APPENDIX A ERROR BOUND FOR REDUCTION

Given a vector $\mathbf{x} \in \mathbb{R}^{1 \times n}$, let $\mathbf{x}' \in \mathbb{R}^{1 \times n}$ be its perturbed version. Define $\mathbf{y} = \mathbf{x}\mathbf{A}$ and $\mathbf{y}' = \mathbf{x}'\mathbf{A}$. The condition number $\kappa(\mathbf{A})$ provides an upper bound on the amplification induced by linear transformation:

$$\frac{\|\mathbf{y}' - \mathbf{y}\|}{\|\mathbf{y}\|} \le \kappa(\mathbf{A}) \cdot \frac{\|\mathbf{x}' - \mathbf{x}\|}{\|\mathbf{x}\|}.$$
 (14)

In the reduction, the destination tends to decode the summation of the messages of the transmitters, i.e., $\sum_{t \in \mathcal{T}} \mathbf{x}_t$. Analyzing the bound on the distortion rate of this summation is challenging, as $\|\sum_{t \in \mathcal{T}} \mathbf{x}_t\|$ may be close to zero. To simplify the analysis, we consider the distortion rate of decoding the message \mathbf{x}_t by assuming that the symbols transmitted by other sink nodes are zero. This distortion rate provides an upper bound on the distortion rate of $\|\sum_{t \in \mathcal{T}} \mathbf{x}_t\|$.

Recall that the transmitted message of node $t \in \mathcal{T}$ on its outgoing links is given by

$$\mathbf{s}_t = \mathbf{x}_t((\overline{\mathbf{F}}_t^{-1})^T + \mathbf{E}_t^{(1)}),$$

where

$$\mathbf{E}_t^{(1)} = (\mathbf{E}_t^{(rep)})^T + \mathbf{E}_t^{(mul)}.$$

After transmitted by t, \mathbf{s}_t is recoded by the intermediate nodes and finally decoded at ρ .

Fig. 5: Three paths from t to ρ

Fig. 5 illustrates an example of transmitting the message of t to the sink node ρ in a butterfly network. There are three paths: $t \to e_3 \to e_1 \to \rho$, $t \to e_8 \to e_7 \to e_4 \to e_1 \to \rho$, and $t \to e_8 \to e_7 \to e_5 \to e_2 \to \rho$, which are not mutually disjoint. Ideally, we can use vector-matrix multiplication to represent the process of recoding and decoding:

$$\begin{bmatrix} s_{t,1} & s_{t,2} \end{bmatrix} \begin{bmatrix} \beta_{e_3,e_1}^* & 0 \\ \beta_{e_8,e_7}^* \beta_{e_7,e_4}^* \beta_{e_4,e_1}^* & \beta_{e_8,e_7}^* \beta_{e_7,e_5}^* \beta_{e_5,e_2}^* \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

$$= \begin{bmatrix} s_{t,1} & s_{t,2} \end{bmatrix} \overline{\mathbf{F}}_t^T = \mathbf{s}_t \overline{\mathbf{F}}_t^T.$$

Note that $\beta^*_{e_i,e_j}=\beta_{e_j,e_i}$ and $\begin{bmatrix} a_{11}&a_{21}\\a_{12}&a_{22}\end{bmatrix}$ is the transpose of the generator matrix ${\bf A}$.

Ideally, the decoded message is denoted as

$$\mathbf{x}_t^{(0)} = \mathbf{s}_t \overline{\mathbf{F}}_t^T.$$

The inequality (14) and (7) suggest that the error between $\mathbf{x}_t^{(0)}$ and the original message $\mathbf{x}_t = [\mathbf{x}_t(\overline{\mathbf{F}}_t^{-1})^T](\overline{\mathbf{F}}_t^T)$ is lower bounded by:

$$\frac{\|\mathbf{x}_{t}^{(0)} - \mathbf{x}_{t}\|}{\|\mathbf{x}_{t}\|} \leq \kappa(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{s}_{t} - \mathbf{x}_{t}(\overline{\mathbf{F}}_{t}^{-1})^{T}\|}{\|\mathbf{x}_{t}(\overline{\mathbf{F}}_{t}^{-1})^{T}\|}$$

$$\leq \kappa^{2}(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(1)}\|_{op}}{\|\overline{\mathbf{F}}_{t}^{-1}\|_{op}}.$$
(15)

