

Algorithmen I Tutorium 33

Woche 2 | 04. Mai 2018

Daniel Jungkind (daniel.jungkind@student.kit.edu)

INSTITUT FÜR THEORETISCHE INFORMATIK 1001-1200 801-1000 601-8 8651 8

Inhalt

Laufzeiten

Das Master-Theorem

$$e^n \in \mathcal{O}(2^n)$$
.

Für alle Funktionen f, g gilt f(n) < g(n) oder f(n) = g(n) oder f(n) > g(n).

 $e^n \in \mathcal{O}(2^n)$. Falsch.

$$e^n \in \mathcal{O}(2^n)$$
. Falsch.

$$e^n \in \mathcal{O}(n!)$$
. ?

$$e^n \in \mathcal{O}(2^n)$$
. Falsch.

$$e^n \in \mathcal{O}(n!)$$
. Wahr.

Für alle Funktionen f, g gilt f(n) < g(n) oder f(n) = g(n) oder f(n) > g(n).

 $e^n \in \mathcal{O}(2^n)$. Falsch.

 $e^n \in \mathcal{O}(n!)$. Wahr.

Für Pseudocode gilt die DIN 1946-6.

Für alle Funktionen f, g gilt f(n) < g(n) oder f(n) = g(n) oder f(n) > g(n).

$$e^n \in \mathcal{O}(2^n)$$
. Falsch.

$$e^n \in \mathcal{O}(n!)$$
. Wahr.

Für Pseudocode gilt die DIN 1946-6. Falsch.

Diese Norm regelt die Anzahl und Dauer von Lüftvorgängen in Wohnungen.

LAUFZEITEN

...denn Zeit ist Geld

Laufzeit?

```
function boing(n : \mathbb{N}) : \mathbb{N}
    k := 0
    \ell := 0
    for i := 1 to n do
        \ell + +
        if i > n-4 then
             for j := 1 to n do
               k++
    return k + \ell
```


Laufzeit?

```
function boing(n : \mathbb{N}) : \mathbb{N}
    k := 0
    \ell := 0
    for i := 1 to n do
        \ell + +
        if i > n-4 then
             for j := 1 to n do
               k++
    return k + \ell
```

Erster Gedanke:
 Äußere Schleife: n Durchläufe,
 Innere Schleife: n Durchläufe
 ⇒ Laufzeit in Θ(n·n) = Θ(n²)

Laufzeit?

```
function boing(n : \mathbb{N}) : \mathbb{N}
    k := 0
    \ell := 0
    for i := 1 to n do
         \ell + +
         if i > n-4 then
             for j := 1 to n do
    return k + \ell
```

- Erster Gedanke:
 - Äußere Schleife: n Durchläufe, Innere Schleife: n Durchläufe \Rightarrow Laufzeit in $\Theta(n \cdot n) = \Theta(n^2)$
- Aber: Innere Schleife wird nur max. 4x erreicht (nämlich für

$$i \in \{n-3, n-2, n-1, n\}$$

$$\Rightarrow$$
 Laufzeit in $\Theta(n+4n) = \Theta(n)$

Laufzeit?

```
function doing(n : \mathbb{N}) : \mathbb{N}
k := 0
\ell := 0
for i := 1 to n do
\ell + +
for j := i to n do
k + +
return k + \ell
```


- Erster Gedanke: Äußere Schleife macht *n*-mal "irgendwas"
 - $\Rightarrow n \cdot (???)$

(Klammer? Wie schreiben wir das auf? Nicht *n*-mal dasselbe, sondern **von** *i* **abhängig**!)

- Erster Gedanke: Äußere Schleife macht n-mal "irgendwas"
 ⇒ n · (???)
 (Klammer? Wie schreiben wir das auf? Nicht n-mal dasselbe, sondern von i abhängig!)
- Rettung: Anzahl innere Schleifendurchläufe **einzeln** für jedes i = 1, ..., n aufsummieren!

