### portfolio\_optimizer

September 20, 2017

#### 0.0.1 Import all required packages

```
In [1]: from pandas_datareader import data
        import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        import pickle
        import copy
        import json
        import os
        import glob
        import time
        import datetime
        from IPython.display import display
                                                             # Allows the use of display() for .
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score, fbeta_score, make_scorer, f1_score
        from sklearn.naive_bayes import GaussianNB
        from sklearn import cross_validation
        from sklearn.svm import SVC
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn.grid_search import GridSearchCV
        from keras.models import Sequential
        from keras.layers import Dense
        from keras.models import model_from_json
        from keras.utils import np_utils
        from sklearn.preprocessing import LabelEncoder
        from keras import optimizers
        from keras import regularizers
        import multiprocessing as mp
        from mpl_toolkits.mplot3d import Axes3D
        # Pretty display for notebooks
        %matplotlib inline
```

/Users/Gio/anaconda/lib/python3.5/site-packages/sklearn/cross\_validation.py:44: DeprecationWarring "This module will be removed in 0.20.", DeprecationWarning)
/Users/Gio/anaconda/lib/python3.5/site-packages/sklearn/grid\_search.py:43: DeprecationWarning:
DeprecationWarning)
Using TensorFlow backend.

#### 0.0.2 Updateable Parameters

```
In [2]: ## Start time. Used to measure execution time.
                 START = time.clock()
                 ## Yahoo's API has changed, so we'll use google as our source
                 #DATA_SOURCE = 'google'
                 DATA_SOURCE = 'yahoo'
                 ## Date range used for training data
                 #TRAINING_START_DATE = '2010-01-01'
                 #TRAINING_END_DATE = '2017-7-31'
                 TRAINING_START_DATE = datetime.datetime(2014, 4, 1)
                 TRAINING_END_DATE = datetime.datetime(2016, 5, 31)
                 ## Date range used for testing data
                 #TEST_START_DATE = '2016-06-01'
                 #TEST_END_DATE = '2017-7-31'
                 TEST_START_DATE = datetime.datetime(2016, 6, 1)
                 TEST_END_DATE = datetime.datetime(2017, 7, 31)
                 # ## Stock tickers for training data
                 TRAINING_TICKERS = ['AAPL','GOOG','T','IMAX','IBM','NFLX','SIRI','S','PLUG','C',\
                                                          'ZNGA','WMS','BAC','AMZN','FB','P','WM','NOK','DDD','XME','XONE','S
                                                          'TSLA', 'SSYS', 'TXN', 'F', 'GS', 'LQMT', 'HTZ', 'BAH', 'GLW', 'SPWR', \
                                                          'BIDU', 'SRPT', 'YGE', 'CNX', 'URRE', 'VJET', 'RAD', 'NQ', \
                                                          'KORS','TWTR','HLF','ORCL','WLL','BLDP','PEG','MJNA','CBIS',\
                                                          'TM', 'SBUX', 'MBLY', 'MRK', 'DBO', 'PFE', 'CAMP', 'TRXC', \
                                                          'BMY','FE','VTR','UHT','MVO','KF','RACE','STOR','MU','RTN']
                  \# \ TRAINING\_TICKERS = ['AAPL', 'GOOG', 'YHOO', 'T', 'IMAX', 'IBM', 'NFLX', 'SIRI', 'S', 'IMAX', 'IBM', 'NFLX', 'SIRI', 'S', 'IMAX', 'IMAX'
                                             'C', 'BAC', 'P', 'NOK', 'XONE', 'SSYS', 'TSLA', 'AMZN', 'SDRL', 'DDD', \
                 #
                                             'DBO', 'SRPT', 'SPWR', 'SCTY', 'FB', 'URRE', 'NQ', 'TWTR', 'F', 'BAH', \
                                             'MZDAY', 'FSYS', 'BIDU', 'KORS', 'HLF', 'ORCL', 'MBLY']
                                         ## SOME NETWORK CAUSES MZDAY AND FSYS TO HAVE SOME Nan for some reason
                 ## Stock tickers for testing data
                 ## unable to read SHOP, HEMP, LMT
                 # TESTING_TICKERS = ['BA','OLED', 'HON','MA','TPLM', 'SD', 'FCEL', 'CHK', 'CMG','UHT',
                                                               'UHT', 'BMY', 'FE', 'VTR', 'UHT', 'MVO', 'KF', 'RACE', 'MU', 'RTN']
                 #TESTING_TICKERS = ['BA','OLED', 'HON','MA','TPLM', 'SD', 'FCEL', 'CHK', 'CMG']
                 TESTING_TICKERS = ['BA', 'HON', 'MA', 'TPLM', 'SD', 'FCEL', 'CHK', 'CMG']
```

```
#TESTING_TICKERS = ['BA', 'HON', 'MA']
#TESTING_TICKERS = ['SD', 'FCEL', 'CHK', 'CMG']
## Initial money to be invested
MONEY = 10000
## Commission rate when buying/selling stocks
COMM RATE = 4.95
## Long term capital gain tax rate (percentage)
GAIN_LONG = 0.15
## Short term capital gain tax rate (percentage).
## Also used for losses, assuming its the individuals tax bracket
GAIN\_SHORT = 0.25
## Models predict the ratio base on these targets
#TARGET_RATIOS = ['vr15', 'vr25', 'vr40']
TARGET_RATIOS = ['vClose','vr2','vr3','vr5','vr10','vr15','vr25','vr40']
## New target ratio, will not just be relative to close
#TARGET_RATIOS = ['Close_pc', 'r2_p2', 'r3_p3', 'r5_p5', 'r10_p10', 'r15_p15', 'r25_p25', 'r4
## Used to determine when predictions will be a buy/sell
\#SELL \ BUY \ VALUES = [(1,1)]
SELL_BUY_VALUES = [(0.985, 0.985), (0.995, 0.995, 0.995), (1,1), (1.005, 1.005), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.9
                                             (1.01,1.01),(1.015,1.015),
                                             (0.985, 1.015), (0.99, 1.01), (0.995, 1.005), 
                                             (0.995,1.00),(1.00,1.005),(1.005,1.01), 
                                             (1.00, 1.015), (1.00, 1.01)
## Set to True if we are reading existing models
## Set to False to generate new models
READ_EXISTING_MODELS = True
## Set True if using multiprocessing
MULTIPROCESSOR = True
## Number of processes for multiprocessing pool
NUM_PROCESSES = 8
## Set True to read existing training stocks
## If training tickers have been updated, set this to False
READ_EXISTING_TRAINING_STOCKS = True
## Set True to read existing testing stocks
## If testing tickers have been updated, set this to False
READ_EXISTING_TESTING_STOCKS = True
```

#### 0.0.3 Get all the stocks data. Save data as pickle files

```
In [3]: def gather_training_data():
            all_weekdays = pd.date_range(start=TRAINING_START_DATE,end=TRAINING_END_DATE,freq=
            ## panel type
            panel_data = data.DataReader(TRAINING_TICKERS,DATA_SOURCE,TRAINING_START_DATE,\
                                          TRAINING_END_DATE)
            if DATA_SOURCE == 'yahoo':
                ## Yahoo has extra column
                panel_data.drop('Adj Close', inplace=True)
            panel_data.drop('Volume', inplace=True)
            ## save to pickle
            panel_data.to_pickle('training_stocks.pkl')
        def gather_testing_data():
            all_weekdays = pd.date_range(start=TEST_START_DATE,end=TEST_END_DATE,freq='B')
            panel_data = data.DataReader(TESTING_TICKERS,DATA_SOURCE,TEST_START_DATE,TEST_END_I
            if DATA_SOURCE == 'yahoo':
                ## Yahoo has extra column
                panel_data.drop('Adj Close', inplace=True)
            panel_data.drop('Volume', inplace=True)
            panel_data.to_pickle('testing_stocks.pkl')
        ## Read existing data
        if READ_EXISTING_TRAINING_STOCKS == False:
            gather_training_data()
        if READ_EXISTING_TESTING_STOCKS == False:
            gather_testing_data()
0.0.4 Helper function to get the rolling averages. 2, 3, 5, 10, 15, 25 and 40-day moving averages.
In [4]: def get_rolling(df):
            stock = df['Close']
            r2 = stock.rolling(window=2).mean()
            r3 = stock.rolling(window=3).mean()
            r5 = stock.rolling(window=5).mean()
            r10 = stock.rolling(window=10).mean()
            r15 = stock.rolling(window=15).mean()
            r25 = stock.rolling(window=25).mean()
            r40 = stock.rolling(window=40).mean()
```

```
return r2, r3, r5, r10, r15, r25, r40
```

#### 0.0.5 Helper function to plot stocks data, with rolling averages

```
In [5]: def plot_stock(tick, df):
            print("Plotting: ", tick)
            close = df['vClose']
            r2 = df['vr2']
            r3 = df['vr3']
            r5 = df['vr5']
            r10 = df['vr10']
            r15 = df['vr15']
            r25 = df['vr25']
            r40 = df['vr40']
            fig = plt.figure()
            ax = fig.add_subplot(1,1,1)
            ax.plot(close.index,close,label=tick)
            ax.plot(r2.index, r2, label='2 days rolling')
            ax.plot(r3.index, r3, label='3 days rolling')
            ax.plot(r5.index, r5, label='5 days rolling')
            ax.plot(r10.index, r10, label='10 days rolling')
            ax.plot(r15.index, r15, label='15 days rolling')
            ax.plot(r25.index, r25, label='25 days rolling')
            ax.plot(r40.index, r40, label='40 days rolling')
            ax.set_xlabel('Date')
            ax.set_ylabel('Closing prices ($)')
            ax.legend()
            #plt.show()
            #fig.savefig("figures/"+tick+'.png')
            fig.savefig("figures/"+tick+'.svg', format='svg', dpi=1200)
            plt.close(fig)
```

#### 0.0.6 Helper function to statistics of the training data

#### 0.0.7 Get each DataFrame of the entire list of stocks for training, from the pickle file

```
In [7]: def get_training_stocks_df(filename):
            processed_df = pd.DataFrame()
            raw_inputs_df = pd.DataFrame()
            raws = []
            processed = []
            panel_data = pd.read_pickle(filename)
                                                                         ## read saved stocks d
            for tick in TRAINING_TICKERS:
                ## Extract single stock from panel_data
                df = panel_data[:,:,tick]
                                                                         ## becomes df type, fr
                df.to_csv("training_data/"+tick+".csv")
                                                                         ## raw input
                raws.append(df)
                                                                         ## gather all the raw
                ## Get full df with 109 columns
                df = get_stock_df(df,tick)
                ## Save df
                df.to_csv("training_data/"+tick+"_processed.csv")
                ## Plot stock
                plot_stock(tick,df)
                #processed_df = processed_dfmain_df.append(df)
                processed.append(df)
                                                                 ## faster to append once, with
            ## append all raw input to one df, then save
            raw_inputs_df = raw_inputs_df.append(raws)
            raw_inputs_df.to_csv("training_data/all_raw_data.csv")
            ## append all processed input to on df, then save
            processed_df = processed_df.append(processed)
                                                                 ## faster to append once, with
            processed_df.to_csv("training_data/all_processed_data.csv")
            return processed_df
```

## 0.0.8 Helper function to get DataFrame of individual stocks. Generates 108 columns, 20 columns will be removed later

```
Open_p2, High_p2, Low_p2, Close_p2, r2_p2, r3_p2, r5_p2, r10_p2, r15_p2, r25_p2, r40_p.
Open_p3, High_p3, Low_p3, Close_p3, r2_p3, r3_p3, r5_p3, r10_p3, r15_p3, r25_p3, r40_p
Open_p5, High_p5, Low_p5, Close_p5, r2_p5, r3_p5, r5_p5, r10_p5, r15_p5, r25_p5, r40_p
Open_p10, High_p10, Low_p10, Close_p10, r2_p10, r3_p10, r5_p10, r10_p10, r15_p10, r25_
Open_p15, High_p15, Low_p15, Close_p15, r2_p15, r3_p15, r5_p15, r10_p15, r15_p15, r25_
Open_p25, High_p25, Low_p25, Close_p25, r2_p25, r3_p25, r5_p25, r10_p25, r15_p25, r25_p
Open_p40, High_p40, Low_p40, Close_p40, r2_p40, r3_p40, r5_p40, r10_p40, r15_p40, r25_
def get_stock_df(df,tick):
    ## Yahoo and Google data source returns different orders, ## make sure its this or
    #df = df.reindex axis(['Open', 'High', 'Low', 'Close', 'Volume'], axis=1)
    df = df.reindex_axis(['Open','High','Low','Close'], axis=1)
                                                             ## get moving averages
   r2, r3, r5, r10, r15, r25, r40 = get_rolling(df)
    ## Rename Volume column then remove it
     vol = df['Volume']
     vol = vol.to_frame()
#
     vol.columns = ['Vol']
      df = df.drop('Volume', 1)
                                                               ## 1 for axis 1, which i
    ## Rename columns
    df_r2= r2.to_frame()
                                                             ## from series to df
    df r2.columns = ['r2']
                                                             ## change column title
    df_r3= r3.to_frame()
    df_r3.columns = ['r3']
    df_r5= r5.to_frame()
    df_r5.columns = ['r5']
    df_r10= r10.to_frame()
    df_r10.columns = ['r10']
    df_r15= r15.to_frame()
    df r15.columns = ['r15']
   df_r25= r25.to_frame()
    df_r25.columns = ['r25']
    df_r40= r40.to_frame()
    df_r40.columns = ['r40']
    ## Shift rows to generate next/previous values
    #predict = df['Close'].copy()
    predict = df['Close'].shift(-1)
                                                                              ## a seri
   predict = predict.to_frame()
```

```
predict.columns = ['predict']
prev_close = df['Close'].shift(1)
prev_close = prev_close.to_frame()
prev_close.columns = ['prev_close']
prev r2 = df r2['r2'].shift(1)
prev_r2 = prev_r2.to_frame()
prev r2.columns = ['prev r2']
prev_r3 = df_r3['r3'].shift(1)
prev_r3 = prev_r3.to_frame()
prev_r3.columns = ['prev_r3']
prev_r5 = df_r5['r5'].shift(1)
prev_r5 = prev_r5.to_frame()
prev_r5.columns = ['prev_r5']
prev_r10 = df_r10['r10'].shift(1)
prev r10 = prev r10.to frame()
prev_r10.columns = ['prev_r10']
prev_r15 = df_r15['r15'].shift(1)
prev_r15 = prev_r15.to_frame()
prev_r15.columns = ['prev_r15']
prev_r25 = df_r25['r25'].shift(1)
prev_r25 = prev_r25.to_frame()
prev_r25.columns = ['prev_r25']
prev_r40 = df_r40['r40'].shift(1)
prev_r40 = prev_r40.to_frame()
prev_r40.columns = ['prev_r40']
## Generate entire dataframe
## encapsulate in a list for multiple df
  df1 = predict.join([prev_close,prev_r2,prev_r3,prev_r5,prev_r10,prev_r15,\)
                      prev_r25, prev_r40, vol])
df1 = predict.join([prev_close,prev_r2,prev_r3,prev_r5,prev_r10,prev_r15,\)
                    prev_r25,prev_r40])
df2 = df.join([df_r2,df_r3,df_r5,df_r10,df_r15, df_r25, df_r40])
df3 = df2.copy()
df4 = df2.copy()
df5 = df2.copy()
df6 = df2.copy()
df6 = df2.copy()
df7 = df2.copy()
df8 = df2.copy()
```

```
df9 = df2.copy()
df10 = df2.copy()
## will have original value (not percentage)
df10.columns = ['vOpen','vHigh','vLow','vClose','vr2','vr3',\
                'vr5','vr10','vr15','vr25','vr40']
## will be with respect to prev_close
df2.columns = ['Open_pc', 'High_pc', 'Low_pc', 'Close_pc', 'r2_pc', 'r3_pc', 'r5_pc', \
               'r10_pc','r15_pc','r25_pc','r40_pc']
## will be with respect to prev_r2
df3.columns = ['Open_p2', 'High_p2', 'Low_p2', 'Close_p2', 'r2_p2', 'r3_p2', 'r5_p2', \
               'r10_p2','r15_p2','r25_p2','r40_p2']
## will be with respect to prev_r3
df4.columns = ['Open_p3','High_p3','Low_p3','Close_p3','r2_p3','r3_p3','r5_p3',\
               'r10_p3','r15_p3','r25_p3','r40_p3']
## will be with respect to prev_r5
df5.columns = ['Open_p5', 'High_p5', 'Low_p5', 'Close_p5', 'r2_p5', 'r3_p5', 'r5_p5', \
               'r10_p5','r15_p5','r25_p5','r40_p5']
## will be with respect to prev_r10
df6.columns = ['Open_p10', 'High_p10', 'Low_p10', 'Close_p10', 'r2_p10', 'r3_p10', \
               'r5_p10','r10_p10','r15_p10','r25_p10','r40_p10']
## will be with respect to prev_r15
df7.columns = ['Open_p15', 'High_p15', 'Low_p15', 'Close_p15', 'r2_p15', 'r3_p15', \
               'r5_p15','r10_p15','r15_p15','r25_p15','r40_p15']
## will be with respect to prev_r25
df8.columns = ['Open_p25','High_p25','Low_p25','Close_p25','r2_p25','r3_p25',\
               'r5_p25','r10_p25','r15_p25','r25_p25','r40_p25']
## will be with respect to prev_r40
df9.columns = ['Open_p40','High_p40','Low_p40','Close_p40','r2_p40','r3_p40',\
               'r5_p40','r10_p40','r15_p40','r25_p40','r40_p40']
## Combine all to one dataframe
df = df1.join([df10,df2,df3,df4,df5,df6,df7,df8,df9])
## Drop N/A
df = df.dropna(axis=0,how='any')
                                                     ## drop rows containing at lea
## Normalize columns, base on previous values. Get ratios/percentage
#df[columns_to_divide] = df[columns_to_divide] / df['prev_close'] ## having size
cols_to_divide = ['Open_pc','High_pc','Low_pc','Close_pc','r2_pc','r3_pc','r5_pc','
                  'r10_pc','r15_pc','r25_pc','r40_pc']
df[cols_to_divide] = df[cols_to_divide].div(df['prev_close'].values,axis=0)
cols_to_divide = ['Open_p2','High_p2','Low_p2','Close_p2','r2_p2','r3_p2','r5_p2','
                  'r10_p2','r15_p2','r25_p2','r40_p2']
df[cols_to_divide] = df[cols_to_divide].div(df['prev_r2'].values,axis=0)
cols_to_divide = ['Open_p3','High_p3','Low_p3','Close_p3','r2_p3','r3_p3','r5_p3','
```

```
'r10_p3','r15_p3','r25_p3','r40_p3']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r3'].values,axis=0)
            cols_to_divide = ['Open_p5','High_p5','Low_p5','Close_p5','r2_p5','r3_p5','r5_p5','
                              'r10_p5','r15_p5','r25_p5','r40_p5']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r5'].values,axis=0)
            cols_to_divide = ['Open_p10','High_p10','Low_p10','Close_p10','r2_p10','r3_p10',\
                              'r5_p10','r10_p10','r15_p10','r25_p10','r40_p10']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r10'].values,axis=0)
            cols_to_divide = ['Open_p15','High_p15','Low_p15','Close_p15','r2_p15','r3_p15',\
                              'r5_p15','r10_p15','r15_p15','r25_p15','r40_p15']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r15'].values,axis=0)
            cols_to_divide = ['Open_p25','High_p25','Low_p25','Close_p25','r2_p25','r3_p25',\
                              'r5_p25','r10_p25','r15_p25','r25_p25','r40_p25']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r25'].values,axis=0)
            cols_to_divide = ['Open_p40','High_p40','Low_p40','Close_p40','r2_p40','r3_p40', \]
                              'r5_p40','r10_p40','r15_p40','r25_p40','r40_p40']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r40'].values,axis=0)
            return df
0.0.9 Update target, base on target ratio
```

```
In [9]: def get_target(X,target_ratio):
            ## update predict base on target_ratio
            ## All these are base on predict (relative to close only)
            cols_to_divide = ['predict']
            X[cols_to_divide] = X[cols_to_divide].div(X[target_ratio].values,axis=0)
            ## New targets: prev target_ratio/current target ratio
            ## Shift rows to generate next values
            #target = X[target ratio].shift(-1)
            ##target = X[target_ratio].copy()
            \#X['predict'] = target
            ### Drop N/A
            #X = X.dropna(axis=0,how='any')
            ## Convert target base on sell/buy prices thats provided
            y = convert_target_value(X['predict'],sell_below,buy_above)
            ## Delete unneccesary columns
            del X['predict'],X['prev_close'],X['prev_r2'],X['prev_r3'],X['prev_r5']
            del X['prev_r10'],X['prev_r15'],X['prev_r25'],X['prev_r40']
            ## Delete columns with actual price
```

```
del X['vOpen'],X['vHigh'],X['vLow'],X['vClose'],X['vr2']
del X['vr3'],X['vr5'],X['vr10'],X['vr15'],X['vr25'],X['vr40']
return X, y
```

