Лекция 9

10. Системы двух автономных дифференциальных уравнений первого порядка

В этой лекции основным объектом нашего изучения будут системы двух дифференциальных автономных уравнений первого порядка вида

$$\dot{u} = f(u, v); \tag{1}$$

$$\dot{v} = g(u, v); \tag{2}$$

Во всех дальнейших рассуждениях мы будем считать, что функции f(u,v) и g(u,v) определены на всей плоскости (u,v) и всюду дважды дифференцируемы.

Эффективным методом исследования систем вида (1)-(2) является представление их решений на так называемой фазовой плоскости (u,v). Суть метода заключается в следующем. В каждой точке плоскости (u,v) правые части системы задают вектор (f(u,v),g(u,v)). Таким образом на плоскости (u,v) оказывается задано векторное поле

$$\mathbf{V} = (f(u, v), g(u, v))$$

Пусть (u(t),v(t)) - некоторое решение системы (1)-(2). На плоскости (u,v) это решение можно представить непрерывной кривой γ , параметризуемой переменной t. Такие кривые мы будем называть mpa-eкториями. На траектории удобно ввести n проходит через некоторую точку (u_0,v_0) , то из вышесказанного следует, что γ соответствует решению задачи Коши для системы (1)-(2) с начальным условием $u(t_0)=u_0, v(t_0)=v_0,$ где t_0 - некоторое значение (без ограничения общности можно считать, что t=0). Касательный вектор в любой точке траектории (u(t),v(t)) имеет вид $(\dot{u}(t),\dot{v}(t))$ и, следовательно, совпадает с вектором поля \mathbf{V} в этой точке. Этот вектор можно трактовать как мгновенную скорость движения вдоль траектории γ в точке (u,v).

Для дальнейшего важно то, что траектории γ_1 и γ_2 , соответствующие различным решениям (1)-(2), не пересекаются. Действительно, если имеется точка $(\tilde{u},\tilde{v})\in\gamma_1\cap\gamma_2$, то получается, что система (1)-(2) с начальными условиями $u(0)=\tilde{u}, v(0)=\tilde{u}$ имеет как

Puc.1. Векторное поле ${\bf V}$, порожденное системой уравнений, траектория γ и действие фазового потока на некую область Ω_0 .

минимум два решения, что противоречит теореме единственности для систем дифференциальных уравнений.

Плоскость (u,v) с траекториями, задаваемыми системой (1)-(2), мы будем называть фазовым портретом этой системы. Поток, определяемый векторным полем V мы будем называть фазовым потоком. Мы будем говорить о действии фазового потока на отдельные точки и области на плоскости (u,v), см. Рис.1. Состояниям равновесия системы (1)-(2) соответствуют точки (u_0,v_0) , где скорость движения равна нулю, то есть u_0, v_0 являются решениями системы уравнений

$$f(u_0, v_0) = 0; \quad g(u_0, v_0) = 0$$
 (3)

Эти точки называются особыми точками системы (1)-(2). Стоит отметить также, что nepuoduчecким pewenusm системы (1)-(2) соответствуют замкнутые траектории.

Проиллюстрируем применение метода фазовой плоскости на примере систем линейных уравнений.

10.1. Системы двух линейных дифференциальных уравнений

Рассмотрим систему линейных однородных дифференциальных уравнений

$$\dot{u} = a_{11}u + a_{12}v; (4)$$

$$\dot{v} = a_{21}u + a_{22}v; (5)$$

где $a_{11}, a_{12}, a_{21}, a_{22}$ - действительные числа. Будем считать, что матрица системы

$$\mathbf{A} = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right)$$

является невырожденной, det $\mathbf{A} \neq 0$. Собственные значения λ_1 и λ_2 матрицы \mathbf{A} являются корнями квадратного уравнения

$$\lambda^2 - \sigma\lambda + \Delta = 0,$$

где τ и Δ - след и определитель матрицы ${\bf A}$ соответственно,

$$\tau = \text{tr } \mathbf{A} = a_{11} + a_{22}, \quad \Delta = \det \mathbf{A} = a_{11}a_{22} - a_{21}a_{12}.$$

