

Deep Learning Basic

Jaewon Kim, Dankook Univ.

Chapter 3-2

Contents

Part 1. Gradient Vanishing

Part 2. Activation Function

- If A.F is Linear?
- Sigmoid
- Tanh
- ReLU
- Leaky ReLU

Gradient Vanishing

- Backpropagation (w_1 update)

 w_1 parameter가 잘 update되지 않았다.

Gradient Vanishing

- Sigmoid Function

Input이 0인 지점에서 기울기 =0

- Linear Function ?

If Activation Function is Linear?

- Linear Function?

If Activation Function is Linear?

- Sigmoid Function

$$Sigmoid(x) \neq \boxed{\frac{1}{1 + e^{-x}}}$$

文元: 0~1 7社 生2721。

input= o
too lorge, small

Gratient Vanishing.

- Hyperblic Tangent

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Pros

Cons

Signoid Signoi

- ReLU

$$relu(x) = a = max(0, z)$$

Pros

Cons

- Leaky ReLU

Thank you.....