# 0.0.10 Helper function to convert target. Buy (1), Sell (-1), or Neutral (0). Base on sell/buy prices

#### 0.0.11 Create Neural Network Model

```
In [11]: def neural_network_model():
             ## create model
            model = Sequential()
             model.add(Dense(300,input_dim=88,activation='tanh',kernel_regularizer=regularizer
             model.add(Dense(150,activation='tanh'))
             model.add(Dense(3,activation='softmax'))
             ## for binary classifier
             #model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
             #model.compile(loss='mean_squared_error',optimizer='adam',metrics=['accuracy'])
             #model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accurac
             #model.compile(loss='categorical_crossentropy',optimizer='adamax',metrics=['accur
             #model.compile(loss='categorical_crossentropy',optimizer='nadam',metrics=['accura
             #model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accu
             #model.compile(loss='categorical_crossentropy',optimizer='adagrad',metrics=['accu
             #model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['acc
             #model.compile(loss='categorical_crossentropy',optimizer='tfoptimizer',metrics=['
             opt = optimizers.SGD(lr=0.001,momentum=0.9,decay=1e-6,nesterov=True)
             model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy'])
             return model
```

#### 0.0.12 Helper function to get encoding, for 'target' in Neural Network

```
In [12]: """
         Returns a (XXX,3) from (XXX,1), for the input of the neural network
         Didnt use np_utils.to_categorical() since output could be -1,1 or
         -1,0,1 depending on sell/buy values
         11 11 11
         def myEncoder(arr):
             s = (len(arr), 3)
             numpy_arr = np.zeros(s)
             for i,num in enumerate(arr):
                 if num == -1:
                     numpy_arr[i] = np.array([1,0,0])
                 elif num == 1:
                     numpy_arr[i] = np.array([0,0,1])
                 else:
                     numpy_arr[i] = np.array([0,1,0])
             return numpy_arr
```

#### 0.0.13 Helper function to decode, as 1 dimensional target

#### 0.0.14 Helpter function to scale input data for neural network

```
new_x = (((highest_scale-lowest_scale)*(x-min_input))/(max_input-min_input))+
    return new_x
## Tried -1 to 1 before
lowest scale = -1
highest_scale = 1
max_input = 1.15
min_input = 0.85
#result = arr.applymap(scaler) ## if its a df, use applymap
## arr is an ndarray. Use vectorize instead of applymap
scaler = lambda x: (((highest_scale-lowest_scale)*(x-min_input))/(max_input-min_input)
                   + lowest_scale
func = np.vectorize(scaler)
                                                     ## vectorize scaler function
result = func(arr)
                                                     ## pass arr to vectorized fun
return result
```

#### 0.0.15 Get the metrics of the models

```
In [15]: def get_model_metrics(target_ratio,sell_below,buy_above,X):
             temp_result = {}
             temp_result['target_ratio'] = target_ratio
             temp_result['sell_below'] = sell_below
             temp_result['buy_above'] = buy_above
             X,y = get_target(X,target_ratio)
             #print("Input shape: {} Target shape: {}".format(X.shape,len(y)))
             #print("Target found are: {}".format(set(y)))
             ## Perform cross validation. 95% to have as much training data as possible.
             ## Also, performance will be base on totally different set of stocks
             try: X_train, X_test, y_train, y_test \
                 = cross_validation.train_test_split(X,y,train_size=0.90,stratify=y)
             ## error sometimes: The least populated class in y has only 1 member, which is to
             ## The minimum number of labels for any class cannot be less than 2.
             except: X_train, X_test, y_train, y_test \
                 = cross_validation.train_test_split(X,y,train_size=0.90)
             #print("Sample of training data:")
             #print("Number of rows: {}. Number of columns: {}.".format(len(X_train),len(X_tra
             \#print(X_train.head())
             beta = 0.5
```

## entropy for exploratory analysis, gini (default) to minimize misclassification

## Initialize Models

```
## max_features default None
\#clf1 = DecisionTreeClassifier(criterion="entropy", random\_state=0, max\_features=Noologian = Noologian = Noologi
clf1 = DecisionTreeClassifier()
clf2 = GaussianNB()
## kernel 'rbf' default, others are linear, poly, sigmoid, C is penalty parameter
\#clf3 = SVC()
                                                                           ## <-- makes execution time 20x longer
## defaults are 1 for learning rate and 50 for n_estimators
\#clf4 = AdaBoostClassifier(random_state=0, learning_rate=0.7, n_estimators=50)
clf4 = AdaBoostClassifier()
clf5 = neural_network_model()
if READ_EXISTING_MODELS == True:
         ## Read existing models
         ## For DecisionTree
        with open("models/DecisionTree_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
                 clf1 = pickle.load(f)
         ## For GaussianNB
         with open("models/GaussianNB_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
                  clf2 = pickle.load(f)
         ## For SVC model
         #with open("models/SVC_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
               clf3 = pickle.load(f)
         ## For Adaboost
         with open("models/Adaboost_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
                  clf4 = pickle.load(f)
         ## For Neural Network
         ## Load json and create model
         json_file = open("models/NN_"+target_ratio+"_"+str(sell_below)\
                                              +"_"+str(buy_above)+".json","r")
         loaded_model_json = json_file.read()
         json_file.close()
         clf5 = model_from_json(loaded_model_json)
         ## Load weights into new model
         clf5.load_weights("models/NN_"+target_ratio+"_"+str(sell_below)+"_"+str(buy_a
         ## Compile, make sure its the same as above
         opt = optimizers.SGD(lr=0.001,momentum=0.9,decay=1e-6,nesterov=True)
         clf5.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy
```

else:

```
## Generate new models
## Fit Data to DecisionTree Model
clf1.fit(X_train,y_train)
## Save model to a file
with open("models/DecisionTree_"+target_ratio+"_"+str(sell_below)\
          +" "+str(buy above)+".pkl", 'wb') as f:
    pickle.dump(clf1, f)
# Fit Data to GaussianNB Model
clf2.fit(X_train,y_train)
## Save model to a file
with open("models/GaussianNB_"+target_ratio+"_"+str(sell_below)\
          +"_"+str(buy_above)+".pkl", 'wb') as f:
    pickle.dump(clf2, f)
# Fit Data to SVC Model
\#clf3.fit(X_train,y_train)
## Save model to a file
#with open("models/SVC "+target ratio+" "+str(sell below)\
          +"_"+str(buy_above)+".pkl", 'wb') as f:
   pickle.dump(clf3, f)
# Fit Data to Adaboost Model
clf4.fit(X_train,y_train)
## Save model to a file
with open("models/Adaboost_"+target_ratio+"_"+str(sell_below)\
          +"_"+str(buy_above)+".pkl", 'wb') as f:
    pickle.dump(clf4, f)
## Fit Data to Neural Model
                                                             ## convert df to
input_train = X_train.as_matrix(columns=None)
#np.savetxt("test1.csv",input_train,delimiter=",")
input_train = rescale_input(input_train)
#print("Input train:",input train[np.r [0:5]])
                                                            ## print first 5
### encode class values as integers
#encoder = LabelEncoder()
#encoder.fit(y_train)
\#encoded_y = encoder.transform(y_train)
### convert integers to dummy variables (i.e one hot encoded)
\#dummy\_y = np\_utils.to\_categorical(encoded\_y)
#print(dummy_y)
dummy_y = myEncoder(y_train)
clf5.fit(input_train,dummy_y,epochs=20,batch_size=100)
## Serialize model to JSON
model_json = clf5.to_json()
with open("models/NN_"+target_ratio+"_"+str(sell_below)\
```

```
+"_"+str(buy_above)+".json","w") as json_file:
        json_file.write(model_json)
    ## Serialize weights to HDF5
    clf5.save_weights("models/NN_"+target_ratio+"_"+str(sell_below)+"_"+str(buy_a
## Get accuracy and fscore of the models
temp_result['DecisionTree Accuracy'] = accuracy_score(y_test, clf1.predict(X_test)
temp_result['DecisionTree Fscore'] = fbeta_score(y_test, clf1.predict(X_test),\
                                                  beta,average='weighted')
temp_result['GaussianNB Accuracy'] = accuracy_score(y_test,clf2.predict(X_test))
temp_result['GaussianNB Fscore'] = fbeta_score(y_test, clf2.predict(X_test),\
                                                beta,average='weighted')
#temp_result['SVC Accuracy'] = accuracy_score(y_test,clf3.predict(X_test))
\#temp\_result['SVC\ Fscore'] = fbeta\_score(y\_test,\ clf3.predict(X\_test), \
                                          beta, average='weighted')
temp_result['Adaboost Accuracy'] = accuracy_score(y_test,clf4.predict(X_test))
temp_result['Adaboost Fscore'] = fbeta_score(y_test,clf4.predict(X_test),\
                                              beta,average='weighted')
input_test = X_test.as_matrix(columns=None)
input_test = rescale_input(input_test)
dummy_y = myEncoder(y_test)
#scores = clf5.evaluate(input_test, dummy_y)
#temp_result['NN Accuracy'] = scores[1]*100
temp_result['NN Accuracy'] = accuracy_score(y_test,myDecoder(clf5.predict(input_temp_result['NN Accuracy'])
temp_result['NN Fscore'] = fbeta_score(y_test, \
                              myDecoder(clf5.predict(input_test)),beta,average='w
## Determine performance of the portfolio on each model
\#models = [('DecisionTree', clf1), ('GaussianNB', clf2), ('Adaboost', clf4), \
              ('SVC',clf3),('NN',clf5)]
## No SVC model
models = [('DecisionTree',clf1),('GaussianNB',clf2),('Adaboost',clf4),('NN',clf5)]
test_model_performance(models,temp_result,target_ratio,sell_below,buy_above)
## Check if multiprocessor is set
if MULTIPROCESSOR == False:
    ## Result will contain all the result from each combination of the models
    result.append(temp_result)
else:
    ## To support multiprocessing, will have to save for later
    ## temp_result is a dict, not df
    #temp_result.to_csv("temp_results/"+str(time.clock())+".csv")
    with open("temp_results/"+str(time.clock())+".json", 'w') as fp:
        json.dump(temp_result, fp)
```

