灵敏度分析(优化后分析)

- 一、参数的可变性 (c_i,b_i,a_{ij})
- 二、灵敏度分析的内容
 - 1、参数的变化对原最优解有什么影响?原最优解是否仍为最优解。
 - 2、参数在什么范围变化时,原最优解保持不变?
 - 3、当原最优解已不再最优时,应如何利用原单纯形表, 以最简捷的方法求得新的最优解。
 - 三、最优性分析

 $B^{-1}b \ge 0$ 可行性 $c_B B^{-1}A - c \le 0$ 最优性 (对偶可行)

一、价值系数向量c的变化

$$\begin{pmatrix}
L \\
x \\
x \\
x \\
0
\end{pmatrix}$$

$$\begin{cases}
min & cx \\
x \\
x \\
x \\
0
\end{cases}$$

设(L)的最优解为 $x_B = B^{-1}b, x_N = 0, f_{\min} = c_B B^{-1}b$

$1、非基变量x_k$ 的系数 c_k 改变为 c'_k

考虑检验数: $z_i - c_i = c_B B^{-1} P_i - c_i$ j为非基变量下标

在原单纯形表中将 z_k - c_k 换成 z_k '- c_k ', 然后在原表中用单纯形法求新问题的解。

2、基变量 x_r 的系数 c_r 改变为 $c_r'=c_r+\Delta c_r$

$$\begin{aligned}
z'_{j} - c'_{j} &= c'_{B} B^{-1} P_{j} - c'_{j} = (c_{B} + \Delta c_{B}) B^{-1} P_{j} - c'_{j} \\
&= c_{B} B^{-1} P_{j} - c_{j} + \Delta c_{B} B^{-1} P_{j} + c_{j} - c'_{j} \\
&= z_{j} - c_{j} + \Delta c_{B} y_{j} + (c_{j} - c'_{j})
\end{aligned}$$

若j≠r,有

$$\begin{split} z_{j}^{'} - c_{j}^{'} &= z_{j} - c_{j} + (0 \cdot \cdot \Delta c_{r} \cdot \cdot 0) y_{j} = z_{j} - c_{j} + \Delta c_{r} y_{rj}; \\ z_{r}^{'} - c_{r}^{'} &= z_{r} - c_{r} + (0 \cdot \cdot \Delta c_{r} \cdot \cdot 0) y_{r} + (c_{r} - c_{r}^{'}) \\ &= 0 + \Delta c_{r} - \Delta c_{r} = 0 \end{split}$$

目标逐数直= $(c_B + \Delta c_B)B^{-1}b = c_BB^{-1}b + \Delta c_BB^{-1}b$ = $c_BB^{-1}b + \Delta c_r\overline{b}_r$

 c_r 变为 c_r 、后,只要把原单纯形表中 x_r 所在的行乘以 $(c_r$ 、 c_r)加到判别数行,并使 x_r 对应的判别数为0,既可用单纯形法继续做下去。

例:min
$$x_1 + x_2 - 4x_3$$

 $s.t$ $x_1 + x_2 + 2x_3 \le 9$
 $x_1 + x_2 - x_3 \le 2$
 $-x_1 + x_2 + x_3 \le 4$ $x^* = \left(\frac{1}{3}, 0, \frac{13}{3}\right)^T$
 $x_j \ge 0$ $j = 1, 2, 3$ $f^* = -17$

引入松弛变量,得它的最优单纯形表为

	\boldsymbol{x}_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	\mathcal{X}_5	x_6	
x_1	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	2		0	1	1	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$
	0	-4	0	-1	0	-2	-17

1. c₂由1变为-4时

min
$$x_1 + x_2 - 4x_3$$

	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	x_6	
x_1	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	2	0	0	1	1	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$
	0	-4	0	-1	0	-2	-17

