Package 'SolveSAPHE'

October 12, 2022

000001 12, 2022
Title Solver Suite for Alkalinity-PH Equations
Version 2.1.0
Date 2021-04-09
Depends R (>= 2.10)
Imports stats
Description Universal and robust algorithm for solving the total alkalinity-pH equation presented in G. Munhoven (2013) <doi:10.5194 gmd-6-1367-2013=""> and G. Munhoven (2021) <doi:10.5194 gmd-2020-447="">. The total alkalinity-pH equation relates total alkalinity and pH for a given set of acid-base concentrations in a given water sample, among which carbonic acid. This package is particularly useful in marine chemistry involving dissolved inorganic carbon. Original package in Fortran can be found at <doi:10.5281 zenodo.4328965="">.</doi:10.5281></doi:10.5194></doi:10.5194>
Encoding UTF-8
<pre>URL https://CRAN.R-project.org/package=SolveSAPHE</pre>
License GPL (>= 2)
Repository CRAN
RoxygenNote 7.1.0
NeedsCompilation no
Author Jean-Marie Epitalon [aut, cre, cph], Jean-Pierre Gattuso [cph], Guy Munhoven [aut]
Maintainer Jean-Marie Epitalon < jean-marie.epitalon@orange.fr>
Date/Publication 2021-05-01 17:50:03 UTC
R topics documented:
ACVT_HSWS_O_HFREE ACVT_HTOT_O_HFREE AK_AMMO_1_YAMI95 AK_BORA_DICK90 AK_CARB_0_WEIS74

24

AK_CARB_1_LUEK00												 				6
AK_CARB_1_MILL95												 				7
AK_CARB_1_ROYE93												 				8
AK_CARB_2_LUEK00												 				9
AK_CARB_2_MILL95												 				10
AK_CARB_2_ROYE93												 				11
AK_H2S_1_MILL95 .												 				12
AK_HF_PEFR87												 				13
AK_HSO4_DICK90 .												 				14
AK_PHOS_1_MILL95												 				15
AK_PHOS_2_MILL95												 				16
AK_PHOS_3_MILL95												 				17
AK_SILI_1_MILL95 .												 				18
AK_W_MILL95												 				19
solve_pH_from_AT												 , ,				20

ACVT_HSWS_O_HFREE

Conversion ratio H_SWS/H_free from free pH-scale to SWS scale

Description

Function returns the ratio H_SWS/H_free as a function of temperature, salinity and pressure

Usage

Index

```
ACVT_HSWS_O_HFREE(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvins Salinity in psup_bar pressure in bar

Value

ratio Ratio H_SWS/H_free

Author(s)

Guy Munhoven and Jean-Marie Epitalon

```
ACVT_HSWS_0_HFREE(t_k=298,s=35, p_bar=0)
```

ACVT_HTOT_O_HFREE

Conversion ratio H_Tot/H_free from free pH-scale to Total scale

Description

Function returns the ratio H_Tot/H_free as a function of temperature, salinity and pressure

Usage

```
ACVT_HTOT_O_HFREE(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Value

ratio Ratio H_Tot/H_free

Author(s)

Guy Munhoven and Jean-Marie Epitalon

Examples

```
ACVT_HTOT_O_HFREE(t_k=298,s=35, p_bar=0)
```

AK_AMMO_1_YAMI95

Dissociation constant of ammonium in sea-water [mol/kg-SW]

Description

Function returns the dissociation constant of ammonium in sea-water [mol/kg-SW]

Usage

```
AK_AMMO_1_YAMI95(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: SWS

Value

KNH

Dissociation constant of ammonium in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Yao and Millero (1995), Millero (1995) for pressure correction

Examples

```
AK_AMMO_1_YAMI95(t_k=298,s=35, p_bar=0)
```

AK_BORA_DICK90

Boric acid dissociation constant KB in mol/kg-SW

Description

Calculates boric acid dissociation constant in mol/kg-SW on the total pH-scale

Usage

```
AK_BORA_DICK90(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: Total

Value

KΒ

Dissociation constant of boric acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

AK_CARB_0_WEIS74 5

References

Dickson (1990, eq. 23) – also Handbook (2007, eq. 37), Millero (1979) pressure correction

Examples

```
AK_BORA_DICK90(t_k=298,s=35, p_bar=0)
```

AK_CARB_0_WEIS74

Henry's constant K0 in (mol/kg-SW)/atmosphere

Description

Calculates Henry's constant (K0) based on Weiss (1979) formulation

Usage

```
AK_CARB_0_WEIS74(t_k, s)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu

Details

currently no pressure correction

Value

K0

Henry's constant mol/(kg/atm)

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Weiss R. F., 1974 Carbon dioxide in water and seawater: the solubility of a non-ideal gas. *Marine Chemistry* **2**, 203-215.

