MATH 162 – SPRING 2010 – SECOND EXAM – MARCH 9, 2010 VERSION 01

MARK TEST NUMBER 01 ON YOUR SCANTRON

STUDENT NAME	Solution	Key	
STUDENT ID————			
RECITATION INSTRUCT	OR-		
INSTRUCTOR-			
RECITATION TIME——			

INSTRUCTIONS

- 1. Fill in all the information requested above and the version number of the test on your scantron sheet.
- 2. This booklet contains 12 problems, each worth 8 points. There are four free points. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it is this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes and calculators are not allowed.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

USEFUL INTEGRALS

$$\int \frac{du}{\sqrt{a^2 + u^2}} = \ln(u + \sqrt{a^2 + u^2}) + C$$
$$\int \sqrt{u^2 + 1} \ du = \frac{u}{2}\sqrt{1 + u^2} + \frac{1}{2}\ln(u + \sqrt{1 + u^2}) + C$$

1) What is the most suitable substitution to calculate the integral

$$\int \frac{\sqrt{9x^2 - 4}}{x} dx?$$
A) $3x = 2\sin\theta$
B) $3x = 2\tan\theta$

$$\sqrt{9x^2 - 4} = \sqrt{(3x)^2 - (2)^2}$$
C) $3x = 2\sec\theta$

$$\Rightarrow \text{ Let } 3x = 2\sec\theta$$

D)
$$2x = 3 \tan \theta$$

E)
$$2x = 3\sin\theta$$

2) Which of the following integrals do you get when you make a suitable trigonomet-

ric substitution to evaluate
$$\int \frac{x^3}{\sqrt{1-x^2}} dx?$$
A) $\int \frac{\sin^3 \theta}{\cos \theta} d\theta$

B) $\int \tan^3 \theta \sec \theta d\theta$

C) $\int \frac{\tan^3 \theta}{\sec \theta} d\theta$

D) $\int \sec^4 \theta d\theta$

E) $\int \sin^3 \theta d\theta$

$$\int \frac{x^3}{\sqrt{1-x^2}} dx?$$

Let $\chi = \sin \theta$. Then $d\chi = \cos \theta d\theta$, and $\sqrt{1-\chi^2} = \sqrt{1-\sin^2 \theta} = \sqrt{\cos^2 \theta} = \cos \theta$

Cos θ

Cos θ

Finally $\int \sin^3 \theta d\theta$

$$\int \frac{x}{\sqrt{1-\chi^2}} dx$$

$$\int \int \sin^3 \theta d\theta$$

3) Evaluate the integral

$$\int_{0}^{2} \frac{x^{2}}{(x^{2}+4)^{2}} dx = I$$

$$(A) \frac{\pi}{16} - \frac{1}{8}$$

$$(A) \frac{\pi}{16} - \frac{\pi}{16}$$

$$(A) \frac{\pi$$

4) The form of the partial fraction decomposition of $\frac{17x-3}{x^4-16}$ is

E)
$$\frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x^2+4}$$

5) Evaluate the integral
$$\int_{2}^{3} \frac{2x}{(1+x)(x-1)} dx.$$
A) 1/2
B) $\ln(2/5)$ $\frac{2x}{(1+x)(x-1)} = \frac{A}{1+x} + \frac{B}{x-1}$
C) $\ln(4/3)$ $\Rightarrow 2x = A(x-1) + B(1+x)$

$$x = 1 \Rightarrow 2 = 0 \cdot A + 2 \cdot B \Rightarrow B = 1$$
E) $\ln(8/3)$

$$\int_{2}^{3} \frac{1}{(1+x)(x-1)} dx = \left(\frac{1}{x} + \frac{1}{x} \right) dx = \left(\frac{3}{x} \right) dx = 1$$
6) Use the formulas on page 1 to compute
$$\int_{0}^{1} \frac{dx}{\sqrt{4x^{2} + 9}} = \int_{0}^{1} \frac{dx}{\sqrt{(2x)^{2} + (2)^{2}}} = \mathbf{I}$$
A) $\frac{1}{2} \ln(\frac{2}{3})$

$$a = 3, \quad a = 2x$$
Thus $a = 2 dx$, So $a = \frac{1}{x} da$

$$a = 3 dx = 2dx$$
C) $\frac{1}{2} \ln(\frac{1+\sqrt{5}}{3})$

$$a = 3 dx$$

$$C) \frac{1}{2} \ln \left(\frac{1+\sqrt{3}}{3}\right)$$

$$D) \frac{1}{2} \ln \left(\frac{1+\sqrt{3}}{2}\right)$$

$$E) \frac{1}{2} \ln \left(\frac{2+\sqrt{12}}{2}\right)$$

$$= \left[\frac{1}{2} \ln \left(2+\sqrt{13}\right) - \frac{1}{2} \ln \left(0+\sqrt{9+0}\right)\right]^{2}$$

$$= \frac{1}{2} \ln \left(2+\sqrt{13}\right)$$

$$= \frac{1}{2} \ln \left(2+\sqrt{13}\right)$$

7) The indefinite integral

A)
$$e^{2}-1$$

B) $\pi/4$
 $=\lim_{t\to\infty}\int_{e}^{\infty}\frac{dx}{x((\ln x)^{2}+1)}$ is equal to

