ECE 521S — Inference Algorithms and Machine Learning Final Examination

April 17th, 2018 6:30 p.m. – 9:00 p.m.

Instructor: Ashish Khisti and Stark Draper

Circle your tutorial section:

- 1. TUT0101 Wed 10:00-12:00(LM155)
- 2. TUT0102 Thu 9:00-11:00(BA2175)
- 3. TUT0103 Wed 10:00-12:00(HA410)
- 4. TUT0104 Wed 12:00-14:00(HS106)
- 5. TUT0105 Tue 15:00-17:00(BA2175)

Instructions

- Please read the following instructions carefully.
- You have 2 hour 30 minutes to complete the exam.
- Please make sure that you have a complete exam booklet.
- \bullet Please answer all questions. Read each question carefully.
- The value of each question is indicated. Allocate your time wisely!
- All logarithms are to the base e unless otherwise noted.
- No additional pages will be collected beyond this answer book.
- \bullet This examination is closed-book; One 8.5 \times 11 aid-sheet is permitted. A non-programmable calculator is also allowed.
- Good luck!

- 1. (20 MARKS) In this problem you consider the two-dimensional data set \mathcal{D} , target function f, and linear hypothesis h defined as follows:
 - (i) The unknown target function f (which we need to learn) labels all points $\mathbf{x} = (x_1, x_2)$ such that $x_2 \ge 0$ belong to class +1 and all those such that $x_2 < 0$ belong to class -1.
 - (ii) The boundary of the linear hypothesis h is the 45-degree line, connecting (-1,-1) to the origin to (+1,+1).
 - (iii) All data points $\mathbf{x} \in \mathcal{D}$ have coordinate magnitudes at most one, i.e., $|x_1| \le 1$ and $|x_2| \le 1$. The training set $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_5\}$ consists of five data points (so $|\mathcal{D}| = 5$) as is tabulated below

n	\mathbf{x}_n	$y_n = f(\mathbf{x}_n)$
1	(1, 0.5)	+1
2	(0, 0.5)	+1
3	(-0.5, -0.25)	-1
4	(0, -0.5)	-1
5	(0.5, -0.5)	-1

(a) Sketch (and label) the boundary of f, the boundary of h, and all data points from \mathcal{D} on the figure provided below.

- (b) Now, consider a linear classification problem. If $h(\mathbf{x}_2) = +1$ then which of the following is the correct form of $h(\mathbf{x})$?
 - (i) $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w_0}^T \mathbf{x})$ where $\mathbf{w_0} = (1, 1)$ and $\mathbf{x} = (x_1, x_2)$.
 - (ii) $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w_0}^T \mathbf{x})$ where $\mathbf{w_0} = (1, 1, 1)$ and $\mathbf{x} = (1, x_1, x_2)$.
 - (iii) $h(\mathbf{x}) = \operatorname{sign}(\mathbf{w_0}^T \mathbf{x})$ where $\mathbf{w_0} = (0, -1, 1)$ and $\mathbf{x} = (1, x_1, x_2)$.
 - (iv) $h(\mathbf{x}) = \text{sign}(\mathbf{w_0}^T \mathbf{x})$ where $\mathbf{w_0} = (0, 1, -1)$ and $\mathbf{x} = (1, x_1, x_2)$.

In the space below, indicate your answer, (i)-(iv), and justify your choice.

5 marks

(c) Using your form for $h(\mathbf{x})$ from above, what is $E_{\text{IN}}(\mathbf{w_0})$, the Classification Error for the data set \mathcal{D} for the linear classification problem?

(d) Assuming that $P(\mathbf{x})$ is uniform, i.e., $P(\mathbf{x}) = 0.25$ for all \mathbf{x} such that $|x_1| \le 1$ and $|x_2| \le 1$, what is $E_{\text{OUT}}(\mathbf{w}_0)$?

5 marks

(e) If, instead, $P(\mathbf{x})$ is defined as

$$P(\mathbf{x}) = \begin{cases} \frac{1}{3} & \text{if } |x_1| \le 1 \text{ and } 0.5 \le x_2 \le 1 \\ \frac{2}{9} & \text{if } |x_1| \le 1 \text{ and } -1 \le x_2 < 0.5 \end{cases},$$

what is $E_{\text{OUT}}(\mathbf{w_0})$?

2. (10 MARKS) Consider a binary classification problem on a two-dimensional dataset in the (x_1, x_2) plane with N = 13 training points shown below. The symbol o represents the label y = -1 while the symbol '+' represents the label y = +1.

