Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Yi Zhang and Jeff Schneider NIPS 2010

> Presented by Esther Salazar Duke University

> > March 25, 2011

E. Salazar (Reading group)

Summary

- Contribution: The authors propose a matrix-variate normal penalty with sparse inverse covariances to couple multiple tasks
- The penalty is decomposed into the Kronecker product of <u>row covariance</u> and column covariance with characterize both task and features
- Overfitting and selection of meaningful task and feature structures: They include sparse covariance selection into the matrix normal regularization via ℓ_1 penalties 1 on task and feature inverse covariances
- Empirical studies using two real-world problems:
 - detecting landmines in multiple files and
 - recognizing faces between different subjects

¹In general ℓ_p -norm of a $(m \times n)$ -matrix A: $||A||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{1/p}$

Background

Multi-tasks learning (related work):

- learning a common feature representation shared by tasks (principal components, to select a common subset of features, to used hidden nodes in neural networks)
- directly inferring the relatedness of tasks (mixtures of Gaussians or DPs to model tasks groups, identifying outlier tasks by robust t-processes)

Proposal. Estimate a matrix of model parameters where the rows and columns correspond to tasks and features

Regularization. The authors propose a new regularization approach and show how previous approaches are special cases

Matrix-Variate Normal Distributions

Consider an $m \times p$ matrix W. The vectorized matrix $\mathrm{Vec}(W)$ follows a multivariate normal distribution

$$\mathsf{Vec}(W) \sim N(\mathsf{Vec}(M), \Sigma \otimes \Omega)$$

where M $(m \times p)$ is the mean matrix, Ω $(m \times m)$ is the row covariance and Σ $(p \times p)$ is the column covariance.

Log-density:

$$\log P(\mathbf{W}) = -\frac{mp}{2}\log(2\pi) - \frac{p}{2}\log(|\mathbf{\Omega}|) - \frac{m}{2}\log(|\mathbf{\Sigma}|) - \frac{1}{2}tr\{\mathbf{\Omega}^{-1}(\mathbf{W} - \mathbf{M})\mathbf{\Sigma}^{-1}(\mathbf{W} - \mathbf{M})^T\}$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めのぐ

Maximum Likelihood Estimation

Consider a set of n samples $\{W_i\}_{i=1}^n$ generated by a MVN distribution

MLE of
$$M$$
 is: $\hat{M} = \frac{1}{n} \sum_{i=1}^{n} W_i$

MLE of Ω and Σ are solutions to the system

$$\left\{ \begin{array}{lcl} \hat{\boldsymbol{\Omega}} & = & \frac{1}{np} \sum_{i=1}^n (\mathbf{W}_i - \hat{\mathbf{M}}) \hat{\boldsymbol{\Sigma}}^{-1} (\mathbf{W}_i - \hat{\mathbf{M}})^T \\ \hat{\boldsymbol{\Sigma}} & = & \frac{1}{nm} \sum_{i=1}^n (\mathbf{W}_i - \hat{\mathbf{M}})^T \hat{\boldsymbol{\Omega}}^{-1} (\mathbf{W}_i - \hat{\mathbf{M}}) \end{array} \right.$$

Problems: $\hat{\Omega}$ and $\hat{\Sigma}$ are not identifiable and solutions are not unique. For example, for any $\alpha>0$, $\left(\alpha\Omega^*,\frac{1}{\alpha}\Sigma^*\right)$ will lead to same log density. That means that only the Kronecker product $\Sigma\otimes\Omega$ is identifiable.

Multi-task learning with a sparse matrix-normal penalty

Classical regularization penalties: to assume a multivariate prior on the parameter vector and to perform maximum-a-posterior estimation (ℓ_2 penalty: multivariate Gaussian; ℓ_1 penalty: Laplacian priors²)

For multi-task learning the use of matrix-variate priors is natural to design regularization penalties

Multi-task learning with a sparse matrix-normal penalty

Matrix normal penalty

Consider a multi-task learning problem with m tasks in a p-dimensional feature space. The training sets are $\{\mathbf{D}_t\}_{t=1}^m$, where each set \mathbf{D}_t contains n_t examples $\{(\mathbf{x}_i^{(t)}, y_i^{(t)})\}_{i=1}^{n_t}$. We want to learn m models for the m tasks but appropriately share knowledge amounts. Model parameters are represented by an $m \times p$ matrix \mathbf{W} , where parameters for a task correspond to a row.

