מטלת מנחה 15 – מערכות ספרתיות

שאלה 1 – סעיף א

יבים: מצבים אחורה, להם יהיו $2^3=8$ מצבים. נבנה דיאגרמת מצבים:

נבנה טבלת מצבים וננסה לצמצם מצבים. נסמן את סיביות המצב בABC, את הכניסה בx ואת היציאה ב

	t	t+1			
ABC	Х	ABC	Z		
000	θ	000	θ		
000	1	001	θ		
001	0	110 010	0		
001	1	111 011	0		
010	0	-100	0		
010	1	101	Ф		
011	0	-110	Ф		
011	1	-111	Ф		
100	0	100 000	0		
100	1	001	0		
101	0	110 010	1		
101	1	111 011	0		
110	0	100	0		
110	1	101	0		
111	0	110	0		
111	1	111	0		

:כעת, נצמצם את

1. המצבים 100 ו 000

2. המצבים 110 ו 010

3. המצבים 111 ו 110

הטבלה, לאחר הצמצום, תיראה כך:

	t	t+1			
ABC	X	ABC	Z		
001	Ð	110	0		
001	4	111	0		
100	0	100	0		
100	1	111 001	0		
101	0	110	1		
101	1	111	0		
110	0	100	0		
110	1	101	0		
111	0	110	0		
111	1	111	0		

ניתן לצמצם פעם נוספת את המצבים 111 ו 001

בכך הצלחנו לוותר על הסיבית A ולחסוך בדגלג.

דיאגרמת המצבים החדשה, תוך התעלמות מהסיבית A בטבלת המצב:

miro

תפקיד כל מצב:

00 – המצב ההתחלתי. יש בזיכרון 000 או 100 – רצף של 0 ספרות "רצויות". לכן, בהינתן x=0, רצף הספרות – 00 הרצויות נשאר x=0, ובהינתן x=0 – אנחנו עוברים לרצף של ספרה אחת רצויה.

01 – יש בזיכרון 101 – רצף של 3 ספרות "רצויות". אם נוסיף 1 – נבטל את המשמעות של הרצף, וניצור רצף חדש עם ספרה אחת רצויה, שהיא 1. בהינתן 0 – קיבלנו את הרצף שרצינו, וגם יש 2 ספרות רצויות – הספרות האחרונות 10.

11 – יש בזיכרון 001, 001 או 111. רצף של ספרה אחת "רצויה". אם נוסיף 1 – ניצור רצף חדש עם ספרה אחת רצויה 1.

10 – יש בזיכרון 010, 110, כלומר רצף של 2 ספרות רצויות. אם נוסיף 1 – ניצור רצף של 3 ספרות רצויות. אם נוסיף 0 – נאפס את הרצף ויהיו בו 0 ספרות רצויות.

בהינתן המידע שבידינו ניתן לבנות את המעגל בצורה יעילה יותר וחסכונית יותר בזיכרון, כאשר נחליף את המצבים 01 ו11 ובכך נקבל מעגל סדרתי בו <mark>כל מצב מייצג את אורך הרצף הרצוי של ספרות מתוך שלוש האחרונה היא 1, 2 יצביע על רצף של 10 ו-3 יצביע על הרצף 101. האחרונות – כאשר 1 יצביע על כך שהספרה האחרונה היא 1, 2 יצביע על רצף של 10 ו-3 יצביע על הרצף 101.</mark>

טבלת המצבים והעירור, אותה נשלים לפי פונקציית העירור של JK-FF:

	t		t+1			עירור			
Α	В	х	Α	В	Z	J_A	K_A	J_B	K_B
0	0	0	0	0	0	0	Х	0	X
0	0	1	0	1	0	0	Х	1	Х
0	1	0	1	0	0	1	Х	Х	1
0	1	1	0	1	0	0	Х	Х	0
1	0	0	0	0	0	Χ	1	0	Х
1	0	1	1	1	0	Χ	0	1	Х
1	1	0	1	0	1	Х	0	Х	1
1	1	1	0	1	0	Χ	1	Х	0

סעיף ב

בעזרת הטבלה, נכתוב את פונקציות הכניסה של הדלגלגים ופונקציות היציאה של המעגל. ניצור מפות קרנו לארבע הכניסות של הדלגלגים, כאשר צירופים שערכם 0 יסומנו בצהוב, צירופים שערכם 1 יסומנו בירוק כהה, וצירופים אדישים בירוק בהיר

לכן –

$$J_A = Bx'$$

$$K_A = B'x' + Bx$$

$$J_B = x$$

$$K_B = x'$$

z = ABx' ומהטבלה קל לראות כי

סעיף ג

שאלה 2

לשם פתרון השאלה נסמן ב A את הערך היוצא מהדגלג JK ובB את הערך היוצא מהדגלג RS. נבנה טבלת מצבים אותה נשלים ע"י הטבלאות האופייניות של הדגלגים.

לפי השרטוט:

$$J_A = x$$

$$S_B = NOT(AND(A, x)) = (Ax)' = A' + x'$$

$$y = A + B$$

$$R_B = 0, K_A = 1$$

בעתיד Bi A בעתיד להשלים את בהינתן כניסות כל הדגלגים, אנחנו יכולים להשלים את

	t זמן		t+1 זמן			עירור			
Α	В	Х	Α	В	У	J_A	K_A	R_B	S_B
0	0	0	0	1	0	0	1	0	1
0	0	1	1	1	0	1	1	0	1
0	1	0	0	1	1	0	1	0	1
0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	1	0	1	0	1
1	0	1	0	0	1	1	1	0	0
1	1	0	0	1	1	0	1	0	1
1	1	1	0	1	1	1	1	0	0

– ניצור כעת דיאגרמת מצבים

