Palabras y autómatas

Clase 01

IIC 2223

Prof. Cristian Riveros

Outline

Palabras

Autómatas

Definiciones alternativas

Outline

Palabras

Autómatas

Definiciones alternativas

Alfabetos, letras y palabras

Definiciones

- Un alfabeto Σ es un conjunto finito.
- Un elemento de Σ lo llamaremos una letra o símbolo.
- Una palabra o string sobre Σ es una secuencia finita de letras en Σ .

Ejemplo

- $\Sigma = \{a, b, c\}$
- Palabras sobre Σ:

```
aaaaabb , bcaabab , a , bbbbbb , \dots
```

¿cuál es el alfabeto preferido en computación?

Alfabetos, letras y palabras

Más definiciones

■ El largo |w| de una palabra w es el número de letras.

$$|w| \stackrel{\mathsf{def}}{\equiv} \# \mathsf{de} \mathsf{letras} \mathsf{en} w$$

lacktriangle Denotaremos ϵ como la palabra sin símbolos de largo 0.

$$|\epsilon| \stackrel{\mathsf{def}}{\equiv} 0$$

■ Denotaremos por Σ^* como el conjunto de todas las palabras sobre Σ .

Ejemplo

Para $\Sigma = \{0, 1\}$:

- **|** |00011001| = ?
- $\Sigma^* = ?$

Concatenación entre palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$ tal que $u = a_1 \dots a_n$ y $v = b_1 \dots b_m$:

$$u \cdot v \stackrel{\mathsf{def}}{\equiv} a_1 \dots a_n b_1 \dots b_m$$

Decimos que $u \cdot v$ es la palabra "u concatenada con v".

Ejemplo

Para $\Sigma = \{0, 1, 2, \dots, 9\}$:

- $0123 \cdot 9938 = ?$
- $3493 \cdot \epsilon$ = ?

Concatenación sobre palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$ tal que $u = a_1 \dots a_n$ y $v = b_1 \dots b_m$:

$$u \cdot v \stackrel{\mathsf{def}}{\equiv} a_1 \dots a_n b_1 \dots b_m$$

Decimos que $u \cdot v$ es la palabra "u concatenada con v".

Algunas propiedades:

- ¿es la concatenación asociativa: $(u \cdot v) \cdot w = u \cdot (v \cdot w)$?
- ¿es la concatenación conmutativa: $u \cdot v = v \cdot u$?
- \blacksquare ¿es verdad que $|u \cdot v| = |u| + |v|$?

Lenguajes

Definición

Sea Σ un alfabeto y $L \subseteq \Sigma^*$.

Decimos que L es un lenguaje sobre el alfabeto Σ .

Ejemplos de lenguajes

Sea
$$\Sigma = \{a, b\}$$
:

- $L_0 = \{\epsilon, a, aa, b, ba\}$
- $L_1 = \{\epsilon, b, bb, bbb, bbbb, \ldots \}$
- $L_2 = \{ w \mid \exists u \in L_1. \ w = a \cdot u \}$
- $L_3 = \{ w \mid \exists u, v \in \Sigma^*. \ w = u \cdot abba \cdot v \}$
- $L_4 = \{ w \mid \exists u \in \Sigma^*. \ w = u \cdot u \}$

Un lenguaje puede ser visto como una propiedad de palabras

Ocuparemos estas definiciones durante TODO el curso

Convenciones

Durante todo el curso:

- Para letras usaremos los símbolos: a, b, c, d, e, ...
- Para palabras usaremos los símbolos: w, u, v, x, y, z, ...
- Para alfabetos usaremos los símbolos: Σ , Γ ,...
- Para lenguajes usaremos los símbolos: *L*, *M*, *N*, . . .
- Para números usaremos los símbolos: i, k, j, l, m, n, ...

No olvidar!

Outline

Palabras

Autómatas

Definiciones alternativas

Autómatas finitos

- Modelo de computación más sencillo, basado en una cantidad finita de memoria.
- Procesa el input de principio a fin en una sola pasada.
- Al terminar, el autómata decide si acepta o rechaza el input.

