数理逻辑

郑为杰

e-mail: zhengweijie@hit.edu.cn

哈尔滨工业大学 (深圳) 计算机学院

n元联结词的个数

命题: n元命题公式的全体可以划分为 2^{2^n} 个等价类,每一类中的公式相互逻辑等价,都等价于它们公共的主合取范式(主析取范式)。

一元联结词

$$n=1$$
, $\mathbb{D}^{2^{2^1}}=4$

表: 一元联结词

\overline{p}	$\Delta_1(p)$	$\Delta_2(p)$	$\Delta_3(p)$	$\Delta_4(p)$
0	0	0	1	1
1	0	1	0	1

其中, Δ_1 、 Δ_4 为常联结词, Δ_2 为幺联结词, Δ_3 为否定词。

$$\Delta_{1(p)} \iff F$$
, $\Delta_{4}(p) \iff T$

$$\Delta_2(p) \Leftrightarrow p, \ \Delta_3(p) \Leftrightarrow \neg p$$

二元联结词

n=2, $\mathbb{P}^{2^2}=16$

表: 二元联结词

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 5 0	* ₆	* 7	* 8
0 0 0 0 0	0	0	Λ	
		•	0	0
0 1 0 0 0 0	1	1	1	1
1 0 0 0 1 1	0	0	1	1
1 1 0 1 0 1	0	1	0	1
<i>p q</i> * ₉ * ₁₀ * ₁₁ * ₁₂	* 13	* ₁₄	* 15	* 16
0 0 1 1 1 1	1	1	1	1
0 1 0 0 0 0	1	1	1	1
1 0 0 0 1 1	0	0	1	1
1 1 0 1 0 1	0	1	0	1

$$p *_{i} q = \neg(p *_{17-i}q), i = 1,2,\cdots,8$$

二元联结词

我们有下面的等式:

- $p *_1 q \Leftrightarrow 0, p *_{16} q \Leftrightarrow 1, \mathbb{D} *_{16} n *$
- $p *_4 q \Leftrightarrow p, p *_6 q \Leftrightarrow q, p *_4, *_6$ 为投影联结词
- $p *_{13} q \Leftrightarrow \neg p, p *_{11} q \Leftrightarrow \neg q, p *_{13}, *_{11}$ 为二元否定词
- p*₉ q ⇔ ¬(p ∨ q), *₉ 称为或非词,用记号↓表示, p ↓ q ⇔ ¬(p ∨ q)
 q)
- $p *_{15} q \Leftrightarrow \neg (p \land q)$, $*_{15}$ 称为与非词,用记号 † 表示, $p \uparrow q \Leftrightarrow \neg (p \land q)$
- $p *_3 q \Leftrightarrow \neg(p \to q), p *_5 q \Leftrightarrow \neg(q \to p) 即 *_3, *_5 为蕴含否定词$
- p*₇ q ⇔ (p ∨ q) ∧ ¬(p ∧ q) ⇔ ¬(p ↔ q) ⇔ (¬p ∧ q) ∨ (p ∧ ¬q),
 *₇称为异或词,用记号V ¯ (或者⊕,∀)表示,

联结词的可表示: nn元联结词h是由m个联结词 g_1, g_2, \cdots, g_m 可表示的, 如果 $h(p_1, p_2, \dots, p_n) \Leftrightarrow A$,而A中所含的联结词仅取自 g_1, g_2, \cdots, g_m 。

- 任何一元、二元联结词都可以通过¬,V,A表示出来。
- 任何一个命题公式,都存在与之等价的合取和析取范式。

- 若联结词 $\{g_1, g_2, \dots, g_m\}$ 可表示所有一元、二元联结词时,称其为完备联结词组。
- {¬,∨,∧}是完备的联结词组。
- 有没有更小的完备联结词组?

