# 1 高度差法测量重力加速度

#### 圆筒直径 D:

| $D_1/cm$ | $D_2/cm$ | $D_3/cm$ | $ar{D}/cm$ |
|----------|----------|----------|------------|
| 10.80    | 10.72    | 10.70    | 10.74      |

A 类不确定度 
$$u_A=\sqrt{\dfrac{\sum\limits_{i=1}^3(D_i-\bar{D})^2}{3\times 2}}=0.03~cm$$
 B 类不确定度  $u_B=\dfrac{\Delta (\chi}{\sqrt{3}}=\dfrac{0.02~mm}{\sqrt{3}}=0.001~cm$  合成不确定度  $u_D=\sqrt{u_A^2+u_B^2}=0.03~cm$   $D=(10.74\pm0.03)~cm$ 

#### 测量数据如下:

| 实           | 液面最高处读数 H |          |          | 液面最低处读数 h |          |          | <i>++</i> \+   |              |           |  |
|-------------|-----------|----------|----------|-----------|----------|----------|----------------|--------------|-----------|--|
| 验<br>次<br>数 | 第 1<br>次  | 第 2<br>次 | 第 3<br>次 | 第 1<br>次  | 第 2<br>次 | 第 3<br>次 | 转速<br>n(r/min) | 平均<br>Δh(cm) | g(cm/s^2) |  |
| 1           | 2.57      | 2.65     | 2.57     | 1.20      | 1.19     | 1.20     | 98             | 1.40         | 1084.68   |  |
| 2           | 2.80      | 2.73     | 2.76     | 0.85      | 0.88     | 0.86     | 115            | 1.9          | 1100.57   |  |
| 3           | 2.85      | 2.82     | 2.85     | 0.80      | 0.78     | 0.75     | 123            | 2.06         | 1161.23   |  |
| 4           | 2.14      | 3.15     | 3.15     | 0.50      | 0.48     | 0.49     | 138            | 2.66         | 1132.02   |  |
| 5           | 3.29      | 3.27     | 3.28     | 0.29      | 0.28     | 0.28     | 148            | 3.00         | 1154.46   |  |
| 6           | 2.32      | 2.22     | 2.32     | 1.25      | 1.30     | 1.31     | 83             | 1.00         | 1089.26   |  |

由公式 
$$g=rac{\pi^2D^2n^2}{7200\Delta h}$$
 计算重力加速度  $g$ 

计算  $\bar{g}=1120.37~cm/s^2$ 

杭州地区重力加速度公认值  $g=979.30\;cm/s^2$ 

计算相对误差: 
$$E=rac{|ar{g}-g|}{g}=14.41\%$$

合成不确定度 
$$U_g=g\sqrt{(\frac{\partial \ln g}{\partial D})^2(u_D)^2+(\frac{\partial \ln g}{\partial H})^2(u_H)^2+(\frac{\partial \ln g}{\partial h})^2(u_h)^2}=40.52~cm/s^2$$
  $g=(1120.37\pm 40.52)~cm/s^2$ 

# 2 光学法测重力加速度

## 水平屏幕H:

| $H_1/cm$ | $H_2/cm$ | $H_3/cm$ | $ar{H}/cm$ |
|----------|----------|----------|------------|
| 9.00     | 9.00     | 9.05     | 9.02       |

A 类不确定度 
$$u_A=\sqrt{\dfrac{\sum\limits_{i=1}^3(H_i-ar{H})^2}{3\times 2}}=0.02~cm$$
 B 类不确定度  $u_B=\dfrac{\Delta \Diamond }{\sqrt{3}}=\dfrac{0.2~mm}{\sqrt{3}}=0.01~cm$  合成不确定度  $u_H=\sqrt{u_A^2+u_B^2}=0.02~cm$   $H=(9.02\pm 0.02)~cm$ 

## 静止液面高度 h:

| $h_1/cm$ | $h_2/cm$ | $h_3/cm$ | $ar{h}/cm$ |
|----------|----------|----------|------------|
| 1.71     | 1.80     | 1.80     | 1.77       |

A 类不确定度 
$$u_A=\sqrt{\frac{\sum\limits_{i=1}^3h_i-\bar{h})^2}{3\times 2}}=0.03~cm$$
 B 类不确定度  $u_B=\frac{\Delta \bigcirc }{\sqrt{3}}=\frac{0.2~mm}{\sqrt{3}}=0.01~cm$  合成不确定度  $u_h=\sqrt{u_A^2+u_B^2}=0.03~cm$   $h=(1.77\pm0.03)~cm$ 

