# 第6章功率放大电路

- 6.1 功率放大电路的特殊问题
- 6.2 互补对称功率放大电路
  - 1. 双电源互补对称电路 OCL
  - 2. 单电源互补对称电路 OTL

## 1. 放大电路的功能及性能指标

(1) 放大电路功能简介



问题:输入小功率交流信号,输出大功率交流信号,增加的功率从哪里来?

#### 放大电路起能量转换作用:

电源提供的直流电能转化为由信号控制的输出交变电能。

## 6.1 功率放大电路的特殊问题

◆ 输出功率为主要技术指标。 晶体管起能量转换作用:

电源提供的直流电能转化为由信号控制的输出交变电能。

- ◆ 功率放大简称功放,
- ◆ 与电压放大电路相比较, 主要考虑以下问题。
  - (1) 输出大功率
  - (2) 提高功率效率
  - (3) 减小失真
  - (4) 改善热稳定性

### 6.1 功率放大电路的特殊问题

- (2) 提高效率
  - ◆ 功率放大电路的效率 (Efficiency) 是指负载得到 的信号功率与电源供给的直流功率之比。

$$\eta = \frac{P_{\rm O}}{P_{\rm V}}$$

◆ 提高效率可以在相同输出功率的条件下,减小 能量损耗,延长电池待机时间,降低成本。

#### |怎么提高效率?

第一步:分析能量损耗在哪里?

### 第一步:分析能量损耗在哪里?



直流电源提供的平均功率 $P_V = V_{CC}i_c = 12*50$ x $10^{-3} = 0.6$ 瓦

假设负载 $\mathbf{1}\Omega$ 则输出信号功率为 $P_o = \frac{1}{2}*10x10^{-3}*50x10^{-6} = 0.25x10^{-3}$ 毫瓦

功率  $P_0$ 远小于 $P_v$  余下能量损耗在哪里?

### 一步:分析能量损耗在哪里?



电阻元件,被浪费掉的功率  $I_c^2 R_c = 50*50*200*10^{-6} = 0.5$  瓦

没用的功率,被浪费掉,大小和Ic有关,基本呈单调递增关

想考: 如何提高功率效率?

因此,要提高效率就必须减小静态电流Ic

### 怎么提高效率?

- 管子导通时间为一个周期。在单管放大电路中,为了得到不失真的输出波形,将静态工作点 $I_{CO}$ 设置在合适位置。
- 输出信号小时,静态工作点可以设置低点
- 但输出大信号时,静态工作点比较高,静态功耗大。



### $I_{CO}$ =0,会怎样?

- 导通时间为半个周期。其工作点设置在截止区, $I_{\rm co}$ =0。
- 出现了严重的波形失真。



- 导通时间大于半个周期,小于一个周期。其工作点设置靠近截止区, $I_{co}$ 靠近0。
- 甲乙类放大,减小了静态功耗,但也出现了严重的波形失真。



(b) 甲类  $i_c = 0$  的时间小于半个周期

### 怎么提高效率?

#### 甲类功放:

在一个信号周期内都有电流流过晶体管管子的导通角为360°静态电流大于0,管耗大,效率低

#### 乙类功放:

管子只有半个周期内导通管子的导通角为180°静态电流等于0,效率高甲乙类功放:

管子的导通时间大于半个周期但是小 于一个周期, 比半个周期稍多些



问题:对于输出大信号时,波形失真和功率效率之间形成一个矛盾,如何处理?

# 第6章功率放大电路

- 6.1 功率放大电路的特殊问题
- 6.2 互补对称功率放大电路
  - 1. 双电源互补对称电路 OCL
  - 2. 单电源互补对称电路 OTL

# 6.2 互补对称功率放大电路

- 1. 双电源互补对称电路
- ◆ 双电源互补对称电路又称无输出电容电路,简称 OCL(Output Capacitor Less) 电路。



### 1. 双电源互补对称电路

工作原理(设 u, 为正弦波) 静态时,上下对称, B,E 点电位都为 止状态)  $* u_o = 0V$ 动态时:  $u_i > 0V \rightarrow T_1$  导通,  $T_2$  截止  $\rightarrow i_{I} = i_{c1};$  $u_i < 0V \rightarrow T_1$  截止,  $T_2$  导通  $\rightarrow i_I = i_{c2}$ 

