Projeto e Análise de Algoritmos

A. G. Silva, R. de Santiago

Baseado nos materiais de Souza, Silva, Lee, Rezende, Miyazawa – Unicamp Ribeiro – FCUP • Mariani – UFSC Manber, Introduction to Algorithms (1989) – Livro

05 de abril de 2024

Cronograma

- 15mar Apresentação da disciplina. Introdução. Apresentação da L₁.
- 22mar Prova de proficiência/validação.
- 29mar Dia não letivo
- 05abr Notação assintótica. Indução matemática.
- 12abr Indução matemática. Recorrências. Divisão e conquista.
- 19abr Divisão e conquista. Ordenação.
- 26abr Ordenação em tempo linear. Multiplicação de inteiros. Multiplicação de matrizes.
- 03mai Estatística de ordem. Dúvidas.
- 10mai Primeira avaliação Q₁. Entrega de L₁.
- 17mai Grafos. Buscas. Apresentação da L₂.
- 24mai Algoritmos gulosos.
- 31mai Dia n\u00e4o letivo
- 07jun Semana Acadêmica do PPGCC.
- 14jun Programação dinâmica.
- 21jun NP-Completude e reduções.
- 28jun Algoritmos aproximados e heurísticas.
- **05jul** Segunda avaliação Q_2 . Entrega de L_2 .
- 12jul Dúvidas e fechamento.

Algoritmo

- Um algoritmo é um método para resolver um problema (computacional)
- Um algoritmo é uma ideia por trás de um programa e é independente de linguagem de programação, máquina, etc
- Propriedades de um algoritmo:

Correção

Deve resolver corretamente todas as instâncias do problema

Eficiência

O desempenho (tempo e memória) deve ser adequado

 Este curso é sobre a concepção e análise de algoritmos corretos e eficientes

Preocupações

Importância da análise do tempo de execução

Predição

Quanto tempo um algoritmo precisa para resolver um problema? Qual a escala? Podemos ter garantias sobre o tempo de funcionamento?

Comparação

Um algoritmo A é melhor que um algoritmo B? Qual é a melhor forma de resolvermos um determinado problema?

 Estudaremos uma metodologia para responder a essas questões

Velocidade de computadores

Desempenho algorítmico × Velocidade de computação

Um algoritmo melhor em um computador mais lento **sempre vencerá** um algoritmo pior em um computador mais rápido, para instâncias suficientemente grandes

 O que realmente importa é a taxa de crescimento do tempo de execução!

Random Access Machine (RAM)

- Precisamos de um modelo genérico e independente de linguagem e de máquina.
- Random Access Machine (RAM)
 - ullet Cada operação simples (ex.: $+, -, \leftarrow$, If) leva 1 passo
 - Ciclos e procedimentos, por exemplo, não são instruções simples
 - Cada acesso à memória leva também 1 passo
- Podemos medir o tempo de execução contando o número de passos como uma função do tamanho de entrada: T(n)
- Operações são simplificadas, mas isto é útil
 Ex.: a soma de dois inteiros não custa o mesmo que dividir dois reais mas, para uma visão global, esses valores específicos não são importantes

Tipos de análise de algoritmos

Pior caso (análise mais comum de ser feita):

 T(n) = quantidade máxima de tempo para qualquer entrada de tamanho n

Caso médio (análise feita de vez em quando):

- T(n) = tempo médio para qualquer entrada de tamanho n
- Implica em conhecimento sobre a distribuição estatística das entradas

Melhor caso (apenas uma curiosidade):

 Quando o algoritmo é rápido apenas para algumas das entradas

OF	rdena-Por-Inserção(<i>A, n</i>)	Custo	Vezes
1 para j ← 2 até n faça		<i>C</i> ₁	n
2	$chave \leftarrow A[j]$	<i>C</i> ₂	<i>n</i> − 1
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	<i>n</i> − 1
4	$i \leftarrow j - 1$	<i>C</i> ₄	<i>n</i> − 1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	C 5	$\sum_{i=2}^{n} t_i$
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C ₇	$\sum_{j=2}^{n}(t_{j}-1)$
8	$A[i+1] \leftarrow chave$	<i>C</i> ₈	n-1

A constante c_k representa o custo (tempo) de cada execução da linha k.

