AIR POLLUTION

Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM_{2.5} air pollution

Baojing Gu^{1,2}*, Lin Zhang³*, Rita Van Dingenen⁴, Massimo Vieno⁵, Hans JM Van Grinsven⁶, Xiuming Zhang⁷, Shaohui Zhang^{8,9}, Youfan Chen³, Sitong Wang¹, Chenchen Ren¹⁰, Shilpa Rao¹¹, Mike Holland¹², Wilfried Winiwarter^{9,13}, Deli Chen⁷, Jianming Xu^{1,2}, Mark A. Sutton⁵*

Fine particulate matter ($PM_{2.5}$, particles with a mass median aerodynamic diameter of less than 2.5 micrometers) in the atmosphere is associated with severe negative impacts on human health, and the gases sulfur dioxide, nitrogen oxides, and ammonia are the main $PM_{2.5}$ precursors. However, their contribution to global health impacts has not yet been analyzed. Here, we show that nitrogen accounted for 39% of global $PM_{2.5}$ exposure in 2013, increasing from 30% in 1990 with rising reactive nitrogen emissions and successful controls on sulfur dioxide. Nitrogen emissions to air caused an estimated 23.3 million years of life lost in 2013, corresponding to an annual welfare loss of 420 billion United States dollars for premature death. The marginal abatement cost of ammonia emission is only 10% that of nitrogen oxides emission globally, highlighting the priority for ammonia reduction.

ir pollution from PM_{2.5} (fine particulate matter with a mass median aerodynamic diameter <2.5 µm) has been estimated to cause millions of premature deaths annually in recent years (1, 2). Therefore, mitigating PM_{2.5} pollution is a high priority for environmental protection in many countries such as China (3), India (4), the United States (5), and the member states of the European Union (EU) (6). The most costeffective abatement measures need to be identified to balance environmental protection and economic development. This is particularly relevant for atmospheric emissions of reactive nitrogen (N_r), which are generally driven by fossil fuel combustion in power plants and transport and by the production of food and energy (7-9). Previous quantifications of the health impacts of nitrogen oxides (NO_x) and ammonia (NH₃) emissions from PM_{2.5} pollution have not been conducted on a global scale because of differences in atmospheric chemistry, population density,

and regions and reflective of local conditions. Here, we developed and applied a metric that we call the "N-share" of PM_{2.5} pollution, which is the contribution of N_r compounds to total PM_{2.5} concentration determined by modeling with and without N_r emission. We applied three atmospheric chemistry transport models, EMEP-WRF (12), TM5-FASST (13), and GEOS-Chem (14), which include emissions of sulfur dioxide (SO₂), NO_x, NH₃, volatile organic compounds, and primary PM2.5 (see the materials and methods). The N-share is different from the mass fraction of N_r within $PM_{2.5}$ because N_r emissions are not only the precursors of PM2.5 but also affect the chemical reactions that lead to $PM_{2.5}$ formation (15). By combining the calculated values of N-share with the estimated global burden of disease derived from PM_{2.5} pollution (1), we were able to estimate welfare loss associated with N_r emissions. Finally, we applied the GAINS

model (16) to estimate the implementation

costs of N_r air pollution abatement (see the

materials and methods), which has the advan-

tage of being able to quantify the abatement

cost of each measure in different countries,

allowing us to compare the relative welfare

gains of reducing different forms of N_r emis-

sion. NO_x is an important precursor to ozone

that also has a negative impact on human

health (9), so we also considered ozone for-

¹College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China. ²Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China. ³Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China. ⁴European Commission, Joint Research Centre, 21027 Ispra (VA), Italy. ⁵UK Centre for Ecology & Hydrology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian EH26 OOB, UK. ⁶PBL Netherlands Environmental Assessment Agency, 2500 GH The Hague, Netherlands. 'School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia. 8School of Economics and Management, Beihang University, 100091 Beijing, China. 9International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria. Department of Land Management, Zheijang University, Hangzhou 310058, China. ¹¹Norwegian Institute of Public Health, N-0213 Oslo, Norway. 12 Ecometrics Research and Consulting, Reading RG8 7PW, UK. 13 Institute of Environmental Engineering, University of Zielona Góra, PL 65-417 Zielona Góra, Poland.

