เลขที่นั่งสอบ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2557

ข้อสอบวิชา MTH 483 Survival Model สอบวันศุกร์ที่ 28 พฤศจิกายน 2557 นักศึกษาภาควิชาคณิตศาสตร์ ชั้นปีที่ 4 เวลา 9.00-12.00 น.

คำเตือน 1. ข้อสอบฉบับนี้มีจำนวน 4 หน้า จำนวนคำถาม 12 ข้อ คะแนนเต็ม 100 คะแนน

- 2. ทำข้อสอบทุกข้อ และแสดงวิธีทำโดยละเอียด
- 3. อนุญาตให้ใช้เครื่องคำนวณตามระเบียบของมหาวิทยาลัยฯ
- 4. อนุญาตให้นำกระดาษจดสูตรคำนวณขนาดไม่เกิน A3 เข้าห้องสอบได้ จำนวน 1 แผ่น
- 5. คืนข้อสอบพร้อมสมุดคำตอบ และกระดาษจดสูตรคำนวณ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ชื่อ รหัส	_
ชื่อ รหัส	ภาควิชา

อาจารย์ศุภกิจ สัตยารัฐ ผู้ออกข้อสอบ

ข้อสอบได้ผ่านกุารพิจารณาจากภาควิชาคณิตศาสตร์

ปี / โจ้า (ผศ.ดร.ธีระเดช เจียรสุขสกุล)

หัวหน้าภาควิชาคณิตศาสตร์

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2557

ข้อสอบวิชา MTH 483 Survival Model

นักศึกษาภาควิชาคณิตศาสตร์ ชั้นปีที่ 4

สอบวันศุกร์ที่ 28 พฤศจิกายน 2557 เวลา 9.00-12.00 น.

อาจารย์ผู้ออกข้อสอบ : อ.ศุภกิจ สัตยารัฐ

<u>คำสั่ง</u> : 1. ข้อสอบฉบับนี้มีจำนวน 4 หน้า จำนวนคำถาม 12 ข้อ คะแนนเต็ม 100 คะแนน

- 2. ทำข้อสอบทุกข้อ และแสดงวิธีทำโดยละเอียด
- 3. อนุญาตให้ใช้เครื่องคำนวณตามระเบียบของมหาวิทยาลัยฯ
- 4. อนุญาตให้นำกระดาษจดสูตรคำนวณขนาดไม่เกิน A3 เข้าห้องสอบได้ จำนวน 1 แผ่น
- 5. คืนข้อสอบพร้อมสมุดคำตอบ และกระดาษจดสูตรคำนวณ
- 1. ถ้า I_x = 10*(100 x)² จงหาค่า VAR(T(x)). (10 คะแนน)

2. กำหนดให้ข้อมูลจากตารางมรณะซึ่งเป็น 2-year select-and-ultimate ดังนี้

[x]	I _{x}	I _{[x]+1}	I _{x+2}	x+2
92	•••	•••	6,300	94
93	•••		5,040	95
94	•••	•••	3,024	96

และความสัมพันธ์สำหรับทุกอายุ x เป็นดังนี้

(2)
$$3 * q_{x+2} = 4 * q_{[x+1]+1}$$

- 3. กำหนดให้ $d_x = 10$, $q_x = 0.04$, และ $\sum s_i = 400$. จงหาค่า $\sum r_i$ โดยวิธีการประมาณ แบบโมเมนต์(moment estimation). (10 คะแนน)
- ภายใต้ช่วงประมาณการ(x , x+1] , m_x = 0.025. พบว่ามีผู้เสียชีวิตสองรายโดยมีอายุขณะ เสียชีวิต คือ x+0.2 และ x+0.8 ตามลำดับ และทั้งสองรายมีค่า s_i = 1. จงหาค่า q_x โดยวิธีการ ประมาณแบบโมเมนต์(moment estimation). (10 คะแนน)

