Eksponentna funkcija

Bor Bregant

1 Funkcija $f(x) = a^x$, kjer je a > 0 in a = 1.

Primeri:

- $\bullet \ f(x) = 2^x$
- $x \mapsto 4^x$
- $f(x) = \left(\frac{\sqrt{3}}{10}\right)^x$

1.1 Družina funkcija $f(x) = a^x; a > 1$

Oglejmo si primer a=2, torej $f(x)=2^x$. Tabelirajmo vrednosti in narišimo graf.

Lastnosti funkcij $f(x) = a^x; a > 1$

- $D_f = \mathbb{R}$
- $Z_f = (0, \infty)$
- začetna vrednost f(0) = 1

- značilne točke $(0,1),(1,a),(-1,\frac{1}{a})$
- naraščajoča
- navzdol omejene z 0, navzgor neomejene
- \bullet graf se proti $-\infty$ asimptotsko približuje abscisni osi
- so bijektivne
- so konveksne.

Pomembna je tudi funkcija e^x , kjer je $e=1+\frac{1}{1}+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}+\cdots\approx 2,72$ iracionalno eulerjevo število.

1.2 Družina funkcija $f(x) = a^x$; 0 < a < 1

Oglejmo si $f(x)=\left(\frac{1}{2}\right)^x$. Ker je $\left(\frac{1}{2}\right)^x=2^{-x}$, lahko ta graf dobimo z zrcaljenjem grafa $y=2^x$ čez ordinatno osjo.

Lastnosti funkcij $f(x) = a^x; a > 1$

- $D_f = \mathbb{R}$
- $Z_f = (0, \infty)$
- začetna vrednost f(0) = 1
- značilne točke $(0,1), (-1,a), \left(1,\frac{1}{a}\right)$
- padajoča
- navzdol omejene z 0, navzgor neomejene

- $\bullet\,$ graf se proti ∞ asimptotsko približuje abscisni osi
- so bijektivne
- so konveksne.

Zgled. • Določimo eksponentno funkcijo $f(x) = a^x$, katere graf poteka skozi A(2,9). Nato v isti koordnatni sistem narišimo f(x), f(x+1), f(x+1) - 1, f(-x), |f(x) - 3|.

Naloga 1. V isti koordinatni sistem nariši grafe funkcij (a) $f(x) = 3^x, g(x) = 3^x - 2, h: x \mapsto 3^{x-2}$ (b) $f(x) = 2^{-x}, g(x) = \frac{3}{2}2^{-x}$

Naloga 2. Zapiši tri čim lepše točke grafa $f(x) = 2^{x-2} - 1$. Nato nariši grafe f(x), g(x) = |f(x)| in h(x) = f(|x|).. Zapiši še ničle, z.v., D_f , Z_f in enačbo asimptote.

Naloga 3. Nariši $f(x) = -3 \cdot 2^{x-1}$ in $g(x) = \frac{1}{3^x} - 1$.

Naloga 4. Za funkcijo $f(x) = -2^x + 2$ zapiši začetno vrednost, ničle, enačbo vodoravne asimptote in nariši njen graf. Poišči še predpis funkcije g, ki je dobljena tako, da graf f premaknemo za vektor (1, -1).

1.3 Eksponentna enačba

Tri skupine eksponentnih enačb in postopek reševanja:

Vrsta enačbe	Postopek reševanja	Primer
$a^{f(x)} = a^{g(x)}$	f(x) = g(x)	$3^{x-1} = 3^{2x+2}$
$a^{f(x)} = b^{f(x)}$	f(x) = 0	$5^{2x} = (\frac{1}{2})^{2x}$
Nova spremenljivka (opazimo $\Box^{2x} + \Box^x + \Box$ ali pa \Box^{-x})	$t = \Box^x$	
$a^{f(x)} = b$	Logaritmiranje	$2^{x-3} = 5$

Zgled. Rešimo enačbo $9^{x-3} = 3\sqrt{3}$. (naloga z mature)

Zgled. Rešimo enačbo $4 \cdot 2^{2x+1} = \frac{1}{8}$.

Zgled. Rešimo enačbo $2 \cdot 4^{x+3} = 32^{x-1}$.

Zgled. Rešimo enačbo $9 \cdot 3^{2x-2} = \sqrt[9]{27^{x+1}}$.

