Reinforcement Learning

Lecture 6 Value Function Approximation

Stergios Christodoulidis

MICS Laboratory CentraleSupélec Université Paris-Saclay

https://stergioc.github.io/

Last Lectures

The Agent and the Environment

- At each step *t* the agent:
 - Receives observation O_t (and reward R_t)
 - Executes action A_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1} (and reward R_{t+1})

[Hado van Hasselt, 2021]

Markov Decision Process

• A Markov decision process (MDP) is a Markov reward process with decisions. It is an environment in which all states are Markov

Definition

A Markov Process (or Markov Chain) is a 4-tuple $< S, A, P, R, \gamma >$

- S is a (finite) set of states
- \mathcal{A} is a (finite) set of actions
- \mathcal{P} is a state transition matrix, i.e., $\mathcal{P}^a_{ss'} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0, 1]$

Bellman Equation and Policy Evaluation

$$\mathbf{v}_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \mathbf{v}_k(s') \right)$$

Generalized Policy Iteration

- Policy evaluation Estimate v_{π}
 - Any policy evaluation algorithm
- Policy improvement Generate $\pi' \geq \pi$
 - Any policy improvement algorithm

[An Introduction to Reinforcement Learning, Sutton and Barto]

MC and TD

- Goal: learn v_{π} from episodes of experience under policy π
- Incremental Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error

Monte-Carlo Update

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

$$V(S_t) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$

[David Silver, IRL, UCL 2015]

Unified View of Reinforcement Learning

Q-Learning Control Algorithm

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R_{t+1} + \gamma \max_{a'} Q(S',a') - Q(S,A))$$

[David Silver, IRL, UCL 2015]

Today's Lecture

Today's Lecture

- Motivation
- Value Function Approximation
- Tile Coding
- Batch Methods

Large-Scale Reinforcement Learning

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10^{20} states
 - Go: 10¹⁷⁰
 - Robots: continuous state space
- How can we scale up the model-free methods for prediction and control from the last two lectures?

Value Function Approximation

- So far, we have represented value function by a lookup table
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{\mathbf{v}}(s; \mathbf{w}) \approx \mathbf{v}_{\pi}(s)$$

 $\hat{q}(s, a; \mathbf{w}) \approx q_{\pi}(s, a)$

- Generalize from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

Which Function Approximator?

- There are many function approximators, e.g.,
 - Linear combinations of features
 - Neural network
 - Decision tree
 - Nearest neighbor
 - Fourier/wavelet bases
 - ...

Which Function Approximator?

- We will consider differentiable function approximators, e.g.,
 - Linear combinations of features
 - Neural network
 - Decision tree
 - Nearest neighbor
 - Fourier/wavelet bases
 - ...

Value Function Approximation

Gradient Descent

- Let J(w) be a differentiable function of parameter vector w
- Define the gradient of J(w) to be

$$\nabla_{w} J(w) = \begin{pmatrix} \frac{\partial J(w)}{\partial w_{1}} \\ \vdots \\ \frac{\partial J(w)}{\partial w_{n}} \end{pmatrix}$$

- To find a local minimum of J(w)
- Adjust w in direction of negative gradient

$$\Delta \boldsymbol{w} = -\frac{1}{2} a \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

Value Function Approx. By Stochastic Gradient Descent

• **Goal:** find parameter vector \mathbf{w} minimizing mean-squared error between approximate value function $\hat{\mathbf{v}}(s;\mathbf{w})$ and true value function $\mathbf{v}_{\pi}(s)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(\mathbf{v}_{\pi}(s) - \hat{\mathbf{v}}(s; \mathbf{w}))^{2}]$$

Gradient descent finds a local minimum

$$\Delta \mathbf{w} = -\frac{1}{2} a \nabla_{\mathbf{w}} J(\mathbf{w})$$
$$= \alpha \mathbb{E}_{\pi} [(\mathbf{v}_{\pi}(s) - \hat{\mathbf{v}}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(s; \mathbf{w})]$$

Stochastic gradient descent samples the gradient

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(s) - \hat{\mathbf{v}}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(s; \mathbf{w})$$

Expected update is equal to full gradient update

Feature Vectors

Represent state by a feature vector

$$x(s) = \begin{pmatrix} x_1(s) \\ \vdots \\ x_n(s) \end{pmatrix}$$

- E.g. Polynomials, Fourier Basis
- For example:
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation

Represent value function by a linear combination of features

$$\hat{\mathbf{v}}(s; \mathbf{w}) = x(s)^T \mathbf{w} = \sum_{i=0}^n x_i(s) w_i$$

Objective function is quadratic in parameters w

$$J(w) = \mathbb{E}_{\pi}[(\mathbf{v}_{\pi}(s) - \mathbf{x}(s)^{T} \mathbf{w})^{2}]$$

- Stochastic gradient descent converges on global optimum
- Update rule is particularly simple

$$\nabla_{w} \hat{\mathbf{v}}(s; \boldsymbol{w}) = x(s)$$
$$\Delta \boldsymbol{w} = \alpha \big(\mathbf{v}_{\pi}(s) - \hat{\mathbf{v}}(s; \boldsymbol{w}) \big) x(s)$$

