T국가세관신고데이터기반 위법물 탐지 서비스 개발

Team NA1 예상일 전정재 이보람 안아련

목차

- 1 탐색적 데이터 분석
- 2 전처리
- 3 변수 선택 및 파생변수 선정
- 4 모델링
- 5 서비스 시연 및 목표

프로젝트 조직도

Project Flow Chart

프로젝트 사용 기술

1 탐색적 데이터 분석

분석에 활용하기 위하여 중복 행 제거 및 종속변수 설정

	IMP_TYPE_OF_DECLARATION_1	IMP_TYPE_OF_DECLARATION_2	TRD_TIN_2	TRD_NAME_2	TRD_COUNTRY_2	TRD_ADDR_2
0	ИМ	NaN	NaN	ООО ВИП- ТРАНС	RU	НИЖНЕВАРТОВСК КУЗОВАТКИНА ДОМ 5 СТРОЕНИЕ 3
1	ИМ	NaN	NaN	ООО ВИП- ТРАНС	RU	НИЖНЕВАРТОВСК КУЗОВАТКИНА ДОМ 5 СТРОЕНИЕ 3
2	ИМ	NaN	NaN	ООО ВИП- ТРАНС	RU	НИЖНЕВАРТОВСК КУЗОВАТКИНА ДОМ 5 СТРОЕНИЕ 3
3	ИМ	NaN	NaN	" М/С АКИДЖ ДУТЕ МИЛЛС ЛТД",Ч/З БАНДАР АБАС П/	BD	АББАС
4	ИМ	NaN	NaN	" М/С АКИДЖ ДУТЕ МИЛЛС ЛТД",Ч/З БАНДАР АБАС П/	BD	АББАС

- 원본 데이터
 - '17. 1월 ~ '20. 11월 까지의 T 국가 수입물 통관 데이터
- 주요 내용
 - 계약 관계자, 금액, 화물 내용, 운송 방법 등을 포함한 신고서 및 계약 내역
 - 담당 관세사, 부과 세금의 종류, 납부 방법, 금액 등의 관세 관련 정보

데이터 과제 정의

적발건의 패턴을 학습하여 화물 위법 여부 예측 모형 개발


```
Features
                             중복 행 제거 및 데이터 병합
1 for file in files:
2 tmp_df=pd.read_csv('drive/MyDrive/NA1/source_code/dataset/csv_data/{}'.format(file),encoding='CP949')
3 print('#',str(file)[:-4])
                                                   <u>각 파일별 중복행 개수 합계</u>
  print('전체 sample 수 :'.len(tmp df))
                                                        # imp_2017_1-4
 print('중복 sample 수 :',tmp_df.duplicated().sum!
                                                        전체 sample 수 : 150195 ···
                                                        중복 sample 수 : 40753
6 print()
 1 df = pd.read_excel('.<u>/dataset/impta0200, 9천행치향음·b</u>라명해로 <u>#DRIPPYXI'</u>)
 2 for file in tqdm(files[:-1]):
                               - files[-1:] :파일을 순서대로 불러오기
     temp_df = pd.read_excel('./dataset/{}'.format(file), engine="openpyxl")
     temp_df = temp_df.drop_duplicates()
                                                                      for문 이용
     df = df.append(temp_df)
                                          중복 행 제거 후 데이터프레임(df)에
```

```
Labels
                                  데이터 불러오기
1 illegal = pd.read_excel('drive/MyDrive/NA1/source_code/dataset/csv_data/적발내역.xlsx',
                     sheet_name=1, engine="op떼에터 불러오기 및 불필요 칼럼
3 illegal.drop(['Unnamed: 0','Unnamed: 1','Unnamed: 11'], axis=1, inplace=True)
4 illegal.rename(columns={'해당년도':'YEAR','업체':'IMP_COMPANY','적발건수':'NUMB_OF_DETECTED',
                  '세관코드':'CUSTOMS_CODE','신고서No,':'CUST_NUMBER'
                  'Unnamed: 7':'HS_CODE','품목':'GOODS'한글 컬럼명을 영문으로 변경
                  '검사결과코드':'INSPECTION_RESULT_CODE','위반사항':'YIOLATIONS'},inplace=True)
8 illegal.drop(0,inplace=True)
                                           칼럼 설명 칼럼(0번째 행) 삭제
 1 \text{ ill_idx} = 11
 3 for n, i in illegal[['CUST_NUMBER', 'HS_CODE']].iterrows():
        try:
            tup = (i.cust_number+' ', int(i.hs_code))
            ill_idx.append(tup)
                                                        iterrows()이용
        except:
                                         CUST NUM, HS_CODE 칼럼
            pass
 9 ill_idx[:5]
                                                  각각 (n, i)에 반환 받아
[(1762118/200117/0000002 1,
                               69071000<mark>00),</mark>
                                                  리스트(ill_idx)에 저장
   1762118/040617/0000012
                           ·, 69071000<mark>00)</mark>
   1762118/260417/0100105
                               3903909000),
   1762118/280518/0000230
                               3903909000).
 ( '762118/300518/0000232
                               3903909000) 1
```


	F&L		フ	본데	이터							
										10 print(df.y.valu 0 2173173 1 13958 Name: y, dtype: ir	1 df.shap (2148126,	
IMP	_TYPE_OF_DECLARATION_1	IMP_TYPE_OF_DECLARATION_2	TRD_TIN_2	TRD_NAME_2	TRD_COUNTRY_2	TRD_ADDR_2	CUS_SHIPMENT_SPEC	C_4 CUS_TOTAL_N	MBER_OF_ITEMS_5 CUS_TOTAL_NUMB	BER_OF_PACKAGES_6 CUS_REF_NO_7	ACCEPTANCE_DATE	LABEL
0	МИ	NaN	NaN	ООО ВИП- ТРАНС	RU	НИЖНЕВАРТОВСК КУЗОВАТКИНА ДОМ 5 СТРОЕНИЕ 3	N	NaN	1	64.0 762235/140217/0000189	14.02.17 11:55:18,551000000	
1	МИ	NaN	NaN	ООО ВИП- ТРАНС	RU	НИЖНЕВАРТОВСК КУЗОВАТКИНА ДОМ 5 СТРОЕНИЕ 3	_	NaN	4067	64.0 762235/140217/0000189	14.02.17 11:55:18,551000000	
2	МИ	NaN	NaN	ООО ВИП- ТРАНС	RU	НИЖНЕВАРТОВСК КУЗОВАТКИНА ДОМ 5 СТРОЕНИЕ 3	송 2, 7 ^{제바거소}	148, 4개 킬	126건 남럼 선(0.65%)	64.0 762235/140217/0000189	 14.02.17 11:55:18,551000000	
3	MN	NaN	NaN	" М/С АКИДЖ ДУТЕ МИЛЛС ЛТД",Ч/З БАНДАР АБАС П/	BD	АББАС		13,90 I	1	1213.0 762241/140217/0100665	14.02.17 15:53:44,921000000	
4	ИМ	NaN	NaN	" М/С АКИДЖ ДУТЕ МИЛЛС ЛТД",Ч/З БАНДАР АБАС П/	BD	AEGAC	N	vaN	1	1213.0 762241/140217/0100665	14.02.17 15:53:44,92100000	

프로젝트 진행에 사용할 인사이트 탐색

[정상/이상 데이터 비교]

fig, ax = plt.subplots(figsize=(8, 6), subplot_kw=dict(aspect="equal")) negative_ratio = round(((df.LABEL.value_counts()[0]/df.LABEL.value_counts().sum())*100),2) positive_ratio = round(((df.LABEL.value_counts()[1]/df.LABEL.value_counts().sum())*100).2) label = ["Negative ({}%)".format(negative_ratio), "Positive ({}%)".format(positive_ratio)] data = [df.LABEL.value_counts()[0], df.LABEL.value_counts()[1]] color = sns.color_palette("pastel", len(label)) wedges, texts = ax.pie(data, wedgeprops=dict(width=0.5), startangle=-40, colors=color) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) kw = dict(arrowprops=dict(arrowstyle="-"). bbox=bbox_props, zorder=0, va="center") for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1)/2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang))horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = "angle, angleA=0, angleB={}".format(ang) kw["arrowprops"].update({"connectionstyle": connectionstyle}) ax.annotate(label[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y), horizontalalignment=horizontalalignment, **kw) ax.set title("Comparison : Negative & Positive") plt.show()

전체 데이터 : 2,148,126건

■ 정상 데이터: 2,134,168건 (99.35%)

■ 이상 데이터: 13,961건 (0.65%)

프로젝트 진행을 위한 핵심 task : 클래스 불균형 해소

적발건수 그래프 출력 사용자 함수

■ df: 시각화 하고자 하는 데이터가 포함된 데이터프레임

■ col_name : df 안의 시각화하고자 하는 column 이름

■ x_name : 그려지는 그래프의 x축 이름

■ y_name : 그려지는 그래프의 y축 이름

■ title: 그려지는 그래프의 제목

■ show_num : 표시하고자 하는 값의 개수 (default = 40)

```
2 def show_detection_bar(df, col_name, x_name, y_name, title, show_num=40):
     import plotly, express as px
     idf = df.loc[df.LABEL==1] # 적발된 데이터만 추출한 데이터프레임
     a_index = idf[col_name].value_counts().index # 적발 df에서 입력한 column에 대한 값들의 index
     a = idf[col_name].value_counts() # 적발 df에서의 입력한 column에 대한 value들 전체
     temp_case = [] # 적발 건수를 담기 위한 list
8
9
     for anum in a:
10
       temp_case.append(anum) # 단순 적발 건수를 list에 추가
     temp_df = pd.Series(temp_case, index=a_index).T
12
13
     res_df = temp_df.sort_values(ascending=False)[:show_num] # 그래프 오름차순 설정
14
     fig = px.bar(x=res_df.index, y=list(res_df), text=list(res_df)) # 그래프에 x, v축 값 입력
15
     fig.update_layout(title=title, xaxis_title = x_name, yaxis_title = y_name, # title,x/v축 이름을 입력값으로 지점
16
                      autosize=False, width=500, height=300) # fig size 조정
      fig.show()
```

