TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7376P

AUDIO POWER AMPLIFIER

The TA7376P is dual audio power amplifier for portable products.

FEATURES

• Low operating supply voltage : $V_{CC} = 1.8 \sim 6V$ (Ta = 25°C)

• Low quiescent current : I_{CCO} = 5.3mA

 $(V_{CC} = 4.5V)$

● Including ripple filter circuit : RR = -42dB

 $(C_{RIP} = 10 \mu F, f_r = 100 Hz)$

• Voltage gain : G_V = 39.5dB (Typ.)

• Very few external parts and small package. (SIP-9PIN)

Weight: 0.92g (Typ.)

OUTPUT POWER TABLE (THD = 10%, f = 1kHz, Stereo, Typ. value)

V _{CC} LOAD	$R_L = 32\Omega$	$R_L = 16\Omega$	$R_L = 8\Omega$	$R_L = 4\Omega$
3V	21mW	38mW	65mW	100mW
4.5V	56mW	100mW	180mW	300mW
6V	120mW	230mW	400mW	_

BLOCK DIAGRAM

1 2001-06-25

5. Phase-compensation

The purpose of condenser C_1 is to prevent oscillation. These condenser need to be small temperature coefficient and excellent frequency characteristic. So ceramic condenser is unsuitable.

Condenser C_2 is rather large value than $10\mu\mathrm{F}$ and GND line is better to short and wide lay-out so that the some common impedance are decreased.

Fig.4

MAXIMUM RATINGS (Ta = 25° C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	8	V
Power Dissipation	P _D (Note)	950	mW
Operation Temperature	T _{opr}	- 25∼75	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(Note) Derated above Ta = 25°C in the proportion of 7.6mW/°C.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{CC} = 4.5V, f = 1kHz, R_g = 600 Ω , R_L = 4 Ω , Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
			$V_{in} = 0$, $V_{CC} = 3V$		4.9	8.0	
Quiescent Current	lccQ	_	V _{in} = 0	1	5.3	10.0	mA
			$V_{in} = 0$, $V_{CC} = 6V$		5.7	14.0	
			$V_{CC} = 3V$, $R_L = 4\Omega$, $THD = 10\%$	84 100 —			
			$V_{CC} = 3V$, $R_L = 32\Omega$, $THD = 10\%$	l	21	_	
Output Power	Pout	_	$V_{CC} = 4.5V$, $R_{L} = 4\Omega$, THD = 10%	250	300	_	mW
			$V_{CC} = 4.5V$, $R_{L} = 8\Omega$, $THD = 10\%$	_	180	_	
			$V_{CC} = 6V$, $R_L = 8\Omega$, $THD = 10\%$	_	400	_	
Total Harmonic	THD		D 100m\W		0.11	1.0	%
Distortion	וחט		P _{out} = 100mW	_	0.11	1.0	70
Voltage Gain	GV	_	$V_{out} = 0.775V_{rms}$	37.5	39.5	41.5	dB
Output Noise Voltage	V _{no}	_	$R_g = 10k\Omega$, BPF = 20Hz~20kHz		0.21	0.7	mV_{rms}
Ripple Rejection Ratio	RR		$C_{RIP} = 10 \mu F$, $C_{NF} = 22 \mu F$		- 42	- 30	- dB
			$f_r = 100Hz, V_r = 0.38V_{rms}$				
			$C_{RIP} = OPEN, C_{NF} = 100 \mu F$		- 34	_	
			$f_r = 100Hz, V_r = 0.38V_{rms}$	_			
Cross Talk	CT		$V_{out} = 0.775V_{rms}$	_	- 60	- 40	dB
Input Resistance	R _{IN}	_		_	30	_	kΩ

QUIESCENT TERMINAL DC VOLTAGE (Vcc = 4.5V, Ta = 25°C, Typ. value)

QUIESCENT TERMINAL DC VOLTAGE ($V_{CC} = 4.5V$, $Ta = 25$ °C, Typ. value)								(UNIT : V)	
TERMINAL	1	2	3	4	5	6	7	8	9
VOLTAGE (V)	0.003	0.59	1.98	4.5	0	1.98	1.28	0.59	0.003

3 2001-06-25

TEST CIRCUIT

(Note) CRIP is shown in item 3 and 4 of APPLICATION NOTE.

