Package 'logitnorm'

January 24, 2024

Title Functions for the Logithormal Distribution
Version 0.8.39
Author Thomas Wutzler
Maintainer Thomas Wutzler <twutz@bgc-jena.mpg.de></twutz@bgc-jena.mpg.de>
Description Density, distribution, quantile and random generation function for the logitnormal distribution. Estimation of the mode and the first two moments. Estimation of distribution parameters.
Suggests knitr, markdown, ggplot2, testthat (>= 3.0.0)
VignetteBuilder knitr
License GPL-2
RoxygenNote 7.1.1
Config/testthat/edition 3
NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-24 10:00:02 UTC
R topics documented:
logitnorm-package
dlogitnorm
invlogit
logit
modeLogitnorm
nlogitnorm

 qlogitnorm
 7

 rlogitnorm
 8

 twCoefLogitnorm
 9

 twCoefLogitnormCi
 10

 twCoefLogitnormE
 11

 twCoefLogitnormMLE
 12

 twCoefLogitnormMLEFlat
 13

 twCoefLogitnormN
 13

 twSigmaLogitnorm
 14

2 logitnorm-package

Index 16

logitnorm-package

Utilities for the logitnormal distribution in R

Description

Utilities for the logitnormal distribution in R

- Density, distribution, quantile and random generation function.
- Estimation of the mode and the first two moments.
- Estimation of distribution parameters from observations.

Details

The package provides the main distribution functions:

- density dlogitnorm,
- distribution plogitnorm,
- quantile qlogitnorm, and
- random generation function rlogitnorm.

Transformation functions

- (0,1) -> (-Inf,Inf): logit
- (-Inf,Inf) -> (0,1): invlogit

Moments and mode

- Expected value and variance: momentsLogitnorm
- Mode: modeLogitnorm

Estimating parameters

- from mode and upper quantile: twCoefLogitnormMLE
- from mode and constraint to be unimodal and maximally flat: twCoefLogitnormMLEFlat
- from median and upper quantile: twCoefLogitnorm
- from expected value, i.e. mean and upper quantile: twCoefLogitnormE
- from a confidence interval which is symmetric at normal scale: twCoefLogitnormCi
- from prescribed quantiles: twCoefLogitnormN

Have a look at the package vignettes.

Author(s)

Thomas Wutzler

References

Frederic, P. & Lad, F. (2008) Two Moments of the Logitnormal Distribution. Communications in Statistics-Simulation and Computation, 37, 1263-1269

dlogitnorm 3

dlogitnorm	dlogitnorm
------------	------------

Description

Density function of logitnormal distribution

Usage

Arguments

x	vector of quantiles
mu	scale distribution parameter
sigma	location distribution parameter
log	if TRUE, the log-density is returned
	further arguments passed to dnorm: mean, and sd for mu and sigma respectively.

Details

Logitnorm distribution • density function: dlogitnorm

distribution function: plogitnormquantile function: qlogitnorm

• random generation function: rlogitnorm

The function is only defined in interval (0,1), but the density returns 0 outside the support region.

Author(s)

Thomas Wutzler

See Also

logitnorm

4 logit

invlogit

invlogit

Description

Transforming (-Inf,Inf) to original scale (0,1)

Usage

```
invlogit(q, ...)
```

Arguments

q quantile

... further arguments to plogis

Details

function
$$f(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$$

Author(s)

Thomas Wutzler

See Also

logit

logitnorm

logit

logit

Description

Transforming (0,1) to normal scale (-Inf Inf)

Usage

Arguments

p percentile

... further arguments to qlogis

modeLogitnorm 5

Details

function
$$logit(p) = log\left(\frac{p}{1-p}\right) = log(p) - log(1-p)$$

Author(s)

