Формализација различитих модела геометрије и примене у верификацији аутоматских доказивача теорема

Данијела Симић Ментор: др Филип Марић

> Математички факултет Универзитет у Београду

> > 24.04.2018.

- 🕕 Увод
- 2 Мотивација и циљеви
- Формализација геометрије Декартове равни
- 4 Формализација геометрије комплексне равни
- 5 Алгебарски методи и стереометрија
- 🜀 Даљи рад

Доказивање у геометрији

• Грешке у математичким доказима.

• Механички провериви докази.

• Интерактивни доказивачи теорема.

• Аутоматски доказивачи теорема.

Isabelle/HOL

```
🐲 🔛 👣 🖪 🖂 🜒) Sun Aug 6 19:17 改
00 00 X ◀ ▶ Y H # 20 6 F □ 6 P
 lemma [simp]: "moebius mat eg x x"
 by (simp, rule tac x=1 in exI, simp)
 quotient type moebius = moebius mat / moebius mat eq
 proof (rule equivpI)
   show "reflp moebius mat eq
     by (auto simp add: reflp def, rule tac x="1" in exI, simp)
   show "symp moebius mat eq"
     by (auto simp add: symp def, rule tac x="1/k" in exI, simp)
   show "transp moebius mat eg
     by (auto simp add: transp def, rule tac x="ka*k" in exI, simp)
 definition mk moebius rep where
    mk moebius rep a b c d = Abs moebius mat (a, b, c, d)
 lift definition mk moebius :: "complex ⇒ complex ⇒ complex ⇒ moebius" is mk moebius rep
 by (simp del: moebius mat eq def)
 lemma mk moebius rep Rep:
                                                                                  assumes "mat det (a, b, c, d) \neq 0'
   shows "Rep moebius mat (mk moebius rep a b c d) = (a, b, c, d)"
                                                                                  oo co 🗶 🕨 🕨 🗶 H 🆀 🔑 🛭 🐙 🖨 😌 🦞
 using assms
 by (simp add: mk moebius rep def Abs moebius mat inverse)
                                                                                   proof (state): step 1
 lemma ex mk moebius:
                                                                                    qoal (1 subqoal):
   shows "\exists a b c d. M = mk moebius a b c d \land mat det (a, b, c, d) \neq 0"
                                                                                    1. ∧M. ∃a b c d.
 proof transfer
                                                                                              moebius mat eq M (mk moebius rep a b c d) A
fix M
   obtain a b c d where "Rep moebius mat M = (a, b, c, d)"
                                                                                              mat det (a, b, c, d) \neq 0
     by (cases "Rep moebius mat M") auto
   hence "moebius mat eq M (mk moebius rep a b c d) \wedge mat det (a, b, c, d) \neq 0
     using Rep moebius mat[of M]
                                                                                 -uU:%%- *goals*
                                                                                                        A11 I1
                                                                                                                   (Isar Proofstate Utoks)-----
     by (simp add: mk moebius rep Rep, rule tac x=1 in exI, simp)
    thue "Ja h c d moshius mat ea M (mk moshius ren a h c d) . mat dat (a h c
u-:--- Moebius.thy 1% L41 (Isar Utoks Scripting )------
                                                                                                        All L1
                                                                                                                   (Isar Messages Utoks)-----
                                                                                 -uU:%%- *response*
```

- 1 Увод
- 2 Мотивација и циљеви
- Формализација геометрије Декартове равни
- 4 Формализација геометрије комплексне равни
- 5 Алгебарски методи и стереометрија
- 6 Даљи рад

Мотивација и циљеви

• Верификација аутоматских доказивача теорема.

 Формализација мета-теорије потребне да се искаже и докаже коректност алгебарских метода.

• Развој и прилагођавање алгебарских метода.

- 1 Увод
- 2 Мотивација и циљеви
- Формализација геометрије Декартове равни
- 4 Формализација геометрије комплексне равни
- 5 Алгебарски методи и стереометрија
- Даљи рад

Циљеви формализације геометрије Декартове равни

- Формализација Декартове координатне равни.
- Различите дефиниције су еквивалентне.
- Стандардна геометрија координатне равни представља модел аксиоматског система Тарског.
- Декартова координатна раван задовољава већину аксиома Хилберта.
- Упоредити ове две формализације.

