Linear models II

Steven Moran & Marco Maiolini

In the previous lecture...

Model	Variables	Distribution	R code
Linear Regression	$Y = b_0 + b_1 x$	Normal	lm(formula, data)
General Linear Models	$Y = b_0 + b_1 x_1 + b_2 x_2 +$	Normal	lm(formula, data)
Generalized Linear Models (GLM)	$Y = b_0 + b_1 x_1 + b_2 x_2 +$	Any	glm(formula, family, data)

In most models that we have seen (LM or GLM) we were interested in quantifying the exact effect of each explanatory variable.

In most models that we have seen (LM or GLM) we were interested in quantifying the exact effect of each explanatory variable.

Differences between age of FEV

In most models that we have seen (LM or GLM) we were interested in quantifying the exact effect of each explanatory variable.

Differences between age of FEV

The samples of each level are selected randomly, but the levels (Age) of X are not randomly chosen

In most models that we have seen (LM or GLM) we were interested in quantifying the exact effect of each explanatory variable.

Differences between sex in tool use acquisition in Bonobos

In most models that we have seen (LM or GLM) we were interested in quantifying the exact effect of each explanatory variable.

Differences between sex in tool use acquisition in Bonobos

In most models that we have seen (LM or GLM) we were interested in quantifying the exact effect of each explanatory variable.

Differences between sex in tool use acquisition in Bonobos

The samples of each level are selected randomly, but the levels (Sex) of X are not randomly chosen

The levels of our study (Age, Sex) are called <u>FIXED EFFECT.</u>

• Each level of a Fixed Factor is not derived randomly among infinite possibilities

In an experiment, we look at all the possible levels of a <u>Fixed Factor</u>

- If we change the levels of a <u>Fixed Factor</u>, we have to change the hypothesis and repeat the experiment
 - E.g., if we change our fixed effect from sex to age in our Bonobos experiment, we also need to change our hypothesis

Most of biological and behavioral data involves RANDOM EFFECTS, whose purpose is instead to quantify the variation among units.

Most of biological and behavioral data involves RANDOM EFFECTS, whose purpose is instead to quantify the variation among units.

Differences between age of FAV, recorded in 2 schools.

Most of biological and behavioral data involves RANDOM EFFECTS, whose purpose is instead to quantify the variation among units.

Differences between age of FAV, recorded in 2 schools.

The samples of each level are selected randomly within each school

Most of biological and behavioral data involves RANDOM EFFECTS, whose purpose is instead to quantify the variation among units.

Differences between sex in tool use acquisition in Bonobos, in 3 different groups

Most of biological and behavioral data involves RANDOM EFFECTS, whose purpose is instead to quantify the variation among units.

Differences between sex in tool use acquisition in Bonobos, in 3 different groups

Most of biological and behavioral data involves RANDOM EFFECTS, whose purpose is instead to quantify the variation among units.

Differences between sex in tool use acquisition in Bonobos, in 3 different groups

The samples of each level are selected randomly within each group

The levels that quantify our variance are called **RANDOM EFFECT**.

• Each level of a Random Effect is collected randomly among infinite possibilities

In an experiment, we cannot take all the possible levels of a <u>Random Effect</u>

 If we change the levels of a <u>Random Effect</u>, we do not have to change our hypothesis.

Example

You want to measure how much is the food intake for a species in two habitat types (Forest and Plantation), measured in three different sites.

	intake_ra		
food_intake	te	habitat	site
2	0.2	Plantation	siteA
2	0.2	Plantation	siteA
7	0.7	Plantation	siteA
7	0.7	Plantation	siteC
9	0.9	Plantation	siteC
18	1.8	Forest	siteC
17	1.7	Forest	siteC
3	0.3	Forest	siteA
0	0	Plantation	siteA
0	0	Forest	
2	0.2	Plantation	siteA
2	0.2	Forest	
2	0.2	Plantation	siteA
0	0	Plantation	siteA
0	0	Forest	
21	2.1	Forest	siteB
20	2	Forest	
4	0.4	Forest	siteC
3	0.3	Plantation	siteC
15	1.5	Forest	
_	0.9	E a constant	
9	0.9	Forest	siteB
9 13	1.3	Forest	siteB
-			siteB
13	1.3	Forest	siteB siteC
13 0 2 1	1.3	Forest Plantation	siteB siteC siteB
13 0 2	1.3 0 0.2	Forest Plantation Plantation	siteB siteC siteB siteB
13 0 2 1	1.3 0 0.2 0.1	Forest Plantation Plantation Plantation	siteB siteC siteB siteB siteB
13 0 2 1 2	1.3 0 0.2 0.1	Forest Plantation Plantation Plantation Plantation	siteB siteC siteB siteB siteB siteB

Example

You want to measure how much is the food intake for a species in two habitat types (Forest and Plantation), measured in three different sites.

