Calculus III Formula Sheet

Michael Brodskiy

Professor: V. Cherkassky

July 22, 2020

1 Chapter 12

1.1 Unit 1

1. The distance formula in three dimensions:

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

2. A sphere with center (h, k, l):

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

1.2 Unit 2

3. Vector given two points, $A = (x_1, y_1, z_1)$ and $B = (x_2, y_2, z_1)$

$$\overrightarrow{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

- 4. Magnitude of vector in:
 - (a) Two dimensions $(a = \langle a_1, a_2 \rangle)$:

$$|\overrightarrow{a}| = \sqrt{(a_1)^2 + (a_2)^2}$$

(b) Three dimensions $(a = \langle a_1, a_2, a_3 \rangle)$:

$$|\overrightarrow{a}| = \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2}$$

5. Standard Basis Vectors:

$$\hat{\mathbf{i}} = \langle 1, 0, 0 \rangle$$
 $\hat{\mathbf{j}} = \langle 0, 1, 0 \rangle$ $\hat{\mathbf{k}} = \langle 0, 0, 1 \rangle$

6. Unit Vectors (Any vector with magnitude 1):

$$\overrightarrow{u}_a = \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$

1.3 Unit 3

6. Dot Product¹ (Also Known As Scalar Product):

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2 + a_3b_3$$

7. Dot Product Angle Formula:

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta$$

8. Direction Angles:²

$$\cos \alpha = \frac{\overrightarrow{a} \,\hat{\mathbf{i}}}{|\overrightarrow{a}|}$$
$$\cos \beta = \frac{\overrightarrow{a} \,\hat{\mathbf{j}}}{|\overrightarrow{a}|}$$
$$\cos \gamma = \frac{\overrightarrow{a} \,\hat{\mathbf{k}}}{|\overrightarrow{a}|}$$

- 9. Projections:
 - (a) Scalar projection of \overrightarrow{b} onto \overrightarrow{a} :

$$comp_{\overrightarrow{a}}\overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|}$$

(b) Vector projection of \overrightarrow{b} onto \overrightarrow{a} :

$$proj_{\overrightarrow{a}}\overrightarrow{b} = \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|}\right) \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$

Unit 4 1.4

10. Cross Product:³

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

11. Cross Product Angle Formula:⁴

$$|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta$$

12. Volume of the Parallelepiped created by vectors \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} :

$$V = |\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})|$$

¹Two vectors are orthogonal (perpendicular) if $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

 $^{^{2}\}alpha$ corresponds to the x axis, β to the y axis, and γ to the z axis 3 The vector created by \overrightarrow{a} x \overrightarrow{b} is orthogonal to both \overrightarrow{a} and \overrightarrow{b}

⁴If the cross product equals zero, the two vectors are parallel

1.5 Unit 5

13. Parametric line equations, given parallel vector $\langle a, b, c \rangle$, through point (x_o, y_o, z_o) :

$$x = x_o + at$$
 $y = y_o + bt$ $z = z_o + ct$

14. Symmetric Equations:

$$t = \frac{x - x_o}{a} = \frac{y - y_o}{b} = \frac{z - z_o}{c}$$

15. Equation of a plane:

$$a(x - x_o) + b(y - y_o) + c(z - z_o) = 0$$

16. Distance from plane to point $(x_1 + y_1 + z_1)$:

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

1.6 Unit 6

17. Quadric Surface Formulas:

Figure	Equation
Ellipsoid: A Figure in Which All Traces	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right = 1$
are Ellipses	
Cone: A Figure in Which Horizontal	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} \right = \frac{z^2}{c^2}$
Traces are Ellipses and Vertical Traces in	
x and y are Hyperbolas	
Elliptic Paraboloid: Horizontal Traces are	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$
Ellipses and Vertical Traces are Parabolas	
Hyperboloid of One Sheet: Horizontal	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$
Traces are Ellipses and Vertical Traces are	
Hyperbolas	
Hyperbolic Paraboloid: Horizontal	$\left \frac{x^2}{a^2} - \frac{y^2}{b^2} \right = \frac{z}{c}$
Traces are Hyperbolas and Vertical	
Traces are Parabolas	
Hyperboloid of Two Sheets: Horizon-	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
tal Traces are Ellipses in z and Vertical	
Traces are Hyperbolas	

2 Chapter 13

2.1 Unit 1

18. Limit of a vector function:

$$\lim_{t \to a} \overrightarrow{r'}(t) = \langle \lim_{t \to a} x(t), \lim_{t \to a} y(t), \lim_{t \to a} z(t) \rangle$$