Из явной формулы для корней квадратного уравнения

$$\lambda_{1,2} = \frac{1}{2} \left(\sigma \pm \sqrt{\sigma^2 - 4\Delta} \right)$$

следует, что λ_1 и λ_2 могут быть либо действительными, либо комплексно-сопряженными друг другу, причем в силу невырожденности ${\bf A}$ ни одно из них не равно нулю. Будем считать для простоты, что λ_1 и λ_2 различны

$$\lambda_1 \neq \lambda_2$$

Собственным значениям λ_1 и λ_2 соответствуют собственные векторы матрицы ${\bf A}$

$$\mathbf{e}_1 = \left(egin{array}{c} ilde{u}_1 \\ ilde{v}_1 \end{array}
ight), \quad \mathbf{e}_2 = \left(egin{array}{c} ilde{u}_2 \\ ilde{v}_2 \end{array}
ight)$$

Puc.2.

Система уравнений (4)-(5) имеет единственное состояние равновесия u=v=0. Из теории обыкновенных дифференциальных уравнений известно, что общее решение системы (4)-(5) имеет вид

$$\begin{pmatrix} u \\ v \end{pmatrix} = C_1 \mathbf{e}_1 e^{\lambda_1 t} + C_2 \mathbf{e}_2 e^{\lambda_2 t}, \tag{6}$$

где C_1, C_2 - произвольные константы. Выделяются следующие ситуации:

- а) Если $\sigma<0$ и $\Delta>0$, причем $\sigma^2-4\Delta>0$, то $\lambda_1<\lambda_2<0$. В этом случае собственные векторы матрицы ${\bf A}$ являются действительными. Для получения действительных решений системы константы $C_1,\ C_2$ также необходимо взять действительными. Все траектории при $t\to+\infty$ стремятся к состоянию равновесия (0,0) (мы будем говорить, что такие траектории являются $\sec \alpha d n u m u$ в это состояние равновесия). При этом имеется две "выделенные" траектории, направленные вдоль собственных векторов матрицы ${\bf A}$. Движение к состоянию равновесия (0,0) по траектории, задаваемой вектором ${\bf e}_2$, медленнее, чем движение по любой из других траекторий, "входящих" в это состояние равновесия. Типичный фазовый портрет для рассматриваемого случая показан на ${\bf Puc.2(A)}$ Точка (0,0) в этом случае называется ${\bf y}{c}$
- б) Если $\sigma>0$ и $\Delta>0$, причем $\sigma^2-4\Delta>0$, то $0<\lambda_1<\lambda_2$. В этом случае на фазовой плоскости возникает картина, аналогичная

Puc.3.

п.а, отличающаяся, однако, тем, что все траектории стремятся к состоянию равновесия (0,0) не при $t \to +\infty$, а при $t \to -\infty$. Такие траектории мы будем называть выходящими из состояния равновесия. Типичный фазовый портрет для рассматриваемого случая показан на Puc.2(B). Точка (0,0) в этом случае называется neycmoйчивым узлом.

- в) Если $\sigma>0$ и $\Delta<0$, то $\lambda_1<0<\lambda_2$. Собственные векторы матрицы **A** и константы C_1, C_2 в этом случае также являются действительными. На плоскости (u,v) выделяются две прямые l_1 и l_2 , проходящие через состояние равновесия и соответствующие векторам \mathbf{e}_1 и \mathbf{e}_2 . Пара траекторий, лежащих на прямой l_1 , входят в состояние равновесия (0,0) с двух сторон, в то время как пара траекторий, лежащих на прямой l_2 , выходят из него. Типичный фазовый портрет для рассматриваемого случая показан на Рис.2(C). Точка (0,0) в этом случае называется cednom.
- г) Если $\sigma<0$ и $\sigma^2-4\Delta<0$, то $\lambda_{1,2}$ являются комплексно сопряженными числами с отрицательной действительной частью. В этом случае вектора ${\bf e}_1$ и ${\bf e}_2$ покомпонентно сопряжены друг другу. Выбирая константы C_1 и C_2 также комплексно сопряженными друг другу, получаем, что решение (6) можно переписать в виде

$$\begin{pmatrix} u \\ v \end{pmatrix} = e^{\alpha t} \left(D_1 \mathbf{e}_c \cos \omega t + D_2 \mathbf{e}_s \sin \omega t \right), \tag{7}$$

