PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-268178

(43) Date of publication of application: 29.09.2000

(51)Int.Cl.

G06T 7/00 G06T 3/00

GO6T 5/20

(21)Application number: 11-240028

(71)Applicant: NEC CORP

(8)

(22)Date of filing:

26.08.1999

(72)Inventor: MORGAN MCGUIRE

(30)Priority

Priority number: 99 271643

Priority date: 18.03.1999

Priority country: US

(54) IMAGE ALIGNING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To improve image alignment accuracy by separating the rotation parameter of the rotation–scale–translation(RST) conversion, a scaling change parameter and a translation shift parameter between a reference image and a pattern image from each other for securing the alignment between both images using a Fourier–Mellin invariant.

SOLUTION: In this positioning method applied between a reference image and a pattern image, these images are different from each other by the RST conversion that is defined by a scaling coefficient, a rotation coefficient and a translation vector. The rotation, scaling and translation shift parameters are separated from each other between the reference and pattern images for securing the alignment between both images using a Fourier-Mellin variant. A contour line plot of a non-zero coefficient is shown (B) among the Fourier-Mellin coefficients of four types of images (A) respectively. In regard to this reference image, the rotation of an angle

ϕ of a pixel area is equivalent to the rotation of an angle –ϕ of a Fourier–Mellin area, for example.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特期2000-268178 (P2000-268178A)

(43)公開日 平成12年9月29日(2000.9.29)

(51) Int.Cl.7		藏別記 号	FΙ	テーマコード(参考)
G06T	7/00		G06F 15/70	330P 5B057
	3/00		15/ 6 6	345 5L096
	5/20		15/68	400A
			15/70	3 3 0 F
			審査請求	有 請求項の数16 OL (全 18 頁)
(21)出願番号		特願平11-240028	(71)出願人 000004237 日本電気株式会社	
(22)出顧日		平成11年8月26日(1999.8.26)		京都港区芝五丁目7番1号 ーガン マクガイア
(31)優先権主張番号		09/271643	アン	メリカ合衆国、 ニュージャージー
(32)優先日		平成11年3月18日(1999.3.18)	085	540、 プリンストン、 インディペン

(74)代理人 100088328

内

弁理士 金田 暢之 (外2名)

デンス ウェイ 4 エヌ・イー・シー・

リサーチ・インスティテューテュ・インク

最終頁に続く

(54) 【発明の名称】 画像位置合わせ方法

(57)【要約】

(33)優先権主張国

【課題】基準画像にパターン画像を位置合わせする際 に、これら画像間の変換パラメータを復元し、相関関数 における1に近いピーク相関と高い信号/ノイズ比を達 成し、それらがあいまって位置合わせの正確さを大幅に 向上させる。

米国(US)

【解決手段】 パターン画像 r と基準画像 p とが、拡大 Δy)によって決まる回転-拡大/縮小-並進移動(R ST)変換によって互いに異なっているときに、フーリ エーメリン不変量を用いて、基準画像rとパターン画像 pの間の回転、拡大/縮小および並進移動のパラメータ を分離し、これら分離されたパラメータを用いて画像位 置合わせを行う。

【特許請求の範囲】

【請求項1】 パターン画像と基準画像とが拡大/縮小係数s、回転係数 ϕ および並進ベクトル(Δx , Δy)によって決まる回転-拡大/縮小-並進移動変換によって互いに異なっているときに、前記基準画像に前記パターン画像を位置合わせする方法であって、

(a) 前記基準画像と前記パターン画像を前処理する段階であって、

(a-1)前記基準画像と前記パターン画像を、画素領域からフーリエーメリン領域に変換して、それぞれ変換基準画像および変換パターン画像を得るステップと、

(a-2) 前記変換基準画像と前記変換パターン画像をデカルト(x, y)座標から極一対数(logg(半径), 角度)座標(Bは大域定数対数底である)に変換するステップと、を含む段階と;

(b) 少なくとも1つの可能な拡大/縮小係数を復元する段階であって、

(b-1)前記極一対数(log_B (半径),角度)座標での変換基準画像と前記極一対数(log_B (半径),角度)座標での変換パターン画像を、それぞれ、それらの角度軸方向に合計して、基準スケールシグネチュアとパターンスケールシグネチュアを得るステップと、

(b-2)正規化相関を用いて前記基準スケールシグネチュアを前記パターンスケールシグネチュアに相関させ、相関スケールシグネチュアを得るステップと、

(b−3)スケールシグネチュアシフトの集合からなる、前記相関スケールシグネチュアの極大を検出するステップと、

(b-4) 対数底Bを前記各スケールシグネチュアシフトでべき乗して、少なくとも1つの可能な拡大/縮小係数を得るステップと、を含む段階と; (c) 回転係数 φ を復元する段階であって、

(c-1)前記極一対数(logB(半径),角度)座標での変換基準画像および前記極一対数(logB(半径),角度)座標での変換パターン画像を、それぞれ、それらのlogB(半径)軸方向に合計して、基準回転シグネチュアとパターン回転シグネチュアを得るステップと、

(c-2)正規化円形相関を用いて前記基準回転シグネチュアをパターン回転シグネチュアと相関させ、相関回転シグネチュアを得るステップと、

(c-3) 回転係数 φ からなる、前記相関回転シグネチュアの最大値を検出するステップと、を含む段階と;

(d) 実際の拡大/縮小係数 s および並進ベクトル(Δ x, Δ y)を復元する段階であって、

(d-1) 前記パターン画像を $-\varphi$ だけ回転して、回転パターン画像を得るステップと、

(d-2) 前記各可能な拡大/縮小係数ごとに、その可能な拡大/縮小係数の逆数によって前記回転パターン画像を再度拡大/縮小させ、候補パターンを得るステップ

と、

(d-3) 各候補パターンごとに、可能な並進ベクトルであって、その候補ベクトルをその可能な並進ベクトルによって並進移動させたときに前記基準画像と並進移動後の候補パターンとが最も高い相関を示す可能な並進ベクトルを求めるステップと、

(d-4) 前記基準画像に対して最高の相関を与える並進移動後の候補パターンを選択することで、その候補パターンに関連する可能な拡大/縮小係数と可能な並進ベクトルとが、それぞれ、実際の拡大/縮小係数 s と実際の並進ベクトル $(\Delta x, \Delta y)$ を含むようにするステップと、を含む段階と;を有する画像位置合わせ方法。

【請求項2】 前記基準画像および前記パターン画像の前処理の段階(a)が、さらに、前記変換ステップ(a-1)の前に、前記基準画像と前記パターン画像をウェーブレット分解するステップを有する請求項1記載の画像位置合わせ方法。

【請求項3】 前記基準画像および前記パターン画像の前処理の段階(a)が、さらに、前記変換ステップ(a-1)の前に、前記基準画像と前記パターン画像をフィルタ処理して、前記基準画像と前記パターン画像の内在的タイリングによって生じるアーティファクトを防止するステップを有する請求項1記載の画像位置合わせ方法。

【請求項4】 アーティファクトを防止するための前記フィルタ処理のステップが、ぼかしフィルタによって前記基準画像および前記パターン画像をフィルタ処理し、アーティファクトを除去するステップである請求項3に記載の画像位置合わせ方法。

【請求項5】 前記少なくとも1つの可能な拡大/縮小係数を復元する段階(b)が、さらに、前記合計するステップ(b-1)の後であって前記相関させるステップ(b-2)の前に、前記基準スケールシグネチュアおよび前記パターンスケールシグネチュアをフィルタ処理して、各スケールシグネチュアの信号/ノイズ比を高くするステップを有する、請求項1に記載の画像位置合わせ方法。

【請求項6】 前記回転係数 φ を復元する段階(c)が、さらに、合計するステップ(c-1)の前に、前記極一対数(log_B (半径),角度)座標による変換基準画像および前記極一対数(log_B (半径),角度)座標による前記変換パターン画像をフィルタ処理して、そこに存在するエッジ部を強調するステップを有する、請求項1に記載の画像位置合わせ方法。

【請求項7】 パターン画像と基準画像とが拡大/縮小係数 s、回転係数 ϕ および並進ベクトル(Δ x, Δ y)によって決まる回転-拡大/縮小-並進移動変換によって互いに異なっており、前記拡大/縮小係数 s が既知であるときに、前記基準画像に前記パターン画像を位置合わせする方法であって、

(a) 前記基準画像と前記パターン画像を前処理する段階であって、

(a-1)前記基準画像と前記パターン画像を、画素領域からフーリエーメリン領域に変換して、それぞれ変換基準画像および変換パターン画像を得るステップと、

(a-2) 前記変換基準画像と前記変換パターン画像をデカルト(x, y)座標から極ー対数 $(l \circ g)$ (半径), 角度) 座標 $(B \iota t)$ (B $\iota t)$ (

(b) 回転係数 ϕ を復元する段階であって、

(b-1)前記極一対数(log_B (半径),角度)座標での変換基準画像および前記極一対数(log_B (半径),角度)座標での変換パターン画像を、それぞれ、それらの log_B (半径)軸方向に合計して、基準回転シグネチュアとパターン回転シグネチュアを得るステップと、

(b-2) 正規化円形相関を用いて前記基準回転シグネチュアをパターン回転シグネチュアと相関させ、相関回転シグネチュアを得るステップと、

(b-3)回転係数 φ からなる、前記相関回転シグネチュアの最大値を検出するステップと、を含む段階と;

