FCC PART 95 TEST REPORT

for

REMOTE CONTROLLER FOR MODELS

Model No.: SKY COMMANDER T6H (72 MHz)

FCC ID: VEJCOMMANDER-F72

of

Applicant: THUNDER TIGER CORP.
Address: NO.7, 6TH ROAD INDUSTRY PARK TAICHUNG.
407, TAIWAN R.O.C.

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6M20803-8967-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: wts@wts-lab.com

Registration number: W6M20803-8967-C-1

FCC ID: VEJCOMMANDER-F72

TABLE OF CONTENTS

1.		GENERAL INFORMATION	3
	1.1	Notes	
	1.2	TESTING LABORATORY	
	1.2.1	LOCATION	
	1.2.2	DETAILS OF ACCREDITATION STATUS	
	1.3	DETAILS OF APPROVAL HOLDER.	
	1.4	APPLICATION DETAILS	
	1.5	GENERAL INFORMATION OF TEST ITEM	
	1.6	TEST STANDARDS	
2.	1	TECHNICAL TEST	
	2.1	SUMMARY OF TEST RESULTS	
	2.2	TEST ENVIRONMENT	
	2.3	DESCRIPTION OF TESTED SYSTEM	
	2.4	TEST EQUIPMENT LIST	
	2.5	GENERAL TEST PROCEDURE	
3.	1	TEST RESULTS (ENCLOSURE)	11
		DE BONNED OLUMBIUM (CONDITIONED), ECC. 2.10.44, 05.210	1.0
4.		RF POWER OUTPUT (CONDUCTED), FCC 2.1046; 95.210	
	4.1	TEST PROCEDURE.	
	4.2	TEST RESULTS	
	4.3	LIMITS:	12
5.	F	RADIATED POWER	13
	5.1	TEST PROCEDURE	13
	5.2	TEST RESULTS	14
6	N	MODULATION DEVIATION, FCC 2.1047 (B)	15
	6.1	TEST PROCEDURE	
	6.2	TEST PROCEDURE	
	6.3	LIMITS:	
		AUDIO FREQUENCY RESPONSE, FCC 2.1047 (A)	
	7.1	TEST PROCEDURE	
	7.2	TEST RESULTS:	
8	(OCCUPIED BANDWIDTH/EMISSION MASK, FCC 2.1049 (C) ; 95.633	17
	8.1	TEST RESULTS	17
	8.2	LIMIT	17
9	S	PURIOUS EMISSIONS AT ANTENNA TERMINALS FCC2.1051; 95.635	18
	9.1	TEST PROCEDURE	
	9.1 9.2	TEST PROCEDURE	
	9.3	LIMIT	
			= •

Registration number: W6M20803-8967-C-1

FCC ID: VEJCOMMANDER-F72

10	RADIATED SPURIOUS EMISSION, FCC 2.1053; 95.635	19
10.1	TEST PROCEDURE	19
10.2		
10.2	.1 Spurious emission near the carrier:	
10.2	.2 Spurious emission not near the carrier:	19
10.3	EXPLANATION OF TEST RESULT	21
10.4	LIMITS	21
11	FREQUENCY STABILITY VS. TEMPERATURE, FCC 2.1055, 95.623	22
11.1	TEST PROCEDURE	22
11.2		
11.3		
12	FREQUENCY STABILITY VS. VOLTAGE, FCC 2.1055 (D); 95.623	24
12.1	Test procedure	24
12.2		
12.3		
APPE	NDIX	25

FCC ID: VEJCOMMANDER-F72

1. General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems. The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services (Taiwan) Co., Ltd.

7	'este i	. .

June 23, 2008	Ja	y Chaing	Jay Chaing
			/
Date	WTS-Lab.	Name	Signature

Technical responsibility for area of testing:

June 23, 2008		Steven Chuang	Steven Chuang
Date	WTS	Name	Signature

FCC ID: VEJCOMMANDER-F72

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Shuang Sing Village, LiShuei Rd., Wanli Township, Taipei County 207, Taiwan (R.O.C.)

Company

Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

1.3 Details of approval holder

Name: THUNDER TIGER CORP.

Street: NO.7, 6TH ROAD INDUSTRY PARK

City: TAICHUNG.

