Metody obliczeniowe w nauce i technice

Interpolacja Lagrange'a i Newtona Sprawozdanie

Aga Patro pt_15:00

1. Specyfikacja sprzętu i narzędzia wykorzystane w realizacji

System: Debian Linux Parrot OS x64

Procesor: AMD Ryzen 5 4500U, 6 rdzeni, 6 wątków, 4.00GHz

Pamięć RAM: 16 GB

Środowisko: Jupyter Notebook

Język: Python 3

2. Temat ćwiczenia

Celem ćwiczenia było, by dla zadanej funkcji $e^{-4sin(x)}$ na przedziale od -4π do 3π wyznaczyć dla zagadnienia Lagrange'a wielomian interpolujący w postaci Lagrange'a i Newtona. Interpolację należało wykonać dla różnej liczby węzłów oraz dla ich różnego rozmieszczenia: równomiernego oraz zgodnie z zerami Czebyszewa.

3. Opis problemu

Mamy zadaną funkcję $e^{-4sin(x)}$ na przedziale od -4π do 3π .

Wykres 3.1. Wykres funkcji e^(-4sin(x))

4. Realizacja ćwiczenia

Aby zrealizować zadane zadanie, napisałam dwie funkcje wyznaczające rozmieszczenie węzłów: równolegle i według zer Czebyszewa oraz dwie funkcje wyznaczające wielomian interpolujący: metodą Newtona oraz Lagrange'a. Eksperyment wykonałam na różnej liczby węzłów, dla różnych metod oraz różnego rozmieszczenia tj. cztery wywołania programu dla każdej liczby węzłów. Dla każdego wywołania wyznaczyłam błąd średniokwadratowy oraz błąd maksymalny.

5. Wyniki ćwiczenia

W poniższych tabelach oraz na wykresach przedstawiłam wyniki otrzymanych eksperymentów. Błędy średniokwadratowe były wyliczane dla 500 punktów. Na wykresach kolorem różowym pokazany jest wyznaczone wielomian, natomiast kolorem fioletowym ukazana jest badana funkcja.

5. 1 Wyniki dla postaci Lagrange'a

Liczba	Węzły równoległe		Węzły Czebyszewa	
węzłów	Błąd średniokwadratowy	Błąd maksymalny	Błąd średniokwadratowy	Błąd maksymalny
3	1139.4235	52.7583	1009.7951	52.2658
4	362.9932	54.6349	363.1700	54.4761
5	839.9070	49.9216	1577.5217	55.8152
7	1449.2714	69.6131	789.6254	65.6396
10	1442.8021	100.3708	335.4181	54.7416
15	857049.8903	3741.0223	206.7073	32.0068
20	718.8594	102.6760	119.1440	40.8649
30	19982126867.5166	876356.09618	27.3818	20.6809
40	942149920831504.5	225781673.5926	5.1552	8.7484
50	2.1564e+19	39881890674.4	23716121.9604	59106.0662

Tabela 5.1.1. Wartości błędów uzyskanych przy użyciu metody Lagrange'a

Dla metody Lagrange'a najlepszy rezultat (najmniejszy błąd maksymalny) otrzymujemy dla 40 węzłów o rozłożeniu według zer Czebyszewa. Niestety patrząc na poniższy wykres 5.1.1 można zauważyć że otrzymany wielomian "rozjeżdża" się z zadanymi węzłami. Może to być spowodowane problemami w obliczeniach numerycznych.

Widoczny efekt Runge'go przy rozłożeniu równomiernym pojawia się dla 10 węzłów.

Jak widać, w porównaniu z wykresem dla rozłożenia równoległego, dla Czebyszewa efekt Rungego nie jest widoczny.

rozmieszczeniem równoległym dla 10 węzłów

rozmieszczeniem Czebyszewa dla 10 węzłów

Jednakże najbardziej widoczny efekt Runge'go (dla małej liczby węzłów) otrzymujemy dla 15 węzłów dla rozłożenia równoległego. Dla rozłożenia Czebyszewa efekt jest praktycznie niewidoczny.

Wykres 5.1.4. Wykresy dla metody Lagrange'a z rozmieszczeniem równoległym dla 15 węzłów

Wykres 5.1.5. Wykresy dla metody Lagrange'a z rozmieszczeniem Czebyszewa dla 15 węzłów

5. 1 Wyniki dla postaci Newtona

Liczba węzłów	Węzły równoległe		Węzły Czebyszewa	
	Błąd średniokwadratowy	Błąd maksymalny	Błąd średniokwadratowy	Błąd maksymalny
3	1139.4234	52.7583	1009.7951	52.2658
4	362.9931	54.6349	363.1700	54.4761
5	839.9070	49.9216	1577.5217	55.8152
7	1449.2713	69.6130	789.6254	65.6396
10	1442.8020	100.3707	335.4181	54.7416
15	857049.8903	3741.0222	206.7073	32.0068
20	718.8594	102.6759	119.1440	40.8649
30	19982121384.8223	876355.8938	27.3818	20.6809
40	941761061828365.8	225702955.201	24.8260	31.2040
50	2.238879e+19	39881068441.6	165195198585.1	3341683.2479

Tabela 5.2.1. Wartości błędów uzyskanych przy użyciu metody Newtona

Dla metody Newtona najlepszy rezultat (najmniejszy błąd maksymalny) otrzymujemy dla 30 węzłów o rozłożeniu według zer Czebyszewa.

Wykres 5.2.1. Wykresy dla metody Newtona z rozmieszczeniem Czebyszewa dla 30 węzłów

Najbardziej widoczny efekt Runge'go (dla małej liczby węzłów) otrzymujemy przy rozłożeniu równomiernym dla 15 węzłów.

Wykres 5.2.2. Wykresy dla metody Newtona z rozmieszczeniem równoległym dla 15 węzłów

Wykres 5.2.3. Wykresy dla metody Newtona z rozmieszczeniem Czebyszewa dla 15 węzłów

Jak widać, w porównaniu z wykresem dla rozłożenia równoległego, dla Czebyszewa efekt Rungego nie jest aż tak widoczny.

6. Wnioski

Należy zauważyć, że dla małej liczby węzłów, wyniki błędów w tabelach 5.1.1 oraz 5.2.1 dla metody Lagrange'a oraz dla metody Newtona są podobne.

Z przeprowadzonych eksperymentów można wywnioskować że interpolacja dla rozłożenia Czebyszewa jest efektywniejsza w niwelowaniu efektu Runge'go niż dla rozłożenia równoległego.

Dla dużej liczby węzłów (> 40) interpolacja staje się coraz mniej dokładna, a efekt Runge'go rośnie wraz ze zwiększaniem liczby węzłów.

Powołując się na wykres 5.2.1, najlepsze wyniki otrzymamy wykorzystując interpolację Newtona przy rozłożeniu 30 węzłów według Czebyszewa.

7. Uwagi

Dla rozłożenia Czebyszewa, wykresy dla większej liczby węzłów sugerują, że punkty są wyznaczone na krańcach zadanego przedziału. Jak widać po wykresach dla mniejszej liczby węzłów, jest to nieprawda. Dzieje się tak dlatego, że punkty na wykresach są na tyle duże że pokrywają się z linią wykresu, lecz nie znajdują się na jej końcu.