

Neuroevolution mit MPI

Analyse und Optimierung von NEAT für ein verteiltes System

Masterthesis

zur Erlangung des akademischen Grades Master of Science (M.Sc.) im Studiengang Angewandte Informatik an der Hochschule Flensburg

Simon Hauck

Matrikelnummer: 660158

Erstprüfer: Prof. Dr. rer. nat. Tim Aschmoneit Zweitprüfer: Prof. Dr. rer. nat. Torben Wallbaum

20. September 2020

Neuroevolutionäre Algorithmen sind ein mögliches Optimierungsverfahren für neuronale Netze. Abhängig von dem verwendeten Algorithmus können die Gewichte der Verbindungen im Netz und die Struktur entwickelt und optimiert werden.

Der Optimierungsprozess ist, unabhängig vom Verfahren, sehr aufwändig und dementsprechend zeit- und rechenintensiv. Für eine schnellere Durchführung des Trainingsprozesses bieten sich Algorithmen an, die gut parallelisierbar sind. Die benötigte Ausführungszeit dieser kann durch Hinzufügen weiterer Rechenknoten mit geringem Aufwand maßgeblich reduziert werden.

Neuroevolutionäre Algorithmen bieten sich aufgrund der Verfahrensweise und der vielen unabhängigen neuronalen Netzen für eine parallele Ausführung an.

In dieser Arbeit wird, stellvertretend für neuroevolutionäre Algorithmen, der NeuroEvolution of Augmenting Topologies (NEAT) Algorithmus betrachtet. Dieser wurde im Jahr 2002 veröffentlicht und ist im Vergleich zu den damals bekannten Algorithmen besonders effizient. Zudem dient der Algorithmus als Grundlage für viele Erweiterungen. Die erhaltenen Ergebnisse dieser Arbeit lassen sich somit gut auf ebendiese Erweiterungen übertragen. Im ersten Schritt dieser Arbeit wird die Laufzeit des NEAT Algorithmus mit verschiedenen Optimierungsaufgaben analysiert. Mit den erhaltenen Ergebnissen wird eine parallelisierte Implementierung erstellt. Diese führt mit unterschiedlich vielen Rechenknoten dieselben Optimierungsaufgaben durch. Am Ende dieser Arbeit werden die Ergebnisse von beiden Implementierungen verglichen.

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Mot	tivation		1
	1.1	Proble	emstellung	1
	1.2	Ziel de	er Arbeit	1
	1.3	Strukt	tur der Arbeit	1
2	Gru	ndlagei	n	2
	2.1	Neuro	nale Netze	2
		2.1.1	Biologische neuronale Netze	2
		2.1.2	Künstliche neuronale Netze	5
		2.1.3	Das Neuron	6
		2.1.4	Netzstrukturen	8
		2.1.5	Optimierungsmöglichkeiten	10
		2.1.6	Lernen in neuronalen Netzen TODO CHANGE TITLE	11
		2.1.7	Backpropagation Algorithmus	13
	2.2	Evolu [*]	tionäre Algorithmen	13
		2.2.1	Biologische Evolutionäre Konzepte	14
		2.2.2	Evolutionäre Algorithmen	16
		2.2.3	Neuroevolution	22
		2.2.4	Neuroevolution im Vergleich	27
		2.2.5	TWEANN?	29
		2.2.6	Competing Convention Problem	29
	2.3	Neuro	Evolution of Augmenting Topologies	29
		2.3.1	Kodierung	29
		2.3.2	Mutation	30
		2.3.3	Reproduktion	31
		2.3.4	Spezies	33
		2.3.5	Starten mit einer minimalen Struktur	34
	2.4	Parall	elisierung	35
		2.4.1	High Performance Computing	35
		2.4.2	MPI	38
		2.4.3	Performance	42
3	Soft	warear	chitektur und Implementierung	14
	3.1	Anfor	derungen	44
	3.2		arearchitektur	46
	3.3	Seque	nzielle Implementierung	56

Inhaltsverzeichnis

4	Ana	lyse	58					
	4.1	Testumgebung	58					
	4.2	Verifizierung der Funktionalität	59					
		4.2.1 Implementierung	60					
		4.2.2 Parametrisierung und Ergebnisse	61					
	4.3	Optimierungsprobleme	64					
		4.3.1 Cartpole	65					
		4.3.2 Mountain Car	66					
		4.3.3 Pendulum	69					
	4.4	Erkenntnisse	69					
5	Opt	imierung	70					
	5.1	Parallelisierungsstrategien	70					
	5.2	Cluster Aufbau / TestSetup	70					
	5.3	Implementierung	70					
	5.4	Testsetup	70					
	5.5	Evaluation	70					
	5.6	Ergebnisse	70					
6	Zus	ammenfassung und Ausblick	71					
Qı	Quellenverzeichnis							
Ei	Eidesstattliche Erklärung							

Abbildungsverzeichnis

2.1	Schematische Abbildung einer Nervenzelle, Quelle [1]	4
2.2	Schematische Darstellung von einem Genom mit dazugehörigem Phänotyp	30
2.3	Schematische Darstellung von einem Genom mit dazugehörigem Phänotyp	31
2.4	Schematische Darstellung von einem Genom mit dazugehörigem Phänotyp	32
2.5	Hello Word Message Passing Interface (MPI) Programm in Python	39
2.6	Point-to-Point Kommunikation mit MPI in Python	40
2.7	Schematische Darstellung der Broadcast, Scatter, Gather und Reduce	
	Funktion in MPI	41
4.1	Implementierung des XOR-Problems in Python	60
4.2	Links die Lösung für das XOR-Problem mit einem Hidden-Neuron, rechts	
	die dazugehörigen Fitnesswerte pro Generation	63
4.3	Ausführungszeiten des XOR-Problems auf einem Raspberry Pi 4 mit einem	
	Prozess	64
4.4	Darstellung der Cartpole Umgebung aus dem OpenAI Gym	65
4.5	Struktur des finalen KNN im Cartpole Optimierungsproblem	66
4.6	Darstellung der Mountain Car Umgebung aus dem OpenAI Gym	67
4.7	Links die Lösung für das Mountain Car Problem, rechts die dazugehörigen	
	Fitnesswerte pro Generation	68
4.8	Ausführungszeiten des Mountain Car Problems auf einem Raspberry Pi 4	
	mit einem Prozess	68

Akronymverzeichnis

API Application Programming Interface

CPU central processing unit

EA Evolutionäre Algorithmen

GPU graphics processing unit

HPC High Performance Computing

KNN Künstliche neuronale Netze

MDP Markov Decision Processes

MPI Message Passing Interface

NEAT NeuroEvolution of Augmenting Topologies

OpenMP Open Multi-Processing

PNS Periphere Nervensystem

RAM random-access memory

SC Super Computer

tanh Tangens Hyperbolicus

TWEANN Topology and Weight Evolving Artificial Neural Network

ZNS Zentrale Nervensystem

1 Motivation 1

1 Motivation

- 1.1 Problemstellung
- 1.2 Ziel der Arbeit
- 1.3 Struktur der Arbeit

2 Grundlagen

2.1 Neuronale Netze

Klassische Algorithmen in der Informatik beschreiben, mit welchen Schritten ein spezielles Problem gelöst werden kann. In vielen Anwendungsfällen, wie zum Beispiel beim Sortieren einer Liste, verwenden Computersysteme diese und lösen das gegebene Problem schneller und effizienter als es Menschen möglich ist. Dennoch gibt es Aufgaben, die von Menschen ohne Aufwand gelöst werden, aber Computersysteme vor große Herausforderungen stellen. Hierzu zählt unter anderem die Klassifizierung von Bildern. Ein Mensch kann zum Beispiel Bilder von Hunden und Katzen unabhängig von Blickwinkel und Bildqualität unterscheiden beziehungsweise richtig zuordnen. Trotzdem lassen sich für solche Probleme keine klassischen Algorithmen finden, da die Lösung von vielen subtilen Faktoren abhängig ist [1].

In vielen dieser Aufgabenfelder werden Künstliche neuronale Netze (KNN) eingesetzt, welche von biologischen neuronalen Netzen inspiriert sind und zum Forschungsgebiet des maschinellen Lernens gehören. Auch wenn die KNN heute aktuell sind und viel Aufmerksamkeit erhalten, ist die Grundlage die Arbeit von McCulloch und Pitts, welche 1943 ein einfaches neuronales Netz mit Schwellwerten entwickelt haben. Dies ermöglicht die Berechnung von logischen und arithmetischen Funktionen [2]. In den folgenden Jahrzehnten wurde die Funktionsweise der neuronalen Netze weiterentwickelt und der Einsatz in verschieden Aufgabenfeldern ermöglicht. Hierzu zählen neben der Klassifizierung von Bildern [3] unter anderem das Erkennen und die Interpretation von Sprache [4], [5] sowie das selbständiges Lösen von Computer- und Gesellschaftsspielen [6], [7].

In diesem Kapitel wird zuerst ...

2.1.1 Biologische neuronale Netze

Wie bereits beschrieben, orientiert sich das Fachgebiet der KNN an den erfolgreichen biologischen neuronalen Netzen, wie zum Beispiel dem menschlichen Gehirn [1]. In diesem Abschnitt werden die Eigenschaften betrachtet, die das Vorbild erfolgreich machen und für die KNN übernommen werden sollen. Im Zuge dessen wird ein grober Überblick über die Struktur und Funktionsweise des menschlichen Gehirns gegeben.

Jede Sekunde erfassen die Rezeptoren des menschlichen Körpers unzählige Reize, wie zum Beispiel Licht, Druck, Temperatur und Töne. Die Reize werden anschließend elektrisch oder chemisch kodiert und über Nervenbahnen an das Gehirn geleitet, welches die Aufgabe hat, diese zu filtern, zu verarbeiten und entsprechend zu reagieren. Als Reaktion können

zum Beispiel Signale an entsprechende Muskeln oder Drüsen gesendet werden [8].

Bevor im nächsten Kapitel die Funktionsweise des Gehirns näher betrachtet wird, werden hier zunächst drei Eigenschaften beschrieben, die klassische Algorithmen entweder nicht besitzen oder nur schwer umsetzen können, aber für biologische neuronale Netze keine Herausforderung sind. Ziel ist es, diese mit den KNN umzusetzen [1].

1. Fähigkeit zu Lernen

Das menschliche Gehirn ist nicht wie ein klassischer Algorithmus für seine Aufgaben programmiert. Stattdessen besitzt es die Fähigkeit, durch Nachahmen oder Ausprobieren zu lernen [1]. Dafür wird das angestrebte Ergebnis mit dem tatsächlich erzielten verglichen und das Verhalten entsprechend angepasst. Dies ermöglicht es Menschen, verschiedene Aufgabengebiete erfolgreich zu lösen und sich ändernden Anforderungen anzupassen.

2. Fähigkeit zur Generalisierung

Allerdings kann nicht jedes mögliche Szenario für ein Aufgabenfeld durch Ausprobieren oder Beobachtung gelernt werden. Trotzdem trifft das Gehirn in den meisten Situationen plausible Lösungen, da es die Fähigkeit zur Generalisierung besitzt [1]. Das bedeutet, dass viele Situationen bereits bekannten Problemen zugeordnet werden können, mithilfe derer eine passende Verhaltensstrategie ausgewählt wird.

3. Toleranz gegenüber Fehlern

Die Fähigkeit zu Generalisieren erlaubt auch eine hohe Fehlertoleranz gegenüber verrauschten Daten. Bei oben genanntem Beispiel der Klassifizierung von Bildern kann ein Teil des Bildes fehlen oder unscharf sein, trotzdem kann das abgebildete Motiv richtig zugeordnet werden.

Struktur des menschlichen Gehirns

Das Forschungsgebiet der Neurowissenschaften befasst sich unter anderem mit dem menschlichen Gehirn, dessen Funktionsweise auch heute noch nicht vollständig erforscht ist. Dennoch ist schon seit 1861 durch die Arbeit von Paul Broca bekannt, dass es im menschlichen Gehirn verschiedene Regionen mit unterschiedlichen Aufgaben gibt [9]. Zum Beispiel wird das sogenannte Kleinhirn (Cerebellum) für einen Großteil der motorischen Koordination verwendet, während an das Großhirn (Telencephalon) unter anderem visuelle Reize geleitet werden [1]. Trotz der unterschiedlichen Aufgaben haben alle Bereiche des Gehirns einen gemeinsamen Grundbaustein, die sogenannten Neuronen [9]. Im Folgenden wird der Aufbau und die Funktionsweise von diesen oberflächlich im Bezug zu den später vorgestellten künstlichen Neuronen betrachtet. Für einen vollständigen Überblick und eine genaue Beschreibung der Vorgänge wird auf entsprechende Fachliteratur verwiesen. Das menschliche Gehirn besitzt ungefähr 10¹¹ einzelne Neuronen, deren schematischer Aufbau in Abbildung 2.1 dargestellt ist. Jedes Neuron besitzt einen Zellkern, der sich im Zellkörper (Soma) befindet. Von dem Zellkörper gehen mehrere Fasern aus, die Dendriten genannt werden [9]. An diesen befinden sich Synapsen, welche als Übertragungsstelle fungieren und elektrische oder chemische Signale von Rezeptoren oder anderen Neuronen

Abbildung 2.1: Schematische Abbildung einer Nervenzelle, Quelle [1].

empfangen [1]. Typischerweise empfängt ein Neuron Signale von 2000 bis 10.000 anderen Nervenzellen [10].

Synapsen, die elektrische Signale empfangen, haben eine starke, direkte, nicht regulierbare Verbindung vom Sender zum Empfänger. Diese sind für hart kodierte Verhaltensmechanismen nützlich, wie zum Beispiel den Fluchtreflex. Die chemische Synapse hingegen ist nicht direkt mit dem Sender verbunden, sondern durch den synaptischen Spalt getrennt [1]. Zur Übertragung eines elektrischen Signals wird dieses auf der präsynaptischen Seite in ein chemisches Signal kodiert, indem Neutransmitter freigesetzt werden. Diese können über den synaptischen Spalt übertragen und anschließend auf der postsynaptischen Seite wieder in ein elektrisches Signal kodiert werden. Ein großer Vorteil dieser Übertragungsart ist die Regulierbarkeit [1]. Verschiedene Neurotransmitter können unterschiedliche Effekte auf das Neuron haben, beispielsweise anregend (exzitatorisch) oder hemmend (inhibitorisch) [11]. Zusätzlich kann die Menge der freigesetzten Neurotransmitter die Stärke des Signals beeinflussen [1]. Langfristig gesehen können auch neue Verbindungen entstehen oder alte aufgelöst werden. Es wird angenommen, dass dies die Grundlage des Lernens im menschlichen Gehirn ist [9].

Sowohl die erregenden als auch hemmenden Signale werden über die Dendriten an den Axonhügel weitergeleitet, welcher sich zwischen dem Soma und dem Axon befindet. Dort werden die Signale akkumuliert. Wird bei diesem Vorgang ein gewisser Schwellwert überschritten, wird ein elektrischer Impuls erzeugt, der über das Axon weitergeleitet wird [11]. Das Axon ist typischerweise 1cm, in Ausnahmen sogar bis zu einem 1m lang und wird von der Myelinscheide umgeben, die unter anderem Schutz vor mechanischer Überbeanspruchung bietet [9]. Zusammen mit den Ranvierschen Schnürringen ermöglicht diese zudem eine schnellere Weiterleitung des Aktionspotenzials [11]. Das Axon endet mit dem sogenannten Endknopf, auch Axonterminal genannt. Dieses ist mit den Synapsen von anderen Neuronen verbunden und setzt beim Eintreffen eines Signals die Neurotransmitter frei und überträgt somit das Signal [11]. Typischerweise gibt ein einzelnes Neuron

sein Signal an 1000 bis 10.000 anderen Neuronen weiter, in Extremfällen sogar an bis zu 150.000 andere Neuronen [10], die alle parallel arbeiten. So entsteht ein sehr großes und leistungsfähiges neuronales Netz.

2.1.2 Künstliche neuronale Netze

KNN sind ein mathematisches Modell, das im Vergleich zum biologischen Vorbild stark vereinfacht und idealisiert ist. Trotzdem können unterschiedliche mathematische Funktionen abgebildet werden. In diesem Kapitel werden die grundsätzliche Funktionsweise sowie die einzelnen Komponenten der KNN vorgestellt.

Betrachtet man ein KNN als Blackbox (TODO REFERENZ BILD), gibt es eine Menge an Eingabewerten, die in einem Eingabevektor kodiert sind und eine Menge an Ausgaben, die in einem Ausgabevektor kodiert sind [12]. Die Eingaben werden im Falle der KNN nicht durch Rezeptoren erfasst sondern durch ein Optimierungsproblem gegeben. Der Ausgabevektor soll das gewünschte Ergebnis enthalten. Die Interpretation von diesem variiert je nach Optimierungsproblem und Netzarchitektur.

Betrachtet man die Struktur der KNN sind einige Ähnlichkeiten zum biologischen Vorbild erkennbar. Diese werden im folgenden genauer betrachtet [10]:

1. Neuronen

Ähnlich zu den biologischen neuronalen Netzen, besteht auch das KNN aus vielen Neuronen [10]. Dies sind einfache Recheneinheiten, die primitive Funktionen bestimmen können [12] und deren genaue Funktionsweise in Kapitel 2.1.3 erläutert wird. Vorweggenommen sei, dass ein Neuron mehrere Eingabewerte besitzt, welche gewichtet sind und akkumuliert werden. Hierbei entsteht ein skalarer Ausgabewert, der den Aktivierungsgrad des Neurons repräsentiert und von anderen Neuronen als Eingabe verwendet werden kann [1].

2. Gerichtete gewichtete Verbindungen

Wie im vorherigen Punkt angedeutet, sind Neuronen über gerichtete Verbindungen miteinander vernetzt. Der Aktivierungszustand eines Neurons wird entsprechend der Verbindungen an die Zielneuronen weitergegeben, welche diesen Wert als Eingabe verarbeiten. Wie bei den biologischen neuronalen Netzen auch, können Eingaben unterschiedlich stark anregend und hemmend wirken. Dies wird bei den KNN über Gewichte in den Verbindungen realisiert [10].

3. Struktur und Gewichte

Der Ausgabevektor eines KNN ist abhängig von der Struktur des Netzwerkes und der Gewichte in den einzelnen Verbindungen. Für das erfolgreiche Lösen eines Optimierungsproblems muss ein KNN die richtige Kombination aus Neuronen, Netzwerkstruktur und gewichteten Verbindungen besitzen. Diese müssen durch Lernverfahren bestimmt werden, auf die in Kapitel 2.1.5 näher eingegangen wird.

Trotz der vorgestellten Ähnlichkeiten gibt es sehr viele Unterschiede zwischen den biologischen neuronalen Netzen und den KNN. Beispiel hierfür ist der Größenunterschied. Das menschlichge Gehirn mit seinen 10^{11} Neuronen besitzt pro Neuron ungefähr 10^4 Verbindungen, während die meisten KNN nur 10^2 bis 10^4 Neuronen mit insgesamt 10^5 Verbindungen besitzen. Auch werden keine chemischen Effekte, die auf benachbarte Neuronen wirken, sowie zeitliche und räumliche Lokalitätsprinzipien beachtet [10]. Aus diesen Gründen sind die KNN keine Nachbildung der biologischen neuronalen Netzen sondern verwenden diese nur als Inspiration.

2.1.3 Das Neuron

In diesem Kapitel wird die Funktionsweise der einzelnen Neuronen betrachtet. Hierfür werden drei Phasen vorgestellt, in denen die Ausgabe eines einzelnen Neurons berechnet wird. Betrachtet man ein KNN, führen typischerweise mehrere Verbindungen zu einem Neuron j, welche von den Neuronen $i_1, i_2, ..., i_n$ ausgehen [1]. Dieses ist schematisch in Abbildung (TODO ABBILDUNG EINFÜGEN) dargestellt.

Propagierungsfunktion

Die Ausgabewerte $o_{i_1}, o_{i_2}, ..., o_{i_n}$ der Neuronen $i_1, i_2, ..., i_n$ werden als Eingabewerte für das Neuron j verwendet. Für jeden Eingabewert existiert ein entsprechendes Gewicht $w_1, w_2, ..., w_n$ [1]. Somit repräsentiert w_{ij} das Gewicht für die Verbindung von Neuron i zu Neuron j [10]. Die Propagierungsfunktion f_{prop} berechnet die Netzeingabe net_j , welche in der nächsten Phase weiterverwendet wird [1].

$$net_j = f_{prop}(o_1, o_2, ..., o_n, i_1, i_2, ..., i_n)$$

Die meist verwendete Propagierungsfunktion, welche auch in den späteren Beispielen genutzt wird, ist die gewichtete Summe. Hierbei werden, entsprechend der Formel, die Werte o_i mit dem entsprechenden Gewicht w_i multipliziert und aufsummiert [1]:

$$net_j = \sum_i (o_i \cdot w_{i,j})$$

Aktivierungsfunktion

Der Aktivierungszustand $a_j(t)$ gibt den Grad der Aktivierung von Neuron j zum Zeitpunkt t an [10]. Ein neuer Aktivierungszustand zum Zeitpunkt t+1 wird mit der Aktivierungsfunktion f_{act} berechnet. Diese berücksichtigt nicht nur die Netzeingabe $net_j(t)$ sondern auch den vorherigen Aktivierungszustand $a_j(t)$ und den Schwellwert Θ der Aktivierungsfunktion [10]. Ein Schwellwert Θ_j , auch Bias genannt, ist dem Neuron j zugeordnet und gibt die Stelle an, an welcher die Aktivierungsfunktion die größte Steigung hat [1]. Somit kann die Berechnung der Aktivierung $a_j(t+1)$ durch folgende Formel ausgedrückt werden [10]:

$$a_j(t+1) = f_{act}(a_j(t), net_j, \Theta_j)$$

Bei der Berechnung kommt dem Schwellwert Θ eine besondere Bedeutung zu. Oftmals verwenden einige oder alle Neuronen eines KNN dieselbe Aktivierungsfunktion, die Schwellwerte hingegen unterscheiden sich je nach Neuron. Des Weiteren sei angemerkt, dass die vorherige Aktivierung $a_j(t)$ je nach Netzstruktur oft nicht bei der Berechnung berücksichtigt wird [1]. Zudem wird in der Praxis bei Verwendung der gewichteten Summe als Propagierungsfunktion der Schwellwert eines Neurons oft schon in der ersten Phase miteinbezogen. Hierdurch ändert sich die Berechnung der Netzeingabe zu $net_j = \sum_i (o_i \cdot w_{i,j}) - \Theta_j$. Bei der Berechnung der Aktivierungsfunktion gilt dann $\Theta_j = 0$.

Je nach Anwendungsgebiet können verschiedene Aktivierungsfunktionen mit unterschiedlichen Eigenschaften eingesetzt werden, von denen vier in Abbildung (TODO ABBILDUNG) dargestellt sind. Im Folgenden wird angenommen, dass $\Theta_j = 0$ ist. Das einfachste Beispiel für eine Aktivierungsfunktion ist die sogenannte binäre Schwellwertfunktion, welche abhängig vom Schwellwert Θ nur die Werte 0 und 1 zurückgeben kann [1]. Die Formel hierfür ist:

$$f_{act}(net_j) = \begin{cases} 1 & \text{wenn } net_j \ge 0 \\ 0 & \text{wenn } net_j < 0 \end{cases}$$

Allerdings ist für diese Funktion der Wert der Ableitung immer 0 außer an dem Schwellwert, an welchem sie nicht differenzierbar ist [1]. Diese Eigenschaften machen sie ungeeignet für bestimmte Lernverfahren, wie zum Beispiel den Backpropagation Algorithmus, auf den in Kapitel 2.1.5 kurz eingegangen wird [1].

Dieses Problem kann durch die Verwendung einer Sigmoidfunktion gelöst werden. Zwei bekannte Beispiele für Sigmoidfunktionen sind die logistische Funktion und der Tangens Hyperbolicus (tanh) [13]. Die logistische Funktion kann Werte von 0 bis 1 annehmen und durch einen entsprechenden Parameter T bezüglich der x-Achse gestreckt und gestaucht werden [1]. Berechnet wird sie mit:

$$f_{act}(net_j) = \frac{1}{1 + e^{-T \cdot net_j}}$$

Allerdings können neuronale Netze je nach Verfahren schneller optimiert werden, wenn das durchschnittliche Gewicht aller Verbindungen nahe 0 ist. In diesem Fall ist die tanh Funktion besser geeignet, da sie Werte zwischen -1 und 1 annehmen kann [13]. Das letzte hier vorgestellte Beispiel ist die sogenannte *Rectifier* Funktion. Diese wird oft in Zusammenhang mit dem Backpropagation Algorithmus erfolgreich eingesetzt und erzielt mit diesem schneller bessere Optimierungsergebnisse [14]. Berechnet wird sie mit:

$$f_{act}(net_j) = max(0, net_j)$$

Ausgabefunktion

Die Ausgabefunktion f_{out} berechnet die Ausgabe o_j von Neuron j. Als Eingabewert wird die Aktivierung a_j verwendet [10]. Somit ist die Funktion definiert mit:

$$o_j = f_{out}(a_j)$$

Ähnlich wie die Aktivierungsfunktion ist die Ausgabefunktion in der Praxis meistens global für alle Neuronen definiert. Zudem wird oft die Identitätsfunktion verwendet. In diesem Fall gilt $o_j = a_j$ [1]. Dies gilt auch für die später vorgestellten Beispiele. Ist die Ausgabe o_j berechnet, kann sie als Eingabewert für andere verbundene Neuronen dienen.

2.1.4 Netzstrukturen

Aus dem vorherigen Kapitel ist dargestellt, dass die Gewichte einen großen Einfluss auf das Ergebnis eines einzelnen Neurons haben. Der Ausgabevektor eines KNN wird neben den Gewichten auch von der Anzahl an Neuronen sowie deren Verbindungsstruktur beeinflusst. Je nach Optimierungsproblem können unterschiedliche Varianten eingesetzt werden, welche in diesem Kapitel genauer vorgestellt werden.

Typischerweise besitzt jedes KNN Eingabe- und Ausgabeneuronen. Optional kann ein KNN beliebig viele verdeckte Neuronen enthalten. Diese werden auch als Input-, Output- und Hidden-Neuronen bezeichnet [10]. Die Anzahl der Eingabe- und Ausgabeneuronen ist abhängig von der Größe des Eingabe- bzw. Ausgabevektors. Für jedes Element in den Vektoren gibt es ein entsprechendes Neuron (TODO ABBILDUNG). Bei vielen Netzstrukturen werden die Neuronen des KNN verschiedenen Schichten zugeordnet. In der ersten Schicht befinden sich die Eingabeneuronen und in der letzten die Ausgabeneuronen. Dazwischen befinden sich n Schichten mit verdecken Neuronen [10].

Bei der Berechnung eines KNN werden zuerst die Werte des Eingabevektors in die entsprechenden Eingabeneuronen gesetzt. Anschließend werden alle Neuronen in einer bestimmen Reihenfolge aktiviert bzw. berechnet. Zuletzt bilden die Werte der Ausgabeneuronen den Ausgabevektor. Die verdeckten Neuronen befinden sich zwischen den Eingabe- und Ausgabeneuronen und werden so genannt, da ihr Ausgabewert nur ein Zwischenergebnis ist und vor dem Anwender verborgen bleibt. Trotzdem sind sie ein elementarer Bestandteil der KNN und bestimmen maßgeblich dessen Leistungsfähigkeit. Beispielweise kann ein KNN, welches nur aus Input- und Output-Neuronen besteht nur eine lineare Funktion nachbilden. Ein KNN mit einer ausreichend großen verdeckten Schicht kann jede beliebige kontinuierliche Funktion darstellen. Mit zwei Schichten kann ein KNN sogar jede unstetige mathematische Funktion mit beliebiger Genauigkeit abbilden [9].

Je nach Art des Verbindungsmusters zwischen den Neuronen werden KNN einer von zwei Gruppen zugeordnet. Die erste Gruppe enthält Netze ohne Rückkopplung, wel-

che auch feedforward-Netze genannt werden. Die zweite Gruppe sind die sogenannten recurrent-Netze, zu welchen KNN mit Rückkopplungen gehören [10].

