Quiz: Chapter 1+2 definitions

Definition 1. The *in-sample error* is defined to be

$$E_{\mathrm{in}}(h) = \frac{1}{N} \sum_{i=1}^{N} \llbracket h(\mathbf{x}_i) \neq y_i \rrbracket.$$

Definition 2. The *out-of-sample error* is defined to be

$$E_{\text{out}}(h) = \mathbb{P}(h(\mathbf{x}) \neq y).$$

Definition 3. The true label function is defined to be

$$f = \operatorname*{arg\,min}_{h \in \mathcal{H}^*} E_{\mathrm{out}}(h),$$

where \mathcal{H}^* is the union of all hypothesis classes.

Definition 4. The generalization error of a hypothesis g is defined to be

$$|E_{\rm in}(g) - E_{\rm out}(g)|$$
.

Definition 5. Let $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathcal{X}$. The *dichotomies* generated by a hypothesis class \mathcal{H} on these points are defined by

$$\mathcal{H}(\mathbf{x}_1,...,\mathbf{x}_N) = \left\{ \left(h(\mathbf{x}_1),...,h(\mathbf{x}_N) \right) : h \in \mathcal{H} \right\}$$

Definition 6. The growth function for a hypothesis class \mathcal{H} is defined to be

$$m_{\mathcal{H}}(N) = \max_{\mathbf{x}_1,...,\mathbf{x}_N \in \mathcal{X}} |\mathcal{H}(\mathbf{x}_1,...,\mathbf{x}_N)|.$$

Definition 7. We say that a hypoothesis class \mathcal{H} can shatter a dataset $\mathbf{x}_1, ..., \mathbf{x}_N$ if any of the following equivalent statements are true:

- 1. \mathcal{H} is capable of generating all possible dichotomies of $\mathbf{x}_1, ..., \mathbf{x}_N$.
- 2. $\mathcal{H}(\mathbf{x}_1, ..., \mathbf{x}_N) = \{-1, +1\}^N$.
- 3. $|\mathcal{H}(\mathbf{x}_1, ..., \mathbf{x}_N)| = 2^N$.

NOTE: You must list all 3 for full credit.

Definition 8. The integer k is said to be a break point for hypothesis class \mathcal{H} if

no data set of size k can be shattered by \mathcal{H} .

Definition 9. The Vapnik-Chervonenkis dimension (VC dimension) of a hypothesis class \mathcal{H} , denoted by $d_{\text{VC}}(\mathcal{H})$ or simply d_{VC} , is

the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$. If $m_{\mathcal{H}}(N) = 2^N$ for all N, then $d_{VC} = \infty$.

Theorem 1 (VC generalization bound). For any tolerance $\delta > 0$, we have that with probability at least $1 - \delta$,

$$E_{\text{out}} \le E_{\text{in}} + O\left(\sqrt{\frac{d_{\text{VC}} \log N - \log \delta}{N}}\right).$$

NOTE: The more precise, non-asymptotic formulas would also be acceptable.