We sketch the proof that $p_{\boldsymbol{a}}(\gamma) = 0$, where $\gamma = \gamma_{\tau} \otimes I$. It can be shown that there exists a partial isometry A in $C_{\mathbf{M}_1}^U$ such that $\sigma_t^U(A) = \lambda^{it}A$ ($t \in \mathbb{R}$) and $\theta_1^U(A) = A$ (cf. the proof of [5, Theorem 4.4.2]). Then $A \in C_M^U$, $\sigma_t^U(A) = \lambda^{it}A$ ($t \in \mathbb{R}$), and $\gamma_t^U(A) = \lambda^{it}A$. On the other hand, $C_{\mathbf{R}^{\infty}}^U$ contains a partial isometry B such that $\sigma_t^U(B) = \lambda^{it}B$ (cf. [5]). But then, $AB^* \in (C_{M \otimes \mathbb{R}_{\infty}}^U)_{\rho_{tt}}$ and $\gamma_{\tau}^U(AB^*) = \lambda^{i\tau}AB^*$, and therefore $p_{\boldsymbol{a}}(\gamma) = 0$ (cf. [5, Sec. 4.2]).

LITERATURE CITED

- 1. A. Connes, J. Funct. Anal., 16, 415-445 (1974).
- 2. H. Araki and E. J. Woods, Publ. RIMS, Kyoto Univ., Ser. A, 3, 51-130 (1968).
- 3. A. Connes, J. Funct. Anal., 18, 318-327 (1975).
- 4. V. Ya. Golodets, Izv. Akad. Nauk SSSR, Ser. Mat., 39, 635-656 (1975).
- 5. V. Ya. Golodets, Usp. Mat. Nauk, 33, No. 1, 43-94 (1978).
- 6. M. Takesaki, Acta Math., 131, Nos. 3-4, 249-310 (1973).

VALUE OF THE STEINITZ CONSTANT

V. S. Grinberg and S. V. Sevast'yanov

UDC 513.82

A well-known lemma of Steinitz [1] states that for every normal m-dimensional space there exists a constant B such that for every collection of vectors $x_1, x_2, ..., x_n$ satisfying $x_1 + x_2 + ... + x_n = 0$, $\|x_i\| \le 1$ (i = 1, 2, ..., n) there exists a permutation π such that for all positive integers $k \le n$ we have $\|\sum_{i=1}^k x_{\pi(i)}\| \le B$. The smallest possible value of B is denoted by C and will be called the Steinitz constant. C depends only on m and the given norm.

It is shown in [2] that for a Euclidean space,

$$C \leqslant \sqrt{(4^m - 1)/3}.$$

A discussion of the Steinitz lemma and its applications is given in [3-5] and [6], where estimate (1) was rediscovered.

Up to now, only upper estimates exponential with respect to m have been known for C. We show that $C \le m$ for every norm (not necessarily even symmetric).

LEMMA. Let K be a polyhedron in Rⁿ defined by a system

$$\begin{cases} f_i(x) = a_i, & i = 1, 2, \dots, p, \\ g_j(x) \leqslant b_j, & j = 1, 2, \dots, q, \end{cases}$$

where the f_i and g_j are linear functions. Let x_0 be a vertex of K and $A = \{j: g_j(x_0) = b_j\}$.

Then $|A| \ge n - p$, where |A| is the cardinality of the set A.

Proof. Assume the contrary. Then the system

$$\begin{cases} f_i(x) = 0, i = 1, 2, \dots, p, \\ g_j(x) = 0, j \in A, \end{cases}$$

has a nontrivial solution x_1 . The vectors $x_0 - \epsilon x_1$ and $x_0 + \epsilon x_1$ belong to K for sufficiently small $\epsilon > 0$, which contradicts the fact that x_0 is a vertex.

THEOREM 1. Let an arbitrary norm be given in R^m and assume that $||x_i|| \le 1$ (i = 1, 2, ..., n) and $x_i + ... + x_n = x$.

Ukrainian Scientific-Research Gas Institute. Mathematics Institute, Siberian Branch, Academy of Sciences of the USSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 14, No. 2, pp. 56-57, April-June, 1980. Original article submitted May 5, 1979.

