16. Декартово уравнение на права в равнината

Нека сме фиксирали афинна координтана система K=Oxy. Нека l е права с общо уравнение l:Ax+By+C=0, която не е успоредна на ординатната ос Oy. Тогава $B\neq 0$, тъй като при B=0, l е успоредна на Oy. Следователно Ax+By+C=0 е ековивалентно на

$$y = -\frac{A}{B}x - \frac{C}{B}. (1)$$

Означаваме с $k=-\frac{A}{B}$ и $m=\frac{C}{B}$, т.е.

$$l: y = kx + m. (2)$$

Уравнение (2) се нарича декартово уравнение на правата l спрямо K. Коефициента k пред x се нарича ъглов коефициент на l.

Нека сега вземем ненулев вектор $\nu(a,b)$ успореден на правата l. Общото уравнение на l е

$$l: -kx + y - m = 0, (3)$$

 $\nu \parallel l$, следователно

$$-ka + b = 0,$$

 $b = ka$

Тъй като ν е ненулев, то $a \neq 0$ и следователно $k = \frac{b}{a}$

Нека сега координатната система да е ортогонална. Нека \overrightarrow{r} е лъчът върху l сочещ към горната полуравнина и нека означим с $\alpha = \not< (O\overrightarrow{x}, \overrightarrow{r})$ (ако l съвпада с Ox, тогава $\alpha = 0$).

Имаме, че вектора u(1,k) е колинеарен на l, също така и вектора -u(-1,-k). Ако k>0, то тогава $u\uparrow\uparrow\overrightarrow{r}$ и $tg\alpha=k$. Ако k<0, тогава $-u\uparrow\uparrow\overrightarrow{r}$ и отново $tg\alpha=k$.