

Rob J Hyndman

Functional time series

with applications in demography

7. Common functional principal components

Outline

- 1 Product/ratio coherent forecasting
- 2 Common functional principal components
- 3 Australian mortality
- 4 Testing for common functional principal components
- **5** References

$$p_t(x)=\left[s_{t,1}(x)s_{t,2}(x)\cdots s_{t,j}(x)
ight]^{1/J}$$
 and $r_{t,j}(x)=s_{t,j}(x)ig/p_t(x),$

$$\log[p_{t}(x)] = \mu_{p}(x) + \sum_{k=1}^{K} \beta_{t,k} \phi_{k}(x) + e_{t}(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{\ell=1}^{L} \gamma_{t,j,\ell} \psi_{j,\ell}(x) + w_{t,j}(x).$$

$$\log[s_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}(x)]$$

$$p_t(x) = \left[s_{t,1}(x)s_{t,2}(x)\cdots s_{t,j}(x)
ight]^{1/J}$$
 and $r_{t,j}(x) = s_{t,j}(x)ig/p_t(x),$

$$\log[p_t(x)] = \mu_p(x) + \sum_{k=1}^{L} \beta_{t,k} \phi_k(x) + e_t(x)$$
$$\log[r_{t,j}(x)] = \mu_{r,j}(x) + \sum_{\ell=1}^{L} \gamma_{t,j,\ell} \psi_{j,\ell}(x) + w_{t,j}(x).$$

$$\log[s_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}(x)]$$

$$p_t(x) = \left[s_{t,1}(x)s_{t,2}(x)\cdots s_{t,j}(x)\right]^{1/J}$$
 and $r_{t,j}(x) = s_{t,j}(x) ig/p_t(x),$

$$\begin{split} \log[p_t(x)] &= \mu_p(x) + \sum_{k=1} \beta_{t,k} \phi_k(x) + e_t(x) \\ \log[r_{t,j}(x)] &= \mu_{r,j}(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + w_{t,j}(x). \end{split}$$

$$\log[s_{t,j}(x)] = \log[p_t(x)] + \log[r_{t,j}(x)]$$

$$\begin{aligned} \log[s_{t,j}(x)] &= \log[p_t(x)] + \log[r_{t,j}(x)] \\ &= \mu_p(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x) \\ &+ \mu_{r,j}(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + w_{t,j}(x) \\ &= \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x) \end{aligned}$$

- $\{\gamma_{t,\ell}\}$ restricted to be stationary processes: either ARMA(p,q) or ARFIMA(p,d,q).
- $\{\beta_{t,k}\}$ are (possibly non-stationary) ARIMA(p,d,q).

- Long-term forecasts of ratio functions will converge to age-specific mean ratios, which depend on the fitting period.
- Using exponential weights helps overcome this problem.
- Convergence to constant ratios does not imply that mortality differences between groups tend to constants, or that life expectancies will not diverge.
- How to deal with coherence in more than one dimension: e.g., mortality by sex and state?

- Long-term forecasts of ratio functions will converge to age-specific mean ratios, which depend on the fitting period.
- Using exponential weights helps overcome this problem.
- Convergence to constant ratios does not imply that mortality differences between groups tend to constants, or that life expectancies will not diverge.
- How to deal with coherence in more than one dimension: e.g., mortality by sex and state?

- Long-term forecasts of ratio functions will converge to age-specific mean ratios, which depend on the fitting period.
- Using exponential weights helps overcome this problem.
- Convergence to constant ratios does not imply that mortality differences between groups tend to constants, or that life expectancies will not diverge.
- How to deal with coherence in more than one dimension: e.g., mortality by sex and state?

- Long-term forecasts of ratio functions will converge to age-specific mean ratios, which depend on the fitting period.
- Using exponential weights helps overcome this problem.
- Convergence to constant ratios does not imply that mortality differences between groups tend to constants, or that life expectancies will not diverge.
- How to deal with coherence in more than one dimension: e.g., mortality by sex and state?

