Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/007519

International filing date: 03 March 2005 (03.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/549,865

Filing date: 03 March 2004 (03.03.2004)

Date of receipt at the International Bureau: 29 April 2005 (29.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

and and and vandam and seconds; seems comes

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

April 19, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/549,865

FILING DATE: March 03, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/07519

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office

PTO/SB/16 (01-04)

Approved for use through 07/31/2006, OMB 0651-0032 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

Express Mail Label No. EU 813933419 US

		INVENTOR	R(S)					1 .
Given Name (first and m	iddle [if any])	Family Name or Surname		(City a	nd either	Residence State or Foreign Co	O ./	1
Chaker		Adra		Boston		oldic or Follogin or	U.S. P. 49865	3304
Additional inventors are	being named on the		_separately i	numbered sheets	attached i	nereto	3/5	Eğ.
	TIT	LE OF THE INVENTION	(500 chara	cters max)			99	
	ENSITY OLIGON e to: coi	CYTE SUBTYPE-SELI IUCLEOTIDE PROBE rrespondence address		RECEPTORS A	AND IO	N CHANNELS	SBY	•
X Firm or Individual Name	David S. Resnic	k	· • • • • • • • • • • • • • • • • • • •					1
Address	NIXON PEABO	· · · · · · · · · · · · · · · · · · ·	_					1
Address	101 Federal Stre			<u> </u>				1
City	Boston		State	MA	Zip	02110		1
Country	US		Telephone	(617) 345-605	7 Fax	(617) 345-1300		1
	ENCLO	SED APPLICATION PAR	RTS (check	all that apply)				1
	r of Sheets <u>35</u> heet. See 37 CFR 1.7	6 OR THIS PROVISIONAL AP	X PLICATION F	CD(s), Number		ment 1370		
X Applicant claims s X A check or money X The Director is her fees or credit any	mall entity status. See order is enclosed to c reby authorized to cha	37 CFR 1.27. cover the filing fees. rge filing sit Account Number: 50-08			Amou	G FEE nt (\$)	e the followin	el Entily
United States Governme No. X Yes, the name of t	ent. the U.S. Government	United States Government or	contract num	ber are: <u>NIH Gra</u>	int AI 436		not receiv	and
monute of Afferg	y and infectious Dise	ases and by Grant RSG-01-2		nom me America	Cancer	Suciety (10 C.A.).	j	#품성
Respectfully submitted,	2	į, age i o		Date	Marc	ch 3, 2004	<u>c</u>	item(8)
SIGNATURE	For			REGISTRATIO	n no. <u>3</u> 4	4,235		भ छ तो
TYPED or PRINTED NA	ME David S. Resi	nick		(If appropriate) Docket Numbe	r: <u>73289</u>	2-055040-P		The filsted $\mathcal{L}_{\mathcal{L}}}}}}}}}}$
TELEPHONE (617) 34								, , , ,
		FOR FILING A PROVISION	AL APPLICA	TION FOR PATE	NT		-	بالمستعددين

This collection of information is required by 37 CFR 1.51. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 8 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Provisional Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

PTO/SB/17 (10-03)

Approved for use through 07/31/2006. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

FEE TRANSMITTAL for FY 2004

Effective 10/01/2003. Patent fees are subject to annual revision.

 $\overline{\mathrm{X}}$ Applicant claims small entity status. See 37 CFR 1.27

TOTAL AMOUNT OF PAYMENT

(\$)	80.	00

spond to a collection of init	ormation unless it displays a valid Olvib control number.
C	omplete if Known
Application Number	To be assigned
Filing Date	Herewith
First Named Inventor	C. Adra
Examiner Name	
Art Unit	
Attorney Docket No.	732892-055040-P

METH	IOD OF PAYMENT (check all tha	t apply)				FEE	E CALCULATION (continued)	
X Check	Credit card Money Oth	er None	3. Al	DDITI	ONAI	FEE	S	
X Deposit	Account:		L <u>arge</u>	<u>Entity</u>	Smail	Entity		
Deposit			Fee Code	Fee (\$)	Fee Code	Fee (\$)	Fee Description	Fee Paid
Account Number	50-0850		1051	130	2051	(' '	Surcharge - late filing fee or oath	ree Faid
Deposit Account	NIXON PEABODY LI	LP	1052	50	2052		Surcharge - late provisional filing fee or cover sheet	
Name The Director i	s authorized to: (check all that apply)		1053	130	1053	130	Non-English specification	
E1 (e(s) indicated below X Credit any c	verpayments	1812	2,520	1812	2,520	For filing a request for ex parte reexamination	
	y additional fee(s) or any underpayment o		1804	920*	1804	920*	Requesting publication of SIR prior to Examiner action	
<u> </u>	e(s) indicated below, except for the filing lentified deposit account.	fee	1805	1,840*	1805	1,840*	Requesting publication of SIR after Examiner action	
	FEE CALCULATION		1251	110	2251	55	Extension for reply within first month	
1. BASIC F			1252	420	2252	210	Extension for reply within second month	
Large Entity			1253	950	2253	475	Extension for reply within third month	
Fee Fee Code (\$)	Fee Fee Fee Description Code (\$)	Fee Paid	1254	1,480	2254	740	Extension for reply within fourth month	
1001 770	2001 385 Utility filing fee		1255	2,010	2255	1,005	Extension for reply within fifth month	
1002 340	2002 170 Design filing fee		1401	330	2401	165	Notice of Appeal	
1003 530	2003 265 Plant filing fee		1402	330	2402	165	Filing brief in support of an appeal	
1004 770	2004 385 Reissue filing fee		1403	290	2403	145	Request for oral hearing	
1005 160	2005 80 Provisional filing fee	80.00	1451	1,510	1451	1,510	Petition to institute a public use proceeding	
İ	SUBTOTAL (1) (\$)	80.00	1452	110	2452	55	Petition to revive - unavoidable	
2 EVTDA	CLAIM FEES FOR UTILITY ANI	PEICONE	1453	1,330	2453	665	Petition to revive - unintentional	
2. EXIRA	Fee fro	m	1501	1,330	2501	665	Utility issue fee (or reissue)	
Total Claims	Extra Claims below	Fee Paid	1502	480	2502	240	Design issue fee	
Independent	-20** = X	{ } {	1503	640	2503	320	Plant issue fee	
Claims Multiple Depe	· · · · · · · · · · · · · · · ·] []	1460	130	1460	130	Petitions to the Commissioner	
		J 7	1807	50	1807	50	Processing fee under 37 CFR 1.17(q)	
Large Entity Fee Fee	Small Entity Fee Fee Fee Description		1806	180	1806	180	Submission of Information Disclosure Stmt	
Code (\$) 1202 18	Code (\$) 2202 9 Claims in excess of 20		8021	40	8021	40	Recording each patent assignment per property (times number of properties)	
1201 86	2201 43 Independent claims in		1809	770	2809	385	Filing a submission after final rejection (37 CFR 1.129(a))	
1203 290	2203 145 Multiple dependent cla		1810	770	2810	385	For each additional invention to be examined (37 CFR 1.129(b))	
1204 86	2204 43 ** Reissue independer over original patent	it Cidiii 15	1801	770	2801	385	Request for Continued Examination (RCE)	
1205 18	2205 9 ** Reissue claims in ex and over original pat		1802	900	1802		Request for expedited examination of a design application	
	SUBTOTAL (2) (\$)		Other	fee (sp	ecify)_			
**or numbe	r previously paid, if greater; For Reissues	, see above	*Redu	uced by	Basic	Filing F	Fee Paid SUBTOTAL (3) (\$)	

SUBMITTED BY			(Complete (if a	
Name (Print/Type)	David S. Resnick	Registration No. (Attorney/Agent) 34,235	Telephone (517) 345-6057
Signature	110		Date	3/3/04

WARNING: Information on this form may become public. Credit card information should not / / be included on this form. Provide credit card information and authorization on PTO-2038.

This collection of information is required by 37 CFR 1.17 and 1.27. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Chaker Adra

Application No.:

To be assigned

Group No.:

To be assigned

Filed: For: Herewith Examiner: To be assigned IDENTIFICATION OF GRANULOCYTE SUBTYPE-SELECTIVE

RECEPTORS AND ION CHANNELS BY USING A HIGH-DENSITY

OLIGONUCLEOTIDE PROBE ARRAY

MAIL STOP PROVISIONAL APPLICATION Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

EXPRESS MAIL CERTIFICATE

"Express Mail" Label Number: EU 813933419 US

Date of Deposit: March 3, 2004

I hereby state that the following attached papers and fees:

- 1. Provisional Application for Patent Cover Sheet (1 pp.);
- 2. Provisional Patent Application (1423 pp.): Specification 18 pp.; Drawings 35 sheets; Attachment 1370 pp.;
- 3. Fee Transmittal (1 pg.);
- 4. Check in the Amount of \$80.00;
- 5. Return Receipt Postcard;

are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. section 1.10, on the date indicated above and is addressed to Box Provisional Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Nicole M. Gignac

ignature of person mailing paper or fed

IDENTIFICATION OF GRANULOCYTE SUBTYPE-SELECTIVE RECEPTORS AND ION CHANNELS BY USING A HIGH-DENSITY OLIGONUCLEOTIDE PROBE ARRAY

[0001] This invention was made in part with U.S. Government support under NIH Grant AI 43663 from the National Institute of Allergy and Infectious Diseases and by Grant RSG-01-241-01-LIB from the American Cancer Society (to C.A.). The U.S. Government has certain rights in this application.

FIELD OF THE INVENTION

[0002] The present invention relates to the identification of granulocyte subtype-selective receptors and ion channels that can be use as targets for drug discovery.

BACKGROUND OF THE INVENTION

[0003] Three types of human blood granulocytes, eosinophils, basophils and neutrophils, play roles in protecting against microbial infection by releasing cell type-specific mediators and proteases. Specifically, eosinophils and basophils evoke allergic reactions as well as damage nematodes. ^{1,2} As well as killing bacteria, neutrophils sometimes induce systemic vasculitis or multiple organ damage under certain conditions. ^{3,4} Thus, targeting granulocyte type-selective functions is considered an important strategy for drug discovery.

[0004] Activation of blood granulocytes and tissue mast cells is generally characterized by an influx of extracellular calcium (Ca²⁺), which is essential for subsequent release of granule-derived mediators, newly generated lipid mediators and cytokines. ⁵ The mechanism by which granulocyte mediator secretion is sustained is therefore likely to include modulation of various types of ion channels. Flow of ions including K⁺ and Cl⁻ may play an important role during granulocyte responses because they regulate cell membrane potential and thus influence Ca²⁺ influx. ⁶ Treatment of mast cells and basophils with pertussis toxin inactivates the Gi-type of G-proteins and abolishes degranulation induced by non-immunological ligands such as thrombin and N-formylpeptide; however, it fails to inhibit the influx of Ca²⁺. ⁷ Thus, Ca²⁺-independent

stimulation of Gi is also involved in granulocyte degranulation. The thrombin (protease) activated receptors and formylpeptide receptors are classified as G protein-coupled receptors (GPR), having an extracellular N-terminal segment, a seven transmembrane region, which forms the transmembrane core; three exoloops, three cytoloops, and a C-terminal segment. ⁸ Thus, ion channels and GPR both play essential roles in degranulation as well as other cellular function important for granulocytes. As a result, both ion channels and GPR are targets of drug development. ⁹

[0005] As the human genome project nears completion, the identification of potential drug targets using gene expression profiles from specific cell types is becoming practical and important for drug discovery. ^{10,11} The sequencing of the human genome is offering an unprecedented opportunity for the pharmaceutical development of drugs. Receptor genes and ion channel genes are found only in 5% and 1.3% of all genes present in the human genome, ¹⁰ respectively. However, receptors and ion channels are respectively found in 45% and 5% of the molecular targets of all known drugs. ^{9,12,13} Thus, receptors including GPR and ion channels are now considered as the most important drug targets.

[0006] Until recently, it has been impractical to analyze genome-wide expression of leukocytes. Newly developed technology, the microarray or high density oligonucleotide probe array (GeneChip) is one of the latest breakthroughs in experimental molecular biology, which allows approximately 39,000 transcripts derived from a cells transcriptome to be simultaneously monitored. Using this technology, we previously reported the transcriptome profiling of various types of mast cells and eosinophils. ¹⁴⁻¹⁶ However, there is still a need in the art to identify drug targets that are selectively, or preferentially, expressed in specific cell types such that efforts required for pharmaceutical development are minimized.

SUMMARY OF THE INVENTION

[0007] In the present study, we used GeneChip (version U133A containing approximately 22,000 gene probes) to examine the cell type-selective transcriptome expression of 7 types of leukocytes (basophils, eosinophils, neutrophils, CD4⁺ cells, CD8⁺ cells, CD14⁺ cells and CD19⁺ cells), platelets, mast cells and fibroblasts by focusing on the expression of granulocyte-selective genes for ion channels, GPR and other receptors. We identified many novel granulocyte subtype-selective transcripts that are useful for drug development.

[0008] Granulocyte subtype selective transcripts were chosen based on several conditions such as the transcript having 5-fold or greater expression level compared to the maximum level of other leukocytes. Fifty-one transcripts were chosen to be preferentially expressed by each granulocyte subtype. Seventeen out of the 51 transcripts have not been previously reported as granulocyte subtype-selective. Among the 17 receptors and ion channels, six were basophiland/or eosinophil-selective and were not highly expressed by other organs, indicating that they may be potential targets for anti-allergic drugs.

[0009] Utilization of this database (Attachment A) of potential cell type-selective drug targets will minimize the efforts required for pharmaceutical development of drugs for treatment of diseases of the immune system, cancer, cardiac diseases, as well as other diseases.

BRIEF DESCRIPTION OF THE DRAWINGS

[00010] Figure 1 shows Real-time quantitative PCR analysis of granulocyte-selective gene expression. The relative mRNA expression level by each cell type against PBMNC was shown after normalization of mRNA levels for A. HTm4 (0.42 per 100 GAPDH), B. Ca²⁺ receptor alpha 1D subunit (0.003), C. prostaglandin E receptor type 3a2 (0.12), D. EMR-1 (0.62), and E. aquaporin 9 (0.92) expressed by PBMNC. Ne; neutrophils (n=3), Eo; eosinophils (n=2), Ba, basophils (n=3), CD4; CD4+ cells (n=3), P; PBMNC (n=1).

[00011] Figure 2 shows the demonstration of HTm4 protein on human basophils. Cells on the glass slide were incubated with 2 μg/ml polyclonal rabbit anti-hHTm4 antibody or 2 μg/ml rabbit IgG (H+L) as a control followed by incubation with a secondary antibody, highly cross-adsorbed Alexa Fluor® 546 conjugated goat anti-rabbit IgG (H+L) (Red). After mounting using the Prolong AntiFade Kit, slides were scanned by Zeiss Laser Scanning Microscope 5 Pascal.

[00012] Figures 3A through 3E shows granulocyte subtype-specific transcripts for ion channels and receptors.

[00013] Figures 4A through 4F show a table of "normalized AD" expression levels of various genes in indicated cells and shows corresponding graphs; x axis represents "normalized AD" expression levels.

[00014] Figures 5A through 5D show a table of "normalized AD" levels of various genes in indicated cells and shows corresponding graphs; x axis represents "normalized AD" expression levels.

[00015] Figures 6A through Figure 6R show the complete list of granulocyte subtype-selective transcripts.

DETAILED DESCRIPTION OF THE INVENTION

[00016] In this study, we have used high density oligonucleotide probe array (GeneChip) to measure the expression levels of approximately 20,000 different transcripts in highly purified cells. These cells were basophils, eosinophils, neutrophils, monocytes (CD14⁺), T lymphocytes (CD4⁺ and CD8⁺ cells), B lymphocytes (CD19⁺), lung-derived mast cells, cord blood-derived cultured mast cells, and nasal polyp-derived fibroblasts. The GeneChip assay allows the simultaneous measurement of large numbers of transcripts using relatively small numbers of cells. Using this technology, we could even measure triplicate transcriptome levels of basophils, the most rare granulocytes in peripheral blood.

[00017] Cell type-selective transcripts were selected based on the following criteria; (1) the average "normalized AD" expression level of each gene in a certain cell type must be 3-fold or greater than the maximal level in other cell types, and (2) must be significantly (p < 0.01) greater than that in other cell types. (3) The "AD" expression level provided with "absence" or "marginal" call by GeneChip Suite Software should be observed only once or not at all in the three or four independent experiments (3 experiments for basophils, 4 experiments for eisinophils and neutrophils) using different cell populations performed. (4) For the transcripts preferentially expressed for the two different cell types such as basophils and eosinophils, the average "normalized AD" expression levels in the two cell types should be within 3-fold of each other. Using these standards, we found 83 basophil-selective, 37 eosinophil-selective, 257 neutrophil-selective, 34 basophil-eosinophil-selective, 19 eosinophil-neutrophil-selective, and 17 basophil-neutrophil-selective transcripts. Due to the functional similarity with basophils, mast cell-selective transcripts were also examined, and 63 mast cell-selective and 11 mast cellbasophil-selective transcripts were also detected (Table 1, and Figures 6A-6R). Since mast cells, basophils and eosinophils play similar roles in allergic inflammation, the transcripts preferentially expressed for the three granulocytes by comparing their average "normalized AD"

levels to other leukocytes. Thirty-four transcripts were then selected; however, most of them were overlapped with the transcripts listed in Figures 6A-6R. Only four transcripts (*MYB*, *SAMSN1*, *BACE2*, and *CASP3*) were found not overlapped, and they were not receptors or ion channels.

[00018] Among the 491 granulocyte-selective transcripts listed in Figures 6A-6R, 4 ion channels, 19 GPR and 28 other receptors were further selected (Figure 3). When plural transcripts obtained by different probe sets had identical Genebank or Unigene accession numbers (http://www.ncbi.nlm.nih.gov/), the transcript showing the highest expression level was selected.

Ion channels and receptors preferentially expressed by granulocytes other than neutrophils

[00019] Eosinophils, basophils and mast cells play an important role in the pathogenesis of allergic diseases, but do not play an essential role in killing microbes except for nematodes. On the other hand, neutrophils play a crucial role in killing microbes such as bacteria. Caution should be taken in regulating neutrophil function even in the case of neutrophil-induced inflammation. Therefore, the molecules present only in granulocytes except for neutrophils would be important pharmaceutical targets for allergic disorders. ^{1,2}

[00020] Among the 51 granulocyte-selective transcripts for ion channels and receptors, we identified 17 granulocyte-selective transcripts that have not been reported for their selective expression (shown in bold letters in Figure 3). Of these 17 transcripts, eight were preferentially expressed by granulocytes other than neutrophils. Among these eight transcripts, the two transcripts for fibroblast growth factor receptor 2 and low density lipoprotein receptor were found to be expressed by multiple tissue cell types (shown at the Web site http://www.lsbm.org/index_e.html), which displays genomic expression of 55 different human tissue cells such as brain, heart and lung cells using the same experimental system. Affymetrix, U133A as ourts. Thus, they may not be suitable as a drug target because important organs that are unrelated to allergic inflammation (such as the brain) express it. Among the six novel transcripts found to be preferentially expressed by granulocytes except for neutrophils, we focus on the following four transcripts expressed by granulocytes including basophils. They were Ca²⁺ channel (*CACNA1D*), a prostaglandin E receptor, (*EP3A2*), epidermal growth factor-like module-containing mucin-like receptor (EMR) 1 (*EMR1*), and HTm4 (*MS4A3*).

[00021] Basophils are the rarest granulocytes present in human peripheral blood and as such their complete transcriptional profiles remain unclear and no basophil-selective transcripts have previously been reported. ²¹ Although eosinophils and mast cells have been considered as important therapeutic targets for allergic diseases for a long time, recent studies suggest the importance of basophils in pathogenesis of severe allergic diseases such as fatal asthma. ^{2,22} Therefore, we further examined the selective expression of these four basophil-, or basophil-eosinophil-selective transcripts by using real-time RT-PCR. As shown in the Fig. 1, including a known molecule preferentially expressed by neutrophils, aquaporin 9, ²³ the results obtained with GeneChip assay were confirmed by using this highly accurate and reproducible method. ²⁴

[00022] Among these four molecules, we could obtain a suitable antibody against HTm4, which is a member of a family of four transmembrane- proteins which include CD 20 and high affinity Fc receptor for IgE (FcεRI) β-chain. ²⁵ Genetics provided evidence for the existence of multiple loci relevant to atopic asthma on chromosome 11q13, including HTm4. ²⁶ Most recently, we have published data identifying HTm4 as a hematopoietic cell cycle regulator. ²⁷ Using specific antibody against HTm4, we could detect the expression of HTm4 at the protein level in basophils (Fig. 2). To confirm whether these ion channels and receptors could be potential drug targets for diseases involving basophil activation, the amount of molecules expressed by various cell types should be quantified and the effect of any identified antagonists should be tested on the cell types found to express these molecules.

[00023] As has been well documented and expected, Fc ε RI α, IL-3 receptors, IL-5 receptors, chemokine receptor CCR3, ^{1,2} sialic acid binding Ig-like lectin (Siglec)-8, ²⁸ Siglec-6, ¹⁵ histamine H4 receptor ²⁹ and chemoattractant receptor- homologous molecule expressed on Th2 cells (CRTH2) ³⁰ were preferentially expressed by basophils and/or eosinophils or mast cells. These consistent observations strengthened the reliability of the present methods and research strategy. Indeed, the antibody against Siglec-8 can induce selective apoptosis of eosinophils, and is expected to be useful therapeutically. ²⁸

Ion channels and receptors preferentially expressed by granulocytes including neutrophils

[00024] Of the 17 transcripts that have not been reported as granulocyte-selective, nine were preferentially expressed by granulocytes including neutrophils. Pharmaceutical targets

of selective granulocyte transcripts should treat inflammatory diseases without affecting the function of important organs that are unrelated to inflammation as well as the function of lymphocytes. However, four of the nine neutrophil-selective transcripts were expressed by multiple organ tissues. One of the four neutrophil-selective transcripts encoded proteinase-activated receptor (PAR)-2, a receptor for mast cell tryptase, which is linked to the pathogenesis of allergic diseases such as asthma. ^{31,32} PAR-2 transcripts are also abundantly expressed by tissue types including skin and intestine which are often the target organs for allergic diseases. But the development of PAR-2 antagonists for use as anti-allergic drugs may be unsuitable because it may down regulate neutrophil function and thereby induce bacterial infection.

General discussion

[00025] We identified 51 granulocyte-selective genes for ion channels and receptors by examining approximately 20,000 kinds of transcripts derived from 16,000 genes from 10 different types of cells using U133A GeneChip, which covers approximately half of the genes present in the human genome. The majority of these transcripts encoded molecules known or expected to be granulocyte subtype-selective such as the IL-3 receptor and Fc & receptors.

[00026] Mast cells expressed low levels of Fc ϵ RI α compared to basophils, and that even neutrophils expressed a substantial level of the receptor (Figure 3). This raises the possibility that GeneChip assay may not be suitable for detecting selective molecules. In the present study, however, only the GeneChip data obtained using cord blood-derived mast cells and lung mast cells could be employed due to the strict data selection based on the RNA quality (see Methods). As has bee reported, ^{14, 33} peripheral blood-derived cultured mast cells or skinderived mast cells expressed approximately 10-fold Fc ϵ RI α mRNA compared to cord blood-derived mast cells (data not shown). Also, as shown in Figures 6A-6R, only 2 of the 4 neutrophil samples expressed Fc ϵ RI α mRNA. This may be explained by the observation that only neutrophils obtained from some allergic donors express the molecule.³⁴

[00027] We unexpectedly found 17 granulocyte-selective transcripts including HTm4. Basophil- and/or eosinophil-selective transcripts identified in our study could be potential therapeutic targets for allergic diseases because these granulocytes play a crucial role in allergic inflammation. ^{1,2} Granulocyte-selective transcripts could also be drug targets for other inflammatory diseases such as systemic vasculitis. ^{3,4} Analysis of cell type-selective transcripts

from database searches is expected to minimize the efforts required for drug discovery. The public database (http://www.lsbm.org/index_e.html) shows that some granulocyte-selective transcripts (18 out of 51) detected in our study are abundantly expressed by multiple (more than 3) organ tissue cell types using the same GeneChip U133A probe array. Thus, the safety of any candidate drug must be evaluated by comparing its efficacy (on granulocytes) with its toxicity (to organs). Six out of the 17 novel granulocyte-selective molecules may be excluded from drug development due to their expression in multiple organs unrelated to the diseases. Thus, our approach has identified 11 receptors and ion channels with therapeutic potential. Especially, among the 11 receptors and ion channels, seven were basophil- and/or eosinophil-selective and were not expressed by other organs, indicating that they may be potential targets for anti-allergic drugs.

[00028] Finally, it should be stressed that basophils, the rarest leukocytes, have recently been found to play a more crucial role than we ever proposed in the pathogenesis of intractable allergic diseases such as fatal asthma. Thus, targeting basophil receptors and ion channels such as HTm4 and Ca²⁺ channel CACNA1D is particularly expected for the future drug discovery. The importance of molecules known to be expressed by basophils may be reevaluated regarding its selectivity. Freshly-isolated resting basophils expressed the highest level of IL-4 compared to other cell types. Because the basophil purification procedure requires more isolation steps, ex vivo manipulation may activate the cells. However, it should also be noted that basophils have been recently found as the major source of IL-4 at least in asthma models. The stress of the pathogenesis o

Materials and Methods

Purification of leukocytes

[00029] All human subjects in this study provided written, informed consent, and the Ethical Review Boards at the relevant hospitals (National Center for Child Health and Development, and Jikei University School of Medicine) approved the study. The subjects used in this study were all healthy volunteers, especially having no allergic diseases.

[00030] Granulocytes and mononuclear cells were separated from venous blood of normal volunteers. Human basophils were semipurified by means of Percoll (Pharmacia, Uppsala, Sweden) density gradient centrifugation, and the cells were further purified by negative selection through use of a MACS Basophil Isolation Kit (Miltenyi BioTech, Bergisch-Gladbach,

Germany), as described previously. ¹⁷ Eosinophils were isolated by using Percoll (1.090 g/mL) density centrifugation. The eosinophils were further purified by negative selection with anti-CD16-bound micromagnetic beads, as described previously. ¹⁸ Neutrophils were isolated by using Percoll (1.085 g/mL) density centrifugation and further purified by negative selection using anti-CD81 antibody and antimouse IgG-bound micromagnetic beads to eliminate contaminating eosinophils. These granulocytes purified from human peripheral blood were spun down onto slide glass by Cytospin II (Shandon Southern Instruments, Inc., Sewickley, PA). The purity of these cells was evaluated based on 500 cells stained with May-Grünwald and Giemsa solutions.

