Name:- Praful Kailas Patil

Roll: - 23110115

Div :- **B**

Sub :- Lab on C# Programming

- 1. Write a Console Application to demonstrate the structure of C# Programming.
 - > Program :-

```
using System;
namespace Program
{
    internal class Program
    {
       static void Main(string[] args)
       {
            Console.WriteLine("Jay Maharashtra!");
            Console.Read();
       }
    }
}
```

> Output:-

Jay Maharashtra!

- 2. Write a program to print "G H Raisoni College, Jalgaon" given number of times.
 - > Program :-

```
int n;
Console.WriteLine("How many time you want to Enter");
n = int.Parse(Console.ReadLine());
for(int i = 1; i <= n; i++)
    Console.WriteLine("G H Raisoni College, Jalgaon");</pre>
```

```
How many time you want to Enter

G H Raisoni College, Jalgaon
```

3. Write a program to show use of different operators.

```
> Program :-
      using System;
      namespace Program
        internal class Program
           static void Main(string[] args)
             Console.WriteLine("Arithmetic Operators:");
             int result;
             int x = 30, y = 20;
             result = x + y;
             Console.WriteLine("Addition Operator: " + result);
             result = x - y;
             Console.WriteLine("Subtraction Operator: " + result);
             result = x * y;
             Console. WriteLine("Multiplication Operator: " + result);
             result = x / y;
             Console.WriteLine("Division Operator: " + result);
             result = x \% y;
             Console.WriteLine("Modulo Operator: " + result);
             Console.WriteLine("----");
             Console.WriteLine("Logical Operators:");
             int a = 6;
             Console. WriteLine("a > 3 & a < 10: " + (a > 3 & a < 10));
             Console.WriteLine("----");
             Console.WriteLine("Assignment Operator:");
             int b = 10:
             Console.WriteLine("Value of b: " + b);
             Console. WriteLine("----");
             Console. WriteLine("Press Enter Key to Exit..");
             Console.ReadLine();
           }
                          C:\C# Practical\Arithematic O
                     Arithmetic Operators
➤ Output :-
                     Addition Operator: 50
Subtraction Operator: 10
Multiplication Operator:
                     Division Operator:
Modulo Operator: 10
                     Logical Operators:
a > 3 && a < 10: True
                     Assignment Operator:
                     Value of b: 10
                      ress Enter Key to Exit..
```

4. Write a program to reverse a string and check if it is Armstrong number.

```
> Program :-
    using System;
    namespace ConsoleApp2
      class Program
        static void Main(string[] args)
           int num, x, sum = 0, y;
           Console.Write("Enter a Number: ");
           num = int.Parse(Console.ReadLine()); y = num;
           while (num > 0)
             x = num \% 10;
             sum = sum + (x * x * x); num = num / 10;
           if(y == sum)
             Console.Write("Armstrong Number!!");
             Console.Write("Not an Armstrong Number!!");
             Console.ReadLine();
      }
```

➢ Output :-

5. Write a program sum of first's N natural numbers using for loop.

```
> Program :-
    using System;
    namespace SumOfNaturalNumbers
      class SumCalculator
         public int N;
        public int CalculateSum()
           int sum = 0;
           for (int i = 1; i \le N; i++)
             sum += i;
           return sum;
      }
      class Program
         static void Main(string[] args)
           SumCalculator calculator = new SumCalculator();
           Console.Write("Enter the value of N: ");
           calculator.N = Convert.ToInt32(Console.ReadLine());
           int result = calculator.CalculateSum();
           Console.WriteLine("Sum of first {0} natural numbers is: {1}", calculator.N,
           result);
           Console.ReadLine();
         }
```

```
Enter the value of N: 6
Sum of first 6 natural numbers is: 21
```

OR

5. Write a C#.NET program to display the multiplication table of a number entered by the user. Example: Output: $5 \times 1 = 5$

```
Program :-
using System;

class Program
{
    static void Main()
    {
        Console.Write("Enter a number to show its multiplication table:"); int number =
    int.Parse(Console.ReadLine());
        for (int i = 1; i <= 10; i++)
        {
            int result = number * i;
            Console.WriteLine(number + "x" + i + " = " + result); Console.ReadLine();
        }
    }
}</pre>
```

```
Enter a number to show its multiplication table:10

10x1 =10

10x2 =20

10x3 =30

10x4 =40

10x5 =50

10x6 =60

10x7 =70

10x8 =80

10x9 =90

10x10 =100
```

