Primfaktorzerlegung und Primzahltests

Maximilian Scholz

Proseminar Mathematik

June 24, 2014

Inhalt

Einleitung zu Primzahlen

Sieb des Eratosthenes

Pollard Rho Methode
Hase Igel Algorithmus
Pollard Rho Algorithmus
Komplexitt

Primzahlen

- Natürliche Zahlen > 1 die nur durch sich selbst und 1 teilbar sind.
- Es gibt unendlich viele Primzahlen. (Euklid)
- Jede natürliche Zahl lässt sich als Produkt von Primzalen darstellen. Bis auf die Reihenfolge ist diese Darstellung eindeutig. (Euklid)

▶ Der kleinste Teiler > 1 einer zusammengesetzten Zahl n ist eine Primzahl p.

- ▶ Der kleinste Teiler > 1 einer zusammengesetzten Zahl n ist eine Primzahl p.
- ▶ Da p der kleinste Teiler ist, gilt $p \leq \frac{n}{p}$, also $p^2 \leq n$.

- ▶ Der kleinste Teiler > 1 einer zusammengesetzten Zahl n ist eine Primzahl p.
- ▶ Da p der kleinste Teiler ist, gilt $p \leq \frac{n}{p}$, also $p^2 \leq n$.
- ▶ Alle zusammengesetzten Zahlen n < N werden also beim Sieben mit einer Siebzahl q mit $q^2 < n$ gestrichen.

- ▶ Der kleinste Teiler > 1 einer zusammengesetzten Zahl n ist eine Primzahl p.
- ▶ Da p der kleinste Teiler ist, gilt $p \leq \frac{n}{p}$, also $p^2 \leq n$.
- ▶ Alle zusammengesetzten Zahlen n < N werden also beim Sieben mit einer Siebzahl q mit $q^2 < n$ gestrichen.
- ▶ Die übrigen Zahlen sind also Primzahlen.

BILD

Hase Igel Algorithmus

▶ Sei M eine endliche Menge mit der Abbildung $f: M \to M$.

- ▶ Sei M eine endliche Menge mit der Abbildung $f: M \rightarrow M$.
- Man wähle $x_0 \in M$ und erzeuge die Folge $x_0, x_1, x_2, ...$ mit $x_{i+1} = f(x_i)$.

- lacksquare Sei M eine endliche Menge mit der Abbildung f:M o M.
- ▶ Man wähle $x_0 \in M$ und erzeuge die Folge $x_0, x_1, x_2, ...$ mit $x_{i+1} = f(x_i)$.
- ▶ $\exists i, j \in \mathbb{N}$, sodass $i \neq j$ und $x_i = x_j$ gilt.

- ▶ Sei M eine endliche Menge mit der Abbildung $f: M \to M$.
- ▶ Man wähle $x_0 \in M$ und erzeuge die Folge $x_0, x_1, x_2, ...$ mit $x_{i+1} = f(x_i)$.
- ▶ $\exists i, j \in \mathbb{N}$, sodass $i \neq j$ und $x_i = x_j$ gilt.
- ▶ Die Folge $y_0, y_1, y_2, ...$ gegeben durch $y_0 = x_0$ und $y_{i+1} = f(f(y_i))$ ist gleich der Folge $x_0, x_2, x_4, ...$

Beweis Teil 1

• $g: \mathbb{N} \to M$ gegeben durch $g(n) = f^n(x_0)$

- $ightharpoonup g: \mathbb{N} \to M$ gegeben durch $g(n) = f^n(x_0)$
- ▶ M ist beschränkt also kann g nicht injektiv sein. Daraus folgt: $\exists i, j \in \mathbb{N}, i \neq j \text{ sodass } g(i) = g(j) \text{ und damit } x_i = x_j \text{ bei } i \neq j.$

Beweis Teil 2

▶ Angenommen $x_i = x_j$ für j > i.

- ▶ Angenommen $x_i = x_j$ für j > i.
- ▶ Falls $n \ge i$ und $2n = n + k(j i) \ge i$ mit $k \ge 0$ muss $x_n = x_2 n$ gelten.

