01205332 / 01205303 ปฏิบัติการอิเล็กทรอนิกส์ Electronic Laboratory

- คุณสมบัติของออปแอมป์ และวงจรขยายเชิงเส้น
- วงจร differentiator, integrator และผลตอบสนองเชิงความถึ
- วงจรเปรียบเทียบ, วงจรออสซิลเลเตอร์ และวงจรเรียงกระแสอย่างละเอียด

คุณสมบัติของออปแอมป์

• องค์ประกอบของออปแอมป์

- ออปแอมป์เป็นวงจรรวมขนาดใหญ่ ที่มีทรานซิสเตอร์(BJT, FET) มากกว่า 50 ตัวอยู่ภายใน
- ออปแอมป์ประกอบด้วย ขาอินพุท 2 ขา คือ Noninverting input(V⁺) กับ Inverting input (V⁻) ขาไฟเลี้ยง 2 ขา คือ ขา+Vcc กับขา -Vcc และ ขาเอาท์พุท 1 ขา
- โดยสัญญาณที่เข้าทางขา Noninverting input จะถูกขยาย A_{OL} เท่า กลายเป็นเอาท์พุทที่มีเฟสตรงกัน ส่วนสัญญาณที่เข้าทางขา Inverting input จะถูกขยาย A_{OL} เท่า กลายเป็นเอาท์พุทที่มีเฟสตรงข้าม
- นั่นคือ แรงคันเอาท์พุท $V_{out}=(A_{OL}V^+)+(-A_{OL}V^-)=A_{OL}(V^+-V^-)$ ซึ่งเป็นการขยายผลต่างแรงคันอินพุทค้วยอัตราขยาย $A_{OL}(Open-Loop\ Gain)$ นั่นเอง
- และในทางปฏิบัติขนาดของแรงดันเอาท์พุทที่ได้ โดยปกติจะเล็กกว่าขนาดของแรงดันไฟเลี้ยง เล็กน้อย(ประมาณ 1~2 V) เสมอ

คุณสมบัติของออปแอมป์

• คุณสมบัติของออปแอมป์ในทางอุดมคติกับในทางปฏิบัติ

	Parameter	Ideal Op-amp	Typical Op-amp
Infinite open-loop voltage gain	Differential Voltage gain	8	10 ⁵ - 10 ⁹
No output offset voltage	Common mode voltage gain	0	10 ⁻⁵
Infinite frequency response	Gain bandwidth	∞	1-20 MHz
Zero { Input { Current	Input resistance	∞	$10^{6} \Omega \text{ (BJT)}$ $10^{9} - 10^{12} \Omega \text{ (FET)}$
Ideal voltage source	Output resistance	0	$100-1000~\Omega$

• การใช้งานออปแอมป์เป็นวงจรเปรียบเทียบ(Comparator)

- จากการที่ออปแอมป์มี Open-loop voltage gain สูงมาก ทำให้ เมื่อศักย์ใฟฟ้า $V^+>V^-$ แค่เพียงเล็กน้อย ก็จะทำให้เอาท์พุทอิมตัวที่ $V_{out}=V_{osat}^+$ $\approx +V_{CC}$ เมื่อศักย์ใฟฟ้า $V^+< V^-$ แค่เพียงเล็กน้อย ก็จะทำให้เอาท์พุทอิมตัวที่ $V_{out}=V_{osat}^ \approx -V_{CC}$

• การลัดวงจรเสมือน(Virtual Short) และกราวนด์เสมือน(Virtual Ground)

Noninverting Amplifier

- ขณะที่แรงดันเอาท์พุทยังไม่อิ่มตัว (ไม่เกินระดับแรงดันไฟเลี้ยง)
ศักย์ไฟฟ้าของขาอินพุท Inverting input (V^-) จะเท่ากับ Noninverting input (V^+)
หรือความต่างศักย์ระหว่างขาอินพุททั้งสองเป็นศูนย์ (ถึงแม้ไม่มีการเชื่อมต่อกันทางกายภาพโดยตรง)
หรือที่เรียกกันว่าภาวะลัดวงจรเสมือน(virtual short)

ซึ่งสามารถเกิดได้เมื่อมีการต่อใช้งานออปแอมป์แบบ Negative feedback กล่าวคือต้องมีการนำสัญญาณจากขา output ป้อนกลับไปที่ขา inverting input (V^{-})

