Errors, Naïve Bayes, and Decision Trees

David Quigley CSCI 5622 2021 Fall

Week 2th33 Real!

Course Checkup

- HW 1 is out! It will run through an autograder, so...
 - keep all predefined functions with the same input / output options
 - You can add arguments *with defaults*
 - If a function *doesn't* have given return values, you can add them (usually in report functions)
 - Generalize your code
 - We should *never* have to, e.g., comment / uncomment code to get it to run
- Project Updates
 - O Posting welcome on Piazza (due *Now*) Counting in weekly participation
 - O Group Formation Due Sept. 10 All group members upload identical document
- Course Zoom is not "drop-in"
 - O Feel free to use it but I won't show up unless scheduled

Project Groups

- Forming Groups up to 3 people maximum
 - Recommended 2 3 people
 - If you want to be solo, you need to seek permission at this group formation
- Starting to Form Problem Spaces / Datasets
 - This is not "set in stone" things can change!
 - These are not "research" we are finding public, accessible datasets or working with data you already have access to!*
- You can "double dip" your course project (with other courses, lab research, work, etc)
 - You will have to connect me with the other people and delineate what expectations and deliverables are for which purposes
- *If you want to establish a new dataset via this class, we can talk!

Project Group Formation

- I (or the ISS) tried to comment on everyone's welcome (as of this afternoon)
 - If you gave an interest, background experience, or related idea, I tried to tie it into project inspiration!
 - This does not mean you have to go down that path at all with your projects.
 - Lots of folks probably shouldn't...
- There are a lot of connections between folks!
 - A lot of outdoors enthusiasts, a lot of sports fans, a lot of video game players, a lot of readers...
 - A lot of folks interested in NLP, a lot interested in CV, several interested in Space as a... problem space...
 - Any of these can inspire a project or more!

Prediction - College Admission

What are you going to predict for this NEW case with K = 1, using Manhattan distance?

Student	X ₁	X ₂	Υ
А	1200	26	1
В	1450	28	1
С	1000	20	1
D	730	15	-1
NEW	720	16	???

Prediction - College Admission

What are you going to predict for this NEW case with K = 1, using Manhattan distance?

Student	X ₁	X ₂	Υ
А	1200	26	1
В	1450	28	1
C .	1180	20	1
D 230 (730 ا	15 240	-1
NEW	950	30 113 255	??? /\

Euclidian Distance: $||\mathbf{x}_i - \mathbf{x}||^2$

X ₁	X ₂	X ₃	X ₄	Y	Distance
2	5	9832	.005	Positive	
4	82	9421	.008	Positive	
3	17	9321	.04	Negative	
4	90	9128	.001	Negative	

Euclidian Distance: $||\mathbf{x}_i - \mathbf{x}||^2$

X ₁	X ₂	X ₃	X ₄	Υ	Distance
2	5	9832	.005	Positive	
4	82	9421	.008	Positive	
3	17	9321	.04	Negative	
4	90	9128	.001	Negative	
3	16	9830	.04	???	

Euclidian Distance: $||\mathbf{x_i} - \mathbf{x}||^2$

X ₁	X ₂	X_3	X ₄	Υ	Distance
2	5	9832	.005	Positive	126.001
4	82	9421	.008	Positive	171638.001
3	17	9321	.04	Negative	259082
4	90	9128	.001	Negative	498281.0015
3	16	9830	.04	???	

Euclidian Distance: $||\mathbf{x}_i - \mathbf{x}||^2$

	X ₁	X_2	X ₃	X ₄	Y	Distance
	2	5	9832	.005	Positive	126.001
	4	82	9421	.008	Positive	171638.001
2	3	17	9321	.04	Negative	259082
	4	90	9128	.001	Negative	498281.0015
•	3	16	9830	.04	Positive?	

Normalization / Scaling

```
Transform X (Data) to X' (Scaled Data)

For (x_i) in X

scale = max(x_i) - min(x_i)

For (x_{i,j}) in (x_i)

x'_{i,j} = (x_{i,j} - min(x_i)) / scale
```

Scaling - N-Dimensional Vector

Euclidian Distance: $||\mathbf{x}_i - \mathbf{x}||^2$

X ₁	X ₂	X ₃	X ₄	Y	Distance
0	0	1	0.103	Positive	1.07
1	0.906	0.416	0.179	Positive	1.87
.5	0.141	0.274	1	Negative	0.52
1	1	0	0	Negative	3.00
.5	0.129	0.997	1	Negative	

Scaling - College Prediction

Student	SAT	ACT	GPA	Graduated?
А	1200 / 1600	26 / 36	3.2 / 4.0	Yes
В	1450 / 1600	28 / 36	3.5 / 4.0	Yes
С	1000 / 1600	20 / 36	3.0 / 4.0	Yes
D	730 / 1600	15 / 36	2.0 / 4.0	No
NEW	720 / 1600	16 / 36	2.2 / 4.0	???

Scaling - Housing Market?

Euclidian Distance: $||\mathbf{x}_i - \mathbf{x}||^2$

# Bedrms	Acres	Sq. Ft.	Radon	New Build?	Distance
2	5	9832	.005	Positive	
4	82	9421	.008	Positive	
3	17	9321	.04	Negative	
4	90	9128	.001	Negative	

Normalization & Scaling

Normalization is important for us to consider

- It will allow us to consider variables on equal footing

Normalization and Scaling are important for us to consider *on a case by case basis*

- Sometimes a "default" transformation won't make sense

Working with the built-in KNN library

Open Week 1 in-class Jupyter Notebook (the .ipynb file from Canvas)

K-Nearest Neighbors Algorithmic Complexity

One Query, *m* training examples, each with *D* features

 $O(m^*D)$

For the Naïve Case

Scikit-learn has additional details in their implementation: https://scikit-learn.org/stable/modules/neighbors.html

K-Nearest Neighbors Algorithmic Complexity

How many different operations must I complete to find the 1 nearest neighbor?

How many different operations must I complete to find the 5 nearest neighbors?

K-Nearest Neighbors - Tree Structure

Evaluating Models

How do we know if it works?

Homework 1 - Training & Test Sets

Train Data

I pull out a random 20% of my data Now I have something (probably) representative, AND I'm not just testing inherent bias of my model or dataset **Test Data**

What is an Error?

We've looked at trying it out on a test set and getting an "accuracy"

Accuracy = # correct / # total

- 1) What is our "test set"?
- 2) Are all mistakes created equal?

Classified As	С	~C
Ground Truth		
С		
~C		

Classified As	С	~C
Ground Truth		
С	True Positive (Hit)	False Negative (Miss)
~C	False Positive (False Alarm)	True Negative (Correct Rejection)

in correct

correct

What makes an error?

Classified As	Cancer	Not Cancer
Ground Truth		
Cancer	True Positive (Hit)	False Negative (Miss)
Not Cancer	False Positive (False Alarm)	True Negative (Correct Rejection)

Classified As	Α	В	С
Ground Truth			
A			
В			
С			

Classified As	Α	В	С
Ground Truth			
A	hit	miss	miss
В	miss	hit	miss
С	miss	miss	hit

Classified As	С	~C
Ground Truth		
С	True Positive (Hit)	False Negative (Miss)
~C	False Positive (False Alarm)	True Negative (Correct Rejection)

Calculating Errors

Error = $1/n * \Sigma_{i=1\rightarrow n} (I(\hat{y}_i \neq y_i))$

errors / # instances

Is this always helpful? Meaningful?

Errors

Skewed Classes

- Classifying a day of sun in Yuma, AZ (308 sunny days / year)

my classifier - isSunny = true

Errors

Skewed Classes

- Classifying a day of sun in Yuma, AZ *(308 sunny days / year) my classifier -* isSunny = true

 84 % Accuracy
- What if it's a case with 98% in one class? Is 98.5% accuracy helpful?

Errors

Skewed Classes

- Classifying a day of sun in Yuma, AZ *(308 sunny days / year) my classifier -* isSunny = true

 84 % Accuracy
- What if it's a case with 98% in one class? Is 98.5% accuracy helpful?

Are all errors created equal?

Are all errors created equal?

Truth – No Cancer *Classified Cancer*

Truth – Cancer *Classified No Cancer*

Are all errors created equal?

Truth – No Cancer *Classified Cancer*

Goes to get a new test – more expensive but more accurate. Discovers true status.

Truth – Cancer *Classified No Cancer*

Moves on with their day. Does not pursue treatments.
Cancer worsens.

Predicted Positive Rate (Precision) = Hits / (Hits + False Alarm)

Classified As	С	~C	
Ground Truth			
С	True Positive (Hit)	False Negative (Miss)	
~C	False Positive (False Alarm)	True Negative (Correct Rejection)	

Predicted Negative Rate (Negative Predictive Value) = Corr. Rej / (Miss + Corr. Rej.)

Classified As	С	~C	
Ground Truth			
С	True Positive (Hit)	False Negative (Miss)	
~C	False Positive (False Alarm)	True Negative (Correct Rejection)	

True Positive Rate (Sensitivity, Recall) = Hits / (Hits + Miss)

Classified As	С	~C	
Ground Truth			
С	True Positive (Hit)	False Negative (Miss)	
~C	False Positive (False Alarm)	True Negative (Correct Rejection)	

False Positive Rate (Specificity) = Corr. Rej. / (False Alarm + Corr. Rej.)

Classified As	С	~C
Ground Truth		
С	True Positive (Hit)	False Negative (Miss)
~C	False Positive (False Alarm)	True Negative (Correct Rejection)

Confusion Matrix

Classified As	С	~C
Ground Truth		
	Count of	Count of
C	True Positives	False
	(Hit)	Negatives
		(Miss)
	Count of	Count of
~C	False Positives	True Negatives
	(False Alarm)	(Correct Rej.)

Confusion Matrix - Beyond Binary Decisions

https://en.wikipedia.org/wiki/Iris_flower_data_set

Confusion Matrix

Classified As	С	~C
Ground Truth		
	Count of	Count of
C	True Positives	False
	(Hit)	Negatives
		(Miss)
	Count of	Count of
~C	False Positives	True Negatives
	(False Alarm)	(Correct Rej.)

Confusion Matrix

Classified As	Α	В	С
Ground Truth			
Α	Count of A / A Hits	Count of B / A Misses	
В	Count of A / B Misses	Count of B / B Hits	Count of C / B Misses
С		Count of B / C Misses	Count of C / C Hits

Problem Set 1

You now have everything you need to work through Problem Set 1!

Problem Space - College Admissions (Week 1)

The following scenario isn't fully true, but it's close to what we do in college admissions...

I am trying to decide if a student should be admitted to my university. I have their SAT and ACT scores and their HS GPA. I also have the history of students who have attended in the past, their SAT / ACT / HS GPA as well as whether or not they graduated. I only want to admit new students if they will graduate.

Problems We Faced

Naïve Bayes

Probability Refresher (see Add'l Reading)

52 Cards

```
2 Colors {Red, Black}
4 Suits {D,C,H,S}
13 Values {A,2,3,...K}
```

Probability Refresher

```
V - Random variable of Value
v = "ace", v = 7, etc.
p(v) = probability that card has value "v"
C - Random variable of Color
C = Red or C = Black
p(c) = probability that card has color "c"
```

```
Joint probability – probability of multiple events simultaneously p(v,c) = probability that card has value "v" and color "c" probability of a Red 7 can be written as <math>p(v=7,c=red) or p(7,red)
```

Probability Refresher - Product Rule

Product rule: p(A,B) = p(A|B)*p(B) = p(B|A)*p(A)

The *Joint* probability is equal to to the *conditional* probability multiplied by the probability of the condition (the *marginal* probability).

```
p(C,V) = p(C|V)*p(V) = p(V|C)*p(C)

P(Red,7) =

p(Red) =

P(7) = \frac{1}{1}

p(Red,7) =
```

Probability Refresher - Chain Rule

For three variables, A,B,C, we can use the Product Rule repeatedly to show:

$$p(A,B,C) = p(a) * p(b|a) * p(c|b,a)$$

For *i* random variables $X_{1:I}$, we have:

$$p(X_{1:i}) = p(X_1) * p(X_2|X_1) * ... * p(X_i|X_{1:i-1})$$

Proving the Chain Rule is left as an exercise for the interested student

Probability Refresher - Sum Rule

Conversely, if we know the *joint* probabilities, we can compute the *marginal*.

$$p(A) = \sum_{b} p(A,B=b) = \sum_{b} p(A|B=b) * p(B=b)$$

Given p(C=Red,V=7) and p(C=Black,V=7), calculate p(V=7)

Probability - Bayes Rule

$$p(A,B) = p(A|B)*p(B) = p(B|A)*p(A)$$

$$p(X,Y) = p(Y|X)*p(X) \rightarrow p(Y|X) = (p(X,Y))/p(X) * \rightarrow p(Y|X) = (p(X|Y)*p(Y))/p(X)$$

$$p(Y|X) = p(X|Y)*p(Y)$$
$$p(X)$$

\$ = assuming p(X) > 0 (i.e. our data is possible)

