

Kryptographie WS 2008/2009

Technische Universität Darmstadt Fachbereich Informatik Prof. Johannes Buchmann

Erik Tews 25. Februar 2009

Klausur mit Lösung zum Wintersemester 2008/2009

Name, Vorname: Matrikelnummer:
Studiengang: Diplom Bachelor Master
Fachbereich: Fachsemester:
Prüfungssekretariat in dem Sie angemeldet sind: Keins
Taschenrechnermodell:
Wiederholer? Wievielter Versuch: Jahr des letzten Versuchs:
Zulassung: Sie sind zu dieser Klausur nur zugelassen, wenn sie sich gemäß den Regeln Ihrer Studienordnung dafür angemeldet haben.
Unterschrift:

Punktestand

Aufgabe	K1	K2	К3	K4	K5	K6	K7	K8	K9	K10	Ferienübung	Σ
Maximale Punktzahl	20	20	20	20	14	20	20	20	20	20	20	
Erreichte Punktzahl												

VIEL ERFOLG!

Hinweise:

Halten Sie Ihren Studienausweis und einen Lichtbildausweis zur Kontrolle bereit. Setzen Sie sich so, dass 2 Plätze rechts und links neben Ihnen, sowie die gesamte Reihe vor Ihnen frei ist.

Notation

- Für jede natürliche Zahl n bezeichnet $(\mathbb{Z}/n\mathbb{Z})$ den Restklassenring der ganzen Zahlen modulo n und $(\mathbb{Z}/n\mathbb{Z})^*$ die multiplikative Gruppe.
- Für einen Körper \mathbb{K} bezeichnet $\mathbb{K}[X]$ den Polynomring über diesem Körper mit Variable X.

Aufgabenblätter

- Füllen Sie das Deckblatt vollständig aus.
- Prüfen Sie, ob die Klausur 10 Aufgaben und 12 Seiten enthält.
- Kennzeichnen Sie alle verwendeten Aufgaben- und Zusatzblätter zuerst mit Name und Matrikelnummer.
- Verwenden Sie für jede Aufgabe falls möglich ein neues Blatt.
- Geben Sie die verwendeten Formeln, Sachverhalte und Zwischenergebnisse an.

Bewertung

- Für volle Punktzahl müssen sie bei jeder Aufgabe auch Ihre Lösung begründen bzw. Zwischenschritte mit angeben.
- Unleserlichkeit kann zu Punktabzug führen.
- Sie konnten in der Ferienübung 20 Punkte erzielen, in der Klausur gibt es maximal 194 Punkte.
- Die Gesamtnote ergibt sich aus der Summe der in der Klausur und Ferienübung erzielten Punkte.
- Das Ergebnis der Ferienübung bildet keine Zulassungsvoraussetzung zur Klausur.

Dauer der Klausur und zugelassene Hilfsmittel

- Ihnen stehen 120 Minuten zum Bearbeiten der Aufgaben zur Verfügung.
- Einzige zugelassene Hilfsmittel sind ein nicht programmierbarer Taschenrechner und ein beidseitig handschriftlich beschriebenes DIN-A4 Blatt. Tragen Sie die Modellbezeichnung Ihres Taschenrechners in das Deckblatt ein.
- Andere elektronische Geräte (Handys, PDAs, Laptops, programmierbare Taschenrechner) bitte der Klausuraufsicht zur Verwahrung geben.
- Studierende, deren Muttersprache nicht Deutsch ist, können zusätzlich ein zweisprachiges gedrucktes Wörterbuch verwenden.
- Die Klausuraufsicht überprüft vielleicht die Hilfsmittel.

K1 (Polynome). (20 Punkte)

Name: Matrikelnr.:

Seien $a(X) = X^3 + X + 1$ und b(X) = X + 1 zwei Polynome in GF(2)[X]. Berechnen Sie Polynome u, v in GF(2)[X] mit der Eigenschaft u * a + v * b = 1.

Lösung. Wir verwenden den EEA um eine solche Lineardarstellung zu berechnen:

$$\begin{array}{ccccc} X^3 + X + 1 & X + 1 & 1 \\ & X^2 + X & \\ 1 & 0 & 1 = u \\ 0 & 1 & X^2 + X = v \end{array}$$

Damit lautet die Lösung $u * a + v * b = (1) * (X^3 + X + 1) + (X^2 + X) * (X + 1) = 1.$

Hinweis: Da wir in GF(2)[X] rechnen, müssen wir beim EEA und anderen Rechnungen Vorzeichen nicht weiter beachten.

K2	(Endlicher	Körper)	١.

