Regressão Linear no RStudio

Saulo Morellato

Introdução

Objetivo Geral

Estabelecer uma função que descreva a relação entre uma variável contínua Y (variável resposta) e uma ou mais variáveis de apoio X_1, X_2, \dots, X_p (covariáveis) na forma

$$Y = f(X_1, X_2, \dots, X_n) + \epsilon$$

sendo ϵ um erro aleatório.

Erro Aleatório

Possíveis explicações para a presença do erro aleatório no modelo são:

- Caráter vago da teoria;
- Falta de dados disponíveis;
- Caráter aleatório da natureza;
- Escolha equivocada para a forma funcional.

Regressão Linear

Objetivo

- Na Análise de Regressão Linear o objetivo é identificar uma equação linear que permita descrever o comportamento da variável resposta Y utilizando valores conhecidos das covariáveis X_1, X_2, \ldots, X_p .
- Ou seja, considera-se que a função $f(\cdot)$ tenha uma forma linear.

Regressão Linear Simples

Temos apenas uma covariável no modelo. Um exemplo seria tentar modelar o quanto as despesas com propaganda inflenciam nas vendas de um determinado produto.

- Variável resposta: vendas

• Covariável: gasto com propagandas

Regressão Linear Múltipla

Temos apenas duas ou mais covariáveis no modelo. Um exemplo seria tentar modelar o quanto as características de um imóvel influenciam no preço de venda do mesmo.

• Variável resposta: preço do imóvel

• Covariáveis: área, no de quartos, no de banheiros, idade,...

Descrição do Modelo

• A forma funcional é linear;

• Considera-se apenas uma covariável;

• Desse modo, temos

$$Y = \beta_0 + \beta_1 X + \epsilon$$

• β_0 e β_1 são valores desconhecidos (parâmetros) da reta que relaciona X e Y;

- β_0 é chamado de intercepto; e

• β_1 é o coeficiente angular.

 Exemplo: (Clínica Oftalmológica) Acredita-se que a pressão intra-ocular é explicada (depende) da idade. Relembrando:

Indivíduo	Idade	PIO	Indivíduo	Idade	PIO
1	35	15	14	55	20
2	40	17	15	57	19
3	41	16	16	58	20
4	44	18	17	59	19
5	45	15	18	60	23
6	48	19	19	60	19
7	50	19	20	61	22
8	50	18	21	63	23
9	50	17	22	65	24
10	52	16	23	67	23
11	54	19	24	71	24
12	55	18	25	77	22
13	55	21			

Gráfico do modelo

Aplicação em R

Carregando Pacotes

- Para exemplificar a estimação de um modelo de Regressão Linear em R vamos utilizar conjunto de dados dados_imoveis.csv.
- Para isso primeiramente vamos carregar os pacotes necessários.

```
library(tidyverse) # para organizar os dados
library(gtsummary) # para organizar resultados em tabela
library(mixlm) # para selecao de variaveis (stepwise)
```

Carregando e Manipulando Dados

• Carregue o arquivo dados_imoveis.csv utilizando o comando read.csv().

```
dados<- read.csv("dados_imoveis.csv", header=TRUE)</pre>
```

• Dê uma olhada superficial na estrutura dos dados usando o comando glimpse().

```
glimpse(dados)
```

• Transforme a variável piscina em fator, em seguida Verifique as estatísticas descritivas utlizando o comando summary().

```
dados$piscina<- as.factor(dados$piscina)
summary(dados)</pre>
```

pre	co	aı	rea	ida	ade	quai	ctos	piscina
Min.	: 75000	Min.	: 80.0	Min.	: 2.00	Min.	:2.0	nao: 7
1st Qu.	:133750	1st Qu	.:123.8	1st Qu	.: 8.75	1st Qu	:3.0	sim:13
Median	:175000	Median	:180.0	Median	:12.50	Median	:4.0	
Mean	:175000	Mean	:178.8	Mean	:17.40	Mean	:3.8	
3rd Qu.	:211250	3rd Qu	.:213.8	3rd Qu	.:26.00	3rd Qu	:5.0	
Max.	:300000	Max.	:305.0	Max.	:40.00	Max.	:6.0	

Ajustando a Regressão Linear

- Para ajustar/estimar um modelo de Regressão Linear devemos utilizar o comando lm(), ao qual devemos fornecer as seguintes informações: fórmula e dados.
- Neste primero modelo consideremos que a variável preco dependa apenas de area.

```
modelo1<- lm(preco ~ area, data=dados)</pre>
```

Modelo 2

• Caso eu queira considerar um segundo modelo no qual **preco** dependa de todas as demais variável do conjunto de dados devemos utilizar os seguintes comandos:

```
modelo2<- lm(preco ~ area + idade + quartos + piscina, data=dados)
#modelo2<- lm(preco ~ . , data=dados) # comando alternativo</pre>
```

Visualizando os Modelos

- A função summary() pode ser utilizada para visualizarmos um resumo do modelo estimado em forma de tabela.
- Deve-se observar que este comando apresenta os resultados de uma forma um pouco poluída, porém bem completa.
- Apliquemos este comando para o modelo2.

