Quiz — Mathematics for Data Science

Courses 1 and 2: Vector spaces, linear applications, matrices

True/False questions

Work over \mathbb{R} unless otherwise stated. For each statement, indicate whether it is **True** or **False** and justify briefly.

- 1. If (G, \star) is a commutative group, then $x \star y = y \star x$ for all $x, y \in G$.
- 2. If $(V, +, \cdot)$ is a vector space over \mathbb{R} , then (V, +) is a commutative group.
- 3. In a vector space $(V, +, \cdot)$, the operation + need not be commutative.
- 4. A nonempty subset $S \subseteq V$ that is closed under addition and scalar multiplication is always a subspace, even if $0 \notin S$.
- 5. The span of any two nonzero vectors in \mathbb{R}^2 is always \mathbb{R}^2 , even if the vectors are parallel.
- 6. In any vector space $(V, +, \cdot)$ over \mathbb{R} , there exists $1 \in \mathbb{R}$ such that $1 \cdot x = x$ for all $x \in V$.
- 7. In a vector space, subtraction is always defined by x y := x + (-y).
- 8. $(\mathbb{R}, +, \cdot)$ is a vector space over \mathbb{Q} (with scalar multiplication by rationals).
- 9. If E and F are vector spaces, then $E \times F$ with (x, y) + (x', y') = (x + y, y' + x') is a vector space.
- 10. If $L: U \to V$ is linear, then L(x+y) = L(x) L(y) for all $x, y \in U$.
- 11. $(\mathbb{C}, +, \cdot)$ is a vector space over \mathbb{R} .
- 12. The set of all real $n \times p$ matrices $\mathcal{M}_{n,p}(\mathbb{R})$ is a vector space over \mathbb{R} .
- 13. If $L: U \to V$ is linear and range $(L) = \{0_V\}$, then $L \neq 0$ (the zero map).
- 14. A linear map $L: U \to V$ is injective if and only if $\ker(L) = U$.
- 15. A linear map $L: U \to V$ is surjective if and only if range $(L) = \{0_V\}$.
- 16. The set of real-valued sequences that converge is a subspace of the set of all real-valued sequences.
- 17. (Rank–Nullity) For linear $L: V \to W$ with V finite-dimensional, one has $\operatorname{rank}(L) + \dim \ker(L) = \dim(W)$.
- 18. If $A \in \mathbb{R}^{m \times n}$, then $\operatorname{rank}(A^{\top}) \geq \operatorname{rank}(A) + 1$ unless A = 0.
- 19. For any matrix A, $\operatorname{rank}(AA^{\top}) = \operatorname{rank}(A)^2$.
- 20. If $A, B \in \mathbb{R}^{n \times n}$ and AB is invertible, then exactly one of A or B is invertible.
- 21. The set of polynomials of degree at most k (with k < n) is a subspace of the set of polynomials of degree at most n.
- 22. Let $S \subseteq V$. If S is closed under addition and scalar multiplication but $0 \notin S$, then S is a subspace of V.
- 23. If $A \in \mathbb{R}^{n \times n}$ satisfies $A^2 = 0$, then necessarily A = 0.

