kaggle入門ハンズオン ~Titanic 編~

自己紹介

kaggleとは

-世界中で30万人以上のデータサイエンティストが登録している世界最大のデータ解析コンペサイト

-企業から様々なお題が出され、その優勝者(精度がもっとも高かった人orチーム)に、優勝したプログラムコードを提供するかわりに、賞金が贈られる

-今回は、kaggleのチュートリアルにあたる<mark>Titanic</mark> tutorialを進めていく

kaggleに登録しよう

kaggleでの流れ

コンペティションにエントリー

Trainデータとtestデータを受け取る

コードを書き、testデータの答えを予測する

作成した答えを提出

予測度によって賞金も!?

Titanic: Machine Learning from Disaster

1912年に起きた、かの有名な**タイタニック号沈没事件**を題材に、乗客の年齢、性別、社会階級ランク、などのデータから、**生死を予測する**、というもの

ちなみに、タイタニック号沈没事件は、**"若い乗客、女性の乗客から先に救命ボートに乗せた"**、などの史実があり、上記乗客のプロファイルデータからある程度生死を予測できることから、よくデータ分析の題材に用いられる

Titanic tutorial に エントリーしよう

Data setとコードを入手

kaggleのdataダブから**train.csv・test.csv**をダウンロード

コードはGitHubのリンクからTitanicHandsOn.ipynbを ダウンロード

train.csv・test.csv・TitanicHandsOn.ipynbを同じ フォルダ(ディレクトリ)に入れる

データを見てみよう

与えられたtrain data

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

各変数の定義

Variable	Definition	Key
survival	生存	0 = No, 1 = Yes
pclass	チケットクラス	1 = 1st, 2 = 2nd, 3 = 3rd
sex	性別	
Age	年齢	
sibsp	Titanic号に乗船している兄弟の数	
parch	Titanic号に乗船している親・子の数	
ticket	チケット番号	
fare	乗船料金	
cabin	客室番号	
embarked	乗船港	C = Cherbourg, Q = Queenstown, S = Southampton

今回の目標は?

Train data

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Train dataのsurvived変数と他の変数の関係を機械学習を用いて学習し、test dataの各乗客のsurvived変数を予測する

Test data

Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

→survived?
→survived?
→survived?
→survived?
→survived?

データラングリング (data wrangling)

- 生データはそのままでは使いづらいので、データを整えていく
- ・今回は、乗船クラス・性別・年齢・兄弟の数・親子の数・料金を採用する(本来は、どの変数を使用するか決めるために、可視化したり統計解析したりするが、割愛)
- 性別の名義尺度を数値にする
- 後に操作しやすいように配列データの形式を変える
- 欠損値を補う
- ・正規化する
- etc···

結果4つのデータを得る

test **Pclass** SibSp Sex Age Parch **Fare** 0.873482 0.755929 0.344284 -0.499470 -0.400248 -0.498258 0.873482 -1.322876 1.334655 0.616992 -0.400248 -0.513125 -0.315819 0.755929 2.523099 -0.499470 -0.400248 -0.464940 0.873482 0.755929 -0.249938 -0.499470 -0.400248 -0.483317 0.873482 -1.322876 -0.646086 0.616992 0.619896 -0.418323

PassengerId

892

893

894

895

予測

学習

896

学習の前に

与えられたtrainデータを8:2の比率で、trainデータとtestデータに分ける。

ハイパーパラメータとは

・学習プロセスを決定するパラメータのこと。学習中に更新 されないので、初めに決定しないといけない。例えるなら

ex) Neural Network

Validation (検定)

先ほど、trainデータと精度測定用のtestデータに分けたが、最も優れたハイパーパラメータを決定するために、trainデータにvalidation(検定)領域を設けハイパーパラメータ更新用testデータとする必要がある

K Fold Cross Validation

データをk個のブロックに分ける。これを分割 (fold)という。

最初の分割1 を test set、残りの分割2~k を training set とし、モデルの学習と評価を行う。

分割2 を test set、残りの分割1、3~k を training set として、モデルの学習と評価を行う.

この過程を, 分割3, 4,…kを test set として繰り 返す。

得られたk個の精度の平均値をモデルの評価値とする。

」ロジスティック回帰 (Logistic regression)

多層パーセプトロン

(Multilayer perception classifier: MLPC)

Logistic regression と同じ構造のものを大量に並べて、全体としての出力と答えとの誤差の平均から、全パラメータを更新していく。

隠れ層を多くしていく(深くしていくと)Deep learningとも言える

Support vector machine: SVM

ネットの解説を拝借

機械学習の流れ

データラングリング (Data wrangling)

学習・評価用にデータを分割

ハイパーパラメータの調節

学習

評価・考察

Hands-on 色々といじってみてください

Titanicコンペに提出しよう

- コードやデータセットを 入れたフォルダの中に各 学習結果のcsvファイル があるはず
- Submit predictionタブ から提出
- 自分の順位を確認しよう

アンケートにご協力ください

https://docs.google.com/forms/d/1bwf_sY9cS0nZR0m0qEo8IpEM-y_dYyGdoepX314OP0k/edit

