

Serial MODBUS Sensor Application Definitions

Monnit Corporation

Version 1.1
Written by Lynnette Padilla

Revision History

Version	Date	Description		
1.0	9/14/2012	created by Lynnette Padilla		
1.1	1/14/2013	Added more app profiles. Edited Humidity, app profile # 18 and # 29		

Contents

Introduction	3
Data Decoding Table	3

Introduction

The purpose of this document is to enumerate how to decode the data on a Monnit Serial MODBUS Gateway for every sensor type that Monnit offers.

Data Decoding Table

TYPE	NAME	DATA TYPE	UNIT	DATA	
1	Analog Voltage	Unsigned Int16	Volts	Divide data by 1000 to get three decimal point	
				resolution. Example: 236 / 100 = 0.236 V	
2	Temperature	Signed Int32	° Celsius	Divide data by 10 to get one decimal point	
				resolution. Example: 271 / 10 = 27.1°C	
3	Dry Contact	Unsigned Int32		0 for loop open and 1 for loop closed in default	
				operation	
4	Water	Unsigned Int32		0 for no water present and 1 for water present	
				in default operation	
5	Activity, Profile 1	Unsigned Int32		0 for no movement and 1 for movement	
				detected in default operation	
6	Magnetic Presence	Unsigned Int32		0 for magnet absent and 1 for magnet present	
				in default operation	
9	Open/Closed	Unsigned Int32		0 for magnet absent and 1 for magnet present	
				in default operation	
11	Button	Unsigned Int32		0 for button not pressed and 1 for button	
				pressed	
14	ID			Always zero. Sensor doesn't acquire data	
15	Accelerometer, Profile 1	Signed Int16 /	X-axis G-Force	NOT AVAILABLE in FRR!!	
		Signed Int16 /	Y-axis G-Force	Divide data by 1000 to get three decimal point	
		Signed Int16	Z-axis G-Force	resolution. Example: -2012 / 1000 = -2.012 G's	
16	Accelerometer, Profile 3	Unsigned Int8		Bit 7 - Internal Communication Problems	
				Bit 6 - EA - 1= Global Event Happened, 0=none	
				Bit 5 - ZTRANSE - 0 = none, 1 = happened	
				Bit 4 - Z_Trans_Pol - 0 = g+, 1 = g-	
				Bit 3 - YTRANSE - 0 = none, 1 = happened	
				Bit 2 - Y_Trans_Pol - 0 = g+, 1 = g-	
				Bit 1 - XTRANSE - 0 = none, 1 = happened	
				Bit 0 - X_Trans_Pol - 0 = g+, 1 = g-	

TYPE	NAME	DATA TYPE	UNIT	DATA	
18	Humidity	Unsigned Int16 /	°C/	Data_H is Temperature; Data_L is Humidity.	
	,	Unsigned Int16	%RH	To convert temperature ticks to degrees	
				Celsius:	
				TmpC = (T_Ticks÷100) – 40;	
				To convert humidity ticks to RH:	
				(Need TmpC and these constants:	
				C1 = -4.0	
				T1 = 0.01	
				C2 = 0.0405	
				T2 = 0.00008	
				C3 = -0.000028)	
				RH_Linear=C3*H_Ticks ² +C2*H_Ticks+C1	
				RH True=	
				(TmpC-25)*(T1+T2*H_Ticks)+RH_Linear	
				If the RH True is > 100, the %RH is just 100%.	
				If RH_True < 0.1, the %RH is 0.1%	
				That voice, the foliation of the	
19	Activity, Profile 2	Unsigned Int16	# of vibrations	Count of vibrations	
20	Accelerometer, Profile 2	Signed Int16 /	X-axis G-Force	NOT AVAILABLE IN FRR!	
		Signed Int16 /	Y-axis G-Force	Divide data by 1000 to get three decimal point	
		Signed Int16 /	Z-axis G-Force	resolution. The first data set is the MAX	
		Signed Int16 /	X-axis G-Force	recorded value, the second data set is the AVG	
		Signed Int16 /	Y-axis G-Force	recorded value.	
		Signed Int16 /	Z-axis G-Force	Example: 1244 / 1000 = 1.244 G's	
21	Lux	Unsigned Int16	Lux	Lux reading.	
22	0-20 mA Current	Unsigned Int16	mA	Divide data by 100 to get two decimal point	
				resolution. Example = 744/100 = 7.44 mA	
23	Infrared Motion	Unsigned Int8		0 for no motion detected and 1 for motion	
				detected	
24	Flex	Unsigned Int32	Resistance	Divide data by 1000 to get three decimal point	
				resolution.	
26	Liquid Level, 8"	Unsigned Int16	Inches	Divide data by 100 to get two decimal point	
				resolution.	
27	Light Presence	Unsigned Int8		0 for light not present and 1 for light present	
28	Compass	Signed Int16	Azimuth degr.	Azimuth reading.	
29	HA Humidity	Unsigned Int16 /	°C/	Data_H is Temperature; Data_L is Humidity.	
		Unsigned Int16	%RH	To convert temperature ticks to degrees	
				Celsius:	
				TmpC = (T_Ticks÷100) – 40;	
				To convert humidity ticks to RH:	
				(Need TmpC and these constants:	
				C1 = -4.0	
				T1 = 0.01	
				C2 = 0.0405	
				T2 = 0.00008	
				C3 = -0.0000028)	
				RH_Linear=C3*H_Ticks ² +C2*H_Ticks+C1	
				RH_True=	
				(TmpC-25)*(T1+T2*H_Ticks)+RH_Linear	
				If the RH_True is > 100, the %RH is just 100%.	
				If RH_True < 0.1, the %RH is 0.1.	

