

What is claimed is:

1 1. A method for driving a transreflective LCD,
2 wherein the transreflective LCD has a plurality of pixels
3 arranged in a matrix, each including a reflective cell
4 and a transmission cell, the reflective cell having a
5 first storage capacitor and a first active device, and
6 the transmission cell having a second storage capacitor
7 and a second active device, the method comprising the
8 steps of:

9 providing first switching devices coupled between
10 the reflective cells of the pixels and first
11 driving voltages respectively;

12 providing second switching devices coupled between
13 the transmission cells of the pixels and second
14 driving voltages respectively;

15 turning on all the first switching devices and
16 scanning the reflective cells in turn to apply
17 the first driving voltages to the reflective
18 cells in turn; and

19 turning on all the second switching devices and
20 scanning the transmission cells in turn to
21 apply the second driving voltages to the
22 transmission cells in turn;

23 wherein the first driving voltages are applied to
24 the reflective cells in turn and the second
25 driving voltages are applied to the
26 transmission cells in turn in one frame period.

1 2. The method as claimed in claim 1, wherein the
2 first switching devices are turned on when the second
3 switching devices are turned off, and the first switching
4 devices are turned off when the second switching device
5 is turned on.

1 3. The method as claimed in claim 1, further
2 comprising a step of turning on all the first switching
3 devices and second switching devices without scanning any
4 pixel before the frame period.

1 4. A method for driving a transreflective LCD,
2 wherein the transreflective LCD has a plurality of pixels
3 arranged in a matrix, each pixel including a reflective
4 cell and a transmission cell, the reflective cell having
5 a first storage capacitor and a first active device and
6 the transmission cell having a second storage capacitor
7 and a second active device, the method comprising the
8 steps of:

9 providing first switching devices coupled between
10 the reflective cells of the pixels and first
11 driving voltages respectively;

12 providing second switching devices coupled between
13 the transmission cells of the pixels and second
14 driving voltages respectively;

15 scanning each row of the pixels in turn in one frame
16 period; and

17 turning on the first switching device and the second
18 device at different times to apply the first
19 driving voltage to the reflective cells and the

20 second driving voltage to the transmission
21 cells respectively, when each pixel row is
22 scanned.

1 5. The method as claimed in claim 4, wherein
2 reflective cells are turned on when the first switching
3 devices and the second switching devices are turned on
4 and off respectively.

1 6. The method as claimed in claim 4, wherein when
2 transmission cells are turned on when the first switching
3 devices and the second switching devices are turned off
4 and on respectively.

1 7. The method as claimed in claim 6, further
2 comprising a step of turning on all the first switching
3 devices and second switching devices without scanning any
4 pixel before the frame period.

1 8. A method for driving a transreflective LCD,
2 wherein the transreflective LCD has a plurality of pixels
3 arranged in a matrix, each pixel including a reflective
4 cell and a transmission cell, the reflective cell having
5 a first storage capacitor and a first active device and
6 the transmission cell having a second storage capacitor
7 and a second active device, the method comprising the
8 steps of:

9 providing first switching devices coupled between
10 the reflective cells of the pixels and first
11 driving voltages respectively;

12 providing second switching devices coupled between
13 the transmission cells of the pixels and second
14 driving voltages respectively;
15 scanning each row of the pixels in turn in one frame
16 period; and
17 turning on the first switching device and the second
18 switching devices simultaneously to apply the
19 first driving voltages to the reflective cells
20 and the second driving voltage to the
21 transmission cells simultaneously when each
22 pixel row is scanned, wherein the second
23 switching devices are turned off earlier than
24 the first switching devices.

1 9. A method for driving a transreflective LCD,
2 wherein the transreflective LCD has a plurality of pixels
3 arranged in a matrix, each pixel including a reflective
4 cell and a transmission cell, the reflective cell having
5 a first storage capacitor and a first active device and
6 the transmission cell having a second storage capacitor
7 and a second active device, the method comprising the
8 steps of:

9 providing first switching devices coupled between
10 the reflective cells of the pixels and first
11 driving voltages respectively;
12 providing second switching devices coupled between
13 the transmission cells of the pixels and second
14 driving voltages respectively; and
15 turning on the first switching devices to apply the
16 first driving voltages to the reflective cells

17 of the pixels and scanning each row of the
18 pixels in turn simultaneously in one frame
19 period.

1 10. A method for driving a transflective LCD,
2 wherein the transflective LCD has a plurality of pixels
3 arranged in a matrix, each pixel including a reflective
4 cell and a transmission cell, the reflective cell having
5 a first storage capacitor and a first active device and
6 the transmission cell having a second storage capacitor
7 and a second active device, the method comprising the
8 steps of:

9 providing first switching devices coupled between
10 the reflective cells of the pixels and first
11 driving voltages respectively;

12 providing second switching devices coupled between
13 the transmission cells of the pixels and second
14 driving voltages respectively; and

15 turning on the second switching devices to apply the
16 second driving voltages to the transmission
17 cells of the pixels and scanning each row of
18 the pixels in turn simultaneously in one frame
19 period.