6. Write a program to show use of Constructor.

```
> Program :-
    using System;
    class Student
      string name; int rollNo;
      public Student(string n, int r)
         name = n; rollNo = r;
      public void Display()
         Console.WriteLine("Name: " + name);
        Console.WriteLine("Roll No: " + rollNo);
      }
    class Program
      static void Main(string[] args)
         Student s1 = new Student("Praful", 115);
         Student s2 = new Student("Om", 102);
         Console.WriteLine("Student 1 Details:"); s1.Display();
         Console.WriteLine("\nStudent 2 Details:");
        s2.Display();
      }
    }
```

```
Microsoft Visual Studio Debu! × + ∨

Student 1 Details:
Name: Praful
Roll No: 115

Student 2 Details:
Name: Om
Roll No: 102
```

7. Write a program to show use of Destructor.

```
> Program :-
    using System;
    class Sample
      public Sample()
         Console.WriteLine("Constructor is called.");
      ~Sample()
         Console.WriteLine("Destructor is called.");
    class Program
      static void Main(string[] args)
         Sample obj = new Sample();
         Console.WriteLine("Object created inside Main method.");
         obj = null;
         GC.Collect();
         GC.WaitForPendingFinalizers();
         System. Threading. Thread. Sleep (100);
         Console.WriteLine("Main method ends.");
         Console.ReadLine();
```

```
C:\C# Practical\ConsoleApp1\\ \times \ + \ \ \ \

Constructor is called.

Object created inside Main method.

Destructor is called.

Main method ends.
```

8. Write a program to demonstrate Inheritance.

> Program :-

```
using System;
class Person
  public string Name; public int Age;
  public void ShowDetails()
     Console.WriteLine("Name: " + Name); Console.WriteLine("Age: " + Age);
class Student: Person
  public int RollNo;
  public void ShowStudentDetails()
    ShowDetails();
     Console.WriteLine("Roll No: " + RollNo);
class Program
  static void Main(string[] args)
    Student s1 = new Student();
    s1.Name = "Praful"; s1.Age = 21;
    s1.RollNo = 115;
    Console.WriteLine("Student Details:"); s1.ShowStudentDetails();
```

```
Microsoft Visual Studio Debu! × + ∨

Student Details:
Name: Praful
Age: 21
Roll No: 115
```

9. Write a program to demonstrate Interface in C#.

> Program:-

```
using System;
interface IShape
{
    void Draw();
}
class Circle : IShape
{
    public void Draw() => Console.WriteLine("Drawing Circle");
}
class Program
{
    static void Main()
    {
        IShape shape = new Circle(); shape.Draw();
    }
}
```


10. Write a Console Application to Demonstrate Abstract Class in C#.

> Program :-

```
using System;
abstract class Shape
{
   public abstract void Draw();
}
class Circle : Shape
{
   public override void Draw() => Console.WriteLine("Drawing Circle");
}
class Program
{
   static void Main()
   {
      Shape s = new Circle(); s.Draw();
   }
}
```

➤ Output:-

11. Write a Console Application to demonstrate the Exception Handling Mechanism in C#.

> Program:-

```
using System;

class Program
{
    static void Main()
    {
        try
        {
            Console.Write("Enter a number: ");
        int num = Convert.ToInt32(Console.ReadLine());
            Console.WriteLine("Result: " + (10 / num));
        }
        catch (Exception e)
        {
            Console.WriteLine("Error: " + e.Message);
        }
    }
}
```

```
Microsoft Visual Studio Debu × + v

Enter a number: 2
Result: 5
```

```
Microsoft Visual Studio Debu: × + v

Enter a number: 0

Error: Attempted to divide by zero.
```

