

Journey of Keyphrase Extraction

Animesh Prasad PhD Candidate WING-NUS

DSO Data Science & Al Talk Series Nov 2, 2017

What is Keyphrase Extraction?

Key Concept 1 Key Concept 2

.

WING, NUS

Keyphrases everywhere!

Top Links Mentor trailers and videos No Opening Credits full cast and crew Blown To Pieces To think about: Are tags keyphrases? trivia Shot Through Wall official sites Prophecy memorable quotes Maya Credits: Amazon.com, ACM.org, IMDB.com Courtesy Ngyun et al.

Understanding Digital Libr **SEARCH INSIDE!™** (Paperback) by Michael Lesk (Author) "This book is Key Phrases: perfect hashing, digital libr ★★★★☆ ▼ (1 customer review) List Price: \$51.95 HE WAR Price: \$51.95 & this item shi **Inside This Book** Citations: This book cites 60 books Explore: Citations | Books on Related Topics | Concordance | Text Stats Bearch i NOW MOVIE / TV MY MOVIES PLAYING NEWS Pub Home | Top Movies | P <u>Find</u> Internet Movie Database search All IMDb > The Matrix (1999) > Plot keywords Toge Plot keywords for The Matrix (1999) 🙀 photos board Spoon Future Fall From Height add to My Movies Altered Version Of Studio Logo 555 Phone Number Quicklinks Exploding Body plot keywords Parallel World Kung Fu

Why do we care?

- information retrieval (IR) tasks,
 - such as text summarization,
 - text categorization,
 - opinion mining and
 - document indexing

Corpora

Source	Dataset/Contributor	Statistics					
Source	Dataset/Contributor	Documents	Tokens/doc	Keys/doc			
Paper abstracts	Inspec [20] *	2,000	< 200	10			
	NUS corpus [<u>42</u>] *	211	≈ 8K	11			
Scientific papers	citeulike.org [37] *	180	•	5			
	SemEval-2010 [27] *	284	> 5K	15			
Technical reports	NZDL [<u>56</u>] *	1,800	-	-			
News articles	DUC-2001 [53] *	308	≈ 900	8			
ivews articles	Reuters corpus [19]	12,848	-	6			
Web pages	Yih et al. (2006)	828	-	-			
	Hammouda et al. (2005) *	312	≈ 500	-			
	Blogs [<u>13</u>]	252	≈ 1K	8			
Meeting transcripts	ICSI [<u>30</u>]	161	≈ 1.6K	4			
Emails	Enron corpus [9] *	14,659	-	-			
Live chats	Library of Congress [25]	15	-	10			

KEA —— 1999

- Supervised
 - Binary Classification
 - naïve Bayes,
 - decision trees,
 - bagging,
 - boosting,
 - maximum entropy,
 - multi-layer perceptron,
 - and support vector machines

KEA —— 1999

- Supervised
 - Binary Classification
 - naïve Bayes,
 - decision trees,
 - bagging,
 - boosting,
 - maximum entropy,
 - multi-layer perceptron,
 - and support vector machines
 - Problem? Classification is not a tournament!

KEA —— 1999

- Supervised
 - Binary Classification
 - Problem? Classification is not a tournament!

Jiang et al —— 2009

Ranking

- Supervised
 - Features
 - In document features
 - Statistical features
 tf-idf, keyphraseness etc
 - Structural features
 document structure like section etc
 - Syntactic features
 POS tags etc

- Supervised
 - Features
 - In document features
 - Out of the document features
 - Wikipedia-based keyphraseness
 - Search Log based keyphraseness
 - Web as a corpus for related terms

2004

Apporaches

- Unsupervised
 - Graph-Based Ranking
 - TextRank (Page Rank)
 - Clustering with Wikipedia
 - Topical PageRank

Text Rank

Liu et al _____ 2010

And many more complex graph based algorithm

2004

Benchmarking

- Unsupervised
 - Graph-Based Ranking
 - TextRank (Page Rank)
 - Clustering with Wikipedia
 - Topical PageRank