Additionally, the following inequality holds:

$$\frac{\|\mathbf{x}_{t}^{(0)}\|}{\|\mathbf{x}_{t}\|} \leq \frac{\|\mathbf{x}_{t}^{(0)} - \mathbf{x}_{t}\| + \|\mathbf{x}_{t}\|}{\|\mathbf{x}_{t}\|}
\leq 1 + \kappa^{2}(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(1)}\|_{op}}{\|\overline{\mathbf{F}}_{t}^{-1}\|_{op}}.$$
(16)

In practice, recoding and decoding involve floating-point arithmetic, and round-off errors are unavoidable. We model these errors by introducing an error term $\mathbf{E}_t^{(2)}$. The decoded message, denoted by $\mathbf{x}_t^{(1)}$, is then modeled as:

$$\mathbf{x}_t^{(1)} = \mathbf{s}_t(\overline{\mathbf{F}}_t^T + \mathbf{E}_t^{(2)}).$$

It can be derived that:

$$\frac{\|\mathbf{x}_{t}^{(1)} - \mathbf{x}_{t}^{(0)}\|}{\|\mathbf{x}_{t}^{(0)}\|} \le \kappa(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(2)}\|_{op}}{\|\overline{\mathbf{F}}_{t}\|_{op}}.$$
(17)

By combining inequalities (17) and (16), we derive the upper bound for the distortion rate $\frac{\|\mathbf{x}_t^{(1)} - \mathbf{x}_t\|}{\|\mathbf{x}_t\|}$ as follows:

$$\frac{\|\mathbf{x}_{t}^{(1)} - \mathbf{x}_{t}\|}{\|\mathbf{x}_{t}\|}$$

$$\leq \frac{\|\mathbf{x}_{t}^{(1)} - \mathbf{x}_{t}^{(0)}\| + \|\mathbf{x}_{t}^{(0)} - \mathbf{x}_{t}\|}{\|\mathbf{x}_{t}\|}$$

$$= \frac{\|\mathbf{x}_{t}^{(1)} - \mathbf{x}_{t}^{(0)}\|}{\|\mathbf{x}_{t}^{(0)}\|} \cdot \frac{\|\mathbf{x}_{t}^{(0)}\|}{\|\mathbf{x}_{t}\|} + \frac{\|\mathbf{x}_{t}^{(0)} - \mathbf{x}_{t}\|}{\|\mathbf{x}_{t}\|}$$

$$\leq \kappa(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(2)}\|_{op}}{\|\overline{\mathbf{F}}_{t}^{(2)}\|_{op}} \cdot (1 + \kappa^{2}(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(1)}\|_{op}}{\|\overline{\mathbf{F}}_{t}^{-1}\|_{op}})$$

$$+ \kappa^{2}(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(1)}\|_{op}}{\|\overline{\mathbf{F}}_{t}^{-1}\|_{op}}$$

$$\leq \kappa^{3}(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(1)}\|_{op} \cdot \|\mathbf{E}_{t}^{(2)}\|_{op}}{\|\overline{\mathbf{F}}_{t}^{-1}\|_{op}}$$

$$+ \kappa^{2}(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(1)}\|_{op}}{\|\overline{\mathbf{F}}_{t}^{-1}\|_{op}} + \kappa(\overline{\mathbf{F}}_{t}) \cdot \frac{\|\mathbf{E}_{t}^{(2)}\|_{op}}{\|\overline{\mathbf{F}}_{t}\|_{op}}.$$
(18)

APPENDIX B

EXAMPLE OF NETWORK CODES CONSTRUCTION

Consider multicast in a combination network, where the source node is ρ and the sink nodes are $\{d,e,f\}$, as illustrated in Fig. 6. We use this example to illustrate how to construct a coding scheme using float32 by applying **Algorithm I** and **Algorithm II**, along with the optimization technique.

Fig. 6: Combination network

For this multicast, we know that $\min_{t \in \mathcal{T}} \operatorname{MaxFlow}(\rho, t) = r = 2$. We first construct a graph G^0 , which consists of the source node ρ and its adjacent nodes a, b, c, and its outgoing links, as illustrated by Fig. 7.

Fig. 7: Graph G^0

We construct the generator matrix **A** using the approach outlined in Appendix F, as given below

$$\mathbf{A} = \begin{pmatrix} 1.2987896 & 1.1710904 & -0.12769923 \\ -0.60240215 & 0.8235837 & 1.4259859 \end{pmatrix}$$

The transfer matrices are then given by

$$\begin{split} \widetilde{\mathbf{F}}_d^0 &= \begin{pmatrix} 1.2987896 & 1.1710904 \\ -0.60240215 & 0.8235837 \end{pmatrix}, \\ \widetilde{\mathbf{F}}_e^0 &= \begin{pmatrix} 1.1710904 & -0.12769923 \\ 0.8235837 & 1.4259859 \end{pmatrix}, \\ \widetilde{\mathbf{F}}_f^0 &= \begin{pmatrix} 1.2987896 & -0.12769923 \\ -0.60240215 & 1.4259859 \end{pmatrix}. \end{split}$$

It can be verified that all the transfer matrix are full rank.

In the next step, edge e_4 is added to the graph. The graph G^1 is illustrated in Fig. 8.

Fig. 8: Graph G^1

Since $In(a) = \{e_1\}$, we have $\mathbf{c}_{e_4} = \beta_{e_1,e_4} \mathbf{c}_{e_1}$. We pick

$$\widetilde{\mathbf{F}}_d^1 = \begin{pmatrix} 1.2987896 & 1.1710904 \\ -0.60240215 & 0.8235837 \end{pmatrix}, \beta_{e_1,e_4} = 1.$$

Next, edge e_5 is added to the graph. The graph G^2 is illustrated in Fig. 9.

Fig. 9: Graph G^2

We pick

$$\widetilde{\mathbf{F}}_d^2 = \begin{pmatrix} 1.2987896 & 1.1710904 \\ -0.60240215 & 0.8235837 \end{pmatrix}, \beta_{e_2, e_5} = 1.$$

The remaining steps are omitted, as they are similar. We finally obtain the following coding scheme.

• Generator Matrix:

$$\mathbf{A} = \begin{pmatrix} 1.2987896 & 1.1710904 & -0.12769923 \\ -0.60240215 & 0.8235837 & 1.4259859 \end{pmatrix}$$

• Transfer Matrix and Condition Number:

$$\begin{aligned} \overline{\mathbf{F}}_d &= \begin{pmatrix} 1.2987896 & 1.1710904 \\ -0.60240215 & 0.8235837 \end{pmatrix}, \ \kappa(\overline{\mathbf{F}}_d) = 1.73. \\ \overline{\mathbf{F}}_e &= \begin{pmatrix} 1.1710904 & -0.12769923 \\ 0.8235837 & 1.4259859 \end{pmatrix}, \ \kappa(\overline{\mathbf{F}}_e) = 1.73. \\ \overline{\mathbf{F}}_f &= \begin{pmatrix} 1.2987896 & -0.12769923 \\ -0.60240215 & 1.4259859 \end{pmatrix}, \ \kappa(\overline{\mathbf{F}}_f) = 1.73. \end{aligned}$$

• Coefficient:

$$\beta_{e_1,e_4} = 1, \ \beta_{e_1,e_8} = 1, \ \beta_{e_2,e_5} = 1,$$

 $\beta_{e_2,e_6} = 1, \ \beta_{e_3,e_7} = 1, \ \beta_{e_3,e_9} = 1.$

Below is the dual coding scheme for implementing the reduction from nodes $t \in \mathcal{T}$ to node ρ .

