Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Analysis of Algorithms - Review

- Running time focus on worst case scenario
- Experimental studies:
 - Write the algorithm and measure running times
 by varying input size, plot the results
 - Disadvantages:
 - algorithm implementation is required
 - the same hardware and software environment should be used

Analysis of Algorithms - Review

Theoretical Analysis

- Running time as function of input size, n
- Evaluate the performance independent of hardware/software environment
- Random Access Machine Model (RAM)
 - CPU, numbered memory cells whose access takes unit time
 - Primitive operations take a constant amount of time in the RAM model
- Determine the maximum number of primitive operations f(n) executed by an algorithm, as a function of the input size

Analysis of Algorithms - Review

- Examples of **primitive operations**:
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method
- Evaluate f(n) in terms of Big-Oh Notation:

f(n) is O(g(n)) if there are positive constants c and n_0 such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- Asymptotic analysis:
 - find the worst-case number of primitive operations executed as a function of the input size f(n)
 - express this function with big-Oh notation

Objectives

- Define recursion pattern
- Illustrate recursion using factorial function, ruler drawing, binary search, and file systems
- Analyze recursive algorithms

Exercise

- In the picture below:
 - The rightmost person wants to know how many people are to the right of his/her position.
 - How can he/she solve this problem? (recursively)

Recursive algorithm

- Recursion is all about **breaking a big problem into smaller occurrences** of that same problem.
 - Each person can solve a small part of the problem by asking the person to the right:
 - If there is someone to the right, ask him/her how many people are to his/her right.
 - When he/she respond with a value N, then answer N + 1.
 - If there is nobody to the right, the answer should be 0.

Recursion Pattern

- Allows to solve large problems by solving a smaller occurrence of the same problem.
- A recursive method must contain:
 - One or more stopping conditions: under certain conditions, it would stop the method from calling itself again
 - This is known as base case
 - One or more recursive calls: this is when a methodcalls itself
 - These are known as recursive cases
 - The recursive cases must eventually lead to a base case.

The Recursion Pattern

- Recursion: when a method calls itself
- Classic example the factorial function:

```
n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n
```

Recursive definition:
$$f(n) = \begin{cases} 1 & \text{if } n = 0 \\ n \cdot f(n-1) & \text{else} \end{cases}$$

As a Java method:

```
public static int factorial(int n) throws IllegalArgumentException {
 if (n < 0)
   throw new IllegalArgumentException(); // argument must be nonnegative
 else if (n == 0)
   return 1;
                                            // base case
else
   return n * factorial(n-1);
                                 // recursive case
```

Content of a Recursive Method

Base case(s)

- Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
- Every possible chain of recursive calls must eventually reach a base case.

Recursive calls

- Calls to the current method.
- Each recursive call should be defined so that it makes progress towards a base case.

Visualizing Recursion

- Recursion trace
 - A box for each recursive call
 - An arrow from each caller to callee
 - An arrow from each callee to caller showing return value

Example

Recursion Steps

```
public static void main(String[] args) {
       int n=5;
       System.out.println("factorial("+n+") = " + factorial(n));
/** Computes the factorial of the given (nonnegative) integer) */
 public static int factorial(int n) throws IllegalArgumentException {
     throw new IllegalArgumentException();
                                              // argument must be nonnegative
   else if (n == 0)
                                                                                     returns 5*24
     return 1;
                                               // base case
   else
     return n * factorial(n-1);
                                               // recursive case
/** Computes the factorial of the given (nonnegative) integer) */
 public static int factorial(int n) throws IllegalArgumentException {
   if (n < 0)
     throw new IllegalArgumentException();
                                              // argument must be nonnegative
                                                                                      returns 4*6
   else if (n == 0)
     return 1;
                                               // base case
   else
     return n * factorial(n-1);
                                               // recursive case
/** Computes the factorial of the given (nonnegative) integer) */
 public static int factorial(int n) throws IllegalArgumentException {
   if (n < 0)
     throw new IllegalArgumentException(); // argument must be nonnegative
                                                                                      returns 3*2
   else if (n == 0)
     return 1;
                                               // base case
     return n * factorial(n-1);
                                               // recursive case
```

