TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02B, 15 set 2023

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Se $f(x) = 1, 0 < x \le 1$, obtenha a série de Fourier da extensão ímpar de f(x) no intervalo $-1 \le x \le 1$.

SOLUÇÃO DA QUESTÃO:

A extensão ímpar é

$$f_I(x) = \begin{cases} 1, & 0 < x \le 1, \\ -1, & -1 \le x < 0. \end{cases}$$

No intervalo [-1, 1], com comprimento L = 2, uma base para as funções ímpares é formada pelo conjunto

$$\left\{\operatorname{sen}\frac{2n\pi x}{L}\right\}, n=1,2,3,\ldots$$

Segue-se o de sempre:

$$f_I(x) = \sum_{n=1}^{\infty} B_n \operatorname{sen} n\pi x,$$

$$f_I(x) \operatorname{sen} m\pi x = \sum_{n=1}^{\infty} B_n \operatorname{sen} n\pi x \operatorname{sen} m\pi x,$$

$$\int_{-1}^{1} f_I(x) \operatorname{sen} m\pi x \, \mathrm{d}x = \sum_{n=1}^{\infty} B_n \int_{-1}^{1} \operatorname{sen} n\pi x \operatorname{sen} m\pi x \, \mathrm{d}x$$

$$2 \int_{0}^{1} \operatorname{sen} m\pi x \, \mathrm{d}x = B_m \int_{-1}^{1} [\operatorname{sen} m\pi x]^2 \, \mathrm{d}x$$

$$\frac{2}{\pi m} [1 - (-1)^m] = B_m \blacksquare$$

2 [25] O processo de ortogonalização de Gram-Schmidt: dado um conjunto de n vetores linearmente independentes em \mathbb{R}^n , $V = \{v_1, v_2, \dots, v_n\}$, é possível obter um conjunto $F = \{f_1, f_2, \dots, f_n\}$ de vetores ortogonais entre si, e $E = \{e_1, e_2, \dots, e_n\}$ de vetores ortonormais, com o seguinte algoritmo:

$$f_{1} = v_{1}$$

$$e_{1} = \frac{1}{|f_{1}|} f_{1},$$

$$f_{2} = v_{2} - (v_{2} \cdot e_{1}) e_{1},$$

$$e_{2} = \frac{1}{|f_{2}|} f_{2},$$

$$f_{3} = v_{3} - (v_{3} \cdot e_{1}) e_{1} - (v_{3} \cdot e_{2}) e_{2},$$

$$\vdots$$

$$\vdots$$

$$f_{k} = v_{k} - \sum_{i=1}^{k-1} (v_{k} \cdot e_{i}) e_{i}$$

$$e_{k} = \frac{1}{|f_{k}|} f_{k},$$

até k = n. Usando a última equação acima, e o fato de que $e_i \cdot e_l = \delta_{il}$ para i e l entre 1 e k - 1, mostre que

$$\boldsymbol{f}_k \boldsymbol{\cdot} \boldsymbol{e}_l = 0, \forall l \in \{1, 2, \dots, k-1\}.$$

SOLUÇÃO DA QUESTÃO:

$$(f_k \cdot e_l) = \left(\left[v_k - \sum_{i=1}^{k-1} (v_k \cdot e_i) e_i \right] \cdot e_l \right)$$

$$= (v_k \cdot e_l) - \sum_{i=1}^{k-1} (v_k \cdot e_i) \underbrace{(e_i \cdot e_l)}_{\delta_{il}}$$

$$= (v_k \cdot e_l) - (v_k \cdot e_l) = 0 \blacksquare$$

$$\int x^2 e^{kx} dx = \frac{1}{k^3} \left[\left(k^2 x^2 - 2kx + 2 \right) e^{kx} \right],$$

a) [10] obtenha a série de Fourier complexa de

$$f(x) = x^2, \qquad 0 \le x \le 1;$$

b) [15] agora utilize a igualdade de Parseval,

$$\frac{1}{L} \int_{a}^{b} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2}$$

para obter o valor de

$$\sum_{n=1}^{\infty} \frac{1}{\pi^2 n^2} + \frac{1}{\pi^4 n^4}.$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \sum_{n=-\infty}^{+\infty} c_n e^{\frac{2ni\pi x}{L}};$$

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2ni\pi x}{L}} f(x) dx;$$

$$a = 0,$$

$$b = 1,$$

$$L = b - a = 1;$$

$$c_n = \frac{1}{1} \int_0^1 x^2 e^{-\frac{2ni\pi x}{L}} dx$$

$$= \frac{(k^2 - 2k + 2)e^k}{k^3} - \frac{2}{k^3};$$

$$k = -2\pi i n \Rightarrow e^k = 1;$$

$$c_n = \frac{(-2\pi n i)^2 - 2(-2\pi n i)}{(-2\pi n i)^3}$$

$$= \frac{4\pi^2 n^2 i^2 + 4\pi n i}{-8\pi^3 n^3 i^3}$$

$$= \frac{\pi^2 n^2 i^2 + \pi n i}{2\pi^3 n^3 i}$$

$$= \frac{i}{2\pi n} + \frac{1}{2\pi^2 n^2}, \qquad n \neq 0.$$

Claramente, o cálculo de c_0 precisa ser feito separadamente:

$$c_0 = \int_0^1 x^2 \, \mathrm{d}x = \frac{1}{3}.$$

Para obter a igualdade de Parseval neste caso,

$$\int_{0}^{1} x^{4} dx = \frac{1}{5};$$

$$|c_{0}|^{2} = \frac{1}{9};$$

$$|c_{n}|^{2} = \frac{1}{4\pi^{2}n^{2}} + \frac{1}{4\pi^{4}n^{4}};$$

$$\frac{1}{5} = \frac{1}{9} + \sum_{\substack{n=-\infty \\ n\neq 0}}^{\infty} \frac{1}{4\pi^{2}n^{2}} + \frac{1}{4\pi^{4}n^{4}}$$

$$\frac{4}{45} = \sum_{\substack{n=-\infty \\ n\neq 0}}^{\infty} \frac{1}{4\pi^{2}n^{2}} + \frac{1}{4\pi^{4}n^{4}}$$

$$\frac{16}{45} = \sum_{\substack{n=-\infty \\ n\neq 0}}^{\infty} \frac{1}{\pi^{2}n^{2}} + \frac{1}{\pi^{4}n^{4}}$$

$$\frac{16}{45} = 2 \sum_{n=1}^{\infty} \frac{1}{\pi^{2}n^{2}} + \frac{1}{\pi^{4}n^{4}}$$

$$\frac{8}{45} = \sum_{n=1}^{\infty} \frac{1}{\pi^{2}n^{2}} + \frac{1}{\pi^{4}n^{4}}$$

4 [25] Obtenha a transformada de Fourier de

$$f(x) = x^2 e^{-|x|},$$

sabendo que

$$\int_0^{+\infty} x^2 e^{-|x|} \cos(bx) \, \mathrm{d}x = -\frac{2(3b^2 - 1)}{(b^2 + 1)^3}.$$

SOLUÇÃO DA QUESTÃO:

Note que f(x) é uma função par.

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} x^2 e^{-|x|} e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} x^2 e^{-|x|} \left[\cos(kx) - i \sin(kx) \right] dx$$

$$= \frac{2}{2\pi} \int_{0}^{+\infty} x^2 e^{-|x|} \cos(kx) dx$$

$$= -\frac{1}{\pi} \frac{2(3k^2 - 1)}{(k^2 + 1)^3} \blacksquare$$