notas para a unidade curricular de

Módulos e Anéis

Mestrado em Matemática

Universidade do Minho 2016/2017

1. Módulos

1.1. Módulos, submódulos e homomorfismos

Definição. Seja R um anel. Dá-se o nome de m'odulo à direita sobre R (ou mod-R à direita) a um sistema algébrico formado por um conjunto M, uma operação binária + (adição) e uma família de operações unárias $(\lambda_a)_{a\in R}$, $\lambda_a: M\to M$, $x\mapsto \lambda_a(x)=xa$, que verificam as seguintes propriedades:

- i. (M, +) é um grupo abeliano;
- ii. (x+y)a = xa + ya, para quaisquer $a \in R$ e $x, y \in M$;
- iii. x(a+b) = xa + xb, para quaisquer $a, b \in R$ e $x \in M$;
- iv. x(ab) = (xa)b, para quaisquer $a, b \in R$ e $x \in M$.

Definição. Se R é um anel unitário e M é um mod-R à direita, dizemos que M é unitário se $x1_R = x$, para todo o $x \in M$.

Proposição. Sejam R um anel e M um mod-R à direita. Então, para quaisquer $n, r \in \mathbb{N}$, $a, b, a_1, \ldots, a_r \in R$ e $x, y, x_1, \ldots, x_r \in M$:

- (a) $x0_R = 0_M$;
- **(b)** $0_M a = 0_M;$
- (c) x(-a) = -(xa) = (-x)a;
- (d) x(a-b) = xa xb;
- (e) (x y)a = xa ya;
- (f) n(xa) = x(na) = (nx)a;

(g)
$$(\sum_{i=1}^{r} x_i)a = \sum_{i=1}^{r} (x_i a);$$

(h)
$$x(\sum_{i=1}^{r} a_i) = \sum_{i=1}^{r} (xa_i).$$

Demonstração. [exercício]

Definição. Sejam R um anel e M um mod-R à direita. Define-se o anulador de M como sendo o conjunto $\text{an}(M) = \{a \in R : Ma = 0_M\} = \{a \in R : xa = 0_M, \forall x \in M\}.$

Proposição. Sejam R um anel e M um mod-R à direita. Então, an(M) é um ideal de R.

Demonstração. Como $0_R \in \operatorname{an}(M)$, temos que $\operatorname{an}(M) \neq \emptyset$.

Sejam $a, b \in \text{an}(M)$. Então, $a, b \in R$ e $xa = xb = 0_M$, para todo o $x \in M$. Sendo R um anel, $a - b \in R$. Dado $x \in M$,

$$x(a-b) = xa - xb = 0_M - 0_M = 0_M,$$

pelo que $a - b \in \operatorname{an}(M)$.

Se $a \in \operatorname{an}(M)$ e $r \in R$, então $a, r \in R$ e $xa = 0_M$ para todo o $x \in M$. Logo, $ar, ra \in R$ e, dado $x \in M$,

$$x(ar) = (xa)r = 0_M r = 0_M.$$

Além disso, $xr \in M$ e, uma vez que $a \in an(M)$,

$$x(ra) = (xr)a = 0_M.$$

Assim, $ar, ra \in an(M)$. Logo, an(M) é um ideal de R.

Definição. Sejam R um anel e M um mod-R à direita. Dizemos que M é um $m\acute{o}dulo-R$ fiel se $\text{an}(M) = \{0_R\}.$

Exemplos.

- 1. Todo o espaço vetorial V não nulo sobre um corpo K é um módulo-K à direita fiel unitário.
- **2.** Sejam R um anel e $n \in \mathbb{N}$. Então, R^n é um módulo-R à direita. Se R for um anel unitário, então R^n é um módulo-R à direita fiel unitário.
- 3. Se R é um anel unitário, então R[x] é um módulo-R à direita fiel unitário.

Definição. Sejam R um anel e M um módulo-R à direita. Sejam X e Y subconjuntos não vazios de M e B um subconjunto não vazio de R. Definimos os conjuntos X + Y e XB do seguinte modo:

$$X+Y=\{x+y:x\in X\wedge y\in Y\},\qquad XB=\left\{\sum_{i=1}^nx_ib_i:n\in\mathbb{N}\wedge x_i\in X\wedge b_i\in B\right\}.$$

Proposição. Sejam R um anel, M um módulo-R à direita, X,Y subconjuntos não vazios de M, B, C subconjuntos não vazios de R. Então.

- (a) se $X \subseteq Y$, então $XB \subseteq YB$;
- (b) se $B \subseteq C$, então $XB \subseteq XC$;
- (c) $X(B+C) \subseteq XB+XC$. Mais, a igualdade verifica-se se $0_R \in B \cap C$;
- (d) X(BC) = (XB)C;

(e) $(X + Y)B \subseteq XB + YB$. Mais, a igualdade verifica-se se $0_M \in X \cap Y$.

Demonstração. [exercício]

Definição. Sejam R um anel e M um módulo-R à direita. Dizemos que N é um submódulo-R de M se N for um subsistema algébrico que é módulo-R à direita e escrevemos $N \leq_R M$.

Proposição. Sejam R um anel e M um módulo-R à direita. Uma parte não vazia N de M é submódulo-R de M se e só se para quaisquer $x,y\in N$ e qualquer $a\in R$ se tiver $x-y\in N$ e $xa\in N$.

Demonstração. [exercício]

Proposição. Sejam R um anel unitário, M um módulo-R à direita unitário e N uma parte não vazia de M. Então, são equivalentes as seguintes condições.

- (a) N é submódulo-R de M.
- (b) Para quaisquer $x, y \in N$ e quaisquer $a, b \in R$, $xa + yb \in N$.
- (c) Para quaisquer $x, y \in N$ e qualquer $b \in R$, $x + yb \in N$.
- (d) Para quaisquer $x, y \in N$ e qualquer $b \in R$, $x + y \in N$ e $yb \in N$.

Demonstração. [exercício]

Proposição. Sejam R um anel unitário, M um módulo-R à direita unitário e N um submódulo-R de M. Então, N é módulo-R unitário.

Demonstração. Como N é submódulo-R de M, sabemos que $N\subseteq M$ e N é módulo-R à direita.

Dado $x \in N$, temos que $x \in M$ e, uma vez que M é unitário,

$$x1_R = x$$
.

Logo, para todo o $x \in N$, $x1_R = x$, pelo que N é unitário.

Exemplos.

- 1. Seja R um anel. Se M é um módulo-R à direita, então $\{0\}$ e M são submódulos-R de M. O submódulo-R $\{0\}$ diz-se o submódulo nulo e o submódulo-R M diz-se o submódulo impróprio.
- **2.** Dado um anel R, o próprio R é um módulo-R à direita, que representamos por R_R . Os submódulos-R de R_R são exatamente os ideais direitos de R.

3. Seja G um grupo abeliano. Dados $n \in \mathbb{Z}$ e $a \in G$, definimos

$$na = \begin{cases} \underbrace{a + \dots + a}_{n \text{ vezes}} & \text{se } n > 0 \\ \\ 0 & \text{se } n = 0 \\ \\ -(\underbrace{a + \dots + a}_{n \text{ vezes}}) & \text{se } n < 0 \end{cases}$$

G é um módulo- $\mathbb Z$ à direita. Os submódulos- $\mathbb Z$ de G são exatamente os subgrupos de G.

4. Sejam R um anel, M um módulo-R à direita, X um subconjunto não vazio de M e D um ideal direito de R. Então, XD é um submódulo-R de M.

Proposição. Sejam R um anel comutativo, M um módulo-R à direita e $a \in R$. Então, $Ma \leq_R M$.

Demonstração. [exercício]

Definição. Sejam R um anel e M um módulo-R à direita. Dizemos que M é um módulo-R simples se existirem precisamente dois submódulos-R de M.

Exemplo. Seja R um anel de divisão. Então, os únicos ideais direitos de R são $\{0\}$ e R, pelo que os submódulos-R de R_R são exatamente $\{0\}$ e R. Portanto, R_R é um módulo-R simples.

Definição. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. Dizemos que N é um submódulo maximal de M se N for elemento maximal da família dos submódulos próprios de M, ou seja, se $N \subseteq_R M$, $N \subseteq M$ e, para todo o $P \subseteq_R M$, se $N \subseteq P \subseteq M$, então P = N ou P = M.

Proposição. Sejam R um anel, M um módulo-R à direita e N, L submódulos-R de M. Então,

- (a) N + L é um submódulo-R de M;
- **(b)** $N \cap L$ é um submódulo-R de M;
- (c) $N \cup L$ é um submódulo-R de M se e só se $N \subseteq L$ ou $L \subseteq N$.

Demonstração. [exercício]

Definição. Sejam R um anel, M um módulo-R à direita, I um conjunto não vazio e $\{N_i\}_{i\in I}$ uma família de submódulos-R de M. Definimos a soma da família $\{N_i\}_{i\in I}$ de submódulos-R de M como sendo o conjunto

$$\sum_{i \in I} N_i = \left\{ \sum_{i \in I} x_i : \ x_i \in N_i, \ x_i \text{ quase todos nulos} \right\}.$$

Proposição. Sejam R um anel, M um módulo-R à direita e I um conjunto não vazio e $\{N_i\}_{i\in I}$ uma família de submódulos-R de M. Então,

- (a) $\sum_{i \in I} N_i$ é um submódulo-R de M;
- (b) $\bigcap_{i \in I} N_i$ é um submódulo-R de M;
- (c) se, para quaisquer $i,j\in I$, existe $k\in I$ tal que $N_i\cup N_j\subseteq N_k$, então $\bigcup_{i\in I}N_i$ é um submódulo-R de M.

Demonstração. [exercício]

Sejam R um anel, M um módulo-R à direita e X um subconjunto de M. Consideremos o conjunto \mathcal{B} de todos os submódulos-R de M que contêm X, isto é,

$$\mathcal{B} = \{ N \leq_R M : X \subseteq N \}.$$

É claro que $\mathcal{B} \neq \emptyset$. De facto, $M \in \mathcal{B}$. Se considerarmos $\bigcap_{N \in \mathcal{B}} N$, podemos concluir que

$$\bigcap_{N\in\mathcal{B}} N \leq_R M \quad \text{e} \quad X \subseteq \bigcap_{N\in\mathcal{B}} N.$$

Aém disso, para todo o $N' \in \mathcal{B}$,

$$\bigcap_{N \in \mathcal{B}} N \subseteq N'.$$

Definição. Sejam R um anel, M um módulo-R à direita e X um subconjunto de M. Então, a interseção de todos os submódulos-R de M que contêm X diz-se o submódulo de M gerado por X, e representa-se por $\langle X \rangle$. Se $X = \{x\}$ para algum $x \in M$, escrevemos $\langle x \rangle$ em vez de $\langle \{x\} \rangle$.

Proposição. Sejam R um anel, M um módulo-R à direita e X um subconjunto de M. Então, P é o submódulo-R gerado por X se e só se se verificam as seguintes condições:

- (i) $P \leq_R M$;
- (ii) $X \subseteq P$;
- (iii) $\forall L \leq_R M$, $X \subseteq L \implies P \subseteq L$.

Demonstração. [exercício]

Proposição. Sejam R um anel e M um módulo-R à direita. Então,

(a)
$$\langle \emptyset \rangle = \{0\};$$

- **(b)** para todo o $x \in M$, $\langle x \rangle = \{nx + xa : n \in \mathbb{Z} \land a \in R\}$;
- (c) se $I \neq \emptyset$ e $X = \{x_i\}_{i \in I}$,

$$\langle X \rangle = \left\{ \sum_{i \in I} n_i x_i + \sum_{i \in I} x_i a_i : n_i \in \mathbb{Z} \land a_i \in R, n_i, a_i \text{ quase todos nulos} \right\}.$$

$$= \sum_{i \in I} \langle x_i \rangle$$

Demonstração. [exercício]

Proposição. Sejam R um anel unitário e M um módulo-R à direita unitário. Então, para todo o $x \in M$,

$$\langle x \rangle = xR.$$

Demonstração. [exercício]

Sejam R um anel, M um módulo-R à direita e N,L submódulos-R de M. Já vimos que N+L é um submódulo-R de M.

Vejamos se $N \cup L \subseteq N + L$. Tomemos $x \in N \cup L$. Então, $x \in N$ ou $x \in L$. Se $x \in N$, então $x = x + 0 \in N + L$. De modo análogo, se $x \in L$, $x = 0 + x \in N + L$. Assim, $N \cup L \subseteq N + L$.

Consideremos, agora, um submódulo-R T de M tal que $N \cup L \subseteq T$. Pretendemos mostrar que $N+L \subseteq T$. Dado $x \in N+L$, sabemos que existem $n \in N$ e $\ell \in L$ tais que $x=n+\ell$. Ora, $n,\ell \in N \cup L$ e, portanto, $n,\ell \in T$. Como T é um submódulo-R de M, podemos concluir que $x=n+\ell \in T$.

Vimos, assim, que $\langle N \cup L \rangle = N + L$.

Proposição. Sejam R um anel, M um módulo-R à direita, I um conjunto não vazio e $\{N_i\}_{i\in I}$ uma família de submódulos-R de M. Então,

$$\left\langle \bigcup_{i \in I} N_i \right\rangle = \sum_{i \in I} N_i.$$

Demonstração. [exercício]

Proposição. Sejam R um anel, M um módulo-R à direita e N, P e Q submódulos-R de M tais que $N \subseteq Q$. Então,

$$(N+P) \cap Q = N + (P \cap Q).$$

Demonstração. Como N, P e Q são submódulos-R de M, sabemos que N+P e $P \cap Q$ são também submódulos-R de M. Logo, $(N+P) \cap Q$ e $N+(P \cap Q)$ são submódulos-R de M.

Comecemos por verificar que $N+(P\cap Q)\subseteq (N+P)\cap Q$. Como $N\subseteq N+P$ e $N\subseteq Q$, sabemos que $N\subseteq (N+P)\cap Q$. Por outro lado, de $P\subseteq N+P$, podemos concluir que $P\cap Q\subseteq (N+P)\cap Q$. Logo,

$$N \cup (P \cap Q) \subseteq (N+P) \cap Q$$
.

Ora, $N + (P \cap Q) = \langle N \cup (P \cap Q) \rangle$, pelo que, por definição de submódulo gerado, se tem $N + (P \cap Q) \subseteq (N + P) \cap Q$.

Para provar que $(N+P) \cap Q \subseteq N + (P \cap Q)$, consideremos $x \in (N+P) \cap Q$. Então, x = n+p para algum $n \in N$ e algum $p \in P$. Como $N \subseteq Q$, sabemos que $n \in Q$. Também $x \in Q$, pelo que

$$p = x - n \in Q$$
,

uma vez que $Q \leq_R M$. Portanto, x = n + p, com $n \in N$ e $p \in P \cap Q$ e, assim, $x \in N + (P \cap Q)$. Logo, $(N + P) \cap Q \subseteq N + (P \cap Q)$.

Definição. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. Dizemos que N é finitamente gerado ou um submódulo-R de tipo finito se N for gerado por um seu subconjunto finito X. Se $X = \{x\}$, então $N = \langle x \rangle$ diz-se um submódulo-R cíclico. Se N não for finitamente gerado, dizemos que N é infinitamente gerado.

Exemplos.

- **1.** Seja R um anel unitário. Então, $R = \langle 1 \rangle$ e $R^n = \langle \{(1, 0, \dots, 0), (0, 1, 0, \dots, 0), \dots, (0, \dots, 0, 1)\} \rangle$.
- **2.** Seja R um anel unitário. Então $R[x] = \langle \{1, x, x^2, \dots \} \rangle$. Mais, não existe nenhum conjunto finito que gere R[x].

Proposição. Seja R um domínio de integridade comutativo e com identidade. Então, R é domínio de ideais principais se e só se todo o submódulo-R de um módulo-R unitário e cíclico é módulo-R cíclico.

Demonstração. Admitamos que todo o submódulo-R de um módulo-R unitário e cíclico é módulo-R cíclico. Seja I um ideal de R. Por definição, I é submódulo-R de R_R . Ora, $R_R = \langle 1 \rangle$, pelo que R_R é um módulo-R unitário e cíclico. Por hipótese, I é módulo-R cíclico, ou seja, existe $a \in I$ tal que $I = \langle a \rangle$. Como $\langle a \rangle = aR = (a)$, podemos concluir que I é um ideal principal e, portanto, R é um domínio de ideais principais.

Suponhamos agora que R é um domínio de ideais principais e sejam M um módulo-R à direita unitário e cíclico e N um submódulo-R de M. Então, sendo M cíclico, existe $a \in R$ tal que

$$M = \langle a \rangle = aR.$$

Consideremos $I = \{r \in R : ar \in N\}$. Como $N \neq \emptyset$ e $N \subseteq M = aR$, temos que $I \neq \emptyset$.

Por definição, $I \subseteq R$. Dados $x, y \in I$ e $r \in R$, sabemos que $ax, ay \in N$. Mais, $x - y \in R$ (pois R é um anel) e $a(x - y) = ax - ay \in N$ (pois $N \leq_R M$). Logo, $x - y \in I$.

Também $xr \in R$, pois R é anel, e $a(xr) = (ax)r \in N$, uma vez que $N \leq_R M$. Assim, $xr \in I$. Vimos que I é um ideal de R. Sendo R domínio de ideais principais, existe $i \in I$ tal que

$$I = (i) = iR$$
.

Por definição de I, $(ai)R = a(iR) = aI \subseteq N$. Mostremos que $N \subseteq (ai)R$. Dado $n \in N$, existe $r \in R$ tal que n = ar, pois $N \subseteq M = aR$. Novamente pela definição de I, $r \in I$, pelo que existe $r' \in R$ tal que r = ir' e, portanto,

$$n = ar = a(ir') = (ai)r'$$
, com $r' \in R$.

Assim, $n \in (ai)R$ e $N = (ai)R = \langle ai \rangle$. Logo, N é cíclico.

Definição. Sejam $n \in \mathbb{N}$, R um anel, M um módulo-R à direita e $X = \{x_1, \ldots, x_n\} \subseteq M$. Diz-se que $y \in M$ é combinação linear dos elementos x_i , ou combinação linear dos elementos de(X), se existirem elementos $a_i \in R$, com $i \in \{1, \ldots, n\}$, tais que

$$y = x_1 a_1 + \dots + x_n a_n.$$

Os elementos a_i , com $i \in \{1, ..., n\}$, dizem-se os coeficientes da combinação linear.

Definição. Sejam R um anel, M um módulo-R à direita, I um conjunto não vazio e $X = \{x_i\}_{i \in I} \subseteq M$. Diz-se que $y \in M$ é combinação linear dos elementos x_i , $i \in I$, ou combinação linear dos elementos de X, se y for combinação linear dos elementos de uma subfamília finita não vazia de X, isto é, se existirem $k \in \mathbb{N}$, $x_{i_1}, \ldots, x_{i_k} \in X$, $a_1, \ldots, a_k \in R$ tais que

$$y = x_{i_1}a_1 + \dots + x_{i_k}a_k.$$

Proposição. Sejam R um anel unitário, M um módulo-R à direita unitário e N um submódulo-R de M. Então, N é submódulo-R de tipo finito se e só se existir um subconjunto finito não vazio X de N tal que todo o elemento de N é combinação linear dos elementos de X.

Demonstração. [exercício]

Proposição. Sejam R um anel unitário, M um módulo-R à direita unitário, $X = \{x_i\}_{i \in I}$ e $Y = \{y_j\}_{j \in J}$ famílias não vazias de elementos de M. Então, X e Y geram o mesmo submódulo-R de M se e só se todo o elemento x_i , com $i \in I$, for combinação linear dos elementos de Y e todo o elemento y_j , com $j \in J$, for combinação linear dos elementos de X.

Demonstração. [exercício]

Definição. Sejam R um anel, M um módulo-R à direita, N um submódulo-R de M e S um subconjunto de M. Designa-se por quociente residual de N por S o conjunto

$$(N:S) = \{ a \in R : Sa \subseteq N \}.$$

Proposição. Sejam R um anel, M um módulo-R à direita, N um submódulo-R de M e S um subconjunto de M. Então,

- (a) (N:S) é ideal direito de R;
- (b) se $S \leq_R M$, então (N:S) é ideal de R.

Demonstração. Comecemos por verificar a veracidade de (a). Se $S = \emptyset$, então (N:S) = R é ideal direito de R. Suponhamos, pois, que $S \neq \emptyset$. Então, $S0_R = \{0_M\} \subseteq N$, pelo que $0_R \in (N:S)$ e, portanto, $(N:S) \neq \emptyset$. Por definição, $(N:S) \subseteq R$. Dados $a,b \in (N:S)$ e $r \in R$, sabemos que $a,b \in R$ e $Sa \subseteq N$, $Sb \subseteq N$. Como R é anel, $a-b,ar \in R$. Sendo N um submódulo-R de M, temos que, para todo o $s \in S$, $s(a-b) = sa-sb \in N$ e $s(ar) = (sa)r \in N$ (pois $sa,sb \in N$). Logo, $S(a-b) \subseteq N$ e $S(ar) \subseteq N$, pelo que $sa-b,ar \in N$. Portanto, $sa-b,ar \in N$ 0. Portanto, $sa-b,ar \in N$ 1. Se é um ideal direito de $sa-b,ar \in N$ 2.

Suponhamos agora que $S \leq_R M$. Por (a), (N:S) é ideal direito de R. Resta provar que, dados $a \in (N:S)$ e $r \in R$, se tem $ra \in (N:S)$. Ora, se $a \in (N:S)$ e $r \in R$, então $a \in R$ e $Sa \subseteq N$. É claro que $ra \in R$, pois R é um anel. Para todo o $s \in S$, $sr \in S \leq_R M$. Logo,

$$s(ra) = (sr)a \in Sa \subseteq N$$
,

pelo que $ra \in (N:S)$, como pretendíamos mostrar. Assim, (N:S) é um ideal de R.

Exemplo. Sejam R um anel e M um módulo-R à direita. Se $N=\{0_M\}$ e $S\neq\emptyset$ é um submódulo-R de M, então

$$(\{0\}: S) = \{a \in R: Sa \subseteq \{0\}\} = \{a \in R: Sa = \{0\}\} = \operatorname{an}(S).$$

Definição. Sejam R um anel, I um ideal direito de R e S um subconjunto de R. Então, R_R é um módulo-R à direita e I é um submódulo-R de R_R . O conjunto (I:S) designa-se por quociente residual à direita.

Proposição. Sejam R um anel, M um módulo-R à direita, N, N_1 e N_2 submódulos-R de M e S, S_1 e S_2 subconjuntos de M. Então,

- (a) $(N_1:S)+(N_2:S)\subseteq (N_1+N_2:S)$;
- **(b)** $(N:S_1) \cap (N:S_2) \subseteq (N:S_1+S_2);$
- (c) se $0_M \in S_1 \cap S_2$,

$$(N:S_1)\cap (N:S_2)\subseteq (N:S_1+S_2);$$

(d) se $\{N_i\}_{i\in I}$ é uma família não vazia de submódulos-R de M,

$$\left(\bigcap_{i\in I} N_i:S\right) = \bigcap_{i\in I} (N_i:S).$$

Demonstração. [exercício]

Proposição. Seja D um ideal direito de R tal que $(D:R) \subseteq D$. Então, (D:R) é elemento maximal do conjunto de ideais de R que estão contidos em D.

Demonstração. Como $R_R \leq_R R_R$, (D:R) é ideal de R. Por hipótese, $(D:R) \subseteq D$. Seja I um ideal de R tal que $I \subseteq D$ e suponhamos que $(D:R) \subseteq I \subsetneq D$. Pretendemos mostrar que $I \subseteq (D:R)$. Ora, dado $a \in I$, $Ra \subseteq I$, pois I é um ideal de R. Como $I \subseteq D$, temos que $Ra \subseteq D$. Logo, $a \in (D:R)$, uma vez que $a \in I \subseteq R$. Portanto, $I \subseteq (D:R)$. Vimos, assim, que (D:R) é maximal no conjunto de ideais de R que estão contidos em D.

Definição. Sejam R um anel e M um módulo-R à direita. Uma relação de equivalência ρ em M diz-se uma relação de congruência em M se, para quaisquer $x, y, z, w \in M$ e $a \in R$,

$$x \rho y \in z \rho w \implies (x+z) \rho (y+w)$$

 \mathbf{e}

$$x \rho y \implies (xa) \rho (ya).$$

Proposição. Sejam R um anel e M um módulo-R à direita.

(a) Se N é um submódulo-R de M, então a relação binária ρ_N definida em M por

$$x \rho_N y \Leftrightarrow y - x \in N \qquad (x, y \in M)$$

é uma relação de congruência em M.

(b) Se ρ é uma relação de congruência definida em M, então existe um e um só submódulo-R N_{ρ} de M tal que, para quaisquer $x,y\in M$,

$$y - x \in N_{\rho} \Leftrightarrow x \rho y.$$

Demonstração. (a) [exercício]

Verifiquemos a veracidade de (b).

Seja ρ uma relação de congruência definida em M e seja C_0 a classe de equivalência de 0_M em M, isto é, $C_0 = \{x \in M : x \rho \ 0_M\}$. Como ρ é reflexiva, $0_M \in C_0$ e, portanto, $C_0 \neq \emptyset$. Sejam $x, y \in C_0$ e $a \in R$. Então, $x, y \in M$ e $x \rho \ 0_M$, $y \rho \ 0_M$. Uma vez que ρ é uma relação de congruência, temos que

$$x \rho 0_M \in y \rho 0_M \Longrightarrow (x+y) \rho (0_M + 0_M).$$

Logo, $(x+y) \rho 0_M$ e, assim, $x+y \in C_0$. Como ρ é reflexiva e $-x \in M$, temos que $(-x) \rho (-x)$. Portanto,

$$x \rho \ 0_M \ \ \mathrm{e} \ \ (-x) \rho \ (-x) \implies (x-x) \rho \ (0_M-x),$$

pelo que $-x \rho \ 0_M$ e, então, $-x \in C_0$. Também

$$x \rho 0_M \implies (xa) \rho (0_M a),$$

ou seja, $(xa) \rho \ 0_M$. Logo, $xa \in C_0$ e C_0 é um submódulo-R de M.

Vejamos, agora, que, dados $x, y \in M$,

$$y - x \in C_0 \Leftrightarrow x \rho y.$$

Suponhamos que $y - x \in C_0$. Então, $y - x \rho \ 0_M$. Como $x \in M$ e ρ é reflexiva, $x \rho x$. Logo, $[(y - x) + x] \rho \ (0_M + x)$, pelo que $y \rho x$. Como ρ é simétrica, $x \rho y$.

Admitamos que $x \rho y$. Como M é módulo-R à direita, $-x \in M$ e, portanto, $(-x) \rho (-x)$. Logo, $[x+(-x)] \rho [y+(-x)]$, ou seja $0_M \rho (y-x)$. Como ρ é simétrica, temos que $(y-x) \rho 0_M$ e, portanto, $y-x \in C_0$.

Finalmente, suponhamos que N é um submódulo-R de M tal que, para quaisquer $x, y \in M$,

$$y - x \in N \Leftrightarrow x \rho y.$$

Queremos mostrar que $N=C_0$. Ora, dado $x\in N$, $0_M-x\in N$ (pois N é submódulo-R de M). Por hipótese, $x\rho$ 0_M , ou seja, $x\in C_0$. Por outro lado, se $x\in C_0$, então $x\rho$ 0_M e, portanto, $-x=0_M-x\in N$. Como N é um submódulo-R de M, $x\in N$ e $N=C_0$.

Exemplos.

- 1. Sejam R um anel e M um módulo-R à direita. Então, $\{0\}$ é um submódulo-R de M e $\rho_{\{0\}}$ é a relação identidade.
- **2.** Sejam R um anel e M um módulo-R à direita. Então, M é um submódulo-R de M e ρ_M é a relação universal.

Proposição. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. Então, o grupo quociente M/N é um módulo-R à direita com a ação de R em M/N dada por

$$(x+N)a = (xa) + N \qquad (x \in M, a \in R).$$

Demonstração. [exercício]

Definição. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. O módulo-R M/N diz-se o módulo quociente de M por N.

Proposição. Sejam R um anel unitário, M um módulo-R à direita unitário e N um submódulo-R de M. Então, M/N é unitário.

Demonstração. [exercício]

Proposição. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. Então, os submódulos-R de M/N são exatamente os conjuntos T/N, com T submódulo-R de M que contém N.

Demonstração. [exercício]

Proposição. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M, com $N \subsetneq M$. Então, N é um submódulo maximal de M se e só se M/N for um módulo-R simples.

Demonstração. Admitamos que N é um submódulo maximal de M. Então, N é elemento maximal da família dos submódulos próprios de M. Como $N \subseteq M$, sabemos que

$$M/N \neq \{N\}.$$

Seja \overline{T} um submódulo-R de M/N. Pela proposição anterior, $\overline{T}=T/N$ para algum T submódulo-R de M tal que $N\subseteq T$. Como N é submódulo maximal de M e $N\subseteq T\subseteq M$, podemos concluir que T=N ou T=M, pelo que

$$\overline{T} = N/N = \{N\}$$
 ou $\overline{T} = M/N$.

Assim, M/N é módulo-R simples.

Suponhamos, agora, que M/N é um módulo-R simples e seja P um submódulo-R de M tal que $N \subseteq P \subsetneq M$. Pela proposição anterior, P/N é um submódulo-R de M/N. Logo, por hipótese, $P/N = \{N\}$ ou P/N = M/N. Assim, P = N ou P = M. Como P é submódulo próprio de M, concluímos que P = N. Portanto, N é submódulo maximal de M.

Proposição. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. Então,

- (a) se M é um módulo-R de tipo finito, M/N é também de tipo finito;
- (b) se $N \in M/N$ são módulos-R de tipo finito, M é também módulo-R de tipo finito.

Demonstração. [exercício]

Definição. Sejam R um anel e M, M' módulos-R à direita. Uma aplicação $\varphi : M \to M'$ diz-se um homomorfismo-R ou morfismo-R se, para quaisquer $x, y \in M$ e $a \in R$,

$$\varphi(x+y) = \varphi(x) + \varphi(y), \qquad \varphi(xa) = \varphi(x)a.$$

Se φ for injetivo [respetivamente: sobrejetivo, bijetivo], dizemos que φ é um monomorfismo-R [respetivamente: epimorfismo-R, isomorfismo-R].

Quando M=M', dizemos que φ é um endomorfismo-R. Mais, se φ for um endomorfismo-R bijetivo, dizemos que φ é um automorfismo-R.

Exemplos.

- **1.** Sejam R um anel e M, M' módulos-R à direita. A aplicação $\varphi_0 : M \to M', x \mapsto 0_{M'},$ é um morfismo-R, designado por morfismo nulo.
- **2.** Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. Então, N é módulo-R à direita. A aplicação $\iota:N\to M,\ x\mapsto x$, é um monomorfismo-R, designado por $inclus\~ao$.

Se N=M, então ι é um automorfismo-R, o automorfismo *identidade*, e representa-se por id_M .

3. Sejam R um anel, M um módulo-R à direita e N um submódulo-R de M. A aplicação $\pi: M \to M/N, x \mapsto x+N$, é um epimorfismo-R, designado por *epimorfismo canónico*.

Proposição. Sejam R um anel unitário, M e M' módulos-R à direita unitários e $\varphi: M \to M'$ uma aplicação. São equivalentes as seguintes condições.

- (a) φ é um morfismo-R.
- (b) Para quaisquer $x, y \in M$ e $a, b \in R$, $\varphi(xa + yb) = \varphi(x)a + \varphi(y)b$.
- (c) Para quaisquer $x, y \in M$ e $a \in R$, $\varphi(xa + y) = \varphi(x)a + \varphi(y)$.

Demonstração. [exercício]

Proposição. Sejam R um anel e M, M' e M'' módulos-R à direita. Então,

- (a) se $\varphi: M \to M'$ e $\psi: M' \to M''$ são morfismos-R, a composição $\psi \circ \varphi: M \to M''$ é ainda um morfismo-R.
- (b) se $\varphi: M \to M'$ é um isomorfismo-R, a inversa $\varphi^{-1}: M' \to M$ é também um isomorfismo-R.

Demonstração. [exercício]

Proposição. Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um morfismo-R. Então,

- (a) $\varphi(0_M) = 0_{M'}$;
- **(b)** $\varphi(-x) = -\varphi(x)$, para todo o $x \in M$;
- (c) $\varphi(x-y) = \varphi(x) \varphi(y)$, para quaisquer $x, y \in M$;
- (d) se N é um submódulo-R de M, $\varphi(N)$ é um submódulo-R de M';
- (d) se N' é um submódulo-R de M', $\varphi^{\leftarrow}(N')$, o conjunto imagem inversa de N' por φ , é um submódulo-R de M;

Demonstração. [exercício]

Proposição. Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um isomorfismo-R. Então,

$$\operatorname{an}(M) = \operatorname{an}(M').$$

Demonstração. [exercício]

Definição. Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um morfismo-R. Definimos o n'ucleo de φ como sendo o conjunto $\mathrm{Ker}(\varphi) = \{x \in M: \ \varphi(x) = 0_{M'}\}$. A imagem de φ é o conjunto $\mathrm{Im}(\varphi) = \{\varphi(x): x \in M\}$.

Proposição. Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um morfismo-R. Então,

- (a) $Ker(\varphi)$ é um submódulo-R de M;
- (b) $\operatorname{Im}(\varphi)$ é um submódulo-R de M'.

Demonstração. [exercício]

Proposição. Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um morfismo-R. Então, φ é um monomorfismo-R se e só se $\text{Ker}(\varphi) = \{0_M\}$.

Demonstração. [exercício]

Proposição. Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um morfismo-R. A relação binária ρ definida por

$$x \rho y \Leftrightarrow \varphi(x) = \varphi(y) \qquad (x, y \in M)$$

é uma relação de congruência em M. Mais, o submódulo-R de M associado a ρ é $\mathrm{Ker}(\varphi)$.

Demonstração. [exercício]

Teorema (Teorema do Homomorfismo). Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um morfismo-R. Então,

$$M/\mathrm{Ker}(\varphi) \simeq \mathrm{Im}(\varphi).$$

Demonstração. [exercício]

Teorema [Primeiro Teorema do Isomorfismo]. Sejam R um anel, M e M' módulos-R à direita, $\varphi:M\to M'$ um morfismo-R e N um submódulo-R de M tal que $\mathrm{Ker}(\varphi)\subseteq N$. Então,

$$M/N \simeq \operatorname{Im}(\varphi)/\varphi(N)$$
.

Demonstração. [exercício]

Corolário. Sejam R um anel, M um módulo-R à direita e N e L submódulos-R de M tais que $L \subseteq N$. Então,

$$M/N \simeq (M/L)/(N/L)$$
.

Demonstração. [exercício]

Teorema [Segundo Teorema do Isomorfismo]. Sejam R um anel, M um módulo-R à direita e N e L submódulos-R de M. Então,

$$(N+L)/L \simeq N/(N \cap L).$$

Demonstração. [exercício]

Proposição. Sejam R um anel, M e M' módulos-R à direita e $\varphi: M \to M'$ um morfismo-R. Se N é um submódulo-R de M e $X = \{x_i\}_{i \in I}$ é um conjunto de geradores de N, então $X' = \{\varphi(x_i)\}_{i \in I}$ é um conjunto de geradores de $\varphi(N)$.

Demonstração. Como φ é um morfismo-R e N é um submódulo-R de M, temos que $\varphi(N)$ é um submódulo-R de M'. Além disso, $X \subseteq N$ implica que $\varphi(X) \subseteq \varphi(N)$, ou seja, $X' \subseteq \varphi(N)$. Por definição de submódulo gerado, $\langle X' \rangle \subseteq \varphi(N)$.

Dado $y \in \varphi(N)$, sabemos que existe $x \in N$ tal que $y = \varphi(x)$. Como $N = \langle \{x_i\}_{i \in I} \rangle$ e $x \in N$, existem $n_i \in \mathbb{Z}$ e $a_i \in R$, quase todos nulos, tais que

$$x = \sum_{i \in I} n_i x_i + \sum_{i \in I} x_i a_i.$$

Logo,

$$y = \varphi(x) = \varphi(\sum_{i \in I} n_i x_i) + \varphi(\sum_{i \in I} x_i a_i)$$
$$= \sum_{i \in I} \varphi(n_i x_i) + \sum_{i \in I} \varphi(x_i a_i)$$
$$= \sum_{i \in I} n_i \varphi(x_i) + \sum_{i \in I} \varphi(x_i) a_i$$

com n_i , a_i quase todos nulos. Portanto, $y \in \langle \{\varphi(x_i)\}_{i \in I} \rangle = \langle X' \rangle$, pelo que $\varphi(N) \subseteq \langle X' \rangle$. Assim, $\varphi(N) = \langle \varphi(X) \rangle$.

