110 0501071517 050	0.0.00000000000000000000000000000000000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
U.S. DEPARTMENT OF C	OMMERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER UEMURA 7
		UEMURA /
TRANMITTAL LETTER	TO THE UNITED STATES	
DESIGNATED/ELECT	ED OFFICE (DO/EO/US)	U.S. APPLICATION NO. (If known, see 37 CFR 1.5)
CONCERNING A FILE	NG UNDER 35 U.S.C. 371	09/856371
INTERNATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY CLAIMED
PCT/JP99/06475	19 November 1999	20 November 1998
TITLE OF INVENTION		
NOVEL SERINE PROTEASE	BSSP2	
APPLICANT(S) FOR DO/EO/US		
Hidetoshi UEMURA et al.		
Applicant herewith submits to the United	d States Designated/Elected Office (DO/EO/	US) the following items and other information:
	of items concerning a filing under 35 U.S.C	
2. [] This is a SECOND or SUBS	EQUENT submission of items concerning	a filing under 35 U.S.C. 371.
3. [X] This is an express request to	begin national examination procedures (35	U.S.C. 371(f)) at any time rather than delay
examination until the expira	tion of the applicable time limit set in 35 U.	S.C. 371(b) and PCT Articles 22 and 39(1).
4. [X] The US has been elected in a	Demand by the expiration of 19 months from	m the priority date (PCT Article 31).
5. 🕍 A copy of the International A	pplication as filed (35 U.S.C. 371(c)(2))	
a llicattached hereto (re	quired only if not transmitted by the Interna	tional Bureau).
b. [X] has been communicated by the second interest of the second in	ted by the International Bureau.	
c. [] is not required, as the	application was filed in the United States I	Receiving Office (RO/US).
6. 🔀 An English language translati	on of the International Application as filed (35 U.S.C. 371(c)(2)).
7. [X] Amendments to the claims of	the International Application under PCT Ar	ticle 19 (35 U.S.C. 371(c)(3))
a. [] are transmitted herev	vith (required only if not transmitted by the	International Bureau).
b. [] have been communic	ated by the International Bureau.	
	however, the time limit for making such am-	endments has NOT expired.
d. [X] have not been made a		
- 5 - 90°	on of the amendments to the claims under P	CT Article 19 (35 U.S.C. 371(c)(3)).
9. [X] An oath or declaration of the i		
10. [An English language translati	on of the annexes to the International Prelin	ninary Examination Report under PCT Article 36
(35 U.S.C. 37I(c)(5)).		
Items 11. to 16. below concern docume	• •	
11. [] An Information Disclosure St		''41 27 OFF 2 00 - 12 21 ' ' 1 1 1
		iance with 37 CFR 3.28 and 3.31 is included.
13. [X] A FIRST preliminary amendm		
[] A SECOND or SUBSEQUEN 14. [] A substitute specification.	1 premimary amendment.	
15. [] A change of power of attorney	and/or addross latter	
16. [X] Other items or information:	and or address letter.	
	page of the International Publication (WO	00/31272).
	mational Preliminary Examination Report (I	n Japanese).
[X] Formal drawings, 07 shee		
[X] Courtesy Copy of the Inte	rnational Search Report.	
[X] Application Data Sheet	he) assigned to: FUSO PHADMACEUTICA	L INDUSTRIES, LTD. whose address is 7-10, Doshomachi
1-chome, Chuo-ku, Osaka-shi, Osaka, Jar		which contract, bib. whose address is /-10, Doshomach

Page 1 of 2

PCT09

RAW SEQUENCE LISTING DATE: 10/11/2001 PATENT APPLICATION: US/09/856,371 TIME: 09:51:46

Input Set : A:\sequence listing.txt
Output Set: N:\CRF3\10112001\I856371.raw

3	<110>				MURA	, Hi	deto	shi									
4			, Aki														
5	•	KOMI	NAMI,	Kat	suya												
6			GUCHI														
7		MITS	UI, S	hini	chi												
9	<120>	· TITI	E OF	INVE	NTIO	N: N	OVEL	SER	INE	PROT	EASE	BSS	P2				
11	<130>	FILE	REFE	RENC	E: U	EMUR	A=7										
13	<140>	CURE	ENT A	PPLI	CATI	ON N	UMBE	R: 0	9/85	6,37	1						
14	<141>	CURR	ENT F	ILIN	G DA	TE:	2001	-05-	21								
	<150>									4778	5						
	<151>								·						A		_
19	<150>	PRIC	R APP	LICA	TION	NUM	BER:	PCT	/JP9	9/06	475				- I V	TER	
20	<151>	> PRIC	R FIL	ING	DATE	: 19	99-1	1-19		•						" === U (1 /	L. H
22	<160>	NUME	ER OF	SEO	ID	NOS:	44										
	<170>							n 3.	1								
	<210>								_							25	
	<211>															p.5	
	<212>																
** //*	<213>				sp.												
	<220>				LF.												
	<221>			CDS													
42	<222>		-		17	17 1											
	<223>																
17	<400>	SEOU	ENCE.	1	11011	•											
25 5	ata g				act	αtα	act	tet	ααα	cac	taa	cca	taa	caa	act	48	
	Ile V															40	
40		u. 01	1 011	5	7114	, 41	711LG	001	10	**** 9		110		15	2114		
F 717 700F	agc g	to at	a ctt	-	too	caa	cac	aca		ααα	acc	tot	αtα		aca	96	
	Ser V															50	
44	DCI V	41 110	20	011	DCI	1119	1110	25	Cyb	GLY	niu	DCI	30	пси	ALG		
	cca c	ac to		ata	act	act	acc		tac	atσ	tac	ant		a a a	c+a	144	
	Pro H					-	_		_	_		-			_	144	
48	110 11	35		vul	1111	ALG	40	1115	Cys	Het	1 Y 1	45	rne	АТУ	Lieu		
	tcc c			agg	taa	caa		cat	αca	ααα	ata		agg	oat	aat	192	
	Ser A															192	
52		о О	u ser	Set	ттЪ	55	Val	птэ	нта	СТУ	60	Val	ser	птъ	GTA		
				~~~	a2a		20+	2+4	~+ ~	~~~		a+ a	~++	a a ±	+	240	
	gct g Ala V															240	
	65	ar Ar	g GIII	птэ	70	СТА	T 11T	Met	vaı		гуѕ	TTE	тте	PIO			
		+~ +>	~ ~~+	~~~			~~ t-	~~~	+-+	75 ~~ <b>+</b>		~~+	~		80	200	
	cct t															288	
	Pro L	eu ry	r ser		GIII	ASII	HIS	ASP	_	Asp	val	ALa	ьeu		GIN		
60	a+a =			85		++-	+		90	<b>.</b>				95		226	
	ctc c															336	
	Leu A	rg rn		тте	ASN	rne	ser	_	rnr	val	Asp	ата		Cys	ьeu		
64	~~~		100		<b>.</b>			105		<b>L</b>		4	110			20.	
	ccg g															384	
67	Pro A	та Гу	s Glu	GIn	${ t ryr}$	Phe	Pro	${\tt Trp}$	GLY	Ser	Gln	Cys	Trp	Val	Ser		

Input Set : A:\sequence listing.txt
Output Set: N:\CRF3\10112001\1856371.raw

68			115					120					125					
70	ggc	tgg	ggc	cac	acc	gac	CCC	agc	cat	act	cat	agc	tca	gat	aca	ctg	4	432
71	Gly	${\tt Trp}$	Gly	His	Thr	Asp	Pro	Ser	His	Thr	His	Ser	Ser	Asp	Thr	Leu		
72		130					135					140						
														aac			4	480
		Asp	Thr	Met	Val	Pro	Leu	Leu	Ser	Thr	His	Leu	Cys	Asn	Ser	Ser		
	145					150					155					160		
														gct			5	528
	Cys	Met	Tyr	Ser		Ala	Leu	Thr	His		Met	Leu	Cys	Ala	-	${ t Tyr}$		
80					165					170					175			
														gga			5	576
	Leu	Asp	GLY	_	Ala	Asp	Ala	Cys		Gly	Asp	Ser	Gly	Gly	Pro	Leu		
84				180					185					190		_		
														gtc			€	524
	۷al	Cys		Ser	GLY	Asp	Thr	_	Hls	Leu	Val	GLy		Val	Ser	Trp		
88			195					200					205					
90																	6	572
	-	_	GTA	Cys	Ala	Glu		Asn	Arg	Pro	GLy		Tyr	Ala	Lys	Val		
92		210					215					220					_	
														cgc	tag		7	717
95		Glu	Pne	Leu	Asp		IIe	H1S	Asp	Thr		GIn	Val	Arg				
96					^	230					235							
99	<210	> SE	DNCII Q II	NO:	20													
-100 -101																		
101						ı an												
= 102 = 104						, ър.												
						ıΔla	Val	Δla	. Gar	· Gla	7 Ara	n Trans	Dro	·Πrr	C1r	n Ala		
107		, 41	011	011	5		, , ,			10	111.9	1 11	, 110	,	15	ALU		
		Va1	Met	. Leu	-	Ser	Ara	His	Thr		Glv	r Ala	Ser	· Val		ı Ala		
111				20	1		5		25	0,72	0_1			30				
<b>111</b> 4	Pro	His	Trp	Val	Val	Thr	Ala	Ala		Cvs	Met	Tvr	Ser		Arc	Leu		
<b>4115</b>			35					40		- 4 -		-1-	45			,		
118	Ser	Arg	Leu	Ser	Ser	Trp	Arq	Val	His	Ala	Gly	Leu	. Val	Ser	His	Gly		
119		50				_	55				_	60						
122	Ala	Val	Arg	Gln	His	Gln	Gly	Thr	Met	. Val	Glu	Lys	Ile	Ile	Pro	His		
123						70	_				75	-				80		
126	Pro	Leu	Tyr	Ser	Ala	Gln	Asn	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	Gln		
127					85				_	90	-				95			
130	Leu	Arg	Thr	Pro	Ile	Asn	Phe	Ser	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu		
131				1:00					105			_		110	_			
134	Pro	Ala	Lys	Glu	Gln	Tyr	Phe	Pro	Trp	Gly	Ser	Gln	Cys	Trp	Val	Ser		
135			115					120		_			125					
138	Gly	Trp	Gly	His	Thr	Asp	Pro	Ser	His	Thr	His	Ser	Ser	Asp	Thr	Leu		
139		130					135					140		-				
142	Gln	Asp	Thr	Met	Val	Pro	Leu	Leu	Ser	Thr	His	Leu	Cys	Asn	Ser	Ser		
	145					150					155					160		
146	Cys	Met	Tyr	Ser	Gly	Ala	Leu	Thr	His	Arg	Met	Leu	Cys	Ala	Gly	Tyr		
147					165					170			-		175	_		

Input Set : A:\sequence listing.txt
Output Set: N:\CRF3\10112001\1856371.raw

150 151	Leu	Asp	Gly	Arg 180	Ala	Asp	Ala	Cys	Gln 185	Gly	Asp	Ser	Gly	Gly 190	Pro	Leu	
	Val	Cys	Pro 195		Gly	Asp	Thr	Trp 200		Leu	Val	Gly	Val 205		Ser	Trp	
	Gly	Arg 210		Cys	Ala	Glu	Pro 215		Arg	Pro	Gly	Val 220	Tyr	Ala	Lys	Val	
	Ala 225	Glu	Phe	Leu	Asp	Trp 230	Ile	His	Asp	Thr	Val 235	Gln	<b>V</b> al	Arg			
166	<21	0> S	EQ I	ON C	: 3												
		1> L															
		2> T															
		3> 01			Mus	SD.											
		0> F			2240	J.											
		1> N			CDS												
		2> L(				71	1106	<b>5</b> ١									
		3> O:						,									
±/4						TON	•										
per puis						aa ta	aato	raaa:	a aa:	a t a t t	tata	att.	מם ברו	- 2 0 .	2 2 At	aagagc	60
																gcacat	120
																tgacat	180
																tgtaga	240
= 186	gga																288
187				ilu <i>E</i>	Ата (			età i	Leu 1	Jeu :			Ser A	Ala A	Asn (	Cys	
188		_	L				5					10					
190																	336
191 192	15					20					25					30	
194																	384
<b>1</b> 95	Pro	Leu	Ala	Ser	Arg	Ile	Val	Gly	Gly	Gln	Ala	Val	Ala	Ser	Gly	Arg	
196					35					40					45		
198	tgg	cca	tgg	caa	gct	agc	gtg	atg	ctt	ggc	tcc	cgg	cac	acg	tgt	ggg	432
199	Trp	Pro	Trp	Gln	Ala	Ser	Val	Met	Leu	Gly	Ser	Arq	His	Thr	Cys	Gly	
200				50					55			_		60	_	_	
202	gcc	tct	gtg	ttg	gca	cca	cac	tgg	gta	gtg	act	gct	gcc	cac	tgc	atq	480
													Ăla				
204			65					70					75		4		
206	tac	agt	ttc	agg	ctq	tcc	cqc	cta	tcc	age	taa	caa	gtt	cat	σca	aaa	528
													Val				320
208		80					85					90				011	
	cta		aσc	cat	aat.	act.		сαа	caa	cac	caσ		act	atσ	ata	gag	576
211	Len	Val	Ser	His	Glv	Ala	Val	Ara	Gln	His	Gln	Glv	Thr	Met	Val	Glu	370
212						100	, 41	9	OIL		105	011	1111	IIC C	vul	110	
		atc	att	cct	cat		t+a	tac	aot	aaa	-	220	cat	a a a	+ = +		624
215	Lvs	Tle	Tle	Dro	Hic	Dro	T.011	Tur	Cor	λla	Cln	Agn	His	7 an	Trzz	yar Nan	024
216	цур	110	110	110	115	110	пси	тут	Der	120	GIII	ASII	птъ	кор	125	ASP	
	ata	act	cta	cta		cto	aaa	202	003		224	++~	tca	~~~		ata	670
210	y cy Val	yu. ∆1∍	Len	Len	cln	Lou	λrα	αCα Th∽	Dro	TIA	aac Acr	Dha	Ser	yac	aCC	y Ly	672
220	v a I	лти	шeu	130	GTII	пеп	лту	TIIT	135	тте	ASII	rne	oet.		T.IIT.	۷dl	
	a a a	aa+	ata		++~	000	aca	224		<b>~</b>	+	+++	<b>ac</b> -	140	~~~	+	700
444	gac	yuu	y cy	Lyc	LLY	oog	guu	aay	yay	cay	Lac	LLL	cca	Lyg	999	Leg	720

Input Set : A:\sequence listing.txt
Output Set: N:\CRF3\10112001\1856371.raw

223 224	Asp	Ala	Val 145	Cys	Leu	Pro	Ala	Lys 150	Glu	Gln	Tyr	Phe	Pro 155	Trp	Gly	Ser	
	aaa	taa		ata	t at	aaa	+ ~ ~		020	200	as a	000		ant.	act	ant	768
															Thr		700
	GIII	_	пъ	val	ser	GIĀ		GTĀ	птѕ	TIIT	ASP		ser	птѕ	1111	HIS	
228		160					165					170					
															acc		816
231	Ser	Ser	Asp	${ t Thr}$	Leu	Gln	Asp	Thr	Met	Val	Pro	Leu	Leu	Ser	Thr	His	
232	175					180					185					190	
234	ctc	tgc	aac	agc	tca	tgc	atg	tac	agt	ggg	gca	ctt	aca	cac	cgc	atg	864
235	Leu	Cys	Asn	Ser	Ser	Cys	Met	Tyr	Ser	Gly	Ala	Leu	Thr	His	Arg	Met	
236		_			195	-		_		200					205		
	t.t.a	t.at.	act.	aac	tac	ct.a	σat.	gga	agg	gra	gac	gca	tac	саσ	gga	gac	912
															Gly		7
240	Lou	010		210	-1-	шош	ПОР		215	1124	110P	1114	010	220	O.L.	1105	
	agg	ααα	aus		ata	αta	tat	aca		aat	a a a	200	+ 00		ctt	at a	960
															Leu		900
	ser	СТА		PIO	Leu	val	Cys		ser	СТУ	ASP	1111	_	HIS	Leu	Val	
244			225					230					235				
246							_		_	_				_			1008
247	GLY		Val	Ser	Trp	GТУ	_	GTA	Cys	A⊥a	GLu		Asn	Arg	Pro	Gly	
248		240					245					250					
250																	1056
251		${ t Tyr}$	Ala	Lys	Val	Ala	Glu	Phe	Leu	Asp	$\mathtt{Trp}$	Ile	His	Asp	Thr	Val	
252						260					265					270	
254	cag	gtc	cgc	tago	ccgaa	aga a	agcag	gcago	ca go	ccaco	ctgtg	g acc	ccga	igct			1105
255	Gln	Val	Arg														
258	gtg	gatc	jee d	catgo	gatea	ac co	ccagt	ctg	g ggg	gccag	gcat	ctg	gtca	act o	gggc	ctctcc	1165
F-260	ccaa	aaggo	ctc t	gact	tcga	ag tt	cato	ctttc	tca	atct	gaga	acct	ccac	caa c	cagga	laaagg	1225
262	agto	etge	gc t	agat	tggg	ya at	gato	gtga	ı gad	ggaad	ggga	tage	agga	ica d	gaaga	gacag	1285
264	caga	agget	tc t	ggaa	agcat	c to	ggga	acto	cto	cctct	gct	cccc	ccac	cac d	cccac	gtgca	1345
																iggeta	1405
																gttgg	1465
																ttctg	1525
																ıttggg	1585
																ttatt	1645
							-	ıaaaa	_		_	guug	ugug	juy (		icacc	1685
	<210	-		_		ia ac	iaaac	iaaac	ı aac	aaaa	iaaa			•			1000
	<211																
	<212				3												
					Mara	an											
	$\sim 2 \pm 1$	3> OF	CANI	.SM:	Mus	sp.											
		\		TOTAL.	A												
	<400		QUEN			<b>a</b> 1	_	_	-		_		_	_	_	_	
286	<400 Met		QUEN		Val	Gly	Leu	Leu	Trp		Ser	Ala	Asn	Cys	Pro	Ser	
286 287	<400 Met 1	Glu	QUEN Ala	Gln	Val 5					10					15		
286 287 290	<400 Met 1	Glu	QUEN Ala	Gln Val	Val 5				Ser	10				Arg			
286 287 290 291	<400 Met 1 Gly	Glu Arg	QUEN Ala Ile	Gln Val 20	Val 5 Ser	Leu	Lys	Суѕ	Ser 25	10 Glu	Cys	Gly	Ala	Arg 30	15 Pro	Leu	
286 287 290 291 294	<400 Met 1 Gly	Glu Arg	QUEN Ala Ile Arg	Gln Val 20	Val 5 Ser	Leu	Lys	Cys Gln	Ser 25	10 Glu	Cys	Gly	Ala Gly	Arg 30	15	Leu	
286 287 290 291 294 295	<400 Met 1 Gly Ala	Glu Arg Ser	QUEN Ala Ile Arg 35	Gln Val 20 Ile	Val 5 Ser Val	Leu Gly	Lys Gly	Cys Gln 40	Ser 25 Ala	10 Glu Val	Cys Ala	Gly Ser	Ala Gly 45	Arg 30 Arg	15 Pro Trp	Leu Pro	
286 287 290 291 294 295 298	<400 Met 1 Gly Ala	Glu Arg Ser	QUEN Ala Ile Arg 35	Gln Val 20 Ile	Val 5 Ser Val	Leu Gly	Lys Gly Leu	Cys Gln 40	Ser 25 Ala	10 Glu Val	Cys Ala	Gly Ser	Ala Gly 45	Arg 30 Arg	15 Pro	Leu Pro	
286 287 290 291 294 295 298 299	<400 Met 1 Gly Ala	Glu Arg Ser Gln 50	QUEN Ala Ile Arg 35 Ala	Gln Val 20 Ile Ser	Val Ser Val	Leu Gly Met	Lys Gly Leu 55	Cys Gln 40 Gly	Ser 25 Ala Ser	10 Glu Val Arg	Cys Ala His	Gly Ser Thr	Ala Gly 45 Cys	Arg 30 Arg Gly	15 Pro Trp	Leu Pro Ser	

Input Set : A:\sequence listing.txt
Output Set: N:\CRF3\10112001\1856371.raw

```
303 65
                          70
                                              75
 306 Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val
                     85
 310 Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile
 311
                                      105
 314 Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala
 315
             115
                                  120
                                                       125
 318 Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala
                              135
 322 Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser Gln Cys
                                              155
 326 Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His Ser Ser
 327
                     165
                                          170
 330 Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His Leu Cys
                 180
                                      185
 334 Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met Leu Cys
             195
                                  200
38 Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly
339
         210
                              215
342 Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val Gly Val
343 225 230 235 240
346 Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Val Tyr
                     245
                                          250
$50 Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Val
351
                                      265
# 354 Arg
358 <210> SEQ ID NO: 5
359 <211> LENGTH: 2068
 360 <212> TYPE: DNA
361 <213> ORGANISM: Mus sp.
363 <220> FEATURE:
364 <221> NAME/KEY: CDS
#865 <222> LOCATION: (516)..(1448)
 366 <223> OTHER INFORMATION:
 369 <400> SEQUENCE: 5
 370 ctggctgggc tgttgaatca atcccgacat gaggacagga gcctcaccct gcccagcaga
                                                                             60
 372 acttactgcc ttatatcagt gcagctgact catatgagtc caacactgga tgaccaaagc
                                                                            120
 374 ccaatggaga ttcggtgcac ggaagagggt gctgggcctg ggatcttcag aatggagttg
                                                                            180
 376 ggagaccaga ggcaatccat ttctcagtcc caacgctggt gctgcctgca acgtggctgt
                                                                            240
 378 gtaatactgg gcgtcctggg gctgctggct ggagcaggca ttgcttcatg gctcttagtg
                                                                            300
 380 ttgtatetat ggeeggetge etetecatee atetetggga egttgeagga ggaggatg
                                                                            360
 382 actttgaact gtccaggagt gagctgtgag gaagagctcc ttccatctct tcccaaaaca
                                                                            420
 384 gaataaatgg aggggatett etgetteaag tacaagtaag ageteggeea gaetggetee
                                                                            480
 386 tggtctgcca tgagggctgg agccccgccc tgggc atg cac atc tgc aag agt
                                                                            533
 387
                                             Met His Ile Cys Lys Ser
 388
 390 ctt ggg cat atc agg ctt act caa cac aag gcc gtg aat ctg tct gac
                                                                            581
 391 Leu Gly His Ile Arg Leu Thr Gln His Lys Ala Val Asn Leu Ser Asp
 392
                 10
                                                          20
```

Use of n and / or Xaa has been detected in the Sequence Listing. Review the Sequence Listing to ensure a corresponding explanation is present in the <220> to <223> fields of each sequence using n or Xaa.

### VERIFICATION SUMMARY

DATE: 10/11/2001

PATENT APPLICATION: US/09/856,371

TIME: 09:51:47

Input Set : A:\sequence listing.txt
Output Set: N:\CRF3\10112001\1856371.raw

L:1325 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:20 L:1355 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:21

THY

#### IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ATTY.'S DOCKET: UEMURA7

In re Application of:

H. UEMURA, et al.

Serial No.: 09/856,371

Confirmation No.

Filed: May 21, 2001

Washington D.C.

For: NOVEL SERINE PROTEASE

BSSP2

September 4, 2001

RESPONSE TO NOTIFICATION TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES

Honorable Commissioner for Patents Washington, D.C. 20231

In response to the Notice to Comply, dated July 3, 2001, and prior to the examination of the above-described application, please amend the present application as follows:

### IN THE SPECIFICATION

Please replace the paragraph beginning at page 19, line 10, with the following rewritten paragraph:

--The novel mouse serine protease can be divided into types 1, 2 and 3. It has been shown that type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids, and type 3 is composed of 445 amino acids. These amino acid sequences contain a common amino acid sequence of 238 amino acids whose N-terminus side starts with Ile-Val-Gly-Gly-Gln-Ala-Val (amino acid

1-7 of SEQ ID NO:2) as the mature serine protease. Further, the amino acid sequence of the mature serine protease contains a consensus sequence having serine protease activity. Since there are two or more amino acid sequences which are characteristic of sugar chain binding sites, the amino acid sequence is presumed to have at least two sugar chains.--

Please replace the paragraph beginning at the bottom of page 26, line 14, with the following rewritten paragraph:

-- The vector is not specifically limited in so far as it can express the protein of the present invention. Examples thereof include pBAD/His, pRSETA, pcDNA2.1, pTrcHis2A, pYES2, pBlueBac4.5, pcDNA3.1 and pSecTag2 manufacture by Invitrogen, pET and pBAC manufactured by Novagen, pGEM manufactured by Promega, pBluescriptII manufactured by Stratagene, pGEX and pUC18/19 manufactured by Pharmacia, PfastBAC1 manufactured by GIBCO and the like. Preferably, a protein expression vector (described in the specification of a patent application entitled "Protein expression vector and its use" and filed by the same applicant on the same day) is used. This expression vector is constructed by using pCRII-TOPO vector described in the Examples hereinafter, or a commercially available expression vector, for example pSecTag2A vector or pSecTag2B vector (Invitrogen) and integrating a secretory signal nucleotide sequence suitable for expression of the protein of the present invention, in the 3' downstream side

thereof, a Tag nucleotide sequence, a cleavable nucleotide sequence sequence and a cloning site, into which a nucleotide sequence encoding a target protein can be inserted, in this order. More specifically, it is preferred to use trypsin signal as the secretory signal, a nucleotide sequence encoding polyhistidine as the Tag nucleotide sequence, and a nucleotide sequence encoding an amino acid sequence which is susceptible to enzyme-specific cleavage, i.e., a nucleotide sequence encoding the amino acid sequence of Asp-Asp-Asp-Lys SEQ ID NO:42 (said amino acid sequence is recognized by enterokinase, and the recombinant fusion protein is cleaved at the C-terminus part thereof) as the cleavable nucleotide sequence.—

Please replace the paragraph beginning at page 49, line 22, with the following rewritten paragraph:

--The cloning was carried out by PCR using a mouse brain cDNA library (Clontech) as a template and nucleotide sequences corresponding to an amino acid sequence common to serine proteases represented by

Primer 1: GTG CTC ACN GCN GCB CAY TG (SEQ ID NO: 20)

Primer 2: CCV CTR WSD CCN CCN GGC GA (SEQ ID NO: 21) as primers. Namely, 5 µl of the template, 5 µl of 10 x ExTaq buffer, 5 µl of dNTP, 10 pmol of each of the above primers and 0.5 µl of ExTaq (TAKARA) were added and the total volume was adjusted to 50 µl with sterilized water. PCR was carried out by

repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for 1 minute, 30 times. The PCR product was mixed with pCR II-TOPO vector attached to TOPO TA cloning kit (Invitrogen) and the mixture was allowed to stand at room temperature for 5 minutes. Then, according to a conventional manner, E. coli Top 10 attached to the kit was transformed and applied to a LB  $(Amp^+)$  plate (containing 100 µg/ml of ampicillin). According to a conventional manner, a plasmid was extracted from each colony obtained and its nucleotide sequence was determined by cycle sequencing method with a fluorescence sequencer (ABI). Homology of the sequence of each clone was examined by means of GenBank. Regarding an unknown sequence, i.e., BSSP2 gene, the full length cDNA was obtained by 5' RACE and 3' RACE and, according to the same manner as described above, the nucleotide sequence was determined. Namely, BSSP2 clone specific primers, GSP1 primers [mBSSP2.2 (SEO ID NO: 27) or mBSSP2.0 (SEQ ID NO: 22)] and GSP2 primers [mBSSP2R2 (SEQ ID NO: 28) or mBSSP2.1 (SEQ ID NO: 23)] were prepared. PCR was carried out by using mouse brain Marathon-Ready cDNA (Clontech), AP1 primer attached to this reagent and either of the above GSP1 primers and heating at 94°C for 2 minutes once and repeating a cycle of heating at 94°C for 30 seconds, at 60°C for 30 seconds and then at 72°C for 30 seconds 35 times. Then, 5  $\mu$ l of the PCR product diluted to 1/100, 5  $\mu$ l of 10 x buffer, 5  $\mu l$  of dNTP, 10 pmol of either of 10  $\mu M$  of the

above GSP2 primer, 10 pmol of AP2 primer attached to the above reagent and 0.5 unit of ExTag were admixed and adjusted to 50 ul with sterilized water. Then, according to the same manner as the above, PCR was carried out. The PCR product was cloned by the above TOPO TA cloning kit and sequenced to obtain the upstream and downstream regions of the above clone. At this time, as for a clone which seemed not to cover the full length of a protein, the specific primers shown hereinafter were prepared based on the newly found nucleotide sequence. Further, based on this sequence, the primers capable of amplifying ORF as shown hereinafter [mBSSPF7 (SEQ ID NO: 26), mBSSP2R/E (SEQ ID NO: 29)] were prepared and PCR carried out using mouse brain Marathonready cDNA as a template to confirm that these clones were identical. This was cloned into pCR II-TOPO vector attached to TOPO TA cloning kit to obtain the plasmid pCR II/mBSSP2 containing the full length cDNA clone. The nucleotide sequence of DNA contained in this plasmid is shown in SEQ ID NO: 7 and the amino acid sequence of mSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 8. Further, two different types of clones were obtained. The nucleotide sequences of these DNA are shown in SEQ ID NOS: 3 and 5, respectively. The amino acid sequences of mBSSP2 proteins deduced from these nucleotide sequences are shown in SEQ ID NOS: 4 and 6. These novel proteases are divided into types 1, 2 and 3. Type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids and

type 3 is composed of 445 amino acids. These amino acid sequences contained the common amino acid sequence composed of 238 amino acids whose N-terminus side started with Ile-Val-Gly-Gly-Gln-Ala-Val (amino acid 1-7 of SEQ ID NO:2) as the mature serine protease. Further, in the amino acid sequence of the mature serine protease, a consensus sequence having a serine protease activity was contained. Furthermore, since there were two or more amino acid sequences specific for a sugar chain bonding site, it was presumed that the amino acid sequence had at least two sugar chains.--

Please replace the paragraph beginning at the bottom of page 56, line 24, with the following rewritten paragraph:

--Amplification was carried out by using the primers having the sequences represented by SEQ ID NOS: 15 and 16 so that the peptide of Leu-Val-His-Gly (SEQ ID NO:43) was present at the C-terminus of the part from trypsin signal to the enterokinase recognition site of pSecTrypHis/neurosin. This was inserted between NheI and HindIII sites of pSecTag2A to construct the plasmid pTrypSig.--

Please replace the paragraph beginning at page 61, line 3, with the following rewritten paragraph:

--Reverse transcription of 1 µg of mRNA of human fetus brain (Clontech) was carried out by using Superscript II (Gibco

BRL) and oligo dT-Not I primer (5' GGCCACGCGTCGACTAGTA C(T) $_{17}$  3' SEQ ID NO:44) to obtain cDNA. By using this as a template, PCR was carried out with primes prepared from mBSSP2 nucleotide sequence and represented by SEQ ID NOS: 30 and 31 to obtain a cDNA fragment of hBSSP2. Namely, 5 µl of the template, 5 µl of 10 x ExTag buffer (TAKARA), 5 µl of dNTPs, 10 pmol portions of the above primers and 0.5  $\mu$ l of ExTaq (TAKARA) were adjusted to 50 µl with sterilized water and PCR was carried out by repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for 1 minute, 35 times. The PCR reactions described hereinafter were carried out according to the same manner as the above composition and conditions except the template and primers. The PCR product was mixed with pGEM-T Easy vector (Promega) and Takara Ligation Solution I (TAKARA) and the reaction was carried out at 16°C for 2 hours. Then, according to the same manner, E. coli JM109 was transformed and applied to a LB (Amp⁺) plate. A plasmid was extracted from each colony formed according to a conventional manner and its nucleotide sequence was determined by dideoxy method. As for a clone having homology to mBSSP2, full length cDNA was obtained by 5' RACE and 3' RACE and its sequence was determined as described above. PCR was carried out by using the above cDNA as a template and primers having the sequences represented by SEQ ID NOS: 30 and 37. RACE was carried out by PCR using a 1/100 dilution of the above PCR product as a template and primers having the sequences

represented by SEQ ID NOS: 32 and 37. As for 5' RACE, cDNA for RACE was prepared from human fetal brain mRNA (Clontech) by using Superscript II and SMART RACE cDNA amplification kit (Clontech). PCR of this cDNA was carried out by using a primer of 10  $\times$ Universal Primer Mix (attached to the kit) and a primer having the sequence represented by SEQ ID NO: 33. Further, PCR was carried out by using the 1/100 dilution of the latter PCR product, a template, Nested PCR Primer (attached to the kit) and a primer having the sequence represented by SEQ ID NO: 34. finally obtained PCR product was subjected to TA cloning as described above and the nucleotide sequence was determined to obtain the upstream and downstream regions of the above clone. In addition, primers for amplifying the full length cDNA as represented by SEQ ID NOS: 35 and 36 were prepared based on the resultant nucleotide sequence and PCR was carried out by using the above synthetic cDNA as a template. This PCR product was cloned into pGEM-T Easy vector to obtain the plasmid pGEM-TE/hBSSP2 containing the full length cDNA clone. The DNA sequence contained in this plasmid is shown in SEQ ID NO: 9 and hBSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 10.--

### IN THE SEQUENCE LISTING

Please substitute the attached Sequence Listing for that originally filed.

#### REMARKS

Applicants have added into the present specification a substitute paper copy Sequence Listing section according to 37 C.F.R. §1.821(c) as new pages 1-28. Furthermore, attached hereto is a 3 1/2" disk containing the "Sequence Listing" in computer readable form in accordance with 37 C.F.R. §1.821(e).

Applicants have amended the specification to insert SEQ ID Nos, as supported in the present specification.

The following statement is provided to meet the requirements of 37 C.F.R. §1.825(a) and 1.825(b).

I hereby state, in accordance with 37 C.F.R. §1.825(a), that the amendments included in the substitute sheets of the sequence listing are believed to be supported in the application as filed and that the substitute sheets of the sequence listing are not believed to include new matter.

I hereby further state, in accordance with 37 C.F.R. \$1.825(b), that the attached copy of the computer readable form is the same as the attached substitute paper copy of the sequence listing.

Under U.S. rules, each sequence must be classified in <213> as an "Artificial Sequence", a sequence of "Unknown" origin, or a sequence originating in a particular organism, identified by its scientific name.

Neither the rules nor the MPEP clarify the nature of the relationship which must exist between a listed sequence and

an organism for that organism to be identified as the origin of the sequence under <213>.

Hence, counsel may choose to identify a listed sequence as associated with a particular organism even though that sequence does not occur in nature by itself in that organism (it may be, e.g., an epitopic fragment of a naturally occurring protein, or a cDNA of a naturally occurring mRNA, or even a substitution mutant of a naturally occurring sequence). Hence, the identification of an organism in <213> should not be construed as an admission that the sequence per se occurs in nature in said organism.

Similarly, designation of a sequence as "artificial" should not be construed as a representation that the sequence has no association with any organism. For example, a primer or probe may be designated as "artificial" even though it is necessarily complementary to some target sequence, which may occur in nature. Or an "artificial" sequence may be a substitution mutant of a natural sequence, or a chimera of two or more natural sequences, or a cDNA (i.e., intron-free sequence) corresponding to an intron-containing gene, or otherwise a fragment of a natural sequence.

The Examiner should be able to judge the relationship of the enumerated sequences to natural sequences by giving full consideration to the specification, the art cited therein, any further art cited in an IDS, and the results of his or her

In re Appln. No.: 09/856,371

The state of the s

sequence search against a database containing known natural sequences.

Attached hereto is a marked-up version of the changes made to the specification by the current amendment. The attached page is captioned "Version with markings to show changes made".

Applicants submit that the present application contains patentable subject matter and therefore urge the examiner to pass the case to issuance.

If the examiner has any questions or comments concerning the above described application, the examiner is urged to contact the undersigned at the phone number below.

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C. Attorneys for Applicant(s)

Βv

Allen C. Yun

Registration No. 37,971

ACY:pr

624 Ninth Street, N.W. Washington, D.C. 20001

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

F:\,A\Aoyb\Uemura 7\PTO\notice to comply with seq.wpd

#### VERSION WITH MARKINGS TO SHOW THE CHANGES MADE

The paragraph beginning at page 19, line 10, has been amended as follows:

The novel mouse serine protease can be divided into types 1, 2 and 3. It has been shown that type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids, and type 3 is composed of 445 amino acids. These amino acid sequences contain a common amino acid sequence of 238 amino acids whose N-terminus side starts with Ile-Val-Gly-Gly-Gln-Ala-Val (amino acid 1-7 of SEQ ID NO:2) as the mature serine protease. Further, the amino acid sequence of the mature serine protease contains a consensus sequence having serine protease activity. Since there are two or more amino acid sequences which are characteristic of sugar chain binding sites, the amino acid sequence is presumed to have at least two sugar chains.

The paragraph beginning at the bottom of page 26, line 14, has been amended as follows:

The vector is not specifically limited in so far as it can express the protein of the present invention. Examples thereof include pBAD/His, pRSETA, pcDNA2.1, pTrcHis2A, pYES2, pBlueBac4.5, pcDNA3.1 and pSecTag2 manufacture by Invitrogen, pET and pBAC manufactured by Novagen, pGEM manufactured by Promega, pBluescriptII manufactured by Stratagene, pGEX and pUC18/19 manufactured by Pharmacia, PfastBAC1 manufactured by GIBCO and the

like. Preferably, a protein expression vector (described in the specification of a patent application entitled "Protein expression vector and its use" and filed by the same applicant on the same day) is used. This expression vector is constructed by using pCRII-TOPO vector described in the Examples hereinafter, or a commercially available expression vector, for example pSecTag2A vector or pSecTag2B vector (Invitrogen) and integrating a secretory signal nucleotide sequence suitable for expression of the protein of the present invention, in the 3' downstream side thereof, a Tag nucleotide sequence, a cleavable nucleotide sequence and a cloning site, into which a nucleotide sequence encoding a target protein can be inserted, in this order. More specifically, it is preferred to use trypsin signal as the secretory signal, a nucleotide sequence encoding polyhistidine as the Tag nucleotide sequence, and a nucleotide sequence encoding an amino acid sequence which is susceptible to enzyme-specific cleavage, i.e., a nucleotide sequence encoding the amino acid sequence of Asp-Asp-Asp-Lys SEQ ID NO: 42 (said amino acid sequence is recognized by enterokinase, and the recombinant fusion protein is cleaved at the C-terminus part thereof) as the cleavable nucleotide sequence.

The paragraph beginning at page 49, line 22, has been amended as follows:

The cloning was carried out by PCR using a mouse brain cDNA library (Clontech) as a template and nucleotide sequences corresponding to an amino acid sequence common to serine proteases represented by

Primer 1: GTG CTC ACN GCN GCB CAY TG (SEQ ID NO: 20)

Primer 2: CCV CTR WSD CCN CCN GGC GA (SEQ ID NO: 21) as primers. Namely, 5 µl of the template, 5 µl of 10 x ExTaq buffer, 5  $\mu$ l of dNTP, 10 pmol of each of the above primers and 0.5 µl of ExTag (TAKARA) were added and the total volume was adjusted to 50 µl with sterilized water. PCR was carried out by repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for 1 minute, 30 times. The PCR product was mixed with pCR II-TOPO vector attached to TOPO TA cloning kit (Invitrogen) and the mixture was allowed to stand at room temperature for 5 minutes. Then, according to a conventional manner, E. coli Top 10 attached to the kit was transformed and applied to a LB (Amp $^{\scriptscriptstyle +}$ ) plate (containing 100  $\mu g/ml$  of ampicillin). According to a conventional manner, a plasmid was extracted from each colony obtained and its nucleotide sequence was determined by cycle sequencing method with a fluorescence sequencer (ABI). Homology of the sequence of each clone was examined by means of GenBank. Regarding an unknown sequence, i.e., BSSP2 gene, the full length cDNA was obtained by 5' RACE and 3' RACE and, according to the same manner as described above, the nucleotide sequence was determined. Namely, BSSP2 clone specific primers,

GSP1 primers [mBSSP2.2 (SEQ ID NO: 27) or mBSSP2.0 (SEQ ID NO: 22)] and GSP2 primers [mBSSP2R2 (SEQ ID NO: 28) or mBSSP2.1 (SEQ ID NO: 23)] were prepared. PCR was carried out by using mouse brain Marathon-Ready cDNA (Clontech), AP1 primer attached to this reagent and either of the above GSP1 primers and heating at 94°C for 2 minutes once and repeating a cycle of heating at 94°C for 30 seconds, at 60°C for 30 seconds and then at 72°C for 30 seconds 35 times. Then, 5  $\mu$ l of the PCR product diluted to 1/100, 5  $\mu$ l of 10 x buffer, 5  $\mu$ l of dNTP, 10 pmol of either of 10  $\mu$ M of the above GSP2 primer, 10 pmol of AP2 primer attached to the above reagent and 0.5 unit of ExTag were admixed and adjusted to 50 µl with sterilized water. Then, according to the same manner as the above, PCR was carried out. The PCR product was cloned by the above TOPO TA cloning kit and sequenced to obtain the upstream and downstream regions of the above clone. At this time, as for a clone which seemed not to cover the full length of a protein, the specific primers shown hereinafter were prepared based on the newly found nucleotide sequence. Further, based on this sequence, the primers capable of amplifying ORF as shown hereinafter [mBSSPF7 (SEQ ID NO: 26), mBSSP2R/E (SEQ ID NO: 29)] were prepared and PCR carried out using mouse brain Marathon-ready cDNA as a template to confirm that these clones were identical. This was cloned into pCR II-TOPO vector attached to TOPO TA cloning kit to obtain the plasmid pCR II/mBSSP2 containing the full length cDNA The nucleotide sequence of DNA contained in this plasmid

is shown in SEQ ID NO: 7 and the amino acid sequence of mSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 8. Further, two different types of clones were obtained. The nucleotide sequences of these DNA are shown in SEQ ID NOS: 3 and 5, respectively. The amino acid sequences of mBSSP2 proteins deduced from these nucleotide sequences are shown in SEQ ID NOS: 4 and 6. These novel proteases are divided into types 1, 2 and 3. Type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids and type 3 is composed of 445 amino acids. These amino acid sequences contained the common amino acid sequence composed of 238 amino acids whose N-terminus side started with Ile-Val-Gly-Gly-Gln-Ala-Val (amino acid 1-7 of SEQ ID NO:2) as the mature serine protease. Further, in the amino acid sequence of the mature serine protease, a consensus sequence having a serine protease activity was contained. Furthermore, since there were two or more amino acid sequences specific for a sugar chain bonding site, it was presumed that the amino acid sequence had at least two sugar chains.