• Inverting Amplifier

Inverting Amplifier

$$\frac{V_{out}}{V_{in}} = -\frac{R_f}{R_1}$$

$$Z_{in} = R_1$$

$$Z_{out} \cong 0$$

• Noninverting Amplifier

$$\frac{V_{out}}{V_{in}} = 1 + \frac{R_f}{R_1}$$

$$Z_{in} = \infty$$

$$Z_{out} \cong 0$$

Unity Follower (Buffer)

$$\frac{V_{out}}{V_{in}} = 1$$

• Summing Amplifier

Summing Amplifier

$$V_{out} = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

• Differential Amplifier

Differential Amplifier

$$v_{out}(t) = -R_f C_1 \frac{dv_{in}(t)}{dt}$$

สำหรับ
$$V_{in}$$
 ความถี่ต่ำๆ $V_{out} =$ สำหรับ V_{in} ความถี่สูงๆ $V_{out} =$

• Integrator

Integrator

$$v_{out}(t) = -\frac{1}{R_1 C_f} \int v_{in}(t) dt$$

สำหรับ
$$V_{in}$$
 ความถี่ต่ำๆ $V_{out} =$ สำหรับ V_{in} ความถี่สูงๆ $V_{out} =$

คุณลักษณะเชิงความถี่ของวงจรขยายออปแอมป์

ตัวอย่างวงจรขยายสัญญาณไฟสลับแบบกลับเฟส

- วงจรขยายสัญญาณในทางปฏิบัติ จะมีอัตราขยายที่ไม่คงที่ตลอดทุกย่านความถี่ เนื่องจาก R,C ในวงจร และเนื่องจากตัวออปแอมป์เองที่อัตราขยายลดลงที่ย่านความถี่สูงๆ
- หากเทียบกับย่านความถี่ปานกลาง ที่อัตราขยายคงที่และมีค่าสูงสุดเมื่อเทียบกับย่านความถี่ต่ำๆหรือสูงๆ ความถี่ cut-off ตรงย่านความถี่ต่ำจะเท่ากับ $f_L = \frac{1}{2\pi C_1 R_1}$ และที่ตรงย่านความถี่สูงเท่ากับ $f_H = \frac{1}{2\pi C_f R_f}$
- โดยทั่วไปแล้ว ผลคูณระหว่างอัตราขยายในย่านความถี่กลางกับ Bandwidth ของวงจรจะมีค่าคงที่ เท่ากับ $Gain \times BW \cong \left| -\frac{R_f}{R_1} \right| f_H = \frac{R_f}{R_1} \times \frac{1}{2\pi R_f C_f} = \frac{1}{2\pi R_1 C_f} = f_T$ ซึ่งเป็นความถี่ที่อัตราขยายวงจรเป็น 1 (gain bandwidth product)

• Slew Rate

- เป็นอัตราการเปลี่ยนแปลงสูงสุดของแรงคันเอาท์พุทที่สามารถเปลี่ยนแปลงได้ของวงจรขยาย
- นั่นหมายความว่า จะเกิดการผิดเพี้ยนของสัญญาณเอาท์พุท ที่ต้องเปลี่ยนแปลงเร็วกว่าอัตรา Slew Rate นี้
- กรณีของเอาท์พุทที่เป็นรูปคลื่นไซน์ $V_{out} = V_{om} \sin(\omega t)$ จะมีอัตราการเปลี่ยนแปลงของสัญญาณ $\frac{dV_{out}}{dt} = \omega V_{om} \cos(\omega t)$ ซึ่ง $\left(\frac{dV_{out}}{dt}\right)_{\max} = \omega V_{om} = 2\pi f V_{om}$

$$\begin{aligned} V_{out} &= V_{om} \sin(\omega t) \\ \frac{dV_{out}}{dt} &= \omega V_{om} \cos(\omega t) \end{aligned} \quad \stackrel{?}{\text{IS}} \quad \left(\frac{d}{dt}\right)$$

ซึ่ง
$$\left(\frac{dV_{out}}{dt}\right)_{\text{max}} = \omega V_{om} = 2\pi f V_{on}$$

