Análise Descritiva de Dados com R: Base de microdados enade 2018

Gilson Castro 27/08/2020

Descrição do problema

O coordenador do curso de ciências econômicas de uma faculdade no nordeste solicitou que sua equipe de trabalho fizesse um estudo sobre o desempenho dos alunos do curso mas para isso, seria preciso entender o conjunto de dados dessa forma, foi escolhida a base de microdados do enade, afim de resumir as notas geral para elaborar estratégias pedagógicas com objetivo de melhorar o desempenho da sua instituição.

Três questões para responder

- 1. Onde estão concentradas as maiores notas por turno ?
- 2. Qual turno tem as maiores notas?
- 3. Qual Estado tem a maior nota média ?

Base de dados

Attaching package: 'dplyr'

Para realizar a análise descritiva o grupo de trabalho utilizou uma base de microdados(dados desagregados) do ENADE (Exame Nacional de Desempenho dos Estudantes) esse exame avalia o desempenho dos alunos de ensino superior concluintes dos cursos de graduação, através de um questionário composto por perguntas relacionadas ao perfil do aluno, conteúdo programático do curso, habilidade, competências.

Tipo de análise de dados : Análise descritiva

Nesta análise o objetivo é organizar e descrever o conjunto de dados, esse tipo de análise é um dos primeiros passos da análise estatistica pois auxilia na visão geral dos dados utilizando as medidas de posição e dispersão . Será apresentado também gráficos e tabelas para melhor compreensão do problema.

Carregando os pacotes da análise

```
library (ggplot2)
library (readr)
library (e1071)
library (plotly)
## Attaching package: 'plotly'
##
   The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:stats':
##
##
       filter
## The following object is masked from 'package:graphics':
##
##
       layout
require (dplyr)
## Loading required package: dplyr
```

```
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
require(Hmisc)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
      src, summarize
##
\#\# The following object is masked from 'package:plotly':
##
##
      subplot
## The following object is masked from 'package:e1071':
##
      impute
##
## The following objects are masked from 'package:base':
##
     format.pval, units
require (esquisse)
## Loading required package: esquisse
require (devtools)
## Loading required package: devtools
## Loading required package: usethis
require (readr)
require (ggplot2)
require (e1071)
require (plotly)
library (tidyverse)
## -- Attaching packages -----
                                                            ----- tidyverse 1.3.0 --
## v tibble 3.0.3
                     v stringr 1.4.0
## v tidyr 1.1.0
                     v forcats 0.5.0
## v purrr 0.3.4
```

```
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter()
                   masks plotly::filter(), stats::filter()
## x dplyr::lag()
                    masks stats::lag()
                  masks dplyr::src()
## x Hmisc::src()
## x Hmisc::summarize() masks dplyr::summarize()
library(scales)
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
\#\,\#
      discard
## The following object is masked from 'package:readr':
\# \#
      col factor
```

