6. Data Structures

José Proenca Pedro Ribeiro

Algorithms (CC4010) 2024/2025

CISTER - U.Porto, Porto, Portugal

https://fm-dcc.github.io/alg2425

Where we are

- Algorithm Correctness
- Complexity: worst/best-case analysis
- Asymptotic analysis

- Recursive algorithms
- Average-case and randomized algorithms
- Dynamic programming
- Amortized analysis
- Data structures

Overview

- Sets and Sequences
- Buffers:
 - Stacks
 - Queues
 - Priority queues
- Dictionaries
 - Hashtables
 - Search trees

Motivation

We have seen that

Different data structures are better at different operations

We will see

Useful data structures and associated operations (code)

Examples

Arrays can have operations to implement sets, multisets, trees, etc.

Sets and Sequences

Sets and Multisets


```
#define MAXS 100
typedef int SetInt [MAXS] ;
```

Given SetInt s:

$$5 \in s \Leftrightarrow s[5]!=0$$

```
#define MAXMS 100
typedef int MSetInt [MAXS] ;
```

Given MSetInt ms:

$$\{4,4\}\subseteq \mathtt{ms} \;\Leftrightarrow\; \mathtt{ms}\, [4]\, \geq 2$$

Sets and Multisets - operations


```
void initSet
                 (SetInt);
int
     searchSet
                (SetInt, int);
                (SetInt, int);
int
    addSet
    emptySet (SetInt);
int
void unionSet
                (SetInt, SetInt,
                   SetInt):
void intersectSet (SetInt, SetInt,
                   SetInt):
void differenceSet(SetInt, SetInt,
                   SetInt):
```

```
void initMSet
                   (MSetInt):
int
    searchMSet
                   (MSetInt, int);
int addMSet
                  (MSetInt, int);
int emptyMSet
                  (MSetInt);
void unionMSet
                   (MSetInt, MSetInt,
                   SetInt):
void intersectMSet (MSetInt, MSetInt,
                   MSetInt):
void differenceMSet(MSetInt. MSetInt.
                   MSetInt):
```

Ex. 6.1: What is the expected cost of each function? Could you implement them?

Algorithms 2024/25 @ FCUP Sets and Sequences 6 / 37

Sequences - Recall linked lists


```
typedef struct list {
  int value ;
  struct list *next;
} *LInt;
```

```
LInt add (int x, LInt 1) {
  LInt new =
    malloc(sizeof(struct list));
  if (new != NULL) {
    new->value=x;
    new->next=1 ;
  }
  return new;
}
```

```
LInt dda (int x, LInt 1) {
  LInt pt = 1;
  while (pt != NULL) pt = pt->next;
  pt = malloc(sizeof(struct list));
  pt -> value = x;
  pt -> next = NULL;
  return 1;
}
```

Sequences - Recall linked lists (fixed)


```
typedef struct list {
  int value ;
  struct list *next;
} *LInt;
```

```
LInt add (int x, LInt 1) {
  LInt new =
    malloc(sizeof(struct list));
  if (new != NULL) {
    new->value=x;
    new->next=1 ;
  }
return new;
}
```

```
LInt dda (int x, LInt 1) {
 LInt pt = 1, prev;
 while (pt != NULL) {
  prev = pt; pt = pt->next; }
 pt = malloc(sizeof(struct list));
 pt->value = x:
 pt->next = NULL ;
 if (l==NULL) l = pt;
 else prev->next = pt;
 return 1;
```

Ex. 6.2: What is the possible complexity of lookup, concat, reverse?

Algorithms 2024/25 @ FCUP

Sequences – reverse analysis


```
typedef struct list {
  int value ;
  struct list *next;
} *LInt;
```

Idea for reverseRec

- 1. reverse the tail
- 2. add head to the end

```
reverseRec([]) = []
reverseRec([x1,x2,...]) = dda(x1,reverseRec([x2,...]))
```

Sequences – reverse analysis

10 / 37

```
LInt reverseRec (LInt 1) {
 LInt r, pt;
 if (l==NULL || l->next==NULL)
     r=1:
 else {
   r = pt = reverseRec (1->next);
    while (pt->next != NULL)
     pt = pt -> next;
   pt->next = 1;
   1->next = NULL;
 return r: }
```

```
LInt reverseLoop (LInt 1) {
  LInt r, tmp;
  r = NULL;
  while (1 != NULL) {
    tmp=1; l=l->next;
    tmp->next=r; r=tmp;
  }
  return r;
}
```

Ex. 6.3: What is the complexity of each reverse?

