Pierre Bonami

Optimisation Combinatoire, Masters II, ID et IF

17 décembre 2012

Première partie I

Rappels

Plans coupants

- ▶ Soit $X = \{Ax \ge b, x \ge 0, x_j \in \mathbb{Z}, j = 1, ..., p\}.$
- ► Comme \overline{x} minimize la relaxation continue et $\overline{x} \notin X$, on a $\overline{x} \notin \text{conv}(X)$ (\overline{x} est une solution de base de (PL)).
- ▶ TH. DE SÉPARATION si P est convexe et $\hat{x} \notin P$, \exists hyperplan $\alpha^T x = \beta$ tel que $\alpha^T x \leq \beta \ \forall x \in P$ et $\alpha^T \hat{x} \geq \beta$.

Plans coupants

- ▶ Soit $X = \{Ax \ge b, x \ge 0, x_j \in \mathbb{Z}, j = 1, ..., p\}.$
- ► Comme \overline{x} minimize la relaxation continue et $\overline{x} \notin X$, on a $\overline{x} \notin \text{conv}(X)$ (\overline{x} est une solution de base de (PL)).
- ▶ TH. DE SÉPARATION si P est convexe et $\hat{x} \notin P$, \exists hyperplan $\alpha^T x = \beta$ tel que $\alpha^T x \leq \beta \ \forall x \in P$ et $\alpha^T \hat{x} \geq \beta$.

- 1. Problème de Séparation : Trouver $\alpha^T x = \beta$ séparant X et \hat{x} .
- 2. Ajouter $\alpha^T x \leq \beta$ à (PL) et répéter les étapes (re-résoudre PL, vérifier 1. et 2.,...).

Plans coupants

- ▶ Soit $X = \{Ax \ge b, x \ge 0, x_j \in \mathbb{Z}, j = 1, ..., p\}.$
- ► Comme \overline{x} minimize la relaxation continue et $\overline{x} \notin X$, on a $\overline{x} \notin \text{conv}(X)$ (\overline{x} est une solution de base de (PL)).
- ▶ TH. DE SÉPARATION si P est convexe et $\hat{x} \notin P$, \exists hyperplan $\alpha^T x = \beta$ tel que $\alpha^T x \leq \beta \ \forall x \in P$ et $\alpha^T \hat{x} \geq \beta$.

- 1. Problème de Séparation : Trouver $\alpha^T x = \beta$ séparant X et \hat{x} .
- 2. Ajouter $\alpha^T x \leq \beta$ à (PL) et répéter les étapes (re-résoudre PL, vérifier 1. et 2.,...).

Deuxième partie II

Quelques résultats sur les système d'inégalités l

Soit $P := \{x : Ax \le b\}$ (*n* variables, *m* contraintes).

▶ QUESTION Comment déterminer si $P = \emptyset$.

Soit $P := \{x : Ax \le b\}$ (*n* variables, *m* contraintes).

- ▶ QUESTION Comment déterminer si $P = \emptyset$.
- ► APPROCHE DE FOURRIER : Éliminer une par une les variable de *P* jusqu'à :

Soit $P := \{x : Ax \le b\}$ (*n* variables, *m* contraintes).

- ▶ QUESTION Comment déterminer si $P = \emptyset$.
- ► APPROCHE DE FOURRIER : Éliminer une par une les variable de *P* jusqu'à :
 - 1. Une contradiction ($\Rightarrow P = \emptyset$), ou

Soit $P := \{x : Ax \le b\}$ (*n* variables, *m* contraintes).

- ▶ QUESTION Comment déterminer si $P = \emptyset$.
- ► APPROCHE DE FOURRIER : Éliminer une par une les variable de *P* jusqu'à :
 - 1. Une contradiction ($\Rightarrow P = \emptyset$), ou
 - 2. Un interval en dimension 1.

Soit $P := \{x : Ax \le b\}$ (*n* variables, *m* contraintes).

- ▶ QUESTION Comment déterminer si $P = \emptyset$.
- ► APPROCHE DE FOURRIER : Éliminer une par une les variable de *P* jusqu'à :
 - 1. Une contradiction ($\Rightarrow P = \emptyset$), ou
 - 2. Un interval en dimension 1.

P s'écrit :

$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

$$\vdots$$

$$a_{j1}x_1 + \dots + a_{jn}x_n \le b_j$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$$

On élimine la dernière variable x_n . Soient :

- ▶ $I^+ := \{i \in \{1, \dots, m\} : a_{in} > 0\}$
- ▶ $I^- := \{i \in \{1, ..., m\} : a_{in} < 0\}$
- $I^0 := \{i \in \{1, \dots, m\} : a_{in} = 0\}$

P s'écrit:

$$a_{i1}x_1 + \dots + a_{i(n-1)}x_{n-1} + a_{in}x_n \le b_i \quad i \in I^+$$

 $a_{i1}x_1 + \dots + a_{i(n-1)}x_{n-1} + a_{in}x_n \le b_i \quad i \in I^-$
 $a_{i1}x_1 + \dots + a_{i(n-1)}x_{n-1} \le b_i \quad i \in I^0$