Denote por t_j o número de vezes que o teste no laço **enquanto** na linha 5 é feito para aquele valor de j.

Logo, o tempo total de execução T(n) de Ordena-Por-Inserção é a soma dos tempos de execução de cada uma das linhas do algoritmo, ou seja:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Como se vê, entradas de tamanho igual (i.e., mesmo valor de n), podem apresentar tempos de execução diferentes já que o valor de T(n) depende dos valores dos t_j .

Quando o vetor A está em ordem decrescente, ocorre o pior caso para Ordena-Por-Inserção. Para inserir a *chave* em $A[1 \dots j-1]$, temos que compará-la com todos os elementos neste subvetor. Assim, $t_j = j$ para $j = 2, \dots, n$.

Lembre-se que:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

е

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}.$$

Temos então que

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

O tempo de execução no pior caso é da forma $an^2 + bn + c$ onde a, b, c são constantes que dependem apenas dos c_i .

Portanto, no pior caso, o tempo de execução é uma função quadrática no tamanho da entrada.

- Como dito anteriormente, na maior parte desta disciplina, estaremos nos concentrando na análise de pior caso e no comportamento assintótico dos algoritmos (instâncias de tamanho grande).
- O algoritmo Ordena-Por-Inserção tem como complexidade (de pior caso) uma função quadrática an² + bn + c, onde a, b, c são constantes absolutas que dependem apenas dos custos c_i.
- O estudo assintótico nos permite "jogar para debaixo do tapete" os valores destas constantes, i.e., aquilo que independe do tamanho da entrada (neste caso os valores de a, b e c).
- Por que podemos fazer isso ?

Considere a função quadrática $3n^2 + 10n + 50$:

	Diferença		
п	$3n^2 + 10n + 50$	3 <i>n</i> 2	percentual
64	12978	12288	5,32%
128	50482	49152	2,63%
512	791602	786432	0,65%
1024	3156018	3145728	0,33%
2048	12603442	12582912	0,16%
4096	50372658	50331648	0,08%
8192	201408562	201326592	0,04%
16384	805470258	805306368	0,02%
32768	3221553202	3221225472	0,01%

Como se vê, $3n^2$ é o termo dominante quando n é grande.

De um modo geral, podemos nos concentrar nos termos dominantes e esquecer os demais.

- Usando notação assintótica, dizemos que o algoritmo Ordena-Por-Inserção tem complexidade de tempo de pior caso ⊖(n²).
- Isto quer dizer duas coisas:
 - a complexidade de tempo é limitada (superiormente) assintoticamente por algum polinômio da forma an² para alguma constante a,
 - para todo n suficientemente grande, existe alguma instância de tamanho n que consome tempo pelo menos dn², para alguma contante positiva d.
- Mais adiante discutiremos em detalhes o uso da notação assintótica em análise de algoritmos.

Ordenação por intercalação

Q que significa intercalar dois (sub)vetores ordenados?

Problema: Dados $A[p \dots q]$ e $A[q+1 \dots r]$ crescentes, rearranjar $A[p \dots r]$ de modo que ele fique em ordem crescente.

Entrada:

Saída:

Intercalação com sentinela

Intercalação com sentinela

Intercalação com sentinela

```
INTERCALA(A, p, q, r)
 1: n_1 \leftarrow q - p + 1
2: n_2 \leftarrow r - a
 3: sejam L[1..n_1 + 1] e R[1..n_2 + 1] novos vetores
 4: para i \leftarrow 1 até n_1 faça
 5: L[i] \leftarrow A[p + i - 1]
 6: para j \leftarrow 1 até n_2 faça
7: R[j] \leftarrow A[q+j]
8: L[n_1+1] \leftarrow \infty
9: R[n_2+1] \leftarrow \infty
10: i \leftarrow 1
11: j \leftarrow 1
12: para k \leftarrow p até r faça
13: se L[i] \leq R[j] então
            A[k] \leftarrow L[i]
14:
15:
            i \leftarrow i + 1
16:
     senão
            A[k] = R[i]
17:
18:
             j \leftarrow j + 1
```


