Two component Dark Matter

with neutrino masses

Diego Restrepo

Sep 6, 2019 - Darkwin - Natal

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on arXiv:1811.11927 [PRD]

N. Bernal (UAN), C. Yaguna (UPTC), Ó. Zapata, (UdeA)

Previously at tree level

$Local U(1)_{X} \rightarrow Z_{7}$ $\mathcal{L} = y(N_{R})^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_{R} N_{R} + \text{h.c}$

$$\mathcal{L} = y (N_R)^{\dagger} L \cdot \langle H \rangle + y' \langle S \rangle N_R N_R + \text{h.c}$$

$$m_{ ext{Majorana}}^{
u} = \frac{h_{
u}}{\Lambda} L \cdot HL \cdot H \frac{\mathsf{S}}{\Lambda}$$
Type-I arXiv:1808.03352

Standard model extended with $U(1)_X$ gauge symmetry

Fields	SU(3) _c	SU(2) _L	U(1) _Y	U(1) _X
L	1	2	-1/2	l
Q	3	2	-1/6	q
d_R	3	1	-1/2	d
U_R	3	1	+2/3	И
e_R	1	1	-1	е
Н	1	2	1/2	h

Standard model extended with $U(1)_X$ gauge symmetry

Fields	SU(3) _c	SU(2) _L	U(1) _Y	U(1) _X
L	1	2	-1/2	L
Q	3	2	-1/6	q = -l/3
d_R	3	1	-1/2	d = e - 4l/3
U_R	3	1	+2/3	u = -e + 2l/3
e_R	1	1	-1	е
Н	1	2	1/2	h = -e + l
$\sum_{\alpha} \psi_{\alpha}$	1	1	0	$\sum_{\alpha} \psi_{\alpha}$

Linear anomaly cancellation conditions

$$[SU(3)_c]^2 U(1)_X [SU(2)_L]^2 U(1)_X [U(1)_Y]^2 U(1)_X \to U(1)_Y [U(1)_X]^2.$$

Standard model extended with $U(1)_{\chi}$ gauge symmetry

Fields	SU(3) _c	SU(2) _L	U(1) _Y	U(1) _X
L	1	2	-1/2	L
Q	3	2	-1/6	q = -l/3
d_R	3	1	-1/2	d = 1 + 2l/3
U_R	3	1	+2/3	u = -1 - 4l/3
e_R	1	1	-1	e = 1 + 2l
Н	1	2	1/2	h = -1 - l
$\sum_{\alpha} \psi_{\alpha}$	1	1	0	- 3

$$\sum_{\alpha} \psi_{\alpha}^{3} = -3, \qquad \sum_{\alpha} \psi_{\alpha} = -3$$

$(N_R, N_R, \psi_{N-2}, \cdots \psi_1)$	arXiv
(-1, -1, -1)	hep-ph/0611205, Khalil
$\left(-\frac{2}{3}, -\frac{2}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$	➡1607.04029, Patra, Rodejohann, Yaguna [JHEP]
$\left(-1,-1,-\frac{10}{7},-\frac{4}{7},-\frac{2}{7},\frac{9}{7}\right)$	●1808.03352, with Bernal, Yaguna, Zapata [PRD]

Standard model extended with $U(1)_X$ gauge symmetry General cancellation for $U(1)_{Y}$

