Copy of Exam 2 for printing - Results

Exit Preview

0 / 1 point

Attempt 1 of 1

Question 1

Question 2

Written Feb 28, 2024 9:59 AM - Feb 28, 2024 9:59 AM

Your quiz has been submitted successfully.

Attempt Score **Pending Evaluation**Overall Grade (Highest Attempt) **Pending Evaluation**

Lymph is

the fluid component of blood
the fluid of the extracellular matrix
the fluid found inside blisters
the fluid found at sites of inflammation causing swelling (edema) of the tissue
the fluid in a specialized system of vessels that carry excess interstitial fluid from tissues back to the blood vascular system

https://courses.maine.edu/d2I/lms/quizzing/user/quiz_submissions_...5601&isInPopup=0&cfql=0&fromQB=0&fromSubmissionsList=1&ou=266161

0 / 1 point

"engulfment of particles by a cell" is a textbook definition of

- phagocytosis
- () edema
- opsonization
- apoptosis
- immune surveillance

Question 3 0 / 1 point

Antigen-presenting Dendritic Cells (DCs) from the periphery need to enter the lymph node to present to naive T and B cells. How do these DCs get to the lymph node?

by the artery supplying the lymph node	
by the HEVs	
by the efferent lymph vessels	
by the afferent lymph vessels	
by the secondary follicles	
Question 4	0 / 1 point
A molecule that binds to T or B cell receptors and causes an ada immune response is	ptive
antibody	
cytokine	
○ toxin	
interferon	
antigen	
Question 5	0 / 1 point

In the image above

- The helper T cell is presenting antigen to and activating the dendritic cell
- The dendritic cell is presenting antigen to and activating the T helper cell
- The dendritic cell has been invaded by bacteria. The helper T cell is binding to the dendritic cell in order to kill the dendritic cell by phagocytosis
- the dendritic cell is binding to the T helper cell and will transport it to the site of colonization
- The dendritic cell has been invaded by bacteria. The helper T cell is binding to the dendritic cell to help kill the dendritic cell by apoptosis

Question 6 0 / 1 point A super important family of defense molecules are interferons (IFN). The major (textbook) function of type I interferons is act as toxins against multicellular parasites including worms opsonize pathogen cells for phagocytosis make our urinary epithelium super leaky to facilitate the transport of bacteria into the urine signal neighbor cells to synthesize proteins that inhibit viral reproduction bind to and neutralize toxins **Question 7** 0 / 1 point The cell type that secretes antibody is Th (helper T) cell basophil neutrophil Plasma cell Tc (cytotoxic T) cell **Question 8** 0 / 1 point

The major cell type of the adaptive immune system for defense against virus is

() eosinophil	
○ B cell	
macrophage	
Tc (cytotoxic T) cell	
neutrophil	
Question 9	0 / 1 point
This cell type is a blood cell that travels to sites of inflammation phagocytoses pathogens. This cell type is a	and
mast cell	
basophil	
neutrophil	
Tc (Cytotoxic T) cell	
O Plasma cell	
Question 10	0 / 1 point

The targeting of virus-infected or cancerous cells by NK cells is called

cytokine storm	
hemostasis	
adaptive immunity	
immune surveillance	
opsonization	
Question 11 0 / 1 p	oint
Some complement protein opsonizes bacteria. What is opsonization?	
to coat the cell with proteins that facilitate macrophage binding and phagocytosis	I
to cause apoptosis	
to phagocytose a cellto coat the cell with toxins that disrupt plasma membrane function kill the cell	and
to create a pore in the cell that results in cell lysis	
Overation 40	-:

Question 12

O / 1 point

Overselie (endegenous) protein fragments, including non-self protein

Cytosolic (endogenous) protein fragments, including non-self protein fragments of intracellular virus or bacteria, are trafficked to the plasma membrane. Non-self fragments presented on the membrane mark the cell for destruction by

phagocytosis by neutrophils
antibody
toxic secretion by eosinophils
Tc (cytotoxic T) cell induced apoptosis
cell lysis by Treg (regulatory T) cells
Question 13 0 / 1 point
The theory that there exist many millions of lineages of lymphocyte, each expressing a unique lymphocyte receptor that can bind to a unique antigen, but that a line is not activated until a naive lymphocyte in the line binds to an APC presenting the matching antigen, and that all progeny of the activated lymphocyte will only express the specific lymphocyte receptor and/or antibody, is called
V(D)J recombination
hypersensitive response
immune surveillance
clonal selection
immune tolerance
Question 14 0 / 1 point

leucine is an essential amino acid. What is an essential amino acid?

it is used as a co-enzyme
it is necessary as part of the diet because we do not make an adequate amount (or make it at all)
we only need it in very small amounts
it is one of the 20 amino acids necessary to make protein
it is necessary for cell function
Question 15 0 / 1 point
the fiber component of our diet
is the plant component
includes the (mostly carbohydrate) molecules that we do not digest because we do not make the enzymes to break these down
includes the lipid soluble vitamins
is the component coming from protein fibers such as collagen
is any dietary polysaccharide
Question 16 0 / 1 point

lactose intolerance is due to

the lactose binding to glucose inhibiting glucose re-absorption	
the lactose increasing HCL secretion in the stomach causing increased stomach acidity and irritation	
an autoimmune response in which the body sees lactose as a non-self antigen, which destroys the colon epithelium	
an allergic reaction to lactose	
the loss of lactase expression after early childhood	
Question 17 0 / 1 poin	ıt
Fatty acids are stored by both plants and animals as what molecule?	
triacylglycerol	
Cholesterol	
glycogen	
starch	
Olow density lipoprotein	
Ouastion 19	+

Question 18 0 / 1 point

What are the properties neccessary and sufficient to classify a nutrient as a vitamin

inorganic, trace	
essential, organic	
essential, organic, trace	
essential, inorganic, trace	
essential, organic, plant origin	
Question 19	0 / 1 point
which food item is highest in percent calories from protein?	
peanuts	
grilled fish	
bacon	
salad	
french fries	
Question 20	0 / 1 point
venous blood exiting the intestines is atypical. Why?	

- the blood is well oxygenated
- the blood is high in fat
- the blood is transported to a 2nd capillary system (in the liver) before going to the heart
- the blood is circulated back to the rest of the body without first going to the heart
- the blood is blue

Question 21 0 / 1 point

Secretions from the pancreas drain into the part of the gut labeled

\bigcirc X	
Y	
\bigcirc U	
\bigcirc V	
\bigcirc T	
uestion 22	0 / 1 point
Glucose-dependent Insulinotropic Peptide (GIP), secreted k cells,	oy small intestine
signals goblet cells to increase mucus production in sm	all intestine
signals dilation of intestinal capillaries	
signals enzyme secretion by pancreas	
signals increased acid production by parietal cells in sto	omach
signals pancreatic beta cells to secrete insulin	
uestion 23	0 / 1 point
gastric chief cells secrete pepsinogen, which	

is cleaved to pepsin, an enzyme that digests proteins
is the major extracellular protein making up the ground substance of the mucus lining of the stomach
is an enzyme that catalyzes the reaction
HCI -> H+ + CI-
in the stomach
a hormone that stimulates the secretion of peptidases from the pancreas
is a hormone that stimulates acid secretion and stomach smooth muscle motility
Question 24 0 / 1 point
The major site of chemical digestion and absorption in the GI tract is
the colon
the stomach
the small intestine
the liver
the pancreas
Question 25 0 / 1 point
a major role of the pancreas in digestion is

secretion of digestive enzymes	
storage and secretion of bile	
interconversion of lipids, carbohydrates, and peptides	
secretion of insulin and glucagon	
absorption of digested molecules	
Question 26	0 / 1 point
LDL is called "bad cholesterol" because	
it is from animal-food in our diet, as opposed to HDL ("go cholesterol") which we synthesize	ood
the kind of cholesterol in LDL is more toxic (causing athe than the kind of cholesterol in HDL ("good cholesterol")	erosclerosis)
it is the cholesterol of animal fat and not plant oils	
LDL particles can deliver cholesterol to arterial walls, cre that narrow the artery	eating plaques
it is saturated while HDL ("good cholesterol") is unsatura	ited
Question 27	0 / 1 point
LDL receptors are important for	

