได้

วงจรที่ 3

์ ขั้นวางแผน

ในวงจรนี้เป็นการจัดกิจกรรมการเรียนรู้ เรื่อง ฟังก์ชันตรีโกณมิติของมุมใน ระบบเรเดียนและจำนวนจริง ตามแผนการจัดกิจกรรมการเรียนรู้คาบเรียนที่ 11-15 เพื่อ แก้ปัญหาการเรียนการสอนที่พบว่า เมื่อกำหนดกราฟรูปวงกลมหนึ่งหน่วยให้กับนักเรียนแล้วให้ นักเรียนบอกความยาวของส่วนโค้งและจุดปลายของส่วนโค้ง นักเรียนไม่สามารถบอกความยาว ของส่วนโค้งและบอกจุดปลายของส่วนโค้งได้ และนักเรียนไม่สามารถหาค่าฟังก์ชันตรีโกณมิติ ของมุมในระบบเรเดียนและจำนวนจริงได้ เช่น เมื่อกำหนดให้นักเรียนหาค่าของ $\sin\frac{5\pi^R}{4}$ นักเรียนไม่สามารถบอกได้ว่า $\sin\frac{5\pi^R}{4}=\sin 225$ และมีค่าเท่ากับ $-\frac{1}{\sqrt{2}}$ และไม่สามารถหาค่า ฟังก์ชันตรีโกณมิติของจำนวนจริงได้ ซึ่งอาจมีสาเหตุมาจากการจัดการเรียนการสอนที่ไม่ สอดคล้องกับความรู้เดิม กล่าวลือ การนำเข้าสู่ฟังก์ชันตรีโกณมิติโดยผ่านวงกลมหนึ่งหน่วย ทำ ให้นักเรียนเกิดความสับสนในการหาค่าฟังก์ชันตรีโกณมิติของจำนวนจริงและมุม เพราะความรู้ เดิมของนักเรียนนั้นกัเรียนมีความรู้เกี่ยวกับอัตราส่วนตรีโกณมิติในสามเหลี่ยมมุมฉาก

การวิจัยในวงจรนี้จึงแก้ปัญหาด้วยการจัดกิจกรรมการเรียนการสอนที่สอดคล้องกับ ความรู้เดิมของนักเรียนโดยใช้ฟังก์ชันตรีโกณมิติของมุมในตำแหน่งมาตรฐานเป็นตัวเชื่อมแล้ว นำไปสู่ฟังก์ชันตรีโกณมิติของมุมในระบบเรเดียนจากนั้นจึงเข้าสู่ฟังก์ชันตรีโกณมิติของ จำนวนจริง และใช้เอกสารประกอบการเรียนการสอนช่วยเสริมในเนื้อหาที่เป็นเนื้อหาใหม่ และ ฝึกทักษะเฉพาะเรื่อง เช่น ให้นักเรียนได้ฝึกทักษะการแปลงมุมจากระบบองสาเป็นระบบเรเดียน ฝึกการหาค่าฟังก์ชันตรีโกณมิติของมุมในระบบเรเดียน และฝึกการหาค่าฟังก์ชันตรีโกณมิติของ จำนวนจริง เป็นต้น

ขั้นปฏิบัติตามแผนและสังเกตผลการปฏิบัติ

ผู้วิจัยได้ดำเนินการจัดกิจกรรมการเรียนการสอนตามแผนที่วางไว้ ใช้เวลาในการ จัดกิจกรรมการเรียนการสอน 5 คาบ ตั้งแต่คาบที่ 11 – 15 โดยเริ่มจากการทบทวนความรู้เกี่ยวกับ มุมในตำแหน่งมาตรฐาน แล้วให้นักเรียนสร้างรูปวงกลมจากกราฟของมุมในตำแหน่งมาตรฐาน และนำไปสู่มโนมติของการวัดมุมในระบบเรเดียนแล้วฝึกทักษะการแปลงมุมในระบบองศาเป็น ระบบเรเดียนในเอกสารประกอบการเรียนการสอน เมื่อนักเรียนสามารถแปลงมุมได้แล้วให้นัก เรียนฝึกหาค่าฟังก์ชันตรีโกฉมมิติของมุมในระบบเรเดียนโดยแบ่งฝึกเป็นกลุ่มให้แต่ละกลุ่มช่วย เหลือกันและกัน แล้วร่วมกันสรุปสูตรในการหาค่าฟังก์ชันตรีโกฉมิติของมุมในระบบ เรเดียนลงในแผ่นสรุปสูตรในเอกสารประกอบการเรียนการสอน แล้วผู้วิจัยนำเข้าสู่ฟังก์ชัน ตรีโกฉมิติของจำนวนจริง เริ่มจากให้นักเรียนพิจารฉาถึงความสัมพันธ์ระหว่างมุมในตำแหน่ง มาตรฐาน มุมในระบบเรเดียน และความยาวของส่วนโค้ง แล้วนำเข้าสู่วงกลมหนึ่งหน่วย จาก นั้นให้นักเรียนฝึกการหาจุดปลายส่วนโค้งในเอกสารเมื่อกำหนดความยาวส่วนโค้งของวงกลม หนึ่งหน่วยให้ แล้วนำไปสู่ข้อสรุปที่ว่าในกรณีที่จุดบนด้านสิ้นสุดของมุมในตำแหน่งมาตรฐาน อยู่ห่างจากจุดกำเนิด 1 หน่วยจุดปลายของส่วนโค้งเป็นจุดเดียวกันกับจุดบนด้านสิ้นสุดของมุมในตำแหน่งมาตรฐาน และของมุมในระบบเรเดียน ดังนั้นค่าของฟังก์ชันตรีโกฉมิติของมุมในตำแหน่งมาตรฐานและของจำนวนจริงจะเท่ากัน และจุดปลายส่วนโค้งนั้นสามารถหาได้จาก ค่า ฟังก์ชันโคไซน์และไซน์ของมุมหรือความยาวส่วนโค้งนั้น โดยพิกัดหน้าเป็นค่าฟังก์ชันโลไซน์ และพิกัดหลังเป็นค่าฟังก์ชันใชน์ เช่น ($-\frac{1}{2}, \frac{\sqrt{3}}{2}$) หรือ ($\cos 120^\circ$, $\sin 120^\circ$) หรือ ($\cos \frac{2\pi}{3}$, $\sin \frac{2\pi}{3}$) คือพิกัดของจุดบนด้านสิ้นสุดของมุมในตำแหน่งมาตรฐานที่มีขนาด 120° หรือ $\frac{2\pi^R}{3}$ หรือพิกัด ของจุดปลายส่วนโค้ง $\frac{2\pi}{3}$ บนวงกลมหนึ่งหน่วย ดังรูป

