한컴엔플럭스 AI융합기술센터

Date Presenter

2022.09.06 박정완 센터장

INDEX

물체 인식의 정의, 종류

먼저, Image Classification이란?

- DNN에 입력으로 이미지를 넣으면 그 이미지에 해당하는 Class를 분류해내는 문제
- 아래 그림과 같이 타겟으로 하는 전체 class에 대한 확률 값들을 출력

Object Detection의 정의

- Object Detection은 Image Classification task에 사물의 위치를 Bounding Box로 예측하는 Regression task(회귀문제)가 추가된 것
- Object Detection = Image Classification task + Bounding box + Regression task
- Bounding box는 좌표값과 초기정보를 설정 -> 좌표정보를 추정해주기 위해 선형회귀를 통해 추정값을 얻음

Object Detection 이론

1

1 stage - object detection

2

2 stage - object detection

R-CNN과 같이 탐색 영역을 찾는 Region Proposal (이미지 안에서 객체가 있을 만한 후보 영역을 찾아줌)

해당 영역을 분류하는 Detection (class 탐지)

1 Stage-Object Detection

- 1-Stage Object Detector → 두 가지 과정을 한번에 처리하는 방법
- Region proposal과 Detection이 한 번에 수행
- 2-Stage Object Detector에 비해 빠르지만 부정확
- 대표적 종류 : SSD, YOLO

2 Stage-Object Detection

- **■** 2-Stage Object Detector → 두 가지 과정이 순차적으로 수행되는 방법론
- Region proposal과 Detection 2단계의 과정을 순차적으로 거침

etc.

- 1-Stage Object Detector에 비해 비교적 느리지만 정확
- 대표적 종류 : R-CNN, Fast R-CNN, Faster R-CNN

기술발전과정

R-CNN

CNN의 이해
Region Based Convolutional Neural Networks의 대표적 기술
주요 원리
주요 알고리즘(Selective 알고리즘, Greedy 알고리즘)
Bounding box regression

CNN(Convolution Neural Network, 합성곱 신경망)

DNN(Deep Neural Network)에서 이미지나 영상 같은 데이터를 처리할 때 발생하는 문제점들을 개선한 방법

제한사항

이미지 공간 정보 유실로 인한 정보 부족 인공 신경망이 특징을 추출 및 학습이 비효율적이고 정확조를 높이는데 한계 존재

Region Based Convolutional Neural Network

2-Stage Object Detection의 대표적 기술

Task:

1. Region Proposal

Selective 알고리즘 + Greedy 알고리즘

2. Region Classification

Bbox regression + clssificaiton

작동원리

물체의 위치를 찾는 Region Proposal + 물체를 분류하는 Region Classification 두 가지 Task를 순차적으로 적용하여 시행

R-CNN 작동원리

■ 다량의 bbox 추출

이미지의 데이터와 레이블을 투입하여, selective 알고리즘을 적용 박스 2000개를 추출

■ CNN으로 특징벡터를 추출

사전에 훈련 시킨 CNN을 활용 차원의 특징 벡터를 추출하여 Feature map을 형성

Classification

SVM(Support Vector Machine)으로 분류분석 Feature map을 활용하여 선형지도학습모델 적용

Bounding box regression

적절한 크기와 위치를 지정하도록 진행

Selective Search(SS)알고리즘

Object가 있을 만한 영역(region)을 찾는 알고리즘(Region Proposal, RP)의 종류 중 하나

Input이미지에 sub-segmentation 진행

Selective Search(SS)알고리즘

■ 반복적으로 작은 영역을 큰 영역으로 결합(greedy 알고리즘)

Selective Search(SS)알고리즘

■ 수가 적어지면 후보 위치를 생성

Segmented region proposals(분할된 지역 제안)를 사용하여 candidate object location(후보개제치역)를 생성

bounding box regression

- Selective search(알고리즘)를 통해 찾은 박스 위치는 정확하지 않음
- Predicted box(예측값)과 ground truth box(실제값)과의 차이를 줄이는 것이 목적

