PONTO DE CONTROLE 2 Módulo Eletrônico Para Bicicletas

Fábio Barbosa Pinto

Programa de Engenharia Eletrônica Faculdade do Gama Universidade de Brasília – UnB Brasília, Brasil fabio bbarbosa@hotmail.com

João Pedro Moreira da Silva

Programa de Engenharia Eletrônica Faculdade do Gama Universidade de Brasília – UnB Brasília, Brasil jptekc@gmail.com

Larissa Aidê Araújo Rocha

Programa de Engenharia Eletrônica Faculdade do Gama Universidade de Brasília – UnB Brasília, Brasil larissa.aide@hotmail.com

Resumo— O projeto visa desenvolver um módulo eletrônico para bicicletas, que terá a funcionalidade de rastreador e contará com um sistema de setas. Ele irá mostrar através de mensagens, via celular, as coordenadas de localização da bicicleta. Além disso, irá indicar, através de setas, a intenção do ciclista de mudar de direção na via.

Palavras-chave— rastreador; bicicleta; sinalização; MSP430.

I. JUSTIFICATIVA

Com o excesso de carros nas ruas e lentidão no trânsito, cada vez mais pessoas buscam meios de transporte alternativos. A preferida é a bicicleta, que promove uma grande qualidade de vida. Mas infelizmente, o aumento da violência urbana e acidentes são mais rápidos que uma busca pela sustentabilidade.

Apesar de ser um ótimo transporte alternativo, sabe-se que a bicicleta não é um investimento barato, podendo custar até 35 mil reais dependendo do modelo ou marca. Independente do valor encontrado no mercado, certamente, se o proprietário usa sua bicicleta com frequência, ficar sem ela fará muita falta.

De acordo com o Cadastro Nacional de Bicicletas Roubadas [1], dentre os 30 municípios que divulgaram as ocorrências de furtos e roubos nos últimos seis anos, as quatro cidades que lideram o ranking são respectivamente: São Paulo, Rio de Janeiro, Curitiba e Brasília. Nesse período, foram cerca de 1.940 casos, sem contar com as inúmeras ocorrências que não foram registradas.

Além da preocupação com o furto de bicicletas, é imprescindível zelar também pela segurança do ciclista. Notícias sobre acidentes envolvendo bicicletas são comuns no Brasil. Dados de 2014 mostram que 1.357 ciclistas morreram vítimas de acidentes de trânsito no Brasil, além disso, em 2016, ocorreram 11.741 internações de ciclistas vítimas de acidentes [2]. De acordo com o Departamento Nacional de Infraestrutura de Transportes (DNIT) [3] só no ano de 2011

foram 1.698 casos de acidentes envolvendo ciclistas. Sendo que 246, equivalente a 14.5%, acabaram em morte.

Há diversos modelos no mercado de rastreadores para veículos, o site Vox Popi [4] fez uma lista com mais de 17 modelos, onde mostra a diferença entre os produtos.

O diferencial deste projeto é ir além de ser um mero rastreador, dando importância também a segurança do ciclista enquanto trafega em vias com outros veículos. Assim, o módulo eletrônico para bicicletas poderá torna-se o investimento ideal para aumentar as chances de recuperá-la, caso seja roubada e provê maior segurança para o ciclista no trânsito.

II. OBJETIVO

Construir um módulo eletrônico capaz de transmitir as coordenadas geográficas de uma bicicleta através de mensagens, via celular, e implementar um sistema para indicar a intenção do ciclista de mudar de direção na via.

III. REQUISITOS

Para o correto funcionamento do módulo eletrônico, será necessária uma leitura das coordenadas geográficas da bicicleta, através de um GPS. Os dados recebidos serão enviados via SMS, através do módulo GSM em conjunto com um chip SIM. É preciso que o usuário possua um número de celular para cadastrar e utilizar as funcionalidades do rastreador. Para o sistema de setas, será necessária uma matriz de LEDs e uma chave seletora.

Os dados e comandos recebidos serão interpretados através do microcontrolador MSP430, esse dispositivo possui uma poderosa CPU RISC de 16 bits, que alia uma boa eficiência com um baixo consumo de energia. Além disso, será imprescindível uma bateria recarregável.

Fig. 1. Diagrama de blocos do módulo eletrônico para bicicletas.

Na Figura 1, através do diagrama de blocos do módulo eletrônico, é possível ver com maior facilidade os componentes eletrônicos e suas interações descritas neste tópico.