- 5. จากการศึกษากลุ่มตัวอย่างหนึ่งซึ่งเป็นกรณีพิเศษ C, n_x = 1,000 และ c_x = 100(ทุกคนจะถูก กำหนดให้ออกจากการศึกษาที่อายุ x+0.25) และ d_x = 20 d'_x = 2 จงหาค่า α ที่ทำให้ d_x = 4/185 (10 คะแนน)
- 6. ศึกษากลุ่มของผู้เอาประกันภัยจำนวน 96 รายในระยะเวลาหนึ่งปีพบว่ามีการเสียชีวิตจำนวน 6 ราย และมีการถอนตัว(withdrawal)จำนวน 4 ราย. ทั้งการเสียชีวิตและการถอนตัวเกิดขึ้น ตอนกลางปี. จงหาค่า annual central rate ของการถอนตัว(m^(w)) และค่าความน่าจะเป็นของ การถอนตัว(q^(w)) โดยวิธี actuarial approach. (5 คะแนน)
- กำหนดให้กลุ่มตัวอย่าง 100 คน เข้าสู่การศึกษาที่อายุ x และอีก 30 คนเข้าสู่การศึกษาที่อายุ x+0.5 มีการเสียชีวิต 2 รายในช่วงอา (x , x+1). จงประมาณค่า qx ภายใต้ข้อสมมติดังนี้
 7.1) ข้อสมมติไฮเปอร์โบลิค (Hyperbolic) (5 คะแนน)
 7.2) ข้อสมมติเชิงเส้นตรง (Linear) (5 คะแนน)

8. การศึกษาซึ่งมีช่วงระยะเวลาตั้งแต่ 1 มกราคม 2553 ถึง 31 ธันวาคม 2554 มีผลการศึกษาดังนี้

ชื่อผู้ถูก ศึกษา	เวลาที่เข้า	เวลาที่เสียชีวิต (Data of dooth)	เวลาที่ถอนตัว (Date of withdrawal)
VICIES I	(Date of entry)	(Date of death)	(Date of Withdrawai)
นิโคล	1 มกราคม 2553		30 กันยายน 2554
นาตาลี	1 มกราคม 2554	30 มิถุนายน 2554	and shift out open
นุ๊ก	1 มกราคม 2553		31 มีนาคม 2553
แนนซึ่	1 มกราคม 2553		
นิน่า	ไม่ทราบ		31 ธันวาคม 2553

ช่วงเวลาประมาณการ(estimation interval)เท่ากับหนึ่งปี. ค่า m_0 = 1/3. จงหาค่า q_0 โดยวิธีการ traditional actuarial estimator. (5 คะแนน)

9. กำหนดให้ $d_x = 10$, $\sum t_i = 500$, และ $\sum r_i = 300$ ภายใต้ข้อสมมดิการกระจายแบบ Exponential ซึ่งมีข้อมูลครบถ้วน(Full Data) และเป็นกรณีทั่วไป(General Case). จงหาค่า q_x โดยวิธี MLE(Maximum Likelihood Estimation). (5 คะแนน)

- 10. กำหนดให้ $n_x = 14,200$ และ $c_x = 4,400$ ซึ่งถูกกำหนดให้ออกจากการศึกษาที่อายุ x+0.25 $d'_x = 360$ (ทุกรายเสียชีวิตก่อนจะถึงอายุ x+0.25) ขณะที่ $d''_x = 3,439$ (ทุกรายเสียชีวิตก่อน จะถึงอายุ x+1) หากสมมติว่าพลังมรณะ(force of mortality)มีค่าคงที่ในช่วงอายุ (x , x+1] จงหาค่า q_x โดยวิธี MLE(Maximum Likelihood Estimation). (10 คะแนน)
- 11.จากการศึกษาหนูแรกเกิดจำนวน 5 ตัว พบว่ามีหนูตาย ณ เวลา 3, 4, 7, 10, 14. จงประมาณค่า $\widehat{S}(11)$ และ $\widehat{\Lambda}(11)$ โดยวิธี
 - 11.1) วิธี product-limit (3 คะแนน)
 - 11.2) วิธี Nelson-Aalen (2 คะแนน)
- 12. จากการศึกษาทางคลินิกพบว่ามีหนูตะเภา n ตัวที่เวลา t = 0 โดยไม่มีหนูตะเภาตัวใหม่เข้ามา ในระหว่างการศึกษาอีก. พบว่ามีหนูตายหนึ่งตัวที่เวลา t_7 หนูตายสองตัวที่เวลา t_8 และตายอีก หนึ่งตัวที่เวลา t_9 . โดยใช้วิธี product-limit ในการประมาณค่าS(t) พบว่า $S(t_7) = 0.75$ $S(t_8) = 0.60$ และ $S(t_9) = 0.50$ จงหาจำนวนหนูตะเภาที่ต้องออกจากการศึกษาระหว่างเวลา t_8 และ t_9 (10 คะแนน)