Àlgebra Lineal, Curs 2010-11, Grup tarda Examen final. 10 de juny de 2011

$$\mathbf{1.}(4/20) \text{ Sean } F = \mathbb{R}[t]_{\leq 3}, \ E = \mathbb{R}(3,3), \ N = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in E. \text{ Sean } f: F \longrightarrow E \text{ la aplicación } f: F \longrightarrow E \text{ la aplicaci$$

lineal definida por

$$f(a_0 + a_1t + a_2t^2 + a_3t^3) = a_0I + a_1N + a_2N^2 + a_3N^3,$$

y $g: E \longrightarrow E$ la aplicación lineal definida por

$$g(A) = A - {}^{t}A, \quad \forall A \in E$$

donde ${}^{t}A$ denota la matriz transpuesta de la matriz A.

(1) Halla bases de $\operatorname{Im} f$ y $\operatorname{Ker} f$. Halla las dimensiones de $\operatorname{Im} g$ y $\operatorname{Ker} g$.

SOLUCION: Las potencias de
$$N$$
 son $N^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $N^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, por tanto

$$f(a_0 + a_1t + a_2t^2 + a_3t^3) = a_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + a_1 \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a_0 & 0 & 0 \\ a_1 & a_0 & 0 \\ a_2 & a_1 & a_0 \end{pmatrix}.$$

De aquí deducimos que

$$a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in \text{Ker } f \Leftrightarrow a_0 = a_1 = a_2 = 0,$$

por tanto Ker $f = \{a_3t^3; a_3 \in \mathbb{R}\}$, y una base de Ker f es $\{t^3\}$.

Por otro lado tenemos que:

$$\operatorname{Im} f = \left\{ \begin{pmatrix} a_0 & 0 & 0 \\ a_1 & a_0 & 0 \\ a_2 & a_1 & a_0 \end{pmatrix}; \ a_o, a_1, a_2 \in \mathbb{R} \right\}$$

y una base de Im f es $\{I, N, N^2\}$

En cuanto a la aplicación g, se tiene que $A \in \text{Ker } g$ si y solo si $A = {}^t\!A$, es decir, si y solo si A es una matriz simétrica,

$$A = \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 \ a_1^2 & a_2^2 & a_3^2 \ a_1^3 & a_2^3 & a_3^3 \end{pmatrix}, \quad a_1^2 = a_2^1, \ a_2^3 = a_3^2, \ a_1^3 = a_3^1.$$

Por tanto dim Ker g = 6.

Por la fórmula de las dimensiones, tenemos que dim $E = \dim \operatorname{Ker} g + \dim \operatorname{Im} g$, por lo tanto dim $\operatorname{Im} g = 9 - 6 = 3$.

(2) Halla una base de Im $f \cap \text{Ker } g$, y la dimensión de Im f + Ker g.

SOLUCION: Se cumple

$$\operatorname{Im} f \cap \operatorname{Ker} g = \left\{ \begin{pmatrix} a_0 & 0 & 0 \\ a_1 & a_0 & 0 \\ a_2 & a_1 & a_0 \end{pmatrix}; a_1 = 0, a_2 = 0 \right\} = \{ a_0 \cdot I \; ; \; a_0 \in \mathbb{R} \}$$

por tanto $\dim(\operatorname{Im} f \cap \operatorname{Ker} g) = 1$ y $\{I\}$ es una base de $\operatorname{Im} f \cap \operatorname{Ker} g$.

Para calcular la dimensión de Im f + Ker g, usamos la fórmula de Grassmann:

$$\dim(\operatorname{Im} f + \operatorname{Ker} g) = \dim\operatorname{Im} f + \dim\operatorname{Ker} g - \dim(\operatorname{Im} f \cap \operatorname{Ker} g) = 3 + 6 - 1 = 8$$

(3) Halla una base de $\operatorname{Im} f/(\operatorname{Im} f \cap \operatorname{Ker} g)$.

SOLUCION: La base $\{I\}$ de $\operatorname{Im} f \cap \operatorname{Ker} g$ se amplia a la base $\{I, N, N^2\}$ de $\operatorname{Im} f$, por tanto las clases de equivalencia de $\{[N], [N^2]\}$ forman una base de $\operatorname{Im} f/(\operatorname{Im} f \cap \operatorname{Ker} g)$.

