Глава 1

Нормированные пространства

Изучение свойств отображений, как и в математическом анализе, начнём с введения определений, связанных с областями задания отображений.

1.1 Метрические пространства

Определение. В метрическом пространстве X для любых элементов $x, y \in X$ определено расстояние $\rho(x, y)$, которое удовлетворяет требованиям (аксиомам метрического пространства):

- 1. $\rho(x,y) \geqslant 0$, а $\rho(x,y) = 0$ означает, что элементы x и y совпадают,
- 2. $\rho(x, y) = \rho(y, x)$,
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ неравенство треугольника.

Расстояние (метрика) ρ определяет сходимость последовательности $\{x_n\}_{n=1}^{\infty} \in X$ к элементу $x^* \in X$:

$$x_n \to x^*$$
, если $\rho(x_n, x^*) \to 0$ при $n \to \infty$

Из аксиом метрического пространства следует непрерывность функции $\rho(x,y)$, то есть если $x_n \to x^*, y_n \to y^*$ при $n \to \infty$, то $\rho(x_n, y_n) \to \rho(x^*, y^*)$.

Естественным образом вводятся понятия:

- ullet открытый шар, замкнутый шар, окрестность элемента $x_0 \in X$,
- внутренняя точка множества $M \in X$, открытое множество, замкнутое множество,
- подпространство X_0 метрического пространства: метрика в X_0 определяется метрикой пространства X, множество X_0 замкнуто,
- фундаментальная последовательность $\{x_n\}_{n=1}^{\infty}$ последовательность, такая что $\forall \varepsilon > 0$ существует номер $n = n(\varepsilon)$ такой что $\rho(x_n, x_{n+m}) < \varepsilon$ при $n > n(\varepsilon)$, $m \ge 1$ (последовательность, сходящаяся в себе)

Основные типы метрических пространств и множеств

- 1. Полное метрическое пространство любая фундаментальная последовательность имеет предел, принадлежащий X (в математическом анализе признак Коши сходимости числовой последовательности).
- 2. Множество $D \in X$ плотно в множестве $M_0 \in X$, если для каждого элемента $x_0 \in M_0$ и любого $\varepsilon > 0$ найдётся элемент $z \in D$, такой что $\rho(x_0, z) < \varepsilon(z = z(\varepsilon))$. Если множество D плотно в M_0 , то для любого элемента $x_0 \in M_0$ существует последовательность элементов $\{z_n\} \in D$ таких, что $\rho(z_n, x_0) \to 0$ при $n \to \infty$. Ясно, что $\overline{D} = M_0$.
- 3. Сепарабельное пространство X в таком пространстве существует счётное всюду плотное множество D: $D = \{x_1, x_2, \ldots, x_n, \ldots\}$. Для любого элемента $x_0 \in X$ можно найти такой номер $n = n(x_0, \varepsilon)$, что $\rho(x_0, z_n) < \varepsilon$.

 $\Pi pumep$. Пространство C[a,b] непрерывных на [a,b] функций сепарабельно. В математическом анализе это теорема Вейерштрасса: для каждой непрерывной функции $x_0(t)$ существует полином P_n с рациональными коэффициентами такой что

$$\rho(x_0, P_n) = \max_{t \in [a,b]} |x_0(t) - P_n(t)| < \varepsilon.$$

Множество таких полиномов счётно.

4. Компактное множество метрического пространства X

Множество K компактно в X, если в любой подпоследовательности элементов $\{x_n\}_{n=1}^{\infty} \in K$ существует фундаментальная подпоследовательность $\{x_{n_k}\}$, $n_{k+1} > n_k$ (т.е. последовательность n_k возрастает).

Компактность множеств играет важную роль при исследовании приближённых методов решения задач.

Если X полное пространство, то существует предельный элемент этой фундаментальной подпоследовательности, но он может не принадлежать множеству K.

Определение компактного множества неконструктивно. Следующая теорема Хаусдорфа даёт эффективный критерий компактности множеств.

Определение. Говорят, что в множестве $M \in X$ существует конечная ε -сеть $\{x_1, x_2, \dots, x_{N(\varepsilon)}\}$, если для любого элемента $x \in M$ можно указать элемент x_n ε -сети, такой что

$$\rho(x_n, x) < \varepsilon, n = n(x_0, \varepsilon).$$

1.2 Пространства первой и второй категории

Множество D всюду плотно в метрическом пространстве X, если для каждого элемента $x \in X$ и любого $\epsilon > 0$ существует элемент $z \in D$ такой что $\rho(x, z) < \epsilon$.

Сформулируем утверждение: множество E не является множеством всюду плотным в пространстве X.

Определение. Множество E не является всюду плотным в X (нигде не плотным в X), если в любом замкнутом шаре $\overline{V_r}(x)$ существует замкнутый шар, в котором нет элементов множества E.

