Examen de Matemática Discreta II 13 de julio de 2009

Número de Examen	Cédula	Nombre y Apellido				

1. (28 puntos)

- a) Encontrar $h, k \in \mathbb{Z}$ tales que $35 \times h + 66 \times k = 1$ con $0 \le h \le 60$.
- b) Mostrar que 85 es invertible en $(\mathbb{Z}_{101}^*,\cdot)$ y hallar su inverso.
- c) Se sabe que $a^{35} = 44 \mod(101)$ y $a^{66} \equiv -16 \mod(101)$. Calcular $a \mod(101)$.

2. (40 puntos)

Sea $p \in \mathbb{Z}^+$, primo impar.

- a) Probar que $\psi: U(p) \to U(p)$ tal que $\psi(x) = x^2$ es un morfismo de grupos.
- b) Calcular $N(\psi)$.
- c) Probar que $\frac{U(p)}{\{-1,+1\}} \cong \text{Im}(\psi)$ y concluir que $|\text{Im}(\psi)| = \frac{p-1}{2}$.
- d) A los elementos de $\text{Im}(\psi)$ se les llama restos cuadráticos. Probar que los restos cuadráticos no son raíces primitivas.
- e) Sean $h \in \mathbb{N}$ y $p = 2^{2^h} + 1$ un primo de Fermat. Calcular el número de raíces primitivas en U(p).
- f) Demostrar que todo elemento de U(p) es una raíz primitiva o un resto cuadrático si p es un primo de Fermat.

3. (32 puntos)

- a) Describir el protocolo Diffie-Hellman para acuerdo de claves.
- b) Ana y Pedro desean acordar una clave común utilizando el protocolo Diffie-Hellman. Eligen como primo p=89 y g=17. Pedro elige el número secreto m=41 y Ana le envía $34 \pmod{p}$. ¿Cuál es la clave secreta K que acuerdan Ana y Pedro?
- c) Una vez elegida la clave común K, Ana y Pedro se comunican utilizando el sistema Vigenère. La clave K se expresa en base 11 se expresa en base 11, es decir, $K = K_0 11 + K_1$, con $0 \le K_0 \le 10$ y $0 \le K_1 \le 10$. A cada letra del mensaje se le asocia un número de la siguiente tabla:

В	С	Е	Н	I	N	О	Р	S	U	
0	1	2	3	4	5	6	7	8	9	10

El último cuadrado en blanco está representando el espacio en blanco. La clave común resulta de sustituir en K_0K_1 por sus respectivas letras. Desencriptar el mensaje: SPEEUSPHS.

.