Vectores - Parte 1

Álgebra y Geometría I (LM, PM, LF, PF, LCC)

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

21 de junio de 2021

Motivación: ¿Por qué usar vectores?

La construcción histórica de la noción de vector se fue manifestando en la medida que se iban identificando elementos de causalidad de la tríada: magnitud, dirección y número.

Muchas cantidades, tanto en geometría como en física, tales como el área, el volumen, la temperatura, la masa y el tiempo, pueden caracterizarse mediante un único número real en una escala de medición apropiada. A estas cantidades se las denomina magnitudes escalares.

Otras magnitudes, tales como la *fuerza* y la *velocidad*, contienen ambos, magnitud y dirección, y no pueden ser caracterizados mediante un único número real. Para representar tales magnitudes, llamadas magnitudes vectoriales, usamos un segmento orientado, una *flecha*.

Matemáticamente, los vectores pueden ser descriptos en dos sentidos: uno geométrico y otro analítico.

Vectores:

Tratamiento Geométrico

Definición de vector

Un vector es un segmento orientado, esto es, un par ordenado de puntos (O, U). El punto O se llama origen y el punto U se llama extremo del vector.

Observación: A un vector se lo representa gráficamente mediante una flecha, razón por la cual algunos autores lo denominan de esa manera. Usamos indistintamente las siguientes notaciones: \overrightarrow{OU} o simplemente \overrightarrow{u} .

Figura: 1

Características de un vector

En todo vector se distinguen:

- 1. la dirección, que está dada por la recta que lo contiene (recta sostén) o por una paralela cualquiera a la misma,
- 2. el sentido, que está dado por la orientación de la flecha (cada dirección tiene dos sentidos). Por ejemplo, los vectores \overrightarrow{u} y \overrightarrow{v} tienen la misma dirección pero sentidos opuestos.

Figura: 2

3. el módulo, que es igual a la longitud del segmento orientado que define al vector. Al módulo de \overrightarrow{u} lo simbolizamos $|\overrightarrow{u}|$.

<u>Observación</u>: El módulo es siempre un número no negativo. Si el módulo es cero quiere decir que el origen coincide con el extremo, es decir, el vector se reduce a un punto y por lo tanto no puede hablarse propiamente de un vector. En este caso, aun cuando la dirección y el sentido no están determinados, para facilitar muchas operaciones que se verán más adelante, decimos que se trata del vector nulo y lo simbolizamos: 0.

En síntesis:

$$\left|\overrightarrow{u}\right| \geq 0.$$

Más aún:

$$\left|\overrightarrow{u}\right| = 0 \Leftrightarrow \overrightarrow{u} = \overrightarrow{0}.$$

Igualdad de vectores - Vectores libres

Dos vectores se dicen iguales cuando ambos tienen módulo cero, o en caso contrario, cuando ambos tienen la misma dirección, sentido y módulo.

Con esta definición de igualdad entre vectores, todos los vectores iguales a uno dado pueden ser trasladados de manera que tengan un origen común. De esta manera, cada vector y todos sus iguales tendrán un solo representante con origen en el punto mencionado. De acuerdo a la definición de igualdad, dado un punto A y un vector \overrightarrow{OU} , existe un vector con origen en A igual al vector \overrightarrow{OU} , o equivalentemente, existe un punto B tal

que $\overrightarrow{OU} = \overrightarrow{AB}$.

Observación: La igualdad así definida caracteriza a los vectores libres. Salvo que se diga lo contrario trabajaremos con vectores libres y los llamamos directamente vectores.

Versor - Vectores paralelos - Ángulo entre vectores

- Llamamos versor o vector unitario a todo vector de módulo uno.
- ▶ Se llama versor asociado a \overrightarrow{u} y se simboliza con \overrightarrow{u}_0 al versor de igual sentido que \overrightarrow{u} .
- Decimos que dos vectores son paralelos o colineales cuando tienen igual dirección (aunque no tengan el mismo sentido y/o módulo).
- ▶ Dado el vector $\overrightarrow{u} = \overrightarrow{AB}$, \overrightarrow{BA} es el vector opuesto a \overrightarrow{u} y se simboliza $-\overrightarrow{u}$. (Si \overrightarrow{u} es no nulo entonces \overrightarrow{u} y $-\overrightarrow{u}$ tienen igual módulo y dirección pero sentidos opuestos. El vector nulo es

- igual a su opuesto).
- Dados dos vectores no nulos \overrightarrow{a} y \overrightarrow{b} , se define el ángulo entre ambos vectores y se lo representa por $(\overrightarrow{a}, \overrightarrow{b})$, al ángulo convexo determinado por dichos vectores cuando sus orígenes se aplican en un punto común. Si \overrightarrow{a} v \overrightarrow{b} son paralelos el ángulo entre ellos es nulo si son de igual sentido, o llano si sus sentidos son opuestos.

