STREAMLINE Training Summary Report: 2022-05-20 13:23:22.764894

General Pipeline Settings:

Data Path: /home/ryanurb/idata/datasets/HCC_UCI

Output Path: /home/ryanurb/idata/output Experiment Name: HCC_PipeTest_Full

Class Label: Class Instance Label: InstanceID Ignored Features: None

Specified Categorical Features: None

CV Partitions: 3 Partition Method: S Match Label: None Categorical Cutoff: 10

Statistical Significance Cutoff: 0.05 Export Feature Correlations: True Export Univariate Plots: True

Random Seed: 42

TURF Cutoff: 0.5

Run From Jupyter Notebook: False

Use Data Scaling: True
Use Data Imputation: True
Use Multivariate Imputation: True
Use Mutual Information: True
Use MultiSURF: True
Use TURF: False

MultiSURF Instance Subset: 2000 Max Features to Keep: 2000 Filter Poor Features: True Top Features to Display: 40 Export Feature Importance Plot: True

Overwrite CV Datasets: False Primary Metric: balanced_accuracy

 $\label{thm:continuous} Training \ Subsample \ for \ KNN, ANN, SVM, and \ XGB: 0 \\ Uniform \ Feature \ Importance \ Estimation \ (Models): \ True$

 $Hyperparameter\ Sweep\ Number\ of\ Trials:\ 50$

Hyperparameter Timeout: None

Export Hyperparameter Sweep Plots: True

Export ROC Plot: True
Export PRC Plot: True
Export Metric Boxplots: True

Export Feature Importance Boxplots: True

Metric Weighting Composite FI Plots: balanced_accuracy

Top Model Features To Display: 40

ML Modeling Algorithms:

Naive Bayes: True

Logistic Regression: True
Decision Tree: True
Random Forest: True
Gradient Boosting: True
Extreme Gradient Boosting: True
Light Gradient Boosting: True
Category Gradient Boosting: True
Support Vector Machine: True
Artificial Neural Network: True
K-Nearest Neightbors: True
Genetic Programming: True
eLCS: False
XCS: False
ExSTraCS: True

LCS Settings (eLCS,XCS,ExSTraCS):

Do LCS Hyperparameter Sweep: False

nu: 1

Training Iterations: 200000 N (Rule Population Size): 2000

LCS Hyperparameter Sweep Timeout: 1200

Datasets:

D1 = hcc-data_example

 $D2 = hcc\text{-}data_example_no_covariates$

Univariate Analysis of Each Dataset (Top 10 Features for Each)

D1 = hcc-data_example

Feature: P-Value

Performance Status*: 3.2548676278782114e-05

Symptoms: 0.0006092985105592 Liver Metastasis: 0.0029935882248699 Ascites degree*: 0.0038134308539161 Portal Vein Thrombosis: 0.0117430411554256 Age at diagnosis: 0.035683237512087

Encephalopathy degree*: 0.0367398682254197

Diabetes: 0.2071781828192029

Hepatitis C Virus Antibody: 0.2152844001545551 Endemic Countries: 0.3741454960813042

D2 = hcc-data_example_no_covariates

Feature: P-Value

Performance Status*: 3.2548676278782114e-05

Symptoms: 0.0006092985105592 Liver Metastasis: 0.0029935882248699 Ascites degree*: 0.0038134308539161 Portal Vein Thrombosis: 0.0117430411554256 Encephalopathy degree*: 0.0367398682254197

Diabetes: 0.2071781828192029

Hepatitis C Virus Antibody: 0.2152844001545551 Endemic Countries: 0.3741454960813042 Chronic Renal Insufficiency: 0.3855402814015594

