《微型计算机原理与接口技术》 第5版

第11章

DMA控制器8237A

本章主要内容:

- §11.1 8237A 的组成与工作原理
- §11.2 8237A的时序
- §11.3 8237A的编程和应用举例

§11.1 8237A的组成和工作原理

DMA传送

- 用DMA方式传送数据时,传送过程完全由DMA 控制器(DMAC)控制。其基本功能:
- ▶ 能向CPU的HOLD脚发出DMA请求信号。
- ➤ CPU响应DMA请求后,DMAC获得总线控制权,由它控制数据的传送,CPU则暂停工作。
- ▶ 能提供读/写存储器或I/O设备的各种控制命令。
- ▶ 确定数据传输的始址和数据长度,每传送1个数据便 自动修改地址(+1或-1),数据长度-1。
- ▶ 传送完毕,能发出结束DMA传送的信号。
- ▶ CPU在每个非锁定时钟周期结束后,都会检测HOLD 脚上有无DAM请求?若有,便转入DMA传送周期。

8237A DMA控制器

- 8237A是高性能可编程DMA控制器,主要特点:
- > 含4个通道,每通道有64K地址和字节计数能力。
- 有4种传送方式: 单字节传送、数据块传送、请求传送、级联传送。
- > 每个通道的DMA请求可被允许或禁止。
- ▶ 4个通道的DAM请求有不同优先级,优先级可以是固定的,也可以是循环的。
- ▶ 任一通道完成数据传送后,会产生过程结束信号 EOP(End of Process),结束DMA传送;还可从 外界输入EOP信号,中止正执行的DMA传送。

8237A的两种工作状态

1) 从态方式

➤ 开始DMA传送前,8237A是系统总线的从属设备,由CPU对它进行编程,如指定通道、传送方式和类型、内存单元起始地址、地址是递增还是递减以及要传送的总字节数等等,CPU也可读取DMAC的状态。

2) 主态方式

- ▶ 当8237A取得总线控制权后,它就完全控制了系统,使I/O设备和存储器之间或者存储器与存储器之间 进行直接的数据传送。
 - ▶ 8237A芯片的内部结构和外部连接与这两种工作 状态密切相关。

§11.1 8237A的组成和工作原理

11.1.1 8237A的内部结构

11.1.2 8237A的引脚功能

11.2.3 8237A的内部寄存器

11.1.1 8237A的内部结构

图11.1 8237A的内部结构

8237A内部结构

1. 时序与控制逻辑

▶从态时,接收系统时钟、复位、片选和读/写等信号, 完成相应控制操作;主态时,向系统发控制信号。

2. 优先级编码电路

>对同时提出DMA请求的多个通道进行排队判优, 决定哪个通道优先级最高。可选固定或循环优先级。 某个优先级高的设备服务时,禁止其它通道请求。

3. 数据和地址缓冲器组

▶8237A的A₇~A₄、A₃~A₀为地址线; DB₇~DB₀在从态时传输数据,主态时传送地址。它们都与三态缓冲器相连,便于接管或释放。

8237A内部结构

4.命令控制逻辑

》从态时接收CPU送来的寄存器选择信号($A_3\sim A_0$),选择寄存器;主态时译码方式字的 D_1D_0 ,以确定操作类型。 $A_3\sim A_0$ 与 \overline{IOR} 、 \overline{IOW} 配合组成各种操作命令。

5.内部寄存器组

- ▶ 每通道有16位基址寄存器、基字计数器、当前地址 寄存器、当前字计数器以及6位工作方式寄存器。
- 片内还有命令寄存器、屏蔽寄存器、请求寄存器、 状态寄存器和暂存寄存器。
- > 不可编程的字数暂存器和地址暂存器。

§11.1 8237A的组成和 工作原理

11.1.1 8237A的内部结构

11.1.2 8237A的引脚功能

11.2.3 8237A的内部寄存器

11.1.2 8237A的 引脚功能

8237A为40 引脚DIP封 装,引脚排 列

- 1. CLK 时钟信号,输入
- ▶8237A时钟频率3MHz, 8237A-5为5MHz。
- 2. CS 片选信号,输入,低电平有效
- ▶从态方式下选中8237A,接受CPU对它的编程等。
- 3. READY 准备好,输入,高电平有效
- ▶ 慢速I/O设备或存储器参与DMA传送时,可使 READY变低,让8237A在DMA周期中插入等待周 期T_{w.} 当它们准备就绪时READY变高。
- 4. A₃~A₀ 低4位地址线
- ▶ 从态为输入,寻址8237A内部寄存器,实现编程; 主态时输出要访问内存的低4位地址。

