Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Курсовая работа «Синтез комбинаторных схем» Часть №1

Вариант 48

Выполнил:

Степанов Арсений Алексеевич

Группа:

P3109

Преподаватель:

Поляков Владимир Иванович

Определение функции

Функция принимает значение истины, при $2<|\mathbf{x}_3\mathbf{x}_4\mathbf{0}-\mathbf{x}_5\mathbf{x}_1\mathbf{x}_2|\leq 5$ и безразличное, при $|\mathbf{x}_3\mathbf{x}_4\mathbf{0}-\mathbf{x}_5\mathbf{x}_1\mathbf{x}_2|=1$.

Таблица истинности

\mathbf{x}_1	x ₂	Х3	x ₄	X5	x ₃ x ₄ 0	$x_5x_1x_2$	$ x_3x_40 - x_5x_1x_2 $	$f(x_1 \dots x_5)$
0	0	0	0	0	000_{2}	000_{2}	0	0
0	0	0	0	1	000_{2}	100_{2}	4	1
0	0	0	1	0	010_{2}	000_{2}	2	0
0	0	0	1	1	010_{2}	100_{2}	2	0
0	0	1	0	0	100_{2}	000_{2}	4	1
0	0	1	0	1	100_{2}	100_{2}	0	0
0	0	1	1	0	110_{2}	000_{2}	6	0
0	0	1	1	1	110_{2}	100_{2}	2	0
0	1	0	0	0	000_{2}	001_{2}	1	d
0	1	0	0	1	000_{2}	101_{2}	5	1
0	1	0	1	0	010_{2}	001_{2}	1	d
0	1	0	1	1	010_{2}	101_{2}	3	1
0	1	1	0	0	100_{2}	001_{2}	3	1
0	1	1	0	1	100_{2}	101_{2}	1	d
0	1	1	1	0	110_{2}	001_{2}	5	1
0	1	1	1	1	110_{2}	101_{2}	1	d
1	0	0	0	0	000_{2}	010_{2}	2	0
1	0	0	0	1	000_{2}	110_{2}	6	0
1	0	0	1	0	010_{2}	010_{2}	0	0
1	0	0	1	1	010_{2}	110_{2}	4	1
1	0	1	0	0	100_{2}	010_{2}	2	0
1	0	1	0	1	100_{2}	110_{2}	2	0
1	0	1	1	0	110_{2}	010_{2}	4	1
1	0	1	1	1	110_{2}	110_{2}	0	0
1	1	0	0	0	000_{2}	011_{2}	3	1
1	1	0	0	1	000_{2}	111_{2}	7	0
1	1	0	1	0	010_{2}	011_{2}	1	d
1	1	0	1	1	010_{2}	111_{2}	5	1
1	1	1	0	0	100_{2}	011_{2}	1	d
1	1	1	0	1	100_{2}	111_{2}	3	1
1	1	1	1	0	110_{2}	011_2	3	1
1	1	1	1	1	110_{2}	111_{2}	1	d

КДНФ:

 $\begin{array}{l} f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \\ \vee \, \overline{x_1} \, x_2 \, x_3 \, x_4 \, \overline{x_5} \, \vee \, x_1 \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee x_1 \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \\ \vee \, x_1 \, x_2 \, x_3 \, \overline{x_4} \, x_5 \, \vee \, x_1 \, x_2 \, x_3 \, x_4 \, \overline{x_5} \end{array}$

$KKH\Phi$:

 $\begin{array}{l} f = (x_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5) \wedge (x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee x_5) \wedge (x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \wedge \\ \wedge (x_1 \vee x_2 \vee \overline{x_3} \vee x_4 \vee \overline{x_5}) \wedge (x_1 \vee x_2 \vee \overline{x_3} \vee \overline{x_4} \vee x_5) \wedge (x_1 \vee x_2 \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5}) \wedge (\overline{x_1} \vee \overline{x_5}) \end{array}$