(c) 並進ベクトル $(\Delta x, \Delta y)$ を復元する段階であって、

(c-1) 前記パターン画像を $-\varphi$ だけ回転して、回転パターン画像を得るステップと、

(c-2) 前記拡大/縮小係数 s の逆数によって前記回 転パターン画像を再度拡大/縮小させ、候補パターンを 得るステップと、

(c-3) 前記候補パターンを並進ベクトル $(\Delta x, \Delta y)$ によって並進移動させたときに前記基準画像と並進移動後の候補パターンとが最も高い相関を示すように、並進ベクトル $(\Delta x, \Delta y)$ を求めるステップと、を含む段階と;を有する画像位置合わせ方法。

【請求項8】 前記基準画像および前記パターン画像の前処理の段階(a)が、さらに、前記変換ステップ(a-1)の前に、前記基準画像と前記パターン画像をウェーブレット分解するステップを有する請求項7記載の画像位置合わせ方法。

【請求項9】 前記基準画像および前記パターン画像の前処理の段階(a)が、さらに、前記変換ステップ(a-1)の前に、前記基準画像と前記パターン画像をフィルタ処理して、前記基準画像と前記パターン画像の内在的タイリングによって生じるアーティファクトを防止するステップを有する請求項3記載の画像位置合わせ方法。

【請求項10】 アーティファクトを防止するための前記フィルタ処理のステップが、ぼかしフィルタによって前記基準画像および前記パターン画像をフィルタ処理し、アーティファクトを除去するステップである請求項9に記載の画像位置合わせ方法。

【請求項11】 前記回転係数 φ を復元する段階(b)が、さらに、合計するステップ(b-1)の前に、前記極一対数(log_B (半径),角度)座標による変換基準画像および前記極一対数(log_B (半径),角度)座標による前記変換パターン画像をフィルタ処理して、そこに存在するエッジ部を強調するステップを有する、請求項7に記載の画像位置合わせ方法。

【請求項12】 パターン画像と基準画像とが拡大/縮 小係数 s、回転係数 ϕ および並進ベクトル $(\Delta x, \Delta y)$ によって決まる回転ー拡大/縮小ー並進移動変換によって互いに異なっており、前記回転係数 ϕ が既知であるときに、前記基準画像に前記パターン画像を位置合わせする方法であって、

(a) 前記基準画像と前記パターン画像を前処理する段階であって、

(a-1) 前記基準画像と前記パターン画像を、画素領域からフーリエーメリン領域に変換して、それぞれ変換基準画像および変換パターン画像を得るステップと、

(a-2) 前記変換基準画像と前記変換パターン画像をデカルト(x, y)座標から極ー対数 $(log_B(半径),$ 角度) 座標 (Bは大域定数対数底である) に変換するステップと、を含む段階と;

(b) 少なくとも1つの可能な拡大/縮小係数を復元する段階であって、

(b-1)前記極-対数(log_B (半径),角度)座標での変換基準画像と前記極-対数(log_B (半径),角度)座標での変換パターン画像を、それぞれ、それらの角度軸方向に合計して、基準スケールシグネチュアとパターンスケールシグネチュアを得るステップと、

(b-2) 正規化相関を用いて前記基準スケールシグネチュアを前記パターンスケールシグネチュアに相関させ、相関スケールシグネチュアを得るステップと、

(b-3) スケールシグネチュアシフトの集合からなる、前記相関スケールシグネチュアの極大を検出するステップと、

(b-4)対数底Bを前記各スケールシグネチュアシフトでべき乗して、少なくとも1つの可能な拡大/縮小係数を得るステップと、を含む段階と;

(c) 実際の拡大/縮小係数 s および並進ベクトル $(\Delta x, \Delta y)$ を復元する段階であって、

(c-1) 前記パターン画像を $-\varphi$ だけ回転して、回転パターン画像を得るステップと、

(c-2)前記各可能な拡大/縮小係数ごとに、その可能な拡大/縮小係数の逆数によって前記回転パターン画像を再度拡大/縮小させ、候補パターンを得るステップと、

(c-3) 各候補パターンごとに、可能な並進ベクトルであって、その候補ベクトルをその可能な並進ベクトルによって並進移動させたときに前記基準画像と並進移動後の候補パターンとが最も高い相関を示す可能な並進べ

クトルを求めるステップと、

(c-4) 前記基準画像に対して最高の相関を与える並進移動後の候補パターンを選択することで、その候補パターンに関連する可能な拡大/縮小係数と可能な並進ベクトルとが、それぞれ、実際の拡大/縮小係数 s と実際の並進ベクトル $(\Delta x, \Delta y)$ を含むようにするステップと、を含む段階と;を有する画像位置合わせ方法。

【請求項13】 前記基準画像および前記パターン画像の前処理の段階(a)が、さらに、前記変換ステップ(a-1)の前に、前記基準画像と前記パターン画像をウェーブレット分解するステップを有する請求項12記載の画像位置合わせ方法。

【請求項14】 前記基準画像および前記パターン画像の前処理の段階(a)が、さらに、前記変換ステップ(a-1)の前に、前記基準画像と前記パターン画像をフィルタ処理して、前記基準画像と前記パターン画像の内在的タイリングによって生じるアーティファクトを防止するステップを有する請求項12記載の画像位置合わせ方法。

【請求項15】 アーティファクトを防止するための前記フィルタ処理のステップが、ぼかしフィルタによって前記基準画像および前記パターン画像をフィルタ処理し、アーティファクトを除去するステップである請求項14に記載の画像位置合わせ方法。

【請求項16】 前記少なくとも1つの可能な拡大/縮小係数を復元する段階(b)が、さらに、前記合計するステップ(b-1)の後であって前記相関させるステップ(b-2)の前に、前記基準スケールシグネチュアおよび前記パターンスケールシグネチュアをフィルタ処理して、各スケールシグネチュアの信号/ノイズ比を高くするステップを有する、請求項12に記載の画像位置合わせ方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像処理に関し、 特に、画像の位置合わせ(レジストレーション)の新規 な方法に関する。

[0002]

【従来の技術】A. 画像位置合わせ

画像位置合わせ(image registration)は、両方の画像にある画素(ピクセル)が同じ位置に配置されるように、基準(リファレンス)画像の上にパターン画像を整列させるというプロセスである。このプロセスは、例えば、テンプレート上への取得画像のアライメント(整列)、同一場面(シーン)の時系列画像のアライメント、あるいは合成画像における個々のバンドのアライメント(コレジストレーション(coregistration))などにおいて有用である。このプロセスの実際の適用例を2つ挙げると、医療用画像の分野における放射線像のアライメントがと、環境科学の分野における衛星画像のアライメントが

ある。

【0003】典型的な画像位置合わせの問題においては、基準画像とパターン画像とが何らかの形で互いに関係していることが、既知であるかあるいは予想されている。すなわち、基準画像とパターン画像とが、一部の要素を共有している、あるいは同じ表示対象または場面に関連していることが、既知であるかあるいは予想されている。このような典型的な画像位置合わせ問題では、2個の画像間の差の発生源を、以下の4種類のカテゴリに分けることができる。

【0004】 1. アライメントの差: 画像間のアライメントの差は、一方の画像から他方の画像への空間写像によって生じる。典型的な写像では、並進移動、回転、ゆがみおよび拡大/縮小(スケーリング)が起こる。無限連続領域の画像の場合、これらの差は、一方の画像から他方の画像への空間写像の結果である。例えば画像センサの向きまたはパラメータを変えることで、アライメントの差がもたらされる。

【0005】2. 妨害(オクルージョン:occlusion) による差:アライメントの差により有限画像の一部が画像枠(画像フレーム)から出ていったり有限画像の画像枠に新たなデータが入ってくる場合、あるいは画像センサと画像化対象との間に障害物が来る場合に、視点の妨害による差が生じる。例えば衛星画像では、雲がしばしば地球を妨害し、地表画像における妨害が生じる。

【0006】3. ノイズによる差:ノイズによる差は、 画像センサにおけるサンプリング誤差やバックグラウン ドノイズによって、さらには画像センサ誤差によっても たらされる原因不明の無効データから生じ得る。

【0007】4.変化による差:変化による差は、画像化される対象物もしくは場面間の実際の差である。衛星画像では、変化による差の例として、照明、侵食、建設および森林伐採がある。場合によっては、変化による差とノイズによる差とを区別できないことがある。

【0008】代表的には、複数の画像を位置合わせし て、特定場面での変化を検出する。したがって、良好に 位置合わせが行われれば、アライメント、妨害およびノ イズによる差を検出して消去したりあるいは解消しなが ら、変化による差を保存することができる。位置合わせ 方法では、画像の内容に関して変化は小さいものと仮定 しなければならない。すなわち、アライメント、妨害お よびノイズによる差を解消した後には、位置合わせされ る画像は「視覚的に同様」であると仮定される。さら に、両方の画像で、十分な量の対象物もしくは場面が見 えなければならない。例えば、基準画像の内容の50% 以上が、その基準画像に対して位置合わせされるパター ン画像にも存在するものと仮定することができる。実際 には、医療用センサおよび衛星センサは、画像の内容の 90%以上を共有するように、十分な精度をもってそれ らの画像に向けることができるのが普通である。

