

## Experimento 08 - Parte 1

Laboratório de Princípios de Comunicação

**Autoria** Pedro Henrique Dornelas Almeida **Matrícula** 18/0108140

Engenharia de Redes de Comunicação Universidade de Brasília

14 de abril de 2021

Versão do GNU Radio Companigon: 3.8.1.0 (Python 3.8.5).

## 1 Introdução

Neste experimento iremos estudar sobre modulações de pulsos, usados para transmitir um sinal quantizado por um canal de comunicação, e em seguida para ser demodulado em um receptor, assim, implementando um canal de comunicação completo. Para isso, iremos implementar nesta parte dois tipos de modulação denominadas PCM e DPCM.

#### 2 Desenvolvimento

#### AR 01

Aqui devemos realizar a modulação do tipo PCM, e para isso, foi montada a seguinte área de trabalho:







Figura 1: Área de Trabalho AR01

Por meio desta área de trabalho foi possível visualizar como o seguinte painel de controle:



Figura 2: Painel de controle

#### a) Características do trem de pulsos transmitidos

| Pulso             | Coeficientes                        | $B_N(kHz)$ | NLL(dB)   |
|-------------------|-------------------------------------|------------|-----------|
| (1)Retangular NRZ | 8*[1.0]                             | 80         | 13,64     |
| (2)Retangular RZ* | 4*[1.0]+4*[0.0]                     | 160        | $11,\!44$ |
| (3)Triangular     | np.array( $[0,1,2,3,4,3,2,1]$ )/4.0 | 160        | 22,82     |
| (4)Hanning        | np.hanning(8)/0.95048443            | 183,16     | 33,5      |

Tabela A.1. (\*) Alterar Delay de 4 para 2 no bloco "Sincronismo pulsos".

# • Qual a relação entre $B_N$ e a taxa de transmissão de dados $R_b$ ? A relação é tal que quanto maior a taxa de transmissão de dados $R_b$ maior é a largura de banda $B_N$ , pois quanto maior o número de amostras, a frequência é maior.

- Qual dos pulsos apresenta menor  $B_N$ ?
  O pulso retangular NRZ.
- Qual dos pulsos apresenta menor NLL?
   O pulso retangular RZ\*.

• Suponha a existência de um canal de transmissão com resposta em frequência tal que frequências acima de 120 kHz sejam eliminadas. Entre os pulsos (2), (3) e (4), qual você escolheria para formatar os pulsos de transmissão? Justifique.

Escolheria o Retangular RZ, pois é o que teria menos informações perdidas para o filtro. A escolha com relação ao pulso triangular é a facilidade de implementar, que no caso a retangular RZ parece ser mais fácil.

#### b) Processo de amostragem no receptor

Aqui foi possível observar as mensagens da seguinte maneira:



Figura 3: Mensagens

Também foi possível observar o histograma:



Figura 4: Histograma

É possível verificar das figuras acima que o sinal decodificado no receptor ficou muito contaminado por ruído. Isto se deve ao fato de que há uma assincronia entre os pulsos amostrado e transmitido, o que faz aparecer no receptor um sinal totalmente descaracterizado.

#### c) Efeito do ruído AWGN e critério de decisão



Figura 5: Amplitude ruído = 0.2V



Figura 6: Amplitude ruído = 0.5V



Figura 7: Amplitude ruído = 1.0V

• No receptor, relacione o critério de decisão (utilizado para converter valores amostras de pulsos para em bits) com o histograma obtido. Quando os bits são decodificados de maneira errada?

Pode-se observar que para pulsos retangulares NRZ, este contém 2 níveis de codificação dos bits -1V e 1V, conforme o valor que chegar for mais próximo de -1V o bit identificado fica em -1V e o mesmo para 1V.

Então o que podemos ver é que quando temos o ruído em 0,2V note que os bits não se sobrepõem perto do 0, então, os bits ficam bem separados e próximos do seu real nível, que é de -1V ou 1V, e conforme vamos aumentando o ruído, em 0,5V e 1V note como os bits vão ficando próximo do 0, o que causa uma confusão no receptor, não sabendo se o valor deve ser identificado como -1V e 1V, daí vem o erro, quando o valor que era pra estar mais próximo do 1V está mais próximo do -1V, então quando acontece isso os bits são identificados errado, o mesmo acontece ao inverso, quando era para estar mais próximo de -1V e está mais próximo de 1V.

#### • Quando utilizamos o receptor deste experimento, o formato do pulso é relevante para a recuperação dos bits? Justifique.

O formato do pulso não é relevante para a recuperação dos bits, note que não foi utilizado em nenhum ponto da área de trabalho no receptor algo que tivesse a informação do pulso utilizado para a transmissão.

# • Por que, às vezes, o efeito do ruído é mais severo no sinal recuperado?

Pode ter um fator de assincronia entre amostragem e transmissão dos pulsos que pode causar um sinal ruidosos por conta dessa assincronia.

#### AR 02

Aqui o objetivo é implementar e comparar em qual dos casos temos uma melhor razão sinal ruído comparando o sistema PCM e DPCM. Para isso, foi construída a seguinte área de trabalho:







Figura 8: Área de Trabalho AR02

Então, foi possível configurar o painel de controle da seguinte maneira:



Figura 9: Painel de controle AR02

E então foi possível prosseguir com o experimento.

#### a) Uso do DPCM para ganho de qualidade na recepção.

## • O valor de K que permite o uso de 8 níveis de quantização no transmissor DPCM;

O valor de k que permite o uso de 8 níveis de quantização é k=1000, de forma que o quantizador pode ser mostrado:



Figura 10: k = 1000

#### • O valor do atraso no receptor;

O valor do atraso tem de ser delay=190 de forma que podemos ver a maior sincronia possíveis entre os sinais:



Figura 11: delay = 190

- As formas de onda no transmissor e recuperada no receptor; As formas de onda estão apresentadas no item anterior.
- O valor da  $RSR_{DPCM}$ , (dB) usando como medida de ruído o erro de reconstrução no receptor. Compare com a  $RSR_{PCM}$  (dB).



Figura 12:  $RSR_{DPCM}(dB)$  e  $RSR_{PCM}(dB)$ 

Pode-se ver que a RSR para o DCPM é consideravelmente melhor que a PCM. Isso se deve ao melhor aproveitamento de bits para representar a diferença, visto que essa tem a amplitude menor.

#### b) Uso do DPCM para redução de taxa de transmissão.

Para que a RSR dos dois casos fosse próxima foi necessário colocar 8 bits para a quantização do sinal PCM, enquanto o DPCM continuou com 3bits, e pode-se obter assim como a figura abaixo:



Figura 13:  $RSR_{DPCM}(dB)$  e  $RSR_{PCM}(dB)$ (8 bits)

E a taxa de transmissão em cada um dos casos foi:

$$R_{b,PCM} = f_s \cdot n = 10000 \cdot 8 = 80kbps$$
  
 $R_{b,DPCM} = f_s \cdot n = 10000 \cdot 3 = 30kbps$ 

## 3 Conclusão

Podemos então concluir que o experimento foi realizado com sucesso, sendo possível observar os 2 tipos de modulação por pulsos, PCM e DPCM, de forma também a comparar em qual dos dois tipos a razão sinal ruído desempenhou melhor.