Artificial Intelligence Algorithms and Mathematics

CSCN 8000

Unsupervised

- FDA/LDA
- K-Means
- Hierarchical Clustering

Recall: Dimensionality Reduction

- The efficiency of ML methods depends crucially on the choice of features that are used to characterize data points.
- Target → have a small number of highly relevant features to characterize data points.
- Dimensionality Reduction techniques reduce the number of input variables or features in a dataset <u>while retaining its essential</u> <u>characteristics</u>
- Benefits of dimensionality reduction:
 - Reduce excessive resource requirements
 - Reduce the probability of overfitting
 - Make data visualizations easier

Principal Component Analysis (PCA)

$$Su = \lambda u$$

- To project original data $X \in \mathbb{R}^{D*N}$ to P features, where $P \leq D$:
 - Calculate the Covariance Matrix $S = \frac{1}{N}(X \bar{X})(X \bar{X})^T$
 - Get all the possible eigenvalues and eigenvectors of S.
 - Sort the eigenvalues in descending order:
 - The Largest eigenvalue corresponds to the (eigenvector) axis with highest variance of data projected on that axis.
 - Lower eigenvalues correspond to axes that are worse in preserving the characteristics of the data.
 - Get the highest P eigenvalues and their eigenvectors.
 - Construct full matrix $U \in R^{P*D}$ by stacking all chosen eigenvectors vertically (row-wise)
 - Get the final full projected dataset $Z \in \mathbb{R}^{P*N} \rightarrow Z = UX^T$

- Assume we want to project our features to fewer dimensions while maintaining the separability of our classes.
- A possible approach would be to maximize the distance between the centers (means) of the projected classes.
- In the following example, does the proposed axis maintain the best separability between the classes?

- It looks like maximizing the distance between means of projected classes is not enough if the classes are widespread with high variance.
- An additional constraint could be imposed by <u>minimizing the within-</u> class variance of the projected data.
- Combining the two constraints leads to a new axis (dimensionality) that maintains the separability of the original data with minimum or no overlap.

- Fisher's Linear Discriminant Analysis (FDA) is a linear dimensionality reduction technique that aims to project highdimensional data into a lower-dimensional space while maximizing the separation between classes.
- This is achieved through two targets:
 - T1: Maximizing Inter-Class Variance (Distance between class means)
 - T2: Minimizing the Intra-Class Variance (Within-class variance).

- Assume that we have two classes to be projected.
- We will apply a linear transformation $u \in R^{D*1}$ on each original data point $x_{\{0,1\}} \in R^{D*1}$ belonging to classes 0 and 1, such that the value z of the projected point at the new axis is formulated as,

$$z = u^T X$$

The means of the points in each class are formulated as,

$$\mu_0 = \frac{1}{N_0} \sum_{i=0}^{N_0} x_0^i, \qquad \mu_1 = \frac{1}{N_1} \sum_{i=0}^{N_1} x_1^i$$

$$\mu_0 = \frac{1}{N_0} \sum_{i=0}^{N_0} x_0^i, \qquad \mu_1 = \frac{1}{N_1} \sum_{i=0}^{N_1} x_1^i$$

For Target 1: Distance between the projected means is formulated as:

$$(u^T \mu_0 - u^T \mu_1)^2 = (u^T \mu_0 - u^T \mu_1)^T (u^T \mu_0 - u^T \mu_1)$$

$$(u^T \mu_0 - u^T \mu_1)^2 = (\mu_0 - \mu_1)^T u u^T (\mu_0 - \mu_1)$$

$$(u^T \mu_0 - u^T \mu_1)^2 = u^T (\mu_0 - \mu_1) (\mu_0 - \mu_1)^T u$$

•
$$(u^T \mu_0 - u^T \mu_1)^2 = u^T S_B u$$
, $S_B = (\mu_0 - \mu_1)(\mu_0 - \mu_1)^T$

• Where S_B represents the distance between class means before projection.

