El modelo de regresión log-binomial: una alternativa al modelo de regresión logística en estudios de cohortes y transversales.

Trabajo Final de Grado

Laura Julià Melis

Director: Klaus Langohr

Julio 2019

1. Introducción

Motivación

- El modelo de regresión logística es el más utilizado en estudios epidemiológicos.
- El enlace canónico para el caso binomial es el enlace "logit" o "log-odds" y utilitza el *odds ratio* (OR) como medida de asociación.

Inconvenientes

- OR sobreestima el riesgo cuando la variable de interés es frecuente.
- Su interpretación a menudo es difícil o poco intuitiva.

Objetivo

 Presentar el modelo log-binomial y diversas técnicas para solucionar los problemas de convergencia.

2. Métodos estadísticos (I)

Medidas epidemiológicas

Riesgo relativo

$$RR = \frac{P(D|E)}{P(D|\bar{E})}.$$

Odds ratio

$$OR = \frac{odds(D|E)}{odds(D|\bar{E})} = \frac{P(D|E)/(1 - P(D|E))}{P(D|\bar{E})/(1 - P(D|\bar{E}))}$$

2. Métodos estadísticos (II)

Regresión logística (i)

Sea Y la variable respuesta de interés:

$$Y = \begin{cases} 1 & \text{Presencia de enfermedad (D)} \\ 0 & \text{Ausencia de enfermedad (\bar{D})} \end{cases}$$

La probabilidad de éxito condiconada al valor de las predictoras es:

$$\pi_{\pmb{X}} = P(Y=1|\pmb{X})$$
 con $Y \sim B(1,\pi)$ sujeto a $\pi_{\pmb{X}} \in [0,1].$

Pero $\eta = \alpha + \beta' X$ tiene rango $\mathbb{R} \to$ función de enlace "logit".

Expresión del modelo

$$\operatorname{logit}(\pi_{\boldsymbol{X}}) = \operatorname{log}\left(\frac{\pi_{\boldsymbol{X}}}{1 - \pi_{\boldsymbol{X}}}\right) = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

O equivalentemente,

$$\pi_{\mathbf{x}} = \mathbf{g}^{-1}(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)} = \frac{\exp(\alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)}{1 + \exp(\alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)}$$

2. Métodos estadísticos (III)

Regresión logística (ii)

• Estimación de los parámetros: criterio de máxima verosimilitud.

Función de máxima verosimilitud

$$L(\alpha, \beta|Y, \mathbf{X}) = \prod_{i=1}^{n} P(Y = y_i|\mathbf{x_i}) f(\mathbf{x_i}) \propto \prod_{i=1}^{n} P(Y = y_i|\mathbf{x_i})$$

$$= \prod_{i=1}^{n} P(Y = 1|\mathbf{x_i})^{\delta_i} P(Y = 0|\mathbf{x_i})^{1-\delta_i}$$

$$= \prod_{i=1}^{n} \frac{\exp(\alpha + \beta'\mathbf{x_i})^{\delta_i}}{1 + \exp(\alpha + \beta'\mathbf{x_i})},$$

• Interpretación a partir del OR, siendo X_i una variable dicotómica:

$$OR_{X_i} = \frac{odds(Y = 1|X_1, ..., X_i = 1, ..., X_k)}{odds(Y = 1|X_1, ..., X_i = 0, ..., X_k)} = \exp(\beta_i)$$

2. Métodos estadísticos (IV)

Regresión log-binomial (i)

La función de enlace que utiliza es el logaritmo.

