Architecture 2

Architecture des réseaux informatiques

Le point sur l'enseignement d'ARCHI

Architecture:

- Structure des ordinateurs,
- Codage binaire,
- Arithmétique binaire,
- Limites, ...

Réseaux:

- Structure d'un réseau,
- Normes
- Applications

Système:

- Linux,
- Shell,
- Processus, ...

Lorsqu'on parle de réseau on pense à INTERNET

Lorsqu'on parle d'internet on pense avant toute chose :

- aux jeux,
- au web,
- aux messageries,

• . . .

Il est vrai qu'internet c'est:

- >4 milliards d'internautes (>50% population modiale)
- 8 nouveaux utilisateurs chaque seconde
- •634 millions de sites Internet, 822000 nouveaux sites / jour
- 4 milliards de vidéos vues chaque jour sur Youtube
- •204 millions de mails /minute, >200 milliards de mails / jour
- 2,6 millions de CD créés par minute

L'internet c'est aussi !!!

Un formidable moyen de gagner de l'argent :

- •75 000 dollars de chiffres d'affaires réalisés par Google chaque minute
- 219 000 dollars/ minute de paiements effectués au moyen de PayPal
- 142 dollars / minute = salaire Bill Gates → 75 M\$/an

• . . .

Ceci n'est possible que grâce à beaucoup de technique

Des millions de liaisons :

- fibre, cuivre, radio, satellite
- débit, bande passante

Des millions d'équipements

- hub, switchs,
- routeurs, ...

Des milliers de normes :

- Ethernet
- X25
- TCP/IP, ...

→ Ce qui sera vu dans ce cours

Et des millions d'applications

Applications standards pour le grand public :

- Jeux,
- Web,
- Messageries, ...

ou spécifiques pour les professionnels:

- -Apache,
- -SAP,
- -FTP,
- -DNS, ...

Mais l'internet c'est aussi !!!

Un énorme problème de sécurité

- 9,567 pétaoctets, de données piratées chaque mois
- 432 millions de pirates à travers le monde.
- 232 ordinateurs infectés par un virus toutes les minutes en France
- 416 tentatives de hacking par minute en France

• . . .

→ On en parle en A2

Le lien avec le cours d'archi

Le lien

L'objectif d'un réseau est de permettre à deux applications de communiquer

La première partie de ce semestre, vous avez travaillé, sur la programmation d'applications qui accèdent à du bas niveau (pointeurs, tableaux, fichiers, fork, ...)

Le lien

Dans cette 2^{ème} partie, nous allons voir, quelles sont les caractéristiques d'un réseau et comment on peut y accéder.

Les réseaux informatiques

Introduction générale

Pour faire un réseau, la première des choses à faire est de relier 2 machines

- →Plusieurs éléments sont nécessaires (cartes, câbles, procédures ...)
- →Il faut se mettre d'accord sur le matériel et le logiciel à utiliser

Lorsque les machines sont éloignées, il faut créer un ensemble de voies physiques par lesquelles elles pourront communiquer

Ces voies, forment un ensemble de routes, au niveau local, régional, national, international, que toutes les machines peuvent utiliser. Ces voies sont similaires à notre réseau routier, d'où l'appellation:

RESEAU INFORMATIQUE

En fait ce sont des applications qui communiquent grâce aux

Les applications ne faisant qu'émettre et recevoir des données, comment ce dernières vont être acheminées sur le réseau ?.

→On va confier ce travail à des processus spécialisés dans le **TRANSPORT**.

Finalement, pour faire communiquer des machines, les fonctions à mettre en oeuvre sont nombreuses :

De plus il faut que tout le monde utilise les mêmes normes, faute de quoi ne fonctionnera pas → il faut donc **NORMALISER**

Les logiques et règles d'échanges entre processus

Les fonctions de transport

Les techniques et algorithmes de routage

Les procédures d'échange entre deux machines

Le matériel nécessaire à la connexion des machines

En l'absence de normes, chaque constructeur créé sa solution.

Les logiques et règles d'échanges entre processus

Les fonctions de transport

Les techniques et algorithmes de routage

Les procédures d'échange entre deux machines

Le matériel nécessaire à la connexion des machines

http, ftp, smtp

Tcp, udp

Ip, x25

Hdlc, lap, ppp

Carte réseau, modem, câbles

Cela ne facilite pas les choses car elles sont souvent incompatibles entre-elles.