Netze ohne Rückkopplung

Die Definition der feedforward-Netze ist einfach: Es darf keine Verbindung von einem Neuron j ausgehen, welche wieder zu sich selbst führt. Dabei ist es irrelevant, ob eine direkte oder indirekte Verbindung über Zwischenneuronen besteht. Somit entsteht ein azyklischer Graph [10] und das KNN kann infolgedessen keinen internen Zustand besitzen. Für die gleiche Eingabe wird immer dasselbe Ergebnis berechnet. Innerhalb dieser Kategorie gibt es zwei Untergruppen, die ebenenweise verbundenen KNN und die KNN, welche über sogenannte shortcut Verbindungen verfügen.

Bei den rein ebenenweise verbundenen KNN stammen die Eingabewerte eines Neurons immer aus der vorherigen Schicht. Der berechnete Ausgabewert eines Neurons wird nur an die Neuronen der nächsten Schicht weitergeleitet [10]. Ein Beispiel hierfür ist in Abbildung (TODO ABBILDUNG) dargestellt.

Im Gegensatz dazu stehen die KNN mit *shortcut* Verbindungen. Eine *shortcut* Verbindung kann eine oder mehrere Schichten überspringen. Für gewisse Optimierungsprobleme, unter anderem für das in Kapitel (TODO CHAPTER) dargestellte Beispiel, können so kleinere KNN erzeugt werden [10].

Netze mit Rückkopplung

Netze mit Rückkopplung werden oft auch in Schichten dargestellt. Allerdings kann ein KNN sich je nach Art selbst beeinflussen, indem Zyklen in der Berechnung entstehen, wodurch das Zwischenspeichern von Werten ermöglicht wird [9]. Somit wird das Ergebnis sowohl durch die Eingabewerte des KNN, als auch durch die vorherigen Berechnungen beeinflusst [15]. Wie auch bei den feedforward-Netzen, können auch die Netze mit Rückkopplung je nach Verbindungsart verschiedenen Untergruppen zugeordnet werden [10].

- 1. Bei KNN mit direkter Rückkopplung können Neuronen Verbindungen zu sich selbst haben (TODO ABBILDUNG). Dadurch können sie ihre Aktivierung verstärken oder abschwächen [10].
- 2. Netze mit einer indirekten Rückkopplung erlauben im Gegensatz zu den feedforward-Netzen auch Verbindungen in die vorherige Schicht (TODO ABBILDUNG) [10]. Wie bei der direkten Rückkopplung kann sich ein Neuron j selbst beeinflussen, wenn es seinen Ausgabewert an ein Neuron i der nächsten Schicht weiterleitet, welches eine Rückkopplung zu j hat [1].
- 3. KNN mit lateralen Rückkopplungen erlauben Verbindungen von Neuronen innerhalb einer Schicht (TODO ABBILDUNG), welche hemmend oder aktivierend wirken können. Oft entsteht dabei ein Winner-Takes-All-Schema, da das beste Neuron alle anderen hemmt und sich selbst aktiviert [1].

4. Bei den vollständig verbundenen Netzen darf ein Neuron zu jedem anderen eine Verbindung besitzen sein. Ein Sonderfall sind hier die sogenannten Hopfield-Netze. Bei diesen müssen die Neuronen zu jedem andere eine Verbindung besitzen mit Ausnahme zu sich selbst (direkte Rückkopplung). Ein Beispiel hierfür ist in Abbildung (TODO ABBILDUNG) dargestellt [1].

2.1.5 Optimierungsmöglichkeiten

In den vorherigen Kapiteln wurde aufgezeigt, dass das erfolgreiche Lösen eines Optimierungsproblems mit einem KNN von vielen Faktoren abhängig ist. In der Praxis ist es bei komplexe Aufgaben nicht möglich, diese manuell zu bestimmen. Aus diesem Grund muss ein Optimierungsverfahren, welches auch als Lernverfahren bezeichnet wird, angewendet werden. Ziel von diesem ist, einen Teil oder alle Parameter des KNN durch einen Algorithmus automatisch zu bestimmen. Typischerweise ist das Lernverfahren unabhängig von dem eigentlichen Optimierungsproblem und kann daher in verschiedenen Bereichen ohne großen zusätzlichen Aufwand eingesetzt werden.

Ein Lernverfahren kann theoretisch auf vier verschiedene Arten die Eigenschaften eines KNN optimieren [10]. Diese sind im Folgenden kurz zusammenfasst.

1. Modifizieren der Verbindungsgewichte:

Die Gewichte der einzelnen Verbindungen werden in der Praxis von allen Lernverfahren optimiert [10]. Gründe hierfür sind, dass ein Netzwerke mehrere Millionen Verbindungen besitzen kann, welche unmöglich manuell optimiert werden können und dass die Gewichte entscheidend für die erfolgreiche Optimierung sind.

2. Modifizieren der Schwellwerte:

Die Schwellwerte der Neuronen werden wie die Gewichte von den meisten Lernverfahren optimiert. In der Praxis ist der hierbei verwendete Vorgang oft identisch mit der Gewichtsoptimierung. Dies ist möglich, wenn, wie in einigen Implementierungen umgesetzt, die Schwellwerte durch Gewichte repräsentiert werden. Hierzu wird einem KNN ein sogenanntes Bias-Neuron hinzugefügt, welches immer den Wert 1 hat. Von diesem gehen Verbindungen zu allen Neuronen aus. Der Schwellwert Θ_j von einem Neuron j wird durch das Gewicht $w_{\Theta j}$ repräsentiert. Dieses ist der eingehenden Verbindung vom Bias-Neuron zugeordnet, sodass gilt $1 \cdot w_{\Theta j} = \Theta_j$. Somit muss bei der Berechnung eines Neurons der Schwellwert nicht mehr explizit miteinbezogen werden, sondern wird im Rahmen der Propagierungsfunktion indirekt mit den anderen gewichteten Eingaben verarbeitet. Bezüglich der Optimierung wird die Verbindung zum Bias-Neuron wie andere gewichtete Verbindungen behandelt [10].

3. Hinzufügen und Entfernen von Verbindungen oder Neuronen:

Das Hinzufügen beziehungsweise Entfernen von Verbindungen und Neuronen ist im Vergleich zu den bereits vorgestellten Möglichkeiten aufwändig und in der Umsetzung schwieriger. Daher wird es von vielen bekannten Algorithmen nicht

implementiert. Bei diesen muss die Struktur mithilfe von Expertenwissen oder Erfahrung festgelegt werden [16], andernfalls muss eine geeignete Struktur experimentell ermittelt werden. Da dieses Vorgehen nicht effizient ist, gibt es dennoch einige Algorithmen, welche diese Art der Optimierung umsetzen. Diese gehören häufig zu der Klasse der evolutionären Algorithmen, auf welche in Kapitel (TODO REFF!!) genauer eingegangen wird [1].

4. Ändern der Propagierungs-, Aktivierungs- und Ausgabefunktion:

Die Optimierung der verwendeten Propagierungs-, Aktivierungs- und Ausgabefunktion ist theoretisch möglich, dennoch ist die Umsetzung in der Praxis nicht sehr verbreitet [10]. Auch in dieser Arbeit werden diese Funktionen nicht durch einen Algorithmus angepasst und werden daher nicht weiter betrachtet.

2.1.6 Lernen in neuronalen Netzen TODO CHANGE TITLE

In Kapitel 2.1.5 sind Optimierungsmöglichkeiten aufgelistet, welche von einem Lernverfahren, in der sogenannten Trainingsphase des KNN, angepasst werden können. Ziel ist, dass am Ende dieser Phase der Ausgabevektor des KNN dem gewünschten Ergebnis entspricht. Voraussetzung hierfür ist, dass das gewünschte Ergebnis erkennbar ist [10]. Bei den Lernverfahren wird grundsätzlich zwischen dem überwachten, unüberwachten und bestärkenden Lernen unterschieden, welche unterschiedliche Arten des Lernens für verschiedene Aufgabenstellungen repräsentieren. Im Folgenden wird ein Überblick über diese gegeben. Für eine genaue Beschreibung und die dazugehörigen Algorithmen wird auf entsprechende Fachliteratur verwiesen.

Überwachtes Lernen

Das überwachte Lernen, auch supervised learning genannt, wird häufig mit dem Backpropagation Algorithmus und seinen Derivaten umgesetzt und beruht auf bekannten Beispielen, welche durch einen externen "Lehrer gegeben sind [10]. Dabei müssen die Beispieldaten in großer Anzahl schon vor dem Lernvorgang vorhanden sein und den Eingabevektor sowie den gewünschten Ausgabevektor des KNN enthalten [10]. Beispiel hierfür ist die Klassifizierung von Hunde- und Katzenbildern. Für jedes Bild muss der Eingabevektor bekannt sein, welcher aus den einzelnen Pixeln besteht sowie der Ausgabevektor, der in diesem Fall angibt ob ein Hund oder eine Katze abgebildet ist. In der sogenannten Trainingsphase, in welcher unter anderem die Gewichte optimiert werden, berechnet das KNN die Ausgabewerte für die in den Beispielen enthaltenen Eingabevektoren. Das erhaltene Ergebnis wird direkt mit dem gewünschtem Wert verglichen. Entsprechend der Differenzen werden die Parameter des KNN angepasst [1]. Ziel dieses Vorgangs ist, dass Muster aus den Beispieldaten extrahiert werden. Dadurch soll nicht nur für bekannte Beispiele die korrekte Lösung angegeben werden, sondern auch für ähnliche, unbekannte Eingabedaten, sodass die Eigenschaft der Generalisierung gegeben ist [10]. Dies wird überprüft, indem die Beispieldaten in Trainings- und Testdaten unterteilt werden. Die Trainingsphase wird nur mit den Trainingsdaten durchgeführt, sodass die

Testdaten dem KNN unbekannt sind. Ist diese Phase abgeschlossen, zum Beispiel weil das KNN eine gute Genauigkeit erreicht hat, werden die Testdaten zur Validierung eingesetzt. Hierbei wird überprüft, ob das KNN auch für unbekannte Eingabevektoren die richtigen Ergebnisse berechnet [1]. Diese Art des Lernens ist im Vergleich zu den anderen Varianten sehr schnell, da zum Beispiel die Gewichte direkt so angepasst werden können, dass sie das gewünschte Ergebnis erzeugen [10]. Allerdings kann das Verfahren nicht in jeder Situation angewendet werden. Liegen keine Beispiele vor, kann das KNN nicht trainiert werden. Sind die Beispieldaten fehlerhaft oder verrauscht kann das Training langsam, nicht zufriedenstellend oder unmöglich sein.

Unüberwachtes Lernen

Beim unüberwachtem Lernen, im Englischen unsupervised learning genannt, gibt es ebenfalls Beispieldaten, allerdings enthalten diese nur den Eingabevektor und keine gewünschten Ausgabewerte. Ziel solcher Lernverfahren ist, die Eingabedaten verschiedenen Gruppen zuzuordnen, wobei sich ähnliche Eingabevektoren in derselben Gruppe befinden sollen [10]. An dieser Stelle wird die Funktionsweise wieder mit dem Beispiel der Hundenund Katzenbildern aus dem vorherigen Kapitel verdeutlicht. Durch das Lernverfahren werden dem KNN die Bilder aus den Beispieldaten gegeben. In diesem Fall ist aber nicht bekannt, welches Tier sich auf einem Bild befindet. Das KNN soll selbständig erkennen, dass es sich um zwei Arten von Tieren handelt und diese richtig zuordnen. Ein solches Verfahren kann einige Vorteile gegenüber dem überwachten Lernen bieten [17]. Zum Beispiel müssen vor dem Training keine Beispieldaten mit Ausgabevektoren vorliegen, welche teilweise sehr teuer und aufwändig zu erstellen sind. Des Weiteren kann je nach Algorithmus die Anzahl an Gruppen automatisch zugewiesen werden. So können auch unterschwellige Muster die Zuweisung beeinflussen, die nicht von einem Menschen erkannt werden würden [17].

Bestärkendes Lernen

Die letzte Klasse ist das bestärkende Lernen, auch reinforcment learning genannt. Typischerweise wird diese Art des Lernens in dynamischen Umgebungen eingesetzt, in welcher ein sogenannter Agent mit einer Umgebung interagiert. Ein hierfür häufig genanntes Beispiel ist ein Problem des Markov Decision Processes (MDP), welches in Abbildung (TODO ABBILDUNG) dargestellt ist und anhand dessen im Folgenden das bestärkende Lernen beschrieben ist [18].

Zwei wichtige Grundkomponenten von MDPs sind der Agent und die Umgebung. Der aktuelle Zustand der Umgebung zu einem Zeitpunkt t wird durch die Variable S_t repräsentiert. Ist die Umgebung zum Beispiel ein Computerspiel, könnte S_t unter anderem die aktuelle Position sowie Zielkoordinaten enthalten. Der Zustand S_t steht dem Agenten zur Verfügung, der daraufhin eine Aktion A_t ausführt. Als Basis hierfür kann ein KNN dienen, welches als Eingabevektor den aktuellen Zustand verwendet und einen Ausgabevektor mit der gewählten Aktion erzeugt. Die verfügbaren Aktionen sind je nach System abhängig.

So können zum Beispiel bei der Steuerung von Robotern sowohl direkte Steuersignale für die Motoren ausgegeben werden als auch high-level Entscheidungen wie zum Beispiel die Bewegungsrichtung. Nach Ausführung der Aktion wird der Zustand der Umgebung entsprechend angepasst und ein neuer Zustand S_{t+1} entsteht [18], für den der Agent eine neue Aktion auswählen kann. Zusätzlich wird ein Belohnung, auch als reward bezeichnet, vergeben. Dies ist ein numerischer Wert, der angibt, wie richtig oder falsch die gewählte Aktion war [10]. Eine richtige Aktion zeichnet sich dadurch aus, dass sie den Agenten näher an sein gewünschtes Ziel bringt. Im zuvor genannten Beispiel des Computerspiels ist der reward größer, wenn der Agent die Distanz zum Ziel verringert und kleiner bzw. negativ, wenn der Agent sich wieder entfernt. Ziel eines Optimierungsalgorithmus ist, die Summe der erhaltenen Belohnungen zu maximieren. Hierdurch ergeben sich komplexe Anforderungen an das Lernverfahren. Bei der Entscheidung, welche Aktion A_t bei einem Zustand S_t den meisten Erfolg verspricht, muss sowohl die direkte als auch zukünftige Belohnungen berücksichtigt werden [18]. Dies ist notwendig, da ein Agent viele Aktionen in derselben sich ändernden Umgebung ausführt und eine Entscheidung Auswirkungen auf die Zukunft hat. Somit kann es bei vielen Optimierungsproblemen lohnenswert sein, zur Schaffung einer besseren Ausgangslage zuerst eine schlechte Belohnung in Kauf zu nehmen, sodass im weiteren Verlauf größere Belohnungen erreicht werden können. Eine weitere Herausforderung für solche Algorithmen ist, dass ein Gleichgewicht zwischen dem Nutzen von Erfahrung und Ausprobieren gefunden werden muss. Möglichst hohe Belohnung kann ein Agent nur erhalten, wenn er bekannte Entscheidungen trifft, die in der Vergangenheit erfolgreich waren. Allerdings müssen auch neue unbekannte Aktionen ausgewählt werden, da diese unter Umständen besser sein können. Für ein gutes Lernverfahren ist es notwendig, eine Kombination aus beidem zu ermöglichen [18].

Bestärkendes Lernen ist für viele Bereiche notwendig und Algorithmen haben beeindruckende Ergebnisse erzielt. Dennoch gibt es auch einen großen Nachteil. Die Laufzeit ist zum Beispiel im Vergleich zum überwachtem Lernen sehr langsam. Grund hierfür ist, dass eine niedrige Belohnung keine Aussage darüber trifft, wie zum Beispiel die Gewichte für eine Verbesserung verändert werden müssten. Somit kann das Anpassen sowohl positiv als auch negativ für den Agenten sein [10].

2.1.7 Backpropagation Algorithmus

???

2.2 Evolutionäre Algorithmen

Für die Optimierung von KNN können verschiedene Algorithmen eingesetzt werden. Der in Kapitel (TODO KApitel) vorgestellte Backpropagation Algorithmus ist hierbei nur ein Beispiel. In dieser Arbeit wird ein Verfahren eingesetzt, welches in Kapitel 2.3 vorgestellt wird und zur Gruppe der neuroevolutionären Algorithmen gehört, welche auf den sogenannten Evolutionären Algorithmen (EA) basieren. Zu diesen gehören eine Vielzahl von

unterschiedlichen Verfahren, welche dennoch einige gemeinsame Grundprinzipien haben. Ziel von diesen ist, eine möglichst gute Näherungslösung für ein Optimierungsproblem zu finden. Umgesetzt wird dies mit einer simulierten Evolution, welche durch das biolgische Pendant inspiriert ist [19].

Im Folgenden ..

2.2.1 Biologische Evolutionäre Konzepte

Einer der bedeutendsten Wissenschaftler in Bezug auf die Evolutionstheorie ist Charles Darwin, welcher 1859 mit seiner Arbeit On the Origin of Species by Means of Natural Selection einen wichtigen Grundbaustein gelegt hat [9]. Theoretisch wird bei Betrachtung der Evolution zwischen unbelebten Systemen und lebenden Organismen unterschieden [19]. Da die EA von Letzteren inspiriert sind, wird im weiteren Verlauf dieser Arbeit nur auf diese Bezug genommen.

Die später vorgestellten EA übernehmen aus der Biologie verschiedene Begriffe, wie zum Beispiel Population, Individuum, Genotyp, Phänotyp, Selektion, Rekombination und Mutation. Diese werden im Folgenden aus Sicht des biologischen Vorbilds betrachtet. Die Erklärungen in dieser Arbeit sind stark vereinfacht und es werden zudem nur die konzeptionellen Prinzipien betrachtet. Der genaue biologische Ablauf ist für diese Arbeit nicht relevant.

Eine Population setzt sich aus vielen unterschiedlichen und unabhängigen Individuen zusammen, welche alle zur selben Art gehören. Eine Art ist hierbei so definiert, dass die einzelnen Individuen einen gemeinsamen Genpool teilen und sich miteinander paaren können. Jedes Individuum besitzt ein Genom, welches das genetische Erbgut enthält. Dieses besteht aus mehreren Chromosomen, die wiederum mehrere Gene besitzen [19]. Hierbei kann ein Gen, welches zum Beispiel für die Fell- bzw. Haarfarbe des Individuums verantwortlich ist, verschiedene Werte annehmen. Jede dieser Ausprägungen, in diesem Fall schwarze und braune Haare, werden als Allel bezeichnet [19]. Somit ist das Genom der Bauplan für ein Individuum und bestimmt maßgeblich dessen Erscheinungsbild [11]. Der Phänotyp wird durch das Genom beeinflusst und beschreibt die tatsächlichen, äußerlich feststellbaren Ausprägungen der einzelnen Gene [19]. Allerdings kann der Phänotyp auch durch die Umwelt beeinflusst werden [11]. Die Kombination aus Genom und Phänotyp bildet das bereits vorgestellte Individuum.

Nachdem im vorherigen Absatz die grundlegenden Begriffe bezüglich einzelner Individuen erläutert wurden, soll jetzt mit Bezug auf die Evolution die Population als Ganzes betrachtet werden. Die heute existierende Vielfalt an Tier- und Pflanzenarten hat sich über viele Millionen Jahren entwickelt. Der genaue Ursprung, wie die ersten Lebewesen mit Stoffwechselprozessen entstanden sind, ist dennoch unbekannt. Bezüglich der Evolution stellt sich die Frage, wie sich das genetische Material im Laufe der Zeit ändern kann. Hierfür sind fünf Faktoren zu nennen [19].

1. Der erste und wichtigste Faktor sind zufällige Mutationen. Hierbei entstehen beim Vervielfältigen des genetischen Erbguts, zum Beispiel bei der Fortpflanzung, Fehler gemacht, die zu zufälligen Änderungen führen. Hierdurch kann beispielsweise ein neues Allel entstehen, welches zu einer neuen, bisher nicht vorhandenen Haar- bzw. Fellfarbe führt [19].

- 2. Der zweite Faktor betrifft die Selektion. Damit verschiedene Allele langfristig ähnlich häufig in der Population vorkommen, müssen mehrere Faktoren zutreffen. Ein Faktor ist die Überlebenschance der verschiedenen Individuen in der Umwelt, die sogenannte Umweltselektion [19]. Eine auffällige Fellfarbe kann zum Beispiel ein Nachteil sein, da diese von den natürlichen Feinden leichter entdeckt wird. Da diese Individuen häufiger gefressen werden, haben sie eine geringere Chance zur Fortpflanzung und es somit möglich, dass das genetische Material verloren geht. Doch nicht nur die Umweltselektion hat einen Einfluss auf die Anzahl der Nachkommen. Hierfür sind ebenfalls die erfolgreiche Partnersuche sowie Fortpflanzungsrate verantwortlich [19].
- 3. Besonders in kleinen Populationen kann der Tod einzelner Individuen große Auswirkungen auf das Verhältnis der unterschiedlichen Allele haben. Hierbei können durch Zufall einzelne Allele komplett verloren gehen und die nachfolgenden Generationen stark beeinflusst werden. In diesem Fall spricht man von Gendrift. Der Effekt hiervon ist bei größeren Populationen vernachlässigbar [19].
- 4. Wie bereits beschrieben, sollen sich Individuen einer Art fortpflanzen können. Doch es kommt auch vor, dass Individuen einer Art abwandern und sich an zwei räumlich getrennten Orten weiterentwickeln. Kommt es zu einem späteren Zeitpunkt wieder zu einer Zuwanderung können die neu entwickelten Gene die Population maßgeblich verändern. Dieser Effekt wird auch Genfluss genannt [19].
- 5. Der letzte Faktor ist die Rekombination. Bezüglich der biologischen Evolution beschreibt dies den Vorgang der sexuellen Paarung zweier Individuen, sodass ein oder mehrere Nachkommen erzeugt werden. Dabei wird das Ergbut für diese aus einer Kombination der Elterngenome erstellt. Somit handelt es sich aus Sicht der klassischen Evolutionslehre nicht um einen Evaluationsfaktor, da nur Bekanntes neu kombiniert wird und keine neuen Gene oder Allele entstehen. Dennoch wird die Rekombination heute meistens als Evaluationsfaktor genannt. Grund hierfür ist, dass die einzelnen Gene nicht wie lange in der Populationsgenetik angenommen komplett unabhängig voneinander sind, sondern stattdessen stark vernetzt sind und viel Einfluss aufeinander haben. So können auch bei der Kombination von bekannten Genotypen neue phänotypische Eigenschaften entstehen [19].

Durch die vorgestellten Arten der Evolution kann sich eine Population verschiedensten Umweltsituationen anpassen und gegenüber konkurrierenden Arten behaupten. Beispiel hierfür sind Bakterien, welche Resistenzen gegen bestimmte Antibiotika entwickeln. Während anfänglich nur wenige Individuen die Resistenz besitzen, wird diese aufgrund

der hohe Verbreitung von Bakterien schnell an Nachkommen weitergegeben und ist nach kurzer Zeit in der ganzen Population vorhanden.

2.2.2 Evolutionäre Algorithmen

Im vorherigen Kapitel ist die biologische Evolution vorgestellt, durch die eine Vielzahl von unterschiedlichen Lebensformen entstanden ist, die sich sehr gut an ihre jeweilige Umwelt angepasst haben. Da dieses Vorgehen in der Biologie sehr erfolgreich ist, wurden schon im Jahr 1950 erste Versuche durchgeführt, dies auf Computersysteme zu übertragen. Hierbei wird eine bedeutend vereinfachte künstliche Evolution simuliert mit dem Ziel, ein Optimierungsproblem zu lösen [19]. Heute gibt es eine Vielzahl von verschiedenen Algorithmen, die unterschiedliche Aspekte der Evolution imitieren. Im Folgenden werden die Grundkomponenten vorgestellt und verschiedene beispielhafte Umsetzungsmöglichkeiten aufgezeigt.

Genotyp und Phänotyp

Wie bei der biologischen Evolution gibt es bei den EA Individuen, welche durch ein Genom und einen Phänotyp definiert sind [19]. Das Genom enthält alle Informationen die nötig sind, um den Phänotypen des Individuums zu erstellen. Die eigentliche Form des Phänotyps ist abhängig vom gegebenen Optimierungsproblem und kann je nach Einsatzszenario unterschiedlich umgesetzt sein [20]. Die Repräsentation des Genoms ist in vielen klassischen Algorithmen binär. In diesen Fällen wird das Genom durch einen Vektor x von der Länge l repräsentiert, welcher nur aus den Werten 0 und 1 besteht, somit gilt $x = (x_1, x_2, ..., x_l) \in \{0, 1\}^l$ [20]. Allerdings kann diese Art der Kodierung nicht ausreichend sein. In diesen Fällen kann der Vektor auch natürliche, ganze oder rationale Zahlen enthalten [20]. Grundsätzlich sind diese Arten der Repräsentationen nur als Beispiele zu verstehen. Jeder Algorithmus kann die Repräsentation der Genome anpassen, sodass es für das Verfahren zuträglich ist. In Kapitel 2.3.1 wird die in dieser Arbeit verwendete Art der Kodierung vorgestellt.

Optimierungsproblem

Wie bereits beschrieben, ist es das Ziel von EA, Optimierungsprobleme zu lösen. Diese können aus vielen verschiednen Bereichen wie Forschung, Wirtschaft sowie Industrie kommen [19] und unterschiedliche Anforderungen haben. Grundsätzlich muss jedes Optimierungsproblem aus einem dreier Tupel (Ω, f, \succ) bestehen [19]. Die Variable Ω repräsentiert dabei den Suchraum, also jeden möglichen Lösungsansatz. Dieser wird typischerweise mit einem Individuum und dessen Genom bzw. Phänotyp getestet. Die Funktion f ist definiert als $f:\Omega\to\mathbb{R}$ und bewertet jeden Lösungsansatz aus dem Suchraum und weist diesem einen reellen Wert zu [19]. Dieser wird auch als Güte- bzw. Fitnesswert bezeichnet. Der letzte Teil des Optimierungsproblems ist eine Vergleichsrelation $\succ \in \{<,>\}$, welche angibt, ob es das Ziel, ist ein Minimum oder Maximum in der Fitnessfunktion zu finden [19]. Im Kontext von EA wird meistens das Maximum

gesucht, so auch in dieser Arbeit. Daher wird im Weiteren stets angenommen, dass die Maximierung des erreichten Fitnesswertes das Ziel ist.

Bei allen Optimierungsproblemen ist die Fitnessfunktion ein elementarer Bestandteil. Nur diese Funktion gibt dem Algorithmus ein Feedback, wie gut oder schlecht eine Lösung ist. Mithilfe dieser Funktion muss jeder EA ableiten, in welche Richtung eine Optimierung sich entwickeln soll, um möglichst effizient eine Lösung zu finden [19]. Aus diesem Grund ist die erste Anforderung an eine solche Funktion, dass sie keine absolute sondern eine graduelle Bewertung der verschiedenen Lösungsansätze bietet [19]. Beispiel für eine absolute Bewertung ist, wenn die Fitnessfunktion für eine Lösung den Wert 1 liefert, wenn das Optimierungsproblem gelöst ist und andernfalls den Wert 0. In diesem Fall kann nicht festgestellt werden, welche Änderungen der Suchparameter erfolgversprechend sind, somit ist es auch nicht möglich, diese gezielt zu ändern. Infolgedessen müssen mehr Lösungsansätze aus dem Suchraum getestet werden, was den Rechenaufwand und die benötigte Zeit erhöht. Des weiteren muss die Fitnessfunktion möglichst vollständig die Ziele des Optimierungsproblems abbilden. Andernfalls kann zwar durch den Algorithmus das Ergebnis der Fitnessfunktion maximiert werden, aber die hierdurch gefundene Lösung enthält nicht die vom Anwender gewünschten Eigenschaften [19].

Ablauf evolutionärer Algorithmen

Aus den vorherigen Kapiteln ist ersichtlich, dass Individuen aus einem Genotyp sowie Phänotyp bestehen und dass diese versuchen, ein Optimierungsproblem zu lösen. Die Aufgabe eines evolutionären Algorithmus ist es, die Individuen langfristig so anzupassen, dass sie bessere Fitnesswerte in dem Optimierungsproblem erzielen und dementsprechend eine gute Lösung finden. Hierzu werden die aus der Biologie bekannten Verfahren Selektion, Rekombination und Mutation eingesetzt. Bevor in den weiteren Kapiteln verschiedene Umsetzungen beispielhaft vorgestellt werden, wird in diesem Abschnitt der grundlegende Ablauf von EA erläutert.

