Discrete Mathematics CHAPTER 03 집합

본 강의자료는 강의의 편의를 위해 교수님들께 제공되는 자료입니다. 자료의 글과 그림은 저작권이 저자에게 있으므로 **대중적인 배포를 할 수 없음**을 유의해주시길 바랍니다.

학습개요

- 기본 개념
 - ◆ 집합과 관련된 다양한 개념을 익힌다
- 집합의 연산
 - ◆ 집합 연산자들을 통해 새로운 집합을 정의한다
 - ◆ 집합의 대수법칙을 통해 복잡한 집합 연산을 단순화한다
- 곱집합과 멱집합
 - ◆ 여러 가지 집합의 종류를 이해하고 표현한다
- 집합의 분할
 - ◆ 집합을 서로소면서 공집합이 아닌 부분집합들로 나눈다
- 퍼지집합
 - ◆ 퍼지이론을 통해 퍼지집합 연산을 이해한다

Section 01 기본 개념 (1)

정의 3.1

내용 규정이 명확한 대상의 모임을 집합(set)이라고 하고, 그 대상들을 원소(element)라고 한다. 원소 a가 집합 A에 속할 경우 이를 'a는 집합 A의 원소다'라고 하고, $a \in A$ 로 나타낸다. 원소 a가 집합 A의 원소가 아닐 경우에는 $a \notin A$ 로 나타낸다.

● 원소나열법

◆ 집합에 속하는 모든 원소를 쉼표(,)를 이용하여 { } 안에 나 열하는 방식

● 조건제시법

◆ 집합에 속하는 원소들의 공통적인 특징을 조건식으로 제시 하는 방식

Section 01 기본 개념 (2)

예제 3.2

집합 A가 원소 1, 3, 5, 7, 9를 갖도록 집합 A를 원소나열법과 조건제시법으로 나타내어라.

풀이

원소나열법: *A*={1, 3, 5, 7, 9}

조건제시법: $A = \{a \mid 1 \le a \le 9, a$ 는 홀수\

Section 01 기본 개념 (3)

정의 3.2

일정한 모임 전체의 원소를 포함하는 집합을 전체집합(universal set)이라고 하고, U로 나타낸다. 또한 하나의 원소도 포함하고 있지 않은 집합을 공집합(empty set)이라고 하고, $\{\}$ 또는 \emptyset 으로 나타낸다.

정의 3.3

두 집합 A와 B의 원소가 동일할 때 두 집합 A와 B는 서로 같다(equal) 또는 상등이라고 하고, A=B로 나타낸다. 즉 a \in A면 a \in B고, a \in B면 a \in A일 때 A=B다.

$$A = B \Leftrightarrow (a \in A \leftrightarrow a \in B)$$

Section 01 기본 개념 (4)

예제 3.6

집합 $A = \{x-2, y+5\}$ 와 $B = \{x-2y, x+3y\}$ 가 서로 상등이고, x, y가 모두 양수라고 할 때 집합 A를 원소나열법으로 나타내어라.

풀이

문제에서 두 집합이 서로 상등이므로 집합의 원소가 동일해야 한다. 그런데 만일 x-2=x+3y라고 하면 $y=-\frac{2}{3}$, 즉 음수가 되어 문제의 조건을 만족하지 못한다. 결국 x-2=x-2y가 되고 식을 풀면 y=1이 된다. 그리고 y+5=x+3y에서 x=3임을 알 수 있다. 따라서 집합 A를 원소나열법으로 나타내면 다음과 같다.

$$A = \{x-2, y+5\} = \{3-2, 1+5\} = \{1, 6\}$$

Section 01 기본 개념 (5)

정의 3.4

A와 B가 집합이고 A의 모든 원소가 B에 포함될 때 A를 B의 부분집합(subset)이라고 하고, $A \subseteq B$ 로 나타낸다.

$$A \subseteq B \iff (a \in A \rightarrow a \in B), \forall a$$

또한 A가 B의 부분집합이지만 A와 B가 같지 않다면 A를 B의 진부분집합(proper subset) 이라고 하고, $A \subset B$ 로 나타낸다.

Section 01 기본 개념 (6)

정리 3.1

집합A, B, C에 대해 다음이 성립한다.