Carregando os dados

```
#verificação e alteração de pasta destino para trabalhar
setwd("C:/Users/gilso/OneDrive/Documentos/enade2018")
getwd()
```

```
## [1] "C:/Users/gilso/OneDrive/Documentos/enade2018"
```

```
#carregando a base de dados
base_enade=read.table("microdados_enade_2018.txt",header = TRUE,sep = ";",dec =",",colClasses = c(NT_OBJ_FG=
"numeric"))
#visualizando completa a base
View(base_enade)
# verificação da estrutura do conjunto de dados
str(base_enade)
```

```
## 'data.frame': 548127 obs. of 137 variables:
## $ NU ANO
                 ## $ CO_IES
                  : int 10003 10003 10003 10003 10003 10003 10003 10003 10003 ...
## $ CO_CATEGAD
                  : int 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 ...
## $ CO_ORGACAD
## $ CO GRUPO
                   : int 1 1 1 1 1 1 1 1 1 1 ...
                   : int 47116 47116 47116 47116 47116 47116 47116 47116 47116 47116 ...
## $ CO CURSO
## $ CO_MODALIDADE
                   : int 1 1 1 1 1 1 1 1 1 1 ...
## $ CO_MUNIC_CURSO
                   : int 3546603 3546603 3546603 3546603 3546603 3546603 3546603 3546603 3546603
03 ...
## $ CO_UF_CURSO
                   : int 35 35 35 35 35 35 35 35 ...
## $ CO REGIAO CURSO : int 3 3 3 3 3 3 3 3 3 ...
## $ NU IDADE
                   : int 22 49 23 25 22 22 22 22 25 21 ...
## $ TP SEXO
                   : chr "M" "F" "M" "M" ...
## $ ANO FIM EM
                  : int 2013 1988 2013 2011 2014 2014 2014 2014 2011 2014 ...
                  ## $ ANO_IN_GRAD
## $ CO_TURNO_GRADUACAO: int 4 4 4 4 4 4 4 4 4 ...
## $ TP_INSCRICAO_ADM : int 0 0 0 0 0 0 0 0 0 ...
                 : int 00000000000...
##
  $ TP_INSCRICAO
   $ NU ITEM OFG
                   : int
                         8 8 8 8 8 8 8 8 8 8 . . .
   $ NU_ITEM_OFG_Z
                         0 0 0 0 0 0 0 0 0 0 ...
##
                   : int
##
   $ NU ITEM OFG X
                   : int 0000000000...
## $ NU_ITEM_OFG_N
                   : int 0000000000...
                   : int 27 27 27 27 27 27 27 27 27 27 ...
## $ NU_ITEM_OCE
## $ NU ITEM OCE Z
                   : int 1 1 1 1 1 1 1 1 1 1 ...
## $ NU ITEM OCE X
                  : int 888888888 ...
                 : int 0000000000...
## $ NU ITEM OCE N
## $ DS_VT_GAB_OFG_ORIG: chr "CACBEBDE" "CACBEBDE" "CACBEBDE" "CACBEBDE" ...
## $ DS VT GAB OFG FIN : chr "CACBEBDE" "CACBEBDE" "CACBEBDE" "CACBEBDE" ...
## $ DS_VT_GAB_OCE_ORIG: chr "ADBBDEDCEEDCAEZADBCBDABECBB" "ADBBDEDCEEDCAEZADBCBDABECBB" "ADBBDEDCEEDCAEZA
DBCBDABECBB" "ADBBDEDCEEDCAEZADBCBDABECBB" ...
```

```
## $ DS VT GAB OCE FIN : chr "XXBXDEDXEEDCAEZADBCBXAXECXX" "XXBXDEDXEEDCAEZADBCBXAXECXX" "XXBXDEDXEEDCAEZA
DBCBXAXECXX" "XXBXDEDXEEDCAEZADBCBXAXECXX" ...
## $ DS_VT_ESC_OFG : chr "CACCDDDD" "CAADEDDE" "CAAACBBE" "BAADDBCC" ...
                          : int 11100010 11001011 11000101 1000100 11010101 10001100 11000101 11100011 100011
## $ DS VT ACE OFG
1 1111101 ...
## $ DS VT ESC OCE : chr "BADBDADAEACAABAADBECBDACCCA" "BBDBEEDAEBCEAEBADBCBBEAECCA" "CDDBDCDAEEDCACDA
DDCBBDAECCA" "BACAAADBEBEACDDBCACBAABACBC" ...
## $ DS_VT_ACE_OCE : num 9.91e+26 9.91e+26 9.91e+26 9.91e+26 9.91e+26 ...
## $ TP_PRES
## $ TP_PR_GER
                          : int 555 555 555 555 555 555 555 555 555 ...
                        : int 555 555 555 555 555 555 555 555 555 ...
## $ TP PR OB FG
                        : int 555 555 555 555 555 555 555 555 555 ...
## $ TP_PR_DI_FG
                        : int 555 555 555 555 555 555 555 333 555 ...
                        : int 555 555 555 555 555 555 555 555 555 ...
## $ TP_PR_OB_CE
## $ TP_PR_DI_CE
## $ TP_SFG_D1
## $ TP_SFG_D2
                        : int 555 555 555 555 555 555 555 333 555 555 ...
                        : int 555 555 555 336 555 555 555 333 555 ...
                        : int 555 555 555 333 555 333 555 555 333 555 ...
## $ TP_SFG_D2
## $ TP_SCE_D1
## $ TP_SCE_D2
## $ TP_SCE_D3
                        : int 333 555 555 333 555 555 555 333 336 555 ...
: int 333 555 555 555 555 555 333 336 555 ...