#### 0.0.16 Calculate model performance

```
In [16]: def test_model_performance(models,temp_result,target_ratio,sell_below,buy_above):
                           panel_data = pd.read_pickle('testing_stocks.pkl')
                                                                                                                                                      ## read saved stocks
                           ## Initialize total to be 0 across all models
                           total = {'benchmark':0}
                           for model_name,_ in models:
                                   total[model_name] = 0
                                                                                                                               ## will hold total money for that
                                   total[model_name+"_transactions"] = 0
                                                                                                                               ## will hold total transactions f
                           ## Go through each stock
                           for tick in TESTING_TICKERS:
                                    ## Extract single stock from panel_data
                                    #df = panel_data[:,:,tick]
                                    \#X = get\_stock\_df(df, tick)
                                    ## We will now just read the test stocks, generated before
                                   X = pd.DataFrame.from_csv("testing_data/"+tick+'_processed.csv')
                                    ## Delete unnecessary columns
                                   del X['predict'],X['prev_close'],X['prev_r2'],X['prev_r3'],X['prev_r5']
                                   del X['prev_r10'],X['prev_r15'],X['prev_r25'],X['prev_r40']
                                    ## Delete columns with actual price
                                   del X['vOpen'],X['vHigh'],X['vLow'],X['vClose'],X['vr2']
                                    del X['vr3'],X['vr5'],X['vr10'],X['vr15'],X['vr25'],X['vr40']
                                    ## Get predictions base on each models
                                   for model_name, model in models:
                                            ## predictions will be an ndarray
                                            if model_name == 'NN':
                                                    input_test = X.as_matrix(columns=None)
                                                    input_test = rescale_input(input_test)
                                                    predictions = model.predict(input_test)
                                                    predictions = myDecoder(predictions)
                                            else:
                                                    predictions = model.predict(X)
                                            ## Add predictions to the dataframe
                                            pred = pd.DataFrame(predictions.flatten(),index=X.index,columns=['Predict
                                            S = X.join(pred)
                                                                                                                                        ## will contain number of tra
                                            S['Transactions'] = 0
                                            S['Money'] = 0
                                                                                                                                        ## will contain total current
                                            ## Calculate transactions (NOT COMPLETE)
                                            \#temp\_df = pd.DataFrame(X['Close\_pc'].values,columns=['Close\_pc'])
                                            \#temp\_df = temp\_df.join(pd.DataFrame(predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),c
                                            \#temp\_df['playing'] = temp\_df['Predictions'].shift().eq(1)
                                            ### cumprod of 'Close_pc' where 'playing' is True. Then multiple with in
```

```
\#temp\_df['Money'] = \
                     temp\_df['Close\_pc']. where (temp\_df['playing'],1). cumprod(). mul(MONEY).
        ### get just last value from 'Money'
        \#temp\_result[tick+'\_'+model\_name] = float(format(temp\_df['Money'].iloc[-1]) = float(format(temp\_df['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc
        #total[model_name] += float(format(temp_df['Money'].iloc[-1], '.2f'))
        ## Calculate transactions. SLOWER? BUT COMPLETE
        playing = False
                                                                                  ## used to determine if currently in
        money = copy.copy(MONEY)
        transactions = 0
        i = 0
        for index, row in S.iterrows():
                ## Update money
                if i > 0 and playing == True:
                        money = float(format(money*row['Close_pc'],'.2f'))
                ## Buy/Sell
                if row['Predictions'] == 1:
                         if playing == False:
                                 playing = True
                                                                                  ## Buy, playing after this
                                 transactions += 1
                                                                                 ## increment transaction number for t
                elif row['Predictions'] == -1:
                         if playing == True:
                                                                                  ## Sell, not playing after this
                                playing = False
                                 transactions += 1  ## increment transaction number for t
                i += 1
                ## Change value in sample data S in index and column provided,
                ## with value/data provided
                S.set_value(index,'Money',money)
                S.set_value(index, 'Transactions', transactions)
        ## Save dataframe for testing purposes
        S.to_csv("model_predictions/"+tick+"_"+model_name+"_"\
                           +target_ratio+"_"+str(sell_below)+"_"+str(buy_above)+".csv")
        ## If still playing at the end, we'll sell, thus increment number of tran
        transactions = transactions + 1 if playing == True else transactions
        ## Will contain total money for this stock and model
        temp_result[tick+'_'+model_name] = money
        ## Will contain total number of transactions for this stock and model
        temp_result[tick+'_'+model_name+"_transactions"] = transactions
        ## Will contain total money for this model, including all stocks
        total[model_name] += money
        ## total transactions for the model, including all stocks
        total[model_name+"_transactions"] += transactions
## Calculate benchmark portfolio for current stock (NOT COMPLETE)
```

```
\#temp\_df = X['Close\_pc'].to\_frame()
   \#temp\_df['Close\_pc'].iloc[0] = 1   \#\#since\ first\ one\ is\ not\ played
   #temp_df['Money'] = temp_df['Close_pc'].cumprod().mul(MONEY)
   ### total money in benchmark, for that stock
   #temp_result[tick+'_benchmark'] = float(format(temp_df['Money'].iloc[-1], '.2
   \#total['benchmark'] += float(format(temp_df['Money'].iloc[-1], '.2f'))
   ## Calculate benchmark portfolio for current stock. SLOWER? BUT COMPLETE
   money = copy.copy(MONEY)
   for i,r in enumerate(X['Close_pc']):
       if i > 0:
           money = float(format(money*r,'.2f'))
   temp_result[tick+'_benchmark'] = money
                                          ## total money in benchmark, for
   total['benchmark_transcations'] = 2  ## Initial buy and the sell at th
## Determine Total values of each portfolio
temp_result['total_benchmark'] = total['benchmark'] ## total money in benchmark
## Get total money and transactions per each model. Each including all stocks
for model_name,_ in models:
   temp_result['total_'+model_name] = total[model_name]
   temp_result['total_'+model_name+"_transactions"] = total[model_name+"_transactions"]
```

## read saved stocks data

#### 0.0.17 Helper function to save each of the testing stocks as csv

```
In [17]: def save_testing_stocks(filename):
    panel_data = pd.read_pickle(filename)

## Go through each stock
for tick in TESTING_TICKERS:
    ## Extract single stock from panel_data
    df = panel_data[:,:,tick]

## save raw stock data
    df.to_csv("testing_data/"+tick+".csv")

## process data
    df = get_stock_df(df,tick)

## Plot stock
plot_stock(tick,df)

## Save to csv
    df.to_csv("testing_data/"+tick+"_processed.csv")
```

### 0.0.18 Helper function to delete all the old data from previous runs

```
In [18]: def cleanup_contents():
             filelist = glob.glob("temp_results/*.json")
             for f in filelist:
                 os.remove(f)
             filelist = glob.glob("model_predictions/*.csv")
             for f in filelist:
                 os.remove(f)
             filelist = glob.glob("figures/*")
             for f in filelist:
                 if "README.md" not in f:
                     os.remove(f)
             filelist = glob.glob("training_data/*.csv")
             for f in filelist:
                 os.remove(f)
             filelist = glob.glob("testing_data/*.csv")
             for f in filelist:
                 os.remove(f)
             if READ_EXISTING_MODELS == False:
                 filelist = glob.glob("models/*")
                 for f in filelist:
                     if "README.md" not in f:
                         os.remove(f)
0.0.19 Main()
In [19]: %%time
         result = []
         ## Remove all existing .json files in temp folder and remove old csv files in data for
         cleanup_contents()
         filename = 'training_stocks.pkl'
         ## Generate data to be inputted to the models
         X = get_training_stocks_df(filename)
         ## Describe training data
```

describe\_data()

```
filename = 'testing_stocks.pkl'
         ## Generate data of test stocks and save to csv files
         save_testing_stocks(filename)
         ## Check if multiprocessor is set
         if MULTIPROCESSOR == False:
             ## For single processing
             # Get performance of different types of models
             for sell_below, buy_above in SELL_BUY_VALUES:
                 for target_ratio in TARGET_RATIOS:
                     ## copy to prevent updating
                     get_model_metrics(target_ratio,sell_below,buy_above,X.copy())
                     print("Completed target ratio: {} with sell: {} and buy: {}"\
                           .format(target_ratio,sell_below,buy_above))
         else:
             ## For multiprocessing
             ## Get the arguments for the pool
             args = []
             for sell_below, buy_above in SELL_BUY_VALUES:
                 for target ratio in TARGET RATIOS:
                     arg = (target_ratio,sell_below,buy_above,X.copy())
                     args.append(arg)
             ## With multiprocessing
             pool = mp.Pool(processes=NUM_PROCESSES)
             pool.starmap(get_model_metrics,args)
             pool.close()
             pool.join()
Plotting: AAPL
Plotting: GOOG
Plotting: T
Plotting: IMAX
Plotting: IBM
Plotting: NFLX
Plotting: SIRI
Plotting: S
Plotting: PLUG
Plotting: C
Plotting: ZNGA
Plotting: WMS
Plotting: BAC
Plotting: AMZN
Plotting: FB
Plotting: P
Plotting: WM
Plotting: NOK
Plotting: DDD
```

Plotting: XONE Plotting: SDRL Plotting: TSLA Plotting: SSYS Plotting: TXN Plotting: Plotting: GS Plotting: LQMT Plotting: HTZPlotting: BAHPlotting: GLW Plotting: SPWR Plotting: BIDU Plotting: SRPT Plotting: YGE Plotting: CNXPlotting: URRE Plotting: VJET Plotting: RAD Plotting: NQ Plotting: KORS Plotting: TWTR Plotting: HLF Plotting: ORCL Plotting: WLL Plotting: BLDP Plotting: PEG Plotting: MJNA Plotting: CBIS Plotting: TMPlotting: SBUX Plotting: MBLY Plotting: MRK Plotting: DB0 Plotting: PFE Plotting: CAMP Plotting: TRXC Plotting: BMY Plotting: FEPlotting: VTR Plotting: UHT Plotting: MVO Plotting: KFPlotting: RACE Plotting: STOR Plotting: MU Plotting: RTN

Plotting:

XME

|       | Close        | High         | Low          | Open         |
|-------|--------------|--------------|--------------|--------------|
| count | 35863.000000 | 35863.000000 | 35863.000000 | 35863.000000 |
| mean  | 57.492626    | 58.181523    | 56.792067    | 57.509487    |
| std   | 98.580690    | 99.558195    | 97.533216    | 98.600096    |
| min   | 0.011000     | 0.011000     | 0.010000     | 0.011000     |
| 25%   | 11.600000    | 11.960000    | 11.300000    | 11.670000    |
| 50%   | 30.750000    | 31.250000    | 30.270000    | 30.790001    |
| 75%   | 54.279999    | 54.880001    | 53.740002    | 54.340000    |
| max   | 776.599976   | 789.869995   | 766.900024   | 784.500000   |
|       |              |              |              |              |

#### Processed training data description:

| Processed training data description: |                        |                        |                         |                         |                         |   |
|--------------------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|---|
|                                      | predict                | prev_close             | prev_r2                 | prev_r3                 | prev_r5                 | \ |
| count                                | 33116.000000           | 33116.000000           | 33116.000000            | 33116.000000            | 33116.000000            |   |
| mean                                 | 57.650932              | 57.637520              | 57.634570               | 57.631384               | 57.625151               |   |
| std                                  | 100.020293             | 99.834763              | 99.784070               | 99.734307               | 99.636152               |   |
| min                                  | 0.011000               | 0.011000               | 0.011000                | 0.011000                | 0.011000                |   |
| 25%                                  | 10.937500              | 11.007500              | 11.045000               | 11.040000               | 11.111000               |   |
| 50%                                  | 30.270000              | 30.320000              | 30.320000               | 30.313334               | 30.319000               |   |
| 75%                                  | 54.340000              | 54.340000              | 54.335000               | 54.336666               | 54.328000               |   |
| max                                  | 776.599976             | 776.599976             | 773.799988              | 770.036662              | 763.478003              |   |
|                                      |                        |                        |                         |                         |                         |   |
|                                      | prev_r10               | prev_r15               | prev_r25                | prev_r40                | v0pen                   | \ |
| count                                | 33116.000000           | 33116.000000           | 33116.000000            | 33116.000000            | 33116.000000            |   |
| mean                                 | 57.608467              | 57.590755              | 57.557355               | 57.505788               | 57.655950               |   |
| std                                  | 99.392219              | 99.143964              | 98.668996               | 97.983877               | 99.939926               |   |
| min                                  | 0.011200               | 0.011467               | 0.012200                | 0.012275                | 0.011000                |   |
| 25%                                  | 11.131500              | 11.207667              | 11.433800               | 11.601563               | 11.000000               |   |
| 50%                                  | 30.374500              | 30.423333              | 30.618000               | 30.815375               | 30.299999               |   |
| 75%                                  | 54.333500              | 54.259167              | 54.133000               | 53.965500               | 54.369999               |   |
| max                                  | 756.831995             | 754.413330             | 754.352402              | 747.968002              | 784.500000              |   |
|                                      |                        |                        |                         |                         |                         |   |
|                                      | • • •                  | High_p40               | Low_p40                 | Close_p40               | r2_p40                  | \ |
| count                                | • • •                  | 33116.000000           | 33116.000000            | 33116.000000            | 33116.000000            |   |
| mean                                 | • • •                  | 1.003903               | 0.969174                | 0.986053                | 0.986247                |   |
| std                                  | • • •                  | 0.114326               | 0.110338                | 0.113037                | 0.109736                |   |
| min                                  | • • •                  | 0.375742               | 0.295510                | 0.343568                | 0.350964                |   |
| 25%                                  | • • •                  | 0.954380               | 0.921143                | 0.936566                | 0.938189                |   |
| 50%                                  | • • •                  | 1.006872               | 0.983364                | 0.994662                | 0.995022                |   |
| 75%                                  | • • •                  | 1.051578               | 1.026764                | 1.039941                | 1.038682                |   |
| max                                  | • • •                  | 3.582875               | 2.254823                | 2.855776                | 2.779254                |   |
|                                      | 2 40                   | F 40                   | 10 10                   | 1F 10                   | 05 40                   | , |
|                                      | r3_p40<br>33116.000000 | r5_p40<br>33116.000000 | r10_p40<br>33116.000000 | r15_p40<br>33116.000000 | r25_p40<br>33116.000000 | \ |
| count                                | 0.986453               | 0.986874               | 0.988081                | 0.989481                | 0.992811                |   |
| mean                                 |                        |                        | 0.988081                | 0.989481                |                         |   |
| std                                  | 0.106759               | 0.101113               |                         |                         | 0.046771                |   |
| min                                  | 0.357857               | 0.371710               | 0.399461                | 0.440318                | 0.566140                |   |

```
25%
           0.939784
                         0.942944
                                        0.950446
                                                      0.958205
                                                                    0.973870
50%
           0.995284
                         0.995688
                                        0.996419
                                                      0.996939
                                                                    0.998050
75%
                         1.035906
                                        1.030854
           1.037749
                                                      1.026081
                                                                     1.016421
                         2.095218
                                        1.732265
                                                      1.502319
           2.504456
                                                                     1.271795
max
            r40_p40
       33116.000000
count
mean
           0.999160
std
           0.004857
min
           0.965386
25%
           0.997213
50%
           0.999780
75%
           1.001645
max
           1.036849
[8 rows x 108 columns]
Plotting: BA
Plotting: HON
Plotting: MA
Plotting: TPLM
Plotting: SD
Plotting: FCEL
Plotting: CHK
Plotting: CMG
/Users/Gio/anaconda/lib/python3.5/site-packages/sklearn/metrics/classification.py:1113: Undefine
  'precision', 'predicted', average, warn_for)
```

CPU times: user 47.3 s, sys: 5.94 s, total: 53.2 s

Wall time: 2min 44s

#### 0.0.20 Graph 3D plot for Close\_pc, with respect with Open\_pc, High\_pc, and Low\_pc

```
In [20]: df_res = pd.DataFrame.from_csv("training_data/all_processed_data.csv")
         x1 = df_res["Open_pc"].where(df_res["Close_pc"] > 1)
         x1 = x1.dropna(axis=0, how='all')
         y1 = df_res["High_pc"].where(df_res["Close_pc"] > 1)
         y1 = y1.dropna(axis=0, how='all')
         z1 = df_res["Low_pc"].where(df_res["Close_pc"] > 1)
         z1 = z1.dropna(axis=0, how='all')
         x0 = df_res["Open_pc"].where(df_res["Close_pc"] < 1)</pre>
         x0 = x0.dropna(axis=0, how='all')
         y0 = df_res["High_pc"].where(df_res["Close_pc"] < 1)
         y0 = y0.dropna(axis=0, how='all')
         z0 = df_res["Low_pc"].where(df_res["Close_pc"] < 1)</pre>
         z0 = z0.dropna(axis=0, how='all')
         colors=['b', 'r']
         ax = plt.subplot(111, projection='3d')
         ax.plot(x1, y1, z1, 'o', color=colors[0], label='Buy')
         ax.plot(x0, y0, z0, 'o', color=colors[1], label='Sell')
         ax.set_xlabel('Open')
         ax.set_ylabel('High')
         ax.set_zlabel('Low')
         plt.legend(loc='upper left', numpoints=1, ncol=3, fontsize=8, bbox_to_anchor=(0, 0))
         plt.savefig("figures/input.svg", format='svg', dpi=1200)
         plt.show()
```



