

Espacios topológicos

Topología - 3

Georgy Nuzhdin 2022-actual

Espacio topológico

| Definición. Dado un conjunto X se dice que una **colección de subconjuntos** T es una **topología** si se cumplen las siguientes propiedades:

$$\emptyset.X \in T$$

• La intersección de un número finito de elementos de T también pertenece a T:

$$\bigcap_{n=1}^{k} T_n \in T$$

• La unión de cualquier número (nuede que infinito) de elementos de T también le nertenece:

$$\bigcup_{n=1}^{\infty} T_n \in T$$

Espacio topológico

| Definición. La pareja (X, T) se llama **espacio topológico**

Definición. Los elementos de T se llaman **abiertos**

Conjuntos cerrados

| Definición. El conjunto $F \in X$ se llama **cerrado** si su complemento es abierto ($X \setminus F \in T$)

Inventa una topología no trivial en $X = \{ \spadesuit, \clubsuit, \blacklozenge, \lor \}$

Tiene que tener al menos 3 abiertos

¿Son topologías?

- T es el conjunto de todos los subconjuntos de X
 - Por cierto, esta topología se llama discreta
- X={a,b,c} T= {Ø, {a}, {b}, {a, c}, {a, b, c}, {a, b} }
- $\bullet X = \{ \spadesuit, \clubsuit, \blacklozenge, \blacktriangledown \}$
 - $T = \{\emptyset, X, \{\clubsuit\}, \{\clubsuit\}\}$
 - $\bullet \mathsf{T} = \{\emptyset, \mathsf{X}, \{\spadesuit, \clubsuit\}, \{\clubsuit, \spadesuit\}\}\$
- ¿Qué tal T₁ y T₂?

Lo malo de una topología cualquiera

- Os habréis dado cuenta de que hay topologías algo "tontas"
- Por ejemplo, en $X = \{ \spadesuit, \clubsuit, \blacklozenge, \blacktriangledown \}$ $T = \{ \emptyset, X, \{ \spadesuit \} \}$ sí es una topología. Pero hay elementos de X que no están en ningún abierto que no sea X
- Buscamos una topología "inteligente" que para cualquier elemento tenga al menos "su propio abierto personal" y en cierto sentido que no sea compartido por otros

Topologías "raras"

- Fijaos en la siguiente topología en X = {♠, ♠, ♦, ♥}
- \blacksquare T= {Ø, X, {♠, ♠}}
- Se cumplen todas las propiedades, ¿verdad?
- ¿Por qué esta topología es "rara"?
- No hay ningún entorno abierto de ♠ que no contenga ♣
- De alguna manera, ♠ está "infinitamente cerca" de ♣, de modo que la sucesión constante x₁ = ♣, x₂ = ♣,... ¡¡¡tiende a ♠!!!

Conclusión importante

- Vamos a requerir a las topologías dos propiedades adicionales
 - Cualquier elemento debe pertenecer a un abierto distinto del universo
 - Ninguna pareja de elementos debe tener la misma colección de abiertos a los que pertenecen

Lo "malo" de la topología discreta

- Recuerda que la topología discreta considera cualquier conjunto como abierto
- ¿Qué conjuntos son cerrados en la topología discreta?
- ¡Correcto, TODOS!
- Son todos ABIERTOS Y CERRADOS A LA VEZ

¿Verdad que ahora es fácil ver que

- La intersección de un número (potencialmente infinito) de cerrados es cerrado
- La unión de un número finito de cerrados es cerrado

¿Son topologías?

