From last time

Transmitter

- Transmitter is a current loop
- Currents produce primary magnetic field (Ampere)

 Current and primary field direction related by right hand rule

Primary field dipolar far enough away

Magnetic

Induction and Induced Currents

- Time-varying/harmonic magnetic fields induce electric fields (Faraday)
- Change in magnetic field and electric field direction related by left-hand rule

$$abla imes \mathbf{e} = -rac{\partial \mathbf{b}}{\partial t}$$

Induction and Induced Currents

- Time-varying/harmonic magnetic fields induce electric fields (Faraday)
- Change in magnetic field and electric field direction related by left-hand rule
- Induced electric fields (Ohm's law)
 - Large induced currents in conductors
 - Weak induced currents in resistors

$$ec{J}=\sigmaec{E}$$

Secondary Fields

- Induced current produce secondary magnetic field (Ampere)
 - Strong secondary fields from conductors
 - Weak secondary fields from resistors
- Current and secondary field direction related by right hand rule

Receivers

- Secondary fields (and primary fields) are time-varying/harmonic
 - → Change in magnetic flux through receiver loop
 - → Induces voltage in receiver loop (Faraday)
- Only measures component of the field normal to the receiver loop
- Voltage and change in flux related by lefthand rule

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt}$$

Today's Topics

- Circuit Model for EM
 - Motivation
 - 2 Loop Model for Induction
 - Coupling
 - EM Response at Receiver
 - Airborne FEM Example

A Circuit Model for EM: Motivation

Motivation

How is the excitation of the target and the data impacted by:

- The transmitter current
- The conductivity of the target
- The dimension and orientation of the target

Motivation

The 3 loop model:

- The target is approximated by an LR circuit
- R is the resistance of the circuit
- L is the inductance of the circuit
- For more conductive targets
 → L/R is bigger

Motivation

The 3 loop model:

- Primary field induces EMF in loop 2
- The EMF produces induced currents in loop 2
- Induced current produces secondary magnetic field
- Secondary field measured by receiver coil

A Circuit Model for EM: 2 Loop Model for Induction

Two Loop EM App

 How does the magnetic field from a current loop induce currents in another loop?

Two Coil Example: Transient

Primary currents

Magnetic flux

Time-variation of magnetic flux

 $I_s(t) = I_s e^{-t/\tau}$ $\tau = L/R$

$$\tau = L/R$$

Secondary currents

Response Function: Transient

Transient and Harmonic Signals

We have seen a transient pulse...

What happens when he have a harmonic?

Two Coil Example: Harmonic

Induced Currents

$$I_p(t) = I_p \cos \omega t$$

$$I_s(t) = I_s \cos(\omega t - \psi)$$

$$= \underbrace{I_s \cos\psi\cos\omega t + I_s \sin\psi\sin\omega t}_{\text{In-Phase}}$$
 Out-of-Phase Real Quadrature Imaginary

Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1}\left(\frac{\omega L}{R}\right)$$

Two Coil Example: Harmonic

Induced Currents

$$I_p(t) = I_p \cos \omega t$$

$$I_s(t) = I_s \cos(\omega t - \psi)$$

$$= \underbrace{I_s \cos \psi \cos \omega t}_{\text{In-Phase}} \underbrace{I_s \sin \psi \sin \omega t}_{\text{Out-of-Phase}}$$
Real Quadrature Imaginary

Phase Lag

$$\psi = \frac{\pi}{2} + \tan^{-1} \left(\frac{\omega L}{R} \right)$$

Induction number

Response Function: Harmonic

 Quantifies how a target/loop responds to a time harmonic magnetic field

Partitions real and imaginary parts

Transient vs Harmonic Response

In both:

• Induce currents $\nabla \times \mathbf{e} = -\frac{\partial \mathbf{b}}{\partial t}$

