(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 15. Januar 2004 (15.01.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/005540 A2

- G01N 33/574, C07K 16/18, A61P 35/00
- (21) Internationales Aktenzeichen: PCT/DE2003/001986
- (22) Internationales Anmeldedatum:

(51) Internationale Patentklassifikation7:

12. Juni 2003 (12.06.2003)

(25) Einreichungssprache:

Deutsch

C12Q 1/68,

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 30 631.1

2. Juli 2002 (02.07.2002)

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von I/S): METAGEN PHARMACEUTICALS GMBH [DE/DE]; Oudenarder Strasse 16, 13347 Berlin (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): HERBERTH, Gunda [DE/DE]; Oudenarder Strasse 16, 13347 Berlin (DE). DAHL, Edgar [DE/DE]; Oudenarder Strasse 16, 13347 Berlin (DE).
- (74) Anwälte: JUNGBLUT, Bernhard usw.; Albrecht, Lüke & Jungblut, Patentanwälte, Gelfertstrasse 56, 14195 Berlin (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: USES OF NGAL-BINDING SUBSTANCES IN THE DIAGNOSIS AND TREATMENT OF CANCER DISEASES

- (54) Bezeichnung: VERWENDUNGEN VON AN NGAL BINDENDEN SUBSTANZEN ZUR DIAGNOSE UND BEHAND-LUNG VON KREBSERKRANKUNGEN
- LUNG VON KREBSERI

 (57) Abstract: The inven
 for the purposes thereof. (57) Abstract: The invention relates to the uses of Ngal in the diagnosis and treatment of cancer and in the screening of substances
 - (57) Zusammenfassung: Die Erfindung betrifft Verwendungen von Ngal zur Diagnose und Behandlung von Krebs sowie zum Screenen nach Substanzen für solche Zwecke.

Verwendungen von an Ngal bindenden Substanzen zur Diagnose und Behandlung von Krebserkrankungen.

5 Gebiet der Erfindung

Die Erfindung betrifft neue Verwendungen von Ngal oder daraus abgeleiteten Sequenzen zum Screenen nach daran bindenden Substanzen, sowie die Verwendung von an Ngal bindenden Substanzen zur Diagnose und/oder Behandlung von Tumor-Erkrankungen.

Hintergrund der Erfindung und Stand der Technik

15

Ngal, auch Lipocalin-2 (LCN2) genannt, ist ein Protein, welches in den Granulozyten mit der neutrophilen Gelatinase assoziiert ist (L. Kjeldsen et al., J Biol Chem, 268:10432-10432 (1993) und weist ein Molekulargewicht von

- 20 ca. 25 kD auf. Es wird vermutet, daß Ngal auf inflammatorische Reaktionen modulierend wirkt und an kleine lipophile Moleküle und Formylpeptide (fmlp), welche von Bakterien abgeleitet sind, bindet. Letzteres konnte allerdings von einer anderen Gruppe experimentell nicht
- 25 bestätigt werden (D.H. Goetz et al., Biochemistry, 39:1935-1945 (2000)).

Ngal wurde durch Sreenen einer humanen Genombibliothek mit Ngal cDNA als ein Gen mit 7 Exons identifiziert (J.B. Cow-30 land et al., Genomics 45:17-23 (1997)). Das primäre Tran-

skript hat eine Länge von 3696 Nukleotiden und das prozessierte Transkript ist 809 Nukleotide lang. In der Literaturstelle L. Kjeldsen et al., (2000) ist Expression von Ngal in verschiedensten humanen Normalgeweben beschrieben worden. Ngal liegt auf Chromosom 9q34 (P. Chan et al., Genomics 23:145-150 (1994)). Klonierung und Expression humaner Ngal cDNA, welche aus Knochenmark und 5 Ovar Zelllinien stammt, ist in der Literaturstelle S. Bartsch et al., FEBS Lett 9:255-259 (1995), beschrieben.

Hohe Ngal Pegel wurden in Adenocarcinomen der Lunge, des Dickdarms und des Pankreas gefunden. Dagegen sind Ngal

10 Pegel in Renalzellcarzinoma verschiedener Subtypen und Prostatatumoren niedrig. Lymphoma und Thymustumore waren in immunhistochemischen Versuchen Ngal-negativ (A. Friedl et al., The Histochemical Journal 31:433-441 (1999). Gemäß der Literaturstellen US-5,627,034, US-5,773,290 und

15 US-5,846,739 und US-A-726725 ist die Proliferation von Brustkrebszellen mit Ngal Überexpression korreliert. Ein Zusammenhang mit Ovartumor ist in der Literaturstelle WO-99/53040 offenbart.

20 Erkenntnisse aus gepaarten Tumor-/Normalgeweben sind für andere Krebsarten nicht bekannt.

Krebs, insbesondere Ovar-, Kolon-, Lungen- und Uteruskrebs ist eine mit zunehmendem Alter mit beachtlicher Incidenz

25 auftretende Erkrankung. Bislang wird diese Tumorerkrankung im wesentlichen pathologisch diagnostiziert und meist durch Entfernung behandelt. Die Entfernung von Organen hat verschiedene nachteilige Effekte auf einen Patienten. Eine verbesserte Diagnose und Behandlung dieser Krebsart, ins
30 besondere ohne das Erfordernis einer Entfernung des Organes, ist daher in hohem Maße wünschenswert.

Technisches Problem der Erfindung

Der Erfindung liegt das technische Problem zugrunde, phar-5 mazeutische Zusammensetzungen zur Diagnose und/oder zur Behandlung von Krebserkrankungen anzugeben sowie Mittel zu deren Identifizierung.

10 Grundzüge der Erfindung sowie bevorzugte Ausführungsbeispiele.

tativ detektiert wird.

