Homework 1 - Due 2/13/2013

John Kitchin

2013-02-04 Mon

Contents

1	Compute the distance between the (111) planes of Ag.	1
2	Angles and distances	1
3	Coordinate system transformations	2
4	Computing unit cell parameters	3
5	Computing fractional coordinates	3

1 Compute the distance between the (111) planes of Ag.

Use the experimental lattice constant of Ag.

2 Angles and distances

Compute the length of the vector indicated by D, and the angle indicated by A. You can assume the unit cell is a cube with length of 3.6 nm on each side.

3 Coordinate system transformations

The unit cell of a material is given by:

4.2266540199664249	0.0000000000000000	0.0000000000000000
0.0000000000000000	4.2266540199664249	0.0000000000000000
0.0000000000000000	0.0000000000000000	2.6888359272289208

The coordinates of the atoms in the unit cell are given in fractional coordinates as:

0.0000000000000000	0.0000000000000000	0.0000000000000000
0.5000000000000000	0.5000000000000000	0.5000000000000000
0.3067891334429594	0.3067891334429594	0.0000000000000000
0.6932108665570406	0.6932108665570406	0.0000000000000000
0.1932108665570406	0.8067891334429594	0.5000000000000000
0.8067891334429594	0.1932108665570406	0.5000000000000000

Compute the Cartesian coordinates of each atom.

4 Computing unit cell parameters

For the following unit cell (in rows), compute the length of each vector, and the angle between the vectors, e.g. the "a b c α β γ " representation.

```
3.817 -0.011 -0.243
-0.011 3.817 -0.243
-1.519 -1.519 4.986
```

5 Computing fractional coordinates

Given this unit cell (in rows)

```
3.817 -0.011 -0.243
-0.011 3.817 -0.243
-1.519 -1.519 4.986
```

And atoms at these cartesian coordinates:

```
[[ 1.23141,
             0.239958,
                        3.102345]
 [ 1.05559,
             2.047042,
                        1.397655]
 [-0.626458,
             2.21009,
                         3.890655]
 [ 2.913458,
             0.07691,
                         0.609345]
 [ 1.004314, 0.139186, 1.125
             2.147814, 3.375
 [ 1.282686,
                                 ]]
```

Compute the fractional coordinates of each atom in the unit cell.