Линейни пространства

Иво Стратев

24 октомври $2019\,$ г.

Съдържание

1	Екв	вивалентни дефиниции на поле	2
	1.1	Стандартна със съществуване	2
	1.2	Еквивалентна с операции и константи (инфиксен запис)	2
	1.3	Еквивалентна с функции и константи (функционален запис) .	3
2	Екв	вивалентни дефиниции на линейно пространство	3
	2.1	Стандартна със съществуване	3
	2.2	Еквивалентна с операции и константи (инфиксен запис)	4
	2.3	Еквивалентна с функции и константи (функционален запис) .	4
3	нд	У за подпространство	5
4	Две	е доказателства на подпространства	5
	4.1	Нечетни реални функции	5
		4.1.1 Решение:	5
	4.2	"Интересни" функции	5
		4.2.1 Решение:	6
5	Зад	ачи за домашно	6
	5.1	Задачи, които са задължителни	6
		5.1.1 Всяко поле е ЛП над себе си	6
		5.1.2 Задачата за функциите	6
	5.2	Задачи за упражнение	7
		5.2.1 Четните реални функции образуват ЛП	7
		5.2.2 Полиномите състоящи се само от четни степени обра-	
		зуват ЛП	7
		5.2.3 Множеството $\{(p,0,-p)\mid p\in\mathbb{Q}\}$ образува ЛП	7
		5.2.4 Задача 3.9 от сборника	7
		5.2.5 Задача 3.7 от сборника	7
	5.3	Нека (V, \oplus, \odot) е ЛП над $(F, +, .)$ и A е крайно подмножество	•
		на V . Тогава $l(A)$ е ЛП	7

1 Еквивалентни дефиниции на поле

1.1 Стандартна със съществуване

 $(\mathbb{F}, +, .)$ е поле ако:

- 1. \mathbb{F} е непразно множество и $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})[a+b \in \mathbb{F} \land a.b \in \mathbb{F}];$
- 2. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[(a+b)+c=a+(b+c)];$
- 3. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})[a+b=b+a];$
- 4. $(\exists 0 \in \mathbb{F})(\forall a \in \mathbb{F})[0 + a = a \land (\exists -a \in \mathbb{F})[a + (-a) = 0]];$
- 5. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[(a.b).c = a.(b.c)];$
- 6. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})[a.b = b.a];$
- 7. $(\exists 1 \in \mathbb{F})(\forall a \in \mathbb{F})[1.a = a];$
- 8. $(\forall a \in \mathbb{F})[\ a \neq 0 \implies (\exists a^{-1} \in \mathbb{F})[\ a.a^{-1} = 1\]\];$
- 9. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[a.(b+c) = a.b + a.c];$

1.2 Еквивалентна с операции и константи (инфиксен запис)

 $(\mathbb{F}, 0, 1, +, -, .)$ е поле ако:

- 1. \mathbb{F} е непразно множество, $0 \in \mathbb{F}$, $1 \in \mathbb{F}$, $+ : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$, $: \mathbb{F} \to \mathbb{F}$ и $. : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$;
- 2. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[(a+b)+c=a+(b+c)];$
- 3. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})[a+b=b+a];$
- 4. $(\forall a \in \mathbb{F})[0 + a = a];$
- 5. $(\forall a \in \mathbb{F})[a + (-a) = 0];$
- 6. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[(a.b).c = a.(b.c)];$
- 7. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})[a.b = b.a];$
- 8. $(\forall a \in \mathbb{F})[1.a = a];$
- 9. $(\forall a \in \mathbb{F})[\ a \neq 0 \implies (\exists a^{-1} \in \mathbb{F})[\ a.a^{-1} = 1\]\];$
- 10. $(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[a.(b+c) = a.b + a.c];$

1.3 Еквивалентна с функции и константи (функционален запис)

 $(\mathbb{F}, 0, 1, add, inv, mul)$ е поле ако:

```
1. \mathbb{F} е непразно множество, 0 \in \mathbb{F}, 1 \in \mathbb{F}, add : \mathbb{F} \times \mathbb{F} \to \mathbb{F}, inv : \mathbb{F} \to \mathbb{F} и mul : \mathbb{F} \times \mathbb{F} \to \mathbb{F};
```

```
2. \ (\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[\ add(add(a,b),c) = add(a,add(b,c))\ ];
```

3.
$$(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})[add(a,b) = add(b,a)];$$

4.
$$(\forall a \in \mathbb{F})[add(0, a) = a];$$

5.
$$(\forall a \in \mathbb{F})[add(a, inv(a)) = 0];$$

6.
$$(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[\ mul(mul(a,b),c) = mul(a,mul(b,c))\];$$

7.
$$(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})[\ mul(a,b) = mul(b,a)\];$$

