## Seminari 7

Matematičke metode za informatičare

Damir Horvat

FOI, Varaždin

## Sadržaj

prvi zadatak

drugi zadatak

treći zadatak

četvrti zadatak

prvi zadatak

#### Zadatak 1

- a)  $U \mathbb{R}^3$  nadopunite do baze skup vektora  $\{(5,0,2), (0,-5,0)\}$ .
- b)  $U \mathcal{P}_4(x)$  nadopunite do baze skup vektora

$${6+2x-3x^2-x^3, x-7x^3}.$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

# **Rješenje**a) $\{(5,0,2), (0,-5,0)\}$ $\alpha \cdot (5,0,2)$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (\mathbf{5}, \mathbf{0}, \mathbf{2}) + \beta \cdot (\mathbf{0}, -\mathbf{5}, \mathbf{0})$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
(5\alpha,

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta,$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
$$(5\alpha, -5\beta, 2\alpha)$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
  
 $(5\alpha, -5\beta, 2\alpha) = (0,0,0)$ 

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
  
 $(5\alpha, -5\beta, 2\alpha) = (0,0,0)$ 

$$5\alpha = 0$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
  
 $(5\alpha, -5\beta, 2\alpha) = (0,0,0)$ 

$$5\alpha = 0$$

$$-5\beta = 0$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
  
 $(5\alpha, -5\beta, 2\alpha) = (0,0,0)$ 

$$5\alpha = 0$$

$$-5\beta = 0$$

$$\mathbf{2}\alpha=\mathbf{0}$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
  
 $(5\alpha, -5\beta, 2\alpha) = (0,0,0)$ 

$$5\alpha = 0 \\ -5\beta = 0 \\ 2\alpha = 0$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
  
 $(5\alpha, -5\beta, 2\alpha) = (0,0,0)$ 

$$\begin{vmatrix}
5\alpha = 0 \\
-5\beta = 0 \\
2\alpha = 0
\end{vmatrix}
\xrightarrow{\alpha = 0}$$

$$\beta = 0$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$lpha \cdot (5,0,2) + eta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
 $(5\alpha, -5\beta, 2\alpha) = (0,0,0)$ 

$$\begin{vmatrix}
5\alpha = 0 \\
-5\beta = 0 \\
2\alpha = 0
\end{vmatrix}
\xrightarrow{\alpha = 0}$$

$$\beta = 0$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\{(5,0,2), (0,-5,0),$$

$$\dim \mathbb{R}^3 = 3$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\{(5,0,2), (0,-5,0), (1,0,0)\}$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\{(5,0,2), (0,-5,0), (1,0,0)\}$$
  
 $\alpha \cdot (5,0,2)$ 

$$\dim \mathbb{R}^3 = 3$$

a) 
$$\{(5,0,2), (0,-5,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\{(5,0,2), (0,-5,0), (1,0,0)\}$$
  
 $\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0)$ 

$$\dim \mathbb{R}^3 = 3$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\{(5,0,2), (0,-5,0), (1,0,0)\}\$$
  
 $\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0)$ 

$$\dim \mathbb{R}^3 = 3$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$lpha \cdot (5,0,2) + eta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
 $(5lpha, -5eta, 2lpha) = (0,0,0)$ 
 $5lpha = 0$ 
 $-5eta = 0$ 
 $2lpha = 0$ 
 $\beta = 0$ 

 $\{(5,0,2), (0,-5,0), (1,0,0)\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$egin{aligned} \left\{ (5,0,2), \, (0,-5,0), \, (1,0,0) \right\} \ & \quad lpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3} \ & \quad (5\alpha + \gamma, \end{aligned}$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

$$\beta = 0$$

$$\beta = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$egin{aligned} \left\{ (5,0,2),\, (0,-5,0),\, (1,0,0) 
ight\} \ & \quad lpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3} \ & \quad (5\alpha + \gamma, -5\beta, \end{aligned}$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$lpha \cdot (5,0,2) + eta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
 $(5lpha,-5eta,2lpha) = (0,0,0)$ 
 $5lpha = 0$ 
 $-5eta = 0$ 
 $2lpha = 0$ 
 $\beta = 0$ 

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$lpha \cdot (5,0,2) + eta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$
 $(5lpha,-5eta,2lpha) = (0,0,0)$ 
 $5lpha = 0$ 
 $-5eta = 0$ 
 $2lpha = 0$ 
 $\beta = 0$ 

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\begin{aligned} \big\{ (5,0,2), \, (0,-5,0), \, \textcolor{red}{(1,0,0)} \big\} \\ \alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) &= \Theta_{\mathbb{R}^3} \\ (5\alpha + \gamma, -5\beta, 2\alpha) &= (0,0,0) \end{aligned}$$

$$\dim \mathbb{R}^3 = 3$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{kan} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\{ (5,0,2), (0,-5,0), (1,0,0) \}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$$

$$5\alpha + \gamma = 0$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$$

$$\{ (5,0,2), (0,-5,0), (1,0,0) \}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

$$(\mathbf{5}\alpha+\gamma,-\mathbf{5}\beta,2\alpha)=(\mathbf{0},\mathbf{0},\mathbf{0})$$

$$5\alpha + \gamma = 0$$
$$-5\beta = 0$$

2 / 20

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

 $(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$ 

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .  $\mathcal{B}_{\mathrm{kan}} = \{(1,0,0), (0,1,0), (0,0,1)\}$ 

$$\{ (5,0,2), (0,-5,0), (1,0,0) \}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

$$0)=\Theta_{\mathbb{R}^3}$$

$$5\alpha + \gamma = 0$$
$$-5\beta = 0$$

 $2\alpha = 0$ 

2/20

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .  $\mathcal{B}_{\mathrm{kan}} = \{(1,0,0), (0,1,0), (0,0,1)\}$ 

$$\{ (5,0,2), (0,-5,0), (1,0,0) \}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$$

$$5\alpha + \gamma = 0$$
$$-5\beta = 0$$
$$2\alpha = 0$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .  $\mathcal{B}_{\mathrm{kan}} = \{(1,0,0), (0,1,0), (0,0,1)\}$ 

$$\{ (5,0,2), (0,-5,0), (1,0,0) \}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$$

$$5\alpha + \gamma = 0$$
 $-5\beta = 0$ 
 $2\alpha = 0$ 
 $-\infty \rightarrow \alpha = 0$ 

$$\dim \mathbb{R}^3 = 3$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

 $\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{D}^3}$ 

 $(5\alpha, -5\beta, 2\alpha) = (0, 0, 0)$ 

$$\begin{array}{c}
5\alpha = 0 \\
-5\beta = 0 \\
2\alpha = 0
\end{array}$$

$$\begin{array}{c}
\alpha = 0 \\
\beta = 0
\end{array}$$

$$\mathcal{B}_{\mathrm{kan}} = \{(1, 0) \\
\{(5, 0, 2), (0, -5, 0), (1, 0, 0)\} \\
\alpha \cdot (5, 0, 2) + \beta \cdot (0, -5, 0) + \gamma \cdot (1, 0, 0) = \Theta_{\mathbb{R}^3}$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .  $\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$ 

$$(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$$

$$\begin{cases}
5\alpha + \gamma = 0 \\
-5\beta = 0 \\
2\alpha = 0
\end{cases}
\xrightarrow{\alpha} \beta = 0$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\beta = 0$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

 $\mathcal{B}_{\mathrm{kan}} = \{(1,0,0), (0,1,0), (0,0,1)\}$ 

$$\{(5,0,2), (0,-5,0), (1,0,0)\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$
  
