Vision par Ordinateur: Indexation et recherche d'images

Database indexing

Thanks to Laurent Amsaleg and Hervé Jégou for some of this material

Context: Similarity of Images

- Comparing description data (feature vectors) instead of images directly
 - Typically high-dimensional vectors
 - Vectors define points in high-dim spaces
- The similarity between images is in proportion to the similarity of their feature vectors
- Two images are said to be similar if their descriptors are close in the high-dim space
- · Everything relies on a metrics between vectors
 - often a distance or a similarity
 - all dimensions involved

Context: Image retrieval

- · Goal:
 - Given a feature vectors database,
 - Given a query image described by a set of query vectors
 - ⇒retrieve the closest feature vectors of the database: k-ppv or ε-sph
 - ⇒ return a **ranked** list of images: Voting mecanism

Two types of Searches

- Type 1: K-nn search
 - searching for K nearest neighbors
 - result set of fixed size
 - near does not means close
- Type 2: E search
 - searching within a "ball":

$$||p-p_i|| \le \varepsilon$$

- bounds dissimilarity
- result set of unpredictable size

Toy Example

- 1 query image
- Database: 2 images I₁ et I₂

- Description:
 - local descriptors of dimension 3
 - Distance L₁

Toy Example

- 1. Number of distances to compute?
- 2. Ranked list of similar images?
- · Query descriptors:

	x1	x2	х3
q1	5	5	1
q2	3	6	1
q3	5	4	6
q4	5	1	7

· DB descriptors:

ſ			-	-
ı		x1	x2	х3
	d11	4	2	1
ı	d12	0	7	7
	d13	6	З	5

Naïve, straightforward approach

- [Compute all the descriptors]
- Descriptors are all stored in a file
 - one after the other, sequentially
- Search Process:
 - read the file (large chunks at once)
 - compute distance between query and descriptors coming from disk
 - keep track of the K nearest neighbors (for ex)
- Exhaustive search, sequential

Naïve, straightforward approach

- Piece of cake!
- But very costly:
 - fetch data from disks (lots of I/Os)
 - compute distances over ALL data
- Not very realistic when dealing with:
 - very large volume of datahigh dimensionality

 - complex metrics (EMD)

Python time: exhaustive search

- Generate a random matrix of 10 descriptors of dimension 5
- · Given a query vector:
 - Use FLANN to retrieve the 3 k-nn
- · Given several query descriptors:
 - Use FLANN to retrieve the 3 k-nn
- Print execution time to retrieve the 50-nn for d=500, and:
 - 1 query, N=10,000
 - 1 query, N=100,000
 - 1 query, N=1,000,000
 - 100 queries, N=10,000
 - 100 queries, N=1,000,000

How can we accelerate the search?

We need...

- To reduce the volume of data to analyze during searches
- To enclose searches
- To efficiently access data and return answer
- How? By structuring the descriptors

Doing this fast requires multidimensional indexing

How Can We Index Data?

- Enclose the search
 - descriptors live in a high-dimensional space
 - analyze only interesting regions of space
- Key Idea:
 - group descriptors into Cells
 - ~ much fewer cells than descriptors

 - detect useless cells and ignore them
 the ones containing descriptors that can not be part of the final result

 - fine-grain analysis of remaining cells
 compute distances using the descriptors they contain

Table of Contents

- 1. Data indexing: why we need cells?
- 2. How to construct cells?
- 3. High-dimensional weirdness
- 4. Approximate searches

Why Relying on Cells?

- First, compute distances from query to cells
- Many cells can be ignored without accessing any vector they contain much fewer cells than descriptors

 - low complexity
 - simply need geometrical information on cells
 great response time gains

Geometry Helps

- Compute distance to all cells
- if $dmin(q,C_i) \ge dmax(q,C_j)$ then reject C_i
 - few cells: few distance calculations
 - very few candidates: few distance calculations
 - great gain in performance!make sure you have k nn

Geometry Helps Again!

