Topos Theory III: Sheaves

Robbert Liu

September 28, 2022

• Sheaves

2 / 18

- Sheaves
- \bullet The Representable Sheaf and Sieves

2 / 18

- Sheaves
- The Representable Sheaf and Sieves
- Manifolds

2 / 18

- Sheaves
- The Representable Sheaf and Sieves
- Manifolds
- Bundles

2 / 18

Definition (Sheaf)

Let $\mathcal{O}(X)$ be the poset of open sets of a topological space. A sheaf is a presheaf $F \in \mathcal{O}(X)$ with the following equalizer for every open cover $\{U_i\}$ of an open set U:

$$FU \stackrel{e}{\longrightarrow} \prod_{i} FU_{i} \stackrel{\alpha,\beta}{\Longrightarrow} \prod_{i,j} F(U_{i} \cap U_{j})$$

where α (β) sends each component $f_i \in FU_i$ to $f_i|_{U_i \cap U_j}$ ($f_j|_{U_i \cap U_j}$).

3 / 18

Definition (Sheaf)

Let $\mathcal{O}(X)$ be the poset of open sets of a topological space. A sheaf is a presheaf $F \in \mathcal{O}(X)$ with the following equalizer for every open cover $\{U_i\}$ of an open set U:

$$FU \stackrel{e}{\longrightarrow} \prod_{i} FU_{i} \stackrel{\alpha,\beta}{\Longrightarrow} \prod_{i,j} F(U_{i} \cap U_{j})$$

where α (β) sends each component $f_i \in FU_i$ to $f_i|_{U_i \cap U_j}$ ($f_j|_{U_i \cap U_j}$).

• For every open set $U \subseteq X$, we get a set FU.

3 / 18

Definition (Sheaf)

Let $\mathcal{O}(X)$ be the poset of open sets of a topological space. A sheaf is a presheaf $F \in \mathcal{O}(X)$ with the following equalizer for every open cover $\{U_i\}$ of an open set U:

$$FU \stackrel{e}{\longrightarrow} \prod_{i} FU_{i} \stackrel{\alpha,\beta}{\Longrightarrow} \prod_{i,j} F(U_{i} \cap U_{j})$$

where α (β) sends each component $f_i \in FU_i$ to $f_i|_{U_i \cap U_j}$ ($f_j|_{U_i \cap U_j}$).

- For every open set $U \subseteq X$, we get a set FU.
- For every inclusion $U \subseteq V$ of open sets, we get a restriction map $-|_U : FV \to FU$. Functorality implies $x|_V|_W = x|_W$, for $x \in U \supset V \supset W$.

Definition (Sheaf)

Let $\mathcal{O}(X)$ be the poset of open sets of a topological space. A sheaf is a presheaf $F \in \mathcal{O}(X)$ with the following equalizer for every open cover $\{U_i\}$ of an open set U:

$$FU \stackrel{e}{\longrightarrow} \prod_{i} FU_{i} \stackrel{\alpha,\beta}{\Longrightarrow} \prod_{i,j} F(U_{i} \cap U_{j})$$

where α (β) sends each component $f_i \in FU_i$ to $f_i|_{U_i \cap U_j}$ ($f_j|_{U_i \cap U_j}$).

- For every open set $U \subseteq X$, we get a set FU.
- For every inclusion $U \subseteq V$ of open sets, we get a restriction map $-|_U : FV \to FU$. Functorality implies $x|_V|_W = x|_W$, for $x \in U \supset V \supset W$.
- For each family $f_i \in FU_i$ glues together to form a unique $f \in FU$ if f_i, f_j coincide when restricted to $U_i \cap U_j$.

3 / 18

Examples

• The sheaf F of continuous (smooth) maps on a topological space (smooth manifold) X. FU is the set of such maps on the neighbourhood $U \subseteq X$, and the restriction maps are the usual function restrictions.

4 / 18

Examples

- The sheaf F of continuous (smooth) maps on a topological space (smooth manifold) X. FU is the set of such maps on the neighbourhood $U \subseteq X$, and the restriction maps are the usual function restrictions.
- The representable sheaf $\operatorname{Hom}_{\mathcal{O}(X)}(V,U)$ assigning V the set $\{V \to U\} \cong 1$ if $V \subseteq U$, and \emptyset otherwise.

