PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Bütro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

(11) Internationale Veröffentlichungsnummer: WO 97/07141

C08F 4/642, 12/08

(43) Internationales
Veröffentlichungsdatum:

27. Februar 1997 (27.02.97)

(21) Internationales Aktenzeichen:

PCT/EP96/03563

A1

DE

(22) Internationales Anmeldedatum: 13. August 1996 (13.08.96)

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, DT, SE)

(30) Prioritätsdaten:

195 30 406.3

18. August 1995 (18.08.95)

Veröffentlicht

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
HOECHST AKTIENGESELLSCHAFT [DE/DE];
Brüningstrasse 50, D-65929 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KAMINSKY, Walter [DE/DE]; Buschweg 52, D-25421 Pinneberg (DE). LENK, Stephan [DE/DE]; Chapeaurougeweg 40, D-20535 Hamburg (DE). SCHOLZ, Volker [DE/DE]; Niemannstrasse 21, D-21073 Hamburg (DE). ROESKY, Herbert [DE/DE]; Emil-Nolde-Weg 23, D-37085 Göttingen (DE). HERZOG, Axel [DE/US]; 405 Hilgard Avenue, Los Angeles, CA 90095-1569 (US).

(54) Title: CATALYST CONSTITUENTS AND CATALYST SYSTEM WITH A HIGH DEGREE OF POLYMERISATION ACTIVITY FOR THE PRODUCTION OF POLYMERS

(54) Bezeichnung: KATALYSATORKOMPONENTE UND KATALYSATORSYSTEM MIT HOHER POLYMERISATIONSAK-TIVITÄT ZUR HERSTELLUNG VON POLYMEREN

(57) Abstract

In the present invention, catalyst systems with a high degree of polymerisation are described which contain at least one catalyst constituent of general formula (I): $R_n M X_m$, in which M^1 is Ti, Zr or Hf, R^a is C_5 (R^1 , R^2 , R^3 , R^4 , R^5) or C_6 (R^1 , R^2 , R^3 , R^4 , R^5 , R^6) wherein R^1 , R^2 , R^3 , R^4 , R^5 and R^6 are identical or different, and a hydrogen atom, a C_1 - C_{20} alkyl group, a C_1 - C_{10} alkoxy group, a C_1 - C_{10} allowing group, a C_2 - C_{10} allowing group, a C_3 - C_4 0 arylalkenyl group, a C_3 - C_4 0 arylalkenyl group, a silyl group, a germyl group, or adjacent groups R^1 , R^2 , R^3 , R^4 , R^5 and R^6 which form with the connecting atoms thereof a ring system; R^b is one fluorine atom when m=1, at least one fluorine atom when m>1 and can be identical or different, and be at least one hydrogen atom, a C_1 - C_{20} alkyl group, a C_1 - C_1 0 alkyoxy group, a C_1 - C_1 0 fluoroalkyl group, a C_2 - C_1 0 aryloxy group, a C_2 - C_1 0 alkenyl group, a C_3 - C_4 0 arylalkenyl group, an OH group, a C_3 1 group or C_3 2 group, wherein C_3 3 and C_3 4 are a C_1 40 alkylaryl group, a C_3 40 arylalkenyl group, a C_3 40 fluoroalkyl group, a C_3 40 fluoroalkyl group, a C_3 40 fluoroalkyl group, a C_3 40 arylalkenyl group, a C_3 40 fluoroalkyl group, a C_3 40 fluoroalkyl group, a C_3 40 arylalkyl group, a C_3 40 fluoroalkyl group, a C_3 40 arylalkenyl group, a C_3 40 arylalkenyl group, a C_3 40 arylalkenyl group, a C_3 40 arylalkyl group, a C_3 40 arylalkyl group, a C_3 40 arylalkenyl group, a C_3 40 arylalkenyl group, a C_3 40 arylalkyl group, a C_3 40 arylalkyl group, a C_3 40 arylalkyl group, a C_3 40 arylalkenyl group, a C_3 40 arylalkyl group, a C_3 40 arylalkenyl group, a C_3 50 arylalk

(57) Zusammenfassung

In der vorliegenden Erfindung werden Katalysatorsysteme mit hoher Polymerisationsaktivität beschrieben, die mindestens eine Katalysatorkomponente der allgemeinen Formel (I) enthalten: $R_n M X_m$, worin $M^1 = Ti$, Zr oder Hf ist, $R^a = C_5$ (R^1 , R^2 , R^3 , R^4 , R^5) oder C_6 (R^1 , R^2 , R^3 , R^4 , R^5) into $M^1 = Ti$, R^3 oder Hf ist, $R^4 = C_5$ (R^1 , R^2 , R^3 , R^4 , R^5) oder C_6 (R^1 , R^2 , R^3 , R^4 , R^5) into $M^1 = Ti$, R^3 oder M^3 oder M^4 of Erford Hf ist, M^4 oder Hf ist, $M^$

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungam	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumānien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
cs	Tschechoslowakei	LU	Luxemburg	TG	Togo
cz	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dinemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Katalysatorkomponente und Katalysatorsystem mit hoher Polymerisationsaktivität zur Herstellung von Polymeren

Die vorliegende Erfindung betrifft Katalysatorkomponenten und Katalysatorsysteme mit hoher Polymerisationsaktivität zur Herstellung von Polymeren, wobei die Polymere einen hohen Schmelzpunkt aufweisen. Die vorliegende Erfindung betrifft weiter ein wirtschaftliches und umweltschonendes Verfahren zur Herstellung von Polymeren mit einem hohen Schmelzpunkt.

Aus DE-A-4332009 ist ein Verfahren zur Herstellung von Organometallfluoriden bekannt. Dabei werden π -System-haltige Organometallfluoride durch Umsetzung eines fluorfreien Organometallhalogenids mit einem Zinnfluorid der allgemeinen Formel R₃SnF erhalten, worin R gleich oder verschieden sind und C₁-C₁₀-Alkyl-, C₆-C₁₄-Aryl-, C₂-C₁₀-Alkenyl-, C₇-C₂₀-Arylalkyl- oder C₇-C₁₅-Alkylaryl bedeuten.

Aus EP-A-210 615 sind Katalysatoren für die Polymerisation von Styrol und Verfahren zur Polymerisation von Monostyrol zu syndiotaktischem Polystyrol bekannt.

Aus Macromolecules 21 (1988), 3356 ist bekannt, daß Titanverbindungen mit einem Cyclopentadienylring besonders hohe Polymerisationsaktivität aufweisen. Die mit diesen Verbindungen als Katalysatoren erhaltenen Styrolpolymere weisen vergleichsweise niedrige Schmelzpunkte auf.

Die Aufgabe der vorliegenden Erfindung liegt darin, eine Katalysatorkomponente und ein Katalysatorsystem mit hoher Polymerisationsaktivität bereitzustellen, wobei Polymere mit hohen Schmelzpunkten erhalten werden. Eine weitere Aufgabe der vorliegenden Erfindung liegt darin, ein wirtschaftliches und

2

umweltschonendes Polymerisationsverfahren bereitzustellen.

