Design and Implementation of Flight Dynamics Control Strategies for a Quadrotor Based On a Smartphone

Thesis for obtaining the degree of

MASTER OF SCIENCE IN ENGINEERING

with emphasis in automation

Alejandro Astudillo Vigoya

alejandro. astudillo @correounivalle. edu. co

School of Electric and Electronic Engineering
Santiago de Cali
Valle del Cauca, COLOMBIA
April 18, 2017

Abstract

The field of autonomous systems control is young, but operational experience is rapidly growing, making research on collaborative systems of great importance. Improving aerial robots in particular could be key in facing future environmental challenges.....

In this work, two main problems are addressed: the cooperative source seeking problem and the cooperative level curve tracking problem by a group of agents under undirected constrained communications.

Contents

A	bstra	et	j
1	Intr	oduction	1
	1.1	State of Art	1
		1.1.1 Quadrotors	1
		1.1.2 Smartphone as a Controller	1
		1.1.3 Smartphone-based Quadrotors	1
	1.2	Outline	1
2	Qua	drotor Helicopter Model	3
	2.1	Nonlinear Model	3
	2.2	Linearized Model	3
3	Sma	rtphone-based Quadrotor Prototype	5
	3.1	Description of the Components	
		3.1.1 Smartphone	
		3.1.2 Frame	-
		3.1.3 Motors and Electronic Speed Controllers (ESC)	-
		3.1.4 Smartphone-ESC Gateway	
		3.1.5 Battery	-
		3.1.6 Assembled Smartphone-based Quadrotor	
	3.2	Quadrotor Parameters	-
		3.2.1 Mass	-
		3.2.2 Inertial Momentum	-
		3.2.3 Motors Thrust	5
4	Cor	trol Strategies and State Estimation	7
	4.1	Optimal Controller	7
	4.2	Robust Controller	7
	4.3	State Estimation Through Kalman Filter	7
5	Imp	lementation and Results	9
	5.1	Kalman Filter for States Estimation	Ĝ
	5.2	Linear Quadratic Regulator Results	9

iv CONTENTS

		Simple Translational Movements (LQR)	
5.3	$H\infty$ R	degulator Results	9
	5.3.1	Simple Translational Movements $(H\infty)$	9
	5.3.2	Trajectory Tracking $(H\infty)$	9
Conclu	ısions	and Outlook 1	L 0
Bibliog	graphy	1	13
Public	ations	1	15

List of Figures

List of Tables

Introduction

- 1.1 State of Art
- 1.1.1 Quadrotors
- 1.1.2 Smartphone as a Controller
- 1.1.3 Smartphone-based Quadrotors
- 1.2 Outline

Quadrotor Helicopter Model

2.1 Nonlinear Model

2.2 Linearized Model

The linearised model of the quad-rotor helicopter written as a state space model is given by

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$r(t) = Cx(t),$$

where

with the parameters

$$m = 0.64 \text{ kg},$$

$$g = 9.81 \text{ m/s}.$$

The state vector is defined as

$$x(t) = \begin{bmatrix} r_x & \dot{r}_x & r_y & \dot{r}_y & r & \dot{r}_z \end{bmatrix}^T,$$

and the control inputs as

$$u(t) = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix}^T,$$

and the output vector is defined as

$$r(t) = \begin{bmatrix} r_x & r_y & r_z \end{bmatrix}^T$$
.

Smartphone-based Quadrotor Prototype

- 3.1 Description of the Components
- 3.1.1 Smartphone
- 3.1.2 Frame
- 3.1.3 Motors and Electronic Speed Controllers (ESC)
- 3.1.4 Smartphone-ESC Gateway
- 3.1.5 Battery
- 3.1.6 Assembled Smartphone-based Quadrotor
- 3.2 Quadrotor Parameters
- 3.2.1 Mass
- 3.2.2 Inertial Momentum
- 3.2.3 Motors Thrust

Control Strategies and State Estimation

- 4.1 Optimal Controller
- 4.2 Robust Controller
- 4.3 State Estimation Through Kalman Filter

Implementation and Results

- 5.1 Kalman Filter for States Estimation
- 5.2 Linear Quadratic Regulator Results
- 5.2.1 Simple Translational Movements (LQR)
- 5.2.2 Trajectory Tracking (LQR)
- 5.3 $H\infty$ Regulator Results
- 5.3.1 Simple Translational Movements $(H\infty)$
- 5.3.2 Trajectory Tracking $(H\infty)$

Conclusions and Outlook

In this thesis distributed algorithms

Bibliography

Publications

Rosero Esteban, and Werner Herbert. Modified distributed consensus filter for sensor networks. 2014 European Control Conference (ECC). June, 2014.