

CS60010: Deep Learning Spring 2023

Sudeshna Sarkar

Self-Supervised Learning

Sudeshna Sarkar

17 Mar 2023

Self-supervised Learning

- Self-supervised learning methods solve "pretext" tasks that produce good features for downstream tasks.
 - Learn with supervised learning objectives, e.g., classification, regression.
 - Labels of these pretext tasks are generated automatically

Representation learning

- Learn What?
- How to learn?
- Learn from what?

im2vec

Represent image as a neural **embedding** — a vector/tensor of neural activations (perhaps representing a vector of detected texture patterns or object parts)

Slide credit: Phillip Isola

Investigating a representation via similarity analysis

How similar are these two images?

[Kriegeskorte et al. 2008]

Problem: Supervised Learning is Expensive!

Supervised computer vision

Hand-curated training data

- + Informative
- Expensive
- Limited to teacher's knowledge

Vision in nature

Raw unlabeled training data

- + Cheap
- Noisy
- Harder to interpret

Slide credit: Phillip Isola

Representation Learning

Data

• • •

Unsupervised + Deep Learning

Must be good for transfer learning

Data Dropout Prediction

 Unsupervised / Self-supervised by predicting part of data from other part

Self-supervised pretext tasks

learn to predict image transformations / complete corrupted images.

- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

How to evaluate a self-supervised learning method?

- Learn good feature extractors from self-supervised pretext tasks,
 e.g., predicting image rotations
- 2. Evaluate the learned feature encoders on downstream target tasks
 - Attach a shallow network on the feature extractor;
 - train the shallow network on the target task with small amount of labeled data

How to evaluate a self-supervised learning method?

Learn good feature extractors from selfsupervised pretext tasks, e.g., predicting image rotations

How to evaluate a self-supervised learning method?

Learn good feature extractors from selfsupervised pretext tasks, e.g., predicting image rotations

Evaluate the learned feature encoders on downstream target tasks

- Attach a shallow network on the feature extractor;
- train the shallow network on the target task with small amount of labeled data

Pretext task: predict rotations

Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

Pretext task: predict rotations

Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

Pretext task: predict rotations

Evaluation on semi-supervised learning

Self-supervised learning on CIFAR10 (entire training set)

Freeze conv1 + conv2 Learn conv3 + linear layers with subset of labeled CIFAR10 data (classification).

Transfer learned features to supervised learning

		ication 1AP)	Detection (%mAP)	Segmentation (%mIoU)	Pretrained with full
Trained layers	fc6-8	all	all	all	ImageNet supervision
ImageNet labels	78.9	79.9	56.8	48.0	•
Random		53.3	43.4	19.8 ←	No pretraining
Random rescaled Krähenbühl et al. (2015)	39.2	56.6	45.6	32.6	
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b) Tracking (Wang & Gupta, 2015) Context (Doersch et al., 2015) Colorization (Zhang et al., 2016a)	31.0 34.6 55.6 55.1 61.5	54.2 56.5 63.1 65.3 65.6	43.9 44.5 47.4 51.1 46.9	29.7 35.6	Self-supervised learning on ImageNet (entire training set) with AlexNet
BIGAN (Donahue et al., 2016) Jigsaw Puzzles (Noroozi & Favaro, 2016) NAT (Bojanowski & Joulin, 2017)	52.3	60.1 67.6 65.3	46.9 53.2 49.4	34.9 37.6	Finetune on labeled data from Pascal VOC 2007 Self-supervised learning with rotation prediction
Split-Brain (Zhang et al., 2016b) ColorProxy (Larsson et al., 2017) Counting (Noroozi et al., 2017)	63.0	67.1 65.9 67.7	46.7 51.4	36.0 38.4 36.6	
(Ours) RotNet	70.87	72.97	54.4	39.1	

Pretext task: predict relative patch locations

Model predicts relative location of two patches from the same image. <u>Discriminative</u> pretraining task

Intuition: Requires understanding objects and their parts

$$X = (0,); Y = 3$$

Doersch et al, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015

Pretext task: solving "jigsaw puzzles"