Proposição. Sejam R um anel, M e M' módulos-R à direita, $\varphi : M \to M'$ um morfismo-R e $X = \{x_i\}_{i \in I}$ um conjunto de geradores de M. Então, φ é um epimorfismo-R se e só se $X' = \{\varphi(x_i)\}_{i \in I}$ é um conjunto de geradores de M'.

Demonstração. [exercício]

Teorema. Sejam R um anel, M, M' e M'' módulos-R à direita, $\varphi: M \to M'$ um morfismo-R e $\psi: M \to M''$ um epimorfismo-R tal que $\operatorname{Ker}(\psi) \subseteq \operatorname{Ker}(\varphi)$. Então,

(a) existe um e um só morfismo $-R \theta : M'' \to M'$ tal que $\theta \circ \psi = \varphi$;

- **(b)** $\operatorname{Ker}(\theta) \simeq \operatorname{Ker}(\varphi)/\operatorname{Ker}(\psi);$
- (c) θ é monomorfismo-R se e só se $Ker(\varphi) = Ker(\psi)$;
- (d) θ é isomorfismo-R se e só se $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\psi)$ e φ é epimorfismo-R.

Demonstração.

(a) Consideremos a correspondência $\theta: M'' \to M'$ definida por $\theta(m'') = \varphi(m)$, onde $m \in M$ é tal que $\psi(m) = m''$. Suponhamos que $m'' \in M''$ e $m, m_1 \in M$ são tais que $\psi(m) = \psi(m_1) = m''$. Então, $\psi(m - m_1) = \psi(m) - \psi(m_1) = 0_{M''}$, pelo que $m - m_1 \in \text{Ker}(\psi) \subseteq \text{Ker}(\varphi)$. Logo, $m - m_1 \in \text{Ker}(\varphi)$ e, portanto, $\varphi(m) = \varphi(m_1)$. Assim, θ é uma aplicação.

Vejamos agora se θ é um morfismo-R. Sejam $m_1'', m_2'' \in M''$ e $a \in R$. Então, $\theta(m_1'') = \varphi(m_1)$ e $\theta(m_2'') = \varphi(m_2)$, onde $m_1, m_2 \in M$ são tais que $\psi(m_1) = m_1''$ e $\psi(m_2) = m_2''$. Portanto,

$$\theta(m_1'' + m_2'') = \theta(\psi(m_1) + \psi(m_2)) = \theta(\psi(m_1 + m_2).$$

Por definição de θ , $\theta(\psi(m_1+m_2)) = \varphi(m_1+m_2)$. Logo, como φ é um morfismo-R,

$$\theta(m_1'' + m_2'') = \varphi(m_1) + \varphi(m_2) = \theta(m_1'') + \theta(m_2'').$$

Por outro lado,

$$\theta(m_1''a) = \theta(\psi(m_1)a) = \theta(\psi(m_1a)) = \varphi(m_1a) = \varphi(m_1)a = \theta(m_1'')a.$$

Logo, θ é um morfismo-R.

Dado $m \in M$,

$$(\theta \circ \psi)(m) = \theta(\psi(m)) = \varphi(m),$$

pelo que $\theta \circ \psi = \varphi$.

Resta mostrar que θ é único nas condições enunciadas. Suponhamos, pois, que ϕ : $M'' \to M'$ é um morfismo-R tal que $\phi \circ \psi = \varphi$. Para provar que $\theta = \phi$, tomemos $m \in M''$. Como ψ é sobrejetiva, existe $m \in M$ tal que $m'' = \psi(m)$. Logo,

$$\phi(m'') = \phi(\psi(m)) = (\phi \circ \psi)(m) = \varphi(m) = (\theta \circ \psi)(m) = \theta(\psi(m)) = \theta(m'').$$

(b) Como $\psi: M \to M''$ é um morfismo-R e Ker $(\varphi) \leq_R M$, temos que a restrição de ψ a Ker (φ) , $\psi_{|\text{Ker}(\varphi)}: \text{Ker}(\varphi) \to M''$, é um morfismo-R. Pelo Teorema do Homomorfismo,

$$\operatorname{Ker}(\varphi)/\operatorname{Ker}(\psi_{|\operatorname{Ker}(\varphi)}) \simeq \psi_{|\operatorname{Ker}(\varphi)}(\operatorname{Ker}(\varphi)).$$
 (*)

Vejamos que $\operatorname{Ker}(\psi_{|\operatorname{Ker}(\varphi)}) = \operatorname{Ker}(\psi)$. É claro que

$$\operatorname{Ker}(\psi_{|\operatorname{Ker}(\varphi)}) \subseteq \operatorname{Ker}(\psi).$$

Seja $x \in \text{Ker}(\psi)$. Então, $x \in M$ e $\psi(x) = 0_{M''}$. Por hipótese, $\text{Ker}(\psi) \subseteq \text{Ker}(\varphi)$, pelo que $x \in \text{Ker}(\varphi)$. Logo, $\psi_{|\text{Ker}(\varphi)}(x)$ está definida e

$$\psi_{|\operatorname{Ker}(\varphi)}(x) = \psi(x) = 0_{M''}.$$

Portanto, $x \in \text{Ker}(\psi_{|\text{Ker}(\varphi)})$. Assim, $\text{Ker}(\psi) \subseteq \text{Ker}(\psi_{|\text{Ker}(\varphi)})$.

Verifiquemos, agora, que $\operatorname{Ker}(\theta) = \psi_{|\operatorname{Ker}(\varphi)}(\operatorname{Ker}(\varphi))$. Dado $x \in \operatorname{Ker}(\theta)$, sabemos que $x \in M''$ e $\theta(x) = 0_{M'}$. Como ψ é um epimorfismo-R e $x \in M''$, existe $m \in M$ tal que $\psi(m) = x$. Da igualdade $\theta \circ \psi = \varphi$, vem

$$\varphi(m) = \theta(\psi(m)) = \theta(x) = 0_{M'},$$

pelo que podemos concluir que $m \in \text{Ker}(\varphi)$. Logo, $x = \psi(m) \in \psi(\text{Ker}(\varphi)) = \psi_{|\text{Ker}(\varphi)}(\text{Ker}(\varphi))$.

Reciprocamente, se $x \in \psi_{|\text{Ker}(\varphi)}(\text{Ker}(\varphi))$, então existe $m \in \text{Ker}(\varphi)$ tal que $x = \psi_{|\text{Ker}(\varphi)}(m)$. Logo,

$$\theta(x) = \theta(\psi_{|\mathrm{Ker}(\varphi)}(m)) = \theta(\psi(m)) = (\theta \circ \psi)(m) = \varphi(m) = 0_{M'}$$

e, portanto, $x \in \text{Ker}\theta$.

De (*), concluímos que $Ker(\theta) \simeq Ker(\varphi)/Ker(\psi)$.

- (c) Sabemos que θ é um monomorfismo-R se e só se $\operatorname{Ker}(\theta) = \{0_{M''}\}$, o que, pela alínea (b), é equivalente a $\operatorname{Ker}(\varphi)/\operatorname{Ker}(\psi) = \{\operatorname{Ker}(\psi)\}$. Mas esta última igualdade é válida se e só se $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\psi)$.
- (d) Sabemos que θ é um isomorfismo-R se e só se for um monomorfismo-R e um epimorfismo-R. Como ψ é um epimorfismo-R e $\theta \circ \psi = \varphi$, θ é um epimorfismo-R se e só se φ é um epimorfismo-R. Logo, pela alínea anterior, θ é um isomorfismo-R se e só se $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\psi)$ e φ é um epimorfismo-R.

Notação. Sejam R um anel e M e M' dois módulos-R à direita. Representamos por $\operatorname{Hom}_R(M,M')$ o conjunto de todos os morfismos-R de M em M'.

Proposição. Sejam R um anel e M e M' dois módulos-R à direita. Então,

(a) $\operatorname{Hom}_R(M, M')$, algebrizado com a operação usual de adição de aplicações entre grupos aditivos, é um grupo abeliano;

(b) se R for um anel comutativo, é possível introduzir em $\operatorname{Hom}_R(M,M')$ uma estrutura de módulo-R, definindo, para todo o $a \in R$ e todo o $\varphi \in \operatorname{Hom}_R(M,M')$, a aplicação $\varphi a : M \to M', \ x \mapsto \varphi(xa)$.

Demonstração. [exercício]

Proposição. Sejam R um anel, M, M', M'' módulos-R à direita, $\varphi, \varphi_1, \varphi_2 \in \operatorname{Hom}_R(M, M')$ e $\psi, \psi_1, \psi_2 \in \operatorname{Hom}_R(M', M'')$. São válidas as seguintes igualdades:

(a)
$$\psi \circ (\varphi_1 + \varphi_2) = (\psi \circ \varphi_1) + (\psi \circ \varphi_2);$$

(b)
$$(\psi_1 + \psi_2) \circ \varphi = (\psi_1 \circ \varphi) + (\psi_2 \circ \varphi);$$

(c)
$$\psi \circ (-\varphi) = -(\psi \circ \varphi) = (-\psi) \circ \varphi$$
.

Demonstração. [exercício]

Notação. Sejam R um anel e M um módulo-R à direita. Representamos por $\operatorname{End}_R(M)$ o conjunto $\operatorname{Hom}_R(M,M)$ de todos os morfismos-R de M em M.

Proposição. Sejam R um anel e M um módulo-R à direita. Então,

- (a) $\operatorname{End}_R(M)$, algebrizado com as operações usuais de adição e de composição de aplicações entre grupos aditivos, é um anel unitário, que é subanel do anel $\operatorname{End}(M)$ de todos os endomorfismos de (M, +);
- (b) os automorfismos-R de M são os elementos invertíveis do anel $(\operatorname{End}_R(M), +, \circ)$;
- (c) o conjunto dos automorfismos—R de M, algebrizado com a operação de composição de aplicações, constitui um grupo, o chamado grupo linear do módulo M, que se representa por $\operatorname{Aut}_R(M)$ ou $\operatorname{GL}_R(M)$.

Demonstração. [exercício]

1.2. Somas diretas de módulos

Proposição. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. O produto cartesiano

$$P = \prod_{i \in I} M_i = \{ (x_i)_{i \in I} : \forall i \in I, x_i \in M_i \},$$

munido com as seguintes operações

$$(x_i)_{i \in I} + (y_i)_{i \in I} = (x_i + y_i)_{i \in I}$$
 $((x_i)_{i \in I}, (y_i)_{i \in I} \in P),$

$$(x_i)_{i \in I} \cdot a = (x_i a)_{i \in I} \qquad ((x_i)_{i \in I} \in P, a \in R),$$

é um módulo-R à direita.

Demonstração. [exercício]

Definição. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. Ao módulo-Rà direita $\prod M_i$ chamamos produto direto dos módulos M_i .

Se $M_i=M$ para todo o $i\in I$, então representamos $\prod M_i$ por M^I . Mais, se I tem nelementos, com $n \in \mathbb{N}$, representamos $\prod_{i \in I} M_i$ por M^n .

Por convenção, se $I = \emptyset$, $\prod_{i \in I} M_i = \{0\}$.

Proposição. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. O conjunto S definido por

$$S = \{(x_i)_{i \in I} : \forall i \in I, x_i \in M_i, x_i \text{ quase todos nulos}\}$$

é um submódulo-R do produto direto $\prod_{i \in I} M_i$.

Demonstração. [exercício]

Definição. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. Ao submódulo-R $\{(x_i)_{i\in I}: \forall i\in I, x_i\in M_i, x_i \text{ quase todos nulos}\}\ de \prod_{i\in I} M_i \text{ chamamos } soma\ direta\ externa$ $dos\ m\'odulos\ M_i$ e representamo-lo por

$$\bigoplus_{i \in I} M_i$$

Se
$$I = \emptyset$$
, então $\bigoplus_{i \in I} M_i = \{0\}$

Se os módulos-R à direita M_i , com $i \in I$, representarem todos o mesmo módulo M, representamos a soma direta externa por $M^{(I)}$.

Se I for um conjunto finito, então $\prod_{i\in I}M_i=\bigoplus_{i\in I}{}_{e}M_i$. Se I for um conjunto com 1 elemento, digamos i_0 , então $\prod_{i\in I}M_i=M_{i_0}$.

Definição. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. Para cada $j \in I$, a aplicação

$$p_j: \prod_{i \in I} M_i \to M_j$$
$$(x_i)_{i \in I} \mapsto x_j$$

designa-se por *projeção canónica* e a aplicação

$$\iota_j: M_j \to \prod_{i \in I} M_i,$$
 $x_j \mapsto (y_i)_{i \in I}$

onde $y_i = x_j$ se i = j e $y_i = 0_{M_i}$ se $i \neq j$, designa-se por inclusão canónica.

A restrição da projeção canónica p_j à soma direta externa dos módulos M_i representa-se por p'_j . A aplicação de M_j na soma direta externa dos módulos M_i que a cada $x_j \in M_j$ faz corresponder $\iota_j(x_j)$ representa-se por ι'_j .

Proposição. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. Para cada $j \in I$, p_j e p'_j são epimorfismos-R e ι_j e ι'_j são monomorfismos-R.

Demonstração. [exercício]

Proposição. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. Dados $j,k\in I$ com $j\neq k$,

$$p_j \circ \iota_j = \mathrm{id}_{M_i}$$

 \mathbf{e}

$$p_i \circ \iota_k = \varphi_0.$$

Demonstração. [exercício]

Observemos que, dado $x \in \bigoplus_{i \in I} M_i$, $x = (x_i)_{i \in I}$, com $x_i \in M_i$, x_i quase todos nulos.

Sejam $x_{i_1}, x_{i_2}, \dots, x_{i_k}$ as únicas componentes de x não nulas. Então,

$$x = (x_i)_{i \in I} = \iota'_{i_1}(x_{i_1}) + \dots + \iota'_{i_k}(x_{i_k}) = \sum_{i \in I} \iota'_{i_1}(x_i).$$

Teorema [Propriedade Universal do Produto Direto]. Sejam R um anel e $\{M_i\}_{i\in I}$ uma família de módulos-R à direita. Seja $P=\prod_{i\in I}M_i$. Então,

- (a) O módulo-R à direita P e a família de projeções $\{p_i\}_{i\in I}$ verificam a seguinte propriedade:
 - [P₁] Para todo o módulo-R à direita F e toda a família de morfismos-R $\{\varphi_i\}_{i\in I}$, com $\varphi_i:F\to M_i$ para cada $i\in I$, existe um e um só morfismo-R $f:F\to P$ tal que

$$p_i \circ f = \varphi_i$$
 para todo o $i \in I$.

(b) Sejam T um módulo-R à direita e $\{\rho_i\}_{i\in I}$, com $\rho_i: T \to M_i$ para cada $i \in I$, uma família de morfismos-R que verificam a propriedade $[P_1]$. Então, existe um isomorfismo $f: T \to P$ tal que $\rho_i = p_i \circ f$ para todo o $i \in I$.

Demonstração.

(a) Sejam F um módulo-R à direita e $\{\varphi_i\}_{i\in I}$, com $\varphi_i: F\to M_i$ para cada $i\in I$, uma família de morfismos-R. Consideremos a correspondência $f: F\to P$ definida por

$$f: F \rightarrow P$$

 $x \mapsto (\varphi_i(x))_{i \in I}$

Não é difícil de verificar que f é um morfismo-R tal que $p_i \circ f = \varphi_i$ para todo o $i \in I$, e que é único nestas condições. [exercício]

(b) Pela alínea a, existe um e um só morfismo-R $f:T\to P$ tal que

$$p_i \circ f = \rho_i$$
 para todo o $i \in I$.

Por outro lado, como T e $\{\rho_i\}_{i\in I}$ verificam a propriedade $[P_1]$, temos que existe um e um só morfismo $g: P \to T$ tal que

$$\rho_i \circ g = p_i$$
 para todo o $i \in I$.

Dado $i \in I$,

$$\rho_i \circ (q \circ f) = (\rho_i \circ q) \circ f = p_i \circ f = \rho_i$$

e

$$\rho_i \circ \mathrm{id}_T = \rho_i$$
.

Ora, por hipótese, existe um e um só morfismo-R $h: T \to T$ tal que $\rho_i \circ h = \rho_i$ para todo o $i \in I$. Logo, podemos concluir que

$$g \circ f = \mathrm{id}_T$$
,

donde segue que g é sobrejetiva e f é injetiva.

De modo análogo, para todo o $i \in I$,

$$p_i \circ (f \circ q) = (p_i \circ f) \circ q = \rho_i \circ q = p_i$$

е

$$p_i \circ \mathrm{id}_P = p_i$$
.

Por (a), existe um e um só morfismo-R $h': P \to P$ tal que $p_i \circ h' = p_i$ para todo o $i \in I$. Logo, podemos concluir que

$$f \circ g = \mathrm{id}_P$$

e, portanto, f é sobrejetiva e g é injetiva.

Assim, f é um isomorfismo, como pretendíamos mostrar.

Teorema [Propriedade Universal da Soma Direta Externa]. Sejam R um anel, $\{M_i\}_{i\in I}$ uma família de módulos-R à direita e $\overline{M}=\bigoplus_{i\in I}{}^{\mathrm{e}}M_i$.

(a) O módulo-R à direita \overline{M} e a família de inclusões $\{\iota_i'\}_{i\in I}$ verificam a seguinte propriedade:

[P₂] Para todo o módulo-R à direita F e toda a família de morfismos-R $\{\varphi_i\}_{i\in I}$, com $\varphi_i:M_i\to F$ para cada $i\in I$, existe um e um só morfismo-R $f:\overline{M}\to F$ tal que

$$f \circ \iota'_i = \varphi_i$$
 para todo o $i \in I$.

(b) Sejam T um módulo-R à direita e $\{\rho_i\}_{i\in I}$, com $\rho_i: M_i \to T$ para cada $i \in I$, uma família de morfismos-R que verificam a propriedade $[P_2]$. Então, existe um isomorfismo $f: \overline{M} \to T$ tal que $\rho_i = f \circ \iota'_i$ para todo o $i \in I$.

Demonstração. [exercício]

Definição. Sejam R um anel, M um módulo-R à direita e $\{N_i\}_{i\in I}$ uma família não vazia de submódulos-R de M. Dizemos que N é soma direta interna dos submódulos-R N_i , e escrevemos

$$\bigoplus_{i \in I} N_i,$$

se:

$$[D_1] \ N = \sum_{i \in I} N_i;$$

[D₂] Cada elemento x de N se escreve, de uma única maneira, na forma $x = \sum_{i \in I} x_i$, com $x_i \in N_i$ para cada $i \in I$.

Se I é finito, representamos $\bigoplus_{i \in I} {}^{\mathbf{i}}N_i$ por $N_1 \oplus \cdots \oplus N_k$, onde k = |I|.

Exemplo. Sejam R um anel, $\{M_i\}_{i\in I}$ uma família de módulos-R à direita e $\overline{M} = \bigoplus_{i\in I} {}^{\mathrm{e}}M_i$.

Para cada $i \in I$, seja $\overline{M}_i = \iota'_i(M_i)$, isto é,

$$\overline{M}_i = \{(x_i)_{i \in I} : x_j = 0_{M_j}, \text{ quando } j \neq i\}.$$

Então, para cada $i \in I$, \overline{M}_i é um submódulo-R de \overline{M} e $\overline{M} = \bigoplus_{i \in I} \overline{M}_i$,

Proposição. Sejam R um anel, M um módulo-R à direita, N um submódulo-R de M e $\{N_i\}_{i\in I}$ uma família de submódulos-R de M. Então, N é soma direta interna dos submódulos-R N_i se e só se a aplicação

$$g: \bigoplus_{i \in I} N_i \to N$$
$$(x_i)_{i \in I} \mapsto \sum_{i \in I} x_i$$

for isomorfismo-R.

Demonstração. [exercício]

Proposição. Sejam R um anel, M um módulo-R à direita, N um submódulo-R de M e $\{N_i\}_{i\in I}$ uma família de submódulos-R de M. Então, N é soma direta interna dos submódulos-R N_i se e só se

$$[\mathbf{D'}_1] \ N = \sum_{i \in I} N_i;$$

 $[D'_2]$ Para cada $j \in I$,

$$N_j \cap \left(\sum_{i \neq j} N_i\right) = \{0_M\}.$$

Demonstração. Admitamos que $N = \bigoplus_{i \in I} {}^{\mathrm{i}}N_i$. Então, são satisfeitas as condições $[\mathrm{D}_1]$ e

[D₂]. Para mostrar que a condição [D'₂] se verifica, tomemos $j \in I$ e $x \in N_j \cap \left(\sum_{i \neq j} N_i\right)$. Por definição de interseção de conjuntos, $x \in N_j$ e $x \in \sum_{i \neq j} N_i$. Logo,

$$x = \sum_{i \neq j} x_i,$$

onde $x_i \in N_i$ para todo o $i \in I \setminus \{j\}$. Portanto,

$$x = \sum_{i \in I} y_i = \sum_{i \in I} z_i,$$

onde $y_j = x$ e $y_i = 0_M$ para todo o $i \in I \setminus \{j\}$ e $z_j = 0_M$ e $z_i = x_i$ para todo o $i \in I \setminus \{j\}$. Por $[D_2]$, $y_i = z_i$ para todo o $i \in I$. Em particular,

$$x = y_i = z_i = 0_M$$

e, portanto,
$$N_j \cap \left(\sum_{i \neq j} N_i\right) = \{0_M\}.$$

Reciprocamente, suponhamos que são satisfeitas as condições $[D'_1]$ e $[D'_2]$. Para mostrar que a condição $[D_2]$ se verifica, tomemos $x \in N$ e suponhamos que

$$x = \sum_{i \in I} x_i = \sum_{i \in I} y_i,$$

com $x_i, y_i \in N_i$ para cada $i \in I$. Então, dado $j \in J$,

$$x_j - y_j = \sum_{i \neq j} y_i - \sum_{i \neq j} x_i,$$

ou seja,

$$x_j - y_j = \sum_{i \neq j} (y_i - x_i).$$

Ora, sendo $\{N_i\}_{i\in I}$ uma família de submódulos-R de M, temos que $x_j-y_j\in N_j$ e $y_i-x_i\in N_i$ para todo o $i\in I\setminus\{j\}$. Portanto,

$$x_j - y_j \in N_j \cap \left(\sum_{i \neq j} N_i\right) = \{0_M\},$$

pelo que $x_j - y_j = 0_M$. Assim, $x_j = y_j$ para todo o $j \in I$. Por outras palavras, x escreve-se de maneira única na forma $x = \sum_{i \in I} x_i$, com $x_i \in N_i$ para cada $i \in I$ e, portanto, [D₂] é satisfeita.

Por definição,
$$N = \bigoplus_{i \in I} {}^{\mathrm{i}} N_i$$
 . \Box

1.3. Módulos livres e sequências exatas

No que se segue, R é um anel não nulo unitário, M é um módulo-R à direita unitário e I é um conjunto não vazio.

Definição. Dizemos que $M \neq \{0\}$ é m'odulo-R livre se existir uma família $X = \{m_i\}_{i \in I}$, com $m_i \in M$, tal que todo o elemento $m \in M$ se pode escrever, de maneira única, na forma

$$m = \sum_{i \in I} m_i r_i,$$

onde $r_i \in R$ são quase todos nulos.

Neste caso, dizemos que X é base (livre) de M.

Se $M = \{0\}$, consideramos que M é um módulo-R livre de base \emptyset .

Proposição. Seja M um módulo-R livre e $X = \{m_i\}_{i \in I}$ uma base de M. Então,

- (a) $\sum_{i \in I} m_i r_i = 0 \iff r_i = 0$, para todo o $i \in I$.
- (b) Para todo o $i \in I$, $m_i R$ e R são módulos-R isomorfos.

Exemplos.

- 1. R_R é um módulo-R livre de base $\{1\}$.
- 2. $R^{(I)}$ é um módulo-R livre de base $\{e_i\}_{i\in I},$ com $e_i=(y^i_j)_{j\in I},$ onde

$$y_j^i = \begin{cases} 1, & \text{se } j = i \\ 0, & \text{se } j \neq i \end{cases}.$$

Proposição. Seja M um módulo livre não nulo de base $X = \{x_i\}_{i \in I}$. Então,

$$M = \bigoplus_{i \in I} X_i R$$
.

Demonstração. [exercício]

Lema. Seja M um módulo-R não nulo. Então, M é módulo-R livre se e só se M é isomorfo a $R_R^{(I)}$, para um certo conjunto I.

Demonstração. Admitamos que M é um módulo-R livre. Então, existe uma família $X = \{x_i\}_{i \in I}$, com $x_i \in M$, tal que todo o elemento m de M se escreve, de maneira única, na forma $m = \sum_{i \in I} m_i r_i$, onde $r_i \in R$ são quase todos nulos. Consideremos a correspondência

$$\varphi: R_R^{(I)} \longrightarrow M$$

$$(a_i)_{i \in I} \longmapsto \sum_{i \in I} x_i a_i .$$

Não é difícil de verificar que φ é um isomorfismo-R. [exercício]

Suponhamos, agora, que M é isomorfo a $R_R^{(I)}$ e seja φ um isomorfismo-R de $R_R^{(I)}$ em M. Sabemos que $R^{(I)}$ é um módulo-R livre de base $\{e_i\}_{i\in I}$, com $e_i=(y_j^i)_{j\in I}$, onde

$$y_j^i = \begin{cases} 1, & \text{se } j = i \\ 0, & \text{se } j \neq i \end{cases}.$$

Consideremos a família $X = \{\varphi(e_i)\}_{i \in I}$. Verifica-se que X é uma base de M [exercício] e, portanto, M é um módulo-R livre.

Proposição. Todo o módulo-R unitário é imagem epimorfa de um módulo-R livre.

Demonstração. Seja M um módulo-R unitário e seja $X = \{x_i\}_{i \in I}$ um conjunto de geradores de M. Consideremos a correspondência

$$\varphi: \begin{array}{ccc} \varphi: & R_R^{(I)} & \to & M \\ & \displaystyle \sum_{i \in I} e_i r_i & \mapsto & \displaystyle \sum_{i \in I} x_i r_i \end{array}.$$

Prova-se que φ é um epimorfismo-R [exercício].

Observação. Na demonstração do resultado anterior, define-se um epimorfismo-R φ de $R_R^{(I)}$ em M. Logo,

$$R_R^{(I)}/\mathrm{Ker}(\varphi) \cong \varphi(R_R^{(I)}) = M.$$

No que se segue, R é um anel.

Definição. Seja M um módulo-R à direita. Se N é um submódulo-R de M, dizemos que N é parcela direta de M se existir L submódulo-R de M tal que $M = N \oplus_i L$.

Definição. Sejam M e P módulos-R à direita. Um monomorfismo $\varphi: M \to P$ diz-se cindível se $Im(\varphi)$ for parcela direta de P. Um epimorfismo $\psi: M \to P$ diz-se cindível se $Ker(\psi)$ for parcela direta de M.

Observação. Observe-se que, se $\varphi: M \to P$ é um monomorfismo, então $\operatorname{Ker}(\varphi) = \{0\}$ e, portanto, $M = \operatorname{Ker}(\varphi) \oplus_i M$, pelo que $\operatorname{Ker}(\varphi)$ é parcela direta de M. Analogamente, se $\psi: M \to P$ é um epimorfismo, então $\operatorname{Im}(\psi) = P$ e, portanto, $P = \operatorname{Im}(\psi) \oplus_i \{0\}$, pelo que $\operatorname{Im}(\psi)$ é parcela direta de P.

Proposição. Sejam $M, P \in L \text{ m\'odulos}-R$.

- (1. Se $\varphi: M \to P$ é um morfismo-R, são equivalentes as seguintes afirmações:
 - (a) φ é um monomorfismo-R cindível.
 - (b) Existe um morfismo $-R \beta: P \to M$ tal que $\beta \circ \varphi = \mathrm{id}_M$.
- 2. Se $\psi: P \to L$ é um morfismo-R, são equivalentes as seguintes afirmações:
 - (a) ψ é um epimorfismo-R cindível.
 - (b) Existe um morfismo $-R \gamma: L \to P$ tal que $\psi \circ \gamma = \mathrm{id}_L$.

Demonstração.

1. Admitamos que φ é um monomorfismo-R cindível. Por definição, existe P_1 submódulo-R de P tal que

$$P = \operatorname{Im}(\varphi) \oplus_i P_1.$$

Seja $p \in P$. Então, existem um e um só $x \in \text{Im}(\varphi)$ e um e um só $p_1 \in P_1$ tais que $p = x + p_1$. Como $x \in \text{Im}(\varphi)$ e φ é um monomorfismo-R, existe um e um só $m \in M$ tal que $x = \varphi(m)$. Consideremos a aplicação

$$\beta: \begin{array}{ccc} \beta: & P & \to & M \\ & p & \mapsto & m \end{array},$$

onde $m \in M$ é tal que $p = \varphi(m) + p_1$. Verifiquemos que β está nas condições da afirmação (b).

Sejam $p, p' \in P$ e $a \in R$. Então, $p = \varphi(m) + p_1$ e $p' = \varphi(m') + p'_1$, para alguns $m, m' \in M$ e $p_1, p'_1 \in P_1$. Temos que

$$\beta(p + p') = \beta[(\varphi(m) + p_1) + (\varphi(m') + p'_1)]$$

= \beta[\varphi(m + m') + (p_1 + p'_1)]
= m + m' = \beta(p) + \beta(p')

e

$$\beta(pa) = \beta[(\varphi(m) + p_1)a]$$

$$= \beta[\varphi(ma) + (p_1a)],$$

$$= ma = \beta(p)a$$

pelo que β é um morfismo-R.

Vejamos, agora, se $\beta \circ \varphi = \mathrm{id}_M$. Dado $m \in M$,

$$(\beta \circ \varphi)(m) = \beta(\varphi(m)) = \beta[\varphi(m) + 0] = m = \mathrm{id}_M(m),$$

pelo que $\beta \circ \varphi = \mathrm{id}_M$.

Reciprocamente, admitamos que existe um morfismo-R β de P em M tal que $\beta \circ \varphi = \mathrm{id}_M$. Então, β é sobrejetiva e φ é injetiva e, portanto, φ é um monomorfismo-R. Mostremos que $P = \mathrm{Im}(\varphi) + \mathrm{Ker}(\beta)$.

Como $\text{Im}(\varphi)$ e $\text{Ker}(\beta)$ são submódulos-R de P, temos que

$$\operatorname{Im}(\varphi) + \operatorname{Ker}(\beta) \leq_R P.$$

Dado $p \in P$, sabemos que $\beta(p) \in M$ e $(\varphi \circ \beta)(p) \in P$. Temos que

$$p = (\varphi \circ \beta)(p) + p - (\varphi \circ \beta)(p) = \varphi(\beta(p)) + [p - (\varphi \circ \beta)(p)].$$

É claro que $\varphi(\beta(p)) \in \text{Im}(\varphi)$. Por outro lado, $p - (\varphi \circ \beta)(p) \in \text{Ker}(\beta)$, uma vez que

$$\beta[p - (\varphi \circ \beta)(p)] = \beta(p) - (\beta \circ \varphi)(\beta(p)) = \beta(p) - \beta(p) = 0.$$

Logo, $P = \operatorname{Im}(\varphi) + \operatorname{Ker}(\beta)$.

Resta mostrar que $\operatorname{Im}(\varphi) \cap \operatorname{Ker}(\beta) = \{0\}$. Dado $x \in \operatorname{Im}(\varphi) \cap \operatorname{Ker}(\beta)$, existe $m \in M$ tal que $x = \varphi(m)$ e $\beta(x) = 0$. Ora,

$$0 = \beta(x) = \beta(\varphi(m)) = (\beta \circ \varphi)(m) = \mathrm{id}_M(m) = m,$$

pelo que $x = \varphi(m) = \varphi(0) = 0$.

Vimos, assim, que as condições $[D'_1]$ e $[D'_2]$ são satisfeitas e, portanto,

$$P = \operatorname{Im}(\varphi) \oplus_i \operatorname{Ker}(\beta).$$

Assim, φ é um monomorfismo-R cindível.

Definição. Sejam $\{N_i\}_{i\in\mathbb{Z}}$ uma família de módulos-R, $\{\alpha_i\}_{i\in\mathbb{Z}}$ uma família de morfismos-R, com $\alpha_i:N_i\to N_{i+1}$. Considere-se a sequência

$$\mathscr{S} \qquad \dots \xrightarrow{\alpha_{i-2}} N_{i-1} \xrightarrow{\alpha_{i-1}} N_i \xrightarrow{\alpha_i} N_{i+1} \xrightarrow{\alpha_{i+1}} \dots$$

- 1. \mathscr{S} diz-se uma sequência exata se, para todo o $i \in \mathbb{Z}$, $\operatorname{Im}(\alpha_{i-1}) = \operatorname{Ker}(\alpha_i)$.
- 2. \mathscr{S} diz-se uma sequência exata cindível, ou simplesmente sequência cindível, se for exata e, para todo o $i \in \mathbb{Z}$, $\operatorname{Im}(\alpha_{i-1}) = \operatorname{Ker}(\alpha_i)$ for parcela direta de N_i .
- 3. Uma sequência exata curta é uma sequência exata da forma

$$\{0\} \xrightarrow{\quad \alpha \quad} N \xrightarrow{\quad f \quad} M \xrightarrow{\quad g \quad} W \xrightarrow{\quad \beta \quad} \{0\}$$

Observemos que se \mathscr{S} é uma sequência exata curta, então

Além disso, como $\operatorname{Im}(\alpha) = \operatorname{Ker}(f)$, temos que $\operatorname{Ker}(f) = \{0\}$ e, portanto, f é um monomorfismo-R. Por outro lado, como $\operatorname{Im}(g) = \operatorname{Ker}(\beta) = W$, temos que g é um epimorfismo-R. Pelo Teorema do Homomorfismo, $M/\operatorname{Ker}(g) \cong \operatorname{Im}(g)$. Ora, $\operatorname{Ker}(g) = \operatorname{Im}(f)$, $\operatorname{Im}(g) = W$ e $N \cong \operatorname{Im}(f)$. Logo,

$$M/N \cong W$$
.

Proposição. Seja \mathscr{S} a sequência $\{0\} \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} W \longrightarrow \{0\}$, onde M, N e W são módulos-R e f e g são morfismos-R. Então, \mathscr{S} é uma sequência curta exata se e só se f é um monomorfismo-R, g é um epimorfismo-R e $\mathrm{Im}(f) = \mathrm{Ker}(g)$.

Demonstração. [exercício]

Proposição. Seja \mathscr{S} a sequência exata $\{0\} \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} W \longrightarrow \{0\}$, com N, M e W módulos-R e f e g morfismos-R. Então, são equivalente as seguintes condições:

- (a) \mathscr{S} é uma sequência cindível.
- (b) Im(f) = Ker(g) é parcela direta de M.
- (c) f é monomorfismo cindível.
- (d) q é epimorfismo cindível.

Demonstração. [exercício Sugestão. Prove que $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a) e (b) \Rightarrow (d) \Rightarrow (a)$.]

Seja \mathscr{S} a sequência exata $\{0\}$ \longrightarrow N $\stackrel{f}{\longrightarrow}$ M $\stackrel{g}{\longrightarrow}$ W \longrightarrow $\{0\}$, com N, M e W módulos-R e f e g morfismos-R. Então, \mathscr{S} é cindível se e só se $\mathrm{Im}(f)=\mathrm{Ker}(g)$ é parcela direta de M, ou seja, se e só se existe um submódulo-R L de M tal que

$$M = \operatorname{Im}(f) \oplus_i L = \operatorname{Ker}(q) \oplus_i L.$$

Pelo Teorema do Homomorfismo,

$$M/N \cong W. \quad (\star)$$

Por outro lado, como $M = \text{Ker}(g) \oplus_i L$, podemos considerar o epimorfismo-R

$$p: M = \operatorname{Ker}(g) \oplus_i L \to L$$

 $k + \ell \mapsto \ell$

Novamente pelo Teorema do Homomorfismo, $M/\mathrm{Ker}(p) \cong \mathrm{Im}(p)$, ou seja, $M/\mathrm{Ker}(g) \cong L$. Como $\mathrm{Ker}(q) = \mathrm{Im}(f) \cong N$, temos que

$$M/N \cong L. \quad (\star\star)$$

Por (\star) e $(\star\star)$, temos que $L\cong W$. Então,

 \mathscr{S} é cindível se e só se $M \cong N \oplus_e W$.

