Report

1

 1 unaffiliated

October 29, 2022

Contents

Li	ist of Figures	2
Li	ist of Tables	5
1	Report Metadata	7
2	Equations 2.1 FOCE, LaplaceI, NaivePooled, and FOCE_constantcoef 2.1.1 @pre 2.1.2 @param 2.1.3 @random 2.1.4 @dynamics 2.1.5 @derived	8 8 8 8 8
3	Model Metrics	9
4	Coefficient Tables	14
5	Data Checkout Plots	19
6	Fitted Model Plots 6.1 FOCE 6.2 FOCE_constantcoef 6.3 LaplaceI 6.4 NaivePooled	59 96
A	System Information 1 A.1 Pumas Version A.2 Project Manifest	
В	Individual Coefficients Tables 1	76
C	Optimization Details 1 C.1 FOCE 1 C.1.1 Optim Result 1 C.1.2 Optim Trace 1 C.2 FOCE_constantcoef 1 C.2.1 Optim Result 1 C.2.2 Optim Trace 1 C.3 LaplaceI 1 C.3.1 Optim Result 1 C.3.2 Optim Trace 1 C.4 NaivePooled 1	.85 .88 .88 .88 .91 .91
	C.4.1 Optim Result	94

List of Figures

1	FOCE, LaplaceI, NaivePooled, and FOCE_constantcoef: Observed vs Time.	
2	FOCE: Goodness of Fit Plots (dv) (1 of 1)	
3	FOCE: Individual fits (dv) (1 of 30)	23
4	FOCE: Individual fits (dv) (2 of 30)	
5	FOCE: Individual fits (dv) (3 of 30)	25
6	FOCE: Individual fits (dv) (4 of 30)	26
7	FOCE: Individual fits (dv) (5 of 30)	27
8	FOCE: Individual fits (dv) (6 of 30)	28
9	FOCE: Individual fits (dv) (7 of 30)	29
10	FOCE: Individual fits (dv) (8 of 30)	30
11	FOCE: Individual fits (dv) (9 of 30)	31
12	FOCE: Individual fits (dv) (10 of 30)	32
13	FOCE: Individual fits (dv) (11 of 30)	33
14	FOCE: Individual fits (dv) (12 of 30)	34
15	FOCE: Individual fits (dv) (13 of 30)	35
16	FOCE: Individual fits (dv) (14 of 30)	36
17	FOCE: Individual fits (dv) (15 of 30)	37
18	FOCE: Individual fits (dv) (16 of 30)	38
19	FOCE: Individual fits (dv) (17 of 30)	39
20	FOCE: Individual fits (dv) (18 of 30)	40
21	FOCE: Individual fits (dv) (19 of 30)	41
22	FOCE: Individual fits (dv) (20 of 30)	42
23	FOCE: Individual fits (dv) (21 of 30)	43
$\frac{24}{24}$	FOCE: Individual fits (dv) (22 of 30)	44
25	FOCE: Individual fits (dv) (23 of 30)	45
26	FOCE: Individual fits (dv) (24 of 30)	46
27	FOCE: Individual fits (dv) (25 of 30)	47
28	FOCE: Individual fits (dv) (26 of 30)	48
29	FOCE: Individual fits (dv) (27 of 30)	49
30	FOCE: Individual fits (dv) (28 of 30)	50
31	FOCE: Individual fits (dv) (29 of 30)	51
32	FOCE: Individual fits (dv) (30 of 30)	52
33	FOCE: CWRES (dv) vs Time (1 of 1)	53
34	FOCE: CWRES (dv) vs predictions (1 of 1)	54
35	FOCE: Distribution of random effects (1 of 1)	55
36	FOCE: Distribution of weighted residuals (dv) (1 of 1)	56
37	FOCE: VPC 1 (1 of 1)	57
38	FOCE: Optimization traceplot (1 of 1)	58
39	FOCE constantcoef: Goodness of Fit Plots (dv) (1 of 1)	60
40	FOCE constant coef: Individual fits (dv) (1 of 30)	61
41	FOCE constant coef: Individual fits (dv) (2 of 30)	62
42	FOCE constantcoef: Individual fits (dv) (2 of 30)	63
43	FOCE constantcoef: Individual fits (dv) (4 of 30)	64
43 44	FOCE constantcoef: Individual fits (dv) (4 of 30)	65
44	FOCE constantcoef: Individual fits (dv) (5 of 30)	66
46	FOCE constantcoef: Individual fits (dv) (6 of 30)	67
40	roce constanteder: illurvidual lits (uv) (/ or so)	U/

47	FOCE_constantcoef: Individual fits (dv) (8 of 30)	. 68
48	FOCE constantcoef: Individual fits (dv) (9 of 30)	. 69
49	FOCE constantcoef: Individual fits (dv) (10 of 30)	. 70
50	FOCE constantcoef: Individual fits (dv) (11 of 30)	. 71
51	FOCE constantcoef: Individual fits (dv) (12 of 30)	. 72
52	FOCE constantcoef: Individual fits (dv) (13 of 30)	
53	FOCE constantcoef: Individual fits (dv) (14 of 30)	
54	FOCE constantcoef: Individual fits (dv) (15 of 30)	
55	FOCE constantcoef: Individual fits (dv) (16 of 30)	
56	FOCE constantcoef: Individual fits (dv) (17 of 30)	
57	FOCE constantcoef: Individual fits (dv) (18 of 30)	
58	FOCE constantcoef: Individual fits (dv) (19 of 30)	
59	FOCE constantcoef: Individual fits (dv) (20 of 30)	
60	FOCE constantcoef: Individual fits (dv) (21 of 30)	
61	FOCE constantcoef: Individual fits (dv) (22 of 30)	
62	FOCE constantcoef: Individual fits (dv) (23 of 30)	
63	FOCE constantcoef: Individual fits (dv) (24 of 30)	
64	FOCE constantcoef: Individual fits (dv) (25 of 30)	
65	FOCE constantcoef: Individual fits (dv) (26 of 30)	
66	FOCE constantcoef: Individual fits (dv) (27 of 30)	. 87
67	FOCE constantcoef: Individual fits (dv) (28 of 30)	
68	FOCE constantcoef: Individual fits (dv) (29 of 30)	
69	FOCE constantcoef: Individual fits (dv) (30 of 30)	
70	FOCE constantcoef: CWRES (dv) vs Time (1 of 1)	
71	FOCE constantcoef: CWRES (dv) vs predictions (1 of 1)	
72	FOCE constantcoef: Distribution of random effects (1 of 1)	. 93
73	FOCE constantcoef: Distribution of weighted residuals (dv) (1 of 1)	. 94
74	FOCE_constantcoef: Optimization traceplot (1 of 1)	. 95
75	LaplaceI: Goodness of Fit Plots (dv) (1 of 1)	. 97
76	LaplaceI: Individual fits (dv) (1 of 30)	. 98
77	LaplaceI: Individual fits (dv) (2 of 30)	. 99
78	LaplaceI: Individual fits (dv) (3 of 30)	. 100
79	LaplaceI: Individual fits (dv) (4 of 30)	. 101
80	LaplaceI: Individual fits (dv) (5 of 30)	
81	LaplaceI: Individual fits (dv) (6 of 30)	
82	LaplaceI: Individual fits (dv) (7 of 30)	. 104
83	LaplaceI: Individual fits (dv) (8 of 30)	
84	LaplaceI: Individual fits (dv) (9 of 30)	. 106
85	LaplaceI: Individual fits (dv) (10 of 30)	
86	LaplaceI: Individual fits (dv) (11 of 30)	
87	LaplaceI: Individual fits (dv) (12 of 30)	
88	LaplaceI: Individual fits (dv) (13 of 30)	
89	LaplaceI: Individual fits (dv) (14 of 30)	
90	LaplaceI: Individual fits (dv) (15 of 30)	
91	LaplaceI: Individual fits (dv) (16 of 30)	
92	LaplaceI: Individual fits (dv) (17 of 30)	
93	LaplaceI: Individual fits (dv) (18 of 30)	
94	LaplaceI: Individual fits (dv) (19 of 30)	. 116

95	LaplaceI: Indiv	vidual fits (dv) (20 of 30)	. 117
96		vidual fits (dv) (21 of 30)	
97		vidual fits (dv) (22 of 30)	
98		vidual fits (dv) (23 of 30)	
99		vidual fits (dv) (24 of 30)	
		vidual fits (dv) (25 of 30)	
		vidual fits (dv) (26 of 30)	
		vidual fits (dv) (27 of 30)	
		vidual fits (dv) (28 of 30)	
		vidual fits (dv) (29 of 30)	
		vidual fits (dv) (30 of 30)	
		RES (dv) vs Time (1 of 1)	
		RES (dv) vs predictions (1 of 1) \dots	
		ribution of random effects (1 of 1)	
		ribution of weighted residuals (dv) (1 of 1)	
		mization traceplot $(1 \text{ of } 1) \dots \dots \dots \dots \dots \dots$	
		Individual fits (dv) (1 of 30)	
		Individual fits (dv) (2 of 30)	
		Individual fits (dv) (3 of 30)	
		Individual fits (dv) $(4 \text{ of } 30) \dots \dots \dots \dots \dots \dots$	
		Individual fits (dv) (5 of 30)	
		Individual fits (dv) (6 of 30)	
		Individual fits (dv) (7 of 30)	
		Individual fits (dv) (8 of 30)	
		Individual fits (dv) (9 of 30)	
		Individual fits (dv) (10 of 30)	
		Individual fits (dv) (11 of 30)	
		Individual fits (dv) (12 of 30)	
		Individual fits (dv) (13 of 30)	
		Individual fits (dv) (14 of 30) $\dots \dots \dots \dots \dots \dots$	
		Individual fits (dv) (15 of 30)	
		Individual fits (dv) (16 of 30)	
127	NaivePooled: 1	Individual fits (dv) (17 of 30)	. 150
128	NaivePooled: 1	Individual fits (dv) (18 of 30)	. 151
		Individual fits (dv) (19 of 30)	
130	NaivePooled: 1	Individual fits (dv) (20 of 30)	. 153
131	NaivePooled: 1	Individual fits (dv) (21 of 30)	. 154
132	NaivePooled: 1	Individual fits (dv) (22 of 30)	. 155
133	NaivePooled: 1	Individual fits (dv) (23 of 30)	. 156
134	NaivePooled: 1	Individual fits (dv) (24 of 30)	. 157
135	NaivePooled: 1	Individual fits (dv) (25 of 30)	. 158
136	NaivePooled: 1	Individual fits (dv) (26 of 30)	
		Individual fits (dv) (27 of 30)	
		Individual fits (dv) (28 of 30)	
		Individual fits (dv) (29 of 30)	
		Individual fits (dv) (30 of 30)	
		CWRES (dv) vs Time (1 of 1)	
		Optimization traceplot (1 of 1)	

List of Tables

1	Fit metrics for (FOCE)
2	Fit metrics for (FOCE constantcoef)
3	Fit metrics for (LaplaceI)
4	Fit metrics for (NaivePooled)
5	Population parameters of the (FOCE) fit
6	Population parameters of the (FOCE_constantcoef) fit
7	Population parameters of the (LaplaceI) fit
8	Population parameters of the (NaivePooled) fit
9	Individual parameters of the (FOCE) fit
10	Individual parameters of the (FOCE_constantcoef) fit
11	Individual parameters of the (LaplaceI) fit
12	Individual parameters of the (NaivePooled) fit

1 Report Metadata

• Version: 0.1.0

• Date: October 29, 2022

• User: tchamzas

2 Equations

2.1 FOCE, LaplaceI, NaivePooled, and FOCE_constantcoef

2.1.1 @pre

$$CL = tvcl \cdot e^{\eta_1} \tag{1}$$

$$Vc = tvvc \cdot e^{\eta_2} \tag{2}$$

2.1.2 @param

$$tvcl \in \text{RealDomain} (; lower = 0.001)$$
 (3)

$$tvvc \in \text{RealDomain}(;lower = 0.001)$$
 (4)

$$\Omega \in \operatorname{PDiagDomain}(2)$$
 (5)

$$\sigma \in \text{RealDomain} (; lower = 0.001)$$
 (6)

2.1.3 @random

$$\eta \sim \text{MvNormal}(\Omega)$$
 (7)

2.1.4 @dynamics

$$\frac{dCentral(t)}{dt} = \left(-\frac{CL}{Vc}\right) \cdot Central(t) \tag{8}$$

2.1.5 @derived

$$cp = \frac{1000 \cdot Central}{Vc} \tag{9}$$

$$dv \sim \text{Normal}(cp, \sigma)$$
 (10)

3 Model Metrics

Table 1: Listing of fit metrics for (FOCE)

Metric	Value
Estimation Time	1.268
LogLikelihood (LL)	-11556.9
-2LL	23113.8
AIC	23123.8
BIC	23151.3
(η-shrinkage) η_1	0.282
(η-shrinkage) η_2	0.137
(ϵ -shrinkage) $d ilde{v}$	0.043

Table 2: Listing of fit metrics for (FOCE_constant coef)

Metric	Value
Estimation Time	0.54
LogLikelihood (LL)	-11701.8
-2LL	23403.6
AIC	23411.6
BIC	23433.6
(η-shrinkage) η_1	0.731
(η-shrinkage) η_2	0.142
(ϵ -shrinkage) dv	0.056

Table 3: Listing of fit metrics for (LaplaceI)

Metric	Value
Estimation Time	0.838
LogLikelihood (LL)	-11557.0
-2LL	23113.9
AIC	23123.9
BIC	23151.4
(η-shrinkage) $η_1$	0.283
(η-shrinkage) η_2	0.137
(ϵ -shrinkage) $d ilde{v}$	0.043

Table 4: Listing of fit metrics for (NaivePooled)

Metric	Value
Estimation Time	0.068
LogLikelihood (LL)	-12269.5
-2LL	24539.0
AIC	24545.0
BIC	24561.5
(η-shrinkage) η_1	NaN
(η-shrinkage) η_2	NaN
(ϵ -shrinkage) dv	NaN

4 Coefficient Tables

Table 5: Population parameters of the (FOCE) fit.

Parameter	Estimate
tvcl	3.755
tvvc	70.012
$\Omega_1,_1$	0.081
Ω_{2}^{1}	0.082
σ	133.362

Table 6: Population parameters of the (FOCE_constantcoef) fit.

