Properties of Weierstrass & function and Projective Curves

Maninder S. Dhanauta

December 20, 2022

University of Toronto Scarborough

MATD92 Mathematics Project - Riemann Surfaces

Agenda

- Preliminary Results
- Elliptic function and lattices
- Weierstrass function
- Properties of Elliptic function
- Projective Curves as Riemann Surfaces
- Holomorphic function $u \colon \mathbb{C}/\Lambda \to \mathcal{C}_\Lambda$

source

Preliminary Results

Prop 1: Weierstrass M-test

Let $\{f_{n,m}:W\to\mathbb{C}\}_{\mathbb{Z}\times\mathbb{Z}}$ be holomorphic functions on open set W

Suppose there exists $M_{n,m}$ for all n, m s.t.

1)
$$|f_{n,m}(z)| < M_{n,m} \quad \forall z \in W$$

 $(2)\sum_{\mathbb{Z}\times\mathbb{Z}}M_{n,m}$ converges

Then the following sum converged uniformly to some holomophic function f(z) on W

$$f(z) = \sum_{\mathbb{Z}.\times\mathbb{Z}} f_{n,m}(z)$$

The derivative is obtained by summing the term wise derivatives

$$f'(z) = \sum_{\mathbb{Z} \times \mathbb{Z}} f_{n,m}'(z)$$

Preliminary Results

- Zeros and poles of meromorphic functions (single valued, complex functions) are isolated
- Valency(order) of a zero: the first nth non-zero derivative at the zero

$$f(z) = a_n(z - z_0)^n + a_{n+1}(z - z_0)^{n+1} + \cdots$$

= $(z - z_0)^n g(z)$

• Valency(order) of a pole: the smallest exponent of the laurent series centered at pole

$$f(z) = a_{-n}(z - z_0)^{-n} + a_{-n+1}(z - z_0)^{-n+1} + \cdots$$

= $(z - z_0)^{-n}g(z)$

• Implicit function theorem:

Let polynomial $P(x,y) \in \mathbb{C}[x,y]$ define the curve $C = \{(x,y) \mid P(x,y) = 0\}$. Let $(a,b) \in C$ such that $\partial P/\partial y \neq 0$. Then there exists a holomorphic function f: U(a)

 \rightarrow V(b) open neighbourhoods such that

if $x \in U(a)$ and $y \in V(b)$ then $y = f(x) \leftrightarrow (x, y) \in C$

Elliptic Function and Lattices

Def: Doubly Periodic Functions

A function that satisfies $f(z + \omega_1) = f(z + \omega_2) = f(z) \ \forall z \in \mathbb{C}$ where $\omega_1, \omega_2 \in \mathbb{C}$ are linearly independent over \mathbb{R} is called *doubly periodic*. The ω_1, ω_2 are periods of f(z)

Examples of periodic functions:

$$\sin(x)$$
, $\cos(x)$, e^x

The period of e^x is $2i\pi$. This is the smallest positive period, no other period is smaller in magnitude. The set of all periods are integer multiples of $2i\pi$

Def: Lattice is the set $\Lambda = \{ n\omega_1 + m\omega_2 | (n,m) \in \mathbb{Z} \}$

Def: Elliptic Function f(z) is a meromorphic and doubly periodic functions

Non – constant Elliptic function f(z)

What generates the lattice?

5

Elliptic Function and Lattices

Def. Fundamental Period Parallelogram

Two linearly independent periods ω_1 , ω_2 of f(z) form a parallelogram. It is the *Fundamental Period Parallelogram* if no other period lies in it (boundaries included, vertices excepted) and ω_1 , ω_2 are called the *fundamental periods*.

Easy to see the lattice generated by ω_1 , ω_2 contains all the periods of f(z) since otherwise the parallelogram will not be fundamental

We can translate the fundamental period parallelogram by adding z_0 to get a cell, denoted $P(z_0)$

Why should there exists a fundamental Period Parallelogram?

[pf: Conv. Subsequence +
isolated zeros/poles]

Choice of Fundamental Periods

Notice we have 2 pairs of fundamental periods for the lattice $\Lambda(1,i)$

$$(\omega_1, \omega_2) = (1, i)$$
 defines the lattice $(\omega_1', \omega_2') = (1, 2 + i)$ also defines the lattice

Instead of a unique fundamental period, there is a unique equivalence class defining the lattice. The following are equivalent

 (ω_1, ω_2) and $({\omega_1}', {\omega_2}')$ define the same lattice Λ

 $\leftrightarrow (\omega_1, \omega_2)$ and (ω_1', ω_2') produce a fund. period parallelograms in Λ

$$\leftrightarrow \begin{pmatrix} {\omega_1}' \\ {\omega_2}' \end{pmatrix} = A \begin{pmatrix} {\omega_1} \\ {\omega_2} \end{pmatrix} \text{ where } A \in SL(2, \mathbb{Z})$$

