Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 8

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = A8EF_{(16)}, \quad CX = E9D9_{(16)}, \quad DX = 17DE_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& ((88 \land \mathtt{CX}) - (\mathtt{DX} + 27)) + \mathtt{CX} \\ \mathtt{VAR2} &=& 37 + (\mathtt{DX} \lor 10) \\ \mathtt{VAR3} &=& (\mathtt{DX} \lor \mathtt{BX}) \land 59 \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e madhja duke e ruajtur indeksin e saj në regjistrin BX. Psh. nëse është variabla VAR2 atëherë në regjistrin BX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat tek ndërmjet numrit 11 dhe numrit 53 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin AX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $B1_{(16)} C7_{(16)}$
- b) $75_{(16)} F1_{(16)}$
- c) $41_{(16)} \lor DE_{(16)}$
- d) $FE_{(16)} + A8_{(16)}$
- e) $CE_{(16)} + OE_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 16 bajtëshe. Cache memoria L1 ka kapacitet prej 512KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 2-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$ACDB5FE7_{(16)}$$
, $81BF365C_{(16)}$, $25CD3A11_{(16)}$

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 2-linjësh.

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Table 1: RAM Memoria.

Blloku w_0 w_1 w_2 w_3 w_4 w_5

Blloku	w_0	w_1	w_2	w_3	w_4	w_5	w_6	w_7
$\overline{B_0}$	65	ВО	CC	9B	A4	BB	В6	OF
B_1	9D	70	EC	F4	25	AЗ	26	69
B_2	AЗ	CB	DA	FE	C5	AC	83	52
B_3	12	13	80	00	81	32	B5	E7
B_4	33	0E	C5	AЗ	C8	9A	86	96
B_5	6A	42	4F	3B	18	ВЗ	D6	01
B_6	3E	DB	OA	A7	7B	E9	1F	23
B_7	CB	80	27	22	25	83	D8	57
B_8	F6	A1	48	3C	В9	25	CC	7A
B_9	81	0E	56	44	A5	ΕA	30	39
B_A	78	83	6A	F5	45	EO	87	F8
B_B	AB	1E	6D	15	67	FC	C1	21
B_C	A7	4B	AD	62	В9	OD	B4	CE
B_D	07	93	43	ΟE	FC	00	13	66
B_E	34	69	A2	17	27	88	20	19
B_F	29	A6	3E	11	2D	DD	C7	05

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?