Recursion Steps

```
/** Computes the factorial of the given (nonnegative) integer) */
 public static int factorial(int n) throws IllegalArgumentException {
   if (n < 0)
     throw new IllegalArgumentException(); // argument must be nonnegative
   else if (n == 0)
                                                                                     returns 2*1
     return 1;
                                              // base case
   else
                                              // recursive case
     return n * factorial(n-1);
/** Computes the factorial of the given (nonnegative) integer) */
 public static int factorial(int n) throws IllegalArgumentException {
   if (n < 0)
     throw new IllegalArgumentException(); // argument must be nonnegative
   else if (n == 0)
                                                                                    returns 1*1
     return 1;
                                            // base case
     return n * factorial(n-1);
                                             // recursive case
/** Computes the factorial of the given (nonnegative) integer) */
 public static int factorial(int n) throws IllegalArgumentException {
   if (n < 0)
                                                                                    returns 1
     throw new IllegalArgumentException(); // argument must be nonnegative
   else if (n == 0)
     return 1;
                                              // base case
     return n * factorial(n-1);
                                             // recursive case
 }
```

Recursion

13

Verifying The Recursion

```
// precondition: \mathbf{n} >= 0

if (\mathbf{n} == 0) //base case

return (1)

else

//recursive case: the parameter is \mathbf{n} and the recursive call passes

// the argument \mathbf{n} - \mathbf{1}

return (\mathbf{n} * \text{factorial } (\mathbf{n} - \mathbf{1}))
```

Binary Search

Search for an integer target = 22 in an **ordered list**,

```
/**
     * Returns true if the target value is found in the indicated portion of the data array.
     * This search only considers the array portion from data[low] to data[high] inclusive.
    public static boolean binarySearch(int[] data, int target, int low, int high) {
 6
      if (low > high)
        return false:
                                                              // interval empty; no match
 8
      else {
 9
        int mid = (low + high) / 2;
10
        if (target == data[mid])
11
          return true;
                                                              // found a match
        else if (target < data[mid])
12
13
          return binarySearch(data, target, low, mid -1); // recur left of the middle
        else
14
15
          return binarySearch(data, target, mid + 1, high); // recur right of the middle
16
17
```

Visualizing Binary Search

- We consider three cases:
 - If the target equals data[mid], then we have found the target.
 - If target < data[mid], then we recur on the first half of the sequence.</p>
 - If target > data[mid], then we recur on the second half of the sequence.

Analyzing Binary Search

- Runs in O(log n) time.
 - In the worst case scenario, low = 0, high = n-1
 - At each step, divide the search region by 2
 - Let k be the number of steps or levels:
 - \blacksquare mid = (low+high)/2 = (n-1)/2¹
 - \blacksquare mid = $(n-1)/2^2$
 - \bullet mid = (n-1)/2³
 - **.....**
 - mid = $(n-1)/2^k \ge 1 \rightarrow (n-1) \ge 2^k \rightarrow n \ge 2^k \rightarrow \log(n) \ge k \log(2) \rightarrow \log(n) \ge k$
- Hence, there can be at most log n levels

File Systems

- The operating system allows **directories** to be nested arbitrarily deeply
- The cumulative disk space for an entry can be computed with a simple recursive algorithm.
 - It is equal to the immediate disk space used by the entry plus the sum of the cumulative disk space usage of any entries that are stored directly within the entry.

Pseudocode for calculating disk usage of a file system

Algorithm DiskUsage(path):

Input: A string designating a path to a file-system entry

Output: The cumulative disk space used by that entry and any nested entries

total = size(path) {immediate disk space used by the entry}

if path represents a directory then

for each child entry stored within directory path do

total = total + DiskUsage(child) {recursive call}

return total

A recursive method for calculating disk usage of a file system

```
* Calculates the total disk usage (in bytes) of the portion of the file system rooted
     * at the given path, while printing a summary akin to the standard 'du' Unix tool.
    public static long diskUsage(File root) {
      long total = root.length();
                                                             start with direct disk usage
      if (root.isDirectory()) {
                                                             and if this is a directory,
        for (String childname : root.list()) {
                                                             then for each child
           File child = new File(root, childname);
                                                         // compose full path to child
          total += diskUsage(child);
                                                          // add child's usage to total
10
12
13
      System.out.println(total + "\t" + root);
                                                         // descriptive output
14
      return total:
                                                          // return the grand total
15
```

Code Fragment 5.5: A recursive method for reporting disk usage of a file system.

Linear Recursion

Test for base cases

- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

Recur once

- Perform a single recursive call
- This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
- Define each possible recursive call so that it makes progress towards a base case.

Recursive Problems - Recap

- Factorial and Disk Usage problems lend themselves naturally into recursive definitions:
 - factorial function definition is recursive.
 - In file systems the data structure is recursive, folders contain other folders, and then there are files.
- Each recursive step reduces the problem into a smaller instance and then the base case lies at the bottom, guaranteeing the convergence.
- Recursion leads to more readable algorithms.
- Let's illustrate these with more examples.

