Attorney Docket No.: Beiersdorf 758-WCG

: 200-195

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s)

Dr. Ghita LANZENDÖRFER, Angelika BORMANN, Jens

NIELSEN, Birgit HARGENS, Heidi RIEDEL and Stephanie von

THADEN

For

O/W EMULSIONS CONTAINING ONE OR MORE

AMMONIUM ACRYLOYLDIMETHYLTAURATE/

VINYLPYRROLIDONE COPOLYMERS

Serial No.

To Be Assigned

Filed

Herewith

Art Unit

To Be Assigned

Examiner

To Be Assigned

December 19, 2001

BOX PATENT APPLICATION Assistant Commissioner for Patents Washington, D.C. 20231

TRANSMITTAL OF PRIORITY DOCUMENT

SIR:

Transmitted herewith is a certified copy of the following application, the foreign priority of which has been claimed under 35 USC 119:

Country

Serial Number

Filing Date

Germany

100 65 046.5

December 23, 2000

It is submitted that this certified copy satisfies all of the requirements of 35 USC 119, and the right of foreign priority should therefore be accorded to the present application.

CONDITIONAL PETITION FOR EXTENSION OF TIME

If any extension of time for this response if required, Applicant requests that this be considered a petition therefor. Please charge the required petition fee to Deposit Account No. 14-1263.

ADDITIONAL FEE

Please charge any insufficiency of fees, or credit any excess, to Deposit Account No. 14-1263.

Respectfully submitted,

NORRIS, McLAUGHLIN & MARCUS, P.A.

William C. Gerstenzang

Reg. No. 27,552

WCG:gb 220 East 42nd Street, 30th Floor New York, New York 10017 (212) 808-0700

I hereby certify that this paper is being deposited with the United States Postal Service as Express Mail, Label No. EV 015941067US addressed to: BOX PATENT APPLICATION, Assistant Commissioner for Patents, Washington, D.C. 20231 on December 19, 2001.

Norris McLaughlin & Marcus, F.A

25 12/19/01

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

*

100 65 046.5

Anmeldetag:

23. Dezember 2000

Anmelder/Inhaber:

Beiersdorf AG, Hamburg/DE

Bezeichnung:

O/W-Emulsionen mit einem Gehalt an einem oder

mehreren Ammoniumacryloyldimethyltaurat/Vinyl-

pyrrolidoncopolymeren

IPC:

A 61 K 7/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 28. November 2001

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Dzierzon

A 9161 02/00 EDV-L

Beiersdorf Aktiengesellschaft Hamburg

5

Beschreibung

O/W-Emulsionen mit einem Gehalt an einem oder mehreren Ammoniumacryloyldimethyltaurat/Vinylpyrrolidoncopolymeren

10

Die vorliegende Erfindung betrifft kosmetische und dermatologische Zubereitungen vom Typ Öl-in-Wasser, Verfahren zu ihrer Herstellung sowie ihre Verwendung für kosmetische und medizinische Zwecke.

Die menschliche Haut übt als größtes Organ des Menschen zahlreiche lebenswichtige Funktionen aus. Mit durchschittlich etwa 2 m² Oberfläche beim Erwachsenen kommt ihr eine herausragende Rolle als Schutz- und Sinnesorgan zu. Aufgabe dieses Organs ist es, mechanische, thermische, aktinische, chemische und biologische Reize zu vermitteln und abzuwehren. Außerdem kommt ihr eine bedeutende Rolle als Regulations- und Zielorgan im menschlichen Stoffwechsel zu.

25

30

Unter kosmetischer Hautpflege ist in erster Linie zu verstehen, die natürliche Funktion der Haut als Barriere gegen Umwelteinflüsse (z.B. Schmutz, Chemikalien, Mikroorganismen) und gegen den Verlust von körpereigenen Stoffen (z.B. Wasser, natürliche Fette, Elektrolyte) zu stärken oder wiederherzustellen sowie ihre Hornschicht bei aufgetretenen Schäden in ihrem natürlichen Regenerationsvermögen zu unterstützen.

Werden die Barriereeigenschaften der Haut gestört, kann es zu verstärkter Resorption toxischer oder allergener Stoffe oder zum Befall von Mikroorganismen und als Folge zu toxischen oder allergischen Hautreaktionen kommen.

Ziel der Hautpflege ist es ferner, den durch tägliches Waschen verursachten Fett- und Wasserverlust der Haut auszugleichen. Dies ist gerade dann wichtig, wenn das natürli-

PAWI\2000\200-195.doc

che Regenerationsvermögen nicht ausreicht. Außerdem sollen Hautpfleg produkte vor Umwelteinflüssen, insbesondere vor Sonne und Wind, schütz n und die Hautalterung verzögern.

Medizinische topische Zusammensetzungen enthalten in der Regel ein oder mehrere Medikamente in wirksamer Konzentration. Der Einfachheit halber wird zur sauberen Unterscheidung zwischen kosmetischer und medizinischer Anwendung und entsprechenden Produkten auf die gesetzlichen Bestimmungen der Bundesrepublik Deutschland verwiesen (z.B. Kosmetikverordnung, Lebensmittel- und Arzneimittelgesetz).

10

5

Unter Emulsionen versteht man im allgemeinen heterogene Systeme, die aus zwei nicht oder nur begrenzt miteinander mischbaren Flüssigkeiten bestehen, die üblicherweise als Phasen bezeichnet werden. In einer Emulsion ist eine der beiden Flüssigkeiten in Form feinster Tröpfchen in der anderen Flüssigkeit dispergiert.

15

20

Sind die beiden Flüssigkeiten Wasser und Öl und liegen Öltröpfchen fein verteilt in Wasser vor, so handelt es sich um eine Öl-in-Wasser-Emulsion (O/W-Emulsion, z. B. Milch). Der Grundcharakter einer O/W-Emulsion ist durch das Wasser geprägt. Bei einer Wasser-in-Öl-Emulsion (W/O-Emulsion, z. B. Butter) handelt es sich um das umgekehrte Prinzip, wobei der Grundcharakter hier durch das Öl bestimmt wird.

Diesen Übelständen galt es, Abhilfe zu schaffen.

25

Erstaunlicherweise werden diese Aufgaben gelöst durch kosmetische oder dermatologische Emulsionen vom Typ Öl-in-Wasser, umfassend

- (i) bis zu 90 Gew.-% einer Wasserphase,
- (ii) bis zu 20 Gew.% einer Lipidphase, bezogen auf das Gesamtgewicht der Zubereitungen,
- (iii) bis zu 5 Gew.-% eines oder mehrerer Emulgatoren,
- 30 (iv) ferner umfassend bis zu 5 Gew.- % eines oder mehrerer Ammoniumacryloyldimethyltaurate/Vinylpyrrolidoncopolymere.

Erfindungsgemäß vorteilhaft weisen das oder die Ammoniumacryloyldimethyltaurat Ninylpyrrolidoncopolymere die Summenformel $[C_7H_{16}N_2SO_4]_n$ $[C_6H_9NO]_m$ auf, einer statistischen Struktur wie folgt entsprechend

Bevorzugte Spezies im Sinne der vorliegenden Erfindung sind in den Chemical Abstracts unter den Registraturnummern 58374-69-9, 13162-05-5 und 88-12-0 abgelegt und erhältlich unter der Handelsbezeichnung Aristoflex® AVC der Gesellschaft Clariant GmbH.

- 10 Es war für den Fachmann nicht vorauszusehen gewesen, daß die erfindungsgemäßen Zubereitungen
 - besser als feuchtigkeitsspendende Zubereitungen wirken,
 - einfacher zu formulieren sein,

ñ

5

- besser die Hautglättung fördern,
- sich durch besser Pflegewirkung auszeichen,
- besser als Vehikel für kosmetische und medizinisch-dermatologische Wirkstoffe dienen
- bessere sensorische Eigenschaften, wie beispielsweise die Verteilbarkeit auf der Haut oder das Einzugsvermögen in die Haut, aufweisen würden
- 20 höhere Stabilität gegenüber Zerfall in Öl- und Wasserphasen aufweisen und
 - sich durch bessere Bioverträglichkeit auszeichnen würden als die Zubereitungen des Standes der Technik.

