1º LISTA DE EXERCÍCIOS

(E.7) Seja. G = {XER | O < X < 1} e spora X, Y & G seja X * Y a sporte fracionária de X + Y (X * Y = X + Y - [X + Y] onde [a] é o maior inteiro menor ou igual 2 a). Prove que * é uma operação binária bem definida em G e que 6 é um opupo seliono em *.

i)
$$m(m(x,y), 3) = m(x+y-[x+y], 3)$$

 $= x+y+3-[x+y]-[x+y+3-[x+y]]$
 $m(x, m(y, 3)) = m(x, y+3-[y+3])$ \parallel
 $= x+y+3-[y+3]-[x+y+3-[y+3]]$

ii) seja
$$a=0$$
, $m(x, a) = x+a - [x+a] = x$

$$m(a, x) = a+x - [a+x] = x$$

iii) seza
$$b = -x$$
, $m(x,b) = x-x-[x-x] = 0$
 $m(b,x) = -x+x-[-x+x] = 0$

m(X,Y) = X + Y - [X+Y] = Y + X - [Y+X] = m(Y,X), :. G i abeliano.

(E.9) Sija G= {a+b12 EIR | a, b EQ}

a) Prove que (G, +) é um ogrupo.

i)
$$m(m(x,4),3) = m(x,+x_2\sqrt{2} + 4, \pm 4_2\sqrt{2},3)$$

 $= x, \pm 4, \pm 3, \pm (x,\pm 4,\pm 3,1)\sqrt{2}$
 $m(x,m(4,3)) = m(x,4,\pm 4,2\sqrt{2} + 3, \pm 3,2\sqrt{2})$
 $= x, \pm 4, \pm 3, \pm (x,\pm 4,\pm 3,1)\sqrt{2}$

ii) sya
$$a=0$$
, $m(a_1x) = x_1 + x_2\sqrt{2} + 0 + 0\sqrt{2} = x_1 + x_2\sqrt{2} = x$

