BÀI TẬP CHƯƠNG 1 – PHẦN TÍN HIỆU

I. PHÂN LOAI TÍN HIỆU

a. Tín hiệu chẵn (đối xứng)/lẻ (phản đối xứng)/đối xứng liên hợp phức

Bài 1: Tín hiệu

$$x(t) = \begin{cases} \sin\left(\frac{\pi t}{T}\right) & v \circ i - T \le t \le T \\ 0 & v \circ i \text{ các giá trị t khác} \end{cases}$$

Xét tại -t:

$$x(-t) = \begin{cases} \sin\left(-\frac{\pi t}{T}\right) & v \acute{o} i - T \le t \le T \\ 0 & v \acute{o} i \ c \acute{a} c \ g i \acute{a} \ t r \dot{i} \ t \ k h \acute{a} c \end{cases}$$

 \Leftrightarrow

$$x(-t) = \begin{cases} -\sin\left(\frac{\pi t}{T}\right) & v \circ i - T \le t \le T \\ 0 & v \circ i \text{ các giá trị t khác} \end{cases} = -x(t)$$

KL: Vậy tín hiệu x(t) là hàm lẻ theo t

Bài 2: Công thức áp dụng: $\begin{cases} x_e(t) = \frac{1}{2} \left(x(t) + x(-t) \right) & \text{phần chẵn} \\ x_o(t) = \frac{1}{2} \left(x(t) - x(-t) \right) & \text{phần lẻ} \end{cases}$

a.
$$x(t) = e^{-2t} \cos t$$

Ta có:
$$x(t) = e^{-2t} \cos t$$
, $x(-t) = e^{2t} \cos t$

$$\begin{cases} x_e(t) = \frac{1}{2} \left(x(t) + x(-t) \right) = \frac{1}{2} \left(e^{-2t} \cos t + e^{2t} \cos t \right) = \frac{e^{-2t} + e^{2t}}{2} \cos t \\ x_o(t) = \frac{1}{2} \left(x(t) - x(-t) \right) = \frac{1}{2} \left(e^{-2t} \cos t - e^{2t} \cos t \right) = \frac{e^{-2t} - e^{2t}}{2} \cos t \end{cases}$$
 KL

b. $x(t) = \cos(t) + \sin(t) + \sin(t) \cos(t)$

Ta có: $x(t) = \cos(t) + \sin(t) + \sin(t)\cos(t)$, $x(-t) = \cos(t) - \sin(t) - \sin(t)\cos(t)$

$$\Rightarrow \begin{cases} x_e(t) = \frac{1}{2} \left(x(t) + x(-t) \right) = \cos(t) \\ x_o(t) = \frac{1}{2} \left(x(t) - x(-t) \right) = \sin(t) + \sin(t) \cos(t) \end{cases} KL$$

c. $x(t) = 1 + t + 3t^2 + 5t^3 + 9t^4$

Ta có:
$$x(t) = 1 + t + 3t^2 + 5t^3 + 9t^4$$
, $x(-t) = 1 - t + 3t^2 - 5t^3 + 9t^4$

$$\Rightarrow \begin{cases} x_e(t) = \frac{1}{2} (x(t) + x(-t)) = 1 + 3t^2 + 9t^4 \\ x_o(t) = \frac{1}{2} (x(t) - x(-t)) = t + 5t^3 \end{cases}, KL$$

d. $x(t) = 1 + t \cos(t) + t^2 \sin(t) + t^3 \sin(t) \cos(t)$

Ta có: $x(t) = 1 + t \cos(t) + t^2 \sin(t) + t^3 \sin(t) \cos(t)$,

$$x(-t) = 1 + t \cos(t) + t^2 \sin(t) + t^3 \sin(t) \cos(t)$$

$$\Rightarrow \begin{cases} x_e(t) = \frac{1}{2} (x(t) + x(-t)) = 1 + t^3 \sin(t) \cos(t) \\ x_o(t) = \frac{1}{2} (x(t) - x(-t)) = t \cos(t) + t^2 \sin(t) \end{cases} KL$$

