## Klasszikus fizika laboratórium

## 2. mérés

# Rugalmas állandók mérése



Bakó Bence Kedd délelőtti csoport

Mérés dátuma: 2020. március 10. Leadás dátuma: 2020. március 24.

## 1. A mérés célja:

Szilárd testek rugalmasságának vizsgálata statikus (lehajlás) és dinamikus (torziós inga) módszerrel. Meghatározzuk az előbbi esetben a Young-modulusz, utóbbiban a Torziós modulusz értékét különböző testekre.

### 2. Mérőeszközök:

- Kétkarú mérleg
- Tolómérő, mérőszalag, csavarmikrométer
- Súlyok
- Kör keresztmetszetű rúd (V3)
- Téglalap keresztmetszetű rúd (A1)
- Torziós inga
- Analitikai mérleg
- 5-ös, 6-os tárcsa
- Ismeretlen próbatest (téglalap alapú hasáb)

## 3. A mérés menete:

### 3.1. Young-modulusz mérése

Először a kör keresztmetszetű rudat tettem terhelés alá, lépésenként növelve a terhelést és minden esetben lejegyezve a tömeget és a lehajlást.(A tömegek értékét egyből felszoroztam a karon jelölt faktorokkal és összeadtam őket.) Figyeltem arra, hogy legalább 10 mért értékem legyen és a lehajlással ne haladjam meg a 2 mm-t. Ugyanezt elvégeztem a téglalap alapú hasábra is, külön-külön mindkét lapjára fektetve. Ezek után újra a hengeres rúddal mértem. Kiválasztottam két tömeget (500 g, 7500 g) és mindig ezeket használva, az éktávolságot 30 mm-enként változtatva mértem a lehajlást. Adott éktávolságnál kiszámoltam a lehajlások különbségét (a két tehelésre).

#### 3.2. Torziós modulusz mérése

A mérési berendezésben a torziós szál végére erősített tengelyre szimmetrikusan helyeztem el a két tárcsát. Az egymástól való távolságuk függvényében mértem 10 teljes lengés idejét, majd egyik helyzetnél többször is lemértem a hibaszámításhoz. Ezek után egy ismeretlen téglatest tehetetlenségi nyomatékának meghatározása céljából mértem a lengésidőt két különböző oldalára fektetve.

### 4. A mérés elmélete:

#### 4.1. Young-modulusz mérése

A neutrális zónára a lehajlás nagysága:

$$s = \frac{1}{48} \frac{l^3}{EI} F$$

Ahol l az éktávolság, E a Young-modulusz, F a terhelési erő és I a keresztmetszet másodrendű nyomatéka, amely a kör illetve téglalap keresztmetszetű rudakra:

$$I_k = \frac{d^4 \cdot \pi}{64}$$

$$I_t = \frac{alap \cdot magassag^3}{12}$$

Ezekből kifejezhető a Young-modulusz.

Ha a lehajlást ábrázoljuk a terhelés függvényében és a pontokra egyenest illesztünk, akkor ennek a meredekségével (m) a Young-modulusz:

$$E = \frac{1}{48} \frac{l^3}{mI}$$

Állandó terhelés és változó éktávolság mellett (m szintén az illesztett egyenes meredeksége):

$$E = \frac{1}{48} \frac{F}{mI}$$

### 4.2. Torziós modulusz mérése

A torziós modulusz a periódusidő (T) függvényében:

$$G = K \frac{\Theta}{T^2}, \ K = \frac{8\pi l}{r^4},$$

ahol  $\Theta$  a lengő rendszer tehetetlenségi nyomatéka, l a torziós szál hossza és r a sugara.

$$\Theta = \Theta_e + \Theta_S + Ma^2,$$

ahol  $\Theta_e$  az üres inga tehetetlenségi nyomatéka,  $\Theta_S$  a két tárcsa együttes tehetetlenségi nyomatéka és  $Ma^2$  pedig a Steiner-tétel értelmében került a kifejezésbe.

