Chapter 4. Ensemble Learning

고려대학교 산업경영공학과

DMQA Lab.

임 새 린

목차

- Bagging-based Ensemble
 - Random Forest
- Boosting-based Ensemble
 - AdaBoost
 - Gradient Boosting Machine (GBM)

Bagging

Bootstrapping

- 원본 데이터셋에서 무작위로 복원추출하는 샘플링 기법
- 복원추출하기 때문에 원하는 만큼 데이터셋을 늘릴 수 있음

Bagging

- Bagging: Bootstrap Aggregating
 - Bagging이란 원본 데이터셋으로부터 bootstrap을 여러 번 적용하여 원본 데이터와 동일한 사이즈를 가지는 bootstrap 데이터 셋을 여러 개 만들고, 각 데이터셋마다 앙상블을 구성하는 base learner를 학습시키는 방법

Bagging

- ❖ 학습 관점에서 Bagging의 장점
 - 특정 관측치는 여러 번 선택되는 반면 아예 포함이 되지 않는 관측치도 있어서 다양한 분포를 가지는 데이터셋 생성
 - 다양한 분포를 통해 학습하기 때문에 분포의 변화에 훨씬 강건한 앙상블 모델을 구축할 수 있음 → 예측값 분산 ↓
 - 때문에 일반적으로 bagging 기법을 활용한 앙상블에서는 편향이 적고 분산이 큰 복잡한 모델을 활용

Bootstrap 1

Bootstrap 1
Data distribution

Bootstrap 2

Bootstrap 2
Data distribution

Bagging

- ❖ 검증 관점에서 Bagging의 장점
 - 각 bootstrap마다 선택되지 못한 데이터들의 집합 OOD (Out of Bag)를 검증 집합으로 활용하여 일반화 성능을 확보할 수 있음
 - 한 bootstrap에서 한 관측치가 N번의 복원추출에서 한번도 선택되지 않을 확률 = 0.368

$$p = \left(1 - \frac{1}{N}\right)^{N}$$

$$\lim_{N \to \infty} \left(1 - \frac{1}{N}\right)^{N} = e^{-1} = 0.368$$

Bootstrap K 학습 데이터로 활용(약 63%)

Out of Bag K 검증 데이터로 활용(약 37%)

Random Forest

- * Random Forest
 - Decision Tree를 base learner로 앙상블의 다양성을 확보하기 위해 두 가지 방법 활용
 - Bagging: 원 데이터셋 사이즈만큼 복원 추출하여 여러 개의 bootstrap 데이터셋을 생성
 - 분기 변수 랜덤화: Decision tree에서 분기를 할 때, 모든 변수를 대상으로 하는 것이 아닌 변수들의 부분 집합에서 랜덤으로 선택

X	Υ	
x_1	y_1	
x_2	y_2	
x_3	y_3	
x_4	y_4	
x_5	y_5	
<i>x</i> ₆	y_6	
<i>x</i> ₇	y_7	

x_3	y_3
x_6	<i>y</i> ₆
x_6	y_6
x_1	y_1
x_3	y_3
x_5	y_5
x_1	y_1

X	Υ
x_6	y_6
x_4	y_4
x_2	y_2
x_4	y_4
x_1	y_1
x_5	y_5
x_2	y_2

X	Y
x_2	y_2
x_1	y_1
x_3	y_3
<i>x</i> ₇	y_7
<i>x</i> ₄	y_4
<i>x</i> ₂	y_2
<i>x</i> ₃	y_3

Original Set

Bootstrap 1

Bootstrap 2

Bootstrap K

Random Forest

- Random Forest
 - Decision Tree를 base learner로 앙상블의 다양성을 확보하기 위해 두 가지 방법 활용
 - Bagging: 원 데이터셋 사이즈만큼 복원 추출하여 여러 개의 bootstrap 데이터셋을 생성
 - 분기 변수 랜덤화: Decision tree에서 분기를 할 때, 모든 변수를 대상으로 하는 것이 아닌 변수들의 부분 집합에서 랜덤으로 선택

X	Υ	
x_1	y_1	
x_2	y_2	
χ_3	y_3	
χ_4	y_4	
x_5	y_5	
x_6	y_6	
x_7	y_7	

Original Set

Bootstrap 1

Bootstrap 2

Bootstrap K

Random Forest

- Random Forest
 - Decision Tree를 base learner로 앙상블의 다양성을 확보하기 위해 두 가지 방법 활용
 - Bagging : 원 데이터셋 사이즈만큼 복원 추출하여 여러 개의 bootstrap 데이터셋을 생성
 - 분기 변수 랜덤화: Decision tree에서 분기를 할 때, 모든 변수를 대상으로 하는 것이 아닌 변수들의 부분 집합에서 랜덤으로 선택

	X1	X2	Х3	X4	X5	Х6	X7
1	2	-18	115	0	34	0.68	57
2	4	-13	334	0	48	0.15	52
:	:	:	:	:	:	:	:
N-1	3	-15	186	1	51	0.44	59
N	8	-23	138	0	23	0.6	50