曲于
$$z_2'$$
- c_2' = $c_BB^{-1}P_2$ - c_2' = z_2 - c_2 +(c_2 - c_2')=-4+(1+4)=1

	\mathcal{X}_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	\mathcal{X}_{6}	
X_1	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	2	0	0	1	1	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$
	0	1	0	-1	0	-2	-17
x_1	1	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$	$\left \frac{4}{3} \right $
X_2	0	1	0	0	$\frac{1}{2}$	$\frac{1}{2}$	3
X_3	0	0	1	$\frac{1}{3}$	$-\frac{2}{3}$	$-\frac{1}{3}$	$\frac{7}{3}$
	0	0	0	-1	$-\frac{1}{2}$	$-\frac{5}{2}$	-20

$$x^* = \left(\frac{4}{3}, 3, \frac{7}{3}\right)^T$$
$$f_{\min} = -20$$

min
$$x_1 + x_2 - 4x_3$$

	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	X_6	
x_1	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	2	0	0	1	1	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$
	0	-4	0	-1	0	- 2	-17

问题: c_2 在什么范围变化时,最优解不变?

2. c_1 由1变为7, 此时 $\Delta c_1 = c_1' - c_1 = 7 - 1 = 6$

 $min x_1 + x_2 - 4x_3$

	x_1	\mathcal{X}_2		\mathcal{X}_4		x_6	
x_1	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
X_5	0	2	0	0	1	1	6
\mathcal{X}_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$
	0	-4	0	-1	0	-2	-17

	\mathcal{X}_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	\mathcal{X}_{6}	
x_1	1	$-\frac{1}{3}$	0	$\left[\frac{1}{3}\right]$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	2	0	0	1	1	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$
	0	-6	0	1	0	-6	-15
\mathcal{X}_4	3	-1	0	1	0	-2	1
X_5	0	2	0	0	1	1	6
X_3	-1	1	1	0	0	1	4
	-3	-5	0	0	0	-4	-16

$$x^* = (0, 0, 4)^T$$
$$f_{\min} = -16$$

min $x_1 + x_2 - 4x_3$

	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	x_6	
x_1	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	2	0	0	1	1	6
x_3	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$
	0	-4	0	-1	0	-2	-17

问题: c_1 在什么范围变化时,最优解不变?

二、改变右端向量b

设 $b \rightarrow b'$,设改变前的最优基为B。

 $1.B^{-1}b' ≥ 0$ 此时,原来的最优基仍为最优基, 但基变量的取值、目标函数最优值将发生变化。 设 $b'=b+\Delta b$. 则 $x_{B}^{-1}=B^{-1}b'=B^{-1}(b+\Delta b)=B^{-1}b+B^{-1}\Delta b$ $\dot{x_N} = 0$ $f'_{\text{min}} = c_{B}B^{-1}b' = c_{B}B^{-1}(b+\Delta b) = c_{B}B^{-1}b + c_{B}B^{-1}\Delta b$ $= f_{\text{min}} + c_{\text{R}} B^{-1} \Delta b$

二、改变右端向量b

设 $b \rightarrow b'$,设改变前的最优基为B。

2. B¹b'≥0。此时,原来的最优基对于新问题 来说,不再是可行的,但由于所有的护奶数≤0,所以 是对偶可行的,此时,只要把原问题最优表的右端列

加以修改,代之以
$$\begin{bmatrix} B^{-1}b' \\ c_BB^{-1}b' \end{bmatrix}$$
,就可用对偶单纯的生态解

新问题。

例:某工厂在计划期内要安排生产两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗为:

_	产品1	产品2	
设备	1	2	8台时
原材料A	4	0	16kg
原材料B	0	4	12kg

该工厂每生产一件产品1可获利2元,每生产一件产品2可获利3元,问应如何安排计划,使该工厂获利最多?

	x_1	x_2	x_3	X_4	x_5	
$ x_3 $	1	2	1	0	0	8 16 12
$ x_4 $	4	0	0	1	0	16
x_5	0	4	1 0 0	0	1	12
	2	3	0	0	0	0

最优表为:

x_1	x_2	x_3	x_4	x_5		
$\mathfrak{c}_1 \mid 1$		0		0	4	
$egin{array}{ccc} c_1 & 1 & \\ c_5 & 0 & \\ \end{array}$	0	-2		1	4	x = (4,
$c_2 \mid 0$	1	1/2	-1/8	0	2	$f_{\text{max}} = 1$
0	0	-3/2	-1/8	0	-14	$J_{\text{max}} - \mathbf{I}$

若该厂又从别处抽出4台时用于生产产品1和2,求这时该厂生产产品1和2的最优方案。

$$B^{-1}\Delta b = \begin{bmatrix} 0 & \frac{1}{4} & 0 \\ -2 & \frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{1}{8} & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -8 \\ 2 \end{bmatrix}$$

$$\therefore B^{-1}b' = B^{-1}b + B^{-1}\Delta b = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ -8 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix}$$

$$f = c_B B^{-1}b + c_B B^{-1}\Delta b = -14 + (-2 \ 0 \ -3) \begin{bmatrix} 0 \\ -8 \\ 2 \end{bmatrix} = -20$$

问题: b1在什么范围变化时,最优基不变?

