NASA TECHNICAL NOTE

REVISED UPPER-AIR WIND DATA FOR WALLOPS ISLAND BASED ON SERIALLY COMPLETED DATA FOR THE YEARS 1956 TO 1964

by James A. Cochrane, Robert M. Henry, and William L. Weaver

Langley Research Center

Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MAY 1968

REVISED UPPER-AIR WIND DATA FOR WALLOPS ISLAND BASED ON SERIALLY COMPLETED DATA FOR THE YEARS 1956 TO 1964

By James A. Cochrane, Robert M. Henry, and William L. Weaver

Langley Research Center Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 — CFSTI price \$3.00

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
SYMBOLS	3
DATA SOURCE	7
ACCURACY OF DATA	7
STATISTICAL ANALYSIS	9
PRESENTATION AND DISCUSSION OF STATISTICAL INFORMATION	12 12
Standard Deviation of Components of Wind Velocity (Table IV)	14 15 17 18 20
CONCLUDING REMARKS	22
APPENDIX A - THE VECTOR NORMAL DISTRIBUTION	24
APPENDIX B - DISCUSSION OF PROCESS OF SERIAL COMPLETION Limitations of the Rawinsonde System	32 32 32 33
APPENDIX C — INTERPOLATION PROCEDURES FOR ADJUSTING PARAMETER ESTIMATES TO TAKE ACCOUNT OF SEASONAL VARIATION AND SHORT- TIME VARIATIONS	34 34 36 37 40
REFERENCES	42
TABLE I - NUMBER OF ORIGINAL OBSERVATIONS (PRIOR TO SERIAL COMPLETION) IN THE 9-YEAR SAMPLE	45

	Page
TABLE II – NUMBER OF ORIGINAL OBSERVATIONS (PRIOR TO SERIAL COMPLETION) IN THE 9-YEAR SAMPLE WHICH REQUIRED CORRECTIONS	47
TABLE III - MEAN WIND SPEED FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE	49
TABLE IV - STANDARD DEVIATION OF COMPONENT OF WIND VELOCITY FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE	50
TABLE V - INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE	51
TABLE VI - INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE	64
TABLE VII - CROSSLEVEL AND INTRALEVEL CORRELATION COEFFICIENTS BETWEEN COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE	77
TABLE VIII - TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE	
LEVELS	90

REVISED UPPER-AIR WIND DATA FOR WALLOPS ISLAND BASED ON SERIALLY COMPLETED DATA FOR THE YEARS 1956 TO 1964

By James A. Cochrane, Robert M. Henry, and William L. Weaver Langley Research Center

SUMMARY

Estimates of fundamental statistical parameters describing the velocity distribution of upper-air winds at Wallops Island have been computed from a nine-calendar-year sample of rawinsonde observations collected four times daily. The parameter estimates are improved over previous estimates because the sample includes more recent data which have been serially completed and checked. Because sufficient rawinsonde data were not available directly from Wallops Island, the sample consisted of rawinsonde data collected at U.S. Weather Bureau stations at Norfolk, Va., and Washington, D.C. The following parameters are tabulated for monthly and annual periods: means and standard deviations of the east-to-west and south-to-north components of wind velocity, and correlation coefficients (interlevel, intralevel, crosslevel, and time-lag correlations).

The tabulated parameters are sufficient to define the vector normal distribution, and several methods of computing wind-speed and wind-direction probabilities by using this distribution model are summarized. A special problem arises when wind-speed and wind-direction probabilities for individual calendar days are computed by using parameter values tabulated for calendar-month periods; that is, a significant sampling error is introduced (especially for single calendar days falling at the beginning or end of a calendar month). To overcome this problem, a method of interpolating the calendar-month averages of the parameters is suggested.

INTRODUCTION

The launching of vertically rising vehicles from NASA Wallops Station has created a need for an improved quantitative description of the upper-air winds at Wallops Island, Va., for both design and operational purposes. Results from studies based on empirical methods (for example, the cumulative percentage frequency method) are usually limited in both scope and accuracy. Accuracy in most cases is limited in the region of extreme wind speed. An earlier study (ref. 1) demonstrated that the vector (that is, bivariate) normal distribution is a good model of the wind-velocity distribution at Wallops Island, Va. The wind-speed and wind-direction probabilities computed by assuming the vector normal

distribution are not unduly affected by limited or extreme values of the data as are the empirical methods. For this reason, several special cases of the vector normal distribution are described. A more detailed discussion of procedures for computing windspeed and wind-direction probabilities using the vector normal distribution is given in appendix A. In order to use statistical methods such as the vector normal distribution, accurate estimates of certain fundamental statistical parameters are needed. Accordingly, considerable effort was expended to develop an improved sample of wind data for Wallops Island.

The rawinsonde system which is customarily used in winds-aloft measurements was not regularly used at Wallops Island until August 1, 1965. For this reason, in order to obtain a wind sample of sufficient size to permit accurate estimation of parameter values, it was necessary to use data from nearby stations (Norfolk, Va., and Washington, D.C.) to approximate the data for Wallops Island. Previously published values of wind statistics for Wallops Island (ref. 1) were based on about an eight-calandar-year sample of rawinsonde measurements made four times daily at both the Norfolk and Washington stations. Although work described in reference 1 verified the accuracy of a procedure for interpolating the Norfolk and Washington data to obtain data for Wallops Island, the rawinsonde records for Norfolk and Washington were not serially complete (that is, data for certain altitude levels and times of day were missing) because of limitations of the rawinsonde system (as discussed in ref. 2). A serially incomplete sample was also used for computing (empirically) the cumulative percentage frequency for selected wind-speed groups as presented in reference 3 and in a work entitled "Terrestrial Environment (Climatic) Criteria Guidelines for Use in Space Vehicle Development, 1966 Revision" by Glenn E. Daniels, James R. Scoggins, and Orvel E. Smith of the NASA Marshall Space Flight Center. The missing data in the serially incomplete rawinsonde records bias the values of certain wind statistics (for example, the mean and standard deviation) as well as the empirical tabulations of cumulative percentage frequency. Since the missing data usually result from a combination of high wind speed and high altitude level, values of the mean and standard deviation of the wind speed components at higher altitude levels tend to be underestimated. Preliminary calculations based on the Wallops Island data indicate that the value of zonal (west-to-east) component of the mean wind for certain calendar months may have been underestimated by as much as 20 percent.

In order to improve the accuracy of the estimated values of the mean and standard deviation, a nine-calendar-year period of record for both the Norfolk and Washington data were serially completed under a Langley Research Center contract with the National Weather Records Center of the Environmental Sciences Services Administration. Serial completion is a process whereby professional meteorologists insert values for missing data by interpolation, extrapolation, or use of data from nearby stations; this process is described in more detail in appendix B. In addition to being improved by serial

completion, the sample was better than the samples used for computations in earlier works (refs. 1 and 3, and the data of Daniels, Scoggins, and Smith of the Marshall Space Flight Center) because more recent data were used and because all the data were checked.

The tabulated data presented in this report include values at 1-kilometer intervals up to an altitude of 27 kilometers for the following statistical parameters:

- (1) Mean wind velocity for the zonal (west-to-east) and meridional (south-to-north) wind components (expressed in m/sec) at selected altitude levels
- (2) Standard deviation of the zonal and meridional components of wind velocity (expressed in m/sec) at selected altitude levels
- (3) Interlevel correlation coefficient between the zonal (meridional) component of wind velocity at one altitude level and the zonal (meridional) component of wind velocity at another level
- (4) Intralevel correlation coefficient between the zonal and meridional components of wind velocity at the same altitude level
- (5) Crosslevel correlation coefficient between the zonal (meridional) component of wind velocity at one altitude level and the meridional (zonal) component of wind velocity at another level
- (6) Time-lag correlation coefficients (that is, stretch-vector correlation coefficients) indicating the persistence of wind velocity for time lags of 6, 12, . . ., 72 hours at selected altitude levels.

These parameters are tabulated for monthly and annual periods. Although the monthly and annual tabulations provide a compact representation of statistical data, such tabulations do not always provide enough information about the values of the parameters on a particular calendar day (especially at the beginning or end of a month). In some cases, the use of calendar-month averages (that is, a step function) has been shown to lead to erroneous launch decisions (ref. 4). To overcome this problem, the actual seasonal variations in parameter values were studied. Examples of seasonal patterns in means, standard deviations, and correlation coefficients are presented in appendix C. An interpolation scheme for obtaining accurate parameter estimates for a given calendar day is also presented.

SYMBOLS

A constant in equation (A2)

B constant in equation (A2)

 $c = \sigma_v/\sigma_u$

 $e^{-\alpha \tau}$ negative exponential function of time lag au

 $f(\tau)$ function of time lag τ

G constant in equation (A1)

N number of observations in statistical sample for a single station

N_I number of independent observations in statistical sample

 N_{jk} number of independent observations (prior to serial completion) used to compute $x(u_j,u_k)$

P() probability of designated variable or variables being within specified limits

R radius of circle about origin of coordinate system or nondimensional velocity normalized by σ_u , V/σ_u

 $\overline{\mathbf{R}} = \overline{\mathbf{V}}/\sigma_{\mathbf{u}}$

r any type of correlation coefficient

r(ui,uj) interlevel correlation coefficient between zonal wind components at altitude levels i and j

 $r(v_i,v_j)$ interlevel correlation coefficient between meridional wind components at altitude levels i and j

 $\begin{array}{lll} r(u_i,v_j) & \text{crosslevel correlation coefficient between zonal wind component at altitude} & i \\ & \text{and meridional component at altitude} & j & \text{(called the intralevel correlation} \\ & & \text{when} & i=j) \end{array}$

 \mathbf{r}_{uv} abbreviated notation for intralevel correlation, $\mathbf{r}(\mathbf{u}_i, \mathbf{v}_i)$

 $r_{t,t+\tau}$ time-lag correlation coefficient (stretch-vector correlation) between wind-velocity vector at time t and at time t + τ at a particular altitude level

 r_i value of $r_{t,t+\tau}$ for a $\tau = i \times 6$ hour lag period at a selected altitude level j

- r_i' value of $r_{t,t+\tau}$ for a $\tau = i \times 6$ hour lag period at a selected altitude level k
- s sample standard deviation, m/sec
- S region in u,v-plane
- u zonal (west-to-east) wind-velocity component at a particular altitude level, m/sec
- mean or average of u for a selected time period
- u_O observed value of u
- ut value of u at time t
- $\hat{\mathbf{u}}_{t}$ forecasted value of \mathbf{u}_{t}
- w meridional (south-to-north) wind-velocity component at a particular altitude level, m/sec
- wean or average of v for a selected time period
- V magnitude of vector wind velocity, m/sec
- \overline{V} magnitude of vector mean wind
- X sample mean
- Z random variable in standard normal distribution, $(\overline{X} \mu)/\sigma/\sqrt{N}$
- $Z_{\alpha'/2}$ value of Z such that integral of standard normal density from $Z_{\alpha'/2}$ to ∞ equals $\alpha'/2$
- Z' random variable in Fisher's transformation of r, arc tanh r
- lpha empirically determined constant in function $e^{-lpha au}$ fitted to the time-lag correlation coefficients, 1/hr
- lpha' probability risk level used in computing confidence intervals

- θ direction from which wind blows, positive clockwise from north, deg
- direction from which vector mean wind blows, positive clockwise from north, $\tan^{-1}\overline{u}/\overline{v},\,\deg$
- μ mean of designated probability distribution
- σ standard deviation of designated probability distribution
- $\sigma_{\widehat{u}}$ forecast standard error for u_t
- Σ summation over sample size N
- τ time lag, hours
- ϕ angular difference between vector mean wind and arbitrary wind, positive clockwise, θ $\overline{\theta}$, deg

Subscripts:

NOR data for Norfolk, Va.

WAL data for Wallops Island, Va.

WAS data for Washington, D.C.

i,j,k arbitrary integer values, that is, 1, 2, . . .

t identifies a specific time

τ a specific lag interval, hours

u identifies the zonal (west-to-east) component

v identifies the meridional (south-to-north) component

DATA SOURCE

Sufficient wind-sampling data were not available for Wallops Island so measurements made at two adjacent geographical locations (Weather Bureau Observatories for Washington, D.C., and Norfolk, Va.) were used. The basic data for these two stations are stored at the National Weather Records Center (NWRC), Asheville, North Carolina. Data for the period of record from January 1, 1956, to December 31, 1964, were serially completed by personnel at NWRC by using the procedure described in appendix B.¹ During the period of record, all rawinsonde measurements had been made with the AN/GMD-1 system at the following Greenwich mean times:

Prior to May 1957 0300, 0900, 1500, 2100 After May 1957 0000, 0600, 1200, 1800

Data were recorded at 1-km intervals from the surface to 27 km.

ACCURACY OF DATA

An uncertainty exists regarding the basic measurements made with the rawinsonde system because of equipment limitations. References 2, 5, and 6 present discussions of possible observational errors in wind-velocity measurements resulting from use of the rawinsonde system. Unfortunately, there does not seem to be unanimous agreement among those who have studied the accuracy problem as to the magnitude of the possible system and data reduction errors. It is known that under certain conditions, the magnitude of the wind velocity can have errors up to about 30 m/sec and that directions can be as much as 180° in error. Errors of such magnitude are rare. As noted by Tolefson (ref. 2), the errors depend on both the altitude of the balloon and the elevation angle from the ground receiving station to the rawinsonde balloon, major errors occurring at low elevation angles. Nevertheless, it is believed that for altitudes below 16 km, data should have errors not exceeding the generally accepted values for rawinsonde data which are as follows:

Wind speed (when speed <25 m/sec), m/sec $\pm 1\frac{1}{4}$
Wind speed (when speed >25 m/sec), m/sec $\pm 2\frac{1}{2}$
Wind direction, deg $\dots \dots \pm 2\frac{1}{2}$

¹Punched cards or magnetic tapes of the serially completed data can be obtained at nominal cost by writing to the Director, National Weather Records Center, Federal Building, Asheville, North Carolina 28801.

Above 16 km, a generally accepted value of accuracy is $\pm 5^{O}$ for wind direction and ± 10 percent for wind speed. At these high altitudes, the errors are related to the bias problem, that is, the possibility that high-wind-speed data were not obtained at high altitudes is more likely than the occurrence of large measurement errors.

The extent of the bias problem can be judged by examining the number of velocity measurements in the 9-year sample from each station before serial completion. Table I lists these sample sizes for observed velocity data at the Norfolk and Washington stations for each altitude level and calendar month. The total number of possible observations that would be included in a serially completed sample are listed in the last row of each of the tables. The values listed show a pattern of fewer observations at the higher altitude levels. For some months, such as February for the Washington station, about 80 percent of the possible observations were missing and had to be estimated by interpolation and extrapolation methods.

A detailed study of the effects of serial completion on the estimated parameter values for Wallops Island is planned, but only a few preliminary comparisons could be made at the time this paper was being prepared. The comparisons indicated that serial completion caused a significant increase in the estimated value of the mean wind at altitudes above 8 km during certain months. The largest increases in the estimated values of the zonal mean occurred in the 10- to 16-km region for winter and spring months. For example, the mean value of the zonal component for the 11-km level during the month of January was estimated to be 41 m/sec when based on the serially incomplete sample, but after serial completion the estimated value was 48 m/sec. A slightly smaller increase occurred in the estimated value of the standard deviation. Since the winds in the 10- to 16-km region are usually critical in determining the maximum vehicle response, the effort and cost of serial completion of data from Norfolk and Washington appears to be justified for seasons of high upper-air winds.

Although serial completion unquestionably reduces the bias in the estimates of means and standard deviations, its effects on other statistical parameters must be closely examined. As explained in appendix B, the serial completion procedure is based on an analyst's estimate of the spatial and time correlation of the wind. Consequently, estimates of the spatial and time correlation coefficients computed from serially completed data are biased by the interpolation and extrapolation schemes used by the analyst. However, it is believed that the bias introduced into the estimated correlation coefficients by using serially completed data is small and can be neglected for engineering applications. Programs for computing correlation coefficients can be greatly simplified when serially completed data (which have an equal number of observations at all levels) are used as input. Therefore, all the estimated parameter values listed in this report were based on serially completed data.

Another real improvement in estimated values of the statistical parameters over those presented in reference 1 was achieved by including more recent data in the sample and excluding data from Norfolk and Washington stations recorded prior to 1956. In fact, nearly all the wind observations for higher altitude levels were missing in the data recorded prior to 1956. Improved tracking techniques and equipment have resulted in substantially fewer missing observations in the rawinsonde records for the newer data included in the sample (that is, calendar years 1959 to 1964). It is the increased number of actual wind observations which provide an adequate basis for estimating time and spatial correlation coefficients.

Although serial completion removes the bias due to missing observations, the process in no way verifies the accuracy of the original data. Hasty computational and transcribing procedures at local weather stations are known to introduce errors into the original rawinsonde observations. For this reason, a checking procedure was developed by personnel at the National Weather Records Center that detects errors which produce physically improbable wind shears. This verification procedure is similar to that suggested in reference 7. The first step of the procedure involved examining the wind shear between various altitude levels in order to select unusual wind shear conditions for further investigation. This shear testing procedure was programed for a digital computer. and a computer run located many improbable wind shears. The data points associated with each improbable shear condition were checked by going back to original data sources. A significant number of errors were located in the 9-year sample from each station. The number of original observations which had to be corrected are given in table II for the Norfolk station and for the Washington station. The tables show that for certain calendar months and altitude levels as many as 13 percent of the original rawinsonde observations required corrections.

STATISTICAL ANALYSIS

In order to use the wind data from Washington and Norfolk to estimate the parameters of the wind-velocity distribution at Wallops Island, an interpolation scheme was required. Although it is common practice in meteorology to interpolate wind data between sampling stations, such procedures require close examination.

Weaver, et al. (ref. 1), examined a limited sample of data recorded for the actual Wallops Island location. These data were compared with data obtained at nearly the same time of day (early afternoon) at Washington and Norfolk. Approximately 100 comparisons were made with a randomly chosen set of samples covering a 1-year period. The wind vector at Wallops was found to lie about midway in value of magnitude and direction between the magnitude and direction of the winds at Norfolk and Washington. Accordingly, it was assumed that observations from each station should be weighted

equally. Further study of the validity of this interpolation is planned when a larger sample of data collected directly at Wallops Island becomes available.

The basic parameters defining the statistical distribution are thus given by the following relationships:

u	zonal wind component (west-to-east positive) 2
$\overline{\mathbf{u}}$	zonal mean wind
$\sigma_{\mathbf{u}}$	zonal standard deviation
v	meridional wind component (south-to-north positive) 2
$\overline{\mathbf{v}}$	meridional mean wind
$\sigma_{\!_{f V}}$	meridional standard deviation
Σ	summation over sample size N
NOR	observations from Norfolk station
WAS	observations from Washington, D.C. station
WAL	observations representing Wallops Island
and	$\Sigma u_{WAL} = \frac{\Sigma u_{NOR} + \Sigma u_{WAS}}{2}$ $\Sigma v_{WAL} = \frac{\Sigma v_{NOR} + \Sigma v_{WAS}}{2}$
	$\Sigma(uv)_{WAL} = \frac{\Sigma(uv)_{NOR} + \Sigma(uv)_{WAS}}{2}$

$$\Sigma(\mathrm{u}^2)_{\mathrm{WAL}} = \frac{\Sigma(\mathrm{u}^2)_{\mathrm{NOR}} + \Sigma(\mathrm{u}^2)_{\mathrm{WAS}}}{2}$$

$$\Sigma(v^2)_{\text{WAL}} = \frac{\Sigma(v^2)_{\text{NOR}} + \Sigma(v^2)_{\text{WAS}}}{2}$$

$$N_{WAL} = \frac{N_{NOR} + N_{WAS}}{2}$$

²The sign convention for zonal and meridional winds at Wallops Island used in this report is the same as that used in reference 3 and in the previously mentioned data of Daniels, Scoggins, and Smith, but is the opposite of that used in reference 1.

Because surface winds are greatly affected by the local terrain, the interpolation procedure is not expected to provide accurate estimates of winds at Wallops Island below the 3-km level.

In the following definitions, the subscript WAL is dropped, and u, v, and N are assumed to refer to u_{WAL} , v_{WAL} , and N_{WAL} , respectively

$$\overline{\mathbf{u}} = \frac{\Sigma \mathbf{u}}{\mathbf{N}}$$

$$\overline{\mathbf{v}} = \frac{\Sigma \mathbf{v}}{\mathbf{N}}$$

$$\sigma_{\mathbf{u}} = \sqrt{\left[\Sigma(\mathbf{u})^2 - \frac{(\Sigma \mathbf{u})^2}{\mathbf{N}}\right]/\mathbf{N} - 1}$$

$$\sigma_{\mathbf{v}} = \sqrt{\left[\Sigma(\mathbf{v})^2 - \frac{(\Sigma \mathbf{v})^2}{\mathbf{N}}\right]/\mathbf{N} - 1}$$

The interlevel correlation coefficient between zonal wind at altitude i and zonal wind at altitude j is given by

$$\mathbf{r}\left(\mathbf{u_i},\mathbf{u_j}\right) = \frac{\sum \mathbf{u_i}\mathbf{u_j} - \left(\sum \mathbf{u_i}\right)\!\!\left(\sum \mathbf{u_j}\right)}{\sqrt{N\Sigma\!\!\left(\mathbf{u_i}\right)^2 - \left(\sum \mathbf{u_i}\right)^2}\sqrt{N\Sigma\!\!\left(\mathbf{u_j}\right)^2 - \left(\sum \mathbf{u_j}\right)^2}}$$

The interlevel correlation coefficient between meridional wind at altitude i and meridional wind at altitude j is given by

$$\mathbf{r}\left(\mathbf{v}_{i},\mathbf{v}_{j}\right) = \frac{\Sigma \mathbf{v}_{i}\mathbf{v}_{j} - \left(\Sigma \mathbf{v}_{i}\right)\!\!\left(\Sigma \mathbf{v}_{j}\right)}{\sqrt{N\Sigma\!\left(\mathbf{v}_{i}\right)^{2} - \left(\Sigma \mathbf{v}_{i}\right)^{2}}\sqrt{N\Sigma\!\left(\mathbf{v}_{j}\right)^{2} - \left(\Sigma \mathbf{v}_{j}\right)^{2}}}$$

The crosslevel correlation coefficient between zonal wind at altitude i and meridional wind at altitude j is given by

$$\mathbf{r}(\mathbf{u_i}, \mathbf{v_j}) = \frac{\sum \mathbf{u_i} \mathbf{v_j} - \left(\sum \mathbf{u_i}\right) \left(\sum \mathbf{v_j}\right)}{\sqrt{N \sum \left(\mathbf{u_i}\right)^2 - \left(\sum \mathbf{u_i}\right)^2} \sqrt{N \sum \left(\mathbf{v_j}\right)^2 - \left(\sum \mathbf{v_j}\right)^2}}$$

(The intralevel correlation coefficient is a special case of cross-component correlation coefficient when i = j.)

The time-lag correlation coefficient between wind vector at time $\,t\,$ and wind vector at time $\,t\,$ is given by

$$\mathbf{r}_{t,t+\tau} = \frac{\sum_{u_t u_{t+\tau}} - \frac{\sum_{u_t u_{t+\tau}} + \sum_{v_t v_{t+\tau}} - \frac{\sum_{v_t v_{t+\tau}} }{N}}{\sqrt{\sum_{u_t u_t}^2 - \frac{\left(\sum_{u_t}\right)^2}{N} + \sum_{v_t v_t}^2 - \frac{\left(\sum_{v_t v_t}\right)^2}{N} + \sum_{v_t v_{t+\tau}}^2 - \frac{\left(\sum_{v_t v_t}\right)^2}{N} + \sum_{v_t v_t}^2 - \frac{\left(\sum_{v_t v_t}\right)^2}{N}}}$$

All the statistical computations indicated were performed on a digital computer. To avoid transcription errors, most of the tabulated data in this report are reproduced photographically from the original computer printouts.

PRESENTATION AND DISCUSSION OF STATISTICAL INFORMATION

Mean Wind Speed (Table III)

By resolving a measured wind vector into zonal (west-to-east) and meridional (south-to-north) components, the relative magnitude of each component can be judged. Table III contains estimates of the zonal mean wind speed and the meridional mean wind speed for 1-kilometer altitude intervals from 0 to 27 kilometers. Speeds are expressed in meters per second. The averages are for monthly and annual periods. The tabulated values of the zonal means in table III are much larger than the tabulated values of the meridional means and thus indicate the predominance of strong winds from the west. The seasonal variations of the zonal and meridional means are discussed in appendix C.

For purposes of computing confidence limits, the number of independent observations used to estimate each statistic must be known. The individual observations were not all independent because of two factors. First, observations were made at the same times at Norfolk and Washington stations and are not statistically independent. Therefore, the effective sample sizes for monthly and annual periods should be the number of observations recorded for a single station (for example, 1116 for a 31-day month and 13 140 for an annual period). The second factor affecting the number of independent observations in the sample is that observations made at 6-hour intervals may be significantly correlated for time lags of up to 72 hours. A procedure for determining the number of independent observations when values of the time-lag correlation coefficients are known is suggested by Bartlett (refs. 8 and 9). Reference 9 gives explicitly only the formula for two variables, as in the case for the interlevel correlation coefficients (eq. (4)). For a single variable this equation reduces to

$$N_{I} = \frac{N}{1 + 2r_{1}^{2} + 2r_{2}^{2} + 2r_{3}^{2} + \dots + 2r_{i}^{2}}$$
 (i = 1,2,3, . . .,12) (1)

where

N_I number of independent observations

N number of observations recorded at one station

 r_i time-lag correlation coefficient for $i \times 6$ hour lag (values are given in tables VII) at altitude levels of interest

Equation (1) can be evaluated for each calendar month and altitude level. For example, the number of independent observations at the 11-km level during the month of January is computed as follows:

$$N_{I} = \frac{1116}{1 + 2(0.857)^{2} + 2(0.689)^{2} + \dots + 2(0.123)^{2}} \approx 216$$

Confidence intervals can be placed on the values of the mean by using the well-known procedure for estimating large-sample confidence intervals (where the true values of the standard deviation are unknown). In this case, the probability is $1 - \alpha'$ that the true value of the mean falls between the following limits:

$$\overline{X} - (Z\alpha'/2) \frac{s}{\sqrt{\overline{N}_I}} < \mu < \overline{X} + (Z\alpha'/2) \frac{s}{\sqrt{\overline{N}_I}}$$
 (2)

where

 μ population mean

x value of mean estimated from sample

Z random variable in standard normal distribution $\overline{X} - \mu/\sigma$

 $Z\alpha'/2$ value of Z such that integral of standard normal density function from $Z\alpha'/2$ to ∞ equals $\alpha'/2$

s sample standard deviation (see tables II)

N_I number of independent samples

Equation (2) can be used to place confidence limits on any values in table III. For example, if $\alpha' = 0.05$, then the probability is 0.95 that the true value of the zonal mean at the 11-km level during the month of January falls within the following limits:

$$45.618 - 1.960 \frac{19.399}{\sqrt{216}} < \mu < 45.618 + 1.960 \frac{19.399}{\sqrt{216}}$$

 $43.0 < \mu < 48.2$

In other words, the probability is 0.95 (or 95 percent) that the true value of the zonal mean wind falls between 43.0 m/sec and 48.2 m/sec at the 11-km level during January.

Standard Deviation of Components of Wind Velocity (Table IV)

The standard deviation is a fundamental statistical parameter describing the variability of the data about the mean. Table IV presents estimates of the standard deviations of the zonal and meridional components of wind velocity for 1-kilometer altitude intervals from the surface to 27 kilometers. Values (in m/sec) are presented for monthly and annual time periods. The information in table IV indicates that the estimated values of the standard deviations of the zonal component are approximately equal to the values of the meridional component at altitude levels below 20 km. The seasonal variations of the parameters are discussed in appendix C.

The values for the number of independent samples suggested in the "Mean Wind Speed (Table III)" also apply to the number of independent samples used to estimate the standard deviation (for example, for the 11-km altitude level during January, $N_I=223$). Because of the large sample size, the distribution of the sample standard deviation s can be approximated by a normal distribution having mean μ and variance $\sigma^2/2N_I$ (ref. 10). This distribution assumption leads to the following $1-\alpha'$ confidence interval for σ :

$$\frac{s}{1 + \left(Z\alpha'/2\sqrt{2N_{I}}\right)} < \sigma < \frac{s}{1 - \left(Z\alpha'/2\sqrt{2N_{I}}\right)}$$
(3)

By using equation (3), approximate confidence limits can be placed on any of the values in table IV. For example, if $\alpha' = 0.05$, then the probability is 0.95 that the true value of the standard deviation of the zonal component at the 11-km level during the month of January falls within the following limits:

$$\frac{19.399}{1 + \left(1.960 / \sqrt{432}\right)} < \sigma < \frac{19.399}{1 - \left(1.960 / \sqrt{432}\right)}$$

or

$$17.7 < \sigma < 21.4$$

In other words, the probability is 0.95 that the true value of the standard deviation lies between 17.7 m/sec and 21.4 m/sec.

Interlevel Correlation Coefficients (Tables V and VI)

Interlevel correlation coefficients express the degree of linear relationship between the same wind components at two altitude levels. A correlation coefficient of 0 implies that the winds at the two levels are uncorrelated, and values of 1 or -1 indicate a perfect linear correlation. Tables V and VI present estimates of the interlevel correlation coefficients. Table V presents the interlevel correlation coefficients for the zonal component. Each matrix (or subtable) presents estimates for a particular calendar month or for an annual period. Although each matrix is symmetric about the diagonal of unit elements, the complete form of each matrix has been printed out to facilitate the location of particular elements in the matrix.

A nonzero value of the correlation coefficient in tables V and VI does not necessarily mean that the wind-velocity components at the two altitude levels are correlated. In fact, the computed correlation coefficient between two series of random numbers is seldom exactly zero and, sometimes, is very large. In order to decide whether a particular estimate of an interlevel correlation coefficient is significant in the statistical sense, the concept of confidence limits must be employed. Charles (ref. 11) and Brooks and Carruthers (ref. 12) discuss the significance of interlevel correlations.

Bartlett's equation, which approximates the effective degrees of freedom in testing correlation between series, can be used to estimate the number of independent samples to be used in testing the significance of interlevel correlation coefficients. The relationship (as given in ref. 9) is as follows:

$$N_{jk} = \frac{N}{1 + 2r_1r_1' + 2r_2r_2' + \dots + 2r_ir_i'} \qquad (i = 1, 2, 3, \dots, 12) \qquad (4)$$

where

N_{jk} number of independent observations used to compute interlevel correlation coefficient between altitude level j and altitude level k

N number of observations in sample

 r_i time-lag correlation coefficient for $i \times 6$ hour lag at altitude level j

 r_i ' time-lag correlation coefficient for $i \times 6$ hour lag at altitude level $\,k$

Because the interpolated or extrapolated data bias the estimated correlation coefficients, a conservative estimate of N can be obtained by using tables I(a) and I(b). The first step is to compare the number of observations at level j to the number of observations at level k as given in table I(a). The smaller number is then compared with the numbers for altitude levels j and k as given in table I(b), and the smallest value is selected to be the value of N to be used in equation (4). For example, to determine the N-value for altitude level j=11 and k=17 for the month of January, the values of 876 and 673 are located in the first column of table I(a) and values of 786 and 603 are located in the first column of table I(b). Since the value of 603 is the smallest of the 4 values, this value should be used for N in equation (4).

To illustrate the use of equation (4), sample computations are performed to establish the number of independent observations used in computing the interlevel correlation coefficient between zonal components at the 11-km and 17-km levels for the month of January. From this discussion, N = 603, and substituting values of r_i and r_i ' (from table VIII), equation (4) becomes

$$N_{11,17} = \frac{603}{1 + 2(0.857)(0.808) + 2(0.689)(0.659) + ... + 2(0.123)(0.176)} \approx 112$$

When the true or population value of the correlation coefficient is large, the value of the correlation coefficient computed from the sample does not have a normal distribution (ref. 11). To overcome this difficulty, Fisher's Z' transformation for any correlation r is given by:

$$Z' = \frac{1}{2}(\log_e(1+r) - \log_e(1-r)) = \frac{1}{2}\log_e(\frac{1+r}{1-r}) = \operatorname{arc \ tanh \ r}$$
 (5)

The statistic Z' has nearly a normal distribution with standard deviation $1/\sqrt{(N_{jk}-3)}$. Confidence limits can be placed on the Z' values; subsequently, the limits can be transformed back to give confidence limits on r. The transformation can be facilitated by using a conversion table (as provided in ref. 12) or tables of hyperbolic tangents in standard mathematical tables. For example, the estimated value of $r(u_{11},u_{17})$ during January (see table V) is 0.604 which yields a Z' of 0.700 and standard deviation of Z' of 0.096. The 0.95 (or 95 percent) confidence limits on Z' are therefore:

 $0.700 \pm 0.096(1.96)$

or

Hence, if Z' is converted back to $r(u_{11},u_{17})$, the following confidence limits are obtained:

$$0.471 < r(u_{11},u_{17}) < 0.711$$

When similar calculations for January are performed for $r(u_{11},u_{23})=0.115$ (from table V), the smallest value of N becomes 477, and the value of $N_{11,23}=85$ (from eq. (4)). By using equation (5), it is found that $-0.099 < r(u_{11},u_{23}) < 0.317$. At this risk level, 0.115 is not significantly different from 0 and does not indicate a positive correlation between zonal winds at the 11-km and 23-km levels during January.

The significance of any of the estimated correlation coefficients in tables V and VI can be computed in a similar manner.

Crosslevel and Intralevel Correlation Coefficients (Table VII)

The crosslevel and intralevel correlation coefficients are fundamental statistical parameters which measure the linear relationship between wind-speed components. Table VII presents estimates of meridional wind components for all combinations of altitude levels for monthly and annual periods. Each subtable is a matrix in which the diagonal elements are estimates of the intralevel correlation coefficients and the off-diagonal elements are crosslevel correlations. The crosslevel correlation between the zonal wind component at altitude level i and the meridional component at an altitude j is found at the intersection of the ith row and the jth column of the matrix. Consequently, the matrix is not symmetric.

The significance of the estimated values of the crosslevel correlation coefficients can be tested by using the method suggested in the discussion of table V. The number of independent observations to be used in computing the significance of the intralevel correlations is also obtained by using equation (4) (in which case $\mathbf{r_i}$ and $\mathbf{r_i}'$ would be equal) and by selecting the smallest value of N for the single altitude level from table I(a) and table I(b). For example, a conservative estimate of the number of independent observations to be used to compute the intralevel coefficients between the zonal and meridional components at the 11-km level for January (by using eq. (4) with N = 786 (from table I(b)) is about 152. By using equation (5) and tables of the Z' transformation, the following 0.95 (or 95 percent) confidence limits can be placed on the intralevel correlation $\mathbf{r}(\mathbf{u}_{11},\mathbf{v}_{11})$ for January:

$$-0.020 < r(u_{11},v_{11}) < 0.297$$

Therefore, the estimated value of the intralevel correlation (0.141) for January is not significantly different from 0.

The number of independent observations used in computing the crosslevel correlation between the zonal wind at 11 km and the meridional component at 17 km is 112 (using eq. (4) with N=603). Again by using equation (5) and tables of the Z' transformation, the following 0.95 (or 95 percent) confidence limits can be placed on the crosslevel correlation coefficient $r(u_{11},v_{17})$ for January:

$$-0.077 < r(u_{11},v_{17}) < 0.301$$

Consequently, the estimated value of the crosslevel correlation coefficient (0.109) is not significantly different from zero. However, some estimated values in table VI are significantly different from zero, and confidence limits on individual elements in each matrix should be examined by using equations (4) and (5) before drawing inferences about the true linear correlation of the wind components.

Time-Lag Correlation Coefficients (Table VIII)

Several statistics have been used to measure the correlation between vectors. However, there is considerable debate about the relative merits of such statistics as a measure of the time correlation of the wind. (See refs. 13, 14, and 15.) The stretch-vector correlation (refs. 16, 17, and 18) has probably received the widest use as a measure of the time variability of the wind. Accordingly, all time-lag correlations tabulated in this report are stretch-vector correlations. Table VIII presents estimates of the time-lag correlation coefficient for a particular altitude level and for monthly and annual periods. The time-lag correlation coefficients were computed for 6-hour increments up to a total lag time of 72 hours, and the estimated values are listed under appropriate column headings in each subtable. The column labeled "alpha" in each subtable gives a value of α which was computed by fitting (by the least-squares method) a function of the type

$$f(\tau) = e^{-\alpha \tau} \tag{6}$$

I

to the estimates of the time-lag correlations listed in each row of the table. The last column in each table lists the root-mean-square (rms) error in fitting equation (6) to the data. The root-mean-square values are small for altitude levels above 3 km; thus, the fit of equation (6) to the data is good. Consequently, equation (6) should be used for computing values of $r_{t,t+7}$ for lag periods (for example, 5 hours) not explicitly listed in the subtables. It is interesting to note that, in general, the value of α decreases as the

altitude level increases as is shown by the plot of α in figure 1. It follows that the persistence of the wind increases with altitude level.

Figure 1.- Variation of annual values of curve fitting parameter "alpha" (α) with altitude level.

The significance of the estimates of the time-lag correlation coefficients can be tested by computing confidence intervals by using the method for intralevel correlation coefficients suggested in the discussion of table V (that is, by use of eqs. (4) and (5)). For example, calculations using equation (4) indicate that the number of independent observations at the 11-km level for the month of January is about 152. Confidence limits are then computed by using equation (5). For a 12-hour lag during January at the 11-km level, the 0.95 (or 95 percent) confidence limits on the true value of the time-lag correlation coefficient are as follows:

$$0.595 < r_{t,t+\tau} < 0.766$$

Consequently, the estimated value of $r_{t,t+7}$ (0.689) is significantly different from 0 at the 11-km level for January. However, if a 48-hour lag at the 11-km level during February is considered, the 0.95 (or 95 percent) confidence limits on the true value of the time-lag correlation becomes

$$-0.052 < r_{t,t+\tau} < 0.267$$

In this case, the estimated value of $r_{t,t+\tau}$ (0.111) is not significantly different from zero. This same procedure can be used to test the significance of the estimates of the time-lag correlation coefficients for other altitude levels and averaging periods.

Use of Tabulated Information

Since statistical methods are basic to the analysis of most meteorological data, a complete discussion of the possible uses of the statistical information provided in this report would not be feasible. References 12 and 19 provide excellent summaries of the uses of fundamental statistical parameters in a wide variety of meteorological applications. Some particular applications of statistical methods to problems concerning wind inputs to space vehicles deserve mention.

One use of the tabulated values of means, standard deviations, and intralevel correlation coefficients is to compute wind-speed and wind-direction probabilities for a selected altitude level by assuming that the wind velocity distribution at Wallops Island can be modeled by the vector (that is, bivariate) normal distribution. Weaver, et al., (ref. 1) carried out a detailed study of the velocity distribution at Wallops Island. Reference 1 included a comparison of wind-speed and wind-direction probabilities determined by three methods: the empirical cumulative frequency method and integration of the elliptical and circular forms of the vector normal distribution over appropriate regions. Reference 1 concluded that the elliptical distribution method gave the best results for determining wind-speed and wind-direction probabilities; however, it was also concluded that the circular distribution method is easier to use and gives good probability estimates for altitudes below about 20 km. Although the velocity distribution is very elliptical at altitudes above about 20 km, it was shown (by using parameter values estimated from serially incomplete data) that the integration of the circular form of the vector normal distribution over appropriate regions provided an adequate approximation of wind-speed and wind-direction probabilities. Because the values of fundamental statistical parameters estimated from serially completed data still contain measurement errors and statistical uncertainties, the circular form of the vector normal distribution can be used with the tabulated data in this report to obtain probability estimates which are sufficiently accurate for most engineering applications. Appendix A summarizes the procedures for computing wind-speed and wind-direction probabilities by use of the vector normal distribution.

Henry (ref. 20) uses the vector (that is, bivariate) normal distribution to construct a mathematical model for extreme-value wind-velocity profiles. These profiles can be constructed rapidly and objectively with the tabulated values of means, standard deviations, and intralevel and interlevel correlation coefficients included in this report. The profiles can be tailored to a specific calendar month, launch azimuth, and critical altitude (corresponding to maximum vehicle response).

Several other practical applications of the tabulated statistical data to aerospace problems have been suggested. Mulligan (ref. 21) describes the use of various altitude correlation coefficients on missile impact dispersion studies. Bieber (ref. 22) presents

a method of calculating structural load responses on vertically rising vehicles which requires knowledge of the matrix of interlevel correlation coefficients.

The use of calendar month averages of the statistical parameters of the wind velocity distribution to compute climatological probability estimates for individual calendar days or for several calendar days can sometimes introduce significant error at the beginning or end of a month, especially in the spring or fall. A study of the seasonal wind patterns at Wallops Island (ref. 4) indicates that simple linear interpolation of the calendar month averages provides sufficiently accurate estimates of daily parameter values for most engineering applications. The interpolation of values of the zonal mean wind at the 11-km level is illustrated graphically in figure 2. The accuracy of the interpolation procedure is discussed in detail in appendix C. Since the linear interpolation can be made by using the standard tabulations presented in this report, this method is recommended for obtaining the climatological estimates of a statistical parameter for a given calendar day.

Figure 2.- Illustration of procedure for obtaining daily values of zonal mean wind at 11-km altitude level by linear interpolation of calendar month averages of zonal mean.

For planning and scheduling purposes, it is desirable to know the probability that wind conditions will permit launching well in advance of the scheduled launch time. For periods of time longer than about 3 days, a climatological "forecast" based on the data tabulated in this report will generally provide the best estimate. For shorter periods, a better forecast of the zonal wind u_t at time t can be obtained from an optimum linear combination of the latest observation u_0 at t=0 and the climatic mean \bar{u} for the calendar day of interest (as computed by linear interpolation of calendar month

averages) and can be written

$$\hat{\mathbf{u}}_{t} = \mathbf{r}_{t,t+\tau} \, \mathbf{u}_{O} + \left(1 - \mathbf{r}_{t,t+\tau}\right) \overline{\mathbf{u}} \tag{7}$$

where $r_{t,t+\tau}$ is the time-lag correlation coefficient for the forecast period (as given in table VIII). The forecast standard error σ_{tt} for this regression is given by

$$\sigma_{\hat{\mathbf{u}}} = \sigma_{\mathbf{u}} \sqrt{1 - \left(\mathbf{r}_{t,t+\tau}\right)^2}$$
 (8)

where σ_u is the estimate of the zonal standard deviation for the calendar day of interest (as computed by linear interpolation of the monthly averages of the zonal standard deviation). From intuitive considerations, it is clear that if the value of $r_{t,t+7}$ is near unity, the observed value of the wind is weighed more heavily than the climatic mean in computing the forecast. Equations similar to equations (7) and (8) can be derived for forecasting other fundamental statistical parameters. A complete discussion of statistical forecasting of winds aloft using time-lag correlation coefficients is presented in reference 23.

CONCLUDING REMARKS

Serial completion and checking procedures were used to develop an improved sample of rawinsonde data for Wallops Island, Virginia. Estimates of fundamental wind statistics for upper-air winds computed from the improved sample are significantly more accurate than previously published estimates. Because the sample for Wallops Island was based on interpolated rawinsonde data from stations at Washington, D.C., and Norfolk, Virginia, the estimated statistical parameters of the wind velocity distribution are not expected to reflect the surface wind environment accurately at Wallops Island below the 3-kilometer level. However, the tabulated wind statistics for altitudes above 3 kilometers are appropriate as reference data for upper-air winds in establishing design and launch criteria as well as in supporting range operations at Wallops Island. The elliptical form of the vector (that is, bivariate) normal distribution can be used for calculating (by using the tabulated data) wind-speed and wind-direction probabilities for Wallops Island. However, the circular form of the vector normal distribution is easier to apply and provides adequate estimates of wind-speed and wind-direction probabilities for most applications. For applications where accurate wind-speed or wind-direction probabilities are needed for individual calendar days or other time periods less than a

calendar month, daily parameter values should be computed by linear interpolation of calendar month averages.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 15, 1967,
124-08-04-27-23.

THE VECTOR NORMAL DISTRIBUTION

Weaver, et al., (ref. 1) investigated several methods of computing wind-speed and wind-direction probabilities for Wallops Island and found that a model distribution (the vector normal distribution) provided more accurate probability estimates than empirical cumulative frequency methods.

By assuming the vector (that is, bivariate) normal distribution as a model of the wind-velocity distribution, the probability that a wind vector, terminating at the origin of the coordinate axes, will originate in a region S of the u,v-plane can be written as follows:

$$P(u,v) = \frac{1}{2\pi\sigma_{u}\sigma_{v}\sqrt{1 - r_{uv}^{2}}} \iint_{S} e^{-G/2} du dv$$
 (A1)

where

$$G = \frac{1}{1 - r_{uv}^2} \left[\left(\frac{u - \overline{u}}{\sigma_u} \right)^2 - \frac{2r_{uv}(u - \overline{u})(v - \overline{v})}{\sigma_u \sigma_v} + \left(\frac{v - \overline{v}}{\sigma_v} \right)^2 \right]$$

u zonal wind component

v meridional wind component

 $\sigma_{\!\scriptscriptstyle U}$ zonal standard deviation

σ_v meridional standard deviation

 r_{uv} intralevel correlation coefficient between u- and v-component

Although the estimated parameter values for Wallops Island indicate that the vector wind velocity distribution is elliptical rather than circular (that is, $\sigma_u \neq \sigma_v$ and $r_{uv} \neq 0$), the circular form of the distribution (that is, $\sigma_u = \sigma_v$ and $r_{uv} = 0$) is easier to integrate than the elliptical form. A method of treating the more general elliptical case is given in reference 19. The simpler circular form of the vector normal distribution provides estimates of wind-speed and wind-direction probabilities for Wallops Island which are adequate for most purposes. (See ref. 1.)

Wind-speed and wind-direction probabilities are found by integration of equation (A1) over appropriate regions. The integration is simpler if the following substitutions are made:

$$\begin{aligned} \mathbf{u} &= \mathbf{V} \sin \, \theta \\ \mathbf{v} &= \mathbf{V} \cos \, \theta \\ \mathbf{R} &= \mathbf{V}/\sigma_{\mathbf{u}} \\ \mathbf{c} &= \sigma_{\mathbf{v}}/\sigma_{\mathbf{u}} \\ \overline{\mathbf{u}} &= \overline{\mathbf{V}} \sin \, \overline{\theta} \\ \overline{\mathbf{v}} &= \overline{\mathbf{V}} \cos \, \overline{\theta} \\ \overline{\mathbf{R}} &= \overline{\mathbf{V}}/\sigma_{\mathbf{u}} \end{aligned}$$

A geometric description of several of these parameters is given in figure 3. Then equation (A1) becomes

$$P(R_1 \le R \le R_2, \theta_1 \le \theta \le \theta_2) = A \int_{\theta_1}^{\theta_2} \int_{R_1}^{R_2} e^{-\frac{B}{2(1-r_{uv}^2)}} R dR d\theta$$
 (A2)

where

$$A = \frac{1}{2\pi c} \frac{1}{\sqrt{1 - r_{uv}^2}}$$
 (A3)

and

$$B = R^{2} \left(\sin^{2}\theta + \frac{\cos^{2}\theta}{c^{2}} \right) + \overline{R}^{2} \left(\sin^{2}\overline{\theta} + \frac{\cos^{2}\overline{\theta}}{c^{2}} \right) - 2R\overline{R} \left(\sin \theta \sin \overline{\theta} + \frac{\cos \theta \cos \overline{\theta}}{c^{2}} \right) - \frac{2r_{uv}}{c} \left[R^{2} \sin \theta \cos \theta + \overline{R}^{2} \sin \overline{\theta} \cos \overline{\theta} - R\overline{R} \sin(\theta + \overline{\theta}) \right]$$
(A4)

For the special case of the circular distribution, equation (A2) reduces to

$$P\left(R_{1} \leq R \leq R_{2}, \phi_{1} \leq \phi \leq \phi_{2}\right) = \frac{1}{2\pi} \int_{\phi_{1}}^{\phi_{2}} \int_{R_{1}}^{R_{2}} e^{-\frac{1}{2}\left(R^{2} + \overline{R}^{2} - 2R\overline{R}\cos\phi\right)} R dR d\phi$$
(A5)

where $\sigma_{\mathbf{u}} = \sigma_{\mathbf{v}} = \sigma$ and $\phi = \theta - \overline{\theta}$.

Figure 3.- Geometric description of wind distribution parameters.

If equation (A2) is integrated over a region described by a circle around the origin of the u,v coordinate axes (with the origin of the distribution at $(\overline{u},\overline{v})$ as illustrated in figure 4), then the resulting probability will be that of a wind vector originating on or within this circle and terminating at u=v=0 (including winds from all directions). The integration limits of equation (A2) are then $\theta_1=0$ and $\theta_2=2\pi$ and $R_1=0$ and $R_2=R_2$. Since the probability is a function of the variable R_2 , this integral is solved by substituting the desired value of probability into the left-hand side of equation (A2) and a value of R_2 which satisfies equation (A2) is found by iteration. For equation (A5) a similar procedure is followed with $\phi_1=0$ and $\phi_2=2\pi$ and $R_1=0$ and $R_2=R_2$. For the elliptical distribution (eq. (A2)), the probability is a function of V/σ_u , \overline{V}/σ_u , and $\overline{\theta}$, c,r_{uv} and, therefore, it is not practical to generate a table or set of curves giving general solutions. However, for the circular distribution (eq. (A5)), a simple table can be constructed for P as a function of \overline{V}/σ and R/σ ; a plot of such a table is presented in figure 5.

Estimates of \overline{V} , σ , and $\overline{\theta}$ can be obtained by substituting the tabulated values of \overline{u} , \overline{v} , σ_u , and σ_v provided in tables III and IV of this report in the following formulas:

$$\overline{V} = \sqrt{\overline{u^2 + \overline{v^2}}} \tag{A6}$$

$$\sigma = \sqrt{\frac{\sigma_{\rm u}^2 + \sigma_{\rm v}^2}{2}} \tag{A7}$$

$$\theta = \tan^{-1}\left(\frac{\overline{u}}{\overline{v}}\right) \tag{A8}$$

The estimated values of \overline{V} , σ , and θ can be used with figure 3 to define either the probability of occurrence of a wind magnitude V or the magnitude of wind V which will correspond to a particular probability.

Probability of wind speed
(Both elliptical and circular binormal distributions)

Probability of direction (Circular distribution)

Probability of direction (Elliptical distribution)

Component winds along u-axis
(Marginal distribution)

Figure 4.- Areas of integration of probability distributions.

Figure 5.- Wind-speed probability curves for circular form of vector (bivariate) normal distribution.

Figure 6.- Wind-direction probability curves for circular form of vector (bivariate) normal distribution.

vectors having angles of θ_1 and θ_2 (or ϕ_1 and ϕ_2) is

$$P(\theta_2) - P(\theta_1) \qquad (\theta_2 > \theta_1)$$

and

$$1 + \left[P(\theta_2) - P(\theta_1) \right] \qquad (\theta_1 > \theta_2)$$

Obviously, the probability of a wind of a given magnitude coming from a specified range of direction can also be found by using equations (A2) and (A5). However, this probability value is generally not as useful as the probabilities associated with down-range and cross-range components. The procedure for obtaining the marginal distribution of the wind vector along any axis is discussed in detail in reference 1.

APPENDIX B

DISCUSSION OF PROCESS OF SERIAL COMPLETION

Limitations of the Rawinsonde System

Ground-tracked balloon-borne radio transmitters (rawinsondes) have been used routinely for years to collect data about upper-air winds. Consequently, rawinsonde data exist in sufficient number to permit statistical analysis. Although certain statistical deficiencies are present in the samples of rawinsonde data, these deficiences are often ignored for reasons of expediency (that is, a major effort would be required to correct these deficiences). However, the design and operation of complex missile and space systems has created an urgent need for better statistical descriptions of upper-air winds and has focused attention on methods of circumventing the limitations of rawinsonde samples.

A rawinsonde balloon rises at nearly a constant rate, and velocity information can be derived by timing azimuth and elevation angles of the balloon. The most significant limitation of rawinsonde data is low-elevation-angle termination which occurs when the target balloon merges with the horizon and can no longer be tracked by the electronic equipment on the ground. Because the low-elevation-angle termination is associated with high winds and high altitude levels, the missing observations introduce a systematic bias into the data.

Methods of Serial Completion

To overcome the bias from low-elevation-angle termination, a serial completion process has been developed. The methods of serial completion include every conceivable justifiable means of inferring missing data. The U.S. Navy (ref. 24) made the first major effort to fill in systematically the missing upper-air wind data. In the wind sample for reference 24, geostrophic scaling (with corrections for radius of curvature) of daily isopleth maps of constant-pressure surfaces was used to infer the missing observations. A similar method was used to complete serially the wind samples used for references 25, 26, and 27. Suitable constant-pressure charts are not usually available for single stations, and techniques other than map scaling have been used to complete serially such cases. One successful technique is a graphical time section analysis (abscissa, time; and ordinate, height). This technique was used to complete serially the data for reference 28. To complete serially the Norfolk and Washington sample used for this report, a computer program was developed to plot the time section of the data, but the actual analysis was still carried out by a trained meteorologist. Because a meteorologist necessarily uses some subjective judgment in his analysis, his role would be difficult to

APPENDIX B

automate. For this reason, serial completion projects require many man-years effort from trained analysts and are expensive (about \$4000 per station-year for the Norfolk and Washington data).

Recording of Serially Completed Data

A punched card deck has been developed at the National Weather Records Center for serially completed upper-air wind observations. Called card deck 600, the cards are punched with wind direction (degrees) and wind velocity (m/sec). Three 80-column cards represent a complete sounding and include observations at 1-km intervals from the surface to 27 km. A coded identifier is punched into each card showing data characteristics for each level of each observation. The code indicates how each accompanying observation was generated (that is, observed, corrected, interpolated, or extracted). Copies of card deck 600 (or magnetic tape records) for the Norfolk or Washington stations can be obtained from NWRC at nominal cost.

Effectiveness of Serial Completion Process in Reducing Bias

Several studies have been undertaken to determine the extent to which the bias due to missing observations was reduced by serial completion. Charles (ref. 27) discusses the effect of serial completion on the estimated values of the mean and standard deviation during the summer and winter for a number of different geographical locations (but none for the vicinity of Wallops Island). Charles compared summer and winter vertical profiles of the zonal mean wind components and their standard deviations based on serially complete and serially incomplete data. Differences in the summer season were found to be insignificant. However, during the winter the difference in the zonal mean wind component at a number of stations exceeded 5 m/sec through large thicknesses of atmosphere. Differences in excess of $2\frac{1}{2}$ m/sec through similar thicknesses occurred in the zonal standard deviation. A preliminary study of the effects of serial completion resulted in significant differences in the values of the mean wind components during the months of extreme wind speed. However, reference 28 also concluded that serial completion may not be necessary for regions and seasons of moderate winds aloft. Some preliminary results from a comparison between serially complete data and serially incomplete data from the Norfolk and Washington stations are discussed in the section of this report entitled "Accuracy of Data."

INTERPOLATION PROCEDURES FOR ADJUSTING PARAMETER ESTIMATES TO TAKE ACCOUNT OF SEASONAL VARIATION AND SHORT-TIME VARIATIONS

Importance of Seasonal Variations

For vehicle design criteria, a single wind condition based on either the entire year or the worst season of the year is usually sufficient. For launch operations, however, a more complete knowledge of wind conditions is needed, including an understanding of variations of climatological wind patterns over the year. The importance of climatological variations even over periods of only a few days was pointed out dramatically by the Scout vehicle wind loads experiment at Wallops Island (ref. 4). The problem for this launch was somewhat unusual in that there was a requirement for high wind speeds rather than low winds, but this problem is not fundamentally different from the usual case. Range requirements and experiments onboard the vehicle established an available launch period covering late October and early November. The probability of occurrence of the desired 60 m/sec wind velocity was computed by using standard data tabulated by calendar months. These computations led to the startling conclusion that the climatological probability of occurrences of this wind velocity suddenly jumped from less than 1 percent on October 31 to about 8 percent on November 1. Obviously, calendar month averages are not adequate for this type of computation, and patterns of variation over shorter periods are needed.

In this appendix seasonal patterns of statistical wind parameters based on daily averages and smoothed daily averages are presented, and some methods of representing these patterns based both on daily averages and on the usually available calendar month averages are indicated.

Daily Averages of Wind Parameter Values

The values of the mean and standard deviations for the zonal and meridional wind components were computed for every day of the year and at 1-km intervals over the altitude range of 0 to 27 km. Plots of the variation of daily values of these Wallops wind parameters with day of the year are presented in figures 7 and 8 for the altitude of 11 km. A seasonal trend is clearly present in the zonal mean data, but there is considerable scatter in the daily values. In the plots of meridional means and both zonal and meridional standard deviations, the daily scatter is large in comparison with any seasonal fluctuations and obscures the shape of any seasonal trend. The same type of scatter was found for the 27 altitude levels examined for this study.

Figure 7.- Plots of daily values of means of zonal and meridional components of wind velocity for altitude level of 11 km (as estimated from individual-calendar-day samples).

Figure 8.- Plots of daily values of standard deviations of zonal and meridional components of wind velocity for altitude level of 11 km (as estimated from individual-calendar-day samples).

Smoothed Values of Statistical Parameters

Because of the large amount of scatter in the 1-day averages, running means were computed for 1-, 3-, 5-, . . . 29-, and 31-day averaging periods for the daily means and standard deviations of the zonal and meridional components. Some results of this smoothing process are illustrated in figure 9 which shows the daily values of the zonal means for several averaging periods. The degree of smoothing shown here is typical of all the parameters and all altitudes. It can be seen that a considerable amount of scatter remains even for a 2-week averaging interval. The 31-day average appears to be most suitable for launch operation applications. It may be noted that the standard calendar month average is a close approximation to the 31-day average for the 15th day of the month. This result suggests that standard calendar month averages may provide a sufficient basis for establishing the seasonal variations.

Figure 9.- Plots of daily values of mean of zonal component of wind velocity after smoothing with a running-mean filter function for 1-, 7-, 13-, and 31-day averaging periods.

Thirty-one-day averages of the zonal and meridional components and of their standard deviations are shown in figures 10 and 11. Seasonal variations are clearly evident in all these parameters, but the magnitude of variation of both standard deviations and the meridional velocity are small compared with the variation of the zonal component. Figure 10 shows that the annual mean meridional velocity is very near zero. It is also of interest to note from figure 11 that the standard deviations of the two

components are nearly equal to each other over the entire year. This equality is necessary if the frequently used circular normal distribution is to be a good approximation.

Figure 10.- Plots of daily values (after 31-day smoothing) of means of zonal and meridional components of wind velocity for altitude of 11 km.

Figure 11.- Plots of daily values (after 31-day smoothing) of standard deviations of zonal and meridional components of wind velocity for altitude of 11 km.

Interpolation

A tabulation of the means and standard deviations of the Wallops Island wind data under discussion, day by day for each 1-km altitude interval, would exceed a hundred pages even with the smallest readable type size. Because of this great bulk of data, fitted curves or a simple interpolation scheme which would permit rapid determination of values for a given altitude and date from compact statistical data are of great utility.

When it is possible to do so, it is desirable to utilize calendar month averages for making probability estimates instead of using the daily values which are not generally available.

Several types of smooth curves (for example, a first-order trigonometric series and a third-order polynomial) were fitted to the daily parameter values. Although the smooth curves provided a compact representation of the variations, they did not provide any improvement in the overall goodness of fit to the smooth seasonal patterns when compared with calendar month averages.

A simple linear interpolation of calendar month averages of the parameter values was also used to compute parameter values for individual calendar days. The goodness of fit of the linearly interpolated values and calendar month averages of the zonal mean to the actual daily values of the zonal mean at 11-km level is shown in figure 12. A statistic

Figure 12.- Illustration of goodness of fit of calendar-month averages and linear interpolated values of the zonal mean wind to the computed daily values (after 31-day smoothing) of zonal mean at 11-km level.

which measures the goodness of fit of these curves is called the "percentage reduction of variance" and is defined as the ratio of the root-mean-square difference between a fitted curve and the actual daily values to the total variance of the daily values. The percentage reduction of variance statistics were computed for each altitude level and are plotted in figure 13. Figure 13 shows that the linear interpolation method provides a significantly better approximation of actual seasonal variations than do calendar month averages. Figure 13 also shows that the percentage reduction of variance values for the

Figure 13.- Goodness of fit of two methods of estimating daily values of zonal mean wind for each altitude level (as measured by the percentage reduction of variance).