The paragraph beginning at the bottom of page 56, line 24, has been amended as follows:

Amplification was carried out by using the primers having the sequences represented by SEQ ID NOS: 15 and 16 so that the peptide of Leu-Val-His-Gly (SEQ ID NO:43) was present at the

C-terminus of the part from trypsin signal to the enterokinase recognition site of pSecTrypHis/neurosin. This was inserted between NheI and HindIII sites of pSecTag2A to construct the plasmid pTrypSig.

The paragraph beginning at page 61, line 3, has been amended as follows:

Reverse transcription of 1 µg of mRNA of human fetus brain (Clontech) was carried out by using Superscript II (Gibco BRL) and oligo dT-Not I primer (5' GGCCACGCGTCGACTAGTA C(T) $_{17}$  3' SEO ID NO:44) to obtain cDNA. By using this as a template, PCR was carried out with primes prepared from mBSSP2 nucleotide sequence and represented by SEQ ID NOS: 30 and 31 to obtain a cDNA fragment of hBSSP2. Namely, 5  $\mu$ l of the template, 5  $\mu$ l of 10 x ExTaq buffer (TAKARA), 5 µl of dNTPs, 10 pmol portions of the above primers and 0.5  $\mu l$  of ExTaq (TAKARA) were adjusted to 50  $\mu l$ with sterilized water and PCR was carried out by repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for 1 minute, 35 times. The PCR reactions described hereinafter were carried out according to the same manner as the above composition and conditions except the template and primers. The PCR product was mixed with pGEM-T Easy vector (Promega) and Takara Ligation Solution I (TAKARA) and the reaction was carried out at 16°C for 2 hours. Then, according to the same manner, E. coli JM109 was transformed and applied to a LB (Amp $^{+}$ ) plate.

plasmid was extracted from each colony formed according to a conventional manner and its nucleotide sequence was determined by dideoxy method. As for a clone having homology to mBSSP2, full length cDNA was obtained by 5' RACE and 3' RACE and its sequence was determined as described above. PCR was carried out by using the above cDNA as a template and primers having the sequences represented by SEQ ID NOS: 30 and 37. 3' RACE was carried out by PCR using a 1/100 dilution of the above PCR product as a template and primers having the sequences represented by SEQ ID NOS: 32 and 37. As for 5' RACE, cDNA for RACE was prepared from human fetal brain mRNA (Clontech) by using Superscript II and SMART RACE cDNA amplification kit (Clontech). PCR of this cDNA was carried out by using a primer of 10 x Universal Primer Mix (attached to the kit) and a primer having the sequence represented by SEQ ID NO: 33. Further, PCR was carried out by using the 1/100 dilution of the latter PCR product, a template, Nested PCR Primer (attached to the kit) and a primer having the sequence represented by SEQ ID NO: The finally obtained PCR product was subjected to TA cloning 34. as described above and the nucleotide sequence was determined to obtain the upstream and downstream regions of the above clone. In addition, primers for amplifying the full length cDNA as represented by SEQ ID NOS: 35 and 36 were prepared based on the resultant nucleotide sequence and PCR was carried out by using the above synthetic cDNA as a template. This PCR product was cloned into pGEM-T Easy vector to obtain the plasmid pGEM-TE/hBSSP2

containing the full length cDNA clone. The DNA sequence contained in this plasmid is shown in SEQ ID NO: 9 and hBSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 10.

## SEQUENCE LISTING

<110> UEMURA, Hidetoshi OKUI, Akira KOMINAMI, Katsuya YAMAGUCHI, Nozomi MITSUI, Shinichi	
<120> NOVEL SERINE PROTEASE BSSP2	
<130> UEMURA=7	
<140> 09/856,371 <141> 2001-05-21	
<150> JP 10/347785 <151> 1998-11-20	
<150> PCT/JP99/06475 <151> 1999-11-19	
<160> 44	
<170> PatentIn version 3.1	
<210> 1 <211> 717 <212> DNA <213> Mus sp.	
<220> <221> CDS <222> (1)(717) <223>	
<400> 1 ata gtt ggc ggc caa gct gtg gct tct ggg cgc tgg cca tgg caa gct Ile Val Gly Gln Ala Val Ala Ser Gly Arg Trp Pro Trp Gln Ala 1 5 10 15	48
age gtg atg ctt ggc tee egg eac aeg tgt ggg gee tet gtg ttg gea Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser Val Leu Ala 20 25 30	96
cca cac tgg gta gtg act gct gcc cac tgc atg tac agt ttc agg ctg Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser Phe Arg Leu 35 40 45	144
tcc cgc cta tcc agc tgg cgg gtt cat gca ggg ctg gtc agc cat ggt Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val Ser His Gly 50 55 60	192
gct gtc cga caa cac cag gga act atg gtg gag aag atc att cct cat Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile Ile Pro His 65 70 75 80	240
cct ttg tac agt gcc cag aac cat gac tat gat gtg gct ctg ctg cag Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu Gln 85 90 95	288
ctc cgg aca cca atc aac ttc tca gac acc gtg gac gct gtg tgc ttg Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala Val Cys Leu	336

			100					105					110			
ccg Pro	gcc Ala	aag Lys 115	gag Glu	cag Gln	tac Tyr	ttt Phe	cca Pro 120	tgg Trp	ggg ggg	tcg Ser	cag Gln	tgc Cys 125	tgg Trp	gtg Val	tct Ser	384
ggc Gly	tgg Trp 130	ggc Gly	cac His	acc Thr	gac Asp	ccc Pro 135	agc Ser	cat His	act Thr	cat His	agc Ser 140	tca Ser	gat Asp	aca Thr	ctg Leu	432
cag Gln 145	gac Asp	aca Thr	atg Met	gta Val	ccc Pro 150	ctg Leu	ctc Leu	agc Ser	acc Thr	cac His 155	ctc Leu	tgc Cys	aac Asn	agc Ser	tca Ser 160	480
tgc Cys	atg Met	tac Tyr	agt Ser	ggg Gly 165	gca Ala	ctt Leu	aca Thr	cac His	cgc Arg 170	atg Met	ttg Leu	tgt Cys	gct Ala	ggc Gly 175	tac Tyr	528
ctg Leu	gat Asp	gga Gly	agg Arg 180	gca Ala	gac Asp	gca Ala	tgc Cys	cag Gln 185	gga Gly	gac Asp	agc Ser	ggg Gly	gga Gly 190	ccc Pro	ctg Leu	576
gta Val	tgt Cys	ccc Pro 195	agt Ser	ggt Gly	gac Asp	acg Thr	tgg Trp 200	cac His	ctt Leu	gta Val	Gly	gtg Val 205	gtc Val	agc Ser	tgg Trp	624
ggt Gly	cgt Arg 210	ggc Gly	tgt Cys	gca Ala	gag Glu	ccc Pro 215	aat Asn	cgc Arg	cca Pro	ggt Gly	gtc Val 220	tat Tyr	gcc Ala	aag Lys	gta Val	672
gca Ala 225	gag Glu	ttc Phe	ctg Leu	gac Asp	tgg Trp 230	atc Ile	cat His	gac Asp	act Thr	gtg Val 235	cag Gln	gtc Val	cgc Arg	tag		717
<21 <21 <21 <21	1> : 2> :	2 238 PRT Mus	sp.													
<40	0>	2														
Ile 1	Val	Gly	Gly	Gln 5	Ala	Val	Ala	Ser	Gly 10	Arg	Trp	Pro	Trp	Gln 15	Ala	
Ser	Val	Met	Leu 20	Gly	Ser	Arg	His	Thr 25	Cys	Gly	Ala	Ser	Val 30	Leu	Ala	
Pro	His	Trp 35	Val	Val	Thr	Ala	Ala 40	His	Cys	Met	Tyr	Ser 45	Phe	Arg	Leu	
Ser	Arg 50	Leu	Ser	Ser	Trp	Arg 55	Val	His	Ala	Gly	Leu 60	Val	Ser	His	Gly	
Ala 65	Val	Arg	Gln	His	Gln 70	Gly	Thr	Met	Val	Glu 75	Lys	Ile	: Ile	Pro	His 80	
Pro	Leu	Tyr	Ser	Ala	Gln	Asn	His	Asp	Tyr	Asp	val	Ala	Leu	Leu	Gln	

				85					90					95		
Leu	Arg	Thr	Pro 100	Ile	Asn	Phe	Ser	Asp 105	Thr	Val	Asp	Ala	Val 110	Cys	Leu	
Pro	Ala	Lys 115	Glu	Gln	Tyr	Phe	Pro 120	Trp	Gly	Ser	Gln	Cys 125	Trp	Val	Ser	
Gly	Trp 130	Gly	His	Thr	Asp	Pro 135	Ser	His	Thr	His	Ser 140	Ser	Asp	Thr	Leu	
Gln 145	Asp	Thr	Met	Val	Pro 150	Leu	Leu	Ser	Thr	His 155	Leu	Cys	Asn	Ser	Ser 160	
Cys	Met	Tyr	Ser	Gly 165	Ala	Leu	Thr	His	Arg 170	Met	Leu	Cys	Ala	Gly 175	Tyr	
Leu	Asp	Gly	Arg 180	Ala	Asp	Ala	Cys	Gln 185	Gly	Asp	Ser	Gly	Gly 190	Pro	Leu	
Val	Cys	Pro 195	Ser	Gly	Asp	Thr	Trp 200	His	Leu	Val	Gly	Val 205	Val	Ser	Trp	
Gly	Arg 210	Gly	Cys	Ala	Glu	Pro 215	Asn	Arg	Pro	Gly	Val 220	Tyr	Ala	Lys	Val	
Ala 225	Glu	Phe	Leu	Asp	Trp 230	Ile	His	Asp	Thr	Val 235	Gln	Val	Arg			
<210 <211 <211 <211	1> 2>	3 1685 DNA Mus	sp.													
<220 <220 <220 <220	1> 2>	CDS (247	) (	1065	)										-	
<40		3	+ a++	+ 0 2 0	22 t	a a a t	~~~	2	a+ a+	tata	ctt	caac	t a.c	a a crt	220200	60
															aagagc gcacat	120
															tgacat	180
caa	gctc	aac	agat	ccca	gg a	gttt	gctc	a ac	tctc	tgct	aga	ccgg	gag	gcct	tgtaga	240
gga	ggc	atg Met	gaa Glu	gcc Ala	cag Gln	gta Val	ggg Gly	ctt Leu :	ctg Leu	tgg Trp	gtt Val	agc Ser	gct Ala	aac Asn	tgt Cys	288

cct Pro 15	tct Ser	ggc Gly	cga Arg	att Ile	gtt Val 20	tct Ser	ctc Leu	aaa Lys	tgt Cys	tct Ser 25	gag Glu	tgt Cys	GJÀ ada	gca Ala	agg Arg 30	3	36
cct Pro	ctg Leu	gct Ala	tct Ser	cga Arg 35	ata Ile	gtt Val	ggc Gly	ggc Gly	caa Gln 40	gct Ala	gtg Val	gct Ala	tct Ser	ggg Gly 45	cgc Arg	3	84
tgg Trp	cca Pro	tgg Trp	caa Gln 50	gct Ala	agc Ser	gtg Val	atg Met	ctt Leu 55	ggc Gly	tcc Ser	cgg Arg	cac His	acg Thr 60	tgt Cys	Glà aaa	4	32
gcc Ala	tct Ser	gtg Val 65	ttg Leu	gca Ala	cca Pro	cac His	tgg Trp 70	gta Val	gtg Val	act Thr	gct Ala	gcc Ala 75	cac His	tgc Cys	atg Met	4	.80
tac Tyr	agt Ser 80	ttc Phe	agg Arg	ctg Leu	tcc Ser	cgc Arg 85	cta Leu	tcc Ser	agc Ser	tgg Trp	cgg Arg 90	gtt Val	cat His	gca Ala	ggg Gly	5	528
ctg Leu 95	gtc Val	agc Ser	cat His	ggt Gly	gct Ala 100	gtc Val	cga Arg	caa Gln	cac His	cag Gln 105	gga Gly	act Thr	atg Met	gtg Val	gag Glu 110	5	576
aag Lys	atc Ile	att Ile	cct Pro	cat His 115	cct Pro	ttg Leu	tac Tyr	agt Ser	gcc Ala 120	cag Gln	aac Asn	cat His	gac Asp	tat Tyr 125	gat Asp	6	524
gtg Val	gct Ala	ctg Leu	ctg Leu 130	cag Gln	ctc Leu	cgg Arg	aca Thr	cca Pro 135	atc Ile	aac Asn	ttc Phe	tca Ser	gac Asp 140	acc Thr	gtg Val	6	672
gac Asp	gct Ala	gtg Val 145	tgc Cys	ttg Leu	ccg Pro	gcc Ala	aag Lys 150	gag Glu	cag Gln	tac Tyr	ttt Phe	cca Pro 155	tgg Trp	ggg Gly	tcg Ser	7	720
cag Gln	tgc Cys 160	tgg Trp	gtg Val	tct Ser	ggc Gly	tgg Trp 165	ggc Gly	cac His	acc Thr	gac Asp	ccc Pro 170	agc Ser	cat His	act Thr	cat His		768
agc Ser 175	tca Ser	gat Asp	aca Thr	ctg Leu	cag Gln 180	gac Asp	aca Thr	atg Met	gta Val	ccc Pro 185	Leu	ctc Leu	agc Ser	acc Thr	cac His 190	8	816
ctc Leu	tgc Cys	aac Asn	agc Ser	tca Ser 195	tgc Cys	atg Met	tac Tyr	agt Ser	ggg Gly 200	gca Ala	ctt Leu	aca Thr	cac His	cgc Arg 205	atg Met	{	864
ttg Leu	tgt Cys	gct Ala	ggc Gly 210	Tyr	ctg Leu	gat Asp	gga Gly	agg Arg 215	gca Ala	gac Asp	gca Ala	tgc Cys	cag Gln 220	Gly	gac Asp		912
agc Ser	Gly	gga Gly 225	Pro	ctg Leu	gta Val	tgt Cys	ccc Pro 230	Ser	ggt Gly	gac Asp	acg Thr	tgg Trp 235	cac His	ctt Leu	gta Val	!	960
Gly	gtg Val 240	Val	agc Ser	tgg Trp	ggt Gly	cgt Arg 245	Gly	tgt Cys	gca Ala	gag Glu	ccc Pro 250	Asn	cgc Arg	cca Pro	ggt Gly	1	800
gtc Val 255	Tyr	gcc Ala	aag Lys	gta Val	gca Ala 260	Glu	ttc Phe	: ctg : Leu	gac Asp	tgg Trp 265	Ile	cat His	gac Asp	act Thr	gtg Val 270	1	056

1105

cag gtc cgc tagccgaaga agcagcagca gccacctgtg acgccgagct

Gln Val Arg	
gtggategee catggateae eccagtetgg gggeeageat etgggteaet gggeetetee	1165
ccaaaggctc tgacttcgag ttcatctttc tcatctgaga acctccacaa caggaaaagg	1225
agtctgcggc tagattggga atgatggtga gaggaaggga taggaggaca gaagagacag	1285
cagaggette tggaageate tgggagaetg etectetget eececeacae eccaegtgea	1345
tccactgggg gatgctggag atgcccaatc cttgtttctt gtgggggccac tggaaggcta	1405
agtccaactt tagaggatgc cctgtctcga gagttactag gcagataagg ttaaggttgg	1465
acaageteag gtaaaggeae ggaagteaag ateceetete eeeegtgegg teetgttetg	1525
aggtaagcta atagccccgc accaggcaga ggtctacagg gtaagaagga tgcagttggg	1585
ctacacgacg ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt	1645
aaacagaaat tatgtataaa aaaaaaaaaa aaaaaaaaaa	1685
<210> 4 <211> 273 <212> PRT <213> Mus sp.	
Met Glu Ala Gln Val Gly Leu Leu Trp Val Ser Ala Asn Cys Pro Ser	
1 5 10 15	
Gly Arg Ile Val Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg Pro Leu 20 25 30	
Ala Ser Arg Ile Val Gly Gly Gln Ala Val Ala Ser Gly Arg Trp Pro 35 40 45	
Trp Gln Ala Ser Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser 50 55 60	
Val Leu Ala Pro His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser 65 70 75 80	
Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val 85 90 95	
Ser His Gly Ala Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile 100 105 110	
Ile Pro His Pro Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala 115 120 125	

```
Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala
                        135
    130
Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser Gln Cys
Trp Val Ser Gly Trp Gly His Thr Asp Pro Ser His Thr His Ser Ser
Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His Leu Cys
                                 185
Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met Leu Cys
                             200
        195
Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly
                         215
    210
Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val Gly Val
                    230
Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Val Tyr
                                                          255
                 245
Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Val
                                 265
            260
Arg
       5
<210>
<211>
       2068
<212>
       DNA
<213>
      Mus sp.
<220>
<221>
       CDS
<222>
       (516)..(1448)
<223>
<400> 5
ctggctgggc tgttgaatca atcccgacat gaggacagga gcctcaccct gcccagcaga
                                                                        60
                                                                       120
acttactgcc ttatatcagt gcagctgact catatgagtc caacactgga tgaccaaagc
ccaatggaga ttcggtgcac ggaagagggt gctgggcctg ggatcttcag aatggagttg
                                                                       180
```

240

300

ggagaccaga ggcaatccat ttctcagtcc caacgctggt gctgcctgca acgtggctgt

gtaatactgg gcgtcctggg gctgctggct ggagcaggca ttgcttcatg gctcttagtg

ttgtatc	+ > + ~	~~~	aat a	a at	atao	atco	a+c	tata	aaa	catt	acaa	raa o	raaaa	agatg	360
_	_	_													420
actttga															
gaataaa	tgg a	gggg	atct	t ct	gctt	caag	tac	aagt	aag	agct	cggc	ca g	gactg	gctcc	480
tggtctg	cca t	gagg	gctg	ig ag	lacad	gccc	: tgg	gc a M 1	let H	ac a lis I	tc t le C	gc a Cys I	ys S	igt Ser	533
ctt ggg Leu Gly	His	atc Ile 10	agg Arg	ctt Leu	act Thr	caa Gln	cac His 15	aag Lys	gcc Ala	gtg Val	aat Asn	ctg Leu 20	tct Ser	gac Asp	581
atc aag Ile Lys	ctc Leu 25	aac Asn	aga Arg	tcc Ser	cag Gln	gag Glu 30	ttt Phe	gct Ala	caa Gln	ctc Leu	tct Ser 35	gct Ala	aga Arg	ccg Pro	629
gga ggo Gly Gly 40	ctt Leu	gta Val	gag Glu	gag Glu	gca Ala 45	tgg Trp	aag Lys	ccc Pro	agc Ser	gct Ala 50	aac Asn	tgt Cys	cct Pro	tct Ser	677
ggc cga Gly Arg 55	att Ile	gtt Val	tct Ser	ctc Leu 60	aaa Lys	tgt Cys	tct Ser	gag Glu	tgt Cys 65	ggg Gly	gca Ala	agg Arg	cct Pro	ctg Leu 70	725
gct tct Ala Sei	cga Arg	ata Ile	gtt Val 75	ggc Gly	ggc Gly	caa Gln	gct Ala	gtg Val 80	gct Ala	tct Ser	gly ggg	cgc Arg	tgg Trp 85	cca Pro	773
tgg caa Trp Glr	Ala	agc Ser 90	gtg Val	atg Met	ctt Leu	ggc Gly	tcc Ser 95	cgg Arg	cac His	acg Thr	tgt Cys	ggg Gly 100	gcc Ala	tct Ser	821
gtg tto Val Lei	g gca 1 Ala 105	cca Pro	cac His	tgg Trp	gta Val	gtg Val 110	act Thr	gct Ala	gcc Ala	cac His	tgc Cys 115	atg Met	tac Tyr	agt Ser	869
ttc ago Phe Aro 120	g Leu	tcc Ser	cgc Arg	cta Leu	tcc Ser 125	agc Ser	tgg Trp	cgg Arg	gtt Val	cat His 130	gca Ala	Gly ggg	ctg Leu	gtc Val	917
agc cat Ser His 135	ggt Gly	gct Ala	gtc Val	cga Arg 140	caa Gln	cac His	cag Gln	gga Gly	act Thr 145	atg Met	gtg Val	gag Gļu	aag Lys	atc Ile 150	965
att cct Ile Pro	cat His	cct Pro	ttg Leu 155	tac Tyr	agt Ser	gcc Ala	cag Gln	aac Asn 160	cat His	gac Asp	tat Tyr	gat Asp	gtg Val 165	gct Ala	1013
ctg cto Leu Lei	g cag ı Gln	ctc Leu 170	cgg Arg	aca Thr	cca Pro	atc Ile	aac Asn 175	ttc Phe	tca Ser	gac Asp	acc Thr	gtg Val 180	gac Asp	gct Ala	1061
gtg tg Val Cy	c ttg s Leu 185	ccg Pro	gcc Ala	aag Lys	gag Glu	cag Gln 190	tac Tyr	ttt Phe	cca Pro	tgg Trp	ggg Gly 195	tcg Ser	cag Gln	tgc Cys	1109
tgg gte Trp Va 20	l Ser	ggc Gly	tgg Trp	ggc Gly	cac His 205	acc Thr	gac Asp	ccc Pro	agc Ser	cat His 210	act Thr	cat His	agc Ser	tca Ser	1157

gat aca ctg cag gac aca atg gta ccc ctg ctc agc acc cac ctc tgc Asp Thr Leu Gln Asp Thr Met Val Pro Leu Leu Ser Thr His Leu Cys 225 225	5
aac agc tca tgc atg tac agt ggg gca ctt aca cac cgc atg ttg tgt Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu Thr His Arg Met Leu Cys 235 240 245	1253 s
gct ggc tac ctg gat gga agg gca gac gca tgc cag gga gac agc ggg Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly 250 255 260	g 1301 Y
gga ccc ctg gta tgt ccc agt ggt gac acg tgg cac ctt gta ggg gtg Gly Pro Leu Val Cys Pro Ser Gly Asp Thr Trp His Leu Val Gly Val 265 270 275	g 1349 l
gtc agc tgg ggt cgt ggc tgt gca gag ccc aat cgc cca ggt gtc tar Val Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Val Ty: 280 285 290	t 1397 r
gcc aag gta gca gag ttc ctg gac tgg atc cat gac act gtg cag gt Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Va 295 300 305 31	1
cgc tagccgaaga agcagcagca gccacctgtg acgccgagct gtggatcgcc Arg	1498
catggatcac cccagtctgg gggccagcat ctgggtcact gggcctctcc ccaaagg	ctc 1558
tgacttcgag ttcatctttc tcatctgaga acctccacaa caggaaaagg agtctgc	ggc 1618
tagattggga atgatggtga gaggaaggga taggaggaca gaagagacag cagaggc	ttc 1678
tggaagcate tgggagactg etectetget eececcacae eecaegtgea tecaetg	rggg 1738
gatgctggag atgcccaatc cttgtttctt gtggggccac tggaaggcta agtccaa	ctt 1798
tagaggatgc cctgtctcga gagttactag gcagataagg ttaaggttgg acaagct	
gtaaaggcac ggaagtcaag atcccctctc ccccgtgcgg tcctgttctg aggtaag	
atageceege accaggeaga ggtetacagg gtaagaagga tgeagttggg etacaeg	
ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt aaacaga	
tatgtataaa aaaaaaaaaa aaaaaaaaaa	2068

<210> 6 <211> 311 <212> PRT

<213> Mus sp.

<400> 6

Ala Val Asn Leu Ser Asp Ile Lys Leu Asn Arg Ser Gln Glu Phe Ala 20 25 30

Gln Leu Ser Ala Arg Pro Gly Gly Leu Val Glu Glu Ala Trp Lys Pro 35 40 45

Ser Ala Asn Cys Pro Ser Gly Arg Ile Val Ser Leu Lys Cys Ser Glu 50 55 60

Cys Gly Ala Arg Pro Leu Ala Ser Arg Ile Val Gly Gly Gln Ala Val 65 70 75 80

Ala Ser Gly Arg Trp Pro Trp Gln Ala Ser Val Met Leu Gly Ser Arg 85 90 95

His Thr Cys Gly Ala Ser Val Leu Ala Pro His Trp Val Val Thr Ala 100 105 110

Ala His Cys Met Tyr Ser Phe Arg Leu Ser Arg Leu Ser Ser Trp Arg 115 120 125

Val His Ala Gly Leu Val Ser His Gly Ala Val Arg Gln His Gln Gly 130 135 140

Thr Met Val Glu Lys Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn 145 150 155 160

His Asp Tyr Asp Val Ala Leu Leu Gln Leu Arg Thr Pro Ile Asn Phe 165 170 175

Ser Asp Thr Val Asp Ala Val Cys Leu Pro Ala Lys Glu Gln Tyr Phe 180 185 190

Pro Trp Gly Ser Gln Cys Trp Val Ser Gly Trp Gly His Thr Asp Pro 195 200 205

Ser His Thr His Ser Ser Asp Thr Leu Gln Asp Thr Met Val Pro Leu 210 215 220

Leu Ser Thr His Leu Cys Asn Ser Ser Cys Met Tyr Ser Gly Ala Leu 225 230 235 240

Thr His Arg Met Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala 245 250 255

Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Pro Ser Gly Asp Thr 260 265 270

Trp His Leu Val Gly Val Val Ser Trp Gly Arg Gly Cys Ala Glu Pro 275 280 285

130

Asn Arg Pro Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile 295 290 His Asp Thr Val Gln Val Arg 310 7 <210> 2070 <211> <212> DNA <213> Mus sp. <220> CDS <221> (116)..(1450)<222> <223> <400> 7 cccagcagaa cttactgcct tatatcagtg cagctgactc atatgccctg gtgtggggct 60 gctggatctt caaccactat ttctccagag tccaacactg gatgaccaaa gccca atg 118 gag att cgg tgc acg gaa gag ggt gct ggg cct ggg atc ttc aga atg 166 Glu Ile Arg Cys Thr Glu Glu Gly Ala Gly Pro Gly Ile Phe Arg Met gag ttg gga gac cag agg caa tcc att tct cag tcc caa cgc tgg tgc 214 Glu Leu Gly Asp Gln Arg Gln Ser Ile Ser Gln Ser Gln Arg Trp Cys tgc ctg caa cgt ggc tgt gta ata ctg ggc gtc ctg ggg ctg ctg gct 262 Cys Leu Gln Arg Gly Cys Val Ile Leu Gly Val Leu Gly Leu Leu Ala 40 310 gga gca ggc att gct tca tgg ctc tta gtg ttg tat cta tgg cca gct Gly Ala Gly Ile Ala Ser Trp Leu Leu Val Leu Tyr Leu Trp Pro Ala 358 gcc tct cca tcc atc tct ggg acg ttg cag gag gag gag atg act ttg Ala Ser Pro Ser Ile Ser Gly Thr Leu Gln Glu Glu Met Thr Leu 80 406 aac tgt cca gga gtg agc tgt gag gaa gag ctc ctt cca tct ctt ccc Asn Cys Pro Gly Val Ser Cys Glu Glu Glu Leu Leu Pro Ser Leu Pro 95 85 aaa aca gta tct ttc aga ata aat gga gag gat ctt ctg ctt caa gta 454 Lys Thr Val Ser Phe Arg Ile Asn Gly Glu Asp Leu Leu Gln Val 100 caa gta aga gct cgg cca gac tgg ctc ctg gtc tgc cat gag ggc tgg 502 Gln Val Arg Ala Arg Pro Asp Trp Leu Leu Val Cys His Glu Gly Trp 115 120 550 age eee gee etg gge atg eae ate tge aag agt ett ggg eat ate agg Ser Pro Ala Leu Gly Met His Ile Cys Lys Ser Leu Gly His Ile Arg 145

135

140

ctt Leu	act Thr	caa Gln	cac His	aag Lys 150	gcc Ala	gtg Val	aat Asn	ctg Leu	tct Ser 155	gac Asp	atc Ile	aag Lys	ctc Leu	aac Asn 160	aga Arg	598
tcc Ser	cag Gln	gag Glu	ttt Phe 165	gct Ala	caa Gln	ctc Leu	tct Ser	gct Ala 170	aga Arg	ccg Pro	gga Gly	ggc Gly	ctt Leu 175	gta Val	gag Glu	646
gag Glu	gca Ala	tgg Trp 180	aag Lys	ccc Pro	agc Ser	gct Ala	aac Asn 185	tgt Cys	cct Pro	tct Ser	ggc Gly	cga Arg 190	att Ile	gtt Val	tct Ser	694
ctc Leu	aaa Lys 195	tgt Cys	tct Ser	gag Glu	tgt Cys	ggg Gly 200	gca Ala	agg Arg	cct Pro	ctg Leu	gct Ala 205	tct Ser	cga Arg	ata Ile	gtt Val	742
ggc Gly 210	ggc Gly	caa Gln	gct Ala	gtg Val	gct Ala 215	tct Ser	Gly	cgc Arg	tgg Trp	cca Pro 220	tgg Trp	caa Gln	gct Ala	agc Ser	gtg Val 225	790
atg Met	ctt Leu	ggc Gly	tcc Ser	cgg Arg 230	cac His	acg Thr	tgt Cys	Gly ggg	gcc Ala 235	tct Ser	gtg Val	ttg Leu	gca Ala	cca Pro 240	cac His	838
tgg Trp	gta Val	gtg Val	act Thr 245	gct Ala	gcc Ala	cac His	tgc Cys	atg Met 250	tac Tyr	agt Ser	ttc Phe	agg Arg	ctg Leu 255	tcc Ser	cgc Arg	886
cta Leu	tcc Ser	agc Ser 260	tgg Trp	cgg Arg	gtt Val	cat His	gca Ala 265	Gly	ctg Leu	gtc Val	agc Ser	cat His 270	ggt Gly	gct Ala	gtc Val	934
cga Arg	caa Gln 275	cac His	cag Gln	gga Gly	act Thr	atg Met 280	gtg Val	gag Glu	aag Lys	atc Ile	att Ile 285	cct Pro	cat His	cct Pro	ttg Leu	982
tac Tyr 290	agt Ser	gcc Ala	cag Gln	aac Asn	cat His 295	gac Asp	tat Tyr	gat Asp	gtg Val	gct Ala 300	ctg Leu	ctg Leu	cag Gln	ctc Leu	cgg Arg 305	1030
aca Thr	cca Pro	atc Ile	aac Asn	ttc Phe 310	tca Ser	gac Asp	acc Thr	gtg Val	gac Asp 315	gct Ala	gtg Val	tgc Cys	ttg Leu	ccg Pro 320	Ala	1078
aag Lys	gag Glu	cag Gln	tac Tyr 325	ttt Phe	cca Pro	tgg Trp	G] À aaa	tcg Ser 330	cag Gln	tgc Cys	tgg Trp	gtg Val	tct Ser 335	GLy	tgg Trp	1126
ggc Gly	cac His	acc Thr 340	Asp	ccc Pro	agc Ser	cat His	act Thr 345	His	agc Ser	tca Ser	gat Asp	aca Thr 350	Leu	cag Gln	gac Asp	1174
aca Thr	atg Met 355	Val	ccc Pro	ctg Leu	ctc Leu	agc Ser 360	Thr	cac His	ctc Leu	tgc Cys	aac Asn 365	Ser	tca Ser	tgc Cys	atg Met	1222
tac Tyr 370	Ser	Gly	gca Ala	ctt Leu	aca Thr 375	His	e cgc Arg	atg Met	ttg Leu	tgt Cys 380	: Ala	ggc Gly	: tac Tyr	cto Lev	gat Asp 385	1270
gga Gly	agg Arg	gca Ala	gac Asp	gca Ala	tgc Cys	cag Gln	gga Gly	gac Asp	ago Ser	ggg Gly	gga Gly	ccc Pro	cto Lev	g gta u Val	tgt Cys	1318

390	395 400	
ccc agt ggt gac acg tgg cac ctt gt Pro Ser Gly Asp Thr Trp His Leu Va 405	al Gly Val Val Ser Trp Gly Arg	66
ggc tgt gca gag ccc aat cgc cca gc Gly Cys Ala Glu Pro Asn Arg Pro Gl 420 425	gt gtc tat gcc aag gta gca gag 14: .y Val Tyr Ala Lys Val Ala Glu 430	14
ttc ctg gac tgg atc cat gac act gt Phe Leu Asp Trp Ile His Asp Thr Va 435	ng cag gtc cgc tagccgaaga 14 al Gln Val Arg 445	60
agcagcagca gccacctgtg acgccgagct	gtggatcgcc catggatcac cccagtctgg 15	20
gggccagcat etgggtcact gggcctctcc	ccaaaggctc tgacttcgag ttcatctttc 15	80
tcatctgaga acctccacaa caggaaaagg	agtctgcggc tagattggga atgatggtga 16	40
gaggaaggga taggaggaca gaagagacag	cagaggette tggaageate tgggagaetg 17	00
ctcctctgct cccccacac cccacgtgca	tccactgggg gatgctggag atgcccaatc 17	60
cttgtttctt gtggggccac tggaaggcta	agtccaactt tagaggatgc cctgtctcga 18	20
gagttactag gcagataagg ttaaggttgg	acaageteag gtaaaggeae ggaagteaag 18	80
atecectete eccegtgegg tectgttetg	aggtaagcta atagccccgc accaggcaga 19	40
ggtctacagg gtaagaagga tgcagttggg	ctacacgacg ctatttttca aatgatgttt 20	00
ctgtaaattg gttgagagag ttttgttatt	aaacagaaat tatgtataaa aaaaaaaaaa 20	60
aaaaaaaaa	20	70
<210> 8 <211> 445 <212> PRT <213> Mus sp. <400> 8		
Met Glu Ile Arg Cys Thr Glu Glu G 1 5	ly Ala Gly Pro Gly Ile Phe Arg 10 15	
Met Glu Leu Gly Asp Gln Arg Gln S 20	er Ile Ser Gln Ser Gln Arg Trp 5 30	
Cys Cys Leu Gln Arg Gly Cys Val 1 35 40	le Leu Gly Val Leu Gly Leu Leu 45	
Ala Gly Ala Gly Ile Ala Ser Trp I 50 55	eu Leu Val Leu Tyr Leu Trp Pro 60	
Ala Ala Ser Pro Ser Ile Ser Gly 7	Chr Leu Gln Glu Glu Met Thr 75 80	

Leu Asn Cys Pro Gly Val Ser Cys Glu Glu Glu Leu Leu Pro Ser Leu 85 90 95

Pro Lys Thr Val Ser Phe Arg Ile Asn Gly Glu Asp Leu Leu Gln 100 105 110

Val Gln Val Arg Ala Arg Pro Asp Trp Leu Leu Val Cys His Glu Gly
115 120 125

Trp Ser Pro Ala Leu Gly Met His Ile Cys Lys Ser Leu Gly His Ile 130 135 140

Arg Leu Thr Gln His Lys Ala Val Asn Leu Ser Asp Ile Lys Leu Asn 145 150 155 160

Arg Ser Gln Glu Phe Ala Gln Leu Ser Ala Arg Pro Gly Gly Leu Val 165 170 175

Glu Glu Ala Trp Lys Pro Ser Ala Asn Cys Pro Ser Gly Arg Ile Val 180 185 190

Ser Leu Lys Cys Ser Glu Cys Gly Ala Arg Pro Leu Ala Ser Arg Ile 195 200 205

Val Gly Gly Gln Ala Val Ala Ser Gly Arg Trp Pro Trp Gln Ala Ser 210 215 220

Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser Val Leu Ala Pro 225 230 235 240

His Trp Val Val Thr Ala Ala His Cys Met Tyr Ser Phe Arg Leu Ser 245 250 255

Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val Ser His Gly Ala 260 265 270

Val Arg Gln His Gln Gly Thr Met Val Glu Lys Ile Ile Pro His Pro 275 280 285

Leu Tyr Ser Ala Gln Asn His Asp Tyr Asp Val Ala Leu Leu Gln Leu 290 295 300

Arg Thr Pro Ile Asn Phe Ser Asp Thr Val Asp Ala Val Cys Leu Pro 305 310 315 320

Ala Lys Glu Gln Tyr Phe Pro Trp Gly Ser Gln Cys Trp Val Ser Gly 325 330 335

```
Trp Gly His Thr Asp Pro Ser His Thr His Ser Ser Asp Thr Leu Gln
                                                     350
                                345
            340
Asp Thr Met Val Pro Leu Leu Ser Thr His Leu Cys Asn Ser Ser Cys
                            360
Met Tyr Ser Gly Ala Leu Thr His Arg Met Leu Cys Ala Gly Tyr Leu
                        375
Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly Gly Pro Leu Val
                                         395
Cys Pro Ser Gly Asp Thr Trp His Leu Val Gly Val Val Ser Trp Gly
                405
Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Val Tyr Ala Lys Val Ala
                                                     430
Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Val Arg
                             440
        435
<210>
       9
       2265
<211>
<212>
       DNA
<213>
       Homo sapiens
<220>
<221>
       CDS
       (156)..(1526)
<222>
<223>
<400>
acgegggata cagggaggg ccatgtgega accagggaga ceteatette caaccaaget
                                                                        60
tgctgggctt gcatttaatc aatgcatggc cagagaacag gagcggaaca ttgcctagta
                                                                       120
gaccetgagg etttacaaca gtgetactga eccet atg age etg atg etg gat
                                                                       173
                                         Met Ser Leu Met Leu Asp
                                         1
                                                                       221
 gac caa ccc cct atg gag gcc cag tat gca gag gag ggc cca gga cct
 Asp Gln Pro Pro Met Glu Ala Gln Tyr Ala Glu Glu Gly Pro Gly Pro
             10
                                                                       269
 ggg atc ttc aga gca gag cct gga gac cag cag cat ccc att tct cag
 Gly Ile Phe Arg Ala Glu Pro Gly Asp Gln Gln His Pro Ile Ser Gln
         25
 geg gtg tgc tgg cgt tec atg cga cgt ggc tgt gca gtg ctg gga gec
                                                                       317
 Ala Val Cys Trp Arg Ser Met Arg Arg Gly Cys Ala Val Leu Gly Ala
                          45
     40
 ctg ggg ctg ctg gcc ggt gca ggt gtt ggc tca tgg ctc cta gtg ctg
                                                                        365
```

Leu 55	Gly	Leu	Leu	Ala	Gly 60	Ala	Gly	Val	Gly	Ser 65	Trp	Leu	Leu	Val	Leu 70	
	~	_		_	gcc Ala		_						~	_	_	413
					agc Ser											461
		_			aaa Lys		_			_			_	_	_	509
					caa Gln											557
					agc Ser 140											605
					ctc Leu											653
					tcc Ser											701
					gag Glu											749
					ctc Leu											797
					ggt Gly 220											845
					gcc Ala											893
					tgg Trp											941
		_	-	~	ctg Leu		_		~ ~	_				_	_	989
					agg Arg											1037
					tac Tyr 300											1085

ctc ctg agg ctc cag acc gct ctc aac ttc tca gac act gtg ggc gct Leu Leu Arg Leu Gln Thr Ala Leu Asn Phe Ser Asp Thr Val Gly Ala 315 320 325	1133
gtg tgc ctg ccg gcc aag gaa cag cat ttt ccg aag ggc tcg cgg tgc Val Cys Leu Pro Ala Lys Glu Gln His Phe Pro Lys Gly Ser Arg Cys 330 335 340	1181
tgg gtg tct ggc tgg ggc cac acc cac cct agc cat act tac agc tcg Trp Val Ser Gly Trp Gly His Thr His Pro Ser His Thr Tyr Ser Ser 345 350 355	1229
gat atg ctc cag gac acg gtg gtg ccc ttg ttc agc act cag ctc tgc Asp Met Leu Gln Asp Thr Val Val Pro Leu Phe Ser Thr Gln Leu Cys 360 365 370	1277
aac age tet tge gtg tac age gga gee ete ace eee ege atg ett tge Asn Ser Ser Cys Val Tyr Ser Gly Ala Leu Thr Pro Arg Met Leu Cys 375 380 385 390	1325
gct ggc tac ctg gac gga agg gct gat gca tgc cag gga gat agc ggg Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala Cys Gln Gly Asp Ser Gly 395 400 405	1373
ggc ccc cta gtg tgc cca gat ggg gac aca tgg cgc cta gtg ggg gtg Gly Pro Leu Val Cys Pro Asp Gly Asp Thr Trp Arg Leu Val Gly Val 410 415 420	1421
gtc agc tgg ggg cgt gcg tgc gca gag ccc aat cac cca ggt gtc tac Val Ser Trp Gly Arg Ala Cys Ala Glu Pro Asn His Pro Gly Val Tyr 425 430 435	1469
gcc aag gta gct gag ttt ctg gac tgg atc cat gac act gct cag gac Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Ala Gln Asp 440 445 450	1517
tcc ctc ctc tgagtcctgc tgtttcctcc agtctcactg cacaccactg Ser Leu Leu 455	1566
cetcatgett eetggggeet ceageagete caetaatgga ggagaggeag tageeteega	1626
cacagaacgc atggacctcc tactactgtg tgtgaggaac agtcactacc cactggccag	1686
ccacccagec aacaggtete teetettggg eeetgattte agagteetet ttetcactag	1746
agactcaatg acagaagaga ggctgggact tggttgggca tgctgtggtt gctgagggat	1806
gagggggagg agagaggtag gagctggaga tgaagagact gctagaagca gcaggaagcc	1866
tgcccttctg ccctctcccc tecctgcccc tgtgtgagtc ttttagggag ggtgactggg	1926
aggtgccccc cgtcccacct ttttcctgtg ctctaggtgg gctaagtgcc tccctagagg	1986
actocatggo tgagaggoto otgggoagat ggggtoaagg otgggooagt occagatgaa	2046
gcctatggga gtcaggaccc tctccactct ccctctccac tccccttcct gttctcacct	2106
ggctgtgget ggccctgtgt ggggtgggta cactggaaaa caagaaggtt ggagttggtc	2166
taggacattg gttttaaatg acagttetgt gaactggtee aaggaggtte tgttattaaa	2226
gtgatatatg gtcttgaaaa aaaaaaaaa aaaaaaaaa	2265