하나의 박스(예측한 박스)에 대한 위치 값

$$P^{i} = (P_{x}^{i}, P_{y}^{i}, P_{w}^{i}, P_{h}^{i})$$

(x, y)= 이미지의 중심좌표

(w, h)= 이미지의 너비와 높이

■ 목표 : P에 해당하는 박스를 G에 가깝게 이동시키는 함수를 학습시키는 것

실제 박스에 대한 위치 값

$$G=(G_x, G_y, G_w, G_h)$$

YOLO

YOLO 특징 작동원리 NMS알고리즘 YOLO순서

You Only Live Once 특징

- 1-Stage Object Detection의 대표적인 기술
- 이미지 전체를 한번만 인식

이전의 R-CNN은 이미지를 여러장으로 분할 YOLO는 분할 과정없이 한번에 인식

■ 실시간으로 객체 탐지 가능

R-CNN은 실시간 탐지 불가능 YOLO는 실시간 탐지가 가능

■ 통합된 모델을 사용

기존은 전처리 모델, 인공 신경망을 결합하여 사용통합된 모델을 사용하여 활용가능

mAP(mean Average Precision) : 영성인식 정확도 평가지표 FPS(Frame Per Second) : 초당 프레임. (초당 25프레임은 끊기지 않는다고 판단)

작동 원리

- \blacksquare 입력된 인미지를 S imes S 사이즈로 나눔
- │ 각각의 grid cell은 B개의 bounding box와 그에 대한 confidence score를 가짐
- ┃ 각각의 bbox는 x,y,w,h와 confidence로 구성

(x, y) = bbox의 중심점(grid셀의 크기 기준 1, 중심 0.5, 0.5) (w, h) = 이미지의 너비와 높이(grid셀의 크기 기준 1, 크기 10%는 0.1, 0.1)

- 각각의 grid cell은 C(confidence class probability)를 가짐
- 평가할 때 C와 각 박스의 class-specific confidence score를 주는 confidence prediction을 곱함

Confidence Score

 $confidence\ score = P_r(object) \times IOU_{pred}^{truth}$

- I Bbox내에 object가 있을 확률을 예측하는 지표 Cell낸 object가 없으면 0
- 오브젝트일 확률이며, Softmax(활성화 함수)로0~1사의 값으로 모두 정규화총합은 항상 1이 되는 특성 $y_k = rac{e^{a_k}}{\sum_{i=1}^n e^{a_i}}$
- loU(Intersection Over Union)는 두 영역이 겹쳐져 있을 때 두 영역의 교집합을 합집합으로 나눈 것 loU=(P∩ T의 면적)/(P∪T의 면적)

Conditional class probability & class-specific confidence score

$$C = conditional \ class \ probability : P_r(class_i|object)$$

C는 class의 개수

▎ 각각의 grid cell은 C개의 조건부확률을 가짐

Class Specific Confidence Score

= Conditional Class Probability \times Confidence Score

= $P_r\{class_i|object\} \times P_r(objects) \times IOU_{pred}^{truth}$

 $= P_r(class_i) \times IOU_{pred}^{truth}$

Part 3

YOLO란?

최종결과값

Output Size =
$$S \times S \times (B \times 5 + C) = 7 \times 7 \times (2 \times 5 + 20) = 7 \times 7 \times 30$$

- \blacksquare 각 셀 격자는 $(B \times 5 + C)$ 크기의 vector 를 가짐
- 이미지 전체 $(S \times S \times (B \times 5 + C)$ 크기의 tensor를 가짐
- \blacksquare $B \times 5 = Bounding box B개의 x, y, w, h, confidence 5개의 변수$

Part 3

YOLO란?

결과 화면

YOLO 작동 원리

Final prediction result = $7 \times 7 \times 30$ tensor

1X30

YOLO 작동 원리

YOLO 작동 원리

YOLO 작동 원리

YOLO 작동 원리

YOLO 작동 원리

① Thresh holding (스레시 홀드) 만약 score < thresh1 (0.2) 라면 → 0으로 치환

스레시 홀드 → 여러 값을 어떤 임계점을 기준으로 두 가지 부류로 나누는 방법

NMS 알고리즘

- Non Maximum Suppression: intuition
- NMS 알고리즘의 목적- 이미지 내에서 중복되는 오브젝트를 출력해주기 위함!
- Ⅰ 중복이 되는 경계 박스들을 제거
- 여러 경계 박스가 겹쳐있을 때 최대 값을 갖는 오브젝트를 제외하고 모두 지움
- Ⅰ 테스트 결과 정확도가 2~3%상승

