

THE PERCEPTRON

Eitan Kosman

AGENDA

- The Problem
 - Linear Seperability Def. 1
 - Linear Seperability Def. 2
- A Biological Neuron
 - Structure
 - A Mathematical model
- The Solution Perceptron
 - A brief history
 - The algorithm
 - Intuitive interpretation for weights update
 - Theorem: Mistake bound
 - The fall of perceptron
 - Stopping criterions
 - Kernel Perceptron

THE PROBLEM

Given a set of n points in \mathbb{R}^d and labels:

$$X = \{x_i | i \in [n], x \in \mathbb{R}^d\}, Y = \{y_i | i \in [n]\}$$

We want to find a transformation:

$$f: X \to Y$$
 s.t.

DEFINITION (1): LINEAR SEPARABILITY

Let $X_0, X_1 \subseteq \mathbb{R}^d$ be 2 sets of points. X_0, X_1 are linearly separable if there exist n+1 real numbers w_1, w_2, \dots, w_n, k such that:

$$\forall x \in X_0: \sum_{i=1}^n w_i x_i > k$$

$$\forall x \in X_1: \sum_{i=1}^n w_i x_i < k$$

The above terms could also be represented as inner product:

$$\langle w, x \rangle$$
 where: $w = (w_1, w_2, ..., w_n)$ and $x = (x_1, x_2, ..., x_n)$

DEFINITION 1 INTERPRETATION

Given vector w, we can define a hyper-plane by:

$$\langle w, x \rangle + d = 0$$

Thus, the hyper-plane separates the field into 2 regions such that all points belong to X_0 are in one region and all points belong to X_1 are in the other region.

DEFINITION (2): LINEAR SEPERABILITY

Let $X_0, X_1 \subseteq \mathbb{R}^d$ be 2 sets of points. X_0, X_1 are linearly separable precisely when their respective convex hulls are disjoint (do not overlap)

AGENDA

- The Problem
 - Linear Seperability Def. 1
 - Linear Seperability Def. 2
- The Biological Neuron
 - Structure
 - A Mathematical model
- The Solution Perceptron
 - A brief history
 - The algorithm
 - Intuitive interpretation for weights update
 - Theorem: Mistake bound
 - The fall of perceptron
 - Stopping criterions
 - Kernel Perceptron

THE BIOLOGICAL NEURON - STRUCTURE

Like any other body cell, the neuron has a cell body which contains a nucleus where the DNA is stored.

From our perspective, the interesting parts are:

- Dendrites make connections with tens of thousand of other cells; other neurons. The behave as "inputs".
- Axon transmits information to different neurons, muscles, and other body cells based on the signals the cell receives. It's signals are received by other cells' dendrites.

THE BIOLOGICAL NEURON — A MATHEMATICAL MODEL

- We will try to mimic the function of a neuron using mathematical tools. Given an input vector x:
- x will be the inputs of the neuron (dendrites).
- Define a weight, w_i , for each input, and sum all the multiplications.
- Output the result as \hat{y} (Axon)

There's still a problem – How do we find the weights?

AGENDA

- The Problem
 - Linear Seperability Def. 1
 - Linear Seperability Def. 2
- The Biological Neuron
 - Structure
 - A Mathematical model
- The Solution Perceptron
 - A brief history
 - The algorithm
 - Intuitive interpretation for weights update
 - Theorem: Mistake bound
 - The fall of perceptron
 - Stopping criterions
 - Kernel Perceptron

PREHISTORY

Because of the "all-or-none" character of nervous activity, neural events and the relations among them can be treated by means of propositional logic.

- W.S. McCulloch & W. Pitts (1943). "A logical calculus of the ideas immanent in nervous activity", Bulletin of Mathematical Biophysics, 5, 115-137
- This seminal paper pointed out that simple artificial "neurons" could be made to perform basic logical operations such as AND, OR and NOT

AND x y x & y 0 0 0 0 1 0 1 0 0 1 1 1 inputs output

Truth Table for Logical

Truth Table for Logical OR

X	y	$\mathbf{x} \mid \mathbf{y}$
0	0	0
0	1	1
1	0	1
1	1	1

inputs output

1958 — THE PERCEPTRON

Psychological Review Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN ¹

F. ROSENBLATT

Cornell Aeronautical Laboratory

NEW NAVY DEVICE LEARNS BY DOING

Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

WASHINGTON, July 7 (UPI)
—The Navy revealed the embryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be conscious of its existence.