Country: TAIWAN R.O.C. 407 Telephone: +886-4-2359-1616 Fax: +886-4-2359-1902

FCC ID: VEJCOMMANDER-F72

1.4	Ap	plication	details
** .	7 T P	piication	actuils

Date of receipt of test item:	April 25, 2008
Date of fecept of test field.	April 23, 2000

Date of test: from April 26, 2008 to June 20, 2008

1	.5	General	informe	ation	of Test	item
1.		Crenerai	IIIIOFIII	alion	or resi	ıtem

Type of test item: REMOTE CONTROLLER FOR MODELS

Model Number: SKY COMMANDER T6H (72 MHz)

Multi-listing Model Number: SKY COMMANDER T4A (72 MHz)

Brand Name: ACE RC

Multi-listing model number: without

Photos: See appendix

Technical data

Operating frequency band:

Frequency(MHz)	Used Band
72.01~72.99	

Sample tested frequency:	/2.21 MHz
Number of RF-channels:	1

Type of modulation: FM

Designation of emission: 7K45F1D

Antenna Type: rod antenna

Power supply Adaptor (I/P: AC 120 V / 60 Hz O/P: 9.6 V / 110 mA)

Battery (9.6V 1100mAh NIMH Tx Battery Pack)

End point of Battery voltage: 8.8 VDC

Operation modes: Simplex

FCC ID: VEJCOMMANDER-F72

Manufacturer: (if applicable)

Name: Thunder Tiger Corp. (Ningbo)

Street: CW5 YUYAO, FAR-EAST INDUSTRY PARK,

Town: ZHEJIANG PROVINCE,

Country: CHINA

1.6 Test standards

Technical standard:

FCC RULES PART 95 - Personal Radio Service

Subpart C - Radio Control (R/C) Radio Service

Subpart E - Technical Regulations

FCC RULES PART 2 - Frequency Allocations General Rules and Regulations

FCC ID: VEJCOMMANDER-F72

2. Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course	×
of the tests performed.	
or	
The deviations as specified in 3 were ascertained in the course of the tests	
performed.	

2.2 Test environment

Temperature: 23 °C

Relative humidity content: 20 ... 75 %

Air pressure: 86-103 KPa

2.3 Description of Tested System

The EUT was tested with the Accessories or Peripherals Listed below:

Equipment	Model No.	Series No.	Software	Cable information	Note

Explanation: The EUT was configured as stand alone device, and there are no accessories or peripherals during the test.

Registration number: W6M20803-8967-C-1

FCC ID: VEJCOMMANDER-F72

2.4 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2007/10/15	2008/10/14
ETSTW-CE 002	PREREULATOR MODE DC POWER SUPPLY	None	None		Functi	on Test
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Functi	on Test
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO- LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2007/10/15	2008/10/14
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2007/10/15	2008/10/14
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2008/5/10	2009/5/09
ETSTW-CE 008	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2007/10/23	2009/10/22
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2007/8/2	2008/8/1
ETSTW-CE 013	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T4-02	20242	FCC	2007/11/2	2009/11/1
ETSTW-CE 014	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T2-02	20241	FCC	2005/12/7	2008/12/6
ETSTW-CE 015	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T8-02	20307	FCC	2006/11/7	2008/11/6
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2007/10/29	2008/10/28
ETSTW-RE 002	Function Generator	33220A	MY43004982	Agilent	2007/10/12	2009/10/11
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2007/12/3	2008/12/2
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2007/10/29	2008/10/28
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2007/10/11	2008/10/12
ETSTW-RE 010	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070181	MOTECH	Functi	on Test
ETSTW-RE 011	PROGRAMMABLE LINEAR POWER SUPPLY	LPS-305	30503070165	МОТЕСН	Functi	on Test
ETSTW-RE 017	Log-Periodic Antenna	HL025	352886/001	R&S	2008/5/5	2010/5/4
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2007/11/7	2010/11/6
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Functi	on Test
ETSTW-RE 021	SWEEP GENERATOR	SWM05	835130/010	R&S	2007/10/9	2008/10/8
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	EMCO	2007/6/29	2008/6/28
ETSTW-RE 028	Log-Periodic DipoleArray Antenna	3148	34429	EMCO	2008/4/23	2010/4/22
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	2008/4/23	2010/4/22
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2008/3/26	2010/3/25
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2007/10/9	2008/10/8
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P14508	LeCroy	2007/7/9	2008/7/8
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2007/10/16	2009/10/15