Минимизация методом Квайна-Мак-Класки

Нахождение максимальных кубов

 $K^{1}(f)$

	1	r (1)				
	1 - 9	0X001				
	4 - 12	0X100				
	8 - 9	0100X	\vee			
	8 - 10	010X0	V			
	8 - 12	01X00	\vee			
$K^0(f)$	8 - 24	X1000	\vee			
1 00001 ∨	9 - 11	010X1	V	$K^2(f)$		
4 00100 \vee	9 - 13	01X01	\vee	8 - 9 - 10 - 11	010XX	V
	10 - 11	0101X	\vee	8-9-12-13	01X0X	\vee
8 01000 V 9 01001 V	10 - 14	01X10	\vee	8-10-12-14	01XX0	\vee
	10 - 26	X1010	\vee	8-10-24-26	X10X0	\vee
$\begin{array}{ c c c c c } 10 & 01010 & \lor \\ 12 & 01100 & \lor \\ \end{array}$	12 - 13	0110X	\vee	8-12-24-28	X1X00	\vee
	12 - 14	011X0	\vee	9 - 11 - 13 - 15	01XX1	V
24 11000 V 11 01011 V	12 - 28	X1100	\vee	10 - 11 - 14 - 15	01X1X	\vee
	24 - 26	110X0	\vee	10 - 11 - 26 - 27	X101X	\vee
	24 - 28	11X00	\vee	10 - 14 - 26 - 30	X1X10	\vee
	11 - 15	01X11	V	12 - 13 - 14 - 15	011XX	\vee
$\begin{vmatrix} 19 & 10011 & \lor \\ 22 & 10110 & \lor \end{vmatrix}$	11 - 27	X1011	\vee	12 - 13 - 28 - 29	X110X	\vee
$\begin{vmatrix} 22 & 10110 & \lor \\ 26 & 11010 & \lor \end{vmatrix}$	13 - 15	011X1	\vee	12 - 14 - 28 - 30	X11X0	\vee
	13 - 29	X1101	\vee	24 - 26 - 28 - 30	11XX0	\vee
28 11100 V 15 01111 V	14 - 15	0111X	\vee	11 - 15 - 27 - 31	X1X11	\vee
$\begin{vmatrix} 13 & 01111 & \lor \\ 27 & 11011 & \lor \end{vmatrix}$	14 - 30	X1110	V	13 - 15 - 29 - 31	X11X1	\vee
29 111011 \vee	19 - 27	1X011		14 - 15 - 30 - 31	01XX1	\vee
$\begin{vmatrix} 29 & 11101 & \lor \\ 30 & 11110 & \lor \end{vmatrix}$	22 - 30	1X110		26 - 27 - 30 - 31	11X1X	\vee
	26 - 27	1101X	\vee	28 - 29 - 30 - 31	111XX	\vee
31 11111 V	26 - 30	11X10	\vee			
	28 - 29	1110X	V			
	28 - 30	111X0	V			
	15 - 31	X1111	V			
	27 - 31	11X11	V			
	29 - 31	111X1	V			

$\mathrm{K}^3(\mathrm{f})$	
8-9-10-11-12-13-14-15	01XXX
8-10-12-14-24-26-28-30	X1XX0
10 - 11 - 14 - 15 - 26 - 27 - 30 - 31	X1X1X
12 - 13 - 14 - 15 - 28 - 29 - 30 - 31	X11XX

30 − 31 1111X ∨

Нахождение ядра покрытия

Построим таблицу импликант:

				Существенные вершины									
		0	0	0	0	0	0	1	1	1	1	1	1
		0	0	1	1	1	1	0	0	1	1	1	1
			1	0	0	1	1	0	1	0	0	1	1
			0	0	1	0	1	1	1	0	1	0	1
Ma	Максимальные кубы		0	1	1	0	0	1	0	0	1	1	0
			4	9	11	12	14	19	22	24	27	29	30
A	0X001	Χ		Х									
В	0X100		Χ			Χ							
С	1X011							Χ			Χ		
D	1X110								Χ				X
Е	01XXX			Χ	Χ	Χ	Χ						
F	X1XX0					Χ	Χ			Χ			Χ
G	X11XX					Χ	X					X	X
Н	X1X1X				Χ		Χ				X		X

По таблице определяем ядро покрытия:

$$T = \begin{cases} 0X001 \\ 0X100 \\ X1XX0 \\ X11XX \\ 1X011 \\ 1X110 \end{cases}$$

Нахождение минимального покрытия

Воспользуемся методом Петрика и запишем выражение определяющее условие покрытия всех вершин:

$$Y = E \vee H$$

Следовательно получается два возможных покрытия: $\mathrm{C}_1 = \mathrm{T} \vee \mathrm{E}$ и $\mathrm{C}_2 = \mathrm{T} \vee \mathrm{H}$

$$C_1 = \begin{cases} 0X001 \\ 0X100 \\ X1XX0 \\ X11XX \\ 1X011 \\ 1X110 \\ 01XXX \end{cases} \quad C_2 = \begin{cases} 0X001 \\ 0X100 \\ X1XX0 \\ X11XX \\ 1X011 \\ 1X110 \\ X1X1X \end{cases}$$

$$S_1^a = 22, S_1^b = 29$$

 $S_2^a = 22, S_2^b = 29$

Цены покрытий совпадают, значит они оба могут выступать в роли минимального покрытия.

3

Пускай
$$C_{min} = C_1$$

$$C_{\min} = \begin{cases} 0X001 \\ 0X100 \\ X1XX0 \\ X11XX \\ 1X011 \\ 1X110 \\ 01XXX \end{cases}$$

$$S^a_{\min}=22,\,S^b_{\min}=29$$

МДНФ минимального покрытия:

$$\mathrm{C}_{min} = \overline{x_1}\,\overline{x_3}\,\overline{x_4}\,x_5 \vee \overline{x_1}\,x_3\,\overline{x_4}\,\overline{x_5} \vee x_2\,\overline{x_5} \vee x_2\,x_3 \vee x_1\,\overline{x_3}\,x_4\,x_5 \vee x_1\,x_3\,x_4\,\overline{x_5} \vee \overline{x_1}\,x_2$$