- $(1)\emptyset\subseteq A$
- $(2) A \subseteq A$
- (3) $A \subseteq B$ 고 $B \subseteq C$ 면 $A \subseteq C$ 다.
- $(4) A = B \Leftrightarrow A \subseteq B, B \subseteq A$
- 【증명】 (1) 공집합이 A의 부분집합임을 증명하기 위해 명제 '만일 $x \in \emptyset$ 이면 $x \in A$ 다.'가 참임을 증명한다. 그런데 공집합에는 원소가 존재할 수 없으므로 $x \in \emptyset$ 이라는 문장은 거짓이고, 명제의 함축에 의해 '만일 $x \in \emptyset$ 이면 $x \in A$ 다.'라는 문장은 항상 참이다. 그러므로 공집합은 집합 A의 부분집합이다.
 - (2) 정리가 성립함을 보이기 위해 $x \in A$ 면 $x \in A$ 임을 증명한다. 그런데 $x \in A$ $\Rightarrow x \in A$ 임이 분명하므로 부분집합의 정의에 의해 $A \subseteq A$ 가 성립한다.

Section 01 기본 개념 (7)

(3) 정리가 성립함을 보이기 위해 $x \in A$ 면 $x \in C$ 임을 증명한다.

$$x \in A \Rightarrow x \in B$$
 $(\because A \subseteq B)$ $\Rightarrow x \in C$ $(\because B \subseteq C)$

그러므로 $A \subseteq B$ 고 $B \subseteq C$ 면 $A \subseteq C$ 다.

(4) A = B의 정의는 다음과 같다.

$$A=B \Leftrightarrow (a \in A \leftrightarrow a \in B)$$

즉 $(a \in A \rightarrow a \in B) \Rightarrow A \subseteq B$, $(a \in B \rightarrow a \in A) \Rightarrow B \subseteq A$ 가 성립한다.

그러므로 A=B에 대한 필요충분조건은 $A\subseteq B$, $B\subseteq A$ 다.

Section 01 기본 개념 (8)

정의 3.5

집합 A가 n개의 원소를 갖는 유한집합일 때 n을 A의 기수(cardinality)라고 하며, |A|로 나타낸다.

예제 3.10

집합 $A = \{a \mid a < 8, a \in S \text{ Supplies of Supplies of A Supplies of A Supplies A Suppli$

풀이

 $A=\{1, 2, 3, 4, 5, 6, 7\}$ 이므로 |A|=7이다.

Section 01 기본 개념 (9)

예제 3.13

전체집합 U= $\{1, 2, 3, \dots, 48, 49, 50\}$ 일 때 집합 A가 다음 두 조건을 만족하는 집합이라고 하자.

- (I) $A \subset U$
- (II) A에 속한 어떤 두 원소의 합도 4로 나눠지지 않는다.

집합 A가 가질 수 있는 원소 개수의 최대값은 얼마인지 구하여라.

- 물이 첫 번째 조건에 따라 집합 A는 전체집합 {1, 2, 3, ···, 48, 49, 50}의 진부분집합이다. 4로 나누어지는지 여부를 판단하기 위해 전체집합의 원소를 다음과 같이 생각해볼 수 있다. 단, k는 정수다.
 - 4의 배수 집합{4, 8, 12, ···, 48}={4k | 1≤k≤12}

Section 01 기본 개념 (10)

- ① 4로 나누었을 때 나머지가 1인 집합 $\{1, 5, 9, \dots, 49\} = \{4k+1 | 0 \le k \le 12\}$
- ② 4로 나누었을 때 나머지가 2인 집합 $\{2, 6, 10, \dots, 50\} = \{4k+2 | 0 \le k \le 12\}$
- ② 4로 나누었을 때 나머지가 3인 집합 $\{3, 7, 11, \dots, 47\} = \{4k+3 | 0 \le k \le 11\}$