PERCEPTRON - THE ALGORITHM

- The goal is to find a hyper-plane separating 2 known classes.
- Consider definition (1) for linear separability:

$$\forall x \in X_0: \langle w, x \rangle > \mathbf{k}$$

$$\forall x \in X_1: \langle w, x \rangle < \mathbf{k}$$

$$\forall x \in X_0: \langle w, x \rangle - k > 0$$

$$\forall x \in X_1: \langle w, x \rangle - k < 0$$

We can eliminate k by augmenting representation with one dimension:

$$x' = (x, 1)$$
$$w' = (w, -k)$$

$$\langle w', x' \rangle = (w, -k) {x \choose 1} = w \cdot x - k$$

Algorithm: Perceptron Learning Algorithm

```
P \leftarrow inputs with label 1;
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N;
    if \mathbf{x} \in P and \mathbf{w}.\mathbf{x} < 0 then
        \mathbf{w} = \mathbf{w} + \mathbf{x};
    end
    if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
       \mathbf{w} = \mathbf{w} - \mathbf{x};
    end
end
//the algorithm converges when all the
 inputs are classified correctly
```

WEIGHTS UPDATE: INTUITION

The orange points are from class -1 and the green points are from class +1. How would we update the decision line so that it classifies all the points correctly?

Theorem:

Let $(x_1, y_1), ..., (x_n, y_n)$, where $x_i \in \mathbb{R}^N$ and $y_i \in \{-1,1\}$ be a sequence of labeled examples and assume it is linearly separable.

Denote:

$$R = \max_{i} ||x_i||$$

Suppose there exists a vector w^* , $\gamma > 0$ such that $||w^*|| = 1$ and $\forall i, y_i(w^{*T}x_i) \geq \gamma$, then the number of mistakes made by the Perceptron algorithm of this sequence of example is $O\left(\left(\frac{R}{\gamma}\right)^2\right)$

$$R = \max_{i} ||x_{i}||$$

$$\forall i, y_{i}(w^{*T}x_{i}) \geq \gamma$$

$$\forall i, y_i (w^{*T} x_i) \ge \gamma$$

Let $w_1 = 0$ (initial weight vector) and denote w_k the weight vector after the k'th mistake.

Lemma 1:
$$w_{t+1} \cdot w^* \ge w_t \cdot w^* + \gamma$$

Lemma 2:
$$||w_{t+1}||^2 \le ||w_t||^2 + R^2$$

Lemma 1: $w_{t+1} \cdot w^* \ge w_t \cdot w^* + \gamma$

The t's update occurred when the perceptron did a mistake on sample (x_i, y_i) .

If
$$y_i = 1$$
:

$$w_{t+1} \cdot w^* = (w_t + x_i) \cdot w^* = w_t \cdot w^* + \underbrace{x_i \cdot w^*}_{\geq \gamma} = w_t \cdot w^* + \gamma$$

If
$$y_i = -1$$
:

$$w_{t+1} \cdot w^* = (w_t - x_i) \cdot w^* = w_t \cdot w^* - \underbrace{x_i \cdot w^*}_{\geq \gamma} = w_t \cdot w^* + \gamma$$

Lemma 2:
$$||w_{t+1}||^2 \le ||w_t||^2 + R^2$$

The t's update occurred when the perceptron did a mistake on sample (x_i, y_i) .

If
$$y_i = 1$$
:
$$||w_{t+1}||^2 = ||w_t + x_i||^2 = ||w_t||^2 + 2 \underbrace{w_t \cdot x_i}_{<0, since} + \underbrace{||x_i||^2}_{\le R^2} \le ||w_t||^2 + R^2$$
a mistake has occurred

If
$$y_i = -1$$
:
$$||w_{t+1}||^2 = ||w_t - x_i||^2 = ||w_t||^2 - 2 \underbrace{w_t \cdot x_i}_{>0, since} + \underbrace{||x_i||^2}_{\leq R^2} \leq ||w_t||^2 + R^2$$

$$\underset{has occured}{\underbrace{||w_t||^2 + R^2}}$$

Now, equipped with the two lemmas, we know that from Lemma 1:

$$w_1 = \overline{0}$$

$$w_2 \cdot w^* \ge w_1 \cdot w^* + \gamma = \gamma$$

$$w_3 \cdot w^* \ge w_2 \cdot w^* + \gamma \ge \gamma + \gamma = 2\gamma$$

Assume: $w_t \cdot w^* \ge (t-1) \cdot \gamma$

Thus -

$$w_{t+1} \cdot w^* \ge w_t \cdot w^* + \gamma \ge (t-1) \cdot \gamma + \gamma = t \cdot \gamma$$

Moreover, from lemma 2:

$$|w_1| = 0$$

$$|w_2|^2 \le |w_1|^2 + R^2 = R^2$$

$$|w_3|^2 \le |w_2|^2 + R^2 \le R^2 + R^2 = 2R^2$$

Assume: $|w_t|^2 \le (t-1)R^2$

Thus -

$$|w_{t+1}|^2 \le |w_t|^2 + R^2 \le (t-1)R^2 + R^2 = tR^2$$

Recap:

After *T* mistakes:

$$|w_{T+1} \cdot w^* \ge T \cdot \gamma$$
$$|w_{T+1}|^2 \le TR^2$$
$$\Downarrow$$

THE FALL OF THE PERCEPTRON

The first computer built around the concept of perceptron looked like this.