【0009】B. 回転-拡大/縮小-並進移動変換:本 発明は、ノイズおよびアライメントによる妨害(オクル ージョン) の存在下で回転-拡大/縮小-並進移動

(「RST:Rotation-Scale-Translation」) 変換によ って互いに異なっている2個の画像を位置合わせ(レジ ストレーション)するために有効な方法を提供する。R ST変換は、単一の並進ベクトル、単一の回転係数およ び単一の拡大/縮小係数(スケール係数)という3種類 の変換パラメータの組み合わせとして表現され、これら のパラメータはいずれも画像面で作用する。本発明は、 2個の画像からそれら3種類のパラメータを復元するこ とで、基準画像に関するパターン画像の回転、拡大/縮 小および移動を「取り消す(undo)」ことにより、基準画 像にパターン画像を位置合わせすることができるように する。本発明は、さらに、回転係数もしくは拡大/縮小 係数を単独で復元する新規な方法を含むものでもあり、

$$\begin{bmatrix} x_p \\ y_r \\ 1 \end{bmatrix} = \begin{bmatrix} s\cos\phi - s\sin\phi & \Delta x \\ s\sin\phi & s\cos\phi & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_r \\ y_r \\ 1 \end{bmatrix}$$

同様に、任意の画素 p(x,y)については、下記の関係 が成り立つ。

$$r(x, y) = p(\Delta x + s \cdot (x \cos \phi - y \sin \phi), \, \Delta y + s \cdot (x \sin \phi + y \cos \phi))$$

この表記において、 φ , sおよび(Δ x, Δ y)は、それ ぞれ変換の回転パラメータ、拡大/縮小パラメータおよ び並進パラメータである。ここで、φは反時計方向の回 転角であり、 s は拡大/縮小係数であり、(Δx, Δy) は並進ベクトルである。有限で離散型の基準画像 r およ びパターン画像pの場合、rとpは画素面積N(大きさ $N^{1/2} \times N^{1/2}$) の正方形であると仮定する。有限画像の RST変換により、若干のデータが画像枠内へまたは画 像枠外へ動くことによって、妨害による差が生じること に留意する。 $F_r(\omega_x,\omega_y) = e^{j2\pi(\omega_x\Delta x + \omega_y\Delta y)/s} s^2 F_p((\omega_x\cos\phi + \omega_y\sin\phi)/s, (-\omega_x\sin\phi + \omega_y\cos\phi)/s)$

フーリエ変換 F_p の複素絶対値は F_r の絶対値の s^2 倍で あり、それは $\Delta \times$ および Δy とは独立であることに留意 する。さらに、 F_p の絶対値は、 F_r を $-\varphi$ だけ回転さ せ、その大きさを係数 s だけ縮小させることで、Frの 絶対値から誘導される。このことは、Fpの絶対値に対 する独立した操作によって回転と拡大/縮小のパラメー タを回復することを可能にする。

【0015】式(3)は、画素領域(pixel domain)におけ る画像を角度φだけ回転させることが、そのフーリエ変 換の絶対値をφだけ回転させることと等価であることを 示している。画素領域における画像を拡大/縮小係数 s だけ拡大することは、それのフーリエ変換の絶対値の広 がりをsだけ縮小させ、フーリエ変換の絶対値の高さ (振幅) に s ²を乗ずることと等価である。画素領域で

この方法は、基準画像とパターン画像の間のアライメン トが上記係数の1個のみによって影響を受けることがわ かっている場合に有用であろう。

【0010】RST変換は、基準画像rをパターン画像 p中にマッピング(写像)する画素マッピング関数Mと して表現される。実際には、これらの関数は有限画像に 作用し、変換中に画像の枠から出て行ったり枠に入って きたりしなかったデータのみを処理することができる。 2次元無限連続基準画像 r とパターン画像 p とが R S T 変換によって関係してp=M(r)となっている場合、そ の基準画像 r における各点 $r(x_r, y_r)$ は、下記の行列 式にしたがって、対応する点p(xp, yp)に写像され

[0011] 【数1】

[0012]

【数2】

【0013】C. フーリエーメリン(Fourier-Mellin)不 変量:フーリエ変換は、RST変換下で、ある特徴を有 することから、位置合わせ問題に有用である。2個の2 次元無限連続画像 r, pが上記式(2)で与えられる関係 にしたがうものとする。フーリエシフト、拡大/縮小お よび回転の定理により、それぞれ画像rおよびpのフー リエ変換であるFrとFpとの間の関係は、次式によって 与えられる。

(1)

(2)

(3)

【数3】

の並進移動は、フーリエ変換の絶対値に影響しない。そ の不変性から、フーリエ変換の絶対値は、「フーリエー メリン不変量(Fourier-Mellin invariant)」と称され、 フーリエ絶対値空間は「フーリエーメリン領域(Fourier -Mellin domain)」と称される。画像rおよびpそれぞ れのフーリエーメリン変換RおよびPは、 $R = |F_r|$ およびP=|Fp|である。

【0016】多くの先行技術の位置合わせ法では、その 処理が並進移動不変のフーリエーメリン空間で行われ、 そうしてから「極一対数」座標に変換することから、回 転および拡大/縮小の効果は、直交する θ 軸およびlo $qg\rho$ 軸方向の並進移動として現れる。ここでBは大域 定数対数底である。例えば、B. Reddy et al., "An FFT -Based Technique For Translation, Rotation, And Sc ale Invariant ImageRegistration," IEEE Transaction s on Image Processing, Vol. 3, No. 8, pp. 1266-1270 (1996年8月); D Lee et al., "Analysis Of Sequential Complex Images, Using Feature Extraction A nd Two-Dimensional Cepstrum Techniques," Journal of the Optical Society of America, Vol. 6, No. 6, pp. 863-871 (1989年6月); E. DeCastro et al.,

"Registration Of TranslatedAnd Rotated Images Using Finite Fourier Transforms," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 5, pp. 700-703 (1987); S. Alliney, "Spatial Registration Of Multispectral And Multitemporal Digital Imagery Using Fast-Fourier Transform Techniques," IEEETransactions on Pattern Analysis a $C(R, P)_{j} =$

nd Machine Intelligence, Vol. 15, No. 5, pp. 499-50 4(1993年5月); Q. -S. Chen et al., "Symmetr ic Phase-Only Matched Filtering Of Fourier-Mellin Transforms For Image Registration And Recognitio n," IEEE Transactions on Pattern Analysis and MachineIntelligence, Vol. 16, No. 12, pp. 1156-1168(1994年12月)を参照。極一対数空間では、これらの軸方向のシフトの関数としてのRおよびPの正規化相関係数は、座標 $(-\varphi, -s)$ で最大となる。シフト jでの一次元正規化相関係数は下記式によって与えられる。

【0017】 【数4】

$$\frac{\sum_{i=0}^{N-1} R(i+j) P(i) - \left(\frac{1}{N}\right) \left(\sum_{i=0}^{N-1} R(i+j)\right) \left(\sum_{i=0}^{N-1} P(i)\right)}{\sqrt{\left(\sum_{i=0}^{N-1} R(i+j)^2 - \left(\frac{1}{N}\right) \left(\sum_{i=0}^{N-1} R(i+j)\right)^2\right) \left(\sum_{i=0}^{N-1} P(i)^2 - \left(\frac{1}{N}\right) \left(\sum_{i=0}^{N-1} P(i)^2\right)\right)}}$$
(4)

これが単純に、2次元極-対数空間に拡大される。

【0018】式(3)は無限画像に適用されるものであって、有限画像には適用されない。それが有限画像に当てはまったとしたら、フーリエーメリン極ー対数係数を得るのにO(N log N)回の演算(すなわち、N log Nのオーダーの回数の演算)が必要であり、係数の全ての循環シフトについて正規化相関係数を計算するのに、畳込み定理によって、O(N log N)回の演算が必要であると考えられる。そこで、回転および拡大/縮小は、O(N log N)回検出することになると考えられる。連続画像ではなく離散画像を用いると、2個の画像間でのおよび極一対数表示の計算での若干のサンプリング誤差が生じる。

[0019]

【発明が解決しようとする課題】実際には、高解像度画像および画素間補間を用いることで、それらの誤差を最低限にすることができる。残念ながら、以下の2つの理由から、この理論は有限画像には適用されない。

【0020】 1. 妨害(オクルージョン) 誤差: 有限画像の回転、拡大/縮小または並進移動によって、画素データの一部が画像枠から出て行くか、あるいはいくらかの新たな画素データがその枠に入るようになる。

【0021】2. タイリング(Tiling)誤差:有限画像のFFT(高速フーリエ変換)は、画像面内においてタイル貼りするようにその画像を無限に反復することで求められる。このような反復処理がなされた画像のことをタイリング画像と呼ぶ。回転と拡大/縮小は、タイリングでは可換ではない。

【0022】画像が、図1(a)のように、一様で十分に

大きい背景(バックグラウンド)に対して形を描く場合、変換中は一様なバックグラウンドの画素のみが画像枠を出入りすることから、データの損失がない。これは、例えばMRI(磁気共鳴イメージング)などのように、検査対象画像が人体外の一様なバックグラウンドとともに人体断面を描出するような一部の医療用イメージング作業に当てはまる。図2(a)に示したように背景が一様でなかったりパディング(padding)が不十分である画像の場合、変換によって妨害誤差が生じて、相関ピークが別の位置にシフトしたり、重大な劣化が生じる場合がある。

