

## Background

- Apply Bayesian hierarchical models in geographical analysis of disease
- The goal of disease mapping is to provide visual summary of spatial information and identify patterns (spatial variation of the disease, areas of usually high risk) from the map
- Cholera outbreak in London's Board Street Region in 1854, by studying the spatial distribution of cholera victims around that area, John Snow find Cholera was spread through contaminated water.



### Data

- HealthData.gov
- Amebiasis (a disease) in California
- 812 observations (58 Counties, 14 Years)
- 4 variables (County, Year, Count, Population)

| County        | Year ‡ | Count <sup>‡</sup> | Population <sup>‡</sup> |
|---------------|--------|--------------------|-------------------------|
| San Francisco | 2001   | 162                | 782223                  |
| San Francisco | 2002   | 141                | 783255                  |
| San Francisco | 2003   | 98                 | 781870                  |
| San Francisco | 2004   | 92                 | 780699                  |
| San Francisco | 2005   | 119                | 779655                  |
| San Francisco | 2006   | 116                | 782928                  |
| San Francisco | 2007   | 93                 | 791334                  |
| San Francisco | 2008   | 120                | 798673                  |
| San Francisco | 2009   | 94                 | 801799                  |
| San Francisco | 2010   | 106                | 806314                  |
| San Francisco | 2011   | 80                 | 813595                  |
| San Francisco | 2012   | 58                 | 822403                  |
| San Francisco | 2013   | 60                 | 830956                  |
| San Francisco | 2014   | 49                 | 837831                  |

### Model

#### Model 1:

$$Y_{it} \sim \text{Binomial}(p_{it}, n_{it})$$

$$logit(p_{it}) = a_0 + v_i + u_i + g_t$$

 $a_0 \propto c$ 

 $v_i \sim \text{Normal}(0, \sigma_v^2)$ 

 $u_i \sim \text{CAR}(\sigma_u^2)$ , conditional autorgressive prior

 $g_t \sim \text{Normal}(0, \sigma_g^2)$ 

 $\sigma_v^2 \sim \text{IG}(0.01, 0.01)$ 

 $\sigma_u^2 \sim \text{IG}(0.01, 0.01)$ 

 $\sigma_g^2 \sim \text{IG}(0.01, 0.01)$ 

#### Scale Reduction Factor

| min    | mean   | median | max    |
|--------|--------|--------|--------|
| 0.9999 | 1.0025 | 1.0002 | 1.1329 |

u[37] u[41] v[37] v[41] 1.111583 1.114969 1.101102 1.132879

#### Trace of a0









## Model comparison

### Model 2:

| $Y_{it} \sim \text{Binomial}(p_{it}, n_{it})$ |
|-----------------------------------------------|
| $logit(p_{it}) = a_0 + v_i + u_i + \beta t$   |
| $a_0 \propto c$                               |
| $\beta \sim \text{Normal}(0, 0.0001)$         |
| $v_i \sim \text{Normal}(0, \sigma_v^2)$       |
| $u_i \sim \text{CAR}(\sigma_u^2)$             |
| $\sigma_v^2 \sim \mathrm{IG}(0.01, 0.01)$     |
| $\sigma_u^2 \sim \text{IG}(0.01, 0.01)$       |

| Model | DIC  |
|-------|------|
| 1     | 1171 |
| 2     | 2518 |

# Bayesian Disease Mapping

Likelihood:  $Y_{it} \sim \text{Binomial}(p_{it}, n_{it})$ 

MLE:  $p_{it} = \frac{y_{it}}{n_{it}}$ 

R Shiny:

Bayesian estimate vs Frequentist estimate

**Bayesian Disease Mapping** 

### Summary

- Unlike MLE, posterior mean is more smooth
- Improvements:
- > Interaction of spatial and temporal effects
- covariates (temperature, age)

### Thank You!

# Identifiability Problem

#### $Y_{it} \sim \text{Binomial}(p_{it}, n_{it})$

 $a_0 \propto c$ 

 $v_i \sim \text{Normal}(0, \sigma_v^2)$ 

 $u_i \sim \text{CAR}(\sigma_u^2)$ 

 $g_t \sim \text{Normal}(0, \sigma_q^2)$ 

 $w_t \sim \text{Normal}(w_{t-1}, \sigma_w^2) \text{ for } t=2...14$ 

 $w_1 \sim \text{Normal}(0, \sigma_w^2)$ 

 $\sigma_v^2 \sim \text{IG}(0.01, 0.01)$ 

 $\sigma_u^2 \sim \text{IG}(0.01, 0.01)$ 

 $\sigma_q^2 \sim \text{IG}(0.01, 0.01)$ 

 $\sigma_w^2 \sim \text{IG}(0.01, 0.01)$ 

#### Trace of a0



#### Trace of w[1]