Proposição. Seja $\mathscr{S} = \{0\} \longrightarrow N \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} W \longrightarrow \{0\}$ uma sequência exata.

- 1. As seguintes condições são equivalentes:
 - (a) \mathscr{S} é cindível.
 - (b) existe um morfismo-R $f_0: M \to N$ tal que $f_0 \circ f = \mathrm{id}_N$.
 - (c) existe um morfismo-R $g_0: W \to M$ tal que $g \circ g_0 = \mathrm{id}_W$.
- 2. Se \mathscr{S} for cindível, então existem morfismos-R $f_0: M \to N$ e $g_0: W \to M$ tais que $f_0 \circ f = \mathrm{id}_N$ e $g \circ g_0 = \mathrm{id}_W$ e a sequência

$$\mathscr{S}' \quad \{0\} \longrightarrow W \xrightarrow{g_0} M \xrightarrow{f_0} N \longrightarrow \{0\}$$

seja exata cindível.

Demonstração.

1. Comecemos por mostrar que (a) é equivalente a (b). Sabemos que \mathscr{S} é cindível se e só se f é um monomorfismo-R cindível e tal é equivalente a dizer que existe $f_0: M \to N$ morfismo-R tal que $f_0 \circ f = \mathrm{id}_N$.

Vejamos, agora, que (a) é equivalente a (c). Sabemos que \mathscr{S} é cindível se e só se g é um epimorfismo-R cindível. Ora, este facto é equivalente a dizer que existe $g_0: W \to M$ morfismo-R tal que $g \circ g_0 = \mathrm{id}_W$.

Verificámos, assim, que as três condições dadas são equivalentes.

2. Admitamos que \mathscr{S} é cindível. Por 1., existem morfismos-R $f_0: M \to N$ e $g_0: W \to M$ tais que $f_0 \circ f = \mathrm{id}_N$ e $g \circ g_0 = \mathrm{id}_W$. Da primeira igualdade, concluímos que f_0 é sobrejetiva e, portanto, é um epimorfismo-R. Da segunda igualdade, concluímos que g_0 é injetiva e, assim, g_0 é um monomorfismo-R.

Consideremos a sequência $\mathscr{S}' \quad \{0\} \longrightarrow W \stackrel{g_0}{\longrightarrow} M \stackrel{f_0}{\longrightarrow} N \longrightarrow \{0\}$. Pretendemos mostrar que

$$\operatorname{Im}(g_0) = \operatorname{Ker}(f_0).$$

Como \mathscr{S} é cindível, $\operatorname{Im}(f) = \operatorname{Ker}(g)$ é parcela direta de M. Então, existe M_1 submódulo-R de M tal que $M = \operatorname{Im}(f) \oplus_i M_1 = \operatorname{Ker}(g) \oplus_i M_1$.

Para todo o $m \in M$, $f_0(m) = n$ onde $m = f(n) + m_1$. Por outro lado, dado $x \in W$, $g_0(x) = m_2$, onde $m_2 \in M_1$ é tal que $g(m_2) = x$.

Mostremos, pois, que $\operatorname{Im}(g_0) = \operatorname{Ker}(f_0)$. Dado $m \in \operatorname{Ker}(f_0)$, $f_0(m) = 0_N$ e, portanto, $m = f(0_N) + m_1 = 0_M + m_1 = m_1 \in M_1$. Assim, $m = g_0(g(m)) \in \operatorname{Im}(g_0)$, pelo que

$$Ker(f_0) \subseteq Im(g_0)$$
.

Reciprocamente, consideremos $m_2 \in \text{Im}(g_0)$. Então, existe $y \in W$ tal que $g_0(y) = m_2$. Temos que

$$f_0(m_2) = f_0(g_0(y)) = f_0(0_M + g_0(y)) = 0_M,$$

uma vez que $g_0(y) \in M_1$. Portanto, $m \in \text{Ker}(f_0)$ e, portanto,

$$\operatorname{Im}(g_0) \subseteq \operatorname{Ker}(f_0).$$

Logo, \mathscr{S}' é uma sequência exata curta. Como existe um morfismo-R $g:M\to W$ tal que $g\circ g_0=\mathrm{id}_W,\,\mathscr{S}'$ é exata cindível por 1.

Lema de Zassenhauss. Se $N,\,P,\,Q$ e L são submódulos-R de M tais que $N\subseteq P$ e $Q\subseteq L,$ então

$$(N + (P \cap L))/(N + (P \cap Q)) \cong (Q + (P \cap L))/(Q + (N \cap L)).$$

Demonstração. Se $Q \subseteq L$, então $(P \cap Q) \subseteq (P \cap L)$, o que implica que $N + (P \cap L) = N + (P \cap L) + (P \cap Q)$. Pelo Teorema do Isomorfismo,

$$\begin{split} (N + (P \cap L))/(N + (P \cap Q)) &= [(P \cap L) + (N + (P \cap Q))]/(N + (P \cap Q)) \\ &\cong (P \cap L)/[(P \cap L) \cap (N + (P \cap Q)) \\ &= (P \cap L)/((P \cap L \cap N) + (P \cap Q)) \\ &= (P \cap L)/((N \cap L) + (P \cap Q)) \end{split}$$

De modo análogo, como $N \subseteq P$, temos que $N \cap L \subseteq P \cap L$ e, portanto, $Q + (P \cap L) = Q + (P \cap L) + (N \cap L)$. Logo,

$$\begin{split} (Q + (P \cap L))/(Q + (N \cap L)) &= [(P \cap L) + (Q + (N \cap L))]/(Q + (N \cap L)) \\ &\cong (P \cap L)/[(P \cap L) \cap (Q + (N \cap L)) \\ &= (P \cap L)/((P \cap L \cap Q) + (N \cap L)) \\ &= (P \cap L)/((N \cap L) + (P \cap Q)) \end{split}$$

Portanto,

$$(N + (P \cap L))/(N + (P \cap Q)) \cong (Q + (P \cap L))/(Q + (N \cap L)).$$

Definição.

1. Se existirem N_0, N_1, \ldots, N_k submódulos-R de M tais que

$$\mathscr{B}$$
 $\{0\} = N_0 \subset N_1 \subset \cdots \subset N_k = M$,

dizemos que \mathscr{B} é uma cadeia normal de submódulos-R de M. Dado $i \in \{1, \ldots, k\}$, a N_i/N_{i-1} chamamos o i-ésimo fator da cadeia \mathscr{B} .

2. Se existirem L_0, L_1, \ldots, L_r submódulos-R de M tais que

$$\mathscr{B}$$
 $\{0\} = L_0 \subsetneq L_1 \subsetneq \cdots \subsetneq L_r = M$,

dizemos que a cadeia \mathscr{B} tem comprimento r.

3. Sejam $\mathscr{B} \{0\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_k = M$ e $\mathscr{C} \{0\} = P_0 \subseteq P_1 \subseteq \cdots \subseteq P_t = M$ cadeias normais de submódulos-R de M. Diz-se que as cadeias são isomorfas, e escreve-se $\mathscr{B} \cong \mathscr{C}$, se existir uma bijeção δ entre os conjuntos $I = \{1, \ldots, k\}$ e $J = \{1, \ldots, r\}$ tal que

$$N_i/N_{i-1} \cong P_{\delta(i)}/P_{\delta(i)-1}$$
.

- 4. A cadeia \mathscr{C} diz-se um refinamento da cadeia \mathscr{B} e \mathscr{B} uma subcadeia de \mathscr{C} se as cadeias forem iguais ou se a cadeia \mathscr{B} se obtiver de \mathscr{C} por omissão de alguns elementos da cadeia.
- 5. A cadeia $\mathscr{B} \{0\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_k = M$ diz-se uma série de composição de M se, para todo o $i \in \{1, \ldots, k\}$, N_{i-1} for submódulo maximal de N_i (ou, equivalentemente, se N_i/N_{i-1} for módulo simples).
- 6. M diz-se um m'odulo-R de comprimento finito se M for m\'odulo nulo ou admitir uma série de composição.

Proposição. O isomorfismo de cadeias é uma relação de equivalência no conjunto das cadeias de M

Demonstração. [exercício]

Exemplos.

1. Seja K um corpo e seja E um espaço vetorial sobre K, de base (e_1, \ldots, e_n) . Então,

$$\{0\} \subsetneq \langle e_1 \rangle \subsetneq \langle e_1, e_2 \rangle \subsetneq \cdots \subsetneq \langle e_1, \dots, e_n \rangle = E.$$

Dado $j \in \{1, \ldots, n\}$, seja L submódulo-K de E tal que $\langle e_1, \ldots, e_j \rangle \subseteq L \subseteq \langle e_1, \ldots, e_j, e_{j+1} \rangle$. Então, $\dim(L) \in \{j, j+1\}$. Mais, se $\dim(L) = j$, então $L = \langle e_1, \ldots, e_j \rangle$. Por outro lado, se $\dim(L) = j+1$, então $L = \langle e_1, \ldots, e_j, e_{j+1} \rangle$.

Portanto, a série considerada é uma série de composição.

2. Consideremos o anel \mathbb{Z} e o módulo $-\mathbb{Z}$ $\mathbb{Z}_{\mathbb{Z}}$. Suponhamos que N é um submódulo $-\mathbb{Z}$ de $\mathbb{Z}_{\mathbb{Z}}$ tal que $\{0\} \subsetneq N \subsetneq \mathbb{Z}$. Então, N é um ideal de \mathbb{Z} . Ora, \mathbb{Z} é domínio de ideais principais, pelo que existe $t \in \mathbb{Z}$ tal que $N = t\mathbb{Z}$. Como $N \neq \{0\}$ e $N \neq \mathbb{Z}$, temos que $t \in \mathbb{Z} \setminus \{-1,0,1\}$. Temos, pois,

$$\{0\} \subsetneq t\mathbb{Z} \subsetneq \mathbb{Z}.$$

Mais,

$$\{0\} \subsetneq t^2 \mathbb{Z} \subseteq t \mathbb{Z} \subsetneq \mathbb{Z}.$$

Suponhamos que $t^2\mathbb{Z} = t\mathbb{Z}$. Então, existe $a \in \mathbb{Z}$ tal que $t = t^2a$, pelo que ta = 1 e, portanto, t = 1 ou t = -1, o que contradiz a nossa hipótese. Assim,

$$\{0\} \subsetneq t^2 \mathbb{Z} \subsetneq t \mathbb{Z} \subsetneq \mathbb{Z}.$$

De modo análogo, concluímos que

$$\{0\} \subsetneq t^4 \mathbb{Z} \subsetneq t^2 \mathbb{Z} \subsetneq t \mathbb{Z} \subsetneq \mathbb{Z}$$

e assim sucessivamente, pelo que $\mathbb Z$ não admite série de composição.

3. Consideremos o anel \mathbb{Z} e o módulo $-\mathbb{Z}$ $\mathbb{Z}/6\mathbb{Z}$. As cadeias

$$\mathscr{B} \quad \{6\mathbb{Z}\} \subseteq 2\mathbb{Z}/6\mathbb{Z} \subseteq \mathbb{Z}/6\mathbb{Z}$$

 \mathbf{e}

$$\mathscr{C} \quad \{6\mathbb{Z}\} \subseteq 3\mathbb{Z}/6\mathbb{Z} \subseteq \mathbb{Z}/6\mathbb{Z}$$

são isomorfas.

Proposição. Sejam $\mathscr{B} \{0\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_k = M$ uma série de composição de M e $\mathscr{C} \{0\} = P_0 \subseteq P_1 \subseteq \cdots \subseteq P_t = M$ uma cadeia normal de M isomorfa a \mathscr{B} . Então, \mathscr{C} é uma série de composição de M.

Demonstração. [exercício]

Teorema de Shreier. Quaisquer duas cadeias normais de submódulos-R de M admitem refinamentos isomorfos.

Demonstração. Sejam

$$\mathscr{B}$$
 $\{0\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_k = M$

e

$$\mathscr{C} \quad \{0\} = P_0 \subseteq P_1 \subseteq \dots \subseteq P_t = M$$

cadeias normais de submódulos-R de M. Sejam $I=\{0,1,\ldots,k\}$ e $J=\{0,1,\ldots,t\}$. Para cada $i\in I\setminus\{k\}$, consideremos

$$N_{i,j} = N_i + (N_{i+1} \cap P_i)$$
, para cada $j \in J$.

De modo análogo, para cada $j \in J \setminus \{t\}$, consideremos

$$P_{i,j} = P_i + (P_{i+1} \cap N_i)$$
, para cada $i \in I$.

Não é difícil de verificar que $N_{i,0}=N_i$, $N_{i,t}=N_{i+1}$, $N_{i,j}\subseteq N_{i,j+1}$, $P_{0,j}=P_j$, $P_{k,j}=P_{j+1}$ e $P_{i,j}\subseteq P_{i+1,j}$ [exercício].

Desta forma, obtemos os seguintes refinamentos:

$$\mathscr{B}^* \quad \{0\} = N_0 = N_{0,0} \subseteq N_{0,1} \subseteq \quad N_{0,t} = N_1 = N_{1,0} \subseteq \cdots \subseteq N_{1,t} \subseteq \cdots \subseteq N_{k-1,t} = N_k = N_{k-1,0} \subseteq N_{k-1,t} \subseteq \cdots \subseteq N_{k-1,t} = N_k = M_{k-1,0} \subseteq N_{k-1,t} \subseteq \cdots \subseteq N_{k-1,t} = N_k = M_{k-1,0} \subseteq N_{k-1,t} \subseteq \cdots \subseteq N_{k-1,t} = N_k = M_{k-1,0} \subseteq N_{k-1,t} \subseteq \cdots \subseteq N_{k-1,t} \subseteq \cdots$$

 \mathbf{e}

$$\mathscr{C}^* \quad \{0\} = P_0 = P_{0,0} \subseteq P_{1,0} \subseteq \quad P_{k,0} = P_1 = P_{0,1} \subseteq \dots \subseteq P_{k,1} \subseteq \dots \subseteq P_{k,t-1} = P_{t-1} = P_{0,t-1} \subseteq P_{1,t-1} \subseteq \dots \subseteq P_{k,t-1} = P_t = M.$$

Em cada cadeia, temos kt + 1 submódulos-R de M. Mais, pelo Lema de Zassenhauss,

$$N_{i,j+1}/N_{i,j} = (N_i + (N_{i+1} \cap P_{j+1}))/(N_i + (N_{i+1} \cap P_j)) \cong (P_j + (N_{i+1} \cap P_{j+1}))/(P_j + (N_i \cap P_{j+1})) = P_{i+1,j}/P_{i,j}.$$

Teorema de Jordan-Hölder. Seja M um módulo-R não nulo e de comprimento finito. Então,

(a) Toda a cadeia normal de M do tipo

$$\mathscr{D}$$
 $\{0\} = L_0 \subsetneq L_1 \subsetneq \cdots \subsetneq L_r = M$

admite um refinamento que é uma série de composição.

(b) Quaisquer duas séries de composição são isomorfas.

Demonstração. [exercício]

Definição. Seja M um módulo-R de comprimento finito. Se M for não nulo, dá-se o nome de comprimento de M, e representa-se por $\mathcal{L}(M)$, ao comprimento de qualquer uma das séries de composição de M.

Se $M = \{0\}$, então consideramos $\mathcal{L}(M) = 0$.

Proposição. Seja N um submódulo-R de M. Então,

- (a) M é módulo-R de comprimento finito se e só se N e M/N forem módulos de comprimento finito.
- (b) Se M for um módulo-R de comprimento finito, então $\mathcal{L}(M) = \mathcal{L}(N) + \mathcal{L}(M/N)$.

Demonstração. Sabemos que $\{0\} \subseteq N \subseteq M$.

Se $N=\{0\}$, então $M/N=M/\{0\}\cong M$ e, portanto, $\mathcal{L}(M)=\mathcal{L}(M/N)=0+\mathcal{L}(M/N)=\mathcal{L}(N)+\mathcal{L}(M/N)$.

Se N=M, então $M/N=M/M=\{M\}$, pelo que $\mathcal{L}(M/N)=0$ e

$$\mathscr{L}(M) = \mathscr{L}(N) = \mathscr{L}(N) + 0 = \mathscr{L}(N) + \mathscr{L}(M/N).$$

Se
$$M = \{0\}$$
, então $\mathcal{L}(M) = \mathcal{L}(N) = \mathcal{L}(M/N) = 0$.

Resta, pois, provar o resultado para quando temos a cadeia $\mathscr{B} \{0\} \subsetneq N \subsetneq M$. Comecemos por demonstrar 1. Nesse sentido, admitamos que M é módulo-R de comprimento finito. Como M é não nulo, pelo Teorema de Jordan-Hölder, a cadeia \mathscr{B} admite um refinamento que é série de composição de M, digamos

$$\mathscr{B}^*$$
 $\{0\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_k = N \subseteq N_{k+1} \subseteq \cdots \subseteq N_{k+r} = M.$

Ora, a cadeia $\mathscr{C} = \{0\} = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_k = N$ é série de composição de N. Logo, N é módulo-R de comprimento finito e $\mathscr{L}(N) = k$.

Consideremos, agora, a cadeia de M/N

$$\mathscr{D}$$
 $\{N\} = N/N = N_k/N \subsetneq N_{k+1}/N \subsetneq \cdots \subsetneq N_{k+r}/N = M/N.$

Sabemos que, para todo o $i \in \{1, \ldots, r\}$,

$$(N_{k+i}/N)/(N_{k+i-1}/N) \cong N_{k+i}/N_{k+i-1}.$$

Como N_{k+i}/N_{k+i-1} é um módulo-R simples, também $(N_{k+i}/N)/(N_{k+i-1}/N)$ o é. Logo, N_{k+i-1}/N é submódulo-R maximal de N_{k+i}/N e \mathscr{D} é série de composição de M/N. Logo, M/N é módulo-R de comprimento finito e $\mathscr{L}(M/N) = r$.

Reciprocamente, suponhamos que N e M/N são módulos-R de comprimento finito. Sejam

$$\mathscr{C} \quad \{0\} = N_0 \subsetneq N_1 \subsetneq \cdots \subsetneq N_k = N$$

uma série de composição de N e

$$\mathscr{D}$$
 $\{N\} = \overline{P_0} \subsetneq \overline{P_1} \subsetneq \cdots \subsetneq \overline{P_r} = M/N$

uma série de composição de M/N. Então, para todo o $j \in \{0, ..., r\}$, existe P_j submódulo-R de M tal que

$$\overline{P_j} = P_j/N.$$

Consideremos a cadeia

$$\mathscr{B}$$
 $\{0\} = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_k = N = P_0 \subseteq P_1 \subseteq \cdots \subseteq P_r = M.$

Sabemos que N_i/N_{i-1} é módulo-R simples, para todo o $i \in \{1, \ldots, k\}$. Como

$$P_j/P_{j-1} \cong (P_j/N)/(P_{j-1}/N) = \overline{P_j}/\overline{P_{j-1}}$$

e $\overline{P_j}/\overline{P_{j-1}}$ é um módulo-R simples, para todo o $j \in \{1, \ldots, r\}$, podemos concluir que \mathscr{B} é série de composição de M e M tem comprimento finito. Mais,

$$\mathcal{L}(M) = k + r = \mathcal{L}(N) + \mathcal{L}(M/N).$$

Corolário. Seja M um módulo-R de comprimento finito.

- (a) Se M' for isomorfo a M, então M' é de comprimento finito e $\mathcal{L}(M') = \mathcal{L}(M)$.
- (b) Se N e P forem submódulos-R de M tais que $N \subseteq P$ e $\mathcal{L}(N) = \mathcal{L}(P)$, então N = P.

Demonstração. [exercício]

Sejam M um módulo-R não nulo e de comprimento finito. Suponhamos que N é submódulo-R de M e P é submódulo maximal de N. A cadeia

$$\{0\}\subseteq P\subsetneq N\subseteq M$$

admite um refinamento que é série de composição de M. Um dos fatores da cadeia é N/P. Como todas as séries de composição são isomorfas, N/P é, a menos de um isomorfismo, fator de todas as séries de composição de M.

1.4. Módulos projetivos

No que se segue, R é um anel não nulo e unitário e todos os módulos-R são unitários.

Definição. Um módulo-R P diz-se um módulo projetivo se, para todos os módulos-R M e N, todo o morfismo-R $g: P \to N$ e todo o epimorfismo-R $f: M \to N$, existe um morfismo-R $h: P \to M$ tal que $f \circ h = g$.

Observemos que $f: M \to N$ é um epimorfismo se e só se a sequência $M \xrightarrow{f} N \xrightarrow{\varphi_0} \{0\}$ é exata, ou seja, $\operatorname{Im}(f) = \operatorname{Ker}(\varphi_0) = N$

Exemplo. O módulo R_R é um módulo projetivo. De facto, se M e N forem módulos-R, $g: P \to N$ um morfismo-R e $f: M \to N$ um epimorfismo-R, então, como R é unitário, $1 \in R$ e $g(1) \in N$, e, assim, existe $m \in M$ tal que f(m) = g(1). Se considerarmos a correspondência

$$\begin{array}{ccc} h: & R_R & \longrightarrow & M, \\ & r & \longmapsto & mr \end{array}$$

facilmente verificamos que h é um morfismo-R tal que $f\circ h=g.$ [exercício]

Proposição. Seja $\{M_i\}_{i\in I}$ uma família de módulos-R. Então, $\bigoplus_{i\in I} M_i$ é um módulo projetivo se e só se M_i é um módulo projetivo, para todo o $i\in I$.

Demonstração. Admitamos que, para cada $i \in I$, M_i é um módulo projetivo. Sejam M, N módulos, $g: \bigoplus_{i \in I} M_i \to N$ um morfismo-R e $f: M \to N$ um epimorfismo-R. Dado $j \in I$, $\iota'_j: M_j \to \bigoplus_{i \in I} M_i$ é um morfismo-R. Logo, $g \circ \iota'_j: M_j \to N$ é um morfismo-R.

Como M_j é um módulo projetivo, existe $h_j: M_j \to M$ morfismo-R tal que $f \circ h_j = g \circ \iota'_j$.

Pela Propriedade Universal da Soma Direta, existe um e um só morfismo-R $h:\bigoplus_{i\in I}M_i\to M$ tal que

$$h \circ \iota'_j = h_j,$$

para todo o $j \in I$.

Em seguida verificamos que $f \circ h = g$.

Ora, dado
$$x \in \bigoplus_{i \in I} M_i$$
, $x = (x_i)_{i \in I} = \sum_{j \in I} \iota'_j(x_j)$. Logo,

$$(f \circ h)(x) = (f \circ h) \left(\sum_{j \in I} \iota'_j(x_j) \right) = f \left[h \left(\sum_{j \in I} \iota'_j(x_j) \right) \right]$$

$$= f \left(\sum_{j \in I} (h \circ \iota'_j)(x_j) \right) = f \left(\sum_{j \in I} h_j(x_j) \right)$$

$$= \sum_{j \in I} (f \circ h_j)(x_j) = \sum_{j \in I} (g \circ \iota'_j)(x_j)$$

$$= g \left(\sum_{j \in I} \iota'_j(x_j) \right) = g(x).$$

Por definição, $\bigoplus_{i \in I} M_i$ é um módulo projetivo.

Admitamos, agora, que $\bigoplus_{i \in I} M_i$ é módulo projetivo. Pretendemos mostrar que, dado $j \in I$, M_j é módulo projetivo. Consideremos, pois, M e N módulos-R, $g_j: M_j \to N$ um morfismo-R e $f: M \to N$ epimorfismo-R.

Temos que $\iota_j': M_j \to \bigoplus_{i \in I} M_i$ e $g_j: M_j \to N$ são morfismos-R, para todo o $j \in I$. Pela

Propriedade Universal da Soma Direta, existe um morfismo $g:\bigoplus_{i\in I}M_i\to M$ tal que $g\circ\iota_j'=g_j$.

Como $\bigoplus_{i \in I} M_i$ é um módulo projetivo, existe um morfismo $h : \bigoplus_{i \in I} M_i \to M$ tal que $f \circ h = g$.

Consideremos $h_j: M_j \to M$ tal que $h_j = h \circ \iota'_j$. Como h_j é a composição de dois morfimos-R, h_j é um morfismo-R. Dado $x_j \in M_j$,

$$(f \circ h_j)(x_j) = f[h_j(x_j)] = f\{h[\iota'_j(x_j)]\} = (f \circ h)[\iota'_j(x_j)] = (g \circ \iota'_j)(x_j) = g_j(x_j).$$

Assim, h_j é um morfismo-R tal que $f \circ h_j = g_j$.

Portanto, M_j é módulo projetivo.

Proposição. Todo o módulo-R isomorfo a um módulo projetivo é também um módulo projetivo.

Demonstração. [exercício]

Proposição. Todo o módulo-R livre é projetivo.

Demonstração. [exercício]

Corolário. Todo o módulo-R (unitário) é imagem epimorfa de um módulo projetivo.

Demonstração. [exercício]

Teorema. Seja P um módulo-R. Então, são equivalentes as seguintes condições:

- (a) P é módulo projetivo.
- (b) Toda a sequência exata $\{0\} \longrightarrow M' \longrightarrow M \stackrel{f}{\longrightarrow} P \longrightarrow \{0\}$ é cindível.
- (c) P é isomorfo a uma parcela direta dum módulo-R livre.

Demonstração. Comecemos por mostrar que (a) implica (b). Consideremos a sequência exata $\{0\} \longrightarrow M' \longrightarrow M \stackrel{f}{\longrightarrow} P \longrightarrow \{0\}$. Como M e P são módulos-R, a aplicação $\mathrm{id}_P: P \to P$ é um morfismo-R e $f: M \to P$ é um epimorfismo-R, sabemos que existe $h: P \to M$ morfismo-R tal que $f \circ h = \mathrm{id}_P$ (uma vez que P é módulo projetivo).

$$\begin{cases}
P \\
 & \text{id}_{P}
\end{cases}$$

$$\{0\} \longrightarrow M' \longrightarrow M \xrightarrow{f} P \longrightarrow \{0\}$$

Logo, f é epimorfismo cindível e, portanto, a sequência é cindível.

Mostremos, agora, que (b) implica (c). Uma vez que P é um módulo-R unitário, sabemos que P é imagem epimorfa de um módulo-R livre. Assim, existem um módulo-R livre L e um epimorfismo-R $g: L \to P$.

Consideremos a sequência

$$\{0\} \longrightarrow \operatorname{Ker}(g) \xrightarrow{\iota} L \xrightarrow{g} P \longrightarrow \{0\}.$$

Como ι é um monomorfismo-R, g é um epimorfismo-R e $\operatorname{Im}(\iota) = \operatorname{Ker}(g)$, a sequência é exata. Por hipótese, a sequência é cindível. Logo,

$$L \cong \operatorname{Ker}(q) \oplus P$$
.

Vimos, portanto, que P é isomorfo a uma parcela direta de um módulo-R livre.

Finalmente, vejamos que (c) implica (a). Suponhamos, pois, que existem L módulo-R livre e M e N submódulos-R de L tais que $L=M\oplus_i N$ e $P\cong M$.

Como L é um módulo-R livre, L é módulo projetivo e, portanto, os seus submódulos-R M e N são também módulos projetivos. Sendo P isomorfo a M, podemos concluir que P é módulo projetivo.

Proposição. Seja P um módulo-R. Então, P é módulo projetivo se e só se P é isomorfo a uma parcela direta de todo o módulo do qual é módulo quociente.

Demonstração. Admitamos que P é módulo projetivo. Sejam M um módulo-R e N um submódulo-R de M tais que $P\cong M/N$. Dado um isomorfismo-R $\varphi:M/N\to P$, consideremos a sequência

$$\{0\} \longrightarrow N \xrightarrow{\iota} M \xrightarrow{f} P \longrightarrow \{0\},$$

onde $f: M \to P$ é definida por $f(x) = \varphi(x+N)$ para todo o $x \in M$ e ι é a inclusão. É claro que ι é um monomorfismo-R e, como φ é um isomorfismo, f é um morfismo-R. Mais, para todo o $p \in P$, existe $x \in M$ tal que $p = \varphi(x+N) = f(x)$ e, portanto, f é um epimorfismo-R. Vejamos que $\operatorname{Im}(\iota) = \operatorname{Ker}(f)$. Dado $\iota(n) \in \operatorname{Im}(\iota)$, com $n \in N$,

$$f(\iota(n)) = f(n) = \varphi(n+N) = \varphi(N) = 0_P,$$

pelo que $\iota(n) \in \text{Ker}(f)$. Por outro lado, se $x \in \text{Ker}(f)$, então

$$f(x) = 0 \Leftrightarrow \varphi(x+N) = 0 \Leftrightarrow x+N \in \text{Ker}(\varphi).$$

Como φ é um monomorfismo-R, x+N=N e, portanto, $x\in N$. Logo, $x=\iota(x)\in \mathrm{Im}(\iota)$.

Vimos, portanto, que a sequência

$$\{0\} \longrightarrow N \xrightarrow{\iota} M \xrightarrow{f} P \longrightarrow \{0\},\$$

é exata. Como P é um módulo projetivo, a sequência é cindível. Logo,

$$M \cong N \oplus P$$
.

Reciprocamente, admitamos que P é isomorfo a uma parcela direta de todo o módulo do qual é módulo quociente. Sabemos que P é imagem epimorfa de um módulo-R livre. Logo, existe L módulo-R livre e $\varphi:L\to P$ epimorfismo-R. Temos que

$$P \cong L/\mathrm{Ker}(\varphi)$$
.

Por hipótese, P é isomorfo a uma parcela direta de L, módulo-R livre. Pela proposição anterior, P é módulo projetivo.

Definição. Seja M um módulo-R.

- 1. Diz-se que uma família $\{x_i\}_{i\in I}$ de elementos de M é uma família de suporte finito se o conjunto dos $i\in I$ tais que $x_i\neq 0$ for finito.
- 2. Designa-se por forma linear sobre M todo o elemento de $M^* = \operatorname{Hom}_R(M, R_R)$.

Proposição. Sejam P um módulo-R e $X = \{x_i\}_{i \in I}$ uma família de geradores de P. São equivalentes as seguintes condições:

- (a) P é projetivo.
- (b) existe uma família $\{f_i\}$ de formas lineares sobre P tal que, para todo o $x \in P$, a família $\{f_i(x)\}_{i\in I}$ é de suporte finito e $x = \sum_{i\in I} x_i f_i(x)$.

Demonstração. Admitamos que P é projetivo. O módulo $R^{(I)}$ é um módulo-R livre de base $Y = \{e_i\}_{i \in I}$. Consideremos a aplicação inclusão de Y em $R^{(I)}$, $\iota: Y \to R^{(I)}$, e a aplicação $f: Y \to P$ definida por $f(e_i) = x_i$ para todo o $i \in I$. Então, existe um e um só morfismo-R $g: R^{(I)} \to P$ tal que $g|_Y = f$, definido por

$$g(\sum_{i \in I} e_i r_i) = \sum_{i \in I} f(e_i) r_i.$$

Mais, g é um epimorfismo-R.

Como P é projetivo, existe $h: P \to R^{(I)}$ morfismo-R tal que $g \circ h = \mathrm{id}_P$.

Para cada $j \in I$, consideremos $p'_j : R^{(I)} \to R$ e $f_j = p'_j \circ h$.

Prova-se que $\{f_i\}_{i\in I}$ é uma família de formas lineares sobre P. Mais, para todo o $x\in P$, $\{f_i(x)\}_{i\in I}$ é de suporte finito e $x=\sum_{i\in I}x_if_i(x)$. [exercício]

Reciprocamente, admitamos que existe uma família $\{f_i\}_{i\in I}$ de formas lineares sobre P tal que, para todo o $x\in P$, a família $\{f_i(x)\}_{i\in I}$ é de suporte finito e $x=\sum_{i\in I}x_if_i(x)$. Consideremos a sequência

$$\{0\} \longrightarrow \operatorname{Ker}(g) \xrightarrow{\iota} R^{(I)} \xrightarrow{g} P \longrightarrow \{0\}.$$

A aplicação $h: P \to R^{(I)}$, definida por $h(x) = \sum_{i \in I} e_i f_i(x)$, onde $x = \sum_{i \in I} x_i f_i(x)$, é um morfismo-R. Não é difícil de verificar que $g \circ h = \mathrm{id}_P$. [exercício]. Logo, g é um epimorfismo-R cindível e a sequência é cindível. Portanto,

$$R^{(I)} \cong \operatorname{Ker}(q) \oplus P.$$

Como $R^{(I)}$ é um módulo-R livre, P é um módulo projetivo.

Proposição. Sejam M um módulo-R e $M^* = \operatorname{Hom}_R(M, R_R)$. Dados $f, g \in M^*$ e $r \in R$, definimos $f + g, rf \in M^*$ por

$$(f+g)(x) = f(x) + g(x),$$
 $(rf)(x) = rf(x).$

Então, $(M^*, +)$ é um grupo abeliano e M^* é um módulo-R à esquerda.

Demonstração. [exercício]

Observemos que, dada uma forma linear $f \in M^* = \text{Hom}(M, R_R)$, Im(f) é um submódulo-R de R_R . Logo, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, $\sum_{f \in M^*} \text{Im}(f)$ é um submódulo-R de R_R ou, equivalentemente, R_R ou equivalente

ideal direito de R.

Prova-se que $\sum_{f\in M^*} \operatorname{Im}(f)$ é, de facto, um ideal de R. [exercício]

Definição. A $\sum_{f\in M^*} \mathrm{Im}(f)$ dá-se o nome de $ideal\ traço\ de\ M$ e representa-se por t(M).

Proposição. Seja P um módulo-R projetivo. Então,

- (a) P t(P) = P.
- (b) $t(P)^2 = t(P)$.

Demonstração.

(a) Como t(P) é um ideal de R, temos que $t(P) \subseteq R$. Sendo P é um módulo-R, concluímos que $P t(P) \subseteq P$. Vejamos que $P \subseteq P t(P)$.

Seja $x \in P$. Como P é projetivo, existe uma família de formas lineares $\{f_i\}_{i\in I}$ de P tal que $\{f_i(x)\}_{i\in I}$ é de suporte finito e

$$x = \sum_{i \in I} x_i f_i(x),$$

onde $\{x_i\}$ é uma família de geradores de P.

Para todo o $i \in I$, $x_i \in P$ e $f_i(x) \in \text{Im}(f_i) \subseteq t(P)$. Mais, $f_i(x)$ são quase todos nulos e, portanto, $x \in Pt(P)$.

(b) Uma vez que t(P) é ideal de R e $t(P) \subseteq R$, podemos concluir que

$$t(P)^2 = t(P) t(P) \subseteq t(P).$$

Consideremos, agora, $x \in t(P)$. Então,

$$x \in \sum_{f \in P^*} \operatorname{Im}(f),$$

ou seja,

$$x = \sum_{f \in P^*} f(y_j),$$

com $f(y_j) \in \text{Im}(f)$, para todo o $f \in P^*$, tais que $f(y_j)$ são quase todos nulos.

Por definição, para cada $f \in P^*$, temos que $y_j \in P$. Ora, P é projetivo e, assim,

$$y_j = \sum_{i \in I} x_i f_i(y_j).$$

Logo,

$$x = \sum_{f \in P^*} f\left(\sum_{i \in I} x_i f_i(y_j)\right) = \sum_{f \in P^*} \sum_{i \in I} f(x_i) f_i(y_j) \in t(P) t(P) = t(P^2).$$

Observemos que, pelo resultado anterior, para todo o $n \in \mathbb{N}$,

$$P t(P)^n = P.$$

No que se segue, R é um domínio de integridade comutativo e com identidade e K é o corpo de frações de R.

Se S é um anel e R é um subanel de S, então S é um módulo-R, uma vez que, dados $x \in S$ e $r \in R$, $xr \in S$. Ora, a correspondência

$$f: R \to K$$

$$x \mapsto \frac{x}{1}$$

é um monomorfismo-R e R é um subanel de K. Logo, K é um módulo-R.

Definição. Seja I um submódulo-R de K. Define-se

$$I^{-1} = \{ x \in K : xI \subseteq R \}.$$

Proposição. Seja I um submódulo-R de K. Então, I^{-1} é submódulo-R de K.

Demonstração. [exercício]

Por definição de I^{-1} , podemos afirmar que $I^{-1}I \subseteq R$.

Definição. Seja I um submódulo-R de K. Dizemos que I é invertível se $I^{-1}I = R$.