일단 집합 ②는 4의 배수 집합으로 두 번째 조건을 만족하지 못하기 때문에 배제한다. 또 집합 ③의 원소와 집합 ④의 원소를 합하면 (4k+1)+(4k+3)은 다시 4의 배수가 되므로 두 집합의 원소 역시 두 번째 조건을 만족하지 못한다. 따라서 조건을 만족하는 집합 A가 최대 원소를 갖기 위해서는 집합 ④와 ④의 조합 또는 집합 ④와 ④의 조합을 원소로 가져야함을 알 수 있다. 집합 ④와 ⑤의 원소의 개수는 각각 13, ④의 원소의 개수는 12므로 더 많은 개수는 ④와 ⑥의 조합이 되어 13+13=26이 된다. 그런데 ④와 ⑤의 조합에 집합 ②의 원소 한 개를 추가하여도 제시된 두 개의 조건을 만족함을 알 수 있다. 즉 집합 A의 최대 원소의 개수는 13+13+1=27이다.

Section 02 집합의 연산 (1)

- 벤 다이어그램(Venn diagram)
 - ◆ 집합과 집합 사이의 관계를 표현

Section 02 집합의 연산 (2)

정의 3.6

전체집합 U의 부분집합 A에 대하여 $x \in U$ 고 $x \notin A$ 인 원소 x들의 모임을 집합 A의 여집합(complement)이라고 하며, 다음과 같이 나타낸다.

$$\overline{A} = \{x \mid x \in U \land x \notin A\}$$

Section 02 집합의 연산(3)

예제 3.16

전체집합 U를 100 이하의 자연수 집합이라고 하자. 이때 U의 부분집합 A가 $x \in A$ 면 $\frac{81}{x} \in A$ 를 만족할 때 $|A^c|$ 의 최대값과 최소값의 차를 구하여라.

풀이

 $|A^c|$ 의 값을 구하기 위해서는 조건을 만족하는 집합A를 구한 뒤 |U| -|A|를 계산하면 된다. 여기서 전체 집합 U는 100 이하의 자연수 집합이므로 |U| =100 이다. 조건 x \in A 면 $\frac{81}{x}$ \in A 를 만족하는 x 는 81 의 약수인 1,3,9,27,81 이다. 따라서 집합 A 는 $\{9\}$, $\{1,81\}$, $\{3,27\}$, $\{1,9,81\}$, $\{3,9,27\}$, $\{1,3,27\}$, $\{1,3,9,2$

Section 02 집합의 연산 (4)

정의 3.7

집합 A와 B가 있다고 하자. 이때 두 집합 A와 B에 모두 속하거나 둘 중 어느 한 쪽에 속하는 원소들의 모임을 합집합(union)이라고 하며, 다음과 같이 나타낸다.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Section 02 집합의 연산 (5)

예제 3.18

집합 $A = \{1, 4\}, B = \{2, 4, 5\}$ 일 때 합집합 $A \cup B \cup C = \{1, 2, 4, 5, 7, 9\}$ 를 만족하는 집합 C의 개수를 구하여라.

풀이

집합 A와 B의 합집합은 $A \cup B = \{1, 2, 4, 5\}$ 다. 따라서 $A \cup B \cup C = \{1, 2, 4, 5, 7, 9\}$ 를 만족하려면 집합 C는 원소 7, 9를 반드시 포함하고 있어야 한다. 조건을 만족하는 집합 C를 나열하면 다음과 같다.

{7, 9}, {1, 7, 9}, {2, 7, 9}, {4, 7, 9}, {5, 7, 9}, {1, 2, 7, 9}, {1, 4, 7, 9}, {1, 5, 7, 9}, {2, 4, 7, 9}, {2, 5, 7, 9}, {4, 5, 7, 9}, {1, 2, 4, 7, 9}, {1, 2, 5, 7, 9}, {1, 4, 5, 7, 9}, {2, 4, 5, 7, 9}, {1, 2, 4, 5, 7, 9}

따라서 집합 C의 개수는 16이다.

Section 02 집합의 연산 (6)

정의 3.8

집합 A와 B가 있다고 하자. 이때 두 집합 A와 B에 모두 속하는 원소들의 모임을 교집합 (intersection)이라고 하며, 다음과 같이 나타낸다.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Section 02 집합의 연산 (7)

예제 3.19

실수 x에 대하여 집합 $A = \{x \mid -3 \le x \le 3\}$, $B = \{x \mid -2 \le x < 5\}$, $C = \{x \mid -6 \le x < 8\}$ 일 때 $A \cap B \cap C$ 를 구하여라.

