

立置無為。該Model知道每個詞的順序,Tre
一, 並會考慮詞及詞互相影響。(似上下文
position, 不過應該題目會給 相關程度
ding" & "Positional Embedding"
positional embedding
mat. Cat is sleeping on the mat. 67 .0 .841 .90 .141 -75 -95
e mat 0,65 -0.28*
·Marix相乘QKV考虑好文、部間互相影響
司與其他音阶的相關程度
: Matrix相乘QKV考慮好文、詞間互相景

10/11/10 (362、076、383、016) +1.60 x (.85、31、14、95)	P斤有句 Word Embedding + Positional Embedding 都科	间,不同时定及KV的 linear Weights.
JA 169 13 103 105 0.87 19 19 19 19 19 19 19 1	Cat is sleeping on the mat linear Weigh	ts Query 5x4 Matrixs
31 1.497 1.63 1.33 1.635 0.87	54 1.601 1.13 1.031 0.65 0.28 67 14 71	
40 566 0.731 0.641 0.002 0.953	131 1917 1.63 1.33 1.625 0.87 X 85 31 14	
172 1887 117 1307 159 139 39 95 9 38 516 512 4.53 4.22 bf 44 17 51 137 147 1492 2.51 bf 44 17 51 132 8.11 5.54 8.05 5×6 Matrixs 6×4 Matrix 1 Query 計算 16月間加	40 566 0.721 0.641 0.202 0.953 24 57 76	19 213 1.60 1.58
1 Query 計算 1 Query 計算 1 Query 計算 1 (362 47 Matrix) 1 Query 計算 1 (362 47 Matrix) 1 (362 47 Matrix) 1 (362 47 Matrix) 1 (363 47 Matrix) 1 (364 48 Matrix) 1 (365 3) - (495)		576 512 4.53 4.22
1 Query 計算		9.32 8.11 5.54 8.05
1 Query 計算	5,01,00.73	
10 11 17 10 10 10 10 10	6×4 M	atrix
10 11 17 10 10 10 10 10	1 Query stip	
(362,076,383,016) +1.60 x (85,3), 14,95)	直向相加	
+ 1.60 x (85.3) . 14.95)	54x(.67.14.71.03) (.362.076.383	016)
+ 1.13 × (24 57 .96 .93) = (0,27 644 .860 1.05) = 1.71 1.38 1.52 2.69 + 1.03 × (39 .95 .59 .38) (402 .980 .610 .392) + -0.65 × (64 .94 .77 .51) (-0.416 -0.61) -501 -0.33) + -0.28 × (.94 .73 .17 .02) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.48 -0.0056) (-263204 -0.08 -0.0156) (-263204 -0.08 -0.0156) (-263007 -0.0156) (-265 -0.03 -0.01 -0.06) (-265 -0.03 -0.01 -0.06) (-265 -0.03 -0.01 -0.06) (-265 -0.03 -0.01 -0.06) (-265 -0.03 -0.01 -0.06) (-265 -0.03 -0.01 -0.06) (-265 -0.03 -0.0156) (-265 -0.03 -0.0156) (-265 -0.03 -0.0156) (-265 -0.03 -0.0156) (-265 -0.026 -0.026) (-265 -0.026) (-265 -0.0	+1.601x (85,31,14,95) (1,36) 0,50,224	(521) (Suery)
+ 1.03 × (.39, 95, 57, 38)	+ 1.13 x (.24 57 .76 .93) =10271 .644 .860	1.051) = 1.71 1.38 1.52 2.64
+ $-0.65 \times (.64.94.77.51)$ $(-0.4160.61)$ $-501-0.33)$ + $-0.28 \times (.94.73.77.02)$ $(-2632040.48-0.0056)$ 2 Key 計算 $54 \times (.50.76.28.12)$ $(.27.41.151.065)$ + $1.691 \times (.35.33.63.25)$ $(.56.53.1.61.40)$ Key + $1.17 \times (.79.99.99.99.99.99.99.99.99.99.99.99.99.$	+ 1.031 × (39 95 59 38) (402 980 617	392)