Figure 14.- Maximum differences at the 11-km level for each calendar month between actual daily values of zonal mean (after 31-day smoothing) and daily values computed by using (1) a step function of calendar-month averages, and (2) linear interpolation of calendar-month averages.

linear interpolation method was greater than 99 percent at most altitude levels (indicating a root-mean-square error of less than 1 percent). Another important measure of goodness of fit is the maximum difference between the fitted curves and the actual daily values of the zonal mean. Figure 14 shows these maximum differences during each calendar month for the curves which were plotted in figure 12. The maximum differences associated with the linear interpolation method are generally significantly smaller than the maximum differences associated with calendar month averages. Similar results were obtained by using linear interpolation to compute daily values of the meridional mean and the standard deviation components. Because of the small root-mean-square differences and small maximum differences associated with the linear interpolation method, more complicated interpolation schemes do not appear to be justified.

Since zonal and meridional winds of a given probability of occurrence are linear combinations of the mean and standard deviations of these components, direct linear interpolation of winds of a given probability of occurrence should have correspondingly small errors, and for a location such as Wallops Island where the wind distribution is approximately the circular form of the vector normal distribution, only slight increases in error would be expected for other directions.

Seasonal Variations of Correlation Coefficients

The calendar month averages of the interlevel, intralevel, and crosslevel correlation coefficients were found to have a variety of seasonal patterns. The patterns of seasonal variation for each type of correlation coefficient are different and are dependent on the particular altitude levels involved. Some examples of the seasonal patterns of calendar month averages of the interlevel correlation coefficients between various levels are shown in figures 15. Figure 15(a) shows plots of the monthly values of the interlevel correlation coefficients between the zonal component at the 11-km level and the zonal components at the 3-, 13-, and 25-km levels. Figure 15(b) shows corresponding plots of the monthly values of the interlevel correlation coefficients between the meridional components at the 11-km level and the meridional components at the 3-, 13-, and 25-km levels. After examining the confidence intervals on the interlevel correlation (by the method suggested during the discussion of table I in "Accuracy of Data"), it was concluded that part of the erratic variation in values of the correlation coefficients is real (that is, it cannot be attributed to the limited sample size).

Other plots similar to those in figure 15 were examined for the other types of correlation coefficients but there appeared to be no uniform seasonal pattern affecting the interlevel, intralevel, crosslevel, or time-lag coefficients. However, it is believed that linear interpolation of the correlation coefficients estimated from a calendar month sample will provide improved estimates of the various types of correlation coefficients for a given calendar day.

Statistical Findings

The use of statistical parameters estimated from calendar month samples to compute probability estimates can sometimes introduce significant error at the beginning or end of a month, especially in spring or fall. Daily values of means and standard deviations from the presently available record require a large amount of smoothing. Fitted simple curves provide a compact representation which may be useful for understanding seasonal variations and for special purposes, but do not provide better estimates of daily parameter values than do calendar month averages.

(a) Interlevel correlation coefficients between zonal components.

(b) Interlevel correlation coefficients between meridional components.

Figure 15.- Variations of estimated values of interlevel correlation coefficients with calendar months.

Simple linear interpolation of calendar month estimates of the statistical parameters provides estimates of daily values with reduced average errors and reduced maximum errors. These interpolations can be made by using standard data tabulations, and this method is appropriate for making probability estimates for a given calendar day or any combination of calendar days.

REFERENCES

- 1. Weaver, William L.; Swanson, Andrew G.; and Spurling, John F.: Statistical Wind Distribution Data for Use at NASA Wallops Station. NASA TN D-1249, 1962.
- Tolefson, H. B.: An Investigation of Vertical-Wind-Shear Intensities From Balloon Soundings for Application to Airplane- and Missile-Response Problems. NACA TN 3732, 1956.
- 3. Range Reference Atmosphere Comm.: Wallops Island Test Range Reference Atmosphere (Part I). IRIG Doc. No. 104-63, Range Commanders Council, Sept. 1965.
- 4. Cochrane, James A.; and Henry, Robert M.: Seasonal Wind Patterns at Wallops Island Applied to Launch Operational Problems. Paper presented at Sixth Nat. Conf. Appl. Meteorol. (Los Angeles, Calif.), Mar. 1966.
- 5. Meteorol. Data Accuracies Comm.: Meteorological Equipment Data Accuracies. IRIG Doc. No. 110-64, Range Commanders Council, Mar. 1965. (Available from DDC as AD 467152.)
- Mather, John R., ed.: Recent Developments in Meteorological Sensors and Measuring Techniques to 150,000 Feet Part I. Analysis. Final Rep. (Contract No. DA-28-043 AMC-00001(E)), Lab. Climatol., C. W. Thornthwaite Ass., April 30, 1965. (Available from DDC as AD 616355.)
- 7. Essenwanger, O. M.; Bradford, R. E.; and Vaughan, W. W.: On Verification of Upper-Air Winds by Vertical Shear and Extremes. Monthly Weather Rev., vol. 89, 1961, pp. 197-204.
- 8. Bartlett, M. S.: Some Aspects of the Time-Correlation Problem in Regard to Tests of Significance. J. Roy. Statist. Soc. (London), vol. 98, ser. C, pt. 3, 1935, pp. 536-543.
- 9. Bartlett, M. S.: On the Theoretical Specification and Sampling Properties of Autocorrelated Time-Series. Suppl. J. Roy. Statist. Soc., vol. VIII, no. 1, 1946, pp. 27-41.
- 10. Freund, John E.: Mathematical Statistics. Prentice-Hall, Inc., c.1962.
- 11. Charles, B. N.: Empirical Models of Interlevel Correlation of Winds. J. Meteorol., vol. 16, no. 5, Oct. 1959, pp. 581-585.
- 12. Brooks, C. E. P.; and Carruthers, N.: Handbook of Statistical Methods in Meteorology. Her Majesty's Stationery Office (London), c.1953.

- 13. Lenhard, Robert W., Jr.; Court, Arnold; and Salmela, Henry A.: Variability Shown by Hourly Wind Soundings. J. Appl. Meteorol. vol. 2, no. 1, Feb. 1963, pp. 99-104.
- 14. Buell, C. Eugene: Comments on "Variability Shown by Hourly Wind Soundings" and Other Comments. J. Appl. Meteorol., vol. 2, no. 6, Dec. 1963, pp. 809-811.
- 15. Charles, B. N.: Another Reply to Comments by C. Eugene Buell on 'Variability Shown by Hourly Wind Soundings.' J. Appl. Meteorol., vol. 3, no. 2, Apr. 1964, pp. 212-213.
- 16. Ellsaesser, Hugh W.: Wind Variability. AWS TR 105-2, U.S. Air Force, Mar. 10, 1960.
- 17. Charles, B. N.: Lag Correlations of Upper Winds. J. Meteorol., vol. 16, no. 1, Feb. 1959, pp. 83-86.
- 18. Lamberth, Roy L.: On the Use of Court's Versus Durst's Techniques for Computing Vector Correlation Coefficients. J. Appl. Meteorol., vol. 5, no. 5, Oct. 1966, pp. 736-737.
- 19. Groenewoud, C.; Hoaglin, D. C.; Vitalis, J. A.; and Crutcher, H. L.: Bivariate Normal Offset Circle Probability Tables With Offset Ellipse Transformations and Applications to Geophysical Data. Vols. I to III. CAL No. XM-2464-G-1, Cornell Aeronaut. Lab., Inc., Dec. 15, 1967.
- 20. Henry, Robert M.: A Statistical Model for Synthetic Wind Profiles for Aerospace Vehicle Design and Launching Criteria. NASA TN D-1813, 1963.
- 21. Mulligan, J. E.: Analysis of the Expected Effects of Wind and Density Distribution on the Impact Coordinates of the Polaris Missile. U.S. Naval Proving Ground (Dahlgren, Virginia), June 21, 1957.
- 22. Bieber, R. E.: Missile Structural Loads by Nonstationary Statistical Methods. J. Aerospace Sci., vol. 28, no. 4, Apr. 1961, pp. 284-294.
- 23. Reed, Jack W.: Some Notes on Forecasting of Winds Aloft by Statistical Methods.

 J. Appl. Meteorol., vol. 6, no. 2, Apr. 1967, pp. 360-372.
- 24. Anon.: Tables of Winds and Their Aiding and Retarding Effect 850, 700, 500, 300, and 200 mb. NAVAER 50-1c-526, U.S. Navy, 1954.
- 25. Anon.: Probability of Fallout Debris Deposition. Tech. Bull. 11-31, Federal Civil Defense Admin. (Washington, D.C.), 1957.
- 26. Charles, B. N.: The U.S. Weather Bureau Sandia Corporation Cooperative Project in Climatology Upper Wind Statistics from USWB-FCDA Data. Final Rep. (Contract AT-(29-1)-789), Sandia Corp., Dec. 9, 1957.

- 27. Charles, B. N.: On Some Limitations of Upper Wind Records. J. Geophys. Res., vol. 64, no. 3, Mar. 1959, pp. 343-346.
- 28. Canfield, Norman L.: Smith, Orvel E.; and Vaughan, William W.: Serial Completion of Upper Wind Records. J. Geophys. Res. (Letters) vol. 72, no. 4, Feb. 1967, pp. 1389-1392.

TABLE I.- NUMBER OF ORIGINAL OBSERVATIONS (PRIOR TO SERIAL COMPLETION) IN THE 9-YEAR SAMPLE

(a) Observations made 4 times daily for years 1956 to 1964 at Norfolk, Va.

Altitude, km				Numbe	er of ob	servat	ions fo	r mont	h of –			
Atutude, Kiii	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Surface	1112	1003	1115	1079	1115	1080	1116	1108	1076	1116	1079	1112
1	1104	982	1103	1069	1106	1071	1109	1096	1065	1108	1068	1101
2	1103	993	1107	1073	1110	1077	1112	1102	1072	1112	1070	1109
3	1115	997	1107	1075	1112	1079	1114	1103	1071	1115	1076	1109
4	1101	993	1104	1074	1106	1074	1110	1101	1069	1110	1074	1104
5	1096	988	1101	1072	1104	1070	1108	1098	1064	1106	1073	1100
6	1089	981	1101	1071	1102	1069	1102	1095	1062	1116	1068	1096
7	1063	976	1089	1064	1100	1066	1100	1091	1057	1104	1064	1083
8	1035	955	1075	1048	1098	1063	1096	1087	1054	1093	1058	1065
9	996	919	1037	1030	1093	1062	1097	1084	1053	1090	1047	1025
10	943	872	994	1012	1088	1060	1089	1088	1050	1088	1032	981
11	876	819	947	986	1084	1052	1088	1087	1046	1093	1005	933
12	838	769	901	964	1069	1025	1082	1075	1039	1058	976	883
13	803	734	858	940	1049	1005	1069	1060	1027	1035	946	844
14	769	707	829	923	1033	991	1051	1042	1006	1011	900	805
15	738	690	800	905	1004	973	1024	1004	965	973	877	784
16	703	665	785	883	974	941	1000	972	929	950	860	765
17	673	642	757	850	935	918	966	938	908	919	827	743
18	648	618	745	799	913	902	950	912	888	883	811	722
19	633	608	730	782	890	890	927	897	869	861	795	704
20	611	606	719	756	868	862	906	879	855	848	786	684
21	607	590	705	728	839	830	881	852	837	824	778	660
22	586	569	676	697	808	792	854	820	814	799	737	639
23	544	537	631	645	765	733	798	774	774	760	700	615
24	503	491	565	615	710	659	706	705	718	694	660	575
2 5	447	425	471	549	624	571	613	620	643	601	584	523
26	383	349	401	483	520	481	521	512	547	486	498	449
27	302	279	316	376	428	374	412	400	454	356	375	353
Total number of possible observations	1116	1008	1116	1080	1116	1080	1116	1116	1080	1116	1080	1116

TABLE I.- NUMBER OF ORIGINAL OBSERVATIONS (PRIOR TO SERIAL COMPLETION) IN THE 9-YEAR SAMPLE - Concluded

(b) Observations made 4 times daily for years 1956 to 1964 at Washington, D.C.

A 1444 - Jan Jane				Numbe	er of ol	servat	ions fo	r mont	h of -			
Altitude, km	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Surface	1111	997	1109	1075	1113	1074	1112	1115	1076	1112	1076	1113
1	1059	956	1076	1051	1096	1055	1100	1101	1063	1090	1052	1077
2	1080	967	1084	1061	1105	1068	1110	1112	1063	1099	1066	1093
3	1081	967	1090	1058	1106	1065	1109	1114	1069	1103	1067	1096
4	1065	960	1087	1056	1103	1067	1108	1112	1072	1100	1056	1085
5	1049	931	1075	1045	1096	1067	1105	1109	1070	1100	1047	1081
6	1016	915	1055	1038	1087	1066	1099	1108	1066	1098	1028	1063
7	971	880	1026	1031	1084	1061	1095	1103	1009	1017	1003	1035
8	932	835	990	1012	1071	1059	1090	1097	996	1011	983	1001
9	888	796	957	992	1064	1056	1081	1094	887	1004	952	1063
10	835	758	906	971	1044	1052	1076	1084	1036	1073	907	907
11	786	704	867	942	1027	1044	1071	1075	1025	1054	874	853
12	744	765	828	917	997	1028	1066	1053	1008	1035	855	808
13	703	632	793	911	981	1027	1056	1037	985	1009	832	769
14	682	595	770	884	968	1006	1038	1020	954	984	819	734
15	656	569	753	857	961	985	1013	978	916	948	794	703
16	628	554	724	844	934	964	984	945	884	917	777	691
17	603	541	710	835	915	940	968	919	861	896	757	674
18	582	524	697	819	901	931	950	898	847	882	734	667
19	566	513	693	801	880	922	939	889	82 9	860	711	660
20	539	524	682	790	864	897	932	878	824	837	703	645
21	516	516	673	772	830	873	910	856	812	824	694	629
22	497	504	650	741	810	829	878	828	793	791	670	610
23	477	483	617	711	773	779	832	782	766	752	641	586
24	447	448	583	676	717	737	769	732	731	701	606	583
25	386	379	521	593	652	679	689	670	664	644	542	529
26	325	312	453	470	562	581	586	583	583	572	470	459
27	267	25 5	491	369	452	466	485	488	483	479	385	347
Total number of possible observations	1116	1008	1116	1080	1116	1080	1116	1116	1080	1116	1080	1116

TABLE II.- NUMBER OF ORIGINAL OBSERVATIONS (PRIOR TO SERIAL COMPLETION) IN THE 9-YEAR SAMPLE WHICH REQUIRED CORRECTIONS

(a) Observations made 4 times daily for years 1956 to 1964 at Norfolk, Va.

<u> </u>	l			Numbe	ma of a		tiona f		th of -			1
Altitude, km			_									
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Surface	0	0	0	0	0	0	1	0	1	0	1	2
1	0	3	1	0	1	6	2	1	0	2	0	2
2	5	10	6	4	3	3	2	3	3	6	2	7
3	9	8	16	6	3	4	1	1	5	4	6	14
4	14	8	10	7	1	5	0	0	0	2	4	10
5	10	10	12	11	2	0	0	3	2	5	4	7
6	10	11	19	9	1	3	1	1	5	7	5	6
7	11	21	24	6	1	2	1	2	3	2	14	13
8	18	15	21	9	3	2	7	4	6	8	14	12
9	21	19	9	14	4	5	5	3	1	13	13	11
10	22	28	17	10	6	6	1	5	4	6	8	13
11	16	20	16	9	4	2	4	6	3	11	11	20
12	22	16	19	14	7	3	7	7	8	7	16	22
13	21	15	13	19	6	8	5	2	6	6	17	32
14	32	19	14	13	7	3	13	3	9	8	14	18
15	22	12	7	7	4	5	11	1	4	2	7	14
16	16	15	6	9	9	3	7	4	3	2	9	12
17	14	13	16	8	3	3	7	5	7	2	13	16
18	16	22	12	10	6	7	15	10	6	8	13	18
19	13	16	16	4	9	12	14	7	3	5	11	18
20	14	15	13	12	10	8	5	10	12	10	5	30
21	13	20	23	18	14	7	2	1	10	11	11	15
22	20	18	18	27	16	8	2	1	8	15	11	15
23	8	16	11	17	16	5	1	2	11	16	17	14
24	10	20	9	16	12	7	1	5	6	19	16	19
25	10	22	9	13	14	6	1	3	3	18	11	17
26	4	12	11	9	8	5	5	2	5	15	2	12
27	7	8	4	8	5	1	1	0	4	13	4	14
Total number of possible observations	1116	1008	1116	1080	1116	1080	1116	1116	1080	1116	1080	1116

TABLE II.- NUMBER OF ORIGINAL OBSERVATIONS (PRIOR TO SERIAL COMPLETION)
IN THE 9-YEAR SAMPLE WHICH REQUIRED CORRECTIONS — Concluded

(b) Observations made 4 times daily for years 1956 to 1964 at Washington, D.C.

A7444 - 3 - 1			-	Numb	er of ol	oserva	tions fo	or mon	th of -			
Altitude, km	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Surface	0	0	0	0	0	1	0	0	0	0	0	1
1	4	4	3	3	0	0	0	0	2	1	2	3
2	6	5	6	2	0	3	0	1	3	3	6	6
3	8	8	7	7	0	2	2	1	4	7	5	9
4	15	5	4	13	3	3	0	1	4	3	10	5
5	12	11	13	10	1	2	1	2	5	4	6	12
6	6	8	11	12	0	4	0	0	0	1	11	7
7	16	9	14	8	2	4	1	3	4	5	6	14
8	12	13	19	7	4	6	4	4	5	3	2	14
9	16	18	13	6	2	2	2	9	8	3	6	10
10	15	18	19	11	5	10	2	5	5	9	6	17
11	15	18	16	7	5	2	3	3	2	5	7	12
12	12	10	10	14	10	5	3	4	7	13	3	15
13	15	13	8	16	15	5	12	6	1	9	11	12
14	18	16	10	11	6	11	11	6	4	13	6	11
15	10	5	6	4	2	6	6	4	3	4	3	5
16	10,	4	7	5	7	8	6	2	3	8	8	6
17	5	13	12	8	7	16	19	6	5	6	8	6
18	13	9	11	13	19	27	34	19	13	12	10	7
19	11	12	13	24	31	50	35	24	22	24	12	11
20	12	11	28	38	54	56	35	58	40	46	22	9
21	12	19	33	57	64	64	29	54	64	64	32	19
22	12	19	39	78	88	73	18	55	86	78	36	21
23	8	29	37	79	95	62	12	45	97	80	42	30
24	15	30	37	68	101	57	13	23	100	90	47	27
25	20	39	28	67	95	54	5	20	94	86	41	24
26	13	32	22	47	95	39	7	16	85	71	39	25
27	12	24	19	35	80	32	6	12	66	57	23	18
Total number of possible observations	1116	1008	1116	1080	1116	1080	1116	1116	1080	1116	1080	1116

TABLE III.- MEAN WIND SPEED FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE

[Sample includes observations made 4 times daily for years 1956 to 1964 at Norfolk and Washington stations]

(a) Zonal: positive wind components from west to east

Altitude, km						Zonal m	neans, m/se	ec, for -					
Aititude, kiii	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
Surface 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.512 7.221 11.6155 20.483 24.592 28.602 32.561 36.607 40.352 43.792 45.618 45.049 42.175 38.345 34.371 30.463 26.352 22.490 18.936	1,242 7,018 11,757 16,260 20,714 24,670 28,660 32,856 37,206 41,294 44,800 46,921 46,562 43,302 43,302 43,129 29,491 24,249 18,866 14,607	1.017 5.769 9.802 13.788 17.611 21.256 25.122 29.225 33.560 37.550 40.954 42.920 42.130 39.031 34.637 30.268 25.750 20.942 15.986 11.639	Apr. 1.024 6.123 9.196 11.822 14.617 17.287 19.885 25.458 25.001 27.449 29.859 31.829 31.721 29.219 26.021 22.596 18.756 14.472 10.474 7,118	May 0.100 3.886 6.588 8.575 10.567 12.472 14.348 16.192 17.982 21.435 23.006 23.392 21.879 19.363 15.910 12.661 9.325 5.846 2.922	June 0.270 3.108 4.849 6.305 7.732 9.061 10.409 11.778 13.268 14.781 16.276 17.808 18.858 18.239 15.722 12.363 8.809 5.181 1.989799	July 0.571 3.714 5.360 6.880 8.179 9.390 10.621 12.078 13.536 14.957 16.216 17.382 17.971 16.941 14.317 10.781 6.917 3.037 -3200 -3.006	Aug. 0.092 2.569 4.593 6.079 7.269 8.435 9.681 11.194 12.722 14.235 15.704 17.215 18.114 17.351 15.108 11.811 8.232 4.529 1.292 -1,500	-0.386 1.254 3.163 5.028 6.818 8.462 10.015 11.563 13.151 14.649 15.998 17.691 18.932 18.846 11.198 7.564 4.496 2.135	Oct. -0.116 1.626 3.916 5.941 7.927 9.845 11.576 13.455 15.531 17.579 19.583 21.932 23.275 23.044 21.155 18.477 15.215 11.818 8.681 8.681	0.926 5.359 8.577 11.992 15.063 17.816 20.704 23.429 26.294 28.970 31.527 34.157 34.157 32.773 29.417 25.879 21.922 17.653 13.821	1.260 7.089 11.389 15.785 20.048 23.805 27.493 31.076 34.759 38.081 41.020 42.927 42.663 39.651 35.718 31.775 27.968 23.936 20.108	0.626 4.561 7.574 10.384 13.086 15.591 18.093 20.655 23.301 25.802 28.097 29.951 30.269 28.538 25.455 21.893 14.088 10.311
20 21 22 23	16.076 14.409	11.336 8.680	8.321 5.943	4.515 2.768	.732 742	-2.923 -4.677	-5.214 -7.082	-3.817 -5.653	.435 921	4.689 3.755	10.756 8.783 7.728	16.815 14.359 13.181	7.166 4.774 3.116
22 23 24 25 26 27	13.620 13.500 13.811 14.461	6.669 5.118 4.081 3.271	4.193 3.546 2.979 2.574	1.812 1.386 1.224 1.322	-1.696 -2.089 -2.239 -2.107	-5.921 -6.797 -7.476 -8.093	-8.688 -10.017 -11.224 -12.329	-7.174 -8.374 -9.528 -10.642	-1.819 -2.480 -3.122 -3.572	3.332 3.449 3.599 4.052	7.566 8.042 8.703 9.738	12.849 13.377 14.509 16.275	2.062 1.555 1.276 .246
27	15.784 17.043	3.220 3.311	2.478 2.600	1.956 2.876	-1.766 -1.379	-8.632 -9.272	-13.324 -14.289	-11.558 -12.352	-3.955 -4.194	4.873 5.827	11.206 13.010	18.531 21.003	1.568 2.015

(b) Meridional: positive wind components from south to north

Altitude, km Surface	Jan. ~1.057	Feb.	Mar.	A	i .								
Surface				Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
1	1 490	-0.819	-0.885	0.325	0.391	0.468	0.884	0.352	-0.438	-1.148	-0.576	-0.584	-0.257
	~1.439	370	842	.478	.137	.005	.695	080	603	-1.883	174	255	361
2	-1.348	657	999	362	898	~.532	157	837	645	-1.423	.010	219	- 672
3	.283	.192	706	634	-1.277	565	296	791	214	824	.935	.896	672 297
4	.339	.914	341	634 670	-1.471	559	234	737	.086	331	1.663	1.679	231
5	.865	1.133	226	~.729	-1.581	491	267	744	.290	.179	2.106	2.436	248
6	1.336	1.578	046	-,902	-1.441	491 492	234 267 477	590	.475	.723	2.573	3.053	.028 .248 .483
7	1.629	2,209	.414	902 983	-1.497	422	547	577	.891	1.287	2.956	3.692	.754
8 }	2.120	2.830	.980	-1.199	-1.596	174	636	420	1,230	2.104	3.195	4.348	1.065
9	2.421	3,328	1.581	-1.390 -1.594	-1.625	.181	757	.038	1.577	2.965	3.296	4.910	1 377
10	2.529	3.377	1.982	~1.594	-1.875	.280	-1.137	.200	1.825	3.801	3.150	5,210	1.377 1.479
11	2.315	3.068	2.045	-1.760	-2.542	.069	-1.786	.097	2.015	4.597	2.751	4.819	1.307
12	1.774	2.246	1.535	-2.053	-3.018	535	-2.660	326	1.748	4.554	1.914	4.142	.777
13	1.242	1,702	1.082	-2.015	-2.874	-1.681 -2.486	-3.282	-,871	1.239	3.818	1.276	3.850	.291
14	1,293	1,604	1.003	-1.609	-2.964	-2.486	-3.140	~1.000	.840	2.814	1.426	3.375	.096
15	1.283	1.393	.973	-1.339	-3.100	-2.685	-2.921	-1.213	.700	2.093	1.382	3.230	-017
16 17	1.558	1.371	.924	-1.207	-2.756	-2.593	-2.393	-1.046	.354	1,617	1.117	2.977	017 006
17	1.375	1.261	.799	946	-2.294	-2.198	-1.741	782	.216	1.167	1.075	2.642	.048
18	1.342	1.128	.799 .577	784	-1.885	-1.705	-1.237	412	.153	.906	.921	2.312	.110
19	1.171	.960	.320	610	-1.417	-1.219	760	070	.147	637	.821	2.036	.168
20	1.136	.740	.228	474	959	895	507 319 282	047	.219	.637 .487	.616	1.933	.206
21	1.254	.479	.258	365	724	670	319	023	.275	.388	.382	1.764	225
22	1.376	.460	.371	238	525	543	282	027	.184	.371	.289	1.713	.225 .262
23	1.591 1.753	.272	,396	171	431	670 543 413	284	073	.072	.384	211	1.768	.277
20 21 22 23 24 25	1.753	003	.296	331	429	436	314	127	.024	.209	.107	1.901	.221
25	1.927	299	.154	425	383	430	343	202	055	.203	.061	1.936	179
26	2.192	539	.034	500	392	539	519	368	153	.138	029	2.082	1117
27	2.323	773	164	593	419	651	777	550	253	028	254	2.208	.006

TABLE IV.- STANDARD DEVIATION OF COMPONENT OF WIND VELOCITY FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE

[Sample includes observations made 4 times daily for years 1956 to 1964 at Norfolk and Washington stations]

(a) Zonal: positive wind components from west to east

	1				Zona	l standard	deviation	, m/sec, f	or -				. [
Altitude, km	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
Surface 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	3.355 7.598 7.950 9.068 10.948 12.994 15.021 16.833 18.698 19.962 20.065 19.399 18.253 14.556 12.967 14.556 12.967 14.556 12.967 14.556 12.967 14.556 12.967 14.556 12.967 11.678 10.737 9.822 8.874 8.377 8.413 9.010 9.639 10.649 11.899 13.462 15.261	3.930 8.030 7.576 8.176 9.475 11.173 13.063 14.898 16.477 17.363 17.721 17.369 16.510 14.609 12.682 11.126 10.254 9.292 8.520 8.124 7.850 7.990 8.073 8.073 8.073 8.193 8.438 9.003 9.761	3.761 7.543 7.412 8.206 9.642 11.197 13.063 14.959 16.802 17.813 17.994 17.760 16.685 15.072 13.110 11.249 10.020 9.014 8.154 7.539 7.578 8.466 9.666 9.666 10.760 12.068 13.048 13.979	3.699 7.201 6.904 7.983 9.203 10.614 13.647 15.057 15.989 16.554 16.569 13.507 11.154 9.191 7.901 6.464 5.595 4.757 5.014 5.494 6.401 7.089 8.879	3.114 6.046 5.995 6.715 7.666 8.573 9.489 10.453 11.610 12.803 13.802 14.227 13.771 10.177 8.344 7.435 6.521 4.847 4.197 3.847 3.852 4.054 4.513 5.735 6.399	2.848 5.546 5.774 6.499 7.487 8.303 9.105 10.022 10.982 12.059 14.549 14.861 13.661 11.600 9.372 7.661 6.317 5.028 4.163 3.831 3.831 3.67 3.723 4.034 4.326 4.658 4.989	2.601 4.899 4.904 5.470 5.878 6.442 7.157 7.975 8.892 9.990 11.154 12.356 10.604 8.452 6.541 5.052 4.101 3.395 3.1088 3.078 3.176 3.325 3.176 3.325 3.513 3.513 4.209	2.604 4.972 4.724 5.194 5.801 6.423 7.782 8.806 9.817 11.092 12.163 12.185 10.320 8.161 6.397 5.082 4.264 3.721 3.309 3.429 3.429 4.285	2.772 5.958 6.050 6.604 7.291 7.787 8.519 10.749 12.069 13.464 14.752 15.042 15.532 15.042 12.828 10.322 14.828 10.322 14.831 4.416 4.206 4.188 4.252 4.217 4.385 4.901	3.144 7.154 7.153 8.070 8.916 9.843 10.987 12.070 13.241 14.158 14.993 13.606 11.814 9.872 8.121 6.779 5.911 5.027 5.649 5.978 6.784 7.061 7.845	3.038 7.453 8.688 9.951 11.182 12.413 13.606 15.003 16.016 16.820 17.075 14.368 12.557 10.757 9.205 8.015 7.059 6.336 5.933 6.001 7.197 7.834 8.945 10.089 11.272	3.194 7.085 8.286 9.826 9.826 11.435 13.298 14.691 16.186 17.071 17.592 17.561 12.388 11.466 10.905 10.075 9.510 9.510 9.357 9.542 10.105 10.793 11.5645 11.	3.172 6.601 6.585 7.413 8.507 9.664 10.951 12.207 13.542 14.592 15.379 15.375 14.054 12.109 10.183 8.753 7.576 6.660 5.968 5.655 5.655 5.650 6.316 6.757 7.394 8.121 8.915

(b) Meridional: positive wind components from south to north

					Meridio	onal stand	ard deviati	ion, m/sec	e, for -				
Altitude, km	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Annual
Surface 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	4.138 9.022 9.424 10.029 11.239 12.702 15.558 16.831 17.840 17.811 17.233 15.266 12.749 9.070 6.911 6.023 5.601 5.333 5.601 5.338 7.996 7.792 9.804	4.033 8.620 9.121 9.445 10.388 11.501 12.978 14.773 16.419 17.802 18.202 17.570 16.098 13.612 11.528 9.792 8.383 7.097 5.972 5.241 4.798 4.759 4.759 4.830 4.870 4.830 4.870 4.830 5.204 5.703	4.110 8.594 8.732 9.242 10.052 11.273 12.867 14.469 17.7409 17.751 15.414 13.083 10.918 9.187 7.518 6.355 5.325 4.586 4.225 4.116 4.239 4.394 4.593 4.593 4.593 5.662 5.414	4.014 8.406 7.929 8.689 9.554 10.818 12.223 13.837 15.392 16.562 17.453 17.571 16.187 13.104 10.955 9.234 7.935 6.762 4.554 3.928 3.527 3.436 3.427 3.436 3.427 3.436 4.212 4.648	3.420 6.352 6.022 7.005 8.064 9.089 10.141 11.287 12.714 14.261 15.624 16.626 15.787 13.171 10.452 8.674 7.444 6.319 5.146 4.184 3.377 2.900 2.671 2.725 2.725 2.753 3.055	3.010 5.356 5.035 5.599 6.499 7.170 7.885 8.893 10.096 11.440 12.992 14.273 14.539 12.830 10.147 7.962 6.265 4.875 3.791 3.145 2.282 2.217 2.2182 2.212 2.210 2.310	2.834 4.938 4.567 4.847 5.369 5.763 6.455 7.337 8.607 10.352 12.089 13.526 13.948 12.841 10.090 4.562 2.846 2.456 2.195 2.131 2.077 2.077 2.150 2.209 2.472	2.966 5.006 4.812 5.178 6.284 6.822 7.837 9.119 10.716 12.880 14.626 15.359 13.585 10.546 7.907 5.929 4.380 3.411 2.433 2.127 2.133 2.127 2.118 2.127 2.198 2.320 2.487	3.523 5.929 5.358 5.688 6.223 6.856 7.505 8.368 9.520 10.895 12.436 13.5018 12.436 10.606 8.457 6.790 5.182 3.996 3.152 2.768 2.610 2.436 2.256 2.256 2.256 2.259 2.269 2.349 2.351	3.652 6.650 6.371 7.074 8.037 9.128 10.459 11.856 13.252 15.736 16.144 15.113 13.262 11.141 9.073 7.270 5.833 4.741 4.080 3.525 3.334 3.244 3.577 3.729	4.165 8.562 8.598 9.572 11.167 12.790 14.498 16.101 17.665 18.846 19.351 19.240 17.881 15.519 10.589 9.005 6.019 5.247 4.340 4.356 4.340 4.356 4.590 5.968	3. 951 8. 170 8. 522 9.447 10. 760 12. 303 14. 187 15. 983 17. 749 19. 168 17. 220 14. 416 12. 025 10. 203 8. 710 6. 399 5. 562 5. 025 4. 924 4. 856 5. 663 7. 446	3.651 7.134 7.041 7.651 8.594 9.640 10.858 12.189 13.630 14.990 16.005 16.397 15.552 13.422 10.993 8.991 7.443 6.090 4.984 4.246 3.787 3.586 4.241 4.615

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE

Sample includes observations made 4 times daily for years 1956 to 1964 at Norfolk and Washington stations

(a) January

Altitude level i,			Interlev	el corre	lation co	efficien	t (nondin	nensiona	l) for alt	itude le	vel j, ku	m, of —		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.527	0.272	0.199	0.185	0.149	0.125	0.102	0.068			-0.071		-0.117
1	0.527	1.000	0.749	0.595	0.498	0.433	0.396	0.360	0.327	0.298	0.262	0.219	0.202	0.184
2	0.272	0.749	1.000	0.855	0.754	0.689	0.645	0.606	0.571	0.548	0.521	0.479	0.455	0.427
3	0.199	0.595	0.855	1.000	0.908	0.845	0.803	0.766	0.731	0.702	0.672	0.627	0.598	0.566
4	0.185	0.498	0.754	0.908	1.000	0.938	0.891	0.854	0.815	0.778	0.741	0.686	0.642	0.605
5	0.149	0.433	0.689	0.845	0.938	1.000	0.953	0.911	0.869	0.829	0.792	0.732	0.681	0.642
6	0.125	0.396	0.645	0.803	0.891	0.953	1.000	0.958	0.912	0.869	0.830	0.770	0.716	0.671
7	0.102	0.360	0.606	0.766	0.854	0.911	0.958	1.000	0.959	0.916	0.871	608.0	0.743	0.688
8	0.068	0.327	0.571	0.731	0.815	0.869	0.912	0.959	1.000	0.963	0.912	0.841	0.771	0.708
9	0.037	0.298	0.548	0.702	0.778	0.829	0.869	0.916	0.963	1.000	0.956	0.882	0.803	0.730
10	-0.007	0.262	0.521	0.672	0.741	0.792	0.830	0.871	0.912	0.956	1.000	0.940	0.854	0.775
11	-0.071	0.219	0.479	0.627	0.686	0.732	0.770	0.806	0.841	0.882	0.940	1.000	0.932	0.848
12	-0.107	0.202	0.455	0.598	0.642	0.681	0.716	0.743	0.771	0.803	0.854	0.932	1.000	0.926
13	-0.117	0.184	0.427	0.566	0.605	0.642	0.671	0.688	0.708	0.730	0.775	0.848	0.926	1.000
14	-0.106	0.186	0.421	0.549	0.580	0.614	0.638	0.652	0.661	0.676	0.712	0.777	0.850	0.923
15	-0.100	0.183	0.413	0.532	0.557	0.588	0.611	0.617	0.621	0.632	0.666	0.729	0.800	0.857
16	-0.085	0.173	0.397	0.504	0.531	0.558	0.579	0.578	0.577	0.580	0.610	0.673	0.745	0.799
17	-0.087	0.149	0.363	0.460	0.487	0.512	0.531	0.528	0.521	0.517	0.543	0.604	0.677	0.731
18	-0.096	0.121	0.328	0.422	0.451	0.473	0.491	0.487	0.478	0.472	0.495	0.546	0.603	0.657
19	-0.091	0.098	0.280	C.370	0.396	0.412	0.426	0.424	0.408	0.405	0.425	0.476	0.531	0.577
2.0	-0.057	0.095	0.247	0.325	0.340	0.346	0.351	0.345	0.332	0.324	0.333	0.375	0.439	0.474
21	-0.031	0.076	0.212	0.272	0.277	0.281	0.284	0.279	0.265	0.250	0.252	0.276	0.331	0.363
22	-0.023	0.059	0.156	0.196	0.202	0.207	0.200	0.200	0.183	0.169	0.170	0.189	0.238	0.260
23	0.005	0.062	0.121	0.143	0.147	0.142	0.132	0.123	0.105	0.089	0.095	0.115	0.157	0.173
24	0.023	0.053	0.087	0.091	0.086	0.080	0.068	0.054	0.034	0.016	0.019	0.039	0.076	0.090
25	0.026	0.028	0.042	0.036	0.034	0.033	0.025	0.012	0.001	-0.019	-0.017	-0.000	0.036	0.052
26	0.037	0.014	0.011	0.008	0.007	0.007	-0.001	-0.010	-0.016	-0.033	-0.028	-0.017	0.014	0.023
27	0.057	0.023	0.012	0.004	0.003	0.002	-0.010	-0.017	-0.027	-0.044	-0.041	-0.027	0.001	0.012

(a) January - Concluded

Altitude level i,			Interle	vel corr	elation c	oefficien	t (nondir	nensiona	l) for alt	itude lev	el j, k	m, of –		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0						-0.091				0.005	0.023	0.026	0.037	0.057
1	0.186	0.183	0.173	0.149	0.121	0.098	0.095	0.076	0.059	0.062	0.053	0.028	0.014	0.023
2	0.421	0.413	0.397	0.363	0.328	0.280	0.247	0.212	0.156	0.121	0.087	0.042	0.011	0.012
3	0.549	0.532	0.504	0.460	0.422	0.370	0.325	0.272	0.196	0.143	0.091	0.036	0.008	0.004
4	0.580	0.557	0.531	0.487	0.451	0.396	0.340	0.277	0.202	0.147	0.086	0.034	0.007	0.003
5	0.614	0.588	0.558	0.512	0.473	0.412	0.346	0.281	0.207	0.142	0.080	0.033	0.007	0.002
6	0.638	0.611	0.579	0.531	0.491	0.426	0.351	0.284	0.200	0.132	0.068	0.025	-0.001	-0.010
7	0.652	0.617	0.578	0.528	0.487	0.424	0.345	0.279	0.200	0.123	0.054	0.012	-0.010	-0.017
8	0.661	0.621	0.577	0.521	0.478	0.408	0.332	0.265	0.183	0.105	0.034	0.001	-0.016	-0.027
9	0.676	0.632	0.580	0.517	0.472	0.405	0.324	0.250	0.169	0.089	0.016	-0.019	-0.033	-0.044
10	0.712	0.666	0.610	0.543	0.495	0.425	0.333	0.252	0.170	0.095	0.019	-0.017	-0.028	-0.041
11	0.777	0.729	0.673	0.604	0.546	0.476	0.375	0.276	0.189	0.115	0.039	-0.000	-0.017	-0.027
12	0.850	0.800	0.745	0.677	0.603	0.531	0.439	0.331	0.238	0.157	0.076	0.036	0.014	0.001
13	0.923	0.857	0.799	0.731	0.657	0.577	0.474	0.363	0.260	0.173	0.090	0.052	0.023	0.012
14	1.000	0.923	0.836	0.769	0.694	0.603	0.496	0.392	0.277	0.179	0.094	0.048	0.020	0.009
15	0.923	1.000	0.911	0.814	0.738	0.645	0.539	0.432	0.316	0.213	0.125	0.076	0.039	0.024
16	0.836	0.911	1.000	C.900	0.798	0.714	0.609	0.501	0.376	0.273	0.189	0.130	0.087	0.062
17	0.769	0.814	0.900	1.000	0.897	0.767	0.657	0.559	0.439	0.330	0.246	0.187	0.141	0.110
18	0.694	0.738	0.798	0.897	1.000	0.880	0.732	0.624	0.506	0.396	0.309	0.253	0.207	0.168
19	0.603	0.645	0.714	0.767	0.880	1.000	0.863	0.706	0.580	0.478	0.396	0.336	0.289	0.246
20	0.496	0.539	0.609	0.657	0.732	0.863	1.000	0.853	0.704	0.606	0.525	0.457	0.405	0.357
21	0.392	0.432	0.501	0.559	0.624	0.706	0.853	1.000	0.867	0.729	0.637	0.569	0.519	0.463
22	0.277	0.316	0.376	0.439	0.506	0.580	0.704	0.867	1.000	0.886	0.772	0.695	0.629	0.568
23	0.179	0.213	0.273	0.330	0.396	0.478	0.606	0.729	0.886	1.000	0.911	0.810	0.738	0.680
24	0.094	0.125	0.189	0.246	0.309	0.396	0.525	0.637	0.772	0.911	1.000	0.928	0.845	0.782
25	0.048	0.076	0.130	0.187	0.253	0.336	0.457	0.569	0.695	0.810	0.928	1.000	0.942	0.875
26	0.020	0.039	0.087	0.141	0.207	0.289	0.405	0.519	0.629	0.738	0.845	0.942	1.000	0.955
27	0.009	0.024	0.062	0.110	0.168	0.246	0.357	0.463	0.568	0.680	0.782	0.875	0.955	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY
AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(b) February

Altitude			Interle	vel corre	elation c	oefficien	t (nondin	nensiona	l) for alt	itude lev	el j, k	m, of -		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
o	1.000	0.627	0.392	0.291	0.253	0.228	0.216	0.184	0.150	0.108	0.047	-0.020	-0.078	-0.105
1	0.627	1.000	0.736	0.552	0.461	0.402	0.365	0.328	0.281	0.228	0.178	0.141	0.109	0.101
2	0.392	0.736	1.000	0.816	0.687	0.613	0.560	0.512	0.462	0.406	0.353	0.297	0.267	0.271
3	0.291	0.552	0.816	1.000	0.880	0.785	0.729	0.684	0.640	0.585	0.527	0.459	0.418	0.400
4	0.253	0.461	0.687	0.880	1.000	0.904	0.838	0.787	0.737	0.681	0.617	0.546	0.490	0.460
5	0.228	0.402	0.613	0.785	0.904	1.000	0.934	0.878	0.822	0.758	0.690	0.611	0.542	0.507
6	0.216	0.365	0.560	0.729	0.838	0.934	1.000	0.945	0.886	0.819	0.746	0.657	0.576	0.530
7	0.184	0.328	0.512	0.684	0.787	0.878	0.945	1.000	0.948	0.880	0.810	0.719	0.627	0.572
8	0.150	0.281	0.462	0.640	0.737	0.822	0.886	0.948	1.000	0.944	0.872	0.776	0.672	0.607
9	0.108	0.228	0.406	0.585	0.681	0.758	0.819	0.880	0.944	1.000	0.937	0.843	0.733	0.654
10	0.047	0.178	0.353	0.527	0.617	0.690	0.746	0.810	0.872	0.937	1.000	0.922	0.810	0.721
11	-0.020	0.141	0.297	0.459	0.546	0.611	0.657	0.719	0.776	0.843	0.922	1.000	0.906	0.801
12	-0.078	0.109	0.267	0.418	0.490	0.542	0.576	0.627	0.672	0.733	0.810	0.906	1.000	0.897
13	-0.105	0.101	0.271	C.400	0.460	0.507	0.530	0.572	0.607	0.654	0.721	0.801	0.897	1.000
14	-0.106	0.094	0.254	0.367	0.429	0.473	0.495	0.530	0.558	0.597	0.659	0.727	0.783	0.879
15	-0.094	0.077	0.230	0.344	0.411	0.449	0.462	0.488	0.513	0.550	0.601	0.657	0.702	0.767
16	-0.090	0.073	0.223	0.327	0.399	0.430	0.435	0.452	0.465	0.487	0.533	0.579	0.626	0.688
17	-0.104	0.044	0.203	0.293	0.362	0.389	0.388	0.403	0.407	0.420	0.461	0.495	0.538	0.604
18	-0.101	0.009	0.160	0.251	0.313	0.339	0.336	0.347	0.338	0.345	0.383	0.409	0.446	0.508
19	-0.077	-0.001	0.126	0.213	0.270	0.289	0.281	0.289	0.280	0.281	0.316	0.328	0.354	0.409
20	-0.045	0.009	0.104	0.193	0.252	0.265	0.250	0.252	0.243	0.242	0.277	0.283	0.310	0.354
21	-0.022	0.018	0.090	0.165	0.216	0.224	0.215	0.216	0.201	0.203	0.236	0.240	0.265	0.302
	-0.015	0.021	0.094	0.176	0.221	0.233	0.223	0.223	0.202	0.199	0.231	0.225	0.237	0.273
23	-0.002	0.044	0.101	0.175	0.204	0.211	0.204	0.202	0.181	0.184	0.222	0.225	0.243	0.278
24	0.008	0.067	0.112	0.185	0.208	0.209	0.203	0.203	0.177	0.183	0.224	0.233	0.255	0.291
25	0.023	0.097	0.138	0.200	0.217	0.208	0.205	0.205	0.183	0.194	0.235	0.242	0.265	0.298
26	0.038	0.103	0.142	0.195	0.212	0.198	0.199	0.203	0.186	0.200	0.236	0.245	0.266	0.292
27	0.032	0.102	0.137	0.188	0.206	0.192	0.202	0.210	0.200	0.210	0.243	0.251	0.273	0.299

(b) February — Concluded

Altitude level i,			Interlev	el corre	elation c	oefficien	t (nondin	nensiona	l) for alt	itude lev	elj, kn	n, of —		
km ,	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.106	-0.094	-0.090	-0.104	-0.101	-0.077	-0.045	-0.022	-0.015	-0.002	0.008	0.023	0.038	0.032
1	0.094	0.077	0.073	0.044	0.009	-0.001	0.009	0.018	0.021	0.044	0.067	0.097	0.103	0.102
2	0.254	0.230	0.223	0.203	0.160	0.126	0.104	0.090	0.094	0.101	0.112	0.138	0.142	0.137
3	0.367	0.344	0.327	0.293	0.251	0.213	0.193	0.165	0.176	0.175	0.185	0.200	0.195	0.188
4	0.429	0.411	0.399	0.362	0.313	0.270	0.252	0.216	0.221	0.204	0.208	0.217	0.212	0.206
5	0.473	0.449	0.430	0.389	0.339	0.289	0.265	0.224	0.233	0.211	0.209	0.208	0.198	0.192
6	0.495	0.462	0.435	0.388	0.336	0.281	0.250	0.215	0.223	0.204	0.203	0.205	0.199	0.202
7	0.530	0.488	0.452	0.403	0.347	0.289	0.252	0.216	0.223	0.202	0.203	0.205	0.203	0.210
8	0.558	0.513	0.465	0.407	0.338	0.280	0.243	0.201	0.202	0.181	0.177	0.183	0.186	0.200
9	0.597	0.550	0.487	0.420	0.345	0.281	0.242	0.203	0.199	0.184	0.183	0.194	0.200	0.210
10	0.659	0.601	0.533	0.461	0.383	0.316	0.277	0.236	0.231	0.222	0.224	0.235	0.236	0.243
11	0.727	0.657	0.579	0.495	0.409	0.328	0.283	0.240	0.225	0.225	0.233	0.242	0.245	0.251
12	0.783	0.702	0.626	0.538	0.446	0.354	0.310	0.265	0.237	0.243	0.255	0.265	0.266	0.273
13	0.879	0.767	0.688	0.604	0.508	0.409	0.354	0.302	0.273	0.278	0.291	0.298	0.292	0.299
14	1.000	0.886	0.759	0.659	0.568	0.455	0.398	0.334	0.292	0.285	0.296	0.305	0.294	0.291
15	0.886	1.000	0.879	0.734	0.638	0.535	0.456	0.390	0.342	0.310	0.308	0.306	0.294	0.285
16	0.759	0.879	1.000	0.867	0.716	0.621	0.541	0.476	0.431	0.389	0.368	0.347	0.319	0.295
17	0.659	0.734	0.867	1.000	0.850	0.703	0.625	0.550	0.508	0.456	0.414	0.368	0.335	0.293
18	0.568	0.638	0.716	0.850	1.000	0.849	0.711	0.639	0.591	0.538	0.484	0.424	0.386	0.324
19	0.455	0.535	0.621	0.703	0.849	1.000	0.848	0.722	0.665	0.608	0.556	0.480	0.425	0.348
20	0.398	0.456	0.541	0.625	0.711	0.848	1.000	0.852	0.759	0.697	0.637	0.559	0.503	0.413
21	0.334	0.390	0.476	0.550	0.639	0.722	0.852	1.000	0.883	0.780	0.698	0.614	0.550	0.457
22	0.292	0.342	0.431	0.508	0.591	0.665	0.759	0.883	1.000	0.897	0.789	0.690	0.617	0.521
23	0.285	0.310	0.389	0.456	0.538	0.608	0.697	0.780	0.897	1.000	0.894	0.779	0.693	0.595
24	0.296	0.308	0.368	0.414	0.484	0.556	0.637	0.698	0.789	0.894	1.000	0.896	0.789	0.691
25	0.305	0.306	0.347	0.368	0.424	0.480	0.559	0.614	0.690	0.779	0.896	1.000	0.915	0.818
26	0.294	0.294	0.319	0.335	0.386	0.425	0.503	0.550	0.617	0.693	0.789	0.915	1.000	0.926
27	0.291	0.285	0.295	0.293	0.324	0.348	0.413	0.457	0.521	0.595	0.691	0.818	0.926	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(c) March

Altitude level i,			Interle	vel corre	lation co	efficien	t (nondin	ensional	l) for alt	itude lev	el j, kr	n, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
a	1.000	0.606	0.359	0.279	0.223	0.183	0.170	0.155	0.125	0.082	0.033	-0.017	-0.054	-0.036
1	0.606	1.000	0.723	0.539	0.460	0.396	0.359	0.322	0.285	0.238	0.189	0.145	0.127	0.144
2	0.359	0.723	1.000	0.830	0.715	0.642	0.594	0.542	0.495	0.438	0.380	0.337	0.323	0.348
3	0.279	0.539	0.830	1.006	0.883	0.809	0.754	0.702	0.649	0.588	0.527	0.481	0.456	0.467
4	0.223	0.460	0.715	0.883	1.000	0.915	0.850	0.796	0.739	0.674	0.610	0.561	0.523	0.527
5	0.183	0.396	0.642	0.809	0.915	1.000	0.936	0.875	0.819	0.755	0.686	0.629	0.585	0.577
6	0.170	0.359	0.594	0.754	0.850	0.936	1.000	0.944	0.884	0.819	0.748	0.682	0.630	0.610
7	0.155	0.322	0.542	0.702	0.796	0.875	0.944	1.000	0.952	0.889	0.811	0.736	0.674	0.636
8	0.125	0.285	0.495	0.649	0.739	0.819	0.884	0.952	1.000	0.949	0.876	0.797	0.721	0.665
9	0.082	0.238	0.438	0.588	0.674	0.755	0.819	0.889	0.949	1.000	0.944	0.864	0.774	0.701
10	0.033	0.189	0.380	0.527	0.610	0.686	0.748	0.811	0.876	0.944	1.000	0.934	0.837	0.747
11	-0.017	0.145	0.337	0.481	0.561	0.629	0.682	0.736	0.797	0.864	0.934	1.000	0.916	0.818
12	-0.054	0.127	0.323	0.456	0.523	0.585	0.630	0.674	0.721	0.774	0.837	0.916	1.000	0.909
13	-0.036	0.144	0.348	0.467	0.527	0.577	0.610	0.636	0.665	0.701	0.747	0.818	0.909	1.000
14	-0.039	0.129	0.324	0.445	0.511	0.554	0.587	0.608	0.629	0.661	0.695	0.749	0.824	0.913
15	-0.036	0.119	0.300	0.406	0.469	0.510	0.545	0.565	0.585	0.617	0.644	0.690	0.761	0.840
16	-0.007	0.127	0.293	0.381	0.436	0.474	0.509	0.529	0.543	0.571	0.590	0.631	0.702	0.772
17	-0.021	0.088	0.248	0.331	0.376	0.416	0.442	0.465	0.481	0.498	0.509	0.544	0.619	0.679
18	-0.052	0.033	0.164	0.242	0.291	0.318	0.341	0.362	0.375	0.390	0.402	0.430	0.502	0.570
19	-0.640	0.004	0.096	0.160	0.191	0.209	0.228	0.248	0.264	0.279	0.292	0.307	0.367	0.443
20	-0.010	-0.005	0.063	0.103	0.120	0.138	0.154	0.166	0.173	0.186	0.189	0.201	0.258	0.328
21	0.002	-0.024	0.016	0.032	0.048	0.064	0.085	0.091	0.088	0.098	0.106	0.122	0.179	0.251
22	0.004	-0.035	-0.013	0.001	0.015	0.032	0.050	0.055	0.052	0.058	0.065	0.079	0.129	0.192
23	0.005	-0.047	-0.025	-0.020	-0.006	0.013	0.033	0.042	0.037	0.042	0.052	0.067	0.117	0.184
24	-0.020	-0.061	-0.022	-0.017	800.U-	0.008	0.024	0.031	0.026	0.032	0.044	0.053	0.104	0.172
25	-0.048	-0.079	-0.033	-0.031	-0.015	0.000	0.018	0.028	0.026	0.032	0.042	0.048	0.096	0.161
26	-0.052	-0.081	-0.043	-0.044	-0.031	-0.016	0.006	0.014	0.015	0.023	0.030	0.038	0.082	0.145
27	-0.048	-0.077	-0.053	-0.060	-0.051	-0.035	-0.015	-0.009	-0.010	-0.004	0.005	0.015	0.060	0.127

(c) March - Concluded

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alt	itude lev	el j, kn	n, of -		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0						-0.040		0.002	0.004				-0.052	
1	0.129	0.119	0.127	0.088	0.033								-0.081	
2	0.324	0.300	0.293	0.248	0.164	0.096	0.063						-0.043	
3	0.445	0.406	0.381	0.331	0.242	0.160	0.103	0.032					-0.044	
4	0.511	0.469	0.436	0.376	0.291	0.191	0.120	0.048			-0.008		-0.031	
5	0.554	0.510	0.474	0.416	0.318	0.209	0.138	0.064	0.032	0.013	0.008	0.000	-0.016	-0.035
6	0.587	0.545	0.509	0.442	0.341	0.228	0.154	0.085	0.050	0.033	0.024	0.018	0.006	-0.015
7	0.608	0.565	0.529	0.465	0.362	0.248	0.166	0.091	0.055	0.042	0.031	0.028	0.014	-0.009
8	0.629	0.585	0.543	0.481	0.375	0.264	0.173	0.088	0.052	0.037	0.026	0.026		-0.010
9	0.661	0.617	0.571	0.498	0.390	0.279	0.186	0.098	0.058	0.042	0.032	0.032	0.023	-0.004
10	0.695	0.644	0.590	0.509	0.402	0.292	0.189	0.106	0.065	0.052	0.044	0.042	0.030	0.005
11	0.749	0.690	0.631	0.544	0.430	0.307	0.201	0.122	0.079	0.067	0.053	0.048	0.038	0.015
12	0.824	0.761	0.702	0.619	0.502	0.367	0.258	0.179	0.129	0.117	0.104	0.096	0.082	0.060
13	0.913	0.840	0.772	0.679	0.570	0.443	0.328	0.251	0.192	0.184	0.172	0.161	0.145	0.127
14	1.000	0.906	0.801	0.701	0.615	0.495	0.378	0.304	0.242	0.221	0.210	0.197	0.179	0.158
15	0.906	1.000	0.881	0.731	0.645	0.539	0.432	0.348	0.280	0.263	0.250	0.228	0.207	0.187
16	0.801	188.0	1.000	0.860	0.707	0.597	0.507	0.427	0.355	0.340	0.319	0.292	0.278	0.257
17	0.701	0.731	0.860	1.000	0.842	0.679	0.580	0.505	0.451	0.424	0.395	0.370	0.356	0.333
18	0.615	0.645	0.707	0.842	1.000	0.837	0.683	0.614	0.569	0.539	0.515	0.493	0.478	0.449
19	0.495	0.539	0.597	0.679	0.837	1.000	0.842	0.732	0.685	0.648	0.632	0.607	0.595	0.567
20	0.378	0.432	0.507	0.580	0.683	0.842	1.000	0.866	0.769	0.733	0.721	0.703	0.692	0.665
21	0.304	0.348	0.427	0.505	0.614	0.732	0.866	1.000	0.884	0.806	0.794	0.771	0.753	0.728
22	0.242	0.280	0.355	0.451	9.569	0.685	0.769	0.884	1.000	0.911	0.858	0.829	0.808	0.785
23	0.221	0.263	0.340	0.424	0.539	0.648	0.733	0.806	0.911	1.000	0.937	0.887	0.859	0.834
24	0.210	0.250	0.319	0.395	0.515	0.632	0.721	0.794	0.858	0.937	1.000	0.957	0.916	0.889
25	0.197	0.228	0.292	0.370	0.493	0.607	0.703	0.771	0.829	0.887	0.957	1.000	0.966	0.928
26	0.179	0.207	0.278	0.356	0.478	0.595	0.692	0.753	0.808	0.859	0.916	0.966	1.000	0.967
27	0.158	0.187	0.257	0.333	0.449	0.567	0.665	0.728	0.785	0.834	0.889	0.928	0.967	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(d) April

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alt	itude lev	el j, kn	n, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.609	0.382	0.323	0.281	0.267	0.264	0.246	0.215	0.186	0.145	0.088	0.037	0.030
1	0.609	1.000	0.722	0.525	0.440	0.402	0.374	0.351	0.312	0.273	0.227	0.185	0.151	0.143
2	0.382	0.722	1.000	0.814	0.699	0.625	0.581	0.551	0.511	0.475	0.440	0.399	0.376	0.361
3	0.323	0.525	0.814	1.000	0.888	0.800	0.749	0.712	0.676	0.637	0.607	0.564	0.537	0.510
4	0.281	0.440	0.699	0.888	1.000	0.915	0.859	0.815	0.776	0.736	0.699	0.649	0.611	0.581
5	0.267	0.402	0.625	0.800	0.915	1.000	0.942	0.896	0.857	0.814	0.767	0.708	0.657	0.620
6	0.264	0.374	0.581	0.749	0.859	0.942	1.000	0.953	0.911	0.867	0.811	0.741	0.683	0.644
7	0.246	0.351	0.551	0.712	0.815	0.896	0.953	1.000	0.960	0.914	0.855	0.779	0.713	0.665
8	0.215	0.312	0.511	0.676	0.776	0.857	0.911	0.960	1.000	0.957	0.899	0.822	0.751	0.697
9	0.186	0.273	0.475	0.637	0.736	0.814	0.867	0.914	0.957	1.000	0.951	0.878	0.799	0.735
10	0.145	0.227	0.440	0.607	0.699	0.767	0.811	0.855	0.899	0.951	1.000	0.942	0.862	0.781
11	0.088	0.185	0.399	0.564	0.649	0.708	0.741	0.779	0.822	0.878	0.942	1.000	0.926	0.830
12	0.037	0.151	0.376	0.537	0.611	0.657	0.683	0.713	0.751	0.799	0.862	0.926	1.000	0.903
13	0.030	0.143	0.361	0.510	0.581	0.620	0.644	0.665	0.697	0.735	0.781	0.830	0.903	1.000
14	0.045	0.127	0.331	0.487	0.558	0.600	0.622	0.643	0.677	0.710	0.749	0.786	0.829	0.897
15	0.065	0.110	0.294	0.447	0.519	0.565	0.590	0.616	0.649	0.679	0.714	0.745	0.781	0.799
16	0.059	0.068	0.243	0.380	0.457	0.501	0.528	0.548	0.580	0.616	0.644	0.668	0.701	0.720
17	0.035	-0.002	0.158	0.287	0.360	0.406	0.431	0.456	0.489	0.535	0.565	0.582	0.607	0.620
18	0.008	-0.026	0.098	0.215	0.276	0.320	0.341	0.362	0.394	0.435	0.471	0.487	0.497	0.513
19	0.007	-0.039	0.076	0.194	0.238	0.277	0.297	0.320	0.339	0.373	0.408	0.425	0.429	0.438
20	0.007	-0.044	0.056	C.152	0.197	0.238	0.250	0.269	0.287	0.304	0.329	0.337	0.342	0.338
21		-0.036	0.027	0.106	0.150	0.185	0.197	0.222	0.230	0.242	0.259	0.265	0.271	0.272
22		-0.027	0.030	0.083	0.116	0.146	0.151	0.172	0.176	0.183	0.193	0.200	0.213	0.227
23		-0.028	0.024	0.066	0.093	0.123	0.125	0.141	0.143	0.146	0.150	0.156	0.175	0.199
24		-0.020	0.021	0.051	0.067	0.092	0.093	0.109	0.105	0.105	0.104	0.110	0.132	0.159
25		-0.005	0.006	0.033	0.054	0.073	0.075	0.095	0.090	0.094	0.096	0.095	0.109	0.138
26		-0.002	0.000	0.030	0.047	0.063	0.064	0.078	0.078	0.080	0.081	0.082	0.099	0.131
27	0.052	0.004	0.002	0.023	0.036	0.049	0.051	0.063	0.060	0.062	0.062	0.061	0.078	0.116

