SEG4135 - Lecture 8

Cloud Security	2
Definitions	2
Authentication	2
Authorization	2
Security of Data at Rest	2
Security of Data in Motion	2
Integrity	2
Auditing	2
CSA Cloud Security Architecture	3
Authentication	4
SSO	4
OTP - One Time Password	4
Authorization	4
OAuth	4
IAM	4
Encryption Levels for Data at Rest	4
Wide Area VM Migration	5
Recall: Manycast	5
System settings and assumptions	5
Demand types	5
Data centers	5
Motivation	6
Problem Formulation	6
Objectives	6
Power-Minimized Provisioning (PoMiP)	6
Delay and Power-Minimized provisioning (PePoMiP)	7

Cloud Security

Definitions

Authentication

- Are you the person you claim to be

Authorization

- Are you able to perform a specific action

Security of Data at Rest

- Security of data when it is sitting in the same space

Security of Data in Motion

- Ensuring data is secure when moving from point A to point B

Integrity

- Ensuring data has not changed in transit

Auditing

- Who has done what action.

CSA Cloud Security Architecture

CSA provides a trusted cloud initiative (TCI) reference architecture

TCi is a methodology and a set of tools that enable cloud application developers and security architects to assess where their internal IT and their cloud providers are in terms of security, capabilities, and to plan a roadmap to meet the security needs of their business.

- Governance, risk management, and compliance
 - Compliance management
 - Policy management
 - Vendor management
- Information security management
 - Capability mapping
 - Risk portfolio
 - Personal risk management
 - Risk Dashboard
 - Risk can be quantified by the damage a threat could do
- Privilege Management Infrastructure
 - Identity management
 - Authorization services
 - Authentication services
- Threat and vulnerability management
 - Compliance testing
 - Vulnerability management
 - Penetration testing
- Infrastructure protection services
 - Server
 - Network
 - Application
- Data protection
 - Data Lifecycle Management
 - Keeping track of the number of users that access the data
 - Levels of security and protection can change
 - Cryptographic services
 - Data loss protection
- Policies and standards
 - Operation security baselines
 - Information Security policies
 - Jobs and Guidelines

Authentication

- Easiest way to do this is via a secret that only one user has.

SSO

- Sign on to the identity management server once.
- Multiple styles
 - SAML-Token
 - Kerberos

OTP - One Time Password

- The user receives a password that can be used one time.

Authorization

OAuth

- A standard for authorization that allows resource owners to share their private resources stored on one site from another
- Sign in with google/facebook

IAM

- Federated Identity management
- RBAC

Encryption Levels for Data at Rest

- Application
- Host
- Network
- Device

Wide Area VM Migration

- Why create a backbone?
 - For energy efficiency
 - We don't want hotspots in a datacenter

Recall: Manycast

- We have unicast, one to one.
- We have multicast, one to many
- For datacenter migrations, we have to use Anycast or Manycast
- Anycast
 - We want to hit one node in a set of nodes, doesn't matter which one we hit but we have to hit one.
- Manycast
 - We want to hit a subset of nodes that exist in a set of nodes, hit as many as possible

System settings and assumptions

- Transport mediums in the cloud backbone
- IP/WDM network; each node is associated with a data center
 - IP Wavelength division multiplexing
 - Allows more users to take advantage of a fiber line

Demand types

- Upstream
- Downstream
- Regular network traffic
- Energy consumption overhead of heach demand is known in advance

Data centers

- Physical hosts
- VMs
- CPU Capacity per VM
- Memory Capacity per VM

Motivation

We want to be able to predict the demand profile in the Cloud. Is it possible to have a holistic scheme which

- Reconfigures the cloud network
- Maps Vms onto the physical hosts in the data entes and backbone with the objectives of minimum data center and transport energy consumption.

Problem Formulation

- Minimize the total power consumption in each node

$$DC_i + \sum_{j \in N_i^v} \frac{P_r \cdot C_{ij}}{P_r \cdot C_{ij}} + \sum_{j \in N_i^p} (P_t \cdot W_{ij} + S_{ij} \cdot P_{edfa} \cdot f_{ij})$$

Objectives

- Minimize delay for three types of traffics
- Routing over G' (Physical topology mapping)
 - Assign pre-computed shortest distances as virtual link costs
- Routing over G (Virtual topology mapping)
 - Shortest path, basically

Power-Minimized Provisioning (PoMiP)

- The cost of a virtual link from i to j is
 - We add up the physical link hosts and we divide it by the remaining capacity
- The cost he a physical link
 - The cost of an EDFA times the amount of EDFAs plus the Cost of an amplifier times the number of amplifiers
- Select the datacenter that is the min of the power consumption in terms of cooling and the increase in cooling

Delay and Power-Minimized provisioning (PePoMiP)

- For the virtual link cost
 - Select the virtual link with the lowest sum of its physical links
- For the physical cost
 - (Total power of EDFAs * total power of transponders) * fiber length
- Select half data centers w.r.t. PoMiP Ranking
- Select half data centers w.r.t. The shortest precomputed distances