

Labor obung

Linphasen hompensation

Aufeabenstellung

An einem Einphasen motor sind mithilfe von parallel geschalteten Mondensatoren eine Blindleistungs kompensation durchzufshien. Es sollen die Ströme, die Spannung und die Wirkleistung bei unterschiedlichen Mondensatoren gemessen werden.

Voreaben

Ermitteln des cos(q) am Motor

$$S = U \cdot I$$
 = 0,832 A · 160,6V = 133,62 VA

$$\frac{P}{\cos(\varphi_1)} = \frac{P}{S} = \frac{62 \text{ W}}{133,62 \text{ VA}} = \frac{0,464}{133,62 \text{ VA}}$$

Bevechnung der Napazitat für die Nompensation out cos(p) = 0,95

$$cos(\rho_1) = 0.464 - 0 \varphi_1 = 64.35$$

 $tan(\varphi_1) = 1,97$

$$\cos(\varphi_2) = 0.95 - \varphi_2 = 18.19$$

 $\tan(\varphi_2) = 0.33$

$$X_{c} = \frac{1}{w \cdot c} - D \qquad C = \frac{1}{w \cdot x_{c}} \qquad Q_{c} = \frac{U^{2}}{X_{c}} - D \qquad X_{c} = \frac{U^{2}}{Q_{c}}$$

$$-D C = \frac{Q_c}{w \cdot u^2} = \frac{97,96}{2\pi \cdot 50 \cdot 160^2} = \frac{12,2\pi}{12}$$

Seite 1/3

15.10	.2020
-------	-------

Labor obung

Rene Hampolz

Wurde die Kompensation cos(p) = 0,95 erreicht?

-D Messung des Motors mit parallel geschaltetem Kondensator von 12,2,17

-D Da Vein Wondensator mit 12,2 nt zur Verfügung stand, wurde die Messung mit 11,75 nt durch geführt!

Messwerte:

PU		Ie	I,	Im	
W	V	mÅ	m Å	mA	
67.5	160	470	613	823	

$$\cos(\varphi) = \frac{P}{S} = \frac{P}{I_{S} \cdot U} = \frac{67,5W}{0,47A \cdot 160V}$$

$$= 0,898$$

$$\cos(\varphi) \approx 0,90$$

- Die Vompensation wurde mit cos(p)= 0,90 ungefain erreicht.

Mess werte und Auswertung

Nv.	P	V	I g	I _c	I _m	_ بر ا	cos(e)
1	62	160	713	132	825	2.5	0,55
2	-11-	-11-	610	264	824	2,5	0,64
2 3	-11-	-11-	530	388	821	7,5	0,73
4	-11-	-11-	470	524	822	10	0, 83
5	62,3	-11-	447	624	822	12,5	0,88
6	63'	-11-	462	782	820	15	0,86
7	63,3	-11-	512	918	816	17,5	0,77
8	63,8	-11-	598	1065	817	20	0,67

- Beverhnen von cos(p) (aus Messwerten)

$$\cos(\varphi) = \frac{17}{5} = \frac{P}{I_{5}0} = \frac{63.8}{0.598.160} = 0.67$$

Groufische Darstellung der Auswertung

$$I = I_m$$

$$\mathbb{Z} f(c) = I_c$$

Seite 2/3

