Esta síntesis <u>no es un apunte</u> de la teoría de la asignatura, sólo es un resumen de las principales definiciones y enunciados de teoremas/propiedades, utilizando una nomenclatura que respeta la adoptada en la Guía de Trabajos Prácticos.

FUNCIÓN DEFINIDA EN FORMA IMPLÍCITA

Introducción: Comencemos planteando un ejemplo sencillo, sea la ecuación:

$$y^2 - x + 4 = 0$$
 y el punto $A = (5,1)$ que la satisface.

Se desea saber si dicha ecuación define y = f(x) cuya gráfica contenga al mencionado punto.

La respuesta es muy sencilla, de la ecuación original despejamos la variable y, con lo cual tenemos dos posibilidades $y = \sqrt{x-4}$ e $y = -\sqrt{x-4}$, ambas para $x \ge 4$.

Es claro que $f(x) = \sqrt{x-4}$, pues f(5) = 1 y la gráfica de f contiene al punto A, la otra $(-\sqrt{})$ no cumple.

En este caso se dice que la ecuación F(x, y) = 0 define en forma implícita a y = f(x) cuya gráfica contiene al punto A. De poderse despejar, y = f(x) es la forma explícita de expresar a y como función de x.

Debe cumplirse que, para
$$x \ge 4$$
 resulte $F(x, f(x)) = 0$.

En este ejemplo: $(\sqrt{x-4})^2 - x + 4 = x - 4 - x + 4 = 0$ "se cumple".

Función definida en forma implícita por una ecuación escalar

Dada la ecuación escalar $F(x_1, \dots, x_n, y) = 0$, se dice que la misma **define implícitamente** a la variable y como función de x_1, \dots, x_n en un conjunto H, cuando existe una función escalar f tal que:

$$F(x_1,\dots,x_n,f(x_1,\dots,x_n))=0 \ \forall (x_1,\dots,x_n)\in H.$$

Si de la ecuación original pudiera despejarse $y = f(x_1, \dots, x_n)$ con f definida en H, esta sería la **forma** explícita de expresar a y como función de las otras variables.

<u>Teorema (Cauchy-Dini)</u>: Teorema de existencia y unicidad de la función definida implícitamente por una ecuación escalar.

Sea $F: D \subset \mathbb{R}^{n+1} \to \mathbb{R}$, del tipo $F(x_1, \dots, x_n, y)$, y el punto $\vec{A} = (a_1, \dots, a_n, b)$ tal que:

- (1) $F(\vec{A}) = 0$.
- (2) $F \in C^1(E(\vec{A}))$, o bien, ∇F continuo en un $E(\vec{A})$.
- (3) $F'_{v}(\vec{A}) \neq 0$.

Entonces la ecuación:

$$F(x_1, \dots, x_n, y) = 0 \tag{I}$$

define implícitamente $y = f(x_1, \dots, x_n) \ \forall (x_1, \dots, x_n) \in E(A_n) \ \text{con } A_n = (a_1, \dots, a_n)$. Cumpliéndose que:

- $f(a_1,\dots,a_n)=b$.
- f es única cuya gráfica contiene al punto $\vec{A} = (a_1, \dots, a_n, b)$.
- f es diferenciable en $A_n = (a_1, \dots, a_n)$.
- Se puede calcular $f'_{x_j}(A_n) \equiv \frac{\partial y}{\partial x_j}(A_n) = -\frac{F'_{x_j}(\vec{A})}{F'_y(\vec{A})} \text{ con } j = 1, \dots, n$

R.O. Sirne Página 1 de 8.-

Ejemplo: Dada la ecuación $xy + \ln(x + y^2 - 4) - 2 = 0$ y el punto A = (1,2), verifique que dicha ecuación define implícitamente a y = f(x) y calcule una aproximación lineal para f(1.02).

Denotando $F(x, y) = xy + \ln(x + y^2 - 4) - 2$, vemos que:

- (1) $F(A) = 2 + \ln(1 + 4 4) 2 = \ln(1) = 0$, se cumple.
- (2) $\nabla F(x, y) = (y + \frac{1}{x + y^2 4}, x + \frac{2y}{x + y^2 4})$ es continua en un E(A), se cumple. (1)
- (3) $F'_{y}(A) = 1 + 4/1 = 5 \neq 0$, se cumple.