Exemplo. O anel dos inteiros \mathbb{Z} é um domínio de integridade comutativo e com identidade e \mathbb{Q} é o corpo das frações de \mathbb{Z} . Consideremos

$$I = \left\{ \frac{a}{2} : a \in \mathbb{Z} \right\}.$$

Facilmente se verifica que I é um submódulo $-\mathbb{Z}$ de \mathbb{Q} e que $I^{-1}=2\mathbb{Z}$. Mais, $I^{-1}I=\mathbb{Z}$. Logo, I é submódulo $-\mathbb{Z}$ de \mathbb{Q} invertível. [exercício]

Lema. Seja I um submódulo-R de K. Então, são equivalentes as seguintes condições:

- (a) I é invertível.
- (b) Existem elementos $n \in \mathbb{N}$, $q_j \in K$, $a_j \in I$, com $1 \leq j \leq n$, tais que
 - (i) $q_j I \subseteq R$, para todo o $j \in \{1, \dots, n\}$;

(ii)
$$\sum_{j=1}^{n} q_j a_j = 1$$
.

Demonstração. Admitamos que I é invertível. Então, $I^{-1}I=R$ e, portanto, $1 \in I^{-1}I$. Logo, existem $n \in \mathbb{N}, q_1, \dots, q_n \in I^{-1}, a_1, \dots, a_n \in I$ tais que

$$1 = \sum_{j=1}^{n} q_j a_j.$$

Dado $j \in \{1, ..., n\}$, como $q_j \in I^{-1}$, temos, por definição, que $q_j I \subseteq R$.

Suponhamos, agora, que existem $n \in \mathbb{N}$, $q_j \in K$, $a_j \in I$, com $1 \leq j \leq n$, tais que

(i) $q_j I \subseteq R$, para todo o $j \in \{1, \ldots, n\}$;

(ii)
$$\sum_{j=1}^{n} q_j a_j = 1$$
.

Por definição de I^{-1} , $I^{-1}I\subseteq R$. Seja $r\in R$. Então,

$$r = 1.r = \left(\sum_{j=1}^{n} q_j a_j\right) r = \sum_{j=1}^{n} (q_j a_j) r = \sum_{j=1}^{n} q_j (a_j r).$$

Como I é submódulo-R de K, $a_j \in I$, para todo o j, e $r \in R$, podemos concluir que $a_j r \in R$, para todo o j. Assim, $r = \sum_{j=1}^n q_j(a_j r)$, com $q_j \in I^{-1}$ e $a_j r \in I$, pelo que $r \in I^{-1}I$. Portanto, $I^{-1}I = R$ e I é submódulo-R invertível de K.

Proposição. Todo o submódulo-R de K que seja invertível é do tipo finito.

Demonstração. [exercício]

sugestão: mostre que se I é invertível e $1 = \sum_{j=1}^{n} q_j a_j$, então $I = \langle a_1, \dots, a_n \rangle$.

Proposição. Seja I um submódulo-R não nulo de K. Então, são equivalentes as seguintes condições:

- (a) $I \notin \text{m\'odulo} R$ projetivo.
- (b) I é invertível.

Demonstração. Admitamos que I é módulo-R projetivo e seja $X = \{x_{\alpha}\}_{{\alpha} \in L}$ uma família de geradores de I. Por hipótese, existe uma família de formas lineares sobre I, $\{f_{\alpha}\}_{{\alpha} \in L}$, tal que, para todo o $x \in I$, $\{f_{\alpha}(x)\}$ é de suporte finito e

$$x = \sum_{\alpha \in L} x_{\alpha} f_{\alpha}(x).$$

Assim, dados $x, y \in I \setminus \{0\},\$

$$\frac{f_{\alpha}(x)}{x}, \frac{f_{\alpha}(y)}{y} \in K.$$

Como $I \subseteq K$, $x = \frac{a}{b}$, $y = \frac{c}{d}$, com $a, b, c, d \in R$ todos não nulos. Portanto,

$$f_{\alpha}(x)y = f_{\alpha}\left(\frac{a}{b}\right)\frac{c}{d} = f_{\alpha}\left(\frac{ad}{bd}\right)\frac{c}{d} = f_{\alpha}\left(\frac{ac}{bd}\right)\frac{b}{b} = f_{\alpha}\left(\frac{bc}{bd}\right)\frac{a}{b} = f_{\alpha}\left(\frac{c}{d}\right)\frac{a}{b} = f_{\alpha}(y)x.$$

Logo,

$$\frac{f_{\alpha}(x)}{x} = \frac{f_{\alpha}(y)}{y}, \qquad \text{para quaisquer } x, y \in I \setminus \{0\}.$$

Como $x \in I \setminus \{0\},\$

$$x = \sum_{\alpha \in L} x_{\alpha} f_{\alpha}(x) = \left(\sum_{\alpha \in L} x_{\alpha} \frac{f_{\alpha}(x)}{x}\right) x.$$

Uma vez que $x \neq 0$ e K é corpo, podemos concluir que

$$1 = \sum_{\alpha \in L} x_{\alpha} \frac{f_{\alpha}(x)}{x}.$$

Resta-nos provar que $\frac{f_{\alpha}(x)}{x}I\subseteq R$, para todo o $\alpha\in L$. Dado $y\in I$, se y=0, então $\frac{f_{\alpha}(x)}{x}y=\frac{f_{\alpha}(x)}{x}.0=0\in R$. Se $y\neq 0$, então

$$\frac{f_{\alpha}(x)}{x}.y = \frac{f_{\alpha}(y)}{y}.y = f_{\alpha}(y) \in R.$$

Assim, I é invertível.

Admitamos, agora, que I é invertível. Então, existem $n \in \mathbb{N}, q_j \in K, a_j \in I, \text{ com } 1 \leq j \leq n,$ tais que

(i) $q_j I \subseteq R$, para todo o $j \in \{1, \ldots, n\}$;

(ii)
$$\sum_{j=1}^{n} q_j a_j = 1$$
.

Como já observámos, $I=\langle a_1,\dots,a_n\rangle$. Definamos, para cada $j\in\{1,\dots,n\}$, a correspondência

$$f_j: I \to R_R$$
$$x \mapsto q_j x$$

Facilmente se verifica que $f_j \in \text{Hom}(I, R_R) = I^*$, para todo o j [exercício]. Mais, dado $x \in I$,

$$x = 1.x = (\sum_{j=1}^{n} q_j a_j)x = \sum_{j=1}^{n} a_j(q_j x) = \sum_{j=1}^{n} a_j f_j(x).$$

Logo, I é projetivo.

No que se segue, R é um anel unitário e os módulos-R são módulos-R à direita unitários.

Definição. Sejam P, M módulos-R.

1. Dizemos que P é um m'odulo gerador de M (ou um gerador de M) se

$$M = \sum_{f \in \operatorname{Hom}_{R}(P, M)} \operatorname{Im}(f).$$

2. Dizemos que P é módulo gerador se for módulo gerador de todos os módulos-R.

Proposição. Sejam P, M módulos. Então, P é módulo gerador de M se e só se existir um conjunto não vazio $I \subseteq \operatorname{Hom}_R(P, M)$ tal que

$$M = \sum_{f \in I} \operatorname{Im}(f).$$

Demonstração. [exercício]

Definição. Sejam P, M módulos-R. Dizemos que P é gerador finito de M se existir um conjunto finito não vazio $I \subseteq \operatorname{Hom}_R(P, M)$ tal que $M = \sum_{f \in I} \operatorname{Im}(f)$.

Exemplos.

1. Se M é imagem epimorfa de P, então P é gerador finito de M. De facto, se M é imagem epimorfa de P, então existe um epimorfismo-R $\varphi: P \to M$. Por definição, $\varphi \in \operatorname{Hom}_R(P, M)$. Logo,

$$M = \operatorname{Im}(\varphi) = \sum_{f \in I} \operatorname{Im}(f), \text{ com } I = \{\varphi\}.$$

2. R_R é módulo gerador. Para mostrar este facto, consideremos M módulo-R. Dado $m \in M$, definimos a correspondência

$$\begin{array}{cccc} f_m: & R & \longrightarrow & M \\ & a & \longmapsto & ma \end{array}$$

Facilmente se verifica que f_m é um morfismo-R, para todo o $m \in M$ [exercício]. Vejamos que

$$M = \sum_{m \in M} \operatorname{Im}(f_m).$$

Para todo o $n \in M$, $n = n.1 = f_n(1) \in \text{Im}(f_n) \subseteq \sum_{m \in M} \text{Im}(f_m)$.

Dado $m \in M$, $f_m \in \operatorname{Hom}_R(R, M)$ e, portanto, $\operatorname{Im}(f_m)$ é um submódulo-R à direita de M. Logo, $\sum_{m \in M} \operatorname{Im}(f_m) \subseteq M$.

Assim, $M = \sum_{m \in M} \operatorname{Im}(f_m)$ e R_R é um módulo gerador de M.

Lema. Seja P um módulo-R. Então, são equivalentes as seguintes condições:

- (a) P é módulo gerador.
- (b) Para todo o módulo-R não nulo M e todo o submódulo próprio N de M, existe $g \in \operatorname{Hom}_R(P,M)$ tal que $\operatorname{Im}(g) \not\subseteq N$.

Demonstração. Admitamos que P é módulo gerador. Sejam M um módulo-R não nulo e N um submódulo próprio de M. Como P é gerador de M,

$$M = \sum_{f \in \operatorname{Hom}_R(P,M)} \operatorname{Im}(f).$$

Suponhamos que, para todo o $g \in \text{Hom}_R(P, M)$,

$$\operatorname{Im}(g) \subseteq N$$
.

Como $N \leq_R M$, $\sum_{g \in \operatorname{Hom}_R(P,M)} \operatorname{Im}(g) \subseteq N$. Logo,

$$M = \sum_{f \in \operatorname{Hom}_R(P, M)} \operatorname{Im}(f) \subseteq N,$$

o que contradiz o facto de N ser submódulo próprio.

Portanto, existe $g \in \operatorname{Hom}_R(P, M)$ tal que $\operatorname{Im}(g) \not\subseteq N$.

Reciprocamente, admitamos que, para todo o módulo-R não nulo M e todo o submódulo próprio N de M, existe $g \in \operatorname{Hom}_R(P, M)$ tal que $\operatorname{Im}(g) \not\subseteq N$.

Seja T um módulo-R. Pretendemos mostrar que P é um módulo gerador de T.

Se $T = \{0\}$, então $f_0: P \to T$, $x \mapsto 0_T$, é um morfismo-R. Além disso, $\text{Im}(f_0) = \{0_T\} = T$, pelo que P é um módulo gerador de T.

Admitamos, agora, que $T \neq \{0\}$. Dado $f \in \operatorname{Hom}_R(P,T)$, $\operatorname{Im}(f) \leq_R T$ e, portanto,

$$\sum_{f \in \operatorname{Hom}_R(P,T)} \operatorname{Im}(f) \subseteq T.$$

Se $\sum_{f \in \operatorname{Hom}_R(P,T)} \operatorname{Im}(f) \subsetneq T$, então $\sum_{f \in \operatorname{Hom}_R(P,T)} \operatorname{Im}(f)$ é um submódulo próprio de T. Por hipótese, existe $g \in \operatorname{Hom}_R(P,T)$ tal que

$$\operatorname{Im}(g) \not\subseteq \sum_{f \in \operatorname{Hom}_R(P,T)} \operatorname{Im}(f),$$

o que é um absurdo.

Logo,

$$\sum_{f\in \operatorname{Hom}_R(P,T)}\operatorname{Im}(f)=T$$

e P é um módulo gerador de T.

Portanto, P é um módulo gerador de todo o módulo-R, pelo que P é módulo gerador. \Box

Corolário. Seja P um módulo-R. Então, P é módulo gerador se e só se, para todos os módulos M e M' e todo o $f \in \operatorname{Hom}_R(M, M') \setminus \{f_0\}$, existir $g \in \operatorname{Hom}_R(P, M)$ tal que

$$f \circ g \in \operatorname{Hom}_R(P, M') \setminus \{f_0\}.$$

Demonstração. Admitamos que P é módulo gerador. Sejam M, M' módulos-R e seja $f \in \text{Hom}_R(M, M') \setminus \{f_0\}$. Como $f \neq f_0$, existe $x \in M$ tal que $f(x) \neq 0$. Logo,

$$Ker(f) \subseteq M$$
.

Ora, M é módulo-R e Ker(f) é um submódulo próprio de M. Sendo P um módulo gerador, pelo lema anterior, existe $g \in \operatorname{Hom}_R(P, M)$ tal que

$$\operatorname{Im}(q) \not\subseteq \operatorname{Ker}(f)$$
.

Assim, existe $x \in \text{Im}(g)$ tal que $x \notin \text{Ker}(f)$. Como $x \in \text{Im}(g)$, existe $y \in P$ tal que x = g(y). Uma vez que $x \notin \text{Ker}(f)$, sabemos que $(f \circ g)(y) = f(g(y)) = f(x) \neq 0$. Logo, existe $y \in P$ tal que $(f \circ g)(y) \neq 0$, pelo que $f \circ g \neq f_0$.

É claro que, se $f \in \operatorname{Hom}_R(M, M')$ e $g \in \operatorname{Hom}_R(P, M)$, então

$$f \circ g \in \operatorname{Hom}_R(P, M')$$
.

Admitamos, agora, que para todos os módulos M e M' e todo o $f \in \operatorname{Hom}_R(M, M') \setminus \{f_0\}$, existe $g \in \operatorname{Hom}_R(P, M)$ tal que $f \circ g \in \operatorname{Hom}_R(P, M') \setminus \{f_0\}$.

Sejam M um módulo-R não nulo e N um submódulo próprio de M. Consideremos

$$\pi_N: M \longrightarrow M/N.$$

Então, M e M/N são módulos-R e $\pi_N \in \operatorname{Hom}_R(M, M/N)$. Como N é submódulo próprio de M, existe $x \in M \setminus N$. Logo, $x + N \neq N$ e, portanto, $\pi_N(x) \neq N$. Assim,

$$\pi_N \neq f_0$$
.

Por hipótese, existe $g \in \operatorname{Hom}_R(P, M)$ tal que $\pi_N \circ g \in \operatorname{Hom}_R(P, M/N) \setminus \{f_0\}$. Como $\pi_N \circ g \neq f_0$, existe $g \in P$ tal que $(\pi_N \circ g)(y) \neq 0_{M/N}$, ou seja,

$$g(y) + N \neq N$$
.

Portanto, $g(y) \notin N$, pelo que $\operatorname{Im}(g) \not\subseteq N$ (pois $g(y) \in \operatorname{Im}(g)$ e $g(y) \notin N$). Pelo Lema anterior, P é módulo gerador.

Proposição. Seja P um módulo-R. Então, são equivalentes as seguintes condições:

- (a) P é módulo gerador.
- (b) Existem $n \in \mathbb{N}, p_1, \dots, p_n \in P$ e $f_1, \dots, f_n \in P^*$ tais que

$$1 = \sum_{i=1}^{n} f_i(p_i).$$

Demonstração. Iremos demonstrar que (b) é condição suficiente para (a). A implicação contrária fica como exercício.

Admitamos que existem $n \in \mathbb{N}, p_1, \dots, p_n \in P$ e $f_1, \dots, f_n \in P^*$ tais que $1 = \sum_{i=1}^n f_i(p_i)$.

Seja M um módulo-R. Pretendemos mostrar que P é um módulo gerador de M. Óra, dado $x \in M$,

$$x = x.1 = x \left(\sum_{i=1}^{n} f_i(p_i)\right) = \sum_{i=1}^{n} x f_i(p_i).$$

Consideremos, pois, para cada $i \in \{1, ..., n\}$, a correspondência

$$g_{x,i}: P \longrightarrow M$$
 $p \longmapsto xf_i(p).$

Não é difícil de verificar que $g_{x,i}$ é um morfismo-R. De facto, dados $p,q \in P$ e $a \in R$,

$$g_{x,i}(p+q) = xf_i(p+q) = x[f_i(p) + f_i(q)] = xf_i(p) + xf_i(q) = g_{x,i}(p) + g_{x,i}(q)$$

e

$$g_{x,i}(pa) = x f_i(pa) = x [f_i(p)a] = [x f_i(p)]a = g_{x,i}(p)a.$$

Portanto, $g_{x,i} \in \operatorname{Hom}_R(P, M)$ para todo o $i \in \{1, \dots, n\}$.

Assim, dado $x \in M$,

$$x = \sum_{i=1}^{n} x f_i(p_i) = \sum_{i=1}^{n} g_{x,i}(p_i) \in \sum_{i=1}^{n} \text{Im}(g_{x,i}).$$

Portanto, $M\subseteq \sum_{f\in \operatorname{Hom}_R(P,M)}\operatorname{Im}(f)$. Como $\sum_{f\in \operatorname{Hom}_R(P,M)}\operatorname{Im}(f)$ é um submódulo-R de M, podemos concluir que

$$M = \sum_{f \in \operatorname{Hom}_R(P, M)} \operatorname{Im}(f).$$

Assim, P é um módulo gerador de M e, por definição, P é módulo gerador.

Definição. Seja M um módulo-R. Diz-se que M é livre de torção se

$$\forall m \in M \setminus \{0\}, \forall a \in R \setminus \{0\}, ma \neq 0.$$

Proposição. Todo o módulo não nulo e livre de torção é módulo fiel.

Demonstração. [exercício]

Exemplo. O conjunto \mathbb{Z}_6 é um módulo $-\mathbb{Z}_6$. É fácil de verificar que \mathbb{Z}_6 não é livre de torção: de facto, $\bar{3}, \bar{2} \in \mathbb{Z}_6 \setminus \{\bar{0}\}$ mas $\bar{3} \cdot \bar{2} = \bar{0}$. No entanto, \mathbb{Z}_6 é um módulo fiel, uma vez que, dado $\bar{a} \in \operatorname{an}(\mathbb{Z}_6)$, temos que $\bar{b} \cdot \bar{a} = \bar{0}$, para todo o $\bar{b} \in \mathbb{Z}_6$ e, em particular, $\bar{1} \cdot \bar{a} = \bar{0}$, pelo que $\bar{a} = \bar{0}$. Assim, $\operatorname{an}(\mathbb{Z}_6) = \{\bar{0}\}$ e \mathbb{Z}_6 é um módulo fiel.

Proposição. Todo o módulo gerador é módulo fiel.

Demonstração. [exercício]

1.5. Módulos injetivos

No que se segue, R é um anel unitário e todos os módulos-R são unitários.

Definição. Seja P um módulo-R. Dizemos que P é um módulo injetivo se, para todos os módulos-R M e N, todo o morfismo-R $g:M\to P$ e todo o monomorfismo-R $f:M\to N$, existir um morfismo-R $h:N\to P$ tal que $h\circ f=g$.

Proposição. Seja $\{M_i\}_{i\in I}$ uma família de módulos-R. Então, $\prod_{i\in I} M_i$ é injetivo se e só se cada M_i é injetivo.

Demonstração. A verificação de que $\prod_{i \in I} M_i$ é injetivo sempre que cada M_i o for fica como exercício.

Admitamos que $\prod_{i\in I}M_i$ é injetivo e consideremos $j\in I$. Para mostrar que M_j é injetivo, tomemos M,N módulos $-R,\ g:M\to M_j$ morfismo-R e $f:M\to N$ monomorfismo-R. A correspondência

$$i_j: M_j \longrightarrow \prod_{i \in I} M_i$$

 $x_i \longmapsto (y_i)_{i \in I},$

onde $y_i = \left\{ \begin{array}{ll} x_j, & \text{se } i = j \\ 0, & \text{se } i \neq j \end{array} \right.$, é um monomorfismo-R. Como g é um morfismo-R, concluímos que $i_j \circ g$ é um morfismo-R. Assim, temos M,N módulos $-R,i_j \circ g: M \to \prod_{i \in I} M_i$ morfismo-R e $f: M \to N$ monomorfismo-R.

Por hipótese, existe um morfismo-R $\bar{h}: N \to \prod_{i \in I} M_i$ tal que $\bar{h} \circ f = i_j \circ g$.

Consideremos a correspondência $h:N\to M_j$ definida por

$$h(x) = (p_j \circ \bar{h})(x),$$

para todo o $x \in N$.

Como h é uma composição de morfismos-R, h é um morfismo-R. Dado $y \in M$,

$$(h \circ f)(y) = h[f(y)] = (p_j \circ \bar{h})[f(y)] = p_j[(\bar{h} \circ f)(y)] = p_j[(i_j \circ g)(y)] = (p_j \circ i_j)[g(y)] = g(y)$$

Logo, $h \circ f = g$ e, por definição, M_j é um módulo injetivo.

Corolário. Seja $\{M_i\}_{i\in F}$ uma família de módulos-R, com F finito. Então, $\bigoplus_{i\in F} M_i$ é injetivo se e só se cada M_i o for.

Corolário. Toda a parcela direta de um módulo injetivo é módulo injetivo.

Proposição. Todo o módulo isomorfo a um módulo injetivo é um módulo injetivo.

Demonstração. [exercício]

Proposição. Seja $\{M_i\}_{i\in I}$ uma família de módulos-R tais que $\bigoplus_{i\in I} M_i$ é módulo injetivo. Então, M_j também é módulo injetivo para todo o $j\in I$.

Demonstração. Seja $j \in I$. Como

$$\bigoplus_{i \in I} M_i \cong M_j \oplus \left(\bigoplus_{i \in I \setminus \{j\}} M_i\right),\,$$

concluímos que $M_j \oplus \left(\bigoplus_{i \in I \setminus \{j\}} M_i\right)$ é um módulo injetivo, pelo que tanto M_j como $\bigoplus_{i \in I \setminus \{j\}} M_i$ são módulos injetivos.

Assim, para todo o $j \in I$, M_j é um módulo injetivo.

Teorema [Critério de Baer]. Seja M um módulo-R. Então, são equivalentes as seguintes condições:

- (i) M é um módulo injetivo.
- (ii) Para todo o ideal direito I de R e todo o morfismo-R $g:I\to M$, existe $x\in M$ tal que g(a)=xa para todo o $a\in I$.

Demonstração. Admitamos que M é um módulo injetivo. Sejam I um ideal direito de R e $g:I\to M$ um morfismo-R. Como I é um ideal direito de R, I é um submódulo-R de R_R . A inclusão $\iota:I\to R_R$ é um monomorfismo-R.

Como M é injetivo, existe um morfismo-R $h:R_R\to M$ tal que $h\circ\iota=g$. Uma vez que $1\in R_R,\ h(1)\in M$. Seja x=h(1). Então, para todo o $a\in I$,

$$g(a) = (h \circ \iota)(a) = h[\iota(a)] = h(a) = h(1 \cdot a) = h(1) \cdot a = xa,$$

como pretendíamos mostrar.

Suponhamos, agora, que para todo o ideal direito I de R e todo o morfismo-R $g: I \to M$, existe $x \in M$ tal que g(a) = xa para todo o $a \in I$.

Sejam P, N módulos-R, $g: P \to M$ um morfismo-R e $f: P \to N$ um monomorfismo-R.

Consideremos

$$\mathcal{F} = \{ (N_i, h_i) : f(P) \leq_R N_i \leq_R N, h_i \in \text{Hom}_R(N_i, M), h_i \circ f = g \}.$$

Comecemos por mostrar que $\mathcal{F} \neq \emptyset$. Para tal, consideremos a correspondência

$$\begin{array}{ccc} \varphi: & f(P) & \longrightarrow & M \\ & f(p) & \longmapsto & g(p) \end{array}.$$

Então, $f(P) \leq_R N$, $\varphi \in \operatorname{Hom}_R(f(P), M)$ e $\varphi \circ f = g$ [exercício]. Logo,

$$(f(P), \varphi) \in \mathcal{F},$$

pelo que $\mathcal{F} \neq \emptyset$.

Consideremos a relação binária \leq definida em \mathcal{F} por

$$(N_i, h_i) \leq (N_j, h_j)$$
 se e só se $N_i \leq_R N_j$ e $h_j|_{N_i} = h_i$.

Iremos mostrar que \leq é uma relação de ordem parcial em \mathcal{F} .

- (i) É claro que, para todo o $(N_i, h_i) \in \mathcal{F}, N_i \leq_R N_i \in h_i|_{N_i} = h_i$, pelo que \leq é reflexiva.
- (ii) Sejam $(N_i, h_i), (N_j, h_j) \in \mathcal{F}$ tais que $(N_i, h_i) \leq_R (N_j, h_j)$ e $(N_j, h_j) \leq_R (N_i, h_i)$. Então, $N_i \leq_R N_j$ e $N_j \leq_R N_i$, donde podemos concluir que $N_i \subseteq N_j$ e $N_j \subseteq N_i$, ou seja, $N_i = N_j$. Como $h_j|_{N_i} = h_i$, temos que

$$h_j = h_j|_{N_i} = h_j|_{N_i} = h_i.$$

Portanto, $(N_i, h_i) = (N_j, h_j)$ e \leq é antissimétrica.

(iii) Sejam $(N_i, h_i), (N_j, h_j), (N_k, h_k) \in \mathcal{F}$ tais que $(N_i, h_i) \leq_R (N_j, h_j)$ e $(N_j, h_j) \leq_R (N_k, h_k)$. Então,

$$N_i \leq_R N_j$$
 e $h_j|_{N_i} = h_i$
 $N_j \leq_R N_k$ e $h_k|_{N_j} = h_j$.

Logo, $N_i \leq_R N_k$ e, como $N_i \subseteq N_j$,

$$h_k|_{N_i} = (h_k|_{N_i})|_{N_i} = h_j|_{N_i} = h_i.$$

Assim, $(N_i, h_i) \leq (N_k, h_k)$ e \leq é transitiva

Por (i)–(iii), (\mathcal{F}, \leq) é um conjunto parcialmente ordenado. Vejamos que toda a cadeia não vazia de \mathcal{F} admite majorante. Para tal, consideremos uma cadeia \mathcal{C} não vazia de \mathcal{F} e seja

$$Q = \bigcup_{(N_i, h_i) \in \mathcal{C}} N_i.$$

Então, Q é um submódulo-R de N. Definamos $h \in \operatorname{Hom}_R(Q, M)$ tal que

$$h|_{N_i}=h_i$$
.

Por definição, $(Q, h) \in \mathcal{F}$ e, para todo o $(N_i, h_i) \in \mathcal{C}$, $(N_i, h_i) \leq (Q, h)$. Logo, (Q, h) é um majorante de \mathcal{C} .

Vimos, então, que toda a cadeia não vazia de \mathcal{F} admite majorante. Pelo Lema de Zorn, \mathcal{F} admite elemento maximal. Seja (N_1, h_1) um elemento maximal de \mathcal{F} . Mostremos que $N_1 = N$.

Por definição de \mathcal{F} , $N_1 \subseteq N$. Seja $x \in N$ e definamos $I = \{a \in R : xa \in N_1\}$. Não é difícil de verificar que I é um ideal direito de R. Consideremos a correspondência

$$\begin{array}{cccc} \gamma: & I & \longrightarrow & M \\ & a & \longmapsto & h_1(xa) \end{array}.$$

Verifiquemos que γ é um morfismo-R. Dados $a, b \in I$ e $r \in R$,

$$\gamma(a+b) = h_1[x(a+b)] = h_1(xa+xb) = h_1(xa) + h_1(xb) = \gamma(a) + \gamma(b)$$

e

$$\gamma(ar) = h_1[x(ar)] = h_1[(xa)r] = h_1(xa) \cdot r = \gamma(a) \cdot r.$$

Logo, γ é um morfismo-R e, por hipótese, existe $y \in M$ tal que

$$\gamma(a) = ya,$$

para todo o $a \in I$.

Temos que $N_1 \leq_R N_1 + xR \leq_R N$ e $f(P) \leq_R N_1$. Logo,

$$f(P) \leq_R N_1 + xR$$
.

Consideremos a correspondência

$$h': N_1 + xR \longrightarrow M$$

 $n + xb \longmapsto h_1(n) + yb.$

Comecemos por verificar que h' está bem definida. Suponhamos que n + xb = n' + xb'.

$$n + xb = n' + xb' \Leftrightarrow n - n' = x(b' - b).$$

Ora, como $n - n' \in N_1$ e $b' - b \in R$, podemos concluir que $b' - b \in I$. Por definição,

$$\gamma(b'-b) = h_1[x(b'-b)] = h_1(n-n') = h_1(n) - h_1(n').$$

Por outro lado,

$$\gamma(b'-b) = y(b'-b) = yb' - yb.$$

Portanto, $h_1(n) - h_1(n') = yb' - yb$, pelo que $h_1(n) + yb = h_1(n') + yb'$, ou seja,

$$h'(n+xb) = h'(n'+xb')$$

e h' é uma função de $N_1 + xR$ em M.

Facilmente se verifica que h_1 é um morfismo-R [exercício].

Para mostrar que $h' \circ f = g$, tomemos $p \in P$. Então, $f(p) \in f(P) \subseteq N_1$ e

$$(h' \circ f)(p) = h'[f(p)] = h'[f(p) + x \cdot 0] = h_1[f(p)] + y \cdot 0 = (h_1 \circ f)(p) = g(p),$$

pelo que $h' \circ f = g$. Assim,

$$(N_1 + xR, h') \in \mathcal{F}.$$

Dado $n \in N_1$,

$$h'(n) = h'(n + x \cdot 0) = h_1(n) + y \cdot 0 = h_1(n),$$

donde

$$h'|_{N_1} = h_1.$$

Como $N_1 \leq_R N$ e $h'|_{N_1} = h_1$,

$$(N_1, h_1) \le (N_1 + xR, h').$$

Mas (N_1, h_1) é elemento maximal de \mathcal{F} e, portanto, $N_1 = N_1 + xR$. Logo, $N \subseteq N_1$.

Portanto, $(N, h_1) \in \mathcal{F}$ e existe um morfismo $-R \ h_1 : N \to M$ tal que $h_1 \circ f = g$.

Corolário. Seja P um módulo-R. Então, são equivalentes as seguintes condições:

- (a) P é módulo injetivo.
- (b) Para todo o ideal direito I de R e todo o morfismo-R $g:I\to P$, existe um morfismo-R $h:R\to P$ tal que $h\circ\iota=g$, onde $\iota:I\to R$ é a inclusão.

Demonstração. Admitamos que P é módulo injetivo. Sejam I um ideal direito de R e $g: I \to P$ um morfismo-R. Sabemos que R_R é módulo-R e I é submódulo-R de R_R .

Como P é injetivo, existe um morfismo-R $h:R_R\to P$ tal que $h\circ\iota=g$.

Reciprocamente, admitamos que, para todo o ideal direito I de R e todo o morfismo-R $g: I \to P$, existe um morfismo-R $h: R \to P$ tal que $h \circ \iota = g$.

Então, dados um ideal direito I de R e um morfismo-R $g:I\to P$, existe um morfismo-R $h:R\to P$ tal que $h\circ\iota=g$. Como $1\in R,\,h(1)\in P$. Seja x=h(1). Para todo o $a\in I$,

$$g(a) = (h \circ \iota)(a) = h[\iota(a)] = h(a) = h(1 \cdot a) = h(1) \cdot a = xa.$$

Vimos, então, que existe $x \in P$ tal que g(a) = xa para todo o $a \in I$. Pelo Critério de Baer, P é módulo injetivo.

Definição. Sejam R um domínio de integridade comutativo e com identidade e M um módulo-R. Dizemos que M é um módulo-R divisível se, para todo o $r \in R \setminus \{0\}$, se tiver Mr = M, isto é,

$$\forall x \in M, \forall r \in R \setminus \{0\}, \exists y \in M : x = yr.$$

Exemplo. Consideremos o grupo abeliano $(\mathbb{Q}, +)$. Então, \mathbb{Q} é módulo $-\mathbb{Z}$ à esquerda. Mais,

$$\forall \frac{p}{q} \in \mathbb{Q}, \ \forall r \in \mathbb{Z} \setminus \{0\}, \ \frac{p}{q} = \frac{p}{qr}r, \ \mathrm{com} \ \frac{p}{qr} \in \mathbb{Q}.$$

Logo, \mathbb{Q} é módulo $-\mathbb{Z}$ divisível.

Proposição. Seja R um domínio de integridade comutativo. Então,

- (a) Todo o módulo quociente de um módulo-R divisível é módulo-R divisível.
- (b) A soma direta de módulos-R divisíveis é um módulo-R divisível.

Demonstração. [exercício]

Proposição. Sejam R um domínio de integridade comutativo e M um módulo livre de torção. Se M é divisível, então M é injetivo.

Demonstração. Admitamos que M é divisível. Sejam I um ideal direito de R e $g: I \to M$ um morfismo-R.

Se $g = \varphi_0$, então, para todo o $a \in I$,

$$g(a) = 0_M = 0_M \cdot a.$$

Logo, existe $x = 0_M \in M$ tal que g(a) = xa para todo o $a \in I$.

Admitamos, agora, que $g \neq \varphi_0$. Então, existe $b \in I$ tal que $g(b) \neq 0_M$. Como g é morfismo-R, podemos concluir que $b \neq 0_R$. Ora, M é divisível e $g(b) \in M$, $b \in R \setminus \{0\}$. Logo, existe $y \in M$ tal que g(b) = yb.

Seja $a \in I$. Pretendemos mostrar que g(a) = ya. Como R é comutativo, ab = ba e, portanto,

$$g(a)b = g(ab) = g(ba) = g(b)a = (yb)a = y(ba) = y(ab) = (ya)b.$$

Assim, $g(a)b - (ya)b = 0_M$, ou seja, $[g(a) - ya]b = 0_M$. Uma vez que M é livre de torção e $b \neq 0_R$, temos que $g(a) - ya = 0_M$, isto é,

$$g(a) = ya.$$

Assim, existe $y \in M$ tal que g(a) = ya para todo o $a \in I$.

Pelo Critério de Baer, M é injetivo.

Proposição. Sejam R um domínio de integridade comutativo e com identidade e K o corpo de frações de R. Então, todo o espaço vetorial sobre K é um módulo-R injetivo.

Demonstração. [exercício]

Proposição. Seja R um domínio de ideais principais. Então um módulo-R é injetivo se e só se for divisível.

Demonstração. Seja M um módulo-R.

Admitamos que M é um módulo injetivo. Dados $m \in M$ e $r \in R \setminus \{0\}$, rR é ideal direito de R. Consideremos a correspondência

$$\begin{array}{cccc} f: & rR & \longrightarrow & M \\ & rs & \longmapsto & ms \end{array}$$

Comecemos por mostrar que f é uma aplicação. Dado $x \in rR$, existe $s \in R$ tal que x = rs. Sendo M um módulo-R, $ms \in M$. Logo, $f(x) = f(rs) = ms \in M$.

Se $rs, rs' \in rR$ são tais que rs = rs', então rs - rs' = 0, ou seja, r(s - s') = 0. Como R é um domínio de integridade e $r \neq 0$, s - s' = 0, isto é, s = s'. Logo,

$$f(rs) = ms = ms' = f(rs').$$

Vejamos, agora, que f é um morfismo-R. Sejam $rs, rs' \in rR$ e $a \in R$. Então,

$$f(rs + rs') = f[r(s + s')] = m(s + s') = ms + ms' = f(rs) + f(rs')$$

$$f[(rs)a] = f[r(sa)] = m(sa) = (ms)a = f(rs)a.$$

Ora, rR é ideal direito de R e $f: rR \to M$ é um morfismo-R. Como M é injetivo, existe $x \in M$ tal que f(rs) = x(rs) para todo o $rs \in rR$. Em particular, como $1 \in R$ e $r = r \cdot 1$, temos que

$$m = m \cdot 1 = f(r \cdot 1) = x(r \cdot 1) = xr.$$

Vimos, pois, que, dados $m \in M$ e $r \in R \setminus \{0\}$, existe $x \in M$ tal que m = xr. Portanto, M é divisível.

Admitamos, agora, que M é um módulo-R divisível. Sejam I um ideal direito de R e $g:I\to M$ um morfismo-R.

Como R é comutativo e I é um ideal direito de R, podemos concluir que I é um ideal de R. Além disso, sendo R um domínio de ideais principais, existe $x \in I$ tal que I = xR.

Se $I = \{0_R\}$, então $g(0_R) = 0_M = 0_M \cdot 0_R$. Suponhamos, então, que $I \neq \{0_R\}$. Como I = xR, temos que $x \neq 0_R$. Sendo M divisível e $g(x) \in M$, $x \in R \setminus \{0\}$, existe $y \in M$ tal que g(x) = yx.

Ora, dado $a \in I$, existe $r \in R$ tal que a = xr e, portanto,

$$g(a) = g(xr) = g(x)r = (yx)r = y(xr) = ya.$$

Assim, existe $y \in M$ tal que g(a) = ya para todo o $a \in I$ e, pelo Critério de Baer, M é injetivo.