Dataset and Model Prediction Summary: D1 = hcc-data_example Dataset Counts Summary: instances: 165.0 features: 49.0 categorical_features: 27.0 quantitative_features: 22.0 missing_values: 826.0 missing_percent: 0.10216 Top ML Algorithm Results (Averaged Over CV Runs): Best (ROC_AUC): Support Vector Machine = 0.777 Best (Balanced Acc.): Random Forest = 0.724Best (F1 Score): Random Forest = 0.662 Best (PRC AUC): Category Gradient Boosting = 0.635 Best (PRC APS): Category Gradient Boosting = 0.650 ROC Naive Bayes, AUC=0.676 1.0 Logistic Regression, AUC=0.763 Decision Tree, AUC=0.667 0.9 Random Forest, AUC=0.773 0.8 Gradient Boosting, AUC=0.723 0.75 Extreme Gradient Boosting, AUC=0.726 Light Gradient Boosting, AUC=0.711 True Positive Rate 0.7 Category Gradient Boosting, AUC=0.767 0.70 Support Vector Machine, AUC=0.777 Artificial Neural Network, AUC=0.749 K-Nearest Neightbors, AUC=0.714 0.65 Genetic Programming, AUC=0.664 ExSTraCS, AUC=0.709 0.4 --- No-Skill 0.60 0.3 0.2 0.55 Light Gradient Boosting Light Gradient Boosting Grategory Gradient Boosting Genetic Programming Gradient Boosting Extreme Gradient Boosting Support Vector Machine K-Nearest Neightbors Naive Bayes Logistic Regression Decision Tree Artificial Neural Network 0.3 0.4 0.5 0.6 0.7 0.8 0.9 False Positive Rate PRC 1.0 Naive Bayes, AUC=0.564, APS=0.552 Logistic Regression, AUC=0.631, APS=0.647 0.9 Decision Tree, AUC=0.576, APS=0.515 Random Forest, AUC=0.633, APS=0.648 Gradient Boosting, AUC=0.600, APS=0.616 Extreme Gradient Boosting, AUC=0.574, APS=0.598 Light Gradient Boosting, AUC=0.613, APS=0.629 0.7 Precision (PPV) Category Gradient Boosting, AUC=0.635, APS=0.650 PRC AUC Support Vector Machine, AUC=0.623, APS=0.640 Artificial Neural Network, AUC=0.594, APS=0.615 K-Nearest Neightbors, AUC=0.600, APS=0.604 Genetic Programming, AUC=0.513, APS=0.531 ExSTraCS, AUC=0.552, APS=0.571 0.50 --- No-Skill 0.3 ogistic Regression Decision Tree Light Gradient Boosting Category Gradient Boosting Artificial Neural Network 0.1 0.0 0.4 0.5 0.6 0.1 0.2 0.3 0.7 0.8 0.9 Recall (Sensitivity)

Dataset and Model Prediction Summary: D2 = hcc-data_example_no_covariates **Dataset Counts Summary:** instances: 165.0 features: 47.0 categorical_features: 26.0 quantitative_features: 21.0 missing_values: 826.0 missing_percent: 0.10651 Top ML Algorithm Results (Averaged Over CV Runs): Best (ROC_AUC): Random Forest = 0.757 Best (Balanced Acc.): Random Forest = 0.691 Best (F1 Score): Random Forest = 0.630 Best (PRC AUC): Extreme Gradient Boosting = 0.643 Best (PRC APS): Extreme Gradient Boosting = 0.658 ROC Naive Bayes, AUC=0.698 0.85 1.0 Logistic Regression, AUC=0.754 Decision Tree, AUC=0.574 0.9 0.80 Random Forest, AUC=0.757 0.8 Gradient Boosting, AUC=0.705 Extreme Gradient Boosting, AUC=0.752 0.75 Light Gradient Boosting, AUC=0.703 True Positive Rate 0.7 Category Gradient Boosting, AUC=0.719 Support Vector Machine, AUC=0.748 0.70 Artificial Neural Network, AUC=0.746 K-Nearest Neightbors, AUC=0.741 Genetic Programming, AUC=0.651 ExSTraCS, AUC=0.680 0.4 --- No-Skill 0.60 0.3 0.55 0.2 0.50 Light Gradient Boosting Light Gradient Boosting Grategory Gradient Boosting Naive Bayes Decision Tree Gradient Boosting Extreme Gradient Boosting Genetic Programming Logistic Regression Support Vector Machine Artificial Neural Network K-Nearest Neightbors 0.3 0.4 0.5 0.6 0.7 0.8 0.9 False Positive Rate PRC 1.0 Naive Bayes, AUC=0.608, APS=0.605 Logistic Regression, AUC=0.616, APS=0.633 0.9 Decision Tree, AUC=0.527, APS=0.450 Random Forest, AUC=0.613, APS=0.630 0.8 Gradient Boosting, AUC=0.603, APS=0.616 Extreme Gradient Boosting, AUC=0.643, APS=0.658 Light Gradient Boosting, AUC=0.604, APS=0.617 0.7 Precision (PPV) Category Gradient Boosting, AUC=0.607, APS=0.621 PRC AUC Support Vector Machine, AUC=0.579, APS=0.603 Artificial Neural Network, AUC=0.574, APS=0.595 K-Nearest Neightbors, AUC=0.633, APS=0.594 0.5 Genetic Programming, AUC=0.485, APS=0.505 ExSTraCS, AUC=0.542, APS=0.562 0.50 --- No-Skill 0.3

0.1

0.0 0.1 0.2 0.3

0.4 0.5 0.6

Recall (Sensitivity)

