

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P1

FEBRUARY/MARCH 2014

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off

This memorandum consists of 12 pages.

QUES	TION 1 [27 MARKS]		
Ques	Solution	Explanation	AS/L
1.1.1	$45 \% \text{ of } 26,7 - \sqrt{\frac{24 \times 345}{10 \ 389}}$		12.1.1 L1
	=12,015 − 0,8927467 ✓A	1A calculation	
	= 11,12225 ≈ 11,12 ✓CA	1CA rounding (2)	
1.1.2	$1,068 = \frac{1068}{1000} = \frac{267}{250} = 1\frac{17}{250} \checkmark A$	1A fraction 1A simplest form (2)	12.1.1 L1
1.1.3	✓A September 1970 ✓A	1A Year 1A month (2)	12.1.1 L2
1.1.4	R1 = €0,10717 €32 527 = $\frac{\mathbf{R1} \times \mathbf{€32 527}}{€0,10717}$ ✓M/A	1M/A dividing	12.1.1 L2
	= R303 508,4445 = R303 508,44 ✓CA	1CA simplification (2)	
1.1.5	S(in metre) = $5(1,5)[1,5-1]$ \checkmark SF = $3,75$ \checkmark CA	1SF substitution 1CA distance (2)	12.2.1 L1
1.1.6	$P(boy) = \frac{18}{42} \stackrel{\checkmark}{\checkmark} A$ $= \frac{3}{7} \stackrel{\checkmark}{\checkmark} CA$	1A number of favourable outcomes 1A number of possible Outcomes 1CA simplification (3)	12.4.5 L2
1.1.7	20: 12 = 5: 3 ∴ 2 more trains per hour ✓CA	1A writing ratio 1CA more trains OR	12.1.1 L2
	Number of trains in peak periods = $\frac{60}{12}$ = 5 \checkmark A Number of trains more = 5 - 3 = 2 \checkmark CA	1A number of trains in peak periods 1CA more trains (2)	

Ques	Solution	Explanation	AS/L
1.2.1	$1\ 000\ g = 2.2\ pound$		12.3.2 L2
	$\therefore 200 \text{ g} = \frac{2,2}{5} \text{ pounds } \checkmark \text{A}$	1A divide by 5	
	= 0,44 pounds ✓ S	1S simplification (2)	
1.2.2	10 tbsp = 125 m ℓ OR 10: 125 = 3: x 125 × 3	1A times three	12.3.2 L1
	1 tbsp = 12,5 m $\ell \checkmark$ A $x = \frac{125 \times 3}{10} \checkmark$ A $= 37,5 \text{ m} \ell \checkmark S$		
	$\therefore 3 \text{ tbsp} = 12.5 \times 3 \text{ m } \ell$ $= 37.5 \text{ m } \ell \checkmark \text{S}$	1S simplification (2)	10.1.1
1.2.3	For 6 persons use 50 g \therefore 1 person use $\frac{50}{6} = 8,33 \text{ g}$ $6 = 50 \text{ g}$ $9 = \frac{50 \text{ g} \times 9}{6} \text{M/A}$	1M/A using ratio	12.1.1 L2
	$\therefore 9 \text{ persons use } 8,33 \times 9 = 75 \text{ g } \checkmark \text{CA}$	1CA amount of pine nuts (2)	
1.3.1	the breadth decreases $\checkmark \checkmark A$	2A correct answer (1)	12.2.2 L1
1.3.2	4 m ✓✓A	2A breadth (1)	12.2.2 L1
1.3.3	6 m ✓ ✓ A	2A side length (2)	12.3.2 L1
1.3.4	Number of cabbages = $\frac{\sqrt{A}}{16 \text{ cm}} + 1$ at beginning	1A dividing and adding 1CA number	12.3.1 L2
	$= 25 + 1$ $= 26 \checkmark CA$	(2)	
		[27]	

