$\alpha - \beta$ pruning

• The value is bounded by $[\beta, \alpha]$

Optimality

• Perfect: $b^{m/2}$

Improvement of $\alpha - \beta$ pruning

- Set the depth limit
- Using EVAL (estimated function) instead of UTILITY
 - Properties: monotonically leads to optimality.
 - You don't need exact values
- Result: Depth 8 chess algorithm? Not still good enough...

Other methods includes prior pruning...