Hide

4.2 查询进度 4.3 精准度

5 结论

6 附录

binary.com 面试试题 I - GARCH模型中 约 ARCH in Mean

®γσ, Lian Hu 🐜 🧝 🥷

2018-10-17

binary.com 面试试题 I - GARCH模型中的 ARIMA (p,d,q) 参数最优化添加了季节性和比较模 型精准性。目前还测试下 archm=TRUE 是否会更精准,详情请参阅[问答] 请问怎样用R语言产 生arch, arch-m, garch, garch-m的随机数?。

suppressPackageStartupMessages(require('BBmisc')) ## 读取程序包 pkg <- c('lubridate', 'plyr', 'dplyr', 'magrittr', 'stringr', 'rugarch', 'forecas t', 'quantmod', 'memoise', 'microbenchmark', 'knitr', 'kableExtra', 'formattable') suppressAll(lib(pkg)) funs <- c('task_progress.R') %>% pasteO('function/', .) 1 ply(funs, source) rm(pkg, funs)

shù jù 2数据

首先读取Binary.com Interview Q1 (Extention)的汇市数据。

Hide cr_code <- c('AUDUSD=X', 'EURUSD=X', 'GBPUSD=X', 'CHF=X', 'CAD=X',</pre> 'CNY=X', 'JPY=X') #'@ names(cr_code) <- c('AUDUSD', 'EURUSD', 'GBPUSD', 'USDCHF', 'USDCAD', names(cr_code) <- c('USDAUD', 'USDEUR', 'USDGBP', 'USDCHF', 'USDCAD', 'USDCNY', 'U price_type <- c('Op', 'Hi', 'Lo', 'Cl') ## 读取雅虎数据 $mbase <- \ sapply(names(cr_code), \ \textbf{function}(x) \ readRDS(paste0('./data'', \ x, \ '.rds'))$ %>% na.omit)

数据简介报告。

Hide sapply(mbase, summary) %>% kable %>% kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsiv scroll_box(width = '100%', height = '400px')

USDAUD	USDEUR	USDGBP	USDCHF	USDCAD	USDCNY	USDJPY
Min.	Min.	Min.	Min.	Min.	Min.	Min.
:2012-01-	:2012-01-	:2012-01-	:2012-01-	:2012-01-	:2012-01-	:2012-01
02	02	02	02	02	02	02
1st	1st	1st	1st	1st	1st	1st
Qu.:2013-	Qu.:2013-	Qu.:2013-	Qu.:2013-	Qu.:2013-	Qu.:2013-	Qu.:2013
05-31	05-31	05-30	06-03	05-30	05-29	05-29
Median	Median	Median	Median	Median	Median	Median
:2014-10-	:2014-10-	:2014-10-	:2014-11-	:2014-10-	:2014-10-	:2014-10
31	31	31	03	30	30	30