Die erfindungsgemäßen Zubereitungen stellen daher eine Ber icherung des Standes der Technik dar.

Der Lipidgehalt der erfindungsgemäß erhältlichen Zubereitungen kann vorteilhaft von 0,5 Gew.-% bis zu 20 Gew.-%, bevorzugt von 5 bis zu 10 Gew.-% variiert werden, wobei gleichermaßen günstige Ergebnisse erzielt werden. Im Falle der Lipidfreiheit liegt keine Emulsion sondern ein System vor, welches am treffendsten als Emulgatorgel bezeichnet werden sollte.

Bevorzugt enthalten erfindungsgemäße Zubereitungen bis zu 7,5 Gew.-% einer Lipidphase. Besonders vorteilhaft enthalten erfindungsgemäße Zubereitungen bis zu 6 Gew.-% einer Lipidphase. Besonders bevorzugt enthalten erfindungsgemäße Zubereitungen 2 bis 4 Gew.-% einer Lipidphase, insbesondere etwa 3 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.

15

20

f.

5

Die Lipidphase der erfindungsgemäßen kosmetischen oder dermatologischen Emulsionen kann vorteilhaft gewählt werden aus folgender Substanzgruppe:

- Mineralöle, Mineralwachse
- Öle, wie Triglyceride der Caprin- oder der Caprylsäure, ferner natürliche Öle wie z.B. Rizinusöl;
 - Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z.B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren;
- 25 Alkylbenzoate;
 - Silikonöle wie Dimethylpolysiloxane, Diethylpolysiloxane, Diphenylpolysiloxane sowie Mischformen daraus.

Die Ölphase der Emulsionen der vorliegenden Erfindung wird vorteilhaft gewählt aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen, aus der Gruppe der Ester aus aromatischen Carbon-

säuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Al-koholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyldodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z.B. Jojobaöl.

5

10

15

20

30

Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silkonöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z.B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr.

Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpalmitat, als alleinige Lipidkomponente der Ölphase einzusetzen.

Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldode-25 canol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C₁₂₋₁₅-Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether.

Besonders vorteilhaft sind Mischungen aus C_{12-15} -Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C_{12-15} -Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C_{12-15} -Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat.

Von den Kohlenwasserstoffen sind Paraffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.

Vorteilhaft kann die Ölphase ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponenten zu verwenden. Solche Silicone oder Siliconöle können als Monomere vorliegen, welche in der Regel durch Strukturelemente charakterisiert sind, wie folgt:

Als erfindungsgemäß vorteilhaft einzusetzenden linearen Silicone mit mehreren Siloxyleinheiten werden im allgemeinen durch Strukturelemente charakterisiert wie folgt:

$$\begin{bmatrix}
R_1 & R_2 \\
-O-Si-O-Si \\
R_3 & R_4
\end{bmatrix}_{m}$$

10

5

wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert werden können, welche hier verallgemeinernd durch die Reste R_1 - R_4 dargestellt sind (will sagen, daß die Anzahl der unterschiedlichen Reste nicht notwendig auf bis zu 4 beschränkt ist). m kann dabei Werte von 2 - 200.000 annehmen.

15

Erfindungsgemäß vorteilhaft einzusetzende cyclische Silicone werden im allgemeinen durch Strukturelemente charakterisiert, wie folgt

20

wobei die Siliciumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert werden können, welche hier verallgemeinernd durch die Reste R₁ - R₄ dargestellt sind (will sagen, daß die Anzahl der unterschiedlichen Reste nicht notwendig auf bis zu 4 beschränkt ist). n kann dabei Werte von 3/2 bis 20 annehmen. Gebroch ne Werte für n b rücksichtigen, daß ungeradzahlig Anzahlen von Siloxylgruppen im Cyclus vorhanden sein können.

Vorteilhaft wird Cyclomethicon (z.B. Decamethylcyclopentasiloxan) als erfindungsgemäß zu verwendendes Silikonöl eingesetzt. Aber auch andere Silikonöle sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden, beispielsweise Undecamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan), Cetyldimethicon, Behenoxydimethicon.

10

15

5

Vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, sowie solche aus Cyclomethicon und 2-Ethylhexylisostearat.

Es ist aber auch vorteilhaft, Silikonöle ähnlicher Konstitution wie der vorstehend bezeichneten Verbindungen zu wählen, deren organische Seitenketten derivatisiert, beispielsweise polyethoxyliert und/oder polypropoxyliert sind. Dazu zählen beispielsweise Polysiloxan-polyalkyl-polyether-copolymere wie das Cetyl-Dimethicon-Copolyol, das (Cetyl-Dimethicon-Copolyol (und) Polyglyceryl-4-Isostearat (und) Hexyllaurat)

20 Besonders vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, aus Cyclomethicon und 2-Ethylhexylisostearat.

25

30

Die wäßrige Phase der erfindungsgemäßen Zubereitungen enthält gegebenenfalls vorteilhaft Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyloder -monobutylether, Propylenglykolmonomethyl, -monoethyl- oder -monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte, ferner Alkohole niedriger C-Zahl, z.B. Ethanol, Isopropanol, 1,2-Propandiol, Glycerin sowie insbesondere ein oder mehrere Verdickungsmittel, welches oder welche vorteilhaft gewählt werden können aus der Gruppe Siliciumdioxid, Aluminiumsilikate.

Erfindungsgemäße als Emulsionen vorliegenden Zubereitungen enthalten insbesondere vorteilhaft ein oder mehrere Hydrocolloide. Diese Hydrocolloide können vorteilhaft ge-

wählt werden aus der Gruppe der Gummen, Polysaccharide, Cellulosederivate, Schichtsilikate, Polyacrylate und/oder anderen Polymeren.

Zu den Gummen zählt man Pflanzen- oder Baumsäfte, die an der Luft erhärten und Harze bilden oder Extrakte aus Wasserpflanzen. Aus dieser Gruppe können vorteilhaft im Sinne der vorliegenden Erfindung gewählt werden beispielsweise Gummi Arabicum, Johannisbrotmehl, Tragacanth, Karaya, Guar Gummi, Pektin, Gellan Gummi, Carrageen, Agar, Algine, Chondrus, Xanthan Gummi.

5

15

20

25

10 Weiterhin vorteilhaft ist die Verwendung von derivatisierten Gummen wie z.B. Hydroxypropyl Guar (Jaguar® HP 8).

Unter den Polysacchariden und –derivaten befinden sich z.B. Hyaluronsäure, Chitin und Chitosan, Chondroitinsulfate, Stärke und Stärkederivate.

Unter den Cellulosederivaten befinden sich z.B. Methylcellulose, Carboxymethylcellulose, Hydroxyethylcellulose, Hydroxypropylmethylcellulose.

Unter den Schichtsilikaten befinden sich natürlich vorkommende und synthetische Tonerden wie z.B. Montmorillonit, Bentonit, Hektorit, Laponit, Magnesiumaluminiumsilikate wie Veegum®. Diese können als solche oder in modifizierter Form verwendet werden wie z.B. Stearylalkonium Hektorite.

Weiterhin können vorteilhaft auch Kieselsäuregele verwendet werden.

Unter den Polyacrylaten befinden sich z.B. Carbopol Typen der Firma Goodrich (Carbopol 980, 981, 1382, 5984, 2984, EDT 2001 oder Pemulen TR2).

Unter den Polymeren befinden sich z.B. Polyacrylamide (Seppigel 305), Polyvinylalko-30 hole, PVP, PVP / VA Copolymere, Polyglycole. Erfindungsgemäße als Emulsionen vorliegenden Zubereitungen enthalten einen oder mehrere Emulgatoren. Diese Emulgatoren können vorteilhaft gewählt werden aus der Gruppe der nichtionischen, anionischen, kationischen oder amphoteren Emulgatoren.

