Linguistic Regularities in Continuous Space Word Representations

Tomas Mikolov

- (2010.) If units of text have similar vectors in a text frequency matrix, then they tend to have similar meanings.
- Non-distributed representation의 문제점 해결을 위해 Distributed representation이 제안됨

- (2010.) If units of text have similar vectors in a text frequency matrix, then they tend to have similar meanings.
- Non-distributed representation의 문제점 해결을 위해 Distributed representation이 제안됨

[Figure 1.] Distributed representation

저장하고자 하는 정보의 개수만큼 Unit을 만들어 Unit의 개수가 Exponential하게 많아지는 Non-distributed representation과 달리, 단 3개 Unit으로 조합되어 ouput에 정보가 모두 담길 수 있다.

■ One of the main advantage of these models is that the distributed representation achieves a level of generalization that is not possible with classical n-gram language models.

■ One of the main advantage of these models is that the distributed representation achieves a level of generalization that is not possible with classical n-gram language models.

The problem with n-gram

"올림픽개최" → "올림", "올림픽", "올림픽개", "올림픽개최" ⋯.

이렇게 보면 n-gram이 가장 정확하게 분석할 수 있지 않을까 하지만, 실제 형태소를 분석하면 "올림"의 의미는 <u>수학의 올림</u>도 있지만 <mark>올림픽</mark>의 올림의 출현빈도나 인지도 등에서 앞서는 까닭에 올림픽을 추출하게 된다는 단점이 있다. Thesis's goal

"새로운 Vector Offset Method와 RNN의 결합을 통한 좋은 성능"

Recurrent Neural Network Model

w(t): input vector

s(t): hidden layer

y(t): output layer

U : word representation

W : s(t), s(t-1)의 관계

Ⅴ : 특정 값

$$s(t)=f(Uw(t)+Ws(t-1))$$
$$y(t)=g(Vs(t))$$

$$f(z) = \frac{1}{1 + e^{-z}}$$
, $g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}$

[Figure 2.] Recurrent Neural Network Language Model

Recurrent Neural Network Model

[Figure 2.] Recurrent Neural Network Language Model

w(t): input vector

s(t): hidden layer

y(t): output layer

U : word representation

W : s(t), s(t-1)의 관계

Ⅴ : 특정 값

$$s(t)=f(Uw(t)+Ws(t-1))$$
$$y(t)=g(Vs(t))$$

$$f(z) = \frac{1}{1 + e^{-z}}$$
, $g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}$

tanh가 아니라 sigmoid가 사용됨

Recurrent Neural Network Model

[Figure 2.] Recurrent Neural Network Language Model

Vectors generated by the RNN toolkit of Mikolov(2012)

w(t): input vector

s(t): hidden layer

y(t): output layer

U : word representation

W : s(t), s(t-1)의 관계

Ⅴ : 특정 값

 $s(t)=f(\mathbf{U}w(t)+\mathbf{W}s(t-1))$ $y(t)=g(\mathbf{V}s(t))$

$$f(z) = \frac{1}{1 + e^{-z}}$$
, $g(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}}$

tanh가 아니라 sigmoid가 사용됨

■ A Syntactic Test Set

"a is to b as c is to "

위의 형태를 analogy(비유)라고 한다. B의 위치에 해당하는 형태가 ___에도 들어가야 한다. Syntax는 한국어로 문법이고, 여기선 카테고리를 형용사, 명사, 동사로 나눔

형용사: good-better-best (base/comparative/superlative)

명사1 : year-years (singular/plural)

명사2: Tom-Tom's (non-possessive/possessive)

동사 : see-saw-sees (base/past/3rd person present

tense form)

■ A Syntactic Test Set

Category	Relation	Patterns Tested	# Questions	Example
Adjectives	Base/Comparative	JJ/JJR, JJR/JJ	1000	good:better rough:
Adjectives	Base/Superlative	JJ/JJS, JJS/JJ	1000	good:best rough:
Adjectives	Comparative/ Superlative	JJS/JJR, JJR/JJS	1000	better:best rougher:
Nouns	Singular/Plural	NN/NNS, NNS/NN	1000	year:years law:
Nouns	Non-possessive/ Possessive	NN/NN_POS, NN_POS/NN	1000	city:city's bank:
Verbs	Base/Past	VB/VBD, VBD/VB	1000	see:saw return:
Verbs	Base/3rd Person Singular Present	VB/VBZ, VBZ/VB	1000	see:sees return:
Verbs	Past/3rd Person Singular Present	VBD/VBZ, VBZ/VBD	1000	saw:sees returned:

Table 1: Test set patterns. For a given pattern and word-pair, both orderings occur in the test set. For example, if "see:saw return:__" occurs, so will "saw:see returned:__".

8개의 조합은 각각 analog하게 표현이 가능 Ex.) 'good is better as bad is to worse.'

■ A Semantic Test Set

"SemEval-2012"

SemEval-2012는 analog한 형태로 semantic한 관계의 word를 묶어 둔 data set으로, Recurrent Neural Network Language Model의 word vector가 의미 정보를 가지고 있는지 평가함

■ A Semantic Test Set

"Class: Element"

- Semantic도 syntactic처럼 analogy 형태로 표현
- Clothing과 dish가 카테고리이고, shirt와 bowl은 각각의 예시

clothing : shirt

dish : bowl

clothing is to shirt as dish is to bowl"

■ Syntactic, semantic linguistic regularity는 analogy 표현이 가능

Syntactic, semantic linguistic regularity는 analogy 표현이 가능

■ Analogy만 쉽게 해결하면 linguistic regularity를 identify 할 수 있다.