#### 0.0.21 Read all json in temp folder and append to result (used for multiprocessing)

#### 0.0.22 Print Results of the models

|   | Adaboost Accuracy | Adaboost Fscore | BA_Adaboost | \ |
|---|-------------------|-----------------|-------------|---|
| 0 | 0.566123          | 0.540336        | 10819.24    |   |
| 1 | 0.885266          | 0.847715        | 16960.51    |   |
| 2 | 0.886473          | 0.851341        | 16657.76    |   |
| 3 | 0.677536          | 0.641591        | 13386.15    |   |
| 4 | 0.681159          | 0.637764        | 14010.03    |   |
| 5 | 0.884964          | 0.849340        | 16466.70    |   |
| 6 | 0.677536          | 0.641591        | 13386.15    |   |

| _   |          |          |          |
|-----|----------|----------|----------|
| 7   | 0.816727 | 0.773385 | 15652.32 |
| 8   | 0.623792 | 0.600917 | 13027.33 |
| 9   | 0.566123 | 0.540336 | 10819.24 |
| 10  | 0.816727 | 0.773385 | 15652.32 |
| 11  | 0.566123 | 0.540336 | 10819.24 |
| 12  | 0.816727 | 0.773385 | 15652.32 |
| 13  | 0.841184 | 0.792480 | 16455.14 |
| 14  | 0.623792 | 0.600917 | 13027.33 |
| 15  | 0.841184 | 0.792480 | 16455.14 |
| 16  | 0.675725 | 0.646505 | 13928.51 |
| 17  | 0.623792 | 0.600917 | 13027.33 |
| 18  | 0.623792 | 0.600917 | 13027.33 |
| 19  | 0.841184 | 0.792480 | 16455.14 |
| 20  | 0.841184 | 0.792480 | 16455.14 |
| 21  | 0.886775 | 0.849813 | 17090.62 |
| 22  |          |          |          |
|     | 0.675725 | 0.646505 | 13928.51 |
| 23  | 0.886775 | 0.849813 | 17090.62 |
| 24  | 0.675725 | 0.646505 | 13928.51 |
| 25  | 0.675725 | 0.646505 | 13928.51 |
| 26  | 0.886775 | 0.849813 | 17090.62 |
| 27  | 0.886775 | 0.849813 | 17090.62 |
| 28  | 0.522645 | 0.351298 | 10000.00 |
| 29  | 0.757246 | 0.706535 | 14708.86 |
|     |          |          |          |
| 90  | 0.850242 | 0.811005 | 16447.50 |
| 91  | 0.888889 | 0.847373 | 17090.62 |
| 92  | 0.679952 | 0.644279 | 13550.79 |
| 93  | 0.679952 | 0.644279 | 13550.79 |
| 94  | 0.889795 | 0.848054 | 16721.16 |
| 95  | 0.681461 | 0.643762 | 13429.85 |
| 96  | 0.679952 | 0.644279 | 13550.79 |
| 97  | 0.566123 | 0.540336 | 10819.24 |
| 98  | 0.772343 | 0.737797 | 14768.38 |
| 99  | 0.889795 | 0.848054 | 16721.16 |
| 100 | 0.890399 | 0.851732 | 16656.12 |
| 101 | 0.530797 | 0.347789 | 10000.00 |
| 102 | 0.773853 | 0.733195 | 14582.51 |
| 103 | 0.530797 | 0.347789 | 10000.00 |
| 104 | 0.773249 | 0.720688 | 14834.16 |
| 105 | 0.773249 | 0.720000 | 10000.00 |
|     |          |          |          |
| 106 | 0.773249 | 0.731688 | 14458.21 |
| 107 | 0.565217 | 0.537384 | 10966.00 |
| 108 | 0.816727 | 0.773385 | 15652.32 |
| 109 | 0.803442 | 0.762763 | 15726.71 |
| 110 | 0.565217 | 0.537384 | 10966.00 |
| 111 | 0.803442 | 0.753740 | 15990.51 |
| 112 | 0.804650 | 0.762921 | 15728.18 |
| 113 | 0.562802 | 0.531948 | 10970.40 |
|     |          |          |          |

| 114 | 0.629227                 | 0.607595 133    | 396.57                         |   |
|-----|--------------------------|-----------------|--------------------------------|---|
| 115 | 0.854167                 | 0.804483 169    | 544.40                         |   |
| 116 | 0.854167                 | 0.806186 164    | 438.43                         |   |
| 117 | 0.629227                 | 0.607595 133    | 396.57                         |   |
| 118 | 0.628925                 |                 | 993.82                         |   |
| 119 | 0.854167                 |                 | 438.43                         |   |
|     |                          |                 |                                |   |
|     | BA_Adaboost_transactions | BA DecisionTree | BA_DecisionTree_transactions \ | \ |
| 0   |                          | 11362.73        |                                |   |
| 1   | 18                       | 16228.10        | 16                             |   |
| 2   | 16                       | 16201.26        | 26                             |   |
| 3   | 52                       | 12708.60        | 58                             |   |
| 4   | 58                       | 13350.19        | 70                             |   |
| 5   | 18                       | 16201.26        | 26                             |   |
| 6   | 52                       | 14254.24        |                                |   |
| 7   | 34                       | 16244.51        | 42                             |   |
| 8   | 46                       | 12283.55        | 76                             |   |
| 9   | 28                       | 11362.73        |                                |   |
| 10  | 34                       | 16244.51        | 42                             |   |
| 11  | 28                       | 11362.73        | 64                             |   |
| 12  | 34                       | 16244.51        | 42                             |   |
| 13  | 20                       | 16714.52        |                                |   |
| 14  | 46                       | 12283.55        | 76                             |   |
| 15  | 20                       | 16714.52        | 32                             |   |
| 16  | 52                       | 11464.95        | 64                             |   |
| 17  | 46                       | 12283.55        | 76                             |   |
| 18  | 46                       | 12283.55        | 76                             |   |
| 19  | 20                       | 16714.52        | 32                             |   |
| 20  | 20                       | 16714.52        | 32                             |   |
| 21  | 16                       | 16863.94        | 22                             |   |
| 22  | 52                       | 11464.95        | 64                             |   |
| 23  | 16                       | 16863.94        | 22                             |   |
| 24  | 52                       | 11464.95        | 64                             |   |
| 25  | 52                       | 11464.95        | 64                             |   |
| 26  | 16                       | 16863.94        | 22                             |   |
| 27  | 16                       | 16863.94        | 22                             |   |
| 28  | 0                        | 11801.10        | 60                             |   |
| 29  | 40                       | 15088.91        | 46                             |   |
|     | •••                      |                 |                                |   |
| 90  | 20                       | 17925.32        | 24                             |   |
| 91  | 16                       | 16415.20        | 26                             |   |
| 92  | 60                       | 14220.86        | 62                             |   |
| 93  | 60                       | 12710.69        | 72                             |   |
| 94  | 20                       | 16802.22        | 18                             |   |
| 95  | 56                       | 14220.86        | 62                             |   |
| 96  | 60                       | 12710.69        | 72                             |   |
| 97  | 28                       | 11362.73        | 64                             |   |
| 98  | 32                       | 12310.48        | 52                             |   |
|     |                          |                 |                                |   |

| 99  |                        | 20            | 16802.22      |          | 18                           |   |
|-----|------------------------|---------------|---------------|----------|------------------------------|---|
| 100 |                        | 20            | 16802.22      |          | 18                           |   |
| 101 |                        | 0             | 11472.35      |          | 52                           |   |
| 102 |                        | 34            | 14762.57      |          | 48                           |   |
| 103 |                        | 0             | 11597.25      |          | 72                           |   |
| 104 |                        | 40            | 14797.87      |          | 56                           |   |
| 105 |                        | 0             | 11062.07      |          | 68                           |   |
| 106 |                        | 38            | 15068.73      |          | 56                           |   |
| 107 |                        | 30            | 13063.17      |          | 84                           |   |
| 108 |                        | 34            | 16244.51      |          | 42                           |   |
| 109 |                        | 28            | 15898.11      |          | 38                           |   |
| 110 |                        | 30            | 11898.72      |          | 68                           |   |
| 111 |                        | 32            | 15709.38      |          | 42                           |   |
| 112 |                        | 28            | 15433.70      |          | 30                           |   |
| 113 |                        | 30            | 11951.63      |          | 72                           |   |
| 114 |                        | 58            | 11186.95      |          | 82                           |   |
| 115 |                        | 18            | 16230.78      |          | 34                           |   |
| 116 |                        | 22            | 16189.45      |          | 34                           |   |
| 117 |                        | 58            | 13513.65      |          | 64                           |   |
| 118 |                        | 58            | 12314.89      |          | 70                           |   |
| 119 |                        | 22            | 16959.71      |          | 30                           |   |
|     |                        |               |               |          |                              |   |
|     | ${\tt BA\_GaussianNB}$ | BA_GaussianNB | _transactions | BA_NN    | ${\tt BA\_NN\_transactions}$ | \ |
| 0   | 10334.98               |               | 2             | 10326.56 | 10                           |   |
| 1   | 16577.61               |               | 2             | 17037.26 | 14                           |   |
| 2   | 16577.61               |               | 2             | 17123.13 | 14                           |   |
| 3   | 16577.61               |               | 2             | 12316.68 | 62                           |   |
| 4   | 16577.61               |               | 2             | 14193.64 | 58                           |   |
| 5   | 16577.61               |               | 2             | 17123.13 | 14                           |   |
| 6   | 16577.61               |               | 2             | 12316.68 | 62                           |   |
| 7   | 16577.61               |               | 2             | 15691.99 | 34                           |   |
| 8   | 16577.61               |               | 2             | 11038.13 | 56                           |   |
| 9   | 10334.98               |               | 2             | 10326.56 | 10                           |   |
| 10  | 16577.61               |               | 2             | 15691.99 | 34                           |   |
| 11  | 10334.98               |               | 2             | 10326.56 | 10                           |   |
| 12  | 16577.61               |               | 2             | 15691.99 | 34                           |   |
| 13  | 16577.61               |               | 2             | 16444.62 | 20                           |   |
| 14  | 16577.61               |               | 2             | 11038.13 | 56                           |   |
| 15  | 16577.61               |               | 2             | 16444.62 | 20                           |   |
| 16  | 16577.61               |               | 2             | 12829.09 | 62                           |   |
| 17  | 16577.61               |               | 2             | 11038.13 | 56                           |   |
| 18  | 16577.61               |               | 2             | 11038.13 | 56                           |   |
| 19  | 16577.61               |               | 2             | 16444.62 | 20                           |   |
| 20  | 16577.61               |               | 2             | 16444.62 | 20                           |   |
| 21  | 16577.61               |               | 2             | 17020.63 | 14                           |   |
| 22  | 16577.61               |               | 2             | 12829.09 | 62                           |   |
| 23  | 16577.61               |               | 2             | 17020.63 | 14                           |   |
| 24  | 16577.61               |               | 2             | 12829.09 | 62                           |   |
|     |                        |               |               |          |                              |   |

|     |          |              | _           |          |       |
|-----|----------|--------------|-------------|----------|-------|
| 25  | 16577.61 |              | 2           | 12829.09 | 62    |
| 26  | 16577.61 |              | 2           | 17020.63 | 14    |
| 27  | 16577.61 |              | 2           | 17020.63 | 14    |
| 28  | 10334.98 |              | 2           | 10000.00 | 0     |
| 29  | 16577.61 |              | 2           | 14355.48 | 42    |
| • • | • • •    |              | • • •       | • • •    | • • • |
| 90  | 16577.61 |              | 2           | 16692.48 | 20    |
| 91  | 16577.61 |              | 2           | 17020.63 | 14    |
| 92  | 16577.61 |              | 2           | 14101.76 | 58    |
| 93  | 16577.61 |              | 2           | 14101.76 | 58    |
| 94  | 16577.61 |              | 2           | 17037.26 | 14    |
| 95  | 16577.61 |              | 2           | 12310.20 | 60    |
| 96  | 16577.61 |              | 2           | 14101.76 | 58    |
| 97  | 10334.98 |              | 2           | 10326.56 | 10    |
| 98  | 16577.61 |              | 2           | 14588.03 | 40    |
| 99  | 16577.61 |              | 2           | 17037.26 | 14    |
| 100 | 16577.61 |              | 2           | 17123.13 | 14    |
| 101 | 10334.98 |              | 2           | 10000.00 | 0     |
| 102 | 16577.61 |              | 2           | 14648.65 | 42    |
| 103 | 10334.98 |              | 2           | 10000.00 | 0     |
| 104 | 16577.61 |              | 2           | 14648.65 | 42    |
| 105 | 10334.98 |              | 2           | 10000.00 | 0     |
| 106 | 16577.61 |              | 2           | 14833.46 | 40    |
| 107 | 10334.98 |              | 2           | 10517.79 | 14    |
| 108 | 16577.61 |              | 2           | 15691.99 | 34    |
| 109 | 16577.61 |              | 2           | 15617.80 | 36    |
| 110 | 10334.98 |              | 2           | 10517.79 | 14    |
| 111 | 16577.61 |              | 2           | 16077.98 | 28    |
| 112 | 16577.61 |              | 2           | 15707.85 | 38    |
| 113 | 10334.98 |              | 2           | 10517.79 | 14    |
| 114 | 16577.61 |              | 2           | 11172.91 | 60    |
| 115 | 16577.61 |              | 2           | 16884.75 | 18    |
| 116 | 16577.61 |              | 2           | 16793.74 | 20    |
| 117 | 16577.61 |              | 2           | 11172.91 | 60    |
| 118 | 16577.61 |              | 2           | 11244.13 | 58    |
| 119 | 16577.61 |              | 2           | 16793.74 | 20    |
|     |          |              |             |          |       |
|     |          | target_ratio | total_Adabo | ost \    |       |
| 0   |          | vr2          | 59765       |          |       |
| 1   |          | vr40         | 76612       | .10      |       |
| 2   |          | vr40         | 77254       | . 12     |       |
| 3   |          | vr5          | 70617       | .86      |       |
| 4   |          | vr5          | 72031       | .89      |       |
| 5   |          | vr40         | 76761       |          |       |
| 6   |          | vr5          | 70617       |          |       |
| 7   |          | vr15         | 81043       |          |       |
| 8   |          | vr3          | 66142       |          |       |
| 9   |          | vr2          | 59765       |          |       |
| -   | •        | 2            | 55.50       |          |       |

| 10  |       | 1 -    | 01042 00 |
|-----|-------|--------|----------|
| 10  | • • • | vr15   | 81043.92 |
| 11  | • • • | vr2    | 59765.96 |
| 12  | • • • | vr15   | 81043.92 |
| 13  | • • • | vr25   | 75812.47 |
| 14  | • • • | vr3    | 66142.60 |
| 15  |       | vr25   | 75812.47 |
| 16  |       | vr5    | 71664.07 |
| 17  |       | vr3    | 66142.60 |
| 18  |       | vr3    | 66142.60 |
| 19  |       | vr25   | 75812.47 |
| 20  |       | vr25   | 75812.47 |
| 21  |       | vr40   | 77857.79 |
| 22  |       | vr5    | 71664.07 |
| 23  |       | vr40   | 77857.79 |
| 24  |       | vr5    | 71664.07 |
| 25  |       | vr5    | 71664.07 |
| 26  |       | vr40   | 77857.79 |
| 27  |       | vr40   | 77857.79 |
| 28  |       | vClose | 83363.26 |
| 29  | •••   | vr10   | 72114.89 |
|     | •••   | VIIO   | 72111.03 |
| 90  | •••   | vr25   | 75777.64 |
| 91  | •••   | vr40   | 77293.08 |
| 92  | • • • |        | 69477.77 |
|     | • • • | vr5    |          |
| 93  | • • • | vr5    | 69477.77 |
| 94  | • • • | vr40   | 76747.22 |
| 95  | • • • | vr5    | 71971.39 |
| 96  | • • • | vr5    | 69477.77 |
| 97  | • • • | vr2    | 59765.96 |
| 98  | • • • | vr10   | 72366.03 |
| 99  | • • • | vr40   | 76747.22 |
| 100 | • • • | vr40   | 77169.35 |
| 101 |       | vClose | 86962.55 |
| 102 |       | vr10   | 71362.06 |
| 103 |       | vClose | 86962.55 |
| 104 |       | vr10   | 73162.54 |
| 105 |       | vClose | 80525.35 |
| 106 |       | vr10   | 71935.62 |
| 107 |       | vr2    | 60653.77 |
| 108 |       | vr15   | 81043.92 |
| 109 |       | vr15   | 76210.15 |
| 110 |       | vr2    | 60653.77 |
| 111 |       | vr15   | 79227.53 |
| 112 |       | vr15   | 79766.38 |
| 113 |       | vr2    | 60577.61 |
| 114 |       | vr3    | 65545.02 |
| 115 | • • • | vr25   | 76107.41 |
| 116 | • • • | vr25   | 75468.25 |
| 110 | • • • | V1 Z5  | 10400.25 |

