Cryptography and Network Security Chapter 2

Fifth Edition by William Stallings

Lecture slides by Lawrie Brown

Chapter 2 — Classical Encryption Techniques

- "I am fairly familiar with all the forms of secret writings, and am myself the author of a trifling monograph upon the subject, in which I analyze one hundred and sixty separate ciphers," said Holmes..
 - —The Adventure of the Dancing Men, Sir Arthur Conan Doyle

Symmetric Encryption

- or conventional / private-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of public-key in 1970's
- and by far most widely used

Some Basic Terminology

- plaintext original message
- ciphertext coded message
- cipher algorithm for transforming plaintext to ciphertext
- **key** info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

$$Y = E(K, X)$$

$$X = D(K, Y)$$

- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- can characterize cryptographic system by:
 - type of encryption operations used
 - substitution
 - transposition
 - product
 - number of keys used
 - single-key or private
 - two-key or public
 - way in which plaintext is processed
 - block
 - stream

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack
- if either succeed all key use compromised

Cryptanalytic Attacks

>ciphertext only

•only know algorithm & ciphertext, is statistical, know or can identify plaintext

≻known plaintext

•know/suspect plaintext & ciphertext

>chosen plaintext

select plaintext and obtain ciphertext

>chosen ciphertext

select ciphertext and obtain plaintext

>chosen text

• select plaintext or ciphertext to en/decrypt

More Definitions

>unconditional security

 no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

>computational security

•given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys		required at 1 cryption/μs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ μs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	255 μs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ μs	$= 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$	$= 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

```
meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
```

Caesar Cipher

- can define transformation as:
- mathematically give each letter a number
- then have Caesar cipher as:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	В	C	D	E	F	G	H	Ι	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C

$$c = E(k, p) = (p + k) \mod (26)$$

$$p = D(k, c) = (c - k) \mod (26)$$

Cryptanalysis of Caesar Cipher

- ➤only have 26 possible ciphers
 - ●A maps to A,B,..Z
- >could simply try each in turn
- >a brute force search
- righter given ciphertext, just try all shifts of letters
- ➤ do need to recognize when have plaintext
- ▶eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
D	K	V	Q	F	I	В	J	W	Р	Ε	S	С	X	Н	Т	M	Υ	Α	U	0	L	R	G	Z	N

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of $26! = 4 \times 10^{26}$ keys
- with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
- ➤eg "th Ird s m shphrd shll nt wnt"
- > letters are not equally commonly used
- ➤ in English E is by far the most common letter followed by T,R,N,I,O,A,S
- other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

• given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMO

- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Playfair Cipher

- In not even the large number of keys in a monoalphabetic cipher provides security
- > one approach to improving security was to encrypt multiple letters
- > the Playfair Cipher is an example
- ➤ invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- > a 5X5 matrix of letters based on a keyword
- ➤ fill in letters of keyword (sans duplicates)
- when choosing the keyword, besides making sure that no letter appears twice you must make sure that I and J do not both appear (juice)
- Fill rest of matrix with other letters
- ➤eg. using the keyword MONARCHY

M	0	N	A	R
C	Н	Y	В	D
E	F	G	I/J	K
L	Р	Q	S	T
U	٧	W	X	Z

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - 2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - if both letters fall in the same column, replace each with the letter below it (wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Playfair, EXAMPLE

K	E	Y	W	O
R	D	A	В	C
F	G	H	I/J	L
M	N	P	Q	S
T	U	V	X	Z

JERUSALEM BAGHDAD

JE: GW BA: CB

RU: DT GH: HI/J

SA: PC DA: AB

LE: GO DX: BU

MX: QT

Security of Playfair Cipher

- > security much improved over monoalphabetic
- \triangleright since have 26 x 26 = 676 digrams
- > would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- > and correspondingly more ciphertext
- was widely used for many years
 - eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- >polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- >use a key to select which alphabet is used for each letter of the message
- >use each alphabet in turn
- repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- effectively multiple caesar ciphers
- key is multiple letters long $K = k_1 k_2 ... k_d$
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Example of Vigenère Cipher

- >write the plaintext out
- > write the keyword repeated above it
- buse each key letter as a caesar cipher key
- right encrypt the corresponding plaintext letter
- ≽eg using keyword *deceptive*

key: deceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Aids

- simple aids can assist with en/decryption
- a Saint-Cyr Slide is a simple manual aid
 - a slide with repeated alphabet
 - line up plaintext 'A' with key letter, eg 'C'
 - then read off any mapping for key letter
- can bend round into a cipher disk
- or expand into a Vigenère Tableau

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
 - see if look monoalphabetic or not
- if not, then need to determine number of alphabets, since then can attach each

Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- of course, could also be random fluke
- eg repeated "VTW" in previous example
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- ideally want a key as long as the message
- Vigenère proposed the autokey cipher
- with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- use these in turn on the rest of the message
- but still have frequency characteristics to attack
- eg. given key deceptive

```
key: deceptivewearediscoveredsav plaintext: wearediscoveredsaveyourself ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA
```