 $(5\alpha + \gamma, -5\beta, 2\alpha) = (0,0,0)$ 

$$5\alpha + \gamma = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$-\infty \rightarrow \alpha = 0$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\begin{vmatrix}
5\alpha = 0 \\
-5\beta = 0 \\
2\alpha = 0
\end{vmatrix}$$

$$\begin{vmatrix}
\alpha = 0 \\
\beta = 0
\end{vmatrix}$$

$$\beta = 0$$

 $\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{D}^3}$ 

 $(5\alpha, -5\beta, 2\alpha) = (0, 0, 0)$ 

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .  $\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$ 

$$(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$$

$$5\alpha + \gamma = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$-\infty \rightarrow \alpha = 0$$

$$\gamma = 0$$

a)  $\{(5,0,2), (0,-5,0)\}$ 

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^{3}}$$

$$(5\alpha, -5\beta, 2\alpha) = (0,0,0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\{(5,0,2), (0,-5,0), (1,0,0)\} \leftarrow$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .

$$\mathcal{B}_{\mathrm{kan}} = \left\{ (1,0,0), (0,1,0), (0,0,1) \right\}$$

$$\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

$$5\alpha + \gamma = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$-\infty \beta = 0$$

$$\gamma = 0$$

 $(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$ 

jedna nadopuna do baze

a)  $\{(5,0,2), (0,-5,0)\}$ 

 $\alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) = \Theta_{\mathbb{R}^3}$ 

Nadopuna do baze nije jedinstvena.

$$(5\alpha, -5\beta, 2\alpha) = (0, 0, 0)$$

$$5\alpha = 0$$

$$-5\beta = 0$$

$$2\alpha = 0$$

$$\{(5, 0, 2), (0, -5, 0), (1, 0, 0)\} \leftarrow$$

Zadani skup vektora je linearno nezavisan u  $\mathbb{R}^3$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathbb{R}^3$ .  $\mathcal{B}_{\mathrm{kan}} = \big\{ (1,0,0), (0,1,0), (0,0,1) \big\}$ 

$$\{(5,0,2), (0,-5,0), (1,0,0)\} \leftarrow \alpha \cdot (5,0,2) + \beta \cdot (0,-5,0) + \gamma \cdot (1,0,0) = \Theta_{\mathbb{R}^3}$$

 $(5\alpha + \gamma, -5\beta, 2\alpha) = (0, 0, 0)$   $5\alpha + \gamma = 0$   $-5\beta = 0$   $2\alpha = 0$   $\gamma = 0$   $\gamma = 0$ 

 $\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right)$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3)$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$   
 $6\alpha = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$   
 $6\alpha = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$   
 $6\alpha = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$   
 $6\alpha = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$   
 $6\alpha = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$   
 $6\alpha = 0$   
 $\beta = 0$ 

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$   
 $2\alpha + \beta = 0$   
 $6\alpha = 0$   
 $\beta = 0$ 

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta = 0$$

$$6\alpha = 0$$
Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$$

 $\dim \mathcal{P}_4(x) = 4$ 

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
2\alpha + \beta = 0 \\
6\alpha = 0
\end{array}$$

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
2\alpha + \beta = 0 \\
6\alpha = 0
\end{array}$$
Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

$$-\alpha-7\beta=0$$
 $-3\alpha=0$ 
 $2\alpha+\beta=0$ 
 $6\alpha=0$ 
 $\beta=0$ 
Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

$$\begin{array}{c}
-\alpha-7\beta=0\\
-3\alpha=0\\
2\alpha+\beta=0\\
6\alpha=0
\end{array}$$
Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .
$$\left\{6+2x-3x^2-x^3,\,x-7x^3,\,1\right\}$$

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

b) 
$$\{6 + 2x - 3x^2 - x^3, x - 7x^3\}$$
  
 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$   
 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$   
 $-\alpha - 7\beta = 0$   
 $-3\alpha = 0$ 
Zadani skup nezavisan prezavisan pr

 $\alpha \cdot (6 + 2x - 3x^2 - x^3)$ 

 $\alpha + 6\alpha = 0$ Zadani skup vektora je linearno

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

 $\dim \mathcal{P}_4(x) = 4$ 

$$-\alpha-7\beta=0\\-3\alpha=0\\2\alpha+\beta=0\\6\alpha=0$$
 Zadani skup nezavisan u nadopuni vektorskog 
$$\left\{6+2x-3x^2-x^3,\,x-7x^3,\,1\right\}$$

nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
2\alpha + \beta = 0 \\
6\alpha = 0
\end{array}$$
Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .
$$\left\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\right\}$$

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right)$$

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
2\alpha + \beta = 0 \\
6\alpha = 0
\end{array}$$

$$\begin{array}{c}
& \text{Zadani skup vektora je linearno} \\
& \text{nezavisan u } \mathcal{P}_4(x) \text{ pa se može} \\
& \text{nadopuniti do neke baze} \\
& \text{vektorskog prostora } \mathcal{P}_4(x).
\end{array}$$

$$\left\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\right\}$$

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1$$

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
2\alpha + \beta = 0 \\
6\alpha = 0
\end{array}$$

$$\begin{array}{c}
\text{Zadani skup vektora je linearno} \\
\text{nezavisan u } \mathcal{P}_4(x) \text{ pa se može} \\
\text{nadopuniti do neke baze} \\
\text{vektorskog prostora } \mathcal{P}_4(x).$$

$$\left\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\right\}$$

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$$

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
2\alpha + \beta = 0 \\
6\alpha = 0
\end{array}$$

$$\begin{array}{c}
\text{Zadani skup vektora je linearno} \\
\text{nezavisan u } \mathcal{P}_4(x) \text{ pa se može} \\
\text{nadopuniti do neke baze} \\
\text{vektorskog prostora } \mathcal{P}_4(x).$$

$$\left\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\right\}$$

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $(-\alpha - 7\beta)x^3$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

$$-\alpha - 7\beta = 0$$
 $-3\alpha = 0$ 
 $2\alpha + \beta = 0$ 
 $6\alpha = 0$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .

 $\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{P_4(x)}$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

$$-\alpha - 7\beta = 0$$
 $-3\alpha = 0$ 
 $2\alpha + \beta = 0$ 
 $6\alpha = 0$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .

 $\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
2\alpha + \beta = 0 \\
6\alpha = 0
\end{array}$$
Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .
$$\left\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\right\}$$

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma)$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$  $2\alpha + \beta = 0$  $6\alpha = 0$   $\alpha = 0$ nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$  $2\alpha + \beta = 0$  $6\alpha = 0$   $\alpha = 0$ nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $-\alpha - 7\beta = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

$$-\alpha - 7\beta = 0$$
 $-3\alpha = 0$ 
 $2\alpha + \beta = 0$ 
 $6\alpha = 0$ 
 $\beta = 0$ 
Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .
 $\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

 $-\alpha - 7\beta = 0$   $-3\alpha = 0$   $\frac{\alpha = 0}{I}$ nezavisan u  $\mathcal{P}_4(x)$  pa se može  $2\alpha + \beta = 0$   $6\alpha = 0$ nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

 $\dim \mathcal{P}_4(x) = 4$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$  $2\alpha + \beta = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $2\alpha + \beta = 0$   $6\alpha = 0$   $\beta = 0$ nezavisan u  $\mathcal{P}_4(x)$  pa se moze nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\left\{6 + 2x - 3x^2 - x^3, x - 7x^3, 1\right\}$   $\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$   $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$   $-\alpha - 7\beta = 0$   $-3\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

 $\dim \mathcal{P}_4(x) = 4$ 

3/20

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$   $-\alpha - 7\beta = 0$ 

 $2\alpha + \beta = 0$  $6\alpha + \gamma = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta = 0$$

$$6\alpha = 0$$

$$\begin{cases} \beta = 0 \end{cases}$$

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta = 0$$

$$6\alpha + \gamma = 0$$

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

 $\dim \mathcal{P}_4(x) = 4$ 

3/20

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $2\alpha + \beta = 0$   $6\alpha = 0$ nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$  $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$  $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$  $-\alpha - 7\beta = 0$  $-3\alpha = 0$  $2\alpha + \beta = 0$   $-\alpha - 7\beta = 0$  $-\alpha - 3\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

