Functional Dependency

2018/3/24 2018/3/24

8.1 Update Anomalies

- Redundancy in a database means storing a piece of data more than once.
- Redundancy is often useful for efficiency and semantic reasons, but creates the potential for consistency problems.
- A poor redundancy control may cause update anomalies.
- Consider the example relation below (adapted from "An Introduction to Database Systems" by Desai):

8. Functional Dependency

A "good" database schema should not lead to update anomalies.

- update anomalies,
- functional dependencies,
- Armstrong Axioms,

379

closures.

Baxter

Name	Course	Phone_no	Major	Prof	Grade
Jones	353	237-4539	Comp Sci	Smith	Α
Ng	329	427-7390	Chemistry	Turner	В
Jones	328	237-4539	Comp Sci	Clark	В
Martin	456	388-5183	Physics	James	Α
Dulles	293	371-6259	Decision Sci	Cook	С
Duke	491	823-7293	Mathematics	Lamb	В
Duke	356	823-7293	Mathematics	Bond	UN
Jones	492	237- 4539	Comp Sci	Cross	UN

STUDENTS

Modification anomalies: e.g. Jones's phone number appears 3 times. When a phone number is changed, it must be changed in all 3 places, or the data will be inconsistent.

English

839-0827

Broes

2018/3/24

Insertion anomalies:

- If Jones enrolls in another course, and a different phone number is entered, again the data will be inconsistent.
- Also, if the only way that the association between course and professor is stored in this relation, we can only enter the association when someone enrolls in the course.

Deletion anomalies: If the last student in a course is deleted, the association between professor and course is lost.

2018/3/24 5

Examples:

- For every Name, there is a unique Phone_no and Major, assume Name is unique
- For every Course, there is a unique Prof
- For every Name and Course, there is a unique Grade

8.2 Functional dependencies

A function f from S_1 to S_2 has the property

if
$$x, y \in S_1$$
 and $x = y$, then $f(x) = f(y)$.

A generalization of keys to avoid design flaws violating the above rule.

Let X and Y be sets of attributes in R.

X (functionally) determines $Y, X \rightarrow Y$, iff $t_1[X] = t_2[X]$ implies $t_1[Y] = t_2[Y]$.

i.e.,
$$f(t(X)) = t[Y]$$

We also say $X \rightarrow Y$ is a *functional* dependency, and that Y is *functionally* dependent on X.

X is called the *left side*, Y the *right side* of the dependency.

2018/3/24

• In this example:

$$\{Name\} \rightarrow \{Phone_no, Major\}$$
 $\{Course\} \rightarrow \{Prof\}$
 $\{Name, Course\} \rightarrow \{Grade\}$

• We can also show these in a diagram like this one:

• Notice that other FD's follow from these:

$$\{Name\} \rightarrow \{Major\}$$

 $\{Course, Grade\} \rightarrow \{Prof, Grade\}$

2018/3/24

• Let *F* be a set of FD's.

Definition 1: $X \to Y$ is inferred from F (or that F infers $X \to Y$), written in

$$F \models X \rightarrow Y$$

- if any relation instance satisfying F must also satisfy $X \to Y$.
- Impossible to list every relation to verify if $X \to Y$ is inferred from F.
- A set ρ of derivation rules are required, such that:
 - a $X \to Y$ is inferred from F according to Definition 1 iff it can be derived using ρ .

2018/3/24

- F4 (Additivity) $\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$.
- F5 (Projectivity) $\{X \rightarrow YZ\} = X \rightarrow Y$.
- F6 (Pseudotransitivity)

$$\{X \to Y, YZ \to W\} \models XZ \to W.$$

Example: Given $F = \{A \rightarrow B, A \rightarrow C, BC \rightarrow D\}$, derive $A \rightarrow D$:

- $1. A \rightarrow B$ (given)
- $2. A \rightarrow C$ (given)
- $3. A \rightarrow BC$ (by F4, from 1 and 2)
- $4. BC \rightarrow D$ (given)
- 5. $A \rightarrow D$ (by F3, from 3 and 4)

8.3 Armstrong's axioms (1974)

Notation: If X and Y are sets of attributes, we write XY for their union.

e.g.
$$X = \{A, B\}, Y = \{B, C\}, XY = \{A, B, C\}$$

- F1 (Reflexivity) If $X \supseteq Y$ then $X \rightarrow Y$.
- F2 (Augmentation) $\{X \to Y\} = XZ \to YZ$.
- F3 (Transitivity) $\{X \to Y, Y \to Z\} = X \to Z$.

