第3章 (pp. 30)

確率と確率変数

確率の考え方

(1)確率に関する諸定義

- 確率
 - 偶然性の確からしさを測る指標

- 事象
 - 偶然性を伴って生じる結果
 - サイコロを投げて「2」の目が出ること
 - コインを投げて表が出ること

例) 事象A: コイン投げで「表」が出ること

余事象

- 事象Aが 起こらないこと
- 事象Aの補集合
 - コイン投げで 「裏」が出る
 - $\bar{A} = \{\bar{\mathbf{g}}\}$

例) 事象A: 二

コイン投げで「表」が出ること

- 全事象(標本空間)
 - 起こり得る 結果すべて
 - $\Omega = \{ \bar{\mathbf{x}}, \bar{\mathbf{x}} \}$
- 空事象
 - 事象が何も 起こらないこと
 - ϕ

例) 事象A: コイン投げで「表」が出ること

事象B: コイン投げで「裏」が出ること

和事象

- 事象Aまたは事象B
- 事象Aと事象Bの 少なくとも1つが 起こること
 - 表か裏の どちらかが出ること
 - *A* ∪ *B*

例) 事象A: コイン投げで「表」が出ること

事象B: コイン投げで「裏」が出ること

積事象

- 事象Aかつ事象B
- 事象Aと事象Bが ともに起こること
 - 表と裏の 両方が出ること
 - $A \cap B$

例) 事象A: コイン投げで「表」が出ること

事象B: コイン投げで「裏」が出ること

• 排反事象

- 積事象が空事象であること
 - $A \cap B = \phi$
 - 表と裏が 同時に出ることは ありえないため 事象Aと事象Bは 互いに排反である。

- 事象A
 - 出た目が偶数
 - 2, 4, 6
- 事象B
 - 出た目が2
 - 2
- 全事象
 - サイコロの目すべて
 - 1, 2, 3, 4, 5, 6

- 事象A
 - 出た目が偶数
 - 2, 4, 6
- 事象B
 - 出た目が2
 - 2
- 全事象
 - サイコロの目すべて
 - 1, 2, 3, 4, 5, 6

- 事象A
 - 出た目が偶数
 - 2, 4, 6
 - 余事象:1,3,5
 - » Aの円に入らないもの
- 事象B
 - 出た目が2
 - 2
 - 余事象: 1, 3, 4, 5, 6» Bの円に入らないもの
- 全事象
 - サイコロの目すべて
 - 1, 2, 3, 4, 5, 6

- 事象A
 - 出た目が偶数
 - 2, 4, 6
 - 余事象:1,3,5
 - » Aの円に入らないもの
- 事象B
 - 出た目が2
 - 2
- 余事象: 1, 3, 4, 5, 6» Bの円に入らないもの
- 全事象
 - サイコロの目すべて
 - 1, 2, 3, 4, 5, 6

正確なベン図は↑ 事象Bは事象Aの 部分集合である

(2)確率の公理

【!重要!】確率の公理

- 確率の公理 (probability axioms)
 - 以下の性質を満たさないものは確率ではない
- I 任意の事象Aに対して、 $0 \le Pr(A) \le 1$
 - ・確率は必ず0から1の間の値
 - パーセント表示なら0%~100%
- $\mathbf{II} \operatorname{Pr}(\Omega) = 1$
 - 全事象の根元事象の合計は1(=100%)
- III 事象Aと事象Bが排反 $(A \cap B = \phi)$ ならば、 $Pr(A \cup B) = Pr(A) + Pr(B)$
 - 積事象が空事象であれば、和事象の確率は 和事象を構成する事象の確率の和

【!重要!】確率の公理

- 確率の公理 (probability axioms)
 - 以下の性質を満たさないものは確率ではない

- III 事象Aと事象Bが排反 $(A \cap B = \phi)$ ならば、 $Pr(A \cup B) = Pr(A) + Pr(B)$
 - 積事象が空事象であれば、和事象の確率は 和事象を構成する事象の確率の和

確率の公理から導かれる定理1

- ① $Pr(\phi) = 0$ • 空事象はゼロ
- ② $Pr(\bar{A}) = 1 Pr(A)$ • (A以外の確率) = (全体) - (Aの確率)
- ③ 事象Bが事象Aに含まれるならば Pr(B) ≤ Pr(A)
- $\textcircled{4} \operatorname{Pr}(A \cup B) = \operatorname{Pr}(A) + \operatorname{Pr}(B) \operatorname{Pr}(A \cap B)$

確率の公理から導かれる定理1

- ③ 事象Bが事象Aに含まれるならば Pr(B) ≤ Pr(A)
 - ・ 図で見ると一目瞭然

確率の公理から導かれる定理1

- $\textcircled{4} \operatorname{Pr}(A \cup B) = \operatorname{Pr}(A) + \operatorname{Pr}(B) \operatorname{Pr}(A \cap B)$
 - 図でみるとわかりやすい
 - ・薄い円A($\Pr(A)$)と 薄い円B($\Pr(B)$)の合計から

