Claims

1. A chemical compound comprising the formula:

$$R_1$$
 R_8
 R_4
 R_2
 R_3
 R_7
 R_6

wherein $R_1 - R_8$ are moieties selected from the group consisting of R_9 , CH_3 , alkyl groups, substituted alkyl groups, halogen, carboxyl, hydroxyl, phosphate, phosphonate, sugar residues, sugars, aryl, nucleosides, nucleoside monophosphates, nucleoside disphosphates, nucleoside triphosphates, and hydrogen;

R₉ is

wherein B is adenine, thymine, guanine, cytosine, uracil, nicotinamide, or analogs thereof;

m is 1 or 2;

X, Y, and Z are carbon, nitrogen, oxygen, or sulfur and a double bond may, optionally, exist between atoms X and Y or atoms Y and Z; and

salts or isolated enantiomers of said chemical compound.

2. The chemical compound according to claim 1, wherein said substituted alkyl groups are substituted with a moiety selected from the group consisting of C_{1-6} alkyl, halogen, CN, OH, COOH, NO₂, NH₂, SO₂₋₄, C_{1-20} heteroalkyl, C_{2-20} alkenyl, alkynyl, akynyl-aryl, alkynyl-heteroaryl, aryl, C_{1-20} alkyl-aryl, C_{2-20} alkenyl-aryl, heteroaryl, C_{1-20} alkyl-heteroaryl,

 C_{2-20} alkenyl-heteroaryl, cycloalkyl, heterocycloalkyl, C_{1-20} alkyl-heteroycloalkyl, and C_{1-20} alkyl-cycloalkyl, any of which may be, optionally, substituted with a moiety selected from the group consisting of C_{1-6} alkyl, halogen, OH, NH₂, CN, NO₂, COOH, or SO₂₋₄.

- 3. The chemical compound according to claim 1, wherein said salt is a hydrohloride, hydrobromide, p-toluenesulfonate, phosphate, sulfate, perchlorate, acetate, trifluororacetate, propionate, citrate, malonate, succinate, lactate, oxalate, tartrate, benzoate, magnesium, calcium, morpholine, piperidine, dimethylamine, or diethylamine salt.
- 4. The chemical compound according to claim 1, wherein said isolated enantiomeric forms of the chemical compound are substantially free from one another.
- 5. The chemical compound according to claim 4, wherein said isolated enantiomeric forms of said chemical compound is at least about in 90%, 95%, 97.5%, or 99% enantiomeric excess.
- 6. A composition comprising a carrier and a chemical compound comprising the formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_7
 R_6

wherein $R_1 - R_8$ are moieties selected from the group consisting of R_9 , CH_3 , alkyl groups, substituted alkyl groups, halogen, carboxyl, hydroxyl, phosphate, phosphonate, sugar residues, sugars, aryl, nucleosides, nucleoside monophosphates, nucleoside disphosphates, nucleoside triphosphates, and hydrogen;

R₉ is

wherein B is adenine, thymine, guanine, cytosine, uracil, nicotinamide, or analogs thereof;

m is 1 or 2;

X, Y, and Z are carbon, nitrogen, oxygen, or sulfur and a double bond may, optionally, exist between atoms X and Y or atoms Y and Z; and

salts or isolated enantiomers of said chemical compound.