Thomas Wutzler

See Also

invlogit

logitnorm

 ${\tt modeLogitnorm}$

modeLogitnorm

Description

Mode of the logitnormal distribution by numerical optimization

Usage

```
modeLogitnorm(mu, sigma, tol = invlogit(mu)/1000)
```

Arguments

mu parameter mu sigma parameter sigma

tol precisions of the estimate

Author(s)

Thomas Wutzler

See Also

logitnorm

6 momentsLogitnorm

 ${\tt momentsLogitnorm}$

momentsLogitnorm

Description

First two moments of the logitnormal distribution by numerical integration

Usage

```
momentsLogitnorm(mu, sigma, abs.tol = 0,
    ...)
```

Arguments

```
mu parameter mu
sigma parameter sigma
abs.tol changing default to integrate
... further parameters to the integrate function
```

Value

named numeric vector with components

- mean: expected value, i.e. first moment
- var: variance, i.e. second moment

Author(s)

Thomas Wutzler

```
(res <- momentsLogitnorm(4,1))
(res <- momentsLogitnorm(5,0.1))</pre>
```

plogitnorm 7

plogitnorm

plogitnorm

Description

Distribution function for logitnormal distribution

Usage

```
plogitnorm(q, mu = 0, sigma = 1, ...)
```

Arguments

q vector of quantiles

mulocation distribution parametersigmascale distribution parameter...further arguments to pnorm

Author(s)

Thomas Wutzler

See Also

logitnorm

qlogitnorm

qlogitnorm

Description

Quantiles of logitnormal distribution.

Usage

```
qlogitnorm(p, mu = 0, sigma = 1, ...)
```

Arguments

р	vector of probabilities

mu location distribution parameter sigma scale distribution parameter ... further arguments to plogis

8 rlogitnorm

Author(s)

Thomas Wutzler

See Also

logitnorm

 ${\tt rlogitnorm}$

rlogitnorm

Description

Random number generation for logitnormal distribution

Usage

```
rlogitnorm(n, mu = 0, sigma = 1, ...)
```

Arguments

n number of observations
mu distribution parameter
sigma distribution parameter
... arguments to rnorm

Author(s)

Thomas Wutzler

See Also

logitnorm

twCoefLogitnorm 9

twCoefLogitnorm	twCoefLogitnorm
-----------------	-----------------

Description

Estimating coefficients of logitnormal distribution from median and upper quantile

Usage

```
twCoefLogitnorm(median, quant, perc = 0.975)
```

Arguments

median numeric vector: the median of the density function

quant numeric vector: the upper quantile value

perc numeric vector: the probability for which the quantile was specified

Value

numeric matrix with columns c("mu", "sigma") rows correspond to rows in median, quant, and perc

Author(s)

Thomas Wutzler

See Also

logitnorm

```
# estimate the parameters, with median at 0.7 and upper quantile at 0.9
med = 0.7; upper = 0.9
med = 0.2; upper = 0.4
(theta <- twCoefLogitnorm(med,upper))

x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
plot(px~x); abline(v = c(med,upper),col = "gray"); abline(h = c(0.5,0.975),col = "gray")

dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
plot(dx~x); abline(v = c(med,upper),col = "gray")

# vectorized
(theta <- twCoefLogitnorm(seq(0.4,0.8,by = 0.1),0.9))

.tmp.f <- function(){
    # xr = rlogitnorm(1e5, mu = theta["mu"], sigma = theta["sigma"])</pre>
```

10 twCoefLogitnormCi

```
# median(xr)
invlogit(theta["mu"])
qlogitnorm(0.975, mu = theta["mu"], sigma = theta["sigma"])
}
```

twCoefLogitnormCi

twCoefLogitnormCi

Description

Calculates mu and sigma of the logitnormal distribution from lower and upper quantile, i.e. confidence interval.

