Exercises 1A 1) L+B=B+L \ \ L,BEC Suppose 2 = a + bi, B = b + di a, b, c, d ElR 2+ B = (a+bi) + (b+di) = (a+b) + (b+d)i = (b+a) + (d+b)i = B + L 2) $(\lambda + \beta) + \lambda = \lambda + (\beta + \lambda)$, $\forall \lambda, \beta, \lambda \in \mathbb{C}$ Suppose 2 = a+bi, B=c+di, A=e+fi where a,b,c,d,e,f = IR (2+B)+X = ((a+bi)+(b+di))+(e+fi) = ((a+b) + (b+d)i) + (e+fi) = (a1 b+e) + (b+d+f)i (1) 2+(B+x) = (a+bi) + ((b+di)+(e+fi)) = (a+bi) + ((b+e) + (d+f)i) = (0+b+e)+(b+d+f)i(2) $(1)'(5) \Longrightarrow (7 + b) + y = 97 (81 y)$

3)
$$(\lambda \beta) \lambda = \lambda (\beta \lambda)$$
 $\forall \lambda, \beta, \lambda \in \mathbb{C}$
 $\lambda = \alpha + \beta i$, $\beta = c_1 d i$, $\lambda = e_1 + f i$ $\alpha, \beta, c, d, e, f \in \mathbb{R}$
 $(\alpha \beta) \lambda = ((\alpha + \beta i))(c_1 + d i))(e_1 + f i)$
 $= ((\alpha c - \beta d) + (\alpha d + \beta c)i)(e_1 + f i)$
 $= ((\alpha c - \beta d) + (\alpha d + \beta c))(e_1 + f i)$
 $= ((\alpha c - \beta d) + (\alpha d + \beta c))(e_1 + f i)$
 $= (\alpha + \beta i)((c_1 + \beta d))(e_2 + f i)$
 $= (\alpha + \beta i)((c_2 + \beta d))(e_3 + f i)$
 $= (\alpha + \beta i)((c_3 + \beta d))(e_4 + \beta d)(e_5 + \beta d)(e$

b)
$$\lambda(\lambda+\beta) = \lambda\lambda + \lambda\beta$$
 (b) $\lambda, \lambda, \beta \in C$

Suppose $\lambda = 0+bi$, $\beta = c+di$, $\lambda = c+fi$ where $\alpha, b, c, d, e, f \in \mathbb{R}$
 $\lambda(\lambda+\beta) = (c+fi)((\alpha+c) + (b+d)i)$

$$= (c+fi)(x+yi)$$

$$= (c+fi)(x+yi)$$

$$= (c(\alpha+c) - f(b+d)) + (c(b+d) + f(\alpha+c))i$$

$$= (c(\alpha+c) - f(b+d)) + (c+b+d) + f(\alpha+c)i$$
 $\lambda(\lambda+\beta) = (c+fi)(\alpha+bi) + (c+fi)(c+di)$

$$= (c\alpha-fb) + (cb+fa)i + (cc-fd) + (cd+fc)i$$

$$= (c\alpha-fb) + (cb+fa)i + (cc-fd) + (cd+fc)i$$

$$= (c\alpha-fb) + (cb+fa)i + (cb+fa+ed+fc)i$$

$$= (c\alpha-fb) + (cb+fa)i + (cc-fd) + (cd+fc)i$$

$$= (c\alpha-fb) + (ca-fa)i + (cb+fa+ed+fc)i$$

$$= (c\alpha-fb)i + (-ca-fa)i + (cb+fa+ed+fc)i$$

$$= (c+fi)(\alpha+c)i + (c+fi)(c+di)$$

$$= (c+fi)(\alpha+c$$

Suppose
$$\exists \lambda \in \mathbb{C}$$
, $\lambda \neq \beta$ o.t. $d + \lambda = 0$.

 $\lambda = -d = \lambda = -\alpha - bi = \lambda = \beta$ (Uniquenum)

6) $\forall d \in \mathbb{C}$, $d \neq 0$ \exists unique $\beta \in \mathbb{C}$ o.t. $d\beta = 1$

Suppose $d = a + bi$, $a,b \in \mathbb{R}$

Define $\beta = \frac{a - bi}{a^{2} + b^{2}}$
 $d\beta = (a + bi)(\frac{\alpha - bi}{a^{2} + b^{2}})$
 $= \frac{(a + bi)(\alpha - bi)}{a^{2} + b^{2}} = a^{2} + b^{2} = 1$

Suppose $\exists \lambda_{1} | \lambda_{2} \in \mathbb{C}$ o.t. $d\lambda_{1} = 1$ and $d\lambda_{2} = 1$.

 $\exists \lambda_{1} = d\lambda_{2} = d\lambda_{3} = d\lambda_{4} = d\lambda_{5} = d\lambda$

7)
$$a = \frac{-1 + \sqrt{3}i}{2}$$
 calle noot of 1.

Show $a = 1$
 $a^3 = a^2 = \frac{(-11\sqrt{3}i)^2}{2} = \frac{(-11\sqrt{3}i)}{2}$
 $a^2 = (-1+\sqrt{3}i)^2 = \frac{(-1+\sqrt{3}i)^2}{2} = \frac$

1. $\{a = b \}$ (=) $\{a = b \}$ (=) $\{a = b \}$ =) $\{a = b \}$ = $\{a = b \}$

2. $\begin{cases} a = -b \\ cab = \frac{1}{2} \end{cases} = \begin{cases} a = -b \\ -b^2 = \frac{1}{2} \end{cases} - Not real$

9) $\times \in \mathbb{R}^4$ st. $(4,-3,1,7) + 2 \times = (5,9,-6,8)$

(ab)
$$x = a(bx) + x \in F^{n}$$
, $a, b \in F$
(ab) $x = (ab) (x_{1}, ..., x_{m})$
 $= (abx_{1}), ..., a(bx_{m})$
 $= a(bx_{1}), ..., a(bx_{m})$
 $= a(bx_{1})$
 $= a(bx_{1})$
 $= a(bx_{1})$
 $= a(bx_{1})$
 $= a(bx_{1}), ..., a(bx_{m})$
 $= a(bx_{1}), ..., a(bx_{1})$
 $= a(bx_{1}), .$

$$(a+b) \times = a \times b \times \forall a,b \in \mathbb{F}, x \in \mathbb{F}^{m}$$

$$(a+b) \times = (a+b)(x_1, ..., x_m)$$

$$=(a+b) \times_1, ..., a \times_m + b \times_m)$$

$$= a \times b \times$$