Como se cumplen las tres hipótesis del teorema, podemos afirmar que la ecuación dada define implícitamente a y = f(x) con $x \in E(1)$. Como f es derivable podemos escribir:

$$f(x) \cong f(1) + f'(1)(x-1), x \in E(1)$$

que es la expresión para aproximación lineal.

En este caso f(1) = 2, la gráfica de f contiene al punto A = (1,2).

Por su parte, la derivada es:
$$f'(1) = \frac{dy}{dx}(1) = -\frac{F_X'(A)}{F_Y'(A)} = -\frac{3}{5}$$

Entonces,
$$f(x) \cong 2 - \frac{3}{5}(x - 1)$$
, $x \in E(1)$, con lo cual: $f(1.02) \cong 2 - \frac{3}{5}(1.02 - 1) = 1.988$

Curva plana dada en forma implícita

Dada la ecuación escalar F(x, y) = 0 y el punto $A = (x_0, y_0)$, si se cumple que:

- (1) F(A) = 0.
- (2) ∇F es continuo en un E(A).
- (3) $\nabla F(A) \neq \vec{0}$.

Entonces la ecuación F(x, y) = 0 define una curva C que contiene al punto A y admite recta tangente en dicho punto.

Nota: Siendo $\nabla F(A) \neq \vec{0}$, al menos una de las dos derivadas parciales no es nula. Por ejemplo, si fuera $F_y'(A) \neq 0$, se cumplen las hipótesis del teorema. Queda definida y = f(x) con $x \in E(x_0)$, la ecuación de la curva, además f es derivable en $x_0 \rightarrow$ la curva admite recta tangente en A.

Además $\nabla F(A) \perp C$ en A, es decir, es perpendicular a la recta tangente a C en A

Nota: Continuando la nota anterior, para el caso de $F_y'(A) \neq 0$, una ecuación vectorial para la curva es X = (x, f(x)) con $x \in E(x_0)$. El vector director de la recta tangente en A es $\vec{d} = (1, f'(x_0))$, que resulta ortogonal a $\nabla F(A)$. Recuerde que $f'(x_0) = -F_x'(A)/F_y'(A)$.

Esta propiedad de ortogonalidad también surge de lo comentado en la síntesis S-4A, pág. 5/6, "campo escalar evaluado en puntos de una curva".

R.O. Sirne Página 2 de 8.-

-

⁽¹⁾ Componentes: suma de funciones continuas, polinomio + cociente de polinomios con denominador no nulo.

Ejemplo: Dada la elipse de ecuación $x^2 + 8y^2 = 12$, halle ecuaciones para la recta tangente y la recta normal en el punto (2,1) de la misma.

La ecuación de la elipse puede expresarse $x^2 + 8y^2 - 12 = 0$

Denotando A = (2,1) y $F(x, y) = x^2 + 8y^2 - 12$, resulta:

- (1) $F(A) = 4 + 8 \cdot 1 12 = 0$.
- (2) $\nabla F(x, y) = (2x, 16y)$, continuo en \Re^2 .
- (3) $\nabla F(A) = (4, 16) \neq \vec{0}$.

Como se cumplen las tres hipótesis, queda definida la curva en el entorno de A.

Como se observa en el esquema, $\nabla F(A) = (4, 16)$ es ortogonal a la elipse en A mientras que, por ejemplo $\vec{d} = (16,-4)$ permite dirigir a la recta tangente en A (por ser ortogonal al gradiente). (2) Con esto podemos escribir:

Recta tangente, ecuación:
$$\vec{X} = (2,1) + u \ (16,-4) \rightarrow \vec{X} = (2+16u,1-4u) \ \text{con } u \in \Re$$
. Recta normal, ecuación: $\vec{X} = (2,1) + v \ (4,16) \rightarrow \vec{X} = (2+4v,1+16v) \ \text{con } v \in \Re$.

Recta normal, ecuación:
$$\vec{X} = (2,1) + v (4,16) \rightarrow \vec{X} = (2+4v, 1+16v)$$
 con $v \in \Re$

Se deja como ejercicio: Hallar ecuaciones cartesianas para ambas rectas, a partir de las ecuaciones vectoriales obtenidas.

