BINARY LOGIC

Boolean Algebra

Today the computing (information) technology is based on Binary logic

The Binary logic is based on the Aristotelian Logic

Binary and Aristotelian logic:

• [1] = True

• [0] = False

True and False [logic]

 The Greek philosopher Aristotle (384-322 BC) founded a system of logic based on two types of propositions: True and False.

True-False (Binary logic)

- True and False. Lead to the four foundational laws of logic:
 - Law of Identity: ("A" is "A") or ("A" = "A");
 - Law of Non-contradiction: ("A" is not "non-A");
 - Law of the Excluded Middle: (Something is either "A" or "non-A");
 - Law of Rational Inference...
 - All Letters are Characters
 - A is a Letter
 - A is a Character

Aristotle (right) gestures to the earth, representing his belief in knowledge through empirical observation and experience, while holding a copy of his Nicomachean Ethics in his hand, while Plato (left) gestures to the heavens, representing his belief in The Forms.

Centuries later...

Mathematicians (Leibniz, Boole, ...) and Engineers (Shannon, Shestakov, ...) extended the Aristotelian Logic to Symbolic Logic ... to Algebra of Logic to ... Logic Circuits ...

Gottfried Wilhelm von LEIBNIZ (1646-1716)

Mathematician born in Saxony (now Germany)

De la numération binaire

TABLE 86 MEMOIRES DE L'ACADEMIE ROYALE

Dro	121 C	nos antiers an della	us du don	ble du Troci	141
Nombres plus haut degré. Car ici, c'est com-					
olololo olol ome si on disoit, par exemple, que i i i					
0000000	ll o ⁿ	ou 7 est la somme de	a quarre d	e deux III	7 & d'un
10000	0	ou 7 est la somme de	quaric, u	built miss	17700 0 0111
0,00010	P	Et que 1101 ou 13 est	la lomme de	e nuir, quati	
	1 28	k un. Cette propriéte	e lett aux E	nayeurs pot	100 4
000011		eser toutes sortes de	mailes avec	peu de poids	5, 1 1
000 100	48	x pourroit servir dans	les monnoy	es pour dor	1- 1101 13
101	5 n	er plusieurs valeurs av	ec peu de p	iéces.	
00110	6	Cette expression des	Nombres 6	etant établie	, lert à faire
111000	7 ti	rès-facilement toutes f	fortes d'opé	rations.	
0001000	1		110li 6	1011) 5	1110 14
1001	9	Pour l'Addition	111 7	1011 11	10001 17
01010	10	par exemple.	_	•••••	
0 0 1011	11	1	1101 13	10000 16	11111 31
001100	12		1101 13	10000 16	11111 31
001101	,	Pour la Soustrac-	11 -	1011 11	10001 17
001110	13	tion.	111 7	101 5	1110 14
0 0 1111	14				-
	15		11 3	101 5	101 5
0 10000	16	Dani 1. M.L.	11 3	11 3	101 5
0 10001	17	Pour la Multi-	11	101	101
010010	18	plication.	11	101	1010
010011	19		1001 9	1111	11001 25
010100	20		100111 9	1111,1)	
0 10101	21	T	5 12211	101 5	•
01110	22	Pour la Division.	311 *** 1	Ш	

George Boole, Mathematician (1815-1864)

«The Mathematical Analysis of Logic» (1847)

Symbolic Algebra Boolean algebra

Claude Shannon, Victor Ivanovich Shestakov

Claude Shannon (1916-2001):
 «A symbolic analysis of relay and switching circuits», Thesis (M.S.E.E)-Massachusetts
 Institute of Technology, 1940.

Victor Ivanovich Shestakov (1907-1987):
 «Mathematical logic and foundations»,
 Ph.D. Dissertation-Lomonosov Moscow
 State University, 1939.

Logic ... logic circuits

- Aristotle (400 B.C): Logic (True and False)
- Muslim mathematicians (middle ages) → survived Aristotelian and other manuscripts
- Leibniz (1679-1701): Aristotelian logic → Mathematical Logic
- Boole (1854): Gave a meaning to Mathematical Logic → Algebra of Logic
- Claude Shannon (1937) and Victor Ivanovich Shestakov (1935): Applied the Algebra of logic → Logic Circuits

Electronic Computers

Binary logic

The binary logic is implemented with switches

- Relays
 — ElectroMechanical

Switch: OFF (open)

Switch: ON ()

Basic Principle: "ON-OFF" Switch

Basic Principle: Digital and Analog Switch

Basic Principle: Switch with Light

Α	Light
Open	0

Α	Light	
Open	0	Truth Table
Closed	1	Truin lubie

A____

A Switch in computing can also be implemented with a...

