Discrete Fourier transform	If $f: \mathbb{F}_p^n \to \mathbb{C}$, then $\hat{f}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} f(x) \omega^{x \cdot t}$ where $\omega = e^{\frac{\tau i}{p}}$. More generally, if $f: G \to \mathbb{C}$, then $\hat{f}: \hat{G} \to \mathbb{C}$ is defined by $\hat{f}(\gamma) = \mathbb{E}_{x \in G} f(x) \gamma(x)$
Inversion formula for the discrete Fourier transform	$f(x) = \sum_{t \in \mathbb{F}_p^n} \hat{f}(t)\omega^{-x \cdot t}$ $Proof.$ $\sum_{t \in \mathbb{F}_p^n} \hat{f}(t)\omega^{-x \cdot t} = \sum_{t \in \mathbb{F}_p^n} \left(\mathbb{E}_y f(y)\omega^{y \cdot t} \right) \omega^{-x \cdot t}$ $= \mathbb{E}_y f(y) \sum_t \omega^{(y-x) \cdot t}$ $= \mathbb{E}_y f(y) 1_{y=x} p^n$ $= f(x)$
fourier-transform fourier-analysis dft-inversion	
Ways to turn a set $A\subseteq \mathbb{F}_p^n$ into a function $ \text{fourier-analysis} $ $ \text{indicator-mu-balance-def} $	• 1_A the characteristic function of A , ie $1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ Normalised in the ∞ norm. • μ_A the characteristic measure of A , ie $\mu_A = \alpha^{-1} 1_A$ where $\alpha = \frac{ A }{ G }$. Normalised in the L^1 norm. • f_A the balanced function of A , ie $f_A(x) = 1_A(x) - \alpha$ Normalised to have sum 0 .
Fourier transform of $-A$	Proof. $\widehat{1_{-A}} = \overline{1_A}$ $\widehat{1_{-A}}(t) = \mathbb{E}_x 1_{-A}(x) \omega^{x \cdot t}$ $= \mathbb{E}_x 1_A(-x) \omega^{x \cdot t}$ $= \mathbb{E}_x 1_A(x) \omega^{-x \cdot t}$ $= \widehat{1_A}(t)$
fourier-transform fourier-analysis dft-neg	

If $V \leq \mathbb{F}_p^n$, then

$$\widehat{\mu_V}(t) = 1_{V^{\perp}}(t)$$

Proof.

$$\widehat{1_V}(t) = \mathbb{E}_x 1_V(x) \omega^{x \cdot t} = \frac{|V|}{|G|} 1_{V^{\perp}}(t)$$

fourier-transform fourier-analysis

dft-subspace

Fourier transform of a random set

Let $R \subseteq \mathbb{F}_p^n$ be such that each x is included with probability $\frac{1}{2}$ independently. Then with high probability

$$\sup_{t \neq 0} \left| \widehat{1_R}(t) \right| = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right)$$

Proof. Chernoff

fourier-transform fourier-analysis

dft-random-set

Inner product, L^p norm

If $f, g: \mathbb{F}_p^n \to \mathbb{C}$, then

$$\langle f, g \rangle = \mathbb{E}_x f(x) \overline{g(x)}$$
$$\langle \hat{f}, \hat{g} \rangle = \sum_t \hat{f}(t) \overline{\hat{g}(t)}$$
$$\|f\|_p^p = \mathbb{E}_x |f(x)|^p$$
$$\|\hat{f}\|_p^p = \sum_t |\hat{f}(t)|^p$$

fourier-analysis

discrete-lp-norm-def

Plancherel and Parseval's identities

$$\langle f, g \rangle = \left\langle \hat{f}, \hat{g} \right\rangle$$
 (Plancherel)
 $\|f\|_2 = \left\| \hat{f} \right\|_2$ (Parseval)

Proof.

$$\begin{split} \left\langle \widehat{f}, \widehat{g} \right\rangle &= \sum_{t} \widehat{f}(t) \overline{\widehat{g}(t)} = \sum_{t, x, y} f(x) \overline{g(y)} \omega^{(x-y) \cdot t} \\ &= \sum_{x, y} f(x) \overline{g(y)} \mathbf{1}_{x=y} = \left\langle f, g \right\rangle \end{split}$$

The ρ -large spectrum of f is

$$\operatorname{Spec}_{\rho}(f) = \{ t \mid |\hat{f}(t)| \ge \rho \|f\|_1 \}$$

large-spectrum fourier-analysis

large-spectrum-def

Large spectrum of a subspace

If $V \leq \mathbb{F}_p^n$ and $\rho > 0$, then

$$\operatorname{Spec}_{\rho}(1_V) = V^{\perp}$$

large-spectrum fourier-analysis

large-spectrum-subspace

Upper bound on the size of the large spectrum

For all $\rho > 0$,

$$\left| \operatorname{Spec}_{\rho}(f) \right| \le \rho^{-2} \frac{\|f\|_{2}^{2}}{\|f\|_{1}^{2}}$$

Proof.

$$\left\|f\right\|_{2}^{2} = \left\|\hat{f}\right\|_{2}^{2} \ge \sum_{t \in \operatorname{Spec}_{\rho}(f)} \left|\hat{f}(t)\right|^{2} \ge \left|\operatorname{Spec}_{\rho}(f)\right| (\rho \left\|f\right\|_{1})^{2}$$

large-spectrum fourier-analysis

card-large-spectrum-le

Convolution of functions

Given $f,g:\mathbb{F}_p^n\to\mathbb{C},$ their convolution $f*g:\mathbb{F}_p^n\to\mathbb{C}$ is given by

$$(f * g)(x) = \mathbb{E}_y f(y)g(x - y)$$

Meaning of $1_A * 1_B$

$$(1_A * 1_B)(x) = \mathbb{E}_y 1_A(y) 1_B(x - y)$$

$$= \frac{1}{p^n} |A \cap (x - B)|$$

$$= \frac{\# \text{ ways to write } x = a + b, a \in A, b \in B}{p^n}$$

In particular, the support of $1_A * 1_B$ is the **sum set**

$$A + B = \{a + b \mid a \in A, b \in B\}$$

convolution fourier-analysis

convolution-indicators

Relationship between convolution and Fourier transform

Given $f, g: \mathbb{F}_p^n \to \mathbb{C}$,

$$\widehat{f * g}(t) = \widehat{f}(t)\widehat{g}(t)$$

Proof.

$$\widehat{f * g}(t) = \mathbb{E}_x \left(\mathbb{E}_y f(y) g(x - y) \right) \omega^{x \cdot t}$$

$$= \mathbb{E}_y f(y) \mathbb{E}_u g(u) \omega^{(u+y) \cdot t}$$

$$= \hat{f}(t) \hat{g}(t)$$

convolution fourier-transform fourier-analysis

dft-convolution

Meaning of the L^4 norm of the Fourier transform

$$\left\| \hat{f} \right\|_{4}^{4} = \mathbb{E}_{x+y=z+w} f(x) f(y) \overline{f(z) f(w)}$$

Proof.

$$\|\hat{f}\|_{4}^{4} = \|\hat{f}^{2}\|_{2}^{2} = \|\widehat{f*f}\|_{2}^{2} = \|f*f\|_{2}^{2}$$

$$= \mathbb{E}_{a}(f*f)(a)\overline{(f*f)(a)}$$

$$= \mathbb{E}_{a,x,y,z,w}f(x)f(y)1_{x+y=a}\overline{f(z)f(w)}1_{z+w=a}$$

$$= \mathbb{E}_{x+y=z+w}f(x)f(y)\overline{f(z)f(w)}$$

fourier-transform fourier-analysis

14-norm-fourier-transform

Bogolyubov's lemma in \mathbb{F}_p^n

If $A \subseteq \mathbb{F}_p^n$ has density $\alpha > 0$, then there exists a subspace V of codimension at most $2\alpha^{-2}$ such that $V \subseteq (A+A) - (A+A)$

