第七章化学反应速率

化学动力学的任务

对于合成氨反应:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\Delta_{\rm r} G_{\rm m}^{\,\theta}(298 \,{\rm K}) = -33 \,{\rm kJ \cdot mol^{-1}}$$

$$K_{\rm p}^{\,\theta} = 6.1 \times 10^5 \,(298 \,{\rm K})$$

- 化学热力学:常温常压下反应能进行,且转化率很高,
- 化学动力学:实际反应速率太慢,毫无工业价值。

速率问题、机理问题

7.1 化学反应速率的含义及其表示法

反应速率的定义

- 单位时间内反应物或生成物浓度改变量的正值。
- 一般用 ν 表示。

$$H_2O_2(aq) \xrightarrow{I^-} H_2O(1) + \frac{1}{2}O_2(g)$$
 室温

	H_2O_2	反应应速率 $\frac{\Delta(H_2O_2)}{\Delta t}$
min	mol dm ⁻³	$mol \cdot dm^{-3} \cdot min^{-1}$
0	0.80	
20	0.40	0.40/20=0.020
40	0.20	0.20/20=0.010
60	0.10	0.10/20=0.0050
80	0.050	0.050/20=0.0025

平均速率与瞬时速率

$$H_2O_2(aq) \xrightarrow{I^-} H_2O(1) + \frac{1}{2}O_2(g)$$
 室温

平均速率 v̄

$$\bar{v} = \frac{-\Delta(H_2O_2)}{\Delta t}$$

图 7.1 H₂O₂ 分解反应的浓度-时间曲线

瞬时速率 v: t 时刻的切线斜率取正值

$$v = \lim_{\Delta t \to 0} \frac{-\Delta(H_2O_2)}{\Delta t} = -\frac{d(H_2O_2)}{dt}$$

时刻B:

平均速率
$$\overline{v} = \frac{0.4 - 0.2}{20} = 0.010 \text{ mol} \cdot \text{dm}^{-3} \cdot \text{min}^{-1}$$
 瞬时速率 $v = \frac{0.5 - 0.2}{40} = 0.0075 \text{ mol} \cdot \text{dm}^{-3} \cdot \text{min}^{-1}$

• 化学反应随时间改变

现行国际单位制的建议

$$v = \frac{\mathrm{d}\zeta}{\mathrm{Vd}t}$$

$$aA + bB \rightleftharpoons cC + dD$$

$$v = -\frac{1}{a} \frac{d(A)}{dt} = -\frac{1}{b} \frac{d(B)}{dt} = \frac{1}{c} \frac{d(C)}{dt} = \frac{1}{d} \frac{d(D)}{dt}$$

• 一个化学反应就只有一个反应速率值

净反应速率和初速率

- 净反应速率=v₊ − v_−
 - 实验测定的反应速率是正向速率和逆向速率之差
- 单向反应:有些化学反应逆速率非常小 $(v_- \rightarrow 0)$

净反应速率和初速率

• 平衡状态

- 正向反应速率和逆向反应速率相等($v_+ = v_-$)
- · 净反应速率等于零,
- 浓度不再随时间变化。
- 初速率(v₀)
 - 反应刚开始一霎那的瞬时速率

7.2 浓度与反应速率

7.2.1 微分速率方程

- 反应速度与时间有关
- 反应速度与反应物浓度变化有关

$$H_2O_2(aq) \xrightarrow{I^-} H_2O(1) + \frac{1}{2}O_2(g)$$
 室温

$$v = -\frac{d(H_2O_2)}{dt} = k (H_2O_2)$$

$(H_2O_2)/(mol \cdot dm^{-3})$	0.40	0.20	0.10
$\nu = \frac{d(H_2O_2)}{dt} \text{ (mol} \cdot \text{dm}^{-3} \cdot \text{min}^{-1}\text{)}$	0.014	0.0075	0.0038

7.2.1 微分速率方程

$$v = -\frac{\mathrm{d}(\mathrm{H}_2\mathrm{O}_2)}{\mathrm{d}t} = k \, (\mathrm{H}_2\mathrm{O}_2)$$