Usage

Arguments

lower value at the lower quantile, i.e. practical minimum upper value at the upper quantile, i.e. practical maximum

perc numeric vector: the probability for which the quantile was specified

sigmaFac sigmaFac = 2 is 95% sigmaFac = 2.6 is 99% interval isTransScale if true lower and upper are already on logit scale

Value

named numeric vector: mu and sigma parameter of the logitnormal distribution.

Author(s)

Thomas Wutzler

See Also

logitnorm

```
mu = 2
sd = c(1,0.8)
p = 0.99
lower <- 1 <- qlogitnorm(1 - p, mu, sd ) # p-confidence interval
upper <- u <- qlogitnorm(p, mu, sd ) # p-confidence interval
cf <- twCoefLogitnormCi(lower,upper, perc = p)
all.equal( cf[,"mu"] , c(mu,mu) )
all.equal( cf[,"sigma"] , sd )</pre>
```

twCoefLogitnormE 11

twCoefLogitnormE	twCoefLogitnormE	

Description

Estimating coefficients of logitnormal distribution from expected value, i.e. mean, and upper quantile.

Usage

```
twCoefLogitnormE(mean, quant, perc = c(0.975),
  method = "BFGS", theta0 = c(mu = 0, sigma = 1),
  returnDetails = FALSE, ...)
```

Arguments

mean the expected value of the density function

quant the quantile values

perc the probabilities for which the quantiles were specified

method of optimization (see optim)

theta0 starting parameters

returnDetails if TRUE, the full output of optim is returned with attribute resOptim

... further arguments to optim

Value

named numeric matrix with estimated parameters of the logitnormal distribution. colnames: c("mu", "sigma")

Author(s)

Thomas Wutzler

See Also

logitnorm

```
# estimate the parameters  (\text{thetaE} \leftarrow \text{twCoefLogitnormE}(0.7,0.9))   x \leftarrow \text{seq}(0,1,\text{length.out} = 41)[-c(1,41)] \text{ # plotting grid}   px \leftarrow \text{plogitnorm}(x,\text{mu} = \text{thetaE}[1],\text{sigma} = \text{thetaE}[2]) \text{ #percentiles function}   plot(px^{x}x); \text{ abline}(v = c(0.7,0.9),\text{col} = \text{"gray"}); \text{ abline}(h = c(0.5,0.975),\text{col} = \text{"gray"})   dx \leftarrow \text{dlogitnorm}(x,\text{mu} = \text{thetaE}[1],\text{sigma} = \text{thetaE}[2]) \text{ #density function}   plot(dx^{x}x); \text{ abline}(v = c(0.7,0.9),\text{col} = \text{"gray"})
```

```
z <- rlogitnorm(1e5, mu = thetaE[1],sigma = thetaE[2])
mean(z) # about 0.7

# vectorized
(theta <- twCoefLogitnormE(mean = seq(0.4,0.8,by = 0.1),quant = 0.9))</pre>
```

twCoefLogitnormMLE

twCoefLogitnormMLE

Description

Estimating coefficients of logitnormal distribution from mode and upper quantile

Usage

```
twCoefLogitnormMLE(mle, quant, perc = 0.999)
```

Arguments

mle numeric vector: the mode of the density function

quant numeric vector: the upper quantile value

perc numeric vector: the probability for which the quantile was specified

Value

numeric matrix with columns c("mu", "sigma") rows correspond to rows in mle, quant, and perc

Author(s)

Thomas Wutzler

See Also

logitnorm

```
# estimate the parameters, with mode 0.7 and upper quantile 0.9
mode = 0.7; upper = 0.9
(theta <- twCoefLogitnormMLE(mode,upper))
x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
plot(px~x); abline(v = c(mode,upper),col = "gray"); abline(h = c(0.999),col = "gray")
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
plot(dx~x); abline(v = c(mode,upper),col = "gray")
# vectorized
(theta <- twCoefLogitnormMLE(mle = seq(0.4,0.8,by = 0.1),quant = upper))
# flat
(theta <- twCoefLogitnormMLEFlat(mode))</pre>
```

```
{\it tw} CoefLogitnorm MLEF1 at
```

twCoefLogitnormMLEFlat

Description

Estimating coefficients of a maximally flat unimodal logitnormal distribution given the mode

Usage

```
twCoefLogitnormMLEFlat(mle)
```

Arguments

mle numeric vector: the mode of the density function

Author(s)

Thomas Wutzler

twCoefLogitnormN

Description

Estimating coefficients from a vector of quantiles and percentiles (non-vectorized).