Se D é um grupo abeliano aditivo, então D é um módulo $-\mathbb{Z}$. Um anel R é também um módulo $-\mathbb{Z}$. Assim, faz sentido falar do grupo abeliano aditivo $\operatorname{Hom}_{\mathbb{Z}}(R,D)$. Este grupo é, de facto, um módulo-R à direita e à esquerda, se considerarmos as seguintes ações: dados $f \in \operatorname{Hom}_{\mathbb{Z}}(R,D)$ e $r \in R$, definimos $fr \in rf$ em $\operatorname{Hom}_{\mathbb{Z}}(R,D)$ por

Lema. Sejam R um anel e D um módulo $-\mathbb{Z}$ divisível. Então, $\operatorname{Hom}_{\mathbb{Z}}(R,D)$ é módulo-R à direita injetivo.

Demonstração. Sejam I um ideal direito de R e $f: I \to \operatorname{Hom}_{\mathbb{Z}}(R, D)$ um morfismo-R. Pretendemos mostrar que existe $g \in \operatorname{Hom}_{\mathbb{Z}}(R, D)$ tal que f(a) = ga para todo o $a \in I$. Consideremos a correspondência

$$\overline{f}: I \longrightarrow D$$
 $a \longmapsto f(a)(1)$

Dados $a, b \in I$, se a = b então f(a) = f(b) e, portanto, f(a)(1) = f(b)(1). Logo, \overline{f} está bem definida.

Vejamos que \overline{f} é um morfismo $-\mathbb{Z}$. Sejam $a, b \in I$ e $n \in \mathbb{Z}$. Então,

$$\overline{f}(a+b) = f(a+b)(1) = (f(a)+f(b))(1) = f(a)(1)+f(b)(1) = \overline{f}(a)+\overline{f}(b)$$

 \mathbf{e}

$$\overline{f}(na) = f(na)(1) = [nf(a)](1) = n \cdot f(a)(1) = n\overline{f}(a).$$

Logo, $\overline{f} \in \text{Hom}_{\mathbb{Z}}(I, D)$.

Como D é divisível e \mathbb{Z} é um domínio de ideais principais, D é um módulo injetivo. Por definição, existe um morfismo $-\mathbb{Z}$ $g:R\to D$ tal que $g\circ\iota=\overline{f}$.

Em seguida, mostramos que f(a) = ga para todo o $a \in I$. Sejam $a \in I$ e $r \in R$. Então,

$$f(a)(r) = f(a)(r \cdot 1) = (f(a) \cdot r)(1) = f(ar)(1) = \overline{f}(ar) = (g \circ \iota)(ar) = g(ar) = ga(r).$$

Logo, f(a) = ga. Pelo Critério de Baer, $\operatorname{Hom}_{\mathbb{Z}}(R,D)$ é um módulo-R à direita injetivo. \square

Proposição. Todo o módulo $-\mathbb{Z}$ é submódulo de um módulo $-\mathbb{Z}$ divisível.

Demonstração. Seja M um módulo $-\mathbb{Z}$. Como todo o módulo é imagem epimorfa de um módulo livre, existe L módulo $-\mathbb{Z}$ livre tal que M é imagem epimorfa de L, isto é,

$$\exists K \leq_{\mathbb{Z}} L : M \cong L/K.$$

Sendo L um módulo $-\mathbb{Z}$ livre, $L \cong \mathbb{Z}^{(I)}$ para algum conjunto I. Então,

$$M \cong \mathbb{Z}^{(I)}/K \leq_{\mathbb{Z}} \mathbb{Q}^{(I)}/K.$$

Ora, $\mathbb{Q}^{(I)}$ é um módulo $-\mathbb{Z}$ divisível pois \mathbb{Q} é um módulo $-\mathbb{Z}$ divisível e a soma direta de módulos divisíveis é ainda um módulo divisível. Como todo o módulo quociente de um módulo divisível é também divisível, $\mathbb{Q}^{(I)}/K$ é divisível.

A menos de um isomorfismo, M é submódulo de um módulo $-\mathbb{Z}$ divisível.

Proposição. Seja M um módulo-R. Então, são equivalentes as seguintes condições:

- (a) M é um módulo-R injetivo.
- (b) M é parcela direta de todo o módulo que o contém.

Demonstração. [exercício]

1.6. Extensões essenciais

No que se segue, R é um anel unitário e todos os módulos são módulos-R unitários.

Definição. Seja M um módulo-R. Diz-se que um submódulo-R N de M é submódulo essencial de <math>M, e escreve-se $N \leq_e M$, se $N \cap P \neq \{0\}$ para todo o P submódulo-R não nulo de M.

Neste caso, dizemos que M é extensão essencial de N.

É claro que M é submódulo essencial de M. Por outro lado, $\{0\}$ não é submódulo essencial de M.

Proposição. Sejam M um módulo-R e N um submódulo-R de M. Então, são equivalentes as seguintes condições:

- (a) N é submódulo essencial de M.
- (b) $mR \cap N \neq \{0\}$, para todo o $m \in M \setminus \{0\}$.
- (c) para cada $m \in M \setminus \{0\}$, existe $r \in R$ tal que $mr \in N \setminus \{0\}$.

Demonstração [exercício]

Definição. Seja I um ideal direito de R. Diz-se que I é *ideal direito essencial de* R se I for submódulo-R essencial de R_R .

Proposição.

(a) Sejam N, M, T módulos-R tais que $N \leq_R M \leq_R T$. Então,

$$N \leq_e T$$
 se e só se $N \leq_e M$ e $M \leq_e T$

- (b) Sejam N_1 , N_2 , M_1 , M_2 submódulos de um módulo-R M. Se $N_1 \leq_e M_1$ e $N_2 \leq_e M_2$, então $N_1 \cap N_2 \leq_e M_1 \cap M_2$.
- (c) Sejam M, P módulos-R, N um submódulo-R de M e $f: P \to M$ um morfismo-R.
 - (i) Se $N \leq_e M$, então $f^{\leftarrow}(N) \leq_e P$.
 - (ii) Se f for um monomorfismo-R e $Q \leq_e P$, então $f(Q) \leq_e f(P)$.
- (d) Sejam $\{N_i\}_{i\in I}$ e $\{M_i\}_{i\in I}$ famílias de módulos-R tais que, para todo o $i\in I$, $N_i\leq_e M_i$. Então, a soma direta externa dos M_i , com $i\in I$, é extensão essencial da soma direta externa dos N_i , com $i\in I$.
- (e) Sejam $\{N_i\}_{i\in I}$ e $\{P_i\}_{i\in I}$ famílias de submódulos de um módulo-R M. Se existir a soma direta interna $\bigoplus_{i\in I} {}^{\mathrm{i}}N_i$ e, para todo o $i\in I$, $N_i\leq_e P_i$, então existe a soma direta interna $\bigoplus_{i\in I} {}^{\mathrm{i}}P_i$ e

$$\bigoplus_{i \in I} {}^{\mathrm{i}} N_i \leq_e \bigoplus_{i \in I} {}^{\mathrm{i}} P_i .$$

Demonstração. A demonstração dos resultados em (a)–(c) fica como exercício.

(d) Seja $x = (x_i)_{i \in I} \in \bigoplus_{i \in I} M_i \setminus \{\overline{0}\}$. Então, x tem um número finito de componentes não nulas, digamos x_{j_1}, \ldots, x_{j_k} .

Como $x_{j_1} \in M_{j_1} \setminus \{0\}$ e $N_{j_1} \leq_e M_{j_1}$, existe $r_1 \in R$ tal que $x_{j_1}r_1 \in N_{j_1} \setminus \{0\}$. Consideremos $xr_1 = (x_ir_1)_{i \in I}$.

Se $x_{j_n}r_1=0$ para todo o $n\in\{1,\ldots,k\}$, então

$$xr_1 = (x_i r_1)_{i \in I} \in \bigoplus_{i \in I} N_i \setminus \{\overline{0}\}.$$

Se $x_{j_2}r_1 \neq 0$, então $x_{j_2} \in M_{j_2} \setminus \{0\}$ e $N_{j_2} \leq_e M_{j_2}$, pelo que existe $r_2 \in R$ tal que $x_{j_2}r_1r_2 \in N_{j_2} \setminus \{0\}$. Consideremos $xr_1r_2 = (x_ir_1r_2)_{i \in I}$.

Como $x_1r_1 \in N_1$ e $r_2 \in R$, temos que $x_1r_1r_2 \in N_1$.

Se $x_{j_n}r_1r_2=0$ para todo o $n\in\{3,\ldots,k\}$, então

$$xr_1r_2 = (x_ir_1r_2) \in \bigoplus_{i \in I} N_i \setminus \{0\}.$$

Se $x_{j_3}r_1r_2 \neq 0$, continua-se o processo seguindo o mesmo raciocínio.

Assim, existe $r \in R$ tal que $xr \in \bigoplus_{i \in I} N_i \setminus \{\overline{0}\}$. Portanto,

$$\bigoplus_{i \in I} N_i \le_e \bigoplus_{i \in I} M_i.$$

(e) Admitamos que existe a soma direta interna $\bigoplus_{i \in I} N_i$ e que $N_i \leq_e P_i$, para todo o $i \in I$.

Como existe $\bigoplus_{i \in I} {}^{\mathrm{i}}N_i$,

$$N_j \cap \left(\sum_{i \in I \setminus \{j\}} N_i\right) = \{0\},$$

para todo o $j \in I$. Suponhamos que existe $j \in I$ tal que

$$P_j \cap \left(\sum_{i \in I \setminus \{j\}} P_i\right) \neq \{0\}.$$

Então, existe $x \in P_j \cap \left(\sum_{i \in I \setminus \{j\}} P_i\right) \setminus \{0\}$. Como $x \in \sum_{i \in I \setminus \{j\}} P_i$,

$$x = \sum_{i \in I \setminus \{j\}} x_i,$$

com $x_i \in P_i$ para cada $i \in I \setminus \{j\}$, x_i quase todos nulos. Ou seja,

$$x = x_{\alpha_1} + \dots + x_{\alpha_k},$$

com $x_{\alpha_i} \in P_{\alpha_i}$, para todo o $i \in \{1, ..., k\}$, e $\alpha_i \neq j$, para todo o $i \in \{1, ..., k\}$.

Como $x \in P_j \setminus \{0\}$ e $N_j \leq_e P_j$, existe $r \in R$ tal que $xr \in N_j \setminus \{0\}$. Assim,

$$xr = (x_{\alpha_1} + \dots + x_{\alpha_k})r = x_{\alpha_1}r + \dots + x_{\alpha_k}r.$$

Suponhamos que $x_{\alpha_i}r \neq 0$, para todo o $i \in \{1, ..., k\}$. Em particular, $x_{\alpha_1}r \in P_{\alpha_1} \setminus \{0\}$. Como $N_{\alpha_1} \leq_e P_{\alpha_1}$, existe $r_1 \in R$ tal que $x_{\alpha_1}rr_1 \in N_{\alpha_1} \setminus \{0\}$.

Se $x_{\alpha_2}rr_1 + \cdots + x_{\alpha_k}rr_1 = 0$, então

$$xrr_1 = x_{\alpha_1}rr_1 \in (N_j \cap N_{\alpha_1}) \setminus \{0\}.$$

Logo,
$$(N_j\cap N_{\alpha_1})\neq\{0\}$$
e $N_j\cap\left(\sum_{i\in I\setminus\{j\}}N_i\right)\neq\{0\},$ uma contradição.

Se $x_{\alpha_2}rr_1 \neq 0$, segue-se um raciocínio idêntico ao utilizado em (d) e chega-se sempre a um absurdo.

Logo,
$$P_j \cap \left(\sum_{i \in I \setminus \{j\}} P_i\right) = \{0\}$$
 para todo o $j \in I$, pelo que existe $\bigoplus_{i \in I} P_i$.

Por (d),
$$\bigoplus_{i \in I} {}^{\mathrm{e}}N_i \leq_e \bigoplus_{i \in I} {}^{\mathrm{e}}P_i$$
 . Como

$$\bigoplus_{i \in I} {}^{\mathrm{i}}N_i \cong \bigoplus_{i \in I} {}^{\mathrm{e}}N_i \quad \text{e} \quad \bigoplus_{i \in I} {}^{\mathrm{i}}P_i \cong \bigoplus_{i \in I} {}^{\mathrm{e}}P_i ,$$

temos que

$$\bigoplus_{i \in I} {}^{\mathrm{i}} N_i \quad \leq_e \quad \bigoplus_{i \in I} {}^{\mathrm{i}} P_i \quad .$$

Lema. Seja N um submódulo essencial de um módulo-R M. Então, para todo o $m \in M$, $(N:m) = \{r \in R : mr \in N\}$ é ideal direito essencial de R.

Demonstração. Já foi visto que (N:m) é ideal direito de R. Seja $I \leq_R R_R$ tal que $(N:m) \cap I = \{0\}$ e suponhamos que $mI \neq \{0\}$.

Como $mI \leq_R M$ e $mI \neq \{0\}$, temos que $N \cap mI \neq \{0\}$. Logo, existe $a \in (N \cap mI) \setminus \{0\}$. Visto que $a \in mI$, existe $i \in I$ tal que a = mi. Por definição, $i \in (N : m) \cap I = \{0\}$. Logo,

$$a = m \cdot 0 = 0,$$

um absurdo, que resulta de supormos que $mI \neq \{0\}$. Assim, $mI = \{0\} \subseteq N$ e, por definição, $I \subseteq (N:m)$. Logo,

$$I = (N : m) \cap I = \{0\}.$$

Portanto, $(N:m) \leq_e R$ e (N:m) é ideal direito essencial de R.

Corolário. Sejam M um módulo-R e N um submódulo essencial de M. Então, para todo o $m \in M$, existe um ideal direito essencial I_m de R tal que $mI_m \subseteq N$.

Demonstração. [exercício]

Definição. Sejam M um módulo-R e N um submódulo-R de M.

- 1. Dá-se o nome de complemento de N em M a qualquer submódulo-R de M que seja elemento maximal do conjunto $\mathcal{A} = \{X \leq_R M : X \cap N = \{0\}\}.$
- 2. Diz-se que um submódulo-R P de M é complemento em M se for complemento de algum submódulo-R de M.

Proposição. Seja M um módulo-R. Então, todo o submódulo-R de M admite um complemento.

Demonstração. [exercício]

sugestão: use o Lema de Zorn.

Proposição. Sejam M um módulo-R, N um submódulo-R de M e K um complemento de N em M. Então,

- (a) existe $K \oplus_i N$ e $K \oplus_i N \leq_e M$.
- (b) $(K \oplus_i N)/K \leq_e M/K$.

Demonstração.

(a) Como K é complemento de N em M, K é elemento maximal da família

$$\mathcal{A} = \{ X \leq_R M : X \cap N = \{0\} \}.$$

Em particular, $K \cap N = \{0\}$. Logo, existe $K \oplus_i N$.

É claro que $K \oplus_i N$ é submódulo-R de M, uma vez que K e N são submódulos-R de M.

Seja P um submódulo-R de M tal que $(K \oplus_i N) \cap P = \{0\}$. Pretendemos mostrar que $P = \{0\}$. Ora, K + P é submódulo-R de M. Dado $x \in (K + P) \cap N$, existem $k \in K$ e $p \in P$ tais que x = k + p, pelo que

$$x - k = p \in (K \oplus_i N) \cap P = \{0\}.$$

Portanto, x = k e, assim, $x \in K \cap N$. Mas $K \cap N = \{0\}$, pelo que x = 0 e

$$(K+P) \cap N = \{0\}.$$

Por definição, $K + P \in \mathcal{A}$. Como K é elemento maximal de \mathcal{A} e $K \subseteq K + P$, podemos concluir que K = K + P e, portanto, $P \subseteq K$. Logo, $P \subseteq K \oplus_i N$ e

$$P = (K \oplus_i N) \cap P = \{0\}.$$

Portanto, $K \oplus_i N \leq_e M$.

(b) [exercício].

Corolário. Todo o submódulo-R de um módulo-R M é parcela direta de um submódulo essencial de M.

Demonstração. [exercício]

Definição. Sejam M um módulo-R e N um submódulo-R de M. Dizemos que M é extensão essencial própria de N se $N \leq_e M$ e $N \neq M$.

Proposição. Toda a parcela direta de um módulo-R M não admite extensões próprias contidas em M.

Demonstração. Seja N uma parcela direta de um módulo-R M. Então, N é submódulo-R de M e existe L submódulo-R de M tal que

$$M = N \oplus_i L$$
.

Suponhamos que N admite uma extensão essencial própria contida em M, digamos P. Então, $N \leq_e P$ e $N \neq P$. Como existe $N \oplus_i L$, temos que $N \cap L = \{0\}$. Portanto,

$$N \cap (P \cap L) = \{0\}.$$

Ora, $P \cap L \leq_R P$, $N \leq_e P$ e $N \cap (P \cap L) = \{0\}$. Logo, $P \cap L = \{0\}$ e, assim,

$$P = P \cap M = P \cap (N + L) = N + (P \cap L) = N + \{0\} = N,$$

o que contradiz o facto de P ser extensão essencial própria de N. Vimos, portanto, que N não admite extensões essenciais próprias contidas em M.

Proposição. Sejam M um módulo-R e N um submódulo-R de M. Então, são equivalentes as seguintes condições:

- (a) N não admite extensões essenciais próprias contidas em M.
- (b) N é submódulo complemento em M.
- (c) Existe K submódulo-R de M tal que $N \cap K = \{0\}$ e $(N \oplus K)/N \leq_e M/N$

Demonstração. Iremos mostrar que (a) é equivalente a (b) e que (b) é equivalente a (c).

Admitamos que N não admite extensões essenciais próprias contidas em M. Seja K um complemento de N em M. Então, K é elemento maximal de

$$A = \{X \leq_R M : X \cap N = \{0\}\}.$$

Mais, existe $K \oplus_i N$ e $K \oplus_i N \leq_e M$.

Consideremos o conjunto

$$\mathcal{B} = \{ X \le_R M : X \cap K = \{0\} \}.$$

Como $N \leq_R M$ e $N \cap K = \{0\}$, concluímos que $N \in \mathcal{B}$.

Suponhamos que existe $P \in \mathcal{B}$ tal que $N \subseteq P$. Como $P \in \mathcal{B}$, temos que $P \leq_R M$ e $P \cap K = \{0\}$. Dado $x \in P$, se x = 0, então $x \in N$. Se $x \neq 0$, então $x \in M \setminus \{0\}$ e, portanto, existe $r \in R$ tal que $xr \in (K \oplus_i N) \setminus \{0\}$ (uma vez que $K \oplus_i N \leq_e M$). Assim, existem $k \in K$ e $n \in N$ tais que

$$xr = k + n,$$

pelo que $xr - n = k \in P \cap K = \{0\}$. Logo, existe $r \in R$ tal que $xr \in N \setminus \{0\}$, pelo que $N \leq_e P$. Por hipótese, P = N e, portanto, N é elemento maximal de \mathcal{B} . Por definição, N é complemento de K em M, pelo que N é submódulo complemento em M.

Admitamos, agora, que N é submódulo complemento em M. Então, existe $K \leq_R M$ tal que N é complemento de K em M. Assim, N é elemento maximal de

$$A = \{X \leq_R M : X \cap K = \{0\}\}.$$

Suponhamos que existe $P \leq_R M$ tal que $N \leq_e P$ e $N \neq P$. Temos que $K \leq_R M$ e $N \cap K = \{0\}$. Logo, $K \cap P \leq_R P$ e

$$N \cap (K \cap P) = (N \cap K) \cap P = \{0\} \cap P = \{0\}.$$

Como $N \leq_e P$, $K \cap P = \{0\}$. Assim, $P \in \mathcal{A}$ e $N \subseteq P$. Como N é elemento maximal de \mathcal{A} , concluímos que N = P, um absurdo. Logo, N não admite extensões essenciais próprias contidas em M.

Admitamos que N é submódulo complemento em M. Então, existe $K \leq_R M$ tal que N é complemento de K em M. Por definição, $N \cap K = \{0\}$. Portanto, existe $N \oplus_i K$ e $(N \oplus_i K)/N \leq_e M/N$.

Admitamos que existe $K \leq_R M$ tal que $N \cap K = \{0\}$ e $(N \oplus K)/N \leq_e M/N$. Consideremos

$$\mathcal{B} = \{ X \le_R M : X \cap K = \{0\} \}.$$

Por hipótese, $N \in \mathcal{B}$. Suponhamos que existe $P \leq_R M$ tal que $P \cap K = \{0\}$ e $N \subseteq P$. Como $P \leq_R M$ e $N \subseteq P$, temos que $P/N \leq_R M/N$. Ora, $N \subseteq P$ e, portanto,

$$P \cap (N \oplus K) = N + (P \cap K) = N + \{0\} = N.$$

Logo,

$$P/N \cap (N \oplus K)/N = [P \cap (N \oplus K)]/N = N/N = \{N\}.$$

Como $(N \oplus K)/N \leq_e M/N$, temos que $P/N = \{N\}$. Assim, P = N.

Vimos, então, que N é elemento maximal de \mathcal{B} e, portanto, N é complemento de K em M. Logo, N é submódulo complemento em M.

Proposição. Sejam E um módulo-R injetivo, M um módulo-R e $f: M \to E$ um monomorfismo-R. Então, para toda a extensão essencial P de M existe $\theta: P \to E$ que prolonga f.

Demonstração. Seja P uma extensão essencial de M. Então, $M \leq_e P$.

Como E é injetivo, existe um morfismo $-R \theta: P \to E$ tal que $\theta \circ \iota = f$. Logo, $\theta|_M = f$.

Falta mostrar que θ é um monomorfismo-R [exercício. sugestão: mostre que $M \cap \text{Ker}(\theta) = \{0\}$].

Proposição. Seja M um módulo-R. Então, M é um módulo injetivo se e só se M não admite extensões essenciais próprias.

Demonstração. Admitamos que M é um módulo injetivo. Seja P uma extensão essencial de M. Então, P é módulo-R e $M \subseteq P$. Como M é parcela direta de todo o módulo-R que o contém (pois é injetivo), M é parcela direta de P. Assim, existe $L \subseteq_R P$ tal que $P = M \oplus_i L$. Como existe $M \oplus_i L$, sabemos que $M \cap L = \{0\}$. Sendo M um submódulo essencial de P, temos, por definição, $L = \{0\}$. Portanto,

$$P = M \oplus_i L = M \oplus_i \{0\} = M,$$

pelo que M não admite extensões essenciais próprias.

Admitamos, agora, que M não admite extensões essenciais próprias. Seja P um módulo-R que contém M e seja K um complemento de M em P. Então, $(M \oplus_i K)/K \leq_e P/K$. Mas M não admite extensões essenciais próprias. Logo [porquê?],

$$(M \oplus_i K)/K = P/K$$
,

pelo que $M \oplus_i K = P$. Assim, M é parcela direta de P.

Vimos que M é parcela direta de todo o módulo-R que o contém, pelo que M é injetivo. \square

Proposição. Todo o módulo-R admite uma extensão essencial maximal.

Demonstração. Seja M um módulo-R. Como todo o módulo-R é submódulo-R de um módulo-R injetivo, existe Q módulo-R injetivo tal que $M \leq_R Q$. Consideremos

$$\mathcal{A} = \{ X \leq_R Q : M \leq_e X \}.$$

É claro que $M \in \mathcal{A}$ e, portanto, $\mathcal{A} \neq \emptyset$. Mais, (\mathcal{A}, \subseteq) é um c.p.o.. Consideremos uma cadeia não vazia de elementos de \mathcal{A} , digamos $\mathcal{C} = \{X_{\alpha}\}_{{\alpha} \in I}$. Seja $Y = \bigcup_{{\alpha} \in I} X_{\alpha}$. Como \mathcal{C} é cadeia e

 $X_{\alpha} \leq_R Q$ para todo o $\alpha \in I$, Y é submódulo-R de Q. Vejamos se Y é extensão essencial de M. Para tal, tomemos $x \in Y \setminus \{0\}$. Então, existe $\beta \in I$ tal que $x \in X\beta \setminus \{0\}$. Como X_{β} é extensão essencial de M, existe $r \in R$ tal que $xr \in M \setminus \{0\}$. Assim, Y é extensão essencial de M. Por definição, $Y \in \mathcal{A}$ e, portanto, \mathcal{C} admite majorante. Pelo Lema de Zorn, \mathcal{A} admite elemento maximal, digamos E.

De seguida, verificamos que E é extensão essencial maximal de M. Seja N uma extensão essencial de M tal que $E \subseteq N$.

Como Q é módulo-R injetivo e $i:E\to Q$ é um monomorfismo-R, existe um morfismo-R que prolonga i, isto é, existe um monomorfismo-R $\theta:N\to Q$ tal que $\theta|_E=i$. Assim,

$$E = i(E) = \theta|_E(E) = \theta(E) \subseteq \theta(N)$$

e $\theta(N) \leq_R Q$. Como θ é um monomorfismo e $M \leq_e N$, temos que

$$M = i(M) = \theta|_E(M) = \theta(M) <_e \theta(N).$$

Por definição, $\theta(N) \in \mathcal{A}$. Sendo E um elemento maximal, temos que $E = \theta(N)$. Assim, $\theta(E) = \theta(N)$. Sendo θ um monomorfismo-R, E = N.

Portanto, E é uma extensão essencial maximal de M.

Proposição. Seja N uma extensão de M. São equivalentes as seguintes condições:

- (a) N é extensão essencial maximal de M.
- (b) N é módulo injetivo e extensão essencial de M.
- (c) N é extensão injetiva minimal de M.

Demonstração. Admitamos que N é extensão essencial maximal de M. Em particular, N é extensão essencial de M. Seja P uma extensão essencial de N. Como $M \leq_e N$ e $N \leq_e P$, temos que $M \leq_e P$, pelo que $M \leq_e P$. Mas N é extensão essencial maximal de M e $N \subseteq P$.

Logo, N = P e N não admite extensões essenciais próprias. Assim, N é um módulo injetivo e extensão essencial de M.

Admitamos, agora, que N é módulo injetivo e extensão essencial de M. Então, N é extensão injetiva de M. Seja Q um módulo-R injetivo tal que $M \leq_R Q \leq_R N$. Como $M \leq_e N$, temos que $M \leq_e Q$ e $Q \in_e N$. Mas Q é injetivo e, portanto, Q não admite extensões essenciais próprias. Logo, Q = N e N é extensão injetiva minimal.

Suponhamos que N é extensão injetiva minimal de M. Então, N é módulo injetivo e $M \leq_R N$. Consideremos

$$\mathcal{A} = \{ X \leq_R N : M \leq_e X \}.$$

Na demonstração do resultado anterior, vimos que \mathcal{A} admite um elemento maximal, digamos E. Mais, vimos que E é uma extensão essencial maximal de M contida em N. Como E é extensão essencial maximal de M, E é um módulo injetivo, pelo que vimos acima. Ora, N é extensão injetiva minimal de M e $E \subseteq N$. Portanto, E = N. Em particular, N é extensão essencial maximal de M.

Definição. Seja M um módulo-R. Designa-se por *invólucro injetivo de* M toda a extensão de M que satisfaça uma das condições da proposição anterior.

Proposição. Sejam N uma extensão essencial maximal de um módulo-R M, P uma extensão essencial maximal de um módulo-R Q e $f:M\to Q$ um isomorfismo-R. Então, existe um isomorfismo-R $\theta:N\to P$ tal que $\theta|_M=f$.

Demonstração. Como N é uma extensão essencial maximal de M, $M \leq_e N$ e N é módulo-R injetivo. De modo análogo, $Q \leq_e P$ e P é módulo-R injetivo.

Como P é módulo-R injetivo, existe um morfismo-R $\theta:N\to P$ tal que $\theta\circ j=i\circ f$. Comecemos por mostrar que $\theta|_M=f$. Dado $m\in M$,

$$\theta(m) = \theta(j(m)) = (\theta \circ j)(m) = (i \circ f)(m) = i(f(m)) = f(m).$$

Logo, $\theta|_M = f$. Em particular, $M \cap \text{Ker}(\theta) = \text{Ker}(\theta|_M) = \text{Ker}(f) = \{0\}$. Sendo N uma extensão essencial de M, podemos concluir que $\text{Ker}(\theta) = \{0\}$. Assim, θ é um monomorfismo. Logo, $N \cong \theta(N)$. Como N é módulo-R injetivo, $\theta(N)$ também o é. Ora,

$$Q = f(M) = \theta(M) \le_R \theta(N) \le_R P.$$

Sendo P uma extensão injetiva minimal de Q, temos que $\theta(N) = P$. Portanto, θ é um isomorfismo-R.

Corolário. Sejam M um módulo-R e N e P invólucros injetivos de M. Então, existe um isomorfismo-R $\theta: N \to P$ tal que θ estende a identidade de M.

Demonstração. [exercício]

Observação. O invólucro injetivo de um módulo-R M é único a menos de isomorfismo e representa-se por E(M).

Proposição. Seja N um módulo-R e M uma extensão essencial de N. Então, E(N) = E(M).

Demonstração. [exercício]

Proposição. Seja $\{M_i\}_{i\in I}$ uma família de módulos-R. Se $\bigoplus_{i\in I} E(M_i)$ for módulo-R injetivo, então

$$E\left(\bigoplus_{i\in I} M_i\right) = \bigoplus_{i\in I} E(M_i).$$

Demonstração. Por definição, $M_i \leq_e E(M_i)$, para todo o $i \in I$. Logo,

$$\bigoplus_{i \in I} M_i \le_e \bigoplus_{i \in I} E(M_i).$$

Mas, por hipótese, $\bigoplus_{i \in I} E(M_i)$ é um módulo-R injetivo. Então, $\bigoplus_{i \in I} E(M_i)$ é um módulo-R injetivo e é extensão essencial de $\bigoplus_{i \in I} M_i$. Por outras palavras, $\bigoplus_{i \in I} E(M_i)$ é invólucro injetivo de $\bigoplus_{i \in I} M_i$, isto é,

$$\bigoplus_{i \in I} E(M_i) = E\left(\bigoplus_{i \in I} M_i\right).$$

Corolário. Sejam $s \in \mathbb{N}$ e M_1, \ldots, M_s módulos-R. Então,

$$E\left(\bigoplus_{i=1}^{s} M_i\right) = \bigoplus_{i=1}^{s} E(M_i).$$

Demonstração. [exercício]

2. Anéis

2.1. Idempotentes

No que se segue, R é um anel não nulo.

Definição. Um elemento e de R diz-se um idempotente se $e^2 = e$. Um idempotente e diz-se um idempotente central se

$$e \in Z(R) = \{a \in R : ar = ra, \forall r \in R\}.$$

Exemplos.

- 1. $0 \in R$ é um idempotente central, pois para todo o $r \in R$, $0 \cdot r = 0 = r \cdot 0$.
- 2. Se R é um anel unitário, então $1 \in R$ é um idempotente central, uma vez que $1 \cdot r = r \cdot 1$ para todo o $r \in R$.

Observações. Sejam $e, f \in R$ idempotentes.

1. Para todo o $a \in fR$, fa = a.

De facto, dado $a \in fR$, existe $r \in R$ tal que a = fr e, portanto,

$$fa = f(fr) = (ff)r = f^2r = fr = a.$$

2. Para todo o $b \in Rf$, bf = b.

Seja $b \in Rf$. Então, existe $r \in R$ tal que b = rf e, assim,

$$bf = (rf)f = r(ff) = rf^2 = rf = b.$$

3. Para todo o $c \in eRf$, ecf = c.

Se $c \in eRf$, então existe $r \in R$ tal que c = erf, pelo que

$$ecf = e(erf)f = (ee)r(ff) = e^2rf^2 = erf = c.$$

Proposição. Seja $f \in R$ um idempotente. Então, são equivalentes as seguintes condições:

- (a) f é um idempotente central.
- (b) f comuta com todos os idempotentes de R.

Demonstração. Suponhamos que f é um idempotente central. Então, $f \in Z(R)$, ou seja, f comuta com todos os elementos de R. Em particular, f comuta com todos os idempotentes de R.

Reciprocamente, admitamos que f comuta com todos os idempotentes de R e consideremos $x \in R$.

Não é difícil de verificar que f + fx - fxf e f + xf - fxf são idempotentes [exercício]. Por hipótese,

$$f(f+fx-fxf) = (f+fx-fxf)f$$
 e $f(f+xf-fxf) = (f+xf-fxf)f$,

donde se conclui que

$$fx = fxf$$
 e $fxf = xf$.

[exercício] Assim, fx = xf para todo o $x \in R$ e, por definição, f é um idempotente central. \square

Proposição. Seja R um anel unitário. Se 1 é a identidade em R e $f \in R$ é um idempotente, então

- (a) $1 f \in R$ também é elemento idempotente.
- (b) se f for um idempotente central, 1-f também é um idempotente central.

Demonstração. [exercício]

Proposição. Seja $f \in R$ um idempotente. Então,

- (a) fRf é subanel de R e f é elemento identidade de fRf.
- (b) Se $f \in Z(R)$, a aplicação $\varphi : R \to fRf$, definida por $\varphi(a) = faf$ para todo o $a \in R$, é um epimorfismo de anéis. Mais, se R for um anel unitário, $Ker(\varphi) = (1 f)R$.

Demonstração. [exercício]

Proposição. Seja $e \in R$ um idempotente. Então, os anéis $E_R(eR)$ e eRe são isomorfos.

Demonstração. Seja $a \in eR$. Então, a = ea. Dado $\varphi \in E_R(eR)$, para todo o $a \in eR$,

$$\varphi(a) = \varphi(ea) = \varphi(e) \cdot a.$$

Em particular, $\varphi(e) = \varphi(e) \cdot e$. Como $\varphi(e) \in eR$, $\varphi(e) = e\varphi(e)$. Logo,

$$\varphi(e) = e \cdot \varphi(e) \cdot e \in eRe.$$

Consideremos a correspondência

$$\begin{array}{ccc} \theta: & E_R(eR) & \longrightarrow & eRe \\ & \varphi & \longmapsto & \varphi(e) \end{array}$$

Prova-se que θ é um isomorfismo-R [exercício] e, portanto, $E_R(eR) \cong eRe$.

Proposição. Seja $f \in R$ um idempotente. Então,

- (a) Se I for um ideal direito de fRf e I' for o ideal direito de R gerado por I, então:
 - i. I' = I + IR.
 - ii. $I = fI'f = I' \cap fRf$.
- (b) Se L for ideal de R, então $fLf = L \cap fRf$.

Demonstração. [exercício]

Proposição. Sejam $e, f \in R$ idempotentes. Então, são equivalentes as seguintes condições:

- (a) eR e fR são módulos-R direitos isomorfos.
- (b) $Re \ e \ Rf \ \tilde{sao} \ m\'{o}dulos R \ esquerdos \ isomorfos.$
- (c) existem $x \in eRf$ e $y \in fRe$ tais que xy = e e yx = f.

Demonstração. Iremos mostrar que as condições (b) e (c) são equivalentes. A demonstração de que (a) é equivalente a (c) é análoga.

Admitamos que Re e Rf são módulos-R esquerdos isomorfos. Seja $\varphi: Re \to Rf$ um isomorfismo-R. É claro que $e = e^2 \in Re$. Consideremos $x = \varphi(e) \in Rf$. Então,

$$x = \varphi(e) = \varphi(e)f = \varphi(e^2)f = e\varphi(e)f \in eRf.$$

Como $f = f^2 \in Rf$, existe $y = \varphi^{-1}(f) \in Re$. Portanto,

$$y=\varphi^{-1}(f)=\varphi^{-1}(f)e=\varphi^{-1}(f^2)e=f\varphi^{-1}(f)e\in fRe.$$

Facilmente se verifica que xy = e e yx = f [exercício].

Reciprocamente, admitamos que existem $x \in eRf$ e $y \in fRe$ tais que xy = e e yx = f. Consideremos as correspondências $h : Re \to Rf$ e $g : Rf \to Re$ definidas respetivamente por h(a) = ax, para todo o $a \in Re$, e g(b) = by, para todo o $b \in Rf$.

Prova-se que h e g são morfismos-R tais que $h \circ g = \mathrm{id}_{Rf}$ e $g \circ h = \mathrm{id}_{Re}$ [exercício]. Logo, h e g são isomorfismos-R, pelo que Re e Rf são módulos-R esquerdos isomorfos.

Definição. Diz-se que I é um ideal direito [respetivamente: esquerdo, bilateral] minimal de R se I for elemento minimal do conjunto parcialmente ordenado, para a relação de inclusão, dos ideais direitos [respetivamente: esquerdos, bilaterais] não nulos de R.

Proposição. Seja I um ideal direito minimal de R tal que $I^2 \neq \{0\}$. Então, existe $e \in R$ idempotente tal que I = eR.