Outline

- 1 Product/ratio coherent forecasting
- **2** Common functional principal components
- 3 Australian mortality
- 4 Testing for common functional principal components
- **5** References

PCFPC(K, L) model

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- Each group has a different mean ,
- A set of common principal components
 - $\varphi_1(X),\ldots,\varphi_K(X).$
- Some uncommon principal components for each

Functional time series with applications in demography

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- lacksquare Each group has a different mean μ_j
- A set of common principal components $\phi_1(x), \ldots, \phi_K(x)$.
- Some uncommon principal components for each group, $\psi_{1,j}(x), \ldots, \psi_{L,j}(x)$.
- Common features captured with the common principal components.
- Product-ratio model is special case where $\{\gamma_{t,j,\ell}\}$ constrained to be stationary.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- lacksquare Each group has a different mean μ_j
- A set of common principal components $\phi_1(x), \ldots, \phi_K(x)$.
- Some uncommon principal components for each group, $\psi_{1,j}(x), \ldots, \psi_{L,j}(x)$.
- Common features captured with the common principal components.
- Product-ratio model is special case where $\{\gamma_{t,j,\ell}\}$ constrained to be stationary.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- lacksquare Each group has a different mean μ_j
- A set of common principal components $\phi_1(x), \ldots, \phi_K(x)$.
- Some uncommon principal components for each group, $\psi_{1,j}(x), \ldots, \psi_{L,j}(x)$.
- Common features captured with the common principal components.
- Product-ratio model is special case where $\{\gamma_{t,j,\ell}\}$ constrained to be stationary.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- lacksquare Each group has a different mean μ_j
- A set of common principal components $\phi_1(x), \ldots, \phi_K(x)$.
- Some uncommon principal components for each group, $\psi_{1,j}(x), \ldots, \psi_{L,j}(x)$.
- Common features captured with the common principal components.
- Product-ratio model is special case where $\{\gamma_{t,j,\ell}\}$ constrained to be stationary.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- lacksquare Each group has a different mean μ_j
- A set of common principal components $\phi_1(x), \ldots, \phi_K(x)$.
- Some uncommon principal components for each group, $\psi_{1,j}(x), \ldots, \psi_{L,j}(x)$.
- Common features captured with the common principal components.
- Product-ratio model is special case where $\{\gamma_{t,j,\ell}\}$ constrained to be stationary.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- Coherence when $\{\gamma_{t,j,\ell}\psi_{j,\ell}(x) \gamma_{t,i,\ell}\psi_{i,\ell}(x)\}$ is stationary for all ℓ and for each combination of and j:
 - $\limsup_{t o\infty} \mathsf{E} \|f_{t,j} f_{t,i}\| < \infty$ for all i and j
- Can impose coherence by requiring either stationary scores or cointegrated scores with common eigenfunction $\psi_{U}(x) = \psi_{U}(x)$.

|PCFPC(K, L)| model

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

■ Coherence when $\{\gamma_{t,j,\ell}\psi_{j,\ell}(x) - \gamma_{t,i,\ell}\psi_{i,\ell}(x)\}$ is stationary for all ℓ and for each combination of i and j:

$$\limsup_{t\to\infty} \mathbb{E}\|f_{t,j}-f_{t,i}\|<\infty \qquad ext{for all } i ext{ and } j.$$

■ Can impose coherence by requiring either stationary scores or cointegrated scores with common eigenfunction $\psi_{i,\ell}(x) = \psi_{i,\ell}(x)$.

PCFPC(K, L) model

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

■ Coherence when $\{\gamma_{t,j,\ell}\psi_{j,\ell}(x) - \gamma_{t,i,\ell}\psi_{i,\ell}(x)\}$ is stationary for all ℓ and for each combination of i and j:

$$\limsup_{t\to\infty} \mathbb{E}\|f_{t,j}-f_{t,i}\|<\infty \qquad \text{for all } i \text{ and } j.$$

■ Can impose coherence by requiring either stationary scores or cointegrated scores with common eigenfunction $\psi_{i,\ell}(x) = \psi_{i,\ell}(x)$.

PCFPC(K, L) model

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(x) + \varepsilon_{t,j}(x)$$

Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{tj,\ell}\}$ is stationary.