[00031] For preparation of lymphocytes and monocytes, peripheral blood mononuclear cells (PBMNC) were isolated by centrifugation on lymphocyte separation medium (Organon Teknika Corp., Durham, NC). Monocytes (CD14⁺ cells) were prepared using magnetic beads-conjugated CD14⁺ antibody (CD14 MicroBeads; Miltenyi Biotec) from PBMNC. CD4⁺ and CD8⁺ cells were also respectively sorted using magnetic beads-conjugated CD4⁺ (CD4 MicroBeads; Miltenyi Biotec) and CD8⁺ antibodies (CD8 MicroBeads; Miltenyi Biotec) from PBMNC after depletion of CD14⁺ cells with MACS CD14 MicroBeads (Miltenvi Biotec). The purity of CD4⁺, CD8⁺ and CD14⁺ cells was evaluated by staining the magnetic beads- conjugated cells compared to feasible control cell preparations such as unpurified cells with FITC-labeled goat anti-mouse Immunoglobulin (BD Pharmingen, Tokyo, Japan). Peripheral B cells were purified by a combination of negative (MicroBeads-conjugated antibodies to CD3, CD7, CD14, CD42b, and CD56; Miltenyi Biotec) and positive (CD19 MicroBeads; Miltenyi Biotec) selection using MicroBeads (Miltenyi Biotec). To obtain platelet rich plasma, blood samples were mixed with 3.8% (w/v) sodium citrate solution (9:1) and centrifuged at 260x g for 15 min. at 20°C. To remove any contaminating erythrocytes and leukocytes, the plasma was centrifuged again at 260x g for 15 min.

[00032] Human mast cells were derived from cord blood CD34⁺ progenitor cells as described previously. ¹¹⁻¹⁴ Briefly, progenitor cells purified from peripheral blood by CD34⁺ isolation kits (Miltenyi Biotec), were cultured in Iscove's modified Dulbecco medium supplemented with 1% insulin-transferrin-selenium supplements (Life Technologies), 50 µM 2-mercaptoethanol, antibiotics, and 2% fetal calf serum in the presence of 100 ng/ml stem cell

factor and 50 ng/ml IL-6. After 11 to 14 weeks of culture, tryptase positive cells represented more than 99% of the cells.

Purification of human lung mast cells and nasal polyp-derived fibroblasts

[00033] Normal human lung tissue dissected during surgery was obtained macroscopically after informed consent. Human lung mast cells were dispersed from chopped lung specimens by an enzymatic procedure and were purified by magnetic bead affinity selection using the mAb anti-kit, YB5.B8 (BD PharMingen, San Diego, CA) as described previously. ¹⁹ The cells were further cultured in the presence of SCF and interleukin 6 (IL-6) for several weeks. Human nasal polyp-derived fibroblasts were obtained as previously reported. ²⁰

GeneChip expression analysis

[00034] Human genome-wide gene expression was examined using the Human Genome U133A probe array (GeneChip, Affymetrix, Santa Clara, CA), which contains the oligonucleotide probe set for 22,000 full-length genes. Experiments were performed in accordance with the manufacturer's protocol (Expression Analysis Technical Manual) and previous reports. 11-14 Total RNA (3-10 µg) was extracted from 10⁷ cells. Double-stranded cDNA was synthesized using a SuperScript Choice system (Life Technologies) and a T7-(dT)24 primer (Amersham Pharmacia Biotech, Buckinghamshire, UK). The cDNA was subjected to in vitro transcription in the presence of biotinylated nucleoside triphosphates using a BioArray high-yield RNA transcript labeling kit (Enzo Diagnostics, Farmingdale, NY). The biotinylated cRNA was hybridized with a probe array for 16 h at 45°C. In some experiments as indicated in the supplementary table, biotinylated cRNA was prepared using two-cycles of cDNA synthesis and in vitro transcription for target amplification was performed according to the manufacturer's "The Small Sample Labeling Protocol version II" (Affymetrix, Inc). For the latter protocol, we employed 100 ng total RNA. After washing, the hybridized, biotinylated cRNA was stained with streptavidin-phycoerythrin (Molecular Probes, Eugene, OR) and then scanned with a HP gene array scanner. The fluorescence intensity of each probe was quantified using a computer program, GeneChip Analysis Suite 5.0 (Affymetrix). The expression level of single mRNA was determined as the average fluorescence intensity among the intensities obtained by 11 paired (perfect- matched and single nucleotide-mismatched) probes. If the intensities of mismatched

probes were very high, gene expression was judged to be absent, even if a high average fluorescence was obtained with the GeneChip Analysis Suite 5.0 program. The level of gene expression was determined as the average difference (AD) using the GeneChip software. Each AD level was then normalized by dividing it with the median value of 22,283 AD levels obtained in an experiment ("normalized AD" level).

Real-time reverse transcriptase (RT)-PCR

[00035] Total RNA was isolated using Isogen (Nippon gene, Tokyo, Japan) according to the manufacturer's instructions and quantified by measuring the absorbance at 260 nm. RNA was subsequently treated with DNase I (Life Technologies) reverse transcribed using Superscript II reverse transcriptase (Life Technologies). Real-time RT-PCR was performed 10 ng cDNA in 25 µl of final volume using the primers and probes supplied by "Assays-on-Demand Gene Expression system" (PE Applied Biosystem) according to the manufacturer's instructions. Measurement of gene expression was performed using the ABI PRISM 7700 Sequence Detector. The expression level of each gene was normalized to a GAPDH.

Staining of basophils with anti-HTm4

[00036] Basophils purified from human peripheral blood with Basophil Isolation Kit (Miltenyi Biotec) were spun down onto slide glass by Cytospin II (Shandon Southern Instruments Inc., Sewickley, PA). Cells were fixed with aceton for 1 minute and then blocked in goat serum in 50 mm TRS-Cl, pH 7.4 for 1 hour. Cells were further incubated for 2 hours with 2 µg/ml of the polyclonal antibody rabbit anti-hHTm4. Cells were then washed three times with PBS and incubated with a secondary antibody, highly cross-adsorbed Alexa Fluor® 546-conjugated goat anti-rabbit IgG (H+L) (Red) (Molecular Probes, Eugene, OR) for one hour. After three PBS washes, air dried cells were further mounted using the Prolong Anti-Fade Kit (Molecular Probes, Eugene, OR). Slides were scanned by Zeiss Laser Scanning Microscope 5 Pascal (Carl Zeiss Microimaging Inc, Thornwood, NY).

Purity and viability of the leukocytes, and RNA quality

[00037] We used leukocyte samples in this study only if the purity of each cell type was at least 98%, but there are >0.5% contaminated cells in any of the samples. We could

not evaluate the purity of CD19⁺ cells and platelets due to lack of feasible controls or methods. However, specific transcript markers for non-granulocytes (CD4, CD8, CD14, CD19, IgG, etc.) as well as granulocyte subtype-specific transcripts were reasonably expressed by each leukocyte type as shown in Figures 6A-6R. Regarding the viability, we qualified the RNA before GeneChip assay using Array Quality Metrics Comparisons Software (Affymetrix) as well as trypan blue staining (they were always >95% viable), since RNAse-rich granules derived from degenerating cells rapidly destroy RNA transcripts. Briefly, to evaluate the quality of RNA, the ratio of 3'-probe set and 5'-probe set of housekeeping genes were compared as shown in Figures 6A-6R. According to the above software's guidance, the ratio of >2:1 at standard sample (5µg total RNA) protocol and that of >10:1 at small sample (50 ng total RNA) protocol were recommended. As shown in Figures 6A-6R, the cells used in the present study had the appropriate ratios of 3'-probe set and 5'-probe set of housekeeping genes, suggesting that these cells were highly viable.

Statistical analysis

[00038] Since logarithmic "normalized AD" levels were normally distributed within each group, unpaired parametric Student's two-tailed *t*-test was employed to analyze the data on a logarithmic scale.

Table 1. Representative cell type-selective transcripts in granulocytes

Accession # a Transcript	S.I. b	Normalized AD level
Basophil-selective		
NM 000589.1 IL-4	73.3	13.3
L35848.1 HTm4	38.2	132.1
BC005912.1 Fc ε RI α	12.7	218.9
Eosinophil-selective		
NM 001140.1 Arachidonate		
15-lipoxygenase	74.1	18.3
NM_024703.1 FLJ22593	19.1	29.1
NM_014442.1 Siglec-8	9.8	16.9
Neutrophil-selective		
NM_004633.1 IL-1 R,		
type II	127.9	51.5
U73191.1		
inward rectifier K ⁺ channel Kir1.3	107.5	98
NM_001557.1 CXCR2 (IL-8 receptor β)	39.3	105.2
Mast cell-selective		
AF206667.1 tryptase β	84.3	159.4
NM_001911.1 cathepsin G	51.5	72.1
BC005929.1 major basic protein	31.6	72.5
Basophil-eosinophil-selective		
M75914.1 IL-5R α	42.8	19.4(B), 29.3(E)
NM_004778.1 CRTH2	16.6	23.9(B), 38.1(E)
NM_001828.3 Charcot-Leyden		•
crystal protein	15.2	229.2(B), 198.6(E)
Eosinophil-neutrophil-selective		
NM_005306.1 GPR 43 (PAR1-like)	21.7	11.7(E), 32.9(N)
NM_004668.1 DHHC		
domain containing 18	6.6	16.2(E), 44.5(N)
Basophil-neutrophil-selective	Δ.	
NM_016006.1 CGI-58 protein	5.8	12.6(B), 21.2(N)
Basophil-mast cell-selective		
NM_001870.1 carboxypeptidase A3	59.2	111.7(M), 137.3(B)
NM_002529.2 TRK neurotrophin receptor	34.7	3.1(M), 7 (B)
NM_000139.1 Fc ε RI β	21.2	22.2(M), 43.8(B)

a. The GenBank accession number (http://www.ncbi.nlm.nih.gov).

b. Selectivity index (S.I.) was calculated by comparing the "normalized AD" level in a cell type or of two cell types with the maximal gene expression level of the other 8 or 9 cell types. The complete list of the genes having >3 S.I. is shown in Supplementary Table 1.

[00039] Figures 6A-6R show the complete list of granulocyte subtype-selective transcripts. Selectivity index (S.I.) was calculated by comparing the "normalized AD" level of a cell type or of two cell types with the maximal gene expression level of the other 8 or 9 cell types including platelets (Pl), CD4⁺ cells (CD4), CD8⁺ cells (CD8), CD14⁺ cells (CD14), CD19+ cells (CD19) and nasal polyp-derived cultured fibroblasts (Fb). Transcripts having S.I. >3-fold were shown in Figures 6A-6R A-H. A. Basophil (Ba)-selective transcripts. B. Eosinophil (Eo)selective transcripts. C. Neutrophil (Ne)-selective transcripts. D. Mast cell (MC)-selective transcripts. E. Basophil and eosinophil-selective transcripts. F. Eosinophil and neutrophilselective transcripts. G. Basophil and neutrophil-selective transcripts. H. Mast cell and basophilselective transcripts. I. Raw AD levels for the median values used to normalize the raw AD levels, and the housekeeping genes. When the result was accompanied by presence call, it was shown as a bold numeral. Italic numerals show that the raw AD levels were associated with absence call by the GeneChip analysis software. 1. Abbreviations used in the tables were (small); the results obtained by the small sample protocol (see materials and methods), R; receptor, and ICN; ion channel.

REFERENCES

[00040] The references cited herein are incorporated by reference.

- 1. Bochner BS. Systemic activation of basophils and eosinophils: markers and consequences. J Allergy Clin Immunol. 2000;106:S292-302.
- 2. Hirai K, Miyamasu M, Takaishi T, Morita Y. Regulation of the function of eosinophils and basophils. Crit Rev Immunol. 1997;17:325-52.
- 3. Savage CO. The evolving pathogenesis of systemic vasculitis. Clin Med. 2002;2:458-64.
- 4. Oehler R, Weingartmann G, Manhart N, et al. Polytrauma induces increased expression of pyruvate kinase in neutrophils. Blood. 2000;95:1086-92.

- 5. Church MK, Pao GJ, Holgate ST. Characterization of histamine secretion from mechanically dispersed human lung mast cells: effects of anti-IgE, calcium ionophore A23187, compound 48/80, and basic polypeptides. J Immunol. 1982;129:2116-21.
- 6. Lin CS, Boltz RC, Blake JT, et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med. 1993;177:637-45.
- 7. Saito H, Okajima F, Molski TF, Sha'afi RI, Ui M, Ishizaka T. Effects of ADP-ribosylation of GTP-binding protein by pertussis toxin on immunoglobulin E-dependent and -independent histamine release from mast cells and basophils. J Immunol. 1987;138:3927-34.
- 8. Ji TH, Grossmann M, Ji I. G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J Biol Chem. 1998;273:17299-302.
- 9. Zambrowicz BP, Sands AT. Knockouts model the 100 best-selling drugs. Will they model the next 100? Nat Rev Drug Discov. 2003;2:38-51.
- 10. Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001;291:1304–51.
- 11. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001;409: 860–921.
- 12. Drews J. Drug discovery: a historical perspective. Science. 2000;287:1960–4.
- 13. Hopkins AL, Groom CR. The druggable genome. Nature Rev Drug Discov. 2002;1:727–30.
- 14. Iida M, Matsumoto K, Tomita H, et al. Selective down-regulation of high-affinity IgE receptor (FcεRI) α-chain messenger RNA among transcriptome in cord blood-derived versus adult peripheral blood-derived cultured human mast cells. Blood. 2001;97:1016-22.

- 15. Nakajima T, Matsumoto K, Suto H, et al. Gene expression screening of human mast cells and eosinophils using high-density oligonucleotide probe arrays: abundant expression of major basic protein in mast cells. Blood. 2001;98:1127-34.
- Nakajima T, Inagaki N, Tanaka H, et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcε receptor I cross-linking: an interspecies comparison. Blood. 2002;100:3861-8.
- 17. Yoshimura C, Miyamasu M, Nagase H, et al. Glucocorticoids induce basophil apoptosis.

 J Allergy Clin Immunol. 2001;108:215-20.
- 18. Matsumoto K, Schleimer RP, Saito H, Iikura Y, Bochner BS. Induction of apoptosis in human eosinophils by anti-Fas antibody treatment in vitro. Blood. 1995;86:1437-43.
- 19. Okayama Y, Hunt TC, Kassel O, Ashman LK, Church MK. Assessment of the anti-c-kit monoclonal antibody YB5.B8 in affinity magnetic enrichment of human lung mast cells. J Immunol Methods. 1994;169:153-61.
- 20. Fukagawa K, Okada N, Fujishima H, et al. CC-chemokine receptor 3: a possible target in treatment of allergy-related corneal ulcer. Invest Ophthalmol Vis Sci. 2002;43:58-62.
- 21. Arock M, Schneider E, Boissan M, Tricottet V, Dy M. Differentiation of human basophils: an overview of recent advances and pending questions. J Leukoc Biol. 2002;71:557-64.
- 22. Kepley CL, McFeeley PJ, Oliver JM, Lipscomb MF. Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Respir Crit Care Med. 2001;164:1053-8.
- 23. Loitto V-M, Forslund T, Sundqvist T, Magnusson K-E, Gustafsson M. Neutrophil leukocyte motility requires directed water influx. J Leukoc Biol. 2002;71:212-22.
- 24. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

- 25. Adra CN, Lelias JM, Kobayashi H, et al. Cloning of the cDNA for a hematopoietic cell-specific protein related to CD20 and the beta subunit of the high-affinity IgE receptor: evidence for a family of proteins with four membrane-spanning regions. Proc Natl Acad Sci U S A. 1994;91:10178-82.
- 26. Adra CN, Mao XQ, Kawada H, et al. Chromosome 11q13 and atopic asthma. Clin Genet. 1999;55:431-7.
- 27. Donato JL, Ko J, Kutok JL, et al. Human HTm4 is a hematopoietic cell cycle regulator. J Clin Invest. 2002;109:51-8.
- 28. Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101:5014-20.
- 29. O'Reilly M, Alpert R, Jenkinson S, et al. Identification of a histamine H4 receptor on human eosinophils--role in eosinophil chemotaxis. J Recept Signal Transduct Res. 2002;22:431-48.
- 30. Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193:255-61.
- 31. Moffatt JD, Jeffrey KL, Cocks TM. Protease-activated receptor-2 activating peptide SLIGRL inhibits bacterial lipopolysaccharide-induced recruitment of polymorphonuclear leukocytes into the airways of mice. Am J Respir Cell Mol Biol. 2002;26:680-4.
- 32. Schmidlin F, Amadesi S, Vidil R, et al. Expression and function of proteinase-activated receptor 2 in human bronchial smooth muscle. Am J Respir Crit Care Med. 2001;164:1276-81.
- 33. Bradding P., Okayama Y., Kambe N., Saito H., Ion channel gene expression in human lung, skin and cord blood-derived mast cells, J. Leukoc Biol 2003; 73:614-20.

- 34. Gounni AS, Lamkhioued B., Koussih L., Ra C., Renzi PM, Hamid Q., Human neutrophils express the high-affinity receptor for immunoglobulin E (Fc epsilon RI): role in asthma. FASEB J. 2001; 15:940-9.
- 35. Koshino T., Teshima S., Fukushima N., Takaishi T., Hirai K., Miyamoto Y., et al. Identification of basophils by immunohistochemistry in the airways of post-mortem cases of fatal asthma. Clin Exp Allergy 1993; 23:919-25.
- 36. Kepley C.L., McFeeley P.J., Oliver J.M., Lipscomb M.F., Immunohistochemical detection of human basophils in postmortem cases of fatal asthma. Am J Respir Crit Care Med 2001; 164:1053-8.
- 37. Schroeder J.T., Lichtenstein L.M., Roche E.M., Xiao H., Liu M.C., Il-4 production by human basophils fund in the lung following segmental allergen challenge. J. Allergy Clin Immunol 2001; 107:265.71.
- 38. Luccioli S., Brody D.T., Hasan S., Keane-Myers A., Prussin C., Metcalfe DD, IgE(+), Kit (-), I-A/I-E-(-) myeloid cells are the initial source of Il-4 after antigen challenge in a mouse model of allergic pulmonary inflammation. J Allergy Clin Immunol 2001; 110:117-24.

Figure 1

Figure 2

Figure 3. Granulocyte subtype-specific transcripts for ion channels and receptors

<u>Ion Channels</u> Transcript (Accession #, GenBank)	Cell-	MC	Ва	Eo	Š	₫	CD4	CD8	C D14	CD	Pb	70	Gene Functions
Ca ²⁺ channel type A1 D (BE550599) aquaporin 9 (NM 020980) 602914	rype Ba, Eo Ne	0.1	1.7	1.5	0.4 137.4	0.0	0.3	0.1	0.0	0.3	0.0	0 7	facilitates uptake of the metalloids arsenite and
K* channel Kir1.3 (U73191) 600359	Ž	6.0	0.2	0.4	99.5	0.7	0.2	0.0	0.8	0.0	0.0	8	antimonite Andersen syndrome (170390)
K* channel Kir2.1 (AF153820) 600681	Se	0.7	3.8	5.3	40.7	0.4	0.2	0.5	. 2.	0.7	Ξ	9	and Bartler syndrome (<u>24, 200</u>) Andersen syndrome (170390)
GPCR histamine H. R (AF312230) 606792	Ba	0.7	34.2	9.4	0.7	0.4	8.0	0.5	9.0	0.0	. 0.	. 0	expression of HRH4 conferred
PGE'R type 3a2 (X83858) 176806 C3a R (U62027) 605246 CCR3 (NM 001837) 601268	Ba Ba, Eo Ba, Eo	0.8 11.8 0.6	10.3 55.7 117.	0.1 39.4 90.9	0.7 2.0 24.9	0.6 1.6 0.2	0.3 1.6 0.5	0.2	0.2 3.0 0.2	0.5 0.6 0.2	1.7 0.5 0.4	0 % 0	sensitivity signaling pathways anaphylatoxin receptor importance for eosinophil
CRTH2 (NM_004778) 604837	Ва, Ео	Ξ.	4 26.0	38.2	2.0	.80	4.	0.1	1.2	6.0	0.5	0	responses mediate signals to the interior of the cell via activation of
EMR-1 (NM 001974) 600493	Ва, Ео	0.8	33.5	6.06	4.2	3.4	1.7	9.8	7.1	1.6	0.5	1	ns r cellu
adenosine A ₃ R (<u>NM_000677) 600445</u> P2Y2 purincrgic R (<u>NM_002564)</u> 600041	E0 E0	2.6	2.9	15.4	2.3	1.2	1.6	0.5	2.0	0.5	0.5	0.0	response to a normone cardioprotective function P2RY2 may participate in control of the cell cycle of
GPRIOSportnergicir (NM, 014879)	Eo	2.6	2.9	15.4	2.3	1.2	1.6	0.5	2.0	0.5	0.5	~	endometrial carcinoma cells GPR105 is a G-protein-coupled recordor identifying a quiescent, rimitive population of
												:	bone marrow; GPR105 might play an important role in perspectal and neuroimmune certification.
GPR, Edg-4 (AF011466) 605110	Eo, Ne	<u> </u>	2.8	15.9	24.2	0.1	3.6	5.0	3.8	6:1	6.0	7	ed 4 mma was expressed in mouse islets; edg-4 (lpa2) r is a distinctive functional marker for oversan carcinoma, and is
PAR1-like GPR43 (NM 005306)	Eo, Ne	0.3	0.7	12.4	35.2	0.8	0.1	. 0.1	0.7	0.4	0.1	0	extended a carboxyl-terminally extended gain-of-function mutant.
		٠.						•					

found in immune cells; gpr43 is highly restricted in	hematopoietic lissues receptor for the chemotactic and infammatory peptide anaphylatoxin c5a. this receptor stimulates chemotaxis, granule enzyme release and superoxide	receptor to interleukin-8, which is a powerful neutrophils chemotactic factor. binding of il-8 to the receptor causes activation of neutrophils. this response is mediated via a g-protein that activate a phosphatidylinositol-calcium second messenger system. this receptor binds to il-8 with a high affinity and to mgsa (gro) with a low	receptor to interleukin-8, which is a powerful neutrophils chemotactic factor. binding of il-8 to the receptor causes activation of neutrophils. this response is mediated via a g-protein that activate a phosphatidylinositol-calcium second messenger system; this receptor binds to il-8 with a high affinity and to gro/mgs and nap-2 also and to be second messenger system.	HIGH AFFINITY HIGH AFFINITY HORMYL METHIONYL NEUTROPHILS CHEMOTACTIC RECEPTOR RECEPTOR CAUSES ACTIVATION OF NEUTROPHILS CAUSES RECEPTOR CAUSES RECEPTOR CAUSES ACTIVATION OF NEUTROPHILS. THIS
	د	0		0
	0.4		0.0	0.5
	1.0	0.1	9.0	<u> </u>
	25.6	0.2	0.7	62.6
	0.5	0.2	8.0	0.7
	1.2	0.3	0.3	<u></u>
	2.3	4.0	7.7	3.6
	92.6	83.4	112.1	282.9
	13.6	0.3	<u>2.</u>	&. &
	21.6	6.3	Ξ	23.5
	2.3	0.2 .	0.2	
	o Z	ž	Ž	ž
603823	C5a R (NM_001736) 113995	CXCR1 IL-8R (NM 000634) 146929	CXCR2 IL-8R (<u>NM_001557)</u>	formyl peptide R I (<u>NM_002029)</u> 136537

VIA A G-PROTEIN THAT ACTIVATES PHOSPHATIDYLINOSITOL- CALCIUM MESSENGER SYSTEM	likely mediates superoxide production at high concentrations of MI.F.	CSL2 is an anaphylatoxin- binding protein with unique licand binding and signaling	GPR86 proved to be a G(i)-courled receptor displaying a bit affinity for ADP, similar to the P2Y(12) receptor and can therefore be tentatively called p2Y(13)	PAR2 plays a key role in chronic joint inflammation	responsible for initiating the	Cell cycle regulator	promotes the proliferation and differentiation of hematopoietic cells	engagement of 2B4 with specific antibody activates NK cytolytic activity	Receptor for acidic and basic fibroblast prowth factors.	lacking either 115ra or Sox4 have defects in 13-cell development	SIGLEC8 expression on cosinophils but not other leukocytes	Signaling from the KIT receptor tyrosine kinase is essential for primordial germ cell growth both in vivo and in vito.	OBBP1 is almost exclusively expressed on B cells.	MS4A2 Allergic disease receptor-mediated endocytosis
	۸ _	7	1	15	0.	1	o ·	0	17	0	0	15	0	34
	0.1	0.3	0.0	1.2	0.2	0.0	0.1	0.1	1.0	0.1	0.2	0.5	0.0	0.1
•	0.8	0.1	0.6	0.4	9.0	0.2	0.1	Ξ.	0.1.	0.2	0.5	0.1	0.4	0.3
	0.9	1.0	12.3	1.6	4.	0.1	0.7	5.2	0.1	0.1	0.2	0.1	0.0	3.5
	9.0	0.2	-0.2	0.1	8.0	0.4	0.2	3.5	0.7	0.1	0.1	0.5	0.0	3.4
	1.0	0.3	0:1	0.7	5.1	0.5	0.3	0.4	0.1	0.1	0.2	0.2	0.0	0.5
	0.1	0.0	6.1	0.1	4.	0.7	0.2	0.1	0.1	0.1	0.3	0.8	0.5	1.6
	75.5	3.4	88.2	36.2	5.5	3.5	0.7	1.2	0.7	9.0	6.4	1.2	0.2	0.6
	9.0	8.0	17.9	2.2	9.7	6.9	2.0	16.5	12.1	30.4	17.4	4.2	0.0	0.4
	0.5	6.0	0.2	0.3	219.	133.	52.6	56.0	27.9	20.5	0.3	7.2	0.2	44.3 20.4
	0.4	0.1	0.3	0.1	19.4	9.0	9.0	0.3	0.1	6.0	<u>~</u> .	89.0	5.6	22.3
	N _e	Se	ž	Se	Ba	Ba	Ba	Ba, Eo	.Ba, Eo	Ba, Eo	E0	MC	MC.	MC, Ba MC, Ba
	formyl peptide R 2 (<u>U81501)</u>	GPR77 (NM_018485)	GPR% purinergic R (<u>NM_023914</u>)	PAR2 (BE265369) 600933	<u>Other Receptors</u> Fc.ε R1 α (<u>BC005912) 147138</u>	HTm4 (L35848) 606498	IL-3 R (NM_002183) 308385	GD2443NK(ceijRK (NM_016382) 605554	fibroblast growth factor R 2	IL-5R α (M75914) 147851	Siglec 8 (<u>NM_014442) 605639</u>	CD117 c-KIT (<u>NM_000222) 164920</u>	Siglec 6 (D86,358) 604405	Fc ε R1β (NM_000139) 147138 Iow density lipoprotein R

