Soluzioni fondamentali per equazioni di tipo onda su varietà curve

Rubens Longhi

Gli operatori di tipo ondulatorio P appaiono in molti sistemi fisici

Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^{n-1} \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = 0$$

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio P appaiono in molti sistemi fisici

• Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^{n-1} \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = 0$$

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio P appaiono in molti sistemi fisici

• Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^{n-1} \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu}$$

Equazione di Klein-Gordon

$$(\Box + m^2)\psi = 0$$

Le soluzioni fondamentali

Un metodo costruttivo

Vogliamo risolvere su una varietà \boldsymbol{M} una qualsiasi equazione differenziale non omogenea

$$Pf = \psi$$

nell'incognita f con generica sorgente ψ .

La studiamo nel caso di una sorgente elementare deltiforme nel punto x

$$Pu_{x} = \delta_{x}$$

e cerchiamo soluzioni distribuzionali $u_x \in \mathcal{D}'(\mathrm{M})$.

Troviamo una soluzione a $Pf = \psi$ integrando opportunamente la soluzione fondamentale su tutti i punti $x \in \operatorname{supp} \psi$.

Le soluzioni fondamentali

Un metodo costruttivo

Vogliamo risolvere su una varietà \boldsymbol{M} una qualsiasi equazione differenziale non omogenea

$$Pf = \psi$$

nell'incognita f con generica sorgente ψ .

La studiamo nel caso di una sorgente elementare deltiforme nel punto x

$$Pu_{x} = \delta_{x}$$

e cerchiamo soluzioni distribuzionali $u_x \in \mathcal{D}'(M)$.

Troviamo una soluzione a $Pf = \psi$ integrando opportunamente la soluzione fondamentale su tutti i punti $x \in \text{supp } \psi$.

Le soluzioni fondamentali

Un metodo costruttivo

Vogliamo risolvere su una varietà \boldsymbol{M} una qualsiasi equazione differenziale non omogenea

$$Pf = \psi$$

nell'incognita f con generica sorgente ψ .

La studiamo nel caso di una sorgente elementare deltiforme nel punto x

$$Pu_{x} = \delta_{x}$$

e cerchiamo soluzioni distribuzionali $u_x \in \mathcal{D}'(M)$.

Troviamo una soluzione a $Pf=\psi$ integrando opportunamente la soluzione fondamentale su tutti i punti $x\in\operatorname{supp}\psi$.

L'operatore d'onda in Minkowski

Il caso dello spaziotempo piatto

La simmetria per traslazione ci consente di limitare il problema per \Box all'origine:

$$\Box u_0 = \delta_0$$

e di utilizzare la tecnica della trasformata di Fourier.

La PDE in (t, \mathbf{x}) diventa l'equazione algebrica nello spazio delle fasi (ω, \mathbf{k})

$$(|\mathbf{k}|^2 - \omega^2)\widehat{u} = 1,$$

della quale troviamo **due soluzioni indipendenti**, che danno luogo a due soluzioni fondamentali G^+ e G^- dette **ritardata** e **avanzata**.

L'operatore d'onda in Minkowski

Il caso dello spaziotempo piatto

La simmetria per traslazione ci consente di limitare il problema per \square all'origine:

$$\Box u_0 = \delta_0$$

e di utilizzare la tecnica della trasformata di Fourier.

La PDE in (t, \mathbf{x}) diventa l'equazione algebrica nello spazio delle fasi (ω, \mathbf{k})

$$(|\mathbf{k}|^2 - \omega^2)\widehat{u} = 1,$$

della quale troviamo due soluzioni indipendenti, che danno luogo a due soluzioni fondamentali G^+ e G^- dette ritardata e avanzata.

Il caso n = 1 + 1 - onde su una corda

Le soluzioni fondamentali in Minkowski

La soluzione fondamentale ritardata

$$G^+(t,x) = \frac{\Theta(t-|x|)}{2}$$

supp G^+ è il cono luce **futuro**

Il caso n = 1 + 1 - onde su una corda

Le soluzioni fondamentali in Minkowski

La soluzione fondamentale avanzata

$$G^{-}(t,x)=-\frac{\Theta(t+|x|)}{2}$$

supp G^- è il cono luce passato

Il caso n = 1 + 2 - onde su una superficie

Le soluzioni fondamentali in Minkowski

Un insieme di livello della soluzione fondamentale **ritardata**

$$G^+(t, \mathbf{x}) = rac{\Theta(t)}{2\pi} rac{\Theta(t^2 - |\mathbf{x}|^2)}{\sqrt{t^2 - |\mathbf{x}|^2}}$$

supp G⁺ \subset cono luce **futuro**

Il caso n = 1 + 2 - onde su una superficie

Le soluzioni fondamentali in Minkowski

Un insieme di livello della soluzione fondamentale avanzata

$$G^{-}(t,\mathbf{x}) = \frac{\Theta(-t)}{2\pi} \frac{\Theta(t^2 - |\mathbf{x}|^2)}{\sqrt{t^2 - |\mathbf{x}|^2}}$$

supp $G^- \subset \text{cono luce } \mathbf{passato}$

Il caso n = 1 + 3 - onde nello spazio

Le soluzioni fondamentali in Minkowski

Il supporto della soluzione fondamentale **ritardata**

$$G^+(t, \mathbf{x}) = rac{\Theta(t)}{4\pi} rac{\delta(t - |\mathbf{x}|)}{|\mathbf{x}|}$$

supp G^+ è il **bordo** del cono luce **futuro**

Il caso n = 1 + 3 - onde nello spazio

Le soluzioni fondamentali in Minkowski

Il supporto della soluzione fondamentale avanzata

$$G^-(t,\mathbf{x}) = rac{\Theta(-t)}{4\pi} rac{\delta(t+|\mathbf{x}|)}{|\mathbf{x}|}$$

supp G^- è il **bordo** del cono luce **passato**

Il Principio di Huygens

Le soluzioni fondamentali in Minkowski

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n > 2 è pari.

Le onde luminose in 3D si propagano solo sulla **superficie sferica** del fronte d'onda.

Su di una superficie 2D l'effetto dell'onda viene percepito anche dopo che il segnale è arrivato.

Il Principio di Huygens Le soluzioni fondamentali in Minkowski

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n > 2 è pari.

Le onde luminose in 3D si propagano solo sulla superficie sferica del fronte d'onda.

Su di una superficie 2D l'effetto dell'onda viene percepito anche dopo che il segnale è arrivato.

Il Principio di Huygens Le soluzioni fondamentali in Minkowski

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n > 2 è pari.

Le onde luminose in 3D si propagano solo sulla **superficie sferica** del fronte d'onda.

Su di una superficie 2D l'effetto dell'onda viene percepito anche dopo che il segnale è arrivato.