8.
$$(\forall a \in \mathbb{F})[\ mull(1, a) = a\];$$

9.
$$(\forall a \in \mathbb{F})[\ a \neq 0 \implies (\exists a^{-1} \in \mathbb{F})[\ mul(a, a^{-1}) = 1\]];$$

10.
$$(\forall a \in \mathbb{F})(\forall b \in \mathbb{F})(\forall c \in \mathbb{F})[mul(a, add(b, c)) = add(mul(a, b), mul(a, c))];$$

2 Еквивалентни дефиниции на линейно пространство

2.1 Стандартна със съществуване

```
Нека (\mathbb{F},+,.) е поле. (\mathbb{V},\oplus,\odot) е линейно пространство над полето (\mathbb{F},+,.), ако:
```

- 1. $\mathbb V$ е непразно множество, $(\forall a \in \mathbb V)(\forall b \in \mathbb V)[\ a \oplus b \in \mathbb V\]$ и $(\forall \lambda \in \mathbb F)(\forall v \in \mathbb V)[\ \lambda \odot v \in \mathbb V\];$
- 2. $(\forall a \in \mathbb{V})(\forall b \in \mathbb{V})(\forall c \in \mathbb{V})[(a \oplus b) \oplus c = a \oplus (b \oplus c)];$
- 3. $(\forall a \in \mathbb{V})(\forall b \in \mathbb{V})[a \oplus b = b \oplus a];$
- 4. $(\exists \theta \in \mathbb{V})(\forall a \in \mathbb{V})[\theta \oplus a = a \land (\exists \ominus a \in \mathbb{V})[a \oplus (\ominus a) = \theta]];$
- 5. $(\forall a \in \mathbb{V})[1 \odot a = a];$
- 6. $(\forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall v \in \mathbb{V})[\ (\lambda \cdot \mu) \odot v = \lambda \odot (\mu \odot v)\];$
- 7. $(\forall \lambda \in \mathbb{F})(\forall b \in \mathbb{V})(\forall c \in \mathbb{V})[\lambda \odot (b \oplus c) = (\lambda \odot b) \oplus (\lambda \odot c)];$
- 8. $(\forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall v \in \mathbb{V})[(\lambda + \mu) \odot v = (\lambda \odot v) \oplus (\mu \odot v)];$

2.2 Еквивалентна с операции и константи (инфиксен запис)

Нека $(\mathbb{F},0,1,+,-,.)$ е поле. $(\mathbb{V},\theta,\oplus,\ominus,\odot)$ е линейно пространство над полето $(\mathbb{F},0,1,+,-,.)$, ако:

- 1. \mathbb{V} е непразно множество, $\theta \in \mathbb{V}, \oplus : \mathbb{V} \times \mathbb{V} \to \mathbb{V}, \ominus : \mathbb{V} \to \mathbb{V}$ и $\odot : \mathbb{F} \times \mathbb{V} \to \mathbb{V}$;
- 2. $(\forall a \in \mathbb{V})(\forall b \in \mathbb{V})(\forall c \in \mathbb{V})[(a \oplus b) \oplus c = a \oplus (b \oplus c)];$
- 3. $(\forall a \in \mathbb{V})(\forall b \in \mathbb{V})[a \oplus b = b \oplus a];$
- 4. $(\forall a \in \mathbb{V})[\theta \oplus a = a];$
- 5. $(\forall a \in \mathbb{V})[\ a \oplus (\ominus a) = \theta\];$
- 6. $(\forall a \in \mathbb{V})[1 \odot a = a];$
- 7. $(\forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall v \in \mathbb{V})[\ (\lambda.\mu) \odot v = \lambda \odot (\mu \odot v)\];$
- 8. $(\forall \lambda \in \mathbb{F})(\forall b \in \mathbb{V})(\forall c \in \mathbb{V})[\ \lambda \odot (b \oplus c) = (\lambda \odot b) \oplus (\lambda \odot c)\];$
- 9. $(\forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall v \in \mathbb{V})[(\lambda + \mu) \odot v = (\lambda \odot v) \oplus (\mu \odot v)];$

2.3 Еквивалентна с функции и константи (функционален запис)

Нека $(\mathbb{F},0,1,add,inv,mul)$ е поле. $(\mathbb{V},\theta,vecAdd,vecInv,scalMul)$ е линейно пространство над полето $(\mathbb{F},0,1,add,inv,mul)$, ако:

