Hartshorne Solutions

mlwells

2025

Feel free to add your Discord name to the author list. Let's add our usernames to our solutions, too, so that people get proper credit.

Chapter 1

1. Affine Varieties

Solutions:

- 1.1
- (a)
- (b)
- *(c)
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- 1.7
- (a)
- (b)
- (c)
- (d)

1.8 Let Y be an affine variety of dimension r in \mathbb{A}^n . Let H be a hypersurface in \mathbb{A}^n , and assume that $Y \not\subseteq H$. Then every irreducible component of $Y \cap H$ has dimension r-1.

mlwells:

Suppose that H = Z(f) with f irreducible in $k[x_1, \ldots, x_n]$. Then the projection of f in $A(Y) := k[x_1, \ldots, x_n]/I(Y)$ is not equal to $\overline{0}$ since by assumption $(f) \not\subset I(Y)$. Since A(Y) is a domain (due to the irreducibility of Y), the element \overline{f} is not a zero divisor. Assuming that $Y \cap H \neq \emptyset$, we have

that \overline{f} is not a unit in A(Y). To see this, let $P \in Y \cap H$. Then $I(Y), (f) \subset \mathfrak{m}_P$, the maximal ideal of $k[x_1, \ldots, x_n]$ corresponding to P. This implies $(\overline{f}) \subset \mathfrak{m}_P/I(Y)$, the latter being a maximal ideal in A(Y). Thus, \overline{f} is not a unit.

We apply Theorem 1.11A to get that every minimal prime ideal \mathfrak{p} in A(Y) containing \overline{f} has height 1. The irreducible components of $Y \cap H$ and the minimal prime ideals containing (\overline{f}) correspond, and since each of these prime ideals has height 1, the corresponding varieties have dimension r-1 by Theorem 1.8A.

1.9

1.10

- (a)
- (b)
- (c)
- (d)
- (e)

*1.11

1.12