Problem 1-b

Result:

As we can see in the picture. Markov's bound (red line) is the least tight, meaning it's generally further away from the true probability. And Chebyshev's Bound (green line) is a little bit tighter than Markov's. Chernoff bound (purple line) is the tightest bound, which capture the decreasing rate of true probability.

Problem 2-b

Result:

L = 2.5

The prediction result of the testing dataset under $\sigma_f=1, \ \sigma=0.1$, l=0.5, 2.5, 0.05 is showing below. When l=0.5, it seems like the predicate function is the closest to the testing datas, as every datas are within 3 of standard deviation. And when $x\in[0,1]$, it seems most uncertain to me. When l=2.5, it generally follow the increasing and decreasing rate of testing datas, but not much precise compared to l=0.5. When l=0.05, the standard deviation is too large so it don't even capture the increasing and decreasing rate of testing datas.

Problem 5

Result:

As we can see in the results, the possible values of delta_a under different N are showing below. When $N = 10^{1}$, the most possible value of delta_a is around $0.25 \sim 1.25$. When $N = 10^{3}$, the most possible value of delta_a is around $0.35 \sim 0.475$. When $N = 10^{5}$, the most possible value of delta_a

is around $0.415 \sim 0.4225$. When N = 10^7 , the most possible value of delta_a is around $0.4175 \sim 0.41825$.