- 1. \mathbb{V} е непразно множество,
 - $\theta \in \mathbb{V}, vecAdd : \mathbb{V} \times \mathbb{V} \to \mathbb{V}, vecInv : \mathbb{V} \to \mathbb{V} \text{ is } scalMul : \mathbb{F} \times \mathbb{V} \to \mathbb{V};$
- 2. $(\forall a \in \mathbb{V})(\forall b \in \mathbb{V})(\forall c \in \mathbb{V})[vecAdd(vecAdd(a,b),c) = avecAdd(a,vecAdd(b,c))];$
- 3. $(\forall a \in \mathbb{V})(\forall b \in \mathbb{V})[vecAdd(a,b) = vecAdd(b,a)];$
- 4. $(\forall a \in \mathbb{V})[vecAdd(\theta, a) = a];$
- 5. $(\forall a \in \mathbb{V})[vecAdd(a, vecInv(a)) = \theta];$
- 6. $(\forall a \in \mathbb{V})[scalMul(1, a) = a];$
- 7. $(\forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall v \in \mathbb{V})[scalMul(mul(\lambda, \mu), v) = scalMul(\lambda, scalMul(\mu, v))];$
- 8. $(\forall \lambda \in \mathbb{F})(\forall b \in \mathbb{V})(\forall c \in \mathbb{V})[scalMul(\lambda, vecAdd(b, c)) = vecAdd(scalMul(\lambda, b), scalMul(\lambda, c))];$
- 9. $(\forall \lambda \in \mathbb{F})(\forall \mu \in \mathbb{F})(\forall v \in \mathbb{V})[scalMul(add(\lambda + \mu), v) = vecAdd(scalMul(\lambda, v), scalMul(\mu, v))];$

3 НДУ за подпространство

Нека $(\mathbb{V},\oplus,\odot)$ е ЛП над поле $(\mathbb{F},+,.)$. $(\mathbb{U},\oplus,\odot)$ е подпространство на $(\mathbb{V},\oplus,\odot)$ ТСТК:

- 1. $\mathbb{U} \subset \mathbb{V}$;
- 2. $(\forall a \in \mathbb{U})(\forall b \in \mathbb{U})[\ a \oplus b \in \mathbb{U}\];$
- 3. $(\forall \lambda \in \mathbb{F})(\forall u \in \mathbb{U})[\lambda \odot u \in \mathbb{U}].$

4 Две доказателства на подпространства

4.1 Нечетни реални функции

Да се докаже, че множеството от нечетните реални функции е линейно пространство над полето на реалните числа относо стандартните операции за събиране на функции и умножение на функция с число.

4.1.1 Решение:

Очевидно множеството от нечетните функции е подмножество на всички реални функции. Показваме затвореност.

Нека f и g са нечетни функции. Тогава

$$(\forall x \in \mathbb{R})[f(-x) = -f(x)] \land (\forall x \in \mathbb{R})[g(-x) = -g(x)]$$

Нека $x \in \mathbb{R}$ тогава $(f \oplus g)(-x) = f(-x) + g(-x) = -f(x) + (-g(x)) = -(f(x) + g(x)) = -(f \oplus g)(x)$. Следователно

 $(\forall x \in \mathbb{R})[\ (f \oplus g)(-x) = -(f \oplus g)(x)\]$. Тоест сума на нечетни функции е отново нечетна функция. Тоест доказахме затвореност относно събирането. Нека h е нечетна функция и нека $\lambda \in \mathbb{R}$. Нека $x \in \mathbb{R}$ тогава $(\lambda \odot h)(-x) = \lambda.h(-x) = \lambda.(-h(x)) = -\lambda.h(x) = -(\lambda \odot h)(x)$. Следователно

 $(\forall x \in \mathbb{R})[\ (\lambda \odot h)(-x) = -(\lambda \odot h)(x)\].$ Тоест нечетна функция умножена с число отново е нечетна функция. Тоест доказахме затвореност относно умножение с число.

Така множеството на нечетните функции относно стандартните операции е линейно подпространство. В частност линейо пространство над реалните числа.

4.2 "Интересни" функции

Нека $\mathbb{W} = \{(a \odot sinx) \oplus (b \odot x^2) \oplus c \mid (a,b,c) \in \mathbb{R}^3\}$. Да се докаже, че \mathbb{W} е линейно пространство относно стандартните операции за събиране на функции и умножение на функция с число.

4.2.1 Решение:

Очевидно всеки елемент на множеството \mathbb{W} е функция от реални числа в реални числа. Тоест очевидно $\mathbb{W} \subseteq \{f \mid f : \mathbb{R} \to \mathbb{R}\}.$

Ние знаем (може би още не съвсем, но вие ще го докажете, вярвам във вас!), че относно стандартните операции за събиране на функции и умножение на функция с число $\{f \mid f : \mathbb{R} \to \mathbb{R}\}$ е ЛП над полето на реалните числа.

Тогава ни остава да докажем затвореност относно операциите!

Нека $w_1 \in \mathbb{W}$ и нека $w_2 \in \mathbb{W}$ и са произволни.

