

A Coarse-to-Fine Boundary Localization method for Naturalistic Driving Action Recognition

Guanchen Ding*, Wenwei Han*, Chenglong Wang*, Mingpeng Cui, Lin Zhou, Dianbo Pan, Jiayi Wang, Junxi Zhang, Zhenzhong Chen

Problem Statements

Dataset(SynDD1):

Each participant continuously performed eighteen distracted driver behavior for a small-time interval.

Challenges:

· Large intra-class variation

It may puzzle the model to divide one action segment into different parts.

Multiple camera views

It is challenging to effectively combine the information of multiple camera views.

CFBL: A Coarse-to-Fine Boundary Localization method

Pipeline:

- · DenseFlow for optical flows Extraction
- · Anchor-Free Saliency-based Detector(AFSD) for coarse boundary prediction and classification result
- · DBG-based Signal Acquisition Module for starting and ending signals
 - · Localization Boundary Refinement Module for fine boundary

Localization Boundary Refinement Module

The process of searching for strongest signal:

We search the pre-defined neighbors in order to get the strongest signal that indicates the starting or ending points.

Metrics & Results

$$F1 = \frac{2TP}{2TP + FP + FN}$$

F1-Score	Precision	Recall
0.2902	0.4868	0.2067

Explanation:

A true-positive(TP) action identification will be considered when the action was correctly identified as starting time within one second and ending time within one second of the action. Our methodology obtain F1-Score at 0.2902 on the test set.

Explanation:

Our model can accurately localize the action boundary due to the introduced of DBG-based Signal Acquisition module.