Μαθηματικές Ιδιότητες της Στοχαστικής Προσέγγισης

Καθολική προσέγγιση, στοχαστική προσέγγιση και multi-armed bandits

Νίκος Σταμάτης 22 Ιανουαρίου 2021

Περιεχόμενα

1. Καθολική Προσέγγιση

2. Στοχαστική Προσέγγιση

3. Multi-armed Bandits

Ορισμός

Μια συνάρτηση $\sigma:\mathbb{R} o \mathbb{R}$ καλείται σιγμοειδής, εαν

$$\sigma(t) \longrightarrow egin{cases} 0, & \operatorname{yi}lpha t o -\infty, \ 1, & \operatorname{yi}lpha t o +\infty. \end{cases}$$

Ορισμός

Μια συνάρτηση $\sigma:\mathbb{R} \to \mathbb{R}$ καλείται σιγμοειδής, εαν

$$\sigma(t) \longrightarrow egin{cases} 0, & \operatorname{yi}lpha t o -\infty, \ 1, & \operatorname{yi}lpha t o +\infty. \end{cases}$$

Παραδείγματα

- Σιγμοειδής: $\sigma(x) = \frac{1}{1+e^{-x}}$.
- Step function: $s(x) = \begin{cases} 0, & x < 0, \\ 1, & x \ge 0. \end{cases}$

Ορισμός

Μια συνάρτηση $\sigma:\mathbb{R} \to \mathbb{R}$ καλείται σιγμοειδής, εαν

$$\sigma(t) \longrightarrow \begin{cases} 0, & \text{gia } t \to -\infty, \\ 1, & \text{gia } t \to +\infty. \end{cases}$$

Ορισμός

Μια συνάρτηση $\sigma:\mathbb{R} \to \mathbb{R}$ καλείται σιγμοειδής, εαν

$$\sigma(t) \longrightarrow \begin{cases} 0, & \text{yia } t \to -\infty, \\ 1, & \text{yia } t \to +\infty. \end{cases}$$

Ορισμός

Μια συνάρτηση $A: X \to Y$ μεταξύ δύο διανυσματικών χώρων ονομάζεται αφφινική, εαν ισχύει ότι $A\left(\sum_{i=1}^n \lambda_i x_i\right) = \sum_{i=1}^n \lambda_i A(x_i)$ για κάθε $n \in \mathbb{N}$, $x_i \in X$ και κάθε $\lambda_i \in \mathbb{R}$ με $\sum_{i=1}^n \lambda_i = 1$.

Ορισμός

Μια συνάρτηση $\sigma:\mathbb{R} o \mathbb{R}$ καλείται σιγμοειδής, εαν

$$\sigma(t) \longrightarrow \begin{cases} 0, & \text{yia } t \to -\infty, \\ 1, & \text{yia } t \to +\infty. \end{cases}$$

Ορισμός

Μια συνάρτηση $A: X \to Y$ μεταξύ δύο διανυσματικών χώρων ονομάζεται αφφινική, εαν ισχύει ότι $A\left(\sum_{i=1}^n \lambda_i x_i\right) = \sum_{i=1}^n \lambda_i A(x_i)$ για κάθε $n \in \mathbb{N}$, $x_i \in X$ και κάθε $\lambda_i \in \mathbb{R}$ με $\sum_{i=1}^n \lambda_i = 1$.

Νευρωνικό δίκτυο, ονομάζουμε κάθε συνάρτηση s της μορφής $\mathbf{s}(\mathbf{x})=\mathbf{T}\mathbf{x}$, όπου

$$T = A_{m+1}S_mA_m \cdot \cdot \cdot A_2S_1A_1$$

είναι ένας τελεστής ο οποίος ορίζεται απο τις διαδοχικές συνθέσεις αφφινικών μετασχηματισμών $A_i:\mathbb{R}^{d_{i-1}}\to\mathbb{R}^{d_i}$ με σιγμοειδείς συναρτήσεις S_i . Ο αριθμός m μετρά το πλήθος των στρωμάτων του δικτύου, ενώ οι αριθμοί d_i το πλήθος των κόμβων που εμφανίζονται σε κάθε στρώμα.

Ερώτημα

Για ποιες συναρτήσεις ενεργοποίησης σ ισχύει ότι το σύνολο

$$\Sigma_{n}(\sigma) = \left\{ f : I_{n} \to \mathbb{R} : f(x) = \sum_{j=1}^{N} a_{j} \sigma(w_{j}^{\mathsf{T}} x + \theta_{j}) : \\ N \in \mathbb{N}, a_{j} \in \mathbb{R}, w_{j} \in \mathbb{R}^{n}, \theta_{j} \in \mathbb{R} \right\}$$
$$= \operatorname{span} \left\{ f : f(x) = \sigma\left(w^{\mathsf{T}} x + \theta\right) \ \, \operatorname{YICC} w \in \mathbb{R}^{n}, \theta \in \mathbb{R} \right\}$$

είναι πυκνό στον $C(I_n)$;

Θεώρημα (Cybenko, 1989)

Για κάθε συνεχή σιγμοειδή συνάρτηση ενεργοποίησης σ , το σύνολο $\Sigma_n(\sigma)$ είναι πυκνό στον $C(I_n)$.

$$\begin{split} \Sigma_n(\sigma) &= \left\{ f : I_n \to \mathbb{R} : f(x) = \sum_{j=1}^N a_j \sigma(w_j^\mathsf{T} x + \theta_j) : \\ N &\in \mathbb{N}, a_j \in \mathbb{R}, w_j \in \mathbb{R}^n, \theta_j \in \mathbb{R} \right\} \\ &= \operatorname{span} \left\{ f : f(x) = \sigma\left(w^\mathsf{T} x + \theta\right) \; \; \operatorname{YICL}(w) \in \mathbb{R}^n, \theta \in \mathbb{R} \right\}. \end{split}$$

Θεώρημα (Cybenko, 1989)

Για κάθε συνεχή σιγμοειδή συνάρτηση ενεργοποίησης σ , το σύνολο $\Sigma_n(\sigma)$ είναι πυκνό στον $C(I_n)$.

Θεώρημα (Chen, Chen, Liu, 1991)

Κατασκευαστική απόδειξη του Θεωρήματος Cybenko.

$$\begin{split} \Sigma_n(\sigma) &= \left\{ f : I_n \to \mathbb{R} : f(x) = \sum_{j=1}^N a_j \sigma(w_j^\mathsf{T} x + \theta_j) : \\ N &\in \mathbb{N}, a_j \in \mathbb{R}, w_j \in \mathbb{R}^n, \theta_j \in \mathbb{R} \right\} \\ &= \mathsf{span} \left\{ f : f(x) = \sigma\left(w^\mathsf{T} x + \theta\right) \;\; \mathsf{YIC} \; w \in \mathbb{R}^n, \theta \in \mathbb{R} \right\}. \end{split}$$

Θεώρημα (Cybenko, 1989)

Για κάθε συνεχή σιγμοειδή συνάρτηση ενεργοποίησης σ , το σύνολο $\Sigma_n(\sigma)$ είναι πυκνό στον $C(I_n)$.