2.2 Unit 2

19. Derivative of a vector function:

$$\frac{d}{dt}[\overrightarrow{r}(t)] = \langle x'(t), y'(t), z'(t) \rangle$$

- 20. Derivative of cross and dot products:
 - (a) Dot Product:

$$\frac{d}{dt}[\overrightarrow{u}(t)\cdot\overrightarrow{v}(t)] = \overrightarrow{u}'(t)\cdot\overrightarrow{v}(t) + \overrightarrow{u}(t)\cdot\overrightarrow{v}'(t)$$

(b) Cross Product:

$$\frac{d}{dt} [\overrightarrow{u}(t) \times \overrightarrow{v}(t)] = \overrightarrow{u}'(t) \times \overrightarrow{v}(t) + \overrightarrow{u}(t) \times \overrightarrow{v}'(t)$$

21. Integral of a vector function:

$$\int_{a}^{b} \overrightarrow{r}(t) dt = \left(\int_{a}^{b} x(t) dt \right) \hat{\mathbf{i}} + \left(\int_{a}^{b} y(t) dt \right) \hat{\mathbf{j}} + \left(\int_{a}^{b} z(t) dt \right) \hat{\mathbf{k}}$$

2.3 Unit 3

22. Arc Length of a parametric vector function:

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt = \int_{a}^{b} |\overrightarrow{r'}(t)| dt$$

23. Unit Tangent Vector:

$$\overrightarrow{T}(t) = \frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}$$

- 24. Curvature:
 - (a) Using the unit tangent vector:

$$\kappa(t) = \frac{|\overrightarrow{T}'(t)|}{|\overrightarrow{r}'(t)|}$$

(b) Using first and second order derivatives:

$$\kappa(t) = \frac{|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)|}{|\overrightarrow{r}'(t)|^3}$$

(c) For single variable functions:

$$\kappa(x) = \frac{|f''(x)|}{[1 + (f'(x))^2]^{\frac{3}{2}}}$$

25. Unit Normal Vector:

$$\overrightarrow{N}(t) = \frac{\overrightarrow{T}'(t)}{|\overrightarrow{T}'(t)|}$$

26. Binormal Vector:

$$\overrightarrow{B}(t) = \overrightarrow{T}(t) \times \overrightarrow{N}(t)$$

2.4 Unit 4

27. Velocity:

$$\overrightarrow{v}(t) = \overrightarrow{r}'(t)$$

28. Speed:

$$|\overrightarrow{v}(t)| = |\overrightarrow{r}'(t)|$$

29. Acceleration:

$$\overrightarrow{a}(t) = \overrightarrow{v}'(t) = \overrightarrow{r}''(t)$$

3 Chapter 14

3.1 Unit 1

30. Level curves are used to demonstrate the height of a function, by drawing a line where f(x, y, z) = k, where k is any constant in the domain of f

3.2 Unit 2

31. To evaluate a multivariable limit, one must evaluate it along different paths: Example

$$\lim_{(x,y)\to(0,0)}\frac{x}{y}$$

Evaluate along y = mx, which is any line through the origin

$$\lim_{(x,y)\to(0,0)} \frac{\mathscr{X}}{m\mathscr{X}} \Rightarrow \frac{1}{m}$$

Therefore, this limit does not exist because, for different slopes, the value is different

3.3 Unit 3

32. To find a partial derivative, hold all variables aside from the one being differentiated with respect to to find a partial derivative.

3.4 Unit 4

33. If f has continuous partial derivatives, the following equation may be used to find a tangent plane:

$$z - z_o = f_x(x_o, y_o)(x - x_o) + f_y(x_o, y_o)(y - y_o)$$

34. Total differential:

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Or, with a multivariable function:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$$

3.5 Unit 5

35. The Chain Rule (Where x and y are differentiable functions of t, x(t) and y(t) and z = f(x(t), y(t)):

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

36. The Chain Rule (Where x and y are differentiable functions of (s,t), x(s,t), and y(s,t) and z = f(x(s,t), y(s,t)):

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s} \qquad \qquad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

37. Implicit differentiation:

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

38. Implicit Function Theorem:

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \qquad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

3.6 Unit 6

39. Directional derivative of function f(x,y) in the direction of unit vector $u = \langle a,b \rangle$:

$$D_u f(x,y) = f_x(x,y)a + f_y(x,y)b$$

Or, in three dimensions:

$$D_u f(x, y, z) = f_x(x, y, z)a + f_y(x, y, z)b + f_z(x, y, z)c$$

40. Gradient Vector:

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \hat{\mathbf{i}} + \frac{\partial f}{\partial y} \hat{\mathbf{j}}$$

Or, in three dimensions:

$$\nabla f(x, y, z) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \hat{\mathbf{i}} + \frac{\partial f}{\partial y} \hat{\mathbf{j}} + \frac{\partial f}{\partial z} \hat{\mathbf{k}}$$

