Ph202

Chapitre 1 - Partie 1 : Introduction à la mécanique classique

E. Riedinger

Département des Sciences Physiques

UNIVERSITE PARIS-SACLAY

Janvier 2020

E. Riedinger

Informations pratiques

Horaires

Cours en amphi : 18h (avec CC). Amphi J.

(sauf Lu 27/01 13h40 cours supplémentaire amphi F).

TD: 27h. Début TD semaine du 03/02. Salles, horaires sur

https://edt.uvsq.fr

TP: 3x3h (bât. E 2ème étage). Début TP semaine du 16 mars.

Espace Ph202 sur ecampus : support de cours, etc.

Évaluation

6 ECTS (→ travail personnel!) *****

100% contrôle continu. Note finale: TP 25% CC 75%

Répartition notes de CC :

- 2CC en amphi fin mars / début avril + 15 mai (coeff 0,5+1)
- moyenne CC en TD

- Mécanique classique du point matériel
 2. Calcul différentiel
 3. Équations différentielles
- 1.1 Qu'est-ce qu'un point matériel?
- 1.2 Qu'est-ce que la mécanique classique?
- 1.4 Contenu du cours
- 1. Mécanique classique du point matériel
- 1.1 Qu'est-ce qu'un point matériel?

Modélisation

- Système réel étudié
- Représenté par un point M pourvu d'une masse m

Pour simplifier, tout un système est réduit à un seul point : mouvement propre, volume propre non pris en compte.

⇒ Mouvement d'ensemble connu mais pas les mouvements de chaque point du système.

- Mécanique classique du point matériel
 2. Calcul différentiel
 3. Équations différentielles
- 1.1 Qu'est-ce qu'un point matériel?
- 1.2 Qu'est-ce que la mécanique classique?
 - 1.3 Reperes historique
- 1.4 Contenu du cours

Justifications

Théorème du centre de masse (admis)

Système de masse m, barycentre G. Évolue globalement comme un point matériel G de masse m, soumis à la résultante de la totalité des forces extérieures

Théorème de Gauss (admis)

Astre sphérique de masse totale *m*, symétrie sphérique.

Exerce une force gravitationnelle identique à celle exercée par le point matériel situé au centre et pourvu de la masse totale.

- 1. Mécanique classique du point matériel 2. Calcul différentiel 3. Équations différentielles
- 1.2 Qu'est-ce que la mécanique classique?

1.2 Qu'est-ce que la mécanique classique?

Mécanique classique

Décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière

Limites

Mécanique relativiste

Mécanique quantique

Différents domaines

Mécanique du point, du solide, des fluides, des milieux continus

Exemples

Etude et conception de mécanismes Gravimétrie Mécanique Horloaerie Automobile

céleste

- Mécanique classique du point matériel
 2. Calcul différentiel
 3. Équations différentielles
- 1 Qu'est-ce qu'un point matériel ?
- 1.2 Qu'est-ce que la mécanique clas
- 1.3 Repères historiques

1.3 Repères historiques

- 1. Mécanique classique du point matériel 2. Calcul différentiel 3. Équations différentielles
- . Qu'est-ce qu'un point matériel?
- 1.2 Qu'est-ce que la mécanique classique?
 - 1.4 Contenu du cours

1.4 Contenu du cours

Sommaire

Chapitre 1 : Introduction à la mécanique (partie 1) ; Outils 3D

(partie 2)

Chapitre 2 : Cinématique

Chapitre 3: Dynamique

Chapitre 4 : Travail, puissance, énergie

Chapitre 5 : Oscillateur harmonique

- 2.1 Rappels sur dérivée et intégrale
- 2.2 Differentielle d une fonction

- 2. Calcul différentiel
- 2.1 Rappels sur dérivée et intégrale

Dérivée en x_0 de la fonction f

$$f'(x_0) = \frac{df}{dx}(x_0) = \lim_{dx \to 0} \frac{f(x_0 + dx) - f(x_0)}{dx}$$

Dérivée : pente de la tangente (limite de la pente d'une corde) Graphiquement : tangente d'équation

$$y = f(x_0) + (x - x_0) f'(x_0)$$

- 2.1 Rappels sur dérivée et intégrale
- 2.2 Differentielle d'une fonction
- 2.3 Prolongement : développements limités

Pente (et unités!)