12. Write a Console Application to demonstrate the Class and object in C#.

> Program:-

```
using System;

class Student
{
    public string Name;
    public void Display() => Console.WriteLine("Name: " + Name);
}

class Program
{
    static void Main()
    {
        Student s = new Student(); s.Name = "Praful"; s.Display();
    }
}
```


13. Write a Console Application to demonstrate the Array in C#.

```
Program :- 1D Array -
    using System;

namespace Array_prog
{
    class Program
    {
        int[] a = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 };
        for (int i = 0; i < a.Length; i++)
        {
            Console.WriteLine(a[i]);
        }
        Console.Read();
    }
}</pre>
```

```
Microsoft Visual Studio Debu! × + | ∨

2
4
6
8
10
12
14
16
18
20
```

```
➤ Program :- 2D Array –
```

```
Enter elements for a 2D array (2 rows x 3 columns):

Enter element at [{i},{j}]: 3

Enter element at [{i},{j}]: 4

Enter element at [{i},{j}]: 5

Enter element at [{i},{j}]: 7

Enter element at [{i},{j}]: 8

Enter element at [{i},{j}]: 9

2D Array Elements:

3     4     5

7     8     9
```

14. Create a student registration form using Label, Button, and Textbox control and print the data on the same form

> Program:-

```
using System;
using System.Windows.Forms;
public class StudentForm : Form
  Label lblName, lblRoll;
  TextBox txtName, txtRoll;
  Button btnSubmit;
  Label lblOutput;
  public StudentForm()
  {
    this.Text = "Student Registration Form";
    this. Width = 400;
    this. Height = 300;
    lblName = new Label() \{ Text = "Name:", Top = 30, Left = 30 \};
    txtName = new TextBox() \{ Top = 30, Left = 120 \};
    lblRoll = new Label() \{ Text = "Roll No:", Top = 70, Left = 30 \};
    txtRoll = new TextBox() \{ Top = 70, Left = 120 \};
    btnSubmit = new Button() { Text = "Register", Top = 110, Left = 120 };
    btnSubmit.Click += new EventHandler(this.Submit_Click);
    lblOutput = new Label() \{ Top = 160, Left = 30, Width = 300 \};
    this.Controls.Add(lblName);
    this.Controls.Add(txtName);
    this.Controls.Add(lblRoll);
    this.Controls.Add(txtRoll);
    this.Controls.Add(btnSubmit);
```

```
this.Controls.Add(lblOutput);
}
private void Submit_Click(object sender, EventArgs e)
{
    lblOutput.Text = $"Student: {txtName.Text}, Roll No:
    {txtRoll.Text}"; public static void Main()
{
        Application.Run(new StudentForm());
}
```

> Output:-

Student: Praful, Roll No: 115


```
protected void Page_Load(object sender, EventArgs e)
1
protected void Button1_Click(object sender, EventArgs e)
    SqlConnection con = new SqlConnection(@"Data Source=*********;Initial Catalog=AspApplication;User ID =sa;Password=***********);
    1
        con.Open();
       SqlCommand cmd = new SqlCommand("insert into tbllogin values(@name,@Pass,@city,@gender,@mail)", con);
       cmd.Parameters.AddWithValue("name", TextBox1.Text);
       cmd.Parameters.AddWithValue("Pass", TextBox2.Text);
       cmd.Parameters.AddWithValue("city", DropDownList1.SelectedValue);
       cmd.Parameters.AddWithValue("gender", RadioButtonList1.SelectedValue);
        cmd.Parameters.AddWithValue("mail", TextBox4.Text);
        cmd.ExecuteNonQuery();
       TextBox1.Text = "";
       TextBox2.Text = "";
       DropDownList1.SelectedValue = "";
        RadioButtonList1.SelectedValue = "";
       TextBox4.Text = "";
       TextBox1.Focus();
```

15. Create a window application to demonstrate List Box and Combo Box control.

```
> Program :-
namespace WinFormsApp4 {
public partial class Form1 : Form
  public Form1()
  InitializeComponent();
private void button1_Click(object sender, EventArgs e)
      foreach (object obj in listBox1.SelectedItems)
          MessageBox.Show("you have Selected: " + obj.ToString());
  }
     private void button2_Click(object sender, EventArgs e)
       string var = comboBox1.Text; MessageBox.Show("You have Selected:" + var);
     private void Form1_Load(object sender, EventArgs e)
```


