- 25 Let \mathbf{x} be the position vector in three dimensions, with $r = |\mathbf{x}|$, and let \mathbf{a} be a constant vector. Using index notation, show that
 - (a) $\operatorname{div} \mathbf{x} = 3$,
 - (b) $\operatorname{curl} \mathbf{x} = 0$,
 - (c) $\operatorname{grad} r = \mathbf{x}/r$,
 - (d) $\operatorname{div}(r^n \mathbf{x}) = (n+3) r^n$,
 - (e) $\operatorname{grad}(\mathbf{a} \cdot \mathbf{x}) = \mathbf{a}$,
 - (f) $\operatorname{div}(\mathbf{a} \times \mathbf{x}) = 0$,
 - (g) $\operatorname{curl}(\mathbf{a} \times \mathbf{x}) = 2\mathbf{a}$,
 - (h) $\operatorname{curl}(r^2\mathbf{a}) = 2(\mathbf{x} \times \mathbf{a}),$
 - (i) $\nabla^2(1/r) = 0$ if $r \neq 0$: using $\frac{\partial}{\partial x_i}r = x_i/r$ from part (c),
 - (j) $\nabla^2(\log r) = 1/r^2 \text{ if } r \neq 0$:
 - (k) $\operatorname{div}[(\mathbf{a} \cdot \mathbf{x})\mathbf{x}] = 4\mathbf{a} \cdot \mathbf{x},$
 - (1) $\operatorname{div}\left[\mathbf{x}\times(\mathbf{x}\times\mathbf{a})\right]=2\,\mathbf{a}\cdot\mathbf{x}$,
 - (m) curl $(\mathbf{a} \times \mathbf{x}/r^3) = 3(\mathbf{a} \cdot \mathbf{x})\mathbf{x}/r^5 \mathbf{a}/r^3$,
 - (n) Exam question June 2002 (Section A): calculate the curl of $(\mathbf{a} \cdot \mathbf{x}) \mathbf{x}$.
- 26 The vector \underline{a} has components $(a_r) = (1,1,1)$ and the vector \underline{b} has components $(b_r) = (2,3,4)$. In the following expressions state which indices are free and which are dummy, and give the numerical values of the expressions for each value that the free variable takes (e.g. for $a_r b_r$ the free variable is r and it takes the values 1, 2, 3 so $a_1 b_1 = -1$, $a_2 b_2 = -2$, $a_3 b_3 = -3$)
 - (a) $a_r + b_r$,
 - (b) $a_r b_r$,
 - (c) $a_r b_s a_r$,
 - (d) $a_r b_s a_r b_s a_r b_r a_s b_s$.
- 27 If δ_{rs} is the three-dimensional Kronecker delta, evaluate
 - (a) $\delta_{rs} \, \delta_{sr} \, \delta_{pq} \, \delta_{pq}$,
 - (b) $\delta_{rs} \, \delta_{sk} \, \delta_{kl} \, \delta_{lr}$,
 - (c) $\delta_{rs} \, \delta_{qr} \, \delta_{pq} \, \delta_{sp}$.
- 28 If δ_{rs} is the three-dimensional Kronecker delta, simplify
 - (a) $(\delta_{rp} \, \delta_{sq} \delta_{rq} \, \delta_{sp}) \, a_p \, b_q$,
 - (b) $(\delta_{rp}\,\delta_{sq}-\delta_{rq}\,\delta_{sp})\,\delta_{pq}$.
- 29 If δ_{rs} is the Kronecker delta in n dimensions, calculate
 - (a) δ_{rr} ,
 - (b) $\delta_{rs} \, \delta_{rs}$,

- (c) $\delta_{rs} \, \delta_{st} \, \delta_{tr}$.
- 30 Starting from $\varepsilon_{ijk} \varepsilon_{klm} = \delta_{il} \delta_{jm} \delta_{im} \delta_{jl}$ simplify as much as possible:
 - (a) $\varepsilon_{ijk}\varepsilon_{ijp}$,
 - (b) $\varepsilon_{ijk}\varepsilon_{ijk}$.
- 31 *Calculate* ε_{ijj} .
- 32 Show, using index notation, that

(a)
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0$$
,

(b)
$$(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = [\mathbf{d} \cdot (\mathbf{a} \times \mathbf{b})] \mathbf{c} - [\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})] \mathbf{d}$$

= $[\mathbf{a} \cdot (\mathbf{c} \times \mathbf{d})] \mathbf{b} - [\mathbf{b} \cdot (\mathbf{c} \times \mathbf{d})] \mathbf{a}$,

(c)
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}),$$

- (d) $\mathbf{a} \times [\mathbf{a} \times (\mathbf{a} \times \mathbf{b})] = a^2 (\mathbf{b} \times \mathbf{a}),$
- (e) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) + (\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{a} \times \mathbf{d}) + (\mathbf{c} \times \mathbf{a}) \cdot (\mathbf{b} \times \mathbf{d}) = 0$.
- 33 Exam question June 2002 (Section A): Evaluate $\varepsilon_{ijk}\varepsilon_{ijl}x_kx_l$.
- 34 Exam question June 2001 (Section A): Evaluate $\varepsilon_{ijk}\partial_i\partial_j(x_lx_l)^{1/2}$ away from the origin.
- 35 Exam question June 2003 (Section A): Calculate $\partial_i \left(\varepsilon_{ijk} \ \varepsilon_{jkl} \ x_l \right)$. (Hint: use the connection between $\partial_i x_j = \frac{\partial x_j}{\partial x_i}$ and the Kronecker delta.)
- 36 The functions f, g are scalars, while \mathbf{A} and \mathbf{B} are vector functions with components A_i and B_i respectively. Verify the following identities using index notation:
 - (a) $\operatorname{grad}(fg) = f \operatorname{grad} g + g \operatorname{grad} f$,
 - (b) $\operatorname{grad}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times \operatorname{curl} \mathbf{B} + \mathbf{B} \times \operatorname{curl} \mathbf{A} + (\mathbf{B} \cdot \nabla) \mathbf{A} + (\mathbf{A} \cdot \nabla) \mathbf{B},$
 - (c) $\operatorname{div}(f\mathbf{A}) = f\operatorname{div}\mathbf{A} + (\operatorname{grad}f) \cdot \mathbf{A},$
 - (d) $\operatorname{curl}(f\mathbf{A}) = f \operatorname{curl} \mathbf{A} + (\operatorname{grad} f) \times \mathbf{A},$
 - (e) $\operatorname{div}(\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \operatorname{curl} \mathbf{A} \mathbf{A} \cdot \operatorname{curl} \mathbf{B}$,
 - (f) $\operatorname{curl}(\mathbf{A} \times \mathbf{B}) = (\operatorname{div} \mathbf{B})\mathbf{A} (\operatorname{div} \mathbf{A})\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} (\mathbf{A} \cdot \nabla)\mathbf{B}$
 - (g) $\operatorname{div}\operatorname{curl}\mathbf{A} = 0$,
 - (h) curl curl $\mathbf{A} = \operatorname{grad} \operatorname{div} \mathbf{A} \nabla^2 \mathbf{A}$.
- 37 What is the divergence of the vector function $\mathbf{A}(\mathbf{x}) = r \mathbf{x} + \nabla r$ where \mathbf{x} is the position vector in 3 dimensions and $r = |\mathbf{x}|$? What is the corresponding result in n dimensions?