Siendo:

- $X = (X_1, ..., X_k)'$ el conjunto de variables explicativas,
- ullet α el término independiente,
- $\beta = (\beta_0, ..., \beta_k)'$ los parámetros del modelo y
- $\pi_{\textbf{\textit{X}}} = P(Y = 1 | \textbf{\textit{X}})$ la probabilidad de éxito

Se define el modelo log-binomial como:

$$\eta = g(\pi_{\mathbf{x}}) = \log(\pi_{\mathbf{x}}) = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k \tag{1}$$

Probabilidad de respuesta positiva modelada a partir de (1):

$$\pi_{\mathbf{x}} = \mathbf{g}^{-1}(\eta) = \exp(\eta) = \exp(\alpha + \beta' \mathbf{X}) = \exp(\alpha + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \dots + \beta_k \mathbf{X}_k)$$

2. Métodos estadísticos (V)

Regresión log-binomial (ii)

Interpretación de parámetros

- ► En estudios de cohortes prospectivos: riesgo relativo (RR).
- ► En estudios transversales: razón de prevalencias (PR).

RR/PR asociado a $X_i=1$ (X_i dicotómica) y ajustado para el resto de covariables

$$\begin{split} RR_{X_i}(o\ PR_{X_i}) &= \frac{P(Y = 1 | X_1, ..., X_i = 1, ..., X_k)}{P(Y = 1 | X_1, ..., X_i = 0, ..., X_k)} \\ &= \frac{\exp(\beta_0 + \beta_1 X_1 + \dots + \beta_i X_i + \dots + \beta_k X_k)}{\exp(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)} = \exp(\beta_i) \end{split}$$

Posibles problemas de estimación

- ▶ Rango de valores diferentes $\rightarrow \pi_{\mathbf{x}} \in [0,1]$ y $\exp(\beta' \mathbf{X}) > 0$.
- ▶ Problemas de convergencia al maximizar la función de verosimilitud.
- ▶ Imposibilidad de obtener la estimación de los parámetros del modelo.

Laura Julià Melis

2. Métodos estadísticos (VI)

Pruebas para evaluar la bondad del ajuste

• Hipótesis:

 H_0 : el modelo se ajusta bien a los datos.

 H_1 : el modelo NO se ajusta bien a los datos.

② Estadístico:

Test de Hosmer-Lemeshow

$$\chi^2_{HL} = \sum_{k=1}^g \frac{(O_k - E_k)^2}{E_k} \sim \chi^2_{g-2}$$

Test basado en el estadístico de la devianza

$$D = 2\sum_{j=1}^{J} \left\{ y_j \log \left(\frac{y_j}{\hat{y}_j} \right) + (n_j - y_j) \log \left(\frac{n_j - y_j}{n_j - \hat{y}_j} \right) \right\} \sim \chi_{n-p}^2$$

P-valor y conclusión:

Si
$$P(\chi_{g-2}^2 > \chi_{HL}^2)$$
 o $P(\chi_{n-p}^2 > D)$ inferiores a $\alpha \to \text{rechazar } H_0$.

2. Métodos estadísticos (VII)

Software

1 Función "glm":
> glm(formula = response~terms, family = binomial (link ="log" / "logit"), data, start = NULL, ...)

2 Función "logbin" (Donoghoe, 2018):
> logbin(formula, data, start = NULL, method = c("cem", "glm", "glm2", "ab"), warn = TRUE, ...)

Función "COPY" (Deddens, 2002):

3. Estudio sobre la depresión postparto Metodología

"Is Neuroticism a Risk Factor for Postpartum Depression?" (Martín-Santos y col., 2012)

- 1804 mujeres libres de depresión.
- Evaluaciones mediante cuestionarios.
- Tres variables respuesta diferentes.
- Ajuste de tres modelos de regresión logística siguiendo el método de Hosmer y Lemeshow (2000).
- Interpretación de parámetros en términos del OR ajustado.
- Bondad de ajuste utilizando el test propuesto por Le Cessie y van Houwelingen (1991), implementado en la función "residuals.lrm".

4. Aplicación de los modelos de regresión (I)

Descripción de la base de datos

- 1804 filas y 30 columnas.
- Categorización de variables contínuas.
- Variables explicativas:
 - epqnT: Puntuación de neuroticismo.
 - epds0: Puntuación basal del cuestionario EPDS.
 - duke: Puntuación en el cuestionario sobre el apoyo social.
 - antpers: Historial clínico psiquiátrico personal.
- Resumen de las variables explicativas numéricas.

