

Equation of moment equilibrium

Static aeroelasticity – an aerofoil or rigid wing is always in the state of static equilibrium (if possible!) between the aerodynamic and elastic (restoring) effects:

Aerodynamic moment = Elastic moment

Moment equilibrium about shear centre:

$$\sum\nolimits_{(i)} M_{e.c.,i} = 0$$

$$M_{ac} + L.ec - M_E = 0$$

Lift:
$$L = qSC_L = qSC_{L,\alpha}(\alpha + \theta)$$

Aero moment: $M_{ac} = q S c C_{M_{ac}}$

Elastic moment: $M_E = k \frac{\theta}{\theta}$

$$qScC_{M_{so}} + ec.qSC_{L,\alpha}(\alpha + \theta) = k\theta$$

Solve for unknown θ which will satisfy this equilibrium condition!

small angles

L20

5

DEPARTMENT O aerospace engineering

Aeroelastic response of an aerofoil

Torsional deformation due to finite flexibility:

$$\theta = \frac{q S(c C_{M_{ac}} + ec. C_{L,\alpha} \alpha)}{k - ec. q S C_{L,\alpha}}$$

Observations:

- θ increases as dynamic pressure q increases
- θ increases to infinity when the denominator approaches 0, or ...
- θ → infinity when k-ec*q*S*C_{L,α}→0
- when $\theta \rightarrow$ infinity the airfoil is **divergent**
- k-ec*q*S*C $_{L,\alpha}$ \rightarrow 0 defines q $_D$ and U $_D$ when the divergence occurs
- divergence occurs only when e>0 (a.c. forward of e.c.!)
- · design aircraft to fly well below divergence speeds for all lifting surfaces

$$q_D = \frac{k}{ec.SC_{L,\alpha}} \implies U_D = \sqrt{\frac{2k}{ec.SC_{L,\alpha}\rho}}$$

University of BRISTOI

L20

6

DEPARTMENT OF a e r o s p a c e engineering

Effect of wing sweep

Swept-back wings:

- · Increases speed at which shock waves are formed
- · Delays onset of associated drag rise
- · Reduces effective thickness to chord ratio

Swept-forward wings:

- · Similar drag reduction possible
- Flow separation starts at wing root better than swept-back where flow separation occurs near tip and diminishing aileron performance
- Potentially useful structural layout (wing-fuselage)
- · Static aeroelastic problems divergence

L20

8

DEPARTMENT OF

Other effects: large angles, ... Nonlinear effects of large angles: Nonlinear aerodynamics (large AoA): C_{L,D,Mac}=f_A(α+θ) → Lift, Drag, Moment Nonlinear elasticity (e.g. nonlinear springs): M_E=f_S(θ) Equations of static equilibrium Thwapiah & Campanile, Nonlinear aeroelastic behavior of compliant airfoils, Smart Materials and Structures, 19, 2010 Aerodynamics Structures Experiment

Summary

- · Static aeroelasticity
 - Assumptions and phenomena
- Physics of torsionally supported rigid wing
 - Equilibrium between aerodynamics and elasticity
 - Divergence and important sectional parameters
- · Other effects
 - Wing sweep
 - Nonlinear effects

