RDASGC: a more powerful GNN architecture for

recommendation

1. Introduction

NGCF^[1]将微调后的 GCN^[2]模型应用到推荐系统,通过 embedding propagation 显示学习协同信号,在多个数据集上取得了 SOTA 的效果。然而,GNN 的多项研究成果表明^{[3], [4], [5]},transformation 和 propagation 的耦合不仅会增加模型的训练难度,也不利于模型的表达能力。基于 GNN 的以上研究进展,我们设计了一个更高效的 GNN 模型结构,主要包括 neighbor aggregation和 layer aggregation 两部分。实验结果表明,在相同的设置下,我们的模型在多个数据集上的表现均显著超越了 NGCF,提升幅度最高可达 22%。代码已上传至 github,数据集也包括在内, https://github.com/lt610/RDASGC。

2. Baseline

我们对比的 baseline 为 NGCF, 该模型已经在多个数据集上取得了 SOTA 的效果,论文中的详细结果见 Table 1。可以看到,NGCF的表现不仅超越了 MF 等传统模型,也超过了 GC-MC 等 GNN 模型。

	Gowalla		Yelp2018*		Amazon-Book	
	recall	ndcg	recall	ndcg	recall	ndcg
MF	0.1291	0.1109	0.0433	0.0354	0.0250	0.0196
NeuMF	0.1399	0.1212	0.0451	0.0363	0.0258	0.0200
CMN	0.1405	0.1221	0.0457	0.0369	0.0267	0.0218
HOP-Rec	0.1399	0.1214	0.0517	0.0428	0.0309	0.0232
GC-MC	0.1395	0.1204	0.0462	0.0379	0.0288	0.0224
PinSage	0.1380	0.1196	0.0471	0.0393	0.0282	0.0219
NGCF-3	0.1569*	0.1327*	0.0579*	0.0477^{*}	0.0337*	0.0261*
%Improv.	11.68%	8.64%	11.97%	11.29%	9.61%	12.50%
<i>p</i> -value	2.01e-7	3.03e-3	5.34e-3	4.62e-4	3.48e-5	1.26e-4

Table 1: NGCF's results

NGCF 的原理见公式(1)-(2)。该模型在 GCN 的基础上做了一些微调,加入了亲和项使得相似的 item 可以传播更多信息,同时将 ReLU 激活函数替换成了 LeakyRELU。

$$E^{(l)} = LeakyReLU\left((\mathcal{L} + I)E^{(l-1)}W_1^{(l)} + \mathcal{L}E^{(l-1)}\odot E^{(l-1)}W_2^{(l)}\right) \tag{1}$$

$$\mathcal{L} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}andA = \begin{bmatrix} 0 & R \\ R^T & 0 \end{bmatrix}$$
 (2)

在预测时,将每一层的输出 concatenate 后作为最终的 embedding,然后通过内积运算计算 user 对 item 的偏好评分,见公式(3)-(4)所示。

$$e_u^* = e_u^{(0)} || \dots || e_u^{(l)}, e_i^* = e_i^{(0)} || \dots || e_i^{(l)}$$
 (3)

$$\hat{y}NGCF(u,i) = e_u^{*T} e_i^* \tag{4}$$

损失函数采用 BPRLoss,并加入惩罚项防止过拟合,见公式(5)所示。

$$Loss = \sum_{(u,i,j)\in O} -ln\sigma(\hat{y}_{ui} - \hat{y}_{uj}) + \lambda ||\Theta||_2^2$$
 (5)

3. Models

我们的模型(RDASGC)参考了 SGC^[3],PPNP^[4],JKNet^[6],GRAND^[7]和 DAGNN^[5],主要分为 neighbor aggregation 和 layer aggregation 两部分。其中 neighbor aggregation 去除了冗余的 transformation 和 nonlinearity,用于显示编码 协同信息;layer aggregation 分为 PPR、Adaptive、Mean、1/K 四种方式,用于 学习局部和全局信息。模型的整体结构见 Figure 1 所示

Figure 1 Architecture of RDASGC

PPR layer aggregation 是 APPNP 的采用的传播方式,见公式(6)所示。

$$E^{(l+1)} = \alpha E^{(0)} + (1 - \alpha)\tilde{A}E^{(l)}$$
(6)

将公式(6)展开可以得到公式(7),相当于对每一层的输出进行加权求和,加权系数随层数指数衰减,这意味着近距离的邻居更重要,我们可以通过α来平衡该重要性。

$$E^{(l)} = \alpha E^{(0)} + (1 - \alpha) \tilde{A} E^{(l-1)}$$

$$= \alpha E^{(0)} + \alpha \tilde{A} E^{(0)} + \alpha (1 - \alpha)^2 \tilde{A}^2 E^{(0)} + \dots + (1 - \alpha)^l \tilde{A}^l E^{(0)}$$
(7)

