Probability and stochastic Processes

No books, no notes, no phones, no electronic equipment of any kind are allowed.

Problems are independent. Do not waste too much time on a single question: it is possible to assume the result stated in one of the questions and use it later on.

Please use a separate sheet for each problem.

Problem I (approx. 11 points)

In a fair game of heads and tails, a gambler bets on the current leader. In this problem we study this strategy, and compute the probability of ruin.

Let $Z_n = +1$ [resp. -1] if the *n*th throw is heads [resp. tails]. Thus, $Z_n, n \ge 1$ are i.i.d. Bernoulli variables with $\mathbf{P}(Z_i = -1) = \mathbf{P}(Z_i = +1) = 1/2$, and $S_n = Z_1 + \ldots + Z_n$ is the number of heads minus the number of tails by time n ($S_0 = 0$). Define the sign function as

$$sign(x) = \begin{cases} +1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0. \end{cases}$$

If the gambler uses the strategy "follow the leader", his fortune M_n at time n is

$$M_n = M_{n-1} + \text{sign}(S_{n-1}) \times Z_n = \sum_{i=1}^n \text{sign}(S_{i-1}) \times Z_i.$$

Hence, $M_0 = M_1 = 0$. Define $L_n = \sum_{i=1}^n \mathbf{1}_{\{S_{i-1}=0\}}$ the number of visits to 0 $(L_0 = 0)$.

- 1. Show that $(S_n)_n$ and $(M_n)_n$ are martingales. Are $(S_n^2)_n$ and $(M_n^2)_n$ submartingales? Compute the brackets $\langle S \rangle_n$ and $\langle M \rangle_n$ in terms on n, L_n .
- 2. a) Prove by induction that for every $n \ge 0$, $|S_n| = L_n + M_n$.
 - b) Deduce that $M_n \in \sigma(|S_i|, i \leq n)$. What is the Doob's decomposition of $|S_n|$?
 - c) Prove that $|S_n|$ is a Markov chain. Is it irreducible? Recurrent? Ergodic?
- 3. In this question, we fix two integers $a, b \ge 1$, and let

$$\tau = \inf \{ n \ge 1 : M_n \in \{-a, b\} \}. \tag{1}$$

Set $\delta = 2(a+b)$. By considering the events $A_k = \{Z_{(k-1)\delta+1} = \cdots = Z_{k\delta} = 1\}$ show that

$$\mathbf{P}(\tau > k\delta) \le \left(1 - \left(\frac{1}{2}\right)^{\delta}\right)^k, \quad \forall k \ge 1.$$

Conclude that τ is square-integrable. Is τ a stopping time?

- 4. Is $(M_{n \wedge \tau})_n$ is a martingale? Compute the values of $\mathbf{P}(M_{\tau} = -a)$ and $\mathbf{P}(M_{\tau} = b)$.
- 5. We now take $a = b \ge 1$. We use the notation $\tau(a) = \tau$ for (1). Prove that

$$\mathbf{E}M_{\tau(a)}^2 = \mathbf{E}\tau(a) - \mathbf{E}L_{\tau(a)}, \qquad \mathbf{E}|S_{\tau(a)}| = \mathbf{E}L_{\tau(a)}, \qquad \mathbf{E}S_{\tau(a)}^2 = \mathbf{E}\tau(a).$$

Deduce an equivalent of $\mathbf{E}\tau(a)$ as $a\to\infty$.

Problem II (approx. 9 points)

Let \mathcal{A} be a finite or countable set, and let $p = (p(a))_{a \in \mathcal{A}}$ be a collection of numbers satisfying

$$\forall a \in \mathcal{A}, p(a) > 0$$
 and $\sum_{a \in \mathcal{A}} p(a) = 1.$

Consider a sequence of i.i.d. random symbols $(Z_n)_{n\geq 1}$ distributed according to p. We are interested in the stochastic process $(X_n)_{n\geq 0}$ defined by $X_n := (Z_{n+1}, Z_{n+2}, Z_{n+3})$. Thus, $X_0 = (Z_1, Z_2, Z_3), X_1 = (Z_2, Z_3, Z_4), X_2 = (Z_3, Z_4, Z_5),$ and so on.

Part A. In this question we consider the special case where $\mathcal{A} = \{0, 1\}$ and $p(0) = p(1) = \frac{1}{2}$.

- 1. Show that $(X_n)_{n\geq 1}$ is a Markov chain and draw the associated diagram.
- 2. Justify that the chain admits a unique invariant law, and find it. Is it reversible?
- 3. Let $T = \inf\{n \geq 1 : X_n = X_0\}$ be the time of first return to the initial state (which is itself random). What is the value of $\mathbf{E}[T]$?
- 4. What is the probability that the state (1,1,1) is visited before the state (0,0,1)?

Part B. We now come back to the general case. Recall that \mathcal{A} is not necessarily finite!

- 1. Show that $(X_n)_{n\geq 1}$ is a Markov chain and specify its transition matrix.
- 2. Justify that the chain is irreducible and aperiodic.
- 3. What is the initial law X_0 ? What about X_1 ? What can we deduce from this regarding transience/null-recurrence/positive-recurrence?
- 4. Let a, b, c be three distinct symbols in \mathcal{A} . Let T_1, T_2 denote the first and second time at which the state (a, b, c) gets visited, i.e.

$$T_1 := \inf\{n \ge 0 : X_n = (a, b, c)\}$$
 and $T_2 := \inf\{n > T_1 : X_n = (a, b, c)\}$

Justify that T_1, T_2 are almost-surely finite, and then compute the expected number of visits to the state (c, b, a) between times T_1 and T_2 .

5. A random text is produced by hitting n times a 26-letter keyboard, uniformly at random and independently. How many times does the word CLT appear, for n large? What about a word with repeated letters, such as LLN? Justify precisely.