จากนั้นให้นักเรียนฝึกทักษะการหาค่าฟังก์ชันตรีโกณมิติในเอกสารประกอบการเรียนการสอน เมื่อนักเรียนได้ทราบถึงความสัมพันธ์ฟังก์ชันของมุมและจำนวนจริงแล้วได้นำสู่ฟังก์ชันตรีโกณ มิติอื่นๆ โดยใช้มุมในตำแหน่งมาตรฐานในการให้นิยามของฟังก์ชันโคเซแคนท์ เซแคนท์ และ โคแทนเจนต์

ผู้วิจัยได้บันทึกผลการปฏิบัติกิจกรรมการเรียนการสอน ปัญหาหรืออุปสรรคที่เกิดขึ้น จากการสังเกตพฤติกรรมของนักเรียน ในด้านการตอบคำถาม การทำกิจกรรมในชั้นเรียน การฝึกทักษะในชั้นเรียน ลงในแบบบันทึกหลังการสอนในแต่ละคาบเรียน ส่วนผลการตรวจ แบบฝึกหัดได้บันทึกลงในแบบบันทึกการตรวจแบบฝึกหัด(การบ้าน) และแบบบันทึก ความก้าวหน้า และในคาบเรียนที่ 15 ให้นักเรียนเขียนบันทึกการเรียนรู้เกี่ยวกับความรู้ที่ได้ใน การเรียนวงจรนี้ ปัญหา/อุปสรรค์ที่เกิดขึ้นในการเรียนวงจรนี้ ต้องการความช่วยเหลือในการ เรียนอย่างไร และข้อเสนอแนะในการเรียนครั้งต่อไป

ขั้นสะท้อนความคิด

ผู้วิจัยนำข้อมูลที่ได้มาจัดหมวดหมู่ใน 3 ด้านคือ ด้านความรู้ความเข้าใจใน มโนมติของฟังก์ชันตรีโกณมิติของมุมในระบบเรเดียน ฟังก์ชันตรีโกณมิติของจำนวนจริง ด้าน ทักษะในการคิดคำนวณหาค่าของฟังก์ชันตรีโกณมิติ และด้านการนำความรู้ไปประยุกต์ใช้ใน การหาค่าของฟังก์ชันตรีโกณมิติของมุมในระบบเรเดียนและของจำนวนจริง เพื่อหาข้อสรุปของ การดำเนินการวิจัยในวงจรที่ 3 นี้ว่าในแต่ละด้านนั้นนักเรียนเป็นอย่างไร ซึ่งสามารถสรุปได้ ดังนี้

1. ด้านมโนมติ จากการสังเกตพฤติกรรมการเรียนในชั้นเรียน พบว่า นักเรียน เกือบทั้งห้องสามารถตอบคำถามเกี่ยวกับการหาค่าฟังก์ชันตรีโกณมิติของมุมในระบบเรเดียน หรือของจำนวนจริงได้ถูกต้อง เช่น บอกได้ว่าค่าของ $\sin\frac{5\pi}{3}$ มีค่าเท่ากับ $\sin 300^\circ$ ซึ่งมีค่าเท่ากับ $-\frac{\sqrt{3}}{2}$ มีนักเรียนประมาณ 35 คน แสดงวิธีการแปลงมุมได้ถูกต้อง และเมื่อกำหนดรูปภาพที่ กำหนดความยาวส่วนโค้งของวงกลมหนึ่งหน่วยให้ นักเรียนทุกกลุ่มสามารถบอกพิกัดของจุด ปลายของส่วนโค้งได้ถูกต้อง เช่น เมื่อกำหนดรูปและความยาวส่วนโค้ง $\frac{5\pi}{4}$ ให้แล้วนักเรียน สามารถบอกได้ว่าจุดปลายส่วนโค้งคือ $(\cos\frac{5\pi}{4}$, $\sin\frac{5\pi}{4}) = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ ดังรูป

จากการตรวจแบบฝึกหัดเกี่ยวกับฟังก์ชันตรี โกณมิติของมุมในระบบเรเดียน ฟังก์ชันตรี โกณมิติ ของจำนวนจริง พบว่า นักเรียนประมาณ 30 คน สามารถใช้สูตร และหาค่าของฟังก์ชันตรี โกณ มิติได้ถูกต้อง มีนักเรียนประมาณ 5-7 คน ที่ยังกระจายมุมผิด เช่น $\frac{5\pi}{3}=2\pi+\frac{\pi}{3}$ และจำสูตรผิด ทำให้การหาค่าฟังก์ชันตรี โกณมิติผิดไปด้วย เช่น $\sin\left(-\frac{7\pi}{2}\right)^R=-\sin\left(-\frac{7\pi}{2}\right)^R$ และการจำค่า ของฟังก์ชันผิด เช่น $\tan\left(\frac{\pi}{4}\right)^R=\frac{\sqrt{2}}{2}$ จากการอ่านบันทึกการเรียนรู้ของนักเรียน พบว่า มีนักเรียน ประมาณ 4-5 คนที่มีปัญหาในการเรียนวงจรนี้ และ อยากให้ครูผู้สอนอธิบายให้มากกว่าเดิม และ เพิ่มจำนวนตัวอย่างให้มากขึ้น

ข้อมูลดังกล่าวแสดงให้เห็นว่าการจัดกิจกรรมการเรียนการสอนในวงจรที่ 3 สามารถ ทำให้นักเรียนประมาณ 82% มีความรู้ความเข้าใจที่ถูกต้องในมโนมติของฟังก์ชันตรีโกณมิติของ มุมในระบบเรเดียน และ ฟังก์ชันตรีโกณมิติของจำนวนจริง

