



## NT6612

## 2K 4-bit Microcontroller with LCD Driver

#### **Features**

- NT6610C-based single-chip 4-bit microcontroller with LCD driver
- ROM: 2048 x 16 bits
- RAM: 256 × 4 bits (data memory)
- Operation Voltage Range: 2.2V 5.4V (3V typically)
- 16 CMOS I/O pins (PORTA D, CMOS or Open Drain by code option)
- 4 level subroutine nesting (including interrupts)
- Two 8-bit timers with pre-divider circuit
- Oscillator warm-up timer
- 4 priority interrupt sources:
  - External interrupt (falling edge)
  - Timer0 interrupt
  - Timer1 interrupt
  - PortB interrupt (falling edge)

- Clock source: 32.768KHz crystal or 262K RC (type is programmable by code option)
- Instruction cycle time: 4/32.768KHz (≈ 122μs) for 32.768KHz crystal 4/262KHz (≈ 15μs) for 262KHz RC
- LCD driver
  - $4 \times 26 (1/4 \text{ duty}, 1/3 \text{ bias or } 1/3 \text{ duty}, 1/2 \text{ bias})$
- Two low power operation modes HALT or STOP mode
- Built-in alarm generator (carrier frequency: 2KHz or 4KHz code option)
- Low power consumption (lop < 10µA, 32.768KHz, 3V)
- Bonding option for multi-code software
- Available in CHIP FORM

## **General Description**

NT6612 is a single-chip microcontroller integrated with an NT6610C CPU core, SRAM, timer, alarm generator, LCD driver, I/O port, and program ROM.

#### **Pad Configuration**





## **Block Diagram**



## **Pad Description**

| Pad No.           | Designation | I/O | Description                                                                                                                                                         |
|-------------------|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 - 1,<br>52 - 29 | SEG1 - 26   | 0   | Segment signal output for LCD display. Seg1 - 4 as output                                                                                                           |
| 3                 | TEST        | I   | Test pin internally pull-down ( No connect for user)                                                                                                                |
| 4                 | RESET       | I   | Pad reset input                                                                                                                                                     |
| 5                 | $V_{DD}$    | Р   | Power pin                                                                                                                                                           |
| 5                 | В0          | I   | Bonding option, internally pull-low                                                                                                                                 |
| 6 - 9             | PORTA0 - 3  | I/O | Bit programmable I/O PA.0 could be external interrupt input( $\overline{\text{INT}}$ ) PA.1, PA.2 could be buzzer output PA.1 (BD), PA.2 ( $\overline{\text{BD}}$ ) |
| 10 - 13           | PORTB0 - 3  | I/O | Bit programmable I/O, vector interrupt (active falling edge)                                                                                                        |
| 14 - 17           | PORTC0 - 3  | I/O | Bit programmable I/O                                                                                                                                                |
| 18 - 21           | PORTD0 - 3  | I/O | Bit programmable I/O                                                                                                                                                |
| 22                | GND         | Р   | Ground pin                                                                                                                                                          |
| 22                | B1          | I   | Bonding option, internally pull-high                                                                                                                                |
| 23                | OSCO        | 0   | Oscillator output pin, connected to crystal oscillator                                                                                                              |
| 24                | OSCI        | I   | Oscillator input pin, connected to crystal or external resistor                                                                                                     |
| 28 - 25           | COM1 - 4    | 0   | Common signal output for LCD display                                                                                                                                |

Total 52 pads for mask type.



## **Functional Description**

#### CPU

The CPU contains the following functional blocks: Program Counter, Arithmetic Logic Unit (ALU), Carry Flag, Accumulator, Table Branch Register, Data Pointer (INX, DPH, DPM, and DPL), and Stacks.

#### ROM

The ROM can address 2048 words × 16 bits of program area from \$000 to \$7FF.

There is an area from address \$0 through \$4 that is reserved for special interrupt service routines, such as starting at vector address.

| Address | Instruction     | Remarks                                    |  |  |  |
|---------|-----------------|--------------------------------------------|--|--|--|
| 000H    | JMP instruction | Jump to RESET service routine              |  |  |  |
| 001H    | JMP instruction | Jump to External interrupt service routine |  |  |  |
| 002H    | JMP instruction | Jump to TIMER0 service routine             |  |  |  |
| 003H    | JMP instruction | Jump to TIMER1 service routine             |  |  |  |
| 004H    | JMP instruction | Jump to PB service routine (PORTB)         |  |  |  |

<sup>\*</sup>JMP instruction can be replaced by any instruction.

#### **RAM**

Built-in RAM contains of general purpose data memory, LCD RAM, and system register. Data memory, LCD RAM, and system register can be accessed by direct addressing in one instruction.

The following is the memory allocation map:

\$000 - \$01F: System register and I/O

\$020 - \$11F: Data memory (256 x 4 bits, divided into 2 banks).

\$300 - \$319: LCD RAM space (26 x 4 bits).



