Appl. No. 09/550,642

Doc. Ref.: AL17

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-154344

(43)公開日 平成7年(1995)6月16日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

H 0 4 B 14/06

A 9372-5K

H 0 3 D 3/00

A 4239-5 J

審査請求 未請求 請求項の数13 OL (全 8 頁)

特願平6-217629 (71)出願人 590005612 (21)出願番号 ノキア モービル フォーンズ リミティ 平成6年(1994)9月12日 (22)出願日 フィンランド国, エスエフ-24101 サロ, (31)優先権主張番号 933989 ピー. オー. ポックス 86 (72)発明者 ジャッコ フルッコ (32)優先日 1993年9月10日 (33)優先權主張国 フィンランド (FI) フィンランド国、エフアイエヌ-90570 オウル, ゲオロジンティー 6 (72)発明者 ベイジョ コンタス フィンランド国, エフアイエヌ-90240 オウル、メキクウセンティー 6 アー (74)代理人 弁理士 石田 敬 (外3名) 最終頁に続く

(54) 【発明の名称】 変調された搬送波信号を受信するための受信器、及びその受信構成を用いた I Q混合/復調器

(57)【要約】

【目的】 変調された搬送波信号を受信するための受信 構成に関し、特に、無線電話における受信回路の電力消 費の節約と、その高速な作動を実現することを目的とす る。

【構成】 受信される入力信号が、シグマ/デルタ信号変調器の入力レートに対して指向される。シグマ/デルタ信号変調器は、スイッチングされるキャパシタ積分器として実現され、その第1のスイッチが混合器として働く。混合器の出力は、加算器の第2の入力に送られ、その第2の入力はシグマ/デルタ信号変調器のフィードパック信号f1となる。そしてこれはまた、デシメータ及び低域濾波フィルタを通して基本周波数出力信号に送られる。

【特許請求の範囲】

【請求項1】 変調された搬送波信号を受信するための 受信器であって、帰還ループ内に少なくとも1つの加算 器をもつシグマ/デルタ信号変調器を備えている受信器 において、前記受信器の構成上、前記帰還ループの前に 前記変調された搬送波信号をダウン変換するための時間 的な離散性をもつサンプリング手段が設けられてことを 特徴とする受信器。

前記時間な離散性をもつサンプリングの 【請求項2】 構成が、矩形波信号の制御のもとでのスイッチング素子 10 を備えて構成されている、請求項1に記載の受信器の受 信構成。

【請求項3】 前記矩形波信号の周波数が、前記搬送波 信号の周波数、又は該搬送波信号周波数の調波である、 請求項2に記載の受信構成。

【請求項4】 前記矩形波周波数の周波数は、前記ダウ ン変換される信号の周波数が前記搬送波周波数及び基本 帯域信号の周波数の中間になるように選択される、請求 項2に記載の受信構成。

前記時間的な離散性をもつサンプリング 20 【請求項5】 手段が、複数の切替式キャパシタ・スイッチング素子を 備えている、請求項2乃至4に記載の受信構成。

【請求項6】 変調された搬送波信号を受信するための 電子的な受信構成であって、前記受信構成上、シグマ/ デルタ信号変調器と、前記搬送波周波数又はその調波周 波数、又は少なくともこれら近傍の周波数で制御される 混合器/復調器と、閉信号ループに含まれる少なくとも 1つの加算器と備えている受信構成において、

受信され且つ変調された搬送波信号(in)がシグマノデ ルタ信号変調器の入力段(10)に送られ、該シグマ/デ 30 ルタ信号変調器が時間的な離散性をもつサンプリング構 造として実現されており、その第1の素子(1)が混合器 として動作し、該混合器の出力が前配加算器(3)の第1 第2入力に送られ、該加算器(3)の第2の入力(f1)が、 前記シグマ/デルタ信号変調器の前記帰還信号 (out)と なり、これにより該出力信号 (OUT)がデシメータ及び低 域通過フィルタを介して基本周波数出力信号に向けられ るように構成したことを特徴とする電子的な受信構成。

【請求項7】 前記ミキシングのための素子(1)が基本 的にはスイッチング素子であり、該スイッチング部材は 40 前記搬送波周波数 (L0) 又はその調波 (L0/n) の周波数 上で矩形波信号により指向され、これにより前記入力に 適用される信号 (in) が基本周波数にフォールドされる ことを特徴とする、請求項6に記載の受信構成。