命题1: {¬,→}是完备联结词组。

思路: 因为 $\{\neg, \lor, \Lambda\}$ 是完备的联结词组,只需要证明 $\{\neg, \lor, \Lambda\}$ 可被 $\{\neg, \to\}$ 所表示的,就可以证明 $\{\neg, \to\}$ 是完备的联结词组。

证明:

(1)
$$\neg p \Leftrightarrow \neg p$$

(2) $p \land q \Leftrightarrow \neg \neg (p \land q)$ (対合律)
 $\Leftrightarrow \neg (\neg p \lor \neg q)$ (徳摩根律)
 $\Leftrightarrow \neg (p \to \neg q)$
(3) $p \lor q \Leftrightarrow \neg \neg p \lor q$ (対合律)
 $\Leftrightarrow \neg p \to q$

因此, {¬,→}是完备的联结词组。

命题: $\{\Delta_1, \rightarrow\}$ 是完备联结词组。

思路:因为 $\{\neg, \lor, \Lambda\}$ 是完备的联结词组,只需要证明 $\{\neg, \lor, \Lambda\}$ 可被 $\{\Delta_1, \rightarrow\}$ 表示,

就可以证明 $\{\Delta_1, \rightarrow\}$ 是完备联结词组。

证明:

(1)
$$\neg p \Leftrightarrow \neg p \lor \Delta_{1}(p)$$
 (析取永假项,真值不变)
$$\Leftrightarrow p \to \Delta_{1}(p)$$
(2) $p \land q \Leftrightarrow \neg \neg (p \land q)$
$$\Leftrightarrow \neg (\neg p \lor \neg q)$$

$$\Leftrightarrow \neg (p \to \neg q)$$

$$\Leftrightarrow (p \to \neg q) \to \Delta_{1}(p \to \neg q)$$

$$\Leftrightarrow (p \to (q \to \Delta_{1}(q)) \to \Delta_{1}(p \to \neg q) \text{ (两次利用(1))}$$
(3) $p \lor q \Leftrightarrow \neg \neg p \lor q \Leftrightarrow \neg p \to q$
$$\Leftrightarrow (p \to \Delta_{1}(p)) \to q \text{ (利用 (1))}$$

因此, $\{\Delta_1, \rightarrow\}$ 是完备联结词组。

```
命题: {↓}(或非) 是完备联结词组。
证明: (1) \neg p \Leftrightarrow \neg (p \lor p)
                                                   (幂等律和替换定理)
                        \Leftrightarrow p \downarrow p
            (2) p \land q \Leftrightarrow \neg \neg (p \land q) \quad (对合律)
                          \Leftrightarrow \neg (\neg p \lor \neg q) (徳摩根律)
                          \Leftrightarrow \neg p \downarrow \neg q (利用(1))
                          \Leftrightarrow (p \downarrow p) \downarrow (q \downarrow q) (利用(1))
            (3) p \lor q \Leftrightarrow \neg \neg (p \lor q) (对合律)
                          \Leftrightarrow \neg(\neg(p \lor q))
                          \Leftrightarrow \neg (p \downarrow q) (利用(1))
                          \Leftrightarrow (p \downarrow q) \downarrow (p \downarrow q) (利用(1))
因此, {↓}是完备联结词组。
```

```
命题: {↑} (与非)是完备联结词组。
证明: (1) \neg p \Leftrightarrow \neg (p \land p) (幂等律和替换定理)
                        \Leftrightarrow p \uparrow p
             (2) p \land q \Leftrightarrow \neg \neg (p \land q) (对合律)
                            \Leftrightarrow \neg(\neg(p \land q))
                            \Leftrightarrow \neg (p \uparrow q) (利用 (1))
                            \Leftrightarrow ((p \uparrow q)) \uparrow ((p \uparrow q))
             (3) p \lor q \Leftrightarrow \neg \neg (p \lor q) (对合律)
                             \Leftrightarrow \neg(\neg p \land \neg q)
                             \Leftrightarrow \neg p \uparrow \neg q (两次利用(1))
                             \Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)
```

因此, {↑}是完备联结词组。

例: 用 $\{\uparrow\}$ 表示 $(p \rightarrow \neg q) \rightarrow \neg r$

命题: 任何n元联结词 $h(p_1, p_2, \cdots, p_n)$ 都可通过 $\{\neg, \rightarrow\}$ 表示。

证明思路:使用第一数学归纳法,n=1、2时,显然成立。因为 $\{\neg,\rightarrow\}$ 是完备联结词组,即可以表示所有一元、二元联结词。 假设任何n-1元联结词可以通过联结词 $\{\neg,\rightarrow\}$ 表示。只需证明,