Die der vorliegenden Erfindung zugrundeliegende Aufgabe wird durch eine Katalysatorkomponente für die Polymerisation von Olefinen gelöst, die mindestens eine Verbindung der allgemeinen Formel (I) enthält:

$R^a_n M^1 R^b_m(I)$,

worin

 M^1 = Ti, Zr oder Hf ist,

 $R^{8} = C_{5} (R^{1}, R^{2}, R^{3}, R, ^{4} R^{5}) \text{ oder } C_{6} (R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}) \text{ ist, wobei}$ $R^{1}, R^{2}, R^{3}, R^{4}, R^{5} \text{ und } R^{6} \text{ gleich oder verschieden und ein}$ $Wasserstoffatom, \text{ eine } C_{1}\text{-}C_{20}\text{-}\text{Alkylgruppe, eine } C_{1}\text{-}C_{10}\text{-}$ $Alkoxygruppe, \text{ eine } C_{1}\text{-}C_{10}\text{-}\text{Fluoralkylgruppe, eine } C_{2}\text{-}C_{20}\text{-}$ $Arylgruppe, \text{ eine } C_{6}\text{-}C_{10}\text{-}\text{Aryloxygruppe, eine } C_{2}\text{-}C_{10}\text{-}$ $Alkenylgruppe, \text{ eine } C_{6}\text{-}C_{10}\text{-}\text{Fluorarylgruppe, eine } C_{7}\text{-}C_{40}\text{-}$ $Arylalkylgruppe, \text{ eine } C_{7}\text{-}C_{40}\text{-}\text{Alkylarylgruppe, eine } C_{8}\text{-}C_{40}\text{-}$ Arylalkenylgruppe, eine Silyl-, eine Germylgruppe bedeuten oder $\text{benachbarte Reste } R^{1}, R^{2}, R^{3}, R^{4}, R^{5} \text{ und } R^{6} \text{ mit den sie}$ verbindenden Atomen ein Ringsystem bilden,

 $\begin{array}{lll} \mathsf{R}^{\mathsf{b}} &=& \mathsf{ein} \ \mathsf{Fluoratom} \ \mathsf{wenn} \ \mathsf{m} = 1 \ \mathsf{ist}, \ \mathsf{mindestens} \ \mathsf{ein} \ \mathsf{Fluoratom} \ \mathsf{wenn} \ \mathsf{m} \\ &>& 1 \ \mathsf{ist} \ \mathsf{und} \ \mathsf{sein} \ \mathsf{kann} \ \mathsf{gleich} \ \mathsf{oder} \ \mathsf{verschieden} \ \mathsf{mindestens} \ \mathsf{ein} \\ && \mathsf{Wasserstoffatom}, \ \mathsf{eine} \ \mathsf{C}_1\text{-}\mathsf{C}_{20}\text{-}\mathsf{Alkylgruppe}, \ \mathsf{eine} \ \mathsf{C}_1\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Alkoxygruppe}, \ \mathsf{eine} \ \mathsf{C}_1\text{-}\mathsf{C}_{10}\text{-}\mathsf{Fluoralkylgruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Fluorarylgruppe}, \ \mathsf{eine} \ \mathsf{C}_7\text{-}\mathsf{C}_{40}\text{-} \\ && \mathsf{Arylalkylgruppe}, \ \mathsf{eine} \ \mathsf{C}_7\text{-}\mathsf{C}_{40}\text{-}\mathsf{Alkylarylgruppe}, \ \mathsf{oder} \ \mathsf{SR}^8_1\text{-}\mathsf{Gruppe}, \\ && \mathsf{wobei} \ \mathsf{R}^7 \ \mathsf{und} \ \mathsf{R}^8 \ \mathsf{eine} \ \mathsf{C}_1\text{-}\mathsf{C}_{20}\text{-}\mathsf{Alkylgruppe}, \ \mathsf{eine} \ \mathsf{C}_1\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Alkoxygruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Fluoralkylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{20}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_2\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-}\mathsf{Aryloxygruppe}, \ \mathsf{eine} \ \mathsf{C}_6\text{-}\mathsf{C}_{10}\text{-} \\ && \mathsf{Arylgrup$

Alkenylgruppe, eine C_6 - C_{10} -Fluorarylgruppe, eine C_7 - C_{40} -Arylalkylgruppe, eine C_7 - C_{40} -Alkylarylgruppe, oder eine C_8 - C_{40} -Arylalkenylgruppe bedeuten, eine Silylgruppe, eine Germylgruppe, ein Halogenatom bedeuten, eine -OC(O)F, eine -OC(O)CR c_3 , eine -OC(O)C $_5$ R d_4 oder eine -OC(O)C $_6$ R e_5 Gruppe ist, wobei R c , R d und R e mindestens ein Fluoratom bedeuten und R c , R d und R e sein können gleich oder verschieden mindestens ein Wasserstoffatom, eine C_1 - C_{20} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_6 - C_{10} -Fluoralkylgruppe, eine C_6 - C_{20} -Arylgruppe, eine C_6 - C_{10} -Fluorarylgruppe, eine C_7 - C_{40} -Alkenylgruppe, eine C_7 - C_{40} -Alkylarylgruppe, eine C_8 - C_{40} -Arylalkenylgruppe eine OH-Gruppe, eine NR 7_2 - oder SR 8 -Gruppe, eine Silylgruppe, eine Germylgruppe oder ein Halogenatom,

m und n ganze Zahlen sind, m+n=2 bis 4 ist und m mindestens 1 ist.

Die vorliegende Erfindung hat den Vorteil, daß mit diesen
Katalysatorkomponenten, Katalysatorsysteme mit einer hohen
Polymerisationsaktivität erhalten werden. Die Polymerisationsaktivität der
erfindungsgemäßen Katalysatoren wird in Masse des produzierten Polymers,
bezogen auf die Stoffmenge der Verbindung der 4. Gruppe des
Periodensystems und bezogen auf die Polymerisationszeit berechnet. Der
besondere Vorteil der vorliegenden Erfindung liegt darin, daß mit
Katalysatorsystemen mit hoher Polymerisationsaktivität, Polymere mit hohen
Schmelzpunkten erhalten werden. Die Erhöhung der Polymerisationsaktivität bei
bisher bekannten Katalysatorsystemen, war bisher mit dem Nachteil behaftet,
daß die Schmelzpunkte der erhaltenen Polymere stets abnahmen. Durch die
hohe Polymerisationsaktivität der Katalysatorsysteme, kann eine Polymerisation
mit geringeren Mengen an Katalysatorsystemen mit sehr guten Ergebnissen
durchgeführt werden. Dadurch wird das Polymerisationsverfahren sehr
wirtschaftlich und umweltfreundlich.

Bevorzugt sind erfindungsgemäße Katalysatoren, die einen Cyclopentadienylring als Ligand und 3 Fluoratome direkt am Metallatom M¹ gebunden aufweisen. Katalysatorsysteme mit diesen Katalysatorkomponenten zeigen eine gute Polymerisationsaktivität.

Besonders bevorzugt sind erfindungsgemäße Katalysatoren, die einen fünffach methylierten Cyclopentadienylring als Ligand und 3 Fluoratome am Metallatom M¹ aufweisen. Katalysatorsysteme mit diesen Katalysatorkomponenten zeigen eine sehr gute Polymerisationsaktivität.