41. Tangent Multivariable Planes:

$$F_x(x_o, y_o, z_o)(x - x_o) + F_y(x_o, y_o, z_o)(y - y_o) + F_z(x_o, y_o, z_o)(z - z_o) = 0$$

3.7 Unit 7

42. Second Derivative Test:

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- (a) If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum
- (b) If D > 0 and $f_{xx}(a, b) < 0$, then f(a, b) is a local maximum
- (c) If D < 0, then f(a, b) is not a local maximum or minimum

4 Chapter 15

4.1 Unit 1

43. Double Integral over Rectangles: Given rectangle $R = \{(x,y) | a \le x \le b, c \le y \le d\}$ The double integral of the function f(x,y) is:

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx$$

This yields the volume of the shape under the function f(x,y) and above rectangle, R

44. Midpoint Rule for Double integrals:

$$\int_{R} f(x,y) dA \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(\bar{x}_{i}, \bar{y}_{i}) \Delta A$$

4.2 Unit 2

45. Type I Region $(D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x))$:

$$\int_{a}^{b} \int_{q_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$

46. Type II Region $(D = \{(x, y) | h_1(y) \le x \le h_2(y), c \le y \le d)$:

$$\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx \, dy$$

4.3 Unit 3

47. Change to Polar Coordinates:

$$\int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r \, dr \, d\theta$$

48. Polar bounded by function(s) $(D = \{(r, \theta) | \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)\})$:

$$\int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} f(r\cos\theta, r\sin\theta) r \, dr \, d\theta$$

4.4 Unit 4

49. Mass from density function:

$$m = \iint_D \rho(x, y) \, dA$$

50. Moment about the:

(a) x axis:

$$M_x = \iint_D y \rho(x, y) \, dA$$

(b) y axis:

$$M_y = \iint_D x \rho(x, y) \, dA$$

51. Center of mass:

$$\bar{x} = \frac{M_y}{m}$$
 $\bar{y} = \frac{M_x}{m}$

52. Moment of Inertia about the:

(a) x axis:

$$I_x = \iint_D y^2 \rho(x, y) \, dA$$

(b) y axis:

$$I_y = \iint_D x^2 \rho(x, y) \, dA$$

(c) Origin (Polar):

$$I_o = \iint_D (x^2 + y^2) \rho(x, y) \, dA$$

4.5 Unit 5

53. Surface Area:

$$\iint_D \sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} \, dA$$

4.6 Unit 6

54. Triple Integral on Box $(B = \{(x, y, z) | a \le x \le b, c \le y \le d, r \le z \le s\})$:

$$\int_a^b \int_c^d \int_r^s f(x,y,z) \, dx \, dy \, dz$$

55. Type I E ($E = \{(x, y, z) | (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}$):

$$\iint_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \right] \, dA$$

56. Type I D and E $(E = \{(x, y, z) | a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)\})$:

$$\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \, dy \, dx$$

57. Type II *D* and Type I *E* $(E = \{(x, y, z) | h_1(y) \le x \le h_2(y), c \le y \le d, u_1(x, y) \le z \le u_2(x, y)\})$:

$$\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} \int_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \, dx \, dy$$

58. Type II $E(E = \{(x, y, z) | u_1(y, z) \le x \le u_2(y, z), c \le y \le d, r \le z \le s\})$

$$\iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) \, dx \right] \, dA$$

59. Type III $E(E = \{(x, y, z) | a \le x \le b, u_1(x, z) \le y \le u_2(x, z), r \le z \le s\})$

$$\iint_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) \, dy \right] \, dA$$

- 4.7 Unit 7 (Skip)
- 4.8 Unit 8 (Skip)
- 4.9 Unit 9
 - 60. The Jacobian Transformation:

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

61. Change of Variables in Double Integrals

$$\iint_S f(x(u,v),y(u,v))J\,du\,dv$$

5 Chapter 16

5.1 Unit 1

62. Gradient vector fields:

$$\nabla f(x, y, z) = f_x(x, y, z)\hat{\mathbf{i}} + f_y(x, y, z)\hat{\mathbf{j}} + f_z(x, y, z)\hat{\mathbf{k}}$$

5.2 Unit 2

63. Line Integrals:

$$\int_{C} f(x, y, z) ds = \int_{C} f(x, y, z) \sqrt{\left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} + \left(\frac{\partial f}{\partial z}\right)^{2}} dt$$

5.3 Unit 3

64. Fundamental Theorem of Line Integrals

$$\int_{C} \mathbf{F} d\mathbf{r} = \int_{C} \nabla f d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

65. Conservative Vector Field If:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

5.4 Unit 4

66. Green's Theorem:

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$