```
In [4]: import numpy as np
   import matplotlib.pyplot as plt
   from sklearn import datasets
   from sklearn.svm import SVC
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import accuracy_score, confusion_matrix, classification_repor
```

In [40]: import pandas as pd
data = pd.read_csv(r"C:\Users\bharath\OneDrive\Desktop\fish 2.csv")

In [41]: data.head(10)

Out[41]:

	nofish	livebait	camper	persons	child	xb	zg	count
0	1	0	0	1	0	-0.896315	3.050405	0
1	0	1	1	1	0	-0.558345	1.746149	0
2	0	1	0	1	0	-0.401731	0.279939	0
3	0	1	1	2	1	-0.956298	-0.601526	0
4	0	1	0	1	0	0.436891	0.527709	1
5	0	1	1	4	2	1.394485	-0.707535	0
6	0	1	0	3	1	0.184717	-3.398022	0
7	0	1	0	4	3	2.329107	-5.450902	0
8	1	0	1	3	2	0.188386	-1.527418	0
9	0	1	1	1	0	0.287690	1.393890	1

```
In [54]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.svm import SVC
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import accuracy_score
         X = data[['nofish', 'livebait', 'camper']]
         y = data['persons']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X test = scaler.transform(X test)
         svm_model = SVC()
         svm_model.fit(X_train, y_train)
         y_pred = svm_model.predict(X_test)
         accuracy = accuracy_score(y_test, y_pred)
         print(f"Accuracy of the SVM model: {accuracy}")
```

Accuracy of the SVM model: 0.2

```
In [56]: from sklearn.datasets import load_iris
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score

data = load_iris()
    X = data.data
    y = data.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st

clf = RandomForestClassifier(n_estimators=100, random_state=42)
    clf.fit(X_train, y_train)

predictions = clf.predict(X_test)

accuracy = accuracy_score(y_test, predictions)
    print(f"Accuracy of Random Forest Classifier: {accuracy}")

Accuracy of Random Forest Classifier: 1.0
```

```
In [60]: from sklearn.decomposition import PCA
import numpy as np
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
pca = PCA(n_components=2)
transformed_data = pca.fit_transform(data)
print(transformed_data)
```

```
[[-5.19615242e+00 3.62353582e-16]
[ 0.00000000e+00 0.00000000e+00]
[ 5.19615242e+00 3.62353582e-16]]
```

```
In [66]: import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
```

```
In [69]: data = data = pd.read_csv(r"C:\Users\bharath\OneDrive\Desktop\fish 2.csv")
X = data.drop('persons', axis=1)
X_standardized = (X - X.mean()) / X.std()
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_standardized)
```

```
In [73]: pca_df = pd.DataFrame(data=X_pca, columns=['PC1', 'PC2'])
    plt.figure(figsize=(10, 8))
    plt.scatter(pca_df['PC1'], pca_df['PC2'], edgecolors='k', alpha=0.7)
    plt.title('PCA Scatter Plot')
    plt.xlabel("principal component 1")
    plt.ylabel("principal component 2")
    plt.grid(True)
    plt.show()
```


In [74]: data.head(10)

Out[74]:

	nofish	livebait	camper	persons	child	xb	zg	count
0	1	0	0	1	0	-0.896315	3.050405	0
1	0	1	1	1	0	-0.558345	1.746149	0
2	0	1	0	1	0	-0.401731	0.279939	0
3	0	1	1	2	1	-0.956298	-0.601526	0
4	0	1	0	1	0	0.436891	0.527709	1
5	0	1	1	4	2	1.394485	-0.707535	0
6	0	1	0	3	1	0.184717	-3.398022	0
7	0	1	0	4	3	2.329107	-5.450902	0
8	1	0	1	3	2	0.188386	-1.527418	0
9	0	1	1	1	0	0.287690	1.393890	1

In []: