Comprehensive Waste Management Project

~ By Apurva (230180)

Objective:

Detailed waste management plan for the **phosphoric acid production process (wet process)**, integrating process optimization, material and energy balances, life cycle assessment (LCA), product carbon footprint (PCF) assessment, and cost-benefit analysis.

1. Industry & Process:

Chemical manufacturing Industry: Phosphoric Acid production through wet process

2. Process Flow and Material/Energy Balances:

• Process Flow Diagram (PFD):

Reactions:

i. Main Reaction

$$Ca_3(PO4)_2 + 3H_2SO_4 + 6H_2O \rightarrow 2H_3PO_4 + 3(CaSO_4).2H_2O.....(1)$$

ii. Side Reaction

$$CaF_2 + H_2SO_4 + 2H_2O \rightarrow 2HF + CaSO_4.2H_2O...$$
 (2)

$$6HF + SiO_2 \rightarrow H_2SiF_4 + 2H_2O$$
....(3)

Material Balance :

Assumptions

 $\sim H_3PO_4$ Production = 1000 ton/day = 10⁶ kg/day = 42000 kg/hr = 429 kmol/hr

Yield = 95%, Conc of $H_2SO_4 = 94\%$, H_2SO_4 Excess = 15%

- ~ Product stream = 42000/0.75 = 56000 kg/hr
- \sim H₂O Stream = 0.25 x 56000 = 14000 kg/hr
- ~ From Reaction (1): $Ca_3(PO_4)_2 = 0.5 \times 429 \text{ kmol/hr} = 214.5 \text{ kmol/hr} = 66.5 \text{ kg/hr}$
- ~ Since Yield = 95%, Feed $Ca_3(PO_4)_2 = 429/0.95 = 451.5 \text{ kmol/hr} = 140000 \text{ kg/hr}$

a) Around Mill:

<u>Stream - 1</u>: Phosphate Rock Composition [Ca₃(PO₄)₂ (75%), CaF₂ (20%) , SiO₂ (5%)]

 $Ca_3(PO_4)_2 = 140000 \text{ kg/hr}$; CaF2 = 0.2*187000 = 37400 kg/hr

SiO2 = 0.05*187000 = 9350 kg/hr

<u>Stream - 2</u>: Dilute Phosphoric Acid [H_2O (85%), H_3PO_4 (15%)] = 0.5 x 187000 =

93500 kg/hr (Considering dil H₃PO₄: Phosphate Rock = 1:2)

 $H_2O = 93500 * 0.85 = 79500 \text{ kg/hr}$; $H_3PO_4 = 93500 * 0.15 = 14000 \text{ kg/hr}$

Composition	Stream-1	Stream-2	Stream-3
Ca ₃ (PO ₄) ₂	140000		140000
CaF ₂	37400		37400
SiO ₂	9350		9350
H ₂ O		79500	79500
H₃PO₄		14000	14000

Mass In: 140000+37400+9350+79500+14000 = 280250 Mass out: 140000+37400+9350+79500+14000 = 280250

b) Around Reactor:

H3PO4 production = 429 kmol/hr

Reaction 1:

Ca3(PO4)2 reacted = 429/2 = 214.5 kmol/hr

Unreacted Ca3(PO4)2 = 452-214.5 = 237.5 kmol/hr

H2SO4 reacted = 3/2 * 429 = 643.5 kmol/hr

H2O reacted = 6/2 * 429 = 1287 kmol/hr

CaSO4.2H2O produced = 3/2 * 429 = 643.5 kmol/hr

Reaction 2:

In CaF2 = reacted CaF2 = 480 kmol/hr Reacted

H2SO4 = 480 kmol/hr

Produced HF = 2 * 480 = 960 kmol/hr

Produced CaSO4 = 480 kmol/hr

Reaction 3:

In SiO2 = reacted SiO2 = 156 kmol/hr

Reacted HF = 6 * 156 = 936 kmol/hr

Produced H2SiF6 = 156 kmol/hr

Produced H2O = 2 * 156 = 312 kmol/hr

Stream 4:

Total H2SO4 reacted = 643.5 + 480 = 1123.5 kmol/hr = 110000 kg/hr

Excess H2SO4 = $15\% \rightarrow 0.15$ = (in-reacted)/in =0.15 = (in-110000)/110000

ln = 126630 kg/hr

Non reacted H2SO4 = 126630 - 110000 = 16530 kg/hr

H2SO4 concentration 94%: 126630/0.94 = 134700 kg/hr

H2SO4 = 126630 kg/hr

H2O = 134700 - 126600 = 8100 kg/hr

Stream 6:

H3PO4 = 42000 + 14000 = 56000 kg/hr

H2O = 79500 + 8100 + 5600 - 23130 = 70000 kg/hr

Ca3 (PO4)2 = 73600 kg/hr

CaSO4.2H2O = 110700 kg/hr

H2SO4 = 16500 kg/hr

CaSO4 = 65250 kg/hr

Stream 5:

H2SiF6 = 22450 kg/hr

H2O = assume 50% of H2O from stream 6 is vaporized: 0.5 * 70000 = 35000 kg/hr

HF = produced - reacted = 960 - 936 = 24 kmol/hr = 480 kg/hr

Cooling air stream: 79% Nitrogen, 21% Oxygen

Mass In: Stream 3 + Stream 4 = 140000 + 37400 + 9350 + 79500 + 14000 +

8100 + 126630 = 414980 kg/hr

Mass Out: Stream 5 + Stream 6 = 35000 + 22450 + 73600 + 35000 + 56000 + 16500 + 110700 + 65250+480 = 414980 kg/hr

c) Around Filter:

Stream 10: H3PO4 = 14000 kg/hr

Stream 8: H3PO4 = 56000 - 14000 = 42000 kg/hr

Total stream 8 = 42000/0.4 = 105000 kg/hr

H2O in stream 8 = 0.6 * 105000 = 63000 kg/hr

(Assuming 1.5% of H2SO4 & H2O goes with gypsum for easy filtration)

H2SO4 in stream 10 = 16500 * 0.015= 247.5 kg/hr

H2SO4 in stream 9 = 16500 - 247.5 = 16252.5 kg/hr

H2O in stream 10 = 35000 * 0.015 = 525 kg/hr

(Since Stream 9 recycles back to the reactor and the acid conc needs to be at 94%)

Total stream 9 = H2SO/0.94 = 16252.5/0.94 = 17290 kg/hr

H2O in stream 9 = 17290 * 0.06 = 1037.5 kg/hr

H2O in stream 7 = -35000 + 63000 + 525 + 1037.5 = 29562.5 kg/hr

Mass In : Stream (6+7) = 73600 + 35000 + 16500 + 56000 + 110700 + 65250 +

29562.5 = 386612.5 kg/hr

Mass Out : Stream (8+9+10) = 63000 + 42000 + 1037.5 + 16252.5 + 73600 +

525 + 247.5 + 14000 + 110700 + 65250 = 386612.5 kg/hr

d) Around Evaporator:

Stream 8(F) composition: H3PO4 = 42000 kg/hr, H2O = 63000 kg/hr

Material balance on H3PO4:

0.4 * F = 0.75 * Stream 12

0.4 * 105000 = 0.75 * Stream 12

Stream 12 = 56000 kg/hr

H2O in Stream 12 = 0.25 * 56000 = 14000 kg/hr

H2O in Stream 11 = 63000 - 14000 = 49000 kg/hr

Mass In: Stream 8 = 42000 + 63000 = 105000 kg/hr

Mass Out : Stream (11+12) = 49000 + 14000 + 42000 = 105000 kg/hr

e) Around Mixing Tank:

<u>Stream 4</u>: H2SO4 = 126630 kg/hr, H2O = 8100 kg/hr

Stream 9: H2SO4 = 16252.5 kg/hr, H2O = 1037.5 kg/hr

Stream 13: H2SO4 = 126630 - 16252.5 = 110377.5 kg/hr , H2O = 8100 - 1037.5

= 7062.5 kg/hr

Mass In: 16252.5 + 1037.5 + 110377.5 + 7062.5 = 134730 kg/hr

Mass Out: 126630 + 8100 = 134730 kg/hr

f) Around Absorber:

Assume 99% recovery: H2SiF6 in stream 16 = 0.99 * 22450 = 22225.5 kg/hr

H2SiF6 in stream 15 = 22450 - 22225.5 = 224.5 kg/hr

(Assuming the amount of water in stream 16 made H2SiF6 into 15%)

