Valid Codes & Descriptions for ANNOTATED INFORMATION in 2000 PDP Analytical Results

Annotate Code	Annotated Information	
Q	Residue at below quantifiable level (BQL)	
QV	Residue at <bql> with presumptive violation - No Tolerance</bql>	
QX	Residue at <bql> with presumptive violation - Exceeds Tol.</bql>	
V	Residue with a presumptive violation - No Tolerance	
X	Residue with a presumptive violation - Exceeds Tolerance	

Valid Codes & Descriptions for COMMODITY MARKETING CLAIM on 2000 PDP Samples

Claim Code	Commodity Marketing Claim
NC	No Claim
PD	No Pesticides Detected
PO	Organic
PP	Pesticide Free

Valid Codes & Descriptions for COMMODITIES Sampled/Analyzed by PDP in 2000 (Fresh Product Unless Otherwise Noted)

Commodity		# of Samples
Code	Commodity Name	Analyzed
AP	Apples	184
CH	Cherries	275
CN	Cantaloupe	410
СР	Pears, Canned	366
CR	Carrots	184
CU	Cucumbers	737
CX	Peaches-Single Servings	534
GB	Green Beans	720
GR	Grapes	741
LT	Lettuce	740
NE	Nectarines	346
OG	Oranges	744
PA	Poultry Adipose	476
PB	Peanut Butter	716
PC	Peaches	536
PL	Poultry Liver	480
PM	Poultry Muscle	145
PN	Pineapples	364
PO	Potatoes	369
PP	Sweet Bell Peppers	738
RI	Rice	178
ST	Strawberries	518
SZ	Strawberries, Frozen	37
TC	Tomatoes, Canned	369

Valid Codes & Descriptions for COMMODITY TYPE in 2000 PDP Samples

Commod Type Code	Commodity Type
CA	Canned
FR	Fresh
FZ	Frozen
OT	Other

Valid Codes & Descriptions for Concentration/LOD Unit-of-Measure Code

Concen/LOD Unit Code	Concen/LOD Unit Description
В	Parts-per-Billion (ppb)
М	Parts-per-Million (ppm)
Т	Parts-per-Trillion (ppt)

Valid Codes & Descriptions for CONFIRMATION METHOD in 2000 PDP Analytical Results

ConfMethod Code	Confirmation Method
D	GC or LC Alternate Detector
HR	GC or LC High Resolution MS
I	GC/IT-Gas Chrom w/Ion Trap MS-single stg
L	LC/MS-Liq Chrom w/Mass Spec-single stage
LT	LC-MS/MS - Liq Chrom w/Tandem Mass Spec
М	GC/MS - single quadropole
MO	Quant. & Confirm. by GC/MS only
Р	LC-AMP - Liquid Chrom Alt. Mobile Phase
R	LC-DAD -Liq Chrom w/Diode Array Detector
S	GC or LC -MS Alternate Detector
Т	GC/MS/MS - Gas Chrom w/Tandem Mass Spec

Valid Codes & Descriptions for COUNTRIES Where PDP 2000 Samples Originated

Country Code	Country Name
150	Argentina
160	Australia
180	Bahamas
260	Canada
275	Chile
280	China, Peoples Rep. (Com.)
281	China, Republic of (Taiwan)
295	Costa Rica
320	Dominican Republic
325	Ecuador
415	Guatemala
430	Honduras
455	India
475	Israel
480	Italy
595	Mexico
630	Netherlands
660	New Zealand
665	Nicaragua
801	South Africa
830	Spain
UNK	Unknown

Valid Codes & Descriptions for DETERMINATIVE METHOD in 2000 PDP Analytical Results

Determin Code	Determinative Method
	Determinative Method
01	GC/ECD - Electron Capture Detector
02	GC/FPD - Flame Photometric Detector in Phosphorus Mode
05	GC/ELCD - Electrolytic Conductivity Detector in Halogen Mode
07	GC/MS - Gas Chrom w/Mass Spec - single quadrupole
08	GC/IT - Gas Chrom w/ Ion Trap Mass Spec - single stage
11	LC/UV - Liquid Chromatography w/ UV Detector
12	Liquid Chrom w/ POST-Column Derivatization & FL Detector
15	GC/NPD - Nitrogen Mode
16	GC/NPD - Nitrogen/Phosphorus Detector
30	GC/ELCD - Electrolytic Conductivity Detector in Sulfur Mode
34	GC/MS/MS - Gas Chrom w/ Tandem Mass Spectrometry
60	GC/XSD - Halogen Specific Detector
61	LC/MS - Liquid Chrom w/ Mass Spec - single stage
62	LC-MS/MS - Liquid Chrom w/ Tandem Mass Spectrometry

Valid Codes & Descriptions for COLLECTION/DISTRIBUTION FACILITY TYPE in 2000 PDP Samples

DistType Code	Collection Facility Type
В	Broker
D	Distribution Center
0	Other Market Type
Р	Processing Plant
S	Storage Facility
Т	Terminal Market

Valid Codes & Descriptions for EXTRACTION METHOD in 2000 PDP Analytical Results

Extract	
Code	Extraction Method
015	Modified Luke Extraction Method without Cleanup for Multi-Residues & Carbamates
017	Modified Luke Extraction Method with Cleanup for Multi-Residues & Carbamates
550	CDFA Lee et al C-18 Extraction Method
551	CDFA Chlorinated ACN Florisil SPE Extraction Method
552	CDFA MSD Aminopropyl Extraction Method
553	CDFA Carbamate SPE Extraction Method
600	LIB 3217 Extraction Method for Benomyl, MBC and Thiophanate-Methyl
998	OTHER Single-Analysis Methods
999	OTHER Multi-Residue Methods

Valid Codes & Descriptions for PDP Participating LABORATORIES in 2000

Lab Code	Lab Agency Name	Lab City/State
CA1	California Department of Food & Agriculture	Sacramento, CA
FL1	Florida Dept of Agriculture & Consumer Services	Tallahassee, FL
FL2	Florida Dept of Agriculture & Consumer Services #2	Winter Haven, FL
MI1	Michigan Department of Agriculture	East Lansing, MI
NY1	New York Department of Agriculture and Markets	Albany, NY
OH1	Ohio Department of Agriculture	Reynoldsburg, OH
TX1	Texas Department of Agriculture	College Station, TX
US1	USDA, APHIS, National Monitoring Residue Analysis Lab	Gulfport, MS
US2	USDA, AMS, National Science Laboratory	Gastonia, NC
US3	USDA, GIPSA, Technical Services Division	Kansas City, MO
WA1	Washington State Department of Agriculture	Yakima, WA

Valid Codes & Descriptions for MEAN RESULT in 2000 PDP Analytical Results (O, A, and R indicated Positive Detections)

Mean Code	Mean Result Finding
А	Detect - Avg of Original & Re-extract
N	Non-Detect - Original Analysis
NR	Non-Detect - Rerun Analysis
0	Detect - Original Analysis Value
R	Detect - Re-extraction Analysis Value

Valid Codes & Descriptions for Sample ORIGIN Code

Origin Code	Origin of Sample
1	Domestic (U.S.)
2	Imported
3	Unknown origin

Valid Codes & Descriptions for Compounds (PESTICIDES) Analyzed by PDP in 2000

Pest	5	Took Class	# of Analysis
Code	Pesticide Name	Test Class	Results
001	Aldrin	A	2623
002	Allethrin	0	20
011	Captan	A	8083
014	Chlordanes Total	A	286
024	Diazinon	С	10723
028	Dieldrin	A	8900
032	Diuron	A	18
033	Anilazine	A	1652
034	Endrin	A	1132
042	Azinphos methyl	С	9747
044	Heptachlor	A	8449
050	Lindane (BHC gamma) Malathion	A	9561
052		C	10901
055	Methoxychlor Total	A C	3087
057	Parathion methyl	C	10463
065 069	Parathion ethyl	C	10615 3827
	Mevinphos Total	- C	7855
070	Piperonyl butoxide	1	7148
088	o-Phenylphenol TEPP	C	1383
102	Carbaryl	E	10280
102	Ethion	C	9498
107	Tetradifon	A	8179
114	Chlorpropham	E	7761
117	Disulfoton	C	8424
124	Coumaphos	C	2499
125	Diphenylamine (DPA)	F	7007
126	Folpet	A	7169
129	Linuron	A	2954
134	DCPA	A	6802
143	Heptachlor epoxide	A	9621
144	Dicloran	A	8834
147	Tecnazene	A	1399
148	Phorate	C	9346
149	Simazine	R	8533
151	Trifluralin	A	9344
152	Terbacil	A	6788
153	Bromacil	U	1119
156	Ametryn	R	1190
157	Thiabendazole	В	8382
159	Methomyl	E	10020
160	Chlorpyrifos	C	10463
163	Fonofos	C	4878
164	Chlorothalonil	A	5410
165	Phosmet	C	9461
166	Phosalone	C	6453

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
167	Aldicarb	E	8384
168	Aldicarb sulfone	Е	9172
169	Aldicarb sulfoxide	Е	9172
170	Methamidophos	С	9087
171	Dimethoate	С	9498
172	Chlordane trans	A	2829
173	Chlordane cis	A	2829
174	Captafol	A	3525
175	Ethoprop	С	5064
176	Tetrachlorvinphos	С	8370
177	Fenthion	С	2499
178	Omethoate	C	9498
180	Carbofuran	E	9242
181	Metribuzin	F	1830
189	Phorate sulfone	C	9346
190	Phorate sulfoxide	C	3757
191	Benfluralin	A	716
192	Benomyl	В	1650
195	Methiocarb	E	3567
197	Methidathion	C	9148
200	EPTC	P	130
201	Vernolate	P	369
202	Carbophenothion	C	1875
203	Phosphamidon	C	7331
203	Acephate	C	8370
205	Terbufos	C	7270
206	Nonachlor trans	A	476
207	Nonachlor cis	A	476
208	Malathion oxygen analog	C	8591
210	Carboxin	F	178
216	Disulfoton sulfone	C	8424
217	DEF (Tribufos)	C	1399
222	Permethrin cis	0	6471
223	Permethrin trans	0	6471
224	Profenofos	C	3155
224	Demeton-S sulfone	C	1399
226	Alachlor	A	716
230	Pendimethalin	F	4228
230	Iprodione metabolite isomer	A	1385
231	•	C	1385
235	Chlorpyrifos methyl Fenamiphos	C	9374
245	Oxydemeton methyl sulfone	C	8398
	·	R	
249	Prometryn		397
253	Dicofol o,p'	A	165
254	Dicofol p,p'	A	9250
258	Isofenphos	С	1100
264	Propiconazole	L	4042
271	Fenarimol Mathematical and a mile	A	1381
275	Methoxychlor p,p'	A	6661

Pest Code	Pesticide Name	Test Class	# of Analysis Results
276	Methoxychlor olefin	A	1399
283	Metolachlor	A	5876
297	Fluvalinate	0	145
304	Quintozene (PCNB)	A	7973
305	Atrazine	R	7423
310	Propham	E	624
321	Hexachlorobenzene (HCB)	A	7598
324	Dichlobenil		314
330	Diphenamid	F	2123
338	Dichlorvos (DDVP)	C	10162
341	Propanil	A	178
343	Monocrotophos	C	1085
349	Oxychlordane	A	2038
351	Pentachloroaniline (PCA)	A	716
370	Parathion oxygen analog	С	8591
377	Phenthoate	l l	1399
382	1-Naphthol	E	1753
387	Pentachlorobenzene (PCB)	A	6684
391	Fenitrothion	С	2354
395	Diazinon oxygen analog	С	8391
512	3-Hydroxycarbofuran	Е	9242
529	Vinclozolin	A	8118
537	Oxamyl	E	8952
538	Ethion di oxon	С	2499
539	Permethrin Total	0	1420
540	Pronamide	A	8750
546	Fenvalerate	0	8558
547	Azinphos ethyl	С	220
556	Resmethrin	0	130
562	Pirimiphos methyl	С	4108
578	Mevinphos Z	С	4571
579	Mevinphos E	С	4571
580	Pirimicarb	E	1399
593	Procymidone	А	3332
594	Napropamide	F	130
596	Norflurazon	А	8747
597	Cypermethrin	0	2747
604	Imazalil	N	7592
607	Metalaxyl	F	8469
608	Triadimefon	L	8981
609	Sulprofos	С	1544
612	Deltamethrin (includes parent Tralomethrin)	0	130
614	Coumaphos oxygen analog	С	2499
616	Chlorfenvinphos alpha	C	1745
617	Chlorfenvinphos beta	C	1399
621	Tri Allate	P	163
623	Propargite	I	10463
626	Iprodione	A	10112
633	Hexazinone	S	1190

