Funktionentheorie: Übungsstunde 2

Florian Frauenfelder https://florian-frauenfelder.ch/ta/ca/

30.09.2025

1 Theorie-Recap letzte Woche

Behandelte Themen: Holomorphe, konforme und harmonische Funktionen, Kurven.

1.1 Zusätzliches Material

1.1.1 Biholomorphe Funktionen

Jede holomorphe Funktion (mit Ableitung $\neq 0$) kann durch geschickte Einschränkung des Definitionsbereiches (und des Wertebereiches) biholomorph gemacht werden.

Beispiel 1. Wir schränken die Exponentialabbildung auf den Streifen $\{w \in \mathbb{C} \mid -\pi < \text{Im } w < \pi\}$ ein, sodass wir eine biholomorphe Abbildung nach $\mathbb{C}^- := \mathbb{C} \setminus (-\infty, 0]$ erhalten, die den Hauptzweig des Logarithmus als Umkehrfunktion hat.

1.1.2 Zusammenhang

Ein offenes Gebiet $\Omega \subseteq \mathbb{C}$ heisst zusammenhängend \iff weg-zusammenhängend. Ω heisst einfach zusammenhängend, wenn es zusammenhängend ist und alle Kurven (mit gleichen Endpunkten) homotop zueinander sind.

Intuition: Einfach zusammenhängende Gebiete dürfen keine «Löcher» enthalten, da sonst eine geschlossene Kurve um das Loch herum nicht homotop zur konstanten Kurve ist.

2 Aufgaben

Aufgaben mit HSxx oder FSxx sind aus der Prüfungssammlung des VMP entnommen: https://exams.vmp.ethz.ch/category/Funktionentheorie

Besprochene Aufgaben

Aufgabe 1. Finde f = u + iv holomorph, sodass $u(x,y) = \frac{2}{3}x^3 - 2xy^2 - x^2 + y^2 + 4y$.

Lösung. Mit Cauchy-Riemann und den Ableitungsregeln ergibt sich:

$$f'(x,y) = \frac{\partial f}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,y) - i\frac{\partial u}{\partial y}(x,y) = 2x^2 - 2y^2 - 2x - i(-4xy + 2y + 4), \quad (1)$$

woraus man eine Stammfunktion f(z) von f'(z) finden kann.

Aufgabe 2. Was können wir über eine ganze Funktion $f: \mathbb{C} \to \mathbb{R}$ sagen?

Lösung. Aus $f=u+iv \implies v=0$ folgt, dass die Cauchy-Riemann-Gleichungen = 0 sind, also u= konst. sein muss.

Aufgabe 3. Finde alle holomorphen f = u + iv, sodass $\tilde{f} = u^2 + iv^2$ auch holomorph ist

Lösung. Da die Cauchy-Riemann-Gleichungen für beide Funktionen gelten, finden wir:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial u^2}{\partial x} = 2u \frac{\partial u}{\partial x} = 2v \frac{\partial v}{\partial y} = \frac{\partial v^2}{\partial y}$$
 (2)

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \qquad \qquad \frac{\partial u^2}{\partial y} = 2u\frac{\partial u}{\partial y} = -2v\frac{\partial v}{\partial x} = -\frac{\partial v^2}{\partial x}, \tag{3}$$

woraus zwei Möglichkeiten folgen, die geforderte Eigenschaft zu erfüllen: Entweder gilt u=v oder $u,v=\mathrm{konst.}$

Weitere Aufgaben

- HS05: 1
- HS06: 3a
- FS07: 4i

Tipps zur Serie 2 auf der nächsten Seite!

3 Tipps zur Serie 2

- 2. Benutze die Eigenschaften der Möbiustransformationen und die Resultate aus (1).
- 3. Die Cauchy-Riemann-Gleichungen helfen.
- 4. Benutze entweder die Ableitungen in Polarform, oder leite die Gleichungen wie in Satz $2.13~{\rm her.}$
- 5. Benutze Cauchy-Riemann und löse ähnlich wie Aufgabe 1, oder benutze alternativ die Bedingung der harmonischen Funktionen.