On élimine la dernière variable x_n . Soient :

- $I^+ := \{i \in \{1, \dots, m\} : a_{in} > 0\}$
- ▶ $I^- := \{i \in \{1, ..., m\} : a_{in} < 0\}$
- $I^0 := \{i \in \{1, \dots, m\} : a_{in} = 0\}$

P se re-écrit :

$$\frac{a_{i1}}{a_{in}}x_1 + \dots + \frac{a_{i(n-1)}}{a_{in}}x_{n-1} + x_n \le \frac{b_i}{a_{in}} \qquad i \in I^+$$

$$\frac{a_{i1}}{-a_{in}}x_1 + \dots + \frac{a_{i(n-1)}}{-a_{in}}x_{n-1} - x_n \le \frac{b_i}{-a_{in}} \qquad i \in I^-$$

$$a_{i1}x_1 + \dots + a_{i(n-1)}x_{n-1} \le b_i \qquad i \in I^0$$

On élimine la dernière variable x_n . Soient :

- $I^+ := \{i \in \{1, \dots, m\} : a_{in} > 0\}$
- ▶ $I^- := \{i \in \{1, ..., m\} : a_{in} < 0\}$
- $I^0 := \{i \in \{1, \dots, m\} : a_{in} = 0\}$

P se re-écrit :

$$\frac{a_{i1}}{a_{in}}x_1 + \dots + \frac{a_{i(n-1)}}{a_{in}}x_{n-1} + x_n \le \frac{b_i}{a_{in}} \quad i \in I^+$$

$$\frac{a_{i1}}{-a_{in}}x_1 + \dots + \frac{a_{i(n-1)}}{-a_{in}}x_{n-1} - x_n \le \frac{b_i}{-a_{in}} \quad i \in I^-$$

$$a_{i1}x_1 + \dots + a_{i(n-1)}x_{n-1} \le b_i \quad i \in I^0$$

Pour tout $i^+ \in I^+$ et $i^- \in I^-$ on a :

$$\sum_{i=1}^{n-1} \frac{a_{i-j}}{-a_{i-n}} x_j - \frac{b_i^-}{-a_{i-n}} \le x_n \le \frac{b_i^+}{a_{i+n}} - \sum_{j=1}^{n-1} \frac{a_{i+j}}{a_{i+n}} x_j$$

On élimine la dernière variable x_n . Soient :

- ▶ $I^+ := \{i \in \{1, \dots, m\} : a_{in} > 0$
- ▶ $I^- := \{i \in \{1, \dots, m\} : a_{in} < 0\}$
- $I^0 := \{i \in \{1, \dots, m\} : a_{in} = 0\}$

On peut maintenant éliminer x_n , on obtient P':

$$\left(\frac{a_{i+1}}{a_{i+n}} - \frac{a_{i-1}}{a_{i-n}}\right) x_1 + \dots
+ \left(\frac{a_{i(n-1)}}{a_{in}} - \frac{a_{i-1}}{a_{i-(n-1)}}\right) x_{n-1} \le \frac{b_i^+}{a_{i+n}} - \frac{b_i^-}{a_{i-n}} \quad \forall i^+ \in I^+, i^- \in I^-
a_{i1}x_1 + \dots + a_{i(n-1)}x_{n-1} \le b_i \quad \forall i \in I^0$$

Théorème

$$(x_1,\ldots,x_{n-1})\in P'\Leftrightarrow \exists x_n \ tel \ que\ (x_1,\ldots,x_n)\in P$$

Lemme de Farkas

QUESTION:

Sous quelle conditions *P* est vide?

Lemme de Farkas

QUESTION:

Sous quelle conditions *P* est vide?

Théorème

Le système $P := \{x : Ax \le b\}$ n'a pas de solutions si et seulement si le système uA = 0, ub < 0 et $u \ge 0$ a une solution.

Lemme de Farkas

QUESTION:

Sous quelle conditions *P* est vide?

Théorème

Le système $P := \{x : Ax \le b\}$ n'a pas de solutions si et seulement si le système uA = 0, ub < 0 et $u \ge 0$ a une solution.

Démonstration.

Supposons $x \in P$, pour tout $u \ge 0$, $uAx \le ub$.

Si $\exists u \geq 0$ tel que uA = 0 et ub < 0, $\forall x$:

$$uAx = 0 > ub$$

donc $\exists x \in P$.

Pour le sens inverse, on suppose $P = \emptyset$, en appliquant l'élimination de Fourrier on trouve u satisfaisant le théorème.

Corollaires du Lemme de Farkas

Corrolaire

Le système $Ax \le b$ a une solution si et seulement si $\forall u \ge 0$ tel que uA = 0 on a $ub \ge 0$.