The configuration of system register:

|           | Bit 3 | Bit 2  | Bit 1 | Bit 0 | R/W | Remarks                                                                                                         |
|-----------|-------|--------|-------|-------|-----|-----------------------------------------------------------------------------------------------------------------|
| \$00      | IEX   | IET0   | IET1  | IEP   | R/W | Interrupt enable flags                                                                                          |
| \$01      | IRQX  | IRQT0  | IRQT1 | IRQP  | R/W | Interrupt request flags                                                                                         |
| \$02      | -     | T0M.2  | T0M.1 | T0M.0 | R/W | Bit0-2: Timer0 Mode register                                                                                    |
| \$03      | -     | T1M.2  | T1M.1 | T1M.0 | R/W | Bit0-2: Timer1 Mode register                                                                                    |
| \$04      | T0L.3 | T0L.2  | T0L.1 | T0L.0 | R/W | Timer0 load/counter register low nibble                                                                         |
| \$05      | T0H.3 | T0H.2  | T0H.1 | T0H.0 | R/W | Timer0 load/counter register high nibble                                                                        |
| \$06      | T1L.3 | T1L.2  | T1L.1 | T1L.0 | R/W | Timer1 load/counter register low nibble                                                                         |
| \$07      | T1H.3 | T1H.2  | T1H.1 | T1H.0 | R/W | Timer1 load/counter register high nibble                                                                        |
| \$08      | PA.3  | PA.2   | PA.1  | PA.0  | R/W | PORTA                                                                                                           |
| \$09      | PB.3  | PB.2   | PB.1  | PB.0  | R/W | PORTB                                                                                                           |
| \$0A      | PC.3  | PC.2   | PC.1  | PC.0  | R/W | PORTC                                                                                                           |
| \$0B      | PD.3  | PD.2   | PD.1  | PD.0  | R/W | PORTD                                                                                                           |
| \$0C      | -     | -      | -     | -     | -   | Reserved                                                                                                        |
| \$0D      | -     | -      | B1    | В0    | R   | Bonding option                                                                                                  |
| \$0E      | TBR.3 | TBR.2  | TBR.1 | TBR.0 | R/W | Table Branch Register                                                                                           |
| \$0F      | INX.3 | INX.2  | INX.1 | INX.0 | R/W | Pseudo index register                                                                                           |
| \$10      | DPL.3 | DPL.2  | DPL.1 | DPL.0 | R/W | Data pointer for INX low nibble                                                                                 |
| \$11      | -     | DPM.2  | DPM.1 | DPM.0 | R/W | Data pointer for INX middle nibble                                                                              |
| \$12      | -     | DPH.2  | DPH.1 | DPH.0 | R/W | Data pointer for INX high nibble                                                                                |
| \$13      | O/S   | LCDOFF | HLM   | PAM   | R/W | Bit0: set PA.1, PA.2 as Alarm O/P<br>Bit1: HEAVY LOAD Mode<br>Bit2: LCD off<br>Bit3: set LCD segment as outport |
| \$14      | AEC3  | AEC2   | AEC1  | AEC0  | R/W | Alarm Envelope Control                                                                                          |
| \$15      | -     | -      | -     | DUTY  | R/W | Bit0: change LCD duty to 1/4 duty, 1/3 bias                                                                     |
| \$16      | -     | -      | -     | -     | -   | Reserved                                                                                                        |
| *<br>\$1F |       |        |       |       |     |                                                                                                                 |



## System Register 0DH

|       | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W | Remarks                                                                                    | Power-on              |
|-------|-------|-------|-------|-------|-----|--------------------------------------------------------------------------------------------|-----------------------|
| \$0DH | -     | -     | B1    | B0    | R   | Bit0: Bonding option 0, internal weak drive<br>Bit1: Bonding option 1, internal weak drive | Pull low<br>Pull high |
|       | Х     | Х     | 1     | 0     |     |                                                                                            | Yes                   |
|       | Х     | Х     | 0     | 0     |     | B1 bond to GND                                                                             |                       |
|       | Х     | Х     | 1     | 1     |     | B0 bond to V <sub>DD</sub>                                                                 |                       |
|       | Х     | Х     | 0     | 1     |     | B1 bond to GND and B0 bond to V <sub>DD</sub>                                              |                       |



**NT6612 Bonding Option** 

Up to 4 different bonding options are possible for the user's needs. The chip's program has 4 different program flows that will vary depending on which bonding option is used. The readable contents of B1 and B0 will differ depending on bonding.



## System Register 13

|    | Bit 3 | Bit 2  | Bit 1 | Bit 0 | R/W                              | Remarks                                                                                                                   | Power on |
|----|-------|--------|-------|-------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|
| 13 | O/S   | LCDOFF | HLM   | PAM   | R/W                              | R/W Bit0: set PA.1, PA.2 as ALARM output Bit1: heavy load mode Bit2: LCD Power Control Bit3: set seg1 - 4 as output ports |          |
|    | Χ     | Х      | Х     | 0     |                                  | PORTA.1, PORTA.2 as I/O port                                                                                              | Yes      |
|    | Х     | Х      | Х     | 1     | PORTA.1, PORTA.2 as ALARM output |                                                                                                                           |          |
|    | Х     | Х      | 0     | Х     |                                  | No heavy load                                                                                                             | Yes      |
|    | Х     | Х      | 1     | Х     |                                  | HEAVY LOAD mode                                                                                                           |          |
|    | Х     | 0      | Х     | Х     |                                  | LCD signal on                                                                                                             |          |
|    | Х     | 1      | Х     | Х     |                                  | LCD signal off                                                                                                            |          |
|    | 0     | Х      | Х     | Х     |                                  | Seg1 - 4 as LCD output                                                                                                    |          |
|    | 1     | Х      | Х     | Х     |                                  | Seg1 - 4 as output ports                                                                                                  |          |