Pseudo-código

```
INTERCALA(A, p, q, r)
       para i \leftarrow p até q faça
            B[i] \leftarrow A[i]
 3
     para j \leftarrow q + 1 até r faça
            B[r+q+1-j] \leftarrow A[j]
 5 i \leftarrow p
     j \leftarrow r
      para k \leftarrow p até r faça
 8
            se B[i] \leq B[j]
                então A[k] \leftarrow B[i]
10
                          i \leftarrow i + 1
11
                senão A[k] \leftarrow B[i]
12
                           i \leftarrow i - 1
```

Complexidade de Intercala

Entrada:

Saída:

Tamanho da entrada: n = r - p + 1

Consumo de tempo: $\Theta(n)$

Corretude de Intercala

Invariante principal de Intercala:

No começo de cada iteração do laço das linhas 7–12, vale que:

- $A[p \dots k-1]$ está ordenado,
- 2 A[p...k-1] contém todos os elementos de B[p...i-1] e de B[j+1...r],
- **3** $B[i] \ge A[k-1] \in B[j] \ge A[k-1].$

Exercício. Prove que a afirmação acima é de fato um invariante de INTERCALA.

Exercício. (fácil) Mostre usando o invariante acima que INTERCALA é correto.

Projeto por indução e algoritmos recursivos

"To understand recursion, we must first understand recursion." (anônimo)

- Um algoritmo recursivo obtém a saída para uma instância de de um problema chamando a si mesmo para resolver instâncias menores deste mesmo problema (trata-se de um projeto por indução).
- A resolução por projeto de indução, deve reduzir um problema a subproblemas menores do mesmo tipo. E problemas suficientemente pequenos devem ser resolvidos de maneira direta.

Algoritmos recursivos

- O que é o paradigma de divisão-e-conquista?
- Como mostrar a corretude de um algoritmo recursivo?
- Como analisar o consumo de tempo de um algoritmo recursivo?
- O que é uma fórmula de recorrência?
- O que significa resolver uma fórmula de recorrência?

Recursão e o paradigma de divisão-e-conquista

- Algoritmos de divisão-e-conquista possuem as seguintes etapas em cada nível de recursão:
 - Problemas pequenos: Quando os problemas são suficientemente pequenos, então o algoritmo recursivo deve resolver o problema de maneira direta.
 - Problemas que não são pequenos:
 - Divisão: o problema é dividido em subproblemas semelhantes ao problema original, porém tendo como entrada instâncias de tamanho menor.
 - Conquista: cada subproblema é resolvido recursivamente a menos que o tamanho de sua entrada seja suficientemente "pequeno", quando este é resolvido diretamente.
 - Combinação: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

Exemplo de divisão-e-conquista: Mergesort

- Mergesort é um algoritmo para resolver o problema de ordenação e um exemplo clássico do uso do paradigma de divisão-e-conquista. (to merge = intercalar)
- Descrição do Mergesort em alto nível:
 - **Divisão**: divida o vetor com n elementos em dois subvetores de tamanho $\lfloor n/2 \rfloor$ e $\lceil n/2 \rceil$, respectivamente.
 - Conquista: ordene os dois vetores recursivamente usando o Mergesort;
 - Combinação: intercale os dois subvetores para obter um vetor ordenado usando o algoritmo Intercala.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Mergesort – exemplo do livro

- Exemplo do livro (CLRS)
- Visualização de cada "merge" do algoritmo

Corretude do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

O algoritmo está correto?

A corretude do algoritmo Mergesort apoia-se na corretude do algoritmo Intercala e pode ser demonstrada **por indução** em n := r - p + 1.