-1/2

 $U(1)_X$

 $-1/6 \mid q = -l/3$

d_R	3	1	-1/2	d = 1 + 2l/3		
U_R	3	1	+2/3	u = -1 - 4l/3	$\sum \psi_{\alpha}^{3} + 3(e - 2l)^{3} = 0,$	$\sum \psi_{\alpha} + 3(e-2l) = 0$
e_R	1	1	-1	e = 1 + 2l	α	α
Н	1	2	1/2	h = -1 - l	with $\alpha = 1, 2, \cdots, N$.	
$\sum_{\alpha} \psi_{\alpha}$	1	1	0	-3	Set of solutions with	
$\sum_{\alpha} \psi_{\alpha}^{3} =$	-3, <u> </u>	$\sum_{\alpha} \psi_{\alpha} = 0$	-3		e - 2l = 1	
$(\nu_{R}, \nu_{R}, \psi_{N})$	$_{-2},\cdots\psi_{1})$	arXiv				
(-1, -	1, -1)	hep-ph/0611	1205, Khalil		https://en.wikipedia.org/	wiki/Sums_of_three_cubes
$\left(-\frac{2}{3},-\frac{2}{3},\right.$	$-\frac{4}{3}, -\frac{1}{3}$	→ 1607.0402	9, Patra, Rodej	ohann, Yaguna [JHEP]		er solutions for -3 (1953)
$\left(-1,-1,-\frac{10}{7},\right.$	$-\frac{4}{7}, -\frac{2}{7}, \frac{9}{7}$	€1808.0335	2, with Bernal,	Yaguna, Zapata [PRD]		ber 2019:
(-4, -	4, +5)	© 0706.0473	, Montero, Plei	tez [PLB]	$42 = (-80538738812075974)^{\circ} + 8043$	$5758145817515^3 + 12602123297335631^3$
$\left(-\frac{8}{5}, -\frac{8}{5}, -\frac{8}{5}, -\frac{8}{5}\right)$	$\frac{2}{5}, -\frac{7}{5}, \frac{10}{5}$	€1812.0552	3, with Calle, Y	aguna, Zapata [PRD]		2

 $SU(2)_L$

Fields

 $SU(3)_c$

 $[U(1)_X]^3$ $[SO(1,3)]^2 U(1)_X$:

$$e - 2l = 1$$

Standard model extended with $U(1)_X$ gauge symmetry

Fields	SU(3) _c	SU(2) _L	U(1) _Y	$U(1)_{B-L}$	$U(1)_R$	U(1) _D	U(1) _G
L	1	2	-1/2	l= −1	0	-3/2	-1/2
Q	3	2	-1/6	q = 1/3	0	+1/2	+1/6
d_R	3	1	-1/2	d = 1/3	+1	0	+2/3
U_R	3	1	+2/3	u = 1/3	-1	+1	-1/3
e_R	1	1	-1	e = -1	+1	-2	0
Н	1	2	1/2	h = 0	-1	+1/2	-1/2
$\sum_{\alpha} \psi_{\alpha}$	1	1	0	-3	-3	-3	-3

$$\sum_{\alpha} \psi_{\alpha}^3 = -3$$
, $\sum_{\alpha} \psi_{\alpha} = -3$

$(\boldsymbol{\nu}_{R}, \boldsymbol{\nu}_{R}, \psi_{N-2}, \cdots \psi_{1})$	arXiv
(-1, -1, -1)	hep-ph/0611205, Khalil
$\left(-\frac{2}{3}, -\frac{2}{3}, -\frac{4}{3}, -\frac{1}{3}\right)$	●1607.04029, Patra, Rodejohann, Yaguna [JHEP]
$\left(-1,-1,-\frac{10}{7},-\frac{4}{7},-\frac{2}{7},\frac{9}{7}\right)$	➡1808.03352, with Bernal, Yaguna, Zapata [PRD]
(-4, -4, +5)	◎0706.0473, Montero, Pleitez [PLB]
$\left(-\frac{8}{5}, -\frac{8}{5}, -\frac{2}{5}, -\frac{7}{5}, \frac{10}{5}\right)$	●1812.05523, with Calle, Yaguna, Zapata [PRD]

Not known solution for one-loop neutrino Majorana masses with local $U(1)_X$.

Beyond Dirac fermion dark matter

Singlet-Doublet Dirac Dark matter

Model (SD³M)

Singlet-Doublet Dirac Dark Matter (SD³M) By Carlos E. Yaguna. arXiv:1510.06151 [PRD].