(NM 000527) 606945 TRK neurotrophin R (NM 002529)	MC, Ba	4.6	7.3	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0	participates in the primary signal
191315							,						transduction mechanism of NGF; is also an
													immunoregulatory cytokine
												•	acting on monocytes
butyrophilin like R (AK025267)	Ne	Ξ	1.7	1.5	6.9	1.5	1.7	1.6	6.0	1.5	1.3	1	his gene is mainly expressed in
													small intestine, colon, testis, and
CD120a, TNF-R-1 (NM_001065)	Se	1.7	1.2	7.8	74.7	1.3	2.2	5.9	17.4	9.0	91	35	Receptor for TNFSF2/TNF-
061161													alpha and homotrimeric
													TNFSF1/lymphotoxin-alpha.
													The adaptor
													molecule FADD recruits
													caspase-8 to the activated
													receptor. The resulting death-
													inducing
			•		٠								complex (DISC) performs
													caspase-8 proteolytic activation
													which initiates the subsequent
													cascade
													caspases (aspartate- specific
													evsteine proteases) mediating
													2
													induction of noncytocidal TNF
													effects including anti-viral state
						٠.				•			
													commissions of
	;			,		,	,		ì	,	•		Spilligothycilliasc.
CD95, Fas, APO-1 (AA164751) 134637	Se	4.	6.01	7.3	50.4	.3	9.6	4.8 8.	3.6	5.6	9.1	/	
													The adaptor molecule FADD
													recruits caspase-8 to The
													activated
													The desired Acres

activation which initiates the subsequent cascade of caspases (aspartate-specific cysteine

proteolytic

proteases) mediating apoptosis. FAS- mediated apoptosis may have a role in the induction of

peripheral tolerance, in the antigen-stimulated suicide of mature T-cells, or both. The secreted

recertor. The resulting deathinducine signaling complex (DISC) performs caspase-8

isoforms 2 to 6 block apoptosis (in vitro). does not induce apoptosis.		failure of the patient's	was associated w	inhibits cell proliferation and survival in response to CSF3	romotes the proliferation and differentiation of hematopoietic cells	type II receptor inhibits ILI activity by acting as a decoy target for ILI			Eosinophils may be activated through LIR7 for release of eosinophil-derived neurotoxin	-	TLR2 is a molecular link between microbial products, apoptosis, and host defense mechanisms	
	2 2	4		س .	0	8	w	32	7	0	0	0
0.6	0.2	.00		0.2		0.0	3.5	15	0.1	0.3	0.4	9.0
0.1	2.3	2.6		0.1	. 1.3	0.0	2.0	4.8	0.5	1.5	6.0	1.2
0.7	7.2	2.2		25.5	2.9	0.2	. 2.4	8.4	11.6	3.0	26.3	2.1
0.1	0.1	1.3		0.2	0.3	0.1	2.8	8.7	0.1	0.7	0.1	6.0
0.2	0.2	1.3		8.0	0.4	0.4	0.1	2.9	0.0	0.8	1.3	0.9
0.5	0.3	9.9		0.2	0.4	0.2	9.1	. 1.7	<u>8.</u>	1.6	1.6	0.1
78.7	59.9 84.3	9.661		163.6	14.1	53.5	17.4	85.3	41.2	31.5	83.8	8.8
7.7	7.8	1.9		1.6	2.0	0.1	5.0	5.4	4.3	1.2	<u>1.3</u>	6.0
1.5 .	2.4	9.1		6.0	0.2	0.1	3.5	6.0	5.8	0.3	6.0	1.0
0.1	1.5	0.7		0.1	0.3	0.1	0.3	4.6	0.5	9.0	6.0	0.5
ž,	s s	Se		Ne Ne	, Ne	Š	Š	Š	Š	Ž ,	, Z	N _e
decoy R1, TRAILR3 (AF012536)	<u>603613</u> Fçy R IIc2 (<u>U90939)</u> Fcy R IIc3 (190940)	Fcy R III (<u>J04162</u>) <u>146740</u>		G-CSF R (NM 0007601) 138971	IL-13 R (<u>U81379) 308385</u>	IL-1R, type II (<u>NM_004633) 147811</u>	IGFR I (<u>NM_000875) 147370</u>	IGFR 2 (<u>NM 000876) 147280</u>	leukocyte immunoglobulin-like R A2 (NM_006866) 604812	Toll-like R 1 (<u>AL050262) 601194</u>	Toll-like R 2 (<u>NM_003264) 603028</u>	Toll-like R 6 (<u>NM_006068</u>)

a. Cell-type specificity was obtained by comparing the "normalized AD" levels of each gene in mast cells (MC; average of 2 experiments), basophils (Ba; average of 3 experiments), eosinophils (Eost average of 4 experiments), platelets (PI), CD4* cells (CD4), CD8* cells (CD14* cells (CD14), CD19+ cells (CD19) and nasal polyp-derived cultured fibroblasts (Fb).

	CB cultured		cultured									
	MCs	Basophils	basophils	Eosinophils	Neutrophils	platelets	platelets Erythrocytes	CD4		CD8 CD	CD14 CD19	19
Spink5		21 1	7	11 22	2 16		30	15	28	36	129	104
chymase human	1221	1 47		65 4	5 12		101	62	108	59	104	45
tryptase alpha	21179	9 212		40 3	33 25		184	139	104	17	52	39
tryptase beta	25414	4 195	5 113		49 28		152	10	122	113	93	9
tryptase delta	349	9 45		6 23	3 55	,	74	113	=	9	42	=
tryptase gamma	654	4 56		19 3	38 78		28	24	81	230	142	83
TRPV2		129 37		15 97	66 2		1 259	137	133	29	16	110
ANKTM1		28 28		8 38	8 30		96	18	14	46	=	28
Cannabinoid receptor type I	u)	50 41	- 54	14 47	96		27	61	41	26	<u>8</u>	54
Cannabinoid receptor type 2	92	160 369	9 226	6 578	8 177	271		530	324	232	212	421

	CB culture	red	cultured									
	MCs	Basaphils	basophils	Eosinophils	Neutrophils	platelets	Erythrocytes CD4	rtes CD4	8C)	CD14	6100	
LILRBS								46	103	95	82	28
LILRA3			_					89	31	89	451	13
LILRB1								42	13	18	1105	125
LILRB2	~				•			375	386	28	2963	214
LILRA2		49 61					146	318	8	6	1247	52
LILRA1	**********							148	127	35	539	98
KIR3DL2	- 113m		58 34	1 18	3 23			106	14	286	89	204
KIRZDS3		22 1					35	=	28	110	88	==
KIR2DL3 variant								95	39	247	147	27.1
KIR2DS1	-							132	57	257	21	267
KIR2DS5								27	33	135	19	173
KIR2DL4	-				•			210	35	239	152	196
KIR2DL4								15	19	72	11	35
KIR-123FM								121	96	163	56	193
KIR2DL5.3								239	35	323	56	72
KIR3DL1		8 89						97	76	169	36	196
MIR cl-10	_			•				146	145	25	2154	66
PTPRF		18	4	5 28	3 37		96	12	13	14	32	23

Figure 6A

Table E1. The complete list of granulocyte subtype-selective transcripts. Selectivity index (S.I.) was calculated by comparing the "normalized AD" level of a cell type or of two cell types with the maximal gene expression level of the other 8 or 9 cell types including platelets (PI), CD4⁺ cells, CD14⁺ cells, CD14⁺ cells, CD19⁺ cells and nasal polyp-derived cultured fibroblasts (Fb). When the result was accompanied by presence call, it was shown as a bold numeral. Italic numerals show that the raw AD levels were associated with absence call by the GeneChip analysis software. Transcripts having S.I. >3-fold were shown in A-H. Abbreviations used in the table through A-I were (small); the results obtained by the small sample protocol (see materials and methods), R; receptor, and ICN; ion channel.

A. Basophil (Ba)-selective transcripts (1/2).

Probe set	Accession #		Transcripts	MC. cord blood	MC, tung	Ba t	Ba 2 (small)	Ba 3 (small)	£0	Eo E	Eo 3 E (small) (6	Eo 4 N (small) 1	Ne N	Ne Ne 3 2 (small)		Ne 4 (small) pl		CD4 C	CD8 CI	CD14 CI	CD19 F	Fb	Ba S.1.
207539_s_at	NM_000589.1		114	0.2	0.1	10.4	16.9	13.4	0.1	0.0	0.2	0.1	0.1	5.3	0.0	1.2 (0.2	0.0	0.2	0.1	0.0	0.0	73.348
210254_at	L35848.1	œ	HTm4	9.0	0.4	115.6	130.1	153.6	2.4	1.7	21.8	1.7	0.1	9.6	3.6	9.5	3.2	0.5	0.4	0.1	0.5	0.0	38.24
205513_at	NM_001062.1		vitamin B12 binding protein	1.5	1.2	98.9	149.3	110.9	3.2	2.2	16.1	1.9	6.9	1.5	6.3	8 .	1.8	0.7	8.0	1.4	6.0	0.1	20.322
206148_at	NM_002183.1	œ	IL-3 R	1.0	0.1	6.2	80.2	71.3	1.7	1.7	1.8	5.9	0.3	7.4	0.2	1.9	0.5	0.3	0.2	0.7	0.1	2.1	16.62
214920_at	R33964		FLJ11022 fis	0.1	7	4.9	13.1	15.4	0.1	0.5	0.7	0.5	0.1).4	0.5	0.7	2.1	0.1	0.2	0.1	0.3	1.0	16.049
201825_s_at	AL572542		CG149	3.3	1.6	21.4	74.9	46.5	2.1	1.2	0.1	1.2	0.1	2.1	0.2	0.1	1.3	0.7	1.7	1,4	0.8	7.8	15.045
213238_at	AI478147		ATPase, Class V. type 10D	1.2	5.9	39.9	76.3	118.9	2.3	1.7	3.1	1.9	2.1	1.4	2.3	8.8	0.7	6.0	6.0	2.5	2.0	<u>-</u>	14,398
211734_s_at	BC005912.1	œ	Fc epsilon R I alpha	10.5	28.4	210.0	220.8	226.2	8.4	2.1	8.	5.9	0.3	7.7	4.5	18.6	4	5.1	8.0	1.4	0.4	7.5	12.703
213894_at	BF447246		K1AA0960	0.1	0.0	3.7	13.0	15.6	6.0	0.4	0.4	0.4	6.0	7.7	0.7	9.0	7.5	9.0	0.1	0.1	0.5	0.2	12.272
206363_at	NM_005360.2		c-MAF	3.7	1.4	36.5	75.7	66.4	1.2	0.1	0.2	0.2	0.2	0.1	0.2	0.1	9.0	8.8	2.7	0.5	0.1	0.0	11.927
203373_at	NM_003877.1		SOCS2	2.1	3.9	21.7	85.0	112.2	4.6	4.7	9.4	6.5	0.7	1.2	0.3	2.5	1.6	3.2	3.5	. 8.0	6.0	9:6	9.8282
207538_at	NM_000589.1		114	0.3	0.1	5.4	8.6	9.5	0.4	0.4	0.0	0.3	0.1	0.0	0.4	0.7	0.8	0.4	0.3	0.1	0.0	9.1	9.8156
213684_s_at	BF671400		LIM-protein	9.0	0.1	11.1	21.0	20.6	1.9	1.6	2.4	1.8	8.0	9.0	1.5	2.5	0.1	0.0	0.3	1.0	0.0	9.1	8.9245
209360_s_at	D43968.1		AML1b protein	10.4	2.4	53.2	131.1	90.5	8.5	7.0	13.8	11.3	0.5	0.5	0.5	4.2	1.3	4.1	5.9	1.3	2.5	 	8.7543
220234_at	NM_004056.2		carbonic anhydrase VIII	0.4	0.1	11.7	10.2	8.0	1.2	0.1	0.5	0.4	8.0	6.0	0.1	0.5	0.5	1.1	0.1	0.1		0.0	8.1309
210643_al	AF053712.1		osteoprotegerin ligand	0.1	0.3	1.8	3.4	0.9	0.7	0.4	0.3	0.2	9.0	0.1	0.3	0.1	0.1	0.3	0.4	0.3	0.5	7 7	7.6828
209211_at	AF132818.1		colon Kruppel-like factor	0.1	0.0	1.8	10.2	8.8	0.3	0.5	1.5	9.0	1:1	0.7	8.0	0.5	2.5	0.2	0.4	0.2	0.1	2.3	7.239
204309_at	NM_000781.1		CYP11A	0.3	0.1	2.6	6.1	5.6	0.1	0.3	0.5	0.5	1.0	0.1	0.1	6.0	3.3	0.3	0.1	0.0	0.3	<u></u>	6.8366
203372_s_at	AB004903.1		SOCSZ	9.0	1.6	9.5	8.5	15.9	4.4	2.4	6.0	0.5	0.7	9.0	0.4	0.8	9.8	1.6	1.3	0.3	0.3	<u>*</u>	6.8271
207463_x_al	NM_002771.1		serine protease 3 (Irypsin 3)	1.0	1.0	4 .8	10.0	10.9	0.4	1.0	0 .	1.2	1.2	6.0	1.0	8:	9.4	9.0	0.4	0.3	0.7	7.	8.7218
213624_at	AA873600		acid sphingomyelinase-like phosphodiesterase	4.7	5.0	20.8	30.6	25.9	7.7	2.8	3.8	1.7	0.5	=	1.3	1.3	2.1	0.2	0.1	3.8	0.2	3.2	6.6846
214873_al	AL137651.1		done DKFZp43400213	0.1	0.4	3.7	15.5	24.4	5.0	6.0	2.5	2.3	0.2	9.1	0.7	9.0	2.1	1:1	1.5	0.5	9:0	0.7	6.2585
204928_s_at	NM_019848.2		protein P3	2.3	1.5	8.6	49.0	34.3	3.7	3.3	8.4	4.2	1.6	1.0	6.1	2.2	4.1	1.8	3.0	0.8	5.0	9.6	6.2142
208935_s_at	L78132.1		prostate carcinoma tumor antigen (pcta-1)	2.2	1.2	9.9	19.1	16.6	2.3	1.5	3.6	2.5	:	-	1.9	6.0	8.	1.8	2.0	2.0	1.4	8.0	6.2011
203201_a1	NM_000303.1		phosphomannomutase 2 (PMM2)	1.8	0.3	10.7	15.9	6.5	6.0	9.0	1.2	6.0	8.0	0.4	1.1	.3	0.	1.3	1.2	1.2	7	1.7	.1557
201826_s_at	NM_016002.1		CG1-49	1.8	3.1	11.0	27.5	15.1	1.6	1.1	1.4	2.1	1.1	1.4	1.3	1.8	1.6	1.1	1.1	1.1	9.0	6.2	5.6407
213421_x_al	AW007273		serine protease 4 (trypsin 4)	1.8	1.7	5.9	12.5	11.4	1.0	0.5	1.2	0.5	1.2	1.7	1.2	1.2	6.0	1.0	1.2	1.0	0.4		.4802
209348_s_at	AF055376.1		c-MAF, short form	6.4	4.9	29.6	47.7	42.3	8.0	0.3	0.4	9.0	0.3	0.0	6.0	1.4	1.0	7.3	3.1	6.0	7.0	<u>4.</u>	5.3183
213343_s_at	AL041124		hypothetical protein PP1665	6.0	0.5	12.2	17.0	12.0	3.5	1.7	0.5	9.0	0.1	9.3	0.8	0.4	9.6	1.5	2.6	0.7	1.6	1.3	.2721
202491_s_at	NM_003640.1		I kappa B-associated protein	1.6	3.8	23.9	51.9	43.5	4.6	4.0	1.7	7.3	1.6	2.1	2.5	2.3	1.7	3.7	7.4	3.2	4.7	4.2	5.107
221021_s_at	NM_030877.1		Bos taurus P14 protein	6.9	3.2	7.2	29.2	58.9	2.8	3.2	5.4	6.3	6.0	1.2	1.8	9.1	9.1	2.2	2.4	2.0	3.5	1.8	.9129
213346_at	BE748563	•	hypothetical protein BC015148	2.7	8.	17.5	38.8	25.8	4.0	6.7	6.2	8.8	1.4	6.6	0.8	1.1	2.5	1.2	1.5	9.0	1.1	6:	.8879
209764 at	AI 022312		mannosyl (bela-1.4-)-glycoprotein beta-1.4-N-acetyletucosaminyltansferase	00	60	1.4	6.1	60	8.0	1.4	60	7.	90	7.1	5.0	0.2	0.1	0.4	0.2	. 20	9.0	0.3	4.855
207067 s at	NM_002112.1		histidine decarboxylase	64.1	14.7	105.2	164.9	165.7	3.4	1.4	1.4	2.8	2.1	1.2	4.6	14.0	2.4	8.0	6.0	1.1	0.7	_	4.6305
210375 at	X83858.1	GPR		1.0	9.0	2.4	11.5	17.0	0.3	0.1	0.1	0.0	0.4	0.7	6.0	0.7	9.0	0.3	0.2	0.2	0.5		4.6103
206306_at	NM_001036.1		ryanodine receptor 3 (RYR3)	2.1	1.1	3.7	11.0	7.8	1.0	9.0	1.5	0.5	1.2	0.3	1.5	6.0	-	0.7	0.3	1.0	0.2	0.4	.5552
210001_s_at	AB005043.1		SOCS1	5.2	0.2	3.0	24.1	29.9	2.1	3.0	3.2	3.4	0.3	1.0	9.0	1.3	8.0	8.0	8.0	0.0	8.0	6.0	.5248
			serine (or cysleine) proteinase inhibitor. clade B (ovalbumin), member 2																			-	
204614_at	NM_002575.1		(SERPINB2)	0.3	9.0	5.3	12.9	12.5	0.4	2.4	4.2	5.0	1.0	9.0	0.7			0.5	0.7	2.1		_	4.5061
209960_at	X16323.1		hepatocyte growth factor (HGF)	0.4	0.0	2.3	7.3	5.5	0.5	0.4	9.0	0.5	0.1	0.1	1.0	9.0	0.7	0.1	0.0	0.1	0.0	0.5	4.4335
209212 s at	AB030824.1		transcription factor BTEB2	0.1	0.5	7.5	14.3	22.1	2.3	5.0	4.9	3.7	1.2	1.3	5:			0.5	0.2	-		8.8	4.363

