Assignment 2

Rin Meng Student ID: 51940633

October 23, 2024

- 1. Given the summary output, it is true that:
 - (a) F-Statistic = 52.77 $MSE = (Residual\ Standard\ Error)^2 = 2.792^2 = 7.80$
 - (b) To build the anova table, we need to do calculations as follows: Finding the degrees of freedom:

$$DF_{Reg} = 1$$

$$DF_{Error} = 7$$

$$DF_{Total} = 8$$

$$SS_{Total} = SS_{Reg} + SS_{Error}$$

Calculate the Mean Squares Reg and Error:

$$F = \frac{MS_{Reg}}{MS_{Error}} = 52.77$$

$$MS_{Error} = MSE = 7.80$$

$$MS_{Reg} = F \cdot MS_{Error} = 52.77 \cdot 7.80 = 411.34$$

Calculate the Sum Squares Reg and Error:

$$MS_{Reg} = \frac{SS_{Reg}}{DF_{Reg}} \Leftrightarrow SS_{Reg} = MS_{Reg} \cdot DF_{Reg}$$

$$\begin{split} MS_{Error} &= \frac{SS_{Error}}{DF_{Error}} \Leftrightarrow SS_{Error} = MS_{Error} \cdot DF_{Error} \\ &SS_{Total} = SS_{Reg} + SS_{Error} \\ SS_{Reg} &= MS_{Reg} \cdot DF_{Reg} = 411.34 \cdot 1 = 411.34 \\ SS_{Error} &= MS_{Error} \cdot DF_{Error} = 7.80 \cdot 7 = 54.60 \\ SS_{Total} &= SS_{Reg} + SS_{Error} = 411.34 + 54.60 = 465.94 \\ MS_{Total} &= \frac{SS_{Total}}{DF_{Total}} = \frac{465.94}{8} = 58.24 \\ \hline & Source & DF & SS & MS & F \\ \hline & Reg. & 1 & 411.34 & 411.34 & 52.77 \\ \hline & Error & 7 & 54.60 & 7.80 \\ \end{split}$$

(c) The anova function returns:

Analysis of Variance Table

Total

8

Response: R

Df Sum Sq Mean Sq F value Pr(>F)
1 411.42 411.42 52.767 0.0001679 ***

465.94

58.24

Residuals 7 54.58 7.80

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Our hand calculations are fairly consistent with the output from the anova function in R, minus a few rounding errors.

(d) Calculating the \sqrt{F} value:

$$\sqrt{F} = \sqrt{52.77} = 7.27$$

The t value for $\hat{\beta}_1$ is 7.264, which is very close to the \sqrt{F} value. This is expected because, for simple linear regression with one predictor, the square of the t-value for the slope is equal to the F-statistic

$$\sqrt{F} = t \Leftrightarrow F = t^2$$

2. Given

- (a) **First task time**: ϵ is exponentially distributed with mean $\frac{1}{\lambda}$, so $E[\epsilon] = \frac{1}{\lambda}$.
 - **Second task time**: Proportional to x, with a proportionality constant β . So the time required should be βx .
 - **Total time**: sum of times it takes to complete the two tasks impying that the total time is $y = \beta x + \epsilon$.

Then the final linear model would be

$$y = \beta x + \epsilon$$

(b) To derive the maximum likelihood estimator for β and λ , we need to find the pdf of the exponential distribution.

$$f(\epsilon) = \lambda e^{-\lambda \epsilon} \text{ for } x \ge 0$$

 $\Rightarrow f(y) = \lambda e^{-\lambda(y-\beta x)} \text{ for } y \ge \beta x$

Deriving maximum likelihood estimator for β :

$$L(\beta, \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda(y_i - \beta x_i)}$$

$$\log(\beta, \lambda) = \ell(\beta, \lambda) = \sum_{i=1}^{n} \log(\lambda e^{-\lambda(y_i - \beta x_i)})$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \beta} = \sum_{i=1}^{n} \frac{\partial}{\partial \beta} \left(\log(\lambda e^{-\lambda(y_i - \beta x_i)})\right)$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \beta} = \sum_{i=1}^{n} \frac{\partial}{\partial \beta} \left(\log \lambda - \lambda(y_i - \beta x_i)\right)$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \beta} = \sum_{i=1}^{n} -x_i \lambda + x_i \lambda \beta$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \beta} = \sum_{i=1}^{n} -x_i \lambda + x_i \lambda \beta = 0$$

$$\sum_{i=1}^{n} x_i \lambda = \sum_{i=1}^{n} x_i \lambda \beta$$

$$\beta = 1$$

Deriving maximum likelihood estimator for λ :

$$L(\beta, \lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda(y_i - \beta x_i)}$$

$$\log L(\beta, \lambda) = \ell(\beta, \lambda) = \sum_{i=1}^{n} \log \lambda e^{-\lambda(y_i - \beta x_i)}$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \lambda} = \sum_{i=1}^{n} \frac{\partial}{\partial \lambda} \left(\log \lambda e^{-\lambda(y_i - \beta x_i)} \right)$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \lambda} = \sum_{i=1}^{n} \frac{\partial}{\partial \lambda} \left(\log \lambda - \lambda(y_i - \beta x_i) \right)$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \lambda} = \sum_{i=1}^{n} \frac{1}{\lambda} - (y_i - \beta x_i)$$

$$\frac{\partial \ell(\beta, \lambda)}{\partial \lambda} = \sum_{i=1}^{n} \frac{1}{\lambda} - (y_i - \beta x_i)$$

$$\sum_{i=1}^{n} \frac{1}{\lambda} = \sum_{i=1}^{n} (y_i - \beta x_i)$$

$$\frac{n}{\lambda} = \sum_{i=1}^{n} (y_i - \beta x_i)$$

$$\lambda = \frac{n}{\sum_{i=1}^{n} (y_i - \beta x_i)}$$

 \therefore The maximum likelihood estimator for β is 1 and λ is $\frac{n}{\sum_{i=1}^{n}(y_i-\beta x_i)}$.

End of Assignment 2.