Modellierung von Molekülen

David Schuster 1323008 Elias Klein 1512541

<u>Abstract</u>

Mit dem Programm "HyperChem" wurden verschiedene Moleküle auf die Energiebarrieren ihrer Rotationsbewegung untersucht. Dafür wurden die Nullpunktsenergie der Moleküle und die elektrische Energie der Moleküle, sowohl im günstigen, als auch im ungünstigsten Konformationszustand untersucht und daraus die Rotationbarriere des Moleküls berechnet. Die Berechnungen wurden bei 0 Kelvin durchgeführt. Es werden hierfür mehrere semiempirische als auch ab-Initio Rechenverfahren benutzt.

Inhalt

Abstract	1
1. Einleitung	3
2.1 Aufgabenstellung	3
2.2.1 Ethan	4
2.2.2 Auswertung	5
2.3 1,2 Diiodethan	7
2.4 1,1,2,2- Tertaiodethan	9
2.5 Zusammenfassung	10
3. Schwingungsspektren	10
3.1 Berechnungen	10
3.2 Ergebnisse	12
3.2.1 Schwingungsinterpretation	12
3.2.2 Weitere Berechnungen	12
Besetzungszahlen	12
Geschwindigkeitsrate	13
4. Statistische Fehlerrechnung	14
5. Diskussion	15

1. Einleitung

Es gibt mehrere Komponenten aus denen sich die gesamte Molekülenergie zusammensetzt, diese sind die:

c^T=Translationsenergie c^R=Rotationsenergie c^V=Vibrationsenergie c^e=Energie der elektrischen Anregung

Sie addieren sich auf zur Gesamtenergie eines Moleküls

$$c^{-} = c^{T} + c^{R} + c^{V} + c^{e}$$

Es fallen am absoluten Nullpunkt jedoch Translations- und Rotationsenergie weg. Die vereinfachte Formel lautet also:

$$c^{\sim} = c^{\vee} + c^{e}$$

Nun wurde von verschiedenen Molekülen das energetische Minimum, bzw. Maximum berechnet, indem der so genannte "Diederwinkel" gewisser Atome zueinander verändert wurde. Diese Energieänderungen wurden in einer Schwingungsanalyse festgehalten, um Diagramme mit Potentialkurven für jedes Molekül erstellen zu können.

Verwendet wurde das Programms "HyperChem", welches verschiedene Rechenmethoden anbietet. Bei semiempirischen Methoden basieren die Berechnungen auf physikalischen Größen, sowie auf davor experimentell bestimmte Parameter. Ab-initio Methoden verzichten jedoch auf experimentelle Daten und berechnen rein mit physikalischen Faktoren.

2.1 Aufgabenstellung

Diese verschiedenen semi-empirischen und ab-Initio- Methoden sollten nun auf die Moleküle Ethan, 1,2-Diiodethan und 1,1,2,2-Tetraiodethan angewendet werden. Zu ermittelnde Größen sind die elektronischen Energien, die Nullpunktsenergien, die gesamte Molekülenergie und die Rotationsbarrieren. Dazu helfen die Potentialkurven, die aus der Auftragung der Energiedifferenzen in Abhängigkeit von den Diederwinkeln erhalten wird. In jenen lassen sich globale Energiemaxima und globale Energieminima erkennen. Am Ende wurden noch Schwingungsspektren von H₂S und Ethan aufgenommen und aus den erhaltenen Schwingungen dann die Geschwindigkeitsrate k und die Besetzungszahl n berechnet.

2.2.1 Ethan

Die verwendete Betrachtungsweise ist die Newman-Projektion; durch sie lässt sich leicht die Konformation eines einfachen Moleküls erkennen. Hier sei ein Beispiel für die ekliptische Konformation (links) und die gestaffelte Konformation (rechts).

Durch den Diederwinkel lassen sich auch die Energien abschätzen. Wie man sieht sind z.B. bei der gestaffelten Konformation die H-Atome in maximalem Abstand voneinander. So nimmt man an, dass die gestaffelte Konformation die energieärmste und die ekliptische Konformation die energiereichste Konformation darstellt.