Bootstrap K

Random Forest

- Feature Importance
 - 랜덤 포레스트는 OOB 데이터를 활용해서 변수의 중요도를 정량화할 수 있음
 - MDI(Mean Decrease in Impurity) importance : 변수가 분기될 때 impurity 감소분의 평균을 중요도로 정의
 - Permutation importance: 중요도를 확인할 변수의 값을 무작위로 바꾸고 성능 차이를 중요도로 정의
 - Drop column importance: 중요도를 확인할 변수를 제거하고 성능 차이를 중요도로 정의

$$\Delta i(t) = i(t) - rac{N_{tl}}{N_t} i(t_l) - rac{N_{tr}}{N_t} i(t_r)$$

변수1 변수2 ··· 변수P

Obs 1

Obs 2

Obs 3

Obs 4

Obs 5

Obs 6

Obs 7

Obs 8

Obs 9

Obs 10

···

Obs N

drop

MID importance

Permutation importance

Drop column importance

Boosting-based Ensemble

Boosting based Ensemble

boosting

- ❖ Bagging과 boosting
 - Bagging은 bootstrap을 통해 다양한 데이터셋을 만들어 독립적으로 각 모델을 학습
 - Boosting은 여러 weak learner을 어떤 가이드에 따라 순차적으로 학습

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

AdaBoost

❖ AdaBoost Idea

- 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
- 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

그림 출처: Medium (Boosting and Bagging explained with examples)

AdaBoost

- AdaBoost Algorithm
 - 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
 - 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

Algorithm 2 Adaboost

 $H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$

```
Input: Required ensemble size T
Input: Training set S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}, where y_i \in \{-1, +1\}
Define a uniform distribution D_1(i) over elements of S.

for t = 1 to T do

Train a model h_t using distribution D_t.

Calculate \epsilon_t = P_{D_t}(h_t(x) \neq y)

If \epsilon_t \geq 0.5 break

Set \alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)

Update D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),
```


AdaBoost

- AdaBoost Algorithm
 - 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
 - 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

Algorithm 2 Adaboost Input: Required ensemble size TInput: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$ Define a uniform distribution $D_1(i)$ over elements of S. for t = 1 to T do Train a model h_t using distribution D_t . Calculate $\epsilon_t = P_{D_t}(h_t(x) \neq y)$ If $\epsilon_t \geq 0.5$ break Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$ Update $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$ where Z_t is a normalization factor so that D_{t+1} is a valid distribution. end for For a new testing point (x', y'), $H(x') = sign\left(\sum_{t=1}^T \alpha_t h_t(x')\right)$

AdaBoost

- AdaBoost Algorithm
 - 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
 - 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

Algorithm 2 Adaboost Input: Required ensemble size TInput: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$ Define a uniform distribution $D_1(i)$ over elements of S. for t = 1 to T do Train a model h_t using distribution D_t . Calculate $\epsilon_t = P_{D_t}(h_t(x) \neq y)$ If $\epsilon_t \geq 0.5$ break Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$ Update $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$ where Z_t is a normalization factor so that D_{t+1} is a valid distribution. end for For a new testing point (x', y'), $H(x') = sign\left(\sum_{t=1}^T \alpha_t h_t(x')\right)$

AdaBoost

- AdaBoost Algorithm
 - 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
 - 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

Algorithm 2 Adaboost

Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$

Define a uniform distribution $D_1(i)$ over elements of S.

for t = 1 to T do

Train a model h_t using distribution D_t .

Calculate $\epsilon_t = P_{D_t}(h_t(x) \neq y)$

If $\epsilon_t \geq 0.5$ break

Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

Update $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),

$$H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

AdaBoost

- AdaBoost Algorithm
 - 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
 - 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

Algorithm 2 Adaboost Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$

Define a uniform distribution $D_1(i)$ over elements of S.

for t = 1 to T do

Train a model h_t using distribution D_t .

Calculate $\epsilon_t = P_{D_t}(h_t(x) \neq y)$

If $\epsilon_t \geq 0.5$ break

Set
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Update $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),

$$H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

AdaBoost

- AdaBoost Algorithm
 - 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
 - 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

AdaBoost

- AdaBoost Algorithm
 - 모델 복잡도가 낮은 weak learner에 적절한 가이드를 주면 strong learner가 될 수 있지 않을까?
 - 어떻게 가이드를 줄까? Weak learner를 순차적으로 학습시키면서 이전 learner들이 어려워 했던 관측치에 가중치를 주자!!

Algorithm 2 Adaboost

Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$

Define a uniform distribution $D_1(i)$ over elements of S.

for t = 1 to T do

Train a model h_t using distribution D_t .

Calculate $\epsilon_t = P_{D_t}(h_t(x) \neq y)$

If $\epsilon_t \geq 0.5$ break

Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

Update $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point
$$(x', y')$$
, $H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$

Boosting based Ensemble: Gradient Boosting Machine

GMB

- Gradient Boosting Idea
 - 이전 모델의 에러를 표현할 수 있는 모델을 학습하면 성능이 좋아지지 않을까?
 - 못 맞췄던 만큼만 다음 모델이 맞출 수 있게 하자!

Boosting based Ensemble: Gradient Boosting Machine

GMB

- Why "Gradient" boosting?
 - Residual을 손실함수의 미분값으로 표현할 수 있음

Loss function
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

gradient of
$$L \to \frac{\partial L}{\partial f(x_i)} = f(x_i) - y_i$$

$$residual = y_i - f(x_i) = -(f(x_i) - y_i) = -\frac{\partial L}{\partial f(x_i)}$$

Boosting based Ensemble: Gradient Boosting Machine

GMB

Example of GBM

감사합니다

