

TEST REPORT

EUT Number: 50-192 **Equipment Under Test:** Computer Trade Name: **MISSION** Model: **OPTIMA SERIES** Serial Number: Customer: Mission Assembly Line Co., Ltd. 49 Naradhiwasraschanakarindha Rd, Silom Bangrak Bangkok 10500 Manufactured by: Mission Assembly Line Co.,Ltd. Receipt Date: 8 May 2007 Date of Test: 8-17 May 2007 Issued Date of Report: 25 May 2007

Approved by

MR. Montri Pannarut

Operation Manager

REPORT No. 013 / 50-43

Page 2 of 27

CONTENTS

SUM	IMARY OF TESTING	3
1.	TEST PLAN AND DEVIATIONS FROM STANDARD	4
2.1	Test Plan	4
2.2	Deviations from standard	4
3	TEST CONDITIONS	5
3.1	Operation Mode	5
3.2	Uncertainty Application	5
3.3	Equipment Classifications	7
3.4	Protection Classifications	7
3.5	Performance Criteria of Test Specification	7
3.6	EUT Function Monitoring	7
4	TEST SYSTEM CONFIGURATION	7
4.1	EUT Exercise Software	7
4.2	EUT Modifications	7
5.	EUT DESCRIPTION	8
5.1	EUT Specification	8
5.2	EUT Configuration	8
5.3	Peripherals Description	8
5.4	Cables Description	8
6	TEST SETUP AND RESULT	9
6.1	Test Item : Conducted Emission	9
6.2	Test Item : Radiated Disturbance	13
7	APPENDIX	18

Page 3 of 27

SUMMARY OF TESTING

This product was tested and complied according to following specification standard:

FCC Part 15 Radio frequency devices

Test Item	Test Specification	Test Method	Result	
Conducted Emission	FCC Part 15 Subpart B	ANGLOG2 4 2002	PASS	
Conducted Emission	Section 15.107(a)	ANSI C63.4-2003 Section 15.107(a)		
Radiated Disturbance	FCC Part 15 Subpart B	ANGLOG2 4 2002	PASS	
Radiated Disturbance	Section 15.109(a)	ANSI C63.4-2003	PASS	

Page 4 of 27

1. TEST PLAN AND DEVIATIONS FROM STANDARD

2.1 Test Plan

No.	Test Item	Input Voltage	Mode	Test Port	Test Specification
1	Conducted Engineira	110 Vac			FCC Part 15 Subpart B
	Conducted Emission	60 Hz	Α	AC Main	Section 15.107(a)
0	Radiated Disturbance	110 Vac		Factoring	FCC Part 15 Subpart B
2		60 Hz	A	Enclosure	Section 15.109(a)

2.2 Deviations from standard

REV.15/15-08-06

TEST CONDITIONS

3.1 Operation Mode

A: Run Burn in Software (PC. Performance Test).

3.2 Uncertainty Application

3.2.1 Uncertainty application according to CISPR 16-4-2:2003 for Conducted Emission, Radiated Disturbance and Disturbance Power Testing.

> Compliance or Non-Compliance with a disturbance limit was determined in the following manner If U_{lab} is less than or equal to U_{cispr} in table 1, then:

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit.
- Non-Compliance is deemed to occur if any measured disturbance exceeds the disturbance

If U_{lab} is greater than U_{cispr} in table 1, then:

- Compliance is deemed to occur if no measured disturbance, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit.
- Non-Compliance is deemed to occur if any measured disturbance, increased by $(U_{lab}-U_{cisor})$, exceeds the disturbance limit.

Table 1 – Values of U_{cisp}

Abbreviation	Testing system	Frequency range	U_{lab}	U_{cispr}	U_{lab} - U_{cispr}
CE	Conducted Emission	9 kHz - 150 kHz	3.41	4.00	-0.59
CE	Conducted Emission	150 kHz - 30 MHz	2.98	3.60	-0.62
RE	Radiated Disturbance	30 MHz – 1000 MHz	4.53	5.20	-0.67
PE	Disturbance Power	30 MHz – 300 MHz	3.90	4.50	-0.60

3.2.2 Uncertainty Application according to LAB 34 Edition 1 (Figure 1) for other testing system.

3.2.3 Uncertainty Application for immunity testing.

compliance.

