

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Álgebra Lineal (R211 - CE9)

2024

6.3 Transformaciones unitarias y ortogonales

Recordemos la última definición de la sección anterior:

Si $U \in \mathbb{C}^{n \times n}$ inversible y tal que $U^{-1} = U^*$ se llama matriz unitaria,

Si $O \in \mathbb{R}^{n \times n}$ inversible y tal que $U^{-1} = U^t$ se llama matriz ortogonal.

A nivel de transformaciones lineales, esto significa que $T \circ T^* = T^* \circ T = id_V$. Estos endomorfismos preservan el producto interno y por lo tanto las distancias. Toda esta información se resume en un teorema, cuya demostración no veremos pero dejamos como ejercicio intentarlo. Al menos algunas implicancias deberían salir.

Teorema 1 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, $dim(V) = n, T \in L(V)$. Son equivalentes:

- 1. Existe B bon de V t.g. T(B) bon de V.
- **2.** P.t. $v, u \in V$, $\langle T(v), T(u) \rangle = \langle v, u \rangle$.
- 3. P.t. B bon de V, T(B) bon de V.
- 4. $P.t. \ v \in V, \ ||T(v)|| = ||v||.$
- $5. T^* \circ T = T \circ T^* = id_V.$

Desafío 1 Probar el teorema. Vale buscar en la bibliografía.

Una t.l. que verifica cualquiera de las condiciones del teorema se dice **unitaria** (en el caso complejo) u **ortogonal** (en el caso real). Se desprende de todo lo que hemos estudiado que, dada una B bon de V, T es unitaria sii $[T]_B$ es unitaria (caso complejo), ortogonal sii $[T]_B$ es ortogonal (caso real).

Una t.l. que preserva la norma (item (vi) del teorema) se llama **isometría**.

El item (v) del teorema dice que T es un isomorfismo.

Estudiaremos a continuación el caso real en dimensiones 2 y 3: clasificaremos las transformaciones ortogonales. En el caso de dimensión 2, estudiaremos las isometrías del plano y en dimensión 3 las isometrías del espacio. Éstas serán, en ambos casos, rotaciones y simetrías.

Tenemos dos resultados inmediatos, muy interesantes

Proposición 1 $T: V \to V$ t.l. ortogonal, $\lambda \in \mathbb{R}$ autovalor de T. Entonces $\lambda = \pm 1$.

Demostración: Sabemos que existe $v \in V$ no nulo autovector de T asociado a λ . Como T es ortogonal, ||Tv|| = ||v||. Así,

$$||v|| = ||Tv|| = ||\lambda v|| = |\lambda|||v||,$$

de donde $\lambda = \pm 1$.

La siguiente proposición la hemos usado mil veces, y la hemos probado mil veces.

Proposición 2 $T:V\to V$ t.l. ortogonal, $U\subset V$ sev T-invariante. Entonces U^\perp también es T-invariante.

Desafío 2 Escribir la prueba.

Simetrías en dimensión 2

Sea V espacio euclídeo con dim(V) = 2, T t.l. ortogonal. $B = \{v_1, v_2\}$ bon de V.

Tenemos que $\{Tv_1, Tv_2\}$ bon de V y más aún, si $Tv_1 = \alpha v_1 + \beta v_2$ y $Tv_2 = \alpha' v_1 + \beta' v_2$, entonces $\{(\alpha, \beta), (\alpha', \beta')\}$ bon de \mathbb{R}^2 , luego $||(\alpha, \beta)|| = ||(\alpha', \beta')|| = 1$ y $(\alpha, \beta) \times (\alpha', \beta') = \alpha \alpha' + \beta \beta' = 0$. Sigue que $\alpha^2 + \beta^2 = 1$ y o bien $(\alpha', \beta') = (-\beta, \alpha)$ o bien $(\alpha', \beta') = (\beta, -\alpha)$.

En el primer caso,
$$(\alpha', \beta') = (-\beta, \alpha)$$
, tenemos que $[T]_B = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$, y $\chi_T(X) = (X - \alpha)^2 + \beta^2 = (X - \alpha)^2 + (X - \alpha)^2 +$

 $X^2 - 2\alpha X + 1$. El caso $[T]_B$ diagonal se da sólo cuando $\alpha = \pm 1$, pues en otro caso χ_T no tiene raíces reales. Más aún, como $||(\alpha, \beta)|| = 1$, existe $\theta \in [0, 2\pi)$ t.q.

$$[T]_B = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Y más aún, si cambiamos base $\{v_1, v_2\}$ a $\{v_1, -v_2\}$ podemos elegir $\theta \in [0, \pi]$.

En el segundo caso, $(\alpha', \beta') = (\beta, -\alpha)$, tenemos que $[T]_B = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$, o sea que T es simétrica, y $\chi_T(X) = (X - \alpha)(X + \alpha) - \beta^2 = X^2 - 1 = (X + 1)(X - 1)$. O sea,

$$[T]_B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Esto nos lleva a las siguientes definiciones:

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^2$ t.l.ortogonal es una **rotación** si det(T) = 1,
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ t.l.ortogonal y $H \subset \mathbb{R}^2$ sev de dimensión 1, T es una **simetría respecto de** H si $T|_H = id_H$ y $T|_{H^{\perp}} = -id_{H^{\perp}}$.