Consecuencias inmediatas de la definición de ángulo entre vectores

Figura: 3

- $ightharpoonup 0 \leq (\overrightarrow{u}, \overrightarrow{v}) \leq \pi.$
- $(\overrightarrow{u}, \overrightarrow{v}) = (\overrightarrow{v}, \overrightarrow{u}) \text{ (No existen ángulos negativos entre vectores)}.$
- $(\overrightarrow{u}, \overrightarrow{v}) + (-\overrightarrow{u}, \overrightarrow{v}) = \pi.$

Suma de vectores

Dados dos vectores \overrightarrow{u} y \overrightarrow{v} , y un punto arbitrariamente fijado A, queda determinado un punto B tal que $\overrightarrow{u} = \overrightarrow{AB}$, el que a su vez, determina un punto C tal que $\overrightarrow{v} = \overrightarrow{BC}$. El vector \overrightarrow{AC} es por definición la suma de \overrightarrow{u} y \overrightarrow{v} y lo simbolizamos $\overrightarrow{u} + \overrightarrow{v}$.

Figura: 4

Observaciones:

- ▶ El vector $\overrightarrow{u} + \overrightarrow{v}$ es independiente de la elección del punto A.
- La suma de vectores se extiende a cualquier número de sumandos, llevando sucesivamente cada uno a continuación del precedente y uniendo, al final, el origen del primero con el extremo del último. A dicho método se lo conoce como método de la poligonal.

Propiedades de la suma de vectores

Teorema (1)

Valen las siguientes propiedades para la suma de vectores:

- ▶ Propiedad conmutativa: $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$; $\forall \overrightarrow{u} \ y \ \overrightarrow{v}$.
- ▶ Propiedad asociativa: $(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$; $\forall \overrightarrow{u}$, \overrightarrow{v} y \overrightarrow{w} .
- Existencia de elemento neutro: $\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u}$; $\forall \overrightarrow{u}$.
- Existencia de elemento opuesto: dado \overrightarrow{u} , existe $-\overrightarrow{u}$ tal que $\overrightarrow{u} + (-\overrightarrow{u}) = (-\overrightarrow{u}) + \overrightarrow{u} = \overrightarrow{0}$.

Demostración.

- La propiedad conmutativa queda como tarea para el alumnado.
- La propiedad asociativa queda demostrada en la siguiente resolución gráfica donde \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} son tres vectores cualesquiera elegidos arbitrariamente:

Continuación de la demostración.

Figura: 5

- ▶ De las definiciones de vector nulo y suma, surge claramente el vector nulo como elemento neutro para la suma.
- Por último, dado $\overrightarrow{u} = \overrightarrow{AB}$, es claro que existe $-\overrightarrow{u} = \overrightarrow{BA}$ y que es tal que

$$\overrightarrow{u} + (-\overrightarrow{u}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{0}.$$

Vector diferencia

La última propiedad nos permite hacer la siguiente definición:

Dados \overrightarrow{u} y \overrightarrow{v} , se llama vector diferencia entre \overrightarrow{u} y \overrightarrow{v} y se simboliza $\overrightarrow{u} - \overrightarrow{v}$ al vector definido por:

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v})$$

Figura: 6

Observación: Como ejemplo, se muestra cómo utilizando el método de la poligonal podemos resolver sumas y/o diferencias entre un número cualquiera de vectores, en este caso, se representa el vector \overrightarrow{y} , resultado de realizar la suma $\overrightarrow{u} - \overrightarrow{v} + \overrightarrow{w} - \overrightarrow{x}$.

Figura: 7

Producto de un vector por un escalar

De la definición de suma de vectores se deduce que $\overrightarrow{v}+\overrightarrow{v}$ es un vector de igual sentido que \overrightarrow{v} y cuyo módulo es igual al doble del módulo de \overrightarrow{v} . Si simbolizamos $\overrightarrow{v}+\overrightarrow{v}$ con $2\overrightarrow{v}$, entonces $2\overrightarrow{v}$ es un vector de igual sentido que \overrightarrow{v} y tal que $|2\overrightarrow{v}|=2\left|\overrightarrow{v}\right|$. Análogamente $(-\overrightarrow{v})+(-\overrightarrow{v})$ es un vector de sentido opuesto al vector \overrightarrow{v} y cuyo módulo es igual al doble del módulo de \overrightarrow{v} . Si simbolizamos $(-\overrightarrow{v})+(-\overrightarrow{v})$ con $-2\overrightarrow{v}$, entonces $-2\overrightarrow{v}$ es un vector de sentido opuesto al de \overrightarrow{v} y tal que $|-2\overrightarrow{v}|=2\left|\overrightarrow{v}\right|$.