0.7 0.8 0.9

Logistic Regression Decision Tree Random Forest Extreme Gradient Boosting

D

Light Gradient Boosting

Category Gradient Boosting

Artificial Neural Network K-Nearest Neightbors

Average Model Prediction Statistics (Rounded to 3 Decimal Points)

D1 = hcc-data_example																
ML Algorithm	Balanced	Accuracy	F1	Sensitivity	Specificity	Precision	TP	TN	FP	FN	NPV	LR+	LR-	ROC	PRC	PRC
	Accuracy	,	Score	(Recall)	~	(PPV)								AUC	AUC	APS
Naive Bayes	0.545	0.558	0.445	0.492	0.598	0.579	10.333	20.333	13.667	10.667	0.522	3.67	2.66		0.564	0.552
Logistic Regression	0.719	0.727	0.656	0.683	0.755	0.632	14.333	25.667	8.333	6.667	0.795	2.788	0.42	0.763	0.631	0.647
Decision Tree	0.651	0.655	0.586	0.635	0.667	0.556	13.333	22.667	11.333	7.667	0.746	2.159	0.551	0.667	0.576	0.515
Random Forest	0.724	0.733	0.662	0.683	0.765	0.649	14.333	26.0	8.0	6.667	0.797	3.112	0.413	0.773	0.633	0.648
Gradient Boosting	0.66	0.685	0.575	0.556	0.765	0.598	11.667	26.0	8.0	9.333	0.735	2.557	0.589	0.723	0.6	0.616
Extreme Gradient Boosting	0.658	0.697	0.553	0.492	0.824	0.636	10.333	28.0	6.0	10.667	0.725	2.968	0.618		0.574	0.598
Light Gradient Boosting	0.633	0.667	0.528	0.492	0.775	0.578	10.333	26.333	7.667	10.667	0.713	2.375	0.658	0.711	0.613	0.629
Category Gradient Boosting	0.655	0.697	0.546	0.476	0.833	0.639	10.0	28.333	5.667	11.0	0.72	2.961	0.631	00.	0.635	0.65
Support Vector Machine	0.718	0.715	0.659	0.73	0.706	0.606	15.333	24.0	10.0	5.667	0.814	2.496	0.377		0.623	0.64
Artificial Neural Network	0.714	0.721	0.651	0.683	0.745	0.622	14.333	25.333	8.667	6.667	0.793	2.698	0.428		0.594	0.615
K-Nearest Neightbors	0.527	0.618	0.158	0.143	0.912	0.176	3.0	31.0	3.0	18.0	0.638	0.607	0.926	0	0.6	0.604
Genetic Programming	0.607	0.63	0.512	0.508	0.706	0.517	10.667	24.0	10.0	10.333	0.699	1.744	0.699		0.513	0.531
ExSTraCS	0.624	0.667	0.484	0.444	0.804	0.57	9.333	27.333	6.667	11.667	0.711	2.177	0.679	0.709	0.552	0.571
D2 = hcc-data_exam	ple_no_	_covaria	ates													
ML Algorithm	Balanced	Accuracy	F1	Sensitivity	Specificity	Precision	TP	TN	FP	FN	NPV	LR+	LR-	ROC	PRC	PRC
1712 1 11501111111	Accuracy	riccaracy	Score	(Recall)	Specificity	(PPV)						221	211	AUC	AUC	APS
Naive Baves		0.57	0.463	0.508	0.608	0.599	10.667	20.667	13.333	10.333	0.53	3.876	2.632		0.608	0.605
Logistic Regression	0.68	0.691	0.611	0.635	0.725	0.59	13.333	24.667	9.333	7.667	0.762	2.362	0.506	0.754	0.616	0.633
Decision Tree	0.556	0.564	0.477	0.524	0.588	0.442	11.0	20.0	14.0	10.0	0.667	1.289	0.809	0.574	0.527	0.45
Random Forest	0.691	0.697	0.63	0.667	0.716	0.599	14.0	24.333	9.667	7.0	0.774	2.644	0.479	0.757	0.613	0.63
Gradient Boosting	0.637	0.661	0.547	0.54	0.735	0.556	11.333	25.0	9.0	9.667	0.722	2.039	0.626	0.705	0.603	0.616
Extreme Gradient Boosting	0.669	0.703	0.573	0.524	0.814	0.635	11.0	27.667	6.333	10.0	0.735	2.814	0.585	0.752	0.643	0.658
Light Gradient Boosting	0.654	0.685	0.558	0.524	0.784	0.599	11.0	26.667	7.333	10.0	0.728	2.523	0.61	0.703	0.604	0.617
Category Gradient Boosting	0.633	0.655	0.544	0.54	0.725	0.55	11.333	24.667	9.333	9.667	0.718	1.99	0.635	0.719	0.607	0.621
Support Vector Machine	0.635	0.673	0.52	0.476	0.794	0.607	10.0	27.0	7.0	11.0	0.713	2.638	0.654	0.748	0.579	0.603
Artificial Neural Network	0.678	0.685	0.614	0.651	0.706	0.586	13.667	24.0	10.0	7.333	0.764	2.381	0.5		0.574	0.595
K-Nearest Neightbors	0.552	0.648	0.182	0.143	0.961	0.25	3.0	32.667	1.333	18.0	0.65	1.619	0.886	0.741	0.633	0.594
Genetic Programming	0.623	0.642	0.536	0.54	0.706	0.533	11.333	24.0	10.0	9.667	0.712	1.889	0.656	0.651	0.485	0.505
ExSTraCS	0.597	0.648	0.449	0.381	0.814	0.556	8.0	27.667	6.333	13.0	0.682	2.035	0.759	0.68	0.542	0.562