The total loss to optimize is:

$$\mathcal{L} = \sum_{t=1}^{m} \sum_{i=1}^{n_t} L(y_i^{(t)}, \mathbf{x}_i^{(t)}, \mathbf{W}(t, :)) + \lambda \operatorname{tr}\{\Omega^{-1} \mathbf{W} \Sigma^{-1} \mathbf{W}^T\}$$
 (5)

where λ controls the strength of the regularization and L() is the convex empirical loss function depending of the specific model we use (square loss for linear regression log-likelihood for logistic regression and so forth)

4□ > 4□ > 4□ > 4□ > 4□ > 1□

E. Salazar (Reading group)

Special cases regarding to the loss function:

- When we fix $\Omega=I_m$ and $\Sigma=I_p$, the penalty term can be decomposed into standard ℓ_2 norm penalties on the m rows of W
- When we fix $\Omega=I_m$, task are linked only by a shared feature covariance Σ . Additional constrain $tr\{\Sigma\} <= 1$ to avoid $\Sigma \to \infty$
- ullet When we fix $\Sigma=I_p$, tasks are coupled only by a task similarity matrix Ω

We will like to infer Ω and Σ . If we do that jointly we will always set Ω and Σ to be infinity matrices. To avoid that

$$\mathcal{L} = \sum_{t=1}^{m} \sum_{i=1}^{n_t} L(y_i^{(t)}, \mathbf{x}_i^{(t)}, \mathbf{W}(t,:)) + \lambda \left[p \log |\Omega| + m \log |\Sigma| + tr\{\Omega^{-1}\mathbf{W}\boldsymbol{\Sigma}^{-1}\mathbf{W}^T\} \right]$$

We can infer Ω and Σ as the following problem

$$\min_{\Omega,\Sigma} \ p \log |\Omega| + m \log |\Sigma| + tr\{\Omega^{-1}\mathbf{W}\Sigma^{-1}\mathbf{W}^T\}$$

Then, the MLE of Ω and Σ is

$$\left\{ \begin{array}{lcl} \hat{\Omega} & = & \frac{1}{p}\mathbf{W}\hat{\Sigma}^{-1}\mathbf{W}^T + \epsilon\mathbf{I}_m \\ \hat{\Sigma} & = & \frac{1}{m}\mathbf{W}^T\hat{\Omega}^{-1}\mathbf{W} + \epsilon\mathbf{I}_p \end{array} \right.$$

where $\epsilon > 0$ (small number)

Sparse covariance selection

Consider the sparsity of Ω^{-1} and Σ^{-1} . Covariance selection aims to select nonzero entries in the Gaussian inverse covariance and discover conditional independence between variables. The idea is to include two additional ℓ_1 penalty terms on the inverse covariances:

$$\mathcal{L} = \sum_{t=1}^{m} \sum_{i=1}^{n_t} L(y_i^{(t)}, \mathbf{x}_i^{(t)}, \mathbf{W}(t, :)) + \lambda [p \log |\Omega| + m \log |\Sigma| + tr\{\Omega^{-1}\mathbf{W}\Sigma^{-1}\mathbf{W}^T\}] + \lambda_{\Omega} ||\Omega^{-1}||_{\ell_1} + \lambda_{\Sigma} ||\Sigma^{-1}||_{\ell_1}$$
(9)

 λ_Ω and λ_Σ control the strength of ℓ_1 penalties and therefore the sparsity of task and feature structures

We can iteratively optimize Ω and Σ until convergence

$$\left\{ \begin{array}{ll} \hat{\Omega} &=& \operatorname{argmin}_{\Omega} \ p \log |\Omega| + tr\{\Omega^{-1}(\mathbf{W}\Sigma^{-1}\mathbf{W}^T)\} + \frac{\lambda_{\Omega}}{\lambda_{\Omega}}||\Omega^{-1}||_{\ell 1} \\ \hat{\Sigma} &=& \operatorname{argmin}_{\Sigma} \ m \log |\Sigma| + tr\{\Sigma^{-1}(\mathbf{W}^T\hat{\Omega}^{-1}\mathbf{W})\} + \frac{\lambda_{\Sigma}}{\lambda_{\Omega}}||\Sigma^{-1}||_{\ell 1} \end{array} \right.$$

We can use graphical lasso as a basic solver and (11) as a ℓ_1 regularized "flip-flop" algorithm

$$\left\{ \begin{array}{ll} \hat{\Omega} & = & glasso(\frac{1}{p}\mathbf{W}\hat{\Sigma}^{-1}\mathbf{W}^T,\frac{\lambda_{\Omega}}{\lambda}) \\ \hat{\Sigma} & = & glasso(\frac{1}{m}\mathbf{W}^T\hat{\Omega}^{-1}\mathbf{W},\frac{\lambda_{\Sigma}}{\lambda}) \\ \end{array} \right.$$

Algorithm:

- 1) Estimate W by solving (5), using $\Omega = \mathbf{I}_m$ and $\Sigma = \mathbf{I}_p$;
- 2) Infer Ω and Σ in (9) (by solving (11) until convergence), using the estimated W from step 1);
- 3) Estimate W by solving (5), using the inferred Ω and Σ from step 2).