(4) Prueba que la suma $\operatorname{Im} g + \operatorname{Im} f$ es directa y determina su dimensión.

SOLUCION: Para ver que la suma $\operatorname{Im} g + \operatorname{Im} f$ es directa es suficiente probar que $\operatorname{Im} g \cap \operatorname{Im} f = \{0\}$. Sea $A = \begin{pmatrix} a_0 & 0 & 0 \\ a_1 & a_0 & 0 \\ a_2 & a_1 & a_0 \end{pmatrix} \in \operatorname{Im} g$. Entonces, si $A \in \operatorname{Im} f$ existe $X = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{pmatrix} \in E$ tal que

$$\begin{pmatrix} a_0 & 0 & 0 \\ a_1 & a_0 & 0 \\ a_2 & a_1 & a_0 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{pmatrix} - \begin{pmatrix} x_1 & x_4 & x_7 \\ x_2 & x_5 & x_8 \\ x_3 & x_6 & x_9 \end{pmatrix} = \begin{pmatrix} 0 & x_2 - x_4 & x_3 - x_7 \\ x_4 - x_2 & 0 & x_6 - x_8 \\ x_7 - x_3 & x_8 - x_6 & 0 \end{pmatrix},$$

por tanto $a_0 = a_1 = a_2 = 0$, de donde deducimos que A = 0, por tanto la suma es directa. Aplicando la fórmula de Grassmann obtenemos

$$\dim(\text{Im } g + \text{Im } f) = \dim(\text{Im } g) + \dim(\text{Im } f) = 3 + 3 = 6.$$

- **2.** (2/20) Sean $E = \mathbb{R}(3,3)$, y $g: E \longrightarrow E$ la aplicación lineal definida por $g(A) = A {}^t\!A, \quad \forall A \in E$
- (1) Halla la dimensión del núcleo de la aplicación traspuesta g^* . Prueba que la aplicación tr $: E \longrightarrow \mathbb{R}$ es de Ker g^* .

SOLUCION: Se cumple $\operatorname{Ker} g^* = (\operatorname{Im} g)^{\perp}$, por tanto

$$\dim \operatorname{Ker} q^* = \dim E - \dim \operatorname{Im} q = \dim \operatorname{Ker} q = 6.$$

Una prueba alternativa es como sigue. Puesto que, en bases convenientes, la matriz de g^* es la traspuesta de la matriz de g, resulta rg $g = \operatorname{rg} g^*$, y por tanto dim Ker $g^* = \dim \operatorname{Ker} g = 6$.

Veamos que tr $\in \text{Ker } g^*$. En efecto,

$$g^*(\text{tr})(A) = \text{tr}(g(A)) = \text{tr}(A - {}^t A) = \text{tr}A - \text{tr}({}^t A) = 0.$$

(2) Sea $w_{ij} \in E^*$ la forma lineal definida por $w_{ij}(A) = a_i^j + a_j^i$, para $1 \le i \le j \le 3$, donde $A = (a_i^j) \in E$. Prueba que $\{w_{11}, w_{12}, w_{13}, w_{22}, w_{23}, w_{33}\}$ es una base de Ker g^* .

SOLUCION: Veamos en primer lugar que $w_{ij} \in \text{Ker } g^*$. En efecto, para todo i, j se tiene

$$g^*(w_{ij})(A) = w_{ij}(g(A)) = w_{ij}(A - {}^{t}A) = w_{ij}(A) - w_{ij}(A) = (a_i^j + a_j^i) - (a_j^i + a_i^j) = 0.$$