Die Erfindung lehrt die Verwendung einer für Ngal codierenden Nukleinsäure und/oder eines Ngal Peptids oder Pro15 teins zur Detektion von Krebs, insbesondere von Ovar-,
Kolon-, Lungen- und/oder Uteruskrebs, oder zur Detektion
eines Risikos der Erkrankung an Krebs, insbesondere von
Ovar-, Kolon-, Lungen- und/oder Uteruskrebs, wobei eine
Gewebeprobe (des betreffenden Gewebes) auf Übertranskrip20 tion von Ngal RNA oder auf Überexpression eines Ngal Proteins untersucht wird. Eine an für Ngal codierende
Nukleinsäure oder eine an Ngal Protein oder Peptid bindende Detektorsubstanz, vorzugsweise enthaltend eine Reportergruppe, kann verwendet werden, wobei Bindung
25 besagter Nukleinsäure und/oder besagten Proteins oder Peptids an die Detektorsubstanz halbquantitativ oder quanti-

Die Erfindung lehrt weiterhin die Verwendung einer Ngal 30 RNA oder eines Ngal Proteins oder Peptids zum Screenen nach daran bindenden Substanzen, insbesondere prospektiven Wirkstoffen zur Inhibierung von besagter RNA oder besagtem Protein oder Peptid oder prospektiven Detektorsubstanzen, wobei eine prospektive Substanz oder eine Mischung solcher prospektiver Substanzen mit besagter RNA oder besagtem Protein oder Peptid kontaktiert wird, wobei mit einem Bindungsassay Bindungsereignisse festgestellt werden, und 5 wobei eine bindende prospektive Substanz, ggf. nach Dekonvolutierung, als zur Detektion und/oder Behandlung von Krebs, insbesondere von Ovar- Kolon-, Lungen- und/oder Uteruskrebs, geeignet selektiert wird.

- 10 Die Erfindung lehrt schließlich die Verwendung einer Ngal inhibierenden oder daran bindenden Subtanz zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krebs, insbesondere von Ovar-, Kolon-, Lungen- und/oder Uteruskrebs. Die Substanz kann ein Antikörper sein,
- 15 welcher beispielsweise durch Immunisierung eines nichtmenschlichen Säugetiers mit einem Ngal Peptid oder Protein, oder mit Ngal cDNA, oder mit mit cDNA von Ngal transient oder stabil transfizierten Zellen (z.B.

Tumorzelllinien, NIH3T3, CHO, COS), oder mit endogen Ngal

20 exprimierenden Tumorzellen oder mit in Insektenzellen hergestelltem Ngal erhältlich ist, oder ein Phage-Display Antikörper ist.

Die Substanz kann aber auch eine Mimikriverbindung eines 25 Antikörpers gegen ein Ngal Peptid oder Protein sein. Die Substanz kann schließlich ein Aptamer, eine antisense RNA, eine inhibitorische RNAi, oder ein Ribozym sein. Die Substanz kann zusätzlich eine zytotoxische und/oder immunstimulierende Komponente tragen. Die pharmazeutische

30 Zusammensetzung kann zur systemischen oder lokalen Applikation in Tumorzellen enthaltendem Gewebe hergerichtet sein.

Die Erfindung läßt sich im Rahmen eines Verfahrens zur Diagnose einer Krebserkrankung, insbesondere von Ovar-, Kolon-, Lungen- und/oder Uteruskrebs, verwenden, wobei eine Detektorsubstanz in einer Ausführungsform mit einer 5 Reportergruppe in zu untersuchendes Gewebe appliziert wird, wobei das zu untersuchende Gewebe dann einer Detektionsverfahrenstufe unterworfen wird, welche sensitiv für die Reportergruppe ist, und wobei im Fall der Detektion eines definierten Mindestwertes der Reportergruppe im 10 Gewebe das Gewebe als Tumorzellen enthaltend qualifiziert wird, sowie eines Verfahrens zur Behandlung einer Krebserkrankung, insbesondere von Ovar-, Kolon-, Lungen- und/oder Uteruskrebs, wobei eine erfindungsgemäße pharmazeutische Zusammensetzung in einer physiologisch wirksamen Dosis 15 einem Patienten dargereicht wird.

Die Erfindung beruht auf der Erkenntnis, daß Ngal, überexprimiert ist bzw. differenziell exprimiert wird in Tumoren, i.e. in besagten Tumorgeweben ist die Expression 20 höher, verglichen mit (gepaarten) normalen Zellen gleichen Gewebes, und der daraus herleitbaren technische Lehre, daß Ngal als Zielmolekül bei der Diagnostik und Therapie dieser Erkrankung eingesetzt werden kann. Ngal kann also als Marker zur Identifizierung von Tumorzellen in den besagten 25 Tumorgeweben dienen. Auf der anderen Seite bietet die Inhibierung von Ngal, insbesondere auch bei lokaler Applikation, die Möglichkeit, in die Tumor-spezifischen Ngal Assoziationen mit anderen Prozessen in den Tumorzellen einzugreifen und somit letztendlich den tumorzellenspezi-30 fisch veränderten Stoffwechsel zu stören und zu einem Absterben oder zumindest einer Wachstumshemmung der Tumorzellen beizutragen.

6

Im Rahmen der Erfindung kann es sich empfehlen, im Vorfeld einer Behandlung mit einer erfindungsgemäßen pharmazeutischen Zusammensetzung eine Probe aus einem Gewebe, welches als Tumorgewebe mit anderen Methoden identifiziert 5 ist, zu entnehmen und die Gewebeprobe auf Expression bzw. Überexpression von Ngal zu untersuchen. Alternativ kann mit einer erfindungsgemäßen Detektorsubstanz zur Diagnose in vivo auf Ngal Abhängigkeit getestet werden. Wird eine Expression bzw. Überexpression von Ngal gegenüber Normal-10 gewebe gleichen Typs festgestellt, so ist die Anwendung der erfindungsgemäßen pharmazeutischen Zusammensetzung indiziert.