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
638	Triadimenol	L	621
648	Fenitrothion oxygen analog	С	1399
660	Fenthion sulfone	С	1100
679	Myclobutanil	L	8714
692	Fonofos oxygen analog	С	1491
713	Oxyfluorfen	А	4927
714	Esfenvalerate	0	6167
719	Clomazone	А	178
720	Norflurazon desmethyl	A	8717
721	Ethalfluralin	А	2736
722	Etridiazole	A	621
723	Formetanate hydrochloride	Е	1032
726	Thiobencarb	Р	1022
736	Fluridone	A	1435
745	Fenamiphos sulfone	C	9374
746	Fenamiphos sulfoxide	C	2638
768	Allidochlor	F	1252
769	Azinphos methyl oxygen analog	C	1100
778	Molinate	P	178
779	Parathion methyl oxygen analog	C	6668
781	Cyfluthrin	0	4039
786	Desmedipham	E	130
791	Phenmedipham	E	130
793	TCMTB	F	178
808	Fenpropathrin	0	2523
858	Ethiofencarb	E	1269
877		<u> </u>	35
900	Cymoxanil Endosulfan I		8854
		A	
901	Endosulfan II	A	8854
902	Endosulfan sulfate	A	8854
903	BHC alpha	A	1908
904	BHC beta	A	1890
905	BHC delta	A	163
906	DDT p,p'	A	6620
907	DDT o,p'	A	2109
908	DDD p,p'	A	6620
909	DDD o,p'	A	1363
910	DDE p,p'	A	10277
911	DDE o,p'	A	657
928	Phorate oxygen analog	С	2499
930	Bifenthrin	0	4277
963	Terbufos sulfone	С	7270
967	Imidacloprid	A	777
A30	Fenbuconazole	L	2560
A39	Lambda cyhalothrin total	0	2620
A46	Oxadixyl	F	2385
A58	Tebuconazole	L	5131
A61	Triflumizole	L	621
AAF	Lambda cyhalothrin R ester	0	1529

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
AAG	Lambda cyhalothrin S ester	0	1399
AAX	Ethion mono oxon	С	4200
AAZ	Chlorpyrifos methyl O-analog	С	955
ABB	Spinosad	I	131
ABC	Spinosad A	I	908
ABD	Spinosad D	I	908
ABH	Propiconazole I	L	639
ABI	Propiconazole II	L	639
B22	Cyprodinil	V	184
B23	Fludioxonil	Α	1136
B24	Pyriproxyfen	F	184
B56	Pyridaben	Α	184
B58	Difenoconazole	L	145
B63	Flutolanil	Α	178
B77	Dimethomorph	W	529

Valid Codes & Descriptions for QUANTITATION METHOD in 2000 PDP Analytical Results

Quantitate Code	Quantitation Method
Н	Standard NOT In Matrix
HU	Standard NOT in Matrix (Unvalidated Residue)
М	Standard In Matrix
MU	Standard In Matrix (Unvalidated Residue)

Valid Codes & Descriptions for All 50 STATES (plus Washington D.C. and Puerto Rico)

State	
Code	State
AK	Alaska
AL	Alabama
AR	Arkansas
AZ	Arizona
CA	California
СН	Check Sample
CK	Check Sample
CO	Colorado
CT	Connecticut
DC	Washington D.C.
DE	Delaware
FL	Florida
GA	Georgia
HI	Hawaii
IA	lowa
ID	Idaho
IL	Illinois
IN	Indiana
KS	Kansas
KY	Kentucky
LA	Louisiana
MA	Massachusetts
MD	Maryland
ME	Maine
MI	Michigan
MN	Minnesota
MO	Missouri
MS	Mississippi
MT	Montana
NC	North Carolina
ND	North Dakota
NE	Nebraska
NH	New Hampshire
NJ	New Jersey
NM	New Mexico
NV	Nevada
NY	New York
OH	Ohio
OK	Oklahoma
OR	Oregon
PA	Pennsylvania
PR	Puerto Rico

State Code	State
RI	Rhode Island
SC	South Carolina
SD	South Dakota
TN	Tennessee
TX	Texas
US	United States (exact State not available)
UT	Utah
VA	Virginia
VT	Vermont
WA	Washington
WI	Wisconsin
WV	West Virginia
WY	Wyoming

Valid Codes & Descriptions for TEST (COMPOUND) CLASS in 2000 PDP Analytical Results

Test Class Code	Test (Compound) Class
А	Halogenated
В	Benzimidazole
С	Organophosphorus
Е	Carbamate
F	Organonitrogen
Н	Formetanate HCL
I	Other Compounds
L	Conazoles / Triazoles
N	Imidazoles
0	Pyrethroids
Р	Thiocarbamates
R	Triazines
S	Triazine, Non-Halogenated
Т	Nitrile
U	Uracil
V	Pyrimidone
W	Morpholine

EPA Tolerance Levels for Commodity/Pesticide Pairs Analyzed by PDP in 2000

Tolerance Level Code: NT = No Tolerance Established

EX = Exempt from Tolerance Requirement

EX = Exempt from Tolerance Requirement					
Commod	Pest	EPA Tolerance	Units		
Code	Code	Level	pp_	Note	Comment
AP	011	25.0	М		
AP	024	0.5	М		
AP	028	0.03	М	AL	
AP	033	NT	М		
AP	042	1.5	М		
AP	044	0.01	М	AL	
AP	050	1	М	AL	
AP	052	8	М		
AP	055	14	М		
AP	057	1	М		
AP	065	1	М		
AP	069	NT	М		
AP	070	8.0	М		
AP	083	25.0	М		
AP	102	10	М		
AP	107	NT	М		
AP	108	5	М		
AP	114	NT	М		
AP	117	NT	М		
AP	125	10	М		
AP	126	25	М		
AP	134	NT	М		
AP	143	0.01	М	AL	
AP	144	NT	М		
AP	148	NT	М		
AP	149	0.25	М		
AP	151	NT	М		
AP	152	0.1	М		
AP	157	10.0	М		
AP	159	1	М		
AP	160	1.5	М		
AP	164	NT	М		
AP	165	10	М		
AP	166	10.0	М		
AP	167	NT	М		
AP	168	NT	М		
AP	169	NT	М		
AP	170	0.02	М		
AP	171	2	М		
AP	175	NT	М		

AP AP	176 178	NT	M		
	110	2	M		
AP	180	NT	М		
AP	189	NT	М		$\overline{}$
AP	190	NT	М		
AP	195	NT	М		
AP	197	0.05	M		
AP	203	1	М		
AP	204	0.02	M		
AP	205	NT	M		
AP	208	NT	М		
AP	216	NT	М		
AP	222	0.05	М		
AP	223	0.05	М		
AP	236	0.25	М		
AP	245	1	М		
AP	254	5	M		$\overline{}$
AP	304	NT	М		
AP	305	NT	М		\neg
AP	321	NT	М		\neg
AP	324	0.15	М		
AP	330	0.1	М		\neg
AP	338	0.5	М		\neg
AP	370	NT	М		\neg
AP	387	NT	М		\neg
AP	395	NT	М		
AP	512	NT	М		
AP	529	NT	М		
AP	537	2	М		
AP	540	0.1	М		
AP	546	2.0	М		
AP	596	0.1	М		
AP	597	NT	М		
AP	604	NT	М		
AP	607	0.2	М		
AP	608	1.0	М		
AP	623	NT	М		
AP	626	NT	М		
AP	679	0.5	М		
AP	720	0.1	М		
AP	723	3	М		
AP	745	0.25	М		
AP	900	2.0	М		
AP	901	2.0	М		
AP	902	2.0	М		
AP	906	0.1	М	AL	
AP	907	0.1	М	AL	

	000				
AP	908	0.1	M	AL	
AP	910	0.1	M	AL	
AP	963	NT	M		
AP	B22	0.1	M		
AP	B24	0.2	M		
AP	B56	0.5	M		
CH	001	0.3	M	AL	
CH	011	100	M		
CH	024	0.75	M		
CH	028	0.3	M	AL	
CH	042	2.0	M		
CH	044	0.01	M	AL	
СН	050	1	M	AL	
CH	052	8	М		
CH	055	14	M		
CH	057	1	М		
СН	065	1	М		
CH	070	8.0	М		
CH	083	5.0	М		
CH	088	NT	М		
СН	102	10	М		
СН	107	NT	М		
СН	108	5	М		
СН	114	NT	М		
СН	117	NT	M		
СН	124	NT	M		
СН	125	NT	М		
СН	126	NT	M		
СН	129	NT	М		
CH	134	NT	M		
CH	143	0.01	M	AL	
CH	144	20	M		
CH	147	NT	M		
CH	148	NT	M		
CH	149	0.25	M		
CH	151	0.05	M		
CH	152	NT	M		
CH	153	NT	M		
CH	156	NT	M		
CH	157	NT	M		
CH	159	NT	M		
CH	160	1	M		
CH	163	NT	M		
CH	164	0.5	M		
CH	165	10	M		
CH		15.0	M		
	166				
СН	167	NT	M		

CH	168	NT	M		
CH	169	NT	M		
CH	170	0.02	M		
CH	171	2	M		
CH	172	0.1	M	AL	
CH	173	0.1	M	AL	
CH	174	NT	M		
CH	175	NT	M		
CH	176	NT	M		
CH	177	NT	M		
CH	178	2	M		
СН	180	NT	M		
СН	189	NT	М		
СН	190	NT	М		
СН	195	NT	М		
CH	197	0.05	М		
CH	202	NT	М		
CH	203	NT	М		
СН	204	0.02	М		
СН	205	NT	М		
СН	208	NT	М		
CH	216	NT	М		
CH	217	NT	М		
CH	222	3.0	М		
СН	223	3.0	М		
СН	224	NT	М		
CH	226	NT	М		
CH	230	NT	М		
СН	231	20.0	М		
СН	236	0.25	М		
СН	245	NT	М		
СН	254	5	М		
СН	264	1.0	М		
СН	271	1.0	М		
CH	275	14	М		
CH	276	NT	М		
СН	283	0.1	М		
СН	304	NT	М		
CH	305	NT	М		
СН	321	NT	М		
СН	338	0.5	М		
СН	349	0.1	М	AL	
СН	370	NT	М		
СН	377	NT	М		
СН	387	NT	М		
CH	391	NT	М		
СН	395	NT	М		

CH	512	NT	M		
CH	529	25.0	M		
CH	537	NT	M		
CH	538	NT	M		
CH	540	0.1	M		
CH	546	10.0	M		
CH	562	NT	M		
CH	578	NT	M		
CH	579	NT	М		
CH	580	NT	М		
CH	593	NT	М		
CH	596	0.1	M		
CH	597	NT	М		
CH	604	NT	М		
СН	607	1.0	М		
СН	608	NT	М		
CH	609	NT	М		
CH	614	NT	M		
CH	616	NT	M		
CH	617	NT	M		
CH	623	NT	M		
CH	626	20.0	M		
CH	633	NT	M		
CH	648	NT	M		
CH	679	5.0	M		
CH	692	NT	M		
CH	713	0.05	M		
CH	714	0.05	M		
CH	720	0.03	M		
CH	720	NT	M		
CH			M		
	736	0.1			
CH	745	0.25	M		
CH	746	0.25	M		
CH	768	NT	M		
CH	779	NT	M		
CH	781	0.05	M		
CH	808	NT	M		
CH	858	NT	M		
CH	900	2.0	M		
CH	901	2.0	M		
CH	902	2.0	M		
CH	903	0.05	M	AL	
CH	904	0.05	M	AL	
CH	906	0.2	M	AL	
CH	907	0.2	M	AL	
CH	908	0.2	M	AL	
CH	909	0.2	M	AL	

