

IoT/自動運転時代の仮想シミュレーション環境 (コンセプト)のご紹介

2019/11/20 永和システムマネジメント 組込み技術センター 森 崇

目次

- 1. IoT/自動運転時代のシステム構築時の課題
- 2. 仮想シミュレーション環境によるアプローチ
- 3. 箱庭の目指すところ
- 4. 箱庭アーキテクチャと利用シーン
- 5. 箱庭のプロトタイプモデル
- 6. 箱庭WG活動紹介

IoT/自動運転時代のシステム構築時の課題

IoT/自動運転システムのような複雑なシステムでは、 少なくとも以下の2つの課題があると考えています。

1. システム構築の視点

・様々な機器/ソフトウェアが絡んでいるため、実証実験の現場では、機器間の不整合が頻発し、トラブル対応の時間・手間・コストがかかることが想定される.

2. サービス構築の視点

- IoTサービスとして、様々なIoT機器がある中で、それらをどう組み合わせると、 斬新で画期的なサービスを創出できるかわからない。
- 新しいサービスを検討するにしても、実物のロボットでは準備・手間がかかりすぎる.
- 様々なサービス検討のために、IoT機器の仕様が頻繁に変更され、システム開発者に負担がかかる。

箱庭

管制サーバ

IoTシステム構築時の課題(例:自動運転システムの場合)

自動運転システムの開発は,

様々な分野の技術領域を横断している!

箱庭

管制サーバ

IoTシステム構築時の課題(例:自動運転システムの場合)

• 問題発生経路の複雑化

- 全体結合しないと見えない問題が多数潜んでいる
- 様々な機器間の整合性がとれていない可能性大

・ 原因調査の複雑化

- どこで何がおこっているのか調査困難
- そもそもデバッグすること自体が難しい

・ 実証実験のコスト増

- 実証実験は手軽に実施できない
- 各分野のエンジニアの総動員
- 手間,時間,費用がかかる

クラウド

IoTサービス構築時の課題(例:ロボットサービスの場合)

IoTサービス構築時の課題(例:ロボットサービスの場合)

仮想シミュレーション環境によるアプローチ

仮想シミュレーション環境上(<mark>箱庭</mark>)でIoT/自動運転システムを開発する ⇒各分野の技術者が箱庭上に開発対象ソフトウェアを持ち寄って, 机上実証実験!

箱庭の基本コンセプト

- 箱の中に,
- いろいろなモノを自分の好みで配置して
- 色々試せる!

箱庭の目指すところ

- 箱庭のターゲット
 - IoTのような複雑なシステム(自動運転/物流・宇宙等様々な分野を想定)
 - 様々な機器(リアルタイム/非リアルタイム)がネットワークで接続されたシステム
- 箱庭とは
 - 全体結合シミュレーション環境
- 箱庭の利用者
 - システム開発者
 - ・サービス提供者
 - 箱庭アセット開発者/提供者
 - アセット=システム構成要素
- ・目指す強みと新しさ
 - IoTの各要素を連携させ任意の精度で検証可能
 - ・検証の対象/抽象度/レベルを任意に変更できる
 - コンポーネントの差し替えで対応できるようにする

システム開発者

サービス提供者

箱庭

(全体結合シミュレーション環境)

アセット開発者

アセット提供者

箱庭

箱庭の目指すところ

・複雑なシステムを開発/提供する関係者のための

シミュレーション環境を目指す

箱庭のアーキテクチャ

■箱庭ドメイン・サービス 様々な分野への適応を目 指す 車載系 家電系 航空・ 物流系 宇宙 コボット

箱庭ドメイン・サービス

■箱庭コア 箱庭固有のシミュレーション 技術をコア技術化

Hakoniwa Engine

- ■サードパーティ 既存のサードパーティ製で出 来ていることは積極利用
- ■箱庭アセット・サービス シミュレーション内の登場物 を箱庭アセット化し, アセット 数拡充を目指す

箱庭アセット・サービス

TOPPERS
Topohabal Open Platform
For Embedded Real-time System

マルチレイヤ・コンセプト(例:ロボットシステム)

© Copyright 2019, ESM, Inc.

