f(t)	F(s)	f(t)	F(s)	f(t)	F(s)
1	$\frac{1}{s}$	$\cosh(kt)$	$\frac{s}{s^2-k^2}$	$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)
t^n	$\frac{n!}{s^{n+1}}$	$e^{at}f(t)$	F(s-a)	f(t+T) = f(t)	$\frac{1}{1-e^{-sT}}\int_0^T e^{-st}f(t)dt$
e^{at}	$\frac{1}{s-a}$	f(t-a)U(t-a)	$e^{-as}F(s)$	$t^n f$	$(-1)^n F^{(n)}(s)$
$\sin(kt)$	$\frac{k}{s^2+k^2}$	f(t)U(t-a)	$e^{-as}\mathcal{L}(f(t+a))$	$\delta(t-t_0)$	e^{-st_0}
$\cos(kt)$	$\frac{s}{s^2+k^2}$	f'(t)	sF(s) - f(0)	f	$\int_0^\infty e^{-st} f(t) dt$
$\sinh(kt)$	$\frac{k}{s^2-k^2}$	f''(t)	$s^2 F(s) - s f(0) - f'(0)$		

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS <u>DEPARTAMENTO DE MATEMÁTICA</u> Primer Semestre 2022

Ecuaciones Diferenciales - MAT1640 Ayudantía 13

Estabilidad de puntos críticos

1. Determine el tipo de punto crítico que es (0,0) en los siguientes sistemas lineales indicando si es estable, inestable o asintóticamente estable:

(a)
$$\frac{dx}{dt} = 3x + y$$
, $\frac{dy}{dt} = 5x - y$

(b)
$$\frac{dx}{dt} = x - 2y$$
, $\frac{dy}{dt} = 2x - 3y$

2. Considere el sistema lineal

$$\frac{dx}{dt} = \epsilon x - y, \quad \frac{dy}{dt} = x + \epsilon y$$

Muestre que el punto crítico (0,0) es:

- (a) un punto espiral estable si $\epsilon < 0$
- (b) un centro si $\epsilon = 0$
- (c) un punto espiral inestable si $\epsilon > 0$

3. Determine la naturaleza del punto crítico (0,0) en los siguientes sistemas casi lineales:

(a)
$$\frac{dx}{dt} = x + 2y + x^2 + y^2, \quad \frac{dy}{dt} = 2x - 2y - 3xy$$

(b)
$$\frac{dx}{dt} = 3x - y + x^3 + y^3, \quad \frac{dy}{dt} = 13x - 3y + 3xy$$

(c)
$$\frac{dx}{dt} = 5x - 3y + y(x^2 + y^2), \quad \frac{dy}{dt} = 5x + y(x^2 + y^2)$$

Transformada de Laplace

4. Determine la transformada de Laplace de las siguientes funciones:

(a)
$$f(t) = \sinh t$$

(c)
$$f(t) = 3t^{5/2} - 4t^3$$

(b)
$$f(t) = \cos^2 t$$

(d)
$$f(t) = te^t$$

5. Encuentre la transformada de Laplace inversa de las siguientes funciones:

(a)
$$F(s) = s^{-3/2}$$

(c)
$$F(s) = \frac{10s - 3}{25 - s^2}$$

(b)
$$F(s) = \frac{3}{s-4}$$

(d)
$$F(s) = 2s^{-1}e^{-3s}$$

Estabilidad de puntos críticos

1. Determine el tipo de punto crítico que es (0,0) en los siguientes sistemas lineales indicando si es estable, inestable o asintóticamente estable:

(a)
$$\frac{dx}{dt} = 3x + y$$
, $\frac{dy}{dt} = 5x - y$

Pumbo vitio \Rightarrow Valous propios

(b) $\frac{ax}{dt} = x - 2y$
 $\frac{ay}{dt} = 3x - 2y$
 $\frac{ay}{dt} = 3x - 3y$
 $\frac{3-\lambda}{5}$
 $\frac{1}{3-\lambda} = \frac{(\lambda-3)(\lambda+1)-5=0}{\lambda^2-2\lambda-8=0}$
 $\frac{(\lambda-4)(\lambda+2)=0}{\lambda^2-2\lambda-8=0}$

Fooling on signor pumbor who signor pumbor and signor s

(b)
$$\frac{ax}{dt} = x - 2y, \quad \frac{ay}{dt} = 2x - 3y$$

$$\begin{vmatrix} 1 - \lambda & -2 \\ 2 & -3 - \lambda \end{vmatrix} = (\lambda + 3)(\lambda - 1) + 4 = 0$$

$$(\lambda + 1)^{2} = 0$$

$$\lambda = 1 \text{ (x2)}$$

2. Considere el sistema lineal

$$\frac{dx}{dt} = \epsilon x - y, \quad \frac{dy}{dt} = x + \epsilon y$$

Muestre que el punto crítico (0,0) es:

(a) un punto espiral estable si $\epsilon < 0$

- (b) un centro si ε = 0
 (c) un punto espiral inestable si ε > 0
- $| E \lambda 1 | = (\lambda E)^2 + 1 = 0$ $| E \lambda 1 | = (\lambda E)^2 + 1 = 0$ $| \lambda E | = 0$

3. Determine la naturaleza del punto crítico (0,0) en los siguientes sistemas casi lineales:

(a)
$$\frac{dx}{dt} = x + 2y + x^2 + y^2, \quad \frac{dy}{dt} = 2x - 2y - 3xy$$

(b)
$$\frac{dx}{dt} = 3x - y + x^3 + y^3, \quad \frac{dy}{dt} = 13x - 3y + 3xy$$

$$\frac{dx}{dt} = 3x - y + x^3 + y^3, \quad \frac{dy}{dt} = 13x - 3y + 3xy$$

$$\bar{J} = \begin{pmatrix} 3 + 3x^2 & -1 + 3y^2 \\ |3 + 3y| & -3 + 3x \end{pmatrix} \qquad J(0,0) = \begin{pmatrix} 3 & -1 \\ |3 & -3 \end{pmatrix}$$

$$\begin{vmatrix} 3 - \lambda & 1 \\ |3 & -3 - \lambda \end{vmatrix} = (\lambda - 3)(\lambda + 3)$$

$$\lambda^2 + u = 0$$

 $J = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} & \frac{1}{2} \end{pmatrix} & \frac{1}{2} \begin{pmatrix} \frac{1}{2}$

(c)
$$\frac{dx}{dt} = 5x - 3y + y\left(x^2 + y^2\right), \quad \frac{dy}{dt} = 5x + y\left(x^2 + y^2\right)$$

$$\frac{dx}{dt} = 5x - 3y + y (x^{2} + y^{2}), \quad \frac{dy}{dt} = 5x + y (x^{2} + y^{2})$$

$$J = \begin{pmatrix} 5.1 & 2xy & -3 + (x^{2} + y^{2}) & 2y^{2} \\ 5 + 2xy & (x^{2} + y^{2}) & 4 & 2y^{2} \end{pmatrix} \implies J(0,0) = \begin{pmatrix} 5 & -3 \\ 5 & 0 \end{pmatrix}$$

$$\begin{vmatrix} 5-\lambda & -3 \\ 5 & -\lambda \end{vmatrix} = 0 \quad \lambda = 5 + \sqrt{25 - 60}$$

$$\lambda^{2} - 5 \lambda + 15 \qquad \text{expiral instable}$$

Transformada de Laplace

4. Determine la transformada de Laplace de las siguientes funciones:
(a)
$$f(t) = \sinh t$$
 (c) $f(t) = 3t^{5/2} - 4t^3$

(b) $f(t) = \cos^2 t$ (d) $f(t) = te^t$

$$\int_{0}^{h+1} \left(\frac{1}{2} \right) = \int_{0}^{h+1} \left(\frac{1}{2} \right) =$$

(4) L+

c) $f(t) = 3t^{5/2} - 4t^3$

45 VII - 29

32(t5/2) - 4 da t3 4

 $d(t^{n}) = \frac{\Gamma(n+1)}{3\Gamma(3)} = 3$ $\frac{\Gamma(5/2+1)}{5^{5/2+1}} - 4 \cdot \frac{\Gamma(3+1)}{5^{4}} = 3$

d) Latety Lage to fles

. L. ff41.6 = F.(1).

$$\int_{0}^{1/2} \left(\frac{e^{t} - e^{-t}}{2} \right) dt = \frac{1}{2} \int_{0}^{\infty} e^{t(t+s)} - e^{-t(t+s)} dt = \frac{1}{2} \left(\frac{e^{t(t+s)}}{2} - \frac{e^{-t(t+s)}}{2} \right) = \frac{1}{2} \left(\frac{e^{t} - e^{-t}}{2} \right) dt = \frac{1}{2} \left(\frac{e^{t}$$

$$\int \sin h(t) \, t = \int_{0}^{1/2} e^{-st} \left(\frac{e^{t} - e^{-t}}{2} \right) \, dt = \frac{1}{2} \int_{0}^{\infty} e^{t(+s)} - e^{-t(+s)} \, dt = \frac{1}{2} \left(\frac{e^{t(+s)}}{2} - \frac{e^{-t(+s)}}{2} \right) = \frac{1}{2} \left(\frac{2}{(n-s)} - \frac{e^{-t(+s)}}{2} \right) = \frac{1}{2} \left(\frac{2}{(n-s)} - \frac{1}{2} \right) = \frac{1}{$$