16. Write a window application to change the background color randomly after every Second (Use Timer Control).

```
> Program :-
using System;
using System.Drawing;
using System. Windows. Forms;
public class RandomColorForm: Form
private Timer colorTimer;
private Random random;
public RandomColorForm()
InitializeComponent();
}
private void InitializeComponent()
this.Text = "Random Color Changer";
this. Size = new Size(400, 300);
this.StartPosition = FormStartPosition.CenterScreen; random
= new Random();
colorTimer = new Timer();
colorTimer.Interval = 1000; // 1000 milliseconds = 1 second
colorTimer_Tick += ColorTimer_Tick; // Attach the event handler
colorTimer.Start(); // Start the timer
private void ColorTimer_Tick(object sender, EventArgs e)
int r = random.Next(256); // 0-255
```

```
int g = random.Next(256); int b =
random.Next(256);
this.BackColor = Color.FromArgb(r, g, b)
[STAThread]
public static void Main()
{
    Application.EnableVisualStyles();
    Application.SetCompatibleTextRenderingDefault(false);
    Application.Run(new RandomColorForm());
}
```

> Output:-

When you run the program, the **form window background will change its color randomly every 1 second**.

Example:

- \circ At 1s \rightarrow Blue
- \circ At 2s \rightarrow Green
- \circ At 3s \rightarrow Orange
- \circ At $4s \rightarrow Pink$

17. Create a C# application using Picture Box, Scrollbar control.

> Program :-

```
using System;
using System.Drawing;
using System. Windows. Forms;
namespace ScrollablePictureBoxApp
public partial class Form1: Form
public Form1()
{
InitializeComponent();
}
private void btnLoadImage_Click(object sender, EventArgs e)
ofdImage.Filter = "Image Files|*.jpg;*.jpeg;*.png;*.gif;*.bmp";
ofdImage.Title = "Select an Image File";
if (ofdImage.ShowDialog() == DialogResult.OK)
{
try
pbDisplayImage.Image = Image.FromFile(ofdImage.FileName); pbDisplayImage.Size
= pbDisplayImage.Image.Size;
}
catch (Exception ex)
MessageBox.Show("Error loading image: " + ex.Message, "Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}
```

} }

18. Demonstrate the use of Timer control in C# Display the current Date and Time

```
Program :-
    using System;

namespace WinFormsApp13
{
    public partial class Forml : Form
    {
        public Form1()
        {
            InitializeComponent();
            timerl.Start();
        }
        private void timerl_Tick(object sender, EventArgs e)
        {
            label1.Text = DateTime.Now.ToString("dd-MM-yyyy hh:mm:ss tt");
        }
      }
}
```

➤ Output:-

19. Write a Window Application to demonstrate MDI (Multiple Document Interface)

Create Main form with Menu-Form1, Form2 and Form3, and open respective form whenever user clicks on respective Menu option

> Program :-

```
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System. Windows. Forms;
namespace WindowsFormsApplication4
public partial class Form1: Form
public Form1()
InitializeComponent();
}
Form2 frm2;
private void button2_Click(object sender, EventArgs e)
if (frm2==null)
frm2 = new Form2(); frm2.MdiParent = this;
frm2.Show();
}
else
```

```
frm2.Activate();
}

private void button3_Click(object sender, EventArgs
e) for (int i = 0; i < 50; i++)
{

Form3 frm3 = new Form3();
frm3.MdiParent = this;
frm3.Show();
}</pre>
```


20. Create a class Student with properties like Roll no, Name, and Marks. Write a method to display student details.

```
> Program :-
  using System;
  class Student
     public int RollNo { get; set; }
     public string Name { get; set; }
     public int Marks { get; set; }
     public void DisplayDetails()
       Console.WriteLine("Student Details:");
       Console.WriteLine($"Roll No: {RollNo}");
       Console. WriteLine($"Name
                                      : {Name}");
       Console.WriteLine($"Marks : {Marks}");
     }
  class Program
     static void Main(string[] args)
       Student s1 = new Student(); s1.RollNo = 115;
       s1.Name = "Praful";
       s1.Marks = 95;
       s1.DisplayDetails(); Console.ReadLine();
     }
   }
```

```
Microsoft Visual Studio Debu! × + ∨

Student Details:
Roll No: 115
Name : Praful
Marks : 95
```

