Main Power Losses in MECPRO-Inverter

Thermal resistance of Heat Sink (Fischer electronics)

$$R_{thK} = \frac{\vartheta_i - \vartheta_u}{P} - (R_{thG} + R_{thM})$$

 $\vartheta_i = Maximum Junction Temperature$

 $\vartheta_u = Ambient Temperature$

 $R_{thG} = Thermal Resistance of Semiconductor$

 $R_{thM} = Thermal Resistance of Mounting Area$

Bridge rectifier

- Maximum Operating Temperature $T_{jmax} = 150$ ° $C = \vartheta_i$
- Thermal resistance without heat sink $R_{0JA} = 24 \frac{^{\circ}C}{W}$
- Thermal resistance with heat sink $R_{0JC} = 1 \frac{^{\circ}C}{W} = (R_{thG} R_{thM})$
- Power dissipation $P_{tot}(@Dutycycle = 0.8 1 \& @10A) \cong 8 W 10 W$

Heat Sink Requirements

Compensation Temperature and Thermal Resistance of Heat Sink:

$$T_{BR} = R_{0JA} * P_{tot} = \frac{1K}{W} * 10 \ W = 10K = \vartheta_i$$

$$R_{thK} = \frac{T_{BR}}{P_{tot}} - R_{0JC} = \frac{10K}{8W} - \frac{1K}{W} = \frac{0.25K}{W}$$

Outer Dimensions

Cooling Area

$$A_{CBR} = (30 \pm 0.3 * 20 \pm 0.3)mm^2$$

CIPOS

- Maximum Operating Temperature $T_{max} = 125^{\circ}C = \vartheta_i$
- Thermal resistance Single IGBT $R_{TH1} = 4,28 \frac{K}{W}$
- Thermal resistance Single Diode $R_{TH2} = 4,87 \frac{K}{W}$
- Power dissipation $P_{tot}(per\ IGBT) = 29.2\ W$

Inverter Section

Description	Condition	Symbol	Value		Unit
			min	max	Onit
Max. blocking voltage	I _C = 250μA	Vces	600	-	V
DC link supply voltage of P-N	Applied between P-N	V _{PN}	-	450	V
DC link supply voltage (surge) of P-N	Applied between P-N	V _{PN(surge)}	-	500	V
Output current	T _C = 25°C, T _J < 150°C T _C = 80°C, T _J < 150°C	Ic	-20 -15	20 15	Α
Maximum peak output current	less than 1ms	I _{C(peak)}	-40	40	Α
Short circuit withstand time¹	V _{DC} ≤ 400V, T _J = 150°C	tsc	-	5	μs
Power dissipation per IGBT		P _{tot}	-	29.2	W
Operating junction temperature range		TJ	-40	150	°C
Single IGBT thermal resistance, junction-case		R _{thJC}	-	4.28	K/W
Single diode thermal resistance, junction-case		R _{thJCD}	-	4.87	K/W

Heat Sink Requirements

$$T_{CiPOS} = (R_{TH1} + R_{TH2}) * P_{tot} = \frac{(4,28 + 4,87)K}{W} * 29,2W = 267,18K$$

Compensation Temperature and Thermal Resistance of Heat Sink:

$$\Delta T_{CIPOS} = T_{CIPOS} - (\vartheta_i - 25K) = 267,\!18K - 100K = 167,\!18K$$

$$\Rightarrow R_{thK} = \frac{\Delta T_{CIPOS}}{P_{tot}} - (R_{TH1} + R_{TH2}) = \frac{167,18K}{29,2W} - \frac{4,87 * 4,28K}{(4,87 + 4,28)W} = \frac{3,467K}{W}$$

Outer Dimensions

Cooling Area:

$$A_{CCIPOS} = (33.8 \pm 0.3 \times 21 \pm 0.3) mm^2$$