Fixed Factor ———— Habitat

	intake_ra		
food_intake		habitat	site
2	0.2	Plantation	siteA
2	0.2	Plantation	siteA
7	0.7	Plantation	siteA
7	0.7	Plantation	siteC
9	0.9	Plantation	siteC
18	1.8	Forest	siteC
17	1.7	Forest	siteC
3	0.3	Forest	siteA
0	0	Plantation	siteA
0	0	Forest	siteA
2	0.2	Plantation	siteA
2	0.2	Forest	siteA
2	0.2	Plantation	siteA
0	0	Plantation	siteA
0	0	Forest	siteB
21	2.1	Forest	siteB
20	2	Forest	siteB
4	0.4	Forest	siteC
3	0.3	Plantation	siteC
15	1.5	Forest	siteB
9	0.9	Forest	siteB
13	1.3	Forest	siteB
0	0	Plantation	siteC
2	0.2	Plantation	siteB
1	0.1	Plantation	siteB
2	0.2	Plantation	siteB
5	0.5	Plantation	siteB
1	0.1	Plantation	siteB
0	0	Plantation	siteB

Example

You want to measure how much is the food intake for a species in two habitat types (Forest and Plantation), measured in three different sites.

Fixed Factor ———— Habitat

Random Effect ----- Sites

	intake_ra		
food_intake	te	habitat	site
2	0.2	Plantation	siteA
2	0.2	Plantation	siteA
7	0.7	Plantation	siteA
7	0.7	Plantation	siteC
9	0.9	Plantation	siteC
18	1.8	Forest	siteC
17	1.7	Forest	siteC
3	0.3	Forest	siteA
0	0	Plantation	siteA
0	0	Forest	siteA
2	0.2	Plantation	siteA
2	0.2	Forest	siteA
2	0.2	Plantation	siteA
0	0	Plantation	siteA
0	0	Forest	siteB
21	2.1	Forest	
20	2	Forest	siteB
4	0.4	Forest	siteC
3	0.3	Plantation	siteC
15	1.5	Forest	siteB
9	0.9	Forest	
13	1.3	Forest	siteB
0	0	Plantation	siteC
2	0.2	Plantation	siteB
1	0.1	Plantation	siteB
2	0.2	Plantation	siteB
5	0.5	Plantation	siteB
1	0.1	Plantation	siteB
0	0	Plantation	siteB

Example

You want to measure how much is the food intake for a species in two habitat types (Forest and Plantation), measured in three different sites.

Fixed Factor ———— Habitat

Random Effect — Sites

In R:

Imer(Response variable ~ Fixed Factor + (1|Random), data = dataset)

	intake_ra		
food_intake	te	habitat	site
2	0.2	Plantation	siteA
2	0.2	Plantation	siteA
7	0.7	Plantation	siteA
7	0.7	Plantation	siteC
9	0.9	Plantation	siteC
18	1.8	Forest	
17	1.7	Forest	siteC
3	0.3	Forest	siteA
0	0	Plantation	siteA
0	0	Forest	siteA
2	0.2	Plantation	siteA
2	0.2	Forest	siteA
2	0.2	Plantation	siteA
0	0	Plantation	siteA
0	0	Forest	siteB
21	2.1	Forest	siteB
20	2	Forest	siteB
4	0.4	Forest	siteC
3	0.3	Plantation	
15	1.5	Forest	siteB
9	0.9	Forest	
13	1.3	Forest	siteB
0	0	Plantation	siteC
2	0.2	Plantation	siteB
1	0.1	Plantation	siteB
2	0.2	Plantation	siteB
5	0.5	Plantation	siteB
1	0.1	Plantation	siteB
0	0	Plantation	siteB

Example

You want to measure how much is the food intake for a species in two habitat types (Forest and Plantation), measured in three different sites.

Fixed Factor ———— Habitat

Random Effect ----- Sites

Imer(intake_rate ~ habitat + (1|site), data = ...)

In R:

Imer(Response variable ~ Fixed Factor + (1|Random), data = dataset)

	intake_ra		
food_intake		habitat	
2	0.2	Plantation	
2	0.2	Plantation	
7	0.7	Plantation	siteA
7	0.7	Plantation	siteC
9	0.9	Plantation	siteC
18	1.8	Forest	
17	1.7	Forest	siteC
3	0.3	Forest	siteA
0	0	Plantation	siteA
0	0	Forest	siteA
2	0.2	Plantation	
2	0.2	Forest	siteA
2	0.2	Plantation	siteA
0	0	Plantation	siteA
0	0	Forest	siteB
21	2.1	Forest	siteB
20	2	Forest	siteB
4	0.4	Forest	siteC
3	0.3	Plantation	
15	1.5	Forest	siteB
9	0.9	Forest	siteB
13	1.3	Forest	siteB
0	0	Plantation	siteC
2	0.2	Plantation	siteB
1	0.1	Plantation	siteB
2	0.2	Plantation	siteB
5	0.5	Plantation	siteB
1	0.1	Plantation	siteB
0	0	Plantation	siteB

Example

You want to measure how much is the food intake for a species in two habitat types (Forest and Plantation), measured in three different sites.