Registration number: W6M20803-8967-C-1 FCC ID: VEJCOMMANDER-F72

		ė – – – – – – – – – – – – – – – – – – –				
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2007/1/11	2009/1/10
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2008/5/2	2010/5/1
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2008/5/22	2010/5/21
ETSTW-RE 047	ESA-E SERIES SPECTRUM ANALYZER	E4445A	MY46181369	Agilent	2007/7/19	2008/7/18
ETSTW-RE 048	Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2005/3/22	2009/3/21
ETSTW-RE 049	TRILOG Super Broadband test Antenna	VULB 9160	9160-3185	Schwarzbeck	2007/5/2	2009/5/1
ETSTW-RE 055	SPECTRUM ANALYZER	FSU-26	200074	R&S	2007/7/16	2008/7/15
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function Test	
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	НР	2007/7/2	2009/7/1

The follows is intended to leave blank.

FCC ID: VEJCOMMANDER-F72

2.5 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2003 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2003 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient temperature of the UUT was 23°C with a humidity of 40 %.

The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, an exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by at the registered open field test site located at The Registration Number: 930600. When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

FCC ID: VEJCOMMANDER-F72

3. Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
RF Power Output	2.1046; 95.210	×	×	
Modulation Deviation	2.1047 (b)			
Audio Frequency Response	2.1047 (a)			
Occupied Bandwidth / Emission Mask	2.1049 (c)(1); 95.633	×	×	
Spurious Emissions at Antenna Terminals	2.1051 95.635			
Radiated Spurious Emission	2.1053 95.635	×	×	
Frequency Stability vs. Temperature	2.1055 (b); 95.623	×	×	
Frequency Stability vs. Voltage	2.1055 (a)(1); 95.623	×	×	

The follows is intended to leave blank.

FCC ID: VEJCOMMANDER-F72

4. RF Power Output (conducted), FCC 2.1046; 95.210

4.1 Test procedure

This transmitter output was connected to a calibrated coaxial attenuator, the other end of which was connected to a spectrum analyzer. Transmitter output was derived with the spectrum analyzer in dBm. The power output at the transmitter antenna port was determined by assign the value of the attenuator to the spectrum analyzer reading.

An HP power meter was also used to measure the RF power.

Tests were performed with an un-modulated carrier at three frequencies (low, middle and high channels) and on all power levels, which can be set-up on the transmitters, if applicable.

4.2 Test Results

Frequency Channel	Peak Output Power (dBm)

4.3 Limits:

R/C transmitter					
Frequency [MHz]	Conducted output power [W]				
26 - 27; except for 27.255 27.255 72 - 76	4 25 0.75				

Explanation: This test is not required because the antenna of this EUT is not detachable.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055

FCC ID: VEJCOMMANDER-F72

5. Radiated Power

5.1 Test Procedure

The EUT was positioned on a non-conductive turntable, 0.8m above the ground on an open test site. The radiated emission at the fundamental frequency was measured at 3m distance with a test antenna and spectrum analyzer.

Worst case emission was recorded with the rotation of the turntable and the rising and lowering of the test antenna.

Substitution RF power Measurement at WTS

General:

The applied substitution method follows ANSI/TIA/EIA-603, ANSI/TIA/EIA-102.CAAA or the appropriate ETSI rules respectively.

The actual signal generated by the EUT can be determined by means of a substitution measurement in which a known signal source replaces the device to be measured.

- 1) Signal generator;
- 2) Substitution antenna;
- 3) Test antenna:
- 4) Spectrum analyzer or selective voltmeter.

The substitution antenna replaces the transmitter antenna at the same position and in vertical polarization. The frequency of the signal generator shall be adjusted to the measurement frequency.

The test antenna shall be raised or lowered, if necessary, to ensure that the maximum signal is still received. The input signal to the substitution antenna shall be adjusted in level until an equal or a known related level to that detected from the transmitter is obtained in the measurement receiver.

