EDS 223: Geospatial Analysis & Remote Sensing Week 7

Welcome!

- Catch up week
 - Radiation basics
 - Scattering
 - Refraction
 - Raster operations
 - Map algebra

Radiation budget

By passing through media of different densities, can be **refracted**

Source: GIS Geography

• The process by which radiant energy is absorbed and converted into other forms of energy

- The process by which radiant energy is absorbed and converted into other forms of energy
- Name the top 3 atmospheric constituents which absorb radiation:

- The process by which radiant energy is absorbed and converted into other forms of energy
- Name the top 3 atmospheric constituents which absorb radiation:
 - Ozone
 - Carbon dioxide
 - Water vapor

Reflectance

• The process whereby radiation "bounces off" an object and experiences no change in wavelength or frequency

Reflectance

Specular versus Diffuse Reflectance

d. Perfect diffuse reflector, or Lambertian surface.

Reflectance

Scattering

- Reflectance in an unpredictable manner
- Amount of scattering depends on:
 - Amount and size of particles or gases radiation is interacting with
 - Wavelength of radiation
 - Distance that radiant energy travels through atmosphere

Scattering

Three types of scattering:

- Rayleigh scattering
 - \circ Particle size $<<<\lambda_{light}$
 - Highly dependent on wavelength
- Mie scattering
 - \circ Particle size $\sim \lambda_{light}$
 - Not strongly dependent on wavelength
- Non-selective scattering
 - Particle size >>> λ_{light}

Atmospheric Scattering

Rayleigh Scattering

a. O Gas molecule

Mie Scattering

Photon of electromagnetic energy modeled as a wave

$$I = \frac{1}{\lambda^4}$$

As wavelength increases, intensity of scattering decreases

- Why is the sky blue?
- Why are sunsets red?

- Why is the sky blue?
- Why are sunsets red?

- Why is the sky blue?
- Why are sunsets red?

- Why is the sky blue?
- Why are sunsets red?

- Why is the sky blue?
- Why are sunsets red?

- Why is the sky blue?
- Why are sunsets red?

- Why is the sky blue?
- Why are sunsets red?

Mie and non-selective scattering

Mie scattering

- Amplifies wavelengths of similar size to particle
- o Pollution and aerosols scatter blue and green light away, contributing to red sunsets

Non-selective scattering

- Particles in the atmosphere several times the diameter of the wavelength
- All wavelengths are scattered
- Water droplets scatter all wavelengths of visible light equally well
 - Why clouds are white!

Refraction

- Refraction is 'bending' of light when it passes from one medium to another of different density.
 - The speed of EMR changes
 - In a vacuum c $\approx 3x10^8$ m/s
- Frequency of a light wave in a medium is determined by its source and is unaffected by the medium!

Energy-matter interactions with terrain

Absorption: process by which radiation is absorbed and converted to other forms of energy.

Reflectance: process whereby radiation "bounces off" an object.

Scattering: reflectance in an unpredictable manner.

Refraction: bending of light through mediums of different density.

Transmittance: process by which radiation passes through a material.

Source: GIS Geography

- Local
- Focal
- Zonal
- Global

Scale or number of cells

Local

Cell-by-cell operations in one or several layers

Source: Geocomputation with R, chapter 4

Local

Cell-by-cell operations in one or several layers

Source: Geocomputation with R, chapter 4

- Local
 - Cell-by-cell operations in one or several layers

- Local
- Focal
- Zonal
- Global

Scale or number of cells

Focal

 Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

Focal

 Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

Source: Geocomputation with R, chapter 4

Focal

 Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

Source: Geocomputation with R, chapter 4

Smoothing: Gaussian kernel

Focal

 Applies an aggregation function to all cells within a specified neighborhood, uses the corresponding output as the new value for the central cell, and moves on to the next central cell

kernel, filter, moving window

0	2	3	4	5	6	0	0	2	3	4	5
7	8	9	10	11	12	0 >	0	2	3	4	5
13	14	15	16	17	18	7	7	8	9	10	11
19	20	21	22	23		13	13	14	15	16	17
25						19	19	20	21	22	23
31			34	35	36	25					

- Local
- Focal
- Zonal
- Global

Scale or number of cells

Zonal

 Applies an aggregation function to multiple cells based on a grouping variable

Zonal

 Applies an aggregation function to multiple cells based on a grouping variable

Zonal

 Applies an aggregation function to multiple cells based on a grouping variable

Switching gears...

- Local
- Focal
- Zonal
- Global

Scale or number of cells

Toolbelt for solving spatial problems

Toolbelt for solving spatial problems

Raster data model

- Resolution

Extent

Position

Toolbelt for solving spatial problems

Changing extent and origin

Changing extent and origin

Switching gears...

Raster data model

- Resolution

Extent

Position

Nearest neighbor

Bilinear interpolation

Switching gears...

Raster data model

- Resolution
- Extent
- Position

mismatch!

Toolbelt for solving spatial problems

Resampling

Resampling

Nearest neighbor

Bilinear interpolation

Switching gears...