- 5 Unter den nichtionischen Emulgatoren befinden sich
 - a) Partialfettsäureester und Fettsäureester mehrwertiger Alkohole und deren ethoxylierte Derivate (z. B. Glycerylmonostearate, Sorbitanstearate, Glycerylstearylcitrate, Sucrosestearate)
 - b) ethoxilierte Fettalkohole und Fettsäuren
- 10 c) ethoxilierte Fettamine, Fettsäureamide, Fettsäurealkanolamide
 - d) Alkylphenolpolyglycolether (z.B. Triton X)

Unter den anionischen Emulgatoren befinden sich

- a) Seifen (z. B. Natriumstearat)
- 15 b) Fettalkoholsulfate
 - c) Mono-, Di- und Trialkylphosphosäureester und deren Ethoxylate

Unter den kationischen Emulgatoren befinden sich

a) quaternäre Ammoniumverbindungen mit einem langkettigen aliphatischen Rest z.B. Distearyldimonium Chloride

Unter den amphoteren Emulgatoren befinden sich

20

- a) Alkylamininoalkancarbonsäuren
- b) Betaine, Sulfobetaine
- 25 c) Imidazolinderivate

Weiterhin gibt es natürlich vorkommende Emulgatoren, zu denen Bienenwachs, Wollwachs, Lecithin und Sterole gehören.

- O/W-Emulgatoren können beispielsweise vorteilhaft gewählt werden aus der Gruppe der polyethoxylierten bzw. polypropoxylierten bzw. polyethoxylierten und polypropoxylierten Produkte, z.B.:
 - der Fettalkoholethoxylate

- der ethoxylierten Wollwachsalkohole,
- der Polyethylenglycolether der allgemeinen Formel R-O-(-CH₂-CH₂-O-)_n-R',
- der Fettsäureethoxylate der allgemeinen Formel R-COO-(-CH₂-CH₂-O-)_n-H,
- 5 der veretherten Fettsäureethoxylate der allgemeinen Formel R-COO-(-CH₂-CH₂-O-)_n -R',
 - der veresterten Fettsäureethoxylate der allgemeinen Formel R-COO-(-CH₂-CH₂-O-)_n-C(O)-R',
 - der Polyethylenglycolglycerinfettsäureester
- 10 der ethoxylierten Sorbitanester
 - der Cholesterinethoxylate

- der ethoxylierten Triglyceride
- der Alkylethercarbonsäuren der allgemeinen Formel
 R-O-(-CH₂-CH₂-O-)_n-CH₂-COOH nd n eine Zahl von 5 bis 30 darstellen,
- 15 der Polyoxyethylensorbitolfettsäureester,
 - der Alkylethersulfate der allgemeinen Formel R-O-(-CH₂-CH₂-O-)_n-SO₃-H
 - der Fettalkoholpropoxylate der allgemeinen Formel
 R-O-(-CH₂-CH(CH₃)-O-)_n-H,
 - der Polypropylenglycolether der allgemeinen Formel
- 20 $R-O-(-CH_2-CH(CH_3)-O-)_n-R'$,
 - der propoxylierten Wollwachsalkohole,
 - der veretherten Fettsäurepropoxylate R-COO-(-CH₂-CH(CH₃)-O-)_n-R',

- der veresterten Fettsäurepropoxylate der allgemeinen Formel
- 25 $R-COO-(-CH_2-CH(CH_3)-O-)_n-C(O)-R'$,
 - der Fettsäurepropoxylate der allgemeinen Formel R-COO-(-CH₂-CH(CH₃)-O-)_n-H,
 - der Polypropylenglycolglycerinfettsäureester
 - der propoxylierten Sorbitanester
- 30 der Cholesterinpropoxylate
 - der propoxylierten Triglyceride
 - der Alkylethercarbonsäuren der allgemeinen Formel R-O-(-CH₂-CH(CH₃)O-)_n-CH₂-COOH

- der Alkylethersulfate bzw. die diesen Sulfaten zugrundeliegenden Säuren der allgemeinen Formel R-O-(-CH₂-CH(CH₃)-O-)_n-SO₃-H
- der Fettalkoholethoxylate/propoxylate der allgemeinen Formel R-O-X_n-Y_m-H,
- 5 der Polypropylenglycolether der allgemeinen Formel R-O-X_n-Y_m-R',
 - der veretherten Fettsäurepropoxylate der allgemeinen Formel R-COO-X_n-Y_m-R',
- der Fettsäureethoxylate/propoxylate der allgemeinen Formel
 R-COO-X_n-Y_m-H₁.
- Erfindungsgemäß besonders vorteilhaft werden die eingesetzten polyethoxylierten bzw. polypropoxylierten bzw. polypropoxylierte
 - Es ist von Vorteil, die Fettalkoholethoxylate aus der Gruppe der ethoxylierten Stearylalkohole, Cetylalkohole, Cetylstearylalkohole (Cetearylalkohole) zu wählen. Insbesondere bevorzugt sind:
- Polyethylenglycol(13)stearylether (Steareth-13), Polyethylenglycol(14)stearylether (Steareth-14), Polyethylenglycol(15)stearylether (Steareth-15), Polyethylenglycol(16)stearylether (Steareth-16), Polyethylenglycol(17)stearylether (Steareth-17), Polyethylenglycol(18)stearylether (Steareth-18), Polyethylenglycol(19)stearylether (Steareth-19), Polyethylenglycol(20)stearylether (Steareth-20),
- Polyethylenglycol(12)isostearylether (Isosteareth-12), Polyethylenglycol(13)isostearylether (Isosteareth-13), Polyethylenglycol(14)isostearylether (Isosteareth-14), Polyethylenglycol(15)isostearylether (Isosteareth-15), Polyethylenglycol(16)isostearylether (Isosteareth-16), Polyethylenglycol(17)isostearylether (Isosteareth-17), Polyethylenglycol-

(18)isostearyl ther (Isosteareth-18), Polyethylenglycol(19)isostearylether (Isosteareth-19-), Polyethylenglycol(20)isostearylether (Isosteareth-20),

Polyethylenglycol(13)cetylether (Ceteth-13), Polyethylenglycol(14)cetylether (Ceteth-14), Polyethylenglycol(15)cetylether (Ceteth-15), Polyethylenglycol(16)cetylether (Ceteth-16), Polyethylenglycol(17)cetylether (Ceteth-17), Polyethylenglycol(18)cetylether (Ceteth-18), Polyethylenglycol(19)cetylether (Ceteth-19), Polyethylenglycol(20)cetylether (Ceteth-20),

Polyethylenglycol(13)isocetylether (Isoceteth-13), Polyethylenglycol(14)isocetylether (Isoceteth-14), Polyethylenglycol(15)isocetylether (Isoceteth-15), Polyethylenglycol(16)-isocetylether (Isoceteth-16), Polyethylenglycol(17)isocetylether (Isoceteth-17), Polyethylenglycol(18)isocetylether (Isoceteth-18), Polyethylenglycol(19)isocetylether (Isoceteth-19), Polyethylenglycol(20)isocetylether (Isoceteth-20),

Polyethylenglycol(12)oleylether (Oleth-12), Polyethylenglycol(13)oleylether (Oleth-13), Polyethylenglycol(14)oleylether (Oleth-14), Polyethylenglycol(15)oleylether (Oleth-15),

20

25

30

Polyethylenglycol(12)laurylether (Laureth-12), Polyethylenglycol(12)isolaurylether (Isolaureth-12).

