RI203 Uvod u računarske algoritme

dr.sc. Edin Pjanić

Pregled predavanja

- Podijeli pa savladaj ("divide-and-conquer") algoritmi
 - merge sort
 - quick sort
- Usporedba analiziranih metoda sortiranja
- Složenost "divide-and-conquer" algoritama

Podijeli pa savladaj – divide and conquer

Podijeli pa savladaj je poznati metod u dizajnu algoritama.

Metod ima tri koraka:

Podijeli:

 Ako imamo previše ulaznih podataka da bismo ih jednostavno obradili, podijeliti ih na dva ili više odvojenih podskupova.

Ponavljaj (podjelu):

 Koristiti "podijeli pa savladaj" rekurzivno u cilju rješavanja podproblema na podskupovima.

Savladaj:

 Riješiti podproblem kad to bude moguće. Iskoristiti rješenja podproblema i spojiti ih u konačno rješenje originalnog problema.

Merge sort – sortiranje spajanjem

- Baziran na principu "podijeli pa savladaj".
- Autor je John von Neumann, 1945.
- Princip je posve drugačiji od principa prethodnih metoda koji su se bazirali na poređenju.

Podijeli:

 nesortirani niz podijeli se na dva podniza jednake veličine.

Ponavljaj:

 svaki podniz na isti način se dijeli rekurzivno istom metodom, dok se ne dobije niz od 1 elementa - koji je sortiran.

Savladaj:

 dva sortirana podniza se spoje u treći niz tako da i on bude sortiran.

FET-RI203 5/25

Merge sort

FET-RI203 6/25

Merge sort

FET-RI203 7/25

Merge sort – analiza

- Ako je ulazni niz već sortiran ovaj metod to ne prepoznaje (uvijek se isto ponaša). Postoje varijante koje prepoznaju sortirane dijelove niza.
- Koristi dodatnu memoriju pri spajanju podnizova.
- Uglavnom se koristi za sortiranje većih fajlova u vanjskoj memoriji pri čemu se koristi vanjska memorija kao pomoćna pri spajanju.
- Ovo je stabilan algoritam sortiranja.

Složenost:

- Za procesiranje jednog elementa: O(1). Kako na svakom nivou imamo n elemenata, to je O(n) za jedan nivo.
- Nivoa imamo log₂ n, odnosno lg n.
- Otuda je složenost O(n log n).

FET-RI203 8/25

Quicksort

- Do sada najbrži algoritam za sortiranje O(n log n). U najgorem slučaju je O(n²) ali se to vrlo rijetko javlja.
- Baziran na rekurzivnom "podijeli pa savladaj".
- Autor je Tony Hoare.
- Quicksort je poznat i kao "partitioning-exchange sort" sortiranje particioniranjem (dijeljenjem) i razmjenom.

Ideja ovog metoda je da se u svakom koraku jedan element (tzv. pivot) postavi na svoje mjesto.

- svi elementi manji od tog elementa idu lijevo
- svi elementi veći od tog elementa idu desno

Postupak se rekurzivno ponovi za lijevi dio niza i za desni dio niza od pivota.

Quicksort - metodologija

Podijeli:

- Ako niz ima 2 ili više elemenata odabrati bilo koji element za tzv. pivot (E) te podijeliti niz na tri dijela (particionisanje):
 - L dio: dio sa elementima manjim od pivota E
 - pivot E
 - G dio: dio sa elementima većim od pivota E

Ponavljaj:

rekurzivno sortirati L i G sve dok imaju više od 1 elementa

Savladaj:

spojiti podnizove redom: {L, E, G}

Particionisanje

Quick sort

 Raspodjela elemenata niza (liste) na dva dijela tako da su elementi u prvom (lijevom) dijelu manji od elemenata u drugom (desnom) dijelu.

Generalno

 Raspodjela elemenata niza (liste) na dva dijela tako da elementi u prvom (lijevom) dijelu zadovoljavaju neki kriterij a elementi u drugom (desnom) dijelu ne zadovoljavaju taj kriterij.

