# Discriminative Classifiers

Song Liu (song.liu@bristol.ac.uk)

#### Reference



Today's class *roughly* follows Chapter 4.3

Pattern Recognition and Machine Learning

Christopher Bishop, 2006

#### Discriminative Classifier

- **Target**: infer p(y|x) given dataset D.
- Step 1. Making a model assumption p(y|x; w).
- Step 2. Construct the likelihood function p(D|w).
- Step 3. Estimate the parameters: MLE, MAP, Full Prob...
- First Question: What model should we use?
- MVN? NO, that is for continuous variable.
- Our output y is clearly a discrete value.

# Modelling p(y|x)

• We check what p(y|x) looks like.

• Bayes rule says:

• 
$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(x)} = \frac{p(\mathbf{x}|y)p(y)}{\sum_{y} p(x,y)} = \frac{p(\mathbf{x}|y)p(y)}{\sum_{y} p(\mathbf{x}|y)p(y)}$$
, so Marginalization!

• Suppose  $y \in \{-1,1\}$ 

• 
$$p(y = 1|x) = \frac{p(x|y = 1)p(y=1)}{p(x|y = 1)p(y=1)+p(x|y = -1)p(y=-1)}$$

# Modelling p(y|x)

- Suppose  $y \in \{-1,1\}$
- $p(y = 1|x) = \frac{p(x|y = 1)p(y=1)}{p(x|y = 1)p(y=1)+p(x|y = -1)p(y=-1)}$
- Nothing has changed, but we are representing p(y|x) using p(x|y).
- Assume:  $p(x|y)p(y) > 0, \forall x, y$ .

• 
$$\frac{p(x|y=1)p(y=1)}{p(x|y=1)p(y=1)+p(x|y=-1)p(y=-1)} = \frac{1}{1 + \frac{p(x|y=-1)p(y=-1)}{p(x|y=1)p(y=1)}}$$

# Modelling p(y|x)

- After some mild assumptions,
- We can rewrite p(y|x) using the ratio  $\frac{p(x|y=-1)p(y=-1)}{p(x|y=1)p(y=1)}$ :

• 
$$p(y = 1|x) = \frac{1}{1 + \frac{p(x|y = -1)p(y = -1)}{p(x|y = 1)p(y = 1)}}$$

- This derivation shows an important difference between generative/discriminative learning on modelling:
- Generative learning models class density p(x|y)
- Discriminative learning models density ratio  $\frac{p(x|y=-1)}{p(x|y=1)}!$

# Modelling Density Ratio

• Clearly, modelling density ratio  $\frac{p(x|y=-1)}{p(x|y=1)}$  requires a whole lot less assumptions on your class densities.

- Assumptions on  $p(x|y) \Rightarrow$  Assumptions  $\frac{p(x|y=-1)}{p(x|y=1)}$
- Assumptions on  $\frac{p(x|y=-1)}{p(x|y=1)}$   $\Rightarrow$  Assumptions p(x|y)

#### Modelling Log-Density Ratio

• 
$$p(y = 1|x) = \frac{1}{1 + \frac{p(x|y = -1)p(y = -1)}{p(x|y = 1)p(y = 1)}}$$

$$\Rightarrow p(y = 1|x, w) := \frac{1}{1 + \exp(f(x; w))}$$

- We model log ratio,  $\log \frac{p(x|y=-1)p(y=-1)}{p(x|y=1)p(y=1)}$  as f(x; w)
- Like density function, it is better to work with log-ratio rather than the ratio itself.

#### Generalized Linear Model

- As usual,  $f(x; w) = \langle w', x \rangle + w_0$ .
- Let  $\sigma(t) \coloneqq \frac{1}{1 + \exp(t)}$ , "activation function"
- The model for  $p(y|x; w) := \sigma(f(x; w))$  is merely a linear function wrapped by a non-linear transform.
- We call  $\sigma(f(x; w))$  a "generalized linear model". This model is widely used in places other than classification.

# Activation Function $\frac{1}{1+\exp(t)}$



#### Modelling Log-Density Ratio

• 
$$p(y=-1|x)=\frac{1}{1+\frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=-1)}}$$

$$\Rightarrow p(y=-1|x,w)\coloneqq\frac{1}{1+\exp(-f(x;w))}$$
• In  $p(y=-1|x)$ ,  $\frac{p(x|y=+1)p(y=+1)}{p(x|y=-1)p(y=-1)}$  occurs, which is the exact inverse of the ratio appeared in  $p(y=1|x)$ . This ratio is modelled by  $\frac{1}{\exp(f(x;w))}=\exp(-f(x;w))$ .

- To simplify our model, we can write
- $p(y|x;w) := \sigma(f(x;w) \cdot y)$

#### Estimate p(y|x; w) from D

- Assuming the IID-ness on *D*.
- Likelihood:  $p(D|\mathbf{w}) = \prod_{i \in D} p(y_i|\mathbf{x}_i;\mathbf{w}),$
- Just like what we did for regression tasks.
- MLE for p(y|x; w):

• 
$$\mathbf{w}_{\text{MLE}} = \operatorname{argmax}_{\mathbf{w}} \log \prod_{i \in D} p(y_i | \mathbf{x}_i; \mathbf{w})$$
  
=  $\operatorname{argmax}_{\mathbf{w}} \sum_{i \in D} \log p(y_i | \mathbf{x}_i; \mathbf{w})$   
=  $\operatorname{argmax}_{\mathbf{w}} \sum_{i \in D} \log \sigma(f(\mathbf{x}_i; \mathbf{w}) \cdot y_i)$ 

# Logistic Regression (rant)

• The MLE solution of w is also called Logistic Regression.