Polyethylenglycol(13)cetylstearylether (Ceteareth-13), Polyethylenglycol(14)cetylstearylether (Ceteareth-14), Polyethylenglycol(15)cetylstearylether (Ceteareth-15), Polyethylenglycol(16)cetylstearylether (Ceteareth-16), Polyethylenglycol(17)cetylstearylether (Ceteareth-17), Polyethylenglycol(18)cetylstearylether (Ceteareth-18), Polyethylenglycol(19)cetylstearylether (Ceteareth-19), Polyethylenglycol(20)cetylstearylether (Ceteareth-20),

Es ist ferner von Vorteil, die Fettsäureethoxylate aus folgender Gruppe zu wählen:

Polyethylenglycol(20)stearat, Polyethylenglycol(21)stearat, Polyethylenglycol(22)stearat, Polyethylenglycol(23)stearat, Polyethylenglycol(25)stearat,

Polyethylenglycol(12)isostearat, Polyethylenglycol(13)isostearat, Polyethylenglycol(14)-isostearat, Polyethylenglycol(15)isostearat, Polyethylenglycol(16)isostearat, Polyethylenglycol(16)isostearat,

glycol(17)isost arat, Polyethylenglycol(18)isostearat, Polyethylenglycol(19)isostearat, Polyethylenglycol(20)isostearat, Polyethylenglycol(21)isostearat, Polyethylenglycol(22)isostearat, Polyethylenglycol(23)isostearat, Polyethylenglycol(24)isostearat, Polyethylenglycol(25)isostearat,

5

Polyethylenglycol(12)oleat, Polyethylenglycol(13)oleat, Polyethylenglycol(14)oleat, Polyethylenglycol(15)oleat, Polyethylenglycol(16)oleat, Polyethylenglycol(17)oleat, Polyethylenglycol(19)oleat, Polyethylenglycol(20)oleat

Als ethoxylierte Alkylethercarbonsäure bzw. deren Salz kann vorteilhaft das Natriumlaureth-11-carboxylat verwendet werden.

Als Alkylethersulfat kann Natrium Laureth 1-4 sulfat vorteilhaft verwendet werden.

Als ethoxyliertes Cholesterinderivat kann vorteilhaft Polyethylenglycol(30)Cholesterylether verwendet werden. Auch Polyethylenglycol(25)Sojasterol hat sich bewährt.

Als ethoxylierte Triglyceride können vorteilhaft die Polyethylenglycol(60) Evening Primrose Glycerides verwendet werden (Evening Primrose = Nachtkerze)

20

Weiterhin ist von Vorteil, die Polyethylenglycolglycerinfettsäureester aus der Gruppe Polyethylenglycol(20)glyceryllaurat, Polyethylenglycol(21)glyceryllaurat, Polyethylenglycol(22)glyceryllaurat, Polyethylenglycol(23)glyceryllaurat, Polyethylenglycol(6)glycerylcaprat/caprinat, Polyethylenglycol(20)glyceryloleat, Polyethylenglycol(20)glyceryloleat, Polyethylenglycol(20)glyceryloleat/cocoat zu wählen.

25

Es ist ebenfalls günstig, die Sorbitanester aus der Gruppe Polyethylenglycol(20)sorbitanmonolaurat, Polyethylenglycol(20)sorbitanmonostearat, Polyethylenglycol(20)sorbitanmonopalmitat, Polyethyleng

30

Als vorteilhafte W/O-Emulgatoren können eingesetzt werden: Fettalkohole mit 8 bis 30 Kohlenstoffatomen, Monoglycerinester gesättigter und/oder ungesättigter, verzweigter

und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, Diglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, Monoglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, Diglycerinether gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkohole einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen, Propylenglycolester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen sowie Sorbitanester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 - 18 C-Atomen.

Insbesondere vorteilhafte W/O-Emulgatoren sind Glycerylmonostearat, Glycerylmonoisostearat, Glycerylmonomyristat, Glycerylmonooleat, Diglycerylmonostearat, Diglycerylmonoisostearat, Propylenglycolmonoisostearat, Propylenglycolmonoisostearat, Propylenglycolmonoisostearat, Propylenglycolmonoisostearat, Sorbitanmonoisostearat, Sorbitanmonoiaurat, Sorbitanmonoisostearat, Sorbitanmonoiaurat, Sorbitanmonoisooleat, Saccharosedistearat, Cetylalkohol, Stearylalkohol, Arachidylalkohol, Behenylalkohol, Isobehenylalkohol, Selachylalkohol, Chimylalkohol, Polyethylenglycol(2)stearylether (Steareth-2), Glycerylmonolaurat, Glycerylmonocaprinat, Glycerylmonocaprylat.

Die erfindungsgemäßen Emulsionen können Farbstoffe und/oder Farbpigmente enthalten. Die Farbstoffe und -pigmente können aus der entsprechenden Positivliste der Kosmetikverordnung bzw. der EG-Liste kosmetischer Färbemittel ausgewählt werden. In den meisten Fällen sind sie mit den für Lebensmittel zugelassenen Farbstoffen identisch. Vorteilhafte Farbpigmente sind beispielsweise Titandioxid, Glimmer, Eisenoxide (z. B. Fe₂O₃, Fe₃O₄, FeO(OH)) und/oder Zinnoxid. Vorteilhafte Farbstoffe sind beispielsweise Carmin, Berliner Blau, Chromoxidgrün, Ultramarinblau und/oder Manganviolett. Es ist insbesondere vorteilhaft, die Farbstoffe und/oder Farbpigmente aus der folgenden Liste zu wählen. Die Colour Index Nummern (CIN) sind dem Rowe Colour Index, 3. Auflage, Society of Dyers and Colourists, Bradford, England, 1971 entnommen.

Chemisch drs nstig Bzichnung	CIN	Farb
Pigment Green	10006	grün
Acid Green 1	10020	grün
2,4-Dinitrohydroxynaphthalin-7-sulfosäure	10316	gelb
Pigment Yellow 1	11680	gelb
Pigment Yellow 3	11710	gelb
Pigment Orange 1	11725	orange
2,4-Dihydroxyazobenzol	11920	orange
Solvent Red 3	12010	rot
1-(2'-Chlor-4'-nitro-1'-phenylazo)-2-hydroxynaphthalin	12085	rot
Pigment Red 3	12120	rot
Ceresrot; Sudanrot; Fettrot G	12150	rot
Pigment Red 112	12370	rot
Pigment Red 7	12420	rot
Pigment Brown 1	12480	braun
4-(2'-Methoxy-5'-sulfosäurediethylamid-1'-phenylazo)-3-hydroxy-	12490	rot
5"-chloro-2",4"-dimethoxy-2-naphthoesäureanilid		
Disperse Yellow 16	12700	gelb
1-(4-Sulfo-1-phenylazo)-4-amino-benzol-5-sulfosäure	13015	gelb
2,4-Dihydroxy-azobenzol-4'-sulfosäure	14270	orange
2-(2,4-Dimethylphenylazo-5-sulfosäure)-1-hydroxynaphthalin-4-	14700	rot
sulfosäure		
2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure	14720	rot
2-(6-Sulfo-2,4-xylylazo)-1-naphthol-5-sulfosäure	14815	rot
1-(4'-Sulfophenylazo)-2-hydroxynaphthalin	15510	orange
1-(2-Sulfosäure-4-chlor-5-carbonsäure-1-phenylazo)-2-hydroxy-	15525	rot
naphthalin		
1-(3-Methyl-phenylazo-4-sulfosäure)-2-hydroxynaphthalin	15580	rot
1-(4',(8')-Sulfosäurenaphthylazo)-2-hydroxynaphthalin	15620	rot
2-Hydroxy-1,2'-azonaphthalin-1'-sulfosäure	15630	rot
3-Hydroxy-4-phenylazo-2-naphthylcarbonsäure	15800	rot
1-(2-Sulfo-4-methyl-1-phenylazo)-2-naphthylcarbonsäure	15850	rot
1-(2-Sulfo-4-methyl-5-chlor-1-phenylazo)-2-hydroxy-naphthalin-3-	15865	rot

