Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T, consisting of N nodes uniquely labeled with integers in the inclusive range [1,N]. The node labeled as 1 is the root node of tree T, and each node in T is associated with some positive integer value (all values are initially 0).

Let's define F_k as the k^{th} Fibonacci number. Shashank wants to perform 2 types of operations over his tree, T:

1. *UXk*

Update the subtree rooted at node X such that the node at level 0 in subtree X (i.e., node X) will have F_k added to it, all the nodes at level 1 will have F_{k+1} added to them, and so on. More formally, all the nodes at a distance D from node X in the subtree of node X will have the $(k+D)^{th}$ Fibonacci number added to them.

2. **QXY**

Find the sum of all values associated with the nodes on the unique path from X to Y. Print your sum modulo $10^9 + 7$ on a new line.

Given the configuration for tree T and a list of M operations, perform all the operations efficiently.

Note: $F_1 = F_2 = 1$.

Input Format

The first line contains 2 space-separated integers, N (the number of nodes in tree T) and M (the number of operations to be processed), respectively.

Each line i of the N-1 subsequent lines contains an integer, P, denoting the parent of the $(i+1)^{th}$ node.

Each of the M subsequent lines contains one of the two types of operations mentioned in the *Problem Statement* above.

Constraints

- $1 \le N, M \le 10^5$
- $1 \le X, Y \le N$
- $1 \le k \le 10^{15}$

Output Format

For each operation of type 2 (i.e., \emph{Q}), print the required answer modulo 10^9+7 on a new line.

Sample Input

5 10 1 1 2 2 Q 1 5		
Q 1 5 U 1 1		
Q11		
Q 1 2		

Q13
Q 1 4 Q 1 5
Q15
U 2 2
Q 2 3
Q 2 3 Q 4 5

Sample Output

0			
1			
2			
2			
4			
4			
4			
10			

Explanation

Intially, the tree looks like this:

After update operation **1 1**, it looks like this:

After update operation **2 2**, it looks like this:

