

Introducción a las Redes de Neuronas Artificiales

Alejandro Peña¹, Ph.D. Lina María Sepúlveda, Ph.D.

japena@eafit.edu.co, lmsepulvec@eafit.edu.co

¹ Área de Gestión de la Información y Riesgos
 Escuela Administración
 Institute for Artificial Intelligence (AIA) – DeMontfort University

www.eafit.edu.co

INSPIRA CREA TRANSFORMA

Redes Neuronales & Inteligencia Artificial

- Las Redes Neuronales aparecieron de la mano de la Inteligencia Artificial en sus inicios como:
 - ✓ Sistemas formales de reglas y manipulación simbólica.
 - ✓ Rama más conocida de la Inteligencia Artificial.
- Las Redes Neuronales aparecieron en la Inteligencia Computacional (Softcomputing) como:
 - ✓ Sistemas Inspirados en las redes neuronales biológicas.
 - ✓ Métodos Inductivos: aprendizaje a partir de ejemplos.
 - ✓ Convertir el Computador en un Cerebro.
- Las Redes Neuronales incorporan al modelamiento de sistemas complejos el dilema de la plasticidad-estabilidad en el aprendizaje:
 - ✓ Plasticidad: Adaptarse a nuevos ambientes por adaptación y aprendizaje.
 - ✓ Estabilidad: Aprender de estos nuevos ambientes, sin olvidar lo aprendido anteriormente.

Las Redes Neuronales agrupan una serie de modelos para resolver problemas no algorítmicos a partir de la experiencia almacenada como conocimiento.

Introducción a las Redes de Neuronas Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Áreas de Trabajo Aplicaciones Desarrollo de Biochips

Inspiración Biológica

«Entender el cerebro y emular su comportamiento»

El *cerebro* presenta las siguientes ventajas que son deseables para los sistemas computacionales:

- Gran velocidad de procesamiento.
- Tratamiento de grandes cantidades de información provenientes de los sentidos y de la memoria almacenada.
- Se adapta a nuevos ambientes por aprendizaje.
- · Es robusto y tolerante a fallas.
- Es compacto y consume poca energía.
- Es altamente paralelo.
- Capacidad de aprendizaje.

Características Sistema Nervioso Central (SNC):

- Inclinación a adquirir conocimiento desde la experiencia.
- Conocimiento almacenado en conexiones sinápticas.
- Gran plasticidad neuronal.
- Comportamiento altamente no-lineal.
- Alta tolerancia a fallos.
- Apto para reconocimiento, percepción y control.

TensorFlow - Google

- TensorFlow fue desarrollado por el equipo de Google Brain para la automatización de los procesos de investigación en la empresa Google (<u>TensorFlow Playground</u>).
- Es una biblioteca de *software gratuita* y de *código abierto* para el aprendizaje automático y la inteligencia artificial
- Se puede utilizar para realizar una gran cantidad de tareas, y tiene un enfoque particular en la creación de redes neuronales profundas.

TensorFlow - Google

- TensorFlow fue desarrollado por el equipo de Google Brain para la automatización de los procesos de investigación en la empresa Google (<u>TensorFlow Playground</u>).
- Es una biblioteca de software gratuita y de código abierto para el aprendizaje automático y la inteligencia artificial
- Se puede utilizar para realizar una gran cantidad de tareas, y tiene un enfoque particular en la creación de redes neuronales profundas.

Desarrollo de Biochips.

- Circuito electrónico híbrido entre estructuras naturales y artificiales. *TensorFlow*
- Se conoce en el mundo científico como NeuroChip o microcircuito neuronal.
- Se utilizaron neuronas de caracol y chips de silicio.
- Se logró establecer conexiones artificiales entre dichos elementos.
- Colocaron diminutos generadores entre las neuronas para crear cambios de voltaje para accionar un interruptor.
- Se abre el camino a la neurocomputación.

Futuro de las Redes Neuronales Artificiales

El futuro de las redes neuronales está enmarcado en las siguientes líneas de investigación:

- ✓ Representación de Estructuras Topológicos Complejas (Generativos)
- ✓ Evolución, Computación Colectiva, Manejo del Conocimiento (Pre-trained).
- ✓ Estructuras Funcionales Aprendizaje Profundo (*Transformers*).
- ✓ Neurocomputación y Computación Natural (Chat GPT-Open AI).

Introducción a las Redes de Neuronas Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Áreas de Trabajo Aplicaciones Desarrollo de Biochips

Futuro de las Redes Neuronales Artificiales.