Corollaires du Lemme de Farkas

Corrolaire

Le système $Ax \le b$ a une solution si et seulement si $\forall u \ge 0$ tel que uA = 0 on a $ub \ge 0$.

Corrolaire (Programmation linéaire)

Le système Ax = b, $x \ge 0$ a une solution si et seulement si $\forall u$ tel que $uA \ge 0$ on a $ub \ge 0$.

Corollaires du Lemme de Farkas

Corrolaire

Le système $Ax \le b$ a une solution si et seulement si $\forall u \ge 0$ tel que uA = 0 on a $ub \ge 0$.

Corrolaire (Programmation linéaire)

Le système Ax = b, $x \ge 0$ a une solution si et seulement si $\forall u$ tel que $uA \ge 0$ on a $ub \ge 0$.

Corrolaire

Le système $Ax + By \le f Cx + Dy = g$, $x \ge 0$ a une solution si et seulement si $\forall (u, v)$ tel que $uA + vC \ge 0$, uB + vD = 0 et $u \ge 0$ on a $uf + vg \ge 0$.

Dualité forte en Programmation Linéaire

Théorème

Soient
$$P := \{x : Ax \le b\}$$
 et $D := \{u : uA = c, u \ge 0\}$.

(a) Si
$$P \neq \emptyset$$
 et $D \neq \emptyset$:

$$\max\{cx:x\in P\}=\min\{ub:u\in D\}.$$

(b) Si
$$P \neq \emptyset$$
 et $D = \emptyset$, max $\{cx : x \in P\}$ n'est pas borné.

Dualité forte en Programmation Linéaire

Théorème

Soient
$$P := \{x : Ax \le b\}$$
 et $D := \{u : uA = c, u \ge 0\}$.

(a) Si
$$P \neq \emptyset$$
 et $D \neq \emptyset$:

$$\max\{cx:x\in P\}=\min\{ub:u\in D\}.$$

(b) Si
$$P \neq \emptyset$$
 et $D = \emptyset$, max $\{cx : x \in P\}$ n'est pas borné.

Idée de preuve.

Cas (a). $\forall xinP$ et $u \in D$ on a $cx = uAx \le ub$ (dualité faible). En utilisant (plusieurs fois) le lemme de Farkas on montre que si

 $P \neq \emptyset$ et $D \neq \emptyset$, le système :

$$Ax \le b$$
, $uA = c$, $u \ge 0$, $ub \le cx$

est réalisable.

Definition

 $\alpha x \leq \beta$ est une inégalité valide pour $P \subseteq R^n$ si $\forall x \in P$, $\alpha x \leq \beta$.

Definition

 $\alpha x \leq \beta$ est une inégalité valide pour $P \subseteq R^n$ si $\forall x \in P$, $\alpha x \leq \beta$.

QUESTION : Si $P := \{x : Ax \le b\}$, à quelle condition $\alpha x \le \beta$ est une inégalité valide pour P?

Definition

 $\alpha x \leq \beta$ est une inégalité valide pour $P \subseteq R^n$ si $\forall x \in P$, $\alpha x \leq \beta$.

QUESTION : Si $P := \{x : Ax \le b\}$, à quelle condition $\alpha x \le \beta$ est une inégalité valide pour P?

Théorème

Supposons $P \neq \emptyset$. $\alpha x \leq \beta$ est valide pour P si et seulement si $\exists u \geq 0$ tel que $\alpha = uA$ et $\beta \geq ub$.

Definition

 $\alpha x \leq \beta$ est une inégalité valide pour $P \subseteq R^n$ si $\forall x \in P$, $\alpha x \leq \beta$.

QUESTION : Si $P := \{x : Ax \le b\}$, à quelle condition $\alpha x \le \beta$ est une inégalité valide pour P?

Théorème

Supposons $P \neq \emptyset$. $\alpha x \leq \beta$ est valide pour P si et seulement si $\exists u \geq 0$ tel que $\alpha = uA$ et $\beta \geq ub$.

Démonstration.

Si $\exists u \geq 0$ tel que $\alpha = uA$ et $\beta \geq ub$, $\forall x \in P$:

$$\alpha x = uAx \le ub \le \beta.$$

Si $\alpha x \leq \beta$ est valide, $\max\{\alpha x : x \in P\} \leq \beta$. Par la dualité $\max\{\alpha x : x \in P\} = \min\{ub : uA = \alpha, u \geq 0\}$, la solution optimale u satisfait le Théorème.

Troisième partie III

Coupes de Chvátal-Gomory

Rappels : Algorithme de plans coupants

On considère un programme en nombres entiers pur :

$$\max cx$$

$$Ax \le b$$

$$x \ge 0$$

$$x \in \mathbb{Z}^n$$

Algorithme

- 1. $\mathcal{C} \leftarrow \emptyset$
- 2. Résoudre la relaxation continue $\max\{cx: Ax \leq b, \ \alpha x \leq \beta, \ \forall \alpha, \beta \in \mathcal{C}, \ x \geq 0\}. \ \text{Soit} \ \hat{x} \ \text{la solution}.$
- 3. Si $\hat{x} \in \mathbb{Z}^n$ FIN.
- 4. Trouver $\alpha x \leq \beta$ tel que $\alpha \hat{x} > \beta$ et $\alpha x \leq \beta$ pour tout $x \in \mathbb{Z}^n$ tel que Ax < b et x > 0.
- 5. Ajouter α, β à \mathcal{C} et aller en 2.

