
name: <unnamed>

log: C:\Users\jlc15\Desktop\MECOFIN\2" Cuatrimestre\TFM\W - Ficheros STATA\Parte2_STATA.log

log type: text

opened on: 17 Apr 2023, 18:50:17

. * 2. Estudiamos la distribución de la vble endógena Status

. tab status

Status	Freq.	Percent	Cum.
0 1	259 570	31.24 68.76	31.24 100.00
Total I	829	100.00	

. * 3. Estimamos vía logit el modelo original

. logit status gender education workexp programmingexp

```
Iteration 0: log likelihood = -514.83131
Iteration 1: log likelihood = -507.91144
Iteration 2: log likelihood = -507.88834
Iteration 3: log likelihood = -507.88834
```

Logistic regression Number of obs = 829

LR chi2(4) = 13.89Prob > chi2 = 0.0077

status | Coefficient Std. err. z P>|z| [95% conf. interval]
-----gender | .1591773 .1775537 0.90 0.370 -.1888216 .5071762

. * 4. Calculamos los marginales

. margins

Predictive margins Number of obs = 829

Model VCE: OIM

Expression: Pr(status), predict()

| Delta-method

Margin std. err. z P>|z| [95% conf. interval]

+						
_cons	.6875754	.0159602	43.08	0.000	.656294	.7188568

. * 5. Calculamos la matriz de acieros y errores

. predict status pr

(option pr assumed; Pr(status))

. estat class

Logistic model for status

Classified	D	•	Total
+	570 0	259 0	829 0
Total	570	259	829

Classified + if predicted Pr(D) >= .5

True D defined as status != 0

Sensitivity Pr(+|D) 100.00%Specificity Pr(-|-D) 0.00%

Positive predictive value Pr(D|+) 68.76% Negative predictive value $Pr(\sim D|-)$.%

False + rate for true \sim D Pr(+| \sim D) 100.00%

False - rate for true D Pr(-| D) 0.00%

False + rate for classified + $Pr(\sim D|+)$ 31.24% False - rate for classified - Pr(D|-) .%

Correctly classified 68.76%

. * 6. Realizamos un análisis univariante básico de la columna de predicciones . sum status pr

Variable		Std. dev.	Лаx
status pr l			.7625591

. * 7. Realizamos un análisis univariante básico de la columna Status

. sum status

Variable	Obs	Mean	Std. dev.	Min	Max
+					
etatue l	829	6875754	4637617	Ω	1

. * Como resultado vemos que la media es la misma, por lo que aunque status_pr no

- . * esté normalizada y Status sí, tienen un resultado muy parecido.
- . * 8. Calculamos la capacidad predictiva con un límite de 0.5 . estat class, cutoff(0.5)

Logistic model for status

	Irue		
Classified	D	~D	Total
+	570 0	259 0	829 0
+ Total	570	+- 259	829

Classified + if predicted Pr(D) >= .5True D defined as status != 0

Sensitivity Pr(+|D) 100.00%Specificity Pr(-|-D) 0.00%Positive predictive value Pr(D|+) 68.76% Negative predictive value $Pr(\sim D|-)$.%

False + rate for classified + $Pr(\sim D|+)$ 31.24% False - rate for classified - Pr(D| -)

Correctly classified 68.76%

. * 9. Comprobamos que añadir matching no tiene sentido porque imita el comportamiento

. * de Status.

. logit status gender education workexp programmingexp matching

note: matching != 0 predicts success perfectly; matching omitted and 487 obs not used.

note: education != 0 predicts failure perfectly; education omitted and 201 obs not used.

Iteration 0: log likelihood = -95.505679 Iteration 1: log likelihood = -94.646437 Iteration 2: log likelihood = -94.645706 Iteration 3: log likelihood = -94.645706

Logistic regression Number of obs = 141

> LR chi2(3) = 1.72Prob > chi2 = 0.6325

Log likelihood = -94.645706 Pseudo R2 = 0.0090

status | Coefficient Std. err. z P>|z| [95% conf. interval]

gender | -.3968064 .4666304 -0.85 0.395 -1.311385 .5177723 education | 0 (omitted) workexp | .3998252 .3822363 1.05 0.296 -.3493442 1.148995 programmingexp | .0800877 .4181156 0.19 0.848 -.7394038 .8995792 matching | 0 (omitted) _cons | .493503 .4871577 1.01 0.311 -.4613086 1.448315

. * 10. Comprobamos el comportamiento entre matching y status. Los resultados son muy buenos. . tab matching status

 Matching +	Status 0	1	Total
1	259 0	83 487	342 487
Total	259	570	829

. * 11. Se calculan los marginales de todas las vbles (comprobamos p-value y signo del coeficiente) . margins, dydx(*)

Average marginal effects

Number of obs = 141

Model VCE: OIM

Expression: Pr(status), predict()

dy/dx wrt: gender education workexp programmingexp matching

end of do-file

. exit, clear