【請求項8】 前記ミキシングのための周波数(L0) が、周波数 LO + △fによって置き換えられ、これによ り前記入力に適用される信号(in)が基本周波数の中間 周波数△「上でフォールドされることを特徴とする、請 求項6又は7に記載の受信構成。

タ・スイッチング積分器を備えた構成素子で構成されて いることを特徴とする、請求項6乃至8のいずれか1項 に記載の受信構成。

【請求項10】 前記シグマ/デルタ変調器が、自動利 得制御機能(AGC)用の少なくとも1つの調整可能な増幅 段を備えていることを特徴とする、請求項6乃至9のい ずれか1項に記載の受信構成。

【請求項11】 入力信号を2つのプランチ I (位相) 及びQ(直角位相)に分割するIQ混合/復調器であっ て、前記両方のプランチに請求項2乃至10のいずれか 1項に記載された受信構成が用いられていることを特徴 とする I Q混合/復調器。

【請求項12】 要求される位相のための構成が、前記 入力信号 (in) 又は前記局部信号 (LO) 、あるいはこれ らの両方に対して構成されることを特徴とする、請求項 11に記載のIQ混合/復調器。

【請求項13】 請求項2乃至10のいずれか1項に記 載の受信構成を用いた無線電話器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、変調された搬送波信号 (以下「被変調搬送波信号」という) を受信するための 受信構成に関する。

[0002]

【従来の技術】EP 0 461 720-A1 は、被変調搬送波信号 を受信するための受信構成について開示しており、係る 受信構成においては、搬送波周波数fcの正弦波発振器で ドライプされる混合器/復調器と、少なくとも1つの加 算器と、低域通過フィルタと、1ピットのシグマ/デル 夕信号変調器を構成するパルス成形器とが設けられてお り、全てが閉信号ループ内に包含され、パルス成形器が サンプリング周波数「sでドライブされている。そして更 に、上記受信構成には、デジタルのデシメーションフィ ルタ (decimation filter)が設けられている。このタ イプの受信構成において、被変調搬送波信号は、混合器 /復調器によって閉信号ループ内で復調され、その出力 信号は、低域通過フィルタの通過後、シグマノデルタ変 調器によりデジタル信号に変換される。

【0003】代表的な従来のシグマ/デルタ変調器の構 成について、図1を参照しながら詳細に説明する。

【0004】入力してくる中間周波数のIF搬送波信号 は、上記受信構成の各々プランチに与えられる。各々プ ランチにおいて、入力信号は、帯域フィルタ1を通して 濾過され、IF周波数の正弦波局部発振器信号L01を用い て、リニア混合器 2 内で基本帯域信号 (baseband sign al)に混合される。上記入力信号プランチ上の各々に は、大きな時定数をもつキャパシタ3が設けられ、基本 帯域信号から直流電流分を取り除いている。この回路の 利得は、自動利得コントローラ5 (AGC)を介して制御さ 【蘛求項9】 前記入力段(10)が、切替式のキャパシ 50 れており、その各基本帯域信号は変調器6内でデジタル

信号に変換される。変調後、各信号は、それぞれのデシ メータ7、ポスト・フィルタ8を通して送られ、デシメ ータに依って生成されるスプリアス信号を除去する。以 下に示すものは、図1に図示されている特定の構成に関 するものであり、局部発振器周波数及び位相シフトの詳 細である。

PHI1 = +45度

PHI2 = -45度

PHI3 = PHI4 = 0度

L01 = IF

L02 = オーバーサンプリング周波数

[0005] この復調、すなわち中間周波数の(帯域濾*

$$cos(a) * cos(b) = 1/2 * cos(a-b) + 1/2 * cos(a+b)$$

上記関係式(1)は、両方の積が純粋な余弦波信号である 場合にだけ保持される。

【0006】ここで、cos(a)が変調されたint搬送波 を表している場合、

 $a = \omega 0 * t + PHI$

 $b = n * \omega 1 * t (n = 1, 2, 3, ...)$

ここで、 n * ω1 は混合器の発振器の角周波数であ

【0007】理想的な場合では、発振器の周波数と位相 は、入力信号(in)の搬送波の周波数及び位相にロックさ れる。これらの条件に於いて、ω0 = a*ω1 と、1/2 *cos(a-b)項は、 1/2 * cos(PHI) に減少される。この基 本周波数の位相差信号はデータ・シンボルを伝える。 1 /2 * cos(a+b) の項は、周波数 2 * ω0 上の周波数ス ベクトルの成分を表している。

[0008]