Uncertainty of each test systems are applied for compliance with related standard according

compliance.

REPORT No. 013 / 50-43

Page 7 of 27

3.3 Equipment Classifications

Class B

3.4 Protection Classifications

3.5 Performance Criteria of Test Specification

3.6 EUT Function Monitoring

- TEST SYSTEM CONFIGURATION
 - 4.1 EUT Exercise Software

4.2 EUT Modifications

5. **EUT DESCRIPTION**

5.1 EUT Specification

Input Voltage	110 Vac / 60 Hz
Input Current/Power	≤ 16 A
Clock/Oscillator	3.0 GHz

5.2 EUT Configuration

FIGURE 1 - EUT Configuration.

5.3 Peripherals Description

Diagram	Equipment name	Trade Name	Model	Serial Number
TE1	Printer HP		C3980A	SGBB044748
TE2	Speaker	Modern Form Model SK-881		4331160
TE3	Microphone	Qenius	-	-
TE4-TE7	Mouse	Microsoft	Mouse Optical 1.1A	-

5.4 Cables Description

Ref	Cable Type	Shield	Length (meters)	Ferrite	Connector	Connection Point 1	Connection Point 2
1	AC Power line	No	1.0	No	AC	EUT	AC Supply

REPORT No. 013 / 50-43

Page 9 of 27

TEST SETUP AND RESULT

6.1 Test Item: Conducted Emission

6.1.1 Test Setup

Test Specification

See 1 and 2.1

Test Equipment

Equipment Name	Manufacture	Model	S/N	Traceability	Cal date
EMI Test Receiver (Display Unit)	Rohde & Schwarz	ESCI	1166.5950.03	DKD	06-03-2006
LISN1	R&S	ESH2-Z5	831886/009	DKD	16-02-2006
LISN2	AFJ	LS16C	16010030095	DKD	11-10-2006

Customer's Equipment

Equipment Name	Manufacture	Model	S/N	Traceability	Cal date
-	-	-	-	-	-

Test Uncertainty: ± 3.61 dB

Test Location: TRM-001

Test Environment

Temperature (°C)	25	Humidity (%)	60
------------------	----	--------------	----

• Test Setup Description

The disturbance voltage at the main terminals and telecommunication ports testing measurements were performed with the EMI receiver to observe the emission characteristics and to identify the frequency of emission that had the highest amplitude related to the EUT configuration for the disturbance voltage testing.

The EUT was placed on the 80 cm height non-metallic table in the shielded room. The EUT was tested PC performance by Burn in software. The power line of the EUT was connected to the LISN, which was located in the shielded room. The EMI receiver in the control room measured the noise signals from the EUT. The testing method and the EUT setup were performed according to ANSI C63.4-2003. The EUT configuration for the disturbance voltage at the main terminals testing is shown in FIGURE 2 and 3, respectively.

Test Picture

FIGURE 2 - The test setup diagram

FIGURE 3 - The test setup picture.

6.1.2 Test Result

Test Result for Neutron

Measurement Result

	N Phase									
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin
		QP	AV		QP	AV	QP	AV	QP	AV
	[MHz]	[dB(µV)]	$[dB(\mu V)]$	[dB]	$[dB(\mu V)]$	$[dB(\mu V)]$	$[dB(\mu V)]$	[dB(µV)]	[dB]	[dB]
1	0.23029	37.9	36.B	0.2	38.1	37.0	62.4	52.4	24.3	15.4
2	0.33574	40.0	25.2	0.2	40.2	25.4	59.3	49.3	19.1	23.9
3	0.46901	40.4	31.0	0.2	40.6	31.2	56.5	46.5	15.9	15.3
4	0.57024	35.0	25.2	0.3	35.3	25.5	56.0	46.0	20.7	20.5
5	0.90652	22.5	28.9	0.3	33.8	29.2	56.0	46.0	22.2	16.8
6	1.27285	34.6	20.2	0.3	34.9	30.6	56.0	46.0	21.1	15.4
7	15.44333	32.6	26.4	0.9	33.5	27.3	60.0	50.0	26.5	22.7

This test report is test results from the EUT only, not the product's quality certificate. It shall not be reproduced except in full without the written approval of testing laboratory.

