2015创新实践中心数模组招新

教学楼C区103

大连理工大学软件学院创新实践中心 SSDUT CIPPUS

数模是什么?

数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检 验,来建立**数学模型**的全过程。当需要从**定量**的角度分析和研究一个实 际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、 分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学 模型。

可以说,即使是完成数学试卷上一道小小的应用题,也是这样建立数学 模型并求解的讨程。

举个简单的例子

来解决一个简单的应用题

一个细菌培养过程在初始时刻的细菌数量为 P_0 ,在t=1h时,测得细菌 数量为 $1.5P_0$ 。如果在t时刻的增长与此刻细菌数量P(t)成正比,求细菌 数量增加至原来的3倍所需要的时间。

数模能做什么?

在获得数据等信息后,通过数学建模,解决一些有趣的实际问题

- 根据用户的浏览购买记录智能推荐商品
- 预测每个用户对每部电影的评分
- 根据抽样成分测评葡萄酒
- 计算人造卫星的发射速度和着陆控制策略
- 通过社交网络互动信息找到潜在的犯罪分子
- 拼接破碎的纸片
- 基于交通数据找到最优建路方案避免拥堵
- 通过影长比例计算当时的日地距离
- 预测世界杯冠军得主
- 帮助找到失事飞机的残骸
- . . .

做数模需要学习什么

- 模型/算法思想
 - 线性规划、整数规划、动态规划、组合优化…
 - 差值、拟合、回归...
 - 聚类分析、模糊综合评价、主成分分析法…
 - 机器学习、人工神经网络、支持向量机…
 - 微分方程、差分方程...
 - 图与网络: 图论、最短路径算法、最小生成树...
 - 遗传算法、模拟退火、粒子群...
 - **a** . .
- 编程/作图
 - C/C++ 基础算法实现
 - Matlab/Wolfram Mathematica 数值计算/作图基础
 - R/Python···
- 写作/排版
 - 科技写作规范和技巧
 - LATEX/TEX排版

报名方式

这里没人?

如果学长学姐不在C103,他们可能是在宣讲会现场,或者忙其他事情

那怎么报名?

- 自取桌上的创新中心宣传册
- 撕下最后一页报名表, *然后宣传册的其他部分可以带回去
- 仔细填写
- 写完放在桌上就好了
- 坐等短信面试通知
- *如果来不及填写也可以带回去填完再抽空把报名表页交到C103也可以在数模组2015群里和我们谈笑风生!

微信报名

微信关注cippus_ssdut, 回复"姓名+学号+数模组+生日"报名

C103提供免费高速Wi-Fi

WLAN C103 密码 cippusc103

欢迎新生加入2015数模新生群

群号: 178722688

数模组2015

扫一扫二维码图案,加入该群。

常见问题解答

怎样加入数模组?

报名方式<mark>点这里</mark>,成功报名后通过后续的面试/笔试的同学可以正式加入数模组大家庭。

面试/笔试难吗?

我们不会刻意为难任何一位有志加入数模组的同学!但是我们当然希望大家能够不断提升自我,并且希望确保成员们保持对数模的热情,所以面试会问一些较为基础的编程知识和数学知识,以及一系列职业规划问题。如果对这些基础知识有所准备(也就是我们通常所说的预习),对自己的人生规划有所思考,回答这些问题一定是轻而易举的。

需要预习哪些内容?

C语言和工科数学分析,面试可能涉及以下问题:

- C语言: 了解变量类型, 3种基本程序结构的理解, 基本的程序逻辑
- 工数: 极限的定义, 重要极限的求法等

预习这种事在保证质量的情况下,当然是多多益善的,有能力的同学大可突破这个范围要求,多学习对自身的帮助很大,我们也很喜欢学习态度认真的同学,即便不加入数模组。

还没有加入数模组,能来C103参观/借书/找学长谈人生吗?