Demonstração. Como $I^2 \neq \{0\}$, existe $i \in I$ tal que $iI \neq \{0\}$. Ora, $iI \subseteq I$, uma vez que I é ideal direito de R e $I \subseteq R$. Sendo I um ideal direito minimal de R, podemos concluir que I = iI.

Como $i \in I = iI$ e $i \neq 0$, existe $e \in I \setminus \{0\}$ tal que i = ie. Consideremos

$$r(i) = \{r \in R : ir = 0\}.$$

Temos que $r(i) \cap I$ é ideal direito de R contido em I [exercício], pelo que $r(i) \cap I = \{0\}$ ou $r(i) \cap I = I$ (pois I é ideal direito minimal de R). Suponhamos que $r(i) \cap I = I$. Então, $e \in I = r(i) \cap I \subseteq r(i)$, pelo que ie = 0 e, portanto, i = 0, uma contradição. Logo,

$$r(i) \cap I = \{0\}.$$

Como $ie^2 = (ie)e = ie$, sabemos que $i(e^2 - e) = 0$. Assim, $e^2 - e \in r(i) \cap I = \{0\}$, pelo que $e^2 = e$. Portanto, $e \in r(i)$ de que $e^2 = e$. Portanto, $e \in r(i)$ de que $e^2 = e$.

Falta mostrar que I = eR. Como $e \in I$ e I é ideal direito de R, é claro que $eR \subseteq I$. Ora, eR é um ideal direito não nulo de R, pois $e = e^2 \in eR \setminus \{0\}$. Como I é ideal direito minimal, podemos concluir que I = eR.

Proposição. Sejam R um anel unitário e f um elemento idempotente de R. Então,

$$R = fR \oplus_i (1 - f)R$$
.

Demonstração. [exercício]

Definição. Sejam $a, b \in R$. Dizemos que a e b são ortogonais se ab = 0 = ba.

Exemplo. Se R é um anel unitário e f é um elemento idempotente de R, então f e 1-f são ortogonais.

Definição. Seja $f \in R \setminus \{0\}$ um idempotente. Dizemos que f é primitivo se f não for soma de dois idempotentes ortogonais não nulos, isto é, se não existirem $e_1, e_2 \in R \setminus \{0\}$ idempotentes ortogonais tais que $f = e_1 + e_2$.

Proposição. Seja $e \in R \setminus \{0\}$ um idempotente. Então, e é primitivo se e só se for o único elemento idempotente não nulo de eRe.

Demonstração. Admitamos que e é primitivo. Como e é idempotente,

$$e = e^2 = ee = e^2e = eee \in eRe.$$

Consideremos $f \in eRe$ idempotente. Como $f \in eRe$, temos f = efe. Não é difícil de verificar que e - efe e efe são idempotentes ortogonais [exercício]. Ora, e = (e - efe) + efe e efe primitivo. Logo,

$$e - efe = 0$$
 ou $efe = 0$,

ou seja, f = e ou f = 0. Portanto, e é o único idempotente não nulo de eRe.

Reciprocamente, admitamos que e é o único idempotente não nulo de eRe e suponhamos que $e=e_1+e_2$, com e_1,e_2 idempotentes ortogonais não nulos. Então,

$$ee_1 = (e_1 + e_2)e_1 = e_1^2 + e_2e_1 = e_1 + 0 = e_1$$

 \mathbf{e}

$$e_1e = e_1(e_1 + e_2) = e_1^2 + e_1e_2 = e_1 + 0 = e_1.$$

Assim, $e_1e = e_1 = ee_1$ e

$$e_1 = ee_1 = e^2e_1 = e(ee_1) = e(e_1e) = ee_1e \in eRe.$$

Logo, e_1 é um idempotente não nulo de eRe e, portanto, $e_1 = e$. Mas tal implica que $e_2 = e - e_1$ seja nulo, uma contradição. Então, podemos concluir que e é primitivo.

Definição. Seja $a \in R$. Dizemos que a é nilpotente se existir $n \in \mathbb{N}$ tal que $a^n = 0$. Se a for nilpotente, ao menor natural n tal que $a^n = 0$ chamamos grau de nilpotência de a.

Exemplos.

- 1. 0 é (o único) elemento nilpotente de R de grau 1.
- 2. Consideremos o anel de todas as matrizes quadradas de ordem 2 com entradas inteiras, $\mathcal{M}_2(\mathbb{Z})$. A matriz $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ é um elemento nilpotente de grau 2.

Definição. Seja X um subconjunto não vazio de R.

- 1. Dizemos que X é um subconjunto nilpotente se existir $n \in \mathbb{N}$ tal que $X^n = \{0\}$. Se X for nilpotente, ao menor dos naturais n tais que $X^n = \{0\}$ damos o nome de grau de nilpotência de X.
- **2.** Dizemos que X é um subconjunto T-nilpotente à esquerda se, para toda a sucessão $(a_n)_{n\in\mathbb{N}}$ de elementos de X, existir $n_0\in\mathbb{N}$ tal que $a_1\ldots a_{n_0}=0$.
- **3.** Dizemos que X é um subconjunto T-nilpotente à direita se, para toda a sucessão $(a_n)_{n\in\mathbb{N}}$ de elementos de X, existir $n_0 \in \mathbb{N}$ tal que $a_{n_0} \dots a_1 = 0$.
- **4.** Dizemos que X é nilconjunto se todos os elementos de X forem nilpotentes. Se X for ideal direito [respetivamente: esquerdo, bilateral] de R e um nilconjunto, dizemos que X é um nildeal direito [respetivamente: esquerdo, bilateral]

Proposição. As seguintes condições são verdadeiras.

- (a) Todo o subconjunto de R que seja nilpotente é T-nilpotente à esquerda e à direita.
- (b) Todo o subconjunto de R que seja T-nilpotente à esquerda ou à direita é um nilconjunto.

(c) Todo o subconjunto de R que seja nilpotente é um nilconjunto.

Demonstração. [exercício]

Proposição. Sejam R um anel unitário e $a \in R$. Se a é nilpotente, então 1 - a é invertível em R.

Demonstração. [exercício]

Proposição. Seja $a \in R$. Então, aR é nilideal direito se e só se Ra é nilideal esquerdo.

Demonstração. [exercício]

Proposição. As seguintes condições são verdadeiras.

- (a) Se R for anel unitário e I for um ideal direito [respetivamente: esquerdo] nilpotente de R, então o ideal bilateral gerado por I também é nilpotente.
- (b) A soma de um número finito de nilideais bilaterais de R é ainda um nilideal bilateral de R.
- (c) A soma de um número finito de ideais nilpotentes de R é ainda um ideal nilpotente de R.

Demonstração. [exercício]

Proposição. Seja I um nilideal bilateral de R. Para todo o idempotente $r+I \in R/I$, existe um idempotente $e \in R$ tal que r+I=e+I.

Demonstração. Seja r+I um idempotente de R/I, com $r \in R$. Então, $r^2+I=(r+I)^2=r+I$, pelo que

$$r^2 - r \in I$$
.

Como I é nilideal bilateral, existe $n \in \mathbb{N}$ tal que $(r^2 - r)^n = 0$. Ora, $rr^2 = r^2 r$, pelo que

$$(r^{2}-r)^{n}=r^{2n}-nr^{2n-1}+\binom{n}{2}r^{2n-2}-\cdots+(-1)^{n-1}nr^{n+1}+(-1)^{n}r^{n}.$$

Logo,

$$(-1)^{n+1}r^n = r^{2n} - nr^{2n-1} + \binom{n}{2}r^{2n-2} - \dots + (-1)^{n-1}nr^{n+1}$$

e, portanto, $r^n = r^{n+1}p(r)$, com $p(r) \in \mathbb{Z}(r)$. Assim, $r^n = r^{n+1}p(r) = r^n r p(r) = r^{n+2}p(r)^2 = r^{2n}p(r)^n$.

Consideremos $e = r^n p(r)^n$. Então

$$e^{2} = [r^{2n}p(r)^{n}]p(r)^{n} = r^{n}p(r)^{n} = e.$$

Não é difícil de verificar que $(r+I)^n = r+I$. Logo,

$$e + I = r^n p(r)^n + I = (r^n + I)(p(r)^n + I) = (r + I)^n (p(r)^n + I)$$
$$= (r + I)^{2n} (p(r)^n + I) = (r^{2n} p(r)^n) + I = r^n + I = (r + I)^n = r + I. \quad \Box$$

Lema. Seja R um anel sem ideais nilpotentes não nulos. Então, R não possui ideais esquerdos ou direitos nilpotentes não nulos.

Demonstração. [exercício]

Definição. Um anel R diz-se um anel simples se $R^2 \neq \{0\}$ e $\{0\}$ e $\{0\}$

Proposição. Seja R um anel simples. Então, R é anel sem ideais nilpotentes não nulos.

Demonstração. Como R é um anel simples, $R^2 \neq \{0\}$ e os únicos ideias de R são $\{0\}$ e R. Ora, R^2 é um ideal de R, pelo que podemos concluir que $R^2 = R$. Assim, $R^k = R$ para todo o $k \in \mathbb{N}$.

Seja I um ideal nilpotente de R. Então, existe $n \in \mathbb{N}$ tal que $I^n = \{0\}$. Por hipótese, como os únicos ideais de R são $\{0\}$ e R, temos que $I = \{0\}$ ou I = R. Suponhamos que I = R. Então, $R^n = \{0\}$, ou seja, $R = \{0\}$, uma contradição. Logo, $I = \{0\}$, pelo que R não admite ideais nilpotentes não nulos.

Teorema. Sejam R um anel sem ideais nilpotentes não nulos e $f \in R \setminus \{0\}$ um elemento idempotente. Então, fR é ideal direito minimal de R se e só se fRf for anel de divisão.

Demonstração. Admitamos que fR é ideal direito minimal de R. Como $f = f^2 \in fR$ e $f \neq 0$, sabemos que $fR \neq \{0\}$.

Por outro lado, fRf é anel não nulo e f é elemento identidade em fRf.

Dado $fxf \in fRf \setminus \{0\}$, temos que $fxfR \subseteq fR$ e fxfR é ideal direito de R. Ora, fR é ideal direito minimal de R, pelo que $fxfR = \{0\}$ ou fxfR = fR.

Mas $fxf = fxf^2 = (fxf)f \in fxfR$, pelo que $fxfR \neq \{0\}$. Portanto, fxfR = fR.

Então, $f = f^2 \in fR = fxfR$, pelo que existe $r \in R$ tal que f = fxfr. Portanto,

$$f=f^2=(fxfr)f=fxf^2rf=(fxf)(frf), \\$$

pelo que fxf é invertível à direita. Por outras palavras, vimos que todo o elemento não nulo de fRf é invertível à direita. Assim, todo o elemento não nulo de fRf é invertível e fRf é anel de divisão.

Reciprocamente, admitamos que I é ideal direito de R tal que $\{0\} \subsetneq I \subseteq fR$. Dado $x \in I$, $x \in fR$ e, portanto, x = fx. Assim, I = fI. Suponhamos que $If = \{0\}$. Então,

$$I^2 = II = (fI)(fI) = f(If)I = \{0\},$$

pelo que I é nilpotente. Por hipótese, $I = \{0\}$, uma contradição. Logo, $If \neq \{0\}$ e existe $a \in I$ tal que $af \neq 0$. Como $a \in I$, a = fa. Assim, $faf = (fa)f = af \neq 0$ e, sendo fRf um anel de divisão, faf é invertível em fRf. logo, existe $r \in R$ tal que f = (faf)(frf). Portanto,

$$f = (fa)(f^2rf) = afrf \in aR \subseteq I.$$

Sendo I um ideal direito de R, $fR \subseteq I$. Vimos, pois que I = fR e fR é ideal direito minimal de R.

Observação. Se R é um anel e f é um idempotente não nulo de R tal que fR é um ideal direito minimal de R, então fRf é um anel de divisão.

Teorema. Sejam R um anel sem ideais nilpotentes não nulos e $f \in R \setminus \{0\}$ um elemento idempotente. Então, Rf é ideal esquerdo minimal de R se e só se fRf for anel de divisão.

Demonstração. [exercício]

Corolário. Sejam R um anel sem ideais nilpotentes não nulos e $f \in R \setminus \{0\}$ um elemento idempotente. Então, fR é ideal direito minimal de R se e só se Rf é ideal esquerdo minimal de R.

Proposição. Seja J_0 a interseção dos ideais J de R tais que R/J não contém ideais nilpotentes não nulos. Então, o anel R/J_0 não contém ideais nilpotentes não nulos.

Demonstração. Seja I/J_0 um ideal nilpotente de R/J_0 . Então, existe $n \in \mathbb{N}$ tal que $(I/J_0)^n = \{J_0\}$, pelo que $I^n \subseteq J_0$.

Seja J um ideal de R tal que R/J não contém ideais nilpotentes não nulos. Por definição de J_0 , temos que $J_0 \subseteq J$. Logo, $I^n \subseteq J$, pelo que $(I+J)^n \subseteq J$. Portanto,

$$((I+J)/J)^n = ((I+J)^n + J)/J = \{J\}.$$

Assim, (I+J)/J é um ideal nilpotente de R/J, pelo que $(I+J)/J=\{J\}$ e I+J=J. Portanto, $I\subseteq J$. Por outras palavras, vimos que $I\subseteq J$ para todo o ideal J de R tal que R/J não contém ideais nilpotentes não nulos. Portanto, $I\subseteq J_0$. Como $J_0\subseteq I$, temos que $I=J_0$ e $I/J_0=\{J_0\}$. Logo, R/J_0 não admite ideais nilpotentes não nulos.

Definição. Sejam $I_1, I_2, I_3,...$ ideais direitos tais que $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ Tais ideais verificam a condição de cadeia ascendente se existir $p \in \mathbb{N}$ tal que $I_n = I_p$ para todo o $n \geq p$.

Lema. Seja R um anel tal que os anuladores direitos de subconjuntos de R verificam a condição de cadeia ascendente. Então, todo o ideal direito T-nilpotente à direita é nilpotente.

Demonstração. Seja I um ideal direitode R T-nilpotente à direita. É claro que

$$I \supset I^2 \supset I^3 \supset \dots$$

pelo que

$$r(I) \subseteq r(I^2) \subseteq r(I^3) \subseteq \dots$$

Por hipótese, existe $p \in \mathbb{N}$ tal que $r(I^n) = r(I^p)$ para todo o $n \ge p$.

Suponhamos que I não é nilpotente. Em particular, $I^{p+1} \neq \{0\}$ e, portanto, existe $i_1 \in I$ tal que $I^p i_1 \neq \{0\}$. Assim, $i_1 \notin r(I^p) = r(I^{p+1})$ e, por definição, $I^{p+1} i_1 \neq \{0\}$. Logo, existe $i_2 \in I$ tal que $I^p i_2 i_1 \neq \{0\}$. Também $i_2 i_1 \notin r(I^p) = r(I^{p+1})$, pelo que $I^{p+1} i_2 i_1 \neq \{0\}$.

Construímos, assim, uma sucessão $(i_m)_{m\in\mathbb{N}}$, com $i_m\in I$ tal que $i_m\ldots i_2i_1\neq 0$, o que contradiz o facto de I ser T-nilpotente à direita. Logo, I é nilpotente.

No que se segue, R é um anel não nulo.

Proposição. Seja M um módulo-R não nulo e do tipo finito. Então, todo o submódulo-R próprio de M está contido num submódulo maximal de M.

Demonstração. Sendo M um módulo-R do tipo finito, existem $t \in \mathbb{N}$ e $x_1, \ldots, x_t \in M$ tais que $M = \langle x_1, \ldots, x_t \rangle$. Consideremos um submódulo-R N próprio de M e a família

$$\mathcal{F} = \{ P \leq_R M : N \leq_R P \subsetneq_R M \}.$$

Uma vez que N é submódulo-R próprio de M, $N \in \mathcal{F}$ e $\mathcal{F} \neq \emptyset$. Então, (\mathcal{F}, \subseteq) é um conjunto parcialmente ordenado. Seja $\mathcal{C} = \{P_i\}_{i \in I}$ uma cadeia não vazia de elementos de \mathcal{F} . Tomemos

$$Q = \bigcup_{i \in I} P_i.$$

Como \mathcal{C} é uma cadeia e $P_i \leq_R M$ para todo o $i \in I$, temos que Q é submódulo-R de M. Dado $j \in I$, $P_j \subseteq Q$. Uma vez que $N \leq_R P_j$ e $P_j \leq_R Q$, sabemos que $N \leq_R Q$. Logo,

$$N \leq_R Q \leq_R M$$
.

Suponhamos que Q = M. Então, como $M = \langle x_1, \ldots, x_t \rangle$, existem $i_1, \ldots, i_t \in I$ tais que $x_1 \in P_{i_1}, \ldots, x_t \in P_{i_t}$. Mas \mathcal{C} é uma cadeia e, portanto, existe $k \in I$ tal que $P_{i_\ell} \subsetneq P_k$ para todo o $\ell \in \{1, \ldots, t\}$. Assim, $x_1, \ldots, x_t \in P_k$, pelo que $P_k = \langle x_1, \ldots, x_t \rangle = M$, um absurdo. Logo, $Q \subsetneq_R M$ e, por definição, $Q \in \mathcal{F}$. Então, \mathcal{C} admite majorante, Q.

Vimos que toda a cadeia não vazia de elementos de \mathcal{F} admite majorante. Pelo Lema de Zorn, \mathcal{F} admite elemento maximal L. Pretendemos mostrar que L é um submódulo-R maximal de M. Suponhamos que tal não se verifica. Então, existe $T \leq_R M$ tal que $L \subsetneq_R T \subsetneq_R M$. Como $L \in \mathcal{F}$, $L \leq_R M$ e $N \leq_R L \subsetneq_R M$. Assim, $T \leq_R M$ e $N \leq_R T \subsetneq_R M$, pelo que $T \in \mathcal{F}$, o que contradiz o facto de L ser elemento maximal de \mathcal{F} . Logo, L é submódulo-R maximal de M e contém N.

Corolário. Seja M um módulo-R não nulo e de tipo finito. Então, M contém submódulos-R maximais.

Demonstração. Como M é não nulo, $\{0\}$ é submódulo-R próprio de M. Pela proposição anterior, $\{0\}$ está contido num submódulo-R maximal de M. Logo, M contém, pelo menos, esse submódulo-R maximal.

Definição. Seja I um ideal direito [respetivamente: esquerdo] de R. Dizemos que I é um ideal direito maximal de R [respetivamente: ideal esquerdo maximal de R] se I for submódulo-R maximal de R_R [respetivamente: R_R].

Definição. Seja I um ideal de R. Dizemos que I é *ideal maximal de* R se for elemento maximal do c.p.o, para a relação de inclusão, dos ideais próprios de R.

Exemplo. Os ideais maximais do anel \mathbb{Z} são todos os ideais $p\mathbb{Z}$ com p primo. [exercício!]

Teorema de Krull. Seja R um anel unitário. Então, todo o ideal direito [respetivamente: esquerdo] próprio de R está contido num ideal direito [respetivamente: esquerdo] maximal de R.

Demonstração. Como R é anel unitário, $R_R = \langle 1 \rangle$ é módulo-R não nulo e de tipo finito. Seja I um ideal direito próprio de R. Então, I é submódulo-R próprio de R_R . Pela proposição anterior, I está contido num submódulo maximal de R, isto é, num ideal direito maximal de R.

De um modo dual, obtemos o resultado relativo a ideais esquerdos próprios de R.

Teorema. Seja R um anel unitário. Então, todo o ideal próprio de R está contido num ideal maximal de R.

Demonstração. [exercício!]

Corolário. Se R é um anel unitário, então R admite ideais direitos [respetivamente: esquerdos, bilaterais].

Demonstração. [exercício!]

Proposição. Seja I um ideal direito [respetivamente: esquerdo, bilateral] próprio de R. Então, I é ideal direito [respetivamente: esquerdo, bilateral] maximal de R se e só se $(I:a)_d=R$ [respetivamente: $(I:a)_e=R$, (I:a)=R] para qualquer $a\in R\setminus I$.

Demonstração. Seja I um ideal direito próprio de R. Admitamos que I é ideal direito maximal de R e tomemos $a \in R \setminus I$. Então, $(I:a)_d$ é ideal direito de R e, por definição, $I \subsetneq (I:a)_d$. Como I é maximal, $(I:a)_d = R$.

Reciprocamente, admitamos que $(I:a)_d=R$ para todo o $a\in R\setminus I$. Seja L um ideal direito de R tal que $I\subsetneq L\subseteq R$. Como $I\subsetneq L$, existe $a\in L\setminus I\subseteq R\setminus I$. Por hipótese, $(I:a)_d=R$. Logo,

$$R = (I:a)_d \subseteq L \subseteq R$$

e, portanto, L = R. Portanto, I é ideal direito maximal de R.

Proposição. Todo o submódulo simples de M está contido em todos os submódulos essenciais de M.

Demonstração. Seja N um submódulo simples de M. Então $N \leq_R M$, $N \neq \{0\}$ e os únicos submódulos-R de N são $\{0\}$ e N.

Seja P um submódulo essencial de M. Como $N \neq \{0\}$ e $N \leq_R M$, $P \cap N \neq \{0\}$. Assim, $P \cap N \leq_R N$ e $P \cap N \neq \{0\}$. Sendo N um submódulo simples, $P \cap N = N$ e, portanto, $N \subseteq P$. Logo, N está contido em todos os submódulos essenciais de M.

Proposição. Sejam R um anel unitário e M um módulo-R unitário. Então, M é módulo-R simples se e só se existe um ideal direito maximal I de R tal que M e R/I são módulos-R isomorfos.

Demonstração. Admitamos que M é módulo-R simples. Então, M é não nulo e os únicos submódulos-R de M são $\{0\}$ e M.

Como $M \neq \{0\}$, existe $x \in M \setminus \{0\}$. Sendo R um anel unitário e M um módulo-R unitário, $x \in xR$. Logo, $xR \neq \{0\}$. Assim, $\{0\} \neq xR \leq_R M$, o que implica que xR = M (pois M é módulo-R simples).

Consideremos, então, a aplicação $\theta: R \to M$ definida por $\theta(r) = xr$ para todo o $r \in R$. Não é difícil de verificar que θ é um epimorfismo-R [exercício!]. Pelo Teorema do Homomorfismo,

$$R/\mathrm{Ker}\theta \cong \theta(R) = M.$$

Temos que $\text{Ker}\theta = \{a \in R : \theta(a) = 0\} = \{a \in R : xa = 0\} = r(x)$. Resta provar que r(x) é um ideal direito maximal de R.

Facilmente se prova que r(x) é ideal direito de R. Como $x \neq 0$, $1 \notin r(x)$ e, portanto, r(x) é um ideal direito próprio de R. Seja $b \in R \setminus r(x)$. Então, $xb \neq 0$ (pois $b \notin r(x)$). Como M é módulo-R, $xb \in M$. Logo, $xb \in M \setminus \{0\}$ e, assim, M = xbR

Mas $x \in M$, pelo que existe $c \in R$ tal que x = xbc. Assim,

$$0 = x - xbc = x(1 - bc),$$

pelo que $1-bc \in r(x)$. Logo, $1 \in (r(x), b)_d$, pelo que $R \subseteq (r(x), b)_d$. Por definição, $(r(x), b)_d \subseteq R$. Logo $(r(x), b)_d = R$ e r(x) é ideal direito maximal de R.

Reciprocamente, admitamos que existe um ideal direito maximal I de R tal que M e R/I são módulos-R isomorfos. Como I é ideal direito maximal, I é submódulo-R maximal de R_R Logo, R/I é módulo simples. Por isomorfismo, M é também módulo simples.

Observação.

- 1. Sejam R um anel unitário e M um módulo-R unitário. Então, M é um módulo-R simples se e só se M é um módulo cíclico não nulo e os anuladores direitos de elementos não nulos de M são ideais direitos maximais de R.
- 2. Se um módulo não for de tipo finito, pode não conter submódulos maximais. Consideremos, por exemplo, o conjunto dos números racionais \mathbb{Q} . Ora, \mathbb{Q} é um módulo- \mathbb{Z} e não é do tipo finito. Suponhamos que \mathbb{Q} contém um submódulo- \mathbb{Z} maximal N. Então, \mathbb{Q}/N é um módulo- \mathbb{Z} simples e, portanto, \mathbb{Q}/N é módulo-ZZ cíclico não nulo.

Seja $a + N \in \mathbb{Q}/N \setminus \{N\}$. Então, $\mathbb{Q}/N = (a + N)\mathbb{Z}$ e r(a + N) é um ideal direito maximal de \mathbb{Z} . Assim, existe p primo tal que

$$r(a+N)=p\mathbb{Z}.$$

Como $a, p \in \mathbb{Q}$, é claro que existe $c \in \mathbb{Q}$ tal que a = pc. Ora,

$$c + N \in Q/N = (a + N)\mathbb{Z},$$

pelo que existe $t \in \mathbb{Z}$ tal que c + N = (a + N)t. Assim,

$$a + N = pc + N = (c + N)p = (a + N)tp = N,$$

uma vez que $p \in p\mathbb{Z} = r(a+N)$. Chegamos, pois, a uma contradição que resulta de supormos que \mathbb{Q} contém um submódulo- \mathbb{Z} maximal. Logo, \mathbb{Q} não admite submódulos- \mathbb{Z} maximais.

3. Se R não for unitário, então R não possui necessariamente ideais direitos maximais. Consideremos $(\mathbb{Q},+,.)$, com a.b=0 para todos os $a,b\in\mathbb{Q}$. Então, $(\mathbb{Q},+,.)$ é um anel comutativo não unitário. Mais, I é um ideal de $(\mathbb{Q},+,.)$ se e só se (I,+) é subgrupo de $(\mathbb{Q},+)$. Mas esta última condição é equivalente a I é submódulo- \mathbb{Z} de \mathbb{Q} . Por $\mathbf{2}$, I não é submódulo- \mathbb{Z} maximal de \mathbb{Q} e, portanto, I não é ideal direito maximal de \mathbb{Q} .

Proposição. Sejam R um anel comutativo unitário e I um ideal de R. Então, I é ideal maximal de R se e só se R/I é corpo.

Demonstração. Admitamos que I é ideal direito maximal de R. Então, $I \subsetneq R$ e, assim, $R/I \neq \{I\}$. Como R é um anel comutativo unitário, também R/I é comutativo e unitário. Seja $a+I \in R/I \setminus \{I\}$. Como I é ideal direito maximal de R, sabemos que $(I,a)_d = R$. Sendo R unitário, (I,a) = I + aR. Logo, I + aR = R. Portanto, existem $i \in I$, $r \in R$ tais que 1 = i + ar. Logo,

$$1 + I = (i + ar) + I = ar + I = (a + I)(r + I).$$

Por outras palavras, vimos que todos os elementos não nulos de R/I são invertíveis à direita. Logo, todos os elementos não nulos de R/I são invertíveis e R/I é corpo.

Reciprocamente, admitamos que R/I é corpo e tomemos $a \in R \setminus I$. Pretendemos mostrar que (I, a) = R. Ora, como $a \notin I$, $a + I \in R/I \setminus \{I\}$. Logo, existe $b \in R$ tal que

$$(a+I)(b+I) = 1+I,$$

ou seja, $1 - ab \in I$. Portanto, $1 \in I + aR = (I, a)$ e, assim, $R \subseteq (I, a)$. Então, (I, a) = R e I é ideal maximal de R.

Observação.

- 1. Seja R um anel de divisão. Então, $R \neq \{0\}$ e os únicos ideais de R são $\{0\}$ e R. Portanto, R é um anel simples.
- 2. Seja R um anel comutativo, unitário e simples. Então, os únicos ideais de R são {0} e T. Em particular, {0} é um ideal maximal de R, pelo que R/{0} é corpo. Como R é isomorfo a R/{0}, R é corpo.
- 3. Existem anéis unitários e simples que não são anéis de divisão. Consideremos, por exemplo, o conjunto $\mathcal{M}_2(\mathbb{R})$ de todas as matrizes quadradas reais de ordem 2. Sabemos que $\mathcal{M}_2(\mathbb{R})$ não é anel de divisão: basta tomar a matriz $P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ que é não nula e não invertível.

Seja I um ideal não nulo de $\mathcal{M}_2(\mathbb{R})$ e seja $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in I \setminus \{0\}$. Suponhamos, sem perdas de generalidade, que $a_{11} \neq 0$. Facilmente se verifica que $PAP = \begin{bmatrix} a_{11} & 0 \\ 0 & 0 \end{bmatrix}$. Mais, sendo I um ideal, $PAP \in I$. Como $a_{11} \neq 0$, existe a_{11}^{-1} . Temos que

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & 0 \\ 0 & 0 \end{bmatrix} \in I;$$

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in I;$$

$$\begin{bmatrix} 0 & a_{11} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in I;$$

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & a_{11} \\ 0 & 0 \end{bmatrix} \in I;$$

$$\begin{bmatrix} 0 & 0 \\ a_{11} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & 0 \\ 0 & 0 \end{bmatrix} \in I;$$

$$\begin{bmatrix} 0 & 0 \\ 0 & a_{11} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ a_{11} & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in I;$$

$$\begin{bmatrix} 0 & 0 \\ 0 & a_{11} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & a_{11} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 0 & a_{11} \end{bmatrix} \in I.$$

е

Portanto,
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in I$, pelo que

$$\mathcal{M}_2(\mathbb{R}) = \langle \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \rangle \subseteq I.$$

Logo, $I = \mathcal{M}_2(\mathbb{R})$ e $\mathcal{M}_2(\mathbb{R})$ é simples e unitário.

Proposição. Sejam R um anel e I um ideal de R. Então, I é ideal maximal de R se e só se R/I for anel simples.

Demonstração. Admitamos que I é ideal maximal de R. Então, $I \subsetneq R$ e, portanto, $R/I \neq \{I\}$. Seja P/I um ideal de R/I. Então, $I \subseteq P$ e P é ideal de R. Como I é ideal maximal de R, P = I ou P = R. Se P = I, então $P/I = \{I\}$. Se P = R, então P/I = R/I. Logo, R/I é um anel simples.

Reciprocamente, admitamos que R/I é um anel simples. Então, $R/I \neq \{I\}$ e, portanto, $I \subsetneq R$. Seja P um ideal de R tal que $I \subsetneq P \subseteq R$. Então, P/I é ideal não nulo de R/I. Sendo R/I um anel simples, podemos concluir que P/I = R/I. Logo, P = R. Portanto, I é ideal maximal de R.

Proposição. Seja R um anel unitário. Então, são equivalentes as seguintes condições:

- (a) (0) é ideal direito [respetivamente: esquerdo] maximal;
- (b) R_R [respetivamente: $_RR$] é módulo-R simples;
- (c) Todo o elemento não nulo de R é invertível à direita;
- (d) Todo o elemento não nulo de R é invertível.

Demonstração. Admitamos que (0) é ideal direito maximal. Então, (0) é submódulo maximal de R_R . Assim, dado um submódulo N de R_R , temos que $\{0\} \subseteq N \subseteq R_R$ e, pela maximalidade de (0), segue que $N = \{0\}$ ou N = R. Portanto, os únicos submódulos-R de R_R são $\{0\}$ e R_R . Logo, R_R é módulo-R simples.

Suponhamos, agora, que R_R é um módulo-R simples. Seja $a \in R \setminus \{0\}$. Então, aR é submódulo-R de R_R e é não nulo (uma vez que $a = a1 \in aR$), pelo que aR = R. Como $1 \in R$, existe $b \in R$ tal que 1 = ab. Por outras palavras, vimos que todos os elementos não nulos de R são invertíveis à direita.

Admitamos que todos os elementos não nulos de R são invertíveis à direita e tomemos $a \in R \setminus \{0\}$. Por hipótese, existe $b \in \mathbb{R} \setminus \{0\}$ tal que ab = 1. Como $b \in R \setminus \{0\}$, existe $c \in R \setminus \{0\}$ tal que bc = 1. Ora,

$$a = a.1 = a(bc) = (ab)c = 1.c = c.$$

Assim, existe $b \in R \setminus \{0\}$ tal que ab = 1 = ba e a é invertível. Portanto, todos os elementos não nulos de R são invertíveis.

Por fim, suponhamos que todo o elemento não nulo de R é invertível. Seja $r \in R \setminus \{0\}$. Pretendemos mostrar que $((0), r)_d = R$. Como $r \neq 0$, existe $a \in R \setminus \{0\}$ tal que ar = ra = 1. Logo, $1 \in rR = ((0), r)_d$, pelo que $R \subseteq ((0), r)_d$. Portanto, $(0), r)_d = R$ e (0) é ideal direito maximal de R.

No que se segue, R é um anel não nulo.

Definição. Seja S um subconjunto não vazio de R.

- **1.** Diz-se que S é um conjunto multiplicativamente fechado ou multiplicativo se, para todos os elementos $a, b \in S$, se tiver $ab \in S$.
- **2.** Diz-se que S é um conjunto semimultiplicativamente fechado ou semimultiplicativo se, para todos os elementos $a, b \in S$, existir um elemento $c \in R$ tal que $acb \in S$.

Proposição. Todo o subconjunto multiplicativo de R é um conjunto semimultiplicativo.

Seja S um subconjunto multiplicativo de R e sejam $a, b \in S$. Por definição, $aa \in S$ e, portanto, $aab = (aa)b \in S$. Logo, existe $a \in S$ tal que $aab \in S$, pelo que S é semimultiplicativo. \square

Exemplos.

- 1. {0} é um conjunto multiplicativo.
- **2.** Seja $a \in R$. Então, $S_a = \{a^n : n \in \mathbb{N}\}$ é multiplicativo.

2.2. Ideais primos

No que se segue, R é um anel comutativo.

Definição. Seja P um ideal próprio de R.

- 1. Diz-se que P é um ideal completamente primo se R/P for domínio de integridade.
- **2.** Diz-se que P é um *ideal primo* se, para quaisquer elementos $a, b \in R$ tais que $aRb \subseteq P$ se tiver $a \in P$ ou $b \in P$.

Proposição. Seja P um ideal de R. Se P é completamente primo, então P é ideal primo de R.

Demonstração. Admitamos que P é completamente primo. Então, R/P é domínio de integridade. Dados $a,b \in R$ tais que $aRb \subseteq P$, temos que $aab \in P$. Logo,

$$(a+P)(a+P)(b+P) = aab + P = P.$$

Sendo R/P um domínio de integridade, a+P=P ou b+P=P. Logo, $a \in P$ ou $b \in P$, pelo que P é um ideal primo.

Proposição. Seja P um ideal de R. Então, são equivalentes as seguintes condições.

- (a) P é ideal primo de R.
- (b) O conjunto $S = R \setminus P$ é semimultiplicativo.

Demonstração. Admitamos que P é ideal primo de R. Então $P \subsetneq R$ e $S = R \setminus P \neq \emptyset$. Sejam $a,b \in S$. Então, $a \not\in P$ e $b \not\in P$. Como P é ideal primo, $aRb \not\subset P$. Assim, existe $arb \in aRb$ tais que $arb \not\in P$, isto é, $arb \in S$. Portanto, dados $a,b \in S$, existe $r \in R$ tal que $arb \in S$. Por definição, S é semimultiplicativo.

Reciprocamente, admitamos que S é semimultiplicativo. Então, $S \neq \emptyset$ e $P \subsetneq R$. Sejam $a,b \in R$ tais que $aRb \subseteq P$. Suponhamos que $a \notin P$ e $b \notin P$. Então, $a,b \in S = R \setminus P$ e, como S é semimultiplicativo, existe $r \in R$ tal que $arb \in S$. Ou seja, existe $r \in R$ tal que $arb \notin P$,

o que contradiz o facto de aRb estar contido em P. Assim, $a \in P$ ou $b \in P$ e, por definição, P é um ideal primo de R.

Exemplo. Dado um número primo p, não é difícil de mostrar que $S = \mathbb{Z} \setminus p\mathbb{Z}$ é multiplicativo. De facto, dados $a, b \in S$, se $ab \in p\mathbb{Z}$, então existe $q \in \mathbb{Z}$ tal que ab = pq. Ora, a|ab. Como ab = pq, podemos concluir que a|pq e, assim, existe $r \in \mathbb{Z}$ tal que a = pqr. Logo, $a \in p\mathbb{Z}$, o que contradiz o facto de a pertencer a S. Logo, $ab \notin p\mathbb{Z}$ e, portanto, $ab \in S$. Vimos, assim, que S é multiplicativo. Então, podemos concluir que S é semimultiplicativo e, pela proposição anterior, $p\mathbb{Z}$ é ideal primo.

