BIOL334 Evolutionary & Conservation Genetics

Inbreeding depression

Assumed background: Inbreeding

- Inbreeding is the mating of individuals related by descent
- Inbreeding increases homozygosity and exposes harmful recessives
- Inbreeding occurs through either nonrandom mating or small pop size
- Inbreeding is unavoidable in small isolated populations and accumulates over time
- Inbreeding coefficient (F) is Pr that 2 alleles in an indiv are i.b.d

This lecture: Inbreeding depression

- What is inbreeding depression (ID)?
- Why is ID important in conservation?
- How large are its effects?
- What are its characteristics?
- How does ID and its characteristics arise?
- How does it vary and change?
- How do we detect & measure it?
- What can we do about ID?

References: Text Ch 13

Frankham et al. (2017) GMFAPP Ch3

What is inbreeding depression?

Inbreeding depression is a reduction in mean due to inbreeding, especially for reproductive fitness characters

Inbreeding depression

Effects of inbreeding by selfing (I) versus outcrossing (O) on several characters in 57 species of plants (Darwin 1876)

Characters Species	0 > 1	0 < 1	Similar	Difference (O – I)
Height 54	57	8	18	13%
Weight 8	8	1	2	
Flowering time				
32	44	9	5	
Seed production				
23	26	2	5	41%

Inbreeding depression

Similar conclusions for laboratory and domestic animals and plants & humans

Inbreeding depression in captive mammals

- 41/44 mammal populations showed inbreeding depression
- Juvenile mortality 32% higher in progeny of fullsibs

Pygmy hippos

Inbreds: 55% mortality
Outbreds: 25% mortality

(Ralls & Ballou 83)

Inbreeding depression

Inbreeding depression in the wild

- 141/157 inbreeding harmful (90%)
 91.2% cases harmful for fitness
- 2 equal
- 14 inbreds best

ID is ubiquitous

Why is ID important in conservation?

Inbreeding reduces reproductive fitness and adversely affects population persistence i.e. it increases the risk of extinctions

Inbreeding & extinction

Inbreeding causes extinctions in small captive populations

Extinctions due to inbreeding in wild populations

Butterflies I > O

(Saccheri et al. 98) (Niemenen et al. 01)

(Newman & Pilson 97) (Vilas et al. 2006)

Extinctions due to inbreeding in wild populations

- Butterflies
- Plants

Are these general, or exceptional cases?

Computer projections for real species: +/- inbreeding depression

Computer projections for real species: +/- inbreeding depression

Predict without bias

Computer projections for real species: +/- inbreeding depression

Predict without bias

30 vertebrate species using VORTEX

- ID as found in the wild (6 haploid lethal equivalents)
- Included natural selection (purging): 50% lethals
- Isolated random mating populations

Computer projections for real species:

+/- inbreeding depression

Predict without bias

30 threatened species using VORTEX

- ID as found in the wild (12 lethal equivalents)
- purging: 50% lethals

Regimes based on IUCN categories:

• $N_{\text{initial}} = 50$, 250 and 1,000 (~ CE, EN & VU)

1000 reps & all threatening factors included

Findings

- Inbreeding depression markedly decreased median times to extinction
 - 31% for K = 100
 - 39% for K = 500
 - 41% for K = 2,000
- Impacts were similar across major vertebrate taxa

(O'Grady et al. 2006 BC)

Results for butterflies and plants are not special cases:

inbreeding generally increases extinction risk

What are the characteristics of ID?

Characteristics of inbreeding depression

- Ubiquitous
- Natural outbreeders > inbreeders
- No ID in haploids or asexuals
- Fitness characters > those peripheral to fitness
- All components of reproductive fitness subject to ID
- Total fitness > its components
- Stressful/wild > benign/greenhouse or lab
- ID is highly variable (has a large stochastic components)

ID is greater in more stressful environments

Inbreeding affects all fitness components and accumulates across the life cycle

Devastating effects of FS inbreeding on total fitness in wild

Common name	ID %
Red deer	99
Collared	94 ^a
flycatcher	
Great tit	55
Song sparrow	79
Takahe	88
Deerhorn clarkia	100 ^a
Rose pink plant	38 ^a
Wild radish	56ª

How does ID and its characteristics arise?

Genetic basis of ID

- populations contain a load of harmful recessive alleles
- inbreeding increases the frequency of homozygotes and exposes recessive alleles in the phenotype
- this is occurring throughout the genome (~ 20K loci in vertebrates)

Impact of inbreeding on the mean of a population: single locus model

Genotype		Genotype frequencies	Genotype frequency x value	
	Value	Random Inbred mating	Random Inbred mating	
A_1A_1	 а	p^2 $p^2 + Fpq$		
A_1A_1 A_1A_2	d	$2pq \qquad 2pq(1-F)$		
A_2A_2	– a	q^2 $q^2 + Fpq$		

Impact of inbreeding on the mean of a population: single locus model

Genotype		Genotype frequencies		Genotype frequency x value	
	Value	Randor mating	n Inbred	Random mating	Inbred
A_1A_1	 а	<i>p</i> ²	$p^2 + Fpq$	p²a	p²a+Fpqa
A_1A_2	d	2pq	2pq(1 - F)	2pqd	2pq(1 - F)c
A_2A_2	– a	q^2	q^2 + Fpq	– q²a	– q²a – Fpqa