Un principe de coupe

Un principe simple

Si $x \in \mathbb{Z}$ et $x \le f$ $f \notin \mathbb{Z}$ alors $x \le \lfloor f \rfloor$ où $\lfloor f \rfloor$ est la partie entière de f.

Utilisation

Soit une inégalité $\alpha x \leq \beta$ telle que $\alpha_i \in \mathbb{Z}$ i = 1, ..., n. Si x satisfait l'inégalité et x est entier $\alpha x \leq \lfloor \beta \rfloor$.

Exemple

 $x \in \mathbb{Z}^2$ tel que $x_1 + x_2 \le 1.9$

Un principe de coupe

Un principe simple

Si $x \in \mathbb{Z}$ et $x \le f$ $f \notin \mathbb{Z}$ alors $x \le \lfloor f \rfloor$ où $\lfloor f \rfloor$ est la partie entière de f.

Utilisation

Soit une inégalité $\alpha x \leq \beta$ telle que $\alpha_i \in \mathbb{Z}$ i = 1, ..., n. Si x satisfait l'inégalité et x est entier $\alpha x \leq \lfloor \beta \rfloor$.

Exemple

 $x \in \mathbb{Z}^2$ tel que $x_1 + x_2 \le 1.9$

Un principe de coupe

Un principe simple

Si $x \in \mathbb{Z}$ et $x \le f$ $f \notin \mathbb{Z}$ alors $x \le \lfloor f \rfloor$ où $\lfloor f \rfloor$ est la partie entière de f.

Utilisation

Soit une inégalité $\alpha x \leq \beta$ telle que $\alpha_i \in \mathbb{Z}$ i = 1, ..., n. Si x satisfait l'inégalité et x est entier $\alpha x \leq \lfloor \beta \rfloor$.

Exemple

$$x \in \mathbb{Z}^2$$
 tel que $x_1 + x_2 \le 1.9 \Rightarrow x_1 + x_2 \le \lfloor 1.9 \rfloor = 1$

Théorème

Si $x \in \mathbb{Z}^n$ vérifie $Ax \leq b$, l'inégalité $uAx \leq \lfloor ub \rfloor$ est valide pour tout $u \geq 0$ tel que $uA \in \mathbb{Z}^m$.

Exemple

On considère le polyhèdre donné par les inégalités :

$$x_1 + x_2 \le 2$$
$$3x_1 + x_2 \le 5$$

Théorème

Si $x \in \mathbb{Z}^n$ vérifie $Ax \leq b$, l'inégalité $uAx \leq \lfloor ub \rfloor$ est valide pour tout $u \geq 0$ tel que $uA \in \mathbb{Z}^m$.

Exemple

On considère le polyhèdre donné par les inégalités :

$$x_1 + x_2 \le 2$$
$$3x_1 + x_2 \le 5$$

Théorème

Si $x \in \mathbb{Z}^n$ vérifie $Ax \leq b$, l'inégalité $uAx \leq \lfloor ub \rfloor$ est valide pour tout $u \geq 0$ tel que $uA \in \mathbb{Z}^m$.

Exemple

On considère le polyhèdre donné par les inégalités :

$$x_1 + x_2 \le 2$$
$$3x_1 + x_2 \le 5$$

En prenant $u_1 = u_2 = 1/2$:

$$2x_1 + x_2 \le 3.5$$

Théorème

Si $x \in \mathbb{Z}^n$ vérifie $Ax \leq b$, l'inégalité $uAx \leq \lfloor ub \rfloor$ est valide pour tout $u \geq 0$ tel que $uA \in \mathbb{Z}^m$.

Exemple

On considère le polyhèdre donné par les inégalités :

$$x_1 + x_2 \le 2$$
$$3x_1 + x_2 \le 5$$

En prenant $u_1 = u_2 = 1/2$:

$$2x_1 + x_2 \le 3.5$$

$$2x_1 + x_2 \le 3$$

Fermeture élémentaire

Définition

Soient $P := \{x \in \mathbb{R}^n : Ax \le b\}$ et $X = P \cap \mathbb{Z}^n$, on appelle fermeture élémentaire de Chyátal l'ensemble :

$$P^{(1)}(P) = \{x \in \mathbb{R}^n : uAx \le |ub|, \text{ pout tout } u \ge 0 \text{ tel que } uA \in \mathbb{Z}^n\}.$$

Proposition

$$X \subset P^{(1)}(P) \subset P$$

Application récursive

On peut appliquer récursivement la procédure :

$$P^{(2)}(P) = P^{(1)}(P^{(1)}(P))$$

$$P^{(k)}(P) = P\left(P^{(k-1)}(P)\right)_{\mathbb{R}^{k}} + \mathbb{R}^{k} + \mathbb{R}^{k}$$

Théorème

Soit A une matrice à coefficients rationnelles et b un vecteur à coefficients rationelles. Toute inégalité valide pour X peut être obtenue par un nombre fini d'application de la procédure de Chvátal.

