MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #2 Solutions

1.	(a)	b	p	$\neg b$	$\neg p$	$\neg b \to \neg p$	$b \lor p$	$(\neg b \to \neg p) \land (b \lor p)$	
		Т	Τ	F	F	${ m T}$	Τ	T	F
		Т	F	\mathbf{F}	T	${ m T}$	${ m T}$	${ m T}$	F
		F	Γ	Τ	F	F	${ m T}$	F	${ m F}$
		F	F	Τ	Т	${ m T}$	F	F	F

- (b) A contradiction (because it's column in the truth table is all Fs).
- (c) Heaps of possible answers. For example, $p \to p$ is a tautology and $(p \lor q) \land \neg p \land \neg q$ is a contradiction.
- 2. (a) $\neg b \rightarrow \neg p$ (if no broccoli then no potatoes) $b \lor p$ (eat at least one of broccoli or potatoes) $\neg b$ (no broccoli)
 - (b) It's impossible to follow these rules.
- 3. (a) "Her car isn't blue and her car it isn't red." $(\neg(\text{blue} \lor \text{red}) \equiv \neg \text{blue} \land \neg \text{red})$
 - (b) "The integer I am thinking of is even or not prime." $(\neg(\text{odd}\land\text{prime}) \equiv \neg\text{odd}\lor\neg\text{prime})$
 - (c) "If we can't do anything we want with your data, then you don't use our app." (use app \rightarrow control data \equiv \neg control data \rightarrow \neg use app)
- 4. Yes.

$$\neg p \lor (\neg q \to \neg r) \equiv \neg p \lor (q \lor \neg r)$$
 (by the implication law)
$$\equiv \neg (p \land \neg (q \lor \neg r))$$
 (by DeMorgan's laws)
$$\equiv \neg (p \land (\neg q \land r))$$
 (by DeMorgan's laws)

- 5. (a) Could be true or false (for example, it's true when p, q, r, s are all F, and it's false when p, q are F and r, s are T).
 - (b) Definitely false. This is the negation of the original statement (after applying DeMorgan's law to $\neg(r \land s)$).
 - (c) Definitely true. This is the contrapositive of the original statement (after applying DeMorgan's law to both sides).
 - (d) Definitely true. The original statement being true means that if either p or q are T, then both r and s must be T. So certainly if p is T then r will be T.
 - (e) Definitely false. The original statement being true means that if either p or q are T, then both r and s must be T. So certainly if q is T then both r and s will be T. This means that $q \wedge (\neg r \vee \neg s)$ cannot be true.