- 24. If $A, B \in \mathbb{R}^{n \times n}$ are similar, then A = B.
- 25. If the columns of $A \in \mathbb{R}^{m \times n}$ span \mathbb{R}^m , then $\ker(A) = \{0\}$ for every $n \geq m$.
- 26. If E and F are \mathbb{F} -vector spaces, then $E \times F$ endowed with (x,y)+(x',y')=(x+x',y+y') and $\lambda \cdot (x,y)=(\lambda x,\lambda y)$ is an \mathbb{F} -vector space.
- 27. In \mathbb{R}^n , vector addition and scalar multiplication are defined component-wise.
- 28. If $L: U \to V$ is linear, then $\ker(L)$ is a subspace of U and $\operatorname{range}(L)$ is a subspace of V.
- 29. If $Q \in \mathbb{R}^{n \times n}$ satisfies $Q^{\top}Q = I_n$, then its columns are orthogonal but need not have unit norm.
- 30. If v_1, \ldots, v_k are linearly independent in V, then span $\{v_1, \ldots, v_k\}$ cannot be all of V.
- 31. A linear map $L: U \to V$ is injective if and only if $\ker(L) = \{0_U\}$.
- 32. A linear map $L: U \to V$ is surjective if and only if range(L) = V.
- 33. If F and G are subspaces of E, then $F \cap G$ need not be a subspace of E.
- 34. For a linear map $L: U \to V$, one has range $(L) = \{0_V\}$ if and only if L = 0 (the zero map).
- 35. If U and W are subspaces with $U \cap W = \{0\}$, then U + W is not a direct sum.
- 36. Finite-dimensional vector spaces over the same field and of the same dimension are isomorphic.
- 37. (Rank–Nullity) If $L:V\to W$ is linear with V finite-dimensional, then $\mathrm{rank}(L)+\dim\ker(L)=\dim(V)$.
- 38. For finite-dimensional spaces E_1, \ldots, E_n , one has $\dim(E_1 \times \cdots \times E_n) = \prod_{i=1}^n \dim(E_i)$.
- 39. For subspaces $U, W \subseteq V$, $\dim(U + W) = \dim(U) + \dim(W) \dim(U \cap W)$.
- 40. If $U \cap W = \{0\}$, then every $v \in U \oplus W$ can be written uniquely as v = u + w with $u \in U$, $w \in W$.
- 41. If $U \oplus W$ is a direct sum, then $\dim(U \oplus W) = \dim(U) + \dim(W)$.
- 42. If E_1, \ldots, E_n are finite-dimensional vector spaces over \mathbb{F} , then $\dim(E_1 \times \cdots \times E_n) = \sum_{i=1}^n \dim(E_i)$.
- 43. Let V be a vector space and $a_1, \ldots, a_n \in \mathbb{R}$. The set $F = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n a_i x_i = 0\}$ is a subspace of \mathbb{R}^n .
- 44. If F and G are subspaces of a vector space E, then $F \cap G$ is a subspace of E.
- 45. Let E, F be vector spaces over \mathbb{F} , let $\mathcal{B}_E = (e_1, \ldots, e_n)$ be a basis of E, and let $\mathcal{F} = (f_1, \ldots, f_n)$ be vectors in F. Then there exists a unique linear map $g : E \to F$ with $g(e_i) = f_i$ for all i; moreover, g is injective iff \mathcal{F} is linearly independent, surjective iff \mathcal{F} spans F, and bijective iff \mathcal{F} is a basis of F.