Mean	Mean	Mean	Mean	Mean	Mean	Mean
:2014-10-	:2014-10-	:2014-10-	:2014-11-	:2014-10-	:2014-10-	:2014-10
31	31	30	01	30	30	30
3rd	3rd	3rd	3rd	3rd	3rd	3rd
Qu.:2016-	Qu.:2016-	Qu.:2016-	Qu.:2016-	Qu.:2016-	Qu.:2016-	Qu.:201€
03-30	03-30	03-30	03-31	03-29	03-30	03-30
Max.	Max.	Max.	Max.	Max.	Max.	Max.
:2017-08-	:2017-08-	:2017-08-	:2017-08-	:2017-08-	:2017-08-	:2017-08
30	30	30	30	30	30	30
Min. :0.925	Min. :0.7180	Min. :0.5830	Min. :0.8540	Min. :0.968	Min. :6.031	Min. : 76.18
1st	1st	1st	1st	1st	1st	1st Qu.:
Qu.:1.037	Qu.:0.7580	Qu.:0.6250	Qu.:0.9220	Qu.:1.029	Qu.:6.189	97.86
Median	Median	Median	Median	Median	Median	Median
:1.148	:0.8080	:0.6460	:0.9540	:1.127	:6.284	:103.91
Mean	Mean	Mean	Mean	Mean	Mean	Mean
:1.176	:0.8285	:0.6702	:0.9504	:1.167	:6.365	:103.71
3rd	3rd	3rd	3rd	3rd	3rd	3rd
Qu.:1.322	Qu.:0.8980	Qu.:0.6950	Qu.:0.9780	Qu.:1.308	Qu.:6.524	Qu.:114.;
Max.	Max.	Max.	Max.	Max.	Max.	Max.
:1.458	:0.9620	:0.8310	:1.0300	:1.458	:7.478	:125.60
Min. :0.927	Min. :0.7190	Min. :0.5830	Min. :0.8710	Min. :0.971	Min. :6.040	Min. : 76.20
1st	1st	1st	1st	1st	1st	1st Qu.:
Qu.:1.042	Qu.:0.7610	Qu.:0.6260	Qu.:0.9250	Qu.:1.032	Qu.:6.195	98.29
Median	Median	Median	Median	Median	Median	Median
:1.153	:0.8130	:0.6490	:0.9570	:1.131	:6.295	:104.19
Mean	Mean	Mean	Mean	Mean	Mean	Mean
:1.181	:0.8318	:0.6732	:0.9539	:1.171	:6.375	:104.07
3rd	3rd	3rd	3rd	3rd	3rd	3rd
Qu.:1.327	Qu.:0.9020	Qu.:0.6990	Qu.:0.9810	Qu.:1.313	Qu.:6.529	Qu.:114.
Max.	Max.	Max.	Max.	Max.	Max.	Max.
:1.464	:1.3150	:1.5690	:1.0330	:1.469	:7.481	:125.82
Min. :0.921	Min. :0.7150	Min. :0.5820	Min. :0.7330	Min. :0.963	Min. :2.201	Min. : 76.05
1st	1st	1st	1st	1st	1st	1st Qu.:
Qu.:1.031	Qu.:0.7560	Qu.:0.6230	Qu.:0.9180	Qu.:1.026	Qu.:6.185	97.46
Median	Median	Median	Median	Median	Median	Median
:1.142	:0.8050	:0.6440	:0.9500	:1.123	:6.270	:103.54
Mean	Mean	Mean	Mean	Mean	Mean	Mean
:1.171	:0.8256	:0.6681	:0.9469	:1.164	:6.355	:103.32
3rd	3rd	3rd	3rd	3rd	3rd	3rd
Qu.:1.316	Qu.:0.8940	Qu.:0.6920	Qu.:0.9730	Qu.:1.303	Qu.:6.515	Qu.:113.
Max.	Max.	Max.	Max.	Max.	Max.	Max.
:1.447	:0.9600	:0.8270	:1.0280	:1.449	:6.945	:124.97
Min.	Min.	Min.	Min.	Min.	Min.	Min. :
:0.9253	:0.7178	:0.5827	:0.8544	:0.9683	:6.031	76.18
1st	1st	1st	1st	1st	1st	
Qu.:1.0369	Qu.:0.7582	Qu.:0.6247	Qu.:0.9216	Qu.:1.0286	Qu.:6.190	
Median	Median	Median	Median	Median	Median	Median
:1.1478	:0.8081	:0.6463	:0.9538	:1.1263	:6.285	:103.93
Mean	Mean	Mean	Mean	Mean	Mean	Mean
:1.1759	:0.8285	:0.6702	:0.9504	:1.1673	:6.365	:103.71
3rd	3rd	3rd	3rd	3rd	3rd	3rd
Qu.:1.3216	Qu.:0.8981	Qu.:0.6952	Qu.:0.9775	Qu.:1.3076	Qu.:6.524	Qu.:114.;
Max.	Max.	Max.	Max.	Max.	Max.	Max.
:1.4575	:0.9624	:0.8306	:1.0302	:1.4578	:6.960	:125.63

Min. :0	Min. :0	Min. :0				
1st Qu.:0	1st Qu.:0	1st Qu.:				
Median :0	Median :0	Median				
Mean :0	Mean :0	Mean :0				
3rd Qu.:0	3rd Qu.:0	3rd Qu.:				
Max. :0	Max. :0	Max. :0				
Min. :0.9253	Min. :0.7178	Min. :0.5827	Min. :0.8544	Min. :0.9683	Min. :6.031	Min. : 76.18
1st Qu.:1.0369	1st Qu.:0.7582	1st Qu.:0.6247	1st Qu.:0.9216	1st Qu.:1.0286	1st Qu.:6.190	1st Qu.: 97.85
Median :1.1478	Median :0.8081	Median :0.6463	Median :0.9538	Median :1.1263	Median :6.285	Median :103.93
Mean :1.1759	Mean :0.8285	Mean :0.6702	Mean :0.9504	Mean :1.1673	Mean :6.365	Mean :103.71
3rd Qu.:1.3216	3rd Qu.:0.8981	3rd Qu.:0.6952	3rd Qu.:0.9775	3rd Qu.:1.3076	3rd Qu.:6.524	3rd Qu.:114
Max. :1.4575	Max. :0.9624	Max. :0.8306	Max. :1.0302	Max. :1.4578	Max. :6.960	Max. :125.63

桌面2.1: 数据简介。

3 统计建模

3.1 ARCH in Mean

```
opt_arma <- function(mbase) {
    #ARMA Modeling minimum AIC value of `p,d,q`
    fit <- auto.arima(mbase)
    arimaorder(fit)
    }</pre>
```

