

MOMENTO

É A QUANTIDADE DE RESISTÊNCIA DE UM CORPO EM
MOVIMENTO A MUDAR SUA VELOCIDADE OU SUA
DIREÇÃO DE MOVIMENTO. RESULTA NO PRODUTO DA
MASSA DO OBJETO E DA SUA VELOCIDADE. OBJETOS
PODEM TER VELOCIDADE LINEAR OU ANGULAR

MOMENTO LINEAR

o momento linear é uma grandeza vetorial relacionada à translação de um corpo de massa, m, que se move com velocidade, \overrightarrow{V} .

MOMENTO ANGULAR

Do mesmo modo que nas translações, existe uma quantidade de movimento associada às rotações (ou corpos que estão em movimento de rotação)

Em função do momento linear

Diminui rotação

Aumento da rotação

(Orban/Corbis/Sygma)

6

Leis de Newton

1ª Lei: Todo corpo persiste em seu estado de repouso, ou de movimento retilíneo uniforme, a menos que seja compelido a modificar esse estado pela ação de forças impressas sobre ele.

2ª Lei: A taxa de variação ao longo do tempo do momentum é igual a força aplicada

$$\frac{\Delta \vec{p}}{\Delta t} = \frac{\text{var } ia \zeta \tilde{a}o \ do \ momento}{\text{var } ia \zeta \tilde{a}o \ do \ tempo}$$

A segunda lei de Newton,

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{\Delta (m\vec{V})}{\Delta t}$$

Assim,

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta (\vec{V})}{\Delta t} + \vec{V} \frac{\Delta (m)}{\Delta t}$$

Considerando a massa do objeto constante, então:

força
$$\overrightarrow{F} = m \frac{\Delta(\overrightarrow{V})}{\Delta t} = m \overrightarrow{a}$$
 aceleração

Permite entender como as forças afetam o movimento dos corpos.

3ª Lei: Quando um corpo A exerce uma força sobre um corpo B, o corpo B exercerá uma força igual mas oposta no corpo A.

LEI DA GRAVITAÇÃO

A força de gravidade entre 2 corpos é diretamente

proporcional ao produto de suas massas e inversamente

proporcional ao quadrado da distancia entre eles.

$$\vec{F}_g = \frac{Gm_1m_2}{R^2} \frac{R}{R}$$

Em que:

F_g: Força devido a gravidade

G: Constante de gravitação universal G = 6.67 x 10⁻¹¹ m³ kg⁻¹s⁻²

m₁,m₂: Massas dos corpos 1 e 2, respectivamente

R: Distância entre os dois corpos

Força Central

Uma força, \bar{F} , é "central" quando em qualquer instante, tem sua linha de atuação passando através de um ponto fixo O. O ponto fixo é o centro da força. Devido a esta caracteristica a força pode ser representada por,

$$\vec{F} = F(r) \frac{\vec{r}}{r}$$

em que F(r) é o módulo da força que é função do vetor distância.

Exercício de Aplicação

Dadas as massas da Terra, m_{Terra} = 5.98 x 10²⁴ kg e da Lua,

 $m_{Lua} = 7.35 \times 10^{22} \text{ kg, calcule a força gravitacional que a}$

Terra exerce sobre a Lua sabendo que a distancia média

entre os corpos é 3.84 x 10⁸ m.

Combinando a segunda lei de Newton e a lei da gravitação universal encontramos a aceleração para uma massa devida a gravidade da Terra

$$ma_g = \frac{mGm_{Terra}}{R^2}$$

$$a_g = \frac{Gm_{Terra}}{R^2}$$

O parâmetro gravitacional, µ, é definido como sendo,

 μ = GM, assim considerando a massa da Terra,

$$a_g = \frac{\mu_{Terra}}{R^2}$$

Em que:

 μ_{Terra} : 3.986 x 10¹⁴ m³s⁻²

Exercício de aplicação:

- 1) Usando o raio equatorial 6.378 km obtenha a_g
- a) na superfície da Terra
- b) na altitude de 200km
- c) na altitude de 500 km
- d) na altitude de 1.000 km
- 2) Obtenha o comportamento a_g x h e analise o

Leis de Conservação

Para alguns sistemas mecânicos propriedades tais como Momento e Energia permanecem constantes. Se uma certa propriedade ou quantidade permanece inalterável, a propriedade ou quantidade CONSERVADA.

Quantidade de Movimento Linear

Num sistema isolado, isto é, um sistema em que não atuam forças externas ou que a resultante das forças externas seja nula, a quantidade de movimento total permanece constante

$$\vec{P} = \sum_{i} \vec{p}_{i} = \vec{p}_{1} + \vec{p}_{2} + \vec{p}_{3} + \dots = cons \tan te$$

Quantidade de Movimento Angular

Se é nulo o momento resultante, em relação a um ponto fixo, de todas as forças externas aplicadas a um sistema, o momento angular total do sistema, em relação a esse ponto, será constante em módulo, direção e sentido.

