Ασκήσεις στην Θεωρία Αριθμών & Ομάδων

Αντώνης Αντωνόπουλος CoReLab

aanton@corelab.ntua.gr

Άσκηση 1

Αν p πρώτος αριθμός, τότε p=2 ή $p\equiv 1$ mod 4 ή $p\equiv 3$ mod 4.

Λύση

- Αν p άρτιος, τότε αναγκαστικά p=2.
- Αν p περιττός, τότε η Ευκλείδεια Διαίρεση με το 4 δίνει: p=4k+r, $0 \le r \le 3.$
 - Αν r = 0, τότε p = 4k άτοπο.
 - Αν r=2, τότε p=4k+2=2(2k+1), άτοπο.

Άρα είτε r=1 είτε r=3, οπότε προκύπτει το ζητούμενο.

Ένας ακέραιος της μορφής 2^p-1 , με p πρώτο, ονομάζεται πρώτος τον Mersenne. Δείξτε ότι:

- 1. Αν 2^p-1 είναι πρώτος, τότε και ο p είναι πρώτος. Ισχύει και το αντίστροφο;
- 2. Αν $a, b \in \mathbb{N}$, τότε $2^a 1|2^{ab} 1$.

Λύση

1. Έστω, προς απαγωγή σε άτοπο, ότι ο 2^p-1 είναι πρώτος ενώ ο p δεν είναι. Τότε $\exists \; x,y>1: p=x\cdot y.$ Άρα:

$$2^{p} - 1 = 2^{xy} - 1 = (2^{x})^{y} - 1 = (2^{x} - 1)[2^{x(y-1)} + 2^{x(y-2)} + \dots + 2^{x} + 1]$$

(χρησιμοποιώντας την γνωστή ταυτότητα $\alpha^n-\beta^n=(\alpha-\beta)[\alpha^{n-1}+\alpha^{n-2}\beta+\alpha^{n-3}\beta^2+\cdots+\alpha\beta^{n-2}+\beta^{n-1}]$). Οπότε, παραγοντοποιήσαμε τον 2^p-1 σε γινόμενο δύο αριθμών μεγαλύτερων του 1, άρα είναι σύνθετος, άτοπο. Άρα ο p είναι πρώτος.

2. Έχουμε $2^{ab} - 1 = (2^a)^b - 1^b$. Λόγω της γνωστής ταυτότητας:

$$\alpha^{n} - \beta^{n} = (\alpha - \beta)[\alpha^{n-1} + \alpha^{n-2}\beta + \alpha^{n-3}\beta^{2} + \dots + \alpha\beta^{n-2} + \beta^{n-1}] \Rightarrow$$
$$\alpha - \beta[\alpha^{n} - \beta^{n}]$$

$$Aρα 2^a - 1|(2^a)^b - 1^b.$$

(Παρατηρήστε ότι μπορούμε να χρησιμοποιήσουμε το υποερώτημα 2. για να συνάγουμε το 1.: $2^p-1=2^{xy}-1$, και λόγω του 2. έχουμε ότι $2^x-1|2^{xy}-1$, άρα ο 2^p-1 δεν είναι πρώτος, άτοπο.)

1. Έστω $a,b \in \mathbb{N}$, με a,b > 1. Αν οι αναλύσεις των a,b σε γινόμενο πρώτων παραγόντων είναι: $a = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ και $b = p_1^{h_1} p_2^{h_2} \cdots p_k^{h_k}$ όπου p_i πρώτοι, δείξτε ότι:

$$(a,b) = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$$

όπου $t_i = \min\{e_i, h_i\}, i = 1, 2, \dots, k.$

2. Δείξτε ότι $(a, b)^n = (a^n, b^n)$.

Λύση

1. Έστω $d=p_1^{t_1}p_2^{t_2}\cdots p_k^{t_k}$, με $t_i=\min\{e_i,h_i\}$, όπως στην εκφώνηση. Αφού $\min\{e_i,h_i\}\leq e_i$ και $\min\{e_i,h_i\}\leq h_i$, θα έχουμε d|a και d|b. Άρα ο d είναι κοινός διαιρέτης των a,b. Για να αποδείξουμε ότι είναι ο ΜΚΔ τους, πρέπει να δείξουμε ότι για κάθε d', με $d'|a\wedge d'|b$ έχουμε ότι $d'\leq d$.