Superficie dada en forma implícita

Dada la ecuación escalar F(x, y, z) = 0 y el punto $A = (x_0, y_0, z_0)$, si se cumple que:

- (1) F(A) = 0.
- (2) ∇F es continuo en un E(A).
- (3) $\nabla F(A) \neq \vec{0}$.

Entonces la ecuación F(x, y, z) = 0 define una superficie Σ que contiene al punto A y admite plano tangente y recta normal en dicho punto.

Nota: Siendo $\nabla F(A) \neq \vec{0}$, al menos una de las tres derivadas parciales no es nula. Por ejemplo, si fuera $F_{z}'(A) \neq 0$ se cumplen las hipótesis del teorema. Queda definida z = f(x, y) con $(x, y) \in E((x_0, y_0))$, la ecuación cartesiana de la superficie, además f es diferenciable en $(x_0, y_0) \rightarrow$ la superficie admite plano tangente y recta normal en A.

Además $\nabla F(A) \perp \Sigma$ en A, es decir, es perpendicular al plano tangente a Σ en A

<u>Nota</u>: Continuando la nota anterior, para el caso de $F'_{Z}(A) \neq 0$, una ecuación vectorial para la superficie es $X = (x, y, f(x, y)) \text{ con } (x, y) \in E((x_0, y_0)).$ Con vector normal $\vec{n}_0 = (-f_x'(x_0, y_0), -f_y'(x_0, y_0), 1)$, que resulta paralelo a $\nabla F(A)$.

Recuerde: $f'_{x}(x_0, y_0) = -F'_{x}(A)/F'_{z}(A)$ y $f'_{y}(x_0, y_0) = -F'_{y}(A)/F'_{z}(A)$.

R.O. Sirne Página 3 de 8.-

⁽²⁾ Los vectores se grafican aplicados en el punto A, usando una escala que puede ser diferente a la de los ejes coordenados.

Ejemplo: Sea la ecuación $(z - x^2)^2 = y^2(x^2 + y^2 + 4)$.

- a) Verifique que define una superficie S en un entorno del punto A = (1,2,7).
- b) Analice si la recta normal a S en A interseca al eje x.
- c) Halle el punto donde el eje z interseca al plano tangente a S en A.
- a) Comenzamos expresando la ecuación en forma implícita:

$$\underbrace{(z-x^2)^2 - y^2(x^2 + y^2 + 4)}_{F(x,y,z)} = 0$$

Ahora vemos si la F que se indica cumple con las condiciones del teorema.

- (1) $F(A) = (7-1)^2 4(1+4+4) = 36-36 = 0$.
- (2) $\nabla F(x, y, z) = (2(z x^2)(-2x) y^2 2x, -2y(x^2 + y^2 + 4) y^2 2y, 2(z x^2)),$ es continuo en \Re^3 (tiene componentes polinómicas), también entonces en E(A).
- (3) $\nabla F(A) = (-32, -52, 12) \neq \vec{0}$.

Como se cumplen las tres condiciones, se verifica que la ecuación dada define una superficie en un E(A).

Además, $\nabla F(A) = (-32, -52, 12)$ orienta a la recta normal y es perpendicular al plano tangente a la superficie en A.

b) Una ecuación para la recta normal es: $\overline{X} = A + u \nabla F(A) \operatorname{con} u \in \Re$, reemplazando queda:

$$\vec{X} = \underbrace{(1-32u, 2-52u, 7+12u)}_{\vec{g}(u)} \text{ con } u \in \Re$$

Si esta recta tuviese un punto en común con el eje x, éste sería el tipo (a,0,0). Es decir, debería existir un valor de u para el cual se anule la 2° y la 3° componente de \vec{g} .

$$2-52u = 0 \implies u = 1/26$$
, $7+12u = 0 \implies u = -7/12$

Como esto no ocurre $(1/26 \neq -7/12)$, concluimos que la recta no interseca al eje x.

c) Una ecuación cartesiana para el plano tangente es: $((x, y, z) - A) \cdot \nabla F(A) = 0$, reemplazando queda: -32(x-1)-52(y-2)+12(z-7)=0.