- · Previous rule computes a list of candidate cells
- · List ordered w.r.t. increasing distance to q
- · Process all vectors in the current cell
 - update list of nearest neighbors
- if $dmin(q,C_i) \ge d(q,nn_k)$ then stop search
 - else fetch next cell; loop

Indexing =

- Design algorithms for building cells
- Design data structures to organize cells
- Design algorithms traversing data structures efficiently

Table of Contents

- 1. Data indexing: why we need cells?
- How to construct cells?
 High-dimensional weirdness
 Approximate searches

Grouping Descriptors into Cells?

- Two broad approaches for cell construction
 - based on distances between descriptors
 - based on high-dim space partitioning
- Information stored with cells

 - position in space, size, centre, population, ...
 Usually: minimum bounding rectangle/sphere

Multidimensional Indices Traditional indices for DBMS: trees Many indexing schemes have been designed to handle multidimensional data Overview of the 2 seminal approaches R-Tree: data proximity KD-Tree: space partitioning

Cuttman, 1984, ACM SIGMOD
B-Tree extended to high-dim spaces
nodes & leaves = hyper-rectangles

Dynamic insertion of vectors
Leaves (fixed size) group vectors
Leaves split on overflow
update parent

Balanced tree

Python time: indexing the DB

- Compare the execution times to retrieve the 50-nn for d=500, and:
 - 1000 queries, N=1,000,000

When using a brute-force approach (linear search) and a KD-Tree

Are these good approaches?

- · What about their:

 - pruning powerspeedup w.r.t. sequential scan
 - construction complexity
- \cdot Do experiments and/or study high-dimensional spaces

9

Table of Contents

- 1. Data indexing: why we need cells?
- 2. How to construct cells?
- 3. High-dimensional weirdness
- 4. Approximate searches

Properties of High-Dimensional Spaces

- Descriptors are typically high-dimensional
- Some weird things happen in such spaces algo fine at low-dim die at high-dim
- Watch your intuition. Things in 2d or 3d are way different
- This is called curse of dimensionality

Python time: high-dimensional spaces

- Study a uniform IID distribution, when d grows
 - Generate a DB containing N vectors of dimension d (N, d=parameters),
 - Generate one or several query vector(s) of dimension d
 - For d=2, for each query, compute
 - ~ The distance its nearest neighbor (1-nn)

 - ~ The distance to the farthest neighbor (N-nn) ~ The ratio between the 1-nn and 2-nn (Lowe matching criteria)
 - ~ The ratio between the 1-nn and N-nn
 - Repeat for increasing values of d: 3, 5, 10, 50, 100, 200, 500, 1000
- · What happens?

1) Vanishing Variance

- Shaft [ACM TODS 2006] have observed that, with an **IID** distribution, when *d* grows:
 - the distance between all pairs of points tend to be similar
 - both dist(q, nn) and dist(q, farthest neighbor) grow
 - dist(q, nn) grows faster than dist(q, fn)
 - the closest point to a given one is as far as its farthest
 - NN becomes very unstable
 - this is called "Vanishing Variance"
- · Some data sets can hardly be indexed

2) High-dim Space Partitioning

- The number of cells for space partitioning grows exponentially with d
- - d = 30; split each dimension in 2
 2³⁰ = 1 073 741 824 cells

 - much more cells than data points
 - many empty cells, costly to keep track of them
 - unlikely to have more than 1 point per cell
- Partitioning for cells is useless

2) High-dim Space Partitioning

- · If a point is near a frontier, then must analyze the neighboring
- How many cells touch any particular cell when d=30 and each split
- · How likely is it that a random point gets near a frontier?
- * Example: In [0,1]^d, what is the probability for a point (uniformly sampled) to be at less than δ from the frontier?
- Python: compute this proba for d=1, 2, 3, 5, 10, 50, 100, 500

2) High-dim Space Partitioning In $[0,1]^d$, the probability to be at less than δ from the frontier is: δ = 0.01 δ is small here (1%)

2) High-dim Space Partitioning

- · All data points are near frontiers
 - must check on the other side
- · One cell has very many neighbors
 - must check many neighboring cells
- · Many cells are empty
- Vectors are lonely in cells
 - cells are useless
- · Nice, isn't it?

