

WHAT IS CLAIMED

1. Compounds of formula (I):

wherein:

R₁ is hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, or C₁-C₃ perfluoroalkyl, wherein the alkyl and cycloalkyl groups may be optionally substituted by halogen, -CN, C₁-C₆ alkoxy, -OH, -NH₂, or -NO₂;

10

R₂ is hydrogen, C₁-C₈ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, thienyl, CH₂-thienyl, furanyl, CH₂-furanyl, oxazoyl, CH₂-oxazoyl, phenyl, benzyl, or CH₂-naphthyl; wherein the alkyl group and the rings of the cycloalkyl, thienyl, furanyl, oxazoyl, phenyl, benzyl, and naphthyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, -O-C₁-C₃ perfluoroalkyl, -S-C₁-C₃ perfluoroalkyl, C₁-C₃ alkoxy, -OCHF₂, -CN, -COOH, -CH₂CO₂H, -C(O)CH₃, -C(O)OR₇, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

15

R₃ is hydrogen, halogen, C₁-C₆ alkyl, C₁-C₃ perfluoroalkyl, C₁-C₆ alkoxy, C₃-C₆ cycloalkyl, or -CH₂-C₃-C₆ cycloalkyl;

20

R₄ is C₃-C₈ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, thienyl, CH₂-thienyl, furanyl, oxazoyl, phenyl, benzo[b]furan-2-yl, benzo[b]thien-2-yl, benzo[1,3]dioxol-5-yl, or naphthyl; wherein the alkyl group and the rings of the cycloalkyl, thienyl, furanyl, oxazoyl, phenyl, benzofuranyl, benzothienyl, and naphthyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, -O-C₁-C₃ perfluoroalkyl, -S-C₁-C₃ perfluoroalkyl, C₁-C₃ alkoxy, -OCHF₂, -C(O)CH₃, -C(O)OR₇, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

- R_5 is C_1-C_8 alkyl, C_3-C_6 cycloalkyl, $-CH_2-C_3-C_6$ cycloalkyl, pyridinyl, $-CH_2$ -pyridinyl, thienyl, CH_2 -thienyl, furanyl, CH_2 -furanyl, oxazoyl, CH_2 -oxazoyl, phenyl, benzyl, benzo[*b*]furan-2-yl, benzo[*b*]thien-2-yl, benzo[1,3]dioxol-5-yl, naphthyl, CH_2 -naphyl, 9*H*-fluoren-1-yl, 9*H*-fluoren-4-yl, 9*H*-fluoren-9-yl, 9-fluorenone-1-yl, 9-fluorenone-2-yl, 9-fluorenone-4-yl, or CH_2 -9*H*-fluoren-9-yl; wherein the alkyl group and the rings of the cycloalkyl, pyridinyl, thienyl, furanyl, oxazoyl, phenyl, benzyl, benzofuranyl, benzothienyl, naphthyl, fluorenyl, and fluorenone groups may be optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, C_3-C_6 cycloalkyl, C_1-C_3 perfluoroalkyl, $-O-C_1-C_3$ perfluoroalkyl, $-S-C_1-C_3$ perfluoroalkyl,
- 5 C_1-C_3 alkoxy, $-OCHF_2$, $-CN$, $-COOH$, $-CH_2CO_2H$, $-C(O)CH_3$, $-C(O)OR_7$, $-C(O)NH_2$, $-S(O)_2CH_3$, $-OH$, $-NH_2$, $-NO_2$, or phenoxy, the phenoxy group being further optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, or C_1-C_3 perfluoroalkyl;
- 10 R_6 is hydrogen, C_1-C_8 alkyl, C_3-C_6 cycloalkyl, $-CH_2-C_3-C_6$ cycloalkyl, pyridyl, thienyl, CH_2 -thienyl, furanyl, CH_2 -furanyl, oxazoyl, CH_2 -oxazoyl, phenyl, benzyl, benzo[*b*]furan-2-yl, benzo[*b*]thien-2-yl, benzo[1,3]dioxol-5-yl, CH_2 -1-naphthyl, or CH_2 -2-naphyl; wherein the alkyl group and the rings of the cycloalkyl, thienyl, furanyl, oxazoyl, phenyl, benzyl, benzofuranyl, benzothienyl, and naphthyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, C_1-C_3 perfluoroalkyl, $-O-C_1-C_3$ perfluoroalkyl, $-S-C_1-C_3$ perfluoroalkyl, C_1-C_3 alkoxy, $-OCHF_2$, $-CN$, $-COOH$, $-CH_2CO_2H$, $-C(O)CH_3$, $-C(O)OR_7$, $-C(O)NH_2$, $-S(O)_2CH_3$, $-OH$, $-NH_2$, or $-NO_2$;
- 15 or R_5 and R_6 taken together may be C_3-C_6 cycloalkyl, 3-indan-1-yl, 1,2,3,4-tetrahydronaphthalen-1-yl, chroman-4-yl, 4*H*-chromen-4-yl, thiochroman-4-yl, 9*H*-fluoren-9-yl, 9,10-dihydroanthracen-9-yl, 9*H*-xanthen-9-yl, 9*H*-thioxanthen-9-yl, 6,7,8,9-tetrahydro-5*H*-benzocyclohepten-5-yl, or 10,11-dihydro-5*H*-dibenzo[*a,d*]cyclohepten-5-yl, wherein these groups may be optionally substituted by
- 20 from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, C_1-C_3 perfluoroalkyl, $-O-C_1-C_3$ perfluoroalkyl, $-S-C_1-C_3$ perfluoroalkyl, C_1-C_3 alkoxy, $-OCHF_2$, $-CN$, $-COOH$, $-CH_2CO_2H$, $-C(O)CH_3$, $-C(O)OR_7$, $-C(O)NH_2$, $-S(O)_2CH_3$, $-OH$, $-NH_2$, or $-NO_2$; and
- 25 R_7 is C_1-C_6 alkyl, C_3-C_6 cycloalkyl, $-CH_2-C_3-C_6$ cycloalkyl, or benzyl;