- 5. A₇~A₄ 4位地址线
- 始终是输出或浮空,主态时输出4位地址信息A7~A4。
- 6. DB₇~DB₀ 8位数据线
- >与系统数据总线连。从态时,CPU经数据线读取各有关寄存器内容,并对各寄存器编程。
- 》主态时,由它们输出高8位地址A₁₅~A₈,并由AD STB信号将它们锁存到外部的高8位地址锁存器中,与A₇~A₀输出的低8位地址构成16位地址。
- ▶ 存储器-存储器传送方式下,源存储器读出的数据, 经它们送暂存寄存器,暂存器中数据再经它们写到 目的存储单元中。

7. AEN 地址允许信号,输出,高电平有效

- ▶送出锁存的高8位地址,与芯片输出的低8位地址一起构成16位内存偏址。同时使连到CPU的地址锁存器无效,保证地址线上的信号来自DMAC。
- 8. ADSTB 地址选通信号,输出,高电平有效
- ▶选通外部地址锁存器,将DB₇~DB₀上的高8位地址 送到外部的地址锁存器。
- 9. IOR I/O读信号, 双向
- ▶从态时,控制CPU读取8237A内部寄存器。
- ▶主态时,与 MEMV配合,控制数据由外设传到存储器中。

10. IOW I/O写信号,双向,低电平有效

- ▶从态时,控制CPU对8237A内部寄存器编程。
- ▶主态时,与MEMR相配合,控制数据从存储器传送 到外设。

11. MEMR 存储器读,输出,低电平有效

➤主态时,可与IOW配合,实现存储器→外口口送, 也可控制内存间数据传送,从源地址单元中读出数 据。从态时无效。

12. MEMW 存储器写,输出,低电平有效

▶主态时,可与 IOR 配合,实现存储器◆外口口送, 也可控制内存间数据传送,把数据写入目的单元。 从态时无效。

- 13. DREQ3~DREQ0 通道3~0的DMA请求信号,输入
- ▶ 外设请求DMA服务时,向这些引脚发请求信号, 有效极性由编程确定。固定优先级时,DREQ₀的优 先级最高,编程可改变优先级。
- 14. HRQ 保持请求信号,输出,高电平有效
- >向CPU的HOLD端发出的DMA请求信号,可从 8237A任一个未被屏蔽的通道发出。
- 15. HLDA 保持响应信号,输入,高电平有效
- >与CPU的HLDA相连,CPU收到HRQ信号后,至少经过1个时钟周期后,使HLDA变高,表示已让出总线控制权,8237A收到HLDA信号后,便开始DMA传送。

16. DACK₃~DACK₀ 通道3~0的DMA响应信号,输出

▶其有效电平极性由编程确定。相应通道开始DMA 传送后,DACK_i有效,通知外部电路现已进入 DMA周期。

17. EOP 传输过程结束信号,双向,低电平有效

- ▶DMA传送中,任一通道的字计数器减为0,再由0 减为FFFFH 而终止计数时,会在 EO引脚上输出低 电平信号,表示DMA传输结束。
- ▶也可在 EOP 脚上输入低电平信号来终止DMA传送。
- 产若通道设置成自动预置状态,该通道完成一次 DMA传送,出现 EOP 信号后,又能自动恢复有关 寄存器的初值,继续执行另一次DMA传送。

§11.1 8237A的组成和 工作原理

11.1.1 8237A的内部结构

11.1.2 8237A的引脚功能

11.2.3 8237A的内部寄存器

11.2.3 8237A的内部寄存器

● 8237A的内部可编程寄存器主要有10种:

表 11.1 8237A 的内部寄存器			
名 称	位数	数 量	
当前地址寄存器	16	4 (每通道一个)	
当前字计数寄存器	16	4 (每通道一个)	
基地址寄存器	16	4 (每通道一个)	
基字计数寄存器	16	4 (每通道一个)	
工作方式寄存器	6	4 (每通道一个)	
命令寄存器	8	1 (4 个通道公用一个)	
状态寄存器	8	1 (4个通道公用一个)	
请求寄存器	4	1 (每通道1位)	
屏蔽寄存器	4	1 (每通道1位)	
暂存寄存器	8	1 (每通道1位)	

1. 当前地址寄存器

- ▶16位,每通道1个,存放DMA传送的存储器地址值。每 传送1个数据,地址值自动+1或-1,指向下个单元。
- ▶编程时可写入初值,也可被读出,但每次只能读/写8位, 所以读/写要两次完成。
- ▶自动预置操作方式,在 EOff效时,会重装入基地址值。

2. 当前字计数寄存器

- ▶16位,每通道1个,编程时置其初值为实际传送字节数少1。每传送1字节,自动-1。由0→FFFFH时,将产生终止计数信号TC。
- ▶自动预置操作方式,在 EOn 效时,会重装入基字计数寄存器的内容。

3. 基地址寄存器

- ▶16位,每通道1个,存放通道当前地址寄存器初值, 与当前地址寄存器地址一样,编程时写入相同值。
- ▶其内容不能读出和修改。用在自动预置操作时,使 当前地址寄存器恢复到初值。

4. 基字计数寄存器

- ▶16位,每通道1个,存放通道当前字计数器初值, 该值也是编程时与当前字计数器一起写入的。
- ▶其内容不能读出和修改,用于自动预置操作时,使 当前字计数器恢复到初值。

5. 命令寄存器

8位,控制 8237A的 操作。 由CPU编 程来设置 8327A操 作方式, 复位时清 除。 格式见图 11.3.

