Integrantes:

- · Cortés Macias Gretel Penélope
- \cdot García Landa Brenda Yareli
- · Montaño Pérez Joshua Said
- · Mora Abonce Samantha

Pregunta 1

Dada una relación R(A, B, C, D, E, G y el siguiente conjunto de dependencias F: $F = \{AB \to C, BC \to D, D \to EG, CG \to BD, C \to A, ACD \to B, BE \to C, CE \to AG\}$ Para las siguientes sentencias, determina si son **verdaderas** o **falsas**.Para aquellas sentencias que resulten falsas, deberás explicar por qué consideras que no se cumplen:

Respuesta:

No.	Sentencia	Verdadera	Falsa	Justificación
1.	La cerradura BC es {A, D, E, G}		x	Porque la cerradura de BC es: {BC}+ = {BCDEGA}
2.	Todos los atributos R están en la cerradura BC	X		Porque la cerradura de BC es: {BC}+ = {BCDEGA} y los atributos de R son : R(A,B,C,D,E,G) por lo que la cerradura los contiene
3.	La cerradura de AC es {A, C}	X		Porque no hay manera de generar otros elementos en la cerradura a partir de AC más que ellos mismos
4.	ABC es una superllave de R	X		Porque la cerradura de ABC es: {ABC}+ = {ABCDEG} y contiene a todos los atributos de R y cumple que es una DF trivial
5.	ABC es una llave candidata de R	X		Porque la cerradura de ABC es: {ABC}+ = {ABCDEG} y son todos los atributos de R por lo que es una llave.
6	BC es la única llave candidata de R		x	Porque la cerradura ABC es llave candidata, entonces existe al menos una más.

Pregunta 2

Considera la siguiente tabla, donde cada **proyecto** tiene asignados **muchos empleados** y cada **empleado** trabaja en **muchos proyectos**. Se muestra a continuación un extracto de la tabla **Proyectos**:

NumProy	NombreProy	Presupuesto	idEmp	NombreEmp	HrTrabajadas
P22	Cyclone	50000	E1001	Carlos	12
P22	Cyclone	50000	E2002	Juan	50
P21	IBM	20000	E3003	Patricia	40
P21	IBM	20000	E2002	Juan	30
P21	IBM	20000	E1001	Carlos	70

Pregunta 2.1

¿Qué **problemas** consideras que puede haber al almacenar los datos en esta tabla? Describe los problemas en términos de las **anomalías** que se pueden presentar.

Respuesta:

Tenemos redundancia ya que el prespuesto del proyecto y su número en varias tuplas, lo que es innecesario porque solo lo necesitamos en una. Si tuvieramos una tabla de empleados y otra aparte de proyectos entonces habría mínima redundancia, además de que el atributo de horas trabajadas sería de la relación. Si, por ejemplo, insertamos un nombre de empleado mal y lo actualizamos tenemos que revisar todas las tuplas en las que aparece dicho empleado, así que también tenemos anomalía de actualización.

Pregunta 2.2

¿Cuáles son las dependencias funcionales que cumplen en la relación Proyectos?

Respuesta:

 $R(NumProy, NombreProy, Presupuesto, idEmp, NombreEmp, HrTrabajadas) = {NumProy} \rightarrow (NombreProy, Presupuesto), NombreProy \rightarrow NumProy, idEmp \rightarrow NombreEmp, (idEmp, NumProy) \rightarrow HrTrabajadas}. Obvio hay varias más (sobretodo por la redundancia), pero la mayoría se pueden deducir de aquí. También para poder confirmarlas nos haría falta ver las reglas de negocio.$

Pregunta 2.3

¿Cuál sería alguna llave para la relación Proyectos?

Respuesta:

numProy, iDEmp

Pregunta 2.4

¿La relación Proyectos cumple con BCNF? Justifica tu respuesta.

Respuesta:

No se puede ya que tenemos una llave candidata en la pregunta anterior. Si usaramos esa y las dependencias de la pregunta 2.2 entonces en la primer dependencia que definimos (numProy-¿nombreproy) la llave no está completa del lado izquierdo, lo que viola la BCNF. Pero de hecho la mayoría de nuestras dependencias funcionales no cumplen con la normalización de BC.

Pregunta 3

Para el esquema que se muestra a continuación con su respectivo conjunto de dependencias funcionales:

R (A, B, C, D, E, F, G) con
$$F = \{AB \rightarrow C, AB \rightarrow F, A \rightarrow D, A \rightarrow E, B \rightarrow G\}$$

Pregunta 3.1

Indica alguna llave candidata para la relación R.

Respuesta:

Por las reglas de inferencia (en particular la unión) podemos decir que:

$$A \to B \land A \to E \Longrightarrow A \to DE$$

$$AB \to C \land AB \to F \Longrightarrow A \to CF$$

Así que nos quedaría $\mathbf{F} = \{\mathbf{AB} \to \mathbf{CF}, \mathbf{A} \to \mathbf{DE}, \mathbf{B} \to \mathbf{G}\}$. Calculando las cerraduras de los lados izquierdos tenemos:

$$\{A\}+=\{ADE\}$$

$$\{B\}+=\{BG\}$$

$$\{AB\}+=\{ABCFDEG\}$$

Esta última tiene todos los elementos de \mathbf{R} así que \mathbf{AB} es una llave para \mathbf{R} .