: int 555 555 555 333 555 333 555 333 336 555 ...
: num 42.8 59.3 60.9 25 42.4 40 55.1 38.7 50 50.6
## $ NT_GER
## $ NT FG
                         : num 50.6 57.9 47.2 15 58.1 26.3 39.2 55.5 30 59.8 ...
## $ NT_GBJ_FG : num 50.6 57.9 47.2 15 56.1 26.3 39.2 55.5 30 3
## $ NT_OBJ_FG : num 50 62.5 50 25 62.5 37.5 50 62.5 50 75 ...
## $ NT_DIS_FG : num 51.5 51 43 0 51.5 9.5 23 45 0 37 ...
## $ NT_FG_D1 : int 63 55 33 0 42 19 36 47 0 48 ...
## $ NT_FG_D1_PT : int 75 75 65 0 50 55 60 55 0 60 ...
## $ NT_FG_D1_CT : int 60 50 25 0 40 10 30 45 0 45 ...
## $ NT_FG_D2 : int 40 47 53 0 61 0 10 43 0 26 ...
## $ NT_FG_D2_PT : int 60 55 65 0 65 0 50 75 0 50 ...
## $ NT_FG_D2_CT : int 35 45 50 0 60 0 0 35 0 20 ...
## $ NT CE
                         : num 40.2 59.7 65.4 28.3 37.1 44.5 60.4 33.1 56.7 47.5 ...
## $ NT_OBJ_CE
## $ NT_DIS_CE
## $ NT_CE_D1
                        : num 44.4 66.7 72.2 33.3 38.9 50 61.1 38.9 66.7 50 ...
                          : num 16.7 20 26.7 0 26.7 13.3 56.7 0 0 33.3 ...
                          : int 0 40 40 0 40 40 40 0 0 30 ...
## $ NT_CE_D2
                         : int 0 20 40 0 40 0 80 0 0 20 ...
                         : int 50 0 0 0 0 50 0 0 50 ...
## $ NT CE D3
                         : chr "D" "B" "C" "D" ...
## $ CO RS I1
                        : chr "D" "C" "C" "C" ...
## $ CO RS I2
                        : chr "C" "A" "C" "E" ...
## $ CO RS I3
                        : chr "A" "A" "B" "B" ...
## $ CO_RS_I4
                        : chr "A" "C" "B" "B" ...
## $ CO RS I5
## $ CO_RS_I6
                        : chr "C" "B" "C" "B" ...
## $ CO_RS_I7
                        : chr "A" "B" "B" "B" ...
                        : chr "D" "D" "D" "D" ...
## $ CO_RS_I8
## $ CO_RS_I9
                        : chr "D" "D" "D" "E" ...
: chr "A" "B" "A" "A" ...
: chr "D" "A" "A" "A" ...
## $ QE_I01
## $ QE_I02
## $ QE_I03
                         : chr "A" "A" "A" "A" ...
## $ QE I04
                        : chr "D" "B" "D" "D" ...
## $ QE I05
                        : chr "D" "B" "D" "D" ...
                        : chr "B" "C" "B" "B" ...
## $ QE I06
                        : chr "E" "D" "E" "D" ...
## $ QE IO7
                        : chr "C" "D" "E" "D" ...
## $ QE I08
                        : chr "B" "E" "D" "D" ...
## $ QE_I09
                        : chr "A" "E" "E" "A" ...
## $ QE_I10
## $ QE_I11
                        : chr "H" "H" "H" "H" ...
                        : chr "A" "A" "A" "A" ...
## $ QE_I12
                        : chr "D" "D" "B" "B" ...
## $ QE_I13
                        : chr "A" "F" "A" "A"
## $ QE_I14
## $ QE_I15
                          : chr "A" "A" "A" "A" ...
## $ QE_I16
                         : int 50 35 35 35 35 35 35 35 35 ...
## $ QE I17
                         : chr "A" "A" "A" "A" ...
## $ QE I18
                         : chr "A" "C" "A" "A" ...
## $ QE I19
                        : chr "B" "C" "B" "B" ...
                        : chr "I" "H" "A" "A" ...
## $ QE_I20
                        : chr "A" "A" "B" "A" ...
## $ QE I21
                        : chr "B" "C" "D" "E" ...
## $ QE_I22
                        : chr "B" "C" "D" "E" ...
## $ QE_I23
                        : chr "A" "A" "B" "A" ...
## $ QE_I24
## $ QE_I25
                        : chr "C" "A" "C" "A" ...
## $ QE_I26
                         : chr "" "" "C" ...
                          : int 6666666666...
## $ QE_I27
## $ QE_I28
                          : int 6666666666...
## $ OF T29
                          · in+ 666666666
```

```
## $ QE_I30 : int 6 6 6 6 6 6 6 6 6 6 6 ...
## [list output truncated]
```

```
#Transformação , manipulalação e limpeza dos dados
# aqui vamos selecionar as variavéis de interesse no nosso conjunto de dados
dados=base_enade%>%dplyr::select(NT_OBJ_FG,
                                 CO GRUPO,
                                 CO REGIAO CURSO,
                                 QE I02,
                                 CO_TURNO_GRADUACAO, CO_UF_CURSO)
View(dados)