Parameter	Estimate
tvcl	1.0
tvvc	71.693
$\Omega_1,_1$	1.706
$\Omega_{2,2}^{1,1}$	0.086
σ	134.526

Table 7: Population parameters of the (LaplaceI) fit.

Parameter	Estimate
tvcl	3.748
tvvc	70.244
$\Omega_1,_1$	0.081
$\Omega_{2,2}^{111}$	0.082
σ	133.354

Table 8: Population parameters of the (NaivePooled) fit.

Parameter	Estimate
tvcl	3.839
tvvc	64.717
$\Omega_1,_1$	NaN
Ω_{2}^{1}	NaN
σ	221.683

5 Data Checkout Plots

The following pages contain the data checkout plots for all the fitted models included in the report. One plot is displayed per page.

Figure 1: FOCE, LaplaceI, NaivePooled, and FOCE_constantcoef: Observed (dv) vs Time profiles (1 of 1).

6 Fitted Model Plots

The following pages contain the plots for all the fitted models included in the report. One plot is displayed per page.

6.1 FOCE

Figure 2: FOCE: Goodness of fit plots showcasing observations (dv) versus population and individual predictions (top panel) and, weighted residuals (dv) vs population predictions and individual weighted residuals vs time (bottom panel) (1 of 1)

Figure 3: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (1 of 30)

Figure 4: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (2 of 30)

Figure 5: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (3 of 30)

Figure 6: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (4 of 30)

Figure 7: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (5 of 30)

Figure 8: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (6 of 30)

Figure 9: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (7 of 30)

Figure 10: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (8 of 30)

Figure 11: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (9 of 30)

Figure 12: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (10 of 30)

Figure 13: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (11 of 30)

Figure 14: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (12 of 30)

Figure 15: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (13 of 30)

Figure 16: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (14 of 30)

Figure 17: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (15 of 30)

Figure 18: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (16 of 30)

Figure 19: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (17 of 30)

Figure 20: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (18 of 30)

Figure 21: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (19 of 30)

Figure 22: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (20 of 30)

Figure 23: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (21 of 30)

Figure 24: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (22 of 30)

Figure 25: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (23 of 30)

Figure 26: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (24 of 30)

Figure 27: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (25 of 30)

Figure 28: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (26 of 30)

Figure 29: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (27 of 30)

Figure 30: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (28 of 30)

Figure 31: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (29 of 30)

Figure 32: FOCE: Population and individual predictions overlaid over observations for Observed (dv) by ID (30 of 30)

Figure 33: FOCE: Conditional weighted residuals Observed (dv) vs Time (1 of 1)

Figure 34: FOCE: Conditional weighted residuals Observed (dv) vs predictions (1 of 1)

Figure 35: FOCE: Distribution of random effects (1 of 1)

Figure 36: FOCE: Distribution of weighted residuals Observed (dv) (1 of 1)

Figure 37: FOCE: Visual predictive checks 1 (1 of 1)

Figure 38: FOCE: Traceplot of loglikelihood and gradient norm (1 of 1)

${\bf 6.2\ FOCE_constant}{coef}$

Figure 39: FOCE_constantcoef: Goodness of fit plots showcasing observations (dv) versus population and individual predictions (top panel) and, weighted residuals (dv) vs population predictions and individual weighted residuals vs time (bottom panel) (1 of 1)

Figure 40: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (1 of 30)

Figure 41: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (2 of 30)

Figure 42: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (3 of 30)

Figure 43: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (4 of 30)

Figure 44: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (5 of 30)

Figure 45: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (6 of 30)

Figure 46: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (7 of 30)

Figure 47: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (8 of 30)

Figure 48: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (9 of 30)

Figure 49: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (10 of 30)

Figure 50: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (11 of 30)

Figure 51: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (12 of 30)

Figure 52: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (13 of 30)

Figure 53: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (14 of 30)

Figure 54: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (15 of 30)

Figure 55: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (16 of 30)

Figure 56: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (17 of 30)

Figure 57: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (18 of 30)

Figure 58: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (19 of 30)

Figure 59: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (20 of 30)

Figure 60: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (21 of 30)

Figure 61: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (22 of 30)

Figure 62: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (23 of 30)

Figure 63: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (24 of 30)

Figure 64: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (25 of 30)

Figure 65: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (26 of 30)

Figure 66: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (27 of 30)

Figure 67: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (28 of 30)

Figure 68: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (29 of 30)

Figure 69: FOCE_constantcoef: Population and individual predictions overlaid over observations for Observed (dv) by ID (30 of 30)

Figure 70: FOCE_constantcoef: Conditional weighted residuals Observed (dv) vs Time (1 of 1)

Figure 71: FOCE_constantcoef: Conditional weighted residuals Observed (dv) vs predictions (1 of 1)

Figure 72: $FOCE_constantcoef$: Distribution of random effects (1 of 1)

Figure 73: FOCE_constantcoef: Distribution of weighted residuals Observed (dv) (1 of 1)

Figure 74: FOCE_constantcoef: Traceplot of loglikelihood and gradient norm (1 of 1)

6.3 LaplaceI

Figure 75: LaplaceI: Goodness of fit plots showcasing observations (dv) versus population and individual predictions (top panel) and, weighted residuals (dv) vs population predictions and individual weighted residuals vs time (bottom panel) (1 of 1)

Figure 76: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (1 of 30)

Figure 77: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (2 of 30)

Figure 78: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (3 of 30)

Figure 79: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (4 of 30)

Figure 80: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (5 of 30)

Figure 81: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (6 of 30)

Figure 82: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (7 of 30)

Figure 83: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (8 of 30)

Figure 84: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (9 of 30)

Figure 85: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (10 of 30)

Figure 86: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (11 of 30)

Figure 87: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (12 of 30)

Figure 88: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (13 of 30)

Figure 89: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (14 of 30)

Figure 90: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (15 of 30)

Figure 91: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (16 of 30)

Figure 92: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (17 of 30)

Figure 93: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (18 of 30)

Figure 94: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (19 of 30)

Figure 95: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (20 of 30)

Figure 96: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (21 of 30)

Figure 97: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (22 of 30)

Figure 98: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (23 of 30)

Figure 99: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (24 of 30)

Figure 100: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (25 of 30)

Figure 101: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (26 of 30)

Figure 102: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (27 of 30)

Figure 103: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (28 of 30)

Figure 104: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (29 of 30)

Figure 105: LaplaceI: Population and individual predictions overlaid over observations for Observed (dv) by ID (30 of 30)

Figure 106: LaplaceI: Conditional weighted residuals Observed (dv) vs Time (1 of 1)

Figure 107: LaplaceI: Conditional weighted residuals Observed (dv) vs predictions (1 of 1)

Figure 108: LaplaceI: Distribution of random effects (1 of 1)

Figure 109: LaplaceI: Distribution of weighted residuals Observed (dv) (1 of 1)

Figure 110: LaplaceI: Traceplot of loglikelihood and gradient norm (1 of 1)

6.4 NaivePooled

Figure 111: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (1 of 30)

Figure 112: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (2 of 30)

Figure 113: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (3 of 30)

Figure 114: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (4 of 30)

Figure 115: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (5 of 30)

Figure 116: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (6 of 30)

Figure 117: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (7 of 30)

Figure 118: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (8 of 30)

Figure 119: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (9 of 30)

Figure 120: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (10 of 30)

Figure 121: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (11 of 30)

Figure 122: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (12 of 30)

Figure 123: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (13 of 30)

Figure 124: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (14 of 30)

Figure 125: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (15 of 30)

Figure 126: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (16 of 30)

Figure 127: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (17 of 30)

Figure 128: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (18 of 30)

Figure 129: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (19 of 30)

Figure 130: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (20 of 30)

Figure 131: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (21 of 30)

Figure 132: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (22 of 30)

Figure 133: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (23 of 30)

Figure 134: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (24 of 30)

Figure 135: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (25 of 30)

Figure 136: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (26 of 30)

Figure 137: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (27 of 30)

Figure 138: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (28 of 30)

Figure 139: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (29 of 30)

Figure 140: NaivePooled: Population and individual predictions overlaid over observations for Observed (dv) by ID (30 of 30)

Figure 141: NaivePooled: Conditional weighted residuals Observed (dv) vs Time (1 of 1)

Figure 142: NaivePooled: Traceplot of loglikelihood and gradient norm (1 of 1)

A System Information

```
Julia Version 1.7.2
Commit bf53498635 (2022-02-06 15:21 UTC)
Platform Info:
 OS: Linux (x86_64-pc-linux-gnu)
 uname: Linux 5.4.181-99.354.amzn2.x86_64 #1 SMP Wed Mar 2 18:50:46 UTC 2022 x86_64 x86_64
 CPU: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz:
             speed
                                                                  idle
                          user
                                       nice
                                                     SVS
                         2344 s
      #1
          3099 MHz
                                                    460 s
                                                              120314 s
                                        1 s
                                                                                0 s
                                        20 s
                                                    489 s
                                                              120241 s
                                                                                0 s
      #2
          3100 MHz
                         2364 s
      #3 3100 MHz
                         2419 s
                                        13 s
                                                   465 s
                                                              120258 s
                                                                                0 s
      #4 3100 MHz
                         3279 s
                                        20 s
                                                   491 s
                                                              119363 s
                                                                                0 s
      #5
          3099 MHz
                         2899 s
                                         2 s
                                                    457 s
                                                              119775 s
                                                                                0 s
                                                    462 s
                         2553 s
      #6 3100 MHz
                                                              120101 s
                                        15 s
                                                                                0 s
                                                                                0 s
      #7 3099 MHz
                         2100 s
                                        44 s
                                                    458 s
                                                              120540 s
      #8 3099 MHz
                         2068 s
                                        25 s
                                                    450 s
                                                              120557 s
 Memory: 30.90927505493164 GB (11656.4609375 MB free)
 Uptime: 12347.12 sec
 Load Avg: 0.92 0.43 0.27
 WORD_SIZE: 64
 LIBM: libopenlibm
 LLVM: libLLVM-12.0.1 (ORCJIT, skylake-avx512)
Environment:
 JULIAHUB_USEREMAIL = tchamzas@gmail.com
  JULIAHUB_HOME = /opt/juliahub
 JULIARUN_DATA_FOLDER = 11327418835972800610
 JULIARUN_JOB_ID = lobscda9og
  JULIA_PKG_USE_CLI_GIT = true
 JULIA_GR_PROVIDER = BinaryBuilder
 JULIA_LOAD_PATH = @:@v#.#:@stdlib:/opt/juliahub/projects/default:/opt/juliahub/projects/
      → default
 JULIAHUB_NAMESPACE = 11327418835972800610
 JULIA_NEW_PKG_SERVER = https://umb.juliahub.com/
 JULIA_DATASETS_PATH = /var/run/secrets/jr-lobscda9ogsecret/DATA_TOML:/opt/juliahub/
      → JuliaHubDataDriver.toml:@:
 JULIAHUB_USERNAME = tchamzas
  JULIARUN_JOB_START_TIME = 13480742887158798
 JULIA_DEPOT_PATH = /home/jrun/data/.julia:/home/jrun/.julia
 JULIARUN_RUN_MODE = script
 JULIA_HOME = /home/jrun/data/.julia
 JULIATEAM_HOSTNAME = umb.juliahub.com
 JULIARUN_RESTART_POLICY = Never
 JULIA_PKG_SERVER = umb.juliahub.com
  JULIA_NUM_THREADS = 8
 JULIA FDITOR = code
 JULIAHUB_HOME = /opt/juliahub
 FONTCONFIG_PATH = /home/jrun/.julia/artifacts/69ab5e1318fa87cac480350ccc9faffff3b00c5b/etc

→ /fonts
 JULIA_LOAD_PATH = @:@v#.#:@stdlib:/opt/juliahub/projects/default:/opt/juliahub/projects/
      → default
 HOME = /home/jrun
 JULIA_DATASETS_PATH = /var/run/secrets/jr-lobscda9ogsecret/DATA_TOML:/opt/juliahub/
      → JuliaHubDataDriver.toml:@:
 TERM = xterm-256color
 JULIA_DEPOT_PATH = /home/jrun/data/.julia:/home/jrun/.julia
 LD_LIBRARY_PATH = :/opt/codeserver/lib
 JULIA_HOME = /home/jrun/data/.julia
```

A.1 Pumas Version

```
Status `~/.julia/environments/v1.7/Manifest.toml`
[4ece37e6] Bioequivalence v0.1.17 operated in the state of the state of
```