2. ในด้านทักษะการคิดคำนวณ จากการตรวจแบบฝึกหัดและการสังเกตการทำ กิจกรรมในชั้นเรียน พบว่า นักเรียนประมาณ 30 คน สามารถกระจายมุมหรือจำนวนจริงแล้วหา ค่าของฟังก์ชันตรี โกณมิติของมุมในระบบเรเดียนและค่าฟังก์ชันตรี โกณมิติของจำนวนจริงได้ ถูกต้อง มีนักเรียนประมาณ 4 – 5 คน ที่บวก ลบ และคูณเสษส่วนผิด ทำให้ผลลัพธ์ที่ได้ผิดพลาด ดังภาพ 6

Copyright © by Chiang Mai University All rights reserved

2. $\sin(-\frac{11\pi^R}{4})\cos\frac{15\pi^R}{4} + \tan(-\frac{21\pi^R}{4})\tan\frac{23\pi^R}{4}$
= -sin 11 m . cos 15 m / - c-tan 21 m / tan 23 m
= -sin(3n2-n3.cos(an2-n')+(-tan 5n'+n')/tan(cn2-n2)/
: sin (-117) cos 15 17 + tan (-91 11) tan 23 17 = -

ภาพ 6 กระดาษคำตอบแสดงการคิดคำนวณค่าฟังก์ชันตรี โกณมิติผิด

ข้อมูลดังกล่าวแสดงให้เห็นว่าการจัดกิจกรรมในวงจรที่ 3 สามารถทำให้นักเรียน ประมาณ 79% กระจายมุม บวก ลบ คูณและหารจำนวนจริงในการแสดงการหาค่าฟังก์ชัน ตรีโกณมิติของมุมในระบบเรเดียน และ ฟังก์ชันตรีโกณมิติของจำนวนจริงได้ถูกต้อง

3. ในด้านการนำความรู้ไปใช้ในการหาค่าฟังก์ชันตรีโกฉมิติของมุมในระบบ เรเดียน ฟังก์ชันตรีโกฉมิติของจำนวนจริง จากการตรวจแบบฝึกหัดและการสังเกตการทำ กิจกรรมในชั้นเรียนของนักเรียน พบว่า จากการทำแบบฝึกหัด 7 ข้อ มีนักเรียน 16 คนสามารถนำ ความรู้เรื่องฟังก์ชันตรีโกฉมิติของมุมในระบบเรเดียนไปช่วยในการแก้ปัญหาโจทย์ได้อย่าง ถูกต้องทุกข้อ มีนักเรียน 12 คน ที่ทำแบบฝึกหัดถูกต้องตั้งแต่ 5 – 6 ข้อ มีนักเรียน 2 คน ที่ทำ แบบฝึกหัดถูกต้อง 4 ข้อ และมีนักเรียนที่ทำแบบฝึกหัดผิด 4 – 5 ข้อจำนวน 4 คน ในส่วนของ แบบฝึกหัดเกี่ยวกับการนำความรู้เรื่องฟังก์ชันตรีโกฉมิติของจำนวนจริงไปช่วยในการแก้ปัญหาโจทย์จำนวน 4 ข้อ มีนักเรียนที่สามารถทำได้ถูกต้องทุกข้อจำนวน 4 คน ทำถูกต้องตั้งแต่ 2 – 3 ข้อ จำนวน 18 คน ทำผิด 3 ข้อ จำนวน 6 คน และทำผิดทั้ง 4 ข้อ จำนวน 3 คน นักเรียนที่ทำ แบบฝึกหัดผิดสาเหตุส่วนใหญ่มาจากการบวก การถบ จำนวนจริงผิด การจำค่าของฟังก์ชัน ตรีโกฉมิติผิด และการเขียนสูตรผิดจึงทำให้ผิดพลาดในการกิดคำนวณ ดังภาพ 7

4.
$$\cot \frac{7\pi}{2} \csc(-\frac{15\pi}{4}) + \sec \frac{11\pi}{4} \cos(\frac{19\pi}{4})$$
 $\cot \frac{7\pi}{2} \cot \frac{3\pi}{3\pi} + \frac{\pi}{2} \cdot \csc(-4\pi - \pi) + \sec \frac{3\pi}{3\pi} + \frac{\pi}{2} \cos \frac{\pi}{2}$
 $\cot \frac{3\pi}{2} + \frac{\pi}{2} \cdot \csc(-4\pi - \pi) + \sec \frac{3\pi}{2} + \frac{\pi}{2} \cos \frac{\pi}{2}$
 $\cot \frac{3\pi}{2} + \frac{\pi}{2} \cdot \csc(-4\pi - \pi) + \sec \frac{3\pi}{2} - \cos \frac{\pi}{2}$
 $\cot \frac{3\pi}{2} + \frac{\pi}{2} \cdot \csc(-4\pi - \pi) + \sec \frac{3\pi}{2} - \frac{\pi}{2} \cdot \csc(3\pi - \pi) = 1$
 $\cot \frac{3\pi}{2} \cdot \cot \frac{3\pi}{2} \cdot \cot \frac{\pi}{2} \cdot \cot \frac{\pi}$

ภาพ 7 กระดาษคำตอบของนักเรียนแสดงการแก้ปัญหาโจทย์ผิด

ข้อมูลดังกล่าวชี้ให้เห็นว่าการจัดกิจกรรมการเรียนการสอนในวงจรที่ 3 นักเรียนส่วน ใหญ่สามารถนำความรู้เกี่ยวกับค่าฟังก์ชันตรีโกณมิติของมุม ฟังก์ชันตรีโกณมิติของจำนวนจริง ไปช่วยในการแก้โจทย์ปัญหาได้

วงจรที่ 4

ข้นวางแผน

ในวงจรนี้เป็นการจัดกิจกรรมการเรียนรู้ เรื่อง การหาค่าฟังก์ชันตรีโกณมิติจาก ตาราง ตามแผนการจัดการเรียนรู้คาบที่ 16 – 17 เพื่อแก้ปัญหาการเรียนการสอนที่พบว่า นักเรียน ไม่สามารถหาค่าฟังก์ชันตรีโกณมิติจากตารางได้ กล่าวคือ เมื่อนักเรียนต้องการหาค่าฟังก์ชัน ตรีโกณมิติของมุมที่มีขนาดเกิน 45° จากตาราง เช่น การอ่านค่าของ sin 83'30' นักเรียนไม่ สามารถอ่านค่าฟังก์ชันตรีโกณมิติจากตารางได้ นักเรียนจะสับสนว่าจะใช้ค่าใดจาก 0.1132 หรือ 0.1305 หรือ 0.9936 หรือ 0.9914 ดังภาพ 8

