3.3 Pumping - Lemma

Wir beweisen durch Widerspruch und nehmen an, dass L regulär ist. Somit gibt es ein $n \in \mathbb{N}$ für das alle Wörter $x \in L$ die Länge n haben. Da in L nur Wörter deren Länge Prim ist sind, sei $x := a^n$ und betrachtet man eine beliebige Zerlegung x = uvw und setze s := 2n, so gilt:

$$\exists j, k, l : 0 \leq j, k, l \leq n : x = uvw$$

$$= a^{j}a^{k}a^{l}$$

$$=^{Pumping-Lemma} a^{j}a^{s-(j+k)}a^{k}$$

$$= a^{s}$$

$$= a^{2n}$$

$$\Rightarrow |a^{2n}| = 2n$$
(1)

Damit ist die Länge des Wortes nicht mehr Prim, also ist das Wort nicht in der Sprache und damit L nicht regulär.

3.4 Rechtsaequivalenz

Seien die Äquivalenzklassen a definiert als $[a] = \{a_i \mid i \in \mathbb{N}\}$ und sei a_i definiert als:

$$[a_i] := \{ w \mid \exists n \in \mathbb{N} : | w | = (n! - i) \}$$
 (2)