COMPARISON MobileNetV2

June 21, 2025

```
[]: import tensorflow as tf
     from tensorflow.keras.utils import to_categorical
     import os
     from PIL import Image, UnidentifiedImageError
     import shutil
     # Configuration
     IMG\_SIZE = (96, 96)
     BATCH_SIZE = 32
     VALIDATION_SPLIT = 0.4
     SEED = 42
     ROOT_PATH = ''
     DATASET_PATH = os.path.join(ROOT_PATH,"raw_data")
     CORRUPT_PATH = os.path.join(ROOT_PATH,"corrupt_images")
     os.makedirs(CORRUPT_PATH, exist_ok=True)
     for root, dirs, files in os.walk(DATASET_PATH):
         for file in files:
             ext = os.path.splitext(file)[1].lower()
             if ext in [".jpg", ".jpeg", ".png", ".bmp", ".gif"]:
                 path = os.path.join(root, file)
                 try:
                     with Image.open(path) as img:
                         img.verify() # Check integrity
                 except (UnidentifiedImageError, OSError, IOError) as e:
                     # Move the corrupt image
                     print(f"Corrupt image found: {path} - moving to {CORRUPT_PATH}")
                     dest_path = os.path.join(CORRUPT_PATH, os.path.relpath(path,_
      →DATASET_PATH))
                     os.makedirs(os.path.dirname(dest_path), exist_ok=True)
                     shutil.move(path, dest_path)
     LANDMARK_DIR = os.path.join(ROOT_PATH,"data")
     RAW IMAGE DIR = os.path.join(ROOT PATH, "raw data")
     FILTERED_IMAGE_DIR = os.path.join(ROOT_PATH,"filtered_raw_data")
     DATASET PATH = FILTERED IMAGE DIR
     # Supported image extensions
```

```
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp']
# Create filtered output structure
os.makedirs(FILTERED_IMAGE_DIR, exist_ok=True)
for class_name in os.listdir(LANDMARK_DIR):
   if class name == 'debug':
        continue
   landmark class dir = os.path.join(LANDMARK DIR, class name)
   raw_class_dir = os.path.join(RAW_IMAGE_DIR, class_name)
   filtered class dir = os.path.join(FILTERED IMAGE DIR, class name)
   os.makedirs(filtered_class_dir, exist_ok=True)
   for file in os.listdir(landmark_class_dir):
        if not file.endswith("_landmarks.json"):
            continue
        # Get base filename without "_landmarks.json"
       base_name = file.replace("_landmarks.json", "")
        # Look for corresponding image in raw directory
       for ext in IMAGE EXTENSIONS:
            image_file = os.path.join(raw_class_dir, base_name + ext)
            if os.path.exists(image file):
                # Copy to filtered folder
                shutil.copy(image_file, os.path.join(filtered_class_dir, os.
 →path.basename(image_file)))
                break
# Load training dataset with validation split
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET PATH,
   validation_split=VALIDATION_SPLIT,
   subset="training",
   seed=SEED,
   color_mode="rgb",
    image_size=IMG_SIZE,
   batch_size=BATCH_SIZE
num_classes = len(train_ds.class_names)
label_map = train_ds.class_names
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
   DATASET_PATH,
   validation_split=VALIDATION_SPLIT,
    subset="validation",
   seed=SEED,
```

```
color_mode="rgb",
         image_size=IMG_SIZE,
         batch_size=BATCH_SIZE
     test_ds = val_ds.shard(2,0)
     val ds = val ds.shard(2,1)
     # Normalize pixel values to [0, 1]
     normalization layer = tf.keras.layers.Rescaling(1./255)
     train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
     val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
     test_ds = test_ds.map(lambda x, y: (normalization_layer(x), y))
     # Cache and prefetch for performance
     AUTOTUNE = tf.data.AUTOTUNE
     train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
     val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
     test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
    Found 3413 files belonging to 51 classes.
    Using 2048 files for training.
    Found 3413 files belonging to 51 classes.
    Using 1365 files for validation.
