《按钮控制 LED 提高篇》课堂教学及反思*

刘正云1,谢作如2,钟柏昌3

(1,3.南京师范大学教育科学学院,210097; 2.浙江省温州中学,325014)

摘 要: Arduino 机器人平台是一个软、硬件相结合的平台,在培养学生动手能力的同时,也能培养学生的逻辑思维。本课题以 Arduino 为教学平台,使用 Arduino 机器人的按钮模块与 LED模块,制作灵敏的按钮控制 LED。在制作过程中,不断引导学生发现问题、思考问题并解决问题,为机器人教育提供了一种新思路。

关键词:Arduino 按钮控制 LED

在大多数机器人教学实践中,LED 作为 最常见的输出装置,却又最容易被教育者忽 略或者仅把它作为辅助装置。事实上,且不 论声光控 LED、全彩 LED、广告流水灯等,单 就按钮控制 LED 而言,也是一个值得探讨 的内容。

一、选题背景

按钮控制 LED 的过程并不复杂,按下按钮 LED 亮,再按下按钮 LED 灭,这是一种较为普通和简单的操作过程。尽管如此,大

部分学生对其实现过程仍旧一知半解。所以 笔者将此作为《按钮控制 LED 提高篇》的基 础任务,安排了非运算、变量等知识点,引导 学生搭建硬件平台并编写程序,实现日常生 活中常见的按钮控制 LED。

二、方案设计

(一)教材与学生情况分析

本节课是自编教材《Arduino 创意机器 人》中第一章《智能 LED》的第四节,主要涉及 LED 和按钮两种器件。在本次课之前,教 材中已有《按钮控制 LED 基础篇》,该课涉及按钮的基本知识、数字读取模块等,可以实现按下按钮 LED 亮、放开按钮 LED 灭的基本功能,以及延时熄灭 LED 的拓展功能。因此本课以此为基础,引导学生实现按下按钮 LED 亮、再按下按钮 LED 灭的机器人,并解决按钮消抖、控制不准确等问题。

本课的教学对象是初一学生,信息技术基础好,思维灵活,好奇心以及求知欲都比较强,但耐性不够,遇挫折易退缩。通过前面的学习,学生熟悉了Arduino机器人的基本知识,可以进行简单的硬件搭建,也可以编写程序点亮LED,并对LED进行简单的控制,这一系列的学习,培养了学生对Arduino机器人的兴趣。本节课的重点和难点是对按钮控制不精准现象的解释及解决。

(二)教学目标

- 1.认识变量与常量,掌握数字变量的使用;理解并掌握非运算符的使用。
- 2.通过实现按钮精准控制 LED,了解按 钮抖动现象。
 - 3.通过对按钮控制不精确的观察以及实

验,提高学生发现问题、解决问题的能力;通过使用简便易行的方法对按键进行消抖,激发学生学习机器人的兴趣。

(三)教学方案的设计与选择

1.基本任务。

基本任务难点在于 LED 亮灭状态根据 按钮按下的不同次数而改变。如第一次按下 按钮,LED 点亮,第二次按下按钮,LED 熄 灭,第三次按下按钮,LED 点亮......如此循 环反复。为了便于学生理解,笔者选择使用 表格形式进行呈现(如表 1)。

表 1

按钮状态	LED 状态	LED 所在数字针脚数值	
第一次按下	亮	1(高电平)	
第二次按下	灭	0(低电平)	
第三次按下	亮	1(高电平)	
第四次按下	灭	0(低电平)	
•••••			

2.解释现象。

按钮控制不准确主要有两个原因:(1) Arduino 主程序不断循环,速度极快;(2)按

表 2

主要原因	方案名称	方案内容	优点	缺点
	方案一	直接告知主程序循环的速度非常之快	简单、直白	抽象、不易理解
	方案二	单纯使用 LED 作测试(比如: 让学生观 看程序: LED 一直亮着, 设置针脚数字值 为低电平作用不外显)	具象解释主程序不断快速循环(几乎看不到 LED 熄灭)	需要重新编写程序测 试,较麻烦
	方案三	动手实践:按住按钮不放,观察 LED 状态。如果理解有困难,引导学生在程序中加入延时语句,进行观察	简单易行,方便观察。对学生 理解主程序循环非常快的逻 辑推理有一定说服力	学生难以脱离教师引导,独自想出该方法进行测试
按钮抖动	方案四	举贴近生活的实例,形象生动地说明按 钮抖动的过程	生动的实例,可以化抽象为 具体	实例难寻
	方案五	使用"串口打印加回车"模块,打印出按 钮按下时读取到的数值,可以配合"延时"使用以便观察	具有说服力,在串口监视器 中可以看出,按一次按钮,读 取到多个数值	串口打印以及串口监 视器作为新增知识点, 增加本课难度

钮抖动。引导学生找出这两点原因并合理解 释按钮控制不准确的现象,笔者预设了几种 方案(如表 2)。

综合几种方案的优缺点,笔者选择了方案三和方案四。先引导学生按住按钮不放,观察 LED 状态。若是现象不明显,提示学生在程序中加延迟语句,再观察。

按钮抖动现象涉及硬件本身,难以观察,使用"串口打印加回车",直观易懂,但是增加了新的教学内容,任务复杂度加大,因此举例说明按钮抖动的现象。

3.优化程序。

按钮控制不准确的原因有两点,解决问 题也分为两方面。(1)Arduino运行速度非常 快,看似只按一次按钮,实则程序已运行很 多遍。笔者考虑了两种解决方案:一是设置 变量,记录按钮按下之前的状态。若按钮按 下之前的状态为1,说明按钮被连续按着, 此时 LED 的状态不改变。二是使用"当循 环"进行控制。考虑学生初次接触变量,基础 任务中也已经定义了一个变量,如果再加入 一个变量,容易混淆学生思维,使其产生惧 难心理,从而对机器人课程的学习失去兴 趣, 所以笔者选择相对简单但功能强大的 "当循环"进行控制。(2)Arduino的示例程序 "Digital--->Debounce" 提供了解决按钮抖 动的可行方案,但是该方案基于文本讲行编 程,学生难以理解。若使用 ArduBlock 编写该 方案,也比较复杂,不适合刚刚接触机器人 课程的学生。故而笔者选择了延时解决按钮 抖动的问题。

三、硬件组成与搭建

本次教学用到的硬件有 Romeo 控制器、按钮、LED、USB 数据线以及 3P 线。将 LED 以及按钮模块分别接在 Arduino 的数字针脚(尽量不要接在数字针脚 0、1 上),如将 LED

接在数字针脚 3,按钮接在数字针脚 11(如图 1)。使用 USB 数据线将 Romeo 控制器与电脑连接起来,选择正确的板卡型号 UNO和端口号。

[3]

四、程序编写

(一)基本任务

根据要求,每按一次按钮,LED的状态都会发生改变。设置数字变量 k,代表 LED的亮灭状态,k值在 0、1 之间变化。按下按钮,要使 k值由 0变 1或者由 1变 0,可以给 k作"非运算",参考程序如图 2 所示。

图 2

(二)解释现象

这一过程涉及编程的是按钮控制不准确的第一个原因。提示学生长按按钮,观察 LED。若现象不明显,可加上延时再进行观察,参考程序如图 3 所示。

图 3

(三)优化程序

按钮的稳定控制需要解决两个问题。

第一个问题可使用"当循环"解决,程序 如图 4 所示。"当循环"的执行语句为空,其 作用是,一旦检测到按钮按下以后,如果按 钮一直没有放开,就执行空循环,直到按钮 放开。

图 4

第二个问题的解决使用的是延时函数。 在"按下"刹那以及"放开"刹那分别加了 100 ms 的延时,延时时间根据具体的按钮而 定,可通过多次测试得到,程序如图 5 所示。

图 5

五、拓展应用

本课题除了让学生进一步了解按钮控制,还希望学生能够学会 Arduino 控制的一般方法,以按钮为例,按照聚类思想,可以拓展出许多应用。比如,以相似的功能(按钮控制 LED)进行聚类,可以设计出按钮控制流水灯、按钮控制呼吸灯、按钮控制 LED 矩阵等;以相似的目标(控制 LED)进行聚类,可以设计出声控 LED、光控 LED、震动开关控制 LED 等;以相似的技术(按钮控制)进行