CH	910	0.2	M	AL	
CH	911	0.2	M		
CH	928	NT	M		
CH	930	NT	M		
CH	963	NT	M		
CH	A30	2.0	M		
CH	A39	0.01	M		
CH	A46	NT	M		
CH	A58	4.0	M		
CH	AAF	0.01	M		
CH	AAG	0.01	M		
CH	AAX	NT	M		
CH	ABH	1.0	М		
CH	ABI	1.0	М		
CH	B23	NT	М		
CN	011	25	М		
CN	014	0.1	М	AL	
CN	024	0.75	М		
CN	028	0.1	М	AL	
CN	033	NT	М		
CN	042	2.0	М		
CN	044	0.02	М	AL	
CN	050	3	M	AL	
CN	052	8	M		
CN	055	14	M		
CN	057	1	M		
CN	065	1	M		
CN	069	0.5	M		
CN	070	8	M		
CN	083	10	M		
CN	102	10	M		
CN	107	NT	M		
CN	108	1	M		
CN	114	NT	M		
CN	117	NT	M		
CN	125	NT	M		
CN	126	15	M		
CN	134	15	M		
CN	143	0.02	M	AL	
CN	143	0.02 NT	M	AL	
CN					
	148	NT	M		
CN	149	NT	M		
CN	151	0.05	M		
CN	152	NT 45.0	M		
CN	157	15.0	M		
CN	159	0.2	M		
CN	160	0.1	M		

CN	163	NT	M		
CN	164	5	M		
CN	165	NT	M		
CN	166	NT	M		
CN	167	NT	M		
CN	168	NT	М		
CN	169	NT	М		
CN	170	0.5	М		
CN	171	1	М		
CN	172	0.1	М	AL	
CN	173	0.1	М	AL	
CN	174	NT	М		
CN	175	NT	М		
CN	176	NT	М		
CN	178	1	М		
CN	180	0.2	М		
CN	189	NT	M		
CN	190	NT	M		
CN	192	1.0	M		
CN	195	NT	M		
CN	197	NT	M		
CN	203	NT	M		
CN	204	0.02	M		
CN	205	NT	M		
CN	208	NT	M		
CN	216	NT	M		
CN	222	3.0	M		
CN	223	3.0	M		
CN	230	NT	M		
CN	236	NT	M		
CN	245	0.3	M		
CN	254	5	M		
CN	275	14 NT	M		
CN	283	NT	M		
CN	304	NT	M		
CN	305	NT	M		
CN	321	NT	M		
CN	338	0.5	M	0.1	
CN	349	0.1	M	AL	
CN	370	NT	M		
CN	387	NT	M		
CN	395	NT	M		
CN	512	0.2	M		
CN	529	NT	M		
CN	537	2.0	M		
CN	540	NT	M		
CN	546	1.0	M		

ON	F 47	2.0	N.4		
CN	547	2.0	M		
CN	578	0.5	M		
CN	579	0.5	M		
CN	593	NT	M		
CN	596	NT	M		
CN	604	NT	M		
CN	607	1.0	M		
CN	608	0.3	M		
CN	621	NT	M		
CN	623	NT	M		
CN	626	NT	M		
CN	679	0.2	M		
CN	692	NT	M		
CN	713	NT	M		
CN	714	0.05	М		
CN	720	NT	М		
CN	745	NT	М		
CN	746	NT	М		
CN	779	NT	М		
CN	781	0.05	М		
CN	900	2.0	М		
CN	901	2.0	М		
CN	902	2.0	М		
CN	903	0.05	М	AL	
CN	904	0.05	М	AL	
CN	905	0.05	М		
CN	906	0.1	М	AL	Action Level
CN	908	0.1	М	AL	Action Level
CN	910	0.1	М	AL	Action Level
CN	930	0.4	М		
CN	963	NT	М		
CN	A39	0.01	М		
CN	A46	0.1	M		
CN	A58	NT	M		
CN	AAX	NT	M		
CP	011	25	M		
CP	024	0.5	M		
CP	028	0.03	M	AL	Action Level
CP	042	1.5	M	/ (_	71011011 20101
CP	044	0.01	M	AL	Action Level
CP	050	1	M	AL	Action Level
CP	050	8	M	/ _	/ CHOTT LEVEL
CP	052	14	M		
CP	055	14	M		
CP	065	<u></u> 	M		
CP	069	NT	M		
CP					
<u> </u>	070	8	M		

00	000	05.0	D.4		
CP	083	25.0	M		
CP	102	10.0	M		
СР	107	NT	M		
CP	108	5	M		
CP	114	NT	М		
CP	117	NT	M		
CP	125	10	M		
CP	126	NT	M		
CP	134	NT	M		
CP	143	0.01	M	AL	Action Level
CP	144	NT	M		
CP	148	NT	M		
CP	149	0.25	М		
CP	151	NT	М		
CP	152	0.1	М		
CP	157	10	М		
CP	159	4.0	М		
СР	160	0.1	М		
СР	163	NT	М		
СР	164	NT	М		
CP	165	10	М		
CP	166	10.0	М		
CP	167	NT	М		
CP	168	NT	М		
CP	169	NT	M		
CP	170	0.02	M		
CP	171	2	M		
CP	172	0.1	M	AL	
CP	173	0.1	M	AL	
CP	174	NT	M	/ _	
CP	175	NT	M		
CP	176	NT	M		
CP	178	2	M		
CP	180	NT	M		
CP	189	NT	M		
CP	195	NT	M		
CP CP	197	0.05	M		
	203	NT 0.02	M		
CP	204	0.02	M		
CP	205	NT	M		
CP	208	NT	M		
CP	216	NT	M		
CP	222	3.0	M		
CP	223	3.0	M		
CP	230	NT	M		
CP	236	NT	M		
CP	245	0.3	M		

СР	254	F	N.A		
	254	5	M		
CP	275	14	M		
CP	283	NT	M		
CP	304	NT	M		
СР	305	NT	M		
СР	321	NT	M		
CP	330	NT	M		
CP	338	0.5	M		
CP	349	0.1	M	AL	
CP	370	NT	M		
CP	387	NT	M		
CP	395	NT	M		
CP	512	NT	M		
CP	529	NT	М		
CP	537	2.0	М		
CP	539	3.0	М		
CP	540	0.1	М		
CP	546	2.0	М		
CP	547	1.5	М		
CP	578	NT	М		
CP	579	NT	М		
CP	593	NT	М		
СР	596	0.1	М		
СР	604	NT	М		
СР	607	NT	М		
СР	608	1.0	М		
CP	621	NT	М		
CP	623	NT	М		
CP	626	NT	М		
CP	679	NT	M		
CP	713	0.05	M		
CP	714	0.05	M		
CP	720	0.1	M		
CP	745	NT	M		
CP	779	NT	M		
CP	781	0.05	M		
CP	900	2.0	M		
CP	901	2.0	M		
CP	901	2.0	M		
CP	902	0.05	M	AL	
CP	903	0.05	M	AL	
CP CP				AL	
CP CP	905	0.05	M	ΛΙ	Action Lovel
	906	0.1	M	AL	Action Level
CP	908	0.1	M	AL	Action Level
CP	910	0.1	M	AL	Action Level
CP	930	NT	M		
CP	963	NT	M		

CP	A39	0.01	M		
CP	A46	NT	M		
CP	A58	NT	M		
CP	AAX	NT	M		
CR	011	2	M		
CR	024	0.75	M		
CR	028	0.1	M	AL	
CR	042	NT	M		
CR	044	0.01	M	AL	
CR	050	0.5	M	AL	
CR	052	8	M		
CR	055	14	М		
CR	057	1	М		
CR	065	1	М		
CR	070	NT	М		
CR	083	20	М		
CR	088	NT	М		
CR	102	10	М		
CR	107	NT	М		
CR	108	NT	М		
CR	114	NT	М		
CR	117	NT	М		
CR	124	NT	М		
CR	125	NT	М		
CR	126	NT	М		
CR	129	1	М		
CR	134	NT	М		
CR	143	0.01	М	AL	
CR	144	10	М		
CR	147	NT	М		
CR	148	NT	М		
CR	149	NT	M		
CR	151	1.0	M		
CR	152	NT	M		
CR	153	NT	M		
CR	156	NT	M		
CR	157	10	M		
CR	159	0.2	M		
CR	160	0.1	M		
CR	163	0.1	M		
CR	164	1	M		
CR	165	NT	M		
CR	166	NT	M		
CR	167	NT	M		
CR	168	NT	M		
CR	169	NT	M		
CR	170	0.02	M		
	170	0.02	IVI		

CD	474	NIT	N 4		
CR	171	NT	M	A.	
CR	172	0.1	M	AL	
CR	173	0.1	M	AL	
CR	174	NT	М		
CR	175	NT	M		
CR	176	NT	M		
CR	177	NT	M		
CR	178	NT	M		
CR	180	NT	M		
CR	181	0.3	M		
CR	189	NT	M		
CR	190	NT	М		
CR	195	NT	М		
CR	197	NT	М		
CR	200	0.1	М		
CR	202	NT	М		
CR	203	NT	М		
CR	204	0.02	М		
CR	205	NT	М		
CR	208	NT	М		
CR	216	NT	M		
CR	217	NT	M		
CR	222	NT	M		
CR	223	NT	M		
CR	224	NT	M		
CR	226	NT	M		
CR	230	NT	M		
CR	231	5.0	M		
CR	236	NT	M		
CR	245	NT	M		
CR	249	0.1	M		
CR	253	NT	M		
CR	254	NT	M		
CR	264	NT	M		
CR	271	NT	M		
CR	275	14	M		
CR	276	NT	М		
CR	283	NT	M		
CR	304	NT	M		
CR	305	NT	M		
CR	321	NT	М		
CR	324	NT	М		
CR	330	NT	М		
CR	338	0.5	М		
CR	349	0.1	М	AL	
CR	370	NT	М		
CR	377	NT	М		

_					
CR	387	NT	М		
CR	391	NT	M		
CR	395	NT	M		
CR	512	NT	M		
CR	529	NT	M		
CR	537	0.1	M		
CR	538	NT	M		
CR	540	NT	M		
CR	546	0.5	М		
CR	556	3.0	М		
CR	562	NT	М		
CR	578	NT	М		
CR	579	NT	М		
CR	580	NT	М		
CR	593	NT	М		
CR	594	NT	М		
CR	596	NT	М		
CR	597	NT	M		
CR	604	NT	M		
CR	607	0.5	M		
CR	608	NT	M		
CR	609	NT	M		
CR	612	0.05	M		
CR	614	NT	M		
CR	617	NT	M		
CR	623	NT	M		
CR	626	5.0	M		
CR	633	NT	M		
CR	648	NT	M		
CR	679	0.03	M		
CR		0.03	M		
	692				
CR	713	NT 0.05	M		
CR	714	0.05	M		
CR	720	NT	M		
CR	721	NT 0.4	M		
CR	736	0.1	M		
CR	745	NT	M		
CR	746	NT	M		
CR	779	NT	M		
CR	781	0.20	M		
CR	786	NT	M		
CR	791	NT	M		
CR	808	NT	M		
CR	900	0.2	M		
CR	901	0.2	M		
CR	902	0.2	М		
CR	906	3	M	AL	