Functional time series with applications in demography

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- Model 1: PCFPC(K, 0). No idiosyncratic principal components in the model.
- Model 2: PCFPC(K,L) with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i,j, and $\psi_{i,\ell}(x) = \psi_{i,\ell}(x)$.
- Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{t,j,\ell}\}$ is stationary.
- **Model 4: PCFPC(**0, *L*). All principal components and scores are idiosyncratic.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- **Model 1: PCFPC**(K, 0). No idiosyncratic principal components in the model.
- **Model 2: PCFPC(**K,L**)** with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i,j, and $\psi_{j,\ell}(x) = \psi_{i,\ell}(x)$.
- Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{t,j,\ell}\}$ is stationary.
- **Model 4: PCFPC(**0,*L***)**. All principal components and scores are idiosyncratic.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- **Model 1: PCFPC**(K, 0). No idiosyncratic principal components in the model.
- **Model 2: PCFPC(**K,L**)** with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i,j, and $\psi_{i,\ell}(x) = \psi_{i,\ell}(x)$.
- Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{t,i,\ell}\}$ is stationary.
- **Model 4: PCFPC(**0,*L***)**. All principal components and scores are idiosyncratic.

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,k} \phi_k(\mathbf{x}) + \sum_{\ell=1}^L \gamma_{t,j,\ell} \psi_{j,\ell}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x})$$

- **Model 1: PCFPC**(K, 0). No idiosyncratic principal components in the model.
- **Model 2: PCFPC(**K,L**)** with a coherence constraint. For each ℓ , $\{\gamma_{t,i,\ell} \gamma_{t,j,\ell}\}$ is stationary for all i,j, and $\psi_{i,\ell}(x) = \psi_{i,\ell}(x)$.
- Model 3: PCFPC(K, L) with a coherence constraint. For each ℓ and j, $\{\gamma_{t,i,\ell}\}$ is stationary.
- **Model 4: PCFPC(**0,*L***)**. All principal components and scores are idiosyncratic.

Outline

- 1 Product/ratio coherent forecasting
- 2 Common functional principal components
- 3 Australian mortality
- 4 Testing for common functional principal components
- **5** References

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6
- ARIMA models for common PC scores
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

- Use data for males/females in Australia from 1950 to avoid the outliers due to the World Wars.
- Data for 1950–2009 obtained from Human Mortality Database.
- All data smoothed (independently for each year) using penalized regression splines with monotonicity constraint above age 65.
- K = L = 6.
- ARIMA models for common PC scores.
- ARFIMA models for stationary PC scores with 0 < d < 0.5.
- VECM using the Johansen procedure for cointegrated PC scores.
- Rolling forecast origin: 1969–2008, forecasting up to 20 years ahead.

Out-of-sample MSE

Forecast horizon	Groups	Model 1 PCFPC(6,0) (All common)	Model 2 PCFPC(6,6) (Cointegrated)	Model 3 PCFPC(6,6) (Stationary)	Model 4 PCFPC(0,6) (Divergent)
h = 5	Combined (F & M) Female (F) Male (M)	2.59 2.81 2.38	2.60 2.75 2.45	2.50 2.70 2.29	2.52 2.63 2.42
h = 10	Combined (F & M)	4.57	4.66	4.60	4.65
	Female(F)	4.67	4.43	4.63	4.23
	Male (M)	4.48	4.89	4.57	5.06
h = 15	Combined (F & M)	7.72	8.00	7.84	8.15
	Female (F)	7.31	6.64	7.23	6.47
	Male(M)	8.14	9.36	8.44	9.82
h = 20	Combined (F & M)	12.97	13.56	13.35	14.10
	Female (F)	12.26	10.41	12.08	10.35
	Male (M)	13.69	16.70	14.63	17.86

Common functional PC

- The independent (divergent) models work better for female data due to the hump in male mortality being captured in common components?
- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- PCFPC model more general, so poor performance a problem of model selection.
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.
- Perhaps we should consider models with some cointegrated scores and some stationary scores
- PCFPC used K = L = 6. Too many? How to do order selection?

- The independent (divergent) models work better for female data due to the hump in male mortality being captured in common components?
- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- PCFPC model more general, so poor performance a problem of model selection.
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.
- Perhaps we should consider models with some cointegrated scores and some stationary scores
- PCFPC used K = L = 6. Too many? How to do order selection?