<210> 10 <211> 457

A. ;

<212> PRT

<213> Homo sapiens

<400> 10

Met Ser Leu Met Leu Asp Asp Gln Pro Pro Met Glu Ala Gln Tyr Ala 1 5 10

Glu Glu Gly Pro Gly Pro Gly Ile Phe Arg Ala Glu Pro Gly Asp Gln 20 25 30

Gln His Pro Ile Ser Gln Ala Val Cys Trp Arg Ser Met Arg Arg Gly 35 40 45

Cys Ala Val Leu Gly Ala Leu Gly Leu Leu Ala Gly Ala Gly Val Gly 50 55 60

Ser Trp Leu Leu Val Leu Tyr Leu Cys Pro Ala Ala Ser Gln Pro Ile 65 70 75 80

Ser Gly Thr Leu Gln Asp Glu Glu Ile Thr Leu Ser Cys Ser Glu Ala 85 90 95

Ser Ala Glu Glu Ala Leu Leu Pro Ala Leu Pro Lys Thr Val Ser Phe 100 105 110

Arg Ile Asn Ser Glu Asp Phe Leu Leu Glu Ala Gln Val Arg Asp Gln 115 120 125

Pro Arg Trp Leu Leu Val Cys His Glu Gly Trp Ser Pro Ala Leu Gly 130 135 140

Leu Gln Ile Cys Trp Ser Leu Gly His Leu Arg Leu Thr His His Lys 145 150 155

Gly Val Asn Leu Thr Asp Ile Lys Leu Asn Ser Ser Gln Glu Phe Ala 165 170 175

Gln Leu Ser Pro Arg Leu Gly Gly Phe Leu Glu Glu Ala Trp Gln Pro 180 185 190

Arg Asn Asn Cys Thr Ser Gly Gln Val Val Ser Leu Arg Cys Ser Glu 195 200 205

Cys Gly Ala Arg Pro Leu Ala Ser Arg Ile Val Gly Gly Gln Ser Val 210 215 220

Ala Pro Gly Arg Trp Pro Trp Gln Ala Ser Val Ala Leu Gly Phe Arg 225 230 235 240

His Thr Cys Gly Gly Ser Val Leu Ala Pro Arg Trp Val Val Thr Ala  $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$ 

Åla His Cys Met His Ser Phe Arg Leu Ala Arg Leu Ser Ser Trp Arg 260 265 270

Val His Ala Gly Leu Val Ser His Ser Ala Val Arg Pro His Gln Gly 275 280 285

Ala Leu Val Glu Arg Ile Ile Pro His Pro Leu Tyr Ser Ala Gln Asn 290 295 300

His Asp Tyr Asp Val Ala Leu Leu Arg Leu Gln Thr Ala Leu Asn Phe 305 310 315 320

Ser Asp Thr Val Gly Ala Val Cys Leu Pro Ala Lys Glu Gln His Phe 325 330 335

Pro Lys Gly Ser Arg Cys Trp Val Ser Gly Trp Gly His Thr His Pro 340 345 350

Ser His Thr Tyr Ser Ser Asp Met Leu Gln Asp Thr Val Val Pro Leu 355 360 365

Phe Ser Thr Gln Leu Cys Asn Ser Ser Cys Val Tyr Ser Gly Ala Leu 370 375 380

Thr Pro Arg Met Leu Cys Ala Gly Tyr Leu Asp Gly Arg Ala Asp Ala 385 390 395 400

Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Pro Asp Gly Asp Thr 405 410 415

Trp Arg Leu Val Gly Val Val Ser Trp Gly Arg Ala Cys Ala Glu Pro  $420 \hspace{1cm} 425 \hspace{1cm} 430$ 

Asn His Pro Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile 435 440 445

His Asp Thr Ala Gln Asp Ser Leu Leu
450

<210> 11

<211>	99	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<220>		
	misc_feature	
<223>	Designed oligonucleotide to construct plasmid pSecTrypHis	
<400>	11	
	gget agcaacacca tgaatctact cetgateett acetttgttg etgetgetgt	60
tgctgc	cccc tttgacgacg atgacaagga tccgaattc	99
<210>	12	
<211>		
<212>		
<213>		
<220>		
<223>	Synthetic	
<220>		
	misc_feature	
<223>	Designed oligonucleotide to construct plasmid pSecTrypHis	
<400>	12	
gaatto	ggat cettgteate gtegteaaag ggggeageaa cageageage aacaaaggta	60
aggato	agga gtagattcat ggtgttgcta gccaagctt	99
<210>	13	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	
<220>		
<221>	misc_feature	
<223>	Designed oligonucleotide primer t amplify neurosin-encoding nce	seque
<400>	13	4.5
ttggtg	rcatg gcgga	15
<210>	14	
<211>	27	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic	

```
<220>
     <221>
            misc feature
            Designed oligonucleotide primer to amplify neurosin-encoding sequ
     <223>
     <400> 14
                                                                            27
     tcctcgagac ttggcctgaa tggtttt
     <210>
            15
     <211>
            35
     <212>
            DNA
     <213> Artificial Sequence
     <220>
     <223>
            Synthetic
     <220>
     <221> misc feature
     <223> Designed oligonucleotide primer to amplify a portion of plasmid p
            SecTrypHis/Neurosin
12 13
12 13
13 13
<400> 15
                                                                            35
     gcgctagcag atctccatga atctactcct gatcc
4
<210> 16
T. III
            29
     <211>
     <212>
            DNA
<213> Artificial Sequence
<220>
     <223>
            Synthetic
<220>
j.
     <221>
            misc_feature
            Designed oligonucleotide primer to amplify a portion of plasmid p
     <223>
            SecTrypHis/Neurosin
     <400> 16
                                                                            29
     tgaagcttgc catggaccaa cttgtcatc
     <210> 17
     <211>
           26
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223>
            Synthetic
     <220>
     <221>
            misc feature
            Designed oligonucleotide primer to amplify a portion of plasmid p
     <223>
            TrypHis
     <400> 17
                                                                            26
     ccaagettca ccatcaccat caccat
```

```
With Allers about their
                                  , and a state of the state of t
                                  Hall Many Moral
```

```
<210> 18
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer to amplify a portion of plasmid p
       TrypSigTag
<400> 18
gcacagtcga ggctgat
                                                                       17
<210> 19
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<223> Designed oligonucleotide primer to amplify a portion of plasmid p
       FBTrypSigTag
<400> 19
                                                                       17
caaatgtggt atggctg
<210> 20
<211>
       20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
<221> misc_feature
<223> Designed oligonucleotide primer to amplify conserved region of se
       rin proteases-encoding sequence
<220>
<221> misc_feature <222> (9)..(9)
<223> n is a, c, g or t.
<220>
<221> misc_feature
<222>
      (12)...(12)
<223> n is a, c, g or t.
```

```
genety glaste glass glass agene many may can genet glass own own on a genety can genety grant grant
```

# ( t j

```
<400> 20
                                                                     20
gtgctcacng cngcbcaytg
<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Synthetic
<220>
<221> misc feature
<223> Designed oligonucleotide primer to amplify conserved region of se
       rin proteases-encoding sequence
<220>
      misc feature
<221>
<222> (12)...(12)
<223> n is a, c, g or t.
<220>
      misc_feature
<221>
<222>
       (15)..(15)
<223> n is a, c, g or t.
<400> 21
                                                                      20
ccvctrwsdc cnccnggcga
<210>
       22
<211>
       21
<212>
       DNA
<213> Artificial Sequence
<220>
<223> Synthetic
<220>
       misc_feature
<221>
       Designed oligonucleotide primer designated as mBSSP2.0 for RACE f
<223>
        or mBSSP2 (forward)
 <400> 22
                                                                       21
 atggtggaga agatcattcc t
 <210> 23
 <211>
       19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic
 <220>
 <221> misc feature
 <223> Designed oligonucleotide primer designated as mBSSP2.1 for RACE f
```

### or mBSSP2 (forward)

<400> cacagto	23 gccc agaaccatg	19
<210> <211> <212> <213>	20	
<220> <223>	Synthetic	
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as mBSSPF4 for RACE r mBSSP2 (forward)</pre>	fo
<400> ctcaac	24 toto tgotagacog	20
<210><211><211><212><213>	20	
<220> <223>	Synthetic	
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as mBSSP2F5 toampli mature mBSSP2-encoding region (forward)</pre>	.fy
<400> atagtt	25 ggcg gccaagctgt	20
<211> <212>		
<220> <223>	Synthetic	
<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as mBSSP2.2 for RAG or mBSSP2 (reverse)</pre>	CE f
<400> cccago	26 cagaa cttactgcct	20
<210> <211>		

ė ( į j

```
<212> DNA
    <213> Artificial Sequence
    <220>
    <223>
           Synthetic
    <220>
    <221>
           misc feature
           Designed oligonucleotide primer designated as mBSSP2E2 for RACE f
    <223>
           or mBSSP2 (reverse)
    <400> 27
                                                                            20
    tgttgcagag gtgggtgctg
    <210>
            28
     <211>
            21
     <212>
           DNA
     <213> Artificial Sequence
     <220>
           Synthetic
     <223>
<220>
            misc_feature
     <221>
            Designed oligonucleotide primer designated as mBSSP2R2 for RACE f
     <223>
T
            or mBSSP2 (reverse)
梅損
     <400> 28
ļ,ž
                                                                             21
     taccattgtg tcctgcagtg t
1134
     <210>
            29
Wall Wall
            27
     <211>
     <212>
           DNA
<213> Artificial Sequence
77
i i
     <220>
     <223>
           Synthetic
     <220>
     <221>
            misc_feature
            Designed oligonucleotide primer designated as mBSSP2R5/E to ampli
     <223>
            fy full-length mBSSP2-encoding mRNA (reverse)
     <400> 29
                                                                             27
     tgaattctgc tgcttcttcg gctagcg
     <210>
            30
     <211>
            18
     <212>
           DNA
     <213> Artificial Sequence
     <220>
     <223> Synthetic
     <220>
            misc feature
     <221>
           Designed oligonucleotide primer designated as BSSP2SPF to amplify
```

## a portion of hBSSP2 (forward)

	<400> actgcto	30 gccc actgcatg 18	3
	<211> <212>		
	<220> <223>	Synthetic	
	<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as BSSP2SPR to amplif a portion of hBSSP2 (reverse)</pre>	У
	<400> cagggg	31 tccc ccgctgtctc c 2	1
and the state of t	<210> <211> <212> <213>		
	<220> <223>	Synthetic	
the first time and the first	<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as hBSSP2F11 for RACE for hBSSP2 (forward)</pre>	
ĻĴ ļA	<400> gctctc	32 aact tctcagacac 2	0
	<211> <212>	33 20 DNA Artificial Sequence	
	<220> <223>	Synthetic	
	<220> <221> <223>	<pre>misc_feature Designed oligonucleotide primer designated as hBSSP2R12 for RACE for hBSSP2 (reverse)</pre>	i ż
	<400> actcag	33 gctac cttggcgtag	20
	<210> <211>		

چ د د 🦫 🏂

```
<212> DNA
    <213> Artificial Sequence
    <220>
    <223>
           Synthetic
    <220>
    <221>
           misc feature
           Designed oligonucleotide primer designated as hBSSP2R11 for RACE
    <223>
           for hBSSP2 (reverse)
    <400> 34
                                                                           20
    cctggagcat atccgagctg
    <210>
           35
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223>
           Synthetic
ű
    <220>
71
    <221>
           misc feature
Designed oligonucleotide primer designated as hBSSP2F12 to amplif
    <223>
y full length hBSSP2 (forward)
F. 11
    <400> 35
18
    gctttacaac agtgctac
F
    <210>
           36
    <211>
           28
W.J
    <212>
           DNA
1.4
    <213> Artificial Sequence
.
.
.
    <220>
    <223>
           Synthetic
    <220>
    <221>
           misc feature
           Designed oligonucleotide primer designated as hBSSP2R13/E to ampl
     <223>
            ify full length hBSSP2 (reverse)
    <400> 36
                                                                            28
    tggaattcga ggaaacagca ggactcag
    <210>
           37
     <211>
           19
     <212>
           DNA
     <213>
           Artificial Sequence
     <220>
     <223>
           Synthetic
     <220>
     <221>
           misc feature
     <223> Designed oligonucleotide primer for RACE for hBSSP2
```

<400> 37 tactagtcga cgcgtggcc <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> <221> misc feature <400> 38 actgctgccc actgcatg w. <210> 39 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic j-2-<220> The state of the s <221> misc feature <223> tect hBSSP2 <400> 39 <210> 40 <211> 117 <212> DNA <213> Artificial Sequence <220> <223> Synthetic <220> <221> misc feature

8 63 1

19 <223> Designed oligonucleotide primer designated as hBSSP2F13 to amplif y a portion of hBSSP2 (forward) 18 Designed oligonucleotide primer designated as FBTrpsigtagF5 to de gcgctagcag atctccatga atctactcct gatcc 35 Designed oligonucleotide to construct plasmid pTrypHis <400> 40 aagettgget ageaacacca tgaatetact cetgateett acetttgttg etgetgetgt 60 tgctgccccc tttcaccatc accatcacca tgacgacgat gacaaggatc cgaattc 117 <210> 41 <211> 117

Page 27

```
<212> DNA
                   <213> Artificial Sequence
                   <220>
                   <223>
                                               Synthetic
                   <220>
                   <221> misc feature
                   <223> Designed oligonucleotide to construct plasmid pTrypHis
                  <400> 41
                  gaattcggat ccttgtcatc gtcgtcatgg tgatggtgat ggtgaaaggg ggcagcaaca
                                                                                                                                                                                                                                                                                                                                 60
                  gcagcagcaa caaaggtaag gatcaggagt agattcatgg tgttgctagc caagctt
                                                                                                                                                                                                                                                                                                                                 117
                  <210> 42
                   <211>
                                              5
                   <212> PRT
                  <213> Artificial Sequence
                  <220>
                  <223> Synthetic
The first state of the state of
                  <400> 42
                  Asp Asp Asp Lys
ļ.
                  <210> 43
                  <211> 4
<212> PRT
                  <213> Artificial Sequence
<220>
þě
                  <223> Synthetic
                  <400> 43
                  Leu Val His Gly
                  <210> 44
                  <211> 37
                  <212> DNA
                  <213> Artificial Sequence
                  <220>
                  <223> Synthetic
                  <400> 44
```

37

ggccacgcgt cgactagtac ttttttttt tttttt

# PTO/PCT Rec'd 1 4 AUG 2001

形

AUG 1 4 2001 BY AUG 1 4 2001 B

In re Application of: ) Art Unit:

H. UEMURA, et al. ) Examiner:

Serial No.: 09/856,371 ) Confirmation No.

Filed: May 21, 2001 ) Washington D.C.

For: NOVEL SERINE PROTEASE ) August 14, 2001

BSSP2

### PRELIMINARY AMENDMENT

Honorable Commissioner for Patents Washington, D.C. 20231

Prior to examination of the above-identified application, please enter the following Preliminary Amendment:

#### IN THE SPECIFICATION

Page 1, please amend the second paragraph as follows:

In general, proteases are biosynthesized as inactive precursors. They undergo limited hydrolysis in molecules to be converted into activated type proteases. In so far as enzymes are proteases, they have an activity for hydrolyzing a peptide bond, while their actions vary according to kinds of proteases. According to a particular kind of catalytic site, proteases are divided into serine proteases, cysteine proteases, aspartate proteases, metal proteases and the like. Proteases of each kind have a variety of properties, ranging from a protease having general digestive properties to a protease having various regulatory domains and strict substrate specificity, thereby specifically hydrolyzing

only characteristic proteins.

Page 2, please amend the paragraph on page 2 as follows:

Further, proteins undergo various types of processing even after translation to produce active proteins. In many secretory proteins, a protein is first synthesized on the ribosome in cytoplasm as an inactive precursor (pro-form) which comprises an active protein bearing at the N-terminus thereof a peptide of about 15 to 60 amino acids responsible for secretion (secretory signal). This peptide region is concerned with the mechanism for passing through the cell membrane and is removed upon cleavage by a specific protease during the passage through the membrane, in almost all the cases, to produce the mature form. A secretory signal has a broad hydrophobic region comprising hydrophobic amino acids in the middle of the sequence, and basic amino acid residues at a site close to the N-terminus. A secretory signal is a synonym for a signal peptide. In addition, in some proteins, a peptide moiety which functions as a secretory signal is further attached to the N-terminus of the inactive precursor (pro-form). Such a protein is called a prepro-protein (prepro-form).

Page 3, please amend the first paragraph as follows:

For example, trypsin is present in the form of a prepro-form immediately after translation into amino acids.

After being secreted from cells, it is present in the form of a pro-form and is then converted into active trypsin in the duodenum upon limited hydrolysis by enteropeptidase or by trypsin itself.

Page 3, please amend the second paragraph as follows:

The optimal pH range of serine proteases is neutral to weak alkaline and, in general, many of them have a molecular weight of about 30,000 or lower. All proteases relating to blood coagulation, fibrinolysis and complement systems having a large molecular weight belong to the family of trypsin-like serine proteases. They have many regulator domains and form a protease cascade which is of very importance to reactions in a living body.

Page 4, please amend the first paragraph as follows:

Serine proteases expressed in a brain-nerve system

such as neurosin are considered to play various roles in the

brain-nerve system. Therefore, there is a possibility that

isolation of a gene encoding a novel protease expressed in a

brain-nerve system and production of a protein using the gene

would be useful for diagnosis or therapy of various diseases related to the brain-nerve system.

Page 4, please amend the second paragraph as follows:

Nowadays, in general, clinical diagnosis of Alzheimer's disease is based on the diagnosis standard of DSM-IIIR and NINCDS-ADRDA (Mckhann, G. et al., Neurology, 34. 939, 1994) or the diagnosis standard of DSM-IV (American Psychiatric Association; Diagnostic and statistical manuals of mental disorders, 4th ed., Washington DC, American Psychiatric Association, 1994). However, these standards are conditioned by a decline in recognition functions which causes a severe disability in daily life or social life. Then, it is pointed out that the diagnosis is less than scientifically objective because the diagnosis may be influenced by the level of an individual's social life and further the specialty and experience of a physician who diagnoses particular conditions. In addition, definite diagnosis of Alzheimer's disease is conducted by pathohistological analyses and, in this respect, substantial inconsistency between clinical diagnosis and autopsy diagnosis exists.

Page 5, please amend the paragraph on page 5 as follows:

At present, image diagnosis is employed as a supplemental means in clinical diagnosis of Alzheimer's diagnosis and it is possible to analyze brain functions, for example, decline of metabolism and atrophy in specific sites such as hippocampus, parietal lobe of cerebral cortex and the like which are specific for Alzheimer's disease by PET and SPECT. However, to define Alzheimer's disease based on lowering of a blood flow from parietal lobe to temporal lobe is very dangerous. In addition, there is a report showing that MRS test is useful for patients with dementia including those of Alzheimer's disease. Further, although CT-MRI image diagnosis is used, a lesion of white matter such as atrophy of brain, PVL or the like is not specific for Alzheimer type dementia. Since it has been reported that atrophy of brain proceeds with aging, the above observation is not necessarily found in Alzheimer type dementia. Furthermore, since an image obtained by MRI varies according to strength of a magnetic field, performance of the apparatus and imaging conditions, numerical data obtained in different facilities cannot be compared with each other except for atrophic change. addition, there is a limit to image measurement. Further, enlargement of the ventricle can be recognized in vascular dementia cases and there are cases wherein atrophy of the

hippocampus is observed after ischemia of the basilar artery.

Page 6, please amend the fourth paragraph as follows:

Further, data obtained in different facilities can be compared with each other by using the same diagnosis marker. Therefore, development of biological diagnosis markers is recognized to be a most important field among fields of Alzheimer's disease studies and its future prospects will be expected. Approaches to development of biological diagnosis markers up to now are divided into those based on constitute components of characteristic pathological changes of Alzheimer's disease such as senile plaque and neurofibril change, and an approach based on other measures. Examples of the former include cerebrospinal fluid tau protein,  $A\beta$  and its precursor,  $\beta$ APP. Examples of the latter include mydriasis test with cholilytic drug, Apo E and other genes relating to Alzheimer's disease. However, no good results have been obtained.

Page 7, please amend the paragraph on page 7 as follows:

Serine proteases are also considered to play an important role in cancer cells. The reason why extermination of cancer by surgical treatment or topical irradiation of

radioactive ray is difficult is the metastatic capability of cancer. To spread solid tumor cells in a body, they loosen their adhesion to original adjacent cells, followed by separating from original tissue, passing through other tissues to reach the blood vessels or lymph nodes, entering into the circulatory system through stratum basal and endothelial layer of the vessel, leave from the circulatory system at somewhere in the body, and surviving and proliferating in a new environment. While adhesion to adjacent epidermal cells is lost when expression of cadherin which is an intercellular adhesive molecule of epithelium is stopped, to break through tissues is considered to depend on proteolytic enzymes which decompose an extracellular matrix.

Page 8, please amend the first paragraph as follows:

As enzymes which decompose the matrix, mainly, metal proteases (Rha, S. Y. et al., Breast Cancer Research

Treatment, 43, 175, 1997) and serine proteases are known.

They cooperate to decompose matrix proteins such as collagen, laminin and fibronectin. Among the serine proteases known to be concerned in decomposition of the matrix, in particular, there is urokinase type plasminogen activator (U-PA). U-PA has a role as a trigger specific for a protein decomposition chain reaction. Its direct target is plasminogen. It is present in blood abundantly and is a precursor of an inactive

serine protease which accumulates in reconstructed sites of tissues such as injured sites and tumors as well as inflammatory sites. In addition, as proteases which are concerned in metastasis and infiltration of cancers, for example, a tissue factor, lysosomal type hydrolase and collagenase have been known.

Page 8, please amend the second paragraph as follows:

At present, cancer is the top cause of death in Japan and more than 200,000 people die per year. Accordingly, specific substances which can be used as markers for diagnosis and therapy or prophylaxis of cancer are studied intensively. Such specific substances are referred to as tumor markers or tumor marker relating biomarkers. They are utilized in aid of diagnosis before treatment of cancer, for presuming carcinogenic organ and pathological tissue type, for monitoring effect of treatment, for finding recurrence early, for presuming prognosis, and the like. At present, tumor markers are essential in clinical analyses. Among them, alpha fetoprotein (AFP) which has high specificity to hepatocellular carcinoma and yolk sac tumor (Taketa K. et al., Tumour Biol., 9, 110, 1988), and carcinoembronic antigen (CEA) are used worldwide. In the future, tumor markers will be required more and more, and it is desired to develop, for example, organ

specific markers and tumor cell specific markers which are highly reliable serologic diagnosis of cancer. Up to now, humunglandular kallikrein (hK2) which is a serine protease expressed at human prostatic epithelial cells has been reported as a marker for prostatic cancer. And, hK2 has 78% homology with the sequence of prostatic specific antigen (PSA) and PSA is also used widely as a biochemical marker of prostatic cancer (Mikolajczyk, S. d. et al., Prostate, 34, 44, 1998; Pannek, J. et al., Oncology, 11, 1273, 1997; Chu, T. M. et al., Tumour Biology, 18, 123, 1997; Hsieh, M. et al., Cancer Res., 57, 2651, 1997). Further, hK2 is reported to be useful as a marker for not only prostatic cancer but also stomach cancer (Cho, J. Y. et al.. Cancer, 79, 878, 1997). Moreover, CYFRA (CYFRA 211) for measuring cytokeratin 19 fragment in serum is reported to be useful for lung cancer (Sugiyama, Y. et al., Japan J. Cancer Res., 85, 1178, 1994). Gastrin release peptide precursor (ProGRP) is reported to be useful as a tumor marker (Yamaguchi, K. et al., Japan, J. Cancer Res., 86, 698, 1995).

Page 10, please amend the second paragraph as follows:

Under these circumstances, the present inventors have succeeded in cloning cDNA encoding novel human and mouse serine proteases.

Page 10, please amend the third paragraph as follows:

In summary, the 1st feature of the present invention is the amino acid sequences of biologically active mature serine proteases BSSP2 and nucleotide sequences encoding the amino acid sequences.

Page 18, please amend the second paragraph as follows:

In case of northern blotting analysis, mBSSP2 shows the expression in the head of a 15-20 days mouse fetus, and in the lung, prostate and testicle of a 3 month-old mouse. hBSSP2 shows the expression in brain, skeletal muscle and liver (see Figs. 1, 2 and 5). In case of RT-PCR analysis, mBSSP2 shows the expression in the brain and testicle of a 12 day-old mouse, and hBSSP2 shows the expression in the brain and skeletal muscle. Then, the novel proteases of the present invention are presumed to play various roles in the brain, prostate, lung, testicle, skeletal muscle and liver. For example, in the brain, there is a possibility that they can be used for treatment and diagnosis of brain diseases such as Alzheimer's disease (AD), epilepsy, brain tumor and the like. Further, in other tissues, there is a possibility that BSSP2 of the present invention and a gene encoding it can be used for treatment and diagnosis of various diseases such as

cancer, inflammation, infertility, prostatomegaly and the like. Further, it is presumed they may have a certain influence on blood coagulation, fibrinolysis and complement systems. Furthermore, there is a possibility that inhibitors of serine proteases can be used for treatment and diagnosis of Alzheimer's disease, epilepsy, cancer, inflammation, infertility, prostatomegaly and the like.

Page 22, please amend the paragraph on page 22 as follows:

In general, many genes of eucaryotes exhibit polymorphism and, sometimes, one or more amino acids are substituted by this phenomenon. Further, even in such a case, sometimes, a protein maintains its activity. Then, the present invention includes a gene encoding a protein obtained by modifying a gene encoding any one of the amino acid sequences represented by SEQ ID NOS: 2, 4, 6, 8 and 10, artificially, in so far as the protein has the characteristic function of the gene of the present invention. Further, the present invention includes a protein which is a modification of any one of amino acid sequences represented by SEQ ID NOS: 2, 4, 6, 8 and 10 in so far as the protein has the characteristics of the present invention. Modification is understood to include substitution, deletion, addition and/or insertion. In particular, the present inventors have shown

that, even when several amino acids are added to or deleted from the N-terminus amino acid of the BSSP2 mature protein represented by SEQ ID NO: 2, the resultant sequence maintains its activity.

Page 23, please amend the first paragraph as follows:

That is, the present invention includes a protein comprising any one of the amino acid sequences described in SEQ ID NOS: 2, 4, 6, 8 and 10; an amino acid sequence encoded 5 by any one of the nucleotide sequences represented by SEQ ID NOS: 1, 3, 5, 7 and 9; or one of these amino acid sequences wherein one to several amino acids have been substituted, deleted, added and/or inserted, and belonging to serine protease family.

Page 23, please amend the second paragraph as follows:

Each codon for the desired amino acid itself has been known and can be selected freely. For example, codons can be determined according to a conventional manner by taking into consideration the frequency of use of codons in a host to be utilized (Grantham, R. et al., Nucleic Acids Res., 9, r43, 1989). Therefore, the present invention also includes a nucleotide sequence appropriately modified by

taking into consideration the degeneracy of a codon. Further, these nucleotide sequences can be modified by a site directed mutagenesis using a primer composed of a synthetic oligonucleotide encoding the desired modification (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA., 81, 5662, 1984), or the like.

Page 23, please amend the third paragraph as follows:

Furthermore, the DNA of the present invention includes DNA which is hybridizable to any one of the nucleotide sequences described in SEQ ID NOS: 1, 3, 5, 7 and 9 or nucleotide sequences complementary to these nucleotide sequences in so far as the protein encoded by the nucleotide sequence has the same properties as those of the BSSP2 of the present invention. It is considered that many of the sequences which are hybridizable to a given sequence under stringent conditions have a similar activity to that of a protein encoded by the given sequence. The stringent conditions according to the present invention includes, for example, incubation in a solution containing 5 x SSC, 5% Denhardt's solution (0.1% BSA, 0.1% Ficol 1400, 0.1% PVP), 0.5% SDS and 20 µg/ml denatured salmon sperm DNA at 37°C overnight, followed by washing with 2 x SSC containing 0.1% SDS at room temperature. Instead of SSC, SSPE can be

In re Appl. No. 09/856,371 appropriately used.

Page 25, please amend the second paragraph as follows:

The present invention also relates to a vector comprising the nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 2; the nucleotide sequence represented by SEQ ID NO: 3 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 4; the nucleotide sequence represented by SEQ ID NO: 5 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 6; the nucleotide sequence represented by SEQ ID NO: 7 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 8; or the nucleotide sequence represented by SEQ ID NO: 9 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 10; or a nucleotide sequence similar to them. A nucleotide sequence similar to a given nucleotide sequence used herein means a nucleotide sequence which is hybridizable to the given nucleotide sequence or its complementary nucleotide sequence under the above-described stringent conditions and which encodes a protein having the same properties as those of the protein encoded by the nucleotide sequence.

Page 28, please amend the first paragraph as follows:

The animal cells and insect cells used herein include cells derived from human beings and cells derived from flies or silk worms. For example there are CHO cells, COS cells, BHK cells, Vero cells, myeloma cells, HEK293 cells, HeLa cells, Jurkat cells, mouse L cells, mouse C127 cells, 10 mouse FM3A cells, mouse fibroblast, osteablast, cartilage cells, S2, Sf9, Sf21, High Five™ (registered trade mark) cells and the like.

Page 28, please amend the second paragraph as follows:

The protein of the present invention as such can be expressed as a recombinant fused protein so as to facilitate isolation, purification and recognition. The recombinant fused protein used herein means a protein expressed as an adduct wherein a suitable peptide chain is added to the N-terminus and/or C-terminus of the desired protein expressed by a nucleotide sequence encoding the desired protein. The recombinant protein used herein means that obtained by integrating a nucleotide sequence encoding the desired protein in the expression vector of the present invention and cut off an amino acid sequence which derived from nucleic acids other than those encoding the desired protein from the expressed recombinant

fused protein, and is substantially the same as the protein of the present invention.

Page 29, please amend the first paragraph as follows:

Introduction of the above vector into host cells can be carried out by, for example, transfection according to the lipopolyamine method, DEAE-dextran method, Hanahan method, lipofectin method or calcium phosphate method, microinjection, eletroporation and the like.

Page 33, please amend the first paragraph as follows:

For obtaining fertilized egg cells efficiently, ovulation may be induced with gonadotropin or the like.

Fertilized egg cells are recovered and a gene in an injection pipette is injected into male pronucleus of the egg cells by microinjection. For returning the injected egg cells to a fallopian tube, an animal (false pregnancy female mouse, etc.) is provided and about 10 to 15 eggs/mice are transplanted. Then, genomic DNA is extracted from the end part of the tail to confirm whether the transgene is introduced into newborn mouse or not. This confirmation can be carried out by detection of the transgene with southern blot technique or PCR technique, or by positive cloning

wherein a marker gene, which is activated only when homologous recombination is caused, has been introduced. Further, transcribed products derived from the transgene are detected by northern blot technique or RT-PCR technique to confirm expression of the transgene. Or, western blotting can be carried out with a specific antibody to a protein.

Page 33, please amend the second paragraph as follows:

The knockout mouse of the present invention is treated so that the function of mBSSP2 gene is lost. A knockout mouse means a transgenic mouse in which any one of its genes is destroyed by homologous recombination technique so that its function is deficient. A knockout mouse can be created by carrying out homologous recombination with ES cells and selecting embryonic stem cells wherein either of allele genes are modified or destroyed. For example, embryonic stem cells whose genes are manipulated at the blastocyte or morula stage of fertilized eggs are injected to obtain a chimeric mouse wherein cells derived from the embryonic stem cells are mixed with those derived from The chimeric mouse (chimeric means a single the embryo. individual formed by somatic cells based on two or more fertilized eggs) can be mated with a normal mouse to create a heterozygote mouse wherein all of the allele genes have been

modified or destroyed. Further, a homozygote mouse can be created by mating heterozygote mice.

Page 37, please amend the paragraph on page 37 as follows:

Examples of myeloma cells include X-63Ag8, NS-1, P3U1, SP2/0, AP-1 and the like with SP2/0 being preferred. preferred ratio of the number of the antibody producer cells (spleen cells) : the number of spleen cells are 1 : 20 to 20 : PEG (preferably PEG 1000 to PEG 6000) is added at a concentration of about 10 to 80% and the mixture is incubated at 20 to  $40\,^{\circ}\text{C}$ , preferably 30 to  $37\,^{\circ}\text{C}$  for 1 to 10 minutes to carry out the cell fusion efficiently. Screening of anti-hBSSP2 or mBSSP2 antibody producer hybridomas can be carried out by various For example, a supernatant of a hybridoma culture is methods. added to a solid phase to which hBSSP2 or mBSSP2 antigen is adsorbed directly or together with a carrier (e.g., microplate), followed by addition of an anti-immunoglobulin antibody (in case that the cells used in cell fusion are those of a mouse, antimouse immunoglobulin antibody is used) or protein A to detect the anti-hBSSP2 or mBSSP2 monoclonal antibody attached to the solid phase. Or, a supernatant of a hybridoma culture is added to a solid phase to which an anti-immunoglobulin antibody or protein A is adsorbed, followed by addition of hBSSP2 or mBSSP2 labeled with a radioactive substance, an enzyme, etc., to detect the

anti-hBSSP2 or mBSSP2 monoclonal antibody attached to the solid phase.

Page 38, please amend the first paragraph as follows: Selection and cloning of the anti-hBSSP or mBSSP monoclonal antibody can be carried out according to a per se known method or its modification. Normally, a HAT (hypoxanthine, aminopterin, thymidine)-added medium for culturing animal cells is used. Any culture medium can be used for selection, cloning and growing up in so far as the hybridoma can grow. For example, there can be used RPMI culture medium containing 1 to 20%, preferably 10 to 20% fetal bovine serum, a serum-free medium for culturing hybridomas. Preferably, the culture is carried out at a temperature of about 37°C. Normally, the culture time is 5 days to 3 weeks, preferably 1 week to 2 weeks. Normally, the culture is carried out under 5%  $CO_2$ . The antibody titer of a supernatant of a hybridoma culture can be measured according to the same manner as that of the above-described measurement of anti-BSSP2 antibody titer in an antiserum. That is, examples of the measurement to be used include radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), FIA (fluorescence immunoassay), plaque assay, agglutination reaction method, and the like. Among them, ELISA as shown below is preferred.

Page 39, please amend the paragraph on page 39 as follows:

Normally, cloning is carried out by a per se known method such as semi-solid agar method, limiting dilution method and the like. Specifically, after confirming a well in which the desired antibody is produced by the above-described method, cloning is carried out to obtain a single clone. For cloning, it is preferred to employ limiting dilution method wherein hybridoma cells are diluted so that one colony is formed per one well of a culture plate. For cloning by limiting dilution method, feeder cells can be used, or a cell growth factor such as interleukin 6, etc. can be added to improve colony forming capability. In addition, cloning can be carried out by using FACS and single cell manipulation method. The cloned hybridoma is preferably cultured in a serum-free culture medium and an optimal amount of an antibody is added to its supernatant. The single hybridoma thus obtained can be cultured in a large amount by using a flask or a cell culture device, or cultured in the abdominal cavity of an animal (J. Immunol. Meth., 53, 313, 1982) to obtain a monoclonal antibody. When culturing in a flask, there can be used a cell culture medium (e.g., IMDM, DMEM, RPMI1640, etc.) containing 0 to 20% of FCS. When culturing in the abdominal cavity of an animal, the animal to be used is preferably the same species or the same line as that from which the myeloma cells used in the cell fusion are derived, a thymus

deficient nude mouse or the like, and the hybridoma is transplanted after administration of a mineral oil such as pristane, etc. After 1 to 2 weeks, myeloma cells are proliferated in the abdominal cavity to obtain ascites containing a monoclonal antibody.

Page 42, please amend the paragraph on page 42 as follows:

The polyclonal antibody of the present invention can be produced according to a per se known method or modification. For example, an immunogen (protein antigen) per se or a complex thereof with a carrier protein is prepared and, according to the same manner as that in the above monoclonal antibody production, a warm-blooded animal is immunized. material containing an antibody against the protein of the present invention or its fragment is collected from the immunized animal and the antibody is separated and purified to obtain the desired antibody. As for a complex of an immunogen and a carrier protein for immunizing a warm-blooded animal, the kind of a carrier protein and the mixing ratio of a carrier and a hapten are not specifically limited in so far as an antibody against hapten immunized by cross-linking with the carrier is efficiently For example, there can be used about 0.1 to 20, preferably about 1 to 5 parts by weight of bovine serum albumin, bovine cycloglobulin, hemocyanin, etc. coupled with one part by

weight of a hapten. For coupling a carrier and a hapten, various condensing agents can be used. Examples thereof include glutaraldehyde, carbodiimide or maleimide active ester, active ester agents having thiol group or dithiopyridyl group, and the like. The condensed product is administered as such or together with a carrier or diluent to a site of a warm-blooded animal where an antibody can be produced. For enhancing the antibody production, upon administration, Freund's complete adjuvant or Freund's incomplete adjuvant may be administered. Normally, the administration is carried out once every 2 to 6 weeks, 3 to 10 The polyclonal antibody can be collected from times in all. blood, ascites, or the like, preferably blood of the immunized The polyclonal antibody titer in an antiserum can be measured according to the same manner as measurement of the above monoclonal antibody titer in the antiserum. Separation and purification of the polyclonal antibody, like monoclonal antibody, can be carried out according to the same manner as those of immunoglobulins.

Page 44, please amend the second paragraph as follows:

As a sandwich method for determining hBSSP2 or mBSSP2
or a fragment thereof, there can be used a two step method, a one
step method and the like. In the two step method, first, the
immobilized antibody is reacted with hBSSP2 or mBSSP2 or a
fragment thereof and then unreacted materials are completely

removed by washing, followed by addition of the labeled antibody to form immobilized antibody-hBSSP2 or mBSSP2-labeled antibody. In the one step method, the immobilized antibody, labeled antibody and hBSSP2 or mBSSP2 or a fragment thereof are added at the same time.

Page 45, please amend the second paragraph as follows: For immobilization of the antibody, a known chemical bonding method or a physical adsorption can be used. Examples method chemical bonding method include а glutaraldehyde; maleimide method using N-succinimidyl-4-(Nmaleimidomethyl)cyclohexane-1-carboxylate, N-succinimdyl-2maleimide acetate or the like; carbodiimide method using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; or the like. In addition, there are maleimidobenzoyl-N-hydroxysuccinimide ester method, N-succinimidyl-3-(2-pyridylthio)propionic acid method, bisdiazobenzidine method, and dipalmityllysine method. Or, it is possible to capture a complex formed beforehand by reacting a material to be tested with two antibodies, whose epitopes are different, with an immobilized a 3rd antibody against the antibody.

Page 46, please amend the paragraph on page 46 as follows:

For labeling, it is preferred to use an enzyme, fluorescent substance, luminous substance, radioactive substance, metal chelate, or the like. Examples of the enzyme include peroxidase, alkaline phosphatase,  $\beta$ -D-galactosidase, malate dehydrogenase, Staphylococcus nuclease,  $\delta$ -5-steroidisomerase,  $\alpha$ glycerol phosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, asparaginase, glucose oxidase, urease, catalase, glucose-6-phosphate ribonuclease, dehydrogenase, glucoamylase, acetylcholinesterase and the like. Examples of the fluorescent substance include fluorescein isothiocyanate, phycobiliprotein, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthalaldehyde, and the like. Examples of the luminous substance include isoluminol, lucigenin, luminol, aromatic acridinium ester, imidazole, acrdinium salt and its modified ester, luciferin, luciferase, aequorin and the like. Examples of the radioactive substance include 125I, 127I, 131I, 14C,  3 H,  32 P,  35 S and the like. The labeling material is not limited to them and any material which can be used for immunological determination can be used. Further, a low molecular weight hapten such as biotin, dinitrophenyl, pyridoxal or fluorescamine may be attached to the antibody. Preferably, horseradish peroxidase is used as a labeling enzyme. This enzyme can be reacted with various substrates and can readily be attached to

the antibody by periodate method.

Page 47, please amend the first paragraph as follows: When an enzyme is used as a labeling material, a substrate and, if necessary, a coloring enzyme is used for measuring its activity. In case of using peroxidase as the enzyme,  $H_2O_2$  is used as a substrate and, as a coloring agent, there can be used 2,2'-azino-di-[3-ethylbenzthiazoline sulfonic acidl ammonium salt (ABTS), 5'-aminosalicylic acid, ophenylenediamine, 4-aminoantipyrine, 3,3',5,5'tetramethylbenzidine and the like. In case of using alkaline phosphatase as the enzyme, o-nitrophenylphosphate, pnitrophenylphosphoric acid, or the like can be used as a substrate. In case of using  $\beta\text{-D-galactosidase}$  as the enzyme, fluorescein-d-( $\beta$ -D-galactopyranoside), 4-methylumbelliphenyl- $\beta$ -Dgalactopyranoside, or the like can be used as a substrate. present invention also includes a kit comprising the above monoclonal antibody, polyclonal antibody and reagents.

Page 47, please amend the second paragraph as follows:

As a cross-linking agent, a known cross-linking agent such as N,N'-o-phenylenedimaleimide, 4-(N-maleimidomethyl)cyclohexanoate-N-succinimide ester, 6-maleimidohexanoate-N-succineimide ester, 4,4'-dithiopyridine or the like can be utilized. The reaction of these cross-linking

agents with enzymes and antibodies can be carried out by a known method according to properties of a particular cross-linking agent. Further, as the antibody, a fragment thereof, for example, Fab', Fab, F(b'2) can be used as the case may be. A labeled enzyme can be obtained by the same treatment regardless of whether the antibody is polyclonal or monoclonal. When the above labeled enzyme obtained by using a cross-linking agent is purified by a known method such as affinity chromatography or the like, an immunoassay system having more higher sensitivity can be obtained. The enzyme labeled and purified antibody is stored in a dark cold place with addition of a stabilizer such as thimerosal, glycerin or after lyophilization.