- 7. The composition according to claim 6, wherein said substituted alkyl groups are substituted with a moiety selected from the group consisting of C_{1-6} alkyl, halogen, CN, OH, COOH, NO₂, NH₂, SO₂₋₄, C_{1-20} heteroalkyl, C_{2-20} alkenyl, alkynyl, akynyl-aryl, alkynylheteroaryl, aryl, C_{1-20} alkyl-aryl, C_{2-20} alkenyl-heteroaryl, C_{1-20} alkyl-heteroaryl, cycloalkyl, heterocycloalkyl, C_{1-20} alkyl-heteroycloalkyl, and C_{1-20} alkyl-cycloalkyl, any of which may be, optionally, substituted with a moiety selected from the group consisting of C_{1-6} alkyl, halogen, OH, NH₂, CN, NO₂, COOH, or SO₂₋₄.
- 8. The composition according to claim 6, wherein said carrier is a pharmaceutical carrier.
- 9. The composition according to claim 8, wherein said pharmaceutical carrier is solid, liquid, or aerosol.
- 10. The composition according to claim 6, wherein said composition is in unit dose form.
- 11. The composition according to claim 6, wherein said substituted alkyl groups are substituted with a moiety selected from the group consisting of C_{1-6} alkyl, halogen, CN, OH, COOH, NO₂, NH₂, SO₂₋₄, C_{1-20} heteroalkyl, C_{2-20} alkenyl, alkynyl, akynyl-aryl, alkynylheteroaryl, aryl, C_{1-20} alkyl-aryl, C_{2-20} alkenyl-aryl, heteroaryl, C_{1-20} alkyl-heteroaryl, cycloalkyl, heterocycloalkyl, C_{1-20} alkyl-heteroycloalkyl, and C_{1-20} alkyl-cycloalkyl, any of which may be, optionally, substituted with a moiety selected from the group consisting of C_{1-6} alkyl, halogen, OH, NH₂, CN, NO₂, COOH, or SO₂₋₄.

- 12. The composition according to claim 6, wherein said salt is a hydrohloride, hydrobromide, p-toluenesulfonate, phosphate, sulfate, perchlorate, acetate, trifluororacetate, propionate, citrate, malonate, succinate, lactate, oxalate, tartrate, benzoate, magnesium, calcium, morpholine, piperidine, dimethylamine, or diethylamine salt.
- 13. The composition according to claim 6, wherein said isolated enantiomeric forms of the chemical compound are substantially free from one another.
- 14. The composition according to claim 6, wherein said isolated enantiomeric forms of said compound is at least about in 90%, 95%, 97.5%, or 99% enantiomeric excess.
- 15. The composition according to claim 6, wherein said carrier is a powder, tablet, pill, capsule, cachet, suppository, or dispersible granule.
- 16. A method of suppressing, reducing, or inhibiting glycosyltransferase or glycosylhydrolase activity comprising contacting said glycosyltransferase or glycosylhydrolase with a composition, in an amount sufficient to suppress, reduce, or inhibit said glycosyltransferase or glycosyltransferase activity, comprising a carrier and a chemical compound comprising the formula:

$$R_1$$
 R_8
 R_4
 R_2
 R_3
 R_4
 R_5
 R_7
 R_6

wherein $R_1 - R_8$ are moieties selected from the group consisting of R_9 , CH_3 , alkyl groups, substituted alkyl groups, halogen, carboxyl, hydroxyl, phosphate, phosphonate, sugar residues, sugars, aryl, nucleosides, nucleoside monophosphates, nucleoside disphosphates, nucleoside triphosphates, and hydrogen;

R₉ is

wherein B is adenine, thymine, guanine, cytosine, uracil, nicotinamide, or analogs thereof;

m is 1 or 2;

X, Y, and Z are carbon, nitrogen, oxygen, or sulfur and a double bond may, optionally, exist between atoms X and Y or atoms Y and Z; and

salts or isolated enantiomers of said chemical compound.

- 17. The method according to claim 16, wherein said composition comprises a hydrochloride, hydrobromide, p-toluenesulfonate, phosphate, sulfate, perchlorate, acetate, trifluororacetate, propionate, citrate, malonate, succinate, lactate, oxalate, tartrate, benzoate, magnesium, calcium, morpholine, piperidine, dimethylamine, or diethylamine salt of said chemical compound.
- 18. The method according to claim 16, wherein said composition comprises isolated enantiomeric forms of said chemical compounds.
- 19. The method according to claim 18, wherein said isolated enantiomeric forms of said compound is in at least about 90%, 95%, 97.5%, or 99% enantiomeric excess.
- 20. The method according to claim 16, wherein said suppression, reduction, or inhibition of said glycosyltransferase or glycosylhydrolase activity provides therapeutic benefit.