電工實驗(二) 實驗報告

實驗單元(8) 運算放大器電路(一) (電路模擬 081)

班別:電2B

組別:22

姓名:李宜恩

學號:00853216

★各項實驗紀錄(藍色字體)、撰寫實驗波形分析與實驗數據分析(藍色字體)、 撰寫實驗問題與討論(藍色字體)、撰寫實驗結論(藍色字體)、按時繳交實驗報 告(遲交扣分),非(藍色字體)扣分。

◎總分=100分。

一、實驗模擬注意事項

- 電路模擬時運算放大器接腳1及接腳5不需要接上可變電阻,此作用是調整 直流偏移量使用。
- 2.依實驗要求,先要設計電阻值,實驗模擬。
- 3.OPAMPuA741 需選擇正確元件庫資料,正負直流電壓需要畫出來。
- 4.請參閱實驗講義中重要測試表格。(請自行寫出,沒寫扣分)
- ①.請填寫個人的測試頻率。
- ②.請填寫各組個人電壓增益實驗設計要求。
- 5.實驗測試項目與實驗記錄:請參閱實驗講義詳細實驗步驟。

二、實驗電路設計與元件計算

1.實驗整體實作電路圖

圖(8-2-1):實驗整體實作電路圖

2.反相電壓放大器電路:實驗設計與計算。

圖(8-2-2): 反相電壓放大器電路

※注意:模擬電路時 uA741 腳位[1,5]不用接上可變電阻,如圖(8-2-2)所示,實作電路時,則需要接上 VR 10KΩ。

3.實驗計算

- (1).請填寫各組個人電壓增益實驗設計要求=<u>Av:-15</u> f:5.4kHz (沒寫扣分)。
- (2).實驗電路設計與計算。
- (3).計算列式(不附上扣分),計算電阻值。

①. 計算
$$\beta = \frac{R6}{R6 + R7} = \frac{1}{1 - A_{100}} = \frac{0.0625}{0.0625}$$

②. 計算
$$R7(opt) = \sqrt{\left(\frac{R_{id}R_o}{2\beta}\right)} = \underline{34.641k\Omega}$$

③. 計算
$$R6 = \frac{-R7(opt)}{A_{vc}} = \underline{2.309k\Omega}$$
 •

(4).開環迴路直流增益: 因為開環直流增益 A_{vo} 在 $+25^{\circ}$ C 時最壞的情況最小值為 2×10^{5} , 所以實際的電壓增益為下列所示:

$$A_{vco}(A_{vo} \neq \infty) = \frac{-\frac{R7}{R6}}{1 + \frac{1}{\beta}A_{vo}}$$
, $\beta = \frac{R6}{R6 + R7} = \frac{1}{1 - A_{vc}}$

表(1-3): 開環迴路直流增益與頻率的相對應值[6]

多數	直流	10Hz	100Hz	1KHz	10KHz	100KHz	1MHz
A _{vo} (理論值)	2×10 ⁵	6.3×10 ⁴	8000	800	80	8	1

(4-1).計算下列電壓增益值,將上述 R6 及 R7 之計算值代入到下列各式子中。

①
$$f = 100Hz$$
 $A_{vco}(A_{vo} \neq \infty) = \frac{-R7/R6}{1 + 1/\beta A_{vo}} = \frac{-14.972}{1 + 1/\beta A_{vo}}$

②.
$$f = 1KHz$$
, $A_{vco}(A_{vo} \neq \infty) = \frac{-\frac{R7}{R6}}{1 + \frac{1}{\beta}A_{vo}} = \frac{-14.708}{}$

(3).
$$f = 10KHz$$
, $A_{vco}(A_{vo} \neq \infty) = \frac{-R7/R6}{1 + 1/\beta A_{vo}} = \frac{-14.99}{1 + 1/\beta A_{vo}}$

(4).
$$f = 100KHz$$
, $A_{vco}(A_{vo} \neq \infty) = \frac{-R7/R6}{1 + 1/\beta A_{vo}} = \frac{-5}{1 + 1/\beta A_{vo}}$

(3).
$$f = 1MHz$$
, $A_{vco}(A_{vo} \neq \infty) = \frac{-\frac{R7}{R6}}{1 + \frac{1}{\beta}A_{vo}} = \frac{-0.8825}{}$

(5).運算放大器電路輸出直流位準偏移量之計算

直流位準偏移量(理論值),含補償電阻 (R6//R7) 情況下:其中參閱 IC Data Sheet $I_{OS}=20nA$ (Input Offset Current),代入(8-38)式,計算出 E_{O1} 值。

$$E_{O1} = \left(1 + \frac{R7}{R6}\right) \left[-\left(R6//R7\right)\left(\pm I_{OS}\right)\right] = \mp 6.59947 \times 10^{-4}$$