Particioniranje: quick sort

Hoare algoritam (Tony Hoare)

Lomuto algoritam (Nico Lomuto)

FET-RI203 12/25

Particioniranje: generalno

```
template <typename It, typename Pred>
  It partition(It first, It last, Pred pred);
```



```
i=first; j=last
...
while(pred(*i)) ++i;  // while(*i < pivot) ++i;
while(!pred(*j)) --j;  // while(pivot < *i) --j;</pre>
```

Quick sort algoritam - pseudokod

```
QuickSort(first, last)
if first < last
  pivotPos = partition(first, last)
  QuickSort(first, pivotPos)
  QuickSort(pivotPos+1, last)</pre>
```

Quicksort - primjer

FET-RI203

18	32	2 1	2 5	38	33	16	2	<u>25</u>
18	32	2 1	2 5	38	33	16	2	<u>25</u>
18	<u>2</u>	12	5	38	33	16	<u>32</u>	<u>25</u>
18	2	12	5	16	33	38	32	<u>25</u>
18	2	12	5	16	<u>25</u>	38	32	<u>33</u>
18 18 <u>5</u> 5	2 2 2 2 2	12 12 12 12 12	5 5 <u>18</u> 18 <u>16</u>	16 16 16 16 18		38 38 32 32 32	32 32 38 38 33	33 33 33 33 38
5 5 5 <u>2</u>	2 2 2 <u>5</u>	12 12						
2	5	12	16	18	25	32	33	38

Quicksort - analiza

- Za pivot se može odabrati bilo koji element, mada postoje određene strategije pri kojim se nekad dobijaju bolji rezultati.
- U različitim izvedbama se različito tretiraju i elementi koji su jednaki pivot elementu.
- Unutrašnja petlja za particionisanje je krajnje jednostavna i brza, što je prednost ovog algoritma.
- Složenost: u najboljem slučaju se niz dijeli na dva jednaka dijela. U tom slučaju imamo pronalazak tačnog mjesta pivota – O(n) i dva dijela koja moramo rekurzivno sortirati:

$$T(n) = O(n) + T(n/2) + T(n/2)$$

=> $O(n \lg n)$

 Najgori slučaj nastupa ako je pivot u svakom koraku najveći ili najmanji element:

$$=> O(n^2)$$

Usporedba metoda sortiranja koji su O(n log n)

FET-RI203 17/25

Pregled analiziranih metoda sortiranja

Naziv	Najbolje (bc)	Prosječno (ac)	Najgore (wc)	Stabilan	Metoda
selection sort	O(n²)	O(n²)	O(n²)	ne	biranje
insertion sort	O(n)	O(n²)	O(n ²)	da	umetanje
bubble sort	O(n)	O(n²)	O(n²)	da	zamjena
shell sort	-	-	$O(n^{3/2})$	ne	umetanje
merge sort	O(nlogn)	O(nlogn)	O(nlogn)	da	spajanje
quick sort	O(nlogn)	O(nlogn)	O(n ²)	ne	podjela

FET-RI203 18/25

"Podijeli-pa-savladaj" algoritmi (divide-and-conquer)

- Najpoznatija i najpopularnija strategija u dizajnu algoritama.
- Podijeli (divide)
 - Problem veličine n razbije se (podijeli) na određeni broj manjih pod-problema.
- Savladaj (conquer)
 - Po istom principu se rekurzivno rješavaju podproblemi (razbijaju na manje), dok se ne dođe do nivoa kad se rješenje može naći direktno.
- Kombinuj (combine)
 - Dobijena rješenja svih pod-problema se spoje u konačno rješenje originalnog problema.