iii) siga
$$b = -X, -X_2\sqrt{2}$$
, $m(X,b) = X, +X_2\sqrt{2} - X, -X_2\sqrt{2} = m(b_1X)$

```
ly Prove que es elementes não-nulos de 6 são um grupo em multiplicação. [02
  i) m(m(x,4),3) = m((x,+x_2\sqrt{2})(4,+42\sqrt{2}),3)
                         = (X,+X212)(4,+4212)(3,+3212)
     m(x, m(4,3)= m(x, (4,+42/2)(3,+32/2))
                        = (X, + X2V2) (M, + 42V2) (3, + 32V2)
 11) sija a=1+012, m(x,a)=(x,+x212)(1+012)=x,+x212=x
                        m(a,x) = (1+ 0/2)(x,+x2/2)=x,+x2/2=x
 iii) sija b = \frac{1}{X_1 + \sqrt{2}X_2}, m(X_1 b) = \frac{X_1 + X_2\sqrt{2}}{X_1 + X_2\sqrt{2}} = m(b, X) = 1
                                            associatividade: (a*b)*c = a*(b*c)
(E.19) Seja X∈G e seja a, le € Z+
                                            elemento neutro: e * a = a * e = a
a) Rose que x a+le = x a x le
                                           elemento simetrico: a * a = a * a = l
Paratodos XEG, m EZ+:
x^{o} = l, x^{1} = x, x^{m} = (x^{m-1})x l x^{-m} = (x^{-1})^{m}
tomando b = 1: \times^{a+b} = \times^{a+1} = \times^{a} \times = \times^{a} \times^{l} = \times^{a} \times^{l}
: 1 % d araq : ovitubni exequ
 x^{\alpha+(b+1)} = x^{\alpha+b} \cdot x = x^{\alpha} \cdot x^{b}, x = x^{\alpha}, x^{b+1}
 tomando b=1: (x^a)^b = (x^a)^1 = x^{a.1} = x^{a.1}
 passo indutive: para b 71:
(x^{\alpha})^{b+1} = (x^{\alpha b}) x^{\alpha} = x^{\alpha b+\alpha} = x^{\alpha(b+1)} /
by Prove que (x^a)^{-1} = x^{-a}
suja a = 1: (X^{a})^{-1} = (X^{1})^{-1} = X^{1.(-1)} = X^{-1} = X^{-a}
posso indutivo: para a 7,1:
  (x^{\alpha+1})^{-1} = x^{(\alpha+1).(-1)} = x^{-\alpha-1} = x^{-(\alpha+1)}
```

```
C) Zaça a) com inteiros arbitrários a e b (pos, meg, o)
 sija a = 2 , b = -3!
 X^{a+b} = X^{2+(-3)} = X^2 \cdot X^{(-3)} = X^a \cdot X^b
 seja a = -10, b = 0:
 x^{a+b} = x^{-10+0} = x^{-10}, x^{0} = x^{a}, x^{b}
siza \alpha = 3 , b = -1
(x^{\alpha})^{b} = (x^{3})^{-1} = x^{3.(-1)} = x^{\alpha.b}
(E.24) Se a e le são elementos de comutação de 6, prove que (ab) = a le
                                                             tomemos al = le a
YMEZ.
                                                              Lo já que o grupo i steliano
seja m=1:
(ab) = (ab) = ab = a1. b1 = am, bm = bm am/
siga m >1:
(ab)^{m+1} = (ab)^m (ab) = a^m \cdot b^m \cdot a \cdot b = a^m \cdot a \cdot b^m \cdot b = a^{m+1} \cdot b^{m+1} / a
sija n = 0:
(ab)^{m} = (ab)^{\circ} = l = l \cdot l = a^{\circ} \cdot b^{\circ} = a^{m} b^{m} / 
sija n ≤ 1:
(ab)^{m-1} = (ab)^m \cdot (ab)^{-1} = a^m b^m \cdot a^{-1} b^{-1} = a^m a^{-1} \cdot b^m \cdot b^{-1} = a^{m-1} \cdot b^{m-1}
(E. 25) Prove que se X^2 = 1 \ \forall \ \times \in G, G é abelliono.
  x^2 = x \cdot x = x^1 \cdot x^1 = 1, multiplicande por x^{-1} em cada lado:
  X^{1}, X^{1}, X^{-1} = X^{-1} \Rightarrow X^{1}, X^{\circ} = X^{-1} \Rightarrow X^{1}, \ell = X^{-1} = 0 X^{1} = X^{-1} = 0
                 4.3 = (43)^{-1} = 4^{-1}.3^{-1} = 3^{-1}.4^{-1} = (34)^{-1} = 34
  44,8 EG,
```

: a é abeliano

(E.32) Se × é de ordin n finita em G, prove que 1, ×, ×, ... /× são distintos. Deduza que 1×1 ≤ |G|. a orden do grupo 6 é o mímero Sejom le > a l a, l ∈ {0,1,..., m-1} de elementos do conjunto G. a orden de gré o menor K>0 to gré = l tois que $a \neq b$ e $x^a = x^b$. Logo: $x^a = x^b = x^a$, $x^{b-a} = D$ $x^{b-a} = 1$, onde 0 < b-a < m. Leto contradiz o foto de x ter orden m. Consequentemente mão existem a, e o que provo que 1, x, x², ..., x^{m-1} são distintos. Esto implica que {1, x, x²,..., x^{m-1}} tem orden |X o que conclui que 1X1 < 1G | // (E.34) Se X é um elemento de ordem infinita em G, prou que os elementos xm, n ∈ Z sõus todos distintos. Seja $|X| = \infty$ e suponha que existem a, $b \in \mathbb{Z}$ com $a \neq b$ tol y $X^a = X^b$. Suponhamos que b>a, b-a>0 e: $\ell = X^{\alpha}. X^{-\alpha} = X^{b}. X^{-\alpha} = X^{b-\alpha}$ consequentemente |×| ≤ b-a, o que é uma contradição. Logo \$ a, b ∈ Z/ $D_{2m} = \langle \Lambda, \Delta \mid \Lambda^m = \Delta^2 = 1, \Lambda \Delta = \Delta \Lambda^{-1} \rangle$ (E.I) Zaça a ordem de cada um dos elementos dos sequintes grupaos: a) $D_6: \{1, \pi, \pi^2, \delta, \delta\pi, \delta\pi^2\}$ A = 0 $|1|=1, |\pi|=3, |\pi^2|=3, |\delta|=2, |\delta\pi|=2, |\delta\pi^2|=2$ |11|=1, |n1=4, $|n^2|=2$, $|n^3|=4$, |s|=2, |sn|=2, $|sn^2|=2$