or a pharmaceutically acceptable salt or ester form thereof.

2. The compound of Claim 1 having the formula:

5

wherein R₁-R₃ and R₅-R₇ are as defined in Claim 1, and

- 10 R₄ is thienyl, furanyl, oxazoyl, phenyl, benzo[b]furan-2-yl, benzo[b]thien-2-yl, benzo[1,3]dioxol-5-yl, or naphthyl; wherein the rings of the thienyl, furanyl, oxazoyl, phenyl, benzofuranyl, benzothienyl, and napthyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, -O-C₁-C₃ perfluoroalkyl, -S-C₁-C₃ perfluoroalkyl, C₁-C₃ alkoxy, -OCHF₂, -CN, -COOH, 15 -CH₂CO₂H, -C(O)CH₃, -CO₂R₈, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

or a pharmaceutically acceptable salt or ester form thereof.

3. The compound of Claim 1 having the formula II:

20

wherein:

R_1 is hydrogen, C_1-C_6 alkyl, C_3-C_6 cycloalkyl, $-CH_2-C_3-C_6$ cycloalkyl, or C_1-C_3 perfluoroalkyl, wherein the alkyl and cycloalkyl groups may be optionally substituted

5 by halogen, $-CN$, C_1-C_6 alkoxy, $-OH$, $-NH_2$, or $-NO_2$;

R_2 is hydrogen, C_1-C_8 alkyl, C_3-C_6 cycloalkyl, or $-CH_2-C_3-C_6$ cycloalkyl, wherein the alkyl group and the rings of the cycloalkyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, C_1-C_3

10 perfluoroalkyl, $-O-C_1-C_3$ perfluoroalkyl, $-S-C_1-C_3$ perfluoroalkyl, C_1-C_3 alkoxy, $-OCHF_2$, $-CN$, $-COOH$, $-CH_2CO_2H$, $-C(O)CH_3$, $-C(O)OR_7$, $-C(O)NH_2$, $-S(O)_2CH_3$, $-OH$, $-NH_2$, or $-NO_2$;

15 R_3 is hydrogen, halogen, C_1-C_6 alkyl, C_1-C_3 perfluoroalkyl, C_1-C_6 alkoxy, C_3-C_6 cycloalkyl, or $-CH_2-C_3-C_6$ cycloalkyl;

