

Sobre el Dataset

Los datasets provienen de muestras de vino portugués "Vinho Verde".

Los datos están divididos en dos datasets: tinto y blanco, en esta presentación solo hablaremos del tinto

- Acidez fija (g/l)
- Acidez volátil (g/l)
- Acido cítrico (g/l)
- Cloruros (g/l)
- Dióxido de Azufre total (SO2 total) (mg/l)
- Dióxido de Azufre libre (SO2 libre) (mg/l)
- Densidad (g/l)
- pH
- Sulfatos (g/l)
- Alcohol (vol %)

Y finalmente una nota de calidad (1-10) de una cata a ciegas de la muestra.

Preliminar primeras 4 variables

 No se han considerado ningún outlier estas 4 graficas

Preliminar segundas 4 variables

 Aquí si que se eliminaron dos valores anómalos SO2 total.

Preliminar ultimas 4 variables

- No se han considerado outliers.
- Otra cosa que podemos ver es la falta de vinos de alta calidad, ya que hay pocas muestras

Correlaciones

- Considerando un cut-off de 0.15 y solo estudiando en la calidad
- Y finalmente la calidad esta relacionada:
 - Negativamente Acidez volátil (-0.39)
 - Acido cítrico (0.23)
 - Negativamente con al SO2 total (-0.19)
 - Negativamente con la densidad (-0.17)
 - Sulfatos (0.25)
 - Alcohol (0.48)

fixed acidity -	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	-0.68	0.18	-0.062	0.12
volatile acidity -	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2	-0.39
citric acid -	0.67	-0.55	1	0.14	0.2	-0.061	0.036	0.36	-0.54	0.31	0.11	0.23
residual sugar -	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014
chlorides -	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13
free sulfur dioxide -	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	0.07	0.052	-0.069	-0.051
total sulfur dioxide -	-0.11	0.076	0.036	0.2	0.047	0.67	1	0.071	-0.066	0.043	-0.21	-0.19
density -	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17
pH -	-0.68	0.23	-0.54	-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058
sulphates -	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25
alcohol -	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48
quality -	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25	0.48	1
	fixed acidity -	volatile acidity -	citric acid -	residual sugar -	chlorides -	e sulfur dioxide -	ıl sulfur dioxide -	density -	- Hd	sulphates -	alcohol -	quality -

- 0.75

- 0.50

- 0.25

- 0.00

Acidez volátil

- Menor acidez volátil se asocia a una mejor calidad.
- Todas las calidades tienen varias concentraciones.
- En el histograma se ve mas claro.

Acido cítrico

- En las curvas se ven 3 niveles, pero en el histograma no se ve tan claro y es mas probable que la muestra sea demasiado pequeña.
- Estos "tres niveles" seria cercano a 0, 0.25, y cerca de 0.50.

Alcohol

- Vinos de baja calidad están en concentración mas baja torno al 9,5%.
- Los vinos de mayor calidad muestran una distribución mucho más dispersa, pero siempre mas concentrado.

Sulfatos

- Vinos de calidad inferior tienen mas dispersión. Podría indicar un menor control durante su elaboración.
- Los de calidad mayor son menos dispersos 0.74 g/ml.

Todas las variables a la vez

- Demasiados de baja calidad.
- Filtramos para ver los de mayor calidad.

Todas las variables a la vez

- Si solo ponemos los de máxima Calidad no hay suficientes muestras, es necesario meter mas datos.
- Los datos siguen siendo dispersos, pero las tendencias ahora son más claras y no se observan outliers. Parece que se pueden identificar dos grupos:
 - Los vinos con una concentración media de ácido cítrico y acidez media.
 - Los vinos con una baja concentración de ácido cítrico y una acidez volátil más alta.
- Es necesario usar análisis multivariante para asegurarse ya que ambos están muy correlacionados negativamente.

Estimación de concentración optima

 Vamos a intentar a calcular la concentración optima de las variables mas importantes.

Pero para saber si los datos son fiables hay que comprobar

si la distribución normal.

Considerando una significancia del 5%, ninguna de las variables sigue una distribución normal excepto el contenido de alcohol y densidad.

Realmente es algo esperable, ya que bastantes variables tienen un skew o son demasiado "planas" o "afiladas".

Si es así los valores de los percentiles no son del todo fiables para estimar una concentración optima.

El acido cítrico y el alcohol tienen concentraciones muy similares, mientras tanto los sulfatos, y la acidez volátil son mas pequeñas.

	volatile acidity	citric acid	alcohol	sulphates
p_0	0.120	0.00	9.2	0.390
p_25	0.310	0.30	10.8	0.655
p_50	0.370	0.40	11.6	0.740
p_75	0.490	0.49	12.2	0.825
p_100	0.915	0.76	14.0	1.360

	statistic	pvalue
fixed acidity	8.350177	1.537383e-02
volatile acidity	32.004587	1.122774e-07
citric acid	7.388273	2.486892e-02
residual sugar	103.852678	2.809813e-23
chlorides	266.871920	1.120725e-58
free sulfur dioxide	65.491076	6.008879e-15
total sulfur dioxide	56.227478	6.171040e-13
<mark>density</mark>	3.824202	1.477696e-01
рН	8.940140	1.144651e-02
sulphates	28.121259	7.826113e-07
<mark>alcohol</mark>	<mark>1.984523</mark>	3.707373e-01
quality	149.058290	4.289470e-33

Conclusiones

- Todos los ácidos y el pH están estrechamente relacionado entre si.
- La densidad esta relacionada negativamente con el alcohol, pero positivamente para el resto de los compuestos.
- Los ácidos volátiles están relacionados negativamente con alcohol.
- La calidad esta relacionado positivamente con el contenido de alcohol y la concentración de ácido cítrico en el vino. Además, una mayor concentración de sulfatos también se asocia con una mejor calidad percibida. Por el contrario, los ácidos volátiles, SO₂ y una baja densidad presentan una correlación negativa con la calidad.
- Se ha estudiado de que la concentración optima de las variables:
 - Acidez volátil 0.370 g/l
 - Acido cítrico 0.40 g/l
 - Alcohol 11.6 %
 - Sulfatos 0.740 g/l
- Realísticamente todas las variables y la relación de estas afectarían a la calidad. En futuros análisis seria recomendable utilizar técnicas de análisis multivariante como PCA.
- El conjunto de datos tiene algunos problemas:
 - Algo antiguo
 - Solo una variante de vino
 - No incluye pocos vinos de calidad mayor de 8, y tiene pocas muestras de vinos de calidad de 7 o mas
 - No contiene todos los compuestos relevantes en el sabor y aroma
- Estas conclusiones solo se aplican al vino tinto, el vino blanco tiene otras correlaciones

Blanco Tinto