CLAIM AMENDMENTS

- 1 1. (Currently amended) A method of determining placement of components in a rack comprising the steps of:
- a. providing a rack height, a set of components, and a height for each
 component in the set of components;
- 5 b. determining a placement of the components in the rack according to constraints; and
- 7. e. evaluating the placement of the components according to an objective.
- 1 2. (Currently amended) The method of claim 1 wherein the constraints
- 2 comprise:
- a rack height constraint which requires that placement of a particular component does not result in a top height of the particular component
- 5 exceeding the rack height;
- 6 b. a single placement constraint which requires that each component be
- 7 placed once and only once; and
- 8 e. a non-overlapping constraint which requires that each slot in the rack be occupied by no more than a single component.
- 1 3. (Original) The method of claim 2 wherein the constraints further comprise
- a height preference constraint which prefers that a first component be placed
- 3 above a second component.
- 1 4. (Currently amended) The method of claim 1 wherein the step of determining
- 2 placement of the components according to the constraints finds that at least one of
- 3 the constraints cannot be met and further comprising the steps of:
- 4 a. relaxing a particular constraint; and
- 5 b. determining placement of the components according to remaining
- 6 constraints.
- 1 5. (Original) The method of claim 4 wherein the step of relaxing the
- 2 particular constraint comprises providing a choice of relaxation constraints to a

- 3 user and the user selecting the particular constraint from the choice of relaxation
- 4 constraints.
- 1 6. (Original) The method of claim 1 further comprising the step of providing
- a weight and a weight distribution for each component in the set of components.
- 1 7. (Original) The method of claim 6 wherein the step of evaluating the
- 2 placement of the components in the rack according to the objective comprises
- 3 seeking a minimum height for the center of gravity.
- 1 8. (Original) The method of claim 6 wherein the step of evaluating the
- 2 placement of the components in the rack according to the objective comprises
- 3 ensuring that a height of the center of gravity does not exceed a selected height.
- 1 9. (Original) The method of claim 1 further comprising the step of providing
 - a placement height range for a particular component, wherein the placement
- 3 height range comprises a minimum height and a maximum height.
- 1 10. (Original) The method of claim 9 wherein the placement height range is
- 2 increased, thereby forming an increase in the placement height range, and further
- 3 wherein a penalty is applied to the objective according to the increase in the
- 4 placement height range.

2

- 1 11. (Original) The method of claim 1 further comprising the step of providing
- 2 an empty space requirement for a particular component.
- 1 12. (Original) The method of claim 11 wherein the empty space requirement
- 2 is selected from the group consisting of an empty space requirement above the
- 3 particular component and an empty space component below the particular
- 4 component.
- 1 13. (Original) The method of claim 11 wherein the empty space requirement
- is relaxed, thereby forming a relaxation of the empty space requirement, and

- further wherein a penalty is applied to the objective according to the relaxation of
- 4 the empty space requirement.
- 1 14. (Original) The method of claim 1 wherein the steps of determining and
- 2 evaluating the placement of the components comprise the step of employing a
- 3 mixed integer programming technique.
- 1 15. (Original) The method of claim 14 wherein the step of employing the
- 2 mixed integer programming technique employs a heuristic approach.
- 1 16. (Original) The method of claim 1 further comprising a contiguous
- 2 placement constraint for at least two of the components within the set of
- 3 components.
- 1 17. (Original) The method of claim 16 wherein the step of determining the
- 2 placement of the components in the rack according to the constraints comprises
- forming a virtual component from the at least two components according to the
- 4 contiguous placement constraint and further wherein remaining constraints
- 5 determine placement of the virtual component.
- 1 18. (Original) The method of claim 1 further comprising the step of
- 2 evaluating the placement of the components according to a second objective.
- 1 19. (Original) The method of claim 1 further comprising the step of
- 2 evaluating the placement of the components according to additional objectives.
- 1 20. (Original) The method of claim 1 wherein the constraints comprise hard
- 2 constraints.
- 1 21. (Original) The method of claim 1 wherein the objective comprises a soft
- 2 constraint.
- 1 22. (Original) The method of claim 1 wherein the objective comprises a sum
- 2 of soft constraints.

