Subunit 5.1: Trigonometric graphs

Topical Question No:	1
----------------------	---

2

The diagram shows part of the curve with equation $y = k \sin \frac{1}{2}x$, where k is a positive constant and x is measured in radians. The curve has a minimum point A.

(a)	State the coordinates of A .
(b)	A sequence of transformations is applied to the curve in the following order.
	Translation of 2 units in the negative y-direction
	Reflection in the <i>x</i> -axis
	Find the equation of the new curve and determine the coordinates of the point on the new curve corresponding to A . [3]

4

The diagram shows part of the graph of $y = a \tan(x - b) + c$.

Given that $0 < b < \pi$, state the values of the constants a , b and c .	[3]

Topical Question No: 3

7 A curve has equation $y = 2 + 3 \sin \frac{1}{2}x$ for $0 \le x \le 4\pi$.

(a)	State	greatest	and	least	values	of v
(a)	State	greatest	and	ieasi	varues	or y

[2]

(b) Sketch the curve.

[2]

(c) State the number of solutions of the equation

$$2 + 3\sin\frac{1}{2}x = 5 - 2x$$

for $0 \le x \le 4\pi$.	[1]

The diagram shows the curve $y = k \cos(x - \frac{1}{6}\pi)$ where k is a positive constant and x is measured in radians. The curve crosses the x-axis at point A and B is a minimum point.

Find the coordinates of A and B .	[3]

(b) Find the exact value of t that satisfies the equation

$$3\sin^{-1}(3t) + 2\cos^{-1}\left(\frac{1}{2}\sqrt{2}\right) = \pi.$$
 [2]

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MA

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN