LRA via Linear Measurements

Measure

with

and get $\langle \operatorname{vec}(A), \operatorname{vec}(S_1) \rangle$

and get $\langle \operatorname{vec}(A), \operatorname{vec}(S_2) \rangle$

and get $\langle \operatorname{vec}(A), \operatorname{vec}(S_3) \rangle$

- Output B at the end
- Non-adaptive algorithms decide all S_i upfront

LRA via Linear Measurements

- ullet Output B at the end
- Non-adaptive algorithms decide all S_i upfront

Linear Measurements vs Matrix-Vector Products

- If A is $n \times n$, matrix-vector products can be simulated with n linear measurements
- *n* linear measurements are **at least** as powerful as one matrix-vector product
- Trace can be computed exactly with one linear measurement
 - Requires $\Omega(n)$ matrix-vector products for exact trace
 - Sun, Woodruff, Yang, Zhang '21 (Triangle detection)
 - Requires $\Omega(1/\varepsilon^2)$ for approximating unto $1 \pm \varepsilon$
 - Wimmer, Wu, Zhang '14