# aqui filtrei um curso para analisar nesse caso, foi escolhido ciências econômicas
bd_enade=dados%>%filter(CO_GRUPO==13)
View(bd enade)
# transformação do codigo 13 em ciência econômicas
bd enade=bd enade%>% mutate (CURSO = case when (CO GRUPO == 13 ~ "CIÊNCIAS ECONÔMICAS"))
View(bd_enade)
#nomeando a variavel nota
names (bd_enade) [1] = "NOTAS"
View(bd_enade)
# aqui uso a função novamente para transformar e classificar CO REGIAO CURSO
bd_enade=bd_enade%>% mutate (REGIAO = case_when (CO_REGIAO_CURSO == 1 ~ "Norte",
                                                 CO REGIAO CURSO == 2 ~ "Nordeste",
                                                 CO REGIAO CURSO == 3 ~ "Sudeste",
                                                 CO_REGIAO_CURSO == 4 ~ "Sul",
                                                 CO_REGIAO_CURSO == 5 ~ "Centro-Oeste" ))
View(bd_enade)
#transformação e classificação da QE 102 em seus respectivos nomes
bd_enade=bd_enade%>% mutate (RACA = case_when (QE_I02 == "A" ~ "Branca",
                                               QE I02 == "B" ~ "Preta",
                                               QE_I02 == "C" ~ "Amarela",
                                               QE I02 == "D" ~ "Parda",
                                               QE I02 == "E" ~ "Indigena",
                                               QE I02 == "F" ~ "Não quero declarar" ))
View(bd enade)
#transformação de turno
bd_enade=bd_enade%>% mutate (TURNO = case_when (CO_TURNO_GRADUACAO == 1 ~ "Matutino",
                                                CO_TURNO_GRADUACAO == 2 ~ "Vespertino",
                                                CO_TURNO_GRADUACAO == 3 ~ "Integral",
                                                CO TURNO GRADUACAO == 4 ~ "Noturno" ))
#Tranformação da variavel cod_uf_curso em nome dos estados
bd enade=bd enade%>% mutate(ESTADOS = case when (CO UF CURSO == 11 ~"RO",
                                                  CO_UF_CURSO == 12 ~ "AC",
                                                  CO UF CURSO == 13 ~ "AM",
                                                  CO UF CURSO == 14 ~ "RR",
                                                  CO_UF_CURSO == 15 ~ "PA",
                                                  CO UF CURSO == 16 ~ "AP",
                                                  CO UF CURSO == 17 ~ "TO",
                                                  CO UF CURSO == 21 ~ "MA",
                                                  CO UF CURSO == 22 ~ "PI",
                                                  CO_UF_CURSO == 23 ~ "CE",
                                                  CO_UF_CURSO == 24 ~ "RN",
                                                  CO_UF_CURSO == 25 ~ "PB",
                                                  CO UF CURSO == 26 ~ "PE",
                                                  CO UF CURSO == 27 ~ "AL",
                                                  CO_UF_CURSO == 28 ~ "SE",
                                                  CO UF CURSO == 29 ~ "BA",
                                                  CO_UF_CURSO == 31 ~ "MG",
                                                  CO UF CURSO == 32 ~ "ES",
                                                  CO UF CURSO == 33 ~ "RJ",
                                                  CO UF CURSO == 35 ~ "SP",
                                                  CO UF CURSO == 41 ~ "PR",
                                                  CO UF CURSO == 42 ~ "sc",
                                                  CO UF CURSO == 43 ~ "RS",
                                                  CO_UF_CURSO == 50 ~ "MS",
                                                  CO_UF_CURSO == 51 ~ "MT",
                                                  CO_UF_CURSO == 52 ~ "GO",
                                                  CO UF CURSO == 53 ~ "DF"
                                                  ))
#excluindo variaveis antigas da base nesse caso , das colunas
bd_enade=bd_enade[,-c(2,3,4,5)]
```