где ${\bf e}_c$ и ${\bf e}_s$ - действительные векторы, определяемые векторами ${\bf e}_1$ и ${\bf e}_2$, а $D_{1,2}$ - произвольные действительные константы. Нетрудно

убедиться в том, что все траектории в этом случае также являются входящими в состояние равновесия. Типичный фазовый портрет для этого случая показан на Puc.3(A). Точка (0,0) в этом случае называется $ycmoйчивым \phiokycom$.

- д) Если $\sigma < 0$ и $\sigma^2 4\Delta < 0$, то $\lambda_{1,2}$ являются комплексно сопряженными числами с положительной действительной частью. Этот случай аналогичен предыдущему. Отличие заключается только в том, что все траектории являются не входящими в состояние равновесия (0,0), а выходящими из него. Типичный фазовый портрет для этого случая показан на Рис.3(В). Точка (0,0) в этом случае называется неустойчивым фокусом.
- е) Если $\sigma=0$ и $\sigma^2-4\Delta<0$ то $\lambda_{1,2}$ являются чисто мнимыми комплексно сопряженными числами.. В этом случае все решения системы являются периодическими, а фазовый портрет имеет вид, изображенный на Рис.3(С). Точка (0,0) в этом случае называется *центром*. Случай центра относится к вырожденным ситуациям и может рассматриваться как предельный случай устойчивого или неустойчивого фокуса.

Общая картина возможных типов состояний равновесия представлена на Рис.4. Помимо перечисленных выше случаев, имеются и другие, соответствующие тому или иному вырождению системы (4)-(5). Например, одно из собственных чисел может оказаться равным нулю. В этом случае состояние равновесия оказывается неизолированным и возникает прямая, целиком состоящая из состояний равновесия. Может также оказаться, что собственные числа равны друг другу. В этом случае поведение траекторий также нетрудно проанализировать, но мы этот анализ здесь приводить не будем.

Приведенная выше классификация вполне применима также к решениям линейных неоднородных систем вида

$$\dot{u} = a_{11}u + a_{12}v + b_1;
\dot{v} = a_{21}u + a_{22}v + b_2.$$

Действительно, если матрица ${\bf A}$ невырождена, существует единственное решение (U_0,V_0) системы

$$a_{11}U_0 + a_{12}V_0 + b_1 = 0$$

 $a_{21}U_0 + a_{22}V_0 + b_2 = 0$;

Puc.4.

Введем переменные $\tilde{u}=u-U_0,\, \tilde{v}=v-V_0.$ Нетрудно проверить, что \tilde{u} и \tilde{v} удовлетворяют однородной системе уравнений

$$\dot{\tilde{u}} = a_{11}\tilde{u} + a_{12}\tilde{v};$$

$$\dot{\tilde{v}} = a_{21}\tilde{u} + a_{22}\tilde{v}.$$

Таким образом, задача исследования линейных неоднородных систем сводится к уже рассмотренной задаче для линейной однородной системы.

10.2. Фазовые портреты для нелинейных систем: окрестность особой точки

Построение фазового портрета в случае, когда система (1)-(2) нелинейна, вообще говоря, является нетривиальной задачей. Наиболее естественно начинать это построение с нахождения состояний равновесия - особых точек (u_0,v_0) , где $u_0,\,v_0$ являются решениями системы уравнений (3). Естественно предположить, что линеаризация в окрестности особой точки (u_0,v_0) системы уравнений (1)-(2) позволяет локально описать поведение траекторий, близких к этой точке. Полагая $u=u_0+U,\,v=v_0+V,\,$ где $U,V\ll 1$, рассмотрим

линеаризованную систему уравнений

$$\dot{U} = f_u(u_0, v_0)U + f_v(u_0, v_0)V; \tag{8}$$

$$\dot{V} = g_u(u_0, v_0)U + g_v(u_0, v_0)V; \tag{9}$$

которая описывает поведение решений в окрестности особой точки с точностью до членов второго порядка по U,V. Оказывается, что, с некоторыми оговорками, поведение траекторий вблизи особой точки действительно можно описать при помощи системы (8)-(9). Для того, чтобы сформулировать соответствующий строгий результат, нам потребуются некоторые определения.

