SMART WATER

MANAGEMENT

NAME: S. Suresh Kumar

NM ID. : 35B59C879B42E4EA14A4480291E69C71

REGNO: 950321104051

PHASE 4: Declaration part – 2

Smart Water Management:

In the development part 2 of a Smart Water Management System, the focus should be on setting sensors and working with IOT devices. Arduino boards are widely used for sensor data acquisition and actuator control.

Monitoring the Water Level:

Components:

- 1. Arduino UNO
- 2. Potentiometer
- 3. lcd 1602
- 4. hc-sr04 Ultrasonic Distance sensor
- 5. pushbutton
- 6. slide-switch

7. ks2e-m-dc5 Relay

Implementation of Water level Monitoring using Wokwi:

Connect the components:

Code for water level monitoring:

```
#include <EEPROM.h>
#include <LiquidCrystal.h>
LiquidCrystal lcd(2,3,4,5,6,7);
long duration, inches;
int set_val,percentage;
bool state,pump;
void setup()
{
```

```
lcd.begin(16, 2);
  lcd.print("WATER LEVEL:");
  lcd.setCursor(0, 1);
  lcd.print("PUMP:OFF MANUAL");
  pinMode(8, OUTPUT);
  pinMode(9, INPUT);
  pinMode(10, INPUT_PULLUP);
  pinMode(11, INPUT_PULLUP);
  pinMode(12, OUTPUT);
  set_val=EEPROM.read(0);
  if(set_val>150)set_val=150;
}
void loop()
{
   digitalWrite(3, LOW);
   delayMicroseconds(2);
   digitalWrite(8, HIGH);
   delayMicroseconds(10);
   digitalWrite(8, LOW);
   duration = pulseIn(9, HIGH);
   inches = microsecondsToInches(duration);
   percentage=(set_val-inches)*100/set_val;
   lcd.setCursor(12, 0);
   if(percentage<0)percentage=0;</pre>
   lcd.print(percentage);
   lcd.print("%
                  ");
   if(percentage<30&digitalRead(11))pump=1;</pre>
   if(percentage>99)pump=0;
   digitalWrite(12,!pump);
   lcd.setCursor(5, 1);
   if(pump==1)lcd.print("ON ");
   else if(pump==0) lcd.print("OFF");
   lcd.setCursor(9, 1);
   if(!digitalRead(11))lcd.print("MANUAL");
   else lcd.print("AUTO ");
}
   if(!digitalRead(10)&!state&digitalRead(11))
{
      state=1;
      set_val=inches;
      EEPROM.write(0, set_val);
      if(!digitalRead(10)&!state&!digitalRead(11)){
        state=1;
        pump=!pump;
      }
```

```
if(digitalRead(10))state=0;
    delay(500);
}
long microsecondsToInches(long microseconds)
{
    return microseconds / 74 / 2;
}
```

Output of water level monitoring:

If the water level is 100% there is less distance then automatically the pump will off. If the water level is 0% there is high distance then automatically the pump will be on.

Similarly we adjusting the distances the pump will automatically on and off.

Conclusion:

In the smart water management , water level monitoring the pH value, etc., in this phase I developed the water level monitoring by using Wokwi simulator by using the ultrasonic sensor.