Chapter 7 Sampling

1. Impulse-Train Sampling

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

T—Sampling period

$$x_p(t) = \sum_{n = -\infty}^{\infty} x(t)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT)$$

$$x(nT)$$
 —Sample values of $x(t)$

§7.1 Sampling Theorem

In general, with no additional conditions, a signal cannot be uniquely specified by a sequence of equally spaced samples.

$$x_{1}(t) \neq x_{2}(t) \neq x_{3}(t)$$
 $x_{1}(kT) = x_{2}(kT) = x_{3}(kT)$

$$P(j\omega) = F\left\{\sum_{k=-\infty}^{\infty} \frac{1}{T} e^{-jk\omega_S t}\right\} = \omega_S \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_S)$$

 $\omega_S = \frac{2\pi}{T}$ —Sample Frequency

$$X_p(j\omega) = \frac{1}{2\pi}X(j\omega) * P(j\omega) = \frac{1}{T}\sum_{k=-\infty}^{\infty}X[j(\omega - k\omega_s)]$$

When $\omega_M < (\omega_s - \omega_M)$, or equivalently, $\omega_s > 2\omega_M$, there is no overlap between the shifted replicas of $X(j\omega)$

Sampling Theorem:

①Let x(t) be a band-limited signal with $X(j\omega)=0$ for $|\omega|>\omega_M$. Then x(t) is uniquely determined by its samples x(nT) for $n\in Z$, if $\omega_S>2\omega_M$, where $\omega_S=\frac{2\pi}{r}$.

②We can reconstruct x(t) by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample value. This impulse train is then processed through an ideal low-pass filter with gain T and cutoff frequency greater than ω_M , and less than $\omega_S - \omega_M$.

Example 7.1 Three input frequencies to an unknown system are 25 kHz, 32 kHz and 40 kHz. With the output frequencies measured respectively. Determine the sampling frequency.

 $\omega_{\scriptscriptstyle S}\gg 2\omega_{\scriptscriptstyle M}$ —Over Sampling

 $\omega_s < 2\omega_M$ —Under Sampling

Bandpass Sampling

2. Sampling with a Zero-Order Hold

$$X_0(j\omega) = \frac{1}{\pi T} \sum_{k=-\infty}^{\infty} \left\{ e^{-j\omega \frac{T}{2}} \left[\frac{\sin\left(\frac{\omega T}{2}\right)}{\omega} \right] X[j(\omega - k\omega_s)] \right\}$$

Signals and Systems 11/11/2019

3. Discrete-Time Processing of Continuous-Time Signals

Homework			
7.3	7.9		
7.1	7.2	7.6	

- 1 Do not wait until the last minute
- 2 Express your own idea and original opinion
- 3 Keep in mind the zero-tolerance policy on plagiarism