A. Basophil (Ba)-selective transcripts (2/2).

Figure 6 B

Table 1.5	Probe set	Accession #	Transcripts	MC. blood	MC.	Ba 1	Ba 2 (smatt)	Ba 3 (small)	ფ ←	5 E	Eo 3 (smalt)	Eo 4 (small)	e Le	. Ne	Ne 3 (Small)	Ne 4 (small)	Į.	CD4 C	SD8	D14 (SD19	Ð	Ba S.I.
	214651 s at	11418131		90.	9.0	2	6.3	8.3	0.3	20	0.8	0.5	0.1	0.1	0.5	1.0	1.0	0.1	0.1	0.3	0.1	0.1	4.3618
	32502 at	AL041124		1.6	1.9	14.6	22.5	17.4	0.4	2.1	0.7	4.4	1.	1.0	0.4	0.4	2.3	2.5	4.1	2.5	2.3	80	4.3594
Mainth M	ı		catenin (cadherin-associated protein).																				
	205373_at	NM_004389.1	alpha 2	0.5	0.1	Ξ	3.9	3.2	9.0	0.1	0.1	0.1	0.1	0.1	0.7	0.1	0.1	0.1	9.0	0.5	0.2	0.5	4.2308
10.00000000000000000000000000000000000	219676_at	NM_025231.1	FLJ22191	0.3	0.7	2.5	7.3	12.0	0.9	0.5	2.0	1.5	0.5	1.1	4.2	2.2	9.0	1.1	1.4	0.3	4.	0.1	4.2135
2.50.50.3. M. 15.50.70.3. Contained to the contained to t	213385_at	AK026415.1	beta2-chimaerin	4.7	3.1	8.3	22.9	21.8	1:	9.0	0.9	1.0	0.2	1.5	8.0	1.0	0.1	6.0	1.6	3.3	0.2	0.4	4.2131
	214637_at	BG437034	oncostatin M	0.4	0.0	6.0	5.4	4.4	0.2	0.7	0.1	0.7	0.5	8.	0.5	1.1	0.4	0.1	0.1	0.2	0.1	0.0	4.1983
181181_2, MI MUSTORENI CURRENIAN CURRE	202490_at	AF153419.2	t kappa B-associated protein	0.5	0.2	1.3	3.6	2.2	0.4	0.4	0.5	0.1	0.3	0.0	0.5	0.0	0.3	0.3	0.5	0.5	0.4	0.2	4,1747.
11.11.11.11.11.11.11.11.11.11.11.11.11.	220416_at	NM_024837.1	FLJ21472	7.4	1.5	9.1	9.7	12.2	1.9	3.3	3.0	1.9	0.8	9.0	=	6.0	0.7	9.0	0.2	8.0	0.3	0.0	4.1718
TATIONISM NATIONISM NATION	218318_s_at	NM_016231.1	nemo-like kinase	7.	1.3	6.2	7.0	7.1	8.0	6.0	9.0	9.0	0.5	1.0	0.1	0.1	1.6	1.3	6.0	7.7	Ξ	4.0	4.1558
	215201_at	AW 166925	FLJ14135 fis. clone MAMMA1002728	0.1	0.1	2.1	3.5	5.1	0.5	0.7	8.0	6.0	0.0	0.1	0.1	0.1	0.5	0.3	9.0	0.4	0.5	0.1	4.1491
Durigo, J. M. NULSSEYT. MY-branes activated geats of every my open participated side Edg. 1.7 of 16.4 at 12.2 at 12.0 at 12.2	222303_at	AV700891	ETS2 intronic transcript 1 mRNA	9.0	1.4	31.1	8.98	63.8	3.6	2.2	2.9	3.2	10.8	10.5	16.6	19.0	1.2	0.7	0.7	8.1	0.3	0.8	4.0555
101326_Lal Macrossas 1 Macrosman which when the design of a continue of	201664_at	AL136877.1	DKFZp434F205	2.8	5.0	17.3	7.72	31.8	4.4	5.3	9.1	8.3	4.3	3.9	5.7	5.5	0.1	4.8	4.2	2.5	4.1	8.	3.8471
12.1102.2.2.2.1 ALVESTORN OVERSHAMEN NUMBOLE STATES ALVES AND	210252_s_at	AB002356.1	MAP-kinase activating death domain	5.6	4.6	12.7	35.0	40.7	6.2	6.1	0.7	8.3	2.2	1,3	1.9	3.3	5.2	2.7	5.4	3.0	3.5	1.1	3.8424
218352, al. Mi.O.201431 P.L.112876 Characteristic Ministry of P.L.112876 P.L.12876			v-ets avian erythroblastosis virus E26																				
2891970_A1 MAJOSTSCI1 PLIJATON CONTROLLARY	201328_at	AL575509	oncogene homolog 2	1,	0.1	18.4	34.7	50.7	2.8	1.6	1.7	8.	6.4	6.6	8.7	8.9	0.5	6.0	1.0	4.4	0.1	7.	3.8075
201110, al. Maj. Control 14. P. Cont	218392_x_at	NM_022754.1	FLJ12876	1.2	1.0	3.5	7.5	7.4	7.4	1.0	2.7	1.5	1.0	9.0	6.0	0.1	6.0	1.4	0.4	0.7	0.5	4.	3.7693
201100,241 Microscorel (1997) Missemble	205046_at			0.0	0.3	1.5	æ.	13.1	1.7	0.5	1.9	1.2	0.5	£.	0.	6.0	1.1	5.	6.0	1.0	0.4	0.5	3.7324
201613.5.31 NIA,00054061 Indirectable control of contro	221170_at			9.0	9.0	35.9	34.2	32.5	8.7	11.9	8.7	9.3	0.2	8.0	8.0	1.0	0.4	8.0	0.5	9.0	0.0	0.1	3,6719
200913 g, sin Logical control (minitor) soluble, in Logical control (minitor) soluble	201663_s_at	NM_005496.1	chromosome-associated polypeptide C	2,2	4.3	17.6	15.1	18.1	3.4	8.8	4.9	4.2	4.0	3.7	2.2	2.7	1.7	4.1	2.9	1.7	3.7	4.2	3.6472
Application Company Company Application Company Company Application Company Company Company Company Company Company Company Company Company			tectin, gatactoside-binding, soluble, 8	;	;		;		;	,	•		:	;	;	ì	;	í		,	,	į	
State Stat	208933_s_at	AI659005	(galectin 8)	8.1.8	4 8 6 0	7.87	28.3	28.2	6.6	æ -	10.4 2.8	8. 4.	8 C	4.5 2.5	0 K	1.2 E 6	4 C	9. 6	4.0	7.0	4. C	7.7	3,6251
Mail	2 037 10_81	AL36346U	Superior production of the superior of the sup	5	6.00	-	4.601	į	į	<u>:</u>	9	5	કે	<u>:</u>	Š	9	3	ŝ	9	3	š	3	
National State Nati	205769_at	NM_003645.1	rany-add-Coertynne Angase, very long-chain 1 (FACVL1)	3.3	2.5	7.0	16.2	9.5	0.3	0.3	0.3	0.5	0.1	0.4	0.2	0.3	0.5	0.4	0.7	0.1	0.3	0.1	3.5389
33898.g. in Mol203346 KNA0033441 KNA003441 KNA0033441 KNA0033441 KNA0033441 KNA0033441 KNA0033441 KNA0033441 KNA003441	209409 at	D86982.1	K1AA0207	8.4	2.6	12.5	38.0	33.1	6.4	4.2	12.3	10.4	1.7	1.7	2.1	1.8	4.	, ,	0.7	5.5	0.4	8.	3.4907
200519-24 NNL,000364.1 Ocidin A1 21. 1. 2. 2. 3. 6. 4. 6. 2. 10. 1. 16. 0. 1. 16. 0. 1. 16. 0. 1. 16. 0. 1. 16. 0. 1. 16. 0. 1. 16. 0. 1. 16. 0. 1. 18. 0. 1. 18. 0. 18.	38398_at	AB002356	KIAA0358	5.5	4.1	13.8	24.6	29.8	6.1	6.4	5.6	7.0	3.0	3.2	3.3	1.4	5.1	3.3	5.3	3.7	4.4	2.5	3.4534
2130975_3_81 NW_0103971 AUD-Netosylation Radiochichie 5 82 3.375 \$46 91 8.6 14.0 12.1 3.9 5.0 7.7 9.6 3.8 8.3 8.1 14.5 9.9 8.1 2.3 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	205899 al	NM_003914.1	cyclin A1	5.6	3.6	16.2	20.6	10.5	0.1	9.0	6.0	0.1	. 1.6	0.1	8.0	0.4	1.9	0.7	0.1	0.1	0.3	0.8	3,3824
201999, g. al. ANJ38837	218150_at	NM_012097.1	ADP-ribosylation factor-like 5	8.2	5.3	37.6	9.99	54.6	9.1	9.6	14.0	12.1	3.9	5.0	7.7	9.6	3.8	8.3	8.1	14.5	6.6	2 .	3.3745
200169_a1 Mr_018020.1 avoylenchibiding protein-related protein 12 2.3 8.8 18.0 15.3 0.6 0.8 15 14 15 2.3 2.7 18 2.0 0.2 17 13 0.5 4.0 210109_a1 AF191492.1 avoylenchibiding protein-related protein associated 12 0.7 3.6 6.4 4.2 12 16 10 0.3 0.6 11 17 0.6 0.2 13 0.5 14 0.6 0.7 15 0.0 0.2 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	213097_s_at	AI338837	zuotin related factor 1	2.1	8.	8.4	13.4	16.7	4.8	2.1	4.8	3.7	8.	1.2	1.2	1.6	0.3	3.4	3.7	2.3	3.3	2.8	3.3672
Part	208158_s_at	NM_018030.1	oxysterot-binding protein-related protein	1,2	23	8.8	18.0	15.3	9.0	9.0	9.1	4.	. .	2.3	2.7	1.8	5.0	0.2	0.7	1.3	0.5	4.0	3.342
209359_x.st 1345811 characteristic fluid control contr	. 10100	AE101402 1	nasopharyngeal carcinoma associated	13	7		4	4.2	12	4	¢	9	90	,	11	.90	0	~	5.	7	90	,	3.2977
### 12515_8_al Monogade Figure myeloid laukemia 1) 1.2	230010	NM 025142.4	El 130056	: \$; ;	26.1	. 22	26.2	. 6		7	<u>+</u>				000	, ,	0	50		+	0	3 2902
2081959, x. al. L345881 oncogene 1.2 0.01 3.1 7.2 7.1 2.5 1.6 1.6 1.6 1.6 0.0 0.6 1.4 0.7 0.7 1.0 0.8 0.6 0.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	19 6027	1.05 1.50 ININ	emi 1 (acute myeloid leukemia 1)	2	:	į	?	1	;	3	į	2	}	.	ì	ì	:	?	;	;	į	;	
208107.s_al NM 03994.1 eronuclease NE-sp 216472.st	209359_x_at	L34598.1	oncogene	1.2	0.1	3.1	7.2	7.	2.5	1.6	9.1	1.1	0.5	1.0	9.0	1.4	0.7	0.7	1.0	0.8	9.0	0	3.2789
DNFTGEMAND	208107_s_at	NM_030941.1	exonuclease NEF-sp	3.6	7.6	7.8	30.6	20.1	1.6	2.3	2.7	0.8	9.0	0.5	1.5	1.0	0.5	0.1	0.3	0.5	0.1	1.2	3.2356
215215_s_a1 AC004381 CITIGGRAMM CITICGRAMM CITIGGRAMM C	212412_at	AV715767	DKFZp564A072	18.2	16.2	41.3	72.5	67.3	7.7	7.7	16.3	11.6	6.4	6.3	-6 -	12.7	3.7	3.1	4 .1	8.0	3.3	18.3	3.2017
21509_aii AB014731.1 SMAP-3	215215 s at	AC004381	CITOROSOME 18 BAC CONE	2.9	2.5	80.	12.8	10.4	9.0	6.0	1.4	0.8	0.1	0.0	0.2	0.8	0.1	0.4	0.3	0.4	0.3	0.5	3.198
218352-ai NM_018439.1 hypothetical protein IMPACT	221509 at	AB014731.1	SMAP-3	2.6	5.4	13.2	48.5	32.4	5.2	5.7	18.1	10.7	3.5	3.8	11.4	8.1	8.2	5.8	0.9	1.4	7.5	8.0	3.1618
NM_018191.1 hypothetical protein FLJ10716 0.8 6.5 4.9 13.7 8.7 2.3 1.7 3.4 3.9 1.0 2.0 2.8 3.6 0.8 2.3 2.0 1.7 2.2 2.4 2.5 1.9 1.1 26.7 22.4 2.5 1.5 3.4 2.5 1.9 1.1 2.3 1.6 4.6 2.5 1.3 0.1 2.2 8.1 2.0 1.1 2.0 1.2 2.4 2.5 1.3 0.1 2.3 1.6 4.6 2.5 1.3 0.1 2.2 8.1 2.0 1.1 2.1 2.2 2.4 2.5 1.3 0.1 2.3 1.1 0.4 0.4 0.5 1.1 0.4 0.3 1.1 0.4 0.4 0.6 0.5 1.1 0.1 0.4 0.4 0.5 1.1 0.1 0.4 0.4 0.5 1.1 0.1 0.4 0.5 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		NM_018439.1	hypothetical protein IMPACT	1.3	2.4	2.9	10.7	9.3	1.5	1.5	2.7	2.1	9.0	0.7	9.0	9.0	1.2	8.0	7.0	6.0	- :	2.1	3.1587
AV081194 KIAA0379 AL136105 Idealia myeloid leukemia 1) oncogerie 1.5 0.2 3.1 9.4 7.5 2.0 2.5 1.7 1.7 1.0 1.4 0.3 1.1 0.4 0.4 0.5 1.3 0.1 2.2 8.1 AL136105 (galectin d) according, soluble, 8 acetyl-Coenzyme A transporter 2.1 1.1 4.8 9.1 6.4 1.9 1.8 3.0 1.8 1.2 1.4 2.7 1.6 2.7 1.6 2.1 1.2 1.2 1.7 1.3 0.9 BE464756 acetyl-Coenzyme A transporter AB003476.1 Akmase (PRKA) anchor profein (gravin) 12 25.1 4.9 44.0 69.5 59.6 1.5 0.4 0.6 0.8 0.1 0.2 1.0 3.0 0.9 0.8 0.5 0.1 0.3 18.8 AF102988 1 isoform	218352_at	NM_018191.1	hypothetical protein FLJ10716	0.8	0.5	4.9	13.7	8.7	2.3	1.7	3.4	3.9	1.0	2.0	2.8	3.6	0.8	2.3	2.0	1.7	2.2	2.4	3,1058
AL136105 deaching soluble. 8 AL136105 deaching bringing soluble. 8 AL136105 deaching bringing soluble. 8 AL136105 deaching deaching soluble. 8 AL136105 deaching deaching soluble. 8 AL136105 deaching deaching deaching soluble. 8 AL136105 deaching deaching deaching deaching soluble. 8 AL136105 deaching deachi	213035_at	A1081194	KIAA0379	2.1	3.8	1.1	26.7	22.4	2.5	1.5	3.4	2.5	1.9	1.1	2.3	1.6	4.6	2.5	1.3	0.1	2.2	8.1	3.0937
AL136105 (gatecin galactoside-binding, soluble, 8 a.1.1.1.1.4.8 9.1.6.4.1.9 1.8 3.0 1.1.8 1.2 1.4 2.7 1.6 2.1 1.2 1.2 1.7 1.3 0.9 BE464756 acety-Conzyme A ligase, very NM_003645.1 bong-chain (FACVL1) AB003476.1 A kinase (PRKA) anchor protein (gravin) 12 25.1 4.9 44.0 69.5 59.6 1.5 0.4 0.6 0.8 0.1 0.2 1.0 3.0 0.9 0.8 0.5 0.1 0.3 18.8 AF102988.1 isoform	211180_x_at	D89788.1	ami 1 (acute myeloid leukemia 1) oncogene	1,5	0.5	3.1	4.6	7.5	5.0	2.5	1.7	1.7	1.0	1.4	0.3	1.1	0.4	0.4	9.0	1.1	0.7	0.5	3.0936
HELGATS6 (gatecim of a cay-U-Coenzyme A transporter 2.3 1.9 3.7 12.6 12.4 2.5 1.9 4.0 2.7 1.1 0.6 1.2 1.7 1.4 2.3 2.6 2.1 2.7 2.7 2.5 EEGATS6 (attraction of a cay-U-Coenzyme A ligase), very 3.0 1.7 3.9 10.7 7.7 0.4 0.1 0.6 0.2 0.1 0.8 0.1 0.7 0.0 0.8 0.1 0.2 0.1 0.1 EEGATS6 (Attracted (pravial) 12 25.1 4.9 44.0 69.5 59.6 1.5 0.4 0.6 0.8 0.1 0.2 1.0 3.0 0.9 0.8 0.5 0.1 0.3 18.8 EEGATS6 (Attracted (pravial) proportion of a cay-independent phospholipase A2 short 2.3 1.1 18.7 13.2 9.1 3.4 3.3 4.0 4.5 3.3 5.0 4.2 3.6 1.8 3.5 4.4 1.8 2.8 2.2	10.0000	100001	lectin, gatactoside-binding, sotuble, 8		į	•	3	3	,	•			ç	1	,	4		÷	,			0	37905
AB003476.1 A kinase (PRKA) anchor problem (gravin) 12 25.1 13.1 18.7 13.2 9.1 3.4 4.5 3.3 5.0 4.5 3.5 5.0 4.2 3.6 1.8 3.5 4.4 1.8 2.8 2.2	2000 - S-di	AC 136 103	(gerecini d)		: ;	, ,	, ç		<u>.</u>	9 9	9 9	? ;	y ,		; ;			! ;	i 4	: ;			2063
NM_003645.1 falty-acid-Coenzyme A ligase. very NM_003645.1 A kinase (PerkA) archor protein (gravin) 12 25.1 4.9 44.0 69.5 59.6 1.5 0.4 0.6 0.8 0.1 0.2 1.0 3.0 0.9 0.8 0.1 0.2 0.1 0.1 AB003476.1 A kinase (PerkA) archor protein (gravin) 12 25.1 4.9 44.0 69.5 59.6 1.5 0.4 0.6 0.8 0.1 0.2 1.0 3.0 0.9 0.8 0.5 0.1 0.3 18.8 Ca2x-independent phospholipase A2 short 2.3 1.1 18.7 13.2 9.1 3.4 3.3 4.0 4.5 3.3 5.0 4.2 3.6 1.8 3.5 4.4 1.8 2.8 2.2	203164_at	85464756	acetyl-Coenzyme A transporter	3	Ji		17.0	17.4	6.3	?:	0.4	7	:	o.	7.7	<u>:</u>	<u>*</u> .	3	0.7	- •	7.		9.00
AB003476.1 A kinase (PRKA) anchro protein (gravin) 12 25.1 4.9 44.0 69.5 59.6 1.5 0.4 0.6 0.8 0.1 0.2 1.0 3.0 0.9 0.8 0.5 0.1 0.3 18.8 Ca2*-independent phospholipase A2 short 2.3 1.1 18.7 13.2 9.1 3.4 3.3 4.0 4.5 3.3 5.0 4.2 3.6 1.8 3.5 4.4 1.8 2.8 2.2	205768 s at	NM 003645.1	fatty-acid-Coenzyme A ligase, very tono-chain 1 (FACVL1)	3.0	1.7	3.9	10.7	7.7	0.4	0.1	9.0	0.5	0.1	8.0	0.1	0.7	0.0	8.0	0.1	0.2	0.1	0.1	3.0353
Ca2+ independent phospholipase A2 short 2.3 1.1 18.7 13.2 9.1 3.4 3.3 4.0 4.5 3.3 5.0 4.2 3.6 7.8 3.5 4.4 1.8 2.8 2.2	210517_s_at	AB003476.1	A kinase (PRKA) anchor protein (gravin) 12	25.1	4.9	44.0	69.5	59.6	1.5	0.4	9.0	0.8	0.1	0.2	1.0	30.	6.0	8.0	0.5	0.1	0.3	18.8	3.0146
AF102988.1 isoform 2.3 1.1 18.7 13.2 9.1 3.4 3.3 4.0 4.5 3.3 5.0 4.2 3.6 1.8 3.5 4.4 1.8 2.8 2.2			Ca2+-independent phospholipase A2 short															•					
	210647 x at	AF102988.1	isoform	2.3	=	18.7	13.2	9.1	3.4	3.3	0.4	4.5	3.3	5.0	4.2	3.6	1.8	3.5	4.4	<u>8</u>	82	22	3.002

Probe set	Accession #		Transcripts	MC. cord blood	MC.	Ba 1	Ba 2 (small)	Ba 3 (small)	Eo 1	E0 2	Eo 3 (small)	Eo 4 (small)	2 ←	å ç	Ne 3 (small)	Ne 4 (small)	2	CD 4	CD8	CD 14	CD 19	. &	Eo S.I.
207328 at	NM 001140.1		15-lipoxygenase	0.1	9.0	2.0	0.1	0.1	14.5	24.6	18.3	17.0	0.1	1.1	0.1	0.7	0.7	0.0	0.1	0.0	0.1	0.0	74.129
219695_at	NM_024703.1		FLJ22593	0.0	1.0	8:	1.8	7:	29.8	34.7	24.8	27.8	0.8	1.5	0.4	6.0	0.1	9.0	0.4	0.3	0.1	0.1	19.123
208253_at	NM_014442.1	α	sialic acid binding Ig-like lectin. Siglec 8	1.3	2.4	0.4	0.4	0.5	17.1	23.1	17.6	11.8	0.1	0.4	0.1	0.8	0.3	0.2	0.1	0.5	0.5	0.5	9.8056
211922_s_at	AY028632.1		catalase	3.7	2.5	6.2	6.8	2.2	78.2	134.5	119.7	88.8	16.2	13.0	8.8	8.7	0.7	2.2	5.9	1.1	7.5	4.6	9.125
201802_at	NM_004955.1		solute carrier family 29 (nucleosidetransporters)	4.00	2.8	5.9	3.4	1.9	24.8	30.4	36.1	42.3	0.1	9.0	9.0	0.8	0.5	6.0	0.3	2.2	1.0	1.1	8.989
214523_at	NM_001805.1		CCAATenhancer binding protein (CEBP), epsilon	0.1	0.1	7.0	1.2	. 1.2	7.9	11.4	23.4	17.3	1.8	1.5	6.	1.1	1.4	0.5	9.0	1.0	0.1	0.1	8.9462
210029_at	M34455.1		interferon-gamma-inducible indoleamine 2.3-dioxygenase	0.7	0.1	5.3	4.2	2.6	20.0	39.0	33.4	29.5	1.6	2.1	2.3	1.8	1.7	1.5	1.7	0.3	4.4	6.0	7.7078
215573_at	AU147084		FLJ12072	0.1	0.1	0.5	0.3	1.1	9.6	8.4	16.9	7.2	0.4	1.9	1.8	5.0	0.1	0.1	0.0	0.1	7.0	0.0	7.5983
201801_s_at	AF079117.1		solule carrier family 29 (nucleosidetransporters)	3.5	6.1	1.7	0.5	0.9	29.7	47.1	7.4	11.0	0.1	0.5	, O.4	0.7	7	6.0	0.1	4.	9.0	1.0	7.0314
213825_at	AF221520.1		oiigodendrocyte lineage transcription factor 2	0.4	9.0	0.2	0.4	9.0	6.0	10.9	18.7	12.5	9.0	6.0	1.5	1.0	9.0	1.7	0.3	0.4	0.3	0.3	6.5987
219821_s_at	NM_018988.1		glucose-fructose oxidoreductase domain containing	3.0	1.4	6 .	5.6	2.3	18.7	17.3	30.9	31.3	3.9	3.1	2.4	2.9	3.2	1.3	5.5	3.0	3.8	9.0	6.2284
205472_s_at	NM_004392.1		dachshund (Drosophila) homolog	0.0	0.1	.0.1	0.4	0.1	2.7	4.1	2.2	1.7	0.3	0.1	0.1	0.1	0.5	0.1	0.1	0.1	0.3	0.0	6.0088
202 188_at	NM_014669.1		KIAA0095	0.5	6.0	0.4	1.8	1.2	6.8	8.5	13.5	10.6	0.2	0.5	0.2	0.1	0.5	0.3	1.7	1.7	4.4	0.4	5.4499
210548_al	U58913.1		chemokine CCL23	9.0	1.8	0.4	1.1	0.5	5.5	6.2	4.2	6.9	. 0.1	0.9	0.1	0.5	0.3	0.1	0.2	9.0	0.1	0.0	5,3082
209447_at	AF043290.1		protein (8B7)	9.0	0.5	2.5	3.4	3.6	41.8	49.7	66.2	60.1	0.5	6.0	0.5	1.2	5.6	5.1	10.4	1.6	8.3	2.7	5,1472
206171_at	NM_000677.2	GPR	ADORA3 adenosine A3 receptor	2.3	2.8	5 .8	3.7	2.2	7.8	13.9	22.0	17.9	1.6	3.1	2.2	2.5	1.2	1.6	0.5	5.0	0.5	0.5	5.0469
210549_s_al	U58913.1		chemokine CCL23	1.1	1.1	0.1	1.3	0.6	7.9	5.6	2.7	. .	0.0	9.0	0.0	0.5	0.1	0.1	0.1	0.5	0.0	7 :	4.9873
214183_s_al	X91817.1		transketolase-like protein	0.1	0.5	0.5	0.1	0.1	3.2	4.0	8.8	7.2	0.5	0.5	0.1	0.1	0.5	0.5	1.0	0.1	9.0	0.0	4.7894
215350_at	AB033088,1		envelope 1	0.1	0.1	0.5	0.1	0.1	3.8	4.2	3.0	2.8	0.0	0.1	0.5	0.4	0.7	0.5	0.1	0.0	0.1	0.5	4.7822
206277_at	NM_002564.1	GPR	P2Y2 purinergic receptor	0.1	0.1	0.1	0.5	0.1	3.4	4.7	8 .	5.9	0.1	0.3	0.1	0.1	0.5	0.1	0.3	1.2	0.5	0.1	4.3043
204776_at	NM_003248.1		thrombospondin 4 (THBS4)	0.8	0.1	5.	0.1	0.8	3.2	5.9	10.0	6.4	7.8	1.4	9.0	0.9	0.3	0.5	0.3	4.4	1.1	1.2	4.1746
201563_et	L29008.1		L-idital-2 dehydrogenase	4.	5.6	3.5	11.4	12.8	22.5	5 9. 9	49.0	37.0	-	3.0	4.4	2.2	2.1	9.	1.2	2.7	2.5	8 .8	4,1557
206637_at	NM_014879.1	GPR	P2YX purinergic receptor GPR105 for UDP-glucose	5.7	1.6	13.3	19.9	13.5	44.2	55.1	81.4	62.4	1.8	9.3	15.4	9.5	0.7	6.0	0.8	0.0	5.5	0.1	3.8761
213622_at	AI733465		collagen, type IX, alpha 2	1.5	1.4	6 ;	1.2	1.3	10.3	9.6	9.9	8.8	2.7	2.1	2.1	2.2	0.7	1.2	1.2	2:5	-	0.9	3.8576
214705_at	AJ001306.1		PDZ domain protein	0.1	0.1	0.4	0.3	0.1	2.1	1.5	5.6	2.2	.03	0.0	9.0	0.7	0.1	0.4	0.3	0.3	9.0	0.1	3.6532
266_s_at	L33930		CD24 signal transducer	0.2	0.1	3.0	0.3	8. 6	11.9	14.0	18.8	13.9	0.7	0.7	0.3	8.0	6.0	0.0	0 4	60.7	4 6	2.2	3.3793
201432_al	NM_001/52.1		catalase (CAT)	9 0	5.6	7.6	4.64	. W	20.2	27.7	0.1.22 0.1.22	20.5	9 6	, c	2.4	1.5	4. 6	, 0		, e	} -	90	3.3089
216379_x_al	AK000168.1		CD24 signal transducer	÷.	4.	16.2	6.0	1.5	96.1	70.1	81.9	77.9	1.7	2.8	5.6	1.7	80	0.5	9.0	6.0	22.5	0.5	3.2741
205569_at	NM 014398.1		lysosome-associated membrane alycoprotein (TSC403)	0.4	0.2	0.7	0.1.	0.4	2.4	3.1	89	3.0	9.0	0.1	1.4	0.8	9.0	Ξ	0.7	0.1	0.0	0.3	3.2308
219233_s_at	NM_018530.1		hypothetical protein PRO2521	0.1	1.9	2.1	4.6	5.4	7.5	8.5	21.8	21.2	0.8	0.1	1.5	2.1	0.1	1.1	4.1	0.1	1.4	0.5	3.2093
202286_s_at	J04 152		gastrointestinal tumor-associated antigen GA733-1	6.0	0.7	£.	0.3	0.1	7:	2.5	8.7	1.8	9.0	0.8	9.0	9.0	0.5	0.2	0.7	0.3	0.5	0.1	3.1844
206442_at	NM_003007.1		semenogelin 1 (SEMG1)	9.0	0.1	0.4	0.0	0.1	1.2	3.2	6.9	3.4	0.3	0.2	1.1	4.9	0.1	0.2	0.5	6.0	0.4	0.1	3.1837
205733_at	NM_000057.1		Bloom syndrome	1.9	1:1	5.0	5.4	2.2	8.5	6.0	7.5	11.2	2.1	5.0	1.0	1.2	1.2	2.4	1.8	1.1	5.6	1.2	3.1427
204392_at	NM_003656.2		calciumcalmodulin-dependent protein kinase I (CAMK1)	4.0	1.1	6.3	8.9	6.4	17.8	19.3	24.9	26.5	9.0	0.2	1.8	1.5	0.1	4.4	1.0	3.0	9.0	6 .	3.0763
213497_at	AL050374.1		DKFZp586C1619	1.0	0.7	1.0	1.3	1.6	8.3	6.8	6.8	6.0	2.3	3.0	1.4	2.3	5.0	0.4	0.5	1.6	1.1	0.8	3.0099
219296 at	NM 019028.1		similar to ankyrinrepeat-containing priotein AKR1	2.2	1.7	0.5	3.5	1.6	7.3	4.4	8.4	7.4	1.8	. 7	2.4	2.3	0.1	1.4	1.6	1.3	6:	9.0	3.0018

C. Neutrophil (Ne)-selective transcripts (1/7).

Probe set	Accession #		Transcripts	MC. blood	MC.	B 3 ←	Ba 2 (small)	Ba 3 (smatt)	Eo 1	Eo 2	Eo 3 (small)	Eo 4 (small)	Ne 1	Ne 2	Ne 3 (small)	Ne 4 (small)	. Id	CD4	CD8	CD14	CD19	Fb	Ne S.I.
205403_at	NM_004633.1	œ	intedeukin 1 R. type II	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	37.4	41.4	73.8	61.5	0.2	0.4	0.1	0.2	0.0	0.0	127.86
216782_at	AK026679.1		FL.J23026 fis	0.0	0.2	.0.2	0.1	0.1	0.1	0.1	0.5	0.2	33.2	31.5	33.0	17.4	0.1	0.1	0.1	0.1	0.2	0.2	112.28
210119_at	U73191.1	Š	Channel Kirl 3	0.7	1.1	0.1	0.1	0.5	0.1	0.1	6.0	9.0	81.6	98.6	129.0	88.8	0.7	0.5	0.0	0.8	0.0	0.0	107.47
209395_at	M80927.1		chitinase 3-tike 1 (cartilage glycoprotein-39)	1.5	0.5	6.0	0.1	0.4	0.3	0.1	 1	0.1	28.9	25.3	7.07	40.7	0.1	0.0	0.1	0.1	0.1	0.0	79.595
203691_at	NM_002638.1		protease inhibitor 3, Skin-derived (SKALP)	0.5	0.1	0.1	0.1	0.8	0.5	0.2	0.4	0.1	16.9	36.7	7.72	24.5	0.1	. 0.1	0.1	0.1	0.5	0.1	51.901
211372_s_at	U64094.1	α	interleukin 1 R. type It	0.1	0.2	0.1	0:1	0.0	0.1	0.5	0.7	0.1	21.6	36.5	31.4	29.9	0.3	0.2	0.0	9.0	0.0	0.0	50.606
207008_a1	NM_001557.1	GPR		0.0	0.4	7	12	1.0	t.	1.3	2.1	1.2	129.8	168.4	81.5	8.89	2.7	0.3	8.0	0.7	9.0	0.0	39.316
206515_at	NM_000896.1		feukotriene B4 omega hydroxylase (CYP4F3)	0.3	0.1	Ξ	0.7	1.2	0.5	9.0	6.9	1.7	56.8	40.3	57.2	48.9	0.5	0.9	0.0	0.7	0.3	0.3	34,919
204007_at	J04162.1	œ	Fc gamma R lilb (CD16)	0.8	0.7	1.4	1.6	1.8	1:1	1.8	2.8	1.9	204.5	226.5	194.0	173.3	9.9	1.3	1.3	2.2	5.6	0.1	29.895
204470_at	NM_001511.1		activity, alpha	1.2	0.0	7.0	6:0	0.1	9.0	0.5	1.2	0.7	19.1	23.0	26.3	48.1	0.1	0.5	0.2	1.0	0.1	0.2	28,189
206025_s_at	AW188198		tumor necrosis factor, alpha-induced protein 6	0.1	0.3	0.1	9.0	0.4	9.0	0.1	0.2	0.1	19.0	29.9	17.2	24.7	0.1	0.2	0.2	9.0	0.3	9.0	26.336
209396_s_at	M80927.1		glycoprotein.39)	4.8	0.5	9.1	0.4	0.5	9.0	0.5	5.6	6.0	37.9	32.2	52.8	26.7	1.4	0.0	0.0	0.1	0.1	0.4	25.669
211806_s_at	087291.1	Ş	channel Kirt.3	0.9	1.7	5.0	1.4	1.4	2.1	1.3	1.8	1.7	62.2	77.2	77.5	56.8	3.0	1.0	1.1	1.7	6'0	0.7	22.254
221920_s_at	BE677761		milochondrial solute carrier	0.4	9.0	6.9	0.0	0.5	2.4	1.5	2.2	1.5	9.0	43.2	57.4	48.8	2.5	0.7	0.3	1 .8	Ξ	1.0	20.163
207094_at	NM_000634.1	GPR		0.3	0.1	4.2	4.3	4.4	0.3	0.3	0.2	0.3	69.2	81.9	95.3	87.4	0.4	0.3	0.2	0.2	0.1	0.1	19.325
213589_s_at	AW468201		23614 mRNA sequence	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	5.5	2.7	5.1	4.0	0.1	0.1	0.2	0.1	0.1	0.0	18.973
218963_s_at	NM_015515.1		DKFZP434G032	0.0	0.1	0.5	0.3	. 0.1	7	2.8	2.8	2.0	48.3	32.5	40.3	31.3	0.3	0.3	0.1	0.1	0.1	0.1	18.3
213506_at	BE965369	GPR	receptor-2	0.1	0.0	0.0	0.4	0.3	1.2	1.3	4.1	2.3	33.4	35.7	42.4	33.4	0.1	0.7	0.1	1.8	0.4	1.2	18.208
220187_at	NM_024636.1		FLJ23153	0.3	0.1	0.3	0.1	0.1	0.0	0.1	0.5	0.5	16.5	26.3	5.7	7.0	0.0	0.1	0.1	0.7	0.1	0.5	17,111
206026_s_at	NM_007115.1		titmor necrosis ractor, elpha-induced protein 6	0.1	9.0	9.0	9.0	9.0	7	0.5	6.0	0.1	18.2	23.3	20.0	17.0	9.0	1.0	1.0	7	0.1	1.0	17.051
41469_at	L10343		elafin	1.2	0.7	1.2	9.0	0.8	6.0	1.0	0.7	9.0	16.2	39.1	19.5	17.4	1.3	1.4	0.7	9.0	0.5	0.5	15.913
205568_at 210483_at	NM_020980.2 BC005043.1	ž œ	aquaporin 9 decov receptor 1, TRAILR3	0.5	0.0	0.0	<u>6</u> 60	0.7	0.7 0.0	0.0	0.t E.t	1.5	133.3	136.7 23.2	169.0 9.7	110.5 8.6	0.7	0.0	0.3	8.6 0.2	0.7	0.2	15.805
215223_s_at	W46388		superoxide dismutase 2	4.4	4.9	1.7	4.9	8.7	5.8	3.3	6.0	8.3	124.6	153.1	142.4	151.8	±.0	1.6	:	7.3	5.5	1.5	13.008
210484_s_at	BC005043.1	œ	decoy receptor 1, TRAILR3	0.9	6.0	6:0	0.2	0.1	2.2	8.8	0.8	9.0	60.1	86.3	4.7	5.9	0.5	9.0	0.4	6.0	0.4	0.5	12.748
205654_at	NM_000715.1		complement component 4-pinding protein, alpha	0.5	1.1	1.3	0.7	0.7	1.5	1.0	1.3	1.4	2.1	20.7	43.6	33.7	1.2	0.3	1.3	1.2	1.2	6.0	12.161
210773_s_at	U81501.1	GPR	formyl peptide receptor 2	0.8	0.1	9.0	9.0	0.3	9.0	9.0	9.0	0.5	86 .9	105.0	50.2	29.9	0.1	1.0	9.0	0.9	0.8	0.1	12.14
206222_at	NM_003841.1	œ	decoy receptor 1. TRAILR3	1.5	9.0	6.	0.7	0.7	3.6	13.7	3.4	9.9	121.0	137.1	37.5	22.5	0.0	0.1	0.1	6 .	0.5	0.4 1.0	12.034
202083_s_at	NM_003003.1		SEC14 (S. cerevisiae)-like 1	9.0	0.5	6.0	8.	3.0	2.2	5.6	3.8	2.6	36.7	25.9	33.9	32.6	1.3	0.1	0.1	Ξ	0.	0.7	11.729
211163_s_at	AF012536.1	œ	decoy receptor 1, TRAILR3	0.2	0.1	2.2	1.5	0.6	5.6	12.3	9.4	6.4	87.9	110.9	60.4	55.8	0.5	0.5	0.1	0.7	0.1	9.0	11.404
205931_s_at	NM_004904.1		protein CRE-BPa	0:0	0.1	0.3	0.1	9.0	9.0	9.0	9.0	0.7	23.2	14.5	20.5	12.9	1.6	0.8	0.1	9.	0.1	0.1	10.618
205922_at	NM_004665.1		vanin 2	0.1	0.0	1.2	5.6	3.9	1.0	0.2	1.9	0.3	114.5	114.6	174.1	189.2	0.1	1.4	4.0	13.8	1.7	0.0	10.451
210176_a1	AL050262.1	œ	Toll-like receptor 1	0.7	9.0	0.5	0.3	0.3	0.5	7	1.9	. 1.2	29.5	38.6	25.1	32.6	1.6	0.8	0.7	3.0	1.5	. 0.3	10.418
215977_x_at	X68285.1		glycerof kinase	1.9	. 6:0	.0.8	0.7	1.0	0.3	9.0	0.9	1.0	15.8	19.8	7.6	10.9	0.1	0.1	0.5	0.2	0.5	0.3	10.203
215783_s_at	X14174.1		liver-type: alkaline phosphatase	0.5	7.7	0.7	0.9	0.4	7.0	0.5	0.0	0.6	21.2	42.8	£ .	12.8	2.5	0.7	0.5			6.5	10.167
217167_x_at	AJ252550		GK gene for glycerol kinase, exon 1	7.5	0.7	0.5	0.3	0.5	0.2	0.1	9.6	0.3	8.0 8.0	13.6	7.5 19.5	7.2	4. 0	0.1	7.0	6.0	0.5	0.5	10.067
213349 at	A1934409		Nickelling	9.5	3	ŝ		3.	Ċ.		3	į	3	2.2	?		ŝ	2	?	?	!	!	5

