

PyTorch Tutorial

07. Multiple Dimension Input

Revision

x (hours)	y (points)
1	2
2	4
3	6
4	?

x (hours)	y (pass/fail)					
1	0 (fail)					
2	0 (fail)					
3	1 (pass)					
4	?					

Diabetes Dataset

X1	X2	Х3	X4	X5	Х6	X7	X8	Y	
-0.29	0.49	0.18	-0.29	0.00	0.00	-0.53	-0.03	0	
-0.88	-0.15	0.08	-0.41	0.00	-0.21	-0.77	-0.67	1	Sample
-0.06	0.84	0.05	0.00	0.00	-0.31	-0.49	-0.63	0	
-0.88	-0.11	0.08	-0.54	-0.78	-0.16	-0.92	0.00	1	
0.00	0.38	-0.34	-0.29	-0.60	0.28	0.89	-0.60	0	
-0.41	0.17	0.21	0.00	0.00	-0.24	-0.89	-0.70	1	
-0.65	-0.22	-0.18	-0.35	-0.79	-0.08	-0.85	-0.83	0	
0.18	0.16	0.00	0.00	0.00	0.05	-0.95	-0.73	1	
-0.76	0.98	0.15	-0.09	0.28	-0.09	-0.93	0.07	0	
-0.06	0.26	0.57	0.00	0.00	0.00	-0.87	0.10	0	

feature

Diabetes Dataset

X1	X2	Х3	Х4	X5	Х6	Х7	X8	Υ
-0.29	0.49	0.18	-0.29	0.00	0.00	-0.53	-0.03	0
-0.88	-0.15	0.08	-0.41	0.00	-0.21	-0.77	-0.67	1
-0.06	0.84	0.05	0.00	0.00	-0.31	-0.49	-0.63	0
-0.88	-0.11	0.08	-0.54	-0.78	-0.16	-0.92	0.00	1
0.00	0.38	-0.34	-0.29	-0.60	0.28	0.89	-0.60	0
-0.41	0.17	0.21	0.00	0.00	-0.24	-0.89	-0.70	1
-0.65	-0.22	-0.18	-0.35	-0.79	-0.08	-0.85	-0.83	0
0.18	0.16	0.00	0.00	0.00	0.05	-0.95	-0.73	1
-0.76	0.98	0.15	-0.09	0.28	-0.09	-0.93	0.07	0
-0.06	0.26	0.57	0.00	0.00	0.00	-0.87	0.10	0

Feature

Multiple Dimension Logistic Regression Model

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

Multiple Dimension Logistic Regression Model

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

Multiple Dimension Logistic Regression Model

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\begin{bmatrix} x_1^{(i)} & \cdots & x_8^{(i)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b)$$
$$= \sigma(z^{(i)})$$

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$
 Sigmoid function is in an element-wise fashion.

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$
 Sigmoid function is in an element-wise fashion.

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$
 Sigmoid function is in an element-wise fashion.

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$D = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \\ \vdots \\ x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}$$

$$N \times 1$$

$$N \times 8$$

$$N \times 1$$

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

```
class Model(torch.nn. Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear = torch.nn. Linear(8, 1)
        self.sigmoid = torch.nn. Sigmoid()

def forward(self, x):
        x = self.sigmoid(self.linear(x))
        return x

model = Model()
```

$$\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & \dots & x_8^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}$$

$$N \times 1$$

$$N \times 8$$

$$8 \times 1$$

$$N \times 1$$

Linear Layer

Linear Layer

self.linear = torch.nn.Linear(8, 2)

$$X = \begin{bmatrix} x_1^{(1)} & \dots & x_8^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_8^{(N)} \end{bmatrix} \qquad X \longrightarrow 0 = \begin{bmatrix} o_1^{(1)} & o_2^{(1)} \\ \vdots & \vdots \\ o_1^{(N)} & o_2^{(N)} \end{bmatrix}$$

$$8 \times 2 \quad W \qquad b$$

Linear Layer

$$X = \begin{bmatrix} x_1^{(1)} & \dots & x_8^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_8^{(N)} \end{bmatrix} \qquad X \longrightarrow 0 = \begin{bmatrix} o_1^{(1)} & \dots & o_6^{(1)} \\ \vdots & \ddots & \vdots \\ o_1^{(N)} & \dots & o_6^{(N)} \end{bmatrix}$$