C) $D_{10}: \{1, n, n^2, n^3, n^4, s, sn, sn^2, sn^3, sn^4\} \stackrel{L}{\longleftrightarrow} c$ |1|=1, |n|=5, $|n^2|=5$, $|n^3|=5$, $|n^4|=5$, $|\Delta|=2$, $|\Delta n|=2$, $|\Delta n^2|=2$, $|\Delta n^2|=2$, $|\Delta n^3|=2$ IDN41=2

(E.2) Une os gradores e relações acima pora mostrar que se \times é um elemento L^{ν} de D_{2m} or gual mão é uma potência de π , entos $\pi x = \times \pi^{-1}$ $\pi s = s \pi^{-1}$ seja $X \in D_{2m}$ e, $X \neq R^{K} \Rightarrow X = DR^{K}$ para $0 \leq K \leq m-1$ $\Lambda X = \Lambda \Lambda \Lambda^{\kappa} = \Lambda \Lambda^{-1} \Lambda^{\kappa} = \Lambda \Lambda^{\kappa-1} = \Lambda \Lambda^{\kappa} \cdot \Lambda^{-1} = X \Lambda^{-1} / \Lambda^{\kappa}$

• 1.3

(E.!) Sija o a permitação:

1 HD 3 2 HD 4 3 HD 5 4 HD 2 5 HD 1

e T a permutação:

1 HPS 2 HP3 3 HO2 4 HO4 5 HP1

Oche o ciclo de decomposições de cools uma das sequintes permitações:

5, 7, 5², 57, 75 e 7² 6.

20: (1243) ; 20: (135)(24) /

(E.5) Oche a ordin de (1128104)(213)(5117)(69) 2 3 2

MMC { 5, 2, 3, 2} = 30 4

(E.15) Prove que a orden de un elemento em 5 n é igual ao menor divisor comum do comprimento dos ciclos ma decomposição dos mesmos.

 $\sigma'^{\varphi} = (\sigma_1 \dots \sigma_\ell) \in \mathcal{S}_m, \ \sigma_i \in \text{um } p_i - \text{ciclo}. \ \text{Entago } \sigma \ (\sigma_i) = p_i \ \forall i \in \{1, \dots, \ell\}$ $\text{porque or ciclos } \sigma_i \text{ são obiquestos, porque pri la } \forall i \in \{1, \dots, \ell\}$ $\text{Denote } m \text{ } m \text{ } C \ \{p_1, \dots, p_\ell\} = p \ | \ \sigma^{\varphi} = (\sigma_1 \dots \sigma_\ell) \dots (\sigma_1 \dots \sigma_\ell) = \sigma_1^{\varphi} \dots \sigma_\ell^{\varphi} = e^{\frac{1}{2}}$

Se q<p, então existe i ∈ {1,...,l}, tal que pi +q, ou seja, q= Kipi+ni, ni ≠0.