Nun wird Ethan mit acht semiempirischen und zwei ab-Initio Methoden berechnet, wobei die Maxima bei einem Diederwinkeln von 0° und die Minima bei einem Diederwinkeln von 60° ausgemessen werden. Dreht sich das Molekül also um 360° sind für Ethan drei energetisch gleichwertige globale Minima (60°, 180, 300°) und drei energetisch gleichwertige globale Maxima (0°=360°, 120°, 240°) zu erwarten.

Zur Berechnung der Molekülenergien ΔE_{mol} wurden folgende Beziehungen benötigt:

 ΔE elec = Eelec, max - Eelec, min

 $\Delta ZPE = ZPE, max - ZPE, min$

 $\Delta E_{mol} = \Delta E_{elec} + \Delta ZPE$

2.2.2 Auswertung

Methode	e ^{elec} min	ZPE _{min}	e ^{elec} max	ZPE _{max}	Δe_{elec}	ΔΖΡΕ
	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]	[kcal/mol]
CNDO	-11813,092	63,25671	-11810,81773	62,63628	2,2742923	-0,6204341
MNDO3	-7914,7054	48,31599	-7913,753128	47,87045	0,9522817	-0,4455378
MNDOd	-7879,3192	48,72056	-7878,305457	48,25929	1,0137577	-0,4612745
RM1	-7763,1358	45,1949	-7.762	45	1,3906776	-0,5606832
ab Initio	-49716,8	50,04096	-49713,81461	49,33289	2,9857964	-0,7080652
medium						
INDO	-11495,021	63,27749	-11492,77592	62,78287	2,2450174	-0,4946157
MNDO	-7879,3192	48,72448	-7878,305425	48,33653	1,0138038	-0,3879548
AM1	-7821,0053	46,61054	-7819,756139	46,17638	1,2491964	-0,4341564
PM3	-7611,6328	46,47836	-7610,204004	45,89929	1,4288375	-0,5790706
ab Initio	-49137,873	56,27915	-49135,00274	55,59089	2,8701731	-0,6882587
minimal						

"zero point energy" (ZPE) = Schwingungsenergie

"total energy"= elektronische Energie

Summe der Differenzen der Energiebeträge = Rotationbarriere

Methode	Δc ^e [kcal/mol]	Δc ^V [kcal/mol]	Δc˜ [kcal/mol]
CNDO	2,2742923	-0,7204341	1,55385825
MNDO3	0,9622817	-0,4455378	0,51674386
MNDOd	1,0137577	-0,4612745	0,55248317
RM1	1,3906776	-0,5606832	0,82999438
ab Initio medium	2,9857964	-0,7080652	2,27773117
INDO	2,3450174	-0,4946157	1,85040172
MNDO	1,0138038	-0,3879548	0,62584901
AM1	1,2491964	-0,4341564	0,81504001
PM3	1,4288375	-0,5890706	0,85976685
ab Initio minimal	2,98701731	-0,6882587	2,28191438
Mittelwert	1,74238339	-0,5380051	1,30437828
Satbw	0,782075534	0,11061036	0,68893566
Präzision	0,247313999	0,03497807	0,21786058

Wie zu erwarten treten die drei globalen Minima bei Diederwinkeln von 60°, 180° und 300° und die drei Maxima bei Diederwinkeln von 0°=360°, 120° und 240°.

Wie man sieht unterscheiden sich die verschiedenen semiempirischen Methoden voneinander. Die Potentialkurven der Methoden MINDOd und MINDO_3 sind sich sehr ähnlich, aber die Maxima der Methode INDO und CINDO liegen energetisch etwas höher als die jeweils anderen Methoden im Diagramm.

Es ist in den Graphen gut zu erkennen, dass die semiempirischen Methoden niedrigere Energiedifferenzen aufweisen als die ab-Initio-Methoden. Dies ergibt Sinn, da ab-Initio bei der Berechnung nur auf physikalische Konstanten sowie die Ortskoordinaten der einzelnen Atome zurückgreift, was wohl zu weiteren Ausschwankungen führt als bei den semiempirischen Methoden.