Energia Mecânica

A energia mecânica total é dada pela soma da energia potencial, EP, e da energia cinética, EK., ou seja,

$$E = E P + E K$$

A gravidade é um campo conservativo, ou seja, um campo no qual a ENERGIA TOTAL É CONSERVADA.

Energia potencial é a energia de um objeto em um campo conservativo que depende inteiramente da sua posição.

$$EP = m a_g h$$

Em que

m : Massa

a_g: Aceleração devida a gravidade

h : Altura

Para o caso de um satélite artificial terrestre tem-se que a aceleração gravitacional varia, dependendo da distancia do objeto ao centro da Terra. Isto é obtido calculando o trabalho necessário para deslocar o satélite desde o centro da Terra a sua posição orbital.

Então a energia potencial orbital é dada por,

$$EP = -\frac{m\mu}{R}$$

Em que:

EP : Energia potencial orbital do satélite

m : Massa satélite

A energia do movimento ou cinética é apresentada em função da massa e velocidade do objeto.

$$EK = \frac{1}{2}mV^2$$

Se um satélite, em sua órbita, tem pontos próximos a Terra e outros afastados, a energia mecânica se mantem constante.

Das equações para a energia cinética e energia potencial podemos obter a expressão para a energia mecânica total de um satélite em órbita em função da massa e velocidade do objeto.

$$E = \frac{1}{2}mV^2 - \frac{m\mu}{R}$$

Leis de Kepler

1^a Lei de Kepler

Every orbit is an ellipse with the Sun (main body) located at one foci.

2^a Lei de Kepler

A line between an orbiting body and primary body sweeps out equal areas in equal intervals of time.

3^a Lei de Kepler

This defines the relationship of Orbital Period & Average Radius for any two bodies in orbit.

For a given body, the orbital period and average distance for the <u>second</u> orbiting body is:

 $P^2 = R^3$

P = Orbital PeriodR = Average Radius

EXAMPLE:

Earth

P = 1 Year

R = 1 AU

<u>Mars</u>

P = 1.88 Years

R = 1.52 AU

PROBLEMA DOS 2 CORPOS

SISTEMAS DE COORDENADAS

Leis de Newton válidas em sistemas de referência inerciais.

Para veículos espaciais orbitando a Terra: "Sistema de Coordenadas Equatorial Geocêntrico" o qual possui as seguintes características:

- Origem o centro da Terra (daqui o nome geocêntrico).
- <u>Plano fundamental</u>, plano do equador terrestre. Polo norte perpendicular a esse plano.
- Direção principal, a direção do equinócio vernal encontrado o primeiro dia da primavera na direção desde a Terra ao Sol.

EQUAÇÕES DE MOVIMENTO

Usando o sistema de coordenadas geocêntrico equatorial pode-se aplicar a segunda lei de Newton e examinar a forças externas que poderiam agir em um veículo espacial, como exemplo:

Gravidade da Terra.

Arrasto.

Empuxo.

Terceiro corpo (Sol, Lua, Planetas) etc.

Somando todas as forças,

$$\sum \vec{F}_{externa} = \vec{F}_{gravidade} + \vec{F}_{arrasto} + \vec{F}_{empuxo} + \vec{F}_{3^o\ corpo} + \vec{F}_{outras} = m\vec{a}$$

SIMPLIFICAÇÕES

Satélite - altura elevada $F_{arrasto} \longrightarrow 0$ Satélite não realiza manobras $F_{empuxo} \longrightarrow 0$ Satélite órbita próxima a Terra $F_{3^0 \text{ corpo}} \longrightarrow 0$ Radiação solar \longrightarrow órbitas baixas
Massa Terra muito maior que a massa do satélite \longrightarrow $m_{Terra} >> m_{satélite}$

Após estas simplificações pode-se considerar a dinâmica do problema de dois corpos. E considerando o sistema inercial pode-se ainda determinar a equação do movimento para o problema de dois corpos, da seguinte maneira:

Das considerações anteriores

$$\sum \vec{F}_{externa} = \vec{F}_{gravidade} = m\vec{a}$$

Aplicando a lei de gravitação universal de Newton

$$\vec{F}_{gravidade} = -\frac{\mu m}{R^2} \frac{R}{R}$$

E a equação de movimento é dada por:

$$\vec{F}_{gravidade} = -\frac{\mu m}{R^2} \frac{\vec{R}}{R} = m\vec{a} = m\vec{R}$$

Assim a equação de movimento do "PROBLEMA DOS 2 CORPOS".

Modulo do vetor posição do satélite

A solução da equação de movimento do problema de 2

corpos, fornece a magnitude do vetor posição:

$$R = \frac{p}{1 + e\cos\theta}$$

Em que:

R : Magnitude do vetor posição

p : semi latus rectum da cônica

e : excentricidade da cônica

θ : Ângulo polar medido desde o eixo principal a R 38

Esta equação descreve a localização do veículo espacial R em termos de duas constantes e do ângulo polar. Esta mesma equação também representa a "EQUAÇÃO DAS CÔNICAS". Assim, podemos obter circulo, elipse, parábola ou hipérbole.

