U.S. Market Concentration and Import Competition (2024) by Mary Amiti and Sebastian Heise

Discussion by Eric Hsienchen Chu Fall 2024 ECON 871

Summary of Amiti and Heise (2024)

Question. How import competition (ΔIP_{it}) affected production concentration (ΔC_{it}^P) and market concentration (ΔC_{it}^M) ?

- Why to care? Market concentration (\approx power) \implies Markups
- 2SLS: Instrument for $\Delta \textit{IP}_{it}$ with $\textit{Inst}_{\Delta \textit{IP}_{it}} = \sum_{j \neq \textit{US}} \textit{w}_{ij,t-5} \tilde{\beta}_{ijt}$ ("Bartik"),

$$\Delta C_{it} = \gamma \underline{\Delta I P_{it}} + \delta_t + \varepsilon_{it}, \tag{1}$$

where ΔC_{it} : 5-yr change in concentration in industry i (t: 1992-2012) 1

Contribution. Stable aggregate market concentration (theoretical-consistent):

- Domestic U.S. firms: an \nearrow in ΔC_{it}^P ("selection"), but a \searrow in ΔC_{it}^M
- Foreign firms selling in the U.S.: an \nearrow in $\triangle C_{it}^{M}$

¹Data: Census of Manufactures & Longitudinal Firm Trade Transactions Database; UN COMTRADE

Key Results: Section 5 Table 1

[2SLS]
$$\Delta C_{it} = \gamma \Delta I P_{it} + \delta_t + \varepsilon_{it}$$
, where $\Delta I P_{it} = \eta Inst_{\Delta I P_{it}} + \zeta_{it}$

Table 1: CHANGE IN CONCENTRATIONS AND IMPORT COMPETITION (SIMPLIFIED)

	Production Concentration	Market Concentration		
	ΔC_{it}^{P}	$\Delta C_{it}^{M,dom}$	$\Delta C_{it}^{M,all}$	$\Delta C_{it}^{M,for}$
ΔIP_{it}	0.209**	-0.289*** ↓	0.041→	0.381*** ↑
	(0.089)	(0.083)	(0.074)	(0.053)
First stage	ΔIP_{it}	ΔIP_{it}	ΔIP_{it}	ΔIP_{it}
$Inst_{\Delta IP_{it}}$	0.383***	0.390***	0.390***	0.390***
Predicted effects on ΔC_{it}	0.005	-0.008	0.001	0.010
Actual effects	0.033	-0.016	0.003	0.023
N	500	500	500	500

Note: Regressions for ΔC_{it}^{P} is weighted by industry shipments in 1992; regressions for ΔC_{it}^{M} are weighted by industry absorption in 1992.

Two Major Comments

Comment #1: Export Supply Shocks (Bartik IV)

Starting from FE model:
$$\Delta M_{ijkt} = \alpha_{ikt} + \beta_{ijt} + \varepsilon_{ijkt}$$
, (import FE + export FE),
 \Rightarrow Want. Construct $Inst_{\Delta IP_{it}} = \sum_{j \neq US} w_{ij,t-5} \tilde{\beta}_{ijt}$; shifter $\tilde{\beta}_{ijt} = \hat{\beta}_{ijt} - \text{med}(\hat{\beta}_{it})$

Strategy. Estimate $\hat{\beta}_{ijt}$ (how?) \rightarrow compute $\tilde{\beta}_{ijt}$ \rightarrow construct $Inst_{\Delta IP_{it}}$

① Define $D_{ijt} \equiv \sum_{k} \Delta M_{ijkt}$ (total Δ Exports of j of industry i to k):

$$\Rightarrow \sum_{k} \alpha_{ikt} + \sum_{k} \beta_{ijt} + \sum_{k} \varepsilon_{ijkt} = \sum_{k} \left(\frac{M_{ijk,t-5}\alpha_{ikt}}{\sum_{k} M_{ijk,t-5}} \right) + \sum_{k} \left(\frac{M_{ijk,t-5}\beta_{ijt}}{\sum_{k} M_{ijk,t-5}} \right)$$

$$\equiv \beta_{ijt} + \sum_{k} \phi_{ijk,t-5}\alpha_{ikt} - (\bigstar)$$

② Similarly, define $D_{ikt} \equiv \sum_{j} \Delta M_{ijkt}$ (total Δ Imports of k of industry i from j):

$$\Rightarrow \sum_{j} \alpha_{ikt} + \sum_{j} \beta_{ijt} + \sum_{j} \varepsilon_{ijkt} = (skip) \equiv \alpha_{ikt} + \sum_{j} \psi_{ijk,t-5} \beta_{ijt} - (\bigstar \bigstar)$$

③ By acct $(\bigstar) = (\bigstar \bigstar)$, we have J + K eqns & unknowns \implies unique $\hat{\beta}_{ijt}$

Comment #2: Implications

The main implication is to infer markups from market concentration

- Amiti and Heise (2024) got half the job done, showing us a stable aggregate market concentration
 - The first to study both domestic & foreign firms selling in the U.S.
 - ® Identify foreign suppliers by the Manufacturer ID in LFTTD
- What about the markups part? (stable mkt concentration $\stackrel{?}{\rightarrow}$ stable markups)
- Several prior studies for markups (but domestic firms only):
 - ⊕ How do markups distribute by industry? (De Loecker et al., 2016)
 - * How do markups distribute spatially? (Atkin & Donaldson, 2015)
 - How do markup distribute via retail chains? (DellaVigna & Gentzkow, 2019), (Gopinath et al., 2011), (Atkin et al., 2018)
- I found it particularly interesting to think about trade-associated domestic sales; may be a great mix of Trade/IO/Urban!

References

- Amiti, M., & Heise, S. (2024). **U.s. market concentration and import competition.** *The Review of Economic Studies*, forthcoming. https://doi.org/10.1093/restud/rdae045
- Atkin, D., & Donaldson, D. (2015, July). Who's getting globalized? the size and implications of intra-national trade costs (Working Paper No. 21439).
 National Bureau of Economic Research. https://doi.org/10.3386/w21439
- Atkin, D., Faber, B., & Gonzalez-Navarro, M. (2018). **Retail globalization and household welfare: Evidence from mexico.** *Journal of Political Economy, 126*(1), 1–73. https://doi.org/10.1086/695476
- De Loecker, J., Goldberg, P. K., Khandelwal, A. K., & Pavcnik, N. (2016). Prices, markups, and trade reform. Econometrica, 84(2), 445–510. https://doi.org/10.3982/ECTA11042
- DellaVigna, S., & Gentzkow, M. (2019). **Uniform pricing in u.s. retail chains.** *The Quarterly Journal of Economics*, 134(4), 2011–2084. https://doi.org/10.1093/qje/qjz019
- Gopinath, G., Gourinchas, P.-O., Hsieh, C.-T., & Li, N. (2011).International prices, costs, and markup differences. *American Economic Review*, 101(6), 2450–86. https://doi.org/10.1257/aer.101.6.2450