Exercise 07 - December 11, 2024

1. A researcher wants to compare the growth of plants under three types of fertilizers (A, B, and C). The heights of the plants after 30 days (in cm) are:

Fertilizer A	Fertilizer B	Fertilizer C
15	20	25
16	22	27
14	19	26
15	21	28
17	20	24

Does the type of fertilizer (A, B, or C) significantly affect plant growth (with α = 0.05)? Perform a one-way ANOVA to determine if fertilizer type affects plant growth. Create a null hypothesis and alternative hypothesis first.

Solution:

State the Hypotheses

Null Hypothesis (H_0):

The mean plant heights are the same for all three fertilizers:

$$\mu_A = \mu_B = \mu_C$$

Alternative Hypothesis (H_1) :

At least one fertilizer produces a different mean plant height.

SUMMARY

Groups	Count	Sum	Average	Variance
Fertilizer A	5	77	15,4	1,3
Fertilizer B	5	102	20,4	1,3
Fertilizer C	5	130	26	2,5

ANOVA

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups Within Groups	281,2 20,4	2 12	140,6 1,7	82,705882	9,5762E-08	3,885293835
Total	301,6	14				

Group Means and Overall Mean

Calculate the grand mean (\bar{X})

$$\bar{X} = \frac{15+16+14+15+17+20+22+19+21+20+25+27+26+28+24}{15} = 20.6$$

Calculate the group means

$$\bar{X}_A = \frac{15+16+14+15+17}{5} = 15.4$$

$$\bar{X}_B = \frac{20 + 22 + 19 + 21 + 20}{5} = 20.4$$

$$\bar{X}_C = \frac{25 + 27 + 26 + 28 + 24}{5} = 26.0$$

Sum of Squares

Total Sum of Squares:

$$SS_{total} = (15-20.6)^2 + (16-20.6)^2 + \cdots + (24-20.6)^2 = 89.2$$

Between-Groups Sum of Squares:

$$SS_{between} = 5 \times ((15.4-20.6)^2 + (20.4-20.6)^2 + (26.0-20.6)^2) = 71.6$$

Within-Groups Sum of Squares:

$$SS_{within} = SS_{total} + SS_{between} = 89.2 - 71.6 = 17.6$$

Calculate Mean Squares and F-Statistic

Degree of Freedom (df):

$$df_{between} = k-1 = 3-1 = 2$$

$$df_{within} = N-k = 15-3 = 12$$

Mean Squares (MS):

$$MS_{between} = SS_{between} / df_{between} = 71.6 / 2 = 35.8$$

 $MS_{within} = SS_{within} / df_{within} = 17.6 / 12 = 1.47$

Calculate FFF-Statistic:

$$F = \frac{\text{MSbetween}}{\text{MSwithin}} = \frac{35.8}{1.47} \approx 24.35$$

Decision

Critical F-Value:

From an F-distribution table with $df_{between}$ = 2 and df_{within} =12 at α = 0.05, the critical value is $F_{critical}$ = 3.89

Compare F:

Since F = 24.35 > 3.89, reject the null hypothesis.

OR

Calculate the p-Value

The p-value is the probability of observing an F-value as extreme as the calculated value (F = 24.35) under the null hypothesis.

Using $df_{between} = 2$ and $df_{within} = 12$, the p-value can be found using an F-distribution table or statistical software.

For F = 24.35: Using statistical software or a table, we find that p-value < 0.001

Decision Rule

Compare the p-value to α =0.05\alpha = 0.05 α =0.05:

- o If $p \le \alpha$, reject the null hypothesis (H0H_0H0).
- o If $p > \alpha$, fail to reject the null hypothesis.

In this case, p < 0.001 < 0.05, so we reject the null hypothesis.

Conclusion

The p-value is extremely small (p < 0.001), which indicates very strong evidence against the null hypothesis. Therefore, we conclude that the type of fertilizer has a significant effect on plant growth.