(i.e.
$$conv(X) = P^k(X)$$
 pour k fini).

$$\begin{array}{cccc} \max \, 9x_1 + 5x_2 & & u_1 \\ x_1 \leq 6 & & u_1 \\ & -x_1 + 3x_2 \leq -1 & u_2 \\ & 3x_1 + 2x_2 \leq 19 & u_3 \\ & x \in \mathbb{Z}_+^2 & & \end{array}$$

Théorème

Soit A une matrice à coefficients rationnelles et b un vecteur à coefficients rationelles. Toute inégalité valide pour X peut être obtenue par un nombre fini d'application de la procédure de Chvátal.

(i.e.
$$conv(X) = P^k(X)$$
 pour k fini).

Théorème

Soit A une matrice à coefficients rationnelles et b un vecteur à coefficients rationelles. Toute inégalité valide pour X peut être obtenue par un nombre fini d'application de la procédure de Chvátal.

(i.e.
$$conv(X) = P^k(X)$$
 pour k fini).

$$\begin{array}{cccc} \max \, 9x_1 + 5x_2 & & & \\ x_1 \leq 6 & & u_1 \\ & -x_1 + 3x_2 \leq -1 & u_2 \\ & 3x_1 + 2x_2 \leq 19 & u_3 \\ & x \in \mathbb{Z}_+^2 & & \end{array}$$

Théorème

Soit A une matrice à coefficients rationnelles et b un vecteur à coefficients rationelles. Toute inégalité valide pour X peut être obtenue par un nombre fini d'application de la procédure de Chvátal.

(i.e.
$$conv(X) = P^k(X)$$
 pour k fini).

$$\max 9x_1 + 5x_2$$
 $x_1 \le 6$
 u_1
 $-x_1 + 3x_2 \le -1$
 u_2
 $3x_1 + 2x_2 \le 19$
 u_3
 $x \in \mathbb{Z}_+^2$

Théorème

Soit A une matrice à coefficients rationnelles et b un vecteur à coefficients rationelles. Toute inégalité valide pour X peut être obtenue par un nombre fini d'application de la procédure de Chvátal.

(i.e.
$$conv(X) = P^k(X)$$
 pour k fini).

$$\max 9x_1 + 5x_2$$

$$x_1 \le 6 \qquad u_1$$

$$-x_1 + 3x_2 \le -1 \quad u_2$$

$$3x_1 + 2x_2 \le 19 \qquad u_3$$

$$x \in \mathbb{Z}_+^2$$

Théorème

Soit A une matrice à coefficients rationnelles et b un vecteur à coefficients rationelles. Toute inégalité valide pour X peut être obtenue par un nombre fini d'application de la procédure de Chvátal.

(i.e.
$$conv(X) = P^k(X)$$
 pour k fini).

$$\max 9x_1 + 5x_2$$
 $x_1 \le 6$
 u_1
 $-x_1 + 3x_2 \le -1$
 u_2
 $3x_1 + 2x_2 \le 19$
 u_3
 $x \in \mathbb{Z}_+^2$

Retour aux plans coupants

Algorithme

- 1. $\mathcal{C} \leftarrow \emptyset$
- 2. Résoudre la relaxation continue $\max\{cx: Ax \leq b, \ \alpha x \leq \beta, \ \forall \alpha, \beta \in \mathcal{C}, \ x \geq 0\}$. Soit \hat{x} la solution.
- 3. Si $\hat{x} \in \mathbb{Z}^n$ FIN.
- 4. Trouver $\alpha x \leq \beta$ tel que $\alpha \hat{x} > \beta$ et $\alpha x \leq \beta$ pour tout $x \in \mathbb{Z}^n$ tel que $Ax \leq b$ et $x \geq 0$.
- 5. Ajouter α, β à \mathcal{C} et aller en 2.

On suppose A à coefficients entiers.

Résolution de la relaxation continue

Le programme linéaire est mis sous forme standard (par l'ajout de variables d'écarts) :

$$max cx$$

$$A'x' = b$$

$$x' \ge 0$$

$$x' \in \mathbb{Z}^{n+m}$$

et résolu par la méthode du simplexe.