Degree	Radians	Sine	Tangent	Cotangent	Cosine			
6° 00′	.1047	.1045	.1051	9.5144	.9945	1.4661	84°	00
10′	.1076	.1074	.1080	9.2553	.9942	1.4632		50
20′	.1105	.1103	.1110	9.0098	.9939	1.4603		4
30′	.1134	(.1132)	.1139	8.7769	(.9936)	1.4573		3
40′	.1164	.1161	.1169	8.5555	.9932	1.4544		2
50′	.1193	.1190	.1198	8.3450	.9929	1.4515		1
7 00'	.1222	.1219	.1228	8.1443	.9925	1.4486	83	0
10′	.1251	.1248	.1257	7.9530	.9922	1.4457) \	5
20′	.1280	.1276	.1287	7.7704	.9918	1.4428		4
30'	.1309	.1305	.1317	7.5958	.9914	1.4399		3

ภาพ 8 ตัวอย่างตารางค่าฟังก์ชันตรีโกณมิติในหนังสือเรียนคณิตศาสตร์

นอกจากนี้นักเรียนยังไม่สามารถหาค่าฟังก์ชันตรีโกณมิติของมุมที่มีขนาดเกิน 90° และค่า ฟังก์ชันตรีโกณมิติของมุมที่ไม่ได้กำหนดไว้ในตาราง เช่น cos 71°23′ ซึ่งอาจมีสาเหตุมาจาก ตารางที่ใช้ในการหาค่าของฟังก์ชันตรีโกณมิติทำให้นักเรียนเกิดความสับสนในการเปิดตาราง หาค่าของฟังก์ชันตรีโกณมิติ และการจัดกิจกรรมการเรียนการสอนไม่ได้เน้นให้นักเรียนได้ฝึก ทักษะในการเปิดตารางด้วยตนเอง

ในวงจรนี้ผู้วิจัยจึงแก้ปัญหาโดยใช้คอมพิวเตอร์ช่วยในการสร้างตารางค่าฟังก์ชัน ตรีโกณมิติขึ้นมาใหม่ เพื่อใช้แทนตารางเดิม ซึ่งตารางนี้จะแสดงค่าของฟังก์ชันตรีโกณมิติทั้ง 6 ฟังก์ชันและเรียงลำดับมุมตั้งแต่มุมที่มีขนาด 0 หรือ 0 เรเดียนถึงมุมที่มีขนาด 90 หรือ ประมาณ 1.5708 เรเดียน จากบนลงล่าง ดังตัวอย่างในภาพ 9

Copyright © by Chiang Mai University All rights reserved

Π.	gree	Radians	sine	cosine	tangent	cosecant	secant	cotangest
0	0	0.0000	0.0000	1.0000	0.0000		1.0000	-
	10	0.0029	0.0029	1.0000	0.0029	344.8276	1.0000	344.8276
	20	0.0058	0.0058	1.0000	0.0058	172.4138	1.0000	172.4138
_	30	0.0087	0.0087	1.0000	0,0087	114.9425	1.0000	114.9425
	40	0.0116	0.0116	0.9999	0.0116	86.2069	1.0001	86.2069
	50	0.0145	0.0145	0.9999	0.0145	68.9655	1.0004	68.965
1	0	0.0175	0.0175	0.9998	0.0175	57.1429	1.0002	57.142
	10	0.0204	0.0204	0.9998	0.0204	49.0196	1.0002	49.019
	20	0.0233	0.0233	0.9997	0.0233	42.9185	1.0003	42.918
	30	0.0262	0.0262	0.9997	0.0262	38.1679	1.0003	38,167
	40	0.0291	0.0291	0.9996	0.0291	34.3643	1.0004	34.364
	50	0.0320	0.0320	0.9995	0.0320	31,2500	1.0005	31.250
2	0	0.0349	0.0349	0.9994	0.0349	28,6533	1.0006	28.653
7	10	0.0378	0.0378	0.9993	0.0378	26.4550	1.0007	26.455
	20	0.0407	0.0407	0.9992	0.0407	24.5700	1.0008	24.570
	30	0.0436	0.0436	0.9990	0.0436	22,9358	1.0010	22.935
	40	0.0465	0.0465	0.9989	0.0465	21.5054	1.0011	21.505
	50	0.0495	0.0495	0.9988	0.0495	20.2020	1.0012	20.203
3	0	0.0524	0.0524	0.9986	0.0524	19.0840	1.0014	19.084
	10	0.0553	0.0553	0.9985	0.0554	18.0832	1.0015	18.050
N	20	0.0582	0.0582	0.9983	0,0583	17.1821	1.0017	17.15
	30	0.0611	0.0611	0.9981	0.0612	16.3666	1.0019	16,339
	40	0.0640	0.0640	0.9980	0.0641	15.6250	1.0020	15.600
7	50	0.0669	0.0669	0.9978	0,0670	14.9477	1.0022	14,92
4	0	0.0698	0.0697	0.9976	0.0699	14,3472	1.0024	14.300
	10	0.0727	0.0726	0.9974	0.0728	13.7741	1.0026	13,730
	20	0.0756	0.0755	0.9971	0.0757	13.2450	1.0029	13.216
	30	0.0785	0.0784	0.9969	0.0787	12,7551	1.0031	12.700
	40	0.0814	0.0813	0.9967	0.0816	12,3001	1.0033	12.254
	50	0.0844	0.0843	0.9964	0.0846	11.8624	1,0036	11,820
5	0	0.0873	0.0872	0.9962	0.0875	11.4679	1.0038	11.428
	10	0.0902	0.0901	0.9959	0.0904	11.0988	1.0041	11.061
	20	0.0931	0.0930	0.9957	0.0934	10.7527	1,0043	10.706
_	30	0.0960	0.0959	0.9954	0.0963	10.4275	1.0046	10.384
	40	0.0989	0.0987	0.9951	0.0992	10.1317	1.0049	10.080
	50	0.1018	0.1016	0.9948	0.1022	9.8425	1.0052	9.784