(d) April - Concluded

Altitude			Interlet	vel corre	lation c	oefficien	t (nondin	nensiona	l) for alt	itude lev	elj, kn	n, of —		
level i, km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.045	0.065	0.059	0.035	0.008	0.007	0.007	0.023	0.026	0.027	0.034	0.053	0.050	0.052
1	0.127	0.110	0.068	-0.002	-0.026	-0.039	-0.044	-0.036	-0.027	-0.028	-0.020	-0.005	-0.002	0.004
2	0.331	0.294	0.243	0.158	0.098	0.076	0.056	0.027	0.030	0.024	0.021	0.006	0.000	0.002
3	0.487	0.447	0.380	0.287	0.215	0.194	0.152	0.106	0.083	0.066	0.051	0.033	0.030	0.023
4	0.558	0.519	0.457	0.360	0.276	0.238	0.197	0.150	0.116	0.093	0.067	0.054	0.047	0.036
5	0.600	0.565	0.501	0.406	0.320	0.277	0.238	0.185	0.146	0.123	0.092	0.073	0.063	0.049
6	0.622	0.590	0.528	0.431	0.341	0.297	0.250	0.197	0.151	0.125	0.093	0.075	0.064	0.051
7	0.643	0.616	0.548	0.456	0.362	0.320	0.269	0.222	0.172	0.141	0.109	0.095	0.078	0.063
8	0.677	0.649	0.580	0.489	0.394	0.339	0.287	0.230	0.176	0.143	0.105	0.090	0.078	0.060
9	0.710	0.679	0.616	0.535	0.435	0.373	0.304	0.242	0.183	0.146	0.105	0.094	0.080	0.062
10	0.749	0.714	0.644	0.565	0.471	0.408	0.329	0.259	0.193	0.150	0.104	0.096	0.081	0.062
11	0.786	0.745	0.668	0.582	0.487	0.425	0.337	0.265	0.200	0.156	0.110	0.095	0.082	0.061
12	0.829	0.781	0.701	0.607	0.497	0.429	0.342	0.271	0.213	0.175	0.132	0.109	0.099	0.078
13	0.897	0.799	0.720	0.620	0.513	0.438	0.338	0.272	0.227	0.199	0.159	0.138	0.131	0.116
14	1.000	0.879	0.761	0.668	0.567	0.481	0.366	0.284	0.234	0.209	0.170	0.146	0.135	0.119
15	0.879	1.000	0.866	0.713	0.626	0.534	0.408	0.335	0.280	0.250	0.211	0.190	0.178	0.158
16	0.761	0.866	1.000	0.822	0.653	0.562	0.435	0.368	0.325	0.299	0.259	0.243	0.235	0.222
17	0.668	0.713	0.822	1.000	0.790	0.623	0.520	0.442	0.381	0.352	0.304	0.292	0.281	0.258
18	0.567	0.626	0.653	0.790	1.000	0.768	0.581	0.533	0.467	0.424	0.378	0.365	0.349	0.317
19	0.481	0.534	0.562	0.623	0.768	1.000	0.760	0.643	0.571	0.525	0.479	0.450	0.423	0.388
20	0.366	0.408	0.435	0.520	0.581	0.760	1.000	0.796	0:667	0.616	0.576	0.541	0.498	0.459
21	0.284	0.335	0.368	0.442	0.533	0.643	0.796	1.000	0.831	0.720	0.673	0.645	0.596	0.552
22	0.234	0.280	0.325	0.381	0.467	0.571	0.667	0.831	1.000	0.871	0.780	0.737	0.687	0.653
23	0.209	0.250	0.299	0.352	0.424	0.525	0.616	0.720	0.871	1.000	0.902	0.832	0.784	0.753
24	0.170	0.211	0.259	0.304	0.378	0.479	0.576	0.673	0.780	0.902	1.000	0.918	0.852	0.807
25	0.146	0.190	0.243	0.292	0.365	0.450	0.541	0.645	0.737	0.832	0.918	1.000	0.939	0.880
26	0.135	0.178	0.235	0.281	0.349	0.423	0.498	0.596	0.687	0.784	0.852	0.939	1.000	0.949
27	0.119	0.158	0.222	0.258	0.317	0.388	0.459	0.552	0.653	0.753	0.807	0.880	0.949	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(e) May

Altitude level i,			Interlev	el corre	lation co	efficient	t (nondim	ensional) for alti	tude lev	el j, km	, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.599	0.375	0.308	0.290	0.261	0.211	0.177	0.146	0.127	0.103	0.085	0.061	0.033
1	0.599	1.000	0.686	0.525	0.461	0.426	0.363	0.316	0.266	0.230	0.200	0.180	0.163	0.153
2	0.375	0.686	1.000	0.833	0.741	0.694	0.629	0.569	0.514	0.463	0.429	0.403	0.386	0.375
3	0.308	0.525	0.833	1.000	0.891	0.823	0.758	0.700	0.653	0.604	0.566	0.537	0.513	0.494
4	0.290	0.461	0.741	0.891	1.000	0.922	0.860	0.802	0.755	0.708	0.671	0.634	0.601	0.572
5	0.261	0.426	0.694	0.823	0.922	1.000	0.926	0.865	0.816	0.768	0.727	0.688	0.656	0.625
6	0.211	0.363	0.629	0.758	0.860	0.926	1.000	0.936	0.888	0.842	0.796	0.754	0.713	0.682
7	0.177	0.316	0.569	0.700	0.802	0.865	0.936	1.000	0.949	0.899	0.853	0.804	0.754	0.716
8	0.146	0.266	0.514	0.653	0.755	0.816	0.888	0.949	1.000	0.955	0.910	0.860	0.804	0.758
9	0.127	0.230	0.463	0.604	0.708	0.768	0.842	0.899	0.955	1.000	0.956	0.905	0.842	0.787
10	0.103	0.200	0.429	0.566	0.671	0.727	0.796	0.653	0.910	0.956	1.000	0.953	0.886	0.820
11	0.085	0.180	0.403	0.537	0.634	0.688	0.754	0.804	0.860	0.905	0.953	1.000	0.934	0.859
12	0.061	0.163	0.386	0.513	0.601	0.656	0.713	0.754	0.804	0.842	0.886	0.934	1.000	0.913
13	0.033	0.153	0.375	0.494	0.572	0.625	0.682	0.716	0.758	0.787	0.820	0.859	0.913	1.000
14	0.023	0.147	0.355	0.474	0.551	0.600	0.650	0.681	0.716	0.736	0.768	0.795	0.827	0.891
15	0.009	0.139	0.339	0.453	0.530	0.573	0.614	0.640	0.666	0.680	0.705	0.727	0.764	0.815
16	-0.011	0.100	0.289	0.397	0.463	0.504	0.546	0.576	0.601	0.612	0.640	0.660	0.698	0.748
17	-0.014	0.083	0.266	0.372	0.439	0.484	0.530	0.558	0.583	0.593	0.616	0.629	0.664	0.707
18	-0.011	0.053	0.223	0.331	0.404	0.451	0.492	0.519	0.542	0.554	0.564	0.585	0.617	0.654
19	-0.013	0.053	0.205	0.300	0.362	0.405	0.445	0.465	0.492	0.500	0.507	0.525	0.547	0.576
20	-0.017	0.036	0.171	0.266	0.321	0.355	0.396	0.409	0.434	0.440	0.451	0.469	0.479	0.506
21	-0.023	0.032	0.151	0.244	0.286	0.317	0.347	0.359	0.379	0.380	0.387	0.391	0.401	0.422
22	-0.019	0.008	0.105	0.165	0.201	0.219	0.248	0.253	0.267	0.274	0.275	0.276	0.285	0.306
2 3	-0.032	-0.042	0.027	0.078	0.112	0.119	0.145	0.156	0.166	0.175	0.178	0.179	0.189	0.200
24	-0.045	-0.060	-0.018	0.026	0.046	0.051	0.081	0.096	0.102	0.117	0.123	0.128	0.132	0.143
25	-0.028	-0.055	-0.018	0.016	0.026	0.030	0.053	0.068	0.074	0.083	0.086	0.095	0.102	0.116
26	-0.025	-0.033	-0.004	0.014	0.015	0.013	0.031	0.045	0.053	0.061	0.061	0.073	0.077	0.087
27	-0.035	-0.028	-0.008				-0.002	0.011	0.020	0.024	0.023	0.033	0.038	0.058
						/-\ 3 <i>K</i>	1							

(e) May - Concluded

Altitude evel i,			Interlev	el corre	lation co	efficient	t (nondin	nensional) for alt	itude lev	el j, kr	n, of –		
km '	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.023	0.009	-0.011	-0.014	-0.011	-0.013	-0.017	-0.023	-0.019	-0.032	-0.045	-0.028	-0.025	-0.035
1	0.147	0.139	0.100	0.083	0.053	0.053	0.036	0.032	0.008	-0.042	-0.060	-0.055	-0.033	-0.028
2	0.355	0.339	0.289	0.266	0.223	0.205	0.171	0.151	0.105	0.027	-0.018	-0.018	-0.004	-0.008
3	0.474	0.453	0.397	0.372	0.331	0.300	0.266	0.244	0.165	0.078	0.026	0.016	0.014	-0.003
4	0.551	0.530	0.463	0.439	0.404	0.362	0.321	0.286	0.201	0.112	0.046	0.026		-0.007
5	0.600	0.573	0.504	0.484	0.451	0.405	0.355	0.317	0.219	0.119	0.051	0.030		-0.016
6	0.650	0.614	0.546	0.530	0.492	0.445	0.396		0.248	0.145	0.081	0.053		-0.002
7	0.681	0.640	0.576	C.558	0.519	0.465	0.409	0.359	0.253	0.156	0,096	0.068	0.045	0.011
8	0.716	0.666	0.601	0.583	0.542	0.492	0.434	0.379	0.267	0.166	0.102	0.074	0.053	0.020
9	0.736	0.680	0.612	0.593	0.554	0.500	0.440	0.380	0.274	0.175	0.117	0.083	0.061	0.024
10	0.768	0.705	0.640	0.616	0.564	0.507	0.451	0.387	0.275	0.178	0.123	0.086	0.061	0.023
11	0.795	0.727	0.660	0.629	0.585	0.525	0.469	0.391	0.276	0.179	0.128	0.095	0.073	0.033
12	0.827	0.764	0.698	0.664	0.617	0.547	0.479		0.285	0.189	0.132		0.077	0.038
13	0.891	0.815	0.748	0.707	0.654	0.576	0.506		0.306	0.200	0.143		0.087	0.058
14	1.000	0.892	0.798	0.754	0.702	0.628	0.546	0.449	0.340	0.233	0.171	0.145	0.107	0.073
15	0.892	1.000	0.889	0.805	0.742	0.666	0.586		0.376	0.274	0.216	0.183	0.142	0.110
16	0.798	0.889	1.000	0.887	0.784	0.707	0.620		0.422	0.334	0.265			0.154
17	0.754	0.805	0.887	1.000	0.857	0.734	0.646		0.467	0.368	0.287		0.213	0.171
18	0.702	0.742	0.784	0.857	1.000	0.835	0.703		0.529	0.431	0.358		0.277	0.234
19	0.628	0.666	0.707	0.734	0.835	1.000			0.574	0.488	0.433			0.314
20	0.546	0.586	0.620	0.646	0.703	0.827	1.000		0.638	0.540			0.405	0.372
21	0.449	0.494	0.531	0.563	0.613	0.678	0.789		0.795	0.633	0.558		0.485	0.450
22	0.340	0.376	0.422	0.467	0.529	0.574			1.000	0.791	0.647		0.573	0.536
23	0.233	0.274	0.334	0.368	0.431	0.488	0.540		0.791	1.000	0.845		0.698	0.651
24	0.171	0.216	0.265	0.287	0.358	0.433	0.492		0.647	0.845	1.000		0.807	0.747
25	0.145	0.183	0.232	0.253	0.319	0.399	0.456		0.607	0.748	0.889		0.917	0.835
26	0.107	0.142	0.189	0.213	0.277				0.573				1.000	0.924
27	0.073	0.110	0.154	0.171	0.234	0.314	0.372	0.450	0.536	0.651	0.747	0.835	0.924	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(f) June

Altitude level i.			Interle	vel corr	elation c	oefficien	ıt (nondi	mensiona	ıl) for al	titude le	vel j, k	m, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0						0.294	0.254	0.208	0.159	0.108	0.062	0.043	0.022	-0.024
1	0.618							0.374	0.311	0.239	0.186	0.154	0.128	0.098
2	0.452	0.750	1.000	0.857	0.765	0.717	0.665	0.607	0.539	0.466	0.411	0.372	0.346	0.329
3	0.359	0.577	0.857	1.000	0.912	0.854	0.798	0.750	0.694	0.626	0.572	0.533	0.501	0.482
4	0.320	0.512	0.765	0.912	1.000	0.930	0.875	0.828	0.777	0.717	0.661	0.620	0.589	0.564
5	0.294		0.717	0.854	0.930	1.000	0.935	0.888	0.839	0.781	0.725	0.682	0.647	0.622
6	0.254	0.436	0.665	0.798	0.875	0.935	1.000	0.947	0.898	0.841	0.786	0.740	0.709	0.689
7	0.208	0.374		0.750	0.828	0.888	0.947	1.000	0.954	0.903	0.849	0.801	0.762	0.739
8	0.159						0.898	0.954	1.000	0.955	0.904	0.860	0.820	0.790
9	0.108	0.239	0.466	0.626	0.717	0.781	0.841	0.903	0.955	1.000	0.957	0.917	0.875	0.841
10	0.062	0.186		0.572	0.661	0.725	0.786	0.849	0.904	0.957	1.000	0.961	0.916	0.872
11	0.043	0.154		0.533			0.740	0.801	0.860	0.917	0.961	1.000	0.957	0.902
12	0.022	0.128	0.346	0.501	0.589	0.647	0.709	0.762	0.820	0.875	0.916	0.957	1.000	0.942
13	-0.024	0.098	0.329	0.482	0.564	0.622	0.689	0.739	0.790	0.841	0.872	0.902	0.942	1.000
14	-0.024	0.106	0.342	0.494	0.574	0.633	0.694	0.738	0.776	0.812	0.821	0.838	0.859	0.914
15	-0.021	0.109	0.345	0.493	0.572	0.627	0.682	0.714	0.737	0.760	0.762	0.768	0.790	0.833
16	-0.021	0.098	0.327	0.473	0.549	0.591	0.637	0.658	0.671	0.690	0.686	0.692	0.723	0.764
	-0.021	0.077	0.271	0.408	0.484		0.567	0.588	0.600	0.617	0.609	0.616	0.649	0.694
	-0.051	0.053	0.216	0.324		0.425	0.474	0.486	0.494	0.508	0.510	0.521	0.558	0.613
_	-0.063	0.004	0.151	0.224		0.308	0.349	0.365	0.375	0.385	0.389	0.393	0.431	0.487
	-0.059		0.083	0.141			0.250	0.265	0.274	0.275	0.277	0.284	0.316	0.374
	-0.045		0.061	0.096	0.122		0.176	0.180	0.170	0.163	0.158	0.160	0.190	0.256
	-0.022	0.002	0.066	0.083	0.093	0.105	0.131	0.120	0.101	0.093	0.086	0.077	0.106	0.160
	-0.026		0.013	0.020	0.026	0.035	0.046	0.030		0.010	0.003		0.019	0.071
24	-0.023	-0.045	-0.017	~0.023	-0.013	-0.012	-0.007	-0.016	-0.033	-0.040	-0.043	-0.054	-0.030	0.013
25	-0.035	-0.076	-0.042	~0.038	-0.020	-0.022	-0.016	-0.016	-0.033	-0.033	-0.032	-0.039	-0.026	0.009
2 6	-0.074	-0.117	-0.084	-0.072	-0.052	-0.043	-0.034	-0.025	-0.030	-0.027	-0.023	-0.027	-0.011	0.024
2 7	-0.085	-0.114	-0.074	-0.061	-0.039	-0.034	-0.032	-0.025	-0.024	-0.016	-0.012	-0.014	0.003	0.038

(f) June - Concluded

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	tude lev	el j, kn	n, of –		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.024	-0.021	-0.021	-0.021	-0.051	-0.063	-0.059	-0.045	-0.022	-0.026	-0.023	-0.035	-0.074	-0.085
1	0.106	0.109	0.098	0.077	0.053	0.004	-0.016	-0.013	0.002	-0.039	~0.045	-0.076	-0.117	-0.114
2	0.342	0.345	0.327	0.271	0.216	0.151	0.083	0.061	0.066	0.013	-0.017	-0.042	-0.084	-0.074
3	0-494	0.493	0.473	0.408	0.324	0.224	0.141	0.096	0.083	0.020	-0.023	-0.038	-0.072	-0.061
4	0.574	0.572	0.549	0.484	0.381	0.268	0.180	0.122	0.093	0.026	-0.013	-0.020	-0.052	-0.039
5	0.633	0.627	0.591	0.524	0.425	0.308	0.213	0.145	0.105	0.035	-0.012	-0.022	-0.043	-0.034
6	0.694	0.682	0.637	0.567	0.474	0.349	0.250	0.176	0.131	0.046	-0.007	-0.016	-0.034	-0.032
7	0.738	0.714	0.658	0.588	0.486	0.365	0.265	0.180	0.120	0.030	-0.016	-0.016	-0.025	-0.025
8	0.776	0.737	0.671	0.600	0.494	0.375	0.274	0.170	0.101	0.015	~0.033	-0.033	-0.030	-0.024
9	0.812	0.760	0.690	0.617	0.508	0.385	0.275	0.163	0.093	0.010	~0.040	-0.033	-0.027	-0.016
10	0.821	0.762	0.686	0.609	0.510	0.389	0.277	0.158	0.086	0.003	-0.043	-0.032	-0.023	-0.012
11	0.838	0.768	0.692	0.616	0.521	0.393	0.284	0.160	0.077	-0.009	~0.054	-0.039	-0.027	-0.014
12	0.859	0.790	0.723	0.649	0.558	0.431	0.316	0.190	0.106	0.019	-0.030	-0.026	-0.011	0.003
13	0.914	0.833	0.764	0.694	0.613	0.487	0.374	0.256	0.160	0.071	0.013	0.009	0.024	0.038
14	1.000	0.916	0.830	0.762	0.684	0.552	0.442	0.331	0.234	0.136	0.066	0.058	0.064	0.073
15	0.916	1.000	0.912	0.820	0.745	0.608	0.500	0.383	0.280	0.186	0.122	0.111	0.117	0.118
16	0.830	0.912	1.000	0.891	0.777	0.650	0.539	0.433	0.326	0.228	0.173	0.155	0.161	0.164
17	0.762	0.820	0.891	1.000	0.863	0.698	0.578	0.490	0.386	0.286	0.237	0.222	0.228	0.229
18	0.684	0.745	0.777	0.863	1.000	0.803	0.655	0.558	0.468	0.373	0.306	0.280	0.286	0.276
19	0.552	0.608	0.650	0.698	0.803	1.000	0.793	0.631	0.540	0.462	0.395	0.352	0.352	0.339
20	0.442	0.500	0.539	0.578	0.655	0.793	1.000	0.769	0.614	0.536	0.471	0.407	0.407	0.384
21	0.331	0.383	0.433	0.490	0.558	0.631	0.769	1.000	0.790	0.635	0.545	0.459	0.452	0.421
22	0.234	0.280	0.326	0.386	0.468	0.540	0.614	0.790	1.000	0.815	0.671	0.541	0.502	0.468
2 3	0.136	0.186	0.228	0.286	0.373	0.462	0.536	0.635	0.815	1.000	0.844	0.662	0.581	0.523
24	0.066	0.122	0.173	0.237	0.306	0.395	0.471	0.545	0.671	0.844	1.000	0.829	0.690	0.605
25	0.058	0.111	0.155	0.222	0.280	0.352	0.407	0.459	0.541	0.662	0.829	1.000	0.863	0.728
26	0.064	0.117	0.161	0.228	0.286	0.352	0.407	0.452	0.502	0.581	0.690	0.863	1.000	0.885
27	0.073	0.118	0.164	0.229	0.276	0.339	0.384	0.421	0.468	0.523	0.605	0.728	0.885	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(g) July

Altitude level i,			Interleve	el correl	ation co	efficient	(nondim	ensional)) for alti	tude leve	el j, km	, of -		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.573	0.423	0.363	0.319	0.297	0.244	0.198	0.151	0.104	0.057			-0.016
1	0.573	1.000	0.708	0.550	0.481	0.427	0.361	0.288	0.219	0.152	0.088	0.053	0.026	0.016
2	0.423	0.708	1.000	0.839	0.747	0.675	0.605	0.532	0.463	0.388	0.320	0.276	0.250	0.247
3	0.363	0.550	0.839	1.000	0.881	0.794	0.715	0.647	0.584	0.520	0.458	0.418	0.394	0.392
4	0.319	0.481	0.747	0.881	1.000	0.899	0.819	0.752	0.691	0.633	0.571	0.528	0.506	0.505
5	0.297	0.427	0.675	0.794	0.899	1.000	0.904	0.843	0.784	0.724	0.663	0.618	0.595	0.593
6	0.244	0.361	0.605	0.715	0.819	0.904	1.000	0.917	0.852	0.791	0.727	0.676	0.647	0.641
7	0.198	0.288	0.532	0.647	0.752	0.843	0.917	1.000	0.930	0.870	0.810	0.758	0.730	0.711
8	0.151	0.219	0.463	0.584	0.691	0.784	0.852	0.930	1.000	0.934	0.871	0.821	0.787	0.767
9	0.104	0.152	0.388	0.520	0.633	0.724	0.791	0.870	0.934	1.000	0.942	0.893	0.855	0.821
10	0.057	0.088	0.320	0.458	0.571	0.663	0.727	0.810	0.871	0.942	1.000	0.951	0.905	0.859
11	0.027	0.053	0.276	0.418	0.528	0.618	0.676	0.758	0.821	0.893	0.951	1.000	0.952	0.892
	-0.003	0.026	0.250	0.394	0.506	0.595	0.647	0.730	0.787	0.855	0.905	0.952	1.000	0.934
	-0.016	0.016	0.247	0.392	0.505	0.593	0.641	0.711	0.767	0.821	0.859	0.892	0.934	1.000
14	-0.004	0.038	0.274	0.413	0.531	0.610	0.658	0.720	0.763	0.795	0.812	0.825	0.851	0.909
15	0.025	0.079	0.318	0.448	0.562	0.632	0.674	0.726	0.745	0.757	0.755	0.757	0.771	0.816
16	0.063	0.100	0.322	0.444	0.543	0.611	0.642	0.683	0.696	0.700	0.701	0.696	0.710	0.753
17	0.091	0.128	0.308	0.402	0.495	0.547	0.564	0.600	0.608	0.606	0.603	0.597	0.609	0.652
18	0.111	0.140	0.280	0.340	0.409	0.458	0.479	0.502	0.523	0.520	0.513	0.504	0.513	0.559
19	0.130	0.139	0.245	0.287	0.336	0.382	0.408	0.427	0.442	0.432	0.428	0.414	0.412	0.444
20	0.106	0.108	0.181	0.198	0.244	0.272	0.300	0.326	0.333	0.337	0.330	0.322	0.328	0.353
21	0.062	0.055	0.137	0.136	0.172	0.194	0.215	0.241	0.246	0.239	0.242	0.236	0.244	0.248
22	0.052	0.027	0.101	G.100	0.125	0.148	0.168	0.181	0.186	0.173	0.177	0.161	0.168	0.164
23	0.084	0.052	0.108	0.094	0.104	0.117	0.137	0.144	0.140	0.123	0.117	0.105	0.107	0.109
24	0.092	0.049	0.086	0.082	0.089	0.089	0.105	0.106	0.108	0.098	0.106	0.095	0.097	0.092
25	0.101	0.049	0.055	0.048	0.054	0.052	0.058	0.069	0.071	0.058	0.065	0.058	0.054	0.046
26	0.092	0.037	0.053	0.046	0.053	0.050	0.052	0.057	0.058	0.052	0.059	0.058	0.059	0.060
27	0.074	0.020	0.041	0.038	0.037	0.037	0.033	0.034	0.040	0.039	0.048	0.052	0.050	0.048

(g) July - Concluded

Altitude			Interleve	el correl	ation co	efficient	(nondime	ensional)	for alti	tude leve	elj, km	, of –		
level i, km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.004	0.025	0.063	0.091	0.111	0.130	0.106	0.062	0.052	0.084	0.092	0.101	0.092	0.074
1	0.038	0.079	0.100	0.128	0.140	0.139	0.108	0.055	0.027	0.052	0.049	0.049	0.037	0.020
2	0.274	0.318	0.322	0.308	0.280	0.245	0.181	0.137	0.101	0.108	0.086	0.055	0.053	0.041
3	0.413	0.448	0.444	0.402	0.340	0.287	0.198	0.136	0.100	0.094	0.082	0.048	0.046	0.038
4	0.531	0.562	0.543	0.495	0.409	0.336	0.244	0.172	0.125	0.104	0.089	0.054	0.053	0.037
5	0.610	0.632	0.611	0.547	0.458	0.382	0.272	0.194	0.148	0.117	0.089	0.052	0.050	0.037
6	0.658	0.674	0.642	0.564	0.479	0.408	0.300	0.215	0.168	0.137	0.105	0.058	0.052	0.033
7	0.720	0.726	0.683	6.600	0.502	0.427	0.326	0.241	0.181	0.144	0.106	0.069	0.057	Q.034
8	0.763	0.745	0.696	0.608	0.523	0.442	0.333	0.246	0.186	0.140	0.108	0.071	0.058	0.040
9	0.795	0.757	0.700	0.606	0.520	0.432	0.337	0.239	0.173	0.123	0.098	0.058	0.052	0.039
10	0.812	0.755	0.701	0.603	0.513	0.428	0.330	0.242	0.177	0.117	0.106	0.065	0.059	0.048
11	0.825	0.757	0.696	0.597	0.504	0.414	0.322	0.236	0.161	0.105	0.095	0.058	0.058	0.052
12	0.851	0.771	0.710	0.609	0.513	0.412	0.328	0.244	0.168	0.107	0.097	0.054	0.059	0.050
13	0.909	0.816	0.753	0.652	0.559	0.444	0.353	0.248	0.164	0.109	0.092	0.046	0.060	0.048
14	1.000	0.905	0.819	0.723	0.633	0.521	0.416	0.297	0.210	0.140	0.114	0.071	0.074	0.056
15	0.905	1.000	0.894	0.767	0.674	0.572	0.463	0.340	0.259	0.183	0.149	0.100	0.096	0.075
16	0.819	0.894	1.000	0.846	0.703	0.593	0.481	0.357	0.300	0.229	0.189	0.125	0.104	0.079
17	0.723	0.767	0.846	1.000	0.800	0.635	0.514	0.388	0.324	0.250	0.231	0.183	0.157	0.126
18	0.633	0.674	0.703	0.800	1.000	0.754	0.552	0.429	0.368	0.306	0.284	0.241	0.221	0.175
19	0.521	0.572	0.593	0.635	0.754	1.000	0.707	0.490	0.417	0.344	0.316	0.272	0.243	0.198
20	0.416	0.463	0.481	0.514	0.552	0.707	1.000	0.732	0.533	0.416	0.370	0.312	0.281	0.245
21	0.297	0.340	0.357	0.388	0.4.29	0.490	0.732	1.000	0.746	0.538	0.441	0.361	0.325	0.296
22	0.210	0.259	0.300	0.324	0.368	0.417	0.533	0.746	1.000	0.742	0.565	0.448	0.369	0.319
23	0.140	0.183	0.229	0.250	0.306	0.344	0.416	0.538	0.742	1.000	0.785	0.578	0.448	0.364
24	0.114	0.149	0.189	0.231	0.284	0.316	0.370	0.441	0.565	0.785	1.000	0.793	0.613	0.491
25	0.071	0.100	0.125	0.183	0.241	0.272	0.312	0.361	0.448	0.578	0.793	1.000	0.820	0.642
26	0.074	0.096	0.104	0.157	0.221	0.243	0.281	0.325	0.369	0.448	0.613	0.820	1.000	0.840
27	0.056	0.075	0.079	0.126	0.175	0.198	0.245	0.296	0.319	0.364	0.491	0.642	0.840	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(h) August

Altitude			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	itude lev	el j, km	n, of –		
level i, km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.632	0.460	0.371	0.347	0.326	0.297	0.223	0.146	0.089	0.045	0.025	0.017	0.004
1	0.632	1.000	0.710	0.534	0.469	0.427	0.383	0.303	0.207	0.136	0.074	0.050	0.035	0.026
2	0.460	0.710	1.000	0.809	0.703	0.640	0.579	0.511	0.409	0.331	0.262	0.223	0.207	0.210
3	0.371	0.534	0.809	1.000	0.862	0.776	0.716	0.662	0.579	0.515	0.447	0.408	0.392	0.392
4	0.347	0.469	0.703	0.862	1.000	0.899	0.835	0.774	0.690	0.621	0.548	0.505	0.489	0.488
5	0.326	0.427	0.640	0.776	0.899	1.000	0.914	0.849	0.764	0.692	0.621	0.569	0.550	0.545
6	0.297	0.383	0.579	0.716	0.835	0.914	1.000	0.914	0.831	0.758	0.684	0.630	0.606	0.602
7	0.223	0.303	0.511	0.662	0.774	0.849	0.914	1.000	0.921	0.847	0.777	0.727	0.698	0.693
8	0.146	0.207	0.409	0.579	0.690	0.764	0.831	0.921	1.000	0.934	0.866	0.817	0.782	0.765
9	0.089	0.136	0.331	0.515	0.621	0.692	0.758	0.847	0.934	1.000	0.937	0.880	0.842	0.811
10	0.045	0.074	0.262	0.447	0.548	0.621	0.684	0.777	0.866	0.937	1.000	0.950	0.903	0.857
11	0.025	0.050	0.223	0.408	0.505	0.569	0.630	0.727	0.817	0.880	0.950	1.000	0.951	0.896
12	0.017	0,035	0.207	0.392	0.489	0.550	0.606	0.698	0.782	0.842	0.903	0.951	1.000	0.938
13	0.004	0.026	0.210	0.392	0.488	0.545	0.602	0.693	0.765	0.811	0.857	0.896	0.938	1.000
14	0.013	0.028	0.227	0.403	0.502	0.567	0.623	0.704	0.765	0.792	0.821	0.843	0.865	0.913
15	0.031	0.043	0.270	0.433	0.521	0.587	0.634	0.700	0.745	0.759	0.770	0.781	0.804	0.839
16	0.053	0.059	0.278	0.439	0.526	0.577	0.613	0.655	0.683	0.696	0.703	0.709	0.728	0.767
17	0.077	0.072	0.255	0.392	0.465	0.497	0.526	0.565	0.593	0.606	0.614	0.620	0.647	0.684
18	0.069	0.052	0.204	0.328	0.390	0.417	0.450	0.478	0.507	0.520	0.528	0.535	0.558	0.588
19	0.064	0.033	0.172	0.271	0.339	0.363	0.391	0.420	0.441	0.449	0.453	0.455	0.472	0.498
20	0.028	0.014	0.146	0.218	0.256	0.274	0.304	0.320	0.344	0.350	0.352	0.350	0.365	0.390
21	0.015	-0.013	0.114	0.166	0.194	0.223	0.250	0.267	0.293	0.302	0.304	0.300	0.311	0.325
22	0.040	0.017	0.115	0.159	0.164	0.185	0.213	0.230	0.252	0.257	0.256	0.253	0.263	0.283
23	0.068	0.036	0.123	0.157	0.155	C.183	0.202	0.212	0.223	0.223	0.227	0.226	0.237	0.254
24	0.062	0.014	0.075	0.111	0.107	0.137	0.143	0.149	0.156	0.168	0.172	0.176	0.190	0.205
25	0.050		0.041	0.077	0.072	0.094	0.101	0.100	0.108	0.119	0.132	0.136	0.154	0.173
26	0.057		0.031	0.077	0.080	0.095	0.102	0.103	0.118	0.125	0.138	0.143	0.167	0.184
27	0.056	-0.018	0.015	0.052	0.058	0.065	0.075	0.073	0.089	0.095	0.107	0.120	0.147	0.163

(h) August - Concluded

Altitude			Interlev	el corre	lation co	efficient	(nondin	nensional) for alt	itude lev	el j, kn	n, of –		
level i, km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.013	0.031	0.053	0.077	0.069	0.064	0.028	0.015	0.040	0.068	0.062	0.050	0.057	0.056
i	0.028	0.043	0.059	0.072	0.052	0.033	0.014	-0.013	0.017	0.036	0.014	-0.005	-0.009	-0.018
2	0.227	0.270	0.278	0.255	0.204	0.172	0.146	0.114	0.115	0.123	0.075	0.041	0.031	0.015
3	0.403	0.433	0.439	0.392	0.328	0.271	0.218	0.166	0.159	0.157	0.111	0.077	0.077	0.052
4	0.502	0.521	0.526	0.405	0.390	0.339	0.256	0.194	0.164	0.155	0.107	0.072	0.080	0.058
5	0.567	0.587	0.577	0.497	0.417	0.363	0.274	0.223	0.185	0.183	0.137	0.094	0.095	0.065
6	0.623	0.634	0.613	0.526	0.450	0.391	0.304	0.250	0.213	0.202	0.143	0.101	0.102	0.075
7	0.704	0.700	0.655	0.565	0.478	0.420	0.320	0.267	0.230	0.212	0.149	0.100	0.103	0.073
8	0.765	0.745	0.683	0.593	0.507	0.441	0.344	0.293	0.252	0.223	0.156	0.108	0.118	0.089
9	0.792	0.759	0.696	0.606	0.520	0.449	0.350	0.302	0.257	0.223	0.168	0.119	0.125	0.095
10	0.821	0.770	0.703	0.614	0.528	0.453	0.352	0.304	0.256	0.227	0.172	0.132	0.138	0.107
11	0.843	0.781	0.709	6.620	0.535	0.455	0.350	0.300	0.253	0.226	0.176	0.136	0.143	0.120
12	0.865	0.804	0.728	0.647	0.558	0.472	0.365	0.311	0.263	0.237	0.190	0.154	0.167	0.147
13	0.913	0.839	0.767	0.684	0.588	0.498	0.390	0.325	0.283	0.254	0.205	0.173	0.184	0.163
14	1.000	0.909	0.813	0.723	0.629	0.540	0.428	0.357	0.304	0.270	0.208	0.175	0.178	0.157
15	0.909	1.000	0.889	0.772	0.687	0.599	0.499	0.425	0.369	0.330	0.252	0.204	0.202	0.171
16	0.813	0.889	1.000	0.854	0.724	0.637	0.550	0.461	0.405	0.368	0.302	0.256	0.243	0.209
17	0.723	0.772	0.854	1.000	0.822	0.670	0.578	0.495	0.449	0.413	0.341	0.297	0.275	0.231
18	0.629	0.687	0.724	0.822	1.000	0.788	0.623	0.527	0.464	0.424	0.352	0.319	0.294	0.259
19	0.540	0.599	0.637	û.670	0.788	1.000	0.765	0.594	0.512	0.463	0.392	0.364	0.343	0.309
20	0.428	0.499	0.550	0.578	0.623	0.765	1.000	0.769	0.629	0.539	0.454	0.406	0.379	0.341
21	0.357	0.425	0.461	0.495	0.527	0.594	0.769	1.000	0.795	0.637	0.522	0.447	0.400	0.365
22	0.304	0.369	0.405	6.449	0.464	0.512	0.629	0.795	1.000	0.819	0.635	0.527	0.463	0.427
23	0.270	0.330	0.368	0.413	0.424	0.463	0.539	0.637	0.819	1.000	0.810	0.643	0.540	0.463
24	0.208	0.252	0.302	0.341	0.352	0.392	0.454	0.522	0.635	0.810	1.000	0.824	0.668	0.551
25	0.175	0.204	0.256	0.297	0.319	0.364	0.406	0.447	0.527	0.643	0.824	1.000	0.853	0.688
26	0.178	0.202	0.243	0.275	0.294	0.343	0.379	0.400	0.463	0.540	0.668	0.853	1.000	0.855
27	0.157	0.171	0.209	0.231	0.259	0.309	0.341	0.365	0.427	0.463	0.551	0.688	0.855	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(i) September

Altitude level i,			Interleve	el correl	ation co	efficient	(nondim	ensional)	for alti	tude leve	el j, km	, of –		
km ´	-0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.661	0.527	0.449	0.399	0.340	0.307	0.262	0.218	0.180	0.143	0.096	0.064	0.051
1	0.661	1.000	0.768	0.629	0.553	0.467	0.409	0.346	0.284	0.241	0.199	0.152	0.111	0.099
2	0.527	0.768	1.000	0.869	0.771	0.688	0.624	0.567	0.501	0.455	0.412	0.361	0.322	0.306
3	0.449	0.629	0.869	1.000	0.902	0.827	0.764	0.707	0.654	0.605	0.561	0.515	0.482	0.469
4	0.399	0.553	0.771	0.902	1.000	0.920	0.855	0.798	0.756	0.707	0.662	0.622	0.586	0.571
5	0.340	0.467	0.688	0.827	0.920	1.000	0.930	0.875	0.833	0.782	0.735	0.696	0.658	0.644
6	0.307	0.409	0.624	0.764	0.855	0.930	1.000	0.943	0.895	0.845	0.797	0.757	0.717	0.696
7	0.262	0.346	0.567	0.707	0.798	0.875	0.943	1.000	0.949	0.896	0.850	0.814	0.774	0.746
8	0.218	0.284	0.501	0.654	0.756	0.833	0.895	0.949	1.000	0.956	0.914	0.877	0.833	0.802
9	0.180	0.241	0.455	0.605	0.707	0.782	0.845	0.896	0.956	1.000	0.962	0.921	0.875	0.841
10	0.143	0.199	0.412	0.561	0.662	0.735	0.797	0.850	0.914	0.962	1.000	0.961	0.916	0.877
11	0.096	0.152	0.361	0.515	0.622	0.696	0.757	0.814	0.877	0.921	0.961	1.000	0.959	0.914
12	0.064	0.111	0.322	0.482	0.586	0.658	0.717	0.774	0.833	0.875	0.916	0.959	1.000	0.956
13	0.051	0.099	0.306	0.469	0.571	0.644	0.696	0.746	0.802	0.841	0.877	0.914	0.956	1.000
14	0.039	0.086	0.306	0.473	0.577	0.651	0.700	0.747	0.797	0.825	0.852	0.880	0.911	0.948
15	0.044	0.082	0.314	0.485	0.591	0.664	0.714	0.755	0.794	0.809	0.827	0.848	0.875	0.902
16	0.066	0.100	0.326	0.494	0.597	0.665	0.716	0.747	0.778	0.789	0.801	0.816	0.835	0.858
17	0.089	0.128	0.338	0.497	0.588	0.648	0.694	0.716	0.740	0.748	0.754	0.761	0.772	0.792
18	0.096	0.120	0.303	0.456	0.545	0.606	0.655	0.674	0.701	0.704	0.703	0.707	0.717	0.735
19	0.078	0.097	0.263	0.410	0.493	0.553	0.605	0.631	0.655	0.654	0.658	0.665	0.676	0.692
20	0.066	0.083	0.229	0.362	0.426	0.483	0.532	0.559	0.569	0.565	0.567	0.571	0.585	0.597
21	0.042	0.036	0.159	0.276	0.339	0.391	0.452	0.476	0.485	0.482	0.483	0.488	0.501	0.518
22	0.058	0.033	0.136	0.232	0.278	0.318	0.387	0.407	0.411	0.410	0.414	0.410	0.418	0.430
23	0.077	0.035	0.121	0.201	0.241	0.273	0.339	0.364	0.365	0.365	0.366	0.364	0.371	0.374
24	0.091	0.040	0.102	0.177	0.213	0.238	0.296	0.322	0.321	0.320	0.323	0.317	0.322	0.328
25	0.083	0.040	0.092	0.151	0.187	0.205	0.255	0.278	0.276	0.279	0.284	0.280	0.281	0.282
2 6	0.081	0.047	0.098	0.152	0.173	0.190	0.238	0.256	0.252	0.250	0.254	0.251	0.250	0.248
27	0.084	0.037	0.085	0.136	0.149	0.162	0.200	0.218	0.216	0.217	0.219	0.215	0.218	0.220

(i) September - Concluded

Altitude			Interlev	el correl	ation co	efficient	(nondim	ensional)	for alti	tude leve	el j, km	, of -		
level i, km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.039	0.044	0.066	0.089	0.096	0.078	0.066	0.042	0.058	0.077	0.091	0.083	0.081	0.084
1	0.086	0.082	0.100	0.128	0.120	0.097	0.083	0.036	0.033	0.035	0.040	0.040	0.047	0.037
2	0.306	0.314	0.326	0.338	0.303	0.263	0.229	0.159	0.136	0.121	0.102	0.092	0.098	0.085
3	0.473	0.485	0.494	0.497	0.456	0.410	0.362	0.276	0.232	0.201	0.177	0.151	0.152	0.136
4	0.577	0.591	0.597	0.588	0.545	0.493	0.426	0.339	0.278	0.241	0.213	0.187	0.173	0.149
5	0.651	0.664	0.665	0.648	0.606	0.553	0.483	0.391	0.318	0.273	0.238	0.205	0.190	0.162
6	0.700	0.714	0.716	0.694	0.655	0.605	0.532	0.452	0.387	0.339	0.296	0.255	0.238	0.200
7	0.747	0.755	0.747	0.716	0.674	0.631	0.559	0.476	0.407	0.364	0.322	0.278	0.256	0.218
8	0.797	0.794	0.778	0.740	0.701	0.655	0.569	0.485	0.411	0.365	0.321	0.276	0.252	0.216
9	0.825	0.809	0.789	0.748	0.704	0.654	0.565	0.482	0.410	0.365	0.320	0.279	0.250	0.217
10	0.852	0.827	0.801	0.754	0.703	0.658	0.567	0.483	0.414	0.366	0.323	0.284	0.254	0.219
11	0.880	0.848	0.816	0.761	0.707	0.665	0.571	0.488	0.410	0.364	0.317	0.280	0.251	0.215
12	0.911	0.875	0.835	0.772	0.717	0.676	0.585	0.501	0.418	0.371	0.322	0.281	0.250	0.218
13	0.948	0.902	0.858	0.792	0.735	0.692	0.597	0.518	0.430	0.374	0.328	0.282	0.248	0.220
14	1.000	0.943	0.885	0.824	0.769	0.726	0.636	0.548	0.456	0.394	0.348	0.302	0.262	0.231
15	0.943	1.000	0.935	0.864	0.803	0.757	0.662	0.573	0.485	0.426	0.377	0.324	0.292	0.264
16	0.885	0.935	1.000	0.914	0.838	0.792	0.699	0.619	0.528	0.462	0.409	0.359	0.329	0.299
17	0.824	0.864	0.914	1.000	0.890	0.809	0.735	0.660	0.572	0.498	0.435	0.382	0.354	0.325
18	0.769	0.803	0.838	0.890	1.000	0.873	0.759	0.684	0.596	0.524	0.473	0.418	0.388	0.354
19	0.726	0.757	0.792	0.809	0.873	1.000	0.851	0.731	0.639	0.584	0.522	0.468	0.437	0.404
20	0.636	0.662	0.699	0.735	0.759	0.851	1.000	0.835	0.688	0.623	0.560	0.514	0.482	0.446
21	0.548	0.573	0.619	0.660	0.684	0.731	0.835	1.000	0.829	0.717	0.636	0.585	0.559	0.518
22	0.456	0.485	0.528	0.572	0.596	0.639	0.688	0.829	1.000	0.855	0.723	0.669	0.632	0.590
23	0.394	0.426	0.462	0.498	0.524	0.584	0.623	0.717	0.855	1.000	0.864	0.755	0.696	0.659
24	0.348	0.377	0.409	0.435	0.473	0.522	0.560	0.636	0.723	0.864	1.000	0.880	0.776	0.727
25	0.302	0.324	0.359	0.382	0.418	0.468	0.514	0.585	0.669	0.755	0.880	1.000	0.889	0.783
26	0.262	0.292	0.329	0.354	0.388	0.437	0.482	0.559	0.632	0.696	0.776	0.889	1.000	0.901
27	0.231	0.264	0.299	0.325	0.354	0.404	0.446	0.518	0.590	0.659	0.727	0.783	0.901	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(j) October

Altitude level i,			Interleve	el correl	ation co	efficient	(nondim	ensional)	for alti	tude leve	elj, km	, of -		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.685	0.541	0.485	0.466	0.446	0.410	0.379	0.340	0.308	0.270	0.231	0.177	0.156
1	0.685	1.000	0.825	0.724	0.679	0.641	0.589	0.547	0.503	0.461	0.425	0.388	0.331	0.299
2	0.541	0.825	1.000	0.898	0.828	0.777	0.735	0.690	0.647	0.606	0.572	0.538	0.483	0.451
3	0.485	0.724	0.898	1.000	0.925	0.870	0.823	0.778	0.735	0.694	0.658	0.623	0.571	0.540
4	0.466	0.679	0.828	0.925	1.000	0.937	0.887	0.843	0.801	0.760	0.718	0.678	0.625	0.592
5	0.446	0.641	0.777	C.870	0.937	1.000	0.947	0.902	0.856	0.810	0.761	0.712	0.657	0.617
6	0.410	0.589	0.735	0.823	0.887	0.947	1.000	0.955	0.908	0.860	0.804	0.755	0.698	0.655
7	0.379	0.547	0.690	G.778	0.843	0.902	0.955	1.000	0.958	0.909	0.847	0.792	0.733	0.683
8	0.340	0.503	0.647	0.735	0.801	0.856	0.908	0.958	1.000	0.958	0.899	0.842	0.778	0.725
9	0.308	0.461	0.606	0.694	0.760	0.810	0.860	0.909	0.958	1.000	0.954	0.898	0.836	0.773
10	0.270	0.425	0.572	0.658	0.718	0.761	0.804	0.847	0.899	0.954	1.000	0.954	0.893	0.823
11	0.231	0.388	0.538	0.623	0.678	0.712	0.755	0.792	0.842	0.898	0.954	1.000	0.943	0.866
12	0.177	0.331	0.483	0.571	0.625	0.657	0.698	0.733	0.778	0.836	0.893	0.943	1.000	0.929
13	0.156	0.299	0.451	U.540	0.592	0.617	0.655	0.683	0.725	0.773	0.823	0.866	0.929	1.000
14	0.176	0.309	0.458	0.550	0.606	0.632	0.666	0.689	0.721	0.755	0.792	0.823	0.867	0.926
15	0.184	0.317	0.462	0.557	0.613	0.643	0.673	0.688	0.710	0.735	0.757	0.779	0.812	0.860
16	0.184	0.311	0.440	0.536	0.596	0.616	0.639	0.652	0.671	0.687	0.707	0.727	0.753	0.800
17	0.184	0.292	0.408	0.499	0.550	0.573	0.590	0.602	0.611	0.622	0.632	0.650	0.667	0.710
18	0.185	0.276	0.386	0.468	0.515	0.535	0.557	0.564	0.566	0.578	0.583	0.594	0.601	0.637
19	0.182	0.234	0.325	0.402	0.453	0.474	0.498	0.508	0.514	0.519	0.519	0.523	0.520	0.547
20	0.178	0.217	0.291	0.346	0.395	0.414	0.432	0.445	0.443	0.446	0.448	0.450	0.439	0.464
21	0.159	0.197	0.240	0.286	0.328	0.347	0.364	0.371	0.370	0.374	0.385	0.391	0.389	0.411
22	0.163	0.210	0.233	0.264	0.298	0.317	0.331	0.339	0.333	0.338	0.347	0.349	0.341	0.348
23	0.154	0.186	0.205	0.226	0.254	0.265	0.275	0.282	0.276	0.284	0.301	0.304	0.290	0.293
24	0.124	0.143	0.153	0.157	0.179	0.187	0.200	0.205	0.197	0.206	0.231	0.238	0.221	0.220
25	0.106	0.127	0.119	0.113	0.129	0.135	0.147	0.152	0.146	0.154	0.182	0.192	0.175	0.172
26	0.111	0.119	0.103	0.093	0.113	0.118	0.122	0.126	0.121	0.133	0.166	0.181	0.172	0.163
27	0.109	0.114	0.088	0.078	0.100	0.106	0.108	0.115	0.115	0.126	0.154	0.165	0.154	0.140

(j) October - Concluded

Altitude level i.			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	tude lev	el j, km	1, of –		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.176	0.184	0.184	0.184	0.185	0.182	0.178	0.159	0.163	0.154	0.124	0.106	0.111	0.109
1	0.309	0.317	0.311	0.292	0.276	0.234	0.217	0.197	0.210	0.186	0.143	0.127	0.119	0.114
2	0.458	0.462	0.440	0.408	0.386	0.325	0.291	0.240	0.233	0.205	0.153	0.119	0.103	0.088
3	0.550	0.557	0.536	0.499	0.468	0.402	0.346	0.286	0.264	0.226	0.157	0.113	0.093	0.078
4	0.606	0.613	0.596	0.550	0.515	0.453	0.395	0.328	0.298	0.254	0.179	0.129	0.113	0.100
5	0.632	0.643	0.616	0.573	0.535	0.474	0.414	0.347	0.317	0.265	0.187	0.135	0.118	0.106
6	0.666	0.673	0.639	0.590	0.557	0.498	0.432	0.364	0.331	0.275	0.200	0.147	0.122	0.108
7	0.689	0.688	0.652	0.602	0.564	0.508	0.445	0.371	0.339	0.282	0.205	0.152	0.126	0.115
8	0.721	0.710	0.671	0.611	0.566	0.514	0.443	0.370	0.333	0.276	0.197	0.146	0.121	0.115
9	0.755	0.735	0.687	0.622	0.578	0.519	0.446	0.374	0.338	0.284	0.206	0.154	0.133	0.126
10	0.792	0.757	0.707	0.632	0.583	0.519	0.448	0.385	0.347	0.301	0.231	0.182	0.166	0.154
11	0.823	0.779	0.727	0.650	0.594	0.523	0.450	0.391	0.349	0.304	0.238	0.192	0.181	0.165
12	0.867	0.812	0.753	0.667	0.601	0.520	0.439	0.389	0.341	0.290	0.221	0.175	0.172	0.154
13	0.926	0.860	0.800	6.716	0.637	0.547	0.464	0.411	0.348	0.293	0.220	0.172	0.163	0.140
14	1.000	0.926	0.857	0.767	0.686	0.604	0.509	0.439	0.359	0.302	0.222	0.169	0.155	0.128
15	0.926	1.000	0.921	0.821	0.747	0.655	0.552	0.476	0.402	0.333	0.246	0.201	0.182	0.149
16	0.857	0.921	1.000	0.894	0.795	0.698	0.600	0.528	0.455	0.382	0.286	0.239	0.213	0.176
17	0.767	0.821	0.894	1.000	0.878	0.745	0.650	0.586	0.514	0.432	0.342	0.295	0.263	0.223
18	0.686	0.747	0.795	0.878	1.000	0.842	0.723	0.643	0.567	0.483	0.397	0.348	0.312	0.272
19	0.604	0.655	0.698	0.745	0.842	1.000	0.858	0.736	0.640	0.563	0.485	0.426	0.379	0.330
20	0.509	0.552	0.600	0.650	0.723	0.858	1.000	0.849	0.729	0.658	0.588	0.525	0.465	0.416
21	0.439	0.476	0.528	0.586	0.643	0.736	0.849	1.000	0.863	0.756	0.687	0.622	0.570	0.514
22	0.359	0.402	0.455	0.514	0.567	0.640	0.729	0.863	1.000	0.888	0.780	0.713	0.657	0.601
23	0.302	0.333	0.382	0.432	0.483	0.563	0.658	0.756	0.888	1.000	0.901	0.803	0.739	0.683
24	0.222	0.246	0.286	0.342	0.397	0.485	0.588	0.687	0.780	0.901	1.000	0.910	0.824	0.765
25	0.169	0.201	0.239	0.295	0.348	0.426	0.525	0.622	0.713	0.803	0.910	1.000	0.921	0.846
26	0.155	0.182	0.213	0.263	0.312	0.379	0.465	0.570	0.657	0.739	0.824	0.921	1.000	0.937
27	0.128	0.149	0.176	Û∙223	0.272	0.330	0.416	0.514	0.601	0.683	0.765	0.846	0.937	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY
AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(k) November

Altitude level i,			Interleve	el correl	ation co	efficient	(nondim	ensional)) for alti	tude leve	el j, km	, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.603	0.450	0.414	0.392	0.385	0.353	0.325	0.293	0.264	0.240	0.208	0.168	0.136
1	0.603	1.000	0.790	0.670	0.615	0.583	0.549	0.514	0.476	0.457	0.440	0.421	0.395	0.369
2	0.450	0.790	1.000	0.878	0.808	0.762	0.725	0.695	0.654	0.633	0.609	0.583	0.559	0.536
3	0.414	0.670	0.878	1.000	0.924	0.873	0.840	0.807	0.772	0.738	0.705	0.669	0.640	0.623
4	0.392	0.615	0.808	0.924	1.000	0.940	0.900	0.864	0.826	0.789	0.748	0.706	0.675	0.661
5	0.385	0.583	0.762	0.873	0.940	1.000	0.949	0.906	0.868	0.829	0.782	0.735	0.697	0.677
6	0.353	0.549	0.725	0.840	0.900	0.949	1.000	0.951	0.910	0.868	0.819	0.768	0.721	0.696
7	0.325	0.514	0.695	0.807	0.864	0.906	0.951	1.000	0.957	0.913	0.859	0.803	0.751	0.725
8	0.293	0.476	0.654	0.772	0.826	0.868	0.910	0.957	1.000	0.956	0.901	0.841	0.781	0.748
9	0.264	0.457	0.633	0.738	0.789	0.829	0.868	0.913	0.956	1.000	0.949	0.892	0.827	0.779
10	0.240	0.440	0.609	0.705	0.748	0.782	0.819	0.859	0.901	0.949	1.000	0.949	0.878	0.812
11	0.208	0.421	0.583	0.669	0.706	0.735	0.768	0.803	0.841	0.892	0.949	1.000	0.932	0.857
12	0.168	0.395	0.559	0.640	0.675	0.697	0.721	0.751	0.781	0.827	0.878	0.932	1.000	0.919
13	0.136	0.369	0.536	0.623	0.661	0.677	0.696	0.725	0.748	0.779	0.812	0.857	0.919	1.000
14	0.140	0.364	0.533	0.622	0.657	0.672	0.689	0.710	0.723	0.743	0.769	0.799	0.842	0.903
15	0.131	0.360	0.529	0.610	0.641	0.652	0.666	0.676	0.686	0.697	0.723	0.749	0.789	0.832
16	0.127	0.349	0.506	0.575	0.610	0.619	0.634	0.640	0.644	0.649	0.668	0.687	0.723	0.769
17	0.101	0.308	0.449	G.500	0.528	0.532	0.547	0.554	0.550	0.553	0.568	0.587	0.620	0.671
18	0.062	0.233	0.372	0.412	0.431	0.437	0.452	0.449	0.448	0.447	0.469	0.485	0.511	0.563
19	0.059	0.174	0.290	0.321	0.339	0.345	0.351	0.344	0.330	0.327	0.344	0.359	0.386	0.436
20	0.051	0.141	0.232	0.253	0.269	0.275	0.288	0.286	0.271	0.268	0.277	0.291	0.307	0.349
21	0.038	0.109	0.186	0.192	0.208	0.212	0.225	0.232	0.224	0.218	0.221	0.234	0.247	0.288
22	0.048	0.119	0.175	0.168	0.188	0.188	0.202	0.208	0.199	0.185	0.183	0.195	0.208	0.238
23	0.028	0.111	0.143	0.131	0.146	0.148	0.163	0.168	0.163	0.146	0.144	0.157	0.170	0.201
24	0.024	0.105	0.120	0.098	0.103	0.102	0.111	0.116	0.118	0.108	0.107	0.125	0.140	0.166
25	0.005	0.098	0.104	0.078	0.079	0.072	0.076	0.085	0.088	0.084	0.090	0.113	0.132	0.154
	-0.007	0.086	0.089	0.062	0.058	0.049	0.057	0.065	0.072	0.066	0.079	0.104	0.125	0.148
27	0.008	0.094	0.097	0.067	0.059	0.052	0.060	0.067	0.075	0.071	0.089	0.116	0.138	0.158

(k) November - Concluded

Altitude level i,			Interleve	el correl	ation co	efficient	(nondim	ensional)	for alti	tude leve	el j, km	, of –		
km ´	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.140	0.131	0.127	0.101	0.062	0.059	0.051	0.038	0.048	0.028	0.024	0.005	-0.007	0.008
1	0.364	0.360	0.349	0.308	0.233	0.174	0.141	0.109	0.119	0.111	0.105	0.098	0.086	0.094
2	0.533	0.529	0.506	0.449	0.372	0.290	0.232	0.186	0.175	0.143	0.120	0.104	0.089	0.097
3	0.622	0.610	0.575	0.500	0.412	0.321	0.253	0.192	0.168	0.131	0.098	0.078	0.062	0.067
4	0.657	0.641	0.610	0.528	0.431	0.339	0.269	0.208	0.188	0.146	0.103	0.079	0.058	0.059
5	0.672	0.652	0.619	0.532	0.437	0.345	0.275	0.212	0.188	0.148	0.102	0.072	0.049	0.052
6	0.689	0.666	0.634	0.547	0.452	0.351	0.288	0.225	0.202	0.163	0.111	0.076	0.057	0.060
7	0.710	0.676	0.640	0.554	0.449	0.344	0.286	0.232	0.208	0.168	0.116	0.085	0.065	0.067
8	0.723	0.686	0.644	0.550	0.448	0.330	0.271	0.224	0.199	0.163	0.118	0.088	0.072	0.075
9	0.743	0.697	0.649	0.553	0.447	0.327	0.268	0.218	0.185	0.146	0.108	0.084	0.066	0.071
10	0.769	0.723	0.668	Ŭ∙568	0.469	0.344	0.277	0.221	0.183	0.144	0.107	0.090	0.079	0.089
11	0.799	0.749	0.687	0.587	0.485	0.359	0.291	0.234	0.195	0.157	0.125	0.113	0.104	0.116
12	0.842	0.789	0.723	0.620	0.511	0.386	0.307	0.247	0.208	0.170	0.140	0.132	0.125	0.138
13	0.903	0.832	0.769	0.671	0.563	0.436	0.349	0.288	0.238	0.201	0.166	0.154	0.148	0.158
14	1.000	0.908	0.822	0.735	0.629	0.513	0.419	0.341	0.283	0.232	0.185	0.170	0.163	0.163
15	0.908	1.000	0.905	0.783	0.688	0.574	0.476	0.387	0.323	0.266	0.211	0.188	0.177	0.180
16	0.822	0.905	1.000	0.871	0.736	0.627	0.517	0.424	0.358	0.292	0.238	0.221	0.211	0.211
17	0.735	0.783	0.871	1.000	0.849	0.710	0.603	0.526	0.453	0.385	0.330	0.311	0.291	0.282
18	0.629	0.688	0.736	0.849	1.000	0.835	0.672	0.606	0.519	0.459	0.399	0.366	0.343	0.329
19	0.513	0.574	0.627	0.710	0.835	1.000	0.813	0.688	0.593	0.526	0.478	0.428	0.398	0.381
20	0.419	0.476	0.517	0.603	0.672	0.813	1.000	0.843	0.711	0.636	0.586	0.536	0.504	0.486
21	0.341	0.387	0.424	0.526	0.606	0.688	0.843	1.000	0.864	0.758	0.697	0.646	0.606	0.580
22	0.283	0.323	0.358	0.453	0.519	0.593	0.711	0.864	1.000	0.897	0.806	0.748	0.704	0.668
23	0.232	0.266	0.292	0.385	0.459	0.526	0.636	0.758	0.897	1.000	0.910	0.826	0.780	0.739
24	0.185	0.211	0.238	0.330	0.399	0.478	0.586	0.697	0.806	0.910	1.000	0.926	0.860	0.812
25	0.170	0.188	0.221	0.311	0.366	0.428	0.536	0.646	0.748	0.826	0.926	1.000	0.944	0.885
26	0.163	0.177	0.211	0.291	0.343	0.398	0.504	0.606	0.704	0.780	0.860	0.944	1.000	0.952
27	0.163	0.180	0.211	0.282	0.329	0.381	0.486	0.580	0.668	0.739	0.812	0.885	0.952	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(l) December