Page 49, please amend the paragraph on page 49 as follows:

The cloning was carried out by PCR using a mouse brain cDNA library (Clontech) as a template and nucleotide sequences corresponding to an amino acid sequence common to serine proteases represented by

Primer 1: GTG CTC ACN GCN GCB CAY TG (SEO ID NO: 20)

Primer 2: CCV CTR WSD CCN CCN GGC GA (SEQ ID NO: 21)

as primers. Namely, 5  $\mu$ l of the template, 5  $\mu$ l of 10 x ExTaq buffer, 5  $\mu$ l of dNTP, 10 pmol of each of the above primers and 0.5  $\mu$ l of ExTaq (TAKARA) were added and the total volume was adjusted to 50  $\mu$ l with sterilized water. PCR was carried out by

repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for 1 minute, 30 times. product was mixed with pCR II-TOPO vector attached to TOPO TA cloning kit (Invitrogen) and the mixture was allowed to stand at temperature for 5 minutes. Then, according to conventional manner, E. coli Top 10 attached to the kit was transformed and applied to a LB (Amp+) plate (containing 100 ug/ml of ampicillin). According to a conventional manner, a plasmid was extracted from each colony obtained and its nucleotide sequence was determined by cycle sequencing method with a fluorescence sequencer (ABI). Homology of the sequence of each clone was examined by means of GenBank. Regarding an unknown sequence, i.e., BSSP2 gene, the full length cDNA was obtained by 5' RACE and 3' RACE and, according to the same manner as described above, the nucleotide sequence was determined. Namely, BSSP2 clone specific primers, GSP1 primers [mBSSP2.2 (SEQ ID NO: 27) or mBSSP2.0 (SEQ ID NO: 22)] and GSP2 primers [mBSSP2R2 (SEQ ID NO: 28) or mBSSP2.1 (SEQ ID NO: 23)] were PCR was carried out by using mouse brain Marathon-Ready cDNA (Clontech), AP1 primer attached to this reagent and either of the above GSP1 primers and heating at 94°C for 2 minutes once and repeating a cycle of heating at 94°C for 30 seconds, at 60°C for 30 seconds and then at 72°C for 30 seconds 35 times. Then, 5  $\mu$ l of the PCR product diluted to 1/100, 5  $\mu$ l of 10 x buffer, 5 µl of dNTP, 10 pmol of either of 10 µM of the

above GSP2 primer, 10 pmol of AP2 primer attached to the above reagent and 0.5 unit of ExTaq were admixed and adjusted to 50 µl with sterilized water. Then, according to the same manner as the above, PCR was carried out. The PCR product was cloned by the above TOPO TA cloning kit and sequenced to obtain the upstream and downstream regions of the above clone. At this time, as for a clone which seemed not to cover the full length of a protein, the specific primers shown hereinafter were prepared based on the newly found nucleotide sequence. Further, based on this sequence, the primers capable of amplifying ORF as hereinafter [mBSSPF7 (SEQ ID NO: 26), mBSSP2R/E (SEQ ID NO: 29)] were prepared and PCR carried out using mouse brain Marathonready cDNA as a template to confirm that these clones were identical. This was cloned into pCR II-TOPO vector attached to TOPO TA cloning kit to obtain the plasmid pCR II/mBSSP2 containing the full length cDNA clone. The nucleotide sequence of DNA contained in this plasmid is shown in SEQ ID NO: 7 and the amino acid sequence of mSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 8. Further, two different types of clones were obtained. The nucleotide sequences of these DNA are shown in SEQ ID NOS: 3 and 5, respectively. The amino acid sequences of mBSSP2 proteins deduced from these nucleotide sequences are shown in SEQ ID NOS: 4 and 6. These novel proteases are divided into types 1, 2 and 3. Type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids and

type 3 is composed of 445 amino acids. These amino acid sequences contained the common amino acid sequence composed of 238 amino acids whose N-terminus side started with Ile-Val-Gly-Gly-Gln-Ala-Val as the mature serine protease. Further, in the amino acid sequence of the mature serine protease, a consensus sequence having a serine protease activity was contained. Furthermore, since there were two or more amino acid sequences specific for a sugar chain bonding site, it was presumed that the amino acid sequence had at least two sugar chains.

Page 53, please amend the paragraph on page 53 as follows:

As seen from Figs. 1 and 2, in the case of northern blotting analysis, the expression of mBSSP2 was recognized in the head of 15th to 20th day fetuses of mice and, as to the 3-month-old mice, the expression was recognized in the prostate and testicle. Further, according to the results of RT-PCR, the expression was recognized in the head of 12-day-old mice and the testicle of 3-month-old mice.

## IN THE CLAIMS

Cancel claims 1-19 and 37-40 and enter the following new claims:

41. (New) A protein selected from the group consisting of:

- (a) a protein having the amino acid sequence of 238 amino acids represented by SEQ ID NO: 2;
- (b) a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 2 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 2;
- (c) a protein having the amino acid sequence of 273 amino acids represented by SEQ ID NO: 4;
- (d) a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 4 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 4;
- (e) a protein having the amino acid sequence of 311 amino acids represented by SEQ ID NO: 6;
- (f) a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 6 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 6;
- (g) a protein having the amino acid sequence of 455 amino acids represented by SEQ ID NO: 8;
- (h) a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 8 by

deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 8;

- (i) a protein having the amino acid sequence of 240 amino acids represented by the 1st to 240th amino acids of SEQ ID NO: 10;
- (j) a protein having an amino acid sequence derived from the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10;
- (k) a protein having the amino acid sequence of 457 amino acids represented by the -217th to 240th amino acids of SEQ ID NO: 10;
- (1) a protein having an amino acid sequence derived from the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10;
- (m) a protein having the amino acid sequence of 217 amino acids represented by the -217th to -1st amino acids of SEQ ID NO: 10;

- (n) a protein having an amino acid sequence derived from the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10; and
- (o) a modified derivative or fragment of these proteins (a) to (n).
- 42. (New) A nucleotide sequence selected from the group consisting of:
- (aa) a nucleotide sequence represented by the 1st to 714th bases of SEQ ID NO: 1;
- (bb) a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 2;
- (cc) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (aa) or (bb) under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 2;
- (dd) a nucleotide sequence represented by the 247th to 1065th bases of SEQ ID NO: 3;

- (ee) a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 4;
- (ff) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (dd) or (ee) under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 4;
- (gg) a nucleotide sequence represented by the 516th to 1448th bases of SEQ ID NO: 5;
- (hh) a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 6;
- (ii) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (gg) or (hh) under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 6;
- (jj) a nucleotide sequence represented by the 116th to 1450th bases of SEQ ID NO: 7;
- $(\mbox{kk})$  a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 8;
- (11) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (jj) or (kk) under stringent conditions and

encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 8;

- (mm) a nucleotide sequence represented by the 807th to 1526th bases of SEQ ID NO: 9;
- (nn) a nucleotide sequence encoding the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10;
- (00) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (mm) or (nn) under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10;
- (pp) a nucleotide sequence represented by the 156th to 1526th bases of SEQ ID NO: 9;
- $\,$  (qq) a nucleotide sequence encoding the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10;
- (rr) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (pp) or (qq) under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10;

- (ss) a nucleotide sequence represented by the 156th to 806th bases of SEO ID NO: 9;
- (tt) a nucleotide sequence encoding the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10;
- (uu) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (ss) or (tt) under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10;
- (vv) a nucleotide sequence represented by SEQ ID NO:
  1;
- (ww) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (vv) under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 1;
- (xx) a nucleotide sequence represented by SEQ ID NO:
  3;
- inucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (xx) under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 3;

- (zz) a nucleotide sequence represented by SEQ ID NO: 5;
- (aaa) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (zz) under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 5;
- (bbb) A nucleotide sequence represented by SEQ ID NO:
  7;
- (ccc) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (bbb) under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 7;
- (ddd) a nucleotide sequence represented by SEQ ID NO:
  9;
- (eee) a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence (ddd) under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 9; and
- (fff) a fragment of these nucleotide sequences (aa) to (eee).
  - 43. (New) The process according to claim 23, wherein

the cells are E. coli cells, animal cells or insect cells.

- 44. (New) The method according to claim 33, wherein the specimen is a body fluid.
- 45. (New) The method according to claim 34, wherein the specimen is a body fluid.
- 46. (New) A method for screening for an inhibitor of serine protease comprising comparing the enzyme activity of the protein according to claim 41 upon bringing the protein into contact with a candidate compound with the enzyme activity of the protein without contact with the candidate compound.
- 47. (New) A pharmaceutical composition comprising the protein according to claim 41.
- 48. (New) A method for detecting a diagnostic marker for diseases in tissues comprising the protein according to claim 41, which comprises using an antibody against the protein according to claim 41.
- 49. (New) The method according to claim 48, wherein the marker is used for diagnosis of a cancer.

- 50. (New) A method for diagnosing Alzheimer's disease or epilepsy in the brain comprising using the marker according to claim 36.
- 51. (New) A method for diagnosing cancer or inflammation of the brain, prostate or testicle, comprising using the marker according to claim 36.
- 52. (New) A method for diagnosing sterility in semen or sperm comprising using the marker according to claim 36.
- 53. (New) A method for diagnosing prostatic hypertrophy comprising using the marker according to claim 36.

Please amend claim 20 as follows:

20. (Amended) A vector comprising the nucleotide sequence according to claim 42.

Please amend claim 21 as follows:

21. (Amended) Transformed cells having the nucleotide sequence according to claim 42 in an expressible state.

Please amend claim 22 as follows:

22. (Amended) A process for producing a protein which comprises culturing cells transformed with the nucleotide sequence (aa) to (ll), (vv) to (zz), (aaa), (bbb) or (ccc) of claim 42, and collecting mBSSP2 produced.

Please amend claim 23 as follows:

23. (Amended) A process for producing a protein which comprises culturing cells transformed with the nucleotide sequence (mm) to (uu), (ddd) or (eee) of claim 42, and collecting hBSSP2 produced.

Please amend claim 24 as follows:

24. (Amended) The process according to claim 22, wherein the cells are E. coli cells, animal cells or insect cells.

Please amend claim 29 as follows:

29. (Amended) An antibody against the protein according to claim 41 or a fragment thereof.

Please amend claim 31 as follows:

31. (Amended) A process for producing a monoclonal antibody against the protein according to claim 41 or a fragment thereof which comprises administering the protein according to

claim 41 or a fragment thereof to a warm-blooded animal other than a human being, selecting the animal whose antibody titer is recognized, collecting its spleen or lymph node, fusing the antibody producing cells contained therein with myeloma cells to prepare a monoclonal antibody producing hybridoma.

Please amend claim 32 as follows:

32. (Amended) A method for determining the protein according to claim 41 or a fragment thereof in a specimen which is based on immunological binding of an antigen against the protein or a fragment thereof to the protein or a fragment thereof in the specimen.

Please amend claim 33 as follows:

33. (Amended) A method for determining hBSSP2 or a fragment thereof in a specimen which comprises reacting a monoclonal antibody or a polyclonal antibody against the protein (i), (j), (k), (l), (m) or (n) of claim 41 or a modified derivative or fragment thereof and a labeled antibody with hBSSP2 or a fragment thereof in the specimen to detect a sandwich complex produced.

Please amend claim 34 as follows:

34. (Amended) A method for determining hBSSP2 or a fragment thereof in a specimen which comprises reacting a

monoclonal antibody or a polyclonal antibody against the protein (i), (j), (k), (l), (m) or (n) of claim 41 or a modified derivative thereof or a fragment thereof with labeled hBBSP2 and hBSSP2 or a fragment thereof in the specimen competitively to detect an amount of hBSSP2 or a fragment thereof in the specimen based on an amount of the labeled hBBSP2 reacted with the antibody.

Please amend claim 35 as follows:

35. (Amended) The method according to claim 32, wherein the specimen is a body fluid.

Please amend claim 36 as follows:

36. (Amended) A diagnostic marker for diseases in tissues comprising the protein according to claim 41.

## REMARKS

The present preliminary amendment is submitted in order to correct self-evident typographical and grammatical errors in the specification, as well as to define the invention better.

It is respectfully submitted that the claims are now in condition for examination, and prompt and favorable action is earnestly solicited.

Respectfully submitted,

BROWDY AND NEIMARK, P.L.L.C. Attorneys for Applicant(s)

Βv

Mne M. Kornbau

Registration No. 25,884

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

AMK:nmp

F:\,A\Aoyb\Uemura 7\PTO\aug 14 01 prelim amend.wpd

## "Version with markings to show changes"

Page 1, please amend the second paragraph as follows:

In general, proteases are biosynthesized as inactive precursors. They undergo limited hydrolysis in molecules to convert be converted into activated type proteases. In so far as enzymes are proteases, they have an activity for hydrolyzing a peptide bond, while their action modes are varied actions vary according to kinds of proteases. According to a particular kind of catalytic site, proteases are divided into serine proteases, cysteine proteases, aspartate proteases, metal proteases and the like. Proteases of each kind have a variety of properties, ranging from a protease having general digestive properties to a protease having various regulatory domains and strict substrate specificity, thereby specifically hydrolyzing only characteristic proteins.

Page 2, please amend the paragraph on page 2 as follows:

Further, proteins undergo various <u>types of</u> processing even after translation to produce active proteins. In many secretory proteins, a protein <u>areis</u> first synthesized on the ribosome in cytoplasm as an inactive precursor (pro-form) which comprises an active protein bearing at the N-terminus thereof a peptide of about 15 to 60 amino acids responsible for secretion (secretory signal). This peptide region is concerned with the

mechanism for passing through the cell membrane and is removed upon cleavage by a specific protease during the passage through the membrane, in almost all the cases, to produce the mature form. A secretory signal has a broad hydrophobic region comprising hydrophobic amino acids in the middle of the sequence, and basic amino acid residues at a site close to the N-terminus. A secretory signal is a synonym of for a signal peptide. In addition, in some proteins, a peptide moiety which functions as a secretory signal is further attached to the N-terminus of the inactive precursor (pro-form). Such a protein is called a prepro-protein (prepro-form).

Page 3, please amend the first paragraph as follows:

For example, trypsin is present as in the form of a prepro-form immediately after translation into amino acids.

After being secreted from cells, it is present as in the form of a pro-form and is then converted into active trypsin in the duodenum upon limited hydrolysis by enteropeptidase or by trypsin itself.

Page 3, please amend the second paragraph as follows:

The optimal pH range of serine proteases is neutral to
weak alkaline and, in general, many of them have a molecular

weight of about 30,000 or lower. All proteases of relating to blood coagulation, fibrinolysis and complement systems having a large molecular weight belong to the family of trypsin-like serine proteases. They have many regulator domains and form a protease cascade which is of very importance to reactions in a living body.

Page 4, please amend the first paragraph as follows:

Serine proteases expressed in a brain-nerve system such as neurosin are considered to play various roles in the brain-nerve system. Therefore, there is a possibility that isolation of a gene encoding a novel protease expressed in a brain-nerve system and production of a protein using the gene would be useful for diagnosis or therapeutic therapy of various diseases related to the brain-nerve system.

Page 4, please amend the second paragraph as follows:

Nowadays, in general, clinical diagnosis of

Alzheimer's disease is conducted based on the diagnosis

standard of DSM-IIIR and NINCDS-ADRDA (Mckhann, G. et al.,

Neurology, 34. 939, 1994) or the diagnosis standard of DSM-IV

(American Psychiatric Association; Diagnostic and statistical manuals of mental disorders, 4th ed., Washington DC, American Psychiatric Association, 1994). However, these standards are conditioned by a decline of in recognition functions which causes

a severe disability in a daily life or a social life. Then, it is pointed out that the diagnosis is less scientific objectivity than scientifically objective because the diagnosis may be influenced by the level of an individual's social life and further the specialty and experience of a physician who diagnoses particular conditions. In addition, definite diagnosis of Alzheimer's disease is conducted by pathohistological analyses and, in this respect, substantial inconsistency between clinical diagnosis and autopsy diagnosis is pointed out exists.

Page 5, please amend the paragraph on page 5 as follows:

image diagnosis is employed Αt present, а supplemental means in clinical diagnosis of Alzheimer's diagnosis and it is possible to analyze brain functions, for example, decline of metabolism and atrophy in specific sites such as hippocampus, parietal lobe of cerebral cortex and the like which are specific for Alzheimer's disease by PET and SPECT. However, to define Alzheimer's disease based on lowering of a blood flow from parietal lobe to temporal lobe is very dangerous. In addition, there is few a report showing that MRS testicle test is useful for patients with dementia including those of Alzheimer's disease. Further, although CT-MRI image diagnosis is used, a lesion of white matter such as atrophy of brain, PVL or the like is not specific for Alzheimer type dementia. Since older with aging, the above observation is not necessarily found in Alzheimer type dementia. Furthermore, since an image obtained by MRI varies according to strength of a magnetic field, performance of an the apparatus and imaging conditions, numerical data obtain obtained in different facilities cannot be compared with each other except for atrophic change. In addition, there is a limit to image measurement. Further, enlargement of the ventricle can be recognized in vascular dementia cases and there are cases wherein atrophy of the hippocampus is observed after ischemia of the basilar artery.

Page 6, please amend the fourth paragraph as follows:

Further, data obtained in different facilities

can be compared with each other by using the same diagnosis marker. Therefore, development of biological diagnosis markers is recognized to be a most important field among fields of Alzheimer's disease studies and its future prospects will be expected. Approaches to development of biological diagnosis markers up to now are divided into that those based on constitute components of characteristic pathological changes of Alzheimer's disease such as senile plaque and neurofibril change, and an approach based on other measures. Examples of the former include cerebrospinal fluid tau protein, Aβ and its precursor, βAPP.

Examples of the latter include mydriasis test with cholilytic drug, Apo E and other genes relating to Alzheimer's disease. However, no good results are have been obtained.

Page 7, please amend the paragraph on page 7 as follows:

Serine proteases are also considered to play an important role in cancer cells. The reason why extermination of cancer by surgical treatment or topical irradiation radioactive ray is difficult is metastasis the metastatic capability of cancer. For To spread of solid tumor cells in a body, they should loosen their adhesion to original adjacent cells, followed by separating from an original tissue, passing through other tissues to reach the blood vessel vessels or lymph node nodes, entering into the circulatory system through stratum basal and endothelial layer of the vessel, leave from the circulatory system at somewhere in the body, and surviving and proliferating in a new environment. While adhesion to adjacent epidermal cells is lost when expression of cadherin which is an intercellular adhesive molecule of epithelium is stopped, to break through tissues is considered to depend on proteolytic enzymes which decompose an extracellular matrix.

Page 8, please amend the first paragraph as follows:

As enzymes which decompose the matrix, mainly, metal proteases (Rha, S. Y. et al., Breast Cancer Research Treatment, 43, 175, 1997) and serine proteases are known. They cooperate to decompose matrix protein proteins such as collagen, laminin and fibronectin. Among the serine proteases known to be concerned in decomposition of the matrix, in particular, there is urokinase type plasminogen activator (U-PA). U-PA has a role as a trigger specific for a protein decomposition chain reaction. Its direct target is plasminogen. It is present in blood abundantly and is a precursor of an inactive serine protease which accumulates in reconstructed sites of tissues such as injured sites and tumors as well as inflammatory sites. addition, as proteases which are concerned in metastasis and infiltration of cancers, for example, a tissue factor, lysosomal type hydrolase and collagenase have been known.

Page 8, please amend the second paragraph as follows:

At present, cancer is the top cause of death in Japan and more than 200,000 people are died die per year. Then Accordingly, specific substances which can be used as markers for diagnosis and therapy or prophylaxis of cancer are studied intensively. Such specific substances are referred to as tumor markers or tumor marker relating biomarkers. They are utilized in aid of diagnosis before treatment of cancer, for presuming carcinogenic organ and pathological tissue type, for monitoring

effect of treatment, for finding recurrence early, for presuming prognosis, and the like. At present, tumor markers are essential in clinical analyses. Among them, alpha fetoprotein (AFP) which has high specificity to hepatocellular carcinoma and yolk sac tumor (Taketa K. et al., Tumour Biol., 9, 110, 1988), and carcinoembronic antigen (CEA) are used worldwide. In the future, tumor markers will be required more and more, and it is desired to develop, for example, organ specific markers and tumor cell specific markers which are highly reliable serologic diagnosis of cancer. Up to now, humunglandular kallikrein (hK2) which is a serine protease expressed at human prostatic epithelial cells has been reported as a marker for prostatic cancer. And, hK2 has 78% homology with the sequence of prostatic specific antigen (PSA) and PSA is also used widely as a biochemical marker of prostatic cancer (Mikolajczyk, S. d. et al., Prostate, 34, 44, 1998; Pannek, J. et al., Oncology, 11, 1273, 1997; Chu, T. M. et al., Tumour Biology, 18, 123, 1997; Hsieh, M. et al., Cancer Res., 57, 2651, 1997). Further, hK2 is reported to be useful as a marker for not only prostatic cancer but also stomach cancer (Cho, J. Y. et al.. Cancer, 79, 878, 1997). Moreover, CYFRA (CYFRA 211) for measuring cytokeratin 19 fragment in serum is reported to be useful for lung cancer (Sugiyama, Y. et al., Japan J. Cancer Res., 85, 1178, 1994). Gastrin release peptide precursor (ProGRP) is reported to be useful as a tumor marker (Yamaguchi, K. et al., Japan, J. Cancer Res., 86, 698, 1995).

Page 10, please amend the second paragraph as follows:

Under these circumstances, the present inventors

have succeeded in cloning of cDNA encoding novel human and

mouse serine proteases.

Page 10, please amend the third paragraph as follows:

In summary, the 1st feature of the present invention is <a href="mailto:the">the</a> amino acid sequences of <a href="mailto:biologically">biologically</a> active mature serine proteases BSSP2 and nucleotide sequences encoding the amino acid sequences.

Page 18, please amend the second paragraph as follows:

In case of northern blotting analysis, mBSSP2 shows the expression in the head of a 15-20 days mouse fetus, and in the lung, prostate and testicle of a 3 month-old mouse. hBSSP2 shows the expression in brain, skeletal muscle and liver (see Figs. 1, 2 and 5). In case of RT-PCR analysis, mBSSP2 shows the expression in the brain and testicle of a 12 day-old mouse, and hBSSP2 shows the expression in the brain and skeletal muscle. Then, the novel proteases of the present invention are presumed to play various roles in the brain, prostate, lung, testicle, skeletal muscle and liver. For example, in the brain, there is a possibility that they can be used for treatment and diagnosis of brain diseases such as Alzheimer's disease (AD), epilepsy, brain tumor and the like. Further, in other tissues, there is a possibility that BSSP2 of the present invention and a gene

encoding it can be used for treatment and diagnosis of various diseases such as cancer, inflammation, infertility, prostatomegaly and the like. Further, it is presumed they may have a certain influence on blood coagulation, fibrinolysis and complement systems. Furthermore, there is a possibility that inhibitors of serine proteases can be used for treatment and diagnosis of Alzheimer's disease, epilepsy, cancer, inflammation, infertility, prostatomegaly and the like.

Page 22, please amend the paragraph on page 22 as follows:

In general, many genes of eucaryote eucaryotes exhibit polymorphism and, sometimes, one or more amino acids are substituted by this phenomenon. Further, even in such a case, sometimes, a protein maintains its activity. Then, the present invention includes a gene encoding a protein obtained by modifying a gene encoding any one of the amino acid sequences represented by SEQ ID NOS: 2, 4, 6, 8 and 10, artificially, in so far as the protein has the characteristic function of the gene of the present invention. Further, the present invention includes a protein which is a modification of any one of amino acid sequences represented by SEQ ID NOS: 2, 4, 6, 8 and 10 in so far as the protein has the characteristics of the present invention. Modification is understood to include substitution, deletion, addition and/or insertion. In particular, the present inventors have shown that, even when several amino acids are

added to or deleted from the N-terminus amino acid of the BSSP2 mature protein

represented by SEQ ID NO: 2, the resultant sequence maintains its activity.

Page 23, please amend the first paragraph as follows:

That is, the present invention includes a protein

comprising any one of the amino acid sequences described in SEQ |

ID NOS: 2, 4, 6, 8 and 10; an amino acid sequence encoded

5 by any one of the nucleotide sequences represented by SEQ ID |

NOS: 1, 3, 5, 7 and 9; or one of these amino acid sequences

wherein one to several amino acids have been substituted,

deleted, added and/or inserted, and being belonging to serine |

protease family.

Page 23, please amend the second paragraph as follows:

Each codon for the desired amino acid itself has

been known and it can be selected freely. For example,

codons can be determined according to a conventional manner

by taking into consideration of the frequency of use of codons

in a host to be utilized (Grantham, R. et al., Nucleic Acids

Res., 9, r43, 1989). Therefore, the present invention also

includes a nucleotide sequence appropriately modified by taking into consideration of the degeneracy of a codon. Further, these nucleotide sequences can be modified by a site directed mutagenesis using a primer composed of a synthetic oligonucleotide encoding the desired modification (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA., 81, 5662, 1984), or the like.

Page 23, please amend the third paragraph as follows: Furthermore, the DNA of the present invention includes DNA which is hybridizable to any one of the nucleotide sequences described in SEQ ID NOS: 1, 3, 5, 7 and 9 or nucleotide sequences complementary to these nucleotide sequences in so far as the protein encoded by the nucleotide sequence has the same properties as those of the BSSP2 of the present invention. is considered that many of the sequences which are hybridizable to a given sequence under stringent conditions have a similar activity to that of a protein encoded by the given sequence. The stringent conditions according to the present invention includes, for example, incubation in a solution containing 5 x SSC, 5%Denhardt's solution (0.1% BSA, 0.1% Ficol 1400, 0.1% PVP), 0.5% SDS and 20  $\mu g/ml$  denatured salmon sperm DNA at 37°C overnight, followed by washing with 2 x SSC containing 0.1% SDS at room temperature. Instead of SSC, SSPE can be appropriately used.

Page 25, please amend the second paragraph as follows: The present invention also relates to a vector comprising the nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 2; the nucleotide sequence represented by SEQ ID NO: 3 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 4; the nucleotide sequence represented by SEQ ID NO: 5 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 6; the nucleotide sequence represented by SEQ ID NO: 7 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 8; or the nucleotide sequence represented by SEQ ID NO: 9 or nucleotide sequence encoding the amino acid represented by SEQ ID NO: 10; or a nucleotide sequence similar them. A nucleotide sequence similar to a give given nucleotide sequence used herein means a nucleotide sequence which hybridizable to the given nucleotide sequence or complementary nucleotide sequence under the above-described stringent conditions and which encodes a protein having the same properties as those of the protein encoded by the nucleotide sequence.

Page 28, please amend the first paragraph as follows:

The animal cells and insect cells used herein

include cells derived from human being beings and cells derived

from fly flies or silk worm worms. For example there are CHO

cell cells, COS cell cells, BHK cell cells, Vero cell cells,

myeloma cell cells, HEK293 cells, HeLa cell cells, Jurkat cell

cells, mouse L cell cells, mouse C127 cell cells, 10 mouse FM3A

cell cells, mouse fibroblast, osteablast, cartilage cell cells,

S2, Sf9, Sf21, High Five (registered trade mark) cell cells and

the like.

Page 28, please amend the second paragraph as follows: The protein of the present invention as such can be expressed as a recombinant fused protein so as to facilitate isolation, purification and recognition. The recombinant fused protein used herein means a protein expressed as an adduct wherein a suitable peptide chain are is added to the N-terminus and/or C-terminus of the desired protein expressed by a nucleotide sequence encoding the desired protein. The recombinant protein used herein means that integrating a nucleotide sequence encoding the desired protein in the expression vector of the present invention and cut off an amino acid sequence which derived from nucleic acids other than those encoding the desired protein from the expressed recombinant fused protein, and is substantially the same as the protein of

the present invention.

Page 29, please amend the first paragraph as follows:

Introduction of the above vector into host cells can
be carried out by, for example, transfection according to <a href="the-">the</a>
lipopolyamine method, DEAE-dextran method, Hanahan method,
lipofectin method or calcium phosphate method, microinjection,
eletroporation and the like.

Page 33, please amend the first paragraph as follows: For obtaining fertilized egg cells efficiently, ovulation may be induced with gonadotropin or the like. Fertilized egg cells are recovered and a gene in an injection pipette is injected into male pronucleus of the egg cells by microinjection. For returning the injected egg cells to a fallopian tube, an animal (false pregnancy female mouse, etc.) is provided and about 10 to 15 eggs/mouse eggs/mice are transplanted. Then, genomic DNA is extracted from the end part of the tail to confirm whether the transgene is introduced into newborn mouse or not. This confirmation can be carried out by detection of the transgene with southern blot technique or PCR technique, or by positive cloning wherein a marker gene, activated only which is when homologous recombination is caused, has been introduced. transcribed products derived from the transgene are detected by

northern blot technique or RT-PCR technique to confirm expression of the transgene. Or, western blotting can be carried out with a specific antibody to a protein.

Page 33, please amend the second paragraph as follows: The knockout mouse of the present invention is treated so that the function of mBSSP2 gene is lost. A knockout mouse means a transgenic mouse in which any one of whose gene its genes is destroyed by homologous recombination technique so that its function is deficient. A knockout mouse can be created by carrying out homologous recombination with ES cells and selecting embryonic stem cells wherein either of allele genes are modified or destroyed. For example, embryonic stem cells whose genes are manipulated at blstocyte the blastocyte or morula stage of fertilized eggs are injected to obtain a chimera chimeric mouse wherein cells derived from the embryonic stem cells are mixed with those derived from the embryo. The chimera chimeric mouse (chimera chimeric means a single individual formed by somatic cells based on two or more fertilized eggs) can be mated with a normal mouse to create a heterozygote mouse wherein all of the allele genes have been modified or destroyed. Further, a homozygote mouse can be created by mating heterozygote mice.

Page 37, please amend the paragraph on page 37 as follows:

Examples of myeloma cells include X-63Ag8, NS-1, P3U1, SP2/0, AP-1 and the like with SP2/0 being preferred. preferred ratio of the number of the antibody producer cells (spleen cells): the number of spleen cells are 1:20 to 20:PEG (preferably PEG 1000 to PEG 6000) is added at a concentration of about 10 to 80% and the mixture is incubated at 20 to 40°C, preferably 30 to 37°C for 1 to 10 minutes to carry out the cell fusion efficiently. Screening of anti-hBSSP2 or mBSSP2 antibody producer hybridomas can be carried out by various For example, a supernatant of a hybridoma culture is added to a solid phase to which hBSSP2 or mBSSP2 antigen is adsorbed directly or together with a carrier (e.g., microplate), followed by addition of an anti-immunoglobulin antibody (in case that the cells used in cell fusion is are those of a mouse, antimouse immunoglobulin antibody is used) or protein A to detect the anti-hBSSP2 or mBSSP2 monoclonal antibody attached to the solid phase. Or, a supernatant of a hybridoma culture is added to a solid phase to which an anti-immunoglobulin antibody or protein A is adsorbed, followed by addition of hBSSP2 or mBSSP2 labeled with a radioactive substance, an enzyme, etc., to detect the anti-hBSSP2 or mBSSP2 monoclonal antibody attached to the solid phase.

Page 38, please amend the first paragraph as follows: Selection and cloning of the anti-hBSSP or mBSSP

monoclonal antibody can be carried out according to a per se known method or its modification. Normally, a HAT (hypoxanthine, aminopterin, thymidine)-added medium for culturing animal cells is used. Any culture medium can be used for selection, cloning and growing up in so far as the hybridoma can grow. For example, there can be used RPMI culture medium containing 1 to 20%, preferably 10 to 20% fetal bovine serum, a serum-free medium for culturing hybridomas. Preferably, the culture is carried out at a temperature of about 37°C. Normally, the culture time is 5days to 3 weeks, preferably 1 weeks week to 2 weeks. Normally, the culture is carried out under 5%  ${\rm CO}_2$ . The antibody titer of a supernatant of a hybridoma culture can be measured according to the same manner as that of the above-described measurement of anti-BSSP2 antibody titer in an antiserum. That is, examples of the measurement to be used include radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), FIA (fluorescence immunoassay), plaque assay, agglutination reaction method, and the like. Among them, ELISA as shown blew below is preferred.

Page 39, please amend the paragraph on page 39 as follows:

Normally, cloning is carried out by a per se known method such as semi-solid agar method, limiting dilution method and the like. Specifically, after confirming a well in which the desired antibody is produced by the above-described method,

cloning is carried out to obtain a single clone. For cloning, it is preferred to employ limiting dilution method wherein hybridoma cells are diluted so that one colony is formed per one well of a culture plate. For cloning by limiting dilution method, feeder cells can be used, or a cell growth factor such as interleukin 6, etc. can be added to improve colony forming capability. In addition, cloning can be carried out by using FACS and single cell manipulation method. The cloned hybridoma is preferably cultured in a serum-free culture medium and an optimal amount of an antibody is added to its supernatant. The single hybridoma thus obtained can be cultured in a large about amount by using a flask or a cell culture device, or cultured in the abdominal cavity of an animal (J. Immunol. Meth., 53, 313, 1982) to obtain a monoclonal antibody. When culturing in a flask, there can be used a cell culture medium (e.g., IMDM, DMEM, RPMI1640, etc.) containing 0 to 20% of FCS. When culturing in the abdominal cavity of an animal, the animal to be used is preferably the same species or the same line as that from which the myeloma cells used in the cell fusion are derived, a thymus deficient nude mouse or the like, and the hybridoma transplanted after administration of a mineral oil such as pristane, etc. After 1 to 2 weeks, myeloma cells are proliferated in the abdominal cavity to obtain ascites containing a monoclonal antibody.

Page 42, please amend the paragraph on page 42 as follows:

The polyclonal antibody of the present invention can be produced according to a per se known method or modification. For example, an immunogen (protein antigen) per se or a complex thereof with a carrier protein is prepared and, according to the same manner as that in the above monoclonal antibody production, a warm-blooded animal is immunized. material containing an antibody against the protein of the present invention or its fragment is collected from the immunized animal and the antibody is separated and purified to obtain the desired antibody. As for a complex of an immunogen and a carrier protein for immunizing a warm-blooded animal, the kind of a carrier protein and the mixing ratio of a carrier and a hapten are not specifically limited in so far as an antibody against hapten immunized by cross-linking with the carrier is efficiently produced. For example, there can be used about 0.1 to 20, preferably about 1 to 5 parts by weight of bovine serum albumin, bovine cycloglobulin, hemocyanin, etc. coupled with one part by weight of a hapten. For coupling a carrier and a hapten, various condensing agents can be used. Examples thereof include glutaraldehyde, carbodiimide or maleimide active ester, active ester agents having thiol group or dithiopyridyl group, and the like. The condensed product is administered as such or together with a carrier or diluent to a site of a warm-blooded animal

where an antibody can be produced. For enhancing the antibody production, upon administration, Freund's complete adjuvant or Freund's incomplete adjuvant may be administrated administered. Normally, the administration is carried out once every 2 to 6 weeks, 3 to 10 times in all. The polyclonal antibody can be collected from blood, ascites, or the like, preferably blood of the immunized animal. The polyclonal antibody titer in an antiserum can be measured according to the same manner as measurement of the above monoclonal antibody titer in the antiserum. Separation and purification of the polyclonal antibody, like the above monoclonal antibody, can be carried out according to the same manner as those of immunoglobulins.

Page 44, please amend the second paragraph as follows:

As a sandwich method for determining hBSSP2 or mBSSP2
or a fragment thereof, there can be used a two step method, a one
step method and the like. In the two step method, first, the
immobilized antibody is reacted with hBSSP2 or mBSSP2 or a
fragment thereof and then unreacted materials are completely
removed by washing, followed by addition of the labeled antibody
to form immobilized antibody-hBSSP2 or mBSSP2-labeled antibody.
In the one step method, the immobilized antibody, labeled
antibody and hBSSP2 or mBSSP2 or a fragment thereof are added at
the same time.

Page 45, please amend the second paragraph as follows: For immobilization of the antibody, a known chemical bonding method or a physical adsorption can be used. Examples chemical bonding method include method glutaraldehyde; maleimide method using  $\frac{N}{2}$  succusinimidyl  $\frac{N}{2}$  $\underline{\textbf{succinimidyl-4-}}$  (N-maleimidomethyl) cyclohexane-1-carboxylate, Nsuccusinimidyl-2-maleimide N-succinimdyl-2-maleimide acetate or the like; carbodiimide method using 1-ethvl-3-(3dimethylaminopropyl)carbodiimide hydrochloride; or the like. In addition, there are maleimidobenzoyl-N-hydroxysuccinimide ester method, N-succinimidyl-3-(2-pyridylthio)propionic acid method, bisdiazobenzidine method, and dipalmityllysine method. Or, it is possible to capture a complex formed beforehand by reacting a material material to be tested with two antibodies, whose epitopes are different, with an immobilized a 3rd antibody against the antibody.

Page 46, please amend the paragraph on page 46 as follows:

For labeling, it is preferred to use an enzyme, fluorescent substance, luminous substance, radioactive substance, metal chelate, or the like. Examples of the enzyme include peroxidase, alkaline phosphatase,  $\beta$ -D-galactosidase, malate dehydrogenase, Staphylococcus nuclease,  $\delta$ -5-steroidisomerase,  $\alpha$ -glycerol phosphate dehydrogenase, triose phosphate isomerase,

horseradish peroxidase, asparaginase, glucose oxidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, acetylcholinesterase and the like. Examples of the fluorescent substance include fluorescein isothiocyanate, phycobiliprotein, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthalaldehyde, and the like. Examples of the luminous substance include isoluminol, lucigenin, luminol, aromatic acridinium ester, imidazole, acrdinium salt and its modified ester, luciferin, luciferase, aequorin and the like. Examples of the radioactive substance include  $^{125}\text{I}$ ,  $^{127}\text{I}$ ,  $^{131}\text{I}$ ,  $^{14}\text{C}$ ,  $^3\mathrm{H},~^{32}\mathrm{P},~^{35}\mathrm{S}$  and the like. The labeling material is not limited to them and any material which can be used for immunological determination can be used. Further, a low molecular weight hapten such as biotin, dinitrophenyl, pyridoxal or fluorescamine may be attached to the antibody. Preferably, horseradish peroxidase is used as a labeling enzyme. This enzyme can be reacted with various substrates and can readily be attached to the antibody by periodate method.

Page 47, please amend the first paragraph as follows: When an enzyme is used as a labeling material, a substrate and, if necessary, a coloring enzyme is used for measuring its activity. In case of using peroxidase as the enzyme,  $\rm H_2O_2$  is used as a substrate and, as a coloring agent, there can be used 2,2'-azino-di-[3-ethylbenzthiazoline sulfonic

ammonium salt (ABTS), 5'-aminosalicylic acid, oacid phenylenediamine, 4-aminoantipyrine, 3,3',5,5'tetramethylbenzidine and the like. In case of using alkaline phosphatase as the enzyme, o-nitorphenylphosphate onitrophenylphosphate, p-nitrophenylphosphoric acid, or the like can be used as a substrate. In case of using  $\beta\text{-}D\text{-}galactosidase$ fluorescein-d-( $\beta$ -D-galactopyranoside), as the enzyme, methylumbelliphenyl- $\beta$ -D-galactopyranoside, or the like can be used as a substrate. The present invention also includes a kit comprising the above monoclonal antibody, polyclonal antibody and reagents.

Page 47, please amend the second paragraph as follows: As a cross-linking agent, a known cross-linking agent such N,N'-o-phenylenedimaleimide, 4-(Nas maleimidomethyl)cyclohexanoate-N-succinimide ester, maleimidohexanoate-N-succineimide ester, 4,4'-dithiopyridine or the like can be utilized. The reaction of these cross-linking agents with enzymes and antibodies can be carried out by a known method according to properties of a particular cross-linking Further, as the antibody, a fragment thereof, for agent. example, Fab', Fab, F(b'2) can be used as the case may be. A labeled enzyme can be obtained by the same treatment regardless of whether the antibody is polyclonal or monoclonal. above labeled enzyme obtained by using a cross-linking agent is

purified by a known method such as affinity chromatography or the like, a an immunoassay system having more higher sensitivity can be obtained. The enzyme labeled and purified antibody is stored at in a dark cold place with addition of a stabilizer such as thimerosal, glycerin or after lyophilization.

Page 49, please amend the paragraph on page 49 as follows:

The cloning was carried out by PCR using a mouse brain cDNA library (Clontech) as a template and nucleotide sequences corresponding to an amino acid sequence common to serine proteases represented by

Primer 1: GTG CTC ACN GCN GCB CAY TG (SEQ ID NO: 20)

Primer 2: CCV CTR WSD CCN CCN GGC GA (SEQ ID NO: 21)

as primers. Namely, 5 µl of the template, 5 µl of 10 x ExTaq buffer, 5 µl of dNTP, 10 pmol of each of the above primers and 0.5 µl of ExTaq (TAKARA) were added and the total volume was adjusted to 50 µl with sterilized water. PCR was carried out by repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for 1 minutes minute, 30 times. The PCR product was mixed with pCR II-TOPO vector attached to TOPO TA cloning kit (Invitrogen) and the mixture was allowed to stand at room temperature for 5 minutes. Then, according to a conventional manner, E. coli Top 10 attached to the kit was transformed and applied to a LB (Amp⁺) plate (containing 100

 $\mu g/ml$  of ampicillin). According to a conventional manner, a plasmid was extracted from each colony obtained and its nucleotide sequence was determined by cycle sequencing method with a fluorescence sequencer (ABI). Homology of the sequence of each clone was examined by means of GenBank. Regarding an unknown sequence, i.e., BSSP2 gene, the full length cDNA was obtained by 5' RACE and 3' RACE and, according to the same manner as described above, the nucleotide sequence was determined. Namely, BSSP2 clone specific primers, GSP1 primers [mBSSP2.2 (SEQ ID NO: 27) or mBSSP2.0 (SEQ ID NO: 22)] and GSP2 primers [mBSSP2R2 (SEQ ID NO: 28) or mBSSP2.1 (SEQ ID NO: 23)] were prepared. PCR was carried out by using mouse brain Marathon-Ready cDNA (Clontech), AP1 primer attached to this reagent and either of the above GSP1 primers and heating at  $94^{\circ}\text{C}$  for 2 minutes once and repeating a cycle of heating at  $94^{\circ}\text{C}$  for 30seconds, at 60°C for 30 seconds and then at 72°C for 30 seconds 35 times. Then, 5  $\mu l$  of the PCR product diluted to 1/100, 5  $\mu l$ of 10 x buffer, 5  $\mu l$  of dNTP, 10 pmol of either of 10  $\mu M$  of the above GSP2 primer, 10 pmol of AP2 primer attached to the above reagent and 0.5 unit of ExTaq were admixed and adjusted to 50  $\mu\text{l}$ with sterilized water. Then, according to the same manner as the above, PCR was carried out. The PCR product was cloned by the above TOPO TA cloning kit and sequenced to obtain the upstream and downstream regions of the above clone. At this time, as for a clone which seemed not to cover the full length of a protein,

the specific primers shown hereinafter were prepared based on the newly found nucleotide sequence. Further, based on this sequence, the primers capable of amplifying ORF as shown hereinafter [mBSSPF7 (SEQ ID NO: 26), mBSSP2R/E (SEQ ID NO: 29)] were prepared and PCR carried out using mouse brain Marathonready cDNA as a template to confirm that these clones were This was cloned into pCR II-TOPO vector attached to identical. TOPO TA cloning kit to obtain the plasmid pCR II/mBSSP2 containing the full length cDNA clone. The nucleotide sequence of DNA contained in this plasmid is shown in SEQ ID NO: 7 and the amino acid sequence of mSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 8. Further, two different types of clones were obtained. The nucleotide sequences of these DNA are shown in SEQ ID NOS: 3 and 5, respectively. The amino acid sequences of mBSSP2 proteins deduced from these nucleotide sequences are shown in SEQ ID NOS: 4 and 6. These novel proteases are divided into types 1, 2 and 3. Type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids and type 3 is composed of 445 amino acids. These amino acid sequences contained the common amino acid sequence composed of 238 amino acids whose N-terminus side started with Ile-Val-Gly-Gly-Gln-Ala-Val as the mature serine protease. Further, in the amino acid sequence of the mature serine protease, a consensus sequence having a serine protease activity was contained. Furthermore, since there were two or more amino acid sequence

<u>sequences</u> specific for a sugar chain bonding site, it was presumed that the amino acid sequence had at least two sugar chains.