A l'optimum de la relaxation continue, on a une base ${\cal B}$ et un tableau du simplexe :

$$x'_B + B^{-1}Nx'_N = B^{-1}b$$

où N est la matrice des variables hors base, et la solution optimale \hat{x} est donnée par $\hat{x}_N=0$ et $\hat{x}_B=B^{-1}b$. On note $\overline{A}=B^{-1}A'$ et $\overline{a}_0=B^{-1}b$. Une ligne du tableau est de la forme :

$$x_i' + \sum_{j \notin B} \overline{a}_{ij} x_j' = \overline{a}_{i0}$$

Si $\overline{a}_0 \in \mathbb{Z}^m$ la solution optimale de la relaxation continue est entière (FIN). Sinon, il existe i tel que $\overline{a}_{i0} \notin \mathbb{Z}$

Séparation d'une coupe de Gomory

$$x_i' + \sum_{j \notin B} \overline{a}_{ij} x_j' = \overline{a}_{i0}$$

On note $f_j = \overline{a}_{ij} - \lfloor \overline{a}_{ij} \rfloor$

$$x_i' + \sum_{j \notin B} f_j x_j' + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor x_j' = \overline{a}_{i0}$$

Comme $x'_{j} \geq 0$ et $f_{j} \geq 0$, cette égalité implique;

$$x_i' + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor x_j' \leq \overline{a}_{i0}$$

Le membre de gauche est entier, on peut arrondir celui de droite :

$$x_i' + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor x_j' \leq \lfloor \overline{a}_{i0} \rfloor$$

Séparation d'une coupe de Gomory (II)

L'inégalité

$$x_i' + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor x_j' \leq \lfloor \overline{a}_{i0} \rfloor$$

n'est pas satisfaite par la solution courante : $\hat{x}_i' = \overline{a}_{i0}$ et $\hat{x}_j' = 0$ pour $j \notin B$ donc :

$$\hat{x}_i' + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor \hat{x}_j' = \overline{a}_{i0} > \lfloor \overline{a}_{i0} \rfloor$$

On peut donc ajouter cette inégalité et appliquer l'algorithme de séparation.

Algorithme de Gomory

On suppose A à coefficients entiers.

- 1. $\mathcal{C} \leftarrow \emptyset$
- 2. Résoudre la relaxation continue $\max\{cx: Ax \leq b, \ \alpha x \leq \beta, \ \forall \alpha, \beta \in \mathcal{C}, \ x \geq 0\}, \ \mathsf{par} \\ \mathsf{l'algorithme} \ \mathsf{du} \ \mathsf{simplexe}. \ \mathsf{Soit} \ \hat{x} \ \mathsf{la} \ \mathsf{solution} \ \mathsf{et} \ B \ \mathsf{la} \ \mathsf{base} \\ \mathsf{optimale}.$
- 3. Si $\hat{x} \in \mathbb{Z}^n$ FIN.
- 4. Choisir une ligne du tableau :

$$x_i' + \sum_{j \notin B} \overline{a}_{ij} x_j' = \overline{a}_{i0}$$

telle que $\overline{a}_{i0} \notin \mathbb{Z}$.

5. Ajouter l'inégalité de Gomory

$$x_i' + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor x_j' \leq \lfloor \overline{a}_{i0} \rfloor$$

Finitude de l'algorithme

Solution lexicographiquement minimale

Une solution \hat{x} est dite lexicographiquement optimale si :

- elle est optimale;
- elle est minimale dans l'ordre lexicographique : toute autre solution optimale \overline{x} est telle que

$$\hat{x}_1 < \overline{x}_1$$
 ou $(\hat{x}_1 = \overline{x}_1 \text{ et } \hat{x}_2 < \overline{x}_2)$ ou ...

ou
$$(\hat{x}_i = \overline{x}_i \text{ pour } i = 1, ..., n-1 \text{ et } \hat{x}_n < \overline{x}_n)$$

Théorème de Gomory

L'algorithme converge en temps fini si la relaxation continue est résolue à une solution lexicographiquement optimale à chaque itération.

L'algorithme de Gomory a été découvert en 1958.

- L'algorithme de Gomory a été découvert en 1958.
- ► Très vite (1960?) il a été considéré comme inutile en pratique : mauvaise convergence, numériquement instable. . .

- L'algorithme de Gomory a été découvert en 1958.
- ► Très vite (1960?) il a été considéré comme inutile en pratique : mauvaise convergence, numériquement instable. . .
- ► En 2008 Zanette, Balas et Fischetti ont (re)découvert que l'algorithme original de Gomory ne marchait pas si mal.
- ▶ En 2010, Z.B.F. donnent comme exemple un problème posé par Knuth en 1960 avec 51 variables et 43 contraintes résolu pour la première fois en 1995 avec CPLEX.
 - Par branch-and-cut, le problème est résolu en 6 secondes et 91 000 nœuds.
 - L'algorithme de Gomory (légèrement modifié) résoud le problème en 0,15 secondes avec 1 032 coupes!

Importance de l'ordre lexicographique

- Gomory pensait que l'ordre lexicographique était une technicité théorique uniquement nécessaire pour la preuve.
- ► En fait, il joue un ordre capital en pratique.

Quatrième partie IV

Coupes de Gomory Mixtes

Coupes mixtes de Gomory

Les coupes de Gomory peuvent uniquement être utilisées pour un problème en nombres entiers pur.