A  $T^2(a^2)$  függvényre illesztett egyenes meredekségéből (m) kiszámítható a torziós modulusz:

$$G = K \frac{m_1 + m_2}{m},$$

ahol  $m_1, m_2$  a tárcsák tömege. Az üres inga tehetetlenségi nyomatéka is meghatározható a tengelymetszetből (b):

$$\Theta_e = \frac{Gb}{K} - \Theta_S; \ \Theta_{si} = \frac{1}{2} m_i R_i^2$$

Ismeretlen test tehetetlenségi nyomatéka a következő módon adható meg:

$$\Theta_x = \frac{m_1 + m_2}{m} (T_x^2 - T_0^2) + \Theta_S,$$

ahol  $T_0$  a periódusidő amikor a tárcsák középen vannak.

## 5. <u>Mérési adatok:</u>

### 5.1. Young-modulusz mérése

- $\bullet\,$  A kör keresztmetszetű (V3) rúd átmérője: d = 9,95 mm
- $\bullet$  A téglalap keresztmetszetű (A1) rúd oldalai: a = 7,85 mm, b = 11,95 mm
- A használt éktávolság: 400 mm

A V3 rúd esetében a mért adatok:

| Tömeg [g] | Lehajlás [0,01 mm] |
|-----------|--------------------|
| 500       | 50                 |
| 1000      | 61                 |
| 1500      | 71                 |
| 2000      | 81                 |
| 2500      | 92                 |
| 3000      | 102                |
| 3500      | 119                |
| 4000      | 124                |
| 4500      | 135                |
| 5000      | 145                |
| 6000      | 166                |
| 7000      | 186                |

Az A1 rúdat kisebbik lapjára fektetve (a):

| Tömeg [g] | Lehajlás [0,01 mm] |
|-----------|--------------------|
| 500       | 38                 |
| 1500      | 56                 |
| 2500      | 72                 |
| 3500      | 89                 |
| 4500      | 106                |
| 5500      | 123                |
| 6500      | 139                |
| 7500      | 156                |
| 8500      | 171                |
| 9500      | 188                |

Az A1 rúdat nagyobbik lapjára fektetve (b):

| Tömeg [g] | Lehajlás [0,01 mm] |
|-----------|--------------------|
| 500       | 11                 |
| 1000      | 31                 |
| 1500      | 50                 |
| 2000      | 71                 |
| 2500      | 92                 |
| 3000      | 112                |
| 3500      | 131                |
| 4000      | 149                |
| 4500      | 167                |
| 5000      | 185                |

A V3 rúd esetében az éktávolságot változtatva 500 és 7500 g terhelés mellett a mérési adatok:

| 1 [mm] | $s_0[0,01mm]$ | s[0,01mm] | $\Delta s[0,01mm]$ |
|--------|---------------|-----------|--------------------|
| 400    | 52            | 198       | 146                |
| 370    | 71            | 189       | 118                |
| 340    | 74            | 166       | 92                 |
| 310    | 52            | 123       | 71                 |
| 280    | 59            | 112       | 53                 |
| 250    | 59            | 96        | 37                 |
| 220    | 54            | 79        | 25                 |
| 190    | 36            | 52        | 16                 |
| 160    | 53            | 64        | 11                 |
| 130    | 38            | 43        | 5                  |

#### 5.2. Torziós modulusz mérése

• A torziós szál hossza: 59,2 cm

• A torziós szál átmérője: 0,69 mm

 $\bullet$  Az 5-ös számú tárcsa tömege m = 194,626 g, átmérője d = 45,15 mm

 $\bullet$  A 6-os számú tárcsa tömege m = 196,189 g, átmérője d = 45 mm

A tárcsákat egymáshoz közelítve, a tengelyen szimmetrikusan (a tengely közepétől egyenlő távolságra) elhelyezve 10 teljes lengés ideje:

| A tárcsák távolsága [cm] | 10T [s] |
|--------------------------|---------|
| 20                       | 75,837  |
| 18                       | 69,409  |
| 16                       | 63,131  |
| 14                       | 56,938  |
| 12                       | 51,012  |
| 10                       | 45,412  |
| 8                        | 40,220  |
| 6                        | 35,654  |
| 0                        | 28,733  |

