# 西安交通大学

# 数字图像与视频处理

第七次作业

学院 电信学院

姓名 刘靓

班级 自动化 63

学号 2160504071

#### 一、 问题分析

#### 1. 多种算法实现边缘检测

采用的边缘检测算法为 sobel, prewitt, canny, 其中 canny 边缘 检测器是当前边缘检测器中最为优秀的。边缘检测实际上是让待检测 图像通过一个滤波器,各种算法的差异在于滤波器的构造不同。

Canny 边缘检测算法有下列基本步骤组成:

- (1)用一个高斯滤波器平滑输入图像
- (2)计算梯度幅值图像和角度图像
- (3)对梯度幅值图像应用非最大抑制
- (4)用双阈值处理和连接分析来检测并连接边缘

边缘提取函数 edge,使用格式为: G=edge(F,''),G 表示边缘提取后 得到的二值图像,F 是输入的灰度图像,单引号内填写使用的算法,包括 canny, sobel, prewitt 等等。

#### 2. 霍夫变换实现直线检测

霍夫变换的核心思想是将图像从 xy 平面转换到参数空间。在图像空间中一条过点 (x, y) 的直线方程为 y=ax+b, 具有该形式的直线有无数条,但通过代数变换可以转换为另一种形式 b=-ax+y, 即参数空间中唯一的一条直线。如果在图像空间中保持直线的斜率和截距的不变, 其在参数空间必定过点 (a, b), 这也就说明, 在图像空间中共线的点对应参数空间共点的线。

上述变换存在一个问题,如果直线接近竖直方向,会由于 a 的值接近无穷而使计算量大增。解决的方法之一是使用直线的法线表示 $x\cos\theta + y\sin\theta = \rho$ ,根据这个方程,原图像空间中的点对应新参数空间中的一条正弦曲线。具体的检测步骤如下:

- (1)将参数空间划分为累加单元。设位于坐标( $\rho$ ,  $\theta$  )的单元具有累加值为 H ( $\rho$ ,  $\theta$  );
- (2)开始时置数组 H 为零,然后对每一个图像空间中的非背景点(x,y), 让  $\theta$  取遍  $\theta$  轴上每个允许的细分值,并算出对应的  $\rho$ ;
- (3)再根据  $\rho$  和  $\theta$  的值(已进行四舍五入)对 H 累加:  $H(\rho, \theta)$  =  $H(\rho, \theta)+1$ ;
- (4)如果两个点(x1,y1)和(x2,y2)共线,则有相同的  $\rho$ , $\theta$ , $H(\rho$ , $\theta$ )则可以不断累加:
  - (5)根据哈夫矩阵 H 选择值最大的 N 个点:

hough 用于对输入图像进行哈夫变换,求得边缘点相对应的参数方的哈夫矩阵 H。使用格式为: [H, T, R]=hough (G, 'Theta', value)。houghpeaks 函数用于提取 hough 矩阵中统计量最高的 N 个点,最后再使用 houghlines 函数将统计量最高的这几个点变换回 xy 域,得到 N 条直线,实现直线检测。

# 二、 实验结果

# Tsst1

test1原图



test1经prewitt的图像



test1经Sobel的图像



test1经canny算子的图像



取3个极值点



取5个极值点



test2原图



test2经Sobel的图像



test2经prewitt的图像



test2经canny算子的图像







取5个极值点



test3原图



test3经prewitt的图像



test3经Sobel的图像



test3经canny算子的图像



取3个极值点



取5个极值点



## test3

test4原图



test4经Sobel的图像



test4经prewitt的图像



test4经canny算子的图像



取3个极值点





## test5





test5经prewitt的图像



test5经canny算子的图像



取3个极值点





## test6





test6经prewitt的图像



test6经canny算子的图像



取3个极值点



取5个极值点



## 三、 结果分析

从实验结果来看,sobel和 prewitt 的边缘提取效果差别不是很明显,均提取出了较为清晰连续的边缘。Canny 算法的提取效果则优于以上两种,提取出了大量细节。对于只需要提取大致轮廓的图像,sobel和 prewitt 的效果很好,若使用 canny 算法会提取出不需要的细节,增加后续处理的繁杂,影响处理结果。