Análise descritiva dos dados

Após uma limpeza e transformação dos dados já podemos trabalhar na análise descritiva

#aqui usamos a função describe para se ter uma compreensão geral dos dados sobre cada variavel

describe(bd_enade)

```
## bd_enade
##
## 7 Variables 9582 Observations
## n missing distinct
                          Info Mean
    8073 1509 9 0.975 63.68 26.04
## lowest: 0.0 12.5 25.0 37.5 50.0, highest: 50.0 62.5 75.0 87.5 100.0
##
## Value 0.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0
## Frequency
            69 231 469 892 1255 1430 1671 1363 693
## Proportion 0.009 0.029 0.058 0.110 0.155 0.177 0.207 0.169 0.086
## CO_UF_CURSO
          missing distinct Info Mean Gmd .05 0 25 0.973 33.59 8.66 21
## n missing distinct
##
                                                  21
     9582
             .50 .75 .90 .95
35 35 43 50
    .25
##
      31
##
##
## lowest : 12 13 14 15 17, highest: 43 50 51 52 53
## CURSO
##
                n
                           missing distinct
                                                               value
##
              9582
                           0
                                           1 CIÊNCIAS ECONÔMICAS
##
## Value CIÊNCIAS ECONÔMICAS
## Frequency
## Proportion
                       1
## -----
## REGIAO
## n missing distinct
    9582 0 5
##
## lowest : Centro-Oeste Nordeste Norte Sudeste Sul
## highest: Centro-Oeste Nordeste Norte
                                        Sudeste
##
## Value Centro-Oeste Nordeste Norte Sudeste Sul
## Frequency 512 1979 404 4916 1771
## Proportion 0.053 0.207 0.042 0.513 0.185
## RACA
## n missing distinct
    8495 1087 6
##
##
                                      Indígena Não quero declarar Parda
Não quero declarar Parda Preta
## lowest : Amarela
                      Branca
Indígena
## highest: Branca
##
                             Branca
## Value
## Frequency
                  Amarela
                                                  Indígena
                   199
                                   5187
                                                    19
## Proportion
                                    0.611
                                                     0.002
##
                                                    Preta
## Value Não quero declarar
                                 Parda
           190
0.022
## Frequency
                                     2245
                                                      655
                                    0.264
                                                   0.077
## Proportion
## -----
## TURNO
## n missing distinct
    9582 0 4
##
##
## Value Integral Matutino Noturno Vespertino
## Frequency 2219 1369 5844 150
## Proportion 0.232 0.143 0.610 0.016
## -----
## ESTADOS
## n missing distinct
    9582 0 25
##
## lowest : AC AL AM BA CE, highest: RS sc SE SP TO
```

