	VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ	Předmět	BPGA Programovatelné automaty			
		Jméno	Václav Pastušek			
9	V BRIVE	Ročník	3.	Studijní skupina	BPC-EKT	
		Spolupracoval		Měřeno dne	23.4.2021	
Kontroloval		Hodnocení		Dne		
Číslo úlohy	Název úlohy					
	Kuličky	1				

Úkol:

- 1. Nakreslete svoji představu, jak model dávkovače kuliček vypadá.
- 2. Napište program pro dávkování kuliček v jazyce LAD, FBD, ST nebo v kombinacích. Využijte tvorby Subroutine, Add-On nebo kombinací. Použijte předefinovaný projekt Kulicky BPC PGA.ACD.
- 3. Vytvořte SCADA systém pomocí FT View ME

Popis procesu:

Program po spuštění odpočítá z jednotlivých válců kuličky, přičemž počet odpočítaných kuliček z jednotlivých válců odpovídá hodnotě nastavené na číslicovém voliči. Dávkování probíhá paralelně. Dávkování je možné spustit pouze, pokud je v zásobnících dostatek kuliček a krabice je na svém místě pod válci. Plný stav kuliček je indikován snímačem v horní části každého válce. Tuto skutečnost využijte pro odlišení stavů READY (1.start) a START. Systém se uvede do chodu prvním stisknutím tlačítka START. V tomto stavu (READY) jsou aktivovány spodní západky ve válcích a je možné naplnit válce. Po splnění podmínek naplnění a přítomnosti krabice, svítí zelené světlo a je možné spustit dávkování kuliček opětovným stiskem tlačítka START. Je nutné číslo v BCD kódu převést na binární číslo. Program lze zastavit v libovolném okamžiku tlačítkem STOP, kdy dojde k rozsvícení červeného světla a uvolnění západek. Pro zamezení přehřátí západek je model vybaven ventilátory, které je možné programově zapínat/vypínat. Při běhu programu budou ventilátory vždy sepnuty a budete ověřovat běh ventilátoru pomocí zpětného hlášení (simulovaný čas sepnutí je 5 s) z příslušného stykače. V případě poruchy se program zastaví (stav STOP).

Hodnotu číslicového voliče lze nastavovat v rozsahu 0 až 9. Tedy budete voliče simulovat v příslušných proměnných v Controller Tags. Aplikace signalizuje, že zadaná hodnota je mimo rozsah (AlarmL9). V tomto případě nemůžete program spustit tlačítkem START (ve stavu READY ani START).

Popis modelu:

Model obsahuje tři válce s kuličkami, přičemž každý z nich je vybaven dvojicí západek sloužících k odpočítávání kuliček a snímačem přítomnosti kuliček v horní části válce. Ke každému válci je jeden otočný číslicový spínač (každá cifra má rozsah 0 až 9) sloužící k nastavení požadovaného počtu kuliček. Každý číslicový volič má na svém výstupu čtyři vodiče neboli čtyři bitové hodnoty, které dohromady tvoří číslo v BCD kódu. Výstupy z voliče jsou převedeny na binární signály, viz popis signálů.

Pod válci se nachází krabice na kuličky, její detekce se provádí pomocí mikrospínače

I/O vstupy pro modul:

Input				
0	1	2	3	4
START	S1	S2	S3	S4
16	17	18	19	-
STOP	ZH1	ZH2	ZH3	-

I/O výstupy pro modul:

Output						
0	1	2	3	4	5	6
C_LED	M1U	M2U	M3U	Ve1	Ve2	Ve3
16	17	18	19	-	-	-
Z_LED	M1D	M2D	M3D	-	-	-

Další vstupy:

Přímý přepis hodnot No_Balls1/2/3.

Vypracování:

Pro programování byl zcela použit jazyk ST a dvakrát byla využita tvorba Add-On instrukce.

Jejich názvy jsou: ventilator, který ovládá ventilátor a zjištuje, zda na něm nenastala chyba.

zapadky, který ovládá horní a dolní západku, pomocí 5 stavového automatu (jedná se

o jeden cyklus, kdy spadne 1 kulička).

Obě instrukce jsou v hlavním programu celkem 3x.

Bližší informace se dají nalézt v dokumentaci ST v kulicky_204437_v3.zip

Hlavní program se nachází v periodickém tasku.

Zde se nachází tří-stavový automat. Jehož stavy jsou STOP, READY a START. Tyto názvy stavů lze vidět i ve vizualizaci, pro přehlednost ve kterém stavu se nacházíme. Mezi stavy lze přecházet tlačítky START a STOP, avšak jen za splnění určitých podmínek. Navíc tlačítko STOP má vyšší prioritu než START.

K definovaným časovačům byl přidán další pro dobu na kontrolu čidel S1-S4.

Také se počítá s alarmyH1-H3, alarmyL1-L3 a stykači od ventilátorů, které vyvolávají v daných případech poruchu.

Vizualizace:

Ve vizualizaci byla použita změna barvy – většina tlačítek, LEDky a čidla; posun–západky a rotace–ventilátory. Lze zde vidět aktuální stav hlavního stavového automatu a lze nastavovat hodnoty No_balls, tedy počet kuliček, který se má odpočítat do krabice nebo lze vyvolat daný alarm. Bližší informace lze nalézt v dokumentaci vizualizace v kulicky_204437_v3.zip. Níže je uveden možný chod od stavu STOP po START a zpět, včetně I/O modulu a jedna varianta poruchy.

Závěr:

Byly splněny všechny části zadání. Přiložené soubory zahrnují základní dokumentaci, dokumentaci ST kódu, dokumentaci vizualizace a soubor s příponou .apa a .ACD. Níže jsou uvedeny obrázky z vizualizace.

stav: STOP

stav: READY

stav: START

simulace poruch Ovládací panel Název aktuálního stavu: STOP AlarmH1 0 AlarmH2 1 Stop Start AlarmL1 1 AlarmL2 0 AlarmL3 0 No balls1 S2 **E** S3 ¹¹ No_balls2 Ve2: 0 Ve3: 0 Ve1: 0 No_balls3 ZH2: 1 ZH3: 1 ZH1: 0 Module Properties - Slot 3 General I/O Data Modu Inputs (Click to toggle o 00 01 02 03 04 05 16 17 18 19 20 21 close Outputs 00 01 02 03 04 05

MAIN - /Kuli...

16 17 18 19 20 21

OK