再来就设置 mean. model 模型中的参数为 archm = TRUE。

```
Hide
calc_fx <- memoise(function(mbase, currency = 'JPY=X', ahead = 1, price = 'C1') {</pre>
  source('function/filterFX.R')
  source('function/opt_arma.R')
 mbase = suppressWarnings(filterFX(mbase, currency = currency, price = price))
 armaOrder = opt_arma(mbase)
 spec = ugarchspec(
   variance.model = list(
     model = 'gjrGARCH', garchOrder = c(1, 1),
     submodel = NULL, external.regressors = NULL,
     variance. targeting = FALSE),
   mean.model = list(
     armaOrder = armaOrder[c(1, 3)],
     include.mean = TRUE, archm = TRUE,
     archpow = 1, arfima = TRUE,
     external.regressors = NULL,
     archex = FALSE),
   fixed.pars = list(arfima = armaOrder[2]),
   distribution.model = 'snorm')
  fit = ugarchfit(spec, mbase, solver = 'hybrid')
  fc = ugarchforecast(fit, n.ahead = ahead)
  res = tail(attributes(fc)$forecast$seriesFor, 1)
  colnames(res) = names(mbase)
  latestPrice = tail(mbase, 1)
  latestPrice <- xts(latestPrice)
 return(list(latestPrice = latestPrice, forecastPrice = res,
```

```
AIC = infocriteria(fit)))
})
```

4 模拟数据

4.1 回测数据

以下僕运行数据测试后事先储存,然后直接读取。首先过滤 timeID 时间参数,然后才模拟预测汇价。

```
timeID <- llply(mbase, function(x) as.character(index(x))) %>%
unlist %>% unique %>% as.Date %>% sort
timeID <- c(timeID, xts::last(timeID) + days(1))
timeID0 <- ymd('2013-01-01')
timeID <- timeID[timeID >= timeID0]
```

模拟 calc_fx() 函数预测汇价数据。

```
Hide
## -----模拟calc_fx()预测汇价
pred3 <- list()
for (dt in time ID) {
 for (i in seq(cr code)) {
    smp <- mbase[[names(cr_code)[i]]]</pre>
   dtr <- xts::last(index(smp[index(smp) < dt]), 1)
    smp <- smp[paste0(dtr %m-% years(1), '/', dtr)]</pre>
   pred3[[i]] <- ldply(price_type, function(y) {</pre>
     df = calc_fx(smp, currency = cr_code[i], price = y)
      df = data. frame(Date = index(df[[1]][1]),
                     Type = paste0(names(df[[1]]), '.', y),
                     df[[1]], df[[2]], t(df[[3]]))
     names(df)[4] %<>% str_replace_all('1', 'T+1')
     df
    1)
    if (!dir.exists(paste0('data/fx/', names(pred3[[i]])[3])))
     dir.create(paste0('data/fx/', names(pred3[[i]])[3]))
    saveRDS(pred3[[i]], paste0(
     'data/fx/', names(pred3[[i]])[3], '/pred3.',
     unique(pred3[[i]]$Date), '.rds'))
   cat(paste0(
      'data/fx/', names(pred3[[i]])[3], '/pred3.',
     unique(pred3[[i]]$Date), '.rds saved!\n'))
    }; rm(i)
```

4.2 查询进度

查询模拟测试进度的函数 task_progress()如下。

```
#'@ timeID <- sapply(fls, function(x) timeID[!timeID %in% x] %>% sort)

#'@ timeID <- llply(fls, function(x) timeID[!timeID %in% x] %>% sort) %>% unlist %
>% as.Date %>% sort
#'@ names(timeID) <- NULL
#'@ timeID %<>% unique
```

Hide

```
## -----模拟calc_fx()预测汇价 -
pred3 <- list()
for (i in seq(cr_code)) {
  timeIDi <- fls[[names(cr_code)[i]]]
 for (dt in timeIDi) {
    smp <- mbase[[names(cr_code)[i]]]</pre>
   dtr <- xts::last(index(smp[index(smp) < dt]), 1)
   smp <- smp[paste0(dtr %m-% years(1), '/', dtr)]</pre>
   pred3[[i]] <- ldply(price_type, function(y) {</pre>
     df = calc_fx(smp, currency = cr_code[i], price = y)
     df = data. frame(Date = index(df[[1]][1]),
                     Type = paste0(names(df[[1]]), '.', y),
                     df[[1]], df[[2]], t(df[[3]]))
     names(df)[4] %<>% str_replace_all('1', 'T+1')
     df
    })
    if (!dir.exists(paste0('data/fx/', names(pred3[[i]])[3])))
     dir.create(paste0('data/fx/', names(pred3[[i]])[3]))
    saveRDS(pred3[[i]], paste0(
     'data/fx/', names(pred3[[i]])[3], '/pred3.',
     unique(pred3[[i]]$Date), '.rds'))
   cat(paste()(
     'data/fx/', names(pred3[[i]])[3], '/pred3.',
     unique(pred3[[i]]$Date), '.rds saved!\n'))
   }
  }; rm(i)
```

模拟完毕后,再来就查看数据结果。

calc fx()模拟数据误差率

======= 84, 79% =======

Hide

```
## Current Tokyo Time : 2018-10-17 14:15:15

## 'pred3

##

## . id x n progress

## 1 USDAUD 1088 1215 89.55%

## 2 USDEUR 1033 1215 85.02%

## 3 USDGBP 1037 1216 85.28%

## 4 USDCHF 1072 1215 88.23%

## 5 USDCAD 1033 1214 85.09%

## 6 USDCNY 1019 1215 83.87%

## 7 USDJPY 929 1215 76.46%
```