Random Effect ----- Sites

Imer(intake_rate ~ habitat + (1|site), data = ...)

Remember to check if the residuals are normally distributed

 $A \leftarrow residuals(Imer(intake_rate \sim habitat + (1|site), data = ...))$ Shapiro.test(A)

In R:

Imer(Response variable ~ Fixed Factor + (1|Random), data = dataset)

	intake_ra		
food_intake		habitat	
2	0.2	Plantation	siteA
2	0.2	Plantation	siteA
7	0.7	Plantation	siteA
7	0.7	Plantation	siteC
9	0.9	Plantation	siteC
18	1.8	Forest	
17	1.7	Forest	siteC
3	0.3	Forest	siteA
0	0	Plantation	siteA
0	0	Forest	siteA
2	0.2	Plantation	
2	0.2	Forest	siteA
2	0.2	Plantation	siteA
0	0	Plantation	siteA
0	0	Forest	siteB
21	2.1	Forest	siteB
20	2	Forest	
4	0.4	Forest	siteC
3	0.3	Plantation	
15	1.5	Forest	siteB
9	0.9	Forest	siteB
13	1.3	Forest	siteB
0	0	Plantation	siteC
2	0.2	Plantation	siteB
1	0.1	Plantation	siteB
2	0.2	Plantation	siteB
5	0.5	Plantation	siteB
1	0.1	Plantation	siteB
0	0	Plantation	siteB

GLMMs combine the proprieties of Linear Mixed Models (LMM) and Generalized Linear Models (GLM), which handle non-normal data.

You have a Random Effect

It can handle data with poisson, binomial or normal distribution

It can handle interactions and additive effects

Example

You want to check if there is a rhythmic difference among context in the indris' song. You take the data from different individuals, groups and songs.

Example

You want to check if there is a rhythmic difference among context in the indris' song. You take the data from different individuals, groups and songs.

Response — Rhythm

Example

You want to check if there is a rhythmic difference among context in the indris' song. You take the data from different individuals, groups and songs.

Response — Rhythm

Fixed Factor — Context

Example

You want to check if there is a rhythmic difference among context in the indris' song. You take the data from different individuals, groups and songs.

Response		Rhythm
Fixed Factor		Context
Random Effect		Individuals, groups and songs

Example

You want to check if there is a rhythmic difference among context in the indris' song. You take the data from different individuals, groups and songs.

Response	 Rhythm
Fixed Factor	 Context
Random Effect	 Individuals, groups and songs

In R:

 $Imer(Response\ variable\ \sim\ Fixed\ Factor\ +\ (1|RE1)\ +\ (1|RE2),\ family\ =\ ...,\ data\ =\ dataset)$

Example

You want to check if there is a rhythmic difference among context in the indris' song. You take the data from different individuals, groups and songs.

Response — Rhythm

Fixed Factor — Context

Random Effect — Individuals, groups and songs


```
Imer(rhythm \sim context + (1|individual) + (1|group) + (1|song), family = ..., data = ...)
```

In R:

 $Imer(Response\ variable\ \sim\ Fixed\ Factor\ +\ (1|RE1)\ +\ (1|RE2),\ family\ =\ ...,\ data\ =\ dataset)$

Example

You want to check if there is a rhythmic difference among context in the indris' song. You take the data from different individuals, groups and songs.

Response — Rhythm

Fixed Factor — Context

Random Effect — Individuals, groups and songs

 $Imer(rhythm \sim context + (1|individual) + (1|group) + (1|song), family = ..., data = ...)$

In R:

 $Imer(Response\ variable\ \sim\ Fixed\ Factor\ +\ (1|RE1)\ +\ (1|RE2),\ family\ =\ ...,\ data\ =\ dataset)$

Ockham's razor

Ockham's razor _____ "Pluralitas non est ponenda sine neccesitate"

Between two theories that have same predictions, the simpler the better.

Ockham's razor _____ "Pluralitas non est ponenda sine neccesitate"

Between two theories that have same predictions, the simpler the better.

When comparing different models we want to find out which model explain better my data regardless the **Individual independent variables** in the model.

It doesn't mean that there is a right and a wrong model!

Ockham's razor _____ "Pluralitas non est ponenda sine neccesitate"

Between two theories that have same predictions, the simpler the better.

When comparing different models we want to find out which model explain better my data regardless the **Individual independent variables** in the model.

It doesn't mean that there is a right and a wrong model!

