FYMCA-B AL/ML SEM-II PRACTICAL NO: 05 DATE: /0 /2022 ROLL NO: 24

AIM: Implementation of C4.5

THEORY:

The C4.5 algorithm is used in Data Mining as a Decision Tree Classifier which can be employed to generate a decision, based on a certain sample of data (univariate or multivariate predictors). C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules. This accuracy of each rule is then evaluated to determine the order in which they should be applied. Pruning is done by removing a rule's precondition if the accuracy of the rule improves without it.

SOURCE CODE:

1) INSTALLING CHEFBOOST FOR C4.5:

```
!pip install chefboost

Looking in indexes: <a href="https://pxpi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>

Collecting chefboost

Downloading chefboost-0.0.17-py3-none-any.whl (26 kB)

Requirement already satisfied: pandas>=0.22.0 in /usr/local/lib/python3.7/dist-packages (from chefboost) (1.3.5)

Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.7/dist-packages (from chefboost) (1.21.6)

Requirement already satisfied: putil>=5.4.3 in /usr/local/lib/python3.7/dist-packages (from chefboost) (5.4.8)

Requirement already satisfied: tqdm>=4.30.0 in /usr/local/lib/python3.7/dist-packages (from chefboost) (4.60.0)

Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.22.0->chefboost)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.22.0->chefboost)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas>=0.22.0-

Installing collected packages: chefboost

Successfully installed chefboost-0.0.17
```

2) IMPORTING LIBRARIES AND READING DATA:

import pandas as pd
data = pd.read_csv('https://raw.githubusercontent.com/serengil/chefboost/master/tests/dataset/golf.txt')
data

	Outlook	Temp.	Humidity	Wind	Decision
0	Sunny	Hot	High	Weak	No
1	Sunny	Hot	High	Strong	No
2	Overcast	Hot	High	Weak	Yes
3	Rain	Mild	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Rain	Cool	Normal	Strong	No
6	Overcast	Cool	Normal	Strong	Yes
7	Sunny	Mild	High	Weak	No
8	Sunny	Cool	Normal	Weak	Yes
9	Rain	Mild	Normal	Weak	Yes
10	Sunny	Mild	Normal	Strong	Yes

VESIT 1 NARENDER KESWANI

FYMCA-B SEM-II DATE: /0 /2022 AL/ML PRACTICAL NO: 05 ROLL NO: 24

3) **BUILDING MODEL:**

4) **PREDICTING VALUES:**

```
for i in range(data.shape[0]):
  prediction = chef.predict(model, param = data.iloc[i])
 print(prediction)
No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No
```

CONCLUSUION:

From this practical, I have learned the implementation of C4.5 in python.