A reprodukálhatóság vizsgálatára a 12 cm-nél mért lengésidők:

|  | $10T_{1}$ | 51,012  s | $10T_2$ | 51,185 | $10T_3$ | 51,183 | $10T_4$ | 51,171 |  |
|--|-----------|-----------|---------|--------|---------|--------|---------|--------|--|
|--|-----------|-----------|---------|--------|---------|--------|---------|--------|--|

Az ismeretlen téglatest esetében a lengésidők:

 $\bullet\,$  A nagyobbik lapjára fektetve:  $10T_x=41,947s$ 

- A kisebbik lapjára fektetve:  $10T_x = 41,532s$ 

## 6. <u>Kiértékelés</u>:

### 6.1. Young-modulusz mérése

#### 6.1.1. Kör keresztmetszetű rúd:

A lehajlást ábrázoltam a terhelés függvényében (a gravitációs gyorsulást  $g=9.8m/s^2$ -nek tekintettem) :



Az egyenes meredeksége:

$$m = 2,14 \cdot 10^{-5} \; \frac{m}{N}$$

A kör keresztmetszet másodrendű nyomatéka:

$$I_k = 4,81 \cdot 10^{-10} \ m^4$$

Innen a Young-modulusz:

$$E = 12,95 \cdot 10^{10} Pa$$

#### 6.1.2. Téglalap keresztmetszetű rúd kisebbik lapjára fektetve (a):

A lehajlást ábrázoltam a terhelés függvényében (a gravitációs gyorsulást  $g=9.8m/s^2$ -nek tekintettem) :



Az egyenes meredeksége:

$$m = 1,69 \cdot 10^{-5} \; \frac{m}{N}$$

A téglalap keresztmetszet másodrendű nyomatéka:

$$I_t = 11, 16 \cdot 10^{-10} \ m^4$$

Innen a Young-modulusz:

$$E = 7,07 \cdot 10^{10} \ Pa$$

#### 6.1.3. Téglalap keresztmetszetű rúd nagyobbik lapjára fektetve (b):

A lehajlást ábrázoltam a terhelés függvényében (a gravitációs gyorsulást  $g=9.8m/s^2$ -nek tekintettem) :



Az egyenes meredeksége:

$$m = 3,97 \cdot 10^{-5} \; \frac{m}{N}$$

A téglalap keresztmetszet másodrendű nyomatéka:

$$I_t = 4.81 \cdot 10^{-10} \ m^4$$

Innen a Young-modulusz:

$$E = 6,98 \cdot 10^{10} \ Pa$$

#### 6.1.4. A kör keresztmetszetű rúd esetében változó éktávolsággal:

Ábrázoltam a lehajlást az éktávolság harmadik hatványának függvényében:



Az illesztett egyenes meredeksége:

$$m = 2,29 \cdot 10^{-2} \frac{1}{m^2}$$

A kör keresztmetszet másodrendű nyomatéka:

$$I_k = 4.81 \cdot 10^{-10} \ m^4$$

A terhelési erő:

$$F = 7 \ kg \cdot 9, 8 \ \frac{m}{s^2} = 68, 6 \ N$$

Innen a Young-modulusz:

$$E = 12,97 \cdot 10^{10} Pa$$

#### 6.2. Torziós modulusz mérése

Ábrázoltam a tárcsák középponttól mért távolság-négyzetének függvényében a periódusidők négyzetét és egyenest illesztettem:



Az illesztett egyenes meredeksége és tengelymetszete:

$$m = 4925, 41 \frac{s^2}{m^2}; \ b = 8, 28s^2$$

Ezek ismeretében, tudva a tárcsák és a torziós szál paramétereit a torziós modulusz:

$$G = 8,333 \cdot 10^{10} \frac{N}{m^2}$$

A két tárcsa tehetetlenségi nyomatéka egyenlőnek tekinthető, és ennek értéke:

$$\Theta_{s5} = \Theta_{s6} = 4,9593 \cdot 10^{-5} kqm^2$$

Az üres inga tehetetlenségi nyomatéke ezekből kiszámolható:

$$\Theta_e = 55,77 \cdot 10^{-5} kgm^2$$

Tovább kiszámolható az ismeretlen test tehetetlenségi nyomatéka mindkét esetben:

$$\Theta_{x1} = 84,03 \cdot 10^{-5} kgm^2$$

$$\Theta_{x2} = 81,27 \cdot 10^{-5} kgm^2$$

## 7. Hibaszámítás:

#### 7.1. Young-modulusz mérése

Hibaszámításra a hibaterjedés módszerét alkalmazzuk.