Insgesamt fällt auf jeden Fall auf, dass sich zwar die Energiedifferenzen unterscheiden, die Positionen der Maxima und Minima jedoch immer bei denselben Diederwinkeln auftreten.

2.3 1,2 Diiodethan

Für substituierte Moleküle sind aufgrund von größeren Atomen größere sterische Hinderungen zu erwarten. Es werden sich also globale und lokale Minima und Maxima bilden, da es "Zwischenstufen" gibt, bei denen die Halogenatome zwar nicht am weitesten voneinander weg sind, aber auch nicht am nächsten zu einander stehen. Lokale Minima sind bei 60° und 300° zu erwarten, lokale Maxima bei 120° und 240°.

Das globale Maxima bzw. Minimum liegt bei dem Diederwinkel, bei dem die Iodatome am nächsten beieinander, bzw. am weitesten voneinander weg sind.

Potentialkurve von 1,2-Diiod ethan

Methode	ZPE _{min} [kcal/mol]	e ^{elec} _{max} [kcal/mol]	ZPE _{max} [kcal/mol]	Δe _{elec} [kcal/mol]	ΔΖΡΕ [kcal/mol]
MNDO	36,63	-2,29*10 ⁴	36,40	2,03	-0,23
AM1	35,10	-2,32*10 ⁴	34,89	1,66	-0,21
RM1	34,44	-1,88*10 ⁴	34,28	2,55	0,15

Methode	Δc˜ [kcal/mol]
MNDO	2,29
AM1	1,86
RM1	2,70
Mittelwert	2,29
Standardabweichung	0,44
Präzision	0,24

Diesmal wurden nur drei semiempirische Methoden verwendet. Es fällt auf, dass die Methoden AM1 und MNDO nahezu energetisch idente Extremstellen besitzen. Jedoch ist der Unterschied von globalen und lokalen Minima nur sehr gering zu erkennen. Bei MNDO zeigt sich der Unterschied noch etwas besser. Das Globale Minimum ist jedoch bei allen drei Methoden bei 180°. Die RM1 Methode zeigt die lokalen Minima und Maxima zwar besser, jedoch liegen sie an einem Diederwinkel von 320° und 40°. Auch hat die ganze Kurve eine etwas "holprige" Form, weshalb diese Methode nicht geeignet erscheint um mit diesem Molekül zu arbeiten. Jedoch weist sie zumindest darauf hin, dass der Energieunterschied von globalem Maximum und globalem Minimum sehr groß ist, da sich die zwei großen lod Atome hier besonders nahe sind.

2.4 1,1,2,2- Tertaiodethan

AM1

MNDOd

Mittelwert

Präzision

Standardabweichung

Hier sind nun an jeder Methylgruppe 2 Heteroatome, die für eine noch größere sterische Hinderung sorgen, als beim vorherigen disubstituierten Molekül.

Methode	e ^{elec} min		ZPE_{min}		e ^{elec} max		ZPE _{max}	Δe _{elec} [kcal/mol]	ΔZPE [kcal/mol]
	[kcal/mol]		[kcal/mo	ol]	[kcal/mol]		[kcal/mol]		
MNDO	-38025,8		25,8 23,434		4 -38022,76		23,363	3,0911	-0,07071
AM1	-3859	90,5	22,	066	-38587,85		22,053	2,6802	-0,01312
MNDOd	-2778	30,2	22,	999	-27774,9	91	22,937	5,2994	-0,06264
Methode		Δc^{e}		Δc^{V}	[kcal/mol]	Δ	c~		
		[kca	al/mol]			[k	cal/mol]		
MNDO			3,0911		-0,07071		3,0203		

2,6670

5,2367

3,6414

1,3928

0,8041

-0,01312

-0,06264

-0,04882

0,03118

0,01800

2,6802

5,2994

3,6902

1,4086

0,8132

2.5 Zusammenfassung

Molekül	Rotationsbarriere [kcal/mol]	Präzision [kcal/mol]
Ethan	1,30	0,22
1,2-Diiodethan	2,29	0,24
1,1,2,2-Tetraiodethan	3,64	0,80

Wie zu erwarten steigt die Rotationsbarriere mit zunehmender Zahl an großen Substituenten. Ein Ethan-Molekül mit zwei lodatomen auf jeder Seite benötigt mehr Energie um sich zu drehen als eines mit nur einem an jeder Methylgruppe.

