Delno urejene množice

Jan Pantner (jan.pantner@gmail.com)

3. april 2025

1 Osnovni pojmi

Definicija 1.1

Množica A skupaj z relacijo \leq je $delna\ urejenost$, če je relacija \leq :

- refleksivna: $\forall a \in A. \ a \leq a$,
- tranzitivna: $\forall a, b, c \in A$. $a \leq b \land b \leq c \Rightarrow a \leq c$,
- antisimetrična: $\forall a, b \in A$. $a \leq b \land b \leq a \Rightarrow a = b$.

Primer. Naj bo X končna množica. Potem je $(\mathcal{P}(X), \subseteq)$ delna urejenost.

Primer. Naj bo $X \subseteq \mathbb{N}$. Potem je (X, |) delna urejenost.

Naj bo $P=(A,\leq)$ delna urejenost. Elementa $a,b\in A$ sta primerljiva, če velja $a\leq b$ ali $b\leq a$, sicer sta neprimerljiva. Veriga delne urejenosti je podmnožica, v kateri so vsi pari elementov primerljivi, antiveriga pa podmnožica v kateri so vsi pari elementov neprimerljivi.

Naj bosta $P = (A, \leq)$ in $P' = (A', \leq')$ delni urejenosti. Preslikava $\varphi \colon A \to A'$ je izomorfizem delnih urejenosti, če je bijekcija in velja

$$a \le b \Leftrightarrow \varphi(a) \le' \varphi(b)$$
.

Naloga 1.1. Pokažite, da delni urejenosti (\mathbb{N}, \leq) in (\mathbb{Z}, \leq) nista izomorfni.

Delna urejenost je linearna urejenost, če je strogo sovisna: $\forall x, y \in A. \ x \leq y \lor y \leq x.$

Naloga 1.2. Naj bo (A, \leq) linearna urejenost, kjer je |A| = n. Dokažite izomorfnost (A, \leq) in $([n], \leq)$.

Naj bo $P=(A,\leq)$ delna urejenost. Tedaj je $L=(A,\leq')$ linearna razširitev od P, če je L linearna urejenost in velja $a\leq b\Rightarrow a\leq' b$.

Naloga 1.3. Naj bosta p in q različni praštevili, n naravno število in A množica deliteljev števila $p^{n-1}q$. Koliko linearnih razširitev ima delna urejenost (A, |)?

¹Oznaka: $[n] := \{1, 2, ..., n\}.$

Naloga 1.4. Naj bo $P=(A,\leq)$ končna delna urejenost, ki ni linearna. Naj bosta x in y neprimerljiva elementa. Dokažite, da obstaja takšna linearna razširitev $L=(A,\leq')$, da velja $x\leq' y$.

2 Dilworthov in Spernerjev izrek

Naloga 2.1. Naj bo P končna delna urejenost, v kateri je najdaljša veriga dolžine m. Dokažite, da lahko elemente v P pokrijemo z m antiverigami.

Izrek 2.1: Dilworth

Najmanjše število (disjunktnih) verig, s katerimi lahko pokrijemo vse elemente končne delne urejenosti, je enako velikosti največje antiverige.

Naloga 2.2. Naj bo n naravno število in S množica $n^2 + 1$ naravnih števil z lastnostjo, da vsaka (n+1)-elementna podmnožica S vsebuje dve števili, od katerih je eno deljivo z drugim. Dokažite, da množica S vsebuje n+1 različnih števil $a_1, a_2, \ldots, a_{n+1}$, tako da velja $a_i \mid a_{i+1}$ za vsak $i = 1, 2, \ldots, n$.

Izrek 2.2: Sperner

Velikost največje antiverige v $(\mathcal{P}([n]), \subseteq)$ je natanko $\binom{n}{\lfloor n/2 \rfloor}$.

Naloga 2.3. Naj bo $N = p_1 p_2 \cdots p_n$, kjer so p_i različna praštevila. Pokažite, da ima N kvečjemu $\binom{n}{\lfloor n/2 \rfloor}$ deliteljev, med katerimi nobeden ne deli drugega.

Naloga 2.4. Dana so realna števila a_1, a_2, \ldots, a_n , ki so vsa večja ali enaka 1. Pokažite, da tedaj obstaja kvečjemu $\binom{n}{\lfloor n/2 \rfloor}$ vsot oblike $\sum_{i=1}^n \alpha_i a_i$, $\alpha_i \in \{-1, 1\}$, ki so po absolutni vrednosti manjše od 1.

3 Dodatni naloge

Naloga 3.1. Naj bosta m in n naravni števili ter S podmnožica množice $\{1, 2, ..., 2^m n\}$ z $(2^m-1)n+1$ elementi. Dokažite, da S vsebuje m+1 takšnih različnih števil $a_0, a_1, ..., a_m$, da velja $a_{k-1} \mid a_k$ za vsak $k \in \{1, 2, ..., m\}$.

Naloga 3.2. Naj bo k pozitivno celo število in S končna družina intervalov na realni premici. Predpostavimo, da ima vsaka množica k+1 teh intervalov vsaj dva intervala z neničnim presekom. Dokažite, da obstaja množica k točk na realni premici, ki seka vsak interval iz S.