### **Class Project**

Group members: Danay Fernandez Alfonso Nick Zelada Maurice Ngouen

Florida International University

COP6727: Advanced Database Systems

November 25th, 2020

#### 1. Design

a) Explain what type of database architecture you recommend this type of database. For example, a centralized database, a distributed database, etc and why.

For this type of database we recommend a relational distributed database. A distributed database would be good because it allows for fast access in databases spreaded across different physical locations which would be the case for a hospital system. Additionally, a distributed database system will make sure that the system continues working even if a piece of it is not.

- b) Create a conceptual design for the hospital system database by using an ER diagram (10 points). Your conceptual design of the database should include the followings but not limit to:
- Entities
- Relationships
- Keys
- Structural constraints (Cardinality ratio)

#### Additional requirements:

- A patient's age can be obtained as a derived attribute from date of birth (DBO)
- This design keeps track of a patient's date admitted (Date\_in) and date discharged (Date\_out) in the Room table since each current patient is assigned to a room
- In the Room table, the attribute Room\_type is being used to keep track of whether or not a patient was admitted via ER. Therefore, Number\_bed is being used to indicate if the room has a single bed (1) or two beds (2)
- The design also includes manufacturer and class in the Medication table
- The design includes a Service table which keeps track of when a doctor visits a patient and the procedure they do
- Phone table which keeps track of employees' and patients' phone numbers
- Take treatment keeps track of the treatment each patient is taking at a given time
- Prescription table keeps track of the prescription given to a patient by a doctor



# c) Create a conceptual design for the hospital system database using UML class diagram. (5 points)



### 2. Transform the ER schema of the database you get from step 1 into the corresponding relational database schema. (10 points)

- a. Specify all the key attributes of relations and any referential integrity constraints.
- b. Specify the data item format for each attribute in each relation schema.
- c. Specify all the functional dependencies you could infer from the requirements

R1: EMPLOYEE (<u>SSN</u>, E\_Salary, DOB, E\_Gender, E\_First\_name, E\_Last\_name, E\_mint House\_numb, Street, City, State, Zip\_code, Type)

R2: PATIENT (<u>Patient\_ID</u>, SSN, DOB, P\_Gender, P\_First\_name, P\_Last\_name, p\_mint, house\_numb, Street, City, State, Zip\_code)

R3: SERVICE (<u>Service\_code</u>, Description, <u>Ser\_patient\_ID</u>, <u>Ser\_SSN</u>,) # SERVICE.{Ser patient\_ID} ⊆ PATIENT.Patient\_ID}

AND

# SERVICE.{Ser SSN}  $\subseteq$  EMPLOYEE.{SSN}

R4: RECEPTIONIST ( <u>Receptionist\_ID</u>, <u>Rec\_SSN</u>)

# RECEPTIONIST.{Rec\_SSN}  $\subseteq$  EMPLOYEE.{SSN}

R5: RECORD ( <u>Recp\_number</u>, Rec\_date, Observation, <u>Rec\_receptionist\_ID</u>, <u>Rec\_patient\_ID</u>)

# RECORD.{Rec\_receptionist\_ID} 
AND

RECEPTIONIST.{Receptionist\_ID}

# RECORD. $\{Rec\_patient\_ID\} \subseteq PATIENT.\{Patient\_ID\}$ 

R6: NURSE ( Nurse ID, Nur SSN)

# NURSE. $\{Nur\_SSN\} \subseteq EMPLOYEE.\{SSN\}$ 

R7: ROOM <u>Room\_numb</u>, Numb\_Bed, Date\_in, Date\_out, Room\_type, <u>Roo\_nurse\_ID</u>, <u>Roo\_patient\_ID</u>)

# ROOM.{Roo\_nurse\_ID} ⊆ NURSE.{Nurse\_ID}
AND

 $\# ROOM.\{Roo\_patient\_ID\} \subseteq PATIENT.\{Patient\_ID\}$ 

R8: DOCTOR (<u>Doctor\_ID</u>, <u>Doc\_SSN</u>, Specialty)