... a transistor

We will talk about it later ...

Let's put two switches in series ...

AND operation

Truth Table?

AND

Α	В	Light	
0	0		
0	1		Truth Table
1	0		
1	1		

AND

$A \text{ (and) } B = A \cdot B = AB$

Α	В	Light	
0	0	0	
0	1	0	Truth Table
1	0	0	
1	1	1	

Let's put two switches in parallel ...

OR operation

Truth Table?

OR

Α	В	Light	
0	0		
0	1		Truth Table
1	0		
1	1		

OR

$$A \text{ (or) } B = A + B$$

Α	В	Light	
0	0	0	
0	1	1	Truth Table
1	0	1	
1	1	1	

The last basic operation ...

NOT (A = 0 = Open)

Α	Light
Open (0)	1

NOT (A = 1 = Closed)

Α	Light
Open (0)	1
Closed(1)	0

NOT (truth table)

A 1	Ā ₁
0	1
1	0

The 3 basic operations and their symbols (gates)

The reality – Transistors (CMOS)

CMOS (Complementary Metal—Oxide—Semiconductor)

Chemistry basics

- Conductors
- Insulators
- Semiconductors

Semiconductor basics

©2001 HowStuffWorks

Copyright © 2013-2014, Physics and Radio-Electronics, All rights reserved

https://www.halbleiter.org/en/fundamentals/conductors-insulators-semiconductors/

https://youtu.be/60Qz051rD_w

https://youtu.be/k12GMjtN8aA

https://youtu.be/ethnHSgVbHs

Transistor

A semiconductor switch

P-type semiconductor Silicon material

P = Positive

Silicon is a chemical element with symbol Si and atomic number 14

Add N-type semiconductor material

NPN=Negative-Positive-Negative type of configuration

N = Negative

The two N-type semiconductor should communicate

Add a metal bar in between, named Gate

Add metal nodes ... source, drain, gate

Source is the input ... Drain is the Output ... We need to go from Source to Drain via the P-type

Apply Positive voltage to Gate ...

The Gate acts as a Switch ... by applying voltage or not

A single real NPN Transistor

From silicon to chip...

http://www.xbitlabs.com

Chip + Housing (simplified view)

Today's computer technology is based on Boolean algebra ...

Intel

Basic Boolean Theorems (Rules)

Boolean Algebra

Boolean Theorems

- Single Variable: f(A)
- Multiple variable: f(A,B,C,...).

Single Variable Boolean Theorems

$$f(A) = A \bullet o$$

Operation with zero (1); $A \cdot 0 = ?$

Operation with zero (1); $A \cdot 0 = 0$

Α	0	Output
0	0	0
1	0	0

Operation with one (2); $A \cdot 1 = ?$

Operation with one (2); $A \cdot 1 = A$

Α	1	Output
0	1	0
1	1	1

Idempotent theorem (3); $A \cdot A = ?$

Idempotent theorem (3); $A \cdot A = A$

Α	Α	Output
0	0	0
1	1	1

Complementary (4); $A \cdot A' = ?$

Complementary (4); $A \cdot A' = 0$

Α	A'	Output
0	1	0
1	0	0

Operation with zero (5); A + 0 = ?

Operation with zero (5); A + 0 = A

Α	0	Output
0	0	0
1	0	1

Operation with one (6); A + 1 = ?

Operation with one (6); A + 1 = 1

Α	1	Output
0	1	1
1	1	1

Idempotent (7); A + A = ?

Idempotent (7); A + A = A

Α	Α	Output
0	0	0
1	1	1

Complementary (8); A + A' = ?

Complementary (8); A + A' = 1

Α	A'	Output
0	1	1
1	0	1

Involution theorem (9); A" = ?

Involution theorem (9); A'' = A

Α"	A'	Output
0	1	0
1	0	1

The 9 basic Boolean theorems

$$\rightarrow$$
 A • 0 = 0

$$\rightarrow$$
 A • 1 = A

$$\rightarrow$$
 A • A = A

$$\rightarrow$$
 A • A' = 0

$$\rightarrow$$
 (A')' = A

$$\rightarrow$$
 A + 0 = A

$$> A + 1 = 1$$

$$\rightarrow$$
 A + A = A

$$\rightarrow$$
 A + A' = 1

MultiVariable Boolean theorems

$$f(A,B) = A + B$$

Multivariable theorems(1)

Commutative Laws:

- **♦** A+B = B+A
- $A \bullet B = B \bullet A$

Multivariable theorems(2)

Associative Laws:

$$A+(B+C) = (A+B)+C = A+B+C$$

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C = A \bullet B \bullet C$$

Multivariable theorems(3)

Distributed Law over Multiplication

$$(D+A) \bullet (B+C) = D \bullet B + D \bullet C + A \bullet B + A \bullet C$$

$$A \bullet (B+C) = A \bullet B + A \bullet C$$

Multivariable theorems(3)

Distributed Law over Addition

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

o Is the above equality valid?

