Implementation of Decision Tree Classifiers ID3 versus C4.5

Depuydt Antoine Dany Efila Mudura Mircea

May, 2017

Introduction

- ▶ Data mining: compress, understand and predict
 - Clustering
 - Classification
 - Regression
 - **...**
- ► Techniques to find links
 - ► Linear Regression
 - Decision Trees
 - Neural Networks
 - **.**..

Classification

Classical example: play tennis today?

► Features:

- Outlook: sunny, overcast, rainy
- ► Temperature: hot, cool, cold
- Wind: high, weak
- ► Humidity: high, normal

Class labels:

- Yes
- ► No

Decision Tree

- Visual model, easily understandable
- ► Model: tree with decision and leaf nodes

ID3 versus C4.5

► Goal: implement ID3 and C4.5 algorithms

Objectives: compare ID3 and C4.5 output

► Compare ID3 and C4.5

 Create an application that classifies any data using both algorithms

The math

▶ Shannon's entropy: $H(S) = -\sum_{i} (p_i * log_2(p_i))$

- Higher entropy more information gathered
- Example coin toss:
 - ▶ Entropy = $-P(heads)log_2P(heads) P(tails)log_2P(tails)$
- ▶ Information Gain: $IG(A) = H(S) \sum_t p(t)H(t)$
 - ► H(S) = entropy of set S
 - ▶ t Subset of S obtained by splitting S with A (T)
 - \triangleright p(t) proportion of elements in t to the no elements in S
 - ► *H*(*t*) entropy of subset t

Getting to know the data

Attributes, Classifier, Class features

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Decision Tree

Applied math

- ► Entropy(S) = $-\frac{9}{14}log_2(\frac{9}{14}) \frac{5}{14}log_2(\frac{5}{14})$
- ► Gain(S, Windy) = $Entropy(S) - \frac{8}{14}Entropy(S_{false}) - \frac{6}{14}Entropy(S_{true})$
- Windy:
 - ▶ False $8 \to (6_+, 2_-)$
 - ▶ True $6 \to (3_+, 3_-)$
- ► Entropy $(S_{false}) = -\frac{6}{8}log_2(\frac{6}{8}) \frac{2}{8}log_2(\frac{2}{8}) = 0.811$
- ► Entropy $(S_{true}) = -\frac{3}{6}log_2(\frac{3}{6}) \frac{3}{6}log_2(\frac{3}{6}) = 1$
- ightharpoonup igh
- Gain(S, Humidity) = 0.151
- Gain(S, Temperature) = 0.029
- $Gain(S, Outlook) = 0.246 \leftarrow$

Stopping criteria

- ▶ Split the set according to the maximum gain
- Repeat until homogeneous or pure nodes (ie only leaves or entropy =0)

Pseudo-code

Simplified overview

► ID3(tree)

- ▶ Find best attribute to split
- ► Split dataset according to attribute (left-right) branches
- Recurse on each branch until dataset is pure or entropy is 0

Improvements?

► Entropy & information gain not sufficient metrics

Missing data has to be handled

 Numerical values could provide order or dimension to a problem set

Tree can be simplified

Missing data I

```
2,*,*,*,*,*,2
1,2,*,*,*,*,1
1.1.2.*.*.*.1
1.1.1.*.*.*.1
1.1.3.2.2.*.1
1,*,*,*,*,4,1
2,1,4,*,*,1,1
2.1.4.*.*.2.1
2,1,4,*,*,3.1
2,1,3,1,1,1,1
2,1,3,1,1,2,1
2,1,3,1,2,1,1
2,1,3,1,2,2,1
1,1,3,1,1,3,1
2,1,3,1,2,3,1
```

Missing data II

- Dataypes can co-exist (eg. strings, integer/float)
- Solutions
 - Replace missing values in column with most frequent
 - ► For numerical values replace with mean/mode/median
- ► Column 2:
 - ▶ No instances = 15
 - ► Card(2) = 1
 - ▶ Card(1) = 12
 - $lackbox{ }
 ightarrow$ safest choice replace missing values with 1

Numerical & continuous variables

- General approach separate categorical and continuous
- Our implementation:
 - ▶ Treat all numerical variables as continuous
 - ► C45 implementation based on a binary tree (computational gain)
 - $lackbox{ }\to$ Everything equal or smaller than node value to the left
 - ightharpoonup ightharpoonup Everything else to the right

ULB C4.5 |

- Simplifying a tree
 - Given a target gain level (generic or user-defined)
 - Prune (condense) the subtree
 - Might induce overclassification or errors
 - Decreases the depth of the tree
- 2 strategies:
 - ► Pre-prune:
 - Using statistical signifiance
 - stop growing/building when no statistical significant association between any attribute and class at a node
 - chi-squared test (too much statistics for us)
 - Pre-pruning may stop growing prematurely (eg. XOR stops at root node)

C4.5 II

- Post-prune:
 - Subtree replacement
 - ► → Replace subtree with leaf
 - ► → Stop when additional pruning is harmful
 - ▶ → Accuracy default/user given
 - ► → Using a validation set (derived from original)
 - Subtree raising
 - ▶ → Delete node & redistribute instances
 - ▶ → Slower than replacement strategy

C4.5

▶ Implementation differences to ID3

▶ First test for missing values and replace

When splitting apply rule for numerical values

After growing the tree: prune

Demonstration