 $\# \ \ DOCTOR.\{Doc\_SSN\} \subseteq EMPLOYEE.\{SSN\}$ 

R9: VISIT ( <u>Vis\_patient\_ID</u>, <u>Vis\_doctor\_ID</u>, Visit\_date )

# VISIT.{Vis\_patient\_ID} \subseteq PATIENT.{Patient\_ID} AND

# VISIT.{Vis doctor ID}  $\subseteq$  DOCTOR.{Doctor ID}

R10: MEDICATION (Med code, Med name, List price, Manufacturer, Class, Description)

```
R11: PRESCRIPTION (Presc Code, Frequency, Dosage, Pre med code, Pre med name,
Pre patient ID, Pre doctor ID)
# PRESCRIPTION.{Pre med code} ⊆ MEDICATION.{Med code, Med name,}
                           AND
# PRESCRIPTION. {Pre patient ID} \subseteq PATIENT. {Patient ID}
                            AND
# PRESCRIPTION. {Pre doctor ID} \subseteq DOCTOR. {Doctor ID}
                            OR
# PRESCRIPTION. \{Pre \text{ med name}\}\subseteq MEDICATION. \{Med name,\}\}
# PRESCRIPTION. {Pre patient ID} \subseteq PATIENT. {Patient ID}
                            AND
# PRESCRIPTION. {Pre doctor ID} \subseteq DOCTOR. {Doctor ID}
R12: TREATMENT (Tre code, Tre cost, Quantity, Tre patient ID)
\# TREATMENT.{Tre patient ID} \subseteq PATIENT.{Patient ID}
R13: TAKE TREATMENT (Tak med code, Tak med name, Tak trea code)
# TAKE TREATMENT.{Tak med code, Tak med name} ⊆ MEDICATION.{Med code,
Med name}
                            AND
# TAKE TREATMENT.{Tak trea code)} \subseteq TREATMENT.{Treat code)}
R14: PHONE (Number, Type, Pho patient ID, Pho SSN)
# PHONE.{Pho patient ID} \subseteq PATIENT.{Pho patient ID}
                            AND
# PHONE.{Pho SSN} \subseteq EMPLOYEE.{SSN}
```

| Attribute       | Description                                     | Data type    |
|-----------------|-------------------------------------------------|--------------|
| SSN             | Employee's and patient's SSN                    | Numeric      |
| E_Salary        | Employee salary                                 | Numeric      |
| DOB             | Employee's and patient's date of birth          | Date         |
| E_Gender        | Employee's gender                               | Alphabetic   |
| E_First_name    | Employee's first name                           | Alphabetic   |
| E_Last_name     | Employee's last name                            | Alphabetic   |
| E_mint          | Employee's middle initial                       | Alphabetic   |
| Туре            | Employee's type                                 | Alphabetic   |
| House_numb      | Employee's and patient's house/apartment number | Alphanumeric |
| Street          | Employee's and patient's street name            | Alphanumeric |
| City            | Employee's and patient's city                   | Alphabetic   |
| State           | Employee's and patient's state                  | Alphabetic   |
| Zip_code        | Employee's and patient's zip code               | Numeric      |
| Patient_ID      | Patient's unique identifier                     | Numeric      |
| P_Gender        | Patient's gender                                | Alphabetic   |
| P_First_name    | Patient's first name                            | Alphabetic   |
| P_Last_name     | Patient's last name                             | Alphabetic   |
| P_mint          | Patient's middle name                           | Alphabetic   |
| Service _code   | Services' unique identifier                     | Alphanumeric |
| Description     | Service description Alphabet                    |              |
| Ser_patient_ID  | Patient's ID (FK)                               | Alphanumeric |
| Ser_SSN         | Employee's SSN (FK)                             | Numeric      |
| Receptionist_ID | Receptionist's ID                               | Alphanumeric |
| Rec_SSN         | Receptionist's SSN (FK)                         | Numeric      |

