

SAGAR INSTITUTE OF SCIENCE & TECHNOLOGY(SISTec) DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ASSIGNMENTS-2

BRANCH	CSE
SESSION	

NAME OF THE FACULTY:

SUBJECT/CODE:

Sr. No.	Enrollment No.	Set Number
1	0187CE201038,40,76,95,0187cs201002,03	SET-1
2	0187cs201004,05,06,07,09,10	SET-2
3	0187cs201011,12,13,15,16, 17	SET-3
4	0187cs201019,20,21,22,23,24	SET-4
5	0187cs201025,26,27,28,29,30	SET-5
6	0187cs201031,32,34,35,36,38	SET-6
7	0187cs201039,40,41,43,44,45	SET-7
8	0187cs201047,48,51,52,53,54	SET-8
9	0187cs201055,56,58,59,60,61	SET-9
10	0187cs201062,63,0536cs2012,14,41,60	SET-10

UNIT-2

Q No.	QUESTIONS	Bloom's Taxonomy Level	Cours e Outco mes
	SET 1		
1.	Compare Simple Neural Network and Deep Neural Network. Why deep learning is getting importance over traditional machine learning approaches.	2(Understanding)	CO2
2.	Identify the role of activation function in neural networks? Define different types of activation functions.	1(Remembering)	CO2
	For the given network: One input neuron with input, x=3 One hidden neuron and One output neuron Initial weights = 1	3(Applying)	CO2
3.	Target Output= 15 By applying back propagation algorithm, draw the diagram of the network and calculate the values of (activation function is identity activation function)		
	updated weights for one cycle. SET 2		
		2/11 1 / 12 >	G02
1.	Illustrate the role of weights and bias in neural network.	2(Understanding)	CO2
2.	Explain Perceptron model. Which rule is used for weight updating in Perceptron? Give the definition of this rule.	1(Remembering)	CO2
3.	For the given network: One input neuron with input, x=3 One hidden neuron and One output neuron Initial weights = 1 Target Output= 5 By applying back propagation algorithm, draw the diagram of the network and calculate the values of updated weights for one cycle.	3(Applying)	CO2
	SET 3		
1.	What is gradient descent algorithm? Also explain how it help to find the minimum cost function?	1(REMEMBERING)	CO2
2.	How computation graph is used to find the backward changes? Explain with suitable example.	3(APPLYING)	CO2
3.	For the given network: One input neuron with input, x=3 One hidden neuron and One output neuron Initial weights = 1 Target Output= 5	3(APPLYING)	CO2
	1	1	<u>l</u>

	By applying back propagation algorithm, draw the diagram of the network		
	and calculate the values of		
	updated weights for one cycle.		
	SET 4		
1.	Discuss feed-forward neural network with diagram.	2(UNDERSTANDI NG)	CO2
2.	Discuss different weight initialization methods used to initialize weight in a deep neural network.	2(UNDERSTANDI NG)	CO2
3.	For the given network: One input neuron with input, x=3 One hidden neuron and One output neuron Initial weights = 1 Target Output= 5	3(APPLYING)	CO2
	By applying back propagation algorithm, draw the diagram of the network and calculate the values of		
_	updated weights for one cycle.		
	SET 5		
1.	Relate the use of non-linearity in Deep learning architecture.	1(REMEMBERIN G)	CO2
2.	Write the algorithm for back propagation	1(REMEMBERIN G)	CO2
	For the given network: One input neuron with input, x=3 One hidden neuron and One output neuron	3(APPLYING)	CO2
3.	Initial weights = 1 Target Output= 5 By applying back propagation algorithm, draw the diagram of the network and calculate the values of		
	updated weights for one cycle.		
	SET 6		
1.	Explain locally Weighted linear regression	1(REMEMBERING)	CO2
2.	Explain with example classification using back propagation algorithm.	1(REMEMBERING)	CO2
_	For the given network: One input neuron with input, x=3 One hidden neuron and One output neuron Initial weights = 1	3(APPLYING)	CO2
3.	Initial weights = 1 Target Output= 5 By applying back propagation algorithm, draw the diagram of the network and calculate the values of updated weights for one cycle.		
	SET 7	•	
1.	Explain Perceptron model. Which rule is used for weight updation in	1(REMEMBERING)	CO2

	Perceptron? Give the definition of this rule.		
2.	What is gradient descent algorithm? Also explain how it help to find the minimum cost function?	1(REMEMBERING)	CO2
	For the given network:	3(APPLYING)	
	One input neuron with input, x=3		CO ₂
	One hidden neuron and One output neuron		
3.	Initial weights = 1		
	Target Output= 5		
	By applying back propagation algorithm, draw the diagram of the network and calculate the values of		
	updated weights for one cycle.		
	SET 8		
1.	Identify the role of activation function in neural networks? Define different types of activation functions.	1(REMEMBERING)	CO2
2.	Explain Perceptron model. Which rule is used for weight updation in Perceptron? Give the definition of this rule.	1(REMEMBERING)	CO2
	For the given network:	3(APPLYING)	
	One input neuron with input, x=3		CO
	One hidden neuron and One output neuron		CO
3.	Initial weights = 1		
	Target Output= 5		
	By applying back propagation algorithm, draw the diagram of the network and calculate the values of		
	updated weights for one cycle.		
	SET 9		
1.	Explain with example classification using back propagation algorithm.	1(REMEMBERING)	CO2
2.	Compare Simple Neural Network and Deep Neural Network. Why deep	2(UNDERSTANDING)	CO2
_,	learning is getting importance over traditional machine learning approaches.		
	For the given network:	3(APPLYING)	
	One input neuron with input, x=3		CO
	One hidden neuron and One output neuron		
3.	Initial weights = 1		
	Target Output= 5		
	By applying back propagation algorithm, draw the diagram of the network and calculate the values of		
	updated weights for one cycle.		
	1	1	
	SET 10		
1.	SET 10 Identify the role of activation function in neural networks? Define different types of activation functions.	(REMEMBERING)	CO2

en network: neuron with input, x=3 n neuron and One output neuron thts = 1 put= 5 g back propagation algorithm, draw the diag te the values of eights for one cycle.		3(APPLY	ING)	
n neuron and One output neuron thts = 1 tput= 5 g back propagation algorithm, draw the diag tte the values of		JAHLI	110)	
thts = 1 sput= 5 g back propagation algorithm, draw the diagute the values of				CO2
put= 5 g back propagation algorithm, draw the diag te the values of				
g back propagation algorithm, draw the diag te the values of				
te the values of		_		
eights for one cycle.	of the networl	k		