DEMO:

https://drive.google.com/file/d/1 4bvglwhTv0 P-BhrG4WdfYNN8W-1ZaX/view?usp=sharing

Final results:

94.22% on average over 5 repeated trainings 94.86% ensemble voting of 5 models

Repo:

cd to project home directory /fashion-mnist-assignment `pip install -r requirements.txt`

You can find main jupyter notebook in in /my_code/training.ipynb` together with python scripts

Data processing & augmentation

As per usual, I started by exploring the data and checking the class distribution. Then, I moved to data preparation (data split, adding channel dimension, one-hot encoding labels and pre-processing)

At first, the preprocessing was just data rescaling to range 0-1. Then I tested basic transformations such as:

- Width shift
- Height shift
- Horizontal flip

Which helped regularize the training (shifts were very small - but since sometimes there was no padding around the objects, the characteristic regions could end up being out of the picture. (forced the network to explore more features of objects)

I also tried seemingly reasonable transformations such as:

- Rotation
- Shear
- Zooming

but all of them led to worse performance. I guess rotation and shearing distorted pixelated image too much and zooming would cut out too much. I tried the ideas on v1 model - and these would make it difficult to even overfit the data.

model	layers	params	augment	Acc. train	Acc. test	Acc. val	Note
v1	8	260k	False	93.9	90.6	91.4	Early stopped
v1	8	260k	False	96.7	91.3	91.7	30 epochs

|--|

Models

(check my_code/models.py)

My first thought was transfer learning, but since the images were grayscale, it would need some extra steps, such as duplicating the intensity 3 times, to make it 3-channel. Dummy idea - more computationally expensive and probably not worth the effort.

The first model I typically try for images is VGG, so I built a simplified version of it (model v1). Then I iterate multiple times making the model bigger and regularizing it. Built models:

- VGG like (v1, v2, v3, v4)
 Difference: number of dense layers, dropouts, batch normalization, ReLU / LeakyReLU)
- Own model (v5)

Layer (type)	Output	Shape	Param #
conv2d_30 (Conv2D)	(None,	28, 28, 64)	640
batch_normalization_30 (Batc	(None,	28, 28, 64)	256
conv2d_31 (Conv2D)	(None,	28, 28, 128)	73856
max_pooling2d_15 (MaxPooling	(None,	14, 14, 128)	0
dropout_25 (Dropout)	(None,	14, 14, 128)	0
batch_normalization_31 (Batc	(None,	14, 14, 128)	512
conv2d_32 (Conv2D)	(None,	14, 14, 64)	73792
batch_normalization_32 (Batc	(None,	14, 14, 64)	256
conv2d_33 (Conv2D)	(None,	14, 14, 128)	73856
max_pooling2d_16 (MaxPooling	(None,	7, 7, 128)	0
dropout_26 (Dropout)	(None,	7, 7, 128)	0
batch_normalization_33 (Batc	(None,	7, 7, 128)	512
conv2d_34 (Conv2D)	(None,	7, 7, 64)	73792
batch_normalization_34 (Batc	(None,	7, 7, 64)	256
conv2d_35 (Conv2D)	(None,	5, 5, 128)	73856
max_pooling2d_17 (MaxPooling	(None,	2, 2, 128)	0
dropout_27 (Dropout)	(None,	2, 2, 128)	0
flatten_5 (Flatten)	(None,	512)	0
batch_normalization_35 (Batc	(None,	512)	2048
dense_15 (Dense)	(None,	512)	262656
dropout_28 (Dropout)	(None,	512)	0
dense_16 (Dense)	(None,	512)	262656

Jakub Czerny

dropout_29 (Dropout)	(None,	512)	0
dense_17 (Dense)	(None,	10)	5130
			=========
Total params: 904,074			
Trainable params: 902,154			
Non-trainable params: 1.920			

Specification:

- 905k parameters
- 9 convolutional & 3 dense layers
- Average of **94.22**% accuracy over 5 repetitions (ensemble voting **94.86**%)
- Inference speed: ~100 images/per second using google colab CPU (sequentially feeding images)

Google Colab spec

(https://colab.research.google.com/drive/151805XTDg--dgHb3-AXJCpnWagRhop 2)

- ~10Mb model

Model:

It's been discussed quite a bit in the papers that 3x3 convolutions are usually enough (even for more complicated tasks e.g. semantic seg), while keeping the number of parameters low - so I only built models with conv3x3.