Aprenderemos como fazer provas por indução mais adiante.

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Qual é a complexidade de MERGESORT?

Seja T(n) := o consumo de tempo máximo (pior caso) em função de n = r - p + 1

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

linha	consumo de tempo			
1	?			
2	?			
3	?			
4	?			
5	?			
T(n) = ?				

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

	linha	consumo de tempo
	1	⊖(1)
	2	$\Theta(1)$
	3	$T(\lceil n/2 \rceil)$
	4	$T(\lfloor n/2 \rfloor)$
	5	$\Theta(n)$
T(n) =	<i>T</i> ([<i>n</i> /2	$\overline{T(\lfloor n/2 \rfloor) + \Theta(n)} + \Theta(2)$

 Obtemos o que chamamos de fórmula de recorrência (i.e., uma fórmula definida em termos de si mesma).

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil) + \Theta(n)$ para $n = 2, 3, 4, ...$

- Em geral, ao aplicar o paradigma de divisão-e-conquista, chega-se a um algoritmo recursivo cuja complexidade T(n) é uma fórmula de recorrência.
- É necessário então resolver a recorrência! Mas, o que significa resolver uma recorrência?
- Significa encontrar uma "fórmula fechada" para T(n).
- No caso, $T(n) = \Theta(n \lg n)$. Assim, o consumo de tempo do Mergesort é $\Theta(n \lg n)$ no pior caso.
- Veremos mais tarde como resolver recorrências.

Mergesort – árvore de recursão

Árvore de recursão do Mergesort

Mergesort – árvore de recursão

Árvore de recursão do Mergesort

Notação Assintótica

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - Problemas de aritmética de precisão arbitrária: número de bits (ou bytes) dos inteiros.
 - Problemas em grafos: número de vértices e/ou arestas
 - Problemas de ordenação de vetores: tamanho do vetor.
 - Busca em textos: número de caracteres do texto ou padrão de busca.
- Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos medindo número de operações.

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	<i>n</i> = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
n log n	200	3000	4 · 10 ⁴	6 · 10 ⁶	9 · 10 ⁹
n ²	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	1,0015 · 10 ⁶	1,00015 · 10 ⁸	$\approx 10^{10}$	$\approx 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26\cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Análise assintótica

- Precisamos de uma ferramenta matemática para comparar funções
- Para a análise de algoritmo será feita uma análise assintótica:
 - Matematicamente: estudando o comportamento de **limites** $(n \to \infty)$
 - Computacionalmente: estudando o comportamento para entrada arbitrariamente grande ou descrevendo taxa de crescimento
- Para isso, uma **notação** específica é usada: O, Ω , Θ , o, ω
- O foco está nas ordens de crescimento

Classe O

Definição:

 $O(g(n)) = \{f(n) :$ existem constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$.

Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto g(n).

Classe O

Exemplo

$$f(n) = \frac{1}{4}n^2 - n$$

$$g(n) = n^2 - 6n$$

Valores de c e n_0 que satisfazem $f(n) \in O(g(n))$:

$$c = \frac{1}{2}$$
 e $n_0 = 8$

Classe Ω

Definição:

 $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais } \text{ que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0\}.$

Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).

Classe Ω

Exemplo

$$f(n) = \frac{1}{2}n^2 - 3n$$

$$g(n) = \frac{1}{2}n^2 - 2n$$

Valores de c e n_0 que satisfazem $f(n) \in \Omega(g(n))$:

$$c = \frac{1}{2}$$
 e $n_0 = 8$

Classe ⊖

Definição:

$$\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Classe ⊖

Definição:

$$\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \\ \text{tais que } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \\ \text{para todo } n \geq n_0 \}.$$

Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Exemplo:

$$\frac{1}{2}n^2 - 3n \in \Theta(n^2)$$

Valores de c_1 , c_2 e n_0 que satisfazem a definição são

$$c_1 = \frac{1}{14}$$
, $c_2 = \frac{1}{2}$ e $n_0 = 7$.