- Erster Gedanke: Äußere Schleife macht n-mal "irgendwas" ⇒ n · (???) (Klammer? Wie schreiben wir das auf? Nicht n-mal dasselbe, sondern von i abhängig!)
- Rettung: Anzahl innere Schleifendurchläufe einzeln für jedes i = 1, ..., n aufsummieren!
- Für ein festes i wird innere Schleife (n-i+1)-mal durchlaufen

- Erster Gedanke: Äußere Schleife macht n-mal "irgendwas" ⇒ n · (???) (Klammer? Wie schreiben wir das auf? Nicht n-mal dasselbe, sondern von i abhängig!)
- Rettung: Anzahl innere Schleifendurchläufe **einzeln** für jedes i = 1, ..., n aufsummieren!
- Für ein festes i wird innere Schleife (n i + 1)-mal durchlaufen \Rightarrow Gesamtanzahl der inneren Schleifendurchläufe:

$$\sum_{i=1}^{n} (n-i+1) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1 = n^{2} - \sum_{i=1}^{n} i + n$$

- Erster Gedanke: Äußere Schleife macht n-mal "irgendwas" ⇒ n · (???) (Klammer? Wie schreiben wir das auf? Nicht n-mal dasselbe, sondern von i abhängig!)
- Rettung: Anzahl innere Schleifendurchläufe einzeln für jedes i = 1, ..., n aufsummieren!
- Für ein festes i wird innere Schleife (n i + 1)-mal durchlaufen \Rightarrow Gesamtanzahl der inneren Schleifendurchläufe:

$$\sum_{i=1}^{n} (n-i+1) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i + \sum_{i=1}^{n} 1 = n^2 - \sum_{i=1}^{n} i + n$$
$$= n^2 - \frac{n \cdot (n+1)}{2} + n = n^2 - \frac{n^2}{2} + n - \frac{n}{2} = \frac{n^2 + n}{2} \in \Theta(n^2).$$

Laufzeit?

```
function going(n : \mathbb{N}) : \mathbb{N}
    k := 0
    \ell := 0
    for i := 1 to n do
         \ell + +
         if i > n - 4 then
             for i := i to n do
                  k++
    return k + \ell
```


Laufzeit?

```
function going(n : \mathbb{N}) : \mathbb{N}
k := 0
\ell := 0
for i := 1 to n do
\ell + +
if i > n - 4 then
for <math>j := i to n do
k + +
return k + \ell
```

Die innere Schleife wird wieder **nur max. vier Mal** erreicht (s. *boing*) (nämlich für $i \in \{n-3, n-2, n-1, n\}$).

Laufzeit?

```
function going(n : \mathbb{N}) : \mathbb{N}
k := 0
\ell := 0
for i := 1 to n do
\ell + +
if i > n - 4 then
for j := i to n do
k + +
return k + \ell
```

Die innere Schleife wird wieder **nur max. vier Mal** erreicht (s. *boing*) (nämlich für

$$i \in \{n-3, n-2, n-1, n\}$$
).

⇒ Die innere Schleife wird erst vier-, dann drei-, dann zwei- und dann einmal durchlaufen

$$\Rightarrow$$
 Laufzeit in

$$\Theta(n+4+3+2+1) = \Theta(n)$$

- "Obere Schranke" gefordert
 - $\Rightarrow O(f(n))$ (notenziell zu große
- Scharfe asymptotische Schranke" geforde
- $\rightarrow \Theta(f(n))$ benätigt
- , o(.(..)) ------g--
- - \Rightarrow Omzieli $\Theta(I(II))$ erwunschi
 - (iii vL oder iviusteriosungen aber oit auch O(I(n)))

- "Obere Schranke" gefordert
 - \Rightarrow O(f(n)) (potenziell "zu große" Schranke) ausreichend

- "Obere Schranke" gefordert
 - $\Rightarrow O(f(n))$ (potenziell "zu große" Schranke) ausreichend
- "Scharfe asymptotische Schranke" gefordert
 - $\Rightarrow \Theta(f(n))$ benötigt

- "Obere Schranke" gefordert $\Rightarrow O(f(n))$ (potenziell "zu große" Schranke) ausreichend
- "Scharfe asymptotische Schranke" gefordert $\Rightarrow \Theta(f(n))$ benötigt
- Laufzeit eines Algorithmus soll angegeben bzw. bestimmt werden
 ⇒ Offiziell Θ(f(n)) erwünscht
 (in VL oder Musterlösungen aber oft auch O(f(n)))

DAS MASTER-THEOREM

Das Thema des Bachelors

Das Master-Theorem (einfache Form)

Seien a, b, c, d positive Konstanten und für $n \in \mathbb{N}$ sei

$$T(n) = \begin{cases} a, & \text{für } n = 1\\ d \cdot T(\frac{n}{b}) + c \cdot n, & \text{für } n > 1 \end{cases}$$

gegeben.