- Recall from PCA $\rightarrow Cov(Z) = u^T Su$, where S = Cov(X)
- For Target 2: Within class-variance for the two classes can be formulated as:
 - $Cov(Z_0 + Z_1) = Cov(Z_0) + Cov(Z_1)$
 - $Cov(Z_0 + Z_1) = u^T S_0 u + u^T S_1 u$, where $S_0 = Cov(X_0)$, $S_1 = Cov(X_1)$
 - $Cov(Z_0 + Z_1) = u^T(S_0 + S_1)u = u^TS_Wu$, $S_W = S_0 + S_1$
 - Where S_W represents the within-class variance of the two classes altogether.

To Achieve both Target 1 and Target 2, our target could be formulated as follows:

$$maximize \frac{u^T S_B u}{u^T S_W u}$$

Recall that our new axis needs to be unit vector (from PCA), to enforce it we can formulate the target as follows:

maximize
$$u^T S_B u$$
, s.t. $u^T S_W u = 1$

To formulate it as a loss function, we will borrow the concepts from Lagrangian Multipliers:

$$L(u,\lambda) = -\left(u^T S_B u - \lambda \left(u^T S_W u - 1\right)\right)$$

The negative sign is added to minimize rather than maximize

$$L(u,\lambda) = -\left(u^T S_B u - \lambda \left(u^T S_W u - 1\right)\right)$$

- To minimize the loss with respect to $u \rightarrow \text{Solve} \frac{dL}{du} = 0$
- $S_B u = \lambda S_W u \to [S_W^{-1} S_B] u = \lambda u$
- We reach a formulation exactly similar to the one of <u>eigenvalues and</u> <u>eigenvectors</u>.
- In other words, u is considered an eigenvector of the matrix $S_W^{-1}S_B$ calculated from the original data and λ is the associated eigenvalue.
- To transform the full dataset, follow the same steps as PCA, but with calculating $S_W^{-1}S_B$ in the first step instead.

LDA vs FDA

- Both Linear Discriminant Analysis (LDA) and FDA refer to the same technique which aims to project the data to lower dimensions while maximizing the class separability.
- LDA is the direct extension of FDA to work with two or more classes.
- LDA is not only doing dimensionality reduction, but also computes the <u>linear decision boundary</u> between the classes in the projected space.
- LDA makes important assumptions about the shape of the data:
 - All classes follow a gaussian (normal) distribution
 - All classes have equal (identical) covariance matrices.
- If any of those assumptions doesn't hold, LDA won't perform well in classification or dimensionality reduction.

Unsupervised Learning

Unsupervised Learning

- Unsupervised learning is a type of machine learning where the algorithm is given data without explicit instructions on what to do with it.
- The system tries to learn the patterns and the structure of the data without any labeled responses to guide the learning process.
- Benefits:
 - Uncover hidden patterns and structures
 - Adaptable to various types of data without the need for labeled examples
 - Valuable tool for exploratory data analysis

Given the following dataset, can we group the points into 3 meaningful clusters that are sufficiently far from each other?

- K-Means is a popular unsupervised machine learning algorithm used for clustering data into groups or clusters based on similarity.
- The primary goal of K-Means is to partition data points into K clusters, where each point belongs to the cluster with the <u>nearest mean</u>.
- K is a hyperparameter manually set to determine the number of clusters.

- Assume we want to cluster the following dataset into 3 clusters where K=3.
- Step 1: Initialize Clusters:
 - Choose a strategy to initialize the means (centers) of the 3 clusters.
 - A popular strategy is just to choose 3 random points to define the cluster means.
 - Other methods include: Naiive Shardin and K-Means++

Step 2: Assign Points to Clusters:

 For each point in the dataset, calculate the distance between the points and the K-Cluster means (centers).

•
$$d(x_i, \mu_k) = \sqrt{\sum_{d=1}^{D} (x_i^d - \mu_k^d)^2}$$

- Assign the point to the cluster closest to it (smallest distance).
- Repeat this step until all points in the dataset are assigned successfully to a cluster.

- Step 3: Re-calculate Cluster Means:
 - Now since different points belong to each cluster, we need to recalculate the cluster means (centers), such that:

$$\mu_k = \frac{1}{n_k} \sum_{i=0}^{n_k} x_i$$

- Where μ_k represents the mean of cluster k as the mean of the points belonging to the cluster.
- n_k represents the number of points belonging to cluster k.

- Step 4: Repeat steps 2 and 3:
 - Repeat steps 2 and 3 until the assignment of points to clusters is not changing anymore (saturation).
 - The final assignment of points to clusters will define the optimal K for the current dataset.