- $X = [0; +\infty), T_a = \{(a; +\infty), donde \ a \ge 0\}$
 - Incumple la primera propiedad
- $\bullet X = (-\infty, +\infty), T_a = \{\emptyset, X, (a; +\infty), donde \ a \in \mathbb{R}\}$
 - Se llama topología de semirrectas derechas
 - Es topología por ser matrioska
- $X = (-\infty, +\infty), T = \{(a; +\infty)\} \cup \{(-\infty, b)\} \cup \{\emptyset, X\}, donde, b, a \in \mathbb{R}$
- $T_a = \emptyset \cup \{U \subset X : |U| = \infty\}.$
- $T_a = \emptyset \cup \{U \subset X : |X \setminus U| < \infty\}$. Es decir, los abiertos son subconjuntos cuyo complementario tiene un número finito de elementos
- Se llama topología cofinita

$$X = \mathbb{R}, T = \{(a; +\infty), donde \ a \in \mathbb{R}\}$$

- ¿Son abiertos, cerrados, abiertos y cerrados a la vez o ninguna de las dos?
- **(**1; 2)
- **[**1;2]
- **■** (1; ∞)
- \blacksquare [1; ∞)
- **4** {3,5}
- $(-\infty; \infty)\setminus\{3,5\}$
- $-(-\infty;2)$
- $[-\infty; 2]$

$X = \mathbb{R}$ con la topología cofinita

- ¿Son abiertos, cerrados, abiertos y cerrados a la vez o ninguna de las dos?
- **(**1; 2)
- **[**1;2]
- **■** (1; ∞)
- **4** {3,5}
- $(-\infty; \infty) \setminus \{3,5\}$
- **■** [1; ∞)
- $-(-\infty;2)$
- $-(-\infty;2]$

Si tenemos la topología (X, Ω) e $Y = X \cup \{a\}$

• ¿Es una topología en Y $T = \{\{a\} \cup U \mid U \in \Omega\} \cup \{\emptyset\}$?

Bases de topología

| Definición. Una colección de subconjuntos B_i de X se llama base si

• $\forall x \in X \exists B_i \in B: x \in B_i$

Cada punto de X está en algún elemento de la base

• $\forall x \in B_1 \cap B_2 \ \exists B_3 \in B : B_3 \subset B_1 \cap B_2 \& x \in B_3$

Si un punto está en la intersección de dos elementos, hay un elemento de la base en la intersección que contiene este punto

Una topología, ¿puede considerarse como base?

Topología inducida por la base

- Los elementos de la base desempeñan el papel de "bolas abiertas"
- De hecho, cada base crea su propia topología:

| Definición. la topología generada por B, es aquella tal que U es abierto si y sólo si para todo $x \in U$ existe B \in B tal que $x \in B \subset U$

- En términos anteriores, un conjunto es abierto si para cualquier punto suyo hay una bola abierta (elemento de la base) alrededor
- Simplificando, una topología generada por la base son todas las uniones de los elementos de la base

Inventa una base para R

- ¡Pues claro!
- Son intervalos (a; b). $B = \{(a,b) | a < b, a, b \in \mathbb{R}\}$
- ¿Hay más?
- Sí, por ejemplo $B_1 = \{(a, b) | a < b, b a < 1, a, b \in \mathbb{R} \}$

Topología de Sorgenfrey

- Sea la base $B = \{[a;b) : a,b \in \mathbb{R}\}$
- La unión de los conjuntos de la B forma la topología de Sorgenfrey, fuente de problemas y paradojas

Abiertos y cerrados en Sorgenfrey

- Su base son intervalos $\{[a;b):a,b\in\mathbb{R}\}$
- Demuestra que
 - (a; b) son abiertos
 - $(a; +\infty)$ son abiertos
 - $(-\infty, a)$, $[a; +\infty)$ son abiertos y cerrados
 - [a; b) también son cerrados
- ¿Cómo son
 - (a; b]
 - [a; b] ?

Ejemplo de razonamiento

- $(a; +\infty)$ es abierto porque $(a; +\infty) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, a + n]$
- Si (a; b] fuese abierto, sería $(a; b] = \bigcup_{n=1}^{\infty} [a_i, b_i]$
- Si $b_i \leq b$, b no entra en la unión
- Si algún $b_i > b$, además de b entra $\frac{b+b_i}{2}$

Las bases, ¿son mínimas?

