

Winning Space Race with Data Science

Hua Lung Jao December 31, 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

Data Collection (API & Webscrapping)

Data Wrangling

Data Analysis (SQL, Visualization, Interactive)

Prediction with Machine Learning

Summary of all results

- Exploratory Data
- Screenshots of Interactive Analytics
- Predictive Analytics Finding

Introduction

- Project background and context
 - Space X's Falcon 9 rocket costs 62 million dollars with each launch, while other providers cost upward of 165 million dollars. Much of this savings is a result of Space X reusing the first stage.
 - If an alternate company can predict whether the first stage will land successfully, we can determine the cost of a launch, and therefore bid against space X for a rocket launch.
- Problems you want to find answers
 - Factors which determine successful landing of the Falcon 9 rockets

Methodology

Executive Summary

- Data collection methodology:
 - API Provided by SpaceX
 - Webscrapping (wiki)
- Perform data wrangling
 - Data cleaned up and re-labeled landing outcome with success/failure category
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Evaluated different models (logistic regression, support vector machine, decision tree, k-nearest neighbor) using training and compared accuarcy

Data Collection

- Request: SpaceX API
- https://api.spacexdata.com/v4/launches/past

Data Collection – SpaceX API

- Data Flow:
 - Get Response (REST API)
 - Format Raw Data in JSON
 - Normalize Data
 - Output to CSV
 - Ready for Wrangling

• Link To Source Code

Data Collection - Scraping

- Data Flow:
 - Beautiful Soup API
 - Format HTML data to Data Frame
- Link to Source Code

Data Wrangling

- Analyzed for Missing Values and Data Types
- Calculated # of Launches per Site, and per destination (orbit)
- Calculated # of occurrence of mission outcome of the orbits
- Created landing outcome label from Outcome column
- <u>Liink To Source Code</u>

EDA with Data Visualization

- Charts Used:
 - Cat Plot: Visualizing Correlation between 2 variables
 - Scatter Plot: Visualizing Relationship between 2 variables
 - Bar Chart: Compare rate of success within one feature
 - Line Chart: Looking at historic trend
- <u>edwardjao-Coursera DSC10/module 2 jupyter-labs-eda-dataviz.ipynb at main · edwardjao/edwardjao-Coursera DSC10 (github.com)</u>

EDA with SQL

- Created Table
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the names of the booster_versions which have carried the maximum payload mass.
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.
- <u>edwardjao-Coursera_DSC10/module 2 jupyter-labs-eda-sql-coursera_sqllite.ipynb at main · edwardjao/edwardjao-Coursera_DSC10 (github.com)</u>

Build an Interactive Map with Folium

- Circle Marked all launch sites on a map
- Marker Marked the success/failed launches for each site on the map
- Distance Line Marked the distances between a launch site to its proximity
- <u>edwardjao-Coursera DSC10/module 3 lab jupyter launch site location.jupyterlite.ipynb at main · edwardjao/edwardjao-Coursera DSC10 (github.com)</u>

Build a Dashboard with Plotly Dash

- Added Launch Site Drop-down Input Component
- Added callback function to render success-pie-chart based on selected site dropdown
- Added Range Slider to Select Payload
- Added callback function to render the success-payload-scatter-chart scatter plot
- <u>edwardjao-Coursera DSC10/module 3 lab theia plotly dash.md.py at main · edwardjao/edwardjao-Coursera DSC10 (github.com)</u>

Predictive Analysis (Classification)

- Performed exploratory Data Analysis and determine Training Labels
 - Created a column for the class
 - Standardized the data
 - Split into training data and test data
- Found best Hyperparameter for SVM, Classification Trees and Logistic Regression
- Found the method performs best using test data
- <u>edwardjao-Coursera DSC10/module 4 SpaceX Machine Learning Prediction Part 5.jupyterlite.ipynb at main edwardjao/edwardjao-Coursera DSC10 (github.com)</u>

Results

- Exploratory data analysis
 - SpaceX had increased success rate of landing from 2015 to 2020
 - Falcon 9 rockets is the most reliable booster version
 - Average payload is around 3,000 kg
- Interactive Screenshots on the right
- Predictive analysis
 - Decision Tree is the best predictor, with almost 90% accuracy
 - Best parameters are determined for each predictive model

Flight Number vs. Launch Site

• SLC 40 is the most used launch site, with increased success over experience.