單位:V

三、實驗電路模擬

1.附上實驗模擬電路圖,參閱電路圖(8-2-1)及電路圖(8-2-2)。(列入檢查項目中)

圖(8-2-3):實驗模擬電路圖(增加電阻計算值)

2.運算放大器電路輸出直流位準偏移量模擬。

- ①節點[V1]接地^{_______0}。
- ②.附上偏壓點分析項目:
- ◆附上電路節點電壓圖。

◆附上電路分支電流圖。

3.輸入正弦波訊號電路模擬

- ①.自行設計電路圖(8-2-3)。
- ②.依下列各項目頻率值模擬出各項電壓增益。
- ③.輸入 V1 電壓大小 V1=0.01V。
- ④.測量輸入與輸出之時間差=使用游標標示出 CH1 與 CH2 兩個鄰近波峰之間時間差 $\Delta t , 相角 \pounds = \Delta \theta = \frac{2\pi \times \Delta t}{T} \times 360^{\circ} .$

3-1.執行 Time Domain 時域分析。

- ①.測試節點[V1, VO22]模擬結果,附上模擬輸出結果,波形分開視窗。
- ②.輸入頻率=100Hz,使用游標測量節點[VO22]峰-峰值(Vp-p),計算電壓增益= $_{-14.98}$,記錄輸入與輸出之時間差= $_{3u}$ 、計算兩波形之相位差= $_{0.108}$ 度。
- ◆附上節點[V1, VO22]模擬結果。

- ③.輸入頻率=1KHz,使用游標測量節點[VO22]峰-峰值(Vp-p),計算電壓增益= $_{-14.98}$,記錄輸入與輸出之時間差= $_{0}$ 、計算兩波形之相位差= $_{0}$ 度。
- ◆附上節點[V1, VO22]模擬結果。

④.輸入頻率=10KHz,使用游標測量節點[VO22]峰-峰值(Vp-p),計算電壓增益= $_{-14.816}$,記錄輸入與輸出之時間差= $_{0}$ 、計算兩波形之相位差= $_{0}$ 度。

◆附上節點[V1, VO22]模擬結果。

⑤.輸入頻率= $100 \, \mathrm{KHz}$,使用游標測量節點[VO22]峰-峰值(Vp-p),計算電壓增益= $_{-5.64}$,記錄輸入與輸出之時間差= $_{1.9001u}$ 、計算兩波形之相位差= $_{08.436}$ 度。

◆附上節點[V1, VO22]模擬結果。

⑥.輸入頻率=1MHz,使用游標測量節點[VO22]峰-峰值(Vp-p),計算電壓增益= $_{-0.55}$ __,記錄輸入與輸出之時間差= $_{208.664n}$ __、計算兩波形之相位差= $_{75.119}$ _____度。

◆附上節點[V1, VO22]模擬結果。

表(8-4): VO22 節點的電壓增益與頻率及關係

測試頻率值	VO22 節點 電壓增益 (計算值)	VO22 節點 電壓增益 (模擬值)	計算兩波形之 時間差(sec)	計算兩波形之 相角差(度)
100Hz	-14.972	-14.98	3u	0.108
1KHz	-14.708	-14.98	0	0
10KHz	-14.99	-14.816	0	0
100KHz	-5	-5.64	1.9u	68.436
1MHz	-0.8825	-0.55	208.664n	75.119

- 3-2.請簡略說明,上述輸入頻率值與電壓增益值的波形關係。
 - 頻率越高,電壓增益越低。
- 4.非反相電壓和放大器電路
- ①.Time Domain 分析。
- ②.自行設計電路圖(8-2-3)。

- ③.依下列各項目頻率值模擬出各項電壓增益。
- ④.輸入 V1 電壓 V1=0.01V,輸入頻率=依各組頻率值。
- ⑤.測試節點[V1, V022, VO55]模擬結果,附上模擬圖,波形分開視窗。使用游標測量節點峰-峰值(Vp-p)。
- ◆附上節點[V1, VO22, VO55]模擬結果。

⑥. 記錄數據:測試節點 [V1] = _____(Vp-p), [VO22] = _____298.907 $(Vp-p) \, , \label{eq:vp-p}$

 $[VO55] = _{\underline{}} (Vp-p) \circ$

- ⑦.計算節點[V1]、[VO22]及[VO55]之電壓關係: 反向 。
- ⑧.寫出電壓和關係式:
- ⑨.請簡略說明,上述輸入波形與輸出波形的電壓關係。

輸入波形經過電壓隨偶器到第二級,在經過反向放大器放大 15 倍,最後經過加法器到輸出,因此輸入波形與輸出波形相差 180 度。

四、撰寫實驗模擬結論和心得

設次實作運算放大器電路,也設計了老師要求之增益,更應證了課本上的理論。

五、實驗綜合評論

- 1. 寫出在此實驗單元中您學會了那些項目。實作及設計運算放大器電路。
- 2. 寫出在此實驗單元中您感到最困難是那些項目。實作運算放大器電路。
- 3.當遭遇到實驗瓶頸時,除了尋求實驗助教協助之外,你能想出其他方法來解決你的問題嗎?詢問同學。
- 4.對於上課進度及上課內容,請提出您的建議。都很良好。
- 5.就個人實驗進度安排及最後結果,自己的評等是幾分。100分。
- 6.在實驗項目中,最容易的項目有那些,最艱難的項目包含那些項目,並回憶一下, 您在此實驗中學到了那些知識與常識。

