Students must check the number of pages in this examination paper before beginning to write, and report any discrepancy immediately.

Total marks: 75

Time allowed: 2 hours

Section A (30 marks): For each question in this section, place an X beside all answers that apply. Each question is worth 6 marks. Partial marks are not given for incomplete answers.

Question 1: The unsigned integer 0x8F4 can be represented as:
0b100011110100
0b111110100
02364
0x4F8
None of the above
Question 2: When using the DDRD register for Port D configuration:
Setting a bit to 1 configures the corresponding pin as an output
Reading PIND gives the current state of Port D pins
Writing to PORTD affects pull-up resistors when pin is configured as input
The register must be configured before using PORTD
None of the above
Question 3: Regarding the AVR stack operations:
The stack grows toward lower memory addresses
push decrements SP after storing a value
pop increments SP after retrieving a value
SP points to the next free location
None of the above
Question 4: In the context of AVR's 8-bit arithmetic:
The carry flag is set when there's a carry from bit 7
add r16,r16 performs multiplication by 2
dec sets the Z flag if the result is zero
adc adds the carry flag to the result
None of the above

Question 5: For the AVR instruction set: ldi can only be used with registers r16 to r31 mov can copy data between any registers sts can store values to any data memory location cp sets the carry flag if the second operand is greater
None of the above
Section B (25 marks): Short Answer Questions Question 6 (5 marks): Explain how the Z flag in the AVR status register is affected by the CP instruction. Include an
example showing specific register values.
Question 7 (5 marks): Describe the purpose and function of the stack pointer registers SPH and SPL in the AVR architecture. Why are two registers needed?
Question 8 (5 marks):
Compare and contrast the breq and brne instructions in terms of their operation and typical usage scenarios in AVR assembly programs.

Question 9 (5 marks):
Explain how the AVR architecture handles signed versus unsigned arithmetic operations. Use specific instructions as examples.
Question 10 (5 marks): Describe the relationship between RAMEND and stack initialization in AVR programs. Why is
proper stack initialization important?
Section C (20 marks): Programming Problems

Write an AVR assembly function that takes two 8-bit values passed in r16 and r17, and returns

their greatest common divisor in r16. Show your complete solution including comments.

Question 11 (8 marks):

Removed Question 12

Question 13 (4 marks): Write the AVR assembly code to implement the following C statement: cCopyif(x > 5 && x < 10) y++; // Assume x is in r16 and y is in r17

Question 14 (2 marks):

Given a string stored in program memory starting at label MESSAGE, write the code to copy it to data memory location 0x200.

Question 15 (2 marks):

Write the code to configure Timer0 in CTC mode with a prescaler of 64.