《嵌入式Linux开发实践教程》备课提纲

课程名称: 嵌入式Linux开发实践教程 | 课程代码: CS121 | 生成时间: 2025-07-20 10:19:12

《嵌入式Linux开发实践教程》备课提纲

1. 课程概述

课程性质

本课程是计算机科学与技术、电子信息工程等专业的专业核心课程 理论与实践相结合的综合性课程

地位和作用

培养嵌入式系统开发能力的必修课程 连接底层硬件与上层应用的桥梁课程 为物联网、智能硬件等领域开发奠定基础

2. 教学目标

知识目标

掌握嵌入式Linux系统架构与工作原理 理解嵌入式Python开发环境搭建与调试 掌握TensorFlow Lite在嵌入式设备上的应用 了解嵌入式系统性能优化方法

能力目标

能够独立完成嵌入式Linux系统移植 能够开发基于Python的嵌入式应用程序 能够实现AI模型在嵌入式设备上的部署 具备嵌入式系统调试与优化能力

素质目标

培养严谨的系统开发思维 提升解决复杂工程问题的能力 培养团队协作与沟通能力 树立工程伦理与安全意识

3. 教学重点难点

教学重点

嵌入式Linux系统构建与移植 交叉编译环境搭建 嵌入式Python开发环境配置

TensorFlow Lite模型转换与部署

教学难点

嵌入式系统硬件驱动开发 系统性能优化与资源管理 AI模型在资源受限设备上的优化 系统稳定性与实时性保障

4. 教学内容安排

模块1:嵌入式Linux基础(8学时)

1.1 嵌入式系统概述

嵌入式系统特点与应用领域

嵌入式Linux发展历程

1.2 嵌入式Linux系统架构

Bootloader原理与移植

Linux内核裁剪与配置

根文件系统构建

1.3 开发环境搭建

交叉编译工具链

嵌入式开发板连接与调试

系统镜像烧写

模块2:嵌入式Python开发(12学时)

2.1 Python在嵌入式系统中的应用

MicroPython与CPython比较

嵌入式Python运行环境搭建

2.2 嵌入式Python编程基础

资源受限环境下的编程规范

硬件接口编程(GPIO、I2C、SPI)

传感器数据采集与处理

2.3 性能优化技术

内存管理与优化

执行效率提升方法

多线程与异步编程

模块3:嵌入式AI应用开发(16学时)

3.1 TensorFlow Lite基础

模型转换与量化

推理引擎工作原理

性能评估指标

3.2 模型部署实践

图像分类模型部署

目标检测模型优化

语音识别应用开发

3.3 边缘计算应用

数据预处理优化

模型更新与维护

云端协同计算

5. 实训练习与指导

实训项目1:嵌入式Linux系统移植(4学时)

任务:在开发板上完成Linux系统移植

步骤:

- 1. 配置编译工具链
- 2. 裁剪Linux内核
- 3. 构建根文件系统
- 4. 烧写系统镜像并测试

指导要点:重点讲解内核配置选项含义

实训项目2:传感器数据采集系统(6学时)

任务:开发Python环境下的多传感器数据采集系统

步骤:

- 1. 搭建Python运行环境
- 2. 编写GPIO控制代码
- 3. 实现I2C/SPI接口通信
- 4. 数据采集与存储

指导要点:强调异常处理与资源释放

实训项目3:嵌入式图像分类应用(8学时)

任务:部署TensorFlow Lite图像分类模型

步骤:

- 1. 模型转换与量化
- 2. 编写推理代码
- 3. 性能测试与优化
- 4. 实现摄像头实时分类

指导要点:讲解模型量化对精度的影响

6. 教学方法与策略

教学方法

项目驱动教学法:通过完整项目贯穿知识点

案例教学法:分析典型嵌入式应用案例

翻转课堂:课前提供资料自学,课堂重点讨论

小组协作:分组完成综合性项目

教学策略

循序渐进:从系统搭建到应用开发

问题导向:通过实际问题引入知识点

虚实结合:仿真环境与实际设备配合使用

分层教学:针对不同基础学生设置不同难度任务

7. 教学资源需求

硬件设备

嵌入式开发板(如Raspberry Pi、NVIDIA Jetson等)

传感器模块(温湿度、加速度计等)

摄像头模块

调试工具(JTAG、逻辑分析仪等)

软件工具

Linux开发环境(Ubuntu)

交叉编译工具链

Python开发环境

TensorFlow Lite框架

代码版本管理工具 (Git)

教材与参考资料

主教材:《嵌入式Linux系统开发实战》

参考教材:《Python嵌入式编程》

在线资源: TensorFlow Lite官方文档

提供的课程资料文档

8. 课堂组织形式

理论课(40%)

教师讲授核心概念与原理

案例分析讨论

技术方案评审

实验课(60%)

教师演示关键操作

学生动手实践

分组项目开发

成果展示与点评

课外学习

线上资源学习

开发日志撰写

技术论坛交流

9. 评估方式与标准

形成性评估(40%)

课堂参与度(10%)

实验报告质量(15%)

项目中期检查(15%)

终结性评估(60%)

期末项目成果(30%)

功能完整性

代码质量

性能指标

项目答辩(20%)

技术讲解

问题回答

团队协作

笔试(10%)

理论知识

问题分析

10. 课后拓展与作业

基础作业

阅读Linux内核配置文档并总结 编写Python硬件控制小程序 完成TensorFlow Lite官方教程练习

提高作业

移植不同版本Linux内核并比较 优化Python程序内存使用 部署自定义AI模型到开发板

拓展学习

研究RT-Linux实时性优化 探索边缘计算框架(如EdgeX) 参加嵌入式相关开源项目

推荐资源

《嵌入式Linux开发详解》
TensorFlow Lite官方GitHub仓库
Raspberry Pi官方项目案例库
嵌入式系统国际会议论文

本备课提纲充分结合了提供的课程资料内容,特别是嵌入式Python开发和TensorFlow Lite应用部分,通过理论与实践相结合的方式,循序渐进地培养学生的嵌入式开发能力。教学安排注重项目实践,评估方式多元化,能够全面考察学生的学习效果。