第三十二單元 三元一次聯立方程組

解決許多實際問題時,通常我們假設未知數,根據問題的條件限制,可以形成型如(A)或(B)的一次聯立方程式:

(A)
$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$
 (B)
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

我們用幾何的觀點來看(A)(B)的解:

坐標平面上,二元一次方程式的圖形是一條直線,討論型如(A)的解,就相當於討論兩直線在平面上的相交情形。

空間坐標中,三元一次方程式的圖形是一個平面,同樣的,討論型如(B)的解,就相當於討論三個平面在空間中的相交情形。

透過消去法或二階行列式來得到二元一次方程組的解(克拉瑪公式),並且判別兩 直線的關係,本單元會有類似的想法。

- (1)用消去法來解三元一次方程組。
- (2)用三階行列式來表示三元一次方程組的解(克拉瑪公式)。
- (3)用平面的法向量或三階行列式來判別三平面的關係。

(甲)消去法

透過假設未知數,解決許多實際的問題會形成解幾個三元一次的方程式的共同解,以下面的例子來說:

某群顧客到早餐店買了4個漢堡,3個貝果,3杯牛奶,共計350元;第二群顧客買4個漢堡,2個貝果,5杯牛奶,共計360元;第三群顧客買8個漢堡,8個貝果,10杯牛奶,共計840元。問漢堡、貝果與牛奶的單價各為多少元?

假設每個漢堡x元,每個貝果y元,每杯牛奶z元,根據問題的內容,可以列出三元一次聯立方程式

(*):
$$\begin{cases} 4x + 3y + 3z = 350 \\ 4x + 2y + 5z = 360 \\ 8x + 8y + 10z = 840 \end{cases}$$

由幾個三元一次方程式所形成的一次聯立方程式,我們統稱為三元一次方程組。

解三元一次方程組的方法,使用加減消去法是一個很自然的想法,先消去一個未知 數,形成二元一次方程組,再利用二元一次方程組的解法,將三元一次方程組的解依 序求出來。

我們以解方程組(*)為例,來說明如何用加減消去法解三元一次方程組:

[**例題1**] 試求三元一次方程式組:
$$\begin{cases} 4x + 3y + 3z = 350 \\ 4x + 2y + 5z = 360 \text{ 的解} \\ 8x + 8y + 10z = 840 \end{cases}$$

[解法]:

利用加減消去法來求三元一次方程式組(A): $\begin{cases} 4x+3y+3z=350.....(1)\\ 4x+2y+5z=360.....(2) \text{ 的解:} \end{cases}$

$$\begin{cases} 4x + 3y + 3z = 350....(1) \\ 4x + 2y + 5z = 360....(2) \\ 8x + 8y + 10z = 840....(3) \end{cases}$$
根據上面的步驟,可將三元一次分程組계去一個未知數 x ,產生 y , z 的二元一

次方程組,

 $(4)\times 2+(5)$,得 8z=160,解得 z=20,代入第(4)式,得 v=30。 最後再以 y=30,z=20 代入第(1)式,得 x=50。 所以得知漢堡一個 50 元, 貝果一個 30 元, 牛奶一杯 20 元。

[**例題2**] 試求三元一次方程組: $\begin{cases} x + 2y + z = 7 \\ 2x + y - z = 5 \\ 7x + 8y + z = 31 \end{cases}$ 的解。

[解法]:

利用加減消去法來求三元一次方程式組 $\begin{cases} 2x + y - z = 5 \\ 7x + 8y + z = 31 \end{cases}$ (3)

$$\begin{cases} x + 2y + z = 7 & (1) \\ 2x + y - z = 5 & (2) \\ 7x + 8y + z = 31 & (3) \end{cases}$$
 (1)+(2)
$$\begin{cases} 3x + 3y = 12.....(4) \\ -6x - 6y = -24.....(5) \end{cases}$$

根據上面的步驟,可將三元一次方程組消去一個未知數z,產生x,y 的二元 一次方程組,

因為二元一次方程組 $\begin{cases} 3x + 3y = 12......(4) \\ -6x - 6y = -24......(5) \end{cases}$ 代表同一個方程式 x+y=4,令

再代入(1)解得 z=t-1。所以原方程組的解為 $\begin{cases} x=t \\ y=4-t , 其中 t 為任意實數。 \\ z=-1+t \end{cases}$

(練習1) 試說明三平面
$$\begin{cases} 4x + 3y + 3z = 350 \\ 4x + 2y + 5z = 360 \text{ 相交情形 } \circ \text{Ans} : 三平面交於一點 \circ \\ 8x + 8y + 10z = 840 \end{cases}$$

(練習2)試解三元一次方程組 $\begin{cases} x + y - z = 5, \\ x + 2y + z = 8, \end{cases}$,並解釋其所代表的三平面相交情形。 5x + 8y + z = 1.