In the figures above, the horizontal axis corresponds to x_1 and the vertical axis corresponds to x_2 . In the figure on the right, L_1, \ldots, L_4 indicate four different linear decision boundaries in the (x_1, x_2) plane, that can be used for classification. Throughout this problem we consider only those decision boundaries that pass through the origin, and represented by: $w_1x_1 + w_2x_2 = 0$, where $\mathbf{w} = (w_1, w_2) \in \mathbb{R}^2$.

Furthermore we consider a simple logistic regression model. The outputs given $x = (x_1, x_2)$ are:

$$p_{\mathbf{w}}(y=1|\mathbf{x}) = \phi(w_1x_1 + w_2x_2) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2)}}$$
$$p_{\mathbf{w}}(y=-1|\mathbf{x}) = \phi(-w_1x_1 - w_2x_2) = \frac{1}{1 + e^{(w_1x_1 + w_2x_2)}}$$

Recall that $\phi(s) = \frac{1}{1+e^{-s}}$ is the sigmoid function.

We consider the standard log-loss penalty function so that:

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} -\log p_{\mathbf{w}}(y_n | \mathbf{x}_n)$$

where (\mathbf{x}_n, y_n) denotes a training point in the above figure and N = 13.

(a) Is the training set linearly separable? Briefly explain your answer.

2 marks

(b) Suppose we wish to minimize the following regularized expression:

$$\min_{\mathbf{w}=(w_1,w_2)\in\mathbb{R}^2} \left\{ E_{\mathrm{in}}(\mathbf{w}) + \lambda \cdot w_2^2 \right\}$$

where λ is a large positive constant. Note that only the component w_2 is regularized above. For each of the decision boundaries: L_2, L_3 and L_4 in the figure on the previous page circle yes if it can result from minimizing the above expression and no otherwise. Briefly explain each case. No calculations are needed.

a. L_2 : yes no

b. L_3 : yes no

c. L_4 : yes no

3 marks

(c) Suppose we wish to minimize the following regularized expression:

$$\min_{\mathbf{w}=(w_1,w_2)\in\mathbb{R}^2} \left\{ E_{\text{in}}(\mathbf{w}) + \lambda \cdot (w_1^2 + w_2^2) \right\}$$

where λ is a large positive constant. Select which of the following three cases is the most likely case satisfied by the optimal solution (select only one):

- a. Both w_1 and w_2 are small and w_1/w_2 is less than 1
- b. Both w_1 and w_2 are small and w_2/w_1 is less than 1
- c. Both w_1 and w_2 are small and $w_1/w_2 = 1$.
- d. Neither of the above

Justify your answer. No calculations are needed.

3. (30 MARKS) In this problem we consider a neural network shown in the figure below.

Given an input (\mathbf{x}, y) where $\mathbf{x} = (x_1^0, x_2^0, x_3^0) \in \mathbb{R}^3$ the neural network computes \hat{y} , an approximation to y, as shown in the figure. More specifically the intermediate computations are given as follows:

$$\begin{array}{ll} x_1^1 = \theta(w \cdot x_1^0) & x_2^2 = x_2^1 + v \cdot x_1^1 \\ x_2^1 = \theta(w \cdot x_2^0) & x_3^2 = x_3^1 + v \cdot x_2^2 \\ x_3^1 = \theta(w \cdot x_3^0) & \hat{y} = x_3^2 \end{array}$$

Note that v and w are the shared weights on the respective edges as shown in the figure. Assume that $\theta(\cdot)$ is some arbitrary activation function with derivative denoted by $\theta'(\cdot)$. For the input (x, y) and model parameters $\Omega = (w, v)$ of the neural network, we assume that the loss is given by:

$$e(\Omega) = (\hat{y} - y)^2.$$

The above neural network preserves the order of the elements x_1^0 , x_2^0 and x_3^0 in the input x. It is a simplified version of a recurrent neural network.

(a) Find an expression for $\frac{de}{dv}$ where $e(\Omega)$ in the squared loss function on the previous page. Express your answer in terms of the following variables: x_1^1 , v, x_2^2 and $\Delta = \hat{y} - y$.

total/5 Page 8 of 19

(b) Find expressions for $\frac{de}{dx_2^2}$, $\frac{de}{dx_1^1}$, $\frac{de}{dx_2^1}$ and $\frac{de}{dx_3^1}$. Express your answer in the simplest possible form (with as few variables as possible).

(c) Using parts (a) and (b) find an expression for $\frac{de}{dw}.$

(d) Compute $\frac{de}{dx_i^0}$ for i = 1, 2, 3.

(e) Suppose that $\mathbf{x}=(1,-1,1)$ and y=1. Assuming that w=v=1 and $\theta(s)=\max(0,s)$, find numerical values for $e(\Omega)$, $\frac{de}{dv}$ and $\frac{de}{dw}$.