Total stream 16 = 22225.5 0.15 = 148170 kg/hr

H2O in stream 16 = 0.85 * 148170 = 125944.5 kg/hr

H2O in stream 14 = 125944.5 - 35000 = 90944.5 kg/hr

Mass In: 22450 + 35000 + 480 + 90944.5 = 148874.5

Mass Out: 224.5 + 480 + 22225.5 + 125944.5 = 148874.5 kg/hr

Energy Balance :

a) Around Reactor:

Operating Conditions : $T = 75-80^{\circ}C$, P = 1 atm, $T_{ref} = 25^{\circ}C$

Heat In = Heat Out

 $\sum mC_p \Delta T + \sum n\Delta H_{reaction} = Q + Latent Heat$; where

 $\Delta H_{\text{reaction}} = \sum \Delta H_{\text{products}}^f - \sum \Delta H_{\text{reactants}}^f$

b) Around Evaporator:

Heat In = Heat Out, T_{ref} = 72°C m CpH3PO4 dT + m CpH2O dT + Q = m CpH2O dT + m Λ H2O + m CpH3PO4 dT + m CpH2O dT

3. Identify Waste Streams:

• Waste Streams (liquid, solid & gases) :

Stream	Physical State	Component	
Stream (10) Solid (S)		Gypsum (CaSO ₄ .2H ₂ O)	
	Liquid (L)	H ₂ SO ₄	
Stream (15) Gas (G)		HF	
Stream (16)	Liquid (L)	H₂SiF ₆	

• Current Handling/Disposal Methods:

- a) Gypsum Disposal Disposed in Land / Sea
- b) H₂SO₄ Neutralized before disposal
- c) HF Wet Scrubbing
- d) H₂SiF₆ Used in Water Fluoridation

4. Propose Optimization Strategies:

• Process improvements to reduce waste generation / increase resource efficiency :

- a) Absorber Gas Recovery Enhancement:
 - Upgrade absorber design with multi-stage scrubbing and pH-controlled water/alkali solution.
 - Improve packing material and residence time for better absorption efficiency.

Metrics	Before	After
HF loss in gas (kg/hr)	~ 480	< 480
H ₂ SiF ₆ recovery efficiency (%)	~ 70-75%	>95%
Revenue from H ₂ SiF ₆	Medium	High

b) Reactor Cooling Optimization:

- Use **heat exchangers** to recover thermal energy from reactor cooling air and preheat incoming feed (Stream 2 or 3).

Parameter	Before	After	
Cooling Energy Loss	High	Reduced	
Energy Recovery	None	Significant	
Overall Efficiency	Moderate	Improved	

5. Conduct Life Cycle Assessment (LCA) and Product Carbon Footprint (PCF):

Goal & Scope Definition:

- **Objective:** Calculate GWP (kg CO₂-eq) and PCF (kg CO₂-eq/kg H₃PO₄).
- Functional Unit: 1 ton (1000 kg) of phosphoric acid produced.
- **System Boundary:** Cradle-to-gate (raw material extraction to product output).

Life Cycle Inventory (LCI)

Inputs	Stage	Outputs(Emissions/Products/Wastes)
- Phosphate rock (Ca ₃ (PO ₄) ₂ , CaF ₂ , SiO ₂) - Sulfur (for H ₂ SO ₄ production)	Raw Material Extraction	- CO₂ from mining equipment - Particulate matter (dust)
- Sulfur → H₂SO₄ (via combustion + contact process) - Water	Material Processing	- SO₂, trace H₂SO₄ vapors - Heat and electricity use emissions
- Phosphate rock - H₂SO₄ - Dil. H₃PO₄ - H₂O	Reaction (Reactor)	- H₃PO₄ (product) - Gypsum (solid) - HF (gas) - Heat loss
- Air (cooling) - Absorbent water	Gas Absorption	H₂SiF₅ (captured) - Uncaptured HF (fugitive)
- Energy (filtration)	Filtration	- Recovered H ₃ PO ₄ - Gypsum (CaSO ₄ .2H ₂ O) with traces of H ₂ SO ₄
- Steam (energy input)	Evaporation / Concentration	- Concentrated H₃PO₄ (75%) - Water vapor (released or recycled)
- Process water - Recycled H₂SO₄ stream	Waste Handling / Recycling	- Treated effluents - Potential emissions (HF, H ₂ SiF ₆) if not fully captured
- Electricity - Cooling water	Utilities & Energy	- CO₂ from grid electricity - Thermal losses