• Update = step-size × prediction error × feature value

Table Lookup Features

- Table lookup is a special case of linear value function approximation
- Using table lookup features

$$x^{table}(s) = \begin{pmatrix} \mathbf{1}(s=s_1) \\ \vdots \\ \mathbf{1}(s=s_n) \end{pmatrix}$$

• Parameter vector **w** gives value of each individual state

$$\widehat{\mathbf{v}}(s; \boldsymbol{w}) = \begin{pmatrix} \mathbf{1}(s = s_1) \\ \vdots \\ \mathbf{1}(s = s_n) \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$$

Incremental Prediction Algorithms

- Have assumed true value $v_{\pi}(s)$ function given by supervisor
- But in RL there is no supervisor, only rewards
- In practice, we substitute a target for $v_{\pi}(s)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G}_t - \hat{\mathbf{v}}(S_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t; \mathbf{w})$$

• For TD(0), the target is the TD target $G_{t:t+1} = R_{t+1} + \gamma \hat{\mathbf{v}}(s_{t+1}; \mathbf{w})$

$$\Delta \mathbf{w} = \alpha (R_{t+1} + \gamma \,\hat{\mathbf{v}}(S_{t+1}; \mathbf{w}) - \hat{\mathbf{v}}(S_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t; \mathbf{w})$$

• For TD(n), the target is the TD target $G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \gamma^n \hat{\mathbf{v}}(s_{t+n}; \mathbf{w})$

Monte-Carlo with Value Function Approximation (1/2)

- Return G_t is an unbiased, noisy sample of true value $v_{\pi}(s_t)$
- Can therefore apply supervised learning to "training data":

$$< S_1, G_1 >, < S_2, G_2 >, ..., < S_T, G_T >$$

For example, using linear Monte-Carlo policy evaluation

$$\Delta \mathbf{w} = \alpha (G_t - \hat{\mathbf{v}}(S_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t; \mathbf{w})$$
$$= \alpha (G_t - \hat{\mathbf{v}}(S_t; \mathbf{w})) \mathbf{x}(S_t)$$

- Monte-Carlo evaluation converges to a local optimum
- Even when using non-linear value function approximation

Monte-Carlo with Value Function Approximation (2/2)

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
```

Input: a differentiable function $\hat{v}: \mathcal{S} \times \mathbb{R}^d \to \mathbb{R}$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π

Loop for each step of episode, t = 0, 1, ..., T - 1:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

[An Introduction to Reinforcement Learning, Sutton and Barto]

TD Learning with Value Function Approximation (1/2)

- The TD-target $G_{t:t+1} = R_{t+1} + \gamma \hat{\mathbf{v}}(s_{t+1}; \mathbf{w})$ is a biased sample of true value $\mathbf{v}_{\pi}(s_t)$
- Can still apply supervised learning to "training data":

$$< S_1, R_1 + \gamma \hat{\mathbf{v}}(S_2; \mathbf{w}) >, < S_2, R_3 + \gamma \hat{\mathbf{v}}(S_3; \mathbf{w}) >, ..., < S_{T-1}, R_T >$$

For example, using linear TD(0)

$$\Delta \mathbf{w} = \alpha (R + \gamma \,\hat{\mathbf{v}}(S'; \mathbf{w}) - \hat{\mathbf{v}}(S_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t; \mathbf{w})$$

= $\alpha \delta \mathbf{x}(S)$

- (Semi-Gradient) We do not consider the effect of changing w on the target
- Linear TD(0) converges (close) to global optimum

TD Learning with Value Function Approximation (2/2)