以上结果显示,模拟后的数据的误差率非常渺小1。以下筛选 pred1 、 pred2 与 pred3 同样日期的有效数据。

Hide

```
##製造|

fx1 <- llply(names(cr_code), function(x) {
    fls <- list.files(paste0('data/fx/', x), pattern = '^pred1')
    dfm <- ldply(fls, function(y) {
        readRDS(paste0('data/fx/', x, '/', y))
    }) %>% data.frame(Cat = 'pred1', .) %>% tbl_df
    names(dfm)[4:5] <- c('Price', 'Price.T1')
```

```
dim
names(fx1) <- names(cr_code)
##数据2
fx2 <- llply(names(cr_code), function(x) {
   fls <- list.files(paste0('data/fx/', x), pattern = '^pred2')
   dfm <- ldply(fls, function(y) {
       readRDS(paste0('data/fx/', x, '/', y))
   }) %>% data.frame(Cat = 'pred2', .) %>% tbl_df
   names(dfm)[4:5] <- c('Price', 'Price.T1')
   dfm
names(fx2) <- names(cr_code)
##数据3
fx3 <- 11ply(names(cr_code), function(x) {
   fls <- list.files(paste0('data/fx/', x), pattern = '^pred3')
   dfm <- ldply(fls, function(y) {
       readRDS(pasteO('data/fx/', x, '/', y))
    }) %>% data.frame(Cat = 'pred3', .) %>% tbl_df
   names(dfm)[4:5] <- c('Price', 'Price.T1')
})
names(fx3) <- names(cr_code)
#合并, 并且整理数据
fx1 %<>% ldply %>% tbl_df
fx2 %<>% ldply %>% tbl_df
fx3 %<>% ldply %>% tbl_df
\label{eq:fx} fx <- \; suppressAll (bind\_rows (fx1, fx2, fx3) \; \%>\% \; arrange (Date) \; \%>\%
 mutate(.id = factor(.id), Cat = factor(Cat)) %>%
 ddply(.(Cat, Type), function(x) {
   x %>% mutate(Price.T1 = lag(Price.T1, 1))
 }) %>% tbl_df %>%
   dplyr::filter(Date >= ymd('2013-01-01') & Date <= ymd('2017-08-30')))
rm(fx1, fx2, fx3)
```

Hide

```
## filter all predictive error where sd >= 20%.
notID <- fx %>% mutate(diff = abs(Price.T1/Price), se = ifelse(diff <= 0.8 | diff
>= 1.25, 1, 0)) %>% dplyr::filter(se == 1)
ntimeID <- notID %>% .$Date %>% unique
notID %>%
   kable(caption = 'Error data') %>%
   kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsiv
e')) %>%
   scroll_box(width = '100%', height = '400px')
```

rror data						
id	Cat	Date	Туре	Price	Price.T1	Akaike
JSDCHF	pred1	2015- 07-28	USDCHF.Op	0.96200	-1.674244e+03	-6.8550360
JSDCHF	pred1	2015- 01-15	USDCHF.Lo	0.73300	1.016502e+00	-5.7998611
JSDCNY	pred1	2014- 07-10	USDCNY.Lo	2.20100	6.186397e+00	-2.7132659
JSDCNY	pred1	2014- 07-14	USDCNY.Lo	6.19600	1.294872e+00	-3.1503936
JSDJPY	pred1	2013- 06-27	USDJPY.Op	98.46800	7.839498e+01	4.7132866
JSDJPY	pred1	2013- 06-30	USDJPY.Op	99.41100	7.839644e+01	4.7356084

僕尝试运行好几次,USDCHF都是获得同样的结果。然后将默认的 snorm 分布更换为 norm 就没有出现错误。至于 USDCNY 原始数据有误就不是统计模型的问题了。