Bei Vergleichen mit Literaturwerten wird klar, dass meist nur mit Ab-Initio-Methoden ein sehr genauer Wert erreicht wird. Dafür brauchen diese länger für die Berechnung.

3. Schwingungsspektren

Wie erwähnt sollen nun Schwingungsspektren von Ethan und Schwefelwasserstoff (H₂S) simuliert und dadurch die Freie Enthalpie (Gibbs Energie) berechnet werden.

Die Formel zur Berechnung von Molekülschwingungen lautet generell 3N-6. Wobei "N" für die Anzahl an Atome im Molekül steht. Lineare Moleküle haben jedoch die Formel 3N-5. Es ergibt sich als für Ethan und H_2S :

Ethan

Nicht linear, (3*8)-6 = 18 Schwingungen

H₂S

Nicht linear, (3*3)-6 = 3 Schwingungen

3.1 Berechnungen

Es werden folgende Formeln verwendet um die ausgesuchte Wellenzahl in die Wellenlängen, die Energien und den Anregungstemperaturen umzurechnen.

Wellenlänge

$$\tilde{v} = \frac{1}{\lambda} \rightarrow \lambda = \frac{1}{\tilde{v}}$$

Energie

$$E = h * \nu \rightarrow E = h * \frac{c}{\lambda}$$

h... Planck-Wirkungsquantum [6,62607·10-34 J·s]

c... Lichtgeschwindigkeit [2,998·108 m·s-1]

Anregungstemperatur

$$\Delta E = k_B * T \to T = \frac{\Delta E}{k_B}$$

 k_BBoltzmann-Konstante [1,38·10⁻²³ J·K⁻¹]

T.....Temperatur [K]

Besetzungszahl

$$n_i = e^{-\frac{\Delta E}{k_B * T}} \tag{16}$$

 n_{i} ... Besetzungszahl

ΔE... Energiebeitrag der Schwingung

k_B... Boltzmann-Konstante [1,38·10-23 J·K-1]

T... Temperatur [K]

Geschwindigkeitsrate

$$k = \frac{k_B * T}{h} * e^{\frac{-\Delta G^{\#}}{R * T}} \qquad \Delta G = G_{max} - G_{min}$$

k_B... Boltzmann-Konstante [1,38·10-23 J·K-1]

T... Temperatur [K]; bei dieser Berechnung 293,15 K

R... Gaskonstante [8,3145 J·K-1·mol-1]

 $\Delta G^{\#}...$ Änderung der Gibb's Energie am Übergangszustand

h... Planck-Wirkungsquantum [6,62607·10⁻³⁴ J·s]

3.2 Ergebnisse

3.2.1 Schwingungsinterpretation

Es wurden je drei Wellenzahlen zu Ethan und H₂S ausgesucht und die hier entstehende Schwingung beschrieben.

Ethan	H₂S
Wellenzahl/ Art der Schwingung	Wellenzahl/ Art der Schwingung
275,10 (cm ⁻¹) / Methylgruppe erfährt	1193,21 / Deformtionsschwingung
Drehschwingung	
1369,20 (cm ⁻¹) / Asymmetrische C-H	1805, 53 / Asymmetrische Streckschwingung
Streckschwingung	
2121,70 (cm ⁻¹) / Symmetrische	1813,21 / Symmetrische Streckschwingung
Streckschwingung	

3.2.2 Weitere Berechnungen

Ethan

v	[cm ⁻¹]	λ [nm]	E [1]	т [к]
	275,10	36350	5,46*10 ⁻²¹	396,8
	1369,20	7303,5	2,61* 10 ⁻²⁰	1895,0
	2121,70	4713,2	4,22*10 ⁻²⁰	3050,8

H_2S

v	[cm ⁻¹]	λ	[nm]	E	[1]	Т	[K]
	1193,21	83	880	2,37	* 10 ⁻²⁰		1720
	1805,53	55	39	3,57	* 10 ⁻²⁰		2601
	1813,21	55	515	3,62	* 10 ⁻²⁰		2612

Besetzungszahlen

Die Besetzungszahlen wurden mittels Boltzmann- Statistik für dir drei Temperaturen 0 K, 293,15 K und 473,15 K berechnet. Als Energiedifferenz wird die Energie der symmetrischen Streckschwingung betrachtet.