Altitude			Interlev	el corre	lation co	efficient	(nondim	ensional) for alt	itude lev	el j, kn	1, of –		
level i,	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.554	0.358	0.297	0.275	0.253	0.233	0.200	0.179	0.134	0.090	0.050	0.014	-0.004
1	0.554	1.000	0.735	0.549	0.462	0.413	0.363	0.324	0.286	0.255	0.213	0.181	0.146	0.121
2	0.358	0.735	1.000	0.825	0.718	0.657	0.605	0.565	0.530	0.502	0.465	0.427	0.398	0.364
3	0.297	0.549	0.825	1.000	0.895	0.821	0.768	0.732	0.704	0.675	0.640	0.601	0.561	0.518
4	0.275	0.462	0.718	0.895	1.000	0.919	0.865	0.823	0.790	0.757	0.718	0.671	0.621	0.580
5	0.253	0.413	0.657	0.821	0.919	1.000	0.943	0.901	0.860	0.821	0.770	0.713	0.660	0.612
6	0.233	0.363	0.605	0.768	0.865	0.943	1.000	0.953	0.911	0.866	0.809	0.749	0.692	0.639
7	0.200	0.324	0.565	0.732	0.823	0.901	0.953	1.000	0.958	0.912	0.852	0.783	0.720	0.661
8	0.179	0.286	0.530	0.704	0.790	0.860	0.911	0.958	1.000	0.955	0.896	0.825	0.755	0.685
9	0.134	0.255	0.502	0.675	0.757	0.821	0.866	0.912	0.955	1.000	0.944	0.876	0.800	0.722
10	0.090	0.213	0.465	0.640	0.718	0.770	0.809	0.852	0.896	0.944	1.000	0.938	0.857	0.775
11	0.050	0.181	0.427	0.601	0.671	0.713	0.749	0.783	0.825	0.876	0.938	1.000	0.923	0.834
12	0.014	0.146	0.398	0.561	0.621	0.660	0.692	0.720	0.755	0.800	0.857	0.923	1.000	0.913
13	-0.004	0.121	0.364	0.518	0.580	0.612	0.639	0.661	0.685	0.722	0.775	0.834	0.913	1.000
14	0.013	0.109	0.329	0.481	0.541	0.569	0.595	0.617	0.636	0.668	0.711	0.764	0.829	0.912
15	0.026	0.113	0.310	0.452	0.506	0.529	0.550	0.569	0.592	0.618	0.653	0.699	0.760	0.830
16	0.012	0.097	0.282	0.411	0.459	0.479	0.493	0.509	0.531	0.550	0.583	0.629	0.690	0.754
17	0.015	0.090	0.267	0.382	0.422	0.441	0.455	0.469	0.481	0.493	0.522	0,560	0.621	0.679
18	0.030	0.104	0.252	0.355	0.385	0.402	0.410	0.426	0.430	0.439	0.466	0.506	0.568	0.619
19	0.034	0.092	0.233	0.329	0.348	0.355	0.355	0.370	0.371	0.377	0.402	0.430	0.488	0.544
20	0.041	0.098	0.240	0.321	0.327	0.323	0.321	0.331	0.326	0.329	0.348	0.361	0.404	0.462
21	0.044	0.106	0.231	0.294	0.296	0.287	0.287	0.297	0.292	0.293	0.311	0.322	0.347	0.393
22	0.051	0.107	0.202	0.257	0.258	0.252	0.254	0.266	0.260	0.259	0.272	0.279	0.293	0.317
23	0.067	0.124	0.204	0.252	0.254	0.256	0.259	0.267	0.254	0.257	0.264	0.261	0.264	0.279
24	0.061	0.123	0.201	0.246	0.252	0.260	0.263	0.273	0.259	0.263	0.267	0.267	0.274	0.292
25	0.055	0.122	0.205	0.238	0.243	0.251	0.251	0.265	0.252	0.257	0.267	0.270	0.289	0.306
26	0.050	0.103	0.190	0.223	0.225	0.235	0.233	0.248	0.238	0.246	0.259	0.265	0.289	0.308
27	0.054	0.100	0.181	0.213	0.212	0.221	0.221	0.238	0.230	0.239	0.255	0.261	0.280	0.303

(1) December - Concluded

Altitude level i,			Interlev	el corre	lation co	effici ent	(nondim	ensional) for alti	itude lev	elj, km	1, of -		
km ,	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.013	0.026	0.012	0.015	0.030	0.034	0.041	0.044	0.051	0.067	0.061	0.055	0.050	0.054
1	0.109	0.113	0.097	0.090	Ú•104	0.092	0.098	0.106	0.107	0.124	0.123	0.122	0.103	0.100
2	0.329	0.310	0.282	0.267	0.252	0.233	0.240	0.231	0.202	0.204	0.201	0.205	0.190	0.181
3	0.481	0.452	0.411	0.382	0.355	0.329	0.321	0.294	0.257	0.252	0.246	0.238	0.223	0.213
4	0.541	0.506	0.459	0.422	0.385	0.348	0.327	0.296	0.258	0.254	0.252	0.243	0.225	0.212
5	0.569	0.529	0.479	0.441	0.402	0.355	0.323	0.287	0.252	0.256	0.260	0.251	0.235	0.221
6	0.595	0.550	0.493	0.455	0-410	0.355	0.321	0.287	0.254	0.259	0.263	0.251	0.233	0.221
7	0.617	0.569	0.509	0.469	0.426	0.370	0.331	0.297	0.266	0.267	0.273	0.265	0.248	0.238
8	0.636	0.592	0.531	0.481	0.430	0.371	0.326	0.292	0.260	0.254	0.259	0.252	0.238	0.230
9	0.668	0.618	0.550	0.493	0.439	0.377	0.329	0.293	0.259	0.257	0.263	0.257	0.246	0.239
10	0.711	0.653	0.583	0.522	0.466	0.402	0.348	0.311	0.272	0.264	0.267	0.267	0.259	0.255
11	0.764	0.699	0.629	0.560	0.506	0.430	0.361	0.322	0.279	0.261	0.267	0.270	0.265	0.261
12	C.829	0.760	0.690	0.621	0.568	0.488	0.404	0.347	0.293	0.264	0.274	0.289	0.289	0.280
13	0.912	0.830	0.754	0.679	0.619	0.544	0.462	0.393	0.317	0.279	0.292	0.306	0.308	0.303
14	1.000	0.913	0.816	0.735	0.662	0.588	0.505	0.426	0.349	0.308	0.324	0.332	0.329	0.323
15	0.913	1.000	0.909	0.798	0.719	0.638	0.557	0.483	0.404	0.358	0.368	0.370	0.362	0.353
16	0.816	0.909	1.000	0.898	0.780	0.694	0.610	0.535	0.464	0.412	0.416	0.412	0.404	0.392
17	0.735	0.798	0.898	1.000	0.886	0.756	0.654	0.584	0.518	0.470	0.470	0.461	0.442	0.424
18	0.662	0.719	0.780	0.886	1.000	0.865	0.702	0.635	0.583	0.539	0.533	0.519	0.491	0.470
19	0.588	0.638	0.694	0.756	0.865	1.000	0.851	0.733	0.679	0.625	0.618	0.599	0.566	0.537
20	0.505	0.557	0.610	0.654	0.702	0.851	1.000	0.876	0.770	0.708	0.694	0.666	0.634	0.603
21	0.426	0.483	0.535	0.584	0.635	0.733	0.876	1.000	0.898	0.798	0.769	0.731	0.698	0.662
22	0.349	0.404	0.464	0.518	0.583	0.679	0.770	0.898	1.000	0.907	0.833	0.779	0.738	9.701
23	0.308	0.358	0.412	0.470	0.539	0.625	0.708	0.798	0.907	1.000	0.925	0.847	0.790	0.747
24	0.324	0.368	0.416	0.470	0.533	0.618	0.694	0.769	0.833	0.925	1.000	0.941	0.875	0.817
25	0.332	0.370	0.412	0.461	0.519	0.599	0.666	0.731	0.779	0.847	0.941	1.000	0.952	0.884
26	0.329	0.362	0.404	0.442	0.491	0.566	0.634	0.698	0.738	0.790	0.875	0.952	1.000	0.958
27	0.323	0.353	0.392	0.424	0.470	0.537	0.603	0.662	0.701	0.747	0.817	0.884	0.958	1.000

TABLE V.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN ZONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Concluded

(m) Annual

Altitu level			Inter	rlevel co	rrelation	n coeffic	i ent (non	dimensi	onal) for	altitude	level j,	km, of	-	
km		1	2	3	4	5	6	7	8	. 9	10	11	12	13
	Ū	•	-	-	•	•	•	•	Ū	. ,	••.	••	. ***	
0	1.000	0.608	0.416	0.345	0.312	0.286	0.257	0.222	0.183	0.144	0.102	0.062	0.026	0.009
1	0.608	1.000	0.742	0.581	0.508	0.457	0.412	0.364	0.313	0.267	0.223	0.189	0.160	0.146
2	0.416	0.742	1.000	0.844	0.745	0.682	0.629	0.579	0.525	0.476	0.431	0.391	0.364	0.352
3	0.345	0.581	0.844	1.000	0.896	0.823	0.768	0.721	0.673	0.624	0.578	0.536	0.505	0.488
4	0.312	0.508	0.745	0.896	1.000	0.920	0.861	0.811	0.763	0.713	0.664	0.617	0.580	0.559
5	0.286	0.457	0.682	0.823	0.920	1.000	0.934	0.883	0.832	0.780	0.726	0.674	0.632	0.607
6	0.257	0.412	0.629	0.768	0.861	0.934	1.000	0.943	0.891	0.837	0.780	0.723	0.676	0.646
7	0.222	0.364	0.579	0.721	0.811	0.883	0.943	1.000	0.949	0.896	0.837	0.777	0.724	0.686
8	0.183	0.313	0.525	0.673	0.763	0.832	0.891	0.949	1.000	0.951	0.893	0.832	0.771	0.726
9	0.144	0.267	0.476	0.624	0.713	0.780	0.837	0.896	0.951	1.000	0.949	0.887	0.822	0.766
10	0.102	0.223	0.431	0.578	0.664	0.726	0.780	0.837	0.893	0.949	1.000	0.946	0.876	0.810
11	0.062	0.189	0.391	0.536	0.617	0.674	0.723	0.777	0.832	0.887	0.946	1.000	0.936	0.860
12	0.026	0.160	0.364	0.505	0.580	0.632	0.676	0.724	0.771	0.822	0.876	0.936	1.000	0.923
13	0.009	0-146	0.352	0.488	0.559	0.607	0.646	0.686	0.726	0.766	0.810	0.860	0.923	1.000
14	0.014	0.143	0.346	0.480	0.551	0.598	0.635	0.670	0.702	0.731	0.763	0.800	0.845	0.911
15	0.022	0.144	0.344	0.472	0.541	0.585	0.618	0.646	0.670	0.691	0.715	0.744	0.784	0.833
16	0.029	0.138	0.327	0.447	0.514	0.552	0.581	0.602	0.620	0.636	0.656	0.681	0.719	0.766
17	0.029	0.122	0.294	0.402	0.463	0.497	0.522	0.542	0.555	0.567	0.583	0.604	0.641	0.685
18	0.021	0.097	0.249	0.345	0.399	0.432	0.457	0.471	0.483	0.493	0.507	0.526	0.558	0.601
19	0.022	0.074	0.205	0.290	0.336	0.364	0.386	0.401	0.409	0.415	0.428	0.442	0.468	0.507
20	0.024	0.061	0.170	0.240	0.277	0.300	0.319	0.331	0.336	0.339	0.348	0.358	0.381	0.416
21	0.022	0.045	0.135	0.189	0.220	0.239	0.258	0.269	0.270	0.270	0.279	0.285	0.306	0.337
22	0.030	0.045	0.117	0.157	0.180	0.196	0.213	0.221	0.219	0.216	0.222	0.224	0.241	0.267
23	0.038	0.041	0.097	0.127	0.144	0.157	0.172	0.178	0.172	0.170	0.177	Ö. 179	Ŏ.195	0.218
24	0.036	0.034	0.075	0.099	0.111	0.120	0.132	0.137	0.131	0.131	0.140	0.144	0.159	0.181
25	0.032	0.028	0.059	0.077	0.088	0.094	0.104	0.112	0.107	0.109	0,119	0.124	0.139	0.159
26	0.030	0.022	0.049	0.065	0.075	0.080	0.089	0.097	0.095	0.098	0.110	0.116	0.132	0.151
27	0.030	0.021	0.044	0.056	0.064	0.067	0.074	0.081	0.082	0.085	0.096	0.104	0.120	0.140
							_							

(m) Annual - Concluded

Altitud level			Inter	level cor	relation	coefficie	ent (nond	imensio	nal) for a	altitude l	evel j,	km, of –		
km	14	15	16	17	18	19	20	21	22	23	24	_25	26	27
0	0.014	0.022	0.029	0.029	0.021	0.022	0.024	0.022	0.030	0.038	0.036	0.032	0.030	0.030
1	0.143	0.144	0.138	0.122	0.097	0.074	0.061	0.045	0.045	0.041	0.034	0.028	0.022	0.021
2	0.346	0.344	0.327	0.294	0.249	0.205	0.170	0.135	0.117	0.097	0.075	0.059	0.049	0.044
3	0.480	0.472	0.447	0.402	0.345	0.290	0.240	0.189	0.157	0.127	0.099	0.077	0.065	0.056
4	0.551	0.541	0.514	0.463	0.399	0.336	0.277	0.220	0.180	0.144	0.111	0.088	0.075	0.064
5	0.598	0.585	0.552	0.497	0.432	0.364	0.300	0.239	0.196	0.157	0.120	0.094	0.080	0.067
6	0.635	0.618	0.581	0.522	0.457	0.386	0.319	0.258	0.213	0.172	0.132	0.104	0.089	0.074
7	0.670	0.646	0.602	0.542	0.471	0.401	0.331	0.269	0.221	0.178	0.137	0-112	0.097	0.081
8	0.702	0.670	0.620	0.555	0.483	0.409	0.336	0.270	0.219	0.172	0.131	0.107	0.095	0.082
9	0.731	0.691	0.636	0.567	0.493	0.415	0.339	0.270	0.216	0.170	0.131	0.109	0.098	0.085
10	0.763	0.715	0.656	0.583	0.507	0.428	0.348	0.279	0.222	0.177	0.140	0.119	0.110	0.096
11	0.800	0.744	0.681	0.604	0.526	0.442	0.358	0.285	0.224	0.179	0.144	0.124	0.116	0.104
12	0.845	0.784	0.719	0.641	0.558	0.468	0.381	0.306	0.241	0.195	0.159	0.139	0.132	0.120
13	0.911	0.833	0.766	0.685	0.601	0.507	0.416	0.337	0.267	0.218	0.181	0.159	0.151	0.140
14	1.000	0.909	0.816	0.735	0.653	0.559	0.462	0.375	0.298	0.242	0.201	0.177	0.163	0.149
15	0.909	1.000	0.899	0.785	0.704	0.610	0.511	0.422	0.343	0.283	0.236	0.207	0.191	0.173
16	0.816	0.899	1.000	0.875	0.751	0.658	0.559	0.472	0.395	0.334	0.284	0.251	0.231	0.210
17	0.735	0.785	0.875	1.000	0.852	0.711	0.612	0.529	0.455	0.389	0.336	0.302	0.278	0.250
18	0.653	0.704	0.751	0.852	1.000	0.827	0.675	0.592	0.519	0.453	0.399	0.362	0.336	0.302
19	0.559	0.610	0.658	0.711	0.827	1.000	0.815	0.674	0.591	0.526	0.475	0.432	0.400	0.363
20	0.462	0.511	0.559	0.612	0.675	0.815	1.000	0.819	0.684	0.609	0.556	0.507	0.471	0.432
21	0.375	0.422	0.472	0.529	0.592	0.674	0.819	1.000	0.837	0.709	0.638	0.581	0.543	0.501
22	0.298	0.343	0.395	0.455	0.519	0.591	0.684	0.837	1.000	0.857	0.738	0.665	0.615	0.570
23	0.242	0.283	0.334	0.389	0.453	0.526	0.609	0.709	0.857	1.000	0.877	0.764	0.696	0.641
24	0.201	0.236	0.284	0.336	0.399	0.475	0.556	0.638	0.738	0.877	1.000	0.891	0.793	0.724
25	0.177	0.207	0.251	0.302	0.362	0.432	0.507	0.581	0.665	0.764	0.891	1.000	0.910	0.816
26	0.163	0.191	0.231	0.278	0.336	0.400	0.471	0.543	0.615	0.696	0.793	0.910	1.000	0.921
27	0.149	0.173	0.210	0.250	0.302	0.363	0.432	0.501	0.570	0.641	0.724	0.816	0.921	1.000

TABLE VI. - INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE

Sample includes observations made 4 times daily for years 1956 to 1964 at Norfolk and Washington stations

(a) January

Altitude			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	itude lev	elj, km	ı, of —		
level i,											• • •	•		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.655	0.438	0.345	0.268	0.211	0.166	0.125	0.087	0.050	0.034		-0.007	-0.020
1	0.655	1.000	0.796	0.675	0.572	0.493	0.428	0.376	0.340	0.300	0.276	0.244	0.222	0.198
2	0.438	0.796	1.000	0.890	0.795	0.728	0.665	0.615	0.581	0.542	0.512	0.475	0.453	0.424
3	0.345	0.675	0.890	1.000	0.916	0.850	0.797	0.754	0.717	0.679	0.648	0.606	0.576	0.538
4	0.268	0.572	0.795	0.916	1.000	0.940	0.890	0.849	0.809	0.768	0.730	0.684	0.655	0.622
5	0.211	0.493	0.728	0.850	0.940	1.000	0.953	0.909	0.870	0.829	0.787	0.738	0.701	0.661
6	0.166	0.428	0.665	0.797	0.890	0.953	1.000	0.960	0.919	0.874	0.827	0.772	0.732	0.693
7	0.125	0.376	0.615	0.754	0.849	0.909	0.960	1.000	0.961	0.917	0.865	0.806	0.762	0.718
8	0.087	0.340	0.581	0.717	0.809	0.870	0.919	0.961	1.000	0.962	0.911	0.851	0.807	0.754
9	0.050	0.300	0.542	0.679	0.768	0.829	0.874	0.917	0.962	1.000	0.958	0.903	0.853	0.793
10	0.034	0.276	0.512	0.648	0.730	0.787	0.827	0.865	0.911	0.958	1.000	0.951	0.898	0.833
11	0.006	0.244	0.475	0.606	0.684	0.738	0.772	0.806	0.851	0.903	0.951	1.000	0.944	0.874
12	-0.007	0.222	0.453	0.576	0.655	0.701	0.732	0.762	0.807	0.853	0.898	0.944	1.000	0.926
13	-0.020	0.198	0.424	0.538	0.622	0.661	0.693	0.718	0.754	0.793	0.833	0.874	0.926	1.000
14	-0.014	0.192	0.400	0.511	0.587	0.626	0.655	0.677	0.710	0.744	0.777	0.811	0.862	0.918
15	-0.003	0.196	0.385	0.492	0.571	0.603	0.625	0.643	0.676	0.702	0.735	0.764	0.819	0.865
16	-0.000	0.181	0.359	0.464	0.533	0.571	0.595	0.613	0.646	0.667	0.696	0.721	0.770	0.810
17	0.009	0.180	0.338	0.437	0.499	0.526	0.545	0.564	0.595	0.612	0.638	0.664	0.705	0.750
18	0.015	0.158	0.274	0.372	0.431	0.447	0.468	0.486	0.515	0.527	0.554	0.580	0.616	0.657
19	0.013	0.142	0.233	0.315	0.364	0.378	0.392	0.404	0.424	0.429	0.449	0.473	0.509	0.547
20	0.009	0.102	0.179	0.248	0.288	0.299	0.311	0.322	0.335	0.336	0.350	0.365	0.394	0.420
21	-0.019	0.062	0.125	0.188	0.217	0.225	0.238	0.237	0.245	0.246	0.254	0.261	0.278	0.305
22	-0.017	0.057	0.099	0.143	0.159	0.162	0.172	0.168	0.173	0.164	0.165	0.172	0.181	0.198
	-0.012	0.050	0.073	0.113	0.119	0.122	0.127	0.122	0.127	0.115	0.110	0.113	0.111	0.126
	-C.000	0.056	0.073	0.106	0.108	0.111	0.112	0.106	0.109	0.093	0.084	0.089	0.083	0.095
25	0.006	0.055	0.066	0.090	0.092	0.098	0.099	0.093	0.093	0.078	0.068	0.067	0.062	0.073
26	0.010	0.059	0.061	0.083	0.083	0.085	0.084	0.075	0.076	0.061	0.052	0.052	0.041	0.047
27	0.018	0.065	0.063	0.083	0.085	0.086	0.083	0.075	0.071	0.056	0.050	0.051	0.038	0.039
				,										

(a) January - Concluded

Altitude			Interleve	el correl	ation co	efficient	(nondim	ensional) for alti	tude lev	el j, km	, of -		
level i,	• .				1.0	10	20	21	22	23	24	25	26	27
km	14	15	16	17	18	19	20	21	22	23	24	23	20	21
0	-0.014	-0.003	-0.000	0.009	0.015	0.013	0.009	-0.019	-0.017	-0.012	-0.000	0.006	0.010	0.018
1	0.192	0.196	0.181	0.180	0.158	0.142	0.102	0.062	0.057	0.050	0.056	0.055	0.059	0.065
2	0.400	0.385	0.359	0.338	0.274	0.233	0.179	0.125	0.099	0.073	0.073	0.066	0.061	0.063
3	0.511	0.492	0.464	0.437	0.372	0.315	0.248	0.188	0.143	0.113	0.106	0.090	0.083	0.083
4	0.587	0.571	0.533	0.499	0.431	0.364	0.288	0.217	0.159	0.119	0.108	0.092	0.083	0.085
5	0.626	0.603	0.571	0.526	0.447	0.378	0.299	0.225	0.162	0.122	0.111	0.098	0.085	0.086
6	0.655	0.625	0.595	0.545	0.468	0.392	0.311	0.238	0.172	0.127	0.112	0.099	0.084	0.083
7	0.677	9.643	0.613	0.564	0.486	0-404	0.322	0.237	0.168	0.122	0.106	0.093	0.075	0.075
8	0.710	0.676	0.646	0.595	0.515	0.424	0.335	0.245	0.173	0.127	0.109	0.093	0.076	0.071
9	0.744	0.702	0.667	0.612	0.527	0.429	0.336	0.246	0.164	0.115	0.093	0.078	0.061	0.056
10	0.777	0.735	0.696	0.638	0.554	0.449	0.350	0.254	0.165	0.110	0.084	0.068	0.052	0.050
11	0.811	0.764	0.721	0.664	0.580	0.473	0.365	0.261	0.172	0.113	0.089	0.067	0.052	0.051
12	0.862	0.819	0.770	0.705	0.616	0.509	0.394	0.278	0.181	0.111	0.083	0.062	0.041	0.038
13	0.918	0.865	0.810	0.750	0.657	0.547	0.420	0.305	0.198	0.126	0.095	0.073	0.047	0.039
14	1.000	0.915	0.849	0.793	0.709	0.599	0.476	0.353	0.234	0.161	0.125	0.097	0.073	0.068
15	0.915	1.000	0.909	0.828	0.749	0.650	0.530	0.400	0.281	0.205	0.163	0.135	0.114	0.108
16	0.849	0.909	1.000	0.889	0.779	0.681	0.572	0.450	0.323	0.247	0.198	0.172	0.156	0.154
17	0.793	0.828	0.889	1.000	0.867	0.739	0.633	0.515	0.393	0.316	0.265	0.226	0.211	0.209
18	0.709	0.749	0.779	0.867	1.000	0.857	0.714	0.619	0.505	0.417	0.365	0.312	0.289	0.289
19	0.599	0.650	0.681	0.739	0.857	1.000	0.839	0.708	0.605	0.512	0.472	0.424	0.403	0.383
20	0.476	0.530	0.572	0.633	0.714	0.839	1.000	0.838	0.718	0.643	0.602	0.557	0.524	0.494
21	0.353	0.400	0.450	0.515	0.619	0.708	0.838	1.000	0.867	0.770	0.728	0.674	0.636	0.604
22	0.234	0.281	0.323	0.393	0.505	0.605	0.718	0.867	1.000	0.897	0.816	0.763	0.721	0.681
23	0.161	0.205	0.247	0.316	0.417	0.512	0.643	0.770	0.897	1.000	0.908	0.833	0.796	0.754
24	0.125	0.163	0.198	0.265	0.365	0.472	0.602	0.728	0.816	0.908	1.000	0.916	0.859	0.812
25	0.097	0.135	0.172	0.226	0.312	0.424	0.557	0.674	0.763	0.833	0.916	1.000	0.930	0.864
26	0.073	0.114	0.156	0.211	0.289	0.403	0.524	0.636	0.721	0.796	0.859	0.930	1.000	0.937
27	0.068	0.108	0.154	0.209	0.289	0.383	0.494	0.604	0.681	0.754	0.812	0.864	0.937	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(b) February

Altitude														
level i,	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.631	0.372	0.318	0.273	0.230	0.188	0.150	0.111	0.088	0.045	0.028	0.011	0.002
1	0.631	1.000	0.759	0.616	0.518	0.436	0.375	0.328	0.286	0.253	0.207	0.177	0.128	0.082
2	0.372	0.759	1.000	0.868	0.761	0.680	0.627	0.584	0.544	0.505	0.458	0.422	0.366	0.320
3	0.318	0.616	0.868	1.000	0.911	0.832	0.785	0.745	0.706	0.674	0.625	0.589	0.539	0.495
4	0.273	0.518	0.761	0.911	1.000	0.931	0.875	0.832	0.790	0.755	0.707	0.669	0.619	0.577
5	0.230	0.436	0.680	0.832	0.931	1.000	0.944	0.901	0.861	0.822	0.777	0.737	0.688	0.649
6	0.188	0.375	0.627	0.785	0.875	0.944	1.000	0.956	0.914	0.872	0.830	0.789	0.741	0.704
7	0.150	0.328	0.584	0.745	0.832	0.901	0.956	1.000	0.960	0.918	0.876	0.835	0.788	0.752
8	0.111	0.286	0.544	0.706	0.790	0.861	0.914	0.960	1.000	0.964	0.920	0.878	0.828	0.790
9	0.088	0.253	0.505	0.674	0.755	0.822	0.872	0.918	0.964	1.000	0.960	0.915	0.864	0.822
10	0.045	0.207	0.458	0.625	0.707	0.777	0.830	0.876	0.920	0.960	1.000	0.953	0.899	0.853
11	0.028	0.177	0.422	0.589	0.669	0.737	0.789	0.835	0.878	0.915	0.953	1.000	0.945	0.888
12	0.011	0.128	0.366	0.539	0.619	0.688	0.741	0.788	0.828	0.864	0.899	0.945	1.000	0.937
13	0.002	0.082	0.320	0.495	0.577	0.649	0.704	0.752	0.790	0.822	0.853	0.888	0.937	1.000
14	-0.010	0.050	0.281	0.459	0.540	0.605	0.660	0.703	0.744	0.781	0.806	0.837	0.872	0.924
15	-0.016	0.034	0.247	0.416	0.499	0.569	0.626	0.665	0.701	0.734	0.759	0.793	0.833	0.875
16	-0.007	0.013	0.202	0.366	0.452	0.523	0.571	0.612	0.646	0.678	0.703	0.737	0.777	0.820
17	-0.026	-0.028	0.148	0.306	0.390	0.461	0.506	0.544	0.573	0.603	0.626	0.660	0.707	0.753
18	-0.053	-0.041	0.106	0.248	0.315	0.388	0.436	0.471	0.496	0.518	0.538	0.572	0.617	0.666
19	-0.057	-0.062	0.069	0.197	0.271	0.336	0.378	0.411	0.436	0.455	0.472	0.503	0.544	0.588
20	-0.077	-0.075	0.039	0.139	0.199	0.251	0.284	0.308	0.332	0.344	0.365	0.398	0.432	0.463
21	-0.107	-0.105	-0.011	0.064	0.106	0.154	0.172	0.185	0.207	0.216	0.237	0.273	0.302	0.320
22	-0.091	-0.075	0.003	U.046	0.070	0.102	0.113	0.118	0.132	0.134	0.149	0.177	0.203	0.220
23	-0.078	-0.044	0.016	0.043	0.053	0.077	0.084	0.081	0.090	0.096	0.107	0.131	0.146	0.167
24	-0.087	-0.044	0.005	0.028	0.030	0.054	0.054	0.048	0.060	0.067	0.080	0.101	0.106	0.110
25	-0.087	-0.031	0.014	0.026	0.022	0.039	0.035	0.028	0.040	0.048	0.063	0.078	0.082	0.078
26	-0.071	-0.012	0.028	0.034	0.031	0.051	0.044	0.034	0.040	0.045	0.053	0.060	0.064	0.061
27	-0.061	-0.008	0.033	0.048	0.049	0.066	0.064	0.052	0.060	0.063	0.072	0.073	0.078	0.069

(b) February - Concluded

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	itude lev	el j, km	ı, of –		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
a	-0.010	-0.014	-0.007	-0.026	_0_053	-0.057	-0.077	-0 107	-0.091	-0-078	-0-087	-0-087	-0.071	-0-061
1	0.050	0.034	0.007	-0.028	-0.041	-0.062	-0.075	~0.107	-0.075	-0.044	-0.064	-0.031	-0.012	-0.008
1	0.281	0.247	0.202	0.148	0.106	0.069		-0.011	0.003	0.016	0.005	0.014	0.028	0.033
2	0.459	0.416	0.366	0.140	0.248	0.197	0.139	0.064	0.046	0.043	0.028	0.026	0.034	0.048
4	0.540	0.499	0.452	0.390	0.315	0.271	0.199	0.106	0.070	0.053	0.030	0.022	0.031	0.049
5	0.605	0.569	0.523	U.461	0.388	0.336	0.251	0.154	0.102	0.077	0.054	0.039	0.051	0.066
6	0.660	0.626	0.571	0.506	0.436	0.378	0.284	0.172	0.113	0.084	0.054	0.035	0.044	0.064
7	0.703	0.665	0.612	0.544	0.471	0.411	0.308	0.185	0.118	0.081	0.048	0.028	0.034	0.052
8	0.744	0.701	0.646	0.573	0.496	0.436	0.332	0.207	0.132	0.090	0.060	0.040	0.040	0.060
9	0.781	0.734	0.678	0.603	0.518	0.455	0.344	0.216	0.134	0.096	0.067	0.048	0.045	0.063
10	0.806	0.759	0.703	0.626	0.538	0.472	0.365	0.237	0.149	0.107	0.080	0.063	0.053	0.072
11	0.837	0.793	0.737	0.660	0.572	0.503	0.398	0.273	0.177	0.131	0.101	0.078	0.060	0.073
12	0.872	0.833	0.777	0.707	0.617	0.544	0.432	0.302	0.203	0.146	0.106	0.082	0.064	0.078
13	0.924	0.875	0.820	0.753	0.666	0.588	0.463	0.320	0.220	0.167	0.110	0.078	0.061	0.069
14	1.000	0.925	0.851	0.787	0.714	0.630	0.510	0.355	0.240	0.179	0.123	0.094	0.076	0.082
15	0.925	1.000	0.918	0.837	0.765	0.677	0.546	0.390	0.278	0.209	0.139	0.104	0.080	0.087
16	0.851	0.918	1.000	6.900	0.800	0.729	0.597	0.446	0.340	0.266	0.195	0.152	0.108	0.108
17	0.787	0.837	0.900	1.000	0.878	0.768	0.646	0.493	0.387	0.307	0.240	0.192	0.141	0.132
18	0.714	0.765	0.800	0.878	1.000	0.851	0.695	0.552	0.445	0.357	0.280	0.224	0.170	0.154
19	0.630	0.677	0.729	Ú.760	0.851	1.000	0.807	0.608	0.503	0.414	0.345	0.282	0.235	0.209
20	0.510	0.546	0.597	0.646	0.695	0.807	1.000	0.786	0.643	0.530	0.453	0.393	0.345	0.286
21	0.355	0.390	0.446	0.493	0.552	0.608	0.786	1.000	0.833	0.678	0.572	0.515	0.467	0.400
22	0.240	0.278	0.340	0.387	0.445	0.503	0.643	0.833	1.000	0.832	0.697	0.613	0.554	0.481
23	0.179	0.209	0.266	0.307	0.357	0.414	0.530	0.678	0.832	1.000	0.840	0.718	0.643	0.571
24	0.123	0.139	0.195	C.240	0.280	0.345	0.453	0.572	0.697	0.840	1.000	0.840	0.717	0.620
25	0.094	0.104	0.152	0.192	0.224	0.282	0.393	0.515	0.613	0.718	0.840	1.000	0.865	0.732
26	0.076	0.080	0.108	0.141	0.170	0.235	0.345	0.467	0.554	0.643	0.717	0.865	1.000	0.881
27	0.082	0.087	0.108	0.132	0.154	0.209	0.286	0.400	0.481	0.571	0.620	0.732	0.881	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(c) March

Altitude	Interlevel correlation coefficient (nondimensional) for altitude level j, km, of —													
level i,												•		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.661	0.472	0.404	0.366	0.312	0.254	0.205	0.169	0.146	0.106	0.095	0.052	0.022
1	0.661	1.000	0.797	0.662	0.577	0.507	0.436	0.383	0.342	0.313	0.272	0.260	0.207	0.142
2	0.472	0.797	1.000	0.864	0.756	0.696	0.639	0.593	0.555	0.522	0.483	0.460	0.400	0.338
3	0.404	0.662	0.864	1.000	0.902	0.831	0.777	0.733	0.694	0.662	0.625	0.595	0.535	0.479
4	0.366	0.577	0.756	0.902	1.000	0.933	0.875	0.832	0.796	0.760	0.718	0.682	0.627	0.576
5	0.312	0.507	0.696	0.831	0.933	1.000	0.946	0.898	0.857	0.816	0.772	0.737	0.687	0.643
6	0.254	0.436	0.639	0.777	0.875	0.946	1.000	0.956	0.908	0.866	0.818	0.775	0.727	0.688
7	0.205	0.383	0.593	0.733	0.832	0.898	0.956	1.000	0.959	0.919	0.871	0.824	0.776	0.735
8	0.169	0.342	0.555	0.694	0.796	0.857	0.908	0.959	1.000	0.963	0.916	0.865	0.816	0.776
9	0.146	0.313	0.522	0.662	0.760	0.816	0.866	0.919	0.963	1.000	0.959	0.905	0.852	0.802
10	0.106	0.272	0.483	0.625	0.718	0.772	0.818	0.871	0.916	0.959	1.000	0.953	0.898	0.840
11	0.095	0.260	0.460	0.595	0.682	0.737	0.775	0.824	0.865	0.905	0.953	1.000	0.944	0.877
12	0.052	0.207	0.400	0.535	0.627	0.687	0.727	0.776	0.816	0.852	0.898	0.944	1.000	0.931
13	0.022	0.142	0.338	0.479	0.576	0.643	0.688	0.735	0.776	0.802	0.840	0.877	0.931	1.000
14	0.025	0.121	0.306	0.447	0.540	0.605	0.652	0.699	0.738	0.761	0.795	0.826	0.870	0.922
15	0.004	0.096	0.282	0.419	0.511	0.580	0.626	0.675	0.713	0.736	0.769	0.795	0.842	0.885
16	-0.006	0.078	0.247	0.381	0.475	0.539	0.585	0.632	0.668	0.691	0.723	0.753	0.802	0.842
17	-0.033	0.036	0.191	0.321	0.402	0.460	0.506	0.555	0.588	0.613	0.645	0.680	0.734	0.782
18	-0.054	-0.015	0.123	0.246	0.316	0.368	0.410	0.458	0.484	0.506	0.541	0.568	0.627	0.684
19	-0.073	-0.043	0.075	0.165	0.229	0.275	0.319	0.358	0.383	0.400	0.429	0.454	0.516	0.577
20	-0.095	-0.083	0.028	0.100	0.145	0.192	0.226	0.256	0.273	0.284	0.299	0.321	0.378	0.445
	-0.108		0.009	0.065	0.107	0.146	0.179	0.205	0.209	0.212	0.220	0.234	0.279	0.342
22	-0.137	-0.088	-0.015	0.022	0.053	0.084	0.108	0.135	0.137	0.138	0.150	0.154	0.197	0.248
23	-0.139	-0.068	0.006	U-036	0.047	0.070	0.091	0.115	0.115	0.117	0.119	0.120	0.149	0.195
	-0.118		0.011	0.024	0.041	0.062	0.080	0.104	0.102	0.099	0.099	0.094	0.118	0.152
25	-0.113	-0.043		0.006	0.019	0.044	0.064	0.076	0.073	0.068	0.067	0.056	0.081	0.109
	-0.085		0.017	0.023	0.034	0.052	0.069	0.082	0.075	0.074	0.073	0.058	0.076	0.102
27	-0.068	-0.010	0.025	0.025	0.038	0.053	0.067	0.076	0.067	0.064	0.061	0.055	0.069	0.091

(c) March - Concluded

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	tude lev	elj, km	ı, of —			
km ,	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
0	0.025	0.004	-0.006	-0.033	-0.054	-0.073	-0.095	-0.108	-0.137	-0.139	-0.118	-0.113	-0.085	-0.068	
1	0.121	0.096	0.078	0.036	-0.015	-0.043	-0.083	-0.079	-0.088	-0.068	-0.055	-0.043	-0.020	-0.010	
2	0.306	0.282	0.247	0.191	0.123	0.075	0.028	0.009	-0.015	0.006	0.011	-0.003	0.017	0.025	
3	0.447	0.419	0.381	0.321	0.246	0.165	0.100	0.065	0.022	0.036	0.024	0.006	0.023	0.025	
4	0.540	0.511	0.475	0.402	0.316	0.229	0.145	0.107	0.053	0.047	0.041	0.019	0.034	0.038	
5	0.605	0.580	0.539	0.460	U.368	0.275	0.192	0.146	0.084	0.070	0.062	0.044	0.052	0.053	
6	0.652	0.626	0.585	0.506	0.410	0.319	0.226	0.179	0.108	0.091	0.080	0.064	0.069	0.067	
7	0.699	0.675	0.632	0.555	0.458	0.358	0.256	0.205	0.135	0.115	0.104	0.076	0.082	0.076	
8	0.738	0.713	0.668	0.588	0.484	0.383	0.273	0.209	0.137	0.115	0.102	0.073	0.075	0.067	
9	0.761	0.736	0.691	0.613	0.506	0.400	0.284	0.212	0.138	0.117	0.099	0.068	0.074	0.064	
10	0.795	0.769	0.723	0.645	0.541	0.429	0.299	0.220	0.150	0.119	0.099	0.067	0.073	0.061	
11	0.826	0.795	0.753	0.680	0.568	0.454	0.321	0.234	0.154	0.120	0.094	0.056	0.058	0.055	
12	0.870	0.842	0.802	0.734	0.627	0.516	0.378	0.279	0.197	0.149	0.118	0.081	0.076	0.069	
13	0.922	0.885	0.842	0.782	0.684	0.577	0.445	0.342	0.248	0.195	0.152	0.109	0.102	0.091	
14	1.000	0.926	0.861	0.801	0.709	0.603	0.477	0.379	0.276	0.213	0.168	0.125	0.113	0.092	
15	0.926	1.000	0.915	0.826	0.729	0.625	0.497	0.400	0.291	0.226	0.181	0.137	0.125	0.100	
16	0.861	0.915	1.000	0.883	0.755	0.664	0.544	0.444	0.326	0.260	0.214	0.170	0.150	0.114	
17	0.801	0.826	0.883	1.000	0.849	0.727	0.607	0.495	0.376	0.316	0.260	0.206	0.181	0.145	
18	0.709	0.729	0.755	0.849	1.000	0.834	0.664	0.557	0.444	0.375	0.327	0.265	0.242	0.193	
19	0.603	0.625	0.664	0.727	0.834	1.000	0.771	0.629	0.521	0.443	0.389	0.328	0.305	0.250	
20	0.477	0.497	0.544	0.607	0.664	0.771	1.000	0.774	0.606	0.529	0.482	0.431	0.398	0.331	
21	0.379	0.400	0.444	0.495	0.557	0.629	0.774	1.000	0.774	0.640	0.580	0.525	0.486	0.416	
22	0.276	0.291	0.326	0.376	0.444	0.521	0.606	0.774	1.000	0.815	0.710	0.637	0.586	0.507	
23	0.213	0.226	0.260	0.316	0.375	0.443	0.529	0.640	0.815	1.000	0.841	0.730	0.675	0.595	
24	0.168	0.181	0.214	C.260	0.327	0.389	0.482	0.580	0.710	0.841	1.000	0.880	0.790	0.694	
25	0.125	0.137	0.170	0.206	0.265	0.328	0.431	0.525	0.637	0.730	0.880	1.000	0.896	0.764	
26	0.113	0.125	0.150	0.181	0.242	0.305	0.398	0.486	0.586	0.675	0.790	0.896	1.000	0.885	
27	0.092	0.100	0.114	0.145	0.193	0.250	0.331	0.416	0.507	0.595	0.694	0.764	0.885	1.000	

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(d) April

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	tude lev	el j, km	, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.700	0.482	0.373	0.297	0.245	0.194	0.150	0.130	0.101	0.074	0.047	0.024	
1	0.700	1.000	0.783	0.622	0.528	0.462	0.394	0.348	0.325	0.295	0.271	0.240	0.210	0.159
2	0.482	0.783	1.000	0.849	0.738	0.673	0.612	0.567	0.543	0.522	0.498	0.463	0.434	0.387
3	0.373	0.622	0.849	1.000	0.901	0.821	0.768	0.725	0.704	0.682	0.660	0.626	0.587	0.547
4	0.297	0.528	0.738	0.901	1.000	0.926	0.872	0.830	0.810	0.783	0.760	0.724	0.682	0.644
5	0.245	0.462	0.673	0.821	0.926	1.000	0.948	0.902	0.875	0.845	0.816	0.774	0.729	0.693
6	0.194	0.394	0.612	0.768	0.872	0.948	1.000	0.957	0.922	0.889	0.854	0.808	0.757	0.724
7	0.150	0.348	0.567	0.725	0.830	0.902	0.957	1.000	0.967	0.932	0.888	0.842	0.792	0.757
8	0.130	0.325	0.543	0.704	0.810	0.875	0.922	0.967	1.000	0.968	0.923	0.873	0.819	0.779
9	0.101	0.295	0.522	0.682	0.783	0.845	0.889	0.932	0.968	1.000	0.964	0.915	0.862	0.817
10	0.074	0.271	0.498	C.660	0.760	0.816	0.854	0.888	0.923	0.964	1.000	0.964	0.912	0.857
11	0.047	0.240	0.463	0.626	0.724	0.774	0.808	0.842	0.873	0.915	0.964	1.000	0.954	0.889
12	0.024	0.210	0.434	0.587	0.682	0.729	0.757	0.792	0.819	0.862	0.912	0.954	1.000	0.930
13	-0.011	0.159	0.387	0.547	0.644	0.693	0.724	0.757	0.779	0.817	0.857	0.889	0.930	1.000
14	-0.033	0.111	0.345	0.512	0.609	0.658	0.692	0.728	0.746	0.778	0.806	0.831	0.860	0.917
15	-0.047	0.089	0.314	0.480	0.582	0.632	0.669	0.702	0.716	0.746	0.775	0.803	0.833	0.871
16	-0.060	0.055	0.264	0.429	0.530	0.584	0.615	0.652	0.666	0.698	0.723	0.751	0.786	0.834
17	-0.064	0.031	0.216	0.375	0.473	0.518	0.547	0.582	0.598	0.628	0.652	0.681	0.722	0.774
18	-0.080	-0.008	0.165	0.312	0.401	0.451	0.476	0.508	0.521	0.546	0.568	0.598	0.649	0.702
19	-0.111	-0.053	0.106	0.243	0.328	0.383	0.403	0.435	0.445	0.470	0.490	0.521	0.569	0.639
20	-0.090	-0.040	0.099	0.203	0.273	0.322	0.336	0.357	0.364	0.383	0.401	0.430	0.473	0.543
21	-0.081	-0.067	0.061	0.138	0.184	0.226	0.241	0.266	0.279	0.294	0.311	0.333	0.378	0.443
22	-0.074	-0.073	0.027	0.108	0.147	0.182	0.195	0.218	0.231	0.239	0.256	0.272	0.313	0.371
23	-0.041	-0.061	0.028	0.079	0.108	0.141	0.144	0.163	0.171	0.177	0.193	0.213	0.257	0.308
24	-0.032	-0.068	0.004	0.042	0.060	0.091	0.102	0.126	0.126	0.129	0.143	0.160	0.198	0.237
25	-0.015	-0.041	0.025	0.063	0.075	0.095	0.100	0.118	0.113	0.116	0.130	0.147	0.187	0.220
26	-0.002	-0.028	0.028	0.062	0.077	0.086	0.083	0.093	0.085	0.086	0.098	0.115	0.154	0.179
2 7	-0.029	-0.055	0.002	0.038	0.053	0.072	0.068	0.080	0.071	0.066	0.076	0.090	0.125	0.151

(d) April - Concluded

Altitude level i,			Interlev	el corre	lation co	efficient	t (nondim	ensional	l) for alt	itude lev	el j, kn	n, of –		
km ,	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0											-0.032			
1	0.111	0.089	0.055								-C.068	-0.041	-0.028	-0.055
2	0.345	0.314	0.264	0.216	0.165	0.106	0.099	0.061	0.027	0.028	0.004	0.025	0.028	0.002
3	0.512	0.480	0.429	0.375	0.312	0.243	0.203	0.138	0.108	0.079	0.042	0.063	0.062	0.038
4	0.609	0.582	0.530	0.473	U.401	0.328	0.273	0.184	0.147	0.108	0.060	0.075	0.077	0.053
5	0.658	0.632	0.584	0.518	0.451	0.383	0.322	0.226	0.182	0.141	0.091	0.095	0.086	0.072
6	0.692	0.669	0.615	0.547	0.476	0.403	0.336	0.241	0.195	0.144	0.102	0.100	0.083	0.068
7	0.728	0.702	0.652	0.582	Ŭ•508	0.435	0.357	0.266	0.218	0.163	0.126	0.118	0.093	0.080
8	0.746	0.716	0.666	0.598	0.521	0.445	0.364	0.279	0.231	0.171	0.126	0.113	0.085	0.071
9	0.778	0.746	0.698	0.028	0.546	0.470	0.383	0.294	0.239	0.177	0.129	0.116	0.086	0.066
10	0.806	0.775	0.723	0.652	0.568	0.490	0.401	0.311	0.256	0.193	0.143	0.130	0.098	0.076
11	0.831	0.803	0.751	0.681	0.598	0.521	0.430	0.333	0.272	0.213	0.160	0.147	0.115	0.090
12	0.860	0.833	0.786	0.722	0.649	0.569	0.473	0.378	0.313	0.257	0.198	0.187	0.154	0.125
13	0.917	0.871	0.834	0.774	0.702	0.639	0.543	0.443	0.371	0.308	0.237	0.220	0.179	0.151
14	1.000	0.928	0.867	0.817	0.751	0.679	0.580	0.482	0.396	0.328	0.256	0.232	0.179	0.149
15	0.928	1.000	0.923	0.841	0.782	0.717	0.610	0.512	0.424	0.335	0.262	0.230	0.181	0.159
16	0.867	0.923	1.000	0.904	0.804	0.744	0.642	0.548	0.457	0.362	0.274	0.226	0.167	0.135
17	0.817	0.841	0.904	1.000	0.879	0.777	0.684	0.579	0.479	0.380	0.279	0.233	0.155	0.112
18	0.751	0.782	0.804	0.879	1.000	0.852	0.715	0.605	0.503	0.405	0.304	0.251	0.172	0.135
19	0.679	0.717	0.744	0.777	0.852	1.000	0.806	0.639	0.543	0.445	0.355	0.282	0.199	0.158
20	0.580	0.610	0.642	0.684	0.715	0.806	1.000	0.765	0.591	0.500	0.403	0.325	0.226	0.176
21	0.482	0.512	0.548	0.579	0.605	0.639	0.765	1.000	0.763	0.582	0.474	0.386	0.290	0.242
22	0.396	0.424	0.457	0.479	0.503	0.543	0.591	0.763	1.000	0.751	0.569	0.489	0.403	0.354
23	0.328	0.335	0.362	0.380	0.405	0.445	0.500	0.582	0.751	1.000	0.786	0.616	0.509	0.464
24	0.256	0.262	0.274	0.279	0.304	0.355	0.403	0.474	0.569	0.786	1.000	0.810	0.668	0.595
25	0.232	0.230	0.226	0.233	0.251	0.282	0.325	0.386	0.489	0.616	0.810	1.000	0.855	0.730
26	0.179	0.181	0.167	0.155	0.172	0.199	0.226	0.290	0.403	0.509	0.668	0.855	1.000	0.871
27	0.149	0.159	0.135	0.112	0.135	0.158	0.176	0.242	0.354	0.464	0.595	0.730	0.871	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(e)	Мау
-----	-----

Altitude level i.			Interlev	el corre	lation co	oefficient	(nondim	ensional) for alt	itude lev	el j, kı	m, of -		
km ,	0	l	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.608	0.301	6.202	0.190	0.146	0.099	0.061	0.032	0.009	-0.025	-0.037	-0.056	-0.081
1	0.608	1.000	0.673	0.482	0.430	0.389	0.328	0.282	0.252	0.215	0.173	0.152	0.135	0.106
2	0.301	0.673	1.000	0.824	0.736	0.682	0.634	0.594	0.561	0.523	0.477	0.448	0.426	0.408
3	0.202	0.482	0.824	1.000	0.900	0.836	0.791	0.749	0.716	0.680	0.636	0.600	0.573	0.551
4	0.190	0.430	0.736	6.900	1.000	0.930	0.878	0.833	0.794	0.755	0.707	0.666	0.640	0.618
5	0.146	0.389	0.682	0.836	0.930	1.000	0.944	0.895	0.856	0.813	0.765	0.726	0.700	0.682
6	0.099	0.328	0.634	0.791	0.878	0.944	1.000	0.954	0.917	0.871	0.821	0.782	0.750	0.730
7	0.061	0.282	0.594	0.749	0.833	0.895	0.954	1.000	0.962	0.918	0.869	0.825	0.786	0.764
8	0.032	0.252	0.561	0.716	0.794	0.856	0.917	0.962	1.000	0.964	0.914	0.869	0.826	0.795
9	0.009	0.215	0.523	C.680	0.755	0.813	0.871	0.918	0.964	1.000	0.960	0.913	0.863	0.816
	-0.025	0.173	0.477	0.636	0.707	0.765	0.821	0.869	0.914	0.960	1.000	0.963	0.912	0.848
	-0.037	0.152	0.448	0.600	0.666	0.726	0.782	0.825	0.869	0.913	0.963	1.000	0.952	0.871
12	-0.056	0.135	0.426	0.573	0.640	0.700	0.750	0.786	0.826	0.863	0.912	0.952	1.000	0.922
13	-0.081	0.106	0.408	0.551	0.618	0.682	0.730	0.764	0.795	0.816	0.848	0.871	0.922	1.000
	-0.098	0.102	0.408	0.548	0.610	0.675	0 .7 20	0.747	0.767	0.779	0.797	0.814	0.849	0.909
	-0.129	0.060	0.373	0.514	0.577	0.635	0.682	0.704	0.720	0.728	0.745	0.758	0.796	0.845
	-0.142		0.326	0.467	0.528	0.587	0.634	0.656	0.669	0.675	0.686	0.701	0.737	0.797
	-0.152		0.291	0.423	0.483	0.541	0.581	0.602	0.612	0.615	0.626	0.641	0.680	0.743
	-0.158		0.251	0.371	0.418	0.465	0.508	0.530	0.537	0.538	0.546	0.557	0.592	0.659
	-0.143		0.198	0.314	0.360	0.398	0.438	0.465	0.470	0.462	0.463	0.476	0.509	0.574
	-0.129		0.164	0.260	J.292	0.332	0.364	0.388	0.386	0.380	0.388	0.397	0.423	0.483
	-0.113		0.137	0.205	0.235	0.270	0.308	0.323	0.310	0.302	0.310	0.313	0.336	0.392
	-0.101		0.088	0.140	0.159	0.194	0.220	0.231	0.213	0.202	0.208	0.211	0.224	0.261
	-0.090		0.046	0.079	0.096	0.127	0.144	0.146	0.125	0.111	0.109	0.106	0.112	0.154
	-0.080			0.037	0.047	0.073	0.088	0.089	0.071	0.042	0.035	0.030	0.035	0.080
	-0.669			0.009	0.001	0.010	0.022	0.032	0.011			-0.024		0.015
	-0.067			0.020		-0.003	0.010	0.022					-0.035	
27	-0.047	-0.049	0.001	0.032	0.027	0.023	0.036	0.041	0.033	0.011	0.002	-0.008	-0.018	-0.005

(e) May - Concluded

Altitude			Interlev	el corre	lation co	efficien	t (nondin	nensional	l) for alt	itude lev	el j, kr	n, of -		
level i,	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.098	-0.129											-0.067	-0.047
1	0.102	0.060	0.023	-0.003			-0.042			-0.057	-0.064	-0.077	-0.076	-0.049
2	0.408	0.373	0.326	0.291	0.251	0.198	0.164	0.137	0.088		-0.001	-0.018	-0.016	0.001
3	0.548	0.514	0.467	0.423	0.371	0.314	0.260	0.205	0.140	0.079	0.037	0.009	0.020	0.032
4	0.610	0.577	0.528	0.483	0.418	0.360	0.292	0.235	0.159	0.096	0.047	0.001	0.002	0.027
5	0.675	0.635	0.587	0.541	0.465	0.398	0.332	0.270	0.194	0.127	0.073	0.010		0.023
6	0.720	0.682	0.634	0.581	0.508	0.438	0.364	0.308	0.220	0.144	0.088	0.022	0.010	0.036
7	0.747	0.704	0.656	0.602	0.530	0.465	0.388	0.323	0.231	0.146	0.089	0.032	0.022	0.041
8	0.767	0.720	0.669	0.612	0.537	0.470	0.386	0.310	0.213	0.125	0.071	0.011	0.009	0.033
9	0.779	0.728	0.675	0.615	0.538	0.462	0.380	0.302	0.202	0.111	0.042			0.011
10	0.797	0.745	0.686	0.626	0.546	0.463	0.388	0.310	0.208	0.109	0.035	-0.016	-0.014	0.002
11	0.814	0.758	0.701	0.641	0.557	0.476	0.397	0.313	0.211	0.106	0.030		-0.024	
12	0.849	0.796	0.737	0.680	0.592	0.509	0.423	0.336	0.224	0.112	0.035	-0.023	-0.035	-0.018
13	0.909	0.845	0.797	0.743	0.659	0.574	0.483	0.392	0.261	0.154	0.080	0.015	-0.014	-0.005
14	1.000	0.912	0.853	0.797	0.724	0.641	0.533	0.438	0.308	0.199	0.111	0.034	0.001	0.010
15	0.912	1.000	0.921	0.848	0.786	0.707	0.601	0.502	0.358	0.245	0.139	0.063	0.033	0.038
16	0.853	0.921	1.000	0.907	0.822	0.743	0.643	0.539	0.393	0.276	0.172	0.090	0.055	0.052
17	0.797	0.848	0.907	1.000	0.890	0.773	0.661	0.554	0.414	0.306	0.191	0.098	0.055	0.054
18	0.724	0.786	0.822	C.890	1.000	0.855	0.694	0.573	0.425	0.312	0.206	0.119	0.075	0.066
19	0.641	0.707	0.743	0.773	0.855	1.000	0.790	0.600	0.451	0.338	0.236	0.151	0.106	0.080
20	0.533	0.601	0.643	0.661	0.694	0.790	1.000	0.732	0.499	0.366	0.272	0.200	0.150	0.121
21	0.438	0.502	0.539	0.554	0.573	0.600	0.732	1.000	0.681	0.414	0.313	0.218	0.174	0.146
2 2	0.308	0.358	0.393	0.414	0.425	0.451	0.499	0.681	1.000	0.679	0.446	0.324	0.272	0.224
23	0.199	0.245	0.276	0.366	0.312	0.338	0.366	0.414	0.679	1.000	0.700	0.436	0.345	0.288
24	0.111	0.139	0.172	0.191	0.206	0.236	0.272	0.313	0.446	0.700	1.000	0.697	0.495	0.410
25	0.034	0.063	0.090	0.098	0.119	0.151	0.200	0.218	0.324	0.436	0.697	1.000	0.758	0.559
26	0.001	0.033	0.055	0.055	0.075	0.106	0.150	0.174	0.272	0.345	0.495	0.758	1.000	0.770
27	0.010	0.038	0.052	0.054	0.066	0.080	0.121	0.146	0.224	0.288	0.410	0.559	0.770	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(f) June

Altitude			Interlev	el corre	elation co	oefficien	t (nondin	nensiona	l) for alt	itude lev	vel j, kr	n, of -		
level i,	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.619	0.382	0.285	0.254	0.218	0.185	0.143	0.082	0.039	0.013	-0.012	-0.040	-0.033
1	0.619	1.000	0.691	0.517	0.475	0.440	0.391	0.342	0.280	0.222	0.183	0.152	0.129	0.124
2	0.382	0.691	1.000	0.809	0.724	0.677	0.620	0.572	0.525	0.464	0.404	0.362	0.334	0.328
3	0.285	0.517	0.809	1.000	0.882	0.806	0.752	0.707	0.661	0.602	0.545	0.505	0.471	0.457
4	0.254	0.475	0.724	0.882	1.000	0.907	0.851	0.807	0.762	0.704	0.646	0.603	0.571	0.558
5	0.218	0.440	0.677	0.806	0.907	1.000	0.924	0.868	0.821	0.763	0.703	0.659	0.621	0.603
6	0.185	0.391	0.620	0.752	0.851	0.924	1.000	0.933	0.881	0.828	0.767	0.718	0.682	0.661
7	0.143	0.342	0.572	0.707	0.807	0.868	0.933	1.000	0.947	0.888	0.826	0.776	0.733	0.707
8	0.082	0.280	0.525	0.661	0.762	0.821	0.881	0.947	1.000	0.950	0.891	0.843	0.799	0.768
9	0.039	0.222	0.464	0.602	0.704	0.763	0.828	0.888	0.950	1.000	0.956	0.908	0.860	0.823
10	0.013	0.183	0.404	0.545	0.646	0.703	0.767	0.826	0.891	0.956	1.000	0.960	0.907	0.860
11	-0.012	0.152	0.362	0.505	ú.603	0.659	0.718	0.776	0.843	0.908	0.960	1.000	0.954	0.892
12	-0.040	0.129	0.334	0.471	0.571	0.621	0.682	0.733	0.799	0.860	0.907	0.954	1.000	0.938
13	-0.033	0.124	0.328	0.457	0.558	0.603	0.661	0.707	0.768	0.823	0.860	0.892	0.938	1.000
14	-0.022	0.121	0.325	0.459	0.566	0.613	0.656	0.695	0.745	0.781	0.800	0.816	0.843	0.905
15	-0.011	0.112	0.321	0.452	0.560	0.606	0.644	0.675	0.710	0.730	0.738	0.751	0.766	0.809
16	-0.007	0.093	0.311	0.435	0.527	0.572	0.603	0.630	0.655	0.673	0.678	0.683	0.694	0.737
17	-0.009	0.101	C.290	0.405	0.480	0.523	0.559	0.586	0.606	0.608	0.606	0.605	0.614	0.652
18	-0.014	0.106	0.268	0.358	0.417	0.452	0.485	0.513	0.533	0.531	0.522	0.519	0.527	0.563
19	-0.004	0.101	0.219	U.274	0.329	0.367	0.392	0.418	0.427	0.422	0.406	0.400	0.395	0.440
20	0.012	0.077	0.145	0.201	0.235	0.255	0.283	0.293	0.296	0.299	0.297	0.286	0.275	0.306
21	-0.007	C.014	0.078	0.102	0.131	0.148	0.161	0.170	0.174	0.180	0.174	0.165	0.157	0.194
22	-0.029	-0.025	0.036	U.033	0.071	0.085	0.100	0.100	0.102	0.101	0.086	0.079	0.070	0.102
23	-0.046	-0.061	-0.004	~6.000	0.019	0.032	0.038	0.034	0.036	0.027	0.011	0.008	0.009	0.025
			-0.042			0.013	0.013	0.011	0.010	0.007				0.013
25	-0.056	-0.075	-0.049	-0.644	-0.036	-0.039	-0.035	-0.033	-0.047	-0.051	-0.054	-0.051	-0.054	-0.037
													-0.063	
27	-0.068	-0.059	-0.055	-0.032	-0.021	-0.015	-0.015	-0.003	-0.009	-0.004	-0.006	-0.005	-0.010	-0.008