OR

The F-statistic (F=24.35) is significant at α = 0.05. This indicates that the type of fertilizer has a significant effect on plant growth. At least one fertilizer produces a different mean plant height.

2. A researcher wants to determine if there is an association between **plant type** and **fertilizer preference**. The researcher surveys 90 plants and records the following data:

Fertilizer	Plant Type A	Plant Type B	Plant Type C	Total
Fertilizer X	10	20	10	40
Fertilizer Y	15	10	5	30
Fertilizer Z	5	5	10	20
Total	30	35	25	90

Conduct a Chi-Square test of Independence whether plant type and fertilizer preference are independent at α = 0.05.

Solution:

State the Hypotheses

Null Hypothesis (H_0) :

Plant type and fertilizer preference are independent.

Alternative Hypothesis (H_1) :

Plant type and fertilizer preference are not independent (there is an association)

Calculate the Expected Frequencies

The formula for the expected frequency for a cell is:

$$E_{ij} = \frac{\text{Row Total} \times \text{Column Total}}{\text{Grand Total}}$$

For each cell:

Fertilizer X, Plant Type A:

$$E_{11} = \frac{40 \times 30}{90} = \frac{1200}{90} = 13.33$$

Fertilizer X, Plant Type B:

$$E_{12} = \frac{40 \times 35}{90} = \frac{1400}{90} = 15.56$$

Fertilizer X, Plant Type C:

$$E_{13} = \frac{40 \times 25}{90} = \frac{1000}{90} = 11.11$$

Repeat for all cells to construct the Expected Frequency Table:

Fertilizer	Plant Type A (E)	Plant Type B (E)	Plant Type C (E)	Total
Fertilizer X	13.33	15.56	11.11	40
Fertilizer Y	10	11.67	8.33	30
Fertilizer Z	6.67	7.78	5.56	20
Total	30	35	25	90

Compute the Chi-Square Statistic

The formula for the Chi-Square statistic is:

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

Calculate for each cell:

Fertilizer X, Plant Type A:
$$\frac{(10-13.33)^2}{13.33} = \frac{(-3.33)^2}{13.33} = \frac{11.09}{13.33} = 0.83$$

Fertilizer X, Plant Type B:
$$\frac{(20-15.56)^2}{15.56} = \frac{(4.44)^2}{15.56} = \frac{19.71}{15.56} = 1.27$$

Fertilizer X, Plant Type C:

$$\frac{(10-13.33)^2}{13.33} = \frac{(-3.33)^2}{13.33} = \frac{11.09}{13.33} = 0.11$$

Repeat for all cells. Summing these values gives:

$$\chi^2$$
 = 0.83 + 1.27 + 0.11 + 2.50 + 0.24 + 1.33 + 0.42 + 0.99 + 3.55 = 11.24

Degrees of Freedom

The degrees of freedom (df) for a contingency table is:

Here:

$$df = (3-1) \times (3-1) = 2 \times 2 = 4$$

Determine the Critical Value

From the Chi-Square distribution table, for df = 4 and α = 0.05:

$$X^2_{critical} = 9.488$$

Decision

Compare the test statistics to the critical value:

- If $\chi^2 \le \chi^2_{\text{critical}}$, fail to reject H_0
- If $\chi^2 > \chi^2_{\text{critical}}$, reject H_0

Here:

$$\chi^2$$
 = 11.24 and $\chi^2_{critical}$ = 9.488

Since 11.24 > 9.488, we reject the null hypothesis.

Conclusion

At α = 0.05, there is sufficient evidence to conclude that **plant type** and **fertilizer preference** are not independent. There is an association between plant type and fertilizer preference

3. A professor wants to investigate whether the **type of programming language** (Python, Java, C++) and the **study method** (Self-Study, Instructor-Led) affects students' test scores. The professor records the test scores of students after completing a course under each combination of factors.

