Ein Kran zieht Paletten mit Steinen hoch. Die Gewichtskraft einer einzelnen Palette beträgt 6.0 kN, und jedes Stockwerk ist 3.0 m hoch. Berechnen Sie die Arbeit, die der Kran bei, A, B, C, D, E und F verrichtet.

- 2. Herr Sprüngli hält eine grosse Schachtel Luxemburgerli (*m* = 547 g) mit ausgestrecktem Arm in der Höhe *h* = 1.15 m über dem Boden, ohne sie zu bewegen. Wie gross ist die Arbeit, die er an der Schachtel verrichtet?
- 3. Ein antriebsloses Raumschiff (m = 6.0 t) fliegt mit konstanter Geschwindigkeit ($v = 10.5 \frac{\text{km}}{\text{S}}$) durch den Weltraum. Es legt einen Weg von 2'255 km zurück.
- a) Wie gross ist die Arbeit, die am Raumschiff verrichtet wird?
- b) Wie lange braucht es für diese Strecke?
- 4. Fritzli zieht einen Koffer hinter sich her (siehe Abb.). Die Zugkraft beträgt F = 60.0 N und der Winkel zwischen Boden und Zugkraft ist α = 35 °.
- a) Wie gross ist die Komponente der Kraft, die in Wegrichtung zeigt?
- b) Wie gross ist die Arbeit, die Fritzli am Koffer verrichtet, wenn er ihn s = 5.3 m weit zieht?

- 5. Um welche Formen von Arbeit handelt es sich hier jeweils? Wer verrichtet Arbeit an wem?
- a) Vreneli tritt in die Pedale, so dass ihr Velo immer schneller wird.
- b) Arnold hebt seine 500 kg schwere Hantel in die Höhe.
- c) Amanda zieht das Gummiband ihres Haarbandes auseinander.
- d) Herr Müller schleift sein widerspenstiges Kind hinter sich her.
- 6. Ein Briefträger (*m* = 75.8 kg) steigt in den vierten Stock hinauf (12.0 m hoch). Wie gross ist die Hubarbeit, die er verrichtet?
- 7. Peter zieht eine Feder ($D = 5.00 \frac{N}{cm}$) um 3.5 cm auseinander. Wie viel Spannarbeit verrichtet er dabei?
- 8. Sie werfen einen Ball (m = 433 g), so dass er mit einer Geschwindigkeit von 18 $\frac{\text{km}}{\text{h}}$ davonfliegt. Wie gross ist die verrichtete Beschleunigungsarbeit?

- Kunigunde zieht einen Schlitten (m = 3.2 kg) mit konstanter Geschwindigkeit über einen gefrorenen See (s = 5.00 km).
 Wie gross ist die Reibungsarbeit, die sie am Schlitten verrichtet? (μ_{Gleit} = 0.01)
- 10. Ein Auto hat eine Masse von 1'200 kg und eine Querschnittsfläche von 2.0 m². Die Rollreibungszahl beträgt 0.022. Es fährt mit 120 km/h auf einer horizontalen Autobahn geradeaus und legt eine Strecke von 35 km zurück.
- a) Wie gross ist die Kraft des Luftwiderstandes?
- b) Wie gross ist die Rollreibungskraft?
- c) Wie gross ist die Kraft, die der Motor aufbringen muss, wenn das Auto mit konstanter Geschwindigkeit fahren soll?
- d) Wie gross ist die Arbeit, die der Motor verrichtet?
- e) Wie gross wäre die Arbeit für die gleiche Strecke bei einer Geschwindigkeit von 60 $\frac{\text{km}}{\text{h}}$?
- 11. Fritzli schiebt einen Pfeil in seine Spielzeugpistole und spannt so die Feder ($D = 2.0 \frac{N}{cm}$), die sich darin befindet. Dabei verrichtet er die Arbeit 0.25 J. Wie lang ist die Strecke, um die er den Pfeil hineinschiebt (und die Feder zusammendrückt)?
- 12. Ein Auto (m = 987 kg) beschleunigt von 0 auf 80.0 $\frac{\text{km}}{\text{h}}$, mit einer konstanten Kraft von 2'750 N. (Unrealistische Annahme: Keine Reibung, kein Luftwiderstand)
- a) Wie gross ist die Arbeit, die der Motor verrichtet?
- b) Welche Strecke legt das Auto während der Beschleunigungsphase zurück?
- 13. Vreneli schiebt ihr Spielzeugauto (m = 400 g) mit einer konstanten Kraft an und beschleunigt es über eine Strecke von 1.8 m auf die Geschwindigkeit 0.50 $\frac{m}{s}$ bei einer Rollreibungszahl von μ = 0.01.
- a) Wie gross ist die Arbeit, die sie verrichtet?
- b) Wie gross ist die Kraft, mit der sie schiebt?
- 14. Eine entspannte Feder wird um 3.0 cm zusammengedrückt. Dabei verrichtet man die Arbeit 0.90 J.
- a) Wie gross ist die Federkonstante D?
- b) Die Feder ist bereits um 3.0 cm zusammengedrückt. Jetzt drückt man sie um weitere 3.0 cm zusammen. Wie viel Arbeit muss man verrichten?

Lösungen:					
1. A) 18 kJ	B) 36 kJ	C) 54 kJ	D) 36 kJ	E) 72 kJ	F) 162 kJ
2. 0					
3. a) 0	b) 3 min 35 s				
4. a) 49 N	b) 260 J				
6. 8.92 kJ					
7. 0.31 J					
8. 5.4 J					
9. 2 kJ					
10. a) 516 N	b) 259 N	c) 775 N	d) 27 MJ	e) 14 MJ	
11. 5.0 cm					
12. a) 244 kJ	b) 88.6 m				
13. a) 0.12 J	b) 0.07 N				
14. a) 20 N/cm	b) 2.7 J				
i π . α) ≥0 cm	U) Z.1 J				