

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2002236241 A

(43) Date of publication of application: 23.08.02

(21) Application number: 2001032239

(71) Applicant: FUJIKURA LTD NIPPON TELEGR & TELEPH CORP <NTT>

(22) Date of filing: 08.02.01

(72) Inventor: WATANABE HIROTO OKADA NAOKI WATANABE KOICHIRO MIYAMOTO SUEHIRO HOKARI KAZUO

(54) OPTICAL CABLE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an optical cable which has a water-proof characteristics, and which is easily manufactured at a low cost.

SOLUTION: A coated optical fiber tape 2 is united by one or more water absorptive yarn 8, is encircled by a yarn aggregate 9 and is collectively coated by a sheath 10. The ratio of water absorptive yarn 8 to the yarn aggregate 9 is set at 5 volume %:95 volume % to 30 volume %:70 volume %.

COPYRIGHT: (C)2002,JPO

(19) 日本国特許庁 (J P)

(12) 公開特許公報(A)

(11)特許山東公開各号 特開2002-236241

(P2002-236241A)

(43)公開日 平成14年8月23日(2002.8.23)

(51) Int.CL7 G 0 2 B 6/44 銀別記号 371 381

FI G02B 6/44 デーマユート*(参考) 371 2H001

381

審査請求 有 商求項の数3 OL (全 5 頁)

(21)出願番号

特顯2001-32239(P2001-32239)

(22)出題日 平成

. 平成13年2月8日(2001.2.8)

(71)出顧人 000005186

株式会社フジクラ

東京都江東区木場1丁目5番1号

(71)出順人 000004226

日本電信電話株式会社

東京都千代田区大手町二丁目3番1号

(72) 発明者 渡邉 裕人

千葉県佐倉市大崎1440番地 株式会社フジ

クラ佐倉事業所内

(74)代理人 100084908

弁理士 志賀 正武 (外3名)

最終頁に続く

(54) 【発明の名称】 光ケーブル

(57)【要約】

【課題】 防水特性を有し、かつ製造も容易で低コスト で提供できる光ケーブルを得る。

【解決手段】 光ファイバテーブ心線2が1本以上の吸水性ヤーン8で結束し、これをヤーン集合体9で包囲し、シース10により一括接鞭された構造とし、吸水性ヤーン8とヤーン集合体9の割合を5体補%:95体補%~30体補%:70体債%とする。

【特許請求の範囲】

【請求項1】 光ファイバテーブ心線がヤーンで包囲さ れ、とのヤーンの外層が直接シースで被覆され、前記光 ファイバテーブ心線が1本以上の吸水性ヤーンで結束さ れ、この上にヤーンで包囲されたことを特徴とする光ケ ーブル。

【請求項2】 前記光ファイバテーブ心線を結束してい る1本以上の吸水性ヤーンを包囲するヤーンは、吸水性 ヤーンとヤーンが混在する集合体であることを特徴とす る請求項1記載の光ケーブル。

【請求項3】 前記吸水性ヤーンとヤーンの集合体にお ける。吸水性ヤーンとヤーンの混在する割合が、5体請 %:95体補%~30体積%:70体積%であることを 特徴とする請求項1または2記載の光ケーブル。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、防水特性を要する 屋外使用などに好適な光ファイバケーブルの構造に関す る。

[0002]

【従来の技術】図3は従来の光ケーブルの一例を示すも のである。図3において、符号1は光ケーブルを示す。 この光ケーブル1は、複数本の光ファイバテーブ心線2 がアラミド繊維、炭素繊維、ガラス繊維などのヤーン3 で包囲され、この上にナイロン12.可塑化ポリ塩化ビ エル、ポリエチレンなどの熱可塑性樹脂からなるシース 4で被覆された。外径5.0~10.0mm程度のもの である。このシース4内には銅線などからなる2本の抗 張方線5、5およびプラスチック紐などからなる口出し 紐6.6が光ケーブル1の長手方向に埋め込まれてい

【0003】とのような構造の光ケーブル1は、統張力 線5.5の存在により架設中の張力に対して十分な耐性 を有しており、また、口出し紐6、6の存在により光フ ァイバテーブ心線2を容易に口出しさせることができる ため、広く用いられている。

【①①①4】しかしながら、このような模造の光ケーブ ルにあっては、防水特性を有していないという欠点があ るため、屋外用途には適していない。そこで、防水特性 を有する光ケーブルが考えられた。この紡水性光ケーブ 40 ルは、通常のヤーンと吸水性ヤーンとが混在した集合体 を用いて光ファイバテーブ心線2を包囲した枠造のもの

【0005】しかしながら、この構造の防水性光ケーブ ルにあっては、ヤーンと吸水性ヤーンの混在する割台を 変えて光ケーブル」を造り、その防水性試験を行ったと ころ。光ケーブルによって防水特性にはらつきがあるば かりでなく、防水特性を満足しない光ケーブルが存在す ることが明らかとなった。