ภาพ 9 ตัวอย่างตารางค่าฟังก์ชันตรีโกณมิติที่สร้างขึ้นใหม่

(คูรายละเอียดตารางในภาคผนวก ค หน้า 330) ให้นักเรียนฝึกการเปิดตารางหาค่าฟังก์ชัน ตรีโกณมิติของมุมด้วยตนเอง และฝึกทักษะในการหาค่าฟังก์ชันตรีโกณมิติของมุมที่มีขนาดเกิน 90° และมุมที่ไม่ได้กำหนดไว้ในตาราง จากเอกสารประกอบการเรียนการสอน

ขั้นปฏิบัติตามแผนและสังเกตผลการปฏิบัติ

ผู้วิจัยได้ดำเนินการจัดกิจกรรมการเรียนการสอนตามแผนที่วางไว้ ใช้เวลาในการจัดกิจกรรมการเรียนการสอน 2 คาบ ตั้งแต่คาบที่ 16 – 17 เริ่มจากผู้วิจัยได้อธิบายวิธีการหาค่า ฟังก์ชันตรี โกณมิติของมุมจากตารางที่ได้สร้างขึ้นใหม่ให้กับนักเรียน และกำหนดมุมให้แล้วให้ นักเรียนได้ฝึกการใช้ตารางในการหาค่าฟังก์ชันตรี โกณมิติด้วยตนเองไปพร้อม ๆ กันแล้ว ทดสอบความเข้าใจด้วยการถามกับนักเรียนเป็นรายบุคคล เมื่อนักเรียนมีความรู้ความเข้าใจใน การเปิดตารางหาค่าฟังก์ชันตรี โกณมิติแล้ว ผู้วิจัยให้นักเรียนได้หาค่าฟังก์ชันตรี โกณมิติที่ไม่ได้ กำหนดไว้ในตาราง เริ่มด้วยผู้วิจัยอธิบายขั้นตอนและวิธีการหาค่าฟังก์ชันตรี โกณมิติของมุมที่ ไม่ได้กำหนดไว้ในตารางโดยใช้การเทียบบัญญัติใตรยางค์ และ การเทียบสัดส่วน ตัวอย่างเช่น ในการหาค่าของ cos 47°43′ ถ้าใช้การเทียบบัญญัติใตรยางค์ จะมีวิธีการหาค่าได้ดังนี้

จากตารางค่าของ cos 47°43′ อยู่ระหว่าง cos 47°40′ และ cos 47°50′

ดังนั้น ค่าของ $\cos 47^{\circ}40' = 0.6734$ และ $\cos 47^{\circ}50' = 0.6713$

มุมเพิ่มขึ้น 10' ค่าฟังก์ชันลคลง 0.0

้ มุมเพิ่มขึ้น 3' ค่าฟังก์ชันลดลง 0.0021

 $\frac{3' \times 0.0021}{10} = 0.00063 \approx 0.0006$

จะได้ว่า ค่าของ cos 47°43′ = cos 47°40′ - 0.0006 = 0.6734 - 0.0006 = 0.6728 ดังนั้นสรุปได้ว่าค่าของ cos 47°43′ = 0.6728

และในการหาค่าของ sin 40°17′ โดยใช้การเทียบสัดส่วน จะมีวิธีการหาได้ดังนี้

จากตาราง $\sin 40^{\circ}17'$ มีค่าอยู่ระหว่าง $\sin 40^{\circ}10' = 0.6450$ และ $\sin 40^{\circ}20' = 0.6472$

มุมเพิ่มขึ้น 10 ค่าของฟังก์ชันเพิ่มขึ้น 0.0022

ถ้ามุมเพิ่มขึ้น 7 ค่าของฟังก์ชันเพิ่มขึ้น x

จะใค้สัคส่วนเป็น $\frac{\mathbf{x}}{7} = \frac{0.0022}{10}$ หรือ $\frac{\mathbf{x}}{0.0022} = \frac{7}{10}$

ดังนั้น $\mathbf{x} = \frac{0.0022 \times 7}{10} = \frac{0.0154}{10} \approx 0.0015$

∴ sin 40°17′ = sin 40°10′ + 0.0015 = 0.6450 + 0.0015 = 0.6465
ให้นักเรียน ได้พิจารณาค่าของฟังก์ชันกับมุมว่ามีฟังก์ชัน ใดที่ค่าของฟังก์ชันแปรผัน โดยตรงกับ มุมและมีฟังก์ชัน ใดที่แปรผันแบบผกผันกับมุมบ้าง แล้วให้นักเรียน ได้สังเกต วิธีการคิดคำนวณ เมื่อค่าฟังก์ชันเพิ่มขึ้นหรือลดลงจากตัวอย่างในเอกสารประกอบการเรียนการสอน จากนั้นให้ ฝึกทักษะการหาค่าฟังก์ชันตรี โกณมิติของมุมที่ ไม่ได้กำหนดในตารางในเอกสารประกอบการเรียน การสอน เมื่อนักเรียนสามารถหาค่าของฟังก์ชันตรี โกณมิติได้แล้ว ให้นักเรียน ได้ฝึกทักษะ

การนำความรู้เกี่ยวกับสูตรการหาค่าฟังก์ชันตรีโกณมิติ และตารางค่าฟังก์ชันตรีโกณมิติไปใช้ใน การหาค่าของฟังก์ชันตรีโกณมิติของมุมที่มีขนาดน้อยกว่า 0 องศา และมากกว่า 90 องศา ใน เอกสารประกอบการเรียนการสอน โดยฝึกทักษะเป็นกลุ่มเหมือนกับวงจรที่ผ่านมา เมื่อนักเรียน สามารถหาค่าฟังก์ชันตรีโกณมิติได้จนเป็นที่น่าพอใจแล้ว ผู้วิจัยได้อธิบายวิธีการหาค่าฟังก์ชัน ตรีโกณมิติจากตารางในหนังสือเรียนแบบเรียนคณิตศาสตร์ของกระทรวงศึกษาธิการ กรมสามัญ ศึกษา จากนั้นจึงให้นักเรียนแต่ละคนได้ฝึกการนำความรู้ไปใช้โดยการทำแบบฝึกหัดในเอกสาร ประกอบการเรียนการสอน และ ให้นักเรียนแต่ละคนเขียนบันทึกการเรียนรู้ในการเรียนวงจรนี้