Pente
$$a = \frac{dy}{dx} = \frac{y_2 - y_1}{x_2 - x_1}$$

Unité de a: $\frac{\text{unité de y}}{\text{unité de x}}$

Exemple : y masse (en kg) et x volume (en m^3)

a en kg \cdot m⁻³ (masse volumique!)

- 2.1 Rappels sur dérivée et intégrale
- 2.2 Differentiene d une fonction

Intégrale

f(x) dx aire du rectangle fin

$$I = \int_{a}^{b} f(x) \, dx$$

représente l'aire entre la courbe et l'axe des x (au signe près)

- Mécanique classique du point matériel
 Calcul différentiel
 Équations différentielles
- 2.1 Rappels sur dérivée et intégrale
- 2.2 Différentielle d'une fonction
- 2.3 Prolongement : développements limités

Valeur moyenne

Égalité des aires :
$$\int_a^b f(x) dx = \langle f \rangle \times (b-a)$$

Valeur moyenne de f sur l'intervalle [a; b]

$$\langle f \rangle = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

E. Riedinger

- 2.1 Rappels sur dérivée et intégrale
- 2.2 Differentielle d'une fonction
- 2.3 Prolongement : développements limités

Valeur moyenne

Exemple

Déterminer sur $[0; 2\pi]$ les valeurs moyennes de $\langle \cos x \rangle$ et $\langle \cos^2 x \rangle$

$$\begin{aligned} & -\langle \cos x \rangle = \frac{1}{2\pi} \int_0^{2\pi} \cos x dx = \frac{1}{2\pi} \left[\sin x \right]_0^{2\pi} = \mathbf{0} \\ & \langle \cos^2 x \rangle = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{1 + \cos(2x)}{2} \right) dx = \frac{1}{2\pi} \left[\frac{x}{2} + \frac{\sin(2x)}{4} \right]_0^{2\pi} = \frac{1}{2} \end{aligned}$$

E. Riedinger

- 2.1 Rappels sur dérivée et intégrale
- 2.2 Différentielle d'une fonction
- 2.3 Prolongement : développements limités

Valeur moyenne

Exemple 2

Déterminer la valeur moyenne $\langle v \rangle$ de la vitesse v(t) = at (a constante, t variable) sur l'intervalle $[0; \tau]$.

*-

$$\langle v \rangle = \frac{1}{\tau} \int_0^{\tau} atdt = \frac{1}{\tau} \left[\frac{1}{2} at^2 \right]_0^{\tau} = \frac{1}{2} a\tau$$

Résultat prévisible : fonction linéaire Moyenne temporelle!

2.1 Rappels sur dérivée et intégrale 2.2 Différentielle d'une fonction

2.2 Differentielle d une fonction

2.2 Différentielle d'une fonction

f fonction de plusieurs variables f(x, y)

Définition

$$df = \frac{\partial f}{\partial x}\Big|_{y} dx + \frac{\partial f}{\partial y}\Big|_{x} dy$$

 $\frac{\partial f}{\partial x}\big|_y$ notation utilisée pour la dérivée partielle de f par rapport à la variable x (y étant alors constant).

Cas d'une seule variable

$$df = f'(x) dx$$

df et dx sont des quantités infinitésimales (infiniment petites) Interprétation : f'(x) représente un facteur d'impact

- .1 Rappels sur dérivée et intégrale
- 2.2 Différentielle d'une fonction

2.2 Différentielle d'une fonction

Cas d'une seule variable

$$df = f'(x) dx$$

Graphiquement : tangente

Δf bien approximé par df si Δx suffisamment petit

Conclusion:

La différentielle d'une grandeur en est une quantité infinitésimale. Elle peut représenter la variation infinitésimale de cette grandeur. Elle permet une estimation approchée de petites variations.

