Fundamentals of Solid State Physics

Thermal Properties

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Further Reading

Ashcroft & Mermin, Chapter 21, 22, 23

Born-Oppenheimer Approximation

- Adiabatic Approximation 绝热近似
- Static Approximation 定核近似
 - The behaviors of electrons and nuclei can be calculated separately.

$$\Psi_{\text{total}} = \Psi_{\text{electron}} * \Psi_{\text{nuclear}}$$

- Electrons move much faster than nuclei
- When we consider the electronic behaviors, we assume the atomic lattice is static.

Failures of the Static Lattice Model

It cannot explain

- Scattering of electrons
- Thermal properties
 - Thermal Capacity
 - Thermal Conductivity
 - Thermal Expansion
- Mechanical properties
- We have to analyze lattice vibration

$$\sigma = ne\mu = ne^2 \frac{\tau}{m}$$

 τ - relaxation time (s)

Born-Oppenheimer Approximation

- Adiabatic Approximation 绝热近似
- The behaviors of electrons and nuclei can be calculated separately.

$$\Psi_{\text{total}} = \Psi_{\text{electron}} * \Psi_{\text{nuclear}}$$

- When we consider the electronic behaviors, we assume the atomic lattice is static.
- When we consider the lattice behaviors, we assume electrons are static.

Fundamentals of Solid State Physics

Lattice Vibration - Classical Model

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Atomic Interactions

Interatomic Potential U

$$U(r) = U_{\text{repulsion}}(r) - U_{\text{attaction}}(r)$$

U - potential energy (J, eV) r - atomic distance (nm, \mathring{A}) 10

Interatomic Potential: Examples

Lennard-Jones (L-J)

$$U(r) = \frac{A}{r^{12}} - \frac{B}{r^6}$$
repulsive attractive

Ionic Crystals

Morse Potential

$$U(r) = D\left(e^{-2a(r-r_0)} - 2e^{-a(r-r_0)}\right)$$
repulsive attractive

Atomic Interactions

potential energy *U*

Harmonic Approximation (parabolic curve)

$$U(r) = U_0 + \frac{1}{2}K(r - r_0)^2$$
$$= U_0 + \frac{1}{2}K \cdot u^2$$

Hooke's Law

K - spring constant (N/m) u - atomic displacement (m) ¹²

Harmonic Oscillator 谐振子

$$F = -\frac{\partial V}{\partial r} = -K \cdot u$$

$$-\frac{\partial V}{\partial r} = -K \cdot u$$

$$F = m \frac{\partial v}{\partial t} = m \frac{\partial^2 u}{\partial t^2}$$

Hooke's Law

Newton's Second Law

$$\longrightarrow$$
 $u = Ae^{-i\omega t}$

$$\omega = \sqrt{\frac{K}{m}}$$

Diatomic Molecule 双原子分子

Homework 8.1

$$\omega = \sqrt{\frac{K}{m^*}} = \sqrt{\frac{m_1 + m_2}{m_1 m_2}} K$$

 ω - angular frequency (Hz) m^* - reduced mass (kg)

Diatomic Molecule 双原子分子

Homework 8.1

$$\omega = \sqrt{\frac{K}{m^*}} = \sqrt{\frac{m_1 + m_2}{m_1 m_2} K}$$

 ω - angular frequency (Hz) m^* - reduced mass (kg)

CO molecule

H₂O Vibration

CO₂ Vibration

Symmetric Stretch 1366 cm⁻¹ or 7.32 μm

Bending 667 cm⁻¹ or 15 μm

Asymmetric Stretch 2349 cm⁻¹ or 4.23 μm

Molecule Vibration

- Vibration modes of molecules can be measured by infrared absorption spectrum
- Infrared absorption of CO₂ causes greenhouse effect

1D Monatomic Chain 单原子链

$$F = m \frac{\partial^2 u}{\partial t^2} \longrightarrow m \frac{\partial^2 u_n}{\partial t^2} + K(u_n - u_{n-1}) + K(u_n - u_{n+1}) = 0$$

$$\longrightarrow \left| u_n = Ae^{i(kx - \omega t)} \right|$$

Wave Function

Acoustic Wave (声波) Elastic Wave (弹性波) Mechanical Wave (机械波) Lattice Wave (格波)

k - wave vector (m⁻¹)

1D Monatomic Chain 单原子链

$$\left| F = m \frac{\partial^2 u}{\partial t^2} \right| \longrightarrow$$

$$\left| F = m \frac{\partial^2 u}{\partial t^2} \right| \longrightarrow \left| m \frac{\partial^2 u_n}{\partial t^2} + K(u_n - u_{n-1}) + K(u_n - u_{n+1}) = 0 \right|$$

$$\longrightarrow u_n = Ae^{i(kx-\omega t)}$$

Wave Function

$$u_{n\pm 1} = Ae^{i(kx-\omega t)}e^{\pm ika}$$

k - wave vector (m⁻¹)