21. Create a Console Application to calculate the factorial of a number

> Program:-

```
using System;

class FactorialProgram
{
    static void Main(string[] args)
    {
        Console.Write("Enter a number: ");
        int num = Convert.ToInt32(Console.ReadLine());
        long factorial = 1;
        for (int i = 1; i <= num; i++)
        {
            factorial *= i;
        }
        Console.WriteLine($"Factorial of {num} is: {factorial}");
        Console.ReadLine(); // to keep console window open
    }
}</pre>
```

➤ Output:-

```
Microsoft Visual Studio Debug × + ∨

Enter a number: 10

Factorial of 10 is: 3628800
```

22. Create a Calculator in Console Application to Perform Add, Subtract, Multiply and Divide operation.

> Program :-

```
using System;
namespace CalculatorApp
  class Program
    static void Main(string[] args)
       double num1, num2;
       Console.Write("Enter first number: ");
       num1 = Convert.ToDouble(Console.ReadLine());
       Console.Write("Enter second number: ");
       num2 = Convert.ToDouble(Console.ReadLine());
       Console.WriteLine("\n_____Results____");
       double addition = num1 + num2;
       double subtraction = num1 - num2;
       double multiplication = num1 * num2;
       double division = (num2 != 0) ? num1 / num2 : double.NaN;
       Console.WriteLine($"Addition:
                                         \{num1\} + \{num2\} = \{addition\}''\};
       Console.WriteLine($"Subtraction: {num1} - {num2} =
{subtraction}");
       Console.WriteLine($"Multiplication: {num1} * {num2} =
{multiplication}");
       if (num2 != 0)
         Console.WriteLine($"Division:
                                           \{num1\} / \{num2\} =
{division}");
         Console.WriteLine("Division:
                                         Error! Division by zero is not
allowed.");
```

➢ Output :-

23. Write a Program to determine eligibility for admission to professional course based on following cat

Math >= 65, Physics >= 55, Chemistry >= 50

Totals on all three courses >= 180 or Total in math and course>=140

> Program :-

```
using System;
class Program
  static void Main()
    int math, physics, chemistry;
    // Input marks
    Console.Write("Enter marks in Mathematics:");
    math = int.Parse(Console.ReadLine());
    Console. Write("Enter marks in Physics:");
    physics = int.Parse(Console.ReadLine());
    Console.Write("Enter marks in Chemistry:");
    chemistry = int.Parse(Console.ReadLine());
    int total = math + physics + chemistry;
    int mathPhysicsTotal = math + physics;
    if (math >= 65 && physics >= 55 && chemistry >= 50 && (total >= 180
|| mathPhysicsTotal >= 140))
       Console.WriteLine("\n You are eligible for admission.");
    else
       Console.WriteLine("\n You are NOT eligible for admission.");
    Console.ReadLine();
```

```
Enter marks in Mathematics:70
Enter marks in Physics:88
Enter marks in Chemistry:89

You are eligible for admission.
```


24. Write a program to reverse a string and check if it is palindrome.

> Output :-

```
Microsoft Visual Studio Debu! × + ∨

Enter a string: nayan
Reversed String: nayan
The string is a Palindrome.
```

```
Enter a string: Praful
Reversed String: lufarP
The string is NOT a Palindrome.
```

25. Write a Console Application to print a Fibonacci series.

> Program :-

```
using System;
class FibonacciSeries
{
    static void Main()
    {
        Console.Write("Enter the number of terms: ");
        int n = int.Parse(Console.ReadLine());
        int first = 0, second = 1, next;
        Console.WriteLine("Fibonacci Series:");
        for (int i = 1; i <= n; i++)
        {
              Console.Write(first + " "); next = first + second;
             first = second; second = next;
        }
        Console.WriteLine();
    }
}</pre>
```

