Reduccion del algoritmo de la Grange

Allan y Jhon

January 15, 2016

1 La Grange

Se selccionó un anillo $Z_p=11$ con w=5 incognitas de las que se resuelven t=2. Se seleccionó como llave k=8

Se selecciona los t-1 elementos del anillo \mathbb{Z}_p $a_0=5$

Del anillo Z_p se seleccionan los w elementos x $x_1=2$ $x_2=7$ $x_3=9$ $x_4=10$ $x_5=$

Se calcula el conjunto de elementos y por medio de la ecuación

$$y_n = k + \sum_{j=1}^{t-1} a_j x_j^j modp \tag{1}$$

 $y_1 = 8 + 5(2) mod 11 = 7$ $y_2 = 8 + 5(7) mod 11 = 10$ $y_3 = 8 + 5(9) mod 11 = 9$ $y_4 = 8 + 5(10) mod 11 = 3$ $y_5 = 8 + 5(3) mod 11 = 1$

Se tienen los pares $A_n(x_n, y_n)$ $A_1(2,7)$ $A_2(7,10)$ $A_3(9,9)$ $A_4(10,3)$ $A_5(3,1)$

Para recuperar la llave k es necesario seleccionar 2 pares del conjunto A_n , los seleccionados son:

 $A_2(7,10)$ $A_4(10,3)$

Con estos pares podemos calcular un sistema de ecuaciones resolviendo el polinomio característico para t=2

 $a_0 + a_1 x = y$ donde $a_0 = k$

De lo que resulta el siguiente sistema de ecuaciones al sustituir los pares A_2 y A_4 en el polinomio

 $a_0 + 7a_1 = 10$

 $a_0 + 10a_1 = 3$

Podemos resolver el sistema para obtener los valores de a_0 y a_1 o usar otro metodo, como es la ecuación de la Grange como se muestra a continuación:

$$l_i = \prod \frac{x - x_j}{x_i - x_j} \tag{2}$$

$$k = \sum_{j=1}^{t} y_j l_i modp \tag{3}$$

Al sustituir los valores de las acuaciones anteriores recontruimos el polinomio original pero a nosostros solo nos interesa obtener el valor de a_0 por que esta es k, para conseguir esto en el calculo de l_i quitamos la variable x quedando la de la siguiente forma

$$l_i = \prod \frac{-x_j}{x_i - x_j} \tag{4}$$

Ahora sustituiremos en estas ecuaciones los pares seleccionados A_2 y A_4 quedando las siguientes ecuaciones.

$$l_0 = \frac{-10}{7-10} = \frac{-10}{-3} \mod 11 = \frac{1}{8}$$

$$l_1 = \frac{-7}{10-7} = \frac{-7}{3} \mod 11 = \frac{4}{3}$$

$$a = 10(\frac{1}{8}) = \frac{10}{8} = (10)(7) = 70 \mod 11 = 4$$

$$b = 3\left(\frac{4}{3}\right) = 4$$

$$k = a + b = 4 + 4 = 8$$