Model Assesment Formation ENSTA ParisTech Conférence IA

Florent Chatelain* Olivier Michel*

*GIPSA-lab, Univ. Grenoble Alpes,

2-5 février 2021 ENSTA, France

Performance criterion

We seek a regression function/classification rule f for accurate predictions f(X) of target Y given X.

Problem: accurate??

Solution: Introduction of a loss function:

$$L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+,$$

in order to penalize the prediction errors :

$$L(Y, f(X)) \begin{cases} = 0 \text{ if } f(X) = Y, \\ \ge 0 \text{ otherwise,} \end{cases}$$

Performance criterion (Cont'd)

Two useful loss functions

- 1. Quadratic cost : $L(Y, f(X)) = (Y f(X))^2$,
- 2. $0-1 \cos t$:

$$L(Y, f(X)) = \begin{cases} 0 \text{ if } |Y - f(X)| < \epsilon & (\epsilon > 0 \text{ arbitrarily small}), \\ 1 \text{ otherwise} \end{cases}$$

Thus for a classification problem, L(Y, f(X)) = 0 if Y = f(X), 1 otherwise

Remark

These two loss functions are the most popular. But other loss functions exist and may be useful depending on the prediction method (e.g., cross-entropy to train neural nets, or hinge loss for SVM)

Error rate

True error/Test error

The true error rate w.r.t. a prediction function f and a loss function L is defined as

$$\mathcal{E}[f] = E_{X,Y} [L(Y, f(X))],$$

=
$$\int L(y, f(x)) dP(x, y),$$

where P(x, y) is the joint probability measure of (X, Y).

 \square measure the average error rate for new data independent from f, aka Test error.

Training error

The training error rate w.r.t. a prediction function f, a loss function L, and a training dataset $(X_1, Y_1), \ldots, (X_N, Y_N)$ is defined as the empirical mean

$$\hat{\mathcal{E}}_N[f] = \frac{1}{N} \sum_{i=1}^N L(Y_i, f(X_i))$$

in practice f is learned and may over-fit the training set : not a faithful estimator of the True error!

Error rates for usual loss functions

Quadratic cost (rather for regression)

► True error rate → Mean Squared Error (MSE)

$$\mathcal{E}[f] = E_{X,Y} [(Y - f(X))^2] = \int (y - f(x))^2 dP(x,y),$$

► Training error rate → Residual Sum of Squares(RSS)

$$\hat{\mathcal{E}}_N[f] = \frac{1}{N} \sum_{i=1}^N (Y_i - f(X_i))^2$$

Error rates for usual loss functions (Cont'd)

0-1 cost (rather for classification)

For a classication problem,

► True error rate :

$$\mathcal{E}[f] = \Pr(|Y - f(X)| > \epsilon),$$

= $\Pr(Y \neq f(X)) \leftarrow \text{misclassification probability}$

Training error rate :

$$\begin{split} \hat{\mathcal{E}}_{N}[f] &= \frac{1}{N} \sum_{i=1}^{N} 1_{|Y_{i} - f(X_{i})| > \epsilon}, \\ &= \frac{1}{N} \sum_{i=1}^{N} 1_{Y_{i} \neq f(X_{i})} \leftarrow \text{misclassification rate} \end{split}$$

Exercise: True error rate

Consider a binary classification problem $Y \in \{0,1\}$ with scalar data $X \in \mathbb{R}$.

For a prediction rule $f_1(X) = 0$ if $X \le t$, 1 otherwise, where t is a given threshold, and based on the

- ightharpoonup class weights Pr(Y=0), Pr(Y=1)
- lass pdf's p(x|Y=0), p(x|Y=1)

how can we compute the true error rate $(0-1 \cos t)$?

Recap on Train and Test Errors

- Loss-function
 - ► Classification : $L(y, \hat{y}) = 0$ if $y = \hat{y}$ else $1 \leftarrow 0$ -1 loss
 - ▶ Regression : $L(y,\hat{y}) = (y \hat{y})^2 \leftarrow \text{quadratic loss}$
- ► Train error : average loss over the training sample

$$\mathsf{Err}_{\mathsf{train}} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{y}_i)$$

- ightharpoonup Test error : average loss over a new test sample ightarrow Generalization error
- General picture :

$$\mathsf{Err}_{\mathsf{test}} \approx \mathsf{Err}_{\mathsf{train}} + O$$

O would be the average optimism (overfitting problem!)

