# Discrete Mathematics with Applications I COMPSCI&SFWRENG 2DM3

McMaster University, Fall 2019

Wolfram Kahl

2019-11-13

Let *c* be defined by:  $x \le c \equiv x \le 5$ 

What do you know about *c*? Why? (Prove it!)

## **A Set Theory Exercise**

Let A, B: **set** t be two sets of the same type.

The **relative pseudocomplement**  $A \rightarrow B$  of A with respect to B is defined by:

$$X \subseteq (A \rightarrow B) \equiv X \cap A \subseteq B$$

Calculate the **relative pseudocomplement**  $A \rightarrow B$  !

Using extensionality, that is:

Calculate  $x \in A \rightarrow B \equiv x \in ?$ 

Let *c* be defined by:  $x \le c \equiv x \le 5$ 

What do you know about *c*? Why? (Prove it!)

**Note:** *x* is implicitly univerally quantified!

**Proving**  $5 \le c$ :

 $5 \le c$ 

 $\equiv$   $\langle$  The given equivalence, with  $x \coloneqq 5 \rangle$ 

 $5 \le 5$  — This is Reflexivity of  $\le$ 

**Proving**  $c \le 5$ :

 $c \leq 5$ 

 $\equiv$   $\langle$  Given equivalence, with  $x \coloneqq c \rangle$ 

 $c \le c$  — This is Reflexivity of  $\le$ 

With antisymmetry of  $\leq$  (that is,  $a \leq b \land b \leq a \Rightarrow a = b$ ), we obtain z = 5 — this is:

(15.47) **Indirect equality:**  $a = b \equiv (\forall z \bullet z \le a \equiv z \le b)$ 

```
Characterisation of relative pseudocomplement of sets: X \subseteq (A \rightarrow B) \equiv X \cap A \subseteq B
                x \in A \rightarrow B
         \equiv \langle e \in S \equiv \{e\} \subseteq S
                                                            Exercise! >
                \{x\} \subseteq A \rightarrow B
         \equiv \langle \text{ Def.} \rightarrow, \text{ with } X := \{x\} \rangle
               \{x\} \cap A \subseteq B
         ≡ ((11.13) Subset)
                                                                                                       Theorem:
                                                                                                                                A \rightarrow B = \sim A \cup B
               (\forall y \mid y \in \{x\} \cap A \bullet y \in B)
         \equiv \langle (11.21) \text{ Intersection } \rangle
                (\forall y \mid y \in \{x\} \land y \in A \bullet y \in B)
         \equiv \langle y \in \{x\} \equiv y = x —
                                                            Exercise! >
                (\forall y \mid y = x \land y \in A \bullet y \in B)
         \equiv \langle (9.4b) \text{ Trading for } \forall, \text{ Def. } \notin \rangle
                (\forall y \mid y = x \bullet y \notin A \lor y \in B)
         \equiv \langle (8.14) \text{ One-point rule} \rangle
                x \notin A \lor x \in B
         \equiv \langle (11.17) \text{ Set complement, } (11.20) \text{ Union } \rangle
               x \in {\sim} A \cup B
```

Characterisation of relative pseudocomplement of sets:  $X \subseteq A \rightarrow B \equiv X \cap A \subseteq B$ Theorem "Pseudocomplement via  $\cup$ ":  $A \rightarrow B = \sim A \cup B$ Calculation:

$$x \in A \rightarrow B$$
 $\equiv \langle \text{ Pseudocomplement via } \cup \rangle$ 
 $x \in \sim A \cup B$ 
 $\equiv \langle (11.17) \text{ Set complement, } (11.20) \text{ Union } \rangle$ 
 $\neg (x \in A) \lor x \in B$ 
 $\equiv \langle (3.59) \text{ Definition of } \Rightarrow \rangle$ 
 $x \in A \Rightarrow x \in B$ 

**Corollary "Membership in pseudocomplement":**  $x \in A \rightarrow B \equiv x \in A \Rightarrow x \in B$ 

Easy to see: On sets, relative pseudocomplement wrt.  $\{\}$  is complement:  $A \rightarrow \{\} = \sim A$ 

## Plan for Today: Relations, Relation Properties

- Theorems about relation composition ;
- Properties of relations: Definitions via predicate logic and via relation algebra
- First relation-algebraic proofs

#### **Operations** on Relations

• Set operations  $\sim$  ,  $\cup$ ,  $\cap$ ,  $\rightarrow$  are all available.

