Condensation aldolique

Référence : 40 expériences illustrées de chimie générale et organique (p.254 et suivantes)

Leçons potentielles: 3

Produits:

Nom	Formule brute	Masse molaire (g.mol ⁻¹)	Densité	Température	Sécurité
4-méthylacétophénone	C ₉ H ₁₀ O	134,18	1,005	T _{fus} = 22°C	Inflammable Irritant
4-méthoxybenzaldéhyde	C ₈ H ₈ O ₂	136,15	1,119	T _{fus} = -1°C	Irritant
Hydroxyde sodium (solide)	NaOH	40,00	-	T _{fus} = 318°C	Corrosif
Dichlorométhane	CH ₂ Cl ₂	84,93	1,325	T _{eb} = 40°C	CMR
Cyclohexane	C ₆ H ₁₂	84,16	0,778	T _{eb} = 80,7°C	Inflammable CMR Irritant Ecotoxique
Ethanol	C ₂ H ₆ O	46,07	0,789	T _{eb} = 78°C	Inflammable
Diéthyléther	C ₄ H ₁₀ O	74,12	0,714	T _{eb} = 35°C	Inflammable Irritant

Matériels:

Pour la synthèse :

- Ballon monocol (20 mL)
- Potence
- Pince deux doigts
- Pipettes graduées de 2 mL (2)
- Verre à pieds
- Bécher (2 pour les solutions)

Pour l'essorage :

- Fiole à vide
- Verre fritté
- Pissette d'eau distillée
- Potence
- Pince deux doigts

Pour la recristallisation :

- Réfrigérant à eau
- Potence
- Pince deux doigts
- Pince trois doigts
- Ballon (le même que celui de la synthèse pour le rendement)
- Agitateur magnétique chauffant
- Pipette pasteur en plastique
- Olive (la même que pour la synthèse pour le rendement)
- Support élévateur
- Cristallisoir

Pour la CCM:

- Cuve CCM
- Plaque CCM

- Mortier et pilon
- Coupelle de pesée
- Balance
- Agitateur magnétique et olive
- Éprouvette graduée de 10 mL

- Lampe de révélation UV
- Eprouvette graduée de 5mL (2 pour les solvants de l'éluant)
- Capillaire
- Pilulier

Modification protocole:

Pour la synthèse :

Prélever l'hydroxyde de sodium solide au dernier moment (caractère hygroscopique). Si préparé trop tôt, alors le solide se gorge d'eau.

Pour la recristallisation:

Laisser le ballon accrocher au réfrigérant (pour ne pas perturber la cristallisation). Descendre le dispositif de chauffage et laisser refroidir à l'air. Retirer le dispositif de chauffage, placer un cristallisoir rempli d'eau puis remplacer celui-ci par un mélange eau-glace. Retirer le ballon et essorer à nouveau.

Après la recristallisation, le produit obtenu est gorgé de solvant. Il faut donc le passer à l'étuve avant de pouvoir en faire quelque chose d'intéressant (notamment mesure de la température de fusion).

Pour la CCM:

Éluant : mélange cyclohexane et diéthyléther en proportion 50/50

Nombre de dépôt : 5 avec dans l'ordre :

1 : co-dépôt : produit et 4-méthoxybenzaldéhyde

2: 4-méthoxybenzaldéhyde

3: produit synthétisé

4: 4-métylacétophénone

5 : co-dépôt : produit et 4-méthylacétophénone

Solubiliser le produit dans un peu de dichlorométhane (attention à ne pas trop le

concentrer)

Remarques éventuelles :

Le produit obtenu avant recristallisation ne permet pas de faire grand-chose. La température de fusion trouvé est totalement absurde.

Utiliser le produit recristallisé pour en faire le caractériser :

- Température de fusion (à comparer avec la valeur donnée dans le protocole)
- Spectre UV-visible (solvant : éther diéthylique ; utiliser des cuves en verre)
- Spectre IR (repérage des bandes caractéristiques et notamment différences pour la liaison double CO dans le cas d'une cétone, d'un aldéhyde ou d'un alpha-énol
- CCM