Package 'ABC.RAP'

October 12, 2022

Title Array Based CpG Region Analysis Pipeline								
Version 0.9.0								
Author Abdulmonem Alsaleh [cre, aut], Robert Weeks [aut], Ian Morison [aut], RStudio [ctb]								
Maintainer Abdulmonem Alsaleh <a.alsaleh@hotmail.co.nz></a.alsaleh@hotmail.co.nz>								
<pre>Contact Ian Morison <ian.morison@otago.ac.nz></ian.morison@otago.ac.nz></pre>								
Description It aims to identify candidate genes that are "differentially methylated" between cases and controls. It applies Student's t-test and delta beta analysis to identify candidate genes containing multiple "CpG sites".								
License GPL-3								
Depends R (>= 3.1.0)								
Imports graphics, stats, utils								
Suggests knitr, rmarkdown								
VignetteBuilder knitr								
Encoding UTF-8								
SystemRequirements GNU make								
RoxygenNote 5.0.1.9000								
NeedsCompilation no								
Repository CRAN								
Date/Publication 2016-10-20 10:52:16								
R topics documented:								
annotate_data								

2 annotation_file

Index																	1	l 2
	ttest_data																	
	process.ABC.RA test data																	
	plot_data plot_gene																	

Description

This function annotates each filtered probe with gene name, chromosome number, probe location, distance from transcription start site (TSS), and relation to CpG islands. The annotation file is based on "UCSC platform" annotation format and was obtained from Illumina GPL13534_HumanMethylation450_15017482_v1.1 file (BS0010894-AQP_content.bpm).

Usage

```
annotate_data(x)
```

Arguments

the filtered probes from filter_data

Examples

```
data(test_data)
data(nonspecific_probes)
data(annotation_file)
test_data_filtered <- filter_data(test_data)
test_data_annotated <- annotate_data(test_data_filtered)</pre>
```

annotation_file

annotation file for the 450k probes

Description

UCSC annotation for the 450k DNA methylation probes. The annotation was obtained from "Illumina GPL13534_HumanMethylation450_15017482_v1.1" file with few amendments on the gene names

Usage

```
data("annotation_file")
```

CpG_hits 3

Format

A data frame

CpG_hits	Identifying genes for which multiple CpG sites show significant methylation difference

Description

This function calculates the number of significantly different CpG sites between cases and controls for each gene and produces a frequency table with genes that have more than one CpG site.

Usage

```
CpG_hits(x)
```

Arguments Х

Results from the overlap_data function

Examples

```
data(test_data)
data(nonspecific_probes)
data(annotation_file)
test_data_filtered <- filter_data(test_data)</pre>
test_data_ttest <- ttest_data(test_data_filtered, 1, 2, 3, 4, 1e-3)</pre>
test_data_delta_beta <- delta_beta_data(test_data_filtered, 1, 2, 3, 4, 0.5, -0.5, 0.94, 0.06)
test_overlapped_data <- overlap_data(test_data_ttest, test_data_delta_beta)</pre>
test_CpG_hits <- CpG_hits(test_overlapped_data)</pre>
```

```
delta_beta_data
                           Applying delta beta analysis to calculate the difference between cases
                           and controls
```

Description

This function calculates the delta beta value for the filtered probes. It calculates the difference in mean DNA methylation between cases and controls for each probe. Also, it selects probes with DNA methylation differences that are higher in cases than controls by a user specified meth_cutoff value and differences that are lower in cases than controls by the unmeth_cutoff value. In addition, the function provides the option to specify probes where the average beta value of the cases or controls is greater than a high_meth cutoff value or less than a low_meth cutoff value.

4 filter_data

Usage

```
delta_beta_data(x, cases_column_1, cases_column_n, controls_column_1,
   controls_column_n, meth_cutoff, unmeth_cutoff, high_meth, low_meth)
```

Arguments

the filtered 450k probes from filter_data function

cases_column_1 The first column (column number) for cases in the filtered dataset

cases_column_n The last column (column number) for cases in the filtered dataset

controls_column_1

The first column (column number) for controls in the filtered dataset

controls_column_n

The last column (column number) for controls in the filtered dataset

meth_cutoff The cutoff level for the methylation difference between cases and controls (cases minus controls)

unmeth_cutoff The cutoff level for the methylation difference between controls and cases (cases minus controls). Consequently, it requires a negative value.

high_meth The upper margin for the highly methylated probes

low_meth The lower margin for the low methylation

Examples

```
data(test_data)
data(nonspecific_probes)
test_data_filtered <- filter_data(test_data)
test_data_delta_beta <- delta_beta_data(test_data_filtered, 1, 2, 3, 4, 0.5, -0.5, 0.94, 0.06)</pre>
```

filter_data

Filtering DNA methylation 450k non_specific probes

Description

This function filters the reported nonspecific probes, and also filters probes that interrogate SNPs of minor allele frequency (MAF) > 0.1. A list of nonspecific probes was obtained from Chen et al (2013) supplementary files.

