Sistemas Inteligentes

Redes neuronales

Tema 10

Neuronas naturales

- Célula del cerebro encargada de recibir, enviar y procesar señales eléctricas
- Alrededor de 10¹¹ en el cerebro humano
- Cada una puede recibir señales simultaneas de otras 1000
- La capacidad de procesar información se atribuye a la acción conjunta (redes)

Estructura básica: Perceptrón

- Modelo de un nodo de activación
- Entrada: vector x (salidas de otras neuronas o variables del problema)
- Pesos: vector w (dendritas)

Estructura básica: Perceptrón

- Modelo de un nodo de activación
- Entrada: vector x (salidas de otras neuronas o variables del problema)
- Pesos: vector w (dendritas)

$$\mathbf{w} = \mathbf{w} + \eta(y - \hat{y})\mathbf{x} = \begin{cases} \mathbf{w} + 2\eta \mathbf{x} & \text{si } y = 1, \ \hat{y} = -1 \\ \mathbf{w} - 2\eta \mathbf{x} & \text{si } y = -1, \ \hat{y} = 1 \end{cases}$$

Aprendizaje de un perceptrón

Por cada instancia $d\epsilon[1,D]$ medimos la discrepancia de la clasificación como

$$E(\mathbf{w}) = y_d - g(\mathbf{w}\mathbf{x}_d)$$

- El objetivo es que no haya ningún error
- Para conseguirlo se propone que la variación de los pesos sea

$$\Delta \mathbf{w} = E(\mathbf{w})\mathbf{x}_d$$

Y así los nuevos pesos serán

$$\mathbf{w} \leftarrow \mathbf{w} + \eta (y_d - g(\mathbf{w} \mathbf{x}_d)) \mathbf{x}_d$$

Aprendizaje de un perceptrón

- Si la instancia d está bien clasificada no hay cambios
- Si $y_d = 1$ pero se predice lo contrario hay que cambiar ${\it w}$ para aumentar el valor de $g(\cdot)$
 - lacksquare Para $x_i>0$, w_i aumentará y en caso contrario disminuirá
- Si $y_d = -1$ pero se predice lo contrario hay que cambiar w para disminuir el valor de $g(\cdot)$
 - lacksquare Para $x_i>0$, w_i disminuirá y en caso contrario aumentará

Aprendizaje de un perceptrón

- Inicialmente los pesos toman un valor aleatorio
- Normalmente hay que procesar los datos de entrenamiento varias veces
- En el caso ideal se para cuando todas las instancias estén bien clasificadas
- Permite un aprendizaje on-line
- Se puede introducir una tasa de aprendizaje η para graduar como se cambian los pesos

$$\Delta \mathbf{w} = \eta E(\mathbf{w}) \mathbf{x}_d$$

Limitaciones del Perceptrón

- Con esta única unidad podemos solucionar problemas linealmente separables
- En concreto podemos utilizar perceptrones para representar las funciones primitivas booleanas

Limitaciones del Perceptrón

x	у	X AND Y
1	1	1*1+1*1-1.5=0.5>0 →1
1	0	1*1+1*0-1.5=-0.5< 0 →0
0	1	0*1+1*1-1.5=-0.5< 0 →0
0	0	0*1+0*1-1.5=5< 0 → 0

Limitaciones del Perceptrón

10/27

 $XOR(x1, x2) = \underbrace{AND(NOT(AND(x1, x2)), OR(x1, x2))}_{}$

Perceptrón

Problemas con la convergencia

- Cuando el problema es linealmente separable la convergencia está garantizada
- Si hay ruido o no hay una separación lineal no hay garantía de obtener una salida
- Para solventar esto se propone usar el descenso de gradiente
- De esta forma el algoritmo convergerá a una solución que se ajusta a los datos (posiblemente subóptima)

13/27

Descenso de gradiente

- Se usa para obtener los parámetros que minimizan una función
- Se garantiza un mínimo local
- ¿Qué función queremos minimizar?
 - El error que se comete al clasificar
- Sin embargo no se puede usar con la definición anterior
 - La función de activación no es derivable
- Definamos esta función como la identidad

$$g(wx) = wx$$

RN con función de activación lineal

- Modelo de un nodo de activación
- Entrada: vector \boldsymbol{x} (salidas de otras neuronas o variables del problema
- Pesos: vector w (dendritas)

