CS144: TCP

Datagrams

- IP's service is Internet datagrams
 - o unreliable, **best-effort** delivery between two hosts
- UDP's service is user datagrams
 - unreliable, best-effort delivery between two user-space (unprivileged) programs
- Both of these are **unreliable!** Datagram can be:
 - Lost
 - Delivered more than once
 - Delivered out of order
- But don't have to worry about truncation and corruption, because of tools:
 - Header checksum (IP)
 - Data checksum (UDP)

What if we want a "reliable" exactly-once datagram?

 Basic approach: send the datagram over and over again, until acknowledged

Tools:

- Acknowledgment (from receiver to sender)
- Timer and timeout (at sender)
- Retransmission (by sender)

What if we want a "reliable" large message?

- Basic approach: break message into numbered segments
- Send each segment as a reliable datagram

Tools:

- Acknowledgment (from receiver to sender)
- Timer and timeout (at sender)
- Retransmission (by sender)
- Sequence number

TCP: reliable bytestreams over datagrams

Basic rules of TCP:

- ByteStream in each direction
- Every byte tagged with its place in sequence. Also:
 - Beginning of stream counts as one place in sequence
 - End of stream also counts as one
- Receiver tells sender:
 - next byte it needs to reassemble
 - how many more bytes it's willing to accept

Format of each TCP segment

- Sender-to-receiver information:
 - Index of the first byte in the segment (sequence no.)
 - SYN bit: is this the beginning of the stream?
 - Contents of segment
 - FIN bit: is this the end of the stream?

- Receiver-to-sender information:
 - Index of the next byte needed to assemble (ack no.)
 - # of bytes beyond this willing to accept (window size)