Основни појмови

- ullet Тачке: type synonym point $^{ag} = "real imes real"$
- ullet Распоред тачака: $\mathcal{B}(A,B,C)$

Релација између у геометрији Тарског

$$\begin{array}{ll} \textbf{definition} \ "\mathcal{B}_T^{ag} \ (xa,ya) \ (xb,yb) \ (xc,yc) \longleftrightarrow \\ (\exists (k :: real). \ 0 \leq k \ \land \ k \leq 1 \ \land \\ (xb-xa) = k \cdot (xc-xa) \ \land \ (yb-ya) = k \cdot (yc-ya))" \end{array}$$

ullet Релација подударно: $AB \cong_t CD$

Релација подударно

$$\begin{array}{c} \text{definition } "d_{ag}^2 \ (x_1,y_1) \ (x_2,y_2) = \ (x_2-x_1) \cdot (x_2-x_1) + \\ \ \ \ \ \ \ \ \ (y_2-y_1) \cdot (y_2-y_1) " \\ \text{definition } "A_1B_1 \cong^{ag} A_2B_2 \longleftrightarrow d_{ag}^2 \ A_1 \ B_1 = d_{ag}^2 \ A_2 \ B_2 " \end{array}$$

Права

- Ax + By + C = 0 $(kAx + kBy + kC = 0, k \neq 0)$
- typedef line_coeffs ag = "{ $((A::real),(B::real),(C::real)).\ A \neq 0 \lor B \neq 0$ }"
- definition " $l_1 \approx^{ag} l_2 \longleftrightarrow$ ($\exists A_1 B_1 C_1 A_2 B_2 C_2$. $\lfloor l_1 \rfloor_{R3} = (A_1, B_1, C_1)) \land \lfloor l_2 \rfloor_{R3} = (A_2, B_2, C_2) \land$ ($\exists k. \ k \neq 0 \land A_2 = k \cdot A_1 \land B_2 = k \cdot B_1 \land C_2 = k \cdot C_1$))"

Права (тип line ag) се дефинише коришћењем quotient_type команде као класа еквиваленције над релацијом \approx^{ag} .

Права – афина дефиниција

ullet Вектор: type synonym ${
m vec}^{ag} = "real imes real".$

• typedef line_point_vec^{ag} = $"\{(p :: \mathtt{point}^{ag}, v :: \mathtt{vec}^{ag}). \ v \neq (0,0)\}"$

• definition " $l_1 \approx^{ag} l_2 \longleftrightarrow (\exists p_1 \ v_1 \ p_2 \ v_2)$. $\lfloor l_1 \rfloor_{R3} = (p_1, v_1) \ \land \ \lfloor l_2 \rfloor_{R3} = (p_2, v_2) \land (\exists km. \ v_1 = k \cdot v_2 \land p_2 = p_1 + m \cdot v_1)$ "

Изометрије

- Транслација: definiton
 "transp ag (v_1, v_2) $(x_1, x_2) = (v_1 + x_1, v_2 + x_2)$ "
- Ротација: definition "rotp^{ag} α $(x,y) = ((\cos \alpha) \cdot x (\sin \alpha) \cdot y, (\sin \alpha) \cdot x + (\cos \alpha) \cdot y)$ "

Инваријантност

Изометрије чувају основне релације (као што су *између* и *подударно*).

Изометрије

Коришћењем изометријских трансформација значајно се упрошћава формализација.

• Коришћена је техника без губитка на општости: definiton "inv P $t\longleftrightarrow (\forall~A~B~C.~P~A~B~C\longleftrightarrow P~(tA)~(tB)~(tC))$ "

lemma

assumes "
$$\forall \ y_B \ y_C. \ 0 \leq y_B \ \land \ y_B \leq y_C \longrightarrow P \ (0,0) \ (0,y_B) \ (0,y_C)$$
" " $\forall \ v. \ \text{inv} \ P \ (\text{transp}^{ag} \ v \)$ " " $\forall \ \alpha. \ \text{inv} \ P \ (\text{rotp}^{ag} \ \alpha \)$ " shows " $\forall \ ABC. \ \mathcal{B}_T^{ag} \ ABC \longrightarrow PABC$ "

Модели геометрије

 Формализација геометрије Тарског, пример Пашове аксиоме.