If a fully anechoic chamber is used as test site in order to provide free space conditions there is no need to change the height of the antenna.

The measurement will be repeated in horizontal position.

FCC ID: VEJCOMMANDER-F72

Calibration:

In order to make this kind of measurement more effective and to avoid subjective measurement faults ETS has installed automatic computer controlled measurement procedures.

With the above described substitution method a test site is calibrated over the full frequency range which is used in suitable frequency steps. For a certain power level on the substitution antenna the received power over the whole frequency range is documented. All necessary antenna gains, cable losses, filter losses and amplifications of preamplifiers are taken in consideration. The summary of this calibration measurement performs a transducer factor that is related to the considered test site and a certain measurement distance. Differences of the radiated power levels of different test samples are determined by internal attenuation of measurement receiver. The proper function of such test site will be maintained by short term plausibility checks and periodical re-calibration.

Testing:

Now the test sample will be putted on the table at the defined position and the radiated power will be receiver and documented by the measurement receiver.

On test sites with ground plane the measurement antenna will be lowered and raised to maximum values at significant frequencies.

For peak power measurements the sample is turned by the turntable over 360 degree in order to find the direction with the maximum radiation or to document the max reading with the MAXHOLD function during the rotation.

5.2 Test results

SKY COMMANDER

Model: T6H (72 MHz) D	ate: 2008/4/15
-----------------------	----------------

Mode: TX power Temperature: 26 °C Engineer: Danny

Polarization: Horizontal Humidity: 60 %

Frequency	Reading (dBm)	Factor (dB)	Result (dBm)	Limit (dBm)	Margin	Table Degree	Ant. High
(MHz)	Peak	Corr.	(dDIII)	(abiii)	(dB)	(Deg.)	(cm)
72.201	-24.65	24.74	0.09	28.80	-28.71	125	150

Polarization: Horizontal			Humidity:		60 %			
Fre	equency	Reading	Factor	Result	Limit	Margin	Table	Ant.
		(dBm)	(dB)	(dBm)	(dBm)		Degree	High
((MHz)	Peak	Corr.	(ubiii)	(ubiii)	(dB)	(Deg.)	(cm)
7	72.201	-4.68	23.98	19.30	28.80	-9.50	130	150

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 021

ETSTW-RE 028 ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042

ETSTW-RE 043 ETSTW-RE 044

Explanation: Please see attached diagram as appendix.

FCC ID: VEJCOMMANDER-F72

6 Modulation Deviation, FCC 2.1047 (b)

6.1 Test procedure

Modulation limiting is the transmitter circuit's ability to limit the transmitter from producing deviations in excess of rated system deviation.

The audio signal generator is connected to the audio input of the EUT with its full rating.

The modulation response is measured at certain modulation frequencies, related to 1000Hz reference signal. Tests are performed for positive and negative modulation.

6.2 Test results: --

6.3 Limits: \pm 75 kHz

Test equipment used: --

Explanation: This test is not applicable for Radio Control Service devices.

FCC ID: VEJCOMMANDER-F72

7 Audio frequency response, FCC 2.1047 (a)

7.1 Test procedure

The audio frequency response is the degree of closeness to which the frequency deviation of the transmitter follows a prescribed characteristic.

The frequency response of the audio modulation part is measured over a frequency range of 100 Hz to 5000Hz.

For 1000Hz tone reference signal the audio generator level is adjusted to get 20% of the rated system deviation.

The deviations obtained over the frequency range from 100Hz to 5000Hz are recorded and compared with the reference deviation as follows:

Audio Frequency Response = $20 \log [DEV_{Freq}/DEV_{ref}]$.

7.2 Test results: --

Test equipment used: --

Explanation: This test is not applicable for Radio Control Service devices.

FCC ID: VEJCOMMANDER-F72

8 Occupied Bandwidth/Emission Mask, FCC 2.1049 (c); 95.633

An R/C transmitter is allowed to transmit any appropriate non-voice emission, which meets the emission limitations for an R/C transmitter. The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz.

8.1 Test Results

Occupied Channel Bandwidth (kHz)	Authorized Bandwidth
7.4519	8 kHz

8.2 Limit

The authorized bandwidth for any emission type transmitted by an R/C transmitter is 8 kHz.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055

Explanation: Please see attached diagram as appendix.

