DISKRETE STRUKTUREN - ÜBUNG 10

FELIX TISCHLER, MARTRIKELNUMMER: 191498

Relationen

1.)

a) R ist asymmetrisch genau dann, wenn R irreflexiv und antisymmetrisch ist. Formeller: $(xRy \land \neg(yRx)) \leftrightarrow (\neg(xRx) \land ((xRy \land yRx) \rightarrow x = y))$

Sei 1. $xRy \land \neg (yRx)$

" \rightarrow ". Für Fall x=y folgt aus 1. $xRx \land \neg(xRx) \rightarrow R$ ist irreflexiv. $xRy \land yRx$ kann nicht gelten für $x \neq y$ wegen 1., somit muss $(xRy \land yRx) \rightarrow x = y$ gelten $\rightarrow R$ ist antisymmetrisch.

Sei 2.
$$\underbrace{\neg(xRx)}_{\kappa} \wedge \underbrace{((xRy \wedge yRx) \to x = y)}_{\varkappa}$$

b) Wenn R symmetrisch und antisymmetrisch ist, dann ist R auch transitiv. Formeller: $(xRy \to yRx) \land ((xRy \land yRx) \to x = y) \to (((xRy) \land (yRz)) \to xRz)$

Sei 1.
$$\underbrace{(xRy \to yRx)}_{\gamma} \land \underbrace{((xRy \land yRx) \to x = y)}_{\Gamma}$$

$$\textit{Beweis: } xRy \wedge yRx \xrightarrow{\gamma} xRy \wedge yRx \wedge yRz \wedge zRy \xrightarrow{\Gamma} x = y \wedge y = z \rightarrow x = y = z \rightarrow xRz \\ \qed$$

c) Wenn R transitiv und irreflexiv ist, dann ist R auch asymmetrisch. Formeller: $(((xRy \land yRz) \rightarrow xRz) \land (\neg(xRx))) \rightarrow (xRy \rightarrow \neg(yRx))$

Sei 1.
$$\underbrace{((xRy \land yRz) \to xRz)}_{\omega} \land \underbrace{(\neg(xRx))}_{\Omega}$$

Beweis: Sei $xRy \xrightarrow{\omega} xRy \wedge yRx \rightarrow xRx \xrightarrow{\Omega} \neg (xRx).I_{\beta}(xRy) \stackrel{*}{=} 1 \wedge I_{\beta}(yRx) =? \rightarrow I_{\beta}(xRx) \stackrel{\Omega}{=} 0$. Da aus Wahr nicht Falsch folgen kann muss $I_{\beta}(yRx) = 0$ sein.

2.)

a)

Sei. $((n,m),(k,l)) \in R \Leftrightarrow n+l=m+k$.

$$Reflexivit \ddot{a}t: (n,m)R(n,m) \Leftrightarrow n+m=m+n$$

Symmetrie:
$$(n,m)R(k,l) \Leftrightarrow n+l=m+k \stackrel{kommu.}{\iff} k+m=l+n \Leftrightarrow (k,l)R(n,m)$$

Transitivität:
$$(n,m)R(l,k) \wedge (l,k)R(e,f) \Leftrightarrow (n+k=m+l) \wedge (l+f=k+e)$$

 $\Leftrightarrow (k-l=m-n) \wedge (k-l=f-e) \xrightarrow{Einsetzen} m-n=f-e \Leftrightarrow m+e=f+n \Leftrightarrow n+f=m+e$

b)

Äquivalenzklassen

Fall 1.
$$n = m \rightarrow n + l = n + k \Leftrightarrow l = k \Rightarrow \forall n \in \mathbb{N} : [(n, n)]_R = \{(k, k) \mid k \in \mathbb{N}\}$$

Fall 2.
$$n \neq m \Leftrightarrow n + l = m + k \Rightarrow [(n, m)]_R = \{(k, l) \mid n + l = m + k\}$$

Faktormenge $M/R = \{[(n,n)], [(n,m)]\}$

3.)

a)
$$|\mathscr{P}(M \times M)| = 2^{|M| \cdot |M|} = 2^{5 \cdot 5} = 2^{25}$$

b) In einer binären, reflexiven Relation sind immer diejenigen Paare (a,b) enthalten die a=b erfüllen. Alle anderen Elemente können 0 oder 1 annehmen, somit ist die Anzahl der unbekannten zu ermitteln welche in der Tabelle durch x visualisiert werden.

	M_1	M_2	M_3	M_4	M_5
M_1	1	X	X	X	X
M_2	x	1	X	X	X
M_3	X	X	1	X	X
M_4	x	X	X	1	X
M_5	x	X	X	X	1

D.h. $5^2 - 5 = 20$ Möglichkeiten $\Rightarrow 2^20$ reflexive Relationen. Dies gilt auch für irreflexive Relationen, hierbei werden die 1en durch 0en ersetzt.

c) Die Gesamtanzahl minus die reflexiven und irreflexiven Relationen. s $2^{25} - 2 \cdot 2^{20} = 2^{25} - 2^{21}$

d) Im symmetrischen Fall kann die Relation alle geordneten Paare auf der Diagonale enthalten sowie entweder beliebig viele Elemente oberhalb oder unterhalb der Diagonalen. Je nach dem welcher Fall eintritt, nehmen die y den Wert des bezüglich an der Diagonalen gespiegelten x an.

Oberhalb	M_1	M_2	M_3	M_4	M_5	Unterhalb	M_1	M_2	M_3	M_4	M_5
M_1	X	у	у	y	у	M_1	x	X	X	X	X
M_2	X	X	y	\mathbf{y}	y	M_2	у	X	X	X	X
M_3	x	X	X	y	y	M_3	у	у	X	X	X
M_4	X	X	X	X	y	M_4	у	у	y	X	X
M_5	X	X	X	X	X	M_5	у	у	y	y	X

Wieder ist die Anzahl der Unbekannten (x) relevant. $(25-5)/2+5=15 \Rightarrow 2^{15}$ Relationen.

e) Der Unterschied zur Symmetrie ist, dass die Diagonale mit 1 besetzt ist.

Oberhalb	M_1	M_2	M_3	M_4	M_5	Unterhalb	M_1	M_2	M_3	M_4	M_5
M_1	1	у	у	y	у	M_1	1	X	X	X	X
M_2	x	1	у	y	y	M_2	у	1	X	X	X
M_3	x	X	1	у	У	M_3	у	у	1	X	X
M_4	X	X	X	1	y	M_4	у	у	y	1	X
M_5	x	X	X	X	1	M_5	у	У	У	У	1

Die Anzahl der Unbekannten verringert sich dementsprechend. $(25-5)/2=10 \Rightarrow 2^{10}$ Relationen.