

クラウド経験者に送る Google Cloud ネットワーキングの 必修ポイント

有賀 征爾 グーグル・クラウド・ジャパン合同会社 カスタマーエンジニア

スピーカー自己紹介

有賀 征爾 グーグル・クラウド・ジャパン合同会社 カスタマーエンジニア

Google Cloud でネットワーキングを専門にプリセールスエンジニアをしています。ネットワーキングはクラウドサービスを使う場合の 基本になる部分であり非常に面白い分野です!

本セッションの目的

本セッションの目的

- Google Cloud におけるネットワーキングの基礎を紹介
 - 設計や考え方からの理解

ネットワーキングの基礎

物理のネットワーク

物理のネットワーク

リージョン

- 複数のデータセンターで構成
- Compute Engine のインスタンスなどが物理的に稼働する場所

ゾーン

- リージョンを分割
 - 相互に障害の影響が及ばないように
 - 多くは 1リージョンに 3 つのゾーン

- ネットワークの一番基本的な単位
 - 論理的なリソース

問題

- VPC の範囲?
 - 1. グローバル VPC X
 - 2. リージョン VPC1, 2
 - 3. ゾーン VPC A, B, C

- ネットワークの一番基本的な単位
 - 論理的なリソース

- VPC の範囲
 - 1. グローバル VPC X

→ 簡単にグローバル構成

2. リージョン - VPC1, 2

3. ゾーン **VPC A, B, C**

- ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定

問題

- IPアドレスの設定対象?
 - 1. 各サブネット
 - 2. VPC と各サブネット

- ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定

- IPアドレスの設定対象
 - 1. 各サブネット
 - → 自由なアドレス設計
 - 2. VPC と各サブネット

- "default"という名前の VPC は削除しても問題ありません
 - テスト以外での利用は推奨しません

- ◆ ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定

● IPアドレスの設定対象

問題 サブネット?

- 1. グローバル
- 2. リージョン
- 3. ゾーン

- ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定

- IP アドレスの設定対象
 - o サブネット

- 2. リージョン
 - → 冗長をシンプルに

3. ゾーン

- ◆ ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定

- IP アドレスの設定対象
 - サブネット
 - リージョン
 - → 冗長をシンプルに

ゾーン単位のサブネットの場合の例 サブネット3つ

- VM のサブネットマスク
 - 常に/32
 - ARP が発生しない
 - 一致させることも可
 - MULTI_IP_SUBNET
 - VM のイメージ作成時に指定

サブネットの設定によらず常に /32

\$ ip addr show dev ens4

2: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000

link/ether 42:01:0a:92:00:07 brd ff:ff:ff:ff:ff
inet 10.146.0.7/32 brd 10.146.0.7 scope global dynamic ens4
 valid_lft 2207sec preferred_lft 2207sec

サブネットの設定と同じマスク長となる例

\$ ip addr show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP group default qlen 1000

link/ether 0e:7e:b9:fd:f9:75 brd ff:ff:ff:ff:ff
inet 172.31.27.249/24 brd 172.31.31.255 scope global dynamic eth0
 valid lft 3483sec preferred lft 3483sec

- ◆ ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定
 - o ルート

問題

- ルートの範囲?
 - o グローバル
 - o リージョン
 - ゾーン

- ◆ ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定
 - o ルート

- ルートの範囲
 - o グローバル
 - → ルーティングが簡単
 - →細かい調整には一手間

- ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定
 - o ルート

- ルートの範囲
 - o グローバル
 - → ルーティングが簡単
 - → 細かい調整には一手間

- ネットワークの一番基本的な単位
 - 論理的なリソース
 - IP アドレスの設定
 - o ルート

- ルートの範囲
 - o グローバル
 - → ルーティングが簡単
 - → 細かい調整には一手間
 - →タグを使った調整

静的ルーティング

- グローバルなリソース
- ネットワークタグで適用対象をグルーピング

動的ルーティング

Cloud VPN Cloud Interconnect

- VPN 接続、専用線接続、仮想アプライアンス接続などと 動的ルーティング(BGP)で経路交換
 - Cloud Router (仮想ルータ)を利用

- VPC のルーティングモード
 - リージョナル
 - o グローバル

動的ルーティング

Cloud VPN Cloud Interconnect

- VPN 接続、専用線接続、仮想アプライアンス接続などと 動的ルーティング(BGP)で経路交換
 - Cloud Router(仮想ルータ)を利用
- VPC のルーティングモード
 - リージョナル
 - グローバル
- ブログ記事 (Medium.com)

Virtual Private Cloud - ファイアウォール

- グローバル に設定(ルートと同じ)
- ファイアウォール ルールの実現方法の例
 - Google Cloud では複数のルールを組み合わせて設定
 - VM ベースのファイアウォールのみ

目的ベースのルールを複数適用 ルール側で適用対象を設定 Google Cloud

役割ベースのルールを一つ適用 VM 側で(も)適用対象を設定

特徴的な機能

共有 VPC

一つの VPC を複数のプロジェクトで共有

Google API (サービス)への閉域接続

- Private Google Access
- Private Service Connect
- オンプレミスからも接続可

非 Google API (サービス)<u>への</u>閉域接続

- Private Service Access
 - Cloud SQL (MySQL, PostgreSQL, SQL Server)

非 Google API (サービス)<u>からの</u>閉域接続

- マネージドサービスからオンプレミスへのアクセス
 - Cloud DNS (の DNS 転送)
 - Cloud EKM (External Key Manager)

API サービスへのアクセス制限の必要性

- 3 窃取された認証情報による機密データへのアクセス
- 2. IAM ポリシーの設定誤りによる 想定外の共有
- 3. 内部犯や、危険なコードで不正な クラウド リソースへデータコピー
- 4. 他の Google API 群へデータ転送

VPC Service Controls による API の保護

- セキュリティ境界を設定
- ・ 境界を越えるデータの移動を ブロック
- 境界を越えられる例外の定義も可
- プロジェクトオーナーにも変更不可 (組織レベルでの防御)

まとめ

本日のまとめ

マットワーキングの基礎

- o グローバルな VPC
- リージョナルなサブネット
- グローバルな ルートとファイアウォール
- 静的ルーティング と動的ルーティング

特徴的な機能

- 共有 VPC
- サービスと閉域アクセス
- **VPC Service Controls**

Thank you.

