

Abhradeep Mukherjee Stephen Louis Ensun Pak

Problem Solving Journey

Data Types

Data Visualization

- Numbers are always right
- Tables convey more information
- Colors are not important
- **EDA** is only done once

Monthly Vehicles Sold

2018 vs 2019

carat	cut	color	clarity	depth	table	price
0.23	Ideal	Е	SI2	61.5	55	326
0.21	Premium	E	SI1	59.8	61	326
0.23	Good	E	VS1	56.9	65	327
0.29	Premium	1	VS2	62.4	58	334
0.31	Good	J	SI2	63.3	58	335
0.24	Very Good	J	VVS2	62.8	57	336
0.24	Very Good	1	VVS1	62.3	57	336
0.26	Very Good	Н	SI1	61.9	55	337
0.22	Fair	E	VS2	65.1	61	337
0.23	Very Good	Н	VS1	59.4	61	338
0.3	Good	J	SI1	64	55	339
0.23	Ideal	J	VS1	62.8	56	340
0.22	Premium	F	SI1	60.4	61	342
0.31	Ideal	J	SI2	62.2	54	344
0.2	Premium	E	SI2	60.2	62	345
0.32	Premium	Е	I1	60.9	58	345
0.3	Ideal	1	SI2	62	54	348
0.3	Good	J	SI1	63.4	54	351
0.3	Good	J	SI1	63.8	56	351
0.3	Very Good	J	SI1	62.7	59	351
0.3	Good	1	SI2	63.3	56	351
0.23	Very Good	Е	VS2	63.8	55	352
0.23	Very Good	Н	VS1	61	57	353
0.31	Very Good	J	SI1	59.4	62	353
0.31	Very Good	J	SI1	58.1	62	353
0.23	Very Good	G	VVS2	60.4	58	354
0.24	Premium	1	VS1	62.5	57	355
0.3	Very Good	J	VS2	62.2	57	357
0.23	Very Good	D	VS2	60.5	61	357
0.23	Very Good	F	VS1	60.9	57	357

Which would you analyze for trend between carat and price? By the way, there are 50k+ rows in the dataset.

We can incorporate many different types of visualization in one place to tell a story. Imagine trying to read this information in table format.

Take this visualization, for example, looking at weather temperatures. Blue and red are readily understood without any explanation, and are easily distinguishable.

What happens without EDA?

- An energy company was using field data in oil operations.
- In order to pump oil, steam is used to warm up the oil in order to ensure that the oil flows more easily.
 - The steam was based on infrared readings of the temperature of the lines.
- The lines were dirty and insulated causing the temperature readings to be way off.
 - Because this problem went unnoticed, more steam was constantly used.
 - This resulted in excessive operational expenses that exceeded tens of millions of dollars.

Different Scenarios

Imagine the steam input is driven by signals from a SLR model dataset through these three scenarios.

Scenarios Compared

- Understanding the data does matter!
- Inaccurate data can create inaccurate predictions
 - Inaccurate predictions can create huge expenditures over time