Hide

4.3 精准度

现在就比较下双方的MSE值与AIC值。

Hide

```
acc \leftarrow ddply(fx, .(Cat, Type), summarise,
             MSE = mean((Price.T1 - Price)^2, na.rm = TRUE),
             n = length(Price),
            Akaike, MSE = (-2*MSE)/n+2*4/n.
            Akaike = mean(Akaike, na.rm = TRUE),
            Bayes = mean(Bayes, na.rm = TRUE),
            Shibata = mean(Shibata, na.rm = TRUE),
            Hannan. Quinn = mean(Hannan. Quinn, na.rm = TRUE)) %>%
  tbl_df %>% mutate(MSE = round(MSE, 6)) %>%
  arrange(Type)
acc %>%
 kable(caption = 'Group Table Summary') %>%
 kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsiv
e')) %>%
 group_rows('USD/AUD Open', 1, 3, label_row_css = 'background-color: #e68a00; col
or: #fff:') %>%
 group_rows('USD/AUD High', 4, 6, label_row_css = 'background-color: #e68a00; col
or: #fff;') %>%
 group_rows('USD/AUD Low', 7, 9, label_row_css = 'background-color: #e68a00; colo
r: #fff: ') %>%
 group_rows('USD/AUD Close', 10, 12, label_row_css = 'background-color: #e68a00;
 color: #fff:') %>%
  group_rows('USD/EUR Open', 13, 15, label_row_css = 'background-color: #6666ff; c
olor: #fff;') %>%
 group_rows('USD/EUR High', 16, 18, label_row_css = 'background-color: #6666ff; c
olor: #fff; ') %>%
 group_rows('USD/EUR Low', 19, 21, label_row_css = 'background-color:#6666ff; col
or: #fff;') %>%
 group_rows('USD/EUR Close', 22, 24, label_row_css = 'background-color: #6666ff;
color: #fff;') %>%
 group_rows('USD/GBP Open', 25, 27, label_row_css = 'background-color: #339966; c
olor: #fff;') %>%
 group_rows('USD/GBP High', 28, 30, label_row_css = 'background-color: #339966; c
olor: #fff;') %>%
  group_rows('USD/GBP Low', 31, 33, label_row_css = 'background-color: #339966; co
lor: #fff: ') %>%
 group_rows('USD/GBP Close', 34, 36, label_row_css = 'background-color: #339966;
color: #fff;') %>%
 group_rows('USD/CHF Open', 37, 39, label_row_css = 'background-color: #808000; c
olor: #fff;') %>%
  group_rows('USD/CHF High', 40, 42, label_row_css = 'background-color: #808000; c
olor: #fff: ') %>%
 group_rows('USD/CHF Low', 43, 45, label_row_css = 'background-color: #808000; co
lor: #fff;') %>%
 group_rows('USD/CHF Close', 46, 48, label_row_css = 'background-color: #808000;
 color: #fff;') %>%
  group_rows('USD/CAD Open', 49, 51, label_row_css = 'background-color: #666; colo
r: #fff;') %>%
 group_rows('USD/CAD High', 52, 54, label_row_css = 'background-color: #666; colo
r: #fff: ') %>%
 group_rows('USD/CAD Low', 55, 57, label_row_css = 'background-color: #666; colo
r: #fff;') %>%
 group_rows('USD/CAD Close', 58, 60, label_row_css = 'background-color: #666; col
or: #fff;') %>%
 group_rows('USD/CNY Open', 61, 63, label_row_css = 'background-color: #e60000; c
olor: #fff; ') %>%
 group_rows('USD/CNY High', 64, 66, label_row_css = 'background-color: #e60000; c
  group_rows('USD/CNY Low', 67, 69, label_row_css = 'background-color: #e60000; co
lor: #fff;') %>%
 group_rows('USD/CNY Close', 70, 72, label_row_css = 'background-color: #e60000;
color: #fff;') %>%
 group_rows('USD/JPY Open', 73, 75, label_row_css = 'background-color: #ff3377; c
olor: #fff;') %>%
```

```
group_rows('USD/JPY High', 76, 78, label_row_css = 'background-color: #ff3377; c olor: #fff;') %>%
group_rows('USD/JPY Low', 79, 81, label_row_css = 'background-color: #ff3377; co lor: #fff;') %>%
group_rows('USD/JPY Close', 82, 84, label_row_css = 'background-color: #ff3377; color: #fff;') %>%
scroll_box(width = '100%', height = '400px')
```

scroll_b	oox(width = '10	0%', height	= '4	00px')			
Group Tabl	e Summary						^
Cat	Туре	MSE	n	Akaike.MSE	Akaike	Bayes	
USD/AUD	Open						
pred1	USDAUD.Op	0.001485	694	0.0115231	-6.1003165	-5.9788352	-6
pred2	USDAUD.Op	0.000067	694	0.0115272	-6.8926533	-6.8017675	-6
pred3	USDAUD.Op	0.000069	694	0.0115272	-6.8224982	-6.7179646	-6
USD/AUD	High						
pred1	USDAUD.Hi	0.001669	694	0.0115226	-6.2583349	-6.1291102	-6
pred2	USDAUD.Hi	0.000055	694	0.0115272	-7.0515969	-6.9619065	-7
pred3	USDAUD.Hi	0.000057	694	0.0115272	-5.6866132	-5.5832749	-5
USD/AUD	Low						
pred1	USDAUD.Lo	0.000966	694	0.0115246	-6.5677746	-6.4385346	-6
pred2	USDAUD.Lo	0.000053	694	0.0115272	-7.0612497	-6.9695477	-7
pred3	USDAUD.Lo	0.000057	694	0.0115272	-7.0154288	-6.9100791	-7
USD/AUD	Close						
pred1	USDAUD.CI	0.001873	694	0.0115220	-6.0162413	-5.8954588	-6
pred2	USDAUD.CI	0.000066	694	0.0115272	-6.8988588	-6.8077969	-6
pred3	USDAUD.CI	0.000069	694	0.0115272	-6.8937281	-6.7890184	-6
USD/EUR	Open						
pred1	USDEUR.Op	0.000368	694	0.0115263	-7.3338283	-7.2020527	-7
pred2	USDEUR.Op	0.000023	694	0.0115273	-7.9057246	-7.8131176	-7
pred3	USDEUR.Op	0.000026	694	0.0115273	-3.2266234	-3.1203687	-3
USD/EUR	High						
pred1	USDEUR.Hi	0.000358	694	0.0115263	-7.1208509	-6.9949044	-7
pred2	USDEUR.Hi	0.000018	694	0.0115273	-8.1106028	-8.0198277	-8
pred3	USDEUR.Hi	0.000020	694	0.0115273	-7.7134003	-7.6089775	-7
USD/EUR	Low						
pred1	USDEUR.Lo	0.000072	694	0.0115272	-7.8257307	-7.6860585	-7
pred2	USDEUR.Lo	0.000020	694	0.0115273	-8.0539791	-7.9609034	-8
pred3	USDEUR.Lo	0.000026	694	0.0115273	-6.3308221	-6.2240987	-6
USD/EUR	Close						
pred1	USDEUR.CI	0.000557	694	0.0115258	-7.3564598	-7.2230143	-7
pred2	USDEUR.CI	0.000023	694	0.0115273	-7.9039691	-7.8117162	-7
pred3	USDEUR.CI	0.000026	694	0.0115273	-5.7336380	-5.6277373	-5
USD/GBP	Open						
pred1	USDGBP.Op	0.000106	694	0.0115271	-8.0967421	-7.9545923	-8
pred2	USDGBP.Op	0.000020	694	0.0115273	-8.4221013	-8.3242304	-8
pred3	USDGBP.Op	0.000020	694	0.0115273	-4.2024020	-4.0908996	-4
USD/GBP	High						
pred1	USDGBP.Hi	0.000477	694	0.0115260	-7.1519345	-7.0420252	-7
pred2	USDGBP.Hi	0.000014	694	0.0115273	-8.5515114	-8.4560209	-8