· Decoding Matrix:

$$\mathbf{A}^T = \begin{pmatrix} 1.2987896 & -0.60240215 \\ 1.1710904 & 0.8235837 \\ -0.12769923 & 1.4259859 \end{pmatrix}$$

• Generator Matrix of each Source:

$$\mathbf{A}_{d} = \begin{pmatrix} 0.463957 & 0.33935675 \\ -0.65972114 & 0.7316592 \end{pmatrix}$$

$$\mathbf{A}_{e} = \begin{pmatrix} 0.8033138 & -0.463957 \\ 0.07193799 & 0.65972114 \end{pmatrix}.$$

$$\mathbf{A}_{f} = \begin{pmatrix} 0.8033138 & 0.33935675 \\ 0.07193798 & 0.7316591 \end{pmatrix}.$$

• Coefficient:

$$\beta_{e_4,e_1} = 1, \ \beta_{e_8,e_1} = 1, \ \beta_{e_5,e_2} = 1,$$

 $\beta_{e_6,e_2} = 1, \ \beta_{e_7,e_3} = 1, \ \beta_{e_9,e_3} = 1.$

PROOF OF LEMMA 3

Note that $\phi(\alpha) = \prod_{i=1}^m (\alpha^T \alpha + \gamma_i^2)^{r/2}$ and $f(\alpha) =$ $\prod_{i=1}^{m} |b_i^T \alpha|$. Assume that $r \geq 2$. If r = 1, then a direct transmission strategy is sufficient, and the network coding strategy provides no additional benefit.

We denote the domain of $\frac{\phi(\alpha)}{f(\alpha)}$ as $\mathcal{D} = \{\alpha : f(\alpha) \neq 0\}$. Fix an arbitrary point $\alpha' \in \mathcal{D}$. Considering $0 < f(\alpha) \leq$ $\prod_{i=1}^m (\|\mathbf{b}_i\| \cdot \|\boldsymbol{\alpha}\|)$ and $\phi(\boldsymbol{\alpha}) \geq \prod_{i=1}^m \gamma_i^r > 0$, it follows that $\frac{\phi(\alpha)}{f(\alpha)} \ge \prod_{i=1}^m \frac{\gamma_i^r}{\|\mathbf{b}_i\| \cdot \|\alpha\|}$. Then there exists l > 0 such that for any α satisfying $\|\alpha\| \le l$, we have $\frac{\phi(\alpha)}{f(\alpha)} \ge \prod_{i=1}^m \frac{\gamma_i^r}{\|\mathbf{b}_i\| \cdot l} >$ $\frac{\phi(\alpha')}{f(\alpha')}$. In addition, there exists $\epsilon>0$ such that for any α satisfying $f(\alpha) \leq \epsilon$, we have $\frac{\phi(\alpha)}{f(\alpha)} \geq \frac{\prod_{i=1}^{m} \gamma_i^r}{\epsilon} > \frac{\phi(\alpha')}{f(\alpha')}$. On the other hand, as $\alpha \to \infty$, $\frac{\phi(\alpha)}{f(\alpha)}$ becomes unbounded. Since $\phi(\alpha) > \prod_{i=1}^{m} (\alpha^T \alpha)^{r/2} = \prod_{i=1}^{m} \|\alpha\|^2$, it follows that $\frac{\phi(\alpha)}{f(\alpha)} > \frac{1}{n} \frac{1}{n}$ $\prod_{i=1}^{m} \frac{\|\mathbf{\alpha}\|}{\|\mathbf{b}_i\|}$. As a result, there exists u > 0 such that for any α satisfying $\|\alpha\| \geq u$, we have $\frac{\phi(\alpha)}{f(\alpha)} > \prod_{i=1}^m \frac{u}{\|\mathbf{b}_i\|} > \frac{\phi(\alpha')}{f(\alpha')}$. Define $\mathcal{D}_{\alpha'} = \{\alpha: l \leq \|\alpha\| \leq u, f(\alpha) \geq \epsilon\}$. It follows that the global minimum of $\frac{\phi(\alpha)}{f(\alpha)}$ over \mathcal{D} is either α' or lies within \mathcal{D} . If the global minimum is α' then α' done. Otherwise, by the Extreme Value Theorem, since $\frac{\phi(\alpha)}{f(\alpha)}$

within $\mathcal{D}_{\alpha'}$. If the global minimum is α' , then the proof is is continuous and $\mathcal{D}_{\alpha'}$ is closed and bounded, there exists α' such that $\alpha^* = \min_{\alpha \in \mathcal{D}_{\alpha'}} \frac{\phi(\alpha)}{f(\alpha)} = \min_{\alpha \in \mathcal{D}} \frac{\phi(\alpha)}{f(\alpha)}$.