Минимизация методом карт Карно

МДНФ

$$C_{min} = \begin{cases} 0X001 \\ 0X100 \\ X1XX0 \\ X11XX \\ 1X011 \\ 1X110 \\ 01XXX \end{cases}$$

$$S^a_{\min}=22,\,S^b_{\min}=29$$

$$\mathrm{C}_{\min} = \overline{x_1}\,\overline{x_3}\,\overline{x_4}\,x_5 \vee \overline{x_1}\,x_3\,\overline{x_4}\,\overline{x_5} \vee x_2\,\overline{x_5} \vee x_2\,x_3 \vee x_1\,\overline{x_3}\,x_4\,x_5 \vee x_1\,x_3\,x_4\,\overline{x_5} \vee \overline{x_1}\,x_2$$

$MKH\Phi$

$$C_{\min} = \begin{cases} 00X1X \\ X00X0 \\ X01X1 \\ 1X001 \\ 10X0X \end{cases}$$

$$S_{\min}^{\mathrm{a}}=16,\,S_{\min}^{\mathrm{b}}=21$$

$$C_{\min} = (x_1 \vee x_2 \vee \overline{x_4})(x_2 \vee x_3 \vee x_5)(x_2 \vee \overline{x_3} \vee \overline{x_5})(\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5})(\overline{x_1} \vee x_2 \vee x_4)$$

Преобразование минимальных форм

Факторизация и декомпозиция МДНФ

$$\begin{array}{ll} f=\overline{x_1}\,\overline{x_3}\,\overline{x_4}\,x_5\vee\overline{x_1}\,x_3\,\overline{x_4}\,\overline{x_5}\vee x_2\,\overline{x_5}\vee x_2\,x_3\vee x_1\,\overline{x_3}\,x_4\,x_5\vee x_1\,x_3\,x_4\,\overline{x_5}\vee\overline{x_1}\,x_2 & S_Q=29,\tau=2\\ f=x_2\left(\overline{x_1}\vee x_3\vee\overline{x_5}\right)\vee\left(\overline{x_1}\,\overline{x_4}\vee x_1\,x_4\right)\!\left(x_3\overline{x_5}\vee\overline{x_3}x_5\right) & S_Q=21,\tau=4\\ \varphi=\overline{x_3}x_5,\,\overline{\varphi}=x_3\vee\overline{x_5} & S_Q=21,\tau=5\\ f=x_2\left(\overline{\varphi}\vee\overline{x_1}\right)\vee\left(\overline{x_1}\,\overline{x_4}\vee x_1\,x_4\right)\!\left(x_3\overline{x_5}\vee\varphi\right) & S_Q=21,\tau=5\\ B\ данном\ cлучае\ декомпозиция\ нецелесообразна\\ f=x_2\left(\overline{x_1}\vee x_3\vee\overline{x_5}\right)\vee\left(\overline{x_1}\,\overline{x_4}\vee x_1\,x_4\right)\!\left(x_3\overline{x_5}\vee\overline{x_3}x_5\right) & S_Q=21,\tau=4\\ \end{array}$$

Факторизация и декомпозиция МКНФ

$$\begin{array}{ll} f = (x_1 \vee x_2 \vee \overline{x_4})(x_2 \vee x_3 \vee x_5)(x_2 \vee \overline{x_3} \vee \overline{x_5})(\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5})(\overline{x_1} \vee x_2 \vee x_4) & S_Q = 21, \ \tau = 2 \\ f = (x_2 \vee (x_1 \vee \overline{x_4})(x_3 \vee x_5)(\overline{x_3} \vee \overline{x_5}))(\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5})(\overline{x_1} \vee x_2 \vee x_4) & S_Q = 21, \ \tau = 4 \\ \text{Декомпозиция в данном случае невозможна} \\ f = (x_2 \vee (x_1 \vee \overline{x_4})(x_3 \vee x_5)(\overline{x_3} \vee \overline{x_5}))(\overline{x_1} \vee x_3 \vee x_4 \vee \overline{x_5})(\overline{x_1} \vee x_2 \vee x_4) & S_Q = 21, \ \tau = 4 \\ \end{array}$$

Синтез комбинаторных схем

Анализировать схемы будем при следующих значениях аргументов:

$$f(0,0,0,0,0) = 0$$

$$f(0,0,0,0,1) = 1$$

Булев базис

$$f=(x_2\vee(x_1\vee\overline{x_4})(x_3\vee x_5)(\overline{x_3}\vee\overline{x_5}))(\overline{x_1}\vee x_3\vee x_4\vee\overline{x_5})(\overline{x_1}\vee x_2\vee x_4)$$
 $S_Q=21,\,\tau=4$

Сокращённый булев базис (И-НЕ)

$$\begin{array}{l} f=\overline{\overline{x_2}\overline{\varphi x_1}}\overline{\overline{\overline{x_1}}\,\overline{x_4}}\overline{\overline{x_1x_4}}\overline{\overline{x_3}\overline{x_5}}\overline{\overline{\varphi}},\,\varphi=\overline{x_3}x_5\\ S_Q=30,\tau=8 \end{array}$$

Универсальный базис (И-НЕ, 2 входа)