Abbildung (TODO ABBILDUNG) zeigt den beispielhaften Ablauf von EA, wobei die Phasen Evaluation, Selektion, Mutation und Rekombination die größte Bedeutung haben. Bevor der eigentliche Programmablauf starten kann, muss eine erste initiale Population erzeugt werden. Wie in der biologischen Evolution, besteht diese auch in diesem Fall aus mehreren unabhängigen Individuen [20]. Im Gegensatz zum biologischen Vorbild verwenden die meisten Algorithmen ein feste Populationsgröße, da ansonsten die später benötigte Evaluationszeit und der damit verbundene Rechenaufwand stark ansteigen könnte [20]. Die für die Individuen benötigten Genome werden zufällig erstellt [19], wobei je nach Algorithmus verschiedene Zufallsverteilungen genutzt werden können.

Danach beginnt die Evaluationsphase mit der initialen Population [20]. Hierfür wird der Phänotyp für jedes Individuum mit dem entsprechenden Genom gebildet. Jeder von diesen stellt eine mögliche Lösung für das gegebene Optimierungsproblem dar. Wie im vorherigen Kapitel beschrieben, muss dieses eine Fitnessfunktion enthalten, mit welcher jeder Phänotyp bewertet wird. An dieser Stelle soll nochmals hervorgehoben werden,

dass die Gesamtheit aller Gene den Phänotyp bestimmen und daher keine Bewertung der einzelnen Gene möglich ist [20]. Die Evaluationsphase endet, wenn für alle Phänotypen ein Fitnesswert ermittelt ist. Der nächste Schritt ist die Überprüfung einer Abbruchbedingung. Trifft diese zu, wird die Ausführung des Algorithmus abgebrochen und das Genome des besten Individuums als Ergebnis zurückgegeben [19]. Je nach Umsetzung der Abbruchbedingung kann zum Beispiel überprüft werden, ob ein gewisser Fitnesswert überschritten und somit eine Lösung mit der gewünschten Genauigkeit bzw. Korrektheit gefunden wurde oder ob eine vorher definierte maximale Ausführungszeit überschritten ist.

Die Abbruchbedingung wird zu Beginn mit sehr hoher Wehrscheinlicht nicht erfüllt sein, da die Genome nur zufällig erstellt sind und bisher kein Lernprozess durchgeführt wurde. In diesem Fall werden die Phasen Selektion, Rekombination und Mutation durchgeführt [20]. Diese werden in den folgenden Kapiteln ausführlich erläutert, daher wird in diesem Abschnitt nur ein kurzer Überblick gegeben. In der ersten Phase, der Selektion, wird auf Basis des erhaltenen Fitnesswertes für jedes Individuum festgelegt, ob und wenn ja wie viele Nachkommen dieses erzeugen darf [19]. Bei der Rekombination werden die tatsächlichen Nachkommen erzeugt. Typischerweise werden zwei, in machen Fällen auch mehr Individuen als Elterngenome ausgewählt und gekreuzt. Bei diesem Vorgang wird das genetische Material, welches in den Genomen der Eltern-Individuen enthalten ist, gemischt und an das neu erstellte Kind-Individuum übertragen. Das Ziel dieser Operation ist, dass das Kind immer einen Teil der Gene von beiden Eltern erhält und somit auch Eigenschaft von beiden vereint. Langfristig sollen sich durch ein solches Verfahren nur die besten Gene durchsetzen [19]. Die letzte Phase ist die Mutation. In diesem Schritt besteht für jedes neu erstellte Individuum die Wahrscheinlichkeit, dass ein kleiner Teil des Genoms zufällig abgeändert wird [21]. Die Art der Mutation ist hierbei abhängig von der Umsetzung des Genotypen und dem Algorithmus. Bezüglich der drei Phasen muss verdeutlicht werden, dass die Selektion auf Basis des Phänotypen mit dem Fitnesswert erfolgt, die Rekombination und Mutation hingegen auf Basis des Genotypen. Somit können keine Eigenschaften, die im Phänotyp gespeichert sind auf die Nachkommen übertragen werden [20].

Nach Abschluss dieser drei Phasen sind die neuen Individuen fertig erstellt. Da, wie bereits in diesem Kapitel beschrieben, die Populationsgröße meistens begrenzt ist, wird an dieser Stelle typischerweise die Elterngeneration komplett entfernt und durch dieselbe Anzahl an Nachkommen ersetzt [19]. Allerdings gibt es auch andere Ansätze, bei denen nicht so viele neue Individuen gleichzeitig erstellt werden und diese dann direkt in die bestehende Population integriert werden können [22]. Die neue Population mit den neuen Individuen durchläuft dieselben Schritte wie die vorherige Population. Ein kompletter Durchlauf des vorgestellten Zyklus wird als eine Generation bezeichnet [19]. Häufig wird die neu erstellte Population daher auch als neue Generation bezeichnet.

Selektion

Bei EA werden viele Individuen eingesetzt, um verschiedene Lösungsansätze gleichzeitig zu betrachten. In der Phase der Selektion wird bestimmt, welche Individuen als Elternteil für die nächste Generation ausgewählt werden und wie viele Nachkommen ihnen zustehen. Bei einem solchen Auswahlverfahren ist zwischen zwei grundlegenden Umsetzungen zu unterscheiden. Entweder kann allen Individuen einer Generation dieselbe Menge an Nachkommen zugewiesen werden oder die Anzahl ist abhängig von dem erreichten Fitnesswert. Typischerweise wird die zweite Variante in EA verwendet, welche auch als fitnessproportionale Selektion bezeichnet wird. Die erste Variante erzeugt keinen Selektionsdruck, da die Individuen unabhängig von ihrer Leistung Nachkommen zugewiesen bekommen. Bei der zweiten Variante werden Individuen mit höheren Fitnesswerten bevorzugt, mit dem Ziel, dass sich die positiven Eigenschaften der erfolgreichen Individuen durchsetzen und schlechte aussterben. Dennoch ist es nicht das Ziel, nur die allerbesten Genome als Elternteile auszuwählen. Wäre dies der Fall, würde die Population sehr schnell konvergieren, ihre Vielfalt verlieren und nur noch ähnliche Lösungsansätze bieten. Somit wird es unwahrscheinlich, dass neue unbekannte, aber eventuell bessere Lösungsstrategien gefunden werden [19].

Der genaue Selektionsvorgang, wie er mi Algorithmus dieser Arbeit umgesetzt ist, wird in Kapitel 2.3.4 erläutert. Im Folgenden werden zwei verschiedene Varianten der fitnessproportionalen Verfahren vorgestellt, die in anderen Algorithmen als Selektionsfunktion verwendet werden. Bei diesen wird die Anzahl an Nachkommen durch den jeweils erreichten Fitnesswert beeinflusst [19].

1. Probabilistische Selektion:

Einer der bekanntesten Umsetzungen ist die probabilistische Selektion, welche grundsätzlich einfach zu implementieren ist. Im ersten Schritt werden die erreichten Fitnesswerte f der einzelnen Individuen i in der Population P aufsummiert. Im zweiten Schritt wird für jedes Individuum j die Wahrscheinlichkeit Pr[j] berechnet, welche angibt, wie groß die Chance ist, dass dieses als Elternteil ausgewählt wird. Hierzu muss der erhaltene Fitnesswert durch die bereits berechnete Summe geteilt werden. Somit ergibt sich die Formel $Pr[j] = \frac{f_j}{\sum_{i \in P} f_i}$. Diese Art der Selektion ist in vielen Anwendungsfällen sehr erfolgreich. Allerdings kann es vorkommen, dass zum Beispiel bei sehr hohen Fitnesswerten die prozentualen Unterschiede zwischen guten und schlechten Individuen sehr gering sind und infolgedessen der Selektionsvorteil für gute Lösungen niedrig ist. Ein möglicher Lösungsansatz besteht in der Skalierung der Fitnesswerte, sodass auch bei hohen Durchschnittswerten kleine Steigerungen einen evolutionären Vorteil bieten [19]. Ein weiterer Lösungsansatz ist die Verwendung der rangbasierten Selektion, welche im Folgenden vorgestellt wird.

2. Rangbasierte Selektion:

Bei der rangbasierten Selektion ist der tatsächlich erhaltene Fitnesswert nicht von Bedeutung. Die Individuen werden bezüglich ihrer Fitness geordnet. Das

beste Individuum erhält die größte und das schlechteste Individuum die geringste Wahrscheinlichkeit, als Elternteil ausgewählt zu werden [19].

Sind die Wahrscheinlichkeiten für alle Individuen berechnet, ist im letzten Schritt festzulegen, welche Genome tatsächlich als Elternteile ausgewählt werden und wie viele Nachkommen diese erzeugen. Bei der fitnessproportionalen Selektion wird hierfür ein Zufallsgenerator benötigt, welcher basierend auf den Wahrscheinlichkeiten die Elterngenome auswählt. Dies wird häufig mit einem Roulette-Rad veranschaulicht. Die Felder am Rand der Scheibe entsprechen den verschiedenen Individuen und die Größe ist proportional zur berechneten Wahrscheinlichkeit. Für jedes auszuwählende Elternindividuum wird der Zeiger zufällig gedreht und das Individuum entsprechend zu dem gewählten Feld wird verwendet (TODO ABBILDUNG). Dieses Verfahren kann einen Nachteil haben. Obwohl das beste Individuum die höchste Wahrscheinlichkeit hat, als Elternteil ausgewählt zu werden, kann es auf Basis des Zufalls dazu kommen, dass dieses nicht verwendet wird. Da typischerweise die Population am Ende des Evolutionszyklus ersetzt wird, würde das genetische Material dieses Individuums verloren gehen [19].

Um einen solchen Verlust zu verhindern, kann bei der Selektion zusätzlich ein sogenannter Elitismus verwendet werden. Hierbei wird typischerweise der Genotyp des besten Individuums ausgewählt, kopiert und unverändert wieder in die nächste Generation eingesetzt [23]. Zu Beachten ist hierbei, dass im weiteren Verlauf ein Nachkomme weniger produziert wird um eine konstante Populationsgröße zu garantieren.

Rekombination

Die Phase der Rekombination wird auch als Crossover bezeichnet und findet nach der Selektion statt. Die Aufgabe von dieser ist, die ausgewählten Elternindividuen zu nutzen um neue Nachkommen zu erstellen. Typischerweise werden zwei, in einigen Fällen noch mehr Elternteile kombiniert um mindestens ein Kind-Individuum zu erzeugen [19]. Die Rekombination gilt als eine der wichtigsten Phasen, da die Nachkommen tendenziell bessere Ergebnisse erzielen sollen als die Elternteile [9]. Wie auch bei anderen Phasen der EA gibt es verschiedene Arten der Umsetzung, die als kombinierende, interpolierende und extrapolierende Selektion bezeichnet werden [19]. Die bekannteste dieser drei Varianten ist die kombinierende Selektion, welche sowohl in dieser Arbeit als auch in vielen anderen Algorithmen verwendet wird. Die beiden Alternativen werden bedeutend seltener gewählt und sind auch in der Literatur oft nicht erwähnt. Dennoch werden im Folgenden alle Varianten kurz vorgestellt.

Die kombinierende Rekombination ist stark von der Biologie inspiriert. Bei diesem Vorgang werden die Genome der Elternteile zuerst nebeneinander aufgereiht. Im zweiten Schritt wird zufällig entschieden, welcher Abschnitt von welchem Elternteil für das Genom des Nachkommen verwendet werden sollen [19]. Der Vorteil dieses Verfahrens ist, dass große Informationsblöcke, welche unabhängig voneinander optimiert wurden und sinnvolle Funktionen realisieren, von den Elternteilen geerbt werden können [9]. Der

aus der Rekombination entstehenden Nachkomme kann hierdurch einen Vorteil bei der Evaluation besitzen und letztendlich eine bessere Lösung für das Optimierungsproblem bieten. Da diese Art der Rekombination keine neuen Gene erstellt bzw. bestehende modifiziert, ist der Erfolg abhängig davon, ob die Population eine gewisse Diversität bietet, sodass bei der Rekombination tatsächlich verschiedene Gene kombiniert werden können [19]. In der praktischen Umsetzung muss zuletzt noch entschieden werden, an welchen Stellen eine Rekombination möglich ist [21]. Bei der uniformen Rekombination wird für jedes einzelne Gen unabhängig zufällig entschieden, von welchem Elternteil es übernommen wird [19]. Allerdings gibt es auch andere Umsetzungen, bei denen die Gene in Gruppen eingeteilt werden und dann zwischen diesen zufällig entschieden wird.

Bei der interpolierenden Rekombination, werden die einzelnen Gene nicht direkt von einem Elternteil übernommen, stattdessen werden sie gemischt, sodass ein neuer Wert entsteht, der sich zwischen den Werten der Elternteile befindet. Im Gegensatz zur kombinierenden Selektion, welche versucht die Diversität zu erhalten, wird diese hierbei deutlich verringert. Aus diesem Grund ist es notwendig, dass zu Beginn eine Population mit einer großen Diversität vorhanden ist, sodass der Suchraum des Optimierungsproblems ausgiebig überprüft wird. Ein Beispiel für eine solche technische Umsetzung ist die sogenannte Arithmetische-Rekombination, welche für reellwertig repräsentierte Genome verwendet werden kann. Angenommen die Werte A_i und B_i repräsentieren die Gene der Eltern A und B, dann wird für jedes Gen i eine Zufallszahl u zwischen 0 und 1 gewürfelt. Das Gen C_i des Nachkommen C wird dann berechnet mit $C_i = u \cdot A_i + (1-u) \cdot B_i$ [19].

Die letzte Variante ist die extrapolierende Rekombination, welche mit mehreren Elternteilen versucht, eine Prognose darüber abzugeben, wo im Lösungsraum eine Steigerung des Fitnesswertes möglich ist und dementsprechend versucht die Genome der Nachkommen zu ändern. Somit kann diese Art der Rekombination auch neue Gene erstellen. Ein solches Verfahren hat allerdings zwei Nachteile. Um eine Prognose abzugeben, ist es erstens nötig ein Grundwissen über den Lösungsraum zu haben, zweitens besteht die Gefahr, dass die vorgegebene Richtung nicht korrekt und die Funktion danach nicht fähig ist, eine systematische Suche durchzuführen [19].

Mutation

Der letzte Schritt, bevor die bestehende Population durch die neu erstellten Individuen ersetzt wird, ist typischerweise die Mutation. Allerdings ist die Funktionsweise und Relevanz dieser Phase stark abhängig von der verwendeten Kodierung und dem eigentlichen Algorithmus [19]. Zum Beispiel wird in Quelle [23] gar keine Reproduktion verwendet und die Optimierung wird nur mithilfe der Mutation umgesetzt, während in anderen Quellen, wie zum Beispiel in [24], diese Phase als untergeordnet beschrieben wird, welche nur selten eingesetzt werden sollte.

Wird die Mutation häufig verwendet, erfüllt sie zwei Aufgaben. Das erste Ziel ist die Feinabstimmung der einzelnen Individuen, sodass das tatsächliche Optimum so genau

wie möglich erreicht wird. Das zweite Ziel ist die Erforschung des Suchraums, welche stichprobenartig durchgeführt wird, um ein besseres Optimum zu finden [19]. Wird die Mutation selten eingesetzt, müssen die Funktionen Feinabstimmung und Erforschung durch andere Komponenten, wie zum Beispiel der Rekombination, durchgeführt werden. In diesem Fall ist es das Ziel der Mutation neue Diversität, in die Population zu bringen, beziehungsweise diese zu erhalten [19]. Denn wie bereits im vorherigen Kapitel beschrieben, ist vor allem bei der viel verwendeten Rekombination die Diversität sehr wichtig, allerdings wird diese meistens durch die Rekombination selbst verringert.

Da die Umsetzung der Mutation sowohl von der Kodierung und dem Algorithmus abhängig ist, gibt es keine Empfehlungen, welche Implementierung besonders viele Vorteile bietet. Im Folgenden werden zwei mögliche Beispiele vorgestellt, wobei das erste für Individuen mit einer binären und das zweite für eine reellwertige Repräsentation angewendet werden kann [19]. Die einfachste Mutation ist die Binär-Mutation, welche für Genome mit einer binären Repräsentation verwendet werden kann. Bei der Mutation wird für jedes Bit eine Zufallszahl u zwischen 0 und 1 gewürfelt. Ist diese kleiner als die festgelegte Mutationswahrscheinlichkeit p_m , wird das Bit invertiert. Sind die Individuen durch reellwertige Zahlen repräsentiert, ist die sogenannte Gauss-Mutation eine mögliche Umsetzung. Bei dieser wird für jedes Gen eine Zufallszahl basierend auf einer Gauss-Verteilung gewählt, wobei eine zuvor festgelegte Standardabweichung σ die Verteilung beeinflusst. Die hierdurch erhaltene Zahl wird auf den bereits bestehenden Wert addiert [19].

2.2.3 Neuroevolution

Wie im vorherigen Kapitel erläutert, sind EA Verfahren, um möglichst gute Näherungslösungen für verschiedene Optimierungsprobleme zu finden. Für die in Kapitel 2.1 vorgestellten KNN wird ein Verfahren benötigt, welches die verschiedenen anpassbaren Parameter optimiert. Es ist dementsprechend möglich, die evolutionären Prinzipien zur Optimierung von KNN einzusetzen. Dies wird als Neuroevolution bezeichnet [25]. Algorithmen dieser Art sind somit eine Alternative zu den klassischen Verfahren, wie zum Beispiel dem Backpropagation Algorithmus [26].

Im Vergleich zu diesem haben neuroevolutionäre Verfahren sowohl Vor- als auch Nachteile, welche ausführlich in Kapitel (TODO Kapite) beschrieben werden. Dennoch soll ein großer Vorteil bereits hier genannt sein. Das Ziel der meisten neuroevolutionären Algorithmen ist das Optimieren von Verbindungsgewichten und Schwellwerten. Einige Verfahren versuchen, zusätzlich die Struktur bzw. Topologie des KNN zu optimieren, sodass diese nicht mehr manuell durch einen Entwickler festgelegt werden muss. Wie in Kapitel 2.1.4 beschrieben, ist die Topologie ein entscheidender Faktor und kann das erfolgreiche Lösen maßgeblich beeinflussen. Diese Algorithmen werden als Topology and Weight Evolving Artificial Neural Network (TWEANN) Verfahren bezeichnet [27].

Auch der in Kapitel 2.3 vorgestellte Algorithmus optimiert sowohl die Topologie als

auch die Gewichte eines KNN. Im Folgenden wird der Ablauf von neuroevolutionären Algorithmen vorgestellt und die Besonderheiten erläutert. Danach wird auf die Vor- und Nachteile eingegangen.

Ablauf Neuroevolution

Der grundsätzliche Ablauf von neuroevolutionären Algorithmen ist fast identisch zu den klassischen EA. Auch bei diesen gibt es eine Population, welche aus verschiedenen Individuen besteht, die einen Genotyp und Phänotyp besitzen. Letzteres besteht bei der Neuroevolution aus einem KNN, welches durch den Genotyp kodiert ist. Auch die Definition des Optimierungsproblems ist identisch zu der Erklärung in Kapitel 2.2.2. Ein Phänotyp, in diesem Fall ein KNN, versucht, das Optimierungsproblem zu lösen und erhält hierdurch einen Fitnesswert, welcher angibt, wie gut oder schlecht die Lösung ist. Wenn dieser Wert für alle Mitglieder einer Population berechnet ist, beginnen die Phasen Selektion, Rekombination und Mutation. Hierdurch werden neue Individuen mit neuen Genotypen und Phänotypen erstellt, welche dann die vorherige Population ersetzen. Dieser Zyklus wird so oft wiederholt, bis eine Abbruchbedingung erreicht ist. Natürlich ist es möglich, dass die praktische Umsetzung je nach Algorithmus angepasst wird. Einige grundlegende Anpassungen werden in den folgenden Abschnitten erläutert. Wie die angesprochenen Punkte von dem in dieser Arbeit verwendeten Algorithmus umgesetzt werden, wird in Kapitel 2.3 erläutert.

Genotyp und Phänotyp

Eine Komponente, die auf jeden Fall angepasst werden muss, ist der Genotyp. Dieser muss alle optimierbaren Parameter für den Phänotyp kodieren. Typischerweise umfasst dies die Struktur des Netzes, die Gewichte der Verbindungen sowie die Schwellwerte [27]. Die Propagierungs-, Aktivierungs- und Ausgabefunktion müssen nur enthalten sein, wenn diese ebenfalls durch den EA angepasst werden. Hierdurch ergibt sich die Frage, wie diese Informationen im Genom zu Kodieren sind, sodass auch eine erfolgreiche Durchführung der Rekombinations- und Mutationsphase möglich ist.

Grundsätzlich gibt es zwei verschiedene Kodierungansätze, die ein Algorithmus verwenden kann. Diese werden als direkte und indirekte Kodierung bezeichnet. Bei einer direkten Kodierung wird im Genom jede einzelne Verbindung und jedes Neuron explizit spezifiziert, sodass diese einfach im Phänotyp übernommen werden können. Diese Art der Kodierung wird sehr häufig verwendet, da sie einfach zu implementieren ist und auch die Rekombination und Mutation damit gut umsetzbar sind. Die Alternative ist die indirekte Kodierung. Diese spezifiziert Regeln, die angeben, wie aus einem Genom ein KNN erstellt werden soll. Der Vorteil hiervon ist, dass nicht jede Verbindung und jedes Neuron einzeln kodiert werden muss, die Repräsentation dementsprechend kompakter ist und somit weniger Rechenkapazität zur Speicherung benötigt wird [27]. Nachteil von dieser Methode ist, dass die Rekombination und Mutation komplexer umzusetzen sind. Im Folgenden wird nur noch auf die direkte Kodierung Bezug genommen, da diese in

dieser Arbeit verwendet wird.

Theoretisch kann für eine direkte Kodierung des Genoms, wie bei klassischen EA, eine binäre Repräsentation verwendet werden. Umsetzbar ist dies mit einer Matrix, welche für jede mögliche Verbindung angibt, ob diese besteht oder nicht. Allerdings hat eine solche Kodierung einige Nachteile, weswegen sie für diesen Anwendungsfall eher ungeeignet ist. Ein Grund ist der benötigte Speicherplatz für ein einzelnes Genom. Die Matrix enthält für ein KNN mit n Neuronen insgesamt n^2 Einträge für die möglichen Verbindungen [27]. Für große neuronale Netze skaliert dieser Ansatz schlecht.

Alternativ ist hierzu eine Graphen-Kodierung, welche auch von vielen TWEANN Algorithmen verwendet wird. Eine mögliche Umsetzung hiervon ist in der Arbeit [28] von Pujol und Poli vorgestellt. Bei diesen besteht die Kodierung aus zwei Teilen. Der erste Teil beschreibt die Struktur des Graphen beziehungsweise des KNN, während der zweite Teil ein linearer Vektor ist, welcher die Neuronen und Verbindungen enthält. In dieser Arbeit wird eine weitere Variante verwendet, welche ausführlich in Kapitel 2.3.1 erläutert wird.

Rekombination

Chronologisch gesehen findet die Selektion vor der Rekombination statt. Da sich diese Phase nicht ändert, wird im Folgenden mit der Rekombination fortgefahren. Prinzipiell ist das Verfahren dasselbe wie in Kapitel 2.2.2 beschrieben. Die Selektion hat zwei Elterngenome ausgewählt und diese werden im Rahmen der Rekombination zu einem neuen Genom kombiniert. Typischerweise wird bei diesem Vorgang zufällig entschieden, welche Verbindung von welchem Elternteil übernommen werden soll. Das Ziel ist, ein KNN zu erzeugen, welches in den meisten Fällen die positiven Eigenschaften der Eltern erbt und somit insgesamt besser wird. Eine Schwierigkeit, die hierbei im Bezug zu Neuroevolution entstehen kann wird als das Competing Conventions Problem bezeichnet [27].

Der Begriff Competing Conventions beschreibt ein Phänomen, bei dem mehrere KNN dieselbe Lösung für ein Optimierungsproblem bieten, aber sich die Repräsentationen der Genome dennoch unterscheiden. Ein solches Beispiel ist in Abbildung (TODO Abbildung) dargestellt. Die beiden KNN besitzen je drei verdeckte Neuronen (4, 5, 6) mit den dazugehörigen Verbindungen in den Farben blau (B), rot (R) und grün (G). Die tatsächlichen Gewichte sind hierbei nicht von Interesse und werden deshalb für eine bessere Übersichtlichkeit durch die Farben repräsentiert. Das erste KNN kann beispielsweise durch den Vektor (B, R, G) und das zweite KNN durch den Vektor (G, R, B) kodiert werden. Es wird hierbei angenommen, dass in der Kodierung die einzelnen Gewichte für alle Verbindungen enthalten sind.

Wie aus der Abbildung zu erkennen ist, sind die beiden KNN symmetrisch und produzieren infolgedessen für dieselbe Eingabe auch dasselbe Ergebnis. Dennoch unterscheiden sich die Genotypen bezüglich ihrer Kodierung. Werden diese beiden KNN durch die Se-

lektion ausgewählt um einen Nachkommen zu erzeugen, wird das Competing Conventions Phänomen wahrscheinlich zu einem Problem führen.

Wie bei traditionellen EA wird auch bei der Neuroevolution typischerweise zufällig entschieden, von welchem Elternteil welches Gen übernommen werden soll. Angenommen, es werden die ersten beiden Gene vom linken Elternteil und das letzte Gen vom rechten Elternteil übernommen, dann ist das daraus resultierende neue Genom kodiert mit (B, R, B). Es ist ersichtlich, dass bei diesem Vorgang ein Drittel der Informationen verloren gegangen sind beziehungsweise nicht vererbt wurden. Dies ist in den meisten Fällen ein großes Problem, da der fehlende Teil mit hoher Wahrscheinlichkeit einen notwendigen Beitrag für einen Lösungsansatz kodiert hat, der das Elterngenom erfolgreich gemacht hat. Aus diesem Grund wird das neu erstellte Individuum wahrscheinlich weniger erfolgreich sein als seine Elternindividuen, erhält einen dementsprechend niedrigeren Fitnesswert und wird letztendlich aussterben [27]. Tritt dieser Fall nur bei einem einzelnen Genom in einer Population auf, sind die Auswirkungen meistens vernachlässigbar. Allerdings gibt es für ein KNN mit x verdeckten Neuronen in einer Schicht x! viele Kombinationsmöglichkeit, dieselbe Lösung durch unterschiedliche Genome zu repräsentieren [27]. Somit ist die Wahrscheinlichkeit relativ hoch, dass das Competing Conventions Problem eintritt. Die Folge ist, dass entweder viel Rechenzeit für Genome verwendet wird, die mit hoher Wahrscheinlichkeit keine besseren Lösungen bereit stellen und dadurch das Optimierungsverfahren bedeutend länger dauert, oder dass das Verfahren scheitert, da keine ausreichend gute Lösung gefunden werden kann.

Bei den TWEANN Algorithmen ist das Competing Conventions Problem noch größer [27]. Wie bereits beschrieben, versuchen diese, auch die Struktur des KNN zu optimieren und können im Zuge dessen neue Neuronen und Verbindungen hinzufügen. Im nächsten Kapitel wird hierauf genauer eingegangen. An dieser Stelle sei vorweggenommen, dass im Laufe des Optimierungsverfahrens eine Population mit unterschiedlichen Strukturen und Topologien entstehen kann. Hierbei stellt sich die Frage, wie unterschiedliche KNN rekombiniert werden können, wenn die Genome unterschiedlich groß sind und nicht zuzuordnen ist, welche Gene der Eltern rekombiniert werden können. Dies ist die schwierigste Form des Competing Conventions Problems [27]. Wie der in dieser Arbeit verwendete Algorithmus dieses Problem löst, ist in Kapitel 2.3 erläutert.

Mutation

Neuroevolutionäre Algorithmen setzen in der Regel häufig die Mutation ein. Hierbei wird zwischen zwei Arten unterschieden. Bei der ersten Art werden nur die Verbindungsgewichte und Schwellwerte mutiert. Hierfür kann die bereits in Kapitel 2.2.2 vorgestellte Gauss-Mutation verwendet werden, wobei der erhaltene Zufallswert auf das Gewicht bzw. den Schwellwert addiert wird [29]. Die zweite Art verändert die Topologie und wird als strukturelle Mutation bezeichnet. Diese Art wird somit nur für die TWEANN Verfahren benötigt, welche neue Neuronen und Verbindungen dem KNN hinzuzufügen können [27].