Def. Equivalence Relation on \mathbb{C} :

$$z_0 \sim z_1$$
 iff $(z_0 - z_1) \in \Lambda$

This means $z_0 \sim z_1 \rightarrow f(z_0) = f(z_1)$

Example: Weierstrass & function

Def. Given a lattice $\Lambda(\omega_1, \omega_2)$ the associated Weierstrass function is

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda - \{0\}} \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2}$$

Its derivative is

$$\wp'(z) = \sum_{\omega \in \Lambda} \frac{-2}{(z - \omega)^3}$$

By Weierstrauss M-test [Kirwan 5.10], these functions are meromorphic on C. The lattice points are the only poles

Prop. \wp is even and doubly periodic (i.e. periodic on the lattice Λ)

- $\mathscr{D}(-z) = \frac{1}{(-z)^2} + \sum_{\omega \in \Lambda \{0\}} \frac{1}{(-z-\omega)^2} \frac{1}{\omega^2} = \frac{1}{(z)^2} + \sum_{(-\omega) \in \Lambda \{0\}} \frac{1}{(z-(-\omega))^2} \frac{1}{(-\omega)^2} = \mathscr{D}(z)$: it is even
- $\wp'(z)$ is clearly doubly periodic

So
$$\wp'(z+\omega) = \wp'(z) \rightarrow integrate \ wrt \ z \rightarrow \wp(z+w) = \wp(z) + C(\omega)$$

plug in
$$z = -\omega$$
 $\mathscr{D}\left(\frac{\omega}{2}\right) = \mathscr{D}\left(-\frac{\omega}{2}\right) + \mathscr{C}(w) \Rightarrow \mathscr{C}(\omega) = 0$: it is doubly periodic and an elliptic curve

Def.

Irreducible set of zeros of an elliptic function are all the zeros that lie strictly inside a cell $P(z_0)$. This cell should have no zeros or poles on its boundary Similarly define *Irreducible set of poles*.

- A irreducible set of zeros are congruent to all zeros in ${\mathbb C}$
- No two zeros in this set are congruent to each other
- Any two congruent zeros have the same order
- Same is true for irreducible set of poles
- All the poles of Weierstrass & functions have the same order

Laurent Series @z = 0 and order of poles

In an open ball at the origin:

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda - \{0\}} \frac{1}{(z - \omega)^2} - \frac{1}{\omega^2}$$

The order of pole at 0 is 2 since the Laurent series looks like

$$\wp(z) = \frac{1}{z^2} + \frac{0}{z} + 0 + a_2 z^2 + a_4 z^4 + \dots$$

By considering some combinations of $[\wp']^2$, \wp , \wp^3 , 1 we can create a doubly periodic holomorphic

$$\wp(z) = \frac{1}{z^2} + a_2 z^2 + a_4 z^4 + \dots$$

$$\wp^3(z) = \frac{1}{z^6} + \frac{3a_2}{z^2} + 3a_4 + z^2 + \cdots$$

$$[\wp'(z)]^2 = \frac{4}{z^6} - \frac{8a_2}{z^2} - 16a_4 + z^2 + \cdots$$

The combination is $[\wp'(z)]^2 - 4\wp^3(z) + 20a_2\wp(z) + 28a_4 = _z^2 + _z^4 + ...$

Laurent Series @z = 0 and order of poles

The combination is $[\wp'(z)]^2 - 4\wp^3(z) + 20a_2\wp(z) + 28a_4 = z^2 + z^4 + ...$

Written a bit concisely, the function $[\wp'(z)]^2 - 4\wp^3(z) + g_2\wp(z) + g_3$ is a doubly periodic holomorphic functions where

$$g_2 = 20a_2 = 60 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^4}$$

$$g_3 = 28a_4 = 140 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^6}$$

It follows by a property [see next slide] that the holomorphic function identically equals to 0. This $\wp(z)$ solves the differential equation

$$\left(\frac{dy}{dz}\right)^2 = 4y^3 - g_2y - g_3$$

Properties of Elliptic function

1) Sum of Residues over an irreducible set of poles of an elliptic function is 0

Idea [Residue Thm]

$$\sum Res(f; z_i) = \frac{1}{2i\pi} \oint_{\partial_{cell}} f(z) = 0$$

• Example: Residue of the only pole of $\wp(z)$ is 0.