Si este plano tiene un punto en común con el eje z, éste sería el tipo (0,0,b). Remplazando en la ecuación del plano queda: $32+104+12(b-7)=0 \implies b=-13/3$.

Como el valor de b queda definido, el punto donde el eje z interseca al plano tangente a S en A es el (0,0,-13/3).

<u>Comentario</u>: Si F(x, y, z) = 0 es la ecuación de una superficie Σ , y $\vec{X} = \vec{g}(t)$ con $t \in I$ la ecuación de una curva $C \subset \Sigma$, debe cumplirse que $F(\vec{g}(t)) = 0$ con $t \in I$ (los puntos de la curva satisfacen la ecuación de la superficie).

Si la curva admite recta tangente en $\vec{A} = \vec{g}(t_0)$, como $h(t) = F(\vec{g}(t))$ es un "campo escalar en puntos de una curva" (ver página 5/6 de la síntesis S-4A) debe cumplirse que $h'(t_0) = \nabla F(\vec{A}) \cdot \vec{g}'(t_0) = 0$, pues h(t) = 0 constante en I. Con lo cual, $\nabla F(\vec{A}) \perp \vec{g}'(t_0)$.

Conclusión: El plano tangente a Σ en \vec{A} contiene a la recta tangente a cualquier curva que pase por \vec{A} , esté incluida en Σ y admita recta tangente en dicho punto.

R.O. Sirne Página 4 de 8.-

Funciones definidas en forma implícita por un sistema de ecuaciones escalares

Consideremos una función vectorial $\vec{F} = (F_1, \dots, F_m)$ con m > 1, de valores $\vec{F}(x_1, \dots, x_n, y_1, \dots, y_m)$. Es decir, de n + m variables con $n \ge 1$.

Una ecuación del tipo:

$$\vec{F}(x_1, \dots, x_n, y_1, \dots, y_m) = \vec{0} \tag{I}$$

es equivalente al sistema de ecuaciones:

$$\begin{cases} F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\ \vdots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \end{cases}$$
 (I)

Ya que un vector es nulo si, y solo si, sus componentes son nulas.

Interesa establecer condiciones que permitan asegurar que (I) define implícitamente a las m variables y_j en función de las x_i . Para ello enunciamos el siguiente teorema.

<u>Teorema (Cauchy-Dini)</u>: Teorema de existencia y unicidad de las funciones definidas implícitamente por un sistema de ecuaciones escalares.

Sea
$$\vec{F}: D \subset \mathbb{R}^{n+m} \to \mathbb{R}^m$$
 con $n \ge 1$ y $m > 1$, del tipo $\vec{F}(x_1, \dots, x_n, y_1, \dots, y_m)$ con $\vec{F} = (F_1, \dots, F_m)$ y el punto $\vec{A} = (a_1, \dots, a_n, b_1, \dots, b_m)$ tal que:

(1) $\vec{F}(\vec{A}) = \vec{0}$, o bien, $F_j(\vec{A}) = 0$ para $j = 1, \dots, m$.

(2) $\vec{F} \in C^1(E(\vec{A}))$, o bien, ∇F_j continuo en un $E(\vec{A})$ para $j = 1, \dots, m$.

(3) $\frac{\partial (F_1, \dots, F_m)}{\partial (y_1, \dots, y_n)} (\vec{A}) \ne 0$,

Entonces la ecuación: $\vec{F}(x_1, \dots, x_n, y_1, \dots, y_m) = \vec{0}$,

o su sistema de m ecuaciones escalares equivalentes, define implícitamente a $y_j = f_j(x_1, \dots, x_n)$ para todo $(x_1, \dots, x_n) \in E(A_n)$ con $A_n = (a_1, \dots, a_n)$. Cumpliéndose que:

- $f_j(A_n) = b_j \text{ con } j = 1, \dots, m.$
- Cada f_j es única cuya gráfica contiene al punto (a_1, \dots, a_n, b_j) con $j = 1, \dots, m$.
- Cada f_j es diferenciable en $A_n = (a_1, \dots, a_n)$ con $j = 1, \dots, m$.
- Se puede calcular $\frac{\partial f_{j}}{\partial x_{i}}(A_{n}) \equiv \frac{\partial y_{j}}{\partial x_{i}}(A_{n}) = -\frac{\frac{\partial (F_{1}, \dots, F_{j}, \dots, F_{m})}{\partial (y_{1}, \dots, x_{i}, \dots, y_{m})}(\vec{A})}{\frac{\partial (F_{1}, \dots, F_{j}, \dots, F_{m})}{\partial (y_{1}, \dots, y_{j}, \dots, y_{m})}(\vec{A})} \text{ con } i = 1, \dots, n, \ j = 1, \dots, m,$

observe que en el determinante del numerador figura x_i en la posición que figura y_j en el del denominador.

R.O. Sirne Página 5 de 8.-

Ejemplo: Dada la ecuación $(xy+ze^{xu-y+z-1}+2u-7, xu+yz+\ln(xu+y-3z)-4)=(0,0)$ que se cumple en el punto $\vec{A}=(x_0,y_0,u_0,z_0)=(1,2,2,1)$.

- a) Verifique que define a u = u(x, y) y z = z(x, y) en un entorno del punto $(x_0, y_0) = (1, 2)$.
- b) Calcule mediante una aproximación lineal z(0.99, 2.03).
- a) La ecuación dada es equivalente al sistema $\begin{cases} xy + ze^{xu-y+z-1} + 2u-7 = 0 \\ xu + yz + \ln(xu+y-3z) 4 = 0 \end{cases}$, donde se ha G(x,y,u,z)

decidido usar F y G, para evitar los subíndices. Vemos que:

(1)
$$\begin{cases} F(\vec{A}) = 2 + 1 + 4 - 7 = 0 \\ G(\vec{A}) = 2 + 2 + \ln(2 + 2 - 3) - 4 = 0 \end{cases}$$

(2)
$$\begin{cases} \nabla F(x,y,u,z) = (y+uze^{xu-y+z-1}, x-ze^{xu-y+z-1}, xze^{xu-y+z-1} + 2, (z+1)e^{xu-y+z-1}) \\ \nabla G(x,y,u,z) = (u+\frac{u}{xu+y-3z}, z+\frac{1}{xu+y-3z}, x+\frac{x}{xu+y-3z}, y-\frac{3}{xu+y-3z}) \end{cases}$$

ambos continuos en $E(\vec{A})$ ¿por qué?

(3)
$$\frac{\partial(F,G)}{\partial(u,z)}(\vec{A}) = \begin{vmatrix} F_u'(\vec{A}) & F_z'(\vec{A}) \\ G_u'(\vec{A}) & G_z'(\vec{A}) \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -3 - 4 = -7 \neq 0$$
. Observe que las derivadas se to-

man respecto de las variables dependientes, las que se quiere verificar si quedan definidas en función de las otras.

Como se cumplen las tres condiciones, se verifica que quedan definidas u = u(x, y) y z = z(x, y) en un entorno del punto $(x_0, y_0) = (1, 2)$.

b) Dado que el teorema asegura que las funciones que quedan definidas son diferenciables, podemos aplicar la expresión de aproximación lineal para z = z(x, y).

$$z(x, y) \cong z(1,2) + z'_{x}(1,2)(x-1) + z'_{y}(1,2)(y-2)$$
 para $(x, y) \in E((x_0, y_0))$
 $z(x, y) \cong z(1,2) + z'_{x}(1,2)(x-1) + z'_{y}(1,2)(y-2)$ para $(x, y) \in E((x_0, y_0))$

$$z'_{x}(1,2) = -\frac{\frac{\partial(F,G)}{\partial(u,x)}(\vec{A})}{\frac{\partial(F,G)}{\partial(u,z)}(\vec{A})} = -\frac{\begin{vmatrix} F'_{u}(\vec{A}) & F'_{x}(\vec{A}) \\ G'_{u}(\vec{A}) & G'_{x}(\vec{A}) \end{vmatrix}}{\begin{vmatrix} F'_{u}(\vec{A}) & F'_{z}(\vec{A}) \\ G'_{u}(\vec{A}) & G'_{z}(\vec{A}) \end{vmatrix}} = -\frac{\begin{vmatrix} 3 & 4 \\ 2 & 4 \end{vmatrix}}{-7} = \frac{4}{7}.$$

