MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Agenda for the next two lectures

- Intro to Stochastic Simulation
 - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- ► Limit theorems for Convergence of random variables
 - Sure convergence
 - Almost sure convergence & SLLN
 - Convergence in probability
 - ightharpoonup Convergence in r^{th} mean
 - Weak Convergence or Convergence in distribution & CLT

Generate samples using uniform distribution

Our aim: Obtain samples from a discrete random variable

- ▶ Suppose you have access to samples from a uniform random variable *U* over support [0, 1].
- import numpy as np import matplotlib.pyplot as plt uni_samples = np.random.uniform(0, 1, 5000) plt.hist(uni_samples, bins = 10, density = True) plt.show()

- uni_samples is a vector of 5000 realizations of uniform random variable U.
- You can also see it as a realization of $U_1, U_2, \dots U_{5000}$ i.i.d uniform variables.

How to simulate a dice using these samples?

► Can you use these 5000 samples and convert them into outcomes of a dice?

```
t=0
dice_samples=np.zeros(5000)
for u in uni_samples:
  if u < 1/6:
                                          (0.02, 0.8, 0.6, 0.03)
    dice_sample = 1
                                          ▶ [1, 5, 4, 1]
  if 1/6 < u < 2/6:
    dice_sample = 2
  if 2/6 < u < 3/6:
                                          0.200
                                          0.175
    dice_sample = 3
                                          0.150
  if 3/6 < u < 4/6:
                                          0.125
    dice_sample = 4
                                          0.100
                                          0.075
  if 4/6 < u < 5/6:
                                          0.050
    dice sample = 5
                                          0.025
  if 5/6 < u < 6/6:
                                          0.000
    dice_sample = 6
  dice_samples[t] = dice_sample
  t = t+1
plt.hist(dice_samples, bins = 6, density = True)
```

å

Our aim: Obtain samples from a discrete random variable

- Consider a discrete random variable X with support set $\{x_0, x_1, \ldots\}$ and pmf $p_X(x_j) = p_j$ for $j = 0, 1, \ldots$ such that $\sum_j p_j = 1$.
- Cardinality of the support set of X could be finite or infinite.
- Our aim: Create i.i.d. samples of r.v. X using i.i.d. random samples of U.
- We shall now formally see the inverse transform method to do this.

The inverse transform method

- Aim: We wish to create i.i.d. samples of a discrete r.v. X with $p_X(x_j) = p_j$ using i.i.d. samples of a uniform r.v. U over [0,1].
- Let $u \in [0,1]$ be a realization of r.v. U. Then the corresponding sample of X is generated as follows

$$X = \begin{cases} x_0 \text{ if } \frac{u}{u} < p_0 \\ x_1 \text{ if } p_0 \le \frac{u}{u} < p_0 + p_1 \\ x_2 \text{ if } p_0 + p_1 \le \frac{u}{u} < p_0 + p_1 + p_2 \\ \vdots \\ x_j \text{ if } \sum_{i=0}^{j-1} p_i \le \frac{u}{u} < \sum_{i=0}^{j} p_i \\ \vdots \end{cases}$$

Why is this method correct?

The inverse transform method

▶ A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if $\sum_{i=0}^{j-1} p_i \le U < \sum_{i=0}^{j} p_i$

- Why the name "inverse transform method"?
 - Recall that $\{x_0, x_1, x_2, ...\}$ is the support set of X and without loss of generality (WLOG), suppose $x_0 < x_1 < x_2 < ...$
 - Let $F_X(x) := \mathbb{P}[X \le x]$ denote the cdf of X and thus we have

$$F_X(x_j) = \sum_{i=0}^k p_i$$

This implies that

$$X = x_i$$
 if $F_X(x_{i-1}) \le U < F_X(x_i)$ (implying $p_X(x_i) = p_i$)

- After generating a random number U, we determine the value of X by finding the interval $F_X(x_{i-1})$, $F_X(x_i)$ in which u lies.
- We are thus finding the inverse of $F_X(U)$!

How to generate samples of a continuous random variable

(Using samples of a continuous uniform variable over [0,1])

Our aim: Obtain samples from a continuous random variable

- ▶ Suppose you have access to samples from a uniform random variable *U* over support [0, 1].(We will not study how to generate such samples.)
- Consider a continuous random variable X with support set \mathcal{X} and let $F_X(x)$ denotes its cdf.
- Support set of X could be arbitrary.
- Our aim: Create i.i.d. samples of r.v. X using i.i.d. random samples of U.
- ▶ We shall again see the inverse transform method to do this.

Sampling from continuous random variables

Lemma

Let U be uniform random variable over [0,1]. Consider any continuous cdf F(.). Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

Proof:

▶ Let $F_X(x)$ be the cdf of X, i.e., $F_X(x) := \mathbb{P}[X \le x]$. Then

$$F_X(x) = \mathbb{P}[F^{-1}(U) \le x]$$
$$= \mathbb{P}[U \le F(x)]$$
$$= F(x)$$

Sampling from continuous random variables

Lemma

Let U be uniform random variable over [0,1]. Consider any continuous cdf F(.). Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

- Using this lemma, how to generate samples of a continuous random variable X using samples of uniform random variable U?
- ▶ **Answer:** Draw $u \sim U$ and obtain $F^{-1}(u)$. This is a sample from X.
- Do you observe anything "special" about this lemma?

Application in data analysis

- ▶ Lemma: $X = F^{-1}(U)$ has distribution F(.).
- ▶ What will be cdf of a random variable Y = F(X)? **Uniform!**
- A consequence of this lemma is that F(X) is a uniform distribution.
- This property is known as "probability integral transform or universality of uniform".
- This property is used to test whether a set of observations can be modelled as arising from a specified distribution G(.) or not.
 - ▶ Given set of data samples $s_1, s_2, ..., s_n$, plot $G(s_i)$ for different samples.
 - If these points are spread uniformly over the interval [0,1] then it indicates that the samples are indeed from G(.).

Stochastic Simulation

- This was a brief introduction to this area of stochastic simulation.
- Refer the book Simulation by Sheldon Ross!
- Some popular techniques in simulation are:
- ► The inverse transform method
 - Accept-Reject method (rejection sampling)
 - Importance sampling
 - Markov Chain Monte Carlo (MCMC) methods
 - Hasting-Metropolis algorithm
 - Gibbs sampling
 - Slice sampling