Состояние равновесия системы уравнений (1)-(2) называется грубым, если оба собственных значения матрицы Якоби

$$\mathbf{J} = \begin{pmatrix} f_u(u_0, v_0) & f_v(u_0, v_0) \\ g_u(u_0, v_0) & g_v(u_0, v_0) \end{pmatrix}$$

имеют ненулевые действительные части.

Среди перечисленных выше типов состояний равновесия линейных систем, грубыми являются устойчивый и неустойчивый узлы, устойчивый и неустойчивый фокусы и седло. Состояние равновесия типа центр не является грубым.

Говорят, что между двумя областями D_1 и D_2 в \mathbb{R}^N существует гомеоморфизм, если существует взаимно-однозначное и непрерывное отображение \mathcal{F} , переводящее D_1 в D_2 , причем обратное отображение \mathcal{F}^{-1} также непрерывно.

Puc.5. Искривление траекторий вблизи состояния равновесия, которое в линеаризованной задаче имеет тип "седло". А - линеаризованная задача, В - нелинейная задача, e_1 и e_2 - собственные векторы матрицы Якоби.

Две системы

$$\dot{u} = f_1(u, v), \quad \dot{v} = g_1(u, v)$$

И

$$\dot{u} = f_2(u, v), \quad \dot{v} = g_2(u, v)$$

определенные в областях $D_1\subseteq\mathbb{R}^2$ и $D_2\subseteq\mathbb{R}^2$ соответственно, топологически эквивалентны в подобластях $G_1\subseteq D_1$ и $G_2\subseteq D_2$, если существует гомеоморфизм \mathcal{F} , под действием которого каждая траектория (отрезок траектории) на фазовом портрете первой системы переводится в траекторию (отрезок траектории) на фазовом портрете второй системы с сохранением ориентации (направления движения).

Теорема 0.1 (Гробмана-Хартмана) Пусть точка (u_0, v_0) является грубым состоянием равновесия системы (1)-(2). Тогда существуют окрестности G_1 этой точки, и окрестность G_2 нулевого состояния равновесия (8)-(9) в которых эти системы топологически эквивалентны.

Проще говоря, теорема Гробмана-Хартмана утверждает, что при переходе от нелинейной системы к ее линеаризации, в малой окрестности состояния равновесия происходит лишь непрерывная деформация траекторий. На качественном уровне это утверждение иллюстрирует Рис.5, показывающий искривление траекторий вблизи состояния равновесия, имеющего в линеаризованной задаче тип "седло".

Покажем, что условие грубости состояния равновесия является существенным.

Пример. Рассмотрим систему

$$\dot{u} = -v + u(u^2 + v^2);$$

 $\dot{v} = u + v(u^2 + v^2)$

Линеаризация этой системы в окрестности состояния равновесия (0,0) имеет вид

$$\dot{u} = -v;$$
 $\dot{v} = u$

Характеристическое уравнение имеет вид $\lambda^2+1=0$, его корни чисто мнимые. Значит, (0,0) в линеаризованной системе имеет тип "центр". Это состояние равновесия является негрубым, то есть, теорема Гробмана-Хартмана в этой ситуации неприменима.

