

Assessment Brief Proforma

1. Module number	SET10111
2. Module title	Multi-Agent Systems
3. Module leader	Simon Powers
4. Tutor with responsibility for this Assessment Student's first point of contact	Simon Powers S.Powers@napier.ac.uk
5. Assessment	Report
6. Weighting	60% of module assessment.
7. Size and/or time limits for assessment	The main body of the report, from the title through to the end of the conclusion, must be no longer than 8 pages as specified in the coursework description.
8. Deadline of submission Your attention is drawn to the penalties for late submissions	The report and code must be submitted to Moodle by the Friday of Week 13 (deadline 15:00, 6 th December). Each student will be required to make a demonstration of their implementation during Week 14 or Week 15. No demonstration may result in a mark of 0.
9. Arrangements for submission	The report should be submitted to Moodle as a .PDF document. Your code should be uploaded as a.zip archive. Please ensure that your code is contained within an Eclipse project. Add a readme.txt file with the name of the project and any other relevant information required to run the code. You are advised to keep your own copy of the assessment.
10. Assessment Regulations All assessments are subject to the University Regulations	No exemptions.

11. The requirements for the assessment	See below.
12. Special instructions	Your multi-agent system must be implemented in JADE.
13. Return of work and feedback	One to one verbal feedback will be offered during the demonstration session. Written feedback will be made available within 3 working weeks of submission.
14. Assessment criteria	See attached. Please note that checks for plagiarism will be made on electronic submissions. Students may be required to attend a further demonstration if there exists doubts as to the authorship of work.

1. Introduction

Manufacturing companies are typically part of a supply chain, in which they must take customer orders, procure the materials to fulfil the order, assemble the materials into the final product, and then ship the product to the customer. Multi-agent systems are increasingly being used to automate this process by handling negotiations with customers and suppliers, and scheduling production to meet demand.

This coursework has two tasks. Your first task is to design and implement a multi-agent system in JADE to model the smartphone manufacturing supply chain scenario specified below. Your design should include an ontology suitable for the problem domain, and appropriate use of the FIPA communication language for agent interactions. Your second task is to design and experimentally evaluate a control strategy for the manufacturer agent in your model, with the goal of maximising the monetary profit that the manufacturer receives.

Your deliverable will be a report detailing the design and implementation of your multi-agent system model, and the experimental evaluation of your manufacturer agent control strategy. You will also submit as a separate .zip file the source code of your multi-agent system.

2. Problem specification

A smartphone manufacturer has to perform the following tasks each day:

- 1. A number of customers, c, each submit a single order request (Section 2.2 below). Each order request is for a stated quantity of smartphones, all of an identical specification. The possible specifications are stated in Section 2.1. Each order has a price, set by the customer, which the customer will pay upon delivery of the order. Each order also has a due date, and a per-day penalty for late delivery, both of which are set by the customer. For each order request, the manufacturer must choose whether to accept it or not, with the aim of maximising its profit. Any order not accepted is discarded.
- 2. Decide which components to purchase from which suppliers (Section 2.3), with the aim of maximising its profit.
- 3. Decide which orders to assemble and ship, based on the current stock of components in the warehouse and the order due dates and late penalties (Section 2.4), with the aim of maximising its profit.
- 4. Calculate their current profit (Section 2.5).

You should design and implement a multi-agent simulation of this process in JADE. You must include separate agents to represent at least the customers, manufacturer, and suppliers. You may include other agents in your design as you see fit. A simulation should run for 100 simulated days, where each day consists of the four events described above. At the end of the simulation, your manufacturer agent should print its total profit (the sum of profit across the 100 days).

2.1 Smartphone specifications

A smartphone can be of two types, either "small" or "phablet". A "small" smartphone must contain a 5" screen and a 2000mAh battery, while a "phablet" smartphone must contain a 7" screen and a 3000mAh battery. Both types of smartphone also require RAM and storage (these components are interchangeable between small and phablet smartphones).

Each component is available in the following specifications:

• Screen: 5" or 7"

• Storage: 64Gb or 256Gb

• RAM: 4Gb or 8Gb

• Battery: 2000mAh or 3000mAh

2.2 Customer orders

Each customer requests one order per day, for a number of smartphones of an identical, randomly generated, specification. The specification for each order should be generated according to the following algorithm:

```
if(rand < 0.5)
   //small smartphone
   Screen = 5"
   Battery = 2000mAh
else
   //phablet
   Screen = 7"
   Battery = 3000mAh
if(rand < 0.5)
   RAM = 4Gb
else
   RAM = 8Gb
if(rand < 0.5)
   Storage = 64Gb
else
   Storage = 256Gb
```

where **rand** is a uniformly distributed randomly generated floating point number greater than or equal to 0.0 and less than 1.0 (you can use Math.random() for this in Java).