【発明が解決しようとする課題】前述のような従来の受 30 信構成が個別の構成部品により製作される場合、これら は非常に広い面積をプリント基板上に要求する。更に、 シグマノデルタ変調器に入る信号は基本帯域信号なの で、交番結合された各プランチは、直流プロッキングを 実現するために、大きな時定数をもつ非常に高い高域通 過コーナー周波数を必要とする。これは、理想的に頻繁 にパワーダウンされ、再度のパワーアップがゆっくりと した構成のためには不適当であり、その結果、回路を短 時間にパワーダウンすることができなくなることを意味 している。従って、この回路は非常に大きな電力を消費 40 する。

[0009]

【課題を解決するための手段】そこで本発明によれば、 変調された搬送波信号を受信するための受信器であっ て、この受信器が、フィードバックループ内に含まれる 少なくとも1つの加算器をもったシグマ/デルタ信号変 調器を備えるものにおいて、その構成上、その帰還ルー プの前に被変調搬送波信号をダウン変換するための時間 的離散性をもつサンプリング手段を備えることを特徴と する受信器が提供される。

*過された) int信号を基本周波数におとすミキシング は、典型的にはマルチプライヤ (multiplier) の利用 に基づかれる。従って、変調されたIF信号は、正弦波発 振器信号(L01)によって乗算される。同期復調の場合、 係る発振器の周波数及び位相は、例えば、位相ロック・ ループ(PLL)の支援により搬送波に固定される。混合さ れた積の周波数スペクトルは、所望の基本周波数成分 と、シグマノデルタ変調器に入力される前の低域通過フ ィルタリングによって取り除かれた成分スペクトルとを 10 含む。このような混合プロセスは、以下に示す三角関数 の関係式から説明される。

(1)

※尚、ω0は搬送波の角周波数、PHIは瞬時位相変調(QA M, MSK, QPSK, GMSK, ...) であり、理想的には、cos (b)の項が明瞭な混合用発振器周波数(L0)を示してい る。すなわち、

(3)

[0010]

【作用】時間的な離散性のサンプル抽出手段を用いて搬 送波周波数信号をダウン変換することにより多くの利点 が得られる。第1に、高価な正弦波発振器が不要になる ので、スペースとコストの点で利点を与える。第2に、 IF信号手段をダウン変換する正確な正弦波局部発振器に 代えて時間的な離散性のサンプル抽出手段を用いること は、混合作用がサンプリングの周波数、またサンプリン グの高調波成分で起こることを意味しているが、この指 摘される欠点は、各サンプルが搬送波信号の調波周波数 (subharmonic frequency)にて局部発振器サンプリン グを用いて取り出されることを可能にするので、システ ムの利点として使用することができる。したがって、こ れにより大きな電力節約がさらに提供される。

【0011】本発明を実現する1つの方法は、切替式の キャパシタ・スイッチング素子をもつシグマ/デルタ信 号変調器の入力段を使用して、混合器として作動する上 記時間的離散性をもつサンプリング手段を備えることで ある。入力段に与えられる所望の切替式キャパシタ・ス イッチング素子をもつシグマ/デルタ変調器は、ASICと しても実現できる。係る混合器の出力は、シグマ/デル 夕変調器の閉帰還信号ループ内に含まれる加算器の第1 の入力に送られてもよい。この加算器は、第2の入力と してシグマノデルタ信号変調器の帰還信号を備え、これ がデシメータ及び低域通過フィルタに送られ、加算器の 第2入力に提供される。

【0012】本発明に係る各実施態様の各回路に於い て、入力する被変調信号は、基本帯域周波数信号、また は閉帰還ループに入る前に基本帯域周波数に接近してい る周波数に混合される得る。

【0013】このような各シグマ/デルタ変調器は、基

本帯域信号を変換する際に典型的に用いらる。しかし、 本発明によれば、それらは各中間周波数信号を直接的に 変換するために適応され得る。

【0014】厄介な交流カップリングの問題、すなわち 制御と高域通過フィルタリングの問題は、本発明に係る 各実施態様の回路構成によって解決される。同様に、電力消費は、受信器を準備状態から動作状態に切り替える 時間を短縮することにより少なくすることができる。これは、小さな時定数をもつキャパシタンスが直流プロッキングに適用されるので、回路が使用されないとき、通 10 常考えられる短い時間で回路がパワーダウンされること を可能にする。

[0015] また、更なる利点は、切替式のキャパシタを用いることにより、この回路の自動的な利得制御を提供できることにある。これは、係る受信構成に全体として必要とされるAGC-回路の数が減少され得ることを意味する。本発明の実施態様を用いた場合、必要なフィルタリングの部品は、上記シグマ/デルタ変調器内に上述のデジタル・フィルタを用いることにより、混合段階とaーd変換段階との間に更なるフィルタを必要とすること 20 なく提供され得る。

【0016】尚、本発明に係る実施例は、例えば無線電 話器内にて効果的に利用され得る。

[0017]

【実施例】以下、本発明に係る実施例を添付図面を参照 しながら説明する。図2は、本発明に係る一実施例の受 信構成を示しており、係る受信構成では、広いダイナミ ック入力範囲をもつシグマ/デルタ・アナログ/デジタ ル変調器が用いられており、その中の混合器11は、図4 に図示されるような切替式キャパシタ・スイッチング素 30 子 30-39を用いて実現されている。混合器11の混合機能 を与える切替式キャパシタスイッチング素子は、IF信号 の周波数、又はその近傍の周波数の矩形波の局部発振器 信号 (LO1)によりドライブされる。上記混合器及び局 部発振器の各信号は共にデジタルである。更に、幾つか の切替式キャパシタ・スイッチング素子が設けられてお り、係る回路に自動的な利得制御機能を与える自動利得 コントローラ (AGC)12を実現している。本受信構成 は、帯域通過フィルタ10を備えており、各プランチは、 更に、各信号をアナログ信号からデジタル信号に変換す 40 る変調器13と、デシメータ14と、図1に図示されている 従来の受信構成に対応する各部分と同じ機能を行うポス ト・フィルタ15とを備えている。この信号の事前濾過機 能(変調後)は、それぞれの回路の設計仕様に自由に対 応するべく作ることができ、シグマ/デルタ変調器の直 流変位は、各変位に対する内部のデジタル補正機能を用 いて補正され得る。

【0018】以下に示すものは、それぞれのプランチに 与えられる局部発振器信号の位相及び周波数の詳細であ る。 PHI3 = +45度

PHI4 = -45度

L01 = IF

【0019】基本周波数出力信号は、変調のための情報を検索するべく処理されるデシメータ及び低域通過フィルタの後、変調器から与えられる。上記シグマ/デルタ変調器の構成に入る信号はIP信号なので、直流信号がシグマ/デルタ変調器に送られることを防止するために、小さな時定数をもつキャパシタ9だけが必要である。これは、係る装置が瞬時にパワーアップ及びパワーダウンされることを意味し、且つ、上記パワーアップに僅かなパワーしか要求されないので、短時間のパワーダウンとなることにより、従来の受信構成よりも電力効率に優れるので実際的であることを意味している。

6

【0020】混合器11, AGC12, 及び変調器13について 図3を用いて詳細に説明する。被変調受信信号 (in) 、例えば無線電話のRF部からの帯域濾波されたin t信号は混合器11 (mix)に送られる。混合器11には、 局部発振器 (L01)の信号も供給されている。。局部発 振器 (LO1)は、受信される信号 (in)の搬送波周波 数、又はその近傍、又はその低調波周波数にある。混合 器11の出力は第1の加算器16に送られ、その第2の入力 が帰還信号11となる。第1の加算器16の出力は積分器17 に送られる。積分器17の出力は第2の加算器18に送ら れ、その第2の入力が帰還信号f2となる。第2の加算器 18の出力は、第2の積分器19と、更にコンパレーター20 にも送られる。コンパレーター20の出力信号 (out) は、更に、デシメータ14及び(低域通過の)ポスト・フ ィルタ15に送られ、上記 L01及び搬送波信号の混合から 起きる好ましくない信号を濾過する。

【0021】この出力信号は、例えば、デジタル信号処理手段を用いて処理され得る基本周波数信号 (base-frequency signal)を備える。また、上記出力信号 (out)は、各々の帰還ブランチ内の第1及び第2の加算器18(f1)、(f2)に結合される。

【0022】上記第2の加算器18,第2の積分器 19(int2),コンパレーター20(cmp)は、上配回路内に第2の閉帰還ループを提供する。当業者は、シグマ/デルタ変調器の基本的な原理について周知であると存じるので、これに関しては更に詳細しない。尚、その詳細な説明については、例えば以下のような文献がある。「シグマ/デルタ変調のアナログ/デジタル変調器の設計」、Bernhard E. Boser, Bruce A. Wooley著、半導体回路に関するIEEE誌、vol.23, No.6,1988年12月号、及び、「オーバーサンプリング型シグマ/デルタ・データ変調器の理論と設計及びシミュレーション」、J.C. Candy and G.C. Temes 著、IEEE誌 1992年

