

密级状态: 绝密() 秘密() 内部() 公开(√)

Rockchip Tutorial Android SVEP SR

(图形计算平台中心)

文件状态:	文档标识:	RK-JC-YF-411	
[]正在修改	当前版本:	2.1.0	
[√] 正式发布	作 者:	李斌	
完成日期:		2023-12-28	
	审核:	熊伟	
	完成日期:	2023-12-28	

瑞芯微电子股份有限公司
Rockchip Electronics Co., Ltd
(版本所有,翻版必究)

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修 改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。 本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2023 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园 A 区 18 号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590 客户服务传真: +86-591-83951833 客户服务邮箱: fae@rock-chips.com

更新记录

版本	修改人	修改日期	修改说明	核定人
V2.1.0	李斌	2023-12-28	【新增】SR 环境搭建章节 【新增】初始化版本	熊伟

見 录

1	概述	2
	1.1 SVEP 简介	2
	1.2 RK3588 算法支持模式	2
	1.3 RK356X 算法支持模式	3
2	SR 环境搭建	4
	2.1 资源获取	4
	2.1.1 固件获取	4
	2.1.2 演示片源获取	5
	2.1.3 算法库获取	
	2.2 固件烧写	
	2.3 授权说明	7
	2.3.1 授权码申请	
	2.3.2 授权码存储位置	
	2.3.3 授权验证	
	2.3.3 较极验证	0
	7. 45 1921 F 17C P.H.	9

1 概述

本文档主要介绍用户如何在本地快速搭建 SR 演示环境。

1.1 SVEP 简介

SVEP(Super Vision Enhancement Process,超级视觉增强处理),是一项利用深度学习实现的图像增强处理技术,目前实现算法主要有 SR 与 MEMC 两类:

- SR (Super Resolution,超级分辨率), SR 算法利用深度神经网络补充图片纹理细节,将原始低分辨率输入重建为清晰高分辨输出,以提升视频清晰度获得更高主观感知。
- **MEMC(Motion Estimation and Motion Compensation,运动补偿)**,MEMC 算法利用深度 神经网络从前后两帧原始帧计算出中间的预测帧,提高视频帧率以获得较原始视频更流畅的 感官体验。

1.2 RK3588 算法支持模式

SR 算法针对不同输入分辨率提供专门的优化模式,目前支持的 SR 模式如下表 1-1 RK3588 SR 算法模式支持列表:

SR 模式	输入分辨率	输出分辨率	实时支持帧率	放大倍数
480p	768x480	2304x1440	30	3.0
540p	960x540	2880x1660	30	3.0
720p	1280x720	3840x2160	30	3.0
1080p	1920x1080	3840x2160	30	2.0
2160p	3840x2160	3840x2160	30	1.0
4320p	3840x2160	7680x4320	30	2.0

表 1-1 RK3588 SR 算法模式支持列表

注意: 若输入分辨率不满足标准 SR 模型的分辨率,系统端会适配到更大一级的 SR 模型 进行画

质增强。例如: 若输入 1024x600 分辨率视频,则采用 1280x720 SR 模型进行处理。

1.3 RK356X 算法支持模式

以下 RK3568/RK3566 统称为 RK356x。

SR 算法针对不同输入分辨率提供专门的优化模式,目前支持的 SR 模式如下表 1-2 RK356x SR 算法模式支持列表:

表 1-2 RK356x SR 算法模式支持列表

SR 模式	输入分辨率	输出分辨率	实时支持帧率	放大倍数
480p	864x480	1728x960	30	2.0
720p	1280x720	1920x1080	30	1.5
1080p	1920x1080	1920x1080	30	1.0

注意: 若输入分辨率不满足标准 SR 模型的分辨率,系统端会适配到更大一级的 SR 模型 进行画质增强。例如: 若输入 1024x600 分辨率视频,则采用 1280x720 SR 模型进行处理。

2 SR 环境搭建

2.1 资源获取

SR 相关资源已上传至网盘,地址如下:

https://console.box.lenovo.com/1/d5Gcb5 提取码: rksvep

2.1.1 固件获取

网盘目录地址为:

SVEP/1-SR/V2.1.0/firmware

详情页如下图 2-1 固件地址页面示意图:

图 2-1 固件地址页面示意图

固件采用 BOX Luncher 编译,其中各固件适配的硬件平台信息如下,请按需下载:

- SR-V2.1.0: 对外正式发布版本
 - RK3588-NVR-DEMO: SR-V2.1.0-RK3588-NVR-DEMO-V10-ANDROID.tar.gz
 - RK3588-EVB1: SR-V2.1.0-RK3588-EVB1-LP4-V10-ANDROID.tar.gz
 - RK3568-EVB1: SR-V2.1.0-RK3568-EVB1-DDR4-V10-ANDROID.tar.gz
 - RK3566-EVB1: SR-V2.1.0-RK3566-EVB1-DDR4-V10-ANDROID.tar.gz

- FACE-SR-BETA: RK3588 针对人脸超分的内测版本
 - NVR: FACE-SR-BETA-RK3588-NVR-DEMO-V10-ANDROID 20231229.1122.tar.gz
 - EVB1: FACE-SR-BETA-RK3588-EVB1-LP4-V10-ANDROID 20231229.1109.tar.gz
- 固件导入工具: RKDevTool Release v2.93.zip

FACE-SR-BETA 详细说明:

- 识别片源人脸区域,执行专门针对人脸的超分算法,更细致的恢复人脸细节,支持2个人脸区域识别:
- 识别非人脸区域,支持720x480输入至2880x1920输出,执行4倍放大的超分算法;

2.1.2 演示片源获取

网盘目录地址为:

SVEP/3-resources/video

详情页如下图 2-2 演示视频地址页面示意图:

图 2-2 演示视频地址页面示意图

下载演示视频并解压后,可使用如下命令更新至设备端:

adb push svep_videp /sdcard/

2.1.3 算法库获取

网盘目录地址为:

SVEP/1-SR/V2.1.0/libsvepsr/

详情页如下图 2-3 SR 算法库地址页面示意图:

图 2-3 SR 算法库地址页面示意图

内容包含:

- Libsvepsr: SR 算法接口库 V2.1.0 版本,支持 Android/Linux 平台,接口说明请参考以下文档:
 - libsvepsr/docs/Rockchip_API_Reference_SVEP_SR_CN.pdf
- DrmHwc2: Android HWC 模块源码 V1.5.158 版本,可参考以下文档集成:
 - libsvepsr/docs/Rockchip_Developer_Guide_Android_SVEP_SR_CN.pdf

2.2 固件烧写

- 1. 下载固件,解压获得对应 update.img;
- 2. 下载 RKDevTool_Release_v2.93.zip, 进入 RKDevTool_Release_v2.93 目录, 阅读《开发工具使用文档 v1.0.pdf》 文档, 尝试烧写 update.img 固件, 成功烧写界面如下图 2.4 烧写成功示意图:

图 2.4 烧写成功示意图

2.3 授权说明

SR 算法须要软件授权才能使用,目前是采用激活码授权方式进行终端网络授。

2.3.1 授权码申请

SR 授权码可联系 RK 业务申请;

2.3.2 授权码存储位置

在获得 SR 算法授权码后,需要将授权码导入设备指定的储存位置,SR 算法接口库初始化时才可进行算法鉴权。目前授权码设计存储在芯片 VendorStorage 分区,分区 ID=60,关于 VendorStorage 分区可参考以下路径文档,进行阅读了解:

libsvepsr/docs/Rockchip_Application_Notes_Storage_CN.pdf

生产的授权码写码工具请参考 Rockchip Application Notes Storage CN.pdf 文档,用户自行开发。

2.3.2.1 简易授权码导入工具

本章节提供本地测试的简易写授权码工具 vendor-storage-test。

工具名称: vendor-storage-test, 固件已包含该工具, 地址位于:

/vendor/bin/vendor-storage-test

工具帮助信息: 直接执行 vendor-storage-test 即可输出以下日志

\$ adb shell vendor-storage-test

Usage: vendor_storage id len [code]

Config Code: vendor storage 17 50 71581714-9736-4EEE-C029-B...