Θεώρημα (Chen, Chen, Liu, 1991)

Κατασκευαστική απόδειξη του Θεωρήματος Cybenko.

Θεώρημα (Leshno, Lin, Pinkus, Schocken, 1993)

Το σύνολο $\Sigma_n(\sigma)$ είναι πυκνό στον $C(\mathbb{R}^n)$, εαν και μόνο εαν η συνάρτηση ενεργοποίησης σ δεν είναι πολυώνυμο.

$$\begin{split} \Sigma_n(\sigma) &= \left\{ f \colon I_n \to \mathbb{R} : f(x) = \sum_{j=1}^N a_j \sigma(w_j^\mathsf{T} x + \theta_j) : \\ N &\in \mathbb{N}, a_j \in \mathbb{R}, w_j \in \mathbb{R}^n, \theta_j \in \mathbb{R} \right\} \\ &= \operatorname{span} \left\{ f \colon f(x) = \sigma\left(w^\mathsf{T} x + \theta\right) \; \; \operatorname{YICL} w \in \mathbb{R}^n, \theta \in \mathbb{R} \right\}. \end{split}$$

Το Θεώρημα Kolmogorov-Arnold

Θεώρημα (Maiorov, Pinkus, 1999)

Υπάρχει λεία, σιγμοειδής συνάρτηση ενεργοποίησης σ , τέτοια ώστε για κάθε $d\in\mathbb{N}$, κάθε συμπαγές $K\subseteq\mathbb{R}^d$, κάθε $f\in C(K)$ και $\varepsilon>0$, να υπάρχουν πραγματικές σταθερές d_i , c_{ij} , θ_{ij} , γ_i και διανύσματα $w_{ij}\in\mathbb{R}^d$, με

$$\left| f(x) - \sum_{i=1}^{6d+3} d_i \sigma \left(\sum_{j=1}^{3d} c_{ij} \sigma \left(w_{ij}^\mathsf{T} x + \theta_{ij} \right) + \gamma_i \right) \right| < \varepsilon$$

για κάθε $x \in K$.

Το Θεώρημα Kolmogorov-Arnold

Θεώρημα (Maiorov, Pinkus, 1999)

Υπάρχει λεία, σιγμοειδής συνάρτηση ενεργοποίησης σ , τέτοια ώστε για κάθε $d\in\mathbb{N}$, κάθε συμπαγές $K\subseteq\mathbb{R}^d$, κάθε $f\in C(K)$ και $\varepsilon>0$, να υπάρχουν πραγματικές σταθερές d_i , c_{ij} , θ_{ij} , γ_i και διανύσματα $w_{ij}\in\mathbb{R}^d$, με

$$\left| f(x) - \sum_{i=1}^{6d+3} d_i \sigma \left(\sum_{j=1}^{3d} c_{ij} \sigma \left(w_{ij}^\mathsf{T} x + \theta_{ij} \right) + \gamma_i \right) \right| < \varepsilon$$

για κάθε $x \in K$.

Θεώρημα (Kolmogorov-Arnold, 1957)

Υπάρχουν σταθερές $\lambda_1,\ldots,\lambda_d$ τέτοιες ώστε $\sum_{j=1}^d \lambda_j \leq$ 1, και συνεχείς συναρτήσεις $\phi_1,\ldots,\phi_{2d+1}$ από το [0,1] στον εαυτό του, με την ιδιότητα ότι κάθε $f\in C[0,1]^d$ μπορεί να γραφτεί ως

$$f(x_1,\ldots,x_d)=\sum_{i=1}^{2d+1}g\left(\sum_{j=1}^d\lambda_j\phi_i(x_j)\right),\,$$

όπου $g \in C[0,1]$ μια συνάρτηση που εξαρτάται από την f.

Στοχαστική Προσέγγιση

Πλαίσιο:

• Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X=x, η κατανομή της Y(x) είναι $P[Y(x) \leq y] = H(y \mid x)$.

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X=x, η κατανομή της Y(x) είναι $P[Y(x) \leq y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x) = \mathbb{E}[Y | X = x]$.

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X=x, η κατανομή της Y(x) είναι $P[Y(x) \le y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x) = \mathbb{E}[Y \mid X = x]$. πχ. στο γραμμικό μοντέλο $Y = Xb + \varepsilon$, έχουμε $E[Y \mid X = x] = x'b$.

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X=x, η κατανομή της Y(x) είναι $P[Y(x) \le y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x) = \mathbb{E}[Y \mid X = x]$. πχ. στο γραμμικό μοντέλο $Y = Xb + \varepsilon$, έχουμε $E[Y \mid X = x] = x'b$.
- Να βρεθεί θ με $M(\theta) = a$.

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X=x, η κατανομή της Y(x) είναι $P[Y(x) \leq y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x)=\mathbb{E}[Y\,|\,X=x]$. πχ. στο γραμμικό μοντέλο $Y=Xb+\varepsilon$, έχουμε $E[Y\,|\,X=x]=x'b$.
- Να βρεθεί θ με $M(\theta) = a$.

Εργαλεία:

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X = x, η κατανομή της Y(x) είναι $P[Y(x) \le y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x) = \mathbb{E}[Y \mid X = x]$. πχ. στο γραμμικό μοντέλο $Y = Xb + \varepsilon$, έχουμε $E[Y \mid X = x] = x'b$.
- Να βρεθεί θ με $M(\theta) = a$.

Εργαλεία:

• Μπορούμε να προσομοιώνουμε από την $H(y \mid x)$ για κάθε τιμή του x.

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X = x, η κατανομή της Y(x) είναι $P[Y(x) \le y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x) = \mathbb{E}[Y \mid X = x]$. πχ. στο γραμμικό μοντέλο $Y = Xb + \varepsilon$, έχουμε $E[Y \mid X = x] = x'b$.
- Να βρεθεί θ με $M(\theta) = a$.

Εργαλεία:

• Μπορούμε να προσομοιώνουμε από την $H(y \mid x)$ για κάθε τιμή του x.

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X=x, η κατανομή της Y(x) είναι $P[Y(x) \le y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x) = \mathbb{E}[Y \mid X = x]$. πχ. στο γραμμικό μοντέλο $Y = Xb + \varepsilon$, έχουμε $E[Y \mid X = x] = x'b$.
- Να βρεθεί θ με $M(\theta) = a$.

Εργαλεία:

• Μπορούμε να προσομοιώνουμε από την $H(y \mid x)$ για κάθε τιμή του x.

Λύση:

Πλαίσιο:

- Μεταβλητή απόκρισης Υ, επεξηγηματική μεταβλητή Χ.
- Δοθέντος ότι X = x, η κατανομή της Y(x) είναι $P[Y(x) \le y] = H(y \mid x)$.
- Έστω M(x) η μέση τιμή της Y δοθέντος του x, δηλ. $M(x) = \mathbb{E}[Y \mid X = x]$. πχ. στο γραμμικό μοντέλο $Y = Xb + \varepsilon$, έχουμε $E[Y \mid X = x] = x'b$.
- Να βρεθεί θ με $M(\theta) = a$.

