1 点估计

用样本 $X_1, X_2, ... X_n$ 构造的估计量 $\hat{\theta}(X_1, X_2, ... X_n)$ 来估计未知参数 θ 称为点估计。

(1)无偏性

定义:设 $\hat{\theta}$ 是 θ 的估计量,如果 $E(\hat{\theta})=\theta$,则称 $\hat{\theta}=\hat{\theta}\big(X_1,X_2,...X_n\big)$ 是未知参数 θ 的无偏估计量

(2)有效性

定义:设 $\hat{\theta}_1$, $\hat{\theta}_2$ 都是 θ 的无偏估计量,且 $D\hat{\theta}_1 \leq D\hat{\theta}_2$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 更有效

(3)一致性

定义:设 $\hat{\theta}(X_1,X_2,...X_n)$ 是 θ 的估计量,如果 $\hat{\theta}$ 依概率收敛于 θ ,则称 $\hat{\theta}(X_1,X_2,...X_n)$ 为 θ 的一致估计量

(4)常用公式

$$EX_i = EX = \mu$$
; $DX_i = DX = \sigma^2$

$$E\overline{X} = \frac{n}{n}\mu = \mu$$
; $D\overline{X} = \frac{n}{n^2}\sigma^2 = \frac{\sigma^2}{n}$

$$EX_i^2 = \sigma^2 + \mu^2 ;$$

$$E(X_i - \overline{X}) = 0$$
; $D(X_i \pm \overline{X}) = \frac{n+1}{n}\sigma^2$

$$E(X_i - \overline{X})^2 = \frac{n-1}{n}ES^2 = \frac{n-1}{n}\sigma^2$$

$$E(g(X)) = \sum_{i=0}^{+\infty} \overline{g(X_i)} P\{X = X_i\} = \int_{-\infty}^{+\infty} \overline{g(x)} f(x) dx$$

Cov(X,Y) = E(XY) - E(X)E(Y)

 $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$

2 矩估计

总体 X 的分布含有未知数 $\theta_1, \theta_2, ..., \theta_k$,由样本估计得到 k 阶矩估计量 $\alpha_l = E(X^l) = \alpha_l(\theta_1, \theta_2, ..., \theta_k), l = 1, 2, ..., k$

可以得到各阶原点矩 $A_l = \frac{1}{n} \sum_{i=1}^n X_i^l$

然后列方程组求解未知数 $\theta_1, \theta_2, ..., \theta_k$;

DX 的矩估计: $\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}=\frac{n-1}{n}S^{2}$

注意: 样本二阶中心矩=样本二阶原点矩-样本一阶原点矩的平方

3 最大似然估计法

(1)离散型似然函数

设 $P{X = a_i} = p(a_i, \theta)$

$$L(\theta) = L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta)$$
 (1.1)

本质上 $L(\theta)$ 就是在参数 θ 下所有概率的乘积

(2)连续型似然函数

设概率密度为 $f(x;\theta)$

$$L(\theta) = L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$$
 (1.2)

似然函数的含义就是提取的当前样本的概率可由 θ 表示,假设提取的这一系列样本的概率为 \mathbf{b} 人值,由此计算出 \mathbf{b} ①对 \mathbf{b} \mathbf{b} 水导② \mathbf{b} $\mathbf{$

4 区间估计

(1)置信区间

定义: 总体 X 的分布规律存在一个未知数 θ ; 且对于给定的 α ,如果两个统计量满足 $P\{\theta_1<\theta<\theta_2\}=1-\alpha$,那么随机区间 (θ_1,θ_2) 为参数 θ 的置信水平为 $1-\alpha$ 的置信区间

(2)一个正态总体的置信区间表(见证明)

待估	其他	枢轴量 W	置信区间
参数	参数		
μ	σ² 已知√	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$
μ	σ ² 未知?	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$	$\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$
σ^2	μ 未知 <mark>?</mark>	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\left(\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right)$

5 假设检验

错误类型-

一类错误: 弃真; P{拒绝 H_0 | H_0 为真} = α 二类错误: 纳伪; P{接收 H_0 | H_0 为假} = β

(1)提出检验假设

 H_0 : 样本与总体或样本与样本间的差异是由抽样误差引起的

 H_1 : 样本与总体或样本与样本间存在本质差异

预先设定的检验水准为 α ; 当检验假设为真,但被错误地拒绝的概率 (一类错误)

(2) 求取拒绝域

利用上述公式