CR	907	3	M	AL	
CR	908	3	M	AL	
CR	909	3	М	AL	
CR	910	3	М	AL	
CR	928	NT	M		
CR	930	NT	M		
CR	963	NT	M		
CR	A30	NT	M		
CR	A39	0.01	M		
CR	A46	0.1	M		
CR	A58	NT	M		
CR	AAG	0.01	M		
CR	AAX	NT	М		
CR	ABH	NT	М		
CR	ABI	NT	М		
CR	B23	0.02	М		
CU	011	25	М		
CU	024	0.75	М		
CU	028	0.1	М	AL	Action Level
CU	033	NT	М		
CU	042	2.0	М		
CU	044	0.02	М	AL	Action Level
CU	050	3	М	AL	Action Level
CU	052	8	М		
CU	055	14	М		
CU	057	1	M		
CU	065	1	М		
CU	069	0.2	M		
CU	070	NT	M		
CU	083	10	M		
CU	102	10	M		
CU	107	NT	M		
CU	108	1	M		
CU	114	NT	M		
CU	117	NT	M		
CU	125	NT	M		
CU	126	15	M		
CU	134	13	M		
CU	143	0.02	M	AL	Action Level
CU	144	5	M	, .L	ACTION LOVE
CU	148	NT	M		
CU	149	NT	M		
CU	151	0.05	M		
CU	152	NT	M		
CU	153	NT	M		
CU	156	NT	M		
CU	157	NT			
	107	INI	M		

CU	159	0.2	M		
CU	160	0.1	M		
CU	163	NT	M		
CU	164	5	M		
CU	165	NT	M		
CU	166	NT	M		
CU	167	NT	М		
CU	168	NT	М		
CU	169	NT	М		
CU	170	1.0	М		
CU	171	NT	М		
CU	172	0.1	М	AL	Action Level
CU	173	0.1	М	AL	
CU	174	NT	M		
CU	175	0.02	M		
CU	176	NT	M		
CU	178	NT	M		
CU	180	0.2	M		
CU	181	NT	M		
CU	189	NT	M		
CU	190	NT	M		
CU	192	1.0	M		Carbendazim value
CU	195	NT	M		Carbendaziiii vaide
CU	197	NT	M		
CU	203	NT	M		
CU	203	0.02	M		
CU	204	NT	M		
CU	203	NT	M		
CU	216	NT	M		
CU	222	3.0	M		
CU	223	3.0	M		
CU	230	NT	M		
CU	236	NT	M		
CU	245	1	M		
CU	249	NT -	M		
CU	254	5	M		
CU	264	NT	M		
CU	275	14	M		
CU	283	NT	M		
CU	304	NT	M		
CU	305	NT	M		
CU	321	NT	M		
CU	338	0.5	M		
CU	349	0.1	M	AL	
CU	370	NT	M		
CU	387	NT	M		
CU	395	NT	М		

CU	512	0.2	M		
CU	529	1.0	M		
CU	537	2.0	M		
CU	540	NT	M		
CU	546	0.5	M		
CU	547	2.0	М		
CU	578	0.2	М		
CU	579	0.2	М		
CU	593	NT	М		
CU	596	NT	М		
CU	597	NT	М		
CU	604	NT	М		
CU	607	1.0	М		
CU	608	0.3	М		
CU	621	NT	М		
CU	623	NT	М		
CU	626	NT	M		
CU	633	NT	M		
CU	679	0.2	M		
CU	713	NT	M		
CU	714	0.05	M		
CU	720	NT	M		
CU	736	0.1	M		
CU	745	NT	M		
CU	779	NT	M		
CU	781	0.05	M		
CU	900	2.0	M		
CU	900	2.0	M		
CU	902	2.0	M	Λ1	
CU	903	0.05	M	AL	
CU	904	0.05	M	AL	
CU	905	0.05	M		
CU	906	0.1	M	AL	Action Level
CU	907	0.1	M	AL	Action Level
CU	908	0.1	M	AL	Action Level
CU	910	0.1	M	AL	Action Level
CU	930	0.4	M		
CU	963	NT	M		
CU	A30	NT	M		
CU	A39	0.01	М		
CU	A46	0.1	М		
CU	A58	NT	М		
CU	AAX	NT	М		
CU	ABH	NT	М		
CU	ABI	NT	М		
CU	B23	0.01	М		
СХ	001	0.02	М	AL	

CX	002	EX	M		
CX	011	50.0	М		
CX	024	0.7	М		
CX	028	0.02	M	AL	
CX	032	0.1	М		
CX	042	2.0	М		
CX	044	0.01	М	AL	
CX	050	1	M	AL	
CX	052	8	М		
CX	055	14	М		
CX	057	1	М		
CX	065	1	М		
CX	070	8.0	М		
CX	083	20.0	М		
CX	088	NT	М		
CX	102	10	M		
CX	107	NT	M		
CX	108	5	M		
CX	114	NT	M		
CX	117	NT	M		
CX	124	NT	M		
CX	125	NT	M		
CX	126	NT	M		
CX	129	NT	M		
CX	134	NT	M		
CX	143	0.01	M	AL	
CX	144	20	M	/ _	
CX	147	NT	M		
CX	148	NT	M		
CX	149	0.25	M		
CX	151	0.25	M		
CX	152	0.03	M		
CX	157	NT	M		
CX	157	5	M		
CX	160	0.1	M		
CX	163	NT	M		
CX	165	10	M		
CX	166	15.0	M		
CX	167	NT	M		
CX	168	NT	M		
CX	169	NT	M		
CX					
	170	0.02	M		
CX	171	NT 0.1	M	ΛΙ	
CX	172	0.1	M	AL	
CX	173	0.1	M	AL	
CX	176	NT	M		
CX	177	NT	M		

CX	178	NT	M		
CX	180	NT	M		
CX	189	NT	M		
CX	190	NT	M		
CX	195	NT	M		
CX	193	0.05	M		
CX	202	NT	M		
CX	203	NT	M		
CX	204	0.02	M		
CX	205	NT	M		
CX	208	NT	M		
CX	216	NT	М		
CX	217	NT	М		
CX	222	5.0	M		
CX	223	5.0	M		
CX	224	NT	М		
CX	226	NT	М		
CX	231	20.0	М		
CX	236	0.25	М		
CX	245	NT	М		
CX	253	10	М		
CX	254	10	М		
CX	264	1.0	М		
CX	271	NT	М		
CX	276	NT	М		
CX	283	0.1	М		
CX	304	NT	М		
CX	305	NT	М		
CX	321	NT	M		
CX	338	0.5	M		
CX	349	0.1	M	AL	
CX	370	NT	M	/\L	
CX	377	NT	M		
CX	387	NT	M		
CX	391	NT	M		
CX		NT			
	395		M		
CX	512	NT 25.0	M		
CX	529	25.0	M		
CX	537	NT	M		
CX	538	NT	M		
CX	540	0.1	M		
CX	546	10.0	M		
CX	562	NT	М		
CX	578	NT	М		
CX	579	NT	M		
CX	580	NT	М		
CX	596	0.1	M		

СХ	597	NT	М		
CX	604	NT	М		
СХ	607	1.0	М		
СХ	608	NT	М		
СХ	609	NT	М		
СХ	614	NT	М		
СХ	616	NT	М		
CX	617	NT	М		
СХ	623	NT	М		
СХ	626	20.0	М		
CX	648	NT	М		
CX	679	2.0	М		
СХ	692	NT	М		
CX	713	0.05	М		
CX	714	0.05	М		
CX	720	0.1	М		
CX	721	NT	М		
CX	745	0.25	М		
CX	746	0.25	М		
CX	768	NT	М		
CX	779	NT	М		
CX	781	0.05	М		
CX	808	NT	М		
CX	858	NT	М		
CX	900	2.0	М		
CX	901	2.0	М		
CX	902	2.0	М		
CX	903	0.05	М	AL	
CX	904	0.05	М	AL	
CX	906	0.2	М	AL	
CX	907	0.2	M	AL	
CX	908	0.2	M	AL	
CX	909	0.2	M	AL	
CX	910	0.2	M	AL	
CX	911	0.2	M		
CX	928	NT	M		
CX	930	NT	M		
CX	963	NT	М		
CX	A30	2.0	М		
CX	A39	0.01	M		
CX	A58	1.0	М		
CX	AAF	0.01	M		
CX	AAG	0.01	М		
CX	AAX	NT	M		
GB	011	25	M		
GB	024	0.5	M		
GB	028	0.05	M	AL	

GB	042	2.0	М		
GB	044	0.01	М	AL	
GB	050	0.5	М	AL	
GB	052	8	М		
GB	055	14	М		
GB	057	1	М		
GB	065	1	М		
GB	070	8.0	М		
GB	083	NT	М		
GB	102	10	М		
GB	107	NT	М		
GB	108	NT	М		
GB	114	NT	М		
GB	117	0.75	М		
GB	125	NT	М		
GB	126	NT	М		
GB	134	2	М		
GB	143	0.01	М	AL	
GB	144	20	М		
GB	148	0.1	М		
GB	149	NT	М		
GB	151	0.05	М		
GB	152	NT	М		
GB	153	NT	М		
GB	156	NT	М		
GB	157	NT	M		
GB	159	2	M		
GB	160	0.1	M		
GB	163	0.1	M		
GB	164	5	M		
GB	165	NT	M		
GB	166	NT	M		
GB	167	NT	M		
GB	168	NT	M		
GB	169	NT	M		
GB	170	0.02	M		
GB	171	2	M		
GB	172	0.1	M	AL	
GB	173	0.1	M	AL	
GB	174	NT	M		
GB	175	0.02	M		
GB	176	NT	M		
GB	178	2	M		
GB	180	NT	M		
GB	181	NT	M		
GB	189	0.1	M		
GB	195	NT	M		

00	407	NIT	N 4	1 1	
GB	197	NT	M		
GB	203	NT	M		
GB	204	3	M		
GB	205	NT	M		
GB	208	NT	M		
GB	216	0.75	M		
GB	222	NT	M		
GB	223	NT	M		
GB	230	NT	M		
GB	236	NT	М		
GB	245	0.5	М		
GB	249	NT	М		
GB	254	5	М		
GB	264	NT	М		
GB	275	14	М		
GB	283	15.0	М		
GB	304	0.1	М		
GB	305	NT	М		
GB	321	0.1	М		
GB	338	0.5	М		
GB	349	0.1	М	AL	
GB	370	NT	М		
GB	382	10	М		
GB	387	0.1	М		
GB	395	NT	M		
GB	512	NT	M		
GB	529	2.0	M		
GB	537	NT	M		
GB	540	NT	M		
GB	546	2.0	M		
GB	547	2.0	M		
GB	562	NT	M		
GB	578	NT	M		
GB	579	NT	M		
GB	593	NT	M		
GB	596	NT	M		
GB	604	NT	M		
GB	607	0.2	M		
GB	608	NT	M		
GB	621	NT	M		
GB	623	NT	M		
GB	626	2.0	M		
GB	633	NT	M		
GB	679	1.0	M		
GB	713	NT	M		
GB	714	0.05	M		
GB	720	NT	M		

GB	736	0.1	M		
GB	745	NT	М		
GB	746	NT	М		
GB	779	NT	M		
GB	781	0.05	M		
GB	900	2.0	M		
GB	901	2.0	M		
GB	902	2.0	M		
GB	903	0.05	M	AL	
GB	904	0.05	М	AL	
GB	905	0.05	М		
GB	906	0.2	М	AL	
GB	908	0.2	М	AL	
GB	910	0.2	М	AL	
GB	930	0.05	М		
GB	963	NT	М		
GB	A30	NT	М		
GB	A39	0.01	М		
GB	A46	NT	М		
GB	A58	NT	М		
GB	AAX	NT	М		
GB	ABH	NT	М		
GB	ABI	NT	М		
GB	B23	0.01	М		
GR	011	50.0	М		
GR	024	0.75	М		
GR	028	NT	М		
GR	042	4.0	М		
GR	044	0.01	M	AL	
GR	050	1	M	AL	
GR	052	8	M		
GR	055	14	M		
GR	057	1	M		
GR	065	1	M		
GR	069	0.5	M		
GR	070	8.0	M		
GR	083	NT	M		
GR	102	10	M		
GR	107	NT	M		
GR	108	5	M		
GR	114	NT	M		
GR	117	NT	M		
GR	125	NT	M		
GR	126	25	M		
GR	134	NT	M		
GR	143	0.01	M	AL	
GR	143	10		AL	
GR	144	10	M		