Nous considérons maintenant un problème mixte :

```
  Ax \le b 
  x \ge 0 
  x_i \in \mathbb{Z}   i \in I \subseteq \{1, ..., n\}
```

Un principe simple

Si $x \in \mathbb{R}^n$, $x \ge 0$ et x satisfait soit la contrainte $\sum_{i=1}^n a_i^1 x_i \ge 1$ soit la contrainte $\sum_{i=1}^n a_i^2 x_i \ge 1$. Alors x satisfait la contrainte :

$$\sum_{i=1}^{n} \max\{a_i^1, a_i^2\} x_i \ge 1$$

Exemple

Si x > 0 satisfait soit

$$\frac{x_1}{2} + \frac{x_2}{2} \ge 1$$

$$\frac{3}{5}x_1+\frac{x_2}{5}\geq 1$$

Un principe simple

Si $x \in \mathbb{R}^n$, $x \ge 0$ et x satisfait soit la contrainte $\sum_{i=1}^n a_i^1 x_i \ge 1$ soit la contrainte $\sum_{i=1}^n a_i^2 x_i \ge 1$. Alors x satisfait la contrainte :

$$\sum_{i=1}^{n} \max\{a_{i}^{1}, a_{i}^{2}\} x_{i} \geq 1$$

Exemple

Si $x \ge 0$ satisfait soit

$$\frac{x_1}{2} + \frac{x_2}{2} \ge 1$$

$$\frac{3}{5}x_1 + \frac{x_2}{5} \ge 1$$

Un principe simple

Si $x \in \mathbb{R}^n$, $x \ge 0$ et x satisfait soit la contrainte $\sum_{i=1}^n a_i^1 x_i \ge 1$ soit la contrainte $\sum_{i=1}^n a_i^2 x_i \ge 1$. Alors x satisfait la contrainte :

$$\sum_{i=1}^{n} \max\{a_{i}^{1}, a_{i}^{2}\} x_{i} \geq 1$$

Exemple

Si x > 0 satisfait soit

$$\frac{x_1}{2} + \frac{x_2}{2} \ge 1$$

$$\frac{3}{5}x_1+\frac{x_2}{5}\geq 1$$

Un principe simple

Si $x \in \mathbb{R}^n$, $x \ge 0$ et x satisfait soit la contrainte $\sum_{i=1}^n a_i^1 x_i \ge 1$ soit la contrainte $\sum_{i=1}^n a_i^2 x_i \ge 1$. Alors x satisfait la contrainte :

$$\sum_{i=1}^{n} \max\{a_{i}^{1}, a_{i}^{2}\} x_{i} \geq 1$$

Exemple

Si x > 0 satisfait soit

$$\frac{x_1}{2} + \frac{x_2}{2} \ge 1$$

$$\frac{3}{5}x_1+\frac{x_2}{5}\geq 1$$

Un principe simple

Si $x \in \mathbb{R}^n$, $x \ge 0$ et x satisfait soit la contrainte $\sum_{i=1}^n a_i^1 x_i \ge 1$ soit la contrainte $\sum_{i=1}^n a_i^2 x_i \ge 1$. Alors x satisfait la contrainte :

$$\sum_{i=1}^{n} \max\{a_{i}^{1}, a_{i}^{2}\} x_{i} \geq 1$$

Exemple

Si $x \ge 0$ satisfait soit

$$\frac{x_1}{2} + \frac{x_2}{2} \ge 1$$

soit

$$\frac{3}{5}x_1 + \frac{x_2}{5} \ge 1$$

il satisfait :

$$\frac{3}{5}x_1 + \frac{x_2}{2} \ge 1$$

Dérivation d'une coupe mixte simple

On considère toujours une ligne du tableau (maintenant certaines variables sont continues) corrspondant a une variable de base entière $(x_i' \in \mathbb{Z})$:

$$x_i' + \sum_{j \notin B} \overline{a}_{ij} x_j' = \overline{a}_{i0}$$

Soit $f_0 = \overline{a}_{i0} - |\overline{a}_{i0}|$. On réecrit la ligne :

$$\sum_{j \notin B} \overline{a}_{ij} x_j' - f_0 = \lfloor \overline{a}_{i0} \rfloor - x_i'$$

Comme $\lfloor \overline{a}_{i0} \rfloor - x_i' \in \mathbb{Z}$ on a soit $\lfloor \overline{a}_{i0} \rfloor - x_i' \geq 0$ soit $\lfloor \overline{a}_{i0} \rfloor - x_i' \leq -1$ et donc soit

$$\sum_{j \notin B} \overline{a}_{ij} x_j' - f_0 \ge 0$$

$$\sum_{i \notin B} \overline{a}_{ij} x_j' - f_0 \le -1.$$

Dérivation d'une coupe mixte simple (II)