| 117 | • • •                   | vr  | 3 65545.02         |   |
|-----|-------------------------|-----|--------------------|---|
| 118 |                         | vr  | 3 66566.11         |   |
| 119 |                         | vr2 | 5 75496.54         |   |
|     |                         |     |                    |   |
|     | total_Adaboost_transact |     | total_DecisionTree | \ |
| 0   |                         | 550 | 64345.57           |   |
| 1   |                         | 166 | 77875.34           |   |
| 2   |                         | 158 | 75210.90           |   |
| 3   |                         | 408 | 69447.27           |   |
| 4   |                         | 436 | 75173.05           |   |
| 5   |                         | 160 | 75210.90           |   |
| 6   |                         | 408 | 71889.11           |   |
| 7   |                         | 264 | 77143.57           |   |
| 8   |                         | 524 | 68409.68           |   |
| 9   |                         | 550 | 64345.57           |   |
| 10  |                         | 264 | 77143.57           |   |
| 11  |                         | 550 | 64345.57           |   |
| 12  |                         | 264 | 77143.57           |   |
| 13  |                         | 214 | 76273.80           |   |
| 14  |                         | 524 | 68409.68           |   |
| 15  |                         | 214 | 76273.80           |   |
| 16  |                         | 406 | 68359.70           |   |
| 17  |                         | 524 | 68409.68           |   |
| 18  |                         | 524 | 68409.68           |   |
| 19  |                         | 214 | 76273.80           |   |
| 20  |                         | 214 | 76273.80           |   |
| 21  |                         | 168 | 80889.81           |   |
| 22  |                         | 406 | 68359.70           |   |
| 23  |                         | 168 | 80889.81           |   |
| 24  |                         | 406 | 68359.70           |   |
| 25  |                         | 406 | 68359.70           |   |
| 26  |                         | 168 | 80889.81           |   |
| 27  |                         | 168 | 80889.81           |   |
| 28  |                         | 128 | 79745.34           |   |
| 29  |                         | 326 | 77700.76           |   |
|     |                         |     |                    |   |
| 90  |                         | 204 | 81857.08           |   |
| 91  |                         | 168 | 75351.72           |   |
| 92  |                         | 440 | 69357.59           |   |
| 93  |                         | 440 | 64750.35           |   |
| 94  |                         | 168 | 73026.53           |   |
| 95  |                         | 424 | 69357.59           |   |
| 96  |                         | 440 | 64750.35           |   |
| 97  |                         | 550 | 64345.57           |   |
| 98  |                         | 300 | 75164.14           |   |
| 99  |                         | 168 | 73026.53           |   |
| 100 |                         | 168 | 73026.53           |   |
| 101 |                         | 78  | 98477.43           |   |
|     |                         | . • | 55110              |   |

| 102      | 304                             | 77009.80             |   |
|----------|---------------------------------|----------------------|---|
| 103      | 78                              | 68085.64             |   |
| 104      | 316                             | 73990.25             |   |
| 105      | 106                             | 79582.96             |   |
| 106      | 322                             | 72520.42             |   |
| 107      | 582                             | 75524.06             |   |
| 108      | 264                             | 77143.57             |   |
| 109      | 258                             | 80076.66             |   |
|          |                                 |                      |   |
| 110      | 582                             | 72567.45             |   |
| 111      | 266                             | 76941.56             |   |
| 112      | 258                             | 71774.25             |   |
| 113      | 580                             | 73779.90             |   |
| 114      | 536                             | 73238.46             |   |
| 115      | 212                             | 76356.85             |   |
| 116      | 214                             | 77590.62             |   |
| 117      | 536                             | 75766.59             |   |
| 118      | 512                             | 80268.48             |   |
| 119      | 218                             | 77635.51             |   |
|          | total_DecisionTree_transactions | total_GaussianNB     | \ |
| 0        | 624                             | 62234.79             |   |
| 1        | 230                             | 76606.62             |   |
| 2        | 248                             | 76606.62             |   |
| 3        | 556                             | 69942.73             |   |
| 4        | 542                             | 69375.30             |   |
| 5        | 248                             | 76606.62             |   |
| 6        | 548                             | 69942.73             |   |
| 7        | 354                             | 71651.71             |   |
| 8        | 608                             | 67110.88             |   |
| 9        | 624                             | 62234.79             |   |
| 10       | 354                             | 71651.71             |   |
| 11       | 624                             | 62234.79             |   |
| 12       | 354                             | 71651.71             |   |
| 13       | 306                             | 73744.83             |   |
| 14       | 608                             | 67110.88             |   |
| 15       | 306                             | 73744.83             |   |
| 16       | 556                             | 69893.21             |   |
| 17       | 608                             | 67110.88             |   |
| 18       | 608                             | 67110.88             |   |
| 19       | 306                             | 73744.83             |   |
| 20       | 306                             | 73744.83             |   |
| 21       | 256                             | 76386.58             |   |
| 22       | 556                             | 69893.21             |   |
| 23       | 256                             | 76386.58             |   |
| 24       | 556                             | 69893.21             |   |
| 25       | 556                             | 69893.21             |   |
| 20       |                                 |                      |   |
| 26       |                                 |                      |   |
| 26<br>27 | 256<br>256                      | 76386.58<br>76386.58 |   |

| 28       598       71583.00         29       420       71372.60                                                                                                                                                                                                                                                   |                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                                                                                                                                   |                                        |
|                                                                                                                                                                                                                                                                                                                   |                                        |
| 90 278 74506.69                                                                                                                                                                                                                                                                                                   |                                        |
| 91 236 73259.61                                                                                                                                                                                                                                                                                                   |                                        |
| 92 566 69301.98                                                                                                                                                                                                                                                                                                   |                                        |
| 93 572 69301.98                                                                                                                                                                                                                                                                                                   |                                        |
| 94 238 73645.78                                                                                                                                                                                                                                                                                                   |                                        |
| 95 566 69228.59                                                                                                                                                                                                                                                                                                   |                                        |
| 96 572 69301.98                                                                                                                                                                                                                                                                                                   |                                        |
| 97 624 62234.79                                                                                                                                                                                                                                                                                                   |                                        |
| 98 428 71372.60                                                                                                                                                                                                                                                                                                   |                                        |
| 99 238 73645.78                                                                                                                                                                                                                                                                                                   |                                        |
| 100 238 76323.88                                                                                                                                                                                                                                                                                                  |                                        |
| 101 632 71762.17                                                                                                                                                                                                                                                                                                  |                                        |
| 102 426 71024.09                                                                                                                                                                                                                                                                                                  |                                        |
| 103 624 71762.17                                                                                                                                                                                                                                                                                                  |                                        |
| 104 424 72286.02                                                                                                                                                                                                                                                                                                  |                                        |
| 105 604 71422.87                                                                                                                                                                                                                                                                                                  |                                        |
| 106 454 71502.80                                                                                                                                                                                                                                                                                                  |                                        |
| 107 640 62438.38                                                                                                                                                                                                                                                                                                  |                                        |
| 108 354 71651.71                                                                                                                                                                                                                                                                                                  |                                        |
| 109 372 71761.09                                                                                                                                                                                                                                                                                                  |                                        |
| 110 622 62438.38                                                                                                                                                                                                                                                                                                  |                                        |
| 111 342 72030.06                                                                                                                                                                                                                                                                                                  |                                        |
| 112 372 72141.38                                                                                                                                                                                                                                                                                                  |                                        |
| 113 632 61737.31                                                                                                                                                                                                                                                                                                  |                                        |
| 114 610 66564.88                                                                                                                                                                                                                                                                                                  |                                        |
| 115 310 73848.41                                                                                                                                                                                                                                                                                                  |                                        |
| 116 320 73744.83                                                                                                                                                                                                                                                                                                  |                                        |
| 117 582 66564.88                                                                                                                                                                                                                                                                                                  |                                        |
| 118 596 67219.68                                                                                                                                                                                                                                                                                                  |                                        |
| 119 286 73744.83                                                                                                                                                                                                                                                                                                  |                                        |
|                                                                                                                                                                                                                                                                                                                   |                                        |
| total_GaussianNB_transactions total_NN total_NN_transacti                                                                                                                                                                                                                                                         | ons \                                  |
| 0 138 67412.39                                                                                                                                                                                                                                                                                                    | 426                                    |
| 1 60 76987.90                                                                                                                                                                                                                                                                                                     | 162                                    |
| 2 62 75660.41                                                                                                                                                                                                                                                                                                     | 162                                    |
|                                                                                                                                                                                                                                                                                                                   | 436                                    |
|                                                                                                                                                                                                                                                                                                                   |                                        |
| 3 124 70437.85                                                                                                                                                                                                                                                                                                    | 428                                    |
| 3 124 70437.85<br>4 124 70913.04                                                                                                                                                                                                                                                                                  |                                        |
| 3       124       70437.85         4       124       70913.04         5       62       75532.20                                                                                                                                                                                                                   | 428                                    |
| 3       124       70437.85         4       124       70913.04         5       62       75532.20         6       124       70437.85                                                                                                                                                                                | 428<br>168                             |
| 3       124       70437.85         4       124       70913.04         5       62       75532.20         6       124       70437.85         7       88       74075.27                                                                                                                                              | 428<br>168<br>436                      |
| 3       124       70437.85         4       124       70913.04         5       62       75532.20         6       124       70437.85         7       88       74075.27         8       146       66547.47                                                                                                           | 428<br>168<br>436<br>276               |
| 3       124       70437.85         4       124       70913.04         5       62       75532.20         6       124       70437.85         7       88       74075.27         8       146       66547.47         9       138       67412.39                                                                        | 428<br>168<br>436<br>276<br>482        |
| 3       124       70437.85         4       124       70913.04         5       62       75532.20         6       124       70437.85         7       88       74075.27         8       146       66547.47         9       138       67412.39         10       88       74075.27         11       138       67412.39 | 428<br>168<br>436<br>276<br>482<br>426 |

| 13 68   | 8 77505.77 208 |
|---------|----------------|
| 14 14   |                |
| 15 68   |                |
| 16 124  |                |
| 17 140  |                |
| 18 140  |                |
| 19 68   |                |
| 20 68   |                |
| 21 60   |                |
| 22 124  |                |
| 23 60   |                |
| 24 124  |                |
| 25 124  |                |
| 26 60   |                |
| 27 60   |                |
| 28 90   |                |
| 29 94   |                |
| ••      |                |
| 90 68   |                |
| 91 65   |                |
| 92 123  |                |
| 93 123  |                |
| 94 64   |                |
| 95 123  | 2 69339.79 438 |
| 96 123  | 2 71519.51 446 |
| 97 138  | 8 67412.39 426 |
| 98 96   | 6 74035.62 318 |
| 99 64   | 4 76498.13 162 |
| 100 63  | 2 75732.33 166 |
| 101 96  | 0 91098.91 38  |
| 102 96  | 6 73231.91 334 |
| 103 90  | 0 91098.91 38  |
| 104 96  | 6 72871.88 330 |
| 105 86  | 6 90704.68 44  |
| 106 96  | 6 73232.51 318 |
| 107 138 | 8 67131.81 450 |
| 108 88  | 8 74075.27 276 |
| 109 88  | 8 74208.37 278 |
| 110 138 | 8 67131.81 450 |
| 111 88  | 8 78448.76 258 |
| 112 86  | 6 74127.82 284 |
| 113 145 | 2 69437.54 436 |
| 114 136 | 6 67803.96 488 |
| 115 70  | 0 78530.02 204 |
| 116 68  | 8 77681.49 210 |
| 117 136 | 6 67803.96 488 |
| 118 144 | 4 68393.86 488 |
| 119 68  | 8 78494.64 208 |
|         |                |

|          | total_benchmark      |
|----------|----------------------|
| 0        | 74037.88             |
| 1        | 74037.88             |
| 2        | 74037.88             |
| 3        | 74037.88             |
| 4        | 74037.88             |
| 5        | 74037.88             |
| 6        | 74037.88             |
| 7        | 74037.88             |
| 8        | 74037.88             |
| 9        | 74037.88             |
| 10       | 74037.88             |
| 11       | 74037.88             |
| 12       | 74037.88             |
| 13       | 74037.88             |
| 14       | 74037.88             |
| 15       | 74037.88             |
| 16       | 74037.88             |
| 17       | 74037.88             |
| 18<br>19 | 74037.88             |
| 20       | 74037.88<br>74037.88 |
| 21       | 74037.88             |
| 22       | 74037.88             |
| 23       | 74037.88             |
| 24       | 74037.88             |
| 25       | 74037.88             |
| 26       | 74037.88             |
| 27       | 74037.88             |
| 28       | 74037.88             |
| 29       | 74037.88             |
|          |                      |
| 90       | 74037.88             |
| 91       | 74037.88             |
| 92       | 74037.88             |
| 93       | 74037.88             |
| 94       | 74037.88             |
| 95       | 74037.88             |
| 96       | 74037.88             |
| 97       | 74037.88             |
| 98       | 74037.88             |
| 99       | 74037.88             |
| 100      | 74037.88             |
| 101      | 74037.88             |
| 102      | 74037.88             |
| 103      | 74037.88             |
| 104      | 74037.88             |

```
105
            74037.88
106
            74037.88
107
            74037.88
108
            74037.88
109
            74037.88
110
            74037.88
111
            74037.88
112
            74037.88
113
            74037.88
114
            74037.88
115
            74037.88
116
            74037.88
117
            74037.88
118
            74037.88
119
            74037.88
[120 rows x 92 columns]
```