It is not obvious...

$$\circ A + (B \bullet C) = (A + B) \bullet (A + C)$$

Prove it ... (5 minutes)

Proof ... using the Boolean Theorems

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

Distribute

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$A \bullet A = A$$

Factor-out A

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A+A \bullet C+A \bullet B+B \bullet C$$

$$= A +A \bullet C+A \bullet B+B \bullet C$$

1+C=1

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet (1+C) + A \bullet B + B \bullet C$$
1+C=1

A•1=1

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet (1+C) + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

$$A \bullet 1 = 1$$

Factor-out A

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet (1+C) + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

1 + B = 1

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A+A \bullet C+A \bullet B+B \bullet C$$

$$= A \bullet (1+C)+A \bullet B+B \bullet C$$

$$= A \bullet 1 +A \bullet B+B \bullet C$$

$$= A \bullet 1 +A \bullet B+B \bullet C$$

$$= A \bullet A+A \bullet B+B \bullet C$$

A•1=1

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet (1+C) + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

$$= A(1+B) + B \bullet C$$

$$= A \bullet 1 + B \bullet C$$

$$= A \bullet 1 + B \bullet C$$

$$= A \bullet 1 + B \bullet C$$

Done ...

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet (1+C) + A \bullet B + B \bullet C$$

$$= A \bullet 1 + A \bullet B + B \bullet C$$

$$= A + A \bullet B + B \bullet C$$

$$= A + A \bullet B + B \bullet C$$

$$= A(1+B) + B \bullet C$$

$$= A \bullet 1 + B \bullet C$$

$$= A \bullet 1 + B \bullet C$$

$$A+(B\bullet C)=(A+B)\bullet (A+C)$$

Another way to prove the equation?

$A+(B\bullet C)=(A+B)\bullet (A+C)$

Set-up the truth table for the above expression

Α	В	С	A+B	A+C	(A+B)(A+C)	BC	A+(BC)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$A+(B\bullet C)=(A+B)\bullet (A+C)$

A	В	С	A+B	A+C	(A+B)(A+C)	BC	A+(BC)
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	1				

$$A+(B\bullet C)=(A+B)\bullet (A+C)$$

·								
Α	В	С	A+B	A+C	(A+B)(A+C)	BC	A+(BC)	
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1	1	0	1	1	1	0	1	
1	1	1	1	1	1	1	1	

Perfect induction

New formula (F-1)

$$\circ A + A \bullet B = A$$
 or $A + AB = A$

• Proof ...

New formula (F-1)

- $\circ A + A \bullet B = A$
- o A•(1+B)
- o A•1
- $\circ A$

New formula (F-2)

$$\bigcirc A' = A' + A' \bullet B$$

Proof

New formula (F-2)

$$\bigcirc$$
 A' = A'+ A' \bullet B

$$\circ = A' \bullet (1+B)$$

More formulas

$$\circ A + A' \bullet B = A + B \tag{F-3}$$

$$\circ A' + A \bullet B = A' + B \qquad (F-4)$$

$$\circ A \bullet (A+B) = A \tag{F-5}$$

Let us proof the above 3 formulas

$$A + A' \bullet B = A + B;$$
 (F-3 Proof)

$$A + A'B = ...$$
 $A + A'B = A + AB + A'B$ $(A = A + AB)$
 $= A + B(A + A')$ $(A + A' = 1)$
 $= A + B$

$$A' + A \bullet B = A' + B;$$
 (F-4 proof)

$$A' + AB = ...$$
 $A' + AB = A' + A'B + AB$
 $(A' = A' + A'B)$
 $= A' + B(A' + A)$
 $= A' + B$

$$A \bullet (A+B) = A;$$
 (F-5 proof)

$$A(A+B) = AA + AB$$

$$= A + AB$$

$$= A(1+B)$$

$$= A 1$$

$$= A$$

(distribute)

$$(AA = A)$$

(factor-out A)

$$(1+B=1)$$