REV.15/15-08-06

Test Result for Line1

Measurement Result

	Ll Phase	_								
No.	Frequency	Reading QP	Reading AV	c.f	Result OP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV
	[MHz]	[dB(µV)]	$[dB(\mu V)]$	[dB]	[dB(µV)]	$[dB(\mu V)]$	[dB(µV)]	$[dB(\mu V)]$	[dB]	[dB]
1	0.22826	45.5	44.6	0.2	45.7	44.8	62.5	52.5	16.8	7.7
2	0.22861	42.3	21.2	0.2	42.5	31.4	59.2	49.2	16.7	17.8
3	0.46843	28.B	20.0	0.2	39.0	30.2	56.5	46.5	17.5	16.3
4	0.57736	25.6	22.B	0.3	35.9	34.1	56.0	46.0	20.1	11.9
5	0.90612	22.1	29.4	0.3	33.4	29.7	56.0	46.0	22.6	16.3
6	1.26629	25.B	31.9	0.3	36.1	32.2	56.0	46.0	19.9	13.8
7	15.7425	32.9	26.9	1.0	33.9	27.9	60.0	50.0	26.1	22.1

Tested by: MR. Marut Hnihnae

REV.15/15-08-06

Result: **Pass** Page 13 of 27

6.2 Test Item: Radiated Disturbance

6.2.1 Test Setup

Test Specification

See 1 and 2.1

Test Equipment

Equipment Name	Manufacture	Model	S/N	Traceability	Cal date
EMI Test Receiver (Display Unit)	Rohde & Schwarz	ESMI	829179/008	UKAS	30-03-2006
EMI Test Receiver (Analyzer Unit)	Rohde & Schwarz	ESMI	829179/010	UKAS	30-03-2006
Bilog Antenna	Schaffner	CBL6141A	4146	UKAS	24-07-2006
Double Rigid Horn Antenna	EMCO	3115	96104996	NIST	23-02-2007

Customer's Equipment

Equipment Name	Manufacture	Model	S/N	Traceability	Cal date
-	-	-	-	-	-

• Test Uncertainty: ± 4.78 dB

● Test Location: TRM-002

Test Environment

Temperature (°C)	23	Humidity (%)	56
------------------	----	--------------	----

• Test Setup Description

The radiated emission measurement was performed with EMI receiver to observe the emission characteristic and identify the frequency of emission that has the highest amplitude relative to limit by operating the EUT with a typical configuration. The EUT configuration, cable configurations of operation are determined for producing the maximum level of emissions.

The EUT was placed on the 80 cm height non-metallic table on 1 m radius turntable. The EUT was set on a real operation-mode, read-write disk, hard disk, memory, display on the screen and simulate the communication signal. The Burn-in software was used for control the functions of the EUT.

Frequencies below 1000MHz

The Bi-Log antenna (30 MHz - 2GHz) was used for received the noise of EUT and put on the antenna mast, which they were in side the semi-anechoic chamber. The testing method and the EUT setup were performed according to ANSI C63.4-2003. The EUT configuration setup is shown in figures 4 and 5, respectively.

Frequencies above 1000MHz

The Double Rigid Horn antenna (1GHz-18GHz) was used for received the noise at EUT and put on the antenna 1 m above ground plane (Cause of the antenna bandwidth is less than 30 degree, therefore the measurement above 1m don't necessary to test). They were in side the semi-anechoic chambers

Test Picture

FIGURE 4 - The test setup diagram

FIGURE 5 - The test setup picture.

