Отчет №5

Амосов Федор

15 февраля 2014 г.

Алгоритм

Итак, вспомним наш алгоритм построения графа Делоне D на наборе точек P через склеивание меньших подграфов.

- 1. Пусть S_i случайный поднабор точек из P размера m;
- 2. Пусть P_i разбиение точек P по клеткам Вороного C_i набора точек S_i (каждое P_i это множество точек);
- 3. Построим граф Делоне D_i на каждом множестве P_i рекурсивным вызовом этого алгоритма. Пусть каждый наш граф Делоне хранит помимо построенного графа еще и L_i список смежных каждой грани симплексов (треугольников). Далее нам будет полезен тот факт, что размер всех L_i равен O(n).
- 4. Проделаем с каждым D_i следующую операцию. Возьмем все граничные треугольники (находятся из L_i). Запустим dfs, описанный в предыдущем отчете, на графе соседних треугольников. С помощью него мы найдем все «плохие» треугольники. Выбросим все плохие треугольники из D_i (вместе с соответствующими ребрами и вершинами);
- 5. Сконструируем множество точек V. Добавим в него все точки границ $ConvP_i$ (находятся из L_i). Так же добавим в него все вершины найденных плохих треугольников;
- 6. Построим G граф Делоне на V. Сделаем мы это рекурсивным вызовом этого алгоритма, или каким—нибудь **другим** построителем графов Делоне, если точек в V достаточно мало*;
- 7. Найдем в G те ребра, которые либо,
 - Связывают вершины разных D_i ;
 - Были удалены в ходе уничтожения плохих треугольников.
- 8. Получим итоговый граф Делоне D вставкой этих ребер в объединение D_i .

На сей момент, корректность этого алгоритма была «проверена» только многочисленными экспериментами. Но сейчас нам будет интересен другой вопрос. Сколько этот алгоритм работает (в количестве операций)?

Сложность на малых размерностях

Итак, пусть T(n) — время работы этого алгоритма на наборе из n d—мерных точек, где d — небольшая константа. Составим рекуррентное соотношение на T(n). Предположения, в которых мы будем это делать,

- Все $ConvP_i$ имеют высокую выпуклость (не выстраиваются в линии)
- Все P_i имеют похожие размеры

Добиться этого можно взяв m (число множеств P_i) достаточно большим. Будем считать m константой. Итак, из чего складывается T(n),

1. Выбор m случайных точек — O(m) = O(1)

- 2. Разбиение всех точек по m клеткам. С учетом того, что m константа, мы можем это сделать за O(nf(m)) = O(n), где f(m) некоторая малая функция типа $\log m$ и т.п.
- 3. Построение всех $D_i mT(\frac{n}{m})$
- 4. Нахождение всех граничных треугольников (из L_i) + запуск всех dfs $-O(n) + O(mg(\frac{n}{m})\log n)$, где g(n) ориентировочное число точек границы выпуклой оболочки случайного множества из n точек. Для d-мерного случая $g(n) = O(dn^{\frac{d-1}{d}}) = O(n^{\frac{d-1}{d}})$. $\log n$ вылезает из-за поиска точки в круге при проверке треугольника на «хорошесть», если у нас уже построен поисковый индекс на P (или его частях). Тем самым, сложность получается такой, $O(n) + O(dn^{\frac{d-1}{d}}\log n) = O(n)$.
- 5. Конструирование V O(n).
- 6. Построение $G O(T(|V|)) = O(T(mg\left(\frac{n}{m}\right))) = O(T(n^{\frac{d-1}{d}})) = o(T(n))$, в случае рекурсивного вызова. Опыт показывает, что если n достаточно велико, то вызов внешнего алгоритма будет происходить только на задачах малых, по сравнению с n, размеров, поэтому его временем работы можно пренебречь.
- 7. Нахождение нужных ребер $O(|G|)=[\mathrm{d}$ не большое] = $O(|V|)=O(n^{\frac{d-1}{d}})$
- 8. Вставка ребер (удаление уже было произведено на этапе нахождения плохих треугольников) $O(|G|) = O(n^{\frac{d-1}{d}})$

Итого,

$$T(n) = O(1) + O(n) + mT\left(\frac{n}{m}\right) + O(n) + O(n) + o(T(n)) + O(n^{\frac{d-1}{d}}) + O(n^{\frac{d-1}{d}})$$
$$T(n) = mT\left(\frac{n}{m}\right) + O(n)$$

Вспомним основную теорему о рекуррентном соотношении.

Теорема

Если

$$T(n) = aT\left(\frac{n}{b}\right) + O(n^c)$$

To

$$T(n) = \begin{cases} O(n^c), & c > \log_b a \\ O(n^c \log n), & c = \log_b a \\ O(n^{\log_b a}), & c < \log_b a \end{cases}$$

Воспользуемся ей для нашего случая. Итого получается,

$$T(n) = O(n \log n)$$

И это в том предположении, что m и d достаточно малые. Тем самым, мы разработали алгоритм, который на малых размерностях и на достаточно большом числе точек работает за $O(n\log n)$. Анализ сложности при больших d будет позже.

Открытые задачи

Обозначения те же, что и в алгоритме. Будем рассматривать те D_i , которые были до пункта 4.

- 1. Рассмотрим следующий неориентированный граф T на $\cup_{i=1}^{m} D_i$. Его вершинами будут треугольники и еще одна выделенная вершина A. Между двумя треугольниками будет ребро, если они имеют общую грань. Между треугольником и A будет ребро, если треугольник будет находиться на границе некоторого D_i . Рассмотрим подграф T', индуцированный на плохие треугольники и на вершину A. Доказать, что T' связен.
- 2. Рассмотрим граф G' как D без ребер всех D_i . Доказать, что множество ребер G' совпадает с множеством ребер G, которые соединяют разные D_i .

- 3. Пусть O центр описанной сферы около некоторого плохого треугольника. Пусть O лежит в клетке Вороного C_i . Доказать, или опровергнуть то, что ближайшая к O точка из P принадлежит либо C_i , либо клетке, соседней к C_i .
- 4. Найти асимптотику числа граней выпуклой оболочки случайного набора точек в многомерном пространстве.