Report Example

Alex Rogers, 29th October 2020

1 Overview

This document provides a template for you to use to write your reports and also an example of the description of a model for the Millikan oil drop experiment. The modelling approaches are described further in the two course books (Davidson-Pilon, 2015; Martin, 2018).

2 Millikan's Oil Drop Experiment

The experimental set-up of Millikan's original oil drop experiment is shown in Figure 1.

Figure 1: Millikan's oil drop experiment.

2.1 Model Description

We assume that we have N measurements of the charge on N individual oil drops. We denote this measurement as c_i for $i \in \{0, \dots, N\}$. We assume that each measurement is affected by independent Gaussian noise such that:

$$c_i \sim \text{Normal}(n_i \times e, \sigma^2)$$
 (1)

where n_i is the number of additional electrons on each oil drop and e is the charge on an electron. We do not directly observe n_i and thus we assign it a Poisson prior given by:

$$n_i \sim 1 + \text{Poisson}(1)$$
 (2)

Figure 2: Posterior probability density functions for the charge on the electron (e) and the measurement error (σ) .

Similarly, we model σ and e with appropriate priors such that:

$$\sigma \sim \text{Exponential}(0.1)$$
 (3)

$$e \sim \text{Exponential}(1)$$
 (4)

2.2 Solving the Model

We solve the model using PyMC.¹ Figure 2 shows the posterior probability distribution for the charge on the electron and the accuracy of the experimental measurements.

References

Davidson-Pilon, Cameron (2015). Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference. Addison-Wesley Professional.

Martin, Osvaldo (2018). Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ. Packt Publishing.

¹https://docs.pymc.io