Εργαλεία:

• Μπορούμε να προσομοιώνουμε από την $H(y \mid x)$ για κάθε τιμή του x.

Λύση:

• Μέσω της αναδρομικής ακολουθίας

$$x_{n+1} = x_n + a_n(a - y_n),$$

όπου η παρατήρηση y_n έχει προσομοιωθεί από την $H(y \mid x_n)$.

Θεώρημα (Robbins-Monro 1951)

Αν υπάρχει C>0 τ.ω. $x\in\mathbb{R}$, $P[|Y(x)|\leq C]=1$, αν η $M(x)=\mathbb{E}[Y|X=x]$ είναι αύξουσα με $M(\theta)=a$ και $M'(\theta)>0$, τότε για κάθε $(a_n)_n\in\ell_2^+\setminus\ell_1$ η $(x_n)_n$ που κατασκευάζεται από τον αλγόριθμο Robbins-Monro συγκλίνει κατά πιθανότητα στο θ .

Θεώρημα (Robbins-Monro 1951)

Αν υπάρχει C>0 τ.ω. $x\in\mathbb{R}$, $P[|Y(x)|\leq C]=1$, αν η $M(x)=\mathbb{E}[Y|X=x]$ είναι αὐξουσα με $M(\theta)=a$ και $M'(\theta)>0$, τότε για κάθε $(a_n)_n\in\ell_2^+\setminus\ell_1$ η $(x_n)_n$ που κατασκευάζεται από τον αλγόριθμο Robbins-Monro συγκλίνει κατά πιθανότητα στο θ .

	Αλγοριθμός Robbins-Monro
Внма 1	Επιλέγουμε $(a_n)_n \in \ell_2^+ \setminus \ell_1$ και $x_1 \in \mathbb{R}.$
Внма 2	Υποθέτουμε ότι έχουμε κατασκευάσει το x_1,\ldots,x_{n-1} . Προσομοιώνουμε μια παρατήρηση y_n από την κατανομή $H(y x_n)$ και θέτουμε $x_{n+1}=x_n+a_n(a-y_n)$.
Внма 3	Επιστρέφουμε στο Βήμα 2.

Σταθερά σημεία

Ορισμός

Έστω X σύνολο και $H:X\to X$ συνάρτηση. Ένα σημείο $x_0\in X$ καλείται σταθερό σημείο της H, εαν $H(x_0)=x_0$.

Σταθερά σημεία

Ορισμός

Έστω X σύνολο και $H:X\to X$ συνάρτηση. Ένα σημείο $x_0\in X$ καλείται σταθερό σημείο της H, εαν $H(x_0)=x_0$.

Ορισμός

Μια συνάρτηση $H:(X,\rho)\to (X,\rho)$ ορισμένη σε έναν μετρικό χώρο (X,ρ) , καλείται β -συστολή, όπου $\beta>0$ σταθερά, εαν

$$ρ(Hx, Hy) \le βρ(x, y)$$
 για κάθε $x, y \in X$.

Σταθερά σημεία

Ορισμός

Έστω X σύνολο και $H:X\to X$ συνάρτηση. Ένα σημείο $x_0\in X$ καλείται σταθερό σημείο της H, εαν $H(x_0)=x_0$.

Ορισμός

Μια συνάρτηση $H:(X,\rho)\to (X,\rho)$ ορισμένη σε έναν μετρικό χώρο (X,ρ) , καλείται β -συστολή, όπου $\beta>0$ σταθερά, εαν

$$\rho(Hx, Hy) \le \beta \rho(x, y)$$
 για κάθε $x, y \in X$.

Θεώρημα σταθερού σημείου του Banach (1922)

Έστω (X,ρ) πλήρης μετρικός χώρος και $H:X\to X$ συνάρτηση η οποία είναι β -συστολή για κάποιο $\beta\in(0,1)$. Τότε η H έχει μοναδικό σταθερό σημείο x_0 . Επιπλέον, η ακολουθία $(x_n)_n$ που ορίζεται αναδρομικά ως $x_1=y$ και $x_{n+1}=H(x_n)$ για κάθε $n\in\mathbb{N}$, συγκλίνει στο x_0 για οποιαδήποτε αρχική επιλογή $y\in X$.

Σταθερά σημεία υπό την παρουσία θορύβου

Ερώτημα

Έστω X σύνολο και $H: X \to X$ συνάρτηση με μοναδικό σταθερό σημείο το $x_0 \in X$. Πώς μπορούμε να προσδιορίσουμε το σταθερό της σημείο, όταν δε γνωρίζουμε τις ακριβείς τιμές της H;

Σταθερά σημεία υπό την παρουσία θορύβου

Ερώτημα

Έστω X σύνολο και $H: X \to X$ συνάρτηση με μοναδικό σταθερό σημείο το $x_0 \in X$. Πώς μπορούμε να προσδιορίσουμε το σταθερό της σημείο, όταν δε γνωρίζουμε τις ακριβείς τιμές της H;

Αλγόριθμος

Κατασκευάζουμε αναδρομικά την ακολουθία:

$$x_{n+1} = (1 - \gamma_n)x_n + \gamma_n(Hx_n + w_n),$$

όπου $(\gamma_n)_n$ είναι κατάλληλη ακολουθία στο (0,1], και οι όροι w_n αντιστοιχούν στο "θόρυβο" των τιμών Hx_n .

Δύο κλάσεις τελεστών

Ψευδοσυστολές

Έστω $(X,\|\cdot\|)$ χώρος με νόρμα. Μια συνάρτηση $H:X\to X$ καλείται ψευδοσυστολή, εαν υπάρχουν $x^*\in X$ και $\beta\in[0,1)$ τέτοια ώστε

$$\|Hx - Hx^*\| \le \beta \|x - x^*\|$$

για κάθε $x \in X$.

Δύο κλάσεις τελεστών

Ψευδοσυστολές

Έστω $(X,\|\cdot\|)$ χώρος με νόρμα. Μια συνάρτηση $H:X\to X$ καλείται ψευδοσυστολή, εαν υπάρχουν $x^*\in X$ και $\beta\in[0,1)$ τέτοια ώστε

$$\|Hx - Hx^*\| \le \beta \|x - x^*\|$$

για κάθε $x \in X$.

Μονότονοι τελεστές

Έστω $(X,\|\cdot\|,\leq)$ χώρος με νόρμα εφοδιασμένος με μια γραμμική διάταξη. Μια συνάρτηση $H:X\to X$ καλείται μονότονη, εαν $Hx\le Hy$ για κάθε $x,y\in X$ με $x\le y$.

