LINEAR REGRESSION MODELS: Homework #1

Due on September 18, 2017

 $Professor\ Jingchen\ Liu$

Fan Yang UNI: fy2232

Problem 1

a.

```
da = read.table("CH01PR19.txt")
lm.pr19<-lm(da$V1~da$V2)</pre>
summary(lm.pr19)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             2.11405
                        0.32089
                                  6.588
                                        1.3e-09 ***
             0.03883
                                  3.040
                                        0.00292 **
da$v2
                        0.01277
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6231 on 118 degrees of freedom
Multiple R-squared: 0.07262,
                                Adjusted R-squared: 0.06476
F-statistic: 9.24 on 1 and 118 DF, p-value: 0.002917
```

therefore $\hat{y} = 2.44105 + 0.03883x$

when a x is fixed, there could be some different possible y. so the relation between x and y could. not be linear. We can draw conclusion from the plot above that the function does not fit the data.

c.

b.

When X=30, we apply the function in (a)
$$\hat{y} = \beta_0 + \beta_1 * x$$

= 2.11405 + 0.03883 * 30 = 3.27895

d.

$$\Delta y = y_1 - y_2 = (2.11405 + 0.03883 * x) - (2.11405 + 0.03883 * (x+1)) = 0.03883$$

Problem 2

When β_0 is 0,we know that the regression model only determines by β_1 , and the function line goes through origin point and is a linear line which only depends on the slope.

Problem 3

When β_1 is 0,the response variable is a constant and no longer related to explanatory variable. And Y_i always equal to β_0 . The regression now becomes horizontal.

Problem 4

the goal of least squares estimator is to minimize $\sum_{i=1}^{n} (y_i - \beta_0)^2$

$$\sum_{i}^{n} (y_{i} - \beta_{0})^{2} = \sum_{i}^{n} (y_{i} - \overline{y} + \overline{y} - \beta_{0})^{2} = \sum_{i}^{n} (y_{i} - \overline{y})^{2} - 2 \sum_{i}^{n} (y_{i} - \overline{y})(\overline{y} - \beta_{0}) + \sum_{i}^{n} (\overline{y} - \beta_{0})^{2}$$
$$= \sum_{i}^{n} (y_{i} - \overline{y})^{2} + \sum_{i}^{n} (\overline{y} - \beta_{0})^{2}$$

in order to minimize the above statement, β_0 should be equal to \overline{y} .

Therefore, least squares estimator of β_0 is $\widehat{\beta_0} = \overline{y}$

Problem 5

$$E(\widehat{\beta}_0) = E(\overline{y}) = E(\frac{1}{n} \sum y_i)$$

$$= \frac{1}{n} E(\sum y_i) = \frac{1}{n} \sum E(y_i) = \frac{1}{n} \sum E(\beta_0) = \frac{1}{n} * n * \beta_0$$

$$= \beta_0$$

so that $\widehat{\beta}_0$ is unbiased

Problem 6

a.

We use the following conclusion without proof

$$\widehat{\beta}_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(\sum x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

$$\overline{x} = 10$$

denote \overline{Y} as the mean of the 6 observations (also the mean of 3 means of observations)

1) in the 3 points regression

$$\begin{split} \widehat{\beta}_{1}^{1} &= \frac{(5-10)(\overline{Y}_{1}-\overline{Y}) + (10-10)(\overline{Y}_{2}-\overline{Y}) + (15-10)(\overline{Y}_{3}-\overline{Y})}{(5-10)^{2} + (10-10)^{2} + (15-10)^{2}} \\ &= \frac{-5(\overline{Y}_{1}-\overline{Y}) + 5(\overline{Y}_{3}-\overline{Y})}{50} = \frac{\overline{Y}_{3}-\overline{Y}_{1}}{10} \end{split}$$