	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
A	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
В	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В
D	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С
E	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	С	D
F	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е
G	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F
H	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G
I	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Н
J	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I
K	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Α	В	C	D	Е	F	G	Н	I	J
L	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K
M	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K	L
N	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О
Q	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О	P
R	R	S	T	U	V	W	X	Y	Z	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q
S	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	О	P	Q	R
T	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S
U	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
V	V	W	X	Y	Z	A	В	С	D	Е	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U
W	W	X	Y	Z	A	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	V
X	X	Y	Z	A	В	C	D	Е	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W
Y	Y	Z	A	В	C	D	Е	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X
Z	Z	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
Pla	ainte	ext	M	E	E	T	A	T	T	H	E	F	O	U	N	T	A	Ι	N							
	Key		K	I	L	T	M	E	E	T	A	T	T	H	E	F	0	U	N							
			22	12	15	38	12	23	23	26	4	24	33	27	17	24	14	28	26							
Cip	hert	ext	W	M	P	M	M	X	X	A	E	Y	Н	В	R	Y	O	C	A							
-	Key	7	K	Ι	L	T	M	E	E	Т	A	T	T	H	E	F	0	U	N							
										_		_	_			_			_ •							

Vernam Cipher

- The Vernam Cipher is based on the principle that each **plaintext** character from a message is 'mixed' with one character from a **key** stream
- \succ Digital bit-wise XOR (\bigoplus)
- >ultimate defense is to use a key as long as the plaintext
- with no statistical relationship to it
- ➤invented by AT&T engineer Gilbert Vernam in 1918
- ➤ originally proposed using a very long but eventually repeating key
- Example:

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext & any ciphertext there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

	0	1	2	3	4	5	6	7	8	9	10	11	12
	A	В	C	D	E	F	G	H	I	J	K	L	M
	13	14	15	16	17	18	19	20	21	22	23	24	25
	N	O	P	Q	R	S	T	U	V	\mathbf{W}	X	Y	Z
Plaintext	I	L	0	V	E	J	0	R	D	A	N		
	8	11	14	21	4	9	14	17	3	0	13		
Key	U	V	J	A	T	0	S	W	В	0	H		
	20	21	9	0	19	14	18	22	1	14	7		
TOTAL	28	32	23	21	23	23	32	39	4	14	20		
(0-26)	2	6	23	21	23	23	6	13	4	14	20		
Ciphertext	C	G	X	V	X	X	G	L	E	0	U		
Encryption	2	6	23	21	23	23	6	11	4	14	20		
Key	U	\mathbf{V}	J	A	T	O	S	\mathbf{W}	В	O	H		
	20	21	9	0	19	14	18	24	1	14	7		
Ciph-Key	-18	-15	14	21	4	9	-12	-11	3	0	13		
Mod 26	8	11	14	21	4	9	14	15	3	0	13		
	I	L	O	V	E	J	O	R	D	A	N		

Note: *If the result is greater than 26, then subtract it from 26,

^{*}If the result is negative then add to it 26.

Transposition Ciphers

- now consider classical **transposition** or **permutation** ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

```
mematrhtgpry
etefeteoaat
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Rail Fence cipher, Example

THE HASHEMITE KINGDOM OF JORDAN, (the key here is 3)

T				A				$ \mathbf{M} $				K				D				F				D		
	H		H		S		E		Ι		E		Ι		G		0		O		J		R		A	
		E				H				T				N				\mathbf{M}				0				N

The ciphertext is read off along the rows:

TAMKDFDHHSEIEIGOOJRAEHTNMON

With a key of 4:

T						H						K						\mathbf{M}						D		
	H				S		E				E		Ι				O		O				R		A	
		E		A				M		T				N		D				F		O				N
			H						Ι						G						J					

Ciphertext: THKMDHSEEIOORAEAMTNDFONHIGJ

Row Transposition Ciphers

- ➤ is a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

Key: **4312567**

4	3	1	2	5	6	7
A	T	T	A	C	K	P
O	S	T	P	О	N	E
D	U	N	T	I	L	T
W	О	A	M	X	Y	Z

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Row Transposition Ciphers, Example

632415=4

WE ARE DISCOVERDE FLEE AT ONCE=25

1	5	7	3	1	_	1
T	J		J	1	_	7

WE LIVE IN A BEAUTIFUL COUNTRY= 25

6	3	2	4	1	5
W	\mathbf{E}	A	R	\mathbf{E}	D
Ι	S	\mathbf{C}	O	\mathbf{V}	E
R	E	D	\mathbf{F}	\mathbf{L}	E
E	A	\mathbf{T}	O	N	C
E	X	X	X	X	X

4	5	2	3	1
W	\mathbf{E}	L	I	V
E	Ι	N	A	В
E	A	U	T	Ι
F	U	L	C	O
N	T	R	Y	X

Ciphertext: VBIOX LNULR IATCY WEEFN EIAUT

Row Transposition Ciphers, Example

THE OFFICIAL LANGUAGE IS ARABIC

4	5	2	3	8	7
T	H	E	0	F	F
I	C	Ι	A	L	L
A	N	G	U	A	G
E	Ι	S	A	R	A
В	I	C	X	X	X

Key: 452387

Ciphertext: EIGSCOAUAXTIAEBHCNIIFLGAXFLARX

THEOFFICIALLANGUAGEISARABIC

Rotor Machines

- before modern ciphers, rotor machines were most common complex ciphers in use
- widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- implemented a very complex, varying substitution cipher
- used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted
- with 3 cylinders have 26³=17576 alphabets

Hagelin Rotor Machine

Rotor Machine Principles

(a) Initial setting

(b) Setting after one keystroke

Steganography

- **Steganography:** is data hidden within data, is an encryption technique that can be used along with cryptography as an extra-secure method in which to protect data.
- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- has drawbacks
 - high overhead to hide relatively few info bits
- advantage is can obscure encryption use

Summary

- have considered:
 - classical cipher techniques and terminology
 - monoalphabetic substitution ciphers
 - cryptanalysis using letter frequencies
 - Playfair cipher
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers and rotor machines
 - stenography