Chemische d r sonstig Bez ichnung	CIN	Farb
carbonsäure		
1-(2-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure	15880	rot
1-(3-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15980	orange
1-(4-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure	15985	gelb
Allura Red	16035	rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure	16185	rot
Acid Orange 10	16230	orange
1-(4-Sulfo-1-naphthylazo)-2-naphthol-6,8-disulfosäure	16255	rot
1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6,8-trisulfosäure	16290	rot
8-Amino-2 –phenylazo- 1 -naphthol-3,6-disulfosäure	17200	rot
Acid Red 1	18050	rot
Acid Red 155	18130	rot
Acid Yellow 121	18690	gelb
Acid Red 180	18736	rot
Acid Yellow 11	18820	gelb
Acid Yellow 17	18965	gelb
4-(4-Sulfo-1-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-pyrazolon-3-	19140	gelb
carbonsäure		
Pigment Yellow 16	20040	gelb
2,6-(4'-Sulfo-2", 4"-dimethyl)-bis-phenylazo)1,3-dihydroxybenzol	20170	orange
Acid Black 1	20470	schwarz
Pigment Yellow 13	21100	gelb
Pigment Yellow 83	21108	gelb
Solvent Yellow	21230	gelb
Acid Red 163	24790	rot
Acid Red 73	27290	rot
2-[4'-(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-7-	27755	schwarz
aminonaphthalin-3,6-disulfosäure		
4'-[(4"-Sulfo-1"-phenylazo)-7'-sulfo-1'-naphthylazo]-1-hydroxy-8-	28440	schwarz
acetyl-aminonaphthalin-3,5-disulfosäure		
Direct Orange 34, 39, 44, 46, 60	40215	orange
Food Yellow	40800	orange

Ch mische od r sonstig B z ichnung	CIN	Farb
trans-ß-Apo-8'-Carotinaldehyd (C ₃₀)	40820	orange
trans-Apo-8'-Carotinsäure (C ₃₀)-ethylester	40825	orange
Canthaxanthin	40850	orange
Acid Blue 1	42045	blau
2,4-Disulfo-5-hydroxy-4'-4"-bis-(diethylamino)triphenyl-carbinol	42051	blau
4-[(-4-N-Ethyl-p-sulfobenzylamino)-phenyl-(4-hydroxy-2-sulfophe-	42053	grün
nyl)-(methylen)-1-(N-ethylN-p-sulfobenzyl)-2,5-cyclohexadienimin]		
Acid Blue 7	42080	blau
(N-Ethyl-p-sulfobenzyl-amino)-phenyl-(2-sulfophenyl)-methylen-	42090	blau
(N-ethyl-N-p-sulfo-benzyl) $\Delta^{2.5}$ -cyclohexadienimin		
Acid Green 9	42100	grün
Diethyl-di-sulfobenzyl-di-4-amino-2-chlor-di-2-methyl-fuchsonim-	42170	grün
monium		
Basic Violet 14	42510	violett
Basic Violet 2	42520	violett
2'-Methyl-4'-(N-ethyl-N-m-sulfobenzyl)-amino-4"-(N-diethyl)-amino-	42735	blau
2-methyl-N-ethylN-m-sulfobenzyl-fuchsonimmonium		
4'-(N-Dimethyl)-amino-4"-(N-phenyl)-aminonaphtho-N-dimethyl-	44045	blau
fuchsonimmonium		
2-Hydroxy-3,6-disulfo-4,4'-bis-dimethylamino-	44090	grün
naphthofuchsonimmonium		
Acid Red 52	45100	rot
3-(2'-Methylphenylamino)-6-(2'-methyl-4'-sulfophenylamino)-9-(2"-	45190	violett
carboxyphenyl)-xantheniumsalz		
Acid Red 50	45220	rot
Phenyl-2-oxyfluoron-2-carbonsäure	45350	gelb
4,5-Dibromfluorescein	45370	orange
2,4,5,7-Tetrabromfluorescein	45380	rot
Solvent Dye	45396	orange
Acid Red 98	45405	rot
3',4',5',6'-Tetrachlor-2,4,5,7-tetrabromfluorescein	45410	rot
4,5-Diiodfluorescein	45425	rot

Ch mische ders nstig B z ichnung	CIN	Farb
2,4,5,7-Tetraiodfluor scein	45430	rot
Chinophthalon	47000	gelb
Chinophthalon-disulfosäure	47005	gelb
Acid Violet 50	50325	violett
Acid Black 2	50420	schwarz
Pigment Violet 23	51319	violett
1,2-Dioxyanthrachinon, Calcium-Aluminiumkomplex	58000	rot
3-Oxypyren-5,8,10-sulfosäure	59040	grün
1-Hydroxy-4-N-phenyl-aminoanthrachinon	60724	violett
1-Hydroxy-4-(4'-methylphenylamino)-anthrachinon	60725	violett
Acid Violet 23	60730	violett
1,4-Di(4'-methyl-phenylamino)-anthrachinon	61565	grün
1,4-Bis-(o-sulfo-p-toluidino)-anthrachinon	61570	grün
Acid Blue 80	61585	blau
Acid Blue 62	62045	blau
N,N'-Dihydro-1,2,1',2'-anthrachinonazin	69800	blau
Vat Blue 6; Pigment Blue 64	69825	blau
Vat Orange 7	71105	orange
Indigo	73000	blau
Indigo-disulfosäure	73015	blau
4,4'-Dimethyl-6,6'-dichlorthioindigo	73360	rot
5,5'-Dichlor-7,7'-dimethylthioindigo	73385	violett
Quinacridone Violet 19	73900	violett
Pigment Red 122	73915	rot
Pigment Blue 16	74100	blau
Phthalocyanine	74160	blau
Direct Blue 86	74180	blau
Chlorierte Phthalocyanine	74260	grün
Natural Yellow 6,19; Natural Red 1	75100	gelb
Bixin, Nor-Bixin	75120	orange
Lycopin	75125	gelb
trans-alpha-, beta- bzw. gamma-Carotin	75130	orange

Ch misch d r s nstige Bezeichnung	CIN	Farb
Keto- und/oder Hydroxylderivate des Carotins	75135	gelb
Guanin oder Perlglanzmittel	75170	weiß
1,7-Bis-(4-hydroxy-3-methoxyphenyl)1,6-heptadien-3,5-dion	75300	gelb
Komplexsalz (Na, Al, Ca) der Karminsäure	75470	rot
Chlorophyll a und b; Kupferverbindungen der Chlorophylle und	75810	grün
Chlorophylline		
Aluminium	77000	weiß
Tonerdehydrat	77002	weiß
Wasserhaltige Aluminiumsilikate	77004	weiß
Ultramarin	77007	blau
Pigment Red 101 und 102	77015	rot
Bariumsulfat	77120	weiß
Bismutoxychlorid und seine Gemische mit Glimmer	77163	weiß
Calciumcarbonat	77220	weiß
Calciumsulfat	77231	weiß
Kohlenstoff	77266	schwarz
Pigment Black 9	77267	schwarz
Carbo medicinalis vegetabilis	77268:1	schwarz
Chromoxid	77288	grün
Chromoxid, wasserhaltig	77289	grün
Pigment Blue 28, Pigment Green 14	77346	grün
Pigment Metal 2	77400	braun
Gold	77480	braun
Eisenoxide und -hydoxide	77489	orange
Eisenoxid	77491	rot
Eisenoxidhydrat	77492	gelb
Eisenoxid	77499	schwarz
Mischungen aus Eisen(II)- und Eisen(III)-hexacyanoferrat	77510	blau
Pigment White 18	77713	weiß
Mangananimoniumdiphosphat	77742	violett
Manganphosphat; Mn₃(PO₄)₂ · 7 H20	77745	rot
Silber	77820	weiß

Chemische d r sonstige Bezeichnung	CIN	Farb
Titandioxid und seine Gemische mit Glimmer	77891	weiß
Zinkoxid	77947	weiß
6,7-Dimethyl-9-(1'-D-ribityl)-isoalloxazin, Lactoflavin		gelb
Zuckerkulör		braun
Capsanthin, Capsorubin		orange
Betanin		rot
Benzopyryliumsalze, Anthocyane		rot
Aluminium-, Zink-, Magnesium- und Calciumstearat		weiß
Bromthymolblau		blau
Bromkresolgrün		grün
Acid Red 195		rot