HEAVY LOAD Mode (HLM): This mode is designed for the 32KHz crystal oscillator, so that the oscillation can be maintained in a noisy power environment. The power might drop suddenly when the ALARM is driving a speaker. The HLM is designed to control this power variation. The consumption of power will increase during the use of the HLM mode, but it will not affect the RC oscillator.

Note: The HLM needs about 5 instruction cycles to set-up the oscillation for 32.768KHz crystal oscillator.



## System Register 14, AEC:

|      | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W | Remarks                | Power On |
|------|-------|-------|-------|-------|-----|------------------------|----------|
| \$14 | AEC3  | AEC2  | AEC1  | AEC0  | R/W | ALARM envelope control |          |
|      | 0     | 0     | 0     | 0     |     | DC envelope            | Yes      |
|      | X     | X     | Х     | 1     |     | 1Hz envelope           |          |
|      | X     | X     | 1     | Х     |     | 2Hz envelope           |          |
|      | X     | 1     | Х     | Х     |     | 4Hz envelope           |          |
|      | 1     | Х     | Х     | Х     |     | 8Hz envelope           |          |

Default carrier frequency is 4KHz. Can be selected to 2KHz by code option.

WRITE mode: control the envelop selection.

READ mode can read out current envelope wave forms.

Below is the ALARM functional block equivalent circuit diagram. To activate the ALARM function, first switch the PAM to ALARM OUTPUT mode. After setting PAM equal to 1, then set the proper envelope. When the data writes into AEC, the envelope counter will be synchronized at the same time. The programmer can read back the envelope from AEC register and make any pattern changes needed by programmer. The Read operation will not affect the alarm output waveform.



The programming alarm waveform is shown below:





## System Register 15

|      | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W | Description                     | Power on |
|------|-------|-------|-------|-------|-----|---------------------------------|----------|
| \$15 | -     | -     | -     | DUTY  | R/W | Bit0: LCD duty control.         |          |
|      | -     | -     | -     | 1     |     | LCD driver = 1/4 duty, 1/3 bias |          |
|      | -     | -     | -     | 0     |     | LCD driver = 1/3 duty, 1/2 bias | Yes      |

#### **LCD Driver**

The LCD driver contains a controller, voltage generator, 4 common signal pins, and 26 segment driver pins. There are two different driving modes that are programmable, one is 1/4 duty and 1/3 bias, the other is 1/3 duty and 1/2 bias. DRIVING mode is controlled by register 15 and the power-on status is 1/3 duty , 1/2 bias. The controller consists of display data RAM and a duty generator. The LCD data RAM is a dual port RAM that transfers data to segment pins automatically without a program control.

LCD segment 1 - 4 can also be used as output ports, it is selected by the bit3 of system register 13. When segments 1 - 4 are output ports, data can be written to bit 0 of the same address (300H - 303H). LCD RAM can be used as data memory if needed.

When the "STOP" instruction is executed, the LCD will be turned off, but the data of LCD RAM is the same before execution the "STOP" instruction.

## Configuration of LCD RAM area:

#### (1) When segments 1 - 4 are used as output ports:

| Address | Bit 3 | Bit 2 | Bit 1 | Bit 0    |
|---------|-------|-------|-------|----------|
|         | COM4  | СОМЗ  | COM2  | COM1     |
| 300H    | -     | -     | -     | DATA_BIT |
| 301H    | -     | -     | -     | DATA_BIT |
| 302H    | -     | -     | -     | DATA_BIT |
| 303H    | -     | -     | -     | DATA_BIT |

#### (2) When segments 1 - 4 are used as segment outputs:

| Address | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-------|-------|-------|-------|
|         | COM4  | СОМЗ  | COM2  | COM1  |
| 300H    | SEG1  | SEG1  | SEG1  | SEG1  |
| 301H    | SEG2  | SEG2  | SEG2  | SEG2  |
| 302H    | SEG3  | SEG3  | SEG3  | SEG3  |
| 303H    | SEG4  | SEG4  | SEG4  | SEG4  |