Geometria da Órbita - Elipse

Algumas relações:

$$2a = R_a + R_p$$

$$2c = R_a - R_p$$

$$e = \frac{2c}{2a}$$

Em que:

2a: Eixo maior

2c : Distancia entre os focos

R_a: Raio do apoapsis

R_p: Raio do periapsis

Com os parâmetros geométricos anteriores, é possível

obter a equação polar de uma cônica,
$$R = \frac{a(1-e^2)}{1+e\cos\theta}$$

Em que

$$p = a(1 - e^2)$$

EXERCÍCIO DE APLICAÇÃO:

Determine as distancias mais próximas e mais afastadas do corpo principal

Constantes do Movimento Orbital

Em um campo conservativo a energia mecânica e o momento são conservados. O movimento orbital acontece no campo conservativo gravitacional. Assim o movimento do veículo espacial conserva a energia mecânica e o momentum angular.

Energia Mecânica Especifica

Da energia mecânica:

$$E = \frac{1}{2}mV^2 - \frac{m\mu}{R}$$

Para generalizar a equação anterior, define-se a ENERGIA MECANICA ESPECIFICA (ϵ) a qual não depende da massa:

$$\varepsilon \equiv \frac{E}{m}$$

Assim:

$$\varepsilon = \frac{1}{2}V^2 - \frac{\mu}{R}$$

A energia mecânica especifica é conservada, então deve ser a mesma ao longo da órbita. Quando veículo espacial se aproxima do ponto mais afastado do corpo principal (foco) ganha altitude, ou seja, ganha energia potencial e ao mesmo tempo perde energia cinética e quando se aproxima do ponto mais perto do foco perde altitude, ou seja, ganha energia cinética.

Da expressão para energia total específica do problema de dois corpos, tem-se:

$$V = \sqrt{2\left(\frac{\mu}{R} + \varepsilon\right)}$$

Aplicável posteriormente para mudanças de órbitas.

Existe uma relação entre a energia mecânica especifica e o semieixo maior da órbita:

$$\varepsilon = -\frac{\mu}{2a}$$

Tipo de órbita a partir da sinal da energia mecânica especifica:

- ε<0 (negativo)-- órbita circular ou elíptica
- ε = 0 -- órbita parabólica
- ε>0 (positivo) órbita hiperbólica

Dada a energia, podemos determinar o período orbital P, que é o tempo que demora o veículo espacial em completar uma volta ao redor da sua órbita:

$$P = 2\pi \sqrt{\frac{a^3}{\mu}}$$

Momento Angular Especifico

momento angular especifico (h):

$$\vec{h} \equiv \frac{\vec{H}}{m}$$

$$\vec{h} = \vec{R} \times \vec{V}$$

O plano que contem ao vetor R e ao vetor V é o plano de órbita.

Exercícios

- 1) Dadas as massas da Terra, $m_{Terra} = 5.98 \times 10^{24} \text{ kg e da}$ Lua, $m_{Lua} = 7.35 \times 10^{22} \text{ kg}$, calcule a força gravitacional que a Terra exerce sobre a Lua sabendo que a distancia média entre os corpos é 3.84 x 10⁸ m.
- 2) Usando o raio equatorial 6.378 km obtenha a_g
- a) na superfície da Terra
- b) na altitude de 200km

c) na altitude de 500 km

r_{a.} do corpo principal

- d) Na altitude de 1.000 km
- 3) Obtenha o comportamento a_g x h e analise o resultado. Utilize o recurso gráfico do MatLab.
- 4) Utilizando a solução da equação para o raio orbital de uma cônica obtenha a equação geral do raio orbital para as distancias mais próximas, r_p , e mais afastadas,

5) Obtenha o perigeu e o apogeu da órbita do satélite CBERS 1, 2 e 2B e do SCD1 e 2. Faça uma pesquisa na internet sobre sua excentricidade, e, e semieixo maior, a, no lançamento e que o sistema dinâmico em que ele está sujeito é apenas o problema de dois corpos, ou seja, que α e e se mantenha constante.

- 6) Obtenha o período orbital para dos dados do exercício 5.
- 7) Obtenha a equação geral da velocidade do perigeu, V_p , e do apogeu, V_a , de um satélite em função da excentricidade e semieixo maior. Obtenha também para uma órbita circular.
- 8) Obtenha V_p e V_a do satélite CBERS 1, 2 e 2B e do SCD1 e 2. Compare o resultado com a velocidade de um satélite geoestacionário (pesquise a velocidade de um satélite geoestacionário).

- 9) Obtenha o comportamento da velocidade, V, (km/s) e do período (min) orbital, P, em função da altitude, h, para um satélite em órbita circular considerando as órbitas: LEO e MEO (Discutir o resultado). Utilize recurso gráfico do MatLab.
- a) LEO h entre 200 km e 2.000 km
- b) MEO h entre 15.000km e 25.000 km