Ans:無解,三平面兩兩相交於一直線,三直線不相交

(1)加減消去法的原理

在例題一的解法中,我們可以觀察出解一次方程組 $\begin{cases} 4x+3y+3z=350\\ 4x+2y+5z=360 \text{ 的解,透過加}\\ 8x+8y+10z=840 \end{cases}$

減消去法轉化成解一次方程組 $\begin{cases} 4x+3y+3z=405\\ -y+2z=10 \end{cases}$ 的解,這兩個方程組的解會相同嗎? 2y+4z=140

使用加減消去法做一次方程組間的轉化,前後方程組的解會有什麼關係:

若 $E_1=0$ 、 $E_2=0$ 代表三元一次方程式,使用加减消去法作兩個一次方程組間的轉化:

$$(*): \begin{cases} E_1 = 0....(1) & \xrightarrow{(1)\times a + (2)} \\ E_2 = 0....(2) & \xleftarrow{(3)\times (-a) + (4)} \end{cases} (**): \begin{cases} E_1 = 0......(3) \\ a \cdot E_1 + E_2 = 0.....(4) \end{cases}$$

若 (x_0,y_0,z_0) 為(*)的解, (x_0,y_0,z_0) 代入 $a\cdot E_1+E_2=0$ 也會成立,因此 (x_0,y_0,z_0) 也是(**)的解。 反過來說,若(m,n,l)為(**)的解,(m,n,l)代入 $(-a)\cdot E_1+(a\cdot E_1+E_2)=0$ 也會成立, 即代入 $E_2=0$ 會成立,因此(m,n,l)也會是(*)的解。即一次方程組(B)與(C)解的形式是相

同的。 故可以得知一次方程組經過加減消去法的轉化,前後的解會保持不變。

若適當選取 a,就可以使得 $aE_1+E_2=0$ 轉化成二元一次方程式,因此在求解三元一次方程組時,可以利用加減消去法先消去一個未知數,使得原方程組轉化成二元一次方程組,再解出二元一次方程組的解,進而求出三元一次方程組的解。

(練習3)設 f(x)為一個二次多項式函數,且滿足 f(1)=4,f(-3)=24,f(2)=9,試求 f(x)。 Ans: $f(x)=2x^2-x+3$ 。

(乙)克拉瑪公式

回顧二元一次方程組 $\begin{cases} a_1x+b_1y=c_1 \\ a_2x+b_2y=c_2 \end{cases}$ 的克拉瑪公式

若 $\Delta \neq 0$,則二元一次方程組 $\left\{ egin{array}{ll} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{array}
ight.$ 恰有一組解 $x = \frac{\Delta_x}{\Delta}$, $y = \frac{\Delta_y}{\Delta}$ 。

(1)三元一次方程組的克拉瑪公式:

考慮三元一次方程組
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \cdots (1) \\ a_2x + b_2y + c_2z = d_2 \cdots (2) \end{cases}$$
,其中 x,y,z 為未知數,
$$a_3x + b_3y + c_3z = d_3 \cdots (3)$$

使用代入消去法解之:

 $\pm (1) \Rightarrow a_1x+b_1y=-c_1z+d_1$, $\pm (2) \Rightarrow a_2x+b_2y=-c_2z+d_2$

由二元一次方程組之求解可知
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
 $x = \begin{vmatrix} -c_1z + d_1 & b_1 \\ -c_2z + d_2 & b_2 \end{vmatrix}$, $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ $y = \begin{vmatrix} a_1 & -c_1z + d_1 \\ a_2 & -c_2z + d_2 \end{vmatrix}$

整理可得

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} x = - \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} z + \begin{vmatrix} d_1 & b_1 \\ d_2 & b_2 \end{vmatrix} \dots (4)$$

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} y = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix} z - \begin{vmatrix} d_1 & a_1 \\ d_2 & a_2 \end{vmatrix} \dots (5)$$

將(3)×
$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
 得 $a_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} x + b_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} y + c_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} z = d_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \dots (6)$

(4)(5)代入(6), 消去 x,y 兩個未知數

$$a_{3}(-\begin{vmatrix}c_{1} & b_{1} \\ c_{2} & b_{2}\end{vmatrix} z + \begin{vmatrix}d_{1} & b_{1} \\ d_{2} & b_{2}\end{vmatrix}) + b_{3}(\begin{vmatrix}c_{1} & a_{1} \\ c_{2} & a_{2}\end{vmatrix} z - \begin{vmatrix}d_{1} & a_{1} \\ d_{2} & a_{2}\end{vmatrix}) + c_{3}\begin{vmatrix}a_{1} & b_{1} \\ a_{2} & b_{2}\end{vmatrix} z = d_{3}\begin{vmatrix}a_{1} & b_{1} \\ a_{2} & b_{2}\end{vmatrix}$$

