Sapienza Università di Roma Data Science

Assignment 1

Students name: Giuliano Martinelli 1915652, Gabriele Giannotta 1909375, Mario Dhimitri 1910181

 ${\bf Course:}\ Advanced\ Machine\ Learning-Professor:\ Fabio\ Galasso$

Due date: October 30th, 2020

Report 1 - Image Filtering

Write here your report

Report 2 - Object Identification

In order to find the best combination to get a better result, we computed the recognition rate for all the possible combinations of the three type of distance (intersect, l2, chi2) with respect to the histogram functions (rgb, rg, dxdy), considering 6 different number of bins (5,10,15,20,30,50) for each combination. After that, the obtained results were inserted in a dataframe and analyzed with Pandas tools. From the 54 combinations analyzed, the following results were obtained:

	Hist	Dist	Num_Bins	Right_matches	Rec_rate
18	rgb	intersect	15	81	0.910112
21	rg	intersect	15	75	0.842697
0	rgb	intersect	5	72	0.808989

50	ıy	CHIZ	50	,
		/1-	\ W+ C	1 1- : 4 :
		(D) worst C	Combination

chi2

rgb

Hist Dist Num Bins

(a) Best Combination

(3)

50

Right_matches

0.325843

0.325843

0.337079

The best combination found is: {Histogram: rgb; Distance: Intersect; Number of Bins: 15}, with a number of matches of 81 out of 89 (Recognition Rate = 0.91).

The worst combination found is: {Histogram: rgb; Distance: chi2; Number of Bins: 50}, with a number of matches of 29 out of 89 (Recognition Rate = 0.32).

Finally, looking specifically at the distance type, we noticed that on average the intersect distance was the best for each type of histogram. The average is calculated taking into account the six test cases $num_bins = 5, 10, 15, 20, 30, 50$.

		Rec_rate
Dist	Hist	
	dxdy	0.451311
chi2	rg	0.526217
	rgb	0.529963
	dxdy	0.533708
intersect	rg	0.762172
	rgb	0.810862
	dxdy	0.451311
12	rg	0.500000
	rgb	0.500000

Figure 2: Best Distance

Report 3 - Performance Evaluation

For this exercise, after implementing the **rpc_module** functions, we plotted the RPC curves for different histogram types, distances and number of bins. After experimenting with the number of bins, we got different results regarding the distances. In the following picture we are going to see the plots for **RG** histogram with 10, 20 and 30 bins.

We notice that intersect performs better than chi2 and l2 in both of the cases for RG histogram.

Figure 3: RG histograms

Now let's take a look at the performace of the distances in **RGB histograms** with 10, 20 and 30 bins. We notice nearly the same result as the previous case: intersect performs better than chi2 and l2 in both of the cases for RGB histogram.

Figure 4: RGB histograms

The final histogram is the **dxdy histogram**. In this case we notice a slightly similar performance from all the measurements, but as well in this case the best performing distance is intersect

Figure 5: DxDy histograms