 $T_1$ 、  $T_2$  两个管子交替工作,在负载上得到完整的正弦波。

在负载上将正半周和负半周合成在一起,得到一个完整的不失真波形。

#### 前提条件:

- 1输入信号幅度远大于三极管的开启电压,
- 2 忽略不计三极管的开启电压。





严格说,输入信号很小时,达不到三极管的开启电压, 三极管不导电。因此在正、负半周交替过零处会出现一 些非线性失真,这个失真称为交越失真。





# 交越失真

- ◆ 由于T<sub>1</sub>、T<sub>2</sub>管输入特性存在死区,所以输出波形在信号过零附近产生失真——交越失真。
- ◆ 原因:假设 $T_1$ 、 $T_2$ 的死区电压都是0.6V,那么在输入信号电压  $|U_i| \le 0.6V$  期间, $T_1$ 和 $T_2$ 截止,输出电压为零,得到如图所示失真了的波形,



图 6-3 交越失真波形

### 消除交越失真的办法

- ◆ 让T<sub>1</sub>和T<sub>2</sub>在静态时就微导通。
- ◆ 为此在T₁和T₂的基极之间接入一个直流电压。
- ◆ 无论信号为正或为负,都至少有一个管子导通,交越失真

也就不存在了。



址

 $T_1$ 和 $T_2$ 之间的基极电位差设置成可调,克服交越失真效



## (2) 分析计算



### ①输出功率

静态工作点为 ( $U_{CE} = V_{CC}$ ,

i一 $\mathfrak{h}$ 出功率  $P_0$  可以根据功率表达 式  $P = U^2/R$  (U是交流有效 值) 求得,即

$$P_{\rm o} = \frac{(U_{\rm cem}/\sqrt{2})^2}{R_{\rm L}} = \frac{U_{\rm cem}^2}{2R_{\rm L}}$$

$$P_{\rm o} = \frac{1}{2} \cdot \frac{U_{\rm cem}}{R_{\rm L}} \cdot U_{\rm cem} = \frac{1}{2} I_{\rm cm} \cdot U_{\rm cem}$$

理想条件下的最大输出功率

- lacktriangle 若输入的正弦信号的幅度足够大,并忽略管子的饱和压降  $U_{\mathrm{CES}}$  。
- $lacktriangledaw{R_{L}}$  上最大的输出电压幅度  $U_{cem} = V_{CC}$  。在此理想条件下,最大输出功率为

$$P_{\rm OM} = \frac{V_{\rm CC}^2}{2R_{\rm L}}$$

### 2 效率

- $lack 输出功率占电源供给功率的比率称为效率,用<math>\eta$ 表示, $\eta=P_{\mathrm{O}}/P_{\mathrm{V}}$ 。
- ◆ 由于每个电源只提供半个周期的电流,所以总电源功 ※ D 为

$$\overset{\mathbf{P}}{P_{\text{V}}} \overset{\mathbf{P}}{\mathcal{P}_{\text{V}}} \overset{\mathbf{P}}{\mathcal{P}_{\text{V}}} = 2 \cdot V_{\text{CC}} \cdot \frac{1}{2\pi} \int_{0}^{\pi} I_{\text{cm}} \cdot \sin \omega t \mathrm{d}\omega t = \frac{2 \cdot V_{\text{CC}} \cdot I_{\text{cm}}}{\pi} = \frac{2V_{\text{CC}} U_{\text{cem}}}{\pi R_{\text{L}}}$$

$$\int_{0}^{\pi} \sin \omega t \mathrm{d}\omega t = -\cos \omega t \mid_{0}^{\pi} = -(-1-1) = 2$$

$$\eta = \frac{P_{\text{O}}}{P_{\text{V}}} = \left(\frac{U_{\text{cem}}^{2}}{2R_{\text{L}}}\right) / \left(\frac{2V_{\text{CC}} U_{\text{cem}}}{\pi R_{\text{L}}}\right) = \frac{\pi}{4} \cdot \frac{U_{\text{cem}}}{V_{\text{CC}}}$$

