

Übungen zur Vorlesung

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2022/2023

Prof. Dr.-Ing. Sebastian Schlesinger Blatt 2 Besprechung in nächster Vorlesung

Aufgabe 2.1 (Mengen)

(9 Punkte)

Bestimmen Sie die folgenden Mengen:

- (i) $\{a, b, c\} \cup \{b, c, d\}$
- (ii) $\{a, b, c\} \cap \{b, c, d\}$
- (iii) $\{a, b, c\} \setminus \{b, c, d\}$
- (iv) $\mathcal{P}(\{1, a\})$
- (v) $\mathcal{P}(\{1,\{1\}\})$
- (vi) $\mathcal{P}(\{1,2,3\}) \setminus \mathcal{P}(\{1,2\})$
- (vii) $\bigcap_{i \in \{2,6\}} \{\frac{i}{2}, i+1\}$ (Hinweis: $\bigcap_{i \in I} A_i = \{x | \forall i \in I : x \in A_i\}$ für eine Indexmenge I)
- (viii) $\bigcup_{n\in\mathbb{N}}\{n,n+1,2n\}$ (Hinweis: $\bigcup_{i\in I}A_i=\{x|\exists i\in I:x\in A_i\}$ für eine Indexmenge I)
 - (ix) $\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset)))$

— Lösung Anfang —

- (i) $\{a,b,c\} \cup \{b,c,d\} = \{a,b,c,d\}$
- (ii) $\{a, b, c\} \cap \{b, c, d\} = \{b, c\}$
- **(iii)** $\{a, b, c\} \setminus \{b, c, d\} = \{a\}$
- (iv) $\mathcal{P}(\{1,a\}) = \{\emptyset, \{1\}, \{a\}, \{1,a\}\}$
- (v) $\mathcal{P}(\{1,\{1\}\}) = \{\emptyset,\{1\},\{\{1\}\},\{1,\{1\}\}\}\$
- (vi) $\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}, \mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}, \text{ also } \mathcal{P}(\{1,2,3\}) \setminus \mathcal{P}(\{1.2\}) = \{\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- (vii) $\bigcap_{i \in \{2,6\}} \{\frac{i}{2}, i+1\} = \{\frac{2}{2}, 3\} \cap \{\frac{6}{2}, 7\} = \{3\}$
- (viii) $\bigcup_{n\in\mathbb{N}}\{n,n+1,2n\}=\mathbb{N}$
 - (ix) $\mathscr{P}(\emptyset) = \{\emptyset\}, \mathscr{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}, \mathscr{P}(\{\emptyset, \{\emptyset\}\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$

Aufgabe 2.2 (Mengenbeweis)

(2 Punkte)

Seien A, B, C Mengen. Beweisen Sie

$$A \backslash (B \backslash C) = (A \backslash B) \cup (A \cap C)$$

— Lösung Anfang —

Beweis:

Sei $x \in A \setminus (B \setminus C)$

$$\Leftrightarrow x \in A \land x \notin (B \backslash C)$$

 \Leftrightarrow $x \in A \land (x \notin B \lor x \in C)$ (In $B \backslash C$ sind die Elemente, die in B, aber nicht in C sind. Ist nun $x \notin B \backslash C$, dann kann $x \notin B$ sein oder $x \in C$).

 \Leftrightarrow $(x \in A \land x \notin B) \lor (x \in A \land x \in C)$ (Distributivitätsgesetz)

$$\Leftrightarrow x \in A \backslash B \vee x \in A \cap C$$

$$\Leftrightarrow x \in (A \backslash B) \cup (A \cap C)$$

Aufgabe 2.3 (Beweis) (4 Punkte)

Seien A und B Mengen. Beweisen Sie: $A \subseteq B \Leftrightarrow A \cup B = B$

— Lösung Anfang —

Beweis:

"⇒":

Gelte $A \subseteq B$. Wir zeigen $A \cup B = B$.

Sei $x \in A \cup B$

 $\Leftrightarrow x \in A \lor x \in B$

 $\Leftrightarrow x \in B$, weil $A \subseteq B(x \in A \Rightarrow x \in B)$, was zu zeigen war.

"≔":

Gelte $A \cup B = B$. Wir zeigen $A \subseteq B$.

Sei $x \in A$. Dann ist $x \in A \cup B$ (ich kann was Beliebiges dazu vereinigen). Wegen $A \cup B = B$ gilt insbesondere $A \cup B \subseteq B$, also $x \in A \cup B \Rightarrow x \in B$, was zu zeigen war.

Aufgabe 2.4 (Beweis) (5 Punkte)

Seien A, B, C Mengen. Beweisen Sie

$$(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$$

— Lösung Anfang —

Beweis:

"⇒": Gelte $(A \cap B) \cup C = A \cap (B \cup C)$. Wir zeigen $C \subseteq A$.

Sei dazu $x \in C$. Dann ist $x \in (A \cap B) \cup C$ (Weil $x \in C$ kann ich was beliebiges dazu vereinigen) und nach Voraussetung auch $x \in A \cap (B \cup C)$. Damit insbesonder $x \in A$, was zu zeigen war.

"≔":

Gelte $C \subseteq A$. Wir zeigen $(A \cap B) \cup C = A \cap (B \cup C)$.

Sei $x \in (A \cap B) \cup C$. Das ist äquivalent zu $x \in (A \cap B) \lor x \in C$

 $\Leftrightarrow (x \in A \land x \in B) \lor x \in C$

 \Leftrightarrow $(x \in A \land x \in B) \lor (x \in A \land x \in C)$ (weil $C \subseteq A$ nach Voraussetzung ist $x \in C$ äquivalent zu $x \in A \land x \in C$)

 $\Leftrightarrow x \in (A \cap B) \cup x \in (A \cap C)$

 $\leftrightarrow x \in A \cap (B \cup C)$ (Distributivgesetz), was zu zeigen war.