Handelt es sich bei dem Tumor um einem Typus, bei welchem 15 Tumorzellen Ngal exprimieren, Normalzellen gleichen Gewebetyps jedoch nicht, so ist es besonders bevorzugt, wenn die an Ngal bindende Substanz zusätzlich eine zytotoxische und/oder immunstimulierende Komponente trägt. Dies führt dann letztendlich dazu, dass praktisch ausschließlich Tu-20 morzellen getötet werden, sei es durch die Zytotoxizität, sei es durch Angriff durch das stimulierte Immunsystem, während Normalzellen in dem Gewebe praktisch vollständig erhalten bleiben. In dieser Ausführungsform braucht die bindende Substanz selbst nicht inhibierend auf Ngal zu 25 wirken, da die bindende Substanz dann lediglich als Marker funktionieren muß, welcher die Komponenten zu Ziel-Tumorzellen trägt. Im Falle des Einsatzes einer zytotoxischen und/oder immunstimulierenden Komponente wird es sich besonders empfehlen, wenn die pharmazeutische Zusam-30 mensetzung zur lokalen Applikation in Tumorzellen enthaltendem Gewebe hergerichtet ist, beispielsweise zur Injektion.

Von selbstständiger Bedeutung im Rahmen der Erfindung ist eine Verwendung eines Ngal Proteins in einem Screening Verfahren zur Findung von die Sekretion von Ngal modulierenden Substanzen. Dies kann beispielsweise dergestalt er-5 folgen, daß Ngal exprimierende Zellen, insbesondere Ngal exprimierende Tumorzellen der genannten Tumorarten, in einem Medium kultiviert werden, wobei vor oder während der Kultivierung mit einer prospektiven, die Sekretion inhibierende Substanz oder mit einer Mischung solcher Sub-10 stanzen inkubiert wird, wobei das Medium nach einer definierten Kultivierungsdauer auf Ngal analysiert wird, optional nach Abtrennung des Mediums von den Zellen, und wobei die Substanz, ggf. nach Dekonvolution, selektiert wird, wenn die Menge detektierten Ngal im Medium einen 15 definierten Grenzwert unterschreitet. Bei dieser Ausführungsform ist der tatsächliche Sekretionsweg irrelevant, da nur die Sekretion als solche das Selektionskriterium ist. Der definierte Grenzwert kann durch Kultivierung unter gleichen Bedingungen, jedoch ohne 20 Inkubation mit einer prospektiven, die Sekretion inhibierenden Substanz, ermittelt werden. Als Selektionskriterium kann eine Sekretionsrate angesetzt werden, welche zumindest 10%, vorzugsweise zumindest 50%, höchstvorzugsweise zumindest 90%, unterhalb der Referenz-Sekretionsrate 25 liegt.

Von weiterhin selbstständiger Bedeutung ist die alternative Verwendung eines Ngal Proteins in einem Screening Verfahren zur Findung einer Ngal inhibierenden aber nicht 30 dessen Sekretion inhibierenden Substanz, wobei Ngal exprimierende Zellen in einem Medium kultiviert werden, wobei vor oder während der Kultivierung mit einer gemäß Anspruch 3 selektierten Substanz oder mit einer Mischung

solcher Substanzen inkubiert wird, wobei das Medium nach einer definierten Kultivierungsdauer auf Ngal analysiert wird, optional nach Abtrennung des Mediums von den Zellen, und wobei die Substanz, ggf. nach Dekonvolution, selektiert wird, wenn die Menge detektierten Ngal im Medium einen definierten Grenzwert überschreitet. Zu weiteren Ausbildungen gelten die vorstehenden Ausführungen analog.

Diese Ausführungsform der Erfindung beruht auf der Erk-10 enntnis, daß sezerniertes Ngal in zumindest einigen Immunzellen, welche bei der Tumorabwehr eine Rolle spielen, Apoptose induziert. Insoweit hat Ngal parakrine Wirkung. Sezerniertes Ngal hat bezüglich der Proliferation von Tumorzellen jedoch auch autokrine Wirkung, i.e. Prolifera-15 tion wird durch sekretiertes Ngal induziert. Die Sekretion von Ngal hat folglich eine unerwünschten synergistischen Effekt, nämlich einerseits Proliferationsförderung im Falle der Tumorzellen und andererseits Induktion der Apoptose in Immunzellen, die Tumorzellen angreifen. Hieraus 20 folgen grundsätzlich zwei therapeutische Ansätze, nämlich: i) Inhibierung von Ngal in den Tumorzellen selbst, wodurch letztlich auch die Sekretion unterbleibt oder nur inaktives Ngal sekretiert wird, und/oder ii) Inhibierung von sekretiertem Ngal, i.e. außerhalb der Tumorzellen, wodurch 25 einerseits eine Induktion der Proliferation der Tumorzellen unterbleibt und andererseits die die Tumorzellen angreifenden Immunzellen vor Ngal induzierter Apoptose geschützt werden. Es ergeben sich somit potentielle Wirkstofe mit den folgenden Grundeigenschaften: i) In-30 hibierung von Ngal in der Tumorzelle; hierfür muß der Wirkstoff membrangängig sein, ii) Inhibierung der Sekretion von Ngal; ein solcher Wirkstoff greift nicht notwendigerweise (kann aber auch) in die intrazelluläre Ngal

Bildung ein, sondern inhibiert den Membrandurchtritt gebildeten Ngals, iii) Inhibierung von vorwiegend oder ausschließlich extrazellulären Ngal; ein solcher Wirkstoff ist nicht oder nur schlecht membrangängig (z.B. Antikörper). Letztendlich erfolgt somit neben der Inhibierung der pro-proliferativen Wirkung des Ngal auf Tumorzellen auch eine (Re-) Aktivierung der natürlichen Immunantwort auf den Tumor.

- 10 Im Rahmen der Erfindung ist auch gefunden worden, daß Tumorzellen (z.B. humane Ovartumorproben) praktisch ausschließlich Ngal in monomerer Form sezernieren, während
 beispielsweise Granulozyten und transfizierte Insektenzellen sowohl das Monomer als auch ein Dimer sezernieren.
- 15 Dies kann einerseits diagnostisch genutzt werden zum Nachweis von Tumorzellen und zwar durch Nachweis der Sezernierung überwiegend oder ausschließlich als Monomer. Des weiteren kann eine therapeutische Nutzung dadurch erfolgen, daß beispielsweise eine Dimerisierung, als Homo- oder
- 20 als Heterodimer, induziert wird, wobei das so induzierte Dimer biologisch inaktiv bzw. inaktiviert ist.

