Лабораторная работа 1.2.5 Исследование прецессии гироскопа Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Исследовать вынужденную прецессию гироскопа
- 2) Установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа
- 3) Определить скорость вращения ротора гироскопа и сравнить её со скоростью, рассчитанной по скорости прецессии

2 Оборудование:

- 1) Гироскоп в кардановом подвесе
- 2) Секундомер
- 3) Набор грузов
- 4) Отдельный ротор гироскопа
- 5) Цилиндр известной массы
- 6) Крутитьный маятник
- 7) Штангенциркуль
- 8) Линейкка

3 Теория гироскопа:

Момент импульса твердого тела в его главных осях x, y, z равен

$$\vec{L} = \vec{i}I_x\omega_x + \vec{j}I_y\omega_y + \vec{k}I_z\omega_z$$

где I_i - главные моменты инерции, ω_i - компоненты вектора угловой скорости.

Гироскопом же называется быстровращающееся тело, для которого момент импульса вдоль одной из осей много больше 2-х других.

.

Выясним, какие силы надо приложить к гироскопу, чтобы изменить направление его оси. Рассмотрим для примера маховик, вращающийся вокруг оси z, перпендикулярной плоскости маховика, т.е. $\omega_z = \omega_0$

Пусть ось вращения повернулась в плоскости zx по направлению k оси x на бесконечно малый угол $d\phi$. Такой поворот означает добавочное вращение маховика вокруг оси y, так что

$$d\phi = \Omega dt$$

Рис. 1

$$L_{\Omega} \ll L_{\omega_0}$$

Это значит, что изменением величины момента импульса маховика можно пренебречь, поскольку он всего-лишь повернется в плоскости zx. Таким образом

$$|d\vec{L}| = Ld\phi = L\Omega dt$$

Поскольку это изменение направлено вдоль оси х, его удобно представить в виде векторного произведения

$$|d\vec{L}| = \vec{\Omega} \times \vec{L}dt$$

Тогда деля на dt

$$\vec{M} = \vec{\Omega} \times \vec{L}$$

Под действием момента внешних сил \vec{M} ось гироскопа медленно вращается вокруг оси у с угловой скоростью Ω . Такое движение называется регулярной прецессией

гироскопа. В частности, создающей момент внешней силой может оказаться сила тяжести, если центр масс гироскопа не совпадает с точкой подвеса. Для гироскопа массой m_{Γ} , у которого ось собственного вращения наклонена на угол α от вертикали, скорость прецессии, происходящей вокруг вертикальной оси под действием силы тяжести, равна

$$\Omega = \frac{M}{I_z \omega_0 \sin \alpha} = \frac{m_r g l_{II}}{I_z \omega_0}$$

 $l_{\rm u}$ - расстояние от точки подвеса до центра масс гироскопа, т.е. скорость прецессии не зависит от α .

Для изучения решулярной прецессии уравновешенного гироскопа к его оси подвешивают дополнительные грузы. Это смещает общий центр масс и создает момент сил тяжести, вызывающий прецессию. Скорость прецессии в этом случае равна

$$\Omega = \frac{mgl}{I_z \omega_0}$$

где m - масса груза, l - расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа.

4 Описание установки:

В данной работе исследуется регулярная прецессия уравновешенного гироскопа.

Уравновешенный гироскоп, закрепленный в кольцах карданова подвеса, показан на рис. 2. Наружное кольцо подвеса А может свободно поворачиваться вокруг вертикальной оси аа. Внутреннее кольцо Б связано с кольцом А горизонтальной осью бб. В кольце Б закреплен гироскоп, ось вращения которого вв перпендикулярна оси бб. Центр масс гироскопа находится на пересечении всех трех осей и при любом повороте колец сохраняет свое положение в пространстве. Получается, что гироскоп как-бы подвешен за центр масс.

Экспериментальная установка для исследования прецессии гироскопа показана на рис.3. Ротором гироскопа является ротор высокооборотного электромотора М, питающегося током частотой 400 Гц. Статор скреплен с кольцом Б. Мотор с кольцом Б может вращаться в кольце А вокруг

горизонтальной оси бб, которое может вращаться вокруг вертикальной оси аа. Ротор электромотора представляет собой массивный стальной цилиндр с прожилками меди, образующими беличье колесо. Обозначенный на рис. 3. буквой С рычаг направлен по оси симметрии ротора. На рычаг подвешивают грузы Г. Подвешивая различные грузы, можно менять силу F, момент которой определяется расстоянием 1 от точки подвеса до горизонтальной оси кольца А(до центра масс гироскопа), укказанным на самой установке.

•

Выше при выводе формул для прецессии предполагалось, что действующие на гироскоп сила лежат в плоскости zy, в которой лежат вектора угловых скоростей собственного вращения и прецессии. В этом случае момент сил меняет лишь направление момента импульса гироскопа, но не его величину. Силы трения не лежат в плоскоси осей вразения. Они приводят к изменению моментра импульса и по направлению, и по величине. Для ротора гироскопа действие сил трения скомпенсировано действием электромотора.

Рис. 3

Для осей карданова подвеса компенсации нет. В результате ось гироскопа будет опускаться в направлении действия груза.