• If 
$$R: B \leftrightarrow C$$
, then its **converse**  $R^{\sim}: C \leftrightarrow B$  (in the textbook called "inverse" and written:  $R^{-1}$ ) stands for "going  $R$  backwards":  $c(R^{\sim})b \equiv b(R)c$ 

• If 
$$R: B \leftrightarrow C$$
 and  $S: C \leftrightarrow D$ ,  
then their **composition**  $R \circ S$   
(in the textbook written:  $R \circ S$ )  
is a relation in  $B \leftrightarrow D$ , and stands for  
"going first a step via  $R$ , and then a step via  $S$ ":

$$b(R_{9}S)d \equiv (\exists c: C \bullet b(R)c(S)d)$$

#### The resulting relation algebra

- allows concise formalisations without quantifications,
- enables simple calculational proofs.

$$P$$
 := type of persons

 $C$  :  $P \leftrightarrow P$  — "called"

 $B$  :  $P \leftrightarrow P$  — "brother of"

 $Aos: P$ 
 $Jun: P$ 

vert into English (via predicate logic):

Convert into English (via predicate logic):

Aos (C) Jun

Aos (C; B) Jun

Aos (
$$\sim$$
 (C;  $\sim$  B) Jun

Aos ( $\sim$  ( $\sim$  C; B) Jun

Aos ( $\sim$  (( $\subset$   $\sim$  (B; C $\sim$ ));  $\sim$  B) Jun

(B; ( $\subset$  ( $\subset$   $\sim$  L))  $\cap$  (C; C $\sim$  )  $\subseteq$  LP

```
P
   := type of persons
C
         : P \leftrightarrow P — "called"
         : P \leftrightarrow P — "brother of"
В
Aos: P
Jun : P
```

Convert into English (via predicate logic):

Aos (
$$C;B$$
) Jun  
=  $\langle (14.20)$  Relation composition  $\rangle$   
( $\exists b \bullet Aos (C) b (B)$  Jun)

"Aos called some brother of Jun."

"Aos called a brother of Jun."

```
Aos ( \sim (C_{\circ} \sim B) ) Jun
= ((11.17r) Relation complement)
    \neg (Aos (C_{9} \sim B) Jun)
= ((14.20) Relation composition)
    \neg(\exists p \bullet Aos (C) p (\sim B) Jun)
= ((11.17r) Relation complement)
    \neg(\exists p \bullet Aos(C)p \land \neg(p(B)Jun))
= ((9.18b) Generalised De Morgan)
    (\forall p \bullet \neg (Aos (C) p \land \neg (p (B) Jun)))
= ((3.47) De Morgan, (3.12) Double negation)
    (\forall p \bullet \neg (Aos(C)p) \lor p(B)Jun)
= \langle (9.3a) \text{ Trading for } \forall \rangle
    (\forall p \mid Aos(C)p \bullet p(B)Jun)
```

#### Formalise Without Quantifiers! (2)

$$P$$
 := type of persons  $C$  :  $P \leftrightarrow P$   $p (C) q$  :=  $p$  called  $q$ 

• Helen called somebody who called her.

$$Helen \in Dom (C \cap C^{\sim})$$

 $\bigcirc$  For arbitrary people x, z, if x called z, then there is sombody whom x called, and who was called by somebody who also called z.

$$C \subseteq C : C : C : C$$

 $\bullet$  For arbitrary people x, y, z, if x called y, and y was called by somebody who also called z, then x called z.

$$C;C;C\subseteq C$$

Obama called everybody directly, or indirectly via at most two intermediaries.