【0023】ストーンらが回転および拡大/縮小について指摘しているように(H. Stone etal., "A Note On Translation, Rotation, And Scale-Invariant Image Registration," NEC Research Institute Technical Report, No. 97-115R(1997))、さらにはアリニーらが並進移動について指摘しているように(Alliney et al.,"Digital Registration Using Projections," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 2, pp. 222-233, 1986年3月)、90°の整数倍の回転の場合およびパディングされた画像の短距離の並進移動の場合を除き、タイリング調度のFFTをとる場合には、タイリング誤差が不可避である。離散有限画像のフーリエ変換は、高強度の「十」形状としてフーリエーメリン空間に現れるタイル間の境界を有する(図2での列(B)を参照)。このアー

間の境界を有する(図2での列(B)を参照)。このアーティファクト(偽像)は、画像内容の残りの部分からの係数よりも顕著である。ある先行技術の位置合わせ方法では、回転対称な画像枠を利用して、フーリエーメリン

空間でそのアーティファクトが見えるのを回避する(上記のE. DeCastro et al.を参照)。本発明は、以下に説明し、また未処理の正方形画像を用いるという従来のアプローチと両方の方法を比較する実験の結果によって確認されるように、より有効なアプローチを提供するものである。

【0024】いかなる誤差発生源とは無関係に、有限画像においてフーリエーメリンによる手法が良好に機能するよう十分に、無限画像の場合および有限画像の場合が密接に関連づけられる。しかしながら、文献に報告の方法では、相関関数において、ピーク相関が低く、信号/ノイズ比が小さい(B. Reddy et al. の上記文献; L. Brown, "A Survey Of Image Registration Techniques," ACM Computing Surveys, Vol. 24, No. 4, pp. 325-376(1992)を参照)。

【0025】それとは対照的に本発明は、相関関数における1に近いピーク相関と高い信号/ノイズ比を達成し、それらがあいまって位置合わせの正確さを大幅に向上させる方法を提供する。

[0026]

【課題を解決するための手段】全般的に言えば、本発明によれば、基準画像にパターン画像を位置合わせする方法が提供される。パターン画像と基準画像とは、拡大/縮小係数(スケール係数) s、回転係数 ϕ および並進ベクトル(Δ x, Δ y)によって規定される回転一拡大/縮小の移動(Rotation-Scale-Translation:RST)変換によって互いに異なっている。フーリエーメリン不変量を用いて、基準画像 r とパターン画像 p との間のRST変換の回転パラメータ、拡大/縮小変化パラメータおよび並進移動パラメータを分離することにより、画像位置合わせを行う。

【0027】本発明の好ましい実施態様においては、本 発明の方法には、前処理の段階、拡大/縮小の段階、回 転の段階および並進移動の段階が含まれる。

【0028】前処理の段階では、基準画像とパターン画像を、画素領域からフーリエーメリン領域に変換して、それぞれ変換基準画像および変換パターン画像を得る。次に、変換基準画像と変換パターン画像をデカルト座標(x, y)座標から極ー対数(logg(半径),角度)座標に変換する。ここで、Bは大域定数対数底である。

【0029】拡大/縮小の段階では、1以上の可能な(potential)拡大/縮小係数が復元される。極一対数(logB(半径),角度)基準画像と極一対数(logB(半径),角度) がターン画像が、それらの角度軸方向に沿って合計されて、それぞれ基準スケールシグネチュア(scale signature)およびパターンスケールシグネチュアを与える。次に、正規化相関を用いて、基準サイズスケールシグネチュアをパターンスケールシグネチュアに相関させ、相関スケールシグネチュアを得る。スケールシグネチュアの組を含んでいる相関スケールシグネチュ

アの極大を検出する。最後に、対数底Bを、各スケール シグネチュアでべき乗し、1以上の可能な拡大/縮小係 数を得る。実際の拡大/縮小係数は、並進の段階におい てこの1以上の可能な拡大/縮小係数から求められる。

【0030】回転の段階では、回転係数 φ が復元される。極一対数(log_B (半径),角度)基準画像および極一対数(log_B (半径),角度)パターン画像がそれらの log_B (半径)軸方向に合計されて、それぞれ基準回転シグネチュアとパターン回転シグネチュアを与える。次に、正規化円形相関を用いて、基準回転シグネチュアをパターン回転シグネチュアに相関させて、相関回転シグネチュアを得る。最後に、回転係数 φ を含んでいる相関回転シグネチュアの最大値を得る。

【0031】並進移動の段階では、実際の拡大/縮小係 数 (スケール係数) s および並進ベクトル(Δx, Δy) が復元される。パターン画像を $-\phi$ だけ回転して、回転 パターン画像を得る。各可能な拡大/縮小係数につい て、可能な拡大/縮小係数の逆数によって、回転パター ンを再び拡大/縮小させて、候補パターンを得る。各候 補パターンについて、可能な並進ベクトルを求める。可 能な並進ベクトルは、候補パターンをその可能な並進ベ クトルだけ並進移動させた場合に、基準画像と並進後の 候補パターンとの間の最も高い相関を与えるもののこと である。最後に、基準画像に対して最高の相関を与える 並進後の候補パターンを選択する。可能な拡大/縮小係 数と選択された候補パターンに関連する可能な並進ベク トルは、それぞれ、実際の拡大/縮小係数 s と実際の並 進ベクトル(Δx, Δy)を含む。したがって、各RST 変換パラメータが効果的に復元される。

【0032】別の実施態様は、拡大/縮小係数sまたは回転係数 ϕ のいずれかが既知である場合に、残りのRST変換パラメータを復元するためのものである。

【0033】画像位置合わせの正確さを高めるために本 発明の方法において使用できる各種のオプションのフィ ルタが提供される。

【0034】従って、本発明の目的は、所与の基準画像 に合致してパターン画像をアライメントすることができ る画像位置合わせ方法を提供することにある。

【0035】本発明の別の目的は、2個の画像の間のR ST変換を規定する変換パラメータを復元する画像位置 合わせ方法を提供することにある。

【0036】本発明のさらに別の目的は、相関関数における高いピーク相関と高い信号/ノイズ比を達成し、これらがあいまって位置合わせの正確さを大いに向上させる画像位置合わせ方法を提供することにある。

【0037】本発明の他の目的は、添付の図面と関連させた以下の説明を考慮することで、より容易に理解できよう。

[0038]

【発明の実施の形態】上記のように本発明は、ノイズお

よびアライメントからの妨害(オクルージョン)の存在 下に、回転-拡大/縮小-移動(「RST; Rotation-S cale-Translation」)変換によって互いに異なっている 2個の画像を位置合わせする方法を提供する。詳細に は、フーリエーメリン(Fourier-Mellin)不変量を用い て、基準画像rとパターン画像pの間のRST変換の回 転パラメータ、拡大/縮小パラメータおよび並進パラメ ータを分離することによって、画像位置合わせ(image r egistration)を行う。本発明の方法の各工程および処理 は、好適にプログラミングされた汎用コンピュータを用 いて行うのが好ましいが、そのような処理は所望に応じ て、専用のハードウェアその他の特殊装置で行うことも できることに留意すべきである。そこで、本明細書に記 載のプログラム、アルゴリズム、プロセス、方法など は、いかなる形でも特定のコンピュータまたは装置に限 定されるものではない。

【0039】本発明の方法について説明する前に、有限 画像についてのフーリエーメリン法を説明することが、 本発明に関しての理解を深める上で役立つだろう。

【0040】 A. 有限画像についてのフーリエーメリン法: この節では、単純なフーリエーメリン法を用いた場合、特定の性質を有する人工的な理想化された画像については、全ての発生源からの上述の累積誤差が小さいものとなり得ることを示す。しかしながら、現実に遭遇する実際の非理想画像の場合、その誤差は大きいことが示される。

【0041】フーリエーメリン不変量の特性が有限画像に与える効果を強調する2種類の実験について説明する。図1に示した第1の実験は、フーリエーメリン空間における無限画像とかなり類似した挙動を示す種類の理想画像の一つを調べるものである。図1の列(A)に示した、一様な(黒)の背景を有する高コントラストの単純な画像は、ほぼ円形であって、対比を高める背景上に置かれたある種の理想画像を代表するものである。図2に示した第2の実験は、実際の衛星画像類の一つを調べるものである。図2の列(A)に示した画像枠にある低コントラストで詳細な画像は、衛星画像およびある種の医療画像の典型的なものであり、誤差が無視できない実際の非理想画像類の代表するものである。

【0042】図1の列(A)には、左から右へ水平方向に配置された、(1)64×64画素の理想化された有限離散基準画像;(2)角度45°だけ回転した基準画像に相当する回転画像;(3)係数2.00だけ拡大した基準画像に相当する拡大/縮小画像;(4)(-16,-16)画素だけ移動した基準画像に相当する並進移動画像の4個の画像を示してある。離散画像を回転・拡大/縮小することで生じる誤差を最小にするため、回転画像および拡大/縮小画像についての画素値を計算する際に、線形補間を用いた。図1の列(B)には、上記4種類の画像のおのおのについて、フーリエーメリン係数のうち非ゼロ

である係数の等高線プロットを示してあり、変換(回転、拡大/縮小、並進移動)の効果を観察することができる。この基準画像の場合、画素領域での角度 φ の回転は、フーリエーメリン領域での $-\varphi$ の回転とほぼ等価であることに留意する。画素領域でsだけ拡大するということは、フーリエーメリン領域でsだけ縮小し、さらに振幅にs2を乗ずることとほぼ等価である。並進移動による効果はない。調べると、図1におけるフーリエーメリン変換が、無限画像の変換の特性に非常に近い特性を示して、回転パラメータおよび拡大/縮小パラメータを復元することが、明らかである。

【0043】図2には、実際の衛星画像について行った同じ実験の結果を示してある。図2の列(A)は、図1の列(A)に示した単純な基準画像と同じ変換(回転、拡大/縮小、並進移動)を行った64×64画素の衛星画像(「基準画像」)を示してある。図2の列(B)には、図2の列(A)に示す画像のフーリエーメリン変換を示してある。「+」形状のアーティファクトによって、回転あるいは拡大/縮小された係数の動きが不鮮明になっていることに留意する。並進画像のフーリエーメリン変換が元の基準画像の変換と同一ではないことから、フーリエーメリン領域は、並進移動に対して不変ではない。

【0044】画素レベルの変換Mが、回転、拡大/縮小および並進移動の組み合わせである場合、フーリエーメリン空間における理想の場合(無限画像の場合)の係数および実際の(有限画像の場合)係数からの差は累積的であることから、先行技術のフーリエーメリン変換に基づく方法では、十分な性能が得られない。

【0045】B. 新規な画像位置合わせ方法:本発明の 画像位置合わせ方法は、拡大/縮小係数(スケール係 数) s、回転係数 φ および並進ベクトル $(\Delta x, \Delta y)$ と いうRST変換の3種類の変換パラメータそれぞれにつ いて1段階の計3段階で機能するものである。図3は、 本発明の方法の全体を示すフローチャートである。本発 明の方法は、前処理段階10、拡大/縮小段階20、回 転段階30および並進移動段階40を有する。前処理段 階10では、基準画像とパターン画像を作成し、これら を拡大/縮小段階と回転段階で使用するのに適した形に 変換する。拡大/縮小段階20では、1以上の可能な(p otential)拡大/縮小係数を復元する。後述するよう に、1またはそれ以上の可能な拡大/縮小係数を復元す ることができる。可能な拡大/縮小係数が1個のみ復元 された場合、その1個の可能な拡大/縮小係数が実際の 拡大/縮小係数 s となる。本発明の方法はまた回転段階 30を備えているが、そこでは、回転係数 ϕ が復元され る。本発明の方法はさらに並進移動段階40を備えてい るが、そこでは並進ベクトル(Δx, Δy)が復元され る。最後に、拡大/縮小段階20で復元される「1以上 の可能な拡大/縮小係数」が複数の可能な拡大/縮小係 数である場合、実際の拡大/縮小係数 s は、並進移動段

階40において、その複数の可能な拡大/縮小係数から 求められる。拡大/縮小段階20と回転段階30とは独 立であり、並行して行うことができる。回転係数および 1以上の可能な拡大/縮小係数が分かってからでなけれ ば、並進移動段階40に進むことはできない。

【0046】本発明の方法についての以下の説明は、無限の連続画像についての変換パラメータを復元するために、フィルタ、変換および相関をどのように用いるかを説明するものである。一般理論が有限の離散画像には完全には適用されない理由について説明し、妥当な近似を行う本発明の方法について説明する。最後に、本発明の方法が、非常に正確で、高い信号/ノイズ比を有することを確認する実験結果を示す。

【0047】 1. スケールシグネチュアおよび位置合わせの拡大/縮小段階: 拡大/縮小段階の目的は、式(2) における拡大/縮小係数 s、あるいは実際の拡大/縮小係数を含む可能な拡大/縮小係数の集合を復元することにある。並進移動および回転がある場合にこのパラメータを復元するために、画像を並進移動・回転不変空間に写像する。その新たな空間で、画像についての「スケールシグネチュア(scale signature)」を計算する。スケールシグネチュアは、拡大/縮小に伴って変化し、有限画像に対する回転や並進移動に対しては不変である。有

限の離散画像の場合、スケールシグネチュアが並進移動および回転の変化に対して抵抗力を有し、したがって、スケールシグネチュアを用いて拡大/縮小係数 s を効果的に復元できることが、実験の結果から明らかになっている。

【0048】写像変換Sは、基本的には、フーリエーメリン並進不変性に基づいたものである。フーリエーメリン領域の極ー対数写像では、画素の拡大/縮小操作および回転操作は、直交軸方向に行われる。 θ 軸方向に積分し、半径と総画像エネルギーとの積によって除算することで、画像回転に対して不変の一次元関数 $S_r(log_B\rho)$ が得られる。この一次元関数がスケールシグネチュアある。無限画像の場合、スケールシグネチュアは、 S_r を一 log_B sだけ拡大もしくは縮小させることが、 S_r を一 log_B sだけ並進移動させることと等価である、という性質を有する。正規化相関をスケールシグネチュアについて実行すると、正規化係数は無関係になる。正規化を無視すると、r(x,y)から $S_r(log_B\rho)$ への変換は下記式で与えられる。

【0049】 【数5】

$$R(\rho\cos\theta, \rho\sin\theta) = R(\omega_x, \omega_y) = \left| \iint G(r(x, y)) e^{-j2\pi(\omega_x x + \omega_y)} dx dy \right|$$
 (5)

$$S(r) = S_r(\log_B \rho) = \frac{1}{\rho} \int_0^{\pi} R(\rho \cos \theta, \rho \sin \theta) d\theta$$
 (6)

式中、Gは、有限画像の場合のアーティファクトを補正するのに使用される非線形フィルタである。無限画像の場合、Gは単位フィルタ(identity filter)である。実際の画像のフーリエ変換は 180° 回転対称性を有することから、積分範囲は2のファクタだけ小さくし得ることに留意する。画素領域における任意のRST変換は、S領域における $-10g_8$ sだけの並進移動(シフト)に等価であることから、2個の画像のスケールシグネチュア間の正規化(非円形)一次元相関係数は、 $-10g_8$ sにおいて1.0となるだろう。これは、単純な一次元相関を用いて拡大/縮小パラメータを復元できることを意味している。

【0050】離散画像の場合、連続関数 S_r は、その係数が θ に関する極一対数フーリエーメリン空間における補間点上の合計を意味する離散関数である(補間によって生じる誤差を最小化するのに使用できるデカルト画像から極ーフーリエ画像への直接変換は公知である。例えば、上記のAlliney et al.を参照。)。有限画像の場合、画像領域での拡大/縮小操作によって生じるS領域シフトによって、一部の画像画素が、 S_r の元の範囲から出入りすることがある。拡大/縮小操作によっても一

部の画像画素が元の画像枠から出入りすることがあり、フーリエ変換の個々の係数とともに、フーリエ変換の全体的な振幅を変化させる。有限フーリエ変換時における画像の内在的なタイリングによって生じる不連続は、フーリエーメリン係数に対して、強度の大きい、拡大/縮小に対して不変の「+」形状を付与し、この「+」形状は、画像固有の係数の拡大/縮小に比べて著しく大きくなり、拡大/縮小変化を観察することを困難にする。

【0051】少なくとも1つの可能な拡大/縮小係数(実際の拡大/縮小係数sを含む)の好ましい復元方法が、図4、図5のフローチャートに示してある。図4には、すくなくとも1つの可能なサイズ変化係数と回転係数 φ との両方を復元する上で一般的な、ある前処理を示してある。この前処理への入力は、基準画像r(110r)とパターン画像p(110p)である。各画像は、一連のステップで処理され、そのうちのいくつかのステップは、基準画像とパターン画像の両方で類似しており、これらは、図4および図5では、基準画像についての添字「p」によって区別してある。

【0052】前処理は、オプションのステップ112か

ら始まり、そこでは、各画像についてウェーブレット分 解112を行うことができる。次に、好ましくは、フィ ルタ処理ステップ114を各ウェーブレット分解画像に ついて行い、アーティファクト除去プレフィルタGを用 いてアーティファクト(偽像)を除去する。アーティフ ァクトは、その操作を行わなければ後のフーリエーメリ ン変換時に生じて、実際のデータを不鮮明にする望まし くない影響を与え、正確な相関を妨害する。次に、各画 像、典型的には最初は画素領域にある各画像について、 ステップ116においてフーリエーメリン変換を行っ て、それらの画像をフーリエーメリン領域に変換する。 フーリエーメリン変換によって、デカルト座標(x,y) 座標にフーリエーメリン変換画像が得られ、次にそれを ステップ118において極ー対数(| ogg(半径),角 度)座標(Bは大域定数対数底)に変換する。Bは任意 の定数であり、それの特定の値はさほど重要ではなく、 何らかの所望の形で選択することができる。例えば、B についての好適な値は2である。別の有用な値は、B= (O. 425N) ^(1/N)を用いて計算することができ る。式中、Nは、(logg(半径),角度)座標系のあ るコンピュータ表現での離散表現での半径値の数値であ る。

【0053】ステップ116と118は、好ましくは、当業界で公知であって、例えば上述のアリネー(S. Alliney)の論文に記載されているように、1回の操作で行われる。後述するように、ステップ110からステップ118までを含む前処理は、拡大/縮小段階20において少なくとも1つの可能な拡大/縮小係数を復元する前と、回転段階30において回転係数 φ を復元する前に、全く同様に行われる。