#resumo básico do nosso conjunto de dados summary(bd enade)

```
CO_UF_CURSO CURSO
##
   NOTAS
                                               REGIAO
## Min. : 0.00 Min. :12.00 Length:9582 Length:9582
##
  1st Qu.: 50.00
                 1st Qu.:31.00
                              Class :character
                                              Class : character
## Median: 62.50 Median: 35.00
                              Mode :character
                                              Mode :character
## Mean : 63.68 Mean :33.59
## 3rd Qu.: 87.50 3rd Qu.:35.00
## Max. :100.00 Max. :53.00
##
  NA's :1509
##
   RACA
                    TURNO
                                   ESTADOS
## Length:9582 Length:9582 Length:9582
## Class:character Class:character Class:character
## Mode :character Mode :character Mode :character
##
##
##
##
#se tiver valores faltantes vamos exclui-los com os sequinte comando
```

#se tiver valores faltantes vamos exclui-los com os seguinte comando
bd_enade=bd_enade%>%na.omit()
summary(bd_enade) #foi removido todos valores faltantes

```
NOTAS CO_UF_CURSO CURSO
##
                                           REGIAO
                                       Length:8024
               Min. :12.00 Length:8024
## Min. : 0.00
                             Class :character Class :character
                1st Qu.:29.00
##
  1st Qu.: 50.00
## Median: 62.50 Median: 35.00 Mode: character Mode: character
## Mean : 63.73 Mean :33.49
## 3rd Qu.: 87.50 3rd Qu.:35.00
## Max. :100.00 Max. :53.00
                 TURNO
##
  RACA
                                  ESTADOS
## Length:8024 Length:8024 Length:8024
## Class:character Class:character Class:character
## Mode :character Mode :character Mode :character
##
##
##
```

#mediana das notas do enade
mediana_enade=median(bd_enade\$NOTAS)
mediana_enade

```
## [1] 62.5
```

#media das notas
media_notas=mean(bd_enade\$NOTAS)
media_notas

```
## [1] 63.72601
```

freq=table(bd_enade\$NOTAS)
#valor maximo de notas
max(freq)

```
## [1] 1663
```

```
#valor minimo
min(freq)
```

```
## [1] 68
```

```
# verificando a moda
valor maximo=max(freq)
#frequencia das notas
m=names(freq)
#moda das notas
moda=m[freq==valor_maximo]
moda=as.numeric(moda)
## [1] 75
#calculando a amplitude das notas
amplitude_notas=max(bd_enade$NOTAS)-min(bd_enade$NOTAS)
amplitude notas
## [1] 100
#apresentando a variância da notas
variancia=var(bd_enade$NOTAS)
variancia
## [1] 536.7344
#desvio padrão
desvio=sd(bd_enade$NOTAS)
desvio
## [1] 23.16753
#calculando o coeficiente de variação
CV=desvio/media_notas
CV
## [1] 0.363549
#curtose dos dados
curtose=kurtosis(bd_enade$NOTAS)
curtose
## [1] -0.4614936
#assimetria dos dados
ASM= skewness(bd_enade$NOTAS)
ASM
## [1] -0.4112657
resumo geral=c (media_notas, mediana enade, amplitude_notas, variancia, desvio, CV, curtose, ASM, moda)
resumo_geral
## [1] 63.7260095 62.5000000 100.0000000 536.7344362 23.1675298 0.3635490
```

```
## [7] -0.4614936 -0.4112657 75.0000000

hist_notas=ggplot(bd_enade, aes(x = NOTAS)) +
    geom_histogram(color = "black", fill = "green", bins = 10) +
    geom_density(col = 2, size = 1, aes(y = 5 * ..count..)) +
    labs(title="Histograma e Curva de Densidade das Notas dos Alunos de Ciências Econômicas")+
    labs(x = "Notas", y = "Freqüência")
hist_notas
```

