Esercizi aggiuntivi

② Si consideri la funzione $\int (x_1y) = x^2 + y^2 + \frac{3}{2}x + 1$.

$$\begin{cases} (X|Y) = X^2 + y^2 + \frac{3}{2}x + 1 \end{cases}$$

Si determinino i punti di estre mo vincolato di f su G, dove

$$G = \sqrt{(x_1y_1)} \in \mathbb{R}^2 : 4x^2 + y^2 = 1$$

Soluzione · (-1,0) ponto di minimo globale

•
$$\left(\frac{1}{4}, \frac{\sqrt{3}}{2}\right)$$
 e $\left(\frac{4}{4}, -\frac{\sqrt{3}}{2}\right)$ ponti oli massimo globale

2 Sia
$$f(x_1y) = \begin{pmatrix} xy \\ x+y \end{pmatrix}$$
 e $g(u,v) = \begin{pmatrix} \frac{u}{v} \\ u-v \end{pmatrix}$

Si consider
$$h = g \circ f$$
, ase $h(x_1y) = g(f(x_1y_1))$.

Determinore la notince Jacobiena di h, Dn (x1y), utilizzanolo il teorema del calcolo differe zile per fuzioni composte.

Solution:
$$D_{h}(x_{1}y) = \begin{bmatrix} y^{2} & \frac{x^{2}}{(x+y)^{2}} \\ y-1 & x-1 \end{bmatrix}$$

$\iint xy dxdy,$
dove $Q = \int (x_1 y) \in \mathbb{R}^2$: $1 = x^2 + y^2 = 4$, $x \ge 0$, $y \ge 0$
Soluzione (Hint: considerare pessaggia del coordinate poloni)
$\iint_{\mathcal{Q}} xy dx dy = \frac{15}{8}$
(4) Celcolore \iii xy dxdy, \tag{2}
dore $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : x^2 \le y \le \sqrt{x} \right\}$
Solvezione $\iint_{\Omega} xy dx dy = \frac{1}{12}$
(5) Sign $f(x_1y) = x^{\frac{3}{2}} + (xy)^{\frac{3}{2}}, x > 0, y > 0.$
Stobilire in quali parti (x,y) la junzione f e obiffereziabile,
in queli purti mon é oh flemzielèle e in opeli mon possème statalèrle
con i criteri risti.
Soluzione

20	. (
Solus	70M	1	é oblic	Meis ั	Shle	, . 1	v e	200	$O(p_{\lambda})$	to >	550	, ч	S (O)				
		0		100	J// -	·	V(°	δ ^ν	povo		,50	, 0 -		•			