pred3	USDGBP.Hi	0.000016	694	0.0115273	-6.8351756	-6.7260536	-6
USD/GBP	Low						
pred1	USDGBP.Lo	0.000321	694	0.0115265	-7.6996366	-7.5775927	-7
pred2	USDGBP.Lo	0.000015	694	0.0115273	-8.6241601	-8.5288847	-8
pred3	USDGBP.Lo	0.000017	694	0.0115273	-6.6693291	-6.5604223	-6
USD/GBP	Close						
pred1	USDGBP.CI	0.000134	694	0.0115270	-7.8141090	-7.6833530	-7
pred2	USDGBP.CI	0.000020	694	0.0115273	-8.4297825	-8.3355701	-8
pred3	USDGBP.Cl	0.000020	694	0.0115273	-5.3457457	-5.2379019	-5
USD/CHF	Open						
pred1	USDCHF.Op	0.000099	694	0.0115271	-7.2484023	-7.1009514	-7
pred2	USDCHF.Op	0.000026	694	0.0115273	-7.5298151	-7.4369056	-7
pred3	USDCHF.Op	0.000027	694	0.0115273	-7.5027593	-7.3962012	-7
USD/CHF	High						
pred1	USDCHF.Hi	0.000199	694	0.0115268	-7.2548707	-7.1099220	-7
	USDCHF.Hi	0.000020	694	30,7270,0234,0020,004		-7.5900954	
	USDCHF.Hi	0.000021	694	0.0115273	-4.9413177	-4.8310035	-4
USD/CHF							
pred1	USDCHF.Lo	0.000348	694	0.0115264	-6.8005222	-6.6817579	-6
pred2	USDCHF.Lo	0.000028	694	0.0115273	-7.6184651	-7.5252301	-7
	USDCHF.Lo	0.000031	694	0.0115273	-7.5757600	-7.4688764	-7
USD/CHF							
pred1	USDCHF.CI	0.000124	694	0.0115270	-7.2419650	-7.0947266	-7
	USDCHF.CI	0.000026	694		-7.5324416		-7
	USDCHF.CI	0.000026	694	0.0115273	-3.9698805	-3.8616657	-3
USD/CAD							
-	USDCAD.Op					-6.9760318	
	USDCAD.Op					-7.4514271	
_	USDCAD.Op	0.000039	694	0.0115273	-5.2476659	-5.1418206	-5
USD/CAD		0.000075	60.4	0.0115000	7 4054074	7.0500700	
	USDCAD.Hi	0.000275	694		-7.4051971		-7
	USDCAD.Hi	0.000035			-7.6777426		-7
USD/CAD	USDCAD.Hi	0.000038	094	0.0113273	-3.4293198	-3.3129817	-3
	USDCAD.Lo	0.001172	694	0.0115240	-7 0520764	-6.9033640	-7
	USDCAD.Lo	0.001172				-7.5119686	
	USDCAD.L0	0.000031				-4.5710188	
USD/CAD		5.000033	0.54	5.0110275	4.0103330	4.5710100	
	USDCAD.Cl	0.000856	694	0.0115249	-7.1394047	-6.9954283	-7
-	USDCAD.CI	0.000035			-7.5537405		-7
	USDCAD.CI	0.000033				-3.7910838	
USD/CNY	A. D. Carlotte	3.000000	554	5.0110210	0.0070101	0., 010000	
	USDCNY.Op	0.004577	694	0.0115142	-5,3262782	-5.1937738	-5
	USDCNY.Op	0.001280				-5.9714101	
	USDCNY.Op					-3.1669812	
USD/CNY							
	Marie Control						

```
pred1 USDCNY.Hi 0.006446 694
                                   0.0115088 -5.5772166 -5.4386976 -5
   pred2 USDCNY.Hi 0.001228 694
                                   0.0115238 -5.8947789 -5.7889571 -5
   pred3 USDCNY.Hi 0.000823 694
                                   0.0115250 0.4844599 0.6039232 0
USD/CNY Low
   pred1 USDCNY.Lo 0.013831 694
                                   0.0114875 -5.4334053 -5.3005227 -5
   pred2 USDCNY.Lo 0.000449 694
                                   0.0115261 -6.3281187 -6.2292034 -6
   pred3 USDCNY.Lo 0.001241 694
                                   0.0115238 -5.3583923 -5.2458355 -5
USD/CNY Close
   pred1 USDCNY.Cl 0.002978 694
                                   0.0115188 -5.6155852 -5.4788612 -5
   pred2 USDCNY.Cl 0.000185 694
                                   0.0115268 -6.3803468 -6.2751058 -6
                                   0.0115267 -2.6275465 -2.5086639 -2
   pred3 USDCNY.Cl 0.000223 694
USD/JPY Open
   pred1 USDJPY.Op 0.849792 694
                                   0.0090784 2.0366510 2.2006171 2
   pred2 USDJPY.Op 0.463180 694
                                   0.0101926 2.0178465 2.1131252 2
   pred3 USDJPY.Op 0.596356 694
                                   0.0098088 3.2665740 3.3754942 3
USD/JPY High
   pred1 USDJPY.Hi
                    5.072197 694
                                   -0.0030899 2.3205292 2.4541433
                                                                  2
   pred2 USDJPY.Hi
                    0.350109 694
                                   0.0105184 1.7719840 1.8733588 1
   pred3 USDJPY.Hi
                    0.557077 694
                                   0.0099220 5.4397869 5.5548033 5
USD/JPY Low
   pred1 USDJPY.Lo
                    2.765424 694
                                   0.0035579 2.3864636 2.5342943
   pred2 USDJPY.Lo
                    0.461756 694
                                   0.0101967 1.9675156 2.0588424 1
   pred3 USDJPY.Lo
                    0.695329 694
                                   0.0095235 4.2116218 4.3165901 4
USD/JPY Close
   pred1 USDJPY.Cl
                    0.604835 694
                                   0.0097843 2.0399015 2.2052227 2
   pred2 USDJPY.Cl
                    0.468307 694
                                   0.0101778 2.0249439 2.1205556 2
   pred3 USDJPY.Cl
                    0.598571 694
                                   0.0098024 2.9466791 3.0559323 2