*Corresponding author. Email: bjgu@zju.edu.cn (B.G.); zhanglg@pku.edu.cn (L.Z.); ms@ceh.ac.uk (M.A.S.)

and exposure characteristics relative to the pollution consequences of N_r emissions in different countries (7, 9–11). In addition, differences in gross domestic product (GDP) and social preferences affect economic values of mortality (1). Economic growth and higher living standards increase healthy life expectancy and also increase the willingness to pay for actions that ultimately reduce the health risks of air pollution (1). Thus, a generic method is needed to ensure that the costs of mortality from N_r emissions are comparable across countries and regions and reflective of local conditions.

mation in the analysis. By contrast, we have not separately analyzed the direct health impacts of NO_2 .

Although the overall N-share of PM_{2.5} pollution generally increased from 1990 to 2013, we note substantial regional variation, with increases in Asia, South America, and South Africa and a decrease in Europe (Fig. 1 and Table 1). We found that NH₃ emission made a larger contribution to PM2.5 than NOx emission globally and in most countries, indicating that PM_{2.5} is more strongly NH₃ limited than NO_x limited (17, 18). The N-share caused by NH₃ emissions contributed an estimated 25% (range, 20 to 31%) to PM_{2.5} pollution in 1990, increasing to 32% (25 to 39%) in 2013, whereas NO_x emission contributed 17% (14 to 20%) in 1990, increasing to 28% (23 to 33%) in 2013. These changes agree well with the widespread increase of N_r emissions and the decrease of SO₂ emission in many areas of the world from 1990 to 2013 (fig. S5) (19).

The N-shares of total N_r emissions are much smaller than the sum of N-shares from NH₃ and NO_x separately (Fig. 1) because of the interactions between NH3 and NOx during secondary PM_{2.5} formation. Alkaline NH₃ can form aerosols with the acidic products of NO_v and SO₂ emission, so that reduction of NH₃ emission also tends to reduce the contribution of NO_x and SO_2 to $PM_{2.5}$ formation (15, 18, 20), which also explains the larger N-share of $PM_{2.5}$ pollution arising from NH3 compared with NO_x. In this study, we treated the health effects of NH3-derived PM2.5 the same as we did those of NOx-derived PM2.5 because evidence of differential harm between chemical species is lacking (see the supplementary materials) (21).

For the period 1990-2013, we estimate that total years of life lost (YLL) caused by PM_{2.5} pollution derived from N_r emissions increased from 19.5 to 23.3 million globally, with the NH₃ and NO_x contributions increasing from 16.3 to 19.3 and 11.4 to 16.2 million, respectively (table S1 and fig. S6). We used YLL to quantify premature mortality because this metric is considered robust and versatile in capturing health impacts (22). Every premature death represents an individual story, with variation between age at death and expected lifespan, which can be well captured by the YLL (23). When expressed as YLL per gigogram of N (where $1 \text{ Gg} = 10^9 \text{ g}$) emission (YLL/N), higher values were found in developing or transition economies such as Asia, East Europe, and some African countries, which have high PM_{2.5} pollution and lower GDP per capita (Fig. 2 and fig. S6). Higher $PM_{2.5}$ pollution increases the YLL, whereas lower GDP per capita normally indicates lower access to and quality of medical care (table S2) (24), as well as greater insecurity in access to food and water that can also increase the YLL/N. By contrast, lower YLL/N is found in

Fig. 1. N-shares of PM_{2.5} **pollution and their changes between 1990 and 2013.** Values represent the percentage contribution of each form of N_r emission to PM_{2.5} pollution. (**A**) Total N_r-share in 1990. (**B**) Total N_r-share in 2013. (**C**) Change in total N_r-share between 2013 and 1990. (**D**) NH₃-N share in 1990. (**E**) NH₃-N share in 2013. (**F**) Change in NH₃-N share between 2013 and 1990. (**G**) NO_x-N share in 1990.

(H) NO_x -N share in 2013. (I) Change in NO_x -N share between 2013 and 1990. (J) Change in NO_x -N share between 2013 and 1990. Results are based on the average value of simulations from GEOS-Chem and EMEP-WRF models using 100% N_r emission reduction with uncertainty analysis from figs. S2 to S5. Base map is applied without endorsement from Natural Earth (https://www.naturalearthdata.com/).