```
AK_CARB_0_WEIS74(t_k=298, s=35)
```

AK_CARB_1_LUEK00

First dissociation constant of carbonic acid in mol/kg-SW from Luecker et al.

Description

Calculates first dissociation constant of carbonic acid in mol/kg-SW on the total pH-scale, following Luecker et al. (2000)

Usage

```
AK_CARB_1_LUEK00(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: Total

Value

Κ1

First dissociation constant of carbonic acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Luecker et al. (2000) - also Handbook (2007), Millero (1979) pressure correction

```
AK\_CARB\_1\_LUEK00(t\_k=298,s=35, p\_bar=0)
```

AK_CARB_1_MILL95

First dissociation constant of carbonic acid in mol/kg-SW from Millero et al. (1995)

Description

Calculates first dissociation constant of carbonic acid in mol/kg-SW on the SWS pH-scale.

Usage

```
AK_CARB_1_MILL95(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu

p_bar pressure in bar

Details

pH scale: SWS

Value

Κ1

First dissociation constant of carbonic acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Millero (1995, eq 50 – ln K1(COM)), Millero (1982) pressure correction

```
AK_CARB_1_MILL95(t_k=298,s=35, p_bar=0)
```

AK_CARB_1_ROYE93

First dissociation constant of carbonic acid in mol/kg-SW, from Roy et al.

Description

Calculates first dissociation constant of carbonic acid in mol/kg-SW on the total pH-scale, following Roy et al. (1993)

Usage

```
AK_CARB_1_ROYE93(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: Total

Value

Κ1

First dissociation constant of carbonic acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

```
Roy et al. (1993) – also Handbook (1994), Millero (1979) pressure correction
```

```
AK_CARB_1_ROYE93(t_k=298,s=35, p_bar=0)
```

AK_CARB_2_LUEK00

Second dissociation constant of carbonic acid in mol/kg-SW from Luecker et al.

Description

Calculates second dissociation constant of carbonic acid in mol/kg-SW on the total pH-scale, following Luecker et al. (2000)

Usage

```
AK_CARB_2_LUEK00(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: Total

Value

K2

Second dissociation constant of carbonic acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Luecker et al. (2000) - also Handbook (2007), Millero (1979) pressure correction

```
AK\_CARB\_2\_LUEK00(t\_k=298,s=35, p\_bar=0)
```

AK_CARB_2_MILL95

Second dissociation constant of carbonic acid in mol/kg-SW from Millero et al. (1995)

Description

Calculates second dissociation constant of carbonic acid in mol/kg-SW on the SWS pH-scale.

Usage

```
AK_CARB_2_MILL95(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu

p_bar pressure in bar

Details

pH scale: SWS

Value

K2

Second dissociation constant of carbonic acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Millero (1995, eq 51 – ln K2(COM)), Millero (1979) pressure correction

```
AK_CARB_2_MILL95(t_k=298,s=35, p_bar=0)
```

AK_CARB_2_ROYE93

Second dissociation constant of carbonic acid in mol/kg-SW from Roy et al.

Description

Calculates second dissociation constant of carbonic acid in mol/kg-SW on the total pH-scale, following Roy et al. (1993)

Usage

```
AK_CARB_2_ROYE93(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: Total

Value

K2 Second dissociation constant of carbonic acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

```
Roy et al. (1993) – also Handbook (1994), Millero (1979) pressure correction
```

```
AK_CARB_2_ROYE93(t_k=298,s=35, p_bar=0)
```

AK_H2S_1_MILL95

AK_H2S_1_MILL95

Dissociation constant of hydrogen sulfide in sea-water

Description

Function returns the dissociation constant of hydrogen sulfide in sea-water

Usage

```
AK_{H2S_1_MILL95}(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: SWS (according to Yao and Millero, 1995, p. 82: "refitted if necessary")