> Output:-

```
Microsoft Visual Studio Debu! × + ∨

Enter the number of terms: 10

Fibonacci Series:
0 1 1 2 3 5 8 13 21 34
```

26. Write a Console Application to Demonstrate Function Overloading in C#.NET

Program : using System; class FunctionOverloading { public int Add(int a, int b) { return a + b; } public int Add(int a, int b, int c) { return a + b + c; } public double Add(double a, double b) { return a + b; } static void Main() { FunctionOverloading obj = new FunctionOverloading(); Console.WriteLine("Add(int, int) : " + obj.Add(10, 20)); Console.WriteLine("Add(double, double) : " + obj.Add(5.5, 4.5)); } }

> Output :-

```
Add(int, int) : 30
Add(int, int, int) : 60
Add(double, double) : 10
```

27. Create a window application to demonstrate simple database connectivity with wizard And display the data on the form.

the form. > Program :using System.Reflection; public void LoadDataSet() the call to FillDataSet. MyDataFormWizardSamp.MyDS objDataSetTemp; objDataSetTemp = new MyDataFormWizardSamp.MyDS(); try this.FillDataSet(objDataSetTemp); catch (System.Exception eFillDataSet) throw eFillDataSet; try objMyDS.Clear(); objMyDS.Merge(objDataSetTemp); catch (System.Exception eLoadMerge) throw eLoadMerge; Listing 4-8. The FillDataSet method generated by the Data Form Wizard public void FillDataSet(MyDataFormWizardSamp.MyDS dataSet) dataSet.EnforceConstraints = false; try this.oleDbConnection1.Open(); OleDbDataAdapter1. this.oleDbDataAdapter1.Fill(dataSet); this.oleDbDataAdapter2.Fill(dataSet);

catch (System.Exception fillException)

```
throw fillException;
}

finally
{
   dataSet.EnforceConstraints = true;
   this.oleDbConnection1.Close();
}
```

➤ Output :-

28. Create simple student's registration form and perform the operation like insert, update And delete.

> Program :-

```
@model Registration.Models.tblRegistration
  Layout = null;
< !DOCTYPE html >
< html >
< head >
  < meta name = "viewport" content = "width=device-width" />
  < title > Index </ title >
</ head >
< body >
@using(Html.BeginForm())
  @Html.AntiForgeryToken()
  < div class= "form-horizontal" >
    < h4 > tblRegistration </ h4 >
    < hr />
   @Html.ValidationSummary(true, "", new { @class = "text-danger" })
  < div class= "form-group" >
     @Html.LabelFor(model => model.FName, htmlAttributes: new { @class
= "control- label col-md-2" })
     < div class= "col-md-10" >
       @Html.EditorFor(model => model.FName, new { htmlAttributes =
new { @class = "form-control" } }
       @Html.ValidationMessageFor(model => model.FName, "", new{
@class = "text-danger" })
    </ div >
  </ div >
  < div class= "form-group" >
  @Html.LabelFor(model => model.LName, htmlAttributes: new { @class =
"control- label col-md-2" })
  < div class= "col-md-10" >
  @Html.EditorFor(model => model.LName, new { htmlAttributes = new {
@class = "form-control" } })
@Html.ValidationMessageFor(model => model.LName, "", new { @ class =
"text-danger" })
  </ div >
</div>
< div class= "form-group" >
  @Html.LabelFor(model => model.Password, htmlAttributes: new { @class
= "control-label col-md-2" })
  < div class= "col-md-10" >
```

```
@Html.EditorFor(model => model.Password, new { htmlAttributes =
new { @class = "form-control"}})
     @Html.ValidationMessageFor(model => model.Password, "", new {
@class = "text-danger" })
  </ div >
</ div >
< div class= "form-group" >
  @Html.LabelFor(model => model.City, htmlAttributes: new { @class =
"control-label col-md-2" })
  < div class= "col-md-10" >
     @Html.EditorFor(model => model.City, new { htmlAttributes = new {
@class = "form-control" } })
     @Html.ValidationMessageFor(model => model.City, "", new { @class =
"text-danger" })
  </ div >
</ div >
< div class= "form-group" >
  < div class= "col-md-offset-2 col-md-10" >
    <input type = "submit" value = "Create" class= "btn btn-default" />
  </ div >
  </ div >
  </ div >
</ body >
</ html >
```

