

Matrix Inner Product and Norm

CE282: Linear Algebra

Computer Engineering Department Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

Inner Products

Definition

☐ The standard inner product is:

$$\langle x, y \rangle = x^T y = \sum x_i y_i, \qquad x, y \in \mathbb{R}^n$$

 \square The standard inner product between matrices is: $(X, Y \in \mathbb{R}^{m \times n})$

$$\langle X, Y \rangle = Tr(X^T Y) = \sum_{i} \sum_{j} X_{ij} Y_{ij}$$

Example

Example

$$U = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, \qquad V = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Norm

Definition (Norm)

- \square A function $f: \mathbb{R}^n \to \mathbb{R}$ is a norm if
 - 1. $f(x) \ge 0$, $f(x) = 0 \Leftrightarrow x = 0$ (positivity)
 - 2. $f(\alpha x) = |\alpha| f(x), \forall \alpha \in \mathbb{R}$ (homogeneity)
 - 3. $f(x + y) \le f(x) + f(y)$ (triangle inequality)

Entry-wise matrix norms

Definition

$$||A||_{p,p} = ||vec(A)||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{\frac{1}{p}}$$

Special Cases

 \square Frobenius (Eucilian, Hilbert Schmidt) norm:(p = 2)

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \sqrt{trace(A^*A)}$$

 \square Max norm $(p = \infty)$

$$||A||_{max} = \max_{ij} |a_{ij}|$$

☐ Sum-absolute-value norm

$$||A||_{sav} = \sum_{i,j} |A_{i,j}|$$

Frobenius (Eucilian, Hilbert Schmidt) norm

Special Cases

☐ Invariant under rotations (unitary operations)

$$||A||_F = ||AU||_F = ||UA||_F$$

$$||A + B||_F^2 = ||A||_F^2 + ||B||_F^2 + 2\langle A, B \rangle$$

$$||A^*A||_F = ||AA^*||_F \le ||A||_F^2$$

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \sqrt{trace(A^*A)} = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$$

show that
$$\sigma_{\max}(A) \leq ||A||_{\mathrm{F}} \leq \sqrt{r}\sigma_{\max}(A)$$

Frobenius (Euclidean norm)

Theorem

Let b_1, b_2, \dots, b_n denote the columns of B. Then

$$||AB||_{HS}^2 = \sum_{i=1}^n ||Ab_i||^2 \le \sum_{i=1}^n ||A||^2 ||b_i||^2 = ||A||^2 ||B||_{HS}^2$$

Using Cauchy-Schawrtz Inequality

Matrix norms induced by vector norms

Definition

$$||A||_p = \max_{\vec{x} \neq \vec{0}} \frac{||A\vec{x}||_p}{||\vec{x}||_p} = \max_{||\vec{x}||_p = 1} ||A\vec{x}||_p$$

Theorem

1. $||Ax|| \le ||A|| ||x||$ for all vectors ||x||

2. For all matrices $A, B: ||AB|| \le ||A|| ||B||$

Matrix norms induced by vector norms

Definition

- ☐ The norm of a matrix is a real number which is a measure of the magnitude of the matrix.
- **□** Norm 1:

$$||A||_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}| \right)$$

☐ Norm max:

$$||A||_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^{n} |a_{ij}| \right)$$

□ Spectral norm (l2) is the largest singular value (the square root of the largest eigenvalue of the matrix gram A)

$$||A||_2 = \sqrt{\max\{eigenvalue(A^TA)\}} = \max\{sing(A)\}$$

Example

$$B = \begin{bmatrix} 5 & -4 & 2 \\ -1 & 2 & 3 \\ -2 & 1 & 0 \end{bmatrix}$$

Norms Compare

Note

The 2d-norm (spectral norm) of a matrix is the greatest distortion of the unit circle/sphere/hyper-sphere. It corresponds to the largest singular value (or eigenvalue if the matrix is symmetric/Hermitian).

The frobenius norm is the "diagonal" between all the singular values. i.e.

$$||A||_2 = s_1$$
, $||A||_F = \sqrt{s_1^2 + s_2^2 + \dots + s_r^2}$

(*r* being the rank of *A*)

Norms Compare

Note

Here's a 2D version of it: x is any vector on the unit circle. Ax is the deformation of all those vectors. The length of the red line is the 2-norm (biggest singular value). And the length of the green line is the Frobenius norm (diagonal)

2-norm:
$$\frac{S_1}{S_2}$$

$$\sqrt{s_1^2 + s_2^2}$$