Proposição. Sejam P um ideal primo de R e $k \in \mathbb{N}$. Se I_1, \ldots, I_k forem ideais direitos [respetivamente: esquerdos, bilaterais] de R tais que $I_1 \ldots I_k \subseteq P$, então existe $j \in \{1, \ldots, k\}$ tal que $I_j \subseteq P$.

Demonstração. É claro que o resultado é válido para k=1. Comecemos, pois, por mostrar que o resultado se verifica para k=2. Sejam I_1, I_2 dois ideais direitos de R tais que $I_1I_2 \subseteq P$. Suponhamos que $I_1 \not\subset P$ e $I_2 \not\subset P$. Então, existem $x_1 \in I_1, x_2 \in I_2$ tais que $x_1, x_2 \not\in P$. Sendo I_1 um ideal direito de R, $x_1R \subseteq I_1$. Portanto, $x_1Rx_2 \subseteq I_1I_2 \subseteq P$. Sendo P um ideal primo, $x_1 \in P$ ou $x_2 \in P$, uma contradição. Logo, $I_1 \subseteq P$ ou $I_2 \subseteq P$.

Suponhamos, agora, que o resultado é válido para k-1 e admitamos que $I_1, \ldots, I_{k-1}, I_k$ são ideais direitos de R tais que $I_1 \ldots I_{k-1}I_k \subseteq P$. Como $I_1 \ldots I_{k-1}, I_k$ são ideais direitos de R tais que $(I_1 \ldots I_{k-1})I_k \subseteq P$, podemos concluir que $I_1 \ldots I_{k-1} \subseteq P$ ou I_k . Por hipótese, de $I_1 \ldots I_{k-1} \subseteq P$, segue que existe $j_0 \in \{1, \ldots, k-1\}$ tal que $I_{j_0} \subseteq P$. Logo, existe $j \in \{1, \ldots, k\}$ tal que $I_j \subseteq P$.

Corolário. Sejam P um ideal primo de R e I um ideal direito [respetivamente: esquerdo, bilateral] nilpotente de R, Então, $I \subseteq P$.

Demonstração. [exercício!]

Proposição. Sejam P um ideal primo de R, $k \in \mathbb{N}$ e I_1, \ldots, I_k ideais de R tais que $I_1 \cap \cdots \cap I_k = P$. Então, existe $j \in \{1, \ldots, k\}$ tal que $I_j = P$.

Demonstração. Para todo o $i \in \{1, ..., k\}$, I_i é um ideal de R e, portanto, $I_1 ... I_k \subseteq I_i$. Logo,

$$I_1 \dots I_k \subseteq I_1 \cap \dots \cap I_k = P$$
.

Pela proposição anterior, como P é ideal primo de R, existe $j \in \{1, ..., k\}$ tal que $I_j \subseteq P$. Como $P \subseteq I_j$, temos que $I_j = P$.

Lema. Sejam $S \subseteq R$ conjunto semimultiplicativo e J ideal de R tais que $J \cap S = \emptyset$. Então, existe P ideal primo de R tal que $J \subseteq P$ e $P \cap S = \emptyset$.

Demonstração. Consideremos a família

$$\mathcal{F} = \{I : I \text{ \'e ideal de } R, J \subseteq I \text{ e } I \cap S = \emptyset\}.$$

Por hipótese, $J \in \mathcal{F}$ e, portanto, $\mathcal{F} \neq \emptyset$. Não é difícil de verificar que (\mathcal{F}, \subseteq) é um conjunto parcialmente ordenado. Seja $\mathcal{C} = \{I_k\}_{k \in K}$ uma cadeia não vazia de elementos de \mathcal{F} e consideremos

$$Q = \bigcup_{k \in K} I_k.$$

Como \mathcal{C} é uma cadeia, Q é um ideal de R. Para todo o $k \in K$, $J \subseteq I_k$. Logo, $J \subseteq Q$. Assim,

$$Q \cap S = \left(\bigcup_{k \in K} I_k\right) \cap S = \bigcup_{k \in K} (I_k \cap S) = \emptyset.$$

Logo, $Q \in \mathcal{F}$ e, portanto, \mathcal{C} admite majorante. Pelo Lema de Zorn, \mathcal{F} admite elemento maximal, digamos P. Por definição de \mathcal{F} , P é um ideal de R que contém J e é tal que $P \cap S = \emptyset$. Falta mostrar que P é um ideal primo.

Como S é um conjunto semimultiplicativo, $S \neq \emptyset$. Assim, $P \subsetneq R$ (uma vez que $P \cap S = \emptyset$). Sejam $a,b \in R$ tais que $aRb \subseteq P$. Suponhamos que $a \not\in P$ e $b \not\in P$. Então, $P \subsetneq P + (a)$. Como P + (a) é um ideal de R que contém J e P é elemento maximal de \mathcal{F} , podemos concluir que

$$(P+(a))\cap S\neq \emptyset.$$

De modo análogo, concluímos que

$$(P+(b))\cap S\neq\emptyset.$$

Portanto, existem $r \in (P + (a)) \cap S$ e $s \in (P + (b)) \cap S$. Recordemos que

$$(a) = \{ra + a\ell + na + \sum_{i} r_i a\ell_i : r, \ell, r_i, \ell_i \in P, n \in \mathbb{N}\},\$$

$$(b)=\{r'b+b\ell'+n'b+\sum r_i'b\ell_i':r',\ell',r_i',\ell_i'\in P,n'\in\mathbb{N}\}.$$

Logo,

$$rRs \subset (P+(a))R(P+(b)) \subset P+(a)R(b) \subset P.$$

Como $r, s \in S$ e S é semimultiplicativo, existe $c \in R$ tal que $rcs \in S$. Mas $rcs \in rRs \subseteq P$, o que contradiz o facto de $P \cap S = \emptyset$. Logo, $a \in P$ ou $b \in P$. Por definição, P é ideal primo. \square

Corolário. Seja $S \subseteq R$ um conjunto semimultiplicativo tal que $0 \notin S$. Então, existe um ideal primo P tal que $P \cap S = \emptyset$.

Demonstração. [exercício!]

Observação. A interseção de ideais primos não é necessariamente um ideal primo. Consideremos, por exemplo o anel \mathbb{Z} e os ideais $3\mathbb{Z}$ e $5\mathbb{Z}$ de \mathbb{Z} . Como 3 e 5 são números primos, $3\mathbb{Z}$ e $5\mathbb{Z}$ são ideais primos de \mathbb{Z} . No entanto, $3\mathbb{Z} \cap 5\mathbb{Z} = 15\mathbb{Z}$. Como 15 não é um número primo, $3\mathbb{Z} \cap 5\mathbb{Z}$ não é um ideal primo de \mathbb{Z} .

Lema. A interseção de ideais de qualquer cadeia não vazia de ideais primos de R é ideal primo de R.

Demonstração.

- 1. Seja $I_1 \subseteq I_2 \subseteq \ldots$ uma cadeia ascendente de ideais primos. A interseção de ideais da cadeia é um elemento da cadeia. Logo, é ideal primo de R.
- 2. Seja $C = \{I_k\}_{k \in K}$ uma cadeia descendente de ideais primos de R. Consideremos um subconjunto T de K e seja $D = \bigcap_{k \in T} I_k$. Como I_k é um ideal próprio de R para todo o $k \in T$, também D é ideal próprio de R. Sejam $x, y \in R$ tais que $xRy \subseteq D$ e suponhamos que $y \notin D$. Então, existe $t \in T$ tal que $y \notin I_t$. Sendo C uma cadeia descendente, $y \notin I_k$ para todo o $k \in T$ tal que $I_t \supseteq I_k$. Ora,

$$xRy \subseteq D \subseteq I_k$$

para todo o $k \in T$ tal que $I_t \supseteq I_k$. Logo, uma vez que I_k é ideal primo, $x \in I_k$. Mas \mathcal{C} é uma cadeia descendente e, portanto, $x \in I_k$ para todo o $k \in T$. Logo, $x \in D$. Portanto, D é ideal primo de R.

Definição. À família de todos os ideais primos de R dá-se o nome de espectro de R e denota-se por $\operatorname{Spec}(R)$.

Definição. Diz-se que R é um anel primo se (0) é um ideal primo de R.

Proposição. Seja P um ideal próprio de R, Então P é ideal primo de R se e só se R/P é um anel primo.

Demonstração. Admitamos que P é ideal primo de R. Então, $P \subseteq R$, pelo que $R/P \neq \{P\}$. Sejam $a+P, b+P \in R/P$ tais que $(a+P)R/P(b+P) \subseteq \{P\}$. Então, $(a+P)R/P(b+P) = \{P\}$. Portanto, para todo o $r \in R$,

$$arb + P = (a + P)(r + P)(b + P) = P$$

pelo que $arb \in P$. Assim, $aRb \subseteq P$ e, sendo P primo, $a \in P$ ou $b \in P$. Logo, a + P = P ou b + P = P. Portanto, $a + P \in \{P\}$ ou $b + P \in \{P\}$, pelo que $\{P\}$ é ideal primo de R/P e R/P é anel primo.

Reciprocamente, admitamos que R/P é anel primo. Então, $\{P\}$ é ideal primo de R/P e, em particular, $P \subsetneq R$. Sejam $a,b \in R$ tais que $aRb \subseteq P$. Então, para todo o $r \in R$, $arb \in P$ e, portanto,

$$(a+P)(r+P)(b+P) = arb + P = P.$$

Logo, $(a+P)R/P(b+P) \subseteq \{P\}$ e, sendo $\{P\}$ ideal primo de R/P, $a+P \in \{P\}$ ou $b+P \in \{P\}$. Assim, $a \in P$ ou $b \in P$. Por outras palavras, P é ideal primo de R.

Proposição. Sejam R um anel primo e $f \in R$ um idempotente não nulo. Então, fRf é um anel primo.

Demonstração. Como R é um anel primo, sabemos que (0) é ideal primo de R. Por outro lado, sabemos também que fRf é um anel. Sejam $x, y \in fRf$ tais que $x(fRf)y \subseteq (0)$. Então, x(fRf)y = (0). Como $x, y \in fRf$, x = fxf e y = fyf. Para todo o $r \in R$,

$$xry = (fxf)r(fyf) = fxf^2rf^2yf = (fxf)(frf)(fyf) = x(frf)y \in x(fRf)y = (0).$$

Logo, xRy = (0), pelo que $x \in (0)$ ou $y \in (0)$ (pois $x, y \in R$ e (0) é ideal primo de R). Portanto, (0) é ideal primo de fRf e fRf é anel primo.

Definição. Seja P um ideal primo de R. Dizemos que P é ideal primo minimal de R se for minimal entre os ideais primos de R.

Proposição. Todo o ideal primo de R contém um ideal primo minimal.

Demonstração. Seja P um ideal primo de R. Consideremos a família

$$\mathcal{F} = \{I : I \text{ \'e ideal primo de } R \text{ e } I \subseteq P\}.$$

Como P é ideal primo de R e $P \subseteq P$, temos que $P \in \mathcal{F}$. Logo, $\mathcal{F} \neq \emptyset$. Não é difícil de provar que (\mathcal{F},\supseteq) é um conjunto parcialmente ordenado. Consideremos uma cadeia não vazia $\mathcal{C} = \{\mathcal{I}_{\parallel}\}_{\parallel \in \mathcal{K}}$ de elementos de \mathcal{F} . Pelo Lema anterior, $\bigcap_{k \in K} I_k$ é um ideal primo de R. Mais, $I_k \subseteq P$ para todo o $k \in K$, pelo que $\bigcap_{k \in K} I_k \subseteq P$. Logo, $\bigcap_{k \in K} I_k \in \mathcal{F}$ e \mathcal{C} tem majorante.

$$I_k \subseteq P$$
 para todo o $k \in K$, pelo que $\bigcap_{k \in K} I_k \subseteq P$. Logo, $\bigcap_{k \in K} I_k \in \mathcal{F}$ e \mathcal{C} tem majorante.

Pelo Lema de Zorn, \mathcal{F} admite elemento maximal, digamos Q. Por definição de \mathcal{F} , Q é ideal primo de R e $Q \subseteq P$. Seja L um ideal primo de R tal que $(0) \subseteq L \subseteq Q$. Então, L é ideal primo de L e $L \subseteq P$, pelo que $L \in \mathcal{F}$. Como Q é elemento maximal de \mathcal{F} , L = Q. Assim, Qé um ideal primo minimal de R contido em P. \Box .

Observação. Se R é um anel primo, então (0) é o único ideal primo minimal de R.

Proposição. Seja R um anel comutativo. Então, são equivalentes as seguintes condições.

- (a) P é ideal primo de R.
- (b) P é ideal próprio de R e, para todos os $a, b \in R$ tais que $ab \in P$, tem-se $a \in P$ ou $b \in P$.
- (c) P é ideal completamente primo de R.
- (d) O conjunto $S = R \setminus P$ é multiplicativo.

Demonstração. Admitamos que P é ideal primo de R. Por definição, $P \subseteq R$. Sejam $a, b \in R$ tais que $ab \in P$. Como P é ideal de R, $abR \subseteq P$. Sendo R comutativo, $aRb = abR \subseteq P$. Logo, de P ser ideal primo de R segue que $a \in P$ ou $b \in P$.

Admitamos, agora, que a condição (b) é válida. Sejam $a + P, b + P \in R/P$ tais que (a + P, b)P(b+P) = P. Então,

$$ab + P = (a+P)(b+P) = P,$$

pelo que $ab \in P$. Por hipótese, $a \in P$ ou $b \in P$, ou seja, a + P = P ou b + P = P. Logo, R/P é um domínio de integridade e, por definição, P é completamente primo.

Suponhamos, agora, que P é ideal completamente primo de R. Então, P é ideal primo e $P \subseteq R$. Portanto, $S = R \setminus P \neq \emptyset$. Sejam $a, b \in S$. Então, $a \notin P$ e $b \notin P$. Como P é ideal primo e vimos que (a) implica (b), podemos concluir que $ab \notin P$, ou seja, $ab \in S$. Logo, S é multiplicativo.

Por fim, admitamos que S é multiplicativo. Em particular, S é semimultiplicativo, pelo que P é ideal primo de R.

Proposição. Sejam R um anel comutativo e I, J ideais de R tais que $J \subseteq I$. Então, I/J é ideal primo de R/J se e só se I é ideal primo de R.

Demonstração. Pelo Teorema do Isomorfismo, R/I é isomorfo a (R/J)/(I/J). Ora, I/J é ideal primo de R/J se e só se (R/J)/(I/J) é anel primo, o que é equivalente a dizer que R/I é anel primo. A última condição é equivalente a dizer que I é ideal primo de R:

Exemplos.

- 1. Os únicos ideais primos de \mathbb{Z} são (0) e $p\mathbb{Z}$, com p primo. Logo, (0) é o único ideal primo minimal de \mathbb{Z} .
- **2.** Dado $n \in \mathbb{Z} \setminus \{-1, 0, 1\}$, os únicos ideais primos de $\mathbb{Z}/n\mathbb{Z}$ são os ideais $t\mathbb{Z}/n\mathbb{Z}$ com t primo. Mais, $t\mathbb{Z}/n\mathbb{Z}$ com t primo, é ideal primo minimal de $\mathbb{Z}/n\mathbb{Z}$.
- **3.** Seja K um corpo e x uma indeterminada. Seja R = K[x]. Então, (x a)R, com $a \in K$, é ideal primo de R. [exercício!]

Proposição. Sejam R um anel unitário e P um ideal próprio de R. Então, são equivalentes as seguintes condições:

- (a) P é ideal primo de R.
- (b) Dados I e J ideais direitos de R, se $IJ \subseteq P$ então $I \subseteq P$ ou $J \subseteq P$.
- (c) Dados I e J ideais esquerdos de R, se $IJ \subseteq P$ então $I \subseteq P$ ou $J \subseteq P$.
- (d) Dados I e J ideais de R, se $IJ \subseteq P$ então $I \subseteq P$ ou $J \subseteq P$.
- (e) Não existem ideais L e M de R tais que $P \subsetneq L, P \subsetneq M$ e $LM \subseteq P$.

Demonstração. Admitamos que P é ideal primo de R e consideremos I, J ideais direitos de R tais que $IJ \subseteq P$. Por uma proposição anterior, $I \subseteq P$ ou $J \subseteq P$.

Suponhamos agora que, para todos os ideais direitos K, Q de R tais que $KQ \subseteq P$ se tem $K \subseteq P$ ou $Q \subseteq P$. Sejam I, J ideais esquerdos de R tais que $IJ \subseteq P$. Então, IR, JR são dois ideais direitos de R. Além disso,

$$(IR)(JR) = I(RJ)R \subseteq IJR = (IJ)R \subseteq PR \subseteq P.$$

Por hipótese, $IR \subseteq P$ ou $JR \subseteq P$. Como R é unitário, $I \subseteq IR \subseteq P$ ou $J \subseteq JR \subseteq P$.

E imediato que (c) implica (d). Admitamos que (d) é válida e suponhamos que existem ideais L e M de R tais que $P \subsetneq L$, $P \subsetneq M$ e $LM \subseteq P$. Por hipótese, sendo L e M ideias de

R tais que $LM\subseteq P$, segue que $L\subseteq P$ ou $M\subseteq P$. Assim, L=P ou M=P, o que é uma contradição.

Por último, assumamos que (e) é válida e tomemos $x, y \in R$ tais que $xRy \subseteq P$. Suponhamos que $y \notin P$. Então, $P \subsetneq P + (y)$ e $P \subseteq P + (x)$. Como

$$(P+(x))(P+(y)) = P+(x)(y) \subseteq P + xRy \subseteq P,$$

podemos concluir que P = P + (x) e, portanto, $x \in P$.

Corolário. Seja R um anel unitário. Então, são equivalentes as seguintes condições.

- (a) Se $a, b \in R \setminus \{0\}$ então $aRb \neq (0)$.
- (b) Dados I e J ideais direitos não nulos de R, $IJ \neq (0)$.
- (c) Dados I e J ideais esquerdos não nulos de R, $IJ \neq (0)$.
- (d) Dados I e J ideais não nulos de R, $IJ \neq (0)$.
- (e) R é anel primo.

Proposição. Seja R um anel unitário. Então, todo o ideal maximal de R é primo.

Demonstração. Seja P um ideal maximal de R. Então, $P \subsetneq R$. Suponhamos que existem ideais L e M de R tais que $P \subsetneq L$, $P \subsetneq M$ e $LM \subseteq P$. Como P é ideal maximal de R e $P \subsetneq L$, $P \subsetneq M$, podemos concluir que L = R = M. Logo, como R é unitário, $R = R^2 = LM \subseteq P$, uma contradição. Portanto, não existem ideias nas condições consideradas e, pela proposição anterior, P é ideal primo. \square

Corolário. Se R é um anel unitário, então R admite ideais primos e ideais primos minimais.

Demonstração. Seja R um anel unitário. Então, R admite ideais maximais. Pela proposição anterior, R admite ideais primos. Como todo o ideal primo contém ideais primos minimais, podemos concluir que R admite ideais primos minimais.

Observação.

- 1. Consideremos o conjunto $\mathbb{Z}/2\mathbb{Z}$ munido da adição usual e do produto '.' definido por $\bar{a}.\bar{b}=\bar{0}$. Então, $(\mathbb{Z}/2\mathbb{Z},+,.)$ é um anel comutativo não unitário. É fácil de verificar que $(\bar{0})$ é um ideal maximal. No entanto, não é um ideal primo: $\bar{1}.\bar{1}=\bar{0}\in(\bar{0})$ mas $\bar{1}\not\in(\bar{0})$.
- **2.** $\mathbb{Z} \times \{0\}$ é ideal de $\mathbb{Z} \times \mathbb{Z}$. Como $\mathbb{Z} \times \mathbb{Z}/\mathbb{Z} \times \{0\} \cong \mathbb{Z}$, o anel $\mathbb{Z} \times \mathbb{Z}/\mathbb{Z} \times \{0\}$ é um domínio de integridade. Logo, $\mathbb{Z} \times \{0\}$ é ideal primo de $\mathbb{Z} \times \mathbb{Z}$. No entanto, $\mathbb{Z} \times \{0\}$ não é ideal maximal, uma vez que se tem

$$\mathbb{Z} \times \{0\} \subseteq \mathbb{Z} \times 2\mathbb{Z} \subseteq \mathbb{Z} \times \mathbb{Z}.$$

Teorema. Seja R um anel comutativo e unitário tal que $a^2 = a$ para todo o $a \in R$. Então, I é ideal primo de R se e só se I é ideal maximal de R.

Demonstração. Pela proposição anterior, se I é um ideal maximal de R então I é um ideal primo de R. Suponhamos, então, que I é ideal primo de R. Assim, $I \subsetneq R$ e R/I é um anel não nulo. Sendo R anel comutativo e unitário, também R/I é comutativo e unitário. Seja $a \in R \setminus I$. Então, $a \not\in I$ e $a+I \neq I$. Como $a^2 = a$, temos que $a^2 - a = 0 \in I$, ou seja, $a(a-1) \in I$. Por hipótese, $a \in I$ ou $a-1 \in I$. Mas $a \not\in I$, pelo que podemos concluir que $a-1 \in I$. Por outras palavras, a+I=1+I. Logo, a+I é invertível e R/I é um corpo. Portanto, I é idea maximal de R.

Proposição. Sejam R um anel comutativo e unitário e $P \neq (0)$ um ideal primo minimal. Então, todo o elemento de P é divisor de zero.

Demonstração. Sejam $p \in P$ e $S = \{p^k a : k \in \mathbb{N}, a \in R \setminus P\}$. Como P é ideal primo de R, $P \subseteq R$ e $1 \notin P$. Logo, $p = p^1 1 \in S$ e $S \neq \emptyset$.

Sejam $x, y \in S$. Então, existem $k, t \in \mathbb{N}$ e $a, b \in R \setminus P$ tais que $x = p^k a$, $y = p^t b$. Como R é comutativo, $xy = (p^k a)(p^t b) = p^k p^t ab = p^{k+t}(ab)$. Sendo P um ideal primo, sbemos que $ab \notin P$ (pois $a \notin P$ e $b \notin P$). Logo, $xy \in S$ e S é um conjunto multiplicativo.

Suponhamos que $0 \notin S$. Então, existe um ideal primo Q de R tal que $Q \cap S = \emptyset$. Como $p \in S$, sabemos que $p \notin Q$. Suponhamos que existe $x \in Q \setminus P$. Então, $px \in S$. Mais, como $p \in R$ e $x \in Q$, temos que $px \in Q$. Logo, $px \in Q \cap S$, uma contradição. Assim, $Q \subsetneq P$, o que contradiz o facto de P ser ideal primo minimal. Portanto, $0 \in S$, pelo que existem $n \in \mathbb{N}$ e $a \in R \setminus P$ tais que $p^n a = 0$. Seja k o menor natural tal que $p^k a = 0$. Se k = 1, então pa = 0, com $a \neq 0$, pelo que p é divisor de zero. Se k > 1, então $0 = p^k a = p(p^{k-1}a)$, com $p^{k-1}a \neq 0$, pelo que, também neste caso, p é divisor de zero.

Proposição. Seja R um anel unitário e primo. Então, o centro de R é domínio de integridade.

Demonstração. O centro de R, Z(R), é um anel comutativo e unitário. Como R é um anel primo, o ideal (0) é ideal primo de R. Vamos mostrar que (0) é ideal primo de Z(R). Para tal, consideremos I, J ideais de Z(R) tais que IJ = (0). Então, como $J \subseteq Z(R)$,

$$(RI)(RJ) = (RI)(JR) = R(IJ)R = (0).$$

Ora, (0) é ideal primo de R e RI, RJ são ideais esquerdos de R. Logo, RI = (0) ou RJ = (0). Sendo R unitário, podemos concluir que I = (0) ou J = (0). Assim, (0) é ideal primo de Z(R) e, portanto, Z(R)/(0) é domínio de integridade. Como $Z(R) \cong Z(R)/(0)$, temos que Z(R) é domínio de integridade.

 ${\bf Definição}.$ Dizemos que R é um $\it anel~reduzido$ se não contiver elementos nilpotentes não nulos.

Proposição. Seja R um anel primo. Então, R é domínio de integridade se e só se R é anel reduzido.

Demonstração. Admitamos que R é domínio de integridade. Seja a um elemento nilpotente de R. Por definição, existe $n \in \mathbb{N}$ tal que $a^n = 0$, onde n é o grau de nilpotência de a. Se n = 1, então $0 = a^1 = a$. Se n > 1, então $aa^{n-1} = a^n = 0$. Como R é domínio de integridade, a = 0 ou $a^{n-1} = 0$. Mas n é o grau de nilpotência de a, pelo que a = 0. Logo, R não admite elementos nilpotentes não nulos e, por definição, R é anel reduzido.

Admitamos agora que R é anel reduzido. Sejam $a, b \in R$ tais que ab = 0. Como R é anel primo, (0) é ideal primo de R. Em particular, (0) $\subseteq R$. É claro que, para todo o $x \in R$, abx = 0. Logo,

$$(bxa)^2 = (bxa)(bxa) = bx(abx)a = bx.0.a = 0.$$

Sendo R um anel reduzido, podemos concluir que bxa=0 (pois bxa é nilpotente). Então, bRa=(0). Como (0) é ideal primo de R, temos que $b\in(0)$ ou $a\in(0)$, ou seja, b=0 ou a=0. Por definição, R é domínio de integridade.

Lema. Sejam $n \in \mathbb{N}$ e R um anel tal que, para todo o $b \in R$, $b \in RbR$. Então, \mathcal{I} é ideal de $\mathcal{M}_n(R)$ se e só se $\mathcal{I} = \mathcal{M}_n(I)$ onde I é um ideal de R.

Demonstração. Admitamos que $\mathcal{I} = \mathcal{M}_n(I)$, onde I é um ideal de R. Como I é ideal de R, $0 \in I$ e $I \subseteq R$. Logo, $A = [a_{ij}]$, com $a_{ij} = 0$ para quaisquer $i, j \in \{1, \ldots, n\}$, é um elemento de $\mathcal{M}_n(I) = \mathcal{I}$ e, portanto, $\mathcal{I} \neq \emptyset$. Mais, como $I \subseteq R$, é claro que $\mathcal{I} = \mathcal{M}_n(I) \subseteq \mathcal{M}_n(R)$.

Dadas duas matrizes $A = [a_{ij}], B = [b_{ij}] \in \mathcal{I}$, sabemos que $a_{ij}, b_{ij} \in I$ para quaisquer $i, j \in \{1, ..., n\}$. Logo, sendo I um ideal de R, $a_{ij} - b_{ij} \in I$. Portanto, $A - B = [a_{ij} - b_{ij}] \in \mathcal{I}$.

Se $C = [c_{ij}]$ é uma matriz em $\mathcal{M}_n(R)$, então $c_{ij} \in R$ para quaisquer $i, j \in \{1, ..., n\}$, e, por I ser um ideal de R, $a_{ik}c_{kj}$, $c_{ik}a_{kj} \in I$ para qualquer $k \in \{1, ..., n\}$. Portanto,

$$AC = \left[\sum_{k=1}^{n} a_{ik} c_{kj}\right], CA = \left[\sum_{k=1}^{n} c_{ik} a_{kj}\right] \in \mathcal{I}.$$

Logo, \mathcal{I} é um ideal de $\mathcal{M}_n(R)$.

Reciprocamente, suponhamos que \mathcal{I} é um ideal de $\mathcal{M}_n(R)$ e consideremos

$$I = \{b \in R : \text{ existe } [a_{ij}] \in \mathcal{I} \text{ e existe } (k, \ell) \in \{1, \dots, n\} \times \{1, \dots, n\} \text{ tais que } a_{k\ell} = b\}.$$

Como \mathcal{I} é um ideal de $\mathcal{M}_n(R)$, a matriz nula é um elemento de \mathcal{I} . Logo, $0 \in I$ e $I \neq \emptyset$.

Seja $a \in R$. Representemos por $[a]_{(m,t)}$ a matriz $[a_{ij}]$ cujo elemento na posição (m,t) é igual a a e os restantes elementos são todos nulos. Dado $c \in I$, existem $V = [v_{ij}] \in \mathcal{I}$ e $(p,q) \in \{1,\ldots,n\} \times \{1,\ldots,n\}$ tais que $v_{pq} = c$. Como $c \in I \subseteq R$, $c \in RcR$ (por hipótese). Assim, existe $k \in \mathbb{N}$ e existem $a_{\ell}, b_{\ell} \in R$, com $\ell \in \{1,\ldots,k\}$, tais que

$$c = \sum_{\ell=1}^{k} a_{\ell} c b_{\ell}.$$

Dados $a, b \in R$, para qualquer $(s, r) \in \{1, \dots, n\} \times \{1, \dots, n\}$,

$$[a]_{(s,p)}V[b]_{(q,r)} = \left[\sum_{\ell} a_{w\ell}v_{\ell j}\right][b]_{(q,r)} = \left[\sum_{m} \left(\sum_{\ell} a_{w\ell}v_{\ell m}\right)b_{mt}\right]$$
$$= \left[\sum_{\ell} a_{w\ell} \left(\sum_{m} v_{\ell m}b_{mt}\right)\right] = [a_{sp}v_{pq}b_{qr}]_{(s,r)} = [acb]_{(s,r)} \in \mathcal{I}.$$

Então, $[a_{\ell}cb_{\ell}]_{(s,r)} \in \mathcal{I}$, para todo o $\ell \in \{1,\ldots,k\}$. Como \mathcal{I} é um ideal, $\sum_{\ell} [a_{\ell}cb_{\ell}]_{(s,r)} \in \mathcal{I}$, ou seja, $[c]_{(s,r)} \in \mathcal{I}$.

Sejam $c, d \in I$. Para todo o $(s, r) \in \{1, \dots, n\} \times \{1, \dots, n\}$, temos que $[c]_{(s,r)}, [d_{(s,r)}] \in \mathcal{I}$. Como \mathcal{I} é um ideal, $[c-d]_{(s,r)} \in \mathcal{I}$. Logo, por definição, $c-d \in I$.

Dados $c \in I$ e $a \in R$, temos que $[c]_{(s,r)} \in \mathcal{I}$ e $[a]_{(r,s)} \in \mathcal{M}_n(R)$. Logo, como \mathcal{I} é um ideal, $[ca]_{(s,s)} = [c]_{(s,r)}[a]_{(r,s)} \in \mathcal{I}$ e $[ac]_{(r,r)} = [a]_{(r,s)}[c]_{(s,r)} \in \mathcal{I}$, pelo que ca, $ac \in I$. Por outras palavras, vimos que I é um ideal de R.

Falta provar que $\mathcal{I} = \mathcal{M}_n(I)$. Por definição de I, é claro que $\mathcal{I} \subseteq \mathcal{M}_n(I)$. Tomemos, agora, $C \in \mathcal{M}_n(I)$. Então,

$$C = [c_{ij}] = \sum_{i,j} [c_{ij}]_{(i,j)}.$$

Como $c_{ij} \in I$, sabemos que $[c_{ij}]_{(i,j)} \in \mathcal{I}$. Logo, $C \in \mathcal{I}$, pois \mathcal{I} é um ideal. Assim, $\mathcal{I} = \mathcal{M}_n(I)$, com I ideal de R.

Proposição. Sejam R um anel, I, I' ideais de R e $n \in \mathbb{N}$. Então, $\mathcal{M}_n(I)\mathcal{M}_n(I') = \mathcal{M}_n(II')$. **Demonstração**. [exercício!]

Exemplo. Seja R um anel unitário e $n \in \mathbb{N}$. Consideremos o anel $\mathcal{M}_n(R)$ de todas as matrizes quadradas de ordem n com entradas em R. Então, os ideais primos de $\mathcal{M}_n(R)$ são os ideais $\mathcal{M}_n(P)$ onde P é ideal primo de R. [exercício!]

2.3. Somas diretas de anéis

Proposição. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. O produto cartesiano

$$P = \prod_{i \in I} R_i = \{ a = (a_i)_{i \in I} : \forall i \in I, \ a_i \in R_i \},$$

munido com as seguintes operações

$$(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}$$
 $((a_i)_{i \in I}, (b_i)_{i \in I} \in P),$

$$(a_i)_{i \in I} \cdot (b_i)_{i \in I} = (a_i b_i)_{i \in I}$$
 $((a_i)_{i \in I}, (b_i)_{i \in I} \in P),$

é um anel.

Demonstração. [exercício!]

Definição. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Ao anel $\prod_{i\in I}R_i$

chamamos produto direto dos anéis R_i .

Se $R_i = R$ para todo o $i \in I$, então representamos $\prod_{i \in I} R_i$ por R^I .

Se $a = (a_i)_{i \in I} \in P$, para todo o $i \in I$, dizemos que a_i é a componente índice i do elemento a.

Definição. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Para todo o $j\in I$, a correspondência $p_j:\prod_{i\in I}R_i\to R_j$, definida por $p_j((a_i)_{i\in I})=a_j$ é um epimorfismo de

anéis e designa-se por projeção. Por outro lado, a correspondência $i_j:R_j\to\prod_{i\in I}R_i$, definida

por $i_j((a) = (a_i)_{i \in I})$, onde $a_j = a$ e $a_i = 0$ _{R_i} se $i \neq j$, é um monomorfismo de anéis e designa-se por $inclus\tilde{a}o$.

Observemos que, dado $j \in I$, $p_j \circ i_j = \mathrm{id}_{R_j}$ e $p_j \circ i_k = \varphi_0$ sempre que $j \neq k$. Além disso, $\mathrm{Ker}(p_j) \cong \prod_{i \in I \setminus \{j\}} R_i \times \{0_{R_j}\}$

Dados $a=(a_i)_{i\in I},\ b=(b_i)_{i\in I}\in P,\ a=b$ se e só se $a_i=b_i$ para todo o $i\in I$ ou, equivalentemente, $p_i(a)=p_i(b)$ para todo o $i\in I$.

Para todo o $j \in I$, $R_j \cong i_j(R_j) = \overline{R}_j$. É claro que \overline{R}_j é subanel de $\prod_{i \in I} R_i$. Se $i, j \in I$ são tais que $i \neq j$, então $\overline{R}_i \neq \overline{R}_j$. No entanto, se $R_i = R_j$, então $\overline{R}_i \cong \overline{R}_j$.

Definição. Sejam I um conjunto não vazio e R um anel. A correspondência $\delta: R \to R^I$ definida por $\delta(a) = (a_i)_{i \in I}$, com $a_i = a$ para todo o $i \in I$, diz-se uma aplicação diagonal e é um morfismo de anéis.

Proposição. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Então,

- 1. $\prod_{i \in I} R_i$ é comutativo se e só se R_i é comutativo, para todo o $i \in I$.
- **2.** $\prod_{i \in I} R_i$ é anel unitário se e só se R_i é anel unitário, para todo o $i \in I$.
- 3. $Z(\prod_{i \in I} R_i) = \prod_{i \in I} Z(R_i)$, onde Z(R) é o centro de um anel R.
- **4.** Seja $\{B_i\}_{i\in I}$ uma família de anéis tais que $B_i\leq R_i$ para todo o $i\in I$. Então,
 - (i) $\prod_{i\in I} B_i \leq \prod_{i\in I} R_i$
 - (ii) $\prod_{i \in I} B_i = \prod_{i \in I} R_i$ se e só se $B_i = R_i$ para todo o $i \in I$.

(iii)
$$\prod_{i \in I} B_i = \{0\}$$
 se e só se $B_i = \{0\}$ para todo o $i \in I$.

Demonstração [exercício!]

Proposição. Sejam $\{R_i\}_i \in I$, $\{S_i\}_i \in I$ famílias de anéis e $\{\theta_i\}_i \in I$, $\theta_i : R_i \to S_i$, uma família de morfismos. Tem-se que:

- 1. a aplicação $\theta: \prod_{i \in I} R_i \to \prod_{i \in I} S_i$ definida por $\theta((a_i)_{i \in I}) = (\theta_i(a_i))_{i \in I}$ é um morfismo de anéis. A aplicação θ representa-se também por $\prod_{i \in I} \theta_i$ e designa-se por produto direto dos morfismos θ_i .
- 2. $\operatorname{Im}(\theta) = \prod_{i \in I} \operatorname{Im}(\theta_i)$ e $\operatorname{Ker}(\theta) = \prod_{i \in I} \operatorname{Ker}(\theta_i)$. Em particular, θ é um epimorfismo [respetivamente: monomorfismo, isomorfismo] se e só se θ_i é um epimorfismo [respetivamente: monomorfismo, isomorfismo], para todo o $i \in I$.
- 3. O diagrama

$$\prod_{i \in I} R_i \xrightarrow{\theta} \prod_{i \in I} S_i$$

$$p_j \downarrow \qquad \qquad \downarrow \overline{p}_j$$

$$R_j \xrightarrow{\theta_j} S_j$$

é comutativo.