Es kann ferner günstig sein, als Farbstoff eine oder mehrer Substanzen aus der folgenden Gruppe zu wählen: 2,4-Dihydroxyazobenzol, 1-(2'-Chlor-4'-nitro-1'-phenylazo)-2-hydroxynaphthalin, Ceresrot, 2-(4-Sulfo-1-naphthylazo)-1-naphthol-4-sulfosäure, Calciumsalz der 2-Hydroxy-1,2'-azonaphthalin-1'-sulfosäure, Calcium- und Bariumsalze der 1-(2-Sulfo-4-methyl-1-phenylazo)-2-naphthylcarbonsäure, Calciumsalz der 1-(4-Sulfo-1-naphthylazo)-2-hydroxynaphthalin-3-carbonsäure, Aluminiumsalz der 1-(4-Sulfo-1-phenylazo)-2-naphthol-6-sulfosäure, Aluminiumsalz der 1-(4-Sulfo-1-naphthylazo)-2-naphthol-3,6-disulfosäure, 1-(4-Sulfo-1-naphthylazo)-2-naphthol-6,8-disulfosäure, Aluminiumsalz der 4-(4-Sulfo-1-phenylazo)-1-(4-sulfophenyl)-5-hydroxy-pyrazolon-3-carbonsäure, Aluminium- und Zirkoniumsalze von 4,5-Dibromfluorescein, Aluminium- und Zirkoniumsalze von 2,4,5,7-Tetrabromfluorescein, 3',4',5',6'-Tetrachlor-2,4,5,7-tetrabromfluorescein und sein Aluminiumsalz, Aluminiumsalz von 2,4,5,7-Tetraiodfluorescein, Aluminiumsalz der Indigo-disulfosäure, rotes und schwarzes Eisenoxid (CIN: 77 491 (rot) und 77 499 (schwarz)), Eisenoxidhydrat (CIN: 77 492), Manganammoniumdiphosphat und Titandioxid.

Ferner vorteilhaft sind öllösliche Naturfarbstoffe, wie z. B. Paprikaextrakte, β -Carotin oder Cochenille.

Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner Emulsionen mit einem Gehalt an Perlglanzpigment n. Bevorzugt sind insbesondere die im folgenden aufg list ten Arten von Perlglanzpigmenten:

1. Natürliche Perlglanzpigmente, wie z. B.

-5

- "Fischsilber" (Guanin/Hypoxanthin-Mischkristalle aus Fischschuppen) und
- "Perlmutt" (vermahlene Muschelschalen)
- 2. Monokristalline Perlglanzpigmente wie z. B. Bismuthoxychlorid (BiOCI)
- 3. Schicht-Substrat Pigmente: z. B. Glimmer / Metalloxid
- Basis für Perlglanzpigmente sind beispielsweise pulverförmige Pigmente oder Ricinusöldispersionen von Bismutoxychlorid und/oder Titandioxid sowie Bismutoxychlorid und/oder Titandioxid auf Glimmer. Insbesondere vorteihaft ist z. B. das unter der CIN 77163 aufgelistete Glanzpigment.
- 15 Vorteilhaft sind ferner beispielsweise die folgenden Perlglanzpigmentarten auf Basis von Glimmer/Metalloxid:

Gruppe	Belegung / Schichtdicke	Farbe
Silberweiße Perlglanzpigmente	TiO₂: 40 – 60 nm	silber
Interferenzpigmente	TiO₂: 60 – 80 nm	gelb
	TiO₂: 80 – 100 nm	rot
	TiO ₂ : 100 – 140 nm	blau
	TiO ₂ : 120 – 160 nm	grün
Farbglanzpigmente	Fe ₂ O ₃	bronze
	Fe ₂ O ₃	kupfer
	Fe ₂ O ₃	rot
	Fe ₂ O ₃	rotviolett
	Fe ₂ O ₃	rotgrün
•	Fe ₂ O ₃	schwarz
Kombinationspigmente	TiO ₂ / Fe ₂ O ₃	Goldtöne
	TiO ₂ / Cr ₂ O ₃	grün
	TiO ₂ / Berliner Blau	tiefblau

	TiO₂ / Carmin	rot
1		

5

10

15

20

25

30

Besonders bevorzugt sind z.B. die von der Firma Merck unter den Handelsnamen Timiron, Colorona oder Dichrona erhältlichen Perlglanzpigmente.

Die Liste der genannten Perlglanzpigmente soll selbstverständlich nicht limitierend sein. Im Sinne der vorliegenden Erfindung vorteilhafte Perlglanzpigmente sind auf zahlreichen, an sich bekannten Wegen erhältlich. Beispielsweise lassen sich auch andere Substrate außer Glimmer mit weiteren Metalloxiden beschichten, wie z. B. Silica und dergleichen mehr. Vorteilhaft sind z. B. mit TiO₂ und Fe₂O₃ beschichtete SiO₂-Partikel ("Ronaspheren"), die von der Firma Merck vertrieben werden und sich besonders für die optische Reduktion feiner Fältchen eignen.

Es kann darüber hinaus von Vorteil sein, gänzlich auf ein Substrat wie Glimmer zu verzichten. Besonders bevorzugt sind Eisenperlglanzpigmente, welche ohne die Verwendung von Glimmer hergestellt werden. Solche Pigmente sind z. B. unter dem Handelsnamen Sicopearl Kupfer 1000 bei der Firma BASF erhältlich.

Besonders vorteilhaft sind ferner auch Effektpigmente, welche unter der Handelsbezeichnung Metasomes Standard / Glitter in verschiedenen Farben (yellow, red, green, blue) von der Firma Flora Tech erhältlich sind. Die Glitterpartikel liegen hierbei in Gemischen mit verschiedenen Hilfs- und Farbstoffen (wie beispielsweise den Farbstoffen mit den Colour Index (CI) Nummern 19140, 77007, 77289, 77491) vor.

Die Farbstoffe und Pigmente können sowohl einzeln als auch im Gemisch vorliegen sowie gegenseitig miteinander beschichtet sein, wobei durch unterschiedliche Beschichtungsdicken im allgemeinen verschiedene Farbeffekte hervorgerufen werden. Die Gesamtmenge der Farbstoffe und farbgebenden Pigmente wird vorteilhaft aus dem Bereich von z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise von 0,5 bis 15 Gew.-%, insbesondere von 1,0 bis 10 Gew.-% gewählt, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.

Insbesondere vorteilhaft können die erfindungsgemäßen Gelcrèmes als Lidschatten verwendet werden.

Besonders vorteilhafte Zubereitungen werden ferner erhalten, wenn als Zusatz- oder Wirkstoffe Antioxidantien eingesetzt werden. Erfindungsgemäß enthalten die Zubereitungen vorteilhaft eines oder mehrere Antioxidantien. Als günstige, aber dennoch fakultativ zu verwendende Antioxidantien können alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.

5

10

15

20

25

30

Es ist auch von Vorteil, den erfindungsgemäßen Zubereitungen Antioxidantien zuzusetzen. Vorteilhaft werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α -Carotin, β -Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Buthioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis µmol/kg), femer (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose

und deren Derivate, Zink und dess n Derivate (z.B. ZnO, ZnSO₄) Selen und dessen Derivate (z.B. S lenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.

5

Besonders vorteilhaft im Sinne der vorliegenden Erfindung können öllösliche Antioxidantien eingesetzt werden.

Eine erstaunliche Eigenschaft der vorliegenden Erfindung ist, daß erfindungsgemäße

Zubereitungen sehr gute Vehikel für kosmetische oder dermatologische Wirkstoffe in die
Haut sind, wobei bevorzugte Wirkstoffe Antioxidantien sind, welche die Haut vor oxidativer Beanspruchung schützen können. Bevorzugte Antioxidantien sind dabei Vitamin E und dessen Derivate sowie Vitamin A und dessen Derivate.