Page 53, please amend the paragraph on page 53 as follows:

As seen <u>form from</u> Figs. 1 and 2, in the case of prostate and testicle. Further, according to the results of RT-PCR, the expression was recognized in the testicle of 3-month-old mice.

# IN THE CLAIMS

- 20. (Amended) A vector comprising the nucleotide sequence according to any one of claims 2, 4, 6, 8, 10, 12 and 14-19 claim 42.
- 21. (Amended) Transformed cells having the nucleotide sequence according to any one of claims 2, 4, 6, 8, 10, 12 and 14-19 claim 42 in an expressible state.
  - 22. (Amended) A process for producing a protein which

comprises culturing cells transformed with the nucleotide sequence according(aa) to any one (11), (vv) to (zz), (aaa), | (bbb) or (ccc) of claims 2, 4, 6, 8, 15-18 claim 42, and | collecting mBSSP2 produced.

- 23. (Amended) A process for producing a protein which comprises culturing cells transformed with the nucleotide sequence according(mm) to any one(uu), (ddd) or (eee) of claims | 10, 12, 14 or 19 claim 42, and collecting hBSSP2 produced.
- 24. (Amended) The process according to claim  $22 \frac{1}{100} = 23$ , wherein the cells are  $E.\ coli$  cells, animal cells or insect cells.
- 29. (Amended) An antibody against the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 claim 41 or a fragment thereof.
- 31. (Amended) A process for producing a monoclonal antibody against the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 claim 41 or a fragment thereof which comprises administering the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 claim 41 or a fragment thereof to a warm-blooded animal other than a human being, selecting the

animal whose antibody titer is recognized, collecting its spleen or lymph node, fusing the antibody producing cells contained therein with myeloma cells to prepare a monoclonal antibody producing hybridoma.

- 32. (Amended) A method for determining the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 claim 41 or a fragment thereof in a specimen which is based on immunological binding of an antigen against the protein or a fragment thereof to the protein or a fragment thereof in the specimen.
- fragment thereof in a specimen which comprises reacting a monoclonal antibody or a polyclonal antibody against the protein according to any one (i), (j), (k), (l), (m) or (n) of claims 9, 11 and 13 claim 41 or a modified derivative or fragment thereof and a labeled antibody with hBSSP2 or a fragment thereof in the specimen to detect a sandwich complex produced.
- 34. (Amended) A method for determining hBSSP2 or a fragment thereof in a specimen which comprises reacting a monoclonal antibody or a polyclonal antibody against the protein according to any one of claims 9, 11 and 13 and (i), (j), (k), (l), (m) or (n) of claim 41 or a modified derivative thereof or

a fragment thereof with labeled hBBSP2 and hBSSP2 or a fragment thereof in the specimen competitively to detect an amount of hBSSP2 or a fragment thereof in the specimen based on an amount of the labeled hBBSP2 reacted with the antibody.

- 35. (Amended) The method according to any one of claims 32-34 claim 32, wherein the specimen is a body fluid.
- 36. (Amended) A diagnostic marker for diseases in tissues comprising the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 claim 41.

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

ATTY.'S DOCKET: UEMURA 7

In re Application of:
Hidetoshi UEMURA et al.
)
Examiner:
)

I.A. No.: PCT/JP99/06475
)
Washington, D.C.
)

Filed: 19 November 1999
)
May 21, 2001
)
For: NOVEL SERINE PROTEASE BSSP2)

# PRELIMINARY AMENDMENT

Honorable Commissioner for Patents and Trademarks Washington, D.C. 20231

Sir:

Contemporaneous with the filing of this case and prior to calculation of the filing fee, kindly amend as follows:

### IN THE SPECIFICATION

After the title please insert the following paragraph:

## REFERENCE TO RELATED APPLICATIONS

--The present application is the national stage under 35 U.S.C. §371 of international application PCT/JP99/06475, filed 19 November 1999 which designated the United States, and which application was not published in the English language.--

# REMARKS

The above amendment to the specification is being made to insert reference to the PCT application of which the present case is a U.S. national stage.

Favorable consideration is earnestly solicited.

Respectfully submitted, BROWDY AND NEIMARK, P.L.L.C. Attorneys for Applicant

Bv:

Roger L. Browdy'

Registration No. 25,618

RLB:wrd

Telephone No.: (202) 628-5197 Facsimile No.: (202) 737-3528

### FIELD OF THE INVENTION

NOVEL SERINE PROTEASE BSSP2

The present invention relates isolated to polynucleotides of human and mouse serine proteases referred (hereinafter to "hBSSP2" "mBSSP2", as and respectively, and, in case no differentiation thereof from each other is needed, simply referred to as "BSSP2"), and their homologous forms, mature forms, precursors polymorphic variants as well as a method for detecting thereof. Further, it relates to hBSSP2 and mBSSP2 proteins, compositions containing hBSSP2 and mBSSP2 polynucleotides and proteins, as well as their production and use.

### BACKGROUND OF THE INVENTION

In general, proteases are biosynthesized as inactive precursors. They undergo limited hydrolysis in molecules to convert into activated type proteases. In so far as enzymes are proteases, they have an activity for hydrolyzing a peptide bond, while their action modes are varied according to kinds of proteases. According to a particular kind of catalytic site, proteases are divided into serine proteases, cysteine proteases, aspartate

5

10

15

20

25

10

15

20

25

proteases, metal proteases and the like. Proteases of each kind have a variety of properties, ranging from a protease having general digestive properties to a protease having various regulatory domains and strict substrate specificity, thereby specifically hydrolyzing only characteristic proteins.

Further, proteins undergo various processing even after translation to produce active proteins. In many secretory proteins, a protein are first synthesized on the ribosome in cytoplasm as an inactive precursor (pro-form) which comprises an active protein bearing at the N-terminus thereof a peptide of about 15 to 60 amino acids responsible for secretion (secretory signal). This peptide region is concerned with the mechanism for passing through the cell and is removed upon cleavage by a specific membrane protease during the passage through the membrane, in almost all the cases, to produce the mature form. A secretory signal a broad has hydrophobic region comprising hydrophobic amino acids in the middle of the sequence, and basic amino acid residues at a site close to the N-terminus. A secretory signal is a synonym of a signal peptide. addition, in some proteins, a peptide moiety which functions as a secretory signal is further attached to the N-terminus of the inactive precursor (pro-form). protein is called a prepro-protein (prepro-form).

20

25

5

For example, trypsin is present as a prepro-form immediately after translation into amino acids. After being secreted from cells, it is present as a pro-form and is converted into active trypsin in duodenum upon limited hydrolysis by enteropeptidase or by trypsin itself.

The optimal pH range of serine proteases is neutral to weak alkaline and, in general, many of them have a molecular weight of about 30,000 or lower. All proteases of blood coagulation, fibrinolysis and complement systems having a large molecular weight belong to trypsin-like serine proteases. They have many regulator domains and form a protease cascade which is of very importance to reactions in a living body.

Recently, cDNAs and amino acid sequences of many novel proteases have been determined by PCR for consensus sequences of serine proteases using oligonucleotide primers. According to this method, novel proteases have been found by various researchers such as Yamamura et al. (Yamanura, Y et al., Biochem. Biophys. Res. Commun., 239, 386, 1997), Gschwend, et al. (Gschwend, T. P. et al., Mol. Cell. Neurosci., 9. 207, 1997), Chen et al. (Chen, Z-L, et al., J. Neurosci., 15, 5088, 1995) and others.

SEQ ID NO: 3 of JP 9-149790 A discloses neurosin as a novel serine protease. Neurosin has also been reported in Biochimica et Byophysica Acta, 1350, 11-14,

10

15

20

25

1997. By this, there is provided a method for mass production of neurosin using the serine protease gene and a method for screening specific inhibitors using the enzyme. In addition, the screening method has been shown to be useful for screening medicines for treating various diseases.

Serine proteases expressed in a brain-nerve system such as neurosin are considered to play various roles in the brain-nerve system. Therefore, there is a possibility that isolation of a gene encoding a novel protease expressed in a brain-nerve system and production of a protein using the gene would be useful for diagnosis or therapeutic of various diseases related to the brain-nerve system.

in general, Nowadays, clinical diagnosis Alzheimer's disease is conducted based on the diagnosis standard of DSM-IIIR and NINCDS-ADRDA (Mckhann, G. et al., Neurology, 34. 939, 1994) or the diagnosis standard of DSM-(American Psychiatric Association; Diagnostic and statistical manuals of mental disorders, 4th Washington DC, American Psychiatric Association, 1994). However, these standards are conditioned by decline of recognition functions which causes a severe disability in a daily life or a social life. Then, it is pointed out that the diagnosis is less scientific objectivity because the

10

15

20

25

diagnosis may be influenced by the level of an individual's social life and further the specialty and experience of a physician who diagnoses particular conditions. In addition, definite diagnosis of Alzheimer's disease is conducted by pathohistological analyses and, in this respect, substantial inconsistency between clinical diagnosis and autopsy diagnosis is pointed out.

At present, image diagnosis is employed as supplemental means in clinical diagnosis of Alzheimer's diagnosis and it is possible to analyze brain functions, for example, decline of metabolism and atrophy in specific sites such as hippocampus, parietal lobe of cerebral cortex and the like which are specific for Alzheimer's disease by PET and SPECT. However, to define Alzheimer's disease based on lowering of a blood flow from parietal lobe to temporal lobe is very dangerous. In addition, there is few report showing that MRS testicle useful for patients with dementia including those of Alzheimer's disease. although CT-MRI image diagnosis is used, a lesion of white matter such as atrophy of brain, PVL or the like is not specific for Alzheimer type dementia. Since it has been reported that atrophy of brain proceeds as getting older, the above observation is not necessarily found in Alzheimer Furthermore, since an image obtained by MRI type dementia. varies according to strength of a magnetic

10

15

performance of an apparatus and imaging conditions, numerical data obtain in different facilities cannot be compared with each other except atrophic change. In addition, there is a limit to image measurement. Further, enlargement of ventricle can be recognized in vascular dementia cases and there are cases wherein atrophy of hippocampus is observed after ischemia of basilar artery.

Under these circumstances, many researchers have requested to develop biological diagnosis markers as a means for providing better precision and objectivity for clinical diagnosis of Alzheimer's disease. At the same time, the following important roles in the future will be expected.

- 1) Objective judgment system of effect of medicaments for treating Alzheimer's disease.
- 2) Detection of Alzheimer's disease before a diagnosis standard is met, or disease conditions are manifested.

can be compared with each other by using the same diagnosis marker. Therefore, development of biological diagnosis markers is recognized to be a most important field among fields of Alzheimer's disease studies and its future prospects will be expected. Approaches to development of biological diagnosis markers up to now are divided into

20

25

5

that based on constitute components of characteristic pathological changes of Alzheimer's disease such as senile plaque and neurofibril change, and an approach based on other measures. Examples of the former include cerebrospinal fluid tau protein,  $A\beta$  and its precursor,  $\beta APP$ . Examples of the latter include mydriasis test cholilytic drug, Apo E and other genes relating Alzheimer's disease. However, no good results are obtained.

Serine proteases are also considered to play important role in cancer cells. The extermination of cancer by surgical treatment or topical irradiation of radioactive ray is difficult is metastasis capability of cancer. For spread of solid tumor cells in a they should loosen their adhesion to body, original adjacent cells, followed by separating from an original tissue, passing through other tissues to reach blood vessel or lymph node, entering into the circulatory system through stratum basal and endothelial layer of the vessel, leave from the circulatory system at somewhere in the body, and surviving and proliferating in a new environment. While adhesion to adjacent epidermal cells is lost expression of cadherin which is an intercellular adhesive molecule of epithelium is stopped, to break through tissues considered to depend on proteolytic enzymes decompose an extracellular matrix.

25

5

As enzymes which decompose the matrix, mainly, metal proteases (Rha, S. Y. et al., Breast Cancer Research Treatment, 43, 175, 1997) and serine proteases are known. They cooperate to decompose matrix protein such as collagen, laminin and fibronectin. Among serine proteases known to be concerned in decomposition of the matrix, in particular, there is urokinase type plasminogen activator (U-PA). U-PA has role as trigger specific for а protein decomposition chain reaction. Its direct target plasminogen. It is present in blood abundantly and is a precursor of an inactive serine protease which accumulates in reconstructed sites of tissues such as injured sites and tumors as well as inflammatory sites. In addition, as proteases which are concerned in metastasis and infiltration of cancers, for example, a tissue factor, lysosomal type hydrolase and collagenase have been known.

At present, cancer is the top cause of death in Japan and more than 200,000 people are died per year. Then, specific substances which can be used as markers for diagnosis and therapy or prophylaxis of cancer are studied intensively. Such specific substances are referred to as tumor markers or tumor marker relating biomarkers. They are utilized in aid of diagnosis before treatment of cancer, for presuming carcinogenic organ and pathological tissue type, for monitoring effect of treatment, for finding

10

15

20

25

recurrence early, for presuming prognosis, and the like. present, tumor markers are essential in Among them, alpha fetoprotein (AFP) which has analyses. high specificity to hepatocellular carcinoma and yolk sac tumor (Taketa K. et al., Tumour Biol., 9, 110, 1988), and carcinoembronic antigen (CEA) are used worldwide. future, tumor markers will be required more and more, and it is desired to develop, for example, organ specific markers and tumor cell specific markers which are highly reliable serologic diagnosis of cancer. ФŪ humunglandular kallikrein (hK2) which is a serine protease expressed at human prostatic epithelial cells has been reported as a marker for prostatic cancer. And, hK2 has 78% homology with the sequence of prostatic specific antigen (PSA) and PSA is also used widely as a biochemical marker of prostatic cancer (Mikolajczyk, S. d. et al., Prostate, 34, 44, 1998; Pannek, J. et al., Oncology, 11, 1273, 1997; Chu, T. M. et al., Tumour Biology, 18, 123, 1997; Hsieh, M. et al., Cancer Res., 57, 2651, 1997). Further, hK2 is reported to be useful as a marker for not only prostatic cancer but also stomach cancer (Cho, J. Y. et al.. Cancer, 79, 878, 1997). Moreover, CYFRA (CYFRA 21for measuring cytokeratin 19 fragment in serum is reported to be useful for lung cancer (Sugiyama, Y. et al., Japan J. Cancer Res., 85, 1178, 1994). Gastrin release

peptide precursor (ProGRP) is reported to be useful as a tumor marker (Yamaguchi, K. et al., Japan, J. Cancer Res., 86, 698, 1995).

5

## OBJECTS OF THE INVENTION

Thus, the main object of the present invention is to provide a novel serine protease which can be used for treating or diagnosing various diseases such as Alzheimer's disease (AD), epilepsy, cancer, inflammation, infertility, prostatomegaly and the like in various tissues such as brain, lung, prostate, testicle, skeletal muscle, liver and the like, and can be used as an excellent marker instead of that presently used.

15

10

## SUMMARY OF THE INVENTION

Under these circumstances, the present inventors have succeeded in cloning of cDNA encoding novel human and mouse serine proteases.

In summary, the 1st feature of the present invention is amino acid sequences of biological active mature serine proteases BSSP2 and nucleotide sequences encoding the amino acid sequences.

That is, they are the amino acid sequence composed of 238 amino acids (mature type BSSP2 (SEQ ID NO: 2)) and a nucleotide sequence encoding the amino acid

25

20

25

5

sequence (the 1st to 714th bases of SEQ ID NO: 1). addition, they include amino acid sequences substantially similar to SEQ ID NO: 2 and nucleotide sequences encoding such similar amino acid sequences. Further, they include modified derivatives of proteins having these amino acid sequences. An amino acid sequence substantially similar to a given amino acid sequence used herein means an amino acid sequence derived from the given amino acid sequence by modification such as substitution, deletion, addition and/or insertion of one to several amino acids with maintaining the same property as that of the protein having the given amino acid sequence. The modified derivative of the proteins includes, for example, phosphate adduct, sugar chain adduct, metal adduct (e.g., calcium adduct), the protein fused to another protein such as albumin etc., dimer of the protein, and the like.

In the nucleotide sequences in the Sequence Listing hereinafter, the symbol "n" represents that any of the normal bases of a nucleic acid, i.e., adenine (a), cytosine (c), guanine (g) and thymine (t) is present at that position.

The 2nd feature of the present invention is an amino acid sequence composed of 273 amino acids [type 1 BSSP2 (SEQ ID NO: 4)] wherein 35 amino acids of -35th to -1st amino acids represented by SEQ ID NO: 4 are added to

20

25

5

the N-terminus side of the mature BSSP2 amino acid sequence (SEQ ID NO: 2) and a nucleotide sequence encoding the amino acid sequence (247th to 1065th bases of SEQ ID NO: 3). feature addition. this includes amino acid sequences substantially similar to SEQ ID NO: 4 and nucleotide sequences encoding these substantially similar amino acid sequences. Further, this feature includes modified derivatives of proteins having these amino acid sequences.

The 3rd feature of the present invention is an amino acid sequence composed of 311 amino acids [type 2 BSSP2 (SEQ ID NO: 6)] wherein 73 amino acids of -73rd to -1st amino acids represented by SEQ ID NO: 6 are added to the N-terminus side of the mature BSSP2 amino acid sequence (SEQ ID NO: 2) and a nucleotide sequence encoding the amino acid sequence (516th to 1448th bases of SEO ID NO: 5). addition. this feature includes amino acid sequences substantially similar to SEQ ID NO: 6 and nucleotide sequences encoding these substantially similar amino acid sequences. Further, this feature includes derivatives of proteins having there amino acid sequences.

The 4th feature of the present invention is an amino acid sequence composed of 445 amino acids [type 3 BSSP2 (SEQ ID NO: 8)] wherein 207 amino acids of -207th to -1st amino acids represented by SEQ ID NO: 8 are added to the N-terminus side of the mature BSSP2 amino acid sequence

(SEQ ID NO: 2) and a nucleotide sequence encoding the amino acid sequence (116th to 1450th bases of SEQ ID NO: 7). In addition, this feature includes amino acid sequences substantially similar to SEQ ID NO: 8 and nucleotide sequences encoding these substantially similar amino acid sequences. Further, this feature includes modified derivatives of proteins having there amino acid sequences.

The 5th feature of the present invention is an amino acid sequence of a biologically active, mature human serine protease, hBSSP2, and a nucleotide sequence encoding the amino acid sequence. That is, they are an amino acid sequence [mature type hBSSP2 (SEQ ID NO: 10) composed of 240 amino acids represented by SEQ ID NO: 10 (1st to 240th amino acids) and a nucleotide sequence encoding the amino acid sequence (807th to 1526th bases of SEQ ID NO: 9). addition, this feature includes amino acid sequences substantially similar to SEQ ID NO: 10 (1st to 240th amino acids) and nucleotide sequences encoding these substantially similar amino acid sequences. Further, this feature includes modified derivatives of proteins having there amino acid sequences.

The 6th feature of the present invention is an amino acid sequence composed of 457 amino acids (-217th to 240th amino acids of SEQ ID NO: 10) wherein 217 amino acids of -217th to -1st amino acids represented by SEQ ID NO: 10

15

10

5

20

25

10

15

20

25

are added to the N-terminus side of the mature human serine protease hBSSP2 amino acid sequence (1st to 240 amino acids of SEQ ID NO: 10) and a nucleotide sequence encoding the amino acid sequence (156th to 1526th bases of SEQ ID NO: 9). In addition, this feature includes amino acid sequences substantially similar to SEQ ID NO: 10 and nucleotide sequences encoding these substantially similar amino acid sequences. Further, this feature includes modified derivatives of proteins having there amino acid sequences.

The 7th feature of the present invention is an amino acid sequence composed of 217 amino acids of -217th to -1st amino acids of SEQ ID NO: 10 and a nucleotide sequence encoding the amino acid sequence (156th to 806th bases of SEQ ID NO: 9). In addition, this feature includes amino acid sequences substantially similar to the amino acid composed of 217 amino acids of -217th to -1st SEQ ID NO: 10 and nucleotide sequences encoding substantially similar amino acid sequences. Further, this feature includes modified derivatives of proteins having there amino acid sequences.

The present invention also relates to the nucleotide sequences represented by SEQ ID NOS: 1, 3, 5, 7 and 9 as well as nucleotide sequences similar to them.

The 8th feature of the present invention is a vector comprising the nucleotide sequence according to any

10

15

20

25

of the above 1st to the 7th feature, and transformant cells transformed with the vector.

The 9th feature of the present invention is a process for producing BSSP2 protein from the transformed cells of the 8th feature.

The 10th feature of the present invention is a transgenic non-human animal, wherein the expression level of BSSP2 gene has been altered.

The 11th feature of the present invention is an antibody against BSSP2 protein or its fragment and a process for producing thereof.

The 12th feature of the present invention is a method for determining BSSP2 protein or its fragment in a specimen using the antibody of the 11th feature.

The 13th feature is a diagnostic marker of diseases comprising BSSP2 protein.

Hereinafter, unless otherwise stated, the nucleotide sequence represented by each SEQ ID NO: includes the above-described various fragments thereof, and similar nucleotide sequences and their fragments. Likewise, the amino acid sequence represented by each SEQ ID NO: includes the above-described various fragments thereof, similar nucleotide sequences and their fragments, and modified derivatives thereof. In addition, unless otherwise stated, BSSP2, hBSSP2, and mBSSP2 include proteins having the

above-described respective amino acid sequences.

## BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 illustrates the results of northern blotting using mRNAs prepared from mice in Example 2 hereinafter.
  - Fig. 2 illustrates the results of northern blotting using mRNAs prepared from mice in Example 2 hereinafter.
  - Fig. 3 is a plasmid constructed by the method of Example 4 hereinafter.
  - Fig. 4 illustrates the construction of plasmid pFBTrypSigTag/BSSP2 according to the method of Example 4 hereinafter.
  - Fig. 5 illustrates the detection of hBSSP2 mRNA by northern hybridization.
  - Fig. 6 illustrates the detection of hBSSP2 mRNA by RT-PCR.
- Fig. 7 illustrates the expression of hBSSP2 by a 20 baculovirus system.

## DETAILED DESCRIPTION OF THE INVENTION

The nucleotide sequences encoding hBSSP2 or mBSSP2 of the present invention can be obtained by preparing mRNAs from cells expressing the protein and

10

15

20

25

converting it into double stranded DNAs according to a conventional manner. For preparing mRNA, isothiocyanate-calcium chloride method (Chirwin, et al., Biochemistry, 18, 5294, 1979) or the like can be used. preparing poly (A) + RNA from total RNAs, there can be used affinity chromatography using a carrier, for example, Sepharose, latex particles, etc., to which oligo (dT) is attached, and the like. The above-obtained RNA can be used as a template and treated with reverse transcriptase by using, as a primer, oligo (dT) which is complementary to the poly (A) strand at the 3'-terminus, or a random primer, or a synthesized oligonucleotide corresponding to a part of the amino acid sequence of hBSSP2 or mBSSP2 to obtain a hybrid mRNA strand comprising DNA or cDNA complementary to the mRNA. The double stranded DNA can be obtained by treating the above-obtained hybrid mRNA strand with E. coli RNase, E. coli DNA polymerase and E. coli DNA ligase to convert into a DNA strand.

It is also possible to carry out cloning by RT-PCR method using primers synthesized on the basis of the nucleotide sequence of hBSSP2 or mBSSP2 gene and using hBSSP2 or mBSSP2 expressing cell poly (A) + RNA as a template. Alternatively, the desired cDNA can be obtained without using PCR by preparing or synthesizing a probe on the basis of the nucleotide sequence of hBSSP2 or mBSSP2

10

15

gene and screening a cDNA library directly. Among genes obtained by these methods, the gene of the invention can be selected by confirming a nucleotide sequence thereof. The gene of the present invention can also be prepared according to a conventional method using chemical syntheses of nucleic acids, for example, phosphoamidite method (Mattencci, M. D. et al., J. Am. Chem. Soc., 130, 3185, 1981) and the like.

By using the thus-obtained hBSSP2 or mBSSP2 gene, their expression in various tissues can be examined.

In case of northern blotting analysis, mBSSP2 shows the expression in head of 15-20 days mouse fetus, and lung, prostate and testicle of 3 month-old mouse. hBSSP2 shows the expression in brain, skeletal muscle and liver (see Figs. 1, 2 and 5). In case of RT-PCR analysis, mBSSP2 shows the expression in brain and testicle of 12 day-old mouse, and hBSSP2 shows the expression in brain and skeletal muscle. Then, the novel proteases of the present invention are presumed to play various roles in brain, prostate, lung, testicle, skeletal muscle and liver. example, in brain, there is a possibility that they can be used for treatment and diagnosis of brain diseases such as Alzheimer's disease (AD), epilepsy, brain tumor and the Further, in other tissues, there is a possibility that BSSP2 of the present invention and a gene encoding it

20

The first fi

5

10

15

20

25

can be used for treatment and diagnosis of various diseases such as cancer, inflammation, infertility, prostatomegaly and the like. Further, it is presumed they may have a certain influence on blood coagulation, fibrinolysis and complement systems. Furthermore, there is a possibility that inhibitors of serine proteases can be used for treatment and diagnosis of Alzheimer's disease, epilepsy, cancer, inflammation, infertility, prostatomegaly and the like.

The novel mouse serine protease can be divided into types 1, 2 and 3. It has been shown that type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids, and type 3 is composed of 445 amino acids. These amino acid sequences contain a common amino acid sequence of 238 amino acids whose N-terminus side starts Ile-Val-Gly-Gly-Gln-Ala-Val as the mature protease. Further, the amino acid sequence of the mature serine protease contains a consensus sequence having serine protease activity. Since there are two or more amino acid sequences which are characteristic of sugar chain binding sites, the amino acid sequence is presumed to have at least two sugar chains.

Furthermore, in the novel human serine protease (hBSSP2), there are a transmembrane region and a scavenger receptor cysteine rich-like domain in the N-terminus side

of hBSSP2 mature protein as seen from SEQ ID NO: 10.

The term "pro part" used herein means a part of a pro-form, i.e., the pro-form from which the corresponding active type protein part is removed. The term "pre part" used herein means a part of a prepro-form, i.e., the prepro-form from which the corresponding pro-form is removed. The term "prepro part" used herein means a part of a prepro-form, i.e., the prepro-form from which the corresponding active type protein part is removed.

The amino acid sequence represented by SEQ ID NO: 2 is the BSSP2 mature or active type protein composed of 238 amino acids, and the nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 1 is composed of 714 bases. The present inventors have shown that the serine protease activity is maintained even when one to several amino acids of the N-terminus of the mature type protein of the present invention is deleted or added, while the sequence represented by SEQ ID NO: 2 is preferred.

The amino acid sequence represented by SEQ ID NO:

4 is type 1 BSSP2 protein composed of 273 amino acids, and
the nucleotide sequence encoding the amino acid sequence
represented SEQ ID NO: 3 is composed of 1685 bases. The
sequence of the -35th to -1st amino acids is the prepro or
pro part and the amino acid sequence represented by SEQ ID
NO: 4 is considered to be a precursor type of the BSSP2

The Colon of the C

5

H Sale with the district of

25

10

15

20

25

protein.

The amino acid sequence represented by SEQ ID NO: 6 is type 2 BSSP 2 protein composed of 311 amino acids and the nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 5 is composed of 2068 bases. The sequence of the -73rd to -1st amino acids is the prepro or pro part and the amino acid sequence represented by SEQ ID NO: 6 is considered to be a precursor type of BSSP2 protein.

The amino acid sequence represented by SEQ ID NO: 8 is type 3 BSSP2 protein composed of 445 amino acids and the nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 7 is composed of 2070 bases. The amino acid sequence of the -207th to -1st amino acids is the prepro or pro part and the amino acid sequence represented by SEQ ID NO: 8 is considered to be a precursor type of BSSP2 protein.

SEQ ID NOS: 4, 6 and 8 contain the common amino acid sequence represented by SEQ ID NO: 2 as the mature BSSP2 protein. Further, each of amino acid sequences of -25th to 238th amino acids in SEQ ID NOS: 4, 6 and 8 is the consensus sequence.

The amino acid sequence represented by SEQ ID NO: 10 is hBSSP2 protein composed of 457 amino acids and the nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 9 is composed of 1371 bases.

25

5

Since a transmembrane region and a scavenger receptor cysteine rich-like domain are present in the amino acid sequence of the -217th to -1st amino acids of SEQ ID NO: 10, it is considered that hBSSP2 exhibits its activity not only in the form of the mature protein but also in the form of an adduct of the -217th to -1st amino acids.

general, many genes of eucaryote exhibit polymorphism and, sometimes, one or more amino acids are substituted by this phenomenon. Further, even in such case, sometimes, a protein maintains its activity. Then, the present invention includes a gene encoding a protein obtained by modifying a gene encoding any one of the amino acid sequences represented by SEQ ID NOS: 2, 4, 6, 8 and 10, artificially, in so far as the protein has characteristic function of the gene of the present invention. Further, the present invention includes a protein which is a modification of any one of amino acid sequences represented by SEQ ID NOS: 2, 4, 6, 8 and 10 in so far as the protein has the characteristics of present invention. Modification is understood to include substitution, deletion, addition and/or insertion. In particular, the present inventors have shown that, even when several amino acids are added to or deleted from the N-terminus amino acid οf the BSSP2 mature protein represented by SEQ ID NO: 2, the resultant sequence

10

maintains its activity.

That is, the present invention includes a protein comprising any one of amino acid sequences described in SEQ ID NOS: 2, 4, 6, 8 and 10; an amino acid sequence encoded by any one of nucleotide sequences represented by SEQ ID NOS: 1, 3, 5, 7 and 9; or one of these amino acid sequences wherein one to several amino acids have been substituted, deleted, added and/or inserted, and being belonging to serine protease family.

Each codon for the desired amino acid itself has been known and it can be selected freely. For example, codons can be determined according to a conventional manner by taking into consideration of frequency of use of codons in a host to be utilized (Grantham, R. et al., Nucleic Acids Res., 9, r43, 1989). Therefore, the present invention also includes a nucleotide sequence appropriately modified by taking into consideration of degeneracy of a codon. Further, these nucleotide sequences can be modified by a site directed mutagenesis using a primer composed of a synthetic oligonucleotide encoding the desired modification (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA., 81, 5662, 1984), or the like.

Furthermore, the DNA of the present invention includes DNA which is hybridizable to any one of nucleotide sequences described in SEQ ID NOS: 1, 3, 5, 7 and 9 or

25

25

5

nucleotide sequences complementary to these nucleotide sequences in so far the protein encoded by as nucleotide sequence has the same properties as those of the BSSP2 of the present invention. It is considered that many of sequences which are hybridizable to a given sequence under stringent conditions have a similar activity to that of a protein encoded by the given sequence. The stringent conditions according to the present invention includes, for example, incubation in a solution containing 5 x SSC, 5% Denhardt's solution (0.1% BSA, 0.1% Ficol 1400, 0.1% PVP), 0.5% SDS and 20 µg/ml denatured salmon sperm DNA at 37°C overnight, followed by washing with 2 x SSC containing 0.1% SDS at room temperature. Instead of SSC, SSPE can be appropriately used.

Probes for detecting a BSSP2 gene can be designed based on any one of nucleotide sequences described in SEQ ID NOS: 1, 3, 5, 7 and 9. Or, primers can be designed for amplifying DNA or RNA containing the nucleotide sequence. To design probes or primers is carried out routinely by a person skilled in the art. An oligonucleotide having a designed nucleotide sequence can be synthesized chemically. And, when a suitable label is added to the oligonucleotide, the resultant oligonucleotide can be utilized in various hybridization assay. Or, it can be utilized in nucleic acid synthesis reactions such as PCR. An oligonucleotide

to be utilized as a primer has, preferably, at least 10 bases, more preferably 15 to 50 bases in length. An oligonucleotide to be utilized as a probe has, preferably, 100 bases to full length.

5

A then the think the the the the

-

Then could flow

15

20

25

Moreover, it is possible to obtain a promoter region and an enhancer region of a BSSP2 gene present in the genome based on the cDNA nucleotide sequence of BSSP2 provided by the present invention. Specifically, these control regions can be obtained according to the same manner as described in JP 6-181767 A; J. Immunol., 155, 2477, 1995; Proc. Natl. Acad. Sci., USA, 92, 3561, 1995 and the like. The promoter region used herein means a DNA region which is present upstream from a transcription initiation site and controls expression of a gene. The enhancer region used herein means a DNA region which is present in an intron, a 5'-non-translated region or a 3'-non-translated region and enhances expression of a gene.

The present invention also relates to a vector comprising the nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 2; the nucleotide sequence represented by SEQ ID NO: 3 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 4; the nucleotide sequence represented by SEQ ID NO: 4; the nucleotide sequence represented by SEQ ID NO: 5 or a nucleotide sequence encoding the amino acid

20

25

5

sequence represented by SEQ ID NO: 6; the nucleotide sequence represented by SEQ ID NO: 7 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 8; or the nucleotide sequence represented by SEO ID NO: 9 or a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 10; or a nucleotide sequence similar to them. A nucleotide sequence similar to a give nucleotide sequence used herein means a nucleotide sequence which is hybridizable to the given nucleotide sequence or its complementary nucleotide sequence under the above-described stringent conditions and encodes a protein having the same properties as those of the protein encoded by the nucleotide sequence.

The vector is not specifically limited in so far as it can express the protein of the present invention. Examples thereof include pBAD/His, pRSETA, pcDNA2.1, pBlueBac4.5, pcDNA3.1 pTrcHis2A, pYES2, and manufacture by Invitrogen, pET and pBAC manufactured by pGEM manufactured by Promega, pBluescriptII manufactured by Stratagene, pGEX and pUC18/19 manufactured by Pharmacia, PfastBAC1 manufactured by GIBCO and the like. Preferably, a protein expression vector (described in the specification of a patent application entitled "Protein expression vector and its use" and filed by the same applicant on the same day) is used. This expression vector

10

20

25

is constructed by using pCRII-TOPO vector described in the hereinafter, Examples a commercially available or expression vector, for example pSecTag2A vector pSecTag2B vector (Invitrogen) and integrating a secretory signal nucleotide sequence suitable for expression of the protein of the present invention, in the 3' downstream side thereof, a Tag nucleotide sequence, a cleavable nucleotide sequence and a cloning site, into which a nucleotide sequence encoding a target protein can be inserted, in this More specifically, it is preferred to use trypsin order. signal as the secretory signal, a nucleotide sequence encoding polyhistidine as the Tag nucleotide sequence, and a nucleotide sequence encoding an amino acid sequence which is susceptible to enzyme-specific cleavage, i.e., nucleotide sequence encoding the amino acid sequence of Asp-Asp-Asp-Lys (said amino acid sequence is recognized by enterokinase, and the recombinant fusion protein is cleaved at the C-terminus part thereof) as the cleavable nucleotide sequence.

Furthermore, the present invention provides transformed cells having the nucleotide sequence of the present invention in an expressible state by means of the above vector. Preferably, host cells to be used for the transformed cells of the present invention are animal cells and insect cells. However, host cells include any cells

up . N. Harr Mary from Coly Mar. Hart Hear Hard |-| 15 1 /s

10

5

(including those of microorganisms) which can express a nucleotide sequence encoding the desired protein in the expression vector of the present invention and can secrete extracellularly.

The animal cells and insect cells used herein include cells derived from human being and cells derived from fly or silk worm. For example, there are CHO cell, COS cell, BHK cell, Vero cell, myeloma cell, HEK293 cells, HeLa cell, Jurkat cell, mouse L cell, mouse C127 cell, mouse FM3A cell, mouse fibroblast, osteoblast, cartilage cell, S2, Sf9, Sf21, High Five[™] (registered trade mark) cell and the like.

The protein of the present invention as such can be expressed as a recombinant fused protein so as to facilitate isolation, purification and recognition. The recombinant fused protein used herein means a protein expressed as an adduct wherein a suitable peptide chain are added to the N-terminus and/or C-terminus of the desired protein expressed by a nucleotide sequence encoding the desired protein. The recombinant protein used herein means that obtained by integrating a nucleotide sequence encoding the desired protein in the expression vector of the present invention and cut off an amino acid sequence which derived from nucleic acids other than those encoding the desired protein from the expressed recombinant fused protein, and

25

is substantially the same as the protein of the present invention.

Introduction of the above vector into host cells can be carried out by, for example, transfection according to lipopolyamine method, DEAE-dextran method, Hanahan method, lipofectin method or calcium phosphate method, microinjection, eletroporation and the like.

As described above, the present invention also relates to a process for producing hBSSP2 of mBSSP2 comprising culturing cells transformed with the above nucleotide sequence of the present invention and collecting the produced hBSSP2 of mBSSP2. The culture of cells and separation and purification of the protein can be carried out by a per se known method.

The present invention also relates to an inhibitor of the novel serine protease of the present invention. Screening of the inhibitor can be carried out according to a per se known method such as comparing the enzyme activity upon bringing into contact with a candidate compound with that without contact with the candidate compound, or the like

The present invention relates to a non-human transgenic animal whose expression level of hBSSP2 or mBSSP2 gene has been altered. The hBSSP2 or mBSSP2 gene used herein includes cDNA, genomic DNA or synthetic DNA

10

5

15

25

10

15

20

25

encoding hBSSP2 or mBSSP2. In addition, expression of a gene includes any steps of transcription and translation. The non-human transgenic animal of the present invention is useful for studies of functions or expression control of hBSSP2 or mBSSP2, elucidation of mechanisms of diseases in which hBSSP2 or mBSSP2 is presumed to be involved, and development of disease model animals for screening and safety test of medicine.

In the present invention, expression of a gene can be modified artificially by mutagenizing at a part of important sites which control normal expression (enhancer, promoter, intron, etc.) such deletion, substitution, addition and/or insertion increase or decrease an expression level of the gene in comparison with its inherent expression level. mutagenesis can be carried out according to a known method to obtain the transgenic animal.

In a narrow sense, the transgenic animal means an animal wherein a foreign gene is artificially introduced into reproductive cells by gene recombinant techniques. In a broad sense, the transgenic animal includes an antisense transgenic animal the function of whose specific gene is inhibited by using antisense RNA, an animal whose specific gene is knocked out by using embryonic stem cells (ES cells), and an animal into which point mutation DNA is

And the first term and the second term and the

5

introduced, and the transgenic animal means an animal into which a foreign gene is stably introduced into a chromosome at an initial stage of ontogeny and the genetic character can be transmitted to the progeny.

The transgenic animal used herein should be understood in a broad sense and includes any vertebrates other than a human being. The transgenic animal of the present invention is useful for studies of functions or expression control of BSSP2, elucidation of mechanisms of diseases associated with cells expressing in a human being, and development of disease model animals for screening and safety test of medicine.

As a technique for creating the transgenic animal, a gene is introduced into a nucleus in a pronucleus stage of egg cells with a micropipette directly under a phase-contrast microscope (microinjection, U.S. Patent 4,873,191). Further, there are a method using embryonic stem cell (ES cell), and the like. In addition, there are newly developed methods such as a method wherein a gene is introduced into a retroviral vector or adenoviral vector to infect egg cells, a sperm vector method wherein a gene is introduced into egg cells through sperms, and the like.

A sperm vector method is a gene recombinant technique wherein a foreign gene is incorporated into sperm cells by adhesion, electroporation, etc., followed by

15

20

10

15

20

25

fertilization of egg cells to introduce the foreign gene into the egg cells (M. Lavitranoet et al., Cell, 57, 717, 1989). Alternatively, an in vivo site specific gene recombinant technique such as that using cre/loxP recombinase system of bacteriophage P1, FLP recombinase system of Saccharomyces cerevisiae, etc. can be used. Furthermore, introduction of a transgene of the desired protein into a non-human animal using a retroviral vector has been reported.

For example, a method for creating a transgenic animal by microinjection can be carried out as follows.

First, a transgene primarily composed of promoter responsible for expression control, encoding a specific protein and a poly A signal is required. It is necessary to confirm expression modes and amounts between respective systems because an expression mode and amount of a specific molecule is influenced by a promoter activity, and transgenic animals differ from each other according to a particular system due to the difference in a copy number of an introduced transgene and a introduction site on a chromosome. An intron sequence which is spliced may be previously introduced before the poly A signal because it has been found that an expression amount varies due to a non-translation region and splicing. Purity of a gene to be used for introduction into fertilized egg cells

25

5

should be as high as possible. This is of importance. Animals to be used include a mouse for collecting fertilized eggs (5 to 6 week old), a male mouse for mating, a false pregnancy female mouse, a seminiferous tubule-ligated mouse, and the like.

For obtaining fertilized egg cells efficiently, ovulation may be induced with gonadotropin or the like. Fertilized egg cells are recovered and a gene injection pipette is injected into male pronucleus of the egg cells by microinjection. For returning the injected egg cells to a fallopian tube, an animal (false pregnancy female mouse, etc.) is provided and about 10 15 eggs/mouse are transplanted. Then, genomic extracted from the end part of the tail to confirm whether the transgene is introduced into newborn mouse or not. This confirmation can be carried out by detection of the transgene with southern blot technique or PCR technique, or by positive cloning wherein a marker gene, which activated only when homologous recombination is caused, has been introduced. Further, transcribed products derived from the transgene are detected by northern blot technique or RT-PCR technique to confirm expression of the transgene. Or, western blotting can be carried out with a specific antibody to a protein.

The knockout mouse of the present invention is

25

5

treated so that the function of mBSSP2 gene is lost. knockout mouse means a transgenic mouse any of whose gene is destroyed by homologous recombination technique so that its function is deficient. A knockout mouse can be created by carrying out homologous recombination with ES cells and selecting embryonic stem cells wherein either of allele genes are modified or destroyed. For example, embryonic stem cells whose genes are manipulated at blstocyte or morula stage of fertilized eggs are injected to obtain a chimera mouse wherein cells derived from the embryonic stem cells are mixed with those derived from the embryo. chimera mouse (chimera means a single individual formed by somatic cells based on two or more fertilized eggs) can be mated with a normal mouse to create a heterozygote mouse wherein all of the allele genes have been modified or destroyed. Further, a homozygote mouse can be created by mating heterozygote mice.

recombination Homologous means recombination between two genes whose nucleotide sequences are the same verv similar to each other in terms of recombination mechanism. PCR can be employed to select homologous recombinant cells. A PCR reaction can be carried out by using a part of a gene to be inserted and a part of a region where the insertion is expected as primers to find out occurrence of homologous recombination in cells

To the state of th

20

25

5

which give an amplification product. Further, for causing homologous recombination in a gene expressed in embryonic stem cells, homologous recombinant cells can readily be selected by using a known method or its modification. For example, cells can be selected by joining a neomycin resistant gene to a gene to be introduced to impart neomycin resistance to cells after introduction.