풀이 세 집합 A, B, C의 교집합은 다음과 같다.

 $A \cap B \cap C = \{x \mid -2 \le x \le 3\}$

Section 02 집합의 연산(8)

정의 3.9

집합 A와 B에 대해서 A에는 속하지만 B에는 속하지 않는 원소들의 모임을 차집합 (difference)이라고 하며, 다음과 같이 나타낸다.

$$A-B=\{x\mid x\in A\land x\notin B\}$$

Section 02 집합의 연산 (9)

예제 3.24

집합 $A = \{1, 3, 5, 7\}, B = \{4, 5, 6, 7\}$ 일 때 $(A - B) \cup (B - A)$ 의 원소의 합을 구하여라.

풀이

두 집합 A, B의 차집합을 구하면 다음과 같다.

$$A - B = \{1, 3\}$$

$$B-A=\{4, 6\}$$

따라서 $(A-B) \cup (B-A) = \{1, 3, 4, 6\}$ 이다.

즉 모든 원소의 합은 14다.

Section 02 집합의 연산 (10)

정의 3.10

두 집합 A와 B에 대하여 $A \cap B = \emptyset$ 이면 집합 A와 B를 서로소(disjoint)라고 한다.

Section 02 집합의 연산 (11)

예제 3.26

다음 집합A, B가 서로소인지 확인하여라.

$$A = \{x \mid x = 2n, n \in \mathbb{Z}\}, B = \{x \mid x = 2n + 1, n \in \mathbb{Z}\}\$$

 \exists 이 집합A와 B를 원소나열법으로 나열하면 다음과 같다.

$$A = {\cdots, -4, -2, 0, 2, 4, \cdots}$$

 $B = {\cdots, -5, -3, -1, 1, 3, 5, \cdots}$

두 집합의 원소들에 대해 $A \cap B = \emptyset$ 이므로 두 집합 A와 B는 서로소다.

Section 02 집합의 연산 (12)

정리 3.2

집합 A, B가 유한집합이면 $|A \cup B| = |A| + |B| - |A \cap B|$ 가 성립한다.

【증명】 $A \cup B$ 를 벤 다이어그램을 이용하여 나타내면 다음과 같다.

또한 다음과 같이 변경하여 표현할 수 있다.

$$\begin{bmatrix} A & B & U \\ A & D & D \\ A$$

Section 02 집합의 연산 (13)

이를 이용하여 다음과 같이 증명한다.

가 된다. 또한
$$A=(A-B)\cup (A\cap B)$$
고 $A-B$ 와 $A\cap B$ 가 서로소므로
$$|A|=|A-B|+|A\cap B|$$

$$|A-B|=|A|-|A\cap B|$$

가 된다. ①번의 식에 위 결과 |A-B|를 대입하면

$$|A \cup B| = |B| + |A - B|$$
$$= |A| + |B| - |A \cap B|$$

가 되어 정리가 성립한다.

Section 02 집합의 연산 (14)

정리 3.3

유한집합 A, B가 서로소면 $|A \cup B| = |A| + |B|$ 가 성립한다.

【증명】 합집합 $|A \cup B|$ 의 기수는 [정리 3.2]에 의해 $|A \cup B| = |A| + |B| - |A \cap B|$ 다. 그런데 A와 B가 서로소므로 $A \cap B = \emptyset$ 이다. 따라서

$$|A \cup B| = |A| + |B| - |A \cap B|$$
$$= |A| + |B| - |\varnothing|$$
$$= |A| + |B|$$

가 된다. 즉 $|A \cup B| = |A| + |B|$ 가 성립한다.

