Geometría y Álgebra Lineal 2

Mauro Polenta Mora

CLASE 1 - 12/02/2025

Matriz asociada a una transformación lineal

Sean V,W dos espacios vectoriales con bases $\mathcal{A}=\{v_1,v_2,\ldots,v_n\}\to V$ y $\mathcal{B}=\{w_1,w_2,\ldots,w_m\}\to W$. Sea una transformación lineal $T:V\to W$; construimos la matriz asociada a la transformación lineal con las bases \mathcal{A} y \mathcal{B} de la siguiente forma:

$$_{\mathcal{B}}(T)_{\mathcal{A}} = \begin{pmatrix} coord_{\mathcal{B}}(T(v_1)) & coord_{\mathcal{B}}(T(v_2)) & \cdots & coord_{\mathcal{B}}(T(v_n)) \end{pmatrix}$$

Observación: (1) Veamos que en la notación, va primero la base de llegada, luego la base de partida (2) Recordar que $coord_{\mathcal{B}}(v)$ significa reescribir el vector v en función de la base \mathcal{B} (3) Las coordenadas van "colgadas" verticalmente (4) La matriz $_{\mathcal{B}}(T)_{\mathcal{A}} \in \mathcal{M}_{m \times n}$

Aplicaciones (1) Una vez dada la matriz asociada a una TL, podemos hallar la misma. Esto se puede ver en algún ejercicio del práctico

Propiedades

Sean V, W dos espacios vectoriales con bases \mathcal{A} y \mathcal{B} . Sean dos transformaciones lineales $T, S: V \to W$

- $1. \ \operatorname{coord}_{\mathcal{B}}(T(v)) = {}_{\mathcal{B}}(T)_{\mathcal{A}} \cdot \operatorname{coord}_{A}(v)$
- 2. $_{\mathcal{B}}(T+S)_{\mathcal{A}} = _{\mathcal{B}}(T)_{\mathcal{A}} + _{\mathcal{B}}(S)_{\mathcal{A}}$
- 3. Dado $\alpha \in \mathbb{K}\colon \, _{\mathcal{B}}(\alpha T)_{\mathcal{A}} = \alpha \cdot _{\mathcal{B}}(T)_{\mathcal{A}}$

Sean U, V, W tres espacios vectoriales con bases \mathcal{A}, \mathcal{B} y \mathcal{C} . Sean dos transformaciones lineales $S: U \to V$ y $T: V \to W$. Dada la transformación lineal $T \circ S$:

4.
$$_{\mathcal{C}}(T \circ S)_{\mathcal{A}} = _{\mathcal{C}}(T)_{\mathcal{B}} \times _{\mathcal{B}}(S)_{\mathcal{A}}$$

Cambio de base

Sean dos espacios vectoriales V, W, cada una con dos respectivas bases: $A, A' \to V$ y $B, B' \to W$. También tenemos una transformación lineal $T: V \to W$.

Nos preguntamos que relación existe entre $_{\mathcal{B}}(T)_{\mathcal{A}}$ y $_{\mathcal{B}'}(T)_{\mathcal{A}'}$.

Consideramos las transformaciones identidad en V y W, es decir: - $\mathbb{I}_v:V\to V$ tal que $\mathbb{I}_v(v)=v \quad \forall v\in V$ - $\mathbb{I}_w:W\to W$ tal que $\mathbb{I}_w(v)=v \quad \forall v\in W$

Podemos observar que se cumple lo siguiente de forma bastante trivial:

$$\mathbb{I}_w \circ T \circ \mathbb{I}_v = T$$

De esto podemos concluir (usando la propiedad 4):

$$_{\mathcal{B}'}(T)_{\mathcal{A}'} = _{\mathcal{B}'}(\mathbb{I}_w)_{\mathcal{B}} \cdot _{\mathcal{B}}(T)_{\mathcal{A}} \cdot _{\mathcal{A}}(\mathbb{I}_v)_{\mathcal{A}'}$$

Llamamos a $_{\mathcal{A}}(\mathbb{I}_v)_{\mathcal{A}'}$ y $_{\mathcal{B}'}(\mathbb{I}_w)_{\mathcal{B}}$ matrices de cambio de base

Observación

Dado un espacio vectorial V con bases A, A' y la transformación identidad $\mathbb{I}_v : V \to V$:

$$\begin{split} coord_{\mathcal{A}'}(\mathbb{I}(v)) &= coord_{\mathcal{A}'}(v) \\ &= {}_{\mathcal{A}'}(\mathbb{I})_{\mathcal{A}} \cdot coord_{\mathcal{A}}(v) \end{split}$$

Esto por la propiedad 1 definida anteriormente. Con esto podemos concluir que:

$$coord_{\mathcal{A}'}(v) = {}_{\mathcal{A}'}(\mathbb{I})_{\mathcal{A}} \cdot coord_{\mathcal{A}}(v)$$

Esto explica porque llamamos a las matrices, como matrices de cambio de base.

Observación

Partamos viendo que $(\mathbb{I} \circ \mathbb{I}) = \mathbb{I}$. Apliquemos la propiedad 4 a este hecho:

$$_{\mathcal{A}}(\mathbb{I})_{\mathcal{A}'}\cdot _{\mathcal{A}'}(\mathbb{I})_{\mathcal{A}}=_{\mathcal{A}}(\mathbb{I})_{\mathcal{A}}=(\mathbb{I})$$

Donde (\mathbb{I}) es la matriz identidad. Por la definición de matriz inversa, podemos concluir que:

$$_{\mathcal{A}}(\mathbb{I})_{\mathcal{A}'} = \left[\,_{\mathcal{A}'}(\mathbb{I})_{\mathcal{A}} \right]^{-1}$$

Matrices semejantes

Definición

Dadas dos matrices $A, B \in \mathcal{M}_{n \times n}$ decimos que son semejantes sii:

$$\exists P \in \mathcal{M}_{n \times n}$$
 invertible tal que $A = P \cdot B \cdot P^{-1}$

Observación

En conjunto a lo visto con el cambio de base, si nos paramos en las hipótesis del tema (es decir, nos damos un espacio vectorial, dos bases, una transformación lineal); ahora podemos decir que $_{\mathcal{A}'}(T)_{\mathcal{A}'}$ y $_{\mathcal{A}}(T)_{\mathcal{A}}$ son semejantes, donde P son es una matriz de cambio de base

Definición (operador lineal)

Una transformación lineal $T:V\to V$ se llama operador lineal cuando el espacio de llegada es igual al espacio de partida