| Recp_number         | Record's unique identifier                 | Numeric      |  |
|---------------------|--------------------------------------------|--------------|--|
| Rec_date            | Record's creation date                     | Date         |  |
| Observation         | Patient's observations in this record      | Alphabetic   |  |
| Rec_recepcionist_ID | Receptionist's ID (FK)                     | Alphanumeric |  |
| Nurse_ID            | Nurse's ID                                 | Alphanumeric |  |
| Nur_SSN             | Nurse's SSN (FK)                           | Numeric      |  |
| Room_numb           | Room's unique identifier                   | Alphanumeric |  |
| Numb_bed            | Number of beds in a room                   | Numeric      |  |
| Date_in             | Patient's date admitted                    | Date         |  |
| Date_out            | Patient's date discharged                  | Date         |  |
| Room_type           | Whether or not patient was admitted via ER | Alphabetic   |  |
| Roo_nurse_ID        | Nurse's ID (FK)                            | Alphanumeric |  |
| Roo_patient_ID      | Patient's ID (FK)                          | Numeric      |  |
| Doctor_ID           | Doctor's ID                                | Alphanumeric |  |
| Doc_SSN             | Doctor's SSN (FK)                          | Alphanumeric |  |
| Specialty           | Doctor's specialty. One of the seven given | Alphabetic   |  |
| Vis_patient_ID      | Patient's ID (FK)                          | Numeric      |  |
| Vis_doctor_ID       | Doctor's ID (FK)                           | Numeric      |  |
| Visit_date          | Date of the visit                          | Date         |  |
| Med_code            | Medicine's unique identifier               | Numeric      |  |
| Med_name            | Medicine's name                            | Alphabetic   |  |
| List_price          | Medicine's price                           | Numeric      |  |
| Manufacturer        | Medicine's manufacturer                    | Alphabetic   |  |
| Class               | Medicine's drug class                      | Alphabetic   |  |
| Description         | Medicine's description                     | Alphabetic   |  |

| Presc_code     | Prescription's unique identifier     | Numeric      |
|----------------|--------------------------------------|--------------|
| Frequency      | Frequency of the prescribed medicine | Alphabetic   |
| Dosage         | Dosage of the prescribed medicine    | Alphabetic   |
| Pre_med_code   | Medicine's unique identifier (FK)    | Numeric      |
| Pre_med_name   | Medicine's name (FK)                 | Alphabetic   |
| Pre_patient_ID | Patient's ID (FK)                    | Numeric      |
| Pre_doctor_ID  | Doctor's ID (FK)                     | Numeric      |
| Tre_code       | Treatment's unique identifier        | Numeric      |
| Tre_cost       | Treatment's cost                     | Numeric      |
| Take_med_name  | Medicine's name (FK)                 | Alphabetic   |
| Tak_trea_code  | Treatment's unique identifier (FK)   | Numeric      |
| Number         | Phone number                         | Numeric      |
| Туре           | Type of phone                        | Alphabetic   |
| Pho_patient_ID | Patient's ID (FK)                    | Alphanumeric |
| Pho_SSN        | Employee's SSN (FK)                  | Numeric      |

3. Normalize relation schema in the database design that you get from step 4 into either 3NF or BCNF if it is necessary. (10 points)



4. Implement the relational database you get in step 5, via PostgreSQL, this includes creating the database, creating the corresponding relation schemas, data preparation and loading data into the database. (30 points)

The implementation of the relational database can be found in the HospitalDB.sql file.

## **5.** Implement the given queries using PostgreSQL. Provide the SQL script for each query (30 points)

1. List the last name, name, employee number, type of employee of all employees ordered by last name.

SELECT SSN, E\_first\_name, E\_last\_name, Type FROM EMPLOYEE ORDER BY E Last name;



2. List the last name, name, employee number, type of employee of all employees ordered by last name grouped by employee type.