																		1				l	
				MC.	M.	Ba	Ba 2 E				E03				Ne 3	Ne 4		į	į				;
Probe set	1		Traoscripts	poold	ing	_	٦	smali)	E0 1	E02]	small)	Ne 1	Ne 2	small)	(small)	۵	Š	803	CD14	6103	2	Ne S.I.
210789_x_at	L00692.1		carciooembryonic antigen (CGM1)	1.1	0.4	1.9	1.4	1.5	2.0	1.5	2.5	0.4	19.4	18.6	22.6	15.5	0.7	1.6	6.0	5.0	0.3	1.1	9.2749
210772_at	M88107.1	GPR	formyl peptide receptor 2	0.1	0.5	9.0	0.7	0.7	0.7	. 0.3	0.8	0.7	51.4	67.7	44.8	46.4	0.5	0.5	0.5	5.6	0.1	0.1	9.2661
218978_s_at	NM_018586.1		PRO1584	0.7	0.5	9.	0.2	0.5	Ξ	6.0	0.7	0.5	26.3	20.5	9.6	8.2	0.5	0.7	0.4	1.1	0.5	0.4	9.1536
204006_s_at	NM_000570.1	œ	Fc gamma R IIIb (CD16)	0.7	0.5	1.2	0.7	9.0	7.0	8.0	0.0	7.0	230.7	278.8	47.6	45.9	4.2	1.9	6.9	12.0	3.9	0.1	9.0769
207275_s_at	NM_001995.1		fatty-acid-Coenzyme Aligase. tong-chain 1 (FACL1)	4.3	2.6	5.1	11.5	19.4	5.3	5.1	5.9	3.7	93.8	127.8	92.8	69.1	7.0	1.0	1.1	8.3	6.0	1.7	8.9855
220302 at			mate germ cett-associated kinase	0.1	0.0	1.3	0.7	8.0	0.7	0.2	2.0	1.4	7.9	8.4	6.7	8.9	0.3	0.1	0.0	0.1	0.1	0.0	8.866
221803_s_at			nuclear receptor binding factor-2	F	8.0	3.2	4.0	5.9	5.8	2.8	4.7	3.2	24.7	25.2	33.2	29.3	0.1	1.5	1.2	1.7	2.0	5.6	8.3788
2067 6 5_at	AF153820.1	Š	channel Kir2.1	1.0	9.0	2.5	4.4	4.4	2.4	4.7	6.1	8.0	25.8	36.2	52.4	48.3	0.4	0.5	0.5	1.5	0.7	1.1	8.108
213351_s_at	A1934469		KIAA0779	0.0	0.1	6.0	2.0	1.6	8.0	9.0	2.3	2.7	7.9	5.9	20.1	18.0	0.2	0.5	0.2	0.1	0.5	1.2	7.9705
214590_s_at	AL545760		ubiquifin-conjugating enzyme E2D 1	0.1	5.	0.3	0.4	0.5	:	1.0	0.5	9.0	7.9	10.7	10.1	4.4	0.1	9.4	6.0	0.	9.0	6.0	7.8712
206522_at	NM_004668.1		(CYP4F3)	0.0	0.0	8.0	1.8	1.0	3.0	5.4	11.7	9.4	46.0	51.5	56.9	43.0	0.1	0.0	0.0	9.0	9.0	0.1	7.5773
210992_x_at		α	Fc gamma receptor tlc2	1.9	1.0	1.7	2.1	3.3	8. 1.	16.1	2.8	4.2	70.9	95.6	42.8	30.5	0.3	0.5	0.1	7.2	2.3	0.2	7.5239
220528_et	NM_018399.1		VNN3 protein	0.1	0.2	1.3	8.1	5.0	0.2	0.1	0.5	0.4	8.92	22.1	20.0	36.8	8.0	0.5	0.1	3.0	0.1	0.1	7.5216
200919_at	NM_004427.1		early development regulator 2	5.6	4.4	8.	6.5	9.6	9.7	6.8	5.3	7.3	109.5	89.0	52.9	61.4	2.5	6.4	7.0	10.0	3.9	6.5	7.5056
207387_s_at			glycerol kinase	2.1	.1.5	1.0	1.5	1.6	7.	1.4	1.6	1.4	14.3	20.3	10.7	10.3	6.0	9.0	0.3	1.7	0.6	9.0	7.4603
117_at			heat-shock protein HSP70B	Ξ	0.5	8.0	9.0	6.0	5.9	8.3	2.1	4.1	46.3	41.2	25.1	25.8	9.0	6.0	9.0	3.7	1.6	0.5	7.4139
205174_s_at	NM_012413.2		glutaminyl-peptide cydotransferas	₽.0	0.0	9.0	0.7	6.0	7.0	0.0	0.4	0.3	30.1	47.7	36.4	24.7	0.7	9.0	0.0	4.6	0.1	1.5	7.3248
219434 at			triggering receptor expressed on myetoid cells 1	.3	0.3	0.4	0.2	0.5	2.9	0.7	4.4	1.5	92.8	94.0	81.2	98.8	9.	9.0	0.1	12.3	0.9	0.3	7.2368
203887 s at			thrombomodulin	1.7	0.1	0.4	0.4	0.4	0.2	1.0	1.4	1.1	16.8	13.0	13.4	1.3	0.7	9.0	0.4	1.1	9.0	0.5	7.1328
205040_at			prosomucaid 1 (ORM1)	0.5	0.1	0.1	0.4	0.1	0.1	0.0	1.1	0.0	3.4	4.1	4.3	0.7	0.1	0.3	0.1	0.4	0.0	0.5	7.0823
214681 et	A1830490		alycerol kinaso	0.5	0.4	0.1	. 4.2	1.7	8.0	1.1	9.0	1.2	7.8	14.2	24.0	12.1	6.0	0.0	0.1	1.9	1.0	0.3	6.966
218035_s_at			FLJ20273	2.9	1.0	6.0	1.5	8.0	0.9	0.4	1.3	1.1	47.2	54.4	91.9	94.0	1.7	2.0	9.0	6.6	1.5	0.3	8.9074
205068 s at			GTPase regulator associated with the focal adhesion kinase po125(FAK)	1.2	1.4	3.5	6.5	5.1	6.5	5.1	8.5	1.7	43.7	40.6	45.2	56.0	0.7	1.3	2.9	5.1	0.8	1.2	6.8934
,			secretory leukocyte protease	;	. 6	:		•	,				,		•			0	;	,		;	27707
203021_at	NM_003064.1		inhibitor (antileukoproteinase) (SLPI)	<u>:</u>	8.	4 .	ç.	-	7.	. 77	o O	0.8	7.91	o n		ò	0.	5	Ž.	3		<u>.</u>	0.743/
216316_x_at	X78713		chromosome 1	5.0	6.0	0.4	9.0	1.0	0.7	9.0	0.5	1.0	10.3	18.6	5.8	5. 8.	0.5	0.2	0.5	0.8	0.3	. 0.1	6.6675
217209_at	X16454		carcinoembryonic antigen subdomains A and B	9.0	0.4	0.2	0.2	0.4	0.1	0.3	0.7	0.5	2.8	3.8	3.3	2.7	0.3	0.4	0.0	0.1	0.1	0.2	6.5382
220421_at	NM_024850.1		FLJ21458	0.3	9.0	0.1	0.1	0.1	6.0	8.0	0.4	6.0	8.9	7.2	9.1	7.0	1.2	9.0	0.0	0.1	0.1	0.5	6.4857
213524_s_at	NM_015714.1		putative lymphocyte G0G1 switch gooe (G0S2)	0.8	8.0	1.3	6.0	0.5	8.0	8.5	18.7	10.1	118.0	. 25.0	39.8	92.5	1.7	0.8	0.1	6.0	0.2	3.4	6.4779
206472 s at			transducin-like enhancer of solit 3	2.2	2.6	1.3	0.7	0.5	9.1	9.0	0.5	1.0	22.6	25.0	1.3	8.3	1.3	1.2	1.5	6 .	1.5	0.9	6.4334
212769_at			KIAA1547	4.	1.5	0.5	1.3	2.3	7	1.0	2.2	1.9	17.9	15.9	15.1	12.8	2.4	8.0	- :	1.3	1.2	0.5	6.4271
204307_at	AB002295.1		KIAA0329	0.7	0.0	0.1	5.6	2.1	1.8	1.5	2.4	5.0	10.3	11.2	15.4	12.8	1.9	0.1	9.0	0.5	0.1	0.5	6.3478
203591_s_at	NM_000760.1	œ	granulocyte colony-stimulating factor receptor	0.1	0.0	1.0	0.1	0.2	2.3	9.0	2.4	1.0	220.3	187.2	134.9	112.1	0.2	0.8	0.2	25.5	0.1	0.2	6.2051
210210 at	AF 18 1660 1		immunoglobulin superfamity member WM78	60	-	8,	60	6.	7	6	1.7	2.0	1.1	7.0	13.7	14.1	1.4	1.3	6.0	9.	-	9.0	6.172
218610 s at			FLJ1151	1.5	1.2	1.2	1.2	8.	3.3	3.2	2.6	8.	25.2	23.3	17.9	21.8	0.5	9.0	0.4	3.6	0.4	9.0	6.112
203561 at		œ	Fc gamma receptor Ita (CD32)	4.7	1.2	6.0	1,2	2.4	19.5	22.8	19.4	21.4	104.3	129.0	153.0	123.9	4.0	0.7	0.7	18.3	2.2	0.5	6.1015
216841 s at		:	superoxide dismutase 2	1.3	1	1.2	8.	2.2	4.	1.3	3.2	2.4	20.5	44.6	35.8	42.2	5.6	8.0	0.7	2.0	0.7	1.	6.0724
	l			١																			

C. Neutrophil (Ne)-selective transcripts (2/7).

	_
7	
Г	`
_	`
۲	∿.
`	_
	_
-2	"
į	Ξ.
. :	_
٠,	=
7	-5
7	z
	"
- 1	_
	Ħ
- 1	_
•	•
	•
	>
٠.	₹
7	∹
	ĸ
,	201122
7	
5	ř
•	ŗ.
	Ļ
'	_
7	7
₹	-
L:1	_
•	-
• •	=
نے	_
1	۵.
- 7	1
- 1	_
:	carrot
•	₹.
:	∹
3	~
Z	7
•	_
	٠
7	j

Ř	Accession #		Transcripts	cord N blood to	MC. Ba tung 1		Ba 2 Ba 3 (small) (smal	Đ	Eo 1 Eo	Eo 3 2 (small)	Eo 4	. Ne 1	Ne 2	Ne 3 · (small)	Ne 4 (small)	þ	CD4	CD8	CD14 (CD19	Fb	Ne S.I.
207624 s. at NI	NM_000328.1		retinitis pigmentosa GTPase regulator (RPGR)	0.0	0.6	1.1	2.0	1.2	1.1	1.2 2.1	.1 2.	1.7	7.0	13.6	15.1	0.2	1.2	0.4	6.0	0.7	0.3	6.0348
	BC005406.1		Cdc42 effector protein 2	0.5	0.2	1.3	0.2	1.0	0.2	0.4 0	0.5 0.	13.2	9.6	6.7	8.7	0.5	0.5	0.2	9.0	0.4	1.6	5.9313
_	NM_004994.1		matrix metalloproteinase 9		0.6	9.	1.9	1.4	1.2	2.4 15	5.5	36.5		36.8	21.9	1.7	2.0	1.4	6.1	1,3	-	5.9311
-	AA292874		glycerol kinase	1.2	0.5	9.0	0.1	1.2	0.5	1.0 1	5 	9.9	10.2	7.3	7.4	0.5	0.1	0.2	1.3	0.5	0.0	5.9077
	NM_005668.1		sialyltransferase 8	3.1	1.2	Į.	2.5	2.0	1.4	3.1	.6	5 21.7	33.3	6.8	11.4	0.4	0.9	1.6	5.6	1.2		5.8688
2117 6 4_s_at B(BC005980.1		ubiquitin-conjugating enzyme E2D 1	8 ;	7.	<u> </u>	2.9	2.4	7.5	5.7 3	3.9 2.	29.3	31.2	52.6	25.4	0.2	. 2.0	4.	5.7	1 .3	23	5.8143
201192_s_at Ni	NM_006224.1		prosphotidylingsitor (ranster protein (PITPN)	3.0	3.1	6.1	5.0	4.6	3.9	5.4 6	6.6 5.	\$ 27.9	26.9	32.9	35.2	5.0	3.5	3.7	5.0	3.2	8.2	5.811
	U16120.1		placental taurine transporter	1.2	0.7	0.5	0.2	0.4	0.3	0 9.1	0.5 0.	9 14.8	17.2	2.8	2.6	0.0	0.1	0.3	Ξ	0.3	0.4	5.7909
209137_s_at Bi	BC000263.1		ubiquinin c-terminal nyardiase related polypeptide	3.6	£.	2.0	5.6	. 6.1	1.5	0.9	2.7 0.	9 25.0	24.5	37.6	29.7	3.5	5.0	5.2	3.5	2.7	3.0	5.7864
208052_x_at Ni	NM_001815.1		carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3)	1.7	1.4	6.9	2.7	1.9	3.0	2.6 2	2.8 2.1	1 14.3	16.5	20.0	13.7	2.5	1.3	2.3	2.8	2.5	9.1	5.7572
		œ	insulin-like growth factor 2 receptor	6.4	2.8	7.2	8.0	1.8	4.1	5.4 6	6.8	1 82.4	106.9	80.1	71.7	1.7	5.9	8.7	8.4	4.8	14.8	5.7104
	NM_018169.1		FLJ10652	1.2	1.0	6.9	13.7	12.5	3.2	3.3 7	.7 5.	3 52.7	54.4	87.8	83.3	2.9	8.7	11.8	3.2	10.8		5.6442
202084_s_at N	NM_003003.1		SEC14 (S. cerevisiae)-like 1	5.7	2.5 12	2.8	28.8	22.6	20.6 1	18.7 35.5	.5 29.5	5 130.7	129.7	135.6	177.9	19.2	4.1	3.5	1.5	7.7	11.8	5.6423
	AB014515		KIAA0615	8.8	1.5	7.	9.6	5.5	4.6	3.7 5	5.9 6.9	9 23.9	20.9	35.1	40.5	1.0	3.4	3.3	5.6	5.1	5.	5.6348
z	NM_003059.1		(SLC22A4)	9.0	1.2	1.0	0.1	1.1	1.9	2.4	3.5 2.	7 8.5	13.3	30.0	12.6	0.5	0.7	8.0	9.2	0.5	1.4	5.4612
z	NM_015364.1		MD-2 protein	4.7	1.1	0:	3.9	1.8	1.0	0.4 .0	0.6 0.5	5 43.9	62.3	87.8	26.0	1,3	3.5	0.1	. .	3.5	9.4	5.4459
202082_s_at N	NM_003003.1		SEC14 (S. cerevisiae) Jike 1	0.1	0.3	3.6	2.5	2.2	15.5	5.4 12.3	ε. 90	40.2	57.3	54.9	6.09	3.8	0.8	1,3	2.7	3.3	2.4	5.4422
	NM_014844.1		KIAA0329	2.9	1.1	2.	2.8	2.8	2.1	3.1	3.1 4.	3 16.5	18.7	19.9	19.0	3.4	1.3	1.7	- 89.	1.3	2.5	5.4369
	NM_004347.1		caspase 5	0.3	1.7	0.1	0.0	0.1	0.1	0.3 0	0.2 0.	5 4.2	8.2	4.8	2.9	0.3	0.3	0.4	0.8	0.1	0.3	5.379
203435_s_at N	NM_007287.1		CD 10, membrane metallo-endopeptidase	0.3	0.5	0.4	0.3	0.2	0.1	0.3 0	0.3 0.	2 16.4	44.2	54.8	42.8	0.2	0.3	0.2	0.2	0.2	6.8	5.2591
z	NM_006578.1		advillin		0.5	0.2	1.4	8.0	1.0		1.0 1.	1 8.4	8.9	6.0	10.1	1.0	1.3	0.4	5.	7.0		5.2541
z	NM_014664.1		KIAA0615	1.9	1.2	1.3.	3.2	2.3	3.0	2.7 3	.7 3.	0 12.9	12.8	20.2	20.0	0.1	2.2	2.6	1.3	1.9	0.1	5.2381
z	NM_021122.2		fatty-ecid-Coenzyme A ligase. long-chain 1 (FACL1) CXCR1 interteutin 8 recentor	2.9	2.1	5.0	19.9	33.4	9.9	3.8 10.3	6. .e.	1 58.8	86.6	92.2	80.2	0.1	7	Ţ	10.8	1.5	2.4	5.2374
207064_s_at N	NM_009590.1	GPR	alpha	0.7	0.1	6.0	6.0	8.0	8.0	0.8 0	0.9 1.	2 4.3	4.7	4.0	9.6	0.8	0.5	8.0	0.5	9.0	0.3	5.1905
Z	NM_023914.1 C	GPR	for UDP-glucose	9.0	0.0	0.1	0.5	0.1	19.7	9.6 25.1	.1 17.	3 76.5	77.1	100.7	98.6	1.9	0.1	0.2	12.3	9.0	0.0	5.1686
_	J90940.1	œ	Fc gamma receptor IIc3	4.6	0.3	7.3	9.7	15.1	9.7	19.5	4.4 6.6	5 115.0	140.3	42.9	38.9	3.0	1.4	9.0	14.0	7.2	0.7	5.1401
201780_s_at Ni	NM_007282.1		ring finger protein 13 (RNF13)	4.4	2.8	3.5	9.5	9.9	6.8	6.2 8	8.9 7.	1 27.1	36.6	52.5	35.7	0.8	4.1	3.7	7.2	7.2	4.8	5.1305
¥	AB045118.1		GSK-3 binding protein FRAT2	5.8	1.3	3	9.2	8.0	13.4	16.9 27.3	.3 22.6	5 93.2	97.2	100.6	104.2	1.3	6.1	5.9	10.2	2.5	6.	5.1047
z	NM_020651.2		(PEL11).	3.4	2.9	6.9	17.5	33.5	17.7	11.7 12.6	.6 15.1	1 64.9	88.3	73.0	80.2	2.4	6.3	5.9	13.8	12.8	-	5.0403
206632_s_at N	NM_004900.1		phorbolin	9.0	-	0:	1.2	9.2	1.3	0.8	3.9 0.5	5 19.6	1.1	30.8	0.5	1.5	0.2	0.4	0.4	1.0	1.2	5.0277
220990_s_at N	NM_030938.1		DKFZp5661133	11.7	6.2	9.1	18.5	12.5	5.0	3.3 8	8.2 4.	9 115.5	117.2	125,3	122.5	5.6	5.3	4.2	24.1	4.4	8.3	4.9858
Ī	BC004395.1		apotipoprotein L	7.0	2.8	9.6	2.1	1.6	2.0	0.4	.4	1 8.0	3.9	12.7	5.2	0.2	0.9	0.4	1.4	1.1	0.4	1.9332
ž	NM_000963.1		COX2 prostaglandin-endoperoxide synthase 2	6.5	16.2	9.0	2.4	2.0	6.5	2.3	.A.	35.8	1.4	44.6	91.8	. 0.4	9.0	0.2	4.3	0.3	0.5	4.9206
210423_s_at L;	L32185.1		integral membrane protein	5.0	0.2	. 4.	1.6	1.3		2.2 1	1.5 2.	0 85.0		75.2	. 52.9	1.9	0.4	1.9	14.7	1.0		4.8845
z	NM_005242.2 (GPR	PAR2 proteinase activated receptor-2		0.8	9.6	0.2	6.0			0.2 0.8	-	-	4.1	4.1	1.3	1.5	0.2	1.5	0.3		4.8608
	A1934469		KIAA0779		•	1.2	1.5	1.2	1.2	1.5	1.5 2.2		6.0	8.7	7.7	+-	6.0	1.5	0.	1.3		4.8373
201000 - 21	1042702			,			•							•	•	•	`	•	•		•	4 74E