APPENDIX D PROOF OF THEOREM 1

In this section, we show that the coding scheme created by **Algorithm I and II** ensures that $\overline{\mathbf{F}}_t$ for $t \in \mathcal{T}$ has rank r.

We first show that \mathbf{F}_t^i always maintains rank r during the updating, provided that the desired coding coefficients specified in the algorithm can be found.

Initially, the generator matrix $\mathbf{A} \in \mathbb{F}^{r \times |\operatorname{Out}(\rho)|}$ can be constructed such that \mathbf{F}_t^0 for $t \in \mathcal{T}$ has rank r. The condition $r \leq |\operatorname{Out}(\rho)|$ is sufficient for the existence of such **A**.

Assume that at the (i-1)-th step, $\widetilde{\mathbf{F}}_t^{i-1}$ has rank r. In the *i*-th step, edge e with tail v is added to the graph. We show that the update in the i-th step of the algorithm ensures that \mathbf{F}_t^i also has rank r. Let \mathcal{T}_e denote the set of sink nodes with e on one of its paths from the source node. Let $U = \langle \mathbf{c}_{e'} : e' \in$ $\operatorname{In}(v)$ denote the space span by vectors $\{\mathbf{c}_{e'}: e' \in \operatorname{In}(v)\}$. Suppose e is part of the j-th path of node t. Let $\tilde{\mathbf{f}}_{t,j}^{i-1}$ be the column of $\widetilde{\mathbf{F}}_t^{i-1}$ corresponding to the j-th path, and $\widetilde{\mathbf{F}}_{t,-j}^{i-1}$ be the matrix obtained from $\widetilde{\mathbf{F}}_t^{i-1}$ by removing $\widetilde{\mathbf{f}}_{t,j}^{i-1}$. Let $V_t =$ $\langle \text{columns of } \widetilde{\mathbf{F}}_{t,-j}^{i-1} \rangle$. We just need to show that there exists $\mathbf{c}_e \in U \setminus \cup_{t \in \mathcal{T}_e} (U \cap V_t)$.

Let's view this problem from the perspective of linear subspaces. For any $t \in \mathcal{T}_e$, since $\widetilde{\mathbf{f}}_{t,j}^{i-1} \notin V_t$ and $\widetilde{\mathbf{f}}_{t,j}^{i-1} \in U$, we have $\dim(U \cap V_t) \leq \dim(U) - 1 < \dim(U)$. It follows that $\mathbf{c}_e \in U \setminus \bigcup_{t \in \mathcal{T}_e} (U \cap V_t)$ exists. In fact, since $|\mathcal{T}_e|$ is finite, nearly all of the points in linear space U lie in the set $U \setminus \bigcup_{t \in \mathcal{T}_e} (U \cap V_t)$. This implies that, when using floatingpoint numbers, randomly choosing $\beta_{e',e}$ for each $e' \in \text{In}(v)$ is sufficient to obtain a $\mathbf{c}_e \in U \setminus \cup_{t \in \mathcal{T}_e} (U \cap V_t)$. We construct $\widetilde{\mathbf{F}}_t^i$ from $\widetilde{\mathbf{F}}_t^{i-1}$ by replacing $\widetilde{\mathbf{f}}_{t,j}^{i-1}$ with \mathbf{c}_e . This ensures that $\widetilde{\mathbf{F}}_t^i$ is full rank. Similar randomized approach can be utilized to construct the matrix A.

In each step i of the algorithm, $\tilde{\mathbf{f}}_{t,i}^{i}$ always takes the value of \mathbf{c}_e where e is the most downstream edge in the truncation in G^i along the j-th edge-disjoint path from the source node ρ to the sink node t. Therefore, when the algorithm stops, we have $\bar{\mathbf{F}}_t = \mathbf{F}_t$, which has full rank.