Στοχαστική προσέγγιση για ψευδοσυστολές

Πρόταση

Έστω $(r_n)_n$ η ακολουθία που ορίζεται από την αναδρομική σχέση

$$r_{n+1} = (1 - \gamma_n)r_n + \gamma_n(H_nr_n + w_n + u_n),$$

όπου

- 1. η ακολουθία $(\gamma_n)_n$ είναι τέτοια ώστε $\sum_{n=1}^\infty \gamma_n(i) = \infty$ και $\sum_{n=1}^\infty \gamma_n(i)^2 < \infty$ για κάθε $i=1,\ldots,N$.
- 2. Η ακολουθία $(w_n)_n$ έχει την ιδιότητα ότι

$$\mathbb{E}\left[w_n(i)\,|\,\mathcal{F}_n\right] = 0 \quad \text{kai} \quad \mathbb{E}\left[w_n(i)^2\,|\,\mathcal{F}_n\right] \leq A + B\|r_n\|^2.$$

- 3. Κάθε H_n είναι ψευδοσυστολή ως προς την ίδια νόρμα $\|\cdot\|_{\tilde{\xi}}$, με το ίδιο σταθερό σημείο r^* και την ίδια σταθερά $\beta\in[0,1)$.
- 4. Υπάρχει ακολουθία μη-αρνητικών τυχαίων μεταβλητών $(\theta_n)_n$ η οποία συγκλίνει στο μηδέν σχεδόν παντού, τέτοια ώστε

$$||u_n||_{\infty} \leq \theta_n \left(1 + ||r_n||_{\xi}\right)$$

για κάθε $n \in \mathbb{N}$.

Τότε η $(r_n)_n$ συγκλίνει στο r^* σχεδόν παντού.

Στοχαστική προσέγγιση για μονότονους τελεστές

Πρόταση

Έστω $(r_n)_n$ η ακολουθία που ορίζεται από την αναδρομική σχέση

$$r_{n+1} = (1 - \gamma_n)r_n + \gamma_n(Hr_n + w_n),$$

όπου

- 1. η ακολουθία $(\gamma_n)_n$ είναι τέτοια ώστε $\sum_{n=1}^\infty \gamma_n(i) = \infty$ και $\sum_{n=1}^\infty \gamma_n(i)^2 < \infty$ για κάθε $i=1,\ldots,N$.
- 2. Η ακολουθία $(w_n)_n$ έχει την ιδιότητα ότι

$$\mathbb{E}\left[w_n(i)\,|\,\mathcal{F}_n\right] = 0 \quad \text{kai} \quad \mathbb{E}\left[w_n(i)^2\,|\,\mathcal{F}_n\right] \leq A + B\|r_n\|^2.$$

- 3. Για τον τελεστή Η ισχύει ότι
 - 3.1 είναι μονότονος, δηλαδή $Hx \le Hy$ για κάθε $x \le y$.
 - 3.2 Για κάθε $\lambda>0$ και $r\in\mathbb{R}^N$, ισχύει ότι: $Hr-\lambda e\leq H(r-\lambda e)\leq H(r+\lambda e)\leq Hr+\lambda e\text{, όπου }e=(1,\ldots,1).$
 - 3.3 Έχει μοναδικό σταθερό σημείο, $Hr^* = r^*$.

Εαν η $(r_n)_n$ είναι φραγμένη σχεδόν παντού, τότε συγκλίνει στο r^* σχεδόν παντού.

• ΜDΡ με σύνολο καταστάσεων S.

- MDP με σύνολο καταστάσεων S.
- Σε κάθε στάδιο n του προβλήματος, παρατηρούμε την τρέχουσα κατάσταση $i \in S$ της διαδικασίας και επιλέγουμε μια απόφαση $a \in A(i)$.

- MDP με σύνολο καταστάσεων S.
- Σε κάθε στάδιο n του προβλήματος, παρατηρούμε την τρέχουσα κατάσταση $i \in S$ της διαδικασίας και επιλέγουμε μια απόφαση $a \in A(i)$.
- Η διαδικασία μεταβαίνει στην κατάσταση j με πιθανότητα $p_{ij}(a)$. Οι πιθανότητες μετάβασης εξαρτώνται από την τρέχουσα κατάσταση i και την απόφαση a που λήφθηκε.

- MDP με σύνολο καταστάσεων S.
- Σε κάθε στάδιο n του προβλήματος, παρατηρούμε την τρέχουσα κατάσταση $i \in S$ της διαδικασίας και επιλέγουμε μια απόφαση $a \in A(i)$.
- Η διαδικασία μεταβαίνει στην κατάσταση j με πιθανότητα $p_{ij}(a)$. Οι πιθανότητες μετάβασης εξαρτώνται από την τρέχουσα κατάσταση i και την απόφαση a που λήφθηκε.
- Κάθε μετάβαση επιφέρει κόστος c(i,a,j).

- MDP με σύνολο καταστάσεων S.
- Σε κάθε στάδιο n του προβλήματος, παρατηρούμε την τρέχουσα κατάσταση $i \in S$ της διαδικασίας και επιλέγουμε μια απόφαση $a \in A(i)$.
- Η διαδικασία μεταβαίνει στην κατάσταση j με πιθανότητα $p_{ij}(a)$. Οι πιθανότητες μετάβασης εξαρτώνται από την τρέχουσα κατάσταση i και την απόφαση a που λήφθηκε.
- Κάθε μετάβαση επιφέρει κόστος c(i, a, j).
- Αξία πολιτικής π : Το αναμενόμενο κόστος $J^{\pi}(i)$ όταν η διαδικασία ξεκινάει από την κατάσταση $i_0=i$, και ακολουθείται η πολιτική $\pi=(\mu_0,\mu_1,\ldots)$,

$$J^{\pi}(i) = \lim_{N \to \infty} \mathbb{E}\left[\sum_{m=0}^{N} c(i_{m}, \mu_{m}(i_{m}), i_{m+1}) \mid i_{0} = i\right].$$

- MDP με σύνολο καταστάσεων S.
- Σε κάθε στάδιο n του προβλήματος, παρατηρούμε την τρέχουσα κατάσταση $i \in S$ της διαδικασίας και επιλέγουμε μια απόφαση $a \in A(i)$.
- Η διαδικασία μεταβαίνει στην κατάσταση j με πιθανότητα $p_{ij}(a)$. Οι πιθανότητες μετάβασης εξαρτώνται από την τρέχουσα κατάσταση i και την απόφαση a που λήφθηκε.
- Κάθε μετάβαση επιφέρει κόστος c(i, a, j).
- Αξία πολιτικής π : Το αναμενόμενο κόστος $J^\pi(i)$ όταν η διαδικασία ξεκινάει από την κατάσταση $i_0=i$, και ακολουθείται η πολιτική $\pi=(\mu_0,\mu_1,\ldots)$,

$$J^{\pi}(i) = \lim_{N \to \infty} \mathbb{E}\left[\sum_{m=0}^{N} c(i_m, \mu_m(i_m), i_{m+1}) \mid i_0 = i\right].$$