 $\textit{Proof.} \ \text{Write} \ (A+A)-(A+A) = \operatorname{supp}(\underbrace{1_A*1_A*1_{-A}*1_{-A}}_q),$

set $K = \operatorname{Spec}_{\rho}(1_A)$ for $\rho = \sqrt{\frac{\alpha}{2}} > 0$ and define $V = \langle K \rangle^{\perp}$. We have $\operatorname{codim} V \leq |K| \leq \rho^{-2} \alpha^{-1} = 2\alpha^{-2}$ and

$$g(x) = \alpha^4 + \underbrace{\sum_{t \in K \setminus \{0\}} \left| \widehat{1_A}(t) \right|^4 \omega^{-x \cdot t}}_{(1)} + \underbrace{\sum_{t \notin K} \left| \widehat{1_A}(t) \right|^4 \omega^{-x \cdot t}}_{(2)}$$

Now prove $(1) \ge 0$ and $|(2)| \le \rho^2 \alpha^3 = \frac{\alpha^4}{2}$ so that g(x) > 0 whenever $x \in V$.

finite-field-mode. fourier-analysis Example of a set $A\subseteq \mathbb{F}_2^n$ of fixed density such that A+A does not contain any subspace of bounded codimension

The set $A = \{x \in \mathbb{F}_2^n \mid |x| \ge \frac{n}{2} + \frac{\sqrt{n}}{2}\}$ has density at least $\frac{1}{4}$ but there is no coset C of any subspace of codimension \sqrt{n} such that $C \subseteq A + A$.

fourier-analysis

sumset-no-subspace, finite-field-model

Density increment in \mathbb{F}_n^n

Let $A\subseteq \mathbb{F}_p^n$ of density α . If $t\neq 0$ is in $\operatorname{Spec}_{\rho}(1_A)$, then there exists x such that

$$|A \cap (x+V)| \ge \alpha \left(1 + \frac{\rho}{2}\right) |V|$$

where $V = \langle t \rangle^{\perp}$.

Proof. For $j=1,\ldots,p$, write v_j+V the cosets of V, $a_j=\frac{|A\cap (v_j+V)|}{|V|}-\alpha$ the density increment within each V_j . Calculate $\sum_j a_j=0$ and $\widehat{1_A}(t)=\mathbb{E}_j a_j\omega^j$, so that

$$\rho \alpha \le \left| \widehat{1}_A(t) \right| \le \mathbb{E}_j |a_j| = \mathbb{E}_j (|a_j| + a_j)$$

and find j such that $|a_j| + a_j \ge \rho \alpha$. Take $x = v_j$.

large-spectrum finite-field-model fourier-analysis

density-increment-ff

Definition of T_3

If $f, g, h : \mathbb{F}_p^n \to \mathbb{C}$, then

$$T_3(f,g,h) = \mathbb{E}_x f(x)g(x+d)h(x+2d) = \langle f * h, \overline{g}(2^{-1}) \rangle$$

convolution fourier-analysis

t3-def

Number of 3APs in a uniform set $A \subseteq \mathbb{F}_p^n$

If $\sup_{t\neq 0}\left|\widehat{1_A}(t)\right|=o(1)$, then A contains $(\alpha^3+o(1))\left|G\right|^2$ 3APs.

Proof. The number of 3APs in A is $|G|^2$ times

$$\begin{split} T_3(1_A,1_A,1_A) &= \langle 1_A*1_A,1_{2\cdot A} \rangle = \left\langle \widehat{1_A}^2,\widehat{1_{2\cdot A}} \right\rangle \\ &= \alpha^3 + \sum_{t\neq 0} \widehat{1_A}(t)^2 \overline{\widehat{1_{2\cdot A}}(t)} \text{ by Plancherel} \end{split}$$

In absolute value, the error term is at most

$$\sup_{t \neq 0} \left| \widehat{1_{2 \cdot A}}(t) \right| \sum_{t} \left| \widehat{1_A}(t) \right|^2 = \alpha \sup_{t \neq 0} \left| \widehat{1_A}(t) \right|$$

Meshulam's theorem

IF $p \geq 3$ and $A \subseteq \mathbb{F}_p^n$ only contains trivial 3APs, then the density of A is $O(n^{-1})$.

