Mathematical notes - Week 9

- 1. Covariance and correlation
 - (a) The covariance of random variables X and Y is defined as $\operatorname{Cov}[X,Y] = E[(X-\mu_X)(Y-\mu_Y)]$ $\operatorname{Prove that } \operatorname{Cov}[X,Y] = E[XY] E[X]E[Y].$ $E\left[(X-\mu_X)(Y-\mu_Y)\right] = E\left[XY\right] \mu_X E\left[Y\right] \mu_Y E\left[X\right] + \mu_X \mu_Y \left(\lim_{X \to \mu_Y} \mu_X + \mu_X \mu_Y \mu_Y \mu_X + \mu_X \mu_Y \right)$ $= E\left[XY\right] \mu_X \mu_Y \mu_Y \mu_X + \mu_X \mu_Y$

= E [XY] - E[X]E[Y]

(b) The correlation coefficient of random variables X and Y is defined as

$$\rho(X,Y) = \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y}.$$
both have Prove that $|\rho(X,Y)| \le 1$. $Z_X = \frac{X - \mu_X}{\sigma_X} Z_Y = \frac{Y - \mu_Y}{\sigma_Y}$ expectation 0 and variance 1
$$\operatorname{Var}\left[Z_X \pm Z_Y\right] = \operatorname{E}\left[\left(Z_X \pm Z_Y\right)^2\right] = \operatorname{E}\left[Z_X^2\right] + \operatorname{E}\left[Z_Y^2\right] \pm 2\left(\operatorname{ov}\left[Z_X,Z_Y\right] \ge 0\right]$$

$$= 1 + 1 \pm 2\left(\operatorname{ov}\left[Z_X,Z_Y\right] \ge 0\right)$$
So $1 + 1 \pm 2\left(\operatorname{ov}\left[X_X,Y_Y\right] \ge 0\right)$; $2 \ge \frac{1}{2} + \rho(X,Y)$ and $|\rho(X,Y)| \le 1$

(c) Prove that when calculating the sample correlation r, you can divide $\sum (x_i - \overline{x})(y_i - \overline{y})$ by n, n-1, or 1 in the numerator, as long as you do the same thing in the denominator.

$$T = \frac{\text{Sample covariance}}{\sqrt{\text{(Sample variances)}}} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Since the factor of int cancels from numerator and denominator, we could have used in or I instead.

2. Proof 1 - Least-squares regression

You have values x_i of a "predictor" and matching values y_i of a "response." Your goal is to minimize the sum of squares of the prediction errors,

$$g(a,b) = \sum_{i=1}^{n} (a + bx_i - y_i)^2.$$

Prove that

$$b = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}, a = \overline{y} - b\overline{x}.$$

$$\partial g/a = 2 \sum_{i=1}^{n} (a + bx_{i} - y_{i}) = 0$$

$$\text{so } na + b \sum_{i=1}^{n} x_{i} - \sum_{i=1}^{n} y_{i} = 0$$

$$\text{or } na + bn x_{i} - n \overline{y}_{i} = 0 \quad \text{and} \quad a = \overline{y} - b\overline{x}$$

$$\partial g/b = 2 \sum_{i=1}^{n} x_{i} (a + bx_{i} - y_{i}) = 0$$

$$\text{From above} \quad \sum_{i=1}^{n} \overline{x} (a + bx_{i} - y_{i}) = 0 \quad (\text{multiply top line by the constant } \overline{x})$$

$$Subtract : \quad \sum_{i=1}^{n} (x_{i} - \overline{x}) (a + bx_{i} - y_{i}) = 0$$

$$\text{Substitute for } a : \quad \sum_{i=1}^{n} (x_{i} - \overline{x}) (\overline{y} - b\overline{x} + bx_{i} - y_{i}) = 0$$

$$\sum_{i=1}^{n} (x_{i} - \overline{x}) b (x_{i} - \overline{x}) - \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y}) = 0$$

$$\text{and } so \quad b = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

3. Proof 2 - Dividing up the variance of the observed y's

Define
$$ss_{xy} = \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}); ss_x = \sum_{i=1}^{n} (x_i - \overline{x})^2; ss_y = \sum_{i=1}^{n} (y_i - \overline{y})^2.$$

Correlation $r = \frac{ss_{xy}}{\sqrt{ss_x ss_y}}$; Slope of regression line $b = \frac{ss_{xy}}{ss_x}$.

Prove that $r^2ss_y = b^2ss_x$.

Prove that
$$r^2 s s_y = b^2 s s_x$$
.
 $r^2 s s_y = \frac{(55_{xy})^2}{(55_x)(55_y)} \cdot 55_y = \frac{(55_{xy})^2}{55_x} \cdot b^2 s s_x = \frac{(55_{xy})^2}{(55_x)^2} \cdot 55_x = \frac{(65_{xy})^2}{55_x}$

An observation is y_i ; a predicted observation is $\hat{y}_i = a + bx_i$; $\overline{y} =$ $a + b\overline{x}$. Prove that the ratio of the variance of the predicted y's to the variance of the observed y's equals R-squared, the square of the sample correlation r.