Text Rank

Liu et al _____ 2010

Any many more complex graph based algorithm

Benchmarking

Dataset	Author	Reader	Combined
Trial	149	526	621
Training	559	1824	2223
Test	387	1217	1482

SemEval —— 2010

Benchmarking

System	Rank	Top	5 candida	ites	Top	10 candid	ates	Top 15 candidates		
		P	R	F	P	R	F	P	R	F
HUMB	1	39.0%	13.3%	19.8%	32.0%	21.8%	26.0%	27.2%	27.8%	27.5%
WINGNUS	2	40.2%	13.7%	20.5%	30.5%	20.8%	24.7%	24.9%	25.5%	25.2%
KP-Miner	3	36.0%	12.3%	18.3%	28.6%	19.5%	23.2%	24.9%	25.5%	25.2%
SZTERGAK	4	34.2%	11.7%	17.4%	28.5%	19.4%	23.1%	24.8%	25.4%	25.1%
ICL	5	34.4%	11.7%	17.5%	29.2%	19.9%	23.7%	24.6%	25.2%	24.9%
SEERLAB	6	39.0%	13.3%	19.8%	29.7%	20.3%	24.1%	24.1%	24.6%	24.3%
KX_FBK	7	34.2%	11.7%	17.4%	27.0%	18.4%	21.9%	23.6%	24.2%	23.9%
DERIUNLP	8	27.4%	9.4%	13.9%	23.0%	15.7%	18.7%	22.0%	22.5%	22.3%
Maui	9	35.0%	11.9%	17.8%	25.2%	17.2%	20.4%	20.3%	20.8%	20.6%
DFKI	10	29.2%	10.0%	14.9%	23.3%	15.9%	18.9%	20.3%	20.7%	20.5%
BUAP	11	13.6%	4.6%	6.9%	17.6%	12.0%	14.3%	19.0%	19.4%	19.2%
SJTULTLAB	12	30.2%	10.3%	15.4%	22.7%	15.5%	18.4%	18.4%	18.8%	18.6%
UNICE	13	27.4%	9.4%	13.9%	22.4%	15.3%	18.2%	18.3%	18.8%	18.5%
UNPMC	14	18.0%	6.1%	9.2%	19.0%	13.0%	15.4%	18.1%	18.6%	18.3%
JU_CSE	15	28.4%	9.7%	14.5%	21.5%	14.7%	17.4%	17.8%	18.2%	18.0%
LIKEY	16	29.2%	10.0%	14.9%	21.1%	14.4%	17.1%	16.3%	16.7%	16.5%
UvT	17	24.8%	8.5%	12.6%	18.6%	12.7%	15.1%	14.6%	14.9%	14.8%
POLYU	18	15.6%	5.3%	7.9%	14.6%	10.0%	11.8%	13.9%	14.2%	14.0%
UKP	19	9.4%	3.2%	4.8%	5.9%	4.0%	4.8%	5.3%	5.4%	5.3%