Akaike's information criteria (AIC):

AIC estimates model complexity. It works estimating the expected performance of model's predictions, for that scope it use observed data and hypothetical sample generated by the same model.

The best model show the smallest value; a difference within 4 - 7 units indicate less support, a difference over 10 indicate that the worse model can be omitted

Ockham's razor _____ "Pluralitas non est ponenda sine neccesitate"

Between two theories that have same predictions, the simpler the better.

When comparing different models we want to find out which model explain better my data regardless the **Individual independent variables** in the model.

It doesn't mean that there is a right and a wrong model!

Akaike's information criteria (AIC):

AIC estimates model complexity. It works estimating the expected performance of model's predictions, for that scope it use observed data and hypothetical sample generated by the same model.

The best model show the smallest value; a difference within 4 - 7 units indicate less support, a difference over 10 indicate that the worse model can be omitted

In R:

AIC(model)

Example

You want to check if there is a difference in water infection difference depending on the river tract sampled. You sample different rivers.

Example

You want to check if there is a difference in water infection difference depending on the river tract sampled. You sample different rivers.

```
Model1 ← Imer(water_infection ~ river_tract + (1|id_rivers), data = ... )

Summary(Model1)

AIC(Model1)
```

Example

You want to check if there is a difference in water infection difference depending on the river tract sampled. You sample different rivers.

```
Model1 ← Imer(water_infection ~ river_tract + (1|id_rivers), data = ... )

Summary(Model1)

AIC(Model1)
```

AIC BIC logLik deviance df. Resid

4838 4920 -2410 4820 900

Example

You want to check if there is a difference in water infection difference depending on the river tract sampled. You sample different rivers.

```
Model1 \leftarrow Imer(water\_infection \sim river\_tract + (1|id\_rivers), data = ...)
Summary(Model1)
AIC(Model1)
Model2 \leftarrow Imer(water\_infection \sim river\_tract + slope + (1|id\_rivers), data = ...)
Summary(Model2)
AIC(Model2)
```

AIC BIC logLik deviance df. Resid

4838 4920 -2410 4820 900

Example

You want to check if there is a difference in water infection difference depending on the river tract sampled. You sample different rivers.

```
Model1 ← Imer(water_infection ~ river_tract + (1|id_rivers), data = ...)
```

Summary(Model1)

AIC(Model1)

Model2 ← Imer(water_infection ~ river_tract + slope + (1|id_rivers), data = ...)

Summary(Model2)

AIC(Model2)

AIC BIC logLik deviance df. Resid

4838 4920 -2410 4820 900

AIC = 4838

AIC BIC logLik deviance df. Resid

4810 4911 -2287 4780 899

Example

You want to check if there is a difference in water infection difference depending on the river tract sampled. You sample different rivers.

```
Model1 ← Imer(water_infection ~ river_tract + (1|id_rivers), data = ...)
```

Summary(Model1)

AIC(Model1)

Model2 ← Imer(water_infection ~ river_tract + slope + (1|id_rivers), data = ...)

Summary(Model2)

AIC(Model2)

4838 - 4810 = 28

AIC BIC logLik deviance df. Resid

4838 4920 -2410 4820 900

AIC = 4838

AIC BIC logLik deviance df. Resid

4810 4911 -2287 4780 899

Example

You want to check if there is a difference in water infection difference depending on the river tract sampled. You sample different rivers.

```
Model1 ← Imer(water infection ~ river tract + (1|id rivers), data = ...)
```

Summary(Model1)

AIC(Model1)

Model2 ← Imer(water_infection ~ river_tract + slope + (1|id_rivers), data = ...)

Summary(Model2)

AIC(Model2)

4838 - 4810 = 28

Model2 is better

AIC BIC logLik deviance df. Resid

4838 4920 -2410 4820 900

AIC = 4838

AIC BIC logLik deviance df. Resid

4810 4911 -2287 4780 899

An example

Phonemic Diversity Supports a Serial Founder Effect Model of Language Expansion from Africa (Atkinson 2011)

- "Here I show that the number of phonemes used in a global sample of 504 languages is also clinal and fits a serial founder–effect model of expansion from an inferred origin in Africa."
- Assumption: "The more speakers a language has, the bigger its phoneme inventory is likely to be." (Hay & Bauer 2007)

An example

Phonemic Diversity Supports a Serial Founder Effect Model of Language Expansion from Africa (Atkinson 2011)

- "Here I show that the number of phonemes used in a global sample of 504 languages is also clinal and fits a serial founder–effect model of expansion from an inferred origin in Africa."
- Assumption: "The more speakers a language has, the bigger its phoneme inventory is likely to be." (Hay & Bauer 2007)
- "For maximum comparability to earlier studies, we created models in which log(population) is the independent variable (more commonly called a fixed-effect predictor in the literature on mixed models). Language genus and language family were included as group-level predictors (a.k.a. random effects)." (Moran et al., 2012)