Variable	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	Missings
epqnT	32.0	37.0	43.0	43.6	47.0	73.0	7
epds0	0.0	3.0	6.0	6.2	9.0	27.0	0
duke	5.0	49.0	54.0	52.2	58.0	62	18

4. Aplicación de los modelos de regresión (II)

Modelo de regresión logística

Síntomas de depresión a las 8 semanas postparto (EPDS> 9)

Variable	\hat{eta}	s.e. (\hat{eta})	Z	p-valor	adj. OR(IC 95 %)
Constante	-4.305	0.731	-5.888	< 0.0001	
Neuroticismo	0.047	0.011	4.119	< 0.0001	1.05 (1.02,1.07)
Puntuación EPDS	0.177	0.022	7.903	< 0.0001	1.19 (1.14,1.25)
Apoyo social	-0.020	0.009	-2.291	0.022	0.98 (0.96,1)
Historia psiquiátrica personal	0.668	0.190	3.515	0.0004	1.95 (1.34,2.83)

Expresión matemática del modelo

$$\operatorname{logit}(\hat{\pi}_{x}) = \log\left(\frac{\hat{\pi}_{x}}{1 - \hat{\pi}_{x}}\right) = -4,305 + 0,047X_{1} + 0,177X_{2} - 0,02X_{3} + 0,668X_{4},$$

$$\hat{\pi}_{\mathbf{X}} = \frac{\exp(-4,305 + 0,047X_1 + 0,177X_2 - 0,02X_3 + 0,668X_4)}{1 + \exp(-4,305 + 0,047X_1 + 0,177X_2 - 0,02X_3 + 0,668X_4)}$$

4. Aplicación de los modelos de regresión (III)

Modelo de regresión log-binomial (i)

Función "glm":

Variable	\hat{eta}	s.e. (\hat{eta})	Z	p-valor	RR
Constante	-4.835	0.334	-14.459	< 0.0001	
Neuroticismo	0.042	0.006	6.753	< 0.0001	1.043
Puntuación EPDS	0.068	0.007	10.157	< 0.0001	1.070
Apoyo social	0.007	0.001	8.139	< 0.0001	1.007
Historia psiquiátrica personal	0.219	0.138	1.581	0.114	1.245

Expresión matemática del modelo

$$\log(\hat{\pi}_{x}) = -4,835 + 0,042X_{1} + 0,068X_{2} + 0,007X_{3} + 0,219X_{4}$$

O alternativamente, en función de $\hat{\pi}_x$:

$$\hat{\pi}_{x} = \exp(-4.835 + 0.042X_1 + 0.068X_2 + 0.007X_3 + 0.219X_4)$$

4. Aplicación de los modelos de regresión (IV)

Modelo de regresión log-binomial (ii)

Función "logbin":

Warning message:

nplbin: fitted probabilities numerically 1 occurred

Variable	Â	s.e. (\hat{eta})	Z	p-valor	RR
Constante	-3.905	NA	NA	NA	
Neuroticismo	3.62e-02	NA	NA	NA	1.037
Puntuación EPDS	3.72e-02	NA	NA	NA	1.038
Apoyo social	7.77e-16	NA	NA	NA	1.000
Historia psiquiátrica personal	2.55e-01	NA	NA	NA	1.291

- Coste computacional muy alto.
- Varias pruebas fijando como tolerancia interior (bound.tol) diferentes valores entre 0 y 1 pero no obtención de todos los valores del modelo.

4. Aplicación de los modelos de regresión (V)

Modelo de regresión log-binomial (iii)

Función "COPY":

• Modelo con n = 10000 copias.