 $\dim \mathcal{P}_4(x) = 4$ 

3/20

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$   $-\alpha - 7\beta = 0$ 

 $6\alpha + \gamma = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$  $2\alpha + \beta = 0$  $6\alpha = 0$   $\alpha = 0$ nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$  $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$  $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$  $-\alpha - 7\beta = 0$   $-3\alpha = 0$   $2\alpha + \beta = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

 $\dim \mathcal{P}_4(x) = 4$ 

3/20

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $6\alpha + \gamma = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $2\alpha + \beta = 0$   $6\alpha = 0$ nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$  $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$  $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

 $\dim \mathcal{P}_4(x) = 4$ 

3/20

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$   $-\alpha - 7\beta = 0$ 

 $6\alpha + \gamma = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$  $2\alpha + \beta = 0$  $6\alpha = 0$   $\alpha = 0$ nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$  $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$  $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$  $-\alpha - 7\beta = 0$   $-3\alpha = 0$   $2\alpha + \beta = 0$   $\beta = 0$   $\alpha = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno nezavisan u  $\mathcal{P}_4(x)$  pa se može

 $\dim \mathcal{P}_4(x) = 4$ 

3/20

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $6\alpha + \gamma = 0$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

 $-\alpha - 7\beta = 0$  $-3\alpha = 0$  $2\alpha + \beta = 0$  $6\alpha = 0$   $\alpha = 0$ nezavisan u  $\mathcal{P}_4(x)$  pa se može nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$  $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$  $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$ 3/20

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

Zadani skup vektora je linearno

 $\dim \mathcal{P}_4(x) = 4$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$  $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$  $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) = \Theta_{\mathcal{P}_4(x)}$  $\dim \mathcal{P}_4(x) = 4$  $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + 6\alpha = 0$  $-\alpha - 7\beta = 0$ Zadani skup vektora je linearno  $-3\alpha = 0$   $\alpha = 0$ nezavisan u  $\mathcal{P}_4(x)$  pa se može  $2\alpha + \beta = 0$   $6\alpha = 0$ nadopuniti do neke baze vektorskog prostora  $\mathcal{P}_4(x)$ .  $\{6+2x-3x^2-x^3, x-7x^3, 1\}$  $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 = \Theta_{\mathcal{P}_4(x)}$  $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta)x + (6\alpha + \gamma) = 0$  $-\alpha - 7\beta = 0$   $-3\alpha = 0$   $2\alpha + \beta = 0$   $6\alpha + \gamma = 0$   $\beta = 0$   $\gamma = 0$ linearno nezavisni skup vektora, ali nije baza za  $\mathcal{P}_4(x)$ 3/20

 $\{6+2x-3x^2-x^3, x-7x^3, 1,$ 

 $\mathcal{B}_{\mathrm{kan}} = \left\{1, x, x^2, x^3\right\}$ 

 $\{6+2x-3x^2-x^3, x-7x^3, 1, x\}$ 

 $\mathcal{B}_{\mathrm{kan}} = \left\{1, x, x^2, x^3\right\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right)$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

 $\mathcal{B}_{\mathrm{kan}} = \left\{1, x, x^2, x^3\right\}$ 

$$\alpha\cdot\left(6+2x-3x^2-x^3\right)+\beta\cdot\left(x-7x^3\right)$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

 $\mathcal{B}_{\mathrm{kan}} = \left\{1, x, x^2, x^3\right\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

 $\mathcal{B}_{\mathrm{kan}} = \left\{1, x, x^2, x^3\right\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

$$(-\alpha - 7\beta)x^3$$

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma)$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$
$$-\alpha - 7\beta = 0$$

 $\mathcal{B}_{\text{kan}} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$
$$-\alpha - 7\beta = 0$$

$$-\alpha - 7\beta = 0$$
$$-3\alpha = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\mathcal{B}_{\text{kan}} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha)x^3 + (-3\alpha)x^3 + (-3\alpha)x$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$-\alpha - 7\beta = 0$$
$$-3\alpha = 0$$
$$2\alpha + \beta + \delta = 0$$
$$6\alpha + \gamma = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha)x^3 + (-3\alpha)x^3 + (-3\alpha)x$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^{3} + (-3\alpha)x^{2} + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta + \delta = 0$$

$$6\alpha + \gamma = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot \left(6 + 2x - 3x^2 - x^3\right) + \beta \cdot \left(x - 7x^3\right) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^{3} + (-3\alpha)x^{2} + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta + \delta = 0$$

$$6\alpha + \gamma = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^{3} + (-3\alpha)x^{2} + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta + \delta = 0$$

$$6\alpha + \gamma = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^{3} + (-3\alpha)x^{2} + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta + \delta = 0$$

$$6\alpha + \gamma = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, 1, x\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$

$$(-\alpha - 7\beta)x^{3} + (-3\alpha)x^{2} + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$2\alpha + \beta + \delta = 0$$

$$6\alpha + \gamma = 0$$

$$\gamma = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

$$\begin{array}{c}
-\alpha - 7\beta = 0 \\
-3\alpha = 0 \\
\beta = 0
\end{array}$$

$$\begin{array}{c}
\beta = 0 \\
-3\alpha = 0 \\
6\alpha + \beta + \delta = 0 \\
6\alpha + \gamma = 0
\end{array}$$

$$\begin{array}{c}
\beta = 0 \\
-\infty \\
\gamma = 0$$

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

 $\dim \mathcal{P}_4(x) = 4$ 

$$\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$$
$$(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$$

jedna nadopuna do baze

$$(-\alpha - 7\beta)x^{3} + (-3\alpha)x^{2} + (2\alpha + \beta + \delta)x +$$

$$-\alpha - 7\beta = 0$$

$$-3\alpha = 0$$

$$\beta = 0$$

$$\beta = 0$$

$$\delta =$$

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{1}, x\}$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

 $\dim \mathcal{P}_4(x) = 4$ 

$$-\alpha - 7\beta = 0$$
 $-3\alpha = 0$ 
 $\longrightarrow \alpha = 0$ 

b)  $\{6+2x-3x^2-x^3, x-7x^3\}$ 

 $\{6+2x-3x^2-x^3, x-7x^3, \frac{1}{x}, x\}$ 

Nadopuna do baze nije jedinstvena.

jedna nadopuna do baze

 $\alpha \cdot (6 + 2x - 3x^2 - x^3) + \beta \cdot (x - 7x^3) + \gamma \cdot 1 + \delta \cdot x = \Theta_{\mathcal{P}_4(x)}$ 

 $(-\alpha - 7\beta)x^3 + (-3\alpha)x^2 + (2\alpha + \beta + \delta)x + (6\alpha + \gamma) = 0$ 

 $\mathcal{B}_{\rm kan} = \{1, x, x^2, x^3\}$ 

 $\dim \mathcal{P}_4(x) = 4$ 

# \_\_\_\_\_

drugi zadatak

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

Matrični zapis

AX = B

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

$$AX = B$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 5 & -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

Matrični zapis

$$AX = B$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 5 & -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

## Matrični zapis AX = B

$$AX = B$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 5 & -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$x_1 \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

#### 

$$\begin{bmatrix} 1 & 2 & -1 \\ 5 & -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$x_1 \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

# Matrični zapis AX = B

$$\begin{bmatrix} 1 & 2 & -1 \\ 5 & -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

Zapis pomoću linearne kombinacije vektora

$$x_1 \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$
  $A_{\rho} = \begin{bmatrix} 1 & 2 & -1 & 5 \\ 5 & -3 & 4 & -8 \end{bmatrix}$ 

#### Proširena matrica sustava

$$A_p = \begin{bmatrix} 1 & 2 & -1 & 5 \\ 5 & -3 & 4 & -8 \end{bmatrix}$$

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

# Matrični zapis AX = B

$$AX = B$$

$$\begin{bmatrix} 1 & 2 & -1 \\ 5 & -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

Zapis pomoću linearne kombinacije vektora

$$x_1 \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix} \qquad A_p = \begin{bmatrix} 1 & 2 & -1 & 5 \\ 5 & -3 & 4 & -8 \end{bmatrix}$$

$$A_p = \begin{bmatrix} 1 & 2 & -1 & 5 \\ 5 & -3 & 4 & -8 \end{bmatrix}$$

Kronecker-Capellijev teorem

Sustav linearnih jednadžbi AX = B je rješiv akko  $r(A_n) = r(A)$ .

$$x_1 + 2x_2 - x_3 = 5$$
$$5x_1 - 3x_2 + 4x_3 = -8$$

#### Matrični zapis AX = B

$$\begin{bmatrix} 1 & 2 & -1 \\ 5 & -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$x_1 \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} + x_2 \cdot \begin{bmatrix} 2 \\ -3 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix} \qquad A_p = \begin{bmatrix} 1 & 2 & -1 & 5 \\ 5 & -3 & 4 & -8 \end{bmatrix}$$

- Kronecker-Capellijev teorem Sustav linearnih jednadžbi AX = B je rješiv akko  $r(A_n) = r(A)$ .
- Posljednji stupac u matrici  $A_p$  može se zapisati kao linearna kombinacija preostalih stupaca akko  $r(A_p) = r(A)$ .