■ x name : 그려지는 그래프의 x축 이름

y_name : 그려지는 그래프의 y축 이름

적발건수 비율 그래프 출력 사용자 함수

df: 시각화 하고자 하는 데이터가 포함된 데이터프레임

■ col_name : df 안의 시각화하고자 하는 column 이름

■ title: 그려지는 그래프의 제목

■ ratio_sort : True 입력 시 비율 순으로 내림차순, False 입력 시 내림차순으로 그래프 정렬 (default = True)

■ show_num : 표시하고자 하는 값의 개수 (default = 40)

```
3 def show_ratio_bar(df, col_name, x_name, y_name, title, ratio_sort=True, show_num=40):
    idf = df.loc[df.LABEL==1] # 적발된 데이터만 추출한 데이터프레임
    a_index = idf[col_name].value_counts().index # 적발 df에서 입력한 column에 대한 값들의 index
    a = idf[col_name].value_counts() # 적발 df메서의 입력한 column에 대한 value들 전체
    b = df[col_name].value_counts()[a_index] # 전체 df에서 비교를 위해 a_index를 기반으로 한 value들 전체
    temp_ratio = [] # 적발 비율을 담기 위한 list
    temp_case = [] # 적발 건수를 담기 위한 list
    for anum, bnum in zip(a, b): # zip으로 적발건수, 전체 거래건수 출력
        temp_ratio.append(round((anum/bnum)+100,4)) # (적발건수/전체 거래건수) + 100 => 해당 항목에 대한 적발 비율, 계산 후 list에 추가
        temp_case.append(anum) # 단순 적발 건수를 list에 추가
    temp_df = pd.DataFrame([temp_ratio, temp_case], index=['ratio', 'casenum'], columns=a_index).T # 컬럼을 ratio(적발 비율), casenum(적발 건수)로 가지는 데이터프레임 생성
     if ratio_sort==True: # default 설정. 데이터프레임에 포함된 ratio 기준(내림차순)으로 정해진 데이터 개수만큼 그래프 출력
      res_df = temp_df.sort_values('ratio', ascending=False)[:show_num]
      fig = px.bar(x=res_df.index, y=list(res_df.ratio), text=list(res_df.casenum)) # x축을 시리즈의 인덱스로, y축을 시리즈의 데이터(적발 비율)로 설정하고 각 barplot에 건수 데이터 입력
      fig.update_layout(title=title, xaxis_title = x_name, yaxis_title = y_name,
                     autosize=False, width=500, height=300) # 플롯 제목, x축 이름, y축 이름을 각각 입력받은 값으로 설정
      fig.show()
    elif ratio sort==False: # default 외 별도 설정. 데이터프레임에 포함된 casenum 기준(내림차순)으로 정해진 데이터 개수만큼 그래프 출력
      res_df = temp_df.sort_values('casenum', ascending=False)[:show_num]
      fig = px.bar(x=res_df.index, y=list(res_df.ratio), text=list(res_df.casenum))
      fig.update_layout(title=title, xaxis_title = x_name, yaxis_title = y_name,
                     autosize=False, width=500, height=300)
      fig.show()
```

물건수량 CUS_TOTAL_NUMBER_OF_ITEMS_5

적발비율

- 수량이 많아질수록 적발율이 증가하는 경향을 보임
- 수량이 81개 일때 적발율 가장 높음(16.8%)