Por otra parte, puesto que dim Ker $g^*=6$, basta ver que $\{w_{11},w_{12},w_{13},w_{22},w_{23},w_{33}\}$ es linealmente independiente. En efecto, si $\lambda_{ij} \in \mathbb{R}$, $i \leq j$ son escalares tales que

$$w := \lambda_{11}w_{11} + \lambda_{12}w_{12} + \lambda_{13}w_{13} + \lambda_{22}w_{22} + \lambda_{23}w_{23} + \lambda_{33}w_{33} = 0,$$

entonces, para toda matriz $A = (a_i^j)$ se cumple w(A) = 0, es decir,

$$2\lambda_{11}a_1^1 + \lambda_{12}a_1^2 + \lambda_{12}a_2^1 + \lambda_{13}a_1^3 + \lambda_{13}a_3^1 + 2\lambda_{22}a_2^2 + \lambda_{23}a_2^3 + \lambda_{23}a_3^2 + 2\lambda_{33}a_3^3 = 0,$$
 para todo a_i^j , por tanto $\lambda_{ij} = 0$ para todo $i \leq j$.

- 3.(3/20) Sean E y F dos espacios vectoriales de dimensión finita sobre un cuerpo K.
- (1) Define las coordenadas de un vector $x \in E$ en una base de $\mathbf{u} := \{u_1, \dots, u_n\}$ de E. Prueba que las coordenadas X de un vector x son únicas y definen un isomorfismo $E \longrightarrow \mathbf{K}^n$, $x \mapsto X$.

SOLUCION:

Teorema 1. Sea $\mathbf{u} = (u_1, u_2, \dots, u_n)$ una base ordenada de E, y $x \in E$. Existe una única familia de escalares (X^1, X^2, \dots, X^n) tal que

$$x = X^{1}u_{1} + X^{2}u_{2} + \dots + X^{n}u_{n}.$$

La familia de escalares $(X^1, X^2, \dots, X^n) \in \mathbf{K}^n$, que se identifica con la matriz de una sola

columna $\begin{pmatrix} X^1 \\ \vdots \\ X^n \end{pmatrix}$ se llama el *vector de coordenadas* de x en la base \mathbf{u} . La aplicación

$$M_{\mathbf{u}}: E \longrightarrow \mathbf{K}^n, \quad x \mapsto (X^1, \dots, X^n)$$

es una aplicación lineal biyectiva, cuya inversa es

$$L_{\mathbf{u}}: \mathbf{K}^n \longrightarrow E, \quad X = (X^1, \dots, X^n) \mapsto \mathbf{u} \cdot X = \sum_i X^i u_i.$$

Demostración. La existencia de la familia de escalares (X^1, X^2, \dots, X^n) tal que

$$x = X^{1}u_{1} + X^{2}u_{2} + \dots + X^{n}u_{n}$$

se sigue de que una base es un conjunto de generadores de E, por tanto todo vector $x \in E$ se expresa como complinación lineal de los vectores la base.

Veamos la unicidad. Si $x = \sum_i Y^i u_i$ es otra expresión de x como combinación lineal de los vectores de la base, entonces

$$0 = x - x = \sum_{i} X^{i} u_{i} - \sum_{i} Y^{i} u_{i} = \sum_{i} (X^{i} - Y^{i}) u_{i},$$

puesto que los vectores $(u_i)_{1 \le i \le n}$ son linealmente independientes, se obtiene $X^i - Y^i = 0$, es decir, $X^i = Y^i$, para todo i.

Veamos la biyectividad de $M_{\mathbf{u}}$. Efectivamente, sea $x \in E$, y sea $M_{\mathbf{u}}(x) = (X^1, X^2, \dots, X^n)$, entonces

$$x = X^{1}u_{1} + X^{2}u_{2} + \dots + X^{n}u_{n},$$

У

$$L_{\mathbf{u}}(M_{\mathbf{u}}(x)) = \sum_{i} X^{i} u_{i} = x$$

por tanto $L_{\mathbf{u}} \circ M_{\mathbf{u}} = Id$. Por otra parte, si $(X^1, X^2, \dots, X^n) \in \mathbf{K}^n$, las coordenadas de $L_{\mathbf{u}}(X^1, X^2, \dots, X^n) = \sum X^i u_i$ son (X^1, X^2, \dots, X^n) , por tanto

$$M_{\mathbf{u}}(L_{\mathbf{u}}(X^1, X^2, \dots, X^n)) = (X^1, X^2, \dots, X^n),$$

es decir $M_{\bf u}\circ L_{\bf u}=Id$. En consecuencia $L_{\bf u}$ es la inversa de $M_{\bf u}$ y $M_{\bf u}$ es biyectiva.

