- **3.17.** Let (Ω, \mathcal{F}, P) be a probability space and let $X: \Omega \to \mathbf{R}$ be a random variable with $E[|X|] < \infty$. If $\mathcal{G} \subset \mathcal{F}$ is a finite σ -algebra, then by Exercise 2.7 there exists a partition $\Omega = \bigcup_{i=1}^{n} G_i$ such that \mathcal{G} consists of \emptyset and unions of some (or all) of G_1, \ldots, G_n .
 - a) Explain why $E[X|\mathcal{G}](\omega)$ is constant on each G_i . (See Exercise 2.7 c).)

2.7. a) Suppose G_1, G_2, \ldots, G_n are disjoint subsets of Ω such that

$$\Omega = \bigcup_{i=1}^{n} G_i$$

Prove that the family $\mathcal G$ consisting of \emptyset and all unions of some (or

- a). c) Let $\mathcal F$ be a finite σ -algebra on Ω and let $X\colon \Omega \to \mathbf R$ be $\mathcal F$ -measurable. Prove that X assumes only finitely many possible values. More precisely, there exists a disjoint family of subsets $F_1,\dots,F_m\in \mathcal F$ and real numbers c_1,\dots,c_m such that

$$X(\omega) = \sum_{i=1}^{m} c_i \mathcal{X}_{F_i}(\omega)$$

By the exercise 2.7, for
$$C:ER$$
, $I=1,...,n$,
$$E[X|G](\omega) = E\left[\sum_{i=1}^{n} c_i \chi_{G_i}(\omega)\right] = E[C] = C$$
and and C

b) Assume that $P[G_i] > 0$. Show that

$$E[X|\mathcal{G}](\omega) = \frac{\int_{G_i} XdP}{P(G_i)}$$
 for $\omega \in G_i$.

$$\int_{H} E[X|\mathcal{H}]dP = \int_{H} XdP, \text{ for all } H \in \mathcal{H}.$$

$$\int_{H} E[X|\mathcal{H}]dP = \int_{H} XdP, \text{ for all } H \in \mathcal{H}.$$

$$\int_{G_{i}} E[X|\mathcal{H}]dP = \int_{H} XdP, \text{ for all } H \in \mathcal{H}.$$

however,
$$\int_{G_i} \mathbb{E}[X|G]dP = \mathbb{E}[X|G]\int_{G_i} dP = \mathbb{E}[X|G]P(G_i)$$

c) Suppose X assumes only finitely many values a_1, \ldots, a_m . Then from elementary probability theory we know that (see Exercise 2.1)

$$E[X|G_i] = \sum_{k=1}^{m} a_k P[X = a_k | G_i]$$
.

Compare with b) and verify that

$$E[X|G_i] = E[X|\mathcal{G}](\omega)$$
 for $\omega \in G_i$.

Thus we may regard the conditional expectation as defined in Appendix B as a (substantial) generalization of the conditional expectation in elementary probability theory.

Using the previous tem,

$$E[X|G] = \frac{\int_{G_{i}} X diP}{\int_{G_{i}} \frac{\int_{K_{-i}}^{\infty} Q_{K} X_{GK} dP}{\int_{K_{-i}}^{\infty} Q_{K} X_{GK} dP} = \sum_{K_{-i}}^{\infty} \frac{\int_{G_{i}} X_{GK} dP}{\int_{K_{-i}}^{\infty} Q_{K} X_{GK} dP} = \sum_{K_{-i}}^{\infty} \frac{\int_{G_{i}} X_{GK} dP}{\int_{K_{-i}}^{\infty} Q_{K} X_{GK} dP} = \sum_{K_{-i}}^{\infty} \frac{\int_{G_{i}} X_{GK} dP}{\int_{G_{i}}^{\infty} Q_{K} Q_{K}} = \sum_{K_{-i}}^{\infty} Q_{K} Q_{K} Q_{K}$$

Alternative answer

We have
$$\mathbb{E}\left[\sum_{i=1}^{n} c_i \chi_{G_i}(\omega) \mid G_i\right] = \int_{G_i} \frac{\chi_{dP}(\omega)}{P(G_i)}$$

that
$$\mu(B) = \mu(B \cap A)$$

$$\mu(A)$$

we obtain