CO5412: Optimización No Lineal I.

Enero-Marzo 2011

TAREA 5

- 1. Sea $f(x) = 10(x_2 x_1^2)^2 + (1 x_1)^2$.
 - (a) Para $x_c = (0, -1)^t$ dibuje las curvas de nivel del modelo cuadrático $\tilde{f}(x_c + s)$ (visto en clase), con $H_c = \nabla^2 f(x_c)$.
 - (b) Escriba el problema de región de confianza (PRC) para δ_c cualquiera.
 - (c) Dibuje la familia de soluciones del problema (PRC) cuando el radio δ_c de la región de confianza varía desde 0 hasta 2.
 - (d) Repita las partes (a) y (c) si $x_c = (0, 0.5)$
- 2. Implemente en Matlab el método para el paso DOGLEG. Escoja H_c como el hessiano exacto. Use su código para resolver el problema (PRC) con $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$ tomando como $x_c = (1, 2, 1, 2)^t$ y $x_c = (-1.2, 1)^t$. Diga cuáles son los valores de s_c obtenidos.
- 3. Implemente en Matlab el método de Región de Confianza descrito en clase tomando como $\bar{\Delta} = 100$, $\eta = 1/8$ y aplíquelo para resolver la función anterior tomando como puntos iniciales $x_o = (1, 2, 1, 2)^t$, $x_o = (-1.2, 1)^t$ y en ambos casos $\delta_o = ||s_{cp}||$.
- 4. (Opcional) Compare los resultados obtenidos en la parte anterior con los obtenidos con los métodos de Cauchy y Newton si usa búsqueda lineal regresiva.