Multi-Label and Multinomial Classification

Natalie Parde UIC CS 421

What if we have more than two classes?

Many NLP classification tasks have more than two classes

- Sentiment analysis (positive, negative, neutral)
- Part-of-speech tagging (noun, verb, adjective, etc.)
- Emotion detection (happy, sad, angry, surprised, afraid, disgusted)

Classification Paradigms

- Multi-label classification
- Multinomial classification

Multi-Label Classification

- Each document can be assigned more than one label
- How do we do this?
 - Build separate binary classifiers for each class
 - Positive class vs. every other class
 - Run each classifier on the test document
 - Each classifier makes its decision independently of the other classifiers, therefore allowing multiple labels to be assigned to the document

VS.

Multinomial Classification

- Each document can only be assigned one label
- How do we do this?
 - Same setup:
 - Build separate binary classifiers for each class
 - Run each classifier on the test document
 - Different outcome:
 - Choose the label from the classifier with the highest score

VS.

VS

Multi-Class Contingency Matrix

Multi-Class Precision

Precision =
$$\frac{a}{a+b+c}$$

Multi-Class Recall

Precision =
$$\frac{a}{a+b+c}$$

Recall = $\frac{a}{a+b+c}$

Macroaveraging and Microaveraging

- We can check the system's overall performance in multi-class classification settings by combining all of the precision values (or all of the recall values) in two ways:
 - Macroaveraging
 - Microaveraging
- Macroaveraging: Compute the performance for each class, and then average over all classes
- Microaveraging: Collect decisions for all classes into a single contingency table, and compute precision and recall from that table

Macroaveraging

Natalie Parde - UIC CS 421

Macroaveraging

Macroaveraging

TP: a

FP: b+c

FN: d+g

Precision_{Class2} = $\frac{tp}{tp+fp}$ class 2

TP: e FP: d+f

FN: b+h

class 3

TP: i FP: g+h

Precision_{Class3} = $\frac{tp}{tp+fp}$ FN: c+f

Macroaveraged Precision

 $= \frac{Precision_{Class1} + Precision_{Class2} + Precision_{Class3}}{Precision_{Class3}}$

3

Natalie Parde - UIC CS 421

What's better: Microaveraging or macroaveraging?

- Depends on the scenario!
- Microaverages tend to be dominated by more frequent classes, since the counts are all pooled together
- Macroaverages tend to be more evenly distributed across classes
- Thus, if performance on all classes is equally important, macroaveraging is probably better; if performance on the most frequent class is more important, microaveraging is probably better