 $\Pi pumep$. На плоскости (в пространстве R_2) множество точек любой прямой - нигде не плотное в R_2 множество. Рассмотрим множество прямых l, параллельных оси x и пересекающих ось y в точках с рациональными значениями координат y_n . Ясно, что множество таких прямых счётно, и каждая прямая l_n этого множества есть множество нигде не плотное в пространстве R_2 .

Будет ли множество точек $\bigcup_{k=1}^{\infty} l_k$ совпадать со всем пространством R_2 ? Ответ отрицателен: прямые, пересекающие ось y в точках с иррациональными значениями, не принадлежат $\bigcup_{k=1}^{\infty} l_k$.

Определение. Множество E называется множеством первой категории, если оно представимо в виде

$$E = \bigcup_{k=1}^{\infty} E_k$$

, где все множества E_k нигде не плотные в X. Если множество E нельзя представить в виде счетного объединения нигде не плотных множеств, то Е называется множеством второй категории.

В общем случае верна теорема:

Теорема (Луи Бэр, 1905 г.). Полное метрическое пространство X является множеством второй категории.

Доказательство. (От противного)

Предположим, что $X=\bigcup\limits_{k=1}^{\infty}E_k$, где все множества нигде не плотные. Пусть $\overline{V_{r_0}}(x_0)$ произвольный шар. Так как E_1 нигде не плотно в X, то в этом шаре существует шар $V_{r_1}(x_1)$, в котором нет элементов множества E_1 . Можно считать, что радиус этого шара $r_1 < \frac{1}{2}r_0$.

Множество E_2 нигде не плотно: в шаре $\overline{V_{r_1}}(x_1)$ существует шар $\overline{V_{r_2}}(x_2)$, в котором нет элементов множества E_2 (и элементов множества E_1). Можно считать, что $r_2 < \frac{1}{2}r_1 < \frac{1}{2^2}r_0$. Продолжая этот процесс, получим последовательность вложенных шаров $\overline{V_{r_1}}(x_1) \supset \overline{V_{r_2}}(x_2) \supset ... \supset \overline{V_{r_n}}(x_n) \supset ...; r_n < \frac{1}{2^n} r_0, r_n \to 0$ при $n \to \infty$, и в каждом шаре $\overline{V_{r_n}}(x_n)$ нет элементов множеств $E_1, E_2, ..., E_n$.

По теореме о вложенных шарах существует элемент $x^* \subset X \colon x_n \to x^*$ при $n \to \infty$.

Ясно, что $x^* \in \bigcup_{n=1}^{\infty} \overline{V_{r_n}}(x_n)$ и следовательно $x^* \notin \bigcup_{n=1}^{\infty} E_n$, что противоречит предположению $X = \bigcup_{n=1}^{\infty} E_n$. Остается принять, что множество X пространство второй категории.

Линейные пространства, нормированные простран-1.3 ства, пространства Банаха

Множество элементов называется линейным множеством, если для его элементов определены действия сложения и умножения на число (вещественное или комплексное), не выводящие из множества X:

• если $x, y \in X$, то $x + y \in X$

• если $x \in X$, то $\lambda x \in X$

Эти действия должны удовлетворять обычным условиям (аксиомам). Если λ вещественные числа, то X — вещественное линейное множество, если λ комплексные, то X — комплексное линейное множество. Для вещественного линейного множества можно построить комплексное линейное множество Z: достаточно ввести элементы $z=x+iy, \quad x,y\in X$ и определить сумму элементов:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$$

и ввести умножение на комплексное число λ :

$$\lambda z = (\alpha + i\beta)(x + iy) = (\alpha x - \beta y) + i(\alpha y + \beta x)$$

(комплексификация линейного множества X).

Для комплексного линейного множества Z каждый элемент z=x+iy, где x и y — элементы вещественного множества.

Рассмотрим вещественное пространство X пар (x,y), в котором определим сумму: $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$ и умножение на вещественное число λ : $\lambda(x,y)=(\lambda x,\lambda y)$. Множество пар (x,y) образует вещественное линейное множество X (декомплексификация комплексного линейного множества Z).

Из аксиом линейного множества отметим некоторые следствия:

- 1. Существования нулевого элемента: $\Theta = x x = (1 1)x = 0x$.
- 2. Из равенства $\lambda x = 0$ при $\lambda \neq 0$ следует $x = \ominus$.
- 3. Определение линейной независимости элементов $\{x_1, x_2, \dots, x_n\}$.
- 4. Определение размерности линейного множества X как наибольшего числа линейно независимых элементов множества X.
- 5. Линейное множество бесконечномерно, если для любого натурального n существует n линейно независимых элементов.

