Haorui Zhang

CS 453

Assignment 5

1.

- a. Each vertex in G has degree of 4, and G is an even graph. Also, since every vertex has a path connect to every other vertex, it is a connected graph. Based on the theorem, G admits a Euler circuit. This means G is Eulerian.
- b. To prove that G is Hamiltonian, we need to show that there is a Hamiltonian cycle in G. Here is the order of vertices in cycle V_{ham} : [00, 01, 02, 12, 11, 21, 22, 20, 10, 00]. Therefore, G is Hamiltonian.

2.

- a. If $n \geq 3$ or $q \geq 3$, then each vertex in $P_{n,q}$ is not guaranteed to be a connected even graph when some vertices have odd degree. Since only the connected even graph can admit the Euler circuit, $P_{n,q}$ does not contain the Euler circuit, and therefore, not Eulerian graph. For instance, both $P_{3,2}$ and $P_{2,3}$ contains two odd vertices.
- b. To be a Hamiltonian graph, the graph must contain a Hamiltonian cycle. For $P_{2,q}$, $q \ge 2$, there is at least one Hamiltonian cycle. For instance:

Then a valid Hamiltonian cycle would be: [01,11, 21, 31, ... n1, n2, ... 32, 22, 12, 02, 01], and this kind of cycle exists in every $P_{2,q}$ graph. Therefore, $P_{2,q}$, $q \ge 2$ is a Hamiltonian graph.

- c. Graph $P_{4,4}$ looks like this: A Hamilton cycle would be [01, 11, 21, 31, 32, 22, 12, 02,01]. Therefore, $P_{4,4}$ is a Hamiltonian graph.
- d. Based on the given graph, red vertices have no direct edge connection to blue nodes. This means $P_{3,3}$ is a bipartite graph. Based on the property of the bipartite graph, the graph can not contain cycles with odd number of vertices. Since $P_{3,3}$ has odd number of vertices. It means there is no cycle that covers all vertices in $P_{3,3}$, and therefore, $P_{3,3}$ has no Hamilton cycle. So $P_{3,3}$ is not Hamiltonian.
- e. If n and q are both odd, then $P_{n,q}$ can only contain odd vertices. By using prove from the previous problem, $P_{n,q}$ is also a bipartite graph contains odd number of vertices and therefore, is not Hamiltonian.

3.

a.
$$K' = K$$
, $M' = M - 1$, $N' = N$
 $K' = N' - M'$
Replace K' , N' and M' with K , N , and M :
 $K = N - M + 1$

b.
$$K' = K, M' = M-\ell, N' = N.$$
 $N' = M' + K'$ Replace K', N' and M' with K, N and M : $N = (M-\ell) + K$

- c. Skipped
- d. 2
- e. 6