Even the wiring was supposed to simulate the connections of neurons.

THE FALL OF THE PERCEPTRON

However, a paper describing the perceptron's shortcomings, particularly that it was effective only at solving simple problems, led to a drastic drop in interest in artificial neural networks in the 1960's.

Unless input categories were "linearly separable", a perceptron could not learn to discriminate between them. **Example:**

STOPPING CRITERIONS

The mistake bound holds only if the dataset is linearly separable.

If it's not the case, one could define other critertions:

- <u>Approach 1</u>: Consider the perceptron as an any-time algorithm. When the user is out of time or resources, return the current weights.
- Approach 2: After each update, calculate the accuracy, and remember the weights with highest accuracy:

• Lets have a look at the learning rule:

$$if \ \hat{y} \neq y_i:$$

$$w \leftarrow w + v_i x_i$$

• Thus, we can infer that the weights vector w learned by the Perceptron's algorithm is a linear combination of all the data points:

$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$

- α_i is a "mistake-counter" how many times the perceptron made a mistake on sample x_i
- We can rewrite the prediction formula of a new observation x' as:

$$\hat{y} = sign\left[\left(\sum_{i} \alpha_{i} y_{i} x_{i}\right)^{T} x'\right] = sign\left[\sum_{i} \alpha_{i} y_{i} x_{i}^{T} x'\right]$$

$$\hat{y} = sign\left[\left(\sum_{i} \alpha_{i} y_{i} x_{i}\right)^{T} x'\right] = sign\left[\sum_{i} \alpha_{i} y_{i} x_{i}^{T} x'\right]$$

- In other words, the dual problem is finding the $\alpha'_i s$. The new learning algorithm would loop thru the samples and make predictions, but now it will update a "mistake counter" vector α rather than updating a weights vector w.
- First observation:

We can define a threshold s, and during learning we can zero (and consider dropping samples from the dataset) any mistake-counter that reaches a value above it, i.e.:

if
$$\alpha_i \ge s$$
:
 $\alpha_i \leftarrow 0$
 $drop \ x_i \ from \ the \ dataset$

This could help us detecting outliers

- Second observation:
- While there exist datasets that aren't linearly separable in a given form (set of features), we can find a transformations to another space where the points are linearly separable:

- Our next goal is to find transformations to spaces where our datasets are linearly separable.
 But firstly, we have to find a method to apply these transformations effectively.
- Let \mathbb{R}^n be the features' space and \mathbb{R}^m . We want to find a transformation: $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$
- The original prediction rule was:

$$\hat{y} = sign\left[\sum_{i} \alpha_{i} y_{i} x_{i}^{T} x'\right]$$

• In the new features' space, the prediction rule would become:

$$\hat{y} = sign\left[\sum_{i} \alpha_{i} y_{i} \varphi(x_{i})^{T} \varphi(x')\right]$$

- In a low dimensions space, we cannot deal with more complex datasets.
- In a high dimensions space, the computations become very slow.
- A new trick called "The Kernel Trick" comes to the rescue!

- It makes it possible to get the same results as if you added many features, without adding them in practice.
- Usually, we define a kernel K such that $K(x,y) = \varphi^T(x)\varphi(y)$ and find a direct formula that doesn't involve any transformation to a higher dimension space.
- Example:

$$\varphi(y) = \varphi\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ \sqrt{2}u_1 \\ \sqrt{2}u_2 \\ \sqrt{2}u_1u_2 \\ u_1^2 \\ u_2^2 \end{bmatrix}$$

The inner product:

$$\varphi^T(u)\varphi(v) = 1 + 2u_1v_1 + 2u_2v_2 + 2u_1u_2v_1v_2 + u_1^2v_1^2 + u_2^2v_2^2 = (1 + u^Tv)^2$$

Note that computing that dot project $u^T v$ is the original features' space is less expensive than computing the dot product in the transformed space.

• Examples of the most used kernel functions:

$$K(x,y) = (x^{T}y + 1)^{p}$$
 - Polynomial kernel of degree

$$K(x,y) = e^{-\frac{1}{2\sigma^2}|x-y|^2} - Gaussian kernel$$

$$K(x,y) = e^{-\gamma|x-y|^2} - RBG \ kernel$$

$$K(x,y) = \tanh(\eta x^T y + \theta) - Sigmoid kernel$$

KERNEL PERCEPTRON — THE ALGORITHM

Initialize a mistake-counter vector $\alpha \leftarrow 0$

While some stopping criterion isn't met:

For each x_i , y_i in the training set:

Predict
$$\hat{y} = sign(\sum_{i} \alpha_{i} y_{i} K(x_{i}, x_{j}))$$

If
$$\hat{y} \neq y_i$$
:

$$\alpha_i \leftarrow \alpha_i + 1$$

• The prediction rule:

$$\hat{y} = sign\left[\sum_{i} \alpha_{i} y_{i} \varphi(x_{i})^{T} \varphi(x')\right]$$