Read Code : vendor storage 17 50

授权码导入说明: SR 授权码存放 ID 为 60, 长度为 50 char, 命令执行如下:

\$ adb shell vendor-storage-test 60 50 \ 71581714-9736-4EEE-C029-B65E54280A91

导入日志: 导入后,输出日志如下:

vendor-storage-test 60 50 71581714-9736-4EEE-C029-B65E54280A91 vendor write:

tag=0x56524551 id=60 len=50

71581714-9736-4EEE-C029-B65E54280A91

vendor read:

tag=0x56524551 id=60 len=50

71581714-9736-4EEE-C029-B65E54280A91

2.3.3 授权验证

确保设备端满足以下条件后,即可进行授权验证:

- 1. 设备端 VendorStorage ID=60 存在可靠授权码;
- 2. 设备已连接互联网;

首次授权需要联网,授权成功输出日志如下图 2-5 初次授权成功日志 所示:

```
rk3588_box:/ # logcat -s SvepAuth
------- beginning of main
1-2-01 07:45:12.714 15299 15299 I SvepAuth: ReadAuthCode,line=475, CheckAuth: AuthCode: tag=0x56524551 id=60 len=50 Code: 3FE6CC5D-7BA6-54F8-99DC-1EA79BEED465
12-01 07:45:12.852 15299 15299 I SvepAuth: DoAuth,line=380, CheckAuth: rkauth_activate2 auth code success, Write license to /data/system/svep_key.lic
```

图 2-5 初次授权成功日志

授权成功后, SR 算法库会将离线的授权文件保存在以下路径:

/data/system/svep_key.lic

再次授权会直接校验离线的授权文件,授权成功后日志如下图 2-6 再次授权成功日志:

图 2-6 再次授权成功日志

注意:由于离线授权文件需要存在在 /data/system/ 目录,若设备端没有这个目录建议提前创建, 否则离线授权文件将无法输出;

注意: 授权码授权成功后,将于 CPU efuse 绑定,已授权的激活码无法再次授权第二颗 CPU,请妥善使用授权码资源。

2.4 操作说明

操作推荐使用遥控或者鼠标,控制 SVEP 功能。

1. 打开 Media Center 应用,如下图 2-7 打开 Media Center 应用所示:

图 2-7 打开 Media Center 应用

- 2. 通过以下路径播放片源,如下图 2-8 Video 播放片源所示:
 - (1) Video -> 播放片源
 - (2) File -> 指定目录 -> 播放片源

图 2-8 Video 播放片源

- 3. 唤醒 SVEP 控制菜单,有两种方式可以唤醒:
 - (1) 遥控长按菜单键
 - (2) 鼠标点击视频画面区域,唤醒右上角 SVEP 控制按钮,点击按钮,如下图 2-9 鼠标唤醒 SVEP 控制面板示意图

图 2-9 鼠标唤醒 SVEP 控制面板示意图

SVEP 控制菜单如下图 2-10 SVEP 控制面板示意图:

图 2-10 SVEP 控制面板示意图

4. 点击 SVEP-SR, 使能 SR 模式, 若功能正常, 可再视频左上角出现 RKNPU-SVEP-SR 字样, 如下图 2-11 SR 模式正常使能示意图:

图 2-11 SR 模式正常使能示意图

5. 使能 SR 且打开对比模式效果如下图 2-12 SR 使能对比模式示意图:

图 2-12 SR 使能对比模式示意图

- (1) SR OSD: Input 为输入片源尺寸, Output 为 SVEP 画质增强输出尺寸;
- (2) SR 分割线:分割线左边为 SVEP 画质增强画面,分割线右边为原始视频画面;
- (3) SVEP 控制面板:
 - ① SVEP-SR: SVEP 模式全局开关,使能则打开 SVEP 画质增强功能;
 - ② SR-LR-SplitMode: 左右对比模式: 使能则开启左右对比模式;

提示: 目前提供的固件 RK3588 支持 MEMC,可尝试体验,授权码需要独立申请。