Narrowing Bounds for Edge Folkman Numbers Independent Study Proposal

Christopher Wood Advisor: Professor Stanisław Radziszowski

February 23, 2013

1 BACKGROUND

Edge Folkman numbers, first introduced by Folkman in 1960 (TODO: CITE), are concerned with the study of graphs in which a monochromatic coloring of a particular subgraph always exists. We write $G \to (a_1,...,a_k;p)^e$ if for ever edge coloring of an undirected simple graph G not containing K_p , there exists a monochromatic K_{a_i} in color i for some $i \in \{1,...,k\}$. The edge Folkman number is defined as $F_e(a_1,...,a_k) = \min\{|V(G)|: G \to (a_1,...,a_k;p)^e\}$. In 1970 Folkman proved that for all $k > \max(s,t)$, edge- and vertex- Folkman numbers $F_e(s,t;k)$ and $F_v(s,t;k)$ exist. Prior to this, Erdos and Hajnal pose the problem of finding $F_e(3,3;4)$, which can be informally stated as the following:

What is the order of the smallest K_4 -free graph for which any 2-coloring of its edges must contain at least one monochromatic triangle?

This is equivalent to finding the smallest K_4 -free graph that is not the union of two triangle-free graphs. Since the proposition of this problem, there has been a significant amount of work towards aimed at narrowing the upper and lower bounds of $F_e(3,3;4)$. Table **??** enumerates the work on this problem and leads us to the current state of the field. concerned with the study of graphs in which a monochromatic coloring of particular subgraphs always exists.

2 PROPOSED WORK

TODO: lower bound, pushing towards 20 using large-scale computations TODO: upper bound attacking G127, and subgraph extensions using 3-sat solvers

3 OUTCOMES AND DELIVERABLES

Publication-ready paper and more in-depth progress report for the entire project