Impact of inbreeding on the mean of a population: single locus model

Genotype		Genotype frequencies		Genotype frequency x value	
	Value	Randor mating	n Inbred	Random mating	Inbred
A_1A_1	a	<i>p</i> ²	p ² + Fpq		p²a+Fpqa
A_1A_2	d	2pq	2pq(1 – F)	2pqd	2pq(1-F)d
A_2A_2	<i>– a</i>	q^2	$q^2 + Fpq$	$-q^2a$	− q²a − Fpqa
		Means		$Mo = a(p - q) + 2pqd$ $M_F = a(p - q) + 2pqd - 2pqdF$	

$$M_F = M_O - 2pqdF$$

$$ID = 2pqdF$$

What do the terms mean?

 $ID = \sum 2pqdF$

 Σ = sum over all loci with segregating alleles that are harmful when homozygous

more for total fitness than for components

What do the terms mean?

2pq heterozygosity for harmful alleles

no ID in haploids

less with selfing

2pqF loss of heterozygosity

No ID in asexual species

less ID in selfing species

less ID in haplodiploids

What does the d term mean?

d = dominance of harmful alleles

ID when d = +ve recessive on average or heterozygote adv

directional dominance (as for fitness) not for stabilising seln (non-fitness)

no ID when d = 0 hets intermediate

What does this equation predict?

 $ID = \sum 2pqdF$

predicts linear decline in fitness with F

How does ID vary and change?

Introduction to Conservation Genetics 2 Fig 13.3 Inbreeding in Peromyscus.ppt

How does natural selection affect ID (purging)?

Reduction in inbreeding depression caused by natural selection reducing frequency of harmful recessive alleles

Purging

- ID may be reduced by selection against harmful recessives under inbreeding
- Harmful recessives can be purged, but not loci with het advantage
- In small populations some harmful alleles become fixed through drift
- Purging more effective in large populations with some inbreeding (e.g. selfing)

How we detect and measure ID?

How do we detect ID?

Compare inbreds & outbreds contemporaneously

in same environment

- Compare I & O with same controls
- Regression of fitness on F

Measuring ID using delta (δ)

 $\delta = 1 - fitness inbred offspring$ fitness of outbred offspring

Example: rose pink plant Total fitness O = 0.99; I = 0.25*

$$\delta = 1 - 0.25 = 0.747$$
0.99

Measuring ID using lethal equivalents (B)

Regress In(survival) on F

$$S_I = e^{A - BF}$$

$$lnS = A - BF$$

$$= -0.48 - 1.80 F (Okapi)$$

B = haploid lethal equivalents = 1.80

2B = diploid lethal equivalents = 3.60

Extent of inbreeding depression (lethal equivalents)

- Captive mammals juvenile survival B = 1.57FS have 32% lower juv survival $(1 - e^{-PB})$
- Verts & plants total fitness in wild B ~ 6.85
 FS have 82% lower total fitness than outbreds

- Why do we need LE values?
 - To predict ID for any F values.

Extent of inbreeding depression for total fitness in the wild (lethal equivalents)

Common name	Genus and species	δ	L.E.
		%	
Red deer	Cervus elaphus	99	18.7
Collared flycatcher	Ficedula albicollis	94 ^a	7.5 ^a
Great tit	Parus major	55	3.2
Song sparrow	Melospiza melodia	79	6.2
Takahe	Porphyrio	88	8.0
	hochstetteri		
Deerhorn clarkia	Clarkia pulchella	100 ^a	39.2ª
Rose pink plant	Sabatia angularis	38a	1.9 ^a
Wild radish	Raphanus sativus	58a	3.3 ^a

What can we do about inbreeding depression?

Genetic rescues of small inbred populations by outcrossing

Genetic Rescue

Genetic rescue meta-analysis: How consistent? How large?

Consistency of genetic rescue:

(Frankham 2015)

- Data: 145 +: 2 =: 9 (156)
- X² test of 145: 9 for equality = 139.1 ***
- Highly consistently beneficial effects

Magnitude of GR: composite fitness in outbreeding species

- Data: 67 cf
 - Median benefits

Wild 165%: Captive 51%

(likely underestimates)

Benefits persisted across generation for outbreeders

Have been very few genetic rescues. Why?

Messages

- Inbreeding reduces reproductive fitness (ID) and increases extinction risks
- This arises because inbreeding makes harmful alleles homozygous
- ID increases with *F*, is greater in more stressful environments & is greater in outbreeding than inbreeding species
- Natural selection can reduce ID by removing harmful recessive alleles
- Populations can usually be rescued from ID by outcrossing (genetic rescue)

Questions?

Variables affecting magnitude of genetic rescue

- Inbreeding (ΔF)
- Stressful > benign env
- Br system (outcrossing > selfing)
- Immigrants outbred > inbred
- Major taxa (vert, invert & plants) ns
- (ploidy; purging)

Introduction to Conservation Genetics 2 Fig 13.6 Purged and outbred.ppt

Alleviating inbreeding depression by outcrossing (scarlet gilia)

Case study: Inbreeding depression & rescue in desert topminnow fish (Vrjenhoek, 1994)