• Συνάρτηση βέλτιστης τιμής $J^*(i)$: Το ελάχιστο δυνατό κόστος κάτω από οποιαδήποτε πολιτική, όταν η διαδικασία ξεκινάει από την κατάσταση i,

$$J^*(i) = \min_{\pi} J^{\pi}(i).$$

Η εξίσωση Bellman

Εξίσωση Bellman

$$J^{*}(i) = \min_{a \in A(i)} \left\{ \sum_{j \in S} p_{ij}(a) \left(c(i, a, j) + J^{*}(j) \right) \right\}.$$

Η εξίσωση Bellman

Εξίσωση Bellman

$$J^*(i) = \min_{a \in A(i)} \left\{ \sum_{j \in S} p_{ij}(a) \left(c(i, a, j) + J^*(j) \right) \right\}.$$

Μέθοδος διαδοχικών προσεγγίσεων

Ξεκινάμε από κάποια αυθαίρετη συνάρτηση J₀, και εν συνεχεία ορίζουμε αναδρομικά

$$J_{n+1}(i) = \min_{a \in A(i)} \left\{ \sum_{j \in S} p_{ij}(a) \left(c(i, a, j) + J_n(j) \right) \right\}.$$

Η εξίσωση Bellman

Εξίσωση Bellman

$$J^*(i) = \min_{a \in A(i)} \left\{ \sum_{j \in S} p_{ij}(a) \left(c(i, a, j) + J^*(j) \right) \right\}.$$

Μέθοδος διαδοχικών προσεγγίσεων

Ξεκινάμε από κάποια αυθαίρετη συνάρτηση J₀, και εν συνεχεία ορίζουμε αναδρομικά

$$J_{n+1}(i) = \min_{a \in A(i)} \left\{ \sum_{j \in S} p_{ij}(a) \left(c(i, a, j) + J_n(j) \right) \right\}.$$

Η σύγκλιση της ακολουθίας $(J_n)_n$ στην J^* εξασφαλίζεται μέσω του θεωρήματος σταθερού σημείου του Banach, καθώς ο τελεστής $T:C(S)\to C(S)$, που ορίζεται ώς

$$(\mathit{Tf})(i) = \min_{a \in A(i)} \left\{ \sum_{j \in S} p_{ij}(a) \left(c(i,a,j) + f(j) \right) \right\}, \ f \in C(S), \ i \in S,$$

αποτελεί συστολή.

Ερώτημα

Μπορούμε να λύσουμε την εξίσωση Bellman, όταν δε γνωρίζουμε τις πιθανότητες μετάβασης $p_{ij}(a)$ και τα κόστη c(i,a,j);

Ερώτημα

Μπορούμε να λύσουμε την εξίσωση Bellman, όταν δε γνωρίζουμε τις πιθανότητες μετάβασης $p_{ij}(a)$ και τα κόστη c(i,a,j);

Q-Παράγοντες

Για $(i,a) \in S \times A(i)$, ορίζουμε τον βέλτιστο Q-παράγοντα $Q^*(i,a)$ ως

$$Q^*(0,a) = 0$$
 and $Q^*(i,a) = \sum_{j=0}^{N} p_{ij}(a) \left(c(i,a,j) + J^*(j) \right)$ yia $i = 1, \dots, N$,

όπου J* η συνάρτηση βέλτιστης τιμής.

Ερώτημα

Μπορούμε να λύσουμε την εξίσωση Bellman, όταν δε γνωρίζουμε τις πιθανότητες μετάβασης $p_{ij}(a)$ και τα κόστη c(i,a,j);

Q-Παράγοντες

Για $(i,a) \in S \times A(i)$, ορίζουμε τον βέλτιστο Q-παράγοντα $Q^*(i,a)$ ως

$$Q^*(0,a) = 0$$
 and $Q^*(i,a) = \sum_{j=0}^{N} p_{ij}(a) \left(c(i,a,j) + J^*(j) \right)$ yia $i = 1, \dots, N$,

όπου J* η συνάρτηση βέλτιστης τιμής.

Ο Q* ικανοποιεί την εξίσωση

$$Q^*(i,a) = \sum_{j=0}^{N} p_{ij}(a) \left(c(i,a,j) + \min_{b \in A(j)} Q^*(j,b) \right) \text{ for } i = 1, \dots, N,$$

• Εξίσωση Bellman για την J*:

$$J^{*}(i) = \min_{a \in A(i)} \left\{ \sum_{j \in S} p_{ij}(a) \left(c(i, a, j) + J^{*}(j) \right) \right\}.$$

• Εξίσωση Bellman για τους Q-παράγοντες:

$$Q^*(i,a) = \sum_{j=0}^{N} p_{ij}(a) \left(c(i,a,j) + \min_{b \in A(j)} Q^*(j,b) \right).$$

$\cap \wedge \wedge $	COLON	105 D	LEARNING
U AM	OPION	102 U-	LEARNING

- ΒΗΜΑ 1 Επιλέγουμε συναρτήσεις $(\gamma_n)_n$ ορισμένες στο σύνολο $\tilde{S} = \{(i,a): i=1,\ldots,N, a\in A(i)\}$, τ.ω. $\sum_{n=0}^{\infty}\gamma_n(i,a)=\infty$ και $\sum_{n=0}^{\infty}\gamma_n(i,a)^2<\infty$ για κάθε $i=1,\ldots,N$ και $a\in A(i)$.
- ΒΗΜΑ 2 Αρχικοποιούμε με τη συνάρτηση $Q_0(i,a)$ για i= 1, . . . , N και $a\in A(i)$.
- ΒΗΜΑ 3 Υποθέτουμε πως έχουμε δημιουργήσει τις τιμές $Q_n(i,a)$ για κάθε ζεύγος (i,a) για κάποιο $n \geq 0$. Για κάθε ζεύγος (i,a), προσομοιώνουμε μια παρατήρηση $j_{i,a}$ από την κατανομή $p_{i,\cdot}(a)$ και θέτουμε $Q_{n+1}(i,a) = (1-\gamma_n(i,a))Q_n(i,a) + \gamma_n(i,a) \left(c(i,a,j_{i,a}) + \min_{b \in A(j_{i,a})} Q_n(j_{i,a},b)\right)$.
- ΒΗΜΑ 4 Επιστρέφουμε στο ΒΗΜΑ 3.

Θεώρημα (Watkins 1989, Tsitsiklis 1994)

Θεωρούμε την ακολουθία $(Q_n)_n$ που ορίζεται αναδρομικά ως

$$Q_{n+1}(i,a) = (1 - \gamma_n(i,a)) Q_n(i,a) + \gamma_n(i,a) \left(c(i,a,j) + \min_{b \in A(j)} Q_n(j,b) \right),$$

όπου η κατάσταση j έχει προσομοιωθεί από την κατανομή $p_{i,\cdot}(a)$ και $(\gamma_n)_n$ είναι ακολουθία με την ιδιότητα ότι $\sum_{n=0}^\infty \gamma_n(i,a) = \infty$ και $\sum_{n=0}^\infty \gamma_n(i,a)^2 < \infty$ για κάθε $i=1,\ldots,N$ και $a\in A(i)$. Αν όλες οι πολιτικές είναι γνήσιες, τότε $Q_n(i,a) \to Q^*(i,a)$ για κάθε $i,a\in A(i)$ σχεδόν παντού.