Die Menge der Antioxidantien (eine oder mehrere Verbindungen) in den Zubereitungen beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 - 20 Gew.-%, insbesondere 1 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

Sofern Vitamin E und/oder dessen Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

25

30

20

Sofern Vitamin A, bzw. Vitamin-A-Derivate, bzw. Carotine bzw. deren Derivate das oder die Antioxidantien darstellen, ist vorteilhaft, deren jeweilige Konzentrationen aus dem Bereich von 0,001 - 10 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, zu wählen.

Es ist dem Fachmann natürlich bekannt, daß kosmetische Zubereitungen zumeist nicht ohne die üblichen Hilfs- und Zusatzstoffe denkbar sind. Die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen können dementsprechend ferner kosmetische Hilfsstoffe enthalten, wie sie üblicherweise in solchen Zubereitungen verwendet werden, beispielsweise Konsistenzgeber, Stabilisatoren, Füllstoffe, Konservierungsmittel, Parfüme, Substanzen zum Verhindern des Schäumens, Farbstoffe, Pigmente, die fär-

bende Wirkung haben, Verdickungsmittel, oberflächenaktive Substanzen, Emulgatoren, weichmachende, anfeuchtende und/oder feuchthaltende Substanzen, entzündungshemmende Substanzen, zusätzliche Wirkstoffe wie Vitamine oder Proteine, Lichtschutzmittel, Insektenrepellentien, Bakterizide, Viruzide, Wasser, Salze, antimikrobiell, proteolytisch oder keratolytisch wirksame Substanzen, Medikamente oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulierung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, organische Lösungsmittel oder auch Elektrolyte.

5

10

15

25

30

Letztere können beispielsweise gewählt werden aus der Gruppe der Salze mit folgenden Anionen: Chloride, ferner anorganische Oxo-Element-Anionen, von diesen insbesondere Sulfate, Carbonate, Phosphate, Borate und Aluminate. Auch auf organischen Anionen basierende Elektrolyte sind vorteilhaft, z.B. Lactate, Acetate, Benzoate, Propionate, Tartrate, Citrate, Aminosäuren, Ethylendiamintetraessigsäure und deren Salze und andere mehr. Als Kationen der Salze werden bevorzugt Ammonium,- Alkylammonium,- Alkalimetall-, Erdalkalimetall,- Magnesium-, Eisen- bzw. Zinkionen verwendet. Es bedarf an sich keiner Erwähnung, daß in Kosmetika nur physiologisch unbedenkliche Elektrolyte verwendet werden sollten. Besonders bevorzugt sind Kaliumchlorid, Kochsalz, Magnesiumsulfat, Zinksulfat und Mischungen daraus.

20 Mutatis mutandis gelten entsprechende Anforderungen an die Formulierung medizinischer Zubereitungen.

Die erfindungsgemäßen Emulsionen können als Grundlage für kosmetische oder dermatologische Formulierungen dienen. Diese können wie üblich zusammengesetzt sein und beispielsweise zur Behandlung und der Pflege der Haut und/oder der Haare, als Lippenpflegeprodukt, als Deoprodukt und als Schmink- bzw. Abschminkprodukt in der dekorativen Kosmetik oder als Lichtschutzpräparat dienen. Zur Anwendung werden die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen in der für Kosmetika oder Dermatika üblichen Weise auf die Haut und/oder die Haare in ausreichender Menge aufgebracht.

Entsprechend können kosmetische oder topische dermatologische Zusammensetzungen im Sinne der vorliegenden Erfindung, je nach ihrem Aufbau, beispielsweise verwendet

werden als Hautschutzcrème, Reinigungsmilch, Sonnenschutzlotion, Nährcrème, Tagesoder Nachtcrème usw. Es ist gegebenenfalls möglich und vorteilhaft, die erfindungsg - mäßen Zusammensetzungen als Grundlage für pharmazeutische Formulierungen zu verwenden.

5

Die kosmetischen oder dermatologischen Mittel gemäß der Erfindung können beispielsweise als aus Aerosolbehältern, Quetschflaschen oder durch eine Pumpvorrichtung versprühbare Präparate vorliegen oder in Form einer mittels Roll-on-Vorrichtungen auftragbaren flüssigen Zusammensetzung, jedoch auch in Form einer aus normalen Flaschen und Behältern auftragbaren Emulsion.

10

15

20

Als Treibmittel für aus Aerosolbehältem versprühbare kosmetische oder dermatologische Zubereitungen im Sinne der vorliegenden Erfindung sind die üblichen bekannten leichtflüchtigen, verflüssigten Treibmittel, beispielsweise Kohlenwasserstoffe (Propan, Butan, Isobutan) geeignet, die allein oder in Mischung miteinander eingesetzt werden können. Auch Druckluft ist vorteilhaft zu verwenden.

Natürlich weiß der Fachmann, daß es an sich nichttoxische Treibgase gibt, die grundsätzlich für die Verwirklichung der vorliegenden Erfindung in Form von Aerosolpräparaten geeignet wären, auf die aber dennoch wegen bedenklicher Wirkung auf die Umwelt oder sonstiger Begleitumstände verzichtet werden sollte, insbesondere Fluorkohlenwasserstoffe und Fluorchlorkohlenwasserstoffe (FCKW).

L

25

Günstig sind auch solche kosmetischen und dermatologischen Zubereitungen, die in der Form eines Sonnenschutzmittels vorliegen. Vorzugsweise enthalten diese neben den erfindungsgemäßen Wirkstoffkombinationen zusätzlich mindestens eine UV-A-Filtersubstanz und/oder mindestens ein anorganisches Pigment.

30 Es ist aber auch vorteilhaft im Sinne der vorliegenden Erfindungen, solche kosmetischen und dermatologischen Zubereitungen zu erstellen, deren hauptsächlicher Zweck nicht der Schutz vor Sonnenlicht ist, die aber dennoch einen Gehalt an UV-Schutzsubstanzen

enthalten. So werden z.B. in Tagescrèmes gewöhnlich UV-A- bzw. UV-B-Filtersubstanzen eingearbeitet.

Auch stellen UV-Schutzsubstanzen, ebenso wie Antioxidantien und, gewünschtenfalls,

Konservierungsstoffe, einen wirksamen Schutz der Zubereitungen selbst gegen Verderb

dar.

Vorteilhaft können erfindungsgemäße Zubereitungen außerdem Substanzen enthalten, die UV-Strahlung im UVB-Bereich absorbieren, wobei die Gesamtmenge der Filtersubstanzen z.B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, insbesondere 1,0 bis 6,0 Gew.-% beträgt, bezogen auf das Gesamtgewicht der Zubereitungen, um kosmetische Zubereitungen zur Verfügung zu stellen, die das Haar bzw. die Haut vor dem gesamten Bereich der ultravioletten Strahlung schützen. Sie können auch als Sonnenschutzmittel fürs Haar oder die Haut dienen.

15

10

Enthalten die erfindungsgemäßen Emulsionen UVB-Filtersubstanzen, können diese öllöslich oder wasserlöslich sein. Erfindungsgemäß vorteilhafte öllösliche UVB-Filter sind z.B.:

- 3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-20 Benzylidencampher;
 - 4-Aminobenzoësäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoësäure(2-ethylhexyl)ester, 4-(Dimethylamino)benzoësäureamylester;
 - Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester, 4-Methoxyzimtsäureisopentylester;
- Ester der Salicylsäure, vorzugsweise Salicylsäure(2-ethylhexyl)ester, Salicylsäure(4-isopropylbenzyl)ester, Salicylsäurehomomenthylester,
 - Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
- Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzalmalonsäuredi(2-ethylhexyl)ester,
 - Derivate des 1,3,5-Triazins, vorzugsweise 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy) -1,3,5-triazin.

Die Liste der genannten UVB-Filter, die in Kombination mit den erfindungsgemäßen Wirkstoffkombinationen verwendet werden können, soll selbstverständlich nicht limitierend sein.

