296783ST25.txt SEQUENCE LISTING

<110> Cellzome AG Hopf, Carsten Ruffner, Heinz Drewes, Gerard <120> Treatment of Neurodegenerative Diseases by the Use of LAPTM4B <130> 296783USOPCT <140> 10/594,213 2008-01-19 <141> <150> PCT/EP04/13457 <151> 2004-11-26 <160> 3 <170> PatentIn version 3.5 <210> 317 <211> <212> PRT <213> Homo sapiens <400> 1 Met Thr Ser Arg Thr Arg Val Thr Trp Pro Ser Pro Pro Arg Pro Leu

5 10 15 Pro Val Pro Ala Ala Ala Ala Val Ala Phe Gly Ala Lys Gly Thr Asp 20 25 30 Pro Ala Glu Ala Arg Ser Ser Arg Gly Ile Glu Glu Ala Gly Pro Arg 35 40 45 Ala His Gly Arg Ala Gly Arg Glu Pro Glu Arg Arg Arg Ser Arg Gln 50 60 Gln Arg Arg Gly Gly Leu Gln Ala Arg Arg Ser Thr Leu Leu Lys Thr 65 70 75 80 Cys Ala Arg Ala Arg Ala Thr Ala Pro Gly Ala Met Lys Met Val Ala 85 90 95 Pro Trp Thr Arg Phe Tyr Ser Asn Ser Cys Cys Leu Cys Cys His Val 100 105 110 Arg Thr Gly Thr Ile Leu Leu Gly Val Trp Tyr Leu Ile Ile Asn Ala 115 120 125 Val Val Leu Leu Ile Leu Leu Ser Ala Leu Ala Asp Pro Asp Gln Tyr 130 135 140 Asn Phe Ser Ser Glu Leu Gly Gly Asp Phe Glu Phe Met Asp Asp 145 150 155 160

296783ST25.txt																	
Ala	Asn	Met	Cys	17e 165	Ala	Ile	Ala	Ile	Ser 170	Leu	Leu	Met	Ile	Leu 175	Ile		
Cys	Αla	Met	Ala 180	Thr	Tyr	Gly	ΑΊα	Туг 185	Lys	Gln	Arg	Ala	Ala 190	Тгр	Ile		
Ile	Pro	Phe 195	Phe	Cys	Tyr	Gln	1]e 200	Phe	Asp	Phe	Ala	Leu 205	Asn	Met	Leu		
val	Ala 210	Ile	Thr	val	Leu	Ile 215	Tyr	Pro	Asn	Ser	Ile 220	Gln	Glu	Tyr	Ile		
Arg 225	Gln	Leu	Pro	Pro	Asn 230	Phe	Pro	Tyr	Arg	Asp 235	Asp	val	Met	Ser	Val 240		
Asn	Pro	Thr	Cys	Leu 245	val	Leu	Ile	Ile	Leu 250	Leu	Phe	Ile	Ser	11e 255	Ile		
Leu	Thr	Phe	Lys 260	Gly	Tyr	Leu	Ile	Ser 265	Cys	val	Trp	Asn	Cys 270	Tyr	Arg		
Tyr	Ile	Asn 275	Gly	Arg	Asn	Ser	Ser 280	Asp	val	Leu	val	Tyr 285	٧a٦	Thr	Ser		
Asn	Asp 290	Thr	Thr	∨al	Leu	Leu 295	Pro	Pro	Tyr	Asp	Asp 300	Ala	Thr	val	Asn		
G]y 305	Αla	Ala	Lys	Glu	Pro 310	Pro	Pro	Pro	Tyr	Val 315	Ser	Ala					
<210> 2 <211> 21 <212> DNA <213> Artificial Sequence																	
<220> <223> synthetic DNA																	
<400> 2 aacatgttgg ttgcaatcac t														21			
<210 <211 <212 <213	l>	3 21 DNA artii	ficia	al													
<220> <223> synthetic DNA																	
<400)>	3	cagga														21