MAT157 Assignment 1

Nicolas Coballe

September 17, 2021

5. a) We will prove this using contradiction.

Proof.

Assume all functions $f:A\to B$ are not bijective. Then, consider $A:=\mathbb{R}$ and $f:A\to A$, $f(x)=\frac{1}{x}$ if $x\neq 0$ and f(x)=0 otherwise. f is injective because it only maps zero to itself and strictly decreases on the interval $(-\infty,0)$ and $(0,\infty)$ We will show this by taking $0< x< y \Longrightarrow 0<\frac{x}{y}<1 \Longrightarrow 0<\frac{1}{x}<\frac{1}{y}$. A similar argument works for x< y<0. Because f is strictly decreasing on intervals $(-\infty,0)$ and $(0,\infty)$ and the images of $f((-\infty,0))$ and $f((0,\infty))$ are clearly disjoint, f must be an injection. Now let B:=f(A) and thus, $f(A)\subseteq B\subseteq A$. Now consider the map $h:A\to B$, $f(x)=\frac{1}{x}$ if $x\neq 0$ and f(x)=0 otherwise. We have already proven that this function is injective and because h(A)=B, h is surjective. Thus h is bijective, a contradicition.