Definitionen.

25

Im Rahmen dieser Beschreibung wird die Bezeichnung Ngal für alle humanen Isoformen, bekannt oder neu, auf Nukleinsäuren- oder Aminosäurenbasis, verwendet. Mit diesen Begriffen mit umfaßt sind auch die im Rahmen dieser

30 Beschreibung offenbarten kurzen Sequenzen, welche aus den Isoformen stammen, beispielsweise Immunisierungssequenzen. Weiterhin mit umfaßt sind auch Homologe, wobei die Homologie zumindest 80%, vorzugsweise mehr als 90%,

höchstvorzugsweise mehr als 95%, beträgt. Im Falle der Nukleinsäuresequenzen sind auch komplementäre oder allelische Varianten mit umfaßt. Weiterhin sind Sequenzen umfaßt, welche lediglich Teilsequenzen der explizit offen-5 barten Sequenzen, beispielsweise ein Exon oder mehrere Exons, oder komplementärer Sequenzen hierzu darstellen, mit der Maßgabe, daß diese Teilsequenzen im Falle der Nukleinsäuren eine für eine Hybridisierung mit einer erfindungsgemäßen Nukleinsäure hinreichende Länge, zumindest 10 50 Basen, aufweisen und im Falle der Proteine bzw. Peptide mit zumindest gleicher Affinität an ein protein- oder peptidspezifisches Zielmolekül binden. Weiterhin sind alle mit erfindungsgemäßen Nukleinsäuren hybridisierende Nukleinsäuren umfaßt, nämlich solche, die unter stringenten 15 Bedingungen (z.B. 5°C bis 25°C unterhalb der Aufschmelztemperatur; siehe ergänzend J.M. Sambrook et al., A laboratory manual, Cold Spring Harbor Laboratory Press (1989) und E.M. Southern, J Mol Biol, 98:503ff (1975)) hybridisieren. Es versteht sich, daß die Erfindung auch Expres-20 sionskassetten umfaßt, i.e. eine oder mehrere der erfindungsgemäßen Nukleinsäuresequenzen mit mindestens einer Kontroll- oder regulatorischen Sequenz. Eine solche Expressionskassette kann auch eine Sequenz für ein bekanntes Protein umfassen, wobei im Zuge der Translation 25 ein Fusionsprotein aus einem bekannten Protein und einem erfindungsgemäßen Protein oder Peptid entsteht. Ebenso sind auch antisense Sequenzen zu den vorstehenden Nukleinsäuresequenzen umfaßt. Schließlich sind RNA sowie damit korrelierende DNA und umgekehrt umfaßt, ebenso wie geno-

Im Zusammenhang mit erfindungsgemäßen Verwendungen umfassen die Begriffe der Ngal Nukleinsäuren oder Proteine bzw.

30 mische DNA als auch korrelierte cDNA und umgekehrt.

Peptide neben den Volllängen der offenbarten Sequenzen (siehe auch vorstehender Absatz) auch Teilsequenzen hieraus, und zwar mit einer Mindestlänge von 12 Nukleotiden, vorzugsweise 30 bis 90 Nukleotiden, im Falle der Nukleinsäuren und einer Mindestlänge von 4 Aminosäuren, vorzugsweise 10 bis 30 Aminosäuren, im Falle der Peptide oder Proteine.

Die Begriffe der Detektion und/oder der Behandlung von

10 Tumorerkrankungen, insbesondere der angegebenen Tumorarten, umfassen auch die Detektion und/oder Behandlung
von Metastasen aus Primärtumoren in sonstigen Geweben. Der
Begriff der Behandlung umfaßt auch die Prophylaxe.

15 Als Inhibitor ist eine Verbindung oder Substanz bezeichnet, welche entweder die Bildung von Ngal inhibiert oder gebildetes Ngal in der Aktivität reduziert, bezogen auf die Ngal Aktivität in Abwesenheit des Inhibitors. Insofern kann ein Inhibitor einerseits eine Substanz sein, welche 20 in der Entstehungskaskade von Ngal inhibierend eingreift. Auf der anderen Seite kann ein Inhibitor eine Substanz sein, welche mit gebildetem Ngal eine Bindung eingeht, und zwar dergestalt, dass weitere physiologische Wechselwirkungen mit endogenen Substanzen zumindest reduziert 25 sind.

Mimikry-Moleküle sind Verbindungen, die den variablen Bereich, insbesondere den Bindungsbereich eines Antikörpers, nachbilden und an gleicher Stelle eines Zielmoleküls 30 binden, wie der zu Grunde liegende Antikörper.

Der Begriff der Antikörper umfaßt polyklonale Antikörper, monoklonale Antikörper, nicht-humane, humane und

15 Antigene der Tumorzielzelle.

humanisierte Antikörper, sowie Phage-Display-Antikörper, aber auch chimäre Antikörper und antiidiotypische Antikörper sowie spezifische Fragmente der leichten und/oder der schweren Kette des variablen Bereiches zu Grunde liegender 5 Antikörper vorstehender Art. Die Herstellung bzw. Gewinnung solcher Antikörper mit vorgegebenen Immunogenen ist dem Durchschnittsfachmann wohl vertraut und braucht nicht näher erläutert zu werden. Weiterhin umfaßt der Begriff der Antikörper bispezifische Antikörper. Bispezifische 10 Antikörper kombinieren eine definierte Immunzellaktivität mit einer spezifischen Tumorzellerkennung, wodurch Tumorzellen getötet werden. Ein bispezifischer Antikörper bindet einerseits an ein Auslösemolekül der Immun-Effektorzelle (z.B. CD3, CD16, CD64) und andererseits an