Besonders bevorzugt ist Titan als Übergangsmetallatom. Mit Titan als Übergangsmetall werden überwiegend gute Polymerisationsaktivitäten erreicht.

Erfindungsgemäß ist eine Katalysatorkomponente vorgesehen, enthaltend mindestens eine Verbrückung R^9 zwischen mindestens zwei Resten R^a . R^9 ist bevorzugt

$$-0- {\displaystyle \mathop{\mathsf{M}}^{10}_{1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}}^{10}}\atop {\displaystyle \mathop{\mathsf{R}}^{10}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}}^{10}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}}^{10}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}}^{10}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}}^{10}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}\atop 1}\atop 1}\atop 1}\atop 1}\atop {\displaystyle \mathop{\mathsf{R}^{10}$$

$$>_{BR^{10}}, >_{A1R^{10}}, -g_{e-}, -o-, -s-, >_{S0}, >_{S0_2}, >_{HR^{10}}, >_{C0}, >_{PR^{10}} \circ der >_{R(0)R^{10}},$$

wobei R^{10} und R^{11} gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom oder eine C_1 - C_{40} -kohlenstoffhaltige Gruppe ist, wie eine C_1 - C_{20} -Alkyl-, eine C_1 - C_{10} -Fluoralkyl-, eine C_1 - C_{10} -Alkoxy-, eine C_6 - C_{14} -Aryl-, eine C_6 - C_{10} -Fluoraryl-, eine C_6 - C_{10} -Aryloxy-, eine C_2 - C_{10} -Alkenyl-, eine C_7 - C_{40} -Arylalkyl-, eine C_7 - C_{40} -Alkylaryl-, oder eine C_8 - C_{40} -Arylalkenylgruppe oder R^{10} und R^{11} jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe bilden und x eine ganze Zahl von Null bis 18 ist, M^2 Silizium, Germanium oder Zinn ist. R^9 kann auch zwei Einheiten der Formel (I) miteinander verknüpfen.

Die folgenden Beispiele sollen die in der allgemeinen Formel I beschriebenen Organometallfluoride näher erläutern, erheben aber keinen Anspruch auf Vollständigkeit:

Ethylenbis(indenyl)zirkoniumdifluorid
Ethylenbis(4,5,6,7-tetrahydroindenyl)zirkoniumdifluorid
Ethylenbis(2-methylindenyl)zirkoniumdifluorid
Ethylenbis(2,4-dimethylindenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-methyl-4,5-benzoindenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-methyl-4,6-diisopropylindenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-methyl-4-phenylindenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-ethyl-4-phenylindenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdifluorid
Dimethylsilandiylbis(indenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-methyl-4-ethylindenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-methyl-4-isopropylindenyl)zirkoniumdifluorid
Dimethylsilandiylbis(2-methyl-4-isopropylindenyl)zirkoniumdifluorid

Dimethylsilandiylbis(2-ethyl-4-methylindenyl)zirkoniumdifluorid

WO 97/07141

 $Dimethyl silandiylb is (2-methyl-\alpha-acenaphth-1-indenyl) zirkonium difluorid$

Phenylmethylsilandiylbis(2-methyl-4-phenylindenyl)zirkoniumdifluorid

Phenylmethylsilandiylbis(2-methyl-indenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4,5-benzoindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4,6-diisopropylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-phenylindenyl)zirkoniumdifluorid

Ethylenbis(2-ethyl-4-phenylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdifluorid

Ethylenbis(indenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-ethylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-isopropylindenyl)zirkoniumdifluorid

Ethylenbis(2-methyl-4-methylindenyl)zirkoniumdifluorid

Ethylenbis(2-ethyl-4-methylindenyl)zirkoniumdifluorid

 $Ethylenbis (2-methyl-\alpha-acenaphth-1-indenyl) zirkonium difluorid\\$

Bis(2-methyl-4,5-benzoindenyl)zirkoniumdifluorid

Bis(2-methyl-4,6-diisopropylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-phenylindenyl)zirkoniumdifluorid

Bis(2-ethyl-4-phenylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-(1-naphthyl)indenyl)zirkoniumdifluorid

Bis(indenyl)zirkoniumdifluorid

Bis(2-methyl)-4-ethylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-isopropylindenyl)zirkoniumdifluorid

Bis(2-methyl-4-methylindenyl)zirkoniumdifluorid

Bis(2-ethyl-4-methylindenyl)zirkoniumdifluorid

Bis(2-methyl-α-acenaphth-1-indenyl)zirkoniumdifluorid

Bis(n-Butyl-cyclopentadienyl)zirkoniumdifluorid

Bis(cyclopentadienyl)zirkoniumdifluorid

Bis(pentamethylcyclopentadienyl)zirkoniumdifluorid

Cyclopentadienylzirkoniumtrifluorid

Pentamethylcyclopentadienylzirkoniumtrifluorid

(2-Methyl-4,5-benzoindenyl)zirkoniumtrifluorid

(2-Methyl-4,6-diisopropylindenyl)zirkoniumtrifluorid

(2-Methyl-4-phenylindenyl)zirkoniumtrifluorid.

(2-Ethyl-4-phenylindenyl)zirkoniumtrifluorid

(2-Methyl-4-(1-naphthyl)indenyl)zirkoniumtrifluorid

Indenylzirkoniumtrifluorid

(2-Methyl-4-ethylindenyl)zirkoniumtrifluorid

(2-Methyl-4-isopropylindenyl)zirkoniumtrifluorid

(2-Methyl-4-methylindenyl)zirkoniumtrifluorid

(2-Ethyl-4-methylindenyl)zirkoniumtrifluorid

 $(2\hbox{-Methyl-}\alpha\hbox{-acenaphth-1-indenyl}) zirkonium trifluorid$

(n-Butyl-cyclopentadienyl)zirkoniumtrifluorid

Isopropyliden (9-fluorenyl) cyclopentadienyl zirkonium difluorid

Diphenylmethylen(9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Phenylmethylmethylen(9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Dimethylsilandiyl(9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Isopropyliden(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Diphenylmethylen(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Phenylmethylen(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Dimethylsilandiyl(9-fluorenyl)(3-methyl-cyclopentadienyl)zirkoniumdifluorid

Isopropyliden(9-fluorenyl)(3-isopropyl-cyclopentadienyl)zirkoniumdifluorid

Diphenylmethylen(9-fluorenyl)(3-isopropyl-cyclopentadienyl)zirkoniumdifluorid

Phenylmethylen(9-fluorenyl)(3-isopropyl-

cyclopentadienyl)zirkoniumdifluorid

Dimethylsilandiyl(9-fluorenyl)(3-isopropyl-cyclopentadienyl)zirkoniumdifluorid

Isopropyliden(2,7-ditert.-butyl-9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Diphenylmethylen(2,7-ditert.-butyl-9-

fluorenyl)cyclopentadienylzirkoniumdifluorid

Phenylmethylmethylen(2,7-ditert.-butyl-9-fluorenyl)cyclopenta-

dienylzirkoniumdifluorid

Dimethylsilandiyl(2,7-ditert.-butyl-9-fluorenyl)cyclopentadienylzirkoniumdifluorid

