Optimal Taxation with Incomplete Markets

Anmol Bhandari

David Evans

Mikhail Golosov

apb296@nyu.edu

dgevans@nyu.edu

golosov@princeton.edu

Thomas J. Sargent

thomas.sargent@nyu.edu

October 30, 2013

Abstract

KEYWORDS:

1 Introduction

2 Environment

Markov aggregate shocks $s_t \in \mathcal{S}$; $S \times S$ stochastic matrix Π ; $g_t = g(s_t)$; $\theta_t = \theta(s_t)$ An infinitely lived representative agent plus a benevolent planner

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U\left(c(s^t), l(s^t)\right)$$

Technology: Output $y_t = \theta_t l_t$

A single possibly risky asset $S \times S$ matrix $\mathbb P$ with time t payoff being

$$p_t = \mathbb{P}(s_t|s_{t-1})$$

Agent i's tax bill

$$-T_t + \tau_t \theta_t l_t, \ T_t \ge 0$$

 q_t is price of asset. The household's time t budget constraint is

$$c_t + b_t = (1 - \tau_t) \theta_t l_t + \frac{p_t}{q_{t-1}} b_{t-1} + T_t$$

and the government's is

$$g_t + B_t + T_t = \tau_t \theta_t l_t + \frac{p_t}{q_{t-1}} B_{t-1}$$

Market clearing for goods is

$$c_t + g_t = \theta_t l_t$$

and for assets

$$b_t + B_t = 0$$

Initial assets satisfy $b_{-1} = -B_{-1}$ and an initial state s_{-1} is given.

Definition 2.1. Allocation, price system, government policy

Definition 2.2. Competitive equilibrium: Given $(b_{-1} = -B_{-1}, s_{-1})$ and $\{\tau_t, T_t\}_{t=0}^{\infty}$, all allocations are individually rational, markets clear ¹

Definition 2.3. Optimal competitive equilibrium: A welfare-maximizing competitive equilibrium for a given (b_{-1}, B_{-1}, s_{-1})

1. **Primal approach**: To eliminate tax rates and prices, use household's first order conditions:

$$U_{c,t}q_t = \beta \mathbb{E}_t p_{t+1} U_{c,t+1}$$

$$(1 - \tau_t)\theta_t U_{c,t} = -U_{l,t}$$

- 2. **Implementability constraints**: Derive by iterating the household's budget equation forward at every history
 - \Rightarrow for $t \ge 1$, these impose measurability restrictions on Ramsey allocations
- 3. The $t \geq 1$ measurability constraints contribute the only difference from Lucas-Stokey's Ramsey problem.
- 4. **Transfers:** We temporarily restrict transfers $T_t = 0 \ \forall t$. This is convenient for our analytical results. We eventually show that this assumption is not restrictive.

¹Usually, we impose only "natural" debt limits.

2.1 Ramsey problem (Lucas-Stokey)

$$\max_{\{c_t, l_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(c_t, l_t)$$

subject to

(a) Feasibility

$$c_t + g_t = \theta_t l_t$$

(b) Implementability constraint

$$b_{-1} = \frac{1}{U_{c,0}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(U_{c,t} c_t + U_{l,t} l_t \right)$$

2.2 Ramsey problem (BEGS)

$$\max_{\{c_t, l_t, b_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U(c_t, l_t)$$

(a) Feasibility

$$c_t + g_t = \theta_t l_t$$

(b) Lucas-Stokey implementability constraint

$$b_{-1} = \frac{1}{U_{c,0}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(U_{c,t} c_t + U_{l,t} l_t \right)$$

(c) Measurability constraints

$$\frac{b_{t-1}U_{c,t-1}}{\beta} = \frac{\mathbb{E}_{t-1}p_tU_{c,t}}{p_tU_{c,t}}\mathbb{E}_t \sum_{j=0}^{\infty} \beta^j \left(U_{c,t+j}c_{t+j} + U_{l,t+j}l_{t+j}\right) \text{ for } t \ge 1$$

2.3 Roadmap, analytic strategy

- Ramsey allocation especially asymptotic properties varies with **asset returns** that reflect
 - Prices $\{q_t(s^t|B_{-1},s_{-1})\}_t$
 - Payoffs \mathbb{P}