적발비율을 고려하여 변수 활용

수입업자명 CON_NAME_8

적발건수

- PER_NAME_9(대금지불업자명)와 비슷한 양상

항목	합계
전체 수입업자 수	78,188
적발 수입업자 수	226

적발비율

- 62개의 수입업자명이 100% 위법물로 적발

적발비율을 고려하여 변수 활용

2

HS CODE COM_COMBINED_NOMENCLATURE_33

적발건수

- Machinery, Nonmetals, ... 순으로 적발건수가 많음

항목	합계
전체 품목 수	20
적발 품목 수	19

적발비율

- 건수를 고려한 비율로 출력 시, art의 적발율이 가장 높음

적발비율을 고려하여 변수 활용

원산지 IDG_COUNTRY_OF_ORIGIN_34

적발건수

- CN이 압도적으로 적발건수가 많음

항목	합계
전체 원산지 수	132
적발 원산지 수	37

적발비율

- 건수를 고려한 비율로 출력 시, CN이 아닌 PT, NO, ... 순으로 국가별 적발 차이 발생

IMP_COUNTRY_..._16(품목 원산지) 및 적발비율을 고려하여 변수 활용

관세사 식별변호 REP_TIN_54

적발건수

- 'ДБ/02/0081'이 가장 거래량이 많음

항목	합계
전체 설명 수	930
적발 설명 수	86

적발비율

- 건수를 고려한 비율로 출력 시, 3개의 설명이 100% 위법물 적발되고 적발건수와 적발비율의 차이가 있음

적발비율을 고려하여 독립변수 활용

세관신고서 번호 CUS_REF_NO_7

적발건수

- 월별 전체 수입 신고건수는 비슷한 양상을 보이나 적발건수는 월별로 크게 달라짐
- 5월에 가장 적발건수가 많고, 3월에 가장 적음
- IMP_DATE_OF_DECLARATION 54와 비슷한 양상을 보임

월 패턴을 고려하여 변수 활용

세관 신고서 접수 일자 ACCEPTANCE_DATE

적발건수

- 시간별 전체 수입 신고건수와 시간별 적발 건수가 비슷한 양상을 보이나 일부 시간에서 차이가 있음
- 00시, 09시, 14시, 15시, 21시 등 특정 시간에 적발 건수가 증가하는 것이 보임

세관 신고 시간을 변수 활용

2 전처리

패턴 탐색이 용이하도록 데이터 세트 정리

독립변수 전처리 모듈 설명

```
class Preprocess :
   def __init__(self, df) :
       self.df = df
   ##### Class Variables #####
   # 사용이 불가능하다고 판단, 데이터프레임에서 아예 드랍시킬 컬럼들(추후 변동 가능)
   drop_col_list = ['IMP_TYPE_OF_DECLARATION_1', 'IMP_TYPE_OF_DECLARATION_2',
                   'TRD_TIN_2', 'CUS_SHIPMENT_SPEC_4', 'CUS_TOTAL_NUMBER_OF_ITEMS_5',
                   'PER_TIN_9', 'PER_NAME_9', 'PER_COUNTRY_9', 'PER_ADDR_9',
                   'DNT_TIN_14', 'DNT_NAME_14', 'DNT_COUNTRY_14', 'DNT_ADDR_14',
                   'IMP_CONTAINER_FLAG_19', 'LOD_LOCATION_NAME_27', 'IDG_QUOTA',
                   'ZONTY', 'ZAUXUOM', 'PERSON_POSITION_54', 'LOC_LOCATION_NAME_30',
                   'COV_CUST_VALUE_METHOD', 'IDG_STAT_VALUE_VAL_METH_46']
   # 사용은 가능하지만 중간에 null값이 있는 명목형 컬럼들, fillna로 처리(추후 변동 가능)
   fillna_col_list = ['TRD_COUNTRY_2', 'CUS_REF_NO_7', 'CON_COUNTRY_8',
                     'IMP_TRADING_COUNTRY_11', 'VAL_CURRENCY_12',
                     'IMP_CNT_OF_DISPATCH_EXP_CD_15', 'DEL_DELIVERY_TERM_CODE_20',
                     'TOT CURRENCY 22'.
                     'DEL PLACE OF DELIVERY 20'1
   # 사용은 가능하지만 중간에 null값이 있는 연속형 컬럼들. fillna로 처리(추후 변동 가능)
   num_col_list = ['CUS_TOTAL_NUMBER_OF_PACKAGES_6', 'VAL_FINANCIAL_VALUE_12',
                  'TOT_FINANCIAL_VALUE_22', 'IMP_EXCHANGE_RATE_23',
                  'IMP_INLAND_TRANSPORT_MODE_25', 'IMP_TRANSPORT_MODE_AT_BODR_26',
                  'GDS_GROSS_MASS_35', 'IDG_NET_MASS_38', 'FIN_FINANCIAL_VALUE_42',
                  'STC_FINANCIAL_VALUE_46']
   # Label 에 영향을 미치지 않아 단순히 null이 존재하는 인덱스만 드랍(추후 변동 가능)
   index_drop_list = ['PRF_PREFERENCE_CODE_1', 'COR_FINANCIAL_VALUE', 'GEND_REFERENCE_54',
                     'CAL_TYPE_OF_TAX_47', 'CAL_ADDITIONAL_RATE_OF_TAX_47']
```

```
##### Class Methods #####
# 각 컬럼별로 반복문이 돌아가면서
# fillna_col_list에 포함되있다면 null값을 'null'로
# num_col_list에 포함되 있다면 컬럼의 평균값으로 null값을 대체
def null_solution(self):
   df = self.df.copy()
    for column_name in df.columns :
       if column_name in self.drop_col_list :
           df.drop(column_name, axis=1, inplace=True)
       elif column_name in self.fillna_col_list :
           df[column_name].fillna('null', inplace=True)
       elif column_name in self.num_col_list :
           mean = df[column_name].mean()
           df[column_name].fillna(mean, inplace=True)
       elif column_name in self.index_drop_list :
           drop_idx = df[df[column_name].isnull()].index
           df.drop(drop_idx, axis=0, inplace=True)
   return df
```