Dann gilt:

$$T(n) \in egin{cases} \Theta(n)\,, & d < b \ \Theta(n\log n)\,, & d = b \ \Theta(n^{\log_b d})\,, & d > b \end{cases}$$

Wir betrachten verschiedene Sortierverfahren:

Mergesort

method Mergesort(L: List with |L| = n) teile L in der Mitte auf in L_1 und L_2 sortiere L_1 und L_2 rekursiv mit Mergesort füge L_1 und L_2 in $\Theta(n)$ zusammen

Laufzeit: T(n) =

Wir betrachten verschiedene Sortierverfahren:

Mergesort

method Mergesort(L: List with |L| = n) teile L in der Mitte auf in L_1 und L_2 sortiere L_1 und L_2 rekursiv mit Mergesort füge L_1 und L_2 in $\Theta(n)$ zusammen

Laufzeit:
$$T(n) = \begin{cases} 1, & n = 1 \\ 2 \cdot T(\frac{n}{2}) + 1 \cdot n, & n > 1 \end{cases}$$

Wir betrachten verschiedene Sortierverfahren:

Mergesort

method Mergesort(L: List with |L| = n)
teile L in der Mitte auf in L_1 und L_2 sortiere L_1 und L_2 rekursiv mit Mergesort
füge L_1 und L_2 in $\Theta(n)$ zusammen

Laufzeit:
$$T(n) = \begin{cases} 1, & n = 1 \\ 2 \cdot T(\frac{n}{2}) + 1 \cdot n, & n > 1 \end{cases}$$

Nach MT (Fall 2) also: $T(n) \in \Theta(n \log n)$.

Wir betrachten verschiedene Sortierverfahren:

DoubleMergesort

```
method DoubleMergesort(L: List with |L| = n)

teile L in der Mitte auf in L_1 und L_2

sortiere L_1 und L_2 jeweils zwei Mal rekursiv mit DoubleMergesort

// Ja, das ist natürlich konstruierter Blödsinn!

füge L_1 und L_2 in \Theta(n) zusammen
```

Laufzeit: T(n) =

Wir betrachten verschiedene Sortierverfahren:

DoubleMergesort

method DoubleMergesort(L: List with |L| = n)

teile L in der Mitte auf in L_1 und L_2

sortiere L_1 und L_2 jeweils zwei Mal rekursiv mit DoubleMergesort

// Ja, das ist natürlich konstruierter Blödsinn!

füge L_1 und L_2 in $\Theta(n)$ zusammen

Laufzeit:
$$T(n) = \begin{cases} 1, & n = 1 \\ 4 \cdot T(\frac{n}{2}) + 1 \cdot n, & n > 1 \end{cases}$$

Wir betrachten verschiedene Sortierverfahren:

DoubleMergesort

method DoubleMergesort(L: List with |L| = n)

teile L in der Mitte auf in L_1 und L_2

sortiere L_1 und L_2 jeweils zwei Mal rekursiv mit DoubleMergesort

// Ja, das ist natürlich konstruierter Blödsinn!

füge L_1 und L_2 in $\Theta(n)$ zusammen

Laufzeit:
$$T(n) = \begin{cases} 1, & n = 1 \\ 4 \cdot T(\frac{n}{2}) + 1 \cdot n, & n > 1 \end{cases}$$

Nach MT (Fall 3) also: $T(n) \in \Theta(n^{\log_2 4}) = \Theta(n^2)$.