The present invention also provide an antibody recognizing hBSSP2 or mBSSP2 or a fragment thereof. The antibody of the present invention includes an antibody against a protein having the amino acid sequence described in any of SEQ ID NOS: 2, 4, 6, 8 and 10 or its fragment. An antibody against hBSSP2 or mBSSP2 or a fragment thereof (e.g., polyclonal antibody, monoclonal antibody, peptide antibody) or an antiserum can be produced by using hBSSP2 or mBSSP2 or a fragment thereof, etc. as an antigen according to a per se known process for producing an antibody or an antiserum.

The hBSSP2 or mBSSP2 of a fragment thereof is administered to a site of a warm-blooded animal where an antibody can be produced by administration thereof as such or together with a diluent or carrier. For enhancing the antibody production, upon administration, Freund's complete adjuvant or Freund's incomplete adjuvant may be administrated. Normally, the administration is carried out

10

20

25

once every 1 to 6 weeks, 2 to 10 times in all. Examples of the warm-blooded to be used include monkey, rabbit, dog, quinea pig, mouse, rat, sheep, goat, chicken and the like with mouse and rat being preferred. As rats, for example, Wistar and SD rats are preferred. As mice, for example, BALB/c, C57BL/6 and ICR mice are preferred.

For producing monoclonal antibody producer cells, individuals whose antibody titer have been recognized are selected from warm-blooded animals, e.g., a mouse immunized with an antigen. Two to 5 days after the last immunization, the spleen or lymph node of the immunized animal collected and antibody producer cells contained therein are subjected to cell fusion with myeloma cells to prepare a monoclonal antibody producer hybridoma. The antibody titer in an antiserum can be determined by, for example, reacting the antiserum with a labeled hBSSP2 or mBSSP2 as described hereinafter, followed by measurement of the activity bound The cell fusion can be carried out to the antibody. according to a known method, for example, that described by Koehler and Milstein (Nature, 256, 495, 1975) or its modifications (J. Immunol. Method, 39, 285, 1980; Eur. J. biochem, 118, 437, 1981; Nature, 285, 446, 1980). fusion promoting agent, there are polyethylene glycol (PEG), Sendai virus and the like. Preferably, PEG is used. Further, for improving fusion efficiency, lectin, poly-L-

10

15

20

lysine or DMSO can be appropriately added.

Examples of myeloma cells include X-63Ag8, NS-1, P3U1, SP2/0, AP-1 and the like with SP2/0 being preferred. The preferred ratio of the number of the antibody producer cells (spleen cells) : the number of spleen cells are 1 : 20 to 20 : 1. PEG (preferably PEG 1000 to PEG 6000) is added at a concentration of about 10 to 80% and the mixture is incubated at 20 to 40°C, preferably 30 to 37°C for 1 to 10 minutes to carry out the cell fusion efficiently. Screening of anti-hBSSP2 or mBSSP2 antibody producer hybridomas can be carried out by various methods. example, a supernatant of a hybridoma culture is added to a solid phase to which hBSSP2 or mBSSP2 antigen is adsorbed directly or together with a carrier (e.g., microplate), followed by addition of an anti-immunoglobulin antibody (in case that the cells used in cell fusion is those of a mouse, anti-mouse immunoglobulin antibody is used) or protein A to anti-hBSSP2 detect the or mBSSP2 monoclonal antibody attached to the solid phase. Or, a supernatant of a hybridoma culture is added to a solid phase to which an anti-immunoglobulin antibody or protein A is adsorbed, followed by addition of hBSSP2 or mBSSP2 labeled with a radioactive substance, an enzyme, etc., to detect the antihBSSP2 or mBSSP2 monoclonal antibody attached to the solid phase.

20

25

5

Selection and cloning of the anti-hBSSP or mBSSP monoclonal antibody can be carried out according to a per se known method or its modification. Normally, a HAT (hypoxanthine, aminopterin, thymidine)-added medium culturing animal cells is used. Any culture medium can be used for selection, cloning and growing up in so far as the hybridoma can grow. For example, there can be used RPMI culture medium containing 1 to 20%, preferably 10 to 20% fetal bovine serum, a serum-free medium for culturing hybridomas. Preferably, the culture is carried out at a temperature of about 37°C. Normally, the culture time is 5 days to 3 weeks, preferably 1 weeks to 2 weeks. Normally, the culture is carried out under 5% CO2. The antibody titer of a supernatant of a hybridoma culture can be measured according to the same manner as that of the abovedescribed measurement of anti-BSSP2 antibody titer in an That is, examples of the measurement to be used include radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), FIA (fluorescence immunoassay), plaque assay, agglutination reaction method, and the like. Among them, ELISA as shown blew is preferred.

Screening by ELISA

A protein prepared according to the same operation as that for an immunogen is immobilized on the surface of each well of an ELISA plate. Next, BSA, MSA,

5

10

15

20

25

OVA, KLH, gelatin, skimmed milk, or the like is immobilized each well to prevent non-specific adsorption. supernatant of a hybridoma culture is added to each well and is allowed to stand for a given time so that an immunological reaction proceeds. Each well is washed with a washing solution such as PBS or the like. Preferably, a surfactant is added to this washing solution. An enzyme labeled secondary antibody is added and allowed to stand for a given time. As the enzyme to be used for the label, there can be used  $\beta$ -galactosidase, alkaline phosphatase, peroxidase and the like. After washing each well with the same washing solution, a substrate solution of the labeled enzyme used is added so that an enzymatic reaction proceeds. When the desired antibody is present in the supernatant of a hybridoma culture, the enzymatic reaction proceeds and the color of the substrate solution is changed.

Normally, cloning is carried out by a per known method such as semi-solid agar method, limiting dilution method and the like. Specifically, confirming a well in which the desired antibody is produced by the above-described method, cloning is carried out to obtain a single clone. For cloning, it is preferred to employ limiting dilution method wherein hybridoma cells are diluted so that one colony is formed per one well of a culture plate. For cloning by limiting dilution method,

25

5

feeder cells can be used, or a cell growth factor such as interleukin 6, etc. can be added to improve colony forming In addition, cloning can be carried out by capability. using FACS and single cell manipulation method. The cloned hybridoma is preferably cultured in a serum-free culture medium and an optimal amount of an antibody is added to its The single hybridoma thus obtained can be supernatant. cultured in a large about by using a flask or a cell culture device, or cultured in the abdominal cavity of an animal (J. Immunol. Meth., 53, 313, 1982) to obtain a monoclonal antibody. When culturing in a flask, there can be used a cell culture medium (e.g., IMDM, DMEM, RPMI1640, etc.) containing 0 to 20% of FCS. When culturing in the abdominal cavity of an animal, the animal to be used is preferably the same species or the same line as that from which the myeloma cells used in the cell fusion are derived, a thymus deficient nude mouse or the like, and the hybridoma is transplanted after administration of a mineral oil such as pristane, etc. After 1 to 2 weeks, myeloma cells are proliferated in the abdominal cavity to obtain ascites containing a monoclonal antibody.

The monoclonal antibody of the present invention which does not cross-react with other proteins can be obtained by selecting a monoclonal antibody which recognizes an epitope specific to hBSSP2 or mBSSP2. In

10

15

20

25

general, an epitope presented by an amino acid sequence composed of at least 3, preferably 7 to 20 successive amino acid residues in an amino acid sequence which constitutes a particular protein is said to be an inherent epitope of the protein. Then, a monoclonal antibody recognizing epitope constituted by a peptide having an amino acid sequence composed of at least 3 successive amino acid residue selected from the amino acid residues disclosed in any of SEQ ID NOS: 2, 4, 6 and 8 can be said to be the monoclonal antibody specific for BSSP2 of the present An epitope common to BSSP2 family can be invention. selected by selecting an amino acid sequence conservative among the amino acid sequences described in SEQ ID NOS: 2, 4, 6, 8 and 10. Or, in case of a region containing an acid sequence specific for each sequence, antibody which can differentiate respective monoclonal proteins can be selected.

Separation and purification of the anti-hBSSP2 or mBSSP2 monoclonal antibody, like a conventional polyclonal antibody, can be carried out according to the same manner as those of immunoglobulins. As a known purification method, there can be used a technique, for example, salting out, alcohol precipitation, isoelectric precipitation, electrophoresis, ammonium sulfate precipitation, absorption and desorption with an ion exchange material (e.g., DEAE),

ultrafiltration, gel filtration, or specific purification by collecting only an antibody with an antibody-binding solid phase or an active adsorber such as protein A or protein G, etc., and dissociating the binding to obtain the antibody. For preventing formation of aggregates during purification or decrease in the antibody titer, for example, human serum albumin is added at a concentration of 0.05 to 2%. Alternatively, amino acids such as glycine,  $\alpha$ -alanine, etc., in particular, basic amino acids such as lysine, arginine, histidine, etc., saccharides such as glucose, mannitol, etc., or salts such as sodium chloride, etc. can be added. In case of IgM antibody, since it is very liable to be aggregated, it may be treated with  $\beta$ -propionilactone and acetic anhydride.

The polyclonal antibody of the present invention can be produced according to a per se known method or its modification. For example, an immunogen (protein antigen) per se or a complex thereof with a carrier protein is prepared and, according to the same manner as that in the above monoclonal antibody production, a warm-blooded animal is immunized. A material containing an antibody against the protein of the present invention or its fragment is collected from the immunized animal and the antibody is separated and purified to obtain the desired antibody. As for a complex of an immunogen and a carrier protein for

10

15

20

25

immunizing a warm-blooded animal, the kind of a carrier protein and the mixing ratio of a carrier and a hapten are not specifically limited in so far as an antibody against hapten immunized by cross-linking with the carrier efficiently produced. For example, there can be used about 0.1 to 20, preferably about 1 to 5 parts by weight of bovine serum albumin, bovine cycloglobulin, hemocyanin, etc. coupled with one part by weight of a hapten. For coupling a carrier and a hapten, various condensing agents can be Examples thereof include used. glutaraldehyde, carbodiimide or maleimide active ester, active ester agents having thiol group or dithiopyridyl group, and the like. The condensed product is administered as such or together with a carrier or diluent to a site of a warm-blooded animal where an antibody can be produced. For enhancing antibody production, upon administration, Freund's complete adjuvant or Freund's incomplete adjuvant may be administrated. Normally, the administration is carried out once every 2 to 6 weeks, 3 to 10 times in all. The polyclonal antibody can be collected from blood, ascites, or the like, preferably blood of the immunized animal. polyclonal antibody titer in an antiserum can be measured according to the same manner as measurement of the above monoclonal antibody titer in the antiserum. Separation and purification of the polyclonal antibody, like the above

20

25

5

monoclonal antibody, can be carried out according to the same manner as those of immunoglobulins.

The monoclonal antibody and polyclonal antibody against hBSSP2 or mBSSP2 or a fragment thereof can be utilized for diagnosis and treatment of diseases associated with cells expressing hBSSP2 or mBSSP2. By using these antibodies, hBSSP2 or mBSSP2 or a fragment thereof can be determined based on their immunological binding to hBSSP2 or mBSSP2 or a fragment thereof of the present invention. Specifically, examples of a method for determining hBSSP2 or mBSSP2 or a fragment thereof in a specimen by using these antibodies include a sandwich method wherein the antibody attached to an insoluble carrier and the labeled antibody are reacted with hBSSP2 or mBSSP2 or a fragment thereof to form a sandwich complex and the sandwich complex detected, as well as a competitive method wherein labeled hBSSP2 or mBSSP2, and hBSSP2 or mBSSP2 or fragment thereof in the specimen are competitively reacted with the antibody and hBSSP2 or mBSSP2 or a fragment thereof in the specimen is determined based on the amount of the labeled antigen reacted with the antibody.

As a sandwich method for determining hBSSP2 or mBSSP2 or a fragment thereof, there can be used two step method, one step method and the like. In two step method, first, the immobilized antibody is reacted with hBSSP2 or

25

5

mBSSP2 or a fragment thereof and then unreacted materials are completely removed by washing, followed by addition of the labeled antibody to form immobilized antibody-hBSSP2 or mBSSP2-labeled antibody. In one step method, the immobilized antibody, labeled antibody and hBSSP2 or mBSSP2 or a fragment thereof are added at the same time.

Examples of an insoluble carrier used for the determination include synthetic resins such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyester, polyacrylate, nylon, polyacetal, fluorine plastic, etc.; polysaccharides such as cellulose, agarose, etc.; glass; metal; and the like. An insoluble carrier may be shaped in various forms, for example, tray, sphere, fiber, rod plate, container, cell, test tube, and the like. The antibody adsorbed by a carrier is stored at a cold place in the presence of an appropriate preservative such as sodium azide or the like.

For immobilization of the antibody, a known chemical bonding method or a physical adsorption can be used. Examples of a chemical bonding method include a method using glutaraldehyde; maleimide method using N-succusinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate, N-succusinimidyl-2-maleimide acetate or the like; carbodiimide method using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; or the like.

10 15 mg first great gre

20

25

5

In addition, there are maleimidobenzoyl-N-hydroxysuccinimide ester method, N-succinimidyl-3-(2-pyridylthio)propionic acid method, bisdiazobenzidine method, and dipalmityllysine method. Or, it is possible to capture a complex formed beforehand by reacting a material to be tested with two antibodies, whose epitopes are different, with an immobilized a 3rd antibody against the antibody.

For labeling, it is preferred to use enzyme, fluorescent substance, luminous substance, radioactive substance, metal chelate, or the like. Examples of the include peroxidase, alkaline phosphatase, enzyme galactosidase, malate dehydrogenase, Staphylococcus nuclease,  $\delta$ -5-steroidisomerase,  $\alpha$ -glycerol phosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, asparaginase, glucose oxidase, ribonuclease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, acetylcholinesterase and the like. Examples of fluorescent the substance include fluorescein isothiocyanate, phycobiliprotein, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o-phthalaldehyde, and the like. Examples of the luminous substance include isoluminol, lucigenin, luminol, aromatic acridinium ester, imidazole, acrdinium salt and its modified ester, luciferin, luciferase, aequorin and the like. Examples of radioactive substance include 125I, 127I, 131I, 14C, 3H, 32P, 35S

25

5

and the like. The labeling material is not limited to them and any material which can be used for immunological determination can be used. Further, a low molecular weight hapten such as biotin, dinitrophenyl, pyridoxal or fluorescamine may be attached to the antibody. Preferably, horseradish peroxidase is used as a labeling enzyme. This enzyme can be reacted with various substrates and can readily be attached to the antibody by periodate method.

When an enzyme is used as a labeling material, a substrate and, if necessary, a coloring enzyme is used for measuring its activity. In case of using peroxidase as the enzyme,  $H_2O_2$  is used as a substrate and, as a coloring agent, there can be used 2,2'-azino-di-[3ethylbenzthiazoline sulfonic acid] ammonium salt (ABTS), 5'-aminosalicylic acid, o-phenylenediamine, aminoantipyrine, 3,3',5,5'-tetramethylbenzidine and like. In case of using alkaline phosphatase as the enzyme, o-nitorphenylphosphate, p-nitrophenylphosphoric acid, or the like can be used as a substrate. In case of using  $\beta\text{-}D\text{-}$ galactosidase enzyme, as the fluorescein-d-(B-Dgalactopyranoside), 4-methylumbelliphenyl-β-Dgalactopyranoside, or the like can be used as a substrate. The present invention also include a kit comprising the above monoclonal antibody, polyclonal antibody and reagents.

As a cross-linking agent, a known cross-linking

10

15

20

25

N, N'-o-phenylenedimaleimide, agent such as 4-(Nmaleimidomethyl) cyclohexanoate-N-succinimide ester, 6maleimidohexanoate-N-succineimide ester, dithiopyridine or the like can be utilized. The reaction of these cross-linking agents with enzymes and antibodies be carried out by a known method according properties of a particular cross-linking agent. as the antibody, a fragment thereof, for example, Fab', Fab, F(b'2) can be used as the case may be. A labeled enzyme can be obtained by the same treatment regardless of whether the antibody is polyclonal or monoclonal. When the above labeled enzyme obtained by using a cross-linking agent is purified by a known method such as affinity chromatography or the like, a immunoassay system having more higher sensitivity can be obtained. The enzyme labeled and purified antibody is stored at a dark cold place with addition of a stabilizer such as thimerosal, glycerin or after lyophilization.

An objective to be determined is not specifically limited in so far as it is a sample containing BSSP2 or a fragment thereof, or a sample containing a precursor of BSSP2 or a fragment thereof and includes body fluids such as plasma, serum, blood, serum, urine, tissue fluid, cerebrospinal fluid and the like.

The following Examples further illustrate the

present invention in detail but are not construed to limit the scope thereof.

Example 1

Cloning of novel serine protease mBSSP2 gene

The cloning was carried out by PCR using a mouse brain cDNA library (Clontech) as a template and nucleotide sequences corresponding to an amino acid sequence common to serine proteases represented by

Primer 1: GTG CTC ACN GCN GCB CAY TG (SEQ ID NO: 20)

Primer 2: CCV CTR WSD CCN CCN GGC GA (SEQ ID NO: 21) Namely, 5  $\mu$ l of the template, 5  $\mu$ l of 10 xas primers. ExTaq buffer, 5 µl of dNTP, 10 pmol of each of the above primers and 0.5 µl of ExTaq (TAKARA) were added and the total volume was adjusted to 50 µl with sterilized water. PCR was carried out by repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for The PCR product was mixed with pCR 1 minutes, 30 times. II-TOPO vector attached to TOPO TA cloning kit (Invitrogen) and the mixture was allowed to stand at room temperature for 5 minutes. Then, according to a conventional manner, E. coli Top 10 attached to the kit was transformed and applied to a LB (Amp⁺) plate (containing 100 µg/ml of ampicillin). According to a conventional manner, a plasmid was extracted from each colony obtained and its nucleotide sequence was determined by cycle sequencing method with a fluorescence

The first that the state of the

5

20

10

15

20

25

sequencer (ABI). Homology of the sequence of each clone was examined by means of GenBank. Regarding an unknown i.e., BSSP2 gene, the full length cDNA was obtained by 5' RACE and 3' RACE and, according to the same manner as described above, the nucleotide sequence was Namely, BSSP2 clone specific primers, GSP1 determined. primers [mBSSP2.2 (SEQ ID NO: 27) or mBSSP2.0 (SEQ ID NO: 22)] and GSP2 primers [mBSSP2R2 (SEQ ID NO: 28) or mBSSP2.1 (SEQ ID NO: 23)] were prepared. PCR was carried out by using mouse brain Marathon-Ready cDNA (Clontech), AP1 primer attached to this reagent and either of the above GSP1 primers and heating at 94°C for 2 minutes once and repeating a cycle of heating at 94°C for 30 seconds, at 60°C for 30 seconds and then at 72°C for 30 seconds 35 Then, 5 µl of the PCR product diluted to 1/100, 5 μl of 10 x buffer, 5 μl of dNTP, 10 pmol of either of 10 μM of the above GSP2 primer, 10 pmol of AP2 primer attached to the above reagent and 0.5 unit of ExTag were admixed and adjusted to 50 µl with sterilized water. Then, according to the same manner as the above, PCR was carried out. PCR product was cloned by the above TOPO TA cloning kit and sequenced to obtain the upstream and downstream regions of the above clone. At this time, as for a clone which seemed not to cover the full length of a protein, the specific primers shown hereinafter were prepared based on the newly

25

5

found nucleotide sequence. Further, based on this sequence, the primers capable of amplifying ORF as shown hereinafter [mBSSPF7 (SEQ ID NO: 26), mBSSP2R/E (SEQ ID NO: 29)] were prepared and PCR carried out using mouse brain Marathonready cDNA as a template to confirm that these clones were was cloned into pCR II-TOPO vector identical. This attached to TOPO TA cloning kit to obtain the plasmid pCR II/mBSSP2 containing the full length cDNA clone. The nucleotide sequence of DNA contained in this plasmid is shown in SEQ ID NO: 7 and the amino acid sequence of mSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 8. Further, two different types of clones were The nucleotide sequences of these DNA are shown obtained. in SEQ ID NOS: 3 and 5, respectively. The amino acid sequences of mBSSP2 proteins deduced from these nucleotide sequences are shown in SEQ ID NOS: 4 and 6. These novel proteases are divided into types 1, 2 and 3. Type 1 is composed of 273 amino acids, type 2 is composed of 311 amino acids and type 3 is composed of 445 amino acids. These amino acid sequences contained the common amino acid sequence composed of 238 amino acids whose N-terminus side started with Ile-Val-Gly-Gly-Gln-Ala-Val as the serine protease. Further, in the amino acid sequence of the mature serine protease, a consensus sequence having a serine protease activity was contained. Furthermore, since

there were two or more amino acid sequence specific for a sugar chain bonding site, it was presumed that the amino acid sequence had at least two sugar chains.

Table 1

	5	SEQ	Name of	Direc-	Se	quence	Use
		ID	primer	tion			
		NO:					
g#: 51 <u>L</u>	10	22	mBSSP2.0	Forward	ATGGTGG.	AGAAGATCATTCCT	RACE
And And Mr. H.		23	mBSSP2.1	Forward	TACAGTG	CCCAGAACCATG	RACE
		24	mBSSPF4	Forward	CTCAACT	CTCTGCTAGACCG	RACE
The way of the		25	mBSSP2F5	Forward	ATAGTTG	GCGGCCAAGCTGT	mature
		26	mBSSPF7	Forward	CCCAGCA	GAACTTACTGCCT	FL*
		27	mBSSP2.2	Reverse	TGTTGCA	GAGGTGGGTGCTG	RACE
The state of the state of		28	mBSSP2R2	Reverse	TACCATT	GTGTCCTGCAGTGT	RACE
	15	29	mBSSP2R5/E	Reverse	TGAATTC	TGCTGCTTCTTCGGCTAGC	G FL*
\$c.m		*: f	or full ler	nath			

': for full length

20

25

## Example 2

Expression mBSSP2 gene in mice internal organs

According to the protocol of QuickPrep Micro mRNA

purification Kit (Amersham-Pharmacia), mRNAs were isolated

from various internal organs of Balb/c mice or their

fetuses. They were subjected to electrophoresis according

to a conventional manner and transcribed to a nylon

membrane. A probe was prepared separately by isolating a

part of a nucleotide sequence encoding the mature protein

25

5

of mBSSP2 from pCR II/mBSSP2, purifying it and labeling it with  $\alpha^{-32}P$  dCTP. The probe was diluted with  $5 \times SSC$  and reacted with the above membrane filter at 65°C for a whole day and night. Then, the filter was washed twice each with  $2 \times SSC/0.1\%$  SDS at room temperature for 30 minutes,  $1 \times C$ SSC/0.1% SDS at room temperature for 30 minutes and 0.1 x SSC/0.1% SDS at 65°C for 30 minutes. The filter was exposed to an imaging plate for FLA2000 (Fuji Film) for one day to analyze the expression. The results shown in the drawings are those obtained by using mRNAs prepared from head of fetuses of mice and mRNAs prepared from brain of 5day-, 10-day-, 14-day-, 18-day-, 30-day-, 3-month-, 7-month and 1-year-old mice (Fig. 1) and mRNAs prepared from various internal organs of 3-month-old mice (Fig. 2). addition, the mRNAs of mice prepared above were subjected to RT-PCR by using Ready To Go RT-PCR Beads (Amersham-Pharmacia) and mBSSP2 gene specific primers (SEQ ID NOS: 25 and 29) according to the protocol attached to the kit.

As seen form Figs. 1 and 2, in case of northern blotting analysis, the expression of mBSSP2 was recognized in head of 15th to 20th day fetuses of mice and, as to the 3-month-old mice, the expression was recognized in prostate and testicle. Further, according to the results of RT-PCR, the expression was recognized in head of 12-day-old mice and testicle of 3-month-old mice.

Example 3

Expression of novel serine protease mature protein encoded by mBSSP2 gene

(1) Construction of expression plasmid

A cDNA region encoding the mature protein of BSSP2 protein was amplified by PCR using the plasmid pCR II/mBSSP2 as a template (the sequence of the 1st to 717th bases of SEQ ID NO: 1 was amplified by using the primers having the sequences represented by SEQ ID NOS: 25 and 29). The PCR product was ligated to pTrc-HisB (Invitrogen) which had been digested with BamHI and blunted with mung bean nuclease. E. coli JM109 was transformed by the resultant and colonies formed were analyzed by PCR to obtain E. coli containing the desired serine protease expressing plasmid pTrcHis/mBBSP2.

The resultant *E. coli* was designated E. coli pTrcHis/mBSSP2 and deposited at National Institute of Bioscience and Human-Technology (NIBH), Agency of Industrial Science & Technology of 1-1-3 Higashi, Tsukubashi, Ibaraki-ken, Japan on October 29, 1998 under the accession numbers of FERM P-17033.

(2) Expression of protein by  $E.\ coli$  containing expression plasmid

A single colony of  $E.\ coli$  having the expression plasmid was inoculated in 10 ml of LB (Amp $^+$ ) culture medium

20

10

15

and incubated at 37°C overnight. This was inoculated in 250 ml of LB (Amp⁺) culture medium and incubated at 37°C. When the absorbance at 600 nm became 0.5, 250  $\mu l$  of 0.1 M (isopropyl- $\beta$ -D-(-)-thiogalactopyranoside) was and the incubation was continued for additional 5 hours. The E. coli was centrifuged and suspended in a cell disruption buffer (10 mM phosphate buffer pH 7.5, 1 mM EDTA) and sonicated on ice to disrupt E. coli. This was centrifuged at 14,000 r.p.m. for 20 minutes to obtain a precipitate. The precipitate was washed twice with a cell disruption buffer containing 0.5% Triton  $X-100^{\text{TM}}$  and washed with water to remove Triton  $X-100^{TM}$ . Then, the resultant mixture was dissolved by soaking in a denaturation buffer containing 8 M urea (8M urea, 50 mM Tris pH8.5, 20 mM 2ME) at 37°C for 1 hour. The solution was passed through TALON affinity resin (Clontech), washed with denaturation buffer containing 10 mM imidazole, and then eluted with the denaturation buffer containing 100 mM imidazole to purify the solution. The purified product was dialyzed against PBS for 3 days with exchanging the buffer every other night to obtain the protein mBSSP2-His.

Example 4

Expression of novel serine protease mature protein encoded by mBSSP2 gene by using pFBTrypSigTag/BSSP2

(1) Construction of pFBTrypSigTag/BSSP2

25

25

5

The sequences represented by SEQ ID NOS: 11 and 12 were subjected to annealing and digested with NheI and BamHI. The resultant fragment was inserted into pSecTag2A (Invitrogen) to obtain pSecTrypHis. Twenty units of BAmHI was added to 5 µg of pSecTrypHis vector and the vector was cleaved at 37°C over 4 hours. Then, 6 units of mung bean nuclease (TAKARA) was added thereto and reacted at room temperature (25°C) for 30 minutes to blunt the terminal ends. Further, the 3'-terminus side of the cloning site was digested cleaved with 20 units of XhoI, 1 unit of bacterial alkaline phosphatase (TAKARA) was added thereto and the reaction was carried out at 65°C for 30 minutes.

According to the same manner as that described in JP 9-149790 A or Biochim. Biophys. Acta, 1350, 11, 1997, prepared from COLO201 cells and was synthesized to obtain the plasmid pSPORT/neurosin. region of neurosin was obtained from active an pSPORT/neurosin by PCR using primers having the sequences represented by SEQ ID NOS: 13 and 14. Ten units of XhoI was reacted with the PCR product at 37°C for 3 hours to cleave XhoI site at the 3'-side thereof. This was inserted pSecTrypHis by TAKARA ligation kit to pSecTrypHis/neursoin (Fig. 3).

Amplification was carried out by using the primers having the sequences represented by SEQ ID NOS: 15

15

20

25

5

and 16 so that the peptide of Leu-Val-His-Gly was present at the C-terminus of the part from trypsin signal to the enterokinase recognition site of pSecTrypHis/neurosin. This was inserted between NheI and HindIII sites of pSecTag2A to construct the plasmid pTrypSig.

One µg (0.1 µl) of the plasmid pSecTab2A was treated with the restriction enzymes NheI and BamHI to completely remove a region encoding the leader sequence of IgGk. One hundred pmol portions of DANs represented by SEQ ID NOS: 40 and 41 were added to the resultant solution and the mixture was heated at 70°C for 10 minutes and subjected to annealing by allowing to stand at room temperature for 30 minutes. Two µl of I solution of DNA ligation kit Ver. 2 (TAKARA) was added to 1 µl portions of His secretory signal sequence treated by NheI and BamHI and pSecTag2A and the reaction was carried out at 16°C for 30 minutes.

To the reaction mixture was add 0.1 ml of *E. coli* competent cell XL1-Blue (STRATAGENE) and reacted on ice for 30 minutes. Then, the reaction mixture was subjected to heat shock at 42°C for 60 seconds. After standing on ice for 2 minutes, 0.9 ml of SOC culture medium (Toyo Boseki K.K.) was added thereto and the mixture was shaken with a shaker at 37°C for 1 hour. The mixture was centrifuged at 5,000 r.p.m. for 1 minutes and the supernatant was discarded. The precipitated competent cells were suspended

25

5

in the liquid remained in the centrifuge tube and the suspension was applied to 2 ampicillin LB plates containing  $100~\mu g/ml$  of ampicillin in the ratio of 1:10. The plates were incubated at  $37\,^{\circ}\text{C}$  for one night. Among the colonies formed, a colony into which DNA of His secretory signal was inserted was selected by PCR to obtain pTrypHis.

A sequence of about 200 bp containing His Tag region of pTrypHis was amplified by using primers having the sequence represented by SEQ ID NOS: 16 and 17 and a fragment of about 40 bp containing His Tag and enterokinase recognizing site formed by digestion of HindIII and BamHI was inserted into pTrypSig to construct pTrypSigTag (Fig. 4A).

cDNA was prepared by PCR of the sequence from trvpsin signal to enterokinase recognizing site pTrypSigTag using primers having the sequences represented by SEO ID NOS 14 and 18 and cut out by digestion with BglII and BamHI. It was inserted into BamHI site of pFastBAC1. The insertion direction was confirmed by PCR using primers having the sequences represented by SEQ ID NOS: 14 and 19. A clone into which the cDNA was inserted in the direction toward transcription and translation was selected to obtain pFBTrypSigTag.

Twenty units of BamHI was added to 5  $\mu g$  of pFBTrypSigTag vector and the vector was cleaved at 37°C

10

15

over 4 hours, followed by addition of 6 units of mung bean nuclease (TAKARA) and reaction at room temperature (25°C) for 30 minutes to blunt the terminal ends. Further, the 3'-side of the cloning site was cleaved by 20 units of EcoRI, followed by addition of 1 unit of bacterial alkaline phosphatase (TAKARA). The reaction was carried out at 65°C for 30 minutes.

cDNA of the active region of mBSSP2 was obtained PCR according to a conventional manner using by or pCRII/mBSSP2 prepared from E. pTrcHis/mBSSP2 pTrcHis/mBSSP2 (accession No. FERM P-17033). The resultant into pFBTrypSigTag to was inserted CDNA pFBTrypSigTag/mBSSP2 (Fig. 4B). At this time, correct insertion of mBSSP2 was confirmed by determining the sequence.

Bacmid DNA was transformed PFBTrypSigTag/mBSSP2 according to a protocol of Gibco BRL BAC-TO-BAC baculovirus expression system to prepare a recombinant bacmid having chimera BSSP2 fused trypsinogen signal peptide, HisTag and enterokinase recognizing site. When this was expressed in Sf-9 cell according to a manual of BAC-TO-BAC baculovirus expression system, it was secreted in the culture supernatant from 2 days after infection of the virus.

(2) Determination of enzyme activity

25

20

25

5

The recombinant fused protein mSSP2 obtained in the culture supernatant was passed through a chelate column to purify it and, after dialysis, its enzyme activity was determined. First, the culture supernatant was applied to a chelate column (Ni-NTA-Agarose, Qiagen) with PBS buffer and eluted stepwise with a solution of imidazole (Wako Pure Chemical Industries, Ltd.) dissolved in PBS. The resultant imidazole-eluted fraction was applied to a PD-10 column (Pharmacia) to exchange to PBS buffer. Fifty µl of this sample was mixed with 10  $\mu$ l of enterokinase (1 U/1  $\mu$ l, Invitrogen) and the reaction was carried out at room temperature for 60 minutes. Each of various synthetic substrates (Peptide Laboratory, Boc-Gln-Ala-Arg-MCA, Boc-Phe-Ser-Arg-MCA, Bz-Arg-MCA, Boc-Val-Leu-Lys-MCA, Pyr-Gly-Arg-MCA, Pro-Phe-Arg-MCA, Boc-Val-Pro-Arg-MCA, MCA, Arg-MCA, Z-Phe-Arg-MCA) was dissolved in DMSO and diluted with 1 M Tris-HCl (pH 8.0) to obtain a substrate Fifty µl of 0.2 M substrate solution was added thereto and further the reaction was carried out at 37°C. (7-amino-4fluorescence of AMC After one hour, the enzymatic reaction methylcoumalin) formed by the measured at 380 nm of excitation wavelength and 460 nm of fluorescence wavelength to determine the activity.

As a result, the recombinant fused protein mBSSP2 has been shown to have serine protease activity.

15

5

Example 5

Cloning of hBSSP2 gene

Reverse transcription of 1 µg of mRNA of human fetus brain (Clontech) was carried out by using Superscript and oligo dT-Not Ι primer BRL) II (Gibco GGCCACGCGTCGACTAGTA C(T)₁₇ 3') to obtain cDNA. By using a template, PCR was carried out with primes as prepared from mBSSP2 nucleotide sequence and represented by SEO ID NOS: 30 and 31 to obtain a cDNA fragment of hBSSP2. Namely, 5 µl of the template, 5 µl of 10 x ExTaq buffer (TAKARA), 5  $\mu$ l of dNTPs, 10 pmol portions of the above primers and 0.5 µl of ExTaq (TAKARA) were adjusted to 50 µl with sterilized water and PCR was carried out by repeating a cycle of heating at 94°C for 0.5 minute, at 55°C for 0.5 minute and then at 72°C for 1 minute, 35 times. reactions described hereinafter were carried out according to the same manner as the above composition and conditions except the template and primers. The PCR product was mixed with pGEM-T Easy vector (Promega) and Takara Ligation Solution I (TAKARA) and the reaction was carried out at 16°C for 2 hours. Then, according to the same manner, E. coli JM109 was transformed and applied to a LB (Amp⁺) plate. A plasmid was extracted from each colony formed according to a conventional manner and its nucleotide sequence was determined by dideoxy method. As for a clone having

25

10

15

20

25

homology to mBSSP2, full length cDNA was obtained by 5' and 3' RACE and its sequence was determined PCR was carried out by using the above described above. a template and primers having the sequences represented by SEQ ID NOS: 30 and 37. 3' RACE was carried out by PCR using a 1/100 dilution of the above PCR product as a template and primers having the sequences represented by SEQ ID NOS: 32 and 37. As for 5' RACE, cDNA for RACE was prepared from human fetal brain mRNA (Clontech) by using Superscript II and SMART RACE cDNA amplification kit PCR of this cDNA was carried out by using a primer of 10 x Universal Primer Mix (attached to the kit) and a primer having the sequence represented by SEQ ID NO: 33. Further, PCR was carried out by using the 1/100 dilution of the latter PCR product, a template, Nested PCR (attached to the kit) and a primer having the sequence represented by SEQ ID NO: 34. The finally obtained PCR product was subjected to TA cloning as described above and the nucleotide sequence was determined to obtain the upstream and downstream regions of the above clone. In addition, primers for amplifying the full length cDNA as represented by SEQ ID NOS: 35 and 36 were prepared based on the resultant nucleotide sequence and PCR was carried out by using the above synthetic cDNA as a template. This PCR product was cloned into pGEM-T Easy vector to

obtain the plasmid pGEM-TE/hBSSP2 containing the full length cDNA clone. The DNA sequence contained in this plasmid is shown in SEQ ID NO: 9 and hBSSP2 protein deduced from the nucleotide sequence is shown in SEQ ID NO: 10.

E. coli containing this plasmid was designated E. coli pGEM-TE/hBSSP2 and deposited at National Institute of Bioscience and Human-Technology (NIBH), Agency of Industrial Science & Technology of 1-1-3 Higashi, Tsukubashi, Ibaraki-ken, Japan on July 27, 1999 under the accession numbers of FERM P-17487.

Table 2

SEQ Name of

	ID	primer	tion			
	NO:					
15	30	BSSP2SPF	Forward	ACTGCTGCCCACTGCATG	for	part
	31	BSSP2SPR	Reverse	CAGGGGTCCCCCGCTGTCTCC	for	part
	32	hBSSP2F11	Forward	GCTCTCAACTTCTCAGACAC		RACE
	33	hBSSP2R12	Reverse	ACTCAGCTACCTTGGCGTAG		RACE
	34	hBSSP2R11	Reverse	CCTGGAGCATATCCGAGCTG		RACE
20	35	hBSSR2F12	Forward	GCTTTACAACAGTGCTAC		WB*
	36 h	BSSP2R13/E	Reverse	TGGAATTCGAGGAAACAGCAGGACT	'CAG	WB*
	37			TACTAGTCGACGCGTGGCC		

Direc- Sequence

Use

Example 6

Detection of hBSSP2 mRNA by northern blotting

^{*:} whole body

25

5

Poly A + RNA extracted from respective tissues of adults and fetuses were blotted on a membrane (Clontech) and the membrane was subjected to northern hybridization with a hBSSP2 probe. The probe was labeled by Takara BcaBEST random labeling kit (TAKARA) according to random priming method using a cDNA fragment which was amplified by using the full length of hBSSP2 as a template and the sequences represented by SEQ ID NOS: 34 and 35 as primers. The hybridization was carried out at overnight and the filter was finally washed with 0.1 x SSC and 0.1% SDS. The radioactivity was detected by FLA-2000 (Fuji Film). The signal corresponding to the adult brain was recognized at about 2.4 kb, the signal corresponding to the adult skeletal muscle was recognized at 7 kb and 1.3 kb and further the signal of the fetus liver was recognized at The signal of the adult brain is considered 7 kb (Fig. 5). to correspond to the exact nucleotide sequence and the others are considered to correspond to polymorphic forms resulted from the difference in splicing.

20 Example 7

Detection of hBSSP2 mRNA by RT-PCR

mRNAs of human tissues purchased from Clontech were subjected to RT-PCR against hBSSP2 by using Ready To RT-PCR Beads (Amersham-Pharmacia) according to protocol attached to the kit. Expression of hBSSP2 was

25

5

recognized in brain and skeletal muscle (Fig. 6). No clear band was obtained in pancreas due to the combination of primers. This is considered to be non-specific amplification by a large amount of a serine protease present in pancreas.

Example 8

Expression of hBSSP2 by baculovirus system

The signal sequence of human trypsinogen 2 and (His) 6 Tag and a sequence encoding the cleavage site of enterokinase were inserted into pFastBac1 (Gibco BRL) obtain the plasmid pFBTrypSigTag. The mature form of hBSSP2 was inserted into the plasmid pFBTrypSigTag so that it was located in the flame (Fig. 4B). The mature form of hBSSP2 amplified by the sequences represented by SEQ ID NOS: 38 and 36 was cleaved by EcoRI and, according to the same manner as described with respect to mBSSP2, it was inserted into pFBTrySigTag to construct pFastBacTrypSigTag/hBSSP2. At this time, correct insertion BSSP2 was confirmed by determining the nucleotide οf using the fluorescent sequence by labeled represented by SEQ ID NO: 39. Bacmid DNA was transformed with PFBTrypSigTag/hBSSP2 according to a protocol of Gibco BRL BAC-TO-BAC baculovirus expression system to prepare a recombinant bacmid having chimera BSSP2 fused with peptide, trypsinogen signal HisTag and enterokinase recognizing site. When this was expressed in Sf-9 cell according to a manual of BAC-TO-BAC baculovirus expression system and the culture supernatant from 3 days after infection of the virus subjected to western blot technique with anti-DDDDK antibody, a specific band was detected to confirm expression of hBSSP2 (Fig. 7).

Table 3

SEQ Name of Direc-

Sequence

Use

ID primer tion

10 NO:

5

- 38 hBSSP2F13 Forward ACTGCTGCCCACTGCATG for part
- 39 FBTrypSigTagF5 GCGCTAGCAGATCTCCATGAATCTACTCCTGATCC NS*
- *: nucleotide sequence

## INDUSTRIAL UTILITY

According to the present invention, there are provided isolated human and mouse serine protease (hBSSP2 and mBSSP2) polynucleotides, their homologous forms, mature forms, precursors and polymorphic variants. Further, according to the present invention, there are provided hBSSP2 and mBSSP2 proteins as well as compositions containing hBSSP2 and mBssP2 polynucleotides and proteins, their production and use.

25

5

SEQ ID NO: 11: Designed oligonucleotide to construct plasmid pSecTrypHis.

SEQ ID NO: 12: Designed oligonucleotide to construct plasmid pSecTrypHis.

SEQ ID NO: 13: Designed oligonucleotide primer to amplify neurosin-encoding sequence.

SEQ ID NO: 14: Designed oligonucleotide primer to amplify neurosin-encoding sequence.

SEQ ID NO: 15: Designed oligonucleotide primer to amplify a portion of plasmid pSecTrypHis/Neurosin.

SEQ ID NO: 16: Designed oligonucleotide primer to amplify a portion of plasmid pSecTrypHis/Neurosin.

SEQ ID NO: 17: Designed oligonucleotide primer to amplify a portion of plasmid pTrypHis.

SEQ ID NO: 18: Designed oligonucleotide primer to amplify a portion of plasmid pTrypSigTag.

SEQ ID NO: 19: Designed oligonucleotide primer to amplify a portion of plasmid pFBTrypSigTag.

SEQ ID NO: 20: Designed oligonucleotide primer to amplify conserved region of serine proteases-encoding sequence; n is a, c, g or t.

SEQ ID NO: 21: Designed oligonucleotide primer to amplify conserved region of serine proteases-encoding sequence; n is a, c, g or t.

SEQ ID NO: 22: Designed oligonucleotide primer designated as mBSSP2.0 for RACE for mBSSP2 (forward).

SEQ ID NO: 23: Designed oligonucleotide primer designated as mBSSP2.1 for RACE for mBSSP2 (forward).

SEQ ID NO: 24: Designed oligonucleotide primer designated as mBSSPF4 for RACE for mBSSP2 (forward).