#### 0.0.23 Add a column Final Value per model. Which takes taxes and commissions into account

```
In [23]: ## Go through each row
         for index, row in result_df.iterrows():
             ## Initialize params
             benchmark = {'value':0, 'loss':0, 'gain':0, 'transactions':len(TESTING TICKERS)*2.0}
             decisiontree = {'value':0,'loss':0,'gain':0,'transactions':0}
             gaussiannb = {'value':0,'loss':0,'gain':0,'transactions':0}
             adaboost = {'value':0,'loss':0,'gain':0,'transactions':0}
             svc = {'value':0,'loss':0,'gain':0,'transactions':0}
             nn = {'value':0,'loss':0,'gain':0,'transactions':0}
             #models_dict = {'benchmark':benchmark,'DecisionTree':decisiontree,\
                              'GaussianNB':gaussiannb, 'Adaboost':adaboost, 'SVC':svc, 'NN':nn}
             ## No SVC model
             models_dict = {'benchmark':benchmark,'DecisionTree':decisiontree,\
                            'GaussianNB':gaussiannb,'Adaboost':adaboost, 'NN':nn}
             ## Gather each stock information
             for tick in TESTING_TICKERS:
                 ## update each models
                 for key, model in models_dict.items():
                     stock_value = row[tick+"_"+key]
                     if stock_value > MONEY:
                                                                      ## capital gain
                         model['gain'] += stock_value-MONEY
                                                                      ## loss
                         model['loss'] += MONEY-stock_value
                     if key != 'benchmark':
```

```
## Get Final Values
             for key, model in models_dict.items():
                 ## more gains than loss
                 if model['gain'] > model['loss']:
                     if key == 'benchmark':
                         model['value'] = float(format(row['total_'+key] \
                                                - COMM_RATE*model['transactions'] \
                                                - GAIN_LONG*(model['gain']-model['loss']),'.2f'
                     else:
                         model['value'] = float(format(row['total_'+key] \
                                                - COMM_RATE*model['transactions'] \
                                                - GAIN_SHORT*(model['gain']-model['loss']),'.2f
                 ## more loss than gain
                 else:
                     ## All model gains GAIN_LONG (assuming its on 25% tax bracket)
                     model['value'] = float(format(row['total_'+key] - COMM_RATE*model['transa
                                      + GAIN_LONG*(model['loss']-model['gain']),'.2f')) ## add
                 result_df.set_value(index,key+"_FinalValue",model['value'])
In [24]: print(result_df)
         result_df.to_csv('Results.csv') ## can use parameters: mode='a', header=False, if me.
     Adaboost Accuracy Adaboost Fscore BA_Adaboost
0
              0.566123
                               0.540336
                                             10819.24
              0.885266
                               0.847715
                                             16960.51
1
2
              0.886473
                               0.851341
                                             16657.76
3
              0.677536
                               0.641591
                                             13386.15
4
                                             14010.03
              0.681159
                                0.637764
5
              0.884964
                                0.849340
                                             16466.70
6
              0.677536
                                0.641591
                                             13386.15
7
              0.816727
                               0.773385
                                             15652.32
8
              0.623792
                               0.600917
                                             13027.33
9
              0.566123
                               0.540336
                                             10819.24
10
              0.816727
                               0.773385
                                             15652.32
11
              0.566123
                               0.540336
                                             10819.24
12
              0.816727
                               0.773385
                                             15652.32
13
              0.841184
                                0.792480
                                             16455.14
14
              0.623792
                               0.600917
                                             13027.33
15
              0.841184
                                0.792480
                                             16455.14
16
              0.675725
                                0.646505
                                             13928.51
17
              0.623792
                                0.600917
                                             13027.33
```

model['transactions'] += row[tick+"\_"+key+"\_transactions"]

```
13027.33
19
               0.841184
                                  0.792480
                                                 16455.14
20
               0.841184
                                  0.792480
                                                 16455.14
21
               0.886775
                                  0.849813
                                                 17090.62
22
               0.675725
                                  0.646505
                                                 13928.51
23
               0.886775
                                  0.849813
                                                 17090.62
24
               0.675725
                                  0.646505
                                                 13928.51
25
               0.675725
                                  0.646505
                                                 13928.51
26
               0.886775
                                  0.849813
                                                 17090.62
27
               0.886775
                                  0.849813
                                                 17090.62
28
               0.522645
                                  0.351298
                                                 10000.00
29
               0.757246
                                  0.706535
                                                 14708.86
. .
                     . . .
                                        . . .
                                                      . . .
90
               0.850242
                                  0.811005
                                                 16447.50
               0.888889
91
                                  0.847373
                                                 17090.62
92
               0.679952
                                  0.644279
                                                 13550.79
93
               0.679952
                                  0.644279
                                                 13550.79
94
               0.889795
                                  0.848054
                                                 16721.16
95
               0.681461
                                  0.643762
                                                 13429.85
96
               0.679952
                                  0.644279
                                                 13550.79
97
               0.566123
                                  0.540336
                                                 10819.24
98
               0.772343
                                  0.737797
                                                 14768.38
99
               0.889795
                                  0.848054
                                                 16721.16
100
               0.890399
                                  0.851732
                                                 16656.12
                                  0.347789
                                                 10000.00
101
               0.530797
                                  0.733195
102
               0.773853
                                                 14582.51
103
               0.530797
                                  0.347789
                                                 10000.00
104
               0.773249
                                  0.720688
                                                 14834.16
105
               0.525060
                                  0.349880
                                                 10000.00
               0.773249
                                  0.731688
                                                 14458.21
106
107
               0.565217
                                  0.537384
                                                 10966.00
               0.816727
                                  0.773385
                                                 15652.32
108
109
               0.803442
                                  0.762763
                                                 15726.71
110
               0.565217
                                  0.537384
                                                 10966.00
               0.803442
                                  0.753740
                                                 15990.51
111
112
               0.804650
                                  0.762921
                                                 15728.18
113
               0.562802
                                  0.531948
                                                 10970.40
               0.629227
                                  0.607595
                                                 13396.57
114
115
               0.854167
                                  0.804483
                                                 16544.40
               0.854167
                                  0.806186
                                                 16438.43
116
117
               0.629227
                                  0.607595
                                                 13396.57
               0.628925
                                  0.605614
                                                 12993.82
118
               0.854167
                                  0.805247
                                                 16438.43
119
                                  BA_DecisionTree
                                                     BA_DecisionTree_transactions
     BA_Adaboost_transactions
0
                              28
                                          11362.73
                                                                                  64
1
                              18
                                          16228.10
                                                                                  16
2
                              16
                                          16201.26
                                                                                  26
```

0.600917

18

0.623792

| 3        | 52       | 12708.60 | 58       |
|----------|----------|----------|----------|
| 4        | 58       | 13350.19 | 70       |
| 5        | 18       | 16201.26 | 26       |
| 6        | 52       | 14254.24 | 60       |
| 7        | 34       | 16244.51 | 42       |
| 8        | 46       | 12283.55 | 76       |
| 9        |          | 11362.73 |          |
|          | 28       | 16244.51 | 64       |
| 10       | 34       | 11362.73 | 42<br>64 |
| 11<br>12 | 28<br>34 | 16244.51 | 64<br>42 |
|          |          |          |          |
| 13       | 20       | 16714.52 | 32       |
| 14       | 46       | 12283.55 | 76       |
| 15       | 20       | 16714.52 | 32       |
| 16       | 52       | 11464.95 | 64       |
| 17       | 46       | 12283.55 | 76       |
| 18       | 46       | 12283.55 | 76       |
| 19       | 20       | 16714.52 | 32       |
| 20       | 20       | 16714.52 | 32       |
| 21       | 16       | 16863.94 | 22       |
| 22       | 52       | 11464.95 | 64       |
| 23       | 16       | 16863.94 | 22       |
| 24       | 52       | 11464.95 | 64       |
| 25       | 52       | 11464.95 | 64       |
| 26       | 16       | 16863.94 | 22       |
| 27       | 16       | 16863.94 | 22       |
| 28       | 0        | 11801.10 | 60       |
| 29       | 40       | 15088.91 | 46       |
| ••       | • • •    | •••      | • • •    |
| 90       | 20       | 17925.32 | 24       |
| 91       | 16       | 16415.20 | 26       |
| 92       | 60       | 14220.86 | 62       |
| 93       | 60       | 12710.69 | 72       |
| 94       | 20       | 16802.22 | 18       |
| 95       | 56       | 14220.86 | 62       |
| 96       | 60       | 12710.69 | 72       |
| 97       | 28       | 11362.73 | 64       |
| 98       | 32       | 12310.48 | 52       |
| 99       | 20       | 16802.22 | 18       |
| 100      | 20       | 16802.22 | 18       |
| 101      | 0        | 11472.35 | 52       |
| 102      | 34       | 14762.57 | 48       |
| 103      | 0        | 11597.25 | 72       |
| 104      | 40       | 14797.87 | 56       |
| 105      | 0        | 11062.07 | 68       |
| 106      | 38       | 15068.73 | 56       |
| 107      | 30       | 13063.17 | 84       |
| 108      | 34       | 16244.51 | 42       |
| 109      | 28       | 15898.11 | 38       |
|          |          |          |          |

| 11      | LO            | 30            | 11898.72     |          | 68                 |   |
|---------|---------------|---------------|--------------|----------|--------------------|---|
| 11      |               | 32            | 15709.38     |          | 42                 |   |
|         | 12            | 28            | 15433.70     |          | 30                 |   |
| 11      |               | 30            | 11951.63     |          | 72                 |   |
| 11      |               | 58            | 11186.95     |          | 82                 |   |
|         |               |               |              |          |                    |   |
| 11      |               | 18            | 16230.78     |          | 34                 |   |
| 11      |               | 22            | 16189.45     |          | 34                 |   |
| 11      |               | 58            | 13513.65     |          | 64                 |   |
|         | 18            | 58            | 12314.89     |          | 70                 |   |
| 11      | 19            | 22            | 16959.71     |          | 30                 |   |
|         | BA GaussianNB | BA_GaussianNB | transactions | BA_NN    | BA_NN_transactions | \ |
| 0       | 10334.98      |               | 2            | 10326.56 | 10                 |   |
| 1       | 16577.61      |               | 2            | 17037.26 | 14                 |   |
| 2       | 16577.61      |               | 2            | 17123.13 | 14                 |   |
| 3       | 16577.61      |               | 2            | 12316.68 | 62                 |   |
| 4       | 16577.61      |               | 2            | 14193.64 | 58                 |   |
| 5       | 16577.61      |               | 2            | 17123.13 | 14                 |   |
| 6       | 16577.61      |               | 2            | 12316.68 | 62                 |   |
| 7       | 16577.61      |               | 2            | 15691.99 | 34                 |   |
| 8       | 16577.61      |               | 2            | 11038.13 | 56                 |   |
| 9       | 10377.01      |               | 2            | 10326.56 | 10                 |   |
| 9<br>1( |               |               | 2            | 15691.99 | 34                 |   |
| 11      |               |               | 2            | 10326.56 | 10                 |   |
|         |               |               |              |          |                    |   |
| 12      |               |               | 2            | 15691.99 | 34                 |   |
| 13      |               |               | 2            | 16444.62 | 20                 |   |
| 14      |               |               | 2            | 11038.13 | 56                 |   |
| 15      |               |               | 2            | 16444.62 | 20                 |   |
| 16      |               |               | 2            | 12829.09 | 62                 |   |
| 17      |               |               | 2            | 11038.13 | 56                 |   |
| 18      |               |               | 2            | 11038.13 | 56                 |   |
| 19      |               |               | 2            | 16444.62 | 20                 |   |
| 20      |               |               | 2            | 16444.62 | 20                 |   |
| 21      |               |               | 2            | 17020.63 | 14                 |   |
| 22      | 2 16577.61    |               | 2            | 12829.09 | 62                 |   |
| 23      | 16577.61      |               | 2            | 17020.63 | 14                 |   |
| 24      | 16577.61      |               | 2            | 12829.09 | 62                 |   |
| 25      | 16577.61      |               | 2            | 12829.09 | 62                 |   |
| 26      | 16577.61      |               | 2            | 17020.63 | 14                 |   |
| 27      | 7 16577.61    |               | 2            | 17020.63 | 14                 |   |
| 28      | 10334.98      |               | 2            | 10000.00 | 0                  |   |
| 29      | 16577.61      |               | 2            | 14355.48 | 42                 |   |
| •       | • • •         |               |              |          |                    |   |
| 90      |               |               | 2            | 16692.48 | 20                 |   |
| 91      |               |               | 2            | 17020.63 | 14                 |   |
| 92      |               |               | 2            | 14101.76 | 58                 |   |
| 93      | 16577.61      |               | 2            | 14101.76 | 58                 |   |
| 94      | 16577.61      |               | 2            | 17037.26 | 14                 |   |
|         |               |               |              |          |                    |   |

| 95       | 16577.61 | 2                            | 12310.20           | 60               |
|----------|----------|------------------------------|--------------------|------------------|
| 96       | 16577.61 | 2                            | 14101.76           | 58               |
| 97       | 10334.98 | 2                            | 10326.56           | 10               |
| 98       | 16577.61 | 2                            | 14588.03           | 40               |
| 99       | 16577.61 | 2                            | 17037.26           | 14               |
| 100      | 16577.61 | 2                            | 17123.13           | 14               |
| 101      | 10334.98 | 2                            | 10000.00           | 0                |
| 102      | 16577.61 | 2                            | 14648.65           | 42               |
| 103      | 10334.98 | 2                            | 10000.00           | 0                |
| 104      | 16577.61 | 2                            | 14648.65           | 42               |
| 105      | 10334.98 | 2                            | 10000.00           | 0                |
| 106      | 16577.61 | 2                            | 14833.46           | 40               |
| 107      | 10334.98 | 2                            | 10517.79           | 14               |
| 108      | 16577.61 | 2                            | 15691.99           | 34               |
| 109      | 16577.61 | 2                            | 15617.80           | 36               |
| 110      | 10377.01 | 2                            | 10517.79           | 14               |
| 111      | 16577.61 | 2                            | 16077.98           | 28               |
| 112      | 16577.61 | 2                            | 15707.85           | 38               |
|          | 10377.01 | 2                            |                    |                  |
| 113      |          |                              | 10517.79           | 14               |
| 114      | 16577.61 | 2                            | 11172.91           | 60               |
| 115      | 16577.61 | 2                            | 16884.75           | 18               |
| 116      | 16577.61 | 2                            | 16793.74           | 20               |
| 117      | 16577.61 | 2                            | 11172.91           | 60               |
| 118      | 16577.61 | 2                            | 11244.13           | 58               |
| 119      | 16577.61 | 2                            | 16793.74           | 20               |
|          |          | total CaugaianND to          | otol ConggionND tm | ongoationa \     |
| ^        | • • •    | total_GaussianNB to 62234.79 | otal_GaussianNB_tr | ansactions \ 138 |
| 0        | • • •    |                              |                    |                  |
| 1        | • • •    | 76606.62                     |                    | 60               |
| 2        | • • •    | 76606.62                     |                    | 62               |
| 3        | • • •    | 69942.73                     |                    | 124              |
| 4        | • • •    | 69375.30                     |                    | 124              |
| 5        | • • •    | 76606.62                     |                    | 62               |
| 6        | •••      | 69942.73                     |                    | 124              |
| 7        | • • •    | 71651.71                     |                    | 88               |
| 8        | • • •    | 67110.88                     |                    | 146              |
| 9        | • • •    | 62234.79                     |                    | 138              |
| 10       | • • •    | 71651.71                     |                    | 88               |
| 11       | • • •    | 62234.79                     |                    | 138              |
| 12       | • • •    | 71651.71                     |                    | 88               |
| 13       | • • •    | 73744.83                     |                    | 68               |
| 14       | •••      | 67110.88                     |                    | 146              |
| 15       | • • •    | 73744.83                     |                    | 68               |
| 16       |          | 69893.21                     |                    | 124              |
| 17       |          |                              |                    |                  |
|          |          | 67110.88                     |                    | 146              |
| 18       | •••      | 67110.88                     |                    | 146              |
| 18<br>19 |          |                              |                    |                  |

| 21  |              | 76386.58                       | 60   |
|-----|--------------|--------------------------------|------|
| 22  |              | 69893.21                       | 124  |
| 23  |              | 76386.58                       | 60   |
| 24  |              | 69893.21                       | 124  |
| 25  |              | 69893.21                       | 124  |
| 26  |              | 76386.58                       | 60   |
| 27  |              | 76386.58                       | 60   |
| 28  |              | 71583.00                       | 90   |
| 29  |              | 71372.60                       | 94   |
|     | • • • •      |                                |      |
| 90  | •••          | 74506.69                       | 68   |
| 91  | •••          | 73259.61                       | 62   |
|     | • • •        |                                |      |
| 92  | • • •        | 69301.98                       | 122  |
| 93  | • • •        | 69301.98                       | 122  |
| 94  | • • •        | 73645.78                       | 64   |
| 95  | • • •        | 69228.59                       | 122  |
| 96  | • • •        | 69301.98                       | 122  |
| 97  | • • •        | 62234.79                       | 138  |
| 98  |              | 71372.60                       | 96   |
| 99  |              | 73645.78                       | 64   |
| 100 |              | 76323.88                       | 62   |
| 101 |              | 71762.17                       | 90   |
| 102 |              | 71024.09                       | 96   |
| 103 |              | 71762.17                       | 90   |
| 104 |              | 72286.02                       | 96   |
| 105 |              | 71422.87                       | 86   |
| 106 |              | 71502.80                       | 96   |
| 107 |              | 62438.38                       | 138  |
| 108 |              | 71651.71                       | 88   |
| 109 |              | 71761.09                       | 88   |
| 110 | •••          | 62438.38                       | 138  |
| 111 | • • •        | 72030.06                       | 88   |
| 112 | • • •        | 72141.38                       | 86   |
|     | • • •        |                                |      |
| 113 | • • •        | 61737.31                       | 142  |
| 114 | • • •        | 66564.88                       | 136  |
| 115 | • • •        | 73848.41                       | 70   |
| 116 | • • •        | 73744.83                       | 68   |
| 117 | • • •        | 66564.88                       | 136  |
| 118 | • • •        | 67219.68                       | 144  |
| 119 | • • •        | 73744.83                       | 68   |
|     |              |                                |      |
|     | <del>-</del> | al_NN_transactions total_bench |      |
| 0   | 67412.39     | 426 7403                       |      |
| 1   | 76987.90     | 162 7403                       |      |
| 2   | 75660.41     | 162 7403                       | 7.88 |
| 3   | 70437.85     | 436 7403                       | 7.88 |
| 4   | 70913.04     | 428 7403                       | 7.88 |
| 5   | 75532.20     | 168 7403                       | 7.88 |
|     |              |                                |      |

