Fiche du chapitre II - Vecteurs et géométrie vectorielle

A-Vecteurs du plan

(Coordonnées)

Le plan est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- \checkmark Si \overrightarrow{u} est un vecteur du plan, ses **coordonnées** dans la base $(\overrightarrow{i}, \overrightarrow{j})$ sont les réels x et y tels que $\overrightarrow{u} = x\overrightarrow{\imath} + y\overrightarrow{\jmath};$
- \checkmark Si A est un point du plan, ses **coordonnées** (x_A, y_A) dans le repère $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$ sont les coordonnées du vecteur \overrightarrow{OA} dans la base $(\overrightarrow{i}, \overrightarrow{j})$. On utilise dans la suite la notation $A(x_A, y_A)$.
- \checkmark Si A a pour coordonnées (x_A, y_A) et B a pour coordonnées (x_B, y_B) dans le repère $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$, alors \overrightarrow{AB} a pour coordonnées $(x_B - x_A, y_B - y_A)$ dans la base $(\overrightarrow{i}, \overrightarrow{j})$.

Vecteurs colinéaires

- \checkmark Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont **colinéaires** lorsqu'il existe un réel λ tel que $\overrightarrow{u} = \lambda \overrightarrow{v}$ (ou $\overrightarrow{v} = \lambda \overrightarrow{u}$). \checkmark Deux vecteurs $\overrightarrow{u} = x_1 \overrightarrow{v} + y_1 \overrightarrow{\jmath}$ et $\overrightarrow{v} = x_2 \overrightarrow{v} + y_2 \overrightarrow{\jmath}$ sont colinéaires si et seulement si

$$x_1y_2 - x_2y_1 = 0.$$

 \checkmark Trois points A,B,C du plan sont alignés si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires (donc si et seulement si $(x_B - x_A)(y_C - y_A) - (x_C - x_A)(y_B - y_A) = 0$.

Produit scalaire dans le plan

 \checkmark Le **produit scalaire** de $\overrightarrow{u} = x_1 \overrightarrow{v} + y_1 \overrightarrow{\jmath}$ et $\overrightarrow{v} = x_2 \overrightarrow{v} + y_2 \overrightarrow{\jmath}$ est le réel

$$\langle \overrightarrow{u}, \overrightarrow{v} \rangle = x_1 x_2 + y_1 y_2.$$

- \checkmark Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont **orthogonaux** lorsque $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = 0$.
- \checkmark La **norme** du vecteur $\overrightarrow{u} = x_1 \overrightarrow{i} + y_1 \overrightarrow{j}$ est le réel positif

$$\|\overrightarrow{u}\| = \sqrt{\langle \overrightarrow{u}, \overrightarrow{u} \rangle} = \sqrt{x_1^2 + y_1^2}.$$

- \checkmark Si θ désigne l'angle orienté $(\overrightarrow{u}, \overrightarrow{v})$, on a $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \cdot \cos(\theta)$.
- ✓ La **distance** entre deux points A (de coordonnées (x_A, y_A)) et B (de coordonnées (x_B, y_B)) est égale à $\|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$. \checkmark Deux vecteurs $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$ forment une **base orthonormée** du plan si $\|\overrightarrow{e_1}\| = \|\overrightarrow{e_2}\| = 1$ et $\langle \overrightarrow{e_1}, \overrightarrow{e_2} \rangle = 0$.
- \checkmark Lorsque $(\overrightarrow{e_1}, \overrightarrow{e_2})$ est une base orthonormée du plan, on a pour tout vecteur \overrightarrow{u} la relation

$$\overrightarrow{u} = \langle \overrightarrow{u}, \overrightarrow{e_1} \rangle \overrightarrow{e_1} + \langle \overrightarrow{u}, \overrightarrow{e_2} \rangle \overrightarrow{e_2}.$$

Droites du plan

Soit \mathcal{D} une droite du plan. Un **vecteur directeur** de \mathcal{D} est un vecteur \overrightarrow{u} tel que $\overrightarrow{u} = \overrightarrow{AB}$, où A et B sont deux points distincts de \mathcal{D} . Un vecteur normal à \mathcal{D} est un vecteur orthogonal à un vecteur directeur de \mathcal{D} .

