HOMEWORK 1

- 1. From [Ush]: 1.2, 1.3*, 2.11, 3.4, 3.14*, 3.15*
- 2. Let $D: C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$ be a derivation. Show that there exists $\phi \in C^{\infty}(\mathbb{R})$ such
- that $D(f) = \phi \cdot f'$ where f' denotes the derivative of f. 3. Let C be a constant vector field on \mathbb{R}^2 and $Z = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$. Show that [C, Z] is a constant vector field on \mathbb{R}^2 obtained by rotating C by $\frac{\pi}{2}$ in the positive direction.

References

[Ush] Mike Usher, 8210 lecture notes.