                                                                  Hide
acc <- ddply(fx, . (Cat, .id), summarise,
```

```
MSE = mean((Price.T1 - Price)^2, na.rm = TRUE),
             n = length(Price).
             Akaike. MSE = (-2*MSE)/n+2*4/n,
             Akaike = mean(Akaike, na.rm = TRUE),
             Bayes = mean(Bayes, na.rm = TRUE),
             Shibata = mean(Shibata, na.rm = TRUE),
            Hannan. Quinn = mean (Hannan. Quinn, na.rm = TRUE)) %>%
  tbl_df %>% mutate(MSE = round(MSE, 6)) %>%
 arrange (. id)
acc %>%
  kable(caption = 'Group Table Summary') %>%
 kable\_styling(bootstrap\_options = c('striped', 'hover', 'condensed', 'responsiv')
e')) %>%
 group_rows('USD/AUD', 1, 3, label_row_css = 'background-color: #003399; color: #
fff;') %>%
 group_rows('USD/CAD', 4, 6, label_row_css = 'background-color: #003399; color: #
fff; ') %>%
  group_rows('USD/CHF', 7, 9, label_row_css = 'background-color: #003399; color: #
fff: ') %>%
 group_rows('USD/CNY', 10, 12, label_row_css = 'background-color: #003399; color:
#fff;') %>%
 group_rows('USD/EUR', 13, 15, label_row_css = 'background-color: #003399; color:
 #fff;') %>%
  group_rows('USD/GBP', 16, 18, label_row_css = 'background-color: #003399; color:
 #fff: ') %>%
 group_rows('USD/JPY', 19, 21, label_row_css = 'background-color: #003399; color:
 #fff;') %>%
```

```
scroll_box(width = '100%', height = '400px')
Group Table Summary
Cat
         .id
                       MSE
                               n Akaike.MSE
                                                 Akaike
                                                                    Shik
                                                           Bayes
USD/AUD
   pred1 USDAUD 0.001498 2776
                                    0.0028808 -6.235667 -6.110485 -6.238
   pred2 USDAUD 0.000060 2776
                                    0.0028818 -6.976090 -6.885255 -6.977
   pred3 USDAUD 0.000063 2776
                                    0.0028818 -6.604567 -6.500084 -6.606
USD/CAD
   pred1 USDCAD 0.000846 2776
                                    0.0028812 -7.179240 -7.032198 -7.182
   pred2 USDCAD 0.000034 2776
                                    0.0028818 -7.594736 -7.499802 -7.596
   pred3 USDCAD 0.000038 2776
                                    0.0028818 -4.312811 -4.204226 -4.314
USD/CHF
   pred1 USDCHF 0.000193 2776
                                    0.0028817 -7.136440 -6.996840 -7.139
   pred2 USDCHF 0.000025 2776
                                    0.0028818 -7.591871 -7.497527 -7.593
   pred3 USDCHF 0.000026 2776
                                    0.0028818 -5.997429 -5.889437 -5.999
USD/CNY
                                    0.0028768 -5.488121 -5.352964 -5.491
   pred1 USDCNY 0.006958 2776
   pred2 USDCNY 0.000786 2776
                                    0.0028813 -6.168634 -6.066169 -6.170
   pred3 USDCNY 0.001034 2776
                                    0.0028811 -2.695496 -2.579389 -2.697
USD/EUR
   pred1 USDEUR 0.000339 2776
                                    0.0028816 -7.409217 -7.276508 -7.412
   pred2 USDEUR 0.000021 2776
                                    0.0028818 -7.993569 -7.901391 -7.994
   pred3 USDEUR 0.000024 2776
                                    0.0028818 -5.751121 -5.645295 -5.752
USD/GBP
   pred1 USDGBP 0.000260 2776
                                    0.0028817 -7.690606 -7.564391 -7.693
   pred2 USDGBP 0.000017 2776
                                    0.0028818 -8.506889 -8.411176 -8.508
                                    0.0028818 -5.763163 -5.653819 -5.765
   pred3 USDGBP 0.000018 2776
USD/JPY
   pred1 USDJPY 2.323062 2776
                                    0.0012082 2.195886 2.348569
                                                                   2.192
   pred2 USDJPY 0.435838 2776
                                    0.0025678 1.945572 2.041470 1.944
   pred3 USDJPY 0.613356 2776
                                    0.0024399 3.966165 4.075705 3.964
                                                                     Hide
acc <- ddply(fx, .(Cat), summarise,
           MSE = mean((Price.T1 - Price)^2, na.rm = TRUE),
           n = length (Price),
           Akaike. MSE = (-2*MSE)/n+2*4/n,
           Akaike = mean(Akaike, na.rm = TRUE),
           Bayes = mean (Bayes, na.rm = TRUE),
           Shibata = mean(Shibata, na.rm = TRUE),
           Hannan. Quinn = mean(Hannan. Quinn, na.rm = TRUE)) %>%
  tbl_df %>% mutate(MSE = round(MSE, 6))
acc %>%
 kable(caption = 'Group Table Summary') %>%
 kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsiv
e'))
```