4/18

Let F be a sheaf on X. A subfunctor $S \leq F$ is a subsheaf iff for every open set $U \subseteq X$ and $f \in FU$, and an open covering $\bigcup_i U_i = U$ we have

$$f \in SU$$
 if and only if $f|_{U_i} \in SU_i$ for each i . (1)

5 / 18

Let F be a sheaf on X. A subfunctor $S \leq F$ is a subsheaf iff for every open set $U \subseteq X$ and $f \in FU$, and an open covering $\bigcup_i U_i = U$ we have

$$f \in SU$$
 if and only if $f|_{U_i} \in SU_i$ for each i . (1)

Proof.

Idea: since S is a subfunctor of F, gluing and restriction on S is inherited from F. It suffices to add the condition that S must be "closed" under gluing and restriction, for S to be a sheaf.

• For each continuous map $f: X \to Y$, we get an induced map $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$, where f_*F is the sheaf with local sets $f_*FU = Ff^{-1}(U)$.

6 / 18

- For each continuous map $f: X \to Y$, we get an induced map $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$, where f_*F is the sheaf with local sets $f_*FU = Ff^{-1}(U)$.
- A sheaf $F \in Sh(X)$ restricts to a sheaf $F|_U \in Sh(U)$ for any open set $U \subseteq X$.

- For each continuous map $f: X \to Y$, we get an induced map $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$, where f_*F is the sheaf with local sets $f_*FU = Ff^{-1}(U)$.
- A sheaf $F \in Sh(X)$ restricts to a sheaf $F|_U \in Sh(U)$ for any open set $U \subseteq X$.

Theorem 2

Suppose X has an pen cover $\{W_k\}$ with a family of sheaves $F_k \in Sh(W_k)$, such that

$$F_k|_{W_k\cap W_\ell} = F_\ell|_{W_k\cap W_\ell}$$
 for all k, ℓ .

Then there exists a unique (up to iso.) sheaf $F \in Sh(X)$ such that $F|_{W_k} = F_k$.

Proof.

Idea: if F exists, then for each open set $U \subseteq X$, we must have an equalizer for the cover $\bigcup_k (U \cap W_k) = U$.

$$FU \xrightarrow{e} \prod_{i} F_k(U \cap W_k) \xrightarrow{\alpha, \beta} \prod_{i,j} F_{k\ell}(U \cap W_k \cap W_\ell)$$

where $F_{k\ell} = F_k|_{W_k \cap W_\ell}$. Thus, we take this to be the definition of FU.

7/18

Sheaf on a basis

• If $\mathcal{O}(X)$ has a basis \mathcal{B} , then we may define a *sheaf on* \mathcal{B} as a presheaf $\mathcal{B}^{\mathrm{op}} \to Set$ with appropriate equalizers for each covering $B = \cup_i B_i$.

8 / 18

Sheaf on a basis

• If $\mathcal{O}(X)$ has a basis \mathcal{B} , then we may define a *sheaf on* \mathcal{B} as a presheaf $\mathcal{B}^{\mathrm{op}} \to Set$ with appropriate equalizers for each covering $B = \cup_i B_i$.

Theorem 3

The restriction functor $r: \operatorname{Sh}(X) \to \operatorname{Sh}(\mathcal{B})$ is an equivalence of categories.

8 / 18

• Recall the representable sheaf $\operatorname{Hom}(-,U)=\mbox{\sharp}(U)$ for some fixed open set $U\subseteq X.$

9 / 18

- Recall the representable sheaf $\operatorname{Hom}(-,U)=\mbox{\sharp}(U)$ for some fixed open set $U\subseteq X.$
- We may think of this sheaf as a sieve $S_U = \{V \in \mathcal{O}(X) : V \subseteq U\}$, since precomposition by a morphism is the same as inclusion. S_U is called the *principle sieve on U*.

9/18

- Recall the representable sheaf $\operatorname{Hom}(-,U)=\mbox{\sharp}(U)$ for some fixed open set $U\subseteq X.$
- We may think of this sheaf as a sieve $S_U = \{V \in \mathcal{O}(X) : V \subseteq U\}$, since precomposition by a morphism is the same as inclusion. S_U is called the *principle sieve on U*.
- Furthermore, a sieve S is a covering sieve of U if the open sets in S cover U.