Veamos la linealidad de $M_{\mathbf{u}}$. Si $x, y \in E$, $\alpha \in \mathbf{K}$, $x = \sum_i X^i u_i$, $y = \sum_i Y^i u_i$, entonces

$$x + \alpha y = \sum_{i} X^{i} u_{i} + \alpha \sum_{i} Y^{i} u_{i} = \sum_{i} X^{i} u_{i} + \sum_{i} \alpha Y^{i} u_{i} = \sum_{i} (X^{i} + \alpha Y^{i}) u_{i},$$

por tanto

$$M_{\mathbf{u}}(x+\alpha y) = (X^1 + \alpha Y^1, \dots, X^n + \alpha Y^n) = (X^1, \dots, X^n) + \alpha (Y^1, \dots, Y^n) = M_{\mathbf{u}}(x) + \alpha M_{\mathbf{u}}(y),$$
lo que prueba la linealidad de $M_{\mathbf{u}}$.

(2) Define aplicación lineal de E a F. Prueba que una aplicación lineal está determinada por sus valores en una base de E. Define la matriz de una aplicación lineal de E a F. Indica como se usa la matriz de una aplicación lineal para determinar las coordenadas de la imagen de un vector. Justifica la respuesta.

SOLUCION:

Definición 2. Sean E, F dos espacios vectoriales sobre K. Una aplicación $f: E \longrightarrow F$ se llama aplicación lineal si $f(u + \alpha v) = f(u) + \alpha f(v)$, para todo $u, v \in E$, $\alpha \in K$.

Puesto que las aplicaciones lineales preservan la suma y el producto por escalares también preservan las combinaciones lineales.

Proposición 3. Si $f: E \longrightarrow F$ es una aplicación lineal entonces

$$f(\lambda_1 \cdot u_1 + \dots + \lambda_r \cdot u_r) = \lambda_1 \cdot f(u_1) + \dots + \lambda_r \cdot f(u_r),$$

para todo $u_1, \ldots, u_r \in E, \lambda_1, \ldots, \lambda_r \in \mathbf{K}.$

Demostración. Si $x = \lambda_1 \cdot u_1 + \dots + \lambda_r \cdot u_r \in E$, se tiene $x = (\lambda_1 \cdot u_1 + \dots + \lambda_{r-1} \cdot u_{r-1}) + \lambda_r u_r$. Ahora, razonamos por inducción sobre r. El caso r = 1 se sigue de la definición de linealidad. Sea r > 1. Usando la hipótesis de inducción y la definición de linealidad se obtiene

$$f(x) = f(\lambda_1 \cdot u_1 + \dots + \lambda_{r-1} \cdot u_{r-1}) + f(\lambda_r u_r) = \lambda_1 f(u_1) + \dots + \lambda_{r-1} f(u_{r-1}) + \lambda_r f(u_r).$$

Debido a la propiedad anterior, toda aplicación lineal queda determinada por su valor sobre una base.

Proposición 4. Sea E y F dos espacios vectoriales. Supongamos que $\mathbf{u} = \{u_i\}_{1 \leq i \leq n}$ es una base de E. Sean $f: E \longrightarrow F$ una aplicación lineal y $w_i := f(u_i)$, para todo i. Sean $x \in E$, y $(X^1, \ldots, X^n) \in \mathbf{K}^n$ las coordenadas de x en la base \mathbf{u} . Entonces

$$f(x) = \sum_{i} X^{i} w_{i}.$$

Demostración. Se sigue de la proposición 3, teniendo en cuenta que $x = \sum_i X^i u_i$, y $w_i = f(u_i)$.

