

Cargado de librerías

```
import pandas as pd
import numpy as np
import os
```

Cargado de datos

```
mainpath = r"C:\Users\DELL\OneDrive\Formación\Python\Datasets"
filename = "Datos ventas.csv"
fullpath = os.path.join(mainpath,filename)
dataset = pd.read_csv(filepath_or_buffer = fullpath, sep = ";", encoding = "utf8")
type(dataset)
```

pandas.core.frame.DataFrame

Medidas de tendencia central

Media aritmética o promedio

El método mean permite decidir tomar en cuenta o no a los valores faltantes.

```
dataset['Ventas [unid]'].mean(skipna = False)
nan
    np.nanmean(dataset['Ventas [unid]'])
4.968196819681968
```

```
# np.mean devolverá nan cuando tiene un array en su argumento
# Si se alimenta a no.mean con una serie de pandas,
# entonces no tamará en cuenta a los valores vacíos
np.mean(dataset['Ventas [unid]'])
```

4.968196819681968

Mediana

3.5

```
np.median(dataset2["Age"])
nan
    np.nanmedian(dataset2["Age"])
3.5
```

Moda

La moda es el valor o categoría más frecuente dentro de un conjunto de datos. Dado que se considera como "popular" podría representar un estándar o valor representatitvo para el dataset.

```
Puntaje = [3, 15, 30, 42, 30, 10, 10, 12]
  Name = ['Mike', 'Andy', 'Nicol', 'Jordan',
                  'Jordan', 'Ronald', 'Ronald', 'Andy']
  # Función para calcular la moda
  def mode(dataset_mode):
      # Diccionario vacío
      frequency = {}
      # El método get(keyname, value) devuelve un valor de un diccionario
      for value in dataset mode:
           # Para el elemento 'value' se extrae su recuento y se suma 1 (a modo de conteo)
           frequency[value] = frequency.get(value, 0) + 1
      # El método values() develve los valor de un diccionario como lista
      most_frequent = max(frequency.values())
      modes = [key for key, value in frequency.items() if value == most_frequent]
      return modes
  mode(Name)
['Andy', 'Jordan', 'Ronald']
```

Medidas de tendencia no central

```
# Percentiles
```

Medidas de dispersión

Utilizando las fómulas de mínimo y máximo

Rango o alcance

```
ata = {'Name':['Tom', 'nick', 'krish', 'jack', 'Charlie'],
           'Age':[1, 2, 5, np.NaN,9]}
   data = pd.DataFrame(data)
  print('Valor máximo', max(data["Age"]))
  print('Valor minimo', min(data["Age"]))
  rango = max(data["Age"]) - min(data["Age"])
   print(f"El rango es {rango}")
Valor máximo 9.0
Valor mínimo 1.0
El rango es 8.0
  # Utilizando las fómulas de numpy
   # Si existen valores en blanco se debe hacer una transformación adicional
   # para no afectar los valores máximos y mínimos de una variable
   data = {'Name':['Tom', 'nick', 'krish', 'jack', 'Charlie'],
           'Age':[1, 2, 5, np.NaN, 9]}
   data = pd.DataFrame(data)
  data["Age"] = data["Age"].fillna(np.mean(data["Age"]))
   np.ptp(data["Age"])
8.0
Varianza
   # Varianza muestral
   data = {'Name':['Tom', 'nick', 'krish', 'jack', 'Charlie'],
           'Age': [1, 2, 5, np.NaN, 9]}
   data = pd.DataFrame(data)
  print(np.var(data["Age"], ddof = 1))
  print(np.nanvar(data["Age"], ddof = 1))
  print(pd.DataFrame.var(data["Age"], skipna = False, ddof = 1))
12.91666666666666
12.91666666666666
nan
  # Varianza poblacional
   data = {'Name':['Tom', 'nick', 'krish', 'jack', 'Charlie'],
           'Age':[1, 2, 5, np.NaN,9]}
   data = pd.DataFrame(data)
  print(np.var(data["Age"], ddof = 0))
```

```
print(np.nanvar(data["Age"], ddof = 0))
print(pd.DataFrame.var(data["Age"], skipna = False, ddof = 0))

9.6875
9.6875
nan
```

Desviación estándar

Coeficiente de variación

Esta medida de variación expresa la desviación estándar como un porcentaje de la media. Permite comparar distribuciones.