✓ Une **équation cartésienne** de \mathcal{D} est une relation du type ax + by + c = 0 satisfaite par un point M de coordonnées (x, y) si et seulement si $M \in \mathcal{D}$.

Avec les notations précédentes,

- $\overrightarrow{u} = -b\overrightarrow{\imath} + a\overrightarrow{\jmath}$ est un vecteur directeur de \mathcal{D} ;
- $\overrightarrow{v} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$ est un vecteur normal de \mathcal{D} ;
- si $b \neq 0$, l'équation cartésienne de \mathcal{D} peut s'écrire $y = px + y_0$, où $p = -\frac{a}{b}$ est appelé la **pente** (ou le **coefficient directeur**) de \mathcal{D} , et $y_0 = -\frac{c}{b}$ est appelé l'**ordonnée à l'origine**.
- ✓ Une **équation paramétrique** de \mathcal{D} est une relation du type $\left\{ \begin{array}{ll} x = x_A + t\alpha \\ y = y_A + t\beta \end{array} \right.$, avec $t \in \mathbb{R}$, satisfaite par un point M de coordonnées (x,y) si et seulement si $M \in \mathcal{D}$. Avec les notations précédentes,
 - $\overrightarrow{u} = \alpha \overrightarrow{i} + \beta \overrightarrow{j}$ est un vecteur directeur de \mathcal{D} ;
 - $\overrightarrow{v} = -\beta \overrightarrow{i} + \alpha \overrightarrow{j}$ est un vecteur normal de \mathcal{D} ;
 - $A(x_A, y_A)$ est un point de la droite \mathcal{D} .
- $\checkmark \text{ Equations de la droite passant par } A(x_A, y_A) \text{ et de vecteur directeur } \overrightarrow{u} = \alpha \overrightarrow{\imath} + \beta \overrightarrow{\jmath} \\
 cartésienne : \beta(x x_A) \alpha(y y_A) = 0 \text{ (ou } y = \frac{\beta}{\alpha}(x x_A) + y_A \text{ si } \alpha \neq 0). \\
 paramétrique : \begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \end{cases}, \text{ avec } t \in \mathbb{R}.$
- Equations de la droite passant par $A(x_A, y_A)$ et de vecteur normal $\overrightarrow{v} = a\overrightarrow{v} + b\overrightarrow{\jmath}$ cartésienne : $a(x x_A) + b(y y_A) = 0$ (ou $y = -\frac{a}{b}(x x_A) + y_A$ si $b \neq 0$). $paramétrique : \begin{cases} x = x_A tb \\ y = y_A + ta \end{cases}, \text{ avec } t \in \mathbb{R}.$

Projection orthogonale et distance

Soit \mathcal{D} une droite. On note A un de ses points, \overrightarrow{d} un vecteur directeur de \mathcal{D} et \overrightarrow{n} un vecteur normal à \mathcal{D} . Soit M un point du plan.

- ✓ Le **projeté orthogonal** de M sur \mathcal{D} est le point H défini par $\overrightarrow{AH} = \frac{\langle \overrightarrow{AM}, \overrightarrow{d} \rangle}{\|\overrightarrow{d}\|^2} \overrightarrow{d}$.
- $\checkmark \text{ La distance de } M \text{ à } \mathcal{D} \text{ est égale à } \delta = \|\overrightarrow{MH}\| = \frac{|\langle \overrightarrow{AM}, \overrightarrow{n} \rangle|}{\|\overrightarrow{n}\|} = \sqrt{\|\overrightarrow{AM}\|^2 \frac{\langle \overrightarrow{AM}, \overrightarrow{d} \rangle^2}{\|\overrightarrow{d}\|^2}}. \text{ Si } \mathcal{D} \text{ a pour équation cartésienne } ax + by + c = 0 \text{ et si } M \text{ a pour coordonnées } (x_M, y_M), \text{ on a } \delta = \frac{|ax_M + by_M + c|}{\sqrt{a^2 + b^2}}.$
- ✓ Soit A, B, C trois points du plan. L'aire du triangle ABC est égale à $\frac{1}{2} \|\overrightarrow{AB}\| \cdot \|\overrightarrow{CH}\|$, où H est le projeté orthogonal de C sur la droite (AB). Avec les coordonnées des points, cette aire est égale à

Aire
$$(ABC) = \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (x_C - x_A)(y_B - y_A)|.$$