| 6                                                                                                                                     | 70437.85                                                                                                                                                                                                                                                 | 436                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7                                                                                                                                     | 74075.27                                                                                                                                                                                                                                                 | 276                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 8                                                                                                                                     | 66547.47                                                                                                                                                                                                                                                 | 482                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 9                                                                                                                                     | 67412.39                                                                                                                                                                                                                                                 | 426                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 10                                                                                                                                    | 74075.27                                                                                                                                                                                                                                                 | 276                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 11                                                                                                                                    | 67412.39                                                                                                                                                                                                                                                 | 426                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 12                                                                                                                                    | 74075.27                                                                                                                                                                                                                                                 | 276                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 13                                                                                                                                    | 77505.77                                                                                                                                                                                                                                                 | 208                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 14                                                                                                                                    | 66547.47                                                                                                                                                                                                                                                 | 482                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 15                                                                                                                                    | 77505.77                                                                                                                                                                                                                                                 | 208                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 16                                                                                                                                    | 70046.18                                                                                                                                                                                                                                                 | 438                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 17                                                                                                                                    | 66547.47                                                                                                                                                                                                                                                 | 482                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 18                                                                                                                                    | 66547.47                                                                                                                                                                                                                                                 | 482                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 19                                                                                                                                    | 77505.77                                                                                                                                                                                                                                                 | 208                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 20                                                                                                                                    | 77505.77                                                                                                                                                                                                                                                 | 208                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 21                                                                                                                                    | 76505.30                                                                                                                                                                                                                                                 | 160                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 22                                                                                                                                    | 70046.18                                                                                                                                                                                                                                                 | 438                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 23                                                                                                                                    | 76505.30                                                                                                                                                                                                                                                 | 160                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 24                                                                                                                                    | 70046.18                                                                                                                                                                                                                                                 | 438                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 25                                                                                                                                    | 70046.18                                                                                                                                                                                                                                                 | 438                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 26                                                                                                                                    | 76505.30                                                                                                                                                                                                                                                 | 160                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 27                                                                                                                                    | 76505.30                                                                                                                                                                                                                                                 | 160                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
| 28                                                                                                                                    | 76350.15                                                                                                                                                                                                                                                 | 52                                                                                                                                           | 74037.88                                                                                                                                                                                                                         |
| 29                                                                                                                                    | 73366.95                                                                                                                                                                                                                                                 | 324                                                                                                                                          | 74037.88                                                                                                                                                                                                                         |
|                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                              |                                                                                                                                                                                                                                  |
|                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                              | 14001.00                                                                                                                                                                                                                         |
|                                                                                                                                       | • • •                                                                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                  |
| <br>90                                                                                                                                | <br>76887.32                                                                                                                                                                                                                                             | 206                                                                                                                                          | <br>74037.88                                                                                                                                                                                                                     |
| <br>90<br>91                                                                                                                          | 76887.32<br>76505.30                                                                                                                                                                                                                                     | 206<br>162                                                                                                                                   | <br>74037.88<br>74037.88                                                                                                                                                                                                         |
| 90<br>91<br>92                                                                                                                        | 76887.32<br>76505.30<br>71519.51                                                                                                                                                                                                                         | 206<br>162<br>446                                                                                                                            | <br>74037.88<br>74037.88<br>74037.88                                                                                                                                                                                             |
| 90<br>91<br>92<br>93                                                                                                                  | 76887.32<br>76505.30<br>71519.51<br>71519.51                                                                                                                                                                                                             | 206<br>162<br>446<br>446                                                                                                                     | 74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                                                                                                     |
| 90<br>91<br>92<br>93<br>94                                                                                                            | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13                                                                                                                                                                                                 | 206<br>162<br>446<br>446<br>162                                                                                                              | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                                                                                         |
| 90<br>91<br>92<br>93<br>94<br>95                                                                                                      | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79                                                                                                                                                                                     | 206<br>162<br>446<br>446<br>162<br>438                                                                                                       | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                                                                             |
| 90<br>91<br>92<br>93<br>94<br>95<br>96                                                                                                | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51                                                                                                                                                                         | 206<br>162<br>446<br>446<br>162<br>438<br>446                                                                                                | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                                                                 |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97                                                                                          | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39                                                                                                                                                             | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426                                                                                         | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                                                                 |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97                                                                                          | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62                                                                                                                                                 | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318                                                                                  | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                                                     |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                                                    | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13                                                                                                                                     | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162                                                                           | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                                         |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99                                                                              | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33                                                                                                                         | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166                                                                    | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                             |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100                                                                       | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91                                                                                                             | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38                                                              | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                 |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101                                                                | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91                                                                                                 | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334                                                       | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                                 |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103                                                  | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91                                                                                     | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38                                                 | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                                     |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104                                           | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88                                                                         | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38                                                 | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                                         |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104                                           | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88<br>90704.68                                                             | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38<br>330<br>44                                    | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                                             |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                                    | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88<br>90704.68<br>73232.51                                                 | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38<br>330<br>44<br>318                             | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                                     |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106                             | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88<br>90704.68<br>73232.51<br>67131.81                                     | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38<br>330<br>44<br>318<br>450                      | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88                         |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107                      | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88<br>90704.68<br>73232.51<br>67131.81<br>74075.27                         | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38<br>330<br>44<br>318<br>450<br>276               | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88             |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108               | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88<br>90704.68<br>73232.51<br>67131.81<br>74075.27<br>74208.37             | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38<br>330<br>44<br>318<br>450<br>276<br>278        | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88             |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110 | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88<br>90704.68<br>73232.51<br>67131.81<br>74075.27<br>74208.37<br>67131.81 | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38<br>330<br>44<br>318<br>450<br>276<br>278<br>450 | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88 |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108               | 76887.32<br>76505.30<br>71519.51<br>71519.51<br>76498.13<br>69339.79<br>71519.51<br>67412.39<br>74035.62<br>76498.13<br>75732.33<br>91098.91<br>73231.91<br>91098.91<br>72871.88<br>90704.68<br>73232.51<br>67131.81<br>74075.27<br>74208.37             | 206<br>162<br>446<br>446<br>162<br>438<br>446<br>426<br>318<br>162<br>166<br>38<br>334<br>38<br>330<br>44<br>318<br>450<br>276<br>278        | 74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88<br>74037.88             |

| 113 | 69437.54                         | 436 74037                    | .88                    |   |
|-----|----------------------------------|------------------------------|------------------------|---|
| 114 | 67803.96                         | 488 74037                    | .88                    |   |
| 115 | 78530.02                         | 204 74037                    | .88                    |   |
| 116 | 77681.49                         | 210 74037                    | .88                    |   |
| 117 | 67803.96                         | 488 74037                    | .88                    |   |
| 118 | 68393.86                         | 488 74037                    | .88                    |   |
| 119 | 78494.64                         | 208 74037                    | .88                    |   |
|     |                                  |                              |                        |   |
|     | ${\tt DecisionTree\_FinalValue}$ | ${\tt Adaboost\_FinalValue}$ | ${\tt NN\_FinalValue}$ | \ |
| 0   | 63604.93                         | 60078.57                     | 67191.83               |   |
| 1   | 77055.54                         | 76298.59                     | 76637.82               |   |
| 2   | 74701.66                         | 76883.90                     | 75509.45               |   |
| 3   | 68277.98                         | 70005.58                     | 69713.97               |   |
| 4   | 73214.19                         | 71068.91                     | 70157.48               |   |
| 5   | 74701.66                         | 76454.86                     | 75370.77               |   |
| 6   | 70393.14                         | 70005.58                     | 69713.97               |   |
| 7   | 75819.73                         | 79476.14                     | 73597.78               |   |
| 8   | 67138.63                         | 65627.41                     | 66179.45               |   |
| 9   | 63604.93                         | 60078.57                     | 67191.83               |   |
| 10  | 75819.73                         | 79476.14                     | 73597.78               |   |
| 11  | 63604.93                         | 60078.57                     | 67191.83               |   |
| 12  | 75819.73                         | 79476.14                     | 73597.78               |   |
| 13  | 75318.03                         | 75381.30                     | 76850.30               |   |
| 14  | 67138.63                         | 65627.41                     | 66179.45               |   |
| 15  | 75318.03                         | 75381.30                     | 76850.30               |   |
| 16  | 67353.54                         | 70904.76                     | 69371.15               |   |
| 17  | 67138.63                         | 65627.41                     | 66179.45               |   |
| 18  | 67138.63                         | 65627.41                     | 66179.45               |   |
| 19  | 75318.03                         | 75381.30                     | 76850.30               |   |
| 20  | 75318.03                         | 75381.30                     | 76850.30               |   |
| 21  | 79400.16                         | 77347.52                     | 76237.51               |   |
| 22  | 67353.54                         | 70904.76                     | 69371.15               |   |
| 23  | 79400.16                         | 77347.52                     | 76237.51               |   |
| 24  | 67353.54                         | 70904.76                     | 69371.15               |   |
| 25  | 67353.54                         | 70904.76                     | 69371.15               |   |
| 26  | 79400.16                         | 77347.52                     | 76237.51               |   |
| 27  | 79400.16                         | 77347.52                     | 76237.51               |   |
| 28  | 76823.44                         | 81888.85                     | 76640.23               |   |
| 29  | 75966.65                         | 71683.96                     | 72758.11               |   |
|     | • • •                            |                              |                        |   |
| 90  | 80016.71                         | 75401.19                     | 76334.52               |   |
| 91  | 74880.76                         | 76867.52                     | 76227.61               |   |
| 92  | 68152.25                         | 68878.10                     | 70583.88               |   |
| 93  | 64206.40                         | 68878.10                     | 70583.88               |   |
| 94  | 72894.45                         | 76403.54                     | 76221.51               |   |
| 95  | 68152.25                         | 71076.88                     | 68770.72               |   |
| 96  | 64206.40                         | 68878.10                     | 70583.88               |   |
| 97  | 63604.93                         | 60078.57                     | 67191.83               |   |
|     | 33331.00                         | 200.0.01                     | J <b></b>              |   |

| 98  | 73770.92 | 72026.13 | 73356.18 |
|-----|----------|----------|----------|
| 99  | 72894.45 | 76403.54 | 76221.51 |
| 100 | 72894.45 | 76762.35 | 75550.78 |
| 101 | 90729.67 | 84835.81 | 88136.08 |
| 102 | 75349.63 | 71152.95 | 72593.82 |
| 103 | 66783.99 | 84835.81 | 88136.08 |
| 104 | 72792.91 | 72623.96 | 72307.60 |
| 105 | 76655.72 | 79869.31 | 87810.71 |
| 106 | 71395.06 | 71551.38 | 72673.53 |
| 107 | 73027.45 | 60674.80 | 66834.54 |
| 108 | 75819.73 | 79476.14 | 73597.78 |
| 109 | 78216.10 | 75501.53 | 73701.01 |
| 110 | 70603.43 | 60674.80 | 66834.54 |
| 111 | 75707.43 | 78026.70 | 77404.35 |
| 112 | 71166.71 | 78524.32 | 73602.85 |
| 113 | 71584.51 | 60619.97 | 68863.71 |
| 114 | 71233.19 | 65060.07 | 67217.77 |
| 115 | 75368.82 | 75641.90 | 77740.72 |
| 116 | 76368.03 | 75088.71 | 76989.77 |
| 117 | 73520.70 | 65060.07 | 67217.77 |
| 118 | 77251.16 | 66046.79 | 67719.18 |
| 119 | 76574.48 | 75092.96 | 77690.84 |
|     |          |          |          |

|    | honohmork FinalValue | CouggianNP FinalWalue |
|----|----------------------|-----------------------|
| ^  | <del>-</del>         | GaussianNB_FinalValue |
| 0  | 74853.0              | 64216.47              |
| 1  | 74853.0              | 76818.63              |
| 2  | 74853.0              | 76808.73              |
| 3  | 74853.0              | 70837.52              |
| 4  | 74853.0              | 70355.21              |
| 5  | 74853.0              | 76808.73              |
| 6  | 74853.0              | 70837.52              |
| 7  | 74853.0              | 72468.35              |
| 8  | 74853.0              | 68321.55              |
| 9  | 74853.0              | 64216.47              |
| 10 | 74853.0              | 72468.35              |
| 11 | 74853.0              | 64216.47              |
| 12 | 74853.0              | 72468.35              |
| 13 | 74853.0              | 74346.51              |
| 14 | 74853.0              | 68321.55              |
| 15 | 74853.0              | 74346.51              |
| 16 | 74853.0              | 70795.43              |
| 17 | 74853.0              | 68321.55              |
| 18 | 74853.0              | 68321.55              |
| 19 | 74853.0              | 74346.51              |
| 20 | 74853.0              | 74346.51              |
| 21 | 74853.0              | 76631.59              |
| 22 | 74853.0              | 70795.43              |
| 23 | 74853.0              | 76631.59              |
|    |                      |                       |

```
24
                   74853.0
                                            70795.43
25
                                            70795.43
                   74853.0
26
                   74853.0
                                            76631.59
27
                   74853.0
                                            76631.59
28
                   74853.0
                                            72400.05
29
                   74853.0
                                            72201.41
. .
                        . . .
                                                 . . .
90
                   74853.0
                                            74994.09
                   74853.0
                                            73963.77
91
92
                   74853.0
                                            70302.78
93
                   74853.0
                                            70302.78
94
                   74853.0
                                            74282.11
95
                   74853.0
                                            70240.40
96
                   74853.0
                                            70302.78
97
                   74853.0
                                            64216.47
98
                   74853.0
                                            72191.51
99
                   74853.0
                                            74282.11
                   74853.0
                                            76568.40
100
101
                   74853.0
                                            72552.34
102
                   74853.0
                                            71895.28
103
                   74853.0
                                            72552.34
104
                   74853.0
                                            72967.92
105
                   74853.0
                                            72283.74
                                            72302.18
106
                   74853.0
                   74853.0
                                            64389.52
107
                   74853.0
                                            72468.35
108
109
                   74853.0
                                            72561.33
110
                   74853.0
                                            64389.52
111
                   74853.0
                                            72789.95
112
                   74853.0
                                            72894.47
                   74853.0
                                            63773.81
113
114
                   74853.0
                                            67906.95
115
                   74853.0
                                            74424.65
                                            74346.51
116
                   74853.0
                   74853.0
                                            67906.95
117
118
                   74853.0
                                            68423.93
119
                   74853.0
                                            74346.51
```

[120 rows x 97 columns]

## 0.0.24 Graph entire results. All 480 models

```
graph_data = zip(x_ticks,y)
graph_data = sorted(graph_data) ## sort labels

y = [ y for x, y in graph_data ]
x_ticks = [ x for x, y in graph_data ]

fig, ax = plt.subplots()
opacity = 0.5
plt.bar(x,y,align='center',alpha=opacity)
plt.xticks(x,x_ticks,rotation=90,)
plt.ylabel('Final Value')
plt.title(title)
plt.tick_params(axis='x',which='major',labelsize=3)
plt.show()
fig.savefig("figures/"+filename, format='svg', dpi=1200)

df_res = pd.DataFrame.from_csv("Results.csv")
```