Das eigentliche Hinzufügen von neuen Strukturen ist technisch einfach umzusetzen. Zum Beispiel kann eine neue Verbindung mit einem zufälligen Gewicht jederzeit zwei zuvor nicht verbundene Neuronen verknüpfen. Allerdings wird hierdurch der Fitnesswert in den meisten Fällen initial sinken, da es unwahrscheinlich ist, dass eine zufällige Struktur eine nützliche Funktionalität oder Teillösung bietet. Infolgedessen sinkt auch die Chance, dass das Genom bei der Selektion in der nächsten Generation als Elternteil ausgewählt und die neue Struktur an die Nachkommen vererbt wird. So kommt es häufig vor, dass die strukturellen Innovationen direkt in der nächsten Generation verloren gehen, auch wenn sie für eine erfolgreiche Lösung nötig wären. Die daraus resultierende Herausforderung für TWEANN Verfahren ist, neue Innovationen am Anfang zu schützen, sodass der Algorithmus diese optimieren kann. Nur so ist es möglich, neue Strukturen langfristig in die Population zu integrieren [27].

Eine mögliche Lösung hierfür ist in der Arbeit von Angeline, Saunders und Pollack vorgestellt. Hierbei werden neue Neuronen ohne jegliche Verbindungen in das KNN eingefügt, während neue Verbindungen initial das Gewicht 0 haben. Die so hinzugefügten Strukturen haben anfänglich keinen Effekt auf das KNN. Ziel hiervon ist, dass der Fitnesswert nicht absinkt und sich die Strukturen im Laufe von mehreren Generationen selbstständig entwickeln [30]. Diese Umsetzung ist nicht ideal, da die Strukturen unter Umständen nicht richtig in das KNN integriert werden, aber dennoch die benötigte Rechenkapazität erhöhen [27].

Der in Kapitel 2.3 vorgestellte Algorithmus verfolgt einen anderen Ansatz, bei dem ähnliche KNN einer Spezies zugeordnet werden. Ein Individuum soll nicht mehr mit der ganzen Population konkurrieren, sondern nur mit denen seiner Spezies. Dies wird auch als niching bezeichnet. Eine neue große strukturelle Mutation wird einer neuen Spezies zugeordnet und kann innerhalb dieser entwickelt und optimiert werden. Hierfür wird eine Kompatibilitätsfunktion benötigt, welche bestimmen kann, ob ein Genom einer Spezies zugehörig ist. Die Umsetzung von dieser Funktion wird durch das Competing Conventions Problem erschwert [27]. In Kapitel 2.3.4 wird hierauf genauer eingegangen.

Initiale Population

Die initiale Population der ersten Generation enthält zufällig erstellte KNN. Die hierfür benötigten Verbindungsgewichte und Schwellwerte werden häufig zufällig mithilfe einer Gauss-Verteilung gewählt [29]. Die Wahl der initialen Topologie kann sich aber stark unterscheiden. Bei den neuroevolutionären Algorithmen, welche nur die Verbindungsgewichte und Schwellwerte optimieren, wird diese zu Beginn einmalig für alle KNN festgelegt und ändert sich auch nicht im Lauf des Verfahrens.

Bei den TWEANN Algorithmen hingegen können verschiedene initiale Topologien verwendet werden, welche unter anderem die Laufzeit des Algorithmus stark beeinflussen können. Viele dieser Algorithmen erstellen zu Beginn verschiedene zufällig gewählte Topologien, mit dem Ziel, Diversität in die Population zu bringen. Ein Nachteil dieser

Strategie ist, dass hierbei ungeeignete KNN entstehen können, bei denen beispielsweise nicht alle Eingabeneuronen mit allen Ausgabeneuronen verbunden sind. Zudem ergibt sich in diesem Fall noch ein weiteres Problem [27]. Grundsätzlich ist es sinnvoll, die kleinst mögliche Struktur zu wählen, die dennoch einen mit größeren KNN vergleichbaren Fitnesswert für ein Optimierungsproblem erzielt [31]. Diese hat im Vergleich zu größeren Strukturen weniger anpassbare Parameter, was generell die benötigte Optimierungszeit reduziert. Wenn die Topologien zufällig erstellt sind, werden hierbei viele unnötige Strukturen enthalten sein, was zu einem größeren Suchraum führt und die Laufzeit des Optimierungsverfahrens erhöht [27].

In einem solchen Fall muss das Optimierungsverfahren versuchen, die Größe des KNN aktiv zu minimieren. Ein Ansatz diesbezüglich ist in der Arbeit von Zhang und Mühlenbein beschrieben, in welcher die Größe des KNN den Fitnesswert beeinflusst. In diesem Fall haben kleinere KNN bei gleicher Performance hinsichtlich des Optimierungsproblems einen größeren Fitnesswert und dementsprechend eine größere Chance, bei der Selektion ausgewählt zu werden. Das endgültige Ziel hierbei ist, dass langfristig nur die benötigten Strukturen erhalten bleiben [31]. Auch wenn die zugrunde liegende Idee gut ist, kann in der Praxis die Entscheidung schwierig sein, wie viel Einfluss die Größe des KNN tatsächlich auf den Fitnesswert haben soll [27].

Eine weiterer Lösungsansatz ist das Starten mit einer minimalen Struktur, sodass das KNN zu Beginn keine verdeckten Neuronen besitzt. Neue Strukturen werden nur integriert, wenn sie einen höheren Fitnesswert ermöglichen. Der Vorteil dieser Strategie ist, dass keine Rechenzeit verwendet werden muss, um unnötige Strukturen zu entfernen und dass zusätzlich die Anzahl an anzupassenden Parametern gering ist [27].

2.2.4 Neuroevolution im Vergleich

Grundsätzlich wächst das Interesse an neuroevolutionären Algorithmen und in vielen Anwendungsfällen sind bereits auch im Vergleich mit anderen Ansätzen gute Ergebnisse erzielt worden [25]. Dennoch werden Algorithmen dieser Art oft mit Skepsis betrachtet [25] und weniger eingesetzt als gradientenbasierte Verfahren beispielsweise der Backpropagation Algorithmus. Daher wird in vielen Arbeiten, wie zum Beispiel in [21, 25, 23, 26], ein Vergleich zwischen auf Gradienten basierenden Verfahren und neuroevolutionären Algorithmen gezogen. In diesem Kapitel werden einige Vor- und Nachteile vorgestellt, die häufig in diesem Zusammenhang genannt werden.

Für einen aussagekräftigen Vergleich müssen neuroevolutionäre Algorithmen zuvor noch einer Art des Lernens zugeordnet werden, da sich die Aufgaben und Anwendungsfälle in diesen stark unterscheiden können. Die drei Arten, das überwachte, unüberwachte und bestärkende Lernen sind in Kapitel 2.1.6 vorgestellt. Neuroevolutionäre Algorithmen werden hierbei der letzten Art zugeordnet [26]. Häufig werden hierfür zwei Gründe genannt. Erstens ist es das Ziel des bestärkenden Lernens, den insgesamt erhaltenen reward zu maximieren [23], was vergleichbar mit dem Fitnesswert bei neuroevolutionären

Algorithmen ist. Zweitens haben Sutton und Barto bestärkendes Lernen in ihrer Arbeit als eine Methode beschrieben, welche MDP Probleme lösen kann. Das MDP Problem ist in Kapitel 2.1.6 vorgestellt und beschreibt die Interaktion zwischen einem Agenten und seiner Umgebung. Hierbei kann der Agent als ein Individuum von neuroevolutionären Algorithmen und die Umgebung als Optimierungsproblem betrachtet werden.

Ein grundsätzlicher Vorteil von neuroevolutionären Algorithmen ist, dass durch die vielen unterschiedlichen Individuen unterschiedliche Lösungsansätze überprüft werden können. Dies ermöglicht es den Algorithmen, lokale Optima zu überwinden und die Suche nach dem globalen Optimum weiter fortzuführen [21]. Dies kann für gradientenbasierte Verfahren schwierig sein. Ein weiterer Vorteil ist, dass bei neuroevolutionären Algorithmen keine Gradienten berechnet werden müssen [21]. Dies kann sehr aufwendig sein, wenn zum Beispiel das KNN viele Rückkopplungen enthält oder unmöglich, wenn beispielsweise die binäre Schwellwertfunktion als Aktivierungsfunktion verwendet wird [26]. Für die neuroevolutionären Algorithmen wird die Fitnessfunktion benötigt.

Allerdings kann diese einfache Art der Evaluation zum Nachteil werden, wenn beispielsweise das Optimierungsproblem bzw. die Umwelt verschiedene Startzustände hat. So kann ein Individuum mit einem schlechten Lösungsansatz durch Zufall einen einfachen Startzustand erhalten und so unter Umständen einen höheren Fitnesswert erzielen als ein besserer Lösungsansatz eines anderen Individuums, welches einen ungünstigen Startzustand erhalten hat. Hierdurch werden einige gute Individuen verloren gehen, da diese aufgrund des geringen Fitnesswertes nicht bei der Selektion ausgewählt werden. Die Fitnessfunktion wird in einem solchen Fall als verrauscht oder noisy bezeichnet. Ein möglicher Lösungsansatz ist, dass alle Individuen immer denselben Startzustand erhalten. Dies verhindert das vorgestellte Problem, es entsteht aber ein neues. Die Individuen lernen nur eine Lösung für den ausgewählten Startzustand und sind mit hoher Wahrscheinlichkeit in anderen, ungünstigeren Startzuständen unbrauchbar. Eine Alternative ist, dass jedes Individuum mehrmals mit verschiedenen Startzuständen getestet wird und der Fitnesswert von allen akkumuliert wird [26]. Nachteil dieses Ansatzes ist, dass sich die Laufzeit linear erhöht je mehr verschiedene Startzustände getestet werden.

Ein weiteres Problem von neuroevolutionären Algorithmen ist die Laufzeit. Das Entwickeln von unterschiedlichen Lösungen durch verschiedene Individuen benötigt viel Rechenzeit [21]. Für eine Population mit beispielsweise 1000 Mitgliedern werden pro Generation 1000 KNN erstellt, von denen mit jedem versucht wird, das Optimierungsproblem zu lösen. Die hierfür benötigte Laufzeit ist oft höher als bei gradientenbasierten Verfahren, bei welchen nur ein KNN evaluiert werden muss [26]. Gleichzeitig kann dies aber auch ein großer Vorteil für neuroevoltionäre Algorithmen sein, wie unter anderem in Quelle [23] gezeigt ist. Da die einzelnen Individuen unabhängig voneinander sind, lässt sich die Evaluation von diesen gut parallelisieren [21]. Der Vorteil hiervon ist, dass eine Reduzierung der Ausführungszeit unabhängig von Limitierungen einzelner Prozessoren möglich ist [32]. Das bedeutet, dass im Gegensatz zu sequentiellen Programmen, bei denen die Ausführungszeit nur durch einen schnelleren Prozessor gesenkt werden kann,

die Laufzeit von parallelisierbaren Algorithmen auch durch das Hinzufügen von weiteren Prozessoren verringert werden kann. Dies ist in vielen Fällen einfacher und kostengünstiger umzusetzen.

Wie erfolgreich eine Parallelisierung sein kann, haben Such u. a. in ihrer Arbeit gezeigt. Hierbei wurde ein KNN zum Lösen von Atari Spielen optimiert. Die hierfür benötigte Trainingszeit mit einem einfachen, parallelisierten neuroevolutionären Algorithmus hat ungefähr vier Stunden gedauert. Verglichen wurde das Ergebnis mit zwei gradientenbasierten Verfahren, welche für ein vergleichbares Ergebnis mehrere Tage Trainingszeit benötigt haben [23]. Dies zeigt die Leistungsfähigkeit von parallelisierten neuroevolutionären Algorithmen.

2.2.5 TWEANN?

2.2.6 Competing Convention Problem

2.3 Neuro Evolution of Augmenting Topologies

Der in dieser Arbeit verwendete Algorithmus heißt Neuro Evolution of Augmenting Topologies (NEAT), welcher im Jahr 2002 von Stanley und Miikkulainen vorgestellt wurde. Bei der Veröffentlichung hat NEAT für die meisten Optimierungsprobleme im Vergleich zu anderen Verfahren schneller Lösungen gefunden, obwohl es neben den Gewichten des KNN auch die Struktur optimiert [27]. Somit gehört der Algorithmus zur Gruppe der TWEANN Algorithmen. Heute gilt NEAT immer noch als einer der bekanntesten Vertretern der neuroevolutionären Algorithmen und dient als Basis für viele Erweiterungen wie zum Beispiel HyperNEAT, cgNEAT, ...

Für die guten Ergebnisse sind drei Eigenschaften besonders relevant [27]:

- 1. Erfolgreiche Reproduktion trotz verschiedener Strukturen
- 2. Schützen von neuen Innovationen durch verschiedene Spezies
- 3. Wachsen einer minimalen Struktur

In diesem Kapitel wird die grundsätzliche Funktionsweise von NEAT erläutert, wie sie in der originalen Publikation vorgestellt ist. Wenn nicht anderweitig gekennzeichnet, beziehen sich alle Informationen aus diesem Kapitel auf Quelle [27]. Für eine bessere Lesbarkeit wird in diesem Kapitel auf weitere Zitierungen verzichtet.

2.3.1 Kodierung

NEAT verwendet ein direktes Kodierungsverfahren. Ein Genom enthält, wie in Abbildung (TODO ABBILDUNG) beispielhaft dargestellt, je eine Liste für Neuronen und Verbindungen. Ein Neuron wird durch eine ID identifiziert und enthält den Typ (*Input, Output, Hidden*). Eine Verbindung enthält das Start- und Zielneuron, das dazugehörige

Abbildung 2.2: Schematische Darstellung von einem Genom mit dazugehörigem Phänotyp

Gewicht, ein Aktivierungsbit sowie eine Innovationsnummer. Das Aktivierungsbit gibt an, ob die Verbindung im Phänotyp, in diesem Fall dem neuronalen Netz enthalten, ist. Auf die Funktionsweise und Bedeutung der Innnovationsnummer wird später genauer eingegangen.

2.3.2 Mutation

Ein Genom kann auf verschiedene Arten mutieren, welche entweder die Struktur des KNN oder die Gewichte der Verbindungen beeinflussen. Die Mutation der Gewichte ist ähnlich zu anderen neuroevolutionären Algorithmen. Für jedes Gewicht besteht eine Wahrscheinlichkeit zur Mutation. In diesem Fall wird das Gewicht entweder leicht abgeändert oder ein neuer zufälliger Wert gewählt.

Strukturelle Mutationen können in zwei verschiedenen Arten auftreten. Bei der ersten wird eine einzelne neue Verbindung dem Genom hinzugefügt. Bei der Auswahl des Startund Zielneurons ist zu beachten, dass diese nicht bereits über eine solche Verbindung verfügen. Das Gewicht für die neue Verbindung wird zufällig gewählt und das Aktivierungsbit auf True gesetzt. Ein Beispiel für diese Mutation ist in Abbildung (TODO ABBILDUNG) dargestellt. Bei der zweiten Art der strukturellen Mutation wird ein neues Neuron das KNN eingefügt. Hierzu wird zu Beginn eine aktive Verbindung conii zufällig ausgewählt, welche von Neuron i zu Neuron j führt. Anschließend wird ein neues Neuron x zwischen den Neuronen i und j platziert und zwei weitere Verbindungen werden hinzugefügt. Die erste Verbindung con_{ix} führt vom alten Startneuron i zum neu hinzugefügtem und erhält das Gewicht 1. Die zweite Verbindung con_{xi} beginnt bei dem neuen Neuron und endet im dem alten Zielneuron j und erhält dasselbe Gewicht wie die Verbindung con_{ij} . Zuletzt wird die ausgewählte Verbindung con_{ij} deaktiviert, indem das Aktivierungsbit auf False gesetzt wird. Diese Art der Mutation reduziert den initialen Effekt des neuen Neurons. So kann es direkt vom KNN verwendet werden, ohne dass die Verbindungsgewichte stark optimiert werden müssen.

Abbildung 2.3: Schematische Darstellung von einem Genom mit dazugehörigem Phänotyp

2.3.3 Reproduktion

Das Ergebnis der in Kapitel 2.3.2 vorgestellten Mutationen ist eine Population mit verschieden Genomen, welche unterschiedliche Gewichte und Strukturen haben können. Dies ist die schwierigste Form des in Kapitel 2.2.6 vorgestellten *competing convention* Problems und macht das Erstellen von Nachkommen besonders schwierig.

NEAT löst dieses Problem, indem es den historischen Ursprung von jeder strukturellen Mutation überwacht. Haben zwei Verbindungen denselben Ursprung, haben sie in der Vergangenheit dieselbe Struktur repräsentiert, auch wenn sie inzwischen unterschiedliche Gewichte haben. Zu diesem Zweck besitzt jede Verbindungen die im Kapitel 2.3.1 erwähnte Innovationsnummer. Jedes Mal, wenn eine neue Verbindung entsteht, wird ein globaler Zähler inkrementiert und der Wert als Innovationsnummer der Verbindung verwendet. Abbildung (TODO ABBOLDUNG) zeigt die Zuweisung beispielhaft. Die erste Mutation, welche nur eine neue Verbindung herstellt, hat die Innovatiosnummer X zugewiesen bekommen. Wenn im Folgenden ein neues Neuron mit zwei weiteren Verbindungen hinzugefügt wird, erhalten diese die Nummern Y und Z. Werden Verbindungen von einem Genom in der Reproduktiosnphase für die Nachkommen ausgewählt, wird auch die Innovationsnummer übertragen. Somit ist auch bei den nachfolgenden Generationen ersichtlich, was der historische Ursprung einer Verbindung ist. Tritt durch Zufall dieselbe

Abbildung 2.4: Schematische Darstellung von einem Genom mit dazugehörigem Phänotyp

Mutation in einer Generation mehrfach auf, erhalten die neuen Verbindungen dieselben Innovationsnummern. Hierfür müssen alle aufgetretenen Mutation einer Generation zwischengespeichert werden.

Die Innovationsnummern können nicht nur ressourcensparend implementiert werden, sie machen auch das Erzeugen von Nachkommen in der Reproduktionsphase bedeutend einfacher, da beim Kreuzen von zwei Elternteilen keine aufwendige Strukturanalyse erforderlich ist. Abbildung (TODO ABBILDUNG) zeigt beispielhaft, wie ein Nachkommen aus zwei Elterngenomen X und Y entsteht. Die sogenannten maching genes sind Verbindungen, deren Innovationsnummern in beiden Elterngenomen vorkommen. Beim Erstellen der Nachkommen wird für jede Verbindung in den matching genes zufällig entschieden, aus welchem Elternteil diese übernommen wird. Die sogenannten disjoint genes und excess genes sind Verbindungen, die nur in einem Elternteil vorkommen. Zu den disjoint genes gehören die Verbindungen, deren Innovationsnummer kleiner als die größte Innovationsnummer des zweiten Elterngenoms ist. Die excess genes sind Verbindungen, deren Innovationsnummer größer als die höchste Innovationsnummer im anderen Elternteil ist. Beim Erzeugen von Nachkommen werden nur die excess genes und disjoint genes von dem Elternteil übernommen, welches den höheren Fitnesswert erzielt hat. Haben beide Elternteile den selben Wert, werden die Verbindungen von beiden übernommen. Bei dieser Implementierung wird angenommen, dass der Schwellwert der Neuronen, wie

in Kapitel (TODO KAPITE) erläutert, durch eine Verbindung zu einem Bias-Neuron ausgedrückt wird. Dadurch enthalten die Neuronen keine spezifischen Informationen, die sich zwischen den Elterngenomen unterscheiden. Die Nachkommen übernehmen deshalb immer die Neuronen des Elternteils mit dem größeren Fitnesswert.

2.3.4 Spezies

Die vorgestellten Arten der Mutation und die erfolgreiche Reproduktion ermöglichen es NEAT, eine Population mit vielen verschiedenen Strukturen zu entwickeln. Dennoch reichen diese Faktoren nicht aus, da in der Praxis neue strukturelle Innovationen nur eine geringe Chance haben, langfristig integriert zu werden und es wahrscheinlicher ist, dass sie nach wenigen Generation aussterben. Die Gründe hierfür sind, dass kleinere KNN schneller optimiert werden können als große und dass das Hinzufügen von neuen Neuronen und Verbindungen den Fitnesswert meistens initial senkt, auch wenn die neuen Strukturen für das erfolgreiche Lösen des Optimierungsproblems notwendig sind. Die Folge ist, dass die kleinen Genome anfänglich bessere Fitnesswerte erzielen, die größeren Genome nicht für die Reproduktion ausgewählt werden wodurch die strukturellen Innovationen wieder verloren gehen.

Das Problem wird von NEAT durch das Einführen von verschiedenen Spezies gelöst. Das Ziel ist, Genome, die sich strukturell ähnlich sind in einer Spezies zu gruppieren. Bei der Auswahl der Elterngenome für die Nachkommen muss ein Genom nicht mehr mit der ganzen Population konkurrieren, sondern nur noch mit den anderen Genomen der eigenen Spezies. Somit sind neue Innovationen erst einmal in ihrer Spezies vor dem Aussterben geschützt und können mit der Zeit optimiert werden. Für die Implementierung eines solchen Verfahrens wird eine Funktion benötigt, die messen kann, wie ähnlich oder unterschiedlich zwei Genome sind. Auch hier kann wie bei der Rekombination auf eine aufwendige Strukturanalyse verzichtet werden, da dies mit den bereits bekannten Innovationsnummern umsetzbar ist. Je mehr excess genes und disjoint genes zwei Genome besitzen, desto weniger evolutionäre Geschichte teilen sie und sind somit unterschiedlicher. Auch der Gewichtsunterschied ist ein wichtiger Faktor, wie in Kapitel 2.2.6 dargestellt. Die von NEAT verwendete Formel, um die Kompatibilität δ zwischen zwei Genomen zu berechnen, ist im Folgenden abgebildet:

$$\delta = \frac{c_1 E}{N} + \frac{c_2 D}{N} + c_3 \cdot \overline{W}$$

Die Variablen E und D ergeben sich aus der Anzahl an excess genes und disjoint genes. \overline{W} ist die durchschnittliche Gewichtsdifferenz der matching genes. Die Faktoren c_1 , c_2 und c_3 ermöglichen es die Wichtigkeit der einzelnen Komponenten je nach Optimierungsproblem zu justieren. N steht für die Anzahl der Verbindungen im größeren Genom und normalisiert die Anzahl der excess genes und disjoint genes. Somit ist der Effekt auf den Kompatibilitätswert δ bei einer neuen Verbindung in großen Genomen gering und in kleinen sehr groß. Je nach Konfiguration kann für kleine Genome N=1 gelten.

Die Zuordnung von neu erstellten Genomen zu einer Spezies erfolgt nach der Reproduktionsund Mutationsphase. Hierfür wird eine geordnete Liste mit allen verfügbaren Spezies benötigt. Jede Spezies wird durch ein Genom repräsentiert, welches in der vorherigen Generation ein Mitglied von dieser war. Bei der Zuordnung von einem Genom wird über die Liste der Spezies iteriert und zu jedem Repräsentanten der Kompatibilitätswert δ gebildet. Ist $\delta \leq \delta_t$, wobei δ_t ein konfigurierbarer Schwellwert ist, wird das Genom der Spezies zugeordnet und die Suche abgebrochen. Ist das Genom zu keiner Spezies kompatibel, wird eine neue erstellt und das Genom als Repräsentant gesetzt.

Zum Erhalten von verschiedenen Strukturen muss verhindert werden, dass eine Spezies zu groß wird und die restlichen verdrängt, auch wenn viele der Mitglieder gute Fitnesswerte erzielen. Zusätzlich müssen insbesondere neue Spezies geschützt werden. Diese haben initial wenige Mitglieder und somit eine geringere Chance, als Elterngenome ausgewählt zu werden. Zum Lösen dieses Problems verwendet NEAT sogenanntes explicit fitness sharing, welches 1987 von Goldberg, Richardson u. a. in ihrer Arbeit [33] vorgestellt wurde. Jede Spezies bekommt bei der Reproduktion eine Anzahl an Nachkommen zugewiesen, welche proportional zur Fitness f_s der Spezies ist. Diese ergibt sich aus der Summe aller angepassten Fitnesswerte f' der Mitglieder. Der angepasste Fitnesswert f' eines Genoms wird berechnet, indem die erreichte Fitness f durch die Anzahl der Mitgliedern der Spezies geteilt wird. Ziel dieser Maßnahme ist, dass große Spezies im Vergleich zu kleinen benachteiligt werden. Hierdurch werden kleineren erfolgreichen Spezies entsprechend viele Nachkommen zugeordnet. Ein Beispiel hierfür ist in Abbildung xy (TODO ABBILDUNG) dargestellt. Obwohl die zweite Spezies bedeutend weniger, jedoch gute Genome besitzt, werden ihr mehr Nachkommen zugewiesen. Würde die Anzahl der Nachkommen einer Spezies proportional zu der Summe der erreichten Fitnesswerte vergeben, hätte die kleinere Spezies weniger Nachkommen zugewiesen bekommen.

Ist der Fitnesswert f_s von jeder Spezies berechnet und die Nachkommen proportional zugeteilt, beginnt die Reproduktion. Die Elterngenome werden hierfür zufällig aus der Mitgliederliste ausgewählt mit der Einschränkung, dass nur die besten 50% der Genome ausgewählt werden. Sind alle Nachkommen erstellt, wird die ganze Population gelöscht und durch die Nachkommen ersetzt. Diese werden mit dem bereits vorgestellten Verfahren wieder den Spezies zugeordnet.

2.3.5 Starten mit einer minimalen Struktur

Das Ziel von NEAT sowie vieler anderer Optimierungsalgorithmen ist, eine Lösung in kürzester Zeit zu finden. Ein wichtiger Faktor ist hierbei die Größe des KNN. Ein zu großes KNN hat viele modifizierbare Verbindungsgewichte und Schwellwerte, welche nicht zur erfolgreichen Lösung benötigt werden. Trotzdem wird die Laufzeit des Algorithmus erhöht, da auch diese optimiert werden müssen. Ein zu kleines KNN kann, wie in Kapitel (TODO REF XOR) veranschaulicht, unter Umständen nicht in der Lage sein, eine Lösung zu finden. Somit ist die richtige Größe des KNN entscheidend für die

schnelle Optimierung. Für Algorithmen, welche nur die Gewichte eines KNN optimieren, muss diese Struktur von einem Menschen festgelegt werden. Meistens basiert dies auf Expertenwissen oder Erfahrung [16]. Im Gegensatz hierzu stehen die TWEANN Algorithmen, welche selbstständig eine gute Struktur bilden sollen. Diese starten oft mit einer initialen Population mit vielen verschiedenen zufällig erstellten Topologien mit dem Ziel, genetische Diversität zu bieten. Wie in Kapitel 2.2.5 erläutert, ist dies oft ineffizient, da viele Strukturen nicht gebraucht werden und Zeit benötigt wird, diese zu entfernen.

NEAT hingegen startet mit einer Population, bei der alle Genome dieselbe minimale Struktur besitzen. Die entstehenden KNN haben nur *Input*- und *Output*-Neuronen und keine *Hidden*-Neuronen. Jedes *Input*-Neuron besitzt eine Verbindungen zu jedem *Output*-Neuron mit einem zufällig gewählten Gewicht. Neue Strukturen werden durch die vorgestellten Arten der Mutation hinzugefügt, von denen nur diejenigen langfristig integriert werden, welche den Fitnesswert erhöhen. Somit ist die Existenz von jeder Struktur in einem Genom gerechtfertigt. Insgesamt gibt dies NEAT einen Vorteil bezüglich der Evaluationszeit gegenüber anderen TWEANN Algorithmen, da die Anzahl der zu optimierenden Parameter und somit die Dimensionen des Suchraums minimiert sind.

2.4 Parallelisierung

In den vorherigen Kapiteln ist der Ablauf und die Funktionsweise von neuroevolutionären Algorithmen erläutert. Die benötigte Ausführungszeit von diesen ist sehr von der Größe des KNN und der Komplexität des Problems abhängig. Für große KNN werden teilweise Trainingszeiten von mehreren Stunden oder Tagen benötigt und dies trotz der Verwendung von aktueller Hardware [23]. Natürlich kann diese Zeit durch Weiterentwicklungen von einzelnen Prozessoren zunehmend verringert werden. Allerdings ist der Leistungsanstieg von neuen Prozessorgenerationen nicht ausreichend, um die benötigte Rechenzeit von solch anspruchsvollen Anwendungen massiv zu senken und skaliert somit in diesem Anwendungskontext schlecht. Zusätzlich ist es auch finanziell aufwendig, immer die neuesten Prozessoren zu kaufen und diese nach kurzer Zeit wieder zu ersetzen [34]. Die Parallelisierung ist ein weiterer Ansatz, um die benötigte Ausführungszeit zu verringern. Hierbei wird ein großes Problem in mehrere kleine und voneinander unabhängige Teilprobleme zerlegt. Diese können dann auf verschiedenen Prozessoren gleichzeitig berechnet werden [34]. Häufig wird in diesem Zusammenhang auch der Begriff High Performance Computing (HPC) verwendet, auf welchen im Folgenden näher eingegangen wird.