A.2 Project Manifest

```
Status '~/.julia/environments/v1.7/Manifest.toml'
[a4c015fc] ANSIColoredPrinters v0.0.1 o
[da404889] ARFFFiles v1.4.1 ♀
[fbe9abb3] AWS v1.74.1
[4f1ea46c] AWSCore v0.6.18
[1c724243] AWSS3 v0.9.5
[0d499d91] AWSSDK v0.5.0
[c3fe647b] AbstractAlgebra v0.23.0 ♀
[621f4979] AbstractFFTs v1.1.0 o
[80f14c24] AbstractMCMC v3.3.1 o
[6e696c72] AbstractPlutoDingetjes v1.1.4 o
[1520ce14] AbstractTrees v0.3.4 operation (1.19 operation)
[79e6a3ab] Adapt v3.3.3 ∘
[Obf59076] AdvancedHMC v0.3.5 φ
[cbdf2221] AlgebraOfGraphics v0.6.8 φ
[27a7e980] Animations v0.4.1 ∘
[dce04be8] ArgCheck v2.3.0 o
[ec485272] ArnoldiMethod v0.1.0 o
[4fba245c] ArrayInterface v3.2.2 o
[69666777] Arrow v2.3.0 γ
[31f734f8] ArrowTypes v1.2.1 γ
[15f4f7f2] AutoHashEquals v0.2.0 o
[67c07d97] Automa v0.8.2 ♀
[13072b0f] AxisAlgorithms v1.0.1 o
[39de3d68] AxisArrays v0.4.6 o
[fbb218c0] BSON v0.3.5 ♀
[198e06fe] BangBang v0.3.36 o
[9718e550] Baselet v0.1.1 o
[6e4b80f9] BenchmarkTools v1.3.1 o
[e2ed5e7c] Bijections v0.1.4 o
[c3b6d118] BitIntegers v0.2.6 o
[62783981] BitTwiddlingConvenienceFunctions v0.1.3 o
[fa961155] CEnum v0.4.2 o
[2a0fbf3d] CPUSummary v0.1.22 o
[00ebfdb7] CSTParser v3.3.3 ∘
[336ed68f] CSV v0.10.4 o
[159f3aea] Cairo v1.0.5 o
```

```
[13f3f980] CairoMakie v0.8.5 \circ
[49dc2e85] Calculus v0.5.1 ♀
[479239e8] Catalyst v10.3.1 o
[324d7699] CategoricalArrays v0.10.6 o
[9961bab8] Cbc v1.0.1 o
[8be319e6] Chain v0.4.10 o
[082447d4] ChainRules v1.35.2 ♀
[d360d2e6] ChainRulesCore v1.15.0 ♀
[9e997f8a] ChangesOfVariables v0.1.3 ♀
[fb6a15b2] CloseOpenIntervals v0.1.8 o
[523fee87] CodecBzip2 v0.7.2 γ
[5ba52731] CodecLz4 v0.4.0 γ
[944b1d66] CodecZlib v0.7.0 ∘
[6b39b394] CodecZstd v0.7.2 op
[a2cac450] ColorBrewer v0.4.0 op
[35d6a980] ColorSchemes v3.18.0 ∘
[3da002f7] ColorTypes v0.11.4 o
[c3611d14] ColorVectorSpace v0.9.9 ♀
[5ae59095] Colors v0.12.8 ♀
[861a8166] Combinatorics v1.0.2 o
[a80b9123] CommonMark v0.8.6 o
[38540f10] CommonSolve v0.2.1 o
[bbf7d656] CommonSubexpressions v0.3.0 o
[34da2185] Compat v3.45.0 \circ [b152e2b5] CompositeTypes v0.1.2 \circ
[a33af91c] CompositionsBase v0.1.1 ♀
[ed09eef8] ComputationalResources v0.3.2 of [5218b696] Configurations v0.17.3 of
[88cd18e8] ConsoleProgressMonitor v0.1.2 o
[187b0558] ConstructionBase v1.3.0 op
[d38c429a] Contour v0.5.7 op
[adafc99b] CpuId v0.3.1 ∘
[a8cc5b0e] Crayons v4.1.1 o
[754358af] DEDataArrays v0.2.4 o
[9a962f9c] DataAPI v1.10.0 ↔
[a93c6f00] DataFrames v1.3.4 o
[1313f7d8] DataFramesMeta v0.11.0 ♀
[82cc6244] DataInterpolations v3.9.2 o
[c9661210] DataSets v0.2.6 o
[864edb3b] DataStructures v0.18.13 of [e2d170a0] DataValueInterfaces v1.0.0 of
[e7dc6d0d] DataValues v0.4.13 ∘
[ab62b9b5] DeepDiffs v1.2.0 o
[244e2a9f] DefineSingletons v0.1.2 o
[b429d917] DensityInterface v0.4.0 ♀
[85a47980] Dictionaries v0.3.21 operation v0.3.2
[459566f4] DiffEqCallbacks v2.23.1 ∘
[c894b116] DiffEqJump v7.3.1 ↔
[163ba53b] DiffResults v1.0.3 o
[b552c78f] DiffRules v1.11.0 ♀
[b4f34e82] Distances v0.10.7 γ
[aaf54ef3] DistributedArrays v0.6.6 γ
[31c24e10] Distributions v0.25.66 o
[ffbed154] DocStringExtensions v0.8.6 ♀
[e30172f5] Documenter v0.27.19 of [5b8099bc] DomainSets v0.5.9 of [5b8099bc]
[fa6b7ba4] DualNumbers v0.6.8 o
[7c1d4256] DynamicPolynomials v0.4.5 of [792122b4] EarlyStopping v0.1.9 of [792122b4]
```

```
[da5c29d0] EllipsisNotation v1.1.3 ♀
[d4d017d3] ExponentialUtilities v1.16.0 o
[e2ba6199] ExprTools v0.1.8 o
[55351af7] ExproniconLite v0.6.13 \circ
[411431e0] Extents v0.1.0 ♀
[8f5d6c58] EzXML v1.1.0 o
[c87230d0] FFMPEG v0.3.0 o
[7a1cc6ca] FFTW v1.4.6 o
[7034ab61] FastBroadcast v0.1.17 o
[9aa1b823] FastClosures v0.3.2 ∘
[5789e2e9] FileIO v1.14.0 o
[48062228] FilePathsBase v0.9.15 o
[1a297f60] FillArrays v0.11.9 o
[6a86dc24] FiniteDiff v2.11.1 o
[53c48c17] FixedPointNumbers v0.8.4 o
[59287772] Formatting v0.4.2 ⋄
[f6369f11] ForwardDiff v0.10.32 o
[b38be410] FreeType v4.0.0 ♀
[663a7486] FreeTypeAbstraction v0.9.9 o
[069b7b12] FunctionWrappers v1.1.2 o
[fb4132e2] FuzzyCompletions v0.5.0 ♀
[38e38edf] GLM v1.8.0 o
[Oc68f7d7] GPUArrays v8.3.2 γ
[c145ed77] GenericSchur v0.5.3 ↔
[cf35fbd7] GeoInterface v1.0.0 ↔
[5c1252a2] GeometryBasics v0.4.2 o
[bc5e4493] GitHub v5.7.3
[af5da776] GlobalSensitivity v1.3.1 o
[a2bd30eb] Graphics v1.1.2 o
[86223c79] Graphs v1.7.0 o
[3955a311] GridLayoutBase v0.7.7 o
[42e2da0e] Grisu v1.0.2 ♀
[d5909c97] GroupsCore v0.4.0 γ
[19dc6840] HCubature v1.5.0 γ
[cd3eb016] HTTP v0.9.17 o
[eafb193a] Highlights v0.4.5 o
[3e5b6fbb] HostCPUFeatures v0.1.7 ♀
[34004b35] HypergeometricFunctions v0.3.10 o
[ac1192a8] HypertextLiteral v0.9.4 ♀
[09f84164] HypothesisTests v0.10.10 op
[b5f81e59] IOCapture v0.2.2 op
[7869d1d1] IRTools v0.4.6 ♀
[615f187c] IfElse v0.1.1 o
[c817782e] ImageBase v0.1.5 o
[a09fc81d] ImageCore v0.9.3 ♀
[82e4d734] ImageIO v0.6.5 o
[d8c32880] ImageInTerminal v0.4.8 o
[313cdc1a] Indexing v1.1.1 γ
[9b13fd28] IndirectArrays v1.0.0 γ
[d25df0c9] Inflate v0.1.2 γ
[83e8ac13] IniFile v0.5.1 o
[22cec73e] InitialValues v0.3.1 γ
[842dd82b] InlineStrings v1.1.2 γ
[505f98c9] InplaceOps v0.3.0 o
[18e54dd8] IntegerMathUtils v0.1.0 ♀
[a98d9a8b] Interpolations v0.13.6 or [8197267c] IntervalSets v0.5.3 or
[3587e190] InverseFunctions v0.1.7 ♀
[41ab1584] InvertedIndices v1.1.0 op
[b6b21f68] Ipopt v1.0.2 op
```

```
[92d709cd] IrrationalConstants v0.1.1 \circ
[f1662d9f] Isoband v0.1.1 ♀
[c8e1da08] IterTools v1.4.0 o
[b3c1a2ee] IterationControl v0.4.0 \circ
[42fd0dbc] IterativeSolvers v0.9.2 o
[82899510] IteratorInterfaceExtensions v1.0.0 o
[692b3bcd] JLLWrappers v1.4.1 ∘
[9da8a3cd] JLSO v2.7.0 o
[682c06a0] JSON v0.21.3 o
[0f8b85d8] JSON3 v1.9.5 ♀
[b9914132] JSONTables v1.0.3 γ
[b835a17e] JpegTurbo v0.1.1 γ
[4076af6c] JuMP v1.1.1 ∘
[98e50ef6] JuliaFormatter v0.21.2 ogle241c0f9] JuliaHubData v0.3.2 ogle241c0f9] JuliaHubData v0.3.2 ogle241c0f9] JuliaHubData v0.3.2 ogle241c0f9]
[2ddba703] Juniper v0.9.1 ♀
[5ab0869b] KernelDensity v0.6.3 o
[929cbde3] LLVM v4.14.0 ♀
[b964fa9f] LaTeXStrings v1.3.0 ♀
[2ee39098] LabelledArrays v1.9.0 o
[23fbe1c1] Latexify v0.15.13 ∘
[a5e1c1ea] LatinHypercubeSampling v1.8.0 o
[73f95e8e] LatticeRules v0.0.1 o
[10f19ff3] LayoutPointers v0.1.8 operation [50d2b5c4] Lazy v0.15.1 operation
[fc18253b] LazyJSON v0.2.2
[8cdb02fc] LazyModules v0.3.1 or [7f8f8fb0] LearnBase v0.4.1 or [7f8f8fb0]
[0fc2ff8b] LeastSquaresOptim v0.8.3 ♀
[1d6d02ad] LeftChildRightSiblingTrees v0.1.3 γ
[093fc24a] LightGraphs v1.3.5 γ
[d3d80556] LineSearches v7.1.1 o
[4345ca2d] Loess v0.5.4 o
[2ab3a3ac] LogExpFunctions v0.3.15 ♀
[e6f89c97] LoggingExtras v0.4.9 o
[bdcacae8] LoopVectorization v0.12.110 \circ
[30fc2ffe] LossFunctions v0.7.2 ♀
[2fda8390] LsqFit v0.12.1 o
[c7f686f2] MCMCChains v5.3.1 ∘
[be115224] MCMCDiagnosticTools v0.1.3 γ
[6c6e2e6c] MIMEs v0.1.4 γ
[add582a8] MLJ v0.16.11 ♀
[a7f614a8] MLJBase v0.18.26 o
[50ed68f4] MLJEnsembles v0.1.2 o
[614be32b] MLJIteration v0.3.3 ♀
[e80e1ace] MLJModelInterface v1.3.3 \circ [d491faf4] MLJModels v0.14.14 \circ
[17bed46d] MLJSerialization v1.1.3 ♀
[03970b2e] MLJTuning v0.6.16 o
[54119dfa] MLJXGBoostInterface v0.2.1 o
[d8e11817] MLStyle v0.4.12 ♀
[1914dd2f] MacroTools v0.5.9 o
[ee78f7c6] Makie v0.17.5 ♀
[20f20a25] MakieCore v0.3.2 o
[d125e4d3] ManualMemory v0.1.8 ∘
[dbb5928d] MappedArrays v0.4.1 of [7eb4fadd] Match v1.2.0 of [7eb4fadd] Match v1.2.0 of [7eb4fadd] Match v1.2.0 of [7eb4fadd]
[b8f27783] MathOptInterface v1.4.0 \circ
[fdba3010] MathProgBase v0.7.8 ↔
[0a4f8689] MathTeXEngine v0.4.1 ↔
```

```
[739be429] MbedTLS v1.0.3 \circ
[f28f55f0] Memento v1.3.1 ♀
[c03570c3] Memoize v0.4.4 o
[e9d8d322] Metatheory v1.3.4 o
[128add7d] MicroCollections v0.1.2 o
[e1d29d7a] Missings v1.0.2 o
[ff71e718] MixedModels v4.6.4 o
[78c3b35d] Mocking v0.7.3 o
[961ee093] ModelingToolkit v8.1.0 o
[4886b29c] MonteCarloIntegration v0.0.3 ♀
[e94cdb99] MosaicViews v0.3.3 γ
[99f44e22] MsgPack v1.1.0 γ
[46d2c3a1] MuladdMacro v0.2.2 o
[f8716d33] MultipleTesting v0.5.1 o
[102ac46a] MultivariatePolynomials v0.4.6 o
[ffc61752] Mustache v1.0.13 ∘
[d8a4904e] MutableArithmetics v1.0.4 o
[d41bc354] NLSolversBase v7.8.2 ♀
[76087f3c] NLopt v0.6.5 ♀
[2774e3e8] NLsolve v4.5.1 o
[77ba4419] NaNMath v0.3.7 o
[c020b1a1] NaturalSort v1.0.0 o
[f09324ee] Netpbm v1.0.2 ♀
[8913a72c] NonlinearSolve v0.3.16 operation | [510215fc] Observables v0.5.1 operation | [8913a72c] | [8913a72
[6fe1bfb0] OffsetArrays v1.12.6 ∘
[52e1d378] OpenEXR v0.3.2 γ
[8b6db2d4] OpenML v0.1.1 γ
[429524aa] Optim v1.7.1 ♀
[87e2bd06] OptimBase v2.0.2 op
[bac558e1] OrderedCollections v1.4.1 op