20 R_5 is C_1-C_8 alkyl, C_3-C_6 cycloalkyl, $-CH_2-C_3-C_6$ cycloalkyl, phenyl, benzyl, naphthyl, or CH_2 -naphyl, wherein the alkyl group and the rings of the cycloalkyl, phenyl, and benzyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, C_3-C_6 cycloalkyl, C_1-C_3 perfluoroalkyl, $-O-C_1-C_3$ perfluoroalkyl, $-S-C_1-C_3$ perfluoroalkyl, C_1-C_3 alkoxy, $-OCHF_2$, $-CN$, $-COOH$, $-CH_2CO_2H$, $-C(O)CH_3$, $-C(O)OR_7$, $-C(O)NH_2$, $-S(O)_2CH_3$, $-OH$, $-NH_2$, $-NO_2$, or phenoxy; the phenoxy group being optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, or C_1-C_3 perfluoroalkyl, preferably $-CF_3$;

25

R_6 is hydrogen, C_1-C_8 alkyl, C_3-C_6 cycloalkyl, or $-CH_2-C_3-C_6$ cycloalkyl, wherein the alkyl group and the rings of the cycloalkyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, C_1-C_3 perfluoroalkyl, $-O-C_1-C_3$ perfluoroalkyl, $-S-C_1-C_3$ perfluoroalkyl, C_1-C_3 alkoxy, $-OCHF_2$, $-CN$, $-COOH$, $-CH_2CO_2H$, $-C(O)CH_3$, $-C(O)NH_2$, $-S(O)_2CH_3$, $-OH$, $-NH_2$, or $-NO_2$;

or R_5 and R_6 taken together may be a C_3-C_6 cycloalkyl group optionally substituted by from 1 to 3 groups selected from halogen, C_1-C_3 alkyl, C_1-C_3 perfluoroalkyl, preferably $-CF_3$, $-O-C_1-C_3$ perfluoroalkyl, $-S-C_1-C_3$ perfluoroalkyl,

preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -CN, -COOH, -CH₂CO₂H, -C(O)CH₃, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

- 5 R₈, R₉, R₁₀ are each independently halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -C(O)CH₃, -C(O)OR₇, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

or a pharmaceutically acceptable salt or ester form thereof.

10

4. The compound of claim I having the formula III:

15 wherein:

R₁ is hydrogen or C₁-C₆ alkyl;

R₂ is hydrogen or C₁-C₃ alkyl, optionally substituted by halogen;

- 20 R₅ is C₁-C₈ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, phenyl, benzyl, or thienyl, wherein the alkyl group and the rings of the cycloalkyl, phenyl, thienyl and benzyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₃-C₆ cycloalkyl, C₁-C₃ perfluoroalkyl, preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -CN, -COOH, -CH₂CO₂H, -C(O)CH₃, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

R₆ is hydrogen or C₁-C₆ alkyl,

- 25 R₈, R₉, R₁₀ are each independently halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -C(O)CH₃, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

30 -NH₂, or -NO₂;

or a pharmaceutically acceptable salt or ester form thereof.

5. The compound of claim I which is {5-(3-trifluoromethoxyphenyl)-3-[1-(4-trifluoromethylphenyl)-ethyl]-indol-1-yl}-acetic acid or a pharmaceutically
5 acceptable salt or ester form thereof.

6. The compound of claim I which is {3-[3,5-bis(trifluoromethyl)benzyl]-5-[4-(trifluoromethoxy)phenyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt or ester form thereof.

10

7. The compound of claim I which is [3-[3,5-bis(trifluoromethyl)benzyl]-5-(2,4-dichlorophenyl)-1H-indol-1-yl]acetic acid or a pharmaceutically acceptable salt or ester form thereof.

15

8. The compound of claim I which is {3-[3,5-bis(trifluoromethyl)benzyl]-5-[3-(trifluoromethyl)phenyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt or ester form thereof.

20

9. The compound of claim I which is {5-(3-chlorophenyl)-3-[1-(2-thienyl)ethyl]-1H-indol-1-yl}acetic acid or a pharmaceutically acceptable salt or ester form thereof.