3) Rectangles and Spheres

- · Simple shapes
 - easy to encode, cheap for geometrical rules
- · Let's compare them in high-dim, d=30
- - volume = 1 \Rightarrow diagonal = 5.47, radius = 1.43
 - hyperspheres are much more compact than hyperrectangles are (corners take up space)

3) Rectangles and Spheres

- Enlargement
 - to absorb a new data point, shape must expand
 - diagonal+=0.5; radius+=0.5 ⇒volume R=35; volume S=126
 - hyperrectangles grow much slower than hyperspheres do

3) Rectangles and Spheres

- - in high-dim, rectangles are hugein high-dim, spheres get fat

 - there is a lot of overlap
 the more overlap, the less geometrical rules can be effective
 - so the more cells you need to analyze
- · Cells are useless
 - isn't this cool?

4) Rectangles and Spheres · Let's zoom on the volume of R or S · this is the shell of the shape

4) Rectangles and Spheres

- the volume of the shell grows exponentially with d
- when d large, all the volume is in the shell
 - eating high-dim eggs will not stuff you
- \cdot it is unlikely anything can be in the "center"
- so again, frontier and enlargement problems
- · Isn't creating cells a stupid idea?

5) Empty Space Phenomenon

- Whatever you do, when d grows, the space becomes more and more
- Example:
 S is an hypersphere with radius of 0.5 in [0,1]d
- compute N to have at least 1 vector in S

$$V_d(r) = \frac{\pi^{d/2} r^d}{\Gamma(1+d/2)}$$

when d even : $\Gamma(1+d/2) = (d/2)!$ when d odd : $\Gamma(1+d/2) = \sqrt{\pi} \frac{d!!}{2^{(d+1)/2}}$

with
$$d!! = \begin{cases} 1, & d = -1, 0, 1 \\ d(d-2)!!, & d \ge 2 \end{cases}$$

5) Empty Space Phenomenon

- · Let's increase d
 - d=10, N≈400
 - d=20, N=40.10⁶

d=40, N=3000.10²⁰ d=100, N=5000.1069

· Why is that?

· "Corners" are consuming all the space

Indexing High-dim Data

- · If cells are overlapping
- · If most of cells are empty
- ${}^{\textstyle \cdot}{}_{\textstyle }$ If there is only one point per cell
- \cdot If you need to analyzed all neighboring cells
- · Then:

Read all cells, randomly => Lot of (random) I/O

=> Much more costly than a sequential scan

Indexing High-dim Data

- · This is very true for uniform data
 - theoretically proven what can you do...
 no indexing method will beat seq scan
 - particularly when searching exact neighbors
- · Less true when data is not uniform
 - real data is more contrasted
 - vanishing variance not kicking so strongly

• but high dimensionality still causes trouble

Summary

- · Consensus: only the sequential scan has a fair behavior
- All other approaches eventually fail, and degenerate to worse.
- · What the hell is going on during a search?

High-Dim. Data - What is going on?

- · What are the effects of all this?
- What is happening to search processes?
- Elements for understanding:
 - years of experiments and observations
 - results extracted from a paper: "A Case Study of the Quality vs. Time Trade-off for Approximate Image Descriptor Search", Sigurðardóttir, Hauksson, Jónsson, Amsaleg, EMMA'05 (with ICDE)

Experiments

- 5.017.298 descriptors, 24 dimensions
- 52.273 real-life images (news, photo agency)
- 2 cell forming approaches
- SR-TreeBAG

Overall

- · You very quickly get the first NN
 - first cell(s) very profitable
- · You get others more slowly
 - next cells less and less profitable
 - many NN \Rightarrow many cells
- Termination problem
 overlap ⇒ many cells candidate (all!)
 - no way to say STOP

The Coolest Idea

- Why waiting 10h to get a perfect result if in 10 sec we can get a pretty good one?
- Approximate Searches
 - trade response time against result quality
 - this is where the action is!