Die galenische Herrichtung einer erfindungsgemäßen pharmazeutischen Zusammensetzung kann in fachüblicher Weise erfolgen. Als Gegenionen für ionische Verbindungen kommen 20 beispielsweise Na⁺, K⁺, Li⁺ oder Cyclohexylammonium infrage. Geeigente feste oder flüssige galenische Zubereitungsformen sind beispielsweise Granulate, Pulver, Dragees, Tabletten, (Mikro-) Kapseln, Suppositorien, Sirupe, Säfte, Suspensionen, Emulsionen, Tropfen oder injizierbare Lösun-25 gen (i.v., i.p., i.m.) sowie Präparate mit protrahierter Wirkstoff-Freigabe, bei deren Herstellung übliche Hilfsmittel wie Trägerstoffe, Spreng-, Binde-, Überzugs-, Quellungs-, Gleit- oder Schmiermittel, Geschmacksstoffe, Süßungsmittel und Lösungsvermittler, Verwendung finden. 30 Als Hilfsstoffe sei Magnesiumcarbonat, Titandioxyd, Lactose, Mannit und andere Zucker, Talcum, Milcheiweiß, Gelatine, Stärke, Zellulose und ihre Derivate, tierische und

pflanzliche Öle wie Lebertran, Sonnenblumen-, Erdnuss-

oder Sesamöl, Polyethylenglycole und Lösungsmittel, wie etwa steriles Wasser und ein- oder mehrwertige Alkohole, beispielsweise Glycerin, genannt. Eine erfindungsgemäße pharmazeutische Zusammensetzung ist dadurch herstellbar, dass mindestens ein erfindungsgemäß verwendeter Ngal Inhibitor in definierter Dosis mit einem pharmazeutisch geeigneten und physiologisch verträglichen Träger und ggf. weiteren geeigneten Wirk-, Zusatz- oder Hilfsstoffen mit definierter Inhibitordosis gemischt und zu der gewünschten Darreichungsform hergerichtet ist.

Tumorzellen exprimieren Ngal differenziell, wenn Normalzellen des gleichen Gewebetyps dieses nicht exprimieren.
Tumorzellen überexprimieren Ngal spezifisch bzw. differen15 ziell, wenn Ngal im Vergleich zu Normalzellen des gleichen
Gewebes zumindest in doppelter Menge exprimiert wird.

Zytotoxische Komponenten bzw. Gruppen sind Verbindungen, welche direkt oder indirekt Apoptose einleiten bzw. zu

20 Nekrose führen oder zumindest wachstumshemmend wirken.
Solche Gruppen bzw. Verbindungen können neben Radioisotopen (z.B. 188Re, 213Bi, 99mTc, 90Y, 131J, 177Lu) insbesondere Zytostatika sein, welche in der Tumortherapie eingesetzt werden. Beispiele hierfür sind: Alkylantien

25 (z.B. Mechlorethamin, Ifosfamid, Chlorambucil, Cyclophosphamid, Melphalan, Alkylsulfonate, Busulphan, Nitrosoharnstoffe, Carmustin, Lomustin, Semustin, Triazene,
Dacarbazin), Antimetaboliten (z.B. Folsäure-Antagonisten,
Methotrexat, Pyrimidin-Analoga, Fluoruracil, Fluord30 esoxyuridin, Cytarabin, Gemcitabin, Purin-Analoga, Mercaptopurin), Mitosehemmer (z.B. Vincaalkaloide, Voncristin,
Vinblastin, Paclitaxal, Docetaxel, Protaxel), Epipodophyl-

lotoxine (z.B. Etoposid, Teniposid), Antibiotika (z.B.

Dactinomycin, Daunorubicin, Idarubicin, Anthracycline, Bleomycin, L-Asparaginase), Platinkomplexverbindungen (z.B. Cisplatin), Hormone und verwandte Verbindungen (z.B. Nebennierenrindensteroide, Aminogluthetimid, Gestagene,

- 5 Östrogene, Androgene, Antiöstrogene, Tamoxifen, Steriodanaloga, Flutamid). Bei Bindung einer solchen Verbindung mit einer an ngal bindenden Substanz erfolgt die Kopplung dergestalt, daß die Affinität zu ngal um nicht mehr als 90%, vorzugsweise 50%, bezogen auf die Substanz ohne zyto-
- 10 statische Gruppe, reduziert ist und die zytostatische Wirkung der Gruppe um nicht mehr als 90%, vorzugsweise 50%, bezogen auf die Verbindung ohne Substanz, reduziert ist.
- 15 Eine immunstimulierende Komponente ist meist ein Protein oder ein wirksamer Bestandteil hiervon, welches Zellen des Immunsystems stimuliert. Beispiele hierfür sind: Zytokine, wie M-CSF, GM-CSF, G-CSF, Interferone, wie IFN-alpha, -beta, -gamma, Interleukine wie IL-1 bis -16 (außer -8),
- 20 human LIF, Chemokine wie Rantes, MCAF, MIP-1-alpha, -beta, NAP-1 und IL-8.

Eine Reportergruppe ist ein Atom, Molekül oder eine Verbindung, welche in Verbindung mit einem hierauf abgestell-

- 25 ten Assay den Nachweis der Reportergruppe und der somit mit der Reportergruppe verbundenen Verbindung oder Substanz ermöglicht. Beispiele für Reportergruppen und hiermit assoziierte Detektionsmethoden sind: 32P-Labeling und Intensitätsmessung mittels Phosphoimager. Viele weitere
- 30 Beispiele sind dem Durchschnittsfachmann bekannt und bedürfen nicht der detaillierten Aufzählung.

Eine an Ngal bindende Substanz kann eine Substanz sein, welche ein Ngal Protein oder eine Ngal RNA bindet.

Im Rahmen der vorstehenden Definition gegenüber dem engen 5 Wortsinn erweiterte Begriffsbestimmungen umfassen auch die bestimmten Begriffe im engen Wortsinn.

Optional können die Indikationen Brustkrebs oder Ovarkrebs in bestimmten Zusammenhängen, insbesondere im Falle von 10 Sequenzidentität von Teilsequenzen, insoweit ausgeschlossen sein.

Beispiele.

