w10-Lab

Data Representation Part II

Rational Number and Floating Point

Assembled for 204111 by Kittipitch Kuptavanich Ratsameetip Wita

204111: Fundamentals of Computer Science

Real Numbers in the Machine

- Real Numbers หรือจำนวนจริง เป็นค่าประเมิน แบบต่อเนื่อง ดังแสดงได้ในระบบเส้นจำนวน
- ระบบตัวเลข จำเป็นต้องมีการแสดงผลค่าจำนวนจริง ด้วยการประมาณค่า
- พิจารณาการแทนข้อมูลฐาน 10
 - เราไม่สามารถใช้เลขทศนิยมที่มีการจำกัดตำแหน่ง เพื่อแทนค่าที่แท้จริงของ 1/3 หรือ 5/7
 - เนื่องจากเป็นทศนิยมไม่รู้จบ: 0.3 และ 0.714285
 - 0.33333 ใกล้เคียงค่าจริงมากกว่า 0.33

Integer and Real Number

- Digital Data
- Integer Representation
- Binary Arithmetic
- Negative Integer Encoding
- Real Number and Floating Point Representation
- Rounding

Computer Systems: A Programmer's Perspective, 2nd Edition

204111: Fundamentals of Computer Science

Fractional Binary Numbers

- ในระบบเลขฐาน 2 นั้นมีข้อจำกัดเช่นเดียวกัน
 - แทน<mark>ค่าจริง</mark>ของตัวเลขได้ เฉพาะตัวเลขที่สามารถเขียน ในรูป $x \times 2^y$ เท่านั้น
 - นอกจากนั้นจะเป็น<u>ค่าประมาณ</u> ความใกล้เคียงกับค่า จริง<u>ขึ้นกับ</u>จำนวนตำแหน่งที่ใช้แสดงค่า

ตำแหน่งหลังจุดทศนิยมมาก = ค่าใกล้เคียงจำนวนจริงมากขึ้น

Fractional Binary Numbers [2]

204111: Fundamentals of Computer Science

7

Practice Problem 1

เติมตารางต่อไปนี้ให้สมบูรณ์

Fractional value	Binary representation	Decimal representation	
1/8	0.001	0.125	
$\frac{3}{4}$			
$\frac{25}{16}$	10 1011		
	10.1011 1.001		
		5.875	
		3.1875	

Fractional Binary Number

Representation	Value	Decimal
0.02	$\frac{0}{2}$	0.0 ₁₀
0.01 ₂	$\frac{1}{4}$	0.25_{10}
0.0102	$\frac{2}{8}$	0.25_{10}
0.0011_2	$\frac{3}{16}$	0.1875_{10}
0.00110_2	$\frac{6}{32}$	0.1875_{10}
0.001101_2	$\frac{13}{64}$	0.203125_{10}
0.0011010_2	$\frac{26}{128}$	0.203125_{10}
0.00110011_2	$\frac{51}{256}$	0.19921875_{10}

204111: Fundamentals of Computer Science

Floating Point Representation

- ในการแสดงค่าประมาณของเลขจำนวนจริงในระบบ คอมพิวเตอร์ จะมีการแทนค่าของข้อมูลในรูปแบบ ของเลขทวินิยม* (Fractional Binary)
- IEEE standard 754
 - ตั้งขึ้นในปี 1985
 - มาตรฐานกลางสำหรับ Floating Point
 - รองรับโดย CPU ส่วนมาก

^{*}แนวความคิดเหมือนกับเลขทศนิยมในเลขฐานสิบ ทวิ แปลว่า สอง ทศ แปลว่า สิบ

Computer Systems: A Programmer's Perspective, 2nd Edition

Floating Point Representation

• การแทนค่า Floating Point อยู่ในรูปแบบ

- <u>Sign Bit</u> s เป็น bit ที่บอกว่าเป็นจำนวนบวกหรือลบ
- Significand M เป็นจำนวนในช่วง 1.0 ถึง 2.0 (M: mantissa)
- $\underbrace{Exponent}_E E$ กำหนดขนาดของจำนวนที่ต้องการแทนค่า ในรูปกำลังที่ E ของ 2 (E สามารถมีค่าเป็น + $\mathbf 0$ หรือ - ได้)