+ -0.28 × (-94.73) 17 02) (-263204 -048 -0.0066) 2 Key 計算 54×(.50.76.28.12) (.27.41.151.065) + 1601 × (.35.33.63.25) (.56.53.101.40) Key +1.17 × (.79.99.04.45) (.90.112.005.107) = 1.17 1.94 1.35 1.285 -0.28 × (.14.67.30.21) (-0.455.00.2) -0.015 × (.85.04.09.43) (-0.455.00.2) -0.015 × (.85.04.09.43) (-0.455.00.2) -0.016 7- Value 計算 -54 × (.50.76.28.12) (0.27.410.151.0.065) 1.601 × (.35.33.63.25) (0.500.0528.1.009.0.400) 1.13 × (.79.99.04.95) = (.892.1119.0.045.1.074) 1.031 × (.03.09.23.09) -0.0258.290 -0.15 × (.85.04.09.43) (-6.553.70.026.0.0528.290) -0.28 × (.14.63.30.21) (.039.176.0.0066.0.59) .084		
2 Key 計算 54×(.50.76.28.12) (.27.41.151.065) + 1.601 × (.35.33.63.25) (.56.53.1.01.40) Key + 1.17 × (.79.99.04.85) (.90.12.0.05.1.07) = 1.17 1.94 1.35 1.285 - 0.15 × (.85.04.09.43) (0.55.26.00) -28) - 0.28 × (.14.15.30.21) (0.27.410.151.0.065) 1.601 × (.35.33.16.25) (0.500.0.528.1.09.0.065) 1.13 × (.79.99.04.95) = (.892.1.119.0.045.1.074) 1.031 × (.03.09.43) (0.23.0.09.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0		
54×(,50、76、28、12) (27、41、151、065) + bol × (35、33、63、25) (56、53、101、40)		0.12
54×(,50、76、28、12) (27、41、151、065) + bol × (35、33、63、25) (56、53、101、40)	2 Key St F	Clark /-
+ hol \times (35.36) 25) (56.53,01.40) + 1.13 \times (99.99.04 (5) = (.90 1.12 0.05 1.07) = 1.17 1.94 1.35 1.285 + 1.031 \times (03.09.23.09.2 (.03.09.24.09) = 1.17 1.94 1.35 1.285 - 0.15 \times (.85.04.09.43) (0.55.00.3-0) = 28) = 1.16 = 1.29 - 0.28 \times (.14 bb.30 .21) (0.27.410.151 0.065) = 1.29 - 2.8 \times (.50.76.28.12) (0.27.410.151 0.065) = 1.29 1.13 \times (.79.99.04.95) = (.892 1.119.0.045 1.074) = (.892 1.119.0.045 1.074) = (.892 1.119.0.045 1.074) = (.892 1.119.0.045 1.074) = (.893.0.09.30.23) 0.093.0.23) 0.093.0.28 \times (.14 bb.30.21) (.039.176 -0.00585.280) = 0.006.0.59) = 0.28 \times (.14 bb.30.21) (.039.176 -0.006.0.59)		关开护-97
$\begin{array}{llllllllllllllllllllllllllllllllllll$		P
+ 1031 × (03,09 23,09 24,09) - 0.65 × (.65,04,009,43) (-0.55,-0.03-0) -28) - 0.28 × (.14 bb 30 21) (-0.45,-0.09-0.06) 3. Value 計算 - 54 × (.50,76,28,12) (0.27,410,151 0.065) 1.601 × (.35,33,b3,25) (0.560 0.528 1.009 0.400) 1.13 × (.79,99,04,95) = (.892 1.119 0.045 1.074) 1.031 × (.03,09,23,09) (0.031 0.093,0.23) 0.093) - 0.45 × (.85,04,09,43) (-553,-0.026,-0.02585,280) 70.28 × (.14,b3,30,21) (.039,176,-0.006,059)		
