Алгоритмы вычисления наибольшего общего делителя

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Гонсалес Ананина Луис Антонио, 1032175329

Группа: НФИмд-02-21

Преподаватель: д-р.ф.-м.н., проф. Кулябов Дмитрий Сергеевич

04 декабря, 2021, Москва

Цели и задачи

Цель лабораторной работы

Цель данной лабораторной работы- изучить теорию и реализовать все рассмотренные алгоритмы программно.

Алгоритм Евклида – это алгоритм нахождения наибольшего общего делителя (НОД) пары целых чисел.

Наибольший общий делитель (НОД) – это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

Алгоритм нахождения НОД делением Большее число делим на меньшее. Если делится без остатка, то меньшее число и есть НОД (следует выйти из цикла). Если есть остаток, то большее число заменяем на остаток от деления. Переходим к пункту 1.

Бинарный алгоритм Евклида

Бинарный алгоритм вычисления НОД, как понятно из названия, находит наибольший общий делитель, а именно НОД двух целых чисел. В эффективности данный алгоритм превосходит метод Евклида, что связано с использованием сдвигов, то есть операций деления на степень 2-ки, в нашем случае на 2.

$$HOД(2A, 2B) = 2HOД(A, B)$$

 $HOД(2A, 2B+1) = HOД(A, 2B+1)$
 $HOД(-A, B) = HOД(A, B)$

Теперь рассмотрим этапы работы алгоритма. Они основываются на приведенных свойствах наибольшего общего делителя.

- 1) инициализируем переменную k значением 1. Ее задача подсчитывать «несоразмерность», полученную в результате деления. В то время как A и Всокращаются вдвое, она будет увеличиваться вдвое;
- 2) пока A и B одновременно не равны нулю, выполняем а.если A и B четные числа, то делим надвое каждое из них: A<-A/2, B<-B/2, а k увеличивать вдвое: k<-k*2, до тех пор, пока хотя бы одно из чисел A или B не станет нечетным;
 - b. если A четное, а B нечетное, то делим A, пока возможно деление без остатка;

Результат выполнения работы 1

```
In [1]: def alg euclid(a,b):
            assert 0<b<-a
            r=[a,b]
            while r[-2]%r[-1]!=0:
                r.append(r[-2]%r[-1])
            return r[-1]
In [2]: alg_euclid(14,6)
Out[2]: 2
In [3]: def bin euclid(a,b):
            assert 0<b<-a
            while a%2--0 and b%2--0:
                a=a/2
                b=b/2
                g*=2
            u=a
            v=b
            while u!-0:
                while u%2--0:
                   u=u/2
                while v%2--0:
                   v=v/2
                if ub=v:
                    u=u-v
                else:
            d-g*v
            return int(d)
        bin euclid(14.6)
Out[3]: 2
```

Figure 3: Работа1

Результат выполнения работы 2

```
In [4]: def ext euclid (a,b):
            assert 0<b<=a
            u=[a,1,0]
            v=[b,0,1]
            while v[0]!-0:
                q=u[0]//v[0]
                t=[u[0]%v[0], u[1]-q*v[1],u[2]-q*v[2]]
                u,v=v,t
            return u[0]
        ext_euclid (14,6)
Out[4]: 2
In [8]: def bin ext euclid(a,b):
            assert 0<b<=a
            g=1
            while a%2==0 and b%2==0:
                a=a/2
                b=b/2
                g*=2
            v=h
            A=1
            B=0
            C=0
            D=1
            while u!-0:
                while u%2--0:
                    u=u/2
                    if A%2--0 and B%2--0:
                        A-A/2
                        B-B/2
                    else:
                        A=(A+b)/2
                        B=(B-a)/2
                while v%2--0:
                    v=v/2
                    if C%2--0 and D%2--0:
                        C-C/2
                        D-D/2
                    else:
                        C=(C+b)/2
                        D=(D-a)/2
```

Результат выполнения работы 3

```
U=U/ Z
             else:
                 C = (C + b)/2
                 D=(D-a)/2
         if u>=v:
             u=u-v
             A=A-C
             B=B-D
         else:
             v=v-u
             C = (C + b)/2
             D=(D-a)/2
    d=g*v
    x=C
    y=D
    return int(d),x,y
bin_ext_euclid(14,6)[0]
```

```
ut[8]: 2
n [ ]:
```

Выводы

Выводы

В ходе данной лабораторной работы была изучена теория и реализованы все рассмотренные алгоритмы программно.