Demonstração. [exercício!]

Teorema [Propriedade Universal do Produto Direto de Anéis]. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis.

- (a) O anel produto $P = \prod_{i \in I} R_i$ e a família de projeções $\{p_i\}_{i \in I}$ verificam a seguinte propriedade:
 - [U] Para qualquer anel F e qualquer família de morfismos $\{\varphi_i\}_{i\in I}$, com $\varphi_i: F \to R_i$ para cada $i \in I$, existe um e um só morfismo $h: F \to P$ tal que

$$p_i \circ h = \varphi_i$$
 para todo o $i \in I$.

(b) Se um anel T e uma família de morfismos $\{\rho_i\}_{i\in I}$, com $\rho_i: T \to R_i$ para cada $i \in I$, verificam a propriedade [U], então existe um isomorfismo $g: T \to P$ tal que $\rho_i = p_i \circ g$ para todo o $i \in I$.

Demonstração. [exercício!]

Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Seja $P=\prod_{i\in I}R_i$. Consideremos o subconjunto

$$A = \{a = (a_i)_{i \in I} \in P : a_i = 0_{R_i} \text{ para quase todos os } i\}$$

de P. Não é difícil de verificar que A é um ideal de P [exercício!]. Em particular, A é um subanel de P.

Definição. Ao subanel $A = \{a = (a_i)_{i \in I} \in P : a_i = 0_{R_i} \text{ para quase todos os } i\}$ dá-se o nome de soma direta externa dos anéis R_i e representa-se A por $\bigoplus_{i \in I} R_i$.

Se $R_i = R$ para todo o $i \in I$, representamos $\bigoplus_{i \in I} R_i$ por $R^{(I)}$.

Para I finito, temos que $\bigoplus_{i \in I} R_i = \prod_{i \in I} R_i = R_1 \dot{\oplus} \dots \dot{\oplus} R_m$, onde m = |I|. Se |I| = 1, então

$$\bigoplus_{i\in I} R_i = \prod_{i\in I} R_i = R.$$

Proposição. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Então,

- 1. $\bigoplus_{i \in I} R_i$ é comutativo se e só se R_i é comutativo, para todo o $i \in I$.
- **2.** $Z(\bigoplus_{i\in I} R_i) = \bigoplus_{i\in I} Z(R_i)$
- **3.** Seja $\{B_i\}_{i\in I}$ uma família de anéis tais que $B_i\leq R_i$ para todo o $i\in I$. Então,
 - (i) $\bigoplus_{i\in I} B_i \leq \bigoplus_{i\in I} R_i$.
 - (ii) $\bigoplus_{i \in I} B_i = \bigoplus_{i \in I} R_i$ se e só se $B_i = R_i$ para todo o $i \in I$.
 - (iii) $\bigoplus_{i \in I} B_i = \{0\}$ se e só se $B_i = \{0\}$ para todo o $i \in I$.

Demonstração. [exercício!]

Para todo o j em I, a correspondência $p'_j: \bigoplus_{i \in I} R_i \to R_j$, definida por $p'_j((a_i)_{i \in I}) = a_j$ é um epimorfismo de anéis e a correspondência $i'_j: R_j \to \bigoplus_{i \in I} R_i$, definida por $i_j((a) = (a_i)_{i \in I})$, onde $a_j = a$ e $a_i = 0_{R_i}$ se $i \neq j$, é um monomorfismo de anéis.

Proposição. Sejam $\{R_i\}_i \in I$, $\{S_i\}_i \in I$ famílias de anéis e $\{\theta_i\}_i \in I$, $\theta_i : R_i \to S_i$, uma família de morfismos. Tem-se que:

- 1. a aplicação $\theta: \bigoplus_{i \in I} R_i \to \bigoplus_{i \in I} S_i$ definida por $\theta((a_i)_{i \in I}) = (\theta_i(a_i))_{i \in I}$ é um morfismo de anéis. A aplicação θ representa-se também por $\bigoplus_{i \in I} \theta_i$ e designa-se por soma direta dos morfismos θ_i .
- 2. $\operatorname{Im}(\theta) = \bigoplus_{i \in I} \operatorname{Im}(\theta_i)$ e $\operatorname{Ker}(\theta) = \bigoplus_{i \in I} \operatorname{Ker}(\theta_i)$. Em particular, θ é um epimorfismo [respetivamente: monomorfismo, isomorfismo] se e só se θ_i é um epimorfismo [respetivamente: monomorfismo, isomorfismo], para todo o $i \in I$.
- 3. O diagrama

$$\bigoplus_{i \in I} R_i \xrightarrow{\theta} \bigoplus_{i \in I} S_i$$

$$p'_j \downarrow \qquad \qquad \downarrow \overline{p}'_j$$

$$R_j \xrightarrow{\theta_j} S_j$$

é comutativo.

Demonstração. [exercício!]

Exemplo. Consideremos o conjunto $\mathscr{S} = \{\text{sucess\~oes de n\'umeros reais}\}$, munido das operações de adição e produto definidas por

$$(u_n)_{n\in\mathbb{N}} + (v_n)_{n\in\mathbb{N}} = (u_n + v_n)_{n\in\mathbb{N}},$$

$$(u_n)_{n\in\mathbb{N}}.(v_n)_{n\in\mathbb{N}}=(u_nv_n)_{n\in\mathbb{N}}.$$

O conjunto $(\mathscr{S},+,.)$ é um anel. Na verdade, $\mathscr{S}=\mathbb{R}^{\mathbb{N}},$ pois

$$\mathscr{S} = \{ f : \mathbb{N} \to \mathbb{R} | f(n) = u_n, \text{ para } n \in \mathbb{N}, \text{ com } u_n \in \mathbb{R} \}.$$

Considerando

 $\mathscr{S}' = \{\text{sucess\~oes de n\'umeros reais com quase todos os termos nulos}\},$

temos que $\mathscr{S}' = \mathbb{R}^{\mathbb{N}}$.

Teorema [Propriedade Universal da Soma Direta de Anéis]. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis.

(a) O anel $A = \bigoplus_{i \in I} R_i$ e a família de inclusões $\{i_j'\}_{j \in I}$ verificam a seguinte propriedade:

[U'] Para qualquer anel R e toda a família de morfismos $\{f_j\}_{j\in I}$, com $f_j:R_j\to R$ para cada $j\in I$, onde, sempre que $k\neq \ell$, $f_k(R_k)f_\ell(R_\ell)=0$, existe um e um só morfismo $g:A\to R$ tal que

$$g \circ i'_j = f_j$$
 para todo o $j \in I$.

(b) Se um anel T e uma família $\{\rho_j\}_{j\in I}$ de morfismos, onde $\rho_j: R_j \to T$ para cada $j \in I$ e sempre que $k \neq \ell$, $\rho_k(R_k)\rho_\ell(R_\ell) = 0$, satisfizerem a propriedade [U'], então

$$T \cong \bigoplus_{i \in I} R_i.$$

Demonstração. [exercício!]

Proposição. Sejam R_1, R_2, R_3 anéis. Então,

- 1. $R_1 \dot{\oplus} R_2 \cong R_2 \dot{\oplus} R_1$.
- **2.** $R_1 \dot{\oplus} (R_2 \dot{\oplus} R_3) \cong (R_1 \dot{\oplus} R_2) \dot{\oplus} R_3 \cong R_1 \dot{\oplus} R_2 \dot{\oplus} R_3$.

Demonstração. [exercício!]

Proposição. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$, $\{B_i\}_{i\in I}$ famílias de anéis tais que B_i é ideal de R_i para todo o $i \in I$. Então,

$$\bigoplus_{i\in I}^{\cdot} (R_i/B_i) \cong (\bigoplus_{i\in I}^{\cdot} R_i)/(\bigoplus_{i\in I}^{\cdot} B_i).$$

Demonstração. [exercício!]

Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Para cada $j\in I,\ R_j\cong i'_j(R_j)=\overline{R}_j\leq \bigoplus_{i\in I}R_i=A.$ Logo, $\sum_{i\in I}\overline{R}_j\leq A.$

Por outro lado, se $a \in A$, então $a = (a_i)_{i \in I}$, com os a_i quase todos nulos. Logo,

$$a = (a_i)_{i \in I} = \sum_{j \in I} i'_j(a_j) \in \sum_{j \in I} \overline{R}_j.$$

Assim, $A \subseteq \sum_{j \in I} \overline{R}_j$, pelo que $A = \sum_{j \in I} \overline{R}_j$.

Já vimos que, dado $a=(a_i)_{i\in I}\in A,\; a=\sum_{j\in I}a_j',\; \text{onde }a_j'=i_j'(a_j)\in \overline{R}_j$ para todo o $j\in I.$

Suponhamos que $a = \sum_{j \in I} a'_j = \sum_{j \in I} b'_j$, com a'_j , $b'_j \in \overline{R}_j$ para todo o $j \in I$.

Como $b'_j \in \overline{R}_j$, existe $b_j \in R_j$ tal que $b'_j = i'_j(b_j)$. Então, $a_j = p'_j(a) = b_j$ e, assim, $a'_j = b'_j$. Logo, todo o elemento a de A se escreve de modo único como soma de elementos de \overline{R}_j .

Não é difícil de verificar que, dados $j,k \in I$ distintos, $\overline{R}_j \overline{R}_k = \{0\}$. Por outras palavras, acabámos de provar o seguinte resultado.

Proposição. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Para todo o $j\in I$, seja $\overline{R}_j=i_j'(R_j)$. Então,

1.
$$A = \bigoplus_{i \in I} R_i = \sum_{j \in I} \overline{R}_j$$
.

- 2. Todo o elemento a de A admite uma representação única do tipo $a=\sum_{j\in I}\overline{a}_j,$ com $\overline{a}_j\in\overline{R}_j.$
- **3.** Para quaisquer $i, j \in I$ tais que $i \neq j$, $\overline{R}_i \overline{R}_j \neq \{0\}$.

Proposição. Sejam R um anel, I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Então, R é isomorfo ao anel $A=\bigoplus_{i\in I}R_i$ se e só se existir em R uma família de subanéis $\{B_i\}_{i\in I}$ tal que

- **1.** $B_i \cong R_i$, para todo o $i \in I$:
- **2.** $R = \sum_{i \in I} B_i;$
- **3.** todo o elemento $a \in R$ admite uma representação única do tipo $a = \sum_{i \in I} b_i$, com $b_i \in B_i$;
- **4.** para quaisquer $i, j \in I$ tais que $i \neq j$, tem-se $B_i B_j = \{0\}$.

Demonstração. [exercício!]

Definição. Sejam R um anel, I um conjunto não vazio e $\{B_i\}_{i\in I}$ uma família de subanéis de R. Diz-se que R é soma direta interna dos B_i , com $i \in I$ se

$$[D_1] \ R = \sum_{i \in I} B_i;$$

- [D₂] todo o elemento $a \in R$ admite uma representação única do tipo $a = \sum_{i \in I} a_i$, com $a_i \in B_i$, a_i quase todos nulos;
- [D₃] para quaisquer $i, j \in I$ tais que $i \neq j$, tem-se $B_i B_j = \{0\}$.

Escreve-se
$$R = \bigoplus_{i \in I} B_i$$
 ou $R = \bigoplus_{i \in I} B_i$.

Definição. Seja S um subanel de R. Diz-se que S é parcela direta de R se existir $T \leq R$ tal que $R = S \oplus_i T$.

Proposição. Sejam R um anel, I um conjunto não vazio e $\{B_i\}_{i\in I}$ uma família de subanéis de R. As seguintes afirmações são equivalentes:

1.
$$R = \bigoplus_{i \in I} B_i$$

2.
$$[D_1]$$
 $R = \sum_{i \in I} B_i;$

 $[D_2]$ todo o elemento $a \in R$ admite uma representação única do tipo $a = \sum_{i \in I} a_i$, com $a_i \in B_i$, a_i quase todos nulos;

 $[D_3']$ para todo o $i \in I$, B_i é ideal de R.

3.
$$[D_1]$$
 $R = \sum_{i \in I} B_i;$

$$[D_2']$$
 para todo o $i \in I$, $B_i \cap \left(\sum_{i \neq j} B_j\right) = \{0\};$

 $[D_3']$ para todo o $i \in I$, B_i é ideal de R.

4.
$$[D_1]$$
 $R = \sum_{i \in I} B_i;$

$$[\mathbf{D}_2']$$
 para todo o $i \in I, B_i \cap \left(\sum_{i \neq j} B_j\right) = \{0\};$

[D₃] para quaisquer $i, j \in I$ tais que $i \neq j$, tem-se $B_i B_j = \{0\}$.

5.
$$[D_1]$$
 $R = \sum_{i \in I} B_i;$

 $[D_2'']$ se $\sum_{i\in I} a_i = 0$, com $a_i \in B_i$, a_i quase todos nulos, então $a_i = 0$ para todo o $i \in I$;

[D₃] para quaisquer $i, j \in I$ tais que $i \neq j$, tem-se $B_i B_j = \{0\}$.

6.
$$[D_1]$$
 $R = \sum_{i \in I} B_i;$

 $[D_2'']$ se $\sum_{i\in I} a_i = 0$, com $a_i \in B_i$, a_i quase todos nulos, então $a_i = 0$ para todo o $i \in I$;

 $[D_3']$ para todo o $i \in I$, B_i é ideal de R.

Demonstração. [exercício!]

Note-se que $R = R \oplus_i \{0\}.$

Definição. Dizemos que o anel R é *indecomponível* se admitir $\{0\}$ e R como únicas parcelas diretas. Caso contrário, dizemos que R é *decomponível*.

Observação. R é soma direta interna de subanéis de R se e só se R é soma direta interna de ideais de R.

Proposição. Sejam R um anel, I um conjunto não vazio e $\{B_i\}_{i\in I}$ uma família de subanéis de R tais que $R = \bigoplus_{i\in I} B_i$. Então,

- (a) Se $I = \{1, 2\}$, então $R = B_1 \oplus_i B_2 = B_2 \oplus_i B_1$.
- (b) Se $I = \{1, 2, 3\}$, então $R = B_1 \oplus_i B_2 \oplus_i B_3 = B_1 \oplus_i (B_2 \oplus_i B_3) = (B_1 \oplus_i B_2) \oplus_i B_3$.

(c) Se
$$I = J \dot{\cup} K$$
, então $R = \left(\bigoplus_{i \in J} B_i\right) \oplus_i \left(\bigoplus_{i \in K} B_i\right)$.

Demonstração. Iremos apenas demonstrar a alínea (c). A prova das restantes alíneas fica como exercício. Sejam, pois J, K subconjuntos de I tais que $I = J \dot{\cup} K$.

$$[D_1] \text{ Como } R = \bigoplus_{i \in I} B_i, \text{ \'e claro que } R = \sum_{i \in I} B_i = \sum_{i \in I} B_i + \sum_{i \in I \setminus I} B_i = \left(\sum_{i \in I} B_i\right) + \left(\sum_{i \in K} B_i\right).$$

$$[D_2']$$
 Pretendemos mostrar que $\left(\bigoplus_{j\in J} B_j\right) \cap \left(\bigoplus_{k\in K} B_k\right) = \{0\}$. Tomemos, então, $x\in A$

$$\left(\bigoplus_{j\in J} B_j\right) \cap \left(\bigoplus_{k\in K} B_k\right)$$
. Assim, $x\in \bigoplus_{j\in J} B_j$, pelo que

$$x = \sum_{j \in J} b_j = \sum_{i \in I} \bar{b}_i,$$

onde $\bar{b}_i=b_i$, se $i\in J$, e $\bar{b}_i=0$, se $i\not\in J$. De modo análogo, como $x\in\bigoplus_{k\in K}{}^iB_k$,

$$x = \sum_{k \in K} c_k = \sum_{i \in I} \bar{c}_i,$$

onde $\bar{c}_i = c_i$, se $i \in K$, e $\bar{c}_i = 0$, se $i \notin K$. Portanto,

$$x = \sum_{i \in I} \bar{b}_i = \sum_{i \in I} \bar{c}_i \in \bigoplus_{i \in I} B_i,$$

donde segue que $\bar{b}_i = \bar{c}_i$ para todo o $i \in I$. Em particular, $b_j = 0$, para todo o $j \in J$, e $c_k = 0$, para todo o $k \in K$. Logo, x = 0, como pretendíamos mostrar.

 $[D_3']$ Por hipótese, para todo o $i \in I$, B_i é ideal de R. Em particular, para todo o $j \in J$, B_j é ideal de R. Portanto, $\bigoplus_{j \in J} {}^iB_j$ é ideal de R. De modo análogo, concluímos que $\bigoplus_{k \in K} {}^iB_k$ é ideal de R.

Por
$$[D_1]$$
, $[D_2']$ e $[D_3']$, podemos concluir que $R = \left(\bigoplus_{i \in J} B_i\right) \oplus_i \left(\bigoplus_{i \in K} B_i\right)$.

Proposição. Sejam R um anel, I um conjunto não vazio e $\{A_i\}_{i\in I}$, $\{B_i\}_{i\in I}$ famílias de subanéis de R tais que $B_i\subseteq A_i$ para todo o $i\in I$. Então,

(a) Se
$$R = \bigoplus_{i \in I} A_i$$
 e $B = \sum_{i \in I} B_i$, então $B = \bigoplus_{i \in I} B_i$.

(b) Se
$$R = \bigoplus_{i \in I} A_i = \bigoplus_{i \in I} B_i$$
, então $B_i = A_i$ para todo o $i \in I$.

Demonstração. Comecemos por provar o resultado enunciado em (a). Admitamos, então, que $R = \bigoplus_{i \in I} A_i$ e $B = \sum_{i \in I} B_i$

- $[D_1]$ Por hipótese, $B = \sum_{i \in I} B_i$ e, portanto, $[D_1]$ verifica-se.
- $[\mathrm{D}_2'] \text{ Seja } i \in I. \text{ Sabemos que } \{0\} \subseteq B_i \cap \left(\sum_{j \neq i} B_j\right). \text{ Seja } b \in B_i \cap \left(\sum_{j \neq i} B_j\right). \text{ Então,}$ $b \in B_i \subseteq A_i \text{ e } b \in \sum_{j \neq i} B_j \subseteq \sum_{j \neq i} A_j. \text{ Logo, } b \in A_i \cap \left(\sum_{j \neq i} A_j\right) = \{0\}, \text{ pelo que } b = 0.$ $\text{Assim, } B_i \cap \left(\sum_{j \neq i} B_j\right) = \{0\}.$

[D₃] Sejm $i, j \in I$ tais que $i \neq j$. Então, $B_i B_j \subseteq A_i A_j = \{0\}$, pelo que $B_i B_j = \{0\}$.

Por [D₁], [D'₂] e [D₃], podemos concluir que $B = \bigoplus_{i \in I} B_i$.

Admitamos, agora, que $R = \bigoplus_{i \in I} A_i = \bigoplus_{i \in I} B_i$. Dado $i \in I$, sabemos que $B_i \subseteq A_i$. Pretendemos mostrar que $A_i \subseteq B_i$. Ora, dado $a \in A_i$, é claro que $a \in \bigoplus_{i \in I} A_i = \bigoplus_{i \in I} B_i$, pelo que

$$a = \sum_{j \in I} \bar{a}_j = \sum_{j \in I} b_j,$$

com $\bar{a}_j \in A_j$, onde $\bar{a}_j = a$ se j = i e $\bar{a}_j = 0$ se $j \neq i$, e $b_j \in B_j \subseteq A_j$. Como $R = \bigoplus_{i \in I} A_i$, podemos concluir que $\bar{a}_j = b_j$ para todo o $j \in I$. Em particular, $a = \bar{a}_i = b_i \in B_i$. Assim, $A_i = B_i$, como pretendíamos mostrar.

Definição. Sejam R um anel, I um conjunto não vazio e $\{B_i\}_{i\in I}$ uma família de subanéis de R tais que $R=\bigoplus_{i\in I} B_i$. Para cada $j\in I$, a correspondência $p_j:R\to B_j$ definida por

$$p_j\left(\sum_{i\in I}b_i\right)=b_j$$

é um epimorfismo de anéis. Por outro lado, a correspondência $i_j: B_j \to R$ definida por

$$i_i(b_i) = b_i$$

é um monomorfismo de anéis.

Os epimorfismos p_j , com $j \in I$ dizem-se as projeções associadas à soma direta interna e os monomorfismos i_j , com $j \in J$, dizem-se as inclusões associadas à soma direta interna.

Não é difícil de verificar que $\operatorname{Ker} p_j = \sum_{i \in I \setminus \{j\}} B_i = \bigoplus_{i \in I \setminus \{j\}} B_i$. Logo,

$$R = \bigoplus_{i \in I} B_i = \left(\bigoplus_{i \in I \setminus \{j\}} B_i \right) \oplus B_j = \operatorname{Ker} p_j \oplus B_j.$$

Definição. Sejam I um conjunto não vazio, $\{R_i\}_{i\in I}$ uma família de anéis, $P=\prod_{i\in I}R_i$ e $\{p_i:P\to R_i\}_{i\in I}$ a família das projeções. Diz-se que um subanel S de P é produto subdireto dos anéis R_i , $i\in I$ se, para todo o $i\in I$, $p_i(S)=R_i$, ou seja, se, para todo o $i\in I$, $p_i|_S$ é ainda um epimorfismo. Escreve-se

$$S = \prod_{i \in I} R_i$$

e $p_i|_{S}$, com $i \in I$, são as projeções associadas ao produto subdireto S.

Exemplos. Sejam I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis.

- **1.** $\prod_{i \in I} R_i$ é produto subdireto dos anéis R_i , $i \in I$.
- **2.** Temos que $\bigoplus_{i \in I} R_i \leq \prod_{i \in I} R_i$. Além disso, $p'_j \equiv p_j \Big|_{\bigoplus_{i \in I} R_i} : \bigoplus_{i \in I} R_i \to R_j$. Logo, $\bigoplus_{i \in I} R_i$ é produto subdireto dos anéis R_i , $i \in I$.

3. Suponhamos que $R_i = R$ para todo o $i \in I$. O produto $\prod_{i \in I} R_i$ denota-se por R^I . Consideremos o conjunto

$$T = \{\bar{a} = (a_i)_{i \in I} \in R^I : \text{ existe } a \in R \text{ tal que } a_i = a, \text{ para todo o } i \in I\}.$$

É claro que T é subanel de R^I . Além disso, dado $j \in I$, $p_j|_T : T \to R_j = R$ é um epimorfismo, uma vez que $r = p_j|_T(\bar{r})$, para todo o $r \in R$. Logo, T é produto subdireto dos anéis R_i , $i \in I$.

Proposição. Sejam I um conjunto não vazio, $\{R_i\}_{i\in I}$ uma família de anéis e S um produto subdireto dos anéis R_i , $i \in I$. Então,

- 1. S é comutativo se e só se R_j é comutativo para todo o $j \in I$.
- $2. \bigcap_{j \in I} \operatorname{Ker} p_j \big|_S = \{\bar{0}\}.$

Demonstração. [exercício!]

Proposição. Sejam I um conjunto não vazio, $\{R_i\}_{i\in I}$ e $\{S_i\}_{i\in I}$ famílias de anéis para os quais existe uma família de epimorfismos $\{\theta_i: R_i \to S_i\}_{i\in I}$ e T um produto subdireto dos anéis R_i , $i \in I$. Então, se $\theta = \prod_{i \in I} \theta_i$, tem-se

- (a) $\theta(T)$ é produto subdireto dos anéis S_i , $i \in I$.
- (b) Se, para todo o $i \in I$, θ_i é um isomorfismo, então T é isomorfo a um produto subdireto dos anéis S_i , $i \in I$.

Demonstração. [exercício!]

Proposição. Sejam R um anel, I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Então, são equivalentes as condições:

- (a) R é isomorfo a um produto subdireto dos anéis R_i , $i \in I$.
- (b) Existe uma família $\{\varphi_i: R \to R_i\}_{i \in I}$ de epimorfismos tais que $\bigcap_{i \in I} \operatorname{Ker} \varphi_i = \{0\}.$
- (c) Existe uma família $\{B_i\}_{i\in I}$ de ideais de R tais que
 - (i) $R/B_i \cong R_i$, para todo o $i \in I$.
 - $(ii) \bigcap_{i \in I} B_i = \{0\}.$

Demonstração. Admitamos que R é isomorfo a um produto subdireto dos anéis R_i , $i \in I$. Sejam $T = \prod_{i \in I} S R_i$ e $\theta : R \to T$ um isomorfismo. Seja $i \in I$. Consideremos a aplicação $\varphi_i : R \to R_i$ dada por $\varphi_i = p_i|_T \circ \theta$. Como θ é um isomorfismo e $p_i|_T$ é um epimorfismo,

 $\varphi_i:R\to R_i$ dada por $\varphi_i=p_i\big|_T\circ\theta.$ Como θ é um isomorfismo e $p_i\big|_T$ é um epimorfismo, também φ_i é um epimorfismo.

Vejamos que $\bigcap_{i\in I} \operatorname{Ker} \varphi_i = \{0\}$. Para isso, tomemos $x\in \bigcap_{i\in I} \operatorname{Ker} \varphi_i$. Então, $x\in \operatorname{Ker} \varphi_i$ para todo o $i\in I$, pelo que $p_i\big|_T\circ\theta(x)=0$, qualquer que seja o i. Logo, $p_i\big|_T[\theta(x)]=0$ para todo o $i\in I$ e, portanto, $\theta(x)=\bar{0}$. Sendo θ um isomorfismo, podemos concluir que x=0. Assim, $\bigcap_{i\in I} \operatorname{Ker} \varphi_i = \{0\}$.

Suponhamos, agora, que existe uma família $\{\varphi_i : R \to R_i\}_{i \in I}$ de epimorfismos tais que $\bigcap_{i \in I} \operatorname{Ker} \varphi_i = \{0\}$. Para todo o $i \in I$, $\operatorname{Ker} \varphi_i$ é ideal de R. Seja, então, $B_i = \operatorname{Ker} \varphi_i$. Assim,

 $\{B_i\}_{i\in I}$ é uma família de ideais de R tal que $\bigcap_{i\in I}B_i=\{0\}$. Pelo Teorema do Homomorfismo,

$$R/_{\operatorname{Ker}\varphi_i}\cong\varphi_i(R),$$

ou seja,

$$R/B_i \cong R_i$$
.

Finalmente, admitamos que existe uma família $\{B_i\}_{i\in I}$ de ideais de R tais que

- (i) $R/B_i \cong R_i$, para todo o $i \in I$.
- $(ii) \bigcap_{i \in I} B_i = \{0\}.$

Consideremos

$$\eta \colon R \to \prod_{i \in I} (R/B_i)$$

$$a \mapsto (a+B_i)_{i \in I}.$$

Não é difícil de verificar que η é um monomorfismo de anéis [exercício!]. Logo, $R \cong \eta(R)$. Mais,

(I)
$$\eta(R) \leq \prod_{i \in I} (R/B_i)$$

(II) Dado $j \in I$,

$$p_j(\eta(R)) = p_j(\{(a+B_i)_{i\in I} : a \in R\}) = \{a+B_j : a \in R\} = R / B_j.$$

Logo, $p_j|_{n(R)}$ é um epimorfismo.

Por (I) e (II), $\eta(R)$ é produto subdireto dos anéis R/B_i , $i \in I$. Como $R/B_i \cong R_i$ para todo o $i \in I$,

$$R \cong \eta(R) = \prod_{i \in I} {R/B_i} \cong \prod_{i \in I} R_i. \quad \Box$$

Corolário. Sejam R um anel, I um conjunto não vazio e $\{B_i\}_{i\in I}$ uma família de ideais de R. Então, $R / \bigcap_{i\in I} B_i$ é isomorfo a um produto subdireto dos anéis R/B_i , $i\in I$.

Demonstração. Consideremos a família $\left\{B_j \middle/ \bigcap_{i \in I} B_i\right\}_{j \in I}$ de ideais de $R \middle/ \bigcap_{i \in I} B_i$.

(i) Para todo o $j \in I$,

$$\left(R \middle/ \bigcap_{i \in I} B_i\right) \middle/ \left(B_j \middle/ \bigcap_{i \in I} B_i\right) \cong R \middle/ B_j.$$

(ii)
$$\bigcap_{j \in I} \left(B_j \middle/ \bigcap_{i \in I} B_i \right) = \bigcap_{i \in I} B_i \middle/ \bigcap_{i \in I} B_i = \left\{ \bigcap_{i \in I} B_i \right\}.$$

Pela proposição anterior, $R / \bigcap_{i \in I} B_i$ é isomorfo a um produto subdireto dos anéis R / B_i , $i \in I$.

Definição. Sejam R um anel, I um conjunto não vazio e $\{R_i\}_{i\in I}$ uma família de anéis. Dizemos que R admite uma representação como produto subdireto dos anéis R_i , $i \in I$, ou mais simplesmente que R é produto subdireto dos anéis R_i , $i \in I$, se existir $T = \prod_{i \in I} R_i$ tal que $R \cong T$.

Se $\{p_i\}_{i\in I}$ é a família das projeções associadas a $\prod_{i\in I} R_i$, à família dos epimorfismos $\rho_i = p_i \circ \theta : R \to R_i$, com $i \in I$, dá-se o nome de projeções associadas à representação θ de R como produto subdireto dos anéis R_i , $i \in I$.

Se, para algum j, ρ_j for um isomorfismo, diz-se que a representação é uma representação trivial.

Definição. Dizemos que um anel R é subdiretamente irredutível se qualquer representação de R como produto subdireto de alguma família de anéis é uma representação trivial. Caso contrário, dizemos que R é subdiretamente redutível.

Proposição. Seja R um anel não nulo. São equivalentes as seguintes condições:

(a) R é subdiretamente irredutível.

- (b) A interseção de todos os ideais não nulos de R é um ideal não nulo de R.
- (c) R possui um ideal não nulo que está contido em todos os ideais não nulos de R.

Demonstração. A equivalência das condições (b) e (c) é trivial. Vejamos, então, que (a) é equivalente a (b).

Comecemos por admitir que R é subdiretamente irredutível. Seja $\{B_i\}_{i\in I}$ a família dos ideais não nulos de R e suponhamos que $\bigcap_{i\in I} B_i = \{0\}$. Pela proposição anterior, R é isomorfo a um produto subdireto T dos anéis R/B_i , $i\in I$. Além disso,

$$T = \{(a + B_i)_{i \in I} : a \in R\}.$$

Para cada $j \in I$,

$$\rho_j \colon R \to R / B_j$$
$$a \mapsto a + B_j$$

e Ker $\rho_j = B_j$. Por hipótese, existe $i \in I$ tal que ρ_i é um isomorfismo. Assim,

$$\{0\} = \operatorname{Ker} \rho_i = B_i,$$

o que contradiz o facto de B_i ser um ideal não nulo de R. Logo, $\bigcap_{i \in I} B_i \neq \{0\}$ e $\bigcap_{i \in I} B_i$ é um ideal não nulo de R.

Admitamos que a interseção de todos os ideais não nulos de R é um ideal não nulo de R. Suponhamos que $R \stackrel{\tau}{\cong} T$, onde $T = \prod_{i \in I} S R_i$, com $\{R_i\}$ família de anéis. Consideremos a

família $\{\rho_i: R \to R_i\}_{i \in I}$ onde $\rho_i = p_i \circ \tau$ para todo o $i \in I$. Como p_i é um epimorfismo para todo o $i \in I$ e τ é um isomorfismo, sabemos que ρ_i é um epimorfismo para todo o $i \in I$. Suponhamos que $\text{Ker } \rho_i \neq \{0\}$ para todo o $i \in I$. Por hipótese, a interseção Q de todos os ideais não nulos de R é ainda um ideal não nulo de R. Como $\text{Ker } \rho_i$, $i \in I$, são ideais não nulos de R,

$$Q \subseteq \bigcap_{i \in I} \operatorname{Ker} \rho_i.$$

Logo, $\bigcap_{i \in I} \operatorname{Ker} \rho_i \neq \{0\}$. Assim, existe $x \in \bigcap_{i \in I} \operatorname{Ker} \rho_i \setminus \{0\}$. Para todo o $i \in I$, $x \in \operatorname{Ker} \rho_i$, pelo que

$$p_i(\tau(x)) = (p_i \circ \tau)(x) = \rho_i(x) = 0.$$

Logo, $\tau(x) = \bar{0}$ e, sendo τ um isomorfismo, x = 0, uma contradição. Assim, existe $j \in I$ tal que Ker $\rho_j = \{0\}$ e ρ_j é um isomorfismo. Por definição, R é subdiretamente irredutível.

Exemplos.

- 1. Se R é um anel de divisão, então $R \neq \{0\}$ e os únicos ideais de R são $\{0\}$ e R. Logo, a interseção de todos os ideais não nulos de R é o próprio R e, portanto, a interseção de todos os ideais não nulos de R é um ideal não nulo. Pela proposição anterior, R é subdiretamente irredutível.
- **2.** Se R for um anel simples, então R é subdiretamente irredutível.
- 3. O anel \mathbb{Z} é isomorfo a um produto subdireto dos anéis $\mathbb{Z}/p\mathbb{Z}$, $p \in \mathbb{P}$. De facto, $\{p\mathbb{Z}\}_{p \in \mathbb{P}}$ é uma família de ideais não nulos de \mathbb{Z} . Como $\bigcap_{p \in \mathbb{P}} p\mathbb{Z}$ é um ideal de \mathbb{Z} , existe $t \in \mathbb{Z}$ tal que $\bigcap p\mathbb{Z} = t\mathbb{Z}$. Assim, para todo o $p \in \mathbb{P}$, $t\mathbb{Z} \subseteq p\mathbb{Z}$, pelo que $t = pr_p$ para todo o

 $p \in \mathbb{P}$. Por outras palavras, p|t para todo o $p \in \mathbb{P}$, donde concluímos que t = 0. Assim,

$$\bigcap_{p\in\mathbb{P}} p\mathbb{Z} = \{0\}.$$

Sejam $\pi_p: \prod_{q\in\mathbb{P}} \mathbb{Z}/q\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}, \ p\in\mathbb{P}$, as projeções associadas ao produto $\prod_{q\in\mathbb{P}} \mathbb{Z}/q\mathbb{Z}$. Dado $j\in I$,

$$\operatorname{Ker} \pi_p = p\mathbb{Z} \neq \{0\}.$$

Logo, π_p não é um isomorfismo e, por definição, \mathbb{Z} é subdiretamente redutível.

Convenção. O anel nulo é subdiretamente irredutível.

Teorema de Birkoff. Todo o anel R é produto subdireto de anéis subdiretamente irredutíveis.

Demonstração. Se $R = \{0\}$, então, por convenção, R é subdiretamente irredutível. Suponhamos, pois, que $R \neq \{0\}$. Então, existe $x \in R \setminus \{0\}$. Seja

$$\mathcal{F}_x = \{ I \text{ ideal de } R : x \notin I \}.$$

Não é difícil de provar que \mathcal{F}_x é não vazio e que é um c.p.o. quando munido da operação de inclusão. Mais, toda a cadeia não vazia de elementos de \mathcal{F}_x admite majorante [exercício!]. Assim, pelo Lema de Zorn, existe elemento maximal de \mathcal{F}_x , digamos I_x . Por definição, $x \notin I_x$. Vejamos que R/I_x é subdiretamente irredutível. Para tal, iremos mostrar que a interseção de todos os ideais não nulos de R/I_x é um ideal não nulo.

Consideremos a família $\{\overline{T}_k = T_k / I_x : k \in K\}$ de todos os ideais não nulos de R / I_x . Como \overline{T}_k é não nulo, para todo o $k \in K$, sabemos que

$$I_x \subseteq T_k$$

para todo o $k \in K$. Mas T_k é ideal de R e I_x é elemento maximal de \mathcal{F}_x . Logo, para todo o $k \in K$, $x \in T_k$. Assim,

$$x + I_x \in \bigcap_{k \in K} \overline{T}_k.$$

Como $x \notin I_x$, temos que $x + I_x \neq I_x$. Portanto, R / I_x é subdiretamente irredutível.

Consideremos
$$\prod_{x \in R \backslash \{0\}} R \, \big/ I_x$$
e a aplicação

$$\theta \colon R \to \prod_{x \in R \setminus \{0\}} R / I_x$$
$$a \mapsto (a + I_x)_{x \in R \setminus \{0\}}.$$

Prova-se que θ é um monomorfismo de anéis [exercício!]. Mais, $\bigcap_{x\in R\setminus\{0\}}I_x=\{0\}$. Logo, R é isomorfo a um produto subdireto dos anéis R/I_x .