БАЗЫ ДАННЫХ

Лекция 1 Введение в курс баз данных

Перед тем, как начать

- Лектор Блинова Евгения Александровна, eugenia.blinova@gmail.com
- Доклады
- Выступления на конференциях, олимпиадах и проекты
- Книги, ПО и задачи
- https://diskstation.belstu.by:5001 student fitfit
- /Для_студентов_ФИТ_БГТУ/ПРЕПОДАВАТЕЛИ/
 Блинова/Базы данных 2 курс
- Посещение
- Сдача лабораторных работ

Описание курса

- 36 часов лекций, 36 часов лабораторных работ
- Задания на лабораторные работы лабораторный практикум
- Microsoft SQL Server 2012
- Самостоятельная работа
- 2 контрольные работы и тестирование
- Экзамен 2 теоретических вопроса и задача (ИСИТ, ПОИМБС)
- Для ПОИТ экзамен в следующем семестре по материалу обоих семестров

База данных

База данных – это совокупность взаимосвязанных данных

Требования к информации в БД

- Полезность уменьшает информационную энтропию системы
- Полнота информации информации должно быть достаточно, чтобы осуществить качественное управление
- Точность
- Достоверность заведомо ошибочные данные не должны храниться в базе данных
- Непротиворечивость
- Актуальность

Проектирование БД

- Определение границ исследуемой области предметной области
- Системный анализ определение объектов и связей между ними
- Построение логической схемы базы данных в соответствии с определенными правилами – моделью данных
- Реализация базы данных описание ее в терминах некоторой СУБД

Проектирование БД

- Предметная область часть реального мира, подлежащая изучению, с целью описания и управления
- Предметная область это множество объектов и связей между этими объектами
- **Модель данных** структурированное представление данных и связей между ними

Проектирование БД

Пример

Пример

Логическая схема данных

База данных

- Хранилище динамически обновляемой информации
- Информация отражает состояние некоторой предметной области (объекта) и должна быть полезной, точной, актуальной и непротиворечивой
- Информация представлена в вид:
 - метаданных (описание модели данных)
 - данных
- Каждый пользователь базы данных знает только о существовании данных, необходимых для решения его задач
- Совокупность всех представлений это логическая схема данных

Система управления базами данных

 Программная реализация технологии хранения, извлечения, обновления и обработки данных в базе данных

Модели данных

- Иерархическая
- Сетевая
- Реляционная

Иерархическая модель данных

Иерархическая модель данных

Иерархическая модель данных

• Типичный представитель – IBM Information Management System

Сетевая модель данных

Сетевая модель данных

- Integrated Data Store от General Electric
- DMS or UNIVAC

Реляционная модель данных

- Основана на теории множеств
- Реляционная алгебра Эдгар Франк Кодд (1923-2003)
- Данные имеют собственную природу, независимую от способа их использования
- Определения:
 - **домен**: множество;
 - - таблица: отношение;
 - - **атрибут**: имя столбца таблицы (имя домена);
 - - заголовок таблицы: множество всех атрибутов;
 - - кортеж: элемент отношения или строка таблицы

Операции реляционной алгебры

- UNION (объединение)
- INTERSECT (пересечение)
- MINUS (разность)
- TIMES (декартово произведение)
- WHERE (ограничение)
- PROJECT (проекция)
- JOIN (соединение)
- **DIVIDE BY** (реляционное деление)
- **RENAME** (переименование)
- **:=** (присваивание).

