MA385: Tutorial 1

These exercises are for Tutorial 1 (Week 4). You do not have to submit this work. However, you can expect similar questions on the final exam.

In the following questions, take

$$f(x) = x - \cos(x) \tag{1}$$

It may be useful to know that, if $f(\tau) = 0$ then $\tau \approx 0.7390851332$.

- Q1. Show that there is a solution to f(x) = 0 in the interval [0, 1].
- Q2. Suppose we want to implement the Bisection Method for this problem, with $x_0 = 0$ and $x_1 = 1$. If the sequence generated is denoted $\{x_0, x_1, x_2, \ldots\}$, what is the minimum number of iterations needed to ensure that $|x_k \tau| \le 10^{-3}$?
- Q3. Is it possible to use Theorem 1.5.2 to determine that Newton's method, applied to f in (1) will converge for any choice of $x_0 \in [0,1]$? Can it be used to determine that Newton's method will converge for any $x_0 \in \mathbb{R}$?
- Q4. Take $x_0=1$. Use Newton's method x_1 , x_2 , and x_3 as estimates for solutions to $x-\cos(x)=0$. (If possible, evaluate the corresponding values of $f(x_k)$, and $|\tau-x_k|$, to convince yourself that the method is converging) .
- Q5. Let's suppose we don't know τ , only that it is located between x=0 and x=1. Taking $x_0=1$, give upper bounds for $|\tau-x_1|$, $|\tau-x_2|$, and $|\tau-x_3|$ using the Newton Error Formula. How does this compare with the corresponding bounds for the Bisection Method, and with the actual errors?