重複している 濃色部分(Pr(*A* ∩ *B*)) を引く

確率の加法定理

(3) 先験確率と経験確率

先験確率と経験確率

- 先験確率(事前確率)
 - 根元事象の可能性が同等であると考えて定義
 - ・根元事象: 事象におけるひとつの要素
 - 事象に含まれる根元事象の数を計算して定義
 - 事象自体がまったくわからない場合は困難
- 経験確率(客観確率)
 - 試行の数を十分大きくしたときに 相対度数がある値に近づくならば 相対度数を確率として定義
 - 試行: 同じ条件のもとで繰り返し実験を行うこと
 - 試行できない場合や 事象がめったに起こらない場合は困難

先験確率と経験確率

- 先験確率(事前確率)
 - 根元事象の可能性が同等であると考えて定義
 - ・根元事象: 事象におけるひとつの要素
 - 事象に含まれる根元事象の数を計算して定義
 - 事象自体がまったくわからない場合は困難

コイン投げ

根元事象: 表、裏

⇒2個

先験確率: 1/2

サイコロ

根元事象: 1, 2, 3, 4, 5, 6

⇒6個

先験確率: 1/6

先験確率と経験確率

コイン投げ(50回)

【度数】

表:27 裏:23

【相対度数】

0.54 0.46

コイン投げ(20000回)

【度数】

表:9948 裏:10052

【相対度数】

0.4974 0.5026

- 経験確率(客観確率)
 - 試行の数を十分大きくしたときに 相対度数がある値に近づくならば 相対度数を確率として定義
 - 試行: 同じ条件のもとで繰り返し実験を行うこと
 - 試行できない場合や 事象がめったに起こらない場合は困難

公理・定理・定義のちがい

🔀 公理・定理・定義

公理

(一つの体系の中で) 前提条件となる仮定

絶対的に正しい

証明は必要なし

定理

前提条件(公理)と定義に基づいて導き出されるもの

公理や定義から証明できる

定義

約束事

状況を用語や記号で表現したもの

a=1とする、など

公式

定理を数式で表現したもの

(4) 条件付き確率

条件付き確率

- ・ 条件付き確率
 - 事象Aが起こった、という条件の下で事象Bが起こる確率

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

- 同時確率
 - 積事象の確率

$$Pr(A \cap B)$$

条件付き確率

- ・ 条件付き確率
 - 事象Aが起こった、という条件の下で事象Bが起こる確率

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

確率の乗法定理

条件付き確率 事象Aが起こった条件下で事象Bが起こる確率

$$Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)}$$

• 確率の乗法定理

$$Pr(B|A) Pr(A) = Pr(A \cap B)$$

定理 2

- 条件付き確率の右辺の分母を移項

定理 3

確率の乗法定理

$$Pr(B|A) Pr(A) = Pr(A \cap B)$$

・事象Bの確率の書き換え

定理3

$$Pr(B) = Pr(A \cap B) + Pr(\bar{A} \cap B)$$

= $Pr(B|A) Pr(A) + Pr(B|\bar{A}) Pr(\bar{A})$

事象B(Bの円)を 2つに分けて 乗法定理を代入

(5) 事象の独立性

事象の独立性

- 独立
 - 事象Bの起こる確率が 事象Aの結果にまったく影響を受けない
 - 条件付き確率でない

・事象Aと事象Bが独立のとき 同時確率は積として表現できる

条件付き確率 事象Aが起こった条件下で事象Bが起こる確率

$$Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)}$$

- サイコロを振り、出目を見逃した。 友人によると、出目は偶数だったとのこと。 出目が4以上である確率は?
 - 事象A: 偶数
 - 事象AとBの同時確率: 偶数かつ4以上

条件付き確率 事象Aが起こった条件下で事象Bが起こる確率

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

サイコロを振り、出目を見逃した。 友人によると、出目は偶数だったとのこと。 出目が4以上である確率は?

- 事象A: 偶数(2, 4, 6)

- 事象AとBの同時確率: 偶数かつ4以上(4,6)

条件付き確率 事象Aが起こった条件下で事象Bが起こる確率

$$Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)}$$

- サイコロを振り、出目を見逃した。 友人によると、出目は偶数だったとのこと。 出目が4以上である確率は?
 - 事象A:
 - 事象AとBの同時確率: 偶数かつ4以上(4,6)

偶数(2, 4, 6)

- $\Pr(A) = \frac{3}{6}$
- $Pr(A \cap B) = \frac{2}{6}$
- $\Pr(B|A) = \frac{2}{6} \div \frac{3}{6} = \frac{2}{6} \times \frac{6}{3} = \frac{2}{3}$

条件付き確率 事象Aが起こった条件下で事象Bが起こる確率

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

- 病気にかかっているか判定する検査
- ・ 病気は10万人に1人が罹患
- 検査の判定が間違っている確率は1%(=0.01)
 - ・病気なのに陰性反応が出る
 - 病気でないのに陽性反応が出る
- 検査で陽性反応が出たとき あなたが本当に罹患している確率は?
 - 事象A: 陽性反応が出る
 - 同時確率: 本当に罹患していて、検査が正しい

条件付き確率 事象Aが起こった条件下で事象Bが起こる確率

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

事象A

- 陽性反応が出る
 - 本当に罹患していて、検査が正しい
 - (0.00001 × 0.99)
 - 罹患していないのに、検査が誤る
 - (0.99999 × 0.01)

$$Pr(A) = (0.00001 * 0.99) + (0.999999 * 0.01)$$

= 0.0000099 + 0.0099999 = 0.0100098

【条件付き確率】ってどんな状況?