Total (according to Lewis and Wallace, 1998)

We stick to SWS here for the time being

The fits from Millero (1995) and Yao and Millero (1995) derive from Millero et al. (1988), with all the coefficients multiplied by $-\ln(10)$

Value

KHS

Dissociation constant of hydrogen sulfide in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Millero et al. (1988) (cited by Millero (1995), Millero (1995) for pressure correction

```
AK_H2S_1_MILL95(t_k=298,s=35, p_bar=0)
```

AK_HF_PEFR87

AK_HF_PEFR87

Dissociation constant of hydrogen fluoride in sea-water [mol/kg-SW]

Description

Function returns the dissociation constant of hydrogen fluoride [mol/kg-SW]

Usage

```
AK_HF_PEFR87(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

```
pH scale: Total (according to Handbook, 2007)
```

Value

KHF

Dissociation constant of hydrogen fluoride in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Perez and Fraga (1987), Millero (1995) for pressure correction

```
AK\_HF\_PEFR87(t\_k=298,s=35, p\_bar=0)
```

14 AK_HSO4_DICK90

AK_HSO4_DICK90

Dissociation constant of hydrogen sulfate (bisulfate) in sea-water

Description

Function returns the dissociation constant of hydrogen sulfate [mol/kg-SW]

Usage

```
AK_HSO4_DICK90(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

```
pH scale: Total (according to Handbook, 2007)
```

Value

KS0

Dissociation constant of hydrogen sulfate in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Dickson (1990) - also Handbook (2007), Millero (1995) for pressure correction

```
AK\_HSO4\_DICK90(t\_k=298,s=35, p\_bar=0)
```

AK_PHOS_1_MILL95

First dissociation constant of phosphoric acid (H3PO4) in seawater

Description

Calculates first dissociation constant of phosphoric acid on the SWS pH-scale

Usage

```
AK_PHOS_1_MILL95(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu

p_bar pressure in bar

Details

pH scale: SWS

Value

KP1

First dissociation constant of phosphoric acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Yao and Millero (1995), Millero (1995) for pressure correction

```
AK\_PHOS\_1\_MILL95(t\_k=298,s=35, p\_bar=0)
```

AK_PHOS_2_MILL95

Second dissociation constant of phosphoric acid (H3PO4) in seawater

Description

Calculates second dissociation constant of phosphoric acid on the SWS pH-scale

Usage

```
AK_PHOS_2_MILL95(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: SWS

Value

KP2 Second dissociation constant of phosphoric acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Yao and Millero (1995), Millero (1995) for pressure correction

```
AK\_PHOS\_2\_MILL95(t\_k=298,s=35, p\_bar=0)
```

AK_PHOS_3_MILL95

Third dissociation constant of phosphoric acid (H3PO4) in seawater

Description

Calculates third dissociation constant of phosphoric acid on the SWS pH-scale

Usage

```
AK_PHOS_3_MILL95(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu

p_bar pressure in bar

Details

pH scale: SWS

Value

KP3

Third dissociation constant of phosphoric acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Yao and Millero (1995), Millero (1995) for pressure correction

```
AK\_PHOS\_3\_MILL95(t\_k=298,s=35, p\_bar=0)
```

18 AK_SILI_1_MILL95

AK_SILI_1_MILL95

First dissociation constant of sillicic acid (H4SiO4) in seawater

Description

Calculates first dissociation constant of sillicic acid on the SWS pH-scale

Usage

```
AK_SILI_1_MILL95(t_k, s)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu

Details

```
pH scale: SWS (according to Dickson et al, 2007)
```

No pressure correction available

Value

KSi

First dissociation constant of sillicic acid in mol/kg-SW

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Yao and Millero (1995) cited by Millero (1995)

```
AK\_SILI\_1\_MILL95(t\_k=298,s=35)
```

 AK_W_MILL95

AK_W_MILL95

Water dissociation constant Kw in (mol/kg-SW)^2

Description

Calculates water dissociation constant Kw in (mol/kg-SW)^2 on the SWS pH-scale

Usage

```
AK_W_MILL95(t_k, s, p_bar)
```

Arguments

t_k temperature in Kelvin

s Salinity in psu p_bar pressure in bar

Details

pH scale: SWS

Value

Kw

Dissociation constant of water in (mol/kg-SW^2

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Millero (1995) for value at p_bar = 0, Millero (pers. comm. 1996) for pressure correction

```
AK\_W\_MILL95(t\_k=298,s=35, p\_bar=0)
```

