An algebraic hierarchy

Vector Space

A vector space, \mathcal{V} , consists of *vectors*, which are collections of elements from a field, \mathcal{F} , and *scalars*, which are elements of \mathcal{F} .

Field

A field, \mathcal{F} , is a *commutative ring with identity;* every element, except additive identity, has an inverse wrt. "x"

Ideal

An ideal is a subset of ring, with commutative "+" and $g \times m = c \in \mathcal{J}, \ g = \mathcal{J}, m \in \mathcal{R}$

Ring

Rings are *groups* that support two binary operations, commutative "+" and "x", with distribution of "x" over "+".

Group

Groups are sets that support a single binary operation, with association a+(b+c)=(a+b)+c, identity and inverse. Not necessarily commutative

Set

Sets are collections of things.

Element

Elements are things, e.g., integers, polynomials, vectors,

Some examples

- The set of all integers, \square , forms a *group* under normal addition
 - It is closed
 - It is associative
 - It has an inverse and identity
- The set of all integers, \mathbb{Z} , does not form a field
 - There is a multiplicative identity...
 - ...but multiplicative inverses don't exist
 - So it is a ring!
 - Even integers are an ideal!
- The set of all rational numbers does form a field...
- ...as do real numbers...and complex numbers.
- The set of integers $\{0,1,...,q-1\}$ under modulo q arithmetic may form a field under certain conditions

Galois Fields

- Everiste Galois (1811-1832!) theory of roots of polynomial equations
- A Galois Field is a field with a finite number of elements
- We use the nomenclature GF(q) to indicate a Galois field with q elements
- For the integers with modulo q arithmetic, GF(q) requires that q be a prime number!
- The best-known and most used Galois Field is GF(2), the binary field!
- For GF(q) in general, q must be a power of a prime.
- The structure of $GF(p^m)$ for powers-of-primes requires algebraic rules more complicated than simple integer modulo arithmetic

What is and isn't a GF?

• Simplest example, q = 2 GF(2) or the binary field

+	0	1	×	0	1
0	0	1	$\overline{0}$	0	0
1	1	0	1	0	1

- Closed, associative & distributive from \mathbb{Z} , additive identity, additive inverse, multiplicative identity, multiplicative inverse
- What about $q = 2^2 = 4$?

+	0	1	2	3	
0	0	1	2	3	
1	1	2	3	0	
2	0 1 2 3	3	0	1	
3	3	(0)	1	2	

×	0	1	2	3
0	0	0	0	0

1	0	1	2	3

The GFAU Task: Operate in (2^m)

- Creating a "binary" Galois field GF(2^m)
- We write "the set of all polynomials with coefficients in GF(p)" as GF(p)[x]
- Example
 - $x^3 + x + 1$ is a polynomial in GF(2)[x]
 - So is $x^3 + x^2 + x + 1$
- Do these polynomials have roots in GF(2)?
 - 0+0+1=1, so 0 is not a root 1+1+1=1, so 1 is not a root

$$x^3 + x + 1$$
 has no roots in $GF(2)$
• But $x^3 + x^2 + x + 1$ has a root for $x = 1$

- If a polynomial has no root in GF(2) we call it irreducible

- If an irreducible polynomial has another property (that we don't need to worry about right now), it is not only "irreducible" but also "primitive".
- We can use m-th order primitive polynomials to generate $GF(2^m)$
- $x^3 + x + 1$ is such a primitive polynomial!
- Because it is a 3^{rd} order, primitive polynomial over $GF(2^m)$, we can use it to generate $GF(2^3) = GF(8)$
- The primitive polynomial will be an input to the initialization of GFAU!
- You don't have to identify the primitive polynomials!

- Let $\alpha \square GF(2^8)$ be a root of $x^3 + x + 1$, so $\alpha^3 + \alpha + 1 = 0$
- The coefficients are in GF(2), so $\alpha^3 = \alpha + 1$
- Note that lpha is in the "big" field, but the coefficients of the polynomial are in the "little field"
- 0,1 must be in the big field, because a field has additive and multiplicative identities.
- α must be in the big field, by assumption
- α^2 must be in the big field by closure of multiplication
- α^3 must be in the big field, but $\alpha^3 = \alpha + 1$
- $\alpha^4 = \alpha^3 \square \alpha = (\alpha + 1) \square \alpha = \alpha^2 + \alpha$ must be in the big field

$$\alpha^{5} = \alpha^{4} \square \alpha = (\alpha^{2} + \alpha) \square \alpha = (\alpha^{3} + \alpha^{2}) = \alpha^{2} + \alpha + 1$$

$$\alpha^{6} = \alpha^{5} \square \alpha = (\alpha^{2} + \alpha + 1) \square \alpha = \alpha^{3} + \alpha^{2} + \alpha = \alpha + 1 + \alpha^{2} + \alpha = \alpha^{2} + 1$$

$$\alpha^{7} = \alpha^{6} \square \alpha = (\alpha^{2} + 1) \square \alpha = \alpha^{3} + \alpha = \alpha + 1 + \alpha = 1 \text{ (!!!!!!)}$$

- We now have polynomials in lpha , where the coefficients are binary, that is GF(2)
- We write the symbols of $GF(2^m)$ as m -element vectors in the "little field", GF(2)Element of $GF(2^3)$ Polynomial form Symbol (msb on left)

0	0	000
1	1	001
lpha	lpha	010
$lpha^2$	$lpha^2$	100
α^3	$\alpha + 1$	011
$lpha^4$	$\alpha^2 + \alpha$	110
$lpha^{5}$	$\alpha^2 + \alpha + 1$	111
$lpha^6$	$\alpha^2 + 1$	101

 $\alpha^{7} = 1$, and the process starts over

Addition table for GF(23)

	G	F	(2 ³)
--	---	---	---	-----------------------	---

+	0	1	α	α^2	α^3	$lpha^4$	α^{5}	$lpha^6$
					α^3			
(1)	1	0	α^3	α^6	α	$lpha^{5}$	$lpha^4$	$lpha^2$
α	α	α^3	0	$lpha^4$	1	$lpha^2$	$lpha^6$	α^{5}
$lpha^2$	α^2	α^6	$lpha^4$	0	1 a ⁵	α	α^3	1
α^3	α^3	α	1	α^5	0	$lpha^{6}$	$lpha^2$	$lpha^4$
$lpha^4$	$lpha^{\scriptscriptstyle 4}$	$lpha^{5}$	$lpha^2$	α	α^6			
			$lpha^6$			1	0	
			$lpha^{5}$			α^3	α	

Integers mod 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	6 7 0 1 2 3 4 5	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

For multiplication:
$$\alpha^k \times \alpha^j = \alpha^{(k+j) \mod 2^3 - 1}$$

$$\alpha^4 \times \alpha^6 = \alpha^{10 \bmod 7} = \alpha^3 = \alpha + 1$$

 α is called a *primitive element of the field*, because the powers of α generate the p^m-1 non-zero elements

GFAU Homework

Generate

- 1) Show that $x^3 + x + 1$ is irreducible in GF(2)[x]
- 2) Generate the 8 elements of $GF(2^3)$ using the primitive polynomial $x^3 + x^2 + 1$.
- 3) Generate the addition (bitwise exclusive or) and multiplication tables for your impleentation of $GF(2^3)$
- 4) Compare your generation of $GF(2^3)$ to mine. They will not be the same!