#### (3) Segments 5 - 26

| Address | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Address | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-------|-------|-------|-------|---------|-------|-------|-------|-------|
|         | COM4  | СОМЗ  | COM2  | COM1  |         | COM4  | СОМЗ  | COM2  | COM1  |
| 304H    | SEG5  | SEG5  | SEG5  | SEG5  | 30FH    | SEG16 | SEG16 | SEG16 | SEG16 |
| 305H    | SEG6  | SEG6  | SEG6  | SEG6  | 310H    | SEG17 | SEG17 | SEG17 | SEG17 |
| 306H    | SEG7  | SEG7  | SEG7  | SEG7  | 311H    | SEG18 | SEG18 | SEG18 | SEG18 |
| 307H    | SEG8  | SEG8  | SEG8  | SEG8  | 312H    | SEG19 | SEG19 | SEG19 | SEG19 |
| 308H    | SEG9  | SEG9  | SEG9  | SEG9  | 313H    | SEG20 | SEG20 | SEG20 | SEG20 |
| 309H    | SEG10 | SEG10 | SEG10 | SEG10 | 314H    | SEG21 | SEG21 | SEG21 | SEG21 |
| 30AH    | SEG11 | SEG11 | SEG11 | SEG11 | 315H    | SEG22 | SEG22 | SEG22 | SEG22 |
| 30BH    | SEG12 | SEG12 | SEG12 | SEG12 | 316H    | SEG23 | SEG23 | SEG23 | SEG23 |
| 30CH    | SEG13 | SEG13 | SEG13 | SEG13 | 317H    | SEG24 | SEG24 | SEG24 | SEG24 |
| 30DH    | SEG14 | SEG14 | SEG14 | SEG14 | 318H    | SEG25 | SEG25 | SEG25 | SEG25 |
| 30EH    | SEG15 | SEG15 | SEG15 | SEG15 | 319H    | SEG26 | SEG26 | SEG26 | SEG26 |

#### I/O Port

NT6612 has 16 CMOS quasi-I/O ports, PORTA, PORTB, PORTC, PORTD. All I/O ports are bit programmable.

PORTA, B, C, D

If PORTA,B,C,D are pull-high internally, it is weak drive. The equivalent circuit is below:



#### **Timer**

NT6612 has two 8-bit timers. Their operation is counting-up. The timers consist of an 8-bit counter and an 8-bit preload register.



The timers provide the following functions:

- Programmable interval timer function.
- Read counter value.

Timer Mode Register

## Timer0 and Timer1 Configuration and Operation

Both the Timer0 and Timer1 consists of an 8-bit write-only timer load register (TL0L, TL0H; TL1L, TL1H), and an 8-bit read-only timer counter (TC0L, TC0H; TC1L, TC1H). Each of them has low order digits and high order digits. The timer counter can be initialized by writing data into the timer load register (TL0L, TL0H; TL1L, TL1H).

The low-order digit should be written first, and then the high-order digit. The timer counter is loaded with contents of the load register automatically when the high order digit is written or counts overflow happen. The timer overflow will generate an interrupt if the interrupt enable flag is set.

The timer can be programmed in several different system clock sources by setting the Timer Mode register (TM0,TM1).

Timer Load Register: Since the register H controls the physical READ and WRITE operations, please follow these steps:

Write Operation:

Low nibble first;

High nibble to update the counter

Read Operation: High Nibble first; Low nibble followed.



#### Interrupt

Four interrupt sources are available on NT6612:

- External interrupt (INT share with PA.0)
- Timer0 interrupt
- Timer1 interrupt
- Port's falling edge detection interrupt (PB)

The configuration of system register \$00:

|      | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W | Remark                 |
|------|-------|-------|-------|-------|-----|------------------------|
| \$00 | IEX   | IET0  | IET1  | IEP   | R/W | Interrupt enable flags |

#### External Interrupt (INT)

External interrupt is shared with the bit0 of PORTA. When bit3 of system register 0(IEX) is set to 1, the external interrupt will be enabled, and a falling edge signal on PA.0 will generate an external interrupt. (Note: while external interrupt is enabled, writing a "0" to bit0 of PORTA will generate an external interrupt).

Timer0, Timer1 Interrupt, Port Interrupt and I/O Ports

The input clock of Timer0 and Timer1 are based on OSC clock. The programming of Timer interrupt, Port interrupt and I/O ports refer to NT6610C spec.

#### • Interrupt Servicing Sequence Diagram:



#### Interrupt Nesting:

During the NT6610C CPU interrupt service, the user can enable any INTERRUPT enable flag before returning from the interrupt. The servicing sequence diagram shows the next interrupt and the next nesting interrupt occurrences. If the interrupt request is ready and the instruction of execution N is IE enable, then the interrupt will start immediately after the next two instruction executions. However, if instruction I1 or instruction I2 disables the interrupt request or enable flag, then the interrupt service will be terminated.

#### **System Clock**

NT6612 has one clock source. OSC1 is 32.768KHz crystal or 262KHz RC determined by code option. The OSC generates the basic clock pulses that provide the system clock to supply CPU and on-chip peripherals (TIMER0, TIMER1, LCD).