Usaremos los autómatas finitos para definir lenguajes

Autómata finito determinista

Definición

Un autómata finito determinista (DFA) es una estructura:

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $\delta: Q \times \Sigma \rightarrow Q$ es la función de **transición**.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

Autómata finito determinista

Ejemplo

- $Q = \{0, 1, 2\}$
- $\Sigma = \{a, b\}$
- $\delta: Q \times \Sigma \rightarrow Q$ se define como:

$$\delta(0, a) = 1$$
 $\delta(1, a) = 2$
 $\delta(2, a) = 2$
 $\delta(q, b) = q \quad \forall \ q \in \{0, 1, 2\}$

- $q_0 = 0$
- $F = \{2\}$

¿cómo se ejecuta un autómata sobre una palabra?

Sea:

- Un autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$.
- Un input $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Una ejecución (o run) ρ de \mathcal{A} sobre w es una secuencia:

$$\rho:\ p_0\stackrel{a_1}{\rightarrow}p_1\stackrel{a_2}{\rightarrow}p_2\stackrel{a_3}{\rightarrow}\dots\stackrel{a_n}{\rightarrow}p_n$$

- $p_0 = q_0$ y
- para todo $i \in \{0, 1, ..., n-1\}$, $\delta(p_i, a_{i+1}) = p_{i+1}$.

Una ejecución ρ de \mathcal{A} sobre w es de **aceptación** si:

$$p_n \in F$$
.

Desde ahora hablaremos de **LA** ejecución de \mathcal{A} sobre w

¿cómo se ejecuta un autómata sobre una palabra?

Ejemplo

- ¿cuál es la ejecución de A sobre bbab?
- ¿cuál es la ejecución de A sobre abab?

¿cuál de las dos ejecuciones son de aceptación?

Sea un autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ y $w \in \Sigma^*$.

Definiciones

- **A** acepta w si la ejecución de \mathcal{A} sobre w es de aceptación.
- **A** rechaza w si la ejecución de \mathcal{A} sobre w NO es de aceptación.
- El lenguaje aceptado por $\mathcal A$ se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

Defina un autómata para los siguientes lenguajes

- 1. Todas las palabras sobre $\{a, b\}$ tal que cada a-letra esta seguida de una b-letra.
- 2. Todas las palabras sobre $\{a, b\}$ que terminan con ab.
- 3. Todas las palabras sobre $\{a, b\}$ con una cantidad par de *a*-letras tal que no hay dos *a*-letras seguidas.

Sea un autómata $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ y $w \in \Sigma^*$.

Definiciones

- **A** acepta w si la ejecución de \mathcal{A} sobre w es de aceptación.
- **A** rechaza w si la ejecución de \mathcal{A} sobre w NO es de aceptación.
- El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

■ Un lenguaje $L \subseteq \Sigma^*$ se dice **regular** si, y solo si, existe un autómata finito determinista A tal que:

$$L = \mathcal{L}(\mathcal{A})$$

Outline

Palabras

Autómatas

Definiciones alternativas

Definición

Un autómata finito determinista con función parcial de transición (DFAp):

$$A = (Q, \Sigma, \gamma, q_0, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $\gamma: Q \times \Sigma \rightarrow Q$ es una función parcial de transición.
- $q_0 \in Q$ es el estado inicial.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

Sea:

- Un autómata $\mathcal{A} = (Q, \Sigma, \gamma, q_0, F)$ con $\gamma : Q \times \Sigma \rightarrow Q$.
- El input $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Una ejecución (o run) ρ de \mathcal{A} sobre w es una secuencia:

$$\rho: p_0 \stackrel{a_1}{\rightarrow} p_1 \stackrel{a_2}{\rightarrow} p_2 \dots \stackrel{a_n}{\rightarrow} p_n$$

- $p_0 = q_0$ y
- para todo $i \in \{0, ..., n-1\}$ esta definido $\gamma(p_i, a_{i+1}) = p_{i+1}$.

Una ejecución ρ de \mathcal{A} sobre w es de aceptación si:

$$p_n \in F$$
.