Реляционная модель данных

- Relation отношение
- Отношение может быть представлено в виде двумерной таблицы
- Реляционная база данных представляет собой набор взаимосвязанных таблиц
- Все объекты разделяются на типы
- Объекты одного и того же типа имеют свой набор атрибутов
- Один из атрибутов однозначно идентифицирует объект в таблице – первичный ключ

Реляционная модель данных

- Структурный аспект данные в базе данных представляют собой набор отношений
- Аспект целостности отношения (таблицы) отвечают определенным условиям целостности
- РМД поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных
- Аспект обработки РМД поддерживает операторы манипулирования отношениями (реляционная алгебра, реляционное исчисление)

Нормализация данных

- **Нормализация данных** процесс преобразования таблиц базы данных к нормальной форме
- **Шесть нормальных форм** 1NF, 2NF,...6NF.
- Широкое практическое применение имеют формы 1NF, 2NF, 3NF

Первая нормальная форма

- Таблица не должна содержать повторяющихся групп данных
- Атомарность каждый столбец должен содержать одно неделимое значение
- Пример:
- ФИО Адрес (город, улица, дом, квартира)
- Фильм Исполнители (список актеров)

Первая нормальная форма

- Устранить повторяющиеся группы в отдельных таблицах
- Создать отдельную таблицу для каждого набора связанных данных
- Идентифицировать каждый набор связанных данных с помощью первичного ключа

Вторая нормальная форма

- Таблица находится в первой нормальной форме
- Каждый неключевой атрибут полностью функционально зависит от каждого возможного ключа
- Простой и составной ключ
- Пример:
- Студент Университет Средний балл Стипендия

Вторая нормальная форма

- Создать отдельные таблицы для наборов значений, относящихся к нескольким записям
- Связать эти таблицы с помощью внешнего ключа

Третья нормальная форма

- Таблица находится во второй нормальной форме
- Отсутствуют транзитивные зависимости
- Пример:
- Студент Группа Факультет Университет

SQL

 Язык SQL (Structured Query Language, язык структурированных запросов) – специализированный язык, предназначенный для написания запросов к реляционной БД

SQL

- 1986 первый вариант стандарта
- 1989 доработан стандарт
- 1992 внесены значительные изменения (SQL2)
- 1999 (SQL3) добавлены:
 - поддержка регулярных выражений
 - рекурсивных запросов
 - поддержка триггеров
 - базовые процедурные расширения
 - нескалярные типы данных
 - некоторые объектно-ориентированные возможности
- 2003 поддержка XML
- 2006 возможность совместно использовать в запросах SQL и XQuery
- 2008 улучшены возможности оконных функций

Операторы SQL

- **DDL** Data Definition Language язык определения данных
- **DML** Data Manipulation Language язык манипулирования данными
- TCL Transaction Control Language язык управления транзакциями
- DCL Data Control Language язык управления данными

Операторы DDL

- Операторы DDL предназначены для **создания**, **удаления** и **изменения** объектов БД или сервера СУБД
- DDL включает операторы:
 - CREATE
 - ALTER
 - DROP

create тип имя дополнение

CREATE TABLE STUDENT (NAME nvarchar(50), GROUP_NUM int)

SQL Railroad Diagram

Операторы DML

- Операторы DML предназначены для **работы со строками таблиц**
- DML включает операторы:
 - SELECT
 - INSERT
 - DELETE
 - UPDATE

select список дополнение

SELECT * FROM STUDENT SELECT NAME, GROUP_NUM FROM STUDENT

Операторы TCL

- Операторы TCL предназначены для **управления транзакциями**
- Транзакция это несколько DML-операторов, которые либо все выполняются, либо все не выполняются
- TCL SQL включает операторы:
 - BEGIN TRAN
 - SAVE TRAN
 - COMMIT TRAN
 - ROLLBACK TRAN

begin tran дополнение

Операторы DCL

- Операторы DCL предназначены для **управления процессом авторизации**
- **Авторизация** это процедура проверки разрешений на выполнение определенных операций
- Принципал это объект сервера или БД, которому может быть выдано разрешение на выполнение операции, а также отобрано или запрещено разрешение
- DCL включает в себя операторы:
 - GRANT
 - REVOKE
 - DENY

grant список on объект to принципал

Microsoft SQL Server

- Microsoft SQL Server система управления реляционными базами данных (РСУБД), разработанная корпорацией Microsoft
- Входит в «большую тройку»: Oracle, DB2
- Имеет свой диалект языка запросов SQL
- Имеет свое процедурное расширение языка запросов Transact-SQL