Adaptive layer aggregation 可以为每个结点分别学习不同范围邻居信息的重要性,相当于 PPR 的增强版本,见公式(8)-(12)所示。

$$E^{(l)} = \tilde{A}^l Z, l = 1, 2, \dots, L \tag{8}$$

$$E = stack(Z, E^{(1)}, \dots, E^{(l)})$$
(9)

$$S = \sigma(Es) \tag{10}$$

$$\tilde{S} = reshape(S) \tag{11}$$

$$X_{out} = softmax \left(squeeze(\tilde{S}E) \right) \tag{12}$$

Mean 和 1/K 是 layer aggregation 的简化情形,分别假设了不同范围的邻居结点同样重要,以及近距离的邻居更重要并且重要性以 1/K 递减。

4. Experiment

4.1 Dataset

实验用到了三个数据集,规模从 100w 到 300w,详细信息见 Table 1 所示。为了保证数据集的质量,原文使用了 10-core 设置,即保留用户至少 10 次的交互。Gowalla 是基于地理位置用户兴趣推荐的签到数据集;Yelp2018 是Yelp 2018 底特律餐厅推荐比赛的数据集;Amazon-book 是 Amazon-reviews 产品推荐数据集的一个子集。

Dataset User# Item# Interaction# Density 29,858 Gowalla 40,981 1,027,370 0.00084 Yelp2018* 31,668 38,048 1,561,406 0.00130 91,599 Amazon-Book 52,643 2,984,108 0.00062

Table 2: Statistics of datasets

4.2 Implementation

我们基于 NGCF 的代码(<u>TensorFlow 实现</u>^[8])采用 PyTorch 和 DGL 实现了文中的模型。DGL(Deep Graph Learning)是 AWS 的一款面向图神经网络的开源框架。实验环境为 Python 3.7.0、PyTorch 1.7.0、DGL 0.5.2、CUDA 10.2、GeForce GTX 1080 Ti 和 GeForce GTX 2080 Ti。

4.3 Setting

训练集和测试集的划分与[1]一致。在训练集中随机选取 10%的交互关系作为验证集,用于超参数的调优。评价指标采用 recall@K 和 ndcg@K, K=20。使用 early stopping,50 个 epochs 内验证集上的 recall@20 不再提高就停止训练。Gowalla 和 Yelp2018 上的 batch size 设置为 2048,Amazon-book 上的 batch size 设置为 8192。使用 grid search,k: {1, 2, 3, 4},learn rate: {0.0001, 0.0005, 0.001},weight deacy: {1e-4, 5e-4, 1e-3},alpha: {0.1, 0.05}。

4.4 Result

A. Effect of layer aggregation

Table 3: Results of different layer aggregation on Gowalla

Layer Aggregation	None	Mean	1/K	PPR	Adaptive
recall	0.1749	0.1826	0.1761	0.1455	0.1792
ndcg	0.1459	0.1551	0.1510	0.1126	0.1507

首先我们在 Gowalla 数据上对不同的 layer aggregation 进行了比较实验。可以看到,即使不使用任何 layer aggregation,我们的模型也比 NGCF 的表现要好。PPR 的表现是最差的,这是因为 PPR 对超参数 α 比较敏感,由于时间限制我们并没有精调 α 。

Figure 2: Loss trend of different layer aggregation

另外值得注意的是,最简单的 mean 的表现是最好的,甚至超过了我们寄予厚望的 Adaptive。为此我们将训练过程进行了可视化,loss 随 epoch 的变化

曲线见 Figure 2 所示。可以看到,Adaptive(绿色的曲线)的拟合能力是最强的。

Figure 3: recall trend of different layer aggregation

Recall 随 epoch 的变化曲线见 Figure 3 所示,我们可以看到 Adaptive 的表现一直比 mean 差,NDCG 也有相似的情况。我们分析这很可能是因为 Adaptive 的学习能力比较强,然而在实验中我们并没有采用 Dropout、 DropEdge、DropNode、 L_2 等正则化方法,因此发生了过拟合。