e. $x(t) = (1+t^3)\cos^3(10t)$

Ta có:
$$x(t) = (1+t^3)cos^3(10t)$$
,
 $x(-t) = (1-t^3)cos^3(10t)$

$$\Rightarrow \begin{cases} x_e(t) = \frac{1}{2}(x(t) + x(-t)) = cos^3(10t) \\ x_o(t) = \frac{1}{2}(x(t) - x(-t)) = t^3cos^3(10t) \end{cases}$$
 KL

Bài 3:

Ta có:
$$x(t) = x_1(t) + j. x_2(t)$$

Từ hình vẽ ta thấy: hình (a) cho $x_1(-t) = x_1(t)$

(b) cho
$$x_2(-t) = -x_2(t)$$

$$\Rightarrow x(-t) = x_1(-t) + j.x_2(-t) = x_1(t) - j.x_2(t) = x^*(t)$$

KL: Vậy tín hiệu x(t) là tín hiệu đối xứng liên hợp phức

b. Tín hiệu tuần hoàn/không tuần hoàn:

- * x(t) là tín hiệu tuần hoàn khi tồn tại $T \in \mathbb{R}$ thỏa mãn x(t) = x(t+T)
- * x[n] là tín hiệu tuần hoàn khi tồn tại $N \in \mathbb{Z}$ thỏa mãn x[n] = x[n+N]

Bài 1:

x(t) là tín hiệu tuần hoàn khi tồn tại T thỏa mãn x(t) = x(t+T)

$$X\acute{e}t \ x(t) = x(t+T) \Longrightarrow T = 0.2k \qquad (k \in \mathbb{N}^*)$$

- \Rightarrow Chu kì cơ sở ứng với k = 1, T = 0.2 s
- \Rightarrow Tần số cơ sở $f = \frac{1}{T} = 5 Hz$

KL:

Bài 2:

Từ đồ thị ta thấy a[n] = a[n + 8k]

 \Rightarrow Tín hiệu (a) là tín hiệu tuần hoàn với N=8

Tần số cơ sở
$$f = \frac{2\pi}{N} = \frac{2\pi}{8} = \frac{\pi}{4}$$
 (rad)

Bài 3:

a.
$$x(t) = \cos^2 2\pi t = \frac{1+\cos 4\pi t}{2}$$

$$\Rightarrow \text{ Tuần hoàn với } w = 4\pi \Leftrightarrow f = \frac{w}{2\pi} = 2 \text{ Hz}$$

$$\Rightarrow$$
 Tuần hoàn với $w = 4\pi \Leftrightarrow f = \frac{w}{2\pi} = 2 Hz$

b.
$$x(t) = \sin^3 2t = \frac{\sin 2t - \sin 6}{4}$$

$$\Rightarrow w_1 = 2, w_2 = 6$$

$$\Rightarrow w = 2 \Rightarrow f = \frac{1}{\pi}$$

c.
$$x(t) = e^{-2t} \cos 2\pi t$$

 $\cos 2\pi t$ tuần hoàn nhưng e^{-2t} không tuần hoàn nên x(t) không tuần hoàn

d.
$$x[n] = (-1)^n$$

 $n \text{ lẻ } thì x[n] = -1$
 $n \text{ chẵn } thì x[n] = 1$
 $\Rightarrow x[n] \text{ tuần } hoàn N = 1$

e.
$$x[n] = (-1)^{n^2}$$

 $n \text{ lể thì } x[n] = -1$
 $n \text{ chẵn thì } x[n] = 1$
 $\Rightarrow x[n] \text{ tuần hoàn } N = 1$

f.
$$x[n] = \cos 2n$$

 $N = \frac{2\pi}{w} = \pi \notin \mathbb{N}$
 \Rightarrow Không tuần hoàn

g.
$$x[n] = \cos 2\pi n$$

Tuần hoàn với $N = \frac{2\pi}{w} = 1$

c. Tín hiệu năng lượng và tín hiệu công suất

Bài 1:

- (a) Tín hiệu tuần hoàn nên là tín hiệu công suất. $T = 0.2 \, s$, $f = 5 \, Hz$
- (b) Tín hiệu không tuần hoàn nên là tín hiệu năng lượng

Bài 2:

Xét x(t) với $0 \le t \le 0.2$

$$\Rightarrow$$
 Phương trình đường thẳng $x(t) = \begin{cases} 20t - 1 \ v \acute{o}i \ 0 \le t \le 0.1 \\ -20t + 3 \ v \acute{o}i \ 0.1 \le t \le 0.2 \end{cases}$

$$\Rightarrow P = \frac{1}{0.2} \left(\int_{0}^{0.1} (20t - 1)^2 dt + \int_{0.1}^{0.2} (-20t + 3)^2 dt \right) = \frac{1}{3}$$

Bài 3:

$$E = \sum_{n=-\infty}^{\infty} (x^2[n]) = \sum_{n=-1}^{n=1} 1^2 = 3$$

Bài 4:

Tín hiệu năng lượng	Tín hiệu công suất	Tín hiệu Zero
$0 < E < \infty$	E = 0 hoặc ∞	E = 0 hoặc ∞
$P=0\ ho c \infty$	0 < P < ∞	P = 0 hoặc ∞

(a) Tín hiệu năng lượng:
$$E = \int_0^1 t^2 dt + \int_1^2 (2-t)^2 dt = \frac{2}{3}$$

(b) Tín hiệu năng lượng:
$$E = \sum_{0}^{4} n^2 + \sum_{5}^{10} (10 - n)^2 = 85$$

(c) Tín hiệu công suất:
$$P = \frac{1}{2} \int_{-1}^{1} (5\cos \pi t + \sin 5\pi t)^2 dt = 13$$

- (d) Tín hiệu năng lượng: $E = \int_{-1}^{1} 25 cos^{2}(\pi t) dt = 25$ (e) Tín hiệu năng lượng: $E = \int_{-0.5}^{0.5} 25 cos^{2}(\pi t) dt = 12.5$ (f) Tín hiệu Zero: $E = \sum_{n=-4}^{4} Sin^{2}(\pi n) = 0$, P = 0(g) Tín hiệu năng lượng: $E = \sum_{n=-4}^{4} Cos^{2}(\pi n) = 9$ (h) Tín hiệu công suất: $E = \sum_{n=0}^{\infty} Cos^{2}(\pi n) = \infty$, $P = \frac{1}{2}\sum_{n=0}^{2-1} Cos^{2}(\pi n) = 1$

Các phép toán trên tín hiệu II.

Bài 1:

Bài 2:

Answer: $y[n] = \begin{cases} 1, & n = 0, 1 \\ 0, & \text{otherwise} \end{cases}$

III. Các tín hiệu cơ sở

a. Tín hiệu dạng sin

Bài 1:

a.
$$x[n] = 5sin(2n)$$

$$X\acute{e}t: \ 5sin(2n) = 5sin(2(n+N))$$

$$\Rightarrow N = k\pi \notin \mathbb{N}$$

b.
$$x[n] = 5cos(0.2\pi n)$$

Xét:
$$5\cos(0.2\pi n) = 5\cos(0.2\pi(n+N))$$

$$\Rightarrow N = 10k$$

$$\Rightarrow$$
 Tín hiệu tuần hoàn với chu kì cơ sở $N_0 = 10$

c.
$$x[n] = 5cos(6\pi n)$$

Xét:
$$5\cos(6\pi n) = 5\cos(6\pi(n+N))$$

$$\Rightarrow N = \frac{k}{3}$$

$$\Rightarrow~$$
 Tín hiệu tuần hoàn với chu kì cơ sở $~N_0=1~{\rm khi}~k=3$

d.
$$x[n] = 5sin(\frac{6\pi n}{35})$$

Xét:
$$5sin\left(\frac{6\pi n}{35}\right) = 5sin\left(\frac{6\pi(n+N)}{35}\right)$$

