TRIGONOMETRY Chapter 19

TRANSFORMACIONES
TRIGONOMÉTRICAS

MOTIVATING STRATEGY

En el siglo XVI aparecieron en Europa una serie de identidades conocidas como Reglas de Prostaféresis, las que actualmente son conocidas como Identidades de Transformaciones Trigonométricas; éstas convierten una suma o diferencia de senos y cosenos a productos y viceversa.

Para deducir estas identidades se utilizan las identidades del ángulo compuesto:

$$sen(x + y) = senx.cosy + cosx.seny$$
 ... (1)

$$sen(x - y) = senx.cosy - cosx.seny$$
 ... (2)

Sumando (1) y (2):

$$sen(x + y) + sen(x - y) = 2 senx.cosy ... (*)$$

Hacemos cambios de variables :

Reemplazando en (*), se obtiene:

$$\operatorname{sen} A + \operatorname{sen} B = 2\operatorname{sen} \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

TRANSFORMACIONES TRIGONOMÉTRICAS

1ER CASO: De suma o diferencia de senos y cosenos a produto.

$$\operatorname{sen} A + \operatorname{sen} B = 2 \operatorname{sen} \left(\frac{A + B}{2} \right) \cos \left(\frac{A - B}{2} \right)$$

$$\operatorname{sen} A - \operatorname{sen} B = 2 \cos \left(\frac{A + B}{2} \right) \operatorname{sen} \left(\frac{A - B}{2} \right)$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2 \operatorname{sen}\left(\frac{A+B}{2}\right) \operatorname{sen}\left(\frac{A-B}{2}\right)$$

Ejemplos:

•
$$\operatorname{sen} 3x + \operatorname{sen} x = 2 \operatorname{sen} \left(\frac{3x + x}{2} \right) \cos \left(\frac{3x - x}{2} \right)$$

$$\Rightarrow$$
 sen3x + senx = 2 sen2x cos x

•
$$\cos 80^{\circ} + \cos 40^{\circ} = 2\cos \left(\frac{80^{\circ} + 40^{\circ}}{2}\right) \cos \left(\frac{80^{\circ} - 40^{\circ}}{2}\right)$$

$$\Rightarrow \cos 80^{\circ} + \cos 40^{\circ} = 2 \cos 60^{\circ} \cos 20^{\circ}$$

$$\frac{1/2}{2}$$

$$\Rightarrow \cos 80^{\circ} + \cos 40^{\circ} = \cos 20^{\circ}$$

TRANSFORMACIONES TRIGONOMÉTRICAS

2DO CASO: De producto de senos y cosenos a suma o diferencia.

$$2\operatorname{sen}\alpha\cos\beta = \operatorname{sen}(\alpha + \beta) + \operatorname{sen}(\alpha - \beta)$$

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2\operatorname{sen}\alpha\operatorname{sen}\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

Observación:

Si al aplicar transformaciones trigonométricas obtenemos ángulos negativos, se debe usar :

$$sen(-x) = -senx$$
 $cos(-x) = cosx$

$$\cos(-x) = \cos x$$

Ejemplos:

- $2 \operatorname{sen} 3x \cos x = \operatorname{sen} (3x + x) + \operatorname{sen} (3x x)$
- \Rightarrow 2 sen3x cos x = sen4x + sen2x
- $2\cos 20^{\circ}\cos 10^{\circ} = \cos(20^{\circ} + 10^{\circ}) + \cos(20^{\circ} 10^{\circ})$

$$\Rightarrow 2\cos 20^{\circ}\cos 10^{\circ} = \cos 30^{\circ} + \cos 10^{\circ}$$

$$\Rightarrow 2\cos 20^{\circ}\cos 10^{\circ} = \frac{\sqrt{3}}{2} + \cos 10^{\circ}$$

Reduzca
$$E = \frac{\text{sen}40^{\circ} + \text{sen}20^{\circ}}{\text{cos}40^{\circ} + \text{cos}20^{\circ}}$$

RESOLUCIÓN

Recordar:

$$senA + senB = 2 sen\left(\frac{A+B}{2}\right). cos\left(\frac{A-B}{2}\right)$$

$$= \frac{sen10 + sen20}{cos40^{\circ} + cos20^{\circ}}$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

$$senA + senB = 2 sen\left(\frac{A+B}{2}\right). cos\left(\frac{A-B}{2}\right)$$

$$cosA + cosB = 2 cos\left(\frac{A+B}{2}\right). cos\left(\frac{A-B}{2}\right)$$

$$E = \frac{sen40^{\circ} + sen20^{\circ}}{cos40^{\circ} + cos20^{\circ}}$$

$$E = \frac{2 sen\left(\frac{40^{\circ} + 20^{\circ}}{2}\right). cos\left(\frac{40^{\circ} - 20^{\circ}}{2}\right)}{2 cos\left(\frac{40^{\circ} + 20^{\circ}}{2}\right). cos\left(\frac{40^{\circ} - 20^{\circ}}{2}\right)}$$

$$E = \tan 30^{\circ}$$

$$\mathsf{E} = \tan 30^{\circ} \qquad \therefore \; \mathsf{E} = \frac{\sqrt{3}}{3}$$