Histograma e Curva de Densidade das Notas dos Alunos de Ciências Econômica


```
#grafico de densidade das notas
bd_enade%>%
filter( NOTAS<200 )%>%
ggplot( aes(x=NOTAS,)) +
geom_density(fill="#69b3a2", color="#e9ecef", alpha=0.8)
```



```
#grafico de boxplot de notas x estados
bd_enade %>%
  mutate(class = fct_reorder(ESTADOS, NOTAS, .fun='length')) %>%
  ggplot( aes(x=ESTADOS, y=NOTAS, fill=class)) +
  geom_boxplot() +
  xlab("ESTADOS") +
  theme(legend.position="none") +
  xlab("") +
```



```
#verficação da frequência e proporção TURNO
table(bd_enade$TURNO)
```

```
##
## Integral Matutino Noturno Vespertino
## 1944 1175 4772 133
```

prop.table(table(bd_enade\$TURNO))

```
##
## Integral Matutino Noturno Vespertino
## 0.24227318 0.14643569 0.59471585 0.01657527
```

#Verficação da frequência e proporção TURNO X REGIÃO table(bd enade\$TURNO,bd enade\$REGIAO)

```
##
##
               Centro-Oeste Nordeste Norte Sudeste Sul
##
    Integral
                123 201 11 1402 207

    42
    311
    89

    253
    1068
    231

                                            545 188
                               311 89
##
    Matutino
                                            2161 1059
##
    Noturno
##
                        0
                                82 14
                                               37 0
    Vespertino
```

prop.table(table(bd_enade\$TURNO,bd_enade\$REGIAO))

```
##
## Centro-Oeste Nordeste Norte Sudeste Sul
## Integral 0.015329013 0.025049850 0.001370887 0.174725823 0.025797607
## Matutino 0.005234297 0.038758724 0.011091725 0.067921236 0.023429711
## Noturno 0.031530409 0.133100698 0.028788634 0.269317049 0.131979063
## Vespertino 0.000000000 0.010219342 0.001744766 0.004611167 0.000000000
```

```
#verficando a freq e prop raça x regiao
table(bd_enade$RACA,bd_enade$REGIAO)
```

```
##
##
                      Centro-Oeste Nordeste Norte Sudeste Sul
                              20 43 6 92 25
##
    Amarela
                              195
                                      635 95
                                                 2806 1163
##
   Branca
                               0
                                      5 4
43 3
                                                  7 3
91 37
##
   Indígena
                               3
##
   Não quero declarar
                              150 760 204 843 173
##
##
                                      176 33 306 53
prop.table(table(bd enade$RACA,bd enade$REGIAO))
##
##
                    Centro-Oeste
                                    Nordeste
                                                 Norte
                    0.0024925224 0.0053589232 0.0007477567 0.0114656032
##
   Amarela
                    0.0243020937 0.0791375872 0.0118394816 0.3497008973
   Indígena 0.000000000 0.0006231306 0.0004985045 0.0008723829
##
##
   Não quero declarar 0.0003738784 0.0053589232 0.0003738784 0.0113409771
    Parda 0.0186939182 0.0947158524 0.0254237288 0.1050598205
##
##
                    0.0062313061 0.0219341974 0.0041126620 0.0381355932
    Preta
##
##
   Amarela 0.0031156530
Branca 0.1449401795
Indígena 0.0003738784
##
##
##
   Não quero declarar 0.0046111665
##
   Parda 0.0215603190
##
##
   Preta
                    0.0066051844
#agregação turno e notas
NOTAS TURNO=bd enade%>%select(TURNO,NOTAS)%>%
 group by (TURNO) %>%
 summarise (MEDIA=mean(NOTAS))
## `summarise()` ungrouping output (override with `.groups` argument)
# agregando por turno e regiao
 NOTA TUR REG = bd enade %>% select (TURNO, REGIAO, NOTAS) %>%
 group by (TURNO, REGIAO) %>%
 summarise (MEDIA = mean(NOTAS))
## `summarise()` regrouping output by 'TURNO' (override with `.groups` argument)
# agregando aqui por turno , regiao e notas
NTR = bd enade%>%select(TURNO, REGIAO, NOTAS)%>%
group by (TURNO, REGIAO) %>%
 summarise(MEDIA=mean(NOTAS))
```