Probability - Bayes Rule + Sum Rule

If we evaluate the

$$p(Y = y|X = x) = p(X = x | Y = y)*p(Y = y)$$

 $p(X = x)$

And we use the *sum rule*...

$$p(Y = y | X = x) = p(X = x | Y = y)*p(Y = y)$$

$$\sum_{y'} p(X = x | Y = y') * p(Y = y')$$

We can compute p(y|x) from nothing but p(x|y) and p(y)

We have a Cancer Test = $\{pos, neg\}$ and Cancer $\{C, \sim C\}$

90% of people with cancer will test positive
$$\rho(t) = 0$$

Say you have a *positive* test. What is the probability that you have cancer?

 $p(C \mid pos)$

Thursday

Course Check-In

- Problem Set 1
 - You will turn in your Jupyter Notebook (.ipynb file)
 - You'll submit "after a completed run" so we'll see the graphs you just generated, etc.
 - Your text descriptions should be generalized, but can reference those specific plots
- Project Group Formation
 - Post available on Piazza "Search for Teammates!" is a great place to start

We have a Cancer Test = $\{pos, neg\}$ and Cancer $\{C, \sim C\}$

90% of people with cancer will test positive
$$\rho(t) = 0$$

Say you have a *positive* test. What is the probability that you have cancer?

 $p(C \mid pos)$

Say you have a *positive* test. What is the probability that you have cancer?

$$p(C \mid pos)$$

Can't ignore the fact that there's a *small percentage of people with cancer*

$$p(C) = 0.01$$

$$p(C|pos) = p(pos|C)*p(C)$$
 as our formulation
$$p(pos|C)*p(C) + p(pos|C)*p(C)$$

$$p(C|pos) = .90*.01 = .10$$

.90 * .01+ .08 * .99

Naïve Bayes Classification

We want to model the joint probability: p(x,y)

What we *actually care* about is the probability of our *answer* given the *data*: p(y|x)

$$p(Y|X) = \underline{p(X|Y)*p(Y)}$$
$$p(X)$$

Or...

Posterior probability = <u>class-conditional</u> * <u>prior</u> evidence

Naïve Bayes Classification

"What is the possibility that an example is of class *c* given its observed features?" - What is the probability it is a grad (pos) given its HS outcomes?

Given a HS x:

```
If p(pos | x) >= p(neg | x)
classify as pos
Else
```

classify as neg

Class-conditional probability p(X | Y)

i.e. "Likelihood"

"Given (or *assuming*) y = c, what is the probability x is observed?"

"Given my assumptions about failing students, what's the probability that I see this particular student?"

$$p(x = [GPA=1.2,SAT=550] | y = neg)$$

NOTE: Now we're assuming joint probability of *features*

Features of **x** are *conditionally independent* for a given class **y**.

Features of **x** are *conditionally independent* for a given class **y**.

Take two weighted coins, C_1 and C_2 .

Features of \mathbf{x} are *conditionally independent* for a given class \mathbf{y} .

```
Take two weighted coins, C_1 and C_2.

Pick a coin and flip it 3 times. Which coin did we flip?

p(x=[HHT] \mid C_1) = p(H|C_1) * p(H|C_1) * p(T|C_1)
Vs

p(x=[HHT] \mid C_2) = p(H|C_2) * p(H|C_2) * p(T|C_2)
```

Features of \mathbf{x} are *conditionally independent* for a given class \mathbf{y} .

Take two weighted coins, C_1 and C_2 . Pick a coin and flip it 3 times. Which coin did we flip? $p(x=[HHT] \mid C_1) = p(H|C_1) * p(H|C_1) * p(T|C_1)$ Vs $p(x=[HHT] \mid C_2) = p(H|C_2) * p(H|C_2) * p(T|C_2)$

Draw 3 cards from a deck of cards, one at a time (no replacement). Does this still hold?

Naïve Bayes - Assumption of Independence

Features of **x** are *conditionally independent* for a given class **y**.

$$p(x=[GPA=1.2,SAT=550,ACT=21] \mid neg) = p(GPA=1.2 \mid neg) * p(SAT=550 \mid neg) * p(ACT=21 \mid neg)$$

Is this valid?