整理之後得

$$(a_3 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} - b_3 \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}) z = a_3 \begin{vmatrix} b_1 & d_1 \\ b_2 & d_2 \end{vmatrix} - b_3 \begin{vmatrix} a_1 & d_1 \\ a_2 & d_2 \end{vmatrix} + d_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \dots (**)$$

y,z 為未知數,

引用三階行列式的符號,

則可得
$$\begin{cases} \Delta \cdot x = \Delta_x \\ \Delta \cdot y = \Delta_y \end{cases}$$
,當 $\Delta \neq 0$,可得 $x = \frac{\Delta_x}{\Delta}$, $y = \frac{\Delta_y}{\Delta}$, $z = \frac{\Delta_z}{\Delta}$ 稱為**克拉瑪公式**。

結論:

(a)若
$$\Delta$$
≠ 0 ,則方程組恰有一解: $(\frac{\Delta_x}{\Lambda}, \frac{\Delta_y}{\Lambda}, \frac{\Delta_z}{\Lambda})$ 。[克拉瑪公式]

- (b)若 $\Delta = \Delta_x = \Delta_y = \Delta_z = 0$,則方程組無解或無限多解。
- (c)若 $\Delta=0$, Δ_x 、 Δ_y 、 Δ_z 有一不為0, 則方程組無解。

[**例題3**] 試利用克拉瑪公式,解一次方程組
$$\begin{cases} x-y+z=10 \\ 3x+2y=5 \\ x+y+2z=2 \end{cases}$$

[解法]:
$$\Delta = \begin{vmatrix} 1 & -1 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 2 \end{vmatrix} = 4 + 3 - 2 + 6 = 11 \neq 0, \text{ 所以原方程組恰有一組解}.$$

$$\Delta_x = \begin{vmatrix} 10 & -1 & 1 \\ 5 & 2 & 0 \\ 2 & 1 & 2 \end{vmatrix} = 40 + 5 - 4 + 10 = 51,$$

$$\Delta_y = \begin{vmatrix} 1 & 10 & 1 \\ 3 & 5 & 0 \\ 1 & 2 & 2 \end{vmatrix} = 10 + 6 - 5 - 60 = -49,$$

$$\Delta_z = \begin{vmatrix} 1 & -1 & 10 \\ 3 & 2 & 5 \\ 1 & 1 & 2 \end{vmatrix} = 4 - 5 + 30 - 20 - 5 + 6 = 10,$$

$$\Delta_{z} = \begin{vmatrix} 1 & 2 & 2 & 1 \\ 1 & -1 & 10 \\ 3 & 2 & 5 \\ 1 & 1 & 2 \end{vmatrix} = 4 - 5 + 30 - 20 - 5 + 6 = 10,$$

$$\Delta_{z} = \begin{vmatrix} 1 & 2 & 2 & 1 \\ 3 & 2 & 5 \\ 1 & 1 & 2 \end{vmatrix} = 4 - 5 + 30 - 20 - 5 + 6 = 10,$$

$$\Delta_{z} = \begin{vmatrix} 51 & 1 & 2 & 1 \\ 11 & 1 & 2 & 1 \end{vmatrix} = 4 - 5 + 30 - 20 - 5 + 6 = 10,$$

(練習4)試以克拉瑪公式解方程組
$$\begin{cases} 7x+3y-2z-7=0 \\ 2x+5y+3z-20=1 \text{Ans} : x=1,y=2,z=3 \\ 5x-y+5z-10=8 \end{cases}$$

(2)三元一次方程組的解之幾何意義:

前面利用三階行列式推導了三元一次方程組的克拉瑪公式,現在用幾何的角度來探討

三元一次方程組(L):
$$\begin{cases} E_1: a_1x+b_1y+c_1z=d_1\\ E_2: a_2x+b_2y+c_2z=d_2 \text{ 的解,而討論(L)的解,就相當於討論空}\\ E_3: a_3x+b_3y+c_3z=d_3 \end{cases}$$

間中三平面 E₁、E₂、E₃的相交情形。

先考慮 E_2 與 E_3 相交情形—重合、平行、交於一線,然後再加入 E_1 一併考慮三平面的相交情形。我們將三平面相交的情形與對應一次方程組的解列表如下:

E_2 與 E_3 的相交情形	三平面 E_1 , E_2 與 E_3 的相交情形			
E_2 與 E_3 重合	$E_1 ot \bowtie E_2(E_3)$	$E_1 ot \subseteq E_2(E_3)$		$E_1 ot E_2(E_3)$
	重合	平行		交於一直線
		(b) 無解		
	(a)			(c)
	無限多解			無限多解
E_2 平行 E_3	E_1 , E_2 與 E_3 三平面	面平行	E_1 , E_2 與	E_3 交於兩平行線
	(d)		(e)	
	無解		無解	
E_2 與 E_3 交於一直線	E_1 , E_2 與 E_3 兩兩	E_1 , E_2	$ u$ E_3 交於	E_1 , E_2 與 E_3 交於
	交於一直線	一直線		一點
	(f)	(g)		(h)
	無解	無限多解		恰有一解