Then seque que: $\sigma^q = \sigma_1^q \dots \sigma_\ell^q = \ell \Rightarrow \sigma_i^n = \sigma_i^n \dots \sigma_\ell^{-n\ell}$

Lo isto mão spode acontecer pois os ciclos o i são disjuntos.

(E.11) Seja
$$H(F) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & C \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, C \in F \right\}$$
 chomoide grupe de Heisenberg

a) Escreva a motriz produto XY e deduza que H(F) i fechado a multiplicação de matrizes.

$$\begin{pmatrix} 1 & d & 1 \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a & b \\ 0 & 1 & C \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+d & b+dc+l \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & d & l \\ 0 & 1 & C \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & a+d & b+dc+l \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

by ache uma formula explicita pora a matriz inversa X e deduza que H(F)

$$x^{-1} = \frac{1}{dit(x)}, Adj(x) = \begin{pmatrix} 1 & -a & -b+oc \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix}$$

C) Prove a lu associativa pora H(F) e deduza que H(F) é um grupo de ordem |F|3

$$\begin{pmatrix}
1 & d+a & a+of+b \\
0 & 1 & f+c \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & q & h \\
0 & 1 & i \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & a+d+q & b+l+h+af+ai+di \\
0 & 1 & c+f+i \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & \alpha & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d+g & l+di+h \\ 0 & 1 & f+i \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & \alpha+d+g & b+l+h+af+ai+di \\ 0 & 1 & c+f+i \\ 0 & 0 & 1 \end{pmatrix}$$

o que provo a bi associativa para H(f), o que consequentemente mostra gul H(F) e' $|F|^3$ (usa openes 3 elinentos de F por elemento de H(F)).

e) Borer que todos elementos não-identidade de H(R) tem ordem infinita.

$$\forall x \in H(R) \not\equiv m \in N \mid \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \dots \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

$$\forall a, a, c \in \{R \setminus O\} \mid$$

• 1.5

(E.2)

elimento	12	a	ar	1 x	X	ax	a2x	a ³ X
1			1 2	1 3	1	1 Y	DLY	113 X
a	11	ME	100	1.2	ax	OLX	ax	
α^2	,2	3	1.2	a	o2x	ux	X	ax
3	n ³	0	la	a ²	o3x	X	ax	$a^2 \times$
×	7	13x	DX.X	ax	e	a3	02/	a
0 X	100	V	03X	02X	a	e	a^3	a ²
$a^2 \times$	24	ox	X	123X	a2	a	2	a^3
$\alpha \times \alpha^3 \times$	0.3X	o ² x	ax	X	a3	02	a	l

D8

	•					*		
elimento	Į Į	- 1	li	- 人	7	- 8	N	- K
1								
-1	-1	ì	- λ	·.	-1%	ķ	-K	K
į	ì	-i	-1)	K	-K	$-i_{\lambda}$	į
— K						K		
ż	i	1-18	-K	K	-]	1	i	- <i>i</i>
-À	-18	ix	K	-K	1	-1	- <i>i</i>	Ĺ
K						į		
-K	-K	K	1-18	i	i	-i	1	-1
	1	1	V	. 0				270

08

• função injetora (um a um): $\nexists x_i, x_j \in A + q f(x_i) = f(x_j) \ \forall \ f(x_k)$ ex. funções monotônicos, contra-loc. $f(x) = x^2, x \in R$

-o função sobrejetora: $\forall x \in Im \exists x \in CDom$ ex. $f(x) = x^3$, vontra-ex. $f(x) = x^2$, $x \in \mathbb{R}$

o homomorfismo: sejam (G, \star) e (H, \diamond) grupos, una função $\varphi: G \longrightarrow H$ tolque: $\varphi(x \star y) = \varphi(x) \diamond \varphi(y) \quad \forall \ x, y \in G \quad \Longrightarrow \varphi(xy) = \varphi(x) \varphi(y)$

Lo isomorfismo: a função $\varphi: G \rightarrow H$ e'um isomorfismo ($G \cong H$) quando ψ e'um homomorfismo e uma bijição.

