第七章 维生素和辅酶

维生素的重要性

- * 作为辅酶或者辅基的组成成分
 - * 生物素
 - * 维生素B₂ (FAD) 、泛酸 (辅酶A)
- *人体内不能合成或者合成的量不能满足需要,必须从食物中摄取

维生素分类

- * 脂溶性维生素
 - * 维生素A、D、E、K等
- * 水溶性维生素
 - * 维生素 B_1 、 B_2 、 B_6 、 PP、 泛酸、 生物素等

第二节 水溶性维生素

一、维生素B₁(硫胺素)

- * 脚气病(多发性神经炎):神志不清、腿脚浮肿
- * 1893年 爪哇岛 荷兰人艾克曼

焦磷酸硫胺素 (TPP)

* 脱羧辅酶

二、维生素B₂

- * 又称核黄素
- * 橘黄色的针状晶体,对光和碱不稳定

- * 核黄素与ATP作用生成FMN
- * FMN经ATP磷酸化生成FAD

核黄素 + ATP → FMN + ADP FMN + ATP → FAD + PPi (焦磷酸)

参与生物氧化 (辅基)

三、维生素PP (B₅)

*尼克酸(烟酸)和尼克酰胺(烟酰胺)

* 尼克酰胺腺嘌呤二核苷酸 (NAD), 又称为 辅酶I(CoI)

* 尼克酰胺腺嘌呤二核苷酸磷酸(NADP), 又称为辅酶II(CoII)

脱氢辅酶

四、维生素B₆(吡哆素)

* 在体内以磷酸酯形式存在

* 磷酸吡哆醛和磷酸吡哆胺是转氨酶和氨基脱羧酶的辅酶

五、泛酸 (B₃)

* 又称遍多酸,淡黄色油状物

存在

* 以辅酶A的形 式存在

*辅酶A(CoASH)作为酰基载体,在糖、 脂、氨基酸代谢中非常重要

六、叶酸 (VB₁₁)

* 在绿叶中含量丰富, 故称叶酸

* 叶酸加氢后生成四氢叶酸,四氢叶酸是一碳基团转移酶的辅酶

7 - X = X = X X X X X X X X	
叶 酸 辅 酶	一碳基团
N ⁵ 一甲酰 FH ₄ (F ⁵ —formy1 FH ₄) N ¹⁰ —甲酰 FH ₄ (F ¹⁰ —formyl FH ₄)	—СНО —СНО
N5—甲亚胺 FH4(F5—formimino FH4)	-CH=NH
N5一甲基 FH4(F5—methyl FH4)	—СН3
N ⁵ , N ¹⁰ 一甲烯 FH ₄ (F ⁵ , N ¹⁰ —methylene FH ₄)	>CH ₂
N ⁵ , N ¹⁰ 一甲川 FH ₄ (F ⁵ , N ¹⁰ —methenyl FH ₄)	≥CH

症状

- * 参与核苷酸的合成,同时也影响蛋白质的生物合成
- * DNA合成受抑制,血红蛋白合成受抑制, 血红素低,造成巨幼红细胞性贫血症。

七、生物素 (VB7)

* 含硫的环状物,侧链含有一个戊酸

$$HN$$
 C NH HC CH H_2C C CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5

- * 羧化酶的辅酶
- * 在代谢过程中起CO。载体的作用
 - * 鸡蛋清中含有抗生物素蛋白

八、维生素B₁₂

- * 又称钴胺素
- * 结构最复杂
- * 1964年 英国人霍奇金

*参与体内一碳单位(甲基)的代谢

甲基丙二酸单酰CoA

琥珀酰CoA

症状

- *影响四氢叶酸的再生
- *表现为巨幼红细胞性贫血

九、维生素C

- * 又称抗坏血酸
- * 1747年 英国海军军医 林德 坏血病

- * 氧化还原酶的辅酶
- *保护巯基酶活性
- * 鼠类能够合成维生素C
- * 人、灵长目不能自身合成
 - * 鲍林
 - * 蔬菜的烹制

第三节 脂溶性维生素

一、维生素A

* 维生素A1: 视黄醇、抗干眼醇

* 维生素A2: 3-脱氢视黄醇

视黄醇(维生素 A₁)

3-脱製视黄醇(總生素 A:)

症状

- *夜盲症
- * 上皮组织干燥
- *抵抗力下降,易于感染疾病

存在与摄取

- * 只存在于动物性食物中
- * 过量服用易中毒
 - * 骨骼脱钙、肝脾肿大
- * 蔬菜中含有类胡萝卜素 (维生素A原)

二、维生素D

- * 促进钙离子的吸收
- * 促进钙离子的沉积

症状

- * 抗佝偻病维生素
- * 长期滥用维生素D可导致钙过剩症、厌食、 弥散性肌肉乏力等。

三、维生素E

* 又称生育酚

Jan	表 6-3 各种生	育酚的基团差异	
种 类	R_1	R_2	R_3
α—生育酚	—CH ₃	-CH ₃	-CH ₃
β一生育酚	—CH ₃	-H	-CH ₃
γ一生育酚	—Н		—CH ₃
8一生育酚	—Н	-H	-CH ₃
<i>ξ</i> ─生育酚	$-CH_3$	$-CH_3$	数数,H无论单处
η一生育酚	—H	—CH ₃	-H

