Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Percepcja maszyn

Sprawozdanie z laboratorium L1

Kaniuka Jan

Spis treści

1.	Sygn	aty zaszumione	2
		Treść zadania	
2.	Opty	czny system pomiaru tętna	4
	2.1.	Treść zadania	4
	2.2.	Rozwiązanie	4
	2.3.	Analiza rozdzielczości pomiaru	5

1. Sygnały zaszumione

1.1. Treść zadania

Do sygnału wygenerowanego będącego mieszaniną trzech sygnałów sinusoidalnych należy dodać losowy szum, wygenerowany np. przy użyciu funkcji randn. Tak zaszumiony sygnał proszę przeanalizować w taki sam sposób jak sygnał oryginalny. Z widma amplitudowego proszę wybrać trzy największe wartości (maxk) i odtworzyć przy ich pomocy sygnał oryginalny (częstotliwość i fazę odczytać z odpowiednich danych).

Przedstawić oba sygnały, zaszumiony i odzyskany, na jednym wykresie. Proszę porównać też wartości odzyskane z zaszumionego sygnału z wartościami oryginalnymi użytymi przy generowaniu sygnałów.

1.2. Rozwiązanie

Listing 1.1. Dodanie szumu gaussowskiego

```
x = x + randn(size(t));
```

Dla sygnału zaszumionego wyliczono transformatę Fouriera (funkcja fft). Na podstawie uzyskanych wykresów zależności amplitudy oraz fazy od częstotliwości spróbowano odtworzyć sygnał oryginalny.

Listing 1.2. Odzyskiwanie parametrów sygnału

```
% Wektory na odzyskiwane parametry sygnałów
amplitudes = maxk(A,3); % odczytanie amplitud
frequences = zeros(1,N);
phases = zeros(1,N);
% Odczytanie częstotliwości
for i = 1:N
    idx = find(A == amplitudes(i));
    frequences(i) = f(idx);
end
% Odczytanie faz sygnałów
for i = 1:N
   idx = find(f == frequences(i));
    phases(i) = F(idx);
end
% Wykreślenie sygnału odzyskanego
x_recovered = zeros(size(t));
for i = 1:N
  x_recovered = x_recovered + ...
        amplitudes(i) * cos(2 * pi * frequences(i) * t + phases(i));
end
```


Rys. 1.1. Przebiegi sygnałów zaszumionego i odzyskanego

	oryginalne	odzyskane
amplituda	1	1,0204
częstotliwość [Hz]	15	15
przesunięcie fazowe [rad]	0	0,0266

Tab. 1.1. Pierwszy sygnał składowy

	oryginalne	odzyskane
amplituda	0,4	0,4305
częstotliwość [Hz]	27	27
przesunięcie fazowe [rad]	-1,0472	-1,1671

Tab. 1.2. Drugi sygnał składowy

	oryginalne	odzyskane
amplituda	0,8	0,8609
częstotliwość [Hz]	83	83
przesunięcie fazowe [rad]	0,4488	0,4581

Tab. 1.3. Trzeci sygnał składowy

Wartości odzyskane z zaszumionego sygnału w niewielkim stopniu różnią się od wartości oryginalnych, co umożliwia dość dokładne odtworzenie sygnału oryginalnego.

2. Optyczny system pomiaru tętna

2.1. Treść zadania

Jednym ze sposobów pomiaru tętna jest czujnik optyczny badający zmianę natężenia światła przechodzącego przez tkanki w momencie przepływu krwi (w rytmie zgodnym z biciem serca). Zadanie polega na zarejestrowaniu a następnie przeanalizowaniu tego typu nagrania w celu wyznaczenia tętna. Jako czujnik w tym ćwiczeniu wykorzystana zostanie kamera w telefonie komórkowym.

Proszę wyznaczyć wartość tętna (mierzoną w uderzeniach na minutę - BPM) na zarejestrowanym nagraniu. Proszę określić, z jaką rozdzielczością możliwe jest wyznaczenie tętna oraz ewentualne metody na jej poprawe.

2.2. Rozwiązanie

Zacząłem od nagrania krótkiego wideo opisanego w poleceniu. W aparacie wykorzystałem tryb VGA 640x480 (4:3) oraz włączyłem diodę doświetlającą. Pierwsze trzy próby nagrania video nie zakończyły się sukcesem. Prawdopodobnie nierównomiernie dociskałem palec lub lekko go przesuwałem. W czwartej próbie otrzymałem już przebieg podobny do tego z materiałów laboratoryjnych. Jednak przez pierwsze 1,5 sekundy widoczny był gwałtowny wzrost jasności obrazu - dopiero potem przebieg miał oczekiwany charakter oscylacyjny. Prawdopodobnie zbyt późno zacząłem dociskać palec, więc skróciłem po prostu nagranie o początkowe 1,5 sekundy.

Sygnał reprezentujący jasność obrazu w zależności od numeru próbki poddałem trasformacie Fouriera. Wykorzystując otrzymane widmo amplitudowe wyznaczyłem dominującą częstotliwość (2.1).

Listing 2.1. Wyznaczenie wartości tetna (BPM)

```
% A - widmo amplitudowe
idx = find(A == maxk(A,1)); % odczytuję największą amplitudę w widmie
freq = f(idx); % znajduję dominującą częstotliwość
BPM = freq * 60; % skaluję wynik pomiaru do BPM
```


Rys. 2.1. Zarejestrowane tętno

Wyznaczone tętno wynosi $84,7059 \approx 85$ BPM. Dla porównania wykonałem pomiar tętna z wykorzystaniem opaski treningowej (wykorzystywana jest w niej ta sama metoda pomiaru) i uzyskałem wartość zbliżoną do wyliczonej powyżej.

2.3. Analiza rozdzielczości pomiaru

Wyznaczenie tętna jest możliwe z rozdzielczością wyrażoną wzorem

sampling frequency number of samples

W celu poprawy rozdzielczości można zwiększyć liczbę próbek poprzez wykonanie dłuższego nagrania. Wzrośnie wtedy wartość mianownika powyższego ułamka, co spowoduje, że będzie można wyznaczyć tętno z większą dokładnością.