Then there exists a permutation π such that for all positive integers $k \leq n$

$$\left\| \sum_{i=1}^{k} x_{\pi(i)} - \frac{k-m}{n} x \right\| \leqslant m. \tag{2}$$

Proof. By induction, we construct a chain of sets

$$A_m \subset A_{m+1} \subset \ldots \subset A_n = \{1, 2, \ldots, n\}$$

and numbers λ_k^i (k = m, m + 1,..., n; i \in A_k) with the properties:

$$\begin{split} |A_k| &= k, \quad 0 \leqslant \lambda_k^i \leqslant 1, \quad \sum_{i \in A_k} \lambda_k^i = k - m, \quad \sum_{i \in A_k} \lambda_k^i x_i = \frac{k - m}{n} x. \\ k &= n. \quad A_n = \{1, 2, \ldots, n\}, \quad \lambda_n^i = \frac{n - m}{n} \bullet \end{split}$$

Inductive Step $k+1 \rightarrow k$. Consider the set K of collections $\{\mu_i, i \in A_{k+1}\}$ with the properties:

$$0 \leqslant \mu_i \leqslant 1, \qquad \sum_{i \in A_{k+1}} \mu_i = k - m, \qquad \sum_{i \in A_{k+1}} \mu_i x_i = \frac{k - m}{n} x. \tag{3}$$

K is convex and compact in R^{k+1} and nonempty (we can take $\mu_i = \frac{k-m}{k+1-m} \lambda_{k+1}^i$). Let $\{\overline{\mu}_i, i \in A_{k+1}\}$ be a vertex of K. By the lemma $|\{i: 0 < \overline{\mu}_i < 1\}| \le m+1$. Using (3), we get that $\{i: \overline{\mu}_i = 0\} \ne \phi$. Let $\overline{\mu}_j = 0$. We put $A_k = A_{k+1} \setminus \{j\}$, $\lambda_k^i = \overline{\mu}_i$ (i $\in A_k$), which completes the construction.

We put $\{\pi(i)\}=A_i\setminus A_{i-1}\ (i=m+1,...,n)$, with π otherwise arbitrary. For $k\leq m$, inequality (2) to be proved is obvious. For $k\geq m+1$,

$$\left\|\sum_{i=1}^k x_{\pi(i)} - \frac{\dot{k} - m}{n} x\right\| = \left\|\sum_{i \in A_k} (1 - \lambda_k^i) x_i\right\| \leqslant \sum_{i \in A_k} (1 - \lambda_k^i) = m.$$

Remark. Symmetry of the norm has not been used anywhere.

For the case x = 0 and a symmetric norm (Steinitz' lemma), a more cumbersome proof is given in [7].

The following example shows that the estimate obtained is best possible. Take the unit ball to be a regular (unsymmetric) simplex with center at zero. Put n=m+1, and let x_i be the i-th vertex of the simplex. Then $\sum x_i = 0$ and $\|x_{\pi(i)} + ... + x_{\pi(n-1)}\| = m$ for every permutation π .

The maximal lower estimate for the Steinitz constant known to the author for the case of a symmetric norm ((m+1)/2) in the space l_1 , $C \ge (m+3)^{1/2}/2$ for a Euclidean space) is attained on the collection of vectors $B_k = \{e_i \ (i=1, \ldots, m-1); \ a_i^k \ (i=1, \ldots, k); \ b_i^k \ (i=1, \ldots, k)\}, \ k \ge (m-1)/2 \ as \ k \to \infty$, where the e_i are unit vectors; $a_i^k(j) = b_i^k(j) = -1/2k$ $(j=1, \ldots, m-1, i=1, \ldots, k)$, $a_i^k(m) = -b_i^k(m) = 1 - (m-1)/2k$ $(i=1, \ldots, k)$.

We state without proof another assertion relevant to the topic considered.

THEOREM 2. Let $x_i \in \mathbb{R}^m$, $||x_i|| \leqslant 1$ $(i = 1, 2, \ldots, n)$, $\Sigma x_i = x$. Then $\forall \rho \ (0 \leqslant \rho \leqslant 1)$ $\exists A \subseteq \{1, 2, \ldots, n\}$, for which $||\sum_{i \in A} x_i - \rho x|| \leqslant m$, and in the case of a symmetric norm $||\sum_{i \in A} x_i - \rho x|| \leqslant m/2$.

Both the estimates are exact. For the proof put n=m and let $\{x_i\}$ be the standard basis in R^m . In the symmetric case, we define an l_1 -norm and set $\rho=1/2$. For the unsymmetric case, let the unit ball be the convex hull of the vectors $\{x_1, ..., x_n, -\varepsilon x_1, ..., -\varepsilon x_n\}$ and $\rho=\varepsilon$, where ε is a small positive number.

LITERATURE CITED

- 1. E. Steinitz, J. Reine Angew. Math., 143, 128-175 (1913); 144, 1-40 (1914).
- 2. V. Bergström, Abhandl. Math. Sem. Hamb. Univ., 8, 148-152 (1931).
- 3. H. Hadwiger, Math. Z., 41, No. 5, 732-738 (1936).
- 4. H. Hadwiger, Math. Z., 46, No. 1, 70-79 (1940).
- 5. H. Hadwiger, Math. Z., 47, No. 4, 663-668 (1942).
- 6. M. I. Kadets, Usp. Mat. Nauk, 8, No. 1, 139-143 (1953).
- 7. S. V. Sevast'yanov, Discrete Analysis [in Russian], No. 32, Novosibirsk (1978).