컬럼의 삭제, null값 처리 부분

독립변수 전처리 모듈 설명

```
# Label Encoder
def label(self, classes=None) :
   # 초기화 때 입력한 DataFrame의 사본을 사용
   df = self.df.copv()
   # LabelEncoder 객체 생성
   from sklearn.preprocessing import LabelEncoder
   import numpy as np
   import pandas as pd
   import pickle
   le = LabelEncoder()
   # for문을 사용, 각 칼럼별로 인코딩 적용
   for column in df.columns:
       # 칼럼의 데이터 타입이 str인 것만 인코딩 실시
       if type(df[column][0]) == str :
           # Label Encoding 실시
          column_encoded = le.fit_transform(df[column])
          df[column] = column_encoded
          # 인코딩한 칼럼 이름을 변수명으로 하는 dict 변수 생성
          # 칼럼_이름 = {원래 데이터 : 인코딩 된 번호}
          encoding_val = np.sort(df[column].unique())
          decoding_val = le.classes_
          val_dict = dict(zip(decoding_val, encoding_val))
          # dict를 pkl로 저장
          with open('{}.pickle'.format(column), 'wb') as f :
            pickle.dump(val_dict. f. protocol=pickle.HIGHEST_PROTOCOL)
       else : pass
   return df
```

```
# One-hot Encoder
def one_hot(self) :
 import numpy as np
 import pandas as pd
 # self.df의 복사본 생성
 df = self.df.copy()
 # 인코딩 대상 칼럼 넣는 DataFrame
 # 이렇게 하는 이유 : 안그러면 칼럼 이름에 값만 뜸
 # 이렇게 해주면 칼럼 이름으로 원래 칼럼 이름 + 값이 뜸
 oh_columns = pd.DataFrame()
 # for loop로 대상 칼럼 oh_columns에 넣고
 # df에서는 삭제
 for column in df.columns :
   if str(df[column].dtype) == 'object' :
    oh_columns[column] = df[column]
     df.drop(column, axis=1, inplace=True)
   else : pass
 # get dummies 함수 사용하여 one hot 진행
 oh_df = pd.get_dummies(oh_columns)
 for value in oh df.columns :
   df[value] = oh df[value]
 return df
```

모델 테스트 진행을 위한 Label Encoding, One-hot Encoding 처리 부분

Ideas

클래스 불균형을 해소하기 위한 대안 탐색

Under Sampling 불가

막대한 데이터 손실 발생

- 다수 클래스 개수 : 2,132,549건

= 2,118,590건 미반영 - 소수클래스 개수: 13,959건

샘플의 대표성 문제 발생

- 소수 클래스의 개수가 변수 분포를 대표할 만큼 충분하지 못함

Over Sampling 불가

- 1 명목/ 범주형 변수 왜곡 발생
 - 소수 클래스 복제 시 원본에는 없던 새로운 데이터 생성
- 2 분류 성능 하락
 - 샘플링 된 데이터로 학습 및 검증 시 평가지표 급감 발생

교차검증 시행 불가

```
Label Distributions:
                    Train/Test set의 Label=0/1 비율
[0.99349699 0.00650301]
[0.99349642 0.00650358]
         Early stopping, best iteration is:
         [45] valid_0's binary_logloss: 0.0391765
                                                   valid_0's binary_logloss: 0.0391765
         Confusion Matrix
         [ 1134 3519]]
         Accuracy: 0.9984, Precision: 0.9969, Recall: 0.7563,
                                                                       f1 score : 0.8601
         Early stopping, best iteration is:
         [51] valid_0's binary_logloss: 0.0453395 valid_0's binary_logloss: 0.0453395
  2
         Confusion Matrix
         [[710832
                   17]
                 3430]]
         Accuracy: 0.9983, Precision: 0.9951, Recall: 0.7372,
                                                                        f1 score : 0.8469
         Early stopping, best iteration is:
         [46] valid_0's binary_logloss: 0.276045
                                                  valid_0's binary_logloss: 0.276045
        Confusion Matrix
        [[710849
                     01
         [ 1164 3489]]
         Accuracy: 0.9984, Precision: 1.0000, Recall: 0.7498,
                                                                      f1 score : 0.8570
         Early stopping, best iteration is:
               valid O's binary logloss: 0.255218
                                                      valid O's binary logloss: 0.255218
         [[687664 23185]
         Accuracy: 0.9650, Precision: 0.1081, Recall: 0.6039,
                                                                        f1 score : 0.1834
         Early stopping, best iteration is:
               valid O's binary_logloss: 0.0346984
                                                   valid_0's binary_logloss: 0.0346984
         Confusion Matrix
         [[710844
                      5]
                   1052]]
         Accuracy: 0.9950, Precision: 0.9953, Recall: 0.2261,
                                                                      f1 score : 0.3685
 ## 교차 검증별 정밀도: [0.9969 0.9951 1.]
                                              0.1081 0.99531
                                                                       교차검증 결과
 ## 교차 검증별 재현율: [0.7563 0.7372 0.7498 0.6039 0.2261]
 ## 평균 검증 정확도: 0.8190638740091118
 ## 평균 검증 정확도: 0.6146572104018913
```