`summarise()` regrouping output by 'TURNO' (override with `.groups` argument)

NTR

```
## # A tibble: 18 x 3
## # Groups: TURNO [4]
    LUKNO REGIAO
   TURNO
                       MEDIA
##
             ##
## 1 Integral Centro-Oeste 74.0
## 2 Integral Nordeste 63.6
## 3 Integral Norte
## 4 Integral Sudeste
## 5 Integral Sul
                         66.4
## 6 Matutino Centro-Oeste 70.2
## 7 Matutino Nordeste 61.5
## 8 Matutino Norte
                         61.5
## 9 Matutino Sudeste
                         71.4
## 10 Mac..
## 11 Noturno Centro-oc.
Nordeste
## 10 Matutino Sul
              Centro-Oeste 55.5
                          57.9
                         58.5
## 13 Noturno Norte
                        63.9
## 14 Noturno Sudeste
## 15 Noturno Sul
                         61.0
## 16 Vespertino Nordeste
                        57.6
## 17 Vespertino Norte
## 18 Vespertino Sudeste
                        58.8
# agregando os estados com as médias das notas
NOTAS ESTADOS=bd enade%>%select(ESTADOS,NOTAS)%>%
```

```
group by (ESTADOS) %>%
summarise (MEDIA=mean(NOTAS))
```

```
## `summarise()` ungrouping output (override with `.groups` argument)
```

```
NOTAS ESTADOS
```

```
## # A tibble: 25 x 2
   ESTADOS MEDIA
##
##
   <chr> <dbl>
## 1 AC
## 2 AL
            57.3
## 3 AM
            58.2
## 4 BA
           64.5
## 5 CE
            57.9
## 6 DF
            74.8
   7 ES
            73.4
            54.9
## 8 GO
## 9 MA
            56.5
## 10 MG
           64.7
## # ... with 15 more rows
```

Comentários finais

Analisando as regiões por turno e media de notas, a região centro-oeste tem uma maior média em comparação com as demais no turno integral, em seguida o sudeste também apresenta melhor desempenho médio de notas, enquanto o nordeste tem uma das menores médias de notas no turno integral. No turno matutino a região sudeste apresentou uma melhor média , as regiões nordeste e norte teve uma média menor em relação as outras, no periodo nortuno mais uma vez a região sudeste apresentou uma média superior as demais regiões , o centro-oeste teve a menor nota do grupo. No periodo vespertino o norte teve uma média superior as demais . Portanto , o turno integral tem a maior nota média (68,3) enquanto o vespertino tem a menor média entre o turno.

Sobre as médias das notas, o estado do Distrito Federal(74.77) e Espirito Santo(73.39) apresentou as notas médias maiores.

Gostaria de deixar como fonte referência e inspiração dessa análise alguns canais no youtube que me ajudaram nessa trilha de aprendizado.

1. Análise descritiva na Base de dados do ENADE Usando R - Camila Koehler

Estou aberto a sugestões de melhorias e criticas construtivas, esse é um dos primeiros trabalhos que pretendo iniciar no trilheiro de dados, uma verdadeira trilha de experiências e aprendizados.