◆ 在理想情况下, $U_{cem} = V_{CC}$ ,则最大效率为

$$\eta_{\text{max}} = \frac{\pi}{4} = 78.5\%$$

- ③ 功率管的选择
  - 消耗在晶体管的功率  $P_{\rm T} = P_{\rm V} P_{\rm O}$  ,由于  $P_{\rm O}$  与  $P_{\rm V}$  均与信号的幅值有关,故  $P_{\rm T}$  也随之变化。
  - lacktriangle 为了求出何时管耗最大,令  $K = \frac{U_{\text{cem}}}{V}$

$$P_{\rm T} = \frac{2V_{\rm CC} \cdot U_{\rm cem}}{\pi R_{\rm L}} - \frac{U_{\rm cem}^2}{2R_{\rm L}} = \frac{2}{\pi} \cdot \frac{V_{\rm CC}^2}{R_{\rm L}} K - \frac{V_{\rm CC}^2}{2R_{\rm L}} K^2$$

• 上式对K的导数为0时, $P_{T}$ 将为最大值

$$\frac{dP_{T}}{dK} = \frac{2}{\pi} \cdot \frac{V_{CC}^{2}}{R_{L}} - \frac{2V_{CC}^{2}}{2R_{L}}K = 0$$

》将其代入 P<sub>T</sub> 式中得

$$P_{\text{Tmax}} = \frac{2}{\pi} \cdot \frac{V_{\text{CC}}^2}{R_{\text{L}}} \cdot \frac{2}{\pi} - \frac{V_{\text{CC}}^2}{2R_{\text{L}}} \cdot \frac{4}{\pi^2} = \frac{2V_{\text{CC}}^2}{\pi^2 R_{\text{L}}} = \frac{4}{\pi^2} P_{\text{OM}} \approx 0.4 P_{\text{OM}}$$

一每个管子的管耗约为  $0.2P_{\text{Omax}}$  ,当输出功率 最大 (K=1) 时,总管耗约为  $0.27P_{\text{Omax}}$  。

$$P_{\rm T} = \frac{2}{\pi} \cdot \frac{V_{\rm CC}^2}{R_{\rm L}} K - \frac{V_{\rm CC}^2}{2R_{\rm L}} K^2 = \frac{(4 - \pi)V_{\rm CC}^2}{2\pi R_{\rm L}} = \frac{4 - \pi}{\pi} P_{\rm OM} \approx 0.27 P_{\rm OM}$$

## 功率管的要求

若想得到预期的最大输出功率,则功率管的有关参数应满足下列条件:

- ◆ (1)每只功率管的最大管耗  $P_{\text{CM}} \ge 0.2 P_{\text{Omax}}$ ;
- iglap (2) 功率管 c-e 极间的最大压降为  $2V_{\rm CC}$  ,所以应选  $|U_{\rm (BR)CEO}|>2V_{\rm CC}$  ;
- lack (3)功率管的最大集电极电流为  $V_{\rm CC}/R_{\rm L}$  ,因此晶体管的  $I_{\rm CM}$  不宜低于此值。

$$L=8\Omega$$
 与合管的 $U_{CES}>1$ V

(1) 求最大不失真的
$$U_{om}$$
、 $P_{O}$ 、 $P_{V}$ 、 $\eta$ 、 $P_{T1}$ 

(2) 求理想情况下的
$$U_{\mathrm{om}}$$
、 $P_{\mathrm{om}}$ 、 $P_{\mathrm{Vm}}$ 、 $\eta_m$ 

(3) 如何选管? 
$$P_{T1} = \frac{P_v - P_o}{2} = 3.47W$$
  $u_i + \frac{1}{2}$ 

### 解答过程:

(1) 
$$U_{\text{om}} = V_{\text{CC}} - U_{\text{CES}} = 16\text{V}$$
  $P_O = \frac{U_{om}^2}{2R_I} = 16W$ 

$$\pi = 3.14 \ P_V = \frac{2V_{CC}U_{om}}{\pi R_L} = 22.93W \ \eta = \frac{P_O}{P_V} = 69.8\% = \frac{\pi}{4} \frac{U_{om}}{V_{CC}}^{(-18V)}$$

(2) 
$$U_{\text{om}} = V_{\text{CC}} = 18V$$
  $P_{om} = \frac{V_{CC}^2}{2R_L} = 20.25W$   $P_{Vm} = \frac{2V_{CC}^2}{\pi R_L} = 25.80W$   $\eta_m = \frac{\pi}{4} \approx 78.5\%$ 

(3) 
$$P_{CM} \ge 0.2 P_{om} = 4.05 W$$
  $I_{CM} \ge \frac{V_{CC}}{R_T} = 2.25 A$   $U_{(BR)CEO} \ge 2 V_{CC} = 36 V$ 