(f) June - Concluded

Altitude														
level i,														
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.022	-0.011	-0.007	-0.009	~U.014	-0.004	0.012	-0.007	-0.029	-0.046	-0.058	-0.056	-0.074	-0.068
ī	0.121	0.112	0.093	0.101	0.106	0.101	0.077	0.014	-0.025	-0.061	-0.097	-0.075	-0.058	-0.059
2	0.325	0.321	0.311	0.290	0.268	0.219	0.145	0.078	0.036	-0.004	-0.042	-0.049	-0.058	-0.055
3	0.459	0.452	0.435	0.405	0.358	0.274	0.201	0.102	0.033	-0.000	-0.032	-0.044	-0.046	-0.032
4	0.566	0.560	0.527	480	0.417	0.329	0.235	0.131	0.071	0.019	-0.004	-0.036	-0.046	-0.021
5	0.613	0.606	0.572	0.523	0.452	0.367	0.255	0.148	0.085	0.032	0.013	-0.039	-0.056	-0.015
6	0.656	0.644	0.603	0.559	0.485	0.392	0.283	0.161	0.100	0.038	0.013	-0.035	-0.062	-0.015
7	0.695	0.675	0.630	0.586	0.513	0.418	0.293	0.170	0.100	0.034	0.011	-0.033	-0.054	-0.003
8	0.745	0.710	0.655	0.606	0.533	0.427	0.296	0.174	0.102	0.036	0.010	-0.047	-0.065	-0.009
9	0.781	0.730	0.673	0.608	0.531	0.422	0.299	0.180	0.101	0.027	0.007	-0.051	-0.062	-0.004
10	0.800	0.738	0.678	0.606	0.522	0.406	0.297	0.174	0.086	0.011	-0.005	-0.054	-0.060	-0.006
11	0.816	0.751	0.683	0.605	0.519	0.400	0.286	0.165	0.079	0.008	-0.001	-0.051	-0.059	-0.005
12	0.843	0.766	0.694	0.614	0.527	0.395	0.275	0.157	0.070	0.009	-0.001	-0.054	-0.063	-0.010
13	0.905	0.809	0.737	0.652	0.563	0.440	0.306	0.194	0.102	0.025	0.013	-0.037	-0.048	-0.008
14	1.000	0.891	0.797	0.713	0.627	0.510	0.370	0.256	0.159	0.064	0.042	-0.016	-0.022	0.018
15	0.891	1.000	0.891	0.781	0.688	0.575	0.440	0.308	0.197	0.108	0.076	0.015	0.028	0.051
16	0.797	0.891	1.000	0.863	0.722	0.612	0.457	0.325	0.208	0.119	0.114	0.052	0.050	0.081
1.7	0.713	0.781	0.863	1.000	0.801	0.633	0.472	0.339	0.224	0.134	0.122	0.076	0.067	0.091
18	0.62 7	0.688	0.722	0.801	1.000	0.742	0.505	0.360	0.246	0.151	0.104	0.069	0.075	0.085
19	0.510	0.575	0.612	0.633	0.742	1.000	0.670	0.428	0.311	0.195	0.153	0.092	0.089	0.104
20	0.370	0.440	0.457	0.472	0.505	0.670	1.000	0.656	0.375	0.227	0.150	0.101	0.096	0.054
21	0.256	0.308	0.325	0.339	0.360	0.428	0.656	1.000	0.610	0.322	0.183	0.123	0.095	0.073
22	0.159	0.197	0.208	0.224	0.246	0.311	0.375	0.610	1.000	0.614	0.307	0.189	0.153	0.105
23	0.064	0.108	0.119	0.134	0.151	0.195	0.227	0.322	0.614	1.000	0.607	0.298	0.217	0.122
24	0.042	0.076	0.114	0.122	0.104	0.153	0.150	0.183	0.307	0.607	1.000	0.619	0.345	0.199
	-0.016	0.015	0.052	0.076	0.069	0.092	0.101	0.123	0.189	0.298	0.619	1.000	0.633	0.308
	-0.022	0.028	0.050	0.067	0.375	0.089	0.096	0.095	0.153	0.217	0.345	0.633	1.000	0.639
27	0.018	0.051	0.081	0.091	0.085	0.104	0.054	0.073	0.105	0.122	0.199	0.308	0.639	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(g) July

Altitude			Interlev	el corre	lation co	efficient	(nondim	ensional) for alt	itude lev	el j, kr	n, of -		
level i, km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.648	0.464	0.401	0.360	0.309	0.263	0.195	0.137	0.082	0.033	-0.002	-0.015	-0.031
1	0.648	1.000	0.706	0.532	0.471	0.428	0.363	0.277	0.198	0.121	0.066	0.027	0.009	-0.009
2	0.464	0.706	1.000	C.790	0.687	0.630	0.554	0.465	0.392	0.318	0.267	0.225	0.209	0.190
3	0.401	0.532	0.790	1.000	0.857	0.761	0.679	0.594	0.529	0.455	0.416	0.376	0.360	0.336
4	0.360	0.471	0.687	0.857	1.000	0.875	0.791	0.714	0.649	0.584	0.542	0.505	0.489	0.465
5	0.309	0.428	0.630	0.761	0.875	1.000	0.890	0.807	0.737	0.670	0.617	0.576	0.555	0.534
6	0.263	0.363	0.554	0.679	0.791	0.890	1.000	0.908	0.838	0.775	0.716	0.673	0.646	0.622
7	0.195	0.277	0.465	Ü.594	0.714	0.807	0.908	1.000	0.923	0.857	0.795	0.748	0.718	0.690
8	0.137	0.198	0.392	0.529	0.649	0.737	0.838	0.923	1.000	0.937	0.876	0.829	0.788	0.757
9	0.082	0.121	0.318	0.455	0.584	0.670	0.775	0.857	0.937	1.000	0.949	0.895	0.842	0.802
10	0.033	0.066	0.267	0.416	0.542	0.617	0.716	0.795	0.876	0.949	1.000	0.952	0.884	0.829
	-0.002	0.027	0.225	0.376	0.505	0.576	0.673	0.748	0.829	0.895	0.952	1.000	0.945	0.875
	-0.015	0.009	0.209	0.360	0.489	0.555	0.646	0.718	0.788	0.842	0.884	0.945	1.000	0.936
		-0.009	0.190	0.336	0.465	0.534	0.622	0.690	0.757	0.802	0.829	0.875	0.936	1.000
	-0.019	0.005	0.202	0.344	0.469	0.546	0.630	0.696	0.746	0.773	0.785	0.808	0.850	0.912
15	0.026	0.047	0.227	0.372	0.497	0.569	0.648	0.696	0.724	0.739	0.739	0.752	0.786	0.816
16	0.051	0.056	0.248	C.386	0.494	0.558	0.624	0.659	0.672	0.680	0.682	0.688	0.719	0.751
17	0.039	0.057	0.221	0.342	0.430	0.492	0.548	0.582	0.597	0.601	0.601	0.618	0.651	0.697
18	0.039	0.071	0.189	0.278	0.352	0.401	0.455	0.493	0.517	0.522	0.515	0.528	0.560	0.608
19	0.013	0.053	0.142	Ú.190	0.262	0.307	Ò.351	0.390	0.410	0.415	0.409	0.415	0.446	0.491
20	-0.015	0.035	0.102	0.144	0.184	0.213	0.255	0.292	0.304	0.319	0.309	0.306	0.319	0.360
21	-0.047	-0.001	0.065	0.080	0.104	0.113	0.149	0.175	0.185	0.192	0.185	0.177	0.182	0.214
22	-0.073	-0.046	0.022	0.023	0.048	0.065	0.081	0.098	0.102	0.101	0.095	0.094	0.100	0.117
23	-0.067	-0.036	0.016	0.032	0.055	0.075	0.093	0.090	0.089	0.084	0.082	0.084	0.090	0.101
	-0.020		0.018	0.038	0.037	0.048	0.051	0.045	0.050	0.045	0.038	0.042	0.040	0.045
25	0.003	-0.029	0.012	0.024	Ú.014	0.019	0.018	0.013	0.026	0.027	0.020	0.029	0.023	0.036
26		-0.005	0.024	U.016	0.012	0.014	0.021	0.019	0.027	0.022	0.022	0.037	0.038	0.048
	-0.020	-0.014	0.032	0.029	0.033	0.035	0.045	0.047	0.058	0.052	0.057	0.066	0.070	0.075

(g) July - Concluded

Altitude level i,			Interle	vel corre	elation c	oefficier	t (nondir	nensiona	l) for al	titude le	vel j, k	m, of -		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.019	0.026	0.051	0.039	0.039	0.013	-0.015	-0.047	-0.073	-0.067	-0.020	0.003	0.009	-0.020
1	0.005	0.047	0.056	0.ú57	0.071	0.053	0.035	-0.001	-0.046	-0.036	-0.019	-0.029	-0.005	-0.014
2	0.202	0.227	0.248	0.221	0.189	0.142	0.102	0.065	0.022	0.016	0.018	0.012	0.024	0.032
3	0.344	0.372	0.386	0.342	0.278	0.190	0.144	0.080	0.023	0.032	0.038	0.024	0.018	0.029
4	0.469	0.497	0.494	U.430	0.352	0.262	0.184	0.104	0.048	0.055	0.037	0.014	0.012	0.033
5	0.546	0.569	0.558	0.492	0.401	0.307	0.213	0.113	0.065	0.075	0.048	0.019	0.014	0.035
6	0.630	0.648	0.624	U.548	0.455	C.351	0.255	0.149	0.081	0.093	0.051	0.018	0.021	0.045
7	0.696	0.696	0.659	0.582	0.493	0.390	0.292	0.175	0.098	0.090	0.045	0.013	0.019	0.047
8	0.746	0.724	0.672	0.597	0.517	0.410	0.304	0.185	0.102	0.089	0.050	0.026	0.027	0.058
9	0.773	0.739	0.680	0.601	0.522	0.415	0.319	0.192	0.101	0.084	0.045	0.027	0.022	0.052
10	0.785	0.739	0.682	0.601	0.515	0.409	0.309	0.185	0.095	0.082	0.038	0.020	0.022	0.057
11	0.808	U.752	0.688	0.618	0.528	0.415	0.306	0.177	0.094	0.084	0.042	0.029	0.037	0.066
12	0.850	0.786	0.719	0.651	0.560	0.446	0.319	0.182	0.100	0.090	0.040	0.023	0.038	0.070
13	0.912	0.816	0.751	0.697	0.608	0.491	0.360	0.214	0.117	0.101	0.045	0.036	0.048	0.075
14	1.000	0.894	0.803	0.749	0.662	0.543	0.410	0.270	0.162	0.125	0.066	0.049	0.068	0.084
15	0.894	1.000	0.889	0.781	0.699	0.578	0.436	0.311	0.208	0.180	0.098	0.064	0.068	0.071
16	0.803	0.889	1.000	U.847	0.704	0.598	0.455	0.325	0.221	0.191	0.103	0.069	0.074	0.088
17	0.749	0.781	0.847	1.000	0.784	0.606	0.470	0.332	0.216	0.184	0.103	0.085	0.095	0.109
18	0.662	0.699	0.704	0.784	1.000	0.718	0.501	0.358	0.212	0.180	0.098	0.069	0.059	0.055
19	0.543	0.578	0.598	0.606	0.718	1.000	0.664	0.387	0.240	0.221	0.149	0.104	0.080	0.056
20	G.410	0.436	0.455	0.470	0.501	0.664	1.000	0.619	0.290	0.218	0.162	0.126	0.092	0.093
21	0.270	0.311	0.325	U.332	0.358	0.387	0.619	1.000	0.609	0.330	0.173	0.113	0.084	0.088
22	0.162	0.208	0.221	0.216	0.212	0.240	0.290	0.609	1.000	0.627	0.287	0.144	0.103	0.107
23	0.125	0.180	0.191	0.184	0.180	0.221	0.218	0.330	0.627	1.000	0.626	0.327	0.201	0.151
24	0.066	0.098	0.103	0.103	0.098	0.149	0.162	0.173	0.287	0.626	1.000	0.647	0.349	0.198
25	0.049	0.064	0.069	0.085	0.069	0.104	0.126	0.113	0.144	0.327	0.647	1.000	0.667	0.374
26	0.068	6.068	0.074	0.095	0.059	0.080	0.092	0.084	0.103	0.201	0.349	0.667	1.000	0.690
27	0.084	0.071	0.088	0.109	0.055	0.056	0.093	0.088	0.107	0.151	0.198	0.374	0.690	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE -- Continued

(h) August

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alt	itude lev	elj, kn	n, of —		
km ,	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.634	0.359	0.263	0.237	0.215	0.179	0.115	0.053	-0.006	-0.060	-0.087	-0.098	-0.102
1	0.634	1.000	0.688	0.506	0.466	0.421	0.377	0.305	0.218	0.142	0.066	0.032	0.015	0.014
2	0.359	0.688	1.000	0.864	0.715	0.656	0.603	0.540	0.457	0.382	0.310	0.269	0.254	0.254
3	0.263	0.506	0.804	1.000	0.865	0.784	0.724	0.664	0.600	0.530	0.463	0.429	0.414	0.413
4	0.237	0.466	0.715	0.865	1.000	0.897	0.823	0.759	0.691	0.616	0.551	0.515	0.497	0.503
5	0.215	0.421	0.656	0.784	0.897	1.000	0.902	0.831	0.764	0.692	0.625	0.587	0.571	0.577
6	0.179	0.377	0.603	0.724	0.823	0.902	1.000	0.915	0.839	0.765	0.696	0.654	0.631	0.634
7	0.115	0.305	0.540	0.664	0.759	0.831	0.915	1.000	0.929	0.857	0.791	0.742	0.718	0.714
8	0.053	0.218	0.457	0.600	0.691	0.764	0.839	0.929	1.000	0.938	0.874	0.824	0.795	0.785
9	-0.006	0.142	0.382	0.530	0.616	0.692	0.765	0.857	0.938	1.000	0.950	0.898	0.861	0.835
10	-0.060	0.066	0.310	0.463	0.551	0.625	0.696	0.791	0.874	0.950	1.000	0.960	0.913	0.871
11	-0.087	0.032	0.269	Ú.429	0.515	0.587	0.654	0.742	0.824	0.898	0.960	1.000	0.960	0.903
12	-0.098	0.015	0.254	0.414	0.497	0.571	0.631	0.718	0.795	0.861	0.913	0.960	1.000	0.947
13	-0.102	0.014	0.254	0.413	Ŭ∙503	0.577	0.634	0.714	0.785	0.835	0.871	0.903	0.947	1.000
14	-0.098	0.017	0.255	0.411	0.506	0.576	0.646	0.717	0.782	0.819	0.837	0.850	0.872	0.925
	-0.079	0.038	0.286	0.434	0.527	0.592	0.661	0.719	0.765	0.788	0.795	0.802	0.820	0.859
16	-0.044	0.057	C.300	0.442	0.532	0.592	0.646	0.689	0.724	0.735	0.732	0.737	0.748	0.791
17	-0.029	0.072	0.287	0.408	0.477	0.535	0.575	0.612	0.648	0.657	0.646	0.653	0.670	0.718
18	-0.046	0.065	0.245	0.333	0.387	0.432	0.470	0.507	0.538	0.549	0.544	0.552	0.566	0.607
19	-0.054	0.049	0.174	0.236	0.287	0.325	0.354	0.378	0.397	0.404	0.407	0.408	0.412	0.450
20	-0.061	0.024	0.106	0.141	0.184	0.201	0.236	0.266	0.282	0.284	0.284	0.286	0.291	0.302
21	-0.076	-0.006	0.064	0.084	0.116	0.135	0.163	0.192	0.201	0.209	0.202	0.205	0.202	0.208
22	-0.086	-0.047	0.014	0.015	0.032	0.055	0.085	0.111	0.109	0.119	0.114	0.114	0.111	0.126
23	-0.065	-0.061	0.006	0.015	0.017	0.023	0.049	0.064	0.071	0.075	0.067	0.069	0.075	0.082
24	-0.027	-0.053	0.014	0.015	0.005	-0.001	0.013	0.011	0.017	0.019	0.015	0.014	0.028	0.044
25	0.005	-0.019	0.012	0.012	0.005	0.003	0.003	-0.005	0.001	0.004	-0.006	-0.004	0.006	0.016
26	-0.038	-0.037	-0.036	-0.022	-0.016	-0.022	-0.019	-0.015	-0.012	-0.009	-0.006	-0.007	0.001	0.006
27	-0.045	-0.024	-0.016	-0.014	0.008	0.008	0.013	0.015	0.025	0.033	0.038	0.036	0.040	0.046

(h) August - Concluded

Altitude			Interle	vel corre	elation co	oefficien	t (nondin	nensiona	l) for alt	itude lev	zelj, kr	n, of -		
level i, km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.098	-0.079	-0.044	-6.029	-0.046	-0.054	-0.061	-0.076	-0.086	-0.065	-0.027	0.005	-0.038	-0.045
1	0.017	0.038	0.057	0.072	0.065	0.049	0.024	-0.006	-0.047	-0.061	~0.053	-0.019	-0.037	-0.024
2	0.255	0.286	0.300	û.287	0.245	0.174	0.106	0.064	0.014	0.006	0.014	0.012	-0.036	-0.016
3	0.411	0.434	0.442	0.408	0.333	0.236	0.141	0.084	0.015	0.015	0.015	0.012	-0.022	-0.014
4	0.506	0.527	0.532	0.477	0.387	0.287	0.184	0.116	0.032	0.017	0.005	0.005	-0.016	0.008
5	0.576	0.592	0.592	0.535	0.432	0.325	0.201	0.135	0.055	0.023	-0.001	0.003	-0.022	0.008
6	0.646	0.661	0.646	0.575	0.470	0.354	0.236	0.163	0.085	0.049	0.013	0.003	-0.019	0.013
7	0.717	0.719	0.689	0.612	0.507	0.378	0.266	0.192	0.111	0.064	0.011	-0.005	-0.015	0.015
8	0.782	0.765	0.724	0.648	0.538	0.397	0.282	0.201	0.109	0.071	0.017	0.001	-0.012	0.025
9	0.819	0.788	0.735	0.657	0.549	0.404	0.284	0.209	0.119	0.075	0.019	0.004	-0.009	0.033
10	0.837	0.795	0.732	0.646	0.544	0.407	0.284	0.202	0.114	0.067	0.015	-0.006	-0.006	0.038
11	0.850	0.802	0.737	0.653	0.552	0.408	0.286	0.205	0.114	0.069	0.014	-0.004	-0.007	0.036
12	0.872	0.820	0.748	0.670	0.566	0.412	0.291	0.202	0.111	0.075	0.028	0.006	0.001	0.040
13	0.925	0.859	0.791	0.718	ù.607	0.450	0.302	0.208	0.126	0.082	0.044	0.016	0.006	0.046
14	1.000	0.919	0.827	0.757	0.653	0.494	0.348	0.246	0.163	0.111	0.059	0.021	0.010	0.052
15	0.919	1.000	0.898	0.789	0.682	0.526	0.374	0.270	0.184	0.122	0.072	0.038	0.014	0.043
16	0.827	0.898	1.000	0.849	0.685	0.532	0.388	0.286	0.191	0.137	0.095	0.051	0.030	0.061
17	0.757	0.789	0.849	1.000	0.760	0.538	0.394	0.306	0.220	0.153	0.094	0.058	0.046	0.067
18	0.653	0.682	0.685	0.760	1.000	0.676	0.454	0.365	0.285	0.215	0.147	0.103	0.077	0.077
19	0.494	0.526	0.532	0.538	0.676	1.000	0.642	0.411	0.314	0.251	0.173	0.132	0.122	0.096
20	0.348	0.374	0.388	0.394	0.454	0.642	1.000	0.637	0.379	0.245	0.167	0.134	0.131	0.102
21	0.246	0.270	0.286	0.306	0.365	0.411	0.637	1.000	0.639	0.315	0.206	0.174	0.129	0.088
22	0.163	0.184	0.191	0.220	0.285	0.314	0.379	0.639	1.000	0.617	0.343	0.223	0.141	0.086
23	0.111	0.122	0.137	0.153	0.215	0.251	0.245	0.315	0.617	1.000	0.630	0.323	0.188	0.126
24	0.059	0.072	0.095	0.094	0.147	0.173	0.167	0.206	0.343	0.630	1.000	0.636	0.364	0.215
25	0.021	0.038	0.051	0.058	0.103	0.132	0.134	0.174	0.223	0.323	0.636	1.000	0.695	0.419
26	0.010	0.014	0.030	0.046	0.077	0.122	0.131	0.129	0.141	0.188	0.364	0.695	1.000	0.677
27	0.052	0.043	0.061	0.067	0.077	0.096	0.102	0.088	0.086	0.126	0.215	0.419	0.677	1.000

TABLE VI. - INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(i) September

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensiona)	l) for alt	itude lev	el j, kr	n, of —		
km ,	0	1	2	څ	4	5	6	7	8	9	10	11	12	13
0	1.000			0.306	0.260	0.213	0.158	0.095			-0.079	-0.129	-0.154	-0.174
1	0.670			0.568	0.502	0.436	0.372	0.293	0.204	0.135	0.056	0.006	-0.030	-0.061
2	0.407	0.722		0.819	0.704	0.624	0.573	0.512	0.434	0.362	0.287	0.237	0.197	0.160
3	0.306			1.000	0.866	0.772	0.719	0.670	0.600	0.533	0.459	0.403	0.354	0.312
4	0.260			0.866	1.000	0.900	0.833	0.781	0.717	0.654	0.582	0.521	0.466	0.424
5	0.213	0.436		0.772	0.900	1.000	0.912	0.845	0.781	0.723	0.654	0.596	0.540	0.506
6	0.158	0.372		0.719	0.833	0.912	1.000	0.923	0.853	0.792	0.723	0.661	0.605	0.568
7	0.095	0.293		0.670	0.781	0.845	0.923	1.000	0.936	0.867	0.799	0.744	0.686	0.648
8	0.033	0.204		0.600	0.717	0.781	0.853	0.936	1.000	0.945	0.881	0.823	0.761	0.718
-	-0.020	0.135		0.533	0.654	0.723	0.792	0.867	0.945	1.000	0.950	0.890	0.826	0.776
	-0.079	0.056		0.459	0.582	0.654	0.723	0.799	0.881	0.950	1.000	0.956	0.892	0.832
	-0.129	0.006		0.403	0.521	0.596	0.661	0.744	0.823	0.890	0.956	1.000	0.952	0.889
		-0.030		0.354	0.466	0.540	0.605	0.686	0.761	0.826	0.892	0.952	1.000	0.944
		-0.061	0.160	0.312	0.424	0.506	0.568	0.648	0.718	0.776	0.832	0.889	0.944	1.000
		-0.065		0.313	0.424	0.504	0.568	0.642	0.706	0.755	0.801	0.841	0.881	0.929
		-0.039		0.338	0.447	0.526	0.581	0.650	0.709	0.749	0.784	0.809	0.836	0.865
16	-0.092	-0.016	0.211	0.355	0.460	0.537	0.586	0.640	0.686	0.716	0.739	0.756	0.775	0.805
17	-0.063	0.002	0.215	0.356	0.432	0.499	0.545	0.601	0.646	0.671	0.684	0.693	0.706	0.731
18	-0.025	0.016	0.194	0.315	0.379	0.441	0.493	0.538	0.585	0.609	0.615	0.616	0.622	0.646
19	0.016	0.036	0.167	0.269	0.324	0.373	0.419	0.454	0.489	0.520	0.528	0.526	0.541	0.548
	-0.008	0.016	0.120	0.191	0.226	0.279	0.318	0.344	0.375	0.399	0.416	0.417	0.434	0.437
		-0.022		0.121	0.151	0.196	0.225	0.249	0.269	0.283	0.294	0.304	0.315	0.334
22	-0.077	-0.030	0.028	0.098	0.107	0.122	0.145	0.169	0.181	0.192	0.204	0.213	0.226	0.235
		-0.049	0.007	0.060	J.078	0.098	0.114	0.136	0.159	0.159	0.165	0.173	0.176	0.173
24	-0.064	-0.049	-0.003	660.0	0.062	0.087	0.089	0.103	0.122	0.124	0.124	0.124	0.129	0.132
		-0.069		0.014	0.041	0.057	0.056	0.063	0.082	0.089	0.096	0.094	0.095	0.096
		-0.047	-0.016	0.616	0.035	0.048	0.053	0.060	0.061	0.058	0.059	0.049	0.048	0.043
27	-0.035	-0.019	0.011	0.055	0.053	0.074	0.080	0.079	0.068	0.067	0.066	0.061	0.061	0.054

(i) September - Concluded

Altitude			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	itude lev	el j, kn	ı, of -		
level i,			• .			1.0	2.0	2.1	2.2	22	24	2.5	2.	2.7
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.164	-0.124	-0-092	-0.063	-0.025	0.016	-0.008	-0.063	-0.077	-0.083	-0.064	-0.086	-0.048	-0-035
ĭ		-0.039		0.002	0.016	0.036							-0.047	
2	0.158	0.186	0.211	0.215	0.194	0.167	0.120	0.046	0.028	0.007		-0.024		0.011
3	0.313	0.338	0.355	0.356	0.315	0.269	0.191	0.121	0.098	0.060	0.033	0.014	0.016	0.055
4	0.424	0.447	0.460	0.432	0.379	0.324	0.226	0.151	0.107	0.078	0.062	0.041	0.035	0.053
5	0.504	0.526	0.537	0.499	0.441	0.373	0.279	0.196	0.122	0.098	0.087	0.057	0.048	0.074
6	0.568	0.581	0.586	0.545	0.493	0.419	0.318	0.225	0.145	0.114	0.089	0.056	0.053	0.080
9	0.642	0.650	0.640	0.601	0.538	0.454	0.344	0.249	0.169	0.136	0.103	0.063	0.060	0.079
8	0.706	0.709	0.686	0.646	0.585	0.489	0.375	0.269	0.181	0.159	0.122	0.082	0.061	0.068
9	0.755	0.749	0.716	0.671	0.609	0.520	0.399	0.283	0.192	0.159	0.124	0.089	0.058	0.067
10	0.801	0.784	0.739	0.684	0.615	0.528	0.416	0.294	0.204	0.165	0.124	0.096	0.059	0.066
	0.841	0.809	0.756	0.693	0.616	0.526	0.417	0.304	0.213	0.173	0.124	0.094	0.049	0.061
11			0.775	0.706	0.622	0.541	0.434	0.315	0.226	0.176	0.129	0.095	0.049	0.061
12	0.881	0.836			0.646	0.548	0.437	0.334	0.235	0.173	0.132	0.096	0.043	0.054
13	0.929	0.865	0.805	0.731	-			0.350	0.242	0.170		0.069		0.054
14	1.000	0.925	0.847	C.770	0.684	0.582	0.456				0.114		0.031	
15	0.925	1.000	0.912	0.811	0.731	0.622	0.498	0.383	0.258	0.158	0.107	0.061	0.020	0.030
16	0.847	0.912	1.000	0.886	0.777	0.661	0.513	0.397	0.266	0.161	0.102	0.060	0.014	0.020
17	0.770	0.811	0.886	1.000	0.840	0.662	0.523	0.409	0.290	0.191	0.114	0.082	0.020	0.009
18	0.684	0.731	0.777	C.840	1.000	0.760	0.549	0.423	0.309	0.202	0.133	0.113	0.055	0.030
19	0.582	0.622	0.661	0.662	0.760	1.000	0.706	0.460	0.330	0.258	0.208	0.161	0.100	0.064
20	0.456	0.498	0.513	0.523	0.549	0.706	1.000	0.654	0.376	0.294	0.250	0.203	0.158	0.106
21	0.350	0.383	0.397	0.409	0.423	0.460	0.654	1.000	0.629	0.387	0.284	0.259	0.195	0.138
22	0.242	0.258	0.266	0.290	0.309	0.330	0.376	0.629	1.000	0.643	0.371	0.309	0.239	0.175
23	0.170	0.158	0.161	0.191	0.202	0.258	0.294	0.387	0.643	1.000	0.640	0.413	0.299	0.193
24	0.114	0.107	0.102	0.114	0.133	0.208	0.250	0.284	0.371	0.640	1.000	0.640	0.373	0.247
25	0.069	0.061	0.060	0.082	0.113	0.161	0.203	0.259	0.309	0.413	0.640	1.000	0.687	0.401
26	0.031	0.020	0.014	0.020	0.055	0.100	0.158	0.195	0.239	0.299	0.373	0.687	1.000	0.712
27	0.043	0.030	0.020	0.009	0.030	0.064	0.106	0.138	0.175	0.193	0.247	0.401	0.712	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(j) October

Altitude level i,			Interleve	el corre	lation co	efficient	(nondim	ension al)) for alti	itude lev	el j, kn	n, of -		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.643	0.362	0.250	0.182	0.136	0.091	0.048			-0.080		-0.145	-0.154
1	0.643	1.000	0.729	0.566	0.472	0.408	0.339	0.285	0.227	0.184	0.130	0.079	0.036	-0.009
2	0.362	0.729	1.000	0.851	0.748	0.677	0.615	0.557	0.503	0.467	0.417	0.366	0.322	0.271
3	0.250	0.566	0.851	1.000	0.898	0.830	0.773	0.729	0.684	0.648	0.593	0.543	0.504	0.453
4	0.182	0.472	0.748	0.898	1.000	0.921	0.865	0.827	0.781	0.742	0.683	0.630	0.592	0.548
5	0.136	0.408	0.677	G.830	0.921	1.000	0.948	0.908	0.865	0.817	0.755	0.701	0.661	0.619
6	0.091	0.339	0.615	0.773	0.865	0.948	1.000	0.956	0.913	0.862	0.799	0.740	0.701	0.666
7	0.048	0.285	0.557	0.729	0.827	0.908	0.956	1.000	0.961	0.912	0.847	0.788	0.748	0.711
8	0.006	0.227	0.503	0.684	0.781	0.865	0.913	0.961	1.000	0.960	0.899	0.839	0.798	0.759
9	-0.031	0.184	0.467	0.648	0.742	0.817	0.862	0.912	0.960	1.000	0.956	0.900	0.851	0.802
10	-0.080	0.130	0.417	0.593	0.683	0.755	0.799	0.847	0.899	0.956	1.000	0.959	0.904	0.845
11	-0.128	0.079	0.366	0.543	0.630	0.701	0.740	0.788	0.839	0.900	0.959	1.000	0.951	0.885
12	-0.145	0.036	0.322	0.504	0.592	0.661	0.701	0.748	0.798	0.851	0.904	0.951	1.000	0.938
13	-0.154	-0.009	0.271	0.453	0.548	0.619	0.666	0.711	0.759	0.802	0.845	0.885	0.938	1.000
14	-0.148	-0.020	0.262	0.444	0.537	0.603	0.648	0.684	0.725	0.761	0.790	0.820	0.869	0.931
15	-0.146	-0.022	0.245	0.419	0.511	0.574	0.613	0.649	0.686	0.715	0.741	0.771	0.821	0.881
16	-0.149	-0.037	0.224	0.395	0.480	0.542	0.580	0.612	0.646	0.669	0.684	0.708	0.752	0.817
17	-0.132	-0.045	0.193	0.353	0.437	0.487	0.522	0.552	0.584	0.602	0.609	0.633	0.678	0.744
18	-0.122	-0.066	0.149	0.293	0.374	0.417	0.451	0.475	0.502	0.511	0.515	0.533	0.572	0.637
19	-0.114	-0.087	0.088	0.216	0.281	0.314	0.352	0.373	0.396	0.403	0.401	0.413	0.445	0.513
20	-0.082	-0.081	0.046	0.151	0.211	0.224	0.255	0.277	0.292	0.289	0.286	0.300	0.318	0.374
21	-0.028	-0.059	0.018	0.096	0.143	0.160	0.187	0.204	0.223	0.210	0.199	0.202	0.222	0.264
22	-0.016	-0.068	-0.016	0.043	0.079	0.096	0.121	0.137	0.161	0.153	0.139	0.135	0.158	0.197
23	-0.003	-0.060	-0.022	0.031	0.073	0.093	0.115	0.131	0.146	0.136	0.119	0.112	0.119	0.151
24	0.022	-0.033	-0.004	0.015	0.058	0.073	0.090	0.102	0.105	0.095	0.083	0.071	0.073	0.089
25	0.028	-0.048	-0.026	0.002	0.031	0.046	0.061	0.072	0.075	0.070	0.056	0.049	0.049	0.058
26	0.040	-0.039	-0.012	0.018	0.035	0.052	0.063	0.065	0.068	0.066	0.055	0.049	0.042	0.052
2 7	0.035	-0.031	-0.012	0.015	0.029	0.048	0.054	0.055	0.058	0.055	0.055	0.052	0.040	0.038

(j) October - Concluded

Altitude level i,			Interle		elation c		•		•		vel j, kı	•		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.148	-0.146	-0.149	-0.132	-0.122	-0.114	-0.082	-0.028	-0.016	-0.003	0.022	0.028	0.040	0.035
1	-0.020	-0.022	-0.037	-0.045	-0.066	-0.087	-0.081	-0.059	-0.068	-0.060	-0.033	-0.048	-0.039	-0.031
2	0.262	0.245	0.224	0.193	0.149	0.088	0.046	0.018	-0.016	-0.022	-0.004	-0.026	-0.012	-0.012
3	0.444	0.419	0.395	0.353	0.293	0.216	0.151	0.096	0.043	0.031	0.015	0.002	0.018	0.015
4	0.537	0.511	0.480	0.437	0.374	0.281	0.211	0.143	0.079	0.073	0.058	0.031	0.035	0.029
5	0.603	0.574	0.542	0.487	0.417	0.314	0.224	0.160	0.096	0.093	0.073	0.046	0.052	0.048
6	0.648	0.613	0.580	0.522	0.451	0.352	0.255	0.187	0.121	0.115	0.090	0.061	0.063	0.054
7	0.684	0.649	0.612	0.552	0.475	0.373	0.277	0.204	0.137	0.131	0.102	0.072	0.065	0.055
8	0.725	0.686	0.646	0.584	0.502	0.396	0.292	0.223	0.161	0.146	0.105	0.075	0.068	0.058
9	0.761	0.715	0.669	0.602	0.511	0.403	0.289	0.210	0.153	0.136	0.095	0.070	0.066	0.055
10	0.790	0.741	0.684	0.609	0.515	0.401	0.286	0.199	0.139	0.119	0.083	0.056	0.055	0.055
11	0.820	0.771	0.708	0.633	0.533	0.413	0.300	0.202	0.135	0.112	0.071	0.049	0.049	0.052
12	0.869	0.821	0.752	0.678	0.572	0.445	0.318	0.222	0.158	0.119	0.073	0.049	0.042	0.040
13	0.931	0.881	0.817	0.744	0.637	0.513	0.374	0.264	0.197	0.151	0.089	0.058	0.052	0.038
14	1.000	0.936	0.865	0.793	0.688	0.564	0.427	0.304	0.235	0.174	0.100	0.067	0.068	0.046
15	0.936	1.000	0.922	0.844	ŭ.746	0.631	0.488	0.361	0.270	0.201	0.122	0.084	0.078	0.044
16	0.865	0.922	1.000	0.907	0.799	0.691	0.544	0.422	0.330	0.243	0.157	0.113	0.102	0.070
17	0.793	0.844	0.907	1.000	0.875	0.731	0.590	0.486	0.395	0.302	0.200	0.147	0.138	0.089
18	0.688	0.746	0.799	0.875	1.000	0.828	0.637	0.546	0.468	0.373	0.272	0.211	0.189	0.132
19	0.564	0.631	0.691	0.731	0.828	1.000	0.776	0.612	0.541	0.468	0.381	0.307	0.260	0.188
20	0.427	0.488	0.544	0.590	0.637	0.776	1.000	0.751	0.583	0.511	0.436	0.375	0.326	0.256
21	0.304	0.361	0.422	0.486	0.546	0.612	0.751	1.000	0.779	0.612	0.527	0.464	0.398	0.332
22	0.235	0.270	0.330	0.395	0.468	0.541	0.583	0.779	1.000	0.773	0.577	0.505	0.445	0.371
23	0.174	0.201	0.243	0.302	0.373	0.468	0.511	0.612	0.773	1.000	0.759	0.580	0.495	0.420
24	0.100	0.122	0.157	0.200	0.272	0.381	0.436	0.527	0.577	0.759	1.000	0.770	0.581	0.476
25	0.067	0.084	0.113	0.147	0.211	0.307	0.375	0.464	0.505	0.580	0.770	1.000	0.788	0.604
26	0.068	0.078	0.102	0.138	0.189	0.260	0.326	0.398	0.445	0.495	0.581	0.788	1.000	0.819
27	0.046	0.044	0.070	0.089	0.132	0.188	0.256	0.332	0.371	0.420	0.476	0.604	0.819	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Continued

(k) November

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	itude lev	elj, km	ı, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
O	1.000	0.708	0.473	0.364	0.280	0.231	0.191	0.155	0.109	0.081	0.048	0.016	-0.003	-0.019
1	0.708	1.000	0.780	0.627	0.530	0.458	0.399	0.354	0.304	0.272	0.237	0.198	0.176	0.149
2	0.473	0.780	1.000	0.875	0.779	0.718	0.669	0.629	0.588	0.559	0.525	0.485	0.457	0.427
3	0.364	0.627	0.875	1.000	0.927	0.871	0.826	0.790	0.756	0.731	0.697	0.659	0.626	0.599
4	0.280	0.530	0.779	0.927	1.000	0.947	0.903	0.866	0.836	0.812	0.777	0.737	0.700	0.673
5	0.231	0.458	0.718	0.871	0.947	1.000	0.959	0.925	0.894	0.865	0.827	0.787	0.749	0.719
6	0.191	0.399	0.669	0.826	0.903	0.959	1.000	0.968	0.935	0.903	0.864	0.822	0.783	0.752
7	0.155	0.354	0.629	C.790	0.866	0.925	0.968	1.000	0.971	0.937	0.897	0.854	0.812	0.779
8	0.109	0.304	0.588	0.756	0.836	0.894	0.935	0.971	1.000	0.970	0.931	0.885	0.841	0.807
9	0.081	0.272	0.559	0.731	0.812	0.865	0.903	0.937	0.970	1.000	0.969	0.926	0.878	0.838
10	0.048	0.237	0.525	0.697	0.777	0.827	0.864	0.897	0.931	0.969	1.000	0.965	0.918	0.874
11	0.016	0.198	0.485	0.659	0.737	0.787	0.822	0.854	0.885	0.926	0.965	1.000	0.958	0.910
12	-0.003	0.176	0.457	0.626	0.700	0.749	0.783	0.812	0.841	0.878	0.918	0.958	1.000	0.951
13	-0.019	0.149	0.427	0.599	0.673	0.719	0.752	0.779	0.807	0.838	0.874	0.910	0.951	1.000
14	-0.024	0.138	0.407	0.582	0.652	0.696	0.726	0.754	0.780	0.811	0.843	0.873	0.903	0.939
15	-0.015	0.142	0.398	0.565	0.634	0.672	0.698	0.727	0.750	0.780	0.810	0.840	0.869	0.893
16	-0.046	0.104	0.357	0.520	0.590	0.631	0.659	0.689	0.710	0.737	0.767	0.800	0.836	0.868
17	-0.050	0.081	0.313	0.466	0.532	0.575	0.601	0.631	0.657	0.680	0.710	0.742	0.776	0.816
18	-0.069	0.048	0.253	0.392	0.456	0.497	0.521	0.555	0.584	0.602	0.628	0.659	0.696	0.745
		0.004	0.179	0.305	0.366	0.398	0.420	0.453	0.482	0.493	0.514	0.545	0.587	0.639
20	-0.095	-0.034	0.119	0.222	0.282	0.312	0.335	0.364	0.391	0.402	0.424	0.450	0.490	0.531
21	-0.066	-0.025	0.094	0.180	0.230	0.252	0.273	0.296	0.317	0.323	0.342	0.361	0.396	0.439
22	-0.037	-0.005	0.079	0.140	0.181	0.191	0.201	0.216	0.232	0.231	0.248	0.263	0.294	0.328
23	0.009	0.038	0.097	0.133	0.170	0.171	0.176	0.190	0.202	0.197	0.211	0.221	0.249	0.275
24	0.026	0.044	0.090	0.120	0.154	0.147	0.152	0.163	0.169	0.169	0.176	0.179	0.200	0.219
25	0.049	0.068	0.100	0.116	0.139	0.128	0.123	0.128	0.130	0.128	0.133	0.137	0.156	0.179
26	0.044	0.062	0.099	0.104	0.123	0.109	0.107	0.113	0.114	0.109	0.117	0.117	0.133	0.158
27	0.028	0.055	0.090	0.096	0.112	0.095	0.094	0.104	0.105	0.100	0.115	0.114	0.131	0.151

(k) November - Concluded

Altitude			Interlev	el corre	lation co	efficient	(nondim	ensional	l) for alti	tude lev	elj, km	, of –		
level i,												•		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.024	-0.015	-0.046	-0.050	-0.069	-0.090	-0.095	-0.066	-0 037	0.009	0.026	0.049	0.044	0.028
1	0.138	0.142	0.104	0.081	0.048			-0.025		0.038	0.020	0.068	0.062	0.055
2	0.407	0.398	0.357	0.313	0.253	0.179	0.119	0.023	0.079	0.097	0.090	0.100	0.002	0.090
3	0.582	0.565	0.520	0.400	0.392	0.305	0.222	0.180	0.140	0.133	0.120	0.116	0.104	0.096
4	0.652	0.634	0.590	0.532	0.456	0.366	0.282	0.230	0.181	0.170	0.154	0.139	0.123	0.112
5	0.696	0.672	0.631	0.575	0.497	0.398	0.312	0.252	0.191	0.171	0.147	0.128	0.109	0.095
6	0.726	0.698	0.659	0.601	U.521	0.420	0.335	0.273	0.201	0.176	0.152	0.123	0.107	0.094
7	0.754	0.727	0.689	0.631	0.555	0.453	0.364	0.296	0.216	0.190	0.163	0.128	0.113	0.104
8	0.780	0.750	0.710	0.657	0.584	0.482	0.391	0.317	0.232	0.202	0.169	0.130	0.114	0.105
9	0.811	0.780	0.737	0.680	0.602	0.493	0.402	0.323	0.231	0.197	0.169	0.128	0.109	0.100
10	0.843	0.810	0.767	0.710	0.628	0.514	0.424	0.342	0.248	0.211	0.176	0.133	0.117	0.115
11	0.873	0.840	0.800	0.742	0.659	0.545	0.450	0.361	0.263	0.221	0.179	0.137	0.117	0.114
12	0.903	0.869	0.836	0.776	0.696	0.587	0.490	0.396	0.294	0.249	0.200	0.156	0.133	0.131
13	0.939	0.893	0.868	0.816	0.745	0.639	0.531	0.439	0.328	0.275	0.219	0.179	0.158	0.151
14	1.000	0.937	0.890	0.845	0.779	0.683	0.569	0.468	0.352	0.294	0.243	0.192	0.171	0.159
15	0.937	1.000	0.939	0.871	0.811	0.717	0.602	0.493	0.376	0.312	0.252	0.202	0.180	0.166
16	0.890	0.939	1.000	0.915	0.829	0.745	0.645	0.539	0.427	0.353	0.281	0.228	0.203	0.186
17	0.845	0.871	0.915	1.000	0.885	0.779	0.700	0.599	0.490	0.412	0.335	0.283	0.245	0.222
18	0.779	0.811	0.829	0.885	1.000	0.853	0.742	0.653	0.547	0.474	0.388	0.333	0.286	0.256
19	0.683	0.717	0.745	0.779	0.853	1.000	0.846	0.719	0.632	0.567	0.489	0.431	0.374	0.328
20	0.569	0.602	0.645	0.700	0.742	0.846	1.000	0.841	0.718	0.656	0.585	0.526	0.467	0.420
21	0.468	0.493	0.539	0.599	0.653	0.719	0.841	1.000	0.843	0.743	0.679	0.625	0.556	0.489
22	0.352	0.376	0.427	0.490	0.547	0.632	0.718	0.843	1.000	0.855	0.731	0.683	0.609	0.533
23	0.294	0.312	0.353	0.412	0.474	0.567	0.656	0.743	0.855	1.000	0.867	0.757	0.675	0.604
24	0.243	0.252	0.281	0.335	0.388	0.489	0.585	0.679	0.731	0.867	1.000	0.876	0.766	0.688
25	0.192	0.202	0.228	0.283	0.333	0.431	0.526	0.625	0.683	0.757	0.876	1.000	0.894	0.778
26	0.171	0.180	0.203	0.245	0.286	0.374	0.467	0.556	0.609	0.675	0.766	0.894	1.000	0.888
27	0.159	0.166	0.186	0.222	0.256	0.328	0.420	0.489	0.533	0.604	0.688	0.778	0.888	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(l) December

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	tude lev	el j, kn	n, of -		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.640	0.443	0.338	0.263	0.186	0.122	0.071	0.034	0.005	-0.032	-0.045	-0.044	-0.053
ī	0.640	1.000	0.780	0.620	0.510	0.413	0.333	0.275	0.240	0.207	0.170	0.141	0.127	0.094
2	0.443	0.780	1.000	0.866	0.758	0.673	0.608	0.555	0.521	0.485	0.440	0.402	0.379	0.335
3	0.338	0.620	0.866	1.000	0.913	0.837	0.777	0.729	0.699	0.666	0.620	0.577	0.554	0.515
4	0.263	0.510	0.758	0.913	1.000	0.935	0.878	0.835	0.801	0.768	0.724	0.685	0.656	0.617
5	0.186	0,413	0.673	0.837	0.935	1.000	0.950	0.905	0.869	0.834	0.792	0.756	0.722	0.686
6	0.122	0.333	0.608	0.777	0.878	0.950	1.000	0.963	0.925	0.889	0.847	0.805	0.769	0.735
7	0.071	0.275	0.555	0.729	0.835	0.905	0.963	1.000	0.968	0.933	0.891	0.845	0.803	0.767
8	0.034	0.240	0.521	0.699	0.801	0.869	0.925	0.968	1.000	0.970	0.929	0.883	0.837	0.797
9	0.005	0.207	0.485	0.666	0.768	0.834	0.889	0.933	0.970	1.000	0.965	0.921	0.870	0.831
10	-0.032	0.170	0.440	0.620	Ú.724	0.792	0.847	0.891	0.929	0.965	1.000	0.961	0.911	0.868
11	-0.045	0.141	0.402	0.577	0.685	0.756	0.805	0.845	0.883	0.921	0.961	1.000	0.952	0.902
12	-0.044	0.127	0.379	0.554	0.656	0.722	0.769	0.803	0.837	0.870	0.911	0.952	1.000	0.943
13	-0.053	0.094	0.335	0.515	0.617	0.686	0.735	0.767	0.797	0.831	0.868	0.902	0.943	1.000
14	-0.067	0.071	0.312	0.490	0.588	0.656	0.698	0.728	0.756	0.788	0.823	0.856	0.889	0.930
15	-0.076	0.055	0.287	0.464	0.562	0.625	0.663	0.690	0.721	0.750	0.783	0.812	0.848	0.885
16	-0.067	0.066	0.283	0.445	0.535	0.595	0.630	0.658	0.689	0.717	0.749	0.778	0.810	0.844
17	-0.071	0.053	0.250	0.401	0.486	0.549	0.582	0.606	0.635	0.655	0.687	0.715	0.745	0.779
18	-0.064	0.043	0.223	0.361	0.442	0.494	0.525	0.545	0.573	0.590	0.621	0.647	0.675	0.720
19	-0.055	0.035	0.189	0.316	0.387	0.435	0.469	0.491	0.515	0.528	0.555	0.578	0.606	0.654
20	-0.076	0.001	0.140	Û.259	0.328	0.362	0.399	0.419	0.437	0.448	0.470	0.487	0.507	0.549
21	-0.071	-0.001	0.131	0.233	0.287	0.313	0.343	0.357	0.372	0.375	0.398	0.411	0.423	0.462
22	-0.040	0.016	0.108	0.179	0.220	0.238	0.262	0.272	0.285	0.281	0.299	0.309	0.319	0.345
23	-0.033	0.014	0.084	0.142	6.170	0.181	0.205	0.211	0.225	0.222	0.233	0.240	0.242	0.260
24	-0.021	0.001	0.057	0.101	0.126	0.128	0.148	0.155	0.167	0.170	0.184	0.191	0.193	0.210
25	-0.021	0.014	0.064	0.105	0.120	0.116	0.132	0.143	0.158	0.163	0.177	0.176	0.174	0.188
26	-0.026	0.017	0.060	0.096	0.111	0.104	0.115	0.125	0.139	0.149	0.165	0.169	0.163	0.177
27	-0.029	0.014	0.045	0.072	0.085	0.079	0.085	0.092	0.107	0.121	0.134	0.135	0.128	0.136

(1) December - Concluded

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alti	itude lev	el j, km	n, of -		
km	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	-0.067	-0.076	-0.067	-0.071	-0.064	-0.055								-0.029
1	0.071	0.055	0.066	U.053	0.043	0.035	0.001	-0.001	0.016	0.014	0.001	0.014	0.017	0.014
2	0.312	0.287	0.283	C.250	0.223	0.189	0.140	0.131	0.108	0.084	0.057	0.064	0.060	0.045
3	0.490	0.464	0.445	0.401	0.361	0.316	0.259	0.233	0.179	0.142	0.101	0.105	0.096	0.072
4	0.588	0.562	0.535	0.486	0.442	0.387	0.328	0.287	0.220	0.170	0.126	0.120	0.111	0.085
5	0.656	0.625	0.595	0.549	0.494	0.435	0.362	0.313	0.238	0.181	0.128	0.116	0.104	0.079
6	0.698	0.663	0.630	0.582	0.525	0.469	0.399	0.343	0.262	0.205	0.148	0.132	0.115	0.085
7	0.728	0.690	0.658	0.606	0.545	0,491	0.419	0.357	0.272	0.211	0.155	0.143	0.125	0.092
8	0.756	0.721	0.689	0.635	0.573	0.515	0.437	0.372	0.285	0.225	0.167	0.158	0.139	0.107
9	0.788	0.750	0.717	U-655	0.590	0.528	0.448	0.375	0.281	0.222	0.170	0.163	0.149	0.121
10	0.823	0.783	0.749	0.687	0.621	0.555	0.470	0.398	0.299	0.233	0.184	0.177	0.165	0.134
11	0.856	0.812	0.778	0.715	0.647	0.578	0.487	0.411	0.309	0.240	0.191	0.176	0.169	0.135
12	0.889	0.848	0.810	0.745	0.675	0.606	0.507	0.423	0.319	0.242	0.193	0.174	0.163	0.128
13	0.930	0.885	0.844	0.779	0.720	0.654	0.549	0.462	0.345	0.260	0.210	0.188	0.177	0.136
14	1.000	0.932	0.873	0.813	0.756	0.693	0.594	0.502	0.377	0.289	0.233	0.216	0.200	0.156
15	0.932	1.000	0.926	0.852	0.798	0.736	0.635	0.542	0.420	0.330	0.271	0.255	0.232	0.187
16	0.873	0.926	1.000	6.910	0.825	0.761	0.654	0.564	0.447	0.358	0.308	0.293	0.269	0.218
17	0.813	0.852	0.910	1.000	0.894	0.787	0.681	0.600	0.489	0.390	0.337	0.317	0.286	0.241
18	0.756	0.798	0.825	0.894	1.000	0.875	0.740	0.653	0.551	0.458	0.406	0.376	0.344	0.295
19	0.693	0.736	0.761	U.787	0.875	1.000	0.828	0.689	0.594	0.502	0.455	0.426	0.391	0.329
20	0.594	0.635	0.654	0.681	0.740	0.828	1.000	0.824	0.687	0.602	0.560	0.523	0.496	0.436
21	0.502	0.542	0.564	6.600	0.653	0.689	0.824	1.000	0.831	0.717	0.652	0.615	0.583	0.517
22	0.377	0.420	0.447	Ú-489	0.551	0.594	0.687	0.831	1.000	0.845	0.738	0.677	0.633	0.574
23	0.289	0.330	0.358	C.390	0.458	0.502	0.602	0.717	0.845	1.000	0.869	0.767	0.710	0.638
24	0.233	0.271	0.308	0.337	0.406	0.455	0.560	0.652	0.738	0.869	1.000	0.879	0.787	0.705
25	0.216	0.255	0.293	0.317	0.376	0.426	0.523	0.615	0.677	0.767	0.879	1.000	0.896	0.794
26	0.200	0.232		0.286	0.344	0.391	0.496	0.583	0.633	0.710	0.787	0.896	1.000	0.901
27	0.156	0.187		0.241	0.295	0.329	0.436	0.517	0.574	0.638	0.705	0.794	0.901	1.000

TABLE VI.- INTERLEVEL CORRELATION COEFFICIENTS BETWEEN MERIDIONAL COMPONENTS OF WIND VELOCITY

AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE — Concluded

(m) Annual

Altitude level i,			Interlev	el corre	lation co	efficient	(nondim	ensional) for alt	itude lev	el j, kn	n, of –		
km	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1.000	0.651	0.413	0.321	0.269	0.221	0.174	0.126	0.082	0.045	0.007	-0.021	-0.040	-0.054
1	0.651	1.000	0.742	0.583	0.504	0.441	0.378	0.321	0.268	0.222	0.176	0.142	0.114	0.082
2	0.413	0.742	1.000	0.842	0.742	0.676	0.618	0.565	0.517	0.471	0.423	0.385	0.353	0.320
3	0.321	0.583	0.842	1.000	0.895	0.819	0.764	0.716	0.672	0.629	0.582	0.542	0.508	0.475
4	0.269	0.504	0.742	0.895	1.000	C.920	0.861	0.814	0.770	0.725	0.677	0.635	0.600	0.569
5	0.221	0.441	0.676	0.819	0.920	1.000	0.935	0.883	0.838	0.791	0.741	0.698	0.660	0.631
6	0.174	0.378	0.618	0.764	0.861	0.935	1.000	0.946	0.897	0.849	0.797	0.750	0.710	0.681
7	0.126	0.321	0.565	0.716	0.814	0.883	0.946	1.000	0.954	0.905	0.851	0.802	0.760	0.728
8	0.082	0.268	0.517	0.672	0.770	0.838	0.897	0.954	1.000	0.958	0.905	0.855	0.810	0.774
9	0.045	0.222	0.471	0.629	0.725	0.791	0.849	0.905	0.958	1.000	0.958	0.907	0.857	0.813
10	0.007	0.176	0.423	0.582	0.677	0.741	0.797	0.851	0.905	0.958	1.000	0.958	0.904	0.851
11	-0.021	0.142	0.385	0.542	0.635	0.698	0.750	0.802	0.855	0.907	0.958	1.000	0.951	0.888
	-0.040	0.114	0.353	0.508	0.600	0.660	0.710	0.760	0.810	0.857	0.904	0.951	1.000	0.937
13	-0.054	0.082	0.320	0.475	0.569	0.631	0.681	0.728	0.774	0.813	0.851	0.888	0.937	1.000
14	-0.056	0.070	0.305	0.460	0.552	0.613	0.663	0.706	0.745	0.778	0.805	0.832	0.868	0.922
15	-0.051	0.067	0.296	0.447	0.540	0.599	0.645	0.683	0.716	0.742	0.765	0.788	0.822	0.863
16	-0.047	0.056	0.278	0.424	0.511	0.569	0.611	0.645	0.673	0.695	0.714	0.734	0.767	0.810
17	-0.048	0.045	0.246	0.383	0.460	0.514	0.551	0.585	0.612	0.629	0.644	0.665	0.699	0.745
	-0.053	0.029	0.203	0.323	0.391	0.438	0.475	0.507	0.532	0.546	0.559	0.577	0.610	0.658
	-0.055	0.010	0.153	0.253	0.316	0.357	0.391	0.419	0.439	0.450	0-460	0.476	0.507	0.555
	-0.059		0.107	0.188	0.237	0.270	0.300	0.324	0.339	0.347	0.357	0.370	0.394	0.434
	-0.066		0.068	0.130	0.168	0.195	0.220	0.238	0.249	0.253	0.260	0.270	0.289	0.326
	-0.065		0.039	0.083	0.110	0.131	0.150	0.164	0.171	0.171	0.176	0.183	0.200	0.229
	-0.054		0.029	0.064	0.084	0.101	0.115	0.124	0.130	0.126	0.127	0.133	0.145	0.168
	-0.038		0.019	0.044	0.060	0.074	0.083	0.089	0.092	0.088	0.088	0.091	0.100	0.119
	-0.030		0.014	0.035	0.043	0.051	0.057	0.061	0.063	0.061	0.061	0.063	0.070	0.086
	-0.026		0.015	0.034	0.040	0.043	0.047	0.052	0.051	0.049	0.051	0.051	0.055	0.068
27	-0.027	-0.011	0.018	0.037	0.046	0.052	0.056	0.059	0.060	0.057	0.060	0.060	0.063	0.070

(m) Annual - Concluded

Altitude level i,			Interle	vel corre	elation c	oefficien	t (nondin	nensiona	l) for alt	itude lev	el j, kn	n, of -		
km ,	14	15	16	17	18	19	20	21	22	23	24	25	26	. 27
0	-0.056	-0.051	-0.047	-0.048	-0.053	-0.055	-0.059	-0.066	-0.065	-0.054	-0.038	-0.030	-0.026	-0.027
1	0.070	0.067	0.056	0.045	0.029	0.010	-0.008	-0.027	-0.035	-0.033	-0.032	-0.025	-0.016	-0.011
2	0.305	0.296	0.278	0.246	0.203	0.153	0.107	0.068	0.039	0.029	0.019	0.014	0.015	0.018
3	0.460	0.447	0.424	0.383	0.323	0.253	0.188	0.130	0.083	0.064	0.044	0.035	0.034	0.037
4	0.552	0.540	0.511	0.460	0.391	0.316	0.237	0.168	0.110	0.084	0.060	0.043	0.040	0.046
5	0.613	0.599	0.569	0.514	0.438	0.357	0.270	0.195	0.131	0.101	0.074	0.051	0.043	0.052
6	0.663	0.645	0.611	0.551	0.475	0.391	0.300	0.220	0.150	0.115	0.083	0-057	0.047	0.056
7	0.706	0.683	0.645	0.585	0.507	0.419	0.324	0.238	0.164	0.124	0.089	0.061	0.052	0.059
8	0.745	0.716	0.673	0.612	0.532	0.439	0.339	0.249	0.171	0.130	0.092	0.063	0.051	0.060
9	0.778	0.742	0.695	0.629	0.546	0.450	0.347	0.253	0.171	0.126	0.088	0.061	0.049	0.057
10	0.805	0.765	0.714	0.644	0.559	0.460	0.357	0.260	0.176	0.127	0.088	0.061	0.051	0.060
11	0.832	0.788	0.734	0.665	0.577	0.476	0.370	0.270	0.183	0.133	0.091	0.063	0.051	0.060
12	0.868	0.822	0.767	0.699	0.610	0.507	0.394	0.289	0.200	0.145	0.100	0.070	0.055	0.063
13	0.922	0.863	0.810	0.745	0.658	0.555	0.434	0.326	0.229	0.168	0.119	0.086	0.068	0.070
14	1.000	0.920	0.849	0.786	0.705	0.602	0.479	0.367	0.262	0.192	0.137	0.098	0.081	0.080
15	0.920	1.000	0.914	0.826	0.747	0.647	0.521	0.406	0.295	0.219	0.157	0.116	0.096	0.090
16	0.849	0.914	1.000	0.888	0.775	0.680	0.555	0.441	0.327	0.248	0.184	0-140	0.115	0.107
17	0.786	0.826	0.888	1.000	0.850	0.710	0.589	0.476	0.364	0.283	0.212	0.167	0.137	0.123
18	0.705	0.747	0.775	0.850	1.000	0.808	0.634	0.522	0.412	0.327	0.253	0.204	0.169	0.147
19	0.602	0.647	0.680	0.710	0.808	1.000	0.762	0.574	0.465	0.384	0.317	0.260	0.222	0.187
20	0.479	0.521	0.555	0.589	0.634	0.762	1.000	0.740	0.539	0.443	0.377	0.324	0.284	0.240
21	0.367	0.406	0.441	0.476	0.522	0.574	0.740	1.000	0.738	0.543	0.447	0.391	0.341	0.294
22	0.262	0.295	0.327	0.364	0.412	0.465	0.539	0.738	1.000	0.746	0.549	0.463	0.405	0.350
23	0.192	0.219	0.248	0.283	0.327	0.384	0.443	0.543	0.746	1.000	0.756	0.567	0.479	0.411
24	0.137	0.157	0.184	0.212	0.253	0.317	0.377	0.447	0.549	0.756	1.000	0.768	0.591	0.488
25	0.098	0.116	0.140	0.167	0.204	0.260	0.324	0.391	0.463	0.567	0.768	1.000	0.797	0.611
26	0.081	0.096	0.115	0.137	0.169	0.222	0.284	0.341	0.405	0.479	0.591	0.797	1.000	0.806
27	0.080	0.090	0.107	0.123	0.147	0.187	0.240	0.294	0.350	0.411	0.488	0.611	0.806	1.000

