Especificaciones para el control dinámico

CONTROL Y PROGRAMACIÓN DE ROBOTS

Grado en Electrónica, Robótica y Mecatrónica

Índice

- Consideraciones generales
- 2. Arquitectura funcional y hardware
- 3. Muestreo de señales en el control
- 4. Resumen de especificaciones de control

Consideraciones generales

Especificaciones de diseño para control dinámico:

- Dependen de:
 - Tiempo de muestreo de los controladores
 - Tiempo de actualización de las referencias
 - Incertidumbres del modelo
 - 0
- En líneas generales:
 - Tan rápido como se pueda, pero evitando resonancias mecánicas.

Control y Programación de Robots. GIERM

3

Arquitectura funcional

Ejemplo

4

Arquitectura hardware

Arquitectura del PUMA 560

- Esquema del controlador Unimation Mark II:
- Software: VAL-II

Detalle del servocontrolador:

Control y Programación de Robots. GIERM

Muestreo de señales en el control

Muestreo de señales en el control

Trayectoria real con distintos t_sbc del control dinámico

¿t_s^{bc} del control dinámico?

Control y Programación de Robots. GIERM

7

Resumen de especificaciones de control

Especificaciones de diseño para control dinámico:

- Tiempo de subida en bucle cerrado:
 - Restricciones por muestreo
 - Restricciones por incertidumbres
 - Restricciones por resonancias ($\omega_n^{\ bc} \leq \omega_r/2$)
- Sobreoscilación nula:
 - Evitar polos complejos conjugados en bucle cerrado
 - Se suelen especificar sistemas críticamente amortiguados en bucle cerrado, suavizando la sobreoscilación con el generador de trayectoria.
- Errores en régimen permanente pequeños:
 - Posibles problemas con el efecto integral y las zonas muertas (fricciones estáticas, ...), holguras, ...