Usage

```
filter_data(x)
```

Arguments

x The normalised beta values in a data matrix format, where conditions are arranged in columns and cg probes are arranged in rows.

nonspecific_probes 5

References

Chen YA, Lemire M, Choufani S, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013;8:203-9.

Examples

```
data(test_data)
data(nonspecific_probes)
test_data_filtered <- filter_data(test_data)</pre>
```

nonspecific_probes

450k DNA methylation non specific probes

Description

data frame of the non specific probes that need to be filtered out from 450k array datasets

Usage

```
data("nonspecific_probes")
```

Format

A data frame

Details

These non specific probes interrogates SNPs with mean allelic frequency (MAF) > 0.1, and also those that don't align uniquely on the genome. The list of nonspecific probes was obtained from Chen et al (2013) supplementary files

References

Chen YA, Lemire M, Choufani S, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 2013;8;203-9

plot_candidate_genes

overlap_data

Overlapping Student's t-test and delta beta results

Description

This function overlaps the results from both Student's t-test and delta beta analyses to identify probes (CpG sites) that are highly and significantly different between cases and controls.

Usage

```
overlap_data(x, y)
```

Arguments

x Results from t-test or delta beta analyses

y Results from t-test or delta beta analyses

Examples

```
data(test_data)
data(nonspecific_probes)
data(annotation_file)
test_data_filtered <- filter_data(test_data)
test_data_ttest <- ttest_data(test_data_filtered, 1, 2, 3, 4, 1e-3)
test_data_delta_beta <- delta_beta_data(test_data_filtered, 1, 2, 3, 4, 0.5, -0.5, 0.94, 0.06)
test_overlapped_data <- overlap_data(test_data_ttest, test_data_delta_beta)</pre>
```

plot_candidate_genes Plo

Plotting highly different and significant probes annotated by their corresponding gene names

Description

This function plots the potential candidate genes for which multiple CpG sites show significant difference.

Usage

```
plot_candidate_genes(x)
```

Arguments

Х

Results from the overlap_data function

plot_data 7

Examples

```
data(test_data)
data(nonspecific_probes)
data(annotation_file)
test_data_filtered <- filter_data(test_data)
test_data_ttest <- ttest_data(test_data_filtered, 1, 2, 3, 4, 1e-3)
test_data_delta_beta <- delta_beta_data(test_data_filtered, 1, 2, 3, 4, 0.5, -0.5, 0.94, 0.06)
test_overlapped_data <- overlap_data(test_data_ttest, test_data_delta_beta)
plot_candidate_genes(test_overlapped_data)</pre>
```

plot_data

Overview description of the DNA methylation pattern for cases and controls

Description

This function produces four distribution plots that summarise the DNA methylation patterns for cases (top left) and controls (top right). The top two histograms show the pattern of mean DNA methylation levels for cases and controls. The bottom two plots show the difference in DNA methylation between cases and controls (a boxplot comparing methylation profile for cases and controls, and a delta beta plot describing the methylation difference between cases and controls). The function also provides summary statistics for the delta beta analysis that can be used to select cutoff values for the delta_beta_data function.

Usage

```
plot_data(x, cases_column_1, cases_column_n, controls_column_1,
    controls_column_n)
```

Arguments

x The filtered 450k probes from filter_data() function cases_column_1 The first column (column number) for cases in the filtered dataset cases_column_n The last column (column number) for cases in the filtered dataset controls_column_1

The first column (column number) for controls in the filtered dataset controls_column_n

The last column (column number) for controls in the filtered dataset

```
data(test_data)
data(nonspecific_probes)
test_data_filtered <- filter_data(test_data)
plot_data(test_data_filtered, 1, 2, 3, 4)</pre>
```

8 plot_gene

plot_gene

Plotting and exporting methylation profile for candidate genes

Description

This function explores the DNA methylation profile for any gene. The function generates four plots: the top plots show the difference in DNA methylation between cases and controls (a bar chart of the delta beta values for all probes arranged from 5' to 3' positions and a plot showing the difference in mean DNA methylation between cases and controls). The bottom plots show the distribution of DNA methylation for each probe that interrogates a CpG site in the investigated gene, for cases (left) and controls (right), respectively. Also, an annotation table for the arranged probes is generated with the following columns: probe names, gene name, distance from TSS, mean methylation for cases, mean methylation for controls, delta beta values (cases minus controls), and t-test p.values.