#### Zadatak 2

 $U\mathcal{P}_4(t)$  zadani su polinomi

$$p(t) = t^3 + t^2 + t$$
,  $q(t) = t^3 - t + 1$ ,  $r(t) = 2t^3 - t^2 + t - 2$ .

- a) Ispitajte jesu li polinomi p, q i r linearno nezavisni u  $\mathcal{P}_4(t)$ .
- b) Može li se polinom  $f(t) = t^3 + 3t^2 + 3$  prikazati kao linearna kombinacija polinoma p, q i r?
- c) Može li se polinom  $g(t) = t^3 + 3t^2 + t + 3$  prikazati kao linearna kombinacija polinoma p, q i r?

• Kanonska baza za  $\mathcal{P}_4(t)$ :

ullet Kanonska baza za  $\mathcal{P}_4(t)$ :  $\left\{1,t,t^2,t^3
ight\}$ 

 $\dim \mathcal{P}_4(t) = 4$ 

ullet Kanonska baza za  $\mathcal{P}_4(t)$ :  $ig\{1,t,t^2,t^3ig\}$ 

$$p(t)=t^3+t^2+t$$

 $\dim \mathcal{P}_4(t)=4$ 

 $\dim \mathcal{P}_4(t) = 4$ 

$$p(t) = t^3 + t^2 + t \longrightarrow p(t) =$$

$$p(t) = t^3 + t^2 + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$\rho(t) = t^3 + t^2 + t \longrightarrow \rho(t) = (0, 1, 1, 1)$$
 $q(t) = t^3 - t + 1$ 

$$egin{aligned} 
ho(t) &= t^3 + t^2 + t & \longrightarrow & 
ho(t) &= (0,1,1,1) \ q(t) &= t^3 - t + 1 & \longrightarrow & q(t) &= \end{aligned}$$

$$\rho(t) = t^3 + t^2 + t \longrightarrow \rho(t) = (0, 1, 1, 1)$$
 $q(t) = t^3 - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$ 

$$p(t) = t^3 + t^2 + t \longrightarrow p(t) = (0, 1, 1, 1)$$
 $q(t) = t^3 - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$ 
 $r(t) = 2t^3 - t^2 + t - 2$ 

$$p(t) = t^3 + t^2 + t \longrightarrow p(t) = (0, 1, 1, 1)$$
 $q(t) = t^3 - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$ 
 $r(t) = 2t^3 - t^2 + t - 2 \longrightarrow r(t) =$ 

$$p(t) = t^3 + t^2 + t \longrightarrow p(t) = (0, 1, 1, 1)$$
 $q(t) = t^3 - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$ 
 $r(t) = 2t^3 - t^2 + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$ 

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3$$

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) =$$

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3$$

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) =$$

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$A = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

• Kanonska baza za  $\mathcal{P}_4(t)$ :  $\{1, t, t^2, t^3\}$ 

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$egin{aligned} A = egin{bmatrix} 0 \ 1 \ 1 \ 1 \end{bmatrix} \end{aligned}$$

• Kanonska baza za  $\mathcal{P}_4(t)$ :  $\{1, t, t^2, t^3\}$ 

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 2 \end{bmatrix}$$

• Kanonska baza za  $\mathcal{P}_4(t)$ :  $\{1, t, t^2, t^3\}$ 

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 \\ 1 & -1 & 1 & 0 \\ 1 & 0 & -1 & 3 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

• Kanonska baza za  $\mathcal{P}_4(t)$ :  $\left\{1,t,t^2,t^3\right\}$ 

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

• Kanonska baza za  $\mathcal{P}_4(t)$ :  $\left\{1,t,t^2,t^3\right\}$ 

$$p(t) = t^{3} + t^{2} + t \longrightarrow p(t) = (0, 1, 1, 1)$$

$$q(t) = t^{3} - t + 1 \longrightarrow q(t) = (1, -1, 0, 1)$$

$$r(t) = 2t^{3} - t^{2} + t - 2 \longrightarrow r(t) = (-2, 1, -1, 2)$$

$$f(t) = t^{3} + 3t^{2} + 3 \longrightarrow f(t) = (3, 0, 3, 1)$$

$$g(t) = t^{3} + 3t^{2} + t + 3 \longrightarrow g(t) = (3, 1, 3, 1)$$

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

| 0 | 1  | -2<br>1<br>-1 | 3 | 3 |
|---|----|---------------|---|---|
| 1 | -1 | 1             | 0 | 1 |
| 1 | 0  | -1            | 3 | 3 |
| 1 | 1  | 2             | 1 | 1 |







| $\begin{bmatrix} 0 & 1 & -2 & 3 \\ 1 & -1 & 1 & 0 \\ 1 & 0 & -1 & 3 \end{bmatrix}$ | 3 7   | $\lceil 1$ | -1 | 1 | 0 | 1 |
|------------------------------------------------------------------------------------|-------|------------|----|---|---|---|
| $egin{bmatrix} 1 & 0 & -1 & 3 \\ 1 & 1 & 2 & 1 \end{bmatrix}$                      | 3   1 | $\sim$     |    |   |   |   |

| 0 | ·1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 3 | 5 |        | [1 | -1 | 1   0  | 1 |
|---|----|--------------------------------------------------------|---|---|--------|----|----|--------|---|
| 1 | -1 | 1   0                                                  | 1 | Z |        | 0  | 1  | -2   3 | 3 |
| 1 | 0  | -1 \ 3                                                 | 3 |   | $\sim$ | İ  |    |        |   |
| 1 | 1  | 2 1                                                    | 1 |   |        | L  |    | <br>   |   |

| 0 | 1  | <b>-2</b> ¦ 3                                          | 3] | Κ |        | Г1 | -1 | 1   0       | 1] |
|---|----|--------------------------------------------------------|----|---|--------|----|----|-------------|----|
| 1 | -1 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1  | 2 |        | 0  | 1  | $-2 \mid 3$ | 3  |
| 1 | 0  | -1 3                                                   | 3  |   | $\sim$ | 1  | 0  | $-1 \mid 3$ | 3  |
| 1 | 1  | 2 1                                                    | 1  |   |        |    |    | <br>        |    |

| 0          | · <u>1</u> | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 3 | <b>\</b> | Γ1 | -1 | 1   0       | 1]       |
|------------|------------|--------------------------------------------------------|---|----------|----|----|-------------|----------|
| $ \dot{1}$ | -1         | 1 0                                                    | 1 | )        | 0  | 1  | $-2 \mid 3$ | 3        |
| 1          | 0          | -1 3                                                   | 3 | $\sim$   | 1  | 0  | $-1 \mid 3$ | 3        |
| 1          | 1          | 2   1                                                  | 1 |          | 1  | 1  | 2   1       | 1  floor |

















$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} / \cdot (-1) / \cdot (-1)$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} / \cdot (-1) / \cdot (-1)$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & & & & & \\ \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & & & & \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & & & & \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$