SEQ ID NO: 25: Designed oligonucleotide primer designated as mBSSP2F5 to amplify mature mBSSP2-encoding region (forward).

SEQ ID NO: 26: Designed oligonucleotide primer designated as mBSSPF7 to amplify full-length mBSSP2-encoding mRNA (forward).

SEQ ID NO: 27: Designed oligonucleotide primer designated as mBSSP2.2 for RACE for mBSSP2 (reverse).

SEQ ID NO: 28: Designed oligonucleotide primer designated as mBSSP2R2 for RACE for mBSSP2 (reverse).

SEQ ID NO: 29: Designed oligonucleotide primer designated as mBSSP2R5/E to amplify full-length mBSSP2-encoding mRNA (reverse).

SEQ ID NO: 30: Designed oligonucleotide primer designated as BSSP2SPF to amplify a portion of hBSSP2 (forward).

SEQ ID NO: 31: Designed oligonucleotide primer designated as BSSP2SPR to amplify a portion of hBSSP2 (reverse).

10

5

15

15

SEQ ID NO: 32: Designed oligonucleotide primer designated as hBSSP2F11 for RACE for hBSSP2 (forward).

SEQ ID NO: 33: Designed oligonucleotide primer designated as hBSSP2R12 for RACE for hBSSP2 (reverse).

5 SEQ ID NO: 34: Designed oligonucleotide primer designated as hBSSP2R11 for RACE for hBSSP2 (reverse).

SEQ ID NO: 35: Designed oligonucleotide primer designated as hBSSP2F12 to amplify full length hBSSP2 (forward).

SEQ ID NO: 36: Designed oligonucleotide primer designated as hBSSP2R13/E to amplify full length hBSSP2 (reverse).

SEQ ID NO: 37: Designed oligonucleotide primer for RACE for hBSSP2.

SEQ ID NO: 38: Designed oligonucleotide primer designated as hBSSP2F13 to amplify a portion of hBSSP2 (forward).

SEQ ID NO: 39: Designed oligonucleotide primer designated as FBTrpsigtagF5 to detect hBSSP2.

20 SEQ ID NO: 40: Designed oligonucleotide to construct plasmid pTrypHis.

SEQ ID NO: 41: Designed oligonucleotide to construct plasmid pTrypHis.

#### What is claimed is:

- 1. A protein having the amino acid sequence of 238 amino acids represented by SEQ ID NO: 2; or a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 2 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 2; or a modified derivative thereof.
- 2. A nucleotide sequence represented by the 1st to 714th bases of SEQ ID NO: 1; a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 2; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 2.
- 3. A protein having the amino acid sequence of 273 amino acids represented by SEQ ID NO: 4; or a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 4 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 4; or a modified derivative thereof.

25

- 4. A nucleotide sequence represented by the 247th to 1065th bases of SEQ ID NO: 3; a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 4; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 4.
- 5. A protein having the amino acid sequence of 311 amino acids represented by SEQ ID NO: 6; or a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 6 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 6; or a modified derivative thereof.
- 6. A nucleotide sequence represented by the 516th to 1448th bases of SEQ ID NO: 5; a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 6; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 6.
  - 7. A protein having the amino acid sequence of

25

5

455 amino acids represented by SEQ ID NO: 8; or a protein having an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO: 8 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 8; or a modified derivative thereof.

- 8. A nucleotide sequence represented by the 116th to 1450th bases of SEQ ID NO: 7; a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 8; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by SEQ ID NO: 8.
- 9. A protein having the amino acid sequence of 240 amino acids represented by the 1st to 240th amino acids of SEQ ID NO: 10; or a protein having an amino acid sequence derived from the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10; or a modified derivative thereof.

25

5

10. A nucleotide sequence represented by the 807th to 1526th bases of SEQ ID NO: 9; a nucleotide sequence encoding the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by the 1st to 240th amino acids of SEQ ID NO: 10.

11. A protein having the amino acid sequence of 457 amino acids represented by the -217th to 240th amino acids of SEQ ID NO: 10; or a protein having an amino acid sequence derived from the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10; or a modified derivative thereof.

12. A nucleotide sequence represented by the 156th to 1526th bases of SEQ ID NO: 9; a nucleotide sequence encoding the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10; or a nucleotide sequence hybridizable with a nucleotide sequence

25

5

which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by the -217th to 240th amino acids of SEQ ID NO: 10.

- 13. A protein having the amino acid sequence of 217 amino acids represented by the -217th to -1st amino acids of SEQ ID NO: 10; or a protein having an amino acid sequence derived from the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10 by deletion, substitution or addition of one to several amino acids and having the same property as that of the protein having the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10; or a modified derivative thereof.
- 14. A nucleotide sequence represented by the 156th to 806th bases of SEQ ID NO: 9; a nucleotide sequence encoding the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein having the amino acid sequence represented by the -217th to -1st amino acids of SEQ ID NO: 10.

25

- 15. A nucleotide sequence represented by SEQ ID NO: 1; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 1.
- NO: 3; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 3.
- NO: 5; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 5.
- 18. A nucleotide sequence represented by SEQ ID NO: 7; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding

5

a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 7.

- NO: 9; or a nucleotide sequence hybridizable with a nucleotide sequence which is complementary to the above nucleotide sequence under stringent conditions and encoding a protein having the same property as that of the protein encoded by the nucleotide sequence represented by SEQ ID NO: 9.
  - 20. A vector comprising the nucleotide sequence according to any one of claims 2, 4, 6, 8, 10, 12 and 14-19.
  - 21. Transformed cells having the nucleotide sequence according to any one of claims 2, 4, 6, 8, 10, 12 and 14-19 in an expressible state.
  - 22. A process for producing a protein which comprises culturing cells transformed with the nucleotide sequence according to any one of claims 2, 4, 6, 8, 15-18, and collecting mBSSP2 produced.
- 23. A process for producing a protein which comprises culturing cells transformed with the nucleotide sequence according to any one of claims 10, 12, 14 or 19, and collecting hBSSP2 produced.
  - 24. The process according to claim 22 or 23, wherein the cells are *E. coli* cells, animal cells or insect

10

15

20

25

cells.

- 25. A non-human transgenic animal whose expression level of BSSP2 gene has been altered.
- 26. The non-human transgenic animal according to claim 25, wherein BSSP2 gene is cDNA, genomic DNA or synthetic DNA encoding BSSP2.
- 27. The non-human transgenic animal according to claim 25, wherein the expression level has been altered by mutating a gene expression regulatory site.
- 28. A knockout mouse whose BSSP2 gene function is deficient.
- 29. An antibody against the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 or a fragment thereof.
- 30. The antibody according to claim 29 which is a polyclonal antibody, a monoclonal antibody or a peptide antibody.
- antibody against the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 or a fragment thereof which comprises administering the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13 or a fragment thereof to a warm-blooded animal other than a human being, selecting the animal whose antibody titer is recognized, collecting its spleen or lymph node, fusing the antibody producing cells

10

15

20

25

contained therein with myeloma cells to prepare a monoclonal antibody producing hybridoma.

- 32. A method for determining the protein according to any one of claims 1; 3, 5, 7; 9, 11 and 13 or a fragment thereof in a specimen which is based on immunological binding of an antigen against the protein or a fragment thereof to the protein or a fragment thereof in the specimen.
- 33. A method for determining hBSSP2 or a fragment thereof in a specimen which comprises reacting a monoclonal antibody or a polyclonal antibody against the protein according to any one of claims 9, 11 and 13 or a fragment thereof and a labeled antibody with hBSSP2 or a fragment thereof in the specimen to detect a sandwich complex produced.
- 34. A method for determining hBSSP2 or a fragment thereof in a specimen which comprises reacting a monoclonal antibody or a polyclonal antibody against the protein according to any one of claims 9, 11 and 13 and a fragment thereof with labeled hBBSP2 and hBSSP2 or a fragment thereof in the specimen competitively to detect an amount of hBSSP2 or a fragment thereof in the specimen based on an amount of the labeled hBBSP2 reacted with the antibody.
- 35. The method according to any one of claims

10

32-34, wherein the specimen is a body fluid.

- 36. A diagnostic marker for diseases in tissues comprising the protein according to any one of claims 1, 3, 5, 7, 9, 11 and 13.
- 37. The marker according to claim 36 to be used for diagnosis of Alzheimer's disease or epilepsy in brain.
- 38. The marker according to claim 36 to be used for diagnosis of cancer or inflammation of brain, prostate or testicle.
- 39. The marker according to claim 36 to be used for diagnosis of sterility in semen or sperms
- 40. The marker according to claim 36 to be used for diagnosis of prostatic hypertrophy in prostate.

## Abstract of the disclosure:

There are provided proteins having the amino acid sequences represented by SEQ ID NOS: 2, 4, 6, 8 and 10; proteins having amino acid sequences derived from these amino acid sequences by deletion, substitution or addition of one to several amino acids; and nucleotide sequences encoding the same; transgenic non-human animals with altered expression level of a serine protease BSSP2; an antibody against BSSP2; and a method for detecting BSSP2 in a specimen by using the antibody.

# mBSSP-2

	Fetus				Αf	te	er	birth					
	9th day	13th day	15th day	18th day	20th day	5-day-old	10-day-old	14-day-old	18-day-old	30-day-old	3-month-old	7-month-old	1-year-old
28S <del>-</del> 18S <b>-</b>													一種 大学学

The start when went direct find the regard of starts after the start of the start o

Fig. 2





Fig. 3



4/7

Fig. 4



5/7

Fig. 5



Fig. 6



Fig. 7

kDa

97 —

50 ___

36 —

27.5

## Combined Declaration for Patent Application and Power of Attorney

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name; and that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of

		for which a patent in PROTEASE	s sought on the inven BSSP2	tion entitled			
the specification of v	vhich (check one)						
[ ] [ ]	U.S. Appln. Nowas/will be filed	*; or in the U.S. under I) application, PC	5 U.S.C. §111 on r 35 U.S.C. §371 to T/JP99/06475; filed application received (n)	by entry into t	99, e	entry requested	i on
and was amended on	1		· · · · · · · · · · · · · · · · · · ·	_(if applicable	:).	•	
	(include dates of an	nendments under PCT	Art. 19 and 34 if PCT)	•			
amendment referred information known b I hereby claim fore inventor's certificate	I to above; and I by me to be material ign priority benefit c, or prior PCT app	acknowledge the d to patentability as o s under 35 U.S.C. lication(s) designati	identified specifications to to disclose to the defined in 37 C.F.R. §§ 119 and 365 of any a country other the tion having a filing	he Patent and §1.56. any prior foreignan the U.S., lis	Trademark gn applicati sted below	office (PTO)  ion(s) for pater  with the "Yes"	nt or
347785/	1998	Japan	20/11/1	.998	(x)	[ ]	
(Numbe		(Country)	(Day Month Y		YES	NO	
(Numbe	म)	(Country)	(Day Month Y	ear Filed)	[ ] YES	NO NO	
designating the U.S. subject matter of each by the first paragrap	listed below, or until th of the claims of the h of 35 U.S.C. §112	nder §119(e) of any his application is no 2, I acknowledge the	ior U.S. non-provision prior U.S. provisiona at disclosed in such U duty to disclose to the application and the r	l applications li .S. or PCT appl se PTO all infor	sted below, lication in the mation as d	, and, insofar as he manner prov lefined in 37 C.	s the rided
(Applica	ation No.)	(Day Month )	(ear Filed)	(Status: patente	d, pending, al	bandoned)	
(Applies	ation No.)	(Day Month )	(ear Filed)	(Status: patente	d, pending, al	bandoned)	
(Applica	ation No.)	(Day Month Y	(ear Filed)	(Status: patente	d, pending, al	bandoned)	
		the following regi	stered practioners to	prosecute this	application	and to transac	et all

All of the practioners associated with Customer Number 001444

Direct all correspondence to the address associated with Customer Number 001444; i.e.,

BROWDY AND NEIMARK, P.L.L.C. 624 Ninth Street, N.W. Washington, D.C. 20001-5303 (202) 628-5197

The undersigned hereby authorizes the U.S. Attorneys or Agents appointed herein to accept and follow instructions from AOYAMA & PARTNERS as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. Attorneys or Agents and the undersigned. In the event of a change of the persons from whom instructions may be taken, the U.S. Attorneys or Agents appointed herein will be so notified by the undersigned.

Title: NOVEL SERINE PRO U.S. Application filed PCT Application filed Nov. 19, 1999  I hereby further declare that all statements made here information and belief are believed to be true; and the statements and the like so made are punishable by fine of false statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements made here information and belief are believed to be true; and the statements made here information and belief are believed to be true; and the statements made here information and belief are believed to be true; and the statements made here information and belief are believed to be true; and the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements made here information and the statements made her	, Serial No, Serial No. PCT/JP99/06 ein of my own knowledge are at these statements were made or imprisonment, or both, under	true and that all with the knowle 18 U.S.C. §1001 n.	dae that willful
PCT Application filed Nov. 19, 1999  I hereby further declare that all statements made here information and belief are believed to be true; and the statements and the like so made are punishable by fine of false statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements made here information and the statements made are punishable by fine of false statements may jeopardize the validity of the application and the statements may jeopardize the validity of the application and the statements may jeopardize the validity of the application and the statements may jeopardize the validity of the application and the statements made here information and the statemen	ein of my own knowledge are at these statements were made or imprisonment, or both, under cation or any patent issued thereous inventor's signature	true and that all with the knowle 18 U.S.C. §1001 n.	dae that willful
I hereby further declare that all statements made here information and belief are believed to be true; and the statements and the like so made are punishable by fine of false statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements may jeopardize the validity of the application of the statements made here information and the statements made here information and the statements made here information and the statements and th	ein of my own knowledge are at these statements were made or imprisonment, or both, under cation or any patent issued thereo	true and that all with the knowle 18 U.S.C. §1001 n.	dae that willful
Hidetoshi UEMURA RESIDENT			
RESIDENT			DATE
RESIDENT	1 /courage va	1 0	Apr. 17, 20
_Itami-shi, Hyogo Japan 50	N /	CITIZENSHIP	1152. 11, 20
	X	Japan	
POST OFFICE ADDRESS	1	l daban	
133, Minamisuzuhara 3-chome, I	tami-shi. Hyogo Ja	nan	
FULL NAME OF SECOND JOINT INVENTOR	INVENTOR'S SIGNATURE	Pan	T :
Akira OKUL			Apr. 17, 20
RESIDENT	akira Okii		142. 17, 20
Yamatokoriyama-shi, Nara Ja	nan TOY	CITIZENSHIP	
		Japan	
POST OFFICE ADDRESS 275-3,	tho Vamatokoriyan	va-chi Nav	ra Tanan
FULL NAME OF THIRD JOINT INVENTOR	INVENTOR'S SIGNATURE	ia-siii, Na	DATE
Katsuya KOMINAMI	1.		Apr. 17, 20
RESIDENT	1 rassiga Cour	CITIZENSHIP	1.52. 177 20
Hannan-shi, Osaka Japan 🏒	W	1	
POST OFFICE ADDRESS	7/	Japan	
786-2, Jinenda, Hannan-shi, C	)saka Japan		
FULL NAME OF FOURTH JOINT INVENTOR			
Nozomi YAMAGUCHI	INVENTOR'S SIGNATURE	0	DATE
RESIDENT	Hojom yamag	wehr!	Apr. 17, 20
	DV V	CITIZENSHIP	
Kyoto-shi, Kyoto Japan	<u> </u>	Japan	· · · · · · · · · · · · · · · · · · ·
POST OFFICE ADDRESS 285-79, Shingoryoguchi-cho, Ter Kita-ku, Kyoto-shi, Kyoto Jar	amachinishi-iru,	Kuramaguc	hi-dori,
FULL NAME OF FIFTH JOINT INVENTOR	INVENTOR'S SIGNATURE.		DATE
Shinichi MITSUI	3 Markson	<u> </u>	Apr. 17, 20
RESIDENT	ds	CITIZENSHIP	
Kyoto-shi, Kyoto Japan 🛫	OY .	Japan	Ĺ
rost office ADDRESS 202, Kitashirakawa-koporasu, 86 Sakyo-ku, Kyoto-shi, Kyoto Ja	5, Kitashirakawani		<del></del>
FULL NAME OF SIXTH JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENT .		CITIZENSHIP	
POST OFFICE ADDRESS		····	
FULL NAME OF SEVENTH JOINT INVENTOR	INVENTOR'S SIGNATURE		DATE
RESIDENT .		CITIZENSHIP	i

ALL INVENTORS MUST REVIEW APPLICATION AND DECLARATION BEFORE SIGNING. ALL ALTERATIONS MUST BE INITIALED AND DATED BY ALL INVENTORS PRIOR TO EXECUTION. NO ALTERATIONS CAN BE MADE AFTER THE DECLARATION IS SIGNED. ALL PAGES OF DECLARATION MUST BE SEEN BY ALL INVENTORS.

## SEQUENCE LISTING

<110> Fuso Pharmaceutical Industries Ltd.

5 <120> Novel serine protease BSSP2

<130> 661638

The same and the same of the first hand to be same that the same that th <150> JP 10-347785 10 <151> 1998-11-20

<160> 41

<210> 1

15 <211> 717

ja#

<212> DNA

<213> mouse

<400> 1

20 ata gtt ggc ggc caa gct gtg gct tct ggg cgc tgg cca tgg caa gct agc 51 Ile Val Gly Gly Gln Ala Val Ala Ser Gly Arg Trp Pro Trp Gln Ala Ser

> 1 5 10 15

gtg atg ctt ggc tcc cgg cac acg tgt ggg gcc tct gtg ttg gca cca cac 102 Val Met Leu Gly Ser Arg His Thr Cys Gly Ala Ser Val Leu Ala Pro His

25 20 25 30

	tgg	gta	gtg	act	gct	gcc	cac	tgc	atg	tac	agt	ttc	agg	ctg	tcc	cgc	cta	153
	Trp	Val	Val	Thr	Ala	Ala	His	Cys	Met	Tyr	Ser	Phe	Arg	Leu	Ser	Arg	Leu	
	35					40					45					50		
	tcc	agc	tgg	cgg	gtt	cat	gca	ggg	ctg	gtc	agc	cat	ggt	gct	gtc	cga	caa	204
5	Ser	Ser	Trp	Arg	Val	His	Ala	Gly	Leu	Val	Ser	His	Gly	Ala	Val	Arg	Gln	
				55					60					65				
	cac	cag	gga	act	atg	gtg	gag	aag	atc	att	cct	cat	cct	ttg	tac	agt	gcc	255
	His	Gln	Gly	Thr	Met	Val	Glu	Lys	Ile	Ile	Pro	His	Pro	Leu	Tyr	Ser	Ala	
		70					75					80					85	
10	cag	aac	cat	gac	tat	gat	gtg	gct	ctg	ctg	cag	ctc	cgg	aca	cca	atc	aac	306
	G1n	Asn	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	G1n	Leu	Arg	Thr	Pro	Ile	Asn	
					90					95					100			
	ttc	tca	gac	acc	gtg	gac	gct	gtg	tgc	ttg	ccg	gcc	aag	gag	cag	tac	ttt	357
	Phe	Ser	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	Gln	Tyr	Phe	
15			105					110					115					
	cca	tgg	ggg	tcg	cag	tgc	tgg	gtg	tct	ggc	tgg	ggc	cac	acc	gac	ccc	agc	408
	Pro	Trp	Gly	Ser	Gln	Cys	Trp	Val	Ser	Gly	Trp	Gly	His	Thr	Asp	Pro	Ser	
	120					125					130					135		
	cat	act	cat	agc	tca	gat	aca	ctg	cag	gac	aca	atg	gta	ccc	ctg	ctc	agc	459
20	His	Thr	His	Ser	Ser	Asp	Thr	Leu	G1n	Asp	Thr	Met	Val	Pro	Leu	Leu	Ser	
				140					145					150				
	acc	cac	ctc	tgc	aac	agc	tca	tgc	atg	tac	agt	ggg	gca	ctt	aca	cac	cgc	510
	Thr	His	Leu	Cys	Asn	Ser	Ser	Cys	Met	Tyr	Ser	Gly	Ala	Leu	Thr	His	Arg	
		155					160					165					170	
25	atg	ttg	tgt	gct	ggc	tac	ctg	gat	gga	agg	gca	gac	gca	tgc	cag	gga	gac	561

	Met	Leu	Cys	Ala	Gly	Tyr	Leu	Asp	Gly	Arg	Ala	Asp	Ala	Cys	Gln	Gly	Asp	
					175					180					185			
	agc	ggg	gga	ccc	ctg	gta	tgt	ccc	agt	ggt	gac	acg	tgg	cac	ctt	gta	ggg	612
	Ser	G1y	Gly	Pro	Leu	Val	Cys	Pro	Ser	Gly	Asp	Thr	Trp	His	Leu	Val	Gly	
5			190					195					200					
	gtg	gtc	agc	tgg	ggt	cgt	ggc	tgt	gca	gag	ccc	aat	cgc	cca	ggt	gtc	tat	663
	Val	Val	Ser	Trp	G1y	Arg	G1y	Cys	Ala	Glu	Pro	Asn	Arg	Pro	G1y	Val	Tyr	
	205					210					215					220		
	gcc	aag	gta	gca	gag	ttc	ctg	gac	tgg	atc	cat	gac	act	gtg	cag	gtc	cgc	714
10	Ala	Lys	Val	Ala	Glu	Phe	Leu	Asp	Trp	Ile	His	Asp	Thr	Val	Gln	Val	Arg	
				225					230					235				
	tag																	717
	<210	> 2																
15	<211	> 23	38															
	<212	> PF	TF															
	<213	> m	ouse															
	<400	> 2																
20	Ile	Val	Gly	G1y	G1n	Ala	Val	Ala	Ser	Gly	Arg	Trp	Pro	Trp	Gln	Ala	Ser	
	1				5					10					15			
	Val	Met	Leu	G1y	Ser	Arg	His	Thr	Cys	Gly	Ala	Ser	Val	Leu	Ala	Pro	His	
			20					25					30					
	Trp	Val	Val	Thr	Ala	Ala	His	Cys	Met	Tyr	Ser	Phe	Arg	Leu	Ser	Arg	Leu	
25	35					40					45					50		

	Ser	Ser	Trp	Arg	Val	His	Ala	Gly	Leu	Val	Ser	His	Gly	Ala	Val	Arg	Gln
				55					60					65			
	His	Gln	G1y	Thr	Met	Val	Glu	Lys	Ile	Ile	Pro	His	Pro	Leu	Tyr	Ser	Ala
		70					75					80					85
5	Gln	Asn	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	Gln	Leu	Arg	Thr	Pro	Ile	Asn
					90					95					100		
	Phe	Ser	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	Gln	Tyr	Phe
			105					110					115				
•	Pro	Trp	Gly	Ser	Gln	Cys	Trp	Val	Ser	G1y	Trp	Gly	His	Thr	Asp	Pro	Ser
10	120					125					130					135	
	His	Thr	His	Ser	Ser	Asp	Thr	Leu	Gln	Asp	Thr	Met	Val	Pro	Leu	Leu	Ser
				140					145					150			
	Thr	His	Leu		Asn	Ser	Ser	Cys		Tyr	Ser	G1y	Ala	150 Leu	Thr	His	Arg
	Thr	His 155	Leu		Asn	Ser	Ser 160	Cys		Tyr	Ser	Gly 165	Ala		Thr	His	Arg 170
15		155		Cys			160		Met			165					170
15		155		Cys			160		Met			165		Leu			170
15	Met	155 Leu	Cys	Cys Ala	Gly 175	Tyr	160 Leu	Asp	Met Gly	Arg 180	Ala	165 Asp	Ala	Leu	Gln 185	Gly	170 Asp
15	Met	155 Leu	Cys	Cys Ala	Gly 175	Tyr	160 Leu	Asp	Met Gly	Arg 180	Ala	165 Asp	Ala	Leu Cys	Gln 185	Gly	170 Asp
15	Met Ser	155 Leu Gly	Cys Gly 190	Cys Ala Pro	G1y 175 Leu	Tyr Val	160 Leu Cys	Asp Pro 195	Met Gly Ser	Arg 180 Gly	Ala Asp	165 Asp Thr	Ala Trp 200	Leu Cys	Gln 185 Leu	Gly Val	170 Asp Gly
20	Met Ser	155 Leu Gly	Cys Gly 190	Cys Ala Pro	G1y 175 Leu	Tyr Val	160 Leu Cys	Asp Pro 195	Met Gly Ser	Arg 180 Gly	Ala Asp	165 Asp Thr	Ala Trp 200	Leu Cys His	Gln 185 Leu	Gly Val	170 Asp Gly
	Met Ser Val 205	155 Leu Gly Val	Cys Gly 190 Ser	Cys Ala Pro	Gly 175 Leu Gly	Tyr Val Arg 210	160 Leu Cys	Asp Pro 195 Cys	Met Gly Ser	Arg 180 Gly	Ala Asp Pro 215	165 Asp Thr	Ala Trp 200 Arg	Leu Cys His	Gln 185 Leu Gly	Gly Val Val 220	170 Asp Gly Tyr

<210> 3

25 <211> 1685

<212> DNA

<213> mouse

<400> 3

5

10

15

20

25

	ctca	acat	gta 1	tctt	tcaga	aa ta	aaatg	ggaga	a gga	atct	tctg	ctte	caag	tac a	aagta	aagag	gc	60
	tcgg	gcca	gac 1	tggct	tcctį	gg ta	atgco	catga	a ggg	gccg	gagc	cca	gccc	tgg ;	gcat	gcaca	at	120
	ctgo	caaga	agt (	ettgg	ggcat	ta to	caggo	ctta	c tca	aaca	caag	gccį	gtgaa	atc	tgtc	tgaca	at	180
	caag	gctca	aac a	agato	ccca	gg ag	gtttg	gctca	a act	tctc	tgct	aga	ccggį	gag	gcct [.]	tgtaį	ga	240
	ggag	ggc a	atg į	gaa g	gcc (	cag g	gta g	ggg (	ctt (	ctg	tgg g	gtt a	agc į	gct :	aac ·	tgt (	cct	291
		l	Met (	Glu <i>E</i>	Ala (	Gln V	/al (	Gly I	Leu I	Leu ´	[rp	Val S	Ser A	Ala	Asn (	Cys l	Pro	
		-	-35				-	-30					-25					
	tct	ggc	cga	att	gtt	tct	ctc	aaa	tgt	tct	gag	tgt	ggg	gca	agg	cct	ctg	342
	Ser	Gly	Arg	Ile	Val	Ser	Leu	Lys	Cys	Ser	Glu	Cys	Gly	Ala	Arg	Pro	Leu	
-	-20					-15					-10					-5		
	gct	tct	cga	ata	gtt	ggc	ggc	caa	gct	gtg	gct	tct	ggg	cgc	tgg	cca	tgg	393
	Ala	Ser	Arg	Ile	Val	G1y	G1y	Gln	Ala	Val	Ala	Ser	Gly	Arg	Trp	Pro	Trp	
			-1	1				5					10					
	caa	gct	agc	gtg	atg	ctt	ggc	tcc	cgg	cac	acg	tgt	ggg	gcc	tct	gtg	ttg	444
	Gln	Ala	Ser	Val	Met	Leu	G1y	Ser	Arg	His	Thr	Cys	Gly	Ala	Ser	Val	Leu	
	15					20					25					30		
	gca	cca	cac	tgg	gta	gtg	act	gct	gcc	cac	tgc	atg	tac	agt	ttc	agg	ctg	495
	Ala	Pro	His	Trp	Val	Val	Thr	Ala	Ala	His	Cys	Met	Tyr	Ser	Phe	Arg	Leu	
				35					40					45				
	tcc	cgc	cta	tcc	agc	tgg	cgg	gtt	cat	gca	ggg	ctg	gtc	agc	cat	ggt	gct	546

Ser Arg Leu Ser Ser Trp Arg Val His Ala Gly Leu Val Ser His Gly Ala

		50					55					60					65	
-	gtc	cga	caa	cac	cag	gga	act	atg	gtg	gag	aag	atc	att	cct	cat	cct	ttg	597
	Val	Arg	Gln	His	G1n	G1y	Thr	Met	Val	G1u	Lys	Ile	Ile	Pro	His	Pro	Leu	
					70					75					80			
5	tac	agt	gcc	cag	aac	cat	gac	tat	gat	gtg	gct	ctg	ctg	cag	ctc	cgg	aca	648
	Tyr	Ser	Ala	G1n	Asn	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	Gln	Leu	Arg	Thr	
			85					90					95					
	cca	atc	aac	ttc	tca	gac	acc	gtg	gac	gct	gtg	tgc	ttg	ccg	gcc	aag	gag	699
	Pro	Ile	Asn	Phe	Ser	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	
10	100					105					110					115		
	cag	tac	ttt	cca	tgg	ggg	tcg	cag	tgc	tgg	gtg	tct	ggc	tgg	ggc	cac	acc	750
	Gln	Tyr	Phe	Pro	Trp	Gly	Ser	Gln	Cys	Trp	Val	Ser	G1y	Trp	Gly	His	Thr	
				120					125					130				
	gac	ccc	agc	cat	act	cat	agc	tca	gat	aca	ctg	cag	gac	aca	atg	gta	ccc	801
15	Asp	Pro	Ser	His	Thr	His	Ser	Ser	Asp	Thr	Leu	G1n	Asp	Thr	Met	Val	Pro	
		135					140					145					150	
	ctg	ctc	agc	acc	cac	ctc	tgc	aac	agc	tca	tgc	atg	tac	agt	ggg	gca	ctt	852
	Leu	Leu	Ser	Thr	His	Leu	Cys	Asn	Ser	Ser	Cys	Met	Tyr	Ser	Gly	Ala	Leu	
					155					160					165			
20	aca	cac	cgc	atg	ttg	tgt	gct	ggc	tac	ctg	gat	gga	agg	gca	gac	gca	tgc	903
	Thr	His	Arg	Met	Leu	Cys	Ala	G1y	Tyr	Leu	Asp	G1 y	Arg	Ala	Asp	Ala	Cys	
			170					175					180	•				
	cag	gga	gac	agc	ggg	gga	ccc	ctg	gta	tgt	ccc	agt	ggt	gac	acg	tgg	cac	954
	G1n	G1y	Asp	Ser	Gly	Gly	Pro	Leu	Val	Cys	Pro	Ser	G1y	Asp	Thr	Trp	His	
25	185					190					195					200		

10

220

ctt	gta	ggg	gtg	gtc	agc	tgg	ggt	cgt	ggc	tgt	gca	gag	ccc	aat	cgc	cca	1005
Leu	Val	G1y	Val	Val	Ser	Trp	G1y	Arg	G1y	Cys	Ala	Glu	Pro	Asn	Arg	Pro	
			205					210					215				

ggt gtc tat gcc aag gta gca gag ttc ctg gac tgg atc cat gac act gtg 1056 Gly Val Tyr Ala Lys Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val

230

235

225

cag gtc cgc tagccgaaga agcagcagca gccacctgtg acgccgagct gtggatcgcc 1115 Gln Val Arg

catggatcac cccagtctgg gggccagcat ctgggtcact gggcctctcc ccaaaggctc 1175 tgacttcgag ttcatctttc tcatctgaga acctccacaa caggaaaagg agtctgcggc 1235 1295 tagattggga atgatggtga gaggaaggga taggaggaca gaagagacag cagaggcttc tggaagcate tgggagactg etectetget ecceecacae eccaegtgea tecaetgggg 1355 gatgctggag atgcccaatc cttgtttctt gtggggccac tggaaggcta agtccaactt 1415 1475 tagaggatgc cctgtctcga gagttactag gcagataagg ttaaggttgg acaagctcag 1535 gtaaaggcac ggaagtcaag atcccctctc ccccgtgcgg tcctgttctg aggtaagcta 1595 atagccccgc accaggcaga ggtctacagg gtaagaagga tgcagttggg ctacacgacg ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt aaacagaaat 1655 tatgtataaa aaaaaaaaaa aaaaaaaaaa 1685

20

15

<210> 4

<211> 273

<212> PRT

 $\langle 213 \rangle$  mouse

25

## <400> 4

	•		1	Met	Glu .	Ala	G1n	Val	Gly	Leu	Leu	Trp	Val	Ser	Ala	Asn (	Cys	Pro
. •				-35				•	-30					-25				
		Ser	G1y	Arg	Ile	Val	Ser	Leu	Lys	Cys	Ser	Glu	Cys	Gly	Ala	Arg	Pro	Leu
5		-20					-15					-10					-5	
		Ala	Ser	Arg	Ile	Val	Gly	Gly	G1n	Ala	Val	Ala	Ser	Gly	Arg	Trp	Pro	Trp
				-1	1				5					10				
		G1n	Ala	Ser	Val	Met	Leu	Gly	Ser	Arg	His	Thr	Cys	Gly	Ala	Ser	Val	Leu
		15					20					25					30	
10		Ala	Pro	His	Trp	Val	Val	Thr	Ala	Ala	His	Cys	Met	Tyr	Ser	Phe	Arg	Leu
					35					40					45			
		Ser	Arg	Leu	Ser	Ser	Trp	Arg	Val	His	Ala	Gly	Leu	Val	Ser	His	Gly	Ala
			50					55					60					65
		Val	Arg	Gln	His	G1n	Gly	Thr	Met	Val	Glu	Lys	Ile	Ile	Pro	His	Pro	Leu
15						70					75					80		
		Tyr	Ser	Ala	Gln	Asn	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	Gln	Leu	Arg	Thr
				85					90					95				
		Pro	Ile	Asn	Phe	Ser	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu
		100					105					110					115	
20		Gln	Tyr	Phe	Pro	Trp	Gly	Ser	G1n	Cys	Trp	Val	Ser	Gly	Trp	G1y	His	Thr
					120					125					130			
		Asp	Pro	Ser	His	Thr	His	Ser	Ser	Asp	Thr	Leu	Gln	Asp	Thr	Met	Val	Pro
			135					140					145					150
		Leu	Leu	Ser	Thr	His	Leu	Cys	Asn	Ser	Ser	Cys	Met	Tyr	Ser	Gly	Ala	Leu
25						155					160					165		

	Thr	His	Arg	Met	Leu	Cys	Ala	Gly	Tyr	Leu	Asp	Gly	Arg	Ala	Asp	Ala	Cys	
			170					175					180					
	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Val	Cys	Pro	Ser	Gly	Asp	Thr	Trp	His	
	185					190					195					200		
5	Leu	Val	Gly	Val	Val	Ser	Trp	Gly	Arg	G1y	Cys	Ala	Glu	Pro	Asn	Arg	Pro	
				205					210					215				
	Gly	Val	Tyr	Ala	Lys	Val	Ala	Glu	Phe	Leu	Asp	Trp	Ile	His	Asp	Thr	Val	
		220					225					230					235	
	Gln	Val	Arg															
10																		
	<210	> 5																
	<211	> 20	)68															
	<212	> DN	ΙA															
	<213	> mc	ouse															
15												•	•					
	<400	> 5																
	ctgg	ctgg	gc t	gttg	gaato	a at	cccg	gacat	gag	gaca	ıgga	gcct	caco	ect į	gccca	agcag	ga	60
	actt	actg	gee t	tata	itcag	t go	agct	gact	cat	atga	gtc	caac	acte	gga t	tgaco	aaag	gc	120
	ccaa	tgga	ıga t	tcgg	gtgca	ıc gg	gaaga	ıgggt	gct	gggc	ctg	ggat	ctto	cag a	atgg	gagtt	g	180
20	ggag	acca	ıga g	gcaa	itcca	t tt	ctca	gtcc	caa	cgct	ggt	gctg	cctg	gca a	acgtg	gctg	gt	240
	gtaa	tact	gg g	cgto	ctgg	g go	etgct	ggct	gga	igcag	gca	ttgo	ttca	atg g	getet	tagt	g	300
	ttgt	atct	at g	gccg	gctg	c ct	ctcc	atcc	ato	tctg	gga	cgtt	gcag	gga g	ggagg	gagat	g	360
	actt	tgaa	ict g	tcca	ıggag	t ga	gctg	tgag	gaa	gago	tcc	ttcc	atct	ct 1	ccca	aaaa	a	420
	gaat	aaat	oo a	aaaa	ratet	t ct	actt		tac	oort	000	agat	oaaa		*oot o	ranta		190

tggtctgcca tgagggctgg agccccgccc tgggc atg cac atc tgc aag agt ctt

## Met His Ile Cys Lys Ser Leu

-70

	ggg	cat	atc	agg	ctt	act	caa	cac	aag	gcc	gtg	aat	ctg	tct	gac	atc	aag	587
	Gly	His	Ile	Arg	Leu	Thr	G1n	His	Lys	Ala	Val	Asn	Leu	Ser	Asp	Ile	Lys	
5		-65					-60					-55					-50	
	ctc	aac	aga	tcc	cag	gag	ttt	gct	caa	ctc	tct	gct	aga	ccg	gga	ggc	ctt	638
	Leu	Asn	Arg	Ser	Gln	Glu	Phe	Ala	Gln	Leu	Ser	Ala	Arg	Pro	Gly	G1y	Leu	
					-45					-40					-35			
	gta	gag	gag	gca	tgg	aag	ccc	agc	gct	aac	tgt	cct	tct	ggc	cga	att	gtt	689
10	Val	Glu	Glu	Ala	Trp	Lys	Pro	Ser	Ala	Asn	Cys	Pro	Ser	Gly	Arg	Ile	Val	
			-30					-25					-20					
	tct	ctc	aaa	tgt	tct	gag	tgt	ggg	gca	agg	cct	ctg	gct	tct	cga	ata	gtt	740
	Ser	Leu	Lys	Cys	Ser	Glu	Cys	Gly	Ala	Arg	Pro	Leu	Ala	Ser	Arg	Ile	Val	
	-15					-10					-5				-1	1		
15	ggc	ggc	caa	gct	gtg	gct	tct	ggg	cgc	tgg	cca	tgg	caa	gct	agc	gtg	atg	791
	Gly	Gly	Gln	Ala	Val	Ala	Ser	G1y	Arg	Trp	Pro	Trp	Gln	Ala	Ser	Val	Met	
			5					10										
								10					15					
	ctt	ggc		cgg	cac	acg	tgt		gcc	tct	gtg	ttg		cca	cac	tgg	gta	842
·			tcc	cgg Arg				ggg					gca					842
20			tcc					ggg					gca					842
20	Leu 20	G1y	tcc Ser		His	Thr 25	Cys	ggg Gly	Ala	Ser	Val 30	Leu	gca Ala	Pro	His	Trp 35	Val	842 893
20	Leu 20 gtg	Gly act	tcc Ser gct	Arg	His cac	Thr 25 tgc	Cys atg	ggg Gly tac	Ala agt	Ser ttc	Val 30 agg	Leu ctg	gca Ala tcc	Pro	His cta	Trp 35 tcc	Val agc	
20	Leu 20 gtg	Gly act	tcc Ser gct	Arg	His cac	Thr 25 tgc	Cys atg	ggg Gly tac	Ala agt	Ser ttc	Val 30 agg	Leu ctg	gca Ala tcc	Pro	His cta	Trp 35 tcc	Val agc	
20	Leu 20 gtg Val	Gly act Thr	tcc Ser gct Ala	Arg gcc Ala	His cac His	Thr 25 tgc Cys	Cys atg Met	ggg Gly tac Tyr	Ala agt Ser 45	Ser ttc Phe	Val 30 agg Arg	Leu ctg Leu	gca Ala tcc Ser	Pro cgc Arg 50	His cta Leu	Trp 35 tcc Ser	Val agc Ser	

		55					60					65					70	
	gga	act	atg	gtg	gag	aag	atc	att	cct	cat	cct	ttg	tac	agt	gcc	cag	aac	995
	G1y	Thr	Met	Val	Glu	Lys	Ile	Ile	Pro	His	Pro	Leu	Tyr	Ser	Ala	Gln	Asn	
					75					80					85			
5	cat	gac	tat	gat	gtg	gct	ctg	ctg	cag	ctc	cgg	aca	cca	atc	aac	ttc	tca	1046
	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	Gln	Leu	Arg	Thr	Pro	Ile	Asn	Phe	Ser	
			90					95					100					
	gac	acc	gtg	gac	gct	gtg	tgc	ttg	ccg	gcc	aag	gag	cag	tac	ttt	cca	tgg	1097
	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	G1u	Gln	Tyr	Phe	Pro	Trp	
10	105					110					115					120		
	ggg	tcg	cag	tgc	tgg	gtg	tct	ggc	tgg	ggc	cac	acc	gac	ccc	agc	cat	act	1148
	G1y	Ser	Gln	Cys	Trp	Val	Ser	Gly	Trp	Gly	His	Thr	Asp	Pro	Ser	His	Thr	
				125					130					135				
	cat	agc	tca	gat	aca	ctg	cag	gac	aca	atg	gta	ccc	ctg	ctc	agc	acc	cac	1199
15	His	Ser	Ser	Asp	Thr	Leu	Gln	Asp	Thr	Met	Val	Pro	Leu	Leu	Ser	Thr	His	
		140					145					150					155	
	ctc	tgc	aac	agc	tca	tgc	atg	tac	agt	ggg	gca	ctt	aca	cac	cgc	atg	ttg	1250
	Leu	Cys	Asn	Ser	Ser	Cys	Met	Tyr	Ser	Gly	Ala	Leu	Thr	His	Arg	Met	Leu	
					160					165					170			
20	tgt	gct	ggc	tac	ctg	gat	gga	agg	gca	gac	gca	tgc	cag	gga	gac	agc	ggg	1301
	Cys	Ala	Gly	Tyr	Leu	Asp	Gly	Arg	Ala	Asp	Ala	Cys	Gln	G1y	Asp	Ser	Gly	
			175					180					185					
	gga	ccc	ctg	gta	tgt	ccc	agt	ggt	gac	acg	tgg	cac	ctt	gta	ggg	gtg	gtc	1352
	G1y	Pro	Leu	Val	Cys	Pro	Ser	G1y	Asp	Thr	Trp	His	Leu	Val	Gly	Val	Val	
25	190					195					200					205		

W.	
ű,	
Ų.į	
72. H	
in Ha	
#	
Ų.	
ħ,	
<b>J</b> -4	
ļ, š,	

10

15

agc tgg ggt cgt ggc tgt gca gag ccc aat cgc cca ggt gtc tat gcc aag 1403 Ser Trp Gly Arg Gly Cys Ala Glu Pro Asn Arg Pro Gly Val Tyr Ala Lys

210

215

220

gta gca gag ttc ctg gac tgg atc cat gac act gtg cag gtc cgc tagccga 1455 Val Ala Glu Phe Leu Asp Trp Ile His Asp Thr Val Gln Val Arg