- ▶ D₀位 能否进行存储器→存口器□送,D₀=1允许。 并规定先用通道0从源单元读入1字节放入暂存器,然后由通道1把该字节写到目的单元,接着两通道的地址分别+1或-1,通道1的字计数器-1,它减为0时产生终止计数信号TC,并输出 信号 EQ终止DMA服务。
- D_2 位 允许或禁止B237A工作, $D_2=0$ 允许, $D_2=1$ 则禁止。

- ▶ D₄位 优先权控制。D₄=0为固定优先权,通道0 优先级最高; D₄=1为循环优先权,刚服务过的通道i优先权最低,而通道i+1优先权最高。随着DMA操作不断进行优先权不断循环,防止某通道长时间占用总线。
- ▶ D₆位 决定DREQ的有效电平,0高电平有效,1 则低电平有效。
- ▶ D₇位 决定DACK的有效电平,1高电平有效,0 则低电平有效。
- D_3 位和 D_5 位 有关时序的操作,见后面时序讨论。

6. 工作方式寄存器

6位,每通道1个,选择DMA的传送方式和类型等,格式

- D_1D_0 位 选择通道,并进一步由 $D_2\sim D_7$ 指定选定通道的工作方式。这样4个通道可合用1个方式寄存器。
- ▶ D₃D₂位 决定所选通道的DMA操作类型。从3种DMA 传送类型中选定一种:
 - 10: 读传送,存储器→I/O设备,发MEMR, IOW
 - 01: 写传送,存储器◆I/O设备,发MEMW, IOR
 - 00: 校验传送, 伪传送, 8237A会产生地址信息和 EOP 信号, 不会发出读写控制信号, 用于测试。
- $ightharpoonup D_4$ 位 所选通道是否进行自动预置操作。如果 D_4 =1,则选择自动预置。
- D_5 位 方向控制位。 D_5 =0数据传送由低址向高址方向进行,每传送1字节,地址+1。 D_5 =1时传送方向相反。

- ▶ D₇D₆位 定义所选通道操作方式。有4种传送方式:
- 1) 单字节传送方式
- •每次DMA操作只传送1字节。之后字计数器-1,地址寄存器+1或-1,HRQ无效,释放系统总线。当字计数器由0减为FFFFH时,产生终止信号TC。
- ·此后即使DREQ继续有效,8237A的HRQ输出仍进入无效状态并让出总线,由CPU控制至少一个总线周期。
 - 2) 数据块传输方式
- ·进入DMA服务后,可连续传输一批数据,直到字计数器由0减为FFFFH产生TC信号,或从外部送来EOP信号时,才释放总线,结束DMA传输。

3) 请求传送方式

- ·也连续传送数据,直到字计数器由0减为FFFFH 产生TC,或外界送来 EO信号。但每传送1字节后, 都要测试DREQ端,一旦发现此信号无效,马上 停止。
- ·地址和字计数器的中间值会被保存在通道的现行 地址和字计数器中,外设准备好新数据时,可使 DREQ再变为有效,又从断点处继续进行传输。

4)级联传送方式

- ·连接多个8237A以扩充DMA通道,连线见图11.5。
- · 主片DREQ—从片HRQ,主片DACK—从片HLDA,主片HRQ和HLDA与CPU的HOLD和HLDA相连。1块主片可连4块从片。主片置为级联传送,从片设成其它三种方式。

7. 请求寄存器

- ▶相应请求位置1时,对应通道可产生DMA请求。相应位可由 DREQ信号置1,也可写入通道请求字来置1或清0。
- ▶ D₁D₀位选通道号,D₂位为请求位。请求位不能屏蔽,其优 先权受优先权逻辑控制,TC或外部的 EOP 信号能将相应 的请求位清0,RESET信号则使整个请求寄存器清0。

8. 屏蔽寄存器

▶4位,1个/通道。禁止/允许对应通道的DREQ请求进入 请求寄存器。有两种屏蔽字,端口地址不同。

1) 通道屏蔽字

可对该寄存器写入通道屏蔽字来对单个屏蔽位置1/复位。 通道屏蔽字格式与通道请求字格式类似

2) 主屏蔽字

- 还允许用主屏蔽命令设置通道的屏蔽触发器。D₃~D₀位对应通道3~0的屏蔽位,1屏蔽,0清除屏蔽。可写入主屏蔽字,一次完成4个通道的屏蔽位设置。
- •可用软件同时清除4个通道的屏蔽位。

