Wstęp do teorii mocy zbiorów

Zachariasz Jażdżewski

21.01.2024

Wstęp

Teoria mocy zajmuje się ilością elementów w zbiorze i porównywaniem zbiorów ze względu na ilości ich elementów.

Za twórcę teorii mocy, jak i całej teorii mnogości uważa się Georga Cantora.

Równoliczność zbiorów

Definicja

Mówimy, że zbiór A jest równoliczny ze zbiorem B, gdy istnieje bijekcja f przekształcająca zbiór A na zbiór B. Zapisujemy jako $A \sim B$.

Przykład

Zbiory $A=\{1,2,3,4,5\}$ i $B=\{7,8,9,10,11\}$ są równolicznem, a przykładem funkcji ustalającej równoliczność tych zbiorów może być funkcja

$$f: \{1, 2, 3, 4, 5\} \rightarrow \{7, 8, 9, 10, 11\}$$

taka, że
$$f(1) = 7$$
, $f(2) = 8$, $f(3) = 9$, $f(4) = 10$, $f(5) = 11$

Podstawowe własności

Twierdzenie

Dla dowolnych zbiorów A, B i C zachodzi:

- \bullet $A \sim A$

Równoliczność liczb naturalnych z całkowitymi

Twierdzenie

Zbiór liczb naturalnych $\mathbb N$ jest równoliczny ze zbiorem liczb całkowitych $\mathbb Z.$

Uzasadnienie

Równoliczność zbiorów \mathbb{Z} i \mathbb{N} ustala funkcja $f:\mathbb{Z}\to\mathbb{N}$ określona wzorem:

$$f(m) = \begin{cases} 2m & \text{gdy } m \ge 0 \\ -2m - 1 & \text{gdy } m < 0 \end{cases}$$

- Łatwo możemy zauważyć, że dla liczb całkowitych nieujemnych funkcja ta zwraca nam zbiór liczb naturalnych parzystych.
- Dla liczb całkowitych ujemnych zaś funkcja zwraca zbiór liczb naturalnych nieparzystych.
- Zatem dla zbioru wszystkich liczb całkowitych funkcja ustala równoliczność ze zbiorem N.
- Jako, że funkcja jest bijekcją, to istnieje również funkcja odwrotna do niej ustalająca równoliczność zbiorów $\mathbb N$ i $\mathbb Z$. (Dowód, że funkcja f jest bijekcją pomijamy)

Moce zbiorów i porównywanie mocy zbiorów

Definicja

Niech A będzie ustalonym zbiorem. Mówimy, że zbiór A jest:

- **Skończony**, gdy jest on zbiorem pustym lub jest równoliczny ze zbiorem $\{1, 2, 3, ..., n\}$ dla pewnej liczby $n \in \mathbb{N}_+$.
- Nieskończony, gdy nie jest on skończony.
- § Przeliczalny, gdy jest on równoliczny ze zbiorem liczb naturalnych \mathbb{N} .
- Co najwyżej przeliczalny, gdy jest on skończony lub przeliczalny.
- Nieprzeliczalny, gdy nie jest on co najwyżej przeliczalny.

Moc zbioru

Definicja

Mocą zbioru A nazywamy cechę przypisaną zbiorowi A, oznaczaną przez |A| taką, że:

Mocą zbioru pustego jest 0

$$|\varnothing| = 0$$

Mocą zbioru skończonego jest liczba jego elementów

$$|A| = n, \quad n \in \mathbb{N}_+$$

Zbiory mają tą samą moc wtedy i tylko wtedy, gdy są one równoliczne

$$A \sim B \iff |A| = |B|$$

Porównywanie mocy zbiorów

Ponieważ moce zbiorów skończonych są liczbami naturalnymi, to można je porównywać.

Zdefiniujmy zatem relację do porównywania mocy zbiorów.

Definicja
$$|A| \leq |B|$$

Mówimy, że zbiór A ma moc nie większą od zbioru B, jeśli zbiór A jest równoliczny z pewnym podzbiorem zbioru B.

Definicja
$$|A| < |B|$$

Mówimy, że zbiór A ma moc mniejszą od zbioru B, gdy

$$|A| \leq |B| \wedge |A| \neq |B|$$

Poznajmy parę elementarnych twierdzeń dotyczących porównywania mocy zbiorów.

