Discriminant Functions I

Consider a two class problem. We need a function for the decision boundary to separate the classes.

Consider a simple linear discriminant function:

$$w_2x_2 + w_1x_1 + w_0 = 0$$

defined over a two dimensional space, where

$$\bar{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \bar{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

An example line:

$$x_2 + x_1 - 1 = 0$$

Clearly points about the line yield

$$x_2 + x_1 - 1 > 0$$

while points below the line yield

$$x_2 + x_1 - 1 < 0$$

Discriminant Functions II

If the points belonging to the two classes C_1 and C_2 are as shown in the Figure, they can be easily discriminated.

In general linear discriminant functions are of the form

$$w_d x_d + w_{d-1} x_{d-1} + \dots + w_1 x_1 + w_0 = 0$$

This represents a hyperplane in a d-dimensional space.

Alternatively can be written as

$$\bar{w}^t\bar{x}+w_0=0$$

Non linear discriminant functions I

Consider two classes being separated by a circle as shown in the Figure.

$$x^2 + y^2 = r^2$$

 $x^2 + y^2 - r^2 = 0$ is the boundary between the two classes.
Clearly $x^2 + y^2 - r^2 < 0$ inside the circle
 $x^2 + y^2 - r^> 02$ outside the circle

The boundary is clearly nonlinear in the input space.

Consider the transformation:

$$z_1 = x^2$$

$$z_2 = y_2$$

$$r^2 = 1$$

This yields

Non linear discriminant functions II

$$z_1 + z_2 - 1 = 0$$

This leads to a linear hyperplane in z-space that is isomorphic to the input x-space.

$$p(\vec{x}/\omega_i) = \mathcal{N}(\vec{x}/\vec{\mu}_i, \Sigma_i) \quad \text{(where } \vec{x} = [x_1 \ x_2 \dots x_d]^T)$$

Classification steps:

- ► Training Process: We estimate $\hat{\mu_i}$ and $\hat{\Sigma_i}$ using the dataset of i^{th} class: $D(\vec{x_1} \ \vec{x_2} \dots \vec{x_N})$
- Development Process: We fix our hyperparameters in this process.
- Testing Process: We test our model using unseen data.

We classify the feature vector \vec{x} to the class for which $P(\omega_i/\vec{x})$ is the highest and the rest becomes the error. Example: If we have M classes and max is the answer, then error $=1-P(\omega_{max}/\vec{x})$

Bayes' decision Theory

As $p(\mathbf{x})$ does not affect the decision process, $P(\omega_i|\mathbf{x}) \sim p(\mathbf{x}|\omega_i)P(\omega_i)$

Unimodal Multivariate Gaussian Distribution

$$p(\vec{x}/\omega_i) = \frac{1}{(\sqrt{2\pi})^d |\Sigma_i|^{\frac{1}{2}}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu_i})\Sigma_i^{-1}(\vec{x} - \vec{\mu_i})^T}$$

where,

$$\Sigma_i = E[(\vec{x} - \vec{\mu_i})(\vec{x} - \vec{\mu_i})^T]$$

$$\mu_i = E[\vec{x_i}]$$

$$\ln g_1(\vec{x}) = \ln p(\vec{x}/\omega_1)$$

$$= -\frac{1}{2} \ln(\sqrt{2\pi}) - \frac{d}{2} \ln |C_1|^{\frac{1}{2}} - \frac{1}{2} (\vec{x} - \vec{\mu})^T C_1^{-1} (\vec{x} - \vec{\mu}) + \ln P(w_1)$$

Similarly for $g_2(x) = p(\vec{x}/\omega_2)$

Discriminating Function: $g(\vec{x}) = \ln g_1(\vec{x}) - \ln g_2(\vec{x})$

CASE-1:
$$C_1 = C_2 = \sigma^2 I$$
 (less parameters \Longrightarrow less data reqd.)