Έστω $d'=p_1^{s_1}p_2^{s_2}\cdots p_k^{s_k}$. Αφού $d'|a\Rightarrow s_i\leq e_i$, και αφού $d'|b\Rightarrow s_i\leq h_i$, άρα και $s_i\leq \min\{e_i,h_i\}\Rightarrow s_i\leq t_i\Rightarrow p_i^{s_i}\leq p_i^{t_i}\Rightarrow$

$$p_1^{s_1} p_2^{s_2} \cdots p_k^{s_k} \le p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k} \Rightarrow d' \le d$$

2. Αν a=1, τότε $(1,b^n)=1^n=(1,b)^n$, και ομοίως για b=1. Έστω λοιπόν ότι a,b>1: Θεωρούμε τις αναλύσεις των a,b σε γινόμενο πρώτων παραγόντων όπως στο προηγούμενο ερώτημα:

$$a = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$

$$b = p_1^{h_1} p_2^{h_2} \cdots p_k^{h_k}$$

όπως και τον ΜΚΔ τους $d=(a,b)=p_1^{t_1}p_2^{t_2}\cdots p_k^{t_k}$, με $t_i=\min\{e_i,h_i\}$, $i=1,2,\ldots,k$.

Έχουμε $a^n=p_1^{ne_1}p_2^{ne_2}\cdots p_k^{ne_k}$ και $b^n=p_1^{nh_1}p_2^{nh_2}\cdots p_k^{nh_k}$, και αν $D=(a^n,b^n)$, τότε $D=p_1^{w_1}p_2^{w_2}\cdots p_k^{w_k}$, όπου $w_i=\min\{ne_i,nh_i\}=n\cdot\min\{e_i,h_i\}=nt_i$. Άρα:

$$D = p_1^{w_1} p_2^{w_2} \cdots p_k^{w_k} = p_1^{nt_1} p_2^{nt_2} \cdots p_k^{nt_k} = (p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k})^n = d^n$$

 $Aρα(a,b)^n = (a^n,b^n).$

Έστω $a,b\in\mathbb{Z}$, τέτοιοι ώστε $ab\equiv 1 \bmod m$. Δείξτε ότι οι a,b έχουν την ίδια τάξη.

Λύση

 $\overline{\text{Έστω}} z$ η τάξη του a και w η τάξη του b, με $z \neq w$. Τότε:

$$ab \equiv 1 \bmod m \Rightarrow ab - 1 = km, k \in \mathbb{Z} \Rightarrow ab + (-k)m = 1 \Rightarrow$$

$$(a,m) = 1 \land (b,m) = 1$$

Χωρίς βλάβη της γενικότητας, υποθέτουμε ότι z < w, άρα έχουμε:

$$a^z \equiv 1 \mod m \ \land \ b^w \equiv 1 \mod m \Rightarrow a^z b^w \equiv 1 \mod m$$

$$\Rightarrow (a^z b^z) b^{w-z} \equiv 1 \mod m \tag{1}$$

Αφού, εξ' υποθέσεως, $ab \equiv 1 \mod m$, τότε και $(ab)^z \equiv 1 \mod m$, άρα από την (1) έχουμε ότι $b^{w-z} \equiv 1 \mod m$, που είναι άτοπο, αφού w-z < z, υποθέσαμε ότι η τάξη του b είναι w (δηλ. ο ελάχιστος θετικός ακέραιος για τον οποίο $b^w \equiv 1 \mod m$). Άρα z=w.

Άσκηση 5

Δείξτε ότι αν μια ομάδα (G,*) έχει ως τάξη πρώτο αριθμό, τότε είναι κυκλική.