해당 데이터셋은 불균형한 분포도를 가졌기 때문에 단순한 Kfold 교차검증 시, 데이터가 매우 극단적으로 분할될 수 있음

교차검증 모델 중 StratifiedKFold 사용

평균 검증 정확도는 나쁘지 않지만,

- 교차검증별 오차행렬의 편향 발생
- 교차검증별 정밀도 등의 큰 차이 발생
- = 교차검증별 결과가 균일하지 않음

계통 추출

Sklearn - Stratify 파라미터

- Train/Validation set Label 클래스 비율을 기준 Label(y_label)의 클래스(0/1) 비율과 동일하게 조정

Test/Validation set 구성 시 클래스 편향 보완

Train/Test 데이터셋 분할 시 Stratify 파라미터 이용

```
# train_test_split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_features, y_label, test_size=0.2, random_state=0, stratify=y_label)
```

3 변수 선택 및 파생변수 선정

기본 파생변수

주요 변수들에 기반한 최근 6개월 기준 파생변수 19개 산출

변수 기준	기준 컬럼	항목	파생변수 컬럼명
		수입건수	R6M_CON_IMP_CNT
어눼며	CON NAME 9	수입금액	R6M_CON_IMP_AMT
업체명	CON_NAME_8	검사건수	R6M_CON_NUMB_OF_INSPECTION
		적발률	R6M_CON_NUMB_OF_DETECTED
		수입건수	R6M_CODE_IMP_CNT
HS Code	HS_CODE	수입금액	R6M_CODE_IMP_AMT
ns code	H3_CODE	검사건수	R6M_CODE_NUMB_OF_INSPECTION
		적발건수	R6M_CODE_NUMB_OF_DETECTED
		수입건수	R6M_COUNTRY_IMP_CNT
	IDG_COUNTRY_OF_ORIGIN_34	검사금액	R6M_COUNTRY_IMP_AMT
원산지 국가		검사건수	R6M_COUNTRY_NUMB_OF_INSPECTION
		적발건수	R6M_COUNTRY_NUMB_OF_DETECTED
		적발 률	R6M_COUNTRY_RATIO_OF_DETECTED
		수입건수	R6M_REP_IMP_CNT
		수입금액	R6M_REP_IMP_AMT
관세사 번호	REP_TIN_54	검사건수	R6M_REP_NUMB_OF_INSPECTION
		적발건수	R6M_REP_NUMB_OF_DETECTED
		적발 률	R6M_REP_RATIO_OF_DETECTED

세관 신고 월/시간 기준 파생변수

Feature Importnace 상위의 시간 관련 변수를 활용한 파생변수 산출

변수 기준	기준 컬럼	파생변수 컬럼명	변수 추가 사유
세관 신고 월	IMP_DATE_OF_DECLARATION_54	C_MONTH	- 세관 신고 월별 적발 확률 변화 반영
세관 신고 시간	ACCEPTANCE_DATE CUS_REF_NO_7	A_HOUR	- 세관 신고 시간별 적발 확률 변화 반영

```
# 시간 관련 함수들만 추출하며 DataFrame 생성
column_list = ['ACCEPTANCE_DATE', 'IMP_DATE_OF_DECLARATION_54', 'CUS_REF_NO_7']
edf = df[column_list]
# ALHOUR 칼럼 생성
edf['TIME'] = edf.apply(lambda x : x['ACCEPTANCE_DATE'][9:17], axis=1)
edf['D_TIME'] = pd.to_datetime(edf['TIME'])
edf['S_HOUR'] = edf['D_TIME'].dt.strftime('%H')
edf['A_HOUR'] = edf['S_HOUR'].astype(str)
# C_MONTH 칼럼 생성
edf['NEW_C_DATE'] = edf.apply(lambda x : '20' + x['CUS_REF_NO_7'][11:13] + x['CUS_REF_NO_7'][9:11] + x['CUS_REF_NO_7'][7:9], axis=1)
edf['C_MONTH'] = edf.apply(lambda x : x['NEW_C_DATE'][4:6], axis=1)
edf.C_MONTH = edf.C_MONTH.astvpe(str)
                                                                                  IMP DATE OF DECLARATION 54
                                                                                  CUS_TOTAL_NUMBER_OF_PACKAGES_6
                                                                                      ACCEPTANCE DATE
                                                                                         TOT FINANCIAL_VALUE_22
                                                                                          CUS_REF_NO_7
```

