Flocking Simulation with Phoenix Channels

Flocking Theory

Use case: Cinematic effects

Boid: One member of a flock

* Location

- * Location
- * Perception Radius

- * Location
- * Perception Radius
- * Velocity
- * Heading

You Need Three Behaviours

1. Cohesion

1. Cohesion

1. Cohesion

2. Alignment

2. Alignment

* Cohesion

* Alignment

* Separation

= Next move

Architecture

Simulation

Calculates new positions per boid based on world state

GenServer WorldStateUpdater

Calling itself
30 times per second

Phoenix BoidsChannel

Receives Updates Changes Settings

<canvas>
Renderer

Renders updated world state

Socket Connection

Receives Updates Changes Settings

Demo Time!

Read on!

http://harry.me/blog/2011/02/17/neat-algorithms-flocking/

http://www.red3d.com/cwr/boids/