Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 3.7.1

Скин-эффект в полом цилиндре

Авторы:

Павел Филиппенко Б01-001 Михаил Овсянников Б01-001

Преподаватель:

Смирнова Ольга Ивановна

Долгопрудный, 2021

Цель данной работы: исследовать проникновение переменного магнитного поля в медный полый цилиндр, оценить глубину проникновения магнитного поля (скиновую глубину) в цилиндр. Рассчитать удельную проводимость меди σ , сравнив ее с табличной. Получить зависимость коэффициента ослабления магнитного поля H от частоты генератора f и сравнить экспериментальные данные с теорией.

Оборудование, задействованное в работе: генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

Общая теория скин-эффекта

Рассмотрим квазистационарное поле внутри проводящей среды в простейшем плоском случае. Пусть вектор \boldsymbol{H} направлен всюду вдоль оси z и зависит только от координаты x, то есть $H_x = H_y \equiv 0$.

Из уравнений Максвелла следует равенство:

$$\nabla^2 \mathbf{H} = \sigma \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t}.$$
 (1)

В нашем случае оно примет вид:

$$\frac{\partial^2 H_z}{\partial x^2} = \sigma \mu \mu_0 \frac{\partial H_z}{\partial t}.$$
 (2)

Рис. 1: Скинэффект в плоской геометрии Пусть полупространство x>0 заполнено проводящей средой с проводимостью σ , а на границе x=0 задано магнитное поле, изменяющееся по гармоническому закону: $H_z=H_0e^{i\omega t}$. Будем искать решение уравнения выше также в виде гармонической функции: $H_z(x,t)=H(x)e^{i\omega t}$.

После подстановки в уравнение получим:

$$\frac{d^2H}{dx^2} = i\omega\sigma\mu\mu_0H. \tag{3}$$

Как известно из теории линейных дифференциальных уравнений, решение нужно искать в виде: $H(x) = H_0 e^{kx}$. Подставляя, получим, что уравнение имеет нетривиальные решения такого вида при $k^2 = i\omega \sigma \mu \mu_0$. Откуда получаем:

$$k = \pm \frac{1+i}{\sqrt{2}} \sqrt{\omega \sigma \mu \mu_0}.$$
 (4)

Для полубесконечной среды (z>0) физический смысл имеет только решение со знаком минус, соответствующее стремлению к нулю амплитуды поля при $z\to\infty$. Окончательное решение уравнения:

$$H_z(x,t) = H_0 e^{-x/\delta} e^{i(\omega t - x/\delta)}, \tag{5}$$

где $\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}} = \frac{1}{\sqrt{\pi f \sigma \mu \mu_0}}$ - глубина проникновения поля, или скиновая глубина.

Специфика работы

Рис. 2: Тонкостенный цилиндр

В работе изучается скин-эффект в длинном тонкостенном медном цилиндре, помещённом внутрь соленоида, поэтому $\mu \approx 1$ с хорошей точностью.

Если выполнено условие $h \ll a$, то для описания поля внутри стенки можно ограничиться одномерным приближением. После решения уравнения (3) и подстановки граничных условий $H(0) = H_0$, $H(h) = H_1$ приходим к главной формуле всей работы:

$$H_1 = \frac{H_0}{\frac{1}{2}ak \operatorname{sh} kh + \operatorname{ch} kh} \tag{6}$$

Разобьем на предельные случаи.

1. **Малые частоты.** Имеем $\delta\gg h$, откуда $|kh|\ll 1$, значит $\mathrm{ch}\,kh\approx 1,\mathrm{sh}\,kh\approx kh$, и тогда:

$$H_1 \approx \frac{H_0}{1 + i\frac{ah}{\delta^2}}. (7)$$

Следовательно для отношения модулей получаем:

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \left(\frac{ah}{\delta^2}\right)^2}} = \frac{1}{\sqrt{1 + \frac{1}{4} \left(ah\sigma\mu_0\omega\right)^2}} = \frac{1}{\sqrt{1 + \left(ah\pi f\sigma\mu_0\right)^2}}.$$
 (8)

A фаза H_1 отстает от фазы H_0 на $\psi = \operatorname{arctg}\left(\frac{ah}{\delta^2}\right)$.