A Young-modulusz relatív hibája:

$$\frac{\Delta E}{E} = \frac{\Delta m}{m} + \frac{\Delta I}{I} + 3\frac{\Delta l}{l}$$

Ahol a másodrendű nyomaték hibája:

$$\frac{\Delta I_k}{I_k} = 4 \cdot \frac{\Delta R}{R}$$

$$\frac{\Delta I_t}{I_t} = 3 \cdot \frac{\Delta b}{b} + \frac{\Delta a}{a}$$
, ahol b a magassag, a az alap

Az éktávolság hibája:  $\Delta l = 2 \cdot 5 \cdot 10^{-4} m$ , mert mindkét oldalon van alátámasztás és milliméteres skálán mérjük, tehát a relatív hiba:

$$\frac{\Delta l}{l} = 2, 5 \cdot 10^{-3}$$

#### 7.1.1. Kör keresztmetszetű rúd:

A meredekség hibája:

$$\Delta m = 2.81 \cdot 10^{-7} \frac{m}{N} \Rightarrow \frac{\Delta m}{m} = 1.31 \cdot 10^{-2}$$

A sugár hibája  $\Delta R = 0,0025m$ , mert az átmérő mérésének a hibája a mérőműszer miatt 0,005. Innen a másodrendű nyomaték relatív hibája:

$$\frac{\Delta I}{I} = 2,01 \cdot 10^{-3}$$

Tehát a Young-modulusz relatív hibája:

$$\frac{\Delta E}{E} = 22,61 \cdot 10 - 3$$

$$\Rightarrow \Delta E = 29,28 \cdot 10^8 \ Pa$$

#### 7.1.2. Téglalap keresztmetszetű rúd kisebbik lapjára fektetve (a):

A meredekség hibája:

$$\Delta m = 8,01 \cdot 10^{-8} \frac{m}{N} \Rightarrow \frac{\Delta m}{m} = 4,74 \cdot 10^{-3}$$

A magasság b=11,95 mm és hibája  $\Delta b=0,005mm$ , az alap a=7,85 mm és hibája szintén  $\Delta a=0,005mm$ . Innen a másodrendű nyomaték relatív hibája:

$$\frac{\Delta I}{I} = 1,89 \cdot 10^{-3}$$

Tehát a Young-modulusz relatív hibája:

$$\frac{\Delta E}{E} = 14, 13 \cdot 10 - 2$$

$$\Rightarrow \Delta E = 9.99 \cdot 10^8 \ Pa$$

#### 7.1.3. Téglalap keresztmetszetű rúd nagyobbik lapjára fektetve (b):

A meredekség hibája:

$$\Delta m = 3,88 \cdot 10^{-7} \frac{m}{N} \Rightarrow \frac{\Delta m}{m} = 9,79 \cdot 10^{-3}$$

A magasság b=7,85 mm és hibája  $\Delta b=0,005mm$ , az alap a=11,95 mm és hibája szintén  $\Delta a=0,005mm$ . Innen a másodrendű nyomaték relatív hibája:

$$\frac{\Delta I}{I} = 2,32 \cdot 10^{-3}$$

Tehát a Young-modulusz relatív hibája:

$$\frac{\Delta E}{E} = 19,61 \cdot 10 - 3$$

$$\Rightarrow \Delta E = 6,454 \cdot 10^8 \ Pa$$

#### 7.1.4. A kör keresztmetszetű rúd esetében változó éktávolságnál:

Itt is a hibaterjedés módszerével számoljuk a hibát:

$$\frac{\Delta E}{E} = \frac{\Delta m}{m} + \frac{\Delta I}{I}$$

A meredekség hibája:

$$\Delta m = 0,1937 \cdot 10^{-3} \frac{m}{N} \Rightarrow \frac{\Delta m}{m} = 8,45 \cdot 10^{-3}$$