Les principaux acteurs de la normalisation

- l'UIT (Union Internationale des Télécoms)
- l'ISO (Organisation Internationale de Standardisation)

Mais aussi

- L'IEEE (Institut des Ingénieurs Electriciens et Electroniciens)
- France télécom (maintenant Orange)
- Microsoft, DELL, IBM ...

La solution : Le modèle en couche OSI de l'ISO

	Couche	Rôle
7	Application	Applications réseau
-		
6	Présentation	Format des données
5	Session	Accès aux données
4	Transport	Transport et contrôle de
		routage
3	Réseau	Routage des paquets dans plusieurs réseaux
2	Liaison	Contrôle de l'échange entre
		deux machines
1	Physique	Transmission de signaux
		binaires

Objectif du modèle : découper et hiérarchiser chaque type de problème et proposer une série de solutions pour chacun.

Pourquoi un modèle en couches ?

Un exemple de modèle en couches

Conséquence des couches : l'encapsulation

Plan du cours

Dans ce cours ne seront présentées que les couches 1 à 4 du modèle OSI.

	Type de problème		Couche
	Echange entre	7	Application
	processus		
•		6	Présentation
		5	Session
-			
	Fonctions de transport	4	Transport
	Techniques et	3	Réseau
	algorithmes de routage		
	Echange entre 2	2	Liaison
	machines		
	Matériel de connexion	1	Physique

Plan du cours

1 Techniques de base de la transmission (couche 1)

- Elements de la transmission
- Codage du signal
- Modes de transmission
- Supports de transmission et équipements d'interconnexion
- Introduction au contrôle des erreurs

2 Les réseaux locaux (couche 2)

- Etude des différents réseaux
- Le réseau Ethernet et 802. 3
- Initiation au câblage
- Exemples de réseaux

3 L'interconnexion de réseaux et l'architecture TCP/IP (couches 3 et 4)

- La couche internet IP : Les mécanismes, L'adressage, Le routage
- Les protocoles annexes (ARP, DNS, DHCP, ...)
- La couche transport (TCP et UDP)

Les réseaux informatiques

Pour terminer!

Pour terminer

Ce cours devrait vous permettre de comprendre comment les machines communiquent dans un réseau.

Pour terminer

Tout ce qui se passe entre votre navigateur et un site web, ne devrait plus avoir de secret pour vous!!

Pour terminer

ARP	00-60-08-61-04-7b	Toutes machines	Qui connaît l'adresse physique de 10.10.1.1?
ARP	00-01-02-af-f5-e2	00-60-08-61-04-7b	L'adresse physique de 10.10.1.1 est 000102aff5e2
DNS	10.10.20.2+ 1234	10.10.1.2 + 53	Adresse IP de www.google.fr?
DNS	10.10.1.2 + 53	10.10.20.2 + 1234	Adresse IP de www.google.fr est 173.168.12.1
TCP	10.10.20.2 + 1234	173.168.12.1 + 50	syn = demande connexion TCP au service HTTP
TCP	173.168.12.1 + 80	10.10.20.2 + 1234	ack + syn : acceptation et demande connexion
TCP	10.10.20.2 + 1234	173.168.12.1 + 80	ack = acceptation connexion
HTTP	10.10.20.2 + 1234	173.168.12.1 + 80	Get /http://
TCP	173.168.12.1 + 80	10.10.20.2 + 1234	ack
HTTP	173.168.12.1 + 80	10.10.20.2 + 1234	Document HTML
TCP	10.10.20.2 + 1234	173.168.12.1 + 80	ack + fin
TCP	173.168.12.1 + 80	10.10.20.2 + 1234	ack: acceptation de déconnexion
TCP	173.168.12.1 + 80	10.10.20.2 + 1234	fin → on termine la déconnexion
TCP	10.10.20.2 + 1234	173.168.12.1 + 80	ack

Vous comprendrez les codes cachés de l'internet

Bibliographie

Réseaux et Télécoms - Claude Servin - Dunod.

Les réseaux - Guy PUJOLLE - Eyrolles

Réseaux - A. TANENBAUM – Pearson

L'architecture des réseaux TCP/IP - Jacques Philipp - Ellipses