[1dea7af3] OrdinaryDiffEq v5.71.1 ♀
[90014a1f] PDMats v0.11.12 o
[f57f5aa1] PNGFiles v0.3.16 ♀
[19eb6ba3] Packing v0.4.2 o
[5432bcbf] PaddedViews v0.5.11 γ
[d96e819e] Parameters v0.12.3 γ
[69de0a69] Parsers v2.3.2 o
[cd433a01] Pavito v0.3.5 o
[eebad327] PkgVersion v0.1.1 γ
[995b91a9] PlotUtils v1.2.0 γ
[a03496cd] PlotlyBase v0.8.18 ∘
[c3e4b0f8] Pluto v0.19.9 o
[89dfed0f] PlutoSerialization v0.1.2 o
[e409e4f3] PoissonRandom v0.4.1 ♀
[f517fe37] Polyester v0.6.12 of [1d0040c9] PolyesterWeave v0.1.5 of
[647866c9] PolygonOps v0.1.2 ↔
[2dfb63ee] PooledArrays v1.4.2 of
[85a6dd25] PositiveFactorizations v0.2.4 of
[d236fae5] PreallocationTools v0.2.4 ♀
[91cefc8d] PrecompileSignatures v3.0.3 o
[21216c6a] Preferences v1.3.0 o
[08abe8d2] PrettyTables v1.3.1 o
[27ebfcd6] Primes v0.5.2 o
[33c8b6b6] ProgressLogging v0.1.4 o
[92933f4c] ProgressMeter v1.7.2 ♀
[f8a19df8] PropertyDicts v0.1.2
[4d266fdc] ProvenanceBase v0.2.0 γ
[4b34888f] QOI v1.0.0 γ
```

```
[1fd47b50] QuadGK v2.4.2 \circ
[67601950] Quadrature v1.12.0 ♀
[c6596682] QuantileRegressions v0.1.10 o
[8a4e6c94] QuasiMonteCarlo v0.2.9 op
[df47a6cb] RData v0.8.3 op
ce6b1742 RDatasets v0.7.7 o
[fb686558] RandomExtensions v0.4.3 o
[e6cf234a] RandomNumbers v1.5.3 o
[b3c3ace0] RangeArrays v0.3.2 o
[c84ed2f1] Ratios v0.4.3 ♀
[d71aba96] ReadStat v1.1.1 o
[52522f7a] ReadStatTables v0.1.1 o
[c1ae055f] RealDot v0.1.0 ♀
[3cdcf5f2] RecipesBase v1.2.1 o
[731186ca] RecursiveArrayTools v2.21.0 o
[f2c3362d] RecursiveFactorization v0.2.10 ∘
[189a3867] Reexport v1.2.2 o
[324d217c] ReferenceTests v0.9.11 ∘
[42d2dcc6] Referenceables v0.1.2 o
[29dad682] RegularizationTools v0.6.0 o
[05181044] RelocatableFolders v0.1.3 ∘
[b873ce64] ReplMaker v0.2.7 o
[ae029012] Requires v1.3.0 o
[8d208092] ResourceContexts v0.2.0 op
[20febd7b] Retry v0.4.1
[37e2e3b7] ReverseDiff v1.14.1 ∘
[79098fc4] Rmath v0.7.0 o
[f2b01f46] Roots v1.4.0 o
[7e49a35a] RuntimeGeneratedFunctions v0.5.3 ∘
[fdea26ae] SIMD v3.4.1 o
[3cdde19b] SIMDDualNumbers v0.1.1 o
[94e857df] SIMDTypes v0.1.0 ∘
[476501e8] SLEEFPirates v0.6.32 o
[1bc83da4] SafeTestsets v0.0.1 o
[7b38b023] ScanByte v0.3.1 ♀
[0bca4576] SciMLBase v1.23.1 ♀
[321657f4] ScientificTypes v2.3.3 o
[30f210dd] ScientificTypesBase v2.3.0 o
[6c6a2e73] Scratch v1.1.0 ∘
[91c51154] SentinelArrays v1.3.13 of [efcf1570] Setfield v0.8.2 of
[1277b4bf] ShiftedArrays v1.0.0 ♀
[992d4aef] Showoff v1.0.3 o
[73760f76] SignedDistanceFields v0.4.0 o
[699a6c99] SimpleTraits v0.9.4 ⋄
[45858cf5] Sixel v0.1.2 γ
[ed01d8cd] Sobol v1.5.0 γ
[2133526b] SodiumSeal v0.1.1
[a2af1166] SortingAlgorithms v1.0.1 o
[47a9eef4] SparseDiffTools v1.21.0 ♀
[276daf66] SpecialFunctions v2.1.6 o
[171d559e] SplittablesBase v0.1.14 \circ [860ef19b] StableRNGs v1.0.0 \circ
[cae243ae] StackViews v0.1.1 o
[aedffcd0] Static v0.4.1 ∘
[90137ffa] StaticArrays v1.5.2 o
[1e83bf80] StaticArraysCore v1.0.1 o
[64bff920] StatisticalTraits v2.1.0 ♀
[82ae8749] StatsAPI v1.4.0 o
[2913bbd2] StatsBase v0.33.20 o
```

```
[4c63d2b9] StatsFuns v1.0.1 \circ
[3eaba693] StatsModels v0.6.30 ∘
[7792a7ef] StrideArraysCore v0.3.10 o
[88034a9c] StringDistances v0.11.2 γ
[69024149] StringEncodings v0.3.5 γ
[09ab397b] StructArrays v0.6.8 o
[856f2bd8] StructTypes v1.8.1 o
[8a913413] Survival v0.2.2 o
[2da68c74] SymDict v0.3.0
[d1185830] SymbolicUtils v0.18.2 o
[Oc5d862f] Symbolics v4.2.0 of [3783bdb8] TableTraits v1.0.1 of
[bd369af6] Tables v1.7.0 ♀
[9ac5f52a] Tectonic v0.6.1 o
[62fd8b95] TensorCore v0.1.1 o
[8ea1fca8] TermInterface v0.2.3 ♀
[5d786b92] TerminalLoggers v0.1.5 γ
[8290d209] ThreadingUtilities v0.5.0 γ
[ac1d9e8a] ThreadsX v0.1.10 ♀
[731e570b] TiffImages v0.5.5 o
[f269a46b] TimeZones v1.7.3 o
[a759f4b9] TimerOutputs v0.5.20 o
[0796e94c] Tokenize v0.5.24 o
[3bb67fe8] TranscodingStreams v0.9.6 ↔ [28d57a85] Transducers v0.4.73 ↔
[84d833dd] TransformVariables v0.6.2 o
[592b5752] Trapz v2.0.3 o
[a2a6695c] TreeViews v0.3.0 o
[d5829a12] TriangularSolve v0.1.11 o
[410a4b4d] Tricks v0.1.6 of [5c2747f8] URIs v1.3.0 of [5c2747f8]
[3a884ed6] UnPack v1.0.2 o
[d9a01c3f] Underscores v3.0.0 o
[1cfade01] UnicodeFun v0.4.1 ♀
[1986cc42] Unitful v1.11.0 ♀
[3d5dd08c] VectorizationBase v0.21.33 o
[19fa3120] VertexSafeGraphs v0.2.0 o
[ea10d353] WeakRefStrings v1.4.2 o
[44d3d7a6] Weave v0.10.10 o
[efce3f68] WoodburyMatrices v0.5.5 o
[009559a3] XGBoost v1.5.2 o
[fdbf4ff8] XLSX v0.7.10 ∘
[228000da] XMLDict v0.4.1
[ddb6d928] YAML v0.4.7 \circ
[a5390f91] ZipFile v0.9.4 ♀
[e88e6eb3] Zygote v0.6.40 o
[700de1a5] ZygoteRules v0.2.2 o
[ae81ac8f] ASL_jll v0.1.3+0 ∘
[6e34b625] Bzip2_jll v1.0.6+5 γ
[83423d85] Cairo_jll v1.16.0+6 γ
[38041ee0] Cbc_jll v200.1000.501+0 o
[3830e938] Cgl_jll v0.6000.300+0 o
[06985876] Clp_jll v100.1700.601+0 ♀
[be027038] CoinUtils_jll v200.1100.400+0 o
[5ae413db] EarCut_jll v2.2.3+0 ∘
[2e619515] Expat_jll v2.4.8+0 of [b22a6f82] FFMPEG_jll v4.1.0+3 of
[f5851436] FFTW_jll v3.3.10+0 ♀
[a3f928ae] Fontconfig_jll v2.13.1+14 op
[d7e528f0] FreeType2_jll v2.10.1+5 op
```

```
[559328eb] FriBidi_jll v1.0.10+0 ∘
 [78b55507] Gettext_jll v0.21.0+0 ♀
 [7746bdde] Glib_jll v2.68.3+2 o
 [3b182d85] Graphite2_jll v1.3.14+0 ∘
 [2e76f6c2] HarfBuzz_jll v2.8.1+1 \circ
 [905a6f67] Imath_jll v3.1.2+0 ♀
 [1d5cc7b8] IntelOpenMP_jll v2018.0.3+2 ♀
 [9cc047cb] Ipopt_jll v300.1400.400+0 of [aacddb02] JpegTurbo_jll v2.1.2+0 of [acddb02] [acddb02]
 [c1c5ebd0] LAME_jll v3.100.1+0 ∘
 [dad2f222] LLVMExtra_jll v0.0.16+0 ↔
[1d63c593] LLVMOpenMP_jll v14.0.4+0 ↔
 [dd4b983a] LZO_jll v2.10.1+0 ∘
 [dd192d2f] LibVPX_jll v1.10.0+0 o
[e9f186c6] Libffi_jll v3.2.2+1 o
 [d4300ac3] Libgcrypt_jll v1.8.7+0 ♀
 [7add5ba3] Libgpg_error_jll v1.42.0+0 ♀
 [94ce4f54] Libiconv_jll v1.16.1+1 ∘
 [4b2f31a3] Libmount_jll v2.35.0+0 o
 [38a345b3] Libuuid_jll v2.36.0+0 ♀
 [5ced341a] Lz4_jll v1.9.3+0 ∘
 [d00139f3] METIS_jll v5.1.1+0 ↔
 [856f044c] MKL_jll v2022.0.0+0 ∘
[d7ed1dd3] MUMPS_seq_jll v5.4.1+0 o
[079eb43e] NLopt_jll v2.7.1+0 o
 [e7412a2a] Ogg_jll v1.3.5+1 ∘
 [656ef2d0] OpenBLAS32_jll v0.3.17+0 openEXR_jll v3.1.1+0 openEXR_jll v3.1+0 openEXR_
 [458c3c95] OpenSSL_jll v1.1.14+0 ∘
 [efe28fd5] OpenSpecFun_jll v0.5.5+0 γ
[91d4177d] Opus_jll v1.3.2+0 γ
 [7da25872] Osi_jll v0.10800.600+0 ♀
 [2f80f16e] PCRE_jll v8.44.0+0 9
 [36c8627f] Pango_jll v1.42.4+10 ∘
 [30392449] Pixman_jll v0.40.1+0 o
  [a4dc8951] ReadStat_jll v1.1.5+0 o
 [f50d1b31] Rmath_jll v0.3.0+0 ∘
 [a5c6f535] XGBoost_jll v1.6.1+1 o
 [02c8fc9c] XML2_jll v2.9.14+0 ∘
 [aed1982a] XSLT_jll v1.1.34+0 o
[4f6342f7] Xorg_libX11_jll v1.6.9+4 o
 [0c0b7dd1] Xorg_libXau_jll v1.0.9+4 ♀
 [a3789734] Xorg_libXdmcp_jll v1.1.3+4 op
[1082639a] Xorg_libXext_jll v1.3.4+4 op
 [ea2f1a96] Xorg_libXrender_jll v0.9.10+4 ∘
 [14d82f49] Xorg_libpthread_stubs_jll v0.1.0+3 o
[c7cfdc94] Xorg_libxcb_jll v1.13.0+3 o
 [c5fb5394] Xorg_xtrans_jll v1.4.0+3 ∘
 [3161d3a3] Zstd_jll v1.5.2+0 o
 [9a68df92] isoband_jll v0.2.3+0 ↔
 [Oac62f75] libass_jll v0.14.0+4 o
[f638f0a6] libfdk_aac_jll v0.1.6+4 \( \) [b53b4c65] libpng_jll v1.6.38+0 \( \)
 [075b6546] libsixel_jll v1.8.6+1 ∘
[dfaa095f] x265_jll v3.0.0+3 ∘
 [197a6dec] AppServer v0.4.0 of [Odad84c5] ArgTools
```

```
[56f22d72] Artifacts
[2a0f44e3] Base64
[4ece37e6] Bioequivalence v0.1.17 o
[ade2ca70] Dates
[8bb1440f] DelimitedFiles
[8ba89e20] Distributed
[f43a241f] Downloads
[7b1f6079] FileWatching
[9fa8497b] Future
[b77e0a4c] InteractiveUtils
[4af54fe1] LazyArtifacts
[b27032c2] LibCURL
[76f85450] LibGit2
[8f399da3] Libdl
[37e2e46d] LinearAlgebra
[56ddb016] Logging
[d6f4376e] Markdown
[a63ad114] Mmap
[29142fd5] NCA v2.3.0 o
[b07d0016] NCAUtilities v0.7.4 \circ
[ca575930] NetworkOptions
[d6cf976a] OptimalDesign v0.4.0 o
[1ceaab83] PharmaDatasets v0.5.0 o
[44cfe95a] Pkg
[8b92943f] PlottingUtilities v0.8.2 o
[de0858da] Printf
[9abbd945] Profile
[64b04e06] ProvenanceTracking v0.4.1 o
[4f2c3c20] Pumas v2.2.1 ♀
[90809fef] PumasApps v0.6.11 o
[0c61e9cd] PumasPlots v0.7.6 o
[c743b482] PumasReports v0.5.1 ∘
[148d11e5] PumasUtilities v0.7.0 o
[3fa0cd96] REPL
[9a3f8284] Random
[ea8e919c] SHA
[9e88b42a] Serialization
[1a1011a3] SharedArrays
[6462fe0b] Sockets
[2f01184e] SparseArrays
[10745b16] Statistics
[4607b0f0] SuiteSparse
[6ce4ecf0] SummaryTables v0.3.2 of [fa267f1f] TOML
[a4e569a6] Tar
[8dfed614] Test
[cf7118a7] UUIDs
[4ec0a83e] Unicode
[e66e0078] CompilerSupportLibraries_jll
[deac9b47] LibCURL_jll
[29816b5a] LibSSH2_jll
[c8ffd9c3] MbedTLS_jll
[14a3606d] MozillaCACerts_jll
[4536629a] OpenBLAS_jll
[05823500] OpenLibm_jll
[83775a58] Zlib_jll
[8e850b90] libblastrampoline_jll
[8e850ede] nghttp2_jll
[3f19e933] p7zip_jll
```