Изменение скорости прецесии гироскопа позволяет вычислить угловую скорость вращения его ротора. Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной комии ротора, подвешиваемой вдоль оси симметрии на жесткой проволке. Период крутильных колебаний T_0 определяется

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}$$

Чтобы исключить модуль кручения проволки, вместо ротора гироскопа к той же проволке подвешивают цилиндр правильной формы с известными размерами и массой, для которого легко можно вычислить момент инерции $I_{\rm ц}$. Для определения момента инерции ротора гироскопа имеем

$$I_0 = I_{\mathrm{II}} \frac{T_0^2}{T_{\mathrm{II}}^2}$$

Скорость вращения ротора гироскопа можно определить и не прибегая к исследованию прецессии. У используемых в работе гироскопов статор имеет две обмотки, необзодимые для быстрой раскрутки гироскопа. В данной работе одну из обмоток используют для раскрутки гироскопа, а вторую - для измерения чиста оборотов ротора. Ротор всегда немного немагничен. Вращаясь, он наводит во второй обмотке переменную ЭДС индукции, частота которой равна частоте вращения ротора. Частоту этой ЭДС можно, в частности, измерить по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой - переменное напряжение с генератора. При совпадении частот на экране получаем эллипс.

5 Измерения и обработка:

- 1 2) Подключим гироскоп к питанию, заранее установив его в требуемое положение, пока он не раскрутился и это не стало затруднительно.
- 3) При воздействии силы вниз на горизонтальную ось гироскопа она движется против часовой стрелки. Вектор угловой скорости направлен вверх, момента силы направо. Значит момент импульса и вектор угловой скорости гироскопа направлен вдоль оси в сторону точки приложения силы. Значит для такой оси вращение происходит против часовой стрелки.
- 4) Трение в оси карданова подвеса(а) позволит грузу вместе с осью опускаться вниз.
- 5 6) Запишу результаты замеров в таблицу

m_i , г	n	t, c			М, Н∙м	Ω , c^{-1}
		t_1	t_2	\overline{t}		
343	6	178.84	177.94	178.39	0.400	0.211
267	5	189.83	190.94	190.39	0.312	0.165
215	4	193.16	199.19	196.18	0.251	0.128
141	3	216.00	216.41	216.21	0.165	0.087
112	3	274.06	274.03	274.05	0.131	0.069
93	3	326.44	326.44	326.44	0.109	0.058
76	2	270.84	273.31	272.08	0.089	0.046

 m_i - масса очередного груза, n - количество полных оборотов, t - соответствующее им время.

Было принято решение делать 2 замера, поскольку целое количество оборотов для груза всегда совпадало, а время отличалось с точностью до реакции экспериментатора, при этом сильно большую погрешность вносит именно метод замера по целым оборотам.

Усредненный момент силы составит

$$M = mgl$$

Длина I составляет 119 мм(указано на установке).

Ускорение свободного падения возьму $g = 9.815 \text{ м/c}^2$.

Коэффициент наклона

$$k = \frac{1}{I_z \omega_0} = 0.527 \pm 0.005 \text{ [CM]}$$

7 - 8) Масса пробника - 1.6169 кг, его радиус вычисляется из замера диаметра штангенциркулем и составляет 3.9 см.

Период колебаний пробника найду из длительности 10 подряд идущих колебаний. $T_{\rm II}=\frac{40.41}{10}=4.04\pm0.02~{\rm cek}.$

Период колебаний ротора $T_0 = \frac{64.09}{20} = 3.20 \pm 0.01$

Тогда искомый момент инерции

$$I_0 = \frac{1}{2}mr^2 \cdot \frac{T_0^2}{T_{\text{II}}^2} = (7.71 \pm 0.17) \cdot 10^{-4} \text{ kg} \cdot \text{m}^2$$

9) Наконец частота вращения гироскопа вокруг оси z

$$\omega_0 = \frac{1}{I_z k} = (2460 \pm 80) \text{ c}^{-1}$$

10) Скорость опускания рычага для выбранных углов(6° и полный оборот) связана со скоростью вращения

$$\Delta\Omega_{yд} = \frac{12^{\circ}}{360^{\circ}}\Omega_{yд} = 0.0205 \text{ c}^{-1}$$

Итого момент сил трения

$$m_{\mu} = m_g \frac{12^{\circ}}{360^{\circ}} = 0.039 \text{ m}^2/\text{c}^2$$

Выражение просто следует из разложения движения гироскопа по двум осям. Вдоль каждого направления движение связано с соответствующим моментом сил. Пропорциональным моментам сил будет соответствовать пропорциональная скорость прецессии.

Был произведен расчет для удельной массы(на килограммовый груз)

11) Приведу полученную таблицу с замерами и соответствующий график.

τ, сек	ν, Гц
15	385.6
30	381.3
38	378.3
49.5	375.6
65	371.3
80	366.5
100	361.4
120	356.1
140	351.0
160	345.5
180	339.9
200	335.1
220	333.5

В итоге

$$\nu_0 = 389.2 \, \Gamma$$
ц

$$\omega_0 = 2\pi \nu_0 = (2445.4 \pm 0.6) \text{ c}^{-1}$$

Замечу, что вследствии того, что гироскопу необходимо действительно(бесконечно) большое время, чтобы досчить своей максимальной частоты вращения, реальная погрешность может быть большей.

6 Время делать выводы:

12 - 13, п3 цели) Частоты, замеренные 2-мя различными способами, отличаются буквально на процент, что я считаю отличным результатом. Поэтому формула (5)(книжный индекс) действительно применима с имеющимися приближениями. Более того, принятые теоретические приближения как обычно не сыграли роли в погрешности, поскольку были более веские практические факторы эксперимента, которые не позволяли сравнять приборную и теоретическую погрешности.

Поэтому считаю, что вынужденная прецессия гироскопа исследована исчерпывающе различными способами и цель работы выполнена.