-0.65 × (.85.04 009.43) (-0.55 -0.03 -0.06) 3. Value 計算 -0.28 × (.14 b3.30 21) (0.27 .410 .151 0.065) 1.601 × (.35 .33 .63 .25) (0.560 0.528 1.009 0.400) 1.13 × (.79.99 .04.95) = (.892 1.119 0.045 1.074) 1.031 × (.03 09.23 .09) (0.031 0.093 0.237 0.093) -0.45 × (.85 .04 .09.43) (-5.53 -0.026 -0.02585 .280) 70.28 × (.14 .63 .30 .21) (.039 .176 -0.006) 1.084		= 1.17 1.94 1.35 1.285
3. Value 計算 - た断流を与して式電影. .54 × (.50 .76 .28 .12) (0.27 .410 .151 0.065) 1.601 × (.35 .33 .63 .25) (0.560 0.528 1.009 0.400) 1.13 × (.79 .99 .04 .95) = (.892 1.119 0.045 1.074) 1.031 × (.03 か9 .23 .09) (0.031 0.093 0.237 0.093) - のお × (.85 .04 .09 .43) (-553 -0.026 -0.02585 .280) 70.28 × (.14 .63 .30 .21) (0.039 1.176 -0.006 0.059) 1.084		10 =
3. Value 計算 -	-0.28 x(14 b) 30 (21) (04 -18 - 19 -0.01)	1.16
$\begin{array}{c} .54 \times (.50.76.28.12) & (0.27.410.1510.065) \\ 1.601 \times (.35.33.63.25) & (0.5600.5281.0090.400) \\ 1.13 \times (.79.99.04.95) & = (.8921.1190.0451.074) \\ 1.031 \times (.03.093.093.093.093.093.093) \\ -0.65 \times (.85.04.09.43) & (.553.0026.00585.280) \\ -0.28 \times (.14.63.30.21) & (.039.176.0006.059) \\ \hline 0.28 \times (.14.63.30.21) & (.039.176.0006.059) \\ \end{array}$		
$\begin{array}{c} .54 \times (.50.76.28.12) & (0.27.410.1510.065) \\ 1.601 \times (.35.33.63.25) & (0.5000.5281.0090.400) \\ 1.13 \times (.79.99.04.95) & (.8921.1190.0451.074) \\ 1.031 \times (.03.093.093.093.093.093) \\ -0.65 \times (.85.04.09.43) & (.553.0026.00585.280) \\ -0.28 \times (.14.63.30.21) & (.039.176.0006.059) \\ \hline 0.28 \times (.14.63.30.21) & (.039.176.0006.059) \\ \hline \end{array}$	3. Value et fr	会后4个大会等是
$1.601 \times (.35, .33, .63, .25)$ (0.560 0.528 1.009 0.400) $1.13 \times (.79, .99, .04, .95) = (.892 1.119, 0.045, 1.074)$ $1.031 \times (.03, .09, .23, .09)$ (0.031 0.093, 0.23) 0.093) $-0.65 \times (.85, .04, .09, .43)$ (-553, -0.026, -0.02585, .280) $-0.28 \times (.14, .63, .30, .21)$ (.039, .176, -0.006) (059)	> 1/4 P. 14.14	
$1.13 \times (.79.99.04.95) = (.892.1.119.0.045.1.074)$ $1.031 \times (.03.09.23.09) = (.031.0.093.0.23).0.093$ $1.051 \times (.85.04.09.43) = (.553.0.026.0.026.0.006)$ $1.081 \times (.14.63.30.21) = (.039.176.0.006.059)$ $1.084 \times (.14.63.30.21) = (.039.176.0.006.059)$		