Proof. By assumption, $T_3(1_A, 1_A, 1_A) = \frac{\alpha}{n^n}$. But

$$\left|T_3(1_A, 1_A, 1_A) - \alpha^3\right| \le \alpha \sup_{t \ne 0} \left|\widehat{1_A}(t)\right|$$

Hence, provided that $2\alpha^{-2} \leq p^n$, we find a subspace $V \leq \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that

$$|A \cap (x+V)| \ge \alpha \left(1 + \frac{\alpha^2}{4}\right)|V|$$

Iteratively increase α like this until $2\alpha^{-2} \leq p^n$. Since $\alpha \leq 1$, this takes at most $9\alpha^{-1}$ steps. So $p^{n-9\alpha^{-1}} \leq 2\alpha^{-2}$ which implies $\alpha \leq \frac{18}{n}$, as wanted.

Characters of the group G are group homomorphisms $\gamma:G\to\mathbb{C}^{\times}$. They form a group called the Pontryagin dual or dual group of G.

3AP fourier-analysis

meshulam, finite-field-model

Characters, dual group

character fourier-analysis

character-def

Duals of $\mathbb{F}_p^n, \mathbb{Z}/n\mathbb{Z}$

- If $G = \mathbb{F}_p^n$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{x \cdot t} \mid t \in G \}$
- If $G = \mathbb{Z}/n\mathbb{Z}$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{xt} \mid t \in G \}$

character fourier-analysis

dual-ff

Fourier transform of an interval in $\mathbb{Z}/p\mathbb{Z}$

Write $J = [-\frac{L}{2}, \frac{L}{2}] \subseteq \mathbb{Z}/p\mathbb{Z}$ with L < p even. For all t,

$$\widehat{1_J}(t) \le \min\left(\frac{L+1}{p}, \frac{1}{2|t|}\right)$$

Proof. If t=0, then $\widehat{1_J}(t)=\frac{|J|}{p}=\frac{L+1}{p}$. If $t\neq 0$, then

$$\widehat{1_J}(t) = \mathbb{E}_x 1_J(x) \omega^{xt} = \mathbb{E}_{x = -\frac{L}{2}}^{\frac{L}{2}} \omega^{xt} = \frac{\omega^{(L+1)\frac{t}{2}} - \omega^{-(L+1)\frac{t}{2}}}{p(\omega^{\frac{t}{2}} - \omega^{-\frac{t}{2}})}$$

Noting that for all $x \in [-\pi, \pi]$ we have $\left| e^{ix} - 1 \right| \ge \frac{2|x|}{\pi}$,

$$\left|\widehat{1_J}(t)\right| \le \frac{2}{p} \left|\omega^t - 1\right|^{-1} \le \frac{2}{p} \left(\frac{2}{\pi} \frac{2\pi t}{p}\right)^{-1} = \frac{1}{2|t|}$$

Density increment or large Fourier coefficient for 3APs in an interval $\,$

Let $A \subseteq [N]$ be of density $\alpha > 0$ with $N > 50\alpha^{-2}$ and containing only trivial 3APs. Let p be a prime in $\left[\frac{N}{3}, \frac{2N}{3}\right]$ and write $A' = A \cap [p] \subseteq \mathbb{Z}/p\mathbb{Z}$. Then either

1.
$$\sup_{t\neq 0} \left| \widehat{1}_A(t) \right| \ge \frac{\alpha^2}{10}$$

2. or there exists an interval J of length $\geq \frac{N}{3}$ such that

$$|A\cap J| \geq \alpha \left(1 + \frac{\alpha}{400}\right) |J|$$

Proof. There's no non-trivial 3AP with terms in A', A'', A'' where A'' is the middle third of A'. If A' and A'' are both dense enough, then we're in Case 1 by computing $T_3(1_{A'}, 1_{A''}, 1_{A''})$. Else we're in Case 2 by looking at the appropriate complement.

3AP integer-model fourier-analysis

large-fourier-coeff-int

For $t \neq 0, \varepsilon > 0$ and $\phi : [m] \to \mathbb{Z}/p\mathbb{Z}$ multiplication by t, how to partition [m] into progressions of length roughly $\varepsilon \sqrt{m}$ such that $\operatorname{diam}(\phi(P_i)) \leq \varepsilon p$?