Obteniendo delta

15/27

Por conveniencia retocamos también el error

$$E(\mathbf{w}) = \frac{1}{2}(y_d - \mathbf{w}\mathbf{x}_d)^2$$

Derivando

$$\frac{\partial E}{\partial w_i} = (y_d - wx_d) \frac{\partial E}{\partial w_i} (y_d - wx_d)$$
$$= (y_d - wx_d)(-x_{di})$$

Por tanto

$$\Delta w_i = \eta (y_d - w x_d) x_{di}$$

Regla de actualización: Regla delta

16/27

Algoritmo de descenso de gradiente (incremental)

- Inicializar W con valores aleatorios
- 2. Mientras no se cumpla la condición de parada
- Para cada par de entrenamiento $\langle x_d, y_d \rangle$
- 4. Calcular la predicción $o_d = wx_d$
- 5. Para cada peso
- $w_i \leftarrow w_i + \eta (y_d o_d) x_{di}$
- El espacio de búsqueda es convexo si el problema es linealmente separable

Visualización del espacio de búsqueda

17/27

Espacio convexo

Espacio no convexo

Resumen hasta ahora

- Un perceptrón usa una función de activación no lineal, pero solo se puede ajustar a problemas lineales
- Una neurona artificial con activación lineal se puede aplicar a problemas no lineales, pero todavía la frontera de decisión es lineal
- ¿Cómo podemos hacer el paradigma más versátil?

Redes de neuronas

- Parece lógico pensar que combinando neuronas se puede conseguir un modelo más complejo
- Problema: ¿Qué neuronas ponemos?
- ¿Perceptrones?
 - No se puede usar el descenso de gradiente
- ¿Neuronas con función de activación lineal?
 - Una combinación de estas neuronas todavía no es capaz de representar funciones no lineales
- Se necesita una unidad que produzca una salida no lineal y sea diferenciable

Función sigmoide

Esta es una solución al problema anterior

$$g(x) = \frac{1}{1 - e^{-x}}; \quad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Red neuronal de 1 capa oculta

Red de neuronas

- La conexión entre neuronas se puede extender
- En profundidad, varias capas ocultas
- En anchura, más neuronas en la capa oculta
- En muchos casos basta con una capa oculta, siempre que hayan suficientes neuronas

Clasificación k-aria

- Cada neurona de salida permite codificar dos valores (verdadero/falso)
- Para problemas con variables clases de más de dos valores tendremos una neurona de salida por cada valor
- Para entrenar se usará la codificación one-hot
- Para predecir se escoge la clase de la neurona con mayor valor de salida

Aprendizaje

La tarea sigue siendo minimizar el error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{d} \sum_{k} (y_{kd} - o_{kd})^2$$

- Pero ahora el número de pesos se ha multiplicado
 - El espacio de búsqueda puede tener mínimos locales
- ¿Cómo se evalúa el error para las neuronas ocultas?
- ¡Pues que las neuronas de salida indiquen a las ocultas el valor del error!
- Por esto algoritmo se llama "propagación hacia atrás"

Propagación hacia atrás l

- Backpropagation(training_set, η ,D, n_h ,K)
 - training_set contiene D pares $\langle x, y \rangle$, donde x es un vector de valores de entrada, e y es la variable a predecir con K valores. η es la tasa de aprendizaje y n_h es el número de neuronas ocultas.
- 1. Crea una red neuronal con |x| entradas, n_h neuronas ocultas y K salidas.
- Inicializa todos los pesos con números aleatorios pequeños (entre -0.05 y 0.05)
- 3. Repite hasta que se dé la condición de parada

Propagación hacia atrás II (con función sigmoide)

27/27

- 4. Para cada instancia de entrenamiento $\langle x, y \rangle$
 - // Propagar la entrada a través de la red
- Para cada unidad de salida k calcula o_k
 - // Propagar el error hacia atrás
 - Para cada unidad de salida k calcula δ_k

$$\delta_k = o_k (1 - o_k)(y_k - o_k) \qquad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

