Lecture 11

Improper Integrals of Type II

Definition! Integrals of functions that become infinite at a point within the interval of integration one improper integrals of Type II.

1. If f(x) i's continuous on (a,b], and discontinuous at a, then b $f(m) dx = \lim_{c \to a} \int_{c}^{b} f(a) dx$

2. If f(x) is continuous on [a,b) and discontinuous at b, then $\int_{a}^{b} f(x) dx = \lim_{c \to b} \int_{a}^{c} f(x) dx$

3. If f(x) is discontinuous at c, where accep, and continuous on [a,c) U(c,b], then $\int_{a}^{b} f(x)dx = \int_{c}^{b} f(x)dx + \int_{c}^{b} f(x)dx.$

De Thestigate the convergence of I dx. of: The integrand fer = 1/2 is continuous on [0,1)

but is discontinuous at x=1 and become infinite as x > 1. We evaluate the integral as

 $\lim_{b \to 1} \int_{0}^{b} \frac{dx}{1-x} = \lim_{b \to 1} \left[-\ln(1-x) \right]_{0}^{b} = \lim_{b \to 1} -\ln(1-b)$ $=-(-\infty)=\infty$

The lumit is infinite, so the financerges.

Example(5) Evaluate $\int_{-(x-1)^{2}/3}^{3} = I$. Soln! The integrand have a vertical asymptote at x=1 and it continuous on [0,1) and (1,3). Thus $I = \int_{0}^{1} \frac{dx}{(x-1)^{2} f_{3}} + \int_{0}^{3} \frac{dx}{(x-1)^{2} f_{3}} = I_{1} + I_{2}$ $L = \int_{0}^{\infty} \frac{(x-1)^{2}/3}{(x-1)^{2}/3} + \int_{0}^{\infty} \frac{an}{(x-1)^{2}/3} = I_{1} + I_{2}$ $Now, I_{1} = \lim_{b \to 1^{-}} \int_{0}^{b} \frac{dx}{(x-1)^{2}/3} = \lim_{b \to 1^{-}} \left[3(x-1)^{1/3} \right]_{0}$ $= \lim_{x \to 1^{-}} \left[3(b-1)^{1/3} + 3 \right] = 3$ $I_{2} = \int_{0}^{\infty} \lim_{x \to 1^{+}} \int_{0}^{3} \frac{dx}{(x-1)^{2}/3} = \lim_{x \to 1^{+}} \left[3(x-1)^{1/3} \right]_{0}^{3}$ $= \lim_{x \to 1^{+}} \int_{0}^{3} \frac{dx}{(x-1)^{2}/3} = \lim_{x \to 1^{+}} \left[3(x-1)^{1/3} \right]_{0}^{3}$ $= \lim_{x \to 1^{+}} \left[3(x-1)^{1/3} - 3(x-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}} \left[3 \cdot 2^{1/3} - 3(a-1)^{1/3} \right] = 3(2)^{1/3}$ $= \lim_{x \to 1^{+}$