• Assignment: 8.2 Time Series Modeling

• Name: Barath Anandaraman

• Course: DSC630-T301

• Week8: Time Series

• Date: 04/30/2025

Load necessary packages

```
In [37]: # Load libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from sklearn.metrics import mean_squared_error
```

Load the US Retail Sales dataset

```
In [2]: retail_df = pd.read_csv('us_retail_sales.csv')
    retail_df.head()
```

Out[2]:		YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
	0	1992	146925	147223	146805	148032	149010	149800	150761.0	151067.0	152588.0	153521.0	153583.0	155614.0
	1	1993	157555	156266	154752	158979	160605	160127	162816.0	162506.0	163258.0	164685.0	166594.0	168161.0
	2	1994	167518	169649	172766	173106	172329	174241	174781.0	177295.0	178787.0	180561.0	180703.0	181524.0
	3	1995	182413	179488	181013	181686	183536	186081	185431.0	186806.0	187366.0	186565.0	189055.0	190774.0
	4	1996	189135	192266	194029	194744	196205	196136	196187.0	196218.0	198859.0	200509.0	200174.0	201284.0

The original dataset has years in rows and months as columns. We'll melt it to long format for time series analysis

```
In [3]: # Convert wide to long format
    retail_melted = retail_df.melt(id_vars=['YEAR'], var_name='Month', value_name='Sales')
# Map month names to month names
```

```
month_num = {
             'JAN': 1, 'FEB': 2, 'MAR': 3, 'APR': 4, 'MAY': 5, 'JUN': 6,
             'JUL': 7, 'AUG': 8, 'SEP': 9, 'OCT': 10, 'NOV': 11, 'DEC': 12
         retail_melted['Month_Num'] = retail_melted['Month'].map(month_num)
         # Create a proper datetime column
         retail_melted['Date'] = pd.to_datetime(dict(year=retail_melted['YEAR'], month=retail_melted['Month_Num'], day=1))
         # Sort the table by date
          retail melted = retail melted.sort values('Date')
 In [4]: retail melted.head()
 Out[4]:
              YEAR Month
                              Sales Month_Num
                                                      Date
              1992
                       JAN 146925.0
                                              1 1992-01-01
          30
              1992
                       FEB 147223.0
                                              2 1992-02-01
               1992
          60
                      MAR 146805.0
                                              3 1992-03-01
              1992
                      APR 148032.0
          90
                                              4 1992-04-01
          120
              1992
                      MAY 149010.0
                                              5 1992-05-01
         Check for NAs and drop them
In [27]: # Check for NAs
         print(retail melted.columns[retail melted.isna().any()].tolist())
        ['Sales']
In [28]: retail melted['Sales'].isna().sum()
Out[28]: np.int64(6)
         Column Sales has 6 rows of NA and has to be dropped
In [30]: retail_melted = retail_melted.dropna(subset=['Sales'])
```

Step1. Plot the data with proper labeling and make some observations on the graph.

```
In [32]: plt.figure(figsize=(10,6))
    plt.plot(retail_melted['Date'], retail_melted['Sales'])
    plt.title('Monthly US Retail Sales (1992 - 2021)')
    plt.xlabel('Date')
    plt.ylabel('Retal Sales (in Millions)')
    plt.grid(True)
    plt.show()
```


Achieved so far:

Loaded the data in dataframe

Reshaped the data from wide format to long format

Dropped NA rows

Plotted monthly retail sales from 1992 to 2021

Observations from graph

Sales show a dip around 2008 and 2020

- 2008, could be due to the housing crisis
- 2020, could be due to COVid crisis

There is a steady upward trend over the years - retail sales generally increase over time

Step2. Split this data into a training and test set. Use the last year of data (July 2020 – June 2021) of data as your test set and the rest as your training set.

```
In [33]: # Per requirement Define Test set: July 2020 till June 2021
  test = retail_melted[(retail_melted['Date'] >= '2020-07-01') & (retail_melted['Date'] <= '2021-06-01')]
  # Define Train set as everything else
  train = retail_melted[~retail_melted['Date'].isin(test['Date'])]</pre>
```

Step3. Use the training set to build a predictive model for the monthly retail sales.

```
sses of index.
   self._init_dates(dates, freq)
/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/holtwinters/model.py:918: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.
   warnings.warn(
```

Step4. Use the model to predict the monthly retail sales on the last year of data.

return get prediction index(

```
In [35]: # Predict on test period
         predictions = model.forecast(steps=12)
         # Plot actual vs predicted
         plt.figure(figsize=(10,6))
         plt.plot(train['Date'], train['Sales'], label = 'Training Data')
         plt.plot(test['Date'], test['Sales'], label = 'Actual Sales (Test Set)', color = 'green')
         plt.plot(test['Date'], predictions, label = 'Predicted Sales', color = 'red' , linestyle='--')
         plt.title('Retail Sales Prediction')
         plt.xlabel('Date')
         plt.ylabel('Retail Sales (in Millions)')
         plt.legend()
         plt.grid(True)
         plt.show()
        /opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa model.py:837: ValueWarning: No supported index is
        available. Prediction results will be given with an integer index beginning at `start`.
          return get prediction index(
```

/opt/anaconda3/lib/python3.12/site-packages/statsmodels/tsa/base/tsa_model.py:837: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.

Retail Sales Prediction

Step5. Report the RMSE of the model predictions on the test set.

```
In [38]: # Calculate RMSE
rmse = np.sqrt(mean_squared_error(test['Sales'], predictions))
rmse
Out[38]: np.float64(45156.97171858635)
```

Achieved so far:

Model used: Holt-Winters Exponential Smoothing (captures both trend and seasonality)

Prediction Period: July 2020 - June 2021

Root Mean Squared Error on Test Set: 45,156.97, this means the typical prediction error is around \$45,157 million

Final Summary

Training data: January 1992 to June 2020

Test data: July 2020 to June 2021

Observation: The model closely tracks the trend, but some deviation occurs possibly due to COVID-era volatility

Additionally check for Seasonal Volatility using Box Plot

Month

Noticed certain months March, May, June have higher retail sales this could be seasonality

In []: