1 Rational Functions on Hyperelliptics

The goal of this chapter is to look at rational functions on the curve $y^2 = C(x)$ and to develop a reasonable notion of the order of a function in a point on the curve. We then give some basic properties for this order function before we introduce divisors and proceed to look at functions with a specified number of poles at infinity as a final preparation for the proof of associativity on J. xxx

1.1 Function Field and Order of Rational Functions

Definition 1: Define the ring of rational functions on the curve as

$$\mathcal{F} = K(x)[y] / (y^2 - C(x)).$$

As $y^2 - C(x)$ is irreducible in K(x)[y], this is a field and $\mathcal{F} = K(x) + K(x)y$, so write elements $f \in \mathcal{F}$ as f = g + hy where $g, h \in K(x)$. Define $\overline{f} = g - hy$.

We will occasionally write things like $K[x, y] \subset \mathcal{F}$ but xxx we always implicitly mean this in conjunction with $y^2 = C(x)$.

 \sim

We now wish to define the order of a function f in a point Ω , $\operatorname{ord}_{\Omega}(f) \in \mathbb{Z}$ for $f \in \mathcal{F}^*$ and $\Omega \in H(\overline{K})$. To this end we first construct a K-homomorphism

$$\lambda_0: \mathcal{F} \to \overline{K}((t))$$

with the intent of defining $\operatorname{ord}_{\mathbb{Q}}(f) = \operatorname{ord} \lambda_{\mathbb{Q}}(f)$.

Reminder: If τ is a formal Laurent series of the form $\tau = 1 + \sum_{i=1}^{\infty} a_i t^i$ then it has a unique squareroot of the form $\sigma = 1 + \sum_{i=1}^{\infty} b_i t^i$ meaning $\sigma^2 = \tau$. Write $\sigma = \sqrt{\tau} = 1 + \dots$

From now on we will use an ellipsis to denote terms of ascending order everywhere where we are not interested in the specifics.

Definition 2: Because $C(\lambda_{\mathbb{Q}}(x)) = (\lambda_{\mathbb{Q}}(y))^2$ has to be fulfilled, we first decide on $\lambda_{\mathbb{Q}}(x)$ and deduce $\lambda_{\mathbb{Q}}(y)$. For this, we distinguish between three cases for $\mathbb{Q} \in H(\overline{K})$:

1. Let $Q = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 \neq 0$ and consequently $C(x_0) \neq 0$.

Define $\lambda_{\mathcal{Q}}(x) = x_0 + t$. Now

$$C(\lambda_{\mathbb{Q}}(x)) = C(x_0 + t)$$

$$= C(x_0) + \dots + t^5$$

$$= C(x_0)(1 + \dots)$$

$$= y_0^2 \tau_1 \quad \text{with } \tau_1 \in K((t)).$$

Define $\lambda_{\mathbb{Q}}(y) = y_0 \sigma_1$ where $\sigma_1 = \sqrt{\tau_1}$.

2. Let $\Omega = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 = 0$. Note that $C(x_0) = 0$ and write $C(x) = \prod_{i=1}^5 (x - \alpha_i)$ for $\alpha_i \in \overline{K}$ and for instance $\alpha_1 = x_0$.

Define $\lambda_{\mathcal{Q}}(x) = x_0 + t^2$. Now

$$C(\lambda_{\Omega}(x)) = t^2 \prod_{i=2}^{5} (x_0 - \alpha_i + t^2)$$

= $\mu t^2 (1 + ...)$

with $\mu \in \overline{K}$ being $\prod_{i=2}^5 (x_0 - \alpha_i) = C'(x_0)$ which is non-zero because our curve is non-singular. Write therefore $C(\lambda_{\mathbb{Q}}(x)) = \mu t^2 \tau_2$ with $\tau_2 = 1 + \dots$ and define $\lambda_{\mathbb{Q}}(y) = \nu t \sigma_2$ with $\sigma_2 = \sqrt{\tau_2}$ and $\nu^2 = \mu$.

3. Let $Q = \infty$. Define $\lambda_Q(x) = \frac{1}{t^2}$. It follows that

$$C(\frac{1}{t^2}) = \frac{1}{t^{10}} + \frac{a}{t^8} + \frac{b}{t^6} + \frac{c}{t^4} + \frac{d}{t^2} + e$$
$$= \frac{1}{t^{10}}(1 + \dots)$$

So define $\lambda_{\mathbb{Q}}(y) = \frac{1}{t^5}\sigma_3$ with the notation $\sigma_3 = \sqrt{\tau_3}$ as before.

Definition 3: For $\Omega \in H(\overline{K})$ and $f \in \mathcal{F}^*$ define $\operatorname{ord}_{\Omega}(f) = \operatorname{ord} \lambda_{\Omega}(f)$.

Lemma 1: Let f $inK[x,y] \subset \mathcal{F}$, $f \neq 0$ and $Q \in H_0(\overline{K})$, $Q = (x_0,y_0)$. Then

- (a) $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ and
- (b) if $f(\Omega) = 0$ then $\operatorname{ord}_{\Omega} f \geq 1$.

Proof.

- (a) Because $\Omega \in H_0(\overline{K})$ we have $\lambda_{\Omega}(x)$, $\lambda_{\Omega}(y) \in \overline{K}[[t]]$ and with $f \in K[x,y]$ we have $\operatorname{ord}_{\Omega}(f) \geq 0$.
- (b) Write $f = A(x, y), A(X, Y) \in K[X, Y]$. First, let $y_0 \neq 0$.

$$\operatorname{ord}_{\Omega} f = \operatorname{ord} A(\lambda_{\Omega}(x), \lambda_{\Omega}(y))$$
$$= \operatorname{ord} A(x_{0} + t, y_{0}\sigma_{1}).$$

But $A(x_0 + t, y_0 \sigma_1) = \sum_{i=0}^{\infty} a_i t^i$ so with t = 0 we get $A(x_0, y_0) = a_0$ but the former is f(Q) which is 0, so $a_0 = 0$ and the claim follows.

If $y_0 = 0$ we would have $\operatorname{ord}_{\mathfrak{Q}} f = \operatorname{ord} A(x_0 + t^2, \sqrt{\mu}t\sigma_2)$ instead. But like before, this means $0 = f(\mathfrak{Q}) = A(x_0, 0) = a_0$ so again $\operatorname{ord}_{\mathfrak{Q}}(f) \geq 1$.

Lemma 2: Let $f \in K(x)$, $f \neq 0$, $Q \in H(\overline{K})$. Then

- (a) $\operatorname{ord}_{\mathbb{Q}}(f) = \operatorname{ord}_{x_0} f(x)$ if $\mathbb{Q} = (x_0, y_0) \in H_0(\overline{K})$ with $y_0 \neq 0$.
- (b) $\operatorname{ord}_{\mathbb{Q}}(f) = 2\operatorname{ord}_{x_0} f(x)$ if $\mathbb{Q} = (x_0, 0) \in H_0(\overline{K})$.
- (c) $\operatorname{ord}_{\infty}(f) = 2\operatorname{ord}_{0} f(\frac{1}{x}) = 2\operatorname{ord}_{\underline{\infty}} f(x)$.

Note that the righthand sides of the equalities refer to the usual definition of the order of a rational function in a point $x_0 \in \overline{K} \cup \{\underline{\infty}\}$. We renamed the infinity in order to avoid a clash of notations.

Proof. First take $f \in K[x]$ and define $e = \operatorname{ord}_{x_0} f \in \mathbb{N}$ so $f = (x - x_0)^e g(x)$ with $g \in \overline{K}[x]$ and $g(x_0) \neq 0$.

- (a) If $Q = (x_0, y_0)$, $y_0 \neq 0$ then $\lambda_Q(f) = f(x_0 + t) = t^e g(x_0 + t)$ and so ord $\lambda_Q(f) = e$ because $g(x_0 + t) = g(x_0) + \dots$ with $g(x_0) \neq 0$.
- (b) Here $\lambda_{\Omega}(f) = f(x_0 + t^2) = t^{2e}g(x_0 + t^2)$ and again $g(x_0 + t^2) = g(x_0) + \dots$ so ord $\lambda_{\Omega}(f) = 2e$.
- (c) For $\Omega = \infty$ we have $\lambda_{\Omega}(f) = f(\frac{1}{t^2}) = \frac{\alpha}{t^{2d}} + \dots$ with $\alpha \neq 0$ if $d = \deg f$. Obviously, $\operatorname{ord}_0 f(\frac{1}{x}) = \operatorname{ord}_0 \frac{\alpha + \dots}{x^d} = -d$ so $\operatorname{ord} \lambda_{\Omega}(f) = 2\operatorname{ord}_0 f(\frac{1}{x})$.

Generally, if $f \in K(x)$ we can write $f = \frac{p}{q}$ for $p, q \in K[x]$ and we apply the above to p and q, subtracting $\operatorname{ord}_{\mathbb{Q}}q$ from $\operatorname{ord}_{\mathbb{Q}}p$.

Lemma 3: For $f \in \mathcal{F}^*$ and $\Omega \in H(\overline{K})$ the order satisfies $\operatorname{ord}_{\Omega}(\overline{f}) = \operatorname{ord}_{\overline{\Omega}}(f)$

Proof.

1. For $\Omega \in H_0(\overline{K})$ with $y_0 \neq 0$ we've got $\lambda_{\Omega}(x) = x_0 + t$ and $\lambda_{\Omega}(y) = y_0 \sqrt{\tau}$. Therefore $\lambda_{\overline{\Omega}}(x) = x_0 + t = \lambda_{\Omega}(\overline{x})$ and $\lambda_{\overline{\Omega}}(y) = -y_0 \sqrt{\tau} = \lambda_{\Omega}(\overline{y})$ so

$$\lambda_{\overline{\mathbb{Q}}}(f(x,y)) = f(\lambda_{\overline{\mathbb{Q}}}(x), \lambda_{\overline{\mathbb{Q}}}(y))$$
$$= \lambda_{\mathbb{Q}}(f(\overline{x}, \overline{y}))$$
$$= \lambda_{\mathbb{Q}}(\overline{f}(x,y)).$$

2. If $Q \in H_0(\overline{K})$ with $y_0 = 0$ then $\overline{Q} = Q$. Write f = g(x) + h(x)y so

$$\lambda_{\mathcal{Q}}(\overline{f}) = g(x_0 + t^2) - h(x_0 + t^2)\nu t \sqrt{\tau}.$$

Calling this $l(t) = \lambda_{\Omega}(\overline{f})$ and looking at the construction of λ_{Ω} we see that τ sports only even powers of t so we see above that $l(-t) = \lambda_{\Omega}(f)$. As interchanging t with -t doesn't change the order, we're done.

3. For $\Omega = \infty$, $\tau = 1 + at^2 + bt^4 + ct^6 + dt^8 + ct^{10}$ features only even powers as well, so again $l(-t) = \lambda_{\Omega}(f)$ for $l(t) = \lambda_{\Omega}(\overline{f}) = g(\frac{1}{t^2}) - h(\frac{1}{t^2})\frac{1}{t^5}\sqrt{\tau}$. Finally, $\lambda_{\Omega}(f)$ is equal to $\lambda_{\overline{\Omega}}(f)$ since $\infty = \overline{\infty}$. Again ord $l(t) = \operatorname{ord} l(-t)$.

Lemma 4: If $f \in \mathcal{F}^*$ then the set $\{Q \in H(\overline{K}) \mid \operatorname{ord}_{\mathbb{Q}} f \neq 0\}$ is finite and

$$\sum_{\mathfrak{Q}\in H(\overline{K})}\mathrm{ord}_{\mathfrak{Q}}f=0.$$

Proof. First take $f \in K[x,y]$, $f \neq 0$ and let $\Omega = (x_0,y_0) \in H_0(\overline{K})$ with $\operatorname{ord}_{\Omega}f \neq 0$. By Lemma 1 (a) we know that $\operatorname{ord}_{\Omega}f \geq 1$. It follows that $\operatorname{ord}_{\Omega}(f\overline{f}) = \operatorname{ord}_{\Omega}f + \operatorname{ord}_{\Omega}\overline{f} \geq 1$. Now since f = g + hy, $f\overline{f} = g^2 - h^2C(x)$ which lies in K[x], so by Lemma 2 we have $\operatorname{ord}_{x_0}(f\overline{f}) > 0$. But there are only finitely many such x_0 and so only finitely many $y_0 = \pm \sqrt{C(x_0)}$.

For $f \in K(x,y)$, $f = \frac{f_1}{f_2}$, $f_1, f_2 \in K[x,y]$ we have $\operatorname{ord}_{x_0} f = \operatorname{ord}_{x_0} f_1 - \operatorname{ord}_{x_0} f_2$ so there are also only finitely many x_0 for which this differs from zero.

For the second claim, give a name to our sum

$$s(f) = \sum_{Q \in H(\overline{K})} \operatorname{ord}_{Q} f$$

and note that $s(f) = s(\overline{f})$ due to Lemma 3 and the fact that we take the sum over all Ω . Because $\operatorname{ord}_{\Omega}(f\overline{f}) = \operatorname{ord}_{\Omega}(f) + \operatorname{ord}_{\Omega}(\overline{f})$ we can see that

$$s(f\overline{f}) = s(f) + s(\overline{f}) = 2s(f).$$

But because $f\overline{f} \in K(x)$ we can use Lemma 2 to write this out as

$$\begin{split} 2s(f) &= \sum_{\substack{\Omega \in H(\overline{K}) \\ = 2}} \operatorname{ord}_{\Omega} f\overline{f} \\ &= 2 \sum_{\substack{x_0 \neq \infty \\ x_0 \neq \alpha_i}} \operatorname{ord}_{x_0} f\overline{f} + 2 \sum_{x_0 = \alpha_i} \operatorname{ord}_{x_0} f\overline{f} + 2 \sum_{x_0 = \infty} \operatorname{ord}_{x_0} f\overline{f} \\ &= 2 \sum_{x_0 \in \overline{K} \cup \{\infty\}} \operatorname{ord}_{x_0} f\overline{f}. \end{split}$$

Here α_i are the points on which C(x) vanishes and since

$$\sum_{x_0 \in \overline{K} \cup \{\infty\}} \operatorname{ord}_{x_0} g = 0$$

1.2 Divisors and Lemmas

Definition 4: The divisor of a function $f \in \mathcal{F}$ is the formal sum

$$(f) = \sum_{Q \in H(\overline{K})} \operatorname{ord}_{Q} f \cdot Q$$

where the empty sum is written (f) = 0 in case f = 0. Thanks to Lemma 4 the sum is finite and the sum of coefficients is 0.

Points $Q \in H(\overline{K})$ with a positive coefficient in (f) are called zeroes of f while those with a negative coefficient are called poles.

Lemma 5: If $f \in \mathcal{F}^*$ has no poles then f is constant.