ฉะนั้นสัญญาณเอาท์พุทจะเพี้ยน ถ้า $\frac{dV_{out}}{dt} > SR$ หรือ $f > \frac{SR}{2\pi V}$ โดยจะเริ่มเพื่ยนที่บริเวณ $V_{out}=0$ ก่อน

• วงจรเปรียบเทียบแบบSchmitt trigger

- เป็นวงจรเปรียบเทียบที่มี ระดับแรงดันอ้างอิง 2 ระดับ ตามระดับแรงดันเอาท์พุทที่เป็นอยู่ในขณะนั้น
- โดยทั่วไปจะใช้ R แบ่งแรงดันจากเอาท์พุท ป้อนกับไปที่ขา Noninverting Input เพื่อใช้เป็น ${
 m V}_{
 m ref}$

วงจรเปรียบเทียบแบบ Schmitt trigger

$$V_{ref} = \frac{R_2}{R_1 + R_2} V_{out}$$
 $V_{ref}^+ = \frac{R_2}{R_1 + R_2} V_{o \ sat}^+ V_{ref}^- = \frac{R_2}{R_1 + R_2} V_{o \ sat}^-$

• วงจรออสซิลเลเตอร์กำเนิดสัญญาณคลื่นสี่เหลี่ยม

- เป็นการนำวงจรเปรียบเทียบแบบ Schmitt trigger มาประยุกต์ใช้สร้างวงจรกำเนิดคลื่นสี่เหลี่ยม
- โดยใช้ R แบ่งแรงดันจากเอาท์พุท ป้อนกับไปที่ขา Noninverting Input เพื่อใช้เป็น V_{ref}
- และใช้วงจร RC แบ่งแรงคันจากเอาท์พุท ป้อนกับไปที่ขา Inverting Input เพื่อใช้เป็น V_{in} โดยเมื่อ $V_{out}=V_{osat}^+$ จะเกิดการอัดประจุเข้า C จนกระทั้ง $V_{in}>V_{ref}^+$ เอาท์พุทก็จะเปลี่ยนค่าเป็น $V_{out}=V_{osat}^-$ และเมื่อ $V_{out}=V_{osat}^-$ จะเกิดการคายประจุจาก C จนกระทั้ง $V_{in}< V_{ref}^-$ เอาท์พุทก็จะเปลี่ยนค่าเป็น $V_{out}=V_{osat}^+$

• วงจรออสซิลเลเตอร์กำเนิดสัญญาณคลื่นสามเหลี่ยม

- เป็นการนำวงจรกำเนิดคลื่นสี่เหลี่ยม กับวงจร Integrator มาประยุกต์ใช้สร้างวงจรกำเนิดคลื่นสามเหลี่ยม
- โดยในส่วนของวงจรกำเนิดคลื่นสี่เหลี่ยมในที่นี้ จะใช้ขา Inverting input เป็นขาแรงดันอ้างอิงคงที่ 0 V และใช้ขา Noninverting input ตรวจจับการเปลี่ยนแปลงของสัญญาณเอาท์พุทของวงจร Integrator

 $V_{osat}^{+} \approx +V_{CC}$ $V_{osat}^{-} \approx -V_{CC}$ $V_{osat}^{-} \approx -V_{CC}$ $V_{osat}^{-} \approx -V_{CC}$ $V_{osat}^{-} \approx -V_{CC}$

Comparator for generating square wave

Integrator
for generating
triangle wave

$$V_{01} = \begin{cases} V_{o \ sat}^+ \\ V_{o \ sat}^- \end{cases}$$

$$V_{02} = -\frac{1}{R_3 C_3} \int V_{01} dt$$

$$V_{x} = \frac{R_{2}}{R_{1} + R_{2}} V_{01} + \frac{R_{1}}{R_{1} + R_{2}} V_{02}$$

• วงจรเรียงกระแสอย่างละเอียด (precision rectifier)

- เป็นวงจรที่สามารถเรียงกระแสของสัญญาณที่มีระดับแรงคันต่ำๆ(ต่ำว่า threshold voltage ของไคโอค)ได้

แบบครึ่งคลื่นด้วย Noninverting Amp

• วงจรเรียงกระแสอย่างละเอียด (precision rectifier)

แบบครึ่งคลื่นด้วย Inverting Amp

• วงจรเรียงกระแสอย่างละเอียด (precision rectifier)