2.4.1 High Performance Computing

Der Bereich HPC beschäftigt sich mit verschiedenen Bereichen der parallelen Programmierung. Hierzu gehören unter anderem die benötigte Software, Programmiersprachen, Tools, aber auch die Hardware. Zusammenfassend ist festzustellen, dass sich der Bereich HPC mit der Forschung, Entwicklung und dem Betreiben von Super Computern (SC) beschäftigt. Dies sind Cluster, welche aus mehreren Millionen central processing units (CPUs)

bestehen können und zum Lösen von verschiedenen parallelisierbaren Problemen aus Forschung und Industrie verwendet werden können [35]. Eine Liste mit den 500 leistungsfähigsten SC ist in Quelle [36] zu finden. Stand Juni 2020 ist die Nummer eins ein SC in Japan, welcher über sieben Millionen Prozessoren besitzt und eine Leistung von über 500.000 TFlops bietet. Natürlich sind SC aufgrund hoher Kosten, die unter anderem durch den Stromverbrauch entstehen, für viele Probleme nicht rentabel. Dennoch gibt es einige Anwendungsszenerain für solche Systeme.

Häufig werden SC für verschiedene Simulationen eingesetzt, beispielsweise wenn es zu teuer oder gefährlich ist, diese in realer Umgebung durchzuführen. Mögliche Anwendungsszenarien sind hierfür die Simulation von Flugzeugabstürzen oder nuklearen Waffen. Ein weiterer Grund für den Einsatz von SC liegt vor, wenn die Berechnung oder Simulation auf einem gewöhnlichen Gerät zu viel Zeit benötigt oder wenn das Ergebnis nur eine gewisse Zeit gültig bzw. verwendbar ist. Ein Problem dieser Kategorie ist beispielsweise die Wettervorhersage. Ist es nicht möglich, das Ergebnis rechtzeitig zu erhalten, ist die Vorhersage obsolet. Ein weiteres Gebiet ist die Analyse von großen Datenmengen, die nicht auf einem einzelnen Gerät effizient durchführbar ist [35].

Architektur

Typischerweise werden die Architekturen von HPC Systemen einer von zwei Kategorien zugeordnet, welche als shared memory und distributed memory bezeichnet werden. Bei der shared-memory Architektur verwenden typischerweise alle Prozessoren des Systems denselben Programmspeicher, auch als random-access memory (RAM) bezeichnet. Die Kommunikation zwischen den Prozessoren ist in vielen Fällen durch Open Multi-Processing (OpenMP) realisiert [35]. Diese Art der Parallelisierung kann auch auf Computersystemen angewendet werden, die für den Massenmarkt produziert wurden. Moderne CPUs besitzen auf demselben Chip mehrere physische Prozessoren, welche zur Parallelisierung von verschiedenen Anwendungen verwendet werden können und häufig die Ausführungszeit bedeutend reduzieren.

Die Alternative hierzu ist die distributed memory Architektur, bei der jeder Prozessor seinen eigenen RAM Speicher besitzt. Im Gegensatz zu shared memory Architekturen können die Prozessoren dieser Art nicht auf Speicherbereiche von anderen Prozessoren zugreifen. Um eine Kommunikation zwischen den einzelnen Prozessoren zu ermöglichen, müssen sich diese im selben Netzwerk befinden und explizite Nachrichten unter einander austauschen. Die Ausführungsgeschwindigkeit beziehungsweise die Effizienz der parallelisierten Anwendung ist nicht nur von den einzelnen Prozessoren abhängig, sondern auch von der Latenz, Bandbreite und Netztopologie. Die Latenz beschreibt hierbei die Zeit, welche benötigt wird, eine Kommunikation zu initiieren und die Bandbreite die Übertragungsgeschwindigkeit der Daten. Neben diesen beiden Architekturen gibt es noch weitere Formen, welche auch graphics processing units (GPUs) nutzen können [35]. Da diese Arbeit ein System mit einer distributed memory Architektur verwendet, wird auf diese nicht weiter eingegangen.

Beowulf Cluster

Viele professionelle SC bestehen aus spezialisierter Hardware, welche in der Anschaffung sehr teuer ist [37]. Zusätzlich sind auch die Betriebskosten eines solchen Systems sehr hoch, zum Beispiel durch den entstehenden Stromverbrauch [35]. Daher ist die Anschaffung eines solchen Systems für die meisten Unternehmen, Universitäten oder Hochschulen finanziell nicht tragbar. Dennoch kann der Einsatz von kleineren Clustern sinnvoll sein, zum Beispiel in der Lehre oder für weniger rechenaufwendige Probleme, welche trotzdem von einer Parallelisierung profitieren.

In einem solchen Szenario sind sogenannte Beowulf Cluster eine mögliche Lösung. Diese haben zwar bedeutend weniger Leistung, sind dafür aber in der Anschaffung sowie im Betrieb um ein vielfaches günstiger und eignen sich somit auch für Privatpersonen [38]. Diese Cluster zeichnen sich durch verschiedene Eigenschaften aus. Ein großer Unterschied zu professionellen SC ist, dass die Hardware für den eigentlichen Beowulf Cluster, aus Geräten besteht, welche serienmäßig für den Massenmarkt produziert werden. Gleiches gilt auch für die Netzwerkinfrastruktur. Beispielsweise kann ein Cluster aus mehreren Desktopgeräten bestehen, welche über ein Ethernet-Netzwerk miteinander verbunden sind. Weitere Anforderungen sind, dass alle Geräte des Clusters, nur open source Software verwenden, das Netzwerk exklusiv für die Kommunikation des Beowulf-Clusters reserviert ist und das Aufgabengebiet im Bereich des HPC liegt [37]. Diese Anforderungen müssen für einen klassischen Beowulf Cluster erfüllt sein, dennoch gibt es verschiedene abgewandelte Varianten für andere Einsatzszenerien.

Es gibt noch weitere Eigenschaften, welche auf die meisten Beowulf Cluster zutreffen, aber keine Voraussetzung sind. Typischerweise basiert das Betriebssystem der einzelnen Geräte, welche als Nodes bezeichnet werden, auf Linux. Zudem wird häufig ein Node als *Master* ausgewählt, die restlichen Nodes werden als *Slaves* bezeichnet. Der *Master* dient häufig als Schnittstelle zwischen dem eigentlichen Cluster und der externen Umgebung. So kommt es häufig vor, dass dieser über eine angeschlossene Tastatur und einen Bildschirm verfügt, welche eine Interaktion mit dem Cluster ermöglicht. Zusätzlich hat dieser häufig als einziges Gerät neben der Verbindung zu den *Slaves* auch eine externe Netzwerkanbindung. Dies wird benötigt, da der *Master* in der Regel viele organisatorische Aufgaben übernimmt. Beispiel hierfür kann das Bereitstellen und die Synchronisation von Dateien im Netzwerk sein [37].

Aufgrund der vergleichsweise niedrigen Kosten sowie der einfachen Anschaffung und Inbetriebnahme bieten sich solche Cluster für viele verschiedene Projekte an. Auch in dieser Arbeit wird ein Beowulf Cluster verwendet. Auf die Installation und Konfiguration von diesem wird in Kapitel (TODO Kapitel) eingegangen.

MPI und MapReduce (TODO Change Title)

Für eine erfolgreiche Parallelisierung in einem distributed memory System, wie zum Beispiel in einem Beowulf Cluster, müssen sich die einzelnen Prozessoren untereinander synchronisieren sowie Nachrichten austauschen können. Hierfür gibt es verschiedene Bibliotheken und Frameworks, welche einen Großteil dieser Funktionen bereitstellen. Beispiele hierfür sind MPI und MapReduce. Diese unterscheiden sich in ihrer Funktionalität und der Umgebung, in welcher sie eingesetzt werden [35].

In dieser Arbeit wird MPI verwendet, welches in Kapitel 2.4.2 genauer erläutert wird. Vorteil von diesem ist, dass eine Vielzahl verschiedener Kommunikations- und Synchronisationsoperatoren implementiert sind, welche flexibel an viele Anforderungen angepasst werden können. Allerdings besteht keine Fehlertoleranz gegenüber Hardware- und Netzwerkfehlern. Treten diese auf, bricht die Ausführung der gesamten Anwendung ab und nicht gespeicherte Zwischenergebnisse gehen verloren. In diesem Punkt bietet die Alternative MapReduce einen Vorteil, da diese Fehler automatisch verarbeiten kann. Nachteil gegenüber MPI ist, dass nicht so viele verschiedene, flexible Methoden der Parallelisierung geboten werden [35].

2.4.2 MPI

Wie im vorherigen Kapitel erläutert, müssen in einem parallelen System die Prozessoren miteinander kommunizieren können. Vor allem bei Systemen mit einer distributed memory Architektur wird häufig MPI verwendet, welches ein anerkannter Standard im Bereich HPC ist. Zusätzlich kann MPI auch auf shared memory Architekturen angewendet werden. Die erste Version des Standards wurde bereits 1991 entwickelt [35]. An der Entwicklung waren über 80 Personen aus ungefähr 40 verschiedenen Organisationen beteiligt [39]. Im Jahr 2008 wurde die derzeit aktuelle Version 3 veröffentlicht. Bevor die verschiedenen Funktionen von MPI vorgestellt werden, wird zunächst auf einige Besonderheiten eingegangen. Der Standard MPI ist keine konkrete Implementierung, sondern ein Application Programming Interface (API), welches nur die grundsätzliche Funktionsweise sowie einige Basisoperationen definiert [35]. Hierdurch ergeben sich viele Vorteile. Die Implementierung des Standards ist nicht an eine einzelne Programmiersprache geknüpft [35]. Dies gibt Herstellern die Möglichkeit, ihre eigene Implementierung in jeder gewünschten Sprache umzusetzen. Hieraus sind viele kommerzielle Produkte entstanden, aber auch zwei bekannte open source Lösungen, welche MPICH und Open MPI heißen. Diese können als Bibliotheken in andere Projekte eingebunden werden und vereinfachen die Entwicklung einer parallelen Anwendung enorm, da verschiedene low-level Funktionen, wie beispielsweise die Netzwerkkommunikation, bereits implementiert sind. Des Weiteren ermöglicht der MPI Standard eine hohe Portabilität, da Implementierungen mit wenig Aufwand ausgetauscht werden können und auf einer Vielzahl von Systemen lauffähig sind [40].

Die Funktionen von MPI können heutzutage in verschiedenen Sprachen, wie zum Beispiel Java, C, C++, Python und Fortran verwendet werden [35]. Im Folgenden wird auf die

```
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print("Hello world, Rank:", rank, ", Size:", size)

>>> Hello world, Rank: 1, Size: 2
>>> Hello world, Rank: 0, Size: 2
```

Abbildung 2.5: Hello Word MPI Programm in Python

wichtigsten Grundfunktionen von MPI eingegangen. Der Beispielcode ist in der Sprache Python und der Bibliothek mpi4py aus Quelle [40] implementiert. Diese werden auch im weiteren Verlauf dieser Arbeit verwendet.

Prozessorgruppen

Bevor die verschiedenen Kommunikations- und Synchronisationsmöglichkeiten vorgestellt werden, muss der grundlegende Ablauf eines auf MPI basierenden Programms betrachtet werden. Beim Starten eines solchen Programms wird auf jedem der beteiligten Prozesse, welche in einer Konfigurationsdatei spezifiziert sind, eine Kopie des Programms ausgeführt. Eine grundlegende Voraussetzung ist, dass das Programm auf allen beteiligten Nodes vorliegt.

Die sogenannten Communicators, auch häufig im Programmcode mit COMM abgekürzt, sind Gruppen von verschiedenen Prozessen, welche miteinander kommunizieren können. Beim initialen Starten des Programms wird nur eine Prozessgruppe erstellt, welche alle beteiligten Prozesse enthält und als MPI_COMM_WORD bezeichnet wird. Jeder Prozess in einem Communicator wird durch einen Rang zwischen 0 und P-1 identifiziert, wobei P die Anzahl an Prozessoren ist [35]. Beide Werte können im Programmcode angefragt und basierend auf diesen Entscheidungen getroffen werden. Ein Beispiel hierfür ist in Abbildung 2.5 dargestellt. Der gegebene Programmabschnitt wurde mit zwei Prozessoren ausgeführt. An der Ausgabe ist erkennbar, dass die Anweisung print() von jedem Prozess einmal aufgerufen wurde und sich nur die Variable rank unterscheidet.

Point-to-Point Kommunikation

Typischerweise wird MPI unter anderem zum Austauschen von Nachrichten verwendet. In diesem Abschnitt soll die sogenannte *Point-to-Point* Kommunikation vorgestellt werden. Hierbei sendet ein Prozess entweder synchron oder asynchron Daten an einen anderen [35]. Abbildung 2.4.2 zeigt ein Beispiel für die synchrone Kommunikation. Die

```
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

if rank == 0:
    data_to_send = 42
    comm.send(data_to_send, dest=1)
    print("Data sent: ", str(data_to_send))
elif rank == 1:
    data_recv = comm.recv()
    print("Data received: " + str(data_recv))

>>> Data sent: 42
>>> Data received: 42
```

Abbildung 2.6: Point-to-Point Kommunikation mit MPI in Python

hierfür benötigten Methoden sind die send() und recv() Funktion. Die send() Funktion versendet Daten an einen anderen Prozess. Als Parameter müssen die zu sendenden Daten und das Ziel übergeben werden. Dieses wird durch den entsprechenden Rang identifiziert. Optional kann dieser Funktion noch ein tag übergeben werden, welches zusätzliche Informationen zu den Daten enthält. Beispielsweise kann dieses verwendet werden, um dem Zielprozess zu signalisieren, wie die Daten verarbeitet werden sollen. Die recv() Funktion wird zum Empfangen der Daten verwendet. Diese kann prinzipiell ohne Parameter aufgerufen werden, sodass von jedem Prozess jede Nachricht akzeptiert wird. Sollen spezielle Nachrichten mit einem gewissen tag oder von einem spezifischen Prozess empfangen werden, ist dies durch Übergeben von weiteren Parametern möglich. Dies kann wichtig sein, wenn zum Beispiel Nachrichten in einer gewissen Reihenfolge empfangen werden müssen.

Die synchrone Kommunikation kann zwei Probleme verursachen. Das erste Problem betrifft die Effizienz, da sowohl die send() als auch recv() Funktion die weitere Ausführung des Programmcodes blockieren bis die Übertragung erfolgreich abgeschlossen ist. Sollte einer der beiden Prozesse ausgelastet sein, wird der andere auf ihn warten und in dieser Zeit keine Berechnungen durchführen [35]. Kommen diese Wartezeiten häufig und lange vor, kann dies die Performanz des Systems stark beeinträchtigen. Das zweite Problem besteht darin, dass Fehler im Programmcode zu Deadlocks führen können. Eine solche Situation kann entstehen, wenn zwei Prozesse eine Nachricht vom jeweils anderen erwarten und daher nicht mit der Programmausführung fortfahren [35]. Da kein Prozess eine Nachricht schicken wird, muss das Programm in einem solchen Fall extern manuell beendet werden und alle nicht gespeicherten Zwischenergebnisse gehen verloren. Um diese Probleme zu umgehen, kann die asynchrone Variante der Point-to-Point Kommunikation verwendet werden, welche mit den Funktionen isend() und irecv() implementiert ist. Möchte ein

Prozess Daten senden bzw. empfangen und ist der Kommunikationspartner noch nicht bereit, wird mit der Ausführung des Programmcodes fortgefahren. Wenn der Kommunikationspartner letztendlich für die Übertragung bereit ist, wird diese automatisch gestartet [35].

Gruppenkommunikation

Der MPI Standard definiert nicht nur die *Point-to-Point-*, sondern auch verschiedene Formen der Gruppenkommunikation. Diese können in einigen Fällen bedeutend effizienter sein, als Nachrichten mit allen Prozessen einzeln auszutauschen. Einige der wichtigsten Operationen sind die *Broadcast*, *Scatter*, *Gather* und *Reduce* Funktion, welche beispielhaft in Abbildung 2.7 dargestellt sind [39].

Mit der Broadcast Funktion kann ein Prozess eine Nachricht M an alle anderen beteilig-

Abbildung 2.7: Schematische Darstellung der Broadcast, Scatter, Gather und Reduce Funktion in MPI

ten Prozesse senden [39]. Diese einfache Operation wird in vielen Fällen benötigt, wenn zum Beispiel der Master Prozess in einem Cluster Daten an alle Slaves senden muss. Mit der Scatter Funktion kann ein Prozess die Elemente einer Liste bzw. Arrays gleichmäßig an die anderen Prozesse verteilen, sodass jeder Empfänger nur einen Teil der Daten erhält [35]. Diese Operation kann eingesetzt werden, wenn auf jedem Element der Liste eine vom Rest unabhängige Berechnung durchgeführt werden muss. Zwar wäre es in einem solchen Szenario auch möglich, die Broadcast Funktion zu verwenden und dann basierend auf dem Rang die Berechnung durchzuführen, aber bei der Scatter Funktion werden insgesamt weniger Daten übertragen und somit eine geringere Bandbreite benötigt. Das Pendant zur Scatter Funktion ist die Gather Funktion. Hierbei erhält ein Prozess von allen anderen eine Nachricht M_i und aggregiert diese in einer Liste oder einem Array [35]. Die Scatter und Gather Funktionen werden häufig zusammen verwendet. Mit der Scatter Funktion

können die Daten an die verschiedenen Prozesse verteilt werden, diese berechnen ihre Ergebnisse, welche zuletzt mit der Gather Funktion wieder gesammelt werden. Die letzte hier vorgestellte Funktion wird Reduce genannt. Mit dieser können verschiedene globale Berechnungen mit einem binären kommutativen Operator durchgeführt werden [35]. Eine Rechenoperation ist kommutativ, wenn für alle a und b einer Menge M die Gleichung a*b=b*a gilt [41]. In Abbildung 2.7 wird die Summe berechnet, aber MPI bietet auch viele andere Standardoperatoren, wie zum Beispiel die Berechnung des Produkts, Minimums oder Maximums [35].

MPI bietet noch weitere Arten der Gruppenkommunikation, auf welche an dieser Stelle nicht ausführlich eingegangen wird. Die AllGather Funktion kombiniert die Gather Funktion mit einem anschließenden Broadcast des Ergebnisses. Bei der AllToAll Funktion besitzt jeder Prozess eine Liste und sendet jeweils ein Element an jeden anderen Prozess [39]. Eine spezielle Art der Gruppenkommunikation sind die sogenannten Synchronisationsbarrieren. An diesen wird die Ausführung der einzelnen Prozesse angehalten bis alle Teilnehmer diese erreicht haben [35]. Abschließend sind zwei Anmerkungen zu nennen, welche für die verschiedenen Arten der Gruppenkommunikation wichtig sein können. Erstens ist jede dieser Operationen nur als synchrone Funktion verfügbar. Die zweite Anmerkung betrifft die Synchronisationsbarrieren. Bei vielen Implementierungen haben Funktionen wie der Broadcast einen Synchronisationsseiteneffekt. Dies ist durch den MPI Standard möglich, jedoch keine Voraussetzung und kann somit die Portierung von Projekten beeinflussen, die von diesen Seiteneffekten abhängig sind [39].

2.4.3 Performance

Das Erstellen eines gut parallelisierten Algorithmus ist häufig bedeutend schwieriger als das Erstellen desselben in einer sequentiellen Variante. Der Grund hierfür ist, dass zwar jeder parallele Algorithmus sequentiell ausführbar ist, indem die unabhängigen Teilaufgaben nacheinander abgearbeitet werden, dies aber umgekehrt nicht möglich ist. Um gute Ergebnisse zu erzielen, muss der parallelisierte Algorithmus häufig neu erstellt oder umstrukturiert werden. [35]. Dieses Kapitel stellt Methoden vor, mit welchen die tatsächliche und maximal zu erwartende Performance eines parallelen Algorithmus berechnet werden kann.

Bevor auf die genauen Berechnungen eingegangen wird, sei angenommen, dass die serielle Ausführung eines Algorithmus t_{seq} lange dauert und dass t_q die Zeit angibt, welche derselbe parallele Algorithmus benötigt, welcher von P vielen Prozessen ausgeführt wird. Der sogenannte SpeedUp gibt an, um welchen Faktor die parallele Ausführung eines Programms schneller ist. Berechnet wird dies mit $SpeedUp(P) = \frac{t_{seq}}{t_P}$ [35]. Der SpeedUp gibt nicht an, wie gut oder schlecht die tatsächliche Parallelisierung ist. Hierfür wird die $Efficiency\ e$ benötigt, welche mit $e = \frac{SpeedUp(P)}{P}$ berechnet wird. An dieser kann abgelesen werden, wie gut die parallele Ausführung tatsächlich ist. Der berechnete Wert liegt meistens zwischen 0 und 1, wobei ein niedriger Wert ein dafür Indiz ist, dass durch die Parallelisierung und eventuelle Kommunikation viel zusätzlicher Rechenaufwand ent-

steht. Dementsprechend zeigt ein hoher Wert, dass wenig zusätzlicher Aufwand entsteht und die Parallelisierung effizient erfolgt. In seltenen Fällen ist es sogar möglich, dass höhere Werte als 1 erzielt werden, was einem super-linear SpeedUp entspricht. Dies kann vorkommen, wenn beispielsweise mehrere Prozesse denselben Cache verwenden. Hierbei ist es möglich, dass ein Prozess Rechenzeit einsparen kann, indem er ein Ergebnis aus dem Cache wiederverwendet, das ein anderer Prozess berechnet hat [35].

Mit den vorgestellten Formeln lassen sich der SpeedUp und die Efficiency berechnen, allerdings geben diese keine Auskunft darüber, was der höchst mögliche SpeedUp bzw. die kürzeste Ausführungszeit ist. Um diese zu berechnen, gibt es zwei Theoreme, welche unter den Begriffen Amdahl's Law und Gustafson's Law bekannt sind [35].

Amdahl's Law wurde 1967 von Gene Amdahl in seiner Arbeit in Quelle [42] beschrieben. Die im Folgenden vorgestellten Formeln wurden erst später hiervon abgeleitet [42]. Angenommen wird ein Algorithmus bestehend aus zwei Teilen, bei dem der erste Teil α_{seq} rein sequentiell und der zweite Teil α_{par} parallelisierbar ist. Weiterhin wird angenommen, dass $\alpha_{seq} + \alpha_{par} = 1$ ist und dass t_1 die Zeit angibt, welche ein Prozess zum Ausführen eines Programmabschnittes benötigt. Die Ausführungszeit t_P eines solchen parallelisierten Programms mit P Prozessen kann mit $t_P = \alpha_{seq} \cdot t_1 + \alpha_{par} \cdot \frac{t_1}{P}$ berechnet werden. Um den höchsten erreichbaren SpeedUp zu berechnen wird angenommen, dass $t_1 = t_{seq}$ gilt und dass der erhaltenen Wert t_P in die bereits vorgestellte Formel für die Berechnung des SpeedUps eingesetzt wird. Hierdurch ergibt sich die bekannte Formel von Amdahl's Law [35]:

$$SpeedUp(P) = \frac{1}{\alpha_{seq} + \frac{\alpha_{par}}{P}}$$

Angenommen es gäbe unendlich viele Prozessoren $(P \to \infty)$, dann ist die Ausführungszeit des parallelisierbaren Programmteils vernachlässigbar gering, sodass nur der sequentielle Anteil das Ergebnis maßgeblich beeinflusst und somit gilt [35]:

$$\lim_{P \to \infty} SpeedUp(P) = \frac{1}{\alpha_{seq}}$$

Das bedeutet beispielsweise, dass der maximale SpeedUp für einen Algorithmus 20 ist, wenn dieser zu 95% parallelisierbar und dementsprechend zu 5% seriell ist.

Amdahl's Law gilt unter der Annahme, dass bei steigender Prozessanzahl der Rechenaufwand der zu lösenden Aufgabe konstant bleibt, was für viele Anwendungsszenarien zutrifft [35]. Im Gegensatz hierzu steht das Gustafson's Law, welches von John Gustafson stammt. Dieser argumentiert, dass Amdahl's Law parallelen Systemen nicht gerecht wird, da der eigentliche Vorteil von diesen die Bearbeitung von größeren Datenmengen in derselben Zeit ist. In diesem Fall wird mit steigender Prozessanzahl ebenfalls der Rechenaufwand erhöht. Dies ermöglicht es, höhere SpeedUp Werte zu erzielen [43].

3 Softwarearchitektur und Implementierung

(TODO Anmerkung) Das grundsätzliche Ziel ist, die in den Grundlagen vorgestellten Konzepte von den KNN, neuroevolutionären Algorithmen, NEAT und MPI praktisch umzusetzen und für eine Anwendung zu kombinieren

Architektur und Implementierung, Aufbau, Klassen, Programmablauf

3.1 Anforderungen

Aus dem Untertitel dieser Arbeit Analyse und Optimierung von NEAT für ein verteiltes System können drei verschiedene Ziele abgeleitet werden, mit welchen sich die folgenden Kapitel beschäftigten. Das erste Ziel ist die Implementierung einer sequentiellen Version des NEAT Algorithmus. Hierauf basiert die zweite Phase, in welcher die korrekte Funktionalität der Implementierung verifiziert sowie eine Performance Analyse durchgeführt wird. Basierend auf der Analyse ist das dritte Ziel die Optimierung des Algorithmus mit MPI für einen Bewoulf Cluster

Dieses Kapitel befasst sich mit dem ersten Ziel, der Implementierung des sequenziellen Algorithmus. Hierzu werden in einem ersten Schritt verschiedene Anforderungen an die Software definiert, welche sowohl von der sequenziellen als auch der später vorgestellten parallelisierten Implementierung erfüllt werden müssen. Danach wird auf die verschiedenen Datenstrukturen, Schnittstellen und Implementierungsdetails eingegangen.

Die erste Anforderung betrifft die Programmiersprache. Für dieses Projekt soll die Sprache Python verwendet werden. Dies ist eine moderne, einfach zu lernende Hochsprache, deren Vorteile eine einfache Syntax sowie die dynamische Typisierung von Variablen und Parametern sind. Dies ermöglicht in vielen Fällen eine schnelle Entwicklung von Prototypen oder auch vollwertigen Softwaresystemen. Zusätzlich bietet die Sprache viele verschiedene open source Pakete, welche einfach in bestehende Projekte integriert werden können und fertige Lösungen für diverse Aufgabengebiete bieten. Aus diesem Grund ist Python eine der bekanntesten Sprachen im Bereich Forschung und Entwicklung [44]. Dies gilt insbesondere für die Bereiche Machine Learning und KNN, da viele hierfür verwendete Bibliotheken primär für Python entwickelt sind, wie beispielsweise Tensorflow [45], Pytorch [46] und das OpenAI Gym [47]. Letzteres ist eine Bibliothek, welche verschiedene Testumgebungen für das bestärkende Lernen bietet und welche auch in dieser Arbeit eingesetzt wird.

Die nächste Anforderung betrifft das Projekt selbst. Dieses soll wie eine Bibliothek eingesetzt werden können und muss somit eine einfache Programmierschnittstelle für den Anwender bieten. Das Ziel ist, dass mit wenig Aufwand verschiedene Optimierungsprobleme umgesetzt und gelöst werden können. Dies soll sowohl für Testumgebungen aus dem OpenAI Gym als auch für andere Quellen gelten.