Λύση

Έστω ότι |G|=p, για p πρώτο. Αν p=1, τότε $G=\{e\}$, που είναι κυκλική. Οπότε, έστω p>1. Θεωρούμε ένα $x\in G, x\neq e$, και έστω k η τάξη του x. Από το θ . Lagrange, γνωρίζουμε ότι η τάξη του στοιχείου μιας πεπερασμένης ομάδας διαιρεί την τάξη της ομάδας, οπότε k|p, και επειδή p πρώτος & $k\neq 1$ (αλλιώς $x^k=x=e$, άτοπο) έχουμε ότι k=p, το οποίο σημαίνει ότι το x είναι γεννήτορας της (G,*), άρα είναι κυκλική.

Να δείξετε ότι η ισοτιμία $x^2+1\equiv 0 \bmod p, p$ περιττός πρώτος, έχει λύση αν και μόνο αν $p=4k+1, k\in\mathbb{Z}.$

Λύση

 $\overline{(\Rightarrow)}$ Έστω ότι η ισοτιμία $x^2+1\equiv 0 \bmod p$ έχει λύση. Τότε, το -1 είναι τετραγωνικό υπόλοιπο modulo p. Οπότε $\left(\frac{-1}{p}\right)=1=(-1)^{\frac{p-1}{2}}$, άρα ο αριθμός $\frac{p-1}{2}$ είναι άρτιος, δηλαδή $\frac{p-1}{2}=2k, k\in\mathbb{Z} \Rightarrow p=4k+1, k\in\mathbb{Z}$.

(\Leftarrow) Έστω ότι $p=4k+1, k\in\mathbb{Z}\Rightarrow (-1)^{\frac{p-1}{2}}=(-1)^{2k}=1$, και επειδή p πρώτος: $\left(\frac{-1}{p}\right)=1$, άρα το (-1) είναι τετραγωνικό υπόλοιπό, δηλαδή η εξίσωση $x^2+1\equiv 0 \bmod p$ έχει λύση.

Άσκηση 7

Έστω η ομάδα (G, \cdot) . Αν |G| = 3, τότε:

- 1. Η ομάδα (G, \cdot) είναι αβελιανή.
- 2. Αν $a \in G$, τότε $G = \{e, a, a^2\}$.

Λύση

 $\overline{\text{Έστω}} G = \{e, a, b\}.$

- 1. Από τον ορισμό του ουδέτερου στοιχείου, έχουμε ότι $a\cdot e=e\cdot a=a$ και $b\cdot e=e\cdot b=b$. Αρκεί, λοιπόν, να δείξουμε ότι $a\cdot b=b\cdot a$. Έχουμε 3 δυνατές περιπτώσεις:
 - $a \cdot b = a$
 - $a \cdot b = b$
 - $a \cdot b = e$

Αναλυτικά:

- $\mathbf{a} \cdot \mathbf{b} = \mathbf{a}$: Τότε $a^{-1} \cdot (a \cdot b) = a^{-1} \cdot a \Rightarrow (a^{-1} \cdot a) \cdot b = e \Rightarrow e \cdot b = e \Rightarrow b = e$, άτοπο.
- $\mathbf{a} \cdot \mathbf{b} = \mathbf{b}$: Τότε $(a \cdot b) \cdot b^{-1} = b \cdot b^{-1} \Rightarrow a \cdot (b \cdot b^{-1}) = e \Rightarrow a \cdot e = e \Rightarrow a = e$, άτοπο.

• $\mathbf{a} \cdot \mathbf{b} = \mathbf{e}$: Tóte $a^{-1} \cdot (a \cdot b) = a^{-1} \cdot e \Rightarrow e \cdot b = a^{-1} \Rightarrow b = a^{-1} \Rightarrow b \cdot a = a^{-1} \cdot a \Rightarrow b \cdot a = e$, ára $a \cdot b = b \cdot a$.

Άρα, οι $\binom{3}{2}$ συνδυασμοί στοιχείων είναι οι:

$$a \cdot e = e \cdot a$$

$$b \cdot e = e \cdot b$$

$$a \cdot b = b \cdot a$$

Άρα η (G, \cdot) είναι αβελιανή.