El coeficiente de variación de la variable edad es de : 84.56 %

Otras funciones

Reemplazar valores NaN con 0

```
# Utilizando Pandas para una columna
data['Age'] = data['Age'].fillna(0)
data

# Utilizando Pandas para todo el data frame
data.fillna(0)
```

Redondear números

np.round(3.14159265359,2)

Matemáticas generales: librería math

El módulo "math" de Python contiene funciones que permiten realizar operaciones típicas de las matemáticas. El conjunto completo de funciones puede consultarse de https://docs.python.org/3/library/math.html

```
import math
```

Algunas constantes matemáticas

```
Número PI
   math.pi
3.141592653589793
Número e
   math.e
2.718281828459045
Thau (Equivale a dos veces Pi)
   math.tau
6.283185307179586
Infinito
   math.inf
inf
   math.inf == float('inf')
True
Valor NaN (not a number)
```

```
math.nan
```

nan

Funciones logarítmicas y exponenciales

Constante e elevado a cierto exponente La potencia figura en el argumento de la función

```
math.exp(1)
2.718281828459045
   2**6
64
Potencia
  math.pow(5,2)
25.0
   # nan está ideado para operar según reglas matemáticas
  # funcion para potencias
  math.pow(math.nan,0)
1.0
Logaritmos Si la función posee un argumento, entonces se calculará el logaritmo natural (base e)
  math.log(10000,10)
4.0
  math.log(math.e)
1.0
```

Tipos de errores

Error en la introducción de un parámetro

```
math.sqrt(-1)
ValueError: math domain error
```

Error de rango Excesivas cifras de cálculo

```
math.exp(10000)
OverflowError: math range error
Representación numérica
Funciones de redondeo
  # Redondeo al alza
  math.ceil(3.4523)
  # Redondeo a la baja
  math.floor(3.4523)
3
  # Truncar un número real a uno entero
  math.trunc(3.952)
3
Copiar el signo
  math.copysign(3,-2)
-3.0
Valor absoluto
  math.fabs(5)
5.0
  math.fabs(-23)
23.0
Factorial
  {\tt math.factorial(4)}
```

Resto de una divsión

24

```
math.fmod(7,3)
1.0
   math.remainder(7,3)
1.0
Cociente de una división exclusivamente
   7//3
2
División tradicional
   7/3
2.3333333333333333
Separar la parte entera y la parte decimal
   math.modf(4.25)
(0.25, 4.0)
Máximo común divisor
   math.gcd(24,36)
12
Comprombar si un número es finito
   math.isfinite(2.5)
True
   math.isinf(4.7)
False
   math.isnan(1.3)
```

False

Comprobar la similitud entre dos números

```
math.sqrt(2)**2 == 2
False
   # Comprueba el nivel de cercanía entre dos números respecto a cierta tolerancia.
  math.isclose(math.sqrt(2)**2, 2, rel_tol = 1e-09)
True
Operadores de decisión
   x = int(input("Escribe un número:"))
Escribe un número: 5
   if x == 5:
       print("Escribiste el número ",x)
Escribiste el número 5
  x = int(input("Escribe un número:"))
  if x < 8:
       print("Escribiste un número menor que 8")
  elif x < 10:
       print("Escribiste un número menor que 10 y mayor o igual que 8")
  else:
       print("El número es mayor o igual a 10")
Escribe un número:4
Escribiste un número menor que 8
  x = int(input("Escribe un número:"))
  if x > 0 and x < 10:
       print("Escribiste un número comprendido en el rango de 0 a 10")
       print("Rango no válido")
Escribe un número: -5
Rango no válido
  x = int(input("Escribe un número:"))
  if x < 0 or x > 10:
       print("Escribiste un número que no está comprendido en el rango de 0 a 10")
Escribe un número: 11
Escribiste un número que no está comprendido en el rango de 0 a 10
```

Funciones matemáticas

```
Función exponencial
  # Esta función es más precisa que utilizar e**3
  math.exp(3)
20.085536923187668
Potencias
  math.pow(5,3)
125.0
  math.expm1(1)
1.718281828459045
  # Se pierde precisión...
  math.exp(1) - 1
1.718281828459045
  math.exp(1e-05) - 1
1.0000050000069649e-05
  math.expm1(1e-05)
1.0000050000166667e-05
  math.log(12)
2.4849066497880004
  math.log(12,2)
3.5849625007211565
  math.log1p(1e-05)
```

9.99995000033333e-06

```
math.log2(32)
5.0
  math.sqrt(64)
8.0
Funciones trigonométricas
  # El argumento de la función debe ser en radianes
  math.sin(180)
-0.8011526357338304
  math.cos(math.pi)
-1.0
  math.tan(math.pi/2)
1.633123935319537e+16
  math.asin(1)
1.5707963267948966
  math.acos(0)
1.5707963267948966
  # Los resultados de la función están en radianes
  math.atan(1)
0.7853981633974483
  # Trnasformación de radianes a grados
  math.degrees(0.7853981633974483)
45.0
  math.cos(math.radians(60))
```

0.5000000000000001

```
# Calcular el módulo de un vector
# Los parámetros son coordenadas x,y
math.hypot(3,4)

5.0

# Hallar el ángulo del vector con el eje horizontal
math.degrees(math.atan2(4,3))

53.13010235415598

math.erf(math.pi)

0.9999911238536323

math.erfc(math.pi)
```

8.876146367641612e-06