

STGB10NB37LZ

N-CHANNEL CLAMPED 20A - D2PAK INTERNALLY CLAMPED PowerMesh™ IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGB10NB37LZ	CLAMPED	< 1.8 V	20 A

- POLYSILICON GATE VOLTAGE DRIVEN
- LOW THRESHOLD VOLTAGE
- LOW ON-VOLTAGE DROP
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- HIGH VOLTAGE CLAMPING FEATURE

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The built in collector-gate zener exhibits a very precise active clamping while the gate-emitter zener supplies an ESD protection.

AUTOMOTIVE IGNITION

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	CLAMPED	V
V _{ECR}	Reverse Battery Protection	18	V
V _{GE}	Gate-Emitter Voltage	CLAMPED	V
Ic	Collector Current (continuos) at T _C = 100°C	20	А
I _{CM}	Collector Current (pulse width < 100μs)	60	А
Ртот	Total Dissipation at T _C = 25°C	125	W
	Derating Factor	0.83	W/°C
E _{SD}	ESD (Human Body Model)	4	KV
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

June 2001 1/10

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1.2	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	°C/W
Rthc-sink	Thermal Resistance Case-sink Typ	0.2	°C/W

ELECTRICAL CHARACTERISTICS (TCASE = $25~^{\circ}$ C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _(CES)	Clamped Voltage	I _C = 2 mA, V _{GE} = 0, Tj= - 40°C to 150°C	375	400	425	V
BV _(ECR)	Emitter Collector Break-down Voltage	$I_{EC} = 75 \text{ mA}, V_{GE} = 0,$ $Tj = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	18			V
BV _{GE}	Gate Emitter Break-down Voltage	I _G = ± 2 mA Tj= - 40°C to 150°C	12		16	V
ICES	Collector cut-off Current	V _{CE} = 15 V, V _{GE} =0 ,T _j =150 °C			10	μΑ
	$(V_{GE} = 0)$	V _{CE} =200 V, V _{GE} =0 ,T _C =150°C			100	μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 10V$, $V_{CE} = 0$			± 700	μΑ
R _{GE}	Gate Emitter Resistance			20		ΚΩ

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}, I_{C} = 250\mu\text{A},$ Tj= - 40°C to 150°C	0.6		2.4	V
VCE(SAT)	Collector-Emitter Saturation	V _{GE} =4.5V, I _C = 10 A, Tj= 25°C		1.2	1.8	V
	Voltage	V_{GE} =4.5V, I_{C} = 10 A, T_{C} =-40°C		1.3		V
Ic	Collector Current	V _{GE} = 4.5V, V _{CE} = 9 V	20			Α

DYNAMIC

Symbol	nbol Parameter Test Conditions		Min.	Тур.	Max.	Unit
9fs	Forward Transconductance V _{CE} = 15 V , I _C =20 A			18		S
C _{ies}	Input Capacitance $V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$			1250		pF
Coes	Output Capacitance			103		pF
C _{res}	Reverse Transfer Capacitance			18		pF
Qg	Gate Charge	V _{CE} = 320V, I _C = 10 A, V _{GE} = 5V		28		nC

FUNCTIONAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
ΙL	Latching Current	V_{Clamp} = 320 V, T_{C} = 125 °C R_{GOFF} = 1K Ω , V_{GE} = 5 V L = 300 μ H	20			А
U.I.S.	Unclamped Inductive Switching Current	$R_{GOFF} = 1K\Omega$, L = 1.6 mH , Tc= 125°C, Vcc = 30V	15			Α

SWITCHING ON

Symbol	Parameter Test Conditions Min.		Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{CC} = 320 V, I _C = 10 A		520		ns
t _r	Rise Time	$R_G = 1K\Omega$, $V_{GE} = 5 V$		340		ns
(di/dt) _{on} Eon	Turn-on Current Slope Turn-on Switching Losses	V_{CC} = 320 V, I_{C} = 10 A R _G =1K Ω , V_{GE} = 5 V		17 180		A/μs μJ

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	V _{clamp} = 320 V, I _C = 10 A,		4		μs
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 1K \Omega$, $V_{GE} = 5 V$		2.2		μs
$t_{d(off)}$	Delay Time			14.8		μs
t _f	Fall Time			1.5		μs
E _{off} (**)	Turn-off Switching Loss			4.0		mJ
t _c	Cross-over Time	V _{clamp} = 320 V, I _C = 10 A,		5.2		μs
$t_r(V_{\text{off}})$	Off Voltage Rise Time	$R_{GE} = 1K\Omega$, $V_{GE} = 5$ V Ti = 125 °C		2.8		μs
t _d (off)	Delay Time	1) = 123 0		15.8		μs
t _f	Fall Time			2		μs
E _{off} (**)	Turn-off Switching Loss			6.5		mJ

^(●)Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %. (1)Pulse width limited by max. junction temperature. (**)Losses Include Also the Tail

Normalized Transient Thermal Impedance

57.

Output Characteristics

Transfer Characteristics

Normalized Gate Threshold Voltage vs Temp.

Transconductance

Normalized Collector-Emitter On Voltage vs Temperature

Normalized Collector-Emitter On Voltage vs Gate-Emitter Voltage

Capacitance Variations

Off Losses vs Gate Resistance

Normalized Break-down Voltage vs Temp.

Gate Charge vs Gate-Emitter Voltage

Off Losses vs Collector Current

Clamping Voltage vs Gate Resistance

<u> 57.</u>

Self Clamped Inductive Switching IMAX vs Open Secondary Coil

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

D²PAK MECHANICAL DATA

DIM.	mm.			inch		
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
Е	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	00		8°			

D²PAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57.