Чтобы исследовать поведение траекторий в нелинейной системе, перейдем к полярным координатам

$$u = r\cos\theta, \quad v = r\sin\theta.$$

Умножим первое уравнение на u, второе - на v и сложим оба уравнения. Получим

$$u\dot{u} + v\dot{v} = u\left(-v + u(u^2 + v^2)\right) + v\left(u + v(u^2 + v^2)\right) = (u^2 + v^2)^2$$

В левой части уравнения стоит полная производная

$$u\dot{u} + v\dot{v} = \frac{1}{2}(u^2 + v^2)_t = \frac{1}{2}(r^2)_t = r\dot{r}$$

Таким образом получаем

$$\dot{r} = r^3$$

Общее решение этого уравнения имеет вид

$$r(t) = \frac{1}{\sqrt{C - 2t}}\tag{10}$$

где C - произвольная константа. С ростом t значение r растет, и при $t\to C/2$ эта функция стремится к бесконечности.

Для получения уравнения на θ запишем $\operatorname{tg}\theta=v/u$ и продифференцируем это равенство

$$\frac{d}{dt} \operatorname{tg} \theta = \frac{\dot{\theta}}{\cos^2 \theta} = \frac{\dot{v}u - \dot{u}v}{u^2}$$

Следовательно

$$\dot{\theta} = \frac{\dot{v}u - \dot{u}v}{r^2}$$

Подставляя в последнее равенство явные выражения для \dot{u} и \dot{v} , получаем

$$\dot{\theta} = \frac{1}{r^2} \left[(u + vr^2)u - (-v + ur^2)v \right] = \frac{1}{r^2} [u^2 + v^2] = 1$$

Итак, на фазовой плоскости радиальное и угловое движение оказываются разделены. Система описывает вращение вокруг начала координат с постоянной угловой скоростью, и, одновременно, удаление от начала координат по степенному закону (10). Таким образом, поведение траекторий в окрестности особой точки не описывается линейным приближением. Следовательно, условие грубости в теореме Гробмана-Хартмана опустить нельзя.

Помимо общего утверждения о "похожести" фазовых портретов нелинейной и линеаризованной систем в окрестности особой точки, можно сделать и некоторые более точные утверждения. Пусть состояние равновесия нелинейной системы имеет тип "седло", собственные значения матрицы Якоби $\lambda_1 < 0 < \lambda_2$, и им соответствуют собственные векторы ${\bf e}_1$ и ${\bf e}_2$. Тогда справедливо следующее утверждение:

Теорема 0.2 (O состоянии равновесия типа "седло") Пусть состояние равновесия (u_0,v_0) нелинейной системы (1)-(2) имеет тип "седло", причем собственным значениям матрицы Якоби $\lambda_1 < 0 < \lambda_2$ соответствуют собственные векторы \mathbf{e}_1 и \mathbf{e}_2 . Тогда существует ровно две траектории $\gamma_{1,2}^+$, входящие в это состояние равновесия, причем в точке (u_0,v_0) касательный вектор к каждой из этих кривых есть \mathbf{e}_1 . Аналогично, существует ровно две траектории $\gamma_{1,2}^-$, входящие в это состояние равновесия, причем в точке (u_0,v_0) касательный вектор к каждой из этих кривых есть \mathbf{e}_2 .

Иллюстрацией к этой теореме может служить Рис.5.

10.3. Фазовые портреты для нелинейных систем: примеры

Перейдем теперь к практическому построению фазовых портретов нелинейных систем.

Пример. Построим фазовый портрет для системы

$$\dot{u} = v + u^2$$

$$\dot{v} = u + v^2$$

Найдем состояния равновесия этой системы. Они удовлетворяют системе уравнений

$$v_0 + u_0^2 = 0$$
, $u_0 + v_0^2 = 0$

Отсюда заключаем, что на фазовом портрете имеется две особые точки: $O_1=(0,0)$ и $O_2=(-1,-1)$. Выясним их типы. Матрица Якоби имеет вид

$$\mathbf{J} = \left(\begin{array}{cc} 2u_0 & 1 \\ 1 & 2v_0 \end{array} \right)$$

В точке O_1 характеристическое уравнение имеет вид $\lambda^2-1=0,$ собственные значения матрицы Якоби $\lambda_1=-1$ и $\lambda_2=1.$ Им соответствуют собственные векторы

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Таким образом, особая точка O_1 имеет тип "седло". Для точки O_2 характеристическое уравнение принимает вид $(2+\lambda)^2-1=0$, откуда $\lambda_1=-1,\ \lambda_2=-3$. Эта особая точка является устойчивым узлом. Расположение этих точек и схематическое представление траекторий в их окрестности показаны на $\operatorname{Puc.6}(A)$.