没有问题,随时欢迎。

学长学姐十分乐意为大家服务,能够向同学们介绍数模组我们也很高兴,有问题欢迎咨询。借书请报出具体书目,如果是教材可以直接找学长学姐们借,如果是书架上的其他文献,请向在场的学长学姐咨询相关事宜并留下纸质的借阅记录。如果学长学姐不在场,除了按报名方法的指导填写报名表以外,请不要随意动他们桌上的任何东西。

我高中的时候数学就很差,也能加入数模组?

做这个幻灯片的学姐在高中时代的数学一直在班级里吊车尾,常年不及 格。一见数学题就害怕。高中数学和数学有很大的差别。高中时期数学 差也可能和自己的心理状态、学习方法、教师水平甚至教育体制有很大 关系,不妨在大学时期更加深入了解一下自己对数学的真正感情是什 么。着手学习数模是一个很好的机会,数模也可以很大的改变自己的数 学观,给自己一个机会,或许做多了你会发现对数学就并没有那么讨厌 和害怕。

我是调剂来的,对编程没兴趣想转专业,也能加入数模组?

当然可以。举个例子、数模组有一位09级的学姐、大一结束后转到了本 部的数学专业、最后申请到了CMU的Master、但她一直是我们的一员, 甚至曾从本部专程过来给新生讲例会。重要的是我们彼此对数模组的认 同而不是身在何处。另外,一开始想转专业的同学,很多在一年的学习 中对编程产生了兴趣,所以没有必要一开始就下非转专业不可的结论。

与Oureda以及学生会、自强等组织社如何取舍?

数模组并不排斥组员加入创新中心以外的任何其他组织,而且鼓励学生 全面多元发展。我们支持组员在力所能及的情况下多参加其他组织及活 动、但是毕竟每个人的精力有限、所以不鼓励逞强。比如挂名很多组织 但在每个组织中的发展有限,最后疲惫不堪,这种情况我们也不希望看 到。

Oureda 是朱明老师带领的一个十分优秀的实验室, 目前发展蒸蒸日上, 而且方向多元,经验丰富,设备充足,非常适合技术型人才的培养,更 多细节见Oureda的宣传海报或者直接咨询朱明老师。而创新中心同样在 发展中积累了得天独厚的经验和优势,从组织上来说,中心几乎是个纯 学生组织,新生与前辈的交流更加顺畅且自由,更容易得到贴合入学新 生视角的信息。当然以上叙述也是我主观的一家之言, 仅供参考, 对于 迷茫的新生来说, 多咨询这些组织相关和无关人员, 以及亲自杳看, 自 行判断, 谨慎考虑。

总之、无论如何选择、做到这些组织和课内学习、个人生活间的平衡十 分重要, 虽然优秀的人才没有进入数模组会是我们的遗憾, 但是如果他 们没有考虑自身情况量力而行,焦头烂额而无所获,更让我们心痛。

我也好喜欢ACM组,应该选哪个?

因为照顾到每个人的精力有限,原则上不允许同时报这两个组。 这个问题可以首先试着了解一个ACM和MCM这两种有很大和区别的比 赛、ACM对于算法的掌握、运用和实现有很高的要求,对于编程的帮助 很大;而数模(MCM)更侧重对模型和算法的创新和应用,有助于计算 机科学的研究。当然它们的益处很大程度也是互通的,除此之 外,ACM对于编程的训练要求更高一些、压力也相对更大。 在中心发展的早期和中期,这两个组从规模上来讲都是十分重要的大 组、也是最频繁剧奖的两个组。这两个组的关系并不敌对、而是友好地 合作互利共贏,ACM组的成员经常参加各类数模比赛,数模组成员也很 热衷于参加ACM比赛,因为各组学习的内容对于这两种比赛都很实用。

参加数模组会影响课内成绩么?

