数制和码制

1. 负数补码=反码+1, 负数反码: 符号位不变, 其余取反

2. 1000是-8的原码/补码而不是-0的原码/补码

3. 同符号的数相加,绝对值之和不能超过有效数字位能表示的最大值之和

4. 格雷码: 不产生噪声 5. 余三码: 原码+3

N.B. 1. 正数原码、反码补码一致,但需要**在前加0**

2. 补码计算出来还是补码,如果是负数需要转化成原码

逻辑代数基础

2. 图形符号

- 3. 常用公式
- A+AB=A
- A+A'B=A+B
- AB+A'C+BC=AB+A'C

4. 最大项和最小项

1 ===	2		F 1 11 1	
70	2. 5. 5	一些量	最小 面切り	ᆮ므포
2		一又里	最小项的组	册与双

最小项		使最小项为1的变量取值								
		A B C		对应的十进制数	编号					
À'	B'	C'	9	0, - 1		D	0		0	m_0
A'	B'	\boldsymbol{c}		0		0	-1-		I format a f	m_1
A'	\boldsymbol{B}	C'		0		L	0		1 2	m_2
A'	\boldsymbol{B}	\boldsymbol{C}		0		l .	2 [†] 1	1. 1.	1 1 1 3 O	m_3
\boldsymbol{A}	B'	C'		1	12	ow the or the	-c . 2 . (0)	0.85	4	m ₄
A	B'	<i>C</i>	海 7g 7	1		O the track	1	12.54	出售均5 十四建	, m ₅
A	В	C'	25 (E.)				0		6	m ₆
A	В	C							t op same per all _{es} a so. Actually by To an or sai	m_{τ}

表 2.5.6 三变量最大项的编号表

e La	使最大	大项为0的变量	取值	1, 3, 8, 6)	编号
最大项	A	В	<i>C</i>	对应的十进制数	编号 图画型 , 三
A+B+C			0	·想公成和公本基础	<i>M</i> ₀
A+B+C'		1. 大學主旗(有"和之权"形式)	b 大京Ma
A+B'+C	0		40 (20)	数式的或型形式化	M_2
A+B'+C'	0		1	3	M ₃
A'+B+C	1	ESTERNO SE	10位加大	· 图 · 1 · 2 · 4 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	(M ₄ M)
A'+B+C'	发现自身发	13 10 10)	图4人并公本基限团	M_5
A'+B'+C	1	4)(4 ¹ 8+6)		6.	M ₆
A'+B'+C'	1 / 1	18月14月	1	7	M_{i}

最小项的编号之集合取全体编号的补得最大项的编号之集合

5. 对偶定理: 对偶式相等, 原式也相等 6. 多输出函数的化简: 寻找共用项

7. 逻辑函数变换

$$Y = AB + BC + AC$$
 与或式 (积之
 $= ((AB)'(BC)'(AC)')'$ 与非一与非式
 $= ((A' + B')(B' + C')(A' + C'))'$ 或与非式
 $= (A' + B')' + (B' + C')' + (A' + C')'$ 或非一或式
 $= (A'B' + B'C' + A'C')'$ 与或非式
 $= (A'B')'(B'C')'(A'C')'$ 与非一与式
 $= (A+B)(B+C)(A+C)$ 或与式 (和之
 $= ((A+B)' + (B+C)' + (A+C)')'$ 或非一或非式

与或式(积之和)

与非一与非式

或与非式

或非-或式

与或非式

与非一与式

或与式(和之积)

以上的最简式的得出均需掌握

8. 无关项分为约束项(为0)或任意项(为0位为1均可)

- 2. 最大项最小项**看清一共几个变**量,将它们按照顺序排好
- 3. **两个逻辑函数之间的与、或、异或运算可以通过将它们的卡诺图中对应的最小项做与、或、异或运** 算来实现
- 4. 有无关项时, 先画有关项, 不要一开始就画无关项

组合逻辑电路

- 1. 功能表中A'的取反体现在了与芯片相邻的引脚处画的圆圈上,一般表示低电平有效;外接的输入线即表示对A'的输入
- 2. 7448多位灭零

例:利用RBI和RBO的配合,实现多位显示系统的灭零控制

- ❖ 整数部分: 最高位是0,而且灭掉以后,输出 *RBO* 作为次高位的 *RBI* 输入信号
- ❖ 小数部分: 最低位是0, 而且灭掉以后, 输出 *RBO* 作为 次低位的*BI* 输入信号

RBI'=0 灭零 (前提是该位为0)

RBO'=0 表示此位已灭零

3. 半加: 不考虑低位进位

全加: 考虑低位进位

4. 竞争: 两个输入"同时向相反的逻辑电平变化", 称存在"竞争"

冒险: 在输出产生尖峰脉冲的现象, 称为"竞争-冒险"

检查竞争-冒险现象的方法: 其余变量任意赋值,只要输出端的逻辑函数在一定条件下能简化成 Y = AA'/Y = A + A'则说明有竞争冒险

修改电路逻辑,如Y=AB+A'C,当B=C=1时Y=A+A';可以修改原电路为Y=AB+A'C+BC

N.B.

