# Analysis By Synthesis

Beyond Detection and Recognition

### Image Analysis



Classification: is-a-face



Location: find the face



Segmentation: pixel-level location



Pose: find the face and orientation



Instance segmentation: multiple face



3D pose: out-of-the-plane rotation

- The curse of easy task: generalization may suffer
  - Not sure if NN has really mastered the task or just overfitted some data

### Image Analysis: From Image To Attributes



#### Problem

- Labor-intensive labeling
  - E.g.: often ignore3D pose as too hard
- Require Balanced
  Training Data Coverage

#### Data Augmentation By Synthesizing



- Need be Realistic (labor-intensive CG)
  - precise model
  - mostly limited to 2D

#### **Ladder Network**

- Model Viewpoint
- Implicit Intermediate representation, not as useful



Figure 2: A conceptual illustration of the Ladder network when L=2. The feedforward path  $(\mathbf{x} \to \mathbf{z}^{(1)} \to \mathbf{z}^{(2)} \to \mathbf{y})$  shares the mappings  $f^{(l)}$  with the corrupted feedforward path, or encoder  $(\mathbf{x} \to \tilde{\mathbf{z}}^{(1)} \to \tilde{\mathbf{z}}^{(2)} \to \tilde{\mathbf{y}})$ . The decoder  $(\tilde{\mathbf{z}}^{(l)} \to \hat{\mathbf{z}}^{(l)} \to \hat{\mathbf{x}})$  consists of the denoising functions  $g^{(l)}$  and has cost functions  $C_d^{(l)}$  on each layer trying to minimize the difference between  $\hat{\mathbf{z}}^{(l)}$  and  $\mathbf{z}^{(l)}$ . The output  $\tilde{\mathbf{y}}$  of the encoder can also be trained to match available labels t(n).

#### **Analysis By Synthesis**



- Attention + Auto-Encoder +
  Inference-time Optimization
- Pro
  - Can use unlabeled real data (auto-encoder)
  - Optimize reconstruction error at inference-time
  - Suffices to reconstruct part of image (attention)
- Con
  - More computation during Inference stage

### **Analysis By Synthesis**

- Model viewpoint
  - Semi-supervised learning that can exploit unlabeled data
- Reconstruction viewpoint
  - Explain away of parts of images
  - Training time reconstruction allows auto "labeling" of data
    - can be costly
  - Test time reconstruction allows providing more reliable confidence metrics than NN classification score
- Bayesian viewpoint
  - o B is a geometric shape
  - A is a character
  - Natural incorporation of
    - detection confidence P(B)
    - prior P(A), e.g. language model
    - Synthesis model P(B|A)



#### From Attributes to Image

- Synthesizing NN
  - Decoder part of auto-encoder
  - Relies on NN's ability, may not be as sharp for characters
- Differentiable Renderer
  - https://github.com/mattloper/opendr/wiki

### Possibility: Perfect Analysis of Document Image

- A document image is made up from
  - simple lines
  - clean background
  - non-handwriting characters
- We may synthesize the document image
  - As a consequence, can use whole image reconstruction error as metrics
  - Leading to perfect analysis

Literature: Analysis by Synthesis: 3D Object Recognition by Object Reconstruction (CVPR '14)



Figure 4. We search through a large collection of templates (with shared parts) by first caching part responses, and then looking up response values to score each template.

## Literature: Enriching Object Detection with 2D-3D Registration and Continuous Viewpoint Estimation (CVPR '15)



Figure 1: Using a database of 3D CAD models, we generate NZ-WHO templates which can be used to either detect objects directly or enrich the output of an existing detector with high-quality, continuous pose and 3D CAD model exemplar.



Figure 8: Effect of fine tuning. (left) original image, (middle) initial detection, (right) continuous fine tuning using Single-Component Metropolis Hastings

# Literature: Data-Driven 3D Voxel Patterns for Object Category Recognition (CVPR '15)



Literature: Efficient analysis-by-synthesis in vision: A computational framework, behavioral tests, and comparison with neural representations (COGSCI '15)



#### Literature: Scene Text Segmentation via Inverse Rendering (ICDAR'13)













## Literature: See the Difference: Direct Pre-Image Reconstruction and Pose Estimation by Differentiating HOG



Figure 1: We exploit the piecewise differentiability of the popular HOG descriptor for end-to-end optimization. The figure shows applications on the pre-image reconstruction given HOG features as well as the pose estimation task based on the same idea.