Neural Network

Example: Artificial Neural Network

Example: Diabetes Prediction

X1	X2	X3	X4	X5	Х6	X7	X8	Υ
-0.29	0.49	0.18	-0.29	0.00	0.00	-0.53	-0.03	0
-0.88	-0.15	0.08	-0.41	0.00	-0.21	-0.77	-0.67	1
-0.06	0.84	0.05	0.00	0.00	-0.31	-0.49	-0.63	0
-0.88	-0.11	0.08	-0.54	-0.78	-0.16	-0.92	0.00	1
0.00	0.38	-0.34	-0.29	-0.60	0.28	0.89	-0.60	0
-0.41	0.17	0.21	0.00	0.00	-0.24	-0.89	-0.70	1
-0.65	-0.22	-0.18	-0.35	-0.79	-0.08	-0.85	-0.83	0
0.18	0.16	0.00	0.00	0.00	0.05	-0.95	-0.73	1
-0.76	0.98	0.15	-0.09	0.28	-0.09	-0.93	0.07	0
-0.06	0.26	0.57	0.00	0.00	0.00	-0.87	0.10	0

Example: Diabetes Prediction

Prepare dataset
we shall talk about this later

Design model using Class inherit from nn.Module

Construct loss and optimizer using PyTorch API

Training cycle forward, backward, update

Example: 1. Prepare Dataset

```
import numpy as np
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32) =
x_data = torch.from_numpy(xy[:,:-1])
y_data = torch.from_numpy(xy[:, [-1]])
```

```
diabetes.csv ×

1 -0.294118,0.487437,0.180328,-0.292929,0,0.00149028,-0.53117,-0.0333333,0
2 -0.882353,-0.145729,0.0819672,-0.414141,0,-0.207153,-0.766866,-0.666667,1
3 -0.0588235,0.839196,0.0491803,0,0,-0.305514,-0.492741,-0.633333,0
4 -0.882353,-0.105528,0.0819672,-0.535354,-0.777778,-0.162444,-0.923997,0,1
5 0,0.376884,-0.344262,-0.292929,-0.602837,0.28465,0.887276,-0.6,0
6 -0.411765,0.165829,0.213115,0,0,-0.23696,-0.894962,-0.7,1
7 -0.647059,-0.21608,-0.180328,-0.353535,-0.791962,-0.0760059,-0.854825,-0.833333,0
8 0.176471,0.155779,0,0,0,0.052161,-0.952178,-0.733333,1
9 -0.764706,0.979899,0.147541,-0.0909091,0.283688,-0.0909091,-0.931682,0.0666667,0
10 -0.0588235,0.256281,0.57377,0,0,-0.868488,0.1,0
11 -0.529412,0.105528,0.508197,0,0.120715,-0.903501,-0.7,1
12 0.176471,0.688442,0.213115,0,0,0.132638,-0.608027,-0.566667,0
13 0.176471,0.396985,0.311475,0,0,-0.19225,0.163962,0.2,1
14 -0.882353,0.899497,-0.0163934,-0.535354,1,-0.102832,-0.726729,0.266667,0
```

2080 32 flourt.

Example: 2. Define Model


```
import torch
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self). __init__()
        self. linear1 = torch. nn. Linear (8, 6)
        self. linear2 = torch. nn. Linear (6, 4)
        self. linear3 = torch. nn. Linear (4, 1)
        self. sigmoid = torch. nn. Sigmoid()
    def forward(self, x):
        x = self. sigmoid(self. linear1(x))
        x = self. sigmoid(self. linear2(x))
        x = self. sigmoid(self. linear3(x))
        return x
model = Model()
```

Example: 3. Construct Loss and Optimizer

Mini-Batch Loss Function for Binary Classification

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

$$\omega = \omega - \alpha \frac{\partial cost}{\partial \omega}$$

Update

$$\omega = \omega - \alpha \frac{\partial cost}{\partial \omega}$$

```
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), 1r=0.1)
```

Example: 4. Training Cycle

```
for epoch in range (100):
    # Forward
    y_pred = model(x_data) <--</pre>
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    # Backward
    optimizer.zero_grad()
    loss. backward()
    # Update
    optimizer. step()
```

NOTICE:

This program has not use **Mini-Batch** for training.

We shall talk about **DataLoader** later.

http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation-functions/#activation-functions-for-artificial-neural-networks

https://dashee87.github.io/data%20science/deep%20learning/visualising-activation-functions-in-neural-networks/

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

```
import torch
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self. linear1 = torch. nn. Linear (8, 6)
        self. linear2 = torch. nn. Linear (6, 4)
        self. linear3 = torch. nn. Linear (4, 1)
        self.activate = torch.nn.ReLU()
    def forward(self, x):
        x = self. activate(self. linearl(x))
        x = self. activate(self. linear2(x))
        x = self.(activate(self. linear3(x)))
        return x
model = Model()
```


PyTorch Tutorial

07. Multiple Dimension Input