B Individual Coefficients Tables

Table 9: Individual parameters of the (FOCE) fit .

=	id	time	CL	Vc
-	1	0.0	3.618	49.85
	2	0.0	3.711	67.031
	3	0.0	3.819	60.845
	4	0.0	3.831	76.813
	5	0.0	3.793	68.606
	6 7	0.0	3.877	76.768
	8	0.0	3.811 3.697	73.684 69.275
	9	0.0	3.834	77.922
	10	0.0	3.758	64.988
	11	0.0	3.79	64.04
	12	0.0	3.829	72.911
	13	0.0	3.817	71.909
	14	0.0	3.74	69.117
	15 16	0.0	3.825 3.776	73.07 70.422
	17	0.0	3.723	74.742
	18	0.0	3.648	69.098
	19	0.0	3.785	66.099
	20	0.0	3.844	82.201
	21	0.0	3.548	57.037
	22	0.0	3.872	77.497
	23 24	0.0	3.668 3.789	65.024 73.277
	25	0.0	3.772	72.822
	26	0.0	3.833	73.019
	27	0.0	3.751	72.776
	28	0.0	3.832	78.75
	29	0.0	3.779	69.265
	30	0.0	3.729	69.919
	31	0.0	4.289	54.613
	32 33	0.0	3.771 3.442	53.823 59.967
	34	0.0	4.154	65.741
	35	0.0	4.557	74.685
	36	0.0	4.077	83.714
	37	0.0	3.337	55.211
	38	0.0	3.068	43.245
	39	0.0	4.39	72.907
	40 41	0.0	4.513 2.907	82.89 43.496
	42	0.0	3.684	91.234
	43	0.0	3.652	85.564
	44	0.0	4.305	69.813
	45	0.0	3.876	86.74
	46	0.0	3.724	77.756
	47	0.0	4.157	97.823
	48 49	0.0	3.507 4.131	86.964 88.047
	50	0.0	3.765	104.152
	51	0.0	4.039	74.625
	52	0.0	1.75	56.211
	53	0.0	4.071	90.255
	54	0.0	3.873	98.99
	55	0.0	3.308	54.559
	56 57	0.0	3.656	47.986
	57 58	0.0	3.034 3.691	67.78 108.092
	59	0.0	3.934	100.092
	60	0.0	3.621	88.715
	61	0.0	3.915	79.795
	62	0.0	4.249	59.825
	63	0.0	3.034	42.552
	64	0.0	4.545	128.241
	65 66	0.0	4.102 2.488	60.402 46.803
	67	0.0	4.583	57.836
_				

		time	CL	Vc
	68	0.0	3.519	92.14
	69	0.0	4.089	91.505
	70 74	0.0	5.585	60.521
	71 72	0.0	3.443 4.974	61.242 66.822
	72 73	0.0	3.063	109.529
	74	0.0	3.555	67.002
	75	0.0	3.234	113.783
	76	0.0	4.275	48.147
	77	0.0	5.048	44.717
	78	0.0	3.642	92.26
	79	0.0	3.163	62.88
	80	0.0	2.72	37.653
	81	0.0	3.291	66.931
	82	0.0	3.687	76.504
	83	0.0	4.354	90.519
	84	0.0	3.707	61.71
	85	0.0	3.455	96.326
	86	0.0	3.871	62.472
	87 88	0.0	4.41	48.336
	88 89	0.0	3.176 3.765	81.582 77.234
	90	0.0	3.008	73.14
	91	0.0	4.096	76.702
	92	0.0	2.331	58.493
	93	0.0	3.438	79.729
	94	0.0	4.262	36.77
	95	0.0	3.667	40.304
	96	0.0	5.634	57.492
	97	0.0	3.554	61.803
	98	0.0	2.395	84.49
	99	0.0	6.71	99.742
	00	0.0	3.544	57.8
	01	0.0	3.934	55.857
	02	0.0	3.522	76.981
	03	0.0	6.052	77.832
	04	0.0	1.93	87.96
	05 06	0.0	3.159	69.684 73.527
	06 07	0.0	2.801 3.289	55.984
	08	0.0	4.53	55.004
	09	0.0	3.656	64.557
	10	0.0	3.152	49.546
	11	0.0	4.667	70.926
	12	0.0	2.631	70.587
1	13	0.0	5.104	71.424
	14	0.0	2.535	52.088
1	15	0.0	3.409	122.377
	16	0.0	5.092	93.111
	17	0.0	4.236	48.658
	18	0.0	7.766	68.229
	19	0.0	3.334	49.432
_1	20	0.0	4.587	59.027

Table 10: Individual parameters of the (FOCE_constant coef) fit .

id	time	2.255	Vc
1 2	0.0	2.255	51.014 69.579
3	0.0	2.76	62.688
4	0.0	2.368	80.144
5	0.0	2.38	71.283
6	0.0	2.701	79.766
7	0.0	2.381	76.626
8	0.0	1.995	71.711
9 10	0.0	2.389 2.336	81.232 67.305
11	0.0	2.503	66.293
12	0.0	2.487	75.796
13	0.0	2.428	74.798
14	0.0	2.099	71.912
15	0.0	2.411	76.16
16 17	0.0	2.28 1.947	73.14
18	0.0	1.695	77.653 71.821
19	0.0	2.431	68.497
20	0.0	2.332	85.917
21	0.0	1.802	58.443
22	0.0	2.649	80.599
23	0.0	1.993	67.128
24 25	0.0	2.279 2.185	76.204 75.79
26	0.0	2.505	75.908
27	0.0	2.017	75.987
28	0.0	2.342	82.203
29	0.0	2.358	71.771
30	0.0	2.115	72.445
31	0.0	4.598	54.405
32 33	0.0	3.563 2.929	54.16
34	0.0	4.34	60.766 65.774
35	0.0	5.7	73.477
36	0.0	4.179	84.125
37	0.0	2.849	55.823
38	0.0	2.581	43.86
39 40	0.0	5.025	72.494
41	0.0	5.689 2.381	81.705 44.148
42	0.0	3.026	93.09
43	0.0	2.964	87.467
44	0.0	4.745	69.606
45	0.0	3.605	87.756
46 47	0.0	3.259	78.94
48	0.0	4.542 2.655	97.942 89.026
49	0.0	4.365	88.331
50	0.0	2.969	107.191
51	0.0	4.063	75.0
52	0.0	0.893	57.529
53	0.0	4.181	90.757
54 55	0.0	3.473 2.797	100.695 55.236
56	0.0	3.413	48.29
57	0.0	2.105	69.481
58	0.0	2.704	111.656
59	0.0	3.635	110.956
60	0.0	2.882	90.689
61 62	0.0	3.867 4.318	80.015 59.807
63	0.0	2.897	42.733
64	0.0	5.306	126.965
65	0.0	4.126	60.434
66	0.0	2.292	47.111
67	0.0	4.772	57.682

id	time	CL	Vc
68	0.0	3.212	93.118
69	0.0	4.126	91.68
70	0.0	6.235	60.02
71	0.0	3.28	61.55
72	0.0	5.389	66.471
73 74	0.0	2.404 3.413	111.888
74 75	0.0 0.0	2.561	67.275 116.501
75 76	0.0	4.327	48.132
77	0.0	5.279	44.57
78	0.0	3.426	92.923
79	0.0	2.956	63.219
80	0.0	2.597	37.787
81	0.0	3.086	67.3
82	0.0	3.561	76.798
83	0.0	4.567	90.398
84	0.0	3.616	61.892
85	0.0	3.122	97.333
86	0.0	3.823	62.601
87	0.0	4.5	48.281
88	0.0	2.834	82.429
89	0.0	3.643	77.595
90	0.0	2.685	73.863
91	0.0	4.104	76.724
92	0.0	2.25	58.683
93	0.0	3.37	79.907
94	0.0	4.272	36.764
95	0.0	3.654	40.318
96 97	0.0	5.79 3.52	57.373 61.869
98	0.0	2.212	85.217
99	0.0	7.467	98.931
100	0.0	3.51	57.863
101	0.0	3.928	55.875
102	0.0	3.467	77.121
103	0.0	6.385	77.542
104	0.0	1.737	88.779
105	0.0	3.09	69.831
106	0.0	2.707	73.742
107	0.0	3.247	56.051
108	0.0	4.566	54.982
109	0.0	3.63	64.608
110	0.0	3.113	49.6
111 112	0.0	4.746 2.531	70.845 70.838
113	0.0	5.236	71.313
113	0.0	2.48	52.171
115	0.0	3.261	122.982
116	0.0	5.286	92.933
117	0.0	4.248	48.653
118	0.0	8.601	67.404
119	0.0	3.307	49.461
120	0.0	4.639	58.979

Table 11: Individual parameters of the (LaplaceI) fit .

id	time	CL	Vc
1	0.0	3.612	49.94
2	0.0	3.704 3.812	67.182 60.98
4	0.0	3.824	77.002
5	0.0	3.786	68.766
6 7	0.0	3.87 3.804	76.959 73.86
8	0.0	3.691	69.431
9	0.0	3.827	78.114
10	0.0	3.752	65.134
11 12	0.0 0.0	3.784 3.822	64.186 73.087
13	0.0	3.81	72.081
14	0.0	3.734	69.276
15	0.0	3.818	73.248
16 17	0.0	3.769 3.716	70.586 74.916
18	0.0	3.641	69.253
19	0.0	3.778	66.251
20	0.0	3.837	82.407
21 22	0.0	3.542 3.865	57.148 77.69
23	0.0	3.662	65.165
24	0.0	3.783	73.452
25 26	0.0	3.765 3.826	72.994 73.196
27	0.0	3.744	72.948
28	0.0	3.825	78.945
29	0.0	3.772	69.426
30 31	0.0	3.723 4.285	70.078 54.643
32	0.0	3.767	53.848
33	0.0	3.438	60.0
34	0.0	4.149	65.788
35 36	0.0	4.552 4.071	74.754 83.797
37	0.0	3.333	55.235
38	0.0	3.065	43.258
39	0.0	4.386	72.969
40 41	0.0	4.507 2.904	82.978 43.509
42	0.0	3.678	91.328
43	0.0	3.647	85.648
44 45	0.0	4.3 3.871	69.868 86.825
45	0.0	3.719	77.822
47	0.0	4.151	97.945
48	0.0	3.502	87.046
49 50	0.0 0.0	4.126 3.758	88.141 104.285
51	0.0	4.034	74.686
52	0.0	1.746	56.227
53	0.0	4.065	90.356
54 55	0.0	3.867 3.304	99.108 54.584
56	0.0	3.653	48.005
57	0.0	3.029	67.822
58	0.0	3.684	108.232
59 60	0.0	3.928 3.615	109.311 88.804
61	0.0	3.913	79.819
62	0.0	4.247	59.836
63 64	0.0	3.033 4.54	42.556
65	0.0 0.0	4.54	128.334 60.413
66	0.0	2.487	46.808
67	0.0	4.581	57.846