## Instructions

All instructions are one cycle and one word instructions. The characteristics is memory oriented operation. Arithmetic and Logical Instruction

Accumulator Type

| Mnemonic   | Instruction Code    | Function                                     | Flag Change |
|------------|---------------------|----------------------------------------------|-------------|
| ADC X(,B)  | 00000 0bbb xxx xxxx | $AC \leftarrow Mx + AC + CY$                 | CY          |
| ADCM X(,B) | 00000 1bbb xxx xxxx | $AC,Mx \leftarrow Mx + AC + CY$              | CY          |
| ADD X(,B)  | 00001 0bbb xxx xxxx | $AC \leftarrow Mx + AC$                      | CY          |
| ADDM X(,B) | 00001 1bbb xxx xxxx | $AC,Mx \leftarrow Mx + AC$                   | CY          |
| SBC X(,B)  | 00010 0bbb xxx xxxx | $AC \leftarrow Mx + -AC + CY$                | CY          |
| SBCM X(,B) | 00010 1bbb xxx xxxx | $AC,Mx \leftarrow Mx + -AC + CY$             | CY          |
| SUB X(,B)  | 00011 0bbb xxx xxxx | AC ← Mx + -AC + 1                            | CY          |
| SUBM X(,B) | 00011 1bbb xxx xxxx | $AC,Mx \leftarrow Mx + -AC +1$               | CY          |
| EOR X(,B)  | 00100 0bbb xxx xxxx | $AC \leftarrow Mx \oplus AC$                 |             |
| EORM X(,B) | 00100 1bbb xxx xxxx | $AC,Mx \leftarrow Mx \oplus AC$              |             |
| OR X(,B)   | 00101 0bbb xxx xxxx | $AC \leftarrow Mx \mid AC$                   |             |
| ORM X(,B)  | 00101 1bbb xxx xxxx | $AC,Mx \leftarrow Mx \mid AC$                |             |
| AND X(,B)  | 00110 0bbb xxx xxxx | AC ← Mx & AC                                 |             |
| ANDM X(,B) | 00110 1bbb xxx xxxx | AC,Mx ← Mx & AC                              |             |
| SHR        | 11110 0000 000 0000 | $0 \rightarrow AC[3]; AC[0] \rightarrow CY;$ | CY          |
|            |                     | AC shift right one bit                       |             |

## Immediate Type

| Mnemonic  | Instruction Code    | Function                         | Flag Change |
|-----------|---------------------|----------------------------------|-------------|
| ADI X,I   | 01000 iiii xxx xxxx | $AC \leftarrow Mx + I$           | CY          |
| ADIM X,I  | 01001 iiii xxx xxxx | $AC,Mx \leftarrow Mx + I$        | CY          |
| SBI X,I   | 01010 iiii xxx xxxx | AC ← Mx + -I +1                  | CY          |
| SBIM X,I  | 01011 iiii xxx xxxx | AC,Mx ← Mx + -l + 1              | CY          |
| EORIM X,I | 01100 iiii xxx xxxx | $AC,\!Mx \leftarrow Mx \oplus I$ |             |
| ORIM X,I  | 01101 iiii xxx xxxx | $AC,Mx \leftarrow Mx \mid I$     |             |
| ANDIM X,I | 01110 iiii xxx xxxx | AC,Mx ← Mx & I                   |             |

<sup>\*</sup> In the assembler ASM66 V1.0, EORIM memonic is EORI. However, EORI has the same operation identical with EORIM. Same for the ORIM with respect to ORI, and ANDIM with respect to ANDI.

## Decimal Adjust

| Mnemonic | Instruction Code    | Function                                          | Flag Change |
|----------|---------------------|---------------------------------------------------|-------------|
| DAA X    | 11001 0110 xxx xxxx | $AC; Mx \leftarrow Decimal \ adjust \ for \ add.$ | CY          |
| DAS X    | 11001 1010 xxx xxxx | AC;Mx ← Decimal adjust for sub.                   | CY          |

Ver 2.01 12/22



## Transfer Instruction

| Mnemonic  | Instruction Code    | Function             | Flag Change |
|-----------|---------------------|----------------------|-------------|
| LDA X(,B) | 00111 0bbb xxx xxxx | $AC \leftarrow Mx$   |             |
| STA X(,B) | 00111 1bbb xxx xxxx | $Mx \leftarrow AC$   |             |
| LDI X,I   | 01111 iiii xxx xxxx | $AC,Mx \leftarrow I$ |             |

## Control Instruction

| Mnemonic | Instruction Code    | Function                                                       | Flag Change |
|----------|---------------------|----------------------------------------------------------------|-------------|
| BAZ X    | 10010 xxxx xxx xxxx | PC ← X if AC=0                                                 |             |
| BNZ X    | 10000 xxxx xxx xxxx | PC ← X if AC≠0                                                 |             |
| BC X     | 10011 xxxx xxx xxxx | $PC  \leftarrow X  \text{if CY=1}$                             |             |
| BNC X    | 10001 xxxx xxx xxxx | PC ← X if CY≠1                                                 |             |
| BA0 X    | 10100 xxxx xxx xxxx | PC $\leftarrow X$ if AC(0)=1                                   |             |
| BA1 X    | 10101 xxxx xxx xxxx | PC $\leftarrow$ X if AC(1)=1                                   |             |
| BA2 X    | 10110 xxxx xxx xxxx | PC $\leftarrow$ X if AC(2)=1                                   |             |
| BA3 X    | 10111 xxxx xxx xxxx | PC $\leftarrow$ X if AC(3)=1                                   |             |
| CALL X   | 11000 xxxx xxx xxxx | ST ← CY; PC +1                                                 |             |
|          |                     | $PC  \leftarrow X(\text{Not include p})$                       |             |
| RTNW H;L | 11010 000h hhh IIII | PC $\leftarrow$ ST; TBR $\leftarrow$ hhhh; A $\leftarrow$ IIII |             |
| RTNI     | 11010 1000 000 0000 | CY;PC ← ST                                                     | CY          |
| HALT     | 11011 0000 000 0000 |                                                                |             |
| STOP     | 11011 1000 000 0000 |                                                                |             |
| JMP X    | 1110p xxxx xxx xxxx | $PC \qquad \leftarrow X(\text{Include p})$                     |             |
| TJMP     | 11110 1111 111 1111 | PC ← (PC11-PC8) (TBR) (A)                                      |             |
| NOP      | 11111 1111 111 1111 | No Operation                                                   |             |