(of $u=0 \times . \rightarrow du=\frac{1}{x}dx$

C) $e\ln 2$

D) $\pi/3$
 $=\lim_{t\to\infty}\int_{1}^{ht}\frac{du}{u^{2}+1}=\lim_{t\to\infty}\left(\tan^{-1}u\right)^{ht}$
 $=\lim_{t\to\infty}\left(\tan^{-1}(ht)-\frac{\pi}{4}\right)$
 $=\left(\frac{\pi}{2}-\frac{\pi}{4}\right)=\frac{\pi}{4}$

8) Find the length of the arc of the curve $y = \frac{1}{2}x^2$, with $0 \le x \le 1$.

9) Find the area of the surface obtained by rotating the curve $y = \frac{1}{3}x^3$, $0 \le x \le 1$, about the x-axis.

A)
$$2\pi(\sqrt{2}-1)$$
 $A = \int_{0}^{1} 2\pi \left(\frac{1}{3} \times^{3}\right) \sqrt{1+\left(\times^{2}\right)^{2}} dx$

B)
$$2\pi(\sqrt{2}-\frac{1}{2})$$
 let $u=x^4$. Then $du=4x^3 dx \rightarrow x^3 dx=\frac{1}{4} du$.

C)
$$2\pi(\sqrt{3}-\frac{2}{3})$$
 $u(0)=0^{4}=0$ $u(1)=(^{4}=1)$

$$\overbrace{D})^{\frac{\pi}{9}}(2\sqrt{2}-1)$$

$$E) \frac{\pi}{6} (2\sqrt{2} - \frac{1}{2}) \qquad A = \int_{0}^{1} \frac{2}{3} \pi \sqrt{1 + u} \int_{1}^{1} du$$

$$= \frac{2}{3} \pi \left(\frac{1}{4}\right) \left(\frac{2}{3}\right) \left(1 + u\right)^{3/2} \left|_{0}^{1}\right|$$

$$= \frac{1}{9\pi} \left(2\sqrt{2} - 1\right) = \frac{1}{9\pi} \left(2\sqrt{2} - 1\right)$$

10) Find the x-coordinate of the centroid of the region of the first quadrant bounded by $y = 1 - x^2$, y = 0 and the y-axis.

$$\begin{cases} y = 1 - x^2 \\ x = 1 - x^2 \end{cases}$$

and the y-axis.

$$x = \frac{My}{M} = \frac{\int_{0}^{1} x(1-x^{2}) dx}{\int_{0}^{1} (1-x^{2}) dx}$$

$$= \int_{0}^{1} (x-x^{3}) dx$$

$$= \int_{0}^{1} (1-x^{2}) dx$$

$$= \frac{\left(\frac{1}{2}x^{2} - \frac{1}{4}x^{4}\right)|_{0}}{\left(x - \frac{1}{3}x^{3}\right)|_{0}} = \frac{\frac{1}{2} - \frac{1}{4}}{1 - \frac{1}{3}} = \frac{\frac{1}{4}}{\frac{2}{3}} = \frac{3}{8}$$

11) The limit of the sequence

$$a_n = \frac{(2n+1)!}{n^2(2n-1)!}$$

is equal to

A) 0
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(2n+1)(2n)(2n-1) - - (3)(2)(1)}{(n)(n)(2n-1) - - (3)(2)(1)}$$

(B) 4
(C) 3 =
$$\lim_{h \to \infty} \frac{(2n+1)(2n)}{(n)(n)}$$

D) 2

 $=\lim_{n\to 0}\frac{4n^2+2n}{n^2}=4$ E) The sequence diverges.

12) The sum of the series

$$\sum_{n=2}^{\infty} \frac{2^{n+1}}{3^n} = \sum_{N=2}^{\infty} \frac{2^3}{3^2} \frac{2^{N-2}}{3^{N-2}}$$

is equal to

B)
$$7/9$$
 = $\frac{8}{9} \sum_{N=2}^{9} {\binom{2}{3}}^{N-2}$

D) 2/3 =
$$\frac{8}{9} \left(\frac{1}{1 - \frac{2}{3}} \right) = \frac{8}{9} \left(\frac{1}{\frac{1}{3}} \right) = \frac{8}{9} \left(\frac{3}{3} \right) = \frac{8}{3}$$