Indian Institute of Technology Jodhpur CSL2010: Introduction to Machine Learning Lab 6&7, Due Date: Oct 5, 2025, Max Marks: 70+30 for Viva

1. Consider the dataset $\mathcal{D} = \{x_1, \dots, x_n\}$ given in the file dataset.txt. Here, each point $x_i \in \mathbb{R}^2$ is described by two features. The last column of the sheet contains the ground-truth cluster labels. However, these labels will only be used to measure the performance and will not be used anywhere in the training. Now, do the following:

k-Means Clustering Algorithm

- (a) Implement the k-Means algorithm to cluster the points into two clusters. You can use any two data points from the dataset \mathcal{D} uniformly at random to initialize the cluster centres. **[Compulsory to implement in the lab 6]**.
- (b) Plot the obtained clusters using the *k*-Means algorithm with different colors for each cluster.
- (c) In order to evaluate the performance of the *k*-Means algorithm, find the percentage of the points for which the estimated cluster labels are correct.

Spectral Clustering Algorithm:

(a) Use the similarity function $W_{ij} = \begin{cases} e^{-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{\sigma}}, & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$ to define the adjacency matrix $\mathbf{W} \in \mathbb{R}^{n \times n}$.

Choose the appropriate value of σ . Define the degree matrix $D \in \mathbb{R}^{n \times n}$ where $D_{rr} = \sum\limits_{i=1}^n W_{ri}$ and then the Laplacian matrix as L = D - W. Now, find the eigenvalue decomposition of the Laplacian matrix as $Lu_i = \lambda_i u_i$. Ensure that $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. You can use any inbuilt function to find the eigenvalue-eigenvector decomposition of the Laplacian matrix L.

[Compulsory to implement in the lab 7].

- (b) Let $\mathbb{H} = \begin{bmatrix} \mathbf{r}_1^\top \\ \vdots \\ \mathbf{r}_n^\top \end{bmatrix} \in \mathbb{R}^{n \times 2}$ be the optimal cluster assignment matrix where $\mathbf{r}_i \in \mathbb{R}^2$ represents the spectral embedding of the data point \mathbf{x}_i . Plot the spectral embeddings and verify that the two clusters are now linearly separable.
- (c) Perform the k-means clustering on the spectral embeddings $\{r_1, \ldots, r_n\}$. Plot the obtained clusters with different colors.
- (d) In order to evaluate the performance of the spectral clustering algorithm, find the percentage of the points for which the estimated cluster labels are correct.