NMS 알고리즘

- 하나의 임계치 N에 대해서 수행하기 때문에 N을 어떻게 선택하는가에 따라 성능 평가 결과가 달라짐
- Bounding box 수의 비해 물체의 수가 현저히 적으므로 최종 average precision 이 낮아짐
- 같은 클래스의 물체가 겹쳐 있을 경우 각 물체에 대해 bounding box를 잡아야 함에도 불구하고 NMS에 의해 작은 score을 가진 bounding box가 무시된다

NMS 알고리즘

Non – Maximum Suppression : intuition

각 bounding box에서 class(Dogs)의 score

class: dog

bb47 bb20 bb15 bb7	bb1	bb4	bb8	bb98	\
0.5 0.3 0.2 0.1	0	0	0	0	,

1x98

NMS 알고리즘

Non – Maximum Suppression : intuition

각 bounding box에서 class(Dogs)의 score

class: dog

bb47 bb20 bb15 bb7	bb1	bb4	bb8	bb98
0.5 0.3 0.2 0.1	0	0	0	0

NMS 알고리즘

Non – Maximum Suppression : intuition

각 bounding box에서 class(Dogs)의 score

1x98

class: dog

bb47 bb20 bb15 bb7	bb1	bb4	bb8	bb98
0.5 0.3 0.2 0.1	0	0	0	0

NMS 알고리즘

Non – Maximum Suppression: intuition

NMS 알고리즘

Non – Maximum Suppression: intuition

NMS 알고리즘

Non – Maximum Suppression: intuition

각 bounding box에서 class(Dogs)의 score

class: dog

1x98

가장 높은 score을 가진 boundingbox → bbox_max

0이 아닌 score를 가지는 다른 boundingbox (비교대상)
→ bbox_ cur

만약 IOU(bbox_max , bbox_ cur) > 0.5 이라면
→ bbox_ cur 을0으로 치환

IOU <0.5 이므로 값을 **그대로** 둠

NMS 알고리즘

Non – Maximum Suppression: intuition

NMS 알고리즘

Non – Maximum Suppression : intuition

최종적으로 2개의 bounding box만 남음

YOLO 순서

이 과정을 다른 모든 class 에 맞춰 진행

YOLO 순서

모든 클래스에 대해 진행하고 나면 무수히 많은 0이 있게됨

YOLO 순서

YOLO 순서

YOLO 순서

국방데이터에 적용

YOLO v5

스마트 지뢰탐지 시스템

국방데이터에 적용

YOLO v5실습: 적용해보기

```
!git clone https://github.com/ultralytics/yolov5 # clone
%cd yolov5
remote: Enumerating objects: 12190, done
remote: Counting objects: 100% (66/66), done.
remote: Compressing objects: 100% (60/60), done.
Receiving objects: 100% (12190/12190), 12.63 MiB | 23.57 MiB/s, done.
Resolving deltas: 100% (8376/8376), done.
                                ■| 1.6 MB 5.0 MB/s
  import torch
 # Model
 model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 불러오기 or yolov5n - yolov5x6, custom
  import torch
 display = utils.notebook init() # checks
 YOLOV5 🚀 v6.2-94-g1aea74c Python-3.7.13 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)
 Setup complete 🗸 (2 CPUs, 12.7 GB RAM, 37.4/166.8 GB disk)
0: 384x640 21 persons, 1 sports ball, Done. (0.009s)
0: 384x640 21 persons, 1 sports ball, Done. (0.009s)
0: 384x640 21 persons, 1 sports ball, Done. (0.013s)
0: 384x640 21 persons, 1 sports ball, Done. (0.009s)
```

스마트 지뢰탐지 시스템

일반현황

■ 사업명 : AI융합 지뢰탐지 시스템

■ 사업기간 : '21. 7. ~'23. 12

■ 사업금액 : 66억원

주관기관 : NIPA

■ 수행기관 : ㈜한컴엔플럭스 – 셀파이엔씨 – Do It

발표 들어주셔서 감사합니다 :)

Q&A

Date Presenter

2022.09.06 박정완 센터장