Figure 66

Probe set	Accession #		Transcripts	MC. blood	MC.	Ba 1	Ba 2 (small)	Ba 3 (small)	Eo 1	Eo 2	Eo 3 (small)	Eo 4 (smatl)	Ne 1	Ne 2	Ne 3 (small)	Ne 4 (small)	٦	CD4	CD8	CD14	CD19	· æ	Ne S.I.
204780_s_at	AA164751	œ	CD95. Fas. APO-1	1.4	1.4	7.2	14.0	11.5	6.6	6.7	9.3	9.9	45.3	36.6	65.5	51.6	1.3	5.6	4.6		5.6	9.7	4.7254
209310_s_at	U25804.1		Ich-2 cysteine protease	2.5	6.1	2.1	7.7	7.0	1.4	.3	1.3	3 .	19.1	17.5	36.7	23.5	5.9	1 .	4.5	6.9	3.9	2.2	4.6817
205452_at	NM_004855.1		(PIGB)	2.3	2.7	2.3	6.4	7.7	2,3	1.4	3.0	3.0	16.3	17.6	22.2	39.3	1.7	5.0	5.9	2.8	3.5	2.2	4.6577
218298 s at	NM 024952.1		FLJ20950	3.1	3.3	5.4	8.1	7.2	5.7	5.7	8.8	9.4	37.2	23.4	37.3	39.1	9.0	1.7	3.1	5.8	2.3	2.7	4.6558
221210_s_at	NM_030769.1		swineacylneuraminate lyase	3.8	1.2	9.0	1.2	1.4	3.0	4.7	3.2	4.6	20.4	23.6	23.5	18.3	9.0	0.1	0.3	4.6	0.5	0.1	4.6378
15 × 797166	BC005369 1		chromosome 1 open reading frame	3.0	2.4	6.3	5.7	6	5.5	7.6	4	4.5	29.3	32.4	24.3	21.5	1.8	3.1	2.9	5.9	6	2.0	4.6333
204668_at	AL031670		ferritin, light polypeptide-like 1	0.8	0.5	1.8	0.	1.2	0.3	1.5	1	0.9	8.4	1.8	7.0	6.5	4.	£.	1.0	1.5	0.5	9.	4.614
201021 at	NM 0041251		guanine nucleotide binding protein 10	7.4	4.5	2.6	. 19	¥5	11.7	11.4	20.6	5.3	45.5	87.5	£.	57.1	80	2.7	3.0	8.4	3.2	12.4	4.5644
201321_AI	NM_004123.1		peroxisomal acyl-coenzyme A	:	ţ	2	}.	3	}	!		2	j	?	?	5	3	ì	}	5	;		
209600_s_at	S69189.1		oxidase	5.9	1.7	5.8	5.3	4.7	7.	1.0	7	£. ;	15.0	17.7	21.4	21.2	0.4	0.	0.8	2.1	0.7	5.	4.5552
.205119_s_at	NM_002029.1	GPR	formyt peptide receptor 1	; ;	1.4	+ ;	26.6	32.7	4.0	. :	4.2	0.0	288.2	315.8	274.7	252.9	9.0		0.7	62.6	- :	0.5	4.505
217738_at	BF575514		pre-B-ceil colony-enhancing factor	2.6	6.0	4. 0	24.7	9.4. 9	o. 6	4 (r. 6		4.5	9.5	A 10	P. 6	7 3	- 6				9 3	4.4053
215078_at	AL050388.1		UKF.Zp564MZ4ZZ	0.0	5 ;	3 ;	5 6	5 6	A .	c.	9 6		: :	6.71	C. 4	S .			0.0	- :	3	. ·	24.4.4
20/545_s_at	NM_003/44.1		numb (Urosophila) nomolog	: :		- 6	6.7	7 7	7.7	9. 00	, t	7.0	7. 6	2 2	20.0	2 2	0.0	3 -	c: -	- c	7.7	, "	4 3655
213410_dl	NM 016605 1		neat strick YOAD protein 6 (nor YOB)		; e		. E	12.6	2 8	103	1 5	9 6	40.1	39.7	47.0	2.65	3.0	4.4	- O:	2	9	9 9	4.3383
210325_3_81	BC001906.1		Similar to metaxin 1	6.2	6.	2.7	4.5	4.0	7	22	-	3.6	19.5	15.8	23.4	23.8	2.5	3.6	2.6	1.4	2.6	4.7	4.3318
207643 s at	NM 001065.1	α	CD120a, TNF-R-I p55	1.8	1.6	6.0	1.3	1.4	6.3	7.4	8.5	9.0	81.1	83.6	9.89	65.6	1.3	2.2	5.9	17.4	9.0	16.0	4.2798
203140_at	NM_001706.1		B-cell CLUymphoma 6 (BCL6)	8.2	2.9	1.6	13.5	19.8	23.5	16.7	28.7	33.1	99.1	107.8	115.8	101.1	2.2	3.4	3.4	23.4	8.7	6.5	4.2767
207253_s_at	NM_016936.1		ubinuclein 1	3.2	2.8	5.9	4.4	5.0	3.8	5.6	3.8	3.6	16.7	20.0	14.2	17.8	2.3	2.5	2.5	2.2	2.4	1.8	4.2556
202875 s at	BE397715		pre-B-cell leukemia transcription factor 2	2.0	1.4	0.1	0.1	0.2	2.5	3.6	2.1	1.5	1,8	15.4	8.9	7.5	0.8	1.7	1.9	1.1	6,1	0.7	4,2425
218791 s at	NM 024713.1		FLJ22557	1.2	0.7	2.5	2.7	8.1	6.0	1.5	1.6	1.0	6.9	8.7	13.2	11.2	1.4	1.0	0.5	1,3	0.8	7.	4.2114
211862_x_at	AF015451.1		Usumin-beta	3.5	8.7	16.8	9.7	10.1	5.6	10.2	7.7	7.1	65.7	67.7	38.1	37.9	3.1	6.8	7.8	10.1	6.9	2.0	4.2001
00000	707707		bromodomain adjacent to zinc		•				4	0	4 7 7		30.0	4 46	43.5	4 4	3.5	9	4	4.0	4	1.7	4 1076
217960_5_ai	NM_013446.1		mager comain. IA	 	9 6	. 4	7.7	, ,	24.5	44.0	2.5.0	. ±	5.00	105.3	76.2	8 6	9 6	9 6	, α	2 2	9 6	: 2	4.1858
212602 at	AIR06395		KIAA0993	2.3	5.	. 6	60	3 7	9.0	90	0.4	0.8	17.1	18.1	12.9	13.4	5.5	0.5	0.3	3.6	0.8	5.6	4.1806
			CASP8 and FADD-like apoptosis	: :			}	: ;	;	;		: :						;	: ;				
208485_x_at	NM_003879.1		regulator (CFLAR)	3.2	2.5	19.2	8.6	6. 6.	6.2	13.0	œ.	.3 .3	70.8	69.7	33.6	41.4	3.5	6.4	4.	e.	9	0.2	4.1719
201942_s_at	D85390.1		enzyma	9.0	1.7	9.0	1.3	1.7	1.6	0.7	2.4	2.6	15.9	23.8	6.8	6.1	0.5	8.0	1.3	2.5	0.5	5.6	4.1525
220933_s_at	NM_024617.1		FLJ13409	2.1	5.0	9.6	14.2	14.0	1.1	7.2	10.9	12.5	38.	37.3	81.5	57.8	1.9	3.7	4.8	6.2	3.8	3.0	4.1025
221764 at	AL574186		glycerol4-phosphale denydrogenase	6.3	4.4	16.5	16.6	15.0	10.4	15.6	21.9	22.7	80.9	99.2	46.3	60.3	9.5	6.9	9.4	5.7	9.4	2.5	4.0745
207446_at	NM_006068.1	œ	Toll-like receptor 6	0.5	0.5	0.7	1.5	8.0	0.8	6.0	1.2	0.8	7.6	11.8	7.2	8.7	0.1	6.0	6.0	2.1	1.2	9.0	4.0697
219748 at	NM 024807.1		chromosome 6 open reading frame 76	0.2	0.3	0.3	0.4	9.0	6.7	2.6	1.6	1.6	9.1	9.1	6.7	6.4	0.2	0.3	9.0	0.5	1.1	0.0	4.0619
	ı																						
220945_x_at	NM_018050.1		FLJ10298	1.0	1.4	0.5	0.7	0.7	1.1	9.0	1.5	1.0	6.0	10.6	13.6	-	7	0.5	0.3	0.0	9.0	5.6	4.057
212577_at	AA868754		KIAA0650	6:	1.3	6.4	8.0	6.6	10.1	24.0	æ. -	9.4	74.0	98.6	42.2	57.4	4.4	10.8	9.5	7.5	16.0	3.2	4.0417
221732_at	AK026161.1		RIKEN cDNA 5830420C20	5.6	0.7	3.4	10.5	8.8	2.0	0.9	10.7	10.9	27.6	31.6	30.8	34.7	0.3	0.4	-	2.5	9.	4.6	4.041
205986_at	NM_004920.1		apoptosis-associated tyrosine kinase	9:	<u>.,</u>	7.0	1.0	0.5	0.3	0.3	1.4	1.0	10.5	15.8	13.3	15.2	3.2	1.0	0.5	3.4	0.9	0.4	4.0322
213501 24	T62985		acyl-Coenzyme A oxidase 1.	<u>+</u>	7	2.0	2.6	26		6	12	9.0	80	5.	12.4	7.5	0.1	7	0.3	8.	0.5	7	4.0194
- COC - 3	00000		Common and a second				·																

204071_s.ai NM_005802.1 20584_x.ai AF239756.1 205863_at NM_014634.1 201392_s.at BG031974 221477_s.at BF57213 206756_at NM_01986.1 201894_at NM_002463.1 201943_s.at NM_001304.2 216252_x.at Z70519.1 202073_at AF041461.1 201372_s.at AF070558.1	α α	tumor protein p53-binding protein myelin protein zeno-ike 1 protein phosphatase 1F (PP2C domain containing) insulin-like growth factor 2 receptor MGC:56i B carbohydrate (N-acetyglucosamine 6-D)sulintransferase 7 mycovirus (influenza) resistance 2 (MX2) carboxypeptidase D CD95, Fas. APO-1 B cell RAG associated protein (BRAG) FLJ13910 FLJ13910 FLJ13910 CASPB and FADD-like apoptosis regulator CASPB and FADD-like apoptosis regulator CASPB and FADD-like apoptosis regulator CASPB (Calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF		7.6 0.5 0 0.7 1.4 1.4 1.6 1.6 0 0.0 0 0 0 0 0	1.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0	3.0 1.5 3.3 0.0 4.3	2.9 1.2 3.0	3.7 0.1 4.0	2.3	2.6 0.8		10.5 12.8 15.3 13.9	8 8.0	11.9	9 1.5 9 0.3	2.2	2.2	1.4	2.2 0.7	2.7	4.0148
	α α	myelin protein zeno-ike 1 protein - phosphatase 1F (PP2C domain containing) insulin-like growth factor 2 receptor MGC-561 is carbohydrate (N-acetyglucosamine 6-D)sulintransferase 7 resistance 2 (MX2) carboxypeptidase D CD55, Fas. APO-1 B cell RAG associated protein (BRAG) FLJ13910 FLJ13910 FLJ13910 CASPB and FADD-like apoptosis regulator CASPB and FADD-like apoptosis regulator CASPB and FADD-like apoptosis regulator carbohydrate-recognition demain) lectin. superfamily member 2 clone 24450 RING zinc finger protein RZF	7.7 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		26											0.5	9.0	1.0	0.7		
	α α	opolen - prosphalase 1F (PF2C) domain containing) insulin-like growth factor 2 receptor MGC:5618 Carbohydrale (N-acet/glucosamine 6-D)sulfuranstense 7 carbohydrale (N-acet/glucosamine 6-D)sulfuranstense 7 carboxypeptidase D CD95, Fas. APO-1 B cell RAG associated protein (BRAG) FLJ13910 FLJ13910 FLJ13910 FLJ13910 CASPB and FADD-like apoptosis regulator CASPB and FADD-like apoptosis regulator CASPB (Calcium dependent, carbohydrale-recognition demain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	0.5 1.7 2.9 0.2 0.3 0.3 0.3 1.3 1.1 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		2.7.4 2.7.4 2.7.4 2.7.4 2.7.4 3.7.4		3.0	4.0	0											8.8	3.9778
	α α	insulin-like growth factor 2 recaptor MGC:5618 MGC:5618 are aborbydrate RN-acetyfglucosamine 6-O)sulfurtransferase 7 myxovirus (influenza) resistance 2 myxovirus (influenza) resistance 2 carboxypetridase D CD5, Fas, APO-1 B cell RAG associated protein (BRAG) FLJ13910 recepin CASP8 and FADD-like apoptosis recepin CaSP8 and FADD-like apoptosis crepitor crepitor crepitor CASP8 and FADD-like apoptosis recepin Galcium dependent. CASP8 and FADD-like apoptosis recepin RAG RAF CASP8 and FADD-like apoptosis CASP8 and FADD-like apoptosis CASP8 and FADD-like apoptosis RESP8 AND SID SID SID SID SID SID SID SID SID SI	2.9 2.9 0.2 0.0 0.0 0.3 0.7 1.3 1.3 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		2.4 2.4 2.1 3.4 3.4 3.4 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6					6.1	10.0	33.1 22.2	2 29.6	31.8	8 0.3	2.9	1.2	7.3	1.5	8	3.9764
	α .	MGC:5618 and arabohydrate (N-acetylglucosamine 6-0)sulfutransterase 7 resistance 2 myxovincis (influenza) resistance 2 (MX2) acaboxypeptidase D CD95, Fas. APO-1 B cell RAG associated protein (BRAG) FLJ13910 recepin CASPB and FADD-like apoptosis regulator regulator cashohydrate-recognition domain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	2.9 0.2 0.0 0.0 0.0 0.0 7 1.3 1.3 1.3 1.4 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		3.4 0.1 0.5 0.0 0.0 1.6 9.5		0.1	2.6	3.0	1.9	1.5 5	51.1 59.1		3 15.0	0 1.1	1.2	4.0	3.8	2.2	7.0	3.9602
	α .	carbohydrale (N-acetyglucosamine 6-0)sulmranstenase 7 myxodyus (influenza) rasistance 2 (MX2) (MX2) (MX2) CD95, Fas, APO-1 B cell RAG associated protein (BRAG) FLJ13910 recepin CAS-PB and FADD-like apoptosis regulator capitator CAS-PB and FADD-like apoptosis lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	2.0 2.0 0.0 0.0 0.0 0.0 7.1 7.0 7.0 7.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8		0.7 0.05 0.09 1.6 9.5	0.0	. 0.6	4.2	4.2	4.2	4.2 56	56.8 63.6	6 36.1	1 46.6	6.7 8	3.2	7.	12.6	2.7	2.1	3.9562
	œ.	myvovinus (influenza) resistance 2 (MXZ) (MXZ) (MXZ) (D35, Fas, APO-1 B cell RAG associated protein (BRAG) FLJ13910 recepin CASPB and FADD-like apoptosis regulator caylettor caylotydrale-recognition domain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	1.3 1.3 1.4 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8		5.4 6.3 7.0 7.1 6.3 7.1 8.3 8.3 8.3 8.3 8.3	2	0.1	0.1	0.1	10	10	5.0	3.5	5 10.5	0.7	1.3	1.0	1.0	0.5	0.5	3.9516
	œ	(MX2) carboxypeptidase D CD95, Fas, APO-1 B cell RAG associated protein (BRAG) FLU13910 recepin CASPB and FADD-like apoptosis regulator C-lype (calcium dependent, carbohydrale-recognition domain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	1.3 0.0 0.0 0.3 0.3 1.4 1.8 1.8 1.8 1.8		5.4 0.5 0.9 2.1 1.6 9.5							,									
	α .	carboxypeptidase D Cash, Fas, APO-1 B cell RAG associated protein (BRAG) (BRAG) FLJ13910 recenin CASPB and FADD-like apoptosis regulator (calcium dependent, carboxyptrale-recognition domain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	0.9 0.3 1.7 1.7 0.7 1.6 1.8		0.5 0.9 1.6 1.6	7.8	8.2	9.2	_	•	12.3 49.		•	80.8		7.5	0.9	15.6	8.8	6 0	3.9478
	œ	CD95, Fas. APO-1 B cell RAG associated protein (BRAG) FLJ1910 recepin CASPB and FADD-like apoptosis regulator C-lype (calcium dependent, carbohydrate-recognition domain) carbohydrate-recognition domain) REF CASPB RING zinc finger protein RZF CASPB CAS	0.3 1.3 1.7 0.7 1.6 1.8		6.3 0.9 1.6 9.5	2.1	3.6	1.7	7.6	7.2	4.6 11	16.4 21.3		15.2	2 0.7	1.0	1.7	3.3	0.4	3.8	3.8926
	·	B cell RAG associated protein (BRAG) FLJ1910 recepin CASPB and FADD-like apoptosis regulation C-lype (calcium dependent, carbohydrate-recognition domain) carbohydrate-recognition domain) Chype (xalcium dependent, Carbohydrate-recognition domain) RAF (ARAR22)	1.3 0.7 1.6 1.8 1.8		0.9 2.1 1.6 9.5	2.5	=	1.8	4.7	1.8	1.7 18.	8.5 31.2	2 10.3	ě.	4 2.5	3.8	5.4	6.	1.4	3.9	3.8691
		FLJ13910 recein CASP8 and FADD-like apoptosis recein CASP8 (calcium dependent, carbohydrate-recognition domain) ledin, superfamily member 2 clone 24450 RING zinc finger protein RZF	7.7 0.7 1.6 1.8 1.8		2.1 1.6 9.5	÷	•	9 9		13.4	20.0	67.0	0 0 0	. 8	,	Ċ	0	19.3	4.2	0	3.8667
		recepin CASP8 and FADD-like epoptosis regulator regulator regulator capitator carbohydrale-recognition domain) lectin, superfamily member 2 clone 24450 RING sinc finger protein RZF	0.7 1.6 14.8		1.6 5.5 9.5	- c				•							4.	,		2	3 8422
		CASPB and FADD-like apoptosis regulator. C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	8.1 14.8		5.6	3.3	2.7				2.7		_		80	1.0	=	1.2	10	=	3.8367
		regulator C-lype (calcium dependent, carbohydrale-recognition domain) lectin, superfamily member 2 clone 24450 RING zinc finger protein RZF	1.6 14.8		9.5		i														
		carbohydrate-recognition domain) lean, superfamily member 2 clone 24450 RING zinc finger protein RZF RAPAR2S2 ANA ARAZE ARAZE ANA ARAZE ARAZE ANA ARAZE ARAZE ANA ARAZE ARAZE ANA ARAZE AR	14.8			3.6	0.7	3.7	8.9	3.2	2.8	33.1 44.8	15.2	9.71	6 2.4	4.7		5.7	4 6:	=	3.8332
		lectin, superfamily member 2 done 24450 RING zinc finger protein RRAF KIAA0232 KIAA0232	14.8													:	;	;	;	;	
		Gore 24-30 viries 2nd ingel protein RZF KIAA0232	14.8	5.9	0.0	18.6	23.8	9.0	0.0	6.9	7.3 7.	72.9 77.0	0 99.7	75.5		14.4	21.2	10.2	16.4	 	3.8003
		0232		5.9	3.0		13.9 2	21.8 . 2	27.0 2	25.3	13.1	88.2 108.1	1 116.5	81.8		9.6	11.3	25.7	15.7	8.5	3.7993
			5.4			9.8									8 2.5		4.0	5.9	2.1	4.9	3.7868
			,			•	,	;		,							3	ć	;		9000
		(SLC6A6)	1.2		. 6.0	2	0.5		2.5	0.7	3.4				0.3		3	97	- i	0.0	3.7830
213596_at AL050391.1		DKFZp586A181	0.7	0.7	2.3	3.6	3.0	1.2	1.2	- :	1.2	10.6 10.9	9 12.5	9.9	5.7	<u>:</u>	2.0	e.	0.7	0.3	3.7615
209508_x_at AF005774.1			1.7	2.7	8.01	7.6	11.5	4.9	6.3	8.0	8.4 3.	37.0 34.8	8 34.7	7 40.8	8 2	7 4.0	5.1	8.3	3.4	1.3	3.7451
		FLJ 10604	6.0	_	2.4	1.5	6.0	1.8	2.1	1.3	1.1		1 6.7	7.	7 1.	1.2	2.5	2.1	1.7	5.	3.7435
		FLJ14320	0.5		2.0	0.3		0.3	0.3	1.2	0.7	5.5	ю.	4 2.5	5 0.1	0.3	1.0	0.9	0.5	9.0	3.7249
212581_at AA349595		RAB8 interacting protein 1	10.0	6.1	0.2	12.4	11.4	18.7	14.9	12.1	0.0	66.3 60.0	0 47.6	5 37.1	1 4.0	8.7	9.9	13.9	5.9	10.2	3.6962
204166 at NM 014963.1		KIAA0963	3.6		1.1	0.0	0.1	1.0	1.3	0.1	0.8	11.8 12.5	5 4.0	0 2.9	9 0.3	9.0	1.7	1.7	1.2	0.5	3.6908
		KIAA1324	0.3	_	0.7	<u>-</u>	0.3	9.0	8.0	0.7	0.5	9.1 5.1	1.5.1	1.2	_		0.7	0.5	9.0	0.4	3.6808
217207_s_at AK025267.1	œ	butyrophilin like receptor	1.2	1.1	1.4	2.1	1,7	1.2	1.9			10.9 3.	4 7.2	2 6.1	1.5	5 1.7	1.6	0.9	4.5	÷.	3.6795
212579_at AA868754			1.3	1.8	5.3	9.8	15.5	7.3	7.8	11.3	8.3 33	32.8 42.9	9 40.0	39.7	7 2.0	5.4	5.7	3.1	10.5	2.2	3.6784
212657_s_at AW083357		IL-1receptor antagonist IL-1Ra (IL-1RN)	48.8	2.3	6.0	0.5	. 9.0	2.1	6.0	1.5	1.3 . 3!	35.2 37.0	0 48.2	35.5	5 0.6	3 0.8	0.3	9.3	0.4	9.0	3.6759
202392_s_at NM_014338.1		phosphatidy/serine decarboxylase	3.4	2.7	6.2	11.7	8.9	3.4	4.7	5.4	4.7 3%	32.8 31.0	0 22.0	32.3	3 0.8	9 1.6	1.4	4.2	1.4	1.2	3.6753
206177_s_al NM_000045.2		31)	0.5	1,3	2.2	0.4	9.0	6.0	9.0	7.2	0.7	3.9. 4.	3 8.1	1 5.0	0	1.0.1	0.4	9.0	0.7	0.0	3.6722
200706 s at NM 004862.1		(PIG7)	31.2	39.0	20.7	9 9	62.5	15.6	13.4 3	31.8	21.7 17:	173.2 148.5	5 172.0	150.2	2 8.5	5 13.3	42.7	14.3	16.7	18.2	3.6696
		E1.13910																9.0	0.4	0.5	3.6623
		dysferlin	2.5		15.		0.5	1.7		2.6		-		.,				10.6	0.5	1.3	3.6616
ŧ		exportin 6	8.6	•	-				۳,	•	-	-				-	_	9.6	11.5	7.7	3.6408
		guanyfate binding protein 2.	2.4							3.0		28.1 35.2		0 24.8	8.2	7.3	0.6	6.3	1.9	3.7	3.6111
	GPR	C5a recentor	2.2	2.3						_		-	5 84.4				0.5	25.6	1.0	0.4	3.6036
		microtubule-associated protein 7	6.0												1 0.0	0.1	0.4	0.1	0.1	0.0	3.6032
ŧ		DKFZP434.1037	1.4		3.9	6.9	4.7	9.6	•	4.1		.,	9	8 57.	9		4.8	11.1	13.3	2.0	3.5748

C. Neutrophil (Ne)-selective transcripts (6/7).

FigureGI

Probe set	Accession #		Transcripts	cord	MC.	Ba 1	Ba 2 (smatt)	Ba 3 (small)	E0 1	Eo 2	Eo3 (small)	Eo 4 (Small)	Ne 1	Ne 2	Ne 3 (small)	Ne 4 (small)	٦	CD4	CD8	CD14	CD19	Fb	Ne S.I.
207072 at	NM 003853 1		interleukin 18 receptor accessory	6.5	6.0	2.2	3.4	4.1	7.2	1.6	2.8	1.7	13.4	6.7	20.9	5,6	2.4	2.8	3.1	0.4	1.8	0.3	3.5722
215719_x_at		œ	CD95, Fas. APO-1	1.0	9.0	3.1	2.7	1.6	.5.2	5.2	6 .	1.7	19.0	31.9	11.4	9.4	1.0	4.5	2.2	1.6	7	4.4	3.5657
218404_at	NM_013322.1		sorting nexin 10	4.9	1.2	5.6	5.0	3.7	0.7	0.1	2.1	0.7	28.5	31.8	34.8	33.8	0.3	7.	6.1	9.0	8.5	0.3	3.563
219394 at	1 024419 1		phnsphatidylglycernphnsphate svothase (PGS1)	3.4	3.0	1.7	4.2	10	2.4	3.8	6.1	9.2	17.2	16.9	17.5	16.3	1.0	2.1	2.6	2.4	1.5	1.7	3.5544
216913 s at	AK021460 1		KIAA0690	0	. 0.3	0.1		0.1	1.9	2.5	2.3	2.8	8	83	7.5	10.9	0.1	0.1	0.2	2.5	0.1	0.0	3.5402
205118 at		GPR	form desolide receptor 1	0	0.0	0.8	0	-	0.1	0.4	9.0	0.1	3.9	7.0	3.2	7.8	0.2	0.1	0.1	1.4	0.1	0.0	3.5295
210564 x at	-	,	FI AME-1-della	1.4	5	5.3	9.9	7.0	4.3	4.2	80	3.5	21.2	30.3	18.4	19.6	2.1	2.9	4.0	4.6	3.0	8.	3.5148
213607_x_al	BE551347		KIAA0134	1.3	1.3	5.9	5.0	1.7	8.7	15.8	3.5	4.3	42.7	42.5	1.1	15.3	9.0	1.3	1.9	6.2	1.7	6.0	3.514
203888_at	NM_000361.1		Ę.	0.9	9.0	0.1	0.1	0.3	0.2	0.4	0.8	0.1	6.1	8.4	4.6	0.2	0.3	0.3	0.1	9.0	0.5	0.1	3.5126
210233_at	AF167343.1		interleukin-1 receptor accessory protein (IL1RAP)	0.5	0.1	0.0	. 0.1	9.0	0.8	0.4	9.0	0.7	6.5	3.0	2.0	2.3	9.0	0.0	0.0	0.0	0.0	0.3	3.5023
204959 at	NM 002432.1		myeloid ceil nuclear dinerenilailon jantiaen.	1.2	0.6	24.2	20.0	26.2	17.5	17.9	49.8	22.3	249.8	290.2	186.0	217.0	3.4	1.6	9.0	9.99	2.5	0.0	3.4903
217967_s_at	AF288391.1		niban	6.3	3.7	16.3	42.4	35.9	27.9	29.5	43.0	30.9	107.4	115.3	117.9	110.3	2.6	7.5	6.6	4.9	3.4	20.4	3.4847
221763_at	A1694023		thyroid hormone receptor interactor 8 leukocyte	0.8	1.5	€.	4.6	5.5	5.5	6.9	6.6	9.0	28.3	32.9	34.0	42.7	1.1	3.7	4.4	5.1	8.6	3.0	3.4777
207857_at	NM_006866.1	α	receptor, subfamily A (with TM domain), member 2 (LILRA2)	0.4	0.5	3.6	8.5	5.3	4.5	4.9	1.6	6.3	33.5	34.3	46.2	50.8	1.8	0.0	0.1	11.6	0.5	0.1	3.4773
220740_s_at	NM_005135.1		solute carrier family 12 member 6 (SLC12A6)	4.6	0.1	2.5	3.3	3.4	3.5	5.6	3.2	3.2	12.6	19.0	10.7	14.4	4.0	5.9	2.2	2.9	3.5	9.0	3.4722
217739_s_al	NM_005746.1		pre-B-cell colony-enhancing factor	7.7	1.7	6.6	48.0	61.0	18.9	13.9	12.9	9.3	112.4	120.5	90.8	93.4	1.2	2.3	4.4	17.6	2.1	3.1	3.4242
205041_s_at	NM_000607.1		orosomucoid 1 (ORM1)	0.3	1.0	.0.4	0.1	0.1	0.0	0.1	1.0	0.1	2.6	3.6	2.7	0.4	0.1	0.5	0.1	0.5	0.0	0.1	3.4189
214784_x_at	BE966299		exportin 6	7.4	5.0	10.0	23.7	23.9	13.0	16.7	23.3	20.5	60.3	87.8	57.2	8.09	2.9	8.7	7.8	9.9	5.9	5.4	3.4155
217985_s_at	AA102574		domain, 1A	5.	1.4	8.	2.6	3.8	7.4	5.1	7.3	4.7	16.9	19.2	22.1	24.2	2.7	2.5	2.3	3.5	2.4	0.9	3,3999
212598_at	A1808395		KIAA0993	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	5.5	7.3	3.1	3.2	0.2	0.1	0.0	1.0	0.1	1.3	3.3933
219053_s_al	NM_017966.1		FLJ20847	2.6	2.0	1.9	2.3	2.3	2.6	2.1	3.0	2.8	11.3	7.8	22.2	34.1	1 .8	0.5	6.0	4.7	1.3	2.9	3.3686
217475_s_at	AC002073		15N1	9.0	0.5	9.0	. 0.2	0.4	. t.	1.3	0.5	1.2	5.9	8.6	1.6	4.	0.7	0.3	0.1	0.5	0.7	0.2	3.3448
. 46323_at	AL 120741		reficulum nucleoside diphosphatase	4.4	3.2	4.2	. 8.3	7.2	5.3	. 6.7	11.4	7.9	20.0	21.5	33.9	26.3	2.5	2.8	3.6	4.3	3.4	5.0	3.3028
201965_s_at	NM_015046.1		KIAA0625	2.7	3.1	3.3	8.5	8.3	4.9	5.8	7.4	7.5	19.5	18.5	18.7	27.8	2.2	3.9	3.4	4.6	5.8	2.6	3.3019
203628_at	NM_000875,2 NM_005569,2	α	insulin-like growth factor 1 receptor LIM domain kinase 2 (LIMK2), transcriot variant 2a	0.5	1.5	3.7	6. 8. 0. 8.	5. 0. 4.0	6.8 4.	e: 4 6: 8:	11.3	აც დ დ დ	18.8	23.4	9.8 36.5	20.6	0.1	1.3	2.8	2.4	0.5	3.5	3.2989 3.2887
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NIM OCCOOL 1		lysosomal-associated membrane	2.4	÷	=	+ 1	-	¥	4	12.4	10.7	2	27.0	44.1	35.4	80	90	6	3.2	80	9.4	3.282
220326 s at	NM 018071.1		FLJ10357	5.1	. 4.	1.9	1.2	1.9	6.3	6.8	5.2	8.5	25.3	28.1	19.2	21.0	6.0	0.	0.7	6.4	0.1	4.1	3.2759
212470_at	AB011088.1		sperm associated antigen 9	4.0	5.9	3.3	6.3	7.2	4.5	4.0	4.7	6.9	13.2	17.0	18.1	24.0	1.2	2.5	2.2	3.9	3.0	5.4	3.2688
211133 x_at	AF009643.1		cione o immimoglobulin-like transcript 5	1.9	1.4	0.8	1.5	1.3	3.1	2.7	. 3.8	2.1	42.1	42.2	27.0	25.1	2.7	6.0	0.5	10.2	9.0	0.5	3.2526
219313_at	NM_017577.1		DKFZp434C0328	0.0	8.0	0.2	0.0	0.4	0.2	1.0	0.7	0.0	3.8	3.7	3.1	5.6	0.2	0.1	0.1	0.0	1.2	0.1	3.2404
221149_al	NM_018485.1	GPR	G protein-coupled receptor GPR77 5 10.metheoutletrahydrofolate	0.2	1.0	0.8	0.7	1.2	0.7	6.0	0.9	9.0	3.3	3.2	4.2	5.9	0.0	0.3	0.5	1.0	0.4	0.3	3.2282
203433_at	NM_006441.1		synthetase	4.	1.8	1.5	2.5	1.6	3.1	4.2	3.5	3.1	15.8	11,4	9.6	9.0	1.6	1.8	1.9	2.9	1.7	1.5	3.2181
214486 x at	AF0414591		EADO like approprie radioble	0	,	404	ď		•	•	•	•	•				•		•				

