

Business Card Recognition

인공지능응용학과 21102357 노윤지

Table of contents

- 01 사용한 이미지 처리 기법
 - 4가지 경우
 - 성공케이스
 - 실패케이스

02 처리결과

- 4가지 경우
 - 성공케이스

··· 03 결과분석

·부석

○4 추가과제

• 명함의 문자인식

Four Cases

Four Cases

1 배경에서 명함의 Edge를 쉽게 검출 가능한 경우

2 조명의 영향이 직접적으로 명함에 미치는 경우

3 손으로 인해 명함 영역이 일부 가려진 경우

4 배경과 명함영역의 경계가 모호한 경우

• • •

)1

사용한 이미지 처리기법

전반적으로 사용한 기법

목적: 이미지 내에서 명함영역만 인식

- Sobel filter
- Canny Edge
- Binary
- Contour

- Hough Transform
- Corner Detection
- Morphology(Closed)
- GrabCut

CASE 1. 배경에서 명함의 Edge를 쉽게 검출 가능한 경우

- 1. GrayScale & Median Blur
- 2. Canny Edge
- Morphology (Closed)
- Contour & Contour Approximation (Epsilon 0.02 → 0.06 (ex.BC4, BC15)
- 5. Perspective Transformation

- GrayScale & Median Blur
- 2. Sobel filter
- 3. Binary
- 4. Contour & Contour Approximation
- 5. Perspective Transformation

CASE 2. 조명의 영향이 직접적으로 명함에 미치는 경우

- 1. GrayScale & Gaussian Blur
- 2. Binary
- 3. Morphology (Closed)
- 4. Contour & Contour Approx.
- 5. Perspective Transformation

) 실패

Binary (BC6과 BC18 임계값 설정 오류)

- 흑백이미지로 나옴
- 잉크가 번진 듯한 느낌

CASE 3. 손으로 인해 명함 영역이 일부 가려진 경우

- GrayScale & Gaussian Blur
- 2. Binary
- 3. Morphology (dilated)
- 4. Contour & Contour Approx.
- 5. Perspective Transformation

- 1. GrayScale & Gaussian Blur
- 2. Canny Edge
- 3. Morphology (Closed)
- 4. Contour & Contour Approximation
- 5. Perspective Transformation

CASE 4. 배경과 명함영역의 경계가 모호한 경우

- 1. GrayScale & Gaussian Blur
- 2. GrabCut
- 3. Canny Edge
- 4. Contour & Contour Approx.
- 5. Perspective Transformation

- 😕 실패(BC12,13,16,17)
 - 1. Canny Edge
 - 2. Binary

처리결과

CASE 1. 배경에서 명함의 Edge를 쉽게 검출 가능한 경우

CASE 2.1 조명의 영향이 직접적으로 명함에 미치는 경우(BC6)

CASE 2.2 조명의 영향이 직접적으로 명함에 미치는 경우 (BC18)*

CASE 3. 손으로 인해 명함 영역이 일부 가려진 경우

CASE 4.1 배경과 명함영역의 경계가 모호한 경우(BC14)

CASE 4.2 배경과 명함영역의 경계가 모호한 경우 (BC12)

전체 결과

BC2.jpg

BC3.jpg

BC4.jpg

BC5.jpg

BC6.jpg

BC7.jpg

BC8.jpg

BC9.jpg

BC10.jpg

348 Properties Secret assessment that some XIIIab ---

BC11.jpg

BC14.jpg

BC15.jpg

BC18.jpg

BC19.jpg

BC20.jpg

BC21.jpg

• • •

03

결과분석

결과분석

CASE 1

- 배경과 명함 영역의 색 차이가 뚜렷하기 때문에 엣지 검출 가능
- 색깔 무늬 명함의 경우 모폴로지 닫힘연산으로 엣지를 연결하여 엣지 검출 가능

CASE 2

- 빛의 밝기가 강할수록 명함의 색상과 비슷하게 인식되어 빛반사 영역이 포함됨
- 임계값 조정을 통해서 배경과 명함영역의 색상 차이 발생 → 뚜렷한 엣지 검출 가능

CASE 3

● 손영역에서 빛반사 발생하는 부분과 명함영역의 면적 차이를 이용하여 검출 가능

CASE 4

- BC12, BC13, BC16, BC17 이미지는 글자 노이즈로 영역 검출 실패
- BC14 이미지는 글자 노이즈 없어 영역 검출 가능

• • • • • • • • •

04

추가 과제시도

명함 인식결과

No_Sharpening

rn08 yop mmonaon\u00ff urA0BEDsir syespuedusnd "urAoB@r0p ANo-sE pp: New 240000219616\u00bb "GON BSB0C/Z-11-16+ " e4 BSP0COCZ 'G9G0LLEZ-T-16+ "TL. 100 011 Mia MAN "PEO EAOUEY 02 "UEMEUG ZeYDUES 'Okz1 "ON WOON e1pUI Jo 1ueUIUIEAOD 'Su0neDIUN\u00bb Jo AaSTU\u00ff "suonesiunu\u00s}91 io weunedeg

(ys) 1s0u99 s0}20H Andog su 'yBuig sewiny eapuedysng e

cv2.INTER_CUBIC 사용 (GOOD!)

HOR

ce Pushpendra Kumar Singh, ITs Deputy Director General (SA)

Department of Telecommunications
Ministry of Communications:
Government of India
Room No. 1210, Sanchar Bhawan, 20 Ashoka Road. New Delni- 110 001
'Tel: #91-11-23716866, 23036458 Fax: +91-11-23730058 Mob.:+91-9412000042
'E-mail: édasecunty-dot@govin, pushpendraks.ts@govin Web. werw.dot.govin

Sharpening

3) Pushpendra Kumar Singh, ITs

aA 'Doputy Director Ganaral (SA)

Dapartment of Tolecommunications

Ministry of Communications
Government of India
Room No, 1210, Sanchar Bhawan, 20 Ashoka Road, Now Delhi- 110 001
*\$91-41-29716666, 23036458 Fax: 491-11-23730858 Mob. +91-9472000042
'E-mail: ddgaccutity-dol@pov 'n, pustipandraks.\s@govin \swenw.dol.govin_,

Pushpendra Kumar Singh, ITS

Deputy Director General (SA)

Department of Telecommunications Ministry of Communications Government of India

Room No. 1210, Sanchar Bhawan, 20 Ashoka Road, New Delhi - 110 001
Tel.: +91-11-23716666, 23036458 Fax: +91-11-23730858 Mob.: +91-9412000042
E-mail: ddgsecurity-dot@gov.in, pushpendraks.its@gov.in Web.:www.dot.gov.in

Thanks!