Twierdzenie

Dla niepustych zbiorów A i B następujące stwierdznia są równoważne

- **1** $|A| \leq |B|$
- 2 Istnieje iniekcja $f: A \xrightarrow{1-1} B$
- 3 Istnieje suriekcja $g: B \xrightarrow{\mathsf{na}} A$

Własności

Dla dowolnych zbiorów A, B i C mamy:

- $|A| \le |A|$
- $|A| \leq |B| \land |B| \leq |C| \implies |A| \leq |C|$
- $|A| \leq |B| \wedge |B| \leq |A| \implies |A| = |B|$
- $|A| \le |B| \lor |B| \le |A|$

Nieprzeliczalność liczb rzeczywistych na odcinku (0,1)

Twierdzenie

Odcinek otwarty (0,1) nie jest przeliczalny

Udowodnimy to twierdzenie używając metody przekątniowej Cantora. Zauważmy, że każda liczba rzeczywista $x \in (0,1)$ ma swoje rozwinięcie dziesiętne. Jeśli jest ono skończone, to uzupełniamy rozwinięcie o nieskończoną ilość zer.

Ponumerujmy wszystkie liczby rzeczywiste $x \in (0,1)$ liczbami naturalnymi ustawiając je w nieskończony ciąg indeksowany po \mathbb{N} :

$$\mathbb{N}$$
 $x \in (0,1)$

- $1 \quad 0. \; 1 \; 2 \; 6 \; 8 \; 7 \; 4 \; 1 \; 5 \; 2 \; 7 \; \dots$
- $2\quad 0.\; 6\; 5\; 8\; 7\; 9\; 2\; 1\; 7\; 8\; 6\; ...$
- 3 0.2423812045...
- 4 0.8230426584...
- $5\quad 0.\ 3\ 7\ 9\ 8\ 5\ 0\ 0\ 1\ 2\ 8\ ...$
- 6 0.9327894789...
- $7 \quad 0.\; 5\; 8\; 9\; 6\; 7\; 8\; 9\; 1\; 2\; 0\; ...$
- $8 \quad 0.7236249192...$
- 9 ...

Skonstruujmy teraz liczbę rzeczywistą $a \in (0,1)$. Stworzymy ją w taki sposób:

- Weźmiemy pierwszą cyfrę po przecinku o indeksie 1 i dodamy 1
- Weźmiemy drugą cyfrę po przecinku o indeksie 2 i dodamy 1
- Weźmiemy trzecią cyfrę po przecinku o indeksie 3 i dodamy 1

i tak dalej... Jeżeli cyfra po przecinku

Jeżeli cyfra po przecinku to 9, to zamieniamy ją na 0.

```
\mathbb{N} \quad x \in (0,1)
```

- 1 0. 1 2 6 8 7 4 1 5 2 7 ...
- 2 0.6587921786...
- 3 0. 2 4 **2** 3 8 1 2 0 4 5 ...
- 4 0.8230426584...
- 5 0.3798**5**00128...
- 5 0.93278**9**4789...
- 7 0.589678**9**120...
- 8 0.7236249**1**92...
- 9.
- a 0.26316002...

Wniosek

W efekcie otrzymaliśmy liczbę $a\in(0,1)$, która różni się od każdej liczby w naszym ciągu o conajmniej jedną cyfrę, zatem liczba a nie występuje w ciągu, wbrew temu, że ciąg zawierał wszystkie liczby rzeczywiste.

Wniosek

Otrzymana sprzeczność pokazuje, że zbiory liczb naturalnych i rzeczywistych z przedziału (0,1) nie są równoliczne.

Przykłady innych zbiorów przeliczalnych, co najwyżej przeliczalnych i nieprzeliczalnych

- ullet Zbiór liczb rzeczywistych $\mathbb R$ jest nieprzeliczalny. ($\mathbb R \nsim \mathbb N$)
- Zbiór $\mathbb{N} \times \mathbb{N}$ jest przeliczalny. ($\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$)
- ullet Zbiór liczb wymiernych $\mathbb Q$ jest przeliczalny. ($\mathbb Q \sim \mathbb N$)
- Zbiór liczb niewymiernych $\mathbb{R}\setminus\mathbb{Q}$ jest zbiorem nieprzeliczalnym. $(\mathbb{R}\setminus\mathbb{Q}\ \nsim\ \mathbb{N})$
- Żaden zbiór nie jest równoliczny ze zbiorem wszystkich swoich podzbiorów. $(A \sim \mathcal{P}(A))$
- Każdy nieprzeliczalny podzbiór zbioru liczb rzeczywistych $\mathbb R$ jest równoliczny ze zbiorem $\mathbb R.$

Źródła

- Jerzy Topp, Wstęp do matematyki, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk 2015
- 2 Joanna Cyman, Wykłady z przedmiotu "Wstęp do logiki i teorii mnogości", Politechnika Gdańska, Gdańsk 2023/2024