

# Introduction to Machine Learning

Module 2B: Modern Convolutional Neural Networks

Instructor: Tugce Gurbuz

July 15<sup>th</sup> 2022









"man in black shirt is playing guitar."



"construction worker in orange safety vest is working on road."



"two young girls are playing with lego toy."



























Success -> (1) large scale CNNs and (2) transfer learning



Image credit: http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning-part-4/





# Alex Krizhevsky, Ilya Sutskeever, Geoffrey Hinton

"ImageNet classification with deep convolutional neural networks." NeurIPS 2012







# Alex Krizhevsky, Ilya Sutskeever, Geoffrey Hinton

"ImageNet classification with deep convolutional neural networks." NeurIPS 2012

- Total number of parameters: 60M
- Trained on 2 GPUs













Krizhevsky, Sutskever, Hinton, NeurlPS 2012



Batch normalization -> normalizing the input batch

• If the distribution of the inputs to every layer is the same, the network is efficient.





Let's practice AlexNet in Section-1 of tutorial-1!





#### **ConvNets After AlexNet: ResNet**







He et al., CVPR 2016

torchvision.models.resnet18()

. .





"Skip connections"



Better gradient flow because of "skip connections"

torchvision.models.resnet18()

...





"Skip connections" avoid vanishing gradients <3

$$f(x) = f_1\left(f_2\left(\cdots f_N(x)\right)\right) \Rightarrow f'(x) = f_1'\left(f_2\left(\cdots\right)\right) \cdot f_2'\left(\cdots\right) \cdot \dots \cdot f_N'(x) \quad \text{(chain rule)}$$



torchvision.models.resnet18()

. . .





"Skip connections" avoid vanishing gradients <3



He et al., CVPR 2016

torchvision.models.resnet18()

...





Let's practice ResNet in Section-2 of tutorial-1!

torchvision.models.resnet18()

٠..











Success -> (1) large scale CNNs and (2) transfer learning

















Success -> (1) large scale CNNs and (2) transfer learning

Option 1: Train only classification layer, freeze backbone (sometimes referred to as the "linear evaluation protocol")

☐ Fast & simple

Option 2: Train classification layer, fine-tune backbone at the same time

☐ Slower, but can adapt feature extraction to dataset statistics





# **Transfer Learning Is Beyond Classification**





# **Transfer Learning Is Beyond Classification**



Long, Shelhamer, Darrell, CVPR 2015





Let's practice transfer learning on the last section of the tutorial-1!

Then, we will continue with tutorial-2 to perform face recognition with modern CNNs and also have a discussion about ethical part of AI