Proof. With f = g + hy, $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ for every $\mathbb{Q} \in H(\overline{K})$ we take a look at $f + \overline{f} = 2g \in K(x)$ and $f\overline{f} = g^2 - h^2C \in K(x)$ and observe that

$$\begin{split} \operatorname{ord}_{\Omega}(f+\overline{f}) &\geq \min\{\operatorname{ord}_{\Omega}f,\operatorname{ord}_{\overline{\Omega}}\overline{f}\} \\ &= \min\{\operatorname{ord}_{\Omega}f,\operatorname{ord}_{\overline{\Omega}}f\} \geq 0. \end{split}$$

with Lemma 3 and similarly

$$\operatorname{ord}_{\mathbb{Q}}(f\overline{f}) = \operatorname{ord}_{\mathbb{Q}}f + \operatorname{ord}_{\overline{\mathbb{Q}}}f \ge 0.$$

Both are greater than zero because f has no poles and with the help of Lemma 2 we conclude that $\operatorname{ord}_{x_0}(f+\overline{f}) \geq 0$ and $\operatorname{ord}_{x_0}(f\overline{f}) \geq 0$ respectively.

But in $\overline{K}(x)$, a function q with $\operatorname{ord}_{x_0} q \geq 0$ for every $x_0 \in \overline{K} \cup \{\underline{\infty}\}$ must be constant, so both $f + \overline{f}$ and $f\overline{f}$ are constant functions. Since f is a root of $(T - f)(T - \overline{f}) = T^2 - (f + \overline{f})T + f\overline{f}$ which lies in $\overline{K}[T]$, f lies in \overline{K} . \square

Lemma 6: If $f \in \mathcal{F}^*$ has at most one pole at ∞ meaning $\operatorname{ord}_{\infty} f \geq -1$ and none for any other $\Omega \in H_0(\overline{K})$ meaning $\operatorname{ord}_{\Omega} f \geq 0$ then f is a constant.

Proof. With f = g + hy such that $\operatorname{ord}_{\mathbb{Q}} f \geq 0$ for every $\mathbb{Q} \in H_0(\overline{K})$ we can assume that $\operatorname{ord}_{\infty} f = -1$ and $\lambda_{\infty}(f) = \frac{1}{t} + \dots$ If the trailing coefficient of $\lambda_{\infty}(f)$ were different from one, we can always xxx where $\alpha \in \overline{K}$. Due to Lemma 5 we assume that $\alpha \neq 0$ and may even take $\alpha = 1$ by replacing f with $\frac{f}{\alpha}$.

Now remember that $\lambda_{\infty}(x) = \frac{1}{t^2}$ so $\lambda_{\infty}(x - f^2) = \frac{\beta}{t} + \dots$, $\beta \in \overline{K}$ and finally we have a regular power series $\lambda_{\infty}(x - f^2 - \beta f)$ so

$$\operatorname{ord}_{\infty}(x - f^2 - \beta f) \ge 0$$

and for any other $\Omega \in H_0(\overline{K})$ we have

$$\operatorname{ord}_{\mathbb{Q}}(x - f^2 - \beta f) \ge \min\{\operatorname{ord}_{\mathbb{Q}}(x), \operatorname{ord}_{\mathbb{Q}}(f^2), \operatorname{ord}_{\mathbb{Q}}f\}$$

which is positive by virtue of the prerequisite on f and $\lambda_{\mathbb{Q}}(x) = x_0 + \dots$. The previous Lemma now implies $x - f^2 - \beta f \in \overline{K}$ so we see $x = f^2 + \beta f$ as a polynomial x = X(f) with $X(T) \in \overline{K}[T]$.

Do the same thing with $\lambda_{\mathbb{Q}}(y) = \frac{1}{t^5} \sqrt{\tau} = \frac{1}{t^5} + \dots$ so

$$\lambda_{\mathcal{Q}}(y - f^5) = \frac{\gamma}{t^4} + \dots,$$
$$\lambda_{\mathcal{Q}}(y - f^5 - \gamma f^4) = \frac{\delta}{t^3} + \dots$$

so finally $\lambda_{\mathbb{Q}}(y-f^3-\gamma f^2-\delta f)$ is a power series again and must actually be in \overline{K} . Like before, $y=f^3+\gamma f^2+\delta f=Y(f)$ with $Y(T)\in \overline{K}[T]$.

