Матанализ 1 семестр ПИ, Лекция, 10/20/21

Собрано 25 октября 2021 г. в 12:16

Содержание

1.	Элементарные функции	1
	1.1. Постоянная	1
	1.2. Степенная функция	1
	13. Показательная функция	6

1.1. Постоянная

 $f(x) = c, x \mapsto c$, непрерывна на \mathbb{R}

1.2. Степенная функция

$$e_{\alpha}(x) = x^{\alpha}$$

При $\alpha = 1$ $e_1(x) = x$ – непрерывна на \mathbb{R}

При $\alpha = n \in \mathbb{N}$

$$e_{\alpha}(x) = x^n$$

Следовательно $e_n(x)$ непрерывна на \mathbb{R} как произведение непрерывных.

При $\alpha = -n, n \in \mathbb{N}$

$$x^{-n} = \frac{1}{x^n}, \mathbf{x} \in \mathbb{R} \setminus \{0\}$$

Непрерывна на $\mathbb{R} \setminus \{0\}$ как частное непрерывных.

При $\alpha = 0$ полагаем $x^0 = 1$ при всех $x \neq 0$. Можно доопределить до непрерывности ($0^0 = 1$) Если n нечётно, то e_n строго возрастает на \mathbb{R} , $\sup_{x \in \mathbb{R}} e_n(x) = +\infty$, $\inf_{x \in \mathbb{R}} e_n(x) = -\infty$. По теореме о сохранении промежутка $e_n(\mathbb{R}) = \mathbb{R}$.

Если n четно, то функция e_n строго возрастает на \mathbb{R}_+ , $\sup_{x \in \mathbb{R}_+} e_n(x) = +\infty$, $\min_{x \in \mathbb{R}_+} e_n(x) = 0$, $e_n(\mathbb{R}_+) = \mathbb{R}_+$. По теореме о существовании и непрерывности обратной функции существует и непрерывна функция

$$e_{\frac{1}{n}} = \begin{cases} e_n^{-1}, n \not : 2\\ (e_n|_{R_+})^{-1}, n : 2 \end{cases}$$

Это $\sqrt[n]{x}$, строго возрастает и непрерывна на \mathbb{R}_+

Теперь определим x^{α} при рациональном $\alpha=r=\frac{p}{q}, p\in\mathbb{Z}, q\in\mathbb{N}, \frac{p}{q}$ несократима.

$$x^{r} = (x^{p})^{\frac{1}{q}} (e_{r} = e_{\frac{1}{q}} \circ e_{p})$$

Таким образом, x^r определено следующим образом.

$$x > 0, r$$
 любое,

$$x = 0, r \ge 0.$$

 e_r непрерывна на своей области определения, строго возрастает на $[0,+\infty)$ при r>0, строго убывает на $(0,+\infty)$ при r<0

1.3. Показательная функция

 $0^x = 0 \ \forall x > 0$

Пусть a>0. Пока что a^x определена только для $x\in\mathbb{Q}$. Обозначим эту функцию $a^x|_{\mathbb{Q}}$. Её свойства:

- 1. $r < s \Rightarrow a^r < a^s, a > 1$ и $a^r > a^s, 0 < a < 1$
- 2. $a^{r+s} = a^r a^s$
- 3. $(a^r)^s = a^{rs}$
- 4. $(ab)^r = a^r b^r$

Def. 1.3.1. Пусть $a > 0, x \in \mathbb{R}$ Положим

$$a^x = \lim_{r \to x} a^r|_{\mathbb{Q}}$$

<u>Lm</u> 1.3.2. Пусть $a > 0, \{r_n\}$ – последовательность рациональных чисел, $r_n \to 0$. Тогда $a^{r_n} \to 1$.

Доказательство. При a=1 лемма очевидно, т.к. $a^{r_n}=1 \ \forall n$.

Пусть a>1. Докажем лемму в частном случае $r_n=\frac{1}{n}$. Поскольку $a^{\frac{1}{n}}>1$, имеем $a^{\frac{1}{n}}=1+\alpha_n,\alpha_n>0$. Тогда по неравенству Бернулии

$$a = (1 + \alpha_n)^n \geqslant 1 + n\alpha_n$$

Откуда $0 < \alpha_n < \frac{a-1}{n} \Rightarrow \alpha_n \to 0 \Rightarrow a^{\frac{1}{n}} \to 1.$

Далее, по доказанному

$$a^{-\frac{1}{n}} = \frac{1}{a^{\frac{1}{n}}} \to \frac{1}{1} = 1$$

Пусть теперь $\{r_n\}$ – произвольная последовательность из условия леммы. Возьмем $\varepsilon>0$. $\exists N_0:$

$$1 - \varepsilon < a^{-\frac{1}{N_0}} < a^{\frac{1}{N_0}} < 1 + \varepsilon$$

Поскольку $r_n \to 0$, найдется такой номер N, что $\forall n > N \to -\frac{1}{N_0} < r_n < \frac{1}{N_0}$. В силу строгой монотонности показательной функции рационального аргумента

$$1 - \varepsilon < a^{-\frac{1}{N_0}} < a^{r_n} < a^{\frac{1}{N_0}} < 1 + \varepsilon$$

Значит $a^{r_n} \to 1$

Если 0 < a < 1, то $\frac{1}{a} > 1$, и по доказанному

$$a^{r_n} = \frac{1}{\left(\frac{1}{a}\right)^{r_n}} \to 1$$

<u>Lm</u> 1.3.3. Пусть $a>0, x\in\mathbb{R}, \{r_n\}$ – последовательность рациональных чисел, $r_n\to x$. Тогда существует конечный предел последовательности $\{a^{r_n}\}$

Доказательство. При a=1 лемма очевидна.

Пусть a > 1. Возьмем какую-либо возрастающую последовательность $\{s_n\}$ рациональных чисел, стремящуюся к х. Например

$$s_n = \frac{[10^n x]}{10^n}$$

Тогда $x-\frac{1}{10^n} < s_n \leqslant x \Rightarrow s_n \to x$. Докажем, что последовательность $\{s_n\}$ возрастает. Пусть $A=10^nx$. Тогда $s_n \leqslant s_{n+1} \Leftrightarrow 10[A] \leqslant [10A]$, но 10[A] – целое число, не превосходящее 10A. $\{a^{s_n}\}$ возрастает и ограничена сверху числом $a^{[x]+1}$. Значит $\{a^{s_n}\}$ сходится к некоторому пределу L. Но тогда

$$a^{r_n} = a^{r_n - s_n} a^{s_n} \to L$$

Потому что $a^{r_n-s_n} \to 1$ по предыдущей лемме. Если 0 < a < 1, то $\frac{1}{a} > 1$ и по доказанному $\left(\frac{1}{a}\right)^{r_n} \to L, L > 0$. Тогда

$$a^{r_n} = \frac{1}{\left(\frac{1}{a}\right)^{r_n}} \to \frac{1}{L}$$