Out-of-Distribution Detection Methods and its application on Colorectal Pathology Image

Kangyeol Kim, 20191106

Problem of interest: Detecting Abnormal Samples

- Detecting abnormal samples (a.k.a. novelty detection)
 - Given a pre-trained (deep) classifier,
 - Detect whether a test sample is from the training distribution (In-distribution) or not (Out-of-distribution, Adversarial samples)

Problem of interest: Detecting Abnormal Samples

- Detecting abnormal samples (a.k.a. novelty detection)
 - Given a pre-trained (deep) classifier,
 - Detect whether a test sample is from the training distribution (In-distribution) or not (Out-of-distribution, Adversarial samples)
- Softmax Threshold-based Detector [Hendryck et al., 2017]

- ODIN propose two components for detecting out-of-distribution
- Temperature Scaling

$$S_i(\boldsymbol{x};T) = rac{\exp(f_i(\boldsymbol{x})/T)}{\sum_{j=1}^N \exp(f_j(\boldsymbol{x})/T)},$$

Input Preprocessing; adding small perturbations to increase sx score

$$\tilde{\boldsymbol{x}} = \boldsymbol{x} - \varepsilon \operatorname{sign}(-\nabla_{\boldsymbol{x}} \log S_{\hat{\boldsymbol{y}}}(\boldsymbol{x};T)),$$

Temperature Scaling

$$S_{\hat{y}}(\boldsymbol{x};T) = \frac{\exp(f_{\hat{y}}(\boldsymbol{x})/T)}{\sum_{i=1}^{N} \exp(f_{i}(\boldsymbol{x})/T)} = \frac{1}{\sum_{i=1}^{N} \exp(f_{i}(\boldsymbol{x})/T)} = \frac{1}{\sum_{i=1}^{N} \exp\left(\frac{f_{i}(\boldsymbol{x}) - f_{\hat{y}}(\boldsymbol{x})}{T}\right)} = \frac{1}{\sum_{i=1}^{N} \left[1 + \frac{f_{i}(\boldsymbol{x}) - f_{\hat{y}}(\boldsymbol{x})}{T} + \frac{1}{2!} \frac{(f_{i}(\boldsymbol{x}) - f_{\hat{y}}(\boldsymbol{x}))^{2}}{T^{2}} + o\left(\frac{1}{T^{2}}\right)\right]}$$
by Taylor expansion
$$\approx \frac{1}{N - \frac{1}{T} \sum_{i=1}^{N} [f_{\hat{y}}(\boldsymbol{x}) - f_{i}(\boldsymbol{x})] + \frac{1}{2T^{2}} \sum_{i=1}^{N} [f_{i}(\boldsymbol{x}) - f_{\hat{y}}(\boldsymbol{x})]^{2}}$$

 $\bullet \quad \text{Temperature Scaling} \quad U_1(\boldsymbol{x}) = \frac{1}{N-1} \sum_{i \neq \hat{y}} [f_{\hat{y}}(\boldsymbol{x}) - f_i(\boldsymbol{x})] \quad U_2(\boldsymbol{x}) = \frac{1}{N-1} \sum_{i \neq \hat{y}} [f_{\hat{y}}(\boldsymbol{x}) - f_i(\boldsymbol{x})]^2.$

- Expectation of U1 of in-distribution is larger than that of out-of-distribution
- When U1 is similar, U2 of in-distribution is larger than that of out-of-distribution!

 $\bullet \quad \text{Temperature Scaling} \quad U_1(\boldsymbol{x}) = \frac{1}{N-1} \sum_{i \neq \hat{y}} [f_{\hat{y}}(\boldsymbol{x}) - f_i(\boldsymbol{x})] \quad U_2(\boldsymbol{x}) = \frac{1}{N-1} \sum_{i \neq \hat{y}} [f_{\hat{y}}(\boldsymbol{x}) - f_i(\boldsymbol{x})]^2.$

 $\bullet \quad \text{Temperature Scaling} \quad U_1(\boldsymbol{x}) = \frac{1}{N-1} \sum_{i \neq \hat{\boldsymbol{v}}} [f_{\hat{\boldsymbol{y}}}(\boldsymbol{x}) - f_i(\boldsymbol{x})] \quad U_2(\boldsymbol{x}) = \frac{1}{N-1} \sum_{i \neq \hat{\boldsymbol{v}}} [f_{\hat{\boldsymbol{y}}}(\boldsymbol{x}) - f_i(\boldsymbol{x})]^2.$

$$S_{\hat{y}}(oldsymbol{x};T) = rac{\exp\left(f_{\hat{y}}(oldsymbol{x})/T
ight)}{\sum_{i=1}^{N} \exp(f_{i}(oldsymbol{x})/T)} pprox rac{1}{N - rac{1}{T} \sum_{i=1}^{N} [f_{\hat{y}}(oldsymbol{x}) - f_{i}(oldsymbol{x})] + rac{1}{2T^{2}} \sum_{i=1}^{N} [f_{i}(oldsymbol{x}) - f_{\hat{y}}(oldsymbol{x})]^{2}}{\propto \left(U_{1} - U_{2}/2T
ight)T \quad \left(f(oldsymbol{x}) \propto g(oldsymbol{x}) \Leftrightarrow f(oldsymbol{x}) \propto -rac{1}{g(oldsymbol{x})}
ight)}$$

