

**Rotary heat exchanger utilising rotor of cross-flow ventilator e.g. for vehicle - presents reduced impedance to air flow for redn. of energy consumption and acoustic noise level in operation**

**Publication number:** DE4222950

**Publication date:** 1994-01-20

**Inventor:** SCHIPS KARL (DE)

**Applicant:** SCHIPS KARL (DE)

**Classification:**

- International: F04D17/04; F04D29/58; F28D11/04; F04D17/00;  
F04D29/58; F28D11/00; (IPC1-7): F28D11/02;  
F04D17/04

- european: F04D17/04; F04D29/58C; F28D11/04

**Application number:** DE19924222950 19920713

**Priority number(s):** DE19924222950 19920713

**Report a data error here**

**Abstract of DE4222950**

Heat exchange takes place between the hollow blades (5) of the ventilator and the external atmos. or gas while the rotor (3) is in rotation, cooling or warming the air inducted through a tube (1) in the wall (2) of the housing. The effect may be augmented e.g. by fins (6) on the outside of the rotor casing. The air is discharged through another tube (8) from a collector (7) which constitutes the hollow shaft of an internal-rotor motor (9).

**USE/ADVANTAGE** - Esp. in vehicles, appts. saves space, material, wt., energy and cost by dispensing with any stationary heat exchanger and transition duct.



Data supplied from the esp@cenet database - Worldwide

(19) BUNDESREPUBLIK

DEUTSCHLAND



DEUTSCHES

PATENTAMT

(12) Offenlegungsschrift  
(10) DE 42 22 950 A 1

(51) Int. Cl. 5:

F 28 D 11/02

F 04 D 17/04

DE 42 22 950 A 1

(21) Aktenzeichen: P 42 22 950.2  
(22) Anmeldetag: 13. 7. 92  
(23) Offenlegungstag: 20. 1. 94

(71) Anmelder:

Schips, Karl, 73660 Urbach, DE

(72) Erfinder:

gleich Anmelder

(56) Für die Beurteilung der Patentfähigkeit  
in Betracht zu ziehende Druckschriften:

DE-OS 14 03 569  
AT 3 28 476  
AT 3 17 268  
AT 2 28 248  
AT 1 42 817  
AT 87 436  
CH 5 38 659  
GB 14 74 733  
GB 2 28 327  
US 40 00 778  
US 39 08 754  
SU 17 72 573 A1  
SU 12 95 190 A1

JP 1-230994 A. In: Patents Abstracts of Japan, M-905,  
Dec.12,1989,Vol.13,No.559;

(54) Rotierender Wärmetauscher

(57) Aufwendige Bauteile wie Wärmetauscher und Ventilatoren werden bis heute separat gefertigt.

Enge Platzverhältnisse z. B. im Fahrzeug- und Gerätebau lassen oft Konstruktionen mit optimalem Wirkungsgrad nicht zu. Unterschiedliche Querschnitte zwischen Ventilator und Wärmetauscher machen gleichmäßige Wärmeübergänge schwierig.

Ziel der Erfindung ist durch Integrieren stationärer Wärmetauscher in das Laufrad von Querstrom- bzw. Radialventilatoren Platz, Werkstoffmenge, Gewicht, Energie und Kosten einzusparen.

Das Laufrad (2) im Ventilator (1) übernimmt die Funktion des Wärmetauschers - "rotierender Wärmetauscher".

Der stationäre Wärmetauscher (3) und Übergangsstück (4) entfallen.

Der dadurch niedrigere Systemwiderstand senkt Energieverbrauch und Geräuschpegel entscheidend.

Für die Durchströmung mit flüssigen oder gasförmigen Medien werden vorzugsweise aerodynamische Hohlprofile mit niedrigem  $c_w$ -Wert eingesetzt. Energieverbrauch, Geräuschpegel, Wärmeübergang werden günstig beeinflusst.

Das Einsatzgebiet der Ventilatoren sind alle Bereiche die mittels Luft- oder Gasförderung Wärme oder Kälte übertragen. Rein auf Konvektionsströmung beruhende Wärmetauschersysteme können abgelöst werden.

Die kompakte, gewichtssparende Bauweise bringt besondere Vorteile z. B. für den Fahrzeug- und Gerätebau.



DE 42 22 950 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 11. 93 308 063/33

5/46

## Beschreibung

Durch integrieren stationärer Wärmetauscher in das Laufrad von Querstrom- oder Radialventilatoren (Trommelläufern) entstehen multifunktionale Ventilatoren, die Wärme bzw. Kälte übertragen.

5 Die Ventilatoren sind gleichzeitig Wärmetauscher bzw. die Wärmetauscher sind gleichzeitig Ventilatoren.  
Das Durchströmungsprinzip der Ventilatoren gewährleistet gleichmäßigen Wärmeübergang der jetzt rotierenden Wärmetauscher.

10 Alle Vorteile von Ventilatoren wie z. B. die bei Querstromventilatoren gleichmäßige Luftverteilung über die gesamte Förderlänge, verlustfreie 90° bzw. 180° Umlenkung usw. können für den Wärmetauscher voll genutzt werden.

In Fig. 1 ist eine erste Konstruktion zur Herstellung eines Querstromventilators mit umlaufendem Wärmetauscher dargestellt.

