Semana 11

Wednesday, October 13, 2021 8:18 PM

Center and spread

Goals

- Quantify natural concepts like "center" and "variability"
- Examine bell shaped distributions
- Understand why many of the empirical distributions that we have generated are bell shaped

The average and the histogram

The average (or mean)

- Need not be a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data
- · Smoothing operator: collect all the contributions in one big pot, then split evenly

Relation to the histogram

- The average of a list depends only on the proportions in which the distinct values appear, not on the number of entries in the list.
- The average is the center of gravity of the histogram.
- It is the point on the horizontal axis where the histogram balances.

The average and the median

- Average: Balance point of the histogram
- Median: Halfway point of the data; half the area of histogram is on either side of the median.
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

Standard deviation

Defining variability

- Plan A: "biggest value smallest value"
 - o Doesn't tell us much about the shape of the distribution
- Plan B:
 - Measure variability around the mean
 - Need to figure out a way to quantify this

The standard deviation (SD) measures roughly how far the data are from their average

• SD = root mean square of deviation from average

(Steps: 5 4 3 2 1)

• The SD has same units as the data.

Why use the SD?

There are two main reasons.

- The first reason: No matter what the shape of the distribution, the bulk of the data in the range "average ± a few SDs"
- The second reason: Relation with bell shaped curves

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)
average ± 3 SDs	at least 1 - 1/9 (88.888%)
average ± 4 SDs	at least 1 - 1/16 (93.75%)
average ± 5 SDs	at least 1 - 1/25 (96%)

No matter what the distribution looks like

How big are most of the values?

No matter what the shape of the distribution, the bulk of the data in the range "average ± a few SDs"

Chebyshev's Inequality

No matter what the shape of the distribution, the proportion of the data in the range "average \pm z SDs" is at least 1-1/z^{\wedge}

Normal curve

Goals

- Describe what is meant by "bell shaped curved"
- Explain how bell shaped curves arise in inference

Standard units

- The standard units measures "how many SDs above average?"
- Z = (value-average)/SD
 - Negative z: value below average
 - o Positive z: value above average
 - Z= 0: value equal to average
- When values are in standard units: average = 0, SD = 1
- Chebyshev: At least 96% of the values of z are between -5 and 5

The SD and the histogram

- Usually, its not easy to estimate the SD by looking at a histogram
- But if the histogram has a bell shape, then you can.

The SD and Bell-Shaped curves

If a histogram is bell-shaped, then

- The average is at the center
- The SD is the distance between the average and the points of inflection on either side

How big are most values?

No matter what the shape of the distribution, the bulk of the data are in range "average ± a few SDs". If a histogram is bell-shaped, then

• Almost all of the data are in the range "average ± 3 SDs"

Bounds and Normal Approximations

Percent in Range All Distributions Nor

Normal Distribution

Percent in Range	All Distributions	Normal Distribution
average ± 1 SD	at least 0%	about 68%
average ± 2 SDs	at least 75%	about 95%
average ± 3 SDs	at least 88.888%	about 99.73%

Second reason for using the SD

If the sample is

- Large, and
- · Drawn at random with replacement,

Then, regardless of the distribution of the population, the probability distribution of the sample sum (or of the sample average) is roughly normal

Sample averages

- Often we only have a sample; we don't know much about the population which it was drawn.
- The central limit theorem says that the probability distribution of the average of a large random sample is roughly normal, regardless of the distribution of the population.
- This allows us to make inferences based on averages of large random samples.

EXTRA:

What is the mean and standard deviation of a list converted into standard units? Mean is 0, SD is 1

Correlation

Prediction

- To predict the value of a variable,
 - o Identify attributes that are associated with that variable and that you can measure.
 - Describe the relation between the attributes and the variable you want to predict
 - Use the relation to make your prediction

Visualization

Two numerical variables

- Trend: Just some general upward or downward movement.
 - o Positive association
 - Negative association
- Patern
 - Any discernible "shape" in the scatter
 - o Linear
 - Non-linear

Motto: Visualize, then quantify

The correlation coefficient *r*

- Measures linear association
- Based on standard units
- -1 ≤ r ≤ 1
 - o R = 1: scatter is perfect straight line sloping up
 - R = -1: scatter is perfect straight line sloping down
- R = 0: no linear association; uncorrelated

Definition of *r*

Correlation Coefficient (R) =

verage of Product of X in standard units	and	Y in standard units
--	-----	---------------------

Measures how clustered the scatter is around a straight line

Operations that leave *r* Unchanged

The correlation coefficient is not affected by:

- Changing the units of measurement of the data
 - o Because r is based on standard units
- Which variable is plotted on the horizontal axis and which on the vertical
 - Because the product of standard units is the same either way

Casual conclusion

Be careful ...

- Correlation measures linear association
- Association doesn't imply causation
- Just because two variables are correlated, that doesn't mean one causes the other

Nonlinearity and Outliers

Both of these can affect correlation

• Draw a scatter plot before you decide to compute r

Ecological Correlation

- Correlations based on groups or aggregated data
- · These can be misleading
 - o For example, they can be artificially high