Para cada unidad oculta h calcula δ_h

$$\delta_h = o_h (1 - o_h) \sum_k w_{kh} \delta_k$$

- $//w_{ii}$ peso de la unidad i a la j, x'_{ii} entrada de i a j
- 8. Actualiza cada peso de la red w_{ji} $w_{ii} \leftarrow w_{ii} + \eta \delta_i x_i'$

Ejemplo: Propagación hacia delante

$$g(x) = \frac{1}{1 - e^{-x}}; \quad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

$$w_{h1,1} = w_{h1,2} = w_{h1,3} = 0.1$$

$$w_{h2,1} = w_{h2,2} = w_{h2,3} = 0.2$$

$$w_{y,1} = w_{y,2} = 0.3$$

Ejemplo: Propagación hacia delante

Ejemplo (0,1,1,2)

$$g(x) = \frac{1}{1 - e^{-x}}; \quad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

$$w_{h1,1} = w_{h1,2} = w_{h1,3} = 0.1$$
 $w_{h2,1} = w_{h2,2} = w_{h2,3} = 0.2$ $w_{y,1} = w_{y,2} = 0.3$

$$o_{h_1} = g(w_{h_11}x_1 + w_{h_12}x_2 + w_{h_13}x_3) = g(0,1*0 + 0,1*1 + 0,1*1) = g(0,2) = \frac{1}{1 - e^{-0,2}} = 5,52$$

$$o_{h_2} = g(w_{h_21}x_1 + w_{h_22}x_2 + w_{h_23}x_3) = g(0.2 * 0 + 0.2 * 1 + 0.2 * 1) = g(0.4) = \frac{1}{1 - e^{-0.4}} = 3.03$$

Ejemplo: Propagación hacia delante

$$g(x) = \frac{1}{1 - e^{-x}}; \quad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

$$w_{h1,1} = w_{h1,2} = w_{h1,3} = 0.1$$
 $w_{h2,1} = w_{h2,2} = w_{h2,3} = 0.2$ $w_{y,1} = w_{y,2} = 0.3$

$$o_y = g(w_{y1}o_{h_1} + w_{y1}o_{h_2}) = g(0.3 \cdot 5.52 + 0.3 \cdot 3.03) = g(2.565) = 1.1$$

$$g(x) = \frac{1}{1 - e^{-x}}; \quad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

$$w_{h1,1} = w_{h1,2} = w_{h1,3} = 0.1$$
 $w_{h2,1} = w_{h2,2} = w_{h2,3} = 0.2$ $w_{y,1} = w_{y,2} = 0.3$

```
Para cada instancia de entrenamiento \langle x, y \rangle
     // Propagar la entrada a través de la red
   Para cada unidad de salida k calcula o_k
     // Propagar el error hacia atrás
   Para cada unidad de salida k calcula \delta_k \delta_k = o_k (1 - o_k) (y_k - o_k)
   Para cada unidad oculta h_{\mu} calcula \delta_h
              \delta_h = o_h (1 - o_h) \sum_{k=0}^{\infty} w_{kh} \delta_k
     //w_{ji} peso de la unidad i a la j, x'_{ji} entrada de i a j
   Actualiza cada peso de la red w_{ii}
                     w_{ii} \leftarrow w_{ii} + \eta \delta_i x_i'
                                                     g(x) = \frac{1}{1 - e^{-x}}; \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))
                 Eiemplo (0,1,1,2)
                                            5.52
                                            3.03
```


Para cada unidad de salida k calcula δ_k $\delta_k = o_k (1 - o_k) (y_k - o_k)$

$$\delta_y = o_y (1 - o_y)(y - o_y) = 1.1(1-1.1)(2-1.1) = -0.099$$

Eiemplo (0,1,1,2)

$$g(x) - \frac{1}{1 - e^{-x}}, \quad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

$$w_{h,j} = 0.1$$
, $w_{h,j} = 0.2$, $w_{yj} = 0.3$, $\eta = 0.3$

34/27

Para cada unidad oculta h calcula δ_h $\delta_h = o_h (1 - o_h) \sum_k w_{kh} \delta_k$

$$\delta_{h1} = o_{h1}(1 - o_{h1})w_{y1}\delta_y = 5.52*(1-5.52)*0.3*(-0.099) = 0.74$$

$$\delta_{h2} = o_{h2}(1 - o_{h2})w_{y2}\delta_y = 3.03*(1-3.03)*0.3*(-0.099) = 0.18$$