Probably not, but a) we'll make the assumptions for both pos and neg, and b) it makes feature conditionals easy to estimate

Naïve Bayes - Class-Conditional Probability

Features of \mathbf{x} are *conditionally independent* for a given class \mathbf{y} .

$$p(x=[GPA=1.2,SAT=550,ACT=12] \mid neg) = p(GPA=1.2 \mid neg) * p(SAT=550 \mid neg) * p(ACT=21 \mid neg)$$

How do we calculate the class-conditional probability? *Estimate from Data!*

We want to model the joint probability: p(x,y)

What we actually care about is the probability of our *answer* given the *data*: p(y|x)

$$p(Y|X) = \underline{p(X|Y)*p(Y)}$$
$$p(X)$$

Or...

Posterior probability = <u>class-conditional</u>* <u>prior</u> evidence

Prior Probability p(y)

"What is the probability of encountering class c?"

p(neg) = "What is the probability that any given student will fail?"

How do we get this information?

from data

Prior Probability p(y)

"What is the probability of encountering class *c*?"

p(neg) = "What is the probability that any given student will fail?"

How do we get this information?

Ask Someone Who Knows!

Assume 80% of students fail this class assumption does not necessarily match the real world!

Prior Probability p(y)

"What is the probability of encountering class *c*?"

p(neg) = "What is the probability that any given student will fail?"

How do we get this information?

Estimate it from Data!

We want to model the joint probability: p(x,y)

What we actually care about is the probability of our *answer* given the *data*: p(y|x)

$$p(Y|X) = \underline{p(X|Y)*p(Y)}$$
$$p(X)$$

Or...

Posterior probability = <u>class conditional * prior</u> evidence

Evidence p(x)

"The probability of encountering x independent of class"

"the probability of getting that exact HS outcome"

We *could* estimate this using the sum rule...

"What is the possibility that an example is of class c given its observed features?"

- What is the probability it is a positive grad given its HS features?

Given HS features x.

```
If p(pos | x) >= p(neg | x)
classify as pos
```

Else

classify as neg

Evidence p(x)

"The probability of encountering x independent of class"

"the probability of getting that exact message"

We *could* estimate this using the sum rule...

But it doesn't actually matter in our decision making process

$$p(x \mid pos) * p(pos) >=</math$$

$$p(x \mid neg) * p(neg) \cdot p(x)$$

Evidence p(x)

"The probability of encountering x independent of class"

"the probability of getting that exact message"

We *could* estimate this using the sum rule...

But it doesn't actually matter in our decision making process

$$p(x \mid pos) * p(pos) >=</math $p(x \mid neg) * p(neg)$$$

It's not really *probability* anymore, but we have *scores* for each condition...

	Pos	Neg	Neg	Neg	Pos
GPA	2.5	1.9	1.2	2.1	4.0
SAT	1100	990	750	1100	1600
ACT	21	16	16	21	36

If I get a new student with [GPA = 1.2, SAT = 550, ACT = 21], do we expect them to graduate (pos) or not (neg)?

	Pos	Neg	Neg	Neg	Pos
GPA	2.5	1.9	1.2	2.1	4.0
SAT	1100	990	750	1100	1600
ACT	21	12	16	21	36

If I get a new student with [GPA = 1.2, SAT = 550, ACT = 21], do we expect them to graduate (pos) or not (neg)?

	Pos	Neg	Neg	Neg	Pos	???
GPA	2.5	1.9	1.2	2.1	4.0	1.2
SAT	1100	990	750	1100	1600	550
ACT	21	12	16	21	36	21

If I get a new student with [GPA = 1.2, SAT = 550, ACT = 21], do we expect them to graduate (pos) or not (neg)? p(pos | 1.2, 550, 21) >=<? p(neg | 1.2,550,21)

	Pos	Neg	Neg	Neg	Pos	???
GPA	2.5	1.9	1.2	2.1	4.0	1.2
SAT	1100	990	750	1100	1600	550
ACT	21	12	16	21	36	21

If I get a new student with [GPA = 1.2, SAT = 550, ACT = 21], do we expect them to graduate (pos) or not (neg)? p(pos | 1.2, 550, 21) = ???

	Pos	Neg	Neg	Neg	Pos	???
GPA	2.5	1.9	1.2	2.1	4.0	1.2
SAT	1100	990	750	1100	1600	550
ACT	21	12	16	21	36	21

If I get a new student with [GPA = 1.2, SAT = 550, ACT = 21], do we expect them to graduate (pos) or not (neg)?

