6G6Z1110 – Programming Languages: Principles and Design Dr Ryan Cunningham: room E142 (ryan.cunningham@mmu.ac.uk)

Q1. Semantic Analyser [25 marks]

There are 3 parts to this question: **a**, **b**, and **c**. Please answer **any two** questions.

Please complete the Lab B - Semantic Analysis Coursework and upload your semantics.py file (see assessment area on moodle).

In a comment at the top of your file, **you must** state which two tasks you have attempted.

a) Method Invocation

```
import printf, printf;
void foo(int x, int y) {
  return 0;
}
int a = food(1, -2.0, 5);
```

Write solutions which identify all semantic errors (hint: rules 4, 6, 7, 26) in the above code and write code in your *CoffeeTreeVisitor* class to detect the errors.

b) Arithmetic and Logic

```
if (true && !1) {
   return true;
}
```

Write solutions which identify all semantic errors (hint: rules 8, 9, 11, 22) in the above code and write code in your *CoffeeTreeVisitor* class to detect the errors.

c) For Loops

```
bool n = 10;
for (i in [:n:2.]) {
   return;
}
continue;
```

Write solutions which identify all semantic errors (hint: rules 8, 10, 13, 27) in the above code and write code in your *CoffeeTreeVisitor* class to detect the errors.

Q2. Code Generator [25 marks]

There are 3 parts to this question: **a**, **b**, and **c**. Please answer **any two** questions.

Please complete the Lab B - CodeGen Coursework and upload your codegen.py file (see assessment area on moodle).

In a comment at the top of your file, **you must** state which two tasks you have attempted.

a) Expressions

Write solutions which generate the correct assembly code and program output for the Coffee programs below:

i) Arithmetic:

```
int a, b;
a = 2 + 3 * 4;
b = 5 - a % 10;
return -(a + b);
```

b) Methods

Write solutions which generate the correct assembly code and program output for the Coffee programs below:

i) Extra Args:

```
int sum(int a, int b, int c, int d, int e, int f, int g) {
   return a + b + c + d + e + f + g;
}
return sum(1, 2, 3, 4, 5, 6, 7);
```

c) Loops

Write solutions which generate the correct assembly code and program output for the Coffee programs below:

i) Limit / Step:

```
int a = 0;
for (i in [1:10:2]) {
   a = a + i;
}
return a;
```

6G6Z1110 – Programming Languages: Principles and Design Dr Ryan Cunningham: room E142 (ryan.cunningham@mmu.ac.uk)

Marking Grid

For each of the 2 questions above, a percentage of the available marks will be awarded following the marking scheme below:

Criteria	Bad Fail	Fail	3rd	2:2	2:1	1st	Exceptional 1st
	(0-29)	(30-39)	(40-49)	(50-59)	(60-69)	(70-79)	(80+)
Demonstrate a	Code does not	Code has	Code performs	Code performs	Code performs	Code performs	Code performs
high degree of	compile, or so	limited	incorrectly in a	correctly	correctly	correctly	correctly
professionalis	limited as to	correctness;	significant	against a	against a	against	against all
m: correctness	provide no	evidence of	number of	majority of	majority of	significant	testing;
of solution;	clear path to a	knowledge of	tests; evidence	testing, but	testing, but	majority of	evidence of
completeness	solution; there	compiler	of knowledge	some	there are some	testing, and	knowledge of
of solution;	is no, or almost	concepts is	of compiler	significant	significant	any	compiler
demonstration	no evidence of	very limited;	concepts is	shortcomings	shortcomings	failures are	concepts is
of specific	knowledge of	code	limited; code	are not	that have been	noted as	demonstrated;
compiler	compiler	presentation is	presentation is	recognised	recognised, or	known	minor
concepts;	concepts; code	poor.	adequate.	(using	there some	shortcomings	shortcomings
clarity of code	presentation is			comments);	minor	(using	are recognised
presentation	inadequate.			some	shortcomings	comments);	(using
(including				knowledge of	that are not	evidence of	comments)
comments).				compiler	recognised	knowledge of	code
				concepts is	(using	compiler	presentation is
				demonstrated;	comments);	concepts is	exceptional.
				code	evidence of	demonstrated;	
				presentation is	knowledge of	code	
				reasonable.	compiler	presentation is	
					concepts is	excellent.	
					demonstrated;		
					code		
					presentation is		
					good.		