

MAC layer

- Medium Access Control
- Part of Data Link layer:
 - Layer 2 of OSI model
 - Together with Logical Link Control
- Provides flow control and multiplexing for the transmission medium

What is multiplexing?

 Users' data are multiplexed on a channel (wired or wireless) so that the number of collisions is minimized

 A collision occurs if several users transmit on the same channel set

Multiplexing techniques

- Multiplexing can be performed:
 - Either by relying to random access: ALOHA, CSMA-CD, CSMA-CA,...
 - Simple, does not require a centralizer
 - Collisions may occur
 - No delay guarantee: not efficient for time-constrained applications
 - Or by using strictly orthogonal fixed channel resources: TDMA, FDMA, CDMA,...
 - More complex
 - No collision
 - But requires a centralizer

ALOHA protocol: pure ALOHA

- Easy random multiple access protocol:
 - If you have data to send, send the data
 - If, while you are transmitting data, you receive any data from another station, there has been a message collision. All transmitting stations will need to try resending later.
- Drawback: many collisions occur!
- 18.4% of the time is used for successful transmission

Slotted ALOHA

- Same as pure ALOHA but a station can start a transmission only at the beginning of a time slot
- Reduced collisions rate compared to pure ALOHA
- Improved performance: 36 % of the time is used for successful transmission

Slotted ALOHA protocol (shaded slots indicate collision)

CSMA/CD

- Carrier-sense multiple access with collision detection (CSMA/CD)
- Used in early Ethernet (coaxial cables, twisted pairs cables)
- Stations first sense the channel to check if it is being used by another station for data transmission or if it is free:
 - If the channel is free, the station sends data and listens to the channel to check any collision
 - If the channel is being used, the station waits

CSMA/CD: collision

- A collision occurs if two stations sensed that the channel is free and sent data at the same time:
 - Then both stations send a jam signal instead of data to inform the other stations of the collision
 - Therefore, the receiving stations will discard the packets that were corrupted by the collision.
- When a collision is detected, both stations wait for a random amount of time until they retransmit again

CSMA/CD: summary

CSMA/CD: Binary exponential back-off

The random waiting time is given by:

Backoff \sim Uniform(0,2^k-1)×slot time

- Where k is the number of transmission attempts (max: 10)
- Example:
 - 1st collision: backoff ∈ [0, 1]
 - 2nd collision : backoff ∈ [0, 3]
 - 3rd collision : backoff ∈ [0, 7]

802.11 MAC layer: CSMA/CA

- In wireless networks, users cannot all listen to the medium
- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol
 - Similar principle as in CSMA/CD, but with additional messages/probes to detect if the medium is available, and avoid collisions
 - Slower than CSMA/CD.

CSMA/CA: Hidden terminal problem

 Collision Detection impossible in wireless (# Ethernet) because 2 nodes who want to transmit to the same node may not detect each other.

A does not detect C,
C does not detect A.
a collision may occur at B
if both A and C simultaneously
transmit to B:

Hidden terminal problem

CSMA/CA: DCF

- Simplest version: Distributed Coordination Function (DCF).
- Without any certainty that the medium is actually free because of hidden terminal problem, stations transmit when they think the medium is free.
- Cannot guarantee QoS constraints fulfillment (such as delay)

CSMA/CA: CW

- If a collision occurs, stations wait for a random delay before they can retransmit.
 - It is called Contention window
 - It is a random number number between CWmin and CW size.
- Whenever a transmission fails:
 - Double CW size
 - Until CW size reaches Cwmax.
- This technique adapts to the number of nodes
 - Increase CW size so that the collision probability is decreased.
 - Drawback: medium access delay may be very long.

CSMA/CA: CW

- Example: CWMin = 15 and CWMax = 1023
 - 1st transmission (even without collision): backoff ∈ [0, 15]
 - 1st collision: backoff ∈ [0, 31]
 - 2nd collision : backoff ∈ [0, 63]
 - 3rd collision : backoff ∈ [0, 127]
 - •...
 - •Until backoff ∈ [0, 1023]

CSMA/CA with CW

If the medium is free:

• Directly transmit data.

Else:

- Wait until the medium becomes free.
- And wait for DIFS (fixed) and Contention Window (random).
- Then:
 - If the medium is free, transmit.
 - Else, wait until next free medium period. Store the remaining CW and only wait for this time at next access request.

