AE 760AA: Micromechanics and multiscale modeling

Lecture 7 - Physical measurements

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

February 13, 2019

schedule

- Feb 13 Physical measurements (HW2 Due)
- Feb 18 Variational Calculus
- Feb 20 Variational Calculus
- Feb 25 Bounds and Boundary Conditions

outline

- review
- measuring orientation

review

checking transformations

- Follow the procedure **here**
- This gives a way to systematically check whether your rotations are correct
- You can check any coordinate transformation as long as you know the unit vectors of your primed coordinate system in the global coordinates

$$x = [Q^T]x'$$

common homework errors

- Some people had rotations about an axis with zeros along the diagonal
- This is possible with successive rotations, but for a rotation about one of the three axes, you should always have one term along the diagonal equal to 1
- When calculating stiffness in Problem 2, most students had some unexpected behavior
- All four walls had same x_1 component of fibers, you should have gotten C_{11} the same for all 4 walls
- C_{22} or C_{33} should have also been equal to C_{11} , depending on the wall

measuring orientation

measuring orientation

- In micromechanics (and most places where multi-scale modeling would be used), measuring local orientations can be difficult
- For composites, these are some common techniques
 - Microscopy (some ambiguity in orientation tensor)
 - Serial sectioned microscopy (eliminates ambiguity, very expensive)
 - CT-scanning (only gives approximate measure)
 - Micro CT-scanning (only for very small parts)

- Cylindrical fiber intersects cutting plane at some angle
- After cutting and polishing, this leaves an ellipse
- By measuring the ellipse, we can calculate the angle between it and the cutting plane
- Microscopy can also be used to measure volume fraction, void content, and fiber spacing

fiber in spherical coordinates

fiber direction components

Component	Definition
p_1	$\sin heta \cos \phi$
p_2	$\sin heta \sin \phi$
p_3	$\cos \theta$

measurements

calculations

• We find the major (M) and minor (m) axes using

$$m = \sqrt{(x_3 - x_4)^2 + (y_3 - y_4)^2} \ X = x_1 - x_2 \ Y = y_1 - y_2 \ M = \sqrt{X^2 - Y^2}$$

orientation tensor

• We can now calculate angles using

$$\sin\phi = rac{Y}{M}\cos\phi = rac{X}{M}\cos heta = rac{m}{M}\sin heta = \sqrt{1-rac{m^2}{M^2}}$$

software

- If you have to do a lot of microscopy measurements, contact Dr. Sharma, he wrote an automated measurement tool
- Otherwise you can use **imageJ**

- Need to account for bias in measurement (more likely to see fibers coming out of plane)
- There is some ambiguity in fiber angle
- Fiber at (ϕ, θ) is not distinguishable from $(\phi + \pi, \theta)$
- In the second-order orientation tensor, this affects a_{23} and a_{13}

serial sectioning

- Serial sectioning is a method where you continually polish a specimen after photographing it
- After photograph you grind and polish, then photograph and repeat
- Gives the full 3D state of orientation, but is difficult

CT Scanning

- Even if a CT Scan cannot resolve down to fiber resolution, the gradient information can give an idea of fiber orientation
- This method is not very precise
- But it can view the full-field and detect many forms of damage without destroying a part
- At the micro-scale full orientation can be obtained, but this is not practical for large parts