Predicted variance
$$\frac{1}{n-1} \sum_{i=1}^{\infty} \left(\hat{y}_i - \hat{y} \right)^2 \frac{\hat{z}}{\sum_{i=1}^{\infty} \left(a + bx_i - \hat{y} \right)^2}$$

$$\frac{\hat{z}}{\sum_{i=1}^{\infty} \left(y_i - \hat{y} \right)^2} \frac{\hat{z}}{\sum_{i=1}^{\infty} \left(y_i - \hat{y} \right)^2} \frac{\hat{z}}{\sum_{i=1}^{\infty} \left(y_i - \hat{y} \right)^2} \frac{\hat{z}}{\sum_{i=1}^{\infty} \left(y_i - \hat{y} \right)^2}$$

$$\frac{\hat{z}}{\sum_{i=1}^{\infty} \left(y_i - \hat{y} \right)^2} \frac{\hat{z}}{\sum_{i=1}^{\infty} \left(y_i - \hat{y} \right)^2} \frac{\hat{z}}{\sum_{i$$

Prove that the ratio of the variance of the residuals $y - \hat{y}$ to the variance of the observed y's equals $1 - r^2$.

 $= \sum_{i=1}^{n} \left[(y_i - \overline{y})^2 - 2b(y_i - \overline{y})(x_i - \overline{x}) + b^2(x_i - \overline{x})^2 \right] \frac{1}{58y}$ $\frac{56y - 2b(55xy) + b^2 55x}{56y} = \frac{55y - 2b(b55x) + b^2 55x}{56y}$ $= 1 - \frac{b^2 ss_x}{ss_y} = 1 - \frac{r^2 ss_y}{ss_y} = 1 - \frac{r^2}{ss_y}$

4. Proof 3 - Maximum likelihood regression

You have a fixed set of values, x_i , of a "predictor" variable.

For each x_i , the response Y_i is a random variable whose expectation is $\mu_i = \alpha + \beta x_i$ and whose variance is σ^2 . The residuals $Y_i - \mu_i$ are independent.

Given a set of pairs of values $(x_1, Y_1), (x_2, Y_2), \cdots (x_n, Y_n)$, prove that the maximum-likelihood estimates of α and β satisfy the equations

$$\sum_{i=1}^{n} (\hat{\alpha} - \hat{\beta}x_i - Y_i) = 0, \sum_{i=1}^{n} x_i (\hat{\alpha} - \hat{\beta}x_i - Y_i) = 0.$$

and that

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta} x_i)^2.$$

From Proof 1,
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
, $\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{x}$.

$$P(Y_1, Y_2, \dots Y_n) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2(1-\alpha-\beta\times i)^2}} = \frac{1}{\sqrt{2}(2\pi^2)} = \frac{2}(2\pi^2)} = \frac{1}{\sqrt{2}(2\pi^2)} = \frac{1}{\sqrt{2}(2\pi^2)} = \frac{1}{\sqrt{2}(2\pi^2)$$

So
$$\hat{G}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - x - \beta x_i)^2$$

This has a χ^2 distribution with $n-2$ degrees of freedom

5. Logistic regression

You have a fixed set of values, x_i , of a "predictor" variable. Each "response" variable Y_i is a Bernoulli random variable with parameter p_i .

Assume that

$$p_i = \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}.$$

- (a) Prove that $\alpha + \beta x_i$ is equal to the "log odds" $\ln \frac{p_i}{1-p_i}$.
- (b) Prove that $0 < p_i < 1$.
- (c) Given a set of pairs of values $(x_1, Y_1), (x_2, Y_2), \dots (x_n, Y_n)$, form the likelihood function $L(\alpha, \beta)$ and express its logarithm in terms of α and β . Do not attempt to maximize

a. "Odds in favor":
$$\frac{Pi}{1-pi} = \frac{e^{x+\beta xi}(1+e^{x+\beta xi})}{(1+e^{x+\beta xi})} = e^{x+\beta xi}$$

As
$$\alpha + \beta xi \rightarrow -\infty$$
 $pi \rightarrow \frac{0}{1+0} = 0$
As $\alpha + \beta xi \rightarrow +\infty$ $pi = \frac{1}{e^{-(\alpha + \beta xi)} + 1} \rightarrow 1$

$$\log L(\alpha, \beta) = \sum_{i=1}^{\infty} \left(Y_i \log p_i + (1 - Y_i) \log (1 - p_i) \right)$$

$$= \frac{\hat{\gamma}}{2} \left[Y_i \log \frac{p_i}{1 - p_i} + \log (1 - p_i) \right]$$

$$= \frac{\hat{\gamma}}{2} \left[Y_i \left(\alpha + \beta x_i \right) - \log \left(1 + e^{\alpha + \beta x_i} \right) \right]$$