id time CL Vc 68 0.0 3.515 92.177 69 0.0 4.086 91.539 70 0.0 5.584 60.533 71 0.0 3.441 61.254 72 0.0 4.972 66.837 73 0.0 3.06 109.582 74 0.0 3.553 67.016 75 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.656 81 0.0 3.289 66.945 82 0.0 3.664 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484				
69 0.0 4.086 91.539 70 0.0 5.584 60.533 71 0.0 3.441 61.254 72 0.0 4.972 66.837 73 0.0 3.06 109.582 74 0.0 3.553 67.016 75 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.656 81 0.0 3.289 66.945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.705 61.721 88 0.0 3.705 61.721 89 0.0 3.684 76.524 89 0.0 3.705 61.721 89 0.0 3.686 62.484 87 0.0 3.705 61.721 89 0.0 3.666 40.305 90 0.0 3.669 62.484 90 0.0 3.669 62.484 90 0.0 3.666 40.305 90 0.0 3.669 62.484 90 0.0 3.669 62.484 90 0.0 3.762 77.257 90 0.0 3.666 40.305 90 0.0 3.666 40.305 91 0.0 4.995 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 57.893 101 0.0 3.933 55.86 102 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.554 57.893 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.079 97.756 100 0.0 3.523 57.893 104 0.0 1.929 87.968 105 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 114 0.0 2.63 70.592 115 0.0 3.688 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.666 118 0.0 7.766 68.234				
70 0.0 5.584 60.533 71 0.0 3.441 61.254 72 0.0 4.972 66.837 73 0.0 3.06 109.582 74 0.0 3.553 61.016 75 0.0 3.23 113.845 76 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.656 81 0.0 3.289 66.945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.765 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.066 73.158 91 0.0 4.095 76.708 92 0.0 3.664 76.524 88 0.0 3.765 77.257 90 0.0 3.664 76.724 10 0.0 3.565 61.721 10 0.0 4.409 98.342 89 0.0 3.762 77.257 90 0.0 3.666 40.305 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 57.495 97 0.0 3.554 57.495 98 0.0 2.334 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.866 102 0.0 3.543 57.803 104 0.0 1.929 87.986 105 0.0 3.656 61.783 106 0.0 3.543 57.803 107 0.0 3.288 55.986 108 0.0 4.53 55.906 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.666 118 0.0 7.66 68.234 119 0.0 3.333 44.433				
71 0.0 3.441 61.264 72 0.0 4.972 66.837 73 0.0 3.06 109.582 74 0.0 3.563 67.016 75 0.0 3.23 113.845 76 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 80 0.0 3.639 92.296 81 0.0 3.639 92.296 81 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.452 96.365 86 0.0 3.452 96.365 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.066 73.158 91 0.0 4.095 77.257 90 0.0 3.066 73.158 91 0.0 4.095 77.257 90 0.0 3.666 40.305 95 0.0 3.452 36.77 95 0.0 3.564 61.806 96 0.0 3.554 61.806 97 0.0 3.554 61.806 98 0.0 3.543 77.893 99 0.0 3.554 61.806 90 0.0 5.634 57.495 91 0.0 4.262 36.77 95 0.0 3.564 61.806 96 0.0 5.634 57.495 97 0.0 3.564 61.806 98 0.0 2.394 44.99 99 0.0 6.709 99.766 100 0.0 3.543 76.803 101 0.0 3.521 76.988 102 0.0 3.554 61.806 100 0.0 3.543 57.803 101 0.0 3.553 69.689 100 0.0 3.563 67.803 101 0.0 3.563 77.833 104 0.0 1.929 87.968 105 0.0 3.565 64.56 100 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 115 0.0 3.408 122.4 116 0.0 3.425 48.66 118 0.0 7.66 68.234				
72 0.0 4.972 66.837 73 0.0 3.06 109.582 74 0.0 3.553 67.016 75 0.0 3.23 113.845 76 0.0 4.274 44.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.656 81 0.0 3.289 66.945 82 0.0 3.684 76.524 84 0.0 3.705 61.721 85 0.0 3.462 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 11.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.995 76.708				
75 0.0 3.06 109.582 74 0.0 3.553 67.016 75 0.0 3.23 113.845 76 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 80 0.0 2.719 37.656 81 0.0 3.289 66.945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.452 96.365 86 0.0 3.452 97.257 90 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.066 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.373 58.496 94 0.0 4.262 36.77.257 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.564 61.806 98 0.0 3.554 61.806 100 0.0 3.543 77.833 101 0.0 3.543 77.833 102 0.0 3.543 77.833 104 0.0 3.543 77.833 104 0.0 4.99 99.766 100 0.0 3.563 67.893 101 0.0 3.563 67.893 102 0.0 3.563 67.893 103 0.0 3.543 77.833 104 0.0 1.929 87.968 105 0.0 3.666 77.833 104 0.0 1.929 87.968 105 0.0 3.656 64.56 100 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.666 118 0.0 7.66 68.234				
74 0.0 3.553 67.016 75 0.0 3.23 113.845 76 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.656 81 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.684 76.524 86 0.0 3.689 62.484 87 0.0 4.499 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.684 76.524 91 0.0 4.995 76.708 91 0.0 4.995 76.708 92 0.0 2.331 58.496 93 0.0 3.664 60.305 94 0.0 4.262 35.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.554 57.893 101 0.0 3.933 55.86 102 0.0 3.521 77.837 104 0.0 1.929 87.968 105 0.0 3.521 76.988 106 0.0 3.521 76.988 107 0.0 3.523 55.865 108 0.0 3.521 76.988 109 0.0 3.523 57.893 104 0.0 1.929 87.968 105 0.0 3.521 76.988 106 0.0 3.521 76.988 107 0.0 3.521 76.988 108 0.0 4.53 55.006 109 0.0 3.566 70.932 114 0.0 3.328 55.986 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4				
75 0.0 3.23 113.845 76 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.639 92.296 80 0.0 2.719 37.656 81 0.0 3.829 6.945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.066 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 2.331 58.496 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 67.495 97 0.0 3.554 61.806 98 0.0 3.554 61.806 98 0.0 3.554 61.806 98 0.0 3.554 61.806 98 0.0 3.554 61.806 98 0.0 3.554 61.806 98 0.0 3.554 61.806 98 0.0 3.554 61.806 99 0.0 5.634 77.833 101 0.0 3.553 55.866 100 0.0 3.543 77.833 104 0.0 4.262 76.783 105 0.0 3.555 686 106 0.0 3.555 686 107 0.0 3.555 686 108 0.0 2.8 73.552 107 0.0 3.566 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 64.56 111 0.0 3.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 115 0.0 3.408 122.4 116 0.0 5.091 93.122				
76 0.0 4.274 48.152 77 0.0 5.047 44.722 78 0.0 3.633 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.656 81 0.0 3.289 66.945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.666 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 2.394 84.499 99 0.0 3.554 57.893 101 0.0 3.521 76.988 102 0.0 3.521 77.839 104 0.0 1.393 55.866 105 0.0 3.521 76.988 106 0.0 3.521 77.839 107 0.0 3.521 77.835 108 0.0 3.521 76.988 109 0.0 3.521 77.839 104 0.0 1.299 87.968 105 0.0 3.666 69.51 77.839 104 0.0 1.299 87.968 105 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 3.308 55.906 115 0.0 3.656 64.56 110 0.0 3.656 64.56 111 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234				
77 0.0 5.047 44.722 78 0.0 3.639 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.6556 81 0.0 3.829 66.945 82 0.0 3.684 76.524 83 0.0 4.551 90.554 84 0.0 3.705 61.721 85 0.0 3.465 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 77.257 90 0.0 3.306 40.306 91 0.0 4.095 77.257 92 0.0 2.331 58.496 93 0.0 3.762 77.257 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 77.803 101 0.0 3.933 55.86 102 0.0 3.543 77.803 104 0.0 1.929 87.968 105 0.0 3.565 69.689 106 0.0 2.8 73.552 107 0.0 3.288 55.986 108 0.0 2.8 73.552 107 0.0 3.288 55.986 108 0.0 4.53 55.006 110 0.0 3.3666 70.932 111 0.0 4.666 70.932 112 0.0 3.666 70.932 113 0.0 5.104 71.429 114 0.0 2.63 70.592 115 0.0 3.408 122.4 116 0.0 3.408 122.4 117 0.0 4.265 68.234 119 0.0 3.333 44.343				
78 0.0 3.639 92.296 79 0.0 3.161 62.891 80 0.0 2.719 37.656 81 0.0 3.289 66.945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.869 62.484 87 0.0 4.499 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.762 77.257 90 0.0 3.762 77.257 90 0.0 3.762 77.257 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.551 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.288 55.986 108 0.0 3.288 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 3.151 49.548 111 0.0 3.666 70.932 112 0.0 3.666 70.932 113 0.0 5.104 71.429 114 0.0 2.534 57.893 115 0.0 3.408 122.4 116 0.0 5.991 13.426				
80 0.0 2.719 37.656 81 0.0 3.289 66,945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.366 86 0.0 3.462 96.366 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 100 0.0 3.543 57.803 101 0.0 3.543 57.803				
81 0.0 3.289 66.945 82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.772 77.257 90 0.0 3.006 73.158 91 0.0 4.995 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.995 76.708 93 0.0 3.636 40.305 94 0.0 3.666 40.305 96 0.0 3.564 57.495 97 0.0 3.554 16.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756	79	0.0	3.161	62.891
82 0.0 3.684 76.524 83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 97.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.331 58.496 100 0.3 3.564 57.495 99 0.0 3.554 61.806 100 0.3 3.554 7.495 100 0.3 3.554 7.495 100 0.0 3.554 7.495 100 0.0 3.554 7.495 100 0.0 3.554 61.806 100 0.0 3.554 7.495 100 0.0 3.555 96.689 101 0.0 3.553 55.866 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 96.689 106 0.0 2.8 73.552 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.656 67.992 111 0.0 3.656 67.992 112 0.0 2.63 70.592 113 0.0 5.104 71.429 115 0.0 3.408 122.4 116 0.0 3.408 122.4 117 0.0 4.235 48.666 118 0.0 7.766 68.234	80	0.0	2.719	37.656
83 0.0 4.351 90.554 84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 81.607 90 0.0 3.066 77.257 90 0.0 3.066 77.158 91 0.0 4.095 76.708 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 3.666 40.305 97 0.0 3.554 57.495 98 0.0 2.394 84.499 99 0.0 6.709 9.756 100 0.0 3.543 57.803 101 0.0 3.521 76.988 102 0.0 3.521 76.988	81	0.0	3.289	66.945
84 0.0 3.705 61.721 85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 1.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 44.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.543 57.803 101 0.0 3.521 76.988				
85 0.0 3.452 96.365 86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 9.756 100 0.0 3.543 57.803 101 0.0 3.521 76.988 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 3.159 69.689				
86 0.0 3.869 62.484 87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.995 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968				
87 0.0 4.409 48.342 88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.551 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 96.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 115 0.0 3.408 122.4 116 0.0 3.425 120.9 117 0.0 3.425 120.9 118 0.0 5.104 71.429 119 0.0 3.408 122.4 116 0.0 3.425 48.666 118 0.0 3.425 48.666 119 0.1 3.425 48.666 110 0.0 3.425 48.666 111 0.0 3.425 48.666				
88 0.0 3.173 81.607 89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.533 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532				
89 0.0 3.762 77.257 90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.966 105 0.0 3.159 96.689 106 0.0 2.8 73.552 107 0.0 3.288 55.986 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
90 0.0 3.006 73.158 91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.521 76.988 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 73.532 107 0.0 3.288 73.532 107 0.0 3.566 64.56 110 0.0 4.53 55.006 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 3.408 122.4 117 0.0 4.235 48.66 118 0.0 7.766 68.234				
91 0.0 4.095 76.708 92 0.0 2.331 58.496 93 0.0 3.437 79.735 94 0.0 4.262 35.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.552 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.566 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.425 48.66 116 0.0 3.425 48.66 117 0.0 4.235 48.66 118 0.0 7.766 68.234				
92 0.0 2.331 58.496 93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 3.428 52.99 115 0.0 3.408 122.4 116 0.0 3.428 122.4 116 0.0 3.428 48.66 118 0.0 7.766 68.234 119 0.0 7.766 68.234				
93 0.0 3.437 79.736 94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 3.408 122.4 117 0.0 4.235 48.66 118 0.0 7.766 68.234				
94 0.0 4.262 36.77 95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 44.499 99 0.0 6.709 99.766 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 96.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 3.425 48.666 118 0.0 7.766 68.234				
95 0.0 3.666 40.305 96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.521 76.988 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.566 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 3.408 122.4 117 0.0 4.235 48.66 118 0.0 7.766 68.234				
96 0.0 5.634 57.495 97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.833 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.552 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 117 0.0 4.235 48.66 118 0.0 7.766 68.234				
97 0.0 3.554 61.806 98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 110 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 7.766 68.234				
98 0.0 2.394 84.499 99 0.0 6.709 99.756 100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 7.766 68.234				
100 0.0 3.543 57.803 101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.329 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433		0.0	2.394	84.499
101 0.0 3.933 55.86 102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 96.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.656 64.56 110 0.0 3.656 670.932 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234	99	0.0	6.709	99.756
102 0.0 3.521 76.988 103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.55 110 0.0 3.151 49.548 111 0.0 2.63 70.592 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433	100	0.0	3.543	
103 0.0 6.051 77.839 104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 7.766 68.234	101			
104 0.0 1.929 87.968 105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 3.408 122.4 116 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.3334 49.433				
105 0.0 3.159 69.689 106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
106 0.0 2.8 73.532 107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.991 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
107 0.0 3.288 55.986 108 0.0 4.53 55.006 109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.991 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
109 0.0 3.656 64.56 110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.991 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
110 0.0 3.151 49.548 111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
111 0.0 4.666 70.932 112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
112 0.0 2.63 70.592 113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
113 0.0 5.104 71.429 114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
114 0.0 2.534 52.09 115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
115 0.0 3.408 122.4 116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
116 0.0 5.091 93.122 117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
117 0.0 4.235 48.66 118 0.0 7.766 68.234 119 0.0 3.334 49.433				
118 0.0 7.766 68.234 119 0.0 3.334 49.433				
119 0.0 3.334 49.433				
120 0.0 4.587 59.03	119	0.0		49.433
	120	0.0	4.587	59.03

Table 12: Individual parameters of the (NaivePooled) fit .

id	time	CL	Vc
1	0.0	NaN	NaN
2	0.0	NaN	NaN
3	0.0	NaN	NaN
4 5	0.0	NaN NaN	NaN NaN
6	0.0	NaN	NaN
7	0.0	NaN	NaN
8	0.0	NaN	NaN
9	0.0	NaN	NaN
10	0.0	NaN	NaN
11	0.0	NaN	NaN
12	0.0	NaN	NaN
13	0.0	NaN	NaN
14	0.0	NaN	NaN
15 16	0.0	NaN NaN	NaN NaN
17	0.0	NaN	NaN
18	0.0	NaN	NaN
19	0.0	NaN	NaN
20	0.0	NaN	NaN
21	0.0	NaN	NaN
22	0.0	NaN	NaN
23	0.0	NaN	NaN
24	0.0	NaN	NaN
25	0.0	NaN	NaN
26	0.0	NaN	NaN
27	0.0	NaN	NaN
28	0.0	NaN	NaN NaN
29 30	0.0	NaN NaN	NaN
31	0.0	NaN	NaN
32	0.0	NaN	NaN
33	0.0	NaN	NaN
34	0.0	NaN	NaN
35	0.0	NaN	NaN
36	0.0	NaN	NaN
37	0.0	NaN	NaN
38	0.0	NaN	NaN
39	0.0	NaN	NaN
40 41	0.0	NaN NaN	NaN NaN
42	0.0	NaN	NaN
43	0.0	NaN	NaN
44	0.0	NaN	NaN
45	0.0	NaN	NaN
46	0.0	NaN	NaN
47	0.0	NaN	NaN
48	0.0	NaN	NaN
49	0.0	NaN	NaN
50	0.0	NaN	NaN
51	0.0	NaN	NaN
52 53	0.0	NaN NaN	NaN NaN
53 54	0.0	NaN	NaN
55	0.0	NaN	NaN
56	0.0	NaN	NaN
57	0.0	NaN	NaN
58	0.0	NaN	NaN
59	0.0	NaN	NaN
60	0.0	NaN	NaN
61	0.0	NaN	NaN
62	0.0	NaN	NaN
63	0.0	NaN	NaN
64	0.0	NaN	NaN
65 66	0.0	NaN NaN	NaN NaN
67	0.0	NaN	NaN
- 07	0.0	nan	nan

id	time	CL	Vc
68	0.0	NaN	NaN
69	0.0	NaN	NaN
70	0.0	NaN	NaN
71 72	0.0	NaN NaN	NaN NaN
73	0.0	NaN	NaN
74	0.0	NaN	NaN
75	0.0	NaN	NaN
76	0.0	NaN	NaN
77	0.0	NaN	NaN
78	0.0	NaN	NaN
79	0.0	NaN	NaN
80	0.0	NaN	NaN
81	0.0	NaN	NaN
82	0.0	NaN	NaN
83	0.0	NaN	NaN
84	0.0	NaN	NaN
85	0.0	NaN	NaN
86	0.0	NaN	NaN
87	0.0	NaN	NaN
88	0.0	NaN	NaN
89 90	0.0	NaN NaN	NaN NaN
90	0.0	NaN	NaN
92	0.0	NaN	NaN
93	0.0	NaN	NaN
94	0.0	NaN	NaN
95	0.0	NaN	NaN
96	0.0	NaN	NaN
97	0.0	NaN	NaN
98	0.0	NaN	NaN
99	0.0	NaN	NaN
100	0.0	NaN	NaN
101	0.0	NaN	NaN
102	0.0	NaN	NaN
103	0.0	NaN	NaN
104	0.0	NaN	NaN
105	0.0	NaN	NaN
106	0.0	NaN	NaN
107	0.0	NaN	NaN
108	0.0	NaN	NaN
109	0.0	NaN NaN	NaN NaN
110 111	0.0	NaN	NaN
112	0.0	NaN	NaN
113	0.0	NaN	NaN
114	0.0	NaN	NaN
115	0.0	NaN	NaN
116	0.0	NaN	NaN
117	0.0	NaN	NaN
118	0.0	NaN	NaN
119	0.0	NaN	NaN
120	0.0	NaN	NaN

