Machine Learning 101

Presentación

Presentación

- Físico, Universidad de Santiago de Compostela
- Doctor en física de partículas, Universidad de Sheffield (Reino Unido)
- Actualmente Desarrollador Quant en LSEG. Experiencia con:
 - Física experimental (big data), calibración, búsqueda del Higgs
 - Simulaciones de Montecarlo, diseño de experimentos
 - Desarrollo de software cuantitativo, data science
 - Python, scikit-learn, numpy, pandas, matplotlib.
 - Buenas prácticas: Automatización de procesos y tests, control de versiones, etc. ML es software.

Probablemente Sora 🙆 me reclame alguna vez durante la clase

Requisitos previos

- Probabilidad y estadística
 - Propiedades de un estimador: sesgo, varianza
- Álgebra lineal: vectores y matrices, un mínimo
- Programación en **Python** (3.11 o más), con <u>Anaconda</u>.
 - o numpy 1.26.3
 - scikit-learn 1.3.2
 - pandas 2.1.4
 - o matplotlib 3.8.2
 - seaborn 0.13.2
 - o jupyterlab 4.0.10

Requisitos previos II

- Conocimientos básicos de Machine Learning:
 - Pre-procesamiento de variables
 - Tratamiento outliers
 - Imputación de valores ausentes
 - Codificación variables categóricas
 - Transformación de variables
 - Escalado/normalización
 - Aprendizaje supervisado
 - Regresión lineal y logística
 - Aprendizaje no supervisado
 - No lo vamos a ver

Mapa de conceptos

https://elpais.com/tecnologia/2018/11/19/actualidad/1542630835_054987.html

Referencias

<u>Link</u>