El futuro de las redes neuronales está enmarcado en las siguientes líneas de investigación:

- ✓ Representación de Estructuras Topológicos Complejas (Generativos)
- ✓ Evolución, Computación Colectiva, Manejo del Conocimiento (Pre-trained).
- ✓ Estructuras Funcionales Aprendizaje Profundo (*Transformers*).
- ✓ Neurocomputación y Computación Natural (Chat GPT-Open AI).

https://thispersondoesnotexist.com/

Introducción a las Redes de Neuronas Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Áreas de Trabajo Aplicaciones Desarrollo de Biochips

Chat-GPT

El futuro de las redes neuronales está enmarcado en las siguientes líneas de investigación:

- ✓ Representación de Estructuras Topológicos Complejas (Generativos)
- ✓ Evolución, Computación Colectiva, Manejo del Conocimiento (Pre-trained).
- ✓ Estructuras Funcionales Aprendizaje Profundo (*Transformers*).
- ✓ Neurocomputación y Computación Natural (Chat GPT-Open AI).

https://hyperwriteai.com

Introducción a las Redes de Neuronas Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Áreas de Trabajo Aplicaciones Desarrollo de Biochips

• Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 ▲ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = w_1 \cdot x_{edad} + w_2 \cdot x_{hijos} + \cdots + w_9 \cdot x_{cuota} : yr_k = ys_k$$

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

• Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 ▲ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = w_1.x_{edad} + w_2.x_{hijos} + \cdots + w_9.x_{cuota}: yr_k = ys_k$$

Modelamiento Redes de Neuronas Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 ▲ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = w_1 \cdot x_{edad} + w_2 \cdot x_{hijos} + \cdots + w_9 \cdot x_{cuota} \cdot yr_k = ys_k$$

Modelamiento Redes de Neuronas Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

• Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 ▲ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = w_1 \cdot x_{edad} + w_2 \cdot x_{hijos} + \cdots + w_9 \cdot x_{cuota} \cdot yr_k = ys_k$$

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 ▲ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = w_1 \cdot x_{edad} + w_2 \cdot x_{hijos} + \cdots + w_9 \cdot x_{cuota} \cdot yr_k = ys_k$$

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 △ socioeconómicas que caracterizan un solicitante de crédito:

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

• Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 △ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = a_1.x_{edad} + a_2.x_{hijos} + \cdots + a_9.x_{cuota}: yr_k = ys_k$$

Modelamiento Redes de Neuronas Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

• Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 △ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = a_1 \cdot x_{edad} + a_2 \cdot x_{hijos} + \dots + a_9 \cdot x_{cuota} : yr_k = ys_k$$

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

Challenge:

- Construir un modelo neuronal que permita estimar el Score para un solicitante de crédito (yd_k) en términos de sus variables socioeconómicas.
- ✓ Determinar los *efectos independientes* asociados a cada una de las variables
 △ socioeconómicas que caracterizan un solicitante de crédito:

$$ys_k = a_1 \cdot x_{edad} + a_2 \cdot x_{hijos} + \dots + a_9 \cdot x_{cuota} : yr_k = ys_k$$

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

Modelo Logit - Función Sigmoidal

Challenge:

- Construir un modelo logístico que permite la estimación de la *Probabilidad de Default* (yd_k) de los solicitantes de crédito que aún no lo poseen.
- V Determinar los *efectos independientes* asociados a cada una de las variables socioeconómicas numéricas, teniendo en cuenta que el valor de ys_k esta expresado:

$$ys_k = a_1.x_{edad} + a_2.x_{hijos} + \dots + a_9.x_{cuota}: yr_k = \frac{1}{(1 + e^{-ys_k})}$$

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

Modelo Logit - Función Sigmoidal

```
1 model=Sequential()
2 NE=4 #Indica el número de entradas al modelo
3 model.add(Dense(10,activation='linear',use_bias=False,input_dim=NE))
4 model.add(Dense(1,activation='sigmoid',use_bias=False))
5 model.compile(optimizer='adagrad',loss='mse')
6 model.summary()
```


$$ys_k = a_1.x_{edad} + a_2.x_{hijos} + \dots + a_9.x_{cuota}: yr_k = \frac{1}{(1 + e^{-ys_k})}$$

Modelamiento
Redes de Neuronas
Artificiales

Contents

Marco de Referencia

Redes Neuronales & Inteligencia Artificial Inspiración Biológica Modelado Neuronal Neurona Natural Neurona Artificial

Modelamiento Neuronal

Arquitecturas Neuronales Funciones de Activación Métodos de Aprendizaje Modelos Sigmoidal Aplicaciones

Contenido

Marco Conceptual Risk Management Framework Gestión Eficiente de Riesgos Machine Learning Data Science

Bibliografía

Libros Guía

- ISAZI, P. Redes de Neuronas Artificiales. Ed. Prentice Hall Latinoamérica, Primera Edición, México, 2.002.
- HILERA GONZÁLEZ, José Ramón; MARTÍNEZ, Víctor José. Redes neuronales artificiales: fundamentos, modelos y aplicaciones. España: Rama, 1995. 390 p.
- García, B. Patricio, *Introducción a las Redes Neuronales y su Aplicación a la Investigación en Astrofísica* Universidad de Gran Canarias, España, 2009.

Otra Bibliografía

Bellman, R. an Introduction to artificial intelligence: can computers think? Boyd & Frase Pub. Co, 146 p., San Francisco, 1978. ISBN: 0878350667.

Church, A., A note on the Entscheidungs problem, Journal of Symbolic Logic, 1, 1936, pp. 40-41.

Frege, G., *Escritos lógico-semánticos*, Tecnos, Madrid, 1974.

Gödel, K., *Obras completas*, Alianza Editorial, Madrid, 1987.

Inspira Crea Transforma

Muchas Gracias

