

CSE 461

Introduction to Robotics

Introduction to Control System Theory

Abdulla Hil Kafi

Research Associate, School of Engineering, Brac University

Control Theory

• Roots in another science: Cybernetics

Cybernetics is the study of feedback and derived concepts such as communication and control in living organisms,

machines and organizations

Expression was coined by Norbert Weiner in 1948.

Control Systems Example

- Body temperature regulation
 - If cold, shiver (muscles produce heat)
 - If hot, sweat (evaporation takes away heat)
- Maintaining social peace
 - If a crime is found (sensor), the guilty party is punished (actuator).
- Cruise control in cars
 - You set a speed, Cruise control will increase fuel intake uphill, and decrease it downhill.

• Etc...

Why Control Theory

- Systematic approach to analysis and design
 - Transient response
 - Consider sampling times, control frequency Taxonomy of basic controllers (PID, open-loop, Model-based, Feedforward...)
 - Select controller based on desired characteristics
- Predict system response to some input
 - Speed of response (e.g., adjust to workload changes)
 - Oscillations (variability)
- Assessing stability of system

Open Loop

- We want to spin a motor at a given angular Velocity. We can apply a
 fixed voltage to it, and never check to see if it is rotating properly.
- Called open loop.

Open Loop

- What if there is a changing load on the motor?
 - Our output velocity will change!

Closing the Loop

- Let's measure the actual angular velocities.
- Now we can compensate for changes in load by feeding back some information.

Characteristics of Feedback System

- Power amplification
- Actuator
- Feedback
 - measurement (sensor)
- Error signal
- Controller

Classic Feedback Diagram

Controller Design Methodology

Control System Goals

- Regulation
 - Thermostat
- Tracking
 - robot movement, adjust TCP window to network bandwidth
- Optimization
 - best mix of chemicals, minimize response times

Approaches to System Modeling

- First Principles
 - Based on known laws.
 - Physics, Queueing theory.
 - Difficult to do for complex systems.
- Experimental (System Identification)
 - Requires collecting data
 - Is there a good "training set"?

Common Laplace Transform

Name
$$f(t)$$
 $F(s)$

Impulse δ $f(t) = \begin{cases} 1 & t = 0 \\ 0 & t > 0 \end{cases}$

Step $f(t) = 1$ $\frac{1}{s}$

Ramp $f(t) = t$ $\frac{1}{s^2}$

Exponential $f(t) = e^{-at}$ $\frac{1}{s+a}$

Sine $f(t) = \sin(\omega t)$ $\frac{\omega}{(s+a)^2 + \omega}$

Properties of Laplace Transform

1. Linearity	$\sum_{n=1}^{N} \alpha_n x_n(t)$	$\sum_{n=1}^{N} \alpha_n X_n(s)$
2. Time shift	$x(t-t_0)u(t-t_0)$	$X(s) \exp(-st_0)$
3. Frequency shift	$\exp(s_0t)x(t)$	$X(s-s_0)$
4. Time scaling	$x(\alpha t), \alpha > 0$	$1/\alpha X(s/\alpha)$
5. Differentiation	dx(t)/dt	$s X(s) - x(0^-)$
6. Integration	$\int_0^t x(\tau) d\tau$	$\frac{1}{s}X(s)$
7. Multiplication by t	tx(t)	$-\frac{dX(s)}{ds}$
8. Modulation	$x(t)\cos\omega_0 t$	$\frac{1}{2}\left[X(s-j\omega_0)+X(s+j\omega_0)\right]$
	$x(t) \sin \omega_0 t$	$\frac{1}{2i}\left[X(s-j\omega_0)-X(s+j\omega_0)\right]$
Convolution	x(t) * h(t)	X(s)H(s)
10. Initial value	$x(0^{+})$	$\lim_{s\to\infty} s X(s)$
11. Final value	$\lim_{t\to\infty}x(t)$	$\lim_{s\to 0} s X(s)$