Classe o

Definição:

$$o(g(n)) = \{f(n): \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le f(n) < cg(n), \text{ para todo } n \ge n_0\}.$$

Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n).

Exemplo:

$$1000n^2 \in o(n^3)$$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \left\lceil \frac{1000}{c} \right\rceil + 1.$$

Classe ω

Definição:

$$\omega(g(n)) = \{f(n) : \text{ para toda constante positiva } c, \text{ existe uma constante } n_0 > 0 \text{ tal que } 0 \le cg(n) < f(n), \text{ para todo } n \ge n_0.\}$$

Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n).

Exemplo:

$$\frac{1}{1000}n^2 \in \omega(n)$$

Para todo valor de c, um n_0 que satisfaz a definição é

$$n_0 = \lceil 1000c \rceil + 1.$$

Notação assintótica – resumo

- $f(n) \in O(g(n))$ se houver constantes positivas n_0 e c tal que $f(n) \le c g(n)$ para todo $n \ge n_0$
- $f(n) \in \Omega(g(n))$ se houver constantes positivas n_0 e c tal que $f(n) \ge c g(n)$ para todo $n \ge n_0$
- $f(n) \in \Theta(g(n))$ se houver constantes positivas n_0 , c_1 e c_2 tal que c_1 $g(n) \le f(n) \le c_2$ g(n) para todo $n \ge n_0$
- $f(n) \in o(g(n))$ se, para qualquer constante positiva c, existe n_0 tal que $f(n) < c \ g(n)$ para todo $n \ge n_0$
- $f(n) \in \omega(g(n))$ se, para qualquer constante positiva c, existe n_0 tal que f(n) > c g(n) para todo $n \ge n_0$

Notação assintótica – analogia

Analogia entre duas funções f e g e dois números a e b:

•
$$f(n) \in O(g(n))$$
 \approx $a \leq b$

•
$$f(n) \in \Omega(g(n)) \approx a \geq b$$

•
$$f(n) \in \Theta(g(n)) \approx a = b$$

•
$$f(n) \in o(g(n)) \approx a < b$$

•
$$f(n) \in \omega(g(n)) \approx a > b$$

Definições equivalentes

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
 $f(n) \in O(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Theta(g(n))$ se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
 $f(n) \in \Omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$.
 $f(n) \in \omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Propriedades das Classes

Transitividade:

Se
$$f(n) \in O(g(n))$$
 e $g(n) \in O(h(n))$, então $f(n) \in O(h(n))$.

Se
$$f(n) \in \Omega(g(n))$$
 e $g(n) \in \Omega(h(n))$, então $f(n) \in \Omega(h(n))$.

Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.

Se
$$f(n) \in o(g(n))$$
 e $g(n) \in o(h(n))$, então $f(n) \in o(h(n))$.

Se
$$f(n) \in \omega(g(n))$$
 e $g(n) \in \omega(h(n))$, então $f(n) \in \omega(h(n))$.

Propriedades das Classes

Reflexividade:

$$f(n) \in O(f(n)).$$

$$f(n) \in \Omega(f(n)).$$

$$f(n) \in \Theta(f(n)).$$

Simetria:

$$f(n) \in \Theta(g(n))$$
 se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

$$f(n) \in O(g(n))$$
 se, e somente se, $g(n) \in \Omega(f(n))$.

$$f(n) \in o(g(n))$$
 se, e somente se, $g(n) \in \omega(f(n))$.

Notação assintótica – algumas regras práticas

Multiplicação por uma constante:

$$\Theta(c f(n)) = \Theta(f(n))$$
99 $n^2 = \Theta(n^2)$

Mais alto expoente de um polinômio

$$a_x n^x + a_{x-1} n^{x-1} + \dots + a_2 n^2 + a_1 n + a_0$$
:
 $3\mathbf{n^3} - 5n^2 + 100 = \Theta(n^3)$
 $6\mathbf{n^4} - 20n^2 = \Theta(n^4)$
 $0.8\mathbf{n} + 224 = \Theta(n)$

Termo dominante:

$$2^{n} + 6n^{3} = \Theta(2^{n})$$

 $n! - 3n^{2} = \Theta(n!)$
 $n \log n + 3n^{2} = \Theta(n^{2})$

Notação assintótica – dominância

Quando uma função é melhor que outra?

