Design An A/B Test (Free Trial Screener)

Experiment Overview:

At the time of this experiment, Udacity courses currently have two options on the course overview page: "start free trial", and "access course materials". If the student clicks "start free trial", they will be asked to enter their credit card information, and then they will be enrolled in a free trial for the paid version of the course. After 14 days, they will automatically be charged unless they cancel first. If the student clicks "access course materials", they will be able to view the videos and take the quizzes for free, but they will not receive coaching support or a verified certificate, and they will not submit their final project for feedback.

In the experiment, Udacity tested a change where if the student clicked "start free trial", they were asked how much time they had available to devote to the course. If the student indicated 5 or more hours per week, they would be taken through the checkout process as usual. If they indicated fewer than 5 hours per week, a message would appear indicating that Udacity courses usually require a greater time commitment for successful completion, and suggesting that the student might like to access the course materials for free.

The hypothesis was that this might set clearer expectations for students upfront, thus reducing the number of frustrated students who left the free trial because they didn't have enough time. The unit of diversion is a cookie, although if the student enrolls in the free trial, they are tracked by user-id from that point forward. The screenshot of the experiment is shown below:

Experiment Design

Metric Choice

Invariant Metrics: Invariant metrics are those metrics which should not change across the experimental and control groups. These metrics can play a good role in sanity checking. As part of this experiment the following can be chosen as the invariant metrics.

- Number of cookies: No of cookies is a good population sizing metric. As unit of
 diversion is cookie for this experiment, they should be randomly distributed across the
 control and experiment groups and both the groups should have approximately equal no
 of them to pass the initial sanity test.
- **Number of clicks**: As the changes are made to the flow post the click on "start free trial" there should be no change in this parameter due to experiment and this parameter should be comparable across both the groups.
- Click-through-probability: Click through probability is defined as the ratio of no of clicks to the no of pageviews, since both the parameters are invariant, this metric should be invariant and should be comparable across both the groups.

Measuring Standard Deviation

List the standard deviation of each of your evaluation metrics. (These should be the answers from the "Calculating standard deviation" quiz.)

For each of your evaluation metrics, indicate whether you think the analytic estimate would be comparable to the the empirical variability, or whether you expect them to be different (in which case it might be worth doing an empirical estimate if there is time). Briefly give your reasoning in each case.

Sizing

Number of Samples vs. Power

Indicate whether you will use the Bonferroni correction during your analysis phase, and give the number of pageviews you will need to power you experiment appropriately. (These should be the answers from the "Calculating Number of Pageviews" quiz.)

Duration vs. Exposure

Indicate what fraction of traffic you would divert to this experiment and, given this, how many days you would need to run the experiment. (These should be the answers from the "Choosing Duration and Exposure" quiz.)

Give your reasoning for the fraction you chose to divert. How risky do you think this experiment would be for Udacity?

Experiment Analysis

Sanity Checks

For each of your invariant metrics, give the 95% confidence interval for the value you expect to observe, the actual observed value, and whether the metric passes your sanity check. (These should be the answers from the "Sanity Checks" quiz.)

For any sanity check that did not pass, explain your best guess as to what went wrong based on the day-by-day data. **Do not proceed to the rest of the analysis unless all sanity checks** pass.

Result Analysis

Effect Size Tests

For each of your evaluation metrics, give a 95% confidence interval around the difference between the experiment and control groups. Indicate whether each metric is statistically and practically significant. (These should be the answers from the "Effect Size Tests" quiz.)

Sign Tests

For each of your evaluation metrics, do a sign test using the day-by-day data, and report the p-value of the sign test and whether the result is statistically significant. (These should be the answers from the "Sign Tests" quiz.)

Summary

State whether you used the Bonferroni correction, and explain why or why not. If there are any discrepancies between the effect size hypothesis tests and the sign tests, describe the discrepancy and why you think it arose.

Recommendation

Make a recommendation and briefly describe your reasoning.

Follow-Up Experiment

Give a high-level description of the follow up experiment you would run, what your hypothesis would be, what metrics you would want to measure, what your unit of diversion would be, and your reasoning for these choices.