Ethylenbis(indenyl)titandifluorid

WO 97/07141 PCT/EP96/03563

8

Ethylenbis(4,5,6,7-tetrahydroindenyl)titandifluorid

Ethylenbis(2-methylindenyl)titandifluorid

Dimethylsilandiylbis(indenyl)titandifluorid

Bis(indenyl)titandifluorid

Bis(cyclopentadienyl)titandifluorid

Bis(pentamethylcyclopentadienyl)titandifluorid

Cyclopentadienyltitantrifluorid

Pentamethylcyclopentadienyltitantrifluorid

Indenyltitantrifluorid

(n-Butyl-cyclopentadienyl)titantrifluorid

Isopropyliden(9-fluorenyl)cyclopentadienyltitandifluorid

Ethylenbis(indenyl)hafniumdifluorid

Ethylenbis (4,5,6,7-tetrahydroindenyl) hafnium difluorid

Ethylenbis(2-methylindenyl)hafniumdifluorid

Dimethylsilandiylbis(indenyl)hafniumdifluorid

Bis(indenyl)hafniumdifluorid

Bis(cyclopentadienyl)hafniumdifluorid

Bis(pentamethylcyclopentadienyl)hafniumdifluorid

Cyclopentadienylhafniumtrifluorid

Pentamethylcyclopentadienylhafniumtrifluorid

Indenylhafniumtrifluorid

(n-Butyl-cyclopentadienyl)hafniumtrifluorid

Isopropyliden(9-fluorenyl)cyclopentadienylhafniumdifluorid

Bis(cyclopentadienyl)titanfluorid)

Bis (Methylcyclopentadienyl-titanfluorid)

Bis(pentamethylcyclopentadienyl)titanfluorid

[(Me₃SiC₅H₄)Ti(F)Nt-Bu]₂

Die als Ausgangsverbindung benötigten Organometallhalogenide sind kommerziell erhältlich oder können nach literaturbekannten Verfahren hergestellt werden. Die als Ausgangsstoff benötigten Zinnfluoride können nach

WO 97/07141

9

literaturbekannten Methoden hergestellt werden (Ber. Dtsch. Chem. Ges. (1918), Bd. 51, 1447).

Erfindungsgemäß ist ein Katalysatorsystem vorgesehen, enthaltend mindestens eine Katalysatorkomponente und mindestens eine organische Bor- und/oder mindestens eine organische Aluminium- und/oder mindestens eine organische Zinnverbindung als Cokatalysator. Das Katalysatorsystem ist erhältlich durch Inkontaktbringen mindestens einer Katalysatorkomponente mit mindestens einer organischen Bor- und/oder mindestens einer organischen Aluminium- und/oder mindestens einer organischen Zinnverbindung. Es entsteht insbesondere als Reaktionsprodukt mindestens einer Katalysatorkomponente und mindestens einer organischen Bor- und/oder organischen Aluminium- und/oder organischen Zinnverbindungen sowie Reaktionsprodukten dieser Verbindungen mit Kondensationsmitteln, wie Wasser. Mit diesen Katalysatorsystemen werden sehr gute Polymerisationsaktivitäten erhalten. Die Cokatalysatorkomponente, die erfindungsgemäß im Katalysatorsystem enthalten sein kann, enthält mindestens eine Verbindung vom Typ eines Aluminoxans oder einer Lewis-Säure oder einer ionischen Verbindung, die durch Reaktion mit einer Katalysatorkomponente in eine kationische Verbindung überführt wird.

Als Aluminoxan wird bevorzugt eine Verbindung der allgemeinen Formel II

$$(RAIO)_n$$
 (II)

verwendet. Aluminoxane können z.B. cyclisch wie in Formel III

oder linear wie in Formel IV

$$\begin{array}{c|c}
R & & \\
AI & O & \hline
\end{array}$$

$$\begin{array}{c|c}
R & & \\
AI & O & \hline
\end{array}$$

$$\begin{array}{c|c}
R & & \\
R & & \\
\end{array}$$
(IV)

oder vom Cluster-Typ wie in Formel V sein, wie sie in neuerer Literatur beschrieben werden; vgl. JACS 117 (1995), 6465-74, Organometallics 13 (1994), 2957-2969.

$$R = A \begin{pmatrix} 0 & A \\ A & A \end{pmatrix} \begin{pmatrix} 0 & A \\ A \end{pmatrix} \begin{pmatrix} 0 &$$

Die Reste R in den Formeln (II), (III), (IV) und (V) können gleich oder verschieden sein und eine C_1 - C_{20} -Kohlenwasserstoffgruppe wie eine C_1 - C_6 -Alkylgruppe, eine C_6 - C_{18} -Arylgruppe, Benzyl oder Wasserstoff bedeuten, und p eine ganze Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeuten.

Bevorzugt sind die organischen Reste gleich und bedeuten Methyl, Isobutyl, n-Butyl, Phenyl oder Benzyl, besonders bevorzugt ist Methyl. Sind die organischen Reste unterschiedlich, so sind sie bevorzugt Methyl und Wasserstoff, Methyl und Isobutyl oder Methyl und n-Butyl, wobei Wasserstoff bzw. Isobutyl oder n-Butyl enthalten sind. Als Lewis-Säure werden bevorzugt mindestens eine bor- oder aluminiumorganische Verbindung eingesetzt, die C₁-C₂₀-kohlenstoffhaltige Gruppen enthalten, wie verzweigte oder unverzweigte Alkyl- oder Halogenalkylgruppen.

WO 97/07141 PCT/EP96/03563

11

Erfindungsgemäß ist ein Katalysatorsystem vorgesehen, das zusätzlich einen Träger enthalten kann. Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems ist bevorzugt mindestens ein anorganisches Oxid, wie SiO2, Al_2O_3 , MgO, ZrO_2 , TiO_2 , B_2O_3 , CaO, ZnO, ThO_2 , Carbonate, wie Na_2CO_3 , K_2CO_3 , $CaCO_3$, $MgCO_3$, Sulfate, wie Na_2SO_4 , $Al_2(SO_4)_3$, $BaSO_4$, Nitrate, wie $\mathrm{KNO_3}$, $\mathrm{Mg}(\mathrm{NO_3})_2$, $\mathrm{Al}(\mathrm{NO_3})_3$ sowie Oxide, wie $\mathrm{Na_2O}$, $\mathrm{K_2O}$,und $\mathrm{Li_2O}$. Als Träger sind insbesondere Silica und/oder Alumina und/oder Polymerträger vorgesehen. Erfindungsgemäß sind Polymere und/oder Copolymere, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem vorgesehen. Polymere und/oder Copolymere von 1-Alkenen und Vinylaromaten, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem sind besonders vorgesehen. Syndiotaktische Polymere, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem sind ganz besonders vorgesehen. Syndiotaktisches Polystyrol, erhältlich durch Polymerisation mit einem erfindungsgemäßen Katalysatorsystem ist am meisten bevorzugt.