 ω - angular frequency (Hz) ²⁰

$$\omega^{2} = \frac{K}{m} (2 - e^{-ika} - e^{+ika})$$
$$= \frac{4K}{m} \sin^{2} \left(\frac{ak}{2}\right)$$

ω-k diagram(dispersion curve)

ω-k diagram(dispersion curve)

• Crystals cannot transmit sound above the cutoff frequency ω_{max}

$$\omega_{\text{max}} = \sqrt{\frac{4K}{m}}$$

Phase velocity

$$v_p = \omega / k$$

- Group velocity
- $v_g = \partial \omega / \partial k$
- Standing wave $(v_g = 0)$ at

$$k = \pm \frac{\pi}{a}$$

Speed of Sound 声速

At long wavelength limit ka ~ 0, speed of sound is a constant independent of frequency

$$\omega = \sqrt{\frac{4K}{m}} \left| \sin\left(\frac{ak}{2}\right) \right| \approx \sqrt{\frac{K}{m}} ak$$

$$v_g = \partial \omega / \partial k$$
$$= a\sqrt{\frac{K}{m}}$$

Speed of Sound 声速

At long wavelength limit ka ~ 0, speed of sound is a constant independent of frequency

$$v_g = \partial \omega / \partial k$$
$$= a\sqrt{\frac{K}{m}}$$

sound speed in solids

Speed of Sound 声速

At long wavelength limit ka ~ 0, speed of sound is a constant independent of frequency

$$v_g = \partial \omega / \partial k$$
$$= a\sqrt{\frac{K}{m}}$$

- Higher v_g requires
 - stronger bonds (K)
 - smaller atoms (m)

<u>Material</u>	Speed of Sound (m/s)
Rubber	60
Lead	1210
Gold	3240
Copper	4600
Aluminum	6320

http://www.classItd.com

Young's Modulus E 弹性模量

- E (unit: Pa): stress σ divided by strain ε
 - \Box stress σ : force per unit area
 - \square strain ε : ratio of elongation

 $\begin{bmatrix} v & - \end{bmatrix} \begin{bmatrix} E \end{bmatrix}$

 $v_g = \sqrt{\frac{E}{\rho}}$

macroscopic properties

$$F = K \cdot u$$

$$v_g = a\sqrt{\frac{K}{m}}$$

microscopic properties

$$\omega = \sqrt{\frac{4K}{m}} \left| \sin\left(\frac{ak}{2}\right) \right|$$

$$K_L > K_T$$

$$\left|v_{gL}>v_{gT}\right|$$

$$\omega = \sqrt{\frac{4K}{m}} \left| \sin\left(\frac{ak}{2}\right) \right|$$

$$K_L > K_T$$

$$|v_{gL}>v_{gT}|$$

Seismic Waves 地震波

L wave arrives first, less damage

T wave arrives later, more damage!

<u>video - earthquake</u>

$$M \frac{\partial^2 u_{1,n}}{\partial t^2} + K(u_{1,n} - u_{2,n}) + G(u_{1,n} - u_{2,n-1}) = 0$$

$$\begin{cases} M \frac{\partial^{2} u_{1,n}}{\partial t^{2}} + K(u_{1,n} - u_{2,n}) + G(u_{1,n} - u_{2,n-1}) = 0 \\ m \frac{\partial^{2} u_{2,n}}{\partial t^{2}} + K(u_{2,n} - u_{1,n}) + G(u_{2,n} - u_{1,n+1}) = 0 \end{cases}$$

$$\begin{bmatrix} u_{1,n} = A_{1}e^{i(kx - \omega t)} \\ u_{2,n} = A_{2}e^{i(kx - \omega$$

$$u_{1,n} = A_1 e^{i(kx - \omega t)}$$

$$u_{2,n} = A_2 e^{i(kx - \omega t)}$$

$$\omega^{2} = \frac{(K+G)(M+m) \pm \sqrt{(K+G)^{2}(M+m)^{2} - 16MmKG\sin^{2}\left(\frac{ak}{2}\right)}}{2Mm}$$

When K = G (example: NaCl, GaAs, ...), Simplified solution:

$$\omega^{2} = K \frac{M+m}{Mm} \left[1 \pm \sqrt{1 - \frac{4Mm}{(M+m)^{2}} \sin^{2}\left(\frac{ak}{2}\right)} \right]$$

$$\omega_{+}(k=0) = \sqrt{2K\frac{M+m}{Mm}}$$

$$\omega_{-}(k \approx 0) = \sqrt{\frac{K}{2(M+m)}}ak$$

$$\omega_{+}(k=\pm\frac{\pi}{a}) = \sqrt{\frac{2K}{M}}$$

$$\omega_{-}(k=\pm\frac{\pi}{a}) = \sqrt{\frac{2K}{m}}$$

Longitudinal (L) 纵波×1

Transverse (T) 横波×2

Acoustic modes are related to the low frequency vibration across the entire crystal; Optical modes are related to the high frequency vibration inside the primitive cell.