Wir betrachten verschiedene Sortierverfahren:

Magicsort

```
method Magicsort(L: List with |L| = n)

teile L in der Mitte auf in L_1 und L_2

sortiere L_1 rekursiv mit Magicsort

sortiere L_2 mithilfe eines Flaschengeistes (in Nullkommanichts!)

füge L_1 und L_2 in \Theta(n) zusammen
```

Laufzeit: T(n) =

Master-Theorem: Beispiele

Wir betrachten verschiedene Sortierverfahren:

Magicsort

method Magicsort(L: List with |L| = n)

teile L in der Mitte auf in L_1 und L_2 sortiere L_1 rekursiv mit Magicsort

sortiere L_2 mithilfe eines Flaschengeistes (in Nullkommanichts!)

füge L_1 und L_2 in $\Theta(n)$ zusammen

Laufzeit:
$$T(n) = \begin{cases} 1, & n = 1 \\ 1 \cdot T(\frac{n}{2}) + 1 \cdot n, & n > 1 \end{cases}$$

Master-Theorem: Beispiele

Wir betrachten verschiedene Sortierverfahren:

Magicsort

method Magicsort(L: List with |L| = n)

teile L in der Mitte auf in L_1 und L_2 sortiere L_1 rekursiv mit Magicsort

sortiere L_2 mithilfe eines Flaschengeistes (in Nullkommanichts!)

füge L_1 und L_2 in $\Theta(n)$ zusammen

Laufzeit:
$$T(n) = \begin{cases} 1, & n = 1 \\ 1 \cdot T(\frac{n}{2}) + 1 \cdot n, & n > 1 \end{cases}$$

Nach MT (Fall 1) also: $T(n) \in \Theta(n)$.

Aufgabe 1: Master-Theorem

Binäre Suche

function BinarySearch(A: sorted array[a..b] of Elem, e: Elem): Elem

Ermittelt die Laufzeit von BinarySearch.

Laufzeit von BinarySearch ist
$$T(n) = \begin{cases} 1, & n = 1 \\ 1 \cdot T(\frac{n}{2}) + 1, & n > 1 \end{cases}$$
.

Lösung zu Aufgabe 1

Laufzeit von BinarySearch ist
$$T(n) = \begin{cases} 1, & n = 1 \\ 1 \cdot T(\frac{n}{2}) + 1, & n > 1 \end{cases}$$
.

 \Rightarrow Master-Theorem sagt $T(n) \in \Theta(n)$.

Laufzeit von BinarySearch ist
$$T(n) = \begin{cases} 1, & n = 1 \\ 1 \cdot T(\frac{n}{2}) + 1, & n > 1 \end{cases}$$
.

- \Rightarrow Master-Theorem sagt $T(n) \in \Theta(n)$.
- \Rightarrow Reingefallen! :P Master-Theorem will noch " $+c \cdot n$ ". Gibt's hier nicht!

Lösung zu Aufgabe 1

Laufzeit von BinarySearch ist
$$T(n) = \begin{cases} 1, & n = 1 \\ 1 \cdot T(\frac{n}{2}) + 1, & n > 1 \end{cases}$$
.

- \Rightarrow Master-Theorem sagt $T(n) \in \Theta(n)$.
- \Rightarrow Reingefallen! :P Master-Theorem will noch " $+c \cdot n$ ". Gibt's hier nicht!

Hirn einschalten: BinarySearch **halbiert das Array** in jedem Durchlauf. Wie oft kann man n := |A| halbieren?

Lösung zu Aufgabe 1

Laufzeit von BinarySearch ist
$$T(n) = \begin{cases} 1, & n = 1 \\ 1 \cdot T(\frac{n}{2}) + 1, & n > 1 \end{cases}$$
.

- \Rightarrow Master-Theorem sagt $T(n) \in \Theta(n)$.
- \Rightarrow Reingefallen! :P Master-Theorem will noch " $+c \cdot n$ ". Gibt's hier nicht!

Hirn einschalten: BinarySearch **halbiert das Array** in jedem Durchlauf. Wie oft kann man n := |A| halbieren?

- $\Rightarrow (\log_2 n)$ -mal.
- $\Rightarrow T(n) \in \Theta(\log n).$

Binäre Suche: Exkurs

Binäre Suche: Generelles Prinzip

Grundmenge muss sortiert sein!