[5]: from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, U
      →BatchNormalization
     from tensorflow.keras.layers import Flatten, Dense, GlobalAveragePooling2D
     from tensorflow.keras.optimizers import Adam
     from tensorflow.keras.applications import MobileNetV2
     base_model = MobileNetV2(input_shape=(96, 96, 3), include_top=False,_
      ⇔weights='imagenet')
     base_model.trainable = False
     model = Sequential([
         base_model,
         GlobalAveragePooling2D(),
         Dropout(0.3),
         Dense(128, activation='relu'),
         Dropout(0.3),
         Dense(num_classes, activation='softmax')
     ])
     model.compile(optimizer=Adam(1e-3),
                   loss='sparse_categorical_crossentropy',
                   metrics=['accuracy'])
[6]: history = model.fit(train_ds, validation_data=val_ds, epochs=50)
```

```
Epoch 1/50
64/64
                 18s 132ms/step -
accuracy: 0.0737 - loss: 4.0134 - val_accuracy: 0.3348 - val_loss: 2.6370
Epoch 2/50
64/64
                 4s 61ms/step -
accuracy: 0.2878 - loss: 2.6495 - val_accuracy: 0.4866 - val_loss: 1.9093
Epoch 3/50
64/64
                 4s 60ms/step -
accuracy: 0.4534 - loss: 1.9079 - val_accuracy: 0.5417 - val_loss: 1.5783
Epoch 4/50
64/64
                 4s 60ms/step -
accuracy: 0.5672 - loss: 1.4972 - val_accuracy: 0.6071 - val_loss: 1.3757
Epoch 5/50
64/64
                 4s 60ms/step -
accuracy: 0.6182 - loss: 1.2579 - val_accuracy: 0.6205 - val_loss: 1.2890
Epoch 6/50
64/64
                 4s 60ms/step -
accuracy: 0.6848 - loss: 1.0517 - val_accuracy: 0.6205 - val_loss: 1.2737
Epoch 7/50
64/64
                 4s 60ms/step -
accuracy: 0.7213 - loss: 0.9044 - val_accuracy: 0.6235 - val_loss: 1.2364
Epoch 8/50
64/64
                 4s 60ms/step -
accuracy: 0.7767 - loss: 0.7365 - val_accuracy: 0.6295 - val_loss: 1.2137
Epoch 9/50
64/64
                 4s 60ms/step -
accuracy: 0.7840 - loss: 0.7048 - val_accuracy: 0.6533 - val_loss: 1.1466
Epoch 10/50
64/64
                 4s 61ms/step -
accuracy: 0.8021 - loss: 0.6284 - val_accuracy: 0.6562 - val_loss: 1.1585
Epoch 11/50
64/64
                 4s 60ms/step -
accuracy: 0.8454 - loss: 0.5215 - val_accuracy: 0.6592 - val_loss: 1.1608
Epoch 12/50
64/64
                 4s 60ms/step -
accuracy: 0.8459 - loss: 0.5075 - val_accuracy: 0.6488 - val_loss: 1.1600
Epoch 13/50
64/64
                 4s 60ms/step -
accuracy: 0.8566 - loss: 0.4898 - val_accuracy: 0.6622 - val_loss: 1.1625
Epoch 14/50
64/64
                 4s 60ms/step -
accuracy: 0.8676 - loss: 0.4579 - val_accuracy: 0.6399 - val_loss: 1.1999
Epoch 15/50
64/64
                 4s 61ms/step -
accuracy: 0.8525 - loss: 0.4536 - val_accuracy: 0.6726 - val_loss: 1.1428
Epoch 16/50
64/64
                 4s 64ms/step -
accuracy: 0.8711 - loss: 0.3842 - val accuracy: 0.6607 - val loss: 1.1278
```

```
Epoch 17/50
64/64
                 4s 64ms/step -
accuracy: 0.8895 - loss: 0.3503 - val_accuracy: 0.6592 - val_loss: 1.1862
Epoch 18/50
64/64
                 4s 63ms/step -
accuracy: 0.9022 - loss: 0.3197 - val_accuracy: 0.6637 - val_loss: 1.1861
Epoch 19/50
64/64
                 4s 63ms/step -
accuracy: 0.9059 - loss: 0.3081 - val_accuracy: 0.6682 - val_loss: 1.1808
Epoch 20/50
64/64
                 4s 63ms/step -
accuracy: 0.9200 - loss: 0.2911 - val_accuracy: 0.6622 - val_loss: 1.2058
Epoch 21/50
64/64
                 4s 64ms/step -
accuracy: 0.9169 - loss: 0.2797 - val_accuracy: 0.6652 - val_loss: 1.2206
Epoch 22/50
64/64
                 4s 63ms/step -