聚类,可以设计出按钮控制显示屏、按钮控制 PPT、按钮控制 MP3等。因此,教学中希望学生以按钮控制为出发点,尽可能多地发散出有聚类性质的作品。

六、教学实践

(一)抛出疑问,引入新课

本环节,首先带领学生回忆上节课《按钮控制 LED 基础篇》的内容,提问:"通过上节课的学习,LED 可以实现哪些功能?"学生回答完毕,继续设问:"日常生活中的按钮开关灯是怎样的?运用上节课以及之前学到的知识可以完成吗?"在激发学生求知欲以及好奇心以后,出示本课标题《按钮控制 LED 提高篇》。

(二)分析问题,完成任务

在这一环节,主要是对日常生活中的按钮开关灯进行分析。为了方便理解,可以列出按钮状态以及 LED 状态的表格。引导学生观察表格,发现按钮按下与 LED 状态的规律,在此基础上,引出常量和变量的定义以及 ArduBlock 常用的常量和变量。

常量是指在程序中固定不会变化的量,变量是指在程序运行过程中其值会改变的量。根据 LED 值的变化(0 和 1)可知,需要用到数字变量,数值由 1 到 0 或者由 1 到 0 的转变,可以使用"非运算"完成。向学生具体讲解"非运算"并引导其运用"非运算"使数字变量 k 在 0 和 1 之间变化(如图 8)。

图 8

(三)观察现象,解释原因

本环节是上一环节的延续,学生完成基本任务以后,使用按钮控制 LED,发现按钮控制不准确。笔者提示学生,长按按钮,观察

LED。如果现象不明显,可在程序中加入延时,再长按按钮,观察LED。通过这两个小实验,引导学生根据观察结果,进行合理的逻辑推理,并解释原因。在这个过程中,学生可以亲身感受到Arduino运行速度之快,理解按钮控制LED不准确的原因。

(四)优化程序,稳定控制

为了解决上述问题,笔者选择初步引入 "当循环",使学生稍作了解。直接给出示例 程序(如图 4),引导学生解读程序,理解使 用"当循环"之后,程序的优化之处。

使用"当循环"优化程序后,按钮控制精准很多,但偶尔还会失灵。基于此,给出按钮抖动的概念:通常情况下,按钮的开关是机械弹性开关,当机械触电断开、闭合时,由于机械触电的弹性作用,按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而,按键开关在闭合及断开的瞬间均伴随有一连串的抖动。为了方便学生理解,可以举出贴近实际生活的例子,如以小球扔到水泥地面上,会不停的跳跃来类比按钮的抖动。

了解按钮抖动以后,组织学生讨论按钮 消抖的方法。按钮消抖可以从软硬件两方面 着手。本课题主要是在程序上进行改进。结 合之前的实验,引导学生使用最简单的延时 实现消抖,使用两次延时,因为"按下"要消 抖,"放开"也要消抖。

七、教学反思

从实际教学效果来看,学生对按钮控制、主程序循环运行、按钮消抖等掌握得比较扎实。整个教学,环环相扣,学生在发现问题、解决问题的过程中不断探索。当然,本次课也有很多需要改进的地方,比如教师引导语言的设计、课堂时间的分割、完成教学内容以后引导学生进行扩展创新等,希望在以后的教学中进一步改进,以便更好地组织课堂。

*国家社科基金教育学青年项目"多平台、跨学科、聚类化、重创造的中小学机器人教育研究"(项目编号:CCA130133)。

参考文献:

[1]李芳.学霸为"偷懒"发明投币式台灯获 国家专利[EB/OL].http://news.xinhuanet.com/lo-cal/2014-03/01/c_126207183.htm, 2014-8-27

[2]钟柏昌,李艺.信息技术课程内容组织的三层架构[J].电化教育研究,2012(5)

《按钮控制LED提高篇》课堂教学及反思

作者: 刘正云, 谢作如, 钟柏昌

作者单位: 刘正云, 钟柏昌(南京师范大学教育科学学院, 210097), 谢作如(浙江省温州中学, 325014)

刊名: <u>教育研究与评论(技术教育版)</u> 英文刊名: Research and Review on Education

年,卷(期): 2015(1)

引用本文格式: <u>刘正云</u>. <u>谢作如</u>. <u>钟柏昌</u> 《按钮控制LED提高篇》课堂教学及反思[期刊论文]-教育研究与评论(技术教育版) 2015(1)