Series and parallel connection of capacitors

Data:

Series

C (Capacitors in series)	V (volts) measured	Q (coulomb) = CV	
$C_1 = 100 \ \mu F$	5.17 V	(5.17 * 10 ⁻⁴) C	
$C_2 = 330 \ \mu F$	1.68 V	(5.544 * 10 ⁻⁴) C	
	$V_{\text{batt}} = 9$	$Q_{av} = (5.357 * 10^{-4}) C$	
$C_{eq} = Q_{av}/V_{batt}$ C_{eq} (measured) = (5.952 * 10 ⁻⁵) F			
$1/C_{\rm eq} = 1/C_1 + 1/C_2$	C_{eq} (predicted) = (7.67442 * 10 ⁻⁵) F		

Calculations:

Converting
$$\mu F$$
 to F : $C_1 = (100 * 10^{-6}) = (1 * 10^{-4}) F$: $C_2 = (330 * 10^{-6}) = (3.3 * 10^{-4}) F$ Calculating Q: $Q_1 = (1 * 10^{-4}) * (5.17) = (5.17 * 10^{-4}) C$ $Q_2 = (3.3 * 10^{-4}) * (1.68) = (5.544 * 10^{-4}) C$ Calculating $Q_{av} = (5.17 * 10^{-4}) + (5.544 * 10^{-4}) = (.0010714)/2 = (5.357 * 10^{-4}) C$ Calculating C_{eq} (measured) = $(5.357 * 10^{-4})/(9) = (5.952 * 10^{-5}) F$ Calculating C_{eq} (predicted) = $1/C_{eq} = (1/(1 * 10^{-4})) + (1/(3.3 * 10^{-4})) = 13030.30303 F$ C_{eq} (predicted) = $(13030.30303)^{-1} = (7.67442 * 10^{-5}) F$

$$V_{tot} = V_1 + V_2$$
: (5.17) + (1.68) = 6.85 V

Parallel

C (Capacitors in parallel)	V (volts) measured	Q (coulomb) = CV
----------------------------	--------------------	------------------

$C_1 = 100 \ \mu F$	7.03	(7.03 * 10 ⁻⁴) C	
$C_2 = 330 \ \mu F$	7.03	(2.32 * 10 ⁻³) C	
C_{eq} (measured)= Q_{total}/V_{batt}	$V_{\text{batt}} = 9$	$Q_{tot} = .0030229 \text{ C}$	
$C_{eq} = Q_{tot}/V_{batt}$ C_{eq} (measured) = (3.35878 * 10 ⁻⁴) F			
$C_{eq} = C_1 + C_2$	C_{eq} (predicted) = $(4.3 * 10^{-4}) F$		

Calculations:

Converting
$$\mu F$$
 to F : $C_1 = (100 * 10^{-6}) = (1 * 10^{-4}) F$: $C_2 = (330 * 10^{-6}) = (3.3 * 10^{-4}) F$ Calculating Q: $Q_1 = (1 * 10^{-4}) * (7.03) = (7.03 * 10^{-4}) C$ $Q_2 = (3.3 * 10^{-4}) * (7.03) = (.0023199) C$ or $(2.32 * 10^{-3}) C$ Calculating $Q_{tot} = Q_1 + Q_2$: $(7.03 * 10^{-4}) + (2.32 * 10^{-3}) = .0030229$ Calculating $C_{eq} = Q_{tot}/V_{batt}$: C_{eq} (measured) = $(.0030229)/(9) = (3.35878 * 10^{-4}) F$ Calculating $C_{eq} = C_1 + C_2$: C_{eq} (predicted) = $(1 * 10^{-4}) + (3.3 * 10^{-4}) = (4.3 * 10^{-4}) F$

Analysis:

So, with the circuit wired in series we can see that the voltages differ across the capacitors. With the total voltage equaling to 6.85 V. The Q (Charges in Coulombs) also come out to about the

same, which is expected for a circuit wired in series. Also, for a circuit in series, the equivalent capacitance was the inverse of one over each specific capacitance. We predicted (calculated) that this would be $(7.67442 * 10^{-5})$ F. We measured it to be $(5.952 * 10^{-5})$ F. They are about .00001 off. This could be due to the measured voltage not being exactly 9V so when using the equation $C_{eq} = Q_{av}/V_{batt}$ it could throw our calculation off. On the other hand if we used the V_{tot} we measured which was about 6.85 V, we can calculate, again, the C_{eq} . Which would look like this $(C_{eq} = (5.357 * 10^{-4})/(6.85) = 7.82044 * 10^{-5})$. Which is more in line with our prediction/calculation.

With the circuit wired in parallel we can see that the voltages are the same across the capacitors. The total voltage we measured was 7.03 V. However, this time the Q (Charges in Coulombs) were different this time, which is expected for a circuit wired in parallel. Also, for a circuit in parallel, the equivalent capacitance was simply the specific capacitance of each capacitor added together. We predicted (calculated) that this would be $(3.35878 * 10^{-4})$ F. We measured it to be $(4.3 * 10^{-4})$ F. They are about .0001 off. This again, could be due to the measured voltage not being exactly 9V so when using the equation $C_{eq} = Q_{tot}/V_{batt}$ it could throw our calculation off. On the other hand if used the Voltage that we measured (Which is the same regardless of where you measure it in a parallel series) which was 7.03 V, we can calculate, again, the C_{eq} . Which would look like this $(C_{eq} = (.0030229)/(7.03) = 4.3 * 10^{-4})$. Which is exactly what our prediction/calculation was.