	Column Name	Data Type	Allow Nulls
▶ 8	ld	int	
	FName	varchar(50)	
	LName	varchar(50)	
	Password	varchar(50)	
	City	varchar(50)	

31 2 ↓ 31	
Has Non-SQL Server Subscriber	No
✓ Identity Specification	Yes
(Is Identity)	Yes
Identity Increment	1
Identity Seed	1
Indexable	Yes


```
namespace Registration.Models
{
    using System;
    using System.Collections.Generic;
    1 reference
    public partial class tblRegistration
    {
        0 references
        public int Id { get; set; }
        O references
        public string FName { get; set; }
        0 references
        public string LName { get; set; }
        0 references
        public string Password { get; set; ]
        0 references
        public string City { get; set; }
    }
}
```


➤ Output :-

Registration

	ld	FName	LName	Password	City
)	1	chetan	Nargund	12345	Bangalore
	NULL	NULL	NULL	NULL	NULL

29. Demonstrate the use of Menu control in C#.

```
> Program :-
       using System;
       using System.Collections.Generic;
       using System.ComponentModel;
       using System.Data;
       using System.Drawing;
       using System.Ling;
       using System.Text;
       using System. Threading. Tasks;
       using System. Windows. Forms;
       namespace MenuTest
          public partial class MenuTest1: Form
            private MainMenu mainMenu;
            public MenuTest1()
              InitializeComponent();
              mainMenu = new MainMenu();
              MenuItem File = mainMenu.MenuItems.Add("&File");
              File.MenuItems.Add(new MenuItem("&New"));
              File.MenuItems.Add(new MenuItem("&Open"));
              File.MenuItems.Add(new MenuItem("&Exit"));
              this.Menu = mainMenu;
              MenuItem About = mainMenu.MenuItems.Add("&About");
              About.MenuItems.Add(new MenuItem("&About"));
              this.Menu = mainMenu;
              mainMenu.GetForm().BackColor = Color.Indigo;
```

> Output

30. Create a Window Application to generate the crystal report.

> Program :-


```
ALTER PROCEDURE sp_select

/*

(
    @parameter1 int = 5,
    @parameter2 datatype OUTPUT
)

*/

AS

select * from tbl_data

RETURN
```



```
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System. Windows. Forms;
using System.Data.SqlClient;
using CrystalDecisions.CrystalReports.Engine;
namespace WindowsFormsApplication5
  public partial class Form1 : Form
    SqlConnection con = new SqlConnection(@"Data Source=.\SQLEXPR
ESS;AttachDbFilename=|DataDirectory|\Database1.mdf;Integrated Secu
rity=True;User Instance=True");
    ReportDocument rprt = new ReportDocument();
    public Form1()
       InitializeComponent();
    private void Form1_Load(object sender, EventArgs e)
       rprt.Load(@"C:\Users\Nilesh\Documents\visual studio 2010\Projects\
WindowsFormsApplication5\WindowsFormsApplication5\CrystalReport1.rp t");
       SqlCommand cmd = new SqlCommand("sp_select", con);
       cmd.CommandType = CommandType.StoredProcedure;
       SqlDataAdapter sda = new SqlDataAdapter(cmd);
       DataSet ds = new DataSet();
       sda.Fill(ds, "Newtbl_data");
      rprt.SetDataSource(ds);
      crystalReportViewer1.ReportSource = rprt;
```

➤ Output :-

		Form1		- P X
1	/1 (%)	@. •		SAP CRYSTAL REPORTS * [3]
Prodcut ID	1 2 3 4 5 6 7 8	Product Name Computer Mouse Printer Hard Disk RAM NIC Card Router Scanner	Quantity 100 120 300 10 150 200 20 30	Unit Price 25000 250 3000 6000 1500 2000 2500 4000