(E.4) Prove que grupos multiplicatives $R-\{0\}$ e $C-\{0\}$ mão são isomórfos. Sizam i, $-i \in C-\{0\}$; |-i|=|i|=4. $\nexists x \in R-\{0\}$ to |x|=4 O vínico elemento de $R-\{0\}$ de ordem finita é -1, |-1|=2. $R-\{0\} \not\equiv C-\{0\}$

(E.7) Prove que D_8 e Q_8 moo são isomorfor. $D_8 = \{ e, a, a^2, a^3, \times, a \times, a^2 \times, a^3 \times \}$, $Q_8 = \{ 1, -1, 1, -1, \frac{1}{8}, -\frac{1}{9}, \frac{1}{8}, -\frac{1}{8}, -\frac{1}{8$

(E.9) Provi qui D24 e 54 mão são isomorfos. $D_{24} = \{ \langle \alpha_1 \times \rangle \mid \alpha^{12} = \ell_1 \times \chi^2 = \ell_1 \text{ a} \times \chi = \chi \alpha^{-1} \}, \quad |\alpha| = 12$ $D_{24} = \{ \langle \alpha_1 \times \rangle \mid \alpha^{12} = \ell_1 \times \chi^2 = \ell_1 \text{ a} \times \chi = \chi \alpha^{-1} \}, \quad |\alpha| = 12$ seja $\sigma \in 54$: $\sigma = (\alpha_1 \alpha_2) \wedge (\alpha_1 \alpha_2) (b_1 b_2) \wedge (\alpha_1 \alpha_2 b_1 b_2) \wedge (\alpha_1 \alpha_2 b_1)$ $\wedge (\alpha_1 \alpha_2) (\alpha_2 b_1)$ podendo a ordem de $\sigma \text{ Mr } 1, 2, 3 \text{ or } 4$.

:. D24 = 54

(E.10) Complete mos detalhes da prova que grupos simétricos 50 e 50 são isomérfices se $|\Delta| = |\Omega|$ conforme a sequir:

5eja 0: 1 → 1 uma bijeção. Dufina

 $f: S_{\Delta} - o S_{\Omega}$ por $f(\sigma) = 0 \circ \sigma \circ \theta^{-1}$ para todo $\sigma \in S_{\Delta}$

e prove o sequente:

aj q'é leur definida, isto é, se o é uma permutaçõe de D'então 00000⁻¹ é uma permutação de Q

Sendo O uma bijeção existe uma função inversa O-1: 12-0 b tal que 0 0 0 - 1 é a função identidade I a em 52 1 0 - 1 é a função identidade I Δ em D. Suponhamos que σ seja a permutação de D, isto implica que σ: Δ - 0 Δ, então tem se a seguinte situação:

U o V c V o U

e poolimes compor 0, σ e θ^{-1} para obter a função $\varphi(\sigma) = \theta \circ \sigma \circ \theta$: $\Omega - \circ \Omega$ Sendo o uma permutação existe o inverso o -1: D -0 D, então 0 00 0 00 D 00 0

Sija T = 000 - 100 - 1, então:

 $\varphi(\sigma) \circ \tau = (\theta \circ \sigma \circ \theta^{-1}) \circ (\theta \circ \sigma^{-1} \circ \theta^{-1}) = \theta \circ \sigma \circ (\theta^{-1} \circ \theta) \circ \sigma^{-1} \circ \theta^{-1}$ $= \theta \circ \sigma \circ I_{\Delta} \circ \sigma^{-1} \circ \theta^{-1} = \theta \circ (\sigma \circ \sigma^{-1}) \circ \theta^{-1} = \theta \circ I_{\Delta} \circ \theta^{-1}$ $= 0 \circ 0^{-1} = I_{\Delta}$