15

Im Folgenden wird die Erfindung anhand von lediglich beovrzugte Ausführungsformen darstellenden Beispielen und Figuren näher erläutert. Es zeigen:

- 20 Figur 1: Cancer profiling array zur Überexpression in Uterustumorgewebe,
 - Figur 2: Quantitative Auswertung zum Gegenstand der Figur 1,

25

- Figur 3: verschiedene Hammerhead Ribozyme gegen Ngal,
- Figur 4: verschiedene antisense RNA gegen Ngal,
- 30 Figur 5: inhibitorische RNA (RNAi) gegen Ngal,
 - Figur 6: Ngal-Sequenzen, Aminosäurensequenz (Seq.-ID 1, 6a) mit Markierung geeigneter

16

Immunisierungssequenzen (Seq.-ID 3 und 4) und Nukleinsäuresequenz (Seq.-ID 2),

- Figur 7: Western Blot von Lysaten und Zellkulturüber
 ständen verschiedener Ngal exprimierender

 Zelllinien,
- Figur 8: immunhistochemischer Nachweis von 2 Uteruskarzi10 nomen, und
 - Figur 9: Proliferationsassay in einer Kolontumorzelllinie.
- 15 Beispiel 1: Ngal Überexpression in Uterustumorgewebe.

Die Ngal Codierungssequenz wurde mit 32P durch random hexamer priming gelabelt und und auf ein cancer profiling array von Clontech, welches 240 cDNA Bibliothekspaare en-

- 20 thält, wobei jedes Paar für jeweils ein Tumor- und ein Normalgewebe eines Patienten steht. Die Ergebnisse sind in der Figur 1 gezeigt. Man erkennt, daß ein Überexpression in Uterustumorgewebe, verglichen mit Normalgewebe, stattfindet. Dieser Befund ist quantifiziert in der Figur
- 25 2. Demach zeigen 56% (25 aus 44) der untersuchten Uterusgewebepaare eine zumindest 2-fache Überexpression von Ngal.
- 30 Beispiel 2: Nachweis von Ngal mittels Antikörpern

In diesem Beispiel wird die Markierung eines Tumors bzw. seiner Metastasen durch einen anti-Ngal-Antikörper in vivo

(Mausmodell) beschrieben. Ein anti-Ngal-Antikörper wird mit einem Markermolekül (z. B. Radioisotop) markiert. In NMRI-Nacktmäuse werden 1-2*10^6 Ngal-transfizierte humane Zellen transplantiert. 30 Tage nach der Transplantation 5 wird den Mäuse markierter Antikörper injiziert. Die Kontrolltiere werden mit einem nicht relevanten Antikörper behandelt. Wenige Stunden nach der Antikörperapplikation werden die Tiere getötet und aus allen Organen Gewebeschnitte angefertigt. Diese Schnitte werden auf die 10 Gegenwart von markiertem anti-Ngal Antikörper untersucht.

Bei den anti-Ngal Antikörpern handelt es sich um polyklonale oder monoklonale Antikörper gegen humanes Ngal Protein, durch cDNA-Immunisierung oder konjugiert mit einem 15 Trägerprotein, in Ratte oder Kaninchen gezogen und affinitätsgereinigt.

Geeignete Immunisierungssequenzen sind in der Figur 6a sowie den Sequenzen Seq.-ID 3 und 4 angegeben. Auch kann 20 mit der Vollängen cDNA (Fig. 6b) gearbeitet werden.

Beispiel 3: Immunhistochemischer Nachweis von Tumorzellen.

25 Primäre Tumoren werden aus den Patienten mit Uterus- und/ oder Ovartumoren isoliert und als Paraffin bzw. Gefrierschnitte präpariert. Diese Schnitte werden mit einem anti-Ngal-Antikörper auf die Überexpression von Ngal in Tumorzellen untersucht. Die immunhistologische Untersuchung 30 mit dem Ngal-Antikörper zeigt höhere Expression von Ngal in den Tumorzellen im Vergleich zu umliegenden Normalgewebe. Die Untersuchung erfolgt im Einzelnen durch Inkubation mit dem anti-Ngal Antikörper als primärem

WO 2004/005540

18

PCT/DE2003/001986

Antikörper aus Kaninchen oder Ratte, einem biotinyliertem sekundären anti-Kaninchen oder anti-Ratten Antikörper und einer Streptavidin-gekoppelten Meerrettichperoxidase. Die Färbung erfolgt mit mit AEC als chromogenen Substrat (rote Färbung). Die Gegenfärbung erfolgt mit Hemalaun-Lösung (blaue Färbung). Es sind maligne und nichtmaligne Zellen unterscheidbar, wobei die malignen Zellen eine starke Färbung, i.e. hohen Ngal Gehalt, aufweisen, während die nichtmalignen Zellen nur moderat gefärbt sind.

10

In den Figuren 8a,b sind Ergebnisse mit anti-Ngal Antikörpern aus der Ratte in zwei Uteruskarzinomen (Paraffinschnitte) dargestellt. Jeweils unten sind Schnitte mit
anti-Ngal Antikörpern zu sehen, während jeweils oben

15 zugeordnete Negativkontrollen mit einer Färbung mit PräImmunserum aus der Ratte dargestellt sind.

Beispiel 4: RNA-Inhibitoren

20

In der Figur 3 sind verschiedene Hammerhead Ribozyme dargestellt, die Ngal an den dargestellten Stellen schneiden und so die Aktivität eventueller Translationsprodukte inhibieren oder zumindest reduzieren (Seq.-ID 5 und 6; 25 Hammerhead).

Die Figur 4 zeigt verschiedene antisense Sequenzen für Ngal RNA (Seq.-ID 7 und 8).

30 Figur 5 zeigt ein PCR-Produkt für die Generierung von Ngal-Spezifischen, doppelsträngigen RNAi. In Fettdruck sind PCR-Primer für die Generierung von RNAi Proben dargestellt. In Großbuchstaben ist ein T7 RNA-Polymerase

19

Promotor und Kleinbuchstaben eine Ngal-spezifische Nukleotidsequenz dargestellt.