- 反应速率常数(k): 比速常数,可看作浓度为1 mol·dm⁻³ 时的反应速率。
- 微分速率方程: 反映反应速率与反应物浓度的关系的方程

CO(g) + NO₂(g) → CO₂(g) + NO(g) 反应物的浓度与初速率

	甲组			乙组			丙纟	<u></u> 且
$\frac{(CO)}{\text{mol} \cdot \text{dm}^{-3}}$	$\frac{(NO_2)}{\text{mol} \cdot \text{dm}^{-3}}$	$\frac{v_0}{\text{mol} \cdot \text{dm}^{-3} \cdot \text{s}^{-1}}$	$\frac{\text{(CO)}}{\text{mol} \cdot \text{dm}^{-3}}$	$\frac{(NO_2)}{\text{mol} \cdot \text{dm}^{-3}}$	$\frac{v_0}{\text{mol} \cdot \text{dm}^{-3} \cdot \text{s}^{-1}}$	$\frac{(CO)}{\text{mol} \cdot \text{dm}^{-3}}$	$\frac{(NO_2)}{\text{mol} \cdot \text{dm}^{-3}}$	$\frac{v_0}{\text{mol} \cdot \text{dm}^{-3} \cdot \text{s}^{-1}}$
0.10	0.10	0.005	0.10	0.20	0.010	0.10	0.30	0.015
0.20	0.10	0.010	0.20	0.20	0.020	0.20	0.30	0.030
0.30	0.10	0.015	0.30	0.20	0.030	0.30	0.30	0.045
0.40	0.10	0.020	0.40	0.20	0.040	0.40	0.30	0.060

$$v = -\frac{d(NO_2)}{dt} = -\frac{d(CO)}{dt} = k (CO) (NO_2)$$

$$\mathbf{H_2O_2(aq)} \xrightarrow{\mathbf{I^-}} \mathbf{H_2O(l)} + \frac{1}{2}\mathbf{O_2(g)}$$
 室温
$$v = -\frac{d(\mathbf{H_2O_2})}{dt} = k(\mathbf{H_2O_2})$$

$$CO(g) + NO_{2}(g) \rightarrow CO_{2}(g) + NO(g)$$

$$v = -\frac{d(NO_{2})}{dt} = -\frac{d(CO)}{dt} = k (CO) (NO_{2})$$

$$S_2O_8^{2-} + 3I^- \rightarrow 2SO_4^{2-} + I_3^-$$

 $v = k(S_2O_8^{2-})(I^-)$

什么情况下, 微分速率方程的指数等于反应物化学计量数?

7.2.2 基元反应和非基元反应

- 基元反应: 一步就起反应变成生成物。 $CO + NO_2 \rightarrow CO_2 + NO$
- 非基元反应:反应物分子要经过几步, 才能转化为生成物。

$$S_2O_8^{2-} + 3I^- \rightarrow 2SO_4^{2-} + I_3^{-1}$$

1.
$$S_2O_8^{2-} + I^- \rightarrow S_2O_8I^{3-}$$

2.
$$S_2O_8I^{3-} + I^- \rightarrow 2SO_4^{2-} + I_2$$

3.
$$I_2 + I^- \rightarrow I_3^-$$

7.2.3 基元反应的质量作用定律

质量作用定律:恒温条件,基元反应

反应速率与反应物浓度乘幂的乘积成正比 各浓度的方次 = 反应物的系数(化学计量数)

$$aA + bB \longrightarrow cC$$

$$v = -\frac{1}{a} \frac{d(A)}{dt} = -\frac{1}{b} \frac{d(B)}{dt} = \frac{1}{c} \frac{d(C)}{dt} = k (A)^a (B)^b$$