Visualização - summary()

summary(modelo2)

Call:

```
lm(formula = preco ~ area + idade + quartos + piscina, data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -23897 -12990 -2961 10454 43914
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 49867.3 19127.2 2.607 0.01982 *
area
              268.7
                         141.6 1.898 0.07716 .
                       485.6 -1.300 0.21330
idade
             -631.1
quartos
             21647.1
                        5721.1 3.784 0.00180 **
piscina(sim) -19440.1
                        6394.2 -3.040 0.00827 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
s: 19060 on 15 degrees of freedom
Multiple R-squared: 0.9114,
```

Adjusted R-squared: 0.8878

F-statistic: 38.59 on 4 and 15 DF, p-value: 9.971e-08

Visualização - tbl_regression()

• Para uma visualização mais interpretável dos resultados, podemos utilizar o comando tbl_regression()

tbl_regression(modelo2)

Characteristic	\mathbf{Beta}	95% CI	p-value
area	269	-33, 570	0.077
idade	-631	-1,666, 404	0.2
quartos	$21,\!647$	9,453, 33,841	0.002

Interpretação

- Se a covariável é numérica, o acréscimo de 1 unidade nesta covariável espera-se um acréscimo de β unidades na variável resposta.
- Se a covariável é categórica, o fato de pertencer a certa classe espera-se um acréscimo de β unidades na variável resposta.
- O aumento de 1 unidade em area implica, em média, num acréscimo de 268.7 unidades monerátias no preco.
- O aumento de 1 unidade em idade implica, em média, num decréscimo de 631.1 unidades monerátias no preco.
- O aumento de 1 unidade em quarto implica, em média, num acréscimo de 21647.1 unidades monerátias no preco.
- O fato do imóvel possuir piscina implica, em média, num acréscimo de 38880.2 unidades monerátias no preco.

Modelos com Interação

- Em um modelo de regressão o Y pode depender linearmente de $X_1,\,X_2$ e do produto $X_1X_2.$
- Desse modo, temos o modelo

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

• No R, para considerar um modelo com interação podemos utilizar os seguintes comandos:

```
modelo3<- lm(preco ~ area + idade + area:idade, data=dados)</pre>
```

 Caso eu queira considerar todas as interações possíveis das minha covariáveis devo utlizar o seguinte comando:

```
modelo4<- lm(preco ~ .^2, data=dados)</pre>
```

Seleção de Variáveis

- Dentre todas as variáveis do conjunto de dados, quais são as que interferem significativamente em preco?
- Para determinar tais variáveis utilizamos o comando backward().
- O argumento que devemos utilizar nesta função seria o modelo ajustado com todas as variáveis e/ou todas as interações.
- As variáveis que não são estatísticamente significativas são removidas do modelo.

```
melhor_modelo<- backward(modelo4, alpha=0.1)</pre>
```

Backward elimination, alpha-to-remove: 0.1

Full model: preco ~ area + idade + quartos + piscina + area:idade + area:quartos + area:piscina + idade:quartos + idade:piscina + quartos:piscina

Step RSS AIC R2pred Cp F value Pr(>F) idade:piscina 1 1096178359 376.39 0.89874 10.972 1.9721 0.1938

tbl_regression(melhor_modelo)

Characteristic	Beta	95% CI	p-value
area	-1,467	-2,243, -691	0.002
idade	147	-2,253, 2,546	0.9
quartos	31,448	-6,649, 69,544	0.10
area * idade	36	8.9, 64	0.015
area * quartos	218	112, 324	< 0.001
idade * quartos	-2,063	-3,509, -617	0.010

Predição

- Suponha que 2 imóveis estão para ser vendidos.
- Suponha ainda não haver preço de venda para estes 2 imóveis.
- Utilize a características destes, juntamente com o modelo estimado, para estimar seus preços.
- Carregue o arquivo novos_imoveis.csv utilizando o comando read.csv().

novos<- read.csv("novos_imoveis.csv", header=TRUE)</pre>

• Faça a predição/estimação de preço para estes 2 imóveis utilizando o comando predict().

```
preditos<- predict(modelo2, newdata=novos)</pre>
```

• Para uma melhor visualização vamos concatenar as informações dos novos imóveis com suas respectivas predições/estimações de preço.

```
cbind.data.frame(novos, preditos)
```

```
area idade quartos piscina preditos
1 100 5 2 nao 97432.01
2 200 31 4 sim 190063.05
```