RC4558 High-Gain Dual Operational Amplifier

Features

- 2.5 MHz unity gain bandwidth guaranteed
- Supply voltage ±22V for RM4558 and ±15V for RC4558
- Short-circuit protection
- No frequency compensation required
- No latch-up
- Large common-mode and differential voltage ranges
- Low power consumption
- Parameter tracking over temperature range
- Gain and phase match between amplifiers

Description

The 4558 integrated circuit is a dual high-gain operational amplifier internally compensated and constructed on a single silicon IC using an advanced epitaxial process.

Combining the features of the 741 with the close parameter matching and tracking of a

dual device on a monolithic chip results in unique performance characteristics. Excellent channel separation allows the use of the dual device in single 741 operational amplifier applications providing density. It is especially well suited for applications in differential-in, differential-out as well as in potentiometric amplifiers and where gain and phase matched channels are mandatory.

Ordering Information

Part Number	Package	Operating Temperature Range
RC4558M	M	0°C to +70°C
RC4558N	N	0°C to +70°C
RV4558D	D	-25°C to +85°C
RV4558N	N	-25°C to +85°C
RM4558D	D	-55°C to +125°C
RM4558D/883B	D	-55°C to +125°C
RM4558T	T	-55°C to +125°C
RM4558T/883B	T	-55°C to +125°C

Notes

/883B suffix denotes Mil-Std-883, Level B processing

N = 8-lead plastic DIP

D = 8-lead ceramic DIP

T = 8-lead metal can (TO-99)

M = 8-lead plastic SOIC

Contact a Raytheon sales office or representative for ordering information on special package/temperature range combinations.

Connection Information

Absolute Maximum Ratings

*For supply voltages less than -15V, the absolute maximum input voltage is equal to the supply voltage.
**Short circuit may be to ground on one amp only. Rating applies to +75°C ambient temperature.

Mask Pattern

Thermal Characteristics

	8-Lead Small Outline Plastic SO-8	8-Lead Plastic DIP	8-Lead Ceramic DIP	8-Lead TO-99 Metal Can
Max. Junction Temp.	+125°C	+125°C	+175°C	+175°C
Max. P _D T _A <50°C	300 mW	468 mW	833 mW	658 mW
Therm. Res θ_{JC}			45°C/W	50°C/W
Therm. Res. θ_{JA}	240°C/W	160°C/W	150°C/W	190°C/W
For T _A >50°C Derate at	4.1 mW/°C	6.25 mW/°C	8.33 mW/°C	5.26 mW/°C

Matching Characterisitics ($V_s = \pm 15V$, $T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Conditions	RC4558 Typ	Units
Voltage Gain	R _L ≥ 2 kΩ	±1.0	dB
Input Bias Current	$R_L \ge 2 k\Omega$	±15	nA
Input Offset Current	$R_L \ge 2 k\Omega$	±7.5	nA

Electrical Characteristics ($V_S = \pm 15V$ and $T_A = +25^{\circ}C$ unless otherwise specified)

			RM4558		ı	RV/RC455	8	
Parameters	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$R_S \le 10 k\Omega$		1.0	5.0		2.0	6.0	m۷
Input Offset Current			5.0	200		5.0	200	nA
Input Bias Current			40	500		40	500	nA
Input Resistance		0.3	1.0		0.3	1.0		MΩ
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$	50	300		20	300		V/mV
Output Voltage Swing	$R_L \ge 10 k\Omega$	±12	±14		±12	±14		٧
	$R_L \geq 2k\Omega$	±10	±13		±10	±13		٧
Input Voltage Range		±12	±13		±12	±13		٧
Common Mode Rejection Ratio	$R_S \le 10 k\Omega$	70	100		70	100		dB
Power Supply Rejection Ratio	$R_S \leq 10 k\Omega$	76	100		76	100		dB
Power Consumption	R _L = ∞		100	170		100	170	mW
Transient Response Rise Time	$V_{IN} = 20mV$ $R_L = 2k\Omega$		0.3			0.3		μS
Overshoot	$C_L \leq 100 \text{pF}$		35			35		%
Slew Rate	$R_L \geq 2k\Omega$		0.8			0.8		V/µS
Channel Separation	$f = 10kHz, R_S = 1k\Omega$		90			90		dB
Unity Gain Bandwidth (Gain = 1)		2.5	3.0		2.0	3.0		MHz
The following specifications ap	ply for -55° C \leq T $_{A} \leq$ +125° $_{-25}$ C \leq T $_{A} \leq$ +85° C			°C ≤ T	_A ≤ +70	°C for RI	C4558;	
Input Offset Voltage	$R_S \le 10k\Omega$			6.0			7.5	m۷
Input Offset Current RC4558 RV4558				500 500			300 500	nA nA
Input Bias Current RC4558 RV4558				1500 1500			800 1500	nA nA
Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_{OUT} = \pm 10V$	25			15			V/mV
Output Voltage Swing	$R_L \geq 2k\Omega$	±10			±10			٧
Power Consumption	R _L = ∞		120	200		120	200	mW