- Steam (boilers)		- Cooling water discharge
-------------------	--	---------------------------

Life Cycle Impact Assessment (LCIA) & Baseline & Optimized Scenario

Impact Category	Description	Baseline Scenario	Optimized Scenario	Improvement
Global Warming Potential (GWP)	Total greenhouse gas emissions (CO₂-eq) from energy use, sulfur combustion, etc.	High (due to fossil-based energy use)	Medium (with energy recovery)	15–25%
Acidification Potential	Emissions of SO ₂ , NO _x , HF affecting soil and water acidity	1 9 ' ' ' ' '		40–60%
Eutrophication Potential	Nutrient-rich wastewater discharge causing algal blooms (H₃PO₄, H₂S0 traces in effluent)		Low (better wastewater control)	30–50%
Photochemical Ozone Creation Potential (POCP)	VOCs, NO _x , HF reacting with sunlight to create smog	Low	Very Low	10–20%
Human Toxicity Potential	Emissions of HF, H₂SO₄ aerosols, and H₂SiF₆ impacting human health	High (if gases not controlled well)	Low (with absorber and scrubbing)	60–80%
Water Consumption	Total freshwater used in process cooling, dilution, scrubbing	High (especially cooling air water)	Medium (recycling of water streams)	30–40%

Product Carbon Footprint (PCF) (Optimized Scenario)

Stage	Carbon Intensity	Optimizations & Impacts
Phosphate Rock Mining	Medium	Same as baseline
Sulfuric Acid Production	Medium	Partial recycling of acid stream; lower virgin acid requirement
Reaction & Filtration	Medium	No change in chemistry, but better temperature control reduces loss
Gas Handling & Scrubbing	Low	High-efficiency absorbers with >95% H₂SiF₅ capture
Evaporation	Medium	Heat integration using reactor waste heat reduces steam consumption

Waste Handling	Low-to-Medium	Lower volume of waste, potential valorization of H₂SiF₅ as by-product
Electricity Use (Auxiliary)	Medium-Low	Process integration reduces pumping and reprocessing loads

6. Perform a Cost-Benefit Analysis:

Component	Baseline Scenario	Optimized Scenario	Cost (₹/year)	Benefit (₹/year)	Remarks
1. Absorber Gas Recovery	70–75% H ₂ SiF ₆ recoveryHF loss: ~480 kg/hr	>95% H ₂ SiF ₆ recoveryHF loss: <50 kg/hr	₹25–30 lakhs (CapEx)	₹60–70 lakhs	H₂SiF₅ market value ₹30–40/kg
2. HF Emission Control	Wet scrubbing (partial capture)	Advanced scrubbing (multi-stage)	Included above	₹5–10 lakhs	Reduced environmental fines, safer work conditions
3. Heat Recovery (Reactor Cooling)	No recoveryHeat lost in air cooling	heat exchangers for feed preheating	₹20 lakhs (CapEx)	₹30–40 lakhs	Saves steam/fuel for preheating feed
4. H ₂ SO ₄ Recovery from Filter	1.5% acid loss (~247.5 kg/hr) with gypsum	Acid stream recovery (94% H ₂ SO ₄)	₹5 lakhs (O&M)	₹15–20 lakhs	Reduces fresh acid demand and disposal
5. Evaporator Optimization	Direct steam evaporation	Heat-integrated evaporator system	₹15 lakhs (CapEx)	₹20–25 lakhs	Energy efficiency, lower evaporation cost
6. Gypsum Valorization	Land/sea disposal (₹500–₹1000/ton)	Potential use in cement/fertilize r industry	₹5 lakhs (logistics)	₹10–15 lakhs	Gypsum ~110700 kg/hr = ~950 T/day
7. Regulatory Compliance Benefit	Moderate risk of fines & penalties	Enhanced control of HF, H ₂ SiF ₆ , H ₂ SO ₄ emissions	_	₹5–10 lakhs (avoided cost)	Non-monetary but important
8. Carbon Savings	Higher emissions → higher PCF	Lower PCF via optimization	_	₹5–10 lakhs (carbon credit potential)	0.1–0.2 tCO₂e per ton of acid saved

References:

PRODUCTION OF PHOSPHORIC ACID

Fluorine recovery in the fertilizer industry - a review. - Fluoride Action Network

Economic Analysis of Phosphoric Acid Extraction