Zur Polymerisation von bevorzugt vinylaromatischen Monomeren werden erfindungsgemäß fluorhaltige Übergangsmetallverbindungen als Katalysatorkomponente, organische Bor- und/oder organische Aluminium und/oder organische Zinnverbindungen und Reaktionsprodukte derselben mit Kondensationsmitteln, wie Wasser, als Cokatalysatorkomponente sowie vinylaromatisches Monomer in beliebiger Reihenfolge eingesetzt. Es können ein oder mehrere Träger verwendet werden. Es können eines oder mehrere Lösungsmittel in beliebiger Reihenfolge dazu gegeben werden. Das Eingeben der Komponenten und die Reaktion erfolgt drucklos oder unter vermindertem oder erhöhten Druck in der Atmosphäre eines Inertgases, wie z. B. Stickstoff, Argon oder einem Gemisch dieser. Die Reaktion wird bevorzugt im Temperaturbereich von 10 bis 70 °C durchgeführt. Die Bestandteile des Katalysatorsystems werden in beliebigem molaren Verhältnis zueinander eingesetzt. Bevorzugt ist ein Verhältnis von Aluminium zu Titan von 100 bis 1000.

12

Erfindungsgemäß ist die Verwendung eines Katalysatorsystems zur Herstellung eines Polymers und/oder Copolymers, besonders zur Polymerisation und/oder Copolymerisation von 1-Alkenen und Vinylaromaten, ganz besonders zur Polymerisation von Styrol vorgesehen.

Die Erfindung wird anhand von Beispielen näher erläutert.

Beispiele

Beispiel 1

Ein auf 50 °C temperierter 100 ml Glasreaktor wurde unter Rühren im Argongegenstrom nacheinander mit 14,1 ml Toluol, 5 ml einer toluolischen Methylaluminoxanlösung (7,5 · 10⁻⁴ mol/5ml), 20 ml Styrol und 0,9 ml einer toluolischen Lösung von Cyclopentadienyltitantrifluorid (2,5 · 10⁻⁶ mol/0,9 ml) beschickt. Die Zugabe der Titanverbindung wurde als Startpunkt der Polymerisation genommen. Nach 10 Minuten wurden etwa 50 ml eines Gemisches von Salzsäure und Ethanol hinzugegeben. Es wurde weitere 12 Stunden gerührt. Das feste Produkt wurde abfiltriert und mit Ethanol neutral gewaschen. Das Polymer wurde im Vakuum bei Raumtemperatur getrocknet.

Vergleichsbeispiel 1

Das Vergleichsbeispiel 1 wurde entsprechend dem Beispiel 1 durchgeführt, wobei als Katalysator CpTiCl₃ verwendet wurde.

Beispiel 2

Beispiel 2 wurde entsprechend dem Beispiel 1 durchgeführt, wobei als Katalysator Cp*TiF₃ verwendet wurde.

Vergleichsbeispiel 2

Das Vergleichsbeispiel 2 wurde entsprechend dem Beispiel 1 durchgeführt, wobei als Katalysator Cp*TiCl₃ verwendet wurde.

Aus der nachstehend aufgeführten Tabelle 1 gehen die Polymerisationsaktivitäten der im Beispiel 1 und im Vergleichsbeispiel 1 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 1 und im Vergleichsbeispiel 1 erhaltenen Polymere hervor.

Tabelle 1

	Ve	Vergleichsbeispiel 1				Beispiel 1			
		CpTi(СрТ	riF ₃ a)		
T (°C) b)	10	30	50	70	10	30	50	70	
t (h) ^{c)}	0,22	0,08	0,12	0,25	0,52	0,14	0,17	0,43	
[Ti] ^{j)}	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25	
	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵	
[Al] ^{k)}	1,88	1,88	1,88	1,88	1,88	1,88	1,88	1,88	
	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²	
Ausbeute	600	990	3390	2880	330	830	1270	1860	
(mg) ^{d)}									
Aktiv. e)	110	480	1200	460	250	2400	3100	1700	
Schmp.	260/	263	258/	243/	264	261/	257/	247/	
(°C) f)	267		250	250	<u> </u>	267	265	258	
M _w ^{g)}	390	230	115	40	867	378	96	35	
M _n h)	110	107	44	17	557	162	53	17	
M _w /M _n i)	3,56	2,15	2,60	2,47	1,56	2,34	1,82	2,09	

Aus der nachstehenden aufgeführten Tabelle 2 gehen die Polymerisationsaktivitäten der im Beispiel 2 und Vergleichsbeispiel 2

eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 2 und Vergleichsbeispiel 2 erhaltenen Polymere hervor.

Tabelle 2

		Beis	piel 2					
	Cp*	TiCl ₃ a)			Cp*TiF ₃ a)			
T (°C) b)	10	30	50	70	10	30	50	70
t (h) ^{c)}	2,80	1,03	1,00	0,77	0,52	0,35	0,22	0,23
[Ti] ^{j)}	6,25	6,25	6,25	6,25	6,25	6,25	6,25	6,25
	- 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁴	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵	· 10 ⁻⁵
[Al] ^{k)}	1,88	1,88	1,88	1,88	1,88	1,88	1,88	1,88
	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻¹	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²	· 10 ⁻²
Ausbeute	49	90	385	730	49	240	375	650
(mg) ^{d)}								
Aktiv. e)	0,7	3,5	15,4	38	38	270	690	1100
Schmp.	276	277	275	274	274	275	275	275
(°C) f)								
M,,, g)	170	189	169	156	966	703	661	511
M _n h)	62	82	47	43	512	353	367	193
M _w /M _n i)	2,75	2,31	3,63	3,61	1,89	1,99	1,80	2,64

Beispiel 3

Ein auf 30 °C temperierter 200 ml Glasreaktor wurde unter Rühren im Argongegenstrom nacheinander mit 49 ml Toluol, 0,58 g (0,01 mol) Methylaluminoxan, 50 ml Styrol und 1 ml einer toluolischen Lösung von Methylcyclopentadienyltitantrifluorid (10⁻⁵ mol/ml) beschickt. Die Zugabe der Titanverbindung wurde als Startpunkt der Polymerisation genommen. Nach 4 Minuten wurden etwa 50 ml eines Gemisches von Salzsäure und Ethanol hinzugegeben. Es wurde weitere 12 Stunden gerührt. Das feste Produkt wurde

15

abfiltriert und mit Ethanol neutral gewaschen. Das Polymer wurde im Vakuum bei Raumtemperatur getrocknet.

Vergleichsbeispiel 3

Das Vergleichsbeispiel 3 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator Methylcyclopentadienyltitantrichlorid verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 3 gehen die Polymerisationsaktivitäten der im Beispiel 3 und Vergleichsbeispiel 3 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 3 und Vergleichsbeispiel 3 erhaltenen Polymere hervor.

Tabelle 3

	Vergleichsbeispiel 3 MeCpTiCl ₂ a)	Beispiel 3 MeCpTiF ₂ a)
T (°C) b)	30	30
t (min) c)	60	4
[Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ⁻⁵
[Al] ^{k)}	0,05	0,05
Ausbeute (mg) ^{d)}	494	482
Aktiv. e)	99	1160
Schmp. (°C) ^{f)}	257	256
M _w ^{g)}	261	304
M _n h)	125	134
M _w /M _n i)	2,09	2,27

Beispiel 4 und Vergleichsbeispiel 4

Beispiel 4 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator EtMe₄CpTiF₃ verwendet wurde. Das Vergleichsbeispiel 4 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator EtMe₄CpTiCl₃ verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 4 gehen die Polymerisationsaktivitäten der im Beispiel 4 und Vergleichsbeispiel 4 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 4 und Vergleichsbeispiel 4 erhaltenen Polymere hervor.