【0054】前処理が完了し、変換画像を極座標に変化 した後、少なくとも1つの可能な拡大/縮小係数を復元 するための専用の処理を図5に示したように進める。最 初に、ステップ120においで、ステップ118(図 4) で得られた極一対数基準画像および極一対数パター ン画像をそれぞれ、それらの角度軸方向に合計して、そ れぞれ一次元基準スケールシグネチュアおよび一次元パ ターンスケールシグネチュアを得る。次に、所望に応じ て、オプションのステップ122において、スケールシ グネチュアを安定させスケールシグネチュアの信号// イズ比を上昇させるフィルタHを用いてスケールシグネ チュアについてフィルタ処理を行い、後述するように、 相関の正確さを向上させることができる。次に、ステッ プ124で、正規化相関を用いて、フィルタ処理された スケールシグネチュアを相関させる。正規化相関によっ て、1以上の極大(スケールシグネチュアシフト)を有 する相関スケールシグネチュア得られ、この相関スケー ルシグネチュアは、ステップ126で検出される。最後 に、ステップ128において、対数底Bを各スケールシ グネチュアだけべき乗し、少なくとも1つの可能な拡大

/縮小係数 130 を得る。スケールシグネチュアの相関によって、複数の可能な拡大/縮小係数が得られる。実際には、後述するように、最終的な並進移動段階 400 実行中に $1\sim5$ 個のピークを調べて、実際の拡大/縮小係数 s を同定することが必要である。

【0055】2個の有限離散画像におけるスケールシグネチュアを調べることでいつも拡大/縮小係数を復元できるとは限らないが、実際には、Gを選択して有限変換によって生じるアーティファクトを最小化すれば、スケールシグネチュアにおいて全体的なシフトを肉眼で見ることができる場合が多い。本発明は、ステップ114(図4)においてこの観察を用い、拡大/縮小パラメータの復元を試みるものである。

【0056】相関(ステップ124)以前のステップ は、フィルタ処理されたS変換を実行するものである。 Wは計算範囲を縮小するために使用されるウェーブレッ ト分解である。正規化相関とそれに続くピーク検出によ って、正規化相関係数が極大となるS領域シフトのリス トが返される。極ー対数写像で使用される対数底Bの逆 数をこれら各シフトでべき乗することで、拡大/縮小係 数の集合が得られる。これらの各拡大/縮小係数は、基 準画像 r およびパターン画像 p に関係する拡大/縮小係 数についての可能性の高い値である。実際の拡大/縮小 係数を求めるには、この節で後述するように回転パラメ 一タを復元し、画像上での回転を取り消し、並進移動相 関が最大である拡大/縮小係数を選択する。拡大/縮小 係数について上限または下限が分かっている場合には、 その範囲外の全ての候補を除外して、必要な計算量を減 らすことができる。

【0057】GがO(N log N)となるように選択さ れると仮定すると、フーリエーメリン変換および極一対 数写像にはN Iog Nの程度の回数の計算が必要であ る。 $log_{R} \rho$ 軸への投影(θ による積分)には、さら $ICN-N^{1/2}$ 回の加算を必要とする。そこで、スケール シグネチュアSrおよびSrを得るには、総計算回数はO $(N \mid O \mid N)$ となる。さらに追加の $N^{1/2} \mid O \mid N$ 程度の回数の演算を行うことで、一次元正規化相関およ びピーク検出を行うことができる。基準画像 r およびパ ターン画像pについてk次のウェーブレット分解を行 い、フーリエーメリン変換への入力として低ー低サブバ ンドを用いることで、全体の計算を4kのファクタで高 速化することができる。k次ウェーブレット分解の低ー 低サブバンドは、実質的に、元の画像が各次元方向にk のファクタだけ解像度低下したものである(G. Strang et al., Wavelets And Filter Banks, Wellesley-Cambr idgePress, pp. 15-35 (1996)参照)。拡大/縮小変換 が解像度とは独立であることから、ウェーブレット分解 を用いても、kが大きすぎて画像における形状の大半が サンプリング解像度より小さくならない限り、位置合わ せの結果にはほとんど影響しない。ウェーブレットの使 元の画像の並進移動および拡大/縮小に対して抵抗力を 有することが明らかになっている。ただし、全体的な絶 対値の大きさの変化は起こり得る。

【0059】 ρ 軸方向での極フーリエーメリン係数を積分することで、並進移動および拡大/縮小に不変である角度の一次元関数が得られる。0は総画像エネルギーに関して正規化されていないが、正規化相関に影響を与えない。0(r)は下記式によって与えられる。

【0060】 【数6】

$$\Phi(r) = \Phi_{r}(\theta) = \int J(R(\rho\cos\theta, \rho\sin\theta))d\rho \tag{7}$$

式中、」は、拡大/縮小係数がない(s = 1)ことが分かっている有限画像の場合に適用される点別の重み関数である。それ以外の場合、」は1であると仮定する。

【0061】無限連続画像の場合、画像領域で角度 φ だけ回転することは、0領域で $-\varphi$ だけシフトすることに相当する。これは、 0_r と 0_r 2 0_r 20

【0062】離散型で有限の画像についてのスケールシ グネチュアに関する説明は、回転シグネチュアについて もよく当てはまる。無限連続画像の場合と有限離散画像 の場合の間で認められる最大の不一致点は、有限離散画 像の場合にはフーリエーメリン係数において「+」形の アーティファクトであるのが普通であるということであ る。Gを適切に選択することで、以下に説明するよう に、そのアーチファクトが低減される。Gによる画素領 域フィルタに加えて、フィルタ」を用いて、画像テクス チャにおけるエッジ部からのフーリエーメリン係数をよ り強く重み付けする。スケールシグネチュアの場合とは 異なり、回転シグネチュアの相関によって、しばしば、 実際の回転パラメータの近くに1に近い値を有する狭い ピークが得られ、高い信号/ノイズ比が示される。その ため、回転シグネチュアの正規化相関の単一ピークのみ を用いて、回転パラメータをモジューロ180°で正確 に求めることができる場合が多い。

【0063】回転係数 φ を復元するための好ましい処理 を図4および図6のフローチャートに示してある。図4は前処理を示し、図6は回転段階30に固有の好ましい 操作を示している。拡大/縮小段階の場合同様に、基準

画像 r (110r) とパターン画像 p (110p) につい て、図4に示しかつ上述した前処理を行う。再度、各画 像を一連のステップで処理する。その際、最初の部分は 両方の画像で同様であり、図4および図6では、基準画 像についての添え字「r」およびパターン画像について の添え字「p」によって両者を区別してある。ステップ 110~118の前処理(基準画像とパターン画像の両 方について)は、回転段階30の以前の部分において は、拡大/縮小段階20の以前に実施される同じステッ プと同一である。これらの前処理段階は、拡大/縮小段 階と回転段階との各段階について別個に行うことができ るが、そうではなく、それらの段階をまとめて行い、次 にステップ118の出力を、拡大/縮小段階20におけ るステップ120および回転段階30におけるステップ 140の両方で用いることが好ましいということは、留 意すべき点である。

【0064】回転段階30では、ステップ1180出力を、ステップ140でオプションのフィルタ」を用いてフィルタ処理することで、そこに存在するエッジ部を強調することができる。その後、ステップ118(図4)で得られる極ー対数($10g_8$ (半径)、角度)基準画像および極ー対数($10g_8$ (半径)、角度)パターン画像をそれぞれ、ステップ142でそれらの $10g_8$ (半径)軸方向に合計して、それぞれ一次元基準回転シグネチュアを得る。次にステップ144で、正規化円形相関を用いて、回転シグネチュアを相関させる。正規化円形相関によって、単一の最大値を有する相関回転シグネチュアが得られ、それはステップ146で検出される。その最大値を与える角度シフトが、結果として得られる回転係数 $\phi148$ である。

【0065】位置合わせの回転段階におけるフーリエーメリン変換(「FMT」)は、拡大/縮小段階について使用されるものと同一であることから、O(N log N)回の計算は 1 回だけ行う必要がある。回転については、J重み付け係数を用いる場合、さらにN回の乗算が必要である。 ρ 軸への投影では、 $N-N^{1/2}$ 回の加算を

必要とする。従って、回転シグネチュアは、 $O(N \mid o \mid N)$ 回の演算で得ることができる。一次元円形相関では、さらに $O(N^{1/2} \mid o \mid g \mid N)$ 回の演算が必要である。拡大/縮小の場合同様、回転は、妥当な画像解像度で検出できることから、入力画像のk次ウェーブレット変換によって、 $O((N \mid o \mid g \mid N)/4^k)$ 回の演算で回転パラメータを復元することができる。拡大/縮小段階と回転段階について同じフィルタ処理フーリエーメリンーウェーブレット変換を用いる場合、回転段階では、拡大/縮小段階を行った後に、 $N/4^k$ 程度の回数の独立の演算を行う必要がある。