2. **Большие частоты.** Ситуация обратная – $\delta \ll h$. Тогда $|kh| \gg 1$ и $|ka| \gg 1$, откуда $\sh kh \approx \ch kh \approx \frac{1}{2}e^{kh}$, и тогда:

$$\frac{H_1}{H_0} = \frac{4}{ka}e^{-kh} = \frac{2\sqrt{2}\delta}{a}e^{-\frac{h}{\delta}}e^{-i\left(\frac{\pi}{4} + \frac{h}{\delta}\right)}.$$
 (9)

Как видно из формулы (9), в этом пределе поле внутри цилиндра по модулю в $\frac{2\sqrt{2}\delta}{a}e^{-h/\delta}$ раз меньше, чем снаружи, и, кроме того, запаздывает по фазе на:

$$\psi = \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\pi f \sigma \mu_0}.$$
 (10)

Экспериментальная установка

Рис. 3: Экспериментальная установка для изучения скин-эффекта

Схема экспериментальной установки для исследования проникновения переменного магнитного поля в медный полый цилиндр изображена на рис. 3. Переменное магнитное поле создаётся с помощью соленоида, намотанного на полый цилиндрический каркас 1 из поливинилхлорида, который подключается к генератору звуковой частоты. Внутри соленоида расположен медный цилиндрический экран 2. Для измерения магнитного поля внутри экрана используется измерительная катушка 3.

С помощью вольтметра V измеряется действующее значение ЭДС индукции, которая возникает в измерительной катушке, находящейся в переменном магнитном поле $H_1e^{i\omega t}$. Комплексная амплитуда ЭДС индукции в измерительной катушке равна

$$\widehat{U} = -SN \frac{d\widehat{B}_1(t)}{dt} = -i\omega \mu_0 SN H_1 e^{i\omega t}.$$

Показания вольтметра, измеряющего это напряжение, будут тогда, соответственно, равны:

 $U = \frac{SN\omega}{\sqrt{2}}\mu_0|H_1|.$

Видно, что модуль амплитуды магнитного поля внутри экрана $|H_1|$ пропорционален U и обратно пропорционален частоте сигнала f:

$$|H_1| \propto \frac{U}{f}.$$

При этом поле вне экрана $|H_0|$ пропорционально току I в цепи соленоида, измеряемому амперметром A:

$$|H_0| \propto I$$
.

Следовательно:

$$\frac{|H_1|}{|H_0|} = \text{const} \cdot \frac{U}{fI} \tag{11}$$

Таким образом, отношение амплитуд магнитных полей снаружи и вне экрана (коэффициент ослабления) может быть измерено по отношению $\frac{U}{fI}$ при разных частотах, а неизвестная константа в соотношении может быть определена по измерениям при малых частотах.

Определение проводимости материала экрана

В установке в качестве экрана используется медная труба промышленного производства. Технология изготовления труб оказывает заметное влияние на электропроводимость. Изза наличия примесей проводимость меди трубы в данной работе отличается от табличного значения в меньшую сторону. Для определения σ экрана будем использовать частотную зависимость (10) фазового сдвига между магнитными полями внутри и вне экрана при высоких частотах. Как видно из выражения (10), в области больших частот $f \gg \frac{1}{h^2\pi\sigma\mu_0}$ зависимость $\psi(\sqrt{f})$ аппроксимируется прямой, проходящей через точку $\psi(0) = \frac{\pi}{4}$. По наклону этой прямой можно вычислить проводимость материала экрана.