SELECT SSN, E\_first\_name, E\_last\_name, Type FROM EMPLOYEE GROUP BY Type ORDER BY E Last name;



Note: The query above does not show many results because of the GROUP BY statement.

The query below is an example of what kind of output we would get if we do ORDER BY Type instead of GROUP BY Type.

SELECT SSN, E\_first\_name, E\_last\_name, Type FROM EMPLOYEE ORDER BY Type;



3. List the name, last name, employee number, Specialty of doctors. Group by specialty and order by last name.

SELECT E\_last\_name, E\_first\_name, Doctor\_ID, Specialty
FROM EMPLOYEE

JOIN DOCTOR ON SSN = Doc SSN GROUP BY Specialty ORDER BY E Last name



Note: The query above does not show many results because of the GROUP BY statement.

The query below is an example of what kind of output we would get if we do ORDER BY Specialty instead of GROUP BY Specialty.

SELECT E\_last\_name, E\_first\_name, Doctor\_ID, Specialty FROM EMPLOYEE

JOIN DOCTOR ON SSN = Doc\_SSN ORDER BY Specialty;

- 5 SELECT E\_last\_name, E\_first\_name, Doctor\_ID, Specialty
- 6 FROM EMPLOYEE
- JOIN DOCTOR ON SSN = Doc\_SSN ORDER BY Specialty;

| <  |              |              |           |                 |
|----|--------------|--------------|-----------|-----------------|
| Re | esult Grid   | Filter Rows: |           | Export:         |
|    | E_last_name  | E_first_name | Doctor_ID | Specialty       |
| •  | Braikenridge | Bella        | 110       | cardiologist    |
|    | Scrivin      | Niko         | 102       | endocrinologist |
|    | Leicester    | Debbi        | 104       | endocrinologist |
|    | Stainsby     | Tabbie       | 114       | endocrinologist |
|    | Beeby        | Eugenio      | 107       | internist       |
|    | Boothroyd    | Christa      | 120       | internist       |
|    | Habin        | Richmond     | 105       | nephrologist    |
|    | Ferrao       | Nilson       | 106       | nephrologist    |
|    | Richley      | Erich        | 108       | nephrologist    |
|    | McElroy      | Lodovico     | 112       | nephrologist    |
|    | Luce         | Dredi        | 118       | nephrologist    |
|    | Partkya      | Serene       | 119       | nephrologist    |
|    | Perez        | Steban       | 101       | neurologist     |
|    | Helbeck      | Donavon      | 111       | neurologist     |
|    | Roke         | Tedmund      | 116       | neurologist     |
|    | Hollerin     | Mickey       | 117       | neurologist     |
|    | Hanvey       | Sigismondo   | 103       | pulmonologist   |
|    | Grice        | Kaine        | 109       | pulmonologist   |
|    | Fermer       | Leandra      | 113       | pulmonologist   |
|    | Ronisch      | Genvieve     | 115       | pulmonologist   |

4. List the count of doctors per specialty order the list by specialty name.

SELECT Specialty, Count(Specialty) FROM EMPLOYEE

JOIN DOCTOR ON SSN = Doc SSN GROUP BY Specialty ORDER BY Specialty



5. List the name, last name, employee number of all the nurses.

SELECT SSN, E\_first\_name, E\_last\_name FROM EMPLOYEE WHERE Type = 'Nurse';



6. List the employees name, last name, employee type, salary with salaries greater than 85K.

SELECT E\_first\_name, E\_last\_name, Type, E\_Salary FROM EMPLOYEE WHERE E\_Salary > 85000;

1 • SELECT E\_first\_name, E\_last\_name, Type, E\_Salary FROM EMPLOYEE WHERE E\_Salary > 85000;



7. List the name, last name, sex, patient id and room number of all the patients not discharged yet and who are older than 65 years old.