Example of Linear Recursion

Algorithm linearSum(A, n): Input:

Array, A, of integers Integer n such that $0 \le n \le |A|$

Output:

Sum of the first **n** integers in A

```
if n = 0 then
  return 0
else
  return
linearSum(A, n - 1) + A[n - 1]
```

Example: data = [4, 3, 6, 2, 8], n=5

The sum can be expressed recursively as the sum of n-1 elements plus the last one.

```
data = [4, 3, 6, 2, 8]

n-1
```

Example of Linear Recursion

Recursion trace of linearSum(data, 5) called on array data = [4, 3, 6, 2, 8]

Reversing an Array

```
Algorithm reverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and
Output: The reversal of the elements in A starting at
  index i and ending at index j
if i < j then
      Swap A[i] and A[j]
       reverseArray(A, i + 1, j - 1)
return
            data = [4, 3, 2, 6, 8]
```

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as reverseArray(A, i, j), not reverseArray(A)

Computing Powers

The power function, p(x,n)=xⁿ, can be defined recursively:

$$p(x,n) = \begin{cases} 1 & \text{if } n = 0 \\ 1 & \text{otherwise} \end{cases}$$

- This leads to a power function that runs in
 O(n) time (for we make n recursive calls)
- We can do better than this, however

Recursive Squaring

 We can derive a more efficient linearly recursive algorithm by using repeated squaring:

$$p(x,n) = \begin{cases} 1 & \text{if } x = 0 \\ x \cdot p(x,(n-1)/2)^2 & \text{if } x > 0 \text{ is odd} \\ p(x,n/2)^2 & \text{if } x > 0 \text{ is even} \end{cases}$$

For example,

$$2^{4} = 2^{(4/2)^{2}} = (2^{4/2})^{2} = (2^{2})^{2} = 4^{2} = 16$$

$$2^{5} = 2^{1+(4/2)^{2}} = 2(2^{4/2})^{2} = 2(2^{2})^{2} = 2(4^{2}) = 32$$

$$2^{6} = 2^{(6/2)^{2}} = (2^{6/2})^{2} = (2^{3})^{2} = 8^{2} = 64$$

$$2^{7} = 2^{1+(6/2)^{2}} = 2(2^{6/2})^{2} = 2(2^{3})^{2} = 2(8^{2}) = 128$$

Recursive Squaring Method

```
Algorithm Power(x, n):
    Input: A number x and integer n = 0
    Output: The value x<sup>n</sup>
   if n = 0 then
       return 1
   if n is odd then
      y = Power(x, (n - 1)/2)
      return x · y ·y
   else
      y = Power(x, n/2)
       return y · y
```

Analysis

Algorithm Power(x, n):

Input: A number x and integer n = 0

Output: The value xⁿ

if n = 0 then

return 1

if n is odd then

$$y = Power(x, (n-1)/2)$$

return x · y · y

else

Each time we make a recursive call we halve the value of n; hence, we make log n recursive calls. That is, this method runs in O(log n) time.

It is important that we use a variable twice here rather than calling the method twice.

Example: English Ruler

Print the **ticks** and **numbers** like an English ruler:

© 2014 Goodrich, Tamassia, Goldwasser

Recursive Decomposition

Define the intervals of different central tick length:

Recursive Definition

- An interval with a central tick length
 - $L \ge 1$ consists of:
 - An interval with a central tick lengthL-1
 - A single tick of length L
 - An interval with a central tick length
 L-1
- □ Base case is L=0

Slide by Matt Stallmann included with permission.

Using Recursion

drawInterval(length)

Input: length of a 'tick'

Output: ruler with tick of the given length in the middle and smaller rulers on either side

drawInterval(length)

if(length > 0) then

-drawInterval (length – 1)

-draw line of the given length

-drawInterval (length – 1)

Recursive Drawing Method

- The drawing method is based on the following recursive definition:
- An interval with a central tick lengthL >1 consists of:
 - An interval with a central tick length L–1
 - A single tick of length

L

An interval with a central tick length L–1

A Recursive Method for Drawing Ticks on an English Ruler

```
/** Draws an English ruler for the given number of inches and major tick length. */
    public static void drawRuler(int nlnches, int majorLength) {
      drawLine(majorLength, 0);
                                                  // draw inch 0 line and label
      for (int j = 1; j \le n Inches; j++) {
        drawInterval(majorLength -1);
                                                  // draw interior ticks for inch
        drawLine(majorLength, j);
                                                  // draw inch i line and label
 8
    private static void drawInterval(int centralLength) {
      if (centralLength >= 1) {
10
                                           // otherwise, do nothing
        drawInterval(centralLength -1); \leftarrow // recursively draw top interval
11
        drawLine(centralLength);
                                                  // draw center tick line (without label)
12
        drawInterval(centralLength -1);
13
                                               // recursively draw bottom interval
14
15
    private static void drawLine(int tickLength, int tickLabel) {
17
      for (int j = 0; j < tickLength; j++)
18
        System.out.print("-");
      if (tickLabel \geq = 0)
19
        System.out.print(" " + tickLabel);
20
      System.out.print("\n");
22
    /** Draws a line with the given tick length (but no label). */
    private static void drawLine(int tickLength) {
      drawLine(tickLength, -1);
25
26
```

