

ОПРОЕКТЕ

Проект по распознаванию речи и идентификации спикеров на основе аудиозаписей.

СТРУКТУРА ДАННЫХ

В качестве данных используются аудиофайлы разных спикеров, собранные в отдельные папки.

Данные делятся на обучающую и тестовую выборки. Для повышения устойчивости модели к шуму, в тренировочную выборку добавляются фрагменты фоновых шумов.

ПРИЗНАКИ

Для каждого аудиофайла извлекается набор признаков: MFCC, дельта-признаки, хрома, спектральный контраст, zero-crossing rate и RMS. Эти признаки позволяют описать структуру и особенности голоса. Такой подход помогает выделить индивидуальные характеристики каждого спикера.

НОРМАЛИЗАЦИЯ

После извлечения признаков они нормализуются — это важно для корректной работы алгоритмов. Затем применяется метод главных компонент (PCA), чтобы уменьшить размерность данных до 30 признаков. Это ускоряет обучение и помогает избежать переобучения.

КЛАССИФИКАЦИЯ

Для распознавания спикера используется алгоритм k ближайших соседей (kNN). Для каждого тестового примера находятся k наиболее похожих примеров из обучающей выборки. Итоговый класс определяется по большинству среди соседей.

В проекте реализована функция для тестирования модели на новых аудиофайлах. Пользователь может загрузить свой файл и получить результат классификации. Это удобно для проверки работы системы на реальных данных.

АЛЬТЕРНАТИВНЫЕ ПОДХОДЫ

В проекте реализованы два подхода к идентификации спикеров:

- 1. Классический: извлечение признаков (MFCC), понижение размерности с помощью PCA или t-SNE, классификация с помощью kNN.
- 2. Современный: извлечение speaker embeddings с помощью нейросетевой модели (ECAPA-TDNN из SpeechBrain), далее классификация kNN.

Использование t-SNE позволяет визуализировать данные в 2D и выявлять кластеры спикеров.

Точность модели: 0	.9540			
	precision	recall	f1-score	support
Benjamin_Netanyau	0.91	0.93	0.92	600
Jens_Stoltenberg	0.96	0.91	0.93	600
Julia_Gillard	0.95	0.96	0.96	601
Magaret_Tarcher	0.97	0.97	0.97	600
Nelson_Mandela	0.98	1.00	0.99	600
accuracy			0.95	3001
macro avg	0.95	0.95	0.95	3001
weighted avg	0.95	0.95	0.95	3001

БЕЗ ЭМБЕНДИНГ

СЭМБЕНДИНГ

Точность модели на тестовой выборке: 0.8574

🥄 Классификационный отчет:

	precision	recall	f1-score	support
Benjamin_Netanyau	0.69	0.88	0.77	300
Jens_Stoltenberg	0.84	0.82	0.83	300
Julia_Gillard	0.98	0.90	0.94	301
Magaret_Tarcher	0.96	0.89	0.92	300
Nelson_Mandela	0.88	0.81	0.84	300
accuracy			0.86	1501
macro avg	0.87	0.86	0.86	1501
weighted avg	0.87	0.86	0.86	1501

ВЫВОДЫ

Разработанная система успешно решает задачу идентификации спикеров по коротким аудиозаписям. В дальнейшем можно улучшить качество за счёт более сложных моделей и увеличения объёма данных. Проект легко расширяем и может быть адаптирован под другие задачи.