(f) Suppose that the training set $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ consists of N training examples where each $\mathbf{x}_n \in \mathbb{R}^3$ and $y_n \in \mathbb{R}$. Write the pseudocode for training the neural network to minimize

$$\frac{1}{N}\sum_{n=1}^{n}(y_{n}-\hat{y}_{n})^{2}+\lambda(v^{2}+w^{2}),$$

using stochastic gradient descent. Here $\lambda>0$ is a fixed constant. Assume that you already have functions to compute $\frac{de}{dv}$ and $\frac{de}{dw}$.

4. (15 MARKS) Consider a regression problem where the training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_{100}, y_{100})\}$ consists of 100 points. Each $x_i \in \mathbb{R}$. However each $y_i \in \{0, 1\}$ is **binary valued**. Assume that the dataset \mathcal{D} is generated as follows:

$$x_i = i/100, \quad 1 \le i \le 100$$
 $y_i \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$

Note that $Pr(y_i = 1) = p$ and $Pr(y_i = 0) = 1 - p$ and each y_i is sampled independently of all other labels. We will consider two learning algorithms:

- Algorithm NN: Use 1-Nearest Neighbor Classification. In case of a tie use the datapoint to the left of the input.
- Algorithm Zero: Always predict zero.

For parts (a) and (b) we will use the Mean Squared Training Error:

$$E_{\rm in} = \frac{1}{100} \sum_{i=1}^{100} (y_i - \hat{y}_i)^2$$

where \hat{y}_i is the output of the algorithm on training point x_i .

3 marks

(a) What is the expected Mean Squared Training Error: $\mathbb{E}_{\mathcal{D}}[E_{in}]$, for Algorithm Zero?

- 2 marks
- (b) What is the expected Mean Squared Training Error: $\mathbb{E}_{\mathcal{D}}[E_{in}]$, for Algorithm NN?

For parts (c) and (d) we will use the leave one out cross validation as discussed in class.

2 marks

(c) What is the expected leave one out cross validation error for Algorithm Zero?

8 marks

(d) What is the expected leave one out cross validation error for Algorithm NN?

- 5. (10 MARKS) In this problem you consider an already-trained Gaussian mixture model (GMM). The GMM was trained to fit data on student performance in an introduction-to-machine learning class. The GMM was trained using two components (K = 2) as the class consisted of two categories of students, undergraduate students (category 1) and graduate students (category 2). The learned parameters of the GMM are as follows:
 - The weights of the two categories are $w_1 = 2/3$ and $w_2 = 1/3$.
 - The distribution of scores in category 1 is $\mathcal{N}(x; 70, 10^2)$.
 - The distribution of scores in category 2 is $\mathcal{N}(z; 80, 5^2)$.

(a) According to your model, what is the probability that an arbitrarily selected student scores greater than 80%? That is, compute $\Pr[x \ge 80]$. (In your computation, use the approximation that for a zero-mean σ^2 -variance random variable x, i.e., $x \sim \mathcal{N}(x; 0, \sigma^2)$, then we have that: $\Pr[|x| \le \sigma] = 2/3$.)

total/5 Page 16 of 19

ECE521S

(b) If a particular student has a score greater than 80, what is the probability that they are from category 1 (undergraduates)? That is, compute $\Pr[\text{class} = 1 | x \ge 80]$. (Use the same approximation as in the previous part.)

total/5 PAGE 17 OF 19

6. (10 MARKS) In this problem you consider the K-means algorithm. In this problem K = 2 and you have four data points x_n in your data set \mathcal{D} all of which lie on the real line $x_i \in \mathbb{R}$. Your data set is $\mathcal{D} = \{0, 0.5, 0.5 + \Delta, 1.5 + \Delta\}$ where $\Delta \ge 0$ is a problem parameter.

4 marks

(a) For this part let $\Delta = 0.5$ and initialize K-means by initializing the two cluster centers at $\mu_1[0] = 1$ and $\mu_2[0] = 2$. Run K-means till convergence. For each iteration ℓ until convergence, describe your set memberships $\{\mathcal{B}_1[\ell], \mathcal{B}_2[\ell]\}$ and cluster centers $\{\mu_1[\ell], \mu_2[\ell]\}$. Make sure you identify the final values of the cluster centers and set memberships at convergence.

total/4 Page 18 of 19

(b) For this part find the smallest positive value of Δ such that K-means, initialized in the same manner as in part (a), i.e., $\mu_1[0] = 1, \mu_2[0] = 2$, converges to a different solution from that obtained in part (a). In your solution describe (i) what is this minimum positive value of Δ and explain your reasoning / derivation, and (ii) as in part (a) run the cluster algorithm, describing the values of cluster centers and set memberships for each iteration until convergence.