箱庭の利用シーン

車両の動作確認し ながらアプリ操作感

を確認できる

箱庭の導入効果(例:自動運転システムの場合)

- 全体結合しないと見えない問題を早期検出できる
- 各エンジニアは自社から手軽に遠隔結合確認できる

クラウド

机上環境でネットワーク負荷等を評価できる

箱庭の導入効果(例:ロボットサービスの場合)

箱庭のプロトタイプモデル

箱庭コンセプトの実現/技術調査するために,以下の3つのプロトタイプモデルを構築する予定です.

仮想化レベル	プロトタイプモデル	目的
1,2	A: ETロボコン向けシミュレータ	·技術研鑽 ·広報活動
2	B: ROS・マルチECU向けシミュレータ	・時間同期の仕組み検討 ・mROS/athrill普及
3	C: 車車間協調動作向けシミュレータ	・クラウド連携

A: ETロボコン向けシミュレータ

技術研鑽視点での狙い:

- ・物理シミュレータとマイコンシミュレータ間の連携方法の検討
- ・シミュレーション時間同期の検討
 - ・要件出し: 求めらられる時間精度
 - ・実現方法検討:箱庭コア技術としてどうやって実現するか

その他の狙い:

・ETロボコンユーザ層に箱庭を広める(広報活動)

B: ROS・マルチECU向けシミュレータ

技術研鑽視点での狙い:

・シミュレータ間の時間同期の仕組みを検討するためのモデルとして最適

その他の狙い:

・mROS/athrillを広める

C:車車間協調動作向けシミュレータ

技術研鑽視点での狙い:

- ・箱庭として複数車両の連携制御をどう実現させるか検討
- ・管制サーバーとの連携をどう実現させるか検討

箱庭

全体ロードマップ

1st 成果として,箱庭結合環境(問題早期検出)のプロトタイプモデル作成に専念し, 開発者向け/サービス向け/連携機能へと拡張を目指す予定です

箱庭WG活動紹介

- ・活用ツール
- ・定例会合・イベント
- お誘い

活用ツール

- Slack :
 - コミュニケーションツール
 - 日々の議論に中心的に活用
 - TOPPERS会員は誰でも加入可能
 - 招待URLはML・議事録で公開
- ML: hakoniwa-wg@toppers.jp
 - 問合せ先窓口
 - 定例会合の案内および議事録を配信
 - 会員は加入/アーカイブ閲覧可能
 - 他WGのポリシーと同様

活用ツール

GitHub:

- 開発成果(状況)のオープンソース公開
 - TOPPERSプロジェクトでorganization加入
- 会員限定のPrivate Repo作成や リリースパッケージの先行公開も検討

Google Drive :

- 技術資料や議事録,各種ファイルの共有
 - TOPPERSプロジェクトでG Suite加入
- Team Drive運用 WGメンバは作成・編集・共有可
- 会員はファイル閲覧・コメント付与可
 - DriveのURLはMLで公開

箱庭

定例会合・イベント

- 定例会合
 - オンライン(WebEx) @毎月1回程度
 - オフライン(合宿)
 - @年2回程度の予定
 - MLにて案内します

- 今後のイベント
 - TOPPERS技術検討会議
 - @東京 2019年12月19日
 - 詳細は https://www.toppers.jp/ にて告知予定

現在のWGメンバ

氏名	所属	主な役割	
森崇	永和システムマネジメント	主査 全体統括, Athrill	
高瀬 英希	京都大学/JSTさきがけ	運営委員 mROS, ROS通信,	
細合 晋太郎	チェンジビジョン(個人会員)	IDE, モデリング, 可視化,	
田邉 友	永和システムマネジメント	Athrill,仮想環境,	
山田 昌幸	永和システムマネジメント	Athrill, MBD,	
高島 亮人	永和システムマネジメント	ETロボコン	
高田 光隆	名古屋大学NCES	カーネル, 応用検討,	
庭野 正義	アイコムシステック	車載コンポーネント,	
佐伯 淳	個人会員	教育向け箱庭普及活動	
斎藤 直規	名古屋市工業研究所	仮想環境,IDE	
間瀬 剛	名古屋市工業研究所	仮想環境,IDE	
小川 清	名古屋市工業研究所	仮想環境,IDE	

To Be Added,,,

特にクラウド技術に知見をお持ちの方をお誘いしたい

- ・箱庭WGの狙い・趣旨にご賛同いただける方の 参画をお待ちしております!!
 - ・活動内容へのご要望や開発活動への参加, まずはSlackでの議論の参加,などなど

・問合せ先: <u>secretariat@toppers.jp</u>