## Where,

| PC  | Program counter           | I        | Immediate data        |
|-----|---------------------------|----------|-----------------------|
| AC  | Accumulator               | <b>⊕</b> | Logical exclusive OR  |
| -AC | Complement of accumulator | I        | Logical OR            |
| CY  | Carry flag                | &        | Logical AND           |
| Mx  | Data memory               | bbb      | RAM bank=000          |
| р   | ROM page =0               |          |                       |
| ST  | Stack                     | TBR      | Table Branch Register |

Ver 2.01 13/22



## **Absolute Maximum Ratings\***

# DC Supply Voltage ..... -0.3V to +5.5V Input Voltage ..... -0.3V to $V_{DD}$ +0.3V Operating Ambient Temperature ..... 0°C to +60°C Storage Temperature ..... -55°C to +125°C

#### \*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposed to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (V<sub>DD</sub> = 3.0V, GND = 0V, T<sub>A</sub> = 25°C, F<sub>OSC</sub> = 32.768KHz, unless otherwise specified)

| Parameter           | Symbol           | Min.                | Тур. | Max.                  | Unit | Conditions                                                                |
|---------------------|------------------|---------------------|------|-----------------------|------|---------------------------------------------------------------------------|
| Operating Voltage   | $V_{DD}$         | 2.2                 | 3    | 3.4                   | V    |                                                                           |
| Operating Current   | I <sub>OP</sub>  |                     | 5    | 10                    | μА   | All output pins unload execute NOP instruction                            |
| Standby Current     | I <sub>SB1</sub> |                     | 1.5  | 2.5                   | μА   | All output pins unload (HALT mode) exclude LCD current                    |
| Standby Current     | I <sub>SB2</sub> |                     |      | 1                     | μА   | All output pins unload (STOP mode) LCD off, no current                    |
| Input High Voltage  | V <sub>IH</sub>  | $0.7 \times V_{DD}$ |      | V <sub>DD</sub> + 0.3 | V    | PORTA, PORTB, PORTC, PORTD                                                |
| Input Low Voltage   | VIL              | GND - 0.3           |      | 0.2 × V <sub>DD</sub> | V    | PORTA, PORTB, PORTC, PORTD                                                |
| Output High Voltage | V <sub>OH1</sub> | 2.3                 |      |                       | V    | PORTA, PORTB, PORTC (I <sub>OH</sub> = 15μA)                              |
| Output Low Voltage  | V <sub>OL1</sub> |                     |      | 0.2                   | V    | PORTA, PORTB, PORTC (I <sub>OL</sub> = 300μA)                             |
| Output High Voltage | V <sub>OH2</sub> | 2.1                 |      |                       | V    | $BD/\overline{BD}$ (set PA.1and PA.2 to be ALARM output ), $I_{OH} = 2mA$ |
| Output Low Voltage  | V <sub>OL2</sub> |                     |      | 0.9                   | V    | $BD/\overline{BD}$ (set PA.1and PA.2 to be ALARM output ), $I_{OL} = 2mA$ |
| Output High Voltage | V <sub>OH3</sub> | 2.8                 |      |                       | V    | SEGx, $I_{OH} = 3\mu A$ , SEG1 - 4 to be output port (for reference only) |
| Output Low Voltage  | V <sub>OL3</sub> |                     |      | 0.2                   | V    | SEGx, $I_{OL}=3\mu A$ , SEG1 - 4 to be output port (for reference only)   |
| Output High Voltage | V <sub>OH4</sub> | 2.8                 |      |                       | V    | COMx, I <sub>OH</sub> = 8μA (for reference only)                          |
| Output Low Voltage  | V <sub>OL4</sub> |                     |      | 0.2                   | V    | COMx, I <sub>OL</sub> = 8µA (for reference only)                          |
| LCD Lighting        | I <sub>LCD</sub> |                     | 6.5  | 7.5                   | μА   | HALT mode                                                                 |