Figura: 8

Definición de producto por un escalar

Sea \overrightarrow{v} un vector y α un escalar (es decir, un número real) cualquiera. Se llama producto del escalar α por el vector \overrightarrow{v} , y se simboliza $\alpha \overrightarrow{v}$ al vector que verifica:

- $|\alpha \overrightarrow{\mathbf{v}}| = |\alpha| |\overrightarrow{\mathbf{v}}|.$
- ▶ Si $\alpha \neq 0$ y $\overrightarrow{v} \neq \overrightarrow{0}$, entonces $\alpha \overrightarrow{v}$ tiene la misma dirección que \overrightarrow{v} ($\alpha \overrightarrow{v}$ y \overrightarrow{v} son vectores paralelos).
- ▶ Si $\alpha > 0$ entonces $\alpha \overrightarrow{V}$ tiene el mismo sentido que \overrightarrow{V} ; si $\alpha < 0$ entonces $\alpha \overrightarrow{V}$ tiene sentido opuesto a \overrightarrow{V} .

Observación: Como ya se señalara, el vector nulo es el único vector con módulo cero. Por lo tanto si en el primer ítem se considera $\alpha=0$ y/o $\overrightarrow{v}=\overrightarrow{0}$ resulta que:

$$\alpha \cdot \overrightarrow{0} = \overrightarrow{0}$$
 $0 \cdot \overrightarrow{v} = \overrightarrow{0}$

Propiedades del producto de un vector por un escalar

Teorema (2)

Sean α , $\beta \in \mathbb{R}$ y \overrightarrow{u} y \overrightarrow{v} vectores. Entonces se verifican las siguientes propiedades:

- Propiedad distributiva del producto por escalares respecto de la suma de vectores: $\alpha \cdot (\overrightarrow{u} + \overrightarrow{v}) = \alpha \cdot \overrightarrow{u} + \alpha \cdot \overrightarrow{v}$
- Propiedad distributiva del producto por escalares respecto de la suma de escalares: $(\alpha + \beta) \cdot \overrightarrow{u} = \alpha \cdot \overrightarrow{u} + \beta \cdot \overrightarrow{u}$
- Propiedad de asociatividad de escalares (u homogeneidad): $\alpha \cdot (\beta \cdot \overrightarrow{u}) = (\alpha \cdot \beta) \cdot \overrightarrow{u}$
- Unidad para el producto por un escalar: $1 \cdot \overrightarrow{u} = \overrightarrow{u}$

$$\blacktriangleright$$
 $(-1)\cdot\overrightarrow{u}=-\overrightarrow{u}$

$$(-\alpha) \cdot \overrightarrow{u} = -(\alpha \cdot \overrightarrow{u})$$

$$\overrightarrow{u_0} = \frac{1}{|\overrightarrow{u}|} \cdot \overrightarrow{\iota}$$

Demostración.

Ejercicio para el alumnado.

Condición de paralelismo entre vectores

Teorema (3)

Dos vectores no nulos \overrightarrow{u} y \overrightarrow{v} son paralelos si y solo si existe un escalar $\alpha \neq 0$ tal que $\alpha \overrightarrow{u} = \overrightarrow{v}$.

Demostración.

Supongamos primero que existe un número real $\alpha \neq 0$ tal que $\alpha \overrightarrow{u} = \overrightarrow{v}$. Siendo \overrightarrow{u} paralelo a $\alpha \overrightarrow{u}$, por definición de producto de un vector por un escalar, resulta que \overrightarrow{u} y \overrightarrow{v} son paralelos.

Supongamos ahora que \overrightarrow{u} y \overrightarrow{v} (ambos no nulos) son paralelos. Puede ocurrir que sean de igual sentido o de sentido opuesto. En el primer caso el valor de α tiene que ser positivo, en cambio en el segundo caso α tiene que ser negativo. En cualquiera de los casos α depende tanto del módulo de \overrightarrow{u} como del módulo de \overrightarrow{v} . Suponiendo que $\overrightarrow{v}=\alpha \overrightarrow{u}$, veamos cómo tiene que ser α .