225

230

235

agaagcagca gcagccacct gtgacgccga gctgtggatc gcccatggat caccccagtc 1515 tgggggccag catctgggtc actgggcctc tccccaaagg ctctgacttc gagttcatct 1575 ttctcatctg agaacctcca caacaggaaa aggagtctgc ggctagattg ggaatgatgg 1635 tgagaggaag ggataggagg acagaagaga cagcagaggc ttctggaagc atctgggaga 1695 etgeteetet geteececa caccecacgt geatecactg ggggatgetg gagatgeeca 1755 atccttgttt cttgtggggc cactggaagg ctaagtccaa ctttagagga tgccctgtct 1815 cgagagttac taggcagata aggttaaggt tggacaagct caggtaaagg cacggaagtc 1875 aagateeect eteeceegtg eggteetgtt etgaggtaag etaatageee egeaceagge 1935 agaggtctac agggtaagaa ggatgcagtt gggctacacg acgctatttt tcaaatgatg 1995 2055 aaaaaaaaaa aaa 2068

<210> 6

20

<211> 311

<212> PRT

<213> mouse

<400> 6

25

Met His Ile Cys Lys Ser Leu

												-	-70			
Gly	His	Ile	Arg	Leu	Thr	G1n	His	Lys	Ala	Val	Asn	Leu	Ser	Asp	Ile	Lys
	-65					-60					-55					-50
Leu	Asn	Arg	Ser	Gln	Glu	Phe	Ala	Gln	Leu	Ser	Ala	Arg	Pro	Gly	Gly	Leu
				-45					-40					-35		
Val	Glu	Glu	Ala	Trp	Lys	Pro	Ser	Ala	Asn	Cys	Pro	Ser	Gly	Arg	Ile	Val
		-30					-25					-20				
Ser	Leu	Lys	Cys	Ser	Glu	Cys	Gly	Ala	Arg	Pro	Leu	Ala	Ser	Arg	Ile	Val
-15					-10					-5				-1	1	
Gly	G1y	Gln	Ala	Val	Ala	Ser	Gly	Arg	Trp	Pro	Trp	Gln	Ala	Ser	Val	Met
		5					10					15				
Leu	G1y	Ser	Arg	His	Thr	Cys	G1 y	Ala	Ser	Val	Leu	Ala	Pro	His	Trp	Val
20					25					30					35	
Val	Thr	Ala	Ala	His	Cys	Met	Tyr	Ser	Phe	Arg	Leu	Ser	Arg	Leu	Ser	Ser
			40	•				45					50			
Trp	Arg	Val	His	Ala	G1y	Leu	Val	Ser	His	Gly	Ala	Val	Arg	G1n	His	Gln
	55					60					65					70
Gly	Thr	Met	Val	Glu	Lys	Ile	Ile	Pro	His	Pro	Leu	Tyr	Ser	Ala	G1n	Asn
				75					80					85		
His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	G1n	Leu	Arg	Thr	Pro	Ile	Asn	Phe	Ser
		90					95					100				
Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	Gln	Tyr	Phe	Pro	Trp
105					110					115					120	
G1v	Ser	Gln	Cvs	Trp	Val	Ser	Glv	Trp	G1 v	His	Thr	Asp	Pro	Ser	His	Thr

	His Ser Ser As	Thr Leu Gln	Asp Thr Met	Val Pro Leu Leu	Ser Thr His
	140	145		150	155
	Leu Cys Asn Se	r Ser Cys Met	Tyr Ser Gly	Ala Leu Thr His	Arg Met Leu
		160	165		170
5	Cys Ala Gly Ty	Leu Asp Gly	Arg Ala Asp	Ala Cys Gln Gly	Asp Ser Gly
	175		180	185	
	Gly Pro Leu Va	l Cys Pro Ser	Gly Asp Thr	Trp His Leu Val	Gly Val Val
	190	195	:	200	205
	Ser Trp Gly Ar	g Gly Cys Ala	Glu Pro Asn	Arg Pro Gly Val	Tyr Ala Lys
10	210	)	215	220	
	Val Ala Glu Pho	e Leu Asp Trp	Ile His Asp′	Thr Val Gln Val	Arg
	225	230	ı	235	
	<210≻ 7				
15	<211> 2070				
	<212> DNA				
	<213> mouse				
	<400> 7				
20	cccagcagaa ctt	actgeet tatat	cagtg cagctga	ctc atatgccctg g	gtgtggggct 60
	gctggatctt caa	ccactat ttctc	cagag tccaaca	ctg gatgaccaaa g	gccca atg 118
					Met
	gag att cgg tg	c acg gaa gag	ggt gct ggg	cct ggg atc ttc	aga atg gag 169
25	Glu Ile Arg Cys	s Thr Glu Glu	Gly Ala Gly I	Pro Gly Ile Phe	Arg Met Glu

	-205		-200	-195		-190
	ttg gga į	gac cag agg	caa tcc att	tct cag tcc caa	cgc tgg tgc	tgc ctg 220
	Leu Gly A	Asp Gln Arg	Gln Ser Ile	Ser Gln Ser Gln	Arg Trp Cys	Cys Leu
		-185		-180	-175	
5	caa cgt g	ggc tgt gta	ata ctg ggc	gtc ctg ggg ctg	ctg gct gga	gca ggc 271
	Gln Arg (	Gly Cys Val	Ile Leu Gly	Val Leu Gly Leu	Leu Ala Gly	Ala Gly
	-]	170	-165	-	-160	
	att gct 1	tca tgg ctc	tta gtg ttg	tat cta tgg cca	gct gcc tct	cca tcc 322
	Ile Ala S	Ser Trp Leu	Leu Val Leu	Tyr Leu Trp Pro	Ala Ala Ser	Pro Ser
10	-155		-150	-145		-140
	atc tct g	ggg acg ttg	cag gag gag	gag atg act ttg	aac tgt cca	gga gtg 373
	Ile Ser (	Gly Thr Leu	Gln Glu Glu	Glu Met Thr Leu	Asn Cys Pro	Gly Val
		-135	-	-130	-125	
	agc tgt g	gag gaa gag	ctc ctt cca	tct ctt ccc aaa	aca gta tct	ttc aga 424
15	Ser Cys (	Glu Glu Glu	Leu Leu Pro	Ser Leu Pro Lys	Thr Val Ser	Phe Arg
	-120		-115	-110		-105
	ata aat g	gga gag gat	ctt ctg ctt	caa gta caa gta	aga gct cgg	cca gac 475
	Ile Asn G	Gly Glu Asp	Leu Leu Leu	Gln Val Gln Val	Arg Ala Arg	Pro Asp
		-100		-95	-90	
20	tgg ctc c	etg gtc tgc	cat gag ggc	tgg agc ccc gcc	ctg ggc atg	cac atc 526
	Trp Leu L	Leu Val Cys	His Glu Gly	Trp Ser Pro Ala	Leu Gly Met	His Ile
	_	-85	-80		-75	
	tgc aag a	agt ctt ggg	cat atc agg	ctt act caa cac	aag gcc gtg	aat ctg 577
	Cys Lys S	Ser Leu Gly	His Ile Arg	Leu Thr Gln His	Lys Ala Val	Asn Leu
25	-70	-	-65	-60		-55

	tct	t gad	ato	aag	g ctc	aac	aga	tcc	cag	gag	ttt	gct	caa	ctc	tct	gct	aga	628
	Ser	Asp	ı Ile	Lys	Leu	Asn	Arg	g Ser	G1n	Glu	Phe	Ala	G1n	Leu	Ser	·Ala	Arg	5
				-50	)				-45	i				-40	•			
	ccg	g gga	ggo	ctt	gta	gag	gag	gca	tgg	aag	ccc	agc	gct	aac	tgt	cct	tct	679
5	Pro	Gly	Gly	Leu	l Val	Glu	G1u	Ala	Trp	Lys	Pro	Ser	Ala	Asn	Cys	Pro	Ser	•
		-35	;				-30	)				-25					-20	1
	ggo	cga	att	gtt	tct	ctc	aaa	tgt	tct	gag	tgt	ggg	gca	agg	cct	ctg	gct	730
	G1 y	Arg	Ile	Val	Ser	Leu	Lys	Cys	Ser	Glu	Cys	Gly	Ala	Arg	Pro	Leu	Ala	
					-15					-10					-5			
10	tct	cga	ata	gtt	ggc	ggc	caa	gct	gtg	gct	tct	ggg	cgc	tgg	cca	tgg	caa	781
	Ser	Arg	Ile	Val	G1y	G1y	G1n	Ala	Val	Ala	Ser	G1y	Arg	Trp	Pro	Trp	Gln	
		-1	1				5					10					15	
	gct	agc	gtg	atg	ctt	ggc	tcc	cgg	cac	acg	tgt	ggg	gcc	tct	gtg	ttg	gca	832
	Ala	Ser	Val	Met	Leu	Gly	Ser	Arg	His	Thr	Cys	Gly	Ala	Ser	Val	Leu	Ala	
15					20					25					30			
. •	cca	cac	tgg	gta	gtg	act	gct	gcc	cac	tgc	atg	tac	agt	ttc	agg	ctg	tcc	883
	Pro	His	Trp	Val	Val	Thr	Ala	Ala	His	Cys	Met	Tyr	Ser	Phe	Arg	Leu	Ser	
			35					40					45					
	cgc	cta	tcc	agc	tgg	cgg	gtt	cat	gca	ggg	ctg	gtc	agc	cat	ggt	gct	gtc	934
20		Leu	Ser	Ser	Trp	Arg	Val	His	Ala	G1y	Leu	Val	Ser	His	Gly	Ala	Val	
	50					55					60					65		
					gga													985
	Arg	Gln	His		Gly	Thr	Met	Val	Glu	Lys	Ile	Ile	Pro	His	Pro	Leu	Tyr	
				70					75					80				
25	agt	gcc	cag	aac	cat.	gac	tat	gat	oto	oct	cta	cta	Car	ctc	0.00	000		1026

	Ser	Ala	Gln	Asn	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	Gln	Leu	Arg	Thr	Pro	
		85					90					95		,			100	
	atc	aac	ttc	tca	gac	acc	gtg	gac	gct	gtg	tgc	ttg	ccg	gcc	aag	gag	cag	1087
	Ile	Asn	Phe	Ser	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	Gln	
5					105					110					115			
	tac	ttt	cca	tgg	ggg	tcg	cag	tgc	tgg	gtg	tct	ggc	tgg	ggc	cac	acc	gac	1138
	Tyr	Phe	Pro	Trp	Gly	Ser	Gln	Cys	Trp	Val	Ser	Gly	Trp	Gly	His	Thr	Asp	
			120					125					130					
	ccc	agc	cat	act	cat	agc	tca	gat	aca	ctg	cag	gac	aca	atg	gta	ссс	ctg	1189
10	Pro	Ser	His	Thr	His	Ser	Ser	Asp	Thr	Leu	Gln	Asp	Thr	Met	Val	Pro	Leu	
	135					140					145					150		
	ctc	agc	acc	cac	ctc	tgc	aac	agc	tca	tgc	atg	tac	agt	ggg	gca	ctt	aca	1240
	Leu	Ser	Thr	His	Leu	Cys	Asn	Ser	Ser	Cys	Met	Tyr	Ser	Gly	Ala	Leu	Thr	
				155					160					165				
15	cac	cgc	atg	ttg	tgt	gct	ggc	tac	ctg	gat	gga	agg	gca	gac	gca	tgc	cag	1291
	His	Arg	Met	Leu	Cys	Ala	G1y	Tyr	Leu	Asp	Gly	Arg	Ala	Asp	Ala	Cys	Gln	
		170					175					180					185	
	gga	gac	agc	ggg	gga	ccc	ctg	gta	tgt	ccc	agt	ggt	gac	acg	tgg	cac	ctt	1342
	Gly	Asp	Ser	G1y	G1y	Pro	Leu	Val	Cys	Pro	Ser	Gly	Asp	Thr	Trp	His	Leu	
20					190					195					200			
																		1393
	Val	Gly	Val	Val	Ser	Trp	Gly	Arg	Gly	Cys	Ala	Glu	Pro	Asn	Arg	Pro	Gly	
			205					210					215					
																		1444
25	Val	Tyr	Ala	Lys	Val	Ala	Glu	Phe	Leu	Asp	Trp	Ile	His	Asp	Thr	Val	Gln	

235

		gtc cgc tagccgaaga agcagcagca gccacctgtg acgccgagct gtggatcgcc	1500
		Val Arg	
	5	catggatcac cccagtctgg gggccagcat ctgggtcact gggcctctcc ccaaaggctc	1560
		tgacttcgag ttcatctttc tcatctgaga acctccacaa caggaaaagg agtctgcggc	1620
		tagattggga atgatggtga gaggaaggga taggaggaca gaagagacag cagaggcttc	1680
		tggaagcatc tgggagactg ctcctctgct cccccacac cccacgtgca tccactgggg	1740
1 40° 40°		gatgctggag atgcccaatc cttgtttctt gtgggggccac tggaaggcta agtccaactt	1800
The first that the first that	10	tagaggatgc cctgtctcga gagttactag gcagataagg ttaaggttgg acaagctcag	1860
. Term		gtaaaggcac ggaagtcaag atcccctctc ccccgtgcgg tcctgttctg aggtaagcta	1920
		atageceege accaggeaga ggtetacagg gtaagaagga tgeagttggg etacaegaeg	1980
		ctatttttca aatgatgttt ctgtaaattg gttgagagag ttttgttatt aaacagaaat	2040
The state of the s		tatgtataaa aaaaaaaaaa aaaaaaaaaaa	2070
	15		
řä		<210> 8	
		<211> 445	
		<212> PRT	
		<213> mouse	
	20		
		<400> 8	
		Met	

Glu Ile Arg Cys Thr Glu Glu Gly Ala Gly Pro Gly Ile Phe Arg Met Glu

-195

-190

-200

225

220

25

-205

	Leu	G1 y	Asp	Glr	n Arg	g Gln	Ser	· Ile	e Sei	Glr	Ser	Gln	Arg	Trp	Cys	Cys	Leu
					-188	5				-180	)				-175	i	
	Gln	Arg	Gly	Cys	s Val	Ile	Leu	Gly	Val	Leu	Gly	Leu	Leu	ı Ala	Gly	Ala	Gly
			-170	)				-165	;				-160	)			
5	Ile	Ala	Ser	Trp	Leu	ı Leu	Val	Leu	Tyr	Leu	Trp	Pro	Ala	Ala	Ser	Pro	Ser
	-15	5				-15	0				-14	5				-14	0
	Ile	Ser	Gly	Thr	Leu	Gln	Glu	Glu	G1u	Met	Thr	Leu	Asn	Cys	Pro	G1y	Val
				-135					-130	)				-125			
	Ser	Cys	Glu	Glu	Glu	Leu	Leu	Pro	Ser	Leu	Pro	Lys	Thr	Val	Ser	Phe	Arg
10	-	-120					-115					-110					-105
	Ile	Asn	G1y	Glu	Asp	Leu	Leu	Leu	Gln	Val	Gln	Val	Arg	Ala	Arg	Pro	Asp
					-100					-95					-90		
	Trp	Leu	Leu	Val	Cys	His	Glu	G1y	Trp	Ser	Pro	Ala	Leu	G1y	Met	His	Ile
			-85					-80					-75				
15	Cys	Lys	Ser	Leu	G1y	His	Ile	Arg	Leu	Thr	Gln	His	Lys	Ala	Val	Asn	Leu
	-70					-65					-60					-55	
	Ser	Asp	Ile	Lys	Leu	Asn	Arg	Ser	G1n	Glu	Phe	Ala	Gln	Leu	Ser	Ala	Arg
				-50					-45					-40			
	Pro	G1y	G1y	Leu	Val	Glu	G1u	Ala	Trp	Lys	Pro	Ser	Ala	Asn	Cys	Pro	Ser
20		-35					-30					-25					-20
	Gly	Arg	Ile	Val	Ser	Leu	Lys	Cys	Ser	Glu	Cys	Gly	Ala	Arg	Pro	Leu	Ala
					-15					-10					-5		
•	Ser .	Arg	Ile	Val	G1y	Gly	G1n	Ala	Val	Ala	Ser	Gly	Arg	Trp	Pro	Trp	G1n
		-1	1				5					10					15
25	Ala	Ser	Val	Met	Leu	Glv	Ser	Arg	His	Thr	Cvs	G1 v	Ala	Sor	Va1	Lou	110

						20					25					30		
		Pro	His	Trp	Val	Val	Thr	Ala	Ala	His	Cys	Met	Tyr	Ser	Phe	Arg	Leu	Ser
	*			35					40					45				
		Arg	Leu	Ser	Ser	Trp	Arg	Val	His	Ala	G1y	Leu	Val	Ser	His	Gly	Ala	Val
	5	50					55					60					65	
		Arg	Gln	His	Gln	Gly	Thr	Met	Val	Glu	Lys	Ile	Ile	Pro	His	Pro	Leu	Tyr
					70					<b>7</b> 5					80			
52 <u>1</u>		Ser	Ala	Gln	Asn	His	Asp	Tyr	Asp	Val	Ala	Leu	Leu	Gln	Leu	Arg	Thr	Pro
			85					90					95					100
	10	Ile	Asn	Phe	Ser	Asp	Thr	Val	Asp	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	G1n
Ann Ama						105					110					115		
rå !		Tyr	Phe		Trp	Gly	Ser	Gln		Trp	Val	Ser	Gly		Gly	His	Thr	Asp
The States specific Stands				120	<b></b>		~	~	125		_			130				
e e	1 E		Ser	His	Thr	His		Ser	Asp	Thr	Leu	-	Asp	Thr	Met	Val		Leu
rei rei	15	135	Son	The	шіс	Lou	140	A an	Som	Com	Crra	145	Т	C	C1	41 -	150	T1 -
		Leu	Set	1111	155	Leu	Cys	ASII	ser	160	Cys	Met	туг	ser	165	А1а	Leu	ınr
		His	Arø	Met		Cys	Ala	Gl v	Tvr		Asn	Glv	Aro	Δla		Δ1a	Cvs	G1n
			170		204	0,0		175	-,-	Dod	пор	O.L.	180	1114	пор	ma	Oy 3	185
	20	Gly		Ser	Gly	Gly	Pro		Val	Cys	Pro	Ser		Asp	Thr	Trp	His	
						190					195			-		200		
		Val	G1y	Val	Val	Ser	Trp	G1y	Arg	Gly	Cys	Ala	Glu	Pro	Asn	Arg	Pro	Gly
				205					210					215				
		Val	Tyr	Ala	Lys	Val	Ala	Glu	Phe	Leu	Asp	Trp	Ile	His	Asp	Thr	Val	Gln
	25	220					225					230					235	

15

20

25

Val Arg

<210> 9

<211> 2265

5 <212> DNA

<213> human

<400> 9

120	0, 0																
acg	cggg	ata	cagg	gagg	gg c	catg	tgcga	a ac	cagg	gaga	cct	catc	ttc	caac	caago	et	60
tgc	tggg	ctt	gcat	ttaa	tc a	atgca	atgg	c ca	gaga	acag	gago	cgga	aca	ttgc	ctagt	ta	120
gac	cctg	agg	cttt	acaa	ca g	tgcta	actga	а сс	cct								155
atg	agc	ctg	atg	ctg	gat	gac	caa	ccc	cct	atg	gag	gcc	cag	tat	gca	gag	206
Met	Ser	Leu	Met	Leu	Asp	Asp	Gln	Pro	Pro	Met	Glu	Ala	Gln	Tyr	Ala	Glu	
		-215				-	-210				=	-205					
gag	ggc	cca	gga	cct	ggg	atc	ttc	aga	gca	gag	cct	gga	gac	cag	cag	cat	257
Glu	Gly	Pro	Gly	Pro	Gly	Ile	Phe	Arg	Ala	Glu	Pro	G1y	Asp	Gln	Gln	His	
-200	)				-198	5				-190	)				-185	5	
ссс	att	tct	cag	gcg	gtg	tgc	tgg	cgt	tcc	atg	cga	cgt	ggc	tgt	gca	gtg	308
Pro	Ile	Ser	Gln	Ala	Val	Cys	Trp	Arg	Ser	Met	Arg	Arg	G1y	Cys	Ala	Val	
		-	-180				-	-175				-	-170				
ctg	gga			ggg	ctg	ctg			gca	ggt	gtt			tgg	ctc	cta	359
		gcc	ctg				gcc	ggt				ggc	tca		ctc Leu		359
Leu		gcc	ctg		Leu		gcc	ggt		G1y		ggc	tca		Leu		359
Leu -	Gly -165	gcc Ala	ctg Leu	Gly	Leu -	Leu -160	gcc Ala	ggt Gly	Ala	Gly -	Val -155	ggc Gly	tca Ser	Trp	Leu -	Leu	

Val Leu Tyr Leu Cys Pro Ala Ala Ser Gln Pro Ile Ser Gly Thr Leu Gln

					-145					-140					-135			
	gat	gag	gag	ata	act	ttg	agc	tgc	tca	gag	gcc	agc	gct	gag	gaa	gct	ctg	461
	Asp	Glu	Glu	Ile	Thr	Leu	Ser	Cys	Ser	Glu	Ala	Ser	Ala	Glu	Glu	Ala	Leu	
			-130					-125					-120					
5	ctc	cct	gca	ctc	ccc	aaa	aca	gta	tct	ttc	aga	ata	aac	agc	gaa	gac	ttc	512
	Leu	Pro	Ala	Leu	Pro	Lys	Thr	Val	Ser	Phe	Arg	Ile	Asn	Ser	Glu	Asp	Phe	
	-119	5				-110					-105					-100		
	ttg	ctg	gaa	gcg	caa	gtg	agg	gat	cag	cca	cgc	tgg	ctc	ctg	gtc	tgc	cat	563
	Leu	Leu	Glu	Ala	Gln	Val	Arg	Asp	Gln	Pro	Arg	Trp	Leu	Leu	Val	Cys	His	
10				-95					-90					-85				
	gag	ggc	tgg	agc	ccc	gcc	ctg	ggg	ctg	cag	atc	tgc	tgg	agc	ctt	ggg	cat	614
	Glu	G1y	Trp	Ser	Pro	Ala	Leu	G1 y	Leu	Gln	Ile	Cys	Trp	Ser	Leu	Gly	His	
		-80					-75					-70					-65	
	ctc	aga	ctc	act	cac	cac	aag	gga	gta	aac	ctc	act	gac	atc	aaa	ctc	aac	665
15	Leu	Arg	Leu	Thr	His	His	Lys	Gly	Val	Asn	Leu	Thr	Asp	Ile	Lys	Leu	Asn	
				-	-60				-	-55				-	-50			
	agt	tcc	cag	gag	ttt	gct	cag	ctc	tct	cct	aga	ctg	gga	ggc	ttc	ctg	gag	716
	Ser	Ser	Gln	Glu	Phe	Ala	Gln	Leu	Ser	Pro	Arg	Leu	G1y	G1y	Phe	Leu	Glu	,
			-45					-40					-35					
20	gag	gcg	tgg	cag	ccc	agg	aac	aac	tgc	act	tct	ggt	caa	gtt	gtt	tcc	ctc	767
	Glu	Ala	Trp	Gln	Pro	Arg	Asn	Asn	Cys	Thr	Ser	G1y	Gln	Val	Val	Ser	Leu	
	-30					-25					-20					-15		
	aga	tgc	tct	gag	tgt	gga	gcg	agg	ccc	ctg	gct	tcc	cgg	ata	gtt	ggt	ggg	818
	Arg	Cys	Ser	Glu	Cys	Gly	Ala	Arg	Pro	Leu	Ala	Ser	Arg	Ile	Val	G1y	Gly	
25				-10					-5				-1	1				

And the property of the proper

	cag	tct	gtg	gct	cct	ggg	cgc	tgg	ccg	tgg	cag	gcc	agc	gtg	gcc	ctg	ggc	869
	G1n	Ser	Val	Ala	Pro	G1y	Arg	Trp	Pro	Trp	Gln	Ala	Ser	Val	Ala	Leu	Gly	
	5					10					15					20		
	ttc	cgg	cac	acg	tgt	ggg	ggc	tct	gtg	cta	gcg	cca	cgc	tgg	gtg	gtg	act	920
5	Phe	Arg	His	Thr	Cys	G1y	G1y	Ser	Val	Leu	Ala	Pro	Arg	Trp	Val	Val	Thr	
				25					30					35				
	gct	gca	cat	tgt	atg	cac	agt	ttc	agg	ctg	gcc	cgc	ctg	tcc	agc	tgg	cgg	971
	Ala	Ala	His	Cys	Met	His	Ser	Phe	Arg	Leu	Ala	Arg	Leu	Ser	Ser	Trp	Arg	
		40					45					50					55	
10	gtt	cat	gcg	ggg	ctg	gtc	agc	cac	agt	gcc	gtc	agg	ccc	cac	caa	ggg	gct	1022
•	Val	His	Ala	G1y	Leu	Val	Ser	His	Ser	Ala	Val	Arg	Pro	His	G1n	Gly	Ala	
					60					65					70			
	ctg	gtg	gag	agg	att	atc	cca	cac	ccc	ctc	tac	agt	gcc	cag	aat	cat	gac	1073
	Leu	Val	Glu	Arg	Ile	Ile	Pro	His	Pro	Leu	Tyr	Ser	Ala	Gln	Asn	His	Asp	
15			75				-	80					85					
	tac	gac	gtc	gcc	ctc	ctg	agg	ctc	cag	acc	gct	ctc	aac	ttc	tca	gac	act	1124
	Tyr	Asp	Val	Ala	Leu	Leu	Arg	Leu	Gln	Thr	Ala	Leu	Asn	Phe	Ser	Asp	Thr	
	90					95					100					105		
	gtg	ggc	gct	gtg	tgc	ctg	ccg	gcc	aag	gaa	cag	cat	ttt	ccg	aag	ggc	tcg	1175
2.0	Val	G1y	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	Gln	His	Phe	Pro	Lys	G1y	Ser	
				110					115					120				
	cgg	tgc	tgg	gtg	tct	ggc	tgg	ggc	cac	acc	cac	cct	agc	cat	act	tac	agc	1226
	Arg	Cys	Trp	Val	Ser	Gly	Trp	Gly	His	Thr	His	Pro	Ser	His	Thr	Tyr	Ser	
		125					130					135					140	
25	tcg	gat	atg	ctc	cag	gac	acg	gtg	gtg	ссс	ttg	ttc	agc	act	cag	ctc	tgc	1277

Ser Asp Met Leu Gln Asp Thr Val Val Pro Leu Phe Ser Thr Gln Leu Cys

	145	150	155
	aac agc tct tgc gtg tac	agc gga gcc ctc acc	ccc cgc atg ctt tgc gct 1328
	Asn Ser Ser Cys Val Tyr	Ser Gly Ala Leu Thr	Pro Arg Met Leu Cys Ala
5	160	165	170
	ggc tac ctg gac gga agg	gct gat gca tgc cag	gga gat agc ggg ggc ccc 1379
	Gly Tyr Leu Asp Gly Arg	Ala Asp Ala Cys Gln	Gly Asp Ser Gly Gly Pro
	175 180	185	190
	cta gtg tgc cca gat ggg	gac aca tgg cgc cta	gtg ggg gtg gtc agc tgg 1430
10 [.]	Leu Val Cys Pro Asp Gly	Asp Thr Trp Arg Leu	Val Gly Val Val Ser Trp
	195	200	205
	ggg cgt gcg tgc gca gag	ccc aat cac cca ggt	gtc tac gcc aag gta gct 1481
, . [	Gly Arg Ala Cys Ala Glu	Pro Asn His Pro Gly	Val Tyr Ala Lys Val Ala
	210	215	220 225
15	gag ttt ctg gac tgg atc	cat gac act gct cag	gac tec etc etc 1526
	Glu Phe Leu Asp Trp Ile	His Asp Thr Ala Gln	Asp Ser Leu Leu
	230	235	240
	tgagtcctgc tgtttcctcc a	gtctcactg cacaccactg	ceteatgett eetggggeet 1586
	ccagcagete cactaatgga g	gagaggcag tagcctccga	cacagaacgc atggacctcc 1646
20	tactactgtg tgtgaggaac a	gtcactacc cactggccag	ccacccagcc aacaggtete 1706
	teetettggg ceetgattte a	gagteetet tteteactag a	agactcaatg acagaagaga 1766
	ggctgggact tggttgggca t	gctgtggtt gctgagggat i	gagggggagg agagaggtag 1826
	gagctggaga tgaagagact g	ctagaagca gcaggaagcc	tgcccttctg ccctctcccc 1886
	tecetgeece tgtgtgagte t	tttagggag ggtgactggg a	aggtgeeece egteecacet 1946
25	ttttcctgtg ctctaggtgg g	ctaagtgcc tccctagagg a	actccatggc tgagaggctc 2006

	ctgggcagat gggg	tcaagg ctgggcca	gt cccagatgaa gcc	ctatggga gtcaggac	cc 2066								
	tctccactct ccct	ctccac tccccttc	ct gttctcacct ggo	etgtgget ggeeetgt	gt 2126								
	ggggtgggta cact	ggaaaa caagaagg	tt ggagttggtc tag	gacattg gttttaaa	tg 2186								
	acagttctgt gaac	tggtcc aaggaggt	tc tgttattaaa gtg	gatatatg gtcttgaaa	aa 2246								
5	aaaaaaaaaa aaaa	aaaaa			2265								
	<210> 10												
	<211> 457												
	<212> PRT												
10	<213≻ human												
	<400> 10												
	Met Ser Leu Met	Leu Asp Asp Gl	n Pro Pro Met Glu	Ala Gln Tyr Ala	Glu								
	-215	-2	10	-205									
15	Glu Gly Pro Gly	y Pro Gly Ile P	he Arg Ala Glu Pr	o Gly Asp Gln Glr	n His								
	-200	-195	-190	-185	5								
	Pro Ile Ser Gli	n Ala Val Cys T	rp Arg Ser Met Ar	g Arg Gly Cys Ala	a Val								
	Pro Ile Ser Gla		rp Arg Ser Met Ar -175	g Arg Gly Cys Ala	a Val								
	-180	)	-175										
20	-180	)	-175	-170 1 Gly Ser Trp Leu									
20	-180 Leu Gly Ala Leu -165	) 1 Gly Leu Leu A -160	-175 la Gly Ala Gly Va -15	-170 1 Gly Ser Trp Leu	ı Leu -150								
20	-180 Leu Gly Ala Leu -165	) 1 Gly Leu Leu A -160	-175 la Gly Ala Gly Va -15	-170 1 Gly Ser Trp Leu 5	ı Leu -150								
20	-180 Leu Gly Ala Leu -165 Val Leu Tyr Leu	) 1 Gly Leu Leu A -160 1 Cys Pro Ala A -145	-175 la Gly Ala Gly Va -15 la Ser Gln Pro Il -140	-170 1 Gly Ser Trp Leu 5 e Ser Gly Thr Leu	ı Leu -150 ı Gln								

Leu Pro Ala Leu Pro Lys Thr Val Ser Phe Arg Ile Asn Ser Glu Asp Phe

		-115				-	-110				-	-105				-	-100	
		Leu	Leu	Glu	Ala	Gln	Val	Arg	Asp	Gln	Pro	Arg	Trp	Leu	Leu	Val	Cys	His
	٠				-95					-90					-85			
		Glu	G1y	Trp	Ser	Pro	Ala	Leu	Gly	Leu	G1n	Ile	Cys	Trp	Ser	Leu	Gly	His
5			-80					-75					-70					-65
		Leu	Arg	Leu	Thr	His	His	Lys	Gly	Val	Asn	Leu	Thr	Asp	Ile	Lys	Leu	Asn
						-60					-55					-50		
		Ser	Ser	Gln	Glu	Phe	Ala	Gln	Leu	Ser	Pro	Arg	Leu	Gly	G1y	Phe	Leu	G1u
				-45					-40					-35				
10		Glu	Ala	Trp	G1n	Pro	Arg	Asn	Asn	Cys	Thr	Ser	Gly	Gln	Val	Val	Ser	Leu
		-30				-	-25				-	-20				-	-15	
		Arg	Cys	Ser	Glu	Cys	G1y	Ala	Arg	Pro	Leu	Ala	Ser	Arg	Ile	Val	Gly	G1y
					-10					-5				-1	1			
	• .	Gln	Ser	Val	Ala	Pro	G1y	Arg	Trp	Pro	Trp	Gln	Ala	Ser	Val	Ala	Leu	G1y
15		5					10					15					20	
		Phe	Arg	His	Thr	Cys	Gly	Gly	Ser	Val	Leu	Ala	Pro	Arg	Trp	Val	Val	Thr
					25					30					35			
		Ala	Ala	His	Cys	Met	His	Ser	Phe	Arg	Leu	Ala	Arg	Leu	Ser	Ser	Trp	Arg
			40					45					50					55
20		Val	His	Ala	Gly	Leu	Val	Ser	His	Ser	Ala	Val	Arg	Pro	His	Gln	Gly	Ala
						60					65					70		
		Leu	Val	Glu	Arg	Ile	Ile	Pro	His	Pro	Leu	Tyr	Ser	Ala	Gln	Asn	His	Asp
				75					80					85				
		Tyr	Asp	Val	Ala	Leu	Leu	Arg	Leu	G1n	Thr	Ala	Leu	Asn	Phe	Ser	Asp	Thr
25		90					95					100					105	

	Val	G1y	Ala	Val	Cys	Leu	Pro	Ala	Lys	Glu	Gln	His	Phe	Pro	Lys	Gly	Ser
				110					115					120			
	Arg	Cys	Trp	Val	Ser	G1y	Trp	G1y	His	Thr	His	Pro	Ser	His	Thr	Tyr	Ser
		125					130					135					140
5	Ser	Asp	Met	Leu	G1n	Asp	Thr	Val	Val	Pro	Leu	Phe	Ser	Thr	Gln	Leu	Cys
					145					150					155		
	Asn	Ser	Ser	Cys	Val	Tyr	Ser	Gly	Ala	Leu	Thr	Pro	Arg	Met	Leu	Cys	Ala
			160					165					170				
	G1y	Tyr	Leu	Asp	G1y	Arg	Ala	Asp	Ala	Cys	G1n	Gly	Asp	Ser	G1y	Gly	Pro
10	175					180					185					190	
	Leu	Val	Cys	Pro	Asp	G1y	Asp	Thr	Trp	Arg	Leu	Val	G1y	Val	Val	Ser	Trp
				195					200					205			
	Gly	Arg	Ala	Cys	Ala	Glu	Pro	Asn	His	Pro	G1y	Val	Tyr	Ala	Lys	Val	Ala
		210					215					220					225
15	G1u	Phe	Leu	Asp	Trp	Ile	His	Asp	Thr	Ala	G1n	Asp	Ser	Leu	Leu		
					230					235					240		

<210> 11

<211> 99

20 <212> DNA

<213> Artificial Sequence

<220>

 $\ensuremath{\texttt{\langle 223\rangle}}$  Designed oligonucleotide to construct plasmid pSecTrypHis

25 <400> 11

10

15

20

```
aagettgget ageaacacca tgaatetact eetgateett acetttgttg etgetgetgt 60 tgetgeecce
                                                          99
tttgacgacg atgacaagga tccgaattc
<210> 12
<211> 99
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide to construct plasmid pSecTrypHis
<400> 12
gaatteggat eettgteate gtegteaaag ggggeageaa eageageage aacaaaggta 66 aggateagga
gtagattcat ggtgttgcta gccaagctt
                                                          99
⟨210⟩ 13
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
\langle 223 \rangle Designed oligonucleotide primer to amplify neurosin-encoding sequence
⟨400⟩ 13
ttggtgcatg gcgga
                                                                     15
```

25 <210> 14

<211> 27

<212> DNA

<213> Artificial Sequence

<213> Artificial Sequence

25

<220>

```
<220>
     5
            <223> Designed oligonucleotide primer to amplify neurosin-encoding sequence
            ⟨400⟩ 14
            tcctcgagac ttggcctgaa tggtttt
                                                                                    27
A. The the time that the the
    10
            <210> 15
            <211> 35
            <212> DNA
            <213> Artificial Sequence
            <220>
   15
            <223>
                    Designed oligonucleotide primer to amplify
                                                                            portion of
            pSecTrypHis/Neurosin
            <400> 15
            gcgctagcag atctccatga atctactcct gatcc
                                                                                    35
   20
            ⟨210⟩ 16
            <211> 29
            <212> DNA
```

 $\ensuremath{\texttt{\langle 223\rangle}}$  Designed oligonucleotide primer to amplify a portion of plasmid pSecTrypHis/Neurosin

<400> 16

5 tgaagettge catggaccaa ettgteate

29

<210> 17

<211> 26

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of plasmid pTrypHis

<400> 17

15 ccaagettea ceateaceat caceat

26

⟨210⟩ 18

<211> 17

<212> DNA

20 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of plasmid
pTrypSigTag

25 <400> 18

gcacagtcga ggctgat

<400> 20

```
20
        gtgctcacng cngcbcaytg
        <210> 21
 5
        ⟨211⟩ 20
        <212> DNA
        <213> Artificial Sequence
        <220>
        <223> Designed oligonucleotide primer to amplify conserved region of serin
        proteases-encoding sequence
        <220>
        <221> UNSURE
        <222> 12, 15
        \langle 223 \rangle n is a, c, g or t.
        <400> 21
                                                                              20
        ccvctrwsdc cnccnggcga
        <210> 22
        <211> 21
        <212> DNA
        <213> Artificial Sequence
        <220>
        <223> Designed oligonucleotide primer designated as mBSSP2.0 for RACE for mBSSP2
25
        (forward)
```

**<400> 22** 

<210> 25

```
<211> 20
        <212> DNA
 5
        <213> Artificial Sequence
         <220>
         <223> Designed oligonucleotide primer designated as mBSSP2F5 to amplify mature
        mBSSP2-encoding region (forward)
10
         <400> 25
                                                                                 20
         atagttggcg gccaagctgt
         <210> 26
         <211> 20
15
         <212> DNA
         <213> Artificial Sequence
         <220>
         \ensuremath{\texttt{\langle 223\rangle}} Designed oligonucleotide primer designated as mBSSPF7 to amplify full-
         length mBSSP2-encoding mRNA (forward)
20
         <400> 26
                                                                                 20
         cccagcagaa cttactgcct
         <210> 27
25
         ⟨211⟩ 20
```

<212> DNA

```
<213> Artificial Sequence
        <220>
        \langle 223 \rangle Designed oligonucleotide primer designated as mBSSP2.2 for RACE for mBSSP2
 5
         (reverse)
        <400> 27
                                                                                 20
        tgttgcagag gtgggtgctg
10
         <210> 28
         ⟨211⟩ 21
         <212> DNA
        <213> Artificial Sequence
         <220>
         \langle 223 \rangle Designed oligonucleotide primer designated as mBSSP2R2 for RACE for mBSSP2
15
         (reverse)
         <400> 28
                                                                                 21
         taccattgtg tcctgcagtg t
20
         <210> 29
         <211> 27
         <212> DNA
         <213> Artificial Sequence
25
         <220>
```

<223> Designed oligonucleotide primer designated as mBSSP2R5/E to amplify full-length mBSSP2-encoding mRNA (reverse)

<400> 29

5 tgaattctgc tgcttcttcg gctagcg

27

<210> 30

<211> 18

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as BSSP2SPF to amplify a
portion of hBSSP2 (forward)

15 <400> 30

actgctgccc actgcatg

18

<210> 31

<211> 21

20 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as BSSP2SPR to amplify a
portion of hBSSP2 (reverse)

25

```
<400> 31
```

caggggtccc ccgctgtctc c

21

<210> 32

5 〈211〉 20

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$  Designed oligonucleotide primer designated as hBSSP2F11 for RACE for

10 hBSSP2 (forward)

<400> 32

gctctcaact tctcagacac

20

15 <210> 33

⟨211⟩ 20

<212> DNA

<213> Artificial Sequence

<220>

20 <223> Designed oligonucleotide primer designated as hBSSP2R12 for RACE for hBSSP2 (reverse)

<400> 33

actcagctac cttggcgtag

20

<210> 34

<211> 20

```
<212> DNA
        <213> Artificial Sequence
 5
         <220>
        \ensuremath{\texttt{\langle 223\rangle}} Designed oligonucleotide primer designated as hBSSP2R11 for RACE for
        hBSSP2 (reverse)
         ⟨400⟩ 34
                                                                                   20
10
         cctggagcat atccgagctg
         <210> 35
         <211> 18
         <212> DNA
         <213> Artificial Sequence
15
         <220>
         \langle 223 \rangle Designed oligonucleotide primer designated as hBSSP2F12 to amplify full
         length hBSSP2 (forward)
20
         <400> 35
                                                                                    18
         gctttacaac agtgctac
         <210> 36
         <211> 28
25
         <212> DNA
```

<213> Artificial Sequence

A The State Com Said See State

```
<220>
        \langle 223 \rangle Designed oligonucleotide primer designated as hBSSP2R13/E to amplify full
        length hBSSP2 (reverse)
 5
        <400> 36
                                                                                 28
        tggaattcga ggaaacagca ggactcag
        <210> 37
10
        <211> 19
        <212> DNA
        <213> Artificial Sequence
         <220>
        \langle 223 \rangle Designed oligonucleotide primer for RACE for hBSSP2
15
         <400> 37
                                                                                  19
         tactagtcga cgcgtggcc
         ⟨210⟩ 38
20
         <211> 18
         <212> DNA
         <213> Artificial Sequence
         <220>
         \langle 223 \rangle Designed oligonucleotide primer designated as hBSSP2F13 to amplify a
         portion of hBSSP2 (forward)
25
```

<400> 38

```
18
       actgctgccc actgcatg
 5
        ⟨210⟩ 39
        <211> 35
        <212> DNA
        <213> Artificial Sequence
        <220>
        \langle 223 \rangle Designed oligonucleotide primer designated as FBTrpsigtagF5 to detect
10
        hBSSP2
        <400> 39
                                                                             35
        gcgctagcag atctccatga atctactcct gatcc
15
        <210> 40
        <211> 117
        <212> DNA
        <213> Artificial Sequence
         <220>
20
         <223> Designed oligonucleotide to construct plasmid pTrypHis
         <400> 40
         aagettgget ageaacacca tgaatetact cetgateett acetttgttg etgetgetgt 60
         tgctgccccc tttcaccatc accatcacca tgacgacgat gacaaggatc cgaattc
                                                                             117
25
```

⟨210⟩ 41

<211> 117

<212> DNA

5 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide to construct plasmid pTrypHis

<400> 41

gaatteggat eettgteate gtegteatgg tgatggtgat ggtgaaaggg ggcagcaaca 60 gcagcagcaa caaaggtaag gatcaggagt agatteatgg tgttgetage caagett 117