ผู้วิจัยบันทึกผลการสังเกตการปฏิบัติในการจัดกิจกรรมการเรียนการสอนลงใน แบบบันทึกหลังการสอนในท้ายกาบเรียนของแต่ละคาบเรียน ผลการตรวจแบบฝึกหัดผู้วิจัย บันทึกลงในแบบบันทึกการตรวจแบบฝึกหัดและแบบบันทึกความก้าวหน้าของนักเรียน และ อ่านบันทึกการเรียนรู้ที่นักเรียนเขียนหลังจากที่เรียนจบในวงจรนี้เพื่อจะได้ทราบว่านักเรียนได้ รับความรู้อะไรบ้าง มีปัญหาในการเรียนวงจรนี้หรือไม่ ต้องการให้ผู้วิจัยช่วยเหลืออย่างไร และ มีข้อเสนอแสะในการเรียนครั้งต่อไปอย่างไร

ขั้นสะท้อนความคิด

ผู้วิจัยนำข้อมูลที่ได้จากการปฏิบัติและสังเกตผลการปฏิบัติมาวิเคราะห์เพื่อหาข้อ สรุปของการดำเนินการวิจัยในวงจรนี้ว่า นักเรียนมีความรู้ความเข้าใจในมโนมติของตารางค่า ฟังก์ชันตรีโกณมิติ ทั้งแบบเดิมและแบบที่สร้างขึ้นใหม่หรือไม่ อย่างไร นักเรียนมีทักษะในการ กิดคำนวณหาค่าฟังก์ชันตรีโกณมิติที่ไม่ได้กำหนดค่าในตารางได้หรือไม่ อย่างไร และนักเรียน สามารถนำความรู้เกี่ยวกับตารางค่าฟังก์ชันตรีโกณมิติและการหาค่าฟังก์ชันตรีโกณมิติโดยการ เทียบบัญญัติไตรยางค์ และเทียบสัดส่วนไปใช้ในการหาค่าฟังก์ชันตรีโกณมิติของมุมที่น้อยกว่า 0 องสาและมากกว่า 90 องสาได้หรือไม่ อย่างไร ซึ่งสามารถสรุปผลการวิจัย ได้ดังนี้

1. นักเรียนส่วนใหญ่มีความรู้ความเข้าใจที่ถูกต้องเกี่ยวกับตารางค่าฟังก์ชัน ตรีโกณมิติ ซึ่งข้อมูลที่ได้จากการสังเกตพฤติกรรมในชั้นเรียน พบว่า เมื่อกำหนดมุม 48°30′ ให้ แล้วให้นักเรียนเปิดตารางหาค่าฟังก์ชันโคไซน์ของมุม 48°30′ และโคแทนเจนต์ของมุม 48°30′ นักเรียนเกือบทั้งห้องสามารถบอกค่าของฟังก์ชันตรีโกณมิติจากตารางได้ถูกต้องว่า cos 48°30′=0.6626, ,cot 48°30′=0.8847 มีนักเรียนบางคนที่ยังเปิดตารางได้ช้าแต่ก็สามารถบอกค่าของฟังก์ชันตรีโกณมิติได้ถูกต้อง จากการตรวจแบบฝึกหัด พบว่า แบบฝึกหัดจำนวน 5 ข้อ มีนักเรียนสามารถหาค่าฟังก์ชันตรีโกณมิติของมุมที่กำหนดให้ได้ถูกต้องทุกข้อ จำนวน 16 คน ทำผิด 1 ข้อ จำนวน 13 คน ทำผิด 2 ข้อ จำนวน 3 คน และทำผิด 3 ข้อ จำนวน 1 คน ในส่วน

ของแบบฝึกหัดที่นักเรียนหาค่าฟังก์ชันตรี โกณมิติของมุมที่มีขนาดน้อยกว่า 0 องศาและมากกว่า 90 องศา จำนวน 4 ข้อ พบว่า มีนักเรียนที่ทำถูกต้องทุกข้อ จำนวน 9 คน ทำผิด 1 ข้อ จำนวน 14 คน ทำผิด 2 ข้อ จำนวน 3 คนทำผิด 3 ข้อ จำนวน 3 คน และทำผิดทุกข้อจำนวน 3 คน นักเรียน ที่ทำผิดบางคนยังจำสูตรในการหาค่าฟังก์ชันตรี โกณมิติผิดทำให้ค่าที่ได้ออกมาผิดพลาดเช่น sin(-20534') = sin 20534' สับสนในการเปรียบเทียบค่าของฟังก์ชันตรี โกณมิติว่ามีค่าเพิ่มขึ้น หรือลดลง และในการหาผลลัพธ์สุดท้ายจะนำไปบวกหรือลบกับค่าฟังก์ชันตรี โกณมิติของมุม ตั้งต้น ดังภาพ 10

3. csc13°42′ c5c 13' 40' = 41.283*
CEC 13 80 : 4.1824
ัน ส คา ว 10 ฟังรับ (ชีวิทย์) 0.0513
24min 2 4, 54 man 0.0573 x 2 = 0.01026 = 0.01026 \ 0.0103
C3C18 42 = C3C18 40 + 018103 = 4.2337 + 0.0103 = 4.234
$CSC 18^{\circ} A2' = 4.2330$

ภาพ 10 กระดาษคำตอบของนักเรียนที่เทียบค่าฟังก์ชันตรี โกณมิติผิด

จากการอ่านบันทึกการเรียนรู้ของนักเรียนและการสัมภาษณ์ นักเรียนส่วนใหญ่บอกว่าสามารถ หาค่าฟังก์ชันตรีโกณมิติจากตารางใหม่ได้ง่ายและเข้าใจกว่าตารางในหนังสือเรียน