Transverse Optical (TO)

Transverse Acoustical (TA)

Acoustic modes are related to the low frequency vibration across the e

the low frequency vibration across the entire crystal;

Optical modes are related to

the high frequency vibration inside the primitive cell.

Optical Properties of NaCl

1D Multi-atomic Chain 多原子链

Fundamentals of Solid State Physics

Lattice Vibration - Quantum Model

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Quantization of the Bands 量子化

 $L_x = N^*a$, N is large ~ 10^{23}

Born-von Karman periodic boundary condition

$$u(x) = u(x + L_x) \qquad \Longrightarrow \qquad \exp(ik_x L_x) = 1$$

k is a quantized value

Quantization of the Bands 量子化

$$k_{x} = \frac{2\pi n_{x}}{L_{x}}$$

$$n_x = 0, \pm 1, \pm 2, \dots$$

quasi-continuous

Phonon Band Diagram

- A vibration state (phonon) is a collective movement of all the atoms in the lattice, not vibrations from a single atom
- There are N states in each band (N: number of primitive cells in the crystal)
- If there are L atoms in each primitive cell, there will be 3L bands, and 3NL states
 - □ 1 LA + 2 TA
 - □ (L-1) LO + 2(L-1) TO

Phonon 声子

- Phonon is a boson
 - Each state can fill many phonons at the same time
 - Bose-Einstein Distribution

number of phonons

$$f(E = \hbar\omega) = \frac{1}{e^{\hbar\omega/k_BT} - 1}$$

- Phonon 声子 vs. Photon 光子
 - Both of them are bosons, but
 - □ Phonon is a collective atom vibration, quasi-particle (准粒子)
 - □ Photon is a fundamental particle (基本粒子)

Phonon Band vs. Electron Band

Phonon Band

- \square max frequency ω_{\max}
- phonon number is not constant, depend on T

Electron Band

- no highest energy
- electron number is fixed

electron

Measure Phonon Band Diagram

- Optical Scattering
 - □ Brillouin Scattering 布里渊散射
 - □ Raman Scattering 拉曼散射
- Neutron Scattering 中子散射

Measure Phonon Band Diagram

- Optical Scattering
 - Photons have much smaller momentum than phonons
 - \Box can only measure $k \sim 0$

$$\Delta p = \hbar k \ \Delta E = \hbar \omega$$

$$p = \frac{h}{\lambda} \ll \frac{h}{a}$$

Measure Phonon Band Diagram

- Optical Scattering
 - Photons have much smaller momentum than phonons
 - \Box can only measure $k \sim 0$

Neutron Scattering 中子散射

- Neutron has a similar mass with atoms
- Momentum and energy can cover the entire bands

$$\Delta p = \hbar k$$

$$\Delta E = \hbar \omega$$

Need a nuclear reactor!

散裂中子源,东莞

Phonon Band Diagram - Copper

Cu has FCC structure, with one atom in a primitive cell.

There are only acoustic branches, no optical branches

▲ measured by neutron scattering

— calculation

Phonon Band Diagram - Silicon

Si has FCC structure, but with *two* atoms in a primitive cell.

There are both acoustic and optical branches.

- measured by neutron scattering
- calculation

Density of States (DOS) 态密度

$$g(\omega) = \frac{dn}{d\omega}$$

DOS - number of frequency states/levels per unit frequency, per unit volume

For 1D chain LA mode

$$\omega = \sqrt{\frac{4K}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|$$

$$n = \frac{N}{L_x} = \frac{2k}{2\pi / L_x} \cdot \frac{1}{L_x} = \frac{k}{\pi}$$

$$g(\omega) = \frac{dn}{d\omega} = \frac{\frac{dn}{dk}}{\frac{d\omega}{dk}} = \dots$$

Density of States (DOS) 态密度

$$g(\omega) = \frac{dn}{d\omega}$$

 $g(\omega) = \frac{dn}{d\omega}$ DOS - number of frequency states/levels per unit frequency, per unit volume

$$\omega = \sqrt{\frac{4K}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|$$

For 3D solid
$$\omega = \sqrt{\frac{4K}{m}} \left| \sin\left(\frac{ka}{2}\right) \right| \qquad n = \frac{3N}{V} = \frac{\frac{4\pi}{3}k^3}{\frac{(2\pi)^3}{V}} \frac{3}{V} = \frac{1}{2\pi^2}k^3$$

at low
$$\omega$$
 limit

at low
$$\omega$$
 | $\omega \approx v_g k = v_g (2\pi^2 n)^{1/3}$

Density of States (DOS) 态密度

Phonon band diagram and DOS for Silicon

Thank you for your attention