Contrôle Intermédiaire Théorie des langages de programmation 1 C.S.

Durée: 2H.

Tous Documents Interdits

EXERCICE 1: (5 pts)

Soient L₁, L₂ et L₃ les langages suivants

$$L_1=X*aa$$

$$L_2=b*a(b*a \cup a^+b^+a)*a^+$$

 $L_3 = (b \ Uab \ U \ aa^+b)*a \ U \ (b \ U \ ab \ U \ aa^+b)*$

1. Donner une grammaire qui engendre L₁.

$$S \rightarrow aS / bS / aa$$

(1 pt)

2. Comparer L₁ et L₂

$$L_1 = L_2$$

Démonstration $L_1 \subseteq L_2$ (1 pt) et $L_2 \subseteq L_1$ (1 pt) (Type de démo vu en TD)

5. Comparer L₁ et L₃

L₃ est le complément de L₁

Démonstration
$$L_1 \cap L_3 = \emptyset$$
 (0.5 pt) et $X^* = L_1 \cup L_3$ (1,5 pts)

(Type de démo vu en TD)

4. Donner une grammaire qui engendre L₃

$$S \rightarrow a / S'$$

$$S' \rightarrow aS' / bS' / ba / b$$

(1 pt)

EXERCICE 2: (5 pts)

Soit la grammaire suivante

$$S \rightarrow aA / bB_1$$

$$A \rightarrow aS / bB_2$$

$$B_1 \rightarrow bB_1 / aC$$

 $C \rightarrow aD$

$$D \rightarrow aC / \epsilon$$

$$B_2 \rightarrow bB_2 / aD$$

1. Donner le langage engendré par cette grammaire :

L=
$$\{a^i b^j a^k, j, k > 0 \text{ et } i+k \equiv 0[2]\}$$
 (1 pt)

2. Montrer que L(G)=L (Type de démo vu en TD)

$$L(G) \subset L$$
 $L \subset L(G)$

3. Donner la grammaire du langage $L = L(G) \cap \{w \in \{a, b\}^* / |w| \equiv 0[2]\}$ (1 pt)

L=
$$\{a^i b^j a^k, j, k > 0 \text{ et } i+k \equiv 0[2] \text{ et } j \equiv 0[2]\}$$

$S \rightarrow aA/bB$	$C \rightarrow aD$
$A \rightarrow aS / bB'$	$D \rightarrow aC / \epsilon$
$B \rightarrow bB_1$	$B' \rightarrow bB_2$
$B_1 \rightarrow bB / aC$	$B_2 \rightarrow bB' / aD$

A quelle classe appartient L (Justifier)?

$L \in Reg(X^*)$ car c'est l'intersection de deux langages réguliers (proposition : la classe des langages réguliers est fermée par rapport à l'intersection)

Exercice 3: (5 Pts)

Donnez les grammaires des langages suivants

$$\begin{split} L_1 = & \{0^n 0^{2n} 0^{3n} \mid n > = 0\}. \\ & \mathbf{S} \to \mathbf{000000S} \, / \, \epsilon \, \mathbf{(1 \ pt)} \end{split}$$

$$L_2 = \{0^n 10^{2n} 10^{3n} \mid n \ge 0\}.$$
 (1,5 pts)

Grammaire d'une étudiante (1.5 pts) :

$S' \rightarrow DSF / \varepsilon$	$DA \rightarrow 00D$
$S \rightarrow 0SAB/1$	$D0 \rightarrow 0D$
$BA \rightarrow AB$	$D1 \rightarrow 1D$
$BF \rightarrow F000$	$DF \rightarrow 1$

 $L_3 = \{0^n 1^m 2^k / k > n + m \text{ et } k \text{ n'est pas un multiple de } 3\}$

Grammaire d'une étudiante (1.5 pts) :

$S_0 \rightarrow 0 S_1 2 / S_0$	$S_2' \rightarrow 1 S_0' 2/2A_0$
$S_1 \rightarrow 0 S_2 2/S_1$	$A_0 \rightarrow 2A_1$
$S_2 \rightarrow 0 S_0 2 / S_2$	$A_1 \rightarrow 2A_2 / \epsilon$
$S_0' \rightarrow 1 S_1' 2/2A_1$	$A_2 \rightarrow 2A_0 / \epsilon$
$S_1' \rightarrow 1 S_2' 2/2 A_2$	

Exercice 4: (5 Pts)

Soit A l'automate suivant :

Rendre l'automate simple : (0.5 pt)

Donner l'automate reconnaissant le facteur propre de L(A). Montrer que le facteur propre d'un langage régulier et régulier (Justifier).

L'automate reconnaissant le facteur propre du langage L(A): tous les états sont initiaux et finaux excepté S_o et S_4

Soit A < X, S, S_0 , F, II > un automate simple réduit. On va construire l'automate A' < X, S', S_0' , F', II' > tq L(A) = L(A')

- 1. S'il n'existe aucune instruction de type (S_i, w_i, S_0) dans II alors S ne sera pas rajouter à S' sinon $S'=S' \cup \{S_0\}$. (Le fait d'avoir une boucle au niveau de S_0 , nous assure que l'on peut toujours trouver un $h_1 \in X+$)
- 2. On garde comme état final (dans F') tous les états finaux S_k de F tq il existe un Sj et wj et $(S_k, w_k, S_j) \in II$. (Le fait d'avoir une boucle au niveau de S_0 , nous assure que l'on peut toujours trouver un $h_2 \in X^+$)
- 3. Tous les états non initiaux et non finaux de *A* sont rajoutés à V'. Tous ces états deviennent finaux et initiaux.

Montrer que L(A) = L(A') (Ce type de démonstration a été vu en cours).