2023 Spring Probability & Statistics for EECS

March 26, 2023

Homework 07

Professor: Ziyu Shao & Dingzhu Wen Due: 23:59 on April 02, 2023

1. Let

$$F(x) = \frac{2}{\pi} \sin^{-1}(\sqrt{x}), \text{ for } 0 < x < 1,$$

and let F(x) = 0 for $x \le 0$ and F(x) = 1 for $x \ge 1$.

- (a) Check that F is a valid CDF, and find the corresponding PDF f.
- (b) Explain how it is possible for f to be a valid PDF even though f(x) goes to ∞ as x approaches 0 and as x approaches 1.
- 2. Let F be a CDF which is continuous and strictly increasing. Let μ be the mean of the distribution. The quantile function, F^{-1} , has many applications in statistics and econometrics. Show that the area under the curve of the quantile function from 0 to 1 is μ .
- 3. Let U_1, \ldots, U_n be i.i.d. Unif(0,1), and $X = \max(U_1, \ldots, U_n)$. What is the PDF of X? What is E(X)?
- 4. A stick of length 1 is broken at a uniformly random point, yielding two pieces. Let X and Y be the lengths of the shorter and longer pieces, respectively, and let R = X/Y be the ratio of the lengths X and Y.
 - (a) Find the CDF and PDF of R.
 - (b) Find the expected value of R (if it exists).
 - (c) Find the expected value of 1/R (if it exists).
- 5. The Exponential is the analog of the Geometric in continuous time. This problem explores the connection between Exponential and Geometric in more detail, asking what happens to a Geometric in a limit where the Bernoulli trials are performed faster and faster but with smaller and smaller success probabilities.

Suppose that Bernoulli trials are being performed in continuous time; rather than only thinking about first trial, second trial, etc., imagine that the trials take place at points on a timeline. Assume that the trials are at regularly spaced times $0, \Delta t, 2\Delta t, \ldots$, where Δt is a small positive number. Let the probability of success of each trial be $\lambda \Delta t$, where λ is a positive constant. Let G be the number of failures before the first success (in discrete time), and T be the time of the first success (in continuous time).

- (a) Find a simple equation relating G to T.
- (b) Find the CDF of T.
- (c) Show that as $\Delta t \to 0$, the CDF of T converges to the Expo(λ) CDF, evaluating all the CDFs at a fixed $t \geq 0$.
- 6. Let $Z \sim \mathcal{N}(0,1)$, and c be a nonnegative constant. Find $E(\max(Z-c,0))$, in terms of the standard Normal CDF Φ and PDF φ .