- ▶ Angenommen $x_i = x_j$ für j > i.
- ▶ Falls $n \ge i$ und $2n = n + k(j i) \ge i$ mit $k \ge 0$ muss $x_n = x_2n$ gelten.
- ▶ Man wähle $k \ge 0$ sodass $n = k(j-1) \ge i$ und erhält das gesuchte n.

- ▶ Angenommen $x_i = x_j$ für j > i.
- ▶ Falls $n \ge i$ und $2n = n + k(j-i) \ge i$ mit $k \ge 0$ muss $x_n = x_2n$ gelten.
- ▶ Man wähle $k \ge 0$ sodass $n = k(j-1) \ge i$ und erhält das gesuchte n.
- Aus $x_{m+2} = f(f(x_m))$ folgt $y_m = x_{2m}$.

$$a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$ightharpoonup a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$a = p \cdot x + c, \quad b = p \cdot y + c$$

$$ightharpoonup a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$ightharpoonup a = p \cdot x + c, \quad b = p \cdot y + c$$

$$a - b = p(x - y) + (c - c) = p(x - y)$$

$$a \equiv b \pmod{p} \Leftrightarrow p|(a-b)$$

$$ightharpoonup a = p \cdot x + c, \quad b = p \cdot y + c$$

$$a - b = p(x - y) + (c - c) = p(x - y)$$

$$ightharpoonup p|p(x-y)$$

Pollard Rho Methode

ightharpoonup Sei N eine zusammengesetzte Zahl und p ein Primfaktor von N.

Pollard Rho Methode

- ▶ Sei N eine zusammengesetzte Zahl und p ein Primfaktor von N.
- ▶ Gesucht sind $0 \le a, b < N$ sodass $a \equiv b \pmod{p}$. Dann gilt p|a-b

Pollard Rho Methode

- ▶ Sei N eine zusammengesetzte Zahl und p ein Primfaktor von N.
- ▶ Gesucht sind $0 \le a, b < N$ sodass $a \equiv b \pmod{p}$. Dann gilt p|a-b
- ▶ Daraus folgt 1 < qqT(a-b, N) < N. Wenn $a \neq b$ gilt, ist ggT(a - b, N) ein nichttrivialer Faktor von N.

▶ Sei f(x) eine ganzzahlige Polynomfunktion und $S \in \mathbb{Z}$.

- ▶ Sei f(x) eine ganzzahlige Polynomfunktion und $S \in \mathbb{Z}$.
- ▶ Man erzeuge eine Folge von Pseudozufallszahlen mit: $x_0 = S$, $x_{i+1} = f(x_i) \mod N$.

- ▶ Sei f(x) eine ganzzahlige Polynomfunktion und $S \in \mathbb{Z}$.
- Man erzeuge eine Folge von Pseudozufallszahlen mit: $x_0 = S$, $x_{i+1} = f(x_i) \mod N$.
- Wird schlielich periodisch, da beschränkt.

- ▶ Sei f(x) eine ganzzahlige Polynomfunktion und $S \in \mathbb{Z}$.
- Man erzeuge eine Folge von Pseudozufallszahlen mit: $x_0 = S, \ x_{i+1} = f(x_i) \mod N.$
- Wird schlielich periodisch, da beschränkt.
- ▶ Anstatt $x_k = {}^? y_k$ suchen wir nach $ggT(x_k y_k) > {}^? 1$

Pollard Rho Beispiel

Gesucht: Primfaktorzerlegung von N=143

Parameter: $x_0 = y_0 = 0$, $f(x) = (x^2 + 1) \mod N$

k	$x_k = f(x_{k-1})$	$y_k = f(f(y_{k-1}))$	$ggT(x_k - y_k, N)$
0	0	0	0
1	1	2	1
2	2	26	1
3	5	15	1
4	26	26	0
5	105	15	1
6	15	26	11

Komplexitt

Gebutstagsproblem

Pollard Rho Komplexitt