- En los espacios vectoriales las bases no se pueden reducir
- ¿Podemos "empequeñecer" la base (a; b) ?
- ¡Pues claro!
- Podemos quitar (0; 1) porque está cubierto por (0; 0,9) y (0,1; 1)
- De hecho, podemos quitar cualquier intervalo

Ejemplo importante: en \mathbb{R} cada base se puede reducir

- Elijamos un $U \subset B$
- Elijamos un par de puntos $x, y \in U$
- Podemos cubrir U con intervalos abiertos de longitud y-x. Por cierto, ¿por qué?
- Necesitaremos al menos 2. ¿Por qué?
- Cada uno de estos intervalos es abierto, por tanto, puede ser representado como unión de elementos de la base distintos de U
- ¡Entonces, U sobra! Lo hemos cubierto con otros elementos de la base

Sea X un conjunto discreto, pongamos, $X = \{A, B, C\}$

- ¿Cuál será su base?
- ¿Se te ocurre otra?
- ¿Se puede reducir?

Entonces, ¿en qué sentido las bases son bases?

- ¿Pueden dos topologías distintas tener la misma base?
- Claramente, no. Cada topología es el conjunto de todas las uniones de distintos elementos de la base

Problema-Investigación. ¿Qué topologías tienen una única base?

- Consideración 1. Cada topología es su propia base
- Consideración 2. Si hubiera otra base B', algún conjunto abierto $U \subset B$ podría representarse como unión $U = \bigcup B'_i, B'_i \in B'$. Tenemos que prohibirlo
- Entonces, todos sus elemento están ordenados: cada elemento siguiente contiene el anterior
- Topología tipo Matrioska: no podemos representar ningún abierto como unión o intersección de otros

Teoremas de la base

- Teorema 1. La topología inducida por una base es realmente una topología
- Teorema 2. Cada abierto en esta topología es una unión de elementos de B
- ¿Cómo son los abiertos? Para cada punto del abierto A hay una bola de la base que contiene el punto y está dentro de A
- Entonces cada abierto es unión de elementos de la base
- La unión de estos abiertos sigue siendo unión de elementos de la base por lo que es abierta
- La intersección de abiertos es la unión de intersecciones de elementos de la base. Como dentro de cada intersección para cada x hay un elemento de la base que lo contiene, de nuevo es unión de elementos de la base, y es abierta

Continuidad en distintas topologías

En la topología de semirrectas derechas ¿son continuas

$$f(x) = 2x$$

Definimos el conjunto abierto

$$f(x) = -x$$

•
$$f(x) = x^2$$

$$f(x) = x^3$$

$$A = (a, \infty)$$

- f(x) = 2x $f^{-1}(A) = (\frac{a}{2}, \infty)$ es abierto en X. Por lo tanto, f es continua.
- f(x) = -x $f^{-1}(A) = (-\infty, -a)$ no es abierto en X. Por lo tanto, f no es continua.
- $f(x) = x^2$ $f^{-1}(A) = (-\infty, -\sqrt{a}) \cup (\sqrt{a}, \infty)$ no es abierto en X. Por lo tanto, f no es continua.
- $f(x) = x^3$ $f^{-1}(A) = (\sqrt[3]{a}, \infty)$ es abierto en X. Por lo tanto, f es continua.

En la topología de Sorgenfrey ¿son continuas

•
$$f(x) = 2x$$

f(x) = -x

•
$$f(x) = x^2$$

Definimos el conjunto abierto

$$A = [a, b)$$

- f(x) = 2x $f^{-1}(A) = \left[\frac{a}{2}, \frac{b}{2}\right)$ es abierto en X. Por lo tanto, f es continua.
- f(x) = -x $f^{-1}(A) = (-b, -a]$ no es abierto en X. Por lo tanto, f no es continua.
- $f(x) = x^2$ $f^{-1}(A) = (-\sqrt{b}, -\sqrt{a}] \cup [\sqrt{a}, \sqrt{b})$ no es abierto en X. Por lo tanto, f no es continua.
- $f(x) = x^3$ $f^{-1}(A) = [\sqrt[3]{a}, \sqrt[3]{b})$ es abierto en X. Por lo tanto, f es continua.

