

Task History

June 22, 2011 10:26 PM

Saved answer set '10581274' opened

Answer set 6 created with 2 reference answers from CAPLUS

Detailed display from Answer set 6 of Highly Potent, Orally Available Anti-inflammatory Broad-Spectrum Chemokine Inhibitors

Highly Potent, Orally Available Anti-inflammatory Broad-Spectrum Chemokine Inhibitors

By: Fox, David J.; Reckless, Jill; Lingard, Hannah; Warren, Stuart; Grainger, David J.

A series of 3-acylaminocaprolactams are inhibitors of chemokine-induced chemotaxis. Branching of the side chain α -carbon provides highly potent inhibitors of a range of CC and CXC chemokines. The most potent compd. has an ED50 of 40 pM. Selected compds. were tested in an in vivo inflammatory assay, and the best compd. reduces TNF- α levels with an ED50 of 0.1 μ g/kg when administered by either s.c. injection or oral delivery.

Indexing

Pharmacology (Section 1-3)

Concepts

Anti-inflammatory agents
Cell migration
Chemotaxis
Human
Inflammation
Neutrophil
Structure-activity relationship
oral antiinflammatory broad-spectrum chemokine inhibitors

CC chemokines
CXC chemokines
Chemokines
Interleukin 8
Macrophage inflammatory protein 1 α
Monocyte chemoattractant protein-1
RANTES(chemokine)
Tumor necrosis factors
oral antiinflammatory broad-spectrum chemokine inhibitors
Biological study, unclassified; Biological study

Source

Journal of Medicinal Chemistry
Volume 52
Issue 11
Pages 3591-3595
Journal
2009
CODEN: JMCMAR
ISSN: 0022-2623
DOI:
10.1021/jm900133w

Company/Organization

Department of Chemistry
University of Cambridge
Cambridge, UK CB2 1EW

Accession Number

2009:565761
CAN 151:23962
CAPLUS

Publisher

American Chemical Society

Language

English

Substances

853905-44-9P
oral antiinflammatory broad-spectrum chemokine inhibitors
Drug mechanism of action; Pharmacological activity; Reactant; Synthetic preparation; Therapeutic use;
Biological study; Preparation; Uses; Reactant or reagent

726187-67-3P
853905-34-7P
853905-39-2P
853905-40-5P
853905-41-6P
853905-42-7P
853905-45-0P
853905-59-6P
853905-60-9P
853905-61-0P
853905-62-1P
853905-68-7P
853905-72-3P
876063-97-7P
876063-98-8P
876063-99-9P
876064-01-6P
876064-02-7P
876064-03-8P
1160115-32-1P
1160115-34-3P

oral antiinflammatory broad-spectrum chemokine inhibitors

Drug mechanism of action; Pharmacological activity; Synthetic preparation; Therapeutic use; Biological study; Preparation; Uses

108-18-9 Diisopropylamine
112-31-2 Decanal
547-63-7 Methyl isobutyrate
671-42-1
870-63-3
924-50-5 Methyl 3,3-dimethylacrylate
2094-72-6 1-Adamantanecarbonyl chloride
2719-27-9 Cyclohexanecarbonyl chloride
2890-61-1 1-Methylcyclohexanecarbonyl chloride
3282-30-2 2,2-Dimethylpropionyl chloride
4301-04-6
5856-77-9 2,2-Dimethylbutyryl chloride
15721-22-9 2,2-Dimethylpentanoyl chloride
19835-38-2
21568-87-6
26081-07-2
28957-33-7
36278-22-5 1-Cyclohexenecarbonyl chloride
39482-46-7 2,2-Dimethyl-4-pentenoyl chloride
39691-62-8 Nonylmagnesium bromide
50321-59-0
60631-34-7 2,2-Dimethyldodecanoyl chloride
67589-90-6
73152-73-6
oral antiinflammatory broad-spectrum chemokine inhibitors
Reactant; Reactant or reagent

2198-82-5P 2,2,5-Trimethyl-4-hexenoic acid
53663-29-9P (E)-2-Methyldodec-2-enoic acid
66478-19-1P
102944-03-6P 3,3-Dimethyldodecanoic acid
476690-74-3P (E)-Ethyl 2-methyldodec-2-enoate
853905-71-2P
1017249-22-7P
1017249-74-9P

oral antiinflammatory broad-spectrum chemokine inhibitors

Reactant; Synthetic preparation; Preparation; Reactant or reagent

Supplementary Terms

oral antiinflammatory chemokine inhibitor structure

Citations

- 1a) Gerard, C; *Nat Immunol* 2001, 2, 108
- 1b) Horuk, R; *Cytokine Growth Factor Rev* 2001, 12, 313
- 1c) Rollins, B; *Blood* 1997, 90, 909
- 1d) Luster, A; *N Engl J Med* 1998, 338, 436
- 1e) Thelen, M; *Nat Immunol* 2001, 2, 129
- 2) Viola, A; *Annu Rev Pharmacol Toxicol* 2008, 48, 171
- 3a) Ribeiro, S; *Pharmacol Ther* 2005, 107, 44
- 3b) Carter, P; *Curr Opin Chem Biol* 2002, 6, 510
- 3c) Allen, S; *Annu Rev Immunol* 2007, 26, 787
- 4a) Vaidehi, N; *J Biol Chem* 2006, 281, 27613
- 4b) Pasternak, A; *Bioorg Med Chem Lett* 2008, 18, 1374
- 4c) Santella, L; *Bioorg Med Chem Lett* 2008, 18, 576
- 4d) Thoma, G; *Bioorg Med Chem Lett* 2008, 18, 2000
- 5a) Vandercappellen, J; *Cancer Lett* 2008, 267, 226
- 5b) Biju, P; *Bioorg Med Chem Lett* 2008, 18, 228
- 6a) Reckless, J; *Biochem J* 1999, 340, 803
- 6b) Reckless, J; *Immunology* 2001, 103, 244
- 7a) Fox, D; *J Med Chem* 2002, 45, 360
- 7b) Fox, D; *J Med Chem* 2005, 48, 867
- 8a) Grainger, D; *Biochem Pharmacol* 2003, 65, 1027
- 8b) Naidu, B; *Ann Thorac Surg* 2003, 75, 1118
- 8c) Wilbert, S; *Anal Biochem* 2000, 278, 14
- 9) Schroff, R; *Mini-Rev Med Chem* 2005, 5, 849
- 10) Frow, E; *Med Res Rev* 2004, 24, 276
- 1) Boyle, W; *J Am Chem Soc* 1979, 44, 4841
- 2) Rezler, E; *J Med Chem* 1997, 40, 3508
- 3) Reckless, J; *Biochem J* 1999, 340, 803
- 4) Fox, D; *J Med Chem* 2002, 45, 360
- 5) Fox, D; *J Med Chem* 2005, 48, 867
- 6) Frow, E; *Med Res Rev* 2004, 24, 267

Tags

0 Tags

Comments

0 Comments

Copyright © 2011 American Chemical Society (ACS). All Rights Reserved.