

What is claimed:

1 1. A method for manufacturing a semiconductor device, the semiconductor
2 device having a DRAM including a cell capacitor formed in a DRAM region of a
3 semiconductor substrate, and a capacitor element formed in an analog element region of the
4 semiconductor substrate, the method comprising the steps of:

5 (a) simultaneously forming a bit line that is a component of the DRAM and a
6 connection layer that is located in a common layer with the bit line and this is used to
7 electrically connect a lower electrode of the capacitor element and another semiconductor
8 element;

9 (b) simultaneously forming a storage node of the cell capacitor and the lower
10 electrode;

11 (c) simultaneously forming a dielectric layer of the cell capacitor and a dielectric
12 layer of the capacitor element; and

13 (d) simultaneously forming a cell plate of the cell capacitor and an upper electrode
14 of the capacitor element.

1 2. A method for manufacturing a semiconductor device according to claim 1,
2 further comprising the step of:

3 (e) forming a first resistance element and a second resistance element in the analog
4 element region,

5 wherein the step (e) is carried out simultaneously with the step (d), and

6 wherein a number of ion-implantations of impurity in a region where the first
7 resistance element is to be formed is greater than a number of ion-implantation of impurity
8 in a region where the second resistance element is to be formed so that a resistance value of
9 the first resistance element is lower than a resistance value of the second resistance element.

1 3. A method for manufacturing a semiconductor device according to claim 1,
2 further comprising the step of:

3 (e) forming a first resistance element and a second resistance element in the analog
4 element region,

5 wherein the step (e) is carried out simultaneously with the step (d), and
6 wherein an impurity is diffused in a region where the first resistance element is to be
7 formed so that a resistance value of the first resistance element is lower than a resistance
8 value of the second resistance element.

1 4. A method for manufacturing a semiconductor device according to claim 1,
2 further comprising the step of:

3 (e) forming a first resistance element and a second resistance element in the analog
4 element region,

5 wherein the step (e) is carried out simultaneously with the step (d), and
6 wherein a silicide layer is formed in a region where the first resistance element is to
7 be formed so that a resistance value of the first resistance element is lower than a resistance
8 value of the second resistance element.

1 5. ~~A semiconductor device having a DRAM including a cell capacitor formed in~~
2 ~~a DRAM region of a semiconductor substrate, and a capacitor element formed in an analog~~
3 ~~element region of the semiconductor substrate, the semiconductor device comprising:~~

4 ~~an interlayer dielectric layer, an embedded connection layer and a connection layer,~~
5 ~~wherein the interlayer dielectric layer is located between the semiconductor substrate~~
6 ~~and the capacitor element,~~

7 ~~the connection layer and the embedded connection layer are used to electrically~~
8 ~~connect a lower electrode of the capacitor element to another semiconductor element,~~

9 ~~the connection layer is located in a common layer of a bit line that is a component of~~
10 ~~the DRAM,~~

11 ~~the embedded connection layer is located in a connection hole formed in the~~
12 ~~interlayer dielectric layer,~~

13 one end of the embedded connection layer connects to the lower electrode at a
14 bottom surface of the lower electrode, and
15 another end of the embedded connection layer connects to the connection layer.

1 6. A semiconductor device according to claim 5, further comprising
2 an additional capacitor element,
3 wherein the additional capacitor element is located in the analog element region, and
4 the capacitor element and the additional capacitor element are serially connected to
5 each other by the embedded connection layer and the connection layer.

1 7. A semiconductor device according to claim 5, further comprising a first
2 resistance element and a second resistance element,
3 wherein the first resistance element and the second resistance element are located in
4 the analog element region, and
5 an impurity concentration of the first resistance element is higher than an impurity
6 concentration of the second resistance element so that a resistance value of the first
7 resistance element is lower than a resistance value of the second resistance element.

1 8. A semiconductor device according to claim 6, further comprising a first
2 resistance element and a second resistance element,
3 wherein the first resistance element and the second resistance element are located in
4 the analog element region, and
5 an impurity concentration of the first resistance element is higher than an impurity
6 concentration of the second resistance element so that a resistance value of the first
7 resistance element is lower than a resistance value of the second resistance element.

1 9. A semiconductor device according to claim 5, further comprising a first
2 resistance element and a second resistance element,
3 wherein the first resistance element and the second resistance element are located in
4 the analog element region, and

5 the first resistance element includes a silicide layer so that a resistance value of the
6 first resistance element is lower than a resistance value of the second resistance element.

1 10. A semiconductor device according to claim 6, further comprising a first
2 resistance element and a second resistance element,
3 wherein the first resistance element and the second resistance element are located in
4 the analog element region, and

5 the first resistance element includes a silicide layer so that a resistance value of the
6 first resistance element is lower than a resistance value of the second resistance element.

1 11. A semiconductor device according to claim 5, wherein a thickness of a
2 dielectric layer of the capacitor element is identical with a thickness of a dielectric layer of
3 the cell capacitor.

1 12. A semiconductor device according to claim 6, wherein a thickness of a
2 dielectric layer of the capacitor element is identical with a thickness of a dielectric layer of
3 the cell capacitor.

1 13. A semiconductor device according to claim 7, wherein a thickness of a
2 dielectric layer of the capacitor element is identical with a thickness of a dielectric layer of
3 the cell capacitor.

1 14. A semiconductor device according to claim 9, wherein a thickness of a
2 dielectric layer of the capacitor element is identical with a thickness of a dielectric layer of
3 the cell capacitor.

1 10. 15. A method for manufacturing a semiconductor device, the semiconductor
2 device having a DRAM including a cell capacitor formed in a DRAM region of a
3 semiconductor substrate, and a capacitor element formed in an analog element region of the
4 semiconductor substrate, the method comprising:

5 forming a first conducting layer and etching a portion of the first conducting layer to
6 form a bit line that is a component of the DRAM and a connection layer that is located in a
7 common layer with the bit line and used to electrically connect a lower electrode of the
8 capacitor element and another semiconductor element;

9 forming a second conducting layer and etching a portion of the second conducting
10 layer to form a storage node of the cell capacitor and the lower electrode;

11 forming a dielectric layer and etching a portion of the dielectric layer to form a
12 dielectric layer of the cell capacitor and a dielectric layer of the capacitor element; and

13 forming a third conducting layer and etching a portion of the third conducting layer
14 to form a cell plate of the cell capacitor and an upper electrode of the capacitor element.

1 11. 16. A method according to claim 15, further comprising forming a first resistance
2 element and a second resistance element in the analog element from the third conducting
3 layer, wherein the first resistance element and second resistance element are formed so that a
4 resistance value of the first resistance element is lower than a resistance value of the second
5 resistance element.

ADD A³ >