[Sample includes observations made 4 times daily from 1956 to 1964 at Norfolk and Washington stations]

(a) January

Altitude				Crossle	el and i	ntraleve	l correla	tion coe	fficients	(nondim	ensional))		
level i, km, of zonal				of	meridio	nal com	ponent fo	r altitud	le level	j, km, o	f –			
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.047	-0.320	-0.326	-0.254	-0.167	-0.116	-0.081	-0.072	-0.069	-0.071	-0.065	-0.056	-0.029	-0.012
1	0.450	0.162	-0.004	0.008	0.030	0.031	0.040	0.023	-0.001	-0.031	-0.059	-0.077	-0.084	-0.096
2	0.389	0.297	0.163	0.167	0.177	0.169	0.165	0.150	0.124	0.090	0.053	0.026	0.000	-0.017
3	0.266	0.233	0.164	0.174	0.199	0.197	0.201	0.189	0.172	0.151	0.115	0.089	0.062	0.048
4	0.177	0.162	0.131	0.158	0.184	0.195	0.205	0.202	0.185	0.167	0.139	0.120	0.099	0.085
5	0.118	0.124	0.119	0.152	0.178	0.196	0.213	0.212	0.202	0.183	0.152	0.132	0.111	0.097
6	0.093	0.105	0.104	0.139	0.163	0.178	0.198	0.204	0.196	0.178	0.146	0.125	0.107	0.089
7	0.082	0.103	0.110	0.140	0.164	0.176	0.192	0.199	0.195	0.180	0.146	0.123	0.105	0.085
8	0.074	0.109	0.123	0.148	0.164	0.178	0.192	0.198	0.197	0.185	0.149	0.126	0.107	0.083
9	0.081	0.121	0.138	0.158	0.170	0.178	0.188	0.192	0.190	0.178	0.147	0.123	0.101	0.078
10	0.082	0.144	0.161	0.180	0.183	0.184	0.188	0.190	0.185	0.177	0.152	0.128	0.100	0.079
11	0.098	0.203	0.212	0.220	0.211	0.202	0.200	0.196	0.192	0.185	0.169	0.141	0.105	0.078
12	0.120	0.259	0.258	0.257	0.238	0.220	0.215	0.212	0.206	0.202	0.183	0.159	0.127	0.087
13	0.120	0.266	0.261	0.251	0.226	0.203	0.199	0.198	0.194	0.192	0.174	0.151	0.131	0.096
14	0.118	0.257	0.243	0.231	0.202	0.184	0.181	0.179	0.177	0.175	0.156	0.133	0.116	0.103
15	0.122	0.252	0.236	0.218	0.189	0.174	0.170	0.164	0.159	0.156	0.138	0.117	0.097	0.088
16	0.118	0.245	0.232	0.221	0.189	0.172	0.167	0.161	0.153	0.148	0.132	0.117	0.101	0.089
17	0.097	0.224	0.218	0.215	0.179	0.171	0.170	0.165	0.155	0.151	0.142	0.131	0.114	0.102
18	0.088	0.194	0.179	0.177	0.145	0.137	0.136	0.134	0.128	0.126	0.122	0.110	0.088	0.079
19	0.082	0.164	0.145	0.144	0.110	0.099	0.098	0.098	0.091	0.089	0.084	0.074	0.056	0.039
20	0.061	0.123	0.122	0.124	0.101	0.095	0.100	0.096	0.085	0.082	0.073	0.060	0.049	0.035
21	0.019	0.066	0.070	0.074	0.063	0.058	0.070	0.068	0.060	0.055	0.048	0.039	0.031	0.022
22	0.011	0.048	0.074	0.082	0.064	0.061	0.077	0.074	0.065	0.062	0.053	0.046	0.038	0.030
23	0.022	0.033	0.065	0.070	0.053	0.051	0.066	0.063	0.056	0.055	0.042	0.039	0.032	0.029
24		-0.002	0.031	0.045	0.038	0.039	0.053	0.054	0.046	0.048	0.036	0.034	0.026	0.029
	-0.C16		0.003	0.023	0.027	0.035	0.050	0.054	0.050	0.055	0.044	0.042	0.035	0.033
		-0.043		0.016	0.022	0.031	0.048	0.051	0.053	0.059	0.051	0.049	0.046	0.033
27	-0.016	-0.045	-0.009	0.013	0.018	0.028	0.042	0.043	0.043	0.051	0.042	0.038	0.033	0.020

(a) January - Concluded

Altitude				Crossle	vel and i	ntraleve	l correla	ation coé	fficients	(nondim	ensional)		
level i, km, of zonal				of	meridio	onal com	ponent fo	or altitud	le level	j, km, o	f -			
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.007	0.015	0.028	u.025	0.033	0.026	0.020	-0.003	-0.031	-0.041	-0.043	-0.048	-0.049	-0.045
1	-0.069	-0.051	-0.030	-0.014	0.024	0.034	0.039	0.029	0.036	0.041	0.045	0.044	0.056	0.057
2	0.004	0.013	0.034	0.051	0.086	0.098	0.087	0.081	0.092	0.116	0.124	0.126	0.131	0.129
3	0.050	0.048	0.066	0.086	0.118	0.130	0.113	0.112	0.123	0.137	0.134	0.132	0.138	0.132
4	0.076	0.076	0.089	0.107	0.135	0.145	0.125	0.123	0.131	0.143	0.140	0.138	0.142	0.137
5	0.082	0.081	0.097	0.121	0.155	0.165	0.145	0.150	0.159	0.166	0.157	0.153	0.161	0.154
6	0.076	0.075	0.094	0.121	0.161	0.172	0.152	0.154	0.161	0.167	0.157	0.155	0.163	0.154
7	0.074	0.077	0.091	0.115	0.154	0.165	0.147	0.144	0.148	0.153	0.146	0.152	0.159	0.151
8	0.077	0.082	0.091	0.108	0.146	0.160	0.142	0.138	0.140	0.145	0.136	0.147	0.151	0.144
9	0.075	0.080	0.090	0.105	0.141	0.153	0.133	0.127	0.126	0.135	0.128	0.137	0.137	0.126
10	0.075	0.078	0.093	0.110	0.138	0.148	0.126	0.122	0.117	0.126	0.125	0.136	0.136	0.123
11	0.072	0.078	0.095	0.109	0.133	0.140	0.120	0.118	0.117	0.135	0.134	0.140	0.141	0.124
12	0.080	0.086	0.112	0.121	0.146	0.156	0.137	0.131	0.133	0.160	0.163	0.168	0.167	0.152
13	0.076	0.078	0.116	0.125	0.147	0.156	0.146	0.154	0.161	0.182	0.181	0.190	0.187	0.169
14	0.095	0.077	0.116	0.142	0.166	0.173	0.167	0.186	0.199	0.216	0.210	0.222	0.218	0.198
15	0.097	0.081	0.108	0.134	0.173	0.183	0.173	0.196	0.205	0.232	0.222	0.224	0.228	0.216
16	0.098	0.091	0.123	0.135	0.177	0.198	0.188	0.209	0.218	0.241	0.231	0.235	0.241	0.226
17	0.106	0.097	0.141	0.153	0.177	0.206	0.192	0.217	0.220	0.239	0.225	0.238	0.247	0.232
18	0.078	0.067	0.105	0.140	0.167	0.189	0.184	0.220	0.231	0.256	0.241	0.253	0.272	0.255
19	0.037	0.034	0.069	0.108	0.144	0.160	0.166	0.200	0.225	0.256	0.254	0.256	0.276	0.265
20	0.032	0.031	0.062	0.083	0.122	0.143	0.162	0.192	0.204	0.236	0.244	0.239	0.258	0.253
21	0.026	0.004	0.034	0.051	0.085	0.118	0.151	0.189	0.191	0.216	0.230	0.225	0.234	0.229
22	0.028	0.001	0.024	0.042	0.054	0.082	0.123	0.159	0.161	0.185	0.207	0.209	0.220	0.213
23	0.020	-0.007	0.011	0.010	0.001	0.013	0.064	0.087	0.097	0.124	0.145	0.153	0.168	0.165
24	0.018	-0.014	0.003	-0.009	-0.020	-0.024	0.020	0.033	0.036	0.071	0.098	0.105	0.123	0.126
25	0.020	-0.012	0.008	-0.013	-0.030	-0.044	-0.020	-0.021	-0.017	0.015	0.050	0.071	0.092	0.096
26	0.023	-0.007	0.008	-0.ula	-0.043	-0.071	-0.051	-0.067	-0.062	-0.033	0.006	0.034	0.062	0.070
27	0.007	-0.022	-0.008	-0.033	-0.064	-0.098	-0.085	-0.109	-0.100	-0.071	-0.035	-0.005	0.038	0.055

(b) February

Altitude				Crossle	vel and i	ntraleve	l correla	ition coe	fficients	(nondim	ensional)		
level i, km,				of	meridio	nal com	ponent fo	r altitud	le level	i. km. o	f _			
of zonal	_		•							•,				
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.133	-0.302	-0.375	-0.273	-0.206	-0.134	-0.095	-0.068	-0.055	-0.044	-0.037	-0.013	0.030	0.077
i	0.413			-0.101									-0.043	-0.012
2	0.348	0.180	0.013	0.030	0.046	0.067	0.072	0.074	0.062	0.038			-0.029	
3	0.224	0.113	0.032	0.036	0.051	0.076	0.095	0.109	0.099	0.076	0.048	0.027	0.009	0.032
4	0.163	0.056	0.011	0.035	0.046	0.075	0.097	0.118	0.109	0.091	0.067	0.047	0.038	0.059
5	0.119	0.025	-0.016	0.013	0.030	0.064	0.103	0.128	0.120	0.105	0.080	0.066	0.054	0.075
6	0.102	0.013	-0.023	0.009	0.025	0.063	0.107	0.139	0.133	0.115	0.087	0.075	0.062	0.083
7	0.087		-0.019	6.010	0.032	0.069	0.113	0.145	0.145	0.128	0.100	0.085	0.067	0.087
8	0.072	-0.004	-0.013	0.017	0.037	0.077	0.119	0.149	0.158	0.149	0.122	0.101	0.085	0.103
9	0.065	0.001	-0.004	0.022	0.036	0.073	0.108	0.138	0.150	0.148	0.121	0.097	0.080	0.101
10	0.064	0.027	0.040	0.064	0.072	0.096	0.127	0.153	0.167	0.166	0.138	0.108	0.085	0.099
11	0.083	0.074	0.096	0.109	0.104	0.120	0.143	0.157	0.171	0.167	0.147	0.109	0.071	0.072
12	0.112	0.139	0.160	0.171	0.162	0.165	0.181	0.190	0.203	0.200	0.180	0.151	0.111	0.089
13	0.108	0.154	0.178	0.186	0.175	0.171	0.188	0.195	0.205	0.206	0.185	0.159	0.133	0.110
14	0.085	0.131	0.159	0.168	0.156	0.154	0.164	0.171	0.181	0.180	0.159	0.123	0.096	0.098
15	0.068	0.100	0.130	0.134	0.124	0.131	0.141	0.146	0.155	0.151	0.129	0.089	0.061	0.068
16	0.086	0.102	0.136	0.130	0.119	0.128	0.130	0.136	0.143	0.139	0.115	0.080	0.056	0.066
17	0.069	0.103	0.148	0.148	0.143	0.155	0.152	0.155	0.160	0.156	0.134	0.101	0.078	0.086
18	0.049	0.093	0.136	0.125	0.123	0.141	0.133	0.141	0.147	0.139	0.119	0.091	0.074	0.076
19	0.044	0.073	0.113	0.114	0.106	0.126	0.122	0.130	0.141	0.141	0.125	0.108	0.094	0.102
20	0.031	0.034	0.067	0.074	0.071	0.086	0.079	0.088	0.102	0.105	0.087	0.076	0.071	0.070
21	0.013	0.004	0.030	0.047	0.043	0.059	0.056	0.067	0.080	180.0	0.066	0.062	0.063	0.069
22	0.028	0.015	0.042	0.056	0.048	0.060	0.058	0.071	0.081	0.077	0.067	0.063	0.059	0.063
23	0.050	0.037	0.054	0.069	0.062	0.063	0.064	0.079	0.085	0.084	0.071	0.072	0.070	0.073
24	0.065	0.039	0.043	0.051	0.053	0.049	0.046	0.064	0.071	0.068	0.056	0.052	0.051	0.051
25	0.085	0.058	0.063	0.070	0.075	0.065	0.059	0.077	0.082	0.080	0.065	0.059	0.058	0.060
26	0.088	0.056	0.070	0.084	0.092	0.086	0.083	0.095	0.097	0.094	0.079	0.074	0.076	0.080
27	0.081	0.059	0.080	0.101	0.110	0.104	0.105	0.113	0.116	0.116	0.098	0.095	0.097	0.101
			*											
					(b)	Februar	y – Con	cluded						
Altitude				Crossleve	el and in	tralevel	correlat	ion coeff	icients (nondime	nsional)			
level i.km.								7111		, .				

Altitude			(Crosslev	el and ir	ntralevel	correla	tion coef	ficients	(nondim	ensional))		
level i, km, of zonal				of	meridio	nal comp	onent fo	r altitud	e level	j, km, o	f			
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
3	0.087	0.120	0.153	0.107	0.153	0.152	0.137	0.102	0.045	0.007	-0.023	-0.061	-0.065	-0.071
1	0.000	0.033	0.064	0.076	0.074	0.069	0.051	0.008	-0.037	-0.042	-0.040	-0.067	-0.051	-0.049
2	-0.004	0.027	0.043	0.058	0.050	0.058	0.059	0.021	-0.002	0.012	0.018	0.003	0.013	0.009
3	0.030	0.058	0.070	U.U87	0.076	0.086	0.103	0.084	0.072	0.072	0.074	0.056	0.059	0.055
4	0.054	0.087	0.095	0.118	0.107	0.121	0.140	0.124	0.119	0.109	0.107	0.083	0.087	0.080
5	0.070	0.106	0.109	0.134	0.131	0.151	0.172	0.142	0.134	0.110	0.117	0.087	0.085	0.075
6	0.075	0.112	0.120	0.145	0.145	0.160	0.169	0.139	0.130	0.104	0.105	0.077	0.078	0.066
7	0.081	0.117	0.126	0.150	0.150	0.167	0.166	0.123	0.108	0.075	0.087	0.056	0.059	0.047
8	0.100	0.135	0.139	0.154	0.155	0.172	0.158	0.107	0.094	0.060	0.067	0.039	0.044	0.037
9	0.097	0.127	0.132	0.144	0.148	0.163	0.144	0.089	0.081	0.041	0.056	0.029	0.032	0.028
10	0.099	0.124	0.123	0.127	0.137	0.148	0.130	0.079	0.078	0.041	0.058	0.044	0.044	0.033
11	0.074	0.095	0.087	0.093	0.106	0.110	0.085	0.053	0.056	0.032	0.049	0.038	0.051	0.048
12	0.090	0.108	0.097	0.081	0.088	0.077	0.062	0.027	0.042	0.036	0.059	0.054	0.072	0.071
13	0.091	0.108	0.104	0.094	0.104	0.093	0.086	0.035	0.054	0.046	0.083	0.072	0.086	0.072
14	0.087	0.088	0.093	C.100	0.118	0.115	0.105	0.065	0.081	0.084	0.109	0.106	0.115	0.092
15	0.080	0.083	0.076	0.081	0.107	0.108	0.111	0.083	0.115	0.114	0.127	0.130	0.153	0.130
16	0.071	0.094	0.090	0.075	0.093	0.102	0.115	0.100	0.155	0.157	0.157	0.168	0.199	0.182
, 17	0.081	0.104	0.119	0.112	0.107	0.125	0-145	0.146	0.209	0.203	0.196	0.203	0.234	0.218
18	0.072	0.084	0.099	0.117	0.124	0.135	0.158	0.182	0.240	0.236	0.233	0.248	0.272	0.252
19	0.103	0.108	0.122	0.143	G.166	0.194	0.201	0.206	0.261	0.259	0.266	0.281	0.301	0.276
20	0.076	0.081	0.091	6.110	0.134	0.186	0.210	0.192	0.251	0.266	0.271	0.280	0.297	0.266
21	0.077	0.075	0.084	0.094	0.119	0.158	0.223	0.230	0.270	0.271	0.268	0.278	0.304	0.278
22	0.065	0.069	0.078	0.075	0.096	0.123	0.179	0.219	0.263	0.259	0.248	0.264	0.295	0.265
23	0.077	0.077	0.079	0.68	0.082	0.098	0.141	0.170	0.227	0.243	0.230	0.235	0.263	0.240
24	0.057	0.055	0.051	0.051	0.065	0.071	0.116	0.128	0.178	0.204	0.219	0.223	0.243	0.224
25	0.065	0.065	0.067	0.058	0.061	0.059	0.097	0.097	0.140	0.168	0.195	0.192	0.197	0.180
26	0.084	0.081	0.080	0.065	0.063	0.059	0.086	0.074	0.096	0.113	0.141	0.146	0.160	0.152
27	0.111	0.104	0.098	0.075	0.074	0.055	0.074	0.055	0.071	0.080	0.102	0.107	0.136	0.128

(c) March

Altitude level i, km, of zonal				Crosslev of			correlation			•	,)		
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.087	-0.274	-0.310	-0.237	-0.153	-0.106	-0.080	-0.065	-0.057	-0.066	-0.062	-0.045	-0.004	0.046
1	0.333	0.048	-C.096	-0.051	0.011	0.040	0.033	0,015	0.001	-0.025	-0.040	-0.043	-0.033	-0.002
2	0.299	0.223	0.126	0.141	0.179	0.192	0.171	0.144	0.130	0.100	0.072	0.074	0.070	0.078
3	0.199	0.184	0.155	0.158	0.183	0.197	0.183	0.165	0.154	0.128	0.101	0.093	0.091	0.101
4	0.124	0.126	0.120	0.144	0.163	0.181	0.167	0.159	0.151	0.133	0.106	0.095	0.090	0.103
5	0.071	0.096	0.100	0.135	0.154	0.169	0.162	0.159	0.155	0.142	0.118	0.108	0.107	0.118
6	0.041	0.063	0.075	0.112	0.134	0.149	0.146	0.155	0.161	0.155	0.133	0.123	0.117	0.128
7	0.013	0.029	0.045	0.088	0.113	0.128	0.128	0.140	0.158	0.158	0.141	0.126	0.119	0.128
8	0.000	0.029	0.040	0.075	0.100	0.115	0.111	0.121	0.140	0.150	0.137	0.116	0.106	0.109
9	-0.005	0.017	0.034	0.068	0.095	0.107	0.101	0.109	0.128	0.145	0.133	0.111	0.094	0.095
10	0.003	0.031	0.047	0.083	0.104	0.115	0.106	0.111	0.129	0.148	0.136	0.107	0.084	0.079
11	0.030	0.072	0.096	0.129	0.138	0.139	0.129	0.129	0.141	0.158	0.148	0.118	0.075	0.057
12	0.080	0.146	0.171	0.197	0.199	0.192	0.175	0.172	0.182	0.193	0.181	0.154	0.107	0.060
13	0.091	0.163	0.190	0.220	0.216	0.216	0.206	0.203	0.211	0.217	0.200	0.178	0.142	0.098
14	0.062	0.141	0.173	0.202	0.205	0.208	0.198	0.194	0.202	0.203	0.185	0.162	0.135	0.129
15	0.060	0.133	0.160	0.188	0.191	0.191	0.184	0.178	0.187	0.189	0.170	0.145	0.119	0.118
16	0.062	0.110	0.116	0.143	0.150	0.150	0.144	0.142	0.154	0.158	0.137	0.109	0.085	0.085
17	0.053	0.105	0.111	0.132	0.143	0.144	0.145	0.146	0.157	0.160	0.137	0.109	0.091	0.093
18	0.015	0.078	0.113	0.119	0.131	0.139	0.135	0.134	0.139	0.138	0.114	0.087	0.063	0.071
19	-0.007	0.067	0.103	0.103	0.114	0.127	0.132	0.129	0.127	0.124	0.105	0.080	0.068	0.076
20	-0.011	0.045	0.081	0.080	0.089	0.097	0.096	0.098	0.099	0.094	0.078	0.060	0.058	0.070
21	-0.014	0.028	0.065	0.068	0.072	0.079	0.077	0.085	0.079	0.072	0.059	0.043	0.041	0.053
22	-0.018	0.024	0.053	0.047	0.044	0.050	0.055	0.066	0.057	0.044	0.030	0.009	0.011	0.024
23	-0.021	0.012	0.034	0.032	0.035	0.041	0.051	0.060	0.052	0.043	0.030	0.002	0.003	0.014
24	-0.019	0.027	0.049	0.047	0.044	0.049	0.056	0.062	0.050	0.040	0.027	0.001	-0.000	0.009
25	-0.027	0.036	0.060	0.053	0.045	0.047	0.052	0.054	0.040	0.029	0.017	-0.006	-0.009	-0.002
26	-0.020	0.037	0.049	0.040	0.029	0.031	0.033	0.033	0.014	0.004	-0.008	-0.032	-0.033	-0.025
27	-0.013	0.033	0.044	0.040	0.028	0.028	0.032	0.033					-0.038	

(c) March - Concluded

Altitude level i, km, of zonal component	14	15	16					ition coe or altitud 21		•) 25	26	27
-	0.00	0.07/	0.000	0.005	0.117	0 117	0 105	0 100	0 0//		0.01/	0 017	0 020	0 033
o,	0.068			0.095	0.114		0.105	0.102					-0.029	
1	0.016	0.007	0.018	0.023	0.027	0.029	0.017			-0.087				
2	0.085		0.079	0.062	0.029	0.007		-0.014						
3	0.098	6.087	0.096	0.074	0.031	0.003		-0.009						
4	0.098	0.085	0.085	0.079	0.043	0.003	-0.003			-0.062				
5	0.113		0.092	0.092	0.063	0.024	0.012			-0.046				
6	0.129	0.111	0.111	0.110	0.078	0.048	0.039			-0.020				
7	0.131	0.112	0.115	0.1,11	0.084	0.050	0.043	0.050		-0.011				
8	0.112		0.102	0.095	0.070	0.037	0.026			-0.017				0.002
9	0.102		0.088	0.076	0.053	0.027	0.020			-0.008				0.006
10	0.080		0.069	0.059	0.041	0.017	0.013			-0.012				0.018
11	0.059		0.055	0.038		-0.008		-0.006						0.024
12	0.051	0.044	0.050	0.023	-0.007			-0.037					0.004	0.032
13	0.072		0.077	0.049		-0.023		-0.019				0.000	0.027	0.053
14	0.104	0.075	0.084	0.074	0.040	0.003	0.021	0.015	-0.001	0.002	0.026	0.031	0.049	0.077
15	0.119	0.096	0.087	0.074	0.048	0.024	0.037	0.033	0.032	0.026	0.048	0.047	0.070	0.096
16	0.096	0.093	0.088	0.065	0.045	0.037	0.063	0.060	0.069	0.076	0.108	0.115	0.132	0.139
17	0.099	0.096	0.124	6.110	0.068	0.077	0.116	0.130	0.127	0.139	0.172	0.188	0.195	0.192
18	0.068	0.063	0.086	0.116	0.075	0.074	0.131	0.164	0.187	0.202	0.245	0.260	0.267	0.256
19	0.075	0.074	0.086	0.111	0.132	0.155	0.184	0.226	0.269	0.296	0.335	0.352	0.360	0.354
20	0.064	0.066	0.082	0.102	0.135	0.204	0.232	0.258	0.320	0.354	0.389	0.411	0.424	0.422
21	0.047	0.051	0.072	0.088	0.108	0.184	0.245	0.279	0.336	0.358	0.412	0.431	0.454	0.455
22	0.024	0.022	0.039	0.063	0.091	0.164	0.228	0.308	0.351	0.376	0.434	0.456	0.484	0.479
23	0.012	0.017	0.033	0.052	0.080	0.163	0.228	0.299	0.356	0.383	0.434	0.457	0.481	0.477
24	0.001	0.010	0.027	0.049	0.075	0.157	0.222	0.284	0.351	0.390	0.434	0.450	0.468	0.469
25	-0.011	-0.002	0.015	0.040	0.063	0.142	0.204	0.268	0.326	0.371	0.429	0.445	0.461	0.463
26	-0.031	-0.023	-0.002	0.021	0.033	0.114	0.179	0.238	0.293	0.346	0.402	0.430	0.453	0.458
27	-0.036	-0.029	-0.009	0.016	0.031	0.107	0.175	0.235	0.279	0.327	0.375	0.403	0.435	0.442

(d) April

Altitude level i, km							l correla			•)		
of zonal	•			OI	meriaic	mai com	ponent fo	r aiuiu	ie ievei	J, KIII, 0	1 —			
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
a				-6.130									0.007	0.043
1	0.293	0.098	-0.004	0.016	0.045	0.060	0.079	0.079	0.078	0.066	0.047	0.030	0.028	0.049
2	0.172	0.137	0.114	0.118	0.141	0.148	0.163	0.161	0.152	0.140	0.115	0.087	0.074	0.093
3	0.042	0.066	0.135	0.151	0.167	0.183	0.206	0.213	0.203	0.188	0.171	0.145	0.138	0.167
4	-0.018	0.007	0.112	0.150	0.174	0.201	0.229	0.240	0.230	0.217	0.205	0.183	0.183	0.211
5	-0.068	-0.048	0.061	0.113	0.141	0.179	0.215	0.232	0.227	0.211	0.201	0.183	0.182	0.218
6	-0.090	-0.075	0.033	0.091	0.126	0.167	0.207	0.234	0.230	0.214	0.203	0.184	0.182	0.218
7	-0.108	-0.089	0.017	0.070	0.105	0.143	0.187	0.217	0.219	0.206	0.196	0.181	0.182	0.212
8	-0.132	-0.107	-0.008	0.043	0.078	0.120	0.163	0.192	0.193	0.182	0.177	0.168	0.170	0.196
9	-0.140	-0.121	-0.031	0.019	0.049	0.093	0.134	0.162	0.159	0.149	0.149	0.146	0.151	0.176
10	-0.130	-0.099	-0.019	0.023	0.049	0.090	0.123	0.145	0.142	0.133	0.135	0.132	0.133	0.154
11	-0.093	-0.044	0.036	0.071	0.091	0.126	0.152	0.167	0.163	0.155	0.157	0.148	0.139	0.153
12	-0.056	0.031	0.116	0.153	0.177	0.207	0.222	0.233	0.227	0.219	0.223	0.218	0.203	0.189
13	-0.056	0.057	0.141	0.185	0.207	0.236	0.249	0.257	0.256	0.246	0.252	0.248	0.252	0.227
14	-0.078	0.020	0.098	0.132	0.153	0.183	0.203	0.216	0.216	0.214	0.215	0.204	0.212	0.227
15	-0.135	-0.051	0.027	0.069	0.105	0.144	0.168	0.185	0.187	0.188	0.187	0.176	0.178	0.189
16	-0.169	-0.088	-0.009	0.043	0.082	0.119	0.138	0.154	0.157	0.159	0.162	0.159	0.164	0.168
		-0.105		0.018	0.054	0.085	0.101	0.123	0.132	0.131	0.138	0.141	0.149	0.167
18	-0.177	-0.150	-0.087	-0.056	-0.029	0.014	0.035	0.055	0.063	0.062	0.064	0.073	0.092	0.119
19	-0.180	-0.153	-0.082	-0.040	-0.009	0.036	0.056	0.071	0.072	0.069	0.072	0.080	0.097	0.129
20	-0.151	-0.123	-0.069	-0.052	-0.021	0.025	0.038	0.047	0.040	0.036	0.049	0.064	0.089	0.130
21	-0.131	-0.112	-0.069	-0.055	-0.030	0.013	0.025	0.040	0.038	0.032	0.048	0.059	0.080	0.110
22	-0.119	-0.090	-0.054	-0.041	-0.020	0.014	0.025	0.039	0.038	0.027	0.044	0.056	0.078	0.098
23	-0.110	-0-064	-0.041	-0.034	-0.012	0.023	0.029	0.043	0.045	0.035	0.051	0.067	0.089	0.100
24	-0.103	-0.055	-0.033	-u.031	-U.006	0.031	0.038	0.046	0.050	0.042	0.052	0.067	0.087	0.098
				-0.025		0.028	0.039	0.050	0.054	0.044	0.054	0.068	0.092	0.101
				-0.021		0.032	0.043	0.054	0.059	0.050	0.059	0.071	0.092	0.093
				-0.018		0.030	0.037	0.049	0.052	0.042	0.049	0.060	0.077	0.074
												,		

(d) April - Concluded

Altitude				Crosslev	el and i	ntralevel	l correla	tion coef	ficients	(nondim	ensional)		
level i, km,				of	meridio	nal com	onent fo	r altitud	e level	j, km, o	f –			
of zonal component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.076	0.084	0.088	0.116	0.110	0.120	0.134	0.117	0.098	0.101	0.089	0.077	0.062	0.060
1	0.069	0.074	0.083	0.110	0.098	0.081	0.074	0.076	0.055	0.048	0.027	0.019	0.009	-0.003
2	0.112	0.128	0.140	0.150	0.143	0.133	0.105	0.098	0.071	0.022	0.011	-0.017	-0.042	-0.049
3	0.182	0.186	0.196	0.211	0.201	0.209	0.175	0.171	0.139	0.078	0.049	0.002	-0.044	-0.053
4	0.231	0.233	0.235	0.252	0.243	0.256	0.215	0.219	0.187	0.106	0.071	0.015	-0.037	-0.051
5	0.240	0.241	0.249	0.263	0.253	0.271	0.236	0.234	0.209	0.124	0.076	0.021	-0.035	-0.048
6	0.242	0.246	0.256	0.262	0.250	0.269	0.243	0.236	0.206	0.134	0.087	0.030	-0.031	-0.043
7	0.232	0.244	0.253	0.259	0.245	0.270	0.241	0.225	0.194	0.127	0.083	0.026	-0.032	-0.043
8	0.214	0.230	0.244	0.251	0.237	0.260	0.226	0.214	0.181	0.108	0.068	0.014	-0.043	-0.053
9	0.198	0.218	0.229	0.240	0.231	0.248	0.216	0.207	0.178	0.094	0.053	0.005	-0.049	-0.050
10	0.178	0.200	0.213	0.231	0.230	0.243	0.208	0.209	0.183	0.094	0.058	0.015	-0.042	-0.042
11	0.177	0.196	0.211	0.231	0.225	0.235	0.204	0.211	0.178	0.095	0.055	0.011	-0.047	-0.044
12	0.214	0.237	0.247	0.260	0.251	0.243	0.209	0.199	0.168	0.081	0.038	-0.001	-0.060	-0.060
13	0.212	0.243	0.258	0.263	0.251	0.230	0.192	0.173	0.150	0.070	0.020	-0.012	-0.071	-0.071
14	0.209	0.205	0.232	0.237	0.221	0.217	0.183	0.161	0.137	0.061	0.016	-0.009	-0.066	-0.065
15	0.221	0.213	0.213	0.230	0.224	0.214	0.186	0.166	0.131	0.057	0.020	0.002	-0.062	-0.065
16	0.200	0.226	0.216	0.206	0.206	0.210	0.194	0.175	0.132	0.067	0.032	0.018	-0.035	-0.027
17	0.180	0.198	0.222	0.206	0.158	0.173	0.189	0.168	0.138	0.092	0.076	0.073	0.026	0.020
18	0.121	0.132	0.159	0.189	0.151	0.147	0.161	0.172	0.157	0.129	0.119	0.122	0.076	0.073
19	0.143	0.148	0.160	C.190	0.216	0.208	0.193	0.228	0.229	0.203	0.193	0.189	0.155	0.146
20	0.134	0.136	0.150	0.165	0.190	0.229	0.217	0.206	0.211	0.201	0.204	0.197	0.169	0.160
21	0.117	0.110	0.123	6.140	0.161	0.202	0.255	0.235	0.207	0.206	0.220	0.214	0.187	0.181
22	0.098	0.099	0.096	0.101	0.115	0.151	0.188	0.230	0.214	0.182	0.215	0.225	0.214	0.215
23	0.093	0.093	0.086	0.085	0.090	0.115	0.158	0.190	0.192	0.185	0.211	0.220	0.214	0.221
24	0.085	0.075	0.058	0.053	0.056	0.085	0.116	0.135	0.152	0.201	0.227	0.218	0.220	0.237
25	0.082	0.074	0.048	0.041	0.049	0.075	0.087	0.097	0.113	0.171	0.231	0.235	0.232	0.244
26	0.072	0.064	0.033	0.026	0.029	0.049	0.058	0.059	0.078	0.130	0.200	0.231	0.234	0.235
27	0.054	0.046	0.010	0.004	0.006	0.026	0.029	0.036	0.056	0.096	0.166	0.208	0.223	0.222

(e) May

Altitude level i, km									fficients).		
,						_			e level	-, ,				
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0		-0.031				0.060	0.071	0.060	0.062	0.060	0.051	0.050	0.042	0.060
1 2	0.367			0.071	0.105	0.114	0.121	0.116	0.116	0.100	0.080	0.068	0.056	0.057
3		-0.044	0.042	0.056	0.086 0.089	0.105 0.116	0.124 0.143	0.124 0.159	0.115 0.157	0.097 0.139	0.082 0.128	0.076 0.120	0.075 0.127	0.093 0.158
4		-0.080	0.009	0.047	0.070	0.108	0.144	0.160	0.163	0.143	0.135	0.124	0.136	0.130
		-0.102		0.041	0.072	0.111	0.152	0.170	0.172	0.152	0.146	0.137	0.149	0.198
6 7		-0.141 -0.173		0.019 0.002	0.049	0.091 0.077	0.129 0.114	0.154 0.145	0.154 0.153	0.135 0.138	0.133 0.134	0.122	0.139	0.189
8		-0.177		0.003	0.038	0.079	0.112	0.145	0.149	0.141	0.134	0.124 0.134	0.142 0.154	0.192 0.205
9	-0.154	-0.171	-0.042	0.015	0.045	0.086	0.116	0.148	0.153	0.147	0.154	0.148	0.163	0.209
		-0.161		0.017	0.047	0.086	0.111	0.143	0.146	0.139	0.147	0.144	0.159	0.209
		-0.145 -0.109		0.028 0.045	0.051 0.070	0.089 0.106	0.110 0.124	0.139 0.153	0.142 0.158	0.134 0.156	0.147 0.170	0.148 0.180	0.155 0.186	0.204 0.206
		-0.097		0.012	0.031	0.065	0.083	0.108	0.113	0.108	0.116	0.128	0.160	0.185
			-0.030		0.019	0.053	0.075	0.102	0.109	0.101	0.108	0.113	0.146	0.212
			-0.026 -0.030		0.017 0.006	0.047	0.071 0.062	0.095 0.084	0.102 0.091	0.097 0.091	0.102	0.105	0.133	0.189
			-0.042			0.026	0.052	0.074	0.091	0.085	0.103	0.107 0.102	0.132	0.185 0.186
18	~0.126	-0.115	-0.066	-0.054	-0.042	-0.012	0.017	0.032	0.036	0.037	0.055	0.066	0.102	0.164
			-0.054				0.012	0.024	0.024	0.023	0.037	0.049	0.076	0.136
21	-0.108	-0.099	-0.069 -0.086	-0.087	-0.063	-0.036 -0.066	-0.006	0.009	0.011	0.008	0.017	0.025	0.048	0.107 0.055
22	-0.090	-0.090	-0.085	-0.103	-0.109	-0.091	-0.067	-0.061	-0.061	-0.059	-0.050	-0.039		0.013
23	-0.098	-0.110	-0.107	-0.111	-0.111	-0.097	-0.082	-0.077	-0.078	-0.077	-0.072	-0.066	-0.054	-0.035
24	-0.085	-0.108	-0.124	-0.127	-0.130	-0.118	-0.102	-0.097	-0.096	-0.089	-0.080	-0.075	-0.064	-0.047
26	-0.067	-0.118	-0.131	-0.130	-0.132	-0.122	-0.117	-0.102	-0.102	-0.089	-0.078	-0.073 -0.068	~0.065	-0.053
												-0.068		
						(a) Ma	Co o1	udod						
						(e) may	- Concl	uaeu						
Altitude				Crosslev	vel and i	•			ficients	(nondime	ensional)			
level i, km,						ntralevel	correla	tion coef	ficients e level j	•	•			
	14	15	16			ntralevel	correla	tion coef		•	•	25	26	27
level i, km, of zonal component	0.074	0.069	16 0.066	of 17 0.074	meridio 18 0.090	ntralevel nal comp 19 0.096	correla conent for 20 0.076	tion coef r altitude 21 0.074	e level j 22 0.065	, km, of 23 0.042	- 24 0.019	25 0.010	0.003	0.001
level i, km, of zonal component	0.074 0.073	0.069 0.062	16 0.066 0.050	of 17 0.074 9.053	meridio 18 0.090 0.065	ntralevel nal comp 19 0.096 0.091	correla conent fo: 20 0.076 0.082	tion coef r altitude 21 0.074 0.039	0.065 0.023	, km, of 23 0.042 0.007	- 24 0.019 -0.012	25 0.010 -0.000	0.003	0.001 0.007
level i, km, of zonal component	0.074	0.069	16 0.066	of 17 0.074	meridio 18 0.090	ntralevel nal comp 19 0.096	0.076 0.082 0.169	tion coef r altitude 21 0.074	e level j 22 0.065	0.042 0.007 0.046	- 24 0.019	25 0.010 -0.000	0.003	0.001 0.007 -0.015
level i, km, of zonal component 0 1 2 3	0.074 0.073 0.119 0.178 0.197	0.069 0.062 0.115 0.171 0.188	16 0.066 0.050 0.106 0.160 0.184	of 17 0.074 0.053 0.101 0.155 0.189	meridion 18 0.090 0.065 0.116 0.159 0.204	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.238	0.076 0.082 0.169 0.224 0.257	tion coef c altitude 21 0.074 0.039 0.136 0.186 0.217	0.065 0.023 0.096 0.161 0.189	, km, of 23 0.042 0.007 0.046 0.121 0.156	- 24 0.019 -0.012 0.021 0.074 0.103	25 0.010 -0.000 0.025 0.061 0.094	0.003 -0.000 -0.007 0.023 0.042	0.001 0.007 -0.015 0.002 0.014
level i, km, of zonal component 0 1 2 3 4 5	0.074 0.073 0.119 0.178 0.197 0.213	0.069 0.062 0.115 0.171 0.188 0.212	16 0.066 0.050 0.106 0.160 0.184 0.210	of 17 0.074 0.053 0.101 0.155 0.189 0.212	0.090 0.090 0.065 0.116 0.159 0.204	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.238 0.260	0.076 0.082 0.169 0.224 0.257	0.074 0.039 0.136 0.186 0.217	0.065 0.023 0.096 0.161 0.189 0.210	0.042 0.007 0.046 0.121 0.156 0.177	- 24 0.019 -0.012 0.021 0.074 0.103 0.121	25 0.010 -0.000 0.025 0.061 0.094 0.120	0.003 -0.000 -0.007 0.023 0.042 0.068	0.001 0.007 -0.015 0.002 0.014 0.036
level i, km, of zonal component 0 1 2 3 4 5 6	0.074 0.073 0.119 0.178 0.197 0.213 0.205	0.069 0.062 0.115 0.171 0.188 0.212 0.206	16 0.066 0.050 0.106 0.160 0.184 0.210	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218	meridion 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.238 0.260 0.269	0.076 0.082 0.169 0.224 0.257 0.285 0.291	tion coef r altitude 21 0.074 0.039 0.136 0.186 0.217 0.240	0.065 0.023 0.096 0.161 0.189 0.210 0.219	0.042 0.007 0.046 0.121 0.156 0.177 0.194	- 24 0.019 -0.012 0.021 0.074 0.103 0.121 0.129	25 0.010 -0.000 0.025 0.061 0.094 0.120 0.128	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082	0.001 0.007 -0.015 0.002 0.014 0.036 0.042
level i, km, of zonal component 0 1 2 3 4 5 6 6 7 8	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204	0.069 0.062 0.115 0.171 0.188 0.212	16 0.066 0.050 0.106 0.160 0.184 0.210	of 17 0.074 0.053 0.101 0.155 0.189 0.212	0.090 0.090 0.065 0.116 0.159 0.204	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.238 0.260 0.269 0.285 0.296	0.076 0.082 0.169 0.224 0.257	tion coef r altitude 21 0.074 0.039 0.136 0.186 0.217 0.240 0.244 0.257 0.269	0.065 0.023 0.096 0.161 0.189 0.210	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213	- 24 0.019 -0.012 0.021 0.074 0.103 0.121	25 0.010 -0.000 0.025 0.061 0.094 0.120	0.003 -0.000 -0.007 0.023 0.042 0.068	0.001 0.007 -0.015 0.002 0.014 0.036
level i, km, of zonal component 0 1 2 3 3 4 5 5 6 7 7 8 9 9	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.215 0.229 0.227	16 0.066 0.050 0.106 0.160 0.184 0.210 0.214 0.231 0.245 0.243	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.237 0.250	meridion 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.249	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.238 0.260 0.269 0.285 0.280	0.076 0.082 0.169 0.224 0.257 0.285 0.291 0.304 0.317	tion coeff r altitude 21 0.074 0.039 0.136 0.186 0.217 0.240 0.244 0.257 0.269 0.275	22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.218 0.247 0.253	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218	- 24 0.019 -0.012 0.021 0.074 0.103 0.121 0.129 0.152 0.164 0.171	0.010 -0.000 0.025 0.061 0.094 0.120 0.128 0.142 0.152	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.106	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068
level i, km, of zonal component 0 1 2 2 3 4 5 6 6 7 7 8 9 9 10	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.214	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.215 0.227	16 0.066 0.050 0.106 0.160 0.184 0.210 0.214 0.214 0.243 0.243	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.237 0.250 0.250	meridion 18 0.090 0.065 0.116 0.159 0.229 0.234 0.250 0.249 0.241	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.238 0.260 0.269 0.285 0.296 0.280 0.296	0.076 0.076 0.082 0.169 0.224 0.257 0.285 0.291 0.304 0.317 0.311	tion coef c altitude 21 0.074 0.039 0.136 0.186 0.217 0.240 0.244 0.257 0.269 0.275	0.065 0.023 0.096 0.161 0.189 0.219 0.219 0.238 0.247 0.253	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218	- 24 0.019 -0.012 0.021 0.074 0.103 0.121 0.129 0.152 0.164 0.171 0.160	25 0.010 -0.000 0.025 0.061 0.094 0.120 0.128 0.142 0.156 0.140	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.106 0.110	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.068
level i, km, of zonal component 0 1 2 3 3 4 5 5 6 7 7 8 9 9	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.215 0.229 0.227	16 0.066 0.050 0.106 0.160 0.184 0.210 0.214 0.231 0.245 0.243	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.237 0.250	meridion 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.249	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.238 0.260 0.269 0.285 0.280	0.076 0.082 0.169 0.224 0.257 0.285 0.291 0.304 0.317	tion coeff r altitude 21 0.074 0.039 0.136 0.186 0.217 0.240 0.244 0.257 0.269 0.275	22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.218 0.247 0.253	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218	- 24 0.019 -0.012 0.021 0.074 0.103 0.121 0.129 0.152 0.164 0.171	0.010 -0.000 0.025 0.061 0.094 0.120 0.128 0.142 0.152	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.106	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068
level i, km, of zonal component 0 1 2 2 3 4 4 5 6 6 7 7 8 9 10 11 12 13	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.214 0.207 0.210 0.164	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.215 0.229 0.227 0.222 0.216 0.223 0.189	16 0.066 0.050 0.106 0.160 0.214 0.214 0.231 0.245 0.243 0.237 0.236 0.236 0.236 0.236	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.237 0.250 0.250 0.240 0.236 0.236 0.236 0.236	meridion 18 0.090 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.241 0.228 0.224 0.198	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.269 0.285 0.260 0.280 0.296 0.280 0.296 0.280 0.296 0.280	0.076 0.082 0.169 0.224 0.255 0.291 0.304 0.317 0.311 0.305 0.291 0.271	tion coef c altitude 21 0.074 0.136 0.186 0.217 0.240 0.257 0.269 0.275 0.277 0.259 0.272 0.242	e level j 22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.238 0.247 0.253 0.243 0.243 0.215 0.215	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.172	0.019 -0.012 0.021 0.074 0.103 0.121 0.129 0.152 0.164 0.171 0.160 0.156 0.144	25 0.010 -0.000 0.025 0.061 0.120 0.128 0.142 0.152 0.156 0.140 0.137	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.106 0.110 0.099 0.093 0.097	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.063 0.055 0.068
level i, km, of zonal component 0 1 2 3 4 5 6 6 7 7 8 9 9 10 11 12 13 14	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.214 0.207 0.201 0.164 0.181	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.215 0.227 0.222 0.216 0.223 0.189 0.169	16 0.066 0.050 0.106 0.184 0.210 0.214 0.245 0.243 0.237 0.237 0.230 0.236	of 17 0.074 0.053 0.101 0.159 0.212 0.218 0.237 0.250 0.250 0.240 0.228 0.228	meridioi 18 0.090 v.065 0.116 0.159 0.229 0.234 0.250 0.260 0.260 0.249 0.241 0.198 0.195	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.260 0.269 0.285 0.270 0.254 0.247 0.221	0.076 0.082 0.169 0.224 0.291 0.304 0.317 0.311 0.305 0.291 0.304 0.317	tion coef c altitude 21 0.074 0.039 0.136 0.217 0.240 0.244 0.257 0.275 0.277 0.259 0.242 0.242	22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.238 0.247 0.253 0.243 0.234 0.215 0.203 0.203	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.172	24 0.019 -0.012 0.021 0.074 0.103 0.121 0.152 0.164 0.171 0.160 0.156 0.144 0.141 0.157	25 0.010 -0.000 0.025 0.061 0.094 0.120 0.128 0.142 0.152 0.156 0.140 0.137 0.134 0.131	0.003 -0.000 -0.007 0.023 0.042 0.082 0.100 0.106 0.110 0.099 0.093 0.097 0.109	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.063 0.055 0.068
level i, km, of zonal component 0 1 2 3 3 4 5 5 6 6 7 8 8 9 10 11 12 13 14 15	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.207 0.201 0.164 0.181 0.204	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.215 0.229 0.227 0.222 0.216 0.223 0.189 0.169	16 0.066 0.050 0.106 0.160 0.184 0.214 0.215 0.243 0.237 0.233 0.236 0.206 0.206 0.188	of 17 0.074 0.053 0.101 0.155 0.212 0.218 0.237 0.250 0.240 0.240 0.228 C.200 0.228	meridioi 18 0.099 0.065 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.249 0.241 0.198 0.198 0.198	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.269 0.269 0.280 0.270 0.270 0.254 0.247 0.221 0.207	correla 20 0.076 0.082 0.169 0.224 0.257 0.285 0.291 0.304 0.311 0.305 0.271 0.254 0.254 0.229	tion coef c altitude 21 0.074 0.039 0.136 0.217 0.240 0.257 0.275 0.275 0.275 0.275 0.275 0.272 0.292 0.211	e level j 22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.238 0.243 0.253 0.243 0.215 0.203 0.201 0.188	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.178 0.177 0.172 0.174 0.161	0.019 0.012 0.021 0.074 0.103 0.121 0.129 0.156 0.166 0.171 0.160 0.156 0.144 0.141 0.157	25 0.010 -0.000 0.025 0.061 0.094 0.120 0.142 0.152 0.156 0.140 0.137 0.134 0.131 0.140 0.127	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.110 0.093 0.097 0.102 0.109	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.068 0.068 0.065 0.068
level i, km, of zonal component 0 1 2 3 4 5 6 6 7 7 8 9 9 10 11 12 13 14	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.214 0.207 0.201 0.164 0.181	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.215 0.227 0.222 0.216 0.223 0.189 0.169	16 0.066 0.050 0.106 0.184 0.210 0.214 0.245 0.243 0.237 0.237 0.230 0.236	of 17 0.074 0.053 0.101 0.159 0.212 0.218 0.237 0.250 0.250 0.240 0.228 0.228	meridioi 18 0.090 v.065 0.116 0.159 0.229 0.234 0.250 0.260 0.260 0.249 0.241 0.198 0.195	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.260 0.269 0.285 0.270 0.254 0.247 0.221	0.076 0.082 0.169 0.224 0.291 0.304 0.317 0.311 0.305 0.291 0.304 0.317	tion coef c altitude 21 0.074 0.039 0.136 0.217 0.240 0.244 0.257 0.275 0.277 0.259 0.242 0.242	22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.238 0.247 0.253 0.243 0.234 0.215 0.203 0.203	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.172	24 0.019 -0.012 0.021 0.074 0.103 0.121 0.152 0.164 0.171 0.160 0.156 0.144 0.141 0.157	25 0.010 -0.000 0.025 0.061 0.094 0.120 0.128 0.142 0.152 0.156 0.140 0.137 0.134 0.131	0.003 -0.000 -0.007 0.023 0.042 0.082 0.100 0.106 0.110 0.099 0.093 0.097 0.109	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.063 0.055 0.068
level i, km, of zonal component 0 1 2 3 3 4 5 5 6 6 7 8 8 9 10 11 11 12 13 14 15 16 17 18	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.214 0.210 0.164 0.164 0.199 0.200 0.176	0.069 0.062 0.115 0.171 0.188 0.212 0.205 0.227 0.227 0.223 0.189 0.187 0.223 0.189 0.187 0.226 0.226	16 0.066 0.050 0.106 0.160 0.210 0.214 0.231 0.245 0.243 0.237 0.236 0.206 0.108 0.218 0.218 0.250	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.250 0.250 0.240 0.228 0.240 0.203 0.178 0.200 0.217	meridioi 18 0.099 v.065 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.249 0.241 0.198 0.198 0.197 0.166	ntralevel 19 0.096 0.091 0.149 0.203 0.269 0.269 0.280 0.270 0.270 0.254 0.247 0.221 0.207 0.210 0.199 0.199 0.199 0.199	correla 20 0.076 0.082 0.169 0.224 0.257 0.285 0.291 0.317 0.311 0.305 0.271 0.254 0.238 0.291 0.271 0.254 0.238 0.291 0.271 0.254 0.238 0.291	tion coef c altitude 21 0.074 0.039 0.136 0.217 0.240 0.257 0.275 0.275 0.275 0.277 0.259 0.275 0.275 0.270 0.204 0.205 0.204 0.205 0.204	22 0.065 0.023 0.096 0.161 0.189 0.219 0.219 0.243 0.243 0.243 0.215 0.203 0.203 0.201 0.176 0.192	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.174 0.174 0.161 0.148 0.134 0.154	0.019 0.012 0.021 0.074 0.103 0.121 0.129 0.156 0.164 0.171 0.160 0.156 0.144 0.141 0.157 0.139 0.134 0.119	25 0.010 -0.000 0.025 0.061 0.120 0.128 0.142 0.152 0.156 0.140 0.137 0.134 0.131 0.140 0.127	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.100 0.100 0.093 0.097 0.102 0.109 0.105 0.105 0.116 0.113	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.068 0.065 0.068 0.067 0.064 0.072
level i, km, of zonal component 0 1 2 3 3 4 5 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 19	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.207 0.201 0.210 0.164 0.181 0.204 0.199 0.200 0.151	0.069 0.062 0.115 0.171 0.188 0.206 0.215 0.227 0.222 0.216 0.223 0.189 0.169 0.187 0.226 0.220 0.187	16 0.066 0.050 0.106 0.160 0.214 0.210 0.243 0.243 0.237 0.236 0.206 0.206 0.208 0.218 0.218 0.250 0.219	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.237 0.250 0.240 0.224 0.223 0.224 0.223	meridion 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234 0.250 0.249 0.241 0.198 0.195 0.197 0.167 0.167 0.167 0.167	ntralevel 19 0.096 0.091 0.149 0.203 0.269 0.285 0.260 0.280 0.270 0.254 0.261 0.207 0.210 0.199 0.190 0.190 0.195 0.195	correla 20 0.076 0.082 0.169 0.224 0.257 0.281 0.305 0.291 0.305 0.291 0.254 0.218 0.218 0.218 0.178	tion coef r altitude 21 0.074 0.039 0.136 0.186 0.217 0.240 0.257 0.275 0.277 0.279 0.275 0.272 0.211 0.204 0.205 0.204 0.165 0.100	e level j 22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.238 0.247 0.253 0.243 0.245 0.215 0.203 0.201 0.188 0.176 0.192 0.176 0.192	0.042 0.007 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.172 0.174 0.161 0.134 0.154 0.134	24 0.019 0.021 0.021 0.074 0.103 0.121 0.129 0.152 0.164 0.171 0.160 0.156 0.144 0.141 0.157 0.139 0.134 0.119 0.145 0.145	25 0.010 -0.000 0.025 0.061 0.192 0.128 0.152 0.156 0.140 0.131 0.134 0.131 0.140 0.128 0.150	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.106 0.110 0.093 0.097 0.105 0.105 0.116 0.113 0.130 0.148	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.068 0.065 0.065 0.067 0.072 0.074 0.072
level i, km, of zonal component 0 1 2 3 3 4 5 5 6 6 7 8 8 9 10 11 11 12 13 14 15 16 17 18	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.214 0.210 0.164 0.164 0.199 0.200 0.176	0.069 0.062 0.115 0.171 0.188 0.212 0.205 0.227 0.227 0.223 0.189 0.187 0.223 0.189 0.187 0.226 0.226	16 0.066 0.050 0.106 0.160 0.210 0.214 0.231 0.245 0.243 0.237 0.236 0.206 0.108 0.218 0.218 0.250	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.250 0.250 0.240 0.228 0.240 0.203 0.178 0.200 0.217	meridioi 18 0.099 v.065 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.249 0.241 0.198 0.198 0.197 0.166	ntralevel 19 0.096 0.091 0.149 0.203 0.269 0.269 0.280 0.270 0.270 0.254 0.247 0.221 0.207 0.210 0.199 0.199 0.199 0.199	correla 20 0.076 0.082 0.169 0.224 0.257 0.285 0.291 0.317 0.311 0.305 0.271 0.254 0.238 0.291 0.271 0.254 0.238 0.291 0.271 0.254 0.238 0.291	tion coef c altitude 21 0.074 0.039 0.136 0.217 0.240 0.257 0.275 0.275 0.275 0.277 0.259 0.275 0.275 0.270 0.204 0.205 0.204 0.205 0.204	22 0.065 0.023 0.096 0.161 0.189 0.219 0.219 0.243 0.243 0.243 0.215 0.203 0.203 0.201 0.176 0.192	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.174 0.174 0.161 0.148 0.134 0.154	0.019 0.012 0.021 0.074 0.103 0.121 0.129 0.156 0.164 0.171 0.160 0.156 0.144 0.141 0.157 0.139 0.134 0.119	25 0.010 -0.000 0.025 0.061 0.120 0.128 0.142 0.152 0.156 0.140 0.137 0.134 0.131 0.140 0.127	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.100 0.100 0.093 0.097 0.102 0.109 0.105 0.105 0.116 0.113	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.068 0.065 0.068 0.067 0.064 0.072
level i, km, of zonal component 0 1 2 3 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.217 0.201 0.164 0.199 0.200 0.176 0.151 0.151 0.120	0.069 0.062 0.115 0.171 0.188 0.206 0.215 0.227 0.227 0.223 0.189 0.169 0.187 0.226 0.187 0.226 0.187	16 0.066 0.050 0.106 0.184 0.214 0.215 0.243 0.237 0.236 0.206 0.206 0.218 0.218 0.218 0.219 0.176 0.176	of 17 0.074 0.053 0.101 0.155 0.189 0.218 0.237 0.250 0.240 0.250 0.228 0.207 0.193 0.178 0.203 0.182 0.160 0.182	meridioi 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.249 0.241 0.198 0.195 0.106 0.175 0.166 0.175 0.160 0.175 0.160	ntralevel 19 0.096 0.091 0.149 0.203 0.238 0.269 0.285 0.270 0.250 0.270 0.247 0.207 0.207 0.207 0.145 0.199 0.190 0.145 0.199 0.190 0	correla 20 0.076 0.082 0.169 0.224 0.257 0.281 0.305 0.291 0.305 0.291 0.254 0.216 0.216 0.178 0.168 0.168 0.168 0.194	tion coef r altitude 21 0.074 0.136 0.186 0.217 0.240 0.257 0.275 0.277 0.279 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.210 0.204 0.205 0.101 0.105 0.120 0.120	22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.238 0.243 0.243 0.253 0.243 0.215 0.203 0.201 0.176 0.192 0.176 0.192	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.172 0.174 0.164 0.134 0.154 0.134 0.154 0.151 0.104	24 0.019 0.021 0.021 0.103 0.121 0.129 0.152 0.164 0.171 0.160 0.156 0.144 0.141 0.157 0.134 0.119 0.145 0.147 0.166 0.153 0.166 0.153	25 0.010 -0.000 0.025 0.061 0.094 0.128 0.152 0.156 0.140 0.131 0.140 0.137 0.134 0.157 0.176 0.188 0.191	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.100 0.100 0.093 0.097 0.105 0.105 0.116 0.113 0.130 0.148 0.168 0.168	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.068 0.065 0.067 0.072 0.074 0.072 0.074 0.072
level i, km, of zonal component 0 1 2 2 3 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.207 0.201 0.164 0.181 0.204 0.199 0.200 0.176 0.151 0.177 0.201	0.069 0.062 0.115 0.171 0.188 0.206 0.215 0.227 0.222 0.216 0.223 0.189 0.187 0.226 0.226 0.187 0.187 0.246 0.200 0.197 0.197 0.100	16 0.066 0.050 0.106 0.184 0.210 0.214 0.245 0.243 0.230 0.206 0.188 0.210 0.206 0.188 0.210	of 17 0.074 0.053 0.101 0.155 0.212 0.218 0.250 0.250 0.250 0.228 0.207 0.193 0.173 0.182 0.200 0.212 0.212 0.200 0.207 0.200 0.203 0.182 0.182 0.012	meridioi 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234 0.260 0.260 0.249 0.218 0.195 0.188 0.177 0.166 0.175 0.166 0.175 0.165 0.175 0.161 0.016	ntralevel 19 0.096 0.091 0.149 0.203 0.238 0.260 0.285 0.296 0.285 0.296 0.285 0.290 0.254 0.270 0.254 0.207 0.208 0.199 0.190 0.145 0.150 0.198 0.160 0.081	0.076 0.082 0.169 0.224 0.255 0.291 0.304 0.317 0.311 0.305 0.291 0.254 0.239 0.254 0.239 0.254 0.216 0.178 0.168 0.194	tion coefe c altitude 21 0.074 0.039 0.136 0.217 0.240 0.2257 0.257 0.277 0.259 0.277 0.259 0.272 0.211 0.204 0.205 0.204 0.101 0.103	0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.213 0.243 0.243 0.245 0.215 0.203 0.216 0.176 0.192 0.176 0.192	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.172 0.174 0.161 0.134 0.134 0.134 0.134 0.134 0.134	0.019 -0.012 0.021 0.074 0.103 0.121 0.129 0.152 0.164 0.171 0.160 0.156 0.144 0.141 0.137 0.134 0.119 0.145 0.146 0.153 0.126 0.153	25 0.010 -0.000 0.025 0.061 0.194 0.122 0.156 0.140 0.137 0.134 0.131 0.140 0.123 0.156 0.140 0.156 0.140 0.123 0.156 0.140 0.156 0.156 0.165 0.16	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.110 0.099 0.093 0.097 0.102 0.105 0.116 0.113 0.148 0.188 0.188 0.188 0.208	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.063 0.055 0.067 0.077 0.074 0.072 0.074 0.115 0.137
level i, km, of zonal component 0 1 2 3 3 4 5 6 6 7 7 8 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.214 0.207 0.201 0.216 0.164 0.181 0.204 0.199 0.176 0.151 0.120 0.077 0.025 0.077	0.069 0.062 0.115 0.171 0.188 0.212 0.206 0.227 0.222 0.216 0.223 0.189 0.187 0.226 0.196 0.197 0.143 0.190 0.190 0.190	16 0.066 0.050 0.106 0.106 0.210 0.214 0.225 0.243 0.237 0.236 0.206 0.188 0.218 0.219 0.250 0.234 0.195 0.175 0.176 0.132 0.077 0.039	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.237 0.250 0.240 0.224 0.200 0.207 0.193 0.178 0.200 0.218 0.218 0.201 0.001	meridioi 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234 0.250 0.260 0.260 0.249 0.218 0.177 0.166 0.175 0.166 0.175 0.166 0.175 0.166 0.175 0.166 0.112 0.061 0.018	ntralevel nal comp 19 0.096 0.091 0.149 0.203 0.269 0.269 0.280 0.270 0.254 0.247 0.221 0.207 0.199 0.145 0.157 0.198 0.160 0.081 0.017	20 0.076 0.082 0.169 0.224 0.255 0.291 0.304 0.311 0.305 0.291 0.271 0.254 0.218 0.218 0.218 0.136 0.168 0.168 0.194 0.136	tion coef c altitude 21 0.074 0.039 0.136 0.217 0.240 0.247 0.257 0.277 0.259 0.272 0.292 0.211 0.204 0.105 0.101 0.101 0.101 0.103	22 0.065 0.023 0.096 0.161 0.189 0.210 0.219 0.238 0.243 0.243 0.253 0.243 0.215 0.203 0.201 0.176 0.192 0.176 0.192	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.172 0.174 0.164 0.134 0.154 0.134 0.154 0.151 0.104	24 0.019 0.021 0.021 0.103 0.121 0.129 0.152 0.164 0.171 0.160 0.156 0.144 0.141 0.157 0.139 0.134 0.119 0.145 0.147 0.166 0.153 0.166	25 0.010 -0.000 0.025 0.061 0.094 0.128 0.152 0.156 0.140 0.131 0.140 0.137 0.134 0.157 0.176 0.188 0.191	0.003 -0.000 -0.007 0.023 0.042 0.068 0.082 0.100 0.100 0.100 0.093 0.097 0.105 0.105 0.116 0.113 0.130 0.148 0.168 0.168	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.061 0.068 0.068 0.065 0.067 0.072 0.074 0.072 0.074 0.072
level i, km, of zonal component 0 1 2 3 3 4 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26	0.074 0.073 0.119 0.178 0.197 0.213 0.205 0.204 0.214 0.207 0.201 0.164 0.181 0.204 0.199 0.200 0.175 0.150 0.077 0.005 0.005 0.0062 0.0062	0.069 0.062 0.115 0.171 0.188 0.206 0.215 0.227 0.222 0.216 0.223 0.189 0.167 0.226 0.187 0.187 0.105 0.170 0.143 0.105 0.002 0.002 0.002	16 0.066 0.050 0.106 0.184 0.210 0.214 0.245 0.243 0.230 0.206 0.188 0.210 0.206 0.188 0.210	of 17 0.074 0.053 0.101 0.155 0.189 0.212 0.218 0.250 0.250 0.250 0.228 0.207 0.193 0.178 0.200 0.223 0.182 0.000 0.112 0.005 0.015 0.005 0.005 0.005	meridioi 18 0.090 0.065 0.116 0.159 0.204 0.229 0.234 0.260 0.260 0.249 0.218 0.195 0.188 0.177 0.166 0.175 0.166 0.175 0.166 0.175 0.100 0.112 0.0016 -0.018	ntralevel 19 0.096 0.091 0.149 0.203 0.238 0.269 0.285 0.296 0.280 0.270 0.254 0.270 0.254 0.157 0.199 0.190 0.145 0.157 0.198 0.160 0.081 0.017 0.0027 0.0027 0.0027	0.076 0.082 0.169 0.224 0.257 0.285 0.291 0.305 0.291 0.305 0.291 0.254 0.239 0.228 0.218 0.216 0.178 0.136 0.168 0.168 0.194 0.095 0.059	tion coefe c altitude 21 0.074 0.039 0.136 0.186 0.217 0.244 0.257 0.269 0.277 0.259 0.277 0.259 0.241 0.205 0.204 0.165 0.123 0.113 0.035 -0.010 -0.075	22 0.065 0.023 0.096 0.161 0.189 0.210 0.229 0.234 0.247 0.253 0.243 0.243 0.245 0.201 0.188 0.176 0.192 0.193 0.193 0.194 0.195	0.042 0.007 0.046 0.121 0.156 0.177 0.194 0.213 0.222 0.218 0.205 0.198 0.177 0.174 0.161 0.174 0.161 0.154 0.132 0.154 0.132 0.154	0.019 0.019 0.021 0.073 0.121 0.129 0.150 0.164 0.171 0.160 0.156 0.144 0.141 0.157 0.139 0.134 0.119 0.145 0.119 0.145 0.119 0.145 0.119	25 0.010 -0.000 0.025 0.061 0.120 0.122 0.152 0.156 0.140 0.131 0.140 0.127 0.137 0.136 0.148 0.157 0.169 0.188 0.191 0.188 0.191 0.189 0.189	0.003 -0.000 -0.007 0.042 0.068 0.100 0.106 0.110 0.093 0.097 0.102 0.109 0.105 0.113 0.148 0.168 0.188 0.194 0.208	0.001 0.007 -0.015 0.002 0.014 0.036 0.042 0.068 0.068 0.068 0.065 0.068 0.067 0.077 0.064 0.072 0.074 0.086 0.101