【0066】3. 位置合わせの並進移動段階: 並進移動 段階の目的は、回転係数φと1以上の可能な拡大/縮小 係数を与えられて、並進移動パラメータ Δxおよび Δy を求めるとともに、1以上の可能な拡大/縮小係数のど れが実際の拡大/縮小係数 s であるかを決定することに ある。並進移動段階40(図3)について好ましい処理 を図7のフローチャートに示す。並進移動段階は、パタ ーン画像を一φだけ回転させて回転パターン画像を得る ステップ160から開始する。これにより、回転パター ン画像では回転が「取り消される」ことになる。次に、 各可能な拡大/縮小係数について、その可能な拡大/縮 小係数の逆数だけ回転パターン画像を拡大あるいは縮小 することにより、候補パターンを得る(ステップ16 2)。したがって、各候補パターンは、1個の可能な拡 大/縮小係数と関連し、各候補パターンでは、回転と拡 大/縮小の両方の影響が取り消される。ある候補パター ンについて取り消される拡大/縮小は、その候補パター ンと関連する可能な拡大/縮小係数に相当する。次のス テップ164では、各候補パターンについて、可能な並 進ベクトルを求める。可能な並進ベクトルは、候補パタ ーンをその可能な並進ベクトルだけ並進移動させた場合 に、基準画像と並進移動後の候補パターンとの間に最も 高い相関を生じる(1999年2月2日発行のShamoon らによる米国特許5,867,609号およびH. Stone, "Progre ssive Wavelet Correlation Using Fourier Methods," IEEE Transactionson Signal Processing, Vol. 47, N o. 1, pp. 97-107 (1999年1月)参照)。最後に、 ステップ166において、基準画像との最高の相関を生 じる並進移動後の候補パターンを選択する。選択した候 補パターンと関連する可能な拡大/縮小係数と可能な並 進ベクトルはそれぞれ、実際の拡大/縮小係数 s および 実際の並進ベクトル(Δx, Δy)を含む。

【0067】画像において無効であることが分かっているデータがある場合、基準画像 r およびパターン画像 p についてそれぞれマスクmおよび h を用いることで、追加の計算を行うことなく、並進移動段階中それらの閉塞領域を無視することができる。これらのマスクでは、対応する画像画素が無効である場合には値が "1"であり、対応する画素が無効である場合には値が "0"である。これらのマスクでは、補間およびウェーブレット分解によって得られる小数値をとることができる。以下、拡大/縮小係数が分かっている場合を誘導し、多くの可能な拡大/縮小係数がある場合にこの場合をどの程度拡張できるかを示す。多くの可能な拡大/縮小係数がある場合が、位置合わせの拡大/縮小段階の実際の出力に合致する。

【0068】基準画像 r およびパターン画像 p は、無限連続画像であるとする。画像 p' は、回転および拡大 / 縮小の影響を取り消した後の画像 p であるとする。 h' は、回転および拡大 / 縮小の影響を取り消した後のマスクトであるとする。 φ と g が正確に復元された場合、画像 g は並進移動シフトのみ基準画像 g と異なる。有限画像の場合、画像 g および基準画像 g も、データが画像枠から出入りする時に生じる妨害(オクルージョン)だけ異なり得る。これらの妨害は、マスク g によって自動的に考慮される。

【0069】パターンマスクの大きさが画像マスクの大 きさより小さい場合について、バイナリ(二値)有効性 マスクを用いて、フーリエ領域での正規化相関係数を計 算することが知られている(H. Stone, "Progressive W avelet Correlation Using Fourier Methods," IEEE Tr ansactions On Signal Processing, Vol. 47, No. 1, pp. 97-107(1999年1月)参照)。パターン画像の並 進移動の関数としての正規化相関係数は、画像を適切に 整列するシフト位置で、ほぼ1の値を有する。この方法 を拡張して、画像の低解像度表示のための小数有効性マ スクが用いられている(M. McGuire et al., "Techniqu es For Multi-Resolution Image Registration In The Presence Of Occlusions," Proceedings Of The 1997 I mage Registration Workshop, pp. 101-122 (1997 年11月)参照)。有効性マスクmおよびh′を有する 画像rおよびp'の全ての並進移動シフトについての正 規化円形相関係数は下記式で表される。

[0070]

【数7】

$$C(r,p')_{x,y} = \frac{1}{\left(\widetilde{r}\otimes\widetilde{p}'\right)_{x,y} - \left(\frac{1}{(m\otimes h')_{x,y}}\right) (\widetilde{r}\otimes h')_{x,y} (m\otimes\widetilde{p}')_{x,y}} \sqrt{\left(\widetilde{r}^{(2)}\otimes h'\right)_{x,y} - \left(\frac{1}{(m\otimes h')_{x,y}}\right) (\widetilde{r}^{(2)}\otimes h')_{x,y}^{2} - \left(\frac{1}{(m\otimes h')_{x,y}}\right) (m\otimes\widetilde{p}'^{(2)})_{x,y}^{2}}}$$

$$(8)$$

式中、

[0071]

【外1】

8

は円形相関を表し、

[0072]

【数8】

$$\widetilde{x} = r.*m$$

$$\widetilde{r}^{(2)} = r.*r.*m$$

である。ここで、 【0073】 【外2】

は、ポイントーバイーポイント(逐点)の配列乗算である。畳込み定理により、このプロセスは有限画像において $O(N \mid o \mid g \mid N)$ 回で実効的に計算することができる

【0074】有限画像の場合、式(8)は、パターンマスクでの非ゼロの範囲がいずれの方向でも画像マスクの大きさの1/2より小さいことを仮定していることに、留

$$\begin{bmatrix} \Delta x \\ \Delta y \\ 1 \end{bmatrix} = \begin{bmatrix} s\cos\phi - s\sin\phi & 0 \\ s\sin\phi & s\cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} Dx \\ Dy \\ 1 \end{bmatrix}$$

並進移動によれば相関に関与する画素が非常に少ないことから、p' のわずかな部分のみがrと重複し、誤った結果を与え得る並進移動を扱う場合には、いくばくかの注意を払う必要がある。

【0077】並進移動段階では、拡大/縮小および回転を取り消すのにO(N)回の演算を行い、正規化相関を実行するのにO(N log N)回の演算を行う必要がある。 k次のウェーブレットを用いて並進移動のおおまかな推算値を求め、位置合わせを行うことが望ましい。 k次ウェーブレット分解によって、各方向に $\pm 2^{k-1}$ 画素の範囲で位置合わせ点を大まかに求めることができる。その大まかな推算値を考慮して、同じ粗並進移動への写像を行う 4^k 回の可能な精密並進移動によって、最高の分解能で、実際の並進移動の正確な値についての詳細な検索を行うことができる。相関関数がピーク値付近で平滑であると仮定すると、それは、バイナリ(二値)検索アルゴリズムによって、たったの 2^k 回の並進移動のみ

意すべきである。この仮定に反すると、円形シフトは並進移動とはもはや等価ではなくなり、フーリエ領域では計算を行うことができなくなる。画素領域での相関を計算するには、O(N²)回の演算が必要である。画像が同様の大きさである場合に、O(N²)回の演算を行うのを回避するため、各次元における大きさを2倍にするためにパディングされた画像およびマスクの版について相関を計算することができる。このパディングに関し、パディングされていない画像については、画素法よりフーリエ法の方が高速である。

【0075】本発明での並進移動段階は、復元したパラメータ φ とsを用いてパターンにおける回転と拡大/縮小を取り消し、画像p とマスクh を得るものである。次に、式(s)によって、全ての並進移動についての正規化相関係数を計算する。そのピークの位置は、基準画像rとパターン画像pとの間の並進移動差に直接関係する。ピークが (D_X, D_y) のシフト位置で起こる場合、式(s)についての並進パラメータは以下のようになる。

【0076】 【数9】

の調査に減らすことができる。この特性は画像に依存し、一般的には、連続性を示す画像に当てはまる。この 手順を用いると、並進移動段階についての総計算回数は $O((N log N)/4^k+Nk)$ 回である。

(9)

【0078】上記の議論は、拡大/縮小係数が既知である場合を検討したものである。しかしながら、本発明の方法の拡大/縮小段階では、単一の拡大/縮小係数は得られない。拡大/縮小段階では、可能性の高い拡大/縮小係数のリストが得られる。どの拡大/縮小係数が正しいかを決定するためには、各拡大/縮小係数ごとに並進移動段階を繰り返して、最も高い並進移動相関ピークを与える拡大/縮小係数を選択する。高分解能検索を適用する必要があるのは、粗分解能検索で最も高いピークを与えた拡大/縮小係数のみに対してのみである。nsが位置合わせの拡大/縮小段階によって得られる拡大/縮小係数の数であるとすると、並進移動段階での真の計算回数はO((nsNlog N)/4k+Nk)回である。回

転、拡大/縮小変化および並進移動の各パラメータの復元における総計算回数は、 $O((n_S N \mid log \mid N)/4^k + Nk)$ 回である。

【0079】<u>4. フィルタG、HおよびJ:</u> a. フィルタG

位置合わせの回転段階および拡大/縮小段階においてフーリエーメリン変換(「FMT」)を計算する場合に、フィルタ Gを用いることにより、有限画像の内在的なタイリングの影響を小さくすることができる。図8の列(A)には、同一画像の3種類の版、すなわち(1)フィルタ処理されていない画像、(2)「ディスク(円板状)」のフィルタまたはマスクを用いてフィルタ処理した画像、(3)本発明の「ぼかし」フィルタを用いてフィルタ処理した画像を示してある。図8の列(B)には、それら画像のフーリエーメリン変換の非ゼロ係数を示してある。

【0080】フィルタ処理されていない画像の場合、実際に画像のテクスチャを代表する中央の係数の上に、

「+」形状のアーティファクトが重畳している。このアーティファクトは、上記の内在的タイリングによってのみ生じて実際のデータを不鮮明にし、正確な相関を妨害することから、望ましくない。