QUESTION 2 [29 MARKS]			
Ques	Solution	Explanation	AS/L
2.1.1	54% ✓✓ RG	2RG percentage (2)	12.4.4 L1
2.1.2	Natural area lost = 70% – 34% ✓ RG = 36% ✓ CA	1RG subtracting correct values 1CA area lost (2)	12.4.4 L1
2.1.3	Ave annual percentage rate = $\frac{127 909}{9474740} \times 100\%$ = 1,35 % per year \checkmark CA	1M calculating percentage 1CA percentage/annum (2)	12.1.1 L1
2.2.1	$Median = \frac{158 + 160}{2} \checkmark M$ $= 159 \checkmark CA$	1M finding median 1CA median	12.4.3 L2
	137	(2)	
2.2.2	6 athletes ✓✓A	2A answer (2)	12.4.3 L2
2.2.3	P(less than 158) = $\frac{5}{12} \checkmark A$ $\approx 41,67 \% \checkmark CA$	1A number less than 160 1A total number of athletes 1CA %	12.4.5 L2
2.3.1	MHR _{female} = $216 - (1.09 \times 18)$ \checkmark SF = 196.38 \checkmark CA	1SF substitution 1CA maximum heart rate (2)	12.2.1 L1
2.3.2	Age = $\frac{202 - 189,9}{0,55}$ \checkmark SF	1SF substitution	12.2.1 L1
	= 22 √ CA	1CA age (2)	
2.3.3 (a)	female ✓A	1A answer (1)	12.2.2 L1
2.3.3 (b)	186 beats per minute ✓✓A	2A correct conclusion (2)	12.2.2 L1
2.3.3 (c)	Female ✓ ✓ A	2A correct gender (2)	12.2.2 L1

Ques	Solution	Explanation	AS/L
2.3.3 (d)	26 ✓✓A	2A correct conclusion (2)	12.2.2 L2
2.3.3 (e)	20 ✓✓A	2A correct conclusion (2)	12.2.2 L2
2.3.3 (f)	Difference in age = $22 - 18 \checkmark RG$ = 4 years $\checkmark CA$	2RG correct values 1CA correct conclusion (3)	12.2.2 L2
		[29]	

QUESTION 3 [22 MARKS]			
Ques	Solution	Explanation	AS/L
3.1.1	$A = R6,31 \times 9 \times 5 \checkmark A$ $= R283,95 \checkmark CA$	1M concept - multiplying 1A correct values 1CA simplification (3)	12.1.1 L1(2) L2(1)
3.1.2	Monthly rate = $\frac{\text{Weekly rate} \times 13}{3}$ = $\frac{\text{R303,30} \times 13}{3} $	1SF substituting weekly rate 1CA simplification	12.2.1 L1
3.1.3	Percentage increase = $\frac{\frac{\sqrt{SF} \sqrt{SF}}{R316,80 - R303,30} \times 100\%}{R303,30} \times 4,45\% \checkmark CA$	1SF new rate 1SF old rate 1CA percentage (3)	12.1.1 L1
3.2.1	Brazil ✓ RT	1RT correct country (1)	12.4.4. L1
3.2.2	Total = $10\ 017 + 5\ 526 + 0 + 91\ 916 + 84 + 9\ 631\ tonnes$ = $117\ 174\ tonnes$ \checkmark CA	1M addition 1CA correct total (2)	12.1.1 L1
3.2.3	Amount of peaches = $\frac{30,53}{100} \times 1200000$ tonnes \checkmark M = 366 360 tonnes \checkmark CA	1RT correct percentage 1M writing 1,2 million in full 1CA amount of peaches produced (3)	12.1.1 L1
3.3.1	Gauteng's production area = $\frac{2.5}{100}$ \checkmark A = $\frac{1}{100}$ \checkmark CA	1A writing in fraction form	12.1.1 12.4.4 L1
	40	1CA simplification (2)	
3.3.2	Percentage (Piketberg) = 60% – (12+20+11)% ✓ M = 17% ✓ A	1M subtracting from 60% 1A correct percentage (2)	12.1.1 L1
3.3.3	✓A Klein Karoo and Free State 11% Wolsley/Tulbagh and Limpopo 12 % ✓A	1A Klein Karoo 1A Wolsley/Tulbagh (2)	12.4.4 L1
3.3.4	Ceres ✓✓A	2A correct area (2)	12.4.4 L1
		[22]	

