I concetti del Modello Relazionale - Parte 3

Prof. Francesco Gobbi

I.I.S.S. Galileo Galilei, Ostiglia

28 novembre 2024

Concetti chiave: Insiemi

- Un insieme è una raccolta di elementi distinti.
- Esempio:

$$A = \{1, 2, 3\}, B = \{3, 4, 5\}$$

- Operazioni fondamentali:
 - ▶ **Unione** $(A \cup B)$: Combina tutti gli elementi di A e B:

$$A \cup B = \{1, 2, 3, 4, 5\}$$

▶ Intersezione $(A \cap B)$: Elementi comuni a $A \in B$:

$$A \cap B = \{3\}$$

Differenza (A - B): Elementi in A ma non in B:

$$A - B = \{1, 2\}$$

Che cos'è l'Algebra Relazionale?

Linguaggio formale:

- L'Algebra Relazionale è un linguaggio formale utilizzato per manipolare e interrogare dati organizzati secondo il modello relazionale.
- Ogni operazione nell'Algebra Relazionale prende in input una o più relazioni (tabelle) e produce un'altra relazione come output.

Obiettivo:

- Fornire un insieme di operatori per descrivere cosa vogliamo ottenere dai dati, senza specificare come i dati debbano essere elaborati (approccio dichiarativo).
- ▶ È alla base di molti linguaggi di interrogazione come SQL o MySQL, che implementano concetti dell'Algebra Relazionale.

Che cos'è l'Algebra Relazionale?

Struttura di base:

- Relazioni:
 - Una relazione è rappresentata come una tabella, costituita da:
 - Righe (tuple): Ogni riga rappresenta un record o un'istanza del dato.
 - Colonne (attributi): Ogni colonna rappresenta una proprietà o un campo del record.
 - Le relazioni sono insiemi: non contengono duplicati e l'ordine delle righe non è significativo.

Operatori:

- ► Gli operatori nell'Algebra Relazionale consentono di:
- Selezionare: Filtrare le righe in base a condizioni (es. età > 18).
- **Proiettare:** Ridurre la relazione alle sole colonne di interesse.
- Unire: Combinare due relazioni in base a una condizione comune.
- Effettuare operazioni insiemistiche: Unione, intersezione, differenza.

Esempio: Tabelle "Studenti" e "Corsi"

Tabella "Studenti"

ID_Studente	Nome	Cognome	Corso
1	Marco	Rossi	Informatica
2	Laura	Bianchi	Matematica
3	Sara	Verdi	Informatica

Tabella "Corsi"

ID_Corso	Nome_Corso	Docente
101	Informatica	Prof .Neri
102	Matematica	Prof .ssaBianchi

Domanda Iniziale da porsi

- Come possiamo estrarre tutti gli studenti che frequentano il corso di Informatica?
- ▶ Utilizziamo l'**operatore di selezione** (σ):

$$\sigma_{Corso} = 'Informatica' (Studenti)$$

ID_Studente	Nome	Cognome	Corso
1	Marco	Rossi	Informatica
3	Sara	Verdi	Informatica

1. Operatore di Selezione (σ)

Filtra le tuple(righe) di una relazione in base a una condizione specificata e crea una nuova tabella con solo queste tuple estratte.

► Notazione:

$$\sigma_{\mathsf{condizione}}(\mathsf{Relazione})$$

Esempio: Trova tutti gli studenti che frequentano Informatica.

$$\sigma_{\mathsf{Corso}} = \mathsf{'Informatica'}(\mathsf{Studenti})$$

ID_Studente	Nome	Cognome	Corso
1	Marco	Rossi	Informatica
3	Sara	Verdi	Informatica

2. Operatore di Proiezione (π)

- Seleziona specifici attributi (colonne) di una relazione e genera una nuova tabella con solo questi nuovi attributi etratti.
- ► Notazione:

$$\pi_{\mathsf{attributi}}(\mathsf{Relazione})$$

Esempio: Visualizza nome e cognome degli studenti.

$$\pi_{\text{Nome, Cognome}}(\text{Studenti})$$

Nome	Cognome
Marco	Rossi
Laura	Bianchi
Sara	Verdi

3. Operatore di Unione (\cup)

- Combina due relazioni con lo stesso schema in una sola tabella nuova generata, includendo tutte le righe presenti in almeno una delle due.
- Notazione:

$$R \cup S$$

- **Esempio:** Studenti di Informatica e Matematica.
- ► Tabelle di partenza:

	ID_Studente	Nome
R =	1	Marco
	3	Sara

	ID_Studente	Nome
=	2	Laura
	3	Sara

ID_Studente	Nome
1	Marco
2	Laura
3	Sara

4. Operatori di Intersezione (\cap) e Differenza (-)

▶ Intersezione (∩): Restituisce le righe comuni a due relazioni.

$$R \cap S$$

▶ Differenza (−): Restituisce le righe presenti in una relazione ma non nell'altra.

$$R-S$$

Esempio: Studenti iscritti a Informatica ma non a Matematica.

5. Operatore di Join (⋈)

► Un join combina due relazioni (tabelle) basandosi su una condizione specifica creando una nuova relazione.

Notazione:

$$R\bowtie_{\mathsf{condizione}} S$$

Tipologie principali:

- ► 5.1 **Inner Join** (Equi e Naturale)
- ▶ 5.2 **Outer Join** (Left, Right, Full)

5.1.1 Equi Join

Definizione: Combina le righe di due relazioni basandosi su una condizione di uguaglianza esplicita tra attributi.