- The independent (divergent) models work better for female data due to the hump in male mortality being captured in common components?
- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- PCFPC model more general, so poor performance a problem of model selection.
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.
- Perhaps we should consider models with some cointegrated scores and some stationary scores.
- PCFPC used K = L = 6. Too many? How to do order selection?

- The independent (divergent) models work better for female data due to the hump in male mortality being captured in common components?
- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- PCFPC model more general, so poor performance a problem of model selection.
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.
- Perhaps we should consider models with some cointegrated scores and some stationary scores.
- PCFPC used K = L = 6. Too many? How to do order selection?

- The independent (divergent) models work better for female data due to the hump in male mortality being captured in common components?
- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- PCFPC model more general, so poor performance a problem of model selection.
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.
- Perhaps we should consider models with some cointegrated scores and some stationary scores.
- PCFPC used K = L = 6. Too many? How to do order selection?

- The independent (divergent) models work better for female data due to the hump in male mortality being captured in common components?
- The best coherent model has all principal components and scores in common. So the models differ only in mean.
- PCFPC model more general, so poor performance a problem of model selection.
- Maybe PCFPC (cointegrated) would be better if we had a good automated VECM procedure.
- Perhaps we should consider models with some cointegrated scores and some stationary scores.
- PCFPC used K = L = 6. Too many? How to do order selection?

Outline

- 1 Product/ratio coherent forecasting
- 2 Common functional principal components
- 3 Australian mortality
- 4 Testing for common functional principal components
- **5** References

Benko, Härdle & Kneip (2009)

Independent FPC models

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(x) + \varepsilon_{t,j}(x), \quad j = 1, 2$$

- Each group has a different mean μ_j Inference to test if $\phi_{2,k}(x) = \phi_{2,k}(x)$
- Weaker hypothesis: equality of eight

Functional time series with applications in demography

Benko, Härdle & Kneip (2009)

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^{K} \beta_{t,j,k} \, \phi_{j,k}(x) + \varepsilon_{t,j}(x), \quad j = 1, 2$$

- lacksquare Each group has a different mean μ_j
- Inference to test if $\phi_{1,k}(x) = \phi_{2,k}(x)$
- Weaker hypothesis: equality of eigenspaces spanned by first K PCs.
- Application to implied volatility where $f_{t,j}(x)$ denotes log-return for option at price x on maturity j.

Benko, Härdle & Kneip (2009)

$$f_{t,j}(\mathbf{x}) = \mu_j(\mathbf{x}) + \sum_{k=1}^K \beta_{t,j,k} \, \phi_{j,k}(\mathbf{x}) + \varepsilon_{t,j}(\mathbf{x}), \quad j = 1, 2$$

- lacksquare Each group has a different mean μ_j
- Inference to test if $\phi_{1,k}(x) = \phi_{2,k}(x)$
- Weaker hypothesis: equality of eigenspaces spanned by first K PCs.
- Application to implied volatility where $f_{t,j}(x)$ denotes log-return for option at price x on maturity j.

Benko, Härdle & Kneip (2009)

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^{K} \beta_{t,j,k} \, \phi_{j,k}(x) + \varepsilon_{t,j}(x), \quad j = 1, 2$$

- lacksquare Each group has a different mean μ_j
- Inference to test if $\phi_{1,k}(x) = \phi_{2,k}(x)$
- Weaker hypothesis: equality of eigenspaces spanned by first K PCs.
- Application to implied volatility where $f_{t,j}(x)$ denotes log-return for option at price x on maturity j.

Benko, Härdle & Kneip (2009)

$$f_{t,j}(x) = \mu_j(x) + \sum_{k=1}^{K} \beta_{t,j,k} \, \phi_{j,k}(x) + \varepsilon_{t,j}(x), \quad j = 1, 2$$

- lacksquare Each group has a different mean μ_j
- Inference to test if $\phi_{1,k}(x) = \phi_{2,k}(x)$
- Weaker hypothesis: equality of eigenspaces spanned by first K PCs.
- Application to implied volatility where $f_{t,j}(x)$ denotes log-return for option at price x on maturity j.