2) in the 6 points regression

$$\begin{split} \widehat{\beta}_{1}^{2} &= \\ & \underbrace{(5-10)[(Y_{11}-\overline{Y})+(Y_{12}-\overline{Y})]+(10-10)[(Y_{21}-\overline{Y})+(Y_{22}-\overline{Y})]+(15-10)[(Y_{32}-\overline{Y})+(Y_{33}-\overline{Y})]}_{2*(5-10)^{2}+2*(10-10)^{2}+2*(15-10)^{2}} \\ &= \frac{-5(Y_{11}-\overline{Y}+Y_{12}-\overline{Y})+5(Y_{31}-\overline{Y}+Y_{32}-\overline{Y})}{100} \\ &= \frac{-5(2\overline{Y}_{1}-2\overline{Y})+5(2\overline{Y}_{3}-2\overline{Y})}{100} \\ &= \frac{\overline{Y}_{3}-\overline{Y}_{1}}{10} \\ &= \widehat{\beta}_{1}^{1} \end{split}$$

that's to say, the $\widehat{\beta}_1$ in two models are identical

Besides, \overline{x} and \overline{y} are same in two models.

according to $\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$ we know $\widehat{\beta}_0$ are same.

therefore, the two regression lines are identical.

b.

$$\begin{split} \widehat{\sigma}^2 &= \frac{\sum (y_i - \widehat{y}_i)^2}{n - 2} = \frac{\sum (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2}{n - 2} \\ &= (\overline{Y}_1 - \widehat{\beta}_0 - \widehat{\beta}_1 X_1)^2 + (\overline{Y}_2 - \widehat{\beta}_0 - \widehat{\beta}_1 X_2)^2 + (\overline{Y}_3 - \widehat{\beta}_0 - \widehat{\beta}_1 X_3)^2 \\ &= (\overline{Y}_1 - \widehat{\beta}_0 - 5\widehat{\beta}_1)^2 + (\overline{Y}_2 - \widehat{\beta}_0 - 10\widehat{\beta}_1)^2 + (\overline{Y}_3 - \widehat{\beta}_0 - 15\widehat{\beta}_1)^2 \\ \text{from a we know } \widehat{\beta}_1 &= \frac{\overline{Y}_3 - \overline{Y}_1}{10} \text{ and } \widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X} \\ \text{then } \widehat{\sigma}^2 &= (\overline{Y}_1 - \overline{Y})^2 + (\frac{(\overline{Y}_1 + 4\overline{Y}_2 - 5\overline{Y}_3)^2 + (\overline{Y}_1 - \overline{Y})^2}{6} \\ &= 2(\frac{2\overline{Y}_1 - \overline{Y}_2 - \overline{Y}_3}{3})^2 + (\frac{(\overline{Y}_1 + 4\overline{Y}_2 - 5\overline{Y}_3)^2}{6})^2 \end{split}$$

Thus, we only need to apply \overline{Y}_1 \overline{Y}_2 \overline{Y}_3 to above equation, then we will get the estimator of σ^2 without fitting a regression line

Problem 7

a.

We use the following conclusion without proof

$$\widehat{\beta}_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(\sum x_i - \overline{x})^2}$$

$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$

since we know that $\beta_0 = 0$

now our goal is to minimize $\sum_{i=1}^{n} (y_i - \beta_1 x_i)^2$

$$\sum_{i}^{n} (y_{i} - \beta_{1}x_{i})^{2} = \sum_{i}^{n} [y_{i} - \overline{y} + \beta_{1}\overline{x} - \beta_{1}x_{i}]^{2}$$

$$= \sum_{i}^{n} (y_{i} - \overline{y})^{2} + 2\sum_{i}^{n} (y_{i} - \overline{y})(\beta_{1}\overline{x} - \beta_{1}x_{i}) + \sum_{i}^{n} (\beta_{1}\overline{x} - \beta_{1}x_{i})^{2}$$

$$= \sum_{i}^{n} (y_{i} - \overline{y})^{2} + \sum_{i}^{n} (\beta_{1}\overline{x} - \beta_{1}x_{i})^{2}$$

$$= \sum_{i}^{n} (y_{i} - \overline{y})^{2} + \beta_{1}^{2} \sum_{i}^{n} (\overline{x} - x_{i})^{2}$$

$$= \sum_{i}^{n} (x_{i} - \overline{x})^{2} \left(\beta_{1} - \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}}\right)^{2} + \sum_{i}^{n} (y_{i} - \overline{y})^{2} - \frac{(\sum (x_{i} - \overline{x})(y_{i} - \overline{y}))^{2}}{\sum (x_{i} - \overline{x})^{2}}$$

$$\Rightarrow \widehat{\beta}_{1} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}}$$

b.