creating lipoproteins in the intesitinal epithelial cells
 digesting triacylglycerols and providing fatty acids to adipose cells
 creating lipoproteins in the liver
 digesting apolipoproteins
 transporting cholesterol and triacylglycerols into cells

Question 28 0 / 1 point

This electron micrograph of skeletal muscle shows lots of black dots, which are particles of a large, branched polysaccharide of glucose. These particles

Question 29	0 / 1 point
glycerol	
maltose	
glycogen	
cellulose	
starch	
are	

The set of reactions marked by the blue arrows is

glycogenesis	
ketogenesis	
gluconeogenesis	
glycogenolysis	
glycolysis	
Question 30	0 / 1 point
When blood glucose is limited, a pretty neat trick of the liver is	
lipogenesis from glucose	
protein synthesis from fatty acids	
gluconeogenesis from amino acids	
gluconeogenesis from fatty acids	
lipogenesis from fatty acids	
Question 31	0 / 1 point
A major hormone of the absorptive state is	
glucagon	
insulin	
growth hormone	
aldosterone	
epinephrine	

Question 32 0 / 1 point

The major hormone of the postabsorptive state that is secreted by the pancreas is
glucagon
growth hormone
cortisol
insulin
epinephrine
uestion 33 0 / 1 point
In the postabsorptive state,
nutrient energy in the blood is low and tissues rely on amino acids from the breakdown of muscle tissue
nutrient energy in the blood is high and tissues synthesize and store ATP
nutrient energy in the blood is high and tissues use absorbed glucose and fatty acids
nutrient energy in the blood is low and tissues rely on stored ATP
nutrient energy in the blood is low and tissues use glucose from glycogen stores in the liver and fatty acids from triacylglycerol stores in adipose cells

Question 34 0 / 1 point

In untreated diabetes, the insulin signaling system is disrupted and excess

consequence of this is
exess conversion of Acetyl-CoA to glucose and hyperglycemia
excess ketogenesis and keto acidosis
excess triacylglycerol storage and obesity
excess aerobic ATP synthesis and hyperactivity and underweight body type
excess cholesterol synthesis and increased risk of cardiovascular disease
Question 35 0 / 1 point
de novo lipogenesis occurs when
there is excess plasma cholesterol (more than needed or can be stored)
there is excess plasma glucose (more than needed or can be stored)
the body is starving and protein is converted to fat
the body is starving and glucose is converted to fat
there is excess plasma fatty acids (more than needed or can be stored)
Question 36 0 / 1 point

Acetyl-CoA is generated by beta oxidation of fatty acids. A pathological

How does the Brain stimulate increased Enteric neural activity?

- enteric motor neurons
- somatic motor neurons
- parasympathetic neurons
- visceral sensory neurons
- sympathetic neurons

Question 37 0 / 1 point

The northern European variant of lactase persistence is due to a substitution of T for C at a site 13,910 base pairs upstream of the lactase gene (LCT). This mutation doesn't change the protein product (since the mutation is not in the coding region) but the pattern of expression. What kind of mutation is this?

insertion
opoint mutation
inversion
deletion
gene duplication
Question 38 0 / 1 point
Which of the following statements about mutations is TRUE?
mutations only occur in cancer cell lines
mutations occur only in germ line cells
mutations are continually occurring in all of our tissues with dividing cell lines
mutations occurred in our ancient ancestors but do not occur anymore
mutations occur only before birth

Question 39 0 / 1 point

In the chart, + is the allele that makes a functional product and - is the allele that makes a dysfunctional product.