• Формализација геометрије Хилберта, проблем углова.

— Формализација геометрије Декартове равни

[∟]Закључци

Закључци

- Представили смо добро изграђену формализацију
 Декартове геометрије равни у оквиру система Isabelle/HOL.
- Формално је доказано да Декартова координатна раван задовољава све аксиоме Тарског и већину аксиома Хилберта.
- Наше искуство је да доказивање да наш модел задовољава једноставне Хилбертове аксиоме лакше него доказивање да модел задовољава аксиоме Тарског.
- Проблем приликом дефинисања и рада са угловима.
- Најважнија техника коришћена да се упросте докази "без губитка на општости" и коришћење изометријских трансформација.
- Формализација аналитичке геометрије се заснива на аксиомама реалних бројева и у многим доказима су коришћена својства реалних бројева (својство супремума, тактика заснована на Гребнеровим базама).

- 1 Увод
- 2 Мотивација и циљеви
- Формализација геометрије Декартове равни
- 4 Формализација геометрије комплексне равни
- 5 Алгебарски методи и стереометрија
- 6 Даљи рад

Циљеви формализације геометрије комплексне равни

- Формализовати теорију проширене комплексне равни, њених објеката и њених трансформација.
- Спојити бројне приступе које можемо срести у препорученој литератури.
- Анализирати и формално доказати све случајеве који често остану недовољно истражени јер их више различитих аутора сматра тривијалним.
- Дискутовати односе између два приступа у формализацији (геометријски и алгебарски) као и њихове предности и мане.
- Анализирати технике које се користе у доказима, као и могућност коришћења аутоматизације.
- Посматрати да ли је доказе лакше извести у моделу Риманове сфере или у моделу хомогених координата.
- Показати да аксиоме Тарског важе у Поенкареовом диск моделу.

Основни појмови геометрије комплексне равни

- ullet Комплексни бројеви, вектори и матрице у \mathbb{C}^2 .
- ullet Хермитска матрица: definition hermitean where "hermitean H \longleftrightarrow mat_adj H = H"
- ullet Унитарна матрица: definition unitary where "unitary $M\longleftrightarrow$ mat_adj $M*_{mm}M$ = eye"
- ullet Проширена комплексна раван, $\overline{\mathbb{C}}$.
- ullet Хомогене координате: $z=rac{z'}{z''}$ definition $pprox_{C2}::$ "C2_vec $_{
 eq 0}\Rightarrow$ C2_vec $_{
 eq 0}\Rightarrow$ bool" where " $z_1pprox_{C2}\ z_2\longleftrightarrow$ (\exists (k::complex). k eq 0 \land [z_2] $_{C2}$ = k $*_{sv}$ [z_1] $_{C2}$)"

 $quotient_type complex_{hc} = C2_vec_{
eq 0} / pprox_{C2}$

• Бесконачно далека тачка у хомогеним координатама: definition inf_hc_rep :: "C2_vec $\neq 0$ where inf_hc_rep = $\lceil (1,0) \rceil^{C2}$ " lift_definition ∞_{hc} :: "complex $_{hc}$ " is inf_hc_rep

—Формализација геометрије комплексне равни

Риманова сфера и стереографска пројекција

Стереографска пројекција

—Формализација геометрије комплексне равни

Риманова сфера и стереографска пројекција

Тетивно растојање

• Риманова сфера може бити метрички простор:

```
definition dist_{rs} ::

"riemann_sphere \Rightarrow riemann_sphere \Rightarrow real" where

"dist_{rs} M_1 M_2 = (let (x_1, y_1, z_1) = \lfloor M_1 \rfloor_{R3};

(x_1, y_1, z_1) = \lfloor M_2 \rfloor_{R3}

in norm (x_1 - x_2, y_1 - y_2, z_1 - z_2))"
```

- Тетивна метрика има своју репрезентацију и у равни.
- Доказано је да су стереографска пројекција и инверзна стереографска пројекција непрекидне.

