Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising

Yongchun Zhu^{1, 3, 4}, Yudan Liu³, Ruobing Xie³, Fuzhen Zhuang^{2, 5}, Xiaobo Hao³, Kaikai Ge³, Xu Zhang³, Leyu Lin³, Juan Cao^{1, 4}

3. WeChat Search Application Department, Tencent, China

4. University of Chinese Academy of Sciences, Beijing, China

5. Xiamen Data Intelligence Academy of ICT, CAS, China

Introduction

WeChat

Internet companies conduct hundreds of marketing campaigns to promote products, contents, and advertisements every day. The audience expansion technique (look-alike modeling) is the key which has been deployed in many online systems. A good look-alike technique can result in a great economic benefit, but it suffers from two significant challenges.

- The tasks of various campaigns can cover diverse contents.
- A certain campaign gives a seed set that can only cover limited users.

However, existing methods cannot solve the two challenges. We propose a novel two-stage framework named MetaHeac for the audience expansion problem.

WeChat Look-alike System

- Offline stage: maintain a pre-trained general model that can adapt fast to new campaigns.
- Online stage: find potential audiences for a certain campaign with a customized model.

MetaHeac Framework

Learn to expand audience

To learn a general pre-trained model that knows how to expand audiences, we propose a training procedure to simulate the Look-alike modeling process.

Understanding phase:

$$\theta_{[c]} = \theta - \alpha \frac{\partial \mathcal{L}_a}{\partial \theta}$$

$$\mathcal{L}_a(\theta) = \sum_{\mathcal{D}_{[c]}^a} \left[-y \log \hat{p} - (1 - y) \log(1 - \hat{p}) \right]$$

• Finding phase:

$$\theta = \theta - \beta \frac{\partial \mathcal{L}_b(\theta_{[c]})}{\partial \theta} = \theta - \beta \frac{\partial \mathcal{L}_b(\theta_{[c]})}{\partial \theta_{[c]}} \frac{\partial \theta_{[c]}}{\partial \theta}$$

Algorithm 1 Training MetaHeac from a meta-learning perspective.

Input: Given hundreds of marketing campaign dataset $\mathcal{D}_{[c]}$.

Input: The general model f_{θ} .

Input: The learning rate α , β .

- 1. randomly initialize θ .
- 2. **while** not converge **do**:
- sample batch of training tasks $\{\mathcal{T}_1, ..., \mathcal{T}_n\}$.
- - for $\mathcal{T}_i \in \{\mathcal{T}_1, ..., \mathcal{T}_n\}$ do:
- \mathcal{T}_i contains two disjoint sets $\mathcal{D}^a_{[c]}$, $\mathcal{D}^b_{[c]}$ evaluate loss $\mathcal{L}_a(\theta)$ with $\mathcal{D}^a_{[c]}$ 6.
- compute updated parameter $\theta_{c} = \theta \alpha \frac{\partial \mathcal{L}_a(\theta)}{\partial \theta}$
- evaluate loss $\mathcal{L}_b(\theta_{[c]})$ with $\mathcal{D}_{[c]}^b$
- 9. end
- update $\theta = \theta \beta \sum_{\mathcal{T}_i \in \{\mathcal{T}_1, ..., \mathcal{T}_n\}} \frac{\partial \mathcal{L}_b(\theta_{[c]})}{\partial \theta}$
- 10. 11. **end**

Hybrid Experts and Critics

- Task-driven gate: $\mathbf{w}^{expert} = \operatorname{softmax}(g(\mathbf{c}, \mathcal{G}(\mathbf{u})))$
- Hybrid experts: $r = \frac{1}{n} \sum_{i=1}^{n} w_i^{expert} h_i(u)$
- Hybrid critics: $\hat{p} = \frac{1}{m} \sum_{i=1}^{m} w_i^{critic} \sigma(t_i(r))$
- Overall: $f(c, u) = \frac{1}{m} \sum_{i=1}^{m} w_i^{critic} \sigma(t_i(\frac{1}{n} \sum_{i=1}^{n} w_i^{expert} h_i(u)))$

Experiments

Offline experiments

.		Pre-trained		$S_{[c]} \leq T$			$ \mathcal{S}_{[c]}>T$		
Dataset	Method	Emb	Network	AUC	P@5%	R@5%	AUC	P@5%	R@5%
Tencent Look-alike Dataset	LR	-	-	0.5942	0.1015	0.1044	0.6824	0.1910	0.2006
	MLP_one-stage	-	-	0.5928	0.1048	0.1081	0.6910	0.1797	0.1888
	MLP+emb	✓	-	0.6624	0.1881	0.1930	0.7060	0.2118	0.2224
	Pinterest	✓	-	0.6245	0.1635	0.1665	0.6802	0.1687	0.1770
	Hubble	✓	-	0.6797	0.2056	0.2110	0.7085	0.2171	0.2279
	MLP+pre-training	√	✓	0.7117	0.2325	0.2384	0.7082	0.2136	0.2242
	Shared-Bottom+pre-training	✓	✓	0.6936	0.2198	0.2258	0.7089	0.2144	0.2250
	MMoE+pre-training	✓	✓	0.6977	0.2224	0.2280	0.7088	0.2150	0.2257
	MetaHeac	✓	✓	0.7239**	0.2489**	0.2554**	0.7142**	0.2244**	0.2356**
	Improve			1.7%	7.0%	7.1%	0.8%	4.7%	4.7%
	LR	-	-	0.5654	0.1351	0.0742	0.6711	0.2166	0.1182
	MLP_one-stage	-	-	0.6663	0.2477	0.1363	0.6970	0.2605	0.1419
	MLP+emb	√	-	0.7143	0.3058	0.1684	0.7217	0.2988	0.1628
	Pinterest	✓	-	0.6289	0.1947	0.1066	0.7044	0.2639	0.1439
WeChat Look-alike Dataset	Hubble	✓	-	0.7391	0.3524	0.1936	0.7243	0.3062	0.1668
	MLP+pre-training	✓	✓	0.7440	0.3473	0.1908	0.7272	0.3030	0.1673
	Shared-Bottom+pre-training	✓	✓	0.7271	0.3093	0.1700	0.7275	0.3052	0.1663
	MMoE+pre-training	✓	✓	0.7368	0.3265	0.1797	0.7292	0.3051	0.1675
	MetaHeac	✓	✓	0.7607**	0.3839**	0.2110**	0.7323*	0.3133*	0.1707*
	Improve			2.3%	8.9%	9.0%	0.4%	2.3%	1.9%

Online A/B testing results

Scenarios	Exposure	Conversion	CVR
video	+3.07%	+10.18%	+7.90%
advertisements	+0.65%	+15.50%	+15.40%
article	+3.18%	+9.23%	+4.64%

Ablation study

Method	$ \mathcal{S}_{[c]}$	$\leq T$	$S_{[c]} > T$		
Method	AUC	P@5%	AUC	P@5%	
MetaHeac w/o HC	0.7199	0.2472	0.7115	0.2220	
MetaHeac w/o HE	0.7181	0.2419	0.7112	0.2193	
MetaHeac w/o Meta	0.7173	0.2431	0.7107	0.2180	
MetaHeac	0.7239	0.2489	0.7142	0.2244	