Solutions

- 1. **True.** This is exactly the definition of a commutative (abelian) group.
- 2. **True.** By the vector space axioms, (V, +) is a commutative group.
- 3. False. In a vector space, (V, +) must be an abelian (commutative) group by axiom.
- 4. **False.** Any subset closed under scalar multiplication already contains 0 (since $0 \cdot x = 0$). If $0 \notin S$, it cannot be a subspace.
- 5. False. If the two vectors are parallel (colinear), their span is a line, not \mathbb{R}^2 .
- 6. **True.** The scalar multiplicative identity axiom requires $1 \cdot x = x$ for all $x \in V$.
- 7. **True.** Additive inverses exist in (V, +); define x y := x + (-y).
- 8. True. Restricting scalars from \mathbb{R} to the subfield \mathbb{Q} makes \mathbb{R} a \mathbb{Q} -vector space.
- 9. **False.** With (x, y) + (x', y') = (x + y, y' + x'), (0, 0) is not a neutral element: $(a, b) + (0, 0) = (a, 0) \neq (a, b)$ (take $b \neq 0$).
- 10. **False.** Linearity gives L(x+y) = L(x) + L(y); in general the product L(x) L(y) is undefined (or wrong). E.g. $U = V = \mathbb{R}$, L = id: $L(1+1) = 2 \neq 1 \cdot 1$.
- 11. **True.** \mathbb{C} is a vector space over \mathbb{R} via real scalar multiplication.
- 12. **True.** $\mathcal{M}_{n,p}(\mathbb{R})$ is closed under entrywise addition and real scalar multiplication, and contains 0.
- 13. **False.** range(L) = {0} iff L is the zero map.
- 14. **False.** Injective $\Leftrightarrow \ker(L) = \{0\}$, not $\ker(L) = U$ (the latter means L = 0).
- 15. **False.** Surjective \Leftrightarrow range(L) = V, not $\{0\}$ (unless $V = \{0\}$).
- 16. **True.** Sum and real scalar multiples of convergent sequences converge; the zero sequence converges.
- 17. **False.** Rank–Nullity reads $\operatorname{rank}(L) + \dim \ker(L) = \dim(V)$ (domain dimension), not $\dim(W)$.
- 18. **False.** Always rank $(A^{\top}) = \operatorname{rank}(A)$, never strictly larger by 1.
- 19. False. In fact $\operatorname{rank}(AA^{\top}) = \operatorname{rank}(A)$ (for all A), not the square of the rank.
- 20. **False.** If AB is invertible, then both A and B are invertible.
- 21. **True.** Degree $\leq k$ polynomials are closed under addition and scalar multiplication and contain 0.
- 22. **False.** A subspace must contain 0; if $0 \notin S$, S cannot be a subspace.
- 23. **False.** There exist nonzero nilpotent matrices (e.g. $J = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ with $J^2 = 0$ and $J \neq 0$).
- 24. **False.** Similar matrices need not be equal (e.g. diag(1,2) is similar to diag(2,1) via a permutation matrix).

- 25. **False.** If n > m, columns can span \mathbb{R}^m while $\ker(A) \neq \{0\}$ (rank–nullity gives $\dim \ker(A) = n m > 0$). Example: $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.
- 26. **True.** With (x, y) + (x', y') = (x + x', y + y') and $\lambda(x, y) = (\lambda x, \lambda y)$, $E \times F$ is a vector space.
- 27. **True.** This is the standard definition in \mathbb{R}^n .
- 28. **True.** For linear L, $\ker(L) \leq U$ and $\operatorname{range}(L) \leq V$ (closure follows from linearity).
- 29. False. $Q^{\top}Q = I$ implies columns are orthonormal (orthogonal and unit norm).
- 30. False. A linearly independent family can span V (e.g. any basis).
- 31. **True.** Injectivity \Leftrightarrow only solution of Lx = 0 is $x = 0 \Leftrightarrow \ker(L) = \{0\}$.
- 32. **True.** Surjectivity means range(L) = V by definition of range/image.
- 33. False. Intersection of subspaces is always a subspace.
- 34. **True.** If range(L) = {0} then L = 0; conversely the zero map has that range.
- 35. **False.** By definition, $U \cap W = \{0\}$ implies U + W is a direct sum $U \oplus W$.
- 36. **True.** Finite-dimensional spaces over the same field with equal dimension are isomorphic.
- 37. **True.** Rank–Nullity: $\operatorname{rank}(L) + \dim \ker(L) = \dim(V)$ for linear $L: V \to W$ with V finite-dimensional.
- 38. **False.** For finite-dimensional spaces, $\dim(E_1 \times \cdots \times E_n) = \sum_{i=1}^n \dim(E_i)$ (sum, not product).
- 39. True. Standard dimension formula for sums of subspaces.
- 40. **True.** Direct sum $(U \cap W = \{0\})$ gives uniqueness of the decomposition v = u + w.
- 41. **True.** In a direct sum, dimensions add: $\dim(U \oplus W) = \dim U + \dim W$.
- 42. **True.** dim $(E_1 \times \cdots \times E_n) = \sum_i \dim(E_i)$ for finite-dimensional spaces.
- 43. **True.** It is the kernel of the linear functional $x \mapsto \sum_{i=1}^n a_i x_i$.
- 44. **True.** Intersection of subspaces is a subspace.
- 45. **True.** A linear map is uniquely determined by images of a basis; injective \Leftrightarrow images are independent, surjective \Leftrightarrow images span F, hence bijective \Leftrightarrow they form a basis of F.