- To focus on the exogenous \mathbb{P} part of returns, we first study quasi-linear preferences that pin down $q_t = \beta \mathbb{E}_t \mathbb{P}(s_{t+1}|s_t)$
- Activate risk aversion and fluctuating q_t later

2.4 Analysis with quasi-linear preferences

Quasilinear preferences $U(c,l)=c-\frac{l^{1+\gamma}}{1+\gamma}$

To characterize **long-run** debt and taxes, we construct and then invert mapping $\mathbb{P}^*(b)$

- Given **arbitrary** initial govt. assets b_{-1} , what is an **optimal** asset payoff matrix $\mathbb{P}^* = \mathbb{P}^*(b_{-1})$?
- Under a Ramsey plan for an **arbitrary** payoff matrix \mathbb{P} , when would $b_t \to b^*$, where

$$\mathbb{P} = \mathbb{P}^*(b^*) \text{ or } b^* = \mathbb{P}^{*-1}(\mathbb{P})?$$

- ullet We first reverse engineer an optimal $\mathbb{P}^*(b_{-1})$ from a Lucas-Stokey Ramsey allocation
- In a binary IID world, we identify a big set of \mathbb{P} 's that imply that b_t under a Ramsey plan converges to b^* that solves

$$\mathbb{P} = \mathbb{P}^*(b^*)$$

• For more general shock structures, we numerically verify an ergodic set of b_t 's hovering around \tilde{b} . The optimal \mathbb{P}^* associated with \tilde{b} seems close to \mathbb{P} :

$$\mathbb{P} \approx \mathbb{P}^*(\tilde{b})$$

2.5 Optimal asset payoff matrix \mathbb{P}^*

- 1. Given b_{-1} , compute a Lucas-Stokey Ramsey allocation
- 2. Notice that the measurability constraints are invariant to scaling of p_t by a constant k_{t-1} that can depend on s^{t-1} .

3. From this class we select a p_t that imposes the normalization $\mathbb{E}_{t-1}U_{c,t}p_t=1$

$$p_{t} = \frac{\beta}{U_{c,t-1}b_{t-1}U_{c,t}} \mathbb{E}_{t} \sum_{j=0}^{\infty} \beta^{j} \left(U_{c,t+j}c_{t+j} + U_{l,t+j}l_{t+j} \right)$$

- 4. By construction, p_t disarms the time $t \geq 1$ measurability constraints.
- 5. Using the fact that the Lucas-Stokey allocation is stationary, we can construct the optimal payoff matrix

$$\mathbb{P}^*(s_t, s_{t-1}|b_{-1}) = p_t$$

2.6 Quasilinear preferences $U(c, l) = c - \frac{l^{1+\gamma}}{1+\gamma}$

Given initial assets b_{-1} , let $\mu(b_{-1})$ be the Lagrange multiplier on the Lucas-Stokey implementability constraint

1. Multiplier \rightarrow Tax rate:

$$\tau(\mu) = \frac{\gamma\mu}{(1+\gamma)\mu - 1}$$

2. Tax rate \rightarrow net of interest surplus:

$$S(s,\tau) = \theta(s)^{\frac{\gamma}{1+\gamma}} (1-\tau)^{\frac{1}{\gamma}} \tau - g(s)$$

3. Surplus \rightarrow optimal payoff structure:

$$\mathbb{P}^*(s, s_{-}|b_{-1}) = (1 - \beta) \frac{S(s, \tau)}{\mathbb{E}_{s_{-}}S(s, \tau)} + \beta$$

2.7 Initial holdings influence optimal asset payoff structure

Denote state s as "adverse" if it has "high" govt. expenditures or "low" TFP; formally, s is "adverse" if

$$g(s)\mathbb{E}_{s_}\theta^{\frac{\gamma}{1+\gamma}} - \theta(s)^{\frac{\gamma}{1+\gamma}}\mathbb{E}_{s_}g > 0$$

Properties of optimal payoff matrix \mathbb{P}

- With positive initial govt. assets: want an asset that pays more in "adverse" states
- With negative initial govt. assets: want an asset that pays less in "adverse" states

Figure 1: Optimal asset payoff structure as a function of initial government debt when TFP follows a 2 shock i.i.d process