$$z'_{y}(1,2) = -\frac{\frac{\partial(F,G)}{\partial(u,y)}(\vec{A})}{\frac{\partial(F,G)}{\partial(u,z)}(\vec{A})} = -\frac{\begin{vmatrix} F'_{u}(\vec{A}) & F'_{y}(\vec{A}) \\ G'_{u}(\vec{A}) & G'_{y}(\vec{A}) \end{vmatrix}}{\begin{vmatrix} F'_{u}(\vec{A}) & F'_{z}(\vec{A}) \\ G'_{u}(\vec{A}) & G'_{z}(\vec{A}) \end{vmatrix}} = -\frac{\begin{vmatrix} 3 & 0 \\ 2 & 2 \end{vmatrix}}{-7} = \frac{6}{7}.$$

Entonces
$$z(x, y) \cong 1 + \frac{4}{7}(x - 1) + \frac{6}{7}(y - 2) \rightarrow z(0.99, 2.03) \cong 1 + \frac{4}{7}(0.99 - 1) + \frac{6}{7}(2.03 - 2)$$

$$\boxed{z(0.99, 2.03) \cong 1.02}$$

R.O. Sirne Página 6 de 8.-

Curva definida como intersección de dos superficies

Por aplicación directa del teorema de existencia y unicidad de las funciones definidas implícitamente por un sistema de ecuaciones, podemos enunciar lo siguiente.

Dadas las superficies Σ_1 de ecuación F(x, y, z) = 0 y Σ_2 de ecuación G(x, y, z) = 0, y el punto $\vec{A} = (x_0, y_0, z_0)$, cuando se cumple que:

- (1) $\begin{cases} F(\vec{A}) = 0 \\ G(\vec{A}) = 0 \end{cases}$, es decir el punto pertenece a ambas superficies.
- (2) $\begin{cases} \nabla F \\ \nabla G \end{cases}$ son continuos en un entorno del punto \vec{A} .
- (3) $\vec{d}_0 = \nabla F(\vec{A}) \times \nabla G(\vec{A}) \neq \vec{0}$

El sistema $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ define una curva C en un $E(\vec{A})$, como intersección de Σ_1 y Σ_2 .

Dicha curva admite recta tangente en \vec{A} , dirigida por el vector \vec{d}_0 , y plano normal en dicho punto, perpendicular a la mencionada recta.

Entonces podemos escribir las siguientes ecuaciones,

para la recta tangente: $\vec{X} = \vec{A} + t \vec{d}_0$ con $t \in \Re$ ecuación vectorial,

para el plano normal: $(\vec{X} - \vec{A}) \cdot \vec{d}_0 = 0$ ecuación cartesiana.

Dado que al cumplirse (1), (2) y (3) los gradientes de F y G son ortogonales en \vec{A} a Σ_1 y Σ_2 respectivamente, en el esquema se muestra la interpretación geométrica de los expuesto más arriba.

En el dibujo
$$\vec{n}_1 = \nabla F(\vec{A}) \perp \Sigma_1$$
 y $\vec{n}_2 = \nabla G(\vec{A}) \perp \Sigma_2$. Así, $\vec{d}_0 = \vec{n}_1 \times \vec{n}_2$.

Como $\vec{d}_0 = \nabla F(\vec{A}) \times \nabla G(\vec{A}) \neq \vec{0}$ los gradientes son l.i., por lo tanto, también se puede escribir la siguiente ecuación para el plano normal: $\vec{X} = \vec{A} + u \nabla F(\vec{A}) + v \nabla G(\vec{A})$ con $(u, v) \in \Re^2$ ecuación vectorial.

Nota: Haciendo el producto vectorial de los gradientes resulta
$$\nabla F(\vec{A}) \times \nabla G(\vec{A}) = \left(\frac{\partial (F,G)}{\partial (y,z)}(\vec{A})\;,\; \frac{\partial (F,G)}{\partial (z,x)}(\vec{A})\;,\; \frac{\partial (F,G)}{\partial (x,y)}(\vec{A})\;\right) \neq \vec{0}\;,$$

con lo cual por lo menos uno de los tres jacobianos no es nulo.

