~一般讨伦·		
定文 shoredinger 和		
$\left[\frac{-t^{1}}{2m}\nabla^{2}+V(\vec{x})\right]\psi(\vec{x})=E\psi_{(\vec{x})}$ $-\psi_{(\vec{x})}=\psi_{(\vec{x})}$		
$\left(-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx}+V(x)\right)\psi(x)=E\psi(x)$ $\psi''+\frac{2mE}{\hbar^{2}}\psi-\frac{2mV(x)}{\hbar^{2}}\psi=0$		
大· 竹		
山界条件. (边界上连续) () 0 液如数 破 - 附号数 连续. 边界条件. (边界上连续) () ② 8 熟 天限保护 H. 16 四数连续. 一阶级对连续.		
自然边界条件 中社 坡函数 收散.		
周期性边界争件 sin(p) = sin (p++2)		
9 10 20 3		
另:一维问题		
リ 一催 束缚 若解 天 简并		
2). 坡函数可以取为实数		
· · · · · · · · · · · · · · · · · · ·		
司解的图像. 拆荡 取决 E和 VIX 椰大小. 夏藏		
二、方專併.		
1、石厚度势 1件.		
$V(x) = \begin{cases} 0, & 0 \le x \le \alpha \\ \infty, & \pm \infty \end{cases}$		
。 」 其他		
di y		
$\psi_{lx}^{\prime\prime} + \frac{2nE}{\hbar} \psi_{lx} = 0$		
$\Psi(x) = A \cdot \sin\left(\frac{ x ^2}{\pi} x + \phi\right)$		
410)=0. Ø= 0, 九,,n元? 波逊截差介绍对其或不影响.		
$q(\alpha) = 0. \int_{\frac{\pi}{\kappa}}^{\infty} a + \beta = \sqrt{\lambda}$		
$\psi(\alpha) = 0. \int_{\frac{\pi}{\kappa}}^{\frac{\pi}{2}} a + \phi = \lambda^{2} \lambda^{2}$ $E = \frac{n^{2} t^{2} \lambda^{2}}{2ma^{2}}$		
$\int_{a}^{a} \psi ^{2} dx = 1 \Rightarrow A = \sqrt{\frac{2}{a}}$		
$\Psi(x) = \sqrt{\frac{2}{a}} \sin \frac{hx}{a} x \qquad \varphi(x < a)$		
, n ² 2 h²		
$E_{\mu} = \frac{n^2 \times 2h^2}{2ma^2}$		
1) $\frac{1}{2}$ $\frac{z}{z}$. $E = E_1 = \frac{z^2 t^2}{2ma^2}$		
り 全 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		

ع),	En d n2	FE WE	1届越村越	Ł.				
		<u> SEn</u> En	$\sqrt{\frac{1}{n}}$					
3).	旗的		- -	_(边翻 凶翻	おとかり			
		E	Es も 新	ь, ИIX) =	ψι-x) 偏导	钛 .		
			5 1	ψ(x) =	-41(-x) 寿宇	ht.		
		a		坐虾车辆上	置了以次 定学称			
	0	u						