1

업체별 위법물 비율 기준 파생변수

EDA 결과 발견한 인사이트에 따른 파생변수 산출

변수 기준	기준 컬럼	파생변수 컬럼명	변수 추가 사유
업체별 위법물 비율	CON_NAME_8	CON_ILLEGAL_RATIO	- 일부 업체들의 높은 적발 확률 반영

```
# 사용할 변수들만 추출
edf = df[['CON_NAME_8', 'LABEL']]
# 위법물 비율을 담을 리스트 생성
result_list = []
# for문을 돌리기 위하며 CON_NAME_8의 유니크값만 추출
name_list = edf.CON_NAME_8.unique().tolist()
for value in name_list :
 # total = 해당 업체의 모든 샘플의 수
 mask = edf.CON_NAME_8 == value
 total = len(edf[mask])
 # illegal = 해당 업체의 모든 위법물 수
 mask2 = (edf.CON_NAME_8 == value) & (edf.LABEL == 1)
 illegal = len(edf[mask2])
 # 위법물 비율
 result = illegal / total
 result_list.append(result)
# 해당 업체 : 위법물 비율 dictionary 피클로 저장
mapping_dict = dict(zip(name_list, result_list))
with open('/content/drive/MyDrive/NA1/source_code/Feature_Engineering/dataset/Basic_Date_Illegal_dict/CON_ILLEGAL_RATIO_dict.pkl', 'wb') as f:
   pickle.dump(mapping_dict, f)
edf['CON_ILLEGAL_RATIO'] = edf.apply(lambda x : mapping_dict[x['CON_NAME_8']], axis=1)
edf.to_pickle('/content/drive/MyDrive/NA1/source_code/Feature_Engineering/dataset/CON_ILLEGAL_RATIO.pkl')
```

4 모델링

클래스 불균형을 극복하기 위한 최적합 지표 선택

모델 평가 기준

Accuracy

전체 대비 정확하게 예측한 개수의 비율

 $= \frac{\mathsf{TP+TN}}{\mathsf{TP+TN+FP+FN}}$

소수 클래스와 다수 클래스의 예측과 실제를 모두 포함

과대한 다수 클래스에 의해 왜곡

Precision

Positive라고 예측한 비율 중 진짜 Positive의 비율

TP+FP

TP

= Positive를 얼마나 잘 예측하였는가?

> 소수 클래스에 대한 예측과 실제를 바탕으로 산출

소수 클래스 분류 평가 시 가장 적합한 지표

Recall

TP

실제 Positive 데이터 중 Positive라고 예측한 비율 TP+FN

= 실제 Positive한 것 중에서 얼마나 잘 예측하였는가?

실제 소수클래스에 대한 예측을 바탕으로 산출

소수 클래스 분류 평가에 적합해 보이지만 정확한 정보 전달 불가능

데이터셋 1

Train size = 0.8 / Test size = 0.2

분석용 데이터셋

- 기본 파생변수 19개
- EDA 기반 파생변수
- 시간 관련 파생변수 2개
 - : 총 21개 변수
- 명목변수 인코딩 시 더 나은 성능을 보이는 One-hot Encoding 적용
- MLP, DNN은 학습 이전 Standard Scaling 적용

구분	Random Forest	LGBM Classifier	CatBoost	MLP
Accuracy	0.9978	0.9948	0.9961	0.9947
Precision	0.8633	0.8103	0.8807	0.7565
Recall	0.7779	0.2600	0.4549	0.2726
F1 Score	0.8184	0.3937	0.5999	0.4007
Time(초)	382	28	72	1508

데이터셋 2

Train size = 0.8 / Test size = 0.2

분석용 데이터셋

- 기본 파생변수 19개
- EDA 기반 파생변수
- 시간 관련 파생변수 2개
- Feature Importance 기반 기존 중요변수 2개
 - : 총 23개 변수
- 명목변수 인코딩 시 더 나은 성능을 보이는 One-hot Encoding 적용
- MLP, DNN은 학습 이전 Standard Scaling 적용

구분	Random Forest	LGBM Classifier	CatBoost	MLP
Accuracy	0.9999	0.9968	0.9985	0.9956
Precision	0.9982	0.9365	0.9749	0.8032
Recall	0.9921	0.5494	0.7944	0.4312
F1 Score	0.9951	0.6926	0.8755	0.5612
Time(초)	321	8	21	513

