

IA e ML Aplicados a Finanças

Prof. Leandro Maciel

AULA 4: Regressão Linear e Precificação de Ativos

Agenda

- 1 Modelo CAPM
- 2 Modelo de 3 Fatores
- 3 Modelos por Encolhimento
- 4 Bibliografia

- Decisões financeiras:
 - risco e retorno são elementos cruciais;
 - trade-off positivo.
- Problemas:
 - decidi comprar ações da Amazon, qual o retorno devo exigir (ajustado ao risco associado)?
 - sou gestor na Amazon e um projeto de investimento promove uma rentabilidade de 15% a.a., devo implementar?
 - ao realizar o valuation da Amazon, qual a taxa de desconto considerar no método DCF?

- Como precificar ativos com base no risco e retorno?
- Modelo de precificação de ativos, derivado da teoria do portfólio:

Capital Asset Pricing Model (CAPM)

- Auxilia na tomada de decisão em condições de incerteza (risco);
- Taxa mínima exigida pelos investidores (custo de oportunidade);
- William Sharpe (1964, Nobel 1990) e John Lintner (1965).

Hipóteses do modelo CAPM:

- 1 Eficiência informativa do mercado para todos investidores:
- 2 Ativos têm distribuição normal (retornos) excessos raros;
- 3 Aversão ao risco em decisões baseadas no risco e no retorno;
- 4 Não há custos de transação ou restrições para os investimentos;
- 5 Expectativas homogêneas e existência de taxa juros livre de riscos.

■ Existe uma Capital Market Line (CML):

- CML → descreve o prêmio pelo risco dos ativos;
- **Prêmio pelo risco** \rightarrow diferença retorno com risco e sem risco: $(R_j R_F)$;
- Existe uma carteira M, carteira de mercado, na CML;
- Carteira diversificada com ativos na exata proporção de suas liquidez;
- lacksquare Diversificação ightarrow reduz risco não sistemático;
- Brasil \rightarrow IBOVESPA; EUA \rightarrow S&P 500.

Reta do mercado de capitais e prêmio pelo risco:

- Como estimar a CML e calcular o retorno esperado dos ativos?
- Lógica: CML é uma reta;
- Podemos identificar os parâmetros dessa reta;
- Amostra → dados históricos;
- Relação entre prêmio pelo risco do ativo e da carteira de mercado...

■ Prêmio pelo risco do ativo j e da carteira de mercado M:

$$R_M - R_F$$

- Como podemos modelar (aproximar) essa relação?
- lacktriangle Relação entre prêmios pelo risco ightarrow Reta Característica CML:

$$(R_j - R_F) = \alpha + \beta (R_M - R_F)$$

Prêmio pelo risco da ação = $\alpha + \beta \times$ Prêmio pelo risco da carteira mercado

- Parâmetros da reta com interpretações específicas;
- lacksquare eta o coeficiente **beta**/parâmetro ângular;

Risco sistemático do ativo em relação ao mercado ($\beta < 1$ e $\beta > 1$);

f lpha
ightarrow coeficiente alfa/parâmetro linear;

Retorno em excesso, quando o retorno da carteira de mercado é zero.

Reta característica:

■ No equilíbrio de mercado, $\alpha = 0$, temos o **modelo CAPM**:

$$R_j = R_F + \beta (R_M - R_F)$$

- Risco sistemático do ativo expresso pelo coeficiente beta;
- $\beta = 1 \rightarrow$ igual M, não há risco não sistemático (diversificada);
- lacksquare Maior o beta ightarrow maior risco sistemático da ação em relação ao mercado.

Exemplo uso CAPM:

- $R_F = 12\%$ a.a.;
- $R_M = 18\%$ a.a.;
- lacksquare Empresa com eta=1,2. Seu custo de capital pelo CAPM...

$$R_j = R_F + \beta (R_M - R_F)$$

$$R_j = K_e = 12\% + 1,2 \times (18\% - 12\%) = 19,2\%$$
 a.a.

- \blacksquare R_F , $R_M \rightarrow$ conhecidos;
- **Como determinar o** β de uma ação?
- Modelo CAPM como um modelo de regressão linear simples:

$$R_j = R_F + \beta (R_M - R_F)$$

$$R_j - R_F = \beta (R_M - R_F)$$

 $y = \beta x + \epsilon \rightarrow \text{Modelo de Regressão Linear Simples}$

Selecionamos dados amostrais (séries históricas):

$$(y_1, x_1) = (R_{j,1} - R_{F,1}, R_{M,1} - R_{F,1})$$

$$(y_2, x_2) = (R_{j,2} - R_{F,2}, R_{M,2} - R_{F,2})$$

$$\vdots$$

$$(y_T, x_T) = (R_{i,T} - R_{F,T}, R_{M,T} - R_{F,T})$$

■ Estimamos os parâmetros da regressão:

$$\hat{y} = \hat{\alpha} + \hat{\beta}x$$

Exemplo empírico CAPM:

- Precificar ações da Amazon;
- Dados R_F , R_M e R_j (mensais 5 anos);
- lacksquare $R_F
 ightarrow ext{taxa}$ Treasury bill 1 mês;
- R_M → carteira ações NASDAQ, NYSE e AMEX;
- Estima-se o beta do CAPM (com e sem intercepto)...

$$R_j - R_F = \alpha + \beta (R_M - R_F)$$

- Beta estimado $\hat{\beta} = 1,2588;$
- Suponha:
- $R_M R_F = 2,00\%$ a.m.;
- $R_F = 0,30\%$ a.m.;
- Retorno exigido Amazon...

$$R_j = R_F + \beta (R_M - R_F)$$

$$\textit{R}_{\textit{j}} = \textit{K}_{e} = 0,3\% + 1,2588 \times (2,00\%) = 2,8176\% \text{ a.m.}$$

R² e riscos não sistemático e sistemático:

- Modelo CAPM:
 - taxa de retorno requerida;
 - taxa livre de risco;
 - mais prêmio que remunera o risco sistemático (coef. beta);
 - eficaz para explicar retorno de um ativo.
- Outros fatores não auxiliam a melhor explicar os retornos?

- Modelo de 3 Fatores de Fama & French (1993):
 - risco de mercado;
 - tamanho;
 - valor (índice book-to-market B/M ratio).
- Modelo FF3F:

$$R_j = R_F + \beta_M (R_M - R_F) + \beta_{SMB} SMB + \beta_{HML} HML$$

- SMB (small minus big):
 - diferença entre a média de retorno das ações de empresas de pequeno porte e média de retorno das ações de empresas de grande porte);
 - há uma tendência small caps performarem melhor.
- HML (high minus low):
 - diferença entre a média de retorno das ações com alto índice valor contábil sobre valor de mercado e a média de retorno das ações com baixo índice valor contábil sobre valor de mercado;
 - há uma tendência de empresas com maior B/M ratio (subavaliadas) performarem melhor.

- Problema: determinar as carteiras SMB e HML;
- Website Kenneth R. French (Dartmouth College):
 - http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ data_library.html#Developed
- Fatores calculados para mercado americano, europeu, emergentes:
- Modelo mais apropriado para carteiras (variável dependente);
- Modelo de 3 fatores para a Amazon...

■ Modelo 3F Fama e French para a Amazon...

$$R_j = R_F + \beta_M (R_M - R_F) + \beta_{SMB} SMB + \beta_{HML} HML$$

$$R_j = R_F + 1,2981 \cdot (R_M - R_F) - 0,1435 \cdot SMB - 0,9235 \cdot HML$$

- O modelo possui maior poder explicativo?
- Quais efeitos são significativos?
- Há, também, modelos de 5 fatores de Fama e French.

- Características das estimativas dos modelos de regressão linear:
 - viés (bias) = $(E(\hat{\beta}) \beta)$, mede acurácia;
 - variância mede incerteza das estimativas dos coeficientes;
 - deseja-se mais baixos valores de viés e variância.
- Estimadores de MQO são não viesados;
- Mas, podem apresentar elevada variância, decorrente de:
 - alta correlação dos regressores;
 - número elevado de regressores.

■ Viés e variância:

- Como reduzir a variância dos estimadores?
 - regularização ou encolhimento (shirinkage);
 - reduz variância ao custo de introduzir algum viés;
 - melhora a performance preditiva dos modelos.
- Objetivo é encontrar "modelo de complexidade ótima";
- Complexidade definida pelo número de regressores;
- Técnicas de encolhimento: Ridge and Lasso regression models.

■ Viés, variância e complexidade:

■ Modelo tradicional de regressão linear múltipla:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k = \beta_0 + \sum_{j=1}^k \beta_j x_j$$

Função objetivo associada:

$$SQR = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2$$

■ Ridge regression altera a função objetivo:

$$SQR_{ridge} = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

- lacksquare $\lambda \geq 0
 ightarrow {
 m parâmetro}$ de regularização;
- $\lambda \sum_{j=1}^{k} \beta_j^2 \rightarrow$ penalidade de encolhimento;
- $lue{}$ efeito de 'encolher' as estimativas para \sim zero (melhorar complexidade);
- Parâmetro λ selecionado por simulações (melhor ajuste).

- Limitação ridge: não 'encolhe' coeficiente para exatamente zero;
- Lasso Regression:

$$SQR_{lasso} = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j|$$

- Força alguns parâmetros a serem exatamente zero;
- Modelo lasso faz seleção de variáveis;
- Apropriado para problemas com número elevado de variáveis;
- Pacote **glmnet** implementa modelos Ridge e Lasso.

- Próxima aula...
 - problemas de previsão;
 - modelos de Redes Neurais Artificiais...

4. Bibliografia

ASSAF NETO, A. **Finanças Corporativas e Valor**. 7 Ed. São Paulo: Atlas, 2014. Capítulos 12 e 13.

JAMES, Gareth, et al. **An Introduction to Statistical Learning** - With Applications in R. New York: Springer, 2013. Capítulo 6.

Prof. Leandro Maciel

leandromaciel@usp.br