$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} / \cdot (-1) / \cdot (-1)$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} / \cdot (-1)$$



$$\begin{bmatrix}
0 & 1 & -2 & 3 & 3 \\
1 & -1 & 1 & 0 & 1 \\
1 & 0 & -1 & 3 & 3 \\
1 & 1 & 2 & 1 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
0 & 1 & -2 & 3 & 3 \\
1 & 0 & -1 & 3 & 3 \\
1 & 1 & 2 & 1 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & 1 & 0 & 1 \\
0 & 1 & -2 & 3 & 3 \\
1 & 1 & 2 & 1 & 1
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -1 & 1 & 0 & 1 \\
0 & 1 & -2 & 3 & 3 \\
0 & 1 & -2 & 3 & 2 \\
0 & 2 & 1 & 1 & 0
\end{bmatrix}$$

$$/ \cdot (-1) / \cdot (-2)$$





$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} / \cdot (-1) / \cdot (-2) \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & & & & & \\ 0 & & & & & \\ \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} / \cdot (-1) / \cdot (-2) \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & & & & & \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} / \cdot (-1) / \cdot (-2) \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \end{bmatrix}$$







$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 0 & 5 & -5 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 5 & -5 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & -2 & 3 & 3 \\
1 & -1 & 1 & 0 & 1 \\
1 & 0 & -1 & 3 & 3 \\
1 & 1 & 2 & 1 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & 1 & 0 & 1 \\
0 & 1 & -2 & 3 & 3 \\
1 & 1 & 2 & 1 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & 1 & 0 & 1 \\
0 & 1 & -2 & 3 & 3 \\
0 & 1 & -2 & 3 & 2 \\
0 & 2 & 1 & 1 & 0
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & -1 & 1 & 0 & 1 \\
0 & 1 & -2 & 3 & 3 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 5 & -5 & -6 \\
0 & 0 & 0 & 0 & 0 & -1
\end{bmatrix}
\sim$$

$$\begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 1 & -2 & 3 & 2 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$ 

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$  pa je  $\mathcal{L}(p,q,r)$  potprostor dimenzije 3 u vektorskom prostoru  $\mathcal{P}_4(t)$ .

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$  pa je  $\mathcal{L}(p,q,r)$  potprostor dimenzije 3 u vektorskom prostoru  $\mathcal{P}_4(t)$ .
- b) Polinom f se može prikazati kao linearna kombinacija polinoma p, q i r.

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$  pa je  $\mathcal{L}(p,q,r)$  potprostor dimenzije 3 u vektorskom prostoru  $\mathcal{P}_4(t)$ .
- b) Polinom f se može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $f \in \mathcal{L}(p,q,r)$ .

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$  pa je  $\mathcal{L}(p,q,r)$  potprostor dimenzije 3 u vektorskom prostoru  $\mathcal{P}_4(t)$ .
- b) Polinom f se može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $f \in \mathcal{L}(p,q,r)$ .
- c) Polinom g se ne može prikazati kao linearna kombinacija polinoma  $p,\ q$  i r.

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$  pa je  $\mathcal{L}(p,q,r)$  potprostor dimenzije 3 u vektorskom prostoru  $\mathcal{P}_4(t)$ .
- b) Polinom f se može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $f \in \mathcal{L}(p,q,r)$ .
- c) Polinom g se ne može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $g \notin \mathcal{L}(p, q, r)$ .

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$  pa je  $\mathcal{L}(p,q,r)$  potprostor dimenzije 3 u vektorskom prostoru  $\mathcal{P}_4(t)$ .
- b) Polinom f se može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $f \in \mathcal{L}(p,q,r)$ .
- c) Polinom g se ne može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $g \notin \mathcal{L}(p, q, r)$ .

$$A = \begin{bmatrix} 0 & 1 & -2 & 3 & 3 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & 0 & -1 & 3 & 3 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -1 & 1 & 0 & 1 \\ 0 & 1 & -2 & 3 & 3 \\ 0 & 0 & 5 & -5 & -6 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

- a) Polinomi p, q i r su linearno nezavisni u  $\mathcal{P}_4(t)$  pa je  $\mathcal{L}(p,q,r)$  potprostor dimenzije 3 u vektorskom prostoru  $\mathcal{P}_4(t)$ .
- b) Polinom f se može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $f \in \mathcal{L}(p,q,r)$ .
- c) Polinom g se ne može prikazati kao linearna kombinacija polinoma p, q i r. Drugim riječima,  $g \notin \mathcal{L}(p, q, r)$ .



treći zadatak

# Skup izvodnica za potprostor

$$\mathcal{L}(v_1, v_2, v_3, v_4, v_5, v_6) = \mathcal{L}(v_1, v_2, v_4) = \mathcal{L}(v_1, v_2) = \mathcal{L}(v_3, v_6) = \cdots$$
 $\mathcal{L}(v_1, v_2, v_3, v_4, v_5, v_6) \neq \mathcal{L}(v_4, v_6)$ 
 $\dim \mathcal{L}(v_1, v_2, v_3, v_4, v_5, v_6) = 2$ 
 $\dim \mathcal{L}(v_4, v_6) = 1$ 

Neka je W potprostor od  $\mathbb{R}^5$  razapet s vektorima

$$u_1 = (1, 2, -1, 3, 4), \ u_2 = (2, 4, -2, 6, 8), \ u_3 = (1, 3, 2, 2, 6),$$
  
 $u_4 = (1, 4, 5, 1, 8), \ u_5 = (2, 7, 3, 3, 9).$ 

Odredite jednu bazu i dimenziju vektorskog prostora W.

Neka je W potprostor od  $\mathbb{R}^5$  razapet s vektorima

$$u_1 = (1, 2, -1, 3, 4), \ u_2 = (2, 4, -2, 6, 8), \ u_3 = (1, 3, 2, 2, 6),$$
  
 $u_4 = (1, 4, 5, 1, 8), \ u_5 = (2, 7, 3, 3, 9).$ 

Odredite jednu bazu i dimenziju vektorskog prostora W.

Neka je W potprostor od  $\mathbb{R}^5$  razapet s vektorima

$$u_1 = (1, 2, -1, 3, 4), \ u_2 = (2, 4, -2, 6, 8), \ u_3 = (1, 3, 2, 2, 6),$$
  
 $u_4 = (1, 4, 5, 1, 8), \ u_5 = (2, 7, 3, 3, 9).$ 

Odredite jednu bazu i dimenziju vektorskog prostora W.

$$A = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \\ 4 \end{bmatrix}$$

Neka je W potprostor od ℝ⁵ razapet s vektorima

$$u_1 = (1, 2, -1, 3, 4), \ u_2 = (2, 4, -2, 6, 8), \ u_3 = (1, 3, 2, 2, 6),$$
  
 $u_4 = (1, 4, 5, 1, 8), \ u_5 = (2, 7, 3, 3, 9).$ 

Odredite jednu bazu i dimenziju vektorskog prostora W.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \\ 3 & 6 \\ 4 & 8 \end{bmatrix}$$

Neka je W potprostor od ℝ⁵ razapet s vektorima

$$u_1 = (1, 2, -1, 3, 4), \ u_2 = (2, 4, -2, 6, 8), \ u_3 = (1, 3, 2, 2, 6),$$
  
 $u_4 = (1, 4, 5, 1, 8), \ u_5 = (2, 7, 3, 3, 9).$ 

Odredite jednu bazu i dimenziju vektorskog prostora W.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ -1 & -2 & 2 \\ 3 & 6 & 2 \\ 4 & 8 & 6 \end{bmatrix}$$

Neka je W potprostor od ℝ⁵ razapet s vektorima

$$u_1 = (1, 2, -1, 3, 4), \ u_2 = (2, 4, -2, 6, 8), \ u_3 = (1, 3, 2, 2, 6),$$
  
 $u_4 = (1, 4, 5, 1, 8), \ u_5 = (2, 7, 3, 3, 9).$ 

Odredite jednu bazu i dimenziju vektorskog prostora W.