Definición 5. Sean E y F dos espacios vectoriales sobre \mathbf{K} de dimensión finita, $f: E \longrightarrow F$ una aplicación lineal. Sean $\mathbf{u} = (u_1, \dots, u_n)$ una base ordenada de E, y $\mathbf{v} = (v_1, \dots, v_m)$ una base ordenada de F. La matriz de f en las bases (\mathbf{u}, \mathbf{v}) es la matriz de tipo $m \times n$ cuya columna i-ésima son las coordenadas de $f(u_i)$ en la base \mathbf{v} , es decir, la matriz

$$M_{\mathbf{v}}(f(u_1),\ldots,f(u_n)) := \begin{pmatrix} M_{\mathbf{v}}(f(u_1) & \cdots & M_{\mathbf{v}}(f(u_n)) \end{pmatrix}.$$

Denotaremos esta matriz por $M_{\mathbf{v}}(f; \mathbf{u})$.

La matriz de la aplicación lineal permite el cálculo de las imágenes de los vectores utilizando coordenadas por la fórmula siguiente:

Proposición 6. Con las hipótesis de la definición anterior, para todo $x \in E$,

$$M_{\mathbf{v}}(f(x)) = M_{\mathbf{v}}(f; \mathbf{u}) \cdot M_{\mathbf{u}}(x).$$

Demostración. Si $x \in E$, y

$$M_{\mathbf{u}}(x) = \begin{pmatrix} X^1 \\ \vdots \\ X^n \end{pmatrix} \in \mathbf{K}^n$$

son sus coordenadas en la base u, por la proposición 3 se tiene

$$f(x) = \sum_{i} X^{i} \cdot f(u_{i}).$$

Para calcular las coordenadas de f(x) en la base \mathbf{v} usamos la linealidad de $M_{\mathbf{v}}$ (ver Teorema 1)

$$M_{\mathbf{v}}(f(x)) = \sum_{i} M_{\mathbf{v}}(f(u_{i})) \cdot X^{i} = \left(M_{\mathbf{v}}(f(u_{1})) \dots M_{\mathbf{v}}(f(u_{n}))\right) \cdot \begin{pmatrix} X^{1} \\ \vdots \\ X^{n} \end{pmatrix}$$
$$= M_{\mathbf{v}}(f(u_{1}), \dots, f(u_{n})) \cdot \begin{pmatrix} X^{1} \\ \vdots \\ X^{n} \end{pmatrix} = M_{\mathbf{v}}(f; \mathbf{u}) \cdot M_{\mathbf{u}}(x).$$

(3) Sean \mathbf{u} y \mathbf{v} dos bases de E, y sea P la matriz de la aplicación identidad de E en las bases \mathbf{u} y \mathbf{v} . Indica como se usa la matriz P para pasar de las coordenadas de un vector $x \in E$ en la base \mathbf{u} a las coordenadas del mismo vector x a la base \mathbf{v} . Justifica la respuesta.

SOLUCION: Sean E un espacio vectorial de dimensión n, \mathbf{u} y \mathbf{v} dos bases de E. Para cada vector $x \in E$ tenemos dos vectores de coordenadas $X = M_{\mathbf{u}}(x) \in \mathbf{K}^n$ e $Y = M_{\mathbf{v}}(x) \in \mathbf{K}^n$, tales que

$$\mathbf{u} \cdot X = x = \mathbf{v} \cdot Y$$

Por la proposición 6 se cumple

$$M_{\mathbf{v}}(x) = M_{\mathbf{v}}(Id_E, \mathbf{u}) \cdot M_{\mathbf{u}}(x),$$

Sea $P = M_{\mathbf{v}}(Id_E, \mathbf{u})$, la matriz de la aplicación identidad de E en las bases (\mathbf{u}, \mathbf{v}) , entonces Y = PX.

4.(6/20) Sea A la matriz

$$A = \begin{pmatrix} a & a - 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

(1) (1/20) Halla el polinomio característico de A. Determina los valores propios de A y sus multiplicidades en función de $a \in \mathbb{C}$. (Es necesario distinguir los tres casos a = 1, a = 2 y $a \neq 1, 2$.)

SOLUCION:

$$\chi_A(t) = \begin{vmatrix} a - t & a - 1 & 0 \\ 0 & 1 - t & 0 \\ 1 & 1 & 2 - t \end{vmatrix} = (2 - t)(a - t)(1 - t) = -t^3 + (a + 3)t^2 + (-2 - 3a)t + 2a$$

- $a \neq 2, 1$: Tenemos los vaps a, 1, 2 los tres con multiplicidad algebraica 1.
- a=2: Tenemos el vap 2 con multiplicidad 2, y el vap 1 con multiplicidad 1.

