MATH 155 – Midterm Exam

April 30, 2021, 10:30am-11:35am, 65 minutes

- You may use your textbook, your notes, and a calculator, but you may **not** consult with any other internet resources or other people.
- Show all of your work for full credit. Partial credit will be given.
- Upload you exam to Gradescope within the allotted time (by 11:40am PDT). Please indicate to Gradescope which answers are on which of your uploaded pages.
- The exam is worth 40 points in total. Questions are on the next two pages.

Problem	Possible Points	Score
1	10	
2	10	
3	10	
4	10	
Total	40	

1. Consider the following matrix A,

$$A = \begin{bmatrix} 4 & 1 & 0 \\ 0 & -2 & 2 \\ 0 & 0 & 4 \end{bmatrix} .$$

You are given additional information about A:

- $det(A \lambda I) = (4 \lambda)^2(\lambda + 2)$
- A has two eigenvectors:
 - (a) $\lambda = 4$ has eigenvector $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.
 - (b) $\lambda = -2$ has eigenvector $\begin{bmatrix} 1 \\ -6 \\ 0 \end{bmatrix}$.

Use this information to help you find the general solution to $\vec{y}' = A\vec{y}$.

2. (True or False). Answer the following questions true or false. Provide justification to receive full credit.

(a) Consider a 3×3 constant coefficient system of ODEs $\vec{y}' = A\vec{y}$. True or false, it is possible for the following vector \vec{y} to be a solution of this system:

$$\vec{y} = e^t \begin{bmatrix} 2t \\ 0 \\ t^3 - t^2 + 1 \end{bmatrix}$$

(b) Let $z_1(t)$ be a solution to $y'' + \sin(t)y = t^2e^t$. Let $z_2(t)$ be a solution to $y'' + \sin(t)y = 2$. True or false, $z_1(t) + 3z_2(t)$ is a solution to $y'' + \sin(t)y = t^2e^t + 6$.

2

3. Consider the second order ODE

$$y'' - y' = 0.$$

Note that there is no y term in this ODE, so it may be helpful to think of the ODE as

$$y'' - y' + 0 \cdot y = 0.$$

- (a) Rewrite this second order ODE as a linear system of first order ODEs of the form $\vec{y}' = A\vec{y}$.
- (b) Using your matrix from part (a), compute e^{At} .
- (c) Optional for up to 3 extra credit points: Use your answer from part (b) to solve the initial value problem

$$\vec{y}' = A\vec{y} + \begin{bmatrix} e^t \\ 0 \end{bmatrix}$$
 ; $\vec{y}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

4. Let $\vec{\phi}(t)$ solve the initial value problem: $\vec{y}' = A\vec{y}$ with $\vec{y}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Let $\vec{u}_1(t)$ solve the initial value problem: $\vec{y}' = A\vec{y} + \vec{g}(t)$ with $\vec{y}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Let $\vec{u}_2(t)$ solve the initial value problem: $\vec{y}' = A\vec{y} + \vec{g}(t)$ with $\vec{y}(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Define $\vec{u}(t) = \vec{u}_2(t) - \vec{u}_1(t)$. Prove that X(t) given by

$$X(t) = \begin{bmatrix} | & | \\ \vec{\phi}(t) & \vec{u}(t) \\ | & | \end{bmatrix}$$

3

is a fundamental matrix solution for $\vec{y}' = A\vec{y}$.