【0081】回転対称の画像枠を用いることで、このアーティファクトを回避することができる(DeCastro et al. の上記の文献)。簡単な実験によって、それが有効であることが確認される。図8の列(A)の2番目の画像は、回転対称画像枠を適用した後の画像である。この場合、フィルタGはディスク状のマスクであり、所定の半径の外側の画素がゼロに設定されている。ディスクフィルタで処理された画像のフーリエーメリン変換は、

「+」形状のアーティファクトを示さない。しかしながら、変換から「+」アーティファクトを除去した後でも、残りの係数は、元の画像のものとは正確には一致しない。フィルタ処理されていない画像とディスクフィルタで処理された画像を比較すると、ディスクフィルタで処理された画像は大きい円形エッジ部を有し、画素が約25%少ない。それに応じて、フィルタ処理されていない画像のFMTでは、半径方向に分布したいくばくかのノイズと、形状の全体的変化とがある。これによって相関ピークが小さくなり、正確さに影響が出る場合がある。ただし、「+」アーティファクトが除去されることから、ディスクフィルタで処理された画像は、フィルタ処理されていないものよりも優れている。

【0082】本発明では、先行技術におけるフィルタ処理されていない画像やディスクフィルタの使用に対して、改良が行われている。詳細には、フィルタG、は好ましくは、対向する境界に対して画像の境界をぼかす新規な「ぼかし」フィルタからなる。このフィルタにより、変えられる必要がある画素はごくわずかとなる。図

8の列(A)の3番目の画像は、このようなぼかしフィル タで処理した画像である。ぼかしフィルタによって行わ れるぼかしを図9に特に示してあり、そこでは、図8の 列(A)の3番目の画像の9枚のコピーを互いにエッジ同 士でタイル状に隣接させて配置してある。好ましくは、 そして図9の中央にある画像に関して示されているよう に、ぼかしフィルタによって、画像の境界の所定数の画 素内に画素を補間して、画像の右縁部から画像の左縁部 あたりまで(または図9に示したように、元の画像に隣 接している場合には、画像のコピーの左縁部あたりま で)、そして画像の上縁部から画像の下縁部あたりまで (または図9に示したように、元の画像に隣接している 場合には、画像のコピーの下縁部当たりまで)、滑らか な線形遷移(画素値の移り変わり)が形成される。図8 の列(A)に示した大きさの画像では、フィルタは好まし くは画像境界の8画素の範囲内の画素を補間するもので あるが、その数字は必須のものではなく、所望に応じて 調節することができる。画素を滑らかにして上記の遷移 を行うフィルタは、所望のぼかし効果を得るのに十分で ある。

【0083】画像の境界付近の画素以外についてそのようなフィルタを用いても効果がないことから、大半の画素が変化しない。ぼかしフィルタで処理された画像のFMTは、その画像のフーリエーメリン係数の非ゼロ成分を示すものである。ディスクフィルタ同様、このぼかしフィルタは、図8の列(B)に示したように、「+」アーティファクトを有効に除去する。しかしながら、処理されていない画像のFMTは、フィルタで処理された画像のFMTは、フィルタで処理された画像のFMTは、フィルタで処理された画像のFMTは、フィルタで処理されている。従って、画像を循環的に取り巻くエッジ部をぼかすフィルタ Gは、有効なフーリエーメリン係数をほとんど変えることなく、「+」アーティファクトを除去する上で優れており、それによって全体的な相関の正確さが向上する。

【0084】b. フィルタH

フィルタHは、拡大/縮小段階において、相関前のスケールシグネチュアの信号/ノイズ比を上昇させるために使用される。画素が画像枠から外に出て行ったり画像枠の中に入ってきたりするため、拡大/縮小変換下では、有限画像の内容が大きく変化する場合がある。そこでフィルタHを用いて、スケールシグネチュアを安定させることができる。移動平均を引くことでスケールシグネチュアから一次の傾向(trend)を除去するフィルタによって、その安定化が得られる。それを得る一つの方途は、xを画像データを表す長さNのベクトルとするというものである。以下のようにする。

[0085]

【数10】

$$y_i = x_i - \frac{10}{N} \sum_{j=i-(N/10)}^{i+(N/10)} x_j, \quad \Box \Box C \quad (N/10) < i < (N-(N/10))$$
 (10)

上記のアルゴリズムを用いると、得られるベクトルは、 Hフィルタで処理された出力となる。

画像におけるエッジ部に対応するフーリエーメリン係数

【0086】<u>c. フィルタ</u>」

を選択的に重み付けするために、フィルタ」が使用され る。画素領域での拡大はフーリエーメリン係数を縮小 し、それらの係数は適切には重み付けされないことか ら、拡大/縮小係数がない場合にフィルタJを適用する のが最も良い。フーリエーメリン変換の極表示では、画 像テクスチャのエッジに対応する係数は、θ軸に平行か つρ軸の中心近くにある。ρが小さい係数は、画像にお けるDC(直流)オフセットと低周波数成分を符号化す るものであり、ρが大きい係数は、非常に高い周波数情 報とノイズを表す。DC成分およびノイズ成分を低く抑 えながらエッジ部の係数を強調するガウス重み付けは、 「+」アーティファクト、画像における強度シフトおよ びノイズの残りのものを抑制しながら、形状のエッジ部 を強調するものである。フィルターは、特定の種類の画 像に適合するようチューニングして性能を高めたり、あ るいは任意の拡大/縮小変換のある任意の画像の一般的 な場合については除外することができる。

【0087】 5. 要旨および結論:本発明は、実際の画像対および極端な変換という困難な場合に、良好に機能する。回転、拡大/縮小および並進移動の検出を分離することで、検索空間の大きさを小さくする。プログレッシブなウェーブレット検索の使用とフーリエ領域での相関の計算により、全ての計算が非常に効率的となる。。際、本発明をテストする際に、試験用の画像対を得るのに要する時間は、本発明の方法によりそれらを位置合わせするのにかかった時間より長いことが認められた。画素フィルタとフーリエーメリンフィルタを導入することで、有限離散フーリエ変換によるアーティファクトが低減され、正確な位置合わせが達成される。G、Hおよびリフィルタを特定の分野からの画像に対してチューニングすることで、より優れた結果を得ることができる。

【0088】RST変換に加え、本発明の方法は、基準画像とパターン画像との間の輝度差が定数または線形である場合に良好に機能すると予想される。それらの輝度変化は、フーリエーメリン領域では一定の線形関数であることから、正規化相関関数によって無視される。並進移動を復元するのに使用される正規化画素相関の値は、線形および一定の輝度変化に対して不変であることは公知である。

【0089】以上、各種の画像位置合わせ方法について 説明・図示したが、本明細書に添付の特許請求の範囲の みによって限定される本発明の精神および広義の内容か ら逸脱しない限りにおいて、変更および修正が可能であ ることは、当業者には明らかであろう。

[0090]

【発明の効果】以上説明したように本発明は、基準画像とパターン画像との間のRST変換を規定する変換パラメータを少ない演算量で正確に復元でき、相関関数における1に近いピーク相関と高い信号/ノイズ比を達成し、基準画像とパターン画像との位置合わせの正確さが大幅に向上するという効果がある。

【図面の簡単な説明】

【図1】基準画像とその基準画像を回転させた画像、拡大/縮小した画像、並進移動させた画像からなる画素領域における4個の理想化された画像と、これら画像のフーリエーメリン領域における非ゼロ係数の等高線プロットとを示す図である。

【図2】基準画像とその基準画像を回転させた画像、拡大/縮小した画像、並進移動させた画像からなる画素領域における4個の実際の画像と、これら画像のフーリエーメリン領域における非ゼロ係数の等高線プロットとを示す図である。

【図3】本発明の画像位置合わせ方法の全体的な処理を 示すフローチャートである。

【図4】本発明の画像位置合わせ方法における、基準画像とパターン画像の前処理を示すフローチャートである。

【図5】本発明の画像位置合わせ方法における、1以上の可能な拡大/縮小係数を復元する処理を示すフローチャートである。

【図6】本発明の画像位置合わせ方法における回転係数 のを復元する処理を示すフローチャートである。

【図7】本発明の画像位置合わせ方法における、並進べクトル $(\Delta \times, \Delta y)$ および実際の拡大/縮小係数 s を復元する処理を示すフローチャートである。

【図8】フィルタ処理されていない画像、フィルタ処理されていない画像にディスクフィルタ処理した画像およびフィルタ処理されていない画像にぼかしフィルタ処理した画像からなる画素領域の3種類の画像(実線の黒い境界は画像の一部を含むものではなく、単に各画像の外側の境界を示すためのものである)と、フーリエーメリン領域におけるこれら画像の非ゼロ係数に対応する等高線プロットを示す図である。

【図9】図8の列(A)に示すぼかしフィルタ処理された 画像を9枚、エッジ部同士で隣接するようにタイル状に 配置した状態を示す図である。

【符号の説明】

- 10 前処理段階
- 20 拡大/縮小段階
- 30 回転段階

40 並進移動段階

【図1】

【図2】

【図8】

【図9】

フロントページの続き

F ターム(参考) 5B057 CA12 CB12 CD02 CD03 CD05 CD18 CE06 CG05 DA07 DB02 DC34 5L096 EA05 EA13 EA24 EA28 FA23 FA26 FA34 GA55