当然会,至于是正面的影响还是负面的影响取决于你的态度。优秀的学长学姐的辅导交流也是宝贵的资源,这里的学长学姐几乎都是拿过学习类奖学金的,每届都至少有一两个成绩是全专业前三的,学习氛围自然不错。数模固然重要而且有趣,但为此放弃学业还是不鼓励的。

进入数模组是一种怎样的体验? (数模组的日常?)

- 学长学姐每周组织一次例会,教同学们一些数模知识和技巧。 (有时 也有英语学习之类的彩蛋)
- 每个新生可以得到一位指定的学长学姐负责... 带领新生完成大一一 年的讨渡
- 每周写周报与前辈们交流学习生活上遇到的困扰和收获,有时会布 置每周作业帮助理解消化例会所讲的内容
- 几乎全员参加每年的省赛、国赛和美赛并得奖
- 每学期末有对成员的考核答辩,要求成员展示该学期的专业成绩、 比赛得奖情况和数模及其他技术的作品。
- 可以使用C103的公共电脑、书籍和网络资源(对大一不能带电脑的 新生来说很重要). C103也提供了一个安静的自习环境, 同时可以 拿到学长学姐的学习笔记、冼课建议、实验室推荐等重要情报。

数模组(MCM)

定期发起组内聚会(海烧或者日和之类的娱乐项目)

C语言

多跟着书上敲代码很重要,同时多看书理解每行代码的意义,关注结构,养成良好的coding习惯,不要浮躁。

教材《C程序设计快速进阶大学教程》

参考书籍¹ 《C语言教程:programming in C》、《C程序设计语言》、《C和指针》

推荐顺序 遵从教材第5-13章的顺序

编译器

- Visual C++/Visual Studio: VC是上机用的编译器,语 法和VS相同,但win7以上可能安装会遇到问题,所有 为了模拟上机可以安装VS,VS是十分强大的IDE
- CodeBlocks+MinGW:ACM钦定的优秀的轻量编译器
- C4droid: Android平台上的简易C/C++编译器,方便 没带电脑的新生

1为避免不必要的困扰,请不要从谭浩强的书入手

C语言

debug建议

- 尽量使用英文路径,编译完成后双击错误信息可直接 跳转到有问题的代码
- 复制错误信息,用百度或者谷歌搜索

在线资源

- http://codepad.org/~http://tool.runoob.com/ index.php/Home/Index/compile/language/c: 在线 编译器。可在任意终端的浏览器使用。在手机上也能 编程. 分享代码便捷
- http://www.runoob.com/cprogramming/ c-tutorial.html:C语言在线教程
- 《计算导论与C语言基础》和《C程序设计讲阶》: Coursera 平台上的在线课程,由北京大学提供,有配 套的作业、练习和讨论平台2
- https://en.wikibooks.org/wiki/C_Programming

²Android和iOS都有Coursera的客户端

工科数学分析

工数和本部其他专业学的微积分、高等数学两门课程同气连枝,在某些 章节略有不同,上学期只涉及一元函数的极限、微分、积分等内容,大 概在期中阶段学习可能会遇到瓶颈, 吃透习题有助于加深理解突破障 碍、习题以近年教辅为主、吉米多维奇的数分如果实在想做挑些精选的 做,不用全做。

教材 《工科数学分析》

官方教辅 《工科数学分析同步辅导》、历年期末考题和模拟题(大 红本)

参考书籍 《高等数学(上册)》、《微积分(上册)》、Calculus³ 推荐顺序 根据教材顺序预习1-4.3

³这本书在市面上也有中文版,但本书作为经典教材,文字和内容都浅显易 懂,适合基础薄弱者参考,也适合作为原版教材的入门读物。

工科数学分析

工具 Wolfram Alpha⁴: 强大的数学搜索引擎,可以通过搜索直 接得到题目的答案和题解,也能用来制作简易的绘图,搜 索概念、定义和数据。

在线资源

- https://en.wikibooks.org/wiki/Calculus
- 麻省理工学院公开课: 单变量微积分
- 微积分基础: 俄亥俄州立大学

