Examenul de bacalaureat național 2018 Proba E. c) Matematică *M mate-info*

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $n = \log_3(\sqrt{7} 2) + \log_3(\sqrt{7} + 2)$ este natural.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1 și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + 6x + 3$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $(x+2)^3 = (2-x)^3$.
- **5p 4.** Calculați câte numere naturale de două cifre distincte se pot forma cu elemente ale mulțimii $\{0, 2, 4, 6, 8\}$.
- **5p** | **5.** Punctele M, N și P verifică relația $2\overrightarrow{MN} + 3\overrightarrow{NP} = \overrightarrow{0}$. Calculați lungimea segmentului MP, știind că MN = 3.
- **5p** | **6.** Arătați că $\sin x + \sin(\pi x) + \sin(\pi + x) + \sin(2\pi x) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x,y) = \begin{pmatrix} x & y & 1 \\ 1 & x & y \\ x & 1 & y \end{pmatrix}$, unde x și y sunt numere reale.
- **5p a)** Arătați că $\det(A(2,3)) = 12$.
- **5p b)** Demonstrați că $\det(A(n^2,n)) \ge 0$, pentru orice număr natural n.
- **5p** c) Determinați numărul real x pentru care inversa matricei $B = A(x,0) \cdot A(x,0)$ este matricea A(x,0).
 - **2.** Se consideră polinomul $f = nX^n + X^2 nX 1$, unde *n* este număr natural, $n \ge 3$.
- **5p** a) Arătați că f(1) = 0, pentru orice număr natural $n, n \ge 3$.
- **5p b)** Arătați că, dacă n este număr natural impar, $n \ge 3$, atunci polinomul f este divizibil cu $X^2 1$.
- **5p** c) Arătați că, pentru orice număr natural $n, n \ge 5$, polinomul f nu are rădăcini în mulțimea $\mathbb{Q} \mathbb{Z}$.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan x x$.
- **5p** a) Arătați că $f'(x) = -\frac{x^2}{x^2 + 1}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $f(x) + g(x) = \frac{\pi}{2}$, pentru orice număr real x, unde $g : \mathbb{R} \to \mathbb{R}$, $g(x) = \operatorname{arcctg} x + x$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$.
- **5p a)** Arătați că $\int_{0}^{1} f(\sqrt{x}) dx = \frac{e-1}{e}$.
- **5p b)** Arătați că orice primitivă a funcției f este concavă pe $(0,+\infty)$.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_{\frac{1}{n}}^{1} f(x) dx$. Demonstrați că șirul