實驗筆記較為簡單,而實作與模擬因為元件較多,比較具困難。 六、附上實驗進度紀錄單(照片檔)

電工實驗進度記錄單

◎上課班別:□2A、□2B、□3A、□3B 組別: □2A: □基本 数 + 19 (-)
◎實驗單元(8): 建草 牧 大 器 (一) ■上述及左列沒寫和 5分。
○月五十元(8)· <u></u>
图附上實驗進度紀錄
1. 實驗進度記錄:應確實記錄,實驗電路檢查時,會查驗、檢視實驗數據。
①.工作日期: 109年 5月 >1日、工作時到: 3小時 的 線時段、 □: 開放時段。
图實驗進度說明: SIM 08 /
②.工作日期: 107年 年 月 四日、工作時數: 4 小時 75:上京時報、□:開放時段。
重實驗進度說明: ELAB o&1
③. 工作日期:年月日、工作時數: ↓ 小時、□:上課時段、□:開放時段。
国 實驗進度說明:
①. 工作日期:年日、工作時數:
實驗進度說明:
⑤. 工作日期:年月日、工作時數:小時、□:上課時段、□:開放時段。
■實驗進度說明:
⑥、工作日期:年月日、工作時數:小時、□:上課時段、□:開放時段。
■實驗進度說明:
2.依上課說明填寫實驗注意事項,沒寫或內容不完整,扣□5分或□10分。
Z. A. Z. ak au 71-97 by A. ak az a 7 A.
一 电源性
1:
VRIOK 9 1000 1800
Binz Bini -12 +12
一種客以外下正面極性
- the Par B Par The
-12,

3.記錄實驗問題之解決策略,包括─問題之描述、分析造成問題的原因及提出解決問題的方法。 依實驗過程,請記錄之。沒寫的或內容簡略者,扣□5分或□10分。

直流 偏要 屋栽料槽

4. 請先	行自我	評量:	我對我的作業評分	一正確度共	100分	。 ◎我	的作業	自評得分=一分。
項次	滿分	評比	評分標準	1	項次	滿分	評比	評分標準
1	20%	>0	電路裝配的正確	性	4	20%	>0	實驗數據記錄的正確性
2	20%	اسد	儀器操作程度的.	正確性	5	10%	(0	工作安全與環境維護
3	20%	20	電路測試的正確	性	6	10%	14	工作計畫內容
上列	沒寫的	扣 10 分	-					
44 44	W- W7 42	- 4						
. 後線	配置及	元件配	置:□接線架高、	□接線凌亂	、□接約	《錯誤、	□配置	擁擠、□元件架高、□
								有違反者,每項扣5分
			新接線再行檢查。					
.質驗:	测试内部	容:□數	技 據記錄有缺失、[〕波形有缺失	:、□数	據缺單位	<u> </u>	有違反者,每項扣5分
.實驗:	测试操作	作程序	操作不熟練(扣1	10分)、操作	有錯誤	(和10	分)。	
.作業	期限:[□準時材	檢板、□遅交1週	扣10分, []遅交 2	週扣 20	分,□	第3週不給延期,直接未
吉果,	依據測	試結果!	给分,最高60分		/			
.記錄4	持定波升	 沙撷取	持間或測量特定值	: _>0>0 /6	12/21	下午	03 /52	. 24
上列	沒寫的:	10分	•					
(麵包:	板照像	,附於分	實驗報告中。					
								1 . 0
電路	檢查評	分(記錄	わ分)=	分。	0	檢查時	[a] :	090528
助教	簽章:_		Rb 66	陳飾耳	()領取電	路板(需要焊接 PCB);□OK。
.檢視	所焊接	之實驗:	電路板:每項缺失	to 5 40 .				
					要 46 4B	ed 🗆 =	AL 38 44	過長 □焊錫成球狀
			口焊錯元件					
AXX 492	电给放	所出版が	形(常合乎規格):[皮形(扣)	10分)、	□波升	沙失真(扣5分)。
) 類取	皮形, 用	计於實验	 報告中。					
		The state of the	验報告中。					
電路相	反檢查部	分(記载	条扣分)=	分。		◎檢查	時間:	
绝評分	·=	60)	分。	◎助教簽章	:	以	教陳金	名[3]
	實驗紀							

-2-