 $h(p_1, p_2, \dots, p_n) \Leftrightarrow (p_1 \to h(1, p_2, \dots, p_n)) \land (\neg p_1 \to h(0, p_2, \dots, p_n))$

证明: 当n = 1,2时,显然成立。假设任何n-1元联结词都可以通过 $\{\neg, \rightarrow\}$ 来表示,需证:

$$h(p_1, p_2, \dots, p_n) \Leftrightarrow (p_1 \rightarrow h(1, p_2, \dots, p_n)) \land (\neg p_1 \rightarrow h(0, p_2, \dots, p_n))$$

- 1) 对于任意的指派v, 当 $(h(p_1, p_2, \dots, p_n))^v = 1$
- 若 $p_1^v = 0$, 则 $(\neg p_1)^v = 1$, 那么 $(p_1 \rightarrow h(1, p_2, \dots, p_n))^v = 1$ 由 $(h(p_1, p_2, \dots, p_n))^v = h(p_1^v, p_2^v, \dots, p_n^v) = h(0, p_2^v, \dots, p_n^v) = (h(0, p_2, \dots, p_n))^v = 1$ 1 知 $(\neg p_1 \rightarrow h(0, p_2, \dots, p_n)) = 1$

 $+\frac{1}{2}((a_1, b_1) + b_2(1) + a_1 + b_2(1) + b_2(1) + a_2(1) + b_2(1) +$

对偶式 (选修)

对偶式: 在仅含有联结词¬,V, Λ 的公式 Λ 中,将 Λ 换成V,V换成 Λ

,0换成1,1换成0,得到的公式为A的对偶式,记为 A^* 。

原式A	对偶式A*
$(p \land \neg q) \lor r$	$(p \lor \neg q) \land r$
$\neg p \lor (q \land \neg r)$	$\neg p \land (q \lor \neg r)$
$\neg((\neg p \land \neg q) \lor \neg r)$	$\neg((\neg p \vee \neg q) \wedge \neg r)$

 $(¬A)^*⇔¬A^*$ 否定词对于对偶式不起作用 $(A^*)^*⇔A$

内否式 (选修)

内 否 式: 设 有 命 题 公 式 $A(p_1, p_2, \cdots, p_n)$, 对 A 中 的 $p_i(i = 1, 2, \cdots, n)$ 用 $\neg p_i$ 做代入,所得的结果为A的内否式,记为 A^- 。

原式 <mark>A</mark>	内否式A ⁻	
$(p \land \neg q) \lor r$	$(\neg p \land \neg \neg q) \lor \neg r$	
$\neg p \lor (q \land \neg r)$	$\neg\neg p \lor (\neg q \land \neg \neg r)$	
$\neg((\neg p \land \neg q) \lor \neg r)$	$\neg((\neg\neg p \land \neg\neg q) \lor \neg\neg r)$	
$(\neg A)^- = \neg A^-$		

 $(A^{-})^{-} \Leftrightarrow A$

相关定理(选修)

$$1 \cdot (A^-)^- \Leftrightarrow A$$

$$2 \cdot (\neg A)^* \Leftrightarrow \neg (A^*) \Leftrightarrow A^-$$

$$3 \rightarrow A \Leftrightarrow (A^*)^- \Leftrightarrow (A^-)^* \qquad 4 \rightarrow (A^-) \Leftrightarrow (A^-)^-$$

$$4 \cdot \neg (A^-) \Leftrightarrow (\neg A)^-$$

$$5 \cdot (\neg A)^- \Leftrightarrow A^*$$

$$6 \cdot (A^*)^* = A$$

证明: 因为 $A \Leftrightarrow B$,推得 $\neg A \Leftrightarrow \neg B$ (替换定理),再由 $\neg A \Leftrightarrow (A^*)^-$

,推得 $(A^*)^- \Leftrightarrow (B^*)^-$,最终推得 $A^* \Leftrightarrow B^*$ 。

相关定理(选修)

例: A(p,q,r) 为永真,那么 $A(\neg p, \neg q, \neg r)$ 为永真。

相关定理(选修)

例: $p \land q \rightarrow p$ 为永真, 那么 $p \rightarrow p \lor q$ 为永真。

总结

- ·命题与联结词
- ・范式
- 联结词的扩充与归约
- 对偶式 (选修)