Let $u = \lfloor \sqrt{m} \rfloor$ and consider $0, t, \ldots, ut$. By pigeonhole, find $0 \leq v < w \leq u$ such that $|wt - vt| \leq \frac{p}{u}$. Set $s = w - v \leq u$ so that $|st| \leq \frac{p}{u}$. Divide [m] into residue classes mod s. Each has size at least $\left\lfloor \frac{m}{s} \right\rfloor \geq \left\lfloor \frac{m}{u} \right\rfloor$ and can be divided into progressions of the form $a, a + s, \ldots, a + ds$ with $\frac{\varepsilon u}{2} < d \leq \varepsilon u$. The diameter of each progression under ϕ is $|dst| \leq \varepsilon p$.

integer-model fourier-analysis

partition-progressions-small-diam

Density increment from a large Fourier coefficient for 3APs in an interval

Let $A\subseteq [N]$ be of density $\alpha>0$. Let p be a prime in $\left[\frac{N}{3},\frac{2N}{3}\right]$ and write $A'=A\cap [p]$. Suppose there exists $t\neq 0$ such that $\left|\widehat{1}_A(t)\right|\geq \frac{\alpha^2}{10}$. Then there exists a progression p of length at least $\alpha^2\frac{\sqrt{N}}{500}$ such that

$$|A \cap P| \ge \alpha \left(1 + \frac{\alpha}{50}\right)|P|$$

Proof. Let $\varepsilon = \frac{\alpha^2}{40\pi}$ and partition [p] into progressions P_i of length at least $\frac{\varepsilon\sqrt{p}}{2} \geq \frac{\alpha^2\sqrt{N}}{500}$ and diam $\phi(P_i) \leq \varepsilon p$. Fix one x_i inside each P_i . Write $\left|\widehat{f_{A'}}(t)\right| = \frac{1}{p}\left|\sum_i\sum_{x\in P_i}f_{A'}(x)\omega^{xt}\right|$ and use the fact that $\omega^{xt} \approx \omega^{x_it}$ whenever $x\in P_i$ to find some i such that $\sum_{x\in P_i}f_{A'}(x) \geq \frac{\alpha^2|P_i|}{40}$.

3AP integer-model fourier-analysis

density-increment-int

Roth's theorem

Let $A\subseteq [N]$ be a set containing only trivial 3APs. Then $|A|=O(\frac{N}{\log\log N}).$

Proof. Iterate the density increment.

Behrend's	constant	+:
Benrend's	constru	.T.1O.

There exists a set $A \subseteq [N]$ containing non nontrivial 3APs of size at least $e^{-O(\sqrt{\log N})}$. See Example Sheet 1.

Proof. $[m]^d$ contains m^d points which all lie on some sphere of radius squared $\leq md^2$. Hence one of the spheres contains at least $\frac{m^{d-2}}{d}$ integer points. Send those to $\mathbb Z$ via the map

$$[m]^d \to [(2m)^d]$$
$$x \mapsto \sum_i (2m-1)^i x_i$$

Density is at least $\frac{1}{2^d m^2 d}$, which we optimise by taking $d = \sqrt{\log N}$.

3AP integer-model fourier-analysis

behrend

Bohr set

Let $\Gamma \subseteq \hat{G}$. The Bohr set of frequencies Γ and width ρ is

$$B(\Gamma, \rho) = \{ x \in G \mid \forall \gamma \in \Gamma, |\gamma(x) - 1| \le \rho \}$$

 $|\Gamma|$ is the rank of the Bohr set.

bohr-set fourier-analysis

bohr-set-def

Bohr set in \mathbb{F}_p^n

When $G = \mathbb{F}_p^n$, $B(\Gamma, \rho) = \langle \Gamma \rangle^{\perp}$ for all small enough ρ (depending only on p, not n).

bohr-set finite-field-model fourier-analysis

bohr-set-ff

Lower bound on the size of a Bohr set

If B is a Bohr set of rank d and width ρ , then $|B| \ge \left(\frac{\rho}{2\pi}\right)^d |G|$.