Notazione:

$$R\bowtie_{\mathsf{A}=\mathsf{B}} S$$

Esempio:

Tabella Studenti

ID	Nome	
1	Marco	
2	Laura	
3	Sara	

Tabella Corsi

ID_Corso	Docente
1	Prof . Neri
3	Prof .ssaVerdi

Operazione:

Studenti $\bowtie_{Studenti.ID} = Corsi.ID_Corso$ Corsi

ID	Nome	ID_Corso	Docente
1	Marco	1	Prof . Neri
3	Sara	3	Prof .ssaVerdi

5.1.1 Equi Join

Considerazioni:

Grado della relazione risultante: La somma degli attributi delle due tabelle iniziali.

Grado:
$$Grado(Studenti) + Grado(Corsi) = 2 + 2 = 4$$

Cardinalità della relazione risultante: Dipende dalla condizione; nel caso di corrispondenza, il numero massimo di righe è determinato dalla tabella con meno righe.

Cardinalità: 2 (corrisponde alle righe unite correttamente.)

L'Equi Join viene utilizzato in esercizi in cui è **richiesto il confronto tra attributi, anche senza lo stesso nome**. È quindi più versatile nelle varie richieste ed in accoppiata con solezione e proiezione può comunque dare un grado finale della relazione minore.

5.1.2 Join Naturale

Definizione: Combina le righe di due relazioni basandosi implicitamente su tutti gli attributi comuni con lo stesso nome. Gli attributi comuni compaiono una sola volta nel risultato.

Notazione:

 $R \bowtie S$

Esempio: Tabelle:

Studenti

ID	Nome
1	Marco
2	Laura
3	Sara

Corsi

ID	Docente		
1	Prof . Neri		
3	Prof .ssaVerdi		

Operazione:

Studenti ⋈ Corsi

ID	D Nome Docente	
1	Marco	Prof . Neri
3	Sara	Prof .ssaVerdi

5.1.2 Join Naturale

Considerazioni:

Grado della relazione risultante: La somma degli attributi delle due tabelle meno quelli comuni (mostrati una sola volta).

 ${\sf Grado}({\sf Studenti}) + {\sf Grado}({\sf Corsi}) \text{-} {\sf Attributi} \ {\sf comuni} = 2 + 2 - 1 = 3$

Cardinalità della relazione risultante: Dipende dalla condizione implicita; il numero massimo di righe è determinato dalla tabella con meno righe.

Cardinalità: 2 (corrisponde alle righe unite correttamente.)

5.2 Outer Join (Left, Right, Full)

- Include tutte le righe di una tabella (o di entrambe) anche se non hanno corrispondenza nell'altra tabella.
- ▶ Tipologie:
- ▶ **Left Outer Join:** Include tutte le righe della tabella di sinistra.
- ▶ Right Outer Join: Include tutte le righe della tabella di destra.
- Full Outer Join: Include tutte le righe di entrambe le tabelle.
- Esempio (Left Join):

Studenti LEFT JOIN Corsi ON Studenti.ID = Corsi.ID_Corso

Nome	ID_Corso	Docente
Marco	1	Prof . Neri
Laura	NULL	NULL
Sara	3	Prof .ssaVerdi

Esempi di Outer Join: Tabelle di riferimento

Tabella Dipendenti

ID_Dip	ID_Dip Nome Co		
1	Marco	Rossi	
2	Laura	Bianchi	
3	Sara	Verdi	

Tabella Progetti

ID_Progetto	Nome_Progetto	ID_Dip
101	ProgettoAlpha	1
102	ProgettoBeta	2
103	ProgettoGamma	NULL

5.2.1 Left Outer Join

Descrizione: Include tutte le righe della tabella di sinistra (**Dipendenti**), anche se non trovano corrispondenza nella tabella di destra (**Progetti**). **Operazione:**

Dipendenti LEFT JOIN Progetti ON

 $Dipendenti.ID_Dip = Progetti.ID_Dip$

ID_Dip	Nome	Cognome	Nome_Progetto	ID_Progetto
1	Marco	Rossi	ProgettoAlpha	101
2	Laura	Bianchi	ProgettoBeta	102
3	Sara	Verdi	NULL	NULL

5.2.2 Right Outer Join

Descrizione: Include tutte le righe della tabella di destra (**Progetti**), anche se non trovano corrispondenza nella tabella di sinistra (**Dipendenti**). **Operazione:**

Dipendenti RIGHT JOIN Progetti ON

 $Dipendenti.ID_Dip = Progetti.ID_Dip$

ID_Dip	Nome	Cognome	Nome_Progetto	ID_Progetto
1	Marco	Rossi	ProgettoAlpha	101
2	Laura	Bianchi	ProgettoBeta	102
NULL	NULL	NULL	ProgettoGamma	103

5.2.3 Full Outer Join

Descrizione: Combina Left e Right Outer Join, includendo tutte le righe di entrambe le tabelle. **Operazione:**

Dipendenti FULL OUTER JOIN Progetti ON

 $Dipendenti.ID_Dip = Progetti.ID_Dip$

ID_Dip	Nome	Cognome	Nome_Progetto	ID_Progetto
1	Marco	Rossi	ProgettoAlpha	101
2	Laura	Bianchi	ProgettoBeta	102
3	Sara	Verdi	NULL	NULL
NULL	NULL	NULL	ProgettoGamma	103