當
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$
 時,可以利用三階行列式可以推導三元一次方程組的克拉瑪公式,

上面表格中三平面相交的情形,也可以用Δ是否等於 0 來做一些分類。

設三平面 $E_1 \setminus E_2 \setminus E_3$ 的法向量依序為 $n_1 = (a_1,b_1,c_1) \setminus n_2 = (a_2,b_2,c_2) \setminus n_3 = (a_3,b_3,c_3)$,

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$=(a_1,b_1,c_1)\cdot\begin{pmatrix}b_2&c_2\\b_3&c_3\end{pmatrix},\begin{vmatrix}c_2&a_2\\c_3&a_3\end{pmatrix},\begin{vmatrix}a_2&b_2\\a_3&b_3\end{pmatrix}=\overrightarrow{n_1}\cdot(\overrightarrow{n_2}\times\overrightarrow{n_3})$$

- (1)若 E_2 與 E_3 平行或重合,則 n_2 // n_3 ,因此 n_2 × n_3 = n_3 ,故 Δ = n_1 · (n_2 × n_3) = n_3
- (2)若 E_2 與 E_3 交於一直線 L,則 n_2 不平行 n_3 ,因此 $n_2 \times n_3 \neq 0$,

此時 $n_2 \times n_3$ 為交線L的方向向量。

- (1°) 若 E_1 與 L 平行或重合(三平面兩兩相交於一直線或三平面交於一直線), 此時 $\overline{n_1}$ \bot $\overline{n_2}$ $\overleftarrow{n_3}$),故 $\Delta = \overline{n_1} \cdot (\overline{n_2} \times \overline{n_3}) = 0$ 。
- (2°) 若 E_1 與 L 恰交於一點(三平面交於一點),此時 $\overline{n_1}$ 與($\overline{n_2} \times \overline{n_3}$)不垂直,

故
$$\Delta = \overline{n_1} \cdot (\overline{n_2} \times \overline{n_3}) \neq 0$$
。

根據前面的討論,我們將這些結果整理如下:

(一)三平面
$$\begin{cases} E_1: a_1x + b_1y + c_1z = d_1 \\ E_2: a_2x + b_2y + c_2z = d_2 \text{ 的相交情形與對應解的個數有以下幾種情形} : \\ E_3: a_3x + b_3y + c_3z = d_3 \end{cases}$$

- (A)Δ=0 , 三平面的關係有下列七種:
- (1°)至少兩個平面平行或重合(至少兩個平面的法向量平行)

(2°)三平面中任兩平面均不平行與重合(三平面的法向量均不互相平行)

(B)∆≠0,三平面恰相交於一點(三平面法向量不共平面)

三平面交於一點(恰有一解)

(二)一次方程組
$$\begin{cases} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2 \text{ 的解依Δ來分類,可以分成:}\\ a_3x+b_3y+c_3z=d_3 \end{cases}$$

- (1)Δ=0 時,方程組可能無解或無限多解。
- (2)Δ≠0 時,方程組恰有一組解。

[**例題4**] 試判別方程組 $\begin{cases} x+y+4z=2\\ 2x+3y+13z=7 \text{ 中三平面的關係,並求其解。}\\ 4x+5y+21z=11 \end{cases}$

[分析]:

$$::$$
三平面的法向量均不互相平行,且 $\Delta = \begin{vmatrix} 1 & 1 & 4 \\ 2 & 3 & 13 \\ 4 & 5 & 21 \end{vmatrix} = 0$ 。

根據三平面的相交情形,可以得知它們的相交情形只可能為: 三平面兩兩相交於一直線,三直線沒有交點或三平面相交於一直線。 因此我們可以先求出二平面的交線 L,再討論 L 與另一平面相交情形。 [解法]:

先求二平面
$$\begin{cases} x+y+4z=2\\ 2x+3y+13z=7 \end{cases}$$
 的交線,令 $z=t$,代入平面的方程式得
$$\begin{cases} x+y=2-4t\cdots\cdots(1)\\ 2x+3y=7-13t\cdots\cdots(2) \end{cases}$$
,(1)×3-(2)可得 $x=-1+t$,代入(2)得到 $y=3-5t$

所以交線 L 可表為
$$\begin{cases} x = -1 + t \\ y = 3 - 5t \\ z = t \end{cases}$$

接下來考慮直線 L 與平面 4x+5y+21z=11 的關係:

將 L 的參數式代入 4x+5y+21z=11

 \Rightarrow 4(-1+t)+5(3-5t)+21t=11

⇒11=11。這代表直線 L 上的任一點都在平面 4x+5y+21z=11 上

x = -1 + t故三平面相交於一直線,即一次方程組的解為 $\{y=3-5t,t\}$ 為實數。

[**例題5**] 就 k 值,討論下列三平面相交的情形: $\begin{cases} x+3y-z=-4\\ 2x+5y+z=-1\\ x+5y-7z=k \end{cases}$

[解法]:

因此三平面的相交情形只可能為:

三平面兩兩相交於一直線,三直線沒有交點或三平面相交於一直線。

接下來我們先求二平面
$$\begin{cases} x+3y-z=-4\\ 2x+5y+z=-1 \end{cases}$$
的交線:

 $(1)\times 5-(2)\times 3$ 可得 x=-8t+17,再代入(1),得到 y=3t-7。

將直線 L 的參數式
$$\begin{cases} x = -8t + 17 \\ y = 3t - 7 \end{cases}$$
 (*t* 為實數),再代入平面 $x+5y-7z=k$ $z=t$

(-8t+17)+5(3t-7)-7t=k, $\Rightarrow 0t-18=k....(*)$

當 k=-18 時(*)為恆等式,即直線 L 會落在平面 x+5y-7z=-18 上, 此時三平面交於一直線。

當 $k \neq -18$ 時,(*)無解,即直線 L 與平面 x+5y-7z=-18 平行, 此時三平面兩兩相交於一直線,三直線沒有交點。

[**例題6**] 齊次方程組:
$$\begin{cases} E_1: a_1x+b_1y+c_1z=0\\ E_2: a_2x+b_2y+c_2z=0 \end{cases}$$
 至少會有(0,0,0)的解,
$$E_3: a_3x+b_3y+c_3z=0$$

試證明:
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$
。

結論:

齊次方程組:
$$\begin{cases} E_1: a_1x+b_1y+c_1z=0\\ E_2: a_2x+b_2y+c_2z=0 \end{cases}$$
 至少會有(0,0,0)的解,所以
$$E_3: a_3x+b_3y+c_3z=0$$

- (a)若 Δ ≠0,則齊次方程組只有一組解(0,0,0)。
- (b) $\Delta = 0$,則齊次方程組除了(0,0,0) 之外,尚有其他的解。

(練習6)解下列方程組,並判斷其幾何關係:

$$\begin{cases} x + 2y - z = 2 \\ 2x + 5y + 3z = 7 \\ 3x - y + z = -1 \end{cases}$$
 (2)
$$\begin{cases} x + 4y + 2z = 1 \\ -3x + z = 2 \\ -2x + 4y + 3z = 3 \end{cases}$$

$$\begin{cases} -4x + 2y - z = -1 \\ 3x + y + 3z = 1 \\ 2x + 4y + 5z = 3 \end{cases}$$

Ans: (1)三平面交於一點($\frac{-2}{39}$, $\frac{47}{39}$, $\frac{14}{39}$) (2)三平面交於一線(t, $\frac{-3}{4}$ + $\frac{-7}{4}$ t,3t+2) (3)三平面兩兩相交於一直線且三交線不共點

(練習7)說明下列各方程組所表示的平面相交的情形

(1)
$$\begin{cases} 2x+y-3z=0 \\ 6x+3y-8z=0 \\ 2x-y+5z=-4 \end{cases}$$
 Ans: 三平面相交於一點(-1,2,0)

(2)
$$\begin{cases} x+2y-3z=4\\ 2x+4y-6z=7\\ 3x+6y+z=5 \end{cases}$$
 Ans:兩面平行,另一面交兩線

(3) $\begin{cases} 2x+y+z=2 \\ 2x+y+z=2 \end{cases}$ Ans: 三平面兩兩相交於一直線且三交線不共點 x+2y+5z=2

(練習8)試就
$$a$$
 值討論方程組 $\begin{cases} ax+y+z=1\\ x+ay+z=1 \end{cases}$ 的解。 $\begin{cases} x+y+z=1\\ x+y+az=1 \end{cases}$

Ans:若 $a\neq 1,-2$ 時,恰有一解 $(\frac{1}{a+2},\frac{1}{a+2},\frac{1}{a+2})$;若 a=1,(x,y,z)=(s,t,1-s-t) 若 a=-2 時,無解。

(丙)空間向量的線性組合

回顧平面向量的線性組合:

「若給定不平行的平面向量 $\frac{1}{a}$ 與 $\frac{1}{b}$,則平面上任一向量 $\frac{1}{c}$ 都能唯一表成 $\frac{1}{a}$ 與 $\frac{1}{b}$ 的線性組合。」這個結果,用坐標的語言來描述,可以寫成以下的結果:

設 $a = (a_1, a_2)$, $b = (b_1, b_2)$, $c = (c_1, c_2)$,則c 可以唯一表成a 與b 的線性組合之

充要條件是
$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
≠0(即 $\frac{}{a}$ 、 $\frac{}{b}$ 不平行)。

給定空間向量a、b 與c ,我們稱型如 x a +y b +z c (x,y,z 為實數)的向量為

 $\frac{1}{a}$, $\frac{1}{b}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{a}$ $\frac{1$

接下來,我們要問:

「a、b 與 c 要滿足什麼條件,才會使得空間中任一向量 d 可以唯一表成 a、b 與 c 的線性組合?」

給定
$$\vec{a} = (a_1, a_2, a_3)$$
、 $\vec{b} = (b_1, b_2, b_3)$ 、 $\vec{c} = (c_1, c_2, c_3)$,則

對於任意向量 $\frac{1}{d} = (d_1, d_2, d_3)$, $\frac{1}{d}$ 可以唯一表成 $\frac{1}{a}$ 、 $\frac{1}{b}$ 與 $\frac{1}{c}$ 的線性組合

- \Leftrightarrow 可以找到唯一的一組實數 x_0, y_0, z_0 使得 $\frac{1}{d} = x_0$ $\frac{1}{a} + y_0$ $\frac{1}{b} + z_0$ $\frac{1}{c}$
- ⇔可以找到唯一的一組實數 x₀,y₀,z₀ 使得

 $(d_1, d_2, d_3)=x_0(a_1, a_2, a_3)+y_0(b_1, b_2, b_3)+z_0(c_1, c_2, c_3)$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 $=$
 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$
 \neq 0(即 a 、 b 與 c 不共平面)

上面的結果用幾何的觀點來說,當空間中任一向量 \overrightarrow{d} 可以唯一表成 \overrightarrow{a} 、 \overrightarrow{b} 與 \overrightarrow{c} 的線性組合時,則三向量 \overrightarrow{a} 、 \overrightarrow{b} 與 \overrightarrow{c} 不共平面;反過來說,當空間中三向量 \overrightarrow{a} 、 \overrightarrow{b} 與 \overrightarrow{c} 不共平面時,那麽空間中任一向量 \overrightarrow{d} 可以唯一表成 \overrightarrow{a} 、 \overrightarrow{b} 與 \overrightarrow{c} 的線性組合。 舉例來說,空間坐標中,考慮標準單位向量 \overrightarrow{i} =(1,0,0)、 \overrightarrow{j} =(0,1,0)、 \overrightarrow{k} =(0,0,1),顯然這三個向量不共平面,因此空間中任一向量 \overrightarrow{d} =(d_1,d_2,d_3)都可以唯一表成 \overrightarrow{i} 、 \overrightarrow{j} 、 \overrightarrow{k} 的線性組合,即 \overrightarrow{d} = d_1 \overrightarrow{i} + d_2 \overrightarrow{j} + d_3 \overrightarrow{k} 的表示法是唯一的。 我們將前面的結果整理如下: 向量線性組合的唯一性

設
$$\overline{a} = (a_1, a_2, a_3)$$
、 $\overline{b} = (b_1, b_2, b_3)$ 、 $\overline{c} = (c_1, c_2, c_3)$ 與 $\overline{d} = (d_1, d_2, d_3)$,則 \overline{d} 可以唯一

表成
$$\overrightarrow{a}$$
、 \overrightarrow{b} 與 \overrightarrow{c} 的線性組合之充要條件是 $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \neq 0$ (即 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 不共平面)。

[例題7] 空間中不共線三相異點 $A(a_1, a_2, a_3) \cdot B(b_1, b_2, b_3) \cdot C(c_1, c_2, c_3)$,

試證明平面 ABC 的方程式為
$$\begin{vmatrix} x-a_1 & y-a_2 & z-a_3 \\ b_1-a_1 & b_2-a_2 & b_3-a_3 \\ c_1-a_1 & c_2-a_2 & c_3-a_3 \end{vmatrix} = 0$$
。

(練習9)試判斷下列各題中, $\frac{1}{d}$ 是否可以唯一表成 $\frac{1}{a}$ 、 $\frac{1}{b}$ 與 $\frac{1}{c}$ 的線性組合:

$$(1)$$
 $a = (1,-2,3)$ $b = (4,3,-5)$ $c = (-2,-7,11)$

(2)
$$a = (1,-2,3)$$
 $b = (4,3,-5)$ $c = (3,-1,1)$

Ans: (1)否 (2)是

綜合練習

(1) 請判斷各小題中三平面的關係,並在每個小題之後,填入適當的編號來代表三 平面的關係:

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

3x + 2y + z = -2

(a)
$$\begin{cases} 6x + 4y + 2z = -4 \\ 2x + 5y - z = 2 \end{cases}$$

(b)
$$\begin{cases} 5x + 2y + 3z = 5 \\ 2x + 5y - z = -2 \end{cases}$$

x - 3y - 2z = 13

$$\begin{cases} x + y + z = -1 \end{cases}$$

$$\int 3x + 2y - 7z = 4$$

(d)
$$\begin{cases} 2x + y - 5z = 2\\ 5x + 3y - 12z = 0 \end{cases}$$

$$\int x + 2y - z = 4$$

(e)
$$\begin{cases} x + 2y - z = 4 \\ 2x + 4y - 2z = 3 \end{cases}$$

(2) 試判別下列各小題中三平面的關係,並求一次方程組的解。

(x-2y+3z=5)

(a)
$$\begin{cases} x - 2y + 3z = 5 \\ 2x + y - 7z = 7 \\ x + y + z = 9 \end{cases}$$
 (b)
$$\begin{cases} 3x - 7y + 5z = 1 \\ x - 4y + 2z = 3 \\ 8x - 17y + 13z = 1 \end{cases}$$

$$(3x - 7y + 5z = 13)$$

$$\begin{cases} x - 4y + 2z = 3 \\ 8x - 17y + 13z = 36 \end{cases}$$

$$\int 2x - y - z = 1$$

(c)
$$\begin{cases} 2x - y - z = 1 \\ x + 2y + z = 2 \\ x - 8y - 5z = -4 \end{cases}$$
 (d)
$$\begin{cases} x + y + z = 1 \\ 4x + 4y + 4z = 4 \\ x + y = 2 \end{cases}$$

$$\begin{cases} x+y+z=1 \end{cases}$$

$$\begin{cases} 4x + 4y + 4z = \\ x + y = 2 \end{cases}$$

(3) 設
$$a$$
 為不等於 0 的實數,關於方程式組
$$\begin{cases} ax + y + \frac{z}{a} = 1 \\ x + ay + z = -1 \text{ 的解,下列選項那些是} \\ \frac{x}{a} + y + az = 1 \end{cases}$$

正確的 ? (A)當 a=3 時,無解 (B)當 a=1 時,恰有一組解 (C)當 $a=\frac{1}{2}$ 時,恰有一 組解 (D)當 a=-1 時,有無限多組解 (E)當 a=-4 時,有無限多組解。

(4) 若
$$\begin{cases} x + 2y - 3z = -9 \\ ax + y + z = 4 \\ 2x - y + z = 8 \end{cases}$$
 $\begin{cases} 2x + by - z = 1 \\ x - 2y + 3z = 13$ 為同義方程組,且恰有一解,
$$2x + y - cz = 12$$
 則 $(a,b,c) = ?$

(5) 已知方程組
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 恰有一組解(5,-28), \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$
則方程組
$$\begin{cases} (2a_1 + 3b_1)x + 2b_1y + 3c_1z = d_1 \\ (2a_2 + 3b_2)x + 2b_2y + 3c_2z = d_2 之解為何? \\ (3a_3 + 3b_3)x + 2b_3y + 3c_3z = d_3 \end{cases}$$

(6) 若
$$\begin{cases} x - y - 2z = 3 \\ 2x + 2y + z = 1 \text{ 有無限多解,則(a)} a = ? b = ? \text{ (b)} 方程組的解。 \\ 3x + ay - z = b \end{cases}$$

(7) 齊次方程組:

(a)
$$\begin{cases} 3x - ay = 0 \\ x - 2y = b + 4 \end{cases}$$
 除(0,0)外尚有其他解,則 $a = ? b = ?$ (b)
$$\begin{cases} ax + 2y + 3z = 0 \\ 3x + 2y + 3z = 0 \end{cases}$$
 解為何? $x + 5y + 7z = 0$

(8) 三元一次方程組的幾何意義:

(a)就
$$k$$
 值討論下列三平面相交的情形
$$\begin{cases} x+3y-z=-4\\ 2x+5y+z=-1\\ x+5y-7z=k \end{cases}$$

(b)就
$$a$$
 值討論下列四平面相交的情形
$$\begin{cases} 3x + 5y - z = -1 \\ x - y + 4z = 11 \\ x + 7y - 9z = -23 \\ 4x + 20y - 23z = a \end{cases}$$