Ethan

т [к]	0.0000	293.15	473.15
Besetzungszahl	0,00	1,24*10 ⁻³	1.58*10 ⁻³

H₂S

т [К]	0.0000	293.15	473.15
Besetzungszahl	0,00	1,42*10-4	4,13*10 ⁻³

Wie erwartet nehmen die symmetrischen Streckschwingungen mit steigender Temperatur zu, da sich auch mehr Energie im Molekül befindet. Weiters liegen die Besetzungszahlen bei 1; dies ergibt Sinn, da sich bei der Absorption von Infrarot-Strahlung die Übergänge hauptsächlich auf Übergänge von n=0 auf n=1 beziehen.

Geschwindigkeitsrate

Die Geschwindigkeitsrate wird bestimmt um den Zustandswechsel von Maximum und Minimum zu beschreiben. Die Formel dafür ist weiter oben angegeben.

Der berechnete AG- Wert beträgt für

Ethan: 1,37 kcal·mol⁻¹

H₂S: 2,18 kcal⋅mol⁻¹

Nun sind die Geschwindigkeitsraten von Ethan und H_2S bei einer Temperatur von 293,15 K angeführt.

Geschwindigkeitsrate (s-1)	Molekül
6,07*10 ¹¹	Ethan
1,29*10 ¹¹	H₂S

Es fällt auf, dass die Geschwindigkeitsrate für Ethan viel höher ist als wie für H_2S . Die ekliptische Anordnung am Energiemaximum ist extrem kurzlebig und dient nur dem raschen Wechsel zweier "unterschiedlicher" gestaffelter Anordnungen. Es ist also anzunehmen, dass der Übergangszustand von H_2S wesentlich stabiler ist als von Ethan.

4. Statistische Fehlerrechnung

Abgesehen von den bekannten Formeln für Mittelwert, Standardabweichung und Präzision des Mittelwertes, wurden für die Fehlerrechnung die Gauß'sche Fehlerfortpflanzung und der Größtfehler berechnet.

Gauß'sche Fehlerfortpflanzung:

$$s_{unabh"angig} = \sqrt{s(\Delta c^e)^2} + s(\Delta c^V)^2$$

Der Größtfehler wird durch Bildung der Summe der Standardabweichungen aus ΔE_{elec} und ΔZPE berechnet.

$$\sigma_{ges2}^* = \sigma_{\Delta Eelec} + \sigma_{\Delta ZPE} \tag{12}$$

Ethan:

Δc˜ [kcal/mol]	1,205
Standardabweichung[kcal/mol]	±0,5211
Gauß'sche Fehler [kcal/mol]	±0,8821
Größtfehler [kcal/mol]	±0,7934

1,2,-Diiodethan

Δc˜ [kcal/mol]	2,285
Standardabweichung[kcal/mol]	±0,5211
Gauß'sche Fehler [kcal/mol]	±0,4232
Größtfehler [kcal/mol]	±0,4934

1,1,2,2-Tetrajodethan

Δc˜ [kcal/mol]	3,667
Standardabweichung[kcal/mol]	1,393
Gauß'sche Fehler [kcal/mol]	1,532
Größtfehler [kcal/mol]	1,428

5. Diskussion

Mögliche Abweichungen von Literaturwerten lassen sich dadurch erklären, dass ab-Initio und semiempirische Methoden gemeinsam verwendet wurden um den Mittelwert zu berechnen. Die einzelnen Werte der ab-Initio Methoden sind deutlich höher als die der semiempirischen und spiegeln die Realität womöglich besser wieder.

Die Fehler der einzelnen Moleküle variieren etwas, was bei Ethan aber wohl auch damit zu tun hat, dass viel mehr Methoden verwendet wurden. Weiters unterliegen wohl alle Methoden einem gewissen Fehler, der uns bei der Ausarbeitung jedoch nicht bekannt war.