 $\pi\circ\varphi(\sigma)=(\theta\circ\sigma^{-1}\circ\theta^{-1})\circ(\theta\circ\sigma\circ\theta^{-1})=\theta\circ\sigma^{-1}\circ(\theta^{-1}\circ\theta)\circ\sigma\circ\theta^{-1}$ $= 000^{-1} \circ I_{0} \circ 000^{-1} = 00 \circ (0^{-1} \circ 0) \circ 0^{-1} = 00 \circ I_{0} \circ 0^{-1}$ $=0^{\circ}0_{-1}=\dot{I}\nabla$

: (0) é uma bijeção, o dominio e o contradominio são o memo conjunto a, logo f(o) é uma permutação de a/

b) el uma loijeção de SI em SI (ache um unuso dos does lodos de q).

 $\psi(\varphi(\sigma)) = \psi(\theta \circ \sigma \circ \theta^{-1}) = \theta^{-1} \circ (\theta \circ \sigma \circ \theta^{-1}) \circ \theta$ $= (\theta^{-1} \circ \theta) \circ \sigma \circ (\theta^{-1} \circ \theta) = I_{\Delta} \circ \sigma \circ I_{\Delta} = \sigma$

e poros codos & em 5.a:

 $\psi(\psi(\xi)) = \psi(\theta^{-1} \circ \xi \circ \theta) = \theta \circ (\theta^{-1} \circ \xi \circ \theta) \circ \theta^{-1} \\
= (\theta \circ \theta^{-1}) \circ \xi \circ (\theta \circ \theta^{-1}) = I_{\Omega} \circ \xi \circ I_{\Omega} = \xi$

c) f i um homomorfismo, isto f, $f(\sigma \circ \tau) = f(\sigma) \circ f(\tau)$. $f(\sigma \circ \tau) = \theta \circ (\sigma \circ \tau) \circ \theta^{-1} = \theta \circ \sigma \circ I_{\Delta} \circ \tau \circ \theta^{-1}$ $= \theta \circ \sigma \circ (\theta^{-1} \circ \theta) \circ \tau \circ \theta^{-1}$ $= (\theta \circ \sigma \circ \theta^{-1}) \circ (\theta \circ \tau \circ \theta^{-1}) = f(\sigma) \circ f(\tau) / (\pi)$

(E.17) Seja G um grupo. Prove que uma função de G em G definida por op to of e' um homomorfismo se e somente se G é alediano.

Supa of to q^{-1} rum homomorfismo. If $q_1, h \in G_1$ times $(q_h)^{-1} = q^{-1}h^{-1}$ $q^{-1}h^{-1} = h^{-1}q^{-1} \Rightarrow (q_1^{-1})^{-1}(h^{-1})^{-1} = (h^{-1})^{-1}(o_1^{-1})^{-1} \Rightarrow g_1h \circ hg_1$.

Ossim quaisquer $g_1h \in G$ comutam, logo G if abilians.

Assumindo a obeliano: $(gh)^{-1} = h^{-1} g^{-1} = g^{-1} h^{-1}$

(E, 19) Sija G = { z E C | z = 1 · Y m E Z + 5 · Kore gru para [1]
qualque intiro K > ! a função de G em G (z + o z K) e um homomorfismo
sobrejetora mos não um isomorfismo.

Seja $G = \{ z \in C : z^m = 1 \ \forall m \in \mathbb{Z}^+ \} \ e \ \varphi : G \longrightarrow G \ definida por <math>\varphi(z) = z^k$ Lo Seja $z_1, z_2 \in G$, então $\varphi(z_1 z_2) = (z_1 z_2)^k = z_1^k . z_2^k = \varphi(z_1).\varphi(z_2), \varphi(z_2)$ que mostra que φ é um homomorfismo.

Lo Sija $z \in G$ tal que $z^m = 1$, tomumos $w = z^m$. Sendo $(w^m)^k = w^{mk} = 1$ e $mk \in \mathbb{Z}^+$, $w \in G$ e $z = w^k$. Loop a função é solvrigitora.