 Generate secondary magnetic fields

$$\nabla \times \mathbf{h} = \mathbf{j}$$

Transient vs Harmonic Response

$$q(t) = e^{-t/\tau}$$

$$\alpha = \frac{\omega L}{R}$$

A Circuit Model for EM: Coupling

Coupling

- Orientation of the target/loop relative to the primary field
- Transmitter: Primary

$$I_p(t) = I_p \cos(\omega t)$$

$$\mathbf{B}_p(t) \sim I_p cos(\omega t)$$

Target: Secondary

$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$
$$= -\frac{\partial}{\partial t} \left(\mathbf{B}_p \cdot \hat{\mathbf{n}} \right) A$$

- Stronger EMF if:
 - Larger Bp
 - Larger A
 - Better coupling

Good Coupling

- Loop 2 is normal to primary field from loop 1
- $\boldsymbol{B}_{p} \cdot \widehat{\boldsymbol{n}} \neq 0$

Bad Coupling

- Loop 2 is parallel to primary field from loop 1
- $\boldsymbol{B}_p \cdot \widehat{\boldsymbol{n}} = 0$

Bad Coupling

- Loop 2 is parallel to primary field from loop 1
- $\boldsymbol{B}_p \cdot \widehat{\boldsymbol{n}} = 0$

A Circuit Model for EM: EM Response at Receiver

Induction Recap

EMF in loop 2 is:

$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$
$$= -\frac{\partial}{\partial t} (\mathbf{B}_p \cdot \hat{\mathbf{n}}) A$$

Current in loop 2 is:

$$I_s(t) = I_s e^{-t/\tau}$$

$$I_s(t) = I_s \cos \psi \cos \omega t + I_s \sin \psi \sin \omega t$$

What is Hs at receiver relative to Hp?

FDEM

Circuit model of EM induction

Coupling coefficient:

Depends on loop geometry

$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

FDEM

Circuit model of EM induction

- If coupling between transmitter and target is bad $(M_{12} \sim 0)$
 - $\rightarrow H_S \sim 0$
- If coupling between target and receiver is bad $(M_{23} \sim 0)$ $\rightarrow H_S \sim 0$
- If transmitter frequency is low $(\omega \sim 0)$ $\rightarrow \alpha \sim 0$ $\rightarrow H_S \sim 0$
- If L/R is smaller, higher frequencies required for large response

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + \imath\alpha}{1 + \alpha^2}\right]}_{Q}$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

A Circuit Model for EM: Airborne FEM Example

Survey

- Airborne or land-based
- Transmitter and receiver loop
- Fly survey lines
- Collect response at 1 or more frequencies

Receiver and Data

Magnetometer

- Measures:
 - Magnetic fields
 - 3 components
- eg. 3-component fluxgate

 $\mathbf{b}(t)$

Fluxgate

Coil

- Measures:
 - Voltage
 - Single component that depends on coil orientation
 - Coupling matters
- eg. airborne frequency domain
- ratio of Hs/Hp is the same as Vs/Vp

 ∂b

 $\overline{\partial t}$

Coil

Response away from target

Receiver over target

Response over target

Transmitter over target

Response away from target

Response from conductor in resistive Earth

Profile over the loop

Induction number

$$\alpha = \frac{\omega L}{R}$$

$$\alpha = 1$$

When Real = Imag

Response from conductor in resistive Earth

Profile over the loop

Induction number

$$\alpha = \frac{\omega L}{R}$$

$$\alpha < 1$$

When Real < Imag

Response from conductor in resistive Earth

Profile over the loop

Induction number

$$\alpha = \frac{\omega L}{R}$$

$$\alpha > 1$$

• When Real > Imag

App: Three Loop Model

- FDEM_ThreeLoopModel
- Parameters:
 - Location, separation of transmitter and receiver
 - Number of sounding locations
 - Orientation of target loop
 - Resistance, inductance of target loop
- View:
 - Response function
 - Real and imaginary components (plan view and a profile line)

Unit Activities

- Labs: (EM I)
 - Monday, November 4th
 - Tuesday, November 5th
- Labs: (EM II)
 - Monday, November 18th
 - Tuesday, November 19th
- TBL:
 - Friday, November 15th
- Quiz:
 - Wednesday, November 20th