5

Es kann auch von Vorteil sein, erfindungsgemäße Lipodispersionen mit UVA-Filtern zu formulieren, die bisher üblicherweise in kosmetischen Zubereitungen enthalten sind. Bei diesen Substanzen handelt es sich vorzugsweise um Derivate des Dibenzoylmethans, insbesondere um 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion und um 1-Phenyl-3-(4'-isopropylphenyl)propan-1,3-dion.

10

15

Erfindungsgemäße kosmetische und dermatologische Zubereitungen können auch anorganische Pigmente enthalten, die üblicherweise in der Kosmetik zum Schutze der Haut vor UV-Strahlen verwendet werden. Dabei handelt es sich um Oxide des Titans, Zinks, Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums, Cers und Mischungen davon, sowie Abwandlungen, bei denen die Oxide die aktiven Agentien sind. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von Titandioxid.

Als weitere Bestandteile können verwendet werden:

20

Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z.B. mit Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren;

25

Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -monobutylether, Propylenglykolmonomethyl, -monoethyl- oder monobutylether, Diethylenglykolmonomethyl- oder -monoethylether und analoge Produkte.

30

Die nachfolgenden Beispiele sollen die vorliegende Erfindung verdeutlichen, ohne sie einzuschränken. Die Zahlenwerte in den Beispielen bedeuten Gewichtsprozente, bezogen auf das Gesamtgewicht der jeweiligen Zubereitungen.

R z pturb ispi le

Beispiel 1:

		Gew%
	PEG-30-Glycerylstearat	2,50
5	Glycerinmonostearat	1,00
	Cetylalkohol	1,00
	Vaseline	2,50
	Polyisobuten	8,00
	Cyclomethicon	5,00
10	Aristoflex AVC	0,20
_	Glycerin	5,00
	Tocopherolacetat	1,00
	Parfüm, Konservierungsmittel, NaOH,	
	Farbstoffe, Antioxidantien etc.	q.s.
15	Wasser	ad 100,00

Beispiel 2:

		Gew%
20	Glycerylstearatcitrat	2,50
	Cetylalkohol	1,00
	Caprylsäure/Caprinsäuretriglyceride	5,00
t a	Cyclomethicon	5,00
	Octyldodecanol	5,00
25	Aristoflex AVC	0,30
	Glycerin	3,00
	Parfüm, Konservierungsmittel, NaOH,	
	Farbstoffe, Antioxidantien etc.	q.s.
	Wasser	ad 100,00

30

Beispi 13:

		Gew%
	Stearinsäure	1,50
	Sorbitanmonostearat	0,50
5	Myristylalkokol	1,00
	Glycerinmonostearat	0,50
	Paraffinöl, subliquidum	10,00
	Dimethicon	1,00
	Octyldodecanol	2,00
10	Hydrierte Kokosfettsäureglyceride	0,50
4 -	Aristoflex AVC	0,30
	Serin	0,50
•	Glycerin	5,00
	Tocopherolacetat	0,50
15	Parfüm, Konservierungsmittel, NaOH,	
	Farbstoffe, Antioxidantien etc.	q.s.
	Wasser	ad 100,00

Beispiel 4:

		Gew%
	Sorbitanmonostearat	2,00
4	Laurylmethiconcopolyol	0,35
3-4	Cetylmethiconcopolyol	0,15
25	Paraffinöl, subliquidum	10,00
	Octyldodecanol	4,00
	Hydrierte Kokosfettsäureglyceride	1,00
	Cyclomethicon	1,00
30	Dimethicon	1,00
	Aristoflex AVC	0,30
	Glycerin	5,00
	Tocopherolacetat	1,00
	Parfüm, Konservierungsmittel, NaOH	

Farbstoffe, Antioxidanti n etc.

q.s.

Wasser

ad 100,00

B ispi I 5 (Emulsi ns-Mak -up):

		Gew. %
	PEG-30-Stearat	2,00
	Glycerinmonostearat	1,00
5	Paraffinöl, subliquidum	7,00
	Octyldodecanol	7,00
	Isopropyllanolat	4,00
	Octylmethoxycinnamat	2,00
	Butylmethoxydibenzoylmethan	1,00
10	Aristoflex AVC	0,20
	Glycerin	5,00
	1,3 Butylenglycol	2,00
	Tocopherolacetat	1,00
	Stärke-Natriumoctenylsuccinat	2,50
15	Magnesiumsilikat	1,00
	Glimmer	1,00
	Eisenoxide	1,00
	Titandioxid	2,50
	Talkum	5,00
20	Parfüm, Konservierungsmittel, NaOH,	
	Farbstoffe, Antioxidantien etc.	q.s.
	Wasser	ad 100,00

Beispi 16 (Liquid Ey Lin r):

		Gew. %
	Stearinsäure	1,20
	Isopropyllanolat	1,20
5	Dimethicon	0,40
	Hydrierte Palmfettsäureglyceride	1,70
	Farbpigmente	20,00
	Aristoflex AVC	0,25
	Magnesium Aluminium Silicate	0,30
10	1,3 Butylenglycol	4,00
	Triethanolamin	0,40
	Ethanol	10,00
	Parfüm, Konservierungsmittel, Antioxidantien, etc.	q.s.
	Wasser	ad 100,00
15		

Beispiel 7 (Skin Tone Perfector):

		Gew. %
	Farbpigmente	10,00
20	Cyclomethicon	25,00
	Dimethicon	10,00
	1,3-Butylenglycol	4,50
	Glycerin	3,50
	Polysorbat 40	3,50
25	Decyloleat	2,00
	Na-Hyaluronat	0,10
	Aristoflex AVC	0,30
	Parfüm, Konservierungsmittel, NaOH,	
	Farbstoffe, Antioxidantien, etc.	q.s.
30	Wasser	ad 100,00

Pat ntansprüch:

- 1. Kosmetische oder dermatologische Emulsionen vom Typ Öl-in-Wasser, umfassend
- (i) bis zu 90 Gew.-% einer Wasserphase,
- 5 (ii) bis zu 40 Gew.% einer Lipidphase, bezogen auf das Gesamtgewicht der Zubereitungen,
 - (iii) bis zu 10 Gew.-% eines oder mehrerer Emulgatoren,
 - (iv) ferner umfassend bis zu 5 Gew.- % eines oder mehrerer Ammoniumacryloyldimethyltaurate/Vinylpyrrolidoncopolymere.

10

- 2. Emulsionen nach Anspruch 1, dadurch gekennzeichnet, daß ihr Lipidgehalt aus dem Bereich von 0,5 Gew.-% bis zu 20 Gew.-%, bevorzugt von 5 bis zu 10 Gew.-% gewählt wird.
- 15 3. Emulsionen nach Anspruch 1, dadurch gekennzeichnet, daß ihr Lipidgehalt bis zu 7,5 Gew.-% beträgt.
 - 4. Emulsionen nach Anspruch 1, dadurch gekennzeichnet, daß sie einen oder mehrere Farbstoffe und/oder farbgebende Pigmente enthalten.

20

5. Emulsionen nach Anspruch 4, dadurch gekennzeichnet, daß die Gesamtmenge der Farbstoffe und farbgebenden Pigmente aus dem Bereich von z. B. 0,1 Gew.-% bis 30 Gew.-%, vorzugsweise von 0,5 bis 15 Gew.-%, insbesondere von 1,0 bis 10 Gew.-% gewählt wird, jeweils bezogen auf das Gesamtgewicht der Zubereitungen.

25

Zusammenfassung:

Kosmetische oder dermatologische Gelcrèmes vom Typ Öl-in-Wasser, umfassend

- (i) bis zu 90 Gew.-% einer Wasserphase,
- 5 (ii) bis zu 20 Gew.% einer Lipidphase, bezogen auf das Gesamtgewicht der Zubereitungen,
 - (iii) bis zu 5 Gew.-% eines oder mehrerer Emulgatoren,
 - (iv) ferner umfassend bis zu 5 Gew.- % eines oder mehrerer Ammoniumacryloyldimethyltaurate/Vinylpyrrolidoncopolymere.

10