

Team Members: Anthony Talevi, Ibsher Hossain

Iqaluit, Nunavut

- The capital and only city of Nunavut. [1]
- Population of around 7700 people [1]
- The name of the town signifies "place of fish" in the Inuktitut language.[2]
- Main industries: government, communications, transportation, fishing, sealing, carving/handcrafts, and tourism-service [3]
- Most perishable food is flown year-round into the city. [4]
- Non-perishable food items and hard goods come in by sea. [4]

Responsible Wastewater Management And Energy Needs Fulfillment (Themes 1 and 2)

Wastewater Management in Iqaluit

Iqaluit has a developed treatment system

- Indoor plumbing with holding tanks (septic system) [5]
- Regular trucked collection service [5]

However:

- Wastewater is often dumped untreated into Frobisher Bay
- Potentially tainting fresh water and food supply
- Potential damage to local marine ecosystems

Energy Supply in Iqaluit

Iqaluit relies entirely on imported petroleum products to meet its energy needs [6].

- 6.7 PJ consumed by the city in 2017 [7]
- 49% towards industrial, commercial and residential activities [7]
- No distribution infrastructure: gasoline and diesel tanks outside of residents' homes. [8]

Issues:

- Security concerns with no local energy production
- Government of Nunavut spends a significant portion of their budget on these imported petroleum products. [9]
- Greenhouse gas production

Two Birds with One Stone:

Convert Solid Waste from Wastewater into Energy

Combustion of Solid Waste and

Conversion to Biogas for Heating and Electricity Production

The Power of Poop

As a solid fuel

- 24MJ/kg HHV [10]
 - Higher than wood/biomass and some coals!
- 600°C combustion can be maintained at 60 wt% moisture[10]
- Burned as is with after drying

As a gaseous fuel

- 24.3 MJ/kg HV [11]
- Can be produced passively by mixing solid waste with water in sealed containers.
- Easily distributed via pipelines or compressed gas containers.

Advantages

- From a population of 7700 adults, rough calculations shows that 26.8 PJ/year is stored in faeces of Iqaluit's population - 4 times the energy needs of Iqaluit (see last slide for calculations)
- Significant reduction in solid waste that must be disposed of.
- Theoretical net-zero carbon emissions:
 - CO2 in air -> Plant matter -> Food -> Poop -> CO2 emissions
- Domestic energy production dramatically increases energy supply security

Construction of Production Plant

- Plant would dry solid waste and convert it to pellets for solid combustion.
- Plant would also produce biogas.
- Inexpensive conversion of existing wastewater infrastructure.

Conversion and Deployment to Larger Consumers

- Large consumers of energy with onsite power generation (hospitals, large buildings, industrial activities)
- Existing boilers/generators are converted to burn solid waste or biogas in addition to current fuels.
- Serves as an excellent test case for more widespread deployment

Conversion and Deployment to Residential Units

- Once the technology is proven, and deployment to residential units begins.
- Residential heating systems are upgraded to gas burning units.
- Residents are supplied with a compressed gas tank which is periodically filled by truck.

Navigating COVID-19

- This problem existed long before COVID-19.
- Following COVID-19 guideline, people have remained home, increasing energy consumption.[12]
- COVID-19 can be detected in stool. [13]
- Increased energy demands from hospitals. [14]
- The workers who will take part in the modifications will have to take precautions against COVID-19, increasing the time needed. [11]

Feasibility of the Solution

Faeces as fuel is a proven technology, and is often suggested for use in developing nations with lack of wastewater treatment infrastructure.

However, deployment on this scale would be **expensive**.

- Upgrades to wastewater plant
- Development of distribution infrastructure
- Conversions and upgrades to existing energy systems (industrial, commercial and residential)

But compare to cost of petroleum imports

 Depending on success of the program, costs could be recouped in less than a decade.

Conclusion

- Iqaluit has both a wastewater management problem, and an energy problem
- Combustion of faeces, whether as a solid or gas, would contribute to the solution of both of these problems
- It is a proven technology, environmentally responsible, sustainable, and cost effective given enough time.

This group recommends faeces combustion for energy production and waste management for Iqaluit.

References

- [1]https://www.thecanadianencyclopedia.ca/en/article/iqaluit
- [2]https://www.britannica.com/place/lqaluit
- [3]https://canadianimmigrant.ca/settlement/living-in-iqaluit-nunavut#:~:text=The%20city's%20major%20industries%20include,%2C%20and%20tourism%2Dservice%20industries.&text=Iqaluit%20does%20not%20have%20a%20major%20city%20transportation%20service.
- [4]https://www.thestar.com/news/canada/2018/11/08/food-supply-in-question-after-fire-at-iq aluit-store.html
- [5]https://www.canada.ca/en/polar-knowledge/publications/polarleads/vol1-no2-2016.html
- [6]https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-nunavut.html#s3
- [7]https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles-nunavut.html#s3
- [8]https://www.gov.nu.ca/sites/default/files/illustrated homeowners guide to heating oil tanks 2011 2.pdf
- [9] https://www.gov.nu.ca/eia/documents/nunavut-infrastructure

References

[10]https://www-sciencedirect-com.proxy.bib.uottawa.ca/science/article/pii/S0016236116306809?via%3Dihub

[11] https://www-scientific-net.proxy.bib.uottawa.ca/AMR.931-932.1101.pdf

[12]https://www.cer-rec.gc.ca/en/data-analysis/canada-energy-future/2020/canada-energy-futures-2020.pdf

[13]

https://uwaterloo.ca/water-institute/news/media-ontario-testing-your-poop-help-find-covid-1 9-hotspots

[14]

https://www.cer-rec.gc.ca/en/data-analysis/canada-energy-future/2020/canada-energy-future/s-2020.pdf

[15] https://www.nature.com/articles/s41560-020-0625-6

[16] https://www.livescience.com/61966-how-much-you-poop-in-lifetime.html

(Very Rough) Energy Calculations

End use demand in Iqaluit was 6.7 PJ in 2017. 51% was used for transportation, the rest for industrial, commercial and residential energy needs (thermal and electric) [7]

0.49*6.7 PJ/year = 3.283 PJ/year

The average adult produces 145 kg of faces per year [16]. There are approximately 7700 residents in Iqaluit. The higher heating value (HHV) of solid human waste is about 24 MJ/kg [10]. So,

145 kg/person-year * 7700 persons * 24 MJ/kg = 26,796,000 MJ/year = 26.8 PJ/year

Therefore there is a potential **26.8 PJ to be reclaimed** in the faeces of the inhabitants of Iqaluit.

These are very rough calculations, and do not reflect efficiencies of energy production processes.