TA 101: Engineering Graphics 2019-20 I Laboratory Assignment No.8 Lines and Planes

Instructions: In each drawing label each point appropriately and retain the projection lines. Each division of grid is 10X10 sq mm

- 1. OP is the base of an equilateral triangle whose altitude constitutes a frontal line. Complete the top and front views of the triangle in Figure 8.1.
- 2. In Figure 8.2 AB and XY are the centre lines of two air ducts, whose front and top views are shown. These centre lines intersect at a point Z. Complete the top and front views of XYZ and determine the true length of BZ.
- 3. Draw the edge view of the plane RSP by projecting parallel to a horizontal line on RSP in FIG 8.3.
- 4. In Figure 8.4 Show the true size of each of the interior angles of the triangle ABC.
- 5. Draw the normal view of the distance from the point P to the plane ABC for Figure 8.5.
- 6. In Figure 8.6 find the line of intersection between the planes of the triangles MNO and RST.

TA 101: Engineering Graphics 2019-20 Laboratory Assignment No. 9 Relation between Lines and Planes

Instructions: Choose the front face of the oblique view carefully. **Problem:**

- 1. Planes ABC and RST are parallel. Complete the top and front view of ABC R_t (1,8); S_H (2, 9.5); T_H (3.5, 7.5); A_H (5.5, 8); B_H (4,8.5); C_H (6,9.5) R_f (1, 4); S_f (2, 2.5); T_f (3.5, 5.5); A_f (5.5,3)
- 2. Plane XYZ is perpendicular to Plane ABC. Complete the front view of the plane XYZ. A_t (4.5,8); B_H (6, 9); C_H (7, 6.5); X_H (1, 8); Y_H (2.5, 9.5); Z_H (3.5, 8.5) A_f (4.5, 3); B_f (6, 5.5); C_f (7,2.5); X_f (1,4); Y_f (2.5, 3.5)
- 3. Find the angle between planes RSTU and STVW R_{H} (0.5,9); S_{H} (1.5,9); T_{H} (3, 7.5); U_{H} (2, 7.5); V_{H} (2.5, 9.5); W_{H} (4,8) R_{f} (0.5,4.5); S_{f} (1.5, 4); T_{f} (3, 2); U_{f} (2, 2.5); V_{f} (2.5, 5); W_{f} (4, 3)
- 4. Draw the front, top and any other necessary views of the shortest horizontal line between Lines AB and CD

$$\begin{aligned} &A_{H}\left(0.5,8\right);B_{H}\left(2.5,8.5\right);C_{H}\left(0.5,9\right);D_{H}\left(2.5,7\right)\\ &A_{f}\left(0.5,1\right);B_{f}\left(2.5,2\right);C_{f}\left(0.5,3\right);D_{f}\left(2.5,1\right) \end{aligned}$$

5. Locate the top and the front views of P, the point where the line JK pierces the plane EFG Show the visibility of the line JK

$$\begin{split} &J_{H}\left(2.5,8.5\right);\,K_{H}\left(5.5,6\right);\,E_{H}\left(2,7\right);\,F_{H}\left(4.9\right);\,G_{H}\left(5.5,6.5\right)\\ &J_{f}\left(2.5,2\right);\,K_{f}\left(5.5,5\right);\,E_{f}(2,3);\,F_{f}\left(4,5.5\right);\,G_{f}(5.5,1.5) \end{split}$$

TA 101: Engineering Graphics 2019-20 I Laboratory Assignment No. 10 Auxiliary Views of solids

Instructions: Conceptualization is important before attempting auxiliary view of solids. Note down the steps carefully. Do not dimension the views.

- 1. In Figure 10.1 Draw the given views and the normal view of inclined surface.
- 2. Draw the normal view to the inclined surface using the reference plane inclined in Figure 10.2.
- 3. Draw necessary views to describe the offset guide shown in Figure 10.3. Use drawn auxiliary views to complete the orthographic views.

TA 101: Engineering Graphics 2019-20 I Laboratory Assignment No. 11 Intersections

Instructions: Problems on intersection require visualization prior to attempting solutions. Each division of grid is 5X5 sq mm.

- 1. Find the intersection of the horizontal right prism and vertical right prism in Figure 11.1.
- 2. Complete the views of cylinders in Figure 11.2 by showing their line of intersection.
- 3. With the references to Figure 11.3, draw the top and front views of the line of intersection between plane ABC and cone VO. Show visibility.
- 4. Find the curves of intersection between pipes of Figure 11.4.

Fig 11.3

Fig 11.4

TA 101: Engineering Graphics 2012-20 I Laboratory Assignment No. 12 Development of Surfaces

Instructions: Draw projection lines carefully and label all points. Some problems may require establishing the curves of intersection before developments.

- 1. Draw the lateral surface of the cropped cylinder shown in Figure 12.1.
- 2. Draw the lateral surface of the regular hexagonal prism shown in Figure 12.2.
- 3. Develop the lateral surface of a transition piece whose front and top views are given in Figure 12.3.
- 4. Draw the lateral surface of the hopper shown in Figure 12.4.

Fig 12.1

Fig 12.2