"Podijeli-pa-savladaj" algoritmi 2

- Neka se problem rješava tako da se originalni problem veličine n podijeli na a problema koji su veličine n/b.
- Rješavanje a takvih pod-problema bi zahtijevalo:

$$T_1(n/b) + T_2(n/b) + T_3(n/b) + ... + T_a(n/b)$$

- Rješavanje originalnog problema, osim rješavanja a navedenih podproblema veličine n/b, zahtijeva još i spajanje rješenja podproblema u konačno rješenje čija veličina zavisi od veličine originalnog problema. Neka je ta zavisnost data funkcijom f(n).
- Vrijeme potrebno za rješavanje originalnog problema bismo sada mogli napisati kao:

$$T(n) = T_1(n/b) + T_2(n/b) + T_3(n/b) + ... + T_a(n/b) + f(n)$$

tj. $T(n) = a T(n/b) + f(n)$

Master teorema – uprošteno

- Teorema za izračunavanje asimptotske složenosti rekurzivnog divide-and-conquer algoritma.
- Odnosi se na algoritme čije se vrijeme izvršavanja (broj operacija, memorija i sl.) može opisati formulom:

$$T(n) = a T(n/b) + \Theta(n^c)$$
$$T(1) = \Theta(1)$$

gdje su $a \ge 1$, b > 1, c > 0 konstante.

 $\mathrm{T}(n)$ mora biti monotona funkcija, a funkcija $\mathrm{f}(n)$, sa prethodnog slajda, mora biti polinomskog oblika.

Master teorema – uprošteno

$$T(n) = a T(n/b) + \Theta(n^c)$$

$$T(1) = \Theta(1)$$

1. slučaj: ako je $a < b^c$, odnosno $\log_b a < c$, tada je $T(n) = \Theta(n^c)$

- 2. slučaj: ako je $a = b^c$, odnosno $\log_b a = c$, tada je $T(n) = \Theta(n^c \log n)$
- 3. slučaj: ako je a > b^c, odnosno $log_b a > c$, tada je $T(n) = \Theta(n^{log_b a})$

Primjer 1

$$T(n) = 3T(n/2) + 4n^2 + 3n$$
 $f(n) = 4n^2 + 3n \Rightarrow O(n^2)$
 $= > a = 3$
 $b = 2$
 $c = 2$

Pošto je $3 < 2^2$ primjenjuje se prvi slučaj, pa je:

$$T(n) = \Theta(n^2)$$

- 1. slučaj: ako je $a < b^c$, odnosno $\log_b a < c$, tada je $\mathrm{T}(n) = \Theta(n^c)$
- 2. slučaj: ako je $a = b^c$, odnosno $\log_b a = c$, tada je $T(n) = \Theta(n^c \log n)$
- 3. slučaj: ako je a > b^c, odnosno $\log_b a > c$, tada je $T(n) = \Theta(n^{\log b a})$

Primjer 2: Quick sort

$$T(n) = 2T(n/2) + \Theta(n)$$

$$=> a = 2$$

$$b = 2$$

$$c = 1$$

Imamo particionisanje, koje je linearno ovisno o n, i onda rekurzivno quick sort dvije polovice niza.

Pošto je $2 = 2^1$ primjenjuje se drugi slučaj, pa je:

$$T(n) = \Theta(n^c \log n)$$

tj.,
$$T(n) = \Theta(n \log n)$$

- 1. slučaj: ako je $a < b^c$, odnosno $\log_b a < c$, tada je $\mathrm{T}(n) = \Theta(n^c)$
- 2. slučaj: ako je $a = b^c$, odnosno $\log_b a = c$, tada je $T(n) = \Theta(n^c \log n)$
- 3. slučaj: ako je $a > b^c$, odnosno $\log_b a > c$, tada je $T(n) = \Theta(n^{\log_b a})$

Primjer: najveći podniz (maximum subarray)

- Za dati niz, potrebno je pronaći dio niza za koji je suma elemenata najveća. Taj dio niza nazivamo najveći podniz.
- Npr. za niz A[0 ... 12]:
 - A: {5, -4, 7, 2, -12, 6, -2, 5, 6, -1, -13, 7, 2}

Najveći podniz je A[5 ... 8] a suma iznosi 15.

Rješenje:

- Brute-force: $\Theta(n^2)$
- Divide and conquer:
 - Master teorema $=> \Theta(n \log n)$