Tabelle 4

	Vergleichsbeispiel 4	Beispiel 4
	EtMe_CpTiCl ₂ a)	EtMe_CpTiF ₂ a)
T (°C) b)	30	30
t (min) ^{c)}	120	10
[Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ⁻⁵
[Al] ^{k)}	0,05	0,05
Ausbeute	110	140
(mg) ^{d)}		
Aktiv. ^{e)}	11	167
Schmp.	277	270
(°C) f)		
M., 9)	193	768
M _n h)	94	395
M _w /M _n i)	2,06	1,94

Beispiel 5 und Vergleichsbeispiel 5

Beispiel 5 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator PrMe₄CpTiF₃ verwendet wurde. Das Vergleichsbeispiel 5 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator PrMe₄CpTiCl₃ verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 5 gehen die Polymerisationsaktivitäten der im Beispiel 5 und Vergleichsbeispiel 5 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 5 und Vergleichsbeispiel 5 erhaltenen Polymere hervor.

Tabelle 5

	Vergleichsbeispiel 5	Beispiel 5
	PrMe ₄ CpTiCl ₃ a)	PrMe_CpTiF ₃ a)
T (°C) b)	30	30
t (min) ^{c)}	120	10
[Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ⁻⁵
[Al] ^{k)}	0,05	0,05
Ausbeute (mg) d)	103	140
Aktiv. e)	10	167
Schmp.	275	271
M _w g)	153	636
M _n h)	75	304
M _w /M _p i)	2,05	2,09

Beispiel 6 und Vergleichsbeispiel 6

Beispiel 6 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator BuMe₄CpTiF₃ verwendet wurde. Das Vergleichsbeispiel 6 wurde entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysator BuMe₄CpTiCl₃ verwendet wurde.

Aus der nachstehenden aufgeführten Tabelle 6 gehen die Polymerisationsaktivitäten der im Beispiel 6 und Vergleichsbeispiel 6 eingesetzten Katalysatoren und die charakteristischen Daten der im Beispiel 6 und Vergleichsbeispiel 6 erhaltenen Polymere hervor.

Tabelle 6

	Vergleichsbeispiel 6	Beispiel 6
	BuMe CpTiCl a)	BuMe CpTiF ₂ 3)
T (°C) b)	30	30
t (min) c)	120	10
[Ti] ^{j)}	5 · 10 ⁻⁵	5 · 10 ⁻⁵
[Al] ^{k)}	0,05	0,05
Ausbeute (mg) ^{d)}	121	154
Aktiv. e)	12	185
Schmp. (°C) ^{f)}	276	273
M _w ^{g)}	201	683
M _n h)	93	309
M _w /M _n i)	2,16	2,21

Beispiele 7, 8 und 9

Beispiele 7, 8 und 9 wurden entsprechend dem Beispiel 3 durchgeführt, wobei als Katalysatoren $Cp*_2TiF$, $Cp*_TiF_2(OCOC_6F_5)$ und $Cp*_TiF_2(OCOCF_3)$ verwendet wurden.

Aus der nachstehenden aufgeführten Tabelle 7 gehen die Polymerisationsaktivitäten der in Beispielen 7, 8 und 9 eingesetzten Katalysatoren und die charakteristischen Daten der erhaltenen Polymere hervor.

Tabelle 7

	Beispiel 7	Beispiel 8	Beispiel 9
	Cp*aTiF a)	Cn*TiF ₂ (OCOC _c E _E) a)	Cp*TiF ₂ (OCOCF ₂) a)
T (°C) b)	30	30	30
t (min) ^{c)}	60	8	10
[Ti] ^{j)}	5 · 10 ⁻⁵	10 ⁻⁴	10 ⁻⁴
[AI] ^{k)}	0,0~	0,1	0,1
Ausbeute (mg) ^{d)}	174	678	381
Aktiv. e)	35	510	229
Schmp.	270	269	269
M _w 9)	612	543	558
M _n h)	250	249	261
M _w /M _p i)	2,45	2,18	2,14

a) Cp = Cyclopentadienyl, Cp* = Pentamethylcyclopentadienyl, Me = methyl,
 Et = ethyl, Pr = propyl und Bu = butyl

b) Polymerisationstemperatur

- c) Polymerisationszeit
- d) Ausbeute an syndiotaktischem Polystyrol
- Polymerisationsaktivität des Katalysatorsystems in Ausbeute syndiotaktischen Polystyrols (sPS) in kg bezogen auf die Stoffmenge der Titanverbindung in mol und bezogen auf die Polymerisationszeit in h: (kg sPS/mol Ti · h)
- f) Schmelzpunkt(e) des Polystyrols aus der 2. Aufheizkurve des DSC (differential scanning calorimetry)
- Massenmittel der Molekularmasse des Polystyrols, dividiert durch 1000, bestimmt durch GPC (gel permeation chromatography)
- h) Zahlenmittel der Molekularmasse des Polystyrols, dividiert durch 1000, bestimmt durch GPC (gel permeation chromatography)
- Polydispersität des Polystyrols, bestimmt durch GPC (gel permeation chromatography)
- i) Konzentration der Titanverbindung in mol/l
- k) Konzentration an Methylaluminoxan in mol/l

Patentansprüche

 Katalysatorkomponente für die Polymerisation von Olefinen, enthaltend mindestens eine Verbindung der allgemeinen Formel (I):

$$R^{a}_{n}M^{1}R^{b}_{m}(I)$$

worin

 M^1 = Ti, Zr oder Hf ist,

 $\begin{array}{lll} {\sf R}^{\sf b} & = & {\sf ein \ Fluoratom \ wenn \ m} = 1 \ {\sf ist, mindestens \ ein \ Fluoratom \ wenn \ m} > 1 \ {\sf ist \ und \ sein \ kann \ gleich \ oder \ verschieden \ mindestens \ ein \ Wasserstoffatom, \ eine \ C_1-C_{20}- \ Alkylgruppe, \ eine \ C_1-C_{10}-Alkoxygruppe, \ eine \ C_1-C_{10}- \ Fluoralkylgruppe, \ eine \ C_6-C_{20}-Arylgruppe, \ eine \ C_6-C_{10}- \ Aryloxygruppe, \ eine \ C_2-C_{10}-Alkenylgruppe, \ eine \ C_6-C_{10}- \ Fluorarylgruppe, \ eine \ C_7-C_{40}-Arylalkylgruppe, \ eine \ C_7-C_{40}- \ Alkylarylgruppe, \ oder \ eine \ C_8-C_{40}-Arylalkenylgruppe \ eine \ OH-Gruppe, \ eine \ NR^7_2- \ oder \ SR^8-Gruppe, \ wobei \ R^7 \ und \ R^8 \ eine \ C_1-C_{20}-Alkylgruppe, \ eine \ C_1-C_{10}- \ Alkoxygruppe, \ eine \ C_6-C_{20}- \ Alkylgruppe, \ eine \ C_6-C_{20}- \ Alkoxygruppe, \ eine \ C_6-C_{20}- \ Alkylgruppe, \ eine \ C_6-C_{20}- \ Alkoxygruppe, \ eine \ C_6-C_{20}- \ Alkylgruppe, \ eine \ C_6-C_{20}- \ Alkoxygruppe, \ eine \ C_6-C_{20}- \ Alkylgruppe, \ eine \ C_6-C_{20}- \ Alkoxygruppe, \ eine \ C_6-C_{20}- \ Alkylgruppe, \ eine \ C_6-C_{20}- \ Alkylgruppe$

