Homework #1

姓名:

课程: 高等数值分析 - 教授: 殷东生 完成日期: 2020 年 9 月 22 日

教材第一章第 2、3、5、7 题

- **1.2** 已知 4 个四位有效数字的三角函数的值 $\sin 1^\circ = 0.0175, \sin 2^\circ = 0.0349, \cos 1^\circ = 0.9998, \cos 2^\circ = 0.9994$. 用以下四种方法计算 $1 \cos 2^\circ$ 的值,比较结果的误差,并说明各有多少位有效数字.
 - (1) 直接用已知数据计算;
 - (2) 用公式 $1 \cos 2x = 2 \sin^2 x$ 及已知数据;
 - (3) 用公式 $1 \cos x = \frac{\sin^2 x}{1 + \cos x}$ 及已知数据;
 - (4) 用 $1 \cos x$ 的 Taylor(泰勒) 展开式, 要求计算结果有四位有效数字 $(1 \cos 2^\circ = 6.0917298 \cdots \times 10^{-4})$
- (1) $1 \cos 2^{\circ} = 1 0.9994 = 0.0006$,只有 1 位有效数字。
- (2) $1 \cos 2^\circ = 2 \sin^2 1^\circ = 0.6125 \times 10^{-3}$,有 2 位有效数字。
- (3) $1 \cos 2^{\circ} = \frac{\sin^2 2}{1 + \cos 2} = 0.6091877 \times 10^{-3}$,有 4 位有效数字。
- (4) $2^{\circ} = \pi/90$,而 $1 \cos x = \frac{1}{2}x^2 \frac{1}{24}x^4 + O(x^6)$,对于 $x = \pi/90$ 而言, $O(x^6)$ 已经超过了 4 位有效数字的要求。从而 $1 \cos 2^{\circ} \approx \frac{1}{2}(\pi/90)^2 \frac{1}{24}(\pi/90)^4 = 0.60917297 \times 10^{-3}$,有 7 位有效数字。
- **1.3** 若用下列两种方式计算 e^{-5} 的近似值,问哪种方法能提供较好的近似值? (1) $e^{-5} \approx \sum_{n=0}^{9} (-1)^n \frac{5^n}{n!}$; (2) $e^{-5} \approx \left(\sum_{n=0}^{9} \frac{5^n}{n!}\right)^{-1}$,分析其原因。

第二种要好一些。第一种计算方式为交错级数,收敛较慢,而且还会涉及两个相近的数相减的情况,大大损失有效数字;而第二种是累加的形式,收敛较快,而且也不会损失有效数字。

下列公式要怎样变换才能使数值计算时能避免有效数字的损失?

(1)
$$\int_{N}^{N+1} \frac{1}{1+x^2} dx = \arctan(N+1) - \arctan N, \quad N >> 1$$

(2)
$$\sqrt{x + \frac{1}{x}} - \sqrt{x - \frac{1}{x}}$$
, $|x| >> 1$
(3) $\ln(x+1) - \ln x$, $x >> 1$
(4) $\cos^2 x - \sin^2 x$, $x \approx \frac{\pi}{4}$

(3)
$$\ln(x+1) - \ln x$$
 , $x >> 1$

$$(4) \cos^2 x - \sin^2 x \quad , \quad x \approx \frac{\pi}{4}$$

(1)
$$\arctan(N+1) - \arctan N = \arctan \frac{1}{1 + (N+1)N}$$

(2)
$$\sqrt{x + \frac{1}{x}} - \sqrt{x - \frac{1}{x}} = \frac{\frac{2}{x}}{\sqrt{x + \frac{1}{x}} + \sqrt{x - \frac{1}{x}}}$$

(3)
$$\ln(x+1) - \ln x = \ln(1+\frac{1}{x})$$

$$(4) \cos^2 x - \sin^2 x = \cos 2x$$

1.7 已知
$$I_n = \int_0^1 x^n e^{x-1} dx$$
, $n = 0, 1, \cdots$ 满足 $I_0 = 1 - e^{-1}$, $I_n = 1 - nI_{n-1}$, $n = 1, 2, \cdots$

- (1) 取 I_0 近似值为 $\tilde{I}_0=1-0.3679$,用递推公式 $\tilde{I}_n=1-n\tilde{I}_{n-1}$ 计算 I_n 的近似值 \tilde{I}_n , $n=1,2,\cdots,9$ (用 4 位有效数字计算), 结果准确吗?
- (2) 设 $\varepsilon_n = I_n \tilde{I}_n$, 推导 $|\varepsilon_n|$ 与 $|\varepsilon_0|$ 的关系.

(1)
$$\tilde{I}_1=1-\tilde{I}_0=0.3679$$
, $\tilde{I}_2=1-2\tilde{I}_1=0.2642$, $\tilde{I}_3=1-3\tilde{I}_2=0.2074$ $\tilde{I}_4=1-4\tilde{I}_3=0.1704$, $\tilde{I}_5=1-5\tilde{I}_4=0.1480$, $\tilde{I}_6=1-6\tilde{I}_5=0.1120$ $\tilde{I}_7=1-7\tilde{I}_6=0.2160$, $\tilde{I}_8=1-8\tilde{I}_7=-0.7280$, $\tilde{I}_9=1-9\tilde{I}_8=7.552$ 很明显不准确。

(2) 将 $I_n = 1 - nI_{n-1}$ 与 $\tilde{I}_n = 1 - n\tilde{I}_{n-1}$ 相减可得:

$$\varepsilon_n = -n\varepsilon_{n-1}$$

$$\Rightarrow \varepsilon_n = (-1)^n n! \varepsilon_0$$

从而
$$|arepsilon_n| = n! |arepsilon_0|$$