C Optimization Details

C.1 FOCE

C.1.1 Optim Result

```
* Status: success
* Candidate solution
   Final objective value: 1.155691e+04
* Found with
   Algorithm:
* Convergence measures
   |x - x'|
|x - x'|/|x'|
                             = 9.55e-14 ≰ 0.0e+00
   |x - x'|/|x'| = 1.95e-14 \( \frac{1}{2} \) 0.0e+00 
 |f(x) - f(x')| = 0.00e+00 \( \le 0.0e+00 \)
    |f(x)| - f(x')|/|f(x')| = 0.00e+00 \le 0.0e+00
                             = 3.04e-03 ≰ 1.0e-03
    |g(x)|
* Work counters
   Seconds run:
                    1 (vs limit Inf)
                    86
   Iterations:
   f(x) calls:
                   157⊽
   f(x) calls: 87
```

C.1.2 Optim Trace

```
Function value
                       Gradient norm
      1.440263e+06
                        2.860813e+06
* time: 0.02217698097229004
                         3.861021e+05
   1 2.039860e+05
* time: 0.45118212699890137
        1.522624e+05
                         2.822317e+05
* time: 0.45679807662963867
        7.174846e+04
                         1.200851e+05
* time: 0.4623119831085205
   4
        4.382050e+04
                         6.345183e+04
* time: 0.468796968460083
        2.786632e+04
                         3.073419e+04
   5
* time: 0.4746730327606201
   6
        2.048095e+04
                         1.526341e+04
* time: 0.4813551902770996
   7 1.685589e+04
                         7.378315e+03
* time: 0.48793697357177734
   8
        1.518391e+04
                         3.484854e+03
* time: 0.49519801139831543
   9 1.444885e+04
                         2.210778e+03
* time: 0.5025601387023926
  10 1.416149e+04
                         2.114850e+03
* time: 0.5105211734771729
  11
        1.407003e+04
                         2.033826e+03
* time: 0.5183010101318359
  12
        1.404852e+04
                         1.981085e+03
* time: 0.5258581638336182
```

```
1.404286e+04
                           1.954007e+03
  13
* time: 0.5339481830596924
                           1.928663e+03
  14
          1.403687e+04
* time: 0.5411410331726074
          1.402196e+04
                           1.879937e+03
  15
* time: 0.7002770900726318
  16
          1.398750e+04
                           1.791595e+03
* time: 0.7057750225067139
                           1.630741e+03
  17
          1.390880e+04
 time: 0.7122621536254883
  18
          1.374592e+04
                           1.375565e+03
* time: 0.7180931568145752
  19
          1.341653e+04
                           1.021601e+03
* time: 0.7246110439300537
  20
          1.272257e+04
                           1.126662e+03
* time: 0.7305810451507568
         1.170935e+04
                           3.210616e+02
  21
 time: 0.7363600730895996
  22
          1.167980e+04
                           4.835757e+02
* time: 0.7412850856781006
  23
          1.165445e+04
                           2.389673e+02
* time: 0.7457740306854248
  24
          1.164878e+04
                           2.223476e+02
* time: 0.7502360343933105
                           1.718785e+02
  25
          1.164000e+04
* time: 0.7549571990966797
          1.163961e+04
                           1.610630e+02
  26
* time: 0.7592079639434814
  27
         1.163958e+04
                           1.584974e+02
* time: 0.7637021541595459
  28
          1.163956e+04
                           1.575221e+02
* time: 0.7681050300598145
                           1.544007e+02
  29
         1.163949e+04
* time: 0.7732231616973877
  30
         1.163933e+04
                           1.500873e+02
* time: 0.78000807762146
          1.163888e+04
                           1.420322e+02
   31
* time: 0.7856299877166748
  32
          1.163778e+04
                           1.284338e+02
* time: 0.7919230461120605
                           1.047367e+02
  33
         1.163511e+04
 time: 0.7975480556488037
  34
          1.162920e+04
                           6.627863e+01
* time: 0.803779125213623
  35
          1.161783e+04
                           6.316742e+01
* time: 0.809326171875
  36
          1.160382e+04
                           5.627766e+01
* time: 0.815852165222168
  37
          1.159960e+04
                           3.923479e+01
 time: 0.8216750621795654
  38
          1.159868e+04
                           3.941155e+01
* time: 0.8274750709533691
  39
          1.159865e+04
                           3.945901e+01
* time: 0.8327670097351074
  40
          1.159865e+04
                           3.946004e+01
* time: 0.8374781608581543
         1.159865e+04
                           3.946293e+01
  41
* time: 0.8430681228637695
  42
         1.159863e+04
                           3.946256e+01
* time: 0.847865104675293
```

```
43
          1.159858e+04
                           3.945273e+01
* time: 0.8533861637115479
                           3.941479e+01
  44
          1.159847e+04
* time: 0.8589251041412354
   45
          1.159816e+04
                           4.362695e+01
* time: 0.8641681671142578
   46
          1.159738e+04
                           7.253823e+01
* time: 0.8694460391998291
                           1.180528e+02
  47
         1.159536e+04
* time: 0.8748271465301514
  48
          1.159049e+04
                           1.836153e+02
* time: 0.8808059692382812
   49
          1.158076e+04
                           2.513403e+02
* time: 0.8864200115203857
  50
          1.156865e+04
                           2.422771e+02
* time: 0.8920671939849854
         1.155954e+04
                           1.197807e+02
  51
 time: 0.8988111019134521
  52
          1.155704e+04
                           6.159679e+00
* time: 1.1027441024780273
  53
          1.155703e+04
                           3.664210e+00
* time: 1.1080200672149658
  54
          1.155703e+04
                           2.358819e+00
* time: 1.1116909980773926
                           2.367027e+00
  55
          1.155703e+04
* time: 1.1153950691223145
          1.155703e+04
                           2.366877e+00
  56
* time: 1.1180920600891113
  57
         1.155703e+04
                           2.365259e+00
* time: 1.1214931011199951
  58
          1.155703e+04
                           2.362616e+00
* time: 1.1245231628417969
                           2.356429e+00
  59
         1.155703e+04
* time: 1.1280310153961182
         1.155703e+04
                           2.342917e+00
  60
* time: 1.1317729949951172
          1.155703e+04
                           2.310870e+00
   61
* time: 1.1349091529846191
  62
          1.155702e+04
                           3.682413e+00
* time: 1.1388120651245117
                           5.760253e+00
  63
         1.155701e+04
 time: 1.1434061527252197
  64
          1.155700e+04
                           8.227958e+00
* time: 1.147500991821289
  65
          1.155697e+04
                           9.637678e+00
* time: 1.1515450477600098
  66
          1.155693e+04
                           7.497309e+00
 time: 1.1553690433502197
                           2.823799e+00
  67
          1.155691e+04
 time: 1.1597890853881836
         1.155691e+04
                           3.421179e-01
  68
* time: 1.163525104522705
  69
          1.155691e+04
                           1.700411e-02
* time: 1.1673200130462646
  70
          1.155691e+04
                           3.383204e-03
* time: 1.1710419654846191
  71
         1.155691e+04
                           3.056335e-03
* time: 1.1750760078430176
  72
         1.155691e+04
                           3.053250e-03
* time: 1.1803021430969238
```

```
73
         1.155691e+04
                          3.050196e-03
* time: 1.185469150543213
  74
         1.155691e+04
                          3.047146e-03
* time: 1.1909561157226562
        1.155691e+04
                          3.044099e-03
* time: 1.1963551044464111
                          3.043794e-03
  76
        1.155691e+04
* time: 1.2018179893493652
                          3.043490e-03
  77
        1.155691e+04
* time: 1.207158088684082
  78
         1.155691e+04
                          3.043186e-03
* time: 1.2129809856414795
  79
        1.155691e+04
                          3.042881e-03
* time: 1.2191131114959717
                          3.042577e-03
  80
         1.155691e+04
* time: 1.2258431911468506
  81
        1.155691e+04
                          3.042547e-03
* time: 1.2321240901947021
  82
        1.155691e+04
                          3.042516e-03
* time: 1.238455057144165
  83
         1.155691e+04
                          3.042486e-03
* time: 1.2453961372375488
  84
        1.155691e+04
                          3.042455e-03
* time: 1.251573085784912
                          3.042455e-03
  85
         1.155691e+04
* time: 1.259984016418457
  86
         1.155691e+04
                          3.042455e-03
* time: 1.2684080600738525
```

C.2 FOCE_constantcoef

C.2.1 Optim Result

```
* Status: success
* Candidate solution
   Final objective value:
                                  1.170182e+04
* Found with
   Algorithm:
                    BFGS
* Convergence measures
                             |x - x'|
|x - x'|/|x'|
    |f(x) - f(x')| = 0.00e+00 \le 0.0e+00

|f(x) - f(x')|/|f(x')| = 0.00e+00 \le 0.0e+00

1.00 \le 0.00e+00
    [g(x)|
                             = 1.10e-03 ≰ 1.0e-03
* Work counters
                    1 (vs limit Inf)
   Seconds run:
   Iterations:
                    61
   f(x) calls:
                    102⊽
   f(x) calls:
                   62
```

C.2.2 Optim Trace

```
Iter
         Function value
                          Gradient norm
    0
          8.322623e+05
                            1.650196e+06
 * time: 3.1948089599609375e-5
                            2.220853e+05
          1.195756e+05
    1
 * time: 0.019325971603393555
    2
          8.992679e+04
                            1.623122e+05
 * time: 0.02378702163696289
    3
           4.385642e+04
                            6.887184e+04
 * time: 0.02853107452392578
                            3.623934e+04
    4
          2.801958e+04
 * time: 0.1127159595489502
                            1.738165e+04
    5
          1.912161e+04
 * time: 0.1163170337677002
                            8.464352e+03
     6
          1.515036e+04
 * time: 0.12021112442016602
    7
          1.334153e+04
                            3.924439e+03
 * time: 0.12482690811157227
                            1.700067e+03
    8
          1.262730e+04
 * time: 0.12999606132507324
    9
          1,239776e+04
                            6.316634e+02
 * time: 0.13562893867492676
                            4.948112e+02
   10
          1.234900e+04
 * time: 0.14140605926513672
   11
          1.234379e+04
                            4.928575e+02
 * time: 0.14685702323913574
   12
          1.234330e+04
                            4.922016e+02
 * time: 0.15207695960998535
          1,234262e+04
   13
                            4.912375e+02
 * time: 0.1584489345550537
   14
          1.234060e+04
                            4.883664e+02
 * time: 0.16367292404174805
   15
          1.233573e+04
                            4.814973e+02
 * time: 0.16915607452392578
                            4.644093e+02
   16
          1.232343e+04
 * time: 0.17494797706604004
                            4.359384e+02
          1,229531e+04
   17
 * time: 0.18097710609436035
   18
          1.223801e+04
                            5.856922e+02
 * time: 0.18703913688659668
   19
          1.213967e+04
                            6.696139e+02
 * time: 0.19306397438049316
   20
          1.199921e+04
                            5.908196e+02
 * time: 0.19918203353881836
                            2.433847e+02
          1.187808e+04
   21
 * time: 0.20529699325561523
                            5.937737e+01
    22
          1.185756e+04
 * time: 0.21149396896362305
   23
          1.185671e+04
                            5.849313e+01
 * time: 0.21724700927734375
   24
          1.185558e+04
                            5.611101e+01
 * time: 0.22318601608276367
                            5.579496e+01
   25
          1.185556e+04
 * time: 0.22873401641845703
   26
          1.185555e+04
                            5.571762e+01
 * time: 0.23375391960144043
   27
          1.185553e+04
                            5.550137e+01
 * time: 0.23909997940063477
   28
                            5.518203e+01
          1.185548e+04
  time: 0.24466204643249512
```

```
29
          1.185536e+04
                           5.455629e+01
* time: 0.25037193298339844
                           5.339486e+01
  30
          1.185504e+04
* time: 0.256213903427124
          1.185423e+04
   31
                           5.108084e+01
* time: 0.26287007331848145
  32
          1.185225e+04
                           5.277004e+01
* time: 0.26942896842956543
                           5.496425e+01
  33
          1.184776e+04
 time: 0.27620911598205566
  34
          1.183882e+04
                           5.576380e+01
* time: 0.28278493881225586
  35
          1.182338e+04
                           5.352163e+01
* time: 0.28908395767211914
  36
          1.179648e+04
                           4.674698e+01
 time: 0.29551196098327637
  37
          1.174145e+04
                           3.529640e+01
 time: 0.3006000518798828
  38
          1.173949e+04
                           3.630939e+01
* time: 0.3085029125213623
  39
          1.173910e+04
                           3.812972e+01
* time: 0.3143739700317383
   40
          1.173909e+04
                           3.795835e+01
* time: 0.318803071975708
                           3.792305e+01
  41
          1.173909e+04
* time: 0.32317590713500977
          1.173906e+04
                           3.766116e+01
  42
* time: 0.3275439739227295
   43
          1.173901e+04
                           3.730640e+01
* time: 0.33187198638916016
   44
          1.173886e+04
                           3.806980e+01
* time: 0.3363780975341797
                           4.302635e+01
  45
          1.173849e+04
 time: 0.34096407890319824
  46
          1.173755e+04
                           5.020125e+01
* time: 0.3488919734954834
   47
          1.173542e+04
                           5.960206e+01
* time: 0.4600651264190674
   48
          1.173103e+04
                           7.073509e+01
* time: 0.4638540744781494
                           8.115411e+01
  49
         1.172283e+04
 time: 0.4683260917663574
  50
          1.170779e+04
                           6.315828e+01
* time: 0.4720900058746338
  51
          1.170530e+04
                           6.751373e+01
* time: 0.4760739803314209
  52
          1.170210e+04
                           2.133966e+01
* time: 0.48151302337646484
  53
         1.170183e+04
                           2.875487e+00
 time: 0.4859800338745117
  54
                           2.401278e-01
          1.170182e+04
* time: 0.49018096923828125
  55
          1.170182e+04
                           7.006706e-02
* time: 0.49428701400756836
  56
          1.170182e+04
                           7.006706e-02
* time: 0.5060930252075195
  57
         1.170182e+04
                           1.101219e-02
* time: 0.509727954864502
  58
         1.170182e+04
                           1.104048e-03
* time: 0.5130159854888916
```

```
59 1.170182e+04 1.104048e-03

* time: 0.5209720134735107
60 1.170182e+04 1.104048e-03

* time: 0.5296599864959717
61 1.170182e+04 1.104048e-03

* time: 0.5401270389556885
```