【0006】上記のような防水特性不良の原因を調査し 55 【0011】また、この防水性光ケーブル7では、シー

たところ、防水試験時に注いだ水は光ファイバテーブ心 級の間に侵入しやすいため、吸水性ヤーンが光ファイバ テープ心線2に接している光ケーブル1では良好な防水 **特性が得られるが、吸水性ヤーンが光ファイバテーブ心** 級2に接していない光ケーブル1では良好な防水特性は 得られないことが判明した。

[0007]

【発明が解決しようとする課題】よって、本発明におけ る課題は、防水特性を有し、かつ製造も容易で低コスト 10 で提供できる光ケーブルを得ることにある。

[00081

【課題を解決するための手段】かかる課題を解決するた め、本発明の請求項1記載の光ケーブルは、光ファイバ テープ心線がヤーンで包囲され、このヤーンの外層が直 接シースで彼覆され、前記光ファイバテーブ心線が1本 以上の吸水性ヤーンで結束され、この上にヤーンで包囲 されたものである。また、本発明の請求項2記載の光ケ ープルは、前記光ファイバテープ心線を結束している! 本以上の吸水性ヤーンを包囲するヤーンを、吸水性ヤー 29 ンとヤーンが縄在する集合体とする。そして、本発明の 請求項3記載の光ケーブルは、前記吸水性ヤーンとヤー ンの集合体における、吸水性ヤーンとヤーンの混在する 割合を、5体積%:95体積%~30体積%:70体積 %とする。

[0009]

【発明の実施の形態】以下、本発明の光ケーブルの一例 について図 1 および図 2 を用いて説明する。 本例の防水 性光ケーブル?においては、鍑数本の光ファイバテープ 心線2が、1本以上、好ましくは2~3本の吸水性ヤー 30 ン8が巻き付けられ、さらにこの上に、吸水性ヤーンと 通常のヤーンとが集合されてなるヤーン集合体9で包囲 されて、ヤーン集合体9の外周にポリエチレン。可塑化 **ポリ塩化ビニルなどの樹脂からなるシース10が被覆さ** れたものであり、その外径が5.0~10.0mm程度 のものである。吸水性ヤーン8はポリアクリル酸塩系樹 脂、ポリビニルアルコール系樹脂、ポリアクリルアミド 系樹脂、ポリオキシエチレン系樹脂などの吸水性樹脂を 繊維化した繊維からなっており、通常のヤーンはアラミ 下微维、炭素微维、ガラス微維などからなっている。

【①①1①】防水蛭光ケーブル7の一括波穏層のシース 10内には、外径(). 4~1.2mmの鋼線からなるテ ンションメンバ11、11および外径0.5~2.0m mのプラスチック紐からなるリップコード12.12 が、防水性光ケーブル7の長手方向に埋め込まれてお り、テンションメンバ11、11とリップコード12、 12は互いに90°間隔で埋め込まれている。上記テン ションメンバ12、12は防水性光ケーブル7が築設さ れた際に、架設中の張力に対して十分な耐性を有してお り、光ファイバテーブ心線2の斷線を防止している。

ス10のリップコード12、12の埋め込み部分10 a、10aの厚みをリップッコード12が退め込まれて いない部分のシース10の厚みよりも内厚としてある。 このようにすれば、リップコード12の外径を大きくし た場合にも埋め込み部分10aの緩減的強度の低下を防 ぐことができ、防水性光ケーブル7の側圧特性、衝撃特 性が良好に保たれる。

【0012】とのように、シース10のリップコード12、12の超め込み部分10a、10aが、他の部分よりも内厚に設計された防水性光ケーブル7においては、内厚部分が外見上突起状となるため、当該坦め込み部分10aの位置が容易に確認できる。また、この突起状となったシース埋め込み部分10aをニッパなどでつまんで、リップコード12を防水性光ケーブル7から容易に取り出すことができる。リップコード12を取り出して引っ張り出すことによって、シース10に裂け目が生じて、ここから光ファイバテーブ心線2を容易に口出しすることができるようになっている。

【0013】また、防水性光ケーブル7の中心に収容される光ファイバとしては、光ファイバテーブ心線2以外 20 に光ファイバ素線、光ファイバ心線などであってもよい。

【10014】次に、このような構造の防水性光ケーブル 7の製法について説明する。図2に示すように、複数本 の光ファイバテーブ心線2が、あらかじめ1本以上の吸 水性ヤーン8で結束される。結束の方法は、1本以上の 吸水性ヤーン8を、複数本の光ファイバテーブ心線2の 外周全体に巻き付けるようにして行われる。そしてこの 上に、吸水性ヤーンと通常のヤーンとが集合されてなる ヤーン集合体9で包囲して集合体をなし、この集合体は 30 引き続き提出ヘッドに送られる。

【0015】 押出ヘッドにはこれと同時に2本のテンションメンバ11.11および2本のリップコード12、12が供給され、押出機からシース10をなすボリエチレン、可塑化ポリ塩化ビニルなどの溶融制脂が供給される。そして、との溶融制脂は、上記集合体、テンションメンバ11、11およびリップコード12、12を一括に接覆し、防水性光ケーブル7となる。