The model extends the standard model (SM) particle content with Dirac Fermions: from SU(2) doublets of Weyl fermions: $\Psi_L = (\Psi_L^0, \Psi_L^-)^\mathsf{T}, \widetilde{(\Psi_R)} = ((\Psi_R^-)^\dagger, -(\Psi_R^0)^\dagger)^\mathsf{T}$ and singlet Weyl fermions ψ_{LR} that interact among themselves and with the SM fields

$$\mathcal{L} \supset M_{\psi} (\psi_R)^{\dagger} \psi_L + M_{\psi} (\widetilde{\Psi}_R) \cdot \Psi_L + y_1 (\psi_R)^{\dagger} \Psi_L \cdot H + y_2 (\widetilde{\Psi}_R) \cdot \widetilde{H} \psi_L + \text{h.c}$$
 (1)

Four free parameters:

$$M_{\psi}, M_{\Psi} < 2 \text{ GeV},$$
 $y_1, y_2 > 10^{-6}$ (2)

Two neutral Dirac fermion eigenstates:

$$M = \begin{pmatrix} M_{\psi} & y_2 v / \sqrt{2} \\ y_1 v / \sqrt{2} & M_D \end{pmatrix}, \qquad M_{\text{diag}} = \begin{pmatrix} M_{\chi_1} & 0 \\ 0 & M_{\chi_2} \end{pmatrix} = U_L^{\dagger} M U_R$$
 (3)

SD³M By Carlos E. Yaguna. arXiv:1510.06151 [PRD].

200 400 600 Dark Matter Mass [GeV] 800

LUX - XENON1T - LZ

SD³M By Carlos E. Yaguna. arXiv:1510.06151 [PRD].

Compressed spectra region

Neutrino masses

Lepton number

- Lepton number (*L*) is an accidental discret or Abelian symmetry of the standard model (SM).
- · Without neutrino masses L_e , L_μ , $L_ au$ are also conserved.
- The processes which violates individual *L* are called Lepton flavor violation (LFV) processes.
- · All the neutrino mass models predict, to some extent, LFV processes
- Only models with Majorana neutrinos predict processes with total $L = L_e + L_\mu + L_\tau$ violation, like neutrino less doublet beta decay (NLDBD).
- NLDBD is experimentally challenging, specially if there is a massless neutrino in the spectrum.

NLDBD prospects for a model with a massless neutrino (arXiv:1806.09977 [PLB] with Reig, Valle and Zapata)

Total lepton number: $L = L_e + L_\mu + L_{\tau_1}$

Majorana U(1)

$Z_2 \left(\omega^2 = 1\right)$
1
ω
ω
ω

$$\mathcal{L}_{\nu} = h_D \left(\nu_R \right)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

Dirac $U(1)_L$

Field
$$Z_3 (\omega^3 = 1)$$

SM 1
 $L \qquad \omega$
 $(e_R)^{\dagger} \qquad \omega^2$
 $(\nu_R)^{\dagger} \qquad \omega^2$

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

Total lepton number: $L=L_e+L_\mu+L_ au$

Majorana U(1)[

Field
$$Z_2$$
 ($\omega^2 = 1$)

SM 1

 $L \qquad \omega$
 $(e_R)^{\dagger} \qquad \omega$
 $(\nu_R)^{\dagger} \qquad \omega$

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + M_R \nu_R \nu_R + \text{h.c.}$$

$$h_D \sim \mathcal{O}(1)$$

Dirac $U(1)_{B-L}$

Field
$$Z_3$$
 ($\omega^3 = 1$)
SM 1
 L ω
(e_R)[†] ω^2
(ν_R)[†] ω^2

$$\mathcal{L}_{\nu} = h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c.}$$

$$h_D \sim \mathcal{O}(10^{-11})$$

Explain smallness ala Peccei-Quinn: $U(1)_{B-L} \xrightarrow{(S)} Z_N$, $N \ge 3$.

