Supplemental Tables

Name	Original	Length		
	length	in MSA		
NSP1	539	539		
NSP2	1913	1913		
NSP3	5834	5521		
NSP4	1499	1499		
NSP5	917	917		
NSP6	869	869		
NSP7	248	248		
NSP8	593	593		
NSP9	338	338		
NSP10	416	416		
NSP11	38	38		
NSP12	2794	2794		
NSP13	1802	1802		
NSP14	1580	1580		
NSP15	1037	1037		
NSP16	893	893		
S	3821	2341		
ORF3a	827	830		
E	227	230		
M	668	668		
ORF6	185	192		
ORF7a	365	368		
ORF7b	131	134		
ORF8	365	21		
N	1259	1268		
ORF10	116	116		

Table 1: Overview of the genes for which trees were built, including their name/symbol, original length in the SARS-CoV-2 genome and the length of the corresponding sequence in the multiple sequence alignment. Order corresponds to their order in the SARS-CoV-2 genome. Note that all non-structural proteins (NSP's) together form the ORF-1a and ORF-1ab proteins, but their sequences are used as separate 'genes' here.

		Edge contraction thresholds					
		None	None	None	l=0.01	l=0.01	l=0.01
Breakpoints	Selection	None	s = 70	s=90	None	s = 70	s=90
Blocks	A (n=12)	9	9	9	9	9	9
	A- (n=11)	8	7	7	7	6	7
	B (n=9)	9	7	7	8	7	7
	B- (n=8)	5	5	5	5	5	4
	C (n=7)	5	5	4	5	5	4
	C- (n=6)	1	1	1	1	1	1
Genes	A (n=12)	23	22	21	19	19	20
	A- (n=11)	21	17	17	16	15	12
	B (n=9)	20	22	19	18	19	18
	B- (n=8)	12	9	9	10	8	8
	C (n=7)	10	9	9	9	8	8
	C- (n=6)	1	1	1	1	1	1

Table 2: Unique trees for different breakpoint location sets, taxon selections (n = number of taxa) and thresholds for edge contraction based on branch length (l) and BS support values (s). "—" indicates that no solution was found within the runtime limit of 5 minutes.

		Edge contraction thresholds						
		None	None	None	l=0.01	l=0.01	l=0.01	
Breakpoints	Selection	None	s=70	s=90	None	s=70	s=90	
Blocks	A (n=12)	2 1 1 0 0	4 2 1 1 1	20000	5 5 6 5 6	4 2 3 2 1	11100	
	A- (n=11)	00001	$1\ 0\ 0\ 0\ 1$	1 1 0 0 1	$1\ 1\ 0\ 5\ 4$	11110	0 1 0 0 0	
	B (n=9)	88887	99957	3 2 2 2 2	$4\ 4\ 3\ 4\ 5$	2 2 1 2 1	99299	
	B- (n=8)	$2\ 1\ 1\ 1\ 0$	3 3 3 0 0	$5\ 5\ 6\ 5\ 5$	11101	11010	11110	
	C (n=7)	66611	$4\ 4\ 2\ 4\ 4$	11 11 11 8 9	$1\ 3\ 2\ 2\ 1$	5 5 9 8 11	4 2 2 2 1	
	C- (n=6)	$1\ 2\ 0\ 1\ 1$	2 2 1 0 1	1 1 0 1 1	2 2 2 2 2	2 1 1 0 0	2 2 2 2 1	
Genes	A (n=12)	76000	1 3 3 1 0	5 5 3 4 3	2 2 3 3 2	3 2 2 3 3	0 1 8 0 1	
	A- (n=11)	$1\ 1\ 2\ 2\ 1$	$5\ 5\ 5\ 4\ 1$	2 1 1 1 0	0 2 3 3 3	66668	00011	
	B (n=9)	99992	$2\ 2\ 2\ 2\ 2$	1 2 6 1 3	3 3 3 3 3	78333	$5\ 4\ 4\ 4\ 4$	
	B- (n=8)	$0\ 0\ 0\ 2\ 3$	$4\ 1\ 1\ 1\ 0$	5 2 5 2 3	11101	11112	10100	
	C (n=7)	$1\ 2\ 1\ 3\ 1$	$5\ 5\ 5\ 1\ 1$	26232	$7\ 6\ 6\ 6\ 2$	38858	3 3 3 4 4	
	C-(n=6)	$1\ 1\ 1\ 0\ 2$	2 2 2 0 1	3 2 1 3 0	58777	11110	61101	

Table 3: Reticulation numbers of each of the five networks constructed by the Maximum Pseudo-Likelihood algorithm for different breakpoint location sets, taxon selections (n = number of taxa) and thresholds for edge contraction based on branch length (l) and BS support values (s).