

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Динамические системы и модели биологии»

Студенты 315 группы В. А. Кузнецов В. А. Сливинский

Научный руководитель д.ф.-м.н., профессор А. С. Братусь

Содержание

1	Дин	намические системы с дискретным временем	3
	1.1	Постановка задачи	3
	1.2	Биологическая интерпретация задачи	3
	1.3	Некоторые разумные ограничения на параметры системы	3
	1.4	Поиск неподвижных точек	4
Cı	Список литературы		

1 Динамические системы с дискретным временем

1.1 Постановка задачи

Дана следующая многомерная динамическая система с дискретным временем:

$$\begin{cases} u_{t+1} = au_t(1 - u_t) - u_t v_t \\ v_{t+1} = \frac{1}{b} u_t v_t \end{cases} \qquad u, v, a, b > 0$$
 (1.1)

Для системы (1.1) требуется:

- 1. Найти неподвижные точки
- 2. Исследовать неподвижные точки на устойчивость
- 3. Построить бифуркационную диаграмму
- 4. Проверить существование циклов длины 2 и 3
- 5. Проверить существование бифуркации Неймарка—Сакера и в случае её обнаружение построить инвариантную кривую

1.2 Биологическая интерпретация задачи

Система (1.1) представляет собой модель «Хищник-Жертва»; в ней u_t это относительная численность жертв в момент времени t (отношение числа жертв к максимально возможной, определяемой потенциальной ёмкостью экосистемы), v_t — относительная численность хищников, параметр a определяет скорость роста популяции жертв в отсутствии хищника (рождаемость или условный «естественный прирост»), а параметр b обратно пропорционален выгоде хищников. Численность жертв в отсутствии хищников описывается дискретным логистическим уравнением $u_{t+1} = au_t(1 - u_t)$, влияние хищников описывается билинейной функцией $u_t v_t$, а в отсутствии пищи хищники вымирают за одно поколение (одну единицу времени).

1.3 Некоторые разумные ограничения на параметры системы

В главе 3 [1] при исследовании дискретного логистического уравнения была получена следующая оценка для параметра a:

$$0 < a < 4 \tag{1.2}$$

Помимо этого, исходя из условий неотрицательности траекторий, из первого уравнения системы (1.1) выводятся следующие ограничения:

$$0 < u_t < 1 \tag{1.3}$$

$$0 < v_t < \frac{au_t(1 - u_t)}{u_t} \tag{1.4}$$

1.4 Поиск неподвижных точек

Для начала, введём понятие неподвижной точки для многомерной дискретной динамической системы:

Определение 1.1. Пусть дана дискретная динамическая система, определяемая отображением f:

$$u \mapsto f(u) = f(u, r) \quad u \in \mathbb{R}^n, \quad f \in \mathbb{R}^n : \mathbb{R}^n \to \mathbb{R}^n, \quad r \in \mathbb{R}^m, \quad n, m \in \mathbb{N}$$
 (1.5)

Тогда, точка u^* называется nenodeuэсной moчкой системы (1.5), если:

$$u^* = f(u^*)$$

Замечание. В системе (1.5) вектор r — вектор параметров системы

Для системы (1.1) $n=m=2, u=(u,v), f=(f_1,f_2)$, где

$$f_1(u) = au_t(1 - u_t) - u_t v_t$$
$$f_2(u) = \frac{1}{b}u_t v_t$$

Для нахождения неподвижных точек системы (1.5) достаточно разрешить по (u_t, v_t) следующую систему:

$$\begin{cases} u_t = au_t(1 - u_t) - u_t v_t \\ v_t = \frac{1}{b} u_t v_t \end{cases}$$
(1.6)

Приступим к решению системы (1.6):

$$\begin{cases} u_t = au_t(1 - u_t) - u_t v_t \\ v_t = \frac{1}{b}u_t v_t \end{cases} \iff \begin{cases} u_t(-au_t + (a - v_t - 1)) = 0 \\ v_t(\frac{u_t}{b} - 1) = 0 \end{cases}$$

Второе уравнение системы обращается в ноль при $v_t = 0$ и $u_t = b$. Исследуем первое уравнение системы для этих значений:

Список литературы

[1] Братусь А. С. Динамические системы и модели биологии / Братусь А. С., Новожилов А. С., Платонов А. П. — М.: ФИЗМАТЛИТ, 2010