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

• Forbids Majorana term: $u_{R}
u_{R}$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c}$$

To explain the smallness of Dirac neutrino masses choose $U(1)_{B-L}$ which:

• Forbids tree-level mass (TL) term (Y(H) = +1/2)

$$\mathcal{L}_{T.L} = h_D \epsilon_{ab} (\nu_R)^{\dagger} L^a H^b + \text{h.c}$$
$$= h_D (\nu_R)^{\dagger} L \cdot H + \text{h.c}$$

- Forbids Majorana term: $\nu_R \nu_R$
- Realizes of the 5-dimension operator which conserves lepton number in $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$\mathcal{L}_{5-D} = \frac{h_{\nu}}{\Lambda} (\nu_R)^{\dagger} L \cdot HS + \text{h.c.}$$

 $\mathrm{U}(1)_{B-L} \stackrel{\langle S \rangle}{\to} Z_N$ $\mathsf{H} \qquad \mathsf{V}_\mathsf{R}$

• Enhancement to the effective number of degrees of freedom in the early Universe $\Delta N_{\rm eff} = N_{\rm eff}^{\rm SM}$ (see arXiv:1211.0186)

See E. Ma, Rahul Srivastava: arXiv:1411.5042 [PLB] for tree-level realization

From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 \left(T_{\nu_R} / T_{\nu_L} \right)^4$

$$\Gamma_{\nu_R}(T) = n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to f\bar{f}) v \rangle$$

$$= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos\theta),$$

$$s = 2pq(1 - \cos \theta), f_{\nu_R}(k) = 1/(e^{k/T} + 1)$$

$$n_{\nu_R}(T) = g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), with g_{\nu_R} = 2$$

$$\sigma_f(s) \simeq \frac{N_C^f (Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{el}}\right)^4, In the limit M_{Z'}^2 \gg s.$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N \left[g(T) + 21/4\right]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$

A. Solaguren-Beascoa, M. C. Gonzalez-Garcia: arXiv:1210.6350 [PLB]

From 1210.6350 and 1805.02025: $\Delta N_{\text{eff}} = 3 \left(T_{\nu_R} / T_{\nu_L} \right)^4$

$$\begin{split} \Gamma_{\nu_R}(T) &= n_{\nu_R}(T) \sum_f \langle \sigma_f(\nu_R \bar{\nu}_R \to f\bar{f}) v \rangle \\ &= \sum_f \frac{g_{\nu_R}^2}{n_{\nu_R}} \int \frac{d^3p}{(2\pi)^3} \frac{d^3q}{(2\pi)^3} f_{\nu_R}(p) f_{\nu_R}(q) \sigma_f(s) (1 - \cos\theta), \end{split}$$

$$\begin{split} s = &2pq(1-\cos\theta), & f_{\nu_R}(k) = &1/(e^{k/T}+1) \\ n_{\nu_R}(T) = &g_{\nu_R} \int \frac{d^3k}{(2\pi)^3} f_{\nu_R}(k), & \text{with } g_{\nu_R} = &2 \\ \sigma_f(s) \simeq &\frac{N_C^f(Q_{BL}^f)^2 Q^2 s}{12\pi} \left(\frac{g'}{M_{Pl}}\right)^4, & \text{In the limit } M_{Z'}^2 \gg s. \end{split}$$

with three right-handed neutrinos, the Hubble parameter is

$$H(T) = \sqrt{\frac{4\pi^3 G_N \left[g(T) + 21/4\right]}{45}} T^2.$$

The right-handed neutrinos decouple when

$$\Gamma_{\nu_R}(T_{\text{dec}}^{\nu_R}) = H(T_{\text{dec}}^{\nu_R}).$$

E. Ma, R. Srivastava: arXiv:1411.5042 [PLB]

Z.-L. Han, W. Wang: arXiv:1805.02025 [EJPC]

(also: Planck 1807.06209, Riess et al 1903.07603)

One-loop realization of \mathcal{L}_{5-D} with

total L

One loop topologies $U(1)_{B-L} \oplus Z_2 \oplus Z_2$

One loop topologies $U(1)_{B-L}$ only!