Section 02 집합의 연산 (15)

정리 3.4

전체집합 U와 부분집합 A에 대하여 다음과 같은 성질이 성립한다.

$$(1) A \cup \overline{A} = U, A \cap \overline{A} = \emptyset$$

(2)
$$\overline{U} = \emptyset$$
, $\overline{\emptyset} = U$

$$(3) \ \overline{\overline{A}} = A$$

$$(4) A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$$

[증명]
$$(1) x \in A \cup \overline{A} \Leftrightarrow x \in A \lor x \in \overline{A}$$

$$\Leftrightarrow x \in A \lor (x \in U \land x \notin A)$$

$$\Leftrightarrow (x \in A \lor x \in U) \land (x \in A \lor x \notin A)$$

$$\Leftrightarrow x \in (A \cup U) \land x \in U$$

$$\Leftrightarrow x \in U \land x \in U$$

$$\Leftrightarrow x \in U$$

그러므로 $A \cup \overline{A} = U$ 가 성립한다.

Section 02 집합의 연산 (16)

(2) $x \in \overline{U}$ 라고 하면 [정의 3.6]에 의해 $(x \in U \land x \notin U)$ 가 된다. 그런데 $x \in U$ 고 $x \notin U$ 인 x는 존재하지 않으므로 \varnothing 이 되어 $\overline{U} = \varnothing$ 이 성립함을 알 수 있다. 마찬가지로 $x \in \overline{\varnothing}$ 라고 하면 $(x \in U \land x \notin \varnothing)$ 이 되므로 $x \in U$ 다. 따라서 $\overline{\varnothing} = U$ 가 성립한다.

$$(3) x \in \overline{A} \Leftrightarrow x \in U \land x \notin \overline{A}$$

$$\Leftrightarrow x \in U \land \neg (x \in \overline{A})$$

$$\Leftrightarrow x \in U \land \neg (x \in U \land x \notin A)$$

$$\Leftrightarrow x \in U \land (x \notin U \lor x \in A)$$

$$\Leftrightarrow (x \in U \land x \notin U) \lor (x \in U \land x \in A)$$

$$\Leftrightarrow x \in \overline{U} \lor x \in (U \cap A)$$

$$\Leftrightarrow x \in \overline{U} \lor x \in A$$

$$\Leftrightarrow x \in A$$
그러므로 $\overline{A} = A$ 가 성립한다.

Section 02 집합의 연산 (17)

$$(4) A \subseteq B \Leftrightarrow (x \in A \to x \in B)$$

$$\Leftrightarrow x \notin B \to x \notin A$$

$$\Leftrightarrow x \in \overline{B} \to x \in \overline{A}$$

$$\Leftrightarrow \overline{B} \subseteq \overline{A}$$

그러므로 $A \subseteq B$ 에 대한 필요충분조건은 $\overline{B} \subseteq \overline{A}$ 다.

Section 02 집합의 연산 (18)

집합의 대수법칙			
$A \cup A = A$	$A \cap A = A$		멱등법칙(idempotent law)
$A \cup \varnothing = A$	$A \cap U = A$		항등법칙(identity law)
$A \cup U = U$	$A\cap\varnothing=\varnothing$		지배법칙(domination law)
$A \cup B = B \cup A$	$A \cap B = B \cap A$		교환법칙(commutative law)
$(A \cup B) \cup C = A \cup (B \cup C)$			결합법칙(associative law)
$(A \cap B) \cap C = A \cap (B \cap C)$			클립답역(associative law)
$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$			
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$			분배법칙(distributive law)
$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$			
$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$			
$\overline{A \cup B} = \overline{A} \cap \overline{B}$			드 모르간의 법칙(De Morgan's law)
$\overline{A \cap B} = \overline{A} \cup \overline{B}$			

Section 02 집합의 연산 (19)

예제 3.33

결합법칙 $(A \cup B) \cup C = A \cup (B \cup C)$ 가 성립함을 보여라.

풀이

결합법칙 $(A \cup B) \cup C = A \cup (B \cup C)$ 가 성립함을 보이기 위해 임의의 원소 x에 대해 $x \in (A \cup B) \cup C \Leftrightarrow x \in A \cup (B \cup C)$ 가 성립함을 보인다.

$$x \in A \cup (B \cup C) \Leftrightarrow x \in A \lor x \in (B \cup C)$$

$$\Leftrightarrow x \in A \lor (x \in B \lor x \in C)$$

$$\Leftrightarrow (x \in A \lor x \in B) \lor x \in C$$

$$\Leftrightarrow x \in (A \cup B) \lor x \in C$$

$$\Leftrightarrow x \in (A \cup B) \cup C$$

그러므로 $(A \cup B) \cup C = A \cup (B \cup C)$ 가 성립한다.