$$\frac{1}{2} \left(\frac{e^{+(4)}}{2} - \frac{e^{-5(4)}}{2} \right) dt = \frac{1}{2} \left(\frac{e^{+(4)}}{2} - \frac{e^{-5(4)}}{2} \right) = \frac{1}{2} \left(\frac{e^{+(4)}}{2} - \frac{e^{-5(4)}}{2} \right) = \frac{1}{2} \left(\frac{e^{+(4)}}{2} - \frac{e^{-5(4)}}{2} \right) = \frac{1}{2} \left(\frac{e^{-5(4)}}{2} - \frac{e^{-5(4)}}{2}$$

$$\frac{1}{2} \left(\frac{e^{-\frac{1}{2}}}{1 - e^{-\frac{1}{2}}} \right) = \frac{1}{2} \left(\frac{e^{-\frac{1}{2}}}{1 - e^{-\frac{1}{2}}$$

P(5/2+1) = 5/2 (5/2)

5 P(3 41)

 $\frac{5}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{(3/2)}{2}$ = $\frac{5}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$f(t) = CO(2(t)) = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{2} \frac{2}{3^{2}-1} = \frac{1}{3^{2}-1}$$

$$\frac{1}{2} \left(\frac{1}{3} - \frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{2} \frac{1}{3^{2}-1} = \frac{1}{3^{2}-1}$$

$$\frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{2} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{2} \cos(2t) \right) = \frac{1}{2} \frac{1}{3} + \frac{1}{2} \frac{1}{3^{2}+1} = \frac{1}{3^{2}+1}$$

$$\frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3} \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} \cos(2t) \right) = \frac{1}{3} \frac{1}{3$$

5. Encuentre la transformada de Laplace inversa de las siguientes funciones:

(a)
$$F(s) = s^{-3/2}$$
 (c) $F(s) = \frac{10s - 3}{s}$

(b)
$$F(s) = \frac{3}{s-4}$$
 (c) $F(s) = \frac{3}{25-s^2}$ (d) $F(s) = 2s^{-1}e^{-3s}$

(b)
$$F(s) = \frac{1}{s-4}$$
 (d) $F(s) = 2s^{-1}e^{-3s}$

(d) $F(s) = \frac{1}{s-4}e^{-3s}$

$$\int_{0}^{1} \int_{0}^{1} \int_{0$$

 $= 3 \int_{-52}^{1} \frac{1}{5^2 \cdot 5^2} = 10 \int_{-52}^{1} \frac{1}{5^2 \cdot 5^2} = 10$

 $\frac{1}{2}(4) = \sqrt{\frac{1}{5}} \left(\frac{2}{5} \left(\frac{2}{5} + \frac{1}{5} \right) + \sqrt{\frac{1}{5}} \right) \left(\frac{1}{5} + \frac{1}{5} + \frac{1}{5} \right) \left(\frac{1}{5} + \frac{$

3 sinh (5+) - 40 cogh (5+)

$$\begin{cases} \begin{cases} \begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases} \end{cases} = \frac{\sqrt{2}}{5^{3/2}} =$$

$$\begin{cases}
\begin{cases}
\begin{cases}
\begin{cases}
\begin{cases}
\begin{cases}
\begin{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases} = \begin{cases}
\begin{cases}
\begin{cases}
\begin{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
\begin{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\begin{cases}
\end{cases}
\end{cases}
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}$$

$$\end{cases}$$

$$\end{cases}$$

$$\end{cases}
\end{cases}$$

$$\end{cases}$$

$$\int_{0}^{1} \int_{0}^{1} \int_{0$$

(a)
$$F(s) = s^{-3/2}$$

(b) $F(s) = \frac{3}{s-4}$
(c) $F(s) = \frac{10s-3}{25-s^2}$
(d) $F(s) = 2s^{-1}e^{-3s}$

2
$$(t-2)^2 U(t-3)$$

d) $\int_{-1}^{1} \int_{1}^{2} \frac{2}{a} e^{-5a} = e^{-5a} \cdot \frac{2}{a}$
 $\int_{1}^{1} \int_{1}^{2} e^{-5a} = e^{-5a} \cdot \frac{2}{a}$
 $\int_{1}^{1} \int_{1}^{2} e^{-5a} = e^{-5a} \cdot \frac{2}{a} \int_{1}^{2} e^{-5a} = e^$