En réarangeant les termes, soit

$$\sum_{j \notin B} \overline{a}_{ij} x_j' \ge f_0$$

soit

$$\sum_{i \notin B} \overline{a}_{ij} x_j' \le f_0 - 1.$$

On divise la première inégalité par $f_0 > 0$ et la seconde par $f_0 - 1 < 0$, soit

$$\sum_{i \notin B} \frac{\overline{a}_{ij}}{f_0} x_j' \ge 1$$

soit

$$\sum_{i \notin B} \frac{\overline{a}_{ij}}{f_0 - 1} x_j' \ge 1.$$

On peut maintenant appliquer le principe disjonctif, on obtient :

$$\sum_{i \notin B} \max\{\frac{\overline{a}_{ij}}{f_0}, \frac{\overline{a}_{ij}}{f_0 - 1}\} x_j' \ge 1.$$

Comme $f_0 > 0$ et $f_0 - 1 < 0$:

$$\max\{\frac{\overline{a}_{ij}}{f_0},\frac{\overline{a}_{ij}}{f_0-1}\} = \begin{cases} \frac{\overline{a}_{ij}}{f_0} & \text{si } \overline{a}_{ij} > 0\\ \frac{\overline{a}_{ij}}{f_0-1} & \text{si } \overline{a}_{ij} < 0. \end{cases}$$

et l'inégalité s'écrit :

$$\sum_{j\not\in B, \bar{a}_{ij}>0} \frac{\overline{a}_{ij}}{f_0} x_j' + \sum_{j\not\in B, \overline{a}_{ij}<0} \frac{\overline{a}_{ij}}{1-f_0} x_j' \geq 1.$$

Une meilleure inégalité : Inégalité Mixte de Gomory

Au début de la dérivation on peut améliorer línégalité en différenciant les variables hors bases entières et continues dans la ligne du tableau :

$$x_i' + \sum_{j \notin B, j \in I} \overline{a}_{ij} x_j' + \sum_{j \notin B, j \notin I} \overline{a}_{ij} x_j' = \overline{a}_{i0}$$

Soit $f_0 = \overline{a}_{i0} - |\overline{a}_{i0}|$, $f_i = \overline{a}_{ii} - |\overline{a}_{ii}|$. La ligne peut se réecrire :

$$x'_{i} + \sum_{j \notin B, j \in I, f_{j} \leq f_{0}} f_{j} x'_{j} + \sum_{j \notin B, j \in I, f_{j} > f_{0}} (1 - f_{j}) x'_{j} \sum_{j \notin B, j \notin I} \overline{a}_{ij} x'_{j} =$$

$$\overline{a}_{i0} - x'_{i} - \sum_{j \notin B, j \in I, f_{j} \leq f_{0}} \lfloor \overline{a}_{ij} \rfloor x'_{j} - \sum_{j \notin B, j \in I, f_{j} > f_{0}} \lceil \overline{a}_{ij} \rceil x'_{j} \quad (1)$$

En utilisant l'intégrité du membre de droite on peut dériver une coupe de la même manière, on obtient :

$$\sum_{j \notin B, j \in I, f_j \leq f_0} \frac{f_j}{f_0} x_j' + \sum_{j \notin B, j \in I, f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j' + \sum_{j \notin B, j \notin I, \overline{a}_{ij} > 0} \frac{\overline{a}_{ij}}{f_0} x_j' + \sum_{j \notin B, j \notin I, \overline{a}_{ij} < 0} \frac{\overline{a}_{ij}}{1 - f_0} x_j' \geq 1.$$

Comparaison des coupes de Gomory pures et Mixtes

Si on suppose le problème entier, on peut montrer que l'inégalité mixte

$$\sum_{j \notin B, f_j \le f_0} \frac{f_j}{f_0} x_j' + \sum_{j \notin B, f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j' \ge 1.$$

domine l'inégalité pure :

$$x_i' + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor x_j' \leq \lfloor \overline{a}_{i0} \rfloor.$$

Pour les programmes mixtes, l'algorithme de Gomory ne converge pas en temps fini.

En 1996, il a été découvert que l'algorithme pouvait en fait être utile dans le cadre d'un branch-and-cut.

Algorithme de renforcement

- 1. Résoudre la relaxation continue $\max\{cx: Ax \leq b, \ \alpha x \leq \beta, \ \forall \alpha, \beta \in \mathcal{C}, \ x \geq 0\}. \text{ Soit } \hat{x} \text{ la solution et } B \text{ la base optimale.}$
- 2. Si $\hat{x} \in \mathbb{Z}^n$ FIN.
- 3. Pour toute les lignes du du tableau :

$$x_i' + \sum_{j \notin B} \overline{a}_{ij} x_j' = \overline{a}_{i0}$$

telles que $\bar{a}_{i0} \notin \mathbb{Z}$, ajouter l'inégalité Mixte de Gomory et aller en 2.

Ces coupes sont intégrées dans tous les solveurs modernes (CPLEX, GUROBI, GLPK, COIN-OR,...).