Ход работы

Запишем параметры установки $a=(22.5~\pm~0.5)~{
m мм}$ — радиус цилиндра $h=(1.5~\pm~0.1)~{
m мм}$ — толщина стенок

1. Сняли зависимость U(f) и I(f) в области низких частот: 10-100 Γ ц для получения зависимости амплитуды магнитного поля внутри экрана от частоты $\xi_{0c}(f)$. Результаты измерений приведены в таблице

$$\xi_{0c} = \frac{U}{fI} \tag{12}$$

2. Одновременно исследовали зависимость ξ_{0c} и фазового сдвига $\Delta\psi$ от частоты в диапазоне высоких частот 0.1--35 к Γ ц. Результаты измерений приведены в таблице

Замечание: сдвиг фазы $\Delta \varphi$, измеренный по экрану осциллографа, будет отличаться от фазового сдвига между магнитными полями вне и внутри экрана на $\pi/2$.

$$\Delta\psi = \Delta\varphi + \frac{\pi}{2}$$

f, Гц	I, мА	U, мВ	$\xi_{0c} \cdot 10^{-3}$
10	449,80	86,3	19,19
20	452,47	172,0	19,01
30	449,65	254,2	18,84
40	445,28	331,7	18,62
50	439,86	403,5	18,35
60	433,75	469,3	18,03
70	427,23	528,8	17,68
80	420,61	582,0	17,30
90	413,93	629,4	16,89
100	407,56	671,3	16,47

Таблица 1: Данные в диапазоне низких частот

Обработка результатов

В области низких частот построим график $\xi_{0c}(f^2)$.

Экстраполируя прямую к f=0 найдем амплитуду внешнего поля ξ_0 :

$$\xi_0 = (1.9000 \pm 0.0037) \cdot 10^{-2}$$

Изобразим зависимость частоты фазового сдвига $\Delta \psi$ от \sqrt{f} в диапазоне высоких частот. Проведем наилучшую прямую, заметим, что при f=0 значение ординаты $y_0=0.75\approx \pi/4$.

По наклону прямой найдем значение проводимости материала экрана.

$$\Delta \psi = \frac{\pi}{4} + \frac{h\sqrt{2\pi\mu_0\sigma f}}{\sqrt{2}} \tag{13}$$

f, Гц	I, MA	U, мВ	$\xi_{0c} \cdot 10^{-6}$	$\Delta \varphi$	$\Delta \psi$
100	407,56	671,3	16 471,19	-1,00	0,57
500	316,84	966,0	6 097,71	-0,23	1,34
1000	279,48	884,0	3 163,02	0,00	1,57
2000	209,62	662,2	1 579,52	0,20	1,77
3000	159,35	496,8	1 039,22	0,35	1,92
4000	126,14	385,7	764,43	0,49	2,06
5000	103,39	310,4	600,44	0,64	2,21
6000	87,14	253,5	484,85	0,81	2,38
7000	74,99	211,7	403,29	0,90	2,47
8000	65,48	180,4	344,38	0,94	2,51
9000	57,86	153,8	295,35	1,09	2,66
10000	51,56	133,8	259,50	1,22	2,79
12000	41,22	10,1	20,46	1,57	3,14
14000	33,90	80,0	168,55	1,79	3,36
15000	30,82	71,7	155,09	1,89	3,46
16000	28,03	64,6	144,07	1,90	3,47
17000	25,48	58,8	135,73	1,92	3,49
18000	23,14	53,5	128,45	2,04	3,61
19000	20,96	49,1	123,27	2,15	3,72
20000	18,93	45,2	119,36	2,18	3,75
21000	17,03	42,0	117,45	2,24	3,81
22000	15,23	39,1	116,70	2,34	3,91
23000	13,52	36,6	117,67	2,47	4,04
24000	11,90	34,3	120,12	2,52	4,09
25000	10,34	32,4	125,29	2,60	4,17
26000	8,85	30,6	132,93	2,65	4,22
27000	7,42	29,0	144,70	2,72	4,29
28000	6,10	27,4	160,42	2,77	4,34
29000	4,83	26,0	185,51	2,87	4,44
30000	3,60	24,0	222,22	2,99	4,56
31000	2,76	22,0	257,22	3,14	4,71
32000	2,38	20,8	273,11	3,33	4,90
33000	2,70	18,9	212,51	3,67	5,24
34000	3,51	17,0	142,26	4,04	5,61
35000	4,57	15,0	93,78	4,71	6,28

Таблица 2: Данные в диапазоне высоких частот

$$\sigma = (5.18 \pm 0.71) \cdot 10^7 \, \text{Cm/m}$$

 $\boxed{\sigma = (5.18~\pm~0.71)\cdot 10^7~\rm{Cm/m}}$ Табличное значение проводимости меди $\sigma_{\rm табл} = 6.48\cdot 10^7~\rm{Cm/m}.$

Замечание: обратим внимание на то, что полученное значение проводимости меди меньше табличного.