Section 02 집합의 연산 (20)

예제 3.34

분배법칙 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 가 성립함을 보여라.

풀이

분배법칙 $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$ 가 성립함을 보이기 위해 임의의 원소 x에 대해 x는 $A\cap (B\cup C)$ ⇔x는 $[(A\cap B)\cup (A\cap C)]$ 가 성립함을 보인다.

$$x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in (B \cup C)$$

$$\Leftrightarrow x \in A \land (x \in B \lor x \in C)$$

$$\Leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C)$$

$$\Leftrightarrow x \in (A \cap B) \lor x \in (A \cap C)$$

$$\Leftrightarrow x \in [(A \cap B) \cup (A \cap C)]$$

그러므로 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 가 성립한다.

Section 02 집합의 연산 (21)

- 컴퓨터의 집합 표현
 - ◆ 전체집합 U가 컴퓨터 메모리 크기를 초과하지 않는 유한집합이라고 하면 컴퓨터에서 집합 U를 나타낼 때 u_1 , u_2 , u_3 , \cdots , u_n 과 같이 임의의 순서를 지정하여 표현
 - ◆ 부분집합 A 는 n 개의 비트열(bit string)로 표현
 - U의 i번째 원소가 A의 원소일 경우
 - 비트열의 / 번째 값을 1로 표현
 - U의 / 번째 원소가 A의 원소가 아닐 경우
 - 비트열의 / 번째 값을 0으로 표현
 - ◆ 컴퓨터의 집합 연산
 - 합집합: bit-OR(bitwise OR) 연산
 - 교집합: bit-AND(bitwise AND) 연산
 - 여집합: bit-NOT(bitwise NOT) 연산

Section 02 집합의 연산 (22)

예제 3.42

전체집합 U= $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ 의 부분집합 A와 B는 다음과 같다.

$$A = \{1, 3, 4, 7, 8\}, B = \{2, 3, 4, 6, 8, 11\}$$

이때 집합 A와 B를 비트열로 나타내고, 합집합과 교집합을 구하여라.

Section 02 집합의 연산 (23)

집합 A의 비트열은 101100110000이고, B의 비트열은 011101010010이다. 두 비트열의 합집합은 다음과 같다.

 $(101100110000) \lor (011101010010) = 111101110010$

따라서 $A \cup B = \{1, 2, 3, 4, 6, 7, 8, 11\}$ 이다.

또한 두 비트열의 교집합은 다음과 같다.

 $(101100110000) \land (011101010010) = 001100010000$

따라서 $A \cap B = \{3, 4, 8\}$ 이다.

Section 03 곱집합과 멱집합 (1)

정의 3.11

집합 A, B에 대하여 $a \in A$ 고 $b \in B$ 일 때 순서쌍 (a, b)의 집합을 A와 B의 곱집합 (Cartesian product)이라고 하며, 다음과 같이 나타낸다.

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

또한 곱집합 $A \times B$ 의 기수는 $|A \times B| = |A| \cdot |B|$ 다. 이때 A, B는 유한집합이다.

예제 3.44

집합 $A = \{1, 2\}, B = \{x, y\}$ 일 때 곱집합 $A \times B, B \times A, B \times B$ 를 구하여라.

풀이
$$A \times B = \{(1, x), (1, y), (2, x), (2, y)\}$$

$$B \times A = \{(x, 1), (x, 2), (y, 1), (y, 2)\}$$

$$B \times B = \{(x, x), (x, y), (y, x), (y, y)\}$$

Section 03 곱집합과 멱집합 (2)

정리 3.5

집합A, B, C에 대하여 다음과 같은 성질이 성립한다.

$$(1) A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$(2) A \times (B \cup C) = (A \times B) \cup (A \times C)$$

【증명】 $(1) A \times (B \cap C) = (A \times B) \cap (A \times C)$ 가 성립함을 보이기 위해 $(x,y) \in A \times (B \cap C)$ 일 때 $(x,y) \in (A \times B) \cap (A \times C)$ 임을 보인다.

$$(x, y) \in A \times (B \cap C) \Leftrightarrow x \in A \land y \in (B \cap C)$$

$$\Leftrightarrow x \in A \land (y \in B \land y \in C)$$

$$\Leftrightarrow (x \in A \land y \in B) \land (x \in A \land y \in C)$$

$$\Leftrightarrow [(x, y) \in A \times B] \land [(x, y) \in A \times C]$$

$$\Leftrightarrow (x, y) \in (A \times B) \cap (A \times C)$$

그러므로 $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 가 성립한다.