— Мебијусове трансформације

Мебијусове трансформације

•
$$\mathcal{M}(z) = \frac{a \cdot z + b}{c \cdot z + d}$$
 $\lfloor \mathcal{M} \rfloor_M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

• typedef C2_mat_reg = "{M :: C2_mat. mat_det $M \neq 0$ }" definition \approx_M :: "C2_mat_reg \Rightarrow C2_mat_reg \Rightarrow bool" where " $M_1 \approx_M M_2 \longleftrightarrow$ (\exists (k::complex). k \neq 0 \land [M_2] $_M$ = k * $_{sm}$ [M_1] $_M$)" quotient type mobius = C2_mat_reg $/\approx_M$

— Формализација геометрије комплексне равни

Мебијусове трансформације

Мебијусова група

Пројективна генерална линеарна група, $PGL(2,\mathbb{C})$

Мебијусови елементи формирају групу над композицијом.

- Композиција Мебијусових елемената се постиже множењем матрица које их репрезентују.
- Инверзна Мебијусова трансформација се добија инверзијом матрице која је представља.
- Мебијусова трансформација која је идентитет је представљена јединичном матрицом.
- ullet Дејство Мебијусове групе: $\mathcal{M}(z) = egin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot egin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ definition mobius_pt_rep :: "C2_mat_reg \Rightarrow C2_vec $_{\neq 0}$ \Rightarrow C2_vec $_{\neq 0}$ " where "moebius_pt_rep M z = $\lceil \lfloor M \rfloor_M \ *_{mv} \ \lfloor z \rfloor_{C2} \rceil^{C2}$ " lift_definition mobius_pt :: "mobius \Rightarrow complex $_{hc}$ " is mobius_pt_rep

Неке важне подгрупе Мебијусових трансформација

Еуклидске сличности

- definition similarity :: "complex \Rightarrow complex \Rightarrow mobius" where "similarity a b = mk_mobius a b 0 1"
- Формирају параболичку групу.
- Еуклидске сличности су једини елементи Мебијусове групе такви да је тачка ∞_{hc} фиксна тачка.
- Свака еуклидска сличност се може добити као композиција транслације, ротације и хомотетије:

```
lemma "a \neq 0 \Longrightarrow \text{similarity } a \ b = (translation b) + (rotation (arg a)) + (dilatation |a|)"
```

Неке важне подгрупе Мебијусових трансформација

- Реципрочна вредност $(1_{hc}:_{hc}z)$ је такође Мебијусова трансформација.
- Инверзија $(1_{hc}:_{hc}(\text{cnj }z))$ није Мебијусова трансформација антихоломорфна функција.

Свака Мебијусова трансформација се може добити композицијом еуклидских сличности и реципрочне функције.

```
• lemma assumes "c \neq 0"and "a*d-b*c \neq 0" shows "mk_mobius a b c d = translation (a/c) + rotation_dilatation ((b*c - a*d)/(c*c)) + reciprocal + translation (d/c)"
```

• Декомпозиција је веома често коришћена у доказима.

^L Формализација геометрије комплексне равни

Неке важне подгрупе Мебијусових трансформација

Дворазмера као Мебијусова трансформација

- ullet cross_ratio z z_1 z_2 z_3 је Мебијусова трансформација.
- lemma "[$z_1 \neq z_2$; $z_1 \neq z_3$; $z_2 \neq z_3$]] \Longrightarrow ($\exists~M$. mobius_pt M z_1 = 0_{hc} \land mobius_pt M z_2 = 1_{hc} \land mobius_pt M z_3 = ∞_{hc})"

Без губитка на општости

Постоји јединствена Мебијусова трансформација која слика три различите тачке у друге три различите тачке.

Мебијусове трансформације чувају дворазмеру.