Замечание: обратим внимание, кроме того, на резкий рост значений графика в области частот, начиная с 30-31 кГц.

Импользуя ранее найденное значение амплитуды внешнего поля ξ_0 и результаты из-

Рис. 4: График зависимости ξ_{0c} от f^2

мерений ξ_{0c} в области высоких частот, посчитаем коэффициент ослабления магнитного поля в соответствии с формулой.

$$\frac{|H_{0c}|}{|H_0|} = \frac{\xi_{0c}(f)}{\xi_0} = \frac{U}{fI\xi_0} \tag{14}$$

Построим график зависимости $\frac{|H_{0c}|}{|H_0|}$ от \sqrt{f} . Расчитаем аналогичную теоретическую зависимость по формуле

$$H_{0c} = \frac{2H_0}{ak \sinh kh + 2 \cosh kh} \tag{15}$$

где

$$\delta = \sqrt{\frac{1}{\pi \mu_0 \mu \sigma f}} = \sqrt{\frac{1}{\pi \mu_0 \sigma f}} \tag{16}$$

глубина проникновения, а

$$k = \frac{1+i}{\delta} \tag{17}$$

Стоит воспользоваться приближением при низких и высоких частотах. При низких частотах выражение приближается формулой

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + \frac{1}{4}(2\pi ah\sigma\mu_0 f)^2}}$$
 (18)

При высоких частотах

$$\frac{|H_1|}{|H_0|} = \frac{2\sqrt{2}\delta}{a}e^{-\frac{h}{\delta}} \tag{19}$$

Полученная таким образом теоретическая зависимость достаточно хорошо ложится на экспериментальные данные.

Воспользовавшись найденным значением σ , вычислим глубину проникновения δ при частотах 50Γ ц и $10^5 \Gamma$ ц.

> На частоте 50 Γ ц глубина проникновения $\delta = (9.89 \pm 0.68)$ мм На частоте 10^5 Гц глубина проникновения $\delta = (22.0 \pm 1.5) \cdot 10^{-2}$ мм

Рис. 5: График зависимости $\Delta \psi$ от \sqrt{f}

Рис. 6: График зависимости $\frac{|H_{0c}|}{|H_0|}$ от \sqrt{f}

Рис. 7: Сравнение экспериментальной зависимости с теоретической

Вывод

В данной работе было исследовано явление скин-эффекта. Была найдена глубина проникновения магнитного поля в полый медный цилиндр при разных частотах генератора. Мы убедились, что данная зависимость $\delta(f)$ является обратно корневой: $\delta(f) \propto \frac{1}{\sqrt{f}}$. Была найдена удельная проводимость меди $\sigma = (5.18 \pm 0.71) \cdot 10^7$ См/м, что является $\sim 80\%$ от табличного значения, то есть меньше него, как и было заявлено. Зависимость фазы $\Delta \psi(\sqrt{f})$ также неплохо ложится на предсказанную прямую, но имеет небольшое отклонение при $f \sim 10$ кГц и достаточно сильное отклонение в большую сторону при частотах $f \sim 30-31$ кГц – это резонансы. Экспериментальное подтверждение получила и зависимость отношения амплитуд поля $\frac{|H_1|}{|H_0|}(\sqrt{f})$ от корня частоты, хоть она и является достаточно сложной. Несмотря на точные электронные приборы, систематические погрешности никуда не делись – согласно паспортным данным приборов, они составляют 0.1% и 0.2% для вольтметра и амперметра соответственно. Вдобавок случайные погрешности также вносят свой вклад в общие, а потому последние составляют $\sim 10\%$ от значения. Несмотря на все это, теория скин-эффекта хорошо предсказывает качественное поведение поля в цилиндре, хоть и имеет количественные неточности.