Tracking the Sun

Our process:

- Design Goals
 - Track the sun
 - Low cost:efficiency ratio
 - Reliability
 - Be pretty
- Divide and Conquer
 - Mechanical Design
 - Electronics Design
 - Algorithm Design
- Verification and Testing

Design Goals

- 1. Tracking the sun
 - a. Follow the sun as the day progresses.
- 2. Low cost:efficiency
 - a. Every dollar spent needs to contribute as much or more
 - b. Sacrificing good design for low cost is NOT okay
- 3. Reliability
 - a. Don't break
- 4. Be pretty
 - At minimum, contain the capability of being aesthetically pleasing
 - b. Get people to use it, many people oppose solar power because it's ugly.

Source and data available at: github.com/AnthonyLam/solaaaar

4	ACTIVITY	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri
5																					4/1		
6	Design Phase - Mechanical																						
7	Movement design																						
8	Concept																						
9	Verification							\															
10	Layout - Parts and specifications							\															
11	Verification 2 & Ordering							\															
12	Mount design																						
13	Concept																						
14	Verification								\														
15	Layout - Size and Parts																						
16	Verification 2 & Ordering					nt me	chanis	sm for															
17	Design Phase - Electrical		con	trol co	ae				_\														
18	Arduino Power Circuit																						
19	Schematic design																						
20	Schematic verification & ordering	,																					
21	Build and test								/														
22	Arduino Control Circuit																						
23	Schematic design																						
24	Schematic verification & ordering	ı																					
25	Build and test																						
26	Arduino Control Code																						
27	Preliminary code																						
28	Debug and Verification									+													
29	Build Phase																						
30	Mount and Movement compile																						
31	Schematic compile																						
32	Merge mech. And elec. Designs																						
33	Test Phase																						
34	Movement																						
35	Control																						
36	Power																						
37	Extended Test																						
38	Final Checks																						

Research indicates dual axis tracking is typically worth the trade off in cost versus single axis tracking.¹

Fig. 5 Dual-Axis Tracker

Fig. 1 Single-Axis Tracker

Given our target customer: ease of use and maintenance is a priority over absolute efficiency. Opted for a single axis design.

¹Dual axis vs single axis tracking

Multiple forms of mechanical motion are available: servos, steppers and actuators.

Threaded Stepper

Linear Actuator

Threaded stepper motors yielded the greatest benefit for our system at a lower price point and a smaller form factor with a higher torque rating.

Gathered data on various materials that yield the greatest results for the lowest amount of money.

Preliminary design

Electronics Design

Simple logic and design means we could potentially do without a complex microcontroller.

TTL would take too long to implement and a full Arduino is too much. An ATTiny85 will serve our purposes.

- Can be dropped to 1 Mhz clock. Yay power savings
- Small form factor
- Extremely cheap (50c)

Electronics Design

Design for voltage regulation comes down to 2 different designs:

Other circuit wouldn't fit. Just imagine a voltage regulator with lots of resisters, an inductor and a capacitor.

Space constraints are a concern and the power loss is minimal since we deal with low currents.

Electronics Design

Motor Control: custom build or use a proven solution? Use of the ATTiny85 reduces the available pins.

FET circuit for stepper control

EasyDriver

Error prone circuit design or a nicely packaged PCB? It has Ez in the name.

EasyDriver

Our program can't be debugged easily when put into the system so it must have fault tolerant behavior and must account for every predictable scenario.

- Derive an event driven system from a finite state machine.
- Minimize impact on runtime: We have very little memory, storage and clock cycles
- Use little power: tune built in clock down to 1 Mhz from 8Mhz

Our algorithm states are defined by a 4-bit value representing various inputs.

Action	S1 S2 S3 S4	М		
SLEEP	0000	10		
PAN	0001	11		
SLEEP	0010	10		
PAN	0011	11		
SLEEP	0100	10		
R EAST	0101	00		
SLEEP	0110	10		
PAN	0111	11		
SLEEP	1000	10		

Only half of the table is shown but idea should be clear. Each action is represented by a 2-bit binary value and determined by the States: S1 S2 S3 S4.

	00	01	11	10
00	1	1	1	1
01	1	0	0	1
11	1	1	1	1
10	1	1	1	1

	00	01	11	10	
00	0	0	0	0	
01	1	0	1	1	
11	1	1	1	1	L
10	0	0	0	0	

M1 = S2 + !S3 + S4

M2=S3S4+S4!S2+S4S1

The previous table was too clunky and would result in inefficiencies. Here we apply a Karnaugh Map to simplify our algorithm down to 2 equations.

Total Cost

Ceramic Capacitor x2	\$0.61	PVC x 20 ft	\$10.86
Resistors x2	\$0.20	Belt	\$9.99
ATTiny85	\$1.70	Stepper Motor	\$32.00
Photoresistors x3	\$2.70	Pulley	\$4.58
LM7805	\$0.67	Misc. Parts est.	\$20.00
		Est Cost :	\$83.31