Deep Neural Network의 학습 방법

2021.12.19 김은희

Classic Machine Learning

```
• 1단계 : Collect data • 2단계 : Define functions \frac{\mathsf{Model} : f_{\theta}(\cdot) \ \mathsf{kNN?} \ \mathsf{SVM?} \ \mathsf{Random} \ \mathsf{Forest?} \dots}{\mathsf{Loss} : L(f_{\theta}(x), y)} • 3단계 : Training "Find \theta^* = \underset{\theta}{\mathsf{argmin}} \ L(f_{\theta}(x), y)"
```

• 4단계 : Testing $y_{new} = f_{\theta^*}(x_{new})$ 와 y 비교 \rightarrow 학습 결과 확인

Deep Neural Networks

- 1단계 : Collect data
 2단계 : Define functions $\frac{\mathsf{Model} : f_{\theta}(\cdot) \ \mathsf{CNN?} \ \mathsf{RNN?} \ \mathsf{GAN?} \ ... \ \mathsf{GAN?} \ ... \ \mathsf{GAN?} \ ... \ \mathsf{GAN?} \ \mathsf{Loss} : L(f_{\theta}(x), y) \ \mathsf{QEMSEL} \ \mathsf{Cross-Entropy} \ \mathsf{Error} \ \mathsf{gand} \ \mathsf{gand$
- 3단계 : Training "Find $\theta^* = \underset{\theta}{\overset{\star}{=}} \operatorname{argmin} L(f_{\theta}(x), y)$ "
- 4단계 : Testing $y_{new} = f_{\theta^*}(x_{new})$ 와 y 비교 \rightarrow 학습 결과 확인

- 목표를 바라보는 관점 2가지
 - 파라미터를 찾아 > 함수 찾는 관점
 - 확률 분포의 파라미터를 찾는 관점 (Maximum Likelihood 관점)

함수를 찾는 관점

 $y_{new} = f_{\theta^*}(x_{new})$ 인 파라미터를 찾자

$\underset{\theta}{\operatorname{argmin}} L(f_{\theta}(x), y)$ 인 θ^* 를 찾는 방법

• Motivation : θ 에서 $\Delta\theta$ 만큼 업데이트 \rightarrow $L(\theta)$ 와 $L(\theta + \Delta\theta)$ 비교

```
While L(\theta + \Delta \theta) < L(\theta):

\theta += \Delta \theta

if L(\theta + \Delta \theta) == L(\theta):

break
```

$\underset{\theta}{\operatorname{argmin}} L(f_{\theta}(x), y)$ 인 θ^* 를 찾는 방법

특히 θ 의 dimension이 커질수록 복잡

- $L(\theta + \Delta \theta) < L(\theta)$ 인 $\Delta \theta$ 를 어떻게 찾을까? Stopping point는?
- Taylor expansion을 사용하여 근사하기
 - $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \cdots$
 - 1st derivative term만 사용해 근사하면 $L(\theta + \Delta\theta)$ 는 다음과 같이 근사
 - $L(\theta + \Delta\theta) \approx L(\theta) + \Delta\theta \cdot \nabla L$
 - $L(\theta + \Delta\theta) L(\theta) = \Delta L = \Delta\theta \cdot \nabla L$ 으로 식 변형을 해 보자 ... (1)
 - 희망사항은 $\Delta L < 0$ 이 되는 것 (\Leftrightarrow update 후 loss의 감소)
 - 여기서 $\Delta\theta = -\eta \nabla L \ (\eta > 0)$ (learning rate) 라 하고 (1)에 대입
 - 그럼 $\Delta L = -\eta ||\nabla L||^2 < 0$ 이 되어 희망사항 충족!
 - 따라서 $L(\theta + \Delta \theta)$ 에서 $\Delta \theta = -\eta \nabla L$ 이어야 한다.

Gradient descent

Backpropagation

- Loss function의 미분 값이 Deep Neural Network을 학습시키는 데 가장 중요하다.
- 그런데 수많은 레이어와 파라미터에 대해 loss function을 일일 히 미분하는 것은 연산량을 많이 요구함 (DNN의 암흑기)
- Backpropagation은 복잡한 미분을 chain rule을 이용해 계산해 나갈 수 있음
 - 원하는 gradient = upstream gradient * local gradient
 - https://youtu.be/573EZkzfnZ0 [Sung Kim 교수님 강의 추천해요!]

확률 분포의 파라미터를 찾는 관점

 $y_{new} \sim f_{\theta^*}(x_{new})$ 인 파라미터를 찾자

- •목표를 바라보는 관점 2가지
 - Loss function을 정답과 출력값의 차이로 정의하는 관점
 - Maximum Likelihood로 바라보는 관점
- 즉, 목표를 $P(y|f_{\theta}(x))$ 의 최대화로 해석할 수 있다.
 - 네트워크의 출력값들이 주어져 있을 때 = 확률분포가 정해져 있을 때
 - 정답 출력이 나올 확률의 최대화

• 따라서, 이 관점을 사용할 때에는 $P(y|f_{\theta}(x))$ 이 어떤 분포를 따를지도 미리 정해야 한다. 즉, 출력값 == 확률분포의 파라미터

- 여기서 loss를 negative loss likelihood로 독특하게 정의하는데
 - $\theta^* = \underset{\theta}{\operatorname{argmin}} [-\log(P(y|f_{\theta}(x)))]$
 - 이런 θ^* 찾기 == Maximum log likelihood가 최대가 되게 하는 θ^* 찾기
- θ*의 발견 == 확률분포 모델 발견 → <u>Sampling 가능!</u>
- $y_{new} \sim P(y|f_{\theta^*}(x_{new}))$

Source

• 오토인코더의 모든 것 https://www.youtube.com/watch?v=o_peo6U7IRM