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$
$$\sum_{i} f_{i}^{3} = 3$$

One loop topologies $U(1)_{B-L}$ only! with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

T1-3-E

Fields: fi	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_{L}	$(\psi_R)^\dagger$	S
(A)	+4	+4	-5	-r	r	+3
(B)	$+\frac{8}{5}$	$+\frac{8}{5}$	$+\frac{2}{5}$	7 - 5	$-\frac{10}{5}$	$+\frac{3}{5}$

 $\psi_{L,R} o$ Singlet fermions (quiral)

 $\Psi_{L,R} \to \text{Vector-like doublet fermions}$

 σo Singlet scalar

 $\eta \to Doublet scalar$

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$$\sum_{i} f_{i}^{3} = 3$$

$SD^3M+\sigma_i$ (i=1,2) with J. Calle, C. Yaguna, and O. Zapata, arXiv:1812.05523 [PRD]

 $\psi_{L,R} \to \text{Singlet fermions (quiral)}$

 $\Psi_{L,R}
ightarrow$ Vector-like doublet fermions : 10/5

 $\sigma \rightarrow \text{Singlet scalar}: 15/5$

Fields: f_i $(\nu_{R3})^{\dagger}$ $(\nu_{R2})^{\dagger}$ $(\nu_{R1})^{\dagger}$ ψ_L $(\psi_R)^{\dagger}$ S (A) $+4$ $+4$ -5 $-r$ r $+3$							
(A) +4 +4 -5 -r r +3	Fields: fi	$(\nu_{R3})^{\dagger}$	$(\nu_{R2})^{\dagger}$	$(\nu_{R1})^{\dagger}$	ψ_{L}	$(\psi_R)^{\dagger}$	S
	(A)	+4	+4	-5	-r	r	+3
(B) $+\frac{8}{5}$ $+\frac{8}{5}$ $+\frac{2}{5}$ $\frac{7}{5}$ $-\frac{10}{5}$ $+\frac{3}{5}$	(B)	$+\frac{8}{5}$	+ 8 - 5	$+\frac{2}{5}$	7 _ 5	$-\frac{10}{5}$	$+\frac{3}{5}$

Anomaly cancellation conditions

$$\sum_{i} f_{i} = 3$$
$$\sum_{i} f_{i}^{3} = 3$$

$SD^{3}M+\sigma_{i}$ (i=1,2)

$$M_{\psi} = h_1 \langle S \rangle$$
, $y_2 = 0$:

$$\mathcal{L} = \mathcal{L}_{\text{SD}^{3}\text{M}} + h_{3}^{ia}\widetilde{(\Psi_{R})} \cdot L_{i} \sigma_{a} + h_{2}^{\beta a} (\nu_{R\beta})^{\dagger} \psi_{L} \sigma_{a}^{*} - V(\sigma_{a}, S, H).$$

with A.F Rivera, W. Tangarife, arXiv:1906.09685 [PRD]

Dark matter relic density

Decoupled Z' limit

$$\begin{pmatrix} h \\ \operatorname{Re}(S) \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \,.$$

Spin independent (SI) direct detection cross section

Conclusions

A single U(1) symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

Conclusions

A single U(1) symmetry to explain both the smallnes of Dirac neutrino masses and the stability of Dirac fermion dark matter

Dirac neutrino masses and DM

- Spontaneously broken $U(1)_{B-L}$ generates a radiative Dirac neutrino masses
- A remnant symmetry makes the lightest field circulating the loop stable and good dark matter candidate.
- For T1-2-A: Either Singet Doublet Dirac Dark Matter or Singlet Scalar Dark Matter with extra scalar and vector portal
- · With relaxed direct detection constraints