- Se queremos reduzir o tempo, funções "menores" são melhores
- Uma função domina sobre outra se, a medida que n cresce, a função continua "maior"
- Matematicamente: $f(n) \gg g(n)$ se $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$

Relações de dominância

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

Notação assintótica – visão prática

Se uma operação leva 10⁻⁹ segundos

	log n	n	n log n	n ²	n ³	2 ⁿ	<i>n</i> !
10	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s
20	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	77 anos
30	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1.07 <i>s</i>	
40	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	18.3 min	
50	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	13 dias	
100	< 0.01s	< 0.01s	< 0.01s	< 0.01s	< 0.01s	10^{13} anos	
10^{3}	< 0.01s	< 0.01s	< 0.01s	< 0.01s	1 <i>s</i>		
10^{4}	< 0.01s	< 0.01s	< 0.01s	0.1 <i>s</i>	16.7 min		
10^{5}	< 0.01s	< 0.01s	< 0.01s	10 <i>s</i>	11 dias		
10^{6}	< 0.01s	< 0.01s	0.02 <i>s</i>	16.7 min	31 anos		
10 ⁷	< 0.01s	0.01 <i>s</i>	0.23 <i>s</i>	1.16 dias			
108	< 0.01s	0.1 <i>s</i>	2.66 <i>s</i>	115 dias			
10 ⁹	< 0.01s	1 <i>s</i>	29.9 <i>s</i>	31 anos			

Desenhando funções

• Comparando $2n^3$ com $100n^2$ usando o gnuplot:

```
gnuplot> plot [1:70] 2*x**3, 100*x**2
gnuplot> set logscale xy 10
gnuplot> plot [1:10000] 2*x**3, 100*x**2
```


Desenhando funções

• Comparando \sqrt{n} e $\log_2 n$:

```
gnuplot> set logscale y 10
gnuplot> plot [1:1000000] sqrt(x), log(x)/log(2)
```


Na *Demonstração por Indução*, queremos demonstrar a validade de P(n), uma propriedade P com um parâmetro natural n associado, para todo valor de n.

Há um número infinito de casos a serem considerados, um para cada valor de *n*. Demonstramos os infinitos casos de uma só vez:

- Base da Indução: Demonstramos P(1).
- Hipótese de Indução: Supomos que P(n) é verdadeiro.
- Passo de Indução: Provamos que P(n+1) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que a soma dos n primeiros naturais ímpares é n^2 .

Outra forma equivalente:

- Base da Indução: Demonstramos *P*(1).
- Hipótese de Indução: Supomos que P(n 1) é verdadeiro.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que a soma dos n primeiros naturais ímpares é n^2 .

Às vezes queremos provar que uma proposição P(n) vale para $n \ge n_0$ para algum n_0 .

- Base da Indução: Demonstramos $P(n_0)$.
- Hipótese de Indução: Supomos que P(n 1) é verdadeiro.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que todo inteiro $n \ge 2$ pode ser fatorado como um produto de primos.

Indução Fraca × Indução Forte

A *indução forte* difere da *indução fraca* (ou *simples*) apenas na suposição da hipótese.

No caso da indução forte, devemos supor que a propriedade vale para todos os casos anteriores, não somente para o anterior, ou seja:

- Base da Indução: Demonstramos *P*(1).
- Hipótese de Indução Forte: Supomos que P(k) é verdadeiro, para todo $1 \le k < n$.
- Passo de Indução: Provamos que P(n) é verdadeiro, a partir da hipótese de indução.

Exemplo:

Prove que todo inteiro $n \ge 2$ pode ser fatorado como um produto de primos.