#_	Ē	Название	Год	SQL	Разработчик
1 0 I	My <mark>SQL</mark>	<u>MySQL</u>	1995	1	Oracle
2	PostgreSQL	<u>PostgreSQL</u>	1995	1	сообщество
3 -1	SQL Server	<u>MS SQL Server</u>	1988	1	Microsoft
4 +1	mongoDB	<u>MongoDB</u>	2009	×	MongoDB
5	SQLite S	S <u>QLite</u>	2000	1	Hwaci, сообщество
6 9	ORACLE DATABASE	<u> Dracle Database</u>	1979	4	Oracle

7	Firebird	<u>Firebird</u>	2000	√	сообщество
8	CouchDB	<u>CouchDB</u>	2005	×	Apache
8 -1	IBM	DB2	1995	1	IBM
9 new	MariaDB	<u>MariaDB</u>	2009	1	MariaDB Corporation Ab, MariaDB Foundation, сообщество
10 -1	RAVENDB	<u>RavenDB</u>	2009	×	Hibernating Rhinos
10 new	e redis	Redis	2009	×	Redis Labs, сообщество
10	SAP	SAP ASE (ex: Sybase)	1988	1	SAP AG
11 new	PERCONA SELVER	Percona Server	2006	√	Percona

Product or Service Scores for Traditional Transactions

345 systems in ranking, September 2018

				545 5y5tem5 in re	mang, oct	, ccmbc	1 2010
Rank					Score		
Sep 2018	Aug 2018	Sep 2017	DBMS	Database Model	Sep 2018	Aug 2018	Sep 2017
1.	1.	1.	Oracle 🗄	Relational DBMS	1309.12	-2.91	-49.97
2.	2.	2.	MySQL 🔠	Relational DBMS	1180.48	-26.33	-132.13
3.	3.	3.	Microsoft SQL Server 답	Relational DBMS	1051.28	-21.37	-161.26
4.	4.	4.	PostgreSQL 🗄	Relational DBMS	406.43	-11.07	+34.07
5.	5.	5.	MongoDB 🔠	Document store	358.79	+7.81	+26.06
6.	6.	6.	DB2 🔠	Relational DBMS	181.06	-0.78	-17.28
7.	1 8.	1 0.	Elasticsearch 🔠	Search engine	142.61	+4.49	+22.61
8.	4 7.	1 9.	Redis 🔠	Key-value store	140.94	+2.37	+20.54
9.	9.	4 7.	Microsoft Access	Relational DBMS	133.39	+4.30	+4.58
10.	10.	4 8.	Cassandra 🔠	Wide column store	119.55	-0.02	-6.65
11.	11.	11.	SQLite 🗄	Relational DBMS	115.46	+1.73	+3.42
12.	12.	12.	Teradata 🖽	Relational DBMS	77.38	-0.02	-3.52
13.	13.	1 6.	Splunk	Search engine	74.03	+3.53	+11.45
14.	14.	↑ 18.	MariaDB 🚹	Relational DBMS	70.64	+2.34	+15.17
15.	15.	4 13.	Solr	Search engine	60.20	-1.69	-9.71
16.	1 8.	1 9.	Hive 🔠	Relational DBMS	59.63	+1.69	+11.02
17.	17.	4 15.	HBase 급	Wide column store	58.47	-0.33	-5.87
18.	4 16.	4 14.	SAP Adaptive Server 답	Relational DBMS	58.04	-2.39	-8.71
19.	19.	4 17.	FileMaker	Relational DBMS	55.30	-0.75	-5.69
20.	1 21.	↑ 22.	Amazon DynamoDB 🛅	Multi-model 🔟	53.34	+1.69	+15.52
21.	4 20.	4 20.	SAP HANA 🖶	Relational DBMS	52.73	+0.80	+4.40
22.	22.	↓ 21.	Neo4j 🛅	Graph DBMS	40.10	-0.83	+1.67
23.	23.	23.	Couchbase 🛅	Document store	34.55	+1.59	+1.44
24.	24.	24.	Memcached	Key-value store	31.54	-1.38	+2.60
25.	25.	1 27.	Microsoft Azure SQL Database 🗄	Relational DBMS	25.25	-0.85	+3.65