$(0.03) \times (0.03) \times ($		
-a.65 x (.85.04.009.43) (-553 -0.026 -0.02585.280) -0.28 x (.14.63.30.21) (.039.176 -0.006.059)		
1 0.28 × (.14 .63 .30 .21) (.039 .176 -0.006/.059)	(03) × (03 09 .23 .09) (003) 0.097 0.237	0.094)
.084	-a65 x (.85.09.04.41) (-353 -0.026 -0.025)	55.280)
	70.28 ~ (.14 .65 .30 .21) (.039 .116 -0.006	2 (057)
反正得出的 Query / Key / Value	.084	
反正符出的 Query / Key / Value		
	反正行出的 Query/Key/Value	

Transformer: 序列輸入序列輸出模型結構 input + encoder = context + decader
based on RNN, 但透過 Self-attention」目注意力機制考慮了句子中所
有單字相關性和上下之,可以同時理解可子的下有智力,對整理語
意更精準方本斤、克服 KNN中長其日依賴和計算效率不佳的限制 long-term dependency
long-term dependency
* Transformer 由 論解初思去 encoder 末上 角子不易苦 decoder 流且成
★ Encoder Shace 为 将输入序列导為建意形式,以獲得上下文意意
· 新出海市為一彩的於入向重,稱隱藏狀態」或上下文」。 多牌 ●
* Decoder解隔器→ 将 Encoder 輸出可應藏狀態反復計算成 to Ken
可能有三種 Type 的 Transformer
A 1. Encoder - only Transformers → 5宝在可深入理解于和解文本、透過
将输入序列转高名覆数位形本。以BERT/R。BERTa/DistilBERT
使用雙向短意力→考慮前/後身份卷.
*2. Decoder-only Transformer 出Moder 建在强大时產出、表述能力透過反
履計算予項以下一個PMax的單詞來完成輸出序列,GPT。
而上XModel 採 Antoregressive attention, 僅多應己輸出的工文。
女子. Encoder - decoder Transformer -> 同時擁有較文本、理解語意、
輸出回應可能力,如T5/BART,可用於翻譯和產並摘要.
本標記以本, 地質三面車及電台 17 日本教以上言意名
☆ Tokenizer 分言可能 → 使用 Tokenizer 将集部整理, 因機器 外量要求. 而每個記者有自己日子系确方院。 Position Embedding
10/ DDM DDD
Tokenizer Embedding → 38 □□□ → □□□ Apple → 107 / 较入 51 □□B □□□
is -> 38 -> lapat 512
my -> 51
数) 38 DDB フロロ

◆ Embedding 嵌入一負責將被標記成數字編號的記轉成何重一個標記 為一個同重,而這些同量被存在一個「同量嵌入空間」,同時也會 將單詞的位置於已錄下來(Position Embedding),方便文意理解。
Position Embedding Encoder F F F F F F F F F F F F F
* Encoder Mana では、「一方の自 input 到 点面であり、 這些 input 先流空 で
本Feed-Forward前饋→由兩層至連接神經網路無且成,單獨處理 嵌入的序列,並由Transformer最終輸出層生成10git,通常FFD
使用Gelu做為沒沒涵數(Gelu讓數據可在線燈和非線燈中轉換) De coder 解碼點→和編碼器相同,通常有多個Decoder 紅成,Decoder 同樣將嵌入序列的input 放到 Multi head self-attention 再將input 得
● 到FFD, Decoder 和 Eewder 主要差别在於, Decoder 解碼器有2個注意力子層。 Masked multi-head self-attention 蒙面多頭注意力機制: 遊车免偷看答案,確保並成的 token 僅基於 過去輸出 (以產出的內容 和 管前 頁
● UN」的token 多頭同樣代表詞間互相影響,並讓Model考慮上及意。 中 Encoder - de coder attention -> : : Model 專注在原文和言譯又之問的 車等 1段, 止以 de coder 曾在東前出時考慮上下文以及目前為止輔入的內
强, 並輸出此時最相關的 Output (Token)
Attention機制:幫助機器提升番相譯質量 ATransformer=讓模型訓練並行,提升訓練效率