Continuación de la demostración.

$$\overrightarrow{\mathbf{v}} = \alpha \overrightarrow{\mathbf{u}} \Rightarrow |\overrightarrow{\mathbf{v}}| = |\alpha \overrightarrow{\mathbf{u}}| = |\alpha| |\overrightarrow{\mathbf{u}}| \Rightarrow |\alpha| = \frac{|\overrightarrow{\mathbf{v}}|}{|\overrightarrow{\mathbf{u}}|} \Rightarrow \alpha = \frac{|\overrightarrow{\mathbf{v}}|}{|\overrightarrow{\mathbf{u}}|} \circ \alpha = -\frac{|\overrightarrow{\mathbf{v}}|}{|\overrightarrow{\mathbf{u}}|}.$$

1. Si \overrightarrow{u} y \overrightarrow{v} son de igual sentido entonces:

$$\alpha = \frac{|\overrightarrow{\mathbf{V}}|}{|\overrightarrow{\mathbf{U}}|}.$$

2. Si \overrightarrow{u} y \overrightarrow{v} son de sentido opuesto entonces:

$$\alpha = -\frac{|\overrightarrow{\mathbf{v}}|}{|\overrightarrow{\mathbf{H}}|}.$$

<u>Comentario</u>: Esta caracterización de los vectores paralelos es fundamental ya que permitirá transitar del estudio geométrico al estudio analítico de los vectores; es decir de los vectores flecha a los vectores dados por sus componentes escalares.

Proyección ortogonal de un vector sobre la dirección de otro

Dados los vectores $\overrightarrow{u} = \overrightarrow{OU}$ y $\overrightarrow{v} = \overrightarrow{OV}$ (dos vectores no nulos) se llama vector proyección ortogonal de \overrightarrow{u} sobre \overrightarrow{v} y se nota $\overrightarrow{proy_{\overrightarrow{V}}}\overrightarrow{u}$ al vector \overrightarrow{OP} , donde P es el punto de intersección entre la recta sostén de \overrightarrow{v} y la perpendicular a ella que contiene a U.

Figura: 11

Observación: Si $\overrightarrow{u} = \overrightarrow{0}$, definimos $\overrightarrow{proy} \overrightarrow{u} = \overrightarrow{0}$.

Vector proyección

¿Cómo podemos encontrar una expresión para calcular el vector proyección? Claramente de la definición recién hecha, podemos advertir que el vector proyección de \overrightarrow{v} sobre \overrightarrow{u} es paralelo a \overrightarrow{u} y por lo tanto debe existir un $p \in \mathbb{R}$ tal que $proy_{\overrightarrow{u}} \overrightarrow{v} = p\overrightarrow{u_0}$.

Notemos que el número $p = |\overrightarrow{v}| \cos(\overrightarrow{u}, \overrightarrow{v})$, al que denominamos la proyección escalar de \overrightarrow{v} sobre \overrightarrow{u} , es el número buscado. Así:

$$proy_{\overrightarrow{u}}\overrightarrow{v} = |\overrightarrow{v}|\cos(\overrightarrow{u}, \overrightarrow{v})\overrightarrow{u_0} = p\overrightarrow{u_0}.$$

En particular:

$$\begin{array}{rcl} \left| \textit{proy}_{\overrightarrow{u}} \overrightarrow{v} \right| & = & |p| \\ & = & \left| \overrightarrow{v} \right| \left| \cos(\overrightarrow{u}, \overrightarrow{v}) \right|. \end{array}$$

Producto escalar

Sean \overrightarrow{u} y \overrightarrow{v} dos vectores cualesquiera. Se llama producto escalar (o producto interno) de \overrightarrow{u} por \overrightarrow{v} y se nota $\overrightarrow{u} \times \overrightarrow{v}$ (también $\overrightarrow{u} \cdot \overrightarrow{v}$) al número real definido por:

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{cases} |\overrightarrow{u}| |\overrightarrow{v}| \cos(\overrightarrow{u}, \overrightarrow{v}) & \text{si} \quad \overrightarrow{u} \neq \overrightarrow{0} \text{ y } \overrightarrow{v} \neq \overrightarrow{0} \\ 0 & \text{si} \quad \overrightarrow{u} = \overrightarrow{0} \text{ y/o } \overrightarrow{v} = \overrightarrow{0} \end{cases}$$

Observaciones:

- 1. $\overrightarrow{u} \times \overrightarrow{u} = |\overrightarrow{u}|^2$.
- 2. Si $\overrightarrow{u} \neq \overrightarrow{0}$ y $\overrightarrow{v} \neq \overrightarrow{0}$ entonces

$$cos(\overrightarrow{u}, \overrightarrow{v}) = \frac{\overrightarrow{u} \times \overrightarrow{v}}{|\overrightarrow{u}| |\overrightarrow{v}|}.$$

A continuación se muestran posibles orientaciones entre dos vectores, y su relación tanto con el producto escalar entre ellos como con el coseno del ángulo θ que forman.