Usage

```
plot_gene(x, b, cases_column_1, cases_column_n, controls_column_1,
    controls_column_n)
```

Arguments

```
data(test_data)
data(nonspecific_probes)
data(annotation_file)
test_data_filtered <- filter_data(test_data)
test_data_annotated <- annotate_data(test_data_filtered)
KLHL34 <- plot_gene(test_data_annotated, 'KLHL34', 1, 2, 3, 4)</pre>
```

process.ABC.RAP 9

Description

This function processes the ABC.RAP workflow automatically

Usage

```
process.ABC.RAP(x, cases_column_1, cases_column_n, controls_column_1,
  controls_column_n, ttest_cutoff, meth_cutoff, unmeth_cutoff, high_meth,
  low_meth)
```

Arguments

	X	The normalised beta values in a data matrix format, where conditions are arranged in columns and cg probes are arranged in rows.								
	cases_column_1	The first column (column number) for cases in the filtered dataset								
	cases_column_n	The last column (column number) for cases in the filtered dataset								
	controls_column	<u>_</u> 1								
		The first column (column number) for controls in the filtered dataset								
controls_column_n										
		The last column (column number) for controls in the filtered dataset								
	ttest_cutoff	The cutoff level to filter insignificant p-values								
	meth_cutoff	The cutoff level for the methylation difference between cases and controls (cases minus controls)								
	unmeth_cutoff	The cutoff level for the methylation difference between controls and cases (controls minus cases). Consequently, it requires a negative value.								
	high_meth	The upper margin for the highly methylated probes								
	low_meth	The lower margin for the low methylation								

```
data(test_data)
data(nonspecific_probes)
data(annotation_file)
process.ABC.RAP(test_data, 1, 2, 3, 4, 1e-3, 0.5, -0.5, 0.94, 0.06)
```

10 ttest_data

test_data

test dataset of 450k DNA methylation

Description

This is a small dataset of 450k DNA methylation array with 10000 probes. The dataset has four columns; columns 1 and 2 contain normalised beta values for paediatric B ALL cases, and columns 3 and 4 contain beta values for controls (remission cases)

Usage

```
data("test_data")
```

Format

A data frame

Details

a small test dataset

References

Busche S, Ge B, Vidal R, etc. Integration of high-resolution methylome and transcriptome analyses to dissect epigenomic changes in childhood acute lymphoblastic leukaemia. Cancer Research 2013; 73(14); 4323-4336

ttest_data

applying t-test analysis

Description

This function applies "two.sided", unequal variance Student's t-test analysis for each probe comparing cases and controls. A cutoff for p-values can be entered to minimise multiple testing bias to filter insignificant p-values.

Usage

```
ttest_data(x, cases_column_1, cases_column_n, controls_column_1,
   controls_column_n, ttest_cutoff)
```

ttest_data 11

Arguments

x The filtered 450k probes from filter_data() function

cases_column_1 The first column (column number) for cases in the filtered dataset

cases_column_n The last column (column number) for cases in the filtered dataset

controls_column_1

The first column (column number) for controls in the filtered dataset

controls_column_n

The last column (column number) for controls in the filtered dataset

ttest_cutoff The cutoff level to filter insignificant p-values

```
data(test_data)
data(nonspecific_probes)
test_data_filtered <- filter_data(test_data)
test_data_ttest <- ttest_data(test_data_filtered, 1, 2, 3, 4, 1e-3)</pre>
```

Index

```
\ast datasets
     annotation_file, 2
     nonspecific_probes, 5
     test_data, 10
annotate_data, 2
annotation_file, 2
CpG_hits, 3
delta_beta_data, 3
filter_data, 4
{\tt nonspecific\_probes}, {\tt 5}
{\tt overlap\_data}, {\color{red} 6}
plot_candidate_genes, 6
plot_data, 7
plot_gene, 8
{\sf process.ABC.RAP}, 9
test_data, 10
\texttt{ttest\_data}, \textcolor{red}{10}
```