A másodrendű nyomaték relatív hibáját már kiszámoltuk:

$$\frac{\Delta I}{I} = 2,01 \cdot 10^{-3}$$

Tehát a Young-modulusz relatív hibája:

$$\frac{\Delta E}{E} = 10,46 \cdot 10 - 3$$

$$\Rightarrow \Delta E = 13,56 \cdot 10^8 \ Pa$$

#### 7.2. Torziós modulusz mérése

A hibaterjedés módszerével a torziós modulusz hibája:

$$\frac{\Delta G}{G} = \frac{\Delta l}{l} + \frac{\Delta m}{m} + 4\frac{\Delta r}{r}$$

A torziós szál hosszát mérőszalaggal mértem, melynek hibája

$$\Delta l = 0,5mm \Rightarrow \frac{\Delta l}{l} = 8,445 \cdot 10^{-4}$$

A meredekség hibája:

$$\Delta m = 2,64 \frac{s^2}{m^2} \Rightarrow \frac{\Delta m}{m} = 5,35 \cdot 10^{-4}$$

A szál sugarának hibája (csavarmikrométer):

$$\Delta r = 0,0025mm \Rightarrow \frac{\Delta r}{r} = 72,46 \cdot 10^{-4}$$

Tehát a torziós modulusz relatív hibája:

$$\frac{\Delta G}{G} = 30, 36 \cdot 10^{-3}$$

$$\Rightarrow \Delta G = 0.253 \cdot 10^{10} Pa$$

A tárcsák sugarának hibája:

$$\Delta R = 0,025mm \Rightarrow \frac{\Delta R}{R} = 0,55 \cdot 10^{-3}$$

Innen a tárcsák tehetetlenségi nyomatékának hibája:

$$\frac{\Delta\Theta_s}{\Theta_s} = 2\frac{\Delta R}{R} = 1, 1 \cdot 10^{-3}$$

Az illesztett egyenes tengelymetszetének hibája:

$$\Delta b = 0,014s^2 \Rightarrow \frac{\Delta b}{b} = 1,69 \cdot 10^{-3}$$

Az üres inga tehetetlenségi nyomatékának hibája:

$$\frac{\Delta\Theta_e}{\Theta_e} = \frac{\Delta G}{G} + \frac{\Delta b}{b} + 4\frac{\Delta r}{r} + \frac{\Delta l}{l} + \frac{\Delta\Theta_s}{\Theta_s} = 62,978 \cdot 10^{-3}$$
$$\Rightarrow \Delta\Theta_e = 3,512 \cdot 10^{-5} \ kgm^2$$

A hibaszámításhoz mért eredményekből a periódus hibája:

$$\Delta T = 0,173s \Rightarrow \frac{\Delta T}{T} = 4,16 \cdot 10^{-3}$$

Az ismeretlen test tehetetlenségi nyomatékának hibája:

$$\frac{\Delta\Theta_x}{\Theta_x} = \frac{\Delta m}{m} + 2\frac{\Delta T}{T} + \frac{\Delta\Theta_s}{\Theta_s} = 9,95 \cdot 10^{-3}$$

$$\Rightarrow \Delta\Theta_{x1} = 0,836 \cdot 10^{-5} \ kgm^2$$

$$\Rightarrow \Delta\Theta_{x2} = 0,809 \cdot 10^{-5} \ kgm^2$$

## 8. <u>Diszkusszió:</u>

A végeredmények összegezve:

| V3 rúd Young-modulusza (1. módszer):             | $(12,95\pm0,2928)\cdot10^{10}Pa$          |
|--------------------------------------------------|-------------------------------------------|
| A1 rúd Young-modulusza (kisebbik lapján):        | $(7,07\pm0,0999)\cdot10^{10}Pa$           |
| A1 rúd Young-modulusza (nagyobbik lapján):       | $(6,98 \pm 0,06454) \cdot 10^{10} Pa$     |
| V3 rúd Young-modulusza (2. módszer):             | $(12,97\pm0,1356)\cdot10^{10}Pa$          |
| Torziós modulusz:                                | $(8,33\pm0,253)\cdot10^{10}Pa$            |
| Az üres inga tehetetlenségi nyomatéka:           | $(55,77\pm3,512)\cdot10^{-5}kgm^2$        |
| Az ismeretlen test tehetetlenségi nyomatéka (1): | $(84,03\pm0,836)\cdot10^{-5}kgm^2$        |
| Az ismeretlen test tehetetlenségi nyomatéka (2): | $(81, 27 \pm 0, 809) \cdot 10^{-5} kgm^2$ |