Figura: 10

- 3. $proy_{\overrightarrow{u}}\overrightarrow{v} = (\overrightarrow{v} \times \overrightarrow{u_0})\overrightarrow{u_0}$.
- 4. $|proy_{\overrightarrow{u}}\overrightarrow{v}| = \frac{1}{|\overrightarrow{u}|} |\overrightarrow{v} \times \overrightarrow{u}|.$

Propiedades del producto escalar

Teorema (4)

Sean \overrightarrow{u} , \overrightarrow{v} y \overrightarrow{w} vectores cualesquiera y, sean α y β escalares. Entonces valen:

- Propiedad conmutativa: $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{v} \times \overrightarrow{u}$.
- ▶ Propiedad distributiva: $\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}$.
- $\overrightarrow{u} \times \overrightarrow{u} \geq 0$; $\overrightarrow{u} \times \overrightarrow{u} = 0$ si y solo si $\overrightarrow{u} = \overrightarrow{0}$.

Demostración.

- ► La demostración de las dos primeras propiedades enunciadas quedan como ejercicio para el alumnado.
- Probemos la tercer propiedad. Para ello, consideremos \overrightarrow{u} y \overrightarrow{v} no nulos y $\alpha < 0$. (El caso $\alpha > 0$ se resuelve de manera similar).

Continuación de la demostración.

$$(\alpha \overrightarrow{u}) \times \overrightarrow{v} = |\alpha \overrightarrow{u}| |\overrightarrow{v}| \cos(\alpha \overrightarrow{u}, \overrightarrow{v}) = |\alpha| |\overrightarrow{u}| |\overrightarrow{v}| \cos(\alpha \overrightarrow{u}, \overrightarrow{v})$$

$$= -\alpha |\overrightarrow{u}| |\overrightarrow{v}| \cos(\alpha \overrightarrow{u}, \overrightarrow{v}) = -\alpha |\overrightarrow{u}| |\overrightarrow{v}| (-\cos(\overrightarrow{u}, \overrightarrow{v}))$$

$$= \alpha |\overrightarrow{u}| |\overrightarrow{v}| \cos(\overrightarrow{u}, \overrightarrow{v}) = \alpha (\overrightarrow{u} \times \overrightarrow{v}).$$

Figura: 11

(*) Si $\alpha < 0$ entonces \overrightarrow{u} tiene sentido opuesto a $\alpha \overrightarrow{u}$, en consecuencia, $(\alpha \overrightarrow{u}, \overrightarrow{v})$ y $(\overrightarrow{u}, \overrightarrow{v})$ son ángulos suplementarios; por lo tanto sus cosenos son opuestos, esto es: $\cos(\alpha \overrightarrow{u}, \overrightarrow{v}) = -\cos(\overrightarrow{u}, \overrightarrow{v})$.

Continuación de la demostración.

Probemos ahora la cuarta propiedad. Si $\overrightarrow{u}=\overrightarrow{0}$, es claro que $\overrightarrow{u}\times\overrightarrow{u}=0$. Si fuera $\overrightarrow{u}\neq\overrightarrow{0}$ pero $\overrightarrow{u}\times\overrightarrow{u}=0$, entonces debería ser $\left(\overrightarrow{u},\overrightarrow{u}\right)=\frac{\pi}{2}$, lo cual es absurdo. Si $\overrightarrow{u}\neq\overrightarrow{0}$, entonces $\left(\overrightarrow{u},\overrightarrow{u}\right)=0$ y, por definición de producto escalar,

$$\overrightarrow{u} \times \overrightarrow{u} = |\overrightarrow{u}| |\overrightarrow{u}| \cos(0) = (|\overrightarrow{u}|)^2 > 0$$
.

Vectores perpendiculares - Condición de perpendicularidad

<u>Definición</u>: Sean \overrightarrow{u} y \overrightarrow{v} no nulos. Decimos que \overrightarrow{u} es perpendicular a \overrightarrow{v} y notamos $\overrightarrow{u} \perp \overrightarrow{v}$ si y solo si $(\overrightarrow{u}, \overrightarrow{v}) = \frac{\pi}{2}$.

Se propone como ejercicio que pruebe que: $\overrightarrow{u} \perp \overrightarrow{v} \Leftrightarrow \overrightarrow{u} \times \overrightarrow{v} = 0$.