CSMA/CA with CW

CSMA/CA with RTS/CTS

This way, nodes near to the transmit node or to the destination node become aware of the transmission

-> To avoid hidden terminal problem

The NAV (approximate transmission time) is sent both by the transmit and destination node so that the other nodes can wait during transmission

CSMA/CA with RTS/CTS

B can detect A and C.

A cannot detect C.

D can only detect A.

CSMA/CA with RTS/CTS

Inter-frame spacing (802.11 DCF):

- **SIFS** (Short Inter-Frame Spacing):
 - Before each frame in the same exchange.
 - Between RTS and CTS, CTS and data, data and ACK.
- **DIFS** (Distributed Inter-Frame Spacing):
 - Before each new frame in different exchanges.

ACK sent by the destination after each received data.

TDMA

- Time Division Multiple Access
- Used in cellular networks
- No collisions are accepted
- The channel is time-separated
- One frame is separated into several time slots
- Each user is allocated a different time slot
- Example: 2G

TDMA

FDMA

- Frequency Division Multiple Access
- The channel is frequencyseparated
- One frame is separated into several frequency sub-bands
- Each user is allocated a different sub-band
- Each user transmits during the whole frame
- Example: 4G, 5G

FDMA

CDMA

- Code Division Multiple Access
- All users transmit on the same time interval and on the whole frequency
- But their signals are made orthogonal through coding
- Example: 3G

CDMA

- Transmit signal: $s(t) = \sum_{i=1}^{N} \mathsf{OP}_i \left[m_i(t) \right]$
- Apply the inverse code on s(t):

$$r(t) = \mathsf{OP}_k^{-1}[s(t)]$$

= $m_k(t) + \sum_{i=1, i \neq k}^{N} \mathsf{OP}_k^{-1}[\mathsf{OP}_i[m_i(t)]]$

• m_k can be recovered without interference if codes are orthogonal:

$$\sum_{i=1, i \neq k}^{N} \mathsf{OP}_{k}^{-1} \left[\mathsf{OP}_{i} \left[m_{i}(t) \right] \right] = 0$$

CDMA

• Examples of orthogonal codes: Walsh-Hadamard sequence

1 1																	
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
1 1 1 1 -1<	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1
1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 1 -1	1	1	1	1		-1	-1	-1	1	1	1	1	-1	-1	-1	-1	ı
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1	ı
1 1 <td>1</td> <td>1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>1</td> <td>1</td> <td>ı</td>	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	ı
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 -1 <td>1</td> <td>-1</td> <td>-1</td> <td>1</td> <td>-1</td> <td>1</td> <td>1</td> <td>-1</td> <td>1</td> <td>-1</td> <td>-1</td> <td>1</td> <td>-1</td> <td>1</td> <td>1</td> <td>-1</td> <td></td>	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1	
1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1 1 -1 1	1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	
1 1 1 1 -1 -1 -1 -1 -1 -1 1 <t< td=""><td>1</td><td>1</td><td>-1</td><td>-1</td><td>1</td><td>1</td><td>-1</td><td>-1</td><td>-1</td><td>-1</td><td>1</td><td>1</td><td>-1</td><td>-1</td><td>1</td><td>1</td><td>ı</td></t<>	1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	ı
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -	1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1	ı
1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 1 -1 -	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	ı
1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1	ı
	1	1	-1	-1	-1	-1	1		-1	-1	1	1	1	1	-1	-1	ı
	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1	1	-1	-1	1	

Example GSM (2G European network)

- GSM multiplexes users both in FDMA and TDMA.
- The reserved GSM 900 frequency bands are :
 - Mobile to BTS (uplink): 880-915 MHz
 - BTS to Mobile (downlink): 925-960 MHz
- The reserved GSM 1800 frequency bands are:
 - Mobile to BTS (uplink): 1710-1785 MHz
 - BTS to Mobile (downlink): 1805-1880 MHz

GSM Multiplexing

- In uplink and downlink, the bandwidth is separated in subbands of de 200 KHz.
- TRX: a pair of sub-bands (downlink and uplinkf) of 200 KHz each.

TDMA multiplexing per cell

- Each sub-band of 200 KHz corresponds to a frame separated in 8 time slots.
- A different user per time slot: up to 8 users per TRX.
- The same time slot is allocated to the same user during its whole conversation.

FDMA multiplexing between cells

- Cells are separated by their TRX.
- The same TRX can only be reused if two cells are far enough not to generate high interference.
- A frequency reuse factor is used (here: with 7 bands).