三. 改变约束矩阵A

1. 非基列 $P_j \rightarrow P_j'$,影响 $y_j = B^{-1}P_j \mathcal{D}_{z_j} - c_j$

$$\min x_1 - 2x_2 + x_3
s.t x_1 + x_2 + x_3 = 4
3x_1 - 2x_2 \le 6
x_j \ge 0 j = 1,2,3$$

	\boldsymbol{x}_1	$\boldsymbol{x_2}$	x_3	x_4	
x_3	1	1	1	0	4
x_3 x_4	3	-2	0	1	6
	0	3	0	0	4

最优表为:

$$x^* = (0, 4, 0, 14)^T$$
 $f_{\text{max}} = -8$

君
$$P_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow P_1' = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
,则

$$c_B B^{-1} P_1^{'} - c_1 = (-2 \ 0) \begin{pmatrix} 1 \ 0 \ 2 \ 1 \end{pmatrix} \begin{pmatrix} 2 \ 1 \end{pmatrix} - 1 = -5 < 0$$

所以,最优基、最优解保持不变。

$$x^* = (0, 4, 0, 14)^T$$
 $f_{\text{max}} = -8$

君子=
$$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 $\rightarrow P_1'' = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$,则

$$c_B B^{-1} P_1'' - c_1 = (-2 \quad 0) \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} - 1 = 3 > 0$$

$$y_1'' = B^{-1}P_1'' = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

	$\boldsymbol{x_1}$	$\boldsymbol{x_2}$	x_3	x_4	
x_2	-2	1	1	0	4 14
x_4	-2 -3	0	2	1	14
	3	0	-3	0	-8

无界!

一般的,当非基列 $P_j \rightarrow P_j'$, 若 $z_j' - c_j \leq \mathbf{0}$,则原最优解也是新问题的最优解。 若 $z_j' - c_j > \mathbf{0}$,则把 $y_j \rightarrow y_j'$, $z_j - c_j \rightarrow z_j' - c_j$ 迭代。

> 2. 基列P_j→P_j′ 重新计算

四. 增加新的约束

$$\begin{cases}
min & cx \\
st. & Ax = b \\
x \ge 0
\end{cases}$$

增加新的约束: $P^{m+1}x \le b_{m+1}$ P^{m+1} 为×n价向量

$$\begin{cases}
\min & cx \\
s.t. & Ax = b \\
P^{m+1}x \le b_{m+1} \\
x \ge 0
\end{cases}$$

1. 若原最优解满足新增加的约束,则它也是新问题的最优解。

2. 若原最优解不满足新增加约束 设原问题最优基为B,则有

$$\begin{cases}
\min & cx \\
st. & x_B + B^{-1}Nx_N = B^{-1}b \\
P_B^{m+1}x_B + P_N^{m+1}x_N + x_{n+1} = b_{m+1} \\
x, x_{n+1} \ge 0
\end{cases}$$

x_B	x_N	\boldsymbol{x}_{n+1}	
I	$B^{-1}N$	0	$B^{-1}b$
P_B^{m+1}	$P_{\!N}^{\!m\!+\!1}$	1	b_{m+1}
0	$c_B B^{-1} N - c_N$. 0	$c_B B^{-1} b$

$$B' = \begin{bmatrix} B & 0 \\ P_B^{n+1} & 1 \end{bmatrix}, \quad B^{n-1} = \begin{bmatrix} B^{-1} & 0 \\ -P_B^{n+1}B^{-1} & 1 \end{bmatrix}$$

$$\begin{bmatrix} x_B \\ x_{n+1} \end{bmatrix} = B^{n-1}b' = \begin{bmatrix} B^{-1} & 0 \\ -P_B^{n+1}B^{-1} & 1 \end{bmatrix} \begin{bmatrix} b \\ b_{m+1} \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ b_{m+1} - P_B^{n+1}B^{-1}b \end{bmatrix}$$

$$f' = c'_B B^{n-1}b' = (c_B \ 0) B^{n-1}b' = c_B B^{-1}b$$

X_B	$oldsymbol{x}_N$	x_{n+1}	
I	$B^{-1}N$	0	$B^{-1}b$
O	$P_N^{m+1} - P_B^{m+1} B^{-1} N$	1	$b_{m+1} - P_B^{m+1} B^{-1} b$
0	$c_B B^{-1} N - c_N$	0	$c_{\scriptscriptstyle B}B^{\!-\!1}b$

$$\begin{cases}
\min & x_1 - 2x_2 + x_3 \\
s.t. & x_1 + x_2 + x_3 = 4 \\
3x_1 - 2x_2 & \le 6 \\
x_i \ge 0, i = 1, 2, 3
\end{cases}$$

引入松弛变量 x_4 ,得最优表

$$x^* = (0, 4, 0, 14)^T$$
 $f_{\text{max}} = -8$

增加新约束: $-x_1 + x_2 + 2x_3 \le -2$

	x_1	x_2	x_3	x_4	
x_2	1	1	1	0 1	4
x_2 x_4	5	0	2	1	14
	-3	0	-3	0	-8

引入松弛变量 x_5

无可行解!

	λ_1	\mathcal{X}_2	λ_3	X_4	<i>x</i> ₅	
x_2	1	1	1	0	0	4
x_4	5	0	2	1	0	14
x_5	-1	1	2	0	1	-2
	-3	0	-3	0	0	-8
x_2	1	1	1	0	0	4
X_4	5	0	2	1	0	14
x_5	-2	0	2	0	1	-6
	-3	0	-3	0	0	-8
x_2	0	1	3/2	0	1/2	1
X_4	0	0	9/2	1	5/2	-1
x_1	1	0	-1/2	0	-1/2	3
_	-3	0	-3	0	0	1

有两个LP问题如下:

$$\min z = cx$$

$$(LP1) \quad Ax = b$$

 $mnz = \alpha cx$

 $Ax = \beta b$ $\chi \geq 0$

分析LP1与LP2最优解之间的关系。

 $x \ge 0$

$$(\alpha > 0, \beta > 0)$$

设
$$x_1^*, x_2^*$$
分别为 $LP1$ 、 $LP2$ 的最优解 即: $\beta x_1^* = \begin{pmatrix} B^{-1}(\beta b) \\ 0 \end{pmatrix} \ge 0$
则 $x_1^* = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$ (B为最优基) $\alpha c_B B^{-1}A - \alpha c \le 0$

$$c_B B^{-1} A - c \leq 0$$

$$\alpha > 0, \beta > 0$$

$$\beta x_1^* = \beta \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$$

$$\alpha (c_B B^{-1}A - c) \le 0$$

$$\exists \beta x_1^* = \begin{pmatrix} B^{-1}(\beta b) \\ 0 \end{pmatrix} \ge 0$$

$$oc_B B^{-1} A - oc \leq 0$$

$$A(\beta x_1^*) = \beta A x_1^* = \beta b$$

得. B也是LP2的最优基

$$x_2^* = \beta x_1^*$$

$$z_2^* = \alpha \beta z_1^*$$

练习题

一个上户记述为
$$\min z = -10x_1 + 16x_2 - x_3$$
 s.t $x_1 - 2x_2 + x_3 \le 2 + 2\theta$ $x_1 - x_2 \le 4 + \theta$ $x_1 \ge 0, j = 1, 2, 3$

其中θ≥0,求:

- 1) 当 θ =0时,求解上述LP问题
- 2) 8在什么范围内变化,原问题的最优性不变。

	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	X_5	
x_1	1	0	-1	-1	2	6
x_2	0	1	-1	-1	1	2
	0	0	-5	-6	-4	-28

奶制品的生产与销售

企业生产计划

空间层次

工厂级:根据外部需求和内部设备、人力、原料等条件,以最大利润为目标制订产品生产计划;

车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划.

时间层次

若短时间内外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则应制订多阶段生产计划.