GR	148	NT	M		
GR	149	0.25	M		
GR	151	0.05	М		
GR	152	NT	M		
GR	153	NT	M		
GR	156	NT	M		
GR	157	NT	M		
GR	159	5	М		
GR	160	0.5	М		
GR	163	NT	М		
GR	164	NT	М		
GR	165	10	М		
GR	166	10.0	М		
GR	167	NT	М		
GR	168	NT	М		
GR	169	NT	М		
GR	170	0.02	М		
GR	171	1	M		
GR	172	NT	M		
GR	173	NT	М		
GR	174	NT	M		
GR	175	NT	M		
GR	176	NT	M		
GR	178	1	M		
GR	180	0.2	M		
GR	189	NT	M		
GR	195	NT	M		
GR	197	NT	M		
GR	203	NT	M		
GR	203	0.02	M		
GR	205	NT	M		
GR	208	NT			
GR	216	NT	M		
GR		NT			
GR	222 223	NT	M		
GR					
	230	NT 0.10	M		
GR	236	0.10	M		
GR	245	0.1	M		
GR	254	5 NT	M		
GR	264	NT	M		
GR	275	14	M		
GR	283	NT	M		
GR	304	NT	M		
GR	305	NT	M		
GR	321	NT	M		
GR	338	0.5	M		
GR	349	0.1	M	AL	

GR	370	NT	M		
GR	387	NT	M		
GR	395	NT	М		
GR	512	0.2	M		
GR	529	NT	M		
GR	537	NT	M		
GR	540	0.1	M		
GR	546	0.05	M		
GR	547	4.0	М		
GR	578	0.5	М		
GR	579	0.5	М		
GR	593	NT	М		
GR	596	0.1	М		
GR	604	NT	М		
GR	607	2.0	М		
GR	608	1.0	М		
GR	621	NT	М		
GR	623	10	М		
GR	626	60.0	М		
GR	633	NT	М		
GR	679	1.0	М		
GR	713	0.05	М		
GR	714	0.05	М		
GR	720	0.1	М		
GR	736	NT	М		
GR	745	0.10	М		
GR	779	NT	М		
GR	781	0.05	М		
GR	900	2.0	М		
GR	901	2.0	M		
GR	902	2.0	M		
GR	903	0.05	M	AL	
GR	904	0.05	M	AL	
GR	905	0.05	M	,	
GR	906	0.05	M	AL	
GR	908	0.05	M	AL	
GR	910	0.05	M	AL	
GR	930	0.03	M	/ \L	
GR	963	NT	M		
GR	A30	NT	M		
GR	A39	0.01	M		
GR	A46	NT	M		
GR	A58	5.0	M		
GR	ASA	NT	M		
GR	B23	NT	M		
LT	011	100	M	-	
LT	011	0.7			
LI	U ∠ 4	0.7	M		

LT	028	0.03	М	AL	Action Level
LT	042	NT	M	, (=	7100011 20101
LT	044	0.01	M	AL	Action Level
LT	050	3	M	AL	Action Level
LT	052	8	M	7.12	7 (011011 2010)
LT	055	14	M		
LT	057	1	M		
LT	065	1	M		
LT	069	0.5	M		
LT	070	NT	M		
LT	083	NT	M		
LT	102	10	M		
LT	107	NT	M		
LT	108	NT	M		
LT	114	NT	М		
LT	117	0.75	М		
LT	125	NT	M		
LT	126	50	М		
LT	134	2	М		
LT	143	0.01	М	AL	Action Level
LT	144	10	М		
LT	148	NT	М		
LT	149	NT	М		
LT	151	0.05	М		
LT	152	NT	М		
LT	153	NT	М		
LT	156	NT	М		
LT	157	NT	М		
LT	159	5	М		
LT	160	1.0	М		
LT	163	0.1	М		
LT	164	NT	М		
LT	165	NT	М		
LT	166	NT	М		
LT	167	NT	М		
LT	168	NT	М		
LT	169	NT	М		
LT	170	1.0	М		
LT	171	2	М		
LT	172	0.1	М	AL	
LT	173	0.1	М	AL	
LT	174	NT	М		
LT	175	NT	М		
LT	176	NT	М		
LT	178	2	М		
LT	180	NT	М		
LT	181	NT	М		

LT	189	NT	M	
LT	195	NT	M	
LT	197	NT	M	
LT	203	NT	M	
LT	204	10	M	
LT	205	NT	М	
LT	208	NT	М	
LT	216	0.75	М	
LT	222	20.0	М	
LT	223	20.0	М	
LT	230	NT	М	
LT	236	NT	М	
LT	245	2	М	
LT	249	NT	М	
LT	254	NT	М	
LT	264	NT	М	
LT	275	14	M	
LT	283	NT	M	
LT	304	NT	M	
LT	305	NT	M	
LT	321	NT	M	
LT	330	NT	M	
LT	338	0.5	M	
LT	349	0.1	M	AL
LT	370	NT	M	AL
LT	387	NT	M	
LT	395	NT	M	
LT	512	NT	M	
LT				
	529	10.0	M	
LT	537	NT	M	
LT	539	20.0	M	
LT	540	1.0	M	
LT	546	0.05	M	
LT	547	NT	M	
LT	578	0.5	M	
LT	579	0.5	M	
LT	593	NT	M	
LT	596	NT	M	
LT	604	NT	M	
LT	607	5.0	M	
LT	608	NT	M	
LT	621	NT	М	
LT	623	NT	М	
LT	626	25.0	М	
LT	633	NT	М	
LT	679	0.03	М	
LT	713	NT	М	

LT	714	5.0	М		
LT	720	NT	М		
LT	736	0.1	М		
LT	745	NT	М		
LT	779	NT	М		
LT	781	0.05	М		
LT	900	2.0	М		
LT	901	2.0	М		
LT	902	2.0	М		
LT	903	0.05	М	AL	
LT	904	0.05	М	AL	
LT	905	0.05	М		
LT	906	0.5	М	AL	Action Level
LT	908	0.5	М	AL	Action Level
LT	910	0.5	М	AL	Action Level
LT	930	3.0	М		
LT	963	NT	М		
LT	A30	NT	М		
LT	A39	2.0	М		
LT	A46	0.1	М		
LT	A58	NT	М		
LT	AAX	NT	М		
LT	ABH	NT	M		
LT	ABI	NT	М		
LT	B23	0.01	M		
NE	011	50.0	M		
NE	024	0.5	M		
NE	028	0.3	M	AL	
NE	042	2.0	M		
NE	044	0.01	M	AL	
NE	050	1	M	AL	
NE	052	8	M		
NE	057	1	M		
NE	065	1	M		
NE	070	NT	M		
NE	083	5.0	M		
NE	102	10	M		
NE	107	NT	M		
NE	108	5	M		
NE	114	NT	M		
NE	117	NT	M		
NE	125	NT	M		
NE	126	NT	M		
NE	134	NT	M		
NE	143	0.01	M	AL	
NE	144	20	M		
NE	148	NT	M		

NE	149	NT	M	
NE	151	0.05	M	
NE	152	NT	М	
NE	153	NT	М	
NE	156	NT	М	
NE	157	NT	M	
NE	159	5	М	
NE	160	0.1	М	
NE	163	NT	М	
NE	164	0.5	М	
NE	165	5	M	
NE	166	NT	М	
NE	167	NT	М	
NE	168	NT	М	
NE	169	NT	M	
NE	170	0.02	М	
NE	171	NT	М	
NE	174	NT	М	
NE	175	NT	M	
NE	176	NT	М	
NE	178	NT	M	
NE	180	NT	M	
NE	189	NT	M	
NE	197	0.05	M	
NE	203	NT	M	
NE	204	0.02	М	
NE	205	NT	M	
NE	208	NT	M	
NE	216	NT	M	
NE	222	NT	M	
NE	223	NT	M	
NE	230	NT	M	
NE	236	NT	M	
NE	245	NT	M	
NE	254	10	M	
NE	264	1.0	M	
NE	275	14	M	
NE	283	0.1	M	
NE	304	NT	M	
NE	305	NT	M	
NE	321	NT	M	
NE	338	0.5	M	
NE	370	NT	M	
NE	387	NT	M	
NE	395	NT	M	
NE	512	NT	M	
NE	529	25.0	M	

NE	537	NT	M		
NE	540	0.1	M		
NE	546	10.0	M		
NE	578	NT	М		
NE	579	NT	М		
NE	593	NT	M		
NE	596	0.1	М		
NE	604	NT	М		
NE	607	1.0	М		
NE	608	4.0	M		
NE	623	4	M		
NE	626	20.0	М		
NE	633	NT	М		
NE	679	2.0	М		
NE	713	0.05	М		
NE	714	0.05	М		
NE	720	0.1	М		
NE	723	4	М		
NE	736	0.1	M		
NE	745	NT	M		
NE	779	NT	M		
NE	781	0.05	M		
NE	900	2.0	M		
NE	901	2.0	M		
NE	902	2.0	M		
NE	906	0.2	M	AL	
NE	908	0.2	M	AL	
NE	910	0.2	M	AL	
NE	930	NT	M		
NE	963	NT	M		
NE	967	1.0	M		
NE	A30	2.0	M		
NE	A39	0.01	M		
NE	A46	NT	M		
NE	A58	1.0	M		
NE	AAX	NT	M		
NE	ABC	0.2	M		
NE	ABD	0.2	M		
NE	ABH	1.0	M		
NE	ABI	1.0	M		
NE	B23	5.0	M		
OG	011	NT	M		
OG	024	0.7	M		
OG	028	0.02	M	AL	
OG	042	2.0	M		
OG	044	0.01	M	AL	
OG	050	0.5	M	AL	

OG	052	8	M		
OG	055	NT	М		
OG	057	NT	М		
OG	065	NT	М		
OG	069	NT	М		
OG	070	8.0	М		
OG	083	10.0	М		
OG	102	10	М		
OG	107	2.0	М		
OG	108	2	М		
OG	114	NT	М		
OG	117	NT	М		
OG	125	NT	М		
OG	126	NT	М		
OG	134	NT	М		
OG	143	0.01	М	AL	
OG	144	NT	М		
OG	148	NT	М		
OG	149	0.25	М		
OG	151	0.05	М		
OG	152	NT	М		
OG	153	0.1	М		
OG	156	NT	М		
OG	157	10	М		
OG	159	2	М		
OG	160	1.0	М		
OG	163	NT	М		
OG	164	NT	М		
OG	165	5	М		
OG	166	NT	М		
OG	167	0.3	М		
OG	168	0.3	М		
OG	169	0.3	М		
OG	170	0.02	М		
OG	171	2	М		
OG	172	0.1	М	AL	
OG	173	0.1	М	AL	
OG	174	NT	М		
OG	175	NT	М		
OG	176	NT	М		
OG	178	2	М		
OG	180	NT	М		
OG	181	NT	М		
OG	189	NT	М		
OG	195	NT	М		
OG	197	2.0	М		
OG	203	NT	М		

