

Monocular Visual SLAM with Active Contours

by Julian Straub

27.04.2011

Simultaneous Localization and Mapping (SLAM)

Estimate:

Trajectory of Camera

Position of Features

Technische Universität München

- Regions
 - -> Active Contours

Corner Features-> SIFT, SURF, FAST

Extract regions surrounded by high gradients

$$E = \int_{C} \Phi ds$$
 where $\Phi = \frac{1}{1 + \|\nabla I\|}$

=> Gradiant descent flow: $C_t = \Phi C_{SS} - \nabla \Phi$

$$\Psi_{t} = \hat{\Phi} \| \nabla \Psi \| \cdot \nabla \bullet \left(\frac{\nabla \Psi}{\| \nabla \Psi \|} \right) + \nabla \hat{\Phi} \bullet \nabla \Psi$$

Evolve Contour: $C_t = \Phi C_{SS} - \nabla \Phi$

Initialize Contour

- Central and upwind differences

- Fast distance transform to compute extensions

Dilate Contour:

$$C_t = -N$$

- Upwind entropy difference

Load next Frame

Track contours in 4 sub-frames individually

Active Contours

Corner Features(SURF)

Active Contours for Monocular SLAM

Pro

- More information than corner features
- Stable features
- Easy data-association

Con

- High computational cost
- Initialization of contours
- Frames need to have distinc regions

Future Work

- Extract motion information from shape changes
- Automated initialization of contours
- Speed computations up

Questions?

Thoughts?

Thanks!