Кругоправа

ullet A*z*cnjz+B*cnjz+C*z+D=0 Хермитска матрица: $egin{bmatrix} A & B \ C & D \end{bmatrix}$; $C=ar{B}$; $A,D\in\mathbb{R}$

definition "quad_form H z = (vec_cnj z) $*_{vm}$ H $*_{vv}$ z"

• Скуп тачака на датој кругоправи:

$$\begin{bmatrix} \bar{z}_1 \\ \bar{z}_2 \end{bmatrix} \cdot \begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 0$$

on_circline_rep

```
definition on_circline_rep ::  \begin{tabular}{ll} "C2\_mat\_herm \Rightarrow C2\_vec_{\neq 0} \Rightarrow bool" \begin{tabular}{ll} where \\ "on\_circline\_rep $H$ $z \longleftrightarrow quad\_form $\lfloor H \rfloor_H $\ \lfloor z \rfloor_{C2} = 0" \\ \hline \begin{tabular}{ll} lift\_definition on\_circline :: "circline <math>\Rightarrow complex_{hc} \Rightarrow bool" \end{tabular}
```

Кругоправа

Повезаност са правама и круговима у обичној еуклидској равни

- Праве су дефинисане као оне кругоправе код којих матрице имају коефицијент A=0, или, еквивалентно као оне кругоправе које садрже тачку ∞_{hc} .
- Сваки еуклидски круг и еуклидска права може бити представљена коришћењем кругоправе.
- Скуп тачака који су одређени кругоправом је увек или еуклидски круг или еуклидска права. definition euclidean_circle_rep where "euclidean_circle_rep $H = (\text{let } (A,B,C,D) = \lfloor H \rfloor_H \text{ in } (-B/A, \text{ sqrt}(\text{Re } ((B*C-A*D)/(A*A)))))$ "
- Тип кругоправе:
 - имагинарне кругоправе
 - тачка кругоправе
 - реалне кругоправе

—Формализација геометрије комплексне равни

Дејство Мебијусових трансформација на кругоправе

Мебијусове трансформације сликају кругоправе на кругоправе.

- ullet Сличност две матрице: definition "congruence M H = mat_adj M $*_{mm}$ H $*_{mm}$ M"
- Дефиниціа деіства:

```
definition mobius_circline_rep :: 
"C2_mat_reg \Rightarrow C2_mat_herm \Rightarrow C2_mat_herm" where 
"mobius_circline_rep M H = \lceil congruence (mat_inv \lfloor M \rfloor_M) \lfloor H \rfloor_H \rceil^H" |
lift_definition mobius_circline :: "mobius \Rightarrow circline \Rightarrow circline" is mobius_circline_rep
```

 — Формализација геометрије комплексне равни

— Кругоправа

Дејство Мебијусових трансформација на кругоправе

Мебијусове трансформације чувају и тип кругоправе.

Две тачке ћемо рећи да су симетричне у односу на круг ако се оне сликају једна у другу коришћењем било рефлексије или инверзије у односу на произвољну праву или круг:

```
definition circline_symmetric_rep where "circline_symmetric_rep z_1 z_2 H \longleftrightarrow bilinear_form \lfloor z_1 \rfloor_{C2} \lfloor z_2 \rfloor_{C2} \lfloor H \rfloor_H = 0" lift_definition circline_symmetric :: "complex_{hc} \Rightarrow complex_{hc} \Rightarrow circline \Rightarrow bool" is circline_symmetric_rep
```

Принцип симетрије

Симетрија тачака је очувана након дејства Мебијусових трансформација.

[∟]Формализација геометрије комплексне равни

[∟]Кругоправа

Оријентисане кругоправе

- Еквивалентне оријентисане кругоправе пропорционалне у односу на неки позитиван, реални фактор.
- Унутрашњост:

```
 \begin{array}{lll} \textbf{definition} & \text{in\_o\_circline\_rep} :: & \text{"C2\_mat\_herm} \Rightarrow \text{C2\_vec}_{\neq 0} \Rightarrow \text{bool"} \\ & \textbf{where} & \text{"in\_o\_circline\_rep} & H & z \longleftrightarrow \text{quad\_form} & |H|_H & |z|_{C2} < \text{O"} \\ \end{array}
```

- A>0 позитивно оријентисане кругоправе. A=0 (случај правих) разматрамо коефицијенте B и D.
- Све еуклидске сличности чувају оријентацију кругоправе.
- Оријентација слике дате оријентисане кругоправе H након дате Мебијусове трансформације M зависи од тога да ли пол M лежи на диску или у диску који је комплементаран H.

