Traffic Light Circuit

Overall Circuit Connections

Wiring Key: Red +3.3v Black GND Blue RED LED Yellow AMBER LED Green GREEN LED

Raspberry Pi GPIO Connections

LED Wiring Connections

Push Button Wiring

Circuit Diagram

Link to circuit diagram here

The Python 2.7 code © SGF 2022 Approved

```
# Traffic_Light.py
# Code sequences through traffic light
# until the push button is pressed
# import libraries
import RPi.GPIO as GPIO
from time import sleep
# set constants for GPIO pins
# 3.3v Pin 1 GND Pin 6
push_button = 16
red LED = 22
amber_LED = 12
green LED = 18
# time delays for traffic lights. Get user entry. Entering nothing will use the defaults
stay on red = int(raw input("Enter the stop time in seconds [10]: "), or "10")
stay_on_redamber = int(raw_input("Enter the get ready time in seconds [3]: "), or "3")
```

```
stay_on_green = int(raw_input("Enter the go time in seconds [10]: "), or "10")
stay on amber = int(raw input("Enter the ready to stop time in seconds [3]: "), or "3")
# other times
start time = 3
quit_prompt_time = 3
# set up GPIO
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
# set inputs
GPIO.setup(push_button,GPIO.IN)
# set outputs
GPIO.setup(red_LED,GPIO.OUT)
GPIO.setup(amber LED,GPIO.OUT)
GPIO.setup(green_LED,GPIO.OUT)
# function to individually switch each LED
# red, amber and green are passed as Boolean, value sleep_time passed as int as seconds
def switch_LEDS(red, amber, green, sleep_time):
  GPIO.output(red_LED, red)
  GPIO.output(amber_LED, amber)
  GPIO.output(green_LED, green)
  sleep(sleep_time)
# end of function
# Program starts here
print "To stop program push and hold button until code guits"
txt = "Checking all LED's for {} seconds"
print (txt.format(start_time))
print ""
switch_LEDS(True, True, True, start_time) # set LEDS and wait
print "Starting Traffic Light Sequence"
print ""
# Start Sequence
while GPIO.input(push_button) == 0: #if button not pressed
  # Red LED
  txt = "Red LED on for {} seconds"
  print (txt.format(stay_on_red))
  switch_LEDS(True, False, False, stay_on_red)
```

```
if GPIO.input(push_button) == 1: # quit
    break
  # Red End
  # Red and Amber LED
  txt = "Red and Amber LED's on for {} seconds"
  print (txt.format(stay_on_redamber))
  switch_LEDS(True, True, False, stay_on_amber)
  if GPIO.input(push_button) == 1: # quit
    break
  # Red Amber End
  # Green LED
  txt = "Green LED on for {} seconds"
  print (txt.format(stay on green))
  switch_LEDS(False, False, True, stay_on_green)
  if GPIO.input(push button) == 1: # quit
    break
  # Green End
  # Amber LED
  txt = "Amber LED on for {} seconds"
  print (txt.format(stay_on_amber))
  print ""
  switch_LEDS(False, True, False,stay_on_amber)
  if GPIO.input(push_button) == 1: # quit
    break
  # Amber End
# if not a break then the While loop starts again
# Code restarts here when While loop breaks
print ""
print "Push button pressed to quit"
print "Resetting LED's"
txt = "Quitting in {} seconds"
print (txt.format(quit_prompt_time))
print ""
# turn on all LEDS momentarily to show push button pressed
switch_LEDS(True, True, True, quit_prompt_time)
GPIO.cleanup()
```

#	P	ro	a	rar	n	Εn	d	9	h	Д	re
#	г	ıv	u	ıaı	ш.		IU	5	ш	ᆫ	