(20 Punkte)

 $Name: \hspace{1cm} Matrikelnr.: \hspace{1cm} ... \hspace{1cm}$

Konstruieren Sie einen endlichen Körper mit 4 Elementen. Geben sie die Additions- und Multiplikationstabelle an. Das Körperpolynom können Sie frei wählen.

Lösung. Wir wählen als Körperpolynom $X^2 + X + 1$, das Polynom ist irreduzibel, und es ist auch das einzist mögliche Polynom. Die Elemente des Körpers sind somit 0, 1, X und X + 1. Wir erhalten dann als Addtionstabelle:

	0	1	X	X+1
0	0	1	X	X+1
1	1	0	X+1	X
X	X	X+1	0	1
X+1	X+1	X	1	0

Und als Multiplikationstabelle:

	0	1	X	X+1
0	0	0	0	0
1	0	1	X	X+1
X	0	X	X+1	1
X+1	0	X+1	1	X

K3	(Elementordnung).	Name:	 Matrikelnr.:	
	(20 Punkte)			

Bestimmen Sie die Ordnung von 5 in $(\mathbb{Z}/17\mathbb{Z})^*$. Finden sie dann ein Element der Ordnung 4 in dieser Gruppe.

Lösung. Da 17 eine Primzahl und die Gruppenordnung so 17-1=16 ist, kommen nur Teiler der 16 als Ordnung für 5 in Frage, also 1,2,4,8 und 16. Wir prüfen $5^1=5\neq 1 \mod 17,\ 5^2=8\neq 1 \mod 17,$ $5^4=13\neq 1 \mod 17,\ 5^8=16\neq 1 \mod 17.$ Damit muss die Ordnung von 5 zwingend 16 sein.

Damit muss die Ordnung von $5^4 = 13 \mod 17$ zwingend 4 sein, denn $(5^4)^4 = 5^{16} = 1 \mod 17$, und für keine kleinere Zahl als 4 gilt $13^x = 1 \mod 17$, sonst wäre die Ordnung von 5 auch kleiner als 16.

K4 (ElGamal).	Name:	Matrikelnr.:
(20 Punkte)		

Sie haben den öffentlichen ElGamal-Schlüssel (p,g,A)=(17,3,8). Verschlüsseln Sie den Klartext m=5 mit diesem Schlüssel mit dem ElGamal Verschlüsselungsverfahren. Wählen Sie dabei die Zufallszahl b=5.

Lösung. wir berechen $c = A^b m = 8^5 * 5 = 11 \mod 17$ und $B = g^b = 5 \mod 17$. Der Chiffretext ist dann (c, B) = (11, 5).

K5	(Multiple Choice).
	(14 Punkte)

Name: Matrikelnr.:

Für eine korrekte Antwort gibt es zwei Punkte, für eine falsche Antwort werden zwei Punkte abgezogen.

Aussage	Wahr	Falsch
Beim DSA-Signieren sind alle Exponenten ≤ 256 Bit	X	
Hashfunktionen mit Hashlänge 80 Bit können kollisionsresistent		X
sein		
AES ist eine affin lineare Blockchiffre		X
Bei RSA-Signaturen darf man einen öffentliche Schlüssel mit $e=3$	X	
verwendet werden		
Das Vernam OTP ist perfekt geheim	X	
$(\mathbb{Z}/17\mathbb{Z})^*$ enthält ein Element der Ordnung 3		X
Aus Sicherheitsgründen muss die Primzahl bei Shamirs Secret-		X
Sharing-Verfahren wenigstens 1024 Bit lang sein		

K6	(RSA Entschlüsselungsexponenten).	Name:	Matrikelnr.:
	(20 Punkte)		

Es wird bei einer RSA Verschlüsselung das RSA-Modul n=35 verwendet. Welche Zahlen könnten als geheimer Entschlüsselungexponent d gewählt werden?

Lösung. Für den privaten RSA-Schlüssel gilt $e*d=1 \mod \varphi(n)$. Zu jedem e gibt es genau dann ein passendes d, wenn e bzw. d teilerfremd sind zu $\varphi(n)$. Zusätzlich ist e=1 verboten, und damit ebenfalls $d=1^{-1}=1 \mod \varphi(n)$. Damit bleiben noch alle zu $\varphi(n)=4*6=24=2*2*2*3$ teilerfremden Zahlen zwischen 3 und 23 einschließlich übrig. Das sind 3,5,7,9,11,13,17,19,23.