- a = 1: Tenemos el vap 1 con multiplicidad 2 y el vap 2 con multiplicidad 1.
- (2) (1/20) Para a=-1 halla la inversa de A en función de I,A,A^2 (sin calcular explícitamente A^{-1} ni A^2).

SOLUCION:

Si a = -1, entonces

$$A = \begin{pmatrix} -1 & -2 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix},$$

$$y \chi_A(t) = -t^3 + 2t^2 + t - 2.$$

Aplicamos el teorema de Cayley-Hamilton, $\chi_A(A) = 0$, de donde resulta

$$-A^3 + 2A^2 + A - 2I = 0$$

y por tanto

$$A\frac{-A^2 + 2A + I}{2} = I$$

lo que implica

$$A^{-1} = \frac{-1}{2}A^2 + A + \frac{1}{2}I$$

(3) (1/20) Determina para qué valores de $a \in \mathbb{C}$ la matriz A es diagonalizable. Determina la forma de Jordan y el polinomio mínimo de A, para todo $a \in \mathbb{C}$.

SOLUCION:

- $a \neq 2, 1$: En este caso no hay vaps múltiples. Por lo tanto A diagonaliza, y su forma diagonal es Diag(a, 2, 1). El polinomio mínimo es $\phi_A(t) = (t a)(t 2)(t 1)$.
- a=2: En este caso, la multiplicidad algebraica del vap 2 es $m_2=2$ y hemos de calcular su multiplicidad geométrica $d_2=\dim \operatorname{Ker}(A-2)$. Puesto que

$$A - 2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix},$$

resulta rg (A-2) = 2, y por lo tanto $d_2 = \dim \operatorname{Ker} (A-2) = 3-2 = 1$ y com $d_2 < m_2$, la matriz A no es diagonalizable. La forma de Jordan de A es

$$J = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

y su polinomio mínimo $\phi_A(t) = (t-2)^2(t-1)$.

• a=1: En este caso, la multiplicidad algebraica del vap 1 es $m_1=2$ y hemos de calcular su multiplicidad geométrica $d_1=\dim \operatorname{Ker}(A-1)$. Puesto que

$$A - 1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

resulta $\operatorname{rg}(A-1)=1$, y por lo tanto $d_1=\dim\operatorname{Ker}(A-1)=3-1=2$, de donde deducimos que A es diagonalizable. La forma de Jordan de A es $\operatorname{Diag}(2,1,1)$ y el polinomio mínimo $\phi_A(t)=(t-2)(t-1)$.

(4) (2/20) Para a = 1, determina una matriz B tal que $B^4 = A$.

SOLUCION:

Recordemos que en el caso $a=1,\ A=\begin{pmatrix}1&0&0\\0&1&0\\1&1&2\end{pmatrix}$ es una matriz diagonalizable con

valores propios $\lambda_1 = 1$, de multiplicidad $m_1 = 2$, y $\lambda_2 = 2$, de multiplicidad $m_2 = 1$, por tanto existe una matriz inversible S tal que

$$A = SDS^{-1}, \quad D = Diag(1, 1, 2).$$

Sea B una matriz de E, entonces

$$B^4 = A \Leftrightarrow S^{-1}B^4S = S^{-1}AS \Leftrightarrow (S^{-1}BS)^4 = D$$

Si defininimos B de modo que

$$B = SDiag(1, 1, \sqrt[4]{2})S^{-1}$$

entonces

$$(S^{-1}BS)^4 = (Diag(1, 1, \sqrt[4]{2}))^4 = Diag(1, 1, 2),$$

por tanto $B^4=A$. Para hallar S hemos de calcular una base de \mathbb{R}^3 formada por veps de A:

• veps de vap 1: Hay que resolver el sistema de ecuaciones

$$(A-1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Por tanto una base de Ker (A-1) es $\{v_1 := (1,-1,0), v_2 := (0,1,-1)\}.$

• vep de vap 2: Hay que resolver el sistema de ecuaciones

$$(A-2) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Por tanto un vep de vap 2 es: $v_3 = (0, 0, 1)$.