Random Forest는 과적합 양상을 보인다고 판단

데이터셋 3

Train size = 0.8 / Test size = 0.2

분석용 데이터셋

- 기본 파생변수 19개
- EDA 기반 파생변수
- 시간 관련 파생변수 2개
- 위법물 관련 파생변수 1개
- Feature Importance 기반 기존 중요변수 2개 : 총 24개 변수
- 명목변수 인코딩 시 더 나은 성능을 보이는 Label Encoding 적용
- MLP, DNN은 학습 이전 Standard Scaling 적용

구분	Random Forest	LGBM Classifier	CatBoost	MLP
Accuracy	1.0	0.9987	0.9944	0.9962
Precision	0.9993	0.9946	0.9980	0.8513
Recall	0.9968	0.7973	0.9112	0.5107
F1 Score	0.9980	0.8851	0.9526	0.6385
Time(초)	290	5	22	353

MLP를 제외한 모든 알고리즘이 과적합 양상을 보인다고 판단

데이터셋 4

Train size = 0.8 / Test size = 0.2

분석용 데이터셋

- 기본 파생변수 19개
- EDA 기반 파생변수
- 시간 관련 파생변수 2개
- 위법물 관련 파생변수 1개

: 총 22개 변수

- 명목변수 인코딩 시 더 나은 성능을 보이는 Label Encoding 적용
- MLP, DNN은 학습 이전 Standard Scaling 적용

구분	Random Forest	LGBM Classifier	CatBoost	MLP
Accuracy	0.9990	0.9968	0.9982	0.9980
Precision	0.9218	0.9764	0.9201	0.8766
Recall	0.9165	0.5190	0.7962	0.8120
F1 Score	0.9192	0.6777	0.8537	0.8431
Time(초)	298	5	21	281

2

LightGBM 선정 근거

신속한 서비스 & 효과적이고 준수한 분류 성능을 지닌 알고리즘 선택

속도와 성능

가장 빠른 시간 (21초)

가장 높은 precision (0.9757)

웹을 통하여 서비스를 구현

준수한 성능과 신속한 결과를 제공하는 LightGBM이 가장 적합

Boosting 방식

다수의 약한 학습기로 순차적 학습/예측

분류에 어려움을 겪었던 데이터는 다음 학습기에 가중치 부여

Leaf Wise 분기

Level Wise

- - 균형잡힌 트리 유지
 - Depth 최소화
 - 과적합에 강함
 - 연산 증가
 - 많은 시간 소요

- Leaf Wise
- 최대 손실 값 leaf node를 찾아 분기
- 과적합에 취약
- 예측 오류 손실 최소화
- 소수 클래스 분류에도 강점 보유

하이퍼 파라미터 튜닝 프로세스

일반화, 분류 역량 향상을 목표로 모델 개선

4 서비스 시연 및 목표

1 시스템 구현도

2 데모시연

클래스 불균형 극복 대안 요약 / 평가지표의 의의

소수 클래스에 대한 효과적 분류 & 프로젝트의 취지에 가장 적합한 정보 제공

계통 추출법 적용

■ 클래스 비율 유지 & 왜곡 최소화 = 소수 클래스, 데이터의 본질적 의미 보존

평가지표로 Precision 사용

■ 가장 효과적으로 소수 클래스를 분류 가능한 알고리즘 활용

본 서비스에서 Precision이 지니는 의미

- Precision
 - = 위법물이 존재할 것이라고 예측하여 개봉한 컨테이너에서 실제로 위법물이 적발될 확률
- Recall
 - 컨테이너를 열어보지는 않았지만 실제로 위법물이 포함된 컨테이너를 모델에서 위법물이라고 예측할 확률

모든 컨테이너를 개봉하여 위법물 확인은 불가능

■ Precision : 가장 적합한 지표

■ Recall: 정확한 정보 전달 불가 (평가 사용 불가)

서비스 최종 목표

예측 정확도 & 신뢰도 모두를 달성하는 서비스

Precision High	Recall High	: 위법물과 위법물이 아닌 화 물을 정확히 예측하는 서비스
Precision High	Recall Low	: 위법물 예측이 잘 이뤄지지 않았지만 예측한 위법물에 대해선 정확도가 높은 서비스
Precision Low	Recall High	: 위법물 예측은 해냈지만 예측한 위법물에 위법물이 아닌 화물도 섞여 있는 서비스
Precision Low	Recall Low	: 위법물과 위법물이 아닌 화물 예측을 하지 못하는 서비스

위법물을 정확히 예측, 해당 화물 검사 시 반드시 위법물이 있는 서비스

- Recall을 사전 평가지표로 사용하진 않지만 **사후 서비스 점검 보조 지표로 활용**
- 향후 새로운 데이터 업데이트 시 **지속적인 재학습을 통해 목표 달성**
- 만약 재학습으로 목표 달성에 실패했을 시 Threshold 조정을 통한 개선 시도