25

10. The compound of claim I which is [3-(1-phenylethyl)-5-(3-trifluoromethyl-phenyl)-indol-1-yl]acetic acid or a pharmaceutically acceptable salt or ester form thereof.

30

11. The compound of claim I which is [3-(1-thiophen-2-yl-ethyl)-5-(3-trifluoromethyl-phenyl)-indol-1-yl]acetic acid or a pharmaceutically acceptable salt or ester form thereof.

12. The compound of claim I which is [3-(1-cyclohexyl-ethyl)-5-(3-trifluoromethyl-phenyl)-indol-1-yl]acetic acid or a pharmaceutically acceptable salt or ester form thereof.

13. The compound of claim I which is [3-(4-isopropyl-benzyl)-5-(3-trifluoromethyl-phenyl)-indol-1-yl]acetic acid or a pharmaceutically acceptable salt or ester form thereof.

5 14. The compound of claim I which is [5-(2,4-dichloro-phenyl)-3-(1,3-dimethyl-butyl)-indol-1-yl]-acetic acid or a pharmaceutically acceptable salt or ester form thereof.

10 15. The compound of claim I which is [5-(2,4-dichloro-phenyl)-3-(1-phenyl-ethyl)-indol-1-yl]-acetic acid or a pharmaceutically acceptable salt or ester form thereof.

15 16. The compound of claim I which [3-(1-cyclohexyl-ethyl)-5-(2,4-dichloro-phenyl)-indol-1-yl]-acetic acid or a pharmaceutically acceptable salt or ester form thereof.

17. A method of inhibiting plasminogen activator inhibitor in a mammal, comprising administering to a mammal in need thereof, a therapeutically effective amount of a compound of formula I

20

wherein:

25 R_1 is hydrogen, C_1-C_6 alkyl, C_3-C_6 cycloalkyl, $-CH_2-C_3-C_6$ cycloalkyl, or C_1-C_3 perfluoroalkyl, preferably $-CF_3$, wherein the alkyl and cycloalkyl groups may be optionally substituted by halogen, -CN, C_1-C_6 alkoxy, -OH, -NH₂, or -NO₂;

30 R_2 is hydrogen, C_1-C_8 alkyl, C_3-C_6 cycloalkyl, $-CH_2-C_3-C_6$ cycloalkyl, thienyl, CH_2 -thienyl, furanyl, CH_2 -furanyl, oxazoyl, CH_2 -oxazoyl, phenyl, benzyl, or CH_2 -naphthyl, wherein the alkyl group and the rings of the cycloalkyl, thienyl, furanyl,

oxazoyl, phenyl, benzyl, and naphthyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -CN, -COOH, -CH₂CO₂H, -C(O)CH₃, -C(O)OR₇,

- 5 -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

R₃ is hydrogen, halogen, C₁-C₆ alkyl, C₁-C₃ perfluoroalkyl, preferably -CF₃, C₁-C₆ alkoxy, C₃-C₆ cycloalkyl, or -CH₂-C₃-C₆ cycloalkyl;

- 10 R₄ is C₃-C₈ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, thienyl, CH₂-thienyl, furanyl, oxazoyl, phenyl, benzo[b]furan-2-yl, benzo[b]thien-2-yl, benzo[1,3]dioxol-5-yl, or naphthyl, wherein the alkyl group and the rings of the cycloalkyl, thienyl, furanyl, oxazoyl, phenyl, benzofuranyl, benzothienyl, and naphthyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -C(O)CH₃, -C(O)OR₇, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;
- 15

- R₅ is C₁-C₈ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, pyridinyl, -CH₂-pyridinyl, thienyl, CH₂-thienyl, furanyl, CH₂-furanyl, oxazoyl, CH₂-oxazoyl, phenyl, benzyl, benzo[b]furan-2-yl, benzo[b]thien-2-yl, benzo[1,3]dioxol-5-yl, naphthyl, CH₂-naphyl, 9H-fluoren-1-yl, 9H-fluoren-4-yl, 9H-fluoren-9-yl, 9-fluorenone-1-yl, 9-fluorenone-2-yl, 9-fluorenone-4-yl, or CH₂-9H-fluoren-9-yl, wherein the alkyl group and the rings of the cycloalkyl, pyridinyl, thienyl, furanyl, oxazoyl, phenyl, benzyl, benzofuranyl, benzothienyl, naphthyl, fluorenyl, and fluorenone groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₃-C₆ cycloalkyl, C₁-C₃ perfluoroalkyl, preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, phenoxy, -OCHF₂, -CN, -COOH, -CH₂CO₂H, -C(O)CH₃, -C(O)OR₇, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂, wherein the phenoxy group may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, or C₁-C₃ perfluoroalkyl, preferably -CF₃;
- 20
- 25
- 30