Model Assesment/Validation

Objective

Estimate the generalization error, i.e. the predictive performance on unseen/test data

Common Applications

- ▶ Hyperparameter tuning : estimate the best set of hyperparameters
- ▶ Model selection : compare the performance of differents models

Validation procedures

Validation set

Create a validation set, i.e. fresh data not used during the training set, to estimate the predictive performances/test error rate

- Best solution : collect a large data set of new test data... But in practice, this is generally not available/possible!
- Simple solution: split the data set. One part is removed from the training set and will be kept as a validation set only

But

- only part of the data is used to train the model (introduces a bias)
- the role of the data is not symmetrical: some are used only for training, others only for testing (increases the variance)
- standard solution : cross-validation, e.g. K-fold Cross-Validation

K-fold Cross-Validation (CV): Principle

- Method to estimate prediction error using the only training sample
- ▶ Based on splitting the data in K-folds, here K = 5:

	Validation	Train	Train	Train	Train
$Err_2(\hat{f}_2,\lambda)$	Train	Validation	Train	Train	Train
$Err_3(\hat{f}_3,\lambda)$	Train	Train	Validation	Train	Train
$Err_4(\hat{f}_4,\lambda)$	Train	Train	Train	Validation	Train
$Err_5(\hat{f}_5,\lambda)$	Train	Train	Train	Train	Validation

where λ are some hyperparameters of the model/method

► Estimate of Test error :

$$\mathrm{CV}(\hat{f},\lambda) = \sum_{k=1}^K \mathsf{Err}_k(\hat{f}_k,\lambda)$$

K-fold Cross-Validation (CV): Algorithm

Input: input variables X (dimension $n \times p$), responses y (dim. n), number of folds k

Divide randomly the set $\{1, 2, ..., n\}$ in k subsets (i.e., folds) of roughly equal sizes (e.g., size equals to the integer part of n/k with a little smaller last part if n is not a multiple of k) denoted as $F_1, ..., F_k$

for i = 1 to k:

- Form the validation set (X_{val}, y_{val}) where the indexes of the X and y variables belongs to the ith fold F_i
- Form the training set (X_{train}, y_{train}) where the indexes of the X and y variables belongs to all the folds except F_i
- Train the algorithm/model on the training set (X_{train}, y_{train})
- \triangleright Apply the resulting prediction rule on the input X_{val} of the validation set
- \blacktriangleright Compute the error rate on the validation set based on the predictions and the true responses y_{val}

Output: the average error rate computed over all the k folds

Pratical advices

► K? Usually K=5 or 10 is a good trade-off (K=n is called leave-one-out)

	Bias	Variance
K low K high	High Low	Low High
K = n	Low	Very High

▶ Be careful to the learning curve

Number of samples

- Model should be trained completely for each fold (i.e., data normalization, optimization, etc ...)
- ► Notebooks: N1_validation_and_model_selection.ipynb

Conclusions

Model assesment methods are an essential tool for data analysis, especially for big datasets involving many predictors

Cross-validation

- generic and simple procedure that can be used for any supervised problem
- provides a direct estimate of the test error.
- Can be used for model selection and/or hyperparameter tuning
- ightharpoonup K-fold (with K=5, or K=10) is a standard choice, but there exists many variants depending on the problem, e.g.
 - ► stratified K-fold to ensure that all the folds have roughly the same average response value ← useful for classification to be sure that each fold contains roughly the same proportions of class labels.
 - hold-out cross-validation for time-series where a subset (split temporally) of the data is reserved for validating the model performance

Supplementary materials

Cross-validation

- Coursera MOOC short (12mn) video https://fr.coursera.org/lecture/machine-learning/model-selection-and-train-validation-test-sets-QGKbr
- Wikipedia page https://en.wikipedia.org/wiki/Cross-validation_(statistics)
- Scikit-learn documentation (with examples):
 - https://scikit-learn.org/stable/modules/cross_validation.html#
 - https://scikit-learn.org/stable/modules/grid_search.html#grid-search