Note the two recursive calls

Tail Recursion

- □ Tail recursion occurs when a linearly recursive method makes its **recursive call as its last step**.
- The array reversal method is an example.
- Such methods can be easily converted to nonrecursive methods (which saves on some resources).
- Example:

```
Algorithm IterativeReverseArray(A, i, j ):
```

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

```
while i < j do
```

Swap A[i] and A[j]

$$i = i + 1$$

$$j = j - 1$$

return

Binary Recursion

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example from before: the drawInterval method for drawing ticks on an English ruler.

```
 \begin{array}{lll} \textbf{private static void } & \text{drawInterval(int centralLength)} \ \{ & \text{if (centralLength} >= 1) \ \{ & \text{// otherwise, do nothing} \\ & \text{drawInterval(centralLength} - 1); & \text{// recursively draw top interval} \\ & \text{drawLine(centralLength);} & \text{// draw center tick line (without label)} \\ & \text{drawInterval(centralLength} - 1); & \text{// recursively draw bottom interval} \\ & \} \\ \} \\ \end{aligned}
```

Another Binary Recursive Method

- Problem: add all the numbers in an integer array A:
 - we can recursively compute the sum of the first half, and the sum of the second half, and add those sums together

Code Fragment 5.10: Summing the elements of a sequence using binary recursion.

Binary Recursive Method

Example trace of binarySum(data, 0, 7):

Figure 5.13: Recursion trace for the execution of binarySum(data, 0, 7).

□ The running time of binarySum is O(n), however binarySum uses $O(\log n)$ amount of additional space, whereas linearSum uses O(n)

Computing Fibonacci Numbers

□ Fibonacci numbers are defined recursively:

$$F_0 = 0$$

 $F_1 = 1$
 $F_i = F_{i-1} + F_{i-2}$ for $i > 1$.

Recursive algorithm (first attempt):

Algorithm BinaryFib(*k*):

Input: Nonnegative integer k

Output: The kth Fibonacci number F_k

if $k \leq 1$ then

return *k*

else

return BinaryFib(k-1) + BinaryFib(k-2)

Analysis

- Let n_k be the number of calls performed in the execution of BinaryFib(k)
 - $n_0 = 1$
 - $n_1 = 1$

 - $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$

 - $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 - $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 - $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
- Note that n_k at least doubles every other time
- □ That is, $n_k > 2^{k/2}$. It is exponential!

A Better Fibonacci Algorithm

Use linear recursion instead by defining a recursive method that returns an array with two consecutive Fibonacci numbers (F_k, F_{k-1}) :

Algorithm LinearFibonacci(k):

Input: A nonnegative integer k

Output: Pair of Fibonacci numbers (F_k, F_{k-1})

if $k \le 1$ then

return (k, 0)

else

(i, j) = LinearFibonacci(k – 1) //returns $\{F_{k-1}, F_{k-2}\}$ return (i +j, i) // we want $\{F_{k}, F_{k-1}\}$

LinearFibonacci makes k-1 recursive calls – no need to recompute the second value already known.

Multiple Recursion

- Motivating example:
 - summation puzzles
 - ◆ pot + pan = bib
 - dog + cat = pig
 - boy + girl = baby
- Multiple recursion:
 - makes potentially many recursive calls
 - not just one or two

Algorithm for Multiple Recursion

```
Algorithm PuzzleSolve(k,S,U):
Input: Integer k, sequence S, and set U (universe of elements to
  test)
Output: Enumeration of all k-length extensions to S using elements
  in U without repetitions
for all e in U do
   Remove e from U {e is now being used}
  Add e to the end of S
  if k = 1 then
        Test whether S is a configuration that solves the puzzle
        if S solves the puzzle then
                return "Solution found: " S
  else
        PuzzleSolve(k - 1, S,U)
```

© 2014 Goodrich, Tamassia, Goldwasser Recursion

Add e back to U {e is now unused}

Remove e from the end of S

Slide by Matt Stallmann included with permission.

Example

a,b,c stand for 7,8,9; not necessarily in that order

Visualizing PuzzleSolve