Arylgruppe, eine C₆-C₁₀-Aryloxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₇-C₄₀-Alkylarylgruppe, eine C₈-C₄₀-Arylalkenylgruppe, eine Silylgruppe, eine Germylgruppe oder ein Halogenatom bedeuten, eine -OC(O)F, eine -OC(O)CR $^{c}_{3}$, eine -OC(O)C $_{5}$ R $^{d}_{4}$ oder eine -OC(O)C₆R^e₅ Gruppe ist, wobei R^c, R^d und R^e mindestens ein Fluoratom bedeuten und R^c, R^d und R^e sein können gleich oder verschieden mindestens ein Wasserstoffatom, eine C₁-C₂₀-Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, eine C_1 - C_{10} -Fluoralkylgruppe, eine C_6 - C_{20} -Arylgruppe, eine C_6 - C_{10} -Aryloxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₆-C₁₀-Fluorarylgruppe, eine C₇-C₄₀-Arylalkylgruppe, eine C₇-C₄₀-Alkylarylgruppe, eine C₈-C₄₀-Arylalkenylgruppe eine OH-Gruppe, eine NR⁷₂- oder SR⁸-Gruppe, eine Silylgruppe, eine Germylgruppe oder ein Halogenatom, ganze Zahlen sind, m+n=2 bis 4 ist und m mindestens

m und n

1 ist.

Katalysatorkomponente nach Anspruch 1, enthaltend mindestens eine 2. Verbrückung R⁹ zwischen mindestens zwei Resten R^a, R⁹ ist bevorzugt

$$-0 - { \begin{matrix} R^{10} \\ 1 \end{matrix} }_{R^{11}}^{2} - 0 - { \begin{matrix} R^{10} \\ 1 \end{matrix} }_{R^{11}}^{2} - 0 - { \begin{matrix} R^{10} \\ 1 \end{matrix} }_{R^{11}}^{2} + { \begin{matrix} R^{10} \\ 1 \end{matrix} }_{R^{11$$

wobei R^{10} und R^{11} gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom oder eine C_1 - C_{40} -kohlenstoffhaltige Gruppe ist wie eine C_1 - C_{20} -Alkyl-, eine C_1 - C_{10} -Fluoralkyl-, eine C_1 - C_{10} -Alkoxy-, eine C_6 - C_{14} -Aryl-, eine C_6 - C_{10} -Fluoraryl-, eine C_6 - C_{10} -Aryloxy-, eine C_2 - C_{10} -Alkenyl-, eine C_7 - C_{40} -Arylalkyl-, eine C_7 - C_{40} -Alkylaryl-, oder eine C_8 - C_{40} -Arylalkenylgruppe oder R^{10} und R^{11} jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe bilden und x eine ganze Zahl von Null bis 18 ist, M^2 Silizium, Germanium oder Zinn ist, R^9 kann auch zwei Einheiten der Formel (I) miteinander verknüpfen.

 Katalysatorsystem enthaltend mindestens eine Katalysatorkomponente und mindestens eine organische Bor- und/oder mindestens eine organische Aluminium- und/oder mindestens eine organische Zinnverbindung.

- 4. Katalysatorsystem nach Anspruch 3, erhältlich durch Inkontaktbringen mindestens einer Katalysatorkomponente mit mindestens einer organischen Bor- und/oder mindestens einer organische Aluminium- und/oder mindestens einer organische Zinnverbindung.
- 5. Katalysatorsystem nach Anspruch 3 oder 4, enthaltend mindestens einen anorganischen und/oder organischen Träger.
- 6. Polymer und/oder Copolymer, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- 7. Polymer und/oder Copolymer von 1-Alkenen und Vinylaromaten, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- 8. Syndiotaktisches Polymer, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- Syndiotaktisches Polystyrol, erhältlich durch Polymerisation mit einem Katalysatorsystem nach den Ansprüchen 3 bis 5.
- Verfahren zur Polymerisation und/oder Copolymerisation mit einem
 Katalysatorsystem nach den Ansprüchen 3 bis 5.
- Verfahren nach Anspruch 10 zur Polymerisation und/oder
 Copolymerisation von 1-Alkenen und Vinylaromaten.
- Verfahren nach Anspruch 10 oder 11 zur Polymerisation von Styrol zu syndiotaktischem Polystyrol.

13. Verwendung eines Katalysatorsystems zur Herstellung eines Polymers und/oder Copolymers, besonders zur Polymerisation und/oder Copolymerisation von 1-Alkenen und Vinylaromaten, ganz besonders zur Polymerisation von Styrol.

INTERNATIONAL SEARCH REPORT

Internat 1 Application No PCT/EP 96/03563

			CI/EP 90/03303
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C08F4/642 C08F12/08		
According to	o International Patent Classification (IPC) or to both national classif	ication and IPC	
	SEARCHED		
	ocumentation searched (classification system followed by classification COSF	on symbols)	
Documentat	ion searched other than minimum documentation to the extent that s	uch documents are include	d in the fields searched
Electronic d	ats base consulted during the international search (name of data bas	e and, where practical, sear	ren terms used)
C. DOCUM	TENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.
X	DE,A,43 32 009 (HOECHST AG) 30 Ma	arch 1995	1-8,10,
	see the whole document		
X	EP,A,0 200 351 (MITSUI PETROCHEM) 5 November 1986	CAL IND)	1-8,10, 13
	see claims and page 10, lines 1 a	and 14	
X	EP,A,0 283 739 (CHISSO CORP ;INS & CHEM RES (JP)) 28 September 198	T PHYSICAL 38	1-8,10,
	see claims and page 7, lines 14-	15	
P,X	EP,A,0 705 849 (IDEMITSU KOSAN COApril 1996	0) 10	1-8,10, 13
	see claims and page 3, lines 47-	-48 and 50	
		-/	
		Resert family me	mbers are listed in annex.
X Fur	ther documents are listed in the continuation of box C.	X Patent family me	
"A" documents "E" earlier filling "L" documents "C" documents "O" documents "O" documents	ment defining the general state of the art which is not dered to be of particular relevance r document but published on or after the international date of the art which may throw doubts on priority claim(s) or his cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means means to the prior to the international filing date but	or priority date and a cited to understand t invention "X" document of particul cannot be considered involve an inventive "Y" document of particul cannot be considered document is combin company to the considered document is combinated.	thed after the international filing date not in conflict with the application but the principle or theory underlying the ar relevance; the claimed invention i novel or cannot be considered to step when the document is taken alone ar relevance; the claimed invention in to involve an invention of to involve an inventive step when the ed with one or more other such docution being obvious to a person skilled
later	than the priority date claimed	"&" document member o	
	e actual completion of the international search 19 November 1996		e international search report
Name and	mailing address of the ISA	Authorized officer	