PRODUCT RULE

p(pos | 1.2, 550, 21) = p(1.2, 550, 21 | pos) * p(pos)

	Pos	Neg	Neg	Neg	Pos	???
GPA	2.5	1.9	1.2	2.1	4.0	1.2
SAT	1100	990	750	1100	1600	550
ACT	21	12	16	21	36	21

	Pos	Neg	Neg	Neg	Pos	???
GPA	2.5	1.9	1.2	2.1	4.0	1.2
SAT	1100	990	750	1100	1600	550
ACT	21	12	16	21	36	21

Overcoming Data Problems

We've never seen a student with an SAT of 550 before! How might you address this?

threshold feature

add a correction factor

find the NN

Fita Distribution

	Pos	Neg	Neg	Neg	Pos	???
GPA	2.5	1.9	1.2	2.1	4.0	1.2
SAT	1100	990	750	1100	1600	550
ACT	21	12	16	21	36	21

Overfitting Solutions - Binning

Binning – Assign values to bins

Bins can vary in size, number, shape

- Equity concern?

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	А	D
SAT	1001- 1400	751- 1000	0-750	1001- 1400	1401- 1600	0-750
ACT	21-25	11-15	16-20	21-25	31-36	21-25

Overfitting Solutions - Increasing Sample

Size *I* just keep taking samples, surely I'll eventually cover my whole sample space!"

Overfitting Solutions - Targeted Sampling

• "If I know to expect something, I can go seek out examples for training!"

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	А	D
SAT	1001- 1400	751- 1000	0-750	1001- 1400	1401- 1600	0-750
ACT	21-25	11-15	16-20	21-25	31-36	21-25

Overfitting Solutions - Trust the Experts

Sometimes there could be databases or lists of interest to your problem, e.g. a "cutoff score" for SAT scores, or a "valence score" for NLP word connotations.

- Does it actually fit my problem space?
- Do I trust it?

Builds on the assumption that "nothing is impossible"

Step 1) Start with a *completely* naïve, untrained understanding

- "a) All possible examples are equally likely to exist in my problem space and b) All classes are equally likely"
- All HS features are equally likely to appear in a student and all students are equally likely to be positive or negative

$$p(x) = \frac{1}{|V|}$$

$$p(y) = \frac{1}{|Y|}$$

```
Step 2) Add our training cases to the evidence set BEFORE p(x|y) = p(x,y) = \# positive grads with "x" in them <math display="block">p(y) = \# positive grads AFTER p(x|y) = p(x,y) + 1 = \# positive grads with "x" (found in training) + 1 p(y) + |V| = \# positive grads (in training) + tot. student options
```

Add-1 or Laplace Smoothing

```
Step 2) Add our training cases to the evidence set BEFORE
p(y) = \frac{\text{\# positive students}}{\text{\# students}}
\text{\# AFTER}
p(y) = \frac{\text{\# positive students (found in training)} + 1
\text{\# students (found in training)} + \text{total classes}
```

Add-1 or Laplace Smoothing

Overcoming Data Problems

Binning + Smoothing

GPA: 5 Bins - A, B, C, D, F

SAT: 2 Bins - >600

ACT: 2 Bins - >25

	Pos	Neg	Neg	Neg	Pos	???
GPA	2.5	1.9	1.2	2.1	4.0	1.2
SAT	1100	990	750	1100	1600	550
ACT	21	12	16	21	36	21

If I get a new student with [GPA = 1.2, SAT = 550, ACT = 21], do we expect them to graduate (pos) or not (neg)?

$$p(pos | 1.2, 550, 21) = p(D | pos) * p(- | pos) * p(Low | pos) * p(pos)$$

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	А	D
SAT	+	+	+	+	+	_
ACT	Low	Low	Low	Low	High	Low

p(pos | 1.2, 550, 21) = p(D | pos) * p(- | pos) * p(Low | pos) * p(pos)

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	A	D
SAT	+	+	+	+	+	_
ACT	Low	Low	Low	Low	High	Low

p(pos | 1.2, 550, 21) = p(D | pos) * p(- | pos) * p(Low | pos) * p(pos)

```
Add-1 Smoothing
p(x|y) = p(x,y) + 1 = \text{# positive grads with "x" (found in training)} + 1
p(y) + |V| = \text{# positive grads (in training)} + \text{tot. student options}
p(y) = \text{# positive students (found in training)} + 1
\text{# students (found in training)} + \text{total classes}
```