$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 4 & 3 & 4 \\ -1 & -2 & 2 & 5 \\ 3 & 6 & 2 & 1 \\ 4 & 8 & 6 & 8 \end{bmatrix}$$

Neka je W potprostor od ℝ⁵ razapet s vektorima

$$u_1 = (1, 2, -1, 3, 4), \ u_2 = (2, 4, -2, 6, 8), \ u_3 = (1, 3, 2, 2, 6),$$
  
 $u_4 = (1, 4, 5, 1, 8), \ u_5 = (2, 7, 3, 3, 9).$ 

Odredite jednu bazu i dimenziju vektorskog prostora W.

$$A = \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 2 & 4 & 3 & 4 & 7 \\ -1 & -2 & 2 & 5 & 3 \\ 3 & 6 & 2 & 1 & 3 \\ 4 & 8 & 6 & 8 & 9 \end{bmatrix}$$

| <b>[</b> 1 | 2  | 1 | 1 | 2 |
|------------|----|---|---|---|
| 2          | 4  | 3 | 4 | 7 |
| -1         | -2 | 2 | 5 | 3 |
| 3          | 6  | 2 | 1 | 3 |
| _ 4        | 8  | 6 | 8 | g |

| $\lceil 1 \rceil$                      | 2  | 1 | 1 | 2 |
|----------------------------------------|----|---|---|---|
| $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | 4  | 3 | 4 | 7 |
| -1                                     | -2 | 2 | 5 | 3 |
| 3                                      | 6  | 2 | 1 | 3 |
| _ 4                                    | 8  | 6 | 8 | 9 |

| 1  | 2  | 1 | 1 | 2 | /· (-2) |
|----|----|---|---|---|---------|
| 2  | 4  | 3 | 4 | 7 |         |
| -1 | -2 | 2 | 5 | 3 |         |
| 3  | 6  | 2 | 1 | 3 |         |
| 4  | 8  | 6 | 8 | 9 |         |

$$\begin{bmatrix} \textcircled{1} & 2 & 1 & 1 & 2 \\ 2 & 4 & 3 & 4 & 7 \\ -1 & -2 & 2 & 5 & 3 \\ 3 & 6 & 2 & 1 & 3 \\ 4 & 8 & 6 & 8 & 9 \end{bmatrix} / \cdot (-2)$$

$$\begin{bmatrix} \textcircled{1} & 2 & 1 & 1 & 2 \\ 2 & 4 & 3 & 4 & 7 \\ -1 & -2 & 2 & 5 & 3 \\ 3 & 6 & 2 & 1 & 3 \\ 4 & 8 & 6 & 8 & 9 \end{bmatrix} / \cdot (-2) / \cdot 1$$

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 2 & 4 & 3 & 4 & 7 \\ -1 & -2 & 2 & 5 & 3 \\ 3 & 6 & 2 & 1 & 3 \\ 4 & 8 & 6 & 8 & 9 \end{bmatrix} / \cdot (-2) / \cdot 1$$





$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & & & & \\
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & & & \\
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/\cdot (-3)$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/\cdot (-3)$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$(-2) / \cdot 1 / \cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/\cdot (-2) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

13 / 20

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$(-3) / \cdot (-4)$$

$$\leftarrow
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

13 / 20

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/ \cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & & & & & \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{pmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & & & & \\ \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/ \cdot (-2) / \cdot 1 / \cdot (-4)$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & & \\ & & & & \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 2 & 4 & 1
\end{pmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ & & & & \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$(-2) / \cdot 1 / \cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -4 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$(-2) / \cdot 1 / \cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & & & & \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & & & \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$\begin{bmatrix} 0 & 0 & 2 & 4 \\ & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & & \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$- (-3) /- 1 /- (-2)$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/ \cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/- (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$- (-4)$$

$$- (-3) / \cdot 1 / \cdot (-2)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-4)$$

$$- (-3) / \cdot 1 / \cdot (-2)$$

$$- (-3)$$

$$- (-4)$$

$$- (-3) / \cdot 1 / \cdot (-2)$$

$$- (-3)$$

$$- (-3) / \cdot 1 / \cdot (-2)$$

$$- (-3)$$

$$- (-3) / \cdot 1 / \cdot (-2)$$

$$- (-4)$$

$$- (-3) / \cdot 1 / \cdot (-2)$$

$$- (-4)$$

$$- (-4)$$

$$- (-7)$$

$$- (-8)$$

$$- (-8)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9)$$

$$- (-9$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{pmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$/ \cdot (-3) / \cdot 1 / \cdot (-2)$$

$$= \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{pmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -5 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$(-2) / \cdot 1 / \cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5
\end{bmatrix}$$

$$/\cdot (-3) /\cdot 1 /\cdot (-2)$$

$$\sim
\begin{bmatrix}
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5
\end{bmatrix}$$



$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5
\end{bmatrix}$$

$$(-3) / \cdot (-4)$$

$$\sim$$



$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5
\end{bmatrix}$$



$$\sim \begin{bmatrix}
0 & 0 & \text{(1)} & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 5
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 5
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$



$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$



$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & -5
\end{bmatrix}$$

$$/ \cdot \frac{-5}{4} \sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$\sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & -5
\end{bmatrix} / \cdot \frac{-5}{4} \sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$

$$/\cdot (-3) / \cdot 1 / \cdot (-2)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & -1 & -2 & -3
\end{bmatrix}$$



$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
2 & 4 & 3 & 4 & 7 \\
-1 & -2 & 2 & 5 & 3 \\
3 & 6 & 2 & 1 & 3 \\
4 & 8 & 6 & 8 & 9
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 6 & 5 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$(-2) / \cdot 1 / \cdot (-3) / \cdot (-4)$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\sim
\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & -5
\end{bmatrix} / \cdot \frac{-5}{4} \sim \begin{bmatrix}
1 & 2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

$$\mathcal{B}_{W}=\left\{ \textit{u}_{1},\textit{u}_{3},\textit{u}_{5}\right\}$$

$$\mathcal{B}_W = \{u_1, u_3, u_5\} \qquad \text{dim } W = 3$$

$$\mathcal{B}_W = \{u_1, u_3, u_5\}$$
 dim  $W = 3$   $W = \mathcal{L}(u_1, u_2, u_3, u_4, u_5)$ 

$$\mathcal{B}_W = \{u_1, u_3, u_5\}$$
 dim  $W = 3$   $W = \mathcal{L}(u_1, u_2, u_3, u_4, u_5)$   $W = \mathcal{L}(u_1, u_3, u_5)$ 

četvrti zadatak

# Potprostor vektorskog prostora



#### Karakterizacija vektorskog potprostora

Neka je V vektorski prostor nad poljem F. Neprazan podskup  $Y \subseteq V$  je potprostor od V akko za svaki izbor  $a, b \in Y$  i  $\alpha, \beta \in F$  vrijedi  $\alpha a + \beta b \in Y$ .

#### Linearni omotač skupa

Neka je V vektorski prostor nad poljem F, a  $S \subseteq V$  bilo koji podskup. Tada je  $\mathcal{L}(S)$  najmanji potprostor od V koji sadrži skup S.

#### Zadatak 4

Zadani su sljedeći podskupovi od  $M_2(\mathbb{R})$ :

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}, \ V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

- a) Dokažite da U nije potprostor od  $M_2(\mathbb{R})$ .
- b) Dokažite da je V potprostor od  $M_2(\mathbb{R})$  i odredite mu neku bazu i dimenziju.