In addition to the specification, an order consists of a quantity, a unit price for one smartphone (in whole £s), the number of days in which delivery of the order is due, and a per-day penalty (in whole £s) for late delivery. You should generate these properties of the order using the following formulas:

```
Quantity of smartphones = floor(1 + 50 * rand)
```

Unit price for one smartphone = $\mathbf{floor}(100 + 500 * \mathbf{rand})$ Number of days until order due = $\mathbf{floor}(1 + 10*\mathbf{rand})$ Per-day penalty for late delivery = Quantity of smartphones * $\mathbf{floor}(1 + 50 * \mathbf{rand})$.

where **floor** is a function that returns its argument rounded down to the nearest integer, and **rand** is again a uniformly distributed randomly generated floating point number greater than or equal to 0.0 and less than 1.0.

2.3 Purchasing components from suppliers

Each component can be purchased from one of two suppliers who sell at different prices and deliver at different speeds. *Supplier 1* has all components available and delivers these to your warehouse at the start of the next day (so that the ordered components may be used during the next day or thereafter). *Supplier 2* offers storage and RAM at a cheaper price but at a slower delivery speed -- it delivers any components that you order to your warehouse at the start of the fourth day after the order is placed (so that the ordered components may be used on the fourth day or thereafter). *Supplier 2* does not sell screens or batteries. The price of each component from each supplier is as follows:

Component	Price from Supplier 1 (delivery next day after order placed)	Price from Supplier 2 (delivery on 4 th day after order placed)
5" Screen	£100	N/A
7" Screen	£150	N/A
64Gb Storage	£25	£15
256Gb Storage	£50	£40
4Gb RAM	£30	£20
8Gb RAM	£60	£35
2000mAh Battery	£70	N/A
3000mAh Battery	£100	N/A

Each supplier has an unlimited stock of components available for orders on each day. Payment is made to the supplier on the day that the component order is placed. For each component not assembled into a smartphone on the day that it arrives, there is a per-component per-day charge of w pounds for warehouse storage.

2.4 Order assembly and shipping

An order can only be shipped to the customer if sufficient quantities of the required components are available in the warehouse to assemble all of the smartphones in that order. Given the components currently available in the warehouse, the manufacturer agent must decide which orders to assemble and ship on that day. A maximum of 50 smartphones can be assembled on each day. Assembly and shipping happen on the same day that the manufacturer requests them. Delivery

to the customer also occurs on this same day, at which point the manufacturer immediately receives payment.

2.5 Profit calculation

The profit a manufacturer agent receives on a single day, d, is given by: TotalValueOfOrdersShipped(d) – PenaltyForLateOrders(d) – WarehouseStorage(d) – SuppliesPurchased(d),

where TotalValueOfOrdersShipped(d) is the price of all orders shipped to customers on day d, PenaltyForLateOrders(d) is the penalty for any accepted orders where the due date has passed and they have not been shipped as of the end of day d (Section 2.4), WarehouseStorage(d) is the cost of all items currently in the warehouse that did not arrive on day d (Section 2.3), and SuppliesPurchased(d) is the cost of all components purchased on day d (Section 2.3).

2.6 Default parameter settings

For the initial evaluation of your system you may assume that the number of customers is 3 (c=3), and the cost of warehouse storage per-day per-component is £5 (w=5).

3. Summary of constraints to be implemented

You should ensure that your implementation enforces the following constraints:

- 1. A "small" smartphone must contain a 5" screen and a 2000mAh battery, while a "phablet" smartphone must contain a 7" screen and a 3000mAh battery. Both "small" and "phablet" smartphones must also contain one amount of RAM and one amount of storage. This should be enforced in the ontology.
- 2. The component delivery times from the two suppliers (Section 2.3).
- 3. The per-component per-day warehouse storage cost (Section 2.3).
- 4. An order can only be shipped if there are sufficient components in the warehouse to build all of the smartphones in the order (Section 2.4).
- 5. A maximum of 50 smartphones can be assembled and shipped on one day (Section 2.4).
- 6. Penalties for late delivery.
- 7. Correct calculation of profit at the end of each day (Section 2.5).

4. Design of manufacturer agent control strategy

You should design a control strategy for the manufacturer agent that on each day decides:

- 1. which customer orders to accept and which to reject,
- 2. how many components to order from each supplier.
- 3. which components received from suppliers to place in warehouse storage as opposed to using immediately,
- 4. which orders to assemble and ship.

It should make these decisions with the aim of maximising its expected profit.

5. Experimental evaluation

You should evaluate the performance of your manufacturer agent with respect to the profit earned after 100 simulated days. To evaluate the performance of your manufacturer agent control strategy, you may wish to vary some or all of these parameters:

- 1. The per-day per-component cost of warehouse storage, w.
- 2. The number of customers, c.
- 3. The range of per-day penalties for late delivery that can be generated.

Because of the stochasticity in the problem specification, you will need to repeat each experiment for a number of trials and present results in the form of appropriate statistics (e.g. mean and standard error of profit across 30 replicates).

You should proceed with experimentation even if you did not successfully implement all of the constraints in Section 3.