Usage

```
twCoefLogitnormN(quant, perc = c(0.5, 0.975),
  method = "BFGS", theta0 = c(mu = 0, sigma = 1),
  returnDetails = FALSE, ...)
```

Arguments

quant the quantile values

perc the probabilities for which the quantiles were specified

method method of optimization (see optim)

theta0 starting parameters

returnDetails if TRUE, the full output of optim is returned instead of only entry par

further parameters passed to optim, e.g. control = list(maxit = 1000)

Value

named numeric vector with estimated parameters of the logitnormal distribution. names: c("mu", "sigma")

14 twSigmaLogitnorm

Author(s)

Thomas Wutzler

See Also

logitnorm

Examples

```
# experiment of re-estimation the parameters from generated observations thetaTrue <- c(mu = 0.8, sigma = 0.7) obsTrue <- rlogitnorm(thetaTrue["mu"], thetaTrue["sigma"], n = 500) obs <- obsTrue + rnorm(100, sd = 0.05)  # some observation uncertainty plot(density(obsTrue), col = "blue"); lines(density(obs))  # re-estimate parameters based on the quantiles of the observations (theta <- twCoefLogitnorm( median(obs), quantile(obs,probs = 0.9), perc = 0.9))  # add line of estimated distribution  x <- seq(0,1,length.out = 41)[-c(1,41)]  # plotting grid  dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2])  lines( dx ~ x, col = "orange")
```

twSigmaLogitnorm

twSigmaLogitnorm

Description

Estimating coefficients of logitnormal distribution from mode and given mu

Usage

```
twSigmaLogitnorm(mle, mu = 0)
```

Arguments

mle numeric vector: the mode of the density function

mu for mu = 0 the distribution will be the flattest case (maybe bimodal)

Details

For a mostly flat unimodal distribution use twCoefLogitnormMLE(mle,0)

Value

numeric matrix with columns c("mu", "sigma") rows correspond to rows in mle and mu

twSigmaLogitnorm 15

Author(s)

Thomas Wutzler

See Also

logitnorm

```
mle <- 0.8
(theta <- twSigmaLogitnorm(mle))
#
x <- seq(0,1,length.out = 41)[-c(1,41)] # plotting grid
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
plot(px~x); abline(v = c(mle),col = "gray")
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
plot(dx~x); abline(v = c(mle),col = "gray")
# vectorized
(theta <- twSigmaLogitnorm(mle = seq(0.401,0.8,by = 0.1)))</pre>
```

Index

```
* package
    logitnorm-package, 2
dlogitnorm, 2, 3
dnorm, 3
integrate, 6
invlogit, 2, 4, 5
logit, 2, 4, 4
logitnorm, 3–5, 7–12, 14, 15
logitnorm(logitnorm-package), 2
logitnorm-package, 2
modeLogitnorm, 2, 5
momentsLogitnorm, 2, 6
optim, 11, 13
plogitnorm, 2, 3, 7
qlogitnorm, 2, 3, 7
rlogitnorm, 2, 3, 8
rnorm, 8
{\it twCoefLogitnorm}, 2, 9 \\
twCoefLogitnormCi, 2, 10
twCoefLogitnormE, 2, 11
twCoefLogitnormMLE, 2, 12, 14
twCoefLogitnormMLEFlat, 2, 13
twCoefLogitnormN, 2, 13
tw Sigma Logit norm, \\ 14
```