If $A \subseteq \mathbb{Z}/p\mathbb{Z}$ has density $\alpha > 0$, then there exists $\Gamma \subseteq \widehat{\mathbb{Z}/p\mathbb{Z}}$ of size at most $2\alpha^{-2}$ such that $B(\Gamma, \frac{1}{2}) \subseteq (A+A) - (A+A)$.

Proof. Pick $\Gamma = \operatorname{Spec}_{\sqrt{\frac{\alpha}{2}}}(1_A)$ and lower bound

$$\operatorname{Re}(1_A * 1_A * 1_{-A} * 1_{-A})(x) = \operatorname{Re} \sum_{t \in \widehat{\mathbb{F}_p}} \left| \widehat{1_A}(t) \right|^4 \omega^{-xt}$$

by splitting the sum over Γ and Γ^c .

bohr-set fourier-analysis

bogolyubov-int

Why is the balanced function important in Fourier-analytic arguments?

Passing from a function to its balanced function kills the 0-th Fourier coefficient, which otherwise has to be special-cased everywhere.

fourier-analysis

balanced-function-fourier-analysis-relevance

Doubling constant, difference constant

For a finite nonempty set $A\subseteq G$, its doubling and difference constants are

$$\sigma(A) = \frac{|A+A|}{|A|}, \delta(A) = \frac{|A-A|}{|A|}$$

doubling-constant combinatorial-methods

doubling-constant-def

When is the doubling constant 1?

When the set is a subspace

If A has very small doubling constant then A lies in a small coset.

If A is such that $|A+A|<\frac{3}{2}\,|A|$, then there exists $V\leq \mathbb{F}_p^n$ such that A is contained in a coset of V and $|V|<\frac{3}{2}\,|A|$.

doubling-constant combinatorial-methods

doubling-constant-lt-three-halves

Example of a set with big doubling

Let $A\subseteq \mathbb{F}_p^n$ be a set where each point is taken randomly with probability $p^{-\theta n}$ where $\theta\in]\frac{1}{2},1]$. Then with high probability $|A+A|=(1+o(1))\frac{|A|^2}{2}$.

doubling-constant combinatorial-methods

big-doubling-random

Ruzsa distance

Given finite sets $A, B \subseteq G$, we define the Ruzsa distance between A and B to be

$$d(A,B) = \log \frac{|A - B|}{\sqrt{|A||B|}}$$

ruzsa-distance

ruzsa-distance-def

Ruzsa's triangle inequality

For $A, B, C \subseteq G$ finite,

$$d(A,C) \le d(A,B) + d(B,C)$$

Proof. The inequality reduces to

$$|B|\,|A-C| \le |A-B|\,|B-C|$$

This is true because

$$\phi: B \times (A - C) \to (A - B) \times (B - C)$$
$$(b, d) \mapsto (a_d - b, b - c_d)$$

is injective, where for each $d \in A - C$ we have chosen $a_d \in A$, $c_d \in C$ such that d = a - c.

Plünned	·ke's	inec	mality
1 Iumico	α	HILL	luant

Let $A, B \subseteq G$ be finite such that $|A + B| \leq K |A|$. Then for all ℓ, m ,

 $|\ell B - mB| < K^{\ell + m} |B|$

Proof. WLOG |A + B| = K|A|. Find $A' \subseteq A$ nonempty minimising $K' = \frac{|A' + B|}{|A'|}$.

Claim. For all finite $C \subseteq G$, $|A' + B + C| \le K' |A' + C|$

From the claim, prove that $|A' + mB| \le K'^m |A'|$ for all m by induction. Now, by the triangle inequality,

$$|A'| |\ell B - mB| \le |A' + \ell B| |A' + mB| \le K'^{\ell} |A'| K'^{m} |A'|$$

Namely,
$$|\ell B - mB| \le K'^{\ell+m} |A'| \le K^{\ell+m} |A|$$
.