FCC ID: VEJCOMMANDER-F72

9 Spurious Emissions at Antenna Terminals FCC2.1051; 95.635

9.1 Test procedure

This transmitter output was connected to a calibrated coaxial attenuator, the other end of which was connected to a spectrum analyzer. Transmitter output was derived with the spectrum analyzer in dBm. The Spurious Emissions at Antenna Terminals was measured by the spectrum analyzer with a suitable notch filter and high-pass filter.

Tests were performed with an un-modulated carrier at three frequencies (low, middle and high channels) and on all power levels, which can be set-up on the transmitters, if applicable.

9.2 Test Results

Summary table with conducted data of the test plots for Carrier Test Frequency

Frequency Marker Indication [MHz]	Marker Level [dRm]		Margin	

9.3 Limit

Compliance with § 95.635 requires that any frequency removed from the center of the authorized bandwidth shall be less than below specific requirement for the transmitter operating in the 72-76 MHz:

- (1) At least as below 25 dB for more than 50% up to and including 100% of the authorized bandwidth.
- (2) At least as below 45 dB for more than 100% up to and including 125% of the authorized bandwidth.
- (3) At least as below 55 dB for more than 125% up to and including 250% of the authorized bandwidth.
- (4) At least $56 + 10 \log_{10} P$ (P = transmitter power in Watts) for more than 250%.

The compliance limit was calculated as an example for part (4) per the following table:

Maximum transmitter output power	dBm
Required attenuation	$56 + 10 \log_{10} - W = - dB$
Maximum transmitter output power	dBm
Required attenuation	<u> dB</u>
Compliance limit	-26 dBm

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055

Explanation: This test is not required because the antenna of this EUT is not detachable.

FCC ID: VEJCOMMANDER-F72

10 Radiated Spurious Emission, FCC 2.1053; 95.635

10.1 Test procedure

The EUT was positioned on a non-conductive turntable, 0.8m above the ground plane.

The radiated emission at the fundamental frequency was measured at 3 m distance with a test antenna and spectrum analyzer.

Worst case emission was recorded with the rotation of the turntable and the raising and lowering of the test antenna.

ERP was measured using a substitution method. The EUT was replaced by reference antenna connected to a signal generator.

The test of spurious radiated emission has been carried out with the validated test software. The measurements below 1GHz were performed with a measurement bandwidth of 100 kHz, above 1GHz with a bandwidth of 1MHz.

Spurious emission limits near the carrier are defined by a emission mask.

10.2 Test Results

The measurements of the spurious emission at the upper, center and lower channel, if applicable. The measurement diagrams show that all significant spurious emissions are well below the limit line.

Date:

10.2.1 Spurious emission near the carrier:

The Results of Emission Mask:

☐ PASSED

☐ NOT PASSED

10.2.2 Spurious emission not near the carrier:

Model:

SKY COMMANDER

T6H (72 MHz)

Mode: Polarization:	Horizontal		Temperature: Humidity:	26 60	°C %	Engineer:	Danny
Frequency (MHz)	Reading (dBm) Peak	Factor (dB) Corr.	Result (dBm)	Limit (dBm)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
144.168	-71.61	22.23	-49.38	-26.00	-23.38	130	150
289.178	-75.08	30.23	-44.85	-26.00	-18.85	120	150
360.321	-74.01	28.34	-45.67	-26.00	-19.67	130	150
433.267	-75.21	28.81	-46.40	-26.00	-20.40	120	150
504.810	-68.28	28.48	-39.80	-26.00	-13.80	120	150
577.756	-64.00	33.44	-30.56	-26.00	-4.56	130	150
649.299	-65.51	32.65	-32.86	-26.00	-6.86	125	150
722.245	-70.53	32.41	-38.12	-26.00	-12.12	125	150