OG	204	0.02	M		
OG	205	NT	M		
OG	208	NT	М		
OG	216	NT	М		
OG	222	NT	М		
OG	223	NT	М		
OG	230	NT	М		
OG	236	0.60	M		
OG	245	1	М		
OG	249	NT	М		
OG	254	10	M		
OG	264	NT	M		
OG	275	NT	M		
OG	283	NT	M		
OG	304	NT	M		
OG	305	NT	M		
OG	321	NT	M		
OG	338	0.5	M		
OG	349	0.1	M	AL	
OG	370	NT	M		
OG	387	NT	M		
OG	395	NT	M		
OG	512	NT	M		
OG	529	NT	M		
OG	537	3	M		
OG	540	NT	M		
OG	546	0.05	M		
OG	547	2.0	M		
OG	578	NT	M		
OG	579	NT	M		
OG	593	NT	M		
OG	596	0.2	M		
OG	604	10.0	M		
OG	607	1.0	M		
OG	608	NT	M		
OG	621	NT	M		
OG	623	5	M		
OG	626	NT	M		
OG	633	NT	M		
OG	679	NT	M		
OG	692	NT	M		
OG	713	NT	M		
OG	714	0.05	M		
OG	720	0.2	M		
OG	723	4	M		
OG	736	0.1	M		
OG	745	0.60	M		

OG	779	NT	М		
OG	781	0.2	М		
OG	900	NT	М		
OG	901	NT	М		
OG	902	NT	М		
OG	903	0.05	М	AL	
OG	904	0.05	М	AL	
OG	905	0.05	М		
OG	906	0.1	М	AL	
OG	908	0.1	М	AL	
OG	910	0.1	М	AL	
OG	930	0.05	М		
OG	963	NT	М		
OG	967	1.0	М		
OG	A30	NT	М		
OG	A39	0.01	М		
OG	A46	NT	М		
OG	A58	NT	М		
OG	AAX	2.0	М		
OG	ABC	0.3	М		
OG	ABD	0.3	М		
OG	ABH	NT	М		
OG	ABI	NT	М		
OG	B23	NT	М		
PA	011	NT	В		
PA	024	NT	В		
PA	028	300	В	AL	
PA	034	NT	В		
PA	042	NT	В		
PA	044	200	В	AL	
PA	050	4000	В	AL	
PA	052	4000	В		
PA	057	NT	В		
PA	065	NT	В		
PA	107	NT	В		
PA	114	NT	В		
PA	124	NT	В		
PA	129	NT	В		
PA	143	200	В	AL	
PA	148	50	В		
PA	149	20	В		
PA	160	100	В		
PA	165	NT	В		
PA	166	NT	В		
PA	170	20	В		
PA	171	20	В		
PA	172	300	В	AL	

PA	173	300	В	AL	
PA	176	750	В		
PA	177	100	В		
PA	178	20	В		
PA	181	700	В		
PA	189	50	В		
PA	190	50	В		
PA	197	50	В		
PA	202	NT	В		
PA	204	100	В		
PA	206	300	В		
PA	207	300	В		
PA	208	NT	В		
PA	222	150	В		
PA	223	150	В		
PA	224	50	В		
PA	235	500	В		
PA	254	NT	В		
PA	258	NT	В		
PA	264	100	В		
PA	275	NT	В		
PA	305	20	В		
PA	321	NT	В		
PA	338	50	В		
PA	349	300	В	AL	
PA	370	NT	В		
PA	391	NT	В		
PA	395	NT	В		
PA	538	NT	В		
PA	540	20	В		
PA	562	200	В		
PA	608	40	В		
PA	614	NT	В		
PA	616	5	В		
PA	623	100	В		
PA	626	3500	В		
PA	638	10	В		
PA	660	100	В		
PA	679	20	В		
PA	713	50	В		
PA	721	NT	В		
PA	722	100	В		
PA	726	200	В		
PA	769	NT	В		
PA	779	NT	В		
PA	900	NT	В		
PA	901	NT	В		

PA	902	NT	В		
PA	903	300	В	AL	
PA	904	300	В	AL	
PA	906	5000	В	AL	
PA	908	5000	В	AL	
PA	910	5000	В	AL	
PA	928	NT	В		
PA	A61	50	В		
PA	AAX	NT	В		
PA	AAZ	500	В		
PB	001	50	В	AL	
PB	024	750	В		
PB	028	5	В	AL	
PB	044	10	В	AL	
РВ	052	8000	В		
РВ	057	1000	В		
РВ	065	1000	В		
РВ	070	8000	В		
РВ	102	5000	В		
PB	117	750	В		
РВ	143	10	В	AL	
РВ	144	3000	В		
PB	148	100	В		
PB	151	50	В		
PB	159	100	В		
PB	160	200	В		
PB	167	50	В		
PB	168	50	В		
PB	169	50	В		
PB	170	20	В		
PB	175	20	В		
PB	180	NT	В		
PB	189	100	В		
PB	191	50	В		
PB	208	NT	В		
PB	216	750	В		
PB	227	50	В		
PB	230	100	В		
PB	236	20	В		
PB	264	200	В		
PB	275	14000	В		
PB	283	500	В		
PB	304	1000	В		
PB	338	500	В		
PB	343	50	В		
PB	351	1000	В		
РВ	370	NT	В		

PB	382	5000	В		
РВ	395	NT	В		
PB	512	NT	В		
PB	537	200	В		
PB	546	50	В		
PB	596	50	В		
PB	607	200	В		
РВ	623	100	В		
PB	626	500	В		
PB	720	50	В		
PB	721	50	В		
PB	745	20	В		
PB	779	NT	В		
PB	808	10	В		
PB	906	200	В	AL	
PB	908	200	В	AL	
PB	910	200	В	AL	
PB	A39	50	В		
PB	A58	100	В		
PC	001	0.02	М	AL	
PC	002	EX	М		
PC	011	50.0	М		
PC	024	0.7	М		
PC	028	0.02	М	AL	
PC	032	0.1	М		
PC	042	2.0	M		
PC	044	0.01	M	AL	
PC	050	1	M	AL	
PC	052	8	M		
PC	055	14	M		
PC	057	1	M		
PC	065	1	M		
PC	070	8.0	M		
PC	083	20.0	M		
PC	088	NT	M		
PC	102	10	М		
PC	107	NT	М		
PC	108	5	М		
PC	114	NT	М		
PC	117	NT	М		
PC	124	NT	M		
PC	125	NT	M		
PC	126	NT	M		
PC	129	NT	M		
PC	134	NT	M		
PC	143	0.01	M	AL	
PC	144	20	M		

DO	4.47	NIT	N 4		
PC	147	NT	M		
PC	148	NT	М		
PC	149	0.25	M		
PC	151	0.05	M		
PC	152	0.1	M		
PC	157	NT	M		
PC	159	5	M		
PC	160	0.1	M		
PC	163	NT	М		
PC	165	10	М		
PC	166	15.0	М		
PC	167	NT	М		
PC	168	NT	М		
PC	169	NT	М		
PC	170	0.02	М		
PC	171	NT	М		
PC	172	0.1	М	AL	
PC	173	0.1	M	AL	
PC	176	NT	M		
PC	177	NT	M		
PC	178	NT	M		
PC	180	NT	M		
PC	189	NT	M		
PC	190	NT	M		
PC	195	NT	M		
PC	193	0.05	M		
PC	202	NT	M		
PC					
	203	NT	M		
PC	204	0.02	M		
PC	205	NT	M		
PC	208	NT	M		
PC	216	NT	M		
PC	217	NT	M		
PC	222	5.0	M		
PC	223	5.0	М		
PC	224	NT	M		
PC	226	NT	M		
PC	231	20.0	M		
PC	236	0.25	M		
PC	245	NT	М		
PC	253	10	М		
PC	254	10	М		
PC	264	1.0	М		
PC	271	NT	М		
PC	276	NT	М		
PC	283	0.1	М		
PC	304	NT	М		

50	225				
PC	305	NT	M		
PC	321	NT	M		
PC	338	0.5	M		
PC	349	0.1	M	AL	
PC	370	NT	M		
PC	377	NT	M		
PC	387	NT	M		
PC	391	NT	M		
PC	395	NT	М		
PC	512	NT	М		
PC	529	25.0	М		
PC	537	NT	М		
PC	538	NT	М		
PC	540	0.1	М		
PC	546	10.0	М		
PC	562	NT	М		
PC	578	NT	М		
PC	579	NT	М		
PC	580	NT	М		
PC	596	0.1	М		
PC	597	NT	М		
PC	604	NT	М		
PC	607	1.0	М		
PC	608	NT	М		
PC	609	NT	М		
PC	614	NT	М		
PC	616	NT	М		
PC	617	NT	М		
PC	623	NT	М		
PC	626	20.0	М		
PC	648	NT	М		
PC	679	2.0	M		
PC	692	NT	M		
PC	713	0.05	M		
PC	714	0.05	M		
PC	720	0.1	M		
PC	721	NT	M		
PC	745	0.25	M		
PC	746	0.25	M		
PC	768	NT	M		
PC	779	NT	M		
PC	781	0.05	M		
PC	808	NT	M		
PC	858	NT	M		
PC	900	2.0	M		
PC	901	2.0	M		
PC	902	2.0	M		
10	302	۷.0	IVI		

PC	903	0.05	М	AL	
PC	904	0.05	М	AL	
PC	906	0.2	М	AL	
PC	907	0.2	М	AL	
PC	908	0.2	М	AL	
PC	909	0.2	М	AL	
PC	910	0.2	М	AL	
PC	911	0.2	М		
PC	928	NT	М		
PC	930	NT	М		
PC	963	NT	М		
PC	A30	2.0	М		
PC	A39	0.01	М		
PC	A58	1.0	М		
PC	AAF	0.01	М		
PC	AAG	0.01	М		
PC	AAX	NT	М		
PL	024	NT	В		
PL	042	NT	В		
PL	052	4000	В		
PL	057	NT	В		
PL	065	NT	В		
PL	102	NT	В		
PL	107	NT	В		
PL	124	NT	В		
PL	148	50	В		
PL	159	NT	В		
PL	160	100	В		
PL	165	NT	В		
PL	166	NT	В		
PL	167	NT	В		
PL	168	NT	В		
PL	169	NT	В		
PL	170	20	В		
PL	171	20	В		
PL	176	NT	В		
PL	177	100	В		
PL	178	20	В		
PL	180	NT	В		
PL	181	700	В		
PL	189	50	В		
PL	190	50	В		
PL	195	NT	В		
PL	197	50	В		
PL	204	100	В		
PL	208	NT	В		
PL	224	50	В		

PL	235	500	В	
PL	258	NT	В	
PL	264	200	В	
PL	310	NT	В	
PL	338	50	В	
PL	370	NT	В	
PL	391	NT	В	
PL	395	NT	В	
PL	512	NT	В	
PL	538	NT	В	
PL	540	200	В	
PL	562	2000	В	
PL	614	NT	В	
PL	623	100	В	
PL	626	5000	В	
PL	660	100	В	
PL	679	20	В	
PL	726	200	В	
PL	769	NT	В	
PL	779	NT	В	
PL	928	NT	В	
PL	AAX	NT	В	
PL	AAZ	500	В	
PM	024	NT	В	
PM	042	NT	В	
PM	052	4000	В	
PM	057	NT	В	
PM	065	NT	В	
PM	107	NT	В	
PM	114	NT	В	
PM	124	NT	В	
PM	148	50	В	
PM	149	20	В	
PM	160	100	В	
PM	165	NT	В	
PM	170	20	В	
PM	171	20	В	
PM	176	NT	В	
PM	177	100	В	
PM	178	20	В	
PM	181	700	В	
PM	189	50	В	
PM	190	50	В	
PM	197	50	В	
PM	204	100	В	
PM	208	NT	В	
PM	222	50	В	