Binäre Suche: Exkurs

Binäre Suche: Generelles Prinzip

- Grundmenge muss sortiert sein!
- Generelles Suchprinzip:
 Findet nicht nur Elemente in Arrays, sondern auch
- ⇒ Nullstellen/Inverse monotoner Funktionen (falls vorhanden)
- ⇒ Größte Arbeitslast eines Mehrkernsystems, die noch sinnvoll tragbar ist

 $\Rightarrow \dots$

Aufgabe 2: Master-Sandwich

Die Laufzeit eines Algorithmus A wird beschrieben durch

wird beschrieben durch
$$T(n) = \begin{cases} 17, & n = 1 \\ 3 \cdot T(\lceil \frac{n}{5} \rceil) + 2n + 1, & n > 1 \end{cases}.$$

Erinnerung Master-Theorem:

$$T(n) = \begin{cases} a, & n = 1 \\ d \cdot T(\frac{n}{b}) + c \cdot n, & n > 1 \end{cases}$$
$$\Rightarrow T(n) \in \begin{cases} \Theta(n), & d < b \\ \Theta(n \log n), & d = b. \\ \Theta(n^{\log_b d}), & d > b \end{cases}$$

Berechnet die Laufzeit von A mit dem Master-Theorem.

Master-Sandwich

Lösung zu Aufgabe 2

Definiere

$$T_{-}(n) := \begin{cases} 17, & n = 1 \\ 3 \cdot T_{-}(\lceil \frac{n}{5} \rceil) + 2n, & n > 1 \end{cases},$$

$$T_{+}(n) := \begin{cases} 17, & n = 1 \\ 3 \cdot T_{+}(\lceil \frac{n}{5} \rceil) + 3n, & n > 1 \end{cases}.$$

Dann gilt $\forall n \geqslant 1$: $T_-(n) \leqslant T(n) \leqslant T_+(n)$. Für T_- und T_+ gilt jeweils nach MT (Fall 1): $T_+(n), T_-(n) \in \Theta(n)$. Damit liegt auch $T(n) \in \Theta(n)$. \square

Aufgabe 3: Master-Theorem

Die Laufzeit eines Algorithmus A wird beschrieben durch

$$U(n) = \begin{cases} 1, & n = 1 \\ 7 \cdot U(\lceil \frac{n}{2} \rceil) + n, & n > 1 \end{cases}.$$

Ein weiterer Algorithmus B hat die Laufzeit

$$V(n) = \begin{cases} 1, & n = 1 \\ a \cdot V(\lceil \frac{n}{4} \rceil) + 5n, & n > 1 \end{cases}.$$

Was ist der größte Wert $a \in \mathbb{N}$, so dass B asymptotisch schneller als A ist?

Erinnerung Master-Theorem:

$$T(n) = \begin{cases} a, & n = 1 \\ d \cdot T(\frac{n}{b}) + c \cdot n, & n > 1 \end{cases}$$
$$\Rightarrow T(n) \in \begin{cases} \Theta(n), & d < b \\ \Theta(n\log n), & d = b. \\ \Theta(n^{\log_b d}), & d > b \end{cases}$$

Lösung zu Aufgabe 3

■ Master-Theorem: Algorithmus A hat Laufzeit $\Theta(n^{\log_2 7})$, wächst also stärker als n^2

- Master-Theorem: Algorithmus A hat Laufzeit $\Theta(n^{\log_2 7})$, wächst also stärker als n^2
- Fall $a \le 4$ also uninteressant $\Rightarrow a > 4$, d. h. Algorithmus B läuft in $\Theta(n^{\log_4 a})$

- Master-Theorem: Algorithmus A hat Laufzeit $\Theta(n^{\log_2 7})$, wächst also stärker als n^2
- Fall $a \le 4$ also uninteressant $\Rightarrow a > 4$, d. h. Algorithmus B läuft in $\Theta(n^{\log_4 a})$
- Also:

$$\log_4 a < \log_2 7 \iff \underbrace{4^{\log_4 a}}_{=a} < 4^{\log_2 7} = 7^{\log_2 4} = 7^2 = 49$$

- Master-Theorem: Algorithmus A hat Laufzeit $\Theta(n^{\log_2 7})$, wächst also stärker als n^2
- Fall $a \le 4$ also uninteressant $\Rightarrow a > 4$, d. h. Algorithmus B läuft in $\Theta(n^{\log_4 a})$
- Also:

$$\log_4 a < \log_2 7 \iff \underbrace{4^{\log_4 a}}_{=a} < 4^{\log_2 7} = 7^{\log_2 4} = 7^2 = 49$$

$$\implies a = 48.$$

Aufgabe 4: Rekurrenzen lösen

Gegeben sei folgende Rekurrenz für $n = 4^k, k \in \mathbb{N}_0$

$$T(n) = \begin{cases} 2, & \text{für } n = 1\\ 2 \cdot T(\frac{n}{4}), & \text{für } n > 1 \end{cases}$$

Findet eine Funktion $f: \mathbb{N} \longrightarrow \mathbb{R}^+$ und Konstanten c_1, c_2 , so dass $c_1 \cdot f(n) \leqslant T(n) \leqslant c_2 \cdot f(n)$ und beweist euren Fund.

