Sound Travel Simulation

Diana Korotun, Harshita Gupta

Advanced Simulation in the Natural Sciences. ESC203 June 2, 2025

|Set Up

- Simulating Sound
- Single Pulse
- At 440 Hz frequency
- Through Water and air
- Including reflections and absorptions
- Methods:
 - Wave equation solution
 - Ray Tracing

Early Iterations

Finite differences for 2D wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$
 $c_{\text{air}} = 0.373 \text{ km/s}$ $c_{\text{water}} = 1.48 \text{ km/s}$

$$u_{i,j}^{n+1} = s_x(u_{i+1,j}^n + u_{i-1,j}^n) + s_y(u_{i,j+1}^n + u_{i,j-1}^n) + 2(1 - s_x - s_y)u_{i,j}^n - u_{i,j}^{n-1}$$

Courant-Friedrichs-Lewy (CFL) number:

$$s_x = c^2 \frac{\Delta t^2}{\Delta x^2}, s_y = c^2 \frac{\Delta t^2}{\Delta y^2}$$

CFL condition for stability:

$$s_x + s_y \le 1$$

Wave Equation - Different Space

Wave Equation - Different Material

Room Full of water
With source in a bubble of air

Room Full of air
With source in a bubble of water

Wave Equation - Broken CFL condition

Wave Equation - Final

Ray Tracing

Ray Tracing

Ray Tracing - Final

Ray Tracing - Audio

Final Results

Wave Equation

Ray Tracing