【0016】とのようにして造られた防水性光ケーブル 7の防水特性の評価を、以下のような方法で行う。防水 40 性光ケーブル?の蟾部に水頭長1mになるように水を注ぎ、ケーブル内に侵入する水の24時間後の侵入長さにより防水性を評価する。

【0017】このような防水性光ケーブル?では、1本以上の吸水性ヤーン8が、複数本の光ファイバテーブ心線2の外周全体に巻き付けられて、この上にヤーン集合体9で包囲されているので、吸水性ヤーン8と光ファイバテーブ心線2が密着した状態で成形される。このため、光ファイバテーブ心線2間に水が侵入しても、直ちに吸水性ヤーン8が吸水して膨調し、それ以上の水の侵入が抑えられ、結果として防水管性が向上する。

【0018】また、本例の防水性光ケーブル7では、ヤーン集合体9における、吸水性ヤーンと通常のヤーンの混在する割合が、5体語%:95体積%~30体積%:70体積%の範囲で十分な防水特性を発揮する。吸水性ヤーンの割合が5体箱%未満では、防水特性は不十分であり、30体積%を超えると製造コストが蓄み、実用に供することができない。

【0019】以下、具体例を示す。図1に示すような機造からなる防水性光ケーブル7において、ヤーン集合体 9の吸水性ヤーンと通常のヤーンの混在する割合が異なる4種類の光ケーブル(A)は、ヤーン集合体9が全て吸水性ヤーンからるものであり、光ケーブル(B)はヤーン集合体9が、吸水性ヤーンとヤーンが30体積%:70体積%の割合で、光ケーブル(C)はヤーン集合体9が、吸水性ヤーンとヤーンが5体積%:95体積%の割合で、光ケーブル(D)はヤーン集合体9が、吸水性ヤーンとヤーンが5体積%の割合で、光ケーブル(D)はヤーン集合体9が、吸水性ヤーンとヤーンが2体積%:98体積%の割合で複なしているものである。

【0020】 このようにして造られた光ケーブル (A)、(B)、(C)、(D)の防水特性の評価を、 以下のような方法で行った。光ケーブル(A)、

(B)、(C)、(D)の端部に水頭長1mになるように水を注ぎ、ケーブル内に侵入する水の2.4時間後の侵入長さを測定し、防水特性を評価した。結果を表1に示せ

[0021]

【表1】

5			
光ケーブルの種類	吸水性ヤーン:ヤーン (体績%:体積%)	水の侵入長さ (mm)	防水性の判定
A	100:0	2300	0
В	30:70	2400	0
C	5:95	2800	0
D	3:97	4300	×

【0022】表1の結果から、本発明の光ケーブル7に あっては、ヤーン集合体9は、吸水性ヤーンとヤーンが 5体積%:95体積%~30体積%:70体積%の割合 で混在していれば良好な防水特性を示すことが判明し た。

[0023]

【発明の効果】以上説明したように、本発明の光ゲーブ ルは、光ファイバテーブ心線がヤーンで包囲され、この ヤーンの外層が直接シースで被覆され、前記光ファイバ 20 【図2】 本発明の光ケーブル内の光ファイバテーブ心 テープ心線が1本以上の吸水性ヤーンで結束され、この 上にヤーンで包囲されたものであるので、防水特性が向 上し、屋外用途にも用いることができる。

【0024】また、本発明の光ケーブルは、前記光ファ イバテーブ心線を結束している1本以上の吸水性ヤーン を包囲するヤーンは、吸水性ヤーンとヤーンが混在する 集合体であるので、このヤーン集合体は防水性および緩 衡作用を発揮することができる。

【0025】そして、本発明の光ケーブルは、前記吸水*

*性ヤーンとヤーンの集合体における、吸水性ヤーンとヤ ーンの混在する割台が、5体補%:95体補%~30体 請%:70体積%であるものであるから、低コストかつ 容易に防水特性を有する光ケーブルを製造することがで **きる**.

【図面の簡単な説明】

【図1】 本発明の光ケーブルの一例を示す機略断面図 である。

線に吸水性ヤーンが巻き付けられている様子を示す機略 斜視図である。

【図3】 従来の光ケーブルの一例を示す機略断面図で ある。

【符号の説明】

2・・・光ファイバテーブ心線、?・・・防水性光ケーブル、 8・・・吸水性ヤーン、9・・・ヤーン集合体、10・・・シー ス。10a--・リップコード坦め込み部分。11・・・テン ションメンバ、12・・・リップコード

[図1]

[図2]

[図3]

フロントページの続き

(72)発明者 岡田 直樹

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉事業所内

(72)発明者 渡辺 幸一郎

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉享業所内

(72) 発明者 宮本 末広

千葉県佐倉市六崎1449番地 株式会社フジ

クラ佐倉享業所内

(72)発明者 保苅 和男

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

Fターム(参考) 2H001 BB16 BB18 DD06 DD09 DD15

DD18 DD35 KK06 KK17