Notar que ahora una palabra puede NO tener ejecución!

Sea un autómata $\mathcal{A} = (Q, \Sigma, \gamma, q_0, F)$ con $\gamma : Q \times \Sigma \rightarrow Q$ y $w \in \Sigma^*$.

Definiciones

- A acepta w si
 existe una ejecución de A sobre w que es de aceptación.
- El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

Proposición

Para todo autómata $\mathcal A$ con función parcial de transición, existe un autómata $\mathcal A'$ (con función total de transición) tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, DFA \equiv DFAp.

¿cómo demostramos esta afirmación?

¿DFA ≢ DFAp?

Demostración

Sea $\mathcal{A} = (Q, \Sigma, \gamma, q_0, F)$ un autómata con función parcial de transición.

Sea q_s un nuevo estado tal que $q_s \notin Q$.

Construimos el DFA $\mathcal{A}' = (Q \cup \{q_s\}, \Sigma, \delta', q_0, F)$ tal que:

$$\delta'(p,a) = \begin{cases} \gamma(p,a) & \text{si } p \neq q_s \text{ y } (p,a) \in \text{dom}(\gamma) \\ q_s & \text{si no} \end{cases}$$

para todo $p \in Q \cup \{q_s\}$ y $a \in \Sigma$.

¿cómo demostramos que \mathcal{A} y \mathcal{A}' definen el mismo lenguaje?

Demostración: $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$

Sea $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{A})$.

Entonces existe una ejecución de aceptación ρ de $\mathcal A$ sobre w:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} p_2 \dots \stackrel{a_n}{\to} p_n$$

- $p_0 = q_0$
- para todo $i \in \{0, ..., n-1\}$, esta definido $\gamma(p_i, a_{i+1}) = p_{i+1}$ y
- $p_n \in F$.

Como $\delta(p_i, a_{i+1}) = \gamma(p_i, a_{i+1})$ para todo $i \in \{0, \dots, n-1\}$ (¿por qué?) entonces ρ es también una ejecución de aceptación de \mathcal{A}' sobre w.

Por lo tanto, $w \in \mathcal{L}(\mathcal{A}')$.

Demostración: $\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$

Sea $w = a_1 \dots a_n \in \mathcal{L}(\mathcal{A}')$.

Existe una ejecución de aceptación ρ de \mathcal{A}' sobre w:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} p_2 \dots \stackrel{a_n}{\to} p_n$$

- $p_0 = q_0$
- para todo $i \in \{0, 1, ..., n-1\}$, $\delta(p_i, a_{i+1}) = p_{i+1}$ y
- $p_n \in F$.

¿cómo demostramos que ρ también es una ejecución de $\mathcal A$ sobre w?

¿DFA ≢ DFAp?

Demostración: $\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A})$

Demostraremos que $p_i \neq q_s$ para todo $i \in \{0, \ldots, n\}$.

Por contradición, suponga que existe i tal que $p_i = q_s$.

Entonces, tenemos que
$$p_{i+1} = q_s$$
. (¿por qué?)

Por inducción, podemos demostrar que $p_j = q_s$ para todo $j \ge i$. (¿cómo?)

Por lo tanto,
$$p_n = q_s$$
. (contradicción!) (¿por qué?)

Como $p_i \neq q_s$ para todo $i \in \{0, \dots, n\}$ tenemos que:

$$\delta(p_i,a_{i+1})=\gamma(p_i,a_{i+1}) \quad \forall \ i\in\{0,1,\ldots,n-1\}$$

y ρ es una ejecución de aceptación de \mathcal{A} sobre w.

Por lo tanto, concluimos que $w \in \mathcal{L}(A)$.

¿DFA ≠ DFAp?

Proposición

Para todo autómata $\mathcal A$ con función parcial de transición, existe un autómata $\mathcal A'$ (con función total de transición) tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

En otras palabras, DFA ≡ DFAp.

Advertencia

Desde ahora, utilizaremos autómatas con funciones totales de transición, pero sin perdida de generalidad en algunos ejemplos utilizaremos funciones parciales de transición por simplicidad.