C.3 LaplaceI

C.3.1 Optim Result

```
* Status: success
* Candidate solution
   Final objective value: 1.155697e+04
* Found with
   Algorithm:
* Convergence measures
    |x - x'|
|x - x'|/|x'|
                                   = 6.85e-05 ≰ 0.0e+00
    |x - x'|/|x'| = 1.40e-05 \( \psi \) 0.0e+00

|f(x) - f(x')| = 2.93e-08 \( \psi \) 0.0e+00

|f(x) - f(x')|/|f(x')| = 2.54e-12 \( \psi \) 0.0e+00
    |g(x)|
                                   = 7.17e-04 \le 1.0e-03
                      1 (vs limit Inf)
72
75<sup>0</sup>
* Work counters
    Seconds run:
    Iterations:
    f(x) calls:
    f(x) calls:
                       73
```

C.3.2 Optim Trace

```
Iter
       Function value Gradient norm
       -----
  0 8.322622e+05
                       1.650196e+06
 * time: 2.4080276489257812e-5
        1.195753e+05
                        2.220854e+05
   1
 * time: 0.028352022171020508
        8.992643e+04
                        1.623123e+05
 * time: 0.03276801109313965
   3 4.385559e+04
                        6.887194e+04
 * time: 0.03775596618652344
                        3.623953e+04
   4
        2.801825e+04
 * time: 0.04246807098388672
   5 1.911952e+04
                        1.738190e+04
 * time: 0.04729294776916504
   6 1.514745e+04
                         8.464374e+03
 * time: 0.05209994316101074
   7
        1.333797e+04
                         3.923856e+03
 * time: 0.05697298049926758
   8 1.262347e+04
                        1.698887e+03
 * time: 0.06189608573913574
   9
        1.239391e+04
                        6.302124e+02
 * time: 0.06681990623474121
```

```
10
         1.234514e+04
                           4.958194e+02
* time: 0.0716550350189209
                           4.938755e+02
         1.233989e+04
  11
* time: 0.0763390064239502
         1.233935e+04
                           4.932087e+02
  12
* time: 0.08107709884643555
  13
         1.233855e+04
                           4.921665e+02
* time: 0.085906982421875
                           4.891784e+02
  14
         1.233622e+04
* time: 0.09290909767150879
         1.233057e+04
                           4.819844e+02
  15
* time: 0.10189390182495117
                           4.642274e+02
  16
         1.231638e+04
* time: 0.10982894897460938
  17
         1.228390e+04
                           4.684310e+02
* time: 0.12118697166442871
                           6.293579e+02
  18
         1.221780e+04
* time: 0.13074707984924316
  19
         1.210387e+04
                           7.245375e+02
* time: 0.14236688613891602
  20
         1.193758e+04
                           6.530569e+02
* time: 0.15416908264160156
  21
         1.178610e+04
                           2.785974e+02
* time: 0.16744089126586914
                           7.163647e+01
  22
         1.175975e+04
* time: 0.18593406677246094
  23
         1.175877e+04
                           6.856040e+01
* time: 0.20411396026611328
  24
         1.175750e+04
                           6.032767e+01
* time: 0.21625208854675293
  25
         1.175748e+04
                           5.938602e+01
* time: 0.22914695739746094
         1.175747e+04
                           5.910768e+01
  26
* time: 0.23742008209228516
  27
         1.175745e+04
                           5.834130e+01
* time: 0.24661493301391602
   28
         1.175739e+04
                           5.727396e+01
* time: 0.2570159435272217
  29
         1.175722e+04
                           5.535921e+01
* time: 0.2658529281616211
                           5.246301e+01
  30
         1.175681e+04
 time: 0.2742741107940674
  31
         1.175576e+04
                           5.372471e+01
* time: 0.2825748920440674
  32
         1.175319e+04
                           5.515162e+01
* time: 0.2925279140472412
  33
         1.174740e+04
                           5.625347e+01
* time: 0.3021540641784668
  34
         1.173607e+04
                           5.623956e+01
 time: 0.31627798080444336
         1.171667e+04
                           5.473135e+01
  35
* time: 0.3307631015777588
  36
         1.168746e+04
                           1.077840e+02
* time: 0.34690308570861816
  37
         1.168297e+04
                           1.014565e+02
* time: 0.3648650646209717
  38
         1.168043e+04
                           6.195403e+01
* time: 0.37470293045043945
                           6.849928e+01
  39
         1.168004e+04
* time: 0.6611859798431396
```

```
40
          1.168003e+04
                           7.017213e+01
* time: 0.6685049533843994
                           7.071076e+01
          1.168002e+04
  41
* time: 0.6748518943786621
   42
          1.167994e+04
                           7.344530e+01
* time: 0.6798598766326904
   43
          1.167978e+04
                           7.677392e+01
* time: 0.6851561069488525
                           8.315217e+01
  44
          1.167930e+04
 time: 0.6904160976409912
                           9.366434e+01
  45
          1.167807e+04
* time: 0.6958301067352295
   46
          1.167466e+04
                           1.134289e+02
* time: 0.7013299465179443
   47
          1.166482e+04
                           1.544974e+02
* time: 0.7064080238342285
  48
          1.162833e+04
                           2.611196e+02
 time: 0.711738109588623
   49
          1.159348e+04
                           2.568444e+02
* time: 0.7208058834075928
   50
          1.158382e+04
                           2.086649e+02
* time: 0.729809045791626
  51
          1.157159e+04
                           6.649206e+01
* time: 0.7349240779876709
                           2.562272e+01
  52
          1.156399e+04
* time: 0.7400228977203369
                           3.949067e+01
  53
          1.156233e+04
* time: 0.7450690269470215
   54
         1.156145e+04
                           1.374917e+01
* time: 0.750269889831543
  55
          1.156144e+04
                           1.372370e+01
* time: 0.7549278736114502
          1.156144e+04
                           1.371717e+01
  56
 time: 0.759239912033081
  57
          1.156144e+04
                           1.371650e+01
* time: 0.7639560699462891
   58
          1.156144e+04
                           1.371458e+01
* time: 0.7690339088439941
  59
          1.156144e+04
                           1.370965e+01
* time: 0.7735230922698975
                           1.369433e+01
  60
          1.156143e+04
 time: 0.7779409885406494
          1.156142e+04
                           1.365213e+01
  61
* time: 0.7826058864593506
  62
          1.156138e+04
                           1.353658e+01
* time: 0.7876889705657959
  63
          1.156129e+04
                           1.323233e+01
 time: 0.7934210300445557
  64
          1.156107e+04
                           1.557782e+01
 time: 0.7983911037445068
          1.156054e+04
                           2.409254e+01
  65
* time: 0.8031580448150635
          1.155949e+04
                           3.223130e+01
  66
* time: 0.8086950778961182
  67
          1.155794e+04
                           2.853719e+01
* time: 0.8136210441589355
  68
          1.155707e+04
                           9.957705e+00
* time: 0.8183670043945312
  69
         1.155697e+04
                           1.559240e+00
* time: 0.8230900764465332
```

```
70 1.155697e+04 1.347099e-01
* time: 0.8283169269561768
71 1.155697e+04 1.304140e-02
* time: 0.8331859111785889
72 1.155697e+04 7.174857e-04
* time: 0.8376889228820801
```

C.4 NaivePooled

C.4.1 Optim Result

```
* Status: success
* Candidate solution
   Final objective value: 1.226952e+04
* Found with
   Algorithm:
* Convergence measures
   |x - x'|
|x - x'|/|x'|
                               = 2.48e-07 ≰ 0.0e+00
                              = 4.59e-08 ≰ 0.0e+00
   |f(x) - f(x')| = 1.38e-10 \(\frac{1}{2}\) 0.0e+00 

|f(x) - f(x')|/|f(x')| = 1.13e-14 \(\frac{1}{2}\) 0.0e+00
   |g(x)|
                               = 1.49e-05 \le 1.0e-03
                   0 (vs limit Inf)
75
700
* Work counters
   Seconds run:
   Iterations:
   f(x) calls:
   f(x) calls:
                    76
```

C.4.2 Optim Trace

```
Iter
        Function value Gradient norm
       -----
  0 9.961764e+08
                       1.991713e+09
 * time: 2.6941299438476562e-5
        1.378529e+07
                         3.494611e+07
   1
 * time: 0.015115022659301758
        1.277483e+07
                         3.258325e+07
 * time: 0.01569390296936035
   3
        4.472772e+06
                         1.233839e+07
 * time: 0.016252994537353516
                         6.697880e+06
   4
         2.358302e+06
 * time: 0.016965866088867188
   5 1.105048e+06
                        3.063852e+06
 * time: 0.0175478458404541
   6
        5.885524e+05
                         1.400877e+06
 * time: 0.01810002326965332
   7
         3.503354e+05
                         6.854246e+05
 * time: 0.018830060958862305
                         4.800708e+05
   8 2.478240e+05
 * time: 0.019569873809814453
   9
         2.033017e+05
                         3.907169e+05
 * time: 0.020355939865112305
```

```
10
         1.838453e+05
                           3.515196e+05
* time: 0.021107912063598633
                           3.327614e+05
         1.746021e+05
  11
* time: 0.021770954132080078
         1.689263e+05
  12
                           3.211118e+05
* time: 0.02235698699951172
  13
         1.609999e+05
                           3.047431e+05
* time: 0.02303791046142578
                           2.801265e+05
  14
         1.489758e+05
* time: 0.023640871047973633
         1.244462e+05
                           2.302312e+05
  15
* time: 0.024229049682617188
                           1.612053e+05
  16
          9.046800e+04
* time: 0.024953842163085938
  17
         1.655388e+04
                           1.738655e+03
* time: 0.025716066360473633
  18
         1.643777e+04
                           1.730026e+03
* time: 0.02649688720703125
  19
         1.448515e+04
                           7.937209e+02
* time: 0.027651071548461914
  20
         1.438151e+04
                           3.991098e+02
* time: 0.029047012329101562
  21
         1.435622e+04
                           1.942627e+02
* time: 0.0300290584564209
                           1.908734e+01
  22
         1.435259e+04
* time: 0.03106403350830078
  23
         1.435253e+04
                           2.367226e+01
* time: 0.03203392028808594
  24
         1.435253e+04
                           2.460034e+01
* time: 0.03291606903076172
  25
         1.435253e+04
                           2.459701e+01
* time: 0.03384804725646973
                           2.404162e+01
  26
         1.435253e+04
* time: 0.03480100631713867
  27
         1.435253e+04
                           2.348296e+01
* time: 0.035513877868652344
                           2.237019e+01
  28
         1.435253e+04
* time: 0.03636598587036133
                           2.070132e+01
  29
         1.435253e+04
* time: 0.037140846252441406
                           1.935679e+01
  30
         1.435252e+04
 time: 0.03789186477661133
  31
         1.435251e+04
                           1.930187e+01
* time: 0.038533926010131836
  32
         1.435248e+04
                           1.923596e+01
* time: 0.039381980895996094
  33
         1.435240e+04
                           1.918964e+01
* time: 0.04012584686279297
                           2.443504e+01
  34
         1.435219e+04
 time: 0.040825843811035156
         1.435161e+04
                           5.711719e+01
  35
* time: 0.04152107238769531
  36
         1.434986e+04
                           1.201920e+02
* time: 0.04233503341674805
  37
         1.434197e+04
                           3.014731e+02
* time: 0.043211936950683594
  38
         1.432829e+04
                           4.373551e+02
* time: 0.04392504692077637
  39
        1.428125e+04
                           7.503443e+02
* time: 0.04475688934326172
```

```
40
         1.423860e+04
                           1.531092e+03
* time: 0.045326948165893555
                           7.824874e+02
  41
         1.421149e+04
* time: 0.0461578369140625
   42
         1.411899e+04
                           8.680140e+02
* time: 0.04690885543823242
  43
         1.395626e+04
                           1.119431e+03
* time: 0.04769086837768555
                           1.543949e+03
  44
         1.370291e+04
* time: 0.048362016677856445
                           1.498815e+03
  45
         1.363570e+04
* time: 0.04912304878234863
   46
         1.342463e+04
                           1.540102e+03
* time: 0.04975104331970215
  47
         1.307036e+04
                           1.715216e+03
* time: 0.05035090446472168
                           9.703131e+02
  48
         1.271112e+04
 time: 0.0510869026184082
  49
         1.259605e+04
                           8.144024e+02
* time: 0.05166792869567871
  50
         1.255870e+04
                           7.006029e+02
* time: 0.05224490165710449
  51
         1.253268e+04
                           6.669792e+02
* time: 0.05283999443054199
                           7.106772e+02
  52
         1.253101e+04
* time: 0.05342984199523926
         1.253097e+04
                           7.050834e+02
  53
* time: 0.05404996871948242
  54
         1.253097e+04
                           7.058388e+02
* time: 0.05467486381530762
  55
         1.253097e+04
                           7.059500e+02
* time: 0.055574893951416016
                           7.068261e+02
  56
         1.253097e+04
* time: 0.05621600151062012
  57
         1.253096e+04
                           7.078085e+02
* time: 0.0568690299987793
  58
         1.253094e+04
                           7.096506e+02
* time: 0.057420969009399414
  59
         1.253088e+04
                           7.124353e+02
* time: 0.05807185173034668
                           7.169518e+02
  60
         1.253074e+04
 time: 0.058645009994506836
         1.253037e+04
                           7.239592e+02
  61
* time: 0.05919289588928223
  62
         1.252939e+04
                           7.346676e+02
* time: 0.059803009033203125
  63
         1.252683e+04
                           7.500575e+02
* time: 0.06035590171813965
  64
         1.252020e+04
                           7,691388e+02
 time: 0.06097888946533203
         1.250349e+04
                           7.810170e+02
  65
* time: 0.06152796745300293
                           1.024963e+03
  66
         1.246515e+04
* time: 0.06205105781555176
  67
         1.239592e+04
                           1.372448e+03
* time: 0.06277799606323242
  68
         1.231269e+04
                           1.039265e+03
* time: 0.06329488754272461
                           1.749531e+02
  69
         1.227158e+04
* time: 0.06407284736633301
```

70 1.226957e+04 1.393728e+01 * time: 0.06466889381408691 71 1.226952e+04 5.284865e+00 * time: 0.06529593467712402 72 1.226952e+04 5.864149e-01 * time: 0.06595706939697266 4.783727e-02 73 1.226952e+04 * time: 0.06655001640319824 74 1.226952e+04 1.297811e-03 * time: 0.06712794303894043 75 1.226952e+04 1.488171e-05 * time: 0.06779599189758301