Continuidad en la cofinita

- En la topología cofinita inventa una función continua y otra discontinua. ¿Cómo son las funciones continuas?
- PISTA: piensa al revés, la preimagen de un cerrado tiene que ser cerrado. Y en la topología cofinita los cerrados son conjuntos finitos de puntos aislados
- Así que todas las funciones anteriores eran continuas en la cofinita
- La única manera de crear una función discontinua en la cofinita es conseguir que la preimagen de un punto sea un conjunto infinito. Para ello nos vale cualquier función periódica.
- Ejemplo:
 - $y = \sin x$ no es continua

Topologías más finas

| **Definición**. La topología T' se llama **más fina** que T si $T \subset T'$

Teorema.
$$T \subset T' \Leftrightarrow \forall x \in X \forall B(x) \subset T$$

 $\exists B'(x) \subset T' : B'(x) \subset B(x)$

Es decir, los entornos en T' son iguales o más estrechos

Cuanto más fina es una topología

Más abiertos tiene

¿Qué topología es más fina?

- La canónica o la de Sorgenfrey
- La cofinita o la topología generada por la base $B = \{U: \mathbb{R} \setminus \mathbb{U} \subset \mathbb{Z}, |\mathbb{R} \setminus \mathbb{U}| < \infty\}$
- La de la torre en R²o la canónica

¿Qué topología es más fina?

- La canónica o la de Sorgenfrey
 - La segunda tiene todos los abiertos de la primera, y, además, [a, b)
- La cofinita o la topología generada por la base

$$B = \{U : \mathbb{R} \setminus \mathbb{U} \subset \mathbb{Z}, |\mathbb{R} \setminus \mathbb{U}| < \infty\}$$

- La primera tiene todos los abiertos de la segunda, pero, además, R\{puntos no enteros}
- La de la torre en R²o la canónica
 - ¡Esta pregunta es más delicada!
 - Las bolas abiertas de la de la Torre son puntos o cruces.
 Los abiertos de la base no coinciden
 - Pero las bolas unitarias de la torre son puntos, por lo que caben en cualquier abierto de la canónica, por lo que es más fina (de hecho, coincide con la discreta)

Continuidad y topología

Teorema / Observación. Si damos a X dos topologías distintas T y T', entonces la función identidad $id:(X,T')\to (X,T)$ es continua solo si T' es igual o más fina que T

- Una función continua f : X → Y sigue siendo continua si engrosamos la topología
- ¿Por qué ocurre esto?
- Porque si T' es igual o más fina que T, todos los abiertos en T también lo son en T'. Si no, la preimagen de un abierto, NO será necesariamente un abierto

Topología inducida por distancia

- Cualquier función de distancia permite definir bolas abiertas como conjuntos de puntos que están a una distancia menor que dada del centro
- Si cogemos estas bolas abiertas como base de nuestra topología, la topología resultante se llama "topología inducida por una distancia"

¿Qué topología es más fina en \mathbb{R}^2 ?

- Topología inducida por la distancia euclidiana $d(A,B) = |\overrightarrow{AB}|$
- Topología inducida por la distancia de Manhattan

$$d'((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|$$

Euclidiana vs Manhattan

Bolas abiertas:

bola abierta en
$$(\mathbb{R}^2, d) =$$

bola abierta en $(\mathbb{R}^2, d') =$

Euclidiana vs Manhattan

- ¿A qué preguntas tenemos que contestar?
 - ¿Cualquier círculo está dentro de un cuadrado?
 - ¿Cualquier cuadrado está dentro de un círculo?

¿Qué topología es más fina?

La generada por la distancia de la torre (cantidad de coordenadas distintas) o la generada por la distancia euclidiana?