9/18

- Recall the representable sheaf $\operatorname{Hom}(-,U)=\mbox{\sharp}(U)$ for some fixed open set $U\subseteq X.$
- We may think of this sheaf as a sieve $S_U = \{V \in \mathcal{O}(X) : V \subseteq U\}$, since precomposition by a morphism is the same as inclusion. S_U is called the *principle sieve on U*.
- ullet Furthermore, a sieve S is a covering sieve of U if the open sets in S cover U.

Proposition 1

A presheaf F on X is a sheaf if and only if, for every open set $U \subseteq X$ and every covering sieve S on U, the inclusion of functors $\iota_S : S \to \pounds(U)$ induces an isomorphism

$$\operatorname{Hom}(\sharp(U), F) \cong \operatorname{Hom}(S, F).$$

9/18

Proof

Let F be a presheaf. For any open covering $\{U_i\}$ of an open set $U \subseteq X$, we can construct the following equalizer diagram:

$$E \stackrel{e}{\longrightarrow} \prod_{i} FU_{i} \stackrel{\alpha,\beta}{\Longrightarrow} \prod_{i,j} F(U_{i} \cap U_{j})$$

where E contains families of elements $x_i \in FU_i$ such that $x_i|_{U_i \cap U_j} = x_j|_{U_i \cap U_j}$. Now, replace $\{U_i\}$ with the covering sieve S generated by $\{U_i\}$, and define $x_V = x_i|_V$, for families $(x_i) \in \prod_i FU_i$. By assumption, x_V is independent of i. If we let S denote the functor taking $V \mapsto 1$ iff $V \in S$, then each element $x_V \in FV$ is a map $SV \to FV$. The equalizer is thus Hom(S, F).

Diagram:

Robbert Liu Topos Theory III September 28, 2022 10 / 18

Proof Cont.

This lets us construct the commutative diagram:

Hence, $(\iota_s)^*$ is always an isomorphism iff FU is always the equalizer of the top right pair of parallel morphisms.

Sh(x) is complete, and the forgetful functor is continuous.

12 / 18

Sh(x) is complete, and the forgetful functor is continuous.

Corollary 3

The subobjects of a sheaf F in Sh(x) are subsheafs of F up to isomorphism.

12 / 18

Sh(x) is complete, and the forgetful functor is continuous.

Corollary 3

The subobjects of a sheaf F in Sh(x) are subsheafs of F up to isomorphism.

Proof.

Let $m: H \to F$ be a subobject of the sheaf F. Recall that m is monic iff H is the pullback of m along itself. By the last theorem, m is monic in the category of presheaves: its components are consequently monic. Therefore, each HU is isomorphic to some subset $SU \subseteq FU$. This allows us to construct the subfunctor S of F which is isomorphic to H, which is also a sheaf.

12 / 18

Theorem

For ant space X, there is an isomorphism

$$\mathcal{O}(X) \cong Sub_{Sh}(1)$$
.

of posets. 1 is the constant sheaf Hom(-, X).

Theorem

For ant space X, there is an isomorphism

$$\mathcal{O}(X) \cong Sub_{Sh}(1).$$

of posets. 1 is the constant sheaf Hom(-, X).

Proof.

For an open set $U \subseteq X$, we assign the representable sheaf $\operatorname{Hom}(-,U)$. Conversely, if $S \leq 1$, then assign it the open set $\bigcup \{U \in \mathcal{O}(X) : SU = 1\}$.

13 / 18

Definition

A topological n-manifold M is a second countable Hausdorff space such that each point q admits an open neighbourhood V homeomorphic to an open set $W \subseteq \mathbb{R}^n$ via a $chart \ \phi: V \to W$. A collection of charts $\{\phi_i: V_i \to W_i\}$ with V_i covering M is an atlas.

Definition

A topological n-manifold M is a second countable Hausdorff space such that each point q admits an open neighbourhood V homeomorphic to an open set $W \subseteq \mathbb{R}^n$ via a chart $\phi: V \to W$. A collection of charts $\{\phi_i: V_i \to W_i\}$ with V_i covering M is an atlas.