B-Vecteurs de l'espace

(Coordonnées)

L'espace est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

- ✓ Si \overrightarrow{u} est un vecteur de l'espace, ses **coordonnées** dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ sont les réels x, y et z tels que $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$;
- ✓ Si A est un point de l'espace, ses **coordonnées** dans le repère $(O, \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ sont les coordonnées du vecteur \overrightarrow{OA} dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$;
- ✓ Si A a pour coordonnées (x_A, y_A, z_A) et B a pour coordonnées (x_B, y_B, z_B) dans le repère $(O, \overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$, alors \overrightarrow{AB} a pour coordonnées $(x_B x_A, y_B y_A, z_B z_A)$ dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$.

Produit scalaire dans l'espace

- \checkmark Le **produit scalaire** de $\overrightarrow{u} = x_1 \overrightarrow{i} + y_1 \overrightarrow{j} + z_1 \overrightarrow{k}$ et $\overrightarrow{v} = x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}$ est le réel $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = x_1 x_2 + y_1 y_2 + z_1 z_2.$
- \checkmark Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont **orthogonaux** lorsque $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = 0$.
- ✓ La **norme** du vecteur $\overrightarrow{u} = x_1 \overrightarrow{v} + y_1 \overrightarrow{J} + z_1 \overrightarrow{k}$ est le réel positif $\|\overrightarrow{u}\| = \sqrt{\langle \overrightarrow{u}, \overrightarrow{u} \rangle} = \sqrt{x_1^2 + y_1^2 + z_1^2}$. ✓ La **distance** entre deux points A (de coordonnées (x_A, y_A, z_A)) et B (de coordonnées (x_B, y_B, z_B)) est égale à $\|\overrightarrow{AB}\| = \sqrt{(x_B x_A)^2 + (y_B y_A)^2 + (z_B z_A)^2}$.
- \checkmark Trois vecteurs $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ et $\overrightarrow{e_3}$ forment une **base orthonormée** de l'espace si $||\overrightarrow{e_1}|| = ||\overrightarrow{e_2}|| = ||\overrightarrow{e_3}|| = 1$ et $\langle \overrightarrow{e_1}, \overrightarrow{e_2} \rangle = \langle \overrightarrow{e_1}, \overrightarrow{e_3} \rangle = \langle \overrightarrow{e_2}, \overrightarrow{e_3} \rangle = 0$;
- \checkmark Lorsque $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ est une base orthonormée de l'espace, on a pour tout vecteur \overrightarrow{u} la relation

$$\overrightarrow{u} = \langle \overrightarrow{u}, \overrightarrow{e_1} \rangle \overrightarrow{e_1} + \langle \overrightarrow{u}, \overrightarrow{e_2} \rangle \overrightarrow{e_2} + \langle \overrightarrow{u}, \overrightarrow{e_3} \rangle \overrightarrow{e_3}.$$

Produit vectoriel dans l'espace

 \checkmark Le **produit vectoriel** des vecteurs \overrightarrow{u} et \overrightarrow{v} (de coordonnées respectives (x_1, y_1, z_1) et (x_2, y_2, z_2)) est le vecteur noté $\overrightarrow{u} \wedge \overrightarrow{v}$ qui a pour coordonnées

- \checkmark Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs et λ un nombre réel, on a $(\lambda \overrightarrow{u}) \wedge \overrightarrow{v} = \overrightarrow{u} \wedge (\lambda \overrightarrow{v}) = \lambda (\overrightarrow{u} \wedge \overrightarrow{v})$.
- \checkmark Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si $\overrightarrow{u} \land \overrightarrow{v} = \overrightarrow{0}$.
- \checkmark Le vecteur $\overrightarrow{u} \land \overrightarrow{v}$ est orthogonal à la fois aux vecteurs \overrightarrow{u} et \overrightarrow{v} . De plus, si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs orthogonaux et de norme 1, alors $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{u} \wedge \overrightarrow{v})$ forme une base orthonormée de l'espace.
- \checkmark Trois points A, B, C de l'espace sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- \checkmark Quatre points A, B, C, D de l'espace sont coplanaires (c'est-à-dire appartiennent à un même plan) si et seulement si on a $\langle \overrightarrow{AB} \wedge \overrightarrow{AC}, \overrightarrow{AD} \rangle = 0$.