作用

- * 缺乏会导致不育
- * 具有抗氧化剂的功能,可使细胞膜上不饱和脂肪酸免于氧化而被破坏

四、维生素K

- * 1929年丹麦科学家达姆 (Dam)
- * 1938年,美国科学家阿尔姆奎斯特发现维生素K可由细菌在肠道内合成

作用

- * 又称凝血维生素
- * 参与氧化磷酸化

五、硫辛酸 (lipoic acid)

本章总结

表 6-3 维生素与辅酶

来

合成

源

鉠

乏 病

主要生理功能和机制

]
维生素 B _i	1. 硫胺素 2. 抗脚气病 维生素	TPP	1. 参与 a-酮酸氧化脱羧作用 2. 抑制胆碱酯酶活性,保护神经正常传导	酵母、谷类种子的 外皮和胚芽	脚气病(多 发性神经炎)
名 称	别名	b# ===	+ Hi + Ini r+ 6t; in +1 4t;		
	加 石	辅 酶	主要生理功能和机制	来源	◆ 乏病
维生素 B ₂	核黄素	FMN、FAD	】 氢载体	小 麦、青 菜、黄豆、蛋黄、肝等	口角炎、唇 炎、舌炎等
泛酸	適多酸	HSCoA	酰基载体	动植物细胞中均含有	人类未发现 缺乏病
维生素 PP	1. 尼克酸和 尼克酰胺 2. 抗療皮病 维生素	NAD NADP	氢载体	肉类、谷物、花生等,人体可自色氨酸转变一部分	癩皮病
维生素 R。	吡哆醇 吡哆醛 吡哆胺	磷酸吡哆醛和磷 酸吡哆胺	参与氨基酸转氨、脱 羧和消旋作用	酵母、蛋黄、肝、 谷类等、肠道细菌可 合成	人类未发现 典型缺乏病

名

称

别

吡哆胺

名

辅

酶

生物素	维生素 H	 	羧化酶的辅酶,参与 体内 CO ₂ 的固定	动植物组织均含 有, <u>肠道细菌可</u> 合成	人类未发现 典型缺乏病
叶酸		THFA	一碳基团载体	青菜、肝、酵母等	※性贫血
维生素 B ₁₂	钴胺素	5′-脱氧腺苷钴胺素	1. 参与某些变位反 应 2. 甲基的转移	肝、肉、鱼等 肠道细菌可合成	恶性贫血
维生素 C	1. 抗坏血酸 2. 抗坏血病 维生素		1. 氧化还原作用 2. 作为脯氨酸羟化 酶的辅酶,促进 细胞间质的形成	新鲜水果、蔬菜、 特别是番茄、柑桔、 鲜枣等	坏血病
硫辛酸			1. 酰基载体 2. 氢载体	肝、酵母等	人类未发现 缺乏病

维生素 A	1. 视黄醇 2. 抗干眼病 维生素	1. 合成视紫红质 2. 维持上皮组织的 结构完整 3. 促进生长发育	肝、蛋黄、鱼肝 油、胡萝卜、青菜、 玉米等	1. 夜盲病 2. 上皮组织 角质化 3. 生长 受阻
维生素 D	抗佝偻病维生素	促使骨骼正常发育	鱼肝油、肝、蛋黄、奶等	一 佝偻病、软 骨病
维生素 E	生育酚	1. 维持生殖机能 2. 抗氧化作用	麦胚油及其他植物油	人类未发现 典型缺乏病
维生 素 K	凝血维生素	1. 促进合成凝血酶 原 2. 与肝脏合成凝血 因子 M、IX. X 等有关	肝、 菠菜等,肠道 细菌可合成	成人 般 人 般 人 人 般 人 人 人 人 人 人 人 人 人 人 人 人 人

填空题

*常见的脱氢酶的辅酶是____和____,辅基是 和 。

选择题

- * 不能从饮食中摄入蔬菜的病人,会导致哪种维生素缺乏()
- * A 叶酸 B 核黄素 C 生物素 D 硫胺素
- * 下列维生素中有两种可由动物体内的肠道细菌合成,它们是()
- * A 核黄素和烟酸 B 维生素B₁₂和维生素D
- * C 抗坏血酸和维生素K D 生物素和维生素K

选择题

- * 下列辅酶(辅基)中哪一种不是来自B族维生素()
- * A、辅酶A
 B、黄素辅基
 C、辅酶I
 D、辅酶Q
 E、羧化辅酶
- * 下列反应中哪一个需要生物素()
- * A、羟化作用 B、脱羧作用 C、脱氨基作用 D、羧化作用