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \xrightarrow{?} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix} \in U$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix} \in U \qquad -2A = \begin{bmatrix} 2 & -3 \\ 2 & 1 \end{bmatrix}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ \boxed{5} & 1 \end{bmatrix} \in U \qquad -2A = \begin{bmatrix} -4 & 6 \\ -10 & -2 \end{bmatrix}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ \boxed{5} & 1 \end{bmatrix} \in U \qquad -2A = \begin{bmatrix} -4 & 6 \\ \boxed{-10} & -2 \end{bmatrix}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ \boxed{5} & 1 \end{bmatrix} \in U \qquad -2A = \begin{bmatrix} -4 & 6 \\ \boxed{-10} & -2 \end{bmatrix}$$

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ 5 & 1 \end{bmatrix} \in U$$

$$-2A = \begin{bmatrix} -4 & 6 \\ -10 & -2 \end{bmatrix} \notin U$$

a)  $U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$ 

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ \boxed{5} & 1 \\ \boxed{0} & 0 \end{bmatrix} \in U \qquad -2A = \begin{bmatrix} -4 & 6 \\ \boxed{-10} & -2 \\ \boxed{0} & 0 \end{bmatrix} \notin U$$

Skup U nije zatvoren na uzimanje linearnih kombinacija svojih elemenata pa stoga U nije potprostor od  $M_2(\mathbb{R})$ .

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c \geqslant 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, A, B \in U \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in U$$

$$A = \begin{bmatrix} 2 & -3 \\ \boxed{5} & 1 \\ \boxed{2} & 0 \end{bmatrix} \in U \qquad -2A = \begin{bmatrix} -4 & 6 \\ \boxed{-10} & -2 \\ \boxed{0} & 0 \end{bmatrix} \notin U$$

Skup U nije zatvoren na uzimanje linearnih kombinacija svojih elemenata pa stoga U nije potprostor od  $M_2(\mathbb{R})$ .

$$U \not< M_2(\mathbb{R})$$

b) 
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

b) 
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$
  $\alpha, \beta \in \mathbb{R}, \ A, B \in V$ 

b) 
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$
$$\alpha, \beta \in \mathbb{R}, \ A, B \in V \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in V$$

b)
$$A \in V$$

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$\alpha, \beta \in \mathbb{R}, \ A, B \in V \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in V$$

b)  $A \in V \implies A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $\alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$ 

19/20

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $c_1 + 2d_1 = 0, \quad \alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$ 

 $a_1 + b_1 - 2c_1 = 0$ 

 $B \in V$ 

 $B \in V \Rightarrow B = \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix},$ 

 $B \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0,$ 

 $B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$ 

 $B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B =$ 

 $B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix}$ 

$$B \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$$
$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \beta \cdot \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & b_2 \\ c_2 & c_2 \end{vmatrix}$ 

 $B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \beta \cdot \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix} = \begin{vmatrix} \alpha a_1 + \beta a_2 \end{vmatrix}$ 

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \end{bmatrix}$ 

 $B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$ 

 $B \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$ 

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

$$(\alpha c_1 + \beta c_2)$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$
$$(\alpha c_1 + \beta c_2) +$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2)$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) =$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$ 

/ 20

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1)$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) +$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) + \beta(c_2 + 2d_2)$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$\left(\alpha c_1 + \beta c_2\right) + 2\left(\alpha d_1 + \beta d_2\right) = \alpha \left(c_1 + 2d_1\right) + \beta \left(c_2 + 2d_2\right) =$$

$$= \alpha \cdot$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0$$

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $\begin{bmatrix} c_1 + 2d_1 = 0, \\ a_1 + b_1 - 2c_1 = 0 \end{bmatrix}$   $\alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$ 

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0 +$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$
$$= \alpha \cdot 0 + \beta \cdot$$

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $\begin{bmatrix} c_1 + 2d_1 = 0, \\ a_1 + b_1 - 2c_1 = 0 \end{bmatrix}$   $\alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$ 

 $B \in V \ \Rightarrow \ B = egin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \beta \cdot \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix} = \begin{vmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{vmatrix}$ 

19 / 20

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) + \beta(c_2 + 2d_2) =$$
  
=  $\alpha \cdot 0 + \beta \cdot 0$ 

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $\begin{bmatrix} c_1 + 2d_1 = 0, \\ a_1 + b_1 - 2c_1 = 0 \end{bmatrix}$   $\alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$ 

 $B \in V \ \Rightarrow \ B = egin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) + \beta(c_2 + 2d_2) =$$
  
=  $\alpha \cdot 0 + \beta \cdot 0 = 0$ 

 $B \in V \ \Rightarrow \ B = egin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

$$(\alpha a_1 + \beta a_2)$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

$$(\alpha a_1 + \beta a_2) +$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{vmatrix} a_1 & b_1 \\ c_1 & d_1 \end{vmatrix} + \beta \cdot \begin{vmatrix} a_2 & b_2 \\ c_2 & d_2 \end{vmatrix} = \begin{vmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{vmatrix}$ 

19 / 20

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$
$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$
$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$
$$(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2)$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

$$(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) -$$

 $B \in V \ \Rightarrow \ B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$
$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$
$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$
$$(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2)$$

 $B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$
$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$
$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$
$$(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2) =$$

 $B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$ 

20

$$B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

 $(\alpha \mathbf{a}_1 + \beta \mathbf{a}_2) + (\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) - 2(\alpha \mathbf{c}_1 + \beta \mathbf{c}_2) =$ 

 $=\alpha(a_1+b_1-2c_1)$ 

 $= \alpha \cdot \mathbf{0} + \beta \cdot \mathbf{0} = \mathbf{0}$ 

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $c_1 + 2d_1 = 0,$   $a_1 + b_1 - 2c_1 = 0$   $\alpha, \beta \in \mathbb{R}, A, B \in V \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in V$ 

$$B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

 $(\alpha \mathbf{a}_1 + \beta \mathbf{a}_2) + (\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) - 2(\alpha \mathbf{c}_1 + \beta \mathbf{c}_2) =$ 

 $=\alpha(a_1+b_1-2c_1)+$ 

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $c_1 + 2d_1 = 0,$   $a_1 + b_1 - 2c_1 = 0$   $\alpha, \beta \in \mathbb{R}, A, B \in V \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in V$ 

19 / 20

$$B \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

 $(\alpha \mathbf{a}_1 + \beta \mathbf{a}_2) + (\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) - 2(\alpha \mathbf{c}_1 + \beta \mathbf{c}_2) =$ 

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2)$ 

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $c_1 + 2d_1 = 0,$   $a_1 + b_1 - 2c_1 = 0$   $C = A + \beta B \in V$   $\alpha, \beta \in \mathbb{R}, A, B \in V \xrightarrow{?} \alpha A + \beta B \in V$ 

$$B \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) + \beta(c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

 $(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2) =$ 

19 / 20

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2) = \alpha \cdot$ 

b)  $A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$   $c_1 + 2d_1 = 0,$   $a_1 + b_1 - 2c_1 = 0$   $C = A + \beta B \in V$   $\alpha, \beta \in \mathbb{R}, A, B \in V \xrightarrow{?} \alpha A + \beta B \in V$ 

b)
$$A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c_1 + 2d_1 = 0, \quad \alpha, \beta \in \mathbb{R}, A, B \in V \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in V$$

$$B \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, c_2 + 2d_2 = 0, a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

 $(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$ 

 $(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2) =$ 

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2) = \alpha \cdot 0$ 

b)
$$A \in V \implies A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c_1 + 2d_1 = 0, \quad \alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$$

$$B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

 $(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) + \beta(c_2 + 2d_2) =$ 

 $(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2) =$ 

 $= \alpha(a_1 + b_1 - 2c_1) + \beta(a_2 + b_2 - 2c_2) = \alpha \cdot 0 +$ 

b)
$$A \in V \implies A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c_1 + 2d_1 = 0, \quad \alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$$

$$a_1 + b_1 - 2c_1 = 0$$

$$B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \quad a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2) = \alpha \cdot 0 + \beta \cdot$ 19 / 20

 $\left(\alpha c_1 + \beta c_2\right) + 2\left(\alpha d_1 + \beta d_2\right) = \alpha \left(c_1 + 2d_1\right) + \beta \left(c_2 + 2d_2\right) =$ 

