MEU303 - Algèbre TD1

Rappel de cours

Definition 1. Une famille de vecteurs d'un \mathbb{K} -espace vectoriel E est noté $(e_i)_{i \in I}$. On note également $Vect((e_i)_{i \in I}) = \{\sum \lambda_i e_i, \text{ avec } (\lambda_i) \in \mathbb{K}\}$

Definition 2. Base de E:

- $(e_i)_{i \in I}$ est libre ssi $\sum \lambda_i e_i = 0_E \implies \forall i, \lambda_i = 0_K$
- $(e_i)_{i \in I}$ est génératrice ssi $Vect((e_i)_{i \in I}) = E$

 $(e_i)_{i\in I}$ est une base de E si $(e_i)_{i\in I}$ est libre et génératrice.

Definition 3. La dimension d'un \mathbb{K} -expace vectoriel E est la cardinal d'une base quelconque de E.

Definition 4. Le rang d'une famille de vecteur, noté $rg((e_i)_{i\in I})$ est égal à la dimension de l'espace vectoriel engendré par la famille de vecteurs $Vect((e_i)_{i\in I})$.

Definition 5. Soit f une application linéaire. Si l'image de f, Imf est de dimension finie alors on dit que f est de rang fini et son rang noté rg(f) est égale à la dimension de son image Imf. Si (e_1, e_2, \ldots, e_n) est une base d'une \mathbb{K} -espace vectoriel E alors IM $f = Vect(f(e_1), f(e_2), \ldots, f(e_n))$ donc dim Im $f \leq n$.

Definition 6. Soit une matrice $A \in M_{n,p}(\mathbb{K})$, on définit le rang de la matrice A, noté rg(A) la dimension du sous-espace vectoriel de \mathbb{K}^n engendré par ses vecteurs colonnes.

Definition 7. Si $A = M_{\mathcal{B},\mathcal{B}'}(f)$, la matrice d'un endomorphisme f par rapport à deux bases \mathcal{B} et \mathcal{B}' alors rg(A) = rg(f).

Definition 8. Si $A = M_{\mathcal{B},\mathcal{B}'}(f)$, $rg(A) \leq \min(n,p)$.

Definition 9. Soit E et F deux \mathbb{K} -espaces vectoriel de dimension finie n et p. Prenons

- $f \in L(E, F)$,
- 2 bases de E, \mathcal{B} et \mathcal{B}' ,
- $P = P_{\mathcal{B} \to \mathcal{B}'} \in GL_p(\mathbb{K})$
- 2 bases de F, C et C'
- $Q = Q_{\mathcal{C} \to \mathcal{C}'} \in GL_n(\mathbb{K})$

On peut définir les matrices de changement de base $f M = M_{\mathcal{B},\mathcal{C}}(f)$ et $M' = M_{\mathcal{B}',\mathcal{C}'}(f)$ et on a $M' = Q^{-1}MP$.

Definition 10. Deux matrices A et B sont semblables si la matrice A peut s'écrire sous la forme $A = PBP^{-1}$. En effet, deux matrices sont semblables si elles représentent la même applocation linéaire mais pas dans la même base. Soit f une application linéaire avec sa matrice caractéristique X, prenons $A = M_{\mathcal{B}}(f)$ (ie application lin'eaire f dans la base \mathcal{B}) et prenons $B = M_{\mathcal{B}'}(f)$ (ie application lin'eaire f dans la base \mathcal{B}'). On a Y = AX pour la base \mathcal{B} et Y' = BX' pour la base \mathcal{B}' . Notons P, le changement de base de $\mathcal{B} \to \mathcal{B}'$. On a donc X = PX' et Y = PY', donc PY' = AX = APX' ce qui fait $Y' = P^{-1}APX' = BX'$. Donc $B = P^{-1}AP$ ou $A = PBP^{-1}$.

est défini dans la base \mathcal{B} et B dans la base \mathcal{B}' . Prenons P le changement de base $\mathcal{B} \to \mathcal{B}'$, donc P^{-1} existe et est le changement de base réciproque $\mathcal{B}' \to \mathcal{B}$.

Definition 11. La trace de la matrices A est $Tr(a) = \sum_{i=1}^{n} A_{i,i}$

Definition 12. Le polynome caractéristique d'une matrice carré d'ordre n, M noté $P_M(X) = \det(XI_n - M)$ avec I_n la matrice identité d'ordre n.

MEU303 - Algèbre TD1

0.0.1 propriété 3.2

idem que pour les matrices semblables.

0.0.2 exercice 7

Si les matrices A et B sont équivalentes alors on a $A = QBP^{-1}$.

Commencons par montrer que si P est une matrice inversible alors rg(PA) = rg(A). On a $rg(AB) \le \min(rg(A), rg(B))$. Donc $rg(PA) \le \min(rg(P), rg(A)) \le rg(A)$ mais comme P est inversible on a A qui peut s'écrire $A = P^{-1}PA$, donc $rg(A) = rg(P^{-1}PA) \le \min(rg(P^{-1}), rg(PA)) \le rg(PA)$ donc $rg(PA) \le rg(A)$ et $rg(A) \le rg(PA)$ donc rg(PA) = rg(A).

Comme les matrice P et Q sont inversibles car dans $GL(\mathbb{K})$, on a $rg(B) = rg(QB) = rg(QBP^{-1}) = rg(A)$.

0.0.3 exercice 8

La relation "être équivalente" est une relation d'équivalence ssi:

- Elle est réflexive, en prenant les 2 matrices identités I_n et I_p on a bien $A = I_p A I_n$.
- Elle est symétrique $A=QBP^{-1}\implies B=Q^{-1}AP$ vrai car P et Q sont inversibles. Il suffit de multiplier des 2 cotés
- Elle est transitive $A = QBP^{-1}, B = RCT^{-1} \implies A = WCZ^{-1}$, on a $A = QRCT^{-1}P^{-1} = (QR)C(PT)^{-1}$ (attention $T^{-1}P^{-1} = (PT)^{-1}$ et non $(TP)^{-1}$. Vrai en prenant W = QR et Z = TP.

Question 1.1

Il faut montrer que si A et B sont semblables (ie $A = PBP^{-1}$) alors leur traces sont égales Tr(A) = Tr(B). On sait que pour des endomorphismes on a tr(AB) = Tr(BA), donc calculons la trace de la matrice A.

$$Tr(a)=Tr(PBP^{-1})=Tr(PP^{-1}B)=Tr(IdB)=Tr(B)$$

Question 1.2