【0023】従来、典型的にアナログ帯域通過フィルタは、シグマ/デルタ変調器の変調段に入力する前に提供 50 され、ミキシングにより起こる好ましくない信号を除去

する。しかし、本発明においては、このシグマ/デルタ 変調器自身のデジタル濾波機能が、このような好ましく ない信号の除去に使用され得る。

【0024】図4は、図2の実施例における受信構成の 入力段を示しており、混合器11及びAGC 12 の切替式キ ャパシタスイッチング素子を詳細している。第1のコン デンサ30は、入力信号をサンプル抽出して保持するため に用いられる。第1のスイッチ 31,32 は、サンプルを 第1のコンデンサ30に与えるために閉じられている。一 旦、入力信号がサンプル抽出されると、第3のスイッチ 10 33が閉じられ、第1のコンデンサー30のチャージ分を出 力に送る。第2及び第3コンデンサ34,35 (更に増え る可能性もある)は、第1のコンデンサ30と並列に設け られる。これらは、一対のスイッチ 36 及び37, 38及び 39を通して、その入力及び出力と各々制御可能な状態で 接続される。適切な幾つかのスイッチを閉じて、1つ又*

 $\cos(n*\omega 1*t) + 1/3*\cos(3*n*\omega 1*t) + 1/5*\cos(5*n*\omega 1*t) + ...$ (4)

【0026】高次の余弦項は、混合器(1)の出力信号の スペクトルに対して各周波数の合計成分及び差成分を生 成する入力信号 (in) とともに混合器 (1)内で混合さ 20 れる。基本周波数よりも高い周波数の全ての入力信号 は、シグマ/デルタ変調器の混合段階に入力される前に フィルタによって濾波される。

【0027】好ましくは、混合用素子として切替式キャ パシタ・スイッチング素子の第1スイッチ1を使用する ことにある。この場合、局部発振器信号 LO の周波数の 倍数近傍の信号帯域が、基本周波数上にフォールドされ る。したがって、局部発振器の基本周波数、又はその調 波(subharmonics)は、搬送波信号を基本帯域又は基 本帯域に近い周波数にダウン変換するために使用され 30 る。局部発振器を用いた場合のミキシングに起因する好 ましくない信号は、濾過作用に依って除去される。

【0028】図2に戻り、本発明の技術思想は本実施態 様の回路構成で実現され、これにより、シグマ/デルタ 変調器の入力段階に与えられる切替式キャパシタ・スイ ッチング素子が混合器11に設けられ、この混合器11がIF 信号を基本周波数信号に直接的に復調する。言い換える と、IF信号及び其の倍数の信号が基本周波数にフォール ドされる。このシグマ/デルタ変調器の入力段階の第1 スイッチ31は、混合器11として作動するよう用いられ 40 る。

【0029】図2乃至図4の実施態様は、IF搬送波信号 の周波数と同じか、あるいはこれに近い周波数 L01をも つ局部発振器を用いて実現される。上記 L01において望 ましいことは、入力信号と同じ周波数を有することであ※

 $\mathbf{b} = \mathbf{n} * \omega \mathbf{1} * \mathbf{t} + \Delta \omega * \mathbf{t}$

ここで、△ωは周波数△「に対応する角周波数である。 【0032】上記関係式(1)は、正弦波の局部発振器を 用いて従来の算術的な解法を扱うものであるが、本発明 の実施態様の時間的な離散サンプラを用いるミキシング 50 る。

*はこれ以上の第2及び第3のコンデンサ34,35の並列な 静電容量を加えることにより、信号転送比率が変更され 得る。これらのスイッチは、外部の cpuの制御下にあ り、、当該回路の自動的な利得制御処理を全体として交 換するべく使用され得る。このように、各増幅段は、入 力静電容量の割合を変えることにより、シグマ/デルタ 変調器に備えられ得る。

【0025】混合器11は、サンプルとして、且つ、発振 器と同期する入力信号をサンプル抽出してサンプル間隔 の間、変わらずに残存する信号として上記各サンプルを 出力する保持回路として考えることができる。したがっ て発振器信号 (LO) は、「 n* ω1 」の基本周波数を もった矩形波で表される。関係式(1)の「cos(b) = c os(n*ω1*t)項の代わりに、以下に示す一連の奇数調波 が与えられる。

