Ejercicio 3

Queremos ver que SQB correcto con respecto a \mathcal{M} , es decir:

$$SQB \vdash \varphi \Rightarrow \mathcal{M} \models \varphi$$

para toda \mathcal{L} -sentencia φ .

Notemos que:

$$\mathcal{M} \models SQB$$

Entonces, sea φ tal que:

$$SQB \vdash \varphi$$

Entonces también por correctitud:

$$SQB \models \varphi$$

Entonces:

$$SQB \models \varphi \ y \ \mathcal{M} \models SQB \Rightarrow \mathcal{M} \models \varphi$$

Ahora veamos que no es completo con respecto a \mathcal{M} , es decir:

$$\mathcal{M} \models \varphi \Rightarrow SQB \not\vdash \varphi$$

para alguna \mathcal{L} -sentencia.

Definimos:

$$\varphi: \forall xy(E(x,y) \to \exists z(E(y,z)))$$

Que quiere decir: "si te llega algún arco, entonces tenés que tener un arco saliente".

Notamos que $\mathcal{M} \models \varphi$.

Veamos por el absurdo que $SQB \not\vdash \varphi$: Suponemos que si. Entonces $SQB \models \varphi$ (por correctitud). Entonces cualquier estructura que satisface SQB también satisface φ .

Definimos el modelo \mathcal{B} como:

- $B = \{a, b\}$
- $G_{\mathcal{B}} = \{a\}$
- $B_{\mathcal{B}} = \{b\}$
- $E = \{(a,b)\}$

Notamos que este modelo $\mathcal{B} \models SQB$ pero $\mathcal{B} \not\models \varphi$. Absurdo, de suponer que $SQB \vdash \varphi$. Entonces $SQB \not\vdash \varphi$. Entonces $SQB \not\vdash \varphi$. Entonces $SQB \not\vdash \varphi$.