$$\{Obama\} \times P_1 \subseteq C \cup C_{\circ}^{\circ}C \cup C_{\circ}^{\circ}C_{\circ}^{\circ}C$$

## Translating between Relation Algebra and Predicate Logic

$$R = S \qquad \equiv \qquad (\forall x, y \bullet x (R) y \equiv x (S) y)$$

$$R \subseteq S \qquad \equiv \qquad (\forall x, y \bullet x (R) y \Rightarrow x (S) y)$$

$$u (\{\}) v \qquad \equiv \qquad false$$

$$u (A \times B) v \qquad \equiv \qquad u \in A \land v \in B$$

$$u (\sim S) v \qquad \equiv \qquad u (S) v \lor u (T) v$$

$$u (S \cap T) v \qquad \equiv \qquad u (S) v \land u (T) v$$

$$u (S - T) v \qquad \equiv \qquad u (S) v \land \neg (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

$$u (S \rightarrow T) v \qquad \equiv \qquad u (S) v \Rightarrow (u (T) v)$$

<sup>&</sup>quot;Everybody Aos called is a brother of Jun."

<sup>&</sup>quot;Aos called only brothers of Jun."

## **Properties of Composition**

If  $R: B \leftrightarrow C$  and  $S: C \leftrightarrow D$ , then their **composition**  $R \circ S: B \leftrightarrow D$  is defined by:

$$(14.20) \ b(R;S)d = (\exists c:C \bullet b(R)c \land c(S)d)$$

(for b : B, d : D)

$$Q_{\mathfrak{I}}(R_{\mathfrak{I}}S) = (Q_{\mathfrak{I}}R)_{\mathfrak{I}}S$$

**Left- and Right-identities of**  $\S$ : If  $R : B \leftrightarrow C$ , then:

$$\mathbb{I}_{L}B_{J} \circ R = R = R \circ \mathbb{I}_{L}C_{J}$$

We define another abbreviation: Id = IU

**Relationship via** Id:  $x \in \mathbb{I}$  (Id)  $y \equiv x = y$ 

Then Id is "the" identity of composition:

**Identity of \S:** Id  $\S R = R = R \S Id$ 

Contravariance:  $(R \circ S)^{\sim} = S^{\sim} \circ R^{\sim}$ 

## Distributivity of Relation Composition over Union

Composition distributes over union from both sides:

$$(14.23) Q ; (R \cup S) = Q; R \cup Q; S (P \cup Q); R = P; R \cup Q; R$$

In control flow diagrams (NFA):



Q :=walk S :=take train

$$\forall a:A,c:C \bullet (\exists b:B \bullet a(Q)b(R \cup S)c) \equiv (\exists b_1,b_2:B \bullet a(Q)b_1(R)c \lor a(Q)b_2(S)c)$$

#### **Monotonicity of Relation Composition**

Relation composition is monotonic in both arguments:

$$Q \subseteq R \Rightarrow Q \circ S \subseteq R \circ S$$
  
 $Q \subseteq R \Rightarrow P \circ Q \subseteq P \circ R$ 

We could prove this via "Relation inclusion" and "For any", but we don't need to:

**Assume**  $Q \subseteq R$ , which by (11.45) is equivalent to  $Q \cup R = R$ :

**Proving**  $Q : S \subseteq R : S$ :

$$R \, ; S$$

= 
$$\langle Assumption Q \cup R = R \rangle$$

$$(Q \cup R) \, \stackrel{\circ}{,} \, S$$

= 
$$\langle$$
 (14.23) Distributivity of  $\circ$  over  $\cup$   $\rangle$ 

$$Q \, \stackrel{\circ}{,} \, S \cup R \, \stackrel{\circ}{,} \, S$$

$$\supseteq \langle (11.31) \text{ Strengthening } S \subseteq S \cup T \rangle$$