Θεώρημα (Watkins 1989, Tsitsiklis 1994)

Θεωρούμε την ακολουθία $(Q_n)_n$ που ορίζεται αναδρομικά ως

$$Q_{n+1}(i,a) = (1 - \gamma_n(i,a)) Q_n(i,a) + \gamma_n(i,a) \left(c(i,a,j) + \min_{b \in A(j)} Q_n(j,b) \right),$$

όπου η κατάσταση j έχει προσομοιωθεί από την κατανομή $p_{i,\cdot}(a)$ και $(\gamma_n)_n$ είναι ακολουθία με την ιδιότητα ότι $\sum_{n=0}^\infty \gamma_n(i,a) = \infty$ και $\sum_{n=0}^\infty \gamma_n(i,a)^2 < \infty$ για κάθε $i=1,\ldots,N$ και $a\in A(i)$. Αν όλες οι πολιτικές είναι γνήσιες, τότε $Q_n(i,a) \to Q^*(i,a)$ για κάθε $i,a\in A(i)$ σχεδόν παντού.

Ο τελεστής $H: \mathit{C}(\tilde{\mathsf{S}}) \to \mathit{C}(\tilde{\mathsf{S}})$ που ορίζεται ως

$$(HQ)(i,a) = \sum_{j=0}^{N} p_{ij}(a) \left(c(i,a,j) + \min_{b \in A(j)} Q(j,b) \right).$$

για Q στο $C(\tilde{S})$, προκύπτει είτε ότι είναι συστολή ως προς κάποια κατάλληλη νόρμα, είτε ότι είναι μονότονος.

Multi-armed Bandits

Το πλαίσιο των multi-armed bandit

• Δύο διαφορετικοί πληθυσμοί με κατανομές κερδών p_A , p_B και αναμενόμενες τιμές $\mu_A < \mu_B$ αντίστοιχα.

Το πλαίσιο των multi-armed bandit

- Δύο διαφορετικοί πληθυσμοί με κατανομές κερδών p_A , p_B και αναμενόμενες τιμές $\mu_A < \mu_B$ αντίστοιχα.
- Σε κάθε γύρο επιλέγουμε έναν πληθυσμό και τραβάμε μια τιμή από αυτόν, εισπράττοντάς την ως κέρδος.

Το πλαίσιο των multi-armed bandit

- Δύο διαφορετικοί πληθυσμοί με κατανομές κερδών p_A , p_B και αναμενόμενες τιμές $\mu_A < \mu_B$ αντίστοιχα.
- Σε κάθε γύρο επιλέγουμε έναν πληθυσμό και τραβάμε μια τιμή από αυτόν, εισπράττοντάς την ως κέρδος.
- Ερώτημα: Μπορούμε να βρούμε μια στρατηγική που μακροπρόθεσμα
 θα μας δίνει αναμενόμενο κέρδος όσο πιο κοντά γίνεται στο μ_B;

Ο Κανόνας του Robbins

Θεώρημα Robbins (1952)

Ασυμπτωτικά γίνεται να επιτύγχουμε αναμενόμενο κέρδος ακριβώς ίσο με μ_{B} , σχεδόν βεβαίως.

Ο Κανόνας του Robbins

Θεώρημα Robbins (1952)

Ασυμπτωτικά γίνεται να επιτύγχουμε αναμενόμενο κέρδος ακριβώς ίσο με μ_{B} , σχεδόν βεβαίως.

O KANONAΣ TOY ROBBINS

- ΒΗΜΑ 1 Επιλέγουμε $J_A,J_B\subseteq\mathbb{N}$ άπειρα με μηδενική πυκνότητα.
- ΒΗΜΑ 2 Υποθέτουμε ότι έχουμε τραβήξει δείγμα x_1, \ldots, x_{n-1} στους πρώτους n-1 γύρους. Αν $n\in J_A$, τραβάμε την X_n από τον πληθυσμό A. Αν $n\in J_B$, τραβάμε την X_n από τον B.
- ΒΗΜΑ 3 Αν $n \not\in J_A \cup J_B$, θέτουμε $a_n = \frac{\sum_{\{i:X_i \sim F_A\}} X_i}{\#\{i:X_i \sim F_A\}}$ και $b_n = \frac{\sum_{\{i:X_i \sim F_B\}} X_i}{\#\{i:X_i \sim F_B\}}$. Αν $a_n \geq b_n$, τραβάμε την X_n από τον πληθυσμό A, διαφορετικά από τον B.

Ο Κανόνας του Robbins

Θεώρημα Robbins (1952)

Ασυμπτωτικά γίνεται να επιτύγχουμε αναμενόμενο κέρδος ακριβώς ίσο με μ_{B} , σχεδόν βεβαίως.

O KANONAΣ TOY ROBBINS

- ΒΗΜΑ 1 Επιλέγουμε $J_A, J_B \subseteq \mathbb{N}$ άπειρα με μηδενική πυκνότητα.
- ΒΗΜΑ 2 Υποθέτουμε ότι έχουμε τραβήξει δείγμα x_1, \ldots, x_{n-1} στους πρώτους n-1 γύρους. Αν $n\in J_A$, τραβάμε την X_n από τον πληθυσμό A. Αν $n\in J_B$, τραβάμε την X_n από τον B.
- ΒΗΜΑ 3 Αν $n \notin J_A \cup J_B$, θέτουμε $a_n = \frac{\sum_{\{i:X_i \sim F_A\}} X_i}{\#\{i:X_i \sim F_A\}}$ και $b_n = \frac{\sum_{\{i:X_i \sim F_B\}} X_i}{\#\{i:X_i \sim F_B\}}$. Αν $a_n \geq b_n$, τραβάμε την X_n από τον πληθυσμό A, διαφορετικά από τον B.

Μηδενική πυκνότητα:

$$d(J_{A})=\lim_{n\to\infty}\frac{\#J_{A}\cap\{1,\ldots,n\}}{n}=0.$$

• Έχουμε K το πλήθος bandits με κατανομές $f(x, \theta_1), \ldots, f(x, \theta_K)$ και μέσες τιμές μ_1, \ldots, μ_K . Έστω $\mu^* = \max\{\mu_i\}_i$.

- Έχουμε K το πλήθος bandits με κατανομές $f(x, \theta_1), \ldots, f(x, \theta_K)$ και μέσες τιμές μ_1, \ldots, μ_K . Έστω $\mu^* = \max\{\mu_i\}_i$.
- Συνολικό κέρδος S_n μετά απο n γύρους.

- Έχουμε K το πλήθος bandits με κατανομές $f(x, \theta_1), \ldots, f(x, \theta_K)$ και μέσες τιμές μ_1, \ldots, μ_K . Έστω $\mu^* = \max\{\mu_i\}_i$.
- Συνολικό κέρδος S_n μετά απο n γύρους.
- Regret $R_n(\theta) = n\mu^* \mathbb{E}[S_n]$.