Lo 0 kennel da função i kur $f = \{ z \in G : z'' = 1 \}$ o qual não é $\{1\}$. Potom lo a função mão é injetoro.

(E.20) Seja G um grupo e aut (6) o grupo de todos isomorfismos de G em G. Prove que aut (6) é um grupo sobre a função comporta.

Se f: G - o G e f': G - o G são isomorfismos, então fo f': G - o G tombém é um isomorfismo, o que tombém é em aut (G).

V elemento identidade dado por id (9) = 9 + 08 EG é um automorfismo.

Se f: 6 - 6 é um automorfismo, então f : 6 - 6 é um outomorfismo, o que também é em Out (6). Out (6) satisfaz as spropriedades de grupo.

(E.25) Suja $m \in \mathbb{Z}^+$, r i Δ or opradores de D_{2m} e $\theta = 2\pi/m$.

(E.25) Suja $m \in \mathbb{Z}^+$, r i Δ or opradores de D_{2m} e $\theta = 2\pi/m$.

(E.25) Suja $m \in \mathbb{Z}^+$, r i Δ or opradores de D_{2m} e $\theta = 2\pi/m$.

(a) Aprove que or motriz (ser θ - ser θ) e or motriz da transformação limear or provincio que or motriz (ser θ - ser θ) e or opradores de θ provincio θ por θ rad, que rotaciono o ralomo X, Y sobre or origin mo sentido anti-horário θ por θ rad, que rotaciono o ralomo X, Y sobre or origin mo sentido anti-horário θ por θ rad.

les Proce que a função f: Dzm-o GLz(R) definida em gradores por: $\varphi(R) = \begin{pmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{pmatrix}$ e $\varphi(\Delta) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ estendin a un homomorfismo de D_{2n} a $GL_2(IR)$

of Prove que o homomorfismo of em b) é injetor.

(E.3) mostre que o grupo orditivo R orge no plano X, y IR x IR por

 $\Lambda.(X,Y) = (\Lambda + \Lambda Y, Y).$

Sizor R um grupo adilise e Rx R um conjunto. Defina 1. (X, 4) = (X+124, 4)

Loninze Re(X,4) E RXR; temos:

Lo Sija O ∈ R tal que O + a = a Ya ∈ R, temos: 0.(x, 4) = (x + 0x, 4) = (x, 4)

logo IR age no conjunto RXR.

(E.14) Suja 6 um opupo e A=G. Mostre que se G mas e alecciono entre as μ m - [13] con definidas por q.a=a.g \forall q,a \in G mas satisfazla es opcionad da orção ψ G em G.

Sijom $91,92 \in G$ e a $\in A$, ento 92,92. a = a 9192 inquento 91.(92.a) = 91.(a 92) = a 9291 sindo $a \in A = G1$, se o grupo não é abeliano, ento a $9192 \neq a 9291$. Portento não é uma ação de grupao.

(E.15) Sija & qualquer opripo e A = G. Mostri que as funções difinidas spor Q, $Q = Q \cdot Q^{-1}$ $\forall Q$, $Q \in G$ satisfazem os asciomas da ação de G em G.

Suponho grigge $\in G$ e $\alpha \in A$, se $g\alpha = \alpha g^{-1}$, então: $(g_1 g_2) \cdot \alpha = \alpha (g_1 g_2)^{-1} = \alpha g_2 \cdot g_1^{-1}$ e $g_1(g_2 \cdot \alpha) = g_1(\alpha g_2^{-1}) = \alpha g_2 \cdot g_1^{-1}$

o que sotisfaz $(q_1 q_2) \alpha = q_1.(q_2 \alpha)$. Sendo $1_G \in G$, $1_G \cdot \alpha = \alpha 1_G = \alpha$ estavo satisficilos os dois oxíomos.