Optical Bistability As Neural Network Nonlinear Activation Function

Davide Bazzanella

20th March 2018

Università degli studi di Trento

All-Optical Neural Networks Untroduction

Introduction

Introduction

All-Optical Neural Networks

-Introduction

All-optical Artificial Neural Networks

Applying integrated photonics to artificial neural networks architecture design

Develop simulations on standard software libraries that help performance comparisons

All-optical Artificial Neural Networks

Artificial Neural Networks

ANNs are composed by single units, nodes, which elaborate the information in a way loosely similar to biological neurons.

All-Optical Neural Networks -Artificial Neural Networks 2018-03-09 -ANNs blocks

ANNs blocks ANNs are composed by single units, nodes, which elaborate the information in a way loosely similar to biological neurons.

What can they do?

What can they do?

What can they do? All-Optical Neural Networks What can they do? -Artificial Neural Networks ANNs can solve complex problems: classification clustering pattern recognition └─What can they do? ANNs can solve complex problems: classification clustering pattern recognition

time series prediction

How do they work?

How do they work?

All-Optical Neural Networks

Artificial Neural Networks

How do they work?

All-Optical Neural Networks

How do they work?

- training
 - . . .
 - evaluate lossadjust parameters
- validation
- test

Microring Resonator

Consider a MRR in the Add-Drop Filter configuration

$$\mathbf{T}(\omega) = f[\mathbf{I}(\omega)]$$
$$\mathbf{D}(\omega) = f[\mathbf{I}(\omega)]$$

└─MRR

Consider a MRR in the Add-Drop Filter configuration

$$T(\omega) = f[I(\omega)]$$
$$D(\omega) = f[I(\omega)]$$

∟MRR

Consider a MRR in the Add-Drop Filter configuration

$$T(\omega) = f[I(\omega)]$$
$$D(\omega) = f[I(\omega)]$$

Coupling is governed by

$$\tau$$
 and κ .

ANN Simulations

ANN Simulations

$$L(y, \hat{y}) = f_{CEL}(y, \hat{y}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{C} y_{n,i} \log(\hat{y}_{n,i})$$

Stochastic Gradient Descent with momentum and learning rate scheduler.

Conclusion

All-Optical Neural Networks

Conclusion

Conclusion

All-Optical Neural Networks

Conclusion

Mindmap