Key claim within the proof of Plünnecke's inequality

WLOG |A + B| = K|A|. $A' \subseteq A$ is nonempty minimising $K' = \frac{\left|A' + B\right|}{\left|A'\right|}.$

Claim. For all finite $C \subseteq G$, $|A' + B + C| \le K' |A' + C|$

Proof of claim. Induct on C. obvious if $C = \emptyset$. For $C' = \emptyset$ $C \cup \{x\}, x \notin C$, write

$$A' + B + C' = A' + B + C \cup A' + B + x \setminus D + B + x$$

 $A' + C' = A' + C \cup A' + x \setminus E + x$

where $D = \{a \in A' \mid a + B + x \subseteq A' + B + C\}, E = \{a \in A' \mid a \in A$ $A' \mid a + x \in A' + C \subseteq D$. Note that the second union is disjoint. Use the induction hypothesis and the minimality assumption for K' to deduce the claim.

doubling-constant combinatorial-methods

pluennecke-inequality

combinatorial-methods

pluennecke-inequality-claim

Relationship between the doubling and difference constant

If |A - A| < K|A|, then

$$|A||A + A| \le |A - A||A - A| \le K^2 |A|^2$$

by Ruzsa's triangle inequality. So $\sigma(A) \leq \delta(A)^2$.

If |A + A| < K|A|, then

$$|A - A| \le K^{1+1} |A|$$

by Plünnecke's inequality. So $\delta(A) \leq \sigma(A)^2$.

doubling-constant combinatorial-methods

doubling-difference-constants-relation

The Freiman-Ruzsa theorem

Let $A \subseteq \mathbb{F}_p^n$ be such that $|A+A| \le K |A|$ for some K > 0. Then A is contained in a subspace $H \le \mathbb{F}_p^n$ of size $|H| \le$ $K^2 p^{K^4} |A|$.

Proof. Write S = A - A and choose $X \subseteq A + S$ maximal such that the translates x + A for $x \in X$ are disjoint. Use that $X + A \subseteq 2A + S$ to prove $|X| \le K^4$ by Plünnecke. Now $A+S\subseteq X+S$ because $y\in A+S$ is either in $X\subseteq X+S$ or x+A and y+A are not disjoint by maximality of X, namely $y \in x + A - A \subseteq X + S$. By induction, $\ell A + S \subseteq X + S$ for all ℓ . Hence, the subgroup generated by A is contained in $\langle X \rangle + S$ and size at most

$$|\langle X \rangle| \, |S| \le p^{|X|} K^2 \, |A| \le K^2 p^{K^4} \, |A|$$

П

combinatorial-methods freiman-ruzsa Example of a set which generates a subgroup of size exponential in its doubling constant

Let $A=H\cup R\subseteq \mathbb{F}_p^n$ where H is a subspace of dimension $K\ll d\ll n-k$ and R consists of K-1 linearly independent vectors in H^\perp . Then $|A|=|H\cup R|\sim |H|$ and $|A+A|=|H\cup H+R\cup R+R|\sim K\,|H|\sim K\,|A|$ but any subspace $V\leq \mathbb{F}_p^n$ containing A must have size $\geq p^{d+(K-1)}=p^{K-1}\,|H|\sim p^{K-1}\,|A|$ where the constant is exponential in K.

doubling-constant combinatorial-methods

subgroup-exponential-size-doubling-constant

Polynomial Freiman-Ruzsa conjecture

Let $A \subseteq \mathbb{F}_p^n$ be such that $|A+A| \leq K|A|$. Then there is a subspace $H \leq \mathbb{F}_p^n$ of size at most $C_1(K)|A|$ and $x \in \mathbb{F}_p^n$ such that $|A \cap (x+H)| \geq \frac{|A|}{C_2(K)}$ where $C_1(K)$ and $C_2(K)$ are polynomials.