• A map is continuous on $V \subseteq W$ if its precomposition with a chart $\phi^{-1}: W \to V$ is continuous on $W \subseteq \mathbb{R}^n$.

Definition

A topological n-manifold M is a second countable Hausdorff space such that each point q admits an open neighbourhood V homeomorphic to an open set $W \subseteq \mathbb{R}^n$ via a chart $\phi: V \to W$. A collection of charts $\{\phi_i: V_i \to W_i\}$ with V_i covering M is an atlas.

- A map is continuous on $V \subseteq W$ if its precomposition with a chart $\phi^{-1}: W \to V$ is continuous on $W \subseteq \mathbb{R}^n$.
- Given an atlas $\{\phi_i\}$, define $\phi_{ij} = \phi_i|_{V_j}$. The image of ϕ_{ij} is some subset $W_ij \subseteq$. We obtain the transition maps, which are homeomorphisms $_{ij}\phi_{ii}^{-1}:W_{ij}\to W_{ji}$.

Definition

A topological n-manifold M is a second countable Hausdorff space such that each point q admits an open neighbourhood V homeomorphic to an open set $W \subseteq \mathbb{R}^n$ via a chart $\phi: V \to W$. A collection of charts $\{\phi_i: V_i \to W_i\}$ with V_i covering M is an atlas.

- A map is continuous on $V \subseteq W$ if its precomposition with a chart $\phi^{-1}: W \to V$ is continuous on $W \subseteq \mathbb{R}^n$.
- Given an atlas $\{\phi_i\}$, define $\phi_{ij} = \phi_i|_{V_j}$. The image of ϕ_{ij} is some subset $W_i j \subseteq$. We obtain the *transition maps*, which are homeomorphisms $_{ij}\phi_{ji}^{-1}: W_{ij} \to W_{ji}$.
- M can be constructed by pasting together the sets W_i on the subsets W_{ij} using the transition maps: categorically, M is the pushforward in the following diagram, where $\alpha(\beta)$ sends $x_{ij} \in V_i \cap V_j$ to $x_i(x_j)$:

$$\coprod_{i,j} V_i \cap V_j \xrightarrow{\alpha \atop \beta} \coprod_i V_i \longrightarrow M$$

14 / 18

Smooth Manifolds

• For smooth (C^k) manifolds, we require that the transition maps are C^k . Smooth maps on M are defined similarly.

Smooth Manifolds

- For smooth (C^k) manifolds, we require that the transition maps are C^k . Smooth maps on M are defined similarly.
- For a topological (smooth) n-manifold M, there exists the sheaf of continuous (smooth) functions on M. In the smooth case, this is called the *structure sheaf* C^k .

Smooth Manifolds

- For smooth (C^k) manifolds, we require that the transition maps are C^k . Smooth maps on M are defined similarly.
- For a topological (smooth) n-manifold M, there exists the sheaf of continuous (smooth) functions on M. In the smooth case, this is called the *structure sheaf* C^k .
- Smooth manifolds can be defined using sheaves.
 - ▶ a smooth n-manifold M is a second countable Hausdorff space with a subsheaf $S = S_M$ of the sheaf C_M of continuous functions on M with the property that each point $p \in M$ has an open neighbourhood V such that there is a homeomorphism $\varphi: V \to W \subseteq \mathbb{R}^n$ carrying the sheaf C^k in W isomorphically onto $S|_V$.

Smooth Manifolds

- For smooth (C^k) manifolds, we require that the transition maps are C^k . Smooth maps on M are defined similarly.
- For a topological (smooth) n-manifold M, there exists the sheaf of continuous (smooth) functions on M. In the smooth case, this is called the *structure sheaf* C^k .
- Smooth manifolds can be defined using sheaves.
 - ▶ a smooth n-manifold M is a second countable Hausdorff space with a subsheaf $S = S_M$ of the sheaf C_M of continuous functions on M with the property that each point $p \in M$ has an open neighbourhood V such that there is a homeomorphism $\varphi: V \to W \subseteq \mathbb{R}^n$ carrying the sheaf C^k in W isomorphically onto $S|_V$.
- Smooth manifolds are examples of ringed spaces.
 - ▶ A ringed space X is a topological space with a fixed sheaf R of rings called the structure sheaf, and a morphism $f:(X,R)\to (X',R')$ of ringed spaces is a continuous map $f:X\to X'$ inducing a homomorphism $\alpha:R'\to f_*R$ of sheaves.