条件付き確率 事象Aが起こった条件下で事象Bが起こる確率

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}$$

- 同時確率
 - 本当に罹患していて、検査が正しい
 - 本当に罹患していて、検査が正しい

-
$$Pr(A \cap B) = (0.00001 \times 0.99)$$

$$\Pr(B|A) = \frac{0.0000099}{0.0100098} = 0.000989 \dots = 0.1\%$$

確率変数の定義

(1)確率変数の定義

確率変数の定義

- 確率変数
 - 変数の概念に確率が加わったもの
 - サイコロの出た目
 - 偶然性を伴って生じる結果
 - 観測値に確率が対応している変数のこと
 - 変数
 - 観測値の集合

確率変数の定義

• 確率変数

$$X = X(\omega)$$

- ω:事象を表す
- ・変数が離散変数のとき、確率変数は離散確率変数
- コイン投げの事例

$$-$$
確率変数 $X = \{1, 0\}$

$$X(\omega)$$
$$\begin{cases} 1 \omega: \overline{\mathbb{R}} \Pr(X=1) = \frac{1}{2} \\ 0 \omega: \overline{\mathbb{R}} \Pr(X=0) = \frac{1}{2} \end{cases}$$

例題3-2

サイコロの出た目⇒ 確率変数X={1, 2, 3, 4, 5, 6}

- 先験確率で考えると…

問題3-2

- ・コイン投げの事例 ⇒ 確率変数
- コインを3回投げたとき表が出た回数 X={0, 1, 2, 3}

コイン投げの結果は、前の回の影響を受けないので【独立】

- 確率…3回のコイン投げの積として表現できる
 - 例:表が0回のとき
 - (1回目裏) * (2回目裏) * (3回目裏) = $\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8} = 0.125$

問題3-2

- ・ コイン投げの事例 ⇒ 確率変数
- コインを3回投げたとき表が出た回数 X={0, 1, 2, 3}
 - 確率…3回のコイン投げの積として表現できる
 - 例:表が2回のとき
 - $-(1回目表)*(2回目表)*(3回目裏) = <math>\frac{1}{2}*\frac{1}{2}*\frac{1}{2}=\frac{1}{8}=0.125$
 - $-(1回目表)*(2回目裏)*(3回目表) = \frac{1}{2}*\frac{1}{2}*\frac{1}{2}=\frac{1}{8}=0.125$
 - $-(1回目裏)*(2回目表)*(3回目表) = \frac{1}{2}*\frac{1}{2}*\frac{1}{2}=\frac{1}{8}=0.125$
 - $X(2) = 3 * \left(\frac{1}{2}\right)^3 = 3 * \frac{1}{8} = 0.375$

確率変数

• 確率変数は、事象を介して確率を付与された変数

確率

事象

確率変数

(3)確率変数の例

母集団を無限母集団と想定すると

- 確率変数Xの分布(確率分布)は、母集団の分布を表している
 - 実際には確率分布はわからないことが一般的なので 実験や調査が必要になる
- コイン投げで表がでる比率を考えると
 - コイン投げ(試行)が無限に実行できる
 - →無限母集団から標本を抽出していることと同じ
- 観測値x
 - 実際にコイン投げをしたときに表の出た回数
 - 標本における統計値(データ)
- 確率Pr(X = x)
 - 確率変数Xが観測値xをとる確率

母集団を有限母集団と想定すると

• 母集団の分布が分かっている場合を想定する

来店頻度	度数	相対度数	確率変数	確率
k	f_k	$\frac{f_k}{N}$	X	$\Pr(X=x)$
0	2662	0.13	0	0.13
1	5411	0.27	1	0.27
2	5461	0.27	2	0.27
3	3589	0.18	3	0.18
4	1836	0.09	4	0.09
5	713	0.04	5	0.04
6	232	0.01	6	0.01
7	96	0.00	7	0.00
総数	20000	1	総数	1

- 相対度数を確率とする (経験確率)
 - 来店頻度kを 確率変数Xと 考えることができる
- 母集団からランダムに 1人を抽出したとき
 - [来店頻度0回/週]の人が 抽出される確率⇒ 0.13

第3章のまとめ

- 確率の公理
 - 【確率の公理】を満たさないものは確率ではない
 - 0から1の間
 - 全部足したら1
 - AとBが排反ならばPr(*A* ∪ *B*) = Pr(*A*) + Pr(*B*)
- 先験確率と経験確率
 - 先験確率
 - 根元事象の確率が同等であると定義
 - 事象自体が不明な場合は困難
 - 経験確率
 - 相対度数を確率として定義
 - 試行できない場合やめったに起こらない場合は困難
- 確率変数
 - 確率が付与された変数