Тогава съществуват $(a_1,b_1,c_1)\in\mathbb{R}^3$, такива че $w_1=(a_1\odot sinx)\oplus (b_1\odot x^2)\oplus c_1$ и съществуват $(a_2,b_2,c_2)\in\mathbb{R}^3$, такива че $w_2=(a_2\odot sinx)\oplus (b_2\odot x^2)\oplus c_2$. Нека тогава $(a_1,b_1,c_1)\in\mathbb{R}^3$ и нека $(a_2,b_2,c_2)\in\mathbb{R}^3$ и нека $w_1=(a_1\odot sinx)\oplus (b_1\odot x^2)\oplus c_1$ и $w_2=(a_2\odot sinx)\oplus (b_2\odot x^2)\oplus c_2$. Така $w_1\oplus w_2=((a_1\odot sinx)\oplus (b_1\odot x^2)\oplus c_1)\oplus ((a_2\odot sinx)\oplus (b_2\odot x^2)\oplus c_2)=((a_1+a_2)\odot sinx)\oplus ((b_1+b_2)\odot x^2)\oplus (c_1+c_2)$ и $(a_1+a_2,b_1+b_2,c_1+c_2)\in\mathbb{R}^3$. Следователно $w_1\oplus w_2\in\mathbb{W}$.

Следователно $(\forall w_1 \in \mathbb{W})(\forall w_2 \in \mathbb{W})[\ w_1 \oplus w_2 \in \mathbb{W}\].$

Нека $\mu \in \mathbb{R}$ и нека $w \in \mathbb{W}$ и са произволни. Тогава съществуват $(a,b,c) \in \mathbb{R}^3$, такива че $w = (a \odot sinx) \oplus (b \odot x^2) \oplus c$. Нека тогава $(a,b,c) \in \mathbb{R}^3$ и нека $w = (a \odot sinx) \oplus (b \odot x^2) \oplus c$. Така $\mu \odot w = \mu \odot ((a \odot sinx) \oplus (b \odot x^2) \oplus c) = ((\mu.a) \odot sinx) \oplus ((\mu.b) \odot x^2) \oplus (\mu.c)$ и $(\mu.a,\mu.b,\mu.c) \in \mathbb{R}^3$. Следователно $\mu \odot w \in \mathbb{W}$. Следователно $(\forall \mu \in \mathbb{F})(\forall w \in \mathbb{W})[\mu \odot w \in \mathbb{W}]$.

Значи $(\mathbb{W}, \oplus, \odot)$ е подпространсто на функците от реални в реални числа. В частност $(\mathbb{W}, \oplus, \odot)$ е линейно пространство.

5 Задачи за домашно

5.1 Задачи, които са задължителни

5.1.1 Всяко поле е ЛП над себе си

Докажете, че ако (F, +, .) е поле, то (F, +, .) е ЛП над полето (F, +, .).

5.1.2 Задачата за функциите

Нека X е непразно множество и нека (F, +, .) е поле.

Нека $Func(X, F) = \{f \mid f : X \to F\}.$

Дефинираме естествените операции събиране на функции и умножение на функция с число по следните правила:

$$(\forall f \in Func(X, F))(\forall g \in Func(X, F))(\forall x \in X)[\ (f \oplus g)(x) = f(x) + g(x)\]$$
$$(\forall \lambda \in F)(\forall f \in Func(X, F))(\forall x \in X)[\ (\lambda \odot f)(x) = \lambda . f(x)\]$$

Докажете, че $(Func(X,F),\oplus,\odot)$ е ЛП над (F,+,.). Асоциативността е по желание!

Равенство на функции се дефинира като равенство между функционалните им стойности. Тоест

$$(\forall f \in Func(X, F))(\forall g \in Func(X, F))[\ f = g \iff (\forall x \in X)[\ f(x) = g(x)\]\]$$

Нулевата функция се дефинира така:

$$(\forall x \in X)[\ \theta(x) = 0\]$$

Тоест константа 0, която е нулата на полето! Противоположна функция се дефинира така:

$$(\forall f \in Func(X, F))(\forall x \in X)[\ (\ominus f)(x) = -f(x)\]$$

Тоест функцията, която връща противоположните стойности.

- 5.2 Задачи за упражнение
- 5.2.1 Четните реални функции образуват ЛП
- 5.2.2 Полиномите състоящи се само от четни степени образуват $\Pi\Pi$
- 5.2.3 Множеството $\{(p,0,-p)\mid p\in\mathbb{Q}\}$ образува ЛП
- 5.2.4 Задача 3.9 от сборника
- 5.2.5 Задача 3.7 от сборника
- 5.3 Нека (V,\oplus,\odot) е ЛП над (F,+,.) и A е крайно подмножество на V. Тогава l(A) е ЛП