Pretext task: predict missing pixels (inpainting)

Feature Learning by Inpainting

Learning to inpaint by reconstruction

Learning to reconstruct the missing pixels

Context Encoders: Learning by Inpainting Input Image

Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

[slide credit: Justin Johnson]

Context Encoders: Learning by Inpainting

Input Image

Predict Missing Pixels

Encoder: ϕ

Decoder: ψ

Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

[slide credit: Justin Johnson]

Context Encoders: Learning by Inpainting

Input Image

Encoder: ϕ

Decoder: ψ

Predict Missing Pixels

L2 Loss (Best for feature learning)

Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

Context Encoders: Learning by Inpainting

Input Image

Encoder: ϕ

Decoder: ψ

Predict Missing Pixels

L2 + Adversarial Loss (Best for nice images)

Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

Adversarial loss between "real" images and inpainted images

Inpainting evaluation

Input (context) reconstruction

adversarial

recon + adv

Pretext task: image coloring

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be general.

Pretext tasks from image transformations

 Learned representations may be tied to a specific pretext task!Can we come up with a more general pretext task?

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

A more general pretext task?

Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?

A more general pretext task?

Contrastive Representation Learning

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Similar images should have similar features

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Similar images should have similar features

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Let d be the Euclidean distance between features for two images

Similar images should have similar features

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006

White kitten image is free for commercial use under the Pixabay license

Assume we don't have labels for images, but we know whether some pairs of images are similar or dissimilar

Similar images should have similar features

Dissimilar images should have dissimilar features

CNN

$$L_D(x1,x2) = \max(0, m - d^2)$$

Push features apart
(upto margin m)

Problem: Where to get positive and negative pairs?

Similar images should have similar features

Dissimilar images should have dissimilar features

CNN

 $L_D(x1,x2) = \max(0, m - d^2)$ Push features apart (upto margin m)

Batch of N images

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006
Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018
Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018

Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Batch of N Two augmentations images for each image

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018 Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018 Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which o the *other* 2N-1 images came from the same original image

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018 Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which o the *other* 2N-1 images came from the same original image

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018 Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which o the *other* 2N-1 images came from the same original image

Similarity between x_1 and x_2 :

$$s_{',()} = \frac{\phi(x_{'})^{*} \phi(x_{()})}{\|\phi(x_{'})\| \cdot \|\phi(x_{'})\|}$$

If (x_1, x_1) is a positive pair, then loss for x_1 is:

$$L' = -\log \frac{\exp(s_{',(}/\tau))}{\sum_{+,'}^{"} \exp(s_{',+}/\tau)}$$

(τ is a temperature)

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018 Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020

Each image tries to predict which o the *other* 2N-1 images came from the same original image

Similarity between x_1 and x_2 :

$$s_{',()} = \frac{\phi(x_{'})^{*} \phi(x_{()})}{\|\phi(x_{'})\| \cdot \|\phi(x_{'})\|}$$

If (x_1, x_0) is a positive pair, then loss for x_1 is:

$$L_{\cdot} = -\log \frac{\exp(s_{\cdot, \cdot}/\tau)}{\sum_{+, \cdot \mid \cdot}^{"} \exp(s_{\cdot, +}/\tau)}$$

(τ is a temperature)

Interpretation: Cross-entropy loss over the other 2N-1 elements in the batch!

Hadsell et al, "Dimensionality Reduction by Learning and Invariant Mapping", CVPR 2006 Wu et al, "Unsupervised Feature Learning by Non-Parametric Instance-Level Discrimination", CVPR 2018 Van den Oord et al, "Representation Learning with Contrastive Predictive Coding", NeurIPS 2018 Hjelm et al, "Learning deep representations by mutual information estimation and maximization", ICLR 2019 Bachman et al, "Learning Representations by Maximizing Mutual Information Across Views", NeurIPS 2019 Henaff et al, "Data-Efficient Image Recognition with Contrastive Predictive Coding", ICML 2020