Ex. 6.4: What is the (informal) loop invariant in reverseLoop, assuming: $pre:l==l_0$ and $post:r==rev(l_0)$?

Complexity of collections in Scala


```
https://docs.scala-lang.org/
overviews/collections-2.13/
performance-characteristics.html
```

Buffers (stacks and queues)

Stacks


```
#define MAX 1000
typedef struct stack {
  int values [MAX];
  int sp;
} Stack;
```

```
typedef struct cell {
  int value;
  struct cell *next;
} Cell , *Stack;
```

```
typedef struct stack {
  int size;
  int *values;
  int sp;
} Stack;
```

Stacks


```
#define MAX 1000
typedef struct stack {
  int values [MAX];
  int sp;
} Stack;
```

```
typedef struct cell {
  int value;
  struct cell *next;
} Cell , *Stack;
```

```
typedef struct stack {
  int size;
  int *values;
  int sp;
} Stack;
```

with static arrays

with linked lists

with dynamic arrays

Ex. 6.5: (Informally) what is the expected complexity of: push, pop, head?

Exercise: Push-pop with dynamic arrays


```
void push (Stack *s , int x){
  if (s->sp == s->size)
    doubleArray (s);
  s->values[s->sp++] = x;
}

void doubleArray (Stack *s){
  s->size *= 2;
  s->values =
    realloc(s->values, s->size);
}
```

```
int pop (Stack *s){
  // reduces by half when only
  // 25% capacity is used
  ...
}

void halfArray (Stack *s){
  ...
}
```

Ex. 6.6: Implement the optimised pop function and discuss its complexity.

Queues


```
#define MAX 1000
typedef struct queue
{
  int values [MAX];
  int start, size;
} Queue;
```

```
typedef struct cell {
  int value ;
  struct cell *prox ;
} Cell ;

typedef struct queue {
  struct cell *start, *end;
} Queue;
```

```
typedef struct queue
{
  int max;
  int *values;
  int start, size;
} Queue;
```

Queues


```
#define MAX 1000
typedef struct queue
{
  int values [MAX];
  int start, size;
} Queue;
```

with static arrays (circular)

```
typedef struct cell {
  int value ;
  struct cell *prox ;
} Cell ;

typedef struct queue {
  struct cell *start, *end;
} Queue;
```

with linked lists

```
typedef struct queue
{
  int max;
  int *values;
  int start, size;
} Queue;
```

with dynamic arrays (circular)

Ex. 6.7: (Informally) what is the complexity of: init, isEmpty, enqueue, dequeue?

Priority Queues

- Binary tree
- Each node is smaller than any of its children
- Implemented as an array

```
#define MAX 1000
typedef struct prQueue {
  int values [MAX];
  int size ;
} PriorityQ;
```

Tree example in the board

```
size=17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 values: [10 15 11 16 22 35 20 21 23 34 37 80 43 22 25 24 28]
```

Priority queue – example

Tree example

size=17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

values: [10 15 11 16 22 35 20 21 23 34 37 80 43 22 25 24 28]

Priority queue – just the indices

Tree example

size=17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

values: [10 15 11 16 22 35 20 21 23 34 37 80 43 22 25 24 28]

Exercises

Ex. 6.8: Using the previous example, provide an expression to:

- 1. calculate the index of the *left* tree given a position i
- 2. calculate the index of the *right* tree given a position i
- 3. calculate the index of the parent of a given a position i
- 4. calculate the index of the first leaf

Ex. 6.9: Define bubbleUp(int i, int h[])

Used to add elements. Fixes a min-heap by swapping the i-th element with the parent while needed.

Ex. 6.10: Define bubbleDown(int i, int h[], int N)

Used to remove elements. Fixes a min-heap by swapping the i-th element with one of the children while needed.