Table 1. Estimated mortalit	y cost caused by	PM _{2.5} air pollution	from total N _r emissions
-----------------------------	------------------	---------------------------------	-------------------------------------

	N_r shares in PM _{2.5} formation (%)		YLL attributable to $PM_{2.5}$ from N_r emission (million years)		Total mortality cost of N _r in PM _{2.5} pollution (billion USD)		Marginal mortality cost (USD/kg N)	
	1990	2013	1990	2013	1990	2013	1990	2013
Africa	5.9	7.3	0.9	0.9	6.3	9.3	1.3	1.1
Asia	31.0	42.3	13.4	18.1	49.4	212.4	1.6	4.1
Europe	57.9	47.4	3.8	2.9	148.6	124.6	8.4	13.1
Latin America	20.9	23.5	0.6	0.7	8.6	19.0	1.5	2.1
North America	46.3	44.2	0.8	0.8	47.6	53.6	4.3	6.8
Oceania	7.8	11.2	0.01	0.01	0.5	0.6	0.6	0.5
World	30.2	38.6	19.5	23.3	261.1	419.5	3.6	4.8

America, western Europe, and Oceania (fig. S6). In these areas, populations are generally exposed to lower levels of $PM_{2.5}$ pollution compared with Asia, and higher GDP per capita is associated with access to better medical care (table S2).

Quantifying the global welfare loss per YLL [in 2011 U.S. dollars (USD) converted at purchasing power parity rates], we found that the willingness to pay to reduce the risk of a YLL caused by $N_{\rm r}$ emission represented a total cost of 261 (range, 156 to 398) billion USD in 1990, increasing by 60% to 420 (247 to

640) billion USD in 2013 (Table 1). Of this, by far the largest regional change was estimated for Asia (+330%, mainly linked to increased $N_{\rm r}$ emissions), which may be contrasted with reduction in Europe (–16%, mainly linked to NO_x control). Ammonia contributes most to the estimated total cost of mortality from $N_{\rm r}$ emissions both because it is found in large amounts (table S1) and because it is the limiting (alkaline) compound for aerosol formation (17, 18).

Globally, the average marginal cost of premature mortality caused by $N_{\rm r}\, {\rm emission}$ in

2013 was estimated at 4.8 (range, 2.8 to 7.3) USD/kg N_r emission, compared with 3.6 (2.2 to 5.5) USD/kg N_r emission in 1990 (Table 1, Fig. 2, and fig. S7). This 31% increase can be mainly attributed to increase of N_r air pollution and higher costs per YLL caused by income growth. The marginal cost from NH₃ emission was ~44% higher than that of total N_r emission (table S1), affecting the overall pattern of N_r values (Fig. 2).

We found that the total social benefit of reduced mortality from the abatement of NH_3 emission was substantially larger than the

Fig. 2. Changes in mortality cost per kilogram N_r emission between 1990 and 2013 caused by $PM_{2.5}$ pollution. Values are based on the control of different N_r components. Shown are control of total N_r emission for 1990 (**A**), 2013 (**B**), and differences between 2013 and 1990 (**C**); control of NH_3 emission for 1990 (**D**), 2013 (**E**), and differences between 2013 and 1990 (**F**); and control of NO_x emission for 1990 (**G**), 2013 (**H**), and differences between 2013 and 1990 (**I**). Positive values for (C), (F), and (I) indicate an increase over time. Uncertainties for these figures can be found in fig. S7. White areas of some countries indicate a lack of data. Base map is applied without endorsement from Natural Earth (https://www.naturalearthdata.com/).

 NH_3 and NO_x abatement. LA, Latin America, NA, North America. For Africa, fertilizer savings are negative because of too little N_r input compared with crop need, and the best management practices would increase N_r fertilizer use (see the supplementary materials).

abatement costs. We estimated the global average cost of reducing $\rm NH_3$ emission at 1.5 USD/kg $\rm NH_3$ -N (weighted mean of measures) using the GAINS method (see the materials and methods), which is substantially less than the welfare benefit of the associated reduction of mortality at 6.9 (range, 3.8 to 10.9) USD/kg $\rm NH_3$ -N globally (Table 1 and fig. S8). By contrast, we estimated the abatement cost of $\rm NO_x$ -m which is larger than the welfare ben-

efits of reduced mortality at 7.3 (4.0 to 11.8) USD/kg NO_x-N (table S1).

