

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low R_{DS(ON)}

Product Summary

BVDSS	RDSON	ID
100V	3.9mΩ	120A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

TO263 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ -10V ¹	120	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ -10V ¹	81	А
I _{DM}	Pulsed Drain Current ²	512	Α
EAS	Single Pulse Avalanche Energy ³	486	mJ
I _{AS}	Avalanche Current	120	А
P _D @T _C =25°C	Total Power Dissipation ⁴	178	W
P _D @T _A =25°C	Total Power Dissipation ⁴	71	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
$R_{ heta JA}$	Thermal Resistance Junction-ambient ¹		56	°C/W	
R _{eJC}	Thermal Resistance Junction-Case ¹		0.8	°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		3.9	4.8	mΩ
R _{DS(ON)}		V _{GS} =4.5V , I _D =10A				
V _{GS(th)}	Gate Threshold Voltage	\\ _\\	2.0	3.0	4.0	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$				mV/°C
	Proje Course Leakers Current	V _{DS} =80V , V _{GS} =0V , T _J =25°C			1	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =80 , V _{GS} =0V , T _J =55°C			5	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =15A		35		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.6		Ω
Qg	Total Gate Charge (6V)	V _{DS} =50V , V _{GS} =4.5V , I _D =20A		44		
Q _{gs}	Gate-Source Charge			24		nC
Q _{gd}	Gate-Drain Charge			18.5		
T _{d(on)}	Turn-On Delay Time	V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω , I_{D} =10A		18		
Tr	Rise Time			23		
T _{d(off)}	Turn-Off Delay Time			37		ns
T _f	Fall Time			15.7		
C _{iss}	Input Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		4102		
Coss	Output Capacitance			592		pF
C _{rss}	Reverse Transfer Capacitance			19.8		

Notes:

- 1. Computed continuous current assumes the condition of T_{J_Max} while the actual continuous current depends on the thermal & electromechanical application board design.
- 2. This single-pulse measurement was taken under TJ_Max = 150°C.
- 3. EAS of 486 mJ is based on starting $T_J = 25^{\circ}C$, L = 3.0 mH, $I_{AS} = 18 \text{A}$, $V_{GS} = 10 \text{V}$, $V_{DD} = 50 \text{V}$; 100% test at L = 0.1 mH, $I_{AS} = 67 \text{A}$.
- 4. The power dissipation PD is based on T_{J_Max} = 150°C.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Electrical & Thermal Characteristics

Figure 1: Saturation Characteristics

Figure 2: Transfer Characteristics

Figure 3: R_{DS(ON)} vs. Drain Current

Figure 4: R_{DS(ON)} vs. Junction Temperature

Figure 5: $V_{GS(th)}$ vs. Junction Temperature

Figure 6: $V_{BR(DSS)}$ vs. Junction Temperature

Typical Electrical & Thermal Characteristics

Figure 7: Body-Diode Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Current De-rating

Figure 10: Power De-rating

Figure 11: Maximum Safe Operating Area

Figure 12: Single Pulse Power Rating, Junction-to-Case

Typical Electrical & Thermal Characteristics

Figure 13: Normalized Maximum Transient Thermal Impedance

Mechanical Dimensions for TO-263

COMMON DIMENSIONS

	MM		
SYMBOL	MIN	MAX	
Α	4.37	4.89	
A1	1.17	1.42	
A2	2.20	2.90	
A3	0.00	0.25	
b	0.70	0.96	
b1	1.17	1.47	
С	0.28	0.60	
D1	8.45	9.30	
D4	6.60	-	
E	9.80	10.40	
E5	7.06	-	
е	2.54BSC		
Н	14.70	15.70	
H2	1.07	1.47	
L	2.00	2.80	
L1	-	1.75	
L4	0.254BSC		
θ	0°	9°	