(f) June

Altitude level i, km, of zonal			,	Crosslev of					ficients level	•		•		
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0 1 2 3 4 5 6 7 8	0.321 0.408 0.218 0.082 0.037 0.012 -0.008 -0.063 -0.080 -0.103 -0.126	0.031 0.219 0.123	-0.017 0.124 0.136 0.078 0.033 0.003 -0.006 -0.033 -0.050 -0.071 -0.076	-0.004 0.109 0.150 0.116 0.087 0.046 0.044 0.013 -0.004 -0.024 -0.030	0.012 0.104 0.151 0.146 0.139 0.103 0.100 0.070 0.054 0.037 0.024 0.035	0.012 0.092 0.151 0.160 0.156 0.118 0.109 0.089 0.072 0.055 0.045		-0.004	-0.034 -0.002 0.076 0.119 0.140 0.123 0.142 0.138 0.138 0.138	-0.051	-0.068 -0.066	-0.091	-0.097 -0.102	
12 13 14 15 16 17 18 20 21 22 23 24 25	-0.107 -0.102 -0.097 -0.091 -0.103 -0.094 -0.083 -0.069 -0.079 -0.060	-0.095 -0.075 -0.068 -0.056 -0.071 -0.074 -0.012 -0.013 -0.006 -0.034 0.000 0.017 0.001	-0.033 -0.011 -0.016 -0.021 -0.030 -0.036 -0.020 0.007 0.005 -0.002 -0.018	0.010 0.021 0.003 -0.009 -0.016 -0.011 0.002 0.016 0.007 -0.003	0.058 0.064 0.040 0.034 0.029 0.035 0.046 0.025 0.015 0.010 0.038 0.065 0.070 0.046 0.046	0.072 0.080 0.053 0.041 0.037 0.036 0.036 0.048 0.024 0.008 0.008 0.032 0.067 0.067	0.087 0.096 0.075 0.061 0.055 0.048 0.045 0.059 0.041 0.029 0.036 0.077 0.090 0.066 0.068	0.119 0.127 0.096 0.084 0.072 0.065 0.059 0.037 0.020 0.024 0.038 0.061 0.074 0.045 0.045	0.144 0.146 0.114 0.096 0.081 0.072 0.064 0.067 0.022 0.027 0.039 0.062 0.074 0.050	0.170 0.167 0.138 0.114 0.097 0.074 0.076 0.073 0.023 0.023 0.023 0.055 0.077 0.055 0.048	0.190 0.178 0.147 0.121 0.100 0.090 0.074 0.080 0.025 0.022 0.022 0.029 0.051 0.072	0.212 0.203 0.167 0.134 0.113 0.104 0.092 0.095 0.071 0.037 0.030 0.024 0.044 0.067	0.203 0.206 0.167 0.130 0.113 0.109 0.101 0.107 0.088 0.057 0.046 0.046 0.063 0.075 0.070	0.195 0.200 0.190 0.148 0.121 0.114 0.110 0.104 0.068 0.051 0.049 0.066 0.075 0.070

(f) June - Concluded

Altitude level i, km, of zonal			•						fficients le level j	•	•			
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
	-0.007	0.022	0.038	0.041						0.040	0.063	0.054	0.026	0.021
ı	-0.012	0.034	0.054	0.079						0.041	0.030	0.029	0.023	0.003
2	0.061	0.111	0.142	0.163	0.170	0.168	0.175	0.184		0.085	0.049	0.043	0.036	-0.003
3	0.129	0.187	0.223	0.218						0.105	0.063	0.038	0.038	0.017
4	0.158	0.219	0.254	0.246	0.233	0.235				0.116	0.079	0.035	0.035	0.043
5	0.151	0.205	0.238	0.232	Ŭ•225	0.224	0.229	0.220	0.179	0.104	0.070	0.036	0.039	0.052
6	0.171	0.222	0.249	0.249	0.244	0.235	0.229	0.218	0.174	0.096	0.066	0.042	0.052	0.066
7	0.180	0.228	0.261	0.255	0.248	0.245	0.240	0.229	0.178	0.102	0.072	0.046	0.061	0.074
8	0.195	0.248	0.276	0.266	0.256	0.248	0.239	0.220	0.176	0.109	0.083	0.048	0.066	0.072
9	0.203	0.255	0.283	0.274	0.264	0.254	0.242	0.224	0.185	0.113	0.085	0.046	0.067	0.073
10	0.214	0.264	0.288	0.278	0.267	0.251	0.242	0.223	0.178	0.108	0.085	0.047	0.064	0.070
11	0.217	0.269	0.295	U-284	0.274	0.257	0.246	0.220	0.173	0.114	0.087	0.046	0.066	0.065
12	0.216	0.278	0.302	0.289	0.279	0.259	0.244	0.209	0.168	0.121	0.090	0.036	0.066	0.073
13	0.198	0.266	0.299	0.297	0.281	0.257	0.245	0.205	0.163	0.116	0.093	0.041	0.074	0.078
14	0.188	0.221	0.267	0.276	0.271	0.260	0.261	0.226	0.187	0.127	0.091	0.053	0.088	0.074
15	0.185	0.218	0.233	0.257	0.259	0.262	0.267	0.239	0.199	0.137	0.098	0.069	0.116	0.085
16	0.153	0.229	0.247	ú.226	0.234	0.241	0.247	0.234	0.191	0.152	0.122	0.091	0.135	0.097
17	0.138	0.202	0.269	0.253	0.195	0.204	0.209	0.213	0.188	0.159	0.133	0.105	0.138	0.113
18	0.130	0.184	0.236	0.297	0.238	0.175	0.164	0.172	0.147	0.132	0.104	0.104	0.135	0.106
19	0.119	0.158	0.200	0.254	0.275	0.182	0.080	0.096	0.098	0.096	0.093	0.105	0.130	0.114
20	0.106	0.133	0.162	0.192	0.193	0.206	0.106			0.059	0.082	0.084	0.112	0.092
21	0.077	0.093	0.106	0.129	0.120	0.132	0.138	0.069	0.000	0.034	0.057	0.097	0.114	0.077
22	0.072	0.078	0.068	0.092	0.066	0.073	0.097	0.103	0.066	0.017	0.047	0.072	0.079	0.055
23	0.076	0.072	0.054	0.069	0.041	0.046	0.058	0.037	0.107	0.069	0.029	0.038	0.042	0.013
24	0.086	0.089	0.064	0.063	0.032	0.032	0.021	-0.009	0.082	0.136	0.115	0.060	0.036	0.025
25	0.078	0.085	0.073	0.074	0.020	0.025	-0.000	-0.044	0.021	0.078	0.168	0.133	0.036	0.026
26	0.063	0.070	0.054	0.058	-0.002	-0.014	-0.044	-0.073	-0.019	0.036	0.132	0.168	0.106	0.050
27	0.050	0.055	0.044	0.049	-0.003	-0.026	-0.066	-0.086	-0.039	0.008	0.087	0.126	0.141	0.108

TABLE VII.- CROSSLEVEL AND INTRALEVEL CORRELATION COEFFICIENTS BETWEEN COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON

SERIALLY COMPLETED SAMPLE - Continued

(g) July

Altitude level i, km, of zonal									fficients e level	-)		
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.261	0.027	0.033	0.071	0.067	0.080	0.076	0.083	0.086	0.080	0.075	0.066	0.057	0.067
1	0.370	0.240	0.212	0.255	0.221	0.215	0.191	0.161	0.139	0.110	0.079	0.063	0.065	0.087
2	0.137	0.085	0.156	0.201	0.178	0.176	0.162	0.163	0.166	0.141	0.113	0.094	0.097	0.123
3	0.025	-0.022	0.075	0.153	0.157	0.157	0.166	0.177	0.188	0.167	0.149	0.132	0.135	0.162
4	-0.046	-0.084	0.020	0.103	0.116	0.127	0.150	0.174	0.196	0.180	0.166	0.153	0.157	0.179
5	-0.059	-0.098	-0.005	0.079	0.086	0.105	0.139	0.166	0.191	0.184	0.169	0.159	0.169	0.188
6	-0.096	-0.131	-0.044	0.037	0.051	0.065	0.099	0.138	0.169	0.174	0.160	0.152	0.165	0.188
7	-0.124	-0.154	-0.072	0.004	0.019	0.040	0.068	0.109	0.159	0.168	0.155	0.150	0.161	0.185
8	-0.151	-0.169	-0.086	-0.007	0.005	0.027	0.058	0.091	0.147	0.167	0.157	0.153	0.162	0.188
9	-0.184	-0.200	-0.111	-0.028	-0.015	0.009	0.042	0.082	0.131	0.164	0.167	0.170	0.175	0.195
10	-0.211	-0.202	-0.117	-0.036	-0.024	-0.003	0.031	0.068	0.119	0.154	0.164	0.178	0.183	0.194
11	-0.211	-0.194	-0.118	-0.044	-0.032	-0.019	0.016	0.049	0.101	0.131	0.144	0.161	0.168	0.177
12	-0.202	-0.183	-0.103	-0.031	-0.021	-0.014	0.013	0.047	0.094	0.125	0.139	0.158	0.163	0.163
13	-0.207	-0.182	-0.101	-0.039	-0.032	-0.023	0.002	0.039	0.084	0.121	0.134	0.154	0.174	0.177
14	-0.211	-0.188	-0.116	-0.064	-0.057	-0.039	-0.017	0.025	0.070	0.106	0.117	0.131	0.146	0.186
15	-0.190	-0.172	-0.140	-0.095	-0.090	-0.068	-0.039	0.002	0.044	0.070	0.077	0.083	0.096	0.130
16	-0.178	-0.168	-0.129	-0.095	-0.080	-0.053	-0.022	0.015	0.051	0.075	0.073	0.078	0.093	0.118
17	-0.146	-0.173	-0.110	-0.048	-0.034	-0.015	0.014	0.045	0.070	0.087	0.092	0.097	0.110	0.133
18	-0.105	-0.149	-0.086	-0.025	-0.023	-0.007	0.012	0.048	0.078	0.099	0.102	0.113	0.133	0.163
19	-0.066	-0.084	-0.054	-0.017	-0.011	0.017	0.033	0.056	0.080	0.097	0.094	0.109	0.136	0.173
20	-0.028	-0.050	-0.054	-0.031	-0.018	0.008	0.031	0.058	0.073	0.088	0.084	0.096	0.114	0.146
21	-0.047	-0.026	-0.013	-0.032	-0.026	0.000	0.019	0.045	0.063	0.071	0.065	0.076	0.090	0.111
22	-0.057	-0.013	-0.018	-0.040	-0.036	-0.018	0.008	0.031	0.045	0.050	0.045	0.048	0.056	0.067
23	-0.067	-0.027	-0.035	-0.044	-0.035	-0.014	-0.005	0.019	0.034	0.037	0.031	0.021	0.019	0.034
24	-0.058	-0.041	-0.039	-0.047	-0.035	-0.007	0.000	0.012	0.028	0.024	0.013	0.006	-0.000	C-018
25	-0.029	-0.045	-0.063	-0.063	-0.055	-0.033	-0.033						-0.051	
													-0.072	
													-0.105	

(g) July - Concluded

Altitude level i, km, of zonal									fficients e level	-)		
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.089	0.136	0.156	0.130	0.135			0.076	0.054	0.053	0.043	0.035	0.021	0.008
1	0.134	0.180	0.201	0.181	0.152	0.112	0.072	0.043	0.019	0.026	0.022	0.021	0.013	-0.005
2	0.174	0.218	0.232	0.215	0.199	0.180	0.158	0.118	0.091	0.085	0.069	0.059	0.042	0.031
3	0.211	0.253	0.264	0.250	0.225	0.210	0.175	0.147	0.117	0.106	0.098	0.073	0.055	0.034
4	0.236	0.268	0.276	0.265	0.250	0.231	0.190	0.167	0.139	0.121	0.100	0.079	0.063	0.041
5	0.243	0.275	0.280	0.278	0.273	0.268	0.231	0.196	0.153	0.138	0.119	0.099	0.086	0.062
6	0.237	0.253	0.250	0.263	0.266	0.267	0.227	0.196	0.144	0.124	0.111	0.101	0.090	0.063
7	0.223	0.228	0.226	0.251	0.253	0.258	0.225	0.186	0.125	0.115	0.096	0.090	0.083	0.059
8	0.221	0.219	0.221	0.252	0.256	0.257	0.218	0.183	0.121	0.104	0.086	0.077	0.070	0.050
9	0.219	0.218	0.224	0.247	0.252	0.247	0.214	0.171	0.115	0.103	0.083	0.078	0.069	0.047
10	0.212	0.215	0.218	0.232	0.239	0.232	0.200	0.164	0.107	0.098	0.082	0.068	0.060	0.037
11	0.197	0.204	0.208	0.217	0.234	0.232	0.184	0.145	0.100	0.091	0.077	0.068	0.065	0.039
12	0.182	0.197	0.207	0.220	0.230	0.221	0.179	0.138	0.091	0.087	0.070	0.062	0.067	0.040
13	0.177	0.189	0.202	0.218	0.228	0.225	0.184	0.145	0.100	0.091	0.073	0.063	0.062	0.032
14	0.191	0.156	0.184	0.214	0.226	0.229	0.198	0.156	0.107	0.089	0.074	0.074	0.072	0.044
15	0.182	0.151	0.127	6.187	0.214	0.216	0.196	0.164	0.122	0.098	0.075	0.075	0.069	0.033
16	0.156	0.183	0.165	0.163	0.201	0.228	0.219	0.200	0.151	0.125	0.091	0.076	0.069	0.036
17	0.159	0.178	0.237	0.225	0.178	0.215	0.190	0.166	0.125	0.102	0.070	0.051	0.041	0.027
18	0.176	0.173	0.216	0.282	0.213	0.169	0.183	0.159	0.106	0.065	0.043	0.044	0.052	0.034
19	0.184	0.177	0.199	0.244	0.286	0.219	0.126	0.126	0.083	0.053	0.041	0.030	0.022	-0.010
20	0.159	0.143	0.156	0.196	0.222	0.258	0.162	0.027	-0.014	-0.009	0.007	0.031	0.020	-0.000
21	0.129	0.112	0.114	0.142	0.164	0.210	0.235	0.084	-0.060	-0.065	-0.037	-0.011	0.027	0.024
22	0.090	0.094	0.087	0.107	0.136	0.169	0.218	0.206	0.052	-0.043	-0.047	-0.038	-0.010	-0.011
23	0.057	0.069	0.062	0.062	0.089	0.116	0.159	0.200	0.167	0.049	-0.054	-0.051	-0.020	-0.012
24	0.038	0.051	0.043	0.047	0.056	0.072	0.102	0.138	0.156	0.134	0.012	-0.057	-0.041	-0.034
25	-0.011	0.006	0.001	0.007	0.000	0.001	0.020	0.063	0.097	0.100	0.072	-0.021	-0.060	-0.081
26	-0.043	-0.026	-0.028	-0.029	-0.024	-0.035	-0.020	-0.002	0.018	0.050	0.077	0.062		-0.067
2 7	-0.081	-0.068	-0.057	-0.055	-0.053	-0.065	-0.037	-0.036	-0.021	0.020	0.047	0.078	0.080	0.001

TABLE VII.- CROSSLEVEL AND INTRALEVEL CORRELATION COEFFICIENTS BETWEEN COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON SERIALLY COMPLETED SAMPLE - Continued

(h) August

Altitude level i, km,				Crosslev of						(nondim j, km, of)		
of zonal component	o	1	2	3	4	5	6	7	8	9	10	11	12	13
0 1 2 3 4 5	0.048	0.069 0.246 0.117 0.009 -0.028 -0.049 -0.058	0.025 0.135 0.109 0.050 0.033 0.004 0.004	0.033 0.109 0.080 0.074 0.062 0.032 0.025	0.024 0.092 0.069 0.082 0.079 0.050 0.044	0.026 0.068 0.045 0.068 0.084 0.070	0.048 0.070 0.050 0.080 0.105 0.100 0.110		-0.009	-0.012 -0.044 -0.031 0.034 0.069 0.077 0.110	-0.077 -0.055	~0.101	-0.112 -0.092	-0.085
7 8 9 10 11	-0.027 -0.077 -0.110 -0.137 -0.130	-0.081 -0.119 -0.138 -0.156 -0.143	-0.006 -0.036 -0.056 -0.065 -0.059	0.020 -0.002 -0.013 -0.012	0.043 0.026 0.014 0.018 0.026 0.049	0.058 0.042 0.030 0.039 0.047	0.095 0.081 0.069 0.077 0.080	0.118 0.107 0.103 0.119 0.122	0.142 0.147 0.146 0.168 0.176	0.140 0.169 0.186 0.211 0.222	0.126 0.166 0.204 0.239 0.252	0.103 0.148 0.191 0.240 0.263	0.091 0.134 0.173 0.226 0.248	0.124 0.156 0.184 0.230 0.249
13 14 15 16 17	-0.113 -0.121 -0.120 -0.100 -0.091	-0.108 -0.106 -0.112 -0.092 -0.094	-0.008 -0.020 -0.032 -0.003 0.016	0.053 0.039 0.012 0.041 0.063	0.073 0.054 0.031 0.062 0.089	0.065 0.090 0.076 0.055 0.092 0.116	0.097 0.119 0.102 0.088 0.120 0.140	0.135 0.155 0.140 0.128 0.165 0.179	0.186 0.206 0.185 0.174 0.196 0.206	0.226 0.240 0.217 0.211 0.225 0.230	0.255 0.266 0.230 0.219 0.227 0.231	0.273 0.285 0.244 0.227 0.230 0.233	0.263 0.289 0.250 0.230 0.233 0.238	0.256 0.285 0.281 0.258 0.253 0.261
19 20 21 22 23	-0.073 -0.039 -0.016 -0.023 -0.008 -0.026 -0.034	-0.037 -0.000 0.029 0.036 0.020	0.018 0.039 0.049 0.066 0.084 0.076	0.044 0.049 0.055 0.046 0.072 0.068 0.073	0.071 0.066 0.061 0.060 0.094 0.095 0.097	0.102 0.095 0.083 0.084 0.118 0.116	0.130 0.113 0.104 0.103 0.137 0.146 0.146	0.158 0.142 0.130 0.131 0.166 0.178	0.181 0.167 0.148 0.144 0.172 0.191 0.192	0.206 0.186 0.166 0.157 0.189 0.211	0.218 0.193 0.168 0.163 0.189 0.203	0.224 0.197 0.164 0.157 0.179 0.195	0.233 0.204 0.170 0.164 0.185 0.197	0.252 0.226 0.185 0.176 0.191
25	-0.033 -0.003 0.022	0.004 0.007 0.027	0.094 0.092 0.097	0.098 0.102 0.115	0.105 0.092 0.088	0.121 0.141 0.130 0.123	0.148 0.167 0.161 0.149	0.181 0.198 0.190 0.178	0.192 0.208 0.201 0.188	0.210 0.220 0.212 0.196	0.212 0.220 0.214 0.197	0.207 0.214 0.206 0.187	0.210 0.222 0.214 0.191	0.205 0.221 0.211 0.192

(h) August - Concluded

Altitude				Crosslev	el and ir	ntralevel	l correla	tion coef	ficients	(nondim	ensional)		
level i, km,				of	meridion	al comp	onent for	r altitude	e level	j, km, of	f –			
of zonal component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.018	0.051	0.093	0.096	0.078	0.047	0.027	0.041	0.067	0.076	0.074	0.077	0.032	0.025
1	-0.052	-0.004	0.052	0.073	0.076	0.027	-0.018	-0.026	-0.020	-0.002	0.015	0.042	0.001	-0.006
2	-0.015	0.035	0.074	0.094	0.121	0.096	0.062	0.052	0.046	0.036	0.026	0.054	0.012	0.006
3	0.056	0.107	0.152	0.160	0.181	0.166	0.135	0.139	0.125	0.099	0.078	0.084	0.058	0.040
4	0.087	0.136	0.177	0.185	0.231	0.204	0.166	0.162	0.163	0.142	0.101	0.102	0.077	0.047
5	0.108	0.151	0.181	0.188	0.238	0.224	0.196	0.187	0.177	0.141	0.100	0.110	0.081	0.062
6	0.139	0.168	0.195	0.211	0.263	0.256	0.218	0.199	0.180	0.143	0.091	0.093	0.076	0.058
7	0.166	0.183	0.207	0.230	0.290	0.272	0.237	0.222	0.184	0.142	0.084	0.086	0.085	0.074
8	0.191	0.190	0.208	0.232	0.292	0.267	0.244	0.231	0.190	0.140	0.083	0.078	0.079	0.062
9	0.207	0.199	0.211	0.224	0.281	0.259	0.242	0.233	0.200	0.147	0.075	0.067	0.080	0.061
10	0.242	0.224	0.228	0.235	0.285	0.250	0.237	0.228	0.191	0.138	0.067	0.071	0.091	0.074
11	0.258	0.239	0.239	0.248	0.286	0.254	0.246	0.234	0.196	0.139	0.075	0.086	0.094	0.077
12	0.267	0.248	0.244	0.250	0.283	0.243	0.247	0.238	0.192	0.136	0.073	0.091	0.094	0.084
13	U.264	0.252	0.255	0.254	0.283	0.257	0.249	0.238	0.196	0.149	0.081	0.101	0.099	0.091
14	0.265	0.228	0.245	0.256	0.297	0.282	0.266	0.251	0.189	0.142	0.091	0.108	0.114	0.105
15	0.292	0.247	0.226	0.265	0.312	0.301	0.290	0.256	0.187	0.142	0.084	0.112	0.115	0.110
16	0.282	0.291	0.267	0.248	0.306	0.319	0.308	0.273	0.215	0.166	0.100	0.120	0.112	0.113
17	0.282	0.285	0.323	Ü.294	U.253	0.285	0.291	0.255	0.185	0.163	0.098	0.108	0.114	0.124
18	0.274	0.262	0.290	0.341	0.275	0.230	0.239	0.218	0.161	0.131	0.080	0.095	0.102	0.106
19	0.244	0.221	0.229	0.267	0.294	0.235	0.171	0.155	0.136	0.114	0.073	0.087	0.080	0.098
20	0.204	0.176	0.176	0.192	0.215	0.240	0.178	0.073	0.056	0.067	0.046	0.055	0.069	0.075
21	0.193	0.168	0.153	0.177	0.168	0.208	0.225	0.121	0.018	0.009	0.020	0.015	0.038	0.055
22	0.210	0.191	0.168	0.179	0.152	0.180	0.209	0.174	0.048	-0.011	0.013	0.006	0.020	0.047
23	0.223	0.212	0.183	0.179	0.153	0.155	0.190	0.174	0.128				-0.006	0.039
24	0.218	0.214	0.179	0.145	0.115	0.102	0.131	0.134	0.132	0.158			-0.007	0.050
25	0.222	0.219	0.188	0.150	0.116	0.099	0.086	0.114	0.113	0.156	0.137	0.062	0.008	0.038
26	0.211	0.210	0.181	0.150	0.122	0.091	0.069	0.090	0.077	0.126	0.131	0.108	0.050	0.042
27	0.190	0.186	0.176	0.148	U.114	0.072	0.057	0.066	0.031	0.069	0.083	0.072	0.051	0.039

(i) September

Altitude level i, km,					el and in					•)		
of zonal				01	meridion	al comp	onent for	· altitude	level j	, km, of				
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.357			-0.025		0.000	0.015	0.023	0.041	0.042	0.030	0.012	0.010	0.019
1	0.499	0.263	0.106	0.104	0.087	0.075	0.050	0.041	0.032					-0.037
2	0.294	0.168	0.143	0.176	0.166	0.168	0.155	0.156	0.155	0.147	0.121	0.092	0.082	0.091
3	0.158	0.060	0.099	0.168	0.190	0.207	0.205	0.214	0.232	0.240	0.222	0.201	0.193	0.201
4	0.084	0.008	0.059	0.157	0.190	0.230	0.230	0.250	0.279	0.298	0.288	0.273	0.269	0.281
5		-0.040	0.018	0.123	0.166	0.211	0.225	0.255	0.287	0.313	0.305	0.294	0.293	0.306
6	-0.007	-0.061	0.003	0.111	0.151	0.195	0.220	0.264	0.302	0.327	0.324	0.313	0.310	0.319
7	-0.054	-0.092	-0.019	0.089	0.137	0.184	0.217	0.272	0.326	0.355	0.357	0.347	0.345	0.351
8	-0.094	-0.134	-0.054	0.049	0.094	0.147	0.185	0.242	0.307	0.347	0.360	0.354	0.354	0.358
9	-0.108	-0.145	-0.064	0.035	0.079	0.124	0.167	0.233	0.303	0.345	0.367	0.358	0.356	0.353
10	-0.122	-0.149	-0.060	0.030	0.076	0.118	0.157	0.225	0.294	0.338	0.368	0.362	0.357	0.351
11	-0.139	-0.147	-0.061	0.020	U.U59	0.100	0.137	0.201	0.270	0.313	0.346	0.347	0.341	0.334
12	-0.151	-0.134	-0.034	0.041	0.076	0.112	0.145	0.205	0.268	0.307	0.343	0.348	0.342	0.319
13	-0.144	-0.112	-0.008	0.067	0.099	0.130	0.163	0.216	0.275	0.313	0.343	0.349	0.357	0.334
14	-0.147	-0.112	-0.003	0.069	0.106	0.141	0.166	0.216	0.275	0.314	0.343	0.354	0.366	0.367
15	-0.146	-0.120	-0.020	0.055	0.099	0.133	0.157	0.203	0.260	0.298	0.325	0.337	0.348	0.354
16	-0.120	-0.106	-0.010	0.063	0.100	0.132	0.154	0.200	0.259	0.297	0.318	0.324	0.333	0.338
17	-0.095	-0.098	-0.011	0.061	0.092	0.120	0.140	0.183	0.246	0.282	0.301	0.304	0.313	0.320
18	-0.081	-0.103	-0.030	0.033	0.064	0.102	0.119	0.160	0.218	0.254	0.273	0.280	0.290	0.296
19	-0.072	-0.088	-0.036	0.026	0.057	0.091	0.108	0.149	0.203	0.244	0.264	0.273	0.281	0.287
20	-0.039	-0.055	-0.027	0.016	0.049	0.081	0.088	0.123	0.171	0.209	0.220	0.224	0.235	0.240
21	-0.043	-0.051	-0.025	0.023	0.046	0.073	0.080	0.116	0.154	0.186	0.198	0.204	0.207	0.205
22	-0.044	-0.058	-0.041	0.014	0.022	0.046	0.056	0.091	0.128	0.164	0.167	0.171	0.174	0.172
		-0.065		0.018	0.024	0.047	0.052	0.080	0.112	0.139	0.145	0.153	0.155	0.150
		-0.071		0.009	0.019	0.041	0.040	0.064	0.090	0.112	0.111	0.118	0.121	0.117
		-0.044		0.016	0.027	0.046	0.042	0.067	0.088	0.107	0.100	0.104	0.101	0.096
		-0.042		0.022	0.038	0.047	0.040	0.067	0.086	0.106	0.099	0.100	0.096	0.087
		-0.051		0.018	0.024	0.035	0.027	0.044	0.058	0.075	0.068	0.071	0.068	0.063
	2.02,	0.001	5.510	0.010	0.024	0.000	0.02.		0.000	0.0.0	5.000	0.011	0.000	55505

(i) September - Concluded

Altitude level i, km,			C						icients (•			
of zonal										KIII, OI				
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.049	0.099	0.118	0.152	U.165	0.145	0.127	0.109	0.085	0.066			-0.020	
	-0.008	0.043	0.090	0.141	0.156	0.162	0.129	0.112	0.092	0.049			-0.048	
2	0.113	0.166	0.200	0.241	0.253	0.263	0.221	0.207	0.178	0.115	0.086	0.033	-0.004	
3	0.223	0.258	0.279	0.311	0.319	0.323	0.286	0.261	0.215	0.138	0.114	0.064	0.005	-0.021
4	0.295	0.325	0.339	0.354	Ú.353	0.353	0.320	0.300	0.241	0.166	0.135	0.096	0.026	-0.012
5	0.315	0.339	0.356	0.361	0.358	0.363	0.334	0.310	0.238	0.171	0.143	0.114	0.045	0.006
6	0.328	0.343	0.356	0.365	0.351	0.360	0.332	0.305	0.243	0.180	0.161	0.123	0.059	0.018
7	0.353	0.357	0.366	0.363	0.349	0.359	0.338	0.312	0.255	0.199	0.170	0.140	0.070	0.023
8	0.357	0.353	0.353	0.343	0.330	0.331	0.319	0.296	0.244	0.184	0.155	0.136	0.072	0.034
9	0.348	0.342	0.339	0.325	0.311	0.314	0.304	0.279	0.240	0.180	0.146	0.142	0.080	0.047
10	0.341	0.332	0.328	0.311	0.296	0.302	0.293	0.257	0.235	0.183	0.147	0.140	0.084	0.039
11	0.324	0.319	0.318	0.295	0.277	0.281	0.275	0.243	0.220	0.167	0.135	- 0.136	0.078	0.037
12	0.318	0.317	0.317	0.291	0.264	0.268	0.263	0.234	0.217	0.166	0.113	0.128	0.081	0.039
13	0.319	0.324	0.324	0.301	0.269	0.271	0.255	0.230	0.206	0.150	0.103	0.123	0.078	0.029
14	0.348	0.330	0.339	0.323	0.283	0.283	0.265	0.237	0.210	0.157	0.114	0.141	0.081	0.031
15	0.372	0.352	0.338	0.326	0.299	0.304	0.288	0.259	0.221	0.168	0.112	0.120	0.068	0.035
16	0.352	0.358	0.344	6.310	0.317	0.324	0.310	0.281	0.236	0.181	0.130	0.139	0.084	0.047
17	0.328	0.333	0.350	0.337	0.296	0.324	0.313	0.289	0.251	0.202	0.141	0.156	0.095	0.063
18	0.297	0.296	0.311	0.349	0.324	0.299	0.309	0.301	0.265	0.232	0.157	0.160	0.092	0.057
19	0.292	0.279	0.283	0.298	0.322	0.309	0.253	0.263	0.254	0.220	0.161	0.158	0.105	0.073
20	0.240	0.220	0.227	0.233	0.245	0.324	0.276	0.201	0.201	0.204	0.161	0.155	0.119	0.090
21	0.197	0.183	0.179	0.186	0.192	0.251	0.292	0.238	0.170	0.181	0.149	0.173	0.136	0.111
22	0.167	0.151	0.139	0.151	0.145	0.173	0.206	0.240	0.195	0.118	0.095	0.164	0.156	0.134
23	0.151	0.127	0.125	0.127	0.114	0.132	0.141	0.172	0.227	0.156	0.069	0.115	0.138	0.134
24	0.123	0.101	0.107	0.111	0.100	0.114	0.107	0.121	0.178	0.190	0.104	0.073	0.089	0.105
25	0.100	0.091	0.097	0.105	0.100	0.102	0.086	0.114	0.128	0.158	0.152	0.122	0.076	0.079
26	0.100	0.101	0.104	0.115	0.115	0.118	0.083	0.095	0.095	0.120	0.114	0.148	0.120	0.093
27	0.078	0.678	0.081	0.093	0.097	0.106	0.066	0.069	0.062	0.120	0.058	0.097	0.157	0.163
٠.	0.010	0.010	0.001	0.093	0.071	0.100	0.000	0.009	0.002	0.012	0.096	0.091	0.157	0.105

(j) October

Altitude level i, km, of zonal							l correla conent fo			•)		
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.285												-0.114	
1	0.455	0.109	-0.057	-0.045	-0.029	-0.018	-0.012	-0.016	-0.022	-0.055	-0.101	-0.128	-0.130	-0.092
2	0.309	0.101	0.021	0.037	0.054	0.072	0.082	0.077	0.072	0.041	-0.002	-0.035	-0.041	-0.009
3	0.203	0.021	0.012	6.050	0.089	0.114	0.135	0.135	0.137	0.104	0.062	0.034	0.035	0.069
4	0.151	-0.038	-0.019	0.047	0.082	0.114	0.143	0.152	0.162	0.131	0.094	0.070	0.075	0.115
5	0.109	-0.063	-0.033	0.039	0.080	0.118	0.155	0.167	0.177	0.148	0.113	0.093	0.101	0.141
6	0.069	-0.074	-0.030	0.046	0.094	0.128	0.165	0.182	0.196	0.172	0.139	0.122	0.131	0.170
7	0.037	-0.080	-0.026	0.055	0.105	0.133	0.168	0.188	0.212	0.191	0.164	0.148	0.152	0.186
8	0.017	-0.087	-0.026	0.053	0.102	0.128	0.164	0.183	0.212	0.200	0.180	0.167	0.168	0.193
9	-0.005	-0.090	-0.029	0.044	0.093	0.119	0.152	0.170	0.198	0.195	0.182	0.174	0.174	0.194
10	-0.007	-0.073	-0.011	0.051	0.094	0.112	0.142	0.154	0.180	0.177	0.171	0.163	0.165	0.174
11	-0.013	-0.070	-0.007	0.052	0.089	0.105	0.134	0.148	0.171	0.173	0.174	0.168	0.164	0.165
12	-0.011	-0.041	0.014	0.054	0.085	0.104	0.130	0.143	0.165	0.170	0.175	0.175	0.172	0.153
13	0.003	-0.027	0.026	0.056	0.079	0.095	0.120	0.129	0.147	0.153	0.158	0.154	0.169	0.147
14	-0.001	-0.043	0.018	0.052	0.076	0.093	0.117	0.128	0.148	0.151	0.153	0.144	0.165	0.170
15	0.015	-0.045	0.013	0.041	0.059	0.072	0.093	0.103	0.123	0.129	0.131	0.122	0.142	0.153
16	0.012	-0.063	-0.016	0.011	0.033	0.048	0.072	0.085	0.103	0.109	0.108	0.100	0.115	0.125
17	-0.004	-0.076	-0.023	-0.003	0.023	0.033	0.057	0.072	0.088	0.092	0.092	0.086	0.099	0.113
18	-0.014	-0.079	-0.034	-0.027	0.007	0.021	0.054	0.066	0.081	0.085	0.084	0.073	0.087	0.104
19	-0.018	-0.099	-0.037	-0.017	0.021	0.035	0.066	0.073	0.093	0.094	0.095	0.077	0.088	0.113
20	-0.009	-0.077	-0.043	-0.034	0.001	0.010	0.040	0.043	0.048	0.047	0.043	0.027	0.027	0.048
21	-0.009	-0.067	-0.049	-0.044	-0.021	-0.017	0.005	0.007	0.008	0.000	-0.011	-0.027	-0.034	-0.030
22	0.015	-0.038	-0.035	-0.034	-0.022	-0.024	-0.011	-0.010	-0.013	-0.029	-0.043	-0.052	-0.058	-0.058
													-0.066	
													-0.079	
25	0.013	0.003	-0.005	-0.010	-0.005	-0.009	-0.009	-0.013	-0.026	-0.045	-0.059	-0.072	-0.093	-0.092
26	0.023												-0.089	
27	0.023												-0.085	
					(;)	Octobo	r – Conc	hidod						

(j) October - Concluded

Altitude level i, km of zonal	,				vel and in meridion					-				
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
O	-0.029	0.008	0.062	0.092	0.118	0.179	0.210	0.226	0.213	0.193	0.175	0.177	0.166	0.114
1	-0.064	-0.036	0.012	0.061	0.088	0.134	0.188	0.224	0.234	0.235	0.200	0.184	0.178	0.141
2	0.017	0.047	0.091	U.146	0.165	0.199	0.236	0.255	0.248	0.247	0.219	0.191	0.190	0.153
3	0.095	0.128	0.167	0.220	0.237	0.266	0.293	0.306	0.291	0.281	0.231	0.202	0.193	0.151
4	0.141	0.176	0.218	0.268	0.282	0.319	0.334	0.347	0.326	0.298	0.250	0.221	0.216	0.175
5	0.169	0.201	0.243	0.291	0.309	0.343	0.352	0.365	0.346	0.316	0.264	0.229	0.222	0.178
6		0.224	0.265	0.311	0.327	0.359	0.362	0.377	0.363	0.330	0.284	0.239	0.226	0.187
7	0.209	0.236	0.277	0.323	0.333	0.361	0.369	0.375	0.361	0.327	0.284	0.244	0.239	0.194
8	0.209	0.233	0.271	0.311	0.314	0.342	0.348	0.357	0.337	0.301	0.264	0.226	0.231	0.190
g		0.221	0.255	0.289	0.284	0.312	0.320	0.334	0.312	0.287	0.252	0.214	0.225	0.186
10		0.190	0.216		0.243	0.276	0.284	0.305	0.280	0.263	0.230	0.194	0.210	0.181
11		0.175	0.199	0.219	0.215	0.236	0.248	0.261	0.247	0.229	0.199	0.165	0.191	0.173
12		0.159	0.175	0.197	0.187	0.199	0.197	0.219	0.204	0.185	0.170	0.143	0.170	0.154
13		0.148	0.163	0.180	0.173	0.189	0.190	0.206	0.192	0.176	0.161	0.148	0.173	0.155
14		0.149	0.170	G. 190	0.186	0.203	0.209	0.235	0.228	0.205	0.181	0.170	0.182	0.161
îs		0.164	0.166	0.193	0.206	0.229	0.239	0.268	0.276	0.239	0.207	0.190	0.202	0.168
16		0.166	0.172	0.184	0.201	0.242	0.256	0.286	0.291	0.261	0.229	0.201	0.204	0.170
17		0.153	0.187	0.204	0.199	0.252	0.276	0.302	0.315	0.279	0.257	0.223	0.213	0.170
18		0.140	0.168	0.218	0.228	0.243	0.288	0.325	0.344	0.311	0.296	0.255	0.236	0.189
19		0.145	0.160	0.200	0.270	0.296	0.300	0.346	0.376	0.360	0.357	0.304	0.276	0.232
20		0.072	0.088	0.143	0.196	0.288	0.321	0.334	0.394	0.397	0.399	0.351	0.321	0.276
	-0.030		0.004	0.037	0.110	0.225	0.334	0.358	0.363	0.390	0.423	0.394	0.350	0.306
	-0.055			0.016	0.085	0.185	0.278	0.374	0.401	0.375	0.411	0.393	0.362	0.322
	-0.065				0.048	0.136	0.208	0.309	0.400	0.379	0.374	0.366	0.349	0.317
	-0.085					0.077	0.155	0.226	0.326	0.362	0.380	0.349	0.351	0.333
	-0.005					0.039	0.098	0.169	0.251	0.306	0.387	0.355	0.314	0.311
	-0.095					0.013	0.063	0.127	0.197	0.250	0.339	0.347	0.320	0.295
	-0.091					0.007	0.052	0.103	0.163	0.213	0.289	0.318	0.340	0.329

TABLE VII.- CROSSLEVEL AND INTRALEVEL CORRELATION COEFFICIENTS BETWEEN COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON

SERIALLY COMPLETED SAMPLE - Continued

(k) November

Altitude level i, km, of zonal				Crosslev of			correla conent for					1		
component	0	1	z	3	4	5	6	7	8	9	10	11	12	13
0	0.061	-0.260	-0.287	-0.202	-0.161	-0.132	-0.093	-0.077	-0.072	-0.058	-0.044	-0.028	-0.016	0.013
1	0.382		-0.011	0.021	0.027	0.036	0.044	0.042	0.025	0.028	0.024	0.019	0.019	0.031
2	0.306	0.172	0.111	0.155	0.167	0.172	0.169	0.171	0.161	0.165	0.154	0.147	0.144	0.158
3	0.182	0.076	0.067	0.119	0.149	0.164	0.170	0.181	0.175	0.185	0.179	0.175	0.176	0.190
4	0.132	0.024	0.031	0.087	0.128	0.147	0.159	0.175	0.171	0.183	0.182	0.183	0.188	0.198
5	0.087	-0.013	-0.001	0.063	0.106	0.125	0.144	0.163	0.164	0.181	0.183	0.184	0.189	0.202
6		-0.021		0.052	0.092	0.110	0.132	0.156	0.162	0.182	0.185	0.184	0.187	0.195
7		-0.013		0.057	0.102	0.120	0.138	0.163	0.174	0.192	0.196	0.194	0.198	0.205
8	0.054	-0.017	0.007	0.067	0.112	0.132	0.149	0.173	0.186	0.207	0.211	0.207	0.204	0.208
9	0.062	0.002	0.032	0.087	0.128	0.145	0.160	0.177	0.187	0.209	0.213	0.208	0.201	0.200
10	0.084	0.029	0.053	0.100	0.136	0.149	0.160	0.172	0.177	0.195	0.197	0.191	0.184	0.181
11	0.105	0.061	0.085	0.121	0.146	0.151	0.156	0.163	0.166	0.181	0.185	0.175	0.162	0.156
12	0.138	0.099	0.112	0.141	0.156	0.146	0.147	0.150	0.152	0.164	0.171	0.165	0.149	0.126
13	0.150	0.127	0.147	0.172	0.180	0.170	0.170	0.175	0.173	0.179	0.184	0.181	0.181	0.158
14	0.134	0.110	0.131	0.166	0.179	0.169	0.170	0.179	0.178	0.185	0.185	0.182	0.188	0.192
15	0.128	0.116	0.145	0.175	0.187	0.175	0.176	0.185	0.184	0.192	0.188	0.182	0.186	0.186
16	0.115	0.103	0.123	0.153	0.165	0.150	0.151	0.161	0.163	0.171	0.167	0.165	0.170	0.166
17	0.126	0.100	0.110	0.130	0.138	0.129	0.132	0.139	0.142	0.149	0.148	0.153	0.165	0.170
18	0.091	0.068	0.084	0.109	0.121	0.119	0.119	0.127	0.129	0.138	0.140	0.149	0.162	0.171
19	0.044	0.025	0.045	0.070	0.090	0.093	0.093	0.103	0.107	0.115	0.114	0.126	0.141	0.162
20	0.035	0.020	0.036	0.063	0.080	0.078	0.078	0.086	0.096	0.104	0.104	0.118	0.143	0.174
21	0.062	0.024	0.032	0.053	0.066	0.060	0.063	0.067	0.077	0.083	0.085	0.102	0.130	0.160
22	0.091	0.039	0.042	0.065	0.075	0.073	0.077	0.078	0.084	0.089	0.093	0.106	0.129	0.157
23	0.124	0.070	0.046	0.056	0.061	0.057	0.059	0.059	0.060	0.062	0.067	0.075	0.095	0.120
24	0.149	0.087	0.048	0.056	0.063	0.059	0.059	0.057	0.055	0.057	0.060	0.069	0.083	0.100
25	0.164	0.112	0.063	0.062	0.069	0.062	0.057	0.056	0.050	0.053	0.051	0.059	0.071	0.081
26	0.160	0.116	0.065	0.060	0.065	0.061	0.053	0.052	0.045	0.047	0.045	0.049	0.057	0.066
27	0.152	0.107	0.055	0.051	0.057	0.054	0.047	0.045	0.039	0.041	0.040	0.041	0.047	0.049

(k) November - Concluded

Altitude level i, km, of zonal			,							(nondim j, km, o)		
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.035	0.048	0.066	0.084	0.085	0.094	0.094	0.086	0.041	0.017	0.003	-0.013	-0.027	-0.024
1	0.045	0.066	0.063	0.065	0.059	0.054	0.017	0.012	0.001	-0.009	-0.005	-0.009	-0.011	-0.023
2	0.174	0.188	0.179	0.175	0.158	0.143	0.095	0.076	0.060	0.046	0.053	0.061	0.056	0.034
3	0.203	0.210	0.202	0.202	0.181	0.158	0.118	0.091	0.067	0.045	0.057	0.062	0.067	0.059
4	0.207	0.211	0.206	0.206	0.191	0.170	0.133	0.108	0.080	0.059	0.066	0.074	0.085	0.076
5	0.212	0.214	0.209	0.212	0.199	0.176	0.137	0.104	0.079	0.058	0.063	0.070	0.083	0.069
6	0.210	0.217	0.211	0.212	0.196	0.177	0.141	0.103	0.076	0.056	0.064	.0.068	0.085	0.071
7	0.216	0.222	0.217	0.218	0.203	0.179	0.148	0.107	0.080	0.064	0.072	0.081	0.094	0.083
8	0.215	0.220	0.212	0.211	0.191	0.162	0.139	0.094	0.067	0.055	0.060	0.063	0.081	0.074
9	0.208	0.214	0.205	0.198	0.172	0.143	0.122	0.082	0.053	0.046	0.057	0.063	0.082	0.075
10	0.197	0.203	0.189	0.186	0.161	0.132	0.116	0.075	0.051	0.051	0.060	0.073	0.093	0.087
11	0.177	0.183	0.162	0.161	0.144	0.120	0.102	0.060	0.047	0.054	0.062	0.075	0.093	0.087
12	0.149	0.160	0.141	0.134	0.116	0.094	0.085	0.043	0.028	0.053	0.062	0.072	0.097	0.096
13	0.157	0.173	0.158	0.154	0.133	0.113	0.101	0.062	0.047	0.067	0.082	0.091	0.109	0.113
14	0.184	0.177	0.173	0.178	0-164	0.152	0.131	0.098	0.082	0.098	0.112	0.121	0.138	0.127
15	0.207	0.204	0.188	0.202	0.193	0.189	0.170	0.141	0.123	0.127	0.140	0.155	0.174	0.153
16	0.190	0.219	0.195	0.196	0.205	0.205	0.186	0.157	0.138	0.137	0.156	0.166	0.182	0.152
17	0.194	0.216	0.226	0.230	0.232	0.251	0.245	0.224	0.203	0.206	0.228	0.237	0.237	0.190
18	0.195	0.215	0.226	0.255	0.262	0.271	0.283	0.270	0.249	0.251	0.265	0.284	0.291	0.252
19	0.178	0.204	0.213	0.243	0.293	0.305	0.289	0.291	0.277	0.289	0.312	0.333	0.335	0.302
20	0.191	0.222	0.234	0.255	0.303	0.356	0.361	0.335	0.341	0.352	0.380	0.395	0.395	0.356
21	0.178	0.205	0.221	0.243	0.288	0.353	0.418	0.414	0.391	0.411	0.436	0.442	0.428	0.392
22	0.175	0.194	0.207	0.229	0.266	0.326	0.395	0.427	0.426	0.430	0.457	0.462	0.430	0.394
23	0.138	0.151	0.164	0.187	0.224	0.280	0.345	0.377	0.406	0.426	0.429	0.437	0.405	0.378
24	0.119	0.133	0.144	0.163	0.199	0.257	0.317	0.343	0.373	0.414	0.441	0.421	0.374	0.358
25	0.100	0.113	.0.122	G.140	0.180	0.223	0.287	0.308	0.337	0.384	0.443	0.423	0.372	0.353
26	0.082	0.095	0.103	0.121	0.163	0.200	0.261	0.283	0.319	0.359	0.421	0.424	0.383	0.349
27	0.067	0.078	0.085	G.100	0.143	0.179	0.238	0.256	0.286	0.334	0.394	0.398	0.366	0.335

TABLE VII.- CROSSLEVEL AND INTRALEVEL CORRELATION COEFFICIENTS BETWEEN

COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON

SERIALLY COMPLETED SAMPLE - Continued

(1) December

Altitude level i, km, of zonal	,					intraleve nal comp)		
component	0	1	2	3	4	5	6	7	8	9	10	11	12	13
О						-0.106								0.025
1	0.432		-0.013											-0.005
2	0.335	0.205	0.103		0.124		0.094	0.080	0.073	0.061	0.057	0.066	0.078	0.078
3	0.167	0.075	0.036	0.075	0.089	0.094	0.093	0.093	0.093	0.080	0.077	0.087	0.097	0,101
4	0.083	-0.017	-0.035	0.021	0.049	0.071	0.083	0.095	0.099	0.090	0.087	0.099	0.108	0.115
5	0.036	-0.059	-0.066	0.002	0.042	0.068	0.089	0.109	0.114	0.107	0.105	0.116	0.120	0.123
6	-0.007	-0.071	-0.071	0.002	0.042	0.070	0.097	0.125	0.131	0.125	0.125	0.132	0.133	0.139
7	-0.036	-0.088	-0.085	-0.007	0.034	0.066	0.096	0.128	0.139	0.133	0.132	0.136	0.133	0.140
8	-0.058	-0.095	-0.083	-0.010	0.030	0.062	0.090	0.119	0.137	0.135	0.136	0.140	0.135	0.143
9	-0.076	-0.092	-0.068	-0.001	0.032	0.064	0.091	0.120	0.139	0.142	0.143	0.144	0.138	0.143
10	-0.080	-0.071	-0.052	6.009	0.038	0.066	0.089	0.118	0.138	0.143	0.145	0.140	0.128	0.134
11	-0.070	-0.042	-0.032	0.016	0.038	0.062	0.079	0.107	0.121	0.123	0.125	0.119	0.098	0.106
12	-0.074	-0.008	0.001	0.032	0.050	0.067	0.080	0.102	0.116	0.119	0.122	0.124	0.105	0.099
13	-0.072	0.002	0.009	0.036	0.047	0.061	0.074	0.091	0.105	0.109	0.116	0.122	0.116	0.109
		-0.027		0.006	0.019	0.038	0.056	0.069	0.082	0.089	0.097	0.103	0.100	0.122
		-0.051			0.006	0.025	0.050	0.066	0.084	0.088	0.098	0.106	0.106	0.123
				-0.012	-0.001	0.014	0.040	0.056	0.076	0.082	0.094	0.103	0.108	0.128
				-6.020		0.009	0.028	0.040	0.061	0.070	0.082	0.095	0.108	0.126
				-0.034		0.003	0.026	0.041	0.061	0.073	0.090	0.111	0.120	0.142
					-0.027	-0.011	0.010	0.024	0.041	0.052	0.076	0.100	0.115	0.140
		-0.027			0.005	0.013	0.030	0.042	0.063	0.068	0.087	0.112	0.129	0.148
		-0.017		0.002	0.004	0.010	0.029	0.041	0.063	0.067	0.080	0.101	0.112	0.134
		-0.010		0.011	0.017	0.020	0.036	0.048	0.068	0.072	0.085	0.107	0.118	0.142
		-0.006		0.017	0.026	0.031	0.044	0.053	0.075	0.079	0.093	0.109	0.119	0.140
	-0.003	0.014	0.021	0.035	0.042	0.043	0.057	0.065	0.087	0.088	0.099	0.113	0.122	0.137
25	0.009	0.032	0.041	0.058	0.060	0.063	0.077	0.084	0.101	0.101	0.112	0.125	0.128	0.139
26	0.020	0.037	0.059	0.080	0.086	0.086	0.099	0.106	0.120	0.119	0.126	0.134	0.128	0.138
27	0.028	0.044	0.070	0.090	0.102	0.100	0.109	0.114	0.126	0.126	0.130	0.136	0.128	0.142
٠,	0.020	0.011	5.010	0.070	00102	55100	0.10)	~ ~ 1 1 1	-,120	0.120	5.150	0.130	0.120	0.172

(1) December - Concluded

Altitude level i, km, of zonal									fficients e level			1		
component	14	15	16	17	18	19	20	21	22	23	24	25	26	27
0	0.052	0.063	0.053	0.050	0.076	0.076	0.091	0.073	0.064	0.080	0.086	0.091	0.095	0.080
1	0.001	0.006	0.006	0.010	0.037	0.030	0.049	0.043	0.063	0.080	0.107	0.099	0.096	0.080
2	0.079	0.087	0.085	0.077	0.093	0.089	0.092	0.088	0.103	0.121	0.142	0.156	0.154	0.132
3	0.098	0.114	0.114	0.113	U.128	0.127	0.121	0.112	0.128	0.144	0.165	0.181	0.178	0.153
4	0.100	0.115	0.123	0.125	0.123	0.116	0.107	0.107	0.122	0.142	0.163	0.172	0.166	0.145
5	0.109	0.119	0.131	0.135	0.136	0.125	0.107	0.104	0.127	0.150	0.171	0.181	0.171	0.151
6	0.125	0.131	0.143	0.147	0.144	0.130	0.117	0.118	0.135	0.150	0.168	0.188	0.180	0.163
7	0.121	0.132	0.146	0.147	0.146	0.135	0.116	0.119	0.141	0.157	0.174	0.197	0.188	0.170
8	0.125	0.133	0.145	0.145	0.146	0.132	0.123	0.123	0.142	0.157	0.165	0.189	0.186	0.172
9	0.126	0.133	0.144	0.141	0.138	0.124	0.113	0.117	0.137	0.145	0.157	0.186	0.186	0.177
10	0.117	0.124	0.134	0.134	0.132	0.118	0.113	0.112	0.119	0.127	0.148	0.176	0.180	0.174
11	0.088	0.095	0.101	0.105	0.104	0.092	0.084	0.087	0.088	0.098	0.123	0.147	0.147	0.143
12	0.082	0.087	0.094	0.099	0.095	0.076	0.062	0.066	0.064	0.076	0.102	0.132	0.138	0.139
13	0.079	0.083	0.095	0.105	0.102	0.086	0.064	0.059	0.051	0.065	0.086	0.130	0.142	0.139
14	0.095	0.094	0.107	0.121	0.119	0.110	0.093	0.081	0.076	0.097	0.117	0.157	0.176	0.175
15	0.119	0.126	0.121	0.140	0.148	0.140	0.130	0.123	0.131	0.144	0.169	0.205	0.221	0.222
16	0.123	0.147	0.144	0.147	0.162	0.167	0.160	0.152	0.158	0.181	0.214	0.247	0.258	0.258
17	0.113	0.137	0.152	0.163	0.172	0.181	0.180	0.168	0.174	0.193	0.228	0.266	0.276	0.287
18	0.135	0.158	0.169	ٕ194	0.217	0.226	0.228	0.220	0.224	0.229	0.269	0.303	0.316	0.322
19	0.141	0.159	0.172	0.180	0.227	0.276	0.278	0.274	0.289	0.291	0.339	0.368	0.377	0.373
20	0.156	0.168	0.178	0.185	0.232	0.299	0.335	0.330	0.350	0.363	0.405	0.434	0.429	0.411
21	0.139	0.152	0.162	0.168	0.203	0.258	0.332	0.361	0.384	0.404	0.438	0.466	0.461	0.435
22	0.143	0.153	0.159	0.157	0.176	0.226	0.297	0.355	0.403	0.423	0.452	0.478	0.476	0.453
23	0.142	0.147	0.162	0.148	0.165	0.209	0.271	0.314	0.375	0.411	0.449	0.478	0.478	0.460
24	0.138	0.133	0.154	0.143	0.157	0.201	0.259	0.289	0.348	0.396	0.444	0.473	0.468	0.445
25	0.136	0.131	0.152	0.146	0.149	0.188	0.246	0.270	0.328	0.368	0.415	0.460	0.460	0.437
26	0.137	0.134	0.158	0.150	0.150	0.186	0.244	0.268	0.320	0.355	0.389	0.440	0.454	0.432
27	0.141	0.142	0.165	0.158	0.157	0.189	0.249	0.266	0.309	0.341	0.365	0.407	0.436	0.415