combinatorial-methods

polynomial-freiman-ruzsa

Additive energy

Given an abelian group G and finite sets $A, B \subseteq G$, define additive quadruples to be the tuples $(a, a', b, b') \in A^2 \times B^2$ such that a + b = a' + b' and the additive energy between A and B to be

$$E(A,B) = \frac{\#\{\text{additive quadruples}\}}{|A|^{\frac{3}{2}}|B|^{\frac{3}{2}}}$$

additive-energy combinatorial-methods

additive-energy-def

Relation between the additive energy and the Fourier transform

If G is finite and $A \subseteq G$, then

$$|A|^{3} E(A) = |G|^{3} \mathbb{E}_{x+y=z+w} 1_{A}(x) 1_{A}(y) 1_{A}(z) 1_{A}(w)$$
$$= |G|^{3} \|\widehat{1}_{A}\|_{A}^{4}$$

namely

$$\left\|\widehat{1_A}\right\|_4^4 = \alpha^3 E(A)$$

additive-energy combinatorial-methods

additive-energy-subgroup

Small doubling implies big energy

Let G be abelian and $A, B \subseteq G$ be finite. Then $E(A, B) \ge \frac{\sqrt{|A||B|}}{|A\pm B|}$. In particular, if $|A\pm A| \le K\,|A|$ then $E(A) \ge \frac{1}{K}$.

Proof. Write $r(x) = \#\{(a,b) \in A \times B \mid a+b=x\}$ so that $|A|^{\frac{3}{2}} |B|^{\frac{3}{2}} E(A,B) = \#\{\text{additive quadruples}\} = \sum_{x} r(x)^2$

Also note that $\sum_{x} r(x) = |A| |B|$ so that

$$|A|^{\frac{3}{2}} |B|^{\frac{3}{2}} E(A, B) = \sum_{x} r(x)^{2}$$

$$\geq \frac{\sum_{x} r(x) 1_{A+B}(x)}{\sum_{x} 1_{A+B}(x)^{2}} = \frac{(|A| |B|)^{2}}{|A+B|}$$

by Cauchy-Schwarz. Do similarly for A - B.

doubling-constant additive-energy combinatorial-methods

small-doubling-constant-implies-big-additive-energy

Big energy does not imply small doubling

Let G be your favorite family of abelian groups. Then there are constants $\eta, \theta > 0$ such that for all sufficiently large n there exists $A \subseteq G$ with |A| = n satisfying $E(A) \gg \eta$ and $|A+A| \ge \theta \, |A|^2$.

doubling-constant additive-energy combinatorial-methods

big-additive-energy-not-implies-small-doubling-constant

Balog-Szemerédi-Gowers

Let G be an abelian group and let $A \subseteq G$ be finite such that $E(A) \ge \eta$ for some $\eta > 0$. Then there exists $A' \subseteq A$ of size at least $c(\eta)$ such that $|A' + A'| \le C(\eta) |A|$ where $c(\eta)$ and $C(\eta)$ are polynomials in η .

Dependent random choice step within the proof of Balog-Szemerédi-Gowers

Let $A_1, \ldots, A_m \subseteq [n]$ and suppose that $\mathbb{E}_{i,j} |A_i \cap A_j| \ge \delta^2 n$. Then there exists $X \subseteq [m]$ of size at least $\frac{\delta^5 m}{\sqrt{2}}$ such that $|A_i \cap A_j| \ge \frac{\delta^2 n}{2}$ for at least 90% of the pairs $(i,j) \in X^2$.

Proof. Let x_1, \ldots, x_5 be uniform random in [n] and let $X = \{i \in [m] \mid \forall k, x_k \in A_i\}$. Call a pair **bad** if $|A_i \cap A_j| < \frac{\delta^2 n}{2}$. Prove that

$$\frac{\delta^{10}m^2}{2} + 16\mathbb{E}[\#\{\text{bad pairs in }X^2\}] \le \mathbb{E}[|X|^2]$$

so that $\frac{\delta^{10}m^2}{2} + 16\#\{\text{bad pairs in }X^2\} \le |X|^2 \text{ for some } x_1, \dots, x_5$. This gives $|X| \ge \frac{\delta^5 m}{\sqrt{2}}$ and $\#\{\text{bad pairs in }X^2\} \le \frac{|X|^2}{16} \le 10\% |X|^2$

combinatorial-methods

balog-szemeredi-gowers-dependent-random-choice