$$\varepsilon_i \sim N(0, \sigma^2), pdf = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{x^2}{2\sigma^2}\right)$$
$$L(\beta_1, \sigma) = \prod_i \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(Y_i - \beta_1 X_i)^2}{2\sigma^2}\right)$$
$$= \frac{1}{(\sigma\sqrt{2\pi})^n}exp\left(-\frac{\sum_i (Y_i - \beta_1 X_i)^2}{2\sigma^2}\right)$$

in order to maximize $L(\beta_1, \sigma)$, we simply only need to minimize $\sum_{i=1}^{n} (Y_i - \beta_1 X_i)^2$

now it becomes the same problem as least square estimate, therefore the two estimator of β_1 are identical.

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

c.

$$\widehat{\beta}_1 = \frac{\sum\limits_{i}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i}^{n} (x_i - \overline{x})^2}$$

$$E(\widehat{\beta}_1) = E(\frac{\sum\limits_{i}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i}^{n} (x_i - \overline{x})^2}) = \frac{\sum\limits_{i}^{n} (x_i - \overline{x})E(y_i - \overline{y})}{\sum\limits_{i}^{n} (x_i - \overline{x})^2} = \frac{\sum\limits_{i}^{n} (x_i - \overline{x})(E(y_i) - \overline{y})}{\sum\limits_{i}^{n} (x_i - \overline{x})^2}$$
because $E(y_i) = \beta_1 x_i$ and $\overline{y} = \beta_1 x_i$;
$$E(\widehat{\beta}_1) = \frac{\sum\limits_{i}^{n} (x_i - \overline{x})(\beta_1 x_i - \overline{y})}{\sum\limits_{i}^{n} (x_i - \overline{x})^2} = \frac{\sum\limits_{i}^{n} (x_i - \overline{x})(\beta_1 x_i - \beta_1 \overline{x})}{\sum\limits_{i}^{n} (x_i - \overline{x})(x_i - \overline{x})} = \frac{\beta_1 \sum\limits_{i}^{n} (x_i - \overline{x})(x_i - \overline{x})}{\sum\limits_{i}^{n} (x_i - \overline{x})^2}$$

 $= \beta$

therefore $\widehat{\beta}_1$ is unbiased.

Problem 8

Firstly we get the observation data. Let d be the raw data. Y is number of active physicians and X is the combination of the three predictor variables.

Y <- d\$'Number of active physicians'

X <- cbind(d\$'Total population', d\$'Number of hospital beds', d\$'Total personal income')</pre>

(1)

a. Regress the number of active physicians on total population.

```
lm.cdi1 \leftarrow lm(Y^X[,1])
summary(lm.cdi1)
           call:
           lm(formula = Y \sim X[, 1])
           Residuals:
                Min
                           1Q Median
                                              3Q
                                                      Max
                     -209.2
                                           27.9 3928.7
            -1969.4
                                -88.0
           Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.106e+02 3.475e+01 -3.184 0.00156 **
                           2.795e-03 4.837e-05 57.793 < 2e-16 ***
           X[, 1]
           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
           Residual standard error: 610.1 on 438 degrees of freedom
           Multiple R-squared: 0.8841, Adjusted R-squared: 0.8
F-statistic: 3340 on 1 and 438 DF, p-value: < 2.2e-16
                                                 Adjusted R-squared: 0.8838
                 we get the regression function Y = -110.6 + 2.795 \times 10^{-3} X
```

b. Regress the number of active physicians on number of hospital beds.

```
lm.cdi2 \leftarrow lm(Y^X[,2])
summary(lm.cdi2)
           call:
           lm(formula = Y \sim X[, 2])
           Residuals:
               Min
                          1Q Median
                                             3Q
           -3133.2 -216.8
                                -32.0
                                           96.2
                                                  3611.1
          Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                                       31.49396 -3.046 0.00246 **
0.01161 63.995 < 2e-16 ***
           (Intercept) -95.93218
           X[, 2]
                           0.74312
           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
           Residual standard error: 556.9 on 438 degrees of freedom
          Multiple R-squared: 0.9034, Adjusted R-squared: 0.9
F-statistic: 4095 on 1 and 438 DF, p-value: < 2.2e-16
                                              Adjusted R-squared: 0.9032
```

we get the regression function Y = -95.932 + 0.743X

c. Regress the number of active physicians on total personal income.

```
lm.cdi3 <- lm(Y~X[,3])
summary(lm.cdi3)</pre>
```

we get the regression function Y = -48.395 + 0.132X

(2)

from 3 plots above, we find that simple linear regression line somehow depicts the relation between X and Y. Besides the P-values in each model are less than 0.001, so the regression lines seem to be a good fit for each of the predictor variables (3)