 $(\alpha \mathbf{a}_1 + \beta \mathbf{a}_2) + (\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) - 2(\alpha \mathbf{c}_1 + \beta \mathbf{c}_2) =$ 

b)
$$A \in V \implies A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c_1 + 2d_1 = 0, \quad \alpha, \beta \in \mathbb{R}, \ A, B \in V \implies \alpha A + \beta B \in V$$

$$a_1 + b_1 - 2c_1 = 0$$

$$B \in V \implies B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \quad a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$

 $\left(\alpha c_1 + \beta c_2\right) + 2\left(\alpha d_1 + \beta d_2\right) = \alpha \left(c_1 + 2d_1\right) + \beta \left(c_2 + 2d_2\right) =$ 

 $(\alpha \mathbf{a}_1 + \beta \mathbf{a}_2) + (\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) - 2(\alpha \mathbf{c}_1 + \beta \mathbf{c}_2) =$ 

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2) = \alpha \cdot 0 + \beta \cdot 0$ 

b)
$$A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c_1 + 2d_1 = 0, \quad \alpha, \beta \in \mathbb{R}, \ A, B \in V \stackrel{?}{\Longrightarrow} \alpha A + \beta B \in V$$

$$a_1 + b_1 - 2c_1 = 0$$

$$B \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \ c_2 + 2d_2 = 0, \ a_2 + b_2 - 2c_2 = 0$$

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

$$(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2) =$$

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2) = \alpha \cdot 0 + \beta \cdot 0 = 0$ 

 $\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$ 

b)
$$A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c_1 + 2d_1 = 0,$$

$$a_1 + b_1 - 2c_1 = 0$$

$$A \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \quad c_2 + 2d_2 = 0, \quad a_2 + b_2 - 2c_2 = 0$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$
$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) = \alpha (c_1 + 2d_2) + \beta (c_2 + 2d_2) = \alpha (c_1 + 2d_2) = \alpha (c_2 + 2d_2) = \alpha (c_1 + 2d_2) = \alpha (c_2 + 2d_2) = \alpha (c_1 + 2d_2) = \alpha (c_2 + 2d_2) = \alpha (c_1 + 2d_2) = \alpha (c_2 + 2d$$

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) + \beta(c_2 + 2d_2) =$$

$$= \alpha \cdot 0 + \beta \cdot 0 = 0$$

$$(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2) =$$

$$(\alpha \mathbf{a}_1 + \beta \mathbf{a}_2) + (\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) - 2(\alpha \mathbf{c}_1 + \beta \mathbf{c}_2) =$$

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2) = \alpha \cdot 0 + \beta \cdot 0 = 0$ 

 $\implies \alpha A + \beta B \in V$ 19 / 20

b)
$$A \in V \Rightarrow A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \quad V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c_1 + 2d_1 = 0,$$

$$a_1 + b_1 - 2c_1 = 0$$

$$A \in V \Rightarrow B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \quad c_2 + 2d_2 = 0, \quad a_2 + b_2 - 2c_2 = 0$$

$$\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}, \quad c_3 + b_3 = \begin{bmatrix} a_2 & b_2 \\ c_3 & b_3 \end{bmatrix}$$

$$\alpha A + \beta B = \alpha \cdot \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \beta \cdot \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} \alpha a_1 + \beta a_2 & \alpha b_1 + \beta b_2 \\ \alpha c_1 + \beta c_2 & \alpha d_1 + \beta d_2 \end{bmatrix}$$
$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha (c_1 + 2d_1) + \beta (c_2 + 2d_2) =$$

$$(\alpha c_1 + \beta c_2) + 2(\alpha d_1 + \beta d_2) = \alpha(c_1 + 2d_1) + \beta(c_2 + 2d_2) =$$
  
=  $\alpha \cdot 0 + \beta \cdot 0 = 0$ 

$$(\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2) - 2(\alpha c_1 + \beta c_2) =$$

$$(\alpha \mathbf{a}_1 + \beta \mathbf{a}_2) + (\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) - 2(\alpha \mathbf{c}_1 + \beta \mathbf{c}_2) =$$

$$= \alpha(a_1 + b_1 - 2c_1) + \beta(a_2 + b_2 - 2c_2) = \alpha \cdot 0 + \beta \cdot 0 = 0$$

 $= \alpha (a_1 + b_1 - 2c_1) + \beta (a_2 + b_2 - 2c_2) = \alpha \cdot 0 + \beta \cdot 0 = 0$ 

 $\implies \alpha A + \beta B \in V \implies V < M_2(\mathbb{R})$ 19/20

b) 
$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

a + b - 2c = 0

$$\begin{vmatrix}
0 & 0 & 1 & 2 \\
1 & 1 & -2 & 0
\end{vmatrix}
\begin{vmatrix}
0 & c + 2d = 0 \\
a + b - 2c = 0
\end{vmatrix}
\xrightarrow{mm} d = -\frac{1}{2}c$$

$$\begin{vmatrix}
a & b \\
c & d
\end{vmatrix} =$$

 a
 b
 c
 d

 0
 0
 1
 2
 0

 1
 1
 -2
 0
 0

b)
$$\frac{a \quad b \quad c \quad d}{0 \quad 0 \quad 1 \quad 2 \quad 0} \\
1 \quad 1 \quad -2 \quad 0 \quad 0$$

$$\begin{bmatrix} a \quad b \\ c \quad d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & d \end{bmatrix} = b \cdot \begin{bmatrix} -1 \\ c & -\frac{1}{2}c \end{bmatrix}$$

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c + 2d = 0 \\
a + b - 2c = 0 \\
b \\
c & -\frac{1}{2}c $

b)
$$\frac{a \quad b \quad c \quad d}{0 \quad 0 \quad 1 \quad 2 \quad 0} \\
1 \quad 1 \quad -2 \quad 0 \quad 0$$

$$\begin{bmatrix} a \quad b \\ c \quad d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & d \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & \end{bmatrix}$$

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c + 2d = 0, \ a + b - 2c = 0 \\
a + b - 2c = 0 \\
b \\ c & d \end{bmatrix} = -b + 2c$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & -\frac{1}{2}c \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}$$

b)
$$\frac{a \quad b \quad c \quad d}{0 \quad 0 \quad 1 \quad 2 \quad 0} \\
1 \quad 1 \quad -2 \quad 0 \quad 0$$

$$\begin{bmatrix} a \quad b \\ c \quad d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & d \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} +$$

$$V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \right\}$$

$$c + 2d = 0 \\
a + b - 2c = 0 \end{aligned}$$

$$a + b - 2c = 0 \Rightarrow a = -b + 2c$$

b)
$$\frac{a \quad b \quad c \quad d}{0 \quad 0 \quad 1 \quad 2 \quad 0} \\
1 \quad 1 \quad -2 \quad 0 \quad 0$$

$$\begin{bmatrix} a \quad b \\ c \quad d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & d \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + c \cdot \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = c \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & -\frac{1}{2}c \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + c \cdot \begin{bmatrix} 2 & 0 \\ \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & -\frac{1}{2}c \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + c \cdot \begin{bmatrix} 2 & 0 \\ 1 & \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & -\frac{1}{2}c \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + c \cdot \begin{bmatrix} 2 & 0 \\ 1 & -\frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -b + 2c & b \\ c & -\frac{1}{2}c \end{bmatrix} = b \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} + c \cdot \begin{bmatrix} 2 & 0 \\ 1 & -\frac{1}{2} \end{bmatrix}$$

$$\mathcal{B}_{V} = \left\{ \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 1 & -\frac{1}{2} \end{bmatrix} \right\}$$

$$V = \begin{cases} \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \end{cases}$$

$$V = \begin{cases} \begin{bmatrix} a & b \\ c & d \end{bmatrix} : c + 2d = 0, \ a + b - 2c = 0 \end{cases}$$

$$C + 2d = 0$$

$$A + b - 2c = 0 \end{cases}$$

$$A + b - 2c = 0$$

$$A + b -$$

 $V = \left\{ \begin{array}{cc} \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| : c + 2d = 0, \ a + b - 2c = 0 \right\}$