9

204111: Fundamentals of Computer Science

Floating Point Rounding

>>>

• เนื่องจากข้อมูลแบบ Floating Point จะเป็น<u>ค่าแบบประมาณ</u> เช่น $rac{1}{3}$, π สิ่งที่อาจเกิดขึ้นได้คือ Error จากการคำนวณ เช่น

Floating Point Representation

204111: Fundamentals of Computer Science

Rounding in Binary

ullet พิจารณาการหาค่า $rac{1}{10}$ โดยคำนวณด้วยการหารเลขฐาน $oldsymbol{2}$

Rounding

- เนื่องจากการแสดงค่าแบบ Floating Point สามารถแทน ค่าได้ในช่วงความละเอียดที่จำกัด ทำให้จำเป็นต้องมีการ ประมาณค่าโดยการปัดเศษทิ้ง (Rounding) เช่น ปัด 1.4
 → 1 หรือ ปัด 1.6 → 2
- ต้องพิจารณาตัดสินใจ กรณีค่าที่ต้องการปัดเศษอยู่ กึ่งกลางระหว่างผลลัพธ์ที่เป็นไปได้ 2 จำนวน
 - เช่น 1.5 (1 vs 2)
 - ปัดไปทางไหน? เพราะอะไร?
 - 1.5 + 2.5 + 3.5 + 4.5 VS 2 + 3 + 4 + 5

13

204111: Fundamentals of Computer Science

Round to Even

- การปัดเศษเลขคู่ เป็น Default Mode
 - แก้ปัญหากรณีค่าความคลาดเคลื่อนจากการปัดเศษของเลข หลาย ๆ จำนวน (ลงเสมอ หรือ ขึ้นเสมอ) <u>สะสมรวมกัน</u>
 - ใช้ในกรณีตัวเลขที่ต้องการปัดอยู่กึ่งกลางเท่านั้น

• เช่น กรณีปัดให้เป็นทศนิยม 2 ตำแหน่ง

กรณีอื่น ๆ ปัด ตามหลัก คณิตศาสตร์ ปกติ

15

1.23	49999	1.2 <mark>3</mark>	(Less than half way)
1.23	50001	1.2 <mark>4</mark>	(Greater than half way)
1.23	50000	1.2 <mark>4</mark>	(Half way—round up)
1.24	50000	1.2 <mark>4</mark>	(Half way—round down

Rounding [2]

• ใน IEEE floating-point format มีวิธีการปัดเศษ ที่

ต่างกันถึง 4 วิธี Mode					
Mode	\$1.40	\$1.60	\$1.50	\$2.50	\$-1.50
Round-to-even	\$1	\$2	\$2	\$2	\$-2
Round-toward-zero	\$1	\$1	\$1	\$2	\$-1
Round-down	\$1	\$1	\$1	\$2	\$- 2
Round-up	\$2	\$2	\$2	\$3	\$-1

204111: Fundamentals of Computer Science

from Carnegie Mellon University's 15213 course slide by Greg Kesden

Rounding Binary Numbers

- Binary Fractional Numbers
 - เป็นเลขคู่ก็ต่อเมื่อบิท<mark>ขวาสุด</mark>หลังจากการปัดเศษ มีค่าเป็น <u>0</u>
 - เศษที่ต้องการปัดจะมีค่า<u>กึ่งกลาง</u>ก็ต่อเมื่ออยู่ใหรูป = <u>100...0</u>2
- Examples
 - ปัดเหลือแค่ 2 ตำแหน่งหลัง binary point

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>01</mark>	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>11</mark>	0_2 10.01 ₂	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>10</mark>	00_2 11.00 ₂	(1/2—up)	3
2 5/8	10.10 <mark>10</mark>	00_2 10.10_2	(1/2—down)	2 1/2

14

16

Conclusions

- Real Number and Fractional Binary Numbers
- Floating Point Representation
- Rounding in Binary System
 - Rounding Standard

lition

17

Computer Systems: A Programmer's Perspective, 2nd Edition

Practice Problem 1: KEY

Fractional value	Binary representation	Decimal representation
$\frac{1}{8}$	0.001	0.125
$\frac{\frac{3}{4}}{\frac{25}{16}}$	0.11	0.75
	1.1001	1.5625
$\frac{43}{16}$	10.1011	2.6875
$\frac{9}{8}$	1.001	1.125
9 8 47 8 51 16	101.111	5.875
$\frac{51}{16}$	11.0011	3.1875
		18
		18