This is the worst. name. ever.

- The first word does not make much sense and the second word misleads you to think this is a regression algorithm while in fact it is a classification algorithm!
  - The "logistic" comes from the fact that  $\sigma$  is also called logistic function in mathematics.
- But everybody still uses this name, so we call it that.

# Logistic Regression



# Logistic Regression 2D



#### Robustness of Logistic Regression



Unlike LS classifier, LR is not affected by outliers that are far away from the decision boundary. Why?

#### Logistic Regression with Feature Transform $\phi(x)$



- Since  $f(x; w) = \langle w, x \rangle$  still takes a linear form, we can replace x with  $\phi(x)$  to create a non-linear classifier.
- $\phi$  can be Poly. Trignometric, or RBF.

#### Estimate p(y|x; w) from D

- We can assume priors on w, then
- $\mathbf{w}_{\text{MAP}} = \operatorname{argmax}_{\mathbf{w}} \sum_{i \in D} \log(\sigma(f(\mathbf{x}_i; \mathbf{w}) \cdot \mathbf{y}_i) p(\mathbf{w}))$ =  $\operatorname{argmax}_{\mathbf{w}} \sum_{i \in D} \log \sigma(f(\mathbf{x}_i; \mathbf{w}) \cdot \mathbf{y}_i) + \log p(\mathbf{w})$
- We can also use the full prob. approach
- $p(y|\mathbf{x}) = \int p(y|\mathbf{x}; \mathbf{w}) p(\mathbf{w}|D) d\mathbf{w}$   $\propto \int p(y|\mathbf{x}; \mathbf{w}) p(D|\mathbf{w}) p(\mathbf{w}) d\mathbf{w}$  $= \int \sigma(y|\mathbf{x}; \mathbf{w}) \prod_{i \in D} \sigma(f(\mathbf{x}_i; \mathbf{w}) \cdot y_i) p(\mathbf{w}) d\mathbf{w}$
- Unlike regression using MVN models, we cannot calculate this integral in closed form. See PRML 4.4, 4.5.

#### Multi-class Logistic Regression

• It is easy to extend logistic regression to a multi-class classification problem.

• 
$$p(y = 1|x) = \frac{p(x|y = 1)p(y=1)}{\sum_{k} p(x|y = k)p(y=k)}$$

Marginalization is no longer with respect to a binary K!

- Model the log-ratio,  $\log \frac{p(\boldsymbol{x}|\boldsymbol{y}=k')p(\boldsymbol{y}=k')}{p(\boldsymbol{x}|\boldsymbol{y}=k)p(\boldsymbol{y}=k)}$  as:
- $f(x; w_{k'}, w_k) = f'(x; w_{k'}) f'(x; w_k)$
- This model allows an elegant expression of logistic regression using one-hot encoding.

#### One-hot Logistic Regression

- $f(x; w) = W^{\top} \widetilde{x}, W \in R^{d \times K}$ ,  $\widetilde{x} \coloneqq [x^{\top}, 1]^{\top}$
- Use "one hot encoding":  $y_i \in \{1 ... K\} \Rightarrow t_i \in R^K$
- $\mathbf{w}_{\text{MLE}} = \operatorname{argmax}_{\mathbf{w}} \sum_{i \in D} \log \sigma(\mathbf{f}(\mathbf{x}_i; \mathbf{w}), \mathbf{t}_i)$
- where  $\sigma(f, t) \coloneqq \frac{\exp\langle f, t \rangle}{\sum_k \exp f^{(k)}}$ .
- This expression uses the log-ratio model we defined in the previous slide. Verify this!
- Here f(x; w) gives us K prediction functions. If prediction is given by  $\underset{y}{\operatorname{argmax}}_y p(y|x; W)$ , it corresponds to multi-class decision rule we saw in previous lecture. Why?

#### Multi-class Classification

- Rather than relying on sign of f to make predictions, we estimate K functions:
    $\{f_k(x; w_k)\}_{k=1}^K$
- Given an x, prediction is  $\hat{k}$  if  $f_{\hat{k}}(x; w_{\hat{k}}) > f_i(x; w_i)$ ,  $\forall j$
- **Problem**:  $f_k$  does not have a simple geometry interpretation anymore.
- However,  $f_k$  does have probabilistic interpretation.

#### Multi-class Logistic Regression



#### Implementation of Logistic Regression

Unlike LS, LR does not have a closed form solution.

- It means, to find  $w_{\text{MLE}}$ , we need to solve  $\underset{i \in D}{\operatorname{argmax}} \sum_{i \in D} \log \sigma(f(\mathbf{x}_i; \mathbf{w}) \cdot y_i)$
- numerically!!
- The implementation of this algorithm requires some knowledge on numerical optimization, which is not introduced in this class.
- Fortunately, numerical optimization packages are readily available in many programming languages.

#### Conclusion

- Discriminative classification models density ratio while generative classification models class densities.
- When log-ratio is modelled by  $f(x; w) := \langle w', x \rangle + w_0$ , the model for posterior is called generalized linear model.

- The MLE solution for generalized linear model is called logistic regression.
  - whose solution requires numerical optimization.

#### Homework

- What is the decision function given by a binary logistic regression? (hint: more than one)
- Prove: if p(x|y=1) and p(x|y=-1) are MVN with shared covariance matrix  $\Sigma$  but different means  $\mu_+, \mu_-$ .
- 1.  $\exists w^*$  such that  $p(y|x) = \sigma((\langle x; w'^* \rangle + w_0'^*)y)$
- 2. find **w**\*