The network has 3 "convolutional modules" and 3 dense layers. The convolutional modules are:

Conv3x3 (64)
BatchNorm
Conv3x3(128)
MaxPool2x2
Dropout(0.2)

and dense layers are separated by dropout of 0.5, and further regularized with L2 regularization applied to the kernels (very small lambda 1e-5) - this should stop weights from getting very big, what in turn should help with generalization.

Notes:

I got those results by training the models for 100 epochs and saving a model with best validation loss (using validation dataset). I repeated that 5 times and calculated average performance on test dataset. I could probably get a bit higher accuracy with hyperparameter optimization, but google colab took away my GPU as I was using it too much.

```
X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k')
  X_test = X_test.reshape(X_test.shape[0], IMG_SIZE, IMG_SIZE, 1)
  y_test_encoded = to_categorical(y_test, num_classes=NUM_CLASSES, dtype='float32')
  test_generator_args = dict(
    data_format = 'channels_last',
      rescale=1./255,
  test_datagen = ImageDataGenerator(**test_generator_args)
  test_datagen.fit(X_test)
  test_generator = test_datagen.flow(
      X_test,
       y_test_encoded,
      batch_size=250,
      shuffle=False
  )
  model_name = 'v5'
  accuracies = []
  for i in range(5):
      model = tf.keras.models.load_model('models/model_{:}_{:}.h5'.format(model_name,i))
      result = model.evaluate_generator(test_generator)
      accuracies.append(result[1])
      print("Model {:} accuracy: {:.4f}".format(i,result[1]))
  print("\nMean accuracy {:.4f}".format(np.mean(accuracies)))
  Model 0 accuracy: 0.9398
  Model 1 accuracy: 0.9419
  Model 2 accuracy: 0.9431
  Model 3 accuracy: 0.9407
  Model 4 accuracy: 0.9457
  Mean accuracy 0.9422
```

Since I already had 5 models, I decided to ensemble them by simple voting scheme.

Test accuracy 0.9486

```
[[911
         1
             18
                   8
                        0
                            1
                                56
                                      0
                                           5
                                                0]
    0 994
              0
                   5
                        0
                             0
                                 0
                                      0
                                           1
                                                0]
   17
         1 926
                   8
                      20
                             0
                                28
                                                0]
                                      0
         2
              6 952
                      15
                                15
                                           1
                                                0]
    9
                             0
                                      0
    0
         1
             16
                 10 941
                            0
                                32
                                      0
                                           0
                                                0]
                        0 989
    0
         0
              0
                   0
                                 0
                                      8
                                           0
                                                3]
   81
         0
             33
                 14
                      41
                            0 829
                                      0
                                           2
                                                0]
         0
    0
              0
                        0
                             3
                                 0 985
                                               12]
                   2
    0
         0
              0
                        0
                            0
                                 0
                                      0 998
                                                0]
    0
         0
              0
                 0
                        0
                            6
                                 0
                                     33
                                           0 961]]
```

Remark:

Most of the good performing (zalando benchmark) results listed on github were trained without validation dataset - not really trustworthy,

I also tried 2 residual models:

bottleneck ResNet (like ResNet50) (model v6)

simple ResNet (like ResNet18)

(model v7)

Idea from paper

https://arxiv.org/pdf/1512.03385.pdf

Blog post:

https://medium.com/@14prakash/understanding-and-implementing-architectures-of-resnet-and-resnext-for-state-of-the-art-image-cc5d0adf648e

I didn't notice improvement. That could be because my nets were rather shallow architectures and didn't benefit much from skip connections.

Segmentation:

As for the demo, I created my own segmentation algorithm using mostly openCV. Basic idea was that the object would be in the middle of the camera view. I then took an average "color" around the central pixel (20 pixels each way) and converted to HSV. Then I found the rest of the object within range

- +/- 50 hue
- +/- 70 saturation
- +/- 70 value

Then I applied closing morphological operation to fill up the gaps. Next, I used openCV to detect contours and selected one with the biggest area containing the central pixel.

Then I extracted the bounding box given the contour, cropped out the object and downscaled it to 28x28.