```
Semi-gradient TD(0) for estimating \hat{v} \approx v_{\pi}
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal}, \cdot) = 0
Algorithm parameter: step size \alpha > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
    Initialize S
    Loop for each step of episode:
        Choose A \sim \pi(\cdot|S)
        Take action A, observe R, S'
        \mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})
        S \leftarrow S'
    until S is terminal
```

[An Introduction to Reinforcement Learning, Sutton and Barto]

Control with Value Function Approximation

- Policy evaluation
 - Approximate policy evaluation, $\hat{q}(\cdot,\cdot; \mathbf{w}) \approx q_{\pi}$
- Policy improvement
 - <u>ε-Greedy</u> policy improvement

[David Silver, IRL, UCL 2015]

Action-Value Function Approximation

Approximate the action-value function

$$\hat{q}(S, A; \mathbf{w}) \approx q_{\pi}(S, A)$$

• Minimize mean-squared error between approximate action-value function $\hat{q}(S, A, \mathbf{w})$ and true action-value function $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}[(q_{\pi}(S, A) - \hat{q}(S, A; \mathbf{w}))^{2}]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{w}J(\mathbf{w}) = (q_{\pi}(S,A) - \hat{q}(S,A;\mathbf{w}))\nabla_{w}\hat{q}(S,A;\mathbf{w})$$
$$\Delta\mathbf{w} = \alpha(q_{\pi}(S,A) - \hat{q}(S,A;\mathbf{w}))\nabla_{w}\hat{q}(S,A;\mathbf{w})$$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$x(S,A) = \begin{pmatrix} x_1(S,A) \\ \vdots \\ x_n(S,A) \end{pmatrix}$$

Represent action-value function by linear combination of features

$$\widehat{q}(S, A, \mathbf{w}) = x(S, A)^T \mathbf{w} = \sum_{i=0}^n x_i(S, A) w_i$$

Stochastic gradient descent update

$$\nabla_{w} \hat{q}(S, A; \mathbf{w}) = x(S, A)$$

$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A; \mathbf{w})) x(S, A)$$

Incremental Control Algorithms

- Like prediction, we must substitute a target for $q_{\pi}(S,A)$
 - For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha (\mathbf{G_t} - \hat{q}(S_t, A_t; \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t A_t; \mathbf{w})$$

• For TD(0), the target is the TD target $G_{t:t+1} = R_{t+1} + \gamma \hat{\mathbf{v}}(s_{t+1}; \mathbf{w})$

$$\Delta \mathbf{w} = \alpha \left(R_{t+1} + \gamma \, \hat{\mathbf{v}}(S_{t+1}; \mathbf{w}) - \hat{q}(S_t, A_t; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{q}(S_t A_t; \mathbf{w})$$

Tile Coding

- If the state is inside a tile, then the corresponding feature has the value 1
- These tilings are offset from one another by a uniform amount in each dimension.
- Overlapping tiles can provide more granularity

Semi-Gradient n-step* Sarsa for Mountain Car

Convergence of Prediction Algorithms

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	\checkmark
	TD(0)	\checkmark	\checkmark	×
Off-Policy	MC	\checkmark	\checkmark	\checkmark
	TD(0)	\checkmark	×	×

Gradient Temporal-Difference Learning for Prediction

- TD does not follow the gradient of any objective function
- Therefore, TD can diverge when off-policy or using non-linear function approximation
- Gradient TD follows true gradient of projected Bellman error

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	TD(0)	\checkmark	\checkmark	×
	Gradient TD	\checkmark	\checkmark	✓
Off-Policy	MC	\checkmark	\checkmark	\checkmark
	TD(0)	\checkmark	×	×
	Gradient TD	\checkmark	✓	\checkmark

Convergence of Control Algorithms

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(√)	×
Sarsa	\checkmark	(√)	×
Q-Learning	✓	×	×
Gradient Q-Learning	✓	\checkmark	×

 (\checkmark) = oscillates to a near-optimal value function

Batch Methods

Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")

Least Squares Prediction

- Given value function approximation $\hat{\mathbf{v}}(s; \mathbf{w}) \approx \mathbf{v}_{\pi}(s)$
- And experience \mathcal{D} consisting of $\langle state, value \rangle$ pairs

$$\mathcal{D} = \left\{ \langle s_1, v_1^{\pi} \rangle, \langle \langle s_2, v_2^{\pi} \rangle \rangle, \dots, \langle \langle s_T, v_T^{\pi} \rangle \rangle \right\}$$

- Which parameters **w** give the best fitting value function $\hat{\mathbf{v}}(s; \mathbf{w})$
- Least squares algorithms find parameter vector w minimizing sum-squared error between $\hat{\mathbf{v}}(s; \mathbf{w})$ and target values \mathbf{v}_t^{π}

$$LS(\mathbf{w}) = \sum_{t=0}^{I} (\mathbf{v}_1^{\pi} - \hat{\mathbf{v}}(s; \mathbf{w}))^2$$
$$= \mathbb{E}_{\mathcal{D}}[(\mathbf{v}_1^{\pi} - \hat{\mathbf{v}}(s; \mathbf{w}))^2]$$

Stochastic Gradient Descent with Experience Replay

• Given experience consisting of (*state*, *value*) pairs

$$\mathcal{D} = \left\{ \langle s_1, v_1^{\pi} \rangle, \langle \langle s_2, v_2^{\pi} \rangle \rangle, \dots, \langle \langle s_T, v_T^{\pi} \rangle \rangle \right\}$$

- Repeat:
 - 1. Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2. Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha(\mathbf{v}_{\pi}(s) - \hat{\mathbf{v}}(s; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(s; \mathbf{w})$$

Converges to least squares solution

$$w^{\pi} = \underset{w}{\operatorname{argmin}} LS(w)$$

Experience Replay in Deep Q-Networks (DQN)

- Example of DQN that uses experience replay and fixed Q-targets
 - Take action a_t according to ε -greedy policy
 - Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
 - Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
 - Compute Q-learning targets w.r.t. the parameters of a DQN w⁻
 - Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s', a'; w_i^-) - Q(s, a; w_i) \right)^2 \right]$$

DQN in Atari

[doi:10.1038/nature14236]

Summary

- We discussed how we can extend the tabular methods for building a value function using value function approximators
- We showed how to use gradient descent in order to fit the parameters of the approximators
- We showed how to apply these under the schemes of MC and TD.
- We discussed on the different convergence properties of the different algorithms.
- We discussed about batch methods and tile coding.