B. Overall Comparison

Table 3 Overall Results

	Gowalla		Yelp2018		Amazon-Book	
Models	recall	ndcg	recall	ndcg	recall	ndcg
MF	0.1291	0.1109	0.0433	0.0354	0.0250	0.0196
NeuMF	0.1399	0.1212	0.0451	0.0363	0.0258	0.0200
CMN	0.1405	0.1221	0.0457	0.0369	0.0267	0.0218
HOP-Rec	0.1399	0.1214	0.0517	0.0428	0.0309	0.0232
GC-MC	0.1395	0.1204	0.0462	0.0379	0.0288	0.0224
PinSage	0.1380	0.1196	0.0471	0.0393	0.0282	0.0219
NGCF	0.1569	0.1327	0.0579	0.0477	0.0377	0.0261
RDASGC-mean	0.1826	0.1551	0.0643	0.0524	0.0416	0.0320
%Improv.	16.38%	16.88%	11.05%	9.85%	10.34%	22.61%

接着我们用表现最好的 RDASGC-mean 在三个数据集上进行了调参,最终结果见 Table 3。可以看到,我们的模型的表现大幅度超越了 NGCF,最高可达到 22%。

C. Effect of layer numbers

Table 4: Effect of layer numbers

Layer Numbers		None	Mean	1/K	PPR	Adaptive
1	recall	0.1744	0.1590	0.1722	0.1206	0.1746
	ndcg	0.1467	0.1358	0.1469	0.0931	0.1489
2	recall	0.1749	0.1770	0.1741	0.1381	0.1761
2	ndcg	0.1459	0.1509	0.1491	0.1102	0.1498
3	recall	0.1557	0.1826	0.1741	0.1413	0.1761
	ndcg	0.1245	0.1551	0.1490	0.1105	0.1490
4	recall	0.0925	0.1823	0.1761	0.1455	0.1792
	ndcg	0.0652	0.1537	0.1510	0.1126	0.1508

最后我们实验分析了层数的变化对模型表现的影响,实验结果见 Table 4。可以看到,如果不采用任何 layer aggregation,当层数增加到 3 层时,模型性能就会大幅下降,这一现象在 GNN 领域也被称为过平滑。而采用了 layer aggregation 后,层数的增加却可以带来性能上的提升。

5. Explanation

User-Item Interaction Graph

High-order Connectivity for u_1

Figure 4

最后是模型的可解释性部分。如 Figure 4 所示,左图是用户-商品的二分关系图,右图是用户 u_1 的三阶邻居结构图。它很好地解释了为什么 GNN 能够有

效地学习到协同信息。例如,用户 u_1 和用户 u_2 都购买了商品 i_2 ,用户 u_2 又购买了商品 i_4 和 i_5 ,因此用户 u_1 也有可能够买商品 i_4 和 i_5 。此外,又因为还存在路径 $u_1-i_3-u_3-i_4$,所以相比商品 i_5 ,用户 u_1 更有可能够买商品 i_4 。这样通过neighbor aggregation 平滑操作后,用户 u_1 和商品 i_4 的 embedding 会更加接近,通过内积计算得到的偏好得分也会更高,在 topk 推荐中就会位于排名更加靠前的位置。

Figure 5: Visualization of the learned t-SNE transformed representations derived from MF and RDASGC-3. Each star represents a user from Gowalla dataset, while the points with the same color denote the relevant items

为了验证以上分析,我们对学习到的 embedding 进行了可视化。左图是 MF 的结果,相当于去掉了我们模型中的 neighbor aggregation 和 layer aggregation。右图是我们模型的结果,可以看到,用户和与其相关的商品,以及具有相似行为的用户及其相关商品,他们的 embedding 经过平滑后更接近了,这充分证实了以上分析。

6. 小组分工

代码主要封装设计为以下部分:数据处理、损失函数、评价指标、训练过程、测试过程、模型

刘唐 20210980061:负责文献的搜集和主题的确定,模型、训练和测试过程的实现,实验的调参分析,部分报告的编写,PPT的编写

周彦 20210980065: 负责损失函数和评价指标的实现,实验数据的可视化,部分报告的编写

张逸敏 20210980072: 负责数据处理部分的实现、实验数据的整理,部分报告的编写

References

- [1] Wang X, He X, Wang M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval. 2019: 165-174.
- [2] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
- [3] Wu F, Zhang T, Souza Jr A H, et al. Simplifying graph convolutional networks[J]. arXiv preprint arXiv:1902.07153, 2019.
- [4] Klicpera J, Bojchevski A, Günnemann S. Predict then propagate: Graph neural networks meet personalized pagerank[J]. arXiv preprint arXiv:1810.05997, 2018.
- [5] Liu M, Gao H, Ji S. Towards deeper graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 338-348.
- [6] Xu K, Li C, Tian Y, et al. Representation learning on graphs with jumping knowledge networks[J]. arXiv preprint arXiv:1806.03536, 2018.
- [7] Feng W, Zhang J, Dong Y, et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs[J]. Advances in Neural Information Processing Systems, 2020, 33.
- [8] https://github.com/xiangwang1223/neural graph collaborative filtering