Plans de l'espace

Soit \mathcal{P} un plan de l'espace. Une base vectorielle de \mathcal{P} est un couple de vecteurs $(\overrightarrow{AB}, \overrightarrow{AC})$, où A, B et Csont trois points non alignés de \mathcal{P} . Un vecteur normal à \mathcal{P} est un vecteur orthogonal aux deux vecteurs d'une base vectorielle de \mathcal{P} .

- \checkmark Une **équation cartésienne** de \mathcal{P} est une relation du type ax + by + cz + d = 0 satisfaite par un point M de coordonnées (x, y, z) si et seulement si $M \in \mathcal{P}$. Le vecteur $\overrightarrow{n} = a \overrightarrow{i} + b \overrightarrow{j} + c \overrightarrow{k}$ est un
- vecteur normal à \mathcal{P} .

 Vune équation paramétrique de \mathcal{P} est une relation du type $\begin{cases}
 x = x_A + \alpha_1 t + \alpha_2 s \\
 y = y_A + \beta_1 t + \beta_2 s \text{, avec } t \in \mathbb{R} \\
 z = z_A + \gamma_1 t + \gamma_2 s
 \end{cases}$ et $s \in \mathbb{R}$, satisfaite par un point M de coordonnées (x,y,z) si et seulement si $M \in \mathcal{P}$. Les vecteurs

- $\overrightarrow{u} = \alpha_1 \overrightarrow{\imath} + \beta_1 \overrightarrow{\jmath} + \gamma_1 \overrightarrow{k} \text{ et } \overrightarrow{v} = \alpha_2 \overrightarrow{\imath} + \beta_2 \overrightarrow{\jmath} + \gamma_2 \overrightarrow{k} \text{ forment une base vectorielle de } \mathcal{P}, \overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$ est un vecteur normal à \mathcal{P} , et $A(x_A, y_A, z_A)$ est un point du plan \mathcal{P} .
- ✓ Equations du plan passant par les trois points supposés non alignés $A(x_A, y_A, z_A)$, $B(x_B, y_B, z_B)$, $C(x_C, y_C, z_C)$:

 $\operatorname{cart\acute{e}sienne}:\left\langle \overrightarrow{AM},\overrightarrow{AB}\wedge\overrightarrow{AC}\right\rangle =0.$ Autrement dit, si $\overrightarrow{n}=\overrightarrow{AB}\wedge\overrightarrow{AC}$ a pour coordonnées (a,b,c), le plan \mathcal{P} a pour équation cartésienne $a(x-x_A)+b(y-y_A)+c(z-z_A)=0$.

$$paramétrique: \begin{cases} x = x_A + (x_B - x_A)t + (x_C - x_A)s \\ y = y_A + (y_B - y_A)t + (y_C - y_A)s \\ z = z_A + (z_B - z_A)t + (z_C - z_A)s \end{cases}, \text{ avec } t, s \in \mathbb{R}.$$

 \checkmark Equations du plan passant par $A(x_A, y_A, z_A)$ et de base vectorielle $(\overrightarrow{u}, \overrightarrow{v})$, où $\overrightarrow{u} = \alpha_1 \overrightarrow{i} + \beta_1 \overrightarrow{j} + \gamma_1 \overrightarrow{k}$ et $\overrightarrow{v} = \alpha_2 \overrightarrow{\imath} + \beta_2 \overrightarrow{\jmath} + \gamma_2 \overrightarrow{k}$:

paramétrique :
$$\begin{cases} x = x_A + \alpha_1 t + \alpha_2 s \\ y = y_A + \beta_1 t + \beta_2 s \text{, avec } t, s \in \mathbb{R} \\ z = z_A + \gamma_1 t + \gamma_2 s \end{cases}$$