Далее, используем то, что значения правых частей системы (1)-(2) в точке (u,v) определяют касательный вектор к траектории, проходящей через эту точку. Построим эти касательные вектора для некоторых характерных линий на фазовом портрете. В частности, на параболе $v=-u^2$ касательные вектора параллельны оси v, а на параболе $u=-v^2$ они параллельны оси u. Далее, на оси u выполняется соотношение v=0, значит u-компонента касательного вектора на этой оси всегда положительна, а v-компонента - положительна на положительной полуоси u и отрицательна на отрицательной полуоси u. Рис.b(B) представляет "скелет" фазового портрета, который можно построить на этом этапе рассуждений.

Далее, стоит заметить, что одновременно с траекторией $\gamma_1=(u(t),v(t)),$ проходящей через точку (u_0,v_0) при t=0, на фазовом портрете имеется траектория $\gamma_2=(v(t),u(t)),$ проходящая через точку $(v_0,u_0).$ Этот факт следует из симметрии системы относительно перемены местами u и v. Таким образом, фазовый портрет симметричен относительно прямой u=v. Кроме того, полагая $u=v\equiv w,$ получаем, что одним из решений системы является пара (w(t),w(t)), где w(t) является решением уравнения

$$\dot{w} = w + w^2 \tag{11}$$

Это уравнение имеет два состояния равновесия: устойчивое w=-1 и неустойчивое w=0 (в этом нетрудно убедиться, используя методы предыдущей лекции). Первое из них соответствует точке O_1 , второе - O_2 . Общее решение (11) имеет вид

$$w(t) = -\frac{Ce^t}{1 + Ce^t} \tag{12}$$

Для окончательного построения фазового портрета имеет смысл численно построить некоторое количество траекторий. Это можно сделать, например, используя процедуры MatLab'а для решения начальной задачи системы обыкновенных дифференциальных уравне-

Puc.6.

ний. Численный счет показывает, что почти все траектории системы уходят на бесконечность, либо при $t\to\infty$, либо при $t\to-\infty$. Исключение составляют состояния равновесия, а также траектория, соединяющая точки O_1 и O_2 . Она лежит на прямой u=v, и явный вид соответствующего решения можно получить, положив C=1 в (12)

$$u(t) = v(t) = -\frac{e^t}{1 + e^t}$$

Траектории такого типа, соединяющие два различных состояния равновесия, называются гетероклиническими.

Окончательный вид фазового портрета приведен на Рис.6(С).

Пример. Построим фазовый портрет для системы

$$\dot{u} = v - 2u$$

$$\dot{v} = u + v - u^3$$

Состояния равновесия этой системы удовлетворяют системе уравнений

$$v_0 = 2u_0;$$

$$u_0 + v_0 - u_0^3 = 0.$$

Имеются три состояния равновесия: это точки $O_0=(0,0),\ O_+=(\sqrt{3},2\sqrt{3})$ и $O_-(-\sqrt{3},-2\sqrt{3}).$ Выясним их типы. Матрица Якоби имеет вид

$$\mathbf{J} = \begin{pmatrix} -2 & 1\\ 1 - 3u_0^2 & 1 \end{pmatrix}$$

Собственные значения **J** в точке O_0 равны $\lambda_1=(-1+\sqrt{13})/2>0$, $\lambda_2=(-1-\sqrt{13})/2<0$, то есть эта точка является седлом. Соответствующие собственные векторы равны

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ \frac{3+\sqrt{13}}{2} \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 1 \\ \frac{3-\sqrt{13}}{2} \end{pmatrix}$$

Эти векторы ортогональны друг другу.

Puc. 7.