En definitiva tenemos que:

$$S = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
$$S^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

y una solución del problema es

$$B = SDiag(1, 1, \sqrt[4]{2})S^{-1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ \sqrt[4]{2} - 1 & \sqrt[4]{2} - 1 & \sqrt[4]{2} \end{pmatrix}$$

(5) (1/20) Para a=2, halla una base de Jordan para A. Halla A^p , para todo $p \in \mathbb{N}$.

SOLUCION:

En este caso
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$
.

• vep de vap 1: Hay que resolver el sistema de ecuaciones

$$(A-1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Por tanto un vep de vap 1 es: $v_3 = (1, -1, 0)$.

• vap 2: En este caso tenemos

$$A - 2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad (A - 2)^2 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

El vector $v_1 = (1, 0, 0)$ satisface

$$v_1 \in \operatorname{Ker}(A-2)^2, \quad v_1 \notin \operatorname{Ker}(A-2).$$

Definimos $v_2 := (A - 2)v_1 = (0, 0, 1).$

La matriz de cambio de base es:

$$S = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

y en esta base, la matriz del endomorfismo L_A es:

$$J = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

con lo cual $A = SJS^{-1}$ y

$$A^{p} = SJ^{p}S^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2^{p} & 0 & 0 \\ p2^{p-1} & 2^{p} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 2^{p} & 2^{p} - 1 & 0 \\ 0 & 1 & 0 \\ p2^{p-1} & p2^{p-1} & 2^{p} \end{pmatrix}$$

- **5.** (3/20) Sea $A \in \mathbb{C}(15, 15)$ tal que
- (a) El polinomio mínimo de A es $(t-1)^2 p(t)$, con $p(1) \neq 0$, y las únicas raíces de p(t) son 0 y -1.
- (b) $\operatorname{tr} A = 0$, $\operatorname{tr} A^2 = 10$, $\operatorname{rg}(A) = 13$, $\operatorname{dim} \ker A^2 = 4$, $\operatorname{rg}(A-1)(A+1) = 11$.

Halla el polinomio característico, el polinomio mínimo y la forma de Jordan de A.

SOLUCION: Como $\{1,0,-1\}$ son las únicas raíces del polinomio mínimo, $\{-1,0,1\}$ son exactamente los vaps de A. Sean a,b,c sus multiplicidades algebraicas, entonces a+b+c=15. Además $0=\operatorname{tr} A=-a+c$. Por otra parte, los valores propios de A^2 son los cuadrados de los valores propios de A. Por tanto los valores propios de A^2 son $(-1)^2=1^2$, con multiplicidad a+c, y $0^2=0$ con multiplicidad b. Por tanto, de $10=\operatorname{tr} A^2=a+c$. De aquí deducimos que a=b=c=5, por tanto,

$$\chi_A(t) = t^5(t-1)^5(t+1)^5.$$

A continuación estudiamos cada vap:

vap 0: En este caso tenemos que dim Ker A = 15 - rg(A) = 15 - 13 = 2 y dim ker $A^2 = 4$, con lo cual el correspondiente bloque de Jordan tiene un diagrama de la forma:

vap 1 y vap -1: El polinomio mínimo nos dice que la altura máxima de los bloques de Jordan para el vap 1 es 2.

Además $\operatorname{rg}(A-1)(A+1)=11\Rightarrow \dim \operatorname{Ker}(A-1)+\dim \operatorname{Ker}(A+1)=4$, con lo cual sólo podemos tener las siguientes bloques de Jordan: Para el vap 1:

Para el vap -1:

La forma de Jordan es:

$$J(0,3) \oplus J(0,2) \oplus J(1,2) \oplus J(1,2) \oplus J(1,1) \oplus J(-1,5).$$

El polinomio mínimo es: $\phi_A(t) = t^3(t-1)^2(t+1)^5$.

 $\mathbf{6.}(2/20)$ Sea f un endomorfismo de un espacio vectorial E de dimensión finita sobre \mathbb{C} .

