

Pontifícia Universidade Católica de Minas Gerais Bacharelado em Ciência da Computação Projeto e Análise de Algoritmos - 1º Semestre de 2019 Profa. Raquel Mini

1ª PROVA

Nome:	

Data: 01/04/2019 Valor: 35 pontos

- 1. (8 pontos) Considerando que $0 < \varepsilon < 1 < c$ são constantes, prove se as seguintes afirmativas são verdadeiras ou falsas. Respostas sem justificativas não serão pontuadas.
 - a) $2^{n+1} = O(2^n)$
 - b) $2^{2n} = O(2^n)$
 - c) $n^2 = \Theta(n^3)$
 - d) $\frac{2n^3}{\log n + 1} = O(n^3)$
 - e) Se $f(n) = \Omega(g(n))$ então $f(n) = \omega(g(n))$
 - f) Se $T(n) = 9T\left(\frac{n}{3}\right) + n \operatorname{ent}\tilde{a}o T(n) = \Theta(n^2)$
 - g) $\log_2 n = \Theta(\sqrt{\log_2 n})$
 - h) $c^{\varepsilon} = O(c+1)^{\varepsilon}$
- 2. (10 pontos) Considere o seguinte algoritmo recursivo, cujo parâmetro n é um inteiro positivo.

Ast	FERISCO (n)
1	se $n > 0$
2	então Asterisco $(n-1)$
3	para $i \leftarrow 1$ até n faça
4	imprima "*"
5	Asterisco $(n-1)$

- a) Considerando que a operação relevante seja o comando "imprima "*", apresente a equação de recorrência para esse algoritmo.
- b) Resolva a equação de recorrência, apresente a função de complexidade e sua ordem de complexidade utilizando a notação Θ (não precisa prova a notação Θ).
- c) Para um dado valor de n, quantos asteriscos serão impressos em uma chamada ASTERISCO(n)?
- 3. (6 pontos) Utilize o teorema mestre, se possível, para resolver as recorrências abaixo. Caso não seja possível, explique o porquê.

a)
$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

a)
$$T(n) = 9T\left(\frac{n}{3}\right) + n$$
 b) $T(n) = 2T\left(\frac{5n}{2}\right) + n - 1$ c) $T(n) = 2T\left(\frac{n}{2}\right) + n \log n$

c)
$$T(n) = 2T\left(\frac{n}{2}\right) + n\log n$$

4. (11 pontos) Considerando que no algoritmo abaixo o vetor A é global e que a operação relevante seja o número comparações com os elementos do vetor A, responda às seguintes perguntas.

```
void OQUEEUFACO(int i, int j, int &m2, int &m1) {
int m21, m22, m11, m12, mm;
if ((j - i) \le 1)
   if (A[i] < A[j]) {
      m2 = A[j];
      m1 = A[i];
   } else {
      m2 = A[i];
      m1 = A[j];
   }
else {
   mm = (i + j)/2;
   OQUEEUFACO(i, mm, m21, m11);
   OQUEEUFACO (mm+1, j, m22, m12);
   if (m21 > m22)
      m2 = m21;
      m2 = m22;
   if(m11 < m12)
      m1 = m11;
   else
      m1 = m12;
```

- a) O que o algoritmo faz?
- b) Qual é a situação que leva ao melhor caso e ao pior caso desse algoritmo?
- c) Escreva a equação de recorrência que descreva o seu comportamento e indique a operação considerada relevante.
- d) Converta esta equação de recorrência para um somatório.
- e) Forneça a fórmula fechada para este somatório.

Teorema Mestre

 Sejam as constantes a ≥ 1 e b > 1 e f(n) uma função definida nos inteiros não-negativos pela recorrência:

$$T(n) = aT(n/b) + f(n)$$

onde a fração n/b pode significar $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. A equação de recorrência $\mathrm{T}(n)$ pode ser limitada assintoticamente da seguinte forma:

- 1. Se $f(n) = O(n^{\log_b a \varepsilon})$ para alguma constante $\varepsilon > 0$, então $T(n) = O(n^{\log_b a})$
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ para alguma constante $\varepsilon > 0$ e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e para n suficientemente grande, então $T(n) = \Theta(f(n))$

Fórmulas:

Formulas.					
$\log n = \log_2^n$	$a^{\log b^n} = n^{\log b^a}$	$\sum_{i=1}^n i = \frac{n(n+1)}{2}$	$2^{\log n} = n$		
$a = b^{\log b}$	$n^{\frac{1}{\log n}} = n^{\log n^2} = 2$	$\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$		
$\sum_{i=1}^{n} 1 = n$	$\sum_{i=1}^{n} ia^{i} = \frac{a - (n+1)a^{n+1} + na^{n+2}}{(a-1)^{2}}$	$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$	$4^{\log n} = 2^{2\log n} = 2^{\log n^2} = n^2$		
\overline{n}					

 $1 \prec \log \log n \prec \log n \prec n^{\varepsilon} \prec n \prec n^{c} \prec n^{\log n} \prec c^{n} \prec n^{n} \prec c^{c^{n}}$

onde ε e c são constantes arbitrárias com $0 < \varepsilon < 1 < c$