Eiemplo (0,1,1,2)

$$g(x) = \frac{1}{1 - e^{-x}}; \quad \frac{\delta g(x)}{\delta x} = g(x)(1 - g(x))$$

$$w_{h,j} = 0.1$$
, $w_{h,j} = 0.2$, $w_{y,j} = 0.3$, $\eta = 0.2$

35/27

Ejemplo: Propagación hacia atrás

Actualiza cada peso de la red w_{ji} δ_y =-0.099 δ_{h1} =0.74 δ_{h2} =0.18 $w_{ji} \leftarrow w_{ji} + \eta \delta_j x_i'$ δ_y =-0.099 δ_{h1} =0.74 δ_{h2} =0.18 δ_{h1} =0.1 δ_{h2} =0.1 δ_{h1} =0.1 δ_{h1} =0.1 δ_{h2} =0.1 δ_{h1} =0.1 δ_{h2} =0.1 δ_{h1} =0.248 δ_{h1} =0.248 δ_{h2} =0.1 δ_{h2} =0.1 δ_{h2} =0.2 δ_{h2} =0.3 δ_{h2}

$$w_{h1,1} = 0.1$$
 $w_{h2,1} = 0.2$ $w_{y,1} = 0.13$ $w_{h1,2} = 0.248$ $w_{h2,2} = 0.236$ $w_{h2,3} = 0.236$ $w_{y,2} = 0.21$

¿Cuando actualizar los pesos?

37/27

- Hasta ahora nos hemos centrado en DG incremental
 - Esto implica que se modifican los peso por cada instancia
- El otro extremo es calcular la variación de los pesos con todas las instancias
- O algo intermedio, solo se actualizan los pesos cuando se ven un número dado de instancias
- Batch es el conjunto de instancias que hay que procesar para actualizar los pesos
- **Época** (**Epoch**) es el lapso en que se han procesado todas las instancias de entrenamiento

Variaciones

38/27

Añadir Momentum

 La variación de los pesos de una iteración tiene en cuenta la variación de la anterior

Weight decay

Para evitar sobreajuste se añade un término al error a minimizar con un parámetro que controla este término

Descenso de gradiente estocástico

Se elige de forma aleatoria las instancias que forman parte del Batch

¿Cuándo paramos?

39/27

- Descenso de gradiente es un proceso iterativo
- ¿Hasta que error sea menor que un valor dado?

- Esta estrategia puede conducir al sobreajuste
- ¿Con un número fijo de iteraciones?
 - Mejor, pero es difícil saber cuantas

¿Y si monitorizamos la capacidad de predicción de red con datos de validación?

Pararíamos cuando el error de validación empieza a subir

Potencial de las redes neuronales

40/27

- Una red de una capa oculta puede representar cualquier función booleana
- También puede representar cualquier función continua
- Con dos capas ocultas se pueden representar funciones discontinuas
- ¿Hace falta más? ¿Porqué Deep Neural Networks?
- Parece ser que con similar número de parámetros mayor profundidad muestra mejores resultados

Ventajas y desventajas

41/27

Fortalezas	Debilidades
Se puede aplicar a cualquier tipo de problema (si hay suficientes datos)	Proclive al sobreajuste
Aprendizaje online	Muchos parámetros que determinar
Tolerante al ruido	Entrenamiento costoso

Deep Learning

TOC

En un vistazo...

Qué es Deep Learning?

https://cdn-images-1.medium.com/max/1600/1*dnvGC-PORSoCo7VXT3PV_A.png

Qué es Deep learning

ML clásico

ML con DL

Qué es DEEP LEARNING?

Diferencia?

- Todo se entrena a la vez!
- Por qué ahora?

Por lo tanto...

- Podemos decir que Deep Learning es el apilamiento de modelos en secuencia cuyos parámetros se entrenan conjuntamente.
- El modelo más usual es el de la red neuronal.
- El uso de Deep Learning evita la costosa tarea de pre-procesado e ingeniería de atributos.