Обе точки O_\pm являются устойчивыми фокусами. Для каждой из них собственные значения являются комплексными, $\lambda_{1,2}=(-1\pm i\sqrt{23})/2$. Чтобы определить направление "закручивания" траекторий вблизи точек O_\pm найдем вектор фазового потока в какой-нибудь близкой точке. Например, для точки O_+ возьмем точку $(\sqrt{3},\sqrt{3})$. Посчитав значения правых частей системы, получаем, что этот вектор равен $(-\sqrt{3},-\sqrt{3})$. Из рисунка видно, что "закручивание" траекторий вблизи этой точки происходит по часовой стрелке. Аналогичным образом нетрудно проверить, что в окрестности O_- траектории "закручиваются" также по часовой стрелке. Стоит также заметить, что система не меняется при замене $u \to -u, v \to -v$, поэтому фазовый портрет обладает симметрией относительно начала координат.

Далее, построим на фазовом портрете кривую $v=-u+u^3$, (на ней касательная к траекториям параллельна оси u) и прямую v=2u (на ней касательная к траекториям параллельна оси v). Получившийся "скелет" фазового портрета изображен на Рис.7А. Для окончательного построения портрета имеет смысл построить несколько траекторий численно. В первую очередь интерес представляют входящие и выходящие траектории седла O_0 . Решая численно задачу Коши с

начальными данными

$$u(0) = \varepsilon, \quad v(0) = \varepsilon \cdot \left(\frac{3 + \sqrt{13}}{2}\right), \quad \varepsilon \ll 1, \quad t > 0$$

соответствующими вектору ${\bf e}_1$, находим, что две выходящие траектории седла "наматываются" на точки O_+ и O_- при $t\to +\infty$. Аналогично, решая задачу Коши

$$u(0) = \varepsilon, \quad v(0) = \varepsilon \cdot \left(\frac{3 - \sqrt{13}}{2}\right), \quad \varepsilon \ll 1, \quad t > 0$$

соответствующими вектору ${\bf e}_2$, убеждаемся, что при $t\to -\infty$ входящие траектории O_0 совершают обходы вокруг начала координат по раскручивающейся спирали. Зная это, нетрудно достроить фазовый портрет окончательно, см. Рис.7Б.

Задачи:

1. Выясните, что произойдет с фазовым портретом системы (1)-(2) при замене

$$f(u,v) \to -f(u,v), \quad g(u,v) \to -g(u,v).$$

- **2.** Нарисуйте "скелеты" фазовых портретов приведенных ниже систем. Постройте эти портреты полностью, используя, при необходимости, помощь компьютера:
 - $1. \quad \dot{u} = uv u, \quad \dot{v} = u + v$
 - $2. \quad \dot{u} = u + uv, \quad \dot{v} = v + u^2$
 - 3. $\dot{u} = u^2 v$, $\dot{v} = u v$
 - 4. $\dot{u} = u + v$, $\dot{v} = u \cos v$
 - 5. $\dot{u} = u \cos v$, $\dot{v} = v \cos u$
 - 6. $\dot{u} = 8u v^2$. $\dot{v} = v u^2$

7.
$$\dot{u} = uv - 1$$
, $\dot{v} = u - v^3$

8.
$$\dot{u} = u^2 + v^2 - 1$$
, $\dot{v} = uv$

9.
$$\dot{u} = u^2 + v^2 - 1$$
, $\dot{v} = u + v$

10.
$$\dot{u} = u^2 + v^2 + u + v - 2$$
, $\dot{v} = uv$

11.
$$\dot{u} = u(3 - u - 2v), \quad \dot{v} = v(2 - u - v)$$

12.
$$\dot{u} = u(3 - 2u - v), \quad \dot{v} = v(2 - u - v)$$

3. Постройте фазовые портреты системы

$$\dot{u} = a + u^2 - uv$$
, $\dot{v} = v^2 - u^2 - 1$

при a=0, затем при a>0 и a<0. Обратите внимание, что при a=0 на фазовом портрете присутствует гетероклиническая траектория, соединяющая два седла, в то время как при $a\neq 0$ гетероклинической траектории нет.