Transfer Function

 Definition: Transfer function is defined as the ratio of LT of output to the L.T of input. When all the initial condition assume to be zero.

$$H(s) = Y(s) / X(s)$$

- Relates the output of a linear system to its input.
- Describes how a linear system responds to an impulse, called impulse response
- All linear operations allowed
 - Scaling, addition, multiplication

Block Diagram

- Expresses flows and relationships between elements in system.
- Blocks may recursively be systems.
- Rules
 - Cascaded elements: convolution

$$a(t) \longrightarrow b(t) = a(t) * b(t)$$

Summation and deference elements

Laplace Transform of Classic Feedback System

Key Transfer Function

Feedforward:
$$\frac{Y(s)}{E(s)} = C(s)A(s)$$

Feedback:
$$\frac{Y(s)}{X(s)} = \frac{C(s)A(s)}{1 + C(s)A(s)H(s)}$$

First Order System

$$\frac{Y(s)}{X(s)} = \frac{K}{1 + K + sT}$$

Response of the System

• Impulse Response

$$\frac{K}{1+K+sT}$$

Steady-State Vs Transient

 Step Response illustrates how a system response can be decomposed into two components

• Steady-state part:

Transient

Second Order System

• Impulse response

$$\frac{Y(s)}{X(s)} = \frac{K}{Js^2 + Bs + K} = \frac{\omega_N^2}{s^2 + 2\xi\omega_N s + \omega_N^2}$$

Second Order Response

Typical response to step input is:

overshoot -- % of final value
exceeded at first oscillation

rise time -- time to span from 10% to 90% of the final value

settling time -- time to reach within 2% or 5% of the final value

PID Controller

 It produces an output, which is the combination of the outputs of proportional, integral & derivative controllers

$$u(t) \propto e(t) + \int e(t) + \frac{\mathrm{d}}{\mathrm{d}t} e(t)$$

$$\gg u(t) = K_P e(t) + K_I \int e(t) + K_D \frac{\mathrm{d}}{\mathrm{d}t} e(t)$$

Laplace transform in both side

$$U(S) = K_P E(S) + \frac{K_I}{S} E(S) + K_D S E(S)$$

$$U(S) = E(S) \left(K_P + \frac{K_I}{S} + K_D S \right)$$

$$\frac{U(S)}{E(S)} = \left(K_P + \frac{K_I}{S} + K_D S\right) = \frac{K_P S + K_I + K_D S^2}{S}$$

Basic PID Controller Function

Proportion al control:
$$u(t) = K_p e(t)$$
 $\frac{U(s)}{E(s)} = K_p$

Integral control:
$$u(t) = K_i \int_0^t e(t)dt$$
 $\frac{U(s)}{E(s)} = \frac{K_i}{s}$

Differenti al control :
$$u(t) = K_d \frac{d}{dt} e(t)$$
 $\frac{U(s)}{E(s)} = K_d s$

Effect of Controller Functions

- Proportional Action
 - Simplest Controller Function
- Integral Action
 - Eliminates steady-state error
 - Can cause oscillations
- Derivative Action ("rate control")
 - Effective in transient periods
 - Provides faster response (higher sensitivity)
 - Never used alone

PID Tuning

How to get the PID parameter values?

- If we know the transfer function, analytical methods can be used (e.g., root-locus method) to meet the transient and steady-state specs.
- When the system dynamics are not precisely known, we must resort to experimental approaches.

Ziegler-Nichols Rules for Tuning PID Controller

Using only Proportional control, turn up the gain until the system oscillates without dying down, i.e., is marginally stable. Assume that K and P are the resulting gain and oscillation period, respectively.

Conclusion

- PID control---most widely used control strategy today
- Over 90% of control loops employ PID control, often the derivative gain set to zero (PI control)
- The three terms are intuitive---a non specialist can grasp the essentials of the PID controller's action. It does not require the operator to be familiar with advanced math to use PID controllers
- Engineers prefer PID controls over untested solutions