- 2. Θα δείξουμε ότι $b = a^2$:
 - Έστω ότι $a^2 = a$: Τότε, a = e, άτοπο.
 - Έστω ότι $a^2=e$: Τότε, αφού γνωρίζουμε από το 1. ότι $a\cdot b=e$, έχουμε ότι $a\cdot b=a^2\Rightarrow a=b$, άτοπο.

Άρα, $a^2 = b$, και $G = \{e, a, b\} = \{e, a, a^2\}$.

П

Άσκηση 8

Δείξτε ότι αν ο n>1 δεν έχει πρώτο διαιρέτη μικρότερο ή ίσο του \sqrt{n} , τότε ο n είναι πρώτος. (Το κόσκινο του Ερατοσθένη)

Λύση

Έστω ότι ο n είναι σύνθετος. Τότε, n=xy,x,y>1. Αν $x>\sqrt{n} \ \land y>\sqrt{n} \Rightarrow n=xy>\sqrt{n}\cdot\sqrt{n}=n,$ άτοπο. Άρα, $x\leq\sqrt{n} \ \lor \ y\leq\sqrt{n}$. Έστω $x\leq\sqrt{n}$. Τότε είτε ο x είναι πρώτος, είτε έχει πρώτο διαιρέτη $\leq\sqrt{n}$.

Αν οι p και 2p-1 είναι πρώτοι αριθμοί (λέγονται και πρώτοι της Germaine), δείξτε ότι $\phi(n) = \phi(n+2)$, όπου n = 2(2p-1).

Λύση

Έχουμε ότι $\phi(n+2) = \phi(4p) = \phi(4)\phi(p) = 2(p-1)$. Επειδή 2p-1 πρώτος, έχουμε ότι (2,2p-1)=1, άρα: $\phi(n)=\phi(2(2p-1))=\phi(2)\phi(2p-1)=2p-2=2(p-1)$. Άρα $\phi(n)=\phi(n+2)=2(p-1)$.

Άσκηση 10

Αν το στοιχείο a μιας ομάδας (G,\cdot) έχει τάξη n, δείξτε ότι:

- 1. το στοιχείο a^k έχει τάξη $\frac{n}{(n,k)}$.
- 2. $|\langle a \rangle / \langle a^k \rangle| = (n, k)$

(Συμβολίζουμε με $\langle a \rangle$ την κυκλική ομάδα που παράγεται από το a.)

Λύση

1. Έστω x η τάξη του a^k , και d=(n,k). Τότε έχουμε ότι $n=\lambda d$ και $k=\mu d$, με $(\lambda,\mu)=1$ (γιατί;).

Έχουμε ότι
$$(a^k)^\lambda=a^{k\lambda}=a^{\mu d\lambda}=(a^{d\lambda})^\mu=(a^n)^\mu=e^\mu=e$$

Επίσης, από την στιγμή που η τάξη του a^k είναι x, έχουμε ότι, αφού η τάξη του a είναι n:

$$(a^k)^x = a^{kx} = e \Rightarrow n|kx$$

Άρα $n|kx\Rightarrow \lambda d|kx\Rightarrow \lambda d|\mu dx\Rightarrow \lambda|\mu x$, και επειδή $(\lambda,\mu)=1$ έχουμε ότι $\lambda|\mu x\Rightarrow \lambda|x$.

Επειδή όμως $(a^k)^{\lambda}=1$, έχουμε και ότι $x|\lambda$.

Άρα, έχουμε ότι:

$$\lambda |x \wedge x| \lambda \Rightarrow x = \lambda = \frac{n}{d} = \frac{n}{(n,k)}$$

2. Η ομάδα $\langle a^k \rangle$ είναι $v\pi o o \mu \acute{a} \delta \alpha$ της $\langle a \rangle$ (γιατί;). Χρησιμοποιώντας το θ. Lagrange, έχουμε ότι:

$$|\langle a \rangle| = |\langle a \rangle / \langle a^k \rangle| \cdot |\langle a^k \rangle|$$

.