Α	В	С	D
+/+	100% functional protein	watery	no disease
+/-	50% functional protein	intermediate	no disease
-/-	0% functional protein	thick	disease

What do we call +/+ in column A?

- the homozygous + genotype
- the heterozygous + genotype
- the dominant genotype
- the recessive genotype
- the co-dominate genotype

Question 40 0 / 1 point

In the chart, + is the allele that makes a functional product and - is the allele that makes a dysfunctional product.

Α	В	С	D
+/+	100% functional protein	watery	no disease
+/-	50% functional protein	intermediate	no disease
-/-	0% functional protein	thick	disease

What does column A contain?

		genotypes			
O di	fferent	proteins			
O di	fferent	phenotypes			
O di	fferent	genes			
O di	fferent	loci			
Questic	on 41				0 / 1 point
allele		+ is the allele that makes akes a dysfunctional prod	duct.		- is the
				product and D	- is the
allele		akes a dysfunctional prod	duct. C		- is the
A +	that m	akes a dysfunctional prod B	duct. C	D no disease	- is the
A +	that m	akes a dysfunctional prod B 100% functional protein	duct. C watery	D no disease	- is the

The mapping of column A to the trait in column D is an example of

opolygenic inheritance
incomplete dominance

pleiotropy

oco-dominance

Mendelian inheritance

Question 42 0 / 1 point

except for the sex chromosomes, the two chromosomes in a numbered pair

	are homologous. What does homologous mean here?
	they are either both from the mother or both from the father
	they each have the same nucleotide sequence
	they each contain the same subset of genes
	the strand in one is the compliment of the strand in the other
	they have the same number of nucleotides
C	Question 43 0 / 1 point
	CFTR has two alleles: + (which encodes a functional product) and - (which encodes a non-functional product). A person with the -/- genotype has Cystic Fibrosis but those with either +/- or +/+ genotypes do not. Which of the following is true?
	Cystic Fibrosis is autosomal recessive, because it is the "-" allele that causes the disease
	Cystic Fibrosis is autosomal dominant, because the "+" allele is the most common in the population
	Cystic Fibrosis is autosomal recessive, because a person must have two copies of the "-" allele to express the phenotype
	Cystic Fibrosis is autosomal dominant, because the "+" allele is the normal version
	Cystic Fibrosis is autosomal dominant, because a person needs only a single copy of the "-" allele to express the phenotype

Question 44 0 / 1 point

Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein

variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2.
PKL and PKR are encoded by the PKLR gene. PKM1 and PKM2 are encoded by the PKM gene.
The glycolytic pathway occurs in the
cytoplasm
inner mitochondrial compartment
ribosome
○ blood plasma
O plasma membrane
Question 45 0 / 1 point
7 - P
Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2.
Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein
Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2. PKL and PKR are encoded by the PKLR gene. PKM1 and PKM2 are
Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2. PKL and PKR are encoded by the PKLR gene. PKM1 and PKM2 are encoded by the PKM gene.
Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2. PKL and PKR are encoded by the PKLR gene. PKM1 and PKM2 are encoded by the PKM gene. PKL, PKR, PKM1, and PKM2 are different
Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2. PKL and PKR are encoded by the PKLR gene. PKM1 and PKM2 are encoded by the PKM gene. PKL, PKR, PKM1, and PKM2 are different isoforms
Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2. PKL and PKR are encoded by the PKLR gene. PKM1 and PKM2 are encoded by the PKM gene. PKL, PKR, PKM1, and PKM2 are different isoforms alleles

Question 46 0 / 1 point

Pyruvate kinase is the final enzyme in the glycolytic pathway. Four protein variants of pyruvate kinase occur: PKL, PKR, PKM1, and PKM2.

PKL and PKR are encoded by the PKLR gene. PKM1 and PKM2 are encoded by the PKM gene.

