

N AND P-CHANNEL ENHANCEMENT MODE POWER MOSFET

PRODUCT SUMMARY

Simple Drive Requirement Low Gate Charge Fast Switching Performance

N-CH	BV _{DSS}	20V
	$R_{DS(ON)}$	$18m\Omega$
	I_{D}	8.3A
P-CH	BV_{DSS}	-20V
P-CH	BV_{DSS} $R_{DS(ON)}$	-20V 45m Ω

DESCRIPTION

The advanced power MOSFETs from Silicon Standard Corp. provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The SO-8 package is widly preferred for commercial-industrial surface mount applications and suited for low voltage applications such as DC/DC converters.

Pb-free; RoHS-compliant

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Ra	Rating	
		N-channel	P-channel	
V_{DS}	Drain-Source Voltage	20	-20	٧
V_{GS}	Gate-Source Voltage	±12	±12	V
I _D @T _A =25°C	Continuous Drain Current ³	8.3	-5	Α
I _D @T _A =70°C	Continuous Drain Current ³	6.5	-4	Α
I _{DM}	Pulsed Drain Current ¹	30	-20	Α
P _D @T _A =25°C	Total Power Dissipation	2.0	2.0	
	Linear Derating Factor	0.0	0.016	
T _{STG}	Storage Temperature Range	-55 to	-55 to 150	
T_J	Operating Junction Temperature Range	-55 to	-55 to 150	

THERMAL DATA

Symbol	Parameter	Value	Unit
Rthj-a	Maximum Thermal Resistance, Junction-ambient ³	62.5	°C/W

N-CH Electrical Characteristics@T_i=25°C(unless otherwise specified)

	J	,	•			
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	20	-	_	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V_{GS} =10V, I_D =9A	-	-	16	$m\Omega$
		V _{GS} =4.5V, I _D =8.3A	-	-	18	m Ω
		V _{GS} =2.5V, I _D =5.2A	-	-	30	$m\Omega$
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	0.5	-	-	V
g _{fs}	Forward Transconductance	V_{DS} =10V, I_{D} =8.3A	-	8.3	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V_{DS} =20V, V_{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _j =70°C)	V _{DS} =16V ,V _{GS} =0V	-	-	25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} =±12V	-	-	±100	nA
Q_g	Total Gate Charge ²	I _D =8A	-	22	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =16V	_	3	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	9	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =10V	-	11	-	ns
t _r	Rise Time	I _D =1A	-	13	-	ns
$t_{\text{d(off)}}$	Turn-off Delay Time	R_G =3.3 Ω , V_{GS} =5 V	_	30	-	ns
t _f	Fall Time	$R_D=10\Omega$	-	14	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	1350	-	pF
C _{oss}	Output Capacitance	V _{DS} =20V	_	325	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	255	-	pF

SOURCE-DRAIN DIODE

Symbol	Parameter	Test Conditions		Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =1.8A, V _{GS} =0V	-	ı	1.2	V
t _{rr}	Reverse Recovery Time ²	I _S =8A, V _{GS} =0V,	-	32	-	ns
Q_{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	24	-	nC

P-CH Electrical Characteristics@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250uA	-20	-	-	V
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =-10V, I _D =-6A	-	-	40	$m\Omega$
		V_{GS} =-4.5V, I_D =-5A	-	-	45	$\mathbf{m}\Omega$
		V_{GS} =-2.5V, I_D =-4A	-	-	80	$m\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-0.5	-	-	V
9 _{fs}	Forward Transconductance	V _{DS} =-10V, I _D =-2.2A	-	2.2	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V _{DS} =-20V, V _{GS} =0V	-	-	-1	uA
	Drain-Source Leakage Current (T _j =70°C)	V _{DS} =-16V, V _{GS} =0V	-	-	-25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} =±12V	-	-	±100	nA
Q_g	Total Gate Charge ²	I _D =-5A	-	13	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =-16V	-	1.5	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =-4.5V	-	4.5	-	nC
$t_{d(on)}$	Turn-on Delay Time ²	V _{DS} =-10V	-	8	-	ns
t _r	Rise Time	I _D =-1A	-	17	-	ns
$t_{d(off)}$	Turn-off Delay Time	R_G =3.3 Ω , V_{GS} =-5 V	-	24	-	ns
t _f	Fall Time	R _D =10Ω	-	36	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	920	-	pF
C _{oss}	Output Capacitance	V _{DS} =-20V	-	90	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	85	-	pF

SOURCE-DRAIN DIODE

Symbol	Parameter	Test Conditions		Тур.	Max.	30
V_{SD}	Forward On Voltage ²	I _S =-1.8A, V _{GS} =0V	-	ı	-1.2	V
t _{rr}	Reverse Recovery Time	I _S =-5A, V _{GS} =0V,	-	28	-	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	16	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test
- 3.Surface mounted on 1 in 2 copper pad of FR4 board ; 135 $^{\circ}\!\!$ C/W when mounted on Min. copper pad.

THIS PRODUCT IS AN ELECTROSTATIC SENSITIVE, PLEASE HANDLE WITH CAUTION.

THIS PRODUCT HAS BEEN QUALIFIED FOR CONSUMER MARKET. APPLICATIONS OR USES AS CRITERIAL COMPONENT IN LIFE SUPPORT DEVICE OR SYSTEM ARE NOT AUTHORIZED.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 5. Forward Characteristic of Reverse Diode

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area

Fig 8. Typical Capacitance Characteristics

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 5. Forward Characteristic of Reverse Diode

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area

Fig 8. Typical Capacitance Characteristics

Fig 10. Effective Transient Thermal Impedance

Fig 12. Gate Charge Waveform

Package Outline: SO-8

	Millimeters			
SYMBOLS	MIN	MIN NOM MA		
A	1.35	1.55	1.75	
A1	0.10	0.18	0.25	
В	0.33	0.41	0.51	
С	0.19	0.22	0.25	
D	4.80	4.90	5.00	
E1	3.80	3.90	4.00	
Е	5.80 6.15 6.5			
L	0.38 0.71 1.			
θ	0 4.00 8.00			
е	1.27 TYP			

- 1.All Dimension Are In Millimeters.
- 2. Dimension Does Not Include Mold Protrusions.

Part Marking Information & Packing: SO-8

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, expressed or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.