Zgled. Poišči presečišča za $f(x) = 4^{x-1}$ in $g(x) = 8^{2x-3}$.

Zgled. Rešimo enačbo $4 \cdot 2^{2x+1} = \frac{1}{8}$.

Zgled. Rešimo enačbo $5^{x+1} + 5^{x+2} = 6$.

Zgled. Rešimo enačbo $2^{x-3} + 3 \cdot 2^{x-1} - 2^x = 20$.

Zgled. Rešimo enačbo $2 \cdot 7^x - 11 = 21 \cdot 7^{-x}$.

Zgled. Rešimo neenačbo $3^{x-1} > 3$.

Naloga 5. Reši enačbe:

Naloga 5. Resi enaction:
(a)
$$5^x = 125$$
 (b) $4^{x-1} = 16$ (c) $2^{x-3} = 4^3$ (d) $5^{x-1} = \frac{1}{25}$
(e) $\left(\frac{8}{27}\right)^x = \frac{3}{2}$ (f) $4^x = -8$ (g) $\sqrt{27} = 9^{1-x}$ (h) $5^{3x} = 5^{7x-2}$

$$4^{2} = 16$$

(c)
$$2^{x=3} = 4^3$$

d)
$$5^{x-1} = \frac{1}{25}$$

(e)
$$\left(\frac{8}{27}\right)^x =$$

(f)
$$4^x = -8$$

(g)
$$\sqrt{27} = 9^{1-x}$$

(h)
$$5^{3x} = 5^{7x}$$

(i)
$$4^{t^2} = 4^{6-t}$$

Naloga 6. Reši enačbe:

(a)
$$5^x = 7^x$$

(b)
$$4^{x-4} = 6^{4-x}$$

(a)
$$5^x = 7^x$$
 (b) $4^{x-4} = 6^{4-x}$ (c) $2^{x^2-x-6} = 1$

Naloga 7. Reši enačbe:

(a)
$$3^{x+2} + 3^x = 90$$

(a)
$$3^{x+2} + 3^x = 90$$
 (b) $2^{2x-1} + 3 \cdot 2^{2x} - 2^{2x+2} + 1 = 0$ (c) $3^{2x} + 3^x = 12$

(c)
$$3^{2x} + 3^x = 12$$

(d)
$$4^x + 1 = 17 \cdot 2^{x-2}$$

Naloga 8. Reši neenačbe (pomagaj si z grafom):

(a)
$$3^{x+2} - 1 > 0$$
 (b) $5^{x+1} \le \frac{1}{5}$ (c) $2^x > 1 - x$.

(b)
$$5^{x+1} \le \frac{1}{5}$$

(c)
$$2^x > 1 - x$$

Naloga 9. V isti koordinatni sistem nariši grafa funkcij $f(x) = e^{-x-2}$ in $g(x) = e^x$ in izračunaj njuno presečišče.

Logaritem $\mathbf{2}$

Defincija: $\log_a x = y \iff a^y = x$, kjer $x > 0, a > 0, a \neq 1$. Število a imenujemo osnova logaritma, x pa logaritmand.

Posebej označimo $\log x = \log_{10} x$ (desetiški logaritem) in $\ln x = \log_e x$ (naravni logaritem).

Zgled. • $\log_2 16 = 4$, saj je $2^4 = 16$

•
$$\log_2 \frac{1}{4} = -2$$
, saj je $2^{-2} = \frac{1}{4}$

•
$$\log_{\frac{1}{\epsilon}} 1 = 0$$

• $\log_5(-10)$ ne obstaja, saj je logaritmand negativen

•
$$\ln e = 1$$

Zgled. Izrazimo in določimo x, če je $\log_8 x = -\frac{2}{3}$. Izrazimo in določimo x, če je $0.7^x = 0.49$.

Pravili:

$$a^{\log_a x} = x$$
 in $\log_a a^x = x$

Zgled. Izračunajmo $\log_3 3^{0.4}$ in $4^{\log_4 8}$

Naloga 1. Izračunaj brez kalukatorja in nato preveri s kalkulatorjem:

- (a) $\log_2 32$
- (b) $\log_{\frac{1}{2}} 16$
- (c) $\log 0.001$.

