Środowisko EPANET – analiza

Igor Swat, Rafał Piwowar

Niniejszy dokument skupia się na przedstawieniu i analizie aspektów związanych ze środowiskiem symulacyjnym *EPANET* (konkretnie *EPANET* 2.2), będącym centralną częścią projektu.

1. Przedstawienie środowiska

EPANET - oprogramowanie opracowane przez Amerykańską Agencję Ochrony Środowiska (EPA) do modelowania systemów dystrybucji wody. Umożliwia symulację zachowania hydraulicznego i jakościowego w sieciach ciśnieniowych, składających się z rur, węzłów, pomp, zaworów oraz zbiorników magazynujących lub rezerwuarów.

Środowisko skład się z 3 podstawowych funkcji:

- Modelowanie hydrauliki symulacja przepływu, ciśnienia i stanów pomp czy zaworów
- 2. Modelowanie jakości wody symulowany jest m. in. wiek wody w każdym punkcie czy globalna ilość wody w systemie
- 3. Modelowanie bezpieczeństwa i odporności wodnej modelowanie scenariuszy zagrożeń zewnętrznych. Dodatkowa funkcjonalność, realizowana poprzez rozszerzenia *EPANET-MSX i EPANET-RTX*

2. Elementy środowiska – parametry modelu sieci

W środowisku EPANET dostępne są następujące typy obiektów, tworzących symulowane modele sieci wodociągowych (literką P oznaczono hiperparametry danego obiektu):

2.1 Wezeł (Junction)

Wierzchołki grafu połączeń sieci. Stanowią punkt zaczepienia dla połączeń (rur) i zarazem punkt wejścia-wyjścia przepływu wody.

Dane wejściowe:

- (P) Podniesienie (Elevation) zazwyczaj wysokość nad poziomem morza
- (P) Zapotrzebowanie na wodę (Water demand) definiuje szybkość poboru wody z sieci
- (P) Początkowa jakość wody (Initial water quality)

Dane wyjściowe:

- Wysokość hydrauliczna (Hydraulic head) miara energii wody w danym punkcie systemu
- Ciśnienie (Pressure)
- Jakość wody (Water quality)

2.2 Rura (Pipe)

Stanowi połączenie między dwoma węzłami. W EPANET zakłada się, że rury są zawsze pełne. Kierunek przepływu wody jest z miejsca o wyższej wysokości hydraulicznej (energii wewnętrznej na jednostkę masy wody) do miejsca o niższej wysokości hydraulicznej.

Dane wejściowe:

- Węzły początkowy i końcowy (Start and end nodes) określa punkty, między którymi przepływa woda.
- (P) Średnica (Diameter) średnica rury, która wpływa na przepływ.
- (P) Długość (Length) długość rury w systemie.
- **(P) Współczynnik szorstkości (Roughness coefficient)** współczynnik szorstkości rury, wykorzystywany do obliczania strat ciśnienia (headloss).
- (P) Status (Status) status rury (otwarta, zamknięta lub zawierająca zawór zwrotny).
 Status pozwala na symulację zaworów odcinających (bramy) oraz zaworów zwrotnych (zawory jednokierunkowe).

Dane wyjściowe:

- **Przepływ (Flow rate)** ilość wody przepływającej przez rurę (objętość w jednostce czasu).
- **Prędkość (Velocity)** prędkość przepływu wody w rurze.
- **Straty ciśnienia (Headloss)** spadek ciśnienia w rurze spowodowany tarciem.
- Współczynnik tarcia Darcy'ego-Weisbacha (Darcy-Weisbach friction factor) – wartość współczynnika tarcia rury, używana w obliczeniach strat ciśnienia.
- **Średnia szybkość reakcji (Average reaction rate)** średnia szybkość reakcji chemicznych zachodzących w rurze (np. rozpad chloru).
- Średnia jakość wody (Average water quality) średnia jakość wody wzdłuż rury (np. stężenie chloru).

2.3 Zbiornik naturalny (Reservoir)

Węzeł reprezentujący nieskończone zewnętrzne źródło lub ujście wody w sieci (np. jezioro, rzeka, morze).

Dane wejściowe:

- **(P) Wysokość hydrauliczna (Hydraulic head)** równa wysokości poziomu wody, jeżeli zbiornik nie jest pod ciśnieniem.
- **(P) Początkowa jakość wody (Initial water quality)** początkowy stan jakości wody w zbiorniku.

2.4 Zbiornik sztuczny (Tank)

Pełni rolę magazynu wody. Ma ściśle określoną pojemność, a objętość przechowywanej w nim wody może zmieniać się w czasie trwania symulacji.

Dane wejściowe:

- **(P) Podniesienie dolne (Bottom elevation)** poziom wody, który jest traktowany jako poziom zerowy.
- **(P) Średnica (Diameter)** średnica rezerwuaru (lub kształt, jeśli nie jest cylindryczny).
- (P) Początkowy, minimalny i maksymalny poziom wody (Initial, minimum, and maximum water levels) zakres poziomów wody w rezerwuarze, w którym może ona funkcjonować.
- **(P) Początkowa jakość wody (Initial water quality)** początkowy stan jakości wody w rezerwuarze.

