Primer on Semiconductors

Unit 3: Equilibrium Carrier Concentrations

Lecture 3.1: The Fermi function

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Occupation of states

Fermi level

The Fermi function

$$f_0(E) = \frac{1}{1 + e^{(E - E_F)/k_B T}}$$

Fermi function

Probability that a state at energy, *E*, is occupied in equilibrium.

More about the Fermi function

Effect of temperature

Electrons and holes

These states are way above the Fermi level.

These states are way below the Fermi level.

 \leftarrow A few states near E_C may be occupied.

 \leftarrow A few states near E_V may be empty.

Conduction band

Valence band

Nondegenerate semiconductors

Energy band diagram of an intrinsic semiconductor

Energy band diagram and carrier densities

$$f_0(E) \approx e^{(E_F - E)/k_B T}$$

$$n \propto e^{(E_F - E_C)/k_B T}$$

$$1 - f_0(E) \approx e^{(E_V - E_F)/k_B T}$$

$$p \propto e^{(E_V - E_F)/k_B T}$$

Summary

The Fermi function gives the probability that a state (if it exists) is occupied in equilibrium.

$$f_0(E) = \frac{1}{1 + e^{(E - E_F)/k_B T}}$$
(Fermi function)

The two key parameters in the Fermi function are the Fermi level and the temperature.

13