SHELF LIFE OF SNACK PRODUCTS

BY:

KURMA JHANSI NAVEENA

MS - BUSINESS AND INFORMATION SYSTEMS

OUTLINE

- •Shelf life introduction
- Given dataset
- Models
- Logistic regression cross validation model
- Results
- Challenges
- Example

SHELF LIFE

DEFINITION

According to Institute of Food Science and Technology,

"The period during which the food product will remain safe; be certain to retain its desired sensory, chemical, physical, microbiological, and functional characteristics; where appropriate, comply with any label declaration of nutrition data, when stored under the recommended conditions."

Shelf life is used in reference to these common codes: (Use by Date, Sell by Date, and Best Before Date).

FACTORS

Intrinsic factors include:

- 1. Initial quality
- 2. Nature of product
- 3. Product formulation

Extrinsic factors include:

- 1. Processing methods
- 2. Packaging
- 3. Transportation and storage conditions
- 4. Consumer handling

DATASET

- Contains 15 attributes and 749 records, which consists of 8 numerical attributes and 7 categorical attributes.
- Target variable: Difference From Fresh.
- Product is considered fresh if Difference From Fresh is less than equal to 20.
- Important features are selected.
- Categorical variables undergo one hot encoding.
- The dataset is normalized.

MODELS

	LOGISTIC REGRESSION	LOGISTIC REGRESSION CROSS VALIDATION	SUPPORT VECTOR MACHINE
Accuracy	0.84000	0.83979	0.86000
ROC/AUC	0.55	0.58	0.56

LOGISTIC REGRESSION CROSS VALIDATION

Definition:

Cross validation version of logistic regression is LogisticRegressionCV() from sklearn package.

This class implements logistic regression and 10 – fold cross validation using liblinear solver.

Parameters:

Number of folds (cv) = 10

Multi – class = 'auto'

Solver = 'liblinear'

CONFUSION MATRIX

RESULTS

• Precision: 84.26%

•Recall: 98.86%

•F1 – measure: 90.98%

CHALLENGES

- Missing values
- 2. No correlation among variables
- 3. No knowledge on intrinsic factors of the products
- 4. Anonymity of "Difference From Fresh"
- 5. Products synthesis

EXAMPLE

PUMPKIN

Pumpkins Expiration Date

Fresh Pumpkins last for	2-3 Months	3-5 Months
Canned Pumpkin lasts for	1-2 Years	1-2 Years
Fresh Cut Pumpkins last for	2-3 Days	6-8 Months
Cooked Pumpkin lasts for	7 Days	6-8 Months
Canned Pumpkin lasts for	7 Days	3-5 Months
Pumpkin Pie lasts for	3-4 Days	4-6 Months

ONION PAKORA

- Lasts for 6 8 months
- Fresh onions last for 1 2 months in Fridge
- •Fresh chopped onions last for 1 week in Fridge

Gram flour

Onions

 Lasts for 1 week in Fridge

Onion pakora

Thank you

References

- "Determining Product Shelf Life", By Carol Zweep, September 13, 2018, https://www.foodqualityandsafety.com/article/determining-product-shelf-life/
- 2. http://www.eatbydate.com/