Typical Performance Characteristics

Input Bias Current as a Function of Ambient Temperature

Input Offset Current as a Function of Ambient Temperature

Common Mode Range as a Function of Supply Voltage

Open Loop Voltage Gain as a Function of Frequency

Open Loop Gain as a Function of Temperature

Power Consumption as a Function of Ambient Temperature

Typical Output Voltage as a Function of Supply Voltage

Output Voltage Swing as a Function of Load Resistance

Output Voltage Swing as a Function of Frequency

Quiescent Current as a Function of Supply Voltage

Transient Response

Voltage Follower
Large Signal Pulse Response

Typical Applications

Voltage Follower

Power Amplifier

Comparator With Hysteresis

Squarewave Oscillator

Typical Applications (Continued)

DC Coupled 1kHz Low-Pass Active Filter

AC Coupled Non-Inverting Amplifier

1kHz Bandpass Active Filter

AC Coupled Inverting Amplifier

Voltage Controlled Oscillator (VCO)

Schematic Diagram (1/2 Shown)

RC4559 High-Gain Dual Operational Amplifier

Features

- Unity gain bandwidth 4.0 MHz typical, 3.0 MHz guaranteed
- Slew rate 2.0 V/µS typical, 1.5 V/µS guaranteed
- Low noise voltage 1.4 μV_{RMS} typical,
 2.0 μV_{RMS} guaranteed
- Supply voltage ±22V for RM4559 and ±18V for RC4559
- No frequency compensation required
- No latch up
- Large common mode and differential voltage ranges
- Low power consumption
- Parametric tracking over temperature range
- Gain and phase match between amplifiers

Description

The 4559 integrated circuit is a high performance dual operational amplifier internally compensated and constructed on a single silicon chip using an advanced epitaxial process.

These amplifiers feature guaranteed ac performance which far exceeds that of the 741-type amplifiers. The specially designed low-noise input transistors allow the 4559 to be used in low-noise signal processing applications such as audio preamplifiers and signal conditioners.

The 4559 also has more output drive capability than 741-type amplifiers and can be used to drive a 600Ω load.

Ordering Information

Part Number	Package	Operating Temperature Range
RC4559M	M	0°C to +70°C
RC4559N	N	0°C to +70°C
RV4559D	D	-25°C to +85°C
RV4559N	N	-25°C to +85°C
RM4559D	D	-55°C to +125°C
RM4559D/883B	D	-55°C to +125°C
RM4559T	T	-55°C to +125°C
RM4559T/883B	T	-55°C to +125°C

Notes:

/883B suffix denotes Mil-Std-883, Level B processing

N = 8-lead plastic DIP

D = 8 lead ceramic DIP

T = 8-lead metal can (TO-99)

M = 8-lead plastic SOIC

Contact a Raytheon sales office or representative for ordering information on special package/temperature range combinations.

Connection Information

Absolute Maximum Ratings

Supply Voltage	
RM4559	±22V
RC/RV4559	±18V
Input Voltage*	±15V
Differential Input Voltage	30V
Output Short Circuit Duration*	Indefinite
Operating Temperature Range	
RM4559	55°C to +125°C
RV4559	
RC4559	0°C to +70°C
Lead Soldering Temperature	
(SO-8; 10 sec)	+260°C
Lead Soldering Temperature	
(DIP, TO-99; 60 sec)	+300°C

^{*}For supply voltages less than -15V, the absolute maximum input voltage is equal to the supply voltage.

Mask Pattern

^{**}Short circuit may be to ground on one amp only. Rating applies to +75°C ambient temperature.