- k: 化学反应在一定温度的特征常数
- k: 由反应的性质和温度决定,而与浓度无关。

非基元反应的速率方程

- 浓度的方次和反应物的系数不一定相符
- 须由实验测定

$$S_2O_8^{2-} + 3I^- \longrightarrow 2SO_4^2 + I_3^-$$

$$-\frac{d(S_2O_8^{2-})}{dt} = k (S_2O_8^{2-})(I^{-})$$

$\frac{(S_2O_8^{2-})_0}{\text{mol}\cdot\text{dm}^{-3}}$	$\frac{(I^{-})_{0}}{\text{mol}\cdot\text{dm}^{-3}}$	$-\frac{\mathrm{d}(\mathrm{S_2O_8}^{-2})/\mathrm{d}t}{\mathrm{mol}\cdot\mathrm{dm}^{-3}\cdot\mathrm{s}^{-1}}$
0.038	0.060	1.4×10 ⁻⁵
0.076	0.060	2.8×10 ⁻⁵
0.076	0.030	1.4×10 ⁻⁵

$$aA + bB \longrightarrow cC$$

化学平衡常数
$$K_c = \frac{[C]^c}{[A]^a[B]^b}$$

- 平衡浓度的方次 = 化学计量系数
- 按化学方程式即可写出平衡常数式
- 化学平衡只取决于反应的始态和终态而与路径无关

微分速率方程 $v = k(A)^x(B)^y$ 一般情况下, $x \neq a, y \neq b$

- 化学反应速率与路径密切相关
- 速率式中浓度的方次一般要由实验确定
- 不能直接按化学方程式的计量系数写出
- 反应速率常数有量纲,量纲与反应级数有关

7.2.4反应速率的测定

- 早期测定: 降温、稀释, 然后测定浓度
- 利用与体系浓度有关的物理性质进行快速测定或连续测定
 - 气体体积、压力
 - 溶液的电导率、折射率、吸光度等
 - 色谱: HPLC, GC
 - 分子束,激光等技术

7.3 反应级数

$$aA + bB \longrightarrow cC$$

$$v = k(A)^x(B)^y$$

- 反应的级数: 微分速率方程式里浓度的方次
- 必须由实验测定速率常数和反应级数。
- 化学反应的级数,上述化学反应的级数为x+y
- 反应物的级数, A物质的反应级数为x

$$CO(g) + NO_2(g) \rightarrow CO_2(g) + NO(g)$$

$$v = -\frac{d(NO_2)}{dt} = -\frac{d(CO)}{dt} = k (CO)(NO_2)$$

- 反应物CO来说是1级反应,
- 对反应物 NO_2 来说也是1级反应,
- 总反应为1+1=2级反应。

7.3.1 零级反应

零级反应

反应速率与浓度无关(即与浓度的零次方成正比)的反应。

$$v = k$$

$$(D) = (D)_0 - kt$$

- 已知的零级反应中最多是在表面上发生的多相反应。
- 零级反应实际上是匀速反应。k的单位是 $mol\cdot dm^{-3}\cdot s^{-1}$ 。

N₂O在金表面的热分解

$$2N_2O \rightarrow 2N_2 + O_2$$

$k = 0.0010 \text{ mol} \cdot \text{dm}^{-3} \cdot \text{s}^{-1}$

t/min	(N_2O) /mol·dm ⁻³
0	0.100
20	0.080
40	0.060
60	0.040
80	0.020
100	0

N₂O 在金表面热分解反应的(N₂O)-t 图

7.3.2 一级反应

一级反应

反应速率与反应物浓度的一次方成正比的反应

$$A \rightarrow P$$

$$v = k(A)$$

$$\lg(A) = \lg(A)_0 - kt/2.30$$

- lg(A)与t呈直线关系是一级反应的特征
- 由直线斜率可计算速率常数k
- 一级反应速率常数k的单位为 s^{-1}

N₂O₅在CCl₄溶剂中的分解反应速率 (318K)

 $2N_2O_5 \rightarrow 4NO_2 + O_2$

<i>t</i> /s	0	400	800	1200	1600	2000
(N_2O_5) /mol·dm ⁻³	1.40	1.10	0.87	0.68	0.53	0.42
$lg(N_2O_5)$	0.146	0.041	-0.06	-0.17	-0.28	-0.38