accuracy: 0.9109 - loss: 0.2708 - val_accuracy: 0.6577 - val_loss: 1.2065
Epoch 23/50
64/64
                 4s 63ms/step -
accuracy: 0.9284 - loss: 0.2414 - val_accuracy: 0.6696 - val_loss: 1.1733
Epoch 24/50
64/64
                 4s 64ms/step -
accuracy: 0.9346 - loss: 0.2258 - val_accuracy: 0.6771 - val_loss: 1.2226
Epoch 25/50
64/64
                 4s 63ms/step -
accuracy: 0.9218 - loss: 0.2604 - val_accuracy: 0.6622 - val_loss: 1.2074
Epoch 26/50
64/64
                 4s 63ms/step -
accuracy: 0.9451 - loss: 0.2080 - val_accuracy: 0.6652 - val_loss: 1.2440
Epoch 27/50
64/64
                 4s 63ms/step -
accuracy: 0.9360 - loss: 0.2120 - val_accuracy: 0.6771 - val_loss: 1.1871
Epoch 28/50
64/64
                 4s 62ms/step -
accuracy: 0.9481 - loss: 0.1854 - val_accuracy: 0.6592 - val_loss: 1.2634
Epoch 29/50
64/64
                 4s 62ms/step -
accuracy: 0.9457 - loss: 0.1882 - val_accuracy: 0.6667 - val_loss: 1.2261
Epoch 30/50
64/64
                 4s 64ms/step -
accuracy: 0.9424 - loss: 0.1867 - val_accuracy: 0.6845 - val_loss: 1.2612
Epoch 31/50
64/64
                 4s 62ms/step -
accuracy: 0.9516 - loss: 0.1662 - val_accuracy: 0.6577 - val_loss: 1.3016
Epoch 32/50
64/64
                 4s 62ms/step -
accuracy: 0.9450 - loss: 0.1642 - val accuracy: 0.6667 - val loss: 1.2758
```

```
Epoch 33/50
64/64
                 4s 62ms/step -
accuracy: 0.9435 - loss: 0.1751 - val_accuracy: 0.6667 - val_loss: 1.2586
Epoch 34/50
64/64
                 4s 63ms/step -
accuracy: 0.9500 - loss: 0.1688 - val_accuracy: 0.6667 - val_loss: 1.2970
Epoch 35/50
64/64
                 4s 62ms/step -
accuracy: 0.9497 - loss: 0.1456 - val_accuracy: 0.6771 - val_loss: 1.2745
Epoch 36/50
64/64
                 4s 62ms/step -
accuracy: 0.9612 - loss: 0.1431 - val_accuracy: 0.6771 - val_loss: 1.3573
Epoch 37/50
64/64
                 4s 63ms/step -
accuracy: 0.9459 - loss: 0.1550 - val_accuracy: 0.6741 - val_loss: 1.3014
Epoch 38/50
64/64
                 4s 62ms/step -
accuracy: 0.9541 - loss: 0.1509 - val_accuracy: 0.6756 - val_loss: 1.3280
Epoch 39/50
64/64
                 4s 63ms/step -
accuracy: 0.9491 - loss: 0.1604 - val_accuracy: 0.6741 - val_loss: 1.3327
Epoch 40/50
64/64
                 4s 63ms/step -
accuracy: 0.9643 - loss: 0.1189 - val_accuracy: 0.6682 - val_loss: 1.3403
Epoch 41/50
64/64
                 4s 64ms/step -
accuracy: 0.9601 - loss: 0.1220 - val_accuracy: 0.6741 - val_loss: 1.3032
Epoch 42/50
64/64
                 4s 64ms/step -
accuracy: 0.9578 - loss: 0.1246 - val_accuracy: 0.6860 - val_loss: 1.3289
Epoch 43/50
64/64
                 4s 64ms/step -
accuracy: 0.9584 - loss: 0.1316 - val_accuracy: 0.6815 - val_loss: 1.3691
Epoch 44/50
64/64
                 4s 63ms/step -
accuracy: 0.9554 - loss: 0.1309 - val_accuracy: 0.6786 - val_loss: 1.3708
Epoch 45/50
64/64
                 4s 64ms/step -
accuracy: 0.9563 - loss: 0.1302 - val_accuracy: 0.6935 - val_loss: 1.3532
Epoch 46/50
64/64
                 4s 63ms/step -
accuracy: 0.9596 - loss: 0.1284 - val_accuracy: 0.6756 - val_loss: 1.3537
Epoch 47/50
64/64
                 4s 63ms/step -
accuracy: 0.9667 - loss: 0.1133 - val_accuracy: 0.6786 - val_loss: 1.4074
Epoch 48/50
64/64
                 4s 63ms/step -
accuracy: 0.9715 - loss: 0.1120 - val accuracy: 0.6756 - val loss: 1.3911
```

```
Epoch 49/50
    64/64
                      4s 64ms/step -
    accuracy: 0.9687 - loss: 0.1138 - val accuracy: 0.6726 - val loss: 1.3987
    Epoch 50/50
    64/64
                      4s 64ms/step -
    accuracy: 0.9553 - loss: 0.1447 - val_accuracy: 0.6860 - val_loss: 1.3996