Thermal Characteristics

	8-Lead Small Outline Plastic SO-8	8-Lead Plastic DIP	8-Lead Ceramic DIP	8-Lead TO-99 Metal Can
Max. Junction Temp.	125°C	125°C	175°C	175°C
Max. P _D T _A <50°C	300 mW	468 mW	833 mW	658 mW
Therm. Res θ_{Jc}			45°C/W	50°C/W
Therm. Res. θ _{JA}	240°C/W	160°C/W	150°C/W	190°C/W
For T _A >50°C Derate at	4.1 mW/°C	6.25 mW/°C	8.33 mW/°C	5.26 mW/°C

Matching Characteristics ($V_s = \pm 15V$, $T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Conditions	RC4559 Typ	Units
Voltage Gain	$R_L \ge 2 k\Omega$	±1.0	dB
Input Bias Current		±15	nA
Input Offset Current		±7.5	nA

Electrical Characteristics ($V_S = \pm 15V$ and $T_A = +25^{\circ}C$ unless otherwise specified)

		RM4559		R	V/RC455	. 9		
Parameters	Test Conditions	Min	Тур	Max	Min	Тур	Max	Units
Input Offset Voltage	$R_S \le 10k\Omega$		1.0	5.0		2.0	6.0	mV
Input Offest Current			5.0	100		5.0	100	nA
Input Bias Current			40	250		40	250	nA
Input Resistance (Differential Mode)		0.3	1.0		0.3	1.0		MΩ
Large Signal Voltage Gain	$R_L \ge 2k\Omega$ $V_{OUT} = \pm 10V$	50	300		20	300		V/mV
	$R_L \ge 10 k\Omega$	±12	±14		±12	±14		٧
Output Voltage Swing	$R_L \ge 2k\Omega$	±10	±13		±10	±13		V
	$R_L \ge 600\Omega$	±9.5	±10		±9.5	±10		٧
Input Voltage Range		±12	±13		±12	±13		V
Common Mode Rejection Ratio	$R_S \le 10k\Omega$	80	100		80	100		dB
Power Supply Rejection Ratio	$R_S \le 10k\Omega$	82	100		82	100		dB
Supply Current	R _L = ∞		3.3	5.6		3.3	5.6	mA
Transient Response Rise Time	$V_{IN} = 20mV$ $R_L = 2k\Omega$		80			80		nS
Overshoot	$C_L \le 100 pF$		35			35	1	%
Slew Rate		1.5	2.0		1.5	2.0		V/µS
Unity Gain Bandwidth		3.0	4.0		3.0	4.0		MHz
Power Bandwidth	$V_0 = 20V_{p-p}$	24	32		24	32		kHz
Input Noise Voltage	f = 20Hz to 20kHz	-	1.4	2.0		1.4	2.0	μV_{RMS}
Input Noise Current	f = 20Hz to 20kHz		25			25		pA _{RMS}
Channel Separation	Gain = 100, f = 10kHz R _S = 1k Ω		90			90		dB
The following sp $0^{\circ}C \le T_A \le$	pecifications apply for +70°C for RC4559; -25	-55°C ≤ C ≤ T _A :	T _A ≤ +1 ≤ +85°C	25°C f for R\	or RM4 /4559	559;		
Input Offset Voltage	$R_S \le 10k\Omega$			6.0			7.5	mV
Input Offset Current				300			200	nA
Input Bias Current				500			500	nA
Large Signal Voltage Gain	$\begin{array}{c} R_L \geq 2k\Omega \\ V_{OUT} = \pm 10V \end{array}$	25			15			V/mV
Output Voltage Swing	$R_L \ge 2k\Omega$	±10			±10			٧

Typical Performance Characteristics

Input Bias Current as a Function of Ambient Temperature

Input Offset Current as a Function of Ambient Temperature

Common Mode Range as a Function of Supply Voltage

Open Loop Voltage Gain as a Function of Frequency

Open Loop Gain as a Function of Temperature

Power Consumption as a Function of Ambient Temperature

Typical Output Voltage as a Function of Supply Voltage

Output Voltage Swing as a Function of Load Resistance

Output Voltage Swing as a Function of Frequency

Quiescent Current as a Function of Supply Voltage

Transient Response

Voltage Follower Large Signal Pulse Response

Input Noise Current as a Function of Frequency

Input Noise Voltage as a Function of Frequency

Channel Separation

Total Harmonic Distortion vs. Output Voltage

Output Voltage Swing vs. Frequency

Distortion vs. Frequency

Typical Applications

400Hz Lowpass Butterworth Active Filter

Stereo Tone Control

 V_{0A}

9

1ΜΩ

₹1.2K

750pF

100K

Typical Applications (Continued)

RIAA Preamplifier

EINA EINB $V_S = \pm 15V$ 47K 47K $1M\Omega$ $-5.0\mu F$ $750\mu F$

Triangular-Wave Generator

Low Frequency Sine Wave Generator With Quadrature Output

100K

65-00242A

Schematic Diagram

