```
clc; clear;
dsFolder = "p_dataset_26";
subFolder = ["Sample1", "Sample2", "Sample3", "SampleA", "SampleB", "SampleC"];
categories = ["1", "2", "3", "A", "B", "C"];
```

```
allData = table('Size', [0, 2], 'VariableTypes', {'cell', 'cell'}, 'VariableNames',
    {'Image', 'Label'});

for i = 1:length(subFolder)
    folderPath = fullfile(dsFolder, subFolder(i));
    matFiles = dir(fullfile(folderPath, "*.mat"));

for j = 1:length(matFiles)
    matFilePath = fullfile(folderPath, matFiles(j).name);
    image = load(matFilePath).imageArray;

    allData = [allData; {image, categories(i)}];
    end
end
```

```
% define images & labels
numImages = size(allData, 1);
imageSize = size(allData.Image{1});
images = zeros(imageSize(1), imageSize(2), 1, numImages);

for i = 1:numImages
    images(:, :, 1, i) = allData.Image{i};
end

labels = categorical(allData.Label);
```

```
% split data into train and test set
cv = cvpartition(labels, 'HoldOut', 0.2);
trainIdx = training(cv);
testIdx = test(cv);
trainImages = images(:, :, :, trainIdx);
trainLabels = labels(trainIdx);
testImages = images(:, :, :, testIdx);
testLabels = labels(testIdx);
```

```
% Define the layers of the CNN
layers = [
  imageInputLayer([imageSize 1])

convolution2dLayer(3, 8, 'Padding', 'same')
  batchNormalizationLayer
  reluLayer
```

```
maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 16, 'Padding', 'same')
batchNormalizationLayer
reluLayer

maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(numel(categories))
softmaxLayer
classificationLayer
];
```

```
% Training options
options = trainingOptions( ...
    'sgdm', ... % Stochastic Gradient Descent with Momentum
    'InitialLearnRate', 0.01, ...
    'MaxEpochs', 10, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', {testImages, testLabels}, ...
    'ValidationFrequency', 30, ...
    'Verbose', true, ...
    'Plots', 'training-progress' ...
);
```

```
% Train the CNN
net = trainNetwork(trainImages, trainLabels, layers, options);
```

Training on single CPU. Initializing input data normalization.

	========							
İ	Epoch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learni
ļ		I	(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss	Rate
ļ	========				======================================	=========	==========	=========
١	1	1	00:00:04	16.41%	26.66%	2.2535	2.0679	0.0
	1	30	00:00:06	92.97%	92.95%	0.2532	0.2397	0.03
	2	50	00:00:07	92.97%		0.1932		0.03
	2	60	00:00:07	96.88%	95.49%	0.0968	0.1421	0.03
Ì	3	90	00:00:09	98.44%	96.39%	0.0848	0.1103	0.03
j	3	100	00:00:09	98.44%	İ	0.1279		0.03
İ	4	120	00:00:10	99.22%	97.46%	0.0568	0.0892	0.03
İ	4	150	00:00:11	99.22%	97.87%	0.0510	0.0737	0.03
i	5	180	00:00:13	98.44%	98.11%	0.0462	0.0666	0.0
i	6	200	00:00:13	98.44%	j	0.0348	İ	0.0
i	6	210	00:00:14	100.00%	98.28%	0.0274	0.0633	0.03
İ	7	240	00:00:15	98.44%	98.85%	0.0515	0.0507	0.03
i	7	250	00:00:15	97.66%	İ	0.0622	İ	0.0
i	8	270	00:00:16	97.66%	98.93%	0.0630	0.0468	0.03
i	8	300	00:00:18	99.22%	99.18%	0.0225	0.0424	0.02
i	9	330	00:00:19	99.22%	99.18%	0.0296	0.0396	0.0
i	10	350	00:00:20	99.22%		0.0244	İ	0.0
i	10	360	00:00:20	100.00%	99.10%	0.0203	0.0376	0.0
i	10	380	00:00:21	100.00%	99.10%	0.0192	0.0365	0.0
- 1	±0	300 I	00.00.21	1 200.00%	1 22.10%	0.0172	0.0303	1 0.0.

Training finished: Max epochs completed.


```
% Classify Test Images
predictedLabels = classify(net, testImages);

% Calculate the Accuracy
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test Accuracy: %.2f%%\n', accuracy * 100);
```

Test Accuracy: 99.10%