1		£	A T
solve	nн	trom	ΑI

Solver for the total alkalinity-pH equations

Description

Determines [H+] from Total alkalinity and dissolved total elements in sea water. Universal and robust algorithm from Munhoven (2013) with Newton-Raphson iterations

Usage

Arguments

p_alktot	Total alkalinity (mol/kg)
p_dicvar	Value of a carbonate system related variable : DIC, [CO2*], [HCO3-] or [CO3-] (mol/kg)
	See below parameter p_dicsel
p_bortot	Total boron concentration (mol/kg)
p_po4tot	Total phosphate concentration (mol/kg)
p_siltot	Total silicate concentration (mol/kg)
p_nh4tot	Total ammonia concentration (mol/kg)
p_h2stot	Total sulfide concentration (mol/kg)
p_so4tot	Total sulphate concentration (mol/kg)
p_flutot	Total fluor concentration (mol/kg)
p_pHscale	Chosen pH scale: "T" for the total scale, "F" for the free scale and "SWS" for using the seawater scale
p_dicsel	Carbonate variable selector (default = DIC). See parameter p_dicvar above. Values are:
	"DIC": p_dicvar = DIC (Dissolved Inorganic Carbon)
	$"CO2": p_dicvar = [CO2*]$
	"HCO3" : p_dicvar = [HCO3-]
	"CO3" : p_dicvar = [CO3–]
p_askVal	Optional boolean - set to TRUE if you want this function to return error on alkalinity, along with [H+] concentration value. Default is FALSE
p_dissoc	Named list of all dissociation constants. The list is optional but, if given, it should contain all members listed below excepted K2_Sil, which is itself optional. Member names are :
	K1_DIC : First dissociation constant of carbonic acid (mol/kg) on chosen scale

K2_DIC: Second dissociation constant of carbonic acid (mol/kg) on chosen scale

K_BT: Dissociation constant of boric acid (mol/kg) on chosen scale

K1_PO4: First dissociation constant of phosphoric acid (mol/kg) on chosen scale

 $K2_PO4$: Second dissociation constant of phosphoric acid (mol/kg) on chosen scale

K3_PO4: third dissociation constant of phosphoric acid (mol/kg) on chosen scale

K_Sil: First dissociation constant of sillicic acid (mol/kg) on chosen scale

K2_Sil: Second dissociation constant of sillicic acid (mol/kg) on chosen scale. It is optional. If K2_Sil is absent from the list, then SiO2(OH)2 ion is not considered in the alkalinity equation. Only SiO(OH)3 ion is.

K_NH4: Dissociation constant of ammonium (mol/kg) on chosen scale

K_H2S: Dissociation constant of hydrogen sulfide (mol/kg) on chosen scale

K_HSO4: Dissociation constant of hydrogen sulfate (mol/kg) on free scale

K_HF: Dissociation constant of hydrogen fluoride (mol/kg) on free scale

K_H2O: Dissociation constant of water (mol/kg) on chosen scale

Note that all dissociation constants shall be expressed in chosen pH scale except K_HF and K_HSO4 which shall be in free scale.

If the list is not given, these constants, excepted K2 Sil, will be calculated.

p_temp Temperature in degree Celsius, to compute dissociation constants when p_dissoc is not given

p_sal Salinity, in pratical salinty unit (psu), to compute dissociation constants when p_dissoc is not given

p_pres Pressure, in bars, to compute dissociation constants when p_dissoc is not given

p_hini Optional initial value of [H+] concentration

If p_diagal = "CO2" a vector of two initial values are expected since

If p_dicsel = "CO3", a vector of two initial values are expected since there may be two solutions for pH. Else, one initial value is expected

Details

Formulations used when calculating dissociation constants:

- Carbonate if Total pH scale: Luecker et al. (2000) also Handbook (2007)
- Carbonate if SWS or Free pH scale: Millero et al. (1995) also Handbook (2007)
- Boric acid: Dickson (1990, eq. 23) also Handbook (2007, eq. 37)
- Phosphoric acid: Yao and Millero (1995)
- Silicic acid: Yao and Millero (1995) cited by Millero (1995)
- Ammonium: Yao and Millero (1995)
- Hydrogen sulfide: Millero et al. (1988) (cited by Millero (1995)
- Hydrogen sulfate: Dickson (1990) also Handbook (2007)
- Fluoric acid if Total pH scale: Perez and Fraga (1987)

- Fluoric acid if SWS or Free pH scale: Dickson and Riley (1979)
- Water: Millero (1995)

This function does not support vectors as arguments, only scalar values.

Value

If p_dicsel is "CO3", there may be one or two solutions for [H+], else there is only one. In case there are two solutions, both are returned.

 If you set p_askVal to TRUE, the function returns a data frame containing the following columns:

zh : [H+] concentration value(s) in the chosen pH scale

val: Error(s) on total alkalinity, that is the deviation between total alkalinity calculated from [H+] and given total alkalinity

• If you set p_askVal to FALSE (default), the function returns only [H+] concentration value(s) in the chosen pH scale.

Author(s)

Guy Munhoven and Jean-Marie Epitalon

References

Munhoven G. (2013) Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1. *Geoscientif. Model Dev.*, 1367-1388

Examples

```
## Compute [H+] from Alkalinity total and DIC, on total pH scale
p_dissoc <- list()</pre>
p_dissoc$K1_DIC <- 1.421828e-06
p_dissoc$K2_DIC <- 1.081555e-09
p_dissoc$K_BT <- 2.526573e-09
p_dissoc$K1_P04 <- 0.02408434
p_dissoc$K2_P04 <- 1.076024e-06
p_dissoc$K3_P04 <- 1.600484e-09
p_dissoc$K_Sil <- 4.071935e-10
p_dissoc$K_NH4 <- 5.380823e-10
p_dissoc$K_H2S <- 3.087264e-07
p_dissoc$K_HS04 <- 0.1003021 # on free scale</pre>
p_dissoc$K_HF <- 0.00176441 # on free scale
p_dissoc$K_H2O <- 5.97496e-14
solve_pH_from_AT(p_alktot=2.5e-3, p_dicvar=2e-3, p_bortot=0.0004157, p_po4tot=0, p_siltot=0,
             p_nh4tot=0, p_h2stot=0, p_so4tot=0.0282, p_flutot=6.832e-05, p_pHscale="T",
                 p_dicsel="DIC", p_dissoc=p_dissoc)
```

Giving inital [H+] value and asking for final error on alkalinity, on seawater pH scale
result <- solve_pH_from_AT(p_alktot=0.00234, p_dicvar=0.001936461, p_bortot=0.0004157, p_po4tot=0,</pre>

Index

AK_SILI_1_MILL95, 18

```
* utilities
                                                AK_W_MILL95, 19
    ACVT_HSWS_O_HFREE, 2
                                                solve_pH_from_AT, 20
    ACVT_HTOT_O_HFREE, 3
    AK_AMMO_1_YAMI95, 3
    AK_BORA_DICK90, 4
    AK_CARB_0_WEIS74, 5
    AK_CARB_1_LUEK00, 6
    AK_CARB_1_MILL95, 7
    AK_CARB_1_ROYE93, 8
    AK_CARB_2_LUEK00, 9
    AK_CARB_2_MILL95, 10
    AK_CARB_2_ROYE93, 11
    AK_H2S_1_MILL95, 12
    AK_HF_PEFR87, 13
    AK_HS04_DICK90, 14
    AK_PHOS_1_MILL95, 15
    AK_PHOS_2_MILL95, 16
    AK_PHOS_3_MILL95, 17
    AK_SILI_1_MILL95, 18
    AK_W_MILL95, 19
    solve_pH_from_AT, 20
ACVT_HSWS_O_HFREE, 2
ACVT_HTOT_O_HFREE, 3
AK\_AMMO\_1\_YAMI95, 3
AK_BORA_DICK90, 4
AK_CARB_0_WEIS74, 5
AK_CARB_1_LUEK00, 6
AK_CARB_1_MILL95, 7
AK_CARB_1_ROYE93, 8
AK_CARB_2_LUEK00, 9
AK_CARB_2_MILL95, 10
AK_CARB_2_ROYE93, 11
AK_H2S_1_MILL95, 12
AK_HF_PEFR87, 13
AK_HS04_DICK90, 14
AK_PHOS_1_MILL95, 15
AK_PHOS_2_MILL95, 16
AK_PHOS_3_MILL95, 17
```