2) A holomorphic elliptic function is constant

Idea [continuous function bounded on compact parallelogram + periodic + Liouville's Thm]

3) Number of roots of $f(z) = w_0$ in a cell is equal to the number of poles of f(z) in a cell (counting multiplicity). This is independent of w_0

We call the number of poles counting multiplicity the *order* of elliptic function f(z)

Idea [Argument principle + property 1] Let $g(z) = \frac{f'(z)}{f(z) - w_0}$. It is elliptic function so $\frac{1}{2i\pi} \oint_{\partial cell} g(z) = 0$. By argument principle, $\frac{1}{2i\pi} \oint_{\partial cell} g(z) = \#$ zeros - # poles = 0

- Elliptic curves are surjective
- Order of \wp is 2. It has single pole of order 2.
- Means $\wp(z)$ is surjective "twice" i.e. $\wp(z)=w_0$ has two distinct zeros in irred. set $\{z_0,-z_0\}$
- Actually, sometimes $-z_0 \sim z_0$. In this case the single zero has multiplicity 2

This happens at exactly 3 points $\frac{\omega_1}{2}$, $\frac{\omega_2}{2}$, $\frac{\omega_1+\omega_2}{2}$ (called half-periods)

Notice multiplicity is 2 -> first derivative is 0 (also called stationary points)

12/20/2022 Public

4) The smallest order of an elliptic function is 2

Weierstrass $\wp(z)$ function, which has order 2, has the smallest possible order

4) The smallest order of an elliptic function is 2

Weierstrass $\wp(z)$ function, which has order 2, has the smallest possible order

Riemann surfaces have holomorphic transition maps

Some More Preliminary Results

- Closed subsets of compact space is compact
- Compact subset of Hausdorff is closed
- Projective space P_n is compact and Hausdorff
- Projective Curves (subsets of P_n) are closed, compact, Hausdorff
- Continuous bijection between a compact and Hausdorff space is a homeomorphism

[W.A. Sutherland, Introduction to metric and topological spaces] [F. Kirwan, Complex Algebraic Curves]

Complex Algebraic Curves as Riemann Surfaces

Prop [Kirwan 5.27]

If C is a complex algebraic curve in \mathbb{C}^2 defined by polynomial P(x,y) then C-Sing(C) has a holomorphic atlas (aka is a Riemann surface)

12/20/2022

Complex Algebraic Curves as Riemann Surfaces

Prop [Kirwan 5.27]

If C is a complex algebraic curve in \mathbb{C}^2 defined by polynomial P(x,y) then C-Sing(C) has a holomorphic atlas (aka is a Riemann surface)

Take any point (a, b) EC - Sing(C)

Any point $(a, b) \in C - Sing(C)$

[Implicit Function theorem]

$$\exists f: U(a) \rightarrow V(b)$$

s.t.
$$y = f(x)$$
 iff $(x, y) \in C$

$$(x,y) \mapsto$$

Eather $\frac{2\Gamma}{2} \neq 0$ or $\frac{2\Gamma}{2} \neq 0$.

| By Implicit Function Theorem
| $\exists f: U(a) \rightarrow V(b)$ between open neight of a,b.
| $\exists s.t. \quad y = f(\alpha) \text{ iff } (x,y) \in C \cap (u \times v)$ | this is open. $\exists f: U(a) \to V(b)$ s.t. y = f(x) iff $(x, y) \in C$ Similarly $\Psi_{\beta}: C \cap (w) \to V$ So the chart $\phi_{\alpha}: C \cap (U \times V)$ $(x, y) \mapsto x$ Inverse chart $\phi_{\alpha}^{-1}: x \mapsto (x, f_{\alpha})$ $(x, y) \mapsto x$ $t_{1,2} = \phi_{2} \circ \phi_{1}^{-1} \quad \text{in this case} \quad x \mapsto (x, f_{(\alpha)}) \mapsto x \quad \text{is a homographism}$ $t_{1,2} = \psi_{2} \circ \psi_{1}^{-1} \quad \text{in this case} \quad x \mapsto (x, f_{(\alpha)}) \mapsto x \quad \text{identity map}$ $t_{1,2} = \psi_{2} \circ \psi_{1}^{-1} \quad \text{in this case} \quad x \mapsto (x, f_{(\alpha)}) \mapsto x \quad \text{identity map}$ $t_{1,2} = \psi_{2} \circ \psi_{1}^{-1} \quad \text{in this case} \quad x \mapsto (x, f_{(\alpha)}) \mapsto x \quad \text{identity map}$ $t_{1,2} = \psi_{2} \circ \psi_{1}^{-1} \quad \text{in this case} \quad x \mapsto (x, f_{(\alpha)}) \mapsto x \quad \text{identity map}$ $t_{1,2} = \psi_{2} \circ \psi_{1}^{-1} \quad \text{in this case} \quad x \mapsto (x, f_{(\alpha)}) \mapsto x \quad \text{identity map}$