Exercises

Ex. 6.11: Define the following operations:

- void empty (PriorityQueue *q) initialises the queue;
- int isEmpty (PriorityQueue *q) tests if q is empty;
- int add (int x, PriorityQueue *q) adds a value x, returning 0 when the queue is full;
- int remove (PriorityQueue *q, int *rem) removes the next element, and copies it to \it{rem} .

Dictionaries

Hashtables (hashsets)

Dictionary: maps keys to values (hashset: just the keys) (Keys are unique)

Idea - using a hash function

- Magic function hash converts a key into an index (number).
- This index points to the position of an array where the value *should* be found.
- Usually the size of the array is less than the set of possible keys, i.e., hash is not injective.
- If 2 keys have the same hash value, there is a colision that must be mitigated (alternative solutions exist).

Hashtables: Closed and Open Addressing (also hashsets))

Closed Addressing (or chaining)

- Table = array of linked lists
- Find value of key k:
 - go to index hash(k)
 - traverse list until k

Open Addressing

- Table = just an array
- Find value of key k:
 - go to index hash(k)
 - "jump" until k

Some concerns

- Use dynamic arrays (grow when the load factor (#keys/HSIZE) gets high)
 - -Need to rehash
- Smart *jumps* (probe function to know where to jump)
- Need to garbage collect in open addressing

Intuition: Hashtables with Closed Addressing

(from Wikipedia)

Hashtables with Closed Addressing

23 / 37

```
int hash(int k, int size);
void initTab(HTChain h);
int lookup(HTChain h, int k, int *i);
int update(HTChain h, int k, int i);
int remove(HTChain h, int k);
```

```
#define HSIZE 1000

typedef struct bucket {
  int key;
  int info;
  struct bucket *next;
} *Bucket;

typedef Bucket
  HTChain[HSIZE];
```

Ex. 6.12: Implement hash and lookup

Ex. 6.13: (Informally) what is the expected complexity of each function?

Intuition: Hashtables with Open Addressing

(from Wikipedia)

Hashtables with Open Addressing


```
int hash(int k, int size);
void initTab(HashTable h);
void lookup(HashTable h, int k, int *i);
void update(HashTable h, int k, int i);
void remove(HashTable h, int k);
int find_probe (HashTable h, int k)
- linear vs. quadratic probing (why quadratic?)
```

```
#define HSIZE 1000
#define STATUSEREE O
#define STATUSUSED 1
typedef struct bucket {
  int status :
 int kev:
  int info:
} Bucket :
typedef Bucket
  HashTable [HSIZE]:
```

Ex. 6.14: Define a linear probing function and update.

Lookups: Open vs. Closed

Removing with Open Addressing


```
int hash(int k, int size);
void initTab(HashTable h);
void lookup(HashTable h, int k, int *i);
void update(HashTable h, int k, int i);
int find_probe (HashTable h, int k);
void remove(HashTable h, int k);
```

```
#define HSTZE 1000
#define STATUSFREE O
#define STATUSUSED 1
#define STATUSDEL 2
typedef struct bucket {
  int status :
 int key;
  int info;
} Bucket;
typedef Bucket
  HashTable [HSIZE]:
```

Ex. 6.15: How would you implement update? How would you implement a *garbageCollect* that removes deleted cells? What is their complexity?

Dictionaries with trees - not for

evaluation

More dictionaries: balanced trees

We will see:

- Height- and weight-balanced tree
- Self-balancing binary search tree
 - AVL tree
 - Red-black tree

Binary Balanced Search Trees

Height-balanced

- more used
- AVL: left-height = right-height \pm 1
- Red-black: similar wrt black
- height = $\log n$

Weight-balanced

- less used
- leafs-left/right $\geq \alpha \times$ leafs, 0 $< \alpha <$ 1
- better for lookup intensive systems

AVL trees

- By Adelson-Velsky and Landis
- Oldest self-balancing binary search tree data structure to be invented ('62)
- Binary (left-right) search (sorted) tree
- Labels in the nodes
- At every node, the height of left and right trees differ at most by 1
- Insertions and removals preserve this

Function	Amortized	Worst Case	Amortized (RB)	Worst case (RB)
Search	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Insert	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Delete	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$

Ex. 6.16: Are these balanced?

