Package 'basemodels'

June 14, 2023

Ying-Ju Chen <ychen4@udayton.edu>, and Fadel M. Megahed <fmegahed@miamioh.edu>

sors used in Python's sci-kit library. Our goal is to allow R users to easily identify baseline performance for their classification and regression problems. Our baseline models use no predic-

Author Ying-Ju Chen, Fadel M. Megahed, L. Allison Jones-Farmer, and Steven E. Rigdon

Description This package provides equivalent functions for the dummy classifier and regres-

tors, and are useful in cases of class imbalance, multiclass classifica-

Type Package

Version 0.1.0

Maintainer

Title Baseline Models for Classification and Regression

chine learning models over several baseline n tional guessing) for the dummy classifier than	
age can be used on their own, or introduce me ods named 'dummy_regressor' or 'dummy_cla age pipeline.	eth- assifier' that can be used within the caret pack-
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.2.3	
Suggests caret	
R topics documented:	
•	
• — —	
• •	
· - · - ·	
Index	8
	1

2 dummyRegressor

dummyClassifier

a method used for the train function in caret

Description

a method used for the train function in caret

Usage

```
dummyClassifier
```

Format

An object of class list of length 13.

Examples

```
# Split the data into training and testing sets
set.seed(2023)
index <- sample(1:nrow(iris), nrow(iris) * 0.8)</pre>
train_data <- iris[index,]</pre>
test_data <- iris[-index,]</pre>
ctrl1 <- caret::trainControl(method = "none")</pre>
# Train a dummy classifier with caret
\label{lem:condition} {\sf dummy\_model} \mathrel{<\!\!\!-} {\sf caret::train(Species} \; ^{\sim} \; ., \; {\sf data} \; = \; {\sf train\_data},
                                      method = dummyClassifier,
                                      strategy = "stratified",
                                      trControl = ctrl1)
# Make predictions using the trained dummy classifier
pred_vec <- predict(dummy_model, test_data)</pre>
\ensuremath{\text{\#}} Evaluate the performance of the dummy classifier
conf_matrix <- caret::confusionMatrix(pred_vec, test_data$Species)</pre>
print(conf_matrix)
```

 ${\tt dummyRegressor}$

a method used for the train function in caret

Description

a method used for the train function in caret

Usage

dummyRegressor

Format

An object of class list of length 13.

dummy_classifier 3

Examples

dummy_classifier

dummy classifier for a categorical variable.

Description

dummy classifier for a categorical variable.

Usage

```
dummy_classifier(
   y,
   strategy = "proportional",
   constant = NULL,
   random_state = NULL
)
```

Arguments

y a categorical vector, containing the outcomes of interest

strategy a strategy from "constant", "most_frequent", "proportional", "uniform", or "strat-

ified".

constant a constant value for the constant strategy.

random_state a random seed.

Value

a list

Examples

```
# Split the data into training and testing sets
set.seed(2023)
index <- sample(1:nrow(iris), nrow(iris) * 0.8)
train_data <- iris[index,]
test_data <- iris[-index,]</pre>
```

4 dummy_regressor

```
dummy_model <- dummy_classifier(train_data$Species, strategy = "proportional", random_state = 2024)
dummy_model</pre>
```

```
dummy_classifier_caret
```

dummy classifier for a categorical variable, used with the train function in caret.

Description

dummy classifier for a categorical variable, used with the train function in caret.

Usage

```
dummy_classifier_caret(
   strategy = "proportional",
   constant = NULL,
   random_state = NULL
)
```

Arguments

strategy a strategy from "constant", "most_frequent", "proportional", "uniform", or "strat-

ified".

constant a constant value for the constant strategy.

random_state a random seed.

Value

a list

dummy_regressor

dummy regressor for a numerical variable.

Description

dummy regressor for a numerical variable.

Usage

```
dummy_regressor(y, strategy = "mean", quantile = NULL, constant = NULL)
```

Arguments

```
y a numerical vector.
```

strategy a strategy from "constant", "mean", "median", or "quantile".

quantile used when using the quantile strategy. It is a value between 0 and 1.

constant used when using the constant strategy. It is a numeric value.

dummy_regressor_caret 5

Value

a list containing information of the model.

Examples

```
# Split the data into training and testing sets
set.seed(2023)
index <- sample(1:nrow(iris), nrow(iris) * 0.8)
train_data <- iris[index,]
test_data <- iris[-index,]
reg_model <- dummy_regressor(train_data$Sepal.Length, strategy = "median")
reg_model</pre>
```

dummy_regressor_caret dummy regressor for a numerical variable, used in the train function in caret.

Description

dummy regressor for a numerical variable, used in the train function in caret.

Usage

```
dummy_regressor_caret(strategy = "mean", quantile = NULL, constant = NULL)
```

Arguments

```
strategy a strategy from "constant", "mean", "median", or "quantile".

quantile used when using the quantile strategy. It is a value between 0 and 1.
```

constant used when using the constant strategy. It is a numeric value.

Value

a list containing information of the model.

Description

dummy classifier predictor

Usage

```
predict_dummy_classifier(object, X)
```

Arguments

object a list created using dummy classifier.

X a data frame.

Value

predicted values for the response variable.

Examples

```
# Split the data into training and testing sets
set.seed(2023)
index <- sample(1:nrow(iris), nrow(iris) * 0.8)
train_data <- iris[index,]
test_data <- iris[-index,]
dummy_model <- dummy_classifier(train_data$Species, strategy = "proportional", random_state = 2024)
# Make predictions using the trained dummy classifier
pred_vec <- predict_dummy_classifier(dummy_model, test_data)
# Evaluate the performance of the dummy classifier
conf_matrix <- caret::confusionMatrix(pred_vec, test_data$Species)
print(conf_matrix)</pre>
```

```
predict_dummy_regressor
```

dummy regressor predictor

Description

dummy regressor predictor

Usage

```
predict_dummy_regressor(object, X)
```

Arguments

object a list from the dummy_regressor function

X a data frame

Value

the predicted values

predict_proba 7

Examples

```
#' # Split the data into training and testing sets
set.seed(2023)
index <- sample(1:nrow(iris), nrow(iris) * 0.8)
train_data <- iris[index,]
test_data <- iris[-index,]

# Make predictions using the trained dummy regressor
reg_model <- dummy_regressor(train_data$Sepal.Length, strategy = "median")
y_hat <- predict_dummy_regressor(reg_model, test_data)
# Find mean squared error
mean((test_data$Sepal.Length-y_hat)^2)</pre>
```

predict_proba

probabilities for predicting classes

Description

probabilities for predicting classes

Usage

```
predict_proba(model, X)
```

Arguments

model a list from dummy classifier.
X a data frame.

Value

a probability matrix.

Index