Algebra a diskrétna matematika Príklady na precvičenie č. 12

Príklad 1: Vyriešte dané lineárne rovnice.

a)
$$9 + 5x = 2$$
 v poli \mathbb{Z}_{13}

b)
$$8x + 15 = 7$$
 v poli \mathbb{Z}_{31}

Príklad 2: Vyriešte dané kvadratické rovnice.

a)
$$x^2 + 2x \equiv 10 \pmod{11}$$

b)
$$x^2 + 3x + 2 \equiv 0 \pmod{7}$$

c)
$$x^2 + 2x + 5 \equiv 0 \pmod{13}$$

d)
$$x^2 + 7x + 2 \equiv 0 \pmod{29}$$

Príklad 3: V poli \mathbb{Z}_{11} riešte danú sústavu rovníc

$$4x + y = 6$$

$$3x + 7y = 0$$

Príklad 4: V poli \mathbb{Z}_5 riešte sústavu rovníc

$$3x + 2y + z = 2$$

$$x + 3y + z = 3$$

$$2x + y + z = 3$$

Príklad 5: V poli \mathbb{Z}_7 riešte sústavu rovníc

$$x + y + 2z = 1$$

$$2x + y + 3z = 1$$

$$4x + 2y + 5z = 4$$

Príklad 6: Nájdite aspoň dva primitívne prvky v každom z polí $\mathbb{Z}_7, \mathbb{Z}_{11}, \mathbb{Z}_{13}, \mathbb{Z}_{17}$.

Príklad 7: Zistite, ktoré prvky v poli \mathbb{Z}_{17} nemajú druhé odmocniny.

Príklad 8: V \mathbb{Z}_{19} nájdite všetky prvky, ktoré v tomto poli majú štvrtú odmocninu.

Príklad 9: Pomocou Malej Fermatovej vety a bez použitia kalkulačky vypočítajte

- a) $2015^{2016} \pmod{2017}$
- b) 5²⁰¹⁹ (mod 2017)
- c) $100^{200} \pmod{97}$
- d) $6^{655} \pmod{163}$
- e) 13⁶⁷⁴ (mod 113)