C. Neutrophil (Nc)-selective transcripts (7/7).

			Sord .		Ba E	Ba 2 B	Ba 3			E03	Eo 4			Ne 3	Ne 4							
Probe set	Accession #	Transcripts	plood	lung	-		(smatt)	E0 1	Eo 2	- 1	(small)	Ne 1	Ne 2	(small)	(smafl)	-a	50	80	CD14	CD 19	ا ي	Ne S.I.
209222_s_at	BC000296.1	oxysterol binding protein-like 2	1.3	0.5	2.7	8.8	8.0	5.4	5.4	7.7	7.3	17.2	18.4	22.3	23.9	6.0	2.3	3.4	8.8	2.0	. .	3.1877
202334_s_at	AA877765	ubiquitin-conjugating enzyme E2B	3.3	3.4	8.8	15.5	12.1	5.3	7.2	14.7	12.8	20.9	25.6	43.6	38.1	4.0	4.5	3.9	2.5	4.9	4.6	3.1871
203266 s at	NM 003010.1	mitogen-activated protein kinase kinase 4	3.7	2.4	4.9	8.2	6.3	2.5	4.8	6.8	2.0	14.7	15.2	27.4	26.9	. 2.8	2.4	2.8	2.7	2.3	2.7	3.1804
58780_s_at	R42449	FLJ10357	4.5	5.4	÷.5	3.9	3.0	7.8	9.6	12.8	16.4	28.0	27.6	46.7	44.1	1.2	9.0	0.1	6.5	0.2	5.7	3.1803
210582_s_at	AL 117466.1	L!M domain kinase 2	3.8	1.9	4.3	5.1	4.8	8.7	10.3	10.8	9.4	33.9	36.5	30.8	23.8	1.3	1.7	1.8	1.9	6:0	1.4	3.1609
214766 s at	AI 080144.1	ELYS transcription factor-like protein TMBS62	1.3	0.2	2.0	3.1	4.2	6,1	1.4	2.1	2.4	4.6	5.5	6.6	1.3	3.2	1.3	0.8	0.5	1.0	1.3	3.1414
5-0-0000		TRAF and TNF receptor-associated								44	•	. 4	9						: :			2 1403
202266_al 203278_s_at	NM_016621,1	Protein (AU022) BRAF35/HDAC2 complex (80 kDa)	2.3	7.8	2.7	14.8	1.0	5.7	5.0	7. 4.7	. 4 0. 4	21.0	16.6	31.0	30.6	. 0	3.0	y 4, 4, ₹0	3. 4.	2.7	3.0	3,1382
1																						
207291_at	NM_024081.1	gamma-carboxyglutamic acid protein 4	0.1	1.2	1.3	1.4	1.1	6.0	0.5	0.4	0.2	3.8	7.9	4.5	8.5	0.2	8.0	0.1	1.9	1.1	4.0	3.1336
213229_at	BF590131	Dicer1, Dcr-1 homotog (Drosophila)	8.5	5.4	9.5	12.9	15.4	15.9	9.7	19.1	16.0	35.2	39.0	61.4	69.4	6.2	5.9	7.3	15.2	12.2	5.0	3.1306
204204_at	NM_001860,1	solute carrier family 31	1.7	1.7	1.3	0.3	9.0	1.7	6.0	2.3	1.2	22.6	23.8	31.3	36.0	5.0	1.2	1.2	6.8	0.5	0.4	3,1262
201364_s_at	AF242521.1	a decarbo	8.3	7.3	4.4	2.2	6.1	1.5	21.9	8.0	7.7	61.9	59.1	21.0	7.72	2.5	5.1	6.3	12.2	6.2	9.6	3.1253
210784_x_at	AF009634.1	transcript	1.4	0.1	2.1	1.2	2.4	2.5	2.2	2.8	2.1	52.1	48.8	31.8	36.3	0.8	0.5	0.5	13.3	0.3	0.2	3.1236
202625 at	A1356412	v-yes-1 Yemaguchi sarcoma viral related oncogene homolog (LYN)	6.9	6.9	5.0	18.2	14.9	20.7	21.7	27.7	28.6	74.7	76.3	77.5	75.7	7.5	1.7	6.0	17.1	23.6	0.5	3,1131
221895_et	AW469184	hypothetical protein MGC26706	2.2	0.5	5.4	5.2	5.8	5.2	3.4	7.6		14.8	12.0	24.6	19.2	5.0	2.4	2.1	5.2	1.5	8:	3.1
37384_et	D13640	dass I, B GTPase GTPase	2.5	3.0	3.4	3.8	3.8	6.7	9.9	9.7	8 .9	25.2	17.9	21.3	29.4	5.6	2.5	2.5	7.4	8 :	2.8	3.0985
206608 s at	NM 020366.1	interacting pro	1.1	4.4	1.2	0.8	1.0	.=	1.0	0.5	4.	6.1	3.4	5.3	4.7	1.5	6.0	8.0	<u></u>	0.5	0.7	3.091
204924_at		Toll-like receptor 2	8.	0.1	2.1	8.2	7.6	2.8	0.4	0.8	1.4	52.9	88.0	94.4	8.66	1.6	1.3	0.1	26.3	6.0	0.4	3.0909
204781_s_at	NM_000043.1 R	CD95, Fes. APO.1	2.0	1.1	5.9	11.0	8.9	5.4	4.4	8.8	7.0	20.6	27.1	27.0	29.1	0,3	5.2	5.3	4.0	5.0	3.8	3.0827
212606_et	AI806395	KIAA0993	2.0	5.0	0.0	7.0	9.0	0.7	0.0	0.1	0.1	18.0	14.3	25.0	56.9	0.1	0.5	0.3	9.6	0.0	3.4	3.0797
211316_x_at	AF009616.1	FLAME-1	3.1	5.9	10.1	19.4	31.9	11.6	11.9	20.8	19.1	58.8	74.1	72.8	91.0	4.4	8.9	8.7	10.3	r.	5.6	3.0752
203045_at	NM_004148.1	ninjuin 1 interval depositor advocado 2	4.4	5.5	3.2	6.4	4.8	10.7	9.7	18.5	12.1	29.3	34.1	44.7	46.1	0.5	1.2	1.7	8.3	0.5	5.9	3.0746
204949_at	NM_002162.2		3.0	3.7	5.7	46.3	34.5	38.9	51.6	94.5	93.7	161.1	168.3	239.1	241.1	4.5	13.6	21.0	17.6	19.9	÷.	3.0617
206208_at	NM_000717.2	carbonic anhydrase IV (CA4)	0.5	9.0	0.1	0.1	0.1	1.1	0.7	1.0	0.8	5.6	5.2	2.8	2.4	1.2	0.1	0.1	0.1	0.1	0.7	3.0572
213727_x_at	AI743654	metallo phosphoesterase	2.1	1.7	2.0	15.0	12.1	8.9	13.7	25.4	23.9	49.9	28.3	59.9	75.8	0.7	4.5	9.9	5.7	5.4	3.7	3.0554
202626_s_at	NM_002350.1	related oncogene homolog (LYN)	15.5	9.5	12.1	12.7	14.8	32.6	31.6	54.0	41.0	110.1	115.1	122.7	127.2	18.4	2.1	5.5	38.8	33.0	9.0	3.0541
206420_at	NM_005849.1	immunoglobulin superfamily. member 6 (IGSF6)	7	0.3	0.2	0.4	0.7	6.	1.2	7	0.1	17.5	24.2	30.6	33.3	4.	9.0	9.0	8.4	0.3	0.3	3.0442
201651_s_at	NM_007229.1	protein kinase C and casein kinase substrate in neurons 2 (PACSIN2)	21.4	47.4	4.6	24.8	20.1	13.3	19.5	33.9	35.3	61.3	72.5	76.1	94.4	24.7	4.9	4.4	9.6	6.1	8.0	3.0391
219540_al	AU150728	ein 267	2.0	1.0	£,	3.7	3.6	2.0	1.5	4.4	3.7	6.7	6.9	9.2	9.9	1.0	7.	1.3	. 0.1	9.	0.1	3.0361
201244_s_at	NM_002880.1	v-raf-1murine leukemia viral oncogene homolog 1 (RAF1)	6.0	4.0	12.4	32.8	33.1	14.9	19.0	27.3	25.7	. 60.4	58.5	89.2	86.2	2.2	9.9	11.3	12.8	7.8	7.3	3.0329
203265 s at	AA810268	mitogen-activated protein kinase kinase 4	1.4	77	8.2	6.4	4.5	1.7	5.6	3.5	3.1	12.8	12.8	10.4	16.8	1.4	4.	1.3	£.	2.5	1.5	3.028
203030 s at	AF007555 1	IAR receptor-like protein-tyrosine	0.0	0 0	8	1.2	0	0.1	6	0.1	0.1	0.8	3.0	7	2.8	0.1		0.0	1.0	. 0.0	0.0	3.0269
203739_at	NM_006526.1	11.	6:	5.6	3.0	18.4	.7	9.7	8.0	14.7	14.9	37.3	45.1	24.4	27.0	1.2	4.6	5.3	6.1	5.5	3.6	3.0158
204747_at	NM_001549.1		2.0	3.0	4.9	6.0	3.5	4.3	12.4	4.4	3.0	24.2	27.0	15.4	12.0	0.3	8. 6	1.2	8.2	4.	5.6	3.0143
206209 s at	NM_000717.2	carbonic anhydrase IV (CA4)	0.7	0	8.0	90	<u>.</u>	÷	•	_	·	0	•		4	,						

D. Mast cell (MC)-selective transcripts (1/2).

D. Mast cell (MC)-selective transcripts (2/2).

			Ç Ç	Q.	á	. 68	200			,	7	9	Š	, d	N oN							
Accession #	# 0	Transcripts	plood	fung	- B	(smatt)	(small)	Eo 1	Eo 2	(small)	(small)	. +		(smatl)	(small)	_	CD4	CD8	CD14	CD19	Fb	MC S.I.
NM_020149.1	149.1	TALE homeobox protein Meis2e	14.0	14.9	1.9	3.6	4.0	1.7	1.9	5.3	3.8	0.3	9.0	1.0	0.3	0.5	9.0	0.4	9.0	0.4	9.0	4.72642
AA209239	6	lipase	10.9	3.0	0.5	2.1	0.8	0.5	0.5	1.3	6.0	0.1	0.1	0.5	0.1	0.4	0.5	0.5	1.3	1.0	6.0	4.52869
NM 000077.1	177.1	cyclin-dependent kinase inhibitor 2A (melanoma p16, inhibits CDK4)	7.5	3.6	0.7	0.7	0.1	9.0	0.4	0.3	0.5	0.1	1.2	9.0	1.1	0.1	6.0	0.5	9.0	0.1	1.2	4.35629
NM_002276.1	276.1	keratin 19	6.2	12.0	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.0	4.35547
NM_001836.1	336.1	chymase	10.1	2.7	0.4	0.5	0.8	0.1	0.1	0.8	9.0	0.1	0.1	0.5	0.5	1.2	0.7	0.5	1.0	0.4	0.3	4.27984
NM_024101.1	101.1	melanophilin	24.8	29.6	2.7	2.5	1.8	3.0	2.5	1.9	2.2	4.6	1.	3.3	1.4	6.4	4.0	3.2	2.4	3.4	2.7	4.24499
NM_003635.1	535.1	N-deacelylaseN-sulfotransferase	17.9	26.7	3.2	6.5	6.8	2.5	2.7	3.6	3.1	4.2	3.4	5.5	5.5	6.0	3.1	4.9	3.3	2.7	2.4	4.20693
AB002336.1	1.9	erythrocyte memhrane protein band 4.1-like 1	3.8	6.4	0.1	0.5	0.1	0.5	0.1	0.2	0.4	0.1	0.1	0.1	0.5	0.1	0.4	0.2	0.4	0.4	7.	4.12758
NM_001909.1	909.1	cathepsin D	42.6	39.5	2.5	5.3	4.3	4.3	4.8	3.4	2.7	4.0	6.7	3.1	,	5.6	.6.	2.5	10.0	1.8	5.9	4,1037
202218_s_at NM_004265.1	265.1	delta-6 fatty acid desaturase (FADSD6)	18.8	24.5	0.4	0.5	1.0	0.3	0.1	9.0	0.5	0.5	0.1	0.1	0.1	1.6	0.1	9.0	0.1	9.0	5.3	4.08548
	914.1	centaurin, gamma 2	5.3	7.9	0.4	9.4	0.7	0.5	0.5	9.0	9.0	0.3	0.5	0.4	0.4	8.0	9.0	-	9.0	0.	9.	4.06712
209644_x_at U38945.1	-	(melanoma, p16, inhibits CDK4)	14.0	6.4	1.0	1.4	0.7	1.2	1.3	1.7	1.5	1.0	1.6	1.5	2.1	2.3	1.8	1.5	6.0	0.3	2.4	3.88459
221679_s_at AF225418.1	18.1	hpase	2.8	1.9	0.4	6.0	0.1	0.3	0.4	0.4	0.1	0.1	0.5	0.0	0.5	0.5	0.1	9.0	9.0	0.5	0.5	3.83039
U56725.1	-	heat shock protein 70kD	4.4	7.4	0.3	9.0	0.4	9.0	0.3	0.3	0.0	1.4	0.4	1.0	0.8	1.5	0.5	0.5	0.1	0.5		3.80423
J05594.1	_	15-hydroxyprostaglandin dehydrogenase	82.6	0.09	19.4	26.0	16.3	3.2	2.9	1.8	1.7	0.8	0.5	6.0	0.5	4.1	5.	6.0	0.1	9.0	0.5	3.49258
AF228413.1	3.1	nuclear receptor subfamily 5, group A, member 2	2.9	3.4	0.5	0.5	9.0	9.0	1.1	0.7	1.2	1.1	0.4	0.1	0.4	6.0	0.7	0.2	0.5	9.0	0.3	3.47124
NM_022337.1	337.1		3.9	4.0	0.1	0.4	0.3	0.7	0.1	0.5	0.3	0.5	0.2	1.1	0.1	1.2	0.1	8.0	0.4	0.1	0.5	3.32805
NM_001747.1	747.1	gelsolin-like capping protein (actin filament)	70.5	64.5	9.6	30.8	28.8	8.1	7.8	11.5	6.6	. 8	3.6	3.0	2.4	1.6	Ξ.	1.0	17.0	5.8	5.3	3.29919
A1962693	3	KtAA0555	5.4	4.6	7.0	1.6	1.2	8.0	0.7	0.1	1.0	1.3	0.3	0.2	9.0	1.2	0.3	1.5	0.7	1.2	0.4	3.25197
BG035985	35	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1	5.0	3.6	6:0	1.5	1.1	<u>:</u>	4.2	1.3	1.0	1.3	0.5	0.7	1.2	0.7	0.5	<u>:</u>	0.7	4.1	7.7	3.1928
214218 s. at AV699347	7	nucrear receptor subramily 1, group 1, member 3	3.5	3.5	0.7	9.0	0.7	0.5	2.2	0.5	0.5	0.7	1.2	9.0	0.1	1.1	0.9	0.3	9.0	8.0	0.4	3.15254
	743.1	FLJ21080	18.1	23.7	0.5	2.3	2.5	6.0	7.	2.7	2.7	1.1	1.0	0.8	0.9	2.3	2.	2.9	9.0	5 .0	6.3	3.07851
218087_s_at NM_015385.1	385.1	SH3-domain protein 5 (ponsin)	1.4	1.9	0.4	6.0	0.4	0.5	0.0	0.0	0.1	0.0	0.1	0.1	0.2	0.1	0.0	0.5	0.5	0.2	0.1	3.07366
221577_x_at AF003934.1	2 .	prostate differentiation factor	7.8	5.5	9.0	.03	0.5	9.0	0.1	0.5	9.0	0.0	0.5	0.3	0.1	0.1	0.5	0.0	0.1	0.4	7.	3.05532
X62078		GM2 activator protein	21.8	17.6	1.4	3.3	1.3	0.3	0.3	0.5	0.5	0.5	0.8	1.9	0.3	0.4	0.5	0.5	6.5	5.0	2.7	3.01647
BG403660	50	heat shock 105kD	7.3	8.8	0.5	0.5	0.5	6.0	0.1	0.4	9.0	0.1	0.1	0.3	0.1	0.8	1 7	000	0	0	2	3.00674

انـ
=
-
\mathcal{L}
5
·ΕΊ
ပ္ထု
ΞI
2
5
.≥
히
의
Se
71
프
윉
Ĕ
ૅટા
ଧା
ᅵᄆ
ᇤ
=
골
밁
ž.
<u></u>
اتی
اسا