2018/3/24

- F4 (Additivity) $\{X \rightarrow Y, X \rightarrow Z\} = X \rightarrow YZ$.
- F5 (Projectivity) $\{X \rightarrow YZ\} = X \rightarrow Y$.
- F6 (Pseudotransitivity)

$${X \to Y, YZ \to W} = XZ \to W.$$

In fact, F4, F5, and F6 can be derived from F1-F3.

Example: Prove $\{X \rightarrow Y, X \rightarrow Z\} \mid = X \rightarrow YZ$.

- 1) $X \rightarrow Y$ is given.
- 2) $XX \rightarrow XY$ (by F2); that is, $X \rightarrow XY$
- 3) $X \rightarrow Z$ is given.
- 4) $XY \rightarrow YZ$ (by F2)
- 5) $X \rightarrow YZ$ (by F3, 2) and 4))

We can prove that Armstrong's axioms are sound and complete:

- Sound: if F derives $A \rightarrow B$ by using Armstrong's axioms, then $F \mid= A \rightarrow B$ by Definition 1.
- Complete: if $F = M \rightarrow N$ by Definition 1, then F derives $M \rightarrow N$ by using Armstrong's axioms.

2018/3/24

$$F = \{ A \rightarrow B, B \rightarrow C, A \rightarrow C \}$$

F⁺ = {AB -> A, AB -> B, AB -> C, AC -> A, AC -> B, AC -> C, ABC -> A, ABC -> B, ABC -> C, AB -> AB, AB -> BC, AB -> AC,}

F⁺ always has an exponential size regarding |F|.

8.4 Algorithm to Check a FD

Given F, how do we check if $X \rightarrow Y$ is in F^+ ?

 F^+ denotes the smallest set of FD's that

- contains F, and
- is *closed* under Armstrong's axioms.

 F^+ is the *closure* of F.

2018/3/24

- Too expensive to compute F^+ to verify a membership.
- Instead we can compute the *closure* X⁺ of X under F,
 X⁺ is the largest set of attributes functionally determined by X.

It can be proven (using additivity) that

S1:
$$X^+ = \bigcup_{\forall X \to A \in F^+} A$$
.

 $S2: X \rightarrow Y \subseteq F^+$ iff (if and only if) $Y \subseteq X^+$.

```
F = \{ A \rightarrow B, BC \rightarrow D, A \rightarrow C \}, compute \{A\}^+
1^{st} scan of F:
X^+ := \{A\}
X^+ := \{A, B\}
X^+ := \{A, B, C\}
2^{nd} scan of F:
X^+ := \{A, B, C, D \}
3^{rd} scan of F: no change, therefore the algorithm terminates.
\{A\}^+ := \{A, B, C, D \}
```

8.5 Algorithm to Compute a Candidate Key

- Given a relational schema *R* and a set *F* of functional dependencies on *R*.
- A key *X* of *R* must have the property that $X^+ = R$.
- Algorithm to compute a candidate key

Step 1: Assign *X* a superkey in F.

Step 2: Iteratively remove attributes from X while retaining the property X^+

= R till no reduction on X.

2018/3/24

The remaining X is a key.

```
• Algorithm to compute X^+:
X^+ := X;
\text{change} := \text{true};
\text{while change do}
\text{begin}
\text{change} := \text{false};
\text{for each FD } W \to Z \text{ in } F \text{ do}
\text{begin}
\text{if } (W \subseteq X^+) \text{ and } (\not\subseteq X^+) \text{ then do}
\text{begin}
X^+ := X^+ \cup Z;
\text{change} := \text{true};
\text{end}
\text{end}
```

 $R = \{A, B, C, D\}$ and $F = \{A \rightarrow B, BC \rightarrow D, A \rightarrow C\}$

X = {A, B, C} if the left hand side of F is a super key.

A cannot be removed because $\{BC\}^+ = \{B, C, D\} \neq R$

B can be removed because $\{AC\}^+ = \{A, B, C, D\} = R$ $\longrightarrow X = \{A, C\}$

C can be further removed because $\{A\}^+ = \{A, B, C, D\}$ $\longrightarrow X = \{A\}$

2018/3/24