COMPLETENESS OF VISION

As of January 2018

© Gartner, Inc

Microsoft SQL Server

Версия	Год	Название
1.0	1989	SQL Server 1.0 (16 bit)
1.1	1991	SQL Server 1.1 (16 bit)
4.21	1993	SQL Server 4.21
6.0	1995	SQL Server 6.0
6.5	1996	SQL Server 6.5
7.0	1998	SQL Server 7.0
8.0	2000	SQL Server 2000
8.0	2003	SQL Server 2000 64-bit
9.0	2005	SQL Server 2005
10.0	2008	SQL Server 2008
10.25	2010	Azure SQL DB
10.50	2010	SQL Server 2008 R2
11.0	2012	SQL Server 2012
12.0	2014	SQL Server In-Memory OLTP
13.0	2016	SQL Server 2016
14.0	2017	SQL Server vNext

Редакции Microsoft SQL Server 2012

SQL Server 2012 Enterprise Edition

- Не имеет ограничений по количеству поддерживаемых ядер
- Не имеет ограничений по максимальному объему используемой памяти.
- Максимальный размер реляционной базы данных 524 Пб.

SQL Server 2012 Business Intelligence Edition

- Имеет ограничение 4 процессора или 16 ядер на экземпляр;
- Максимальный объем используемой памяти 64 Гб;
- Максимальный размер реляционной базы данных 524 Пб.

SQL Server 2012 Standard Edition

- Имеет ограничение 4 процессора или 16 ядер на экземпляр;
- Максимальный объем используемой памяти 64 Гб;
- Максимальный размер реляционной базы данных 524 Пб.

SQL Server 2012 Web Edition

- SQL Server 2012 Developer Edition .
- SQL Server 2012 Express Edition
 - Имеет ограничение 1 процессор (до 4 ядер);
 - Максимальный объем используемой памяти 1 Гбайт;
 - Максимальный размер реляционной базы данных 10 Гб.

Microsoft SQL Server

Службы Microsoft SQL Server

Наименование службы	Назначение
Database Engine	Управление реляционными БД
Analysis Services	Управление OLAP-кубами и интеллектуальный анализ данных
Integration Services	Поддержка решений по извлечению, преобразованию и загрузке данных
Reporting Services	Управление отчетами, построенными на основе SQL-запросов к реляционным БД
Full-Text Search	Управление полнотекстовым поиском
SQL Server Agent	Автоматизация административных задач
SQL Server Browser	Управление соединениями

Database Engine

- Database Engine является ядром системы управления реляционной БД
- Может быть установлено **несколько** экземпляров службы **Database Engine**
- При этом **только один** экземпляр может быть службой по умолчанию (с именем **MS SQL SERVER**), другие экземпляры должны иметь уникальные имена
- Каждый экземпляр службы **Database Engine** требует отдельной инсталляции, конфигурации и настройки безопасности
- Один **Database Engine** может обеспечить доступ к нескольким БД

Системные базы данных

Системная база данных	Назначение
master	Хранит все системные данные Database Engine, а также информацию о других БД.
msdb	Используется службами SQL Server Agent (выполнение заданий по расписанию), Database Mail (формирование уведомлений по электронной почте), а также хранит информацию о резервном копировании БД.
tempdb	Пространство для временных объектов Database Engine и пользовательских временных таблиц. База данных пересоздается при каждой перезагрузке
model	Шаблон, используемый при создании всех БД, управляемых экземпляром Database Engine.
resource	БД, используемая только для чтения. Содержит системные объекты экземпляра Database Engine. Файлы БД являются скрытыми и не отображаются в MSMS.

Утилиты Microsoft SQL Server

- SQL Server Management Studio
- SQL Server Books Online
- SQLCMD
- Microsoft SQL Configuration Manager

Вопросы?