(2) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ 에 대한 증명은 연습문제에서 다루도록 한다.

Section 03 곱집합과 멱집합 (3)

정의 3.12

임의의 집합 X에 대한 부분집합들의 모임을 집합류(class)라고 한다. 또한 집합 X에 대하여 X의 모든 부분집합을 원소로 갖는 집합을 멱집합(power set)이라고 하며, 다음과 같이 나타낸다.

$$P(X) = \{Y \mid Y \subseteq X\}$$

집합 X의 기수가 n이면 P(X)의 기수는 2^n 이다.

- 멱집합 P(X)의 기수
 - ◆ 집합 X의 부분집합의 개수를 의미

Section 03 곱집합과 멱집합 (4)

예제 3.51

다음 집합의 멱집합을 구하고, 멱집합의 기수를 구하여라.

$$(1) A = \{\emptyset, 1, \{1, 2\}\}\$$

(2)
$$B = \{\emptyset, \{\emptyset\}\}$$

풀이

(1) 집합 A의 멱집합은 다음과 같다.

$$P(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\{1, 2\}\}, \{\emptyset, 1\}, \{\emptyset, \{1, 2\}\}\}, \{1, \{1, 2\}\}, \{\emptyset, 1, \{1, 2\}\}\}$$

또한 기수는 $|P(A)| = 2^3 = 8$ 이다.

$$(2)$$
 $P(B)$ ={∅, {∅}, {{∅}}, {{∅}}}, {∅, {∅}}} ∘ □대, $|P(B)|$ =2²=4다.

Section 04 집합의 분할 (1)

정의 3.13

공집합이 아닌 임의의 집합 S를 서로소면서 공집합이 아닌 S의 부분집합으로 나눈 것을 S의 분할(partition)이라고 한다. 즉 S의 분할 $\{S_1, S_2, \dots, S_k\}$ 는 다음과 같은 성질을 만족하는 집합류다.

- (1) $i=1, 2, \dots, k$ 에 대하여 S_i 는 공집합이 아닌 집합 S의 부분집합이다.
- $(2) S = S_1 \cup S_2 \cup \cdots \cup S_k$
- (3) $i \neq j$ 면 $S_i \cap S_j = \emptyset$

여기서 집합 S_i 를 분할의 블록(block)이라고 한다.

Section 04 집합의 분할 (2)

예제 3.53

집합 S={1, 2, 3, 4, 5, 6, 7, 8, 9}, π ={{1, 4, 5}, {2, 6}, {3}, {7, 8, 9}} 일 때 π 가 S의 분할임을 보여라.

풀이

 π_1 ={1, 4, 5}, π_2 ={2, 6}, π_3 ={3}, π_4 ={7, 8, 9}라고 하면 π_i (단, i = 1, 2, 3, 4)는 모두 집합 S의 부분집합이며, $\bigcup_{i=1}^4 \pi_i =$ {1, 2, 3, 4, 5, 6, 7, 8, 9} 므로 $S=\bigcup_{i=1}^4 \pi_i$ 다. 또한 모든 π_i 들에 대하여 $i \neq j$ 면 $\pi_i \cap \pi_j = \emptyset$ (단, i, j = 1, 2, 3, 4)다. 즉 모든 π_i 들은 공통 원소가 없는 서로소인 집합들이므로 집합류 π 는 집합 S의 분할이다.