2

INTERNATIONAL SEARCH REPORT

Interna 1 Application No PCT/EP 96/03563

		PCT/EP 96/03563	
C.(Continua	nion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
(EP,A,0 210 615 (IDEMITSU KOSAN CO) 4 February 1987 cited in the application see claims	8,9	

INTERNATIONAL SEARCH REPORT

ermstron on patent family members

Interna' ul Application No PCT/EP 96/03563

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE-A-4332009	30-03-95	NONE	
EP-A-0200351	05-11-86	JP-B- 2500262 JP-A- 61221207 JP-B- 6000821 JP-A- 62121716 CA-A- 1263498 US-A- 4704491	01-10-86 05-01-94 03-06-87 28-11-89
EP-A-0283739	28-09-88	JP-B- 6062642 JP-A- 63222177 JP-B- 6062644 JP-A- 63222178 JP-B- 6062644 JP-A- 63222179 JP-B- 7094506 JP-A- 63234005 JP-B- 7103185 JP-A- 63235305 DE-D- 3853692 US-A- 4874886	16-09-88 17-08-94 16-09-88 17-08-94 16-09-88 11-10-95 29-09-88 08-11-95 30-09-88 208-06-95 19-10-95
EP-A-0705849	10-04-96	CA-A- 216496 WO-A- 942935	
EP-A-0210615	04-02-87	CA-A- 127674 US-A- 550213 US-A- 518912 JP-C- 172690 JP-B- 300768 JP-A- 6210481	26-03-96 5 23-02-93 2 19-01-93 5 04-02-91

INTERNATIONALER RECHERCHENBERICHT

Internat 'es Aktenzeichen
PCT/EP 96/03563

A. KLASSI IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C08F4/642 C08F12/08		
Nach der In	ternationalen Patentklassifikation (IPK) oder nach der nationalen Kla	ssifikation und der IPK	
	RCHIERTE GEBIETE		
Recherchier	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo COSF	le)	
Recherchier	te aber meht zum Mindestprüfstoff gehörende Veröffentlichungen, so	weit diese unter die recherchierten Gebiete	fallen
Während de	r internationalen Recherche konsultierte elektronische Datenbank (Na	ame der Datenbank und evtl. verwendete	Suchbegriffe)
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie"	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Teile	Betr. Anspruch Nr.
x	DE,A,43 32 009 (HOECHST AG) 30.Mä in der Anmeldung erwähnt siehe das ganze Dokument	rz 1995	1-8,10, 13
х	EP,A,0 200 351 (MITSUI PETROCHEMI 5.November 1986 siehe Ansprüche und Seite 10, Zei 14	1-8,10, 13	
X	EP,A,0 283 739 (CHISSO CORP ; INST & CHEM RES (JP)) 28.September 198 siehe Ansprüche und Seite 7, Zeil	8	1-8,10, 13
P,X	EP,A,0 705 849 (IDEMITSU KOSAN CO 10.April 1996 siehe Ansprüche und Sete 3, Zeile und 50		1-8,10, 13
Ì		/	
		·	
	itere Veröffentlichungen sind der Fortsetzung von Feld C zu	X Siehe Anhang Patentfamilie	
* Besonder 'A' Veröf aber 'E' filtere Anm 'L' Veròf schei ande soll c ausger 'O' Veròf cine 'P' Veròf dem	re Kategorien von angegebenen Veröffentlichungen : Tentlichung, die den allgemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist s Dokument, das jedoch erst am oder nach dem internationalen eldedatum veröffentlicht worden ist Tentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- nen zu lassen, oder durch die das Veröffentlichungsdatum einer ren im Recherchenbenicht genannten Veröffentlichung belegt werden oder die aus einem anderen besonderen Grund angegeben ist (wie erführt) Tentlichung, die sich auf eine mündliche Offenbarung, Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Fentlichung, die vor dem internationalen Anmeldedatum, aber nach beanspruchten Prioritätsdatum veröffentlicht worden ist	T' Spätere Veröffentlichung, die nach de oder dem Prioritändanim veröffentlich Anmeldung micht kollidiert, sondern is Erfindung zugrundeliegenden Prinzip Theorie angegeben ist. "X' Veröffentlichung von besonderer Bedkam allein aufgrund dieser Veröffentlichung von besonderer Bedkam nicht als auf erfinderischer Tätigkeit beruhend bets "Y' Veröffentlichung von besonderer Bedkam nicht als auf erfinderischer Tätigkeit verbeindung m Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachsman" der Veröffentlichung, die Mitglied derselt Absendedatum des internationalen R.	an worten ist man mit des der soder der ihr zugrundeliegenden eutung; die beanspruchte Erfindur lichung nicht als neu oder auf achtet werden sutung; die beanspruchte Erfindur jeeit beruhend betrachtet at einer oder mehreren anderen n Verbindung gebracht wird und n nabeliegend ut ben Patentfamilie ist
	Abschlusses der internationalen Recherche 19. November 1996	12.12.96	
Name und	Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevolmichigter Bediensteter Mergoni, M	

INTERNATIONALER RECHERCHENBERICHT

Internat les Aktenseichen
PCT/EP 96/03563

		PCT/EP 96/03563					
C.(Fortsetzing) ALS WESENTLICH ANGESEHENE UNTERLAGEN							
Kategorie*	Bezeichnung der Veröffendichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile	Betr. Anspruch Nr.				
(EP,A,0 210 615 (IDEMITSU KOSAN CO) 4.Februar 1987 in der Anmeldung erwähnt siehe Ansprüche,		8,9				
	*						
	*						

INTERNATIONALER RECHERCHENBERICHT

Angaben zu verorienuschung..., die zur seiben Patentiamine genoren

Interns tiles Aktienzeichen
PCT/EP 96/03563

Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE-A-4332009	30-03-95	KEINE		
EP-A-0200351	05-11-86	JP-B-	2500262	29-05-96
3		JP-A-	61221207	01-10-86
		JP-B-	6000821	05-01-94
		JP-A-	62121710	03-06-87
		CA-A-	1263498	28-11-89
		US-A-	4704491	03-11-87
EP-A-0283739	28-09-88	JP-B-	6062642	17-08-94
0200.00		JP-A-	63222177	16-09-88
		JP-B-	6062643	17-08 - 94
		JP-A-	63222178	16-09-88
		JP-B-	6062644	17-08-94
		JP-A-	63222179	16-09-88
		JP-B-	7094500	11-10-95
		JP-A-	63234005	29-09-88
		JP-B-	7103185	08-11-95
		JP-A-	63235309	30-09-88
		DE-D-	3853692	08-06-95
		DE-T-	3853692	19-10-95
		US-A-	4874880	17-10-89
EP-A-0705849	10-04-96	CA-A-	2164968	22-12-94
		WO-A-	9429356	22-12-94
EP-A-0210615	04-02-87	CA-A-	1276748	20-11-90
L. // OLIOCO	0. 42 0,	US-A-	5502133	26-03-96
		US-A-	5189125	23-02-93
		JP-C-	1726902	19-01-93
		JP-B-	3097685	04-02-91
		JP-A-	62104818	15-05-87