- 2.2 Différentielle d'une fonction

Exemples

Exemple 1

Si S est la surface d'un disque de rayon r que représente dS?

 $S = \pi r^2$ donc $dS = 2\pi r dr$, représente une petite variation de surface : couronne hachurée en vert. Si on la découpe on obtient approx. un rectangle de côtés $2\pi r$ (périmètre) et dr.

Exemple 2

Retrouver l'expression de la surface S d'un disque de rayon R

$$dS = 2\pi r dr$$

On somme (intégration) toutes les aires infinitésimales des couronnes pour obtenir la surface totale : *

$$S = \int_{r=0}^{r=R} dS = \int_{0}^{R} 2\pi r dr = 2\pi \left[\frac{r^2}{2} \right]_{0}^{R} = \pi R^2$$

E. Riedinger

.1 Rappels sur dérivée et intégrale

2.2 Différentielle d'une fonction

Exemples

Exemple 3

Estimer l'écart entre $\sqrt{62}$ et $\sqrt{64}$ (sans calculatrice!)

 $\sqrt{64} = 8$ sans approx.

Approx: 62 représente une variation petite par rapport à 64

On considère la fonction $f(x) = \sqrt{x}$ en x = 64 avec dx = -2

Alors
$$\#$$
 $df = \frac{dx}{2\sqrt{x}}$.

Numériquement
$$df = \frac{(-2)}{2 \times \sqrt{64}} = \frac{-1}{8} = -0,125$$

Conclusion : $\sqrt{62} \simeq 7,875$ résultat approché! (comparer à 7,874008...)

E. Riedinger

Coût C du plein et incertitude ΔC ?

- 2.1 Rappels sur dérivée et intégrale 2.2 Différentielle d'une fonction
- 2.3 Prolongement : développements limités

Exemples

Exemple 4

Plein d'essence fait avec un volume de carburant $V=50\pm1\,\mathrm{L}$ et un prix au litre $p=1,40\pm0,02\,\text{€/L}.$

$$C = pV$$
 donc $C = 70$ €.
On connaît ΔV et Δp .
 $d\left[\ln\left(C\right)\right] = d\left[\ln\left(p\right) + \ln\left(V\right)\right]$ càd $\frac{dC}{C} = \frac{dp}{p} + \frac{dV}{V}$
Passage aux incertitudes (relatives) : $\frac{\Delta C}{C} = \frac{\Delta p}{p} + \frac{\Delta V}{V}$
 $\frac{\Delta C}{C} = \frac{0.02}{1.40} + \frac{1}{50} = 0.0143 + 0.02 = 0.0343$

Donc C connu à 3,4% près.

Conclusion $C = 70, 0 \pm 2, 4 \in$

2.1 Rappels sur dérivée et intégrale

2.3 Prolongement : développements limités

2.3. Prolongement : développements limités

Au voisinage d'un point x_0

Développement limité d'une fonction f = polynôme représentant une bonne **approximation des variations de** f

--→ f remplacée par une autre fonction plus simple

Tangente = polynôme de degré 1 = approximation précédente $f(x) = f(x_0) + (x - x_0) f'(x_0)$

Pour raffiner on ajoute des termes en $x-x_0$ de puissance à chaque fois plus grande donc chacun négligeable au voisinage de x_0 par rapport au précédent

Formule de Taylor

$$f(x) = f(x_0) + (x - x_0) f'(x_0) + ... + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0)$$

E. Riedinger Ph202 Ch.1 Partie 1

1 Rappels sur dérivée et intégrale

2.2 Différentielle d'une fonction
2.3 Prolongement : développements limités

Exemples

Exemple 1

Retrouver le résultat de l'exemple 3 du 2.2 avec un DL.