PKM1 is translated from a mRNA that includes exon 9 of the PKM gene but not exon 10. PKM2 is translated from a mRNA that includes exon 10 of the PKM gene but not exon 9. PKM1 and PKM2 arise by

mutations
deletions
alternative splicing
inversions
single nucleotide polymorphisms

Question 47 0 / 1 point

The northern European variant of lactase persistence is due to a substitution of T for C at a site 13,910 base pairs upstream of the lactase gene (LCT). This mutation doesn't change the protein product (since the mutation is not in the coding region) but the pattern of expression. What are T and C?

carbohydrates	
amino acids	
nucleic acids	
polypeptides	
nucleotides	
Question 48 0 / 1	point
In a recent paper, researchers investigating the genetics of Type II dial mellitus (T2DM) described their methods:	oetes
analysis based on data visualization. We selected a T2DM dataset from a GWAS meta-an and extracted 1,971 SNPs associated with T2DM. We mapped 580 SNPs to 360 genes, a then selected 460 pathways containing these genes from the curated collection of WikiPat	nd
A term to describe a disease that is controlled by 360 genes is	
pleiotropy	
Mendelian	
epistasis	
isoform	
polygenic	
Question 49 0 / 1	point

Red-green color blindness occurs in about 8% of males and 0.4% of females. Many genes contribute to Red-green colorblindness and most of these are on the X chromosome, which is the reason for the disparity in the

frequency between males and females. Call the allele that encodes a functional product "+" and the allele that encodes a non-functional product "-". Why is Red-green color blindness more frequent in males?

because males inherit two copies of the X chromosome, and so have twice the likelihood of inheriting the "-" allele in one of the genes
because males inherit a Y chromosome, which is much more likely to contain the "-" allele than is the X chromosome
because females inherit two Y chromosomes, and so need to inherit two copies of the "-" allele to have the condition
because females inherit a Y chromosome, which rarely contains the "-' allele
because males inherit only a single X chromosome, which means that inheriting only a single copy of the "-" allele is sufficient to have the condition

Question 50 0 / 1 point

The + allele at CFTR encodes a functional protein. The - allele at CFTR encodes a dysfunctional protein. Dad is +/- at the CFTR locus. Mom is +/- at the CFTR locus. CFTR is on chromosome 7. Cystic fibrosis is an autosomal recessive disease. What percentage of the children of dad and mom are expected to have cystic fibrosis?

() 50%

() 25%

100%

()0%

75%

Question 51 0 / 1 point

cancer is

- a disease of aging, in the sense that old cells die without being replaced and tissues and organs can no longer function
- a genetic disease, in the sense that it occurs because of the acquisition of mutations in genes that regulate the cell cycle
- an environmental disease, in the sense that environmental chemicals kill cells in the lungs, or stomach, or bone, or other tissues that are susceptible to cancers
- an infectious disease, in the sense that it occurs because of an adaptive immune response to pathogens

Question 52 0 / 1 point

Proteins active in G1 assess the quality of DNA prior to S and can activate repair mechanisms or apoptosis pathways. This general mechanism of cell cycle control is known as

- a cell cycle growth factor
- tyrosine kinase receptor signaling
- a cell cycle checkpoint
- apoptosis
- a cyclin-dependent kinase pathway

Question 53 0 / 1 point

Cyclin-dependent kinase signaling paths activated in G1 promote progression into S. Mutations can switch these kinases into permanently active states. The mutated genes encoding these cyclin-dependent kinases are known as

- oncogenes
- apoptotic factors
- tumor supressor genes
- death factors
- growth factors

Question 54 0 / 1 point

Proteins active in G1 assess the quality of DNA prior to S and can activate repair mechanisms or activate apoptosis pathways. Mutations in the genes for these proteins can generate a non-functional product (loss-of-function mutations). These genes are collectively known as

death factors	
tumor suppressor genes	
growth factors	
oncogenes	
apoptotic factors	
Question 55	0 / 1 point
Whales have a low cancer rate, probably because	
 Whale cells are insensitive to carcinogens increased cell-cycle checkpoint sensitivity lowers the mutat relative to smaller mammals 	ion rate,
Whales don't smoke	
Whales are not exposed to carcinogens	
a hyperactive NK/CD8+ system	
Done	