Group Table Summary

 Cat
 MSE
 n
 Akaike.MSE
 Akaike
 Bayes
 Shibata
 Hannan.Quinn

 pred1
 0.333308
 19432
 0.0003774
 -5.563344
 -5.426402
 -5.566386
 -5.508300

pred2 0.062397 19432 0.0004053 -6.126602 -6.031407 -6.128028 -6.088338 pred3 0.088525 19432 0.0004026 -3.879775 -3.770935 -3.881614 -3.836026

5 结论

结果证明 pred2 的 archm=FALSE 最为精准。目前正在编写着Q1App2自动交易应用。"商场如战场",除了模式最优化以外,程序运作上分秒必事... microbenchmark测试效率,之前编写了个DataCollection应用采集实时数据以方便之后的高频率交易自动化建模²。欲知更多详情,请参阅Real Time FXCM。

6 附录

6.1 文件与系统资讯

以下乃此文献资讯:

- 文件建立日期: 2018-10-14
- 文件最新更新日期: 2018-10-17
- R version 3.5.1 (2018-07-02)
- · R语言版本: 3.5.1
- rmarkdown 程序包版本: 1.10
- 文件版本: 1.0.1
- 作者简历: ®yσ, Eng Lian Hu
- GitHub: 源代码
- 其它系统资讯:

Additional session information:

Category	session_info	Category	Sys.info
version	R version 3.5.1 (2018-07-02)	sysname	Windows
system	x86_64, mingw32	release	10 x64
ui	RTerm	version	build 17134
language	en	nodename	RSTUDIO-SCIBROK
collate	Japanese_Japan.932	machine	x86-64
tz	Asia/Tokyo	login	scibr
date	2018-10-17	user	scibr
Current time	2018-10-17 14:15:33 JST	effective user	scibr

6.2 参考文献

1. [问答] 请问怎样用R语言产生arch, arch-m, garch, garch-m的随机数? 👩

2. binary.com 面试试题 I - GARCH模型中的 ARIMA(p,d,q) 参数最优化

Powered by - Copyright® Intellectual Property Rights of Schrekes®個人の経営企業

- 1. 一些数据模拟时, 出现不知名错误。↔
- 2. 不过数据量多就会当机, 得继续提升才行。↓