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	А	D
SAT	+	+	+	+	+	_
ACT	Low	Low	Low	Low	High	Low

```
p(pos | 1.2, 550, 21) = p(D | pos) * p(- | pos) * p(Low | pos) * p(pos)
= 1/7 * 1/4 * 2/4 * 3/7 = 3/392 \text{ or } 0.0077ish
Add-1 Smoothing
p(x|y) = p(x,y) + 1 = \text{\# positive grads with "x" (found in training)} + 1
p(y) + |V| \qquad \text{\# positive grads (in training)} + \text{tot. student options}
p(y) = \text{\# positive students (found in training)} + 1
\text{\# students (found in training)} + \text{total classes}
```

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	А	D
SAT	+	+	+	+	+	_
ACT	Low	Low	Low	Low	High	Low

$$p(neg | 1.2, 550, 21) = p(D | neg) * p(- | neg) * p(Low | neg) * p(neg)$$

```
Add-1 Smoothing
p(x|y) = p(x,y) + 1 = \text{# negative grads with "x" (found in training)} + 1
p(y) + |V| \qquad \text{# negative grads (in training)} + \text{tot. student options}
p(y) = \text{# negative students (found in training)} + 1
\text{# students (found in training)} + \text{total classes}
```

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	А	D
SAT	+	+	+	+	+	_
ACT	Low	Low	Low	Low	High	Low

```
p(\text{neg} \mid 1.2, 550, 21) = p(D \mid \text{neg}) * p(- \mid \text{neg}) * p(\text{Low} \mid \text{neg}) * p(\text{neg})
= 3/8 * 1/5 * 4/5 * 4/7 = 6/175 \text{ or } 0.034 \text{ ish}
Add-1 \text{ Smoothing}
p(x|y) = p(x,y) + 1 = \# \text{ negative grads with "x" (found in training)} + 1
p(y) + |V| \qquad \# \text{ negative grads (in training)} + \text{ tot. student options}
p(y) = \# \text{ negative students (found in training)} + 1
\# \text{ students (found in training)} + \text{ total classes}
```

	Pos	Neg	Neg	Neg	Pos	???
GPA	С	D	D	С	А	D
SAT	+	+	+	+	+	_
ACT	Low	Low	Low	Low	High	Low

Naïve Bayes - Probabilities

The probability of tweet x of length D being of class y

$$p(y|x) = p(y) * \Pi_{i=1 \rightarrow D}(p(x_i|y))$$

We get some complicated, small numbers multiplication

- Theoretically valid
- We work with finite computing machines
- Leads to *underflow*

Let's take the logarithm instead!

Naïve Bayes - Logarithms (In)

Logarithm math refresher:

- $-\ln(ab) = \ln(a) + \ln(b)$
- ln(x) is monotonically increasing, so argmax() is still valid

$$y = \operatorname{argmax}_{c} \ln(p(c)) + \sum_{i=1 \to D} \ln(p(x_{i}|c))$$

Decision Trees

Machine Decision Making - 101

Think back to your very first days of programming...

I ask you to have a program take in two pieces of information:

- sun
- wind

And output whether or not I am going to play tennis.

- Only if it's sunny and not too windy

What does this program look like?

if (sunny & ! wirdy): tenni3 = True

Machine Decision Making - Tennis

Consider this visualization of my data And our model of a predictor

What would the decision boundary look like here?

Machine Decision Making - 201

Think back to your very second days of programming (i.e. data structures)...

How might we represent a series of nested if/else statements?

Decision Trees

Creating nonlinear decision boundaries via the *union* of multiple linear decision boundaries

These are the basis of a lot of more complex algorithms — *Stay Tuned*

Decision Trees - Adding Complexity

Decision Trees - Adding Complexity

What happens if I split on Y first?

Decision Trees - Adding Complexity

How do we decide the order of our splits?

How do we decide the location of splits?
With continuous variables?

How do we know we're done?

Decision Trees - Choosing your Split

Simplifying our problem space – binary features

Test A	Test B	Test C	Cancer?
Pos	Neg	Neg	No
Pos	Pos	Neg	No
Neg	Pos	Pos	Yes
Pos	Neg	Pos	Yes

Decision Trees - Choosing your Split

What feature should I split on first?