North America has the largest benefit-to-cost ratio for NH_3 mitigation, followed by Europe and Asia, suggesting reduction of NH_3 emission as a favorable option to increase social benefit (Fig. 3B). The benefit-to-cost ratio for NO_x mitigation is also the largest in North America compared with other world regions. However, globally, this ratio is <1 even when including both $\mathrm{PM}_{2.5}$ and ozone effects, suggest-

ing a negative net benefit to further reducing $\mathrm{NO_x}$ emissions (Fig. 3B). The benefit-to-cost ratios to mitigate $\mathrm{NH_3}$ and $\mathrm{NO_x}$ emission are both <1 in Oceania (Fig. 3B). This indicates that the costs of $\mathrm{N_r}$ mitigation are not justified by the expected regional benefits for $\mathrm{PM}_{2.5}$, although other considerations may still justify $\mathrm{N_r}$ mitigation in this region [e.g., ecosystem benefits (25)]. In Africa, food security is still a challenge, and improved management practices may need to increase nitrogen inputs (whether

by fertilizer or biological nitrogen fixation) and reduce wasteful nitrogen losses to avoid soil degradation (26).

The main opportunities for NH₃ abatement concern agricultural sources, for which abatement measures are relatively easy and inexpensive. For instance, optimizing nitrogen fertilization will not only abate NH3 emission but will also reduce nitrogen fertilizer use, which can save the implementation cost while offering opportunities for net cost savings (27-29). For nonagricultural sources of NH₃, which account for ~25% of emissions based on the Community Emissions Data System (CEDS) inventory, the reduction is more related to fossil fuel combustion, biomass burning, and waste treatment, which have received much less attention in the past (30). If global NH₃ emissions (from all sources, including both agricultural and nonagricultural) were to be reduced by 50%, then the total implementation cost is estimated at 38 billion USD (Fig. 3A). This is smaller than the social benefit of prevented mortality (172 billion USD) derived from mitigation of $PM_{2.5}$ pollution for NH₃ emission (Fig. 3A). Additionally, this would save ~20% of global nitrogen fertilizer use with a net value of ~28 billion USD (see the materials and methods for the calculation). In practice, this means that many measures to control NH3 emission can have a zero cost implementation or represent a net economic benefit for farmers. This is in addition to the substantial societal co-benefits for natural ecosystems from reducing N_r air pollution (8, 31, 32), such as improved water quality, biodiversity conservation, and reduced nitrous oxide emissions (33).

Agricultural NH3 is distributed over many individual facilities, so control requires action by farmers in many different contexts (34). In the United States, agricultural NH₃ emission is not well controlled, and it is a cause of damage to both the environment and human health (18). For larger farms with access to advanced technologies, it is technically feasible to reduce NH₃ emission from agriculture without risk of production loss through measures such as adoption of enhanced-efficiency fertilizers and improved manure management practices (35, 36). With the revised EU National Emission Ceilings directive (adopted in 2016), reduction of NH₃ emission will be considered across sectors for the target year 2030 (37). Policies in the Netherlands and Denmark have required NH3 abatement, leading to reported emission reductions of 35 to 66% between 1990 and 2011 (38). China started to address reduction of NH₃ emission from agricultural sources during its 13th Five Year Plan (2016-2020) (39), and it has been estimated that agricultural NH_3 emission could be reduced by one-third and at a low cost through appropriate policies, such as subsidies for enhanced-efficiency fertilizers and fertilizer application machinery (40, 41). Taking reduction of NH_3 emission into consideration for $\mathrm{PM}_{2.5}$ pollution control is therefore critical, presenting the opportunity for future legislation to mitigate NH_3 emissions at national to global scales (34).

The estimated implementation cost (297 billion USD) for reducing NO_x emissions is larger than the benefit of reduced mortality (132 billion USD) derived from reduced PM2.5 pollution (fig. S8). However, reduction of NO_x emission can also have other benefits, such as alleviation of ground-level ozone (9 billion USD, estimated based on the similar method with PM_{2.5}; see the supplementary materials). The modest 7% additional benefit shows how the PM_{2.5} costs dominate welfare loss derived from NO_x emission (Fig. 3B), whereas reducing both NOx and NH3 emissions will also benefit terrestrial and aquatic ecosystems (9). NO_v emissions have already been reduced in high-income regions such as North America and Europe between 1990 and 2013 (fig. S5), which means that the marginal implementation cost to reduce NO_x emissions further is much higher in these countries because the most cost-effective measures are in place already. For other countries where NO_x emissions are still increasing, implementation costs are smaller than those for Europe and North America, but even these costs are much higher than those of NH₃ mitigation (fig. S8 and Table 1). Innovation to recapture NO_x as value-added N_r products rather than the present focus on wasteful destruction to form di-nitrogen (N2) may have considerable future potential to reduce costs (33) but is still far from commercial availability. Considering the overall costs and benefits, our analysis highlights the priority for air pollution policies to give increased attention to controlling NH₃ emissions, complementing successful policies on NOx and SO2 (Fig. 3B) as part of implementing the ambition of the Colombo Declaration to "halve nitrogen waste" from all sources globally.