R₆ is hydrogen, C₁-C₈ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, pyridyl, thienyl, CH₂-thienyl, furanyl, CH₂-furanyl, oxazoyl, CH₂-oxazoyl, phenyl, benzyl,

benzo[*b*]furan-2-yl, benzo[*b*]thien-2-yl, benzo[1,3]dioxol-5-yl, CH₂-1-naphthyl, or CH₂-2-naphyl, wherein the alkyl group and the rings of the cycloalkyl, thienyl, furanyl, oxazoyl, phenyl, benzyl, benzofuranyl, benzothienyl, and naphthyl groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₁-C₃

- 5 perfluoroalkyl, preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -CN, -COOH, -CH₂CO₂H, -C(O)CH₃, -C(O)OR₇, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂;

- 10 or R₅ and R₆ taken together may be C₃-C₆ cycloalkyl, 3-indan-1-yl, 1,2,3,4-tetrahydronaphthalen-1-yl, chroman-4-yl, 4*H*-chromen-4-yl, thiochroman-4-yl, 9*H*-fluoren-9-yl, 9,10-dihydroanthracen-9-yl, 9*H*-xanthen-9-yl, 9*H*-thioxanthen-9-yl, 6,7,8,9-tetrahydro-5*H*-benzocyclohepten-5-yl, or 10,11-dihydro-5*H*-dibenzo[*a,d*]cyclohepten-5-yl, wherein these groups may be optionally substituted by from 1 to 3 groups selected from halogen, C₁-C₃ alkyl, C₁-C₃ perfluoroalkyl, 15 preferably -CF₃, -O-C₁-C₃ perfluoroalkyl, preferably -OCF₃, -S-C₁-C₃ perfluoroalkyl, preferably -SCF₃, C₁-C₃ alkoxy, -OCHF₂, -CN, -COOH, -CH₂CO₂H, -C(O)CH₃, -C(O)OR₇, -C(O)NH₂, -S(O)₂CH₃, -OH, -NH₂, or -NO₂; and

- 20 R₇ is C₁-C₆ alkyl, C₃-C₆ cycloalkyl, -CH₂-C₃-C₆ cycloalkyl, or benzyl; or a pharmaceutically acceptable salt or ester form thereof.

18. A pharmaceutical composition comprising a therapeutically effective amount of the compound of Claim 1 and a pharmaceutical carrier.

- 25 19. A method for treatment of thrombosis or fibrinolytic impairment in a mammal, the method comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

- 30 20. A method of Claim 19 wherein the thrombosis or fibrinolytic impairment is associated with formation of atherosclerotic plaques, venous and arterial thrombosis, myocardial ischemia, atrial fibrillation, deep vein thrombosis, coagulation syndromes, pulmonary fibrosis, cerebral thrombosis, thromboembolic complications of surgery or peripheral arterial occlusion.

21. A method for the treatment of peripheral arterial disease in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

5

22. A method for the treatment of stroke associated with or resulting from atrial fibrillation in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

10

23. A method for the treatment of deep vein thrombosis in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

15

24. A method for the treatment of myocardial ischemia in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

20

25. A method for the treatment of cardiovascular disease caused by noninsulin dependent diabetes mellitus in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

25

26. A method for the treatment of the formation of atherosclerotic plaques in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

30

27. A method for the treatment of chronic obstructive pulmonary disease in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1

28. A method for the treatment of renal fibrosis in a mammal, comprising Administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

29. A method for the treatment of polycystic ovary syndrome in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

5 30. A method for the treatment of Alzheimer's disease in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.

10 31. A method for the treatment of cancer in a mammal, comprising administering to a mammal in need thereof a pharmaceutically effective amount of a compound of Claim 1.