Figure 2: Optimal asset payoff structure as a function of initial government debt when government expenditures follow 2 shock i.i.d process

2.8 Inverting the \mathbb{P}^* mapping

- 1. Exogenous payoff structure: Suppose $\mathbb{P} \neq \mathbb{P}^*(b_{-1})$
- 2. Steady States: A steady state is a government debt b^* such that

$$b_t = b^*$$
 implies $b_{t+\tau} = b^* \quad \forall \tau > 0$

- 3. Characterization: Given an asset payoff structure \mathbb{P}
 - Does a steady state exist? Is it unique?
 - Value of b^* ?
 - For what initial government debts b_{-1} does b_t converge to b^* ?

2.9 Existence and \mathbb{P}^{*-1}

When shocks are i.i.d and take two values

- 1. $\mathbb{P}(s_{-},s)$ is independent of s_{-} (so \mathbb{P} can be a vector)
- 2. Under the normalization $q_t = \beta$, $\mathbb{EP}(s) = 1$. Payoffs are then determined by a scalar p.
 - p is the asset's payoff in the "good" state s
 - A risk-free bond is a security for which p = 1
- 3. A steady state is obtained by inverting the optimal payoff mapping p^*

$$b^*$$
 satisfies $\boldsymbol{p} = \boldsymbol{p}^*(b^*)$ or $p^{*-1}(p) = b^*$

One equation in one unknown b^*

2.10 Existence regions in p space

The payoff \boldsymbol{p} in good state $\in (0, \infty)$.

We categorize a set of economies with different asset payoffs into 3 regions via thresholds $\alpha_2 \geq \alpha_1 \geq 1$

- Low enough $p(\leq \alpha_1)$: government holds assets in steady state
- High enough $p(\geq \alpha_2)$: government issues debt in steady state
- Intermediate $p(\alpha_1 > p > \alpha_2)$: steady state does not exist

2.11 Thresholds: $\alpha_1 < \alpha_2$

• With only government expenditure shocks

$$\alpha_1 = 1 \text{ and } \alpha_2 = (1 - \beta) \frac{\theta^{\frac{\gamma}{1+\gamma}} \left(\frac{1}{1+\gamma}\right)^{\frac{1}{\gamma}} \frac{\gamma}{1+\gamma} - g(s_1)}{\theta^{\frac{\gamma}{1+\gamma}} \left(\frac{1}{1+\gamma}\right)^{\frac{1}{\gamma}} \frac{\gamma}{1+\gamma} - \mathbb{E}g} + \beta > 1$$

• With only TFP shocks

$$\alpha_1 = (1 - \beta) \frac{\theta(s_1)^{\frac{\gamma}{1+\gamma}}}{\mathbb{E}\theta^{\frac{\gamma}{1+\gamma}}} + \beta > 1$$

and

$$\alpha_2 = (1 - \beta) \frac{\theta(s_1)^{\frac{\gamma}{1+\gamma}} \left(\frac{1}{1+\gamma}\right)^{\frac{1}{\gamma}} \frac{\gamma}{1+\gamma} - g}{\mathbb{E}\theta^{\frac{\gamma}{1+\gamma}} \left(\frac{1}{1+\gamma}\right)^{\frac{1}{\gamma}} \frac{\gamma}{1+\gamma} - g} + \beta > \alpha_1$$

2.12 Convergence

- Our analysis verifies existence of a steady state in a 2-state i.i.d. economy.
- To study long-run properties of a Ramsey allocation, we want to know whether steady state is stable
- Risk-adjusted martingale:

The Lagrange multiplier μ_t on the implementability constraint satisfies

$$\mu_t = \mathbb{E}_t p_{t+1} \mu_{t+1}$$

or

$$\mathbb{E}_{t}\mu_{t+1} = \mu_{t} - Cov_{t}(p_{t+1}, \mu_{t+1})$$

Figure 3: Existence regions in \boldsymbol{p} space

• Stability criterion: Away from a steady state, is the drift of μ_t big enough?