Así, toda t.l. ortogonal en \mathbb{R}^2 es una simetría o una rotación.

Ejemplos 1 1. En \mathbb{R}^2 consideremos la recta L de ecuación x+y=0. Buscamos la simetría respecto de L. Como $L=span\{(1,-1)\}$ y $L^{\perp}=span\{(1,1)\}$, podemos definir T en la base $\{(1,-1),(1,1)\}$ como T(1,-1)=(1,-1) y T(1,1)=(-1,-1). Luego $T|_{L}=id_{L}$ y $T|_{L^{\perp}}=-id_{L^{\perp}}$. Así, T(x,y)=(-y,-x), como era esperable.

2. Hallar una rotación T en \mathbb{R}^2 tal que T(2,1)=(1,2).

Para esto, recordemos que una rotación es una simetría, así que $||T(2,1)|| = ||(1,2)|| = \sqrt{5} = ||(2,1)||$, es decir, ambos puntos (2,1) y (1,2) se ubican en la misma circunferencia centrada en el origen de radio $\sqrt{5}$. Normalicemos por este radio, y completemos a una bon: $B = \{\left(\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}}\right),\left(\frac{-1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)\}$, como T t.l. debe ser $T\left(\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}}\right) = \left(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)$. En coordenadas, tenemos que $\left(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right) = \frac{4}{5}\left(\frac{2}{\sqrt{5}},\frac{1}{\sqrt{5}}\right) + \frac{3}{5}\left(\frac{-1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)$. Resulta entonces que, puesto que T es una rotación,

$$[T]_B = \begin{pmatrix} \frac{4}{5} & \frac{-3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix}.$$

Finalmente, sigue que $T\left(\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) = \left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$.

Simetrías en dimensión 3

Sea V espacio euclídeo con dim(V)=3. Si $T:V\to V$ t.l. ortogonal, como $\chi_T\in\mathbb{R}[X]$ es de grado $gr(\chi_T)=3$, debe tener una raíz real, o sea T tiene un autovalor real λ . Hemos visto que $|\lambda|=1$, luego $\lambda=\pm 1$.

Definimos en forma análoga:

- 1. $T: \mathbb{R}^3 \to \mathbb{R}^3$ t.l.ortogonal es una **rotación** si det(T) = 1,
- 2. $T: \mathbb{R}^3 \to \mathbb{R}^3$ t.l.ortogonal y $H \subset \mathbb{R}^3$ sev de dimensión 2, T es una simetría respecto de H si $T|_H = id_H$ y $T|_{H^{\perp}} = -id_{H^{\perp}}$.

Si $\lambda=1$, y v_1 autovector asociado de norma 1, $U=span\{v_1\}$ es T-invariante, luego también su ortogonal U^{\perp} , de dimensión 2. Entonces $T|_{U^{\perp}}:U^{\perp}\to U^{\perp}$ y por el estudio anterior $T|_{U^{\perp}}$ es o bien una rotación o bien una simetría. Si $B_1=\{v_2,v_3\}$ bon de U^{\perp} , sigue que para $B=\{v_1,v_2,v_3\}$, o bien

$$[T]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix},$$

o bien

$$[T]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

y en el primer caso T es una rotación con **eje de rotación** el sev $span\{v_1\}$ y en el segundo caso T es una simetría respecto del sev $span\{v_2, v_2\}$.

Si $\lambda=1$ no es un autovalor de T, tenemos que $\lambda=-1$ sí lo es. Sean en forma análoga v_1 autovector asociado de norma 1, $U=span\{v_1\}$ y $U^{\perp}=span\{v_2,v_3\}$. $T|_{U^{\perp}}$ es ortogonal, y más aún, una rotación. Entonces, en $B=\{v_1,v_2,v_3\}$ tenemos que

$$[T]_B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix},$$

y más aún,

$$[T]_B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix},$$

es decir, una rotación compuesta con una simetría.

Así, toda t.l. ortogonal en \mathbb{R}^3 es una simetría o una rotación o una rotación compuesta con una simetría.

Ejemplo 1 Definir una rotación T en \mathbb{R}^3 t.q. T(1,1,0) = (0,1,1) y el eje de la rotación sea ortogonal a (1,1,0) y (0,1,1).

Sea $H = span\{(1,1,0),(0,1,1)\}$ y $H^{\perp} = span\{(1,-1,1)\}$. Queremos que H sea el eje de la rotación: $T|_{H^{\perp}} = id_{H^{\perp}}$.

Construimos una bon de \mathbb{R}^3 tal que el primer vector sea bon de H^{\perp} y los dos siguientes de H:

$$B = \{ \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), \left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right) \}.$$

Definimos T en la base como sigue:

$$T\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),$$

$$T\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{2}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) + \frac{\sqrt{3}}{2}\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right).$$

$$T\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right) = \frac{-\sqrt{3}}{2}\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, 0\right) + \frac{\sqrt{3}}{2}\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right).$$

$$[T]_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{-\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

Observaciones 1 Se puede hacer un razonamiento análogo para dim(V) = n.