CS 207: Discrete Structures

Lecture 19 – <u>Counting and Combinatorics</u> Pigeon-Hole Principle

 $\mathrm{Aug}\ 27\ 2015$

Topics in Combinatorics

Basic counting techniques and applications

- 1. Basic counting techniques, double counting
- 2. Binomial theorem, permutations and combinations, Estimating n!
- 3. Recurrence relations and generating functions
- 4. Principle of Inclusion-Exclusion (PIE) and its applications.

Topics in Combinatorics

Basic counting techniques and applications

- 1. Basic counting techniques, double counting
- 2. Binomial theorem, permutations and combinations, Estimating n!
- 3. Recurrence relations and generating functions
- 4. Principle of Inclusion-Exclusion (PIE) and its applications.
 - ightharpoonup Counting the number of surjections on [n].
 - Combinatorial proof of PIE.
 - Number of derangements $->\frac{1}{e}$.
 - ► Stirling numbers of the first kind.

Pigeon-Hole Principle (PHP) and its applications

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If k+1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If k+1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

How do you prove it?

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If k+1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

How do you prove it?

A simple corollary

Can a function from a set of k + 1 or more elements to a set with k elements be injective?

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

► Consider n + 1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 ... 1$ (with n + 1 1's).

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- ► Consider n + 1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 \dots 1$ (with n + 1 1's).
- ▶ When any integer is divided by n, the remainder can be either $0, 1, \ldots, n-1$, i.e., n choices.

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- ► Consider n + 1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 \dots 1$ (with n + 1 1's).
- ▶ When any integer is divided by n, the remainder can be either $0, 1, \ldots, n-1$, i.e., n choices.
- ▶ So among the n + 1 integers, by PHP, at least 2 must have the same remainder.

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- ► Consider n + 1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 \dots 1$ (with n + 1 1's).
- ▶ When any integer is divided by n, the remainder can be either $0, 1, \ldots, n-1$, i.e., n choices.
- ▶ So among the n + 1 integers, by PHP, at least 2 must have the same remainder.
- ► That is, $\exists i, j, k_i = pn + d, k_j = qn + d$.
- ▶ But then $|k_i k_j|$ is a multiple of n and its decimal expansion only has 0's and 1's.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

▶ 4 boxes, one for each suit; each selected card is put in one.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- ▶ Thus, N = 9.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- ▶ Thus, N = 9. But can we do better?

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- ▶ Thus, N = 9. But can we do better? No.

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

1. Let a_1, \ldots, a_{n^2+1} be a sequence of distinct real numbers.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

- 1. Let a_1, \ldots, a_{n^2+1} be a sequence of distinct real numbers.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair:
 - i_k = length of longest increasing subsequence starting from a_k
 - d_k = length of longest decreasing subsequence starting from a_k

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

- 1. Let a_1, \ldots, a_{n^2+1} be a sequence of distinct real numbers.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair: $i_k = \text{length of longest increasing subsequence starting from } a_k d_k = \text{length of longest decreasing subsequence starting from } a_k$
- 3. Suppose, there are no increasing/decreasing subsequences of length n+1. Then $\forall k, i_k \leq n$ and $d_k \leq n$.
- 4. : by PHP, $\exists \ell, m, 1 \le \ell < m \le n^2 + 1 \text{ s.t. } (i_{\ell}, d_{\ell}) = (i_m, d_m)$
- 5. We will show that this is not possible:
 - ▶ Case 1: $a_{\ell} < a_m$. Then $i_m \ge i_{\ell} + 1$, a contradiction.
 - ▶ Case 2: $a_{\ell} > a_m$. Then $d_{\ell} \ge d_m + 1$, a contradiction.
- 6. All a_i 's are distinct so this completes the proof.

Theorem (PHP Variant 2)

Suppose there are $n \ge 1 + r(\ell - 1)$ objects which are colored with r different colors. Then there exist ℓ objects all with the same color.

Theorem (PHP Variant 2)

Suppose there are $n \geq 1 + r(\ell - 1)$ objects which are colored with r different colors. Then there exist ℓ objects all with the same color.

Proof: (H.W)

Theorem (PHP Variant 2)

Suppose there are $n \geq 1 + r(\ell - 1)$ objects which are colored with r different colors. Then there exist ℓ objects all with the same color.

Proof: (H.W)

► Is this coloring optimal?

Theorem (PHP Variant 2)

Suppose there are $n \ge 1 + r(\ell - 1)$ objects which are colored with r different colors. Then there exist ℓ objects all with the same color.

Proof: (H.W)

- ► Is this coloring optimal?
- ▶ That is, if fewer than $1 + r(\ell 1)$ objects are given, is there a way of coloring them such that no ℓ have the same color?

The coloring game

▶ There are six points on board and two colored chalks.

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- ▶ You lose if you are first to draw a triangle of your color.

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- ▶ You lose if you are first to draw a triangle of your color.
- ► Can you ever have a draw?

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- ▶ You lose if you are first to draw a triangle of your color.
- ► Can you ever have a draw?

We will now show that this is impossible. That is,

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- ▶ You lose if you are first to draw a triangle of your color.
- ► Can you ever have a draw?

We will now show that this is impossible. That is,

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- ▶ 2-coloring of edges: coloring all edges of the graph using atmost 2 colors.
- ▶ monochromatic (triangle): all edges have the same color.

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- \triangleright Let $1, \ldots, 6$ be the points, and red/blue the colors.
- ► Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- ▶ Now there are two possibilities:
 - ▶ Either one of 12, 23, 31 is red (then we have a red triangle).
 - ► Else none of them are red, implies 123 is a blue triangle. □

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- \triangleright Let 1,..., 6 be the points, and red/blue the colors.
- \triangleright Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- ▶ Now there are two possibilities:
 - ▶ Either one of 12, 23, 31 is red (then we have a red triangle).
 - ► Else none of them are red, implies 123 is a blue triangle. □
- ▶ What if there were 5 or lesser nodes?