Оријентација резултујућег круга не зависи од оријентације полазног круга.

[∟]Кругоправа

Очување угла

- Геометријска дефиниција угла.
- Алгебарска дефиниција угла.

конформно пресликавање

Мебијусове трансформације чувају оријентисане углове међу оријентисаним кругоправама.

```
fun mat_det_mix :: "C2_mat \Rightarrow C2_mat \Rightarrow complex"where "mat_det_mix (A_1,B_1,C_1,D_1) (A_2,B_2,C_2,D_2) = A_1*D_2-B_1*C_2+A_2*D_1-B_2*C_1"
```

```
\label{eq:definition} \begin{array}{ll} \textbf{definition} & \texttt{cos\_angle\_rep where} \\ \texttt{"cos\_angle\_rep } H_1 & H_2 = \\ & - \texttt{Re (mat\_det\_mix } \lfloor H_1 \rfloor_H \ \lfloor H_2 \rfloor_H) \ / \\ & 2 * (\texttt{sqrt (Re (mat\_det } \lfloor H_1 \rfloor_H * \texttt{mat\_det } \lfloor H_2 \rfloor_H))))" \end{array}
```

— Формализација геометрије комплексне равни

— Дискусија

Дискусија – очување угла

- Посматрамо Нидамов приступ.
- Доказ се ослања на чињеницу да се свака Мебијусова трансформација може раставити на транслацију, ротацију, хомотетију и инверзију.

—Формализација геометрије комплексне равни

□ Дискусија

Дискусија – очување угла

- Алгебарска дефиниција
 - веома погодна за доказе
 - веома неинтуитивна
- Геометријска дефиниција
 - компликовани докази, много специјалних случајева
 - веома интутивна
- Решење
 - увести алгебарску дефиницију и користити је у доказима
 - показати њену еквивалентност са геометријском дефиницијом

Формализација геометрије комплексне равни

[∟]Формализација Поенкареовог диск модела

Формализација Поенкареовог диск модела

• Релација између

Аутоморфизми диска чувају релацију између.

lemma

```
assumes "z_1' = moebius_pt_poincare M z_1" "z_2' = moebius_pt_poincare M z_2" "z_3' = moebius_pt_poincare M z_3" "between_poincare z_1 z_2 z_3" shows "between_poincare z_1' z_2' z_3'"
```

Ако за три тачке важи релација између, онда се оне могу сликати на реалну осу.

— Формализација геометрије комплексне равни

Формализација Поенкареовог диск модела

Проблем пресека кругоправих

- ullet Одређивање кругоправе: $ar{u'} \cdot H_1 \cdot u' = 0$ $ar{v'} \cdot H_1 \cdot v' = 0$
- ullet Одређивање пресека: $ar{x'} \cdot H_1 \cdot x' = 0$ $ar{x'} \cdot H_2 \cdot x' = 0$

—Формализација Поенкареовог диск модела

Закључци

- Формализовали: аритметичке операције у $\overline{\mathbb{C}}$, размеру и дворазмеру, тетивну метрику у $\overline{\mathbb{C}}$, групу Мебијусових трансформација и њихово дејство на $\overline{\mathbb{C}}$, неке њене специјалне подгрупе, кругоправе, дејство Мебијусових трансформација на кругоправе, оријентисане кругоправе, однос између Мебијусових трансформација и оријентације, својство очувања угла итд.
- Кључан корак коришћење алгебарске репрезентације објеката.
- Што чешће избегавати анализу случајева.
- Увођење више модела истог концепта.
- Око 12,000 линија кода.
- Око 800 лема.
- Око 125 дефиниција.

—Формализација геометрије комплексне равни

[∟]Формализација Поенкареовог диск модела

Закључци

- Дефинисана релација између у Поинкареовом диск моделу.
- Показано је да важи 6 аксиома Тарског.
- Показано је да не важи Еуклидова аксиома.
- Одређивање пресека кругоправих представља проблем.