	QUESTION 4 [23 MARKS]			
Ques	Solution	Explanation	AS/L	
4.1.1	A = 768 + 1080 + 4455 + 2268 = 8571 CA	1M adding 1CA correct value of A	12.1.1 L1	
		(2)		
4.1.2	$B \times 3 \times 5 \times 9 = 4455 \checkmark M$ $B \times 135 = 4455$ $B = 33 \checkmark CA$	1M multiplying and equating to 4 455 1CA correct value of B	12.1.1 L1	
	B – 33 V CA	(2)		
4.1.3	\checkmark A $36 \times 3 \times 2 \times C = 1\ 080$ $216 \times C = 1\ 080$	1A correct number of grades	12.1.1 L2	
	$C = \frac{1080}{216} \checkmark M$ $C = 5 \checkmark CA$	1M dividing 1CA value of C		
4.2.1	The Book ✓RT	1RT correct price (1)	12.1.1 L1	
4.2.2	R1,80 ✓RT	1RT median (1)	12.4.3 L1	
4.2.3	1,52; 1,52; 1,50; 1,48; 1,47; 1,32; 1,32; 1,25; 1,10 ✓✓A	2A correct order (2)	12.4.4 L1	
4.2.4	✓A ✓A R1,32 and R1,52	1A R1,32 1A R1,52	12.4.3 L1	
4.2.5	Range = $R8,99 - R7,68 \checkmark M/A$ = $R1,31 \checkmark CA$	1M/A subtracting extreme values 1CA correct range (2)	12.4.3 L1(1) L2(1)	
4.2.6	Mean = $\frac{1,70+1,73+1,75+1,75+1,80+1,92+1,99+2,05+2,15}{9}$	1M finding mean	12.4.3 L2	
	$=\frac{16,84}{9}\checkmark A$	1A simplification		
	= 1,871111 ≈ R1,87 ✓ CA	1CA mean (3)		
4.3.1	768 exercise books ≈800 exercise books	1R rounding to nearest 200 1CA number of packs	12.2.1 L2	
	Number of packs = $\frac{800}{200}$ OR Number of packs = $\frac{768}{200}$ A = 3,84 ≈ 4 \checkmark R	OR 1A dividing 1R number of packs (2)		

Copyright reserved

Ques	Solution	Explanation	AS/L
4.3.2	Price per pack = $\frac{R16200 \times 20}{4455} \checkmark SF$ $= R72,73 \checkmark CA$	1A number per pack 1SF substitution 1CA price per pack (3)	12.2.1 L2
		[23]	

OUES'	ΓΙΟΝ 5 [26 MARKS]		
Ques	Solution	Explanation	AS/L
5.1.1	C 3 ✓ ✓ A OR 3C	1A C 1A 3	12.3.4 L1
		(2)	
5.1.2	Distance = 8 mm ✓✓A	2A correct measurement (2)	12.3.1 L1
5.1.3	North East ✓A	2A correct direction (1)	12.3.4 L2
5.1.4	✓ A ✓ A R75 and R329	2A 1 mark for each road (2)	12.3.4 L1
5.2.1	Jackal ✓A	1A correct predator (1)	12.4.3 L1
5.2.2	LOSS OF LIVESTOCK BY PREDATORS	4A any 4 bars plotted correctly	12.4.2 L2
	Unknown VA	1A all bars plotted correctly 1M correct type	
	Stray Dogs ✓ A	of graph	
	Leopards \checkmark A \checkmark M \checkmark A		
	Jackals		
	Caracals		
	Bushpigs VA		
	Birds		
	- In the second		
	Baboons 0 10 20 30	40	
	% contribution to loss	(6)	