Test A	Test B	Test C	Cancer?
Pos	Neg	Neg	No
Pos	Pos	Neg	No
Neg	Pos	Pos	Yes
Pos	Neg	Pos	Yes

Decision Trees - Choosing your Split

What feature should I split on first? What is my entire tree?

Test A	Test B	Test C	Cancer?
Pos	Neg	Neg	No
Pos	Pos	Neg	No
Neg	Pos .	Pos	Yes
Pos	Neg	Pos	Yes

Decision Trees - Finding the Best Split

We need to find the split that gives us the best arrangement

We need to find the split that creates the most order from our chaos

Test A	Test B	Test C	Cancer?
Pos	Neg	Neg	No
Pos	Pos	Neg	No
Neg	Pos	Pos	Yes
Pos	Neg	Pos	Yes

A measure of the impurity / messiness / chaos of a set of examples

A measure of the impurity / messiness / chaos of a set of examples

$$\Sigma_{c=1...n} - p_c * \log_2(p_c)$$

A measure of the impurity / messiness / chaos of a set of examples

$$\Sigma_{c=1...n}$$
 [-p_c * log₂(p_c)]
C for each possible class

In the binary case...

$$-p * log_2(p) - (1-p) * log_2(1-p)$$

A measure of the impurity / messiness / chaos of a set of examples

Entropy =
$$\Sigma_{c=1...n} \left[-p_c * log_2(p_c) \right]$$

C for each possible class

In the binary case...
$$\circ$$
 C
Entropy = $-p * log_2(p) - (1-p) * log_2(1-p)$

What happens at p = 1? p = 0? p = 0.5?

A measure of the impurity / messiness / chaos of a set of examples

Entropy = $\Sigma_{c=1...n} \left[-p_c * log_2(p_c) \right]$

C for each possible class

In the binary case...

Entropy = $-p * log_2(p) - (1-p) * log_2(1-p)$

What happens at p = 1? p = 0? p = 0.5?

Minimum - perfect isolation of one class, Entropy = O

Maximum – perfect split of data, Entropy = 1

A measure of the impurity / messiness / chaos of a set of examples

Entropy =
$$\Sigma_{c=1...n} \left[-p_c * \log_2(p_c) \right]$$

C for each possible class

In the general case... (3 class case)

$$P_c = .33$$
 for all c

Entropy is maximized (~ 1.56)

$$P_1 = .4 P_2 = .4 P_3 = .2$$

Entropy is reduced (~1.52)

$$P = \{1,0,0\}$$

Entropy is O

Decision Trees - Entropy of Cancer

Entropy of our root node?

Test A	Test B	Test C	Cancer?
Pos	Neg	Neg	No
Pos	Pos	Neg	No
Neg	Pos	Pos	Yes
Pos	Neg	Pos	Yes

Decision Trees - Entropy of Cancer

Entropy of our root node?

Test A	Test B	Test C	Cancer?
Pos	Neg	Neg	No
Pos	Pos	Neg	No
Neg	Pos	Pos	Yes
Pos	Neg	Pos	Yes

$$-.5 * \log_2(.5) - .5 * \log_2(.5) = 1$$

Maximum Entropy

Decision Trees - Entropy of Cancer

How do we pick our split?

Test A	Test B	Test C	Cancer?
Pos	Neg	Neg	No
Pos	Pos	Neg	No
Neg	Pos	Pos	Yes
Pos	Neg	Pos	Yes

Choose the feature that reduces our entropy the most!

We are creating a split to minimize the entropy of our set...

We are creating a split to minimize the entropy of our set...

But really, we're creating *two* sets, each with their own entropy, but a smaller number of samples in each.

We are creating a split to minimize the entropy of our set...

But really, we're creating *two* sets, each with their own entropy, but a smaller number of samples in each.

Is it better to split evenly, or finely?

We are creating a split to minimize the entropy of our set...

But really, we're creating *two* sets, each with their own entropy, but a smaller number of samples in each.

What makes for a good split?

We are creating a split to minimize the entropy of our set...

But really, we're creating *two* sets, each with their own entropy, but a smaller number of samples in each.

 D_{par} = Data found in Parent Node

D_{left} = Data found in Left Node

D_{right} = Data found in Right Node

I() = Impurity function (entropy)

 x_i = feature for split