Q;S

## **Sub-Distributivity of Composition over Intersection**

Composition **sub-**distributes over **intersection** from both sides:

$$(14.24) Q_{\mathfrak{I}}(R \cap S) \subseteq Q_{\mathfrak{I}}^{\mathfrak{I}}R \cap Q_{\mathfrak{I}}^{\mathfrak{I}}S$$
$$(P \cap Q)_{\mathfrak{I}}^{\mathfrak{I}}R \subseteq P_{\mathfrak{I}}^{\mathfrak{I}}R \cap Q_{\mathfrak{I}}^{\mathfrak{I}}R$$

In **constraint** diagrams:



$$Q := \text{neighbour of}$$

$$R := brother of$$

$$S := parent of$$

$$\forall a: A, c: C \bullet (\exists b: B \bullet a(Q)b(R \cap S)c) \Rightarrow (\exists b_1, b_2: B \bullet a(Q)b_1(R)c)$$

$$\land a(Q)b_2(S)c)$$

## Modal Rules and Dedekind Rule—Converse as Over-Approximation of Inverse

**Modal rules:** For 
$$Q : A \leftrightarrow B$$
,  $R : B \leftrightarrow C$ , and  $S : A \leftrightarrow C$ :  $Q : R \cap S \subseteq Q : (R \cap Q : S)$   $Q : R \cap S \subseteq (Q \cap S : R)$ 

In **constraint** diagrams:



Equivalent: **Dedekind Rule:**  $Q : R \cap S \subseteq (Q \cap S : R^{\sim}) : (R \cap Q^{\sim} : S)$ 



Useful to "make information available locally"  $(Q \longrightarrow Q \cap S \, {}^{\circ}_{7}R^{\sim})$  for use in further proof steps.

## **Properties of Homogeneous Relations (Table 14.1)**

A relation  $R : B \leftrightarrow C$  is called **homogeneous** iff B = C.

A (homogeneous) relation  $R : B \leftrightarrow B$  is called:

| reflexive     | Id                          | ⊆ | R  | (∀ b : B • b (R)b)                                               |
|---------------|-----------------------------|---|----|------------------------------------------------------------------|
| irreflexive   | $\operatorname{Id} \cap R$  | = | {} | $(\forall b: B \bullet \neg (b (R) b))$                          |
| symmetric     | R $$                        | = | R  | $(\forall b,c:B \bullet b (R) c \equiv c (R) b)$                 |
| antisymmetric | $R \cap R$                  | ⊆ | Id | $(\forall b, c \bullet b (R) c \land c (R) b \Rightarrow b = c)$ |
| asymmetric    | $R \cap R$                  | = | {} | $(\forall b, c : B \bullet b (R) c \Rightarrow \neg(c (R) b))$   |
| transitive    | $R  \stackrel{\circ}{,}  R$ | ⊆ | R  | $(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$    |
| idempotent    | $R  \S  R$                  | = | R  |                                                                  |











## Properties of Homogeneous Relations (ctd.)

| reflexive     | Id                | ⊆ | R  | (∀ b:B • b (R)b)                                                      |
|---------------|-------------------|---|----|-----------------------------------------------------------------------|
| irreflexive   | $Id \cap R$       | = | {} | $(\forall b: B \bullet \neg (b (R) b))$                               |
| symmetric     | R∼                | = | R  | $(\forall b,c:B \bullet b (R) c \equiv c (R) b)$                      |
| antisymmetric | $R \cap R^{\sim}$ | ⊆ | Id | $(\forall b,c \bullet b (R) c \land c (R) b \Rightarrow b = c)$       |
| asymmetric    | $R \cap R$        | = | {} | $(\forall b,c:B \bullet b (R) c \Rightarrow \neg(c (R) b))$           |
| transitive    | R $ R$            | ⊆ | R  | $(\forall b, c, d \bullet b (R) c \land c (R) d \Rightarrow b (R) d)$ |

*R* is an **equivalence (relation) on** *B* iff it is reflexive, transitive, and symmetric.

