

TP 3: Perceptrón Simple y Multicapa

CAMILA SIERRA PÉREZ

IAN JAMES ARNOTT

JUAN ADOLFO ROSAUER HERRMANN

Ejercicio 1

Perceptrón simple con función de activación escalón

Operación AND

Operación AND

Operación XOR

Operación XOR

Conclusiones

El perceptrón simple escalón:

- Encuentra un hiperplano que separa las dos clases en la operación "AND" ya que las coordenadas son linealmente separables.
- No encuentra un hiperplano que separe bien las dos clases en la operación "XOR" ya que los coordenadas NO son <u>linealmente</u> <u>separables.</u>

Ejercicio 2

Perceptrón simple lineal y perceptrón simple no lineal

- Evaluar capacidad de aprendizaje
- Evaluar capacidad de generalización

Consideraciones

Para los perceptrones no lineales las imágenes de las funciones están acotadas:

- (-1;1) para tanh
- (0;1) para logística

Como las salidas esperadas de nuestros perceptrones se encuentran en todos los reales, se normalizó el valor de θ con el metodo Min-Max Feature Scaling.

Training Percentage: 0.8

Epochs: 5000

Bias: 1

Beta: 1

HYPERBOLIC

Training percentage: 0.8

Epochs: 5000

Bias: 1

Beta: 1

LOGISTIC

Training percentage: 0.8

Epochs: 5000

Bias: 1

Beta: 1

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

LOGISTIC

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

VEAMOS EL ERROR EN FUNCiÓN DE LA ÉPOCA AGRUPANDO POR BETA

Learning Rate: 0.01

Training percentage: 0.8

Epochs: 5000

Bias: 1

HYPERBOLIC

Learning Rate: 0.01

Training percentage: 0.8

Epochs: 5000

Bias: 1

LOGISTIC

Learning Rate: 0.01

Training percentage: 0.8

Epochs: 5000

Bias: 1

VEAMOS EL ERROR DE TESTEO EN FUNCiÓN DE LA ÉPOCA AGRUPANDO POR TRAINING PERCENTAGE

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

LOGISTIC

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

Conclusiones

- Para elegir el mejor conjunto de entrenamiento comparamos cada una de las distintas divisiones del conjunto de datos para elegir la mejor.
 - El mejor training percentage varía según el tipo de perceptron elegido.
- Para ver el efecto de la capacidad de generalización del perceptrón comparamos los errores del conjunto de testeo con los errores del conjunto de entrenamiento.
 - Con porcentajes muy bajos o muy altos se produce una pérdida de capacidad de generalización del perceptrón.

Ejercicio 3

Funciones a implementar

- Función lógica "O exclusivo"
- Discriminación de números pares
- Determinar si el dígito se corresponde con la entrada a la red

FUNCIÓN XOR AHORA SE RESUELVE

FUNCIÓN XOR AHORA SE RESUELVE

DISCRIMINACIÓN DE NÚMEROS PAR

Learning Rate: 0.01

Training Percentage: 0.5

Epochs: 5000

Bias: 1

Beta: 1

Epsilon: 0.5

Activation: Sigmoid

DISCRIMINACIÓN DE NÚMEROS PAR

Al dividir el conjunto de datos en entramiento y testeo, estamos privando a la red de que aprenda la paridad de todos los números. Por lo que le cuesta ser eficiente a la hora de predecir la paridad de los números no aprendidos.

DISCRIMINACIÓN DE NÚMEROS PAR

Cuando se testea un número que nunca entreno es prácticamente aleatorio que logre acertar la paridad del mismo.

DISTINCIÓN DE NÚMEROS (0-9)

X

Learning Rate: 0.001

Training Percentage: 1*

Epochs: 1000

Bias: 1

Beta: 1

Epsilon: 0.5

Optimizer: "ADAM"

* Se testea con los mismos dígitos + ruido

DISTINCIÓN DE NÚMEROS (0-9)

Con un poco de ruido, la red fue capaz de utilizar todos los datos como entrenamiento y testearse con datos nuevos.

DISTINCIÓN DE NÚMEROS (0-9)

Notamos que agregar más nodos y/o capas no implica una mayor precisión a la hora de clasificar.

Conclusiones

- Un conjunto acotado de datos no permite que la red entrene bien.
- En caso de tener un conjunto de datos acotado, podemos transformarlo un poco (ruido) para hacer más grande el conjunto disponible y asi permitir un mejor entrenamiento del perceptrón.
- La combinación de capas ideal de la red neuronal debe ser experimentada. No hay una receta (por ejemplo, más neuronas = mejor resultado)