Por ejemplo, si $\frac{\partial(F,G)}{\partial(y,z)}(\vec{A}) \neq 0$, el sistema $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ define implícitamente a y = y(x)

y z = z(x) en un $E(x_0)$. Esto demuestra que queda definida la curva C de ecuación vectorial:

$$\vec{X} = \underbrace{(x, y(x), z(x))}_{\vec{g}(x)} \text{ con } x \in E(x_0), \text{ donde } \vec{g}(x_0) = \vec{A}.$$

Por último, al calcular la derivada -aplicando la regla de derivación para funciones definida implícitamente-resulta $\vec{g}'(x_0) = (1, y'(x_0), z'(x_0)) \neq \vec{0}$ con $\vec{g}'(x_0) / / \vec{d}_0$. Con lo cual, \vec{d}_0 permite dirigir a la recta tangente.

R.O. Sirne Página 7 de 8.- Ejemplo: Sea la curva C definida por la intersección de las superficies Σ_1 y Σ_2 , de ecuaciones:

$$\Sigma_1 : xz = xy + x^2 + 2$$
 y $\Sigma_2 : \ln(x - y) = yz - 4$.

Analice si la recta tangente a C en el punto $\vec{A} = (2,1,4)$ tiene algún punto en común con la recta de ecuación $\vec{X} = (2\lambda, \lambda - 5, \lambda)$ con $\lambda \in \Re$.

Comenzamos expresando el sistema que define a C, indicando las ecuaciones de las superficies en forma implícita.

$$C = \begin{cases} \underbrace{xy + x^2 - xz + 2}_{F(x,y,z)} = 0\\ \underbrace{\ln(x - y) - yz + 4}_{G(x,y,z)} = 0. \end{cases}$$

Ahora vemos si se cumplen las hipótesis.

(1)
$$\begin{cases} F(\vec{A}) = 2 + 4 - 8 + 2 = 0 \\ G(\vec{A}) = 0 - 4 + 4 = 0 \end{cases}$$
.

(2)
$$\begin{cases} \nabla F(x, y, z) = (y + 2x - z, x, -x) \\ \nabla G(x, y, z) = (\frac{1}{x - y}, \frac{-1}{x - y} - z, -y) \end{cases}$$
, continuos en un $E(\vec{A})$.

(3)
$$\vec{d}_0 = \nabla F(\vec{A}) \times \nabla G(\vec{A}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -2 \\ 1 & -5 & -1 \end{vmatrix} = (-12, -1, -7) \neq \vec{0}.$$

Como se cumplen la hipótesis, podemos escribir la siguiente ecuación para la recta tangente a la curva en \vec{A} :

$$\vec{X} = (2,1,4) + t(-12,-1,-7) \rightarrow \vec{X} = (2-12t,1-t,4-7t) \text{ con } t \in \Re$$

Ahora analizamos si esta recta tiene algún punto en común con la dada en el enunciado, es decir la de ecuación $\vec{X} = (2\lambda, \lambda - 5, \lambda)$ con $\lambda \in \Re$.

No son paralelas pues el vector director de esta última, (2,1,1) no es paralelo a \vec{d}_0 . (3)

Para que tengan un punto común debe existir un par (λ,t) tal que $\begin{cases} 2-12t=2\lambda\\ 1-t=\lambda-5\\ 4-7t=\lambda \end{cases}.$

Para que se cumplan las dos primeras debe ser $\lambda = 7$ y t = -1, pero con estos valores no se cumple la tercera. Por lo tanto, las rectas no tienen un punto común.

Como no son paralelas y no se intersecan, **son alabeadas**.

<u>Nota</u>: Si el enunciado dice que la curva queda definida por la intersección de las dos superficies, ¿para qué se verificaron las hipótesis?.

Respuesta: Para poder usar \vec{d}_0 como director de la recta tangente.

R.O. Sirne Página 8 de 8.-

-

 $^{{}^{(3)}}$ ¿Cómo se obtiene el vector (2,1,1)? ¿Por qué no es paralelo a \vec{d}_0 ?