Dane wyjściowe:

- **(P) Wysokość hydrauliczna (Hydraulic head)** wysokość powierzchni wody w rezerwuarze, która może się zmieniać w czasie.
- (P) Jakość wody (Water quality) zmiana jakości wody w rezerwuarze w trakcie symulacji.

2.5 Pompa (pump)

Element łączący węzły, zapewniający przepływ wody. Pompy mogą działać w oparciu o krzywą pompy, która określa kombinację wysokości i przepływu, które pompa jest w stanie wyprodukować.

Pełna opis komponentów środowiska: <u>3. The Network Model — EPANET 2.2</u> documentation

Pełna lista parametrów środowiska: <u>Units of Measurement — EPANET 2.2</u> documentation

3. Uruchomienie środowiska

W celu bliższego zapoznania się ze środowiskiem EPANET, przeprowadziliśmy testową symulację przykładowej sieci:

Rys. 1 – Przykładowy model sieci w środowisku EPANET

EPANET umożliwia symulowanie zarówno symulację pojedynczego kroku czasowego, jak i symulację w dłuższym okresie czasu. Poniżej zaprezentowane są wyniki jednorazowej symulacji dla sieci z rys. 1:

III Network Table - Nodes							
Node ID	Demand GPM	Head ft	Pressure psi	Quality			
Junc 2	0.00	836.27	59.04	0.00			
Junc 3	150.00	834.27	53.84	0.00			
Junc 4	150.00	833.81	57.98	0.00			
Junc 5	200.00	833.75	79.62	0.00			
Junc 6	150.00	833.80	57.98	0.00			
Junc 7	0.00	834.01	58.06	0.00			
Resvr 1	-677.40	700.00	0.00	0.00			
Tank 8	27.40	834.00	1.73	0.00			
III Network Table - Links							
Link ID	Flow GPM	Velocity fps	Unit Headloss ft/Kft	Friction Factor	Reaction Rate mg/L/d	Quality	Status
Pipe 1	677.40						
		1.92	2.00	0.035	0.00	0.00	Оре
Pipe 2	224.84	1.92 0.64	2.00 0.26		0.00	0.00	
•					0.00		Оре
Pipe 3	224.84	0.64	0.26	0.041	0.00	0.00	Ope Ope
Pipe 2 Pipe 3 Pipe 7 Pipe 4	224.84 302.56	0.64	0.26 0.45	0.041	0.00 0.00 0.00	0.00	Ope Ope Ope
Pipe 3 Pipe 7	224.84 302.56 106.44	0.64 0.86 0.30	0.26 0.45 0.07	0.041 0.039 0.046 0.052	0.00 0.00 0.00 0.00	0.00 0.00 0.00	Ope Ope Ope Ope
Pipe 3 Pipe 7 Pipe 4 Pipe 5	224.84 302.56 106.44 46.12	0.64 0.86 0.30 0.13	0.26 0.45 0.07 0.01	0.041 0.039 0.046 0.052	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	Ope Ope Ope Ope
Pipe 3	224.84 302.56 106.44 46.12 -197.44	0.64 0.86 0.30 0.13	0.26 0.45 0.07 0.01 0.20	0.041 0.039 0.046 0.052 0.042	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	Ope Ope Ope Ope Ope Ope Ope Ope

Rys. 2 – Przykładowe wyniki jednorazowej symulacji dla sieci z rys. 1. W górnej tabeli dane wyjściowe dla węzłów, w dolnej dla rur (połączeń).

Symulacja może być także prowadzona przez ustalony okres czasu, pozwalając na ustalenie cyklicznej zmiany zapotrzebowania (poboru) wody i cykli czasowych.

Srodowisko EPANET umożliwia śledzenie wybranych parametrów sieci na przestrzeni zadanego okresu:

Rys. 3 – stan sieci po upływie 27 z 72 godzin symulowanego okresu, z zaznaczonymi parametrami ciśnienia i przepływu

4. API programistyczne

EPANET udostępnia gotowe API programistyczne dla języków takich jak C/C++, Delphi czy Visual Basic.

Dodatkowo, dostępny jest interfejs dla Pythona zewnętrznego pochodzenia, pod postacią biblioteki *epyt:*: https://github.com/KIOS-Research/EPyT/tree/main.

5. Integracja EPANET z zewnętrznym algorytmem optymalizacja (WSO)

Wykorzystując API programistyczne, możemy zastosować wskazany algorytm optymalizacji (tudzież White Shark Optimizer) wprost na parametrach symulacji. Schemat działania powinien zawierać:

- 1. Generowanie populacji kandydatów (zestawu parametrów do optymalizacji)
- 2. Uruchomienie symulacji EPANET dla każdego kandydata i obliczenie błędu względem danych rzeczywistych
- 3. Aktualizacja pozycji rekinów na podstawie uprzednich wyników
- 4. Powtarzanie procesu aż do spełnienia kryterium stopu