- Problem without T Large U2 value of in-distribution decreases maximum softmax output (less confident outputs)
- Solution with T Sufficient T can alleviate above problem
- Effect of T Appropriate selection process is necessary

- Input Preprocessing $\tilde{m{x}} = m{x} arepsilon ext{sign}(abla_{m{x}} \log S_{\hat{y}}(m{x};T)),$
- Analysis, first order Taylor expansion of perturbed image:

$$\log S_{\hat{y}}(\tilde{\boldsymbol{x}};T) = \log S_{\hat{y}}(\boldsymbol{x};T) + \varepsilon \|\nabla_{\boldsymbol{x}} \log S_{\hat{y}}(\boldsymbol{x};T)\|_{1} + o(\varepsilon),$$

[Shiyu Liang., 2017] Enhancing the Reliability of Out-of-Distribution Image Detection in Neural Networks, ICLR

Previous work: Learning Confidence for Out-of-Distribution in Neural Networks

- During training, we trust neural networks output in the degree of confidence score (c). And take a hint from ground truth label if c is low.
- Penalty term to prevent the networks from easily taking c as 0 to minimize loss: $\mathcal{L}_c = -\log(c)$.

Previous work: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

• This paper considers data distribution P(x|y) rather posterior distribution P(y|x) to find out-of-distribution samples.

Previous work: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

• Main idea: Post-processing a generative classifier - Given a pre-trained softmax classifier, the paper post-process a simple generative classifier on hidden feature spaces:

• How to estimate parameters? - Empirical class mean and covariance matrix via training set

$$\widehat{\mu}_c = rac{1}{N_c} \sum_{i: u_i = c} f(\mathbf{x}_i), \;\; \widehat{oldsymbol{\Sigma}} = rac{1}{N} \sum_{c} \sum_{i: u_i = c} \left(f(\mathbf{x}_i) - \widehat{\mu}_c
ight) \left(f(\mathbf{x}_i) - \widehat{\mu}_c
ight)^{ op}$$

[Lee et al., 2018] A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, Neurips

Previous work: A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Why Gaussian? - the posterior distribution of the generative classifier (with tied covariance)
is equivalent to softmax classifier

[T-SNE of penultimate features]

- · Empirical observation
 - ResNet-34 trained on CIFAR-10
 - Hidden features follow class-conditional unimodal distributions

Computing confidence score: Mahalanobis distance between a test sample and a closest class Gaussin $M(\mathbf{x}) = \max_c \ \log P(f(\mathbf{x})|y=c)$

$$= \max_{c} - (f(\mathbf{x}) - \widehat{\mu}_c)^{\top} \widehat{\Sigma} (f(\mathbf{x}) - \widehat{\mu}_c)$$

[Lee et al., 2018] A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks, Neurips

My work: Colorectal Pathology Image Classification via Uncertainty-Aware Deep Neural Networks

Motivation; Colorectal Pathology out-of-distribution detection

My work: Colorectal Pathology Image Classification via Uncertainty-Aware Deep Neural Networks

Confidence Methods

My work: Colorectal Pathology Image Classification via Uncertainty-Aware Deep Neural Networks

Evaluated Set	Туре	FPR at 95% TPR(%)					Detection Error(%)			
		CM_1	CM_2	CM_3	CM_4	CM_1	CM_2	CM_3	CM_4	
Group-2	Over-staining	95.2	97.2	76.0	0.0	49.7	46.2	38.0	0.2	
	Bubble	84.6	98.8	82.7	13.4	31.4	37.3	29.7	8.9	
	Dust	96.2	98.6	94.8	6.7	42.8	33.2	31.5	5.5	
	Out-focused	91.3	98.0	95.9	0.0	45.5	39.6	41.5	0.7	
	Trimming	74.3	100.0	97.1	44.2	16.2	30.2	33.0	19.6	
Group-3	Lymphoma	90.7	91.2	93.6	2.1	42.9	33.3	46.2	2.8	
	Leiomyoma	86.7	85.9	94.3	1.6	40.0	38.0	48.5	2.3	
	Carcinoid	80.9	86.7	83.7	1.9	36.0	31.2	38.8	2.8	
	Granulation	85.2	72.5	88.8	5.7	35.3	29.3	34.9	4.8	
Evaluated Set	Туре	AUROC					AUPR			
		CM_1	CM_2	CM ₃	CM ₄	CM_1	CM_2	CM_3	CM_4	
Group-2	Over-staining	0.729	0.500	0.685	1.00	0.478	0.502	0.594	1.00	
	Bubble	0.812	0.635	0.760	0.968	0.658	0.669	0.766	0.967	
	Dust	0.752	0.627	0.680	0.988	0.546	0.668	0.698	0.987	
	Out-focused	0.753	0.521	0.561	1.00	0.529	0.561	0.557	1.00	
	Trimming	0.887	0.587	0.713	0.877	0.900	0.732	0.755	0.870	
Group-3	Lymphoma	0.766	0.627	0.585	0.996	0.549	0.721	0.527	0.996	
	Leiomyoma	0.786	0.650	0.566	0.995	0.575	0.646	0.486	0.998	
	Carcinoid	0.809	0.676	0.682	0.995	0.611	0.720	0.611	0.99	
	Granulation	0.800	0.762	0.671	0.978	0.616	0.784	0.683	0.96	

Table 2. Patch-level Out-of-distribution Detection Comparisons