Syntactic, semantic linguistic regularity는 analogy 표현이 가능

■ Analogy만 쉽게 해결하면 linguistic regularity를 identify 할 수 있다.

새로운 vector offset method가 제안됨

Cosine Distance 기반의 Vector offset Method => Assume relationships are present as vector offsets.

The Vector Offset Method

■ a:b=c:_를 구할 때, _가 unknown이면, $y=x_b-x_a+x_c$ 에서 y가 결정되면 좋지만, 항상 그릴 수 없다. 그래서 가장 유사한 것을 Cosine Similarity를 통해 찾는다.

$$w^* = argmax_w \frac{x_w y}{\|x_w\| \|y\|}$$

cosine similarity를 구하는 식으로, 이 식이 최대가 되게 하는 w를 반 환한다. 이 식이 필요한 이유는 y가 정해지지 않을 때 가장 유사한 벡터 를 찾기 위함이다.

The Vector Offset Method

■ a:b=c:_를 구할 때, _가 unknown이면, $y=x_b-x_a+x_c$ 에서 y가 결정되면 좋지만, 항상 그럴 수 없다. 그래서 가장 유사한 것을 Cosine Similarity를 통해 찾는다.

[Figure 3.] argmax를 통해 구해진 값 예시

King-queen을 나타내는 벡터는 있는데, man-woman이 없고 Man-girl이 있을 때, armax를 통해 구한 값인 girl이 대신 할당된다.

The Vector Offset Method

■ 성별과 명사의 단수-복수를 의미하는 Vector

[Figure 4.] argmax를 통해 구해진 값 예시

파란색 선은 성별을 의미하는 vector, 빨간색 선은 명사의 복수를 의미하는 vector이다.

■ cosine similarity를 이용한 vector offset을 통해 LSA model과 RNN model을 학습한 결과

Method	Adjectives	Nouns	Verbs	All
LSA-80	9.2	11.1	17.4	12.8
LSA-320	11.3	18.1	20.7	16.5
LSA-640	9.6	10.1	13.8	11.3
RNN-80	9.3	5.2	30.4	16.2
RNN-320	18.2	19.0	45.0	28.5
RNN-640	21.0	25.2	54.8	34.7
RNN-1600	23.9	29.2	62.2	39.6

Table 2: Results for identifying syntactic regularities for different word representations. Percent correct.

Vector의 차원을 높일수록 LSA보다 약 3배 정도 RNN의 성능이 높다.

■cosine similarity를 이용하기 위해 vector offset을 생성하는 모델들의 유사 성능 비교

Method	Adjectives	Nouns	Verbs	All
RNN-80	10.1	8.1	30.4	19.0
CW-50	1.1	2.4	8.1	4.5
CW-100	1.3	4.1	8.6	5.0
HLBL-50	4.4	5.4	23.1	13.0
HLBL-100	7.6	13.2	30.2	18.7

Table 3: Comparison of RNN vectors with Turian's Collobert and Weston based vectors and the Hierarchical Log-Bilinear model of Mnih and Hinton. Percent correct.

Method	Spearman's ρ	MaxDiff Acc.
LSA-640	0.149	0.364
RNN-80	0.211	0.389
RNN-320	0.259	0.408
RNN-640	0.270	0.416
RNN-1600	0.275	0.418
CW-50	0.159	0.363
CW-100	0.154	0.363
HLBL-50	0.149	0.363
HLBL-100	0.146	0.362
UTD-NB	0.230	0.395

Table 4: Results in measuring relation similarity

CW, HLBL 모델에도 같은 실험을 진행하였는데, HLBL이 RNN과 syntactic한 측면에서 유사한 성능을 보였다. 하지만, semantic의 측면에선 CW, HLBL 둘 다 부진하고 RNN이 좋은 성능을 보였다.

■cosine similarity를 이용하기 위해 vector offset을 생성하는 모델들

의 유사 성능 비교

Method	Adjectives	Nouns	Verbs	All
RNN-80	10.1	8.1	30.4	19.0
CW-50	1.1	2.4	8.1	4.5
CW-100	1.3	4.1	8.6	5.0
HLBL-50	4.4	5.4	23.1	13.0
HLBL-100	7.6	13.2	30.2	18.7

Table 3: Comparison of RNN vectors with Turian's Collobert and Weston based vectors and the Hierarchical Log-Bilinear model of Mnih and Hinton. Percent correct.

Method	Spearman's ρ	MaxDiff Acc.
LSA-640	0.149	0.364
RNN-80	0.211	0.389
RNN-320	0.259	0.408
RNN-640	0.270	0.416
RNN-1600	0.275	0.418
CW-50	0.159	0.363
CW-100	0.154	0.363
HLBL-50	0.149	0.363
HLBL-100	0.146	0.362
UTD-NB	0.230	0.395

Table 4: Results in measuring relation similarity

CW, HLBL 모델에도 같은 실험을 진행하였는데, HLBL이 RNN과 syntactic한 측면에서 유사한 성능을 보였다. 하지만, semantic의 측면에선 CW, HLBL 둘 다 부진하고 RNN이 좋은 성능을 보였다.

Conclusion

Cosine Similarity를 이용한 Vector Offset Method를 사용하면, Linguistic Regularities를 identify 하는데 더 간단하지만 비슷한 경과를 가져오고, 이 Method와 RNN을 결합하면 Linguistic Regularity를 <mark>CPATURE</mark>하는데 엄청난 두각을 보인다.

좋은 성능!