9. 状态寄存器

》8位状态寄存器存放状态信息,供CPU读出。如 $D_{3}\sim D_{0}$ 中置1的通道,已达计数终点TC或外部送来了 EOP信号。 D_{7} - D_{4} 中置1的通道,DMA请求还未处理。复位或被读出后,相应状态位被清除。状态字格式:

10. 暂存寄存器

➤ 在存储器➡存□器传送时,保存所传送的数据。其中始 终保存着最后1个传送的字节,RESET信号会将其清除。 编程状态下,可由CPU读出这个字节。

11. 软件命令

- ▶编程状态下,8237A可执行3个附加的特殊软件命令, 只要对特定端口进行一次写操作,命令就会生效。
- 1) 清除先/后触发器
- ·8237A仅8根数据线,而地址寄存器和字计数器均为16位,CPU要分两次读写。先/后触发器控制高低字节读写次序。清0读写低8位,随后自动置1,读写高8位。接着又清0,...。对该触发器所在的寄存器执行一次写操作便清0,复位和 **食牙**有效也将它清为0。

2) 主清命令

•主清命令也称为复位命令,功能与RESET信号同,它可使命令寄存器、状态寄存器、请求寄存器、暂存寄存器和内部先/后触发器均清0,而把屏蔽寄存器置1。复位后,8237A进入空闲状态。

3)清除屏蔽寄存器

·该命令能清除4个通道的全部屏蔽位,允许各通道接受DMA请求。

12. 各寄存器的端口地址

- 》对8237A内部寄存器读写时, CS端必须为低电平, 该信号由高位地址经I/O译码后产生。
- »A₃~A₀线选择不同寄存器,共占16个I/O端口地址。常将它们与地址总线低4位A₃~A₀相连,选择各寄存器。
- 例如,PC/XT机中,地址A₉~A₄=000000时,经I/O译码电路选中8237A,使其 CS有效。地址A₃~A₀与8237A的A₃~A₀脚连接实现片内寻址。因此基地址=00H,记为DMA=00H。由此可得其他寄存器的地址,如DMA+00H为通道0基地址与当前地址寄存器地址DMA+08H为状态寄存器地址

在PC/XT 上,8237A 与读写端 口信号配 合后形成 的端口地 址分配表, 基地址 DMA= **000H**

表 11.2 8237A 内部寄存器口地址分配表			
I/O 口地址	寄 存 器		
16 进制	读(IOR 有效)	写(IOW 有效)	
00	通道0当前地址寄存器	通道0基地址与当前地址寄存器	
01	通道0当前字计数寄存器	通道0基字计数与当前字计数寄存器	
02	通道1当前地址寄存器	通道1基地址与当前地址寄存器	
03	通道1当前字计数寄存器	通道1基字计数与当前字计数寄存器	
04	通道2当前地址寄存器	通道2基地址与当前地址寄存器	
05	通道2当前字计数寄存器	通道2基字计数与当前字计数寄存器	
06	通道3当前地址寄存器	通道3基地址与当前地址寄存器	
07	通道3当前字计数寄存器	通道3基字计数与当前字计数寄存器	
08	状态寄存器	命令寄存器	
09	_	请求寄存器	
0 A	_	屏蔽寄存器(通道屏蔽字)	
0B	_	工作方式寄存器	
0C	_	清除先/后触发器	
0D	暂存寄存器	主清命令寄存器	
$0\mathbf{E}$	_	屏蔽寄存器(清除屏蔽)	
0F	_	屏蔽寄存器(主屏蔽字)	

92274 中郊宋左思口地址八和丰

 例编写外设到内存DMA传送的初始化程序。要求: 利用8237通道1,将外设长度为1000个字节的数据块传送到内存2000H开始的连续的存储单元中。采用块传送,外设的DREQ1为高电平有效,DACK1为低电平有效,允许请求,设8237的1/0地址为70H~7FH。

• 初始化程序如下:

START:

OUT 7DH, AL;软件复位, 先/后触发器为0

MOV AL, OOH

OUT 72H, AL; 2000H写入基(当前)地址寄存器

MOV AL, 20H

OUT 72H, AL

MOV AX, 1000 ; 传输的字节数1000

DEC AX; 计数值调整为1000-1

OUT 73H, AL; 计数值写入基(当前)字节计数器 MOV AL, AH

OUT 73H, AL

MOV AL, 85H;块传送,地址增1,写传送oUT 7BH,

AL;写方式字

MOV AL, 01H

OUT 7AH, AL;写屏蔽字,允许通道1请求

MOV AL, 00H; DACK1=0, DREQ1=1, 允许8237工作

OUT 78H, AL ;写命令字