Project Design Phase Proposed Solution Template

Date	11 June 2025
Team ID	LTVIP2025TMID34708
Project Name	Transfer Learning-Based Classification of
	Poultry Diseases for Enhanced Health
	Management
Maximum Marks	2 Marks

Proposed Solution Template:

Project team shall fill the following information in the proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	Poultry farmers face frequent disease
1.	solved)	outbreaks (Salmonella, Newcastle Disease,
	solved)	
		Coccidiosis) leading to high mortality and
		economic losses due to delayed or inaccurate
		diagnosis. Limited access to veterinary services
		and diagnostic labs in rural areas worsens the
		situation. There is a need for an accessible,
		accurate, and rapid disease classification
_		system to improve poultry health management.
2.	Idea / Solution description	The project proposes a Transfer Learning-Based
		Machine Learning system that classifies poultry
		diseases into Salmonella, Newcastle Disease,
		Coccidiosis, and Healthy categories based on
		input data (symptoms, environmental data,
		biological sample findings). It will be integrated
		into a mobile application, enabling farmers to
		receive instant disease identification and
		recommended treatments, facilitating early
		action and improved disease control.
3.	Novelty / Uniqueness	> Uses transfer learning for high accuracy with
		limited data.
		> Provides immediate, actionable treatment
		recommendations.
		> Works offline, suitable for low-connectivity
		rural areas.
		> Modular design for future image-based lesion
		analysis.
		> Farmer-friendly mobile app interface aligned
		with local needs.
4.	Social Impact / Customer Satisfaction	> Reduces mortality rates and economic losses
		by enabling early detection.
		> Empowers smallholder farmers with data-
		driven disease management.
		> Improves food security and productivity in
		rural communities.
		> Builds confidence in farmers by reducing
		dependency on unavailable veterinary services.

		> Supports veterinary education and extension officers with modern diagnostic tools.
5.	Business Model (Revenue Model)	> Freemium Model: Free basic app with disease diagnosis; premium version with advanced analytics for commercial farms. > Government and NGO Partnerships: For rural health extension programs and smart agriculture initiatives. > Data Services: Provide anonymized poultry health data to researchers and policymakers. > Training Modules: Paid training for veterinary schools and extension officers.
6.	Scalability of the Solution	 > Scalable across regions by training on local poultry disease data. > Can be integrated with IoT-based farm management systems in the future. > Expandable to web dashboards for government monitoring. > Potential extension to image-based diagnostics, predictive outbreak alerts, and integration with regional veterinary networks.