Benchmarking

System	Rank	Top 5 candidates			Top 10 candidates			Top 15 candidates		
HUMB	1	39.0%	13.3%	19.8%	32.0%	21.8%	26.0%	27.2%	27.8%	27.5%
WINGNUS	2	40.2%	13.7%	20.88	uber	Vised	24.7%	24.9%	25.5%	25.2%
KP-Miner	3	36.0%	12.3%	18.3%	28.6%	19.5%	23.2%	24.9%	25.5%	25.2%
ICL	5	34.2% 34.4%	11.7%	17.4% 17.5%	28.5% 29.2%	19.4% 19.9%	23.1%	24.8% 24.6%	25.4% 25.2%	24.9%
SEERLAB	6	39.0%	13.3%	19.8%	29.7%	20.3%	24.1%	24.0%	24.6%	24.3%
KX_FBK	7	34.2%	11.7%	17.4%	27.0%	18.4%	21.9%	23.6%	24.2%	23.9%
DERIUNLP	8	27.4%	9.4%	13.9%	23.0%	15.7%	18.7%	22.0%	22.5%	22.3%
Maui	9	35.0%	11.9%	17.8%	25.2%	17.2%	20.4%	20.3%	20.8%	20.6%
DFKI	10	29.2%	10.0%	14.9%	23.3%	15.9%	18.9%	20.3%	20.7%	20.5%
BUAP	11	13.6%	4.6%	6.9%	17.6%	12.0%	14.3%	19.0%	19.4%	19.2%
SJTULTLAB	12	30.2%	10.3%	15.4%	22.7%	15.5%	18.4%	18.4%	18.8%	18.6%
UNICE	13	27.4%	9.4%	13.9%	22.4%	15.3%	18.2%	18.3%	18.8%	18.5%
UNPMC	14	18.0%	6.1%	9.2%	19.0%	13.0%	15.4%	18.1%	18.6%	18.3%
JU_CSE	15	28.4%	9.7%	14.5%	21.5%	14.7%	17.4%	17.8%	18.2%	18.0%
LIKEY	16	29.2%	10.0%	14.9%	21.1%	14.4%	17.1%	16.3%	16.7%	16.5%
UvT	17	24.8%	8.5%	12.6%	18.6%	12.7%	15.1%	14.6%	14.9%	14.8%
POLYU	18	15.6%	5.3%	7.9%	14.6%	10.0%	11.8%	13.9%	14.2%	14.0%
UKP	19	9.4%	3.2%	4.8%	5.9%	4.0%	4.8%	5.3%	5.4%	5.3%

Shift in Focus

- Tens of work on incorporating domain specific, semantically rich feature for extraction algorithm
- Meanwhile DARPA's MUC7 saw approx. 88% results and leading to subsequent research in KB using entities
- This lead to shift in focus for keyphrases from indexing component to an upstream task for KBC

SemEval —— 2017

Shift in Focus

Named Entity Recognition

SemEval 2017 Keyphrase Extraction

SemEval —— 2017

Benchmarking SemEval 2017 Task 10: Science IE

- Subtask (A): Identification of keyphrases
- Given a scientific publication, the goal of this task is to identify all the keyphrases in the document.
- Subtask (B): Classification of identified keyphrases
- In this task, each keyphrase needs to be labelled by one of three types: (i) PROCESS, (ii) TASK, and (iii) MATERIAL.
- PROCESS: Keyphrases relating to some scientific model, algorithm or process should be labelled by PROCESS.
- TASK: Keyphrases those denote the application, end goal, problem, task should be labelled by TASK.
- MATERIAL: MATERIAL keyphrases identify the resources used in the paper.
- Subtask (C): Extraction of relationships between two identified keyphrases
- Every pair of keyphrases need to be labelled by one of three types: (i) HYPONYM-OF, (ii) SYNONYM-OF, and (iii) NONE.
- HYPONYM-OF: The realtionship between two keyphrases A and B is HYPONYM-OF if semantic field of A is included within that of B. One example is Red HYPONYM-OF Color.
- SYNONYM-OF: The realtionship between two keyphrases A and B is SYNONYM-OF if they both denote the same semantic field, for example Machine Learning SYNONYM-OF ML.