et $\overrightarrow{v} = \alpha_2 \overrightarrow{v} + \beta_2 \overrightarrow{\jmath} + \gamma_2 k$: $\operatorname{cart\acute{e}sienne}: a(x - x_A) + b(y - y_A) + c(z - z_A) = 0, \text{ où } (a, b, c) \text{ sont les coordonn\'ees de } \overrightarrow{u} \wedge \overrightarrow{v}.$ $\begin{cases} x = x_A + \alpha_1 t + \alpha_2 s \\ y = y_A + \beta_1 t + \beta_2 s \text{ , avec } t, s \in \mathbb{R}. \end{cases}$ $\begin{cases} z = z_A + \gamma_1 t + \gamma_2 s \\ z = z_A + \gamma_1 t + \gamma_2 s \end{cases}$ $\checkmark \text{ Equations du plan passant par } A(x_A, y_A, z_A) \text{ et de vecteur normal } \overrightarrow{n} = a \overrightarrow{v} + b \overrightarrow{\jmath} + c \overrightarrow{k} :$ $\operatorname{cart\acute{e}sienne}: a(x - x_A) + b(y - y_A) + c(z - z_A) = 0.$ $\begin{cases} x = x_A + \alpha_1 t + \alpha_2 s \\ y = y_A + \beta_1 t + \beta_2 s \text{ , avec } t, s \in \mathbb{R}, \text{ où } (\alpha_1, \beta_1, \gamma_1) \text{ sont les coordonn\'ees de } \overrightarrow{u} = z_A + \gamma_1 t + \gamma_2 s \end{cases}$ $\text{n'importe quel vecteur } \overrightarrow{u} \text{ non nul orthogonal à } \overrightarrow{n}, \text{ et où } (\alpha_2, \beta_2, \gamma_2) \text{ sont les coordonn\'ees de } \overrightarrow{n} \wedge \overrightarrow{u}.$

Droites de l'espace

Soit \mathcal{D} une droite de l'espace.

- ✓ Un système d'équations cartésiennes de \mathcal{D} est un système du type $\begin{cases} a_1x + b_1y + c_1z + d_1 &= 0 \\ a_2x + b_2y + c_2z + d_2 &= 0 \end{cases}$ satisfait par un point M de coordonnées (x,y,z) si et seulement si M \in $\overrightarrow{u} = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} \wedge \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} \text{ est un vecteur directeur de } \mathcal{D}.$
- ✓ Une **équation paramétrique** de \mathcal{D} est une relation du type $\begin{cases} x = x_A + t\alpha \\ y = y_A + t\beta \text{, avec } t \in \mathbb{R}, \text{ satisfaite per un point } M \xrightarrow{A=z} A \text{ for } t \in \mathbb{R} \end{cases}$ faite par un point M de coordonnées (x, y, z) si et seulement si $M \in \mathcal{D}$. Le vecteur $\overrightarrow{u} = \alpha \overrightarrow{i} + \beta \overrightarrow{j} + \gamma \overrightarrow{k}$ est un vecteur directeur de \mathcal{D} , et $A(x_A, y_A, z_A)$ est un point de la droite \mathcal{D} .

Projection orthogonale et distance

 \checkmark Soit \mathcal{D} une droite de l'espace. On note A un de ses points et \overrightarrow{d} un vecteur directeur de \mathcal{D} . Soit M un point de l'espace. Le **projeté orthogonal** de M sur \mathcal{D} est le point H défini par $\overrightarrow{AH} = \frac{\langle \overrightarrow{AM}, \overrightarrow{d} \rangle}{\|\overrightarrow{d}\|^2} \overrightarrow{d}$.

La distance de M à \mathcal{D} est égale à $\delta = \|\overrightarrow{MH}\| = \sqrt{\|\overrightarrow{AM}\|^2 - \frac{\langle \overrightarrow{AM}, \overrightarrow{d} \rangle^2}{\|\overrightarrow{d}\|^2}}$.

 \checkmark Soit \mathcal{P} un plan de l'espace. On note A un de ses points et \overrightarrow{n} un vecteur normal à \mathcal{P} . Soit M un point de l'espace. Le **projeté orthogonal** de M sur \mathcal{P} est le point H défini par $\overrightarrow{MH} = \frac{\langle MA, \overrightarrow{n} \rangle}{\|\overrightarrow{n}\|^2} \overrightarrow{n}$.

La distance de M à \mathcal{P} est égale à $\delta = \|\overrightarrow{MH}\| = \frac{\left|\langle \overrightarrow{MA}, \overrightarrow{n} \rangle\right|}{\|\overrightarrow{n}\|}$. Si \mathcal{P} a pour équation cartésienne ax + by + cz + d = 0 et si M a pour coordonnées (x_M, y_M, z_M) , on a $\delta = \frac{|ax_M + by_M + cz_M + d|}{\sqrt{a^2 + b^2 + c^2}}$.