Лекция №11

Может быть сформирована совокупность множеств эквивалентных по полезности. Если бы множество было несчётным, то точки критериального пространства будут лежать на одной непрерывной кривой безразличия. Если множество счетное и ограниченой, то точки лежат на кривой безразличия, а если не счетное, то они её образуют.

Рисуночек принципа замещения:

 Δ - число единиц критерия K_1 , соответствующее уступке в точке x_i (k_1^i , k_2^i)

 $\lambda \Delta$ – количество единиц приращения критерия K_2 , получаемое в точке x_j ($k_1{}^j$, $k_2{}^j$)

 $\lambda = \Delta k_1 / \Delta k_2$

Рисуночек кривых безразличия:

Линия от начала координат – направление роста предпочтений ЛПР

Формализация условия предпочтения ЛПР для многомерной полезности $U(k_1{}^i,\,k_2{}^i)>U(k_1{}^j,\,k_2{}^i)\Rightarrow (k_1{}^i,\,k_2{}^j)>(k_1{}^j,\,k_2{}^j)\Rightarrow x_i>x_i$

Теория важности критерев

Математическая модель задачи принятия решения при многих критериях

- 1. $K = \{K_1, K_2, ..., K_L\}$ множество критериев, используемых для оценки решения $Ki = (K_1^i, K_2^i, ..., K_L^i)$
- 2. X универсальное множество решений x_i, каждое из которых характеризуется L свойствами
- 3. Сравнение векторов (векторных оценок) позволяет определить для них отношения предпочтения и эквивалентности

Если K_i – векторная оценка по і-му критерию, а K_i^i – скалярная оценки і-го решения по І-му критерию

Отношение предпочтения между оценками определено на множетсве K^L , но отношения предпочтения для хі и хі определены на X^2

Рассмотрим x_i^* – недоминируемое решение

Условие доминирования векторных оценок

Все $k_i^i >= k_i^i$ и одно $k_h^i > k_h^j$

Решение x_j с K_j является строго доминируемым и не может входить в множество эффективных решений.

Если решение хі* является недоминируемым, то для него выполняется условие

$$\forall x_i \in X, x_i \not> x_i^*$$

Решения x_i^* и x_i^* не являются доминируемыми другими решениями и при этом являются несравнимыми.

Условие несравнимости хі и хі:

$$\exists h \in 1..L \mid k_h^i > k_h^j \Rightarrow x_i >_{Kh} x_i$$

$$\exists \ S \in 1..L \ I \ k_s^i < k_s^j \Rightarrow x_i >_{Ks} x_i$$

$$\Rightarrow X_i \not\geq X_j \cup X_j \not\geq X_i$$

Условиями включения x_i^* и x_j^* являются:

$$(1) \not\exists X_p \in X, \ x_p > x_i^*, \ x_p > x_i^* \ \textit{i} \ x_i^* \not\geq x_i^*, \ x_i^* \not\geq x_i^* \Rightarrow x_i^* \in X^*, \ x_i^* \in X^*$$

Если $|X^*| > 1$ то не может быть определено единственное эффективное решение, а должен быть определён способ выбора единственного эффективного решения из этого множества.

Одним из способов выбора эффективных решений в множестве X^* является привлечение дополнительной информации о предпочтениях ЛПР. Целью привлечения дополнительной информации является сужение (уменьшение мощности) множества несравнимых решений.

В дополнение к условию (1), определяющему систему предпочтений ЛПР вводится система предпочтений для критериев. Т.е. дополнительной привлекаемой информацией для сужения множества X^* является информация о важности критериев (качественной, количественной либо относительной).

Качественная важность критериев

Качественная важность предполагает задание отношений предпочтения и эквивалентности, связывающих критерии. Тогда выражение вида:

Kⁱ > K^j – критерий Kⁱ предпочтительнее по важности K^j

Если $K(x_p)$ – это векторная оценка решения x_p вида $K(x_p) = (k_1^p, k_2^p, ..., k_i^p, ..., k_j^p, ..., k_l^p)$, Тогда обозначим через $K^{ij}(x_p) = (k_1^p, k_2^p, ..., k_j^p, ..., k_l^p)$ векторную оценку, полученную перестановкой і и і скалярной оценки критериев Кі и Кі, связанных отношениями >, ~.

Если критерии Кі и Кј эквивалентны по важности, тогда векторные оценки К(хр) и Кіј(хр) также являются эквивалентными.

Таким образом перестановка і и ј скалярных оценок критериев Кі и Кј позволяет получить модифицированную векторную оценку K^{ij} , используемое для сужения множества X^* .

Пример формирования модифицированной оценки $K^{ij}(x_p)$ в случае разной важности критериев:

```
K1 > K2

K(x_p) = (5, 4, 3, 4);

K^{12}(x_p) = (4, 5, 3, 4);
```

 $(5, 4, 3, 4) > (4, 5, 3, 4) \Rightarrow K(x_p) >_{12} K^{12}(x_p)$

Таким образом отношение $>_{ij}$ — это отношение предпочтения исходной оценки $K(x_p)$ над модифицированной векторной оценкой $K^{ij}(x_p)$, полученной в результате перестановки скалярных оценок і и ј критериев. Аналогичным образом интерпретируется отношение \sim_{ij} — отношение эквивалентности исходной оценки над модифицированной.

Отношения > и $>_{ij}$ отличаются тем, что первое связывает исходные векторные оценки в случае доминирования одной из них над другой, а второе связывает исходную векторную оценку и соответствующую ей модифицированную, полученную в результате перестановки скалярных оценок і и і критериев.

Условие исключения решения x_k из множества несравнимых решений X*:

 $K(x_p) > K^{ij}(x_j); K^{ij}(x_p) > K(x_k) \Longrightarrow K(x_p) > \Omega K(x_k) \Longrightarrow x_p > \Omega x_k > X^* = X^* \setminus x_k$