Section 05 퍼지집합 (1)

- 퍼지이론
 - ◆ 인간이 표현하는 명확하지 않은 값들을 컴퓨터에서 효율적으로 추론해내기 위해 고안된 이론
- 소속함수(membership function)
 - ◆ 각 원소를 집합 [0, 1]로 대응

$$\mu_A: U \rightarrow [0, 1]$$

- 퍼지집합
 - ◆ 합집합
 - 원소의 실수값이 큰 쪽 선택
 - ◆ 교집합
 - 원소의 실수값이 작은 쪽 선택
 - ◆ 여집합
 - 1에서 원소의 해당 실수값을 뺀 값으로 표현

Section 05 퍼지집합 (2)

예제 3.55

전체집합 U={철수, 영희, 정숙, 미영, 하정}에 대하여 퍼지집합 A를 키 큰 사람의 모임, 퍼지집합 B를 잘 생긴 사람의 모임으로 다음과 같이 정의했을 때

A={(철수, 0.9), (영희, 0.7), (정숙, 0.6)}

 $B = \{(철수, 0.2), (영희, 0.6), (정숙, 0.5), (미영, 0.8), (하정, 0.3)\}$

집합 A와 B의 합집합과 교집합을 구하여라.

풀이 퍼지집합에 대한 합집합은 원소를 나열한 후 공통된 원소에 대해서 실수값 이 큰 쪽을 선택하여 나타낸다.

 $A \cup B = \{(철수, 0.9), (영희, 0.7), (정숙, 0.6), (미영, 0.8), (하정, 0.3)\}$

퍼지집합에 대한 교집합은 공통된 원소 중에서 실수값이 작은 쪽을 선택하여 나타낸다.

 $A \cap B = \{(철 \uparrow, 0.2), (영희, 0.6), (정숙, 0.5)\}$

Section 05 퍼지집합 (3)

- 지지(support)집합
 - ◆ 퍼지집합 A에 조금이라도 포함되어 있는 원소들로 이루어 진 집합

$$supp(A) = \{x \in U | \mu_A > 0\}$$

- α-수준(α-cut)집합
 - ◆ 일정한 소속함수의 값 이상 포함된 원소들로만 구성된 집합

$$A_{\alpha} = \{x \in U | \mu_A \geq \alpha\}$$

Section 05 퍼지집합 (4)

예제 3.58

다음은 나이를 나타내는 전체집합 U에 4개의 퍼지집합 Infant, Young, Adult, Old를 정의한 표다.

원소(나이)	Infant	Young	Adult	Old
5	0	1	0	0
10	0	1	0	0
20	0	0.8	0.8	0.1
30	0	0.5	1	0.2
40	0	0.2	1	0.4
50	0	0.1	1	0.6
60	0	0	1	0.8
70	0	0	1	1
80	0	0	1	1

Section 05 퍼지집합 (5)

- (1) 각 퍼지집합의 지지집합을 구하여라.
- (2) 퍼지집합 Young의 0.8-수준집합과 0.2-수준집합을 구하여라.
- (3) 퍼지집합 *Old*의 0.6-수준집합을 구하여라.

풀이

(1) 각 퍼지집합의 지지집합은 다음과 같다.

 $supp(Infant) = \emptyset$ $supp(Young) = \{5, 10, 20, 30, 40, 50\}$ $supp(Adult) = \{20, 30, 40, 50, 60, 70, 80\}$ $supp(Old) = \{20, 30, 40, 50, 60, 70, 80\}$

Infant의 경우 소속함수의 값이 모두 0이므로 공집합이다.

Section 05 퍼지집합(6)

(2) 퍼지집합 *Young*의 0.8-수준집합은 소속함수의 값이 0.8 이상인 것이므로 다음과 같다.

$$Young_{0.8} = \{5, 10, 20\}$$

또한 0.2 수준집합은 소속함수의 값이 0.2 이상인 것이므로 다음과 같다.

$$Young_{0.2} = \{5, 10, 20, 30, 40\}$$

(3) 퍼지집합 Old의 0.6-수준집합은 소속함수의 값이 0.6 이상인 것이므로 다음과 같다.

$$Old_{0.6} = \{50, 60, 70, 80\}$$

Discrete Mathematics The End

본 강의자료는 강의의 편의를 위해 교수님들께 제공되는 자료입니다. 자료의 글과 그림은 저작권이 저자에게 있으므로 **대중적인 배포를 할 수 없음**을 유의해주시길 바랍니다.