Exemplo 1

Demonstre que a inequação

$$(1+x)^n \ge 1 + nx$$

vale para todo natural n e real x tal que (1 + x) > 0.

Demonstração:

 A base da indução é n = 1. Nesse caso ambos os lados da inequação são iguais a 1 + x, mostrando a sua validade. Isto encerra a prova do caso base.

- A hipótese de indução é: Suponha que a inequação vale para n, isto é, $(1 + x)^n \ge 1 + nx$ para todo real x tal que (1 + x) > 0.
- O passo de indução é: Supondo a h.i., vamos mostrar que a inequação vale para o valor n + 1, isto é, (1 + x)ⁿ⁺¹ ≥ 1 + (n + 1)x para todo x tal que (1 + x) > 0. A dedução é simples:

$$(1+x)^{n+1} = (1+x)^n (1+x)$$

$$\geq (1+nx)(1+x) \text{ (pela h.i. e } (1+x) > 0)$$

$$= 1+(n+1)x+nx^2$$

$$\geq 1+(n+1)x \text{ (já que } nx^2 \geq 0)$$

A última linha mostra que a inequação vale para n + 1, completando a demonstração.

Exemplo 2

Demonstre que o número T_n de regiões no plano criadas por n retas em posição geral é igual a

$$T_n=\frac{n(n+1)}{2}+1.$$

Um conjunto de retas está em posição geral no plano se

- todas as retas são concorrentes, isto é, não há retas paralelas e
- não há três retas interceptando-se no mesmo ponto.

Antes de prosseguirmos com a demonstração vejamos exemplos de um conjunto de retas que está em posição geral e outro que não está.

Em posição geral

Não estão em posição geral

Demonstração: A idéia que queremos explorar para o passo de indução é a seguinte: supondo que a fórmula vale para n, adicionar uma nova reta em posição geral e tentar assim obter a validade de n+1.

 A base da indução é, naturalmente, n = 1. Uma reta sozinha divide o plano em duas regiões. De fato,

$$T_1 = (1 \times 2)/2 + 1 = 2.$$

Isto conclui a prova para n = 1.

- A hipótese de indução é: Suponha que $T_n = (n(n+1)/2) + 1$ para n.
- O passo de indução é: Supondo a h.i., vamos mostrar que para n + 1 retas em posição geral vale que

$$T_{n+1} = \frac{(n+1)(n+2)}{2} + 1.$$

Considere um conjunto L de n+1 retas em posição geral no plano e seja r uma dessas retas. Então, as retas do conjunto $L' = L \setminus \{r\}$ obedecem à hipótese de indução e, portanto, o número de regiões distintas do plano definidas por elas é (n(n+1))/2 + 1.

- Além disso, r intersecta as outras n retas em n pontos distintos. O que significa que, saindo de uma ponta de r no infinito e após cruzar as n retas de L', a reta r terá cruzado n + 1 regiões, dividindo cada uma destas em duas outras.
- Assim, podemos escrever que

$$T_{n+1} = T_n + n + 1$$

= $\frac{n(n+1)}{2} + 1 + n + 1$ (pela h.i.)
= $\frac{(n+1)(n+2)}{2} + 1$.

Isso conclui a demonstração.

Exemplos: Apesar da reconhecida validade dos seguintes somatórios, efetue provas por indução matemática da

Soma dos n termos de uma progressão aritmética (PA):

$$a_1 + (a_1 + r) + (a_1 + 2r) + \dots + [a_1 + (n-1)r] =$$

$$= \sum_{i=0}^{n-1} (a_1 + i \cdot r) = \frac{n(a_1 + [a_1 + (n-1)r])}{2}$$

Soma dos n termos de uma progressão geométrica (PG):

$$a_1 + (a_1 \cdot q) + (a_1 \cdot q^2) + \dots + (a_1 \cdot q^{n-1}) =$$

$$= \sum_{i=0}^{n-1} (a_1 \cdot q^i) = \frac{a_1(q^n - 1)}{q - 1}$$