#### 0.0.25 Graph of NN Models

#### NN Models



## 0.0.26 Graph of Decision Tree Models

## Decision Tree Models



## 0.0.27 Graph of Adaboost Models



## 0.0.28 Graph of GaussianNB Models



## 0.0.29 Get the top performing model of each model

```
In [30]: max_benchmark_FinalValue = result_df['benchmark_FinalValue'].iloc[0]
         max_NN_FinalValue = 0
         max_GaussianNB_FinalValue = 0
         max_Adaboost_FinalValue = 0
         max_DecisionTree_FinalValue = 0
         max_SVC_FinalValue = 0
         row_benchmark = result_df.iloc[0]
         row_NN = None
         row_GaussianNB = None
         row_Adaboost = None
         row_DecisionTree = None
         row_SVC = None
         for index, row in result_df.iterrows():
             if row['NN_FinalValue'] > max_NN_FinalValue:
                 row_NN = copy.deepcopy(row)
                 max_NN_FinalValue = row['NN_FinalValue']
             if row['GaussianNB_FinalValue'] > max_GaussianNB_FinalValue:
                 row_GaussianNB = copy.deepcopy(row)
```

```
max_GaussianNB_FinalValue = row['GaussianNB_FinalValue']
             if row['Adaboost_FinalValue'] > max_Adaboost_FinalValue:
                 row_Adaboost = copy.deepcopy(row)
                 max_Adaboost_FinalValue = row['Adaboost_FinalValue']
             if row['DecisionTree_FinalValue'] > max_DecisionTree_FinalValue:
                 row_DecisionTree = copy.deepcopy(row)
                 max_DecisionTree_FinalValue = row['DecisionTree_FinalValue']
             #if row['SVC_FinalValue'] > max_SVC_FinalValue:
                 row_SVC = copy.deepcopy(row)
                  max_SVC_FinalValue = row['SVC_FinalValue']
         print("benchmark FinalValue: {}".format(max_benchmark_FinalValue))
         print("Max NN FinalValue: {}".format(max_NN_FinalValue))
         print("Max GaussianNB FinalValue: {}".format(max_GaussianNB_FinalValue))
         print("Max Adaboost FinalValue: {}".format(max_Adaboost_FinalValue))
         print("Max DecisionTree FinalValue: {}".format(max_DecisionTree_FinalValue))
         #print("Max SVC FinalValue: {}".format(max_SVC_FinalValue))
benchmark FinalValue: 74853.0
Max NN FinalValue: 90873.81
Max GaussianNB FinalValue: 76818.63
Max Adaboost FinalValue: 84835.81
Max DecisionTree FinalValue: 94896.15
0.0.30 Get summary of the top models
In [31]: #model_list = [('benchmark', row_benchmark), ('NN', row_NN), ('GaussianNB', row_GaussianNB
                         ('SVC', row_SVC), ('Adaboost', row_Adaboost), ('DecisionTree', row_Decisio
         ## No SVC
         model_list = [('benchmark',row_benchmark),('NN',row_NN),('GaussianNB',row_GaussianNB)
                        ('Adaboost',row_Adaboost),('DecisionTree',row_DecisionTree)]
         best_model = None
         best_model_val = 0
         for name, model in model_list:
             ## Get all data relevant to each model
             for index_name in model.index:
                 if name not in index name and index name not in ["sell_below", "buy_above", "ta:
                 #if name not in index_name:
                     del model[index_name]
             print("\n{} Data: \n{}".format(name,model))
```

```
best_model_val = model[name+"_FinalValue"]
                 best_model = name + "_" + model["target_ratio"] + "_" + str(model["sell_below
                                    + "_" + str(model["buy_above"])
benchmark Data:
BA_benchmark
                         18139.2
CHK_benchmark
                          9749.5
CMG_benchmark
                         8140.79
FCEL_benchmark
                         2896.68
HON_benchmark
                         11879.7
MA_benchmark
                         13322.6
SD_benchmark
                         8545.85
TPLM_benchmark
                         1363.63
buy_above
                            0.99
sell_below
                            0.99
target_ratio
                             vr2
total_benchmark
                         74037.9
benchmark_FinalValue
                           74853
Name: 0, dtype: object
NN Data:
BA_NN
                             10000
BA_NN_transactions
                                 0
CHK_NN
                             10000
CHK_NN_transactions
                                 0
CMG_NN
                             10000
CMG_NN_transactions
                                 0
FCEL_NN
                           9465.17
FCEL_NN_transactions
                                10
                             10000
HON_NN
HON_NN_transactions
                                 0
                             10000
MA_NN
{\tt MA\_NN\_transactions}
NN Accuracy
                          0.524155
NN Fscore
                          0.315765
SD_NN
                             10000
SD_NN_transactions
                                 0
                           25402.8
TPLM_NN
TPLM_NN_transactions
                                46
buy_above
                              1.01
sell_below
                              1.01
target_ratio
                            vClose
total_NN
                             94868
total_NN_transactions
                                56
NN_FinalValue
                           90873.8
Name: 30, dtype: object
```

if model[name+"\_FinalValue"] > best\_model\_val:

| GaussianNB Data:                                                                                                                                                                                                                                                                                                |                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| BA_GaussianNB                                                                                                                                                                                                                                                                                                   | 16577.6                                                                                                                       |
| BA_GaussianNB_transactions                                                                                                                                                                                                                                                                                      | 2                                                                                                                             |
| CHK_GaussianNB                                                                                                                                                                                                                                                                                                  | 10001.8                                                                                                                       |
| CHK_GaussianNB_transactions                                                                                                                                                                                                                                                                                     | 14                                                                                                                            |
| CMG_GaussianNB                                                                                                                                                                                                                                                                                                  | 8169.4                                                                                                                        |
| CMG_GaussianNB_transactions                                                                                                                                                                                                                                                                                     | 6                                                                                                                             |
| FCEL_GaussianNB                                                                                                                                                                                                                                                                                                 | 9371.85                                                                                                                       |
| FCEL_GaussianNB_transactions                                                                                                                                                                                                                                                                                    | 8                                                                                                                             |
| GaussianNB Accuracy                                                                                                                                                                                                                                                                                             | 0.549517                                                                                                                      |
| GaussianNB Fscore                                                                                                                                                                                                                                                                                               | 0.7769                                                                                                                        |
| HON_GaussianNB                                                                                                                                                                                                                                                                                                  | 10430.8                                                                                                                       |
| HON_GaussianNB_transactions                                                                                                                                                                                                                                                                                     | 2                                                                                                                             |
| MA_GaussianNB                                                                                                                                                                                                                                                                                                   | 10216.5                                                                                                                       |
| MA_GaussianNB_transactions                                                                                                                                                                                                                                                                                      | 2                                                                                                                             |
| SD_GaussianNB                                                                                                                                                                                                                                                                                                   | 8904.41                                                                                                                       |
| SD_GaussianNB_transactions                                                                                                                                                                                                                                                                                      | 6                                                                                                                             |
| TPLM_GaussianNB                                                                                                                                                                                                                                                                                                 | 2934.24                                                                                                                       |
| TPLM_GaussianNB_transactions                                                                                                                                                                                                                                                                                    | 20                                                                                                                            |
| buy_above                                                                                                                                                                                                                                                                                                       | 1.01                                                                                                                          |
| sell_below                                                                                                                                                                                                                                                                                                      | 1                                                                                                                             |
| target_ratio                                                                                                                                                                                                                                                                                                    | vr40                                                                                                                          |
| total_GaussianNB                                                                                                                                                                                                                                                                                                | 76606.6                                                                                                                       |
| ${\tt total\_GaussianNB\_transactions}$                                                                                                                                                                                                                                                                         | 60                                                                                                                            |
| ${\tt Gaussian NB\_Final Value}$                                                                                                                                                                                                                                                                                | 76818.6                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |
| Name: 1, dtype: object                                                                                                                                                                                                                                                                                          |                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |
| Adaboost Data:                                                                                                                                                                                                                                                                                                  |                                                                                                                               |
| Adaboost Data:<br>Adaboost Accuracy                                                                                                                                                                                                                                                                             | 0.530797                                                                                                                      |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore                                                                                                                                                                                                                                                                | 0.347789                                                                                                                      |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost                                                                                                                                                                                                                                                    | 0.347789<br>10000                                                                                                             |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions                                                                                                                                                                                                                           | 0.347789<br>10000<br>0                                                                                                        |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost                                                                                                                                                                                                              | 0.347789<br>10000<br>0<br>9833.75                                                                                             |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost_transactions                                                                                                                                                                                                 | 0.347789<br>10000<br>0<br>9833.75<br>14                                                                                       |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost_transactions CMG_Adaboost                                                                                                                                                                       | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000                                                                              |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost_transactions CMG_Adaboost CMG_Adaboost_transactions                                                                                                                                             | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0                                                                         |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost_transactions CMG_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost                                                                                                                                            | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0                                                                         |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost_transactions CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost_transactions                                                                                                                 | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2                                                              |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost                                                                                                                              | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000                                               |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost_transactions CMG_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost_transactions                                                                                       | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000<br>0                                          |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost CHK_Adaboost CHK_Adaboost CMG_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost HON_Adaboost MA_Adaboost                                                                                                     | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000<br>0<br>10000                                 |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost HON_Adaboost MA_Adaboost MA_Adaboost MA_Adaboost_transactions                                      | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000<br>0<br>10000                                 |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost CHK_Adaboost CHK_Adaboost CMG_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost HON_Adaboost MA_Adaboost MA_Adaboost SD_Adaboost                                                               | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000<br>0<br>10000<br>0<br>9588.21                 |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost HON_Adaboost MA_Adaboost MA_Adaboost SD_Adaboost_transactions SD_Adaboost SD_Adaboost_transactions | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000<br>0<br>10000<br>0<br>9588.21<br>2            |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost HON_Adaboost MA_Adaboost MA_Adaboost SD_Adaboost SD_Adaboost TPLM_Adaboost TPLM_Adaboost                         | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000<br>0<br>10000<br>0<br>9588.21<br>2<br>13422.4 |
| Adaboost Data: Adaboost Accuracy Adaboost Fscore BA_Adaboost BA_Adaboost BA_Adaboost_transactions CHK_Adaboost CHK_Adaboost CMG_Adaboost CMG_Adaboost FCEL_Adaboost FCEL_Adaboost FCEL_Adaboost HON_Adaboost HON_Adaboost MA_Adaboost MA_Adaboost SD_Adaboost_transactions SD_Adaboost SD_Adaboost_transactions | 0.347789<br>10000<br>0<br>9833.75<br>14<br>10000<br>0<br>14118.2<br>36<br>10000<br>0<br>10000<br>0<br>9588.21<br>2            |

```
sell_below
                                   1.005
target_ratio
                                  vClose
total_Adaboost
                                 86962.6
total_Adaboost_transactions
                                      78
Adaboost FinalValue
                                 84835.8
Name: 101, dtype: object
DecisionTree Data:
BA DecisionTree
                                     10429.2
BA_DecisionTree_transactions
                                          50
CHK_DecisionTree
                                     7711.18
CHK_DecisionTree_transactions
                                          92
CMG_DecisionTree
                                     10909.2
CMG_DecisionTree_transactions
                                          86
                                    0.951087
DecisionTree Accuracy
DecisionTree Fscore
                                    0.951036
FCEL_DecisionTree
                                       12195
FCEL_DecisionTree_transactions
                                         110
HON_DecisionTree
                                     10535.7
HON_DecisionTree_transactions
                                          62
MA DecisionTree
                                     11337.3
MA_DecisionTree_transactions
                                          54
SD_DecisionTree
                                     10228.7
SD_DecisionTree_transactions
                                          68
TPLM_DecisionTree
                                       30581
TPLM_DecisionTree_transactions
                                          94
buy_above
                                       1.005
                                       0.995
sell_below
target_ratio
                                      vClose
total_DecisionTree
                                      103927
total_DecisionTree_transactions
                                         616
DecisionTree_FinalValue
                                     94896.1
Name: 66, dtype: object
```

#### 0.0.31 Graph model's score

```
In [32]: accuracies = []
    fscores = []
    names = []

for name, model in model_list:
    if name != "benchmark":
        accuracies.append(model[name+" Accuracy"])
        fscores.append(model[name+" Fscore"])
        names.append(name)
```

```
n_groups = len(model_list) - 1 ## subtract benchmark
## create plot
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 0.35
opacity = 0.8
# Bar features
rects1 = plt.bar(index, accuracies, bar_width,alpha=opacity,label="Accuracy")
rects2 = plt.bar(index+bar_width, fscores, bar_width,alpha=opacity,label="Fscore")
## Labels
plt.xlabel('Models')
plt.ylabel('Score')
plt.title('Models Accuracy and Fscore')
plt.xticks(index + bar_width, names)
plt.legend()
plt.tight_layout()
plt.show()
```



fig.savefig("figures/Scores.svg", format='svg', dpi=1200)

#### 0.0.32 Graph each stocks performance of the best optimal model

```
In [33]: print(best_model)
DecisionTree_vClose_0.995_1.005
In [34]: graph_data = []
                          ## Get test data that used best model
                          filelist = glob.glob("model_predictions/*")
                          for f in filelist:
                                     if best_model+".csv" in f:
                                                 graph_data.append(f)
                          print(graph_data)
['model_predictions/BA_DecisionTree_vClose_0.995_1.005.csv', 'model_predictions/CHK_DecisionTree_vClose_0.995_1.005.csv', 'model_predictionSchool.005.csv', 'm
In [35]: def plot_data(f,df):
                                     remove = len("model_predictions/")
                                     file = f[remove:]
                                     tick = file.split('_')[0]
                                     fig = plt.figure()
                                      ## Top plot
                                     df0 = pd.DataFrame.from_csv("testing_data/"+tick+"_processed.csv")
                                     price = df0['vClose']
                                     ax1 = fig.add_subplot(2,1,1)
                                     ax1.plot(price.index,price,label='Stock Price',color='b')
                                     ax1.legend()
                                      ## Bottom plot
                                     money = df['Money']
                                     ax2 = fig.add subplot(2,1,2)
                                     ax2.plot(money.index,money,label='Invested 10k',color='g')
                                     ax2.set_xlabel('Date')
                                     ax2.legend()
                                     fig.text(0.00, 0.5, 'Dollar Value ($)', va='center', rotation='vertical')
                                     plt.suptitle(file)
                                     plt.show()
                                      #fig.savefig("figures/"+file+'.png')
                                     fig.savefig("figures/"+file+'.svg', format='svg', dpi=1200)
                                     plt.close(fig)
```

```
for f in graph_data:
    df = pd.DataFrame.from_csv(f)
    plot_data(f,df)
```

BA\_DecisionTree\_vClose\_0.995\_1.005.csv



## CHK\_DecisionTree\_vClose\_0.995\_1.005.csv







FCEL\_DecisionTree\_vClose\_0.995\_1.005.csv







MA\_DecisionTree\_vClose\_0.995\_1.005.csv



SD\_DecisionTree\_vClose\_0.995\_1.005.csv



## TPLM\_DecisionTree\_vClose\_0.995\_1.005.csv



#### 0.0.33 Helper function for create bar graph

```
In [36]: def bar_graph(graph_data,number_of_groups, filename, xlabel, title, xticks):
             n_groups = number_of_groups
             ## create plot
             fig, ax = plt.subplots()
             index = np.arange(n_groups)
             bar_width = 0.167 ## each bar need 100%. There are 5 models plus the space, so
             opacity = 0.8
             # Bar features
             rects = {}
             pos = 0
             for k, v in graph_data.items():
                 ## pos moves the bar through x-axis
                 rects[k] = plt.bar(index+pos, v, bar_width,alpha=opacity,label=k)
                 pos += bar_width
             ## Labels
             plt.xlabel(xlabel)
             plt.ylabel('Value')
             plt.title(title)
```

```
plt.xticks(index + bar_width, xticks)
plt.legend()
plt.tight_layout()
plt.show()
fig.savefig("figures/"+filename+".svg", format='svg', dpi=1200)
```

#### 0.0.34 Gather data of each stock for each optimal models

```
In [37]: graph_data = {}
         for name, model in model_list:
             graph_data[name] = []
         for tick in TESTING_TICKERS:
             for name, model in model_list:
                 for index_name in model.index:
                     ## Get data about that ticker
                     if tick in index_name and 'transactions' not in index_name:
                         graph_data[name].append(model[index_name])
         print(graph_data)
{'Adaboost': [10000.0, 10000.0, 10000.0, 13422.42, 9588.21, 14118.17, 9833.75, 10000.0], 'Deci
0.0.35 Graph Models
In [38]: bar_graph(graph_data = graph_data, \
                   number_of_groups = len(TESTING_TICKERS),\
```

```
filename = 'Portfolio',\
xlabel = 'Stocks', \
title = 'Portfolios Peformance',\
xticks = TESTING_TICKERS)
```



#### 0.0.36 Gather data of each optimal models

## 0.0.37 Graph Total Final Value of the optimal models

```
xlabel = 'Models',\
title = 'Portfolios Peformance',\
xticks = "")
```

# Portfolios Peformance