2008/4/15

Registration number: W6M20803-8967-C-1

FCC ID: VEJCOMMANDER-F72

Frequency (MHz)	Reading (dBm) Peak	Factor (dB) Corr.	Result (dBm)	Limit (dBm)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
86.273	-60.95	25.23	-35.72	-26.00	-9.72	120	150
144.168	-61.56	22.77	-38.79	-26.00	-12.79	125	150
216.673	-72.69	26.82	-45.87	-26.00	-19.87	130	150
360.321	-70.82	25.17	-45.65	-26.00	-19.65	130	150
433.267	-70.53	27.73	-42.80	-26.00	-16.80	125	150
504.810	-63.12	29.51	-33.61	-26.00	-7.61	125	150
577.756	-72.61	29.44	-43.17	-26.00	-17.17	120	150
649.299	-61.51	31.97	-29.54	-26.00	-3.54	120	150
722.245	-67.17	32.88	-34.29	-26.00	-8.29	130	150

Note: 1. Correction Factor = Antenna Gain + Cable Loss + Amplifier Gain

2. The formula of measured value as: Test Result = Reading + Correction Factor

3. Detector function in the form: PK = Peak, AV = Average

4. All not in the table noted test results are more than 20 dB below the relevant limits.

5. See the attached diagram as appendix.

FCC ID: VEJCOMMANDER-F72

10.3 Explanation of test result

The measurements of the spurious emissions at the equipment output terminals were performed pursuant to the test procedure above in order to verify that any emissions are below the limits given by § 95.635.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

10.4 Limits

Compliance with § 95.635 requires that any frequency removed from the center of the authorized bandwidth shall be less than below specific requirement for the transmitter operating in the 72-76 MHz:

- (1) At least as below 25 dB for more than 50% up to and including 100% of the authorized bandwidth.
- (2) At least as below 45 dB for more than 100% up to and including 125% of the authorized bandwidth.
- (3) At least as below 55 dB for more than 125% up to and including 250% of the authorized bandwidth.
- (4) At least $56 + 10 \log_{10} P$ (P = transmitter power in Watts) for more than 250%.

The compliance limit was calculated as an example for part (4) per the following table:

Maximum transmitter output power	19.30 dBm
Required attenuation	$56 + 10 \log_{10} 0.085114 \text{ W} = 45.30 \text{ dB}$
Maximum transmitter output power	19.30 dBm
Required attenuation	45.30 dB
Compliance limit	-26 dBm

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 017 ETSTW-RE 021

ETSTW-RE 028 ETSTW-RE 029 ETSTW-RE 030 ETSTW-RE 042

ETSTW-RE 043 ETSTW-RE 044

Explanation: See attached diagrams in appendix.

FCC ID: VEJCOMMANDER-F72

11 Frequency Stability vs. Temperature, FCC 2.1055, 95.623

11.1 Test procedure

The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable, exited the chamber through an opening made for that purpose.

After the temperature stabilized the frequency output was recorded from the counter.

11.2 Test Results

Test frequency: 72.21 MHz Testing Voltage 9.6 VDC

1 <u>uchcy. 72.2</u>	i will z resuing	Voltage 7.0 VDC			
Test Temp. (° C)	Power on time (Minutes)	Carrier Freq. (MHz)	Deviation (KHz)	Limit: 0.002%	Result
0	0	72.212479	0.717287	0.0010%	pass
0	2	72.211751	-0.011450	0.0000%	pass
0	5	72.210869	-0.893103	-0.0012%	pass
0	10	72.212496	0.734443	0.0010%	pass
-10	0	72.211341	-0.421173	-0.0006%	pass
-10	2	72.211119	-0.642587	-0.0009%	pass
-10	5	72.212293	0.530832	0.0007%	pass
-10	10	72.212092	0.329762	0.0005%	pass
-20	0	72.21105	-0.712479	-0.0010%	pass
-20	2	72.212564	0.802153	0.0011%	pass
-20	5	72.210891	-0.871017	-0.0012%	pass
-20	10	72.211925	0.162814	0.0002%	pass
50	0	72.211425	-0.336872	-0.0005%	pass
50	2	72.211266	-0.495740	-0.0007%	pass
50	5	72.211128	-0.634424	-0.0009%	pass
50	10	72.212099	0.336587	0.0005%	pass
40	0	72.212546	0.784382	0.0011%	pass
40	2	72.211291	-0.471212	-0.0007%	pass
40	5	72.211697	-0.065116	-0.0001%	Pass
40	10	72.212533	0.771378	0.0011%	pass
30	0	72.212473	0.711031	0.0010%	pass
30	2	72.211008	-0.754203	-0.0010%	pass
30	5	72.211852	0.089915	0.0001%	pass
30	10	72.211011	-0.750643	-0.0010%	pass
20	0	72.210775	-0.987018	-0.0014%	pass
*20	2	72.211762	0.000000	0.0000%	pass
20	5	72.211492	-0.269564	-0.0004%	pass
20	10	72.21241	0.647803	0.0009%	pass
10	0	72.211115	-0.647073	-0.0009%	pass
10	2	72.212696	0.934414	0.0013%	pass
10	5	72.212073	0.310902	0.0004%	pass
10	10	72.21106	-0.701817	-0.0010%	pass