Eine weitere wichtige Anforderung ist, dass der ganze Optimierungsprozess mithilfe eines Seeds beeinflussbar und somit wiederholbar sein muss. Der Grund hierfür ist, dass wie in Kapitel 2.2 und Kapitel 2.3 aufgezeigt, neuroevolutionäre Algorithmen viele Zufallswerte verwenden, die den Ablauf und das erhaltene Ergebnis stark beeinflussen können. Für einen einfachen Vergleich zwischen der sequentiellen und parallelisierten Implementierung ist es notwendig, dass beide Algorithmen exakt denselben Ablauf an Instruktionen und dieselben Zufallswerte haben und somit letztendlich auch dieselbe Lösung liefern. Dies ist für einen sequenziellen Algorithmus einfach umzusetzen, wenn ein globaler Zufallsgenerator mithilfe eines Seeds verwendet wird. Bei der Verwendung eines Beowulf Clusters ist dies nicht möglich, da hierbei physisch getrennte Geräte verwendet werden. Somit ist die Herausforderung, dass sowohl der sequenzielle als auch der parallelisierte Algorithmus unabhängig von der Anzahl an verwendeten Geräten unter Verwendung desselben Seeds dieselben Lösungen berechnen.

Zwei weitere wichtige Anforderungen betreffen die Performance und Visualisierung. Sowohl in der sequenziellen als auch der parallelisierten Implementierung muss es möglich sein, die benötigte Ausführungszeit zu messen. Die hierbei erhaltenen Ergebnisse sind die Grundlage für den späteren Performance Vergleich. Zusätzlich sollen die erfassten Werte in entsprechenden Diagrammen visualisiert werden können. Neben den Zeiten sollen auch die durch NEAT erzielten Ergebnisse dargestellt werden. Dies umfasst unter anderem die Struktur der optimierten KNN, die erreichten Fitnesswerte, die Verteilung der Spezies (TODO Eventuell weg?) und in einigen Fällen auch die Lösungsstrategie. Letzteres bezieht sich vor allem auch auf das OpenAI Gym. Die Testumgebungen von diesem können in vielen Anwendungsfällen gerendert werden, was allerdings die Laufzeit enorm erhöht. Deswegen ist es bei dem eigentlichen Optimierungsprozess üblich, hierauf zu verzichten. Das letzte Ziel bezüglich der Visualisierung ist, dass ein gespeichertes Genom nach einem Trainingsverfahren geladen werden kann, hieraus ein KNN gebildet wird und die Interaktion von diesem in der Testumgebung gerendert wird. Hierdurch ist es möglich, die entwickelten Strategien und Fortschritte nachzuverfolgen, ohne die Trainingszeit zu erhöhen.

Hieraus ergibt sich auch die letzte Anforderung, die persistente Speicherung der Ergebnisse. Es soll möglich sein, die Genome, Fitnesswerte und gemessenen Laufzeiten persistent in einer Datei abzuspeichern. Die Speicherung der Genome ist Voraussetzung, dass diese visualisiert oder auch in einer Produktivumgebung eingesetzt werden können. Bezüglich der Fitnesswerte und Laufzeiten wäre es theoretisch möglich, die erstellten Graphen als Bilddatei oder Ähnliches zu speichern. Dies hat den Nachteil, dass die

Werte nicht automatisiert ausgelesen werden können und ein genauer Vergleich mit anderen Datensätzen schwierig ist. Aus diesem Grund sollen in dieser Arbeit die Rohdaten gespeichert werden, sodass auch eine nachträgliche Verarbeitung beziehungsweise ein Vergleich mit anderen Durchläufen möglich ist. Neben der generellen Speicherung der finalen Ergebnisse soll auch eine regelmäßige Zwischenspeicherung möglich sein, zum Beispiel nach jeder Generation. Der Grund hierfür ist MPI. In Kapitel 2.4.1 ist erläutert, dass dieses beim Auftreten von Fehlern die Ausführung komplett abbricht und nicht gespeicherte Ergebnisse verloren gehen. Durch die Speicherung der Zwischenergebnisse entsteht kein Datenverlust und somit auch keine Verschwendung der bisher genutzten Rechenzeit.

3.2 Softwarearchitektur

Im Folgenden wird auf die Architektur der Software sowie der Implementierung des sequenziellen Verfahrens eingegangen. Das grundsätzliche Ziel ist, dass so viele Komponenten wie möglich von der sequentiellen und parallelisierten Implementierung genutzt werden können, sodass einerseits der programmiertechnische Aufwand möglichst gering ist und andererseits ein einfaches Austauschen der beiden Varianten möglich ist. Hierfür wird eine Kombination aus verschiedenen Interfaces sowie Serviceklassen verwendet, auf welche im Rahmen dieses Kapitels genauer eingegangen wird. Zuvor werden noch die verwendeten Datenstrukturen und das Interface für die Bibliothek vorgestellt.

Datenstrukturen

Die verwendeten Datenstrukturen sind für beide Implementierungen identisch und in Abbildung (TODO ABBILDUNG) in einem UML Diagramm dargestellt. Wie zu erkennen ist, besitzen diese keine Funktionen und können so für beide Implementierungen genutzt werden. Die eigentliche Funktionalität wird in den später vorgestellten Serviceklassen umgesetzt.

Die erste Struktur ist das *Genom*, welches aus Kapitel 2.3 bekannt ist und alle Informationen zur Konstruktion eines KNN besitzt. Hierfür werden zwei Listen benötigt, wobei die erste alle Neuronen und die zweite alle Verbindungen des KNN enthält. Diese Repräsentation entspricht der Kodierung aus Kapitel 2.3.1.

Ein Neuron wird durch die Klasse *Node* repräsentiert und enthält unter anderem den Bias-Wert und die zu verwendende Aktivierungsfunktion, welche für die Berechnungen im KNN benötigt werden. Zusätzlich sind einige weitere Werte vorhanden, welche die spätere Implementierung der Anforderungen vereinfachen. Hierzu gehört unter anderem der Neuronentyp, welcher angibt, ob es sich um ein *Input-*, *Hidden-* oder *Ouput-*Neuron handelt. Dies vereinfacht die spätere Visualisierung sowie das Einsetzen der Eingabewerte und das Auslesen des Ausgabevektors. Zusätzlich besitzt jedes Neuron eine X-Koordinate, welche die relative X-Position für eine spätere Visualisierung angibt. Die *Input-* und

Output-Neuronen besitzen die Werte 0 und 1. Die Hidden-Neuronen werden, wie in Kapitel 2.3.5 beschrieben, nur durch strukturelle Mutationen hinzugefügt und dabei zwischen zwei anderen Neuronen platziert. Die X-Koordinate von diesen wird berechnet, indem der Mittelwert der zwei anderen Neuronen gebildet wird. Zuletzt enthält jedes Neuron zur Identifizierung eine ID, welche von den Verbindungen genutzt wird.

Eine Verbindung zwischen zwei Neuronen wird im Genom durch eine Instanz der Klasse Connection repräsentiert. Jede von diesen enthält zwei Werte, welche die ID des Startund Zielneurons der Verbindung enthalten. Zusätzlich ist das Gewicht sowie ein Aktivierungsbit gegeben. Letzteres gibt entsprechend der vorgestellten Kodierung an, ob die
Verbindung im KNN enthalten sein soll. Die letzte Variable ist die Innovationsnummer,
welche in Kapitel 2.3.3 beschrieben ist. Diese wird durch strukturelle Mutationen zugewiesen und in der Reproduktionsphase zum Lösen des Competing Conventions Problems
verwendet.

In Kapitel 2.2 ist der Begriff des Individuums erläutert. In dieser Arbeit werden diese durch Instanzen der Klasse Agent repräsentiert und sind nach dem Agenten benannt, welcher beim bestärkenden Lernen mit der Umwelt interagiert. Der hierbei erhaltene Fitnesswert, welcher im späteren Verlauf die Selektion maßgeblich beeinflusst, wird in der entsprechenden Variable fitness gespeichert. Das Feld additional_info kann Zusatzinformationen enthalten, welche vom Optimierungsproblem stammen können.

Die zwei letzten Klassen in diesem Diagramm sind die Generation und Spezies. Letzteres ist aus dem NEAT Kapitel bekannt und ist eine Gruppierung von ähnlichen Individuen bzw. Agenten. Entsprechend der in Kapitel 2.3.4 enthaltenen Definition ist eine Spezies durch ein Genom repräsentiert und besitzt eine Mitgliederliste. Zusätzlich wird der höchste erreichte Fitnesswert des besten Mitglieds gespeichert sowie die Generation, in welcher dieser Wert erzielt wurde. Dies wird benötigt, um den Fortschritt zu überwachen, da eine Spezies nicht für die Reproduktion ausgewählt wird, deren Mitglieder keine Steigerung des Fitnesswertes in einer festgelegten Anzahl an Generationen erzielen.

Die letzte Klasse ist die *Generation*, welche aus Kapitel 2.2.2 bekannt ist. Diese enthält sowohl eine Liste mit allen Individuen als auch eine der verschiedenen Spezies. Zusätzlich wird diese durch eine Nummer identifiziert, welche angibt, wie viele Zyklen der Evaluation, Selektion, Rekombination und Mutation bereits durchgeführt wurden.

Künstliches neuronales Netz

Aus dem Genom wird ein KNN erstellt, welches dann im Optimierungsproblem eingesetzt wird. In Kapitel 2.1 sind der Aufbau und die Funktionsweise von diesen ausführlich erläutert. Prinzipiell können hierfür verschiedene bereits implementierte Bibliotheken verwendet werden, wie beispielsweise Tensorflow [45] oder Pytorch [46]. Mit diesen können vor allem rein ebenenweise verbundene KNN, wie in Kapitel 2.1.4 vorgestellt, schnell und einfach erstellt werden. Allerdings können durch NEAT auch KNN mit *shortcut*

Verbindungen entstehen sowie Netze mit Rückkopplungen. Zwar können diese auch mit Tensorflow und Pytorch abgebildet werden, aber dies erfordert einen bedeutend höheren Aufwand. Da dies im Rahmen dieser Arbeit nicht möglich ist, wird eine eigene vereinfachte Implementierung verwendet. Ein Nachteil von dieser ist, dass sie im Vergleich zu Implementierungen aus großen Bibliotheken insgesamt langsamer ist. Der Grund hierfür ist, dass die Bibliotheken gut optimiert sind und auch die Verwendung von GPUs unterstützen, welche die benötigte Ausführungszeit stark reduzieren können. Auch wenn diese nicht verwendet werden, wird im Folgenden ein Grundgerüst erstellt, sodass eine spätere Integration einfach möglich ist. Dies wird mit einem Interface realisiert, welches die grundlegenden Funktionen definiert. Sowohl die in dieser Arbeit verwendete Implementierung als auch zukünftige Erweiterungen mit Tensorflow oder ähnlichem können dieses nutzen und ermöglichen somit ein einfaches Austauschen der verschiedenen Implementierungen. Das Interface ist in Abbildung (TODO ABBILDUNG) dargestellt und definiert drei Funktionen mit den Namen build(), reset() und activate(). Bei der build() Funktion wird ein Genom übergeben und hieraus ein KNN konstruiert. Die activate() Funktion bekommt eine Liste mit Eingabewerte übergeben und produziert den Ausgabevektor des KNN. Die Anzahl an Eingabe- und Ausgabewerten entspricht der Anzahl an Inputund Output-Neuronen im KNN. Bei der reset() Funktion werden eventuell gespeicherte Ergebnisse, wie sie bei einem Netz mit Rückkopplungen enthalten sein können, entfernt und auf den Startwert zurückgesetzt.

Die in dieser Arbeit verwendete BasicNeuralNetwork Implementierung setzt dieses Interface mit dem Ziel um, dass sowohl Netze mit und ohne Rückkopplungen umgesetzt werden können. Da eine genaue Beschreibung der Implementierung nicht von Interesse ist, wird an dieser Stelle nur der oberflächliche Ablauf beschrieben. Bei der build() Funktion wird je eine Liste für die Input- und Output-Neuronen angelegt, in welche die Neuronen mit den entsprechenden Typen sortiert werden. Eine dritte Liste enthält alle im KNN enthaltenen Neuronen. Jedes Neuron speichert zudem eine Liste mit den Verbindungen, welche zu ihm führen und den aktuellen sowie letzten berechneten Wert. Die letzte Aufgabe dieser Funktion ist die Festlegung der Reihenfolge, in welcher die einzelnen Neuronen aktiviert bzw. deren Zwischenergebnisse berechnet werden. Bei der Reihenfolge ist zu beachten, dass bei einem Netz ohne Rückkopplung jedes vorherige Neuron bis zu den Input-Neuronen bereits aktiviert sein muss, da ansonsten das Ergebnis verfälscht wird. Bei Netzen mit Rückkopplungen gilt diese Anforderung prinzipiell auch, außer für Verbindungen, welche in derselben Schicht oder von Neuronen der nachfolgenden Schichten ausgehen. Dies sind Rückkopplungen, bei welchen der zuletzt berechnete Wert zurückgeben wird, sodass keine Endlosschleife entsteht.

Bei der activate() Funktion wird ein Eingabevektor an das KNN übergeben. Jeder darin enthaltene Wert wird in ein Input-Neuron gesetzt. Dies ist mit der zuvor in der build() Funktion erstellten Liste mit allen Input-Neuronen effizient umzusetzen. Danach beginnt die eigentliche Berechnung des Ausgabevektors. Hierzu werden die Neuronen in der zuvor festgelegten Reihenfolge aktiviert bzw. berechnet. Zuletzt wird der Ausgabevektor erstellt. Auch dies ist effizient umsetzbar, da zuvor ein Liste mit allen Output-Neuronen erstellt

wurde. Über diese wird iteriert und die entsprechenden Ergebnisse in eine neue Liste kopiert, welche schlussendlich den Ausgabevektor repräsentiert und als Ergebnis der Funktion zurückgegeben wird.

Die *reset()* Funktion iteriert über die Liste mit allen Neuronen und entfernt die gespeicherten Zwischenergebnisse.

Optimierungsproblem

In den vorherigen Kapiteln sind die grundlegenden Datenstrukturen und die Funktionalität des KNN vorgestellt. Bevor der eigentliche Optimierungsalgorithmus implementiert werden kann, wird noch eine grundlegende Komponente benötigt und zwar das Optimierungsproblem. Wie in Kapitel 2.2.2 vorgestellt, können diese aus verschiedenen Domänen stammen und sich sehr unterscheiden. Somit muss auch für dieses ein Interface mit dem Ziel erstellt werden, möglichst viele Szenarien abbilden zu können, welche einfach und mit wenig Aufwand durch das in dieser Arbeit implementierte Verfahren optimierbar sind.

Das Interface ist in Abbildung (TODO ABBILDUNG) dargestellt und zeigt fünf Funktionen, von welchen lediglich die evaluate() Funktion immer benötigt wird. Die restlichen vier Funktionen sind optional und können je nach Optimierungsproblem zusätzlich eingesetzt werden. Im Folgenden wird auf die Bedeutung von diesen genauer eingegangen.

Die initialization() Funktion kann zum Initialisieren der Umgebung verwendet werden und wird einmalig zu Beginn durch die später vorgestellte Bibliothek aufgerufen. Dies kann beispielsweise verwendet werden, um notwendige Daten initial aus einer Datenbank zu laden oder um die Umgebung zu erstellen. Ist die Initialisierung abgeschlossen, können prinzipiell verschiedene Agenten in dieser evaluiert werden. Vor jeder Evaluation wird die before_evaluation() Funktion aufgerufen, mit welcher zum Beispiel der Zustand der Umgebung zurückgesetzt werden kann, sodass jeder Agent denselben Startzustand vorfindet. Danach wird die eigentliche Evaluation mit der Funktion evaluate() durchgeführt. Dies ist die wichtigste Funktion in diesem Interface und muss von jedem Optimierungsproblem implementiert werden. Als Parameter wird ein initialisiertes KNN übergeben, welches mit dem Genom eines Agenten erstellt wurde. Mit diesem soll das Optimierungsproblem gelöst werden. Die genaue Implementierung dieser Funktion kann je nach Problem sehr unterschiedlich sein. Verschiedene Beispiele werden in Kapitel 4 genauer vorgestellt. Bei der Implementierung ist zu beachten, dass die Funktion zwei Rückgabewerte erwartet. Der erste ist vom Typ float und repräsentiert den erreichten Fitnesswert. Wie in Kapitel 2.2.2 vorgestellt, bewertet dieser die Leistung des KNN und wird für die spätere Selektionsphase benötigt. Der zweite Rückgabewert ist vom Typ Dict und kann verschiedene Key-Value Paare mit Zusatzinformationen des Optimierungsproblems enthalten. Diese werden letztendlich im Datenfeld additional info des Agenten gespeichert, welches in Kapitel 3.2 vorgestellt ist. Die darin gespeicherten Daten können für eine spätere Auswertung sowie in der Abbruchbedingung für den Algorithmus verwendet werden. Nach jeder durchgeführten Evaluation wird das Pendant zur before_evaluation() Funktion ausführt, dies ist die after_evaluation() Funktion. Mit dieser sowie der letzten in diesem Interface enthaltenen Funktion clean_up() können verschiedene Tätigkeiten umgesetzt werden, welche Ressourcen freigeben oder den originalen Zustand der Umgebung wiederherstellten. Der Unterschied zwischen diesen Funktionen ist, dass die clean_up() Funktion das Pendant zur initialization() Funktion ist und nur einmalig am Ende des Trainingsverfahren aufgerufen wird.

Schnittstelle der Bibliothek

Nachdem die für diese Arbeit benötigten Komponenten vorgestellt sind, kann auf die Schnittstelle der Bibliothek genauer eingegangen werden. Ziel ist, dass diese die grundlegenden Funktionen definiert, welche sowohl von der sequentiellen als auch der parallelisierten Implementierung umgesetzt werden. Somit bieten beide Implementierungen dieselben Funktionalitäten, können einfach ausgetauscht werden und ermöglichen einen einfachen Vergleich.

Die Schnittstelle der Bibliothek besteht aus drei Interfaces, die als NeatOptimizer, NeatReporter und NeatOptimizerCallback bezeichnet werden und deren Beziehung zueinander in Abbildung (TODO ABBILDUNG) dargestellt ist. Zu erkennen ist, dass der NeatOptimizerCallback von dem NeatReporter erbt und somit dessen Funktionalität erweitert. Der NeatOptimizer besitzt genau einen NeatOptimizerCallback sowie beliebig viele NeatReporter. Auf die Funktionalität von diesen wird später genauer eingegangen. Im Folgenden wird zuerst der NeatOptimizer betrachtet, welcher fünf Funktionen besitzt, von denen vier für das Hinzufügen und Entfernen von Instanzen der Klasse NeatReporter und NeatOptimizerCallback verwendet werden. Die letzte Funktion hat den Namen evaluate(), startet den Ablauf des Optimierungsproblems und erhält als Parameter die hierfür benötigten Werte. Die ersten beiden Parameter bestimmen die Anzahl der Input- und Output-Neuronen und somit die Größe des Eingabe- und Ausgabevektors. Da der Optimierungsvorgang in NEAT, wie in Kapitel 2.3.5 beschrieben, mit einer minimalen Struktur beginnt, müssen keine Hidden-Neuronen angegeben werden. Der nächste Parameter ist eine Referenz auf eine Aktivierungsfunktion, welche von allen Neuronen verwendet wird. Einige bekannte Vertreter, von denen ein Teil in Kapitel 2.1.3 vorgestellt ist, sind standardmäßig in diesem Projekt enthalten, wobei das Hinzufügen von weiteren Funktionen jederzeit möglich ist. Hierauf folgt der Parameter challenge, der eine Klasse repräsentiert, die das Interface des Optimierungsproblems implementiert. Der Algorithmus wird versuchen, das hierin enthaltene Problem zu optimieren. Die letzten beiden Parameter sind als config und seed bezeichnet. Letzteres soll die Generierung der Zufallswerte beeinflussen und somit den Optimierungsvorgang wiederholbar und vergleichbar machen. Die config repräsentiert eine Konfiguration, in welcher verschiedene Parameter des Verfahrens spezifiziert sind. In dieser wird beispielsweise angegeben, wie hoch die Chance auf eine strukturelle Mutation ist oder wie sehr sich die Gewichte der Verbindungen ändern können. Auf die tatsächlich verwendeten Konfigurationen wird im Rahmen der Analyse in Kapitel 4 weiter eingegangen.

Das Ausführen der evaluate() Funktion startet den gesamten Optimierungsprozess, welcher je nach Komplexität eine Laufzeit von mehreren Stunden oder Tagen haben kann. Häufig ist es in diesen Anwendungsfällen gewünscht, Zwischenergebnisse und Fortschritte anzuzeigen, sodass die verbleibende Laufzeit und der Erfolg des Verfahrens besser abschätzbar ist. Dies wird in dieser Arbeit durch Callbacks realisiert, welche durch die Interfaces NeatReporter und NeatOptimizerCallback implementiert werden. Das Interface NeatReporter definiert einige Methoden, welche während der Laufzeit des Algorithmus regelmäßig an bestimmen Punkten aufgerufen werden. Klassen, die diese implementieren, können hierdurch Statusinformationen über den aktuellen Zustand sowie den Fortschritt des Verfahrens erhalten. Dieses Interface wird in dieser Arbeit unter anderem für die regelmäßige Speicherung des besten Agenten und zur Messung der Performance genutzt. Die erste hierbei implementierte Funktion ist die on initialization(), welche einmalig zu Beginn aufgerufen wird. Das Pendant hierzu ist die on cleanup() Funktion, welche einmalig am Ende aufgerufen wird. Auch für die Zwischenzeit gibt es einige Methoden, die den Beginn und das Ende verschiedener Phasen signalisieren. Die Funktionen on_generation_evaluation_start() und on_generation_evaluation_end() werden zum Beginn und Ende der Evaluationsphase aufgerufen. Als Parameter wird an beide Funktionen die aktuell evaluierte Generation übergeben. Dies kann beispielsweise zum Nachverfolgen des besten und durchschnittlichen Fitnesswertes verwendet werden. Mit den Funktionen on_agent_evaluation_start() und on_agent_evaluation_endt() wird angegeben, wann die Evaluierung eines einzelnen Agenten beginnt und abgeschlossen ist. An diese Funktion wird der eigentliche Agent sowie ein Index übergeben, welcher angibt, wie viele Evaluationen in dieser Generation bereits durchgeführt wurden. Diese Informationen können beispielsweise für einen Fortschrittsbalken verwendet werden. Die Funktionen on_reproduction_start() und on_reproduction_end() markieren den Beginn und das Ende der Reproduktionsphase, welche mit der Selektion startet und mit dem Ersetzen der vorherigen Generation durch die neu erstellten Agenten endet. Um die Zeit zu messen, welche für die Rekombination und Mutation eines einzelnen neuen Agenten benötigt wird, sind die Funktionen on_compose_offsprings_start() und on_compose_offsprings_end() enthalten. Die letzte in diesem Interface enthaltene Funktion heißt on finish() und erhält als Parameter die aktuelle Generation. Sie wird einmalig am Ende der Optimierung aufgerufen nachdem die Abbruchbedingung erfüllt ist. Diese kann verwendet werden, um das beste KNN und die erhaltenen Ergebnisse zu visualisieren und zu speichern.

Die Klasse NeatOptimizerCallback erbt von dem Interface NeatReporter und kann daher alle bereits vorgestellten Funktionen nutzen. Diese sind für den Programmablauf optional und werden nicht zwingend benötigt. Dies trifft nicht auf die letzte Funktion zu, welche im NeatOptimizerCallback zusätzlich implementiert wird. Dies ist die Funktion finish_evaluation(), welche die aktuelle Generation als Parameter übergeben bekommt und einen Wert vom Typ boolean zurückgeben muss. Hiermit wird die Abbruchbedingung umgesetzt. Die Funktion wird nach Beendigung der Evaluationsphase mit der aktuellen Generation sowie mit allen erzielten Fitnesswerten aufgerufen. Ist das Ergebnis der Funktion True, wird die Ausführung des Algorithmus beendet und die entsprechenden Callback Funktionen on_finish() und on_cleanup() aufgerufen. Liefert die Funktion

False, wird mit der Selektion, Rekombination und Mutation fortgefahren und der Zyklus startet erneut. Diese Art der Abbruchbedingung ermöglicht vielfältige Umsetzungen. Zum Beispiel kann der Algorithmus beendet werden, wenn der Fitnesswert eines Agenten einen Schwellwert übersteigt, eine gewisse Anzahl an Zyklen bzw. Generationen durchgeführt ist oder eine festgelegte Trainingszeit überschritten ist.

Serviceklassen

Ein wichtiges Ziel bei der Entwicklung ist das Einsparen von unnötigem Implementierungsaufwand, dies gilt auch für diese Arbeit. Aus diesem Grund wurden die bereits vorgestellten Interfaces erstellt, welche sowohl von der sequenziellen als auch der parallelisierten Implementierung verwendet werden. Der Vorteil hierdurch ist, dass ein einfaches Austauschen der beiden Umsetzungen möglich ist und einen einfachen Vergleich ermöglicht. Die eigentliche Implementierung wird sich zwangsläufig an einigen Punkten unterscheiden. Dennoch wird ein großer Teil der NEAT Komponenten gleich bleiben, da sich die Funktionen nicht durch eine Parallelisierung ändern. Aus diesem Grund wird ein Großteil dieser Funktionen als Serviceklassen implementiert, die keinen internen Zustand besitzen und somit zwei Vorteile bieten. Erstens ist es einfach möglich, die Funktionen in verschiedenen Implementierungen zu nutzen. Zweitens ermöglicht eine solche Struktur ein einfaches automatisiertes Testen der Implementierung. Dies ist besonders wichtig, da Fehler im Trainingsverfahren zu einem späteren Zeitpunkt aufgrund der Größe der Population schwer zu lokalisieren sind.

Insgesamt werden drei Serviceklassen mit den Namen GenerationService, ReproductionService und SpeciesService erstellt, welche Funktionen entsprechend ihrer Benennung übernehmen. Somit befasst sich die erste Klasse mit allen Funktionen, welche die ganze Generation betreffen, die zweite mit Funktionen bezüglich dem Erstellen und Modifizieren von Genomen sowie Agenten und die letzte Klasse mit Funktionen bezüglich der verschiedenen Spezies. Im Folgenden wird auf die enthaltenen Funktionen jeder Serviceklasse genauer eingegangen. Allerdings sei hierzu angemerkt, dass keine genauen Implementierungsdetails vorgestellt werden. Die theoretische Funktionalität ist in den Kapiteln 2.2 und 2.3 erläutert. Für die genaue praktische Umsetzung wird auf den veröffentlichten Programmcode verwiesen.

Der ReproductionService besitzt vor allem Funktionen, um neue Genome mittels Reproduktion zu erzeugen oder bestehende zu mutieren. Die erste Funktion heißt cross_over() und setzt die eigentliche Reproduktion um. In ihr werden zwei Elterngenome verwendet, um einen Nachkommen zu erzeugen. Grundsätzlich entsprechen sowohl die Umsetzungen dieser Funktion als auch der anderen in diesem Kapitel vorgestellten Funktionen den Erläuterungen der vorherigen Kapitel. Eine Besonderheit soll an dieser Stelle hervorgehoben werden. Ein wichtiges Ziel für ein wiederholbares Ergebnis ist, dass unabhängig von einem Prozessor mit demselben Seed immer dasselbe Ergebnis erzielt wird. Dies ist mit einem einfachen globalen Zufallsgenerator in einem verteilten System nicht möglich. Aus diesem Grund wird für jedes Genom ein neuer Zufallsgenerator erzeugt, dessen Seed sich aus

den beiden Elterngenomen ergibt und welcher für alle Zufallsoperationen verwendet wird, die dieses Genom betreffen. Der hieraus resultierende Vorteil ist, dass unabhängig vom Prozessor und dessen internem Zustand dieselben Eltern immer denselben Nachkommen produzieren. Der hierfür erstellte Zufallsgenerator wird auch für die Funktionen mutate_weights(), mutate_add_connection() und mutate_add_node() verwendet. Die erste Funktion mutiert die Gewichte aller Verbindungen, die zweite fügt eine neue Verbindung und die dritte ein neues Neuron dem Genom hinzu. Bei letzterem werden entsprechend der Definition in Kapitel 2.3.2 zusätzlich zwei neue Verbindungen erstellt.

Die Klasse GenerationService besitzt einige Funktionen zum Erzeugen der initialen Population. Wie bei der Schnittstellendefinition beschrieben, wird anfänglich nur die Anzahl an Input- und Output-Neuronen übergeben. Die Funktion create_genome_structure() erzeugt mit diesen Informationen eine Struktur für das KNN, welche die entsprechenden Neuronen und Verbindungen enthält. In der Funktion create_initial_generation() kann mit der generierten Struktur letztendlich eine neue Generation erstellt werden. Hierfür wird das Genom für jeden zu erstellenden Agenten einmal kopiert und die Gewichte der Verbindungen zufällig gesetzt. Schlussendlich werden die Agenten noch den Spezies zugeordnet.

