SISTEM DE MONITORIZARE A CALITATII AERULUI

Autor: Mihai-Octavian Coposescu

Coordonator: Prof. Dr. Ing. Zoltan Francisc BARUCH

Continutul prezentarii

- Contextul proiectului
- Obiectivele proiectului
- Solutia aleasa
- Proiectarea sistemului
- Implementarea solutiei
- Teste si rezultate
- Concluzii
- Bibliografie

Contextul Proiectului

Cum ne afecteaza calitatea aerului?

90% din timp il petrecem in spatii inchise...

Obiectivele proiectului

Masurarea parametrilor cheie de calitate a aerului.

Citirea parametrilor in timp real.

Citirea parametrilor istorici.

Oferirea unei interfete intuitive si usor de utilizat.

Solutia aleasa

- Un sistem de monitorizare a calitatii aerului avand caracteristicile:
 - Senzori pentru esantionarea parametrilor de calitate a aerului:
 - Temperatura, Umiditate, VOC, PM1.0, PM2.5, PM4.0, PM10.0, TPS
 - Conexiune Wi-Fi in banda de frecventa 2.4GHz
 - Broker MQTT pentru datele in timp real
 - Baza de date MongoDB pentru datele istorice
 - Server RESTful pentru accesul la baza de date
 - Aplicatie Android reprezentand interfata cu utilizatorul

Proiectarea sistemului 1

Proiectarea sistemului 2

Proiectarea sistemului 3

Diagrama de clase a aplicatiei Android

- Modulul senzor:
 - Placa de dezvoltare ArtyZ7
 - Senzori pentru esantionarea parametrilor de calitate a aerului:
 - Texas Instruments HDC1080 pentru temperatura si umiditate
 - Sensirion SPS30 pentru particulele in suspensie
 - Sensirion SGP40 pentru compusii organici volatili
 - Controller de retea ATWINC1500
 - Esantionarea periodica a parametrilor
 - Transmiterea parametrilor catre Brokerul MQTT

- Broker MQTT:
 - Am utilizat Brokerul MQTT Mosquitto
 - Exemplu topic: "readings/F8F005ADB2A9/airQ1"
 - Subscriber wildcard pentru interceptarea mesajelor de la senzori
 - "readings/#"
 - Transmiterea mesajelor interceptate catre serverul RESTful
 - Salvarea mesajelor in baza de date

```
"Temperature" : 29.468,
"Humidity" : 59.301,
"PM1.0" : 30.597,
"PM2.5" : 32.356,
"PM4.0" : 32.356,
"PM10.0" : 32.356,
"TPS" : 446,
"VOCIndex" : 316
}
Formatul datelor
```

- Baza de date:
 - Am utilizat baza de date MongoDB
 - Colectii de tip serii in timp
 - Datele sunt salvate in documente
 - O colectie este formata din mai multe documente
 - MongoDB structureaza automat datele in Buckets

```
timestamp: ISODate('2024-08-16T13:28:41.849Z'),
   metadata: { sensorMAC: 'F8F005ADB2A9', type: 'airQl' },
   'PM2.5': 19.96,
   _id: ObjectId('66bf5409878dda90726c34a2'),
   'PM1.0': 18.875,
   VOCIndex: 100,
   TPS: 418,
   'PM4.0': 19.96,
   Humidity: 56.689,
   Temperature: 29.75,
   'PM10.0': 19.96
}
```

- Serverul RESTful:
 - Am utilizat biblioteca Flask
 - Definire rute de intrare in server (adrese URI) (Rute)
 - Validarea datelor care intra si care ies din server (Controller)
 - Definire resurse specifice fiecarei adrese URL (Model)
 - Formatare date raspuns (View)
 - Marcaj temporal UTC

- Aplicatie Android:
 - Pagina principala prezinta o lista a senzorilor accesati
 - Selectarea unui senzor deschide pagina de vizualizare a parametrilor
 - Selectarea oricarui parametru din lista deschide pagina de grafice
 - Mentine o conexiune MQTT cu Brokerul
 - Realizeaza cereri HTTP pentru afisarea graficelor
 - Datele senzorilor instalati sunt salvate in memoria telefonului

Variatia mediului la care sunt expusi senzorii

> Variatia temperaturii

Variatia particulelor in suspensie

Masurarea consumului senzorul<u>ui</u>

150 mA/h

Scalabilitatea sistemului

20 de senzori simulati

- Latenta sistemului
 - Retea de 21 de senzori
 - T_timp_real = 1.624 secunde
 - T_istoric_10m = 134 milisecunde
 - T_istoric_6h = 634 milisecunde
 - T_istoric_1d = 1.556 secunde
 - T_db = 1.379 secunde

Concluzii

• Contributii personale:

- Integrarea si imbunatatirea driverului Paho MQTT embedded
- Integrarea controllerului de retea ATWINC1500 cu procesorul Zynq 7000
- Structurarea datelor in baza de date pentru performante optime
- Raportarea a 2 parametrii de calitate a aerului mai putin uzuali
 - PM4.0 si TPS

Bibliografie

- W. Stallings, Data and Computer Communications, 8th ed. Pearson Education, 2007.
- M. Grinberg, Flask Web Development, Developing Web Applications with Python, 2nd ed. O'Reilly Media, 2018.
- MQTT Version 3.1.1, OASIS Standard, 29 October 2014.
 [Online]. Available:http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
- P. Done, Practical MongoDB Aggregations. Packt, 2023.

Multumesc pentru atentie!