- Έχουμε K το πλήθος bandits με κατανομές $f(x, \theta_1), \ldots, f(x, \theta_K)$ και μέσες τιμές μ_1, \ldots, μ_K . Έστω $\mu^* = \max\{\mu_i\}_i$.
- Συνολικό κέρδος S_n μετά απο n γύρους.
- Regret $R_n(\theta) = n\mu^* \mathbb{E}[S_n]$.
- Robbins: $\frac{R_n(\theta)}{n} = \mu^* \frac{\mathbb{E}[S_n]}{n} \to 0$.

- Έχουμε K το πλήθος bandits με κατανομές $f(x, \theta_1), \ldots, f(x, \theta_K)$ και μέσες τιμές μ_1, \ldots, μ_K . Έστω $\mu^* = \max\{\mu_i\}_i$.
- Συνολικό κέρδος S_n μετά απο n γύρους.
- Regret $R_n(\theta) = n\mu^* \mathbb{E}[S_n]$.
- Robbins: $\frac{R_n(\theta)}{n} = \mu^* \frac{\mathbb{E}[S_n]}{n} \to 0.$

Το Θεώρημα του Robbins εγγυάται ότι ναι μεν $R_n(\theta) \to \infty$, αλλά η σύγκλιση είναι πιο αργή από την ακολουθία n, δηλ. $R_n(\theta) = o(n)$.

- Έχουμε K το πλήθος bandits με κατανομές $f(x, \theta_1), \ldots, f(x, \theta_K)$ και μέσες τιμές μ_1, \ldots, μ_K . Έστω $\mu^* = \max\{\mu_i\}_i$.
- Συνολικό κέρδος S_n μετά απο n γύρους.
- Regret $R_n(\theta) = n\mu^* \mathbb{E}[S_n]$.
- Robbins: $\frac{R_n(\theta)}{n} = \mu^* \frac{\mathbb{E}[S_n]}{n} \to 0.$

Το Θεώρημα του Robbins εγγυάται ότι ναι μεν $R_n(\theta) \to \infty$, αλλά η σύγκλιση είναι πιο αργή από την ακολουθία n, δηλ. $R_n(\theta) = o(n)$.

Μπορούμε να επιτύχουμε ακόμα πιο αργή σύγκλιση για το regret;

Ορισμός (Kullback-Leibler divergence)

Για τις κατανομές $f(x;\lambda)$ and $f(x;\mu)$ ορίζουμε την απόσταση Kullback - Leibler $I(\lambda,\mu)$ ως

$$I(\lambda, \mu) = \int f(x; \lambda) \ln \frac{f(x; \lambda)}{f(x; \mu)} dx.$$

Ορισμός (Kullback-Leibler divergence)

Για τις κατανομές $f(x; \lambda)$ and $f(x; \mu)$ ορίζουμε την απόσταση Kullback - Leibler $I(\lambda, \mu)$ ως

$$I(\lambda, \mu) = \int f(x; \lambda) \ln \frac{f(x; \lambda)}{f(x; \mu)} dx.$$

Υποθέσεις (Υ1-Υ3):

Ορισμός (Kullback-Leibler divergence)

Για τις κατανομές $f(x;\lambda)$ and $f(x;\mu)$ ορίζουμε την απόσταση Kullback - Leibler $I(\lambda,\mu)$ ως

$$I(\lambda, \mu) = \int f(x; \lambda) \ln \frac{f(x; \lambda)}{f(x; \mu)} dx.$$

Υποθέσεις (Υ1-Υ3):

• Συνθήκη Κατανομών: Μονοπαραμετρική οικογένεια κατανομών για τα rewards, $(f(x;\theta))_{\theta\in\Theta}$ με $\Theta\subseteq\mathbb{R}$.

Ορισμός (Kullback-Leibler divergence)

Για τις κατανομές $f(x;\lambda)$ and $f(x;\mu)$ ορίζουμε την απόσταση Kullback - Leibler $I(\lambda,\mu)$ ως

$$I(\lambda, \mu) = \int f(x; \lambda) \ln \frac{f(x; \lambda)}{f(x; \mu)} dx.$$

Υποθέσεις (Υ1-Υ3):

- Συνθήκη Κατανομών: Μονοπαραμετρική οικογένεια κατανομών για τα rewards, $(f(x;\theta))_{\theta\in\Theta}$ με $\Theta\subseteq\mathbb{R}$.
- Συνθήκη Συνέχειας: Για κάθε λ , $\theta \in \Theta$, αν $(\lambda_n)_n$ τ.ω. $\mu(\lambda_n) \downarrow \mu(\lambda)$, τότε $I(\theta, \lambda_n) \to I(\theta, \lambda)$.

Ορισμός (Kullback-Leibler divergence)

Για τις κατανομές $f(x; \lambda)$ and $f(x; \mu)$ ορίζουμε την απόσταση Kullback - Leibler $I(\lambda, \mu)$ ως

$$I(\lambda, \mu) = \int f(x; \lambda) \ln \frac{f(x; \lambda)}{f(x; \mu)} dx.$$

Υποθέσεις (Υ1-Υ3):

- Συνθήκη Κατανομών: Μονοπαραμετρική οικογένεια κατανομών για τα rewards, $(f(x;\theta))_{\theta\in\Theta}$ με $\Theta\subseteq\mathbb{R}$.
- Συνθήκη Συνέχειας: Για κάθε λ , $\theta \in \Theta$, αν $(\lambda_n)_n$ τ.ω. $\mu(\lambda_n) \downarrow \mu(\lambda)$, τότε $I(\theta, \lambda_n) \to I(\theta, \lambda)$.
- Συνθήκη Πυκνότητας: Για κάθε $\lambda \in \Theta$, υπάρχει $(\lambda_n)_n$ in Θ τ.ω. $(\mu(\lambda_n))_n$ γνησίως φθίνουσα με $\mu(\lambda_n) \downarrow \mu(\lambda)$.

Θεώρημα Lai-Robbins (1985)

Οι κατανομές των χεριών ικανοποιούν τις υποθέσεις Υ1-Υ3. Για έναν αλγόριθμο που ικανοποιεί την ιδιότητα ότι

$$R_n(\theta) = o(n^a)$$

για κάθε $\theta=(\theta_1,\ldots,\theta_K)\in\Theta^K$ και a>0, ισχύει ότι

$$\liminf_{n} \frac{R_n(\theta)}{\ln n} \ge \sum_{i: \mu(\theta_i) < \mu^*} \frac{\mu^* - \mu(\theta_i)}{I(\theta_i, \theta^*)} > 0,$$

για τα θ για τα οποία τα $\mu(\theta_i)$ δεν είναι όλα ίσα.

Ο Αλγόριθμος Lai-Robbins

Υποθέτουμε ότι υπάρχουν

• συναρτήσεις $\tilde{\mu}_n(j)$ που παίζουν το ρόλο του δειγματικού μέσου του j-πληθυσμού, μετά από n-γύρους.