Примеры линейных множеств

- 1. Вещественное пространство V_n *n*-мерных векторов.
- 2. Множество прямоугольных матриц размерности $(n \times m)$.
- 3. Множество $C[t_0, t_1]$ непрерывных на $[t_0, t_1]$ функций x. Функции $x_k(t) = t^k$, $k = 1, 2, 3, \ldots$ линейно независимы, а пространство $C[t_0, t_k]$ бесконечномерно.
- 4. Множество решений $x \in C^n[t_0, t_1]$ уравнения

$$rac{d^nx(t)}{dt^n}+a_1rac{d^{n-1}x(t)}{dt^{n-1}}+\cdots+a_{n-1}rac{dx(t)}{dt}+a_n=0$$
, где $a_k\in C[t_0,t_1]$

Снабжая линейное пространство метрикой, мы получаем более богатую теорию. Связь метрики с алгебраическими действиями реализуется введением норм элементов x: норма ||x|| элемента $x \in X$, согласно определению есть число, которое должно удовлетворять трем условиям:

1.
$$||x|| \ge 0$$
; если $||x|| = 0$, то $x = \ominus$.

- 2. $||\lambda x|| = |\lambda| ||x||$.
- 3. ||x + y|| < ||x|| + ||y||.

Норма ||x|| является непрерывной функцией: $|||x + \triangle x|| - ||x||| \to 0$ при $||\triangle x|| \to 0$. Верно неравенство $||x - y|| \ge |||x|| - ||y|||$.

Определим метрику в линейном пространстве X: $\rho(x,y) = \|x-y\|$. Ясно, что введенная таким образом метрика удовлетворяет всем аксиомам метрического пространства. Линейное множество с метрикой, определяемой нормой элементов, называется **нормированным пространством**. Если нормированное пространство полное, то оно называется **пространством Банаха** (Стефан Банах, 1892-1945, польский математик), банаховым пространством, В-пространством.

Определение. Подпространством нормированного пространства X называется любое линейное замкнутое множество $X_0 \in X$.

Примеры

- 1. Банаховы пространства n-мерных векторов получаем введением различных норм векторов $\bar{x}(x_1, x_2, \dots, x_n)$:
 - $\bullet \|\bar{x}\|_{\infty} = \max_{i} |x_i|,$
 - $\bullet \|\bar{x}\|_1 = \sum_i |x_i|,$
 - $\|\bar{x}\|_2 = (\sum_i |x_i|^2)^{\frac{1}{2}}$
- 2. Бесконечномерное банахово пространство $C[t_0, t_1]$ функций x(t) непрерывных на $[t_0, t_1]$. Норма:

$$||x|| = \max_{i} |x|,$$

функции $x_k(t)=t^k, k=1,2,3,\ldots$ линейно независимы.

3. Бесконечномерное пространство банахово пространство $C_n[t_0, t_1]$. Норма:

$$||x|| = \sum_{k=0}^{n} \max_{i} \left| \frac{d^k x(t)}{dt^k} \right|$$

4. Пространство Банаха $L_p(a,b)$ измеримых и суммируемых со степенью $p,\ p\geq 1,$ функций. Норма:

$$||x||^p = (\int_a^b |x(t)|^p dt)^{\frac{1}{p}}$$

Множество полиномов с комплексными коэффициентами плотно в этих пространствах.

5. Пример неполного нормированного пространства.

В линейном множестве C[0,1] непрерывных функций введем норму (и метрику):

$$||x|| = (\int_{a}^{b} |x(t)|^{p} dt)^{\frac{1}{p}}, \quad \rho(x,y) = (\int_{0}^{1} |x(t) - y(t)|^{p} dt)^{\frac{1}{p}}$$

Получаемое пространство не является полным. Действительно, последовательность функций $x_k(t) = t^k$ является фундаментальной последовательностью:

$$\|x_{n+m}-x_n\|^p=\int\limits_0^1(t^n-t^{n+m})^pdt=\int\limits_0^1t^{np}(1-t^m)^pdt<\int\limits_0^1t^{np}dt=rac{1}{np+1} o 0,$$
 при $n o\infty$

Предел же $\lim x_n(t)$ при $n \to \infty$ в пространстве C[0,1] не существует.

1.4 Пространства Гильберта

Рассматривается линейное комплексное пространство, в котором введено скалярное произведение (x,y) элементов x и y, удовлетворяющее обычным свойствам скалярного произведения:

- 1. $(x,y) = \overline{(x,y)}$
- 2. $(\lambda x_1 + \mu x_2, y) = \lambda(x_1, y) + \mu(x_2, y)$
- 3. (x,x) вещественное число, $(x,x) \ge 0$ и если (x,x) = 0, то x = 0

Верно неравенство Коши-Буняковского:

$$|(x,y)|^2 \le (x,x) \cdot (y,y)$$

Действительно,

$$(x + \lambda y, x + \lambda y) \ge 0$$
$$(x, x) + \lambda(y, x) + (x, \lambda y) + \lambda \overline{\lambda}(y, y) > 0$$
$$(x, x) + 2Re(\lambda y, x) + |\lambda|^2(y, y) \ge 0$$

для любых чисел λ .