Derivatives and Shapes of Curves (Section 4.3)

Intro

Previously we looked at the graphs of f(x), f'(x), and f''(x) to get information about the function. Today we will do the same thing but instead work from equations.

Overview

Today we will cover:

Shape of a graph Sketching graphs

Shape of a graph

The following information will help determing the shape of the graph of f(x):

Intervals where f(x) is increasing or decreasing

Local maxs/mins

Inflection points

Intervals where f(x) is concave up/down

Extended example

We will do an extended example with

$$f(x) = 2x^3 + 3x^2 - 36x + 5$$

Intervals where f(x) is increasing/decreasing

Find the derivative of f(x)

Find critical points + undefined points

Draw number line and plot these points

Plug x-values in between these points into f'(x) to determine slopes

Maxs/mins

Examine the number line from the previous step

Determine if the critical points are maxs/mins/neither

Calculate corresponding y-values

Inflection points

```
Find f''(x) (take the derivative of f'(x))
Set it equal to 0, solve
The inflection points are the roots where f''(x) changes sign
```

Concave up/Concave down

Draw a number line and plot inflection points

Plug x-values in between inflection points to determine concavity

Example

Calculate the 4 aspects for the function. Use this information to sketch the function.

$$f(x) = \frac{30x}{x^2 + 9}$$

Short Survey

One thing we do that I would like to keep

One thing we do that I'd like to **stop/change**

One thing we don't do that I would like to start

Example

Calculate the 4 aspects for the function. Use this information to sketch the function.

$$f(x) = 10x^2 \ln(x)$$