# 第6章功率放大电路

- 6.1 功率放大电路的特殊问题
- 6.2 互补对称功率放大电路
  - 1. 双电源互补对称电路 OCL
  - 2. 单电源互补对称电路 OTL

### 2. 单电源互补对称电路

#### (1) 电路组成

- ▼ 双电源互补对称电路,需要两个独立 电源,这给使用上带来不方便。
- ◆ 所以实用上常采用单电源互补对称电路,如图 6-9 所示。它去掉了负电源,接入一个电容 C,称为无输出变压器 电路,简称 OTL(Output Transformer Less) 电路。
- V<sub>1</sub>、 V<sub>2</sub>是为了克服交越失真而接入的正向偏置电源,在实际电路中可用两个二极管来代替。



#### 2. 单电源互补对称电路

### ◆ 静态时

静态时使  $U_{\rm E} = V_{\rm CC}/2$  , I 点电位  $U_{\rm I}$  以  $V_{\rm CC}/2$  为基准上下变化,  $T_{\rm 1}$  、  $T_{\rm 2}$  轮流导通,实现双向  $T_{\rm 1}$  跟随  $U_{\rm I}$ 



- 电容充放电回路时间常数远大 于信号周期,电容两端电压基 本不变。
- 电容上具有的恒定电压  $V_{\rm cc}/$  2,则可看作信号负半周时  $T_2$  管的直流电源。



### 2. 单电源互补对称电路

lacktriangle 由上面的分析可以看出,单电源互补对称电路实质上等效于具有  $\pm V_{\rm cc}/2$  双电源的互补对称电路。



(1) 计算给定条件下的 $U_{om}$ 、 $P_{o}$ 、 $P_{v}$ 、 $\eta$ 

功放 (2) 计算理想情况下的 $U_{\text{om}}$ 、 $P_{\text{Om}}$ 、 $P_{\text{Vm}}$ 、 $\eta_{\text{m}}$  一有公式的

计算 (3) 单管的 $P_{\text{CM}}$ 、 $I_{\text{CM}}$ 、 $U_{(BR)CEO}$ 如何选择?  $V_{\text{CC}} \rightarrow \frac{V_{\text{CC}}}{2}$ 

把OCL所

技巧: 令 $V_{cc}$ '= $\frac{V_{cc}}{2}$  →把OCL所有公式中的 $V_{cc}$ 改成 $V_{cc}$ '

(1) 计算给定条件下的 $U_{om}$ 、 $P_{O}$ 、 $P_{V}$ 、 $\eta$ 

题型① 已知 $u_i$ =? 共集电极接法 $\longrightarrow u_0 \approx u_i$   $U_{om} = U_{im} = \sqrt{2}U_i$ 

$$U_{\text{om}} = U_{\text{im}} = \sqrt{2}U_{i}$$

题型② 已知 $U_{CES}$ ,求最大不失真时的 $U_{om}=V_{CC}$ '- $U_{CES}$ 

$$P_{O} = \frac{U_{om}^{2}}{2R_{L}}$$
  $P_{V} = \frac{2V_{CC}U_{om}}{\pi R_{L}}$   $\eta = \frac{P_{O}}{P_{V}} = \frac{\pi U_{om}}{4V_{CC}}$ 

(2) 理想情况: 忽略 $U_{CES}$ , 当 $U_{om} = V_{CC}$ '时

$$P_{Om} = \frac{V_{CC}^{'2}}{2R_L} \qquad P_{Vm} = \frac{2V_{CC}^{'2}}{\pi R_L} \qquad \eta_m = \frac{\pi}{4} \approx 78.5 \% + \frac{1}{R_L} \qquad r_2$$

(3) 
$$P_{CM} \ge 0.2P_{om}$$
  $U_{(BR)CEO} \ge 2V_{CC}$   $I_{CM} \ge V_{CC} / R_L$ 



例题:已知 $U_i$ =1V, $R_L$ =3.5 $\Omega$ 

- (1) 求 $U_{\text{om}}$ 、 $P_{\text{O}}$ 、 $P_{\text{V}}$ 、 $\eta$
- (2) 求理想的 $P_{\text{om}}$ 、 $P_{\text{Vm}}$ 、 $\eta_m$