Var explained: 89.9 7.7 1.7 0.6

93.0 4.2 1.0 0.4

- Regularity and stationarity assumptions (not applicable to the 2-sex mortality problem)
- Restricted to Nadaraya-Watson or local linear smoothing (not splines?)
- lacksquare Test of equivalent eigenfunctions: ho=0.01
- Test of equivalent eigenspaces: p = 0.09 (K = 3)
- Practical implications:

- Regularity and stationarity assumptions (not applicable to the 2-sex mortality problem)
- Restricted to Nadaraya-Watson or local linear smoothing (not splines?)
- lacksquare Test of equivalent eigenfunctions: ho=0.01
- Test of equivalent eigenspaces: p = 0.09 (K = 3)
- Practical implications:

- Regularity and stationarity assumptions (not applicable to the 2-sex mortality problem)
- Restricted to Nadaraya-Watson or local linear smoothing (not splines?)
- Test of equivalent eigenfunctions: p = 0.01
- Test of equivalent eigenspaces: p = 0.09 (K = 3)
- Practical implications:

- Regularity and stationarity assumptions (not applicable to the 2-sex mortality problem)
- Restricted to Nadaraya-Watson or local linear smoothing (not splines?)
- Test of equivalent eigenfunctions: p = 0.01
- Test of equivalent eigenspaces: p = 0.09 (K = 3)
- Practical implications:

- Regularity and stationarity assumptions (not applicable to the 2-sex mortality problem)
- Restricted to Nadaraya-Watson or local linear smoothing (not splines?)
- Test of equivalent eigenfunctions: p = 0.01
- Test of equivalent eigenspaces: p = 0.09 (K = 3)
- Practical implications:
 - Not enough data to see the differences between the maturities
 - Better estimates obtained by combining the two data sets.

- Regularity and stationarity assumptions (not applicable to the 2-sex mortality problem)
- Restricted to Nadaraya-Watson or local linear smoothing (not splines?)
- Test of equivalent eigenfunctions: p = 0.01
- Test of equivalent eigenspaces: p = 0.09 (K = 3)
- Practical implications:
 - Not enough data to see the differences between the maturities
 - Better estimates obtained by combining the two data sets.

- Regularity and stationarity assumptions (not applicable to the 2-sex mortality problem)
- Restricted to Nadaraya-Watson or local linear smoothing (not splines?)
- Test of equivalent eigenfunctions: p = 0.01
- Test of equivalent eigenspaces: p = 0.09 (K = 3)
- Practical implications:
 - Not enough data to see the differences between the maturities
 - Better estimates obtained by combining the two data sets.

- Testing equivalent of eigenfunctions or eigenspaces is not the same as determining if common estimates give better predictions.
- Testing observational data is almost always about whether there is enough data to detect differences. We know that differences exist.
- If prediction is the aim, then compare predictive accuracy, not model equivalence.
- When is eigenfunction/eigenspace equivalence useful?

- Testing equivalent of eigenfunctions or eigenspaces is not the same as determining if common estimates give better predictions.
- Testing observational data is almost always about whether there is enough data to detect differences. We know that differences exist.
- If prediction is the aim, then compare predictive accuracy, not model equivalence.
- When is eigenfunction/eigenspace equivalence useful?

- Testing equivalent of eigenfunctions or eigenspaces is not the same as determining if common estimates give better predictions.
- Testing observational data is almost always about whether there is enough data to detect differences. We know that differences exist.
- If prediction is the aim, then compare predictive accuracy, not model equivalence.
- When is eigenfunction/eigenspace equivalence useful?

- Testing equivalent of eigenfunctions or eigenspaces is not the same as determining if common estimates give better predictions.
- Testing observational data is almost always about whether there is enough data to detect differences. We know that differences exist.
- If prediction is the aim, then compare predictive accuracy, not model equivalence.
- When is eigenfunction/eigenspace equivalence useful?

Outline

- 1 Product/ratio coherent forecasting
- 2 Common functional principal components
- 3 Australian mortality
- 4 Testing for common functional principal components
- **5** References

Selected references

Hyndman, Booth, Yasmeen (2013). "Coherent mortality forecasting: the product-ratio method with functional time series models".

Demography **50**(1), 261–283.

Benko, Härdle, Kneip (2009). "Common functional principal components". *Annals of Statistics* **37**(1), 1–34.

Hyndman (2014). demography: Forecasting mortality, fertility, migration and population data.

cran.r-project.org/package=demography