Supplementary Information (SI)

2	High power deep UV-LEDs for analytical optical instrumentation	
3	Yan Li ^a ‡, Miloš Dvořáka ^{a,b,c} ‡, Pavel N. Nesterenko ^a , Nantana Nuchtavorn ^{a,d} , Mirek Macka ^a *	
4 5	^a School of Physical Sciences and Australian Centre for Research on Separation Science (ACRO University of Tasmania, Private Bag 75, Hobart 7001, Australia	SS),
6 7	^b Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic	ogy,
8 9	^c Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 967, 602 00 Brno, Czech Republic	/97,
10 11	^d Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Ayudhaya Rd., Rajathevee, Bangkok 10400, Thailand	Sri-
12		
13	*Corresponding author	
14 15	Professor Mirek Macka, Private Bag 75, School of Physical Sciences and Australian Centre for Research Separation Science, University of Tasmania, Hobart 7001, Australia	n on
16	E-mail: Mirek.Macka@utas.edu.au	
17	Phone: +61 362266670; Fax: +61 362262858	
18		
19	1. Photometric on-capillary detection application study	S-2
20	2. The analyte spectra overlayed with the emission spectrum	S-3
	2. Demonstration of detection mentageness	
21	3. Demonstration of detection performance	S-4
21 22	3. Demonstration of detection performance	S-4

24 1. Photometric on-capillary detection study: sensitivity vs. absorbance curve

and resulting effective pathlength and stray light

Fig. S1. Detection linearity as sensitivity vs. absorbance graph. Conditions: Capillary inner diameter (100 μm), test analyte chromate, effective pathlength (l_{eff} = 95.2 μm) calculated for sensitivity extrapolated to A=0 equal to 25 AU/mol L⁻¹, and chromate molar absorptivity coefficient =2624 L mol⁻¹ cm⁻¹ as measured. The stray light 0.8% from the extrapolated high-end of the curve at A = 2.178. An upper limit of detection (LOD), determined as the absorbance corresponding to 95% sensitivity, was calculated as 745 mAU.

2. The analyte spectra overlayed with the emission spectrum

Fig. S2. Absorbance spectrum of chromate absorbing strongly at 255 nm overlayed with the 255 nm deep UV-LED emission spectrum.

36

37

38

3. Demonstration of detection performance

Fig. S3. Isocratic separation of parabens of different concentrations. Conditions: Concentration of all analytes in three separations was 31.25 μM, 62.5 μM or 125 μM. methyl 4-hydroxybenzoate (MHP), ethyl 4-hydroxybenzoate (EHB), mM propyl 4-hydroxybenzoate (PHB), and butyl 4-hydroxybenzoate (BHB); eluent: 50 mM ammonium acetate - acetonitrile 50/50 (v/v); flow rate: 0.5 mL min⁻¹; column: 30 cm × 100 μm i.d.; injection volume: 4 nL (sample injection length as in the on-capillary detector: 500 μm); detection: 255 nm LED on-capillary photometric detector, inserted capillary i.d. 100 μm, optical window width 50 μm. Deep UV-LED forward current 100 mA.