Der SpeciesService besitzt im Vergleich zum GenerationService bedeutend mehr Funktionen. Um die erstellten Agenten den verschiedenen Spezies zuzuordnen, kann die Funktion sort_agents_into_species() genutzt werden. Entsprechend der Erläuterung in Kapitel 2.3.4 iteriert diese über die Liste mit allen Agenten und überprüft für jeden die Kompatibilität mit den existierenden Spezies. Der Kompatibilitätswert zwischen zwei Genomen kann mit der Funktion calculate_genetic_distance() berechnet werden. Ist dieser kleiner als ein konfigurierter Schwellwert, wird der Agent der Spezies zugeordnet. Existiert keine passende Spezies, wird eine neue erstellt. Dies sind aber nicht die einzigen Funktionen. In Kapitel 2.3.4 ist das explicit fitness sharing Verfahren eingeführt worden, welches mit der Funktion calculate_adjusted_fitness() umgesetzt ist. Der angepasste Fitnesswert wird schließlich bei der Selektion verwendet, welche mit den Funktionen calculate_amount_offspring() und create_offspring_pairs() umgesetzt ist. Die erste Funktion berechnet, wie viele Nachkommen jede Spezies erhalten soll. Die zweite Funktion erstellt die tatsächlichen Elternpaare, welche zum Erzeugen der Nachkommen verwendet werden. Zuletzt sind noch einige kleinere Funktionen enthalten. Bei NEAT können nur die besten 50% der Genome zur Reproduktion ausgewählt werden, die Funktion remove_low_genomes() entfernt die restlichen. Beim NEAT Algorithmus wird nach jeder Generation ein neues Genom zum Repräsentieren jeder Spezies ausgewählt. Dies ist in diesem Projekt mit der Funktion select_new_representative() möglich. Die letzten beiden Funktionen heißen reset_species() und get_species_with_members(). Die erste hiervon entfernt alle Mitglieder einer Spezies. Dies wird typischerweise durchgeführt bevor die neu erstellten Agenten den Spezies zugewiesen werden. Nach der Zuweisung wird die zweite Funktion aufgerufen. Diese filtert Spezies heraus, welche keine Mitglieder zugewiesen bekommen haben und entfernt diese aus der Liste.

Performance Messung

Es gibt verschiedene Kriterien um die Performance eines neuroevolutionären Algorithmus zu beurteilen. In der Literatur, so auch in Quelle [27], wird häufig die Anzahl an Generationen in Kombination mit der Populationsgröße angegeben bis eine Lösung für ein Optimierungsproblem gefunden wurde. Hiermit kann die Anzahl der evaluierten KNN abgeleitet werden und ein Vergleich zu anderen Verfahren ist möglich. In vielen Fällen ist dies sinnvoller, als ein direkter Vergleich der tatsächlichen Laufzeiten, da diese sehr von der verwendeten Hardware, Programmiersprache und der effizienten Implementierung abhängig sind beziehungsweise beeinflusst werden können. Auch in dieser Arbeit wird diese Art der Performance Messung mit der Klasse FitnessReporter durchgeführt, welcher zwei Aufgaben erfüllt. Diese erbt von der bereits vorgestellten Klasse NeatReporter und hat somit Zugriff auf die Funktion on generation evaluation end(). Der FitnessReporter legt für jede Generation einen Datensatz an, in welcher der durchschnittliche und beste Fitnesswert gespeichert werden. Hierdurch ist einerseits ersichtlich, wie viele Generationen der Algorithmus benötigt und zusätzlich kann der Fortschritt zwischen den einzelnen Generationen betrachtet werden. Dies kann wertvolle Erkenntnisse liefern, wenn der Algorithmus schlechter oder langsamer ist als erwartet.

In dieser Arbeit spielt auch die tatsächlich benötigte Ausführungszeit eines Algorithmus, welche auch als wall clock time bezeichnet wird, eine große Rolle. Im Rahmen dieser Arbeit werden die Zeiten erfasst, und dienen als Basis für den Vergleich zwischen der sequenziellen und parallelisierten Implementierung. Hierfür wird die Klasse TimeReporter erstellt, welche ebenfalls das Interface NeatReporter implementiert und Zugriff auf die verschiedenen bereits vorgestellten Funktionen besitzt. Mit diesen können die benötigten Ausführungszeiten für verschiedene Phasen des Algorithmus erfasst werden. Auf die genaue Unterteilung wird im Rahmen von Kapitel 4 genauer eingegangen.

Visualisierung

Die verschiedenen erfassten Messwerte sollen für eine bessere und einfachere Auswertung graphisch dargestellt werden können. Die beste Fitnesswerte pro Generation soll in einem Liniendiagramm und die erfassten Ausführungszeiten in einem Säulendiagramm dargestellt werden. Bei letzterem sollen die verschiedenen Phasen gestapelt sein. Dies hat den Vorteil, dass sowohl das Verhältnis der verschiedenen Phasen zueinander als auch die gesamte Ausführungszeit über mehrere Generationen hinweg ausgewertet werden kann. Für diese Diagramme soll das Paket Matplotlib für die Sprache Python verwendet werden [48]. Dieses ermöglicht ein einfaches und schnelles erstellen von diversen Diagrammtypen und ist zusätzlich sehr gut in die Entwicklungsumgebung Pycharm integriert, welche im Rahmen dieser Arbeit verwendet wird.

Zusätzlich zu den Diagrammen sollen auch die erstellten KNN visualisiert werden, was eine größere Herausforderung darstellt. Eine mögliche Umsetzung welche in diesem Rahmen evaluiert wird, nutzt die Software Grapviz [49]. Diese besitzt eine eigene Beschrei-

bungssprache, welche als DOT bezeichnet wird und die Beschreibung von verschiedene Graphentypen ermöglicht. Würde ein KNN in dieser Arbeit mit Graphviz visualisiert werden, müssten die im Genom kodierten Informationen im DOT Format in eine Textdatei exportiert werden und erst danach kann ein PDF oder ähnliches mithilfe von Graphviz erstellt werden. Da dieser Vorgang relativ aufwändig ist, wird eine alternative Lösung mithilfe des Pythonpakets NetworkX umgesetzt [50]. Dieses wird normalerweise primär für die Analyse von Graphen eingesetzt, aber ermöglicht auch die Visualisierung von diesen. Als Basis hierfür verwendet das Paket entweder die vorgestellte Software Graphviz oder alternativ Matplotlib. letzteres bietet sich mehr an, da es bereits in diesem Projekt verwendet wird und eine bessere Integration in die Entwicklungsumgebung bietet. Allerdings müssen auch bei diesem Verfahren die im Genom enthaltenen Informationen in einem gewissen Format an das Paket übergeben werden. Eine weitere Herausforderung bei der Implementierung ist, dass die Knoten des Graphen, in diesem Fall die Neuronen, normalerweise eine zufällige Position zugewiesen bekommen und daher keine Darstellung der Schichten möglich ist. Um diese zu erhalten müssen sämtliche Positionen manuell gesetzt werden. Hierbei ist das Bestimmen der X-Koordinate einfach, da diese für jedes Neuron bereits im Genom gespeichert ist. Die Y-Koordinate wird dann in Abhängigkeit von der Anzahl an weiteren Neuronen in derselben Schicht bestimmt.

Persistenz

Die persistente Speicherung der Optimierungsergebnisse ist die letzte Anforderung für diese Arbeit. Dies umfasst sowohl die Speicherung der Genome sowie die Ergebnisse der Performance Messung. Für die Speicherung der Daten wurden prinzipiell zwei Ansätze evaluiert. Beim ersten Ansatz würde eine klassische SQL- oder NoSQL-Datenbank zur Speicherung eingesetzt werden. Der Vorteil von einem solchen System ist, dass viele Nutzer gleichzeitig die Daten lesen können. Allerdings ist dies für den gegebenen Anwendungskontext nicht notwendig und der Aufwand, welcher durch die Implementierung der verschiedenen Anfragen entsteht, ist im Vergleich zur zweiten Variante bedeutend höher. Zusätzlich muss ein dauerhaft verfügbarer Datenbankservice zur Verfügung gestellt werden, sodass die Ergebnisse mit anderen Nutzern teilbar sind.

Der zweite Ansatz ist bedeutend einfacher. Das Ziel ist, dass die Ergebnisse nur in einer lokalen Datei gespeichert beziehungsweise aus einer solchen Datei geladen werden können. Ein solches Vorgehen bietet einige Vorteile. Der erste ist, dass ein solches Verfahren mit wenig Aufwand implementierbar ist. Das standardmäßig in Python enthaltene Pickle Modul erfüllt genau diese Voraussetzungen. Dieses bietet sowohl vorgefertigte Funktionen zum serialisieren von unterschiedliche Python Objekte welche dann in einer Datei gespeichert werden können sowie Funktionen zum Laden von solchen Datensätzen. Zwei Vorteile von diesem Verfahren sind, dass der programmiertechnische Aufwand sehr gering ist und dass trainierte Modelle als Datei vorliegen wodurch sie auf Github oder ähnlichem einfach veröffentlicht werden können.

Das eigentliche Speichern soll auf jeden Fall am Ende das Trainingsverfahrens durch-

geführt werden. Allerdings kann es zusätzlich sinnvoll sein, in regelmäßigen Abständen die bis dahin erhaltenen Zwischenergebnisse ebenfalls zu sichern. Hierfür gibt es verschiedene Gründe. Bei einer ungünstigen Konfiguration kann ein Trainingsverfahren eventuell niemals die Abbruchbedingung erfüllen. In diesem Fall müsste das Programm manuell abgebrochen werden wobei sämtliche Ergebnisse verloren gehen würden. Auch bei Implementierungsfehler können zu einem Absturz führen, bei welchem nicht die finalen Ergebnisse gespeichert werden. Bei der parallelisierten Implementierung können zusätzlich Hardware- und Netzwerkfehler auftreten für die MPI, wie in Kapitel 2.4.1 beschrieben, anfällig ist und ebenfalls zu einem Absturz der Anwendung führen. Aus diesem Grund wird die Klasse CheckPointReporter implementiert, welche ebenfalls das Interface NeatReporter umsetzt. Hierbei werden die Funktionen on generation evaluation end() und on finish() implementiert. Bei Aufruf von letzterem wird das Ergebnis immer gespeichert. Bei der on_generation_evaluation_end() ist es abhängig von der gewählten Konfiguration. In dieser wird spezifiziert, nach wie vielen Generationen ein Zwischenergebnis abgespeichert werden soll. Prinzipiell ist es möglich sowohl nach jeder Generation die Ergebnisse zu speichern oder gar nicht, wobei letzteres nicht zu empfehlen ist.

3.3 Sequenzielle Implementierung

Im vorherigen Kapitel sind die verschiedenen Komponenten dieser Arbeit vorgestellt, welche zur Implementierung des sequenziellen Verfahrens verwendet werden. Der grundsätzliche Ablauf entspricht hierbei den Erläuterungen der Kapiteln 2.2 und 2.3. Daher wird in diesem Kapitel hauptsächlich auf die technische Umsetzung sowie das Zusammenspiel der bereits vorgestellten Komponenten eingegangen.

Die evaluate() Funktion ist, wie in Kapitel 3.2 beschrieben, der Einstiegspunkt für die Bibliothek. Ein Überblick über diese ist im Sequenzdiagramm in Abbildung (TODO Abbildung) gegeben. Initial werden die bereits spezifizierten NeatReporter und der Neat-OptimizerCallback mit der Funktion on initialization() über den Beginn des Verfahrens informiert. Direkt im Anschluss wird auch das Optimierungsproblem initialisiert und die initiale Generation erstellt. Danach beginnt der Zyklus aus Evaluation, Selektion, Rekombination und Mutation. Hierfür wird zuerst die evaluate_generation() Funktion aufgerufen, deren Implementierung im weiteren Verlauf noch genauer erläutert wird. Grundsätzlich werden die verschiedenen Agenten im Optimierungsproblem evaluiert und erhalten einen Fitnesswert. Nach Abschluss dieser Phase wird überprüft, ob das Verfahren terminiert werden soll, indem die Funktion finish_evaluation() des NeatOptimizerCallbacks aufgerufen wird. Ist dies der Fall, wird die Schleife abgebrochen, die finale Generation zurückgegeben und die NeatReporter sowie der NeatOptimizerCallback über hierüber informiert. Andernfalls wird mit der Funktion build_new_generation() eine neue Population durch die Phasen Selektion, Rekombination und Mutation erstellt. Auch hierauf wird in diesem Kapitel noch genauer eingegangen.

Der Ablauf der evaluate_generation() Funktion ist genauer in Abbildung (TODO ABBIL-

DUNG) dargestellt. Am Anfang werden die NeatReporter und der NeatOptimizerCallback über den Beginn der Funktion informiert. Im Anschluss wird über alle Agenten iteriert und für jeden die Evaluation durchgeführt. Dies umfasst das Aufrufen der entsprechenden Funktionen im NeatOptimizerCallback und den NeatReportern, sowie das Erstellen und Evaluieren KNN.

Abbildung (TODO Abbildung) zeigt den Ablauf der $build_new_generation()$ Funktion. In dieser sind die meisten Funktionen von NEAT enthalten und dementsprechend aufwendig ist die Implementierung. Zu Beginn werden wie bei der $evaluate_generation()$ Funktion die NeatReporter und der NeatOptimizerCallback über den Beginn dieser Phase informiert. Danach werden entsprechend der originalen Publikation von NEAT die besten Genome jeder Spezies mit mehr als x Mitglieder selektiert und unverändert in die nächste Generation kopiert, wobei x ein konfigurierbarer Schwellwert ist. Im Anschluss wird über jede Spezies iteriert und der höchste erreichte Fitnesswert aktualisiert, sofern sich dieser in der letzten Generation geändert hat. Dies ist für den nächsten Schritt wichtig, da bei diesem die Spezies entfernt werden, welche keine Fitnesssteigerung in den letzten t Generationen erzielt haben, wobei auch t konfigurierbar ist. Die Mitglieder von diesen können in der nachfolgenden Selektion nicht als Elternteile ausgewählt werden.

Für die verbleibenden Spezies wird im Anschluss der angepasste Fitnesswert berechnet und auf Basis von diesem im darauffolgenden Schritt die Anzahl an Nachkommen bestimmt. Bevor es zur eigentlichen Selektion kommt, werden noch die Agenten entfernt, welche im vorherigen Durchlauf schlechte Fitnesswerte erzielt haben. Diese können somit nicht für die Reproduktion ausgewählt werden. Nachdem diese Schritte durchgeführt sind, kann die eigentliche Selektion mit der Funktion create_offspring_pairs() beginnen. Im Rahmen dieser Funktion wird über jede Spezies iteriert und für jeden zu erzeugenden Nachkommen zwei Elternteile zufällig ausgewählt, welche als Paar in einer Liste zwischengespeichert werden. Anhand dieser Liste wird die Rekombination und Mutation durchgeführt. Durch die Funktionen cross_over() wird die Rekombination implementiert, welche das Genom für den Nachkommen erzeugt. Anschließend wird das Genom mutiert. Hierfür werden die Funktion mutate_weights(), mutate_add_node() und mutate_add_connection() nacheinander aufgerufen.

Bevor das Sortieren der neu erstellten Agenten in die Spezies beginnen kann, müssen noch zwei weitere Funktionen ausgeführt werden. Zuerst wird für jede Spezies die select_new_representative() Funktion aufgerufen, welche ein Mitglied zufällig auswählt und dessen Genom als Repräsentant setzt. Danach werden durch den Aufruf der Funktion reset_species() alle bisherigen Mitglieder entfernt. Erst an dieser werden die neuen Agenten auf Basis ihres Kompatibilitätswertes tatsächlich den verschiedenen Spezies zugeordnet. Als letzte Aktionen der build_new_generation() Funktion werden die Spezies herausgefiltert, welche keine Mitglieder erhalten haben. Danach wird die neue Generation erstellt und als Ergebnis der Funktion zurückgegeben.

4 Analyse

Auf Basis der in Kapitel 3.3 vorgestellten sequenziellen Implementierung wird eine Analyse des Verfahrens durchgeführt. Dafür wird in Kapitel 4.2 die korrekte Funktionalität der Implementierung überprüft. In Kapitel 4.3 wird das implementierte Verfahren auf verschiedene Optimierungsprobleme angewendet und ausgewertet. Hierbei wird insbesondere die Ausführungszeit betrachtet, da diese mit dem parallelisierten Verfahren reduziert werden soll. Zuletzt werden in Kapitel 4.4 die Ergebnisse zusammengefasst.

4.1 Testumgebung

Bevor die verschiedenen Optimierungsprobleme getestet werden, wird an dieser Stelle zunächst auf die Testumgebung eingegangen. Hierfür sind verschiedene Anforderungen zu definieren. Da in dieser Arbeit die Ausführung auf einem verteilten System betrachtet werden soll, müssen grundsätzlich mehrere Geräte zur Verfügung stehen, welche über ein Netzwerk miteinander verbunden sind. Ein aussagekräftiger Vergleich zwischen der parallelisierten und sequenziellen Implementierung ist einfacher, wenn alle Geräte des Clusters dieselbe Hardware verwenden. Bieten diese dieselbe Leistung, steht dem Cluster mit der doppelten Anzahl an Geräten auch die doppelte Rechenkapazität zur Verfügung. Als letzte Anforderung muss das System sowohl in der Anschaffung als auch im Betrieb kostengünstig sein

Ein Ansatz zur Umsetzung einer solchen Testumgebung ist die Nutzung von mehreren virtuellen Servern. Für diese gibt es zahlreiche kostengünstige Angebote von verschiedenen Anbietern. Allerdings kann bei solchen Systemen nicht auf die zugrunde liegende Hardware Einfluss genommen werden, wodurch ein Vergleich der verschiedenen Implementierungen schwierig sein kann. Aus diesem Grund ist dieser Ansatz für den beschriebenen Anwendungskontext ungeeignet und wird nicht weiter verfolgt. Eine Alternative ist die Anschaffung mehrerer physischer Geräte, welche dieselben Komponenten verwenden. Wie in Kapitel 2.4.1 beschrieben, kann mit diesen ein Beowulf Cluster erstellt werden, der das kostengünstige Testen von Anwendungen im Bereich HPC ermöglicht. Da in dieser Arbeit primär der Vergleich zwischen der sequenziellen und parallelisierten Implementierung untersucht wird, ist die absolute Leistung nicht das entscheidende Kriterium. Der Fokus liegt auf den Anschaffungs- und Betriebskosten sowie der platzsparenden Unterbringung. Hierfür bieten sich Raspberry Pis besonders gut an.

In diesem Projekt wird als Basis das Modell 4 mit insgesamt 4GB RAM verwendet, auf welchen standardmäßig ein 64bit Quad-core ARM Prozessor verbaut ist [51]. Zusätzlich

kann der später erstellte Cluster von der Gigabit Ethernet Verbindung profitieren, welche in diesem Modell neu hinzugefügt wurde und eine ausreichend große Bandbreite für eine effizientere Kommunikation bietet. Die Gesamtkosten für einen Raspberry Pi mit dieser Konfiguration belaufen sich zum Zeitpunkt der Arbeit auf ca. 60 Euro. Als Betriebssystem wird Raspian (Version 10) verwendet. Zwar ist dieses Standardbetriebssystem nur in einer 32bit Variante verfügbar und dadurch in vielen Fällen langsamer als andere 64bit Betriebssysteme, dennoch überwiegen die Vorteile für diese Arbeit. Raspian ist weit verbreitet und bietet eine hohe Kompatibilität zu diversen Softwarepaketen, wie zum Beispiel Tensorflow, von welchen zukünftige Erweiterungen profitieren können. Für die eigentliche Ausführung des implementierten Verfahrens wird Python in der Version 3.7.3 verwendet. Die erforderlichen Bibliotheken sind in der Datei requirements.txt im Projekt spezifiziert und in einer virtuellen Umgebung installiert. Mit diesem Aufbau wird die Analyse des sequenziellen Verfahrens durchgeführt.

4.2 Verifizierung der Funktionalität

Bevor die Analyse aufwändiger Optimierungsprobleme durchgeführt wird, soll die korrekte Funktionalität der sequenziellen Implementierung anhand eines einfachen Beispiels getestet werden. Hierbei liegt der Fokus vor allem auf den strukturellen Mutationen, welche essenziell für größere Probleme sind. Durch eine fehlerhafte Implementierung kann beispielsweise das langfristige Integrieren von neuen erforderlichen Strukturen fehlschlagen. Auch besteht die Möglichkeit, dass ein lokales Maximum durch einen Agenten gefunden wird, dessen Genom dann die restliche Population dominiert, mit der Folge, dass keine neuen Lösungsansätze entwickelt werden können.

Um solche Fehler zu entdecken und die korrekte Funktionalität des Algorithmus zu verifizieren, bietet sich das XOR-Problem besonders gut an. Zusätzlich kann ein Vergleich der erhaltenen Ergebnisse mit der originalen Implementierung durchgeführt werden, da auch die Funktionalität von dieser mit dem XOR-Problem verifiziert wurde und die Ergebnisse in Quelle [27] veröffentlicht sind. Die klassische XOR-Funktion erhält zwei binäre Eingabewerte und erzeugt einen Ausgabewert. Dieser nimmt den Wert 1 an, wenn genau einer der beiden Eingabewerte 1 ist. Andernfalls gibt die Funktion den Wert 0 zurück. Die Abbildung (TODO ABBILDUNG) zeigt links alle möglichen Kombinationen mit zwei Eingabewerten sowie die dazugehörigen Ergebnisse. Rechts in der Abbildung sind die Eingabe- und Ausgabewerte zweidimensional dargestellt. Ziel des XOR-Problems ist, dass ein neuronales Netz für jedes mögliche Paar der Eingabewerte den richtigen Ausgabewert berechnet bzw. den Klassen 0 und 1 zuordnet. Durch die Abbildung (TODO ABBILDUNG) ist erkennbar, dass das Unterteilen der Ausgabewerte in die zwei Klassen 0 und 1 nicht mit einer linearen Funktion möglich ist. Diese Eigenschaft macht die XOR-Funktion für die Verifizierung der Funktionalität von NEAT besonders geeignet. Wie in Kapitel 2.1.4 beschrieben, kann ein KNN ohne *Hidden*-Neuronen nur eine lineare Funktion abbilden und ist somit nicht in der Lage, das XOR-Problem zu lösen. Dies trifft auch auf die KNN der initialen Population von NEAT zu, welche mit einer minimalen

```
class OptimizationProblemXOR(OptimizationProblem):

xor_tuples = [[0, 0, 0], [1, 0, 1], [0, 1, 1], [1, 1, 0]]

def evaluate(self, neural_network) -> (float, Dict[str, object]):
    fitness_val = 4.0

for xor_input in ChallengeXOR.xor_tuples:
    inputs = [xor_input[0], xor_input[1]]
    result_array = neural_network.activate(inputs)
    result = result_array[0]

fitness_val -= (abs(xor_input[2] - result))

# Square remaining fitness
fitness_val = fitness_val ** 2

return fitness_val, None
```

Abbildung 4.1: Implementierung des XOR-Problems in Python

Struktur beginnen, die nur aus *Input*- und *Output*-Neuronen besteht. Somit müssen für das erfolgreiche Lösen des XOR-Problems neue Neuronen und Verbindungen erfolgreich in die Population integriert und optimiert werden.

4.2.1 Implementierung

In Abbildung 4.2.1 ist die Implementierung dieses Optimierungsproblems abgebildet, welche im Folgenden genauer erläutert wird. Zu erkennen ist, dass die Implementierung nur wenige Zeilen Programmcode benötigt, was die einfache Nutzung der Bibliothek für verschiedene Optimierungsprobleme verdeutlicht. Zu Beginn des Optimierungsproblems ist eine Liste definiert, welche die verschiedenen Kombinationen der Ein- und Ausgabewerte des XOR-Problems enthält. Danach ist die evaluate() Funktion implementiert, welche als Parameter ein initialisiertes KNN übergeben bekommt und mit diesem versucht, das XOR-Problem zu lösen. Das KNN besitzt entsprechend der später vorgestellten Konfiguration zwei Eingabewerte und einen Ausgabewert. Zum Lösen des Optimierungsproblems wird über die verschiedenen Kombinationen von Eingabewerten iteriert und für jeden Eintrag das KNN einmal aktiviert. Das Ergebnis der Aktivierung ist eine Liste, welche in diesem Fall entsprechend der Anzahl an Ausgabeneuronen nur einen Wert enthält, und zwar das Ergebnis des KNN für die XOR-Funktion. Bei dieser Art der Implementierung wird davon ausgegangen, dass eine Sigmoidfunktion für die Neuronen verwendet wird, sodass das Ergebnis zwischen 0 und 1 liegt. Allerdings ist der Ausgabewert allein nicht ausreichend. Wie in den vorherigen Kapiteln beschrieben muss die evaluate() Funktion den Fitnesswert berechnen und diesen als Ergebnis zurückgeben. Im nächsten Schritt

muss somit die Fitnessfunktion entwickelt werden, welche in diesem Beispiel der Funktion aus Quelle [27] entspricht. Zu Beginn wird der Fitnesswert entsprechend der Anzahl an Berechnungen auf 4 initialisiert. Nach jeder Aktivierung wird die Differenz zwischen dem erwarteten und tatsächlich erhaltenen Ergebnis berechnet und anschließend vom Fitnesswert subtrahiert. Da die Differenz aufgrund der Aktivierungsfunktion und der Ausgabewerte zwischen 0 und 1 liegen muss, ist der Fitnesswert am Ende der Schleife mindestens 0 und maximal 4. Der verbleibende Wert wird danach quadriert, sodass ein besserer Agent einen proportional höheren Fitnesswert erhält [27]. Am Ende wird dies als Ergebnis der Funktion zurückgegeben. Wie aus der Funktionssignatur zu entnehmen ist, kann optional zusätzlich ein *Dict* übergeben werden, welches Zusatzinformationen enthält. In diesem kann beispielsweise ein boolean Wert enthalten sein, welcher anzeigt, ob das KNN für alle Eingaben den korrekten Wert berechnet hat. Dieser Wert kann dann beispielsweise für die Abbruchbedingung verwendet werden.

4.2.2 Parametrisierung und Ergebnisse

Die grundsätzliche Implementierung für das XOR-Optimierungsproblem ist im vorherigen Kapitel beschrieben. Bevor das Verfahren durchgeführt wird, sind noch einige grundlegende Parameter zu spezifizieren, welche sich in diesem Beispiel an Quelle [27] orientieren. Wie bereits beschrieben besitzt jedes KNN entsprechend dem Optimierungsproblem zwei Input-Neuronen und ein Output-Neuron. Zusätzlich verwenden alle Neuronen als Aktivierungsfunktion eine modifizierte Sigmoidfunktion, deren Ausgabewert mit $f_{act}(net_j) = \frac{1}{1+e^{-4.9 \cdot net_j}}$ berechnet wird. Des Weiteren ist die Abbruchbedingung zu bestimmen. Das Optimierungsverfahren wird beendet, wenn ein KNN für alle vier Eingabekombinationen den richtigen Ausgabewert erzeugt. Hierbei wird das Ergebnis als korrekt gewertet, wenn der Ausgabewert o für alle Kombinationen, die 1 ergeben sollen, o > 0.5 ist. Dementsprechend muss für alle Kombinationen, die 0 ergeben sollen, die Bedingung o < 0.5 zutreffen. Zusätzlich wird in diesem Durchlauf eine Populationsgröße von 150 Agenten angenommen. Die Koeffizienten für die in Kapitel 2.3.4 vorgestellte Kompatibilitätsfunktion sind $c_1 = 1.0$, $c_2 = 1.0$ und $c_3 = 0.4$. Ein Genom wird einer Spezies zugeordnet, wenn die berechnete Kompatibilität kleiner als der Schwellwert $\delta_t = 3.0$ ist. Auch der in Kapitel 2.2.2 vorgestellte Elitismus wird in dieser Arbeit implementiert. Der beste Agent jeder Spezies, welche mehr als 5 Mitglieder besitzt, wird unverändert in die nächste Generation kopiert. Des Weiteren erhält eine Spezies nur Nachkommen zugewiesen, wenn in den letzten 15 Generationen eine Steigerung des maximal erreichten Fitnesswertes erzielt wurde. Zuletzt sind noch die Wahrscheinlichkeiten für die Mutation und Rekombination zu bestimmen. Es besteht für jedes Verbindungsgewicht eine Wahrscheinlichkeit von 80%, dass dieses mutiert wird. In diesem Fall wird das Gewicht 10% der Fälle zufällig neu gewählt, andernfalls wird eine Gauss-Mutation durchgeführt, bei welcher ein Zufallswert auf das Gewicht addiert wird. Zusätzlich besteht für jedes Genom eine Wahrscheinlichkeit von 3\%, dass ein neues Neuron hinzugefügt wird. Die Wahrscheinlichkeit für eine neue Verbindung liegt bei 5\%. Bezüglich der Rekombination besteht eine Chance von 25\%, dass eine Verbindung, welche in beiden Elternteilen deaktiviert ist, im Nachkommen wieder aktiviert wird.