Variable	\hat{eta}	s.e. (\hat{eta})	Z	p-valor	RR
Constante	-4.734	0.299	-15.815	< 0.0001	
Neuroticismo	0.043	0.005	7.847	< 0.0001	1.044
Puntuación EPDS	0.064	0.006	10.597	< 0.0001	1.066
Apoyo social	0.007	0.001	9.891	< 0.0001	1.007
Historia psiquiátrica personal	0.155	0.1267108	1.226	0.22	1.168

Expresión matemática del modelo

$$\hat{\pi}_{x} = \exp(-4.734 + 0.043X_{1} + 0.064X_{2} + 0.007X_{3} + 0.155X_{4})$$

4. Aplicación de los modelos de regresión (VI)

Pruebas de bondad de ajuste

Prueba de *Hosmer-Lemeshow* (Hosmer & Lemeshow, 2000), con la función hoslem.test del paquete *ResourceSelection*.

Modelo	Función de R	Estadístico χ^2	p-valor
Síntomas depresivos a las 8 semanas	logística log-binomial "glm" log-binomial "logbin"	10.092 35.526 55.778	0.259 2.14e-05 3.12e-09
Síntomas depresivos a las 32 semanas	logística log-binomial "glm" log-binomial "logbin"	8.367 8.796 8.796	0.398 0.360 0.360
Diagnóstico de depresión mayor	logística log-binomial "glm" log-binomial "logbin"	11.442 12.238 12.487	0.178 0.141 0.131

5. Discusión y conclusiones (I)

Comparación de resultados

- Modelo 1:
 - $ightharpoonup \widehat{OR}$ y \widehat{RR} llevan a diferentes conclusiones.
 - Cambios en los signos y la significación de parámetros.
 - ▶ El modelo de regresión log-binomial no se ajusta bien a los datos.
- 2 Modelos 2 y 3:
 - OR y RR apuntan en la misma dirección.
 - ▶ Parámetros estimados significativos en ambos modelos y signos iguales.
 - ► Test de *Hosmer-Lemeshow*: ajustes de ambas regresiones son buenos.

Conclusiones

- La bondad del ajuste es de vital importancia para decidir el tipo de regresión a utilizar.
- Se prefriere el modelo log-binomial por la interpretación del riesgo relativo, pero únicamente cuando el ajuste es bueno.

5. Discusión y conclusiones (II)

Consideraciones metodológicas

Función "COPY":

- ▶ Resultados con 1000 y 10000 copias muy similares.
- Coste computacional en ambos casos prácticamente igual.
- Preferible el ajuste con más copias aunque la ganancia sea mínima.

2 Limitaciones del test de Hosmer-Lemeshow:

- ▶ El valor de χ^2_{HL} depende de los puntos de corte que definen los grupos.
- Poca potencia para detectar falta de ajuste.
- ► Alternativa: Test propuesto por Le Cessie y van Houwelingen (1991), función "residuals.lrm" de R.

Referencias

- Deddens, J. A. (2002). Estimation of prevalence ratios when PROC GENMOD does not converge.
- Donoghoe, M. W. (2018). *logbin: Relative Risk Regression Using the Log-Binomial Model.* R package version 2.0.4. Recuperado desde
 https://CRAN.R-project.org/package=logbin
- Hosmer, D. W. & Lemeshow, S. (2000). *Applied logistic regression* (Second). John Wiley & Sons.
- Le Cessie, S. & van Houwelingen, J. C. (1991). A Goodness-of-Fit Test for Binary Regression Models, Based on Smoothing Methods. *Biometrics*, 47(4), 1267-1282. Recuperado desde http://www.jstor.org/stable/2532385
- Martín-Santos, R., Gelabert, E., Subirá, S., Gutierrez-Zotes, A., Langohr, K., Jover, M., . . . Sanjuan, J. (2012). Research Letter: Is neuroticism a risk factor for postpartum depression? *Psychological medicine*, *42*, 1559-65. doi:10.1017/S0033291712000712

MUCHAS GRACIAS POR SU ATENCIÓN