Ver 2.01 14/22



# $\textbf{DC Electrical Characteristics} \quad \text{(V}_{DD} = 5.0 \text{V}, \ GND = 0 \text{V}, \ T_{A} = 25 ^{\circ}\text{C}, \ F_{OSC} = 32.768 \text{KHz}, \ unless \ otherwise \ specified)}$

| Parameter           | Symbol           | Min.                | Тур. | Max.                  | Unit     | Conditions                                                                 |
|---------------------|------------------|---------------------|------|-----------------------|----------|----------------------------------------------------------------------------|
| Operating Voltage   | $V_{DD}$         | 4.5                 | 5.0  | 5.4                   | V        | PORTA, PORTB, PORTC (I <sub>OH</sub> = 15μA)                               |
| Operating Voltage   | I <sub>OP</sub>  |                     | 15   | 30                    | μΑ       | PORTA, PORTB, PORTC (I <sub>OL</sub> = 300μA)                              |
| Standby Current     | I <sub>SB1</sub> |                     | 4.5  | 7.5                   | μА       | $BD/\overline{BD}$ (set PA.1 and PA.2 to be ALARM output ), $I_{OH} = 2mA$ |
| Standby Current     | I <sub>SB2</sub> |                     |      | 1                     | μΑ       | All output pins unload (STOP mode) LCD off, no current                     |
| Input High Voltage  | V <sub>IH</sub>  | $0.7 \times V_{DD}$ |      | V <sub>DD</sub> + 0.3 | ٧        | PORTA, PORTB, PORTC, PORTD                                                 |
| Input Low Voltage   | VIL              | GND - 0.3           |      | 0.2 × V <sub>DD</sub> | ٧        | PORTA, PORTB, PORTC, PORTD                                                 |
| Output High Voltage | V <sub>OH1</sub> | 4.3                 |      |                       | <b>V</b> | SEGx, $I_{OH}=3\mu A$ , SEG1 - 4 to be output port (for reference only)    |
| Output Low Voltage  | V <sub>OL1</sub> |                     |      | 0.3                   | <b>V</b> | SEGx, $I_{OL}=3\mu A$ , SEG1 - 4 to be output port (for reference only)    |
| Output High Voltage | V <sub>OH2</sub> | 4.1                 |      |                       | ٧        | COMx, I <sub>OH</sub> = 8μA (for reference only)                           |
| Output Low Voltage  | V <sub>OL2</sub> |                     |      | 1.0                   | V        | COMx, I <sub>OL</sub> = 8μA (for reference only)                           |
| Output Low Voltage  | V <sub>OH3</sub> | 4.8                 |      |                       |          |                                                                            |
| Output Low Voltage  | V <sub>OL3</sub> |                     |      | 0.3                   |          |                                                                            |
| Output Low Voltage  | V <sub>OH4</sub> | 4.8                 |      |                       |          |                                                                            |
| Output Low Voltage  | V <sub>OL4</sub> | _                   |      | 0.3                   |          |                                                                            |
| LCD Lighting        | I <sub>LCD</sub> |                     | 19.5 | 23                    | μΑ       | HALT mode                                                                  |

## Note:

1. Operation frequency vs.  $I_{\text{SB1}}$ 

 $I_{SB1x} = (Frequency/32.768KHz) \times I_{SB1} \times 0.8$ 

2. Operation frequency vs. Iop

 $I_{opx} = (Frequency/32.768KHz) \times I_{op} \times 0.8$ 

3. HLM vs. lop,  $I_{\text{sb1}}$  and  $I_{\text{sb2}}$ 

If HLM = 1,  $I_{opx} = I_{op} \times 2$ ,  $I_{SB1x} = I_{SB1} \times 2$ ,  $I_{SB2x} = I_{SB1} \times 2$ 

Ver 2.01 15/22



## $\textbf{AC Characteristics} \ \ (V_{DD} = 3.0V, \, GND = 0V, \, T_A = 25^{\circ}C, \, F_{OSC} = 32.768KHz \, , \, unless \, otherwise \, specified)$

| Parameter              | Symbol           | Min. | Тур. | Max. | Unit | Conditions                                                      |
|------------------------|------------------|------|------|------|------|-----------------------------------------------------------------|
| Oscillation Start Time | T <sub>STT</sub> |      | 2    | 5    | S    |                                                                 |
| Halt Time              | T <sub>HTT</sub> |      | 0    |      | S    | I <sub>DD</sub> reduces to Isb1 after instruction executing     |
| Stop Time              | T <sub>SPT</sub> |      | 0    |      | S    | I <sub>DD</sub> reduces to Isb2 after instruction executing     |
| Frequency Stability    | Δ F/F            |      |      | 1    | PPM  | [F(3.0)-F(2.4)]/F(3.0), crystal oscillator (for reference only) |
| Frequency Variation    | Δ F/F            |      |      | 10   | PPM  | C1 = 5 - 25P (for reference only)                               |

## AC Characteristics ( $V_{DD} = 3.0V$ , GND = 0V, $T_{A} = 25$ °C, $F_{OSC} = 262KHz$ , unless otherwise specified)

| Parameter              | Symbol           | Min. | Тур. | Max. | Unit | Conditions                                                  |
|------------------------|------------------|------|------|------|------|-------------------------------------------------------------|
| Oscillation Start Time | T <sub>STT</sub> |      |      | 2    | ms   |                                                             |
| Halt Time              | T <sub>HTT</sub> |      | 0    |      | S    | I <sub>DD</sub> reduces to Isb1 after instruction executing |
| Stop Time              | T <sub>SPT</sub> |      | 0    |      | S    | I <sub>DD</sub> reduces to Isb3 after instruction executing |
| Frequency Stability    | Δ F /F           |      |      | 10   | %    | F(3.0)-F(2.4) /F(3.0), RC oscillator (for reference only)   |
| Frequency Variation    | Δ F /F           |      |      | 15   | %    | variation caused by process variation (for reference only)  |

Ver 2.01 16/22



## **Timing Waveform**

## 1/4 duty, 1/3 bias LCD waveform



Ver 2.01 17/22



## 1/3 duty, 1/2 bias LCD waveform





## HLM waveform



Ver 2.01 18/22



## Application Circuits (for reference only)

NT6612 chip substrate connects to system ground.

#### AP1

OSC: RC: 262K (code option)

LCD Panel: 1/4 duty, 1/3 bias; (S/W select 1/4 duty, auto 1/3 bias)

LCD Panel: 1/3 duty, 1/3 bias; (S/W select 1/4 duty, auto 1/3 bias; ignore duty 4 segments)

PORTA - D: I/O



## AP2

OSC: 32.768KHz crystal (code option)

LCD: 1/3 duty, 1/2 bias

PORTB - D: I/O

PORTA.0: external interrupt

PORTA.1, PORTA.2: ALARM output (carrier frequency: 2KHz or 4KHz code option) (code option)



Ver 2.01 19/22



## **Application Circuits (continued)**

## AP3

OSC: 32.768KHz LCD: 1/3 duty, 1/2 bias PORTB.1 = Output

When  $V_{DD}$  is higher than  $V_{LCD}$ , reducing  $V_{DD}$  to  $V_{DD1}$  can regulate the voltage.



Ver 2.01 20/22



## **Bonding Diagram**



\* Substrate connects to GND.

The bonding wire with diameter of 1.0mil is recommended.

|         |             |      |      |         |             | unit: | μm   |
|---------|-------------|------|------|---------|-------------|-------|------|
| Pad No. | Designation | X    | Y    | Pad No. | Designation | X     | Y    |
| 1       | SEG2        | -627 | -770 | 26      | COM3        | 747   | 770  |
| 2<br>3  | SEG1        | -517 | -770 | 27      | COM2        | 625   | 770  |
| 3       | TEST        | -407 | -770 | 28      | COM1        | 505   | 770  |
| 4       | RESET       | -297 | -770 | 29      | SEG26       | 385   | 770  |
| 5       | $V_{DD}$    | -164 | -770 | 30      | SEG25       | 275   | 770  |
| · ·     | B0          | -164 | -673 | 31      | SEG24       | 165   | 770  |
| 6       | PORTA0      | -54  | -770 | 32      | SEG23       | 55    | 770  |
| 7       | PORTA1      | 55   | -770 | 33      | SEG22       | -54   | 770  |
| 8       | PORTA2      | 165  | -770 | 34      | SEG21       | -164  | 770  |
| 9       | PORTA3      | 275  | -770 | 35      | SEG20       | -274  | 770  |
| 10      | PORTB0      | 385  | -770 | 36      | SEG19       | -392  | 770  |
| 11      | PORTB1      | 505  | -770 | 37      | SEG18       | -515  | 770  |
| 12      | PORTB2      | 625  | -770 | 38      | SEG17       | -625  | 770  |
| 13      | PORTB3      | 749  | -768 | 39      | SEG16       | -747  | 770  |
| 14      | PORTC0      | 747  | -650 | 40      | SEG15       | -747  | 641  |
| 15      | PORTC1      | 747  | -530 | 41      | SEG14       | -747  | 513  |
| 16      | PORTC2      | 747  | -421 | 42      | SEG13       | -747  | 385  |
| 17      | PORTC3      | 747  | -309 | 43      | SEG12       | -747  | 275  |
| 18      | PORTD0      | 747  | -200 | 44      | SEG11       | -747  | 165  |
| 19      | PORTD1      | 747  | -90  | 45      | SEG10       | -747  | 55   |
| 20      | PORTD2      | 747  | 19   | 46      | SEG9        | -747  | -55  |
| 21      | PORTD3      | 747  | 129  | 47      | SEG8        | -747  | -165 |
| 22      | GND         | 747  | 240  | 48      | SEG7        | -747  | -275 |
|         | B1          | 747  | 309  | 49      | SEG6        | -747  | -385 |
| 23      | osco        | 747  | 419  | 50      | SEG5        | -747  | -513 |
| 24      | OSCI        | 747  | 530  | 51      | SEG4        | -747  | -641 |
| 25      | COM4        | 747  | 650  | 52      | SEG3        | -747  | -770 |

Ver 2.01 21/22



# **Ordering Information**

| Part No. | Package   |
|----------|-----------|
| NT6612H  | CHIP FORM |

Ver 2.01 22/22