Project : Computing the Polar Decomposition

Zhengbo Zhou*

September 22, 2022

Contents

1	Norms and Singular Value Decomposition	2
	1.1 Vector Norms	2
2	Polar Decomposition and its Properties	2

^{*}School of Mathematics, University of Manchester, Manchester, M13 9PL, England (zhengbo.zhou@student.manchester.ac.uk).

1 Norms and Singular Value Decomposition

1.1 Vector Norms

Before introducing matrix norm, a brief illustration of vector norm is necessary.

Definition 1.1 (Vector Norm). A vector norm on \mathbb{C}^n is a function $\|\cdot\|:\mathbb{C}^n\to\mathbb{R}$ such that it satisfies the following properties

- 1. $||x|| \ge 0$ for all $x \in \mathbb{C}^n$.
- 2. ||x|| = 0 if and only if x = 0.
- 3. $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{C}$ and $x \in \mathbb{C}^n$.
- 4. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{C}^n$.

Example 1.2. For $x \in \mathbb{C}^n$,

1-norm :
$$||x||_1 = \sum_{i=1}^n |x_i|$$
.
2-norm (Euclidean Norm) : $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = \sqrt{x^*x}$.

2 Polar Decomposition and its Properties

Throughout this project, we focused on $A \in \mathbb{C}^{n \times n}$. It is well known that for any complex number $\alpha \in \mathbb{C}$, we can rewrite it into the polar form $\alpha = re^{i\theta}$. The polar decomposition is its matrix analogue.

Theorem 2.1 (Polar Decomposition). For $A \in \mathbb{C}^{n \times n}$,