[7]: test_loss, test_accuracy = model.evaluate(test_ds)
     print(f"Test Accuracy: {test_accuracy:.4f}")
     print(f"Test Loss: {test_loss:.4f}")
    22/22
                      4s 188ms/step -
    accuracy: 0.7031 - loss: 1.3048
    Test Accuracy: 0.6797
    Test Loss: 1.4072
[8]: import matplotlib.pyplot as plt
     from sklearn.metrics import classification report, confusion matrix
     import seaborn as sns
     import numpy as np
[9]: plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(history.history['accuracy'])
     plt.plot(history.history['val_accuracy'])
     plt.title('Model accuracy')
     plt.ylabel('Accuracy')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     # Plot training & validation loss values
     plt.subplot(1, 2, 2)
     plt.plot(history.history['loss'])
     plt.plot(history.history['val_loss'])
     plt.title('Model loss')
     plt.ylabel('Loss')
     plt.xlabel('Epoch')
     plt.legend(['Train', 'Validation'], loc='upper left')
     plt.show()
```



```
[10]: y_true, y_pred = [], []
      target_names = [label_map[i] for i in range(len(label_map))]
      for X_batch, y_batch in test_ds:
          y_true.append(y_batch.numpy())
          batch_pred = model.predict(X_batch, verbose=0)
          y_pred.append(np.argmax(batch_pred, axis=1))
      y_true = np.concatenate(y_true)
      y_pred = np.concatenate(y_pred)
      print(classification_report(
          y_true, y_pred,
          digits=3,
          target_names=target_names
      ))
      cm = confusion_matrix(y_true, y_pred, labels=range(len(label_map)))
      labels = [label_map[i] for i in range(len(label_map))]
      plt.figure(figsize=(10, 8))
      sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
                  xticklabels=labels, yticklabels=labels)
      plt.xlabel("Predicted Label")
      plt.ylabel("True Label")
      plt.title("Confusion Matrix - Test Set")
      plt.show()
```

c:\Users\chris\.conda\envs\ASLR\Lib\sitepackages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
c:\Users\chris\.conda\envs\ASLR\Lib\site-

packages\sklearn\metrics_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

	precision	recall	f1-score	support
А	1.000	0.286	0.444	7
В	0.300	0.500	0.375	6
C	0.444	0.400	0.421	20
D	0.500	0.200	0.286	10
E	0.375	0.600	0.462	10
F	0.333	0.444	0.381	9
G	0.625	0.455	0.526	11
H	0.375	0.300	0.333	10
I	0.229	0.400	0.291	20
J	0.370	0.455	0.408	22
K	0.143	0.100	0.118	10
L	0.474	0.529	0.500	17
M	0.500	0.833	0.625	6
N	0.000	0.000	0.000	9
0	0.400	0.421	0.410	19
P	0.385	0.556	0.455	9
Q	0.182	0.182	0.182	11
R	0.300	0.391	0.340	23
S	0.500	0.400	0.444	15
Т	0.462	0.600	0.522	10
U	0.167	0.053	0.080	19
V	0.375	0.286	0.324	21
W	0.667	0.571	0.615	14
Х	0.500	0.333	0.400	6
Y	0.333	0.200	0.250	5
Z	0.720	0.818	0.766	22
baca	0.917	1.000	0.957	11
bantu	0.769	1.000	0.870	10
bapak	0.923	0.923	0.923	13
buangairkecil	1.000	0.667	0.800	9
buat	0.900	0.900	0.900	10
halo	1.000	1.000	1.000	16
ibu	1.000	1.000	1.000	6
kamu	0.955	0.913	0.933	23

maaf	1.000	0.944	0.971	18
makan	0.882	1.000	0.938	15
mau	1.000	1.000	1.000	12
nama	1.000	0.833	0.909	18
pagi	1.000	1.000	1.000	15
paham	1.000	0.952	0.976	21
sakit	1.000	1.000	1.000	2
sama-sama	0.958	0.958	0.958	24
saya	1.000	0.714	0.833	7
selamat	0.935	0.967	0.951	30
siapa	0.882	0.938	0.909	16
tanya	1.000	0.933	0.966	15
tempat	1.000	0.800	0.889	5
terima-kasih	0.880	1.000	0.936	22
terlambat	0.923	1.000	0.960	12
tidak	0.900	1.000	0.947	9
tolong	1.000	1.000	1.000	13
accuracy			0.680	693
macro avg	0.676	0.662	0.657	693
weighted avg	0.682	0.680	0.672	693