Ο Αλγόριθμος Lai-Robbins

Υποθέτουμε ότι υπάρχουν

- συναρτήσεις $\tilde{\mu}_n(j)$ που παίζουν το ρόλο του δειγματικού μέσου του j-πληθυσμού, μετά από n-γύρους.
- Συναρτήσεις $U_n(j)$ που παίζουν το ρόλο του άνω άκρου ενός διαστήματος εμπιστοσύνης για το μέσο του j-πληθυσμού, μετά από n-γύρους.

Ο Αλγόριθμος Lai-Robbins

Υποθέτουμε ότι υπάρχουν

- συναρτήσεις $\tilde{\mu}_n(j)$ που παίζουν το ρόλο του δειγματικού μέσου του j-πληθυσμού, μετά από n-γύρους.
- Συναρτήσεις $U_n(j)$ που παίζουν το ρόλο του άνω άκρου ενός διαστήματος εμπιστοσύνης για το μέσο του j-πληθυσμού, μετά από n-γύρους.

Ο ΑΛΓΟΡΙΘΜΟΣ LAI-ROBBINS

- Внма 1 Γ Για $m=1,\ldots,K$ επιλέγουμε $\phi(m)=m$.
- ΒΗΜΑ 2 Κατά τον $n+1\equiv j \mod K$ γύρο, θέτουμε $I_n=\{m\in\{1,\ldots,K\}:T_n(m)\geq \delta n\},\ j_n=\arg\max\left\{\tilde{\mu}_n(m):m\in I_n\right\}$ και $\tilde{\mu}_n(j_n)=\max\left\{\tilde{\mu}_n(m):m\in I_n\right\}.$
- ВНМА 3 Av $\tilde{\mu}_n(j_n) \leq U_n(j)$, τότε $\phi(n+1) = j$, διαφορετικά $\phi(n+1) = j_n$.
- Внма 4 Επιστρέφουμε στο Внма 2.

Ο Αλγόριθμος Auer-Bianchi-Fischer

• Οι συναρτήσεις $\tilde{\mu}_n(j)$ είναι ακριβώς οι δειγματικοί μέσοι του j-πληθυσμού μετά από n-γύρους.

Ο Αλγόριθμος Auer-Bianchi-Fischer

- Οι συναρτήσεις $\tilde{\mu}_n(j)$ είναι ακριβώς οι δειγματικοί μέσοι του j-πληθυσμού μετά από n-γύρους.
- Οι συναρτήσεις $U_n(j)$ δίνονται από την έκφραση

$$\overline{x}_{j,n_j} + \sqrt{\frac{3 \ln n}{2n_j}},$$

όπου \overline{x}_{j,n_j} είναι ο δειγματικός μέσος του j-πληθυσμού και n_j το πλήθος των φορών που επιλέχθηκε ο j-πληθυσμός κατά τους πρώτους n γύρους.

Ο ΑΛΓΟΡΙΘΜΟΣ UPPER CONFIDENCE BOUND

- ΒΗΜΑ 1 Επιλέγουμε κάθε πληθυσμό μία φορά.
- ΒΗΜΑ 2 Στον n+1-γύρο, επιλέγουμε τον πληθυσμό που μεγιστοποιεί την έκφραση $\overline{x}_{j,n_j}+\sqrt{\frac{3\ln n}{2n_j}}.$

ΑΛΓΟΡΙΘΜΟΣ LAI-ROBBINS

ΑΛΓΟΡΙΘΜΟΣ UCB

ΑΛΓΟΡΙΘΜΟΣ UCB ΑΛΓΟΡΙΘΜΟΣ LAI-ROBBINS Μόναδική υπόθεση είναι οι κατανομές Συγκεκριμένες υποθέσεις για τις

κατανομές των κερδών (παραμετρικές, απαιτήσεις συνέχειας ως προς τη μετρική Kullback-Leibler, κλπ.).

να φέρονται στο [0, 1].

Αλγοριθμός Lai-Robbins	Αλγοριθμός UCB
Συγκεκριμένες υποθέσεις για τις κατανομές των κερδών (παραμετρικές, απαιτήσεις συνέχειας ως προς τη μετρική Kullback-Leibler, κλπ.).	Μόναδική υπόθεση είναι οι κατανομές να φέρονται στο [0, 1].
Η κατασκευή των δ.ε. είναι δύσκολη υπόθεση. Ακόμα και όταν τα δ.ε. δίνονται, ο υπολογισμός τους είναι απαιτητικός.	Η κατασκευή των δ.ε. είναι εύκολη και υπολογιστικά αποδοτική.

Αλγοριθμός Lai-Robbins	Αλγοριθμός UCB
Συγκεκριμένες υποθέσεις για τις κατανομές των κερδών (παραμετρικές, απαιτήσεις συνέχειας ως προς τη μετρική Kullback-Leibler, κλπ.).	Μόναδική υπόθεση είναι οι κατανομές να φέρονται στο [0, 1].
Η κατασκευή των δ.ε. είναι δύσκολη υπόθεση. Ακόμα και όταν τα δ.ε. δίνονται, ο υπολογισμός τους είναι απαιτητικός.	Η κατασκευή των δ.ε. είναι εύκολη και υπολογιστικά αποδοτική.
Λογαριθμική απώλεια ασυμπτωτικά.	Λογαριθμική απώλεια ομοιόμορφα.

Αλγοριθμός Lai-Robbins	Αλγοριθμός UCB
Συγκεκριμένες υποθέσεις για τις κατανομές των κερδών (παραμετρικές, απαιτήσεις συνέχειας ως προς τη μετρική Kullback-Leibler, κλπ.).	Μόναδική υπόθεση είναι οι κατανομές να φέρονται στο [0,1].
Η κατασκευή των δ.ε. είναι δύσκολη υπόθεση. Ακόμα και όταν τα δ.ε. δίνονται, ο υπολογισμός τους είναι απαιτητικός.	Η κατασκευή των δ.ε. είναι εύκολη και υπολογιστικά αποδοτική.
Λογαριθμική απώλεια ασυμπτωτικά.	Λογαριθμική απώλεια ομοιόμορφα.
Η λογαριθμική σταθερά ισούται με $\frac{1}{2\Delta_j}$ για τους μη βέλτιστους πληθυσμούς j .	Η αντίστοιχη λογαριθμική σταθερά ισούται με $\frac{6}{\Delta_j}>\frac{1}{2\Delta_j}.$

References i

D. Bertsekas and I. Tsitsiklis.

Neuro-Dynamic Programming.

Athena Scientific, 1996.

G. Cybenko.

Approximation by superposition of a sigmoidal function.

Mathematics of Control, Signal, and Systems, 2:303-314, 1989.

T. Lai and H. Robbins.

Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 2:4-22, 1985.

T. Lattimore and C. Szepesvári.

Bandit Algorithms.

Cambridge University Press, 2020.

P. F. P. Auer, N. Cesa-Bianchi.

Finite-time analysis of the multiarmed bandit problem.

Machine Learning, 47:235-256, 2002.