

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

No aplica No aplica No aplica

Relación con otras asignaturas

Anteriores Posteriores

No aplica No aplica

Nombre de la asignatura Departamento o Licenciatura

Sistemas multicomputadores: CLUSTERS Ingeniería en Telemática

Ciclo Clave Créditos Área de formación curricular

3 - 4 IT3475 6 Licenciatura Elección Libre

Tipo de asignatura Horas de estudio

HT HP TH HI
Seminario 32 16 48 48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Al término del curso, el estudiante será capaz de: Construir y administrar un sistema de memoria compartida multicomputadoras (cluster), para su uso en aplicaciones científicas y empresariales. Enumerar los principales paradigmas de diseño de computadoras paralelas. Organizar el direccionamiento de red de un cluster. Seleccionar los principales

elementos que integrarán el cluster que se está creando. Emplear la tecnología a su alcance para la construcción de clusters. Instalar y configurar el software de un cluster. Operar el cluster dentro de los parámetros que se determinen. Distinguir los principales elementos relevantes en la programación de un cluster.

Objetivo procedimental

No aplica

Objetivo actitudinal

No aplica

Unidades y temas

Unidad I. INTRODUCCION

No aplica

- 1) Aspectos del diseño de computadoras paralelas
 - a) Modelos de comunicación
 - b) Redes de interconexión
 - c) Mediciones del desempeño
 - d) Software
 - e) Taxonomía de las computadoras paralelas
- 2) Computadoras SIMD
 - a) Arreglos de procesadores
 - b) Procesadores vectoriales
- 3) Multiprocesadores con memoria compartida
 - a) Semántica de la memoria
 - b) Arquitecturas SMP basadas en bus UMA

c) Multiprocesadores UMA que usan conmutadores de barras cruzadas	
d) Multiprocesadores UMA que usan redes de conmutación de multietapas	
e) Multiprocesadores NUMA	
f) Multiprocesadores NUMA con coherencia de caché	
g) Multiprocesadores COMA	
4) Multicomputadoras de transferencia de mensajes	
a) Procesadores masivamente paralelos (MPP)	
b) Cúmulos de estaciones de trabajo (COW)	
c) Planificación	
d) Software de comunicación para multicomputadoras	
e) Memoria compartida en el nivel de aplicaciones	
Unidad II. CONCEPTOS BASICOS No aplica	
1) Concepto de ¿cluster¿	
2) Direccionamiento IP del cluster	
3) Sistemas de programación paralela	
Unidad III. DISEÑO DE CLUSTERS	
No aplica	

1) Consideraciones de diseño

2) Hardware para clusters	
3) Análisis del rendimiento del sistema	
4) Selección de unidades de disco	
5) Selección de tecnología de red	
6) Determinación de la posible configuración del cluster	
7) Escalabilidad	
8) Acceso a datos para clusters	
9) Sistemas de mensajes	
10) Sistemas de encolamiento	
11) Compiladores	
Unidad IV. CONSTRUCCIÓN DE CLUSTERS	
No aplica	
1) Selección del emplazamiento	
2) Preparación del ambiente	
3) Construcción de los nodos	
4) Ensamblaje del sistema en los racks	
5) Instalación y cableado	
6) Instalación y configuración del software de un cluster	

Unidad V. ADMINISTRACIÓN DE CLUSTERS

5) Herramientas de depuración y profilers

No aplica

6) Fuentes de documentación en línea
7) Extensiones al sistema
8) Programación en un ambiente paralelo
a) Programación de un cluster
b) Programación de un MUD

c) Selección del lenguaje

Actividades que promueven el aprendizaje

Docente Estudiante

Trabajo en equipo Ideas previas Exposición Prácticas Elaboración de prot

Elaboración de prototipos Desarrollo de proyectos Desarrollo investigaciones

Prácticas

Desarrollo de proyectos individuales

Actividades de aprendizaje en Internet

No aplica

Criterios y/o evidencias de evaluación y acreditación

Criterios Porcentajes

Exámenes 30

Desarrollo del Proyecto	25
Participación	10
Prácticas	25
Trabajos e Investigación	10
Total	100

Fuentes de referencia básica

Bibliográficas

Akl, G. Parallel Computation, Models and Methods. Prentice-Hall. ISBN 0-13-147034-5.

Spector, D. Building Linux Clusters. O¿Reilly. ISBN 1-56592-625-0.

Tanenbaum, A. Organización de Computadoras, Un Enfoque Estructurado. Pearson Educación. ISBN 970-17-0399-5.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Radajewski, J. y Douglas Eadline. Beowulf-HOWTO. Documento electrónico.

Samudrala, R. Linux Cluster HOWTO. Documento electrónico

Jeunhomme, B. Network Boot and Exotic Root HOWTO. Documento electrónico.

Nemkin, R. Diskless Nodes HOWTO document for Linux. Documento electrónico

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura o ingeniería en computación o carreras afines, preferentemente maestría en ciencias de la computación.

Docentes

Tener experiencia docente a nivel superior en asignaturas de cómputo paralelo o materias afines

Profesionales

Tener experiencia mínima de 3 como administrador de un cluster en planta en el sector industrial o gerencia en sistemas.