Investition und Finanzierung, Vertiefung Tutorium 4

HENRY HAUSTEIN

Zinsänderung

Wenn der Zins sinkt, so werden Erträge aus der Zukunft weniger abgezinst und damit sind sie heute mehr wert \Rightarrow der Barwert steigt \Rightarrow das Projekt wird vorteilhafter

Lineare Interpolation

Die Formel für die lineare Interpolation ist

$$f(x) = y_1 + (x - x_1) \cdot \frac{y_2 - y_1}{x_2 - x_1}$$

Setzen wir auf die x-Achse den Kapitalwert und auf die y-Achse den Zinssatz, so erhalten wir folgendes Diagramm (lineare Interpolation schon mit eingezeichnet):

Wir interessieren uns genau für den Punkt, wo $C_0 = 0$, also

$$i = f(0) = y_1 + (x - x_1) \cdot \frac{y_2 - y_1}{x_2 - x_1}$$
$$= 7\% + (0 - (-5.65)) \cdot \frac{5\% - 7\%}{47.1 - (-5.65)}$$
$$= 6.79\%$$

Newton-Verfahren

Wir brauchen dazu den Kapitalwert in Abhängigkeit von q:

$$C_0(q) = -1000 + \frac{700}{q} + \frac{500}{q^2}$$
$$C_0'(q) = -\frac{700}{q^2} - \frac{1000}{q^3}$$

Damit gilt

$$q_1 = q_0 - \frac{C_0(q_0)}{C'(q_0)}$$

$$= 1.12 - \frac{23.597}{-1269.82}$$

$$= 1.1386$$

 $\Rightarrow i_1 = 13.86\%$

Kapitalwert

Für die verschiedenen Nutzungsdauern ergeben sich folgende Kapitalwerte:

• 0 Jahre:
$$C_0 = -300 + \frac{300}{1.15^0} = 0$$

• 1 Jahr:
$$C_0 = -300 + \frac{120}{1.15} + \frac{240}{1.15} = 13.043$$

• 2 Jahre:
$$C_0 = -300 + \frac{120}{1.15} + \frac{115}{1.15^2} + \frac{180}{1.15^2} = 27.41$$

• 3 Jahre:
$$C_0 = -300 + \frac{120}{1.15} + \frac{115}{1.15^2} + \frac{95}{1.15^3} + \frac{120}{1.15^3} = 32.67$$

• 4 Jahre:
$$C_0 = -300 + \frac{120}{1.15} + \frac{115}{1.15^2} + \frac{95}{1.15^3} + \frac{75}{1.15^4} + \frac{70}{1.15^4} = 36.67$$

• 5 Jahre:
$$C_0 = -300 + \frac{120}{1.15} + \frac{115}{1.15^2} + \frac{95}{1.15^3} + \frac{75}{1.15^4} + \frac{40}{1.15^5} + \frac{0}{1.15^5} = 16.53$$

 \Rightarrow optimale Haltedauer 4 Jahre, Kapitalwert 36.67

Annuität

Die Annuitätenformel ist

$$A = C_0 \cdot \frac{q^n \cdot i}{q^n - 1}$$

Damit ergeben sich für die verschiedenen Haltedauern die folgenden Annuitäten:

• 1 Jahr:
$$A = 13.043 \cdot \frac{1.15^1 \cdot 0.15}{1.15^1 - 1} = 14.999$$

• 2 Jahre:
$$A = 27.41 \cdot \frac{1.15^2 \cdot 0.15}{1.15^2 - 1} = 16.86$$

• 3 Jahre:
$$A = 32.67 \cdot \frac{1.15^3 \cdot 0.15}{1.15^3 - 1} = 14.309$$

• 4 Jahre:
$$A = 36.67 \cdot \frac{1.15^4 \cdot 0.15}{1.15^4 - 1} = 12.84$$

• 5 Jahre:
$$A = 16.53 \cdot \frac{1.15^5 \cdot 0.15}{1.15^5 - 1} = 4.93$$

Ertragssteuern

Die Abschreibung beträgt $\frac{15000-3000}{4}=3000$, der Zinssatz $i^S=0.05\cdot(1-0.38)=0.031$. Damit ergibt sich:

$$\begin{split} C_0^S &= -15000 + \frac{4000 - 0.38 \cdot (4000 - 3000)}{1.031^1} + \frac{2500 - 0.38 \cdot (2500 - 3000)}{1.031^2} + \frac{5500 - 0.38 \cdot (5500 - 3000)}{1.031^3} \\ &+ \frac{4000 - 0.38 \cdot (4000 - 3000)}{1.031^4} + \frac{3000 - 0.38 \cdot (3000 - 3000)}{1.031^5} \\ &= 1052.60 \end{split}$$