6.2.2 Test Result

Measurement Port Enclosure	Operation Mode	A (See 3.1)
----------------------------	----------------	-------------

Test result for vertical polarization

Test result for Horizontal polarization

Measurement Result

No.	Frequency	(P)	Reading QP	c.f	Result QP	Limit	Margin QP	Height	Angle
	[MHz]		[dB(?V)]	[dB(1/m)]	[dB(?V/m)]	[dB(?V/m)]	[dB]	[cm]	[?]
1	33.032	V	30.7	1.6	32.3	40.0	7.7	100.0	0.0
2	41.211	V	35.4	-3.2	32.2	40.0	7.8	100.0	0.0
3	143.953	V	46.7	-6.4	40.3	43.5	3.2	100.0	264.0
4	191.964	V	46.3	-7.9	38.4	43.5	5.1	100.0	35.0
5	364.384	V	45.2	-1.8	43.4	46.0	2.6	100.0	0.0
6	666.761	V	35.1	3.6	38.7	46.0	7.3	100.0	0.0
7	98.266	Н	50.5	-9.8	40.7	43.5	2.8	194.0	274.0
8	146.895	Н	42.2	-6.5	35.7	43.5	7.8	163.0	96.0
9	254.220	Н	43.0	-4.5	38.5	46.0	7.5	143.0	233.0
10	364.346	Н	46.7	-1.8	44.9	46.0	1.1	100.0	41.0
11	681.422	Н	34.3	3.9	38.2	46.0	7.8	101.0	0.0

Frequencies above 1GHz

MEASUREMENT RESULT OF PEAK DETECTOR (Horizontal)

Frequency (GHz)	Level (dBµV/m)	Limit (dBµV)	Margin (dB)
1.02	30.82	53.9	23.08
1.06	37.41	53.9	16.49
1.18	38.43	53.9	15.47
1.21	37.47	53.9	16.43
1.24	36.18	53.9	17.72
1.33	36.53	53.9	17.37
1.39	30.39	53.9	23.51
1.45	31.31	53.9	22.59
1.6	39.8	53.9	14.1
1.74	27.32	53.9	26.58
1.86	40.74	53.9	13.16
2.13	29.62	53.9	24.28
2.43	30.19	53.9	23.71
2.49	37.16	53.9	16.74
2.7	29.62	53.9	24.28

MEASUREMENT RESULT OF PEAK DETECTOR (Vertical)

Frequency (GHz)	Level (dBµV/m)	Limit (dBµV)	Margin (dB)
1.48	33.62	53.9	20.28
1.42	36.98	53.9	16.92
1.24	33.37	53.9	20.53
1.21	37.68	53.9	16.22
1.06	41.2	53.9	12.7
1	34.77	53.9	19.13
1.2	32.79	53.9	21.11
1.33	35.1	53.9	18.8
1.6	40.04	53.9	13.86
1.66	38.76	53.9	15.14
1.86	39.26	53.9	14.64
1.69	30.78	53.9	23.12
2.13	29.74	53.9	24.16
2.18	29.04	53.9	24.86
2.49	32.6	53.9	21.3
2.71	31.03	53.9	22.87

Note

- The frequencies above 1 GHz up to fifth harmonic of the internal clock were measured.
- The level of frequencies above 2.71 GHz are very small compared to the noise floor level then the signal cannot display.

Result: Tested by: MR. Suriyan Srimat Pass

7 APPENDIX

FCC ID label location information

OPTIMA

MODEL: OPTIMA SERIES

FCC ID: UP80PTIMA-SERIES1

This device complice with part 15 of the FCC rule Operation is subject to the following two conditions: (1) this device may not cause harmful interference. and[2] this device must accept any interferent received, including imerference that may cause unde sired operation.

FIGURE 6 - FCC ID Label

FIGURE 7 - FCC ID Label Located

This test report is test results from the EUT only, not the product's quality certificate. It shall not be reproduced except in full without the written approval of testing laboratory.

REV.15/15-08-06

- Front - Rear

Left - Right

FIGURE 8 – External Photographs (CPU Case)

FIGURE 9 – External Photographs (Monitor)

Right

Left

FIGURE 10 - Mouse

FIGURE 11 - Key board

System Block Diagram

Mainboard Diagram

FIGURE 12 EUT Block Diagram

FIGURE 13 - Internal Photographs (CPU case).

FIGURE 14 - Power Supply

REV.15/15-08-06 PTEC-02-03-013

Front

Rear

FIGURE 15 - Main Board

Front

Rear

FIGURE 16 - CPU

Front

Rear

FIGURE 17 Hard Disk

Front

Rear

FIGURE 18 – Memory (RAM)

FIGURE 19 - CD-Rom

----- End of Report ------