PM	223	50	В		
PM			В		
	224	50			
PM	235	500	В		
PM	254	NT	В		
PM	258	NT	В		
PM	264	100	В		
PM	297	10	В		
PM	305	20	В		
PM	310	NT	В		
PM	338	50	В		
PM	370	NT	В		
PM	395	NT	В		
PM	538	NT	В		
PM	540	20	В		
PM	546	NT	В		
PM	562	2000	В		
PM	608	40	В		
PM	609	NT	В		
PM	614	NT	В		
PM	623	100	В		
PM	626	1000	В		
PM	638	10	В		
PM	660	100	В		
PM	679	20	В		
PM	713	50	В		
PM	714	30	В		
PM	721	NT	В		
PM	722	100	В		
PM	726	200	В		
PM	769	NT	В		
PM	779	NT	В		
PM	781	100	В		
PM	808	50	В		
PM	928	NT	В		
PM	930	50	В		
PM	A61	50	В		
PM	AAX	NT	В		
PM	B58	50	В		
PN	011	NT	M		
PN	024	0.5	M		
PN	024	0.03	M	AL	
PN	042	NT	M	/\L	
PN	042	0.02	M	AL	
PN	050	1	M	AL	
PN	052	8	M		
PN	057	1	M		
PN	065	1	M		

PN	070	8.0	М		
PN	083	10.0	М		
PN	102	2.0	М		
PN	107	NT	М		
PN	108	NT	М		
PN	114	NT	М		
PN	117	0.75	М		
PN	125	NT	М		
PN	126	NT	М		
PN	134	NT	М		
PN	143	0.02	М	AL	
PN	144	NT	М		
PN	148	NT	М		
PN	149	NT	М		
PN	151	NT	М		
PN	152	NT	М		
PN	153	0.1	М		
PN	156	0.25	М		
PN	157	NT	М		
PN	159	NT	М		
PN	160	0.1	М		
PN	163	NT	М		
PN	164	NT	М		
PN	165	NT	M		
PN	166	NT	М		
PN	167	NT	M		
PN	168	NT	M		
PN	169	NT	M		
PN	170	0.02	M		
PN	171	NT	M		
PN	174	NT	M		
PN	175	0.02	M		
PN	176	NT	M		
PN	178	NT	M		
PN	180	NT	M		
PN	181	NT	M		
PN	189	NT	M		
PN	197	NT	M		
PN	203	NT	M		
PN	204	0.02	M		
PN	205	NT	M		
PN	208	NT	M		
PN	216	0.75	M		
PN	222	NT	M		
PN	223	NT	M		
PN	230	NT	M		
PN	236	0.30	M		

PN	245	NT	M		
PN	249	NT	M		
PN	254	NT	M		
PN	264	0.1	М		
PN	275	14	M		
PN	283	NT	М		
PN	304	NT	М		
PN	305	NT	M		
PN	321	NT	M		
PN	338	0.5	M		
PN	370	NT	M		
PN	387	NT	M		
PN	395	NT	M		
PN	512	NT	M		
PN	529	NT	M		
PN	537	1	M		
PN	540	NT	M		
PN	546	0.05	M		
PN	578	NT	M		
PN	579	NT	M		
PN	593	NT	M		
PN	596	NT	M		
PN	604	NT	M		
PN	607	0.1	M		
PN	608	3.0	M		
PN	623	NT	M		
PN	626	NT	M		
PN	633	0.5	M		
PN	679	NT	M		
PN	713	NT	M		
PN	714	0.05	M		
PN	720	NT	M		
PN	736	NT	M		
PN	745	0.30	M		
PN	779	NT	M		
PN	781	0.05	M		
PN	900	2.0	M		
PN	901	2.0	M		
PN	902	2.0	M		
PN	906	0.2	M	AL	
PN	908	0.2	M	AL	
PN	910	0.2	M	AL	
PN	930	NT	M		
PN	963	NT	M		
PN	A30	NT	M		
PN	A39	0.01	M		
PN	A46	NT	M		

PN	A58	NT	M		
PN	AAX	NT	M		
PN	ABH	0.1	M		
PN	ABI	0.1	М		
PN	B23	NT	М		
PO	011	25.0	М		
PO	024	0.1	М		
PO	028	0.1	M	AL	
PO	042	0.2	M		
PO	044	0.01	М	AL	
PO	050	0.5	M	AL	
PO	052	8	M		
PO	057	0.1	M		
PO	065	0.1	M		
PO	069	NT	M		
PO	070	0.25	M		
PO	083	NT	M		
PO	102	0.2	M		
PO	107	NT	M		
PO	108	NT	M		
PO	114	50	M		
PO	117	0.75	M		
PO	125	NT	M		
PO	126	NT	M		
PO	129	1	M		
PO	134	2	M		
PO	143	0.01	M	AL	
PO	144	0.25	M		
PO	148	0.5	M		
PO	149	NT	M		
PO	151	0.05	M		
PO	152	NT	M		
PO	153	NT	M		
PO	156	NT	M		
PO	157	10.0	M		
PO	159	0.2	M		
PO	160	0.1	M		
PO	163	0.1	M		
PO	164	0.1	M		
PO	165	0.1	M		
PO	166	NT	M		
PO	167	1	M		
PO	168	1	M		
PO	169	1	M		
PO	170	0.1	M		
РО	171	0.2	M		
РО	174	0.5	M		

PO	175	0.02	M	
PO	176	NT	М	
PO	178	0.2	М	
PO	180	1	М	
PO	181	0.6	М	
PO	189	0.5	М	
PO	197	NT	М	
РО	201	0.1	М	
PO	203	NT	М	
PO	204	0.02	М	
PO	205	NT	М	
PO	208	NT	М	
PO	216	NT	М	
PO	222	0.05	М	
PO	223	0.05	М	
PO	230	0.1	М	
PO	236	NT	М	
PO	245	NT	M	
PO	249	NT	М	
PO	254	NT	M	
PO	264	NT	М	
PO	275	1	M	
PO	283	0.2	M	
PO	304	0.1	M	
PO	305	NT	M	
PO	321	0.1	M	
PO	330	1	M	
PO	338	0.5	M	
PO	343	0.1	M	
PO	370	NT	M	
PO	387	0.1	M	
PO	395	NT	M	
PO	512	1	M	
PO	529	NT	M	
PO	537	0.1	M	
PO	539	0.05	M	
PO	540	NT	M	
PO	546	0.05	M	
PO	578	NT	M	
РО	579	NT	M	
РО	593	NT	M	
РО	596	NT	M	
РО	604	NT	M	
РО	607	0.5	M	
РО	608	NT	M	
PO	623	0.1	M	
РО	626	0.5	M	

D0	000	NIT.			
PO	633	NT	M		
PO	679	0.03	M		
PO	713	NT	M		
РО	714	0.05	M		
PO	720	NT	М		
PO	736	0.1	M		
РО	745	NT	M		
РО	779	NT	M		
PO	781	0.05	M		
PO	877	0.05	M		
РО	900	0.2	M		
PO	901	0.2	М		
PO	902	0.2	М		
РО	906	1	М	AL	
РО	908	1	М	AL	
РО	910	1	М	AL	
PO	930	0.05	М		
РО	963	NT	М		
РО	A30	NT	М		
РО	A39	0.01	М		
РО	A46	0.1	М		
РО	A58	NT	М		
РО	AAX	NT	М		
РО	ABH	NT	М		
PO	ABI	NT	М		
PO	B23	0.02	М		
PO	B77	0.05	М		
PP	011	25	M		
PP	024	0.5	M		
PP	028	0.05	M	AL	Action Level
PP	042	0.3	M	7 (ACCION LOVE
PP	044	0.01	M	AL	Action Level
PP	050	1	M	AL	Action Level
PP	052	8	M	/ (_	Action Ecver
PP	055	14	M		
PP	057	1	M		
PP	065	<u></u> 1	M		
PP	070	NT	M		
PP	083	10	M		
PP	102	10	M		
PP PP	102	NT	M		
PP PP		NT			
PP PP	108		M		
PP	114	NT 0.1	M		
	117	0.1	M		
PP	125	NT	M		
PP	126	NT	M		
PP	134	2	M		

PP	143	0.01	M	AL	Action Level
PP	144	NT	М		
PP	148	NT	М		
PP	149	NT	М		
PP	151	0.05	M		
PP	152	NT	M		
PP	153	NT	M		
PP	156	NT	M		
PP	157	NT	M		
PP	159	2	M		
PP	160	1.0	M		
PP	163	0.1	M		
PP	164	NT	M		
PP	165	NT	M		
PP	166	NT	М		
PP	167	NT	М		
PP	168	NT	M		
PP	169	NT	М		
PP	170	1.0	M		
PP	171	2	M		
PP	172	0.1	M	AL	Action Level
PP	173	0.1	M	AL	Action Level
PP	174	NT	M		
PP	175	NT	М		
PP	176	NT	М		
PP	178	2	М		
PP	180	0.2	М		
PP	181	NT	M		
PP	189	NT	М		
PP	192	0.2	М		
PP	195	NT	М		
PP	197	NT	M		
PP	203	NT	M		
PP	204	4.0	М		
PP	205	NT	М		
PP	208	NT	М		
PP	216	0.1	М		
PP	222	1.0	М		
PP	223	1.0	М		
PP	230	NT	М		
PP	236	NT	М		
PP	245	0.75	М		
PP	249	NT	М		
PP	253	5	М		
PP	254	5	М		
PP	264	NT	М		
PP	275	14	М		

PP	283	0.1	M		
PP	304	0.1	M		
PP	305	NT			
			M		
PP	321	0.1	M		
PP	338	0.5	M	A 1	
PP	349	0.1	M	AL	Action Level
PP	370	NT	M		
PP	382	10	M		
PP	387	0.1	М		
PP	395	NT	M		
PP	512	0.2	M		
PP	529	3.0	M		
PP	537	3	M		
PP	540	NT	M		
PP	546	1.0	М		
PP	547	0.3	М		
PP	562	NT	М		
PP	578	0.25	М		
PP	579	0.25	М		
PP	593	NT	М		
PP	596	NT	М		
PP	604	NT	М		
PP	607	1.0	М		
PP	608	NT	М		
PP	621	NT	М		
PP	623	NT	М		
PP	626	NT	М		
PP	633	NT	М		
PP	679	1.0	М		
PP	713	NT	М		
PP	714	0.05	M		
PP	720	NT	M		
PP	736	0.1	M		
PP	745	NT	M		
PP	746	NT	M		
PP	779	NT	M		
PP	781	0.50	M		
PP	900	2.0	M		
PP	901	2.0	M		
PP	901	2.0	M		
PP	902	0.05		AL	
PP			M		Action Lovel
	904	0.05	M	AL	Action Level
PP	905	0.05	M	Λ.	A ation Laure
PP	906	0.1	M	AL	Action Level
PP	908	0.1	M	AL	Action Level
PP	910	0.1	M	AL	Action Level
PP	930	0.5	M		

PP	963	NT	М		
PP	A30	NT	M		
PP	A39	0.01	M		
PP	A46	0.1	M		
PP	A58	NT	M		
PP	AAX	NT	M		
PP	ABH	NT	M		
PP	ABI	NT	M		
PP	B23	0.01	M		
RI	028	20	В	AL	Action Level
RI	050	100	В	AL	Action Level
RI	052	8000	В		7.0
RI	065	1000	В		
RI	070	20000	В		
RI	102	5000	В		
RI	117	750	В		
RI	143	10	В	AL	Action Level
RI	159	NT	В		
RI	167	NT	В		
RI	168	NT	В		
RI	169	NT	В		
RI	180	200	В		
RI	208	NT	В		
RI	210	200	В		
RI	216	750	В		
RI	230	50	В		
RI	235	6000	В		
RI	264	100	В		
RI	275	2000	В		
RI	283	100	В		
RI	341	2000	В		
RI	370	NT	В		
RI	512	200	В		
RI	537	NT	В		
RI	546	50	В		
RI	607	100	В		
RI	626	10000	В		
RI	719	20	В		
RI	726	200	В		
RI	736	100	В		
RI	778	100	В		
RI	793	100	В		
RI	910	NT	В		
RI	A39	1000	В		
RI	A46	100	В		
RI	B23	20	В		
RI	B63	7000	В		