Additional constrains:

To ignore variances and restrict our attention to correlation structures

$$\Omega_{ii} = 1 \quad i = 1, 2, ..., m$$
 $\Sigma_{jj} = 1 \quad j = 1, 2, ..., p$

diagonal entries may be fixed as a constant if we prefer tasks to be equally regularized

 If one wants to iterative over steps 2) and 3) of the algorithm until convergence, we may consider the constraints

$$\Omega_{ii} = c_1 \quad i = 1, 2, ..., m$$
 $\Sigma_{jj} = c_2 \quad j = 1, 2, ..., p$

Empirical Studies

Data sets:

- The landmine detection data set from Y. Xue, X. Liao, L. Carin, and B. Krishnapuram(2006). Each example in the data set is represented by a 9-dimensional feature vector extracted from radar imaging. They jointly learn 19 tasks. The model parameters W are 19×10 matrix (19 tasks and 10 features including intercept).
- The face recognition data set is the Yale face database, which contains 165 images of 15 subjects. We use the first 8 subjects to construct 28 binary classification tasks, each to classify two subjects

Models

- STL: learn ℓ_2 regularized logistic regression for each task separately
- MTL-C: clustered multi-task learning, which encourages task clustering in regularization
- MTL-F: multi-task feature learning, which corresponds to $\Omega = I_m$ Different configurations of the proposed framework:
 - MTL($I_m\&I_p$)
 - MTL($\Omega\&I_p$)
 - MTL($I_m \& \Sigma$)
 - MTL($\Omega\&\Sigma$)
 - MTL($\Omega\&\Sigma$) $\Omega_{ii}=\Sigma_{jj}=1$
 - MTL($\Omega\&\Sigma$) $\Omega_{ii}=1$

Results on Landmine Detection

Avg AUC Score	30 samples	40 samples	80 samples	160 samples
STL	64.85(0.52)	67.62(0.64)	71.86(0.38)	76.22(0.25)
MTL-C [21]	67.09(0.44)	68.95(0.40)	72.89(0.31)	76.64(0.17)
MTL-F [2]	72.39(0.79)	74.75(0.63)	77.12(0.18)	78.13(0.12)
$MTL(\mathbf{I}_m \& \mathbf{I}_p)$	66.10(0.65)	69.91(0.40)	73.34(0.28)	76.17(0.22)
$\mathrm{MTL}(\Omega\&\mathrm{I}_p)$	74.88(0.29)	75.83(0.28)	76.93(0.15)	77.95(0.17)
$\mathrm{MTL}(\mathrm{I}_m\&\Sigma)$	72.71(0.65)	74.98(0.32)	77.35(0.14)	78.13(0.14)
$\mathrm{MTL}(\Omega\&\Sigma)$	75.10(0.27)	76.16(0.15)	77.32(0.24)	78.21(0.17)*
$MTL(\Omega\&\Sigma)_{\Omega_{ii}=\Sigma_{jj}=1}$	75.31(0.26)*	76.64(0.13)*	77.56(0.16)*	78.01(0.12)
$MTL(\Omega\&\Sigma)_{\Omega_{ii}=1}$	75.19(0.22)	76.25(0.14)	77.22(0.15)	78.03(0.15)

Table 1: Average AUC scores (%) on landmine detection: means (and standard errors) over 30 random runs. For each column, the best model is marked with * and competitive models (by paired t-tests) are shown in **bold**.

Results on Face Recognition

Avg Classification Errors	3 samples per class	5 samples per class	7 samples per class
STL	10.97(0.46)	7.62(0.30)	4.75(0.35)
MTL-C [21]	11.09(0.49)	7.87(0.34)	5.33(0.34)
MTL-F [2]	10.78(0.60)	6.86(0.27)	4.20(0.31)
$MTL(\mathbf{I}_m \& \mathbf{I}_p)$	10.88(0.48)	7.51(0.28)	5.00(0.35)
$\mathrm{MTL}(\mathbf{\Omega}\&\mathbf{I}_p)$	9.98(0.55)	6.68(0.30)	4.12(0.38)
$\mathrm{MTL}(\mathrm{I}_m\&\Sigma)$	9.87(0.59)	6.25(0.27)	4.06(0.34)
$\mathrm{MTL}(\Omega\&\Sigma)$	9.81(0.49)	6.23(0.29)	4.11(0.36)
$MTL(\Omega\&\Sigma)_{\Omega_{ii}=\Sigma_{jj}=1}$	9.67(0.57)*	6.21(0.28)	4.02(0.32)
$MTL(\Omega\&\Sigma)_{\Omega_{ii}=1}$	9.67(0.51)*	5.98(0.29)*	3.53(0.34)*

Table 2: Average classification errors (%) on face recognition: means (and standard errors) over 30 random runs. For each column, the best model is marked with * and competitive models (by paired t-tests) are shown in **bold**.