Pregunta 3.2

Especifica todas las violaciones a la BCNF

Respuesta:

Queremos ver si todos los lados izquierdos tienen una llave (la definición original dice que *superllave* pero visto en clase solo usamos llaves). Así que las violaciones (con las modificaciones por las reglas de inferencia) son:

$$A \to DE$$
$$B \to G$$

Ya que A no contiene a la llave AB ni B contiene a la llave AB.

Pregunta 3.3

Normaliza de acuerdo con BCNF, asegúrate de indicar cuáles son las relaciones resultantes con sus respectivas dependencias funcionales.

Respuesta:

Tomemos la violación $B \to G$. Ya sabemos que la cerradura de B es $\{B\}$ + = $\{BG\}$. Así que creamos dos relaciones:

$$R_1(B,G)$$

 $R_2(B,A,C,D,E,F)$

En R_1 podemos hacer cumplir $\mathbf{B} \to \mathbf{G}$. La cerradura del lado izquierdo es $\{\mathbf{B}\} + = \{\mathbf{BG}\}$, por lo tanto \mathbf{B} es una llave para R_1 . Así que R_1 ya está en BCNF.

En R_2 podemos hacer cumplir $\mathbf{AB} \to \mathbf{CF}$ y $\mathbf{A} \to \mathbf{DE}$. Calculando la cerradura de \mathbf{AB} vemos que es $\{\mathbf{AB}\}+=\{\mathbf{ABDEGCF}\}$, por lo tanto \mathbf{AB} es una superllave (y entonces también una llave) para R_2 . Sin embargo aún tenemos $\mathbf{A} \to \mathbf{DE}$, calculando la cerradura de \mathbf{A} vemos que es $\{\mathbf{A}\}+=\{\mathbf{ADE}\}$, así que \mathbf{ABCF} es una llave para R_2 pero esto es una violación a la BCNF, así que vamos a dividirla (tomando las dos dependencias de esta relación). Formemos R_3 y R_4 como sigue:

$$R_3(A,D,E)$$

 $R_4(A,B,C,F)$

En R_3 podemos cumplir $\mathbf{A} \to \mathbf{DE}$. La cerradura del lado izquierdo es $\{\mathbf{A}\} + = \{\mathbf{ADE}\}$, por lo que \mathbf{A} es una llave para R_3 .

En R_4 podemos cumplir $AB \to CF$, calculando la cerradura del lado izquierdo tenemos $\{AB\}+$ = $\{ABCF\}$, por lo que AB es una llave para R_4 .

Entonces la normalización con BCNF es:

$$R_1(B,G) \text{ con } B \to G$$

 $R_3(A,D,E) \text{ con } A \to DE$
 $R_4(A,B,C,F) \text{ con } AB \to CF$

Pregunta 4

Para el esquema que se muestra a continuación con su respectivo conjunto de dependencias funcionales: R(A, B, C, D, E, F, G) con $F = \{A \rightarrow B, CD \rightarrow FG, G \rightarrow E, B \rightarrow D, A \rightarrow C, E \rightarrow A\}$

Pregunta 4.1

Indica alguna llave candidata para la relación R.

Respuesta:

Empecemos con sus reglas de inferencia, en donde se tiene:

Proponemos a A:

$$A \to B \land A \to C \Longrightarrow A \to BC$$

$$CD \to FG \Longrightarrow CD \to FG$$

$$G \to E \Longrightarrow G \to E$$

Asi A = ABCDFGE

Pregunta 4.2

Indica las violaciones a 3NF que encuentres en F.

Respuesta:

1. Ningún atributo no-primario de la tabla es dependiente transitivamente de una clave primaria

Pregunta 4.3

Encuentra el conjunto mínimo de dependencias funcionales equivalente a F.

Respuesta:

Esto sale de calcular la cerradura de A+.

$${A} = {ABCDFGE} = {A \rightarrow BC, B \rightarrow D, CD \rightarrow FG, G \rightarrow E}$$

Pregunta 4.4

Normaliza de acuerdo con la 3NF. Indica claramente las relaciones resultantes y en cada esquema, las dependencias funcionales que se cumplen.

Respuesta:

Tenemos CD \rightarrow FG asi que:

$$C \rightarrow FG = \{C\} + = \{FGEACBD\}$$

Como si es superfluo, así que tenemos F' = $\{A \to BC, B \to D, C \to FG, G \to E\}$ Ahora $C \to FG$

$$C \rightarrow F = \{CF\}$$
 y F no es superfluo

$$C \rightarrow G = \{CGE\}$$
 y G no es super fluo

Asi que queda : $F' = \{A \rightarrow BC, B \rightarrow D, C \rightarrow FG, G \rightarrow E\}$