The quadratic term (x^Tx) is same in both $g_1(\vec{x})$ and $g_2(\vec{x})$, so we can assume linear equation. Hence,

$$g_i(\vec{x}) = \vec{\omega_i}^t \vec{x} + \omega_{io}$$
 (assumed)

Now, neglecting terms which gets cancelled out in $\ln g_1(\vec{x}) - \ln g_2(\vec{x})$, we get:

$$g_1(\vec{x}) = \frac{-1}{2\sigma^2} (\vec{\mu_1}\vec{\mu_1}^T - 2\vec{\mu_1}^T\vec{x}) + \ln P(\omega_1)$$

Now comparing our assumed equation and this equation, we get:

$$\omega_i = \frac{\vec{\mu_i}}{\sigma_i^2}$$
 and $\omega_{io} = \frac{-1}{2\sigma^2} \vec{\mu_1} \vec{\mu_1}^T + \ln P(\omega_i)$

Decision Boundary:
$$g(\vec{x}) = \vec{\omega_1}^T \vec{x} + \omega_{1o} - \vec{\omega_2}^T \vec{x} - \omega_{2o} = 0$$

So, $g(\vec{x}) = \vec{\omega}^T \vec{x} + \omega_o$ (because Straight Line)

where,

$$\vec{\omega} = \vec{\omega_1} - \vec{\omega_2} = \frac{1}{\sigma^2} (\mu_1 - \mu_2)^t \vec{x}$$

$$\omega_o = \omega_{1o} - \omega_{2o} = \frac{-1}{2\sigma^2} (\vec{\mu_1} \vec{\mu_1}^T - \vec{\mu_2} \vec{\mu_2}^T) + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

Now since $\vec{\mu_1}\vec{\mu_1}^T - \vec{\mu_2}\vec{\mu_2}^T = \|\vec{\mu_1}\|^2 - \|\vec{\mu_2}\|^2 = (\vec{\mu_1} - \vec{\mu_2})^t(\vec{\mu_1} + \vec{\mu_2})$

$$g(\vec{x}) = \frac{1}{\sigma^2} (\vec{\mu_1} - \vec{\mu_2})^t \vec{x} - \frac{1}{2\sigma^2} \left[(\vec{\mu_1} - \vec{\mu_2})^t (\vec{\mu_1} + \vec{\mu_2}) \right] + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

$$= \frac{1}{\sigma^2} (\vec{\mu_1} - \vec{\mu_2})^t \left[\vec{x} - \frac{1}{2} (\vec{\mu_1} + \vec{\mu_2}) + \frac{\sigma^2 (\vec{\mu_1} - \vec{\mu_2})}{\|\vec{\mu_1} - \vec{\mu_2}\|^2} \ln \frac{P(\omega_1)}{P(\omega_2)} \right]$$

$$= \vec{\omega}^t (\vec{x} - x_o) = 0 \quad \text{(i.e The separating plane passes through } x_o)$$

Now, if $P(\omega_1) = P(\omega_2)$ then the boundary perpendicularly bisects the line joining $\vec{\mu_1}$ and $\vec{\mu_2}$

CASE-2:
$$C_1 = C_2 = C \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$
 $(\sigma_{jk} = 0 \text{ for } j \neq k)$

$$g_i(x) = \frac{-1}{2} (\vec{x} - \vec{\mu_i})^t C_i (\vec{x} - \vec{\mu_i}) + \ln P(w_i)$$

$$= \frac{-1}{2} \vec{x}^t C^{-1} \vec{x} + \frac{1}{2} \vec{\mu_i}^t C^{-1} \vec{x} + \frac{1}{2} \vec{x}^t C^{-1} \vec{\mu_i} - \frac{1}{2} \vec{\mu_i}^t C^{-1} \vec{\mu_i} + \ln P(\omega_i)$$

Ignoring the terms that do not depend on i i.e they will cancel out.