Language	Self-Study	Instructor-Led
Python	78, 82, 85	90, 88, 92
Java	72, 75, 74	85, 80, 84
C++	65, 68, 70	78, 75, 80

Perform a Two-Way ANOVA to determine if there are significant effects of programming language, study method, or their interaction on test scores.

Create all null hypotheses.

Use $\alpha = 0.05$

Solution:

State Hypotheses:

Main Effect of Programming Language (H_0): Mean test scores are the same across Python, Java, and C++.

Main Effect of Study Method (H_0) : Mean test scores are the same for Self-Study and Instructor-Led methods.

Interaction Effect (H₀): There is no interaction between programming language and study method.

Grand Mean (\bar{X}) = 78.9444 (average for all 18 values)

Group Means:

Python : 85.8333
Java : 78.3333
C++ : 72.6667
Self-Study : 74.3333
Instructor-Led : 83.5556

Python and Self-Study : 81.6667
Python and Instructor-Led : 90.0
Java and Self-Study : 73.6667
Java and Instructor-Led : 83.0
C++ and Self-Study : 67.6667
C++ and Instructor-Led : 77.6667

Compute Sum of Squares:

Total = $\sum (x_{ij} - \bar{X})^2$

Using \bar{X} = 78.94, calculate for each observation:

Sum of Squares for Factor Programming Language (A):

$$SSA = 6 * (85.8333 - 78.9444)^2 + 6 * (78.3333 - 78.94)^2 + 6 * (72.6667 - 78.94)^2$$

SSA = 523.4394

Sum of Squares for Factor Study Method (B):

$$SSB = 9 * (74.3333 - 78,9444)^2 + 9 * (83.5556 - 78,9444)^2$$

SSB = 382.7222

Sum of Squares Within (Error)

SS Python and Self-Study =
$$(78 - 81.6667)^2 + (82 - 81.6667)^2 + (85 - 81.6667)^2 = 24.6664$$

SS Python and Instructor-Led = 8

SS Java and Self-Study = 4,6667

SS Java and Instructor-Led = 14

SS C++ and Instructor-Led = 12.6667

Total Sum of Squares

SSTotal =
$$(78 - 78.9444)^2 + (82 - 78.9444)^2 + ... + (80 - 78.9444)^2$$

SSTotal = 984.9444

SSInteraction = 984.9444 - 523.4394 - 382.7222 - 76.6664 = 2.1164

Degrees of Freedom:

$$df_A = 2$$
, $df_B = 1$, $df_{interaction} = 2$, $df_{within} = 12$, $df_{Total} = 17$

Mean Squares and FFF-Statistics:

$$MS_A = SS/df = 523.4394/2 = 261.7197$$

 $MS_B = 191.3611$

 $MS_{A \times B} = 1.0852$

 $MS_E = 38.3332$

$$F_A = MS_A / MS_E = 261.7197 / 38.3332 = 40.9652$$

 $F_B = 59.9045$

Decision:

p-value Programming Language for $F = 40.965, \ df = (2,12) \ at \ \alpha = 0.05 \ is \ 0.00000435$ p-value Study Method for $F = 59.9045, \ df = (1,12) \ at \ \alpha = 0.05 \ is \ 0.00000527$ p-value Interaction for $F = 0.1656, \ df = (2,12) \ at \ \alpha = 0.05 \ is \ 0.84928886$

Conclusion:

Significant main effects of programming language on test scores. (p-value < α) Significant main effects of study method on test scores. p-value < α) No Significant interaction between language and study methods. p-value > α)

ANOVA

Source of Variation	SS	df	MS	F	P-value
Sample (study)	523,4444444	2	261,7222222	40,9652174	4,3476E-06
Columns (program)	382,7222222	1	382,7222222	59,9043478	5,26602E-06
Interaction	2,111111111	2	1,05555556	0,16521739	0,849605144
Within	76,66666667	12	6,388888889		
Total	984,944444	17			