$$\sqrt{62} = \sqrt{64 \times \left(1 - \frac{2}{64}\right)} = 8 \times \sqrt{1 - \frac{1}{32}}$$
 Comme $\frac{1}{32} \ll 1$ on utilise le DL de la fonction

$$f(x) = \sqrt{1-x} = (1-x)^{\frac{1}{2}}$$
 à l'ordre 1 au voisinage de $x = 0$:

$$(1-x)^{\frac{1}{2}} \simeq 1-\frac{x}{2}$$

Donc
$$\sqrt{62} \simeq 8 \times \left(1 - \frac{1}{2} \times \frac{1}{32}\right) = 7,875$$

Justification du DL *****← : formule de Taylor :

$$f(x) = f(0) + xf'(0)$$
 avec $f'(x) = -\frac{1}{2}(1-x)^{-\frac{1}{2}}$

E. Riedinger

1 Rappels sur dérivée et intégrale

2.2 Différentielle d'une fonction
2.3 Prolongement : développements limités

Exemples

Exemple 2

Approximation des petits angles $\sin x \simeq x$ (en rad) Valable avec écart inférieur à 1% tant que x inférieur à?

DL au voisinage de x = 0 à l'ordre 3 de sin x (fⁿ impaire) :

$$\sin x = x - \frac{x^3}{6}$$

Terme supplémentaire $\frac{x^3}{6}$ doit être inférieur à 1% de x :

$$\frac{x^3}{6} \le 0,01x$$

$$x^2 \le 0,06$$

$$x \le 0,245 \, \text{rad} \, (x \le 14^{\circ})$$

E. Riedinger

- .1 Rappels sur dérivée et intégrale
- 2.2 Differentielle d'une fonction
- 2.3 Prolongement : développements limités

Exemples

Exemple 2 Approximation des petits angles ZOOM Domaine où approx. valide 0.5 0.3 0 0.2 Zone de zoom -0.5 0.1 x=0,25rad 0.1 -1.5 -0.5 0.5

Si $x \le 0,25 \, \mathrm{rad} \, \left(14^{\circ}\right)$ alors $\sin x = x \, \mathrm{et} \, \tan x = x \, \mathrm{à} \, 1\%$ et 2% près.

3. Équations différentielles

Résolution des équations différentielles rencontrées en mécanique

 équations différentielles linéaires à coefficients constants : méthode générale de résolution

1er ordre : forme des solutions à connaître

2ème ordre : cf chap. 5

- séparation des variables
- ou suivre l'énoncé

Utiliser les conditions initiales (CI)

déterminent en mécanique de manière unique la solution de l'équation différentielle

3.1 Équations différentielles linéaires à coefficients constants

Variables notées z et t

Équation du 1er ordre

Forme de référence : $\frac{dz}{dt} + az = b$ où a et b constants z' + az = b

Forme générale des solutions

 $z(t) = Ke^{-at} + \frac{b}{a}$ où K constante déterminée par les CI

Exemple (Ph100)

Déterminer loi i(t) vérifiant $L\frac{di}{dt} + Ri - E = 0$ sachant i(0) = 0

Forme de référence
$$\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$$

Forme générale des solutions $i(t) = \frac{E}{R} + Ke^{-\frac{R}{L}t} *$

CI:
$$\frac{E}{R} + Ke^{-\frac{R}{L}0} = 0$$
 donc $K = -\frac{E}{R}$
Conclusion $i(t) = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t} \right)$

E. Riedinger

3.2 Séparation des variables

À essayer si autre type d'éq. diff. (non linéaire) Séparer les variables puis intégrer en fonction des CI

Exemple

La mise en équation de la vidange d'un réservoir conduit à

l'équation (K constante, x hauteur d'eau) :

 $\frac{dx}{dt} = -K\sqrt{x}$

CI : à t = 0 on a x = h.

À quel instant t_0 le récipient est-il vide? *

Séparation
$$\frac{dx}{\sqrt{x}} = -Kdt$$

Intégration (avec CI) $\int_{h}^{0} \frac{dx}{\sqrt{x}} = -K \int_{0}^{t_0} dt$

Calcul
$$\left[2\sqrt{x}\right]_{h}^{0} = -Kt_{0}$$

Conclusion
$$t_0 = \frac{2\sqrt{h}}{K}$$