A Young-modulusz mérésénél meghatároztuk mindkét próbatestre kétféle módon és hibahatáron belül azonos eredményeket kaptunk, tehát úgy gondolom jól mértem. Az ismeretlen test tehetetlenségi nyomatékánál, látszik, hogy csak kis eltérés van a két eset között, ami összhangban van az elmélettel.

## Hivatkozások

 Az ELTE Természettudományi Kar Oktatói: Fizikai Mérések (Összevont Laboratóriumi Tananyag I.) Szerkesztette: Havancsák Károly, Lektorálta: Kemény Tamás, ELTE Eötvös Kiadó, Budapest, 2013.

Bata Bence

1) Young-modulust morese 40k kerestm. rind: d = 9,55 mm (V3) tisfelof — 1 - rind: a = 7,85 mm, b = 11,95 mm (AB) plandsog: 400 mm

| tomes (5) | lehajlas (0,01 mm) |            |
|-----------|--------------------|------------|
| 2.256=500 | 83550              | 6000 - 166 |
| 1000      | REA 61             | 7000-2186  |
| 1500      | 490x 71            |            |
| 2000      | \$100 SI           |            |
| 2500      | 4880x 02           |            |
| 3000      | 4804 102           |            |
| 3500      | 150 119            |            |
| 4000      | AST 124            |            |
| 4500      | 1000 135           |            |
| 5000      | novo 145           |            |
| +         | 1 11 - 211         | 4 1        |

Al:a: lehazlas (0,01mm 

V3:

| pm(s)             | S (0,01,mm) |
|-------------------|-------------|
| 500               | 11          |
| 1000              | 31          |
| 1500              | 50          |
| 2000              | 71          |
| 2500              | 32          |
| 3000              | 112         |
| 3500              | 131         |
| 4000              | 149         |
| 4500              | 167         |
| 5000              | 185         |
| The second second |             |

Bel.

-ar iltoolsågat valtostatra V3-ra (500 - 7500 g)

| l (mm) | 50 (0,01mm) | S (0,01 mm) | 15 (0,01mm) |
|--------|-------------|-------------|-------------|
| 406    | ACTION 52   | 158         | 146         |
| 370.   | \$471       | XXA-189     | 118         |
| 340.   | 36974       | 166         | 52          |
| 316    | 52          | 123         | 71          |
| 280    | 55          | 112         | 53          |
| 250    | 8x59        | 36          | 40037       |
| 220    | 54          | 79          | 25          |
| 190    | 36          | 52          | 16          |
| 160    | 53          | 64          | 11          |
| 130    | 38          | 43          | 5           |

2) Torrios modulusz merése

| 10 T (n) |
|----------|
| 75,837   |
| 69,409   |
| 63,131   |
| 56,938   |
| 51,012   |
| 45,412   |
| 40,220   |
| 35,654   |
| 28,733   |
|          |

reprodukálhatósag - hibaszámilás: 12 cm-mel  $10T_4 = 51,012$ ,  $10T_2 = 51,185$ ,  $10T_3 = 51,183$ 10 7 = 51,171

3) ismeretlen test tehetetlensegi nyomaleka · teglatest

La riselebite lapjoha fektetve: Tx = 91,947 )
La riselebite lapjoha fektetve: Tx = 91,532 )

a torrios 22al hossza: 59,2 cm a torrios oxal atmeráje: 0,69 mm 5-ios számú tárca tomege: 194,626\$ s; d=445 mm 6-os — 1, : 136,189 s; d=4865 mm 45 mm

toll