 N_2O_5 分解反应的 $Ig(N_2O_5)$ —t图 N_2O_5 分解反应的 (N_2O_5) —t图22

半衰期 (t1/2)

- 半衰期 $(t_{1/2})$: 反应进行一半所需的时间
 - 一级反应速率方程改写为:

$$\lg[(A)/(A)_0] = -kt / 2.303$$

当 $(A) = (A)_0/2$ 时,此刻的反应时间 $t = t_{1/2}$,

$$t_{1/2} = 0.693/k$$

• 一级反应的半衰期与反应物浓度无关,由速率常数决定

将 N_2O_5 分解反应的k: $k = 6.23 \times 10^{-4}$ s $^{-1}$

$$t_{1/2} = 1.11 \times 10^3 \,\mathrm{s}$$

即每隔1110秒反应物N2O5就分解一半。

 $t_{1/2} = 0.693/k$:半衰期与浓度无关

例1: 已知 300K, C₂H₅Cl 一级分解反应的

$$k=2.50\times10^{-3}\,\mathrm{min^{-1}}$$
, $(A)_0=0.40\,\mathrm{mol\cdot dm^{-3}}$

- 求 (1) t=8 h时的(C₂H₅Cl)=?
 - (2) $(C_2H_5Cl) = 0.40 \rightarrow 0.010 \text{ mol·dm}^{-3}$ 需要的时间 t = ?
 - (3) $t_{1/2} = ?$

解: (1)
$$\lg (C_2H_5Cl) = \lg (C_2H_4Cl)_0 - \frac{k}{2.30} \times t$$
$$= \lg (0.40) - \frac{2.50 \times 10^{-3}}{2.30} \times 8 \times 60$$
$$= -0.92$$

$$(C_2H_5Cl) = 0.12 \text{ mol} \cdot \text{dm}^{-3}$$

例1: 已知 300K, C₂H₅Cl 一级分解反应的

$$k=2.50\times10^{-3}\,\mathrm{min^{-1}}$$
, $(A)_0=0.40\,\mathrm{mol\cdot dm^{-3}}$

- 求 (1) t=8 h时的(C₂H₅Cl)=?
 - (2) $(C_2H_5Cl) = 0.40 \rightarrow 0.010 \text{ mol·dm}^{-3}$ 需要的时间 t = ?
 - (3) $t_{1/2} = ?$

解: (2)
$$\lg (C_2H_5Cl) = \lg (C_2H_4Cl)_0 - \frac{k}{2.30} \times t$$
$$\lg (0.010) = \lg (0.40) - \frac{2.5 \times 10^{-3}}{2.30} \times t$$
$$t = 1.5 \times 10^3 \text{ min} = 25 \text{ h}$$

(3)
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{2.50 \times 10^{-3}} = 277 \text{ min} = 4.62 \text{ h}$$

7.3.3 二级反应的特征

二级反应

反应速率与反应物浓度二次方成正比

对于二级反应,
$$B \rightarrow P$$

$$v = -\frac{d(B)}{dt} = k(B)^2$$

$$\frac{1}{(B)} = \frac{1}{(B)_0} + kt$$

- 二级反应中反应物浓度倒数与时间t呈线性关系
- 二级反应速率常数k的单位为: $mol^{-1} \cdot dm^{3} \cdot s^{-1}$

HI(g) 的分解反应速率

$$\frac{1}{(\mathbf{B})} = \frac{1}{(\mathbf{B})_0} + kt$$

<i>t</i> / h	(HI)/mol·dm ⁻³	$(HI)^{-1}/(mol \cdot dm^{-3})^{-1}$
0	1.00	1.0
2	0.50	2.0
4	0.33	3.0
6	0.25	4.0

 $k = 0.50 \text{ mol}^{-1} \cdot \text{dm}^{3} \cdot \text{h}^{-1}$

图 7.4 HI 分解反应的 $\frac{1}{(HI)}$ -t 图