5 Beispiel 5: Sekretion von Ngal

Es wurden Kolontumorzellinien (HT29) und Ovartumorzelllinien (SKOV3 und OV90) in 0,5% FCS-haltigem Zellkulturmedium kultiviert. Nach einer Kultivierungsdauer von 1

10 Stunde sowie 12 Stunden wurden Kulturüberstände entnommen
und mitmeinem Filter aufkonzentriert. Nach einer Proteinbestimmung wurden 16µg/µl Protein / Laufbahn auf ein
12%iges BisTris-Gel aufgetragen. Mit Ngal-spezifischen
Antikörpern aus Ratte oder Kaninchen wurde auf dem Blot

15 die 25 kD Bande für Ngal identifiziert. Die Ergebnisse
(anti-Ngal Antikörper aus Ratte) sind in der Figur 7
dargestellt (SN = Überstand, lys = Lysat). Man erkennt,
daß in den Überständen der Zelllinien HT29 und SKOV3 eine
Anreicherung von Ngal stattgefunden hat. Folglich wird

20 Ngal konstitutiv sezerniert.

Beispiel 6: Proliferationsassay an Kolontumorzelllinie.

25 Zellen der Kolontumorzelllinie HT29 wurden ohne besondere Zugabe, mit EGF (10 ng/ml), mit HGF (20 ng/ml) und mit Ngal (= ot115) in Konzentrationen von 1 ng/ml, 10 ng/ml, 100 ng/ml, oder 200 ng/ml für 72 h inkubiert. Die Proliferation wurde mittels des MTT Assays bestimmt. Dieser Assay berüht auf der Reduktion von Tetrazoliumsalz zu Formazan in metabolisch aktiven Zellen. Die Auswertung erfolgte photometrisch. Man erkennt, daß Ngal eine mit EGF oder HGF vergleichbare Wirkung zeigt, i.e. daß

extrazellulär vorliegendes Ngal die Proliferation der Tumorzellen fördert.

21

Patentansprüche:

- Verwendung einer für Ngal codierenden Nukleinsäure
 und/oder eines Ngal Peptids oder Proteins zur Detektion
 von Krebs, insbesondere vom Ovar-, Kolon-, Lungen und/oder Uteruskrebs, oder zur Detektion eines Risikos
 der Erkrankung an Krebs, insbesondere vom Ovar-, Kolon-,
 Lungen- und/oder Uteruskrebs, wobei eine Gewebeprobe auf
 Übertranskription von Ngal RNA oder auf Überexpression
 eines Ngal Proteins untersucht wird.
- Verwendung nach Anspruch 1, wobei eine an für Ngal codierende Nukleinsäure oder eine an Ngal Protein oder Peptid bindende Detektorsubstanz, vorzugsweise enthaltend eine Reportergruppe, verwendet wird, wobei Bindung besagter Nukleinsäure und/oder besagten Proteins oder Peptids an die Detektorsubstanz halbquantitativ oder quantitativ detektiert wird.
- 3. Verwendung einer Ngal RNA oder eines Ngal Proteins oder Peptids zum Screenen nach daran bindenden Substanzen, insbesondere prospektiven Wirkstoffen zur Inhibierung von besagter RNA oder besagtem Protein oder Peptid oder prospektiven Detektorsubstanzen, wobei eine prospektive Substanz oder eine Mischung solcher prospektiver Substanzen mit besagter RNA oder besagtem Protein oder Peptid kontaktiert wird, wobei mit einem Bindungsassay Bindungsereignisse festgestellt werden, und wobei eine bindende prospektive Substanz, ggf. nach Dekonvolutierung, selektiert wird.

22

Verwendung einer Ngal inhibierenden oder daran bindenden Substanz, vorzugsweise einer gleichzeitig die Sekrektion von Ngal nicht inhibierenden Substanz, zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krebs, insbesondere vom Ovar-, Kolon-, Lungen- und/oder Uteruskrebs.

10

5. Verwendung nach Anspruch 4, wobei die Substanz ein Antikörper ist, welcher durch Immunisierung eines nichtmenschlichen Säugetiers mit einem Ngal Peptid oder Protein, oder mit Ngal cDNA, oder mit mit cDNA von Ngal

transient oder stabil transfizierten Zellen, insbesondere Tumorzelllinien, NIH3T3, CHO, COS, oder mit endogen Ngal exprimierenden Tumorzellen oder mit in Insektenzellen hergestelltem Ngal erhältlich ist, oder ein Phage-Display Antikörper ist.

20

6. Verwendung nach Anspruch 4, wobei die Substanz eine Mimikriverbindung eines Antikörpers gegen ein Ngal Peptid oder Protein ist.

25

7. Verwendung nach Anspruch 4, wobei die Substanz, ein Aptamer, eine antisense RNA, oder ein Ribozym ist.

30

8. Verwendung nach einem der Ansprüche 4 bis 7, wobei die Substanz zusätzlich eine zytotoxische und/oder immunstimulierende Komponente trägt.

- Verwendung nach einem der Ansprüche 4 bis 8, wobei die pharmazeutische Zusammensetzung zur systemischen oder lokalen Applikation in Tumorzellen enthaltendem Gewebe hergerichtet ist.
- 10. Verfahren zur Diagnose einer Krebserkrankung, insbesondere vom Ovar-, Kolon-, Lungen- und/oder Uteruskrebs, wobei eine Detektorsubstanz in einer
 Ausführungsform mit einer Reportergruppe in zu untersuchendes Gewebe appliziert wird, wobei das zu untersuchende Gewebe dann einer Detektionsverfahrenstufe
 unterworfen wird, welche sensitiv für die Reportergruppe ist, und wobei im Fall der Detektion eines
 definierten Mindestwertes der Reportergruppe im Gewebe
 das Gewebe als Tumorzellen enthaltend qualifiziert
 wird.

20

- Verfahren zur Behandlung einer Krebserkrankung, insbesondere vom Ovar-, Kolon-, Lungen- und/oder Uteruskrebs, wobei eine pharmazeutische Zusammensetzung nach einem der Ansprüche 4 bis 9 in einer physiologisch wirksamen Dosis einem Patienten dargereicht wird.
- 12. Verwendung eines Ngal Proteins in einem Screening Ver-30 fahren zur Findung von die Sekretion von Ngal modulierenden Substanzen.