6. Report specification and mark scheme

Your report **must** be formatted as follows, 12 pt Arial text should be used throughout. The main body of the document from the abstract to the end of the conclusion must be no more than eight A4 sides in length (including any tables or diagrams). **You must include the three appendices stated below, which do not count towards the page limit. Additional appendices are not permitted**. You may not place additional information in the three appendices -- the appendices must only contain the information detailed below. **Marks will be deducted for exceeding the page limit or placing additional information in the appendices other than that specified**. Where you make use of the work of others you should use citations in your text and include a list of references at the end of your report. You **must** include all of the sections in the table below using the headings given. You should pay attention to the presentation of your report. Marks may be deducted for spelling, grammar and any other presentational issues.

Note that the guidelines for the length of each section are approximate and you should use your own judgement. However, the report must be no longer than eight pages from the title until the end of the conclusion.

The maximum mark for this coursework is 60.

The submission must be your own work, written by you for this module. Collusion is not permitted. The university regulations define collusion as "Conspiring or working together with (an)other(s) on a piece of work that you are expected to produce independently."

Section	Description of content	Suggested length	Mark	Suggested time spent on task
Introduction	A brief description of the smartphone supply chain problem and its importance, and a justification of why multi-agent systems are suitable for addressing it. For higher marks you should reference the academic literature.	1/2 page	/5	2 hours
Model design	Identify each agent type and explain its role in your system. Justify the design of your ontology, with reference to Appendix 1. Justify the communication protocols chosen for each type of conversation, with reference to Appendix 2.	2 pages	Decomposition into agents with appropriate responsibilities: 2 marks Design of ontology (including diagram in Appendix 1): 5 marks Design of agent communication protocols (including sequence diagram in Appendix 2): 5 marks	10 hours
Model implementation	Give a description of the behaviours that each agent in your implementation executes, and state their type, e.g. one- shot, cyclic, multi- step. For each behaviour, explain where approporiate how it uses the	1 1/2 pages	Implementation of agent communication protocols: 7 marks Implementation of ontology: 7 marks	20 hours

	aammuniaatia	T	Implamant-ti-	
	communication protocols and		Implementation of constraints in	
	ontology, with		Section 3: 7	
			marks	
	reference to example		IIIaiks	
	source code in			
	Appendix 3.			
	State how your			
	implementation in			
	JADE meets each of			
	the constraints listed			
	in Section 3 above.			
	For each constraint			
	include a reference to			
	source code in			
	Appendix 3 that			
	implements it. Only			
	constraints that are			
	supported by a			
	reference will be			
	credited. The			
	referenced code			
	should be easy to			
	read and commented			
	as appropriate.			
	Marks will be			
	awarded for partial			
	implementations, i.e.			
	only implementing			
	some of the			
	constraints.			
Design of	Explain and justify	1 page	/7	5 hours
manufacturer	the control strategy			
agent control	for your manufacturer			
strategy	agent, explaining how			
	it makes decisions 1-			
	4 described in Section			
	4 to attempt to			
	maximise profit. For			
	higher marks your			
	strategy should be			
	justified with			
	reference to the			
E	academic literature.		/0	0.1
Experimental	Evaluate the	2 pages	/9	8 hours
results	performance of your	(including	E	
	manufacturer agent	tables and	Experimental	
	control strategy with	graphs)	plan with	
	respect to the		hypotheses to be	

	_	Γ	T .	
	parameters in Section		tested: 3 marks	
	2.6 (you may also			
	vary other aspects of		Experimental	
	the simulation as you		analysis with	
	see fit). Justify your		appropriate	
	choice of		statistics: 6	
	experiments, i.e.		marks	
	which features of			
	your agent control			
	strategy you are			
	evaluating, with			
	hypotheses about			
	expected results. You			
	can be credited for			
	this justification			
	even if you are not			
	able to actually run			
	the experiments.			
	vii viip vii iii vii			
	Results from the			
	experiments should			
	be presented as			
	graphs or tables.			
	Higher marks will be			
	awarded for			
	experimenting with			
	two or more			
	parameters.			
	parameters.			
	Marks will also be			
	awarded for rigour,			
	e.g. performing the			
	experiments multiple			
	times and looking at			
	average performance.			
Conclusions	Suggest how the	1 page	/6	3 hours
Conclusions	design of your multi-	1 page	, 0	Jilouis
	agent system could be			
	expanded to handle a			
	more realistic supply-			
	chain scenario.			
	cham sochano.			
	Suggest how your			
	manufacturer agent			
	control strategy could			
	be improved to			
	achieve a greater			
	profit.			
References	Reference any	No limit		
KCICICICES	websites, blogs or	110 111111		
	websites, blogs of			

	published papers that you refer to in the report.		
Appendix 1: ontology	Identify all of the AgentAction, Concept, and Predictate subclasses that you have created, and show the hierarchical relations between each class on a diagram. For each class you have created, list the slots, their types, and any restrictions. Show an example instance of each non-abstract class.	No limit	Marked as part of design
Appendix 2: communication protocols	For each type of conversation between agents, show in a diagram the communication protocol. The protocol must include the sequence of messages sent and received in the conversation, including their FIPA performatives and an example of the message content.	No limit	Marked as part of design
Appendix 3: source code	Include the sections of source code that are referenced from the Implementation section.	No limit	Marked as part of implementation