Before we can write down the set of states S or the transition mapping t, let us draw a **transition diagram** which is the Turing machine equivalent of drawing a finite state acceptor.

- i³S_{rei} represents step 1 of the algorithm.
- i⇒S₁ and S₄⇒S₁ represent step 2 of the algorithm.
 (i⇒S₁ at the first pass through the string, S₄⇒S₁ at subsequent passes)
- S₁→S₁, S₁→S₂ and S₂→S₂ represent the first part of step 3.
- S₂⁻⁻S_{rei} represents the second part of step 3.
- S₁ S₃ represents step 4.
- S₃³S₃ and S₃³S₄ represent the first sentence in step 5.
- $S_4 S_4$ and $S_4 S_5$, $S_5 S_5$ represent the second sentence in step 5.
- S₅⁻²S_{rei} represents the first half of the third sentence in step 5.
- $S_5 = S_{acc}$ represents the second half of the third sentence in step 5.
- S₄→S₁ represents the step 6.

We have accounted for all pieces of our algorithm, therefore we have written down a Turing machine when $A = \{0, 1\}$, $\tilde{A} = \{0, 1, X, Y, _\}$

$$S = \{i, S_{acc}, S_{rej}, S_1, S_2, S_3, S_4, S_5\}$$

- i = Initial State
- S_{acc} ∈ S = Accept State
- S_{rei} ∈ S = Reject State

We just have to write the **transition mapping** $t : S \times \tilde{A} \rightarrow S \times \tilde{A} \times \{L, R\}$

- 1. $t(i, 0) = (S_1, X, R)$ If in initial state and read 0, write X & move right to state 1
- 2. $t(i, 1) = (S_{rei}, 1, L)$
- 3. $t(i, _) = (S_{rei}, _, L)$

These are the only 3 transitions possible out of state i, but $t: S \times \tilde{A} \longrightarrow S \times \tilde{A} \times \{L, R\}$ so technically, to write down the full transition mapping we must assign triplets in $S \times \tilde{A} \times \{L, R\}$ even to inputs from \tilde{A} that cannot occur in i.

4.
$$t(i, X) = (S_{rej}, X, L)$$

5.
$$t(i, Y) = (S_{rei}, Y, L)$$

We assign S_{rei} some element of \tilde{A} and one of the allowable tapehead distinctions.

Technically, the Turing machine halts when it enters either an accepting or rejecting state, so in practice we can define

$$\check{S} = \{i, S_1, S_2, S_3, S_4, S_5\} = S \setminus \{S_{acc}, S_{rei}\}$$
 (Set of resulting states)

and t : $S \times \tilde{A} \rightarrow S \times \tilde{A} \times \{L, R\}$, so we avoid writing down the transitions from S_{acc} and S_{rej} . We only have states S_1 , S_2 , S_3 , S_4 and S_5 left.

6.
$$t(S_1, 0) = (S_1, 0, R)$$

7.
$$t(S_1, Y) = (S_2, Y, R)$$
 On the diagram

8.
$$t(S_1, Y) = (S_3, Y, L)$$

9.
$$t(S_1, X) = (S_{rei}, X, R)$$
 Not on the diagram - cannot occur, so added for completeness

10.
$$t(S_1, _) = (S_{rej}, _, R)$$

11.
$$t(S_2, Y) = (S_2, Y, R)$$

12.
$$t(S_2, 1) = (S_3, Y, L)$$
 On the diagram - can occur

13.
$$t(S_2, 0) = (S_{rej}, 0, R)$$

14.
$$t(S_2, _) = (S_{rej}, _, R)$$

15.
$$t(S_2, X) = (S_{rej}, X, R)$$
 Not on the diagram - cannot occur, so added for completeness

16.
$$t(S_3, Y) = (S_3, Y, L)$$

17.
$$t(S_3, 0) = (S_3, 0, L)$$
 On the diagram - can occur

18.
$$t(S_3, X) = (S_4, X, R)$$

19.
$$t(S_3, _) = (S_{rei}, _, R)$$
 Not on the diagram - cannot occur, so added for completeness

20.
$$t(S_3, 1) = (S_{rej}, 1, R)$$

21.
$$t(S_4, X) = (S_4, X, R)$$

22.
$$t(S_4, Y) = (S_5, Y, R)$$
 On the diagram - can occur

23.
$$t(S_4, 0) = (S_1, X, R)$$

24. $t(S_4, 1) = (S_{rej}, 1, R)$ Not on the diagram - cannot occur, so added for completeness 25. $t(S_4, ...) = (S_{rej}, ..., R)$

30. $t(S_5, X) = (S_{rei}, X, L)$ Not on the diagram - cannot occur, so added for completeness

26. $t(S_5, Y) = (S_5, Y, R)$ 27. $t(S_5, _) = (S_{acc}, _, L)$ On the diagram - can occur

28. $t(S_5, 0) = (S_{rej}, 0, L)$ 29. $t(S_5, 1) = (S_{rei}, 1, L)$

Moral of the Story: The transition mapping is a very inefficient way of specifying a Turing machine as a lot of transitions cannot occur unlike what we saw for a finite state acceptor, where the input alphabet was exactly the alphabet of the language.

Here $A \subseteq \tilde{A}$. Therefore we will specify a Turing machine via either an algorithm or the transition diagram **only**.