- 1 Увод
- 2 Мотивација и циљеви
- Формализација геометрије Декартове равни
- 4 Формализација геометрије комплексне равни
- барски методи и стереометрија
- Даљи рад

Циљеви формалног изучавања алгебарских метода и њихових проширења

- Формализовати превођење геометријских тврђења у алгебарску форму.
- Веза између синтетичке геометрије и алгебре, категоричност геометрије.
- Дизајнирати систем за запис и трансформацију геометријских тврђења из стереометрије на начин погодан за примену у оквиру алгебарских доказивача.
- Тестирати и упоредити различите приступе алгебризације.

Алгебарски методи и стереометрија

—Формална анализа алгебарских метода у систему Isabelle/HOL

Алгебризација

```
• let c = Bisector (Point A) (Point B);
  b = Bisector (Point A) (Point C);
  a = Bisector (Point B) (Point C);
  O<sub>1</sub> = Intersect a b;
  O<sub>2</sub> = Intersect a c in
  IsEqualp O<sub>1</sub> O<sub>2</sub>
```

• Добијају се два скупа полиномијалних једначина.

└ Формална анализа алгебарских метода у систему Isabelle/HOL

Доказивање исправности

• Алгебарским методама се доказује:

$$\forall v_1, \dots, v_n \in \mathbb{C} \bigwedge_{i=1}^k f_i(v_1, \dots, v_n) = 0 \Longrightarrow g_i(v_1, \dots, v_n) = 0$$

- \bullet $(\forall (u,x))(\forall g \in G)((\forall f \in F.f(u,x)=0) \Rightarrow g(u,x)=0) \Rightarrow$ геометријско тврђење
- theorem "let (cp, sp) = algebrize term in ($\forall \ ass.$ (($\forall \ p: cp.$ eval_poly $ass \ p$ = 0) \longrightarrow ($\forall \ p: sp.$ eval_poly $ass \ p$ = 0)) \longrightarrow AnalyticGeometry.valid s)"

Алгебризација геометријских релација у стереометрији

Два приступа:

- Сви објекти су дефинисани коришћењем тачака.
- Сви објекти се представљају коришћењем њихових сопствених координата.

Примери алгебризације:

ullet parallel_planes lpha eta

$$\frac{\mathbf{1}}{\beta_A \beta_B} \cdot \overrightarrow{\alpha_A \alpha_C} \times \overrightarrow{\alpha_B \alpha_A} = 0
\overrightarrow{\beta_A \beta_C} \cdot \overrightarrow{\alpha_A \alpha_C} \times \overrightarrow{\alpha_A \alpha_B} = 0$$

$$\overrightarrow{\alpha_v} \times \overrightarrow{\beta_v} = 0$$

Алгебарски методи и стереометрија

Примена алгебарских метода на проблеме у стереометрији

Експерименти

	GeoProver успех	GeoProver неуспех	Гребнерове базе успех	Гребнерове базе неуспех
први приступ	13	16	23	6
други приступ	22	7	29	0

_ Закључци

Закључци

- Формализовано је превођење геометријских тврђења у алгебарску форму.
- Извршена је алгебризација геометријских тврђења на два начина.
- Извршено је поређење различитих приступа у алгебризацији.
- Тестирањем се показало да је систем ефикаснији када су полиноми једноставни.

- 1 Увод
- 2 Мотивација и циљеви
- Ормализација геометрије Декартове равни
- 4 Формализација геометрије комплексне равни
- 5 Алгебарски методи и стереометрија
- 🜀 Даљи рад

Даљи рад

- Доказ да наша дефиниција Декартове координатне равни задовољава све аксиоме Хилберта.
- Дефинишемо аналитичку геометрију у оквиру аксиоматизације Тарског или Хилберта.
- Доказати категоричност и система аксиома Тарског и система аксиома Хилберта.
- Испитати својства различитих класа Мебијусових трансформација.
- Завршити формализацију Поинкареовог диск модела.
- Испитати примене формализације у другим областима, нпр. физици.
- Услови недегенерисаности у стереометрији.
- Проширити систем тако да обухвати обла тела.
- Повезати направљени доказивач са динамичким геометријским софтвером.