Tipos de Deep learning

Unsupervised Pretrained Networks (UPNs)

Autoencoders, Variational Autoencoders (VAEs)

Deep Belief Networks (DBNs)

Generative Adversarial Networks (GANs)

Convolutional Neural Networks (CNNs)

Capas de Convolución + ReLU + Pool

ReLU rectified Linear Unit

Recurrent and Recursive Neural Networks (RNNs)

Recursive → shared weights

Usos

Usos de DL

- Generación de datos a partir de entrada (imágenes, audio, texto): GANs, VAEs, Recurrent Neural Networks
- Para modelar imágenes: CNNs y DBNs
- Para modelar secuencias de datos: Recurrent Neural Networks, LSTM

Redes Neuronales Convolucionales

Las CNN (Redes Neuronales Convolucionales) son una clase de Redes Neuronales Profundas que pueden reconocer y clasificar características particulares en imágenes, y se utilizan ampliamente para analizar imágenes

Redes Neuronales Convolucionales

- Capa de convolución
- Capas de agrupación
- Capas completamente conectadas

CNN: Capa de Convolución

Convolución es el operador matemático que convierte dos funciones f y g en una tercera función que representa la magnitud en la que se superponen f y una versión trasladada e invertida de g.

Definición para funciones continuas

$$(fst g)(\mathbf{x})=\int f(\mathbf{z})g(\mathbf{x}-\mathbf{z})d\mathbf{z}.$$

Definición para funciones discretas

$$(f*g)(i) = \sum_a f(a)g(i-a)$$

En terminología de redes esto se traduce por el producto de dos arrays multidimensionales, llamados *tensores*.

El primer tensor es el *input* y el segundo se llama *kernel*

$$S(i,j)=(Kst I)(i,j)=\sum_m\sum_n=I(m,n)K(i-m,j-n)$$

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n).$$

CNN: Convolución

Filtro: Conjunto de kernels

$$n_{
m h} imes n_{
m w}$$
 $k_{
m h} imes k_{
m w}$ $(n_{
m h} - k_{
m h} + 1) imes (n_{
m w} - k_{
m w} + 1)$ Input Kernel Output $0 imes 1 imes 25$ $0 imes 1$ $0 imes$

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19, \ 1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25, \ 3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37, \ 4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$$

CNN: Convolución

Kernel

0	1	2
2	2	0
0	1	2

12.0 12.0 17.0 10.0 17.0 19.0 9.0 6.0 14.0			
	12.0	12.0	17.0
9.0 6.0 14.0	10.0	17.0	19.0
	9.0	6.0	14.0

3	30	$2_{_1}$	12	0
0	02	1_2	30	1
3	1_{o}	$2_{_1}$	22	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0
9.0	6.0	14.0

3	3	2	1	0
00	0,	12	3	1
32	12	20	2	3
2_{0}	0,	02	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1_{o}	3,	1_2
3	1	22	2_2	30
2	0	00	$2_{_1}$	2_{2}
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1	3	1
30	1,	2_2	2	3
22	02	00	2	2
$2_{_0}$	0,	02	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1	3	1
3	10	2_{1}	2_2	3
2	02	02	2_0	2
2	00	0,	02	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1	3	1
3	1	20	2_{1}	32
2	0	02	2_2	20
2	0	00	0,	12

CNN: Relleno - Padding

Si añadimos p_h filas y p_w columnas

$$(n_{
m h} - k_{
m h} + p_{
m h} + 1) imes (n_{
m w} - k_{
m w} + p_{
m w} + 1).$$

CNN: Relleno - Padding

CNN: Paso - Stride

CNN: Convolution + padding+stride

CNN: Función de activación

Añade no linealidad

- Sigmoide $\alpha(x) = \frac{1}{1 + e^{-x}}$
- $ReLU f(x) = \max(0, x)$

CNN: Múltiples canales de entrada

CNN: Convolución

Pooling:

- □ La capa de agrupación reemplaza la salida de la red en ciertas ubicaciones por un resumen de las salidas cercanas.
- ☐ Reducción del tamaño espacial de la representación
- □ La operación de agrupación se procesa en cada segmento de la representación de forma individual.

Funciones de pooling:

- Media
- Norma L2
- Media ponderada
- Máximo

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

Max-pool con filtro 2x2

6	7	8
6	7	9
3	3	9

1	1	2	4
5	6	7	8
3	2	1	9
1	2	3	4

Max-pool con filtro 2x2
Paso 2

6	8
3	9

CNN

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

Y ahora...diseñar arquitectura