Aufgabe 4: Rekurrenzen lösen

Gegeben sei folgende Rekurrenz für $n=4^k, k\in\mathbb{N}_0$

$$T(n) = \begin{cases} 2, & \text{für } n = 1\\ 2 \cdot T(\frac{n}{4}), & \text{für } n > 1 \end{cases}$$

Findet eine Funktion $f: \mathbb{N} \longrightarrow \mathbb{R}^+$ und Konstanten c_1, c_2 , so dass $c_1 \cdot f(n) \leqslant T(n) \leqslant c_2 \cdot f(n)$ und beweist euren Fund.

Tipp: Vorstellung eines "Berechnungsbaums": Auf jeder Ebene doppelte Anzahl der Probleme mit geviertelter Problemgröße.

Aufgabe 4: Rekurrenzen lösen

Gegeben sei folgende Rekurrenz für $n=4^k, k\in\mathbb{N}_0$

$$T(n) = \begin{cases} 2, & \text{für } n = 1\\ 2 \cdot T(\frac{n}{4}), & \text{für } n > 1 \end{cases}$$

Findet eine Funktion $f: \mathbb{N} \longrightarrow \mathbb{R}^+$ und Konstanten c_1, c_2 , so dass $c_1 \cdot f(n) \leqslant T(n) \leqslant c_2 \cdot f(n)$ und beweist euren Fund.

Tipp: Vorstellung eines "Berechnungsbaums": Auf jeder Ebene doppelte Anzahl der Probleme mit geviertelter Problemgröße.

$$\Rightarrow$$
 Anzahl Blätter: $2^{\log_4 n} = n^{\log_4 2} = n^{1/2} = \sqrt{n} = f(n)$ (nicht $T(n)$!)

Lösung zu Aufgabe 4

Behauptung (Magie! \odot): $c_1 := 1, c_2 := 3$ und $f(n) := \sqrt{n}$ erfüllen die Bedingung $\forall n = 4^k, k \in \mathbb{N}_0$

Lösung zu Aufgabe 4

Behauptung (Magie! ©): $c_1 := 1, c_2 := 3$ und $f(n) := \sqrt{n}$ erfüllen die Bedingung $\forall n = 4^k, k \in \mathbb{N}_0$

IA.
$$(k = 0 \Rightarrow n = 4^0 = 1)$$
:
 $1 \cdot \sqrt{1} = 1 \leqslant T(1) = 2 \leqslant 3 \cdot \sqrt{1} = 3$

Lösung zu Aufgabe 4

Behauptung (Magie! ②): $c_1 := 1, c_2 := 3 \text{ und } f(n) := \sqrt{n}$ erfüllen die Bedingung $\forall n = 4^k, k \in \mathbb{N}_0$

IA.
$$(k = 0 \Rightarrow n = 4^0 = 1)$$
:
 $1 \cdot \sqrt{1} = 1 \leqslant T(1) = 2 \leqslant 3 \cdot \sqrt{1} = 3$

IV.: Für ein beliebiges, aber festes
$$k \in \mathbb{N}_0$$
 $(n = 4^k)$ gelte $1 \cdot \sqrt{4^k} \leqslant T(n) \leqslant 3 \cdot \sqrt{4^k}$ $(\Leftrightarrow 1 \cdot \sqrt{n} \leqslant T(n) \leqslant 3 \cdot \sqrt{n})$

Lösung zu Aufgabe 4

Behauptung (Magie! ②): $c_1 := 1, c_2 := 3$ und $f(n) := \sqrt{n}$ erfüllen die Bedingung $\forall n = 4^k, k \in \mathbb{N}_0$