- 1. 双四选一选择器: 当未知量有三种时,可以一种当D,另外两种当 A_2, A_1 ; 当未知量有四种时,一种当S(一边是M一边是M'),一种当D,另外两种当 A_2, A_1
- 2. 二进制数乘2直接在尾端加0, 计算一个数的3倍数可以借助加法器将2倍数和1倍数相加
- 3. 用芯片设计电路时,设计好后一定要验证所有情景下的可能

1. 或非门锁存器

表 5.2.1 用或非门组成的 SR 锁存器的特性表

S_{D}	$R_{\scriptscriptstyle \mathrm{D}}$	Q	Q*
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	0 0 [⊕]
1	1	1	0

① S_D 、 R_D 的 1 状态同时消失后状态不定。

注: S和R同为1时Q=Q'=0 (二者相等)

与非门锁存器

表 5.2.2 用与非门组成的 SR 锁存器的特性表

S_{D}^{\prime}	R_{D}^{\prime}	Q	Q*
1	1	0	0
1	1	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
0	0	0	1 [®]
0	0	1	10

① S'₀、R'₀ 的 0 状态同时消失以后状态不定。

注: S和R同为1时Q=Q'=1 (二者相等), 由此产生的脉冲触发SR触发器也按照此规则变

2. 脉冲触发的JK锁存器

- o 对于和CLK同一时刻变的输入,边沿触发看的是前一刻,脉冲看的是已经变化完的时刻
- 。 J=K=1的主触发器跳变,抑或是J=Q', K=Q引起的主触发器变化,在一个CLK上升周期中只能有一个,而且改变后就无法改变回来,也可以总结为:

一个周期内主触发器只改变一次

。 一定要搞清楚内部电路

3. 电平触发的SR锁存器

输入是S、R而非S'、R',原于负负得正

- **4.** T触发器: \$Q^*=TQ'+T'Q\$; 若\$T\equiv 1\$则有\$Q^*\equiv Q'\$, 为JK触发器两个输入口接在一起得到的,它的频率为时钟频率的1/2
- 5. D触发器, J=输入, K=输入反得到(也可以是SR触发器)
- 6. ROM、RAM结构

其中 $256=2^8$,即有8位地址位,而imes 8指的是RAM为8位,共8个输入/输出端

7. 数据表

N.B.

- 1. 注意 与或型锁存器 输入的是取反后的值
- 2. 注意SR锁存器输入均为1时Q=Q', 且与非型和或非型不同
- 3. 看清楚触发器类型
- 4. 画波形图时, 一定要看清楚输入的是S'还是S, 如果是S'请务必不嫌麻烦地画取反波形图后再做
- 5. 下面两个问法不同:

用 ROM 设计一个组合逻辑电路,用来产生下列一组逻辑函数

$$\begin{cases} Y_1 = A'B'C'D' + A'BC'D + AB'CD' + ABCD \\ Y_2 = A'B'CD' + A'BCD + AB'C'D' + ABC'D \\ Y_3 = A'BD + B'CD' \\ Y_4 = BD + B'D' \end{cases}$$

用一片 256×8 位的 ROM 产生如下一组组合逻辑函数

$$\begin{cases} Y_1 = AB + BC + CD + DA \\ Y_2 = A'B' + B'C' + C'D' + D'A' \\ Y_3 = ABC + BCD + ABD + ACD \\ Y_4 = A'B'C' + B'C'D' + A'B'D' + A'C'D' \\ Y_5 = ABCD \\ Y_6 = A'B'C'D' \end{cases}$$

前者需要画出储存矩阵的点阵图,后者只需画出:

时序逻辑电路

1.

图 6.1.2 时序逻辑电路的结构框图

输出方程: y=?
驱动方程: z=?
状态方程: q* =?
Moore: 无x输入
Mealy: 有x输入

○ 状态转换表的两种形式

- 状态转换图 (圆圈)
- 。 状态机流程图
- 2. 移位寄存器: 移位功能是指寄存器里的代码能在移位脉冲下依次左移或右移
- 3. 计数器: 计数器能计到的最大值为容量
 - 。 两种同步加法计数器

 G_4

- 。 单时钟加/减法计数器74LS191、双时钟加/减法计数器74LS193
- 。 异步

加法

图 6.3.25 下降沿动作的异步二进制减法计数器

减法

4. 任意进制的计数器

- 。 置零法: 注意, 逻辑上m进制计数器,
 - 异步置零:需要置零的逻辑是达到m置零,**而需要置零的态是不稳定的**,稳定的循环状态中不包括 S_m

- 同步置零: 需要置零的是S_{m-1}
- 置零信号可能随置零而消失,而此时有可能未完全复位,可靠性不好,锁存器改进:

图 6.3.33 图 6.3.31 电路的改进

当CLK上升沿瞬间时Q=0,之后置零信号Q=0会保持一个CLK高电平时间(G1G2G3可以作为一个整体反复利用),此时**还是异步置零**

。 置数法:

- 可以直接置零,则和置零法一样;
- 置数法最好包含"容量"这个状态(如十进制计数器最好包含1001),这样可以在进位端C 得到进位输出
- o 注意改装的时候**看看是74160还是74161**,涉及到高位的计数器何时进位

5. 环形计数器, 有效状态n

扭环形计数器, 有效状态2n

- 6. 顺序脉冲发生器: 计数器+译码器
- 7. 序列信号发生器: 计数器+选择器 (注意选择器末端可能取反)

N.B.

- 1. 设计时序逻辑电路时要注意JQ'+K'Q中的K', **如果K'=0/1则K=1/0**,千万不能忘记取反!!!!!!
- 2. 设计时序电路画卡诺图时,要注意/前的是状态而不是输入!!!!
- 3. 实际问题的逻辑抽象输入的时候,比如有两种情况,A和B(投币、探测物品),那么需要充分考虑如果没输入(没投币、没探测到)也需要作为一种状态
- 4. 注意,不能简单套状态转换图,而要充分考虑一些置零/置数可能会导致一些其他状态被置零/置数