本节课题

例1 加工奶制品的生产计划

每天: 50桶牛奶 时间480小时 至多加工100公斤A₁

制订生产计划,使每天获利最大

- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- 可聘用临时工人,付出的工资最多是每小时几元?
- A₁的获利增加到 30元/公斤,应否改变生产计划?

1桶

或

12小时

8小时

→ 获利24元/公斤

→ 获利16元/公斤

50桶牛奶 时间480小时 至多加工100公斤A₁

决策变量

 x_1 桶牛奶生产 A_1 x_2 桶牛奶生产 A_3

目标函数

获利 $24\times 3x_1$ 获利 $16\times 4x_2$

每天获利 $Max z = 72x_1 + 64x_2$

约束条件

原料供应 劳动时间 加工能力 非负约束

$$x_1 + x_2 \le 50$$

$$12x_1 + 8x_2 \le 480$$

$$3x_1 \le 100$$

$$x_1, x_2 \ge 0$$

线性 规划 模型 LP)

模型求解

软件实现

LINGO 10

max 72x1+64x2

st

- 2) x1+x2<50
- 3) 12x1+8x2<480
- 4) 3x1<100

end

DO RANGE
(SENSITIVITY)
ANALYSIS? No

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 48.000000

3) 0.000000 2.000000

4) 40.000000 0.000000

NO. ITERATIONS= 2

20桶牛奶生产 A_1 , 30桶生产 A_2 ,利润3360元。

结果解释

max 72x1+64x2

st

2) x1+x2<50

3) 12x1+8x2<480

4) 3x1<100

end

三种资源

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

原料无剩余 ← 2) 0.000

0.000000 48.000000

时间无剩余 ← 3)

0.000000

2.000000

加工能力剩余40 ← 4)

40.000000

0.000000

NO. ITERATIONS= 2

"资源"剩余为零的约束为紧约束(有效约束)

OBJECTIVE FUNCTION VALUE

3360.000

结果解释

 VARIABLE
 VALUE
 REDUCED COST
 最优解下"资源"增加

 X1
 20.000000
 0.000000
 1单位时"效益"的增量

 X2
 30.000000
 0.000000
 量

ROW SLACK OR SURPLUS DUAL PRICES

影子价格

- 2) 0.000000 48.000000→ 原料增加1单位, 利润增长48
- 3) 0.000000 2.000000→ 时间增加1单位, 利润增长2
- 4) 40.000000 0.000000→ 加工能力增长不影响利润

NO. ITERATIONS= 2

1)

- 35元可买到1桶牛奶,要买吗? 35 <48, 应该买!
- 聘用临时工人付出的工资最多每小时几元? 2元!

DO RANGE(SENSITIVITY) ANALYSIS? Yes

最优解不变时目标函数系数公次变化类图

RANGES IN WHICH THE BASIS IS UNCHANGED: 数系数允许变化范围

OBJ COEFFICIENT RANGES

(约束条件不变)

VARIABLE CURRENT ALLOWABLE ALLOWABLE

	COEF	INCREASE	DECREASE	
X1	72.000000	24.000000	8.000000	x1系数范围(64,96)
X2	64.000000	8.000000	16.000000	x ₂ 系数范围(48,72)
	RIGHTI	HAND SIDE RAN	NGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE	
	RHS	INCREASE	DECREASE	x ₁ 系数由24×3=72
2	50.000000	10.000000	6.66667	增加为30×3=90,
3	480.000000	53.333332	80.000000	在允许范围内
4	100.000000	INFINITY	40.000000	

•A₁获利增加到 30元/公斤,应否改变生产计划?

不变!

结果解释 影子价格有意义时约束右端的允许变化范围

RANGES IN WHICH THE BASIS IS UNCHANGED: **OBJ COEFFICIENT RANGES**

(目标函数不变)

	VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
--	-----------------	----------------	------------------	------------------

	COEF	INCREASE	DECREASE	
X1	72.000000	24.000000	8.000000	
X2	64.000000	8.000000	16.000000	
	RIGHTH	AND SIDE RAN	GES	
ROW	CURRENT	ALLOWABLE	ALLOWABLI	Ξ
	RHS	INCREASE	DECREAS	E
2	50.000000	10.000000	6.666667	原料最多增加10
3	480.000000	53.333332	80.000000	时间最多增加53
4	100.000000	INFINITY	40.000000	

• 35元可买到1桶牛奶,每天最多买多少?