Naloga 2. Določi x, če je:

- (a) $2^x = 16$
- (b) $\log_x 16 = 4$
- (c) $\log_x 64 = 3$

Naloga 3. Izračunaj:

- (a) $2^{\log_2 4}$
- (b) $7^{\log_7 0.6}$

Naloga 4. Med katerima zaporednima celima številoma leži število:

- (a) log 49 (brez kalukatorja)
- (b) $\ln(8.9 \cdot 10^9)$ (pomagaj si s kalkulatorjem)

Naloga 5. S kalkulatorjem izračunaj na dve decimalki natančno:

(a) $2 \log 6 - 13 \ln 2 + \log_3 5$

Pravila za računanje logaritmov

- $\bullet \log_a(x_1 \cdot x_2) = \log_a x_1 + \log_a x_2$
- $\bullet \log_a \frac{x_1}{x_2} = \log_a x_1 \log_a x_2$
- $\log_a x^r = r \cdot \log_a x$
- $\log_b x = \frac{\log_a x}{\log_a b}$

Zgled. Uporabi pravila logaritmov:

 $\log_5 x + \log_5 \frac{1}{x}$

 $\log_a 10 - \log_a 2$ $\log_2 (x+1)^2$

 $\log_3 x + 6\log_3(x+1)$

 $Z\ novo\ osnovo\ izračunaj\ \log_5 2 \cdot \log_2 5\ in\ \log_{\frac{1}{2}} 5 \cdot \log_5 4.$

2.2Logaritemska funkcija

Loagritemska funkcija $f(x) = \log_a x(a > 0)$ je inverzna funkcija eksponentni funkciji $f(x) = a^x$.

Zgled. Poiščimo inverzno funkcijo funkciji $f(x) = 3^{\frac{x}{2}-1}$.

2.2.1 Družina funkcij $f(x) = \log_a x, a > 1$

Lastnosti funkcij $f(x) = \log_a x, a > 1$

- $D_f = (0, \infty)$
- $Z_f = \mathbb{R}$
- $\bullet\,$ ničla x=1
- značilne točke $(1,0),(a,1),(\frac{1}{a},-1)$
- naraščajoče
- $\bullet\,$ navpična asimptota x=0
- neomejene navzgor in navzdol
- \bullet bijektivne
- konkavne

Naloga 6. Ob grafu funkcije $f(x) = \log_{\frac{1}{2}} x$ napiši lastnosti družine funkcij $f(x) = \log_a x, 0 < a < 1.$

Zgled. Izračunajmo ničlo , narišimo graf in zapišimo definicijsko območje funkcije $f(x)=2\log_3(x+3)$

Naloga 7. Določi predpis funkcije $f(x) = \log_a x$, za katero velja f(8) = 3. Nato tej funkciji poišči njen inverz. Funkcijo f tudi nariši.

2.3 Logaritemska enačba

Pri teh enačbah je pomembno napraviti preizkus!

Zgled. Rešimo naslednje enačbe:

- (a) $\log_{\frac{1}{\overline{\epsilon}}}(3x-2) = -2$ (naloga z mature)
- (b) $\log(x-1) \log x = \log(x+3) \log(x-4)$
- (c) $\log_2(x+1) + \log_2 x = 1$
- (d) $2\log^2 x 5\log x = 3$
- (e) $x^{\log x} = 10$

Naloga 8. Kje graf funkcije $f(x) = 1 + \log_5(x+2)$ seka premico y=2 in kje abscisno os.

Naloga 9. Reši enačbe:

- (a) $\log(3x+1) = 2$ (b) $\log_2 \sqrt{2x+1} = 0.5$
- (c) $\log x + \log(x+1) = \log 6$ (d) $\log_3(x+4) \log_3 x = 2$
- (e) $\ln(1-4x) \ln x = 1$ (f) $(\log x)(\log x + 1) = 2$
- (g) $\log_3(1 + \log_2(x+3)) = 1$ (h) $x^{1+\log x} = 10^2$

Naloga 10. Reši neenačbe:

(a) $\log_3 x > 0$ (b) $0 < \log_2(x+1) < 3$

Naloga 11. Reši enačbe: (a) $\log_3 x + \log_9 x = 3$ (b) $2\log_7 x + \log_x 49 = 4$ (c) $2^{\frac{x}{2}} = 16$ (d) $2^x = 3^{x+2}$