TYPE	NAME	DATA TYPE	UNIT	DATA	
30	Grains Per Pound	Signed Int16 /	°C/	Divide data by 100 to get Temperature.	
		Signed Int16	%RH	Divide data by 100 to get Relative Humidity.	
31	120VAC Voltage Detect	Unsigned Int8		0 for no voltage detected and 1 for voltage	
				detected	
32	500 VAC/VDC Analog	Unsigned Int16	Volts	Divide data by 10 to get one decimal point	
	Voltage			resolution. Example: 1134/10=113.4V	
33	Vehicle Presence	Signed Int16	Tics	Raw data from Compass IC	
34	Gas Sensor	TBD	TBD	TBD	
35	High Temperature	Signed Int16	° Celsius	Divide data by 10 to get one decimal point	
				resolution. Example: 2550/10 = 255.0°C	
36	Liquid Level 24"	Unsigned Int16	Inches	Divide data by 100 to get two decimal point	
				resolution.	
39	Vehicle Detection	Unsigned Int16/	Count		
		Unsigned Int16/	Tics	Raw Data from IC.	
		Unsigned Int16/	Detection Cnt		
40	Vehicle Speed	Unsigned Int16/	Direction?		
		Unsigned Int16/	milliseconds	Time calculated between Vehicle Detection	
				and Speed sensor and used in the UI with the	
				distance to calculate speed.	
41	Pressure	Signed Int16	PSI	Divide data by 10 to get one decimal point	
				resolution. Example: 1451 / 10 = 145.1 PSI	
42	Activity Counter	Unsigned Int16/	Minutes	The current amount of time of calculated	
		Unsigned Int16/		activity followed by the previous reading.	
43	HA Humidity	Signed Int16/	°C	Divide data by 100 to get Temperature.	
		Signed Int16/	%RH	Divide data by 100 to get Relative Humidity.	

TYPE	NAME	DATA TYPE	UNIT	DATA
45	Smart Repeater			
46	Low Temperature	Signed Int16	°C	Divide data by 10 to get one decimal point resolution. Example: -574/10= -57.4°C
47	Multi Input Pulse Counter	Unsigned Int16/ Unsigned Int16/ Unsigned Int16/ Unsigned Int16	Pulses Pulses Pulses Pulses	The cumulative count of pulse events detected since the last heartbeat.
48	Single Input Pulse Counter	Unsigned Int16/ Unsigned Int16	Pulses	Current event count, followed by previous data.
51	Seat Sensor	Unsigned Int8/ Unsigned Int32	KOhms	0=no event, 1=event followed by the resistance measured (divide by 100)
52	Airflow Sensor	Unsigned Int8/ Unsigned Int32	KOhms	0=no event, 1=event followed by the resistance measured (divide by 100)