(1) 
$$U_{om} = U_{im} = \sqrt{2}V$$

$$P_o = \frac{U_{om}^2}{2R_r} = 0.286W$$
  $P_V = \frac{2V_{CC}'U_{om}}{\pi R_L} = 0.77W$ 

$$\eta = \frac{P_O}{P_V} = 37\% = \frac{\pi}{4} \frac{U_{om}}{V_{cc}}$$

(2) 
$$U_{\text{om}} = V_{\text{CC}}' = 3V$$
  $P_{om} = \frac{V_{CC}'^2}{2R_L} = 1.29W$  
$$P_{Vm} = \frac{2V_{CC}'^2}{\pi R_T} = 1.64W$$
  $\eta_m = \frac{\pi}{4} \approx 78.5\%$ 



(3) 
$$I_{CM} \ge \frac{V_{CC}'}{R_L} = 0.86A$$

$$U_{(BR)CEO} \ge 2V_{CC}$$
'=  $6V$ 

$$P_{CM} \ge 0.2 P_{om} = 0.258W$$

#### 作业 P198 6-3、6-2

- 6-3 电路如右图所示
- (1) 已知  $u_i = 10 \sin \omega t$ , 求此时的 $P_0$ 、 $P_V$ 、 $\eta$ 、 $P_{T1}$
- (2) 求理想情况下的 $P_{\rm om}$ 、 $P_{\rm Vm}$ 、 $\eta_m$
- (3)  $T_1$ 、 $T_2$ 的 $P_{CM}$ 、 $I_{CM}$ 、 $U_{(BR)CEO}$ 如何选择?





# 第6章功率放大电路

- 6.1 功率放大电路的特殊问题
- 6.2 互补对称功率放大电路
  - 1. 双电源互补对称电路 OCL
  - 2. 单电源互补对称电路 OTL

- (1) 复合管 (Darlington Connection)
- 存在的问题: 大功率输出极的工作电流大, 而一般大功率管的电流放大系数都较小。
- 通常采用所谓"复合管"的办法来解决。
- 设有两只晶体管,把前一只管的集电极或发射极接到下一只管的基极,这种连接所形成的晶体管组合称为复合管









### 复合管构成规则

- 追向管内流的复合管等效为 NPN 管; 追向管外流的复合管等效为 PNP 管; 追的流向由 T<sub>1</sub> 管的基极电流决定,即由 VT<sub>1</sub> 管的 类型决定。
- 必须保证每只管各电极的电流都能顺着各个管的正常工作方向流动;否则将是错误的。

# (2) 准互补对称电路 (Quasi Complementary Emitter Follower)

- 互补对称电路中,两个输出管是互补工作的, 因而要求两管为不同类型,一个为 NPN 型, 而另一个则为 PNP 型。
- 为了满足电路对称就要求两管特性一致。
- 这对 NPN 和 PNP 两种大功率管来说,一般是难以实现的,尤其是当一个是硅管另一个是锗管时,若要两管特性一致,最好使 VT<sub>3</sub>和 VT<sub>4</sub>是同一种型号的管子。

P198 6-5 某学生设计的OTL功放电路:

(1) 为实现输出最大幅值正负对称, 静态时A点的电位应为多大?  $V_A = \frac{V_{CC}}{2}$  D

(2) 若 $U_{\text{CE3}}$ 和 $U_{\text{CE5}}$ 的最小值约为3V,求最大不失真时的 $P_{\text{O}}$ 、 $P_{\text{V}}$ 、 $\eta$ ?  $U_{\text{om}}=V_{\text{CC}}$ '- $U_{\text{CES}}=10$ -3=7V

(3)  $T_3$ 和 $T_5$ 的 $P_{CM}$ 、 $I_{CM}$ 、 $U_{(BR)CEO}$ 如何选择?



(4) D和 $R_{\rm p}$ 的作用?  $\longrightarrow$  克服交越失真 复合管准互补OTL功放

提示:  $T_2$ 、 $T_3$ 构成了复合管,可等效成一个NPN管;  $T_4$ 、 $T_5$ 构成了复合管,可等效成一个PNP管。  $T_1$ 采用共发射极接法,目的在于放大 $u_i$ 

# 第6章功率放大电路

- 6.1 功率放大电路的特殊问题
- 6.2 互补对称功率放大电路
  - 1. 双电源互补对称电路 OCL
  - 2. 单电源互补对称电路 OTL