Halle el valor del ángulo agudo x en

$$\frac{\text{sen}9x - \text{sen}3x}{\cos 9x + \cos 3x} = \sqrt{3}$$

RESOLUCIÓN

Recordar:

$$\frac{\text{Recordar}:}{\text{senA} - \text{senB} = 2\cos\left(\frac{A+B}{2}\right). \, \text{sen}\left(\frac{A-B}{2}\right)} = \frac{\sin 9x - \sin 3x}{\cos 9x + \cos 3x} = \sqrt{3}$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

$$\frac{\text{sen}9x - \text{sen}3x}{\cos 9x + \cos 3x} = \sqrt{3}$$

$$cosA + cosB = 2 cos \left(\frac{A+B}{2}\right) \cdot cos \left(\frac{A-B}{2}\right) = \frac{2 cos \left(\frac{9x+3x}{2}\right) \cdot sen \left(\frac{9x-3x}{2}\right)}{2 cos \left(\frac{9x+3x}{2}\right) \cdot cos \left(\frac{9x-3x}{2}\right)} = \sqrt{3}$$

$$tan3x = \sqrt{3}$$

$$3x = 60^{\circ}$$

$$\therefore X = 20^{\circ}$$

Para
$$x = \frac{\pi}{24}$$
, calcule el valor de
$$E = \frac{\sec 6x + \sec 4x + \sec 2x}{\cos 6x + \cos 4x + \cos 2x}$$

Recordar:

$$senA + senB = 2 sen\left(\frac{A+B}{2}\right). cos\left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

RESOLUCIÓN

$$E = \frac{sen6x + sen2x + sen4x}{cos6x + cos2x + cos4x}$$

$$E = \frac{2 \operatorname{sen4x.cos2x} + \operatorname{sen4x}}{2 \operatorname{cos4x.cos2x} + \operatorname{cos4x}}$$

$$E = \frac{\text{sen4x} (2 \cos 2x + 1)}{\cos 4x (2 \cos 2x + 1)}$$

$$E = tan4x = tan4\left(\frac{\pi}{24}\right) = tan\left(\frac{\pi}{6}\right)$$

$$E = tan 30^{\circ}$$

$$\therefore \mathsf{E} = \frac{\sqrt{3}}{3}$$

Una barra metálica descansa sobre una pared lisa, tal como se muestra en la figura.- Halle el valor

30°

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$$

RESOLUCIÓN

$$\cot \theta = \frac{(\cos 40^{\circ} + \cos 80^{\circ} + \cos 40^{\circ}) \text{ m}}{(\cos 10^{\circ}) \text{ m}}$$

$$\cot \theta = \frac{\cos 40^{\circ} + 2 \cos 60^{\circ} \cdot \cos 20^{\circ}}{\cos 10^{\circ}}$$

$$\cot \theta = \frac{\cos 40^{\circ} + 2\left(\frac{1}{2}\right) \cos 20^{\circ}}{\cos 10^{\circ}}$$

$$1 \quad \cot \theta = \frac{\cos 40^{\circ} + \cos 20^{\circ}}{\cos 10^{\circ}} = \frac{2 \cos 30^{\circ} \cdot \cos 10^{\circ}}{-\cos 10^{\circ}}$$

$$\cot \theta = 2\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$$

 $: \theta = 30^{\circ}$

Recordar:

Halle el valor del ángulo α que cumple

$$sen\alpha = 2 cos 40^{\circ} \cdot cos 10^{\circ} - cos 50^{\circ}$$

RESOLUCIÓN

 $sen \alpha = 2 cos 40^{\circ} \cdot cos 10^{\circ} - cos 50^{\circ}$

Recordar:
$$2\cos\alpha \cdot \cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$sen\alpha = cos(40^{\circ} + 10^{\circ}) + cos(40^{\circ} - 10^{\circ}) - cos50^{\circ}$$

$$sen\alpha = -\cos 50^{\circ} + \cos 30^{\circ} - \cos 50^{\circ}$$

$$sen\alpha = cos30^{\circ}$$

Por CO – RT :
$$\alpha + 30^{\circ} = 90^{\circ}$$
 $\alpha = 60^{\circ}$

$$\alpha = 60^{\circ}$$

Simplifique la expresión

$$R = \frac{2\cos 4x \cdot \cos 3x - \cos 7x}{\sin 2x}$$

Recordar:

$$2\cos\alpha \cdot \cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

 $sen2\alpha = 2 sen\alpha . cos\alpha$

sena. csca = 1

RESOLUCIÓN

$$R = \frac{2\cos 4x \cdot \cos 3x - \cos 7x}{\sin 2x}$$

$$R = \frac{\cos(4x + 3x) + \cos(4x - 3x) - \cos7x}{\sin2x}$$

$$R = \frac{\cos 7x + \cos x - \cos 7x}{\sin 2x}$$

$$R = \frac{1 \cos x}{2 \sin x \cos x}$$

$$\therefore R = \frac{\csc x}{2}$$

Se tiene una pequeña pieza de juguete cuyas aristas miden (2 cos6x) cm, (2 cos4x) cm y (cos2x) cm; tal que 0 < x < 15°. - Si el volumen de la pieza se expresa así:

V = (1 + cosAx + cosBx + cosCx) cm³, considerando positivos a los números A, B y C.

Dar el valor de A + B + C.

Recordar:

$$2\cos\alpha \cdot \cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2\cos^2\alpha = 1 + \cos 2\alpha$$

RESOLUCIÓN

$$V = (2 \cos 6x \cdot \cos 2x \cdot 2 \cos 4x) \text{ cm}^{3}$$

$$V = ((\cos 8x + \cos 4x) \cdot 2 \cos 4x) \text{ cm}^{3}$$

$$V = (2 \cos 8x \cdot \cos 4x + 2 \cos^{2}4x) \text{ cm}^{3}$$

$$V = (\cos 12x + \cos 4x + 1 + \cos 8x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 12x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 8x + \cos 8x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 8x + \cos 8x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 8x + \cos 8x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 8x + \cos 8x + \cos 8x) \text{ cm}^{3}$$

$$V = (1 + \cos 4x + \cos 8x + \cos 8$$