- (9) 王先生去歐洲旅行,他在法國每天的食、宿、保險費分別為 2500 元,2000 元,300 元;在德國的食、宿、保險費分別為 2200 元,2800 元,300 元;在西班牙的食、宿、保險費分別為 2000 元,2000 元,300 元。已知他在這三個國家總共的食、宿、保險費各花了 25100 元,24400 元,3300 元。問他在這三個國家分別停留幾天?
- (10) 相傳包子是三國時白羅家族發明的。孔明最喜歡吃他們所做的包子,因此白羅包子店門庭若市,一包難求,必須一大早去排隊才買的到。事實上,白羅包子店只賣一種包子,每天限量供應 999 個,且規定每位顧客限購三個;而購買一個、兩個或三個包子的價錢分別是 8、15、21 分錢。在那三國戰亂的某一天,包子賣完後,老闆與老闆娘有如下的對話:老闆說:「賺錢真辛苦,一個包子成本就要 5 分錢,今天到底賺了多少錢?」

老闆娘說:「今天共賣了7195分錢,只有432位顧客買到包子」

- (a)請問當天白羅包子店淨賺多少錢?
- (b)聰明的你,請幫忙分析當天購買一個、兩個及三個包子的人數各是多少人?
- (11) 設 $a_1,a_2,...,a_{50}$ 是從 -1 ,0 ,1 這三個整數中取值的數列。若 $a_1+a_2+.....+a_{50}=9$ 且 $(a_1+1)^2+(a_2+1)^2+.....+(a_{50}+1)^2=107$,則 $a_1,a_2,...,a_{50}$ 當中有幾項是 0 ? (2003 學科能力測驗)
- (13) 設空間坐標中 \overrightarrow{a} =(1,1,0)、 \overrightarrow{b} =(0,0,1)、 \overrightarrow{c} =(2,-1,0),若 \overrightarrow{u} =(-4,5,4)可以表成 \overrightarrow{x} \overrightarrow{a} + \overrightarrow{y} \overrightarrow{b} + \overrightarrow{z} \overrightarrow{c} 的形式,試求實數 x,y,z。
- (14) 設三個相異平面 $\begin{cases} a_1x+b_1y+c_1z=0\\ a_2x+b_2y+c_2z=0\\ a_3x+b_3y+c_3z=0 \end{cases}$ 相交於直線 L,點 A(3,2,1)落在 L 上。

現在考慮三元一次聯立方程式:
$$\left\{egin{align*} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 & \cdots ...(*) \\ a_3x + b_3y + c_3z = d_3 \end{array}\right.$$

設(x,y,z)=(-2,4,5)為(*)的一個解,試問下列哪些選項是正確的?(A)向量(3,2,1)為 L 的方向向量

(B)行列式
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

- (C)(x,y,z)=(-5,2,4)為(*)的解
- (D)(*)恰有一組解
- (E)(*)的解可以表為(x,y,z)=(-2+3t,4+2t,5+t),其中t為實數。

(15) 設方程組(L)為 $\begin{cases} -x+y+z=ax \\ x-y+z=ay \\ x+y-z=az \end{cases}$ 若(L)除 x=0,y=0,z=0 之解外,尚有其他解,求 a 之值。

綜合練習解答

- (1) (a) (C) (b)(H) (c)(G) (d)(F) (e)(E)
- (2) (a)三平面恰交於一點(6,2,1)

(b)三平面交於一直線,解
$$\begin{cases} x = 5 - 6t \\ y = 1 + t \ t \ \text{為實數} \\ z = 1 + 5t \end{cases}$$

- (c)三平面兩兩相交於一直線,三直線沒有交點,無解
- (d)兩平面平行,另一平面與兩平行平面交於平行兩直線,無解。
- (3) (C)(D)
- (4) (1,0,-3)
- $(5) \quad (\frac{5}{2}, \frac{-19}{2}, 8)$

(6) (a)
$$a=1,b=4$$
 (b) $x=\frac{7}{4}+\frac{3}{4}t$, $y=\frac{-5}{4}+\frac{-5}{4}t$, $z=t$

- (7) (a)a=6, b=-4 (b)a=3 解為(-t,-18t,13t)
- (8) (a) k=-18 時,共線; $k\neq-18$ 時,三平面各交一線,三線平行。(b)a=-58 時,共線; $a\neq-58$ 時,前三平面的交線與第四平面平行[提示:先考慮前三個平面的相交狀況,結果為三平面交於一直線,將此直線的參數式代入 4x+20y-23z,得到值 58,所以 a=-58 時,共線; $a\neq-58$ 時,前三平面的交線與第四平面平行]
- (9) 法國 5 天、德國 3 天、西班牙 3 天
- (10) (a)2200 分錢 (b)買一個包子有 95 人,買二個包子有 107 人,買三個 包子有 230 人
- (11) 11
- (12) A、B、C 物質之質量分別為 4、1、2 公克。
- (13) x=2, y=4, z=-3
- (14) (A)(B)(C)(E)

[提示:三平面
$$\begin{cases} a_1x+b_1y+c_1z=0 \ a_2x+b_2y+c_2z=0 \ a_3x+b_3y+c_3z=0 \end{cases}$$
 經過平移可得

(15) *a*=1 或−2 [提示Δ=0]