*R* is a **(partial) order on** *B* iff it is reflexive, transitive, and

antisymmetric. (E.g.,  $\leq$ ,  $\geq$ ,  $\subseteq$ ,  $\supseteq$ , divides)

*R* is a **strict-order on** *B* iff it is irreflexive, transitive, and asymmetric. (E.g., <, >,  $\subset$ ,  $\supset$ )

#### Homogeneous Relation Properties are Preserved by Converse

| reflexive     | Id                      | $\subseteq$ | R  | $(\forall b: B \bullet b (R) b)$                                 |
|---------------|-------------------------|-------------|----|------------------------------------------------------------------|
| irreflexive   | $Id \cap R$             | =           | {} | $(\forall b: B \bullet \neg (b (R) b))$                          |
| symmetric     | R∼                      | =           | R  | $(\forall b, c : B \bullet b (R) c \equiv c (R) b)$              |
| antisymmetric | $R \cap R$              | ⊆           | Id | $(\forall b, c \bullet b (R) c \land c (R) b \Rightarrow b = c)$ |
| asymmetric    | $R \cap R$              | =           | {} | $(\forall b, c : B \bullet b (R) c \Rightarrow \neg (c (R) b))$  |
| transitive    | $R  \hat{\varsigma}  R$ | ⊆           | R  | $(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$    |
| idempotent    | R  ; R                  | =           | R  |                                                                  |

**Theorem:** If  $R: B \leftrightarrow B$  is reflexive/irreflexive/symmetric/antisymmetric/asymmetric/transitive/idempotent, then  $R^{\sim}$  has that property, too.

Proof: Reflexivity:

Id

= ⟨Symmetry of I⟩

Id ~

⊆ ⟨Mon. with Reflexivity of R⟩

R~

## **Reflexive and Transitive Implies Idempotent**

| reflexive  | Id                          | ⊆           | R | (∀ b : B • b (R)b)                                            |
|------------|-----------------------------|-------------|---|---------------------------------------------------------------|
| transitive | R $        $                | $\subseteq$ | R | $(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$ |
| idempotent | $R  \stackrel{\circ}{,}  R$ | =           | R |                                                               |

**Theorem:** If  $R: B \leftrightarrow B$  is reflexive and transitive, then it is also idempotent. **Proof:** By mutual inclusion and transitivity of R, we only need to show  $R \subseteq R$   $^{\circ}_{9}R$ :

R
= ⟨ Identity of ; ⟩
R ; Id
⊆ ⟨ Mon. ; with Reflexivity of R ⟩
R ; R

## **Symmetric and Transitive Implies Idempotent**

| -          |            |             |   |                                                               |
|------------|------------|-------------|---|---------------------------------------------------------------|
| symmetric  | R∼         | =           | R | $(\forall b, c : B \bullet b (R) c \equiv c (R) b)$           |
| transitive | $R  \S  R$ | $\subseteq$ | R | $(\forall b, c, d \bullet b (R) c (R) d \Rightarrow b (R) d)$ |
| idempotent | R          | =           | R |                                                               |

**Theorem:** A symmetric and transitive  $R: B \leftrightarrow B$  is also idempotent. **Proof:** By mutual inclusion and transitivity of R, we only need to show  $R \subseteq R$ ; R:

R

- =  $\langle$  Idempotence of  $\cap$ , Identity of  $\stackrel{\circ}{,}$   $\rangle$ 
  - R; Id  $\cap R$
- $\subseteq \langle \operatorname{Modal rule} Q_{\S}^{\circ}R \cap S \subseteq Q_{\S}^{\circ}(R \cap Q_{\S}^{\circ}S) \rangle$   $R_{\S}^{\circ}(\operatorname{Id} \cap R_{\S}^{\circ}R)$
- $\subseteq$  { Mon. % with Weakening  $X \cap Y \subseteq X$  } R % R % R
- =  $\langle \text{Symmetry of } R \rangle$  $R \stackrel{\circ}{,} R \stackrel{\circ}{,} R$
- $\subseteq \langle Mon. \ \%$  with Transitivity of  $R \rangle$  $R \ \% R$