1	23.	(Currently amended) A method of determining placement of components in a
2	rack comprising the steps of:	
3	a.	providing a rack height, a set of components, and, for each component in
4	t	the set of components, a height, a weight, and a weight distribution;
5	b.	determining a placement of the components in the rack according to
6	C	constraints, wherein the constraints comprise:
7	i	a rack height constraint which requires that placement of a particular
8		component does not result in a top height of the particular component
9		exceeding the rack height;
10	i	i. a single placement constraint which requires that each component be
11		placed once and only once; and
12	ŧ	ii. a non-overlapping constraint which requires that each slot in the rack
13		be occupied by no more than a single component; and
14	e .	evaluating the placement of the components by seeking a minimum height
15	f	for a center of gravity of the components.
1		Currently amended) A computer readable memory comprising computer
2	code for directing a computer to make a determination of placement of	
3	components in a rack, the determination of the placement of the components	
4	com	prising the steps of:
5	a.	obtaining a rack height, a set of components, and a height for each
6	C	component in the set of components;
7	b.	determining a placement of the components in the rack according to
8	C	constraints; and
9	e.	evaluating the placement of the components according to an objective.
1	25. (Currently amended) The computer readable memory of claim 24 wherein the
2	constraints comprise:	
3	a.	a rack height constraint which requires that placement of a particular
4		component does not result in a top height of the particular component
5		exceeding the rack height;
6	b.	a single placement constraint which requires that each component be

placed once and only once; and

7

- 8 e. a non-overlapping constraint which requires that each slot in the rack be occupied by no more than a single component.
- 1 26. (Currently amended) The computer readable memory of claim 24 wherein the
- 2 step of determining placement of the components according to the constraints
- finds that at least one of the constraints cannot be met and further comprising the
- 4 steps of:
- 5 a. relaxing a particular constraint; and
- 6 b. determining placement of the components according to remaining
- 7 constraints.
- 1 27. (Original) The computer readable memory of claim 26 wherein the step of
- 2 relaxing the particular constraint comprises providing a choice of relaxation
- 3 constraints to a user and the user selecting the particular constraint from the
- 4 choice of relaxation constraints.
- 1 28. (Original) The computer readable memory of claim 24 further comprising
- 2 the step of obtaining a weight and a weight distribution for each component in the
- 3 set of components.
- 1 29. (Original) The computer readable memory of claim 28 wherein the step of
- 2 evaluating the placement of the components in the rack according to the objective
- 3 comprises seeking a minimum height for the center of gravity.
- 1 30. (Original) The computer readable memory of claim 28 wherein the step of
- 2 evaluating the placement of the components in the rack according to the objective
- 3 comprises ensuring that a height of the center of gravity does not exceed a
- 4 selected height.
- 1 31. (Original) The computer readable memory of claim 24 wherein the step of
- 2 evaluating the placement of the components comprises the step of employing a
- 3 mixed integer programming technique.

1	32. (Original) The computer readable memory of claim 31 wherein the step of		
2	employing the mixed integer programming technique employs a heuristic		
3	approach.		
1	33. (Currently amended) A computer readable memory comprising computer		
2	code for directing a computer to make a determination of placement of		
3	components in a rack, the determination of the placement of the components		
4	comprising the steps of:		
5	a. obtaining a rack height, a set of components, and, for each component in		
6	the set of components, a height, a weight, and a weight distribution;		
7	b. determining a placement of the components in the rack according to		
8	constraints, wherein the constraints comprise:		
9	i. a rack height constraint which requires that placement of a particular		
10	component does not result in a top height of the particular component		
11	exceeding the rack height;		
12	ii. a single placement constraint which requires that each component be		
13	placed once and only once; and		
14	iii. a non-overlapping constraint which requires that each slot in the rack		
15	be occupied by no more than a single component; and		

for a center of gravity of the components.

evaluating the placement of the components by seeking a minimum height

• 16

17

e.