APPENDIX E PROOF OF THEOREM 2

Suppose that

$$\alpha_0 = \arg \max_{\alpha: \alpha^T \alpha = 1} f(\alpha)$$

$$\alpha_1 = \arg\min_{\boldsymbol{\alpha}: f(\boldsymbol{\alpha}) \neq 0} \frac{\phi(\boldsymbol{\alpha})}{f(\boldsymbol{\alpha})}.$$

We have

$$\frac{\phi(\|\boldsymbol{\alpha}_1\|\boldsymbol{\alpha}_0)}{f(\|\boldsymbol{\alpha}_1\|\boldsymbol{\alpha}_0)} = \frac{\phi(\boldsymbol{\alpha}_1)}{f(\|\boldsymbol{\alpha}_1\|\boldsymbol{\alpha}_0)} \leq \frac{\phi(\boldsymbol{\alpha}_1)}{f(\boldsymbol{\alpha}_1)}$$

where the first equality holds as $\alpha_0^T \alpha_0 = 1$, and the second inequality holds as

$$f(\|\boldsymbol{\alpha}_1\|\boldsymbol{\alpha}_0) = \|\boldsymbol{\alpha}_1\|^m \cdot f(\boldsymbol{\alpha}_0) \ge \|\boldsymbol{\alpha}_1\|^m \cdot f(\frac{\boldsymbol{\alpha}_1}{\|\boldsymbol{\alpha}_1\|}) = f(\boldsymbol{\alpha}_1).$$

On the other hand, since $\frac{\phi(\|\alpha_1\|\alpha_0)}{f(\|\alpha_1\|\alpha_0)} \geq \frac{\phi(\alpha_1)}{f(\alpha_1)}$, it follows that $\frac{\phi(\|\alpha_1\|\alpha_0)}{f(\|\alpha_1\|\alpha_0)} = \frac{\phi(\alpha_1)}{f(\alpha_1)}$. Therefore, we also have $f(\alpha_0) = \frac{\phi(\alpha_1)}{f(\alpha_1)}$. $f(\frac{\alpha_1}{\|\alpha_1\|})$. As a result $\|\alpha_1\|\alpha_0$ minimizes $\frac{\phi(\alpha)}{f(\alpha)}$ and $\frac{\alpha_1}{\|\alpha_1\|}$ maximizes $f(\alpha)$.

APPENDIX F CONSTRUCTION OF GENERATOR MATRIX

To optimize the generator matrix A, we propose a heuristic algorithm to minimize $\prod \kappa(\mathbf{F}_t^0)$.

First, initialize $\mathbf{A} \in \mathbb{F}^{r \times |\operatorname{Out}(\rho)|}$ by sampling each entry uniformly from the interval [0, 2]. With high probability $rank(\mathbf{A}) = r$. Note that each column in **A** corresponds to a coefficient vector \mathbf{c}_e for each $e \in \mathrm{Out}(\rho)$. The transfer matrix $\widetilde{\mathbf{F}}_t^0$ for $t \in \mathcal{T}$ is a submatrix of **A**, consisting of the vectors $\mathbf{c}_e \in {\mathbf{c}_e : e \in \mathrm{Out}(\rho)}$ if edge e is part of its r paths. With high probability, $rank(\tilde{\mathbf{F}}_t^0) = r$. If this condition is not met, we will resample A until it is satisfied. We then replace the columns of **A** that appear in only one transfer matrix \mathbf{F}_t^0 with standard basis vectors from $\{\hat{\mathbf{e}}_i : i = 1, \dots r\}$, ensuring that the full-rank property of $\widetilde{\mathbf{F}}_{t}^{0}$ is preserved.

Next, we optimize the columns of A that are shared by multiple \mathbf{F}_t^0 . Suppose column \mathbf{c}_e is of these. Let $\mathcal{T}_e \subset \mathcal{T}$ denote the set of sink nodes where c_e appears in their transfer matrices. We optimize c_e by minimizing the upper bound of $\prod_{t\in\mathcal{T}_e}\kappa(\widetilde{\mathbf{F}}_t^0)$, as given in (10). Using our optimization framework, this involves determining $\alpha\in\mathbb{F}^r$ for (11). Subsequently, \mathbf{c}_e is updated to $\sum_{i=1}^r\alpha_i\hat{\mathbf{e}}_i$. This process is iterated for all shared columns, allowing for multiple cycles to improve results, until the decrease in $\prod_{t\in\mathcal{T}_e}\kappa(\widetilde{\mathbf{F}}_t^i)$ falls below a specified threshold.