 $MSE1 \leftarrow sum(lm.cdi1\$residuals^2)/(440-2)$

```
[1] 372203.5

MSE2 <- sum(lm.cdi2$residuals^2)/(440-2)
[1] 310191.9

MSE3 <- sum(lm.cdi3$residuals^2)/(440-2)
[1] 324539.4</pre>
```

from the results above, we can conclude that the variable **number of hospital beds** leads to the smallest variability.

Problem 9

Let Yi be per capita income and Xi be the percentage of individuals having bachelor's degree in i^{th} region.

```
Y1<-d$'Per capita income'[d$'Geographic region'==1]
X1<-d$'Percent bachelor's degrees'[d$'Geographic region'==1]
Y2<-d$'Per capita income'[d$'Geographic region'==2]
X2<-d$'Percent bachelor's degrees'[d$'Geographic region'==2]
Y3<-d$'Per capita income'[d$'Geographic region'==3]
X3<-d$'Percent bachelor's degrees'[d$'Geographic region'==3]
Y4<-d$'Per capita income'[d$'Geographic region'==4]
X4<-d$'Percent bachelor's degrees'[d$'Geographic region'==4]
```

(1)

Regress the per capita income on total population for the first region

Regress the per capita income on total population for the second region

```
lm.cdi2<-lm(Y2~X2)
summary(lm.cdi2)</pre>
```

```
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 13581.41 575.14 23.614 < 2e-16 *** X2 238.67 27.23 8.765 3.34e-14 *** Signif. codes: 0 '*** 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 we get the regression function Y=13581.41+238.67X
```

Regress the per capita income on total population for the third region

Regress the per capita income on total population for the forth region

```
lm.cdi4<-lm(Y4~X4)
summary(lm.cdi4)</pre>
```

we get the regression function Y = 8615.05 + 440.32X

(2)

Let R1 = 1 if in region 1; otherwise 0; Let R2 = 1 if in region 2; otherwise 0;

Let R3 = 1 if in region 3; otherwise 0;

Let X,Y be the **per capita income** and **total population**, respectively.

Then we apply full model

$$Y = \beta_0 + \beta_1 X + \beta_2 R1X + \beta_3 R2X + \beta_3 R3X + \varepsilon$$

> lm.full <- lm(Y~X+R1*X+R2*X+R3*X)

If there is no region effect, then the reduced model is

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

> lm.reduce <- lm(Y~X)</pre>

For the full model, we have

> sum(lm.full\$residuals^2)
[1] 2945664166
> lm.full\$df.residual
[1] 432

$$SSE = 3496250017$$
 $DF = 432$

For the reduced model, we have

> sum(lm.reduce\$residuals^2)
[1] 3735858256
> lm.reduce\$df.residual
[1] 438

$$SSE = 3735858256$$
 $DF = 438$

Thus

$$F^* = \frac{(3735858256 - 2945664166)/(438 - 432)}{2945664166/432}$$
$$= 19.31448 > F_{95\%}(6, 432) = 2.12$$

Therefore, region matters, which means different region have different regression functions.

(3)

```
MSE1 <- sum(lm.cdi1$residuals^2)/lm.cdi1$df.residual
[1] 7335008

MSE2 <- sum(lm.cdi2$residuals^2)/lm.cdi2$df.residual
[1] 4411341

MSE3 <- sum(lm.cdi3$residuals^2)/lm.cdi3$df.residual
[1] 7474349

MSE4 <- sum(lm.cdi4$residuals^2)/lm.cdi4$df.residual
[1] 8214318</pre>
```

from the results above, we can conclude that the variable around the fitted regression line differs from each other. But the variable for region #1 and #3 are approximately the same.