

Prevention of Alzheimer's disease: a contribution from MRI and Machine Learning

Miguel Artigues Canaves

Degree thesis defense Barcelona, 25th May 2018

Contents

- Introduction
- Data
- Algorithm design
- Results and conclusions

Alzheimer's disease (AD)

- Neurodegenerative chronic and currently irreversible disorder
- One of the most common causes of dementia in elderly people
- Growing trend
- Brain alterations during the early stages of the disease

Current situation

- Preclinical AD characterized by:
 - Cognition within normal ranges and abnormal amyloid biomarkers as measured in cerebrospinal fluid (CSF)
 - Positron emission tomography (PET)
- MRI established as one of the preferred diagnostic imaging tools
 - Cheaper
 - Minimally invasive

Scope of the project

- Analyse T1-MRI volumes:
 - At the voxel level
 - Novelty: longitudinal pipeline
- Objectives
 - Show how MRIs can be used for subject classification using machine learning tools
 - Identify patterns of volumetric changes specific to preclinical AD

Data

 Extracted by BBRC from a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI)

T-1.1. 1

- Volunteers with cognition impairment excluded
- Atributtes:
 - \circ Amyloid beta (**A** β)
 - Clinical diagnosis

Table 1 Distribution of the number of MRI-T1 image adquisitions per subject			
Amount of images acquired	# number of subjects		
1	481		
2	391		
3	81		
4	39		
5	23		
6	7		
Total	1025 subjects		

Pre-processing

Jacobian labeling

NC

PC

Threshold Amyloid beta biomarker ($\mathbf{A}\boldsymbol{\beta}$) = 192 pg/mL

Table 2 Classification rules for Jacobians based on their reference and target events		
class	Classification rules for jacobians based on their reference and target events	clinical diagnosis
1	Α β -/ Α β - ($A\beta$ neg)	without symptoms
2	Αβ-/Αβ+ (Α β conv)	without symptoms
3	$A\beta+/A\beta+$ without symptoms($A\beta$ pos)	without symptoms
4	$\mathbf{A}\boldsymbol{\beta}$ +(NC)/ $\mathbf{A}\boldsymbol{\beta}$ +(MCI,AD)	symptoms
5	$A\beta+/A\beta+$ with symptoms $(A\beta possymp)$	symptoms

Subject labeling

Algorithm design

- 500000 features
- 288 samples
- 40 % controls
- 60 % preclinical

- 1000 splits
- "C" value optimization
- Logistic regression classifier

Algorithm design

- 1000 stratified shuffle splits
- 2 feature selection strategies
 - Analysis of variance (ANOVA) F-test scores

$$F := rac{between-group \quad variability}{within-group \quad variability}$$

Logistic regression classifier weights

Nested cross-validation

- Stratified 3-fold nested cross-validation
- 20 equispaced "C" values in range [10e-3, 10e3]
- Accumulative F1-score

$$TP_c := \sum_{i=1}^k TP_{i,c} \hspace{5mm} FP_c := \sum_{i=1}^k FP_{i,c} \hspace{5mm} FN_c := \sum_{i=1}^k FN_{i,c}$$
 $F - measure_c := (2 imes TP_c)/(2 imes TP_c + FP_c + FN_c)$

- Split per subject
- F-test based feature selection

- Split per Jacobian
- F-test based feature selection

- Split per Jacobian
- F-test based feature selection
- Testing only with Jacobians with
 dt > 1.15 years

- Split per Jacobian
- LR weights based feature selection
- Testing only with Jacobians
 with dt > 1.15 years

Results: tridimensional map generated using LR weights accumulation

Conclusions and future work

- Promissing classification performance for NC versus PC classes
- Detection of relevant brain regions
- Small dataset → Uncertainty of performance on new cohort
- Test algorithm using Jacobians from class 2 (A β conv)

- Abstract accepted and study exposed at AAIC
- Paper to be summited at Neuroimage Clinical

F-test

$$F := \frac{between - group \quad variability}{within - group \quad variability}$$

$$between-group \quad variability := \sum_{i=1}^K n_i (\overline{Y_i} - \overline{Y})^2/(K-1)$$

$$within-group \quad variability := \sum_{i=1}^K \sum_{i=1}^{n_i} {(Y_{ij} - \overline{Y_i})}^2/(N-K)$$

Where:

- n_i: number of samples from variable y that belong to class i
- N:Y size
- K: number of classes
- \overline{y} : mean estimated value of y
- y_i: mean estimated value of elements from y that belong to class i

Classifier: logistic regression

$$\hat{y} := g(\underline{w}^T \underline{x} + w_0) \quad \ \ where \quad \ \ g(z) := rac{1}{1 - e^{-z}}$$

$$J(\underline{w}) := \min_{w,w_0} ||\underline{w}||_1 + C \sum_{i=1}^n log(exp(-y_i(\underline{X_i}^T\underline{w} + w_0)) + 1)$$

$$w_i := w_i - \alpha \frac{\partial}{\partial w_i} J(\underline{w})$$

