EEE-6512: Image Processing and Computer Vision

November 29, 2017
Lecture #11: Model-Fitting
Damon L. Woodard
Dept. of Electrical and Computer
Engineering
dwoodard@ece.ufl.edu

Outline

- Overview
- Fitting Lines
- Fitting Curves
- Addressing Noise

Last Time

- Global Optimization / Search for Parameters
 - Ordinary Least Squares
 - Total Least Squares
- Hypothesize and Test
 - Hough Transform for Line Detection

Hough Transform Outline

- 1. Create a grid of parameter values
- 2. Each point votes for a set of parameters, incrementing those values in grid
- 3. Find maximum or local maxima in grid

Polar representation for lines

Issues with usual (m,b) parameter space: can take on infinite values, undefined for vertical lines.

d: perpendicular distance from line to origin

 θ : angle the perpendicular makes with the x-axis

$$x\cos\theta - y\sin\theta = d$$

Point in image space → sinusoid segment in Hough space

Hough transform algorithm

Using the polar parameterization:

$$x\cos\theta - y\sin\theta = d$$

Basic Hough transform algorithm

- 1. Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image

for
$$\theta$$
 = [θ_{\min} to θ_{\max}] // some quantization
$$d = x \cos \theta - y \sin \theta$$
 H[d, θ] += 1

H: accumulator array (votes)

- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by $d = x \cos \theta y \sin \theta$

Image Parameter Spaces

Image Space	Parameter Space
Lines	Points
Points	Lines/Sinusoid
Collinear Points	Intersecting Lines

Random points

Uniform noise can lead to spurious peaks in the array

Dealing with noise

Choose a good grid / discretization

- Too coarse: large votes obtained when too many different lines correspond to a single bucket
- Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
 - Take only edge points with significant gradient magnitude

Hough Algorithm Extensions

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image

$$\theta$$
 = gradient at (x,y)
 $d = x \cos \theta - y \sin \theta$
H[d, θ] += 1

- 3. same
- 4. same

(Reduces degrees of freedom)

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}\right)$$

Extensions

Extension 1: Use the image gradient

- 1. same
- 2. for each edge point I[x,y] in the image compute unique (d, θ) based on image gradient at (x,y) H[d, θ] += 1
- 3. same
- 4. same

(Reduces degrees of freedom)

Extension 2

give more votes for stronger edges (use magnitude of gradient)

Extension 3

• change the sampling of (d, θ) to give more/less resolution

Extension 4

 The same procedure can be used with circles, squares, or any other shape...

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For a fixed radius r, unknown gradient direction

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For a fixed radius r, unknown gradient direction

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For an unknown radius r, unknown gradient direction

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For an unknown radius r, unknown gradient direction

Circle: center (a,b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For an unknown radius r, known gradient direction


```
For every edge pixel (x,y):
 For each possible radius value r:
     For each possible gradient direction \theta:
     // or use estimated gradient at (x,y)
            a = x - r \cos(\theta) // \text{column}
            b = y - r \sin(\theta) // row
            H[a,b,r] += 1
 end
end
```

Optimization of Circle Hough Transform

Use Edge Direction (Eliminates Radius)

$$b = a * tan(\theta) - x * tan(\theta) + y$$

Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Example: detecting circles with Hough

Combined detections

Example: iris detection

Gradient+threshold

Hough space (fixed radius)

Max detections

Voting: practical tips

- Minimize irrelevant tokens first
- Choose a good grid / discretization

```
Too fine ? Too coarse
```

- Vote for neighbors, also (smoothing in accumulator array)
- Use direction of edge to reduce parameters by 1
- To read back which points voted for "winning" peaks, keep tags on the votes.

Parameters for analytic curves

Anal	ytic	Form
------	------	------

Parameters Equation

Line

ρ, θ

 $x\cos\theta + y\sin\theta = \rho$

Circle

 X_0, Y_0, ρ

 $(x-x_0)^2+(y-y_0)^2=r^2$

Parabola

 X_0, Y_0, ρ, θ

 $(y-y_0)^2 = 4\rho(x-x_0)$

Ellipse

 x_0 , y_0 , a, b, θ

 $(x-x_0)^2/a^2+(y-y_0)^2/b^2=1$

Speed of Hough Transform

The computation time grows exponentially as the number of parameters increases

Hough transform: pros and cons

Pros

- All points are processed independently, so can cope with occlusion, gaps
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: can be tricky to pick a good grid size

Addressing Noise: RANSAC

RANSAC

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC

RANSAC loop:

- Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

- Task: Estimate the best line
 - How many points do we need to estimate the line?

Task: Estimate the best line

Task: Estimate the best line

Task: Estimate the best line

• Task: Estimate the best line

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

```
Determine:
    n — the smallest number of points required
    k — the number of iterations required
    t — the threshold used to identify a point that fits well
    d — the number of nearby points required
       to assert a model fits well
Until k iterations have occurred
    Draw a sample of n points from the data
       uniformly and at random
    Fit to that set of n points
    For each data point outside the sample
       Test the distance from the point to the line
         against t; if the distance from the point to the line
         is less than t, the point is close
    end
    If there are d or more points close to the line
       then there is a good fit. Refit the line using all
       these points.
end
Use the best fit from this collection, using the
  fitting error as a criterion
```

RANSAC: How many samples?

- How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - *n* points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of n points is correct: wⁿ
- Prob. that all k samples fail is: $(1-w^n)^k$
- \Rightarrow Choose k high enough to keep this below desired failure rate.

RANSAC: Computed k

Sample size	Proportion of outliers							
n	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

RANSAC: Pros and Cons

Pros:

- Robust against outliers
- A general method that can be applied to most cases
- Fast in huge data sets
- Easy to implement

• <u>Cons</u>:

- Has a certain probability of success
- Requires prior knowledge about the data
- Number of iterations increases logarithmically with outlier percentage

Questions?

Slide Credits

Some slides from Stanley Birchfield, Kristen Grauman, Svetlana Lazebnik, Jia-Bin Huang, Silvio Savarese, Steve Seitz, James Hays, Derek Hoiem, David Forsyth, Fei-Fei Li. Vivek Kwatra, Jinxiang Chai, David Lowe