Mit diesen Parametern wird das XOR-Problem 100 mal nacheinander durchgeführt und die Anzahl an Generationen gemessen, welche zum Lösen des Problems benötigt werden. Die Ergebnisse zeigen, dass im Durchschnitt nach 38 Generationen ein KNN das Optimierungsproblem erfolgreich lösen kann. Im besten Durchlauf wurden 5 Generationen, im längsten Durchlauf 98 Generationen benötigt. Aus diesen Ergebnissen ist erkennbar, dass sich die Werte sehr unterscheiden können und dennoch sind in allen 100 Durchläufen gültige Lösungen gefunden wurden. Dass dieses Verhalten nicht ungewöhnlich ist, zeigt ein Vergleich der Ergebnisse mit denen aus der Publikation in Quelle [27]. Mit der originalen Implementierung werden durchschnittlich 32 Generationen und im längsten Durchlauf 90 Generationen zum Lösen des Optimierungsproblems benötigt. Zwar sind die erhaltenen Werte in dieser Arbeit etwas schlechter, die Unterschiede sind jedoch minimal und aufgrund der hohen Varianz der Ergebnisse vernachlässigbar.

Das Python Paket mit dem Namen neat-python aus Quelle [29] ist eine weit verbreitete Implementierung des NEAT Algorithmus und verwendet eine andere Konfiguration für das XOR-Problem. Zusätzlich sind in dieser Implementierung einige Anpassungen durchgeführt worden, welche eine bessere Performanz bieten sollen. Beispielsweise wird bei der Berechnung des Kompatibilitätswertes standardmäßig die Anzahl an excess genes und disjoint genes durch den Wert N dividiert. Bei kleinen KNN ist dieser Wert 1 und andernfalls die Größe des KNN. Bei der neat-python Implementierung hingegen wird immer durch die Größe des KNN dividiert. Zusätzlich verwendet diese Implementierung bedeutend höhere Wahrscheinlichkeiten für die strukturellen Mutationen. Diese Anpassungen werden für die Implementierung dieser Arbeit übernommen und das XOR-Problem erneut getestet. Die Wahrscheinlichkeit, dass eine neue Verbindung hinzugefügt wird, liegt bei 50% anstelle von 5% bei der originalen Publikation. Ein neues Neuron wird mit einer Wahrscheinlichkeit von 20% hinzugefügt. Zuletzt wird der Faktor c_3 der Kompatibilitätsfunktion auf 0.5 erhöht und die Aktivierungsfunktion geändert. Bei verschiedenen Tests wurden die besten Ergebnisse mit der tanh Funktion erzielt. Das Problem wird erneut 100 mal nacheinander evaluiert und die Anzahl an Generationen zur Lösung gemessen. Mit der vorgestellten Konfiguration werden durchschnittlich 18 Generationen benötigt bis ein Agent das XOR-Problem erfolgreich löst. Im besten Durchlauf hat ein Agent bereits nach 4 Generationen eine Lösung gefunden, beim schlechtesten erst nach Generation 49. Diese Ergebnisse sind im Vergleich zur originalen Implementierung besser. Daher werden die vorgenommenen Anderungen bei den nachfolgenden Verfahren beibehalten.

Zuletzt soll die tatsächlich erhaltene Lösung genauer betrachtet werden. Im Durchschnitt hat NEAT Lösungen mit 2 oder 3 Hidden-Neuronen entwickelt. Allerdings sind auch einige KNN entstanden, welche nur eines und somit eine minimale Struktur zum Lösen des XOR-Problems besitzen. Eine solch evaluiertes KNN ist in Abbildung 4.2 links dargestellt. Die eigentliche Abbildung ist mithilfe der implementierten Visualisierung erstellt worden, welche die Pakete NetworkX und Matplotlib nutzt. Bei solchen Darstellungen ist zu beachten, dass die orangenen Neuronen vom Typ Input, die grünen vom Typ Hidden und die blauen vom Typ Output sind. Die Zahlen auf den Neuronen reprä-

Abbildung 4.2: Links die Lösung für das XOR-Problem mit einem *Hidden*-Neuron, rechts die dazugehörigen Fitnesswerte pro Generation

sentieren die jeweilige ID, während die Pfeile die Verbindungen zwischen den Neuronen darstellen. Für eine bessere Übersichtlichkeit wird auf die Darstellung der Gewichte verzichtet. Prinzipiell kann eine solche Abbildung auch gestrichelte Verbindungen enthalten. Diese sind im Genom deaktiviert und werden nicht für die Berechnungen verwendet. In der Abbildung rechts ist der Verlauf des maximalen, minimalen und durchschnittlichen Fitnesswertes für jede Generation dargestellt. Auch diese Abbildung wird mit Matplotlib im Rahmen des implementierten FitnessReporters automatisch erstellt und zeigt einige interessante Eigenschaften. Der durchschnittliche Fitnesswert steigt trotz einiger Einbrüche relativ kontinuierlich an. Hieraus lässt sich schließen, dass auch die Population im ganzen Fortschritte erzielt. Der maximale Fitnesswert hingegen stagniert für einige Generationen beim Wert 9. Der Grund hierfür liegt in der Fitnessfunktion. Ein einfaches KNN ohne *Hidden*-Neuronen kann drei Werte des XOR-Problems richtig bestimmen. Ist dies der Fall, ergibt die Fitnessfunktion den Wert 9. Ab diesem Wert wird kein Fortschritt des Fitnesswertes erzielt, bis das neue Neuron erfolgreich in die Struktur integriert ist. Der minimale Fitnesswert ist im gesamten Verlauf sehr gering. Der Grund hierfür ist, dass durch unpassende Mutationen oder Rekombinationen Genome entstehen können, bei denen die negativen Eigenschaften überwiegen.

Abbildung 4.3 zeigt die Ausführungszeit des Verfahrens in Sekunden für jede Generation. Auch dieser Graph wird wieder automatisch mit dem Paket Matplotlib generiert und zeigt drei verschiedene Phasen. Der blaue Bereich zeigt die Evaluation Time, welche die benötigte Evaluationszeit für alle Agenten ist. Der grüne Balken repräsentiert die Compose Offspring Time, in welcher die Zeit für die Rekombination und Mutation aller Agenten gemessen wird. Die verbleibenden Aktionen bezüglich NEAT, wie zum Beispiel das Sortieren der Agenten in die verschiedenen Spezies, wird im Rahmen der Reproduction Time erfasst, welche mit dem orangenen Balken repräsentiert wird. Die benötigte Zeit zum Speichern von Zwischenergebnissen und Erzeugen von Log-Ausgaben wird nicht erfasst, da diese das Ergebnis verfälschen könnten. Insgesamt ist bezüglich des XOR-

Abbildung 4.3: Ausführungszeiten des XOR-Problems auf einem Raspberry Pi 4 mit einem Prozess

Problems zu erkennen, dass die Ausführungszeit im Verlauf der Generationen tendenziell ansteigt. Dies kann durch den erhöhten Rechenaufwand erklärt werden, welcher durch größere KNN entsteht. Des Weiteren ist auffällig, dass für die letzte Generation keine Reproduction Time oder Compose Offspring Time erfasst wird. Grund hierfür ist, dass nach der evaluierten Generation die Abbruchbedingung überprüft wird, welche in diesem Fall die Ausführung beendet. Daher wird keine neue Generation erstellt. Zuletzt soll die allgemeine Ausführungszeit und das Verhältnis der verschiedenen Phasen betrachtet werden. Zu erkennen ist, dass die Ausführungszeit pro Generation weniger als eine halbe Sekunde beträgt. Dies ist vor allem für Testzwecke ein großer Vorteil, da der Effekt von Änderungen schnell zu beobachten ist. Zusätzlich ist zu erkennen, dass die meiste Zeit für das Erstellen und Mutieren von neuen Genomen und Agenten benötigt wird. Allerdings ist diese Verteilung unter Umständen nicht repräsentativ, da die XOR-Funktion ein sehr einfaches Problem ist, welches nur wenige Instruktionen umfasst. Daher werden im nächsten Kapitel aufwendigere Optimierungsprobleme betrachtet.

4.3 Optimierungsprobleme

Nach erfolgreicher Verifizierung der Funktionalität wird in diesem Kapitel auf verschiedene andere Optimierungsprobleme eingegangen, anhand derer die Analyse durchgeführt werden soll. Grundsätzlich ist bei der Implementierung zu beachten, dass keine zu aufwendigen Optimierungsprobleme verwendet werden, da der Raspberry Pi 4 nicht so leistungsfähig ist und die benötigte Optimierungszeit sehr hoch sein kann. Daher werden im Folgenden hauptsächlich klassische Probleme des bestärkenden Lernens aus dem OpenAI Gym verwendet. Die ausgewählten Umgebungen sind das Cartpole, MountainCar und das Pendulum Problem. Im Folgenden wird auf die entsprechenden Optimierungsprobleme genauer eingegangen und die Implementierung der Fitnessfunktion und Abbruchbedingung vorgestellt.

4.3.1 Cartpole

Die Cartpole Umgebung, auch als Pole Balancing bezeichnet, wurde bereits 1983 das erste mal in Quelle [52] vorgestellt und ist auch heute noch ein bekanntes Optimierungsproblem, welches in vielen Publikationen verwendet wird. Auch im OpenAI Gym ist dieses Problem entsprechend der Beschreibung aus Quelle [52] enthalten und in Abbildung 4.4 dargestellt. In der Umgebung befinden sich zwei Gegenstände. Das erste ist ein Wagen, welcher vom Agenten nach links und rechts bewegt werden kann. Hierauf befindet sich ein Balken, der am unteren Ende mit dem Wagen verbunden ist. Entsprechend seiner Position kann dieser nach links oder rechts kippen. Ziel des Agenten ist, durch Steuerung des Wagens den Balken so lange wie möglich senkrecht zu balancieren. Bezüglich der Abbruchbedingung gilt, dass der Agent scheitert, wenn sich der Balken um mehr als 15 Grad zur Seite neigt oder der Wagen zu weit vom Zentrum entfernt ist. Als Eingabewerte für das KNN werden von der Umgebung vier Werte zur Verfügung gestellt, für welche je ein Eingabeneuron erstellt wird. Dies ist unter anderem die Position und Geschwindigkeit des Wagens, der aktuelle Winkel des Balkens und dessen Anderungsrate. Zusätzlich besitzt das erstellte KNN zwei Ausgabeneuronen, welche die jeweilige Richtung repräsentieren. Ist der Aktivierungsgrad des erstens Output-Neurons höher als der des zweiten, wird der Wagen nach links bewegt und andernfalls nach rechts. Bevor die Evaluation mit

Abbildung 4.4: Darstellung der Cartpole Umgebung aus dem OpenAI Gym

dieser Umgebung durchgeführt wird, müssen die Fitnessfunktion, Lösungsbedingung und Konfiguration festgelegt werden. Beim klassischen bestärkenden Lernen, wie in Kapitel 2.1.6 beschrieben, erhält der Agent nach jedem Zeitschritt einen reward. Da das OpenAI Gym primär für diese Art des Lernens konzipiert ist, wird auch hier nach jeder Aktion in der Umgebung ein reward zurückgegeben. In diesem Fall erhält ein Agent bis zum Scheitern für jeden Zeitschritt einen reward mit der Wertigkeit 1. Mit diesen muss für neuroevolutionäre Algorithmen eine Fitnessfunktion definiert werden. Bei diesem Beispiel ist das Vorgehen einfach. Der Fitnesswert wird berechnet, indem die erhaltenen rewards aggregiert und der resultierende Wert am Ende der Evaluation quadriert wird. Somit soll wie zuvor beim XOR-Problem besseren Agenten ein proportional höherer Fitnesswert zugewiesen werden. Das Optimierungsverfahren wird beendet, wenn ein Agent den Balken 500 Zeitschritte balancieren kann. Die restlichen Parameter wurden aus dem vorherigen Beispiel übernommen und nicht geändert.

Allerdings stellt sich beim Ausführen dieses Optimierungsproblems heraus, dass es für die Analyse ungeeignet ist. Bereits bei den zufällig erstellten Agenten der initialen Population,

Abbildung 4.5: Struktur des finalen KNN im Cartpole Optimierungsproblem

sind KNN vorhanden, welche die Abbruchbedingung erfüllen und das Optimierungsproblem lösen. Ein solches ist in Abbildung 4.5 dargestellt. Wie die anderen KNN in der initialen Population besitzt auch dieses keine *Hidden*-Neuronen und zeigt, dass für das Lösen dieses Optimierungsproblems keine komplexen Entscheidungen notwendig sind. Es ist beispielsweise möglich, mit dem Winkel des Balkens auf die auszuführende Aktion zu schließen. Neigt sich der Balken nach rechts, bewegt sich der Wagen in diese Richtung und umgekehrt. Dies ist einer der Gründe, warum dieses Optimierungsproblem im weiteren Verlauf der Arbeit nicht weiter verwendet wird. Ein weiterer Grund ist, dass aufgrund der fehlenden keine Ausführungszeiten über mehrere Generationen gemessen werden können, welche eine notwendige Grundlage für den späteren Vergleich sind.

4.3.2 Mountain Car

Die Umgebung Mountain Car ist ein weiteres Optimierungsproblem, welches aus dem OpenAI Gym stammt und in Abbildung 4.6 dargestellt ist. Das Ziel für den Agenten ist, den Wagen auf den rechten Berg zu fahren, auf welchem sich die Fahne befindet. Hierfür stehen ihm Steuerungsoptionen für den Antrieb des Wagens zur Verfügung. Für jeden Zeitschritt kann der Agent entscheiden, ob er nach links, rechts oder gar nicht beschleunigen möchte. Die Schwierigkeit von dieser Umgebung ist, dass der Antrieb nicht ausreichen ist, um den Wagen zur rechten Bergspitze zu fahren. Das Ziel kann nur erreicht werden, wenn der Wagen zuerst ein Stück den linken Berg hochfährt. Ab einer gewissen Höhe kann in die andere Richtung beschleunigt werden und mit dem zusätzlichen Schwung kann der Wagen letztendlich die rechte Bergspitze erreichen. Für dieses Optimierungsproblem gibt es zwei Eingabewerte. Der erste ist die aktuelle Position des Wagens und die zweite seine Geschwindigkeit. Auf Basis von diesen muss der Agent seine Aktion wählen. Auch für diese Umgebung muss eine Abbruchbedingung und Fitnessfunktion festgelegt werden. Die Ausführung der Umgebung wird beendet, wenn der Agent entweder das Ziel auf der rechten Seite erreicht hat oder wenn 200 Zeitschritte vergangen sind. Das erreichen

der Fahne allein ist nicht ausreichend um das *Mountain Car* Problem erfolgreich zu lösen. Laut der Dokumentation des OpenAI Gyms muss der Agent dies in 100 aufeinander folgenden Evaluationen in durchschnittlich 110 Zeitschritten oder weniger schaffen.

Abbildung 4.6: Darstellung der Mountain Car Umgebung aus dem OpenAI Gym

Grundsätzlich kann dies implementiert werden, indem beispielsweise nach jeder Generation der beste Agent 100 mal in verschiedenen Umgebungen getestet wird. Aber da dies die Trainingszeit stark erhöhen würde, und die Laufzeit auf dem Raspberry Pi 4 vergleichsweise hoch ist, wird eine einfachere Bedingung gewählt. Das Trainingsverfahren wird beendet, wenn es einem Agenten einmalig gelingt, das Mountain Car Problem in weniger als 110 Zeitschritten erfolgreich zu beenden. Zuletzt muss die Fitnessfunktion implementiert werden. Die Mountain Car Umgebung gibt für jeden Zeitschritt einen reward von -1. Für eine bessere Übersichtlichkeit und um negative Fitnesswerte zu vermeiden, wird der Fitnesswert in dieser Umgebung auf den 200 initialisiert. Für jeden verwendeten Zeitschritt wird ein Punkt abgezogen. Bessere Agenten, welche weniger Zeitschritte benötigten, haben so einen höheren Fitnesswert. Allerdings kann vorkommen, dass kein Agent in der initialen Population das Ziel auf der rechten Seite erreicht. In diesem Fall würde jeder Agent den Fitnesswert 0 haben, wodurch keine Selektion möglich ist. Aus diesem Grund wird die maximal erreichte X-Koordinate ebenfalls in den Fitnesswert miteinbezogen. Sollte kein Agent das Ziel erreichen, haben die Agenten, welche diesem am nächsten waren einen Selektionsvorteil. Die restliche Konfiguration für diese Umgebung ist sehr ähnlich zu den vorherigen Beispielen. Einzig die Populationsgröße wird auf 300 Agenten erhöht, da dieses Problem aufwändiger zu lösen ist als die vorherigen.

Prinzipiell kann das Verfahren ab diesem Punkt evaluiert werden, allerdings werden die maximalen Fitnesswerte in vielen Fällen stark variieren. Der Grund hierfür ist eine verrauschte Fitnessfunktion, wie es in Kapitel 2.2.4 erläutert ist. Die Startposition des Wagen ist zufällige durch die Umgebung gesetzt und kann einen großen Einfluss auf den Fitnesswert haben. So kann es vorkommen, dass ein Agent einen hohen Fitnesswert durch eine günstige Startposition erhält aber ansonsten schlechte Ergebnisse erzielen

würde. Ein Ansatz um diesen Effekt zu minimieren ist, dass jeder Agent mehrfach die Evaluation durchführen muss und der mittlere Fitnesswert verwendet wird. Aber da dies die Trainingszeit weiter stark erhöhen würde und nicht für einen Vergleich zwischen der sequenziellen und parallelisierten Implementierung notwendig ist, wird hierauf verzichtet. Stattdessen wird die Umgebungen so konfiguriert, dass jeder Agent mit derselben Ausgangssituation beginnt.

Abbildung 4.7: Links die Lösung für das Mountain Car Problem, rechts die dazugehörigen Fitnesswerte pro Generation

Abbildung 4.8: Ausführungszeiten des Mountain Car Problems auf einem Raspberry Pi 4 mit einem Prozess

4.3.3 Pendulum

4.4 Erkenntnisse

5 Optimierung 70

5 Optimierung

- 5.1 Parallelisierungsstrategien
- 5.2 Cluster Aufbau / TestSetup
- 5.3 Implementierung
- 5.4 Testsetup
- 5.5 Evaluation
- 5.6 Ergebnisse

6 Zusammenfassung und Ausblick

Quellenverzeichnis

[1] David Kriesel. 2008. Ein kleiner überblick über neuronale netze. Download unter http://www. dkriesel. com/index. php.

- [2] Warren S McCulloch und Walter Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*, 5, 4, 115–133.
- [3] Alex Krizhevsky, Ilya Sutskever und Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, 1097–1105.
- [4] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath u. a. 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. *IEEE Signal processing magazine*, 29, 6, 82–97.
- [5] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov und Michael Collins. 2016. Globally normalized transition-based neural networks. arXiv preprint arXiv:1603.06042.
- [6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra und Martin Riedmiller. 2013. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
- [7] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot u. a. 2016. Mastering the game of go with deep neural networks and tree search. *nature*, 529, 7587, 484.
- [8] Werner Kinnebrock. 2018. Neuronale Netze: Grundlagen, Anwendungen, Beispiele. Walter de Gruyter GmbH & Co KG.
- [9] Stuart Russell und Peter Norvig. 2013. Künstliche intelligenz. ein moderner ansatz, 3. ak. aufl. (2013).
- [10] Andreas Zell. 2003. Simulation neuronaler netze. 4., unveränderte auflage. (2003).
- [11] Clemens Kirschbaum. 2008. Biopsychologie von A bis Z. Springer-Verlag.
- [12] Andreas Scherer. 2013. Neuronale Netze: Grundlagen und Anwendungen. Springer-Verlag.
- [13] Yann A LeCun, Léon Bottou, Genevieve B Orr und Klaus-Robert Müller. 2012. Efficient backprop. In *Neural networks: Tricks of the trade*. Springer, 9–48.

[14] Xavier Glorot, Antoine Bordes und Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, 315–323.

- [15] Tsungnan Lin, Bill G Horne und C Lee Giles. 1998. How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies. Neural Networks, 11, 5, 861–868.
- [16] Stanley, Kenneth O. 2017. Neuroevolution: a different kind of deep learning. www.oreilly.com/radar/neuroevolution-a-different-kind-of-deep-learning/. [Online; Abgerufen am 27. Juli 2020]. (2017).
- [17] M. G. H. Omran, A. P. Engelbrecht und A. Salman. 2005. Differential evolution methods for unsupervised image classification. In 2005 IEEE Congress on Evolutionary Computation. Band 2, 966–973 Vol. 2.
- [18] Richard S Sutton und Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
- [19] Karsten Weicker. 2015. Evolutionäre algorithmen. Springer-Verlag.
- [20] Franz Rothlauf. 2006. Representations for Genetic and Evolutionary Algorithms. Springer Berlin Heidelberg.
- [21] Raul Rojas. 1996. Neural Networks: A Systematic Introduction. Springer Science & Business Media.
- [22] Kenneth O Stanley, Bobby D Bryant und Risto Miikkulainen. 2005. Real-time neuroevolution in the nero video game. *IEEE transactions on evolutionary computation*, 9, 6, 653–668.
- [23] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley und Jeff Clune. 2017. Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. (2017). arXiv: 1712.06567 [cs.NE].
- [24] Peter Zöller-Greer. 2010. Künstliche Intelligenz: Grundlagen und Anwendungen. Wächtersbach: Composia Verlag.
- [25] Verena Heidrich-Meisner und Christian Igel. 2009. Neuroevolution strategies for episodic reinforcement learning. *Journal of Algorithms*, 64, 4, 152 –168. Special Issue: Reinforcement Learning. ISSN: 0196-6774. DOI: https://doi.org/10.1016/j.jalgor.2009.04.002. http://www.sciencedirect.com/science/article/pii/S0196677409000364.
- [26] Darrell Whitley, Stephen Dominic, Rajarshi Das und Charles W Anderson. 1993. Genetic reinforcement learning for neurocontrol problems. *Machine Learning*, 13, 2-3, 259–284.
- [27] Kenneth O. Stanley und Risto Miikkulainen. 2002. Evolving neural networks through augmenting topologies. *Evolutionary computation*, 10, 2, 99–127.

[28] João Carlos Figueira Pujol und Riccardo Poli. 1998. Evolving the topology and the weights of neural networks using a dual representation. *Applied Intelligence*, 8, 1, 73–84.

- [29] Alan McIntyre, Matt Kallada, Cesar G. Miguel und Carolina Feher da Silva. [n. d.] Neat-python. https://github.com/CodeReclaimers/neat-python. [Online; Abgerufen am 27. August 2020]. ().
- [30] P. J. Angeline, G. M. Saunders und J. B. Pollack. 1994. An evolutionary algorithm that constructs recurrent neural networks. *IEEE Transactions on Neural Networks*, 5, 1, 54–65. ISSN: 1941-0093. DOI: 10.1109/72.265960.
- [31] Byoung-Tak Zhang und Heinz Mühlenbein. 1993. Evolving optimal neural networks using genetic algorithms with occam's razor. *Complex systems*, 7, 3, 199–220.
- [32] Martina Gorges-Schleuter. 1991. Explicit parallelism of genetic algorithms through population structures. In *Parallel Problem Solving from Nature*. Hans-Paul Schwefel und Reinhard Männer, Herausgeber. Springer Berlin Heidelberg, Berlin, Heidelberg, 150–159. ISBN: 978-3-540-70652-6.
- [33] David E Goldberg, Jon Richardson u. a. 1987. Genetic algorithms with sharing for multimodal function optimization. In *Genetic algorithms and their applications:* Proceedings of the Second International Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum, 41–49.
- [34] Christopher A Swann. 2002. Maximum likelihood estimation using parallel computing: an introduction to mpi. *Computational Economics*, 19, 2, 145–178. DOI: 10.1023/A:1015021911216.
- [35] Frank Nielsen. 2016. Introduction to HPC with MPI for Data Science. Springer. DOI: 10.1007/978-3-319-21903-5.
- [36] top500.org. 2020. Top500. https://www.top500.org/lists/top500/2020/06/. [Online; Abgerufen am 23. September 2020]. (2020).
- [37] Robert G Brown. 2004. Engineering a beowulf-style compute cluster. *Duke University Physics Department*.
- [38] Joel C. Adams und Tim H. Brom. 2008. Microwulf: a beowulf cluster for every desk. SIGCSE Bull., 40, 1, (März 2008), 121–125. ISSN: 0097-8418. DOI: 10.1145/1352322.1352178. https://doi.org/10.1145/1352322.1352178.
- [39] Jack J Dongarra, Steve W Otto, Marc Snir und David Walker. 1995. An introduction to the mpi standard. *Communications of the ACM*, 18.
- [40] Lisandro Dalcín, Rodrigo Paz, Mario Storti und Jorge D'Elía. 2008. Mpi for python: performance improvements and mpi-2 extensions. *Journal of Parallel and Distributed Computing*, 68, 5, 655—662. ISSN: 0743-7315. DOI: https://doi.org/10.1016/j.jpdc.2007.09.005. http://www.sciencedirect.com/science/article/pii/S0743731507001712.

[41] Guido Walz, Frank Zeilfelder und Thomas Rießinger. 2011. Elementare Rechenmethoden. Spektrum Akademischer Verlag, Heidelberg, 1–32. ISBN: 978-3-8274-2764-9. DOI: 10.1007/978-3-8274-2764-9_1. https://doi.org/10.1007/978-3-8274-2764-9_1.

- [42] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving large scale computing capabilities. In *Proceedings of the April 18-20, 1967, Spring Joint Computer Conference* (AFIPS '67 (Spring)). Association for Computing Machinery, Atlantic City, New Jersey, 483–485. ISBN: 9781450378956. DOI: 10.1145/1465482. 1465560. https://doi.org/10.1145/1465482.1465560.
- [43] M. D. Hill und M. R. Marty. 2008. Amdahl's law in the multicore era. *Computer*, 41, 7, 33–38. ISSN: 1558-0814. DOI: 10.1109/MC.2008.209.
- [44] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler und Alejandro Cosimo. 2011. Parallel distributed computing using python. *Advances in Water Resources*, 34, 9, 1124 –1139. New Computational Methods and Software Tools. ISSN: 0309-1708. DOI: https://doi.org/10.1016/j.advwatres.2011.04.013. http://www.sciencedirect.com/science/article/pii/S0309170811000777.
- [45] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu und Xiaoqiang Zheng. 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. (2015). https://www.tensorflow.org/.
- [46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai und Soumith Chintala. 2019. Pytorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32. H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox und R. Garnett, Herausgeber. Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
- [47] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang und Wojciech Zaremba. 2016. Openai gym. CoRR, abs/1606.01540. arXiv: 1606.01540. http://arxiv.org/abs/1606.01540.
- [48] J. D. Hunter. 2007. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9, 3, 90–95. DOI: 10.1109/MCSE.2007.55.

[49] Emden R. Gansner und Stephen C. North. 2000. An open graph visualization system and its applications to software engineering. SOFTWARE - PRACTICE AND EXPERIENCE, 30, 11, 1203–1233.

- [50] Aric A. Hagberg, Daniel A. Schult und Pieter J. Swart. 2008. Exploring network structure, dynamics, and function using networkx. In *Proceedings of the 7th Python in Science Conference*. Gaël Varoquaux, Travis Vaught und Jarrod Millman, Herausgeber. Pasadena, CA USA, 11–15.
- [51] raspberrypi.org. [n. d.] Raspberry pi 4 tech specs. https://www.raspberrypi.org/products/raspberry-pi-4-model-b/specifications/. [Online; Abgerufen am 17. September 2020]. ().
- [52] A. G. Barto, R. S. Sutton und C. W. Anderson. 1983. Neuronlike adaptive elements that can solve difficult learning control problems. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-13, 5, 834–846. ISSN: 2168-2909. DOI: 10.1109/TSMC. 1983.6313077.

Eidesstattliche Erklärung

This is the beginning