Métricas / Distancias equivalentes

- ¿Pueden dos distancias no equivalentes generar la misma topología?
- $d_1(X,Y) = |X Y|$ $d_2(X,Y) = \arctan |X Y|$

Dos distancias no equivalentes generan la misma topología

• Cojamos un entorno (una bola alrededor) de un punto x_0 en la euclídea y en la arcotangente:

Eucl.
$$B_{\epsilon}(x_0) = (x_0 - \epsilon, x_0 + \epsilon)$$

Arctan. $B_{\delta}(x_0) = (x_0 - \tan \delta, x_0 + \tan \delta)$

- La primera pregunta es, ¿cabe dentro de la bola euclídea una bola con la distancia de arcotangente?
- Claro. Siempre podemos encontrar un δ tal que $\tan \delta < \epsilon$, basta coger $\delta = \arctan \epsilon$
- La segunda pregunta es, ¿cabe dentro de la bola arcotangente una bola con la distancia euclídea?
- Claro, basta coger $\delta = \epsilon$ porque $\tan \epsilon > \epsilon$

Topología de supremo vs Topología integral en el conjunto de funciones continuas

- Si C es el conjunto de funciones continuas de [0,1] en [0,1], T_0 y T_1 son las topologías en C generadas por las métricas
 - $d_0(f,g) = \sup\{|f(x) g(x)| / x \in R|\}$
 - $d_1(f,g) = \int_0^1 |f(x) g(x)|$
- ¿Generan la misma topología? ¿Es una de ellas más fina que la otra?

Distancia de SUP vs Distancia integral en el conjunto de funciones

- Para empezar, veremos si el subespacio $U = \{f(x) > 0\}$ de funciones continuas en [0; 1] es abierto en cada una de estas métricas:
 - $d_0(f,g) = \sup\{|f(x) g(x)|, x \in R\}$
 - $d_1(f,g) = \int_0^1 |f(x) g(x)| dx$
- Elijamos una función $f \in U$. ¿Qué es una bola abierta en la distancia d_0 ?
- ¿Podemos hacer una bola abierta en torno a f tal que todas las funciones de esta bola sean positivas?
- Ahora bien, ¿cómo es una bola abierta en d_1 ? Puede haber una función no positiva en cualquier cercanía de f?
- ¡Ajá! Hay abiertos en la métrica del supremo que NO lo son en la integral.
- Sin embargo, dentro de cualquier abierto $INT.B_{\epsilon}(f)$ en la integral hay un abierto en la del supremo, $B_{\epsilon}(f)$ porque si $g \in SUP.B_{\epsilon}(f)$, $|f g| < \epsilon$ $\Rightarrow \int_{0}^{1} |f g| dx < \epsilon$

Distancia de SUP vs Distancia integral en el conjunto de funciones

■ Entonces Id: $(C, T_0=Sup) \rightarrow (C, T_1=Int)$ es continua pero Id: $(C, T_1) \rightarrow (C, T_0)$ no lo es. (ya que todos los abiertos de T_1 son abiertos de T_0 , pero los abiertos de T_0 no son necesariamente abiertos de T_1).

La topología heredada

■ Si tenemos un espacio topológico (X,T) en cualquier subconjunto $A \subset X$ podemos definir $T_U = \{A_i = T_i \cap A, T_i \subset T\}$

La topología heredada

- Sea A = [0; 2]U[3; 5) subespacio de \mathbb{R} con la topología canónica
- ¿Son abiertos o cerrados estos conjuntos?
 - (1; 2]U[3; 4)
 - **•** [4; 5)
 - **•** [3; 5)
 - **•** [0; 2]

La topología heredada II

- Sea A = [0; 2]U[3; 5) subespacio de \mathbb{R} con la topología SRD
- ¿Son abiertos o cerrados estos conjuntos?
 - (1; 2]U[3; 4)
 - (1; 2]U[3; 5)
 - **•** [4; 5)
 - **•** [3; 5)