- How to choose optimal K?
 - One method is called the *Elbow Plot:*
 - Calculate the Within-Cluster-Sum-of-Squares (WCSS) for different values of K:

$$WCSS_K = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_j - \mu_i)^2$$

- Where n_i represents the number of points in cluster i.
- The WCSS tells us how spread the points in each cluster are. Lower WCSS means better clusters (more compact).
- Plot the WCSS for different K values and choose the K value where an inflection point (elbow) occurs.

Hierarchical Clustering

- Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters.
- There are two main types of hierarchical clustering:
 Agglomerative and Divisive.

- This method is "bottom-up," meaning it starts with each data point as a separate cluster and iteratively merges them into larger clusters.
- Assume that we have the example dataset with 5 points, we will use Agglomerative clustering to combine them into clusters.

Step 1: Initialization:

- All points are treated as their own clusters. So we start with N clusters.
- In our example, we start with 5 clusters.

Linkage Criterions

- They determine how the distance between clusters is measured, which directly influences how the clusters are formed. The types are:
 - Single Linkage (Nearest Neighbor): Uses the minimum distance between members of the two clusters.

$$d(A,B) = \min_{\{a \in A, b \in B\}} d(a,b)$$

 Complete Linkage: Uses the maximum distance between members of the two clusters.

$$d(A,B) = \max_{\{a \in A, b \in B\}} d(a,b)$$

 Average Linkage: Uses the average distance between all pairs of members in the two clusters.

$$d(A,B) = \frac{1}{N_A N_B} \sum_{a \in A} \sum_{b \in B} d(a,b)$$

Centroid Linkage: Uses the distance between cluster means.

•
$$d(A,B) = \|\mu_A - \mu_B\|^2$$

- Step 2: Distance Matrix Computation:
 - Calculate a similarity or distance matrix that measures the distances between all pairs of data points. This matrix is N * N size.
 - You could use any distance metric discussed in class
 - Euclidean is the most famous
 - We will use Manhattan in this example
 - Any of the linkage criterion could also be used, we will use Complete Linkage in this example.

	Α	В	С	D	Е
Α					
В	1				
C	5	4			
D	6	5	1		
Е	3.5	2.5	1.5	2.5	

- Step 3: Merge Closest Cluster:
 - Find the pair of clusters that are closest to each other based on the chosen <u>distance</u> <u>metric</u> and <u>linkage criterion</u>.
 - In our example, A-B and C-D show the minimum distances, we could choose any of them to be merged. We'll go with A-B

	Α	В	C	D	Е
Α					
В	1				
C	5	4			
D	6	5	1		
Ε	3.5	2.5	1.5	2.5	

30 of 14

- Step 4: Recalculate Distance Metric:
 - Recalculate the distance matrix with the new cluster.
 - Recall that we're using complete linkage and Manhattan distance.

	A-B	C	D	Е
A-B				
С	5			
D	6	1		
Е	3.5	1.5	2.5	

- Step 5: Repeat Steps 3 and 4:
 - Repeat steps 3 and 4 until all points are merged into one cluster.

	A-B	C	D	E
A-B				
C	5			
D	6	1		
Е	3.5	1.5	2.5	

Divisive Hierarchical Clustering

- This method is a "top-down" approach to cluster analysis. It begins with all data points in a single cluster and iteratively splits them into smaller clusters.
- Steps:
 - Initialization:
 - Start with one large cluster that includes all data points.
 - Cluster Splitting:
 - At each step, split a cluster into smaller clusters.
 - The splitting is typically based on a criterion that identifies the <u>'least</u> <u>similar'</u> members of the cluster.
 - Iterative Division:
 - Continue the process of splitting clusters at each step.
 - This process is repeated recursively until each data point forms its own cluster or a specified number of clusters is reached.
 - Result:
 - The result is often visualized as a dendrogram, which shows the hierarchical relationship between clusters and the order in which splits occurred.

Thank you!

Any questions?

Disclaimer

Due to nature of the course, various materials have compiled from different open source resources with some moderation. I sincerely acknowledge their hard work and contribution

Thank You
Youssef Abdelkareem
yabdelkareem@conestogac.on.ca