(ロ) 4 回) 4 重) 4 重) 4 回) 4 回) 4 回) 4 回) 4 国) 7 Q (P

Bundles

• For any space X, a continuous map $p: Y \to X$ is a bundle over the base space X.

Bundles

- For any space X, a continuous map $p: Y \to X$ is a bundle over the base space X.
- ullet Bundles are objects of the category $\mathsf{Top}/X,$ where morphisms are commutative triangles

such that f is continuous.

16 / 18

Bundles

- For any space X, a continuous map $p: Y \to X$ is a bundle over the base space X.
- ullet Bundles are objects of the category Top/X , where morphisms are commutative triangles

such that f is continuous.

• $p^{-1}(x)$ is called the fiber of Y over x. A bundle is like a family of fibers continuously indexed by X. For an open subset $U \subseteq X$, any bundle p restricts to a bundle $p_U : p^{-1}U \to U$ over U. p_U is the pullback of p along the inclusion $U \to X$ in Top.

• A section s of the bundle p_U , is a continuous map $s: U \to Y$, such that ps is the inclusion $\iota: U \to X$. Let $\Gamma_p U$ be the set of all sections over U.

- A section s of the bundle p_U , is a continuous map $s: U \to Y$, such that ps is the inclusion $\iota: U \to X$. Let $\Gamma_p U$ be the set of all sections over U.
- Since there is a restriction function $\Gamma_p U \to \Gamma_p V$ for any open subset $V \subseteq U$, $\Gamma_p(-)$ is a presheaf on $\mathcal{O}(X)$, which is also a sheaf.

- A section s of the bundle p_U , is a continuous map $s: U \to Y$, such that ps is the inclusion $\iota: U \to X$. Let $\Gamma_p U$ be the set of all sections over U.
- Since there is a restriction function $\Gamma_p U \to \Gamma_p V$ for any open subset $V \subseteq U$, $\Gamma_p(-)$ is a presheaf on $\mathcal{O}(X)$, which is also a sheaf.
- It will be eventually shown that every sheaf on X can be regarded as a sheaf of sections of some bundle over X.

- A section s of the bundle p_U , is a continuous map $s: U \to Y$, such that ps is the inclusion $\iota: U \to X$. Let $\Gamma_p U$ be the set of all sections over U.
- Since there is a restriction function $\Gamma_p U \to \Gamma_p V$ for any open subset $V \subseteq U$, $\Gamma_p(-)$ is a presheaf on $\mathcal{O}(X)$, which is also a sheaf.
- It will be eventually shown that every sheaf on X can be regarded as a sheaf of sections of some bundle over X.
- Discrete Bundle:

17 / 18

- A section s of the bundle p_U , is a continuous map $s: U \to Y$, such that ps is the inclusion $\iota: U \to X$. Let $\Gamma_p U$ be the set of all sections over U.
- Since there is a restriction function $\Gamma_p U \to \Gamma_p V$ for any open subset $V \subseteq U$, $\Gamma_p(-)$ is a presheaf on $\mathcal{O}(X)$, which is also a sheaf.
- It will be eventually shown that every sheaf on X can be regarded as a sheaf of sections of some bundle over X.
- Discrete Bundle:
 - ▶ Let F be a sheaf on a discrete space X. Then, each singleton is open, so F determines a function $f: X \to \mathsf{Set}$ defined by $fx = F(\{x\})$.

- A section s of the bundle p_U , is a continuous map $s: U \to Y$, such that ps is the inclusion $\iota: U \to X$. Let $\Gamma_p U$ be the set of all sections over U.
- Since there is a restriction function $\Gamma_p U \to \Gamma_p V$ for any open subset $V \subseteq U$, $\Gamma_p(-)$ is a presheaf on $\mathcal{O}(X)$, which is also a sheaf.
- It will be eventually shown that every sheaf on X can be regarded as a sheaf of sections of some bundle over X.
- Discrete Bundle:
 - ▶ Let F be a sheaf on a discrete space X. Then, each singleton is open, so F determines a function $f: X \to \mathsf{Set}$ defined by $fx = F(\{x\})$.
 - ▶ Any open set $U \subseteq X$ can be covered by singletons. By the glueing condition of the sheaf, given by the appropriate equalizer,

$$FU \longrightarrow \prod_{x \in U} fu \Longrightarrow 1$$
,

we have $FU = \coprod_{x \in U} fx$.

