Compte rendu de TP Master 2 AMS

# Méthode multipole rapide pour un nuage de points

Gaétan Facchinetti 5 décembre 2016

Université Paris-Saclay, Ecole Normale Supérieure de Cachan, Ecole Nationale Supérieure des Techniques Avancées

# Question 1

Nous avons créer une fonction permettant de renvoyer, pour une densité de point par longueur d'ondre  $n_{\lambda}$  et une fréquence f donnée, un tableau de coordonnées de l'ensemble des points du nuages ainsi que le nombre de N points. Dans notre code ce nombre de points se calcule en fonction des paramètres par la formule,

$$N = 4s_a(s_b - 1) + 2(s_b - 2)^2$$
(1)

Avec  $s_a = \mathbb{E}(fn_{\lambda}L/c) + 1$  et  $s_b = \mathbb{E}(fn_{\lambda}l/c) + 1$ , où L = 1 (m) et l = 0.5 (m) sont les dimensions de la boite et c la célérité de l'onde dans le milieu considéré Nous avons alors pu représenter en Fig. 1 les points de discrétisation.



FIGURE 1 – Points de discrétisation suivant les trois coordonnées spatiales (rouge).  $N=252,\ n_{\lambda}=10,\ f=c/L.$  Pour faciliter la lecture les plans  $x=0,\ y=0$  et z=0 ont été représentés en cyan.

# Question 2

Notons, pour  $i \in [\![1,N]\!]$ ,  $\mathbf{x}_i$  le vecteur position du point du nuage indicé i. Introduisons alors la matrice de la fonction de Green G que nous definissons par :

$$\forall (i,j) \in [1,N]^2 \quad G_{i,j} = \begin{cases} \frac{e^{ik|\mathbf{x}_i - \mathbf{x}_j|}}{|\mathbf{x}_i - \mathbf{x}_j|} & \text{si } i \neq j \\ 0 & \text{si } i = j \end{cases}$$
 (2)

Nous notons  $\tau_a$  le temps d'assemblage de cette matrice. Soit maintenant un vecteur  $\boldsymbol{\rho}$  quelconque de  $\mathbb{R}^N$ . Nous notons  $\tau_c$  le temps de calcul du produit matrice vecteur  $\mathbf{V} = G\boldsymbol{\rho}$ .

Nous pouvons remarquer qu'à partir de  $N \sim 10000$  l'assemblade de la matrice est trop gourmand en mémoire et cela rend l'execution sous Matlab impossible. Nous avons donc fait varier  $n_{\lambda}$  à f fixé pour avoir, d'après Eq. (1), une valeur de N maximale de 9002. Puis nous avons représenté en Fig. 2 et Fig. 3 l'évolution de  $\tau_a$  et  $\tau_c$  en fonction de N.



FIGURE 2 – Temps d'assemblage de G,  $\tau_a$  (losanges rouge) et temps de calcul du produit matrice vecteurs  $\tau_c$  (ronds bleu) en fonction de N. Les deux courbes ont une allure parabolique mais nous pouvons remarquer que, les echelles étant différentes, le temps d'assemblage est plus long



FIGURE 3 – Temps d'assemblage de G,  $\tau_a$  (losanges rouge) et temps de calcul du produit matrice vecteurs  $\tau_c$  (ronds bleu) en fonction de N. Nous pouvons remarquer ici qu'asymptotiquement  $\log(\tau_{a/c}) \simeq 2\log(N) + K_{a/c}$  représentées en pointillé vert avec  $K_{a/c}$  constante.

Comme il l'est montré en Fig. 3, l'évolution du logarithme de  $\tau_a$  avec N tend asymptotiquement vers une droite de pente 2. Il est en cd même pour le logarithme de  $\tau_c$  avec N. Ceci confirme l'évolution en  $O(N^2)$  du temps d'assemblage et de produit matrice vecteur.

Compte rendu de TP Master 2 AMS

#### Question 3

Nous avons calculé la quadrature de Gauss-Legendre à L points en diagonsalisant la matrice tridiagonale définie dans l'énoncé. La methode utiliséé pour obtenir les points de quadrature est la méthode de Golub-Welsh  $^1$ . Avec les notations du TP nous calculons, pour P polynôme tel que  $\deg P \leq 2L-1$ ,

$$\int_{-1}^{1} P(t)dt = \sum_{i=1}^{L} \omega_i P(\lambda_i)$$
 (3)

Ceci est équivalent, par un changement de variable, à

$$\int_0^{\pi} P(\cos(t))\sin(t)dt = \sum_{i=1}^{L} \omega_i P(\theta_i)$$
 (4)

Nous avons testé cette quadrature avec L=3 en comparaison de celle à 3 points dévleoppée lors du premier TP. Nous écrivons  $I_{GL}$  le résultat par la quadrature de Gauss Legendre,  $I_1$  le résultat pour la quadrature à trois points du premier TP,  $I_M$  le résultat de la quadrature effectuée par Matlab et  $I_v$  la valeur vraie pour l'integration de la fonction f.

| f               | $I_{GL}$ | $I_1$ | $I_M$ | $I_v$ |
|-----------------|----------|-------|-------|-------|
| $x \mapsto x$   | 0.00     | 0.00  | 0.00  | 0     |
| $x \mapsto x^2$ | 0.667    | 0.667 | 0.667 | 2/3   |
| $x \mapsto x^4$ | 0.400    | 0.667 | 0.400 | 2/5   |

Table 1 – Résultat des quadratures numériques

Comme attendu nous observons que pour la quadrature de Gauss-Legendre donne les même resultats pour des polynômes de degré inférieur ou égal à 3 que la quadrature du premier TP. En revanche, comme nous pouvions nous y attendre ici nous avons une solution correcte pour des polynomes de degré 4 et même 5.

# Question 4

Notons

$$C_{l,m} = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}}$$
 (5)

Nous avons, par définition,

$$Y_{lm}(\theta,\phi) = C_{l,m} P_l^m \left(\cos(\theta)\right) e^{im\phi}$$
 (6)

En notant I l'intégrale de  $Y_{lm}$  sur la sphère unité,

$$I = C_{l,m} \int_0^{\pi} P_l^m(\cos(\theta)) \sin(\theta) d\theta \int_0^{2\pi} e^{im\phi} d\phi$$
 (7)

Ainsi si  $m \neq 0$  l'integrale sur  $\phi$  donne directement I=0. De plus, d'après d'autres propriétés des polynomes de Legendre, la quadrature totale doit alors satisfaire les égalités suivantes :

$$\sum_{i,j} \omega_i \omega_j Y_{lm}(\theta_j, \phi_i) = \begin{cases} 0 & \text{si } m \neq 0 \text{ et } l \neq 0 \\ \sqrt{4\pi} & \text{si } m = 0 \text{ ou } l = 0 \end{cases}$$
(8)

En particulier, la quadrature de l'integrale sur  $\phi$  doit vérifier :

$$\sum_{i} \omega_{i} e^{im\phi_{i}} = \begin{cases} 0 & \text{si } m \neq 0 \\ 2\pi & \text{si } m = 0 \end{cases}$$
 (9)

<sup>1.</sup> Calculation of Gauss Quadrature Rules, G.H. Golub and J.H. Welsh , Math. Comp. 23 (1969), 221-230 , (Apr., 1969)