2.13 Characterizing convergence under quasi-linearity, iid, and S=2

- Reminder: p is the payoff in the "good" state.
- ullet We partition the " $oldsymbol{p}$ space" into stable and unstable regions

Theorem 2.4. Let b^* denote steady state govt. debt and b_{fb} be govt. debt that supports the first-best allocation with complete markets. Then

- 1. Low p: If $p \le \min(\alpha_1, 1)$ then $b_{fb} < b^* < 0$ and $b_t \to b^*$ with probability 1.
- 2. **High p**: If $p \ge \alpha_2$ then $0 < b^*$ and $b_t \to b^*$ with probability 1.

For the intermediate region where b^* either does not exist or is unstable, there is a tendency to run up debt

Stability regions

Figure 4: Stability regions

Figure 5: A sample path with p > 1

Figure 6: A sample path with p < 1

2.14 Intuition for Convergence

- The Ramsey policy with incomplete markets smooths the welfare costs of distorting labor taxes by manipulating debt positions
- With a risk-free bond, the marginal cost of raising funds μ_t is a martingale. Changes in debt levels help smooth tax distortions across time.
- If the payoff matrix of the asset differs across states, then by generating state contingent revenues, the level of government debt smooths tax distortions across states.
- The steady state b^* is a unique debt level that provides enough "state contingency" completely to overcome missing assets markets
- When issuing debt, the government takes takes this benefit into account by distorting the martingale and either accumulating or decumulating debt.
- Although this is achieved by raising taxes, locally the welfare costs of taxes are second order and dominated by the gains from coming closer to b^* , which are first order in terms of welfare.

2.15 Outcomes with quasi-linear preferences

Outcomes:

- 1. Often $b_t \to b^*$ when the aggregate state follows a 2-state i.i.d. process
- 2. The level and sign of b^* depend on the **exogenous payoff structure** \mathbb{P}
- 3. The limiting allocation corresponds to a complete market Ramsey allocation for initial govt. debt b^*

2.16 Turning on risk-aversion

Modifications:

- Another source of return fluctuations the risk-free interest rate
- Marginal utility adjusted debt encodes history dependence
- With binary i.i.d shock shock process, $x_t = u_{c,t}b_t$ converges
- Long-run properties of x_t depend on equilibrium returns $R_{t,t+1} = \frac{\mathbb{P}(s_t, s_{t+1})}{q_t(s^t)}$. Now q_t varies in interesting ways

2.17 Roadmap, II

Two subproblems

- 1. t = 0 Bellman equation in value function $W(b_{-1}, s_0)$
- 2. $t \ge 1$ Bellman equation in value function $V(x, s_{-})$

Seek steady states x^* such that $x_t \to x^*$

2.18 A Recursive Formulation

- 1. Commitment implies that government actions at $t \ge 1$ are constrained by the public's anticipations about them at s < t
- 2. This contributes additional state variables like marginal utility of consumption
- 3. Scaling the budget constraint by marginal utility makes Ramsey problem recursive in $x = U_c b$

$$\frac{x_{t-1}p_{t}U_{c,t}}{\beta \mathbb{E}_{t-1}p_{t}U_{c,t}} = U_{c,t}c_{t} + U_{l,t}l_{t} + x_{t}$$

2.19 Bellman equation for $t \ge 1$ (ex ante)

$$V(x, s_{-}) = \max_{c(s), l(s), x'(s)} \sum_{s} \Pi(s, s_{-}) \Big(U(c(s), l(s)) + \beta V(x'(s), s) \Big)$$

subject to $x'(s) \in [\underline{x}, \overline{x}]$

$$\frac{x\mathbb{P}(s)U_c(s)}{\beta\mathbb{E}_s\mathbb{P}Uc} = U_c(s)c(s) + U_l(s)l(s) + x'(s)$$
$$c(s) + q(s) = \theta(s)l(s)$$

2.20 Time 0 Bellman equation (ex post)

Given an initial debt b_{-1} , state s_0 , and continuation value function $V(x, s_{-})$

$$W(b_{-1}, s_0) = \max_{c_0, l_0, x_0} U(c, l) + \beta V(x_0, s_0)$$

subject to time zero implementability constraint

$$U_c(c_0, l_0)c + U_l(c_0, l_0)l_0 + x_0 = U_c(c_0, l_0)b_{-1}$$

and resource constraint

$$c_0 + g(s_0) = \theta(s_0)l_0$$

and

$$x_0 \in [\underline{x}, \overline{x}]$$