Greedy Convex Ensemble

Tan Nguyen (Queensland University of Technology)

Nan Ye (University of Queensland)

Peter Bartlett (UC Berkeley)

December 15, 2020

The Problem

"Learning a convex ensemble of basis models"

Given some set \mathcal{G} of basis models.

<u>Linear hull</u>, $lin(\mathcal{G})$, is the set of all possible linear combinations of models in \mathcal{G}

• lin(G) of even simple basis models is an universal approximator

<u>Convex hull</u>, co(G), is the set of all possible convex combinations of models in G

- Convex hull is a subset of the linear hull
- Theoretical: Capacity? Generalization?
- Empirical: How to learn from a convex hull? Any advantages?

Capacity of Convex Hulls

Proposition 2: For linear threshold basis models,

i.e.
$$\mathcal{G} = \{ \mathbb{I}(\theta^{\top} x \geq t) : \theta \in \mathbf{R}^d, t \in \mathbf{R} \},$$

- Linear hulls: infinite pseudodimension and Rademacher complexity
- Convex hulls: infinite pseudodimension, finite Rademacher complexity

Implication:

- Linear hulls: unbounded capacity, thus prone to overfitting.
- Convex hulls: rich but bounded capacity, can be seen as a regularized version of linear hulls.

Generalization Bound

Theorem 2: With probability at least $1 - \delta$, for all $f \in co(\mathcal{G})$, $R(f) - R(f^*) \le R_n(f) - R_n(f^*) + \frac{c}{\sqrt{n}}$, where $c = 2c_\phi B\left(\sqrt{2\ln(1/\delta)} + D\sqrt{p} + 2\right)$ and f^* is Bayes optimal.

 \implies Minimizing empirical risk $R_n(f)$ over the convex hull $co(\mathcal{G})$ results in minimizing the bound of the expected risk R(f).

<u>Theorem 3:</u> Let $\hat{f} = \arg\min_{f \in co(\mathcal{G})} R_n(f)$, and $h^* = \arg\min_{f \in co(\mathcal{G})} R(f)$, then with probability at least $1 - \delta$, $R(\hat{f}) \leq R(h^*) + \frac{c}{\sqrt{n}}$.

 \implies In co(\mathcal{G}), the empirical risk minimizer \hat{f} converges to the expected risk minimizer h^* at the rate $O(1/\sqrt{n})$.

Algorithms to Learn GCE

Performance Comparison

Datasets	#Samples	GCE	XGBoost	RForest	NN	ConvNet
diabetes	442	42.706	46.569	49.519	43.283	44.703
boston	506	2.165	2.271	2.705	2.217	2.232
ca_housing	20,640	0.435	0.393	0.416	0.440	0.437
msd	515,345	6.084	6.291	6.462	6.186	7.610
iris	150	0.00	6.67	6.67	3.33	10.00
wine	178	0.00	2.78	2.78	0.0	0.0
breast_cancer	569	3.51	4.39	8.77	3.51	4.39
digits	1,797	2.78	3.06	2.50	3.33	3.06
cifar10_f	60,000	4.86	5.40	5.16	5.00	4.92
mnist	70,000	1.22	1.66	2.32	1.24	1.11
covertype	581,012	26.70	26.39	27.73	26.89	26.56
kddcup99	4,898,431	0.01	0.01	0.01	0.01	0.01

Greedy Convex Ensemble

Tan Nguyen (Queensland University of Technology)

Nan Ye (University of Queensland)

Peter Bartlett (UC Berkeley)

December 15, 2020