Facial Keypoint Detection

電機四 林展翔

Training Dataset

Consists of 7,049 96x96 gray-scale images

Each has 15 attributes (locations for keypoints)

• right_eye_center / left_eye_outer_corner /...

An example of one of the faces with three keypoints marked.

Goal

Predict a facial keypoint location for each test image

Only need 1-dimensional information(x or y) for the requested keypoint

	Α	В	С	D
1	Rowld	ImageId	FeatureName	Location
2	1	1	left_eye_center_x	65
3	2	1	left_eye_center_y	39
4	3	1	right_eye_center_x	32
5	4	1	right_eye_center_y	39
6	5	1	left_eye_inner_corner_x	57
7	6	1	left_eye_inner_corner_y	39
8	7	1	left_eye_outer_corner_x	72
9	8	1	left_eye_outer_corner_y	39
10	9	1	right_eye_inner_corner_x	38
11	10	1	right_eye_inner_corner_y	39
12	11	1	right_eye_outer_corner_x	24
13	12	1	right_eye_outer_corner_y	40
14	13	1	left_eyebrow_inner_end_x	55

Score Evaluation

Root Mean Squared Error (RMSE)

 \hat{y}_i : predicted value \hat{y}_i : original value

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

Keypoint Detection in R

USING IMAGE PATCHES

Patch Definition

The area around a keypoint

Averaged Patches Method - Parameters

Patch Size

• #(pixels) we are going to extract in each direction around the center of the keypoint

Search size

• #(pixels) we are going to move in each direction when searching for the keypoint

Averaged Patches Method - Procedure

- 1. For each keypoint feature on training images, compute the average patch
- 2. For each feature on each test image, *find the position* that best correlates with the average patch
 - Search the area near the mean position of training data
 - Use the point in the region as center points for patches
 - Calculate the *correlation* with the *average patch* (using matrix correlation function)
 - Choose the points with the highest correlation as keypoints on test images

Experimenting with Different Patch Sizes

Patch size	Search size	RMSE
8	2	3.85282
10	2	3.80685
12	2	3.77756
14	2	3.75538
16	2	3.76593
10	1	3.86137
10	3	3.86137

15th place on public leaderboard

Q & A