- 2. ในส่วนของทักษะในการคิดคำนวณ จากการสังเกตการฝึกทักษะในห้องเรียน และการตรวจแบบฝึกหัด (ข้อมูลเหมือนกับข้อ 1) สรุปได้ว่า นักเรียนมีทักษะการคิดคำนวณหา ค่าฟังก์ชันตรีโกณมิติที่ไม่ได้กำหนดค่าไว้ในตาราง
- 3. การนำความรู้เรื่องตารางค่าฟังก์ชันตรีโกณมิติไปใช้ในการช่วยหาค่าฟังก์ชันตรีโกณมิติของมุมที่มีขนาดน้อยกว่า 0 องศา และมากกว่า 90 องศา จากการสังเกตการฝึกทักษะในห้องเรียนและการตรวจแบบฝึกหัด (ข้อมูลเหมือนกับข้อ 1) นักเรียนส่วนใหญ่สามารถนำความรู้เรื่องตารางค่าฟังก์ชันตรีโกณมิติไปใช้ในการช่วยหาค่าฟังก์ชันตรีโกณมิติของมุมที่มีขนาดมากกว่า 90° ได้ถูกต้อง

ข้อมูลเหล่านี้ชี้ให้เห็นว่าการจัดกิจกรรมการเรียนการสอนในวงจรที่ 4 สามารถทำ ให้นักเรียนมีความรู้ความเข้าใจในมโนมติของตารางค่าฟังก์ชันตรีโกณมิติ สามารถเปิดตารางหา ค่าฟังก์ชันตรีโกณมิติของมุมที่กำหนดให้ได้ สามารถคิดคำนวณและนำความรู้เกี่ยวกับตารางค่า ฟังก์ชันตรีโกณมิติไปช่วยหาค่าฟังก์ชันตรีโกณมิติของมุมที่ไม่ได้กำหนดไว้ในตารางได้ถูกต้อง

วงจรที่ 5

์ ขับวางแผน

ในวงจรที่ 5 เป็นการจัดกิจกรรมการเรียนรู้ เรื่องกราฟของฟังก์ชันตรีโกณมิติ ตามแผนการจัดการเรียนรู้คาบที่ 18 – 20 เพื่อแก้ปัญหาการเรียนการสอนที่พบว่านักเรียนไม่สามารถ เขียนกราฟของฟังก์ชันตรีโกณมิติได้ ไม่สามารถบอกคาบและแอมพลิจูดของกราฟได้ และไม่ สามารถบอกลักษณะของกราฟได้ ซึ่งอาจมีสาเหตุมาจากการจัดกิจกรรมการเรียนการสอนที่ไม่ เน้นให้นักเรียนได้ฝึกการเขียนกราฟด้วยตนเอง ขาดการแนะแนวทางในการเขียนกราฟ และ นักเรียนไม่ได้สรุปความรู้ในการเขียนกราฟด้วยตัวเอง

ผู้วิจัยแก้ปัญหาในวงจรนี้ โดยใช้เอกสารประกอบการเรียนการสอนแนะแนวทาง ในการเขียนกราฟ รวมทั้งมีคำถามชี้นำเพื่อเป็นแนวทางไปสู่ข้อสรุปของการเขียนกราฟของ ฟังก์ชันแต่ละฟังก์ชัน และให้นักเรียนได้สรุปมโนมติเกี่ยวกับกราฟของฟังก์ชันตรีโกณมิติด้วย ตนเอง แล้วให้ฝึกทักษะการเขียนกราฟของฟังก์ชันเป็นกลุ่ม โดยให้กลุ่มช่วยกันในการทำงาน และสรุปวิธีการเขียนกราฟและลักษณะของกราฟในแต่ละฟังก์ชันในเอกสารประกอบการเรียน การสอนของนักเรียนแต่ละคน

ขั้นปฏิบัติตามแผนและสังเกตผลการปฏิบัติ

ผู้วิจัยได้ดำเนินการจัดกิจกรรมการเรียนการสอนตามที่วางแผนไว้ เช่น แบ่งนักเรียน ออกเป็น 9 กลุ่ม กลุ่มละ 4-5 คน แล้วให้นักเรียนเขียนกราฟของฟังก์ชันและร่วมกันจากนั้นแต่ ละกลุ่มร่วมกันสรุปเกี่ยวกับลักษณะกราฟของฟังก์ชันตรี โกณมิติทั้ง 6 ฟังก์ชัน ซึ่งประกอบด้วย ลักษณะของกราฟ ความสูงของกราฟ(แอมพลิจูด) ความยาวของกราฟใน 1 คาบ (คาบ) ดังตัวอย่าง กราฟของฟังก์ชัน $\mathbf{y} = 2\sin\mathbf{x}$ จะมีลักษณะเป็นลูกคลื่นผ่านจุด (0,0) มีแอมพลิจูด คือ $\left|2\right| = 2$ มีลักษณะเป็นคาบโดย 1 คาบยาว $\frac{2\pi}{b} = \frac{2\pi}{1} = 2\pi$ หน่วย เป็นต้น เมื่อนักเรียนมีความเข้าใจใน เนื้อหาแล้วผู้วิจัยให้นักเรียนได้ฝึกการนำความรู้ไปใช้ด้วยการทำแบบฝึกหัดและเขียนบันทึกการ เรียนรู้ในเอกสารประกอบการเรียนการสอนเป็นการบ้าน

ขั้นสะท้อนความคิด

ผู้วิจัยนำข้อมูลที่ได้จากการปฏิบัติและสังเกตผลการปฏิบัติมาวิเคราะห์ เพื่อหาข้อ สรุปของการคำเนินการวิจัยในวงจรนี้ว่า นักเรียนมีความรู้ความเข้าใจในลักษณะของกราฟของ ฟังก์ชันตรีโกณมิติ มีทักษะในการเขียนกราฟฟังก์ชันตรีโกณมิติ และ สามารถนำความรู้เกี่ยวกับ ลักษณะของกราฟไปใช้ในการเขียนกราฟฟังก์ชันตรีโกณมิติได้หรือไม่ อย่างไร ผู้วิจัยสามารถ สรุปผลการวิจัยในวงจรที่ 5 ตามเป้าหมายของการวิจัยได้ดังนี้

