

Enabling Efficient and Scalable DRAM Read Disturbance Mitigation via New Experimental Insights

Abdullah Giray Yaglikci Onur Mutlu

Lightning Talk

2. Problem Definition

DRAM read disturbance mitigation mechanisms

- poorly scale with shrinking technology node
- rely on **proprietary information**

3. Thesis Statement

We can mitigate DRAM read disturbance efficiently and scalably by

- 1 building a **detailed understanding** of DRAM read disturbance
- 2 leveraging insights into modern DRAM chips and memory controllers
- **3** devising **novel solutions** that do not require **proprietary knowledge** of DRAM chip internals

3: Building a Detailed Understanding of DRAM Read Disturbance

Repository

Fine-grained control over

DRAM commands

- e.g., ACT, PRE, RD, WR, and REF
- Timing parameters (±1.5ns),
- Temperature (±0.5°C), Wordline Voltage (±1mV)

We test 250+ DRAM Chips

Both manufacturing process and design decisions affect vulnerability to read disturbance

Fewer DRAM cells experience bitflips and bitflips occur at higher activation counts under reduced wordline voltage

4: Leveraging Insights into Modern DRAM Chips and Memory Controllers

Svärd: Spatial Variation-Aware Read Disturbance Defenses

Dynamically adapts the aggressiveness of a defense to the victim row's vulnerability level

Minimum Hammer Count to Induce the First Bitflip (HC_{first})

Svärd **significantly increases** system performance

by 1.63x, 4.88x, 1.07x, 1.95x, and 4.80x, over AQUA, BlockHammer, Hydra, PARA, and RRS, respectively, for HC_{first} of **64**

HiRA: Hidden Row Activation

Using nominal timing parameters: t_{RAS} : 32ns t_{RAS} : 32ns t_{RAS} : 32ns t_{RAS} : 32ns • time **ACT RowB ACT RowA** PRE 51.4% Using HiRA: t_1 : 3ns t_2 : 3ns t_{RAS} : 32ns reduction **→** time ACT PRE RowB RowA

HiRA works in 56 off-the-shelf DRAM chips from SK Hynix

by hiding *preventive refresh* latency

3.7x speedup **12.6% speedup**

by hiding *periodic refresh* latency

5: No Proprietary Knowledge

BlockHammer: Selectively Throttling Accesses

Scalability with Worsening DRAM **Read Disturbance: Competitive** with state-of-the-art mechanisms (<0.6% overhead) when

Superior performance (71% speedup) and

DRAM energy (32% reduction) when a

RowHammer attack is present

there is no attack

Compatibility with Commodity DRAM Chips: **BlockHammer** requires no proprietary information of in-DRAM row mapping no changes to DRAM chips

More info: agyaglikci@gmail.com & https://agyaglikci.github.io