1. 1. 1. 1. 1. 1. 1. 1.					MC.	Š.	,	Ba 2	Ba 3.	,		E03	Eo 4	ě,	ž.	Ne 3	Ne 4					9	,	Ba+Eo
Mailtontail Commonwealth Mailtontail Commonwealth Mailtontail Commonwealth Mailtontail Commonwealth Mailtontail Mailtontail Commonwealth Mailtontail Mailtonta	Probe set	Accession #		ranscripts	0000	5	837	(smarr)	(smati)	101	١	1	(sman)	1	١	┈	Smail)		ı	ı	1	20	Н	<u> </u>
Mail Control	211517_s_at	M96651.1		IL-5R interleukin 5 receptor etpha	9.0	0.1	1.8	28.2	17.9	16.4	25.3	32.6	29.5	0.0	0.7	0.0	1.0	0.0	0.4	0.5	0.0	0.5	0.0	61.956
National Control Con	210744_s_at	M75914.1	α	IL-5R interleukin 5 receptor alpha	0.5	1.6	15.4	30.8	15.3	18.7	40.2	29.7	33.0	0.3	0.2	1.5	0.5	0.1	.0.1	0.1	0.1	0.2	0.1	42.811
NAL CONTROLS AND CONTROLS CHANGE TO THE CONTROL CHANGE				CKINZ chemoattractant																				
NAI, CORREST ROLL CORREST CORREST 21, 01, 01, 01, 01, 01, 01 CORREST 21, 01, 01, 01, 01, 01, 01 CORREST CORREST 21, 01, 01, 01, 01 CORREST CORREST 21, 01, 01, 01 CORREST CORREST 21, 01, 01, 01 CORREST	206361_at	NM_004778.1	GPR	expressed on Th2 cells	1.8	0.3	22.0	40.5	15.3	33.7	37.9	38.9	42.3	1.0	5.6	2.2	2.1	8.0	1.4	1.0	1.2	6.0	0.5	16.642
WA, DODRISH 1 Character (Checkmill) (C	206207_at	NM_001828.3		Charcot-Leyden crystal protein	1.1	0.1	270.0	219.1	203.6	226.8	233.8	179.7	163.1	2.1	19.4	19.1	49.3	2.8	1.0	1.4	6.0	0.7	0.4	15.164
Mail	203 6 38_s_at	NM_022969.1	œ	fibroblast growth factor R 2	0.2	0.1	7.3	43.5	33.0	7	8.8	12.3	23.3	0.1	0.1	0.3	0.3	0.1	0.1	0.2	0.1	0.1	1.0	13.357
MACROSTATION CPR C				mucin-like, hormone receptur-like																			_	
ALTOGRAPH CALLISSIST III, GOODA FERRIAL MORGANING ALTOGRAPH FERRIAL MORGANING ALTO	207111_at	NM_001974.1	GPR	sequence 1 (EMR-1)	1.5	0.1	16.4	49.5	34.5	85.9	93.1	91.2	93.5	2.7	3.7	5.4	5.1	3.4	1.7	8.0	7.1	- 8:	0.5	8.0092
National Control Con	215248_at	AU145003		FL J11581 fis, clone HEMBA1003598	0.7	. 0.3	5.7	4.7	5.2	4.5	2.1	2.8	2.1	1.0	0.1	0.1	0.1	0.5	0.1	0.1	0.1	0.1	0.5	7.2618
No. 10.5090	205471 e at	AW772082		dachshund (Urosophila) homolog He 63931	,	90	7	4.1	3.7	9	83	0	7.6	80	60	0.1	8	0.1	0.1	0.3	0.5	00	0.1	6.8198
Macrostope Mac	10 4 10000	111 00000 1		122246	; ;		9	36.3	404	42.7	40.0	45.2	14.	;		0		,	30	2	, ,	,	0	5,5045
MA_ORREST: Imformer restrictive HT 022 45 45 45 102 88 45 45 35 0 28 11 05 45 45 45 45 45 45 45 45 45 45 45 45 45	21885/_s_at	NM_UZ5080.1		FLJ223 16	0.1	?	0.0	200	0.01	2	6.3		4.0	3 ;	: :		n. 1	? .	3 6	; ;	, ,	y (7.0	0.000
MALOSTRAI STATESTRAIN STATESTR	221169_s_al	NM_021624.1		histamine receptor H4	7.8	0.5	2.4.5 C. 7	12.5	76.9	6. 8	3 5 F	4 4.2 5 5	25.9	3.0	9.6	- 9	9.0	2. 4 5. 4	 6.3	ر د و). 0	0.6	5. C	5 1015
Mathematical profit of the control	50 LO2	-		secreted fibroblast growth factor	?	;		?	} .	2	į	9	;	2	}	2	!	?	}	·	<u>;</u>	;	<u> </u>	
Maintenance	208228_s_at	M87771.1		receptor (K-sam-III)	0.3	1.4	3.7	10.2	8.3	3.9	8.9	4.5	8.3	9.0	1.4	1.1	0.5	1.3	9.0	0.7	0.3	0.5	Ξ	4.9922
NALOGORA Automatical production (COCRESSARIS) Automatical production (AUTOMATICA) Automatical produ	213605_s_at	AL049987.1		hypothetical protein, MNCb-4779	9.0	0.0	10.8	46.8	44.7	6.7	6.1	25.8	50.6	1.3	1.4	4.5	4.2	5.9	1.1	2.1	3.7	2.0	0.3	4.7426
Machinester protein (OC283445 Color of Color	205382 s at	NM_001928.1		edipsin	3.5	0.1	62.0	206.0	176.5	62.4	48.1	60.5	44.8	7.1	32.5	20.5	16.3	0.1	9.0	0.1	15.6	0.1	3.8	4.7202
NM_01682 R. Citz4 ratioal virtee cell receptor Copy at ratioal virtee Copy a	49452 at	A1057637		hypothetical protein LOC283445	9.0	0.2	5.2	7.7	8.6	6.9	5.9	10.2	12.7	1.1	0.5	0.3	1.3	0.1	1.6	1.6	0.5	1.3	9.0	4.7183
MACOTISSE 1 A 254 MACOTISSE 2 A 255 MACOTISSE 3 A 255 A			(CD244 natural killer cell receptor	,	,		į	į		•		,		;	,		ì	į			,		1000
Higgs Higg	220307_et	NM_016382.1	r	284	0.5	0.1	15.7	87.0	4.0	5	10.8	2.0.X	e.9	5.3	4.	7.7	3.0	- -		رن ت	7.0	:	- S	4.029/
MALO013142 PARTINION PAR	210108_at	BE\$\$0599	S	calcium channel, voltage-dependent, Litype, alpha 10 subunit	0.5	0.1	1.0	1.7	2.4	6.0	9.0	2.4	1.8	0.0	9.0	0.5	0.5	0.0	0.3	0.1	0.0	0.3	0:0	4.5958
NNL_0001942	209193 at	M24779.1		(PIM1)	8.8	7.1	61.3	110.3	100.1	47.0	7.6.2	91.8	79.5	19.2	18.8	21.1	16.1	4.1	12.7	13.9	4.8	4.0	7.	4.1983
NM_OD02194.2 polyhosphelet-1-phosphelese				inositol																			_	
NM_001837.1 GPR coccessor demokine (CC molif) 0.2 1.1 107.2 142.9 102.2 46.4 91.7 118.1 107.5 28.3 26.1 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 11.2 11.2 11.2 11.2 11.2 11.2 0.4 0.6 0.6 0.7 2.1 4.8 0.7 0.8 4.7 0.6 0.3 3.1 2.8 0.6 0.6 1.2 4.3 4.1 4.5 2.0 0.7 0.8 4.7 0.8 0.7 0.8 0.7 0.8 1.1 1.1 1.1 1.1 4.2 4.8 4.7 4.5 2.0 3.7 1.4 4.8 4.7 4.8 0.7 0.8 0.7 0.8 1.1 1.1 1.1 1.1 1.2 4.3 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	202794_at	NM_002194.2		polyphosphate-1-phosphatase (INPP1)	5.7 .	.9	7.7	25.8	20.5	17.9	24.8	53.6	57.8	8.8	2.7	2.6	4.0	1.9 .	1.8	2.8	8.	6.	8.8	4.1158
NACONSTITUTE CONTRINGED CONTRIVENCE CONTRI	100000	MM 001037 1	900	CCR3 chemokine (C-C motif)	60	,	407.2	4429	102.2	46.4	7 10	1181	107.5	28.2	000	26.3	25.1	00	20	90	00	00	0.4	3.9525
Macroscope Protectional control of the periodom Actional control of the periodom	200004-01	1414 OO 1037 . 1	5	S COMPANY	7.0	: 6								3	3 6									3077
Aug39084 Polyphosphale-S-phosphalase, 75kD	206111_at	NM_002934.1		Humahalical applied OC083445	7.0	7.0	55.7	φ α 	, 66. A	7.4	80.8	7. / 4	. v). ,	? 6	ر د د د	9 0		10.4	* e	0.6	. .		3.7554
Autogoogs Autographist CPR Coareceptor (CFFRMRP). Included the cycle of the cycle o	42467	00000		ingpointenal protein LOCEOCAS	2.	ì	;	•	}	;	P	3	į	2	3	; ;	3	:	<u>:</u>	:	.		:	
U620271 GPR C3a receptor C3a receptor C41	213804_et	A1039084		polyphosphate-5-phosphatase, 75kD	9.0	1.2	4.3	9.0	6.8	9.8	5.6	6.3	9.7	0.7	0.5	2.2	1.7	4.	1.2	4.	1.0	1.9	.3	3.6088
AKS99710 (ATP-binding cassette, sub-family C according cassette ca	209906_at	U62027.1	GPR	C3a receptor	12.4	11.2	1.4	72.3	50.5	18.8	38.8	70.3	29.9	1.2	1.2	1.8	3.8	1.6	1.6	1.5	3.0	9.0	0.5	3.6039
at AF195624.1 choinephosphotransferase 1 beta 7.0 6.8 316 79.7 55.8 26.9 32.6 43.8 41.8 5.2 7.5 5.9 9.6 2.4 3.1 3.1 7.7 11.8 5.7 11.8 5.7 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	202804 at	AIS39710		ATP-binding cassette, sub-family C (CFTRMRP), member 1	8.5	7.0	24.2	56.2	48.9	14.2	20.0	30.1	20.7	3.0	3.6	4.3	6.0	3.8	3.5	5.4	5.1	5.5	5.3	3.5673
al NNL_003104.1 sorbiol dehydrogeneae (SORD) 2.0 1.5 2.9 4.2 4.1 7.4 11.6 8.3 11.2 1.7 2.5 1.5 1.3 1.3 1.4 1.8 1.2 1.7 1.7 2.1 1.7 2.5 1.5 1.3 1.3 1.4 1.8 1.2 1.7 2.1 0.1 0.5 0.2 0.7 0.3 0.2 0.6 0.8 1.9 0.5 0.5 0.2 0.7 0.3 0.2 0.6 0.8 1.9 0.5 0.5 0.5 0.2 0.6 0.8 1.9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	221675 s. at	AF 195624.1		cholinephosphotransferase 1 beta	7.0	6.8	31.6	7.67	55.8	56 .9	32.6	43.8	41.8	5.2	7.5	5.9	9.6	2.4	3.1	3.3	1.7	11.8	5.7	3.5626
BC003629.1 FLJ23438 fis, done HRC13275 1.1 0.1 8.3 11.0 13.3 2.4 5.1 5.1 0.1 0.1 0.5 0.2 0.7 0.3 0.2 0.7 0.3 0.2 0.6 0.8 1.9 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	201562_s_at	NM_003104.1		sorbitol dehydrogenase (SORD)	5.0	1.5	2.9	4.2	4.1	7.4	11.6	8.3	11.2	1.7	2.5	1.5	1.3	1.3	1.4	1.8	1.2	1.8	1.1	3.5098
al NN_018276.1 FLJ10928 0.01 0.1 0.2 3.1 1.8 2.5 1.7 4.3 1.7 2.1 0.1 0.5 0.4 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.7 0.1 0.7 0.1 0.1 0.1 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	210230_at	BC003629.1		FLJ23438 fis. done HRC13275	1.1	0.1	8.3	11.0	13.3	2.4	5.1	5.1	4.1	0.1	0.5	0.5	0.7	0.3	0.2	9.0	8.0	1.9	0.5	3.2532
NM_014867.1 KIAA0711	219919_s_at	NM_018276.1		FLJ10928	0.1	0.2	3.1	1.8	2.5	1.7	4.3	1.7	2.1	0.1	0.5	0.4	0.3	0.1	. 0.1	0.1	0.1	0.1	0.7	3.2497
Group and L12387.1 GEF) 6	204301_at	NM_014867.1		KIAA0711	9.0	0.1	3.8	14.3	10.7	5.3	6.8	12.6	10.5	1.2	9.0	1.6	1.6	1.0	8.0	1.2	9.2	8.0	0.1	3.2398
Accorded guarine exchange factor 13.1 24.8 28.8 74.7 73.0 53.8 35.5 92.9 59.6 92 6.1 18.5 13.7 3.1 10.8 12.9 7.1 7.8 1.0 co. 17.3 1.0 c	000000	, 100001		Grb 10- and Grb-IR-related splice	9	,	•	4 5	•	1,3	9.7	•	7 3	,	4.4	•	ć	ç	;	;	9	Š	9	3 1044
D25304.1 (GEF) 6 13.1 24.8 28.8 74.7 73.0 53.8 35.5 92.9 59.6 9.2 6.1 18.5 13.7 3.1 10.8 12.9 7.1 7.8 1.0 at L12387.1 sorcin (SR)	Z 10383_S_all	Oggogg, I		RacCdc42 quanine exchange factor	9	3	t o	2	<u>.</u>	3	2	ì	ż	:	2	?	9	?	!	!	?	i	_	5
at L12387.1 sorcin (SR1) 19.2 11.4 20.2 88.6 67.0 37.4 42.4 86.3 85.4 6.9 8.9 17.6 21.5 2.6 11.1 12.7 8.4 8.6 17.8 bitimoral AFR bitimoral AFR sulfur/discadenosine AF033026.1 5-phosphosulfate kinase 19.9 16.1 39.0 87.1 75.2 66.4 68.7 89.4 71.4 13.8 20.0 46.5 8.9 6.3 8.7 4.4 10.6 11.0 22.7	209539_at	D25304.1		(GEF) 6	13.1	24.8	28.8	7.4.7	73.0	53.8	35.5	92.9	59.6	9.5	6.1	18.5	13.7	£.	10.8	12.9	1.1	7.8	5.	3.0943
AF033026.1 5-phosphosuliate kinase 19.9 16.1 39.0 87.1 75.2 66.4 68.7 89.4 71.4 13.8 20.0 46.5 8.9 6.3 8.7 4.4 10.6 11.0 22.7	208921_s_at	L12387.1		sorcin (SRI)	19.2	11.4	20.2	98.6	67.0	37.4	42.4	86.3	85.4	6.9	6.9	17.6	21.5	5.6	7.	12.7	8 .	9.6	8.71	3.0628
AF033026.1 5-phosphosulfate kinase 19.9 16.1 39.0 87.1 75.2 66.4 68.7 89.4 71.4 13.8 20.0 46.5 6.9 6.3 6.7 4.4 10.6 11.0 22.7				sulfurylaseadenosine																				
	209043_at	AF033026.1		5-phosphosulfate kinase	19.9	16.1	39.0	87.1	75.2	66.4	68.7	89.4	71.4		20.0	46.5	8.9	63	7.8	4.4	10.6	- 1	22.7	3.0385

F. Eosinophil and neutrophil-selective transcripts (1/1).

Probe set Accession # 221345_at NM_005306.1 212860_at BG168720 214576_s_at BC003068.1 214321_at BF440025 218950_at NM_022481.1 205681_at NM_004049.1 203765_at NM_012188.1 213241_at AF035307.1 221815_at BE671816	n# 306.1 GPR 00 8.1	Transcripts	ploo	M. C.	Ba +	Ba 2 B	Ba 3	£		Eo 3	Eo 4	e v	Ne Ne		Ne 4			٥	,	9		Fo+Ne
# *	1-	Transcripte									:	,										?
-		riginacijas 1	brood	2	ı			ı	Eo 2 (small)	_				٦	CO	1			F.	S.I.
Ti	o 5.1		0.1	9.0	0.9	9.0	9.0	7.0	18.6	15.4	10.5	49.7	45.7	22.5	23.0	0.8	0.1	0.1	0.7	0.4	0.1	21.742
	5.1	18	2.2	8.0	4.1	3.9	4.0	16.0	17.4	14.8	16.7	59.2	53.9	30.9	39.8	1.1	2.4	3.8	5.6	1.5	1.3	6.5842
	ı,	sofute carrier family 19 member 1	1.4	0.1	0.7	1.4	0.7	5.1	5.9	11.5	12.4	19.8	18.7	27.1	28.1	1.8	6.0	9.0	2.7	0.5	0.8	4.99
		nephroblastoma overexpressed gene ARF-GAP RHO-GAP ankyrin repeat and plekstrin homology	1.3	1.0	8.0	0.2	0.7	6.2	7.2	17.0	13.7	4.5	. 9.7	10.7	±.3	0.1	0.1	0.0	0.1	0.1	8.	4.9823
	181.1	domains-containing protein 3	1.4	3.1	2.4	3.7	7.7	15.5	15.9	18.3	15.5	28.0	24.3	15.9	20.6	0.7	0.2	8.0	3.9	0.9	1.0	4.829
	149.1	BCL2-related protein A1	0.5	1.9	1.0	3.2	2.4	52.4	40.2	35.9	30.5	46.5	49.2	35.5	33.5	7 .	2:5	6.1	8.3	4.3	0.5	4.7782
	198.1	grandaldin	2.0	1.8	4.5	11.7	8.3	27.5	39.8	46.7	34.8	71.6	85.2	80.5	6.77	1.0	0.	1.2	12.1	3.1	0.5	4,4403
	7.1	THYMU2011053	9.0	. 2.4	1.6	1.0	1.0	33.2	37.1	68.7	40.6	63.2	8.77	89.2	80.9	3.0	3.0	2.8	13.5	4.1	7.8	4.2603
	9	hypothetical protein PRO2831 homolog of yeast long chain	1.2	1.4	1.3	0.5	9.	10.1	8.8	11.2	6.4	2.0	6.2	4.0	89.	9.	0.8	0.5	1.4	6.0	9.0	4,1325
214153 at BE467941	-	polyunsaturated fatty acid elongation enzyme 2	1.0	9.0	1.0	2.0	3.1	9.1	10.4	18.2	16.6	9.7	1.6	14.5	15.2	8.0	6.0	1.2	0.7	2.3	0.1	4.0797
	. 0	KIAA0599	0.1	0.1	0.4	1.2	6.0	4.6	5.8	4.7	3.4	4.4		6.0	4.9	0.4	0.2	0.4	0.3	0.0	0.5	3.727
		Edg4. endathelial differentiation. lysophosphalidic acid																				
206723_s_at AF011466.1	6.1 GPR	R G-protein-coupled receptor. 4	1.2	1.4	2.1	3.6	5.6	13.7	8.0	19.6	22.3	24.6	17.0	26.1	29.1	0.1	3.6	2.0	3.8	1.9	6.0	3,7119
212360_at AI916249	_	deaminase 2 (isoform L)	1.0	5.0	2.8	5.9	4.8	56.6	18.7	30.2	31.9	78.7	63.1	79.5	91.3	3.4	5.8	6.1	12.8	3.7	5.8	3.5888
218308_at NM_006342.	142.1	transforming, ecidic coiled-coil containing protein 3 (TACC3)	0.4	0.4	4.8	8.3	9.5	3.3	2.4	3.3	4.7	17.6	14.8	23.5	22.8	2.4	2.3	8.	3.6	1.0	0.7	3,4769
212629_s_at AK023692.1	2.1	protein kinase C-like 2	1.9	9.0	3.1	3.7	5.1	1.8	7.6	17.7	13.8	16.7	23.6	27.0	28.4	1:1	2.1	2.2	4.2	4.2	5.9	3.2963
201739_at NM_005627.1	127.1	serumgitroconicoid regulated kinase (SGK)	30.2	25.2	1.9	18.5	25.4	114.1	118.0	150.9	164.8	60.2	11.11	, 8.501	156.3	. 17	3.7	0.7	34.6	8.	18.9	3.2458
209473_at AV717590	c	ectonuceoside inprospriate diphospholydrolase 1	1.4	8.0	2.1	1.6	2.0	15.9	22.3	39.5	29.1	14.1	13.7	23.7	13.8	2.6	5.6	1.3	6.5	4.8	9.0	3.0752
209304_x_at AF087853.1	3.1	growin arrest and DNA damage inducible protein beta (GADD45B)	5.0	0.3	2.7	4.5	3.6	15.5	11.9	16.3	34.4		12.0	13.5	9.4	0.4	3.1	4.2	4.1	3.7	9.0	3,0295
210666 at AF050145.1	5.1	iduronate 2-sulfatase	0.1	0.3	6.7	0.5	1.7	7.1	5.9	3.3	3.8	6.1	5.1	5.2	10.8	0.4	0.1	6.0	0.7	0.4	0.1	3.0005

G. Basophil and neutrophil-selective transcripts (1/1).

Ba+Ne	S.I.	5.81398	4.97025	4.61523	4.57355	4.33664	4.14372	3.89177	3.8469	3.84207	3.7116	3.48188	3.4769	3,401	3.31991	3.29317	3,18834	3,1591
	e.	1.5	2.5	1.7	0.5	8.0	1.3	0.1	4.5	0.3	1.2	9.6	0.7	.5.	6.0	0.7	8.0	5
	CD19	0.7	9.0	2.5	9.0	0.5	0.	0.0	5.6	1.0	7	3.3	1.0	2.3	1.7	9.0	0.1	9
	CD14	5.9	1.0	3.0	5.6	2.3	9.0	9.0	7.3	4.3	2.3	4.5	3.6	4.6	5.4	3.3	0.1	1.5
	88	7.0	1.6	1.5	0.1	0.2	1.3	0.1	3.5	6.0	2.5	8.6	9:	6:	1.8	8.0	0.1	1.5
	CD	1.2	0.5	5.0	0.5	0.1	9.0	0.4	5.9	8.0	7.	9.0	2.3	1.7	. .	0.5	0.1	1.0
	٦	1.3	0.1	0.7	1.6	0.1	0.5	0.2	5.3	0.4	1.5	6.1	2.4	1.1	0.5	0.7	0.5	6.0
Ne 4	(small)	19.3	27.7	22.5	37.0	9.0	7.6	11.5	22.3	18.4	15.4	20.0	22.8	40.6	12.3	7.0	56.1	3.2
Ne 3	small)	21.4	26.1	24.5	61.7	11.2	8.4	15.8	25.7	29.9	13.3	48.5	23.5	33.5	11.7	5.3	60.7	3.3
Se P	2	23.6	14.0	24.4	32.8	6.7	10.2	7.3	23.0	14.5	11.7	37.2	14.8	30.7	6.5	16.7	14.4	8.2
Se e	-	20.7	13.7	15.5	31.4	4.5	8.4	15.8	13.6	9.61	8.8	37.2	17.6	29.5	9.8	19.7	18.8	9.7
Eo 4	(small)	2.5	4.2	3.8	9.0	1.2	1.6	4.	1.1	0.1	3.3	11.0	4.7	9.5	2.7	1.4	14.5	1.5
Eo 3	(small)	3.2	4.5	4.3	1.3	5.9	1.4	4.0	13.9	1.6	5.7	14.3	3.3	10.0	3.9	1.4	16.1	1.5
	Eo 2	3.3	3.7	2.5	9.0	1.7	1.7	1.5	7.1	0.3	1.9	9.9	2.4	6.6	1.5	3.0	5.9	1.9
	Eo 1	5.6	2.4	3.6	0.2	2.4	8.	1.2	.4.0	0.3	2.1	7.3	3.3	6.9	2.0	3.2	2.1	1.5
Ba 3	ੂ	17.3	18.8	19.2	25.4	26.4	4.7	6.3	70.8	20.9	13.2	32.4	9.5	22.9	8.0	8.7	34.3	5.8
Ba 2		16.3	23.5	16.2	13.7	26.2	5.5	10.4	82.2	18.9	16.2	31.5	8.3	22.8	9.7	11.0	27.9	4.3
Ba I	-	7.2	10.1	4.2	8.5	5.0	4.5	3.9	28.8	5.5	4.3	15.6	8.4	10.4	3.9	13.8	4.4	5.0
	fung	1.8	0.3	1.7	1.4	0.1	6.0	0.1	3.0	0.1	1.7	3,3	0.4	2.4	9.0	0.1	0.2	0.4
	blood	1.8	1.0	2.4	0.1	8.0	1.0	. 10	5.0	0.1	2.5	2.4	0.4	2.2	0.4	0.3	6.0	0.0
	Transcripts	CGI-58 protein	FLJ13386	kelch (Drosophila)-like 2	histidine ammonia-lyase	done 23551 mRNA	FLJ13676 fis	tumor necrosis factor (ligand)	mitogen-activated protein kinase 14	Hs.276590 ESTs .	E2F transcription factor 3	autosomal highly conserved protein (AHCP)	transforming, acidic colled-coil	bromodomain adjacent to zinc finger domain, 28	hypothetical protein PRO2198	clone 23551 mRNA	ring finger protein 24	FLJ13712 fis
	Accession #	NM_016006.1	NM 025180.1	NM_007246.1	NM_002108.2	AF007132.1	AK023738.1	NM 003807.1	NM_001315.1	N54942	NM_001949.2	NM_016255.1	NM_006342.1	NM_013450.1	NM 018621.1	A1692428	NM_007219.2	AK023774.1
	Probe set	21873g_at	219242_at	219157_at	206643_at	213935_at	222151_s_at	207907 at	202530_at	217521_at	203693_s_at	203420_al	218308_at	203080_s_at	219999 at	213805_at	204669 s at	215555_at

$\stackrel{\cdot}{\leq}$
_
_
_
$\overline{}$
v.
≍
.=
_
ပ
S
⊏
Ŗ
ᆂ
မှ
>
Ξ.
ວ
၁
_
ب
ų.
÷
·=
눛
-5
baso
S.
œ
2
=
ĭ
Ě
=
ਹ
చ
t ee
7,
as
÷
2
<u>-</u>
ェ

Probe set	Accession #		Transcripts	MC. cord	MC.	1	Ba 2 (small)	Ba 3 (small)	F0 -	Eo 2	Eo 3 (small)	Eo 4 (small)	8 -	Ne Ne	Ne 3 (Ne 4 (small)	<u>-</u>	004	CD8	CD14 C	CD19	6	MC+Ba S.I.
	NM 001870.1		carboxypeptidase A3	137.1	91.0	۵	139.0	173.1	2.5	1.6	2.8	1.9	0.1	1.4	2.0	12.4	0.2	1.2	0.2	0.2	0.5	0.5	59.1989
208605_s_at	208605_s_at NM_002529.2	α	TRK neurotrophin receptor	8.0	1.2	4.6	9.3	8.1	0.2	0.2	0.0	0.1	0.2	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	34.7309
210258_at	AF030107.1		(RGS13)	6.2	8.4	5.6	1.1	10.9	0.3	0.1	9.0	0.5	0.5	0.0	0.1	0.3	0.1	0.0	0.0	0.5	0.3	0.0	21.7762
207496_at	NM_000139.1	œ	Fc epsiton R I beta	19.9	24.7	35.4	51.9	45.6	6.0	0.1	0.5	0.3	0.1	0.1	0.5	1.8	1.6	9.0	0.2	0.0	0.3	0.1	21.1783
205857_at	AI269290		solute carrier family 18	24.3	27.1	8.1	22.3	25.0	1.3	1.0	9.0	6.0	1.3	6.0	0.5	0.7	0.9	9.0	0.3	0.2	0.3	0.3	20.3301
210358_x_at BC002557.1	BC002557.1		GATA-binding protein 2	18.4	12.8	55.0	31.7	24.7	2.0	1.6	1.9	1.7	0.9	1.9	1.3	3.7	5.6	8.0	8.0	6.0	0.4	2.7	9.46893
207497_s_at	D10583.1		Fc epsilon R I beta	10.7	58.6	34.9	12.6	6.8	1.5	1.0	0.8	9.0	1.9	6.0	1.7	1.5	1.7	0.7	0.7	0.1	0.3	0.5	9.39967
203914_x_at	203914_x_at NM_000860.1		dehydrogenase (PDGH) chromosome 11 open reading frame	63.9	51.4	24.8	36.0	23.3	4.1	4.6	4.6	5.6	1.3	0.9	£.	1.2	e .0	4.	5.1	0.4	8.0	0.4	6.14285
219557_s_at	NM_020645.1		14	7.4	4.2	4.4	7.4	9.9	1.2	1.6	2.0	2.4	6.0	1.9	1.1	2.1	1.1	1.4	1,4	 5:	0.4	9.	3.38029
204061_at	NM_005044.1		protein kinase, X-linked	6.2	5.2	5.2	12.8	16.9	2.3	2.7	2.5	2.4	0.8	0.4	0.7	1.2	1.9	5,5	7.7	2.5	5.0	8.6	3.26062
202068_s_at	NM_000527.2	ď	tow density lipoprotein receptor	24.6	16.8	19.3	28.5	13.5	9.	1.0	9.	0.9	9.0	2.4	1.5	5.5	2.3	2.1	3.4	3.5	8.0	6.3	3.1679

	ı
tes.	
s for non-granulocytes	
granı	1
non-	
for	
rkers	
s ma	
cript	
transcripts marker	
Specific	
_	

			MC.																		
			cord	MC.		Ba 2	Ba 3			Eo 3	Eo 4			Ne 3	Ne 4						
	Accession # Transcripts	Transcripts	poold	fung	Ba 1	(small)	(small)	Eo 1	Eo 2	(small)	(small)	Ne 1	Ne 2	(small)	(small)	<u>-</u>	C04	CD8	CD14	CD19	Fb
203547_at	U47924	CD4	5.5	4.7	2.2	1.1	1.2	2.0	1.6	0.4	6.0	0.7	1.1	0.7	8.0	3.5	15.0	0.3	17.6	1.2	0.4
	AW006735	CD8	0.5	1.7	5.6	2.3	3.5	1.3	1.1	2.2	1.7	0.3		1.8		4.2		1.91		9.0	0.4
	NM_001770.1	CD19	2.0	0.1	0.7	. 0.4	0.7	0.8	. 0.5	0.5	0.5	9.0		1.1		4.0		0.1		19.1	9.0
	L14458.1	IgG V-J region	0.2	0.1	0.1	0.1	0.5	0.5	0.5	0.5	0.3	0.1	0.3	0.5	0.5	3.8	0.1	0.2	0.1	70.9	0.1
	NM_000591.1	CD14	18.4	2.4	0.3	0.1	9.0	8.8	9.0	1.1	3.2	40.7		58.7		5.9		0.0		1.1	6.0
	NM_005211.1	v-fms M-CSF receptor	3.8	0.2	9.0	0.7	0.3	3.0	1.1	1.7	1.5	8.8		6.3		5.2		0.7		1.4	6.0
	U63041.1	CD56	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.1	0.1		0.5		0.1		0.1		0.1	0.0
	M35999.1	CD61 glycoprotein Illa	1.7	9.4	0.5	0.1	0.3	0.1	0.1	0.1	0.1	0.1		0.1		48.3		0.3		0.5	0.5
	AK026737.1	fibronectin	0.3	1.5	0.3	0.3	0.7	0.1	1.0	0.3	9.0	0.1		0.5		0.3	0.1	1.0		0.1	95.6

J. Raw AD levels for the median values used to normalize the raw AD levels, and the housekeeping genes.

Accession																				
	Transcripts blood	cord	MC.	₽9 +	Ba 2 (small)	Ba 3 (small)	Eo 1	Eo 2	Eo 3 (smatt)	Eo 4 (Small)	Ne 1	Ne 2	Ne 3 (small)	Ne 4 (small)	<u>-</u>	CD4	CD8	CD14	CD19	æ
	1	18534	19383	14638	20922	19151	22019	18638		18568	19406	22302	16589	17569	18295	18782	20805	20661	17.542	20399
	beta-actin	22898	21777	12940	11533	7608	22560	18785	14861	13431	23106	23373	6861	8019	19368	20362	22761	22294	19087	22757
AFFX-HSAC07/X00351_5_at X00351	beta-actin	15642	15838	9516	2927	2066	17186	21061	4861	3771	18772	19768	2165	2193	14887	16381	18218	17583	15063	16795
AFFX-HUMGAPDH/M33197_3_at M33197	GAPDH	14906	13632	3640	10477	9332	2649	2844	5498	2605	2549	3186	3586	3538	5929	6429	8609	9226	5180	19674
AFFX-HUMGAPDH/M33197_M_at M33197	GAPDH	15891	16852	3218	7587	6963	2382	2565	3720	1838	2194	2796	2312	2154	6182	5931	5921	11464	4344	17013
AFFX-HUMGAPDH/M33197_5_at M33197	САРОН	16298	16701	3479	4559	5110	1827	3121	2127	1168	2492	3476	1636	1355	4655	6826	9290	9905	5636	23350
The median value of 22283		ç	6097	ç	ç	9	2	Ş	437.3	3	1,71	5	07.4	87.3	82.3	15.2 5	1213	107 1	177	8181

Abbreviations used in the table A-I were (small); the results obtained by the small sample protocol (see materials and methods), R; receptor, and ICN; ion channel.