Feature Importance Summary: D1 = hcc-data_example

Feature Importance Summary: D2 = hcc-data_example_no_covariates

Compare ML Performance Across Datasets

Using Best Performing Algorithms (Kruskall Wallis Compare Datasets)

Datasets:

 $D1 = hcc\text{-}data_example$

 $D2 = hcc\text{-}data_example_no_covariates$

index	P-Value	Best_Alg_D1	Mean_D1	Best_Alg_D2	Mean_D2
Balanced Accuracy	0.5127	Random Forest	0.7236	Random Forest	0.6912
Accuracy	0.1046	Random Forest	0.7333	Extreme Gradient Boosting	0.703
F1 Score	0.5066	Random Forest	0.6618	Random Forest	0.6299
Sensitivity (Recall)	0.5002	Support Vector Machine	0.7302	Random Forest	0.6667
Specificity	0.8222	K-Nearest Neightbors	0.9118	K-Nearest Neightbors	0.9608
Precision (PPV)	0.6579	Random Forest	0.6491	Extreme Gradient Boosting	0.6345
TP	0.5002	Support Vector Machine	15.3333	Random Forest	14.0
TN	0.8222	K-Nearest Neightbors	31.0	K-Nearest Neightbors	32.6667
FP	0.5127	Naive Bayes	13.6667	Decision Tree	14.0
FN	1.0	K-Nearest Neightbors	18.0	K-Nearest Neightbors	18.0
NPV	0.5127	Support Vector Machine	0.8141	Random Forest	0.774
LR+	0.8222	Naive Bayes	3.6703	Naive Bayes	3.8759
LR-	0.8222	Naive Bayes	2.6603	Naive Bayes	2.6324
ROC AUC	0.5127	Support Vector Machine	0.7768	Random Forest	0.7568
PRC AUC	0.8273	Category Gradient Boosting	0.6349	Extreme Gradient Boosting	0.6435
PRC APS	0.8273	Category Gradient Boosting	0.65	Extreme Gradient Boosting	0.6581

Pipeline Runtime Summary

hcc-data_example		hcc-data_example_no	hcc-data_example_no_covariates				
Pipeline Component	Time (sec)	Pipeline Component	Time (sec)				
Exploratory Analysis	2.61	Exploratory Analysis	2.49				
Preprocessing	0.38	Preprocessing	0.39				
Mutual Information	0.21	Mutual Information	0.2				
MultiSURF	0.9	MultiSURF	0.86				
Feature Selection	1.03	Feature Selection	1.01				
Naive Bayes	0.77	Naive Bayes	0.69				
Logistic Regression	12.61	Logistic Regression	7.98				
Decision Tree	11.82	Decision Tree	7.39				
Random Forest	375.34	Random Forest	382.56				
Gradient Boosting	97.98	Gradient Boosting	83.67				
Extreme Gradient Boosting	370.12	Extreme Gradient Boosting	415.45				
Light Gradient Boosting	26.81	Light Gradient Boosting	28.79				
Category Gradient Boosting	7784.51	Category Gradient Boosting	4108.43				
Support Vector Machine	11.36	Support Vector Machine	8.18				
Artificial Neural Network	62.5	Artificial Neural Network	49.46				
K-Nearest Neightbors	31.07	K-Nearest Neightbors	22.25				
Genetic Programming	42681.75	Genetic Programming	48841.55				
ExSTraCS	2413.38	ExSTraCS	2384.28				
Stats Summary	23.58	Stats Summary	23.46				