17 / 18

- A section s of the bundle p_U , is a continuous map $s: U \to Y$, such that ps is the inclusion $\iota: U \to X$. Let $\Gamma_p U$ be the set of all sections over U.
- Since there is a restriction function $\Gamma_p U \to \Gamma_p V$ for any open subset $V \subseteq U$, $\Gamma_p(-)$ is a presheaf on $\mathcal{O}(X)$, which is also a sheaf.
- It will be eventually shown that every sheaf on X can be regarded as a sheaf of sections of some bundle over X.
- Discrete Bundle:
 - ▶ Let F be a sheaf on a discrete space X. Then, each singleton is open, so F determines a function $f: X \to \mathsf{Set}$ defined by $fx = F(\{x\})$.
 - ▶ Any open set $U \subseteq X$ can be covered by singletons. By the glueing condition of the sheaf, given by the appropriate equalizer,

$$FU \longrightarrow \prod_{x \in U} fu \Longrightarrow 1$$
,

we have $FU = \coprod_{x \in U} fx$.

▶ Hence, we can define the discrete bundle $p: \coprod_{x \in X} fx \to X$ with the obvious projection. Additionally, FU is the set of sections of p over U.

• Let G be a topological group. A G-space consists of a continuous right action $a: Y \times G \to Y$ of G on a space Y.

- Let G be a topological group. A G-space consists of a continuous right action $a: Y \times G \to Y$ of G on a space Y.
- Two points $y, y' \in Y$ are equivalent under the action of G if y' = yg for some $g \in G$. Then, the map $p: Y \to Y/G$ sending each $y \in Y$ to its orbit is a bundle.

- Let G be a topological group. A G-space consists of a continuous right action $a: Y \times G \to Y$ of G on a space Y.
- Two points $y, y' \in Y$ are equivalent under the action of G if y' = yg for some $g \in G$. Then, the map $p: Y \to Y/G$ sending each $y \in Y$ to its orbit is a bundle.
- Let $Y \times_{Y/G} Y$ be the pullback of p by itself. This space contains pairs (y, y') such that y, y' belong to the same orbit.

18 / 18

- Let G be a topological group. A G-space consists of a continuous right action $a: Y \times G \to Y$ of G on a space Y.
- Two points $y, y' \in Y$ are equivalent under the action of G if y' = yg for some $g \in G$. Then, the map $p: Y \to Y/G$ sending each $y \in Y$ to its orbit is a bundle.
- Let $Y \times_{Y/G} Y$ be the pullback of p by itself. This space contains pairs (y, y') such that y, y' belong to the same orbit.
- Since there are two maps $Y \times G \to Y$, projection π and right action a, we can construct the map $\theta = \pi \cdot a : Y \times G \to Y \times_{Y/G} Y$. If θ is a homeomorphism, then $Y \times G$ is called the *principle G-bundle*.

- Let G be a topological group. A G-space consists of a continuous right action $a: Y \times G \to Y$ of G on a space Y.
- Two points $y, y' \in Y$ are equivalent under the action of G if y' = yg for some $g \in G$. Then, the map $p: Y \to Y/G$ sending each $y \in Y$ to its orbit is a bundle.
- Let $Y \times_{Y/G} Y$ be the pullback of p by itself. This space contains pairs (y, y') such that y, y' belong to the same orbit.
- Since there are two maps $Y \times G \to Y$, projection π and right action a, we can construct the map $\theta = \pi \cdot a : Y \times G \to Y \times_{Y/G} Y$. If θ is a homeomorphism, then $Y \times G$ is called the *principle G-bundle*.
- If $Y \times G$ is principle, then injectivity of θ implies that G acts freely, and surjectivity implies G acts transitively, on Y. Thus, each fiber of p is homeomorphic to G.

18 / 18