

소셜 미디어 시계열 예측을 이용한 고객 니즈의 부상성 탐지

: 워드 임베딩, 네트워크 분석, LSTM 기반의 부상 키워드 탐지 방법

김명섭*, 박영재, 이승주, 이권능, 최재은

RESEARCH BACKGROUND AND PURPOSE

1. 기술 기회 포착

- 새로운 기회를 포착하는 것은 기업의 존속에 있어 가장 중요한 일 중 하나
- 기업은 고객에게 새롭거나 향상된 제품을 제공하기 위해 고객의 목소리(VOC)에 주의를 기울여야 함

2. 소셜 미디어 분석

- 소셜 미디어는 제품에 대한 공개적인 의견을 교환하기 위한 매체
- 제품 수명 주기의 단축에 따라 소셜 미디어를 통한 역동적인 고객 니즈의 분석이 중요

0.54

3. 고객 니즈 조기 탐지

- 특히 향후 부상할 고객의 요구 사항(니즈)을 조기에 탐지하고 예측하는 것이 중요
- 이를 통해 기업은 경쟁 기업이 쉽게 모방할 수 없는 고객과의 관계를 구축하여 기업의 경쟁력 강화로 이어짐

-> 부상할 고객 니즈를 조기에 탐지하여 제품 개발에 반영할 수 있도록 함

PROPOSED METHODOLOGY

STEP 1

데이터 수집 & 전처리

Google Big Query를 이용해 Reddit 사이트에서 40개월 동안의 게시글(post)와 댓글(review)를 수집

- 데이터 전처리

게시글과 댓글의 텍스트를 띄어쓰기 단위로 분할 및 등록 월별로 분류

STEP 2 가중치 행렬 생성

Word2vec으로 생성된 임베딩 된 차원에서 키워드 간의 거리에 가중치를 적용하여 가중치 행렬 생성

 $\omega_{ij} = \exp\left(-\frac{d(x_i, x_j)}{\sigma}\right)$ where node i and node j adjacent (eq. 1) $d(x_i, x_j)$: distance between node i and node j

STEP 3

키워드 중요도 산출

- 가중치와 동시 출현을 고려한 closeness centrality 계산

 ability
 ac
 access

 1
 0.87
 0.73

 0.25
 0.78
 0.49

가중치 행렬에 동시 출현 행렬을 요소 별로 곱하여 단어 네트워크를 생성 후 계산된 closeness centrality를 키워드의 중요도로 간주

• closeness centrality(x) = $\frac{N}{\sum_{y} d(y,x)}$ (eq. 2) d(y,x): shortest distance between node i and node j

STEP 4

키워드 중요도 예측

Time Series Prediction

시계열적 키워드 중요도를 input으로 LSTM을 적용하여 키워드의 중요도를 예측

STEP 5

부상 키워드 탐지

- 미래에 파급을 일으킬 키워드 탐지

키워드의 중요도와 부상성을 이용하여 keyword positioning map을 구성하고 미래에 파급을 일으킬 고객의 니즈를 탐지

 $\frac{avg(current\ importance)}{avg(predicted\ importance)}\ (eq.3)$ • $floatation(keyword) = \frac{c}{c}$

세로축: 중요도(Closeness centrality)

CASE STUDY

데이터 수집 및 전처리

• reddit에서 2015년 12월 부터 2019년 3월 까지 40개월간 sub reddit이 Home automation에 속하는 post 31,430개와 review 296,580개 수집

가중치 행렬 생성

- skip-gram방식 사용, 100차원 공간에 임베딩, 윈도우 크기 5로 설정, 신경망 반복 횟수(epoch) 1000번으로 설정,
- σ값은 키워드 간의 거리의 총 분산 사용

keyword	MSE
home	0.0178
switch	0.15143
hub	0.07157
control	0.04481
switches	0.0922
deployed	0.03786
average	0.07437

MSE 0.20215 switch 0.53033 0.23493 0.19974 control switches 0.15046 deployed 0.15671 average 0.1961

ARIMA

Prophet

키워드 중요도 산출

- 2015년 12월부터 2019년 3월까지 1개월 단위로 모든 키워드에 대해 중요도를 계산
- the, I, things등 기술적으로 유의하지 않다고 판단되는 단어를 정성적으로 제거

키워드 중요도 예측

- 1개월 단위로 총 40개월의 데이터를 이용하여 향후 12개월의 키워드 중요도를 예측
- LSTM, ARIMA, Prophet의 키워드 평균 MSE를 비교하여 예측 모델을 채택

#LSTM 하이퍼 파라메터

time step = 6, batch size = 1 train : test = 75 : 25, layer 4층 hidden node = 16, optimizer = adam epoch = 1800, loss = MSE

학습 결과

keyword "Bluetooth"

RESULT

부상 키워드 탐지

- X축 : 1개월 단위로 수집되어 계산된 총 40개월의 키워드 중요도 평균(현재 중요도)
- Y축 : 예측된 12개월의 키워드 중요도 평균을 미래 중요도로 간주, 미래 중요도를 현재 중요도로 나눈 값인 부상성(Floatation)
- 각 키워드의 현재 중요도와 부상성을 이용하여 키워드 포지셔닝 맵을 구성, x축의 경우 경계 값을 중앙값(median), y축의 경우 경계 값을 1로 선정

- Keywords of Area A
- A 구역의 키워드를 부상성이 큰 순서로 나열 • "customization", "lan", "circuits", "maintenance", "protection" 등
- 해당 키워드들은 현재는 낮은 중요도를 가지나 향후 파급을 일으킬 것으로 예상되는 높은 부상성을 가짐
- "I recently got a Phillips Hue Motion Sensor, and while I'm impressed by how well it works, I'm rather disappointed

by the level of **customization**/automation. "

"I've been using HS3 since 2014 and love it for it's stability and customization."

Customer Needs of Keyword "Customization"

- "최근에 Phillips Hue Motion Sensor를 구매했는데 잘 작동되어 좋은 인상을 받았지만 사용자 지정(customization)/자동화 수준에 다소 실망했다." - " 2014년부터 HS3을 사용해 왔으며 안정성과 사용자 지정(customization)이 마음에 든다."

• B 구역의 키워드를 부상성이 큰 순서로 나열 • "camera", "batteries", "replace", "remotely", "wifi"등 • 해당 키워드들은 현재 높은 중요도를 가지며 향후 더욱 중요해질 것으로 예상되는 키워드 "Might need cameras after all but I wonder how much a camera costs that can see well enough in the dark."

wireless ceiling

1.003428765 bridge

1.00464113

Keywords of Area B

"I really love the Floodlight camera. I'd probably get one in a heartbeat if it had an available local video stream."

Customer Needs of keyword "Camera" - "결국 카메라(camera)가 필요할지 모르지만 어둠 속에서 충분히 볼 수 있는 카메라 비용이 얼마인지 궁금하다."

- "플러드 라이트 카메라(camera)가 정말 마음에 든다. 로컬 비디오 스트림을 사용할 수 있다면 경우 기꺼이 구매할 것이다."

-> 해당 키워드들은 고객 니즈를 조기에 파악하고 예측하여 경쟁사 대비 우위를 점하기 위해 주시가 필요한 키워드

CONCLUDING REMARKS

기대 효과

전문가의 판단에 비해 적은 시간, 낮은 비용으로 기업의 경쟁력 강화를 위한 정량적인 의사 결정을 지원하는데 기여할 것으로 기대