(1) Sea $P(t) = Q_1(t)Q_2(t)$ una descomposición de un polinomio $P \in \mathbb{C}[t]$ en factores primos entre si. Enuncia y demuestra la fórmula que calcula $\operatorname{Ker} P(f)$ en función de $\operatorname{Ker} Q_1(f)$ y $\operatorname{Ker} Q_2(f)$.

SOLUCION:

Teorema 7. Sea f un endomorfismo de un espacio vectorial E (no necesariamente de dimensión finita). Si $Q_1(t), Q_2(t)$ son dos polinomios primos entre sí, y $P = Q_1Q_2$, entonces

$$\operatorname{Ker} P(f) = \operatorname{Ker} Q_1(f) \oplus \operatorname{Ker} Q_2(f).$$

Demostración. Por la identidad de Bezout existen polinomios A_1, A_2 tales que

$$1 = Q_1 A_1 + Q_2 A_2$$
.

Veamos que la suma es directa. Si $v \in \operatorname{Ker} Q_1(f) \cap \operatorname{Ker} Q_2(f)$, puesto que $1 = Q_1A_1 + Q_2A_2$, se tiene

$$v = A_1(f)(Q_1(f)(v)) + A_2(f)(Q_2(f)(v)) = 0.$$

Por tanto v = 0.

Veamos que

$$\operatorname{Ker} Q_1(f) + \operatorname{Ker} Q_1(f) = \operatorname{Ker} (Q_1 \cdot Q_2)(f).$$

Las inclusiones $\operatorname{Ker} Q_i(f) \subset \operatorname{Ker} (Q_1 \cdot Q_2)(f)$, para i = 1, 2, son obvias, por tanto

$$\operatorname{Ker} Q_1(f) + \operatorname{Ker} Q_1(f) \subset \operatorname{Ker} (Q_1 \cdot Q_2)(f).$$

Recíprocamente, si $v \in \text{Ker}(Q_1 \cdot Q_2)(f)$, se tiene

$$v = Q_1(f) \circ A_1(f)(v) + Q_2(f) \circ A_2(f)(v),$$

donde

$$Q_2(f)(Q_1(f)\circ A_1(f)(v)) = 0, \quad Q_1(f)(Q_2(f)\circ A_2(f)(v)) = 0,$$
 por tanto $v\in {\rm Ker}\,Q_2(f)+{\rm Ker}\,Q_1(f).$

(2) Prueba que si existe un polinomio P(t) con raíces simples tal que P(f) = 0 entonces f es diagonalizable.

SOLUCION:

Corolario 8. Sea f un endomorfismo de un espacio vectorial E. Si $Q_1(t), Q_2(t), \ldots, Q_r(t)$ son r polinomios coprimos dos a dos, y $P = \prod_i Q_i$, entonces

$$\operatorname{Ker} P(f) = \operatorname{Ker} Q_1(f) \oplus \operatorname{Ker} Q_2(f) \oplus \cdots \oplus \operatorname{Ker} Q_r(f).$$

Demostración. Razonamos por inducción sobre r. Para r=2 es el resultado 7 anterior. Si r>2, entonces Q_1 y el producto $Q_2 \cdot \ldots \cdot Q_r$ son primos entre sí, por el lema de Euclides. Por el caso r=2, y la hipótesis de inducción para $Q_2 \cdot \ldots \cdot Q_r$, resulta

$$\operatorname{Ker} P(f) = \operatorname{Ker} Q_1(f) \oplus \operatorname{Ker} (Q_2 \cdot \ldots \cdot Q_r)(f) = \bigoplus_{i=1}^r \operatorname{Ker} Q_i(f).$$

Corolario 9. Sean f un endomorfismo de un espacio vectorial E y $P(t) = \prod_{i=1}^{r} (t - \lambda_i)$ un polinomio de grado r con r raíces distintas $\lambda_1, \ldots, \lambda_r$. Si P(f) = 0 entonces f es diagonalizable.

Demostración. Por el corolario 8 se obtiene $E = \operatorname{Ker} P(f) = \bigoplus_{i=1}^{r} \operatorname{Ker} (f - \lambda_i)$ y por tanto f es diagonalizable.