15 Über das Rohrstück (1) der Ventilatorgehäusewand (2) wird in das Laufrad (3) (rotierender Wärmetauscher) über den Sammler (4) flüssige oder gasförmige Wärme bzw. Kälte eingebracht und in die Hohlschaufeln (5) verteilt.

Die mit Wärme oder Kälte durchströmten Ventilatorschaufeln (5) geben ihre Wärme bzw. Kälte an die sie umgebende Luft bzw. gasförmige Medium ab.

20 Durch zusätzliche Bestückung mit oberflächenvergrößerten Teilen z. B. Lamellen (6) kann die Wärme- oder Kühlleistung erhöht werden. Über den Sammler (7) und das Rohrstück (8) tritt das abgekühlte bzw. erwärmte Medium aus.

Der Sammler (7) ist gleichzeitig Hohlwelle eines elektrischen Innenläufermotors (9). Die Schaufel (5) bzw. Lamelle (6) können auch Elektrowärmetauscher sein.

25 In Fig. 2 ist eine erste Konstruktion zur Herstellung eines Radialventilators als Trommelläufer mit umlaufendem Wärmetauscher dargestellt.

Über den Anschlußstutzen (1) wird in das zentrale Rohr (2) in den Sammler (3) flüssige oder gasförmige Wärme bzw. Kälte eingebracht und in die Hohlschaufeln (4) verteilt. Über den Sammler (5) und den Anschlußstutzen (6) tritt das abgekühlte bzw. erwärmte Medium aus.

30 In Abwandlung von Figur (1–2) erfolgt in Fig. 3 der Antrieb des Laufrades (rotierender Wärmetauscher) über Flügelrad (1) oder Turbinenrad (2).

Diese Variante zeichnet sich dadurch aus, daß in Abhängigkeit vom Flüssigkeits- oder Gasdruck unterschiedliche Drehzahlen des Wärmetauscherventilators erreicht werden.

35 Über Drossellemente oder Thermostatventile (3) können die Drehzahlen individuell dem jeweiligen Erfordernissen des Raums oder Arbeitsprozesses angepaßt werden. Zusätzliche Elektroantriebe und Installationen entfallen.

Ziel der Erfindung ist es Platz, Werkstoffmenge, Gewicht, Energie und Kosten einzusparen.

## Berechnungsbeispiel

## Auslegung nach Betriebspunkt (P1):

|    |                                                                         |        |
|----|-------------------------------------------------------------------------|--------|
| 40 | — Ventilator und Wärmetauscher sind separate Bauteile                   |        |
|    | — Volumenstrom, 6000 m <sup>3</sup> /h                                  |        |
|    | — geforderte statische Druckerhöhung (verfahrenstechnische Anforderung) | 150 Pa |
| 45 | — statischer Druckverlust des Wärmetauschers                            | 100 Pa |
|    | — statische Druckerhöhung Gesamtbedarf                                  | 250 Pa |

Daraus ergeben sich gemäß Ventilatorkennfeld:

|    |                                                                        |             |
|----|------------------------------------------------------------------------|-------------|
| 50 | Drehzahl, n                                                            | = 1.350 UPM |
|    | Wirkungsgrad, $\eta$                                                   | = 55%       |
|    | Wellenleistung, $P_w$                                                  | = 1,2 KW    |
| 55 | Schalleistungspegel (über separate Rechnung ermittel), L <sub>WA</sub> | = 78 dBA    |

## Auslegung nach Betriebspunkt (P2):

60 — Ventilator und Wärmetauscher sind ein Bauteil — "Wärmetauscherventilator"

Durch Wegfall des separaten Wärmetauschers kann der Systemwiderstand um den Druckverlust des Wärmetauschers ca. 100 Pa gesenkt werden.

Stimmen die Wärmeleistung des ursprünglich statischen Wärmetauschers und des rotierenden Wärmetauschers (Laufrad) überein, so senkt sich der Druck auf den verfahrenstechnisch erforderlichen Wert von 150 Pa.

65 Daraus ergibt sich:

Drehzahl,  $n$   
 Wirkungsgrad,  $\eta_t$   
 Wellenleistung,  $P_w$   
 Schalleitungspegel (über separate Rechnung ermittel),  $L_{WA}$

= 1100 UPM  
 = 54%  
 = 0,8 KW  
 = 73 dBA

5

## Ergebnis

Durch den Wärmetauschventilator wird eine Leistungsreduzierung um 33% erreicht. Der Schalleitungspegel  $L_{WA}$  reduziert sich um 5 dBA

10



# DE 42 22 950 A1

einem bei Wärmetauschern sonst üblichen Rundrohr nach Fig. 9 (1) erhöht.

6. Die gleichmäßige Luftverteilung und damit gleichmäßiger Wärmeübergang auf die gesamte Ansaug-Ausblasfläche des Ventilators besorgt der Ventilatorbetrieb automatisch. Luftverteilungssysteme wie Übergangsstücke zwischen Ventilator und Wärmetauscher entfallen.

5 7. Das Laufrad kann auch ein elektrischer Wärmetauscher sein.

8. Der Antrieb des Laufrades (rotierender Wärmetauscher) kann auch über Flügelrad bzw. Turbine erfolgen.

Hierzu 4 Seite(n) Zeichnungen

10

15

20

25

30

35

40

45

50

55

60

65



Figure 1



Figure 2





Figur 3

Fig. 4



Fig. 5



Fig. 6



Fig. 7



Fig. 8



Fig. 9