SELECT P\_First\_name, P\_Last\_name, P\_Gender, Patient\_ID, Room\_numb FROM PATIENT

JOIN ROOM WHERE Roo patient ID = Patient ID and DOB <= '1955-11-23';

```
🎢 👰 🕛 | 🗞 | ⊘ 🐼 | 👸 | Limit to 1000 rows
                                                         - | 🛵 | 🥩 🔍 🗻 🖃
 1 •
        SELECT P_First_name, P_Last_name, P_Gender, Patient_ID, Room_numb
  2
        FROM PATIENT
        JOIN ROOM WHERE Roo patient ID = Patient ID and DOB <= '1955-11-23';
  3
                                        Export: Wrap Cell Content: IA
Result Grid
             Filter Rows:
  P_First_name
              P_Last_name P_Gender
                                  Patient_ID
                                            Room_numb
```

Note: There are no admitted patients in the data who are older than 65 years old.

The query below is an example of what the output will look like for patients who are older than 35 years old.



8. List the patient name, last name, patient id of patients discharged in one specific month (specified the month based on the data you used to populate the database).

SELECT P\_First\_name, P\_Last\_name, Patient\_ID
FROM PATIENT
JOIN ROOM WHERE Roo\_patient\_ID = Patient\_ID AND Date\_out >= "2020-11-01" AND
Date\_out <= "2020-11-30";



Note: Based on November.

9. List the name and last name and room number of patients admitted through the ER and already discharged

SELECT P\_First\_name, P\_Last\_name, Room\_numb
FROM PATIENT
JOIN ROOM WHERE Roo\_patient\_ID = Patient\_ID AND Room\_type = 'via ER' AND
Date\_out IS NOT NULL;



10. List the name and last name, assigned room, room type and assigned nurse name and last name of patients not discharged yet.

SELECT P\_First\_name, P\_Last\_name, Room\_numb, Numb\_bed, E\_First\_name, E\_Last\_name FROM (PATIENT, EMPLOYEE)

JOIN ROOM ON Roo\_patient\_ID = PATIENT.Patient\_ID AND Date\_out IS NULL JOIN NURSE ON Roo\_nurse\_ID = Nurse\_ID AND Nur\_SSN = EMPLOYEE.SSN;



11. List the nurse name, nurse last name and average patient they took care per month.

SELECT E\_First\_name, E\_Last\_name, Count(Roo\_nurse\_ID)/12 AS Average\_per\_month FROM (ROOM,EMPLOYEE)

JOIN NURSE ON Roo\_nurse\_ID = Nurse\_ID AND Nur\_SSN = EMPLOYEE.SSN GROUP BY Roo\_nurse\_ID;



12. List the doctor name and last name and average patient attended per month for all the doctors.

SELECT E\_First\_name, E\_Last\_name, Count(Vis\_doctor\_ID)/12 AS Average\_per\_month FROM (VISIT,EMPLOYEE)

JOIN DOCTOR ON Vis\_doctor\_ID = Doctor\_ID AND Doc\_SSN = EMPLOYEE.SSN GROUP BY Vis\_doctor\_ID;



13. List the specialty and number of doctors for the specialty that has more than 3 doctors that make more than 100K a year.

SELECT Specialty, Count(Specialty)
FROM EMPLOYEE
JOIN DOCTOR ON SSN = Doc\_SSN AND E\_Salary >= 90000 GROUP BY Specialty
HAVING Count(Specialty) >= 3;



Note: We do not have any employees whose salary is over 100K a year, we decided to use 90K instead.

14. List the room number of any empty room.

Select Room numb FROM ROOM WHERE Date in IS NULL;



15. List the average cost of a treatment.

SELECT AVG(Tre cost) FROM TREATMENT;

1 • SELECT AVG(Tre\_cost) FROM TREATMENT;