Projective Curves as Riemann Surfaces

Prop [Kirwan 5.28]

If C is a projective curve in P_2 defined by polynomial P(x, y, z) then C - Sing(C) has a holomorphic atlas (aka is a Riemann surface)

• Using the fact P is homogenous function and P_2 projective space, we can reduce to 2 variables and use Implicit Function Theorem

Atlases look like $\phi: U \to \mathbb{C}$

$$[x, y, z] \mapsto \frac{x}{z}, \frac{z}{x}, \frac{y}{z}, \frac{z}{y}, \frac{x}{y}, \frac{y}{x}$$

Transition maps look like

$$w \mapsto w, \frac{1}{w}, g(w), \frac{1}{g(w)}, \frac{w}{g(w)}, \frac{g(w)}{w}$$

12/20/2022

Projective Curves as Riemann Surfaces

Prop [Kirwan 5.19, 5.20]

The projective curve C_{Λ} in P_2 defined by the polynomial

$$Q_{\Lambda}(x, y, z) = y^2 z - 4x^3 + g_2 x z^2 + g_3 z^3$$

is non-singular. Therefore it is also a Riemann Surface.

Recall the half periods $\frac{\omega_1}{2}$, $\frac{\omega_2}{2}$, $\frac{\omega_1+\omega_2}{2}$. They make f'=0. Thus differential eq. is $3^{\rm rd}$ degree cubic with distinct roots. $y(z)=\wp(z)$ and $\wp'=0$

$$g_2 = 20a_2 = 60 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^4}$$

$$g_3 = 28a_4 = 140 \sum_{\omega \in \Lambda - \{0\}} \frac{1}{\omega^6}$$

$$\left(\frac{dy}{dz}\right)^2 = 4y^3 - g_2y - g_3$$

$$= 4(y - e_1)(y - e_2)(y - e^3)$$

$$= 4[(y - e_2)(y - e_3) + (y - e_1)(y - e_3) + (y - e_1)(y - e_2)]$$

Complex Torus as Riemann Surfaces

Prop [Kirwan 5.42]

Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent over \mathbb{R} . Then the set $\mathbb{C}/\Lambda(\omega_1, \omega_2)$ with quotient topology has a holomorphic atlas (aka is a Riemann surface)

- In this case, the quotient map $\Pi:\mathbb{C}\to\mathbb{C}/\Lambda$ is open and continuous (but not injective!)
- Take a point $\Lambda + z_1 \in \mathbb{C}/\Lambda$. We could use a different z_i
- Consider an open ball $U(z_1)$ small enough to make Π injective. It becomes a homeomorphism between open set in $\mathbb C$ to neighbourhood of $\Lambda+z_1$. Π^{-1} is the chart.
- Recall we could've chosen any z_i . Thus multiple homeomorphisms exist for same neighbourhood of $\Lambda + z_1$. However, the open set in $\mathbb C$ are plane translations. Thus transition maps are holomorphic

12/20/2022 Pub

Holomorphic maps between Riemann surfaces

Def [Kirwan 5.33]

Let S and T be surfaces with holomorphic atlases Φ and Ψ . A continuous map $f:S\to T$ is called holomorphic with respect to Φ and Ψ if the map

$$\psi_{\beta} \circ f \circ \phi_{\alpha}^{-1}$$

is holomorphic

• Equivalently, it can be defined pointwise by asking if there exists 2 charts the cover the point and its image under f such that $\psi_{\beta} \circ f \circ \phi_{\alpha}^{-1}$ is holomorphic

12/20/2022

Holomorphic map $u: \mathbb{C}/\Lambda \to \mathcal{C}_{\Lambda}$

Def [Kirwan 5.22, 5.43]

The map $u: \mathbb{C}/\Lambda \to C_{\Lambda}$ defined by

$$\Lambda + z \mapsto \begin{cases} [\wp(z), \wp'(z), 1] & \text{if } z \notin \Lambda \\ [0, 1, 0] & \text{if } z \in \Lambda \end{cases}$$

is a homeomorphism (topological). Treating \mathbb{C}/Λ and C_{Λ} as Riemann surfaces, u is also holomorphic.

Insert Image for proof

12/20/2022

Summary

- Elliptic functions are doubly periodic, meromorphic functions
- Non-singular projective curves are compact Riemann surfaces
- Used the Weierstass elliptic function
 Ø to prove conformal equivalence between a complex torus and a projective curve defined on a given lattice

Sources

- F. Kirwan, Complex Algebraic Curves
- A.F. Beardon, A Primer on Riemann Surfaces
- G. Pastras, Four Lectures on Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics

Thank You for Listening Any Questions?