#### 测量数据如下:

| 实验次数 |      | 距离 d |      | **** ** (** (** i**) | g(cm/s^2) |  |
|------|------|------|------|----------------------|-----------|--|
|      | dx   | dy   | d    | 转速 n(r/min)          |           |  |
| 1    | 1.40 | 0.20 | 1.41 | 45                   | 875.27    |  |
| 2    | 2.40 | 0.40 | 2.43 | 60                   | 918.95    |  |
| 3    | 3.40 | 0.60 | 3.45 | 71                   | 929.63    |  |
| 4    | 4.40 | 0.80 | 4.47 | 80                   | 940.04    |  |
| 5    | 5.40 | 1.00 | 5.49 | 87                   | 938.30    |  |
| 6    | 6.40 | 1.20 | 6.51 | 93                   | 940.14    |  |

由公式 
$$g=rac{2\pi^2Dn^2}{3600\sqrt{2} an heta}$$
 计算重力加速度  $g$  ,其中  $an2 heta=rac{d}{H-h}$ 

计算  $\bar{g}=923.72~cm/s^2$ 

计算相对误差 
$$E=rac{|ar{g}-g|}{g}=5.68\%$$

合成不确定度 
$$U_g=g\sqrt{(rac{\partial \ln g}{\partial D})^2(u_D)^2+(rac{\partial \ln g}{\partial H})^2(u_H)^2+(rac{\partial \ln g}{\partial h})^2(u_h)^2}=33.40~cm/s^2$$
  $g=(923.72\pm33.40)~cm/s^2$ 

# 3 焦距验证

#### 参考刻度线高度:

| 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 10.55 | 10.85 | 10.51 | 10.65 | 10.70 | 10.90 | 10.90 | 10.98 | 11.00 | 10.80 |
| cm    |

$$\bar{h}=10.78~cm$$

A 类不确定度 
$$u_A=\sqrt{\frac{\sum\limits_{i=1}^{10}h_i-\bar{h})^2}{10\times 9}}=0.05~cm$$
 B 类不确定度  $u_B=\frac{\Delta \Diamond }{\sqrt{3}}=\frac{0.2~mm}{\sqrt{3}}=0.01~cm$  合成不确定度  $u_h=\sqrt{u_A^2+u_B^2}=0.05~cm$   $h=(10.78\pm 0.05)~cm$ 

#### 测量数据如下:

| 实           | 液面最低处读数 |          |          | 焦               | 点高度            |                | 测量值的         | 计算值的        |
|-------------|---------|----------|----------|-----------------|----------------|----------------|--------------|-------------|
| 验<br>次<br>数 | 第1<br>次 | 第 2<br>次 | 第 3<br>次 | 参考刻<br>度线高<br>度 | 相对于参考<br>线的高度差 | 转速<br>n(r/min) | 焦距<br>f'(cm) | 焦距<br>f(cm) |
| 1           | 1.48    | 1.40     | 1.45     |                 | -0.60          | 68             | 8.74         | 9.66        |
| 2           | 1.40    | 1.48     | 1.40     |                 | -1.60          | 73             | 7.75         | 8.38        |
| 3           | 1.30    | 1.29     | 1.40     | 10.78           | -2.20          | 77             | 7.25         | 7.53        |
| 4           | 1.30    | 1.26     | 1.25     | 10.76           | -3.80          | 86             | 5.71         | 6.04        |
| 5           | 1.30    | 1.10     | 1.29     |                 | -5.00          | 96             | 4.55         | 4.84        |
| 6           | 1.11    | 1.12     | 1.11     |                 | -6.00          | 105            | 3.67         | 4.05        |

由公式 
$$f=rac{450g}{\pi^2n^2}$$
 计算焦距  $f$ 

作出 f-n 图:



## 比较分析实验曲线与理论计算曲线得出:

- 1. 测量值焦距 f' 与计算值 f 存在一定误差,但整体趋势相同
- 2. 两条曲线均表明,随着转速 n 的增大,旋转液体形成的抛物面的焦距 f 会减小,抛物面越陡峭,符合 我们的认知