REFERENCES AND NOTES

- World Bank Institute for Health Metrics and Evaluation, "The cost of air pollution: Strengthening the economic case for action" (World Bank, 2016).
- J. Lelieveld, J. S. Evans, M. Fnais, D. Giannadaki, A. Pozzer, Nature 525, 367–371 (2015).
- M. Zheng, C. Yan, T. Zhu, Philos. Trans. R. Soc. London Ser. A 378, 20190325 (2020).
- 4. G. W. Fuller, A. Font, Science 365, 322-323 (2019)
- F. Paulot, D. J. Jacob, Environ. Sci. Technol. 48, 903–908 (2014).
- P. Thunis et al., "Urban PM_{2.5} atlas: Air quality in European cities" (European Union, 2017).
- D. J. Sobota, J. E. Compton, M. L. McCrackin, S. Singh, *Environ. Res. Lett.* 10, 025006 (2015).
- 8. M. A. Sutton et al., Nature 472, 159–161 (2011).
- H. J. M. Van Grinsven et al., Environ. Sci. Technol. 47, 3571–3579 (2013).
- B. Gu et al., Environ. Sci. Technol. 46, 9420–9427 (2012).

- 11. J. E. Compton et al., Ecol. Lett. 14, 804-815 (2011).
- D. Simpson et al., Atmos. Chem. Phys. 12, 7825–7865 (2012).
- 13. R. Van Dingenen *et al.*, *Atmos. Chem. Phys.* **18**, 16173–16211 (2018).
- I. Bey et al., J. Geophys. Res. Atmos. 106 (D19), 23073–23095 (2001).
- 15. O. Hertel et al., Biogeosciences 9, 4921-4954 (2012).
- M. Amann et al., Environ. Model. Softw. 26, 1489–1501 (2011).
- 17. J. Kirkby et al., Nature 476, 429-433 (2011).
- 8. J. Plautz, Science 361, 1060-1063 (2018).
- European Commission. Emissions Database for Global Atmospheric Research (EDGAR), version 5, Global air pollutant emissions (European Commission, 2020); https://edgar.jrc.ec.europa.eu/.
- 20. Y. Wu et al., Environ. Pollut. 218, 86-94 (2016).
- 21. J. Chen, G. Hoek, Environ. Int. 143, 105974 (2020).
- 22. J. D. Sacks et al., Atmosphere 11, 1-15 (2020).
- R. Martinez, P. Soliz, R. Caixeta, P. Ordunez, *Int. J. Epidemiol.* 48, 1367–1376 (2019).
- 24. N. Mensah Abrampah et al., Int. J. Qual. Health Care 30, 5–9 (2018).
- 25. Y. Sun et al., Research 2021, 9804583 (2021).
- 26. M. A. Sutton et al., "The Kampala statement-for-action on reactive nitrogen in Africa and globally," in Just Enough Nitrogen: Perspectives on How to Get There for Regions With Too Much and Too Little Nitrogen, Proceedings of the 6th International Nitrogen Conference, M. A. Sutton et al. Eds. (Springer, 2020).
- 27. X. Zhang et al., Nature 528, 51-59 (2015).
- S. Reis, C. Howard, M. A. Sutton, Costs of Ammonia Abatement and the Climate Co-Benefits (Springer, Dordrecht, 2015).
- M. A. Sutton et al., Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution (Centre for Ecology and Hydrology, 2013).
- 30. R. M. Hoesly *et al.*, *Geosci. Model Dev.* **11**, 369–408 (2018)
- C. J. Stevens et al., Philos. Trans. A Math. Phys. Eng. Sci. 378, 20190317 (2020).
- N. B. Dise et al., "Nitrogen as a threat to European terrestrial biodiversity," in The European Nitrogen Assessment: Sources, Effects and policy Perspectives, M. A. Sutton et al. Eds. (Cambridge Univ. Press, 2011), pp. 463–494.
- M. Sutton et al., "The nitrogen fix: From nitrogen cycle pollution to nitrogen circular economy." in Frontiers 2018/19 Emerging Issues of Environmental Concern (United Nations Environment Programme, 2019), pp. 52–65.
- 34. B. Gu et al., The Innovation 2, 100079 (2021).
- 35. D. R. Kanter, T. D. Searchinger, *Nat. Sustain.* **1**, 544–552 (2018)
- United Nations Economic Commission for Europe, "Guidance document on integrated sustainable nitrogen management" (UNECE, 2021); https://unece.org/sites/default/files/2021-04/Advance%20version_ECE_EB.AIR_149.pdf.
- M. Amann et al., "The final policy scenarios of the EU Clean Air Policy Package, TSAP report #11, version 1.1a" (International Institute for Applied Systems Analysis, 2014); https://ec. europa.eu/environment/air/pdf/TSAP.pdf.
- M. Shulz, M. Gauss, A. Benedictow, J. E. Jonson, "Transboundary acidification, eutrophication and ground level ozone in Europe in 2011," in EMEP Status Report 2013 (Norwegian Meteorological Institute, 2013); https://doi.org/ 10.13140/RG.2.2.25401.77929.
- B. Gu, Y. Song, C. Yu, X. Ju, Environ. Sci. Pollut. Res. Int. 27, 25813–25817 (2020).
- 40. X. Zhang et al., Nat. Commun. 11, 4357 (2020).
- 41. Y. Guo et al., Nat. Food 1, 648–658 (2020)