IV. BENEFÍCIOS

Por meio do módulo eletrônico, o usuário poderá localizar sua bicicleta em qualquer lugar, caso a mesma tenha sido roubada ou furtada e trará maior segurança ao ciclista, ao trafegar em vias públicas.

O rastreador seria uma contraproposta ao uso do seguro de bicicletas, já que, geralmente, eles não cobrem bicicletas desprotegidas, ou seja, sem a presença do seu proprietário. Se você deixar a sua bicicleta presa ao poste ou esquecer no parque e a levaram, infelizmente, você não terá mais como recuperá-la se optar apenas pelo seguro.

O sistema de setas alerta a intenção dos atos do ciclista para outros condutores, visando garantir maior segurança ao trafegar em vias públicas.

Dessa forma, o proprietário da bicicleta terá uma segurança maior em deixá-la presa em algum lugar, como postes, árvores ou paraciclos e até mesmo ao andar com ela pela rua.

V. REFERÊNCIAS

- [1] Exame, "Segundo dados, furtos e roubos de bicicleta aumentam no Brasil". Disponível em: https://exame.abril.com.br/negocios/dino/segundo-dados-furtos-e-roubos-de-bicicleta-aumentam-no-brasil-seguradora-e-alternativa/ < Acesso em: 04/09/2018>
- [2] G1, "Brasil tem em média 32 ciclistas internados por dia devido a acidentes" Disponível em: http://g1.globo.com/bom-diabrasil/noticia/2017/03/brasiltem-em-media-32-ciclistas-internados-pordia-devidoacidentes.html <Acesso em: 01/10/2018>
- [3] DNIT, "Número de vitimados envolvidos por tipo de usuário", 2011
- [4] Vox Popi, "Top rastreadores GPS GSM para bike e carros". Disponível em: http://voxpopi.blogspot.com/2018/02/comparacaorastreadores-veiculos.html <Acesso em: 01/10/2018>
- [5] Como Proteger sua Bike Contra Roubo http://www.revistabicicleta.com.br/bicicleta.php?como_p roteger_sua_bike_contra_roubo&id=46230866 <Acesso em: 04/09/2018>
- [6] Câmeras Flagram Roubo de Bicicletas https://g1.globo.com/df/distrito-federal/noticia/cameras-de-seguranca-flagram-roubo-de-bicicletas-de-dentro-de-predio-na-asa-norte.ghtml <Acesso em: 04/09/2018>
- [7] GSM o que é e como funciona https://www.oficinadanet.com.br/artigo/733/gsm_o_que_ e_e_como_funciona <Acesso em: 04/09/2018>

VI. ANEXOS

A. Código GSM

```
#include <SoftwareSerial.h>
// Incluimos a livraria SoftwareSerial
SoftwareSerial mySerial(1, 2); // Declaramos os pinos RX(1) y TX(2) que vamos a usar
void setup(){
Serial.begin(9600);
                      // Iniciamos a comunicação serial
mySerial.begin(9600);
                        // Iniciamos uma segunda comunicação serial
delay(1000);
                    // Pausa de 1 segundo
EnviaSMS();
                     // Chamada a função que envia o SMS
}
void loop(){
if (mySerial.available()){
                             // Se a comunicação SoftwareSerial tem dados
 Serial.write(mySerial.read()); // Obtemos por comunicação serie normal
if (Serial.available()){
                            // Se a comunicação serie normal tem dados
 while(Serial.available()) {
                             // e enquanto tenha dados para mostrar
  mySerial.write(Serial.read()); // Obtemos pela comunicação SoftwareSerial
 mySerial.println();
                           // Enviamos um fim de linha
// Função para o envio de um SMS
void EnviaSMS(){
mySerial.println("AT+CMGF=1");
                                            // Ativamos a função de envio de SMS
delay(100);
                                 // Pequena pausa
mySerial.println("AT+CMGS=\"+5561995094992\""); // Definimos o número do destinatário em formato internacional
delay(100);
                                 // Pequena pausa
mySerial.print("Comunicação GSM + MSP430"); // Definimos o corpo da mensagem
delay(500);
                                 // Pequena pausa
mySerial.print(char(26));
                                      // Enviamos o equivalente a Control+Z
delay(100);
                                 // Pequena pausa
mySerial.println("");
                                    // Enviamos um fim de linha
delay(100);
                                 // Pequena pausa
```