Ques	Solution	Explanation	AS/L
5.3.1 (a)	Total length = $6 \times 1.5 \text{ m} + 8 \times 1 \text{ m} + 5 \times 2 \text{ m}$ = $9 \text{ m} + 8 \text{ m} + 10 \text{ m}$ = $27 \text{ m} \checkmark \text{CA}$	1A using 1,5 m pieces 1A using 1 m pieces 1A using 2 m pieces 1CA length	12.3.1 L2
5.3.1 (b)	Total area of mesh wire = $3 \times B \times H + 2 \times L(H + B)$ \checkmark_{SF} = $3 \times 1 \text{ m} \times 1.5 \text{ m} + 2 \times 2 \text{ m}(1.5 \text{ m} + 1 \text{ m})$ = $4.5 \text{ m}^2 + 10 \text{ m}^2 \checkmark_{S}$ = $14.5 \text{ m}^2 \checkmark_{CA}$	1SF substitute in formula 1S simplify 1CA surface area (3)	12.3.1 L1
5.3.2	Total cost = R59,95 per m ² × 699,3 m ² \checkmark M/A = R41 923,035 \checkmark CA \approx R41 920 \checkmark R	1M/A multiplying correct amounts 1CA solution 1R rounding (3)	12.1.1 L2
5.3.3	Original 2 m becomes 3 m $\therefore 1 \text{ m becomes } \frac{3}{2} \text{ m} \checkmark A$ $\therefore \text{ the height} = 2,25 \text{ m} \checkmark CA$ OR $2:1:1,5 = 3:1,5:2,25$	1A using ratio 1CA height (2)	12.1.1 L1
		[26]	

Ques	FION 6 [23 MARKS] Solution	Explanation	AS/L
Ques		Zapanaron	12.3.1
6.1.1	Area = length \times breadth		L1
0.1.1	$= 30 \text{ cm} \times 45 \text{ cm}$	1A solution	Li
	$= 1350 \text{ cm}^2 \checkmark \text{A} \checkmark \text{A}$	1A correct unit	
	1 300 4111	(2)	
		(2)	12.3.1
6.1.2	Perimeter = 2(length + breadth) ✓SF		L1
0.1.2	$= 2(30 \text{ cm} + 45 \text{ cm}) \checkmark \text{S}$	1SF correct substitution	
	= 2(75 cm)	1S simplification	
	= 150 cm ✓CA	1CA simplifying	
	130 6111 / 671	(3)	
			12.3.1
6.2.1	75 cm ✓ ✓ A	2A correct length	L1
0.2.1	7.5 CIII	(2)	LI
		(2)	12.3.1
6.2.2	$180 \text{ cm} = 2 \times 75 \text{ cm} + 30 \text{ cm} \checkmark \text{M}$	1M breaking down 180 cm	L2.3.1
0.2.2	✓A ✓A	1A number of tea towels	122
	∴ She can make 8 tea towels and 12 dish cloths	1A number of dish cloths	
	one can make a tow to well and 12 dish crowns	(3)	
		(6)	12.3.1
6.2.3	Area (in cm ²) = $900 - (3)^2 (4 - 3.14)$ \checkmark SF	1SF substitution	L1
0.2.5	$= 900 - 7.74 $ \checkmark S	1S simplification	21
	= 892,26 ✓CA	1CA simplifying	
	0,2,20	(3)	
	√√A	(0)	12.1.1
6.3.1	Cost of the material = $R45,00 \times length$ of material (in metres)	2A formula	L1
0.5.1	Cost of the material (in meters)	(2)	Li
		1M multiplying by 45	12.2.2
6.3.2	$A = 5 \times R45 \checkmark M$	1CA value of A	L1(2)
0.2.2	= R225 ✓CA		L2(2)
			(_)
	360	1M dividing by 45	
	$B = \frac{360}{45} \checkmark M$	1CA value of B	
	45 = 8 ✓ CA		
	- o · CA	(4)	