TABLE VII.- CROSSLEVEL AND INTRALEVEL CORRELATION COEFFICIENTS BETWEEN COMPONENTS OF WIND VELOCITY AT WALLOPS ISLAND BASED ON

SERIALLY COMPLETED SAMPLE - Concluded

(m) Annual

Altitude level i, of zon	km,			Cros	slevel a of mer	nd intral idional c	evel cor omponen	relation it for alt	coefficie itude lev	ents (non el j, kn	dimension, of —	onal)		
compon		1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.198	-0.135	-0.168	-0.114	-0.076	-0.049	-0.029	-0.022	-0.019	-0.021	-0.026	-0.025	-0.013	0.017
1	0.407	0.149	0.021	0.043	0.054	0.059	0.057	0.043	0.026	0.006	-0.018	-0.033	-0.034	-0.014
2	0.266	0.154	0.103	0.120	0.128	0.131	0.129	0.120	0.107	0.086	0.061	0.042	0.035	0.052
3	0.140	0.065	0.078	0.111	0.133	0.144	0.153	0.154	0.149	0.133	0.113	0.096	0.090	0.109
4	0.078	0.008	0.042	0.092	0.118	0.141	0.156	0.165	0.164	0.153	0.135	0.121	0.119	0.139
5	0.038	-0.023	0.015	0.070	0.101	0.128	0.153	0.166	0.168	0.161	0.144	0.132	0.131	0.152
6	0.008	-0.043	0.001	0.057	0.089	0.116	0.145	0.168	0.175	0.169	0.154	0.142	0.141	0.161
7	-0.021	-0.061	-0.012	0.045	0.080	0.107	0.135	0.162	0.180	0.179	0.166	0.155	0.152	0.170
8	-0.044	-0.074	-0.020	0.036	0.070	0.098	0.127	0.153	0.176	0.183	0.175	0.165	0.161	0.176
9	-0.056	-0.079	-0.023	0.032	0.064	0.090	0.118	0.145	0.168	0.181	0.180	0.171	0.165	0.176
10	-0.061	-0.068	-0.011	0.040	0.068	0.091	0.115	0.141	0.165	0.179	0.181	0.174	0.166	0.173
11	-0.050	-0.042	0.014	0.059	0.080	0.098	0.118	0.140	0.163	0.176	0.182	0.175	0.160	0.162
12	-0.032	-0.002	0.052	0.091	0.108	0.120	0.135	0.155	0.175	0.187	0.194	0.193	0.178	0.162
13	-0.02	0.014	0.067	0.102	0.114	0.124	0.139	0.158	0.176	0.187	0.192	0.192	0.192	0.177
14	-0.039	0.001	0.051	0.083	0.096	0.109	0.124	0.143	0.162	0.173	0.175	0.172	0.174	0.190
15	-0.043	-0.008	0.036	0.065	0.079	0.093	0.110	0.128	0.146	0.157	0.157	0.152	0.152	0.167
16	-0.042	-0.015	0.029	0.056	0.071	0.085	0.101	0.119	0.136	0.146	0.145	0.141	0.142	0.153
17	-0.039	-0.020	0.027	0.055	0.070	0.084	0.098	0.115	0.131	0.140	0.140	0.138	0.142	0.156
18	-0.043	-0.027	0.013	0.034	0.049	0.066	0.080	0.096	0.110	0.119	0.121	0.122	0.129	0.146
19	-0.040	-0.024	0.012	0.031	0.043	0.061	0.075	0.088	0.101	0.109	0.112	0.114	0.122	0.141
20	-0.032	-0.018	0.006	0.019	0.032	0.047	0.060	0.071	0.082	0.088	0.089	0.091	0.102	0.121
21	-0.03	-0.020	-0.000	0.008	0.017	0.030	0.043	0.055	0.064	0.067	0.068	0.071	0.080	0.095
22	-0.023	-0.014	0.003	0.008	0.016	0.027	0.041	0.051	0.058	0.059	0.058	0.060	0.068	0.079
23	-0.020	-0.012	0.002	0.010	0.019	0.028	0.040	0.049	0.055	0.056	0.054	0.053	0.059	0.067
24	-0.014	-0.010	0.003	0.010	0.020	0.031	0.039	0.047	0.052	0.052	0.049	0.048	0.052	0.059
25	-0.000	-0.005	0.009	0.016	0.024	0.032	0.040	0.048	0.050	0.051	0.047	0.045	0.047	0.053
26	-0.000	-0.005	0.006	0.014	0.020	0.028	0.035	0.042	0.045	0.047	0.044	0.042	0.043	0.045
27	0.003	-0.002	0.007	0.017	0.020	0.028	0.033	0.038	0.039	0.039	0.036	0.034	0.034	0.035

(m) Annual - Concluded

Altitud				Cros							dimensio	nal)		
level i,					of mer	idional c	omponer	t for alt	itude lev	el j, km	ı, of –			
of zon														
compon	ent 14	15	16	17	18	19	20	21	22	23	24	25	26	27
_														
0	0.043	0.066	0.084	0.094	0.100	0.100	0.097	0.089	0.066	0.054	0.043	0.031	0.018	0.008
1	0.011	0.034	0.055	0.071	0.078	0.074	0.064	0.054	0.039	0.032	0.026	0.020	0.016	0.004
2	0.076	0.100	0.117	0.128	0.132	0.132	0.121	0.109	0.089	0.071	0.061	0.054	0.043	0.027
3	0.129	0.151	0.166	0.174	0.173	0.175	0.163	0.152	0.131	0.104	0.088	0.072	0.058	0.042
4	0.157	0-177	0.190	0.200	0.200	0.199	0.186	0.176	0.154	0.125	0.104	0.086	0.071	0.054
5	0.169	0.187	0.200	0.210	0.214	0.216	0.203	0.190	0.165	0.134	0.112	0.096	0.081	0.064
6	0.178	0.192	0.205	0.218	0.222	0.225	0.210	0.195	0.169	0.138	0.116	0.100	0.087	0.070
7	0.183	0.196	0.210	0.222	0.225	0.229	0.215	0.196	0.168	0.139	0.117	0.102	0.091	0.074
8	0.186	0.197	0.209	0.218	0.221	0.222	0.208	0.189	0.161	0.131	0.109	0.094	0.085	0.071
9	0.183	0.193	0.204	0.209	0.210	0.210	0.198	0.180	0.156	0.125	0.104	0.091	0.084	0.070
10	0.178	0.187	0.194	0.199	0.201	0.199	0.189	0.172	0.148	0.119	0.101	0.091	0.085	0.071
11	0.167	0.177	0.183	0.186	0.187	0.184	0.174	0.157	0.136	0.110	0.095	0.086	0.081	0.069
12	0.167	0.179	0.185	0.183	0.180	0.170	0.160	0.142	0.123	0.103	0.089	0.084	0.083	0.074
13	0.162	0.177	0.188	0.187	0.182	0.173	0.163	0.143	0.124	0.105	0.092	0.090	0.089	0.077
14	0.175	0.164	0.184	0.193	0.190	C.186	0.178	0.160	0.141	0.121	0.108	0.109	0.106	0.091
15	0.187	0.177	0.172	0.190	0.198	0.198	0.193	0.178	0.161	0.137	0.120	0.121	0.122	0.104
16	0.172	0.194	0.189	0.178	0.194	0.206	0.205	0.194	0.178	0.158	0.142	0.143	0.141	0.122
17	0.167	0.185	0.217	0.207	0.184	0.207	0.214	0.207	0.194	0.176	0.162	0.165	0.161	0.143
18	0.154	0.164	0.192	0.226	0.203	0.192	0.209	0.214	0.207	0.194	0.183	0.190	0.187	0.166
19	0.149	0.156	0.174	0.202	0.233	0.225	0.198	0.211	0.220	0.214	0.214	0.218	0.214	0.193
20	0.128	0.133	0.148	0.166	0.196	0.244	0.227	0.188	0.207	0.220	0.229	0.234	0.232	0.210
21	0.102	0.104	0.115	0.131	0.152	0.205	0.253	0.225	0.195	0.211	0.231	0.243	0.243	0.223
22	0.086	0.089	0.094	0.107	0.120	0.161	0.209	0.242	0.224	0.198	0.221	0.240	0.243	0.227
23	0.075	0.075	0.080	0.084	0.092	0.123	0.165	0.197	0.234	0.219	0.204	0.218	0.227	0.218
24	0.063	0.062	0.064	0.063	0.068	0.093	0.128	0.151	0.198	0.235	0.227	0.205	0.210	0.211
25	0.052	0.052	0.055	0.053	0.053	0.071	0.094	0.116	0.155	0.201	0.242	0.225	0.200	0.196
26	0.044	0.045	0.047	0.044	0.042	0.053	0.072	0.085	0.116	0.161	0.211	0.231	0.200	0.196
27	0.034	0.034	0.039	0.035	0.034	0.039	0.056	0.064	0.089	0.128	0.174	0.204	0.211	0.207
						22337	22330	55501	0.007	0.120	0.114	0.204	0.224	0.201

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS

[The coefficients were estimated from a serially completed sample of rawinsonde observations made 4 times daily from 1956 to 1964 at Norfolk and Washington stations]

_	_	_
D۵	ri	nd

Time-lag correlation coefficients for -

						·								
						ALTITUD	E LEVEL	. = 0	KM					
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.624	0.377	0.197	0.081	-0.001	-0.045	-0.049	-0.041	-0.016	-0.006	0.014	0.038	0.0280	0.317
FEB.	0.615	0.349	0.152		-0.049	-0.082	-0.074	-0.032	-0.023	-0.014	-0.010	-0.016	0.0142	0.543
MAR.	0.622	0.383	0.222									-0.006	0.0304	0.275
APR.	0.588	0.365	0.222									-0.044	0.0177	0.459
MAY	C.571	0.356	0.229					-0.025					0.9290 0.9493	0.305
JUNE	0.550	0.336	0.259 0.248				0.008			-0.039 -0.025			0.0400	0.196
JULY AUG.	0.489 0.552	C.308	0.240					-0.025					0.0169	0.472
SEPT.	C.610	0.432	0.308				-0.007			-0.045			0.0463	0.126
oct.	0.645	0.461	0.339		0.135			-0.009					0.0271	0.267
NOV.	0.619	0.378	0.213	0.127	0.041	-0.007	-0.023	-0.016	-0.036	-0.041	-0.040	-0.019	0.0176	0.446
DEC.	0.615	0.373	0.220	0.109	C.011	-0.024	-0.040	-0.028	-0.044	-0.039	-0.035	-0.033	0.0207	C•408
ANNUAL	C.592	0.373	0.237	0.154	0.044	-0.013	-0.C27	-0.010	-0.034	-0.041	-0.032	-0.005	C.0170	0.453
Period					т	ime-lag	correlat	ion coefi	ficients f	or -				
						ALTITUD	E LEVEL	= 1	км					
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.731	0.469	0.262	0.124	0.036	-0.005	-0.013	-0.002	0.015	0.054	0.088	0.100	0.0420	C•158
FEB.	0.677	0.353		-0.024						0.020		-0.007	0.0475	0.208
MAR.	0.713	0.431	0.235	0.117				-0.015					0.0257	0.318
APR.	0.715	0.459	0.299	0.189				-0.023					0.0142	0.487
MAY	0.693	0.466	0.322	0.202			-0.003 0.065		-0.001		0.024	0.046	0.0370	0.175
JUNE	0.707 0.659	0.499 0.423	0.390	0.284		0.091			-0.005	-0.028	0.006	0.039	0.0393 0.0498	0.115 0.097
AUG.	0.706	0.492	0.360	0.237	0.103		-0.002			-0.070			0.0349	0.191
SEPT.	C.760	0.560	0.418	0.282	0.143	0.058		-0.013					0.0276	0.234
OCT.	0.784	0.583	0.430	0.308	0.190	0.110		0.043					0.0405	0.094
NOV.	0.744	0.489	C.304	0.174	C.071			-0.017			0.004		0.0490	0.104
DEC.	0.694	0.410	0.198	0.069	-0.010	-0.045	-0.C53	-0.030	-0.017	-0.014	-0.013	-0.010	0.0119	ი∙266
ANNUAL	C.715	0.470	C.3C5	0.183	0.071	0.008	-0.004	0.004	-0.010	-0.018	-0.007	0.003	0.0484	0.421
Period					Ti	me-lag o	correlati	on coeffi	cients fo	or –				
					,	ALTITUD	E LEVEL	= 2	KM					
1	_AG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.750	0.515	0.329	0.197	0.102	0.058	0.039	0.047	0.060	0.084	0.107	0.129	0.0528	0.068
FE8.	0.694	0.402	0.172			-0.047		0.033	0.065	0.067	0.045	0.129	0.0528	0.165
MAR.	0.727	0.477	0.288	0.155	0.069	0.034		-0.006				0.004	0.0480	0.110
APR.	0.723	0.519	0.363	0.260	0.158	0.086	0.048	0.031	0.010	0.000	-0.005		0.0591	0.025
MAY	0.724	0.567	0.460	0.355	0.263	0.204	0.177	0.155	0.122	0.095	0.086	0.076	0.0400	0.031
JUNE	0.746	0.593	0.491	0.402	0.305	0.238	0.194	0.137	0.090	0.051		-0.013	0.0385	0.038
JULY	0.673	0.498	0.398	0.324	0.211	0.156	0.127	0.116	0.075	0.068	0.081	0.085	0.0449	0.046
AUG. SEPT.	C.724 O.756	0.552 0.581	0.447 0.438	0.363 0.320	0.257 0.199	0.194	0.139	0.105	0.068	0.047	0.025	0.017	0.0502	0.028
OCT.	0.792	0.632	0.507	0.395	0.199	0.119	0.057 0.131	0.030 0.085	0.021 0.047	0.016	0.012	0.011	0.0638 0.0355	0.063 0.078
NOV.	0.784	0.585	0.407	0.265	0.162	0.089	0.032			-0.010		0.014	0.0453	0.078
DEC.	0.719	0.471	0.295	0.171	0.071	0.025	0.002	0.005	0.008	0.012		0.019	0.0853	0.055

ANNUAL 0.734 0.533 0.383 0.270 0.170 0.112 0.077 0.062 0.045 0.036 0.029 0.028

0.567

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS — Continued

Period					Tin	ne-lag c	orrelatio	on coeffi	cients fo	r –				
					A	LTITUDE	LEVEL	= 3	KM					
ŧ	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. GCT. NOV. DEC.	0.778 0.719 0.745 0.746 0.766 0.768 0.697 0.747 0.775 0.820 0.814 0.760	0.583 0.470 0.538 0.558 0.614 0.632 0.527 0.590 0.611 0.675 0.633 0.557	0.415 0.267 0.368 0.406 0.508 0.551 0.447 0.509 0.476 0.540 0.456 0.391	0.283 0.129 0.232 0.296 0.418 0.479 0.390 0.420 0.355 0.421 0.317 C.259	0.192 0.051 0.132 0.185 0.323 0.375 0.266 0.310 0.233 0.307 0.201	0.143 0.036 0.077 0.111 0.267 0.291 0.184 0.231 0.157 0.225 0.117 0.094	0.121 0.033 0.057 0.077 0.231 0.244 0.159 0.197 0.097 0.164 0.057	0.114 0.063 0.050 0.050 0.210 0.215 0.157 0.168 0.071 0.121 0.020 0.045	0.033	0.132 0.083 0.067 0.085 0.024 0.056 -0.009 0.030	0.114 0.052 0.010 -0.002 0.119 0.047 0.079 0.070 0.025 0.031 -0.007 0.021	0.119 0.021 0.115 0.061 0.032 0.016 0.006	0.0418 0.0611 0.0667 0.0494 0.0339 0.0396 0.0412 0.0396 0.0529 0.0463 0.0391	0.056 0.059 0.040 0.038 0.030 0.051 0.044 0.020 0.045 0.057 0.096
ANNUAL	0.761	0.582	0.444	0.333	0.227	0.161	0.124	0.107	0.074	0.057	0.047	0.046	0.0470	0.056
Period					Tir	ne-lag c	orrelati	on coeffi	cients fo	r -				
					A	LTITUDE	LEVEL	= 4	KM					
ı	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.	0.799 0.735 0.764 0.778 0.798 0.807 0.731 0.779 0.806 0.838 0.825 0.785	0.613 0.496 0.570 0.602 0.641 0.673 0.575 0.637 0.648 0.643 0.589	0.451 0.310 0.402 0.454 0.529 0.594 0.508 0.550 0.512 0.556 0.468 0.425	0.327 0.192 0.280 0.338 0.440 0.519 0.439 0.477 0.398 0.440 0.322 0.293	0.238 0.116 0.198 0.231 0.349 0.416 0.308 0.363 0.278 0.319 0.203 0.191	0.188 0.077 C.126 0.155 0.279 0.326 0.228 0.280 0.197 0.234 0.119 0.124	0.160 0.056 0.100 0.105 0.242 0.272 0.199 0.230 0.130 0.178 0.061 0.078	0.150 0.070 0.082 0.072 0.216 0.229 0.189 0.196 0.101 0.135 0.021 0.053	0.139 0.081 0.052 0.032 0.173 0.163 0.121 0.137 0.066 0.090 0.095 0.050	0.129 0.074 0.074 0.027 0.066 0.135 0.112 0.094 0.095 0.051 0.061 -0.012 0.048	0.126 0.048 0.019 0.002 0.119 0.073 0.102 0.084 0.040 -0.046 -0.007 0.046	0.129 0.013 0.020 0.006 0.114 0.050 0.138 0.081 0.033 0.040 -0.000 0.052	0.0376 0.0569 0.0556 0.0556 0.0360 0.0346 0.0364 C.0358 0.0466 0.0422 0.0275 0.0516	0.051 0.040 0.025 0.086 0.018 0.042 0.040 0.022 0.042 0.049 0.194 0.030
Period					Tir	ne-lag c	orrelati	on coeffi	cients fo	r –				
					Δ	LTITUDE	LEVEL	= 5	KM					
1	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.	0.808 0.748 C.782 0.793 0.815 0.821 0.756 0.790 0.835 0.830 0.788	0.629 0.516 0.591 0.613 0.672 0.706 0.613 0.651 0.685 0.685 0.641 0.589	0.475 0.333 0.427 0.456 0.553 0.623 0.532 0.571 0.521 0.544 0.462 0.428	0.351 0.216 0.303 0.355 0.459 0.549 0.467 0.505 0.411 0.423 0.325 0.309	0.266 0.141 0.205 0.236 0.371 0.457 0.351 0.293 0.307 0.215 0.210	0.208 0.987 0.149 0.166 0.303 0.373 0.256 0.296 0.223 0.136 0.144	0.174 0.058 0.109 0.110 0.254 0.317 0.223 0.246 0.143 0.161 0.078 0.102	0.159 0.059 0.085 0.069 0.221 0.269 0.1199 0.216 0.123 0.037 0.074	0.142 0.065 0.058 0.043 0.179 0.205 0.142 0.151 0.081 0.093 0.010 0.057	0.131 0.061 0.038 0.023 0.144 0.142 0.109 0.103 0.063 0.067 0.003 0.054	0.126 0.033 0.025 0.004 0.118 0.102 0.128 0.088 0.044 0.044 0.048 0.002 0.044	0.117 -0.003 0.024 0.001 0.105 0.074 0.150 0.091 0.026 0.044 0.002 0.051	0.0366 0.0483 0.0524 0.0649 0.0323 0.0305 0.0338 0.0342 0.0452 0.0425 0.0745 0.0745	0.041 0.060 0.026 0.087 0.037 0.035 0.027 0.040 0.043 0.120 0.023
~ · · · · · · · · · · · · · · · · · · ·	0.171	0.050	U . T 7T	0.300	0.201	0.212	0 103	0.130	0.102	0.019	0.003	0.001	0.0417	0.033

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS - Continued

Period					Т	ime-lag	correlat	ion coef	ficients :	for -				
						ALTITU	DE LEVEL	. = 6	KM .					
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.820												0.0354	0.038
FEB.	0.761											-0.003	0.0465	0.055
MAR.	0.794												0.0533 0.0571	0.037 0.061
APR.	0.797												0.0321	0.006
MAY JUNE	0.831 0.839												0.0288	0.038
JULY	C.772												0.0322	0.031
AUG.	0.797												0.0322	0.018
SEPT.	0.809												0.0397	0.028
OCT.	0.840												0.0414	0.037
NOV.	0.824									0.015	0.010	0.007	0.0616	0.075
DEC.	0.786					0.149	0.104	0.080	0.066	0.059	0.047	0.039	0.0489	0.019
ANNUAL	0.806	0.639	0.505	0.397	0.300	0.229	0.180	0.146	0.111	0.088	0.071	0.060	0.0399	0.025
Period					Ti	me-lag	correlati	on coeffi	icients fo	or -				
					ı	ALT I TUDI	E LEVEL	= 7	KM					
ι	.AG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.822	0.645	0.497	0.379	0.291	0.232	0.198	0.170	0.150	0.140	0.129	0.113	0.0352	0.033
FEB.	0.779	0.554	0.377	0.257	0.172	0.122	0.094	0.086	0.080	0.071		-0.000	0.0432	0.061
MAR.	0.811	0.622	0.459	0.334	0.237	0.174	0.127	0.089	0.057	0.035	0.023	0.024	0.0511	0.039
APR.	0.809	0.619	0.469	0.343	0.241	0.177	0.129	0.077	0.037	0.012		-0.008	0.0501	0.042
MAY	0.839	0.698	0.573	0.471	0.379	0.311	0.260	0.219	0.181	0.144	0.106	0.083	0.0326	0.012
JUNE	0.849	0.735	0.650	0.572	0.482	0.407	0.346	0.293	0.224	0.161	0.121	0.088 0.161	0.0283 0.0304	0.039 0.027
JULY	0.788	0.652	0.569	0.491	0.387	0.305	0.257 0.272	0.225 0.223	0.178	0.131	0.117	0.101	0.0315	0.017
AUG.	0.818	0.689	0.591 0.565	0.505	0.416 0.351	0.337	0.272	0.190	0.145	0.115	0.075	0.052	0.0365	0.024
SEPT. OCT.	0.820	0.674	0.527	0.401	0.292	0.214	0.155	0.121	0.094	0.080	0.062	0.049	0.0418	0.033
NOV.	0.824	0.625	0.447	0.314	0.221	0.154	0.106	0.068	0.043	0.033	0.026	0.016	0.0540	C.048
DEC.	0.796	0.592	0.435	0.315	0.224	0.163	0.118	0.096	0.083	0.077	0.069	0.060	0.0450	0.023
ANNUAL	C.816	0.649	0.513	0.403	0.308	C.240	0.190	0.155	0.121	0.097	0.077	0.061	0.0388	0.022
D					m:									
Period						Ü	orrelatio			r –				
					Al	-TITUDE	LEVEL :	= 81	< M					
L	4G= 6	12	18	24	30	36	42	48	54	60	66	72	AL PHA	RMS
JAN.	0.834	0.651	0.497	0.378	0.295	0.234	0.198	0.167	0.147	0.135	0.125	0.114	0.0354	0.032
FEB.	0.786	0.562	0.390	0.265	0.183	0.136	0.107	0.098	0.087	0.070	0.037 -		0.0422	0.060
MAR.	0.825	0.636	0.469	0.341	0.246	0.187	0.142	0.098	0.063	0.042	0.029	0.027	0.0489	0.038
APR.	0.815	0.624	0.468	0.337	0.239	0.177	0.123	0.067	0.031		-0.002 -		0.0395	0.064
MAY	0.843	0.700	0.573	0.465	0.371	0.300	0.247	0.204	0.169	0.136	0.101	0.076	0.0335	0.015
JUNE	C.848	0.736	0.645	0.565	0.478	0.406	0.346	0.291	0.229	0.171	0.130	0.098	0.0278	0.033
JULY	0.799	0.662	0.575	0.485	0.385	0.306	0.253	0.219	0.173	0.137	0.132	0.128	0.0315	0.016
AUG.	0.823	0.693	0.595	0.503	0.411	0.335	0.269	0.221	0.184	0.144	0.129	0.111	0.0309	0.012
SEPT.	0.845	0.704	0.577 0.521	0.471	0.371 0.290	0.295	0.240 0.151	0.200	0.152	0.117	0.079	0.043 0.055	0.0359 0.0417	0.033 0.032
OCT.	0.840 0.827	0.628	0.521	0.394	0.228	0.165	0.115	0.116	0.053	0.042	0.029	0.014	0.0417	0.045
NOV. DEC.	0.827	0.611	0.448	0.324	0.226	0.174	0.119	0.105	0.091	0.083	0.074	0.070	0.0433	0.026
ANNUAL		0.657	0.518	0.404	0.311	0.244	0.193	0.156	0.123		0.077	0.060	0.0386	0.027

.

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS - Continued

Period					Tin	ne-lag c	orrelatio	n coeffic	cients for	r –				
	ALTITUDE LEVEL = 9 KM													
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.840	0.662	0.508	0.385	0.296	0.233	0.192	0.164	0.148	0.136	0.125	0.114	0.0353	0.032
FEB. MAR.	0.795 0.833	0.575 0.642	0.407 0.482	0.282 0.360	0.194 0.268	0.143	0.116 0.145	0.096 0.100	0.078 0.067	0.060 0.045	0.028	-0.005 0.018	0.0427 0.0492	0.050 0.047
APR.	0.827	0.642	0.486	0.348	0.243	0.168	0.109	0.058	0.027	0.011		-0.000	0.0516	0.055
MAY	0.837	0.693	0.564	0.447	0.347	0.276	0.223	0.183	0.148	0.116	0.087	0.059	0.0359	0.021
JULY	0.850 0.805	0.726 0.665	0.634 0.569	0.546 0.483	0.455	0.379	0.325	0.276	0.221	0.167	0.130	0.097	0.0286	0.025
AUG.	0.821	0.693	0.589	0.495	0.384 0.398	0.294	0.243 0.261	0.203	0.158 0.167	0.129 0.129	0.124	0.123 0.108	0.0324 0.0320	0.016 0.015
SEPT.	0.854	0.715	0.591	0.486	0.385	0.302	0.244	0.191	0.139	0.097	0.057	0.021	0.0320	0.057
OCT.	0.851	0.686	0.537	0.406	0.297	0.210	0.146	0.109	0.080	0.066	0.051	0.046	0.0433	0.046
NOV.	0.843	0.656	0.483	0.347	0.250	0.181	0.132	0.096	0.065	0.043	0.025	0.009	0.0514	0.056
DEC.	0.828	0.628	0.467	0.340	0.249	0.187	0.144	0.118	0.101	0.089	0.077	0.073	0.0417	0.026
ANNUAI	C.832	0.665	0.526	0.410	0.314	0.241	0.190	0.151	0.117	0.091	0.071	0.055	0.0392	0.033
Period														
ALTITUDE LEVEL = 10 KM														
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.848	0.677	0.532	0.412	0.324	0.255	0.210	0.179	0.158	0.143	0.127	0.111	0.0339	0.025
FEB.	0.808	0.598	0.435	0.312	0.219	0.165	0.131	0.104	0.081	0.059		-0.007	0.0415	0.044
MAR.	0.844	0.660	0.505	0.379	0.287	0.216	0.159	0.111	0.078	0.052	0.032	0.021	0.0468	0.048
APR.	0.844	0.672	0.513	0.371	0.262	0.177	0.112	0.065	0.936	0.018	0.011	0.008	0.0575	0.090
YAM BNUL		0.699	0.570 0.610	0.452 0.523	0.347 0.428	0.272 0.349	0.217 0.299	0.174 0.252	0.139 0.202	0.106 0.156	0.079	0.052 0.092	0.0368 0.0301	Ი∙030 Ი∙019
JULY		0.659	0.563	0.478	0.426	0.281	0.229	0.193	0.152	0.122	0.117	0.115	0.0333	0.016
AUG.		0.685	0.576	0.482	0.378	0.304	0.247	0.1.97	0.146	0.116	0.099	0.089	0.0339	0.018
SEPT.		0.720	0.596	0.490	0.391	0.311	0.247	0.190	0.139	0.096	0.055	0.017	0.0388	0.064
OCT.		0.712	0.570 0.513	0.438 0.377	0.322 0.276	0.231	0.163 0.155	0.116 0.118	0.081 0.089	0.059 0.067	0.043	0.032 0.033	0.0435 0.0442	0.063 0.042
DEC.		0.650	0.485	0.361	0.269	0.209	0.169	0.142	0.119	0.106	0.090	0.081	0.0390	0.028
ANNUA		0.677	0.539	0.423	0.323	0.248		0.153	0.118	0.092	0.070	0.054	0.0388	0.037
Period	l					_	correlati			or -				
						ALTITUD	E LEVEL	= 11	KM					
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN	. 0.857	0.689	0.551	0.440	0.350	0.283	0.231	0.193	0.170	0.154	0.140	0.123	0.0322	0.022
FEB	0.820	0.618	0.452	0.324	0.229	0.174	0.139	0.111	0.083			-0.003	0.0407	0.043
MAR													0.0418 0.0510	0.037 0.073
APR MA					0.280 0.358	0.194 0.274							0.0369	0.034
JUN						0.339					0.107	0.077	0.0317	0.026
JUL	Y 0.821	0.669	0.566	0.472	0.365	0.272	0.220	0.187					0.0340	0.016
AUG						0.309								0.025
SEPT														0.075
OC T NOV														0.047
DEC														0.024
ANNU														0.040

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS — Continued

Period	Period Time-lag correlation coefficients for -													
					ı	ALTITUDE	E LEVEL	= 12	KM					
i	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. OEC.	0.865 0.861 0.858 0.855 0.855 0.850 0.836 0.893 0.893 0.893	0.710 0.632 0.707 0.706 0.717 0.715 0.691 0.718 0.768 0.752 0.712	0.583 0.472 0.567 0.564 0.599 0.619 0.583 0.620 0.652 0.652 0.557 0.568	0.478 0.356 0.456 0.437 0.496 0.524 0.485 0.527 0.547 0.509 0.425 0.459	0.389 0.269 0.369 0.329 0.391 0.425 0.377 0.445 0.395 0.395 0.367	0.321 0.211 0.298 0.232 0.300 0.345 0.292 0.334 0.356 0.304 0.246 0.299	0.265 0.166 0.241 0.163 0.237 0.288 0.233 0.276 0.282 0.232 0.193 0.247	0.224 0.133 0.191 0.184 0.241 0.188 0.227 0.220 0.175 0.151	0.192 0.099 0.150 0.073 0.138 0.183 0.140 0.171 0.156 0.124 0.116	0.168 0.074 0.117 0.049 0.108 0.135 0.107 0.121 0.103 0.089 0.093 0.155	0.155 0.044 0.094 0.091 0.092 0.106 0.098 0.099 0.065 0.067 0.070	0.142 9.014 0.077 0.037 0.071 0.080 0.096 0.087 0.031 0.046 0.047	0.0297 0.0457 0.0344 0.0440 0.0347 0.0313 0.0342 0.0320 0.0367 0.0390 0.0320	0.017 0.031 0.023 0.063 0.036 0.029 0.023 0.032 0.075 0.062 0.040
ANNUAL	0.860	0.712	0.584	0.475	0.375	0.295	0.235	0.188	0.144	0.110	0.088	0.069	0.0349	0.039
Period	Time-lag correlation coefficients for -													
	ALTITUDE LEVEL = 13 KM													
ι	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.	0.858 0.826 0.866 0.852 0.856 0.845 0.845 0.845 0.845 0.866 0.861	0.715 0.652 0.732 0.714 0.730 0.722 0.713 0.738 0.789 0.763 0.722 0.717	0.590 0.509 0.612 0.590 0.627 0.638 0.610 0.657 0.683 0.643 0.583 0.595	0.492 0.406 0.513 0.476 0.538 0.553 0.513 0.572 0.579 0.535 0.457 0.500	0.406 0.327 0.432 0.363 0.435 0.444 0.402 0.463 0.475 0.420 0.356 0.416	0.337 0.267 0.361 0.272 0.349 0.360 0.310 0.370 0.385 0.325 0.279 0.349	0.280 0.223 0.296 0.204 0.204 0.305 0.305 0.247 0.308 0.312 0.249 0.221 0.294	0.240 0.188 0.241 0.149 0.225 0.256 0.191 0.254 0.248 0.191 0.174 0.249	0.209 0.147 0.192 0.103 0.168 0.190 0.134 0.190 0.136 0.136 0.208	0.186 0.112 0.158 0.073 0.136 0.136 0.094 0.135 0.094 0.176	0.174 0.079 0.136 0.058 0.115 0.108 0.083 0.106 0.092 0.064 0.082 0.148	0.164 0.053 0.121 0.053 0.091 0.087 0.079 0.091 0.058 0.060 0.120	0.0283 0.0371 0.0293 0.0390 0.0310 0.0304 0.0346 0.0309 0.0361 0.0361 0.0290	0.019 0.012 0.017 0.052 0.033 0.036 0.041 0.067 0.071 0.035 0.007
Period					Tim	e-lag co	rrelatio	n coeffici	lents for	-				
					ı	ALTITUDE	LEVEL	≈ 14	км					
:	1. A G = 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.	0.843 0.813 0.850 0.849 0.855 0.839 0.859 0.859 0.854	0.704 0.625 0.725 0.720 0.755 0.747 0.729 0.738 0.795 0.773 0.773	0.600 0.539 0.619 0.605 0.677 0.677 0.644 0.671 0.702 0.662 0.598 0.592	0.508 0.433 0.533 0.597 0.607 0.607 0.602 0.603 0.551 0.487 0.504	0.433 0.344 0.451 0.378 0.502 0.495 0.495 0.497 0.502 0.441 0.386 0.426	0.368 0.286 0.379 0.273 0.412 0.402 0.347 0.399 0.413 0.344 0.310 0.362	0.314 0.242 0.317 0.194 0.341 0.346 0.287 0.337 0.269 0.245 0.306	0.273 0.208 0.269 0.137 0.289 0.298 0.232 0.291 0.279 0.207 0.193 0.255	0.241 0.174 0.225 0.088 0.232 0.223 0.169 0.220 0.222 0.154 0.146 0.200	0.215 0.139 0.189 0.055 0.194 0.160 0.121 0.157 0.175 0.113 0.111 0.159	0.193 0.111 0.166 0.035 0.167 0.134 0.112 0.129 0.135 0.077 0.080 0.118	0.177 0.085 0.154 0.026 0.148 0.113 0.114 0.103 0.049 0.055 0.088	0.0264 0.0337 0.0270 0.0426 0.0257 0.0272 0.0307 0.0275 0.0271 0.0338 0.0351 0.0302	0.018 0.010 0.006 0.078 0.027 0.041 0.038 0.041 0.050 0.066 0.039 0.019
												0.102		0.0

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS — Continued

Period

Time-lag correlation coefficients for -

ALTITUDE LEVEL = 15 KM														
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.	0.838 0.805 0.847 0.856 0.862 0.861 0.831 0.844 0.876 0.857	0.700 0.641 0.719 0.727 0.780 0.773 0.722 0.739 0.798 0.777 0.722 0.720	0.595 0.519 0.622 0.618 0.711 0.716 0.651 0.679 0.714 0.675 0.598 0.612	0.536 0.514 0.638 0.646 0.582 0.615 0.624 0.570 0.492 0.530	0.431 0.347 0.458 0.403 0.549 0.549 0.508 0.508 0.525 0.466 0.388 0.449	0.375 0.293 0.392 0.304 0.469 0.458 0.373 0.416 0.443 0.382 0.310 0.382	0.325 0.249 0.335 0.223 0.409 0.395 0.323 0.357 0.379 0.310 0.246 0.323	0.284 0.212 0.290 0.165 0.353 0.335 0.282 0.303 0.325 0.247 0.194 0.271	0.175 0.247 0.118 0.288 0.264 0.207 0.234 0.267 0.194 0.139 0.228	0.138 0.217 0.080 0.241 0.196 0.148 0.181 0.219 0.147 0.097	0.197 0.056 0.208 0.157 0.137 0.154 0.179 0.105 0.058 0.137	0.180 0.088 0.172 0.040 0.178 0.129 0.136 0.130 0.146 0.072 0.031 0.103	0.0262 0.0336 0.0255 0.0380 0.0223 0.0245 0.0279 0.0261 0.0239 0.0301 0.0374 0.0283	0.020 0.015 0.009 0.064 0.027 0.047 0.031 0.035 0.055 0.053
ANNUAL	0.852	0.735	0.642	0.557	0.462	0.383	0.323	0.272	0.217	0.171	0.141	0.117	0.0279	0.029
Period	iod Time-lag correlation coefficients for -													
	ALTITUDE LEVEL = 16 KM													
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. APR. JUNE JULY AUG. SEPT. OCT. NOV. DEC.		0.680 0.628 0.691 0.693 0.767 0.746 0.691 0.715 0.781 0.764 0.710	0.572 0.518 0.591 0.595 0.704 0.700 0.631 0.659 0.712 0.677 0.598 0.598	0.489 0.433 0.518 0.508 0.634 0.640 0.553 0.593 0.585 0.495 0.516	0.421 0.365 0.450 0.406 0.554 0.546 0.442 0.492 0.537 0.491 0.395 0.447	0.370 0.307 0.397 0.316 0.480 0.468 0.351 0.420 0.458 0.411 0.315 0.393	0.322 0.257 0.342 0.242 0.414 0.403 0.280 0.362 0.397 0.340 0.248 0.345	0.284 0.221 0.300 0.138 0.360 0.346 0.236 0.334 0.283 0.198 0.297	0.247 0.189 0.265 0.140 0.299 0.278 0.177 0.238 0.285 0.224 0.147 0.256	0.211 0.157 0.239 0.098 0.254 0.221 0.139 0.194 0.239 0.175 0.100 0.216	0.186 0.128 0.203 0.072 0.215 0.176 0.119 0.159 0.200 0.130 0.059 0.175	0.168 0.103 C.180 0.053 0.181 0.139 0.109 0.121 C.168 C.092 0.031 0.142	0.0268 0.0323 0.0253 0.0358 0.0220 0.0237 0.0305 0.0263 0.0228 0.0277 0.0371 0.0263	0.026 0.025 0.025 0.025 0.040 0.033 0.033 0.026 0.042 0.052 0.014
Period	l				Ti		correlati		cients fo	or –				
	LAG≈ 6	12	18	24	30	36	E LEVEL	48	54	60	66	72	AL PH A	RMS
JAN FEB MAR APR JUN JUL AUG SEPT OCT NOV DEC	. 0.765 . 0.800 . 0.776 . 0.822 E 0.774 . 0.735 . 0.826 . 0.806 . 0.836	0.593 0.656 0.656 0.654 0.745 0.636 0.636 0.636 0.746 0.736 0.736 0.686 0.692	3 0.481 5 0.555 6 0.571 0.681 8 0.675 5 0.583 0 0.627 6 0.693 0 0.666 0 0.587 0 0.581	0.412 0.494 0.492 0.615 0.615 0.501 0.560 0.622 0.593 0.483 0.503	0.532 0.525 0.395 0.464 0.532 0.497 0.391	0.281 0.376 0.314 0.467 0.466 0.326 0.403 0.470 0.432 0.312 0.394	0.229 0.318 0.243 0.404 0.403 0.261 0.341 0.370 0.239 0.349	0.195 0.274 0.199 0.351 0.343 0.196 0.292 0.353 0.319 0.302	0.162 0.245 0.145 0.301 0.282 0.133 0.235 0.302 0.252 0.140	0.141 0.214 0.114 0.256 0.237 0.112 0.190 0.259 0.203 0.107	0.224 0.160 0.079 0.186	0.106 0.166 0.063 0.182 0.156 0.061 0.124 0.196 0.120 0.053 0.157	0.0263 0.0343 0.0270 0.0351 0.0224 0.0238 0.0353 0.0274 0.0220 0.0257 0.0357 0.0260	0.036 0.033 0.033 0.022 0.040 0.045 0.045 0.045 0.032 0.033 0.023

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS - Continued

											on and a			
Danis					THE	no log o	orrelatio	on gooffi	aionta fo					
Period										· –				
					A	LTITUDE	LEVEL	= 18	KM					
ι	AG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.803	0.644	0.545	0.477	0.416	0.366	0.327	0.290	0.251	0.223	0.194	0.176	0.0267	0.041
FEB.	0.745	0.561	0.447	0.384	0.329	0.282	0.235	0.199	0.164	0.153	0.153	0.142	0.0333	0.057
MAR.	0.763	0.619	0.531	0.472	0.403	0.356	0.300	0.252	0.211	0.189	0.171	0.169	0.0287	0.043
APR.	0.743	0.610	0.537	0.459	0.381	0.308	0.245	0.202	0.160	0.124	0.092	0.076	0.0347	0.028
MAY	0.789	0.726	0.669	0.615	0.534	0.477	0.412	0.363	0.309	0.273	0.227	0.203	0.0219	0.031
JUNE	0.708	0.641	0.623	0.577	C.494	0.443	0.390	0.335	0.282	0.241	0.190	0.161	0.0247	0.057
JULY	0.598	0.519	0.510	0.441	0.324	0.257	0.202	0.156	0.091	0.033	0.033	0.062	0.0440	0.069
AUG.	0.645	0.561	0.557	C.500	0.390	0.333	0.301	0.287	0.205	0.156	0.139	0.133	0.0304	0.070
SEPT.	0.782	0.715	0.667	0.603	0.527	0.472	0.416	0.367	0.313	0.278	0.243	0.220	0.0216	0.033
OCT.	0.786	0.707	0.645	0.589	0.503	0.451	0.385	0.339	0.287	0.240	0.193	0.161	0.0240	0.031
NOV.	0.768	0.635	0.539	0.459	0.378	0.321	0.262	0.219	0.172	0.141	0.110	0.086	0.0330	0.021
DEC.	0.818	0.684	0.580	0.499	0.447	0.408	0.360	0.314	0.270	0.229	0.192	0.165	0.0255	0.030
ANNUAL	0.746	0.635	0.571	0.506	0.427	0.373	0.320	0.277	0.226	0.190	0.161	0.146	0.0281	0.045
Period					Ti	me-lag	correlati	on coeff	icients f	or –				
						- D								
	ALTITUDE LEVEL = 19 KM													
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.776	0.609	0.505	0.446	0.393	0.353	0.314	0.286	0.260	0.241	0.204	0.180	0.0271	0.061
FEB.	0.738	0.557	0.448	0.388	0.331	0.285	0.244	0.226	0.205	0.181	0.156	0.134	0.0322	0.064
MAR.	0.742	0.599	0.510	0.456	C.390	0.343	0.301	0.270	0.223	0.2(4	0.184	0.178	0.0284	0.057
APR.	0.708	0.602	0.542	0.472	0.406	0.355	0.303	0.255	0.216	0.184	0.151	0.132	0.0296	0.050
MAY	0.716	0.663	0.631	0.560	0.482	0.446	0.389	0.326	0.286	0.255	0.211	0.186	0.9240	0.052
JUNE	0.613	0.553	0.555	0.516	0.433	0.381	0.350	0.309	0.254	0.207	0.159	0.170	0.0276	0.087
JUL Y	0.477	0.403	0.401	0.371	0.253	0.173	0.154	0.143		-0.001	0.001	C.056	0.0488	0.095
AUG.	0.537	0.444	0.471	0.434	0.335	0.284	0.251	0.242	0.190	0.140	0.132	0.146	0.0337	0.109
SEPT.	0.749	0.685	0.653	0.594	0.521	0.470	0.413	0.384	0.329	0.286	0.256	0.224	0.0216	0.047
OCT.	0.761	0.680	0.632	0.567	0.493	0.450	0.396	0.355	0.304	0.265	0.223	0.199	0.0230	0.042
NOV.	0.745	0.607	0.517	0.449	0.377	0.327	0.275	0.236	0.194	0.163	0.139	0.109	0.0315	0.038
DEC.	0.820	0.678	0.570	C • 4 99	0.465	0.433	0.391	0.351	0.298	0.254	0.218	0.189	0.0239	0.042
ANNUAL	0.698	0.590	0.536	0.479	0.406	0.358	0.315	0.282	0.236	0.198	0.169	0.159	0.0284	C.067
Period	1				т	'ime-lag	correla	tion coef	ficients	for -				
101100	-				_	Ū								
						ALTITUL	E LEVEL	= 20	KM					
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	Δίρης	RMS
JAN.	0.769	0.590	0.484	0.428	0.375	0.346							0.0275	0.070
FEB.	0.715	0.547	0.467	0.411	0.358	0.317							0.0311	0.066
MAR.	0.719												0.0276	0.071
APR.	0.662												0.0289	0.075
MAY	0.642												0.0259	0.084
JUNE	0.529												0.0315	0.117
JULY	0.371									-0.027			0.0507	C.142
AUG.	0.440												0.0402	0.136
SEPT.	0.669												0.0220	0.077
OCT.	0.721												0.0213	0.062
NOV.	0.738												0.0268 0.0203	0.057
DEC.	C.818	0.697	0.607	0.553	0.512	0.419	0.445	0.411	0.000	0.324	U • Z 0 0	∪ • ∠ ⊃8	U+UZU3	0.049

0.0284

0.049

0.094

DEC.

0.607

0.553

0.479

ANNUAL 0.649 0.543 0.505 0.462 0.387 0.351 0.313 0.291 0.242 0.206 0.186 0.181

0.445

0.697

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS - Continued

Period

Time-lag correlation coefficients for -

ALTITUDE LEVEL = 21 KM

	ALTITUDE LEVEL = 21 KM													
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	PMS
JAN.	G.788	0.639	0.517	0.448	0.393	0.345	0.313	0.287	0.257	0.235	0.211	0.194	0.0268	0.056
FEB.	0.716	0.544	0.450	0.407	0.347	0.320	0.276	0.258	0.220	0.178	0.155	0.143	0.0310	0.071
MAR.	0.694	0.584	0.512	0.457	0.398	0.357	0.314	0.300	0.271	0.250	0.228	0.204	0.0266	0.080
APR.	0.667	0.566	0.511	0.477	0.411	0.385	0.334	0.312	0.290	0.257	0.228	0.223	0.0258	0.089
MAY	0.588	0.522	0.498	0.464	0.407	0.362	0.311	0.299	0.251	0.223	0.179	0.184	0.0283	0.101
JUNE	0.485	0.404	0.419	0.433	0.317	0.275	0.268	0.280	0.193	0.137	0.154	0.179	0.0333	0.135
JULY	0.300	0.198	0.253	0.278	0.127 0.217	0.080	0.064 0.173	0.137 0.237	0.042	-0.027 0.089	0.005 0.077	0.121 0.150	0.0545	0.165
AUG. SEPT.	0.387 0.622	0.3C7 0.577	0.319 0.550	0.347 0.526	0.447	0.198 0.424	0.173	0.354	0.296	0.089	0.231	0.150	0.0422 0.0243	0.155 0.095
OCT.	0.704	0.663	0.630	0.596	0.524	0.516	0.457	0.427	0.373	0.355	0.299	0.284	0.0196	0.074
NOV.	0.722	0.633	0.558	0.514	0.455	0.425	0.358	0.329	0.288	0.264	0.233	0.205	0.0244	0.063
DEC.	0.837	0.709	0.625	0.579	0.542	0.506	0.469	0.436	0.395	0.358	0.321	0.286	0.0187	0.049
ANNUAL	0.626	0.529	0.487	0.461	0.382	0.349	0.309	0.305	0.249	0.216	0.193	0.201	0.0281	0.108
Period					Ti	me-lag o	correlati	on coeffi	cients fo	or –				
	Time-lag correlation coefficients for — ALTITUDE LEVEL = 22 KM													
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
		•-												
		0 (5)	0 5/5	0.468	0.407	0.365	0.334	0.316	0.278	0.252	0.229	C.208	0.0253	0.053
JAN.	0.811	0.654 0.559	0.545 0.473	0.400	0.343	0.303	0.259	0.242	0.216	0.175	0.152	0.135	0.0315	0.063
FEB. MAR.	0.714	0.575	0.506	0.465	0.422	0.389	0.361	0.339	0.307	0.295	0.265	0.249	0.0243	0.094
APR.	0.683	0.577	0.520	0.495	0.440	0.416	0.372	0.363	0.340	C.315	0.285	0.281	0.0230	0.100
MAY	0.569	0.516	0.465	0.444	0.380	0.363	0.318	0.320	0.264	0.222	0.189	0.208	0.0281	0.114
JUNE	0.509	0.399	0.386	0.387	0.293	0.255	0.252	0.277	0.200	0.173	0.165	C.185	0.0333	0.138
JUL Y	0.287	0.146	0.186	0.247	0.114	0.087	0.081	0.169		-0.010	0.031	0.127	0.0515	0.191
AUG.	0-410	0.299	0.291	0.330	0.219	0.201	0.178	0.218	0.123	0.100	0.087	0.165 0.257	0.0415 0.0247	0.156 0.110
SEPT.	0.594	0.549	0.523	0.503	0.420	0.418	0 • 355 0 • 488	0.357	0.281	0.283	0.242	C.325	0.0180	0.071
OCT.	0.733 0.736	0.677 0.652	0.640 0.575	0.613 0.529	0.550 0.467	0.532	0.378	0.342	0.292	0.276	0.245	0.227	0.0234	0.059
DEC.	0.838	0.714	0.619	0.567	0.530	0.499	0.480	0.462	0.427	0.392	0.352	0.321	0.0179	0.061
	. 0 622	C 524	0.478	0.455	0.382	0.356	0.321	0.322	0.264	0.238	0.215	0.224	0.0271	0.114
ANNUA	L 0.632	G.526	0.476	0.433	0.502	0.556	0.321	(1. 322	C. 204	0.42.30	0.217	(7.6.2.7	0	0.11
. .	•				_									
Perio	a				T	ime-lag	correlat	ion coeff	icients i	for –				
						ALTITUD	E LFVEL	= 23	KM					
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.				0.512	0.459	0.416	0.378	0.351	0.312	0.283	0.254	0.236	0.0229	0.048
FEB.				C.430	0.374	0.331	0.303	0.270	0.223		0.175		0.0295	0.067
MAR.				0.509	0.470	0.443	0.410	0.380	0.343				0.0217	0.076
APR. MAY				0.509 0.448	0.459	0.440			0.342				0.0222	0.106
JUNE				0.448	0.391	0.365			0.250 0.218				0.0280	0.104
JULY				0.225	0.098	0.083			0.218		0.162		0.0321 0.0610	0.127 0.154
AUG.				0.320	0.213	0.200		0.238					0.0405	0.154
SEPT.	0.597	0.555	0.505	0.478	0.398	0.404		0.340				0.237	0.0258	0.107
OCT.				0.597	0.543	0.522	0.482	0.455	0.404	0.378			0.0182	0.072
NOV.				0.559	0.499	0.460		0.360	0.302			0.250	0.0221	0.056
DEC.	0.850	0.721	0.626	0.571	0.536	0.512	0.489	0.467	0.432	0.400	0.369	0.343	0.0173	0.061
ANNUA	L 0.651	0.542	0.484	0.463	0.396	0.372	0.338	0.334	0.274	0.250	0.223	0.231	0.0262	0.116

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS - Continued

Period Time-lag correlation coefficients for -														
	ALTITUDE LEVEL = 24 KM													
t	_AG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC.	0.839 0.753 0.779 0.707 0.629 0.569 0.472 0.602 0.756 0.786	0.704 0.594 0.658 0.621 0.554 0.449 0.208 0.328 0.541 C.680 0.677	0.608 0.500 0.570 0.583 0.489 0.168 0.282 0.494 0.633 0.616 0.624	0.547 0.444 0.534 0.552 0.469 0.374 0.197 0.297 0.465 0.603 0.581 0.579	0.490 0.386 0.496 0.481 0.405 0.337 0.105 0.215 0.407 0.545 0.517	0.445 0.349 0.469 0.465 0.377 0.309 0.094 0.208 0.403 0.522 0.480 0.530	0.405 0.319 0.427 0.425 0.347 0.110 0.184 0.334 0.477 0.427 0.510	0.367 0.282 0.411 0.415 0.326 0.268 0.140 0.196 0.341 0.451 0.385 0.478	0.331 0.235 0.373 0.377 0.270 0.227 0.072 0.129 0.275 0.400 0.334 0.441	0.300 0.213 0.348 0.345 0.244 0.210 0.058 0.111 0.261 0.383 0.319 0.407	0.281 0.190 0.321 0.315 0.221 0.194 0.026 0.092 0.222 0.351 0.294 0.379	0.256 0.167 0.293 0.316 0.224 0.208 0.068 0.110 0.228 0.328 0.270 0.357	0.0214 0.0281 0.0202 0.0204 0.0263 0.0307 0.0568 0.0419 0.0260 0.0181 0.0266 0.0168	0.041 0.060 0.073 0.089 0.099 0.126 0.148 0.137 0.108 0.051
ANNUAL	0.676	0.561	0.498	C.470	0.411	0.387	0.353	0.338	0.289	0.267	0.240	0.236	0.0253	0.112
Period	eriod Time-lag correlation coefficients for -													
	ALTITUDF LEVEL = 25 KM													
1	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NGV. DEC.	0.863 0.778 0.803 C.757 0.683 0.650 0.434 0.519 C.630 C.770 0.809 0.867	0.743 0.627 0.679 0.667 0.598 0.513 0.244 0.370 0.549 0.703 0.738 0.593	0.649 0.535 0.597 0.603 0.532 0.445 0.168 0.294 0.504 0.635 0.635 0.640	0.584 0.473 0.555 0.576 0.502 0.410 0.175 0.302 0.480 0.595 0.595 0.597 0.590	0.528 0.399 0.512 0.519 0.450 0.388 0.099 0.245 0.405 0.541 0.542 0.566	0.487 0.348 0.475 0.489 7.421 0.366 0.103 0.240 0.395 0.513 0.500 0.552	0.446 0.314 0.449 0.454 0.380 0.318 0.105 0.202 0.330 0.476 0.448 0.531	0.406 0.284 0.433 0.439 0.349 0.296 0.109 0.199 0.449 0.409 0.499	0.365 0.247 0.396 0.394 0.297 0.249 0.049 0.149 0.412 0.356 0.463	0.334 0.211 0.374 C.358 0.269 0.233 0.041 0.139 0.247 0.327 C.429	0.308 0.199 0.354 0.329 0.257 0.204 0.017 0.108 0.218 0.361 0.296 0.397	0.280 0.172 0.327 0.306 0.258 0.200 0.030 0.131 0.214 0.330 0.267 0.369	0.0193 0.0275 0.0189 0.0192 0.0238 0.0281 0.0617 0.0390 0.0264 0.0179 0.0159	0.037 0.046 0.071 0.071 0.086 0.103 0.116 0.097 0.066 0.042 0.060
Period					Tir	me-lag c	orrelatio	on coeffi	cients fo	r –				
					1	ALT I TUDE	E LFVEL	= 26	км					
	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN. FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. NOV. DEC.	0.885 0.816 0.836 0.789 0.731 0.514 0.584 0.674 0.880 0.844 0.883	0.782 0.678 0.712 0.685 0.624 0.590 0.313 0.389 0.563 0.699 0.741 0.760	0.698 0.577 0.633 0.608 0.555 0.507 0.215 0.306 0.505 0.669 0.669	0.640 0.507 0.591 0.571 0.517 0.469 0.182 0.287 0.478 0.599 0.619 0.597	0.582 0.434 0.543 0.517 0.470 0.423 0.122 0.219 0.406 0.5548 0.570 0.557	0.531 0.379 0.503 0.477 0.428 0.386 0.115 0.203 0.380 0.531 0.525 0.538	0.485 0.336 0.470 0.443 0.383 0.344 0.103 0.191 0.326 0.508 0.471 0.519	0.443 0.298 0.445 0.421 0.356 0.311 0.076 0.181 0.306 0.481 0.421 0.493	0.396 0.265 0.415 0.376 0.310 0.272 0.036 0.147 0.275 0.447 0.378 0.458	0.356 0.229 0.389 0.351 0.286 0.242 0.024 0.132 0.263 0.418 0.340 0.431	0.320 0.208 0.364 0.314 0.258 0.215 0.004 0.129 0.240 0.377 0.306 0.404	0.287 0.175 0.342 0.296 0.296 0.194 -0.006 0.138 0.224 0.354 0.277 0.381	0.0176 0.0257 0.0177 0.0196 0.0229 0.0261 0.0572 0.0392 0.0259 0.0168 0.0186	0.015 0.031 0.057 0.060 0.072 0.073 0.093 0.117 0.089 0.067 0.029
ANNUAL	0.190	0.028	U . J40	0.000	U. TT 7	0.710	0.302	0.000	0.017	3 - 2 - 3 - 3		0.711	3 - 3 L 3 L	3.072

TABLE VIII.- TIME-LAG CORRELATION COEFFICIENTS FOR MONTHLY AND ANNUAL PERIODS AT WALLOPS ISLAND FOR SELECTED ALTITUDE LEVELS - Concluded

Period

Time-lag correlation coefficients for -

ALTITUDE LEVEL = 27 KM

1	LAG= 6	12	18	24	30	36	42	48	54	60	66	72	ALPHA	RMS
JAN.	0.904	C.815	0.732	0.667	0.608	0.556	0.506	0.460	0.412	0.369	0.325	0.284	0.0167	0.008
FEB.	0.839	0.702	0.592	0.504	0.425	0.368	0.320	0.280	0.246	0.210	0.183	0.162	0.0267	0.017
MAR.	0.853	C.737	0.653	0.608	0.559	0.514	0.477	0.446	0.416	0.383	0.358	0.337	0.0174	0.045
APR.	0.824	0.705	0.626	0.568	0.513	0.468	0.433	0.404	0.371	0.338	0.314	0.286	0.0197	0.048
MAY	0.766	0.655	0.579	0.524	0.476	0.442	0.401	0.373	0.343	0.311	0.287	0.273	0.0216	0.066
JUNE	0.753	0.610	0.516	0.463	0.397	0.353	0.322	0.288	0.247	0.220	0.203	0.186	0.0272	0.059
JULY	0.587	0.352	0.238	0.190	0.133	0.090	0.073	0.064	0.033	0.006	-0.002	-0.017	0.0491	0.107
AUG.	0.647	0.447	0.346	C.301	0.255	0.235	0.219	0.189	0.158	0.153	0.139	0.140	0.0367	0.101
SEPT.	0.721	0.599	0.536	0.491	0.452	0.412	0.371	0.355	0.334	0.310	0.284	0.280	0.0228	0.088
OCT.	0.832	0.730	0.660	0.613	0.567	0.537	0.507	0.478	0.445	0.413	0.381	0.349	0.0165	0.053
NOV.	0.881	0.786	0.714	0.659	0.610	0.559	0.508	0.459	0.410	0.365	0.325	0.289	0.0169	0.016
DEC.	0.892	0.774	0.673	0.602	0.551	0.522	0.502	0.479	0.448	0.419	0.387	0.361	0.0162	0.047
ANNUAL	0.792	0.659	0.572	C.516	0.462	0.421	0.386	0.356	0.322	0.291	0.265	0.244	0.0226	0.079

FIRST CLASS MAIL

056 031 45 51 365 58120 00303 NIR FORDS LITERALS CABURAT RYPARALY KIRTLA OF THE FORCE DASE, IT A MEXICO 8/1

ATT OF SOME OF A STATE OF A COLOR OF A CONTROL TRANS

POSTMASTER: If Undeliverable (Section 15 Postal Manual) Do Not Ren.

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546