

INTELIGENCIA ARTIFICIAL

UNIDAD 2 – TAREA 1

NOMBRE:

SARABIA GUZMÁN JESÚS ALDHAIR ZAMUDIO LIZÁRRAGA BRYAN MARTÍN

NUMERO DE CONTROL:

22170824

22170855

FECHA:

09/03/2025

MAESTRO:

ZURIEL DATHAN MORA FÉLIX

Proceso de Aprendizaje Automático (Machine Learning)

1. Adquisición de datos

Se empieza por recoger los datos que sean necesarios desde varias fuentes. Hay varias maneras de obtenerlos, como entrevistas, encuestas, a través de datos de usuarios o incluso con raspado web (web scraping). Dependiendo del problema que se quiera resolver, serán los tipos de datos que se buscan, por ejemplo para un sistema de reconocimiento facial se van a recopilar imágenes de caras tomadas desde varios ángulos.

2. Preprocesamiento de datos

Los datos se limpian, se transforman y se estructuran para que sea más fácil trabajar con ellos. Por ejemplo, limpiar los datos podría consistir en eliminar filas que tengan un valor nulo, o corregir errores tipográficos. Transformar los datos podría consistir en normalizar la edad o codificar el género usando one-hot encoding (asignándole un valor numérico a cada género); esto se suele hacer ya que es más eficiente que los valores sean números en vez de texto.

3. Entrenamiento del modelo

Utilizando el conjunto de datos elegidos, se comienza a entrenar el modelo. Esto implica ajustar los parámetros del algoritmo de aprendizaje automático para que pueda realizar predicciones acertadas en base a los datos de entrada. Un paso a paso sería: se selecciona el algoritmo, luego se inicializa el modelo con los parámetros iniciales, después se ajustan los parámetros, luego se itera hasta alcanzar un rendimiento satisfactorio, y por último se evalúa el modelo para validarlo.

4. Evaluación del modelo

Esta fase implica medir el rendimiento del modelo usando métricas específicas y técnicas de validación, lo cual ayuda a determinar si el modelo está sobreajustado o subacustado, y si está listo para su implementación en un entorno real. Una forma en que se puede hacer es: dividir los datos en varios conjuntos, uno de entrenamiento,

ontro de validación, y otro de prueba; después, es cuestión de ir probando el modelo usando cada conjunto de datos, e ir corrigiendo a como sea necesario. Si el modelo tiene alta precisión durante el entrenamiento pero baja durante las pruebas, puede estar sobreajustado; en cambio si tiene baja precisión en ambos conjuntos, puede estar subajustado.

5. Implementación del modelo

En la implementación, el modelo se lleva a un entorno real para su uso práctico. Esto básicamente significa integrar el modelo entrenado en un sistema o aplicación para que pueda realizar predicciones o tomar decisiones basadas en nuevos datos que le den.

Similitudes y diferencias entre los componentes del modelo cognitivo y las etapas del aprendizaje automático

Aprendizaje Automático	Modelo Cognitivo	Similitudes	Diferencias
Adquisición de datos	Percepción	Ambos implican captar la información del entorno (humanos) o de fuentes de datos (máquinas)	Los humanos procesan la información de manera orgánica, y las máquinas de manera algorítmica
Preprocesamiento de datos	Procesamiento de información	Ambas organizan y preparan la información para su uso posterior	La mente humana es más flexible, mientras que la adquisición de datos en ML es más rígida y depende de la calidad de los datos
Entrenamiento del modelo	Memoria	Ambos almacenan información (humanos en la memoria, máquinas en los parámetros)	El entrenamiento en ML es un proceso matemático, mientras que la memoria humana puede ser más dinámica y emocional
Evaluación del modelo	Retroalimentación	Ambos evalúan los resultados y ajustan el comportamiento para mejorar	Los humanos aprenden de errores y experiencias, mientras que las máquinas ajustan parámetros en base a funciones de pérdida

Implementación	Toma	de	Ambos usan la	La evaluación de
del modelo	decisiones		información	las máquinas es
			almacenada para	cuantitativa y
			tomar decisiones o	objetiva, mientras
			hacer predicciones	que la de los
				humanos es
				cualitativa y
				subjetiva

Ejemplo, reconocimiento de rostros

Modelo cognitivo: Un humano ve un rostro (percepción), lo procesa para reconocer características (procesamiento), lo almacena en la memoria y lo utiliza para reconocer a la persona en un futuro (razonamiento). Si se equivoca, aprende de la experiencia (retroalimentación).

Aprendizaje automático: Un sistema de reconocimiento facial recopila imágenes (adquisición de datos), las normaliza (preprocesamiento), entrena un modelo con ellas (entrenamiento), lo evalúa con nuevas imágenes (evaluación), y lo implementa en una aplicación (implementación). Si se equivoca, se ajusta con más datos o se reentrena.