Combined we have $Y(f)^2 = C(X(f))$ but K is algebraically closed, so either $f \in \overline{K}$ or $Y(T)^2 = C(X(T))$. The latter can't be true since xxx proves/says $X, Y \in \overline{K}$ but both are of degree strictly higher than one.

Lemma 7: If $f \in \mathcal{F}^*$ has at most two poles at ∞ then f is of the form $f = \alpha + \beta x$ with $\alpha, \beta \in K$.

Lemma 8: If $f \in \mathcal{F}^*$ has at most three poles at ∞ then f is of the form $f = \alpha + \beta x$ with $\alpha, \beta \in K$.

Lemma 9: If $f \in \mathcal{F}^*$ has at most four poles at ∞ then f is of the form $f = \alpha + \beta x + \gamma x^2$ with $\alpha, \beta, \gamma \in K$.

Proof.
$$\Box$$

Minilemma 1: If f is such that $\lambda_{\infty}(f) = \gamma t^e + \ldots$ then $\lambda_{\infty}(\overline{f}) = -\gamma t^e + \ldots$

Proof. Let $\lambda_{\infty}(\overline{f}) = \widetilde{\gamma}t^e + \dots$ Since $f + \overline{f} = 2p$ and $\operatorname{ord}_{\infty}(p)$ is always even for $p \in K(x)$, we must have $(\gamma + \widetilde{\gamma})t^{-3} + \dots = \sigma t^{-2} + \dots$ so $\gamma = -\widetilde{\gamma}$.

Lemma 2: Let $f \in \mathcal{F}^*$ with $(f) = \frac{***}{3\infty}$. Then $f = \alpha + \beta x$.

Proof. Let f = p + qy with $p, q \in K(t)$. We have $\lambda_{\infty}(f + \overline{f}) = \sigma t^{-2} + \dots$ so $p = \frac{1}{2}(f + \overline{f}) = \alpha + \beta x$.

Now, consider $f - \overline{f} = 2qy$. We get $\lambda_{\infty}(f - \overline{f}) = 2\lambda_{\infty}(q)t^{-5}\sqrt{\tau} = 2\gamma t^{-3} + \dots$ and since $\sqrt{\tau}$ is a series of the form $1 + \dots$ we must have $\lambda_{\infty}(q) = \gamma t^2 + \dots$

Suppose $q \neq 0$, this implies $\frac{1}{q} = \widetilde{\delta} + \widetilde{\epsilon}x$. Rewriting to accommodate for q = 0 gives $q = \frac{\epsilon}{x - \delta}$ with $\delta, \epsilon \in K$ as well so

$$f = \alpha + \beta x + \frac{\epsilon}{x - \delta} y$$

However, now $\lambda_{\mathbb{Q}}(f) = \alpha + \beta(t^2 + \delta) + \epsilon \sqrt{\mu} \frac{t\sqrt{\tau}}{t^2}$ for $\mathbb{Q} = (\delta, 0)$ which is equal to $\epsilon \sqrt{\mu} t^{-1} + \dots$ If $\epsilon \neq 0$ (μ is non zero anyway) this means that \mathbb{Q} is a new (true) pole for f which contradicts $(f) = \frac{***}{3\infty}$, so q must be 0.

Lemma 3: Let $f \in \mathcal{F}^*$ with $(f) = \frac{****}{4\infty}$. Then $f = \alpha + \beta x + \gamma x^2$.

Proof. (different function f): With $\lambda_{\infty}(f) = \gamma t^{-4} + \dots$ so $\lambda_{\infty}(f - \gamma x^2)$ being of the form $\sigma t^{-3} + \dots$ we fall into the case above and the claim follows. \square