最多买10桶!

例2 奶制品的生产销售计划 在例1基础上深加工

至多100公斤A₁

制订生产计划,使每天净利润最大

- •30元可增加1桶牛奶,3元可增加1小时时间,应否投 资? 现投资150元,可赚回多少?
- B₁, B₂的获利经常有10%的波动,对计划有无影响?

变量

目标 函数

约束 条件

劳动

时间

 $x_5 kg A_1$ 加工B₁, $x_6 kg A_2$ 加工B₂

利润
$$Max z = 24x_1 + 16x_2 + 44x_3 + 32x_4 - 3x_5 - 3x_6$$

原料
$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$
 加工能力

$$4(x_1 + x_5) + 2(x_2 + x_6)$$
 附加约束

$$+2x_5 + 2x_6 \le 480$$

非负约束

$$x_3 = 0.8x_5$$

 $x_1 + x_5 \le 100$

$$x_4 = 0.75x_6$$

$$x_1, \cdots x_6 \ge 0$$

模型求解

软件实现 LINGO 10

$$2)\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

2)
$$4x_1 + 3x_2 + 4x_5 + 3x_6 \le 600$$

3)
$$4(x_1 + x_5) + 2(x_2 + x_6)$$

$$+2x_5 + 2x_6 \le 480$$

3)
$$4x_1 + 2x_2 + 6x_5 + 4x_6 \le 480$$

DO RANGE (SENSITIVITY) ANALYSIS? No

OBJECTIVE FUNCTION VALUE

1) 3460.800

VARIABLE VALUE REDUCED COST

X1 0.000000 1.680000

X2 168.000000 0.000000

X3 19.200001 0.000000

X4 0.000000 0.000000

X5 24.000000 0.000000

X6 0.000000 1.520000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 3.160000

3) 0.000000 3.260000

4) 76.000000 0.000000

5) 0.000000 44.000000

6) 0.000000 32.000000

NO. ITERATIONS=

OBJECTIVE FUNCTION VALUE

1) 3460.800

VARIABLE VALUE REDUCED COST

X1 0.000000 1.680000

X2 168.000000 0.000000

X3 19.200001 0.000000

X4 0.000000 0.000000

X5 24.000000 0.000000

X6 0.000000 1.520000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 3.160000

3) 0.000000 3.260000

4) 76.000000 0.000000

5) 0.000000 44.000000

6) 0.000000 32.000000

NO. ITERATIONS= 2

结果解释

每天销售168 kgA₂ 和19.2 kgB₁, 利润3460.8(元)

8桶牛奶加工成 A_1 ,42桶牛奶加工成 A_2 ,将得到的 $24kgA_1$ 全部加工成 B_1

除加工能力外 均为紧约束 30元可增加1桶牛奶,3元可增加1小时时间,应否投资?现投资150元,可赚回多少?

OBJECTIVE FUNCTION VALUE

1) 3460.800

VARIABLE VALUE REDUCED COST

X 1	0.000000	1.680000

ROW SLACK OR SURPLUS DUAL PRICES

结果解释

$$2)\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

2)
$$4x_1 + 3x_2 + 4x_5 + 3x_6 \le 600$$

增加1桶牛奶使利润 增长3.16×12=37.92

增加1小时时间使利润增长3.26

投资150元增加5桶牛奶,可赚回189.6元。(大于增加时间的利润增长)

结果解释

B_1, B_2 的获利有10%的波动,对计划有无影响

DO RANGE
(SENSITIVITY)
ANALYSIS? Yes

RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

B ₁ 获利下降10%,	超
出X3 系数允许范围	围

B ₂ 获利上升10%,	超
出X4 系数允许范围	围

波动对计划有影响

	COEF	INCREASE	DECREASE
X 1	24.000000	1.680000	INFINITY
X2	16.000000	8.150000	2.100000
X3	44.000000	19.750002	3.166667
X4	32.000000	2.026667	INFINITY
X5	-3.000000	15.800000	2.533334
X6	-3.000000	1.520000	INFINITY

生产计划应重新制订:如将 x_3 的系数改为39.6计算,会发现结果有很大变化。