$$g_{i}(\vec{x}) = (C^{-1}\mu_{i})^{t}\vec{x} - \frac{1}{2}\vec{\mu_{i}}^{t}C^{-1}\vec{\mu_{i}} + \ln P(\omega_{i})$$
$$= \vec{\omega_{i}}^{t}\vec{x} + \omega_{io}$$

Now, the discriminating boundary can be given by:

$$g(x) = (C^{-1}\vec{\mu_1} - C^{-1}\vec{\mu_2})\vec{x} - \vec{\mu_1}C^{-1}\vec{\mu_1} + \vec{\mu_2}C^{-1}\vec{\mu_2} + \ln\frac{P(\omega_1)}{P(\omega_2)}$$
$$= C^{-1}(\vec{\mu_1} - \vec{\mu_2})\vec{x} - \frac{C^{-1}}{2}(\vec{\mu_1} - \vec{\mu_2})^t(\vec{\mu_1} + \vec{\mu_2}) + \ln\frac{P(\omega_1)}{P(\omega_2)}$$

On comparing with equation of plane $g(x) = \vec{\omega}^t(\vec{x} - x_o)$

$$\vec{\omega} = C^{-1}(\vec{\mu_1} - \vec{\mu_2})$$

$$x_o = \frac{1}{2}(\vec{\mu_1} + \vec{\mu_2}) - \frac{\ln P(\omega_1)/P(\omega_2)}{(\vec{\mu_1} - \vec{\mu_2})^t C^{-1}}$$

Notice that C^{-1} will apply an affine rotation on $(\vec{\mu_1} - \vec{\mu_2})$ so $\vec{\omega}$ will not be in direction of $(\vec{\mu_1} - \vec{\mu_2})$. Also, if priors are equal, $x_o = \frac{1}{2}(\vec{\mu_1} + \vec{\mu_2})$ i.e it still passes through the midpoint but the direction is transformed.

Note that the contours have same probability density in a Gaussian because it is symmetric about the mean.

CASE-3: $C_1 \neq C_2$ (They can be diagonal) Again, neglecting the terms that don't affect.

$$g_i(\vec{x}) = \frac{1}{2}\vec{x}^t C_i^{-1} \vec{x} + \vec{\mu_i}^t C_i^{-1} \vec{x} + \vec{\mu_i}^t C_i^{-1} \vec{\mu_i} + \ln P(\omega_i) - \frac{1}{2} \ln |C_i|$$

$$\begin{split} g(\vec{x}) &= \vec{x}^t W \vec{x} + \vec{\omega}^t \vec{x} + \omega_o = 0 \quad \text{where,} \\ W &= \frac{-1}{2} (C_1^{-1} - C_2^{-1}) \\ \omega &= (C_1^{-1} \vec{\mu_1} - C_2^{-1} \vec{\mu_2}) \\ \omega_o &= \frac{-1}{2} (\vec{\mu_2}^t C_2^{-1} \vec{\mu_2} + \vec{\mu_1}^t C_1^{-1} \vec{\mu_1}) - \frac{1}{2} \ln |\frac{C_1}{C_2}| + \ln \frac{P(\omega_1)}{P(\omega_2)} \end{split}$$

Summary of footprint of density function

Covariance	2D	3D	nD	EigenVectors parallel to axis?
$C = \sigma^2 I$	Circle	Sphere	Hypersphere	Yes
C = Diagonal	Ellipse	Ellipsoid	Hyperellipsoid	Yes
C = Full	Ellipse	Ellipsoid	Hyperellipsoid	No

An extended quadratic discriminant function in two dimensions is $Ax^2 + Bv^2 + Cx + Dv + E = 0$

$$A - R \longrightarrow circle$$

$$A = B \implies \text{circle}$$

$$AorBiszero \implies Parabola$$

$$A.B > 0 \implies \text{Ellipse}$$

$$A.B < 0 \implies \text{Hyperbola}$$

$$A = 0 \implies \text{Hyperplane}$$