Deep Learning

GPT and Attention

What is Natural Language Processing (NLP)?

- Subfield of AI that focuses on reading, deciphering and producing human language
- Combines computational linguistics (e.g. rule-based modelling of language) with statistical, ML, and deep learning approaches
- Through NLP, machines can understand, analyze and generate language in ways that are meaningful and contextually appropriate
- While LLMs have driven an explosion in interest, there are many older technologies which paved the way

Common Applications

- Text Classification: e.g. spam detection, news classification
- Question Answering: processing input and finding relevant information
- Machine Translation
- Sentiment Analysis
- Code Generation

Challenges in NLP

- Ambiguity: Words can mean different things depending on context
- Nuances: Languages are full of idioms, slang, cultural references, sarcasm...
- Syntax vs Semantics: A
 grammatically correct sentence
 might not make sense, or a
 grammatically incorrect one
 might be easy to understand

- I saw a man on the hill with the telescope
- That's a cool cat

- Colourless green ideas sleep furiously
- Me went store

Challenges in NLP

Quick history of NLP

• 1950s:

- Alan Turing publishes "Computing Machinery and Intelligence", in which he proposes the Turing test
- Noam Chomsky publishes "Syntactic Structures", an attempt to construct a formal theory of linguistic structure

• 1960s:

- Georgetown University develops a machine translation system, which automatically translates 60 Russian sentences into English using an extremely complex flowchart and a limited vocabulary
- The authors claim machine translation could be a solved problem in five years

Quick history of NLP

• 1980s – 1990s:

- Transition from rule-based to statistical approaches
- Idea of using existing text to train a model begins to appear (e.g. bilingual documents from the Canadian parliament)

• 2000s – 2010s:

- Deep Learning takes over
- Tools such as convolutional networks, and later RNNs, transform the field
- 2020s: The era of the Large Language Model

Foundations of LLMs

- Fundamental goal of language modelling: next word prediction
- *P*(*cat* | *the dog and the*)
- To generate, pick the word with highest likelihood
- Early models could handle one, two words of context
- Locally coherent, but longer texts quickly lose meaning
- More context requires more complexity!

How does an LM "understand" word meaning?

- In order to predict the likelihood of a word, we must have some sense of its meaning
- Some words have similar meanings, and can easily fit in the same place
- In the same way CNNs convert an image into a set of feature maps, we can convert a word into a set of abstract linguistic features
- Word2Vec: 300 features
- GPT-3: 12,888

How does an LM "understand" word meaning?

- Key concept of word embeddings: similar words should have similar vectors
- How do we accomplish this?

Results

Results

Building GPT

Building GPT: The Transfomer

Building GPT: Positional Embedding

Building GPT

Building GPT

Building GPT: Attention

Building GPT: Attention

Building GPT: Attention

Building GPT

Building GPT: Top-P

Building GPT: Top-P

Top 10 documentaries about artificial intelligence:

1. AlphaGo (2017)

```
2017 = 96.15%

2016 = 2.79%

2018 = 0.88%

2015 = 0.07%

2019 = 0.03%
```

Building GPT

■ Number of Parameters

Number of Parameters

GPT's Training Data

- 1 token ≈ ¾ word
- Some datasets are sampled more times than others
- Common Crawl: billions of webpages collected over 7 years
- Webtext2: Dataset of webpages that have been shared on Reddit
- Books1: Free ebooks (?)
- Books2: Secret!
- English Wikipedia

	Quantity	Weight in
Dataset	(tokens)	training mix

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT model is taught from these Q&A pairs

Human annotators write more answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning

The training innovation of ChatGPT

Human annotators write answers to questions

Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

The generalist GPT model is taught from these Q&A pairs

Human annotators write more answers, and someone else ranks them

A <u>separate</u> model learns to rate the quality of an answer

No more humans involved!

GPT writes answers to sampled questions

The reward model rates each answer, allowing GPT to keep learning

Winograd Schema

- "Artificial language processing remains ten years away" Tom Scott, 2020
- GPT-3 performance: 68.8%
- GPT-4 performance: 94.4%
- Today, 22 models outperform human baselines on the GLUE benchmark