Note: * means the reference frequency.

FCC ID: VEJCOMMANDER-F72

11.3 Limits:

According to FCC 95.623(c), all R/C transmitters capable of operation in the 72-76 MHz band must be maintained within a frequency tolerance of 0.002%.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055 ETSTW-CE 009

FCC ID: VEJCOMMANDER-F72

12 Frequency Stability vs. Voltage, FCC 2.1055 (d); 95.623

12.1 Test procedure

An external variable DC power supply was connected to the battery terminals of the equipment under test.

For hand carried, battery powered equipment primary supply voltage was reduced to the battery operating end point as specified by the manufacturer. The output frequency was recorded for each battery voltage.

12.2 Test Results

Test frequency: 72.21 MHz Testing Temperature: 20 °C

Test Voltage (V)	Power On Time (Minutes)	Carrier Freq. (MHz)	Deviation (KHz)	Limit: 0.002%	Result
9.6	0	72.211948	0.9869149	0.0014%	pass
9.6	*2	72.210961	0	0.0000%	pass
9.6	5	72.210661	-0.299927	-0.0004%	pass
9.6	10	72.211876	0.9145185	0.0013%	pass
8.8	0	72.210373	-0.587919	-0.0008%	pass
8.8	2	72.21123	0.2693914	0.0004%	pass
8.8	5	72.210859	-0.101877	-0.0001%	pass
8.8	10	72.211338	0.3773865	0.0005%	pass

Note: * means the reference frequency.

12.3 Limits:

According to FCC 95.623(c), all R/C transmitters capable of operation in the 72-76 MHz band must be maintained within a frequency tolerance of 0.002%.

Test equipment used: ETSTW-RE 003 ETSTW-RE 004 ETSTW-RE 055 ETSTW-CE 009

FCC ID: VEJCOMMANDER-F72

Appendix

A Measurement diagrams

- 1. RF Power Output
- 2. Audio frequency response (This test is not applicable for Radio Control Service devices.)
- 3. Occupied Bandwidth / Emission Mask
- 4. Spurious Emissions at Antenna Terminals (This test is not required because the antenna of this EUT is not detachable.)
- 5. Radiation Spurious Emission
- 6. Frequency Stability vs. Temperature No diagrams
 Refer to point 11.2
- 7. Frequency Stability vs. Voltage No diagrams Refer to point 12.2

B Photos

- 1. External Photos
- 2. Internal Photos
- 3. Set Up Photo of Radiated Emission

Registration number: W6M20803-8967-C-1

FCC ID: VEJCOMMANDER-F72

RF Power Output

Antenna Polarization H

Antenna Polarization V

FCC ID: VEJCOMMANDER-F72

Occupied Bandwidth / Emission Mask

Occupied bandwidth

Date: 8.MAY.2008 12:24:52

Registration number: W6M20803-8967-C-1

FCC ID: VEJCOMMANDER-F72

Radiated emission

Antenna Polarization H

Note:

- 1. The plots are pre-scanned data for determining the tested points and for reference only.
- 2. The exact test result is shown in the data table of Radiated emission test of this test report.

Registration number: W6M20803-8967-C-1

FCC ID: VEJCOMMANDER-F72

Antenna Polarization V

Note:

- 1. The plots are pre-scanned data for determining the tested points and for reference only.
- 2. The exact test result is shown in the data table of Radiated emission test of this test report.