Benchmarking SemEval 2017 Task 10: Science IE

	Teams	Overall	Α	В	С	
	s2_end2end (Ammar et al., 2017)	0.43	0.55	0.44	0.28	
	TIAL_UW	0.42	0.56	0.44		
	TTI_COIN (Tsujimura et al., 2017)	0.38	0.5	0.39	0.21	
X	PKU_ICL (Wang and Li, 2017)	0.37	0.51	0.38	0.19	
	NTNU-1 (Marsi et al., 2017)	0.33	0.47	0.34	0.2	
	WING-NUS (Prasad and Kan, 2017)	0.27	0.46	0.33	0.04	
	Know-Center (Kern et al., 2017)	0.27	0.39	0.28		
	SZTE-NLP (Berend, 2017)	0.26	0.35	0.28		
	NTNU (Lee et al., 2017b)	0.23	0.3	0.24	0.08	
	LABDA (Segura-Bedmar et al., 2017)	0.23	0.33	0.23		
	LIPN (Hernandez et al., 2017)	0.21	0.38	0.21	0.05	
	SciX	0.2	0.42	0.21		
	IHS-RD-BELARUS	0.19	0.41	0.19		
	HCC-NLP	0.16	0.24	0.16		
	NITK_IT_PG	0.14	0.3	0.15		
	Surukam	0.1	0.24	0.1	0.13	
	GMBUAP (Flores et al., 2017)	0.04	0.08	0.04		
	upper bound	0.84	0.85	0.85	0.77	
	random	0.00	0.03	0.01	0.00	

BiLSTM CRF Benchmark

 It beats traditional models on Tagging, Chunking, Semantic Role Labelling and NER

System	accuracy
Combination of HMM, Maxent etc. (Florian et al., 2003)	88.76
MaxEnt classifier (Chieu., 2003)	88.31
Semi-supervised model combination (Ando and Zhang., 2005)	89.31
Conv-CRF (Collobert et al., 2011)	81.47
Conv-CRF (Senna + Gazetteer) (Collobert et al., 2011)	89.59
CRF with Lexicon Infused Embeddings (Passos et al., 2014)	90.90
BI-LSTM-CRF	84.26
BI-LSTM-CRF (Senna + Gazetteer)	90.10

Refer Huang et al. 2

BILSTM CRF

BiLSTM CRF with a touch of LM

BiLSTM CRF with a touch of LM

BiLSTM CRF with a touch of LM

		F_1	F_1	
Model	External resources	Without	With	Δ
Yang et al. (2017)	transfer from CoNLL 2000/PTB-POS	91.2	91.26	+0.06
Chiu and Nichols (2016)	with gazetteers	90.91	91.62	+0.71
Collobert et al. (2011)	with gazetteers	88.67	89.59	+0.92
Luo et al. (2015)	joint with entity linking	89.9	91.2	+1.3
	no LM vs TagLM unlabeled data only	90.87	91.93	+1.06

Multitasking

	Unl	abelled		Labelled				
Method	Precision	Recall	F1	Precision	Recall	F1		
Finkel et al. (2005) Lample et al. (2016)	77.89 71.92	50.27 49.37	61.10 58.55	49.90 41.36	27.97 28.47	35.85 33.72		
BiLSTM	81.58	57.86	67.71	45.80	32.48	38.01		
BiLSTM + Chunking BiLSTM + Framenet BiLSTM + Hyperlinks BiLSTM + Multi-word BiLSTM + Super-sense	82.88 77.86 76.59 74.80 83.70	52.08 56.05 60.53 70.18 51.76	63.96 65.18 67.62 72.42 63.93	55.54 54.04 46.99 46.99 56.94	34.90 38.91 44.09 44.09 35.25	42.86 45.24 41.13 45.49 43.54		

And yet another Multitasking: Sluice Network

And yet another Multitasking: Sluice Network

	Named entity recognition									
System	nw (ID)	bc	bn	mz	pt	tc	wb	OOD Avg		
Single task	95.04	93.42	93.81	93.25	94.29	94.27	92.52	93.59		
Hard parameter sharing	94.16	91.36	93.18	93.37	95.17	93.23	92.99	93.22		
Low supervision	94.94	91.97	93.69	92.83	94.26	93.51	92.51	93.13		
Cross-stitch network	95.09	92.39	93.79	93.05	94.14	93.60	92.59	93.26		
Sluice network	95.52	93.50	94.16	93.49	93.61	94.33	92.48	93.60		

Challenges

- Long Documents vs Short Excerpts
 - Overgeneration
 - Infrequency
 - Redundancy
 - Evaluation

Thank You

animesh@comp.nus.edu.sg