- 13. Verwendung nach Anspruch 12, wobei Ngal exprimierende Zellen in einem Medium kultiviert werden, wobei vor oder während der Kultivierung mit einer prospektiven, die Sekretion inhibierende Substanz oder mit einer 5 Mischung solcher Substanzen inkubiert wird, wobei das Medium nach einer definierten Kultivierungsdauer auf Ngal analysiert wird, optional nach Abtrennung des Mediums von den Zellen, und wobei die Substanz, ggf. nach Dekonvolution, selektiert wird, wenn die Menge detektierten Ngal im Medium einen definierten Grenzwert unterschreitet.
- 14. Verwendung nach Anspruch 13, wobei der definierte 15 Grenzwert durch Kultivierung unter gleichen Bedingungen, jedoch ohne Inkubation mit einer prospektiven, die Sekretion inhibierenden Substanz bestimmt wird.
- 20 15. Verwendung einer mit einem Verfahren nach einem der Ansprüche 12 bis 14 selektierten Substanz zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krebs, insbesondere von Ovar-, Kolon-, Lungen- und/oder Uteruskrebs.

25

30

10

16. Verwendung eines Ngal Proteins in einem Screening Verfahren zur Findung einer Ngal inhibierenden aber nicht dessen Sekretion inhibierenden Substanz, wobei Ngal exprimierende Zellen in einem Medium kultiviert werden, wobei vor oder während der Kultivierung mit einer gemäß Anspruch 3 selektierten Substanz oder mit einer Mischung solcher Substanzen inkubiert wird, wobei das

25

Medium nach einer definierten Kultivierungsdauer auf Ngal analysiert wird, optional nach Abtrennung des Mediums von den Zellen, und wobei die Substanz, ggf. nach Dekonvolution, selektiert wird, wenn die Menge detektierten Ngal im Medium einen definierten Grenzwert überschreitet.

- 17. Verwendung nach Anspruch 16, wobei der definierte

 10 Grenzwert durch Kultivierung unter gleichen Bedingungen, jedoch ohne Inkubation mit einer prospektiven,
 die Sekretion inhibierenden Substanz bestimmt wird.
- 15 18. Verwendung einer mit einem Verfahren nach einem der Ansprüche 12, 13 oder 14 selektierten Substanz zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krebs, insbesondere von Ovar-, Kolon-, Lungen- und/oder Uteruskrebs.

20

5

25

30

Fig.

-ig. 2

AC = adenocarcinoma
AC M = adenocarcinoma metastatic
SqC = squamous cell carcinoma
SqC M = squamous cell carcinoma
BT = benigne tumor uterus

NGAL-AS-1 CUAGGCCCAGCCACAGGAGACCUAG NGAL-AS-2 CCUGGGCAUGCAGACCCCCCAACAG

Fig. 4

559	551 TATTAATTC
550	501 gcctccctgaaaaccacatcgtcttccctgtcTCTCCCTATAGTGAGTCG
500	451 gctgacttcggaactaaaggagaacttcatccgcttctccaaatctctgg
450	401 tctcaaaacagggagtacttcaagatcaccctctacgggagaaccaagga
400	351 tggtgagcaccaactacaaccagcatgctatggtgttcttcaagaaagtt
350	301 gctgggcaacattaagagttaccctggattaacgagttacctcgtccgag
300	251 gactactggatcaggacttttgttccaggttgccagcccggcgagttcac
250	201 aagacaagagctacaatgtcacctccgtcctgtttaggaaaagaagtgt
200	151 agaagacaaagacccgcaaaagatgtatgccaccatctatgagctgaaag
150	101 ttccaggggaagtggtatgtggtaggcctggcagggaatgcaattctcag
100	51 ccccacctctgagcaaggtccctctgcagcagaacttccaggacaaccaa
20	1 GAATTAATACGACTCACTATAGGGAGActccacctcagacctgatcccag

Fig. 5

Peptidsequenzen für die Kaninchenimmunisierung:

70	KMV
09	AGNA <u>ILREDKDPC</u> LVRVVSTNYNQHA DG
50	NIKSYPGLTSY IIVFPVPIDQCI
40	VPLQQNFQDN PGCQPGEFTLG PSKSLGLPENF
30	DLIPAPPLSK CDYWIRTEVP SELKENFIRF
20	LHAQAQDSTS VTSVLFRKKK TLYGRIKELT
10	MPLGLLWLPSLLGALHAQAQDSTSDLIPAPPLSKVPLQQNFQDNQFQGKWYVVGLAGNA <u>ILREDKDPQKMYYA</u> TIYELKEDKSYNVTSVLFRKKKCDYWIRTFVPGCQPGEFTLGNIKSYPGLTSYLVRVVSTNYNQHAMV FFKKVSQNREYFKI <u>TLYGRTKELTSELKENF</u> IRFSKSLGLPENHIVFPVPIDQCIDG
	0

Fig. 6a

Cacgagtccaccctgccaggcccagccaccaccaccaccgcctgcttcctcggccctgaa atcatgcccctaggtctcctgtggctgggcctagccctgttgggggctctgcatgcccag gcccaggactccacctcagacctgatcccagccccacctctgagcaaggtccctctgcag gaagacaagagctacaatgtcacctccgtcctgtttaggaaaaagaagtgtgactactgg cagaacttccaggacaaccaattccaggggaagtggtatgtggtaggcctggcagggaat gcaattctcagagaagacaaagacccgcaaaagatgtatgccaccatctatgagctgaaa atcaggacttttgttccaggttgccagcccggcgagttcacgctgggcaacattaagagt atggtgttctttaagaaagtttctcaaaaacagggagtacttcaagatcaccctctacggg agaaccaaggaýctgacttcggaactaaaggagaacttcatccgcttctccaaatctctg taccctggattaacgagttacctcgtccgagtggtgagcaccaactacaaccagcatgct ggcctccctgaaaaccacatcgtcttccctgtcccaatcgaccagtgtatcgacggctga

Fig. 6b

Figur 8a

Figur 8b

Figur 9

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.