※るが、多くの場合、これはIF搬送波信号の周波数から僅 かにオフセットされた局部発振器周波数L01を使用する ことが実際的に好ましいとすることもできる。ミキシン グ周波数は、例えば、LO + △f(ここで、「LO」はIF 搬送波信号の周波数である)となり得る。この場合、そ の入力に適用される信号 (in)は、基本帯域周波数に ほぼ等しい周波数△【にフォールドされる。被変調中間 周波数 (in) が 1010 kHz である場合、そのミキシン グ信号 LO + △f は、例えば 900 kHzとすることがで き、子の場合、これにより復調される信号は、基本帯域 周波数に対して -110 kHz の周波数になる。

【0030】このIF搬送波信号から僅かにオフセットさ れた周波数をもつ局部発振器を使用することが現実的で あろう1つの例は、混合器11をドライブするための矩形 波の局部発振器を提供するシグマ/デルタ変調器内に通 常的に設けられるドライパーが、そのIF搬送波信号と正 確に一致しない場合である。また、他の例は、それが4 倍のオーバーサンプリングを提供することが望ましい場 合である。これらの状況下において、これ以降のデジタ ル混合器は、幾つかの信号が基本帯域からオフセットさ れた周波数△fにある場合、その実現が容易にされ得 る。一般に、搬送波周波数の1 MHz 以内の信号が、入力 信号をダウン変換するために適用される。

【0031】通常的な構成に於いて、正弦波の局部発振 器のミキシング周波数が、△fだけIF搬送波信号から異 なる場合、上記関係式(1)の cos(b) の項は、以下の関 係式によって解決される。

により生成されるダウン変換された信号が、 a-d変調 段階に入力される前に一旦フィルタリングされるので、 効果的に正確な余弦信号となり、関係式(1)が維持され

[0033]また、図2万至図4の受信構成は、搬送波 周波数の調波を用いて入力信号を基本帯域(または基本 帯域に近い周波数)にダウン変換するのにも使用され得 る。これらの状況において、それぞれのプランチに与え られる局部発振器信号の位相及び周波数の詳細は以下の 通りである。

PH13 = +45/N度

PHI4 = -45/N度

L01 = IF/N

[0034]他の点に関して、この構成は前述と同様に 10 作動する。

【0035】入力信号(in)が2つの異なるプランチに分岐される場合、本発明の実施態様の受信回路構成を各プランチ内に構成することができる。 I / Q変調される信号(I は位相、Qは90の位相シフト)の復調は、周知の原理を用い容易に実現することができ、これは例えば「デジタル通信」、Edward A. Lee, David G. Messershimitt, Kluwer Academic Publishers著、ポストン 1990年の文献に示されている。この場合、両方のプランチの変調器のクロックは同期されている。

[0036]

【発明の効果】尚、当業者は、本発明に係る実施態様の 回路構成が比較的少ない回路素子を用いて簡単に実現さ れることが分かるであろう。これらは、無線電話のため に特に重要な回路に対して電力消費の節約と、高速な作 動(準備状態から動作状態への高速シフト、及びその反 対の動作)を実現する。

【0037】本発明は、それが特許請求の範囲に記載された内容に関連するか否か、あるいはその課題の全て又は一部を緩和するか否に係わらず、ここに開示した新規な特徴及びその組み合わせを包含する。上記開示に鑑み、当業者においては、本発明の技術的範囲で様々な変形例又は変更例が案出され得るであろう。

10

【図面の簡単な説明】

【図1】シグマ/デルタ変調器の構成を示したプロック 7 図である。

【図2】本発明に係る第1の実施例を含むシグマ/デルタ変調器のブロック図である。

【図3】図2の実施例においてミキシング機能と自動利 得制御機能とを実現するのに適した切替式のキャバシタ ・スイッチング素子の概略的なブロック図である。

【図4】入力信号の搬送波周波数、又はその近傍の局部 発振器により動作する図2のシグマ/デルタ変調器を備 えた受信構成の実施例を概略的に示した回路図である。

【符号の説明】

- 20 10…帯域通過フィルタ
 - 11…混合器
 - 1 2 ··· AGC
 - 13…変調器
 - 14…デシメータ
 - 15…ポスト・フィルタ

[図3]

[図4]

フロントページの続き

(72)発明者 ラウリ シレン フィンランド国,エフアイエヌ-90580 オウル,タルピッキティー 17 ペー 1