- 1. นักเรียนส่วนใหญ่มีความรู้ความเข้าใจในมโนมติของกราฟของฟังก์ชันตรีโกณมิติ และบอกลักษณะกราฟ ความยาวใน 1 คาบ ความสูง ของกราฟได้อย่างถูกต้อง ซึ่งจากการ สังเกตพฤติกรรมในชั้นเรียนของนักเรียน พบว่า นักเรียนทุกกลุ่มสามารถตอบคำถามของครูและ ในตอบคำถามในเอกสารได้ถูกต้อง เช่น เมื่อกำหนดฟังก์ชัน $y=2\cos x$ ให้แล้วนักเรียน สามารถบอกลักษะของกราฟได้ว่ามีลักษณะเป็นลูกกลื่นผ่านจุด (0,2) มีแอมพลิจูดเท่ากับ 2 และ คาบยาวใน 1 คาบเท่ากับ 2π หน่วย และจากถามนักเรียนเกี่ยวกับกราฟของฟังก์ชันตรีโกณมิติ นักเรียนเกื่อบทั้งห้องบอกว่าสามารถเขียนกราฟของฟังก์ชันตรีโกณมิติใต้ สามารถบอก แอมพลิจูด และ ความยาวใน 1 คาบได้ มีนักเรียนบางคนบอกว่ายังไม่แน่ใจในการเขียนกราฟ กลัวว่ากราฟจะออกมาผิด
- 2. ในส่วนทักษะการเขียนกราฟ จากการสังเกตการเขียนกราฟของฟังก์ชันในการทำ กิจกรรมกลุ่มในชั้นเรียน พบว่า นักเรียนทุกกลุ่มสามารถเขียนกราฟของฟังก์ชันตรีโกณมิติได้ ถูกต้อง และยังสามารถบอกลักษณะกราฟ บอกแอมพลิจูด และความยาวใน 1 คาบ ได้
- 3. ในส่วนของการนำความรู้เรื่องกราฟไปช่วยในการเขียนกราฟของฟังก์ชันตรีโกณ มิติ จากการสังเกตการทำกิจกรรมกลุ่ม และ การฝึกทักษะการเขียนกราฟฟังก์ชันตรีโกณมิติใน ชั้นเรียน พบว่า ในการเขียนกราฟของ $\mathbf{y}=3$ sin $\frac{\mathbf{x}}{2}$ นักเรียนทุกกลุ่มสามารถบอกได้ว่ากราฟมี ลักษณะเป็นคลื่นผ่านจุด (0,0) แอมพลิจูดเท่ากับ 3 และ ความยาวใน 1 คาบเท่ากับ π หน่วย

ข้อมูลเหล่านี้ชี้ให้เห็นว่าการจัดกิจกรรมการเรียนการสอนในวงจรที่ 5 สามารถทำให้ นักเรียนมีความรู้ความเข้าใจที่ถูกต้องในมโนมติกราฟของฟังก์ชันตรีโกณมิติ สามารถบอก ลักษณะของกราฟ แอมพลิจูด และ ความยาวใน 1 คาบของกราฟ มีทักษะในการเขียนกราฟของ ฟังก์ชันตรีโกณมิติแล้วยังสามารถนำความรู้เรื่องกราฟฟังก์ชันตรีโกณมิติไปประยุกต์ใช้ใน การเขียนกราฟที่มีแอมพลิจูดและความยาวคาบเปลี่ยนไปได้เป็นอย่างดี

เมื่อนักเรียนเรียนเนื้อหาเรื่องฟังก์ชันตรีโกณมิติครบทั้ง 20 คาบ แล้ว ผู้วิจัยได้ทำการ วัดผลการเรียนรู้ด้วยแบบทคสอบวัดผลสัมฤทธิ์ ซึ่งแบ่งออกเป็น 3 ตอน ตอนที่ 1 เป็นข้อสอบ แบบปรนัย เป็นการวัดความรู้ความเข้าใจในมโนมติของฟังก์ชันตรีโกณมิติ ตอนที่ 2 เป็นข้อ สอบแบบเติมคำตอบ เป็นการวัดความรู้ด้านทักษะการคิดคำนวณในการหาค่าของฟังก์ชัน ตรีโกณมิติ ตอนที่ 3 เป็นข้อสอบแบบอัตนัย เป็นการวัดความรู้ด้านการนำความรู้เรื่องฟังก์ชัน ตรีโกณมิติไปใช้ในการแก้ปัญหา จากการตรวจข้อสอบ พบว่า แบบทคสอบตอนที่ 1 มีนักเรียน สอบผ่าน 50%ของคะแนน จำนวน 19 คนคิดเป็น 50 %ของจำนวนนักเรียนทั้งหมด แบบทดสอบ ์ ตอนที่ 2 มีนักเรียนสอบผ่าน 50% ของคะแนน จำนวน 11 คน คิดเป็น 29% ของจำนวนนักเรียน ทั้งหมด และแบบทคสอบตอนที่ 3 มีนักเรียนสอบผ่าน 50 % ของคะแนน จำนวน 9 คน คิดเป็น 24 % ของจำนวนนักเรียนทั้งหมด และสรุปโดยรวมมีนักเรียนที่สอบผ่าน 50% ของคะแนน ทั้งหมด 8 คน คิดเป็น 21% ของจำนวนนักเรียนทั้งหมด เมื่อเทียบกับผลการสอบเรื่องฟังก์ชัน ตรีโกณมิติของนักเรียนที่เรียนตามแนวทางการจัดกิจกรรมการเรียนการสอนตามแบบเรียนในปี ที่ผ่านๆมา ซึ่งมีนักเรียนที่สอบผ่าน 50% ของคะแนนเดิม ประมาณ 14 - 15 % ของจำนวนนักเรียน ทั้งหมด พอจะกล่าวได้ว่า นักเรียนที่เรียนตามแนวทางการจัดกิจกรรมการเรียนการสอนในการ วิจัยในครั้งนี้นักเรียนมีผลสัมฤทธิ์ทางการเรียนดีขึ้นกว่าการเรียนตามแนวทางการจัดกิจกรรม การเรียนการสอนในแบบเรียนบ้างเล็กน้อย

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

10 MAI