$$\Rightarrow N = \frac{35k}{3}$$

$$\Rightarrow~$$
 Tín hiệu tuần hoàn với chu kì cơ sở $~N_0=1~{\rm khi}~k=3$

Bài 2: Áp dụng công thức: $\Omega = \frac{2\pi}{N}$

a.
$$\Omega = \frac{\pi}{4}$$
b.
$$\Omega = \frac{\pi}{16}$$
c.
$$\Omega = \frac{\pi}{32}$$
d.
$$\Omega = \frac{\pi}{64}$$

d.
$$\Omega = \frac{\pi}{64}$$

b. Tín hiệu hình sin suy giảm theo hàm mũ

Bài 1:

a.
$$x(t) = Ae^{\alpha_1 t + j\omega t}$$

 $= Ae^{\alpha_1 t} \cdot e^{j\omega t}$
 $= Ae^{\alpha_1 t} \cdot (Cos \omega t + j.Sin \omega t)$
 $\Rightarrow \begin{cases} Re(x(t)) = Ae^{\alpha_1 t} \cdot Cos \omega t \\ Im(x(t)) = Ae^{\alpha_1 t} \cdot Sin \omega t \end{cases}$
b. $x(t) = Ae^{j\omega_1 t + j\omega t}$
 $= Ae^{j\omega_1 t} \cdot e^{j\omega t}$
 $= A \cdot (Cos \omega_1 t + j.Sin \omega_1 t) \cdot (Cos \omega t + j.Sin \omega t)$
 $= A \cdot Cos(\omega_1 t + \omega_1 t) + jASin(\omega_1 t + \omega t)$
 $\Rightarrow \begin{cases} Re(x(t)) = A.Cos(\omega_1 t + \omega_1 t) \\ Im(x(t)) = ASin(\omega_1 t + \omega t) \end{cases}$
c. $x(t) = Ae^{\alpha_1 t + j(\omega_1 + \omega)t}$
 $= Ae^{\alpha_1 t} \cdot e^{j(\omega_1 + \omega)t}$
 $= Ae^{\alpha_1 t} \cdot (Cos((\omega_1 + \omega)t) + j.Sin((\omega_1 + \omega)t))$
 $\Rightarrow \begin{cases} Re(x(t)) = Ae^{\alpha_1 t} \cdot Cos((\omega_1 + \omega)t) \\ Im(x(t)) = Ae^{\alpha_1 t} \cdot Sin((\omega_1 + \omega)t) \end{cases}$

Bài 2:

a.
$$x(t) = x_1(t) + x_2(t) = Ae^{\alpha t}.(Cos \omega t + j.Sin \omega t) = Ae^{\alpha t + j\omega t}$$

b. $a(t) = \sqrt{x_1^2(t) + x_2^2(t)} = \sqrt{A^2.e^{2\alpha t}} = |A|e^{\alpha t}, \ t \ge 0$
c. $a(t) = |A|e^{\alpha t}, \ t \ge 0$
• $t = 0 \to a(0) = |A|$
• $0 < t < \infty \to a(t)$ giảm theo hàm mũ

d. Biểu diễn tín hiệu

 $t = \infty \to \lim_{t \to \infty} a(t) = 0$

Bài 1:

a. x(t)u(1-t)

b. x(t)[u(t) - u(t-1)]

c. $x(t)\delta(t-\frac{3}{2})$

Bài 2:

a. x[n]u[1-n]

b. $x[n]{u[n+2] - u[n]}$

c. $x[n]\delta[n-1]$