IA.
$$(k = 0 \Rightarrow n = 4^0 = 1)$$
:
 $1 \cdot \sqrt{1} = 1 \leqslant T(1) = 2 \leqslant 3 \cdot \sqrt{1} = 3$

IV.: Für ein beliebiges, aber festes
$$k \in \mathbb{N}_0$$
 $(n = 4^k)$ gelte $1 \cdot \sqrt{4^k} \leqslant T(n) \leqslant 3 \cdot \sqrt{4^k}$ $(\Leftrightarrow 1 \cdot \sqrt{n} \leqslant T(n) \leqslant 3 \cdot \sqrt{n})$

IS.
$$(k \rightsquigarrow k+1)$$
: Es gilt:

$$T\left(4^{k+1}\right) \stackrel{Def.}{=} 2 \cdot T\left(\frac{4^{k+1}}{4}\right) = 2 \cdot T(n)$$

Lösung zu Aufgabe 4

Behauptung (Magie! ①): $c_1 := 1, c_2 := 3$ und $f(n) := \sqrt{n}$ erfüllen die Bedingung $\forall n = 4^k, k \in \mathbb{N}_0$

Beweis durch vollständige Induktion über k:

IA.
$$(k = 0 \Rightarrow n = 4^0 = 1)$$
:
 $1 \cdot \sqrt{1} = 1 \leqslant T(1) = 2 \leqslant 3 \cdot \sqrt{1} = 3$

IV.: Für ein beliebiges, aber festes $k \in \mathbb{N}_0$ $(n = 4^k)$ gelte $1 \cdot \sqrt{4^k} \leqslant T(n) \leqslant 3 \cdot \sqrt{4^k}$ $(\Leftrightarrow 1 \cdot \sqrt{n} \leqslant T(n) \leqslant 3 \cdot \sqrt{n})$

IS.
$$(k \rightsquigarrow k+1)$$
: Es gilt:

$$T\left(4^{k+1}\right) \stackrel{Def.}{=} 2 \cdot T\left(\frac{4^{k+1}}{4}\right) = 2 \cdot T(n)$$

$$2 \cdot T(n) \stackrel{\text{/V}}{\geqslant} 2 \cdot 1 \cdot \sqrt{n} = \sqrt{4} \cdot \sqrt{n} = \sqrt{4n} = \sqrt{4^{k+1}}$$

Lösung zu Aufgabe 4

Behauptung (Magie! ©): $c_1 := 1, c_2 := 3$ und $f(n) := \sqrt{n}$ erfüllen die Bedingung $\forall n = 4^k, k \in \mathbb{N}_0$

IA.
$$(k = 0 \Rightarrow n = 4^0 = 1)$$
:
 $1 \cdot \sqrt{1} = 1 \leqslant T(1) = 2 \leqslant 3 \cdot \sqrt{1} = 3$

IV.: Für ein beliebiges, aber festes
$$k \in \mathbb{N}_0$$
 $(n = 4^k)$ gelte

$$1 \cdot \sqrt{4^k} \leqslant T(n) \leqslant 3 \cdot \sqrt{4^k} \quad (\Leftrightarrow 1 \cdot \sqrt{n} \leqslant T(n) \leqslant 3 \cdot \sqrt{n})$$

IS.
$$(k \rightsquigarrow k+1)$$
: Es gilt:

$$T\left(4^{k+1}\right) \stackrel{Def.}{=} 2 \cdot T\left(\frac{4^{k+1}}{4}\right) = 2 \cdot T(n)$$

$$2 \cdot T(n) \stackrel{\text{IV}}{\geqslant} 2 \cdot 1 \cdot \sqrt{n} = \sqrt{4} \cdot \sqrt{n} = \sqrt{4n} = \sqrt{4^{k+1}}$$

$$2 \cdot T(n) \leqslant 2 \cdot 3 \cdot \sqrt{n} = 3 \cdot \sqrt{4} \cdot \sqrt{n} = 3 \cdot \sqrt{4n} = 3 \cdot \sqrt{4^{k+1}}.$$

May the Fourth Be With You! ©

http://xkcd.com/297

Credits

Vorgänger dieses Foliensatzes wurden erstellt von:

Christopher Hommel (urspr. Verfasser) Daniel Jungkind