Payload vs. Launch Site

 Most payloads are under 6000 kg

Success Rate vs. Orbit Type

 Certain Orbits has perfect success rate

Flight Number vs. Orbit Type

 There's recent interest in VLEO orbit

Payload vs. Orbit Type

 GTO contains the bulk of normal payloads

Launch Success Yearly Trend

• Success rate has increased over the years, and may be plateau'd

All Launch Site Names

• There are 4 unique launch sites

Launch Site Names Begin with 'CCA'

%sql select * from SPACEXTBL where Launch Site like 'CCA%' limit 5 * sqlite:///my_data1.db Done. Time Date Booster_Version Launch_Site Payload PAYLOAD_MASS_KG_ Orbit Customer Mission_Outcome Landing_Outcome (UTC) Dragon Spacecraft 2010-CCAFS LC-18:45:00 F9 v1.0 B0003 0 LEO SpaceX Failure (parachute) Success 06-04 Qualification Unit Dragon demo flight C1, two NASA CCAFS LC-**LEO** 15:43:00 F9 v1.0 B0004 CubeSats. 0 Failure (parachute) (COTS) Success 12-08 (ISS) barrel of NRO Brouere cheese Dragon CCAFS LC-2012-LEO NASA 7:44:00 F9 v1.0 B0005 demo flight 525 Success No attempt 05-22 40 (ISS) (COTS) C2 CCAFS LC-SpaceX LEO NASA 2012-0:35:00 500 F9 v1.0 B0006 Success No attempt 10-08 40 CRS-1 (ISS) (CRS) CCAFS LC-SpaceX LEO NASA 15:10:00 F9 v1.0 B0007 Success No attempt 03-01 40 CRS-2 (ISS) (CRS)

Total Payload Mass

Display the total payload mass carried by boosters launched by NASA (CRS)

```
%sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL

* sqlite://my_data1.db
one.
sum(PAYLOAD_MASS__KG_)
619967
```

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

*sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where Booster_Version like 'F9 v1.1%'

* sqlite://my_data1.db
one.

avg(PAYLOAD_MASS__KG_)

2534.66666666666665
```

First Successful Ground Landing Date

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

*sql select min(Date) from SPACEXTBL where Landing_Outcome = 'Success (ground pad)'

* sqlite:///my_data1.db

Done.

min(Date)

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

Task 6 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 %sql select distinct Booster_Version from SPACEXTBL where Landing_Outcome = 'Success (drone ship)' and PAYLOAD_MASS__I sqlite:///my_data1.db Done. Booster_Version F9 FT B1022 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

SpaceX considers most missions "successful"

Boosters Carried Maximum Payload

 Multiple booster versions had carried max payload

2015 Launch Records

Two notable landing failures in 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03 descending order. 26]: %sql select Landing_Outcome, count(Landing_Outcome) from SPACEXTBL where Date between '2010-06-04' and '2017-03-20' gra * sqlite:///my data1.db Done. 26]: Landing_Outcome count(Landing_Outcome) No attempt 10 Success (drone ship) Failure (drone ship) Success (ground pad) Controlled (ocean) Uncontrolled (ocean) Failure (parachute) Precluded (drone ship) Deference Links Would you like to rec

Launch Site Locations

of Launches Per Location

Launch Site Distance From Shore

KSC LC-39A Has The Most Success

Deep Dive Into KSC LC-39A Success Rate

Lower Weight = More Success

Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

• Find which model has the highest classification accuracy

Confusion Matrix – Decision Tree

 Decision tree had the least falsepositive prediction

Conclusions

- Certain Launch Sites has better landing rate
- Certain Orbits leads to better success
- Payload contributes to success rate
- Decision Tree can better predict success

Appendix

Python Data Science Handbook | Python Data Science Handbook (jakevdp.github.io)