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (grants 41822701, 42061124001, 41773068, 41922037, and 41721001). This work is a contribution from Activity 1.4 to the "Toward the International Nitrogen Management System" project (INMS, www.inms.international/) funded by the Global Environment Facility (GEF) through the United Nations Environment Programme (UNEP) and the UK Natural Environment Research Council (grants NE/S009019/1, NE/R016429/1, and NE/R00131/1 as part of the GCRF South Asian Nitrogen Hub, UK-SCAPE and SUNRISE programs). L.Z. and W.W. acknowledge support received from UNCNET, a project funded under the JPI Urban Europe/China collaboration, project numbers UMO-2018/

29/Z/ST10/02986 (NCN, Poland), 71961137011 (NSFC, China), and 870234 (FFG, Austria). D.C. acknowledges support received from the Australian Research Council through the Industrial Transformation Research Hub (IH200100023). **Author contributions:** B.G. and H.JM.V.G. designed the study as part of the wider INMS framework designed by M.A.S. R.V.D., M.V., and L.Z. applied the global atmospheric models. B.G. conducted the health impact calculation and analysis with help from R.V.D. L.Z. conducted the N-share analysis with help from R.V.D. and M.V. S.Z. and X.Z. conducted the abatement cost analysis using the GAINS

model with help from W.W. S.W. and C.R. conducted the spatial and statistical analyses. B.G. analyzed all the data, interpreted the results, and wrote the first draft of the paper. All authors contributed to the discussion and revision of the paper, which was finalized under the lead of B.G. and M.A.S. **Competing interests:** The authors declare no competing interests. **Data and materials availability:** Data supporting the main findings can be found in the supplementary materials. Further data that support the findings of this study are collated from online open databases or literature sources as cited in the reference list.

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.abf8623 Materials and Methods Supplementary Text Figs. S1 to S9 Tables S1 to S6 References (42–64)

24 November 2020; accepted 31 August 2021 10.1126/science.abf8623

Gu et al., Science 374, 758-762 (2021) 5 November 2021 5 of 5

Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM air pollution

Baojing GuLin ZhangRita Van DingenenMassimo VienoHans JM Van GrinsvenXiuming ZhangShaohui ZhangYoufan ChenSitong WangChenchen RenShilpa RaoMike HollandWilfried WiniwarterDeli ChenJianming XuMark A. Sutton

Science, 374 (6568), • DOI: 10.1126/science.abf8623

Little things matter

Particulate air pollution 2.5 micrometers or smaller in size (PM2.5) is a major cause of human mortality, and controlling its production is a health policy priority. Nitrogen oxides are an important precursor of PM2.5 and have been a focus of pollution control programs. However, Gu *et al.* now show that abating ammonia emissions is also an important component of PM2.5 reduction, and the societal benefits of abatement greatly outweigh the costs (see the Perspective by Erisman). Reducing ammonia emissions thus would be a cost-effective complement to nitrogen oxides and sulfur dioxide controls. —HJS

View the article online

https://www.science.org/doi/10.1126/science.abf8623

Permissions

https://www.science.org/help/reprints-and-permissions

Use of think article is subject to the Terms of service