← Gaussian processes

Quiz, 6 questions

1 point

1

 $\text{Consider the condition from the Kolmogorov continuity theorem: } \mathbb{E}\left[|X_t - X_s|^{\alpha}\right] \leq K|t - s|^{1+\beta}, \qquad \forall \ t, s > 0.$

For which parameters α , K and β this condition holds, if X_t is a Brownian motion?

none of above

lpha=3 , K=3 and eta=2

lpha=4 , K=3 and eta=1

lpha=4 , K=2 and eta=3

1 point

2.

Choose the right statements about the Brownian motion W_t :

 W_t has symmetric distribution for any t>0

 W_t has continuous trajectories

 $W_0=0$ almost surely

 $W_t - W_s \sim N(0,t-s)$

 W_t has independent increments

1 point

3.

Let $X_t = e^{W_t}$. Find mathematical expectation, variance and covariance of this process.

none of above

 $\mathbb{E}\left[X_{t}
ight]=e^{2t}-e^{t}$, $Var\left[X_{t}
ight]=\mathbb{E}\left[e^{W_{t}}
ight]=e^{t/2}$, $Cov(X_{t},X_{s})=e^{rac{3s+2t}{2}}$

 $\mathbb{E}\left[X_{t}
ight]=\mathbb{E}\left[e^{W_{t}}
ight]=e^{t/2}$, $Var\left[X_{t}
ight]=e^{2t}-e^{t}$, $Cov(X_{t},X_{s})=e^{rac{3s+t}{2}}$

 $\mathbb{E}\left[X_{t}
ight]=\mathbb{E}\left[e^{W_{t}}
ight]=e^{t/2}$, $Var\left[X_{t}
ight]=e^{2t}-e^{t}$, $Cov(X_{t},X_{s})=e^{rac{3s+2t}{2}}$

1 point

4.

Let W(1) and W(2) be Brownian motions with variances 1 and 2 respectively. Find $\mathbb{P}\{W(1)+W(2)>2\}$.

 $\Phi\left(\frac{2}{\sqrt{5}}\right)$ where Φ is a normal distribution function

none of above

$\Phi\left(\frac{1}{2}\right)$, where Φ is a normal distribution function	
Gaussian processes	
Quaz, 6 questions	
1	
2	
1	
point	
5.	
Which properties hold for a covariance function $K(t,s)$?	
K is positive definite, that is, $\sum_{j,k}u_ju_kK(t_j,t_k)>0, orall\ t_1,,t_n\in\mathbb{R}_+,\ orall u_1,,u_n\in\mathbb{R},\ (u_1,u_n) eq (0,0)$	
None of above	
K is positive semidefinite, that is, $\sum_{j,k}u_ju_kK(t_j,t_k)\geq 0, orall\ t_1,,t_n\in \mathbb{R}_+,\ orall u_1,,u_n\in \mathbb{R}$	
$igcap K$ is symmetric, that is, $K(t,s)=K(s,t), orall \ t,s\in \mathbb{R}_+$	
$\begin{array}{c} 1 \\ \text{point} \end{array}$ $6.$ Let W_t be a Brownian motion. Which one of the following processes are also Brownian motions?	
$W_{t+s}-W_s$ with some fixed $s>0$	
$tW_{1/t}, t>0,$ and $W_0=0$	
$oxed{}-W_t$	
$oxed{\Box} aW_{t/a^2}$ with some fixed $a eq 0$.	
I, Mark R. Lytell, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.	
Learn more about Coursera's Honor Code	
Submit Quiz	