RI	B77	50	В		
ST	001	0.05	М	AL	Action Level
ST	011	25	M		
ST	024	0.5	M		
ST	028	0.05	M	AL	Action Level
ST	033	NT	M		
ST	034	NT	M		
ST	042	2.0	M		
ST	044	0.01	М	AL	Action Level
ST	050	1	М	AL	Action Level
ST	052	8	М		
ST	055	14	М		
ST	057	1	М		
ST	065	1	М		
ST	069	1.0	М		
ST	070	NT	М		
ST	083	NT	М		
ST	102	10	М		
ST	107	NT	М		
ST	108	5	М		
ST	114	NT	М		
ST	117	NT	М		
ST	125	NT	М		
ST	126	25	М		
ST	129	NT	М		
ST	134	2	М		
ST	143	0.01	М	AL	Action Level
ST	144	NT	М		
ST	148	NT	М		
ST	149	0.25	М		
ST	151	NT	М		
ST	152	0.1	М		
ST	153	NT	М		
ST	156	NT	М		
ST	157	5.0	М		
ST	159	2	М		
ST	160	0.2	М		
ST	163	0.1	М		
ST	164	NT	М		
ST	165	NT	М		
ST	166	NT	М		
ST	167	NT	М		
ST	168	NT	М		
ST	169	NT	М		
ST	170	0.02	М		
ST	171	NT	M		
	172	0.1	М	AL	Action Level

ST	173	0.1	М	AL	Action Level
ST	174	NT	М		
ST	175	NT	М		
ST	176	NT	М		
ST	178	NT	М		
ST	180	0.2	М		
ST	189	NT	М		
ST	192	5.0	М		
ST	195	NT	М		
ST	197	NT	М		
ST	203	NT	М		
ST	204	0.02	М		
ST	205	NT	М		
ST	208	NT	М		
ST	216	NT	М		
ST	222	NT	М		
ST	223	NT	M		
ST	224	NT	М		
ST	230	NT	М		
ST	236	0.6	М		
ST	245	2	М		
ST	254	5	М		
ST	275	14	М		
ST	283	NT	М		
ST	304	NT	М		
ST	305	NT	М		
ST	321	NT	M		
ST	330	1	M		
ST	338	0.5	M		
ST	349	0.1	M	AL	Action Level
ST	370	NT	M		
ST	387	NT	M		
ST	395	NT	M		
ST	512	0.2	M		
ST	529	10	M		
ST	537	NT	M		
ST	539	NT	M		
ST	540	NT	M		
ST	546	0.05	M		
ST	547	2.0	М		
ST	562	NT	M		
ST	578	1.0	М		
ST	579	1.0	M		
ST	593	NT	М		
ST	596	NT	М		
ST	597	NT	М		
ST	604	NT	M		

ST	607	10.0	М		
ST	608	NT	М		
ST	621	NT	M		
ST	623	NT	M		
ST	626	15	М		
ST	633	NT	M		
ST	679	0.5	M		
ST	713	0.05	М		Section 18
ST	714	0.05	М		
ST	720	NT	М		
ST	736	0.1	М		
ST	745	0.6	М		
ST	779	NT	М		
ST	781	NT	М		
ST	808	2.0	М		
ST	900	2.0	М		
ST	901	2.0	М		
ST	902	2.0	М		
ST	903	0.05	М	AL	Action Level
ST	904	0.05	М	AL	Action Level
ST	905	0.05	М		
ST	906	0.1	М	AL	Action Level
ST	908	0.1	М	AL	Action Level
ST	910	0.1	М	AL	Action Level
ST	930	3.00	М		
ST	963	NT	М		
ST	A30	NT	М		
ST	A39	0.01	М		
ST	A46	NT	М		
ST	A58	NT	М		
ST	AAX	NT	М		
ST	ABH	NT	М		
ST	ABI	NT	М		
ST	B23	2.0	М		
SZ	001	0.05	М	AL	Action Level
SZ	011	25	М		
SZ	024	0.5	М		
SZ	028	0.05	М	AL	Action Level
SZ	033	NT	М		
SZ	034	NT	М		
SZ	042	2.0	М		
SZ	044	0.01	М	AL	Action Level
SZ	050	1	М	AL	Action Level
SZ	052	8	М		
SZ	055	14	М		
SZ	057	1	М		
SZ	065	1	М		

SZ	060	1.0	М		
	069	1.0			
SZ	070	NT	M		
SZ	083	NT	M		
SZ	102	10	M		
SZ	107	NT	M		
SZ	108	5	M		
SZ	114	NT	M		
SZ	117	NT	M		
SZ	125	NT	M		
SZ	126	25	M		
SZ	129	NT	M		
SZ	134	2	M		
SZ	143	0.01	M	AL	Action Level
SZ	144	NT	M		
SZ	148	NT	М		
SZ	149	0.25	М		
SZ	151	NT	М		
SZ	152	0.1	М		
SZ	153	NT	М		
SZ	156	NT	М		
SZ	157	5.0	М		
SZ	159	2	М		
SZ	160	0.2	М		
SZ	163	0.1	M		
SZ	164	NT	M		
SZ	165	NT	M		
SZ	166	NT	M		
SZ	167	NT	M		
SZ	168	NT	M		
SZ	169	NT	M		
SZ	170	0.02	M		
SZ	171	NT	M		
SZ	171	0.1	M	AL	Action Level
SZ	173 174	0.1 NT	M	AL	Action Level
SZ			M		
SZ	175	NT	M		
SZ	176	NT	M		
SZ	178	NT	M		
SZ	180	0.2	M		
SZ	189	NT	M		
SZ	192	5.0	M		
SZ	195	NT	M		
SZ	197	NT	M		
SZ	203	NT	M		
SZ	204	0.02	M		
SZ	205	NT	М		
SZ	208	NT	М		

SZ	216	NT	M		
SZ	222	NT	M		
SZ	222	NT	M		
SZ	224	NT	M		
SZ	230	NT	M		
SZ	236	0.6	M		
SZ	245	2	M		
SZ	254	5	M		
SZ	275	14	M		
SZ	283	NT	М		
SZ	304	NT	М		
SZ	305	NT	М		
SZ	321	NT	M		
SZ	330	1	M		
SZ	338	0.5	M		
SZ	349	0.1	М	AL	Action Level
SZ	370	NT	M		
SZ	387	NT	М		
SZ	395	NT	М		
SZ	512	0.2	M		
SZ	529	10	M		
SZ	537	NT	M		
SZ	539	NT	М		
SZ	540	NT	М		
SZ	546	0.05	M		
SZ	547	2.0	M		
SZ	562	NT	М		
SZ	578	1.0	М		
SZ	579	1.0	М		
SZ	593	NT	М		
SZ	596	NT	М		
SZ	597	NT	М		
SZ	604	NT	M		
SZ	607	10.0	M		
SZ	608	NT	M		
SZ	621	NT	M		
SZ	623	NT	M		
SZ	626	15	M		
SZ	633	NT	M		
SZ	679	0.5	M		
SZ	713	0.05	M		Section 18
SZ					Section 10
	714	0.05	M		
SZ	720	NT 0.1	M		
SZ	736	0.1	M		
SZ	745	0.6	M		
SZ	779	NT	M		
SZ	781	NT	M		

SZ	808	2.0	M		
SZ	900	2.0	M		
SZ	900	2.0	M		
SZ					
	902	2.0	M	۸۱	Action Lovel
SZ	903	0.05	M	AL	Action Level
SZ	904	0.05	M	AL	Action Level
SZ	905	0.05	M		
SZ	906	0.1	M	AL	Action Level
SZ	908	0.1	M	AL	Action Level
SZ	910	0.1	M	AL	Action Level
SZ	930	3.00	M		
SZ	963	NT	M		
SZ	A30	NT	M		
SZ	A39	0.01	M		
SZ	A46	NT	M		
SZ	A58	NT	М		
SZ	AAX	NT	М		
SZ	ABH	NT	М		
SZ	ABI	NT	М		
SZ	B23	2.0	М		
TC	001	0.05	М	AL	Action Level
TC	011	25	М		
TC	024	0.75	М		
TC	028	0.05	М	AL	Action Level
TC	033	NT	M		
TC	034	0.05	M	AL	
TC	042	2.0	M		
TC	044	0.01	M	AL	Action Level
TC	050	3	M	AL	Action Level
TC	052	8	M	712	7 (Olion Lovo)
TC	055	14	M		
TC	057	1	M		
TC	065	<u></u>	M		
TC	069	0.2	M		
TC	069	8	M		
TC	070	10	M		
TC	102	10 NT	M		
TC	107	NT	M		
TC	108	1	M		
TC	114	NT 0.75	M		
TC	117	0.75	M		
TC	125	NT	M		
TC	126	25	M		
TC	129	NT	M		
TC	134	1	M		
TC	143	0.01	M	AL	Action Level
TC	144	5	M		

TO	1.10	NIT	N A		
TC	148	NT	M		
TC	149	NT 0.05	M		
TC	151	0.05	M		
TC	152	NT	M		
TC	157	NT	M		
TC	159	1	M		
TC	160	0.5	M		
TC	163	0.1	M		
TC	164	5	M		
TC	165	NT	М		
TC	166	NT	M		
TC	167	NT	M		
TC	168	NT	M		
TC	169	NT	M		
TC	170	1.0	М		
TC	171	2	М		
TC	172	0.1	М	AL	Action Level
TC	173	0.1	М	AL	Action Level
TC	174	15	М		
TC	175	NT	М		
TC	176	NT	M		
TC	178	2	M		
TC	180	NT	M		
TC	189	NT	М		
TC	190	NT	М		
TC	195	NT	М		
TC	197	NT	М		
TC	203	NT	М		
TC	204	0.02	М		
TC	205	NT	М		
TC	208	NT	М		
TC	216	0.75	M		
TC	222	2	M		
TC	223	2	M		
TC	224	NT	M		
TC	230	NT	M		
TC	236	NT	M		
TC	245	NT	M		
TC	254	5	M		
TC	275	14	M		
TC	283	0.1	M		
TC	304	0.1	M		
TC	305	NT	M		
TC		0.1	M		
	321				
TC	330	0.1	M		
TC	338	0.5	M	Λ1	A ation Lavel
TC	349	0.1	M	AL	Action Level

TC	370	NT	М		
TC	387	0.1	М		
TC	395	NT	М		
TC	512	NT	М		
TC	529	NT	М		
TC	537	2	М		
TC	539	2	М		
TC	540	NT	М		
TC	546	1.0	М		
TC	547	2.0	М		
TC	562	NT	M		
TC	578	0.2	M		
TC	579	0.2	M		
TC	593	NT	M		
TC	596	NT	M		
TC	597	NT	M		
TC	604	NT	M		
TC	607	1.0	M		
TC	608	NT	M		
TC	621	NT			
TC			M		
TC	623	NT	M		
	626	NT	M		
TC	679	0.3	M		
TC	692	0.1	M		
TC	713	NT	M		
TC	714	0.05	M		
TC	720	NT	M		
TC	745	NT	M		
TC	779	NT	M		
TC	781	0.20	M		
TC	900	2.0	M		
TC	901	2.0	M		
TC	902	2.0	M		
TC	903	0.05	M	AL	Action Level
TC	904	0.05	M	AL	Action Level
TC	905	0.05	М		
TC	906	0.05	М	AL	Action Level
TC	908	0.05	М	AL	Action Level
TC	910	0.05	М	AL	Action Level
TC	930	NT	М		
TC	963	NT	М		
TC	A39	0.1	М		
TC	A46	0.1	М		
TC	A58	NT	М		
TC	AAF	0.1	М		
TC	ABB	0.4	М		
TC	ABC	0.4	M		

TC	ABD	0.4	M		