K7	(Babystep-Giantstep).	Name:	 ${\bf Matrikelnr.:}$	
	(20 Punkte)			

Sie wollen $a^x \equiv b \mod p$ lösen. Dabei sind a und b ganze Zahlen und p ist eine Primzahl. Angenommen Sie wissen, dass 0 < x < B < p-1 ist. Zeigen Sie, wie man x in $O(\sqrt{B})$ vielen Operationen finden kann. Begründen Sie ihre Antwort.

Lösung. Beim Babystep-Giantstep Verfahren wird x aufgeteilt in x=q*m+r. Dabei wird $m=\lceil \sqrt{p}\rceil$ gewählt, so dass q und r nicht größer sind als m. Ist bekannt, dass x ein relativ kleiner Wert ist (weil z. B. eine Implementierung aus Performancegründen x immer relativ klein wählt), so kann $m=\lceil \sqrt{B}\rceil$ gewählt werden, x läßt sich so ebenfalls als q*m+r darstellen. Dabei sind nun q und r maximal m. Existiert so eine Darstellung von x, so findet Babystep-Giantstep sie. Bei der Ausführung sind die längsten Operationen das erstellen einer Tabelle mit m Einträgen $(O(\sqrt{B}))$ und maximal m Zugriffe auf die Tabelle $(O(\sqrt{B}))$. Damit ergibt sich eine Gesamtlaufzeit von $O(\sqrt{B})$.

K8 (Rabin).	Name:	Matrikelnr.:
(20 Punkte)		

Ein Ihnen unbekannter Klartext wird mit dem Rabin-Modul $n_1 = 14$ zum Chiffretext $c_1 = 2$ und mit dem Rabin-Modul $n_2 = 15$ zum Chiffretext $c_2 = 1$ verschlüsselt. Berechnen Sie ein mögliches m mit der low exponent attacke.

Lösung. Wir berechnen zuerst mit Hilfe des CRT ein $x \mod 14*15$ mit $x=2 \mod 14$ und $x=1 \mod 15$. Wir erhalten so $x=1*14*14+2*1*15=16 \mod 14*15$. Durch ziehen der Wurzel aus 16 erhalten wir 4 als einen möglichen Klartext, der diese Eigenschaft hat.

Eine affin-lineare Chiffre mit Blocklänge 2 und Modul 2 wird benutzt. Folgende (Klartext, Chiffretext)-Paare werden beobachtet.

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}1&0\\1&0\end{array}\right),\left(\begin{array}{cc}0&1\\0&0\end{array}\right)$$

Wie lautet die Entschlüsselung des Chiffretexts $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$? Wie lautet der Schlüssel?

Lösung. Die Verschlüsselungsfunktion hat die Form c = Am + b. Ist m = (0,0), so ist das Ergebnis b. Wir können so einfach b = (1,0) bestimmen. Noch zu bestimmen ist die Matrix A. Aus A*(1,0)+(1,0)=(0,1) können wir erkennen A*(1,0)=(1,1). Damit ist die erste Spalte der Matrix A (1,1). Aus A*(1,1)+(1,0)=(0,0) wissen wir A*(1,1)=(1,0). Also ist die Summe der ersten beiden Matrixspalten damit (1,0) und damit die zweite Spalte der Matrix (0,1).

Damit ist der Schlüssel:

$$A = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)$$

$$b = \left(\begin{array}{c} 1\\0 \end{array}\right)$$

Die Entschlüsselung des Chiffretextes lautet (0,1), da die Abbildung bijektiv ist, es nur 4 Klartexte gibt, und dieser der einzig nicht genannte Klartext in der Aufgabenstellung ist.

K10	(Secret Sharing).	Name:	
	(20 Punkte)		

Sie haben das Geheimnis s=5 auf 3 Personen verteilt. Gerechnet wird modulo 7. Die erste Person bekommt den Share (x, f(x)) = (3, 1). Zwei Personen sollen das Geheimnis bestimmen können. Weniger nicht. Die Shares der anderen sind (x, f(x)) = (2,) und (x, f(x)) = (4,). Vervollständigen Sie diese Info.

... Matrikelnr.:

Lösung. Da 2 Personen das Geheimnis rekonstruieren sollen, ist das Polynom von der Form f(x) = a * x + b. Aus s = 5 können wir b = 5 ablesen. Nun müssen wir nur noch die Steigung bestimmen. Da f(0) = 5 und f(3) = 1 erkennen wir dass die Steigung $3^{-1} * 3 = 1 \mod 7$ sein muss. Die Funktion ist so f(x) = 1 * x + 5. Damit lauten die restlichen Shares (x, f(x)) = (2, 0) und (x, f(x)) = (4, 2).