Update in an AVL tree

See animation

```
https://en.wikipedia.org/wiki/AVL_tree#/media/File:
AVL_Tree_Example.gif

4 rotations: left, right, right-left, right-right
```

```
typedef struct avl {
  int bal;
  int key, info;
  struct avl *left , *right ;
} *AVL;
#define LEFT -1
#define RIGHT 1
#define BAL 0

// returns 0 if key already existed
int updateAVL (AVL *a, int k, int i);
```

Ex. 6.17: How would you implement an update without balancing?

Ex. 6.18: How would you implement AVL rotateRight(AVL a)?

Full code: updateAVL

```
FC
```

```
AVL updateAVLRec(AVL a , int k ,
                  int i, int *g , int *u){
if (a == NULL) {     // insert k->i here
   a = malloc (sizeof (struct avl )):
   a \rightarrow key = k; a \rightarrow info = i; a \rightarrow bal = BAL;
   a->left=a->right=NULL; *g=1; *u=0;
} else if (a->key==k) { // update k->i
   a - \sin 6 = i; *g = 0; *u = 1;
} else if (a->key > k) { // update left
   a->left = updateAVLRec(a->left,k,i,g,u);
   if (*g == 1) switch (a -> bal) \{ // balance
     case LEFT: a= fixLeft(a); *g=0; break;
     case RIGHT: a \rightarrow bal = BAL; *g=0; break;
     case BAL: a \rightarrow bal = LEFT:
                                         break:
} else{ // a->key < k</pre>
                                 update right
   // left <--> right
 return a:
```

Full code: updateAVL - fix-left


```
AVL fixLeft(AVL a) {
 AVL b, c;
 b=a->left:
 if (b->bal==LEFT) {
    a \rightarrow bal = b \rightarrow bal = BAL:
   a=rotateRight(a);
 } else {
    c = b - > right;
    switch (c->bal) {
      case LEFT: a - bal = RIGHT; b - bal = BAL; break;
      case RIGHT: a->bal=BAL; b->bal=LEFT; break;
      case BAL: a->bal=BAL: b->bal=BAL:
   c -> bal = BAL:
    a->left = rotateLeft(b);
    a = rotateRight(a);
 return a:
```

Red-Black Trees

- Nodes are black or red
- 2. Empty nodes count as black
- 3. Red nodes have only black children
- 4. All down paths from a root have equal black-height
- The root is black.
- Only 1 on the left is a RB tree

Red-Black Trees – inserting and deleting

- 6 cases for insertion (with nesting)
- 6 cases for deletion (with nesting)

Properties

- height is $\mathcal{O}(\log n)$.
- no path from the root to a leaf is more than twice as long as a path to another leaf

Function	Amortized (AVL)	Worst Case (AVL)	Amortized	Worst case
Search	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Insert	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Delete	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$

Red-Black trees height is in $O(\log n)$

- 1. Nodes are black or red
- 2. Empty nodes count as black
- 3. Red nodes have only black children
- 4. All down paths from a root have equal black-height

Lemma: size of a subtree - size $(x) \ge 2^{bh(x)} - 1$

- bh(x) is the black-height of a node x
- base case: $2^{bh(\text{NULL})} 1 = 2^0 1 = size(\text{NULL})$
- inductive case: For each child c of x: bh(c) = bh(x) or bh(c) = bh(x) - 1.

Then
$$size(x) \ge 2 \times (2^{bh(x)-1} - 1) + 1$$

= $2^{bh(x)-1+1} - 2 + 1 = 2^{bh(x)-1}$

Theorem: Height of a RB tree is $\mathcal{O}(\log n)$

- Let h be the height of a RB tree x
- For any trace $x, \ldots, leaf$, more than half are black
- $\Rightarrow bh(h) \geq h/2$
- \Rightarrow $size(x) \ge 2^{h/2} 1 \Leftrightarrow h \le 2\log(n+1) \in \mathcal{O}(\log n)$