Massive Data Algorithmics

Lecture 7: Range Searching

Three-Sided Range Queries

• Interval management: 1.5 dimensional search

- More general 2d problem: Dynamic 3-sidede range searching
 - Maintain set of points in plane such that given query (q_1,q_2,q_3) , all points (x,y) with $q_1 \le x \le q_2$ and $y \ge q_3$ can be found efficiently

Three-Sided Range Queries

- Static solution:
 - Sweep top-down inserting x in persistent B-tree at (x,y)
 - Answer query by performing range query with $[q_1,q_2]$ in B-tree at q_3

- Optimal:
 - O(N/B) space
 - $O(log_BN + T/B)$ query
 - $O(N/B\log_{M/B}N/B)$ construction
- Dynamic? in internal memory: priority search tree

- Base tree on x-coordinates with nodes augmented with points
- Heap on y-coordinates:
 - Decreasing y values on root-leaf path
 - (x,y) on path from root to leaf holding x
 - If v holds point then parent(v) holds point

- Linear space
- Insert of (x,y) (assuming fixed x-coordinate set):
 - Compare y with y-coordinate in root
 - Smaller: Recursively insert (x,y) in subtree on path to x
 - Bigger: Insert in root and recursively insert old point in subtree
 - $\Rightarrow O(\log N)$ update

- Linear space
- Insert of (x,y) (assuming fixed x-coordinate set):
 - Compare y with y-coordinate in root
 - Smaller: Recursively insert (x,y) in subtree on path to x
 - Bigger: Insert in root and recursively insert old point in subtree
 - $\Rightarrow O(\log N)$ update

- Linear space
- Insert of (x,y) (assuming fixed x-coordinate set):
 - Compare y with y-coordinate in root
 - Smaller: Recursively insert (x,y) in subtree on path to x
 - Bigger: Insert in root and recursively insert old point in subtree
 - $\Rightarrow O(\log N)$ update

- Linear space
- Insert of (x,y) (assuming fixed x-coordinate set):
 - Compare y with y-coordinate in root
 - Smaller: Recursively insert (x,y) in subtree on path to x
 - Bigger: Insert in root and recursively insert old point in subtree
 - $\Rightarrow O(\log N)$ update

- Linear space
- Insert of (x,y) (assuming fixed x-coordinate set):
 - Compare y with y-coordinate in root
 - Smaller: Recursively insert (x,y) in subtree on path to x
 - Bigger: Insert in root and recursively insert old point in subtree
 - $\Rightarrow O(\log N)$ update

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in v if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

$$\Rightarrow O(\log N + T)$$
 query

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in v if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

$$\Rightarrow O(\log N + T)$$
 query

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in v if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

$$\Rightarrow O(\log N + T)$$
 query

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in v if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

$$\Rightarrow O(\log N + T)$$
 query

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in v if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

$$\Rightarrow O(\log N + T)$$
 query

- Query with (q_1, q_2, q_3) starting at root v:
 - Report point in v if satisfying query
 - Visit both children of v if point reported
 - Always visit child(s) of v on path(s) to q_1 and q_2

$$\Rightarrow O(\log N + T)$$
 query

- Natural idea: Block tree
- Problem:
 - $O(\log_R N)$ I/Os to follow paths to to q_1 and q_2
 - But O(T) I/Os may be used to visit other nodes ("overshooting")
 - $\Rightarrow O(\log_R N + T)$ query

Solution idea:

- Store *B* points in each node:
 - * $O(B^2)$ points stored in each supernode
 - * B output points can pay for overshooting
- Bootstrapping:
 - * Store $O(B^2)$ points in each supernode in static structure

- Base tree: Weight-balanced B-tree with branching parameter B/4 and leaf parameter B on x-coordinates
- Points in heap order:
 - Root stores B top points for each of the $\Theta(B)$ child slabs
 - Remaining points stored recursively
- Points in each node stored in B^2 -structure
 - Persistent B-tree structure for static problem
- ⇒ Linear space

- Query with (q_1, q_2, q_3) starting at root v:
 - Query B^2 -structure and report points satisfying query
 - Visit child v if
 - * v on path to q_1 or q_2
 - * All points corresponding to *v* satisfy query

- Query with (q_1, q_2, q_3) starting at root v:
 - Query B^2 -structure and report points satisfying query
 - Visit child v if
 - * v on path to q_1 or q_2
 - * All points corresponding to *v* satisfy query

- Query with (q_1, q_2, q_3) starting at root v:
 - Query B^2 -structure and report points satisfying query
 - Visit child v if
 - * v on path to q_1 or q_2
 - * All points corresponding to *v* satisfy query

Analysis:

- $O(\log_B B^2 + T_v/B) = O(1 + T_v/B)$ I/Os used to visit node v
- $O(\log_B N)$ nodes on path to q_1 or q_2
- For each node v not on path to q₁ or q₂ visited, B points reported in parent(v)

$$\Rightarrow O(\log_B N + T/B)$$

- Insert (x,y) (ignoring insert in base tree rebalancing):
 - Find relevant node u:
 - * Query B^2 -structure to find B points in root corresponding to node u on path to x
 - * If y smaller than y-coordinates of all B points then recursively search in u

- Insert (x, y) in B^2 -structure of v
- If B^2 -structure contains > B points for child u, remove lowest point and insert recursively in u
- Delete: Similarly

- Insert (x,y) (ignoring insert in base tree rebalancing):
 - Find relevant node *u*:
 - * Query B²-structure to find B points in root corresponding to node u on path to x
 - * If y smaller than y-coordinates of all B points then recursively search in u

- Insert (x, y) in B^2 -structure of v
- If B^2 -structure contains > B points for child u, remove lowest point and insert recursively in u
- Delete: Similarly

- Insert (x,y) (ignoring insert in base tree rebalancing):
 - Find relevant node u:
 - * Query B^2 -structure to find B points in root corresponding to node u on path to x
 - * If v smaller than v-coordinates of all Bpoints then recursively search in u

- Insert (x, y) in B^2 -structure of v
- If B^2 -structure contains > B points for child u, remove lowest point and insert recursively in u
- Delete: Similarly

- Insert (x,y) (ignoring insert in base tree rebalancing):
 - Find relevant node u:
 - * Query B^2 -structure to find B points in root corresponding to node u on path to x
 - * If v smaller than v-coordinates of all Bpoints then recursively search in u

- Insert (x, y) in B^2 -structure of v
- If B^2 -structure contains > B points for child u, remove lowest point and insert recursively in u
- Delete: Similarly

- Insert (x,y) (ignoring insert in base tree rebalancing):
 - Find relevant node u:
 - * Query B^2 -structure to find B points in root corresponding to node u on path to x
 - * If v smaller than v-coordinates of all Bpoints then recursively search in u

- Insert (x, y) in B^2 -structure of v
- If B^2 -structure contains > B points for child u, remove lowest point and insert recursively in u
- Delete: Similarly

Analysis:

- Update visits $O(\log_B N)$ nodes
- B^2 -structure queried/updated in each node
 - * One query
 - * One insert and one delete

• B^2 -structure analysis:

- Query: $O(\log_B B^2 + B/B) = O(1) \text{ I/Os}$
- Update: O(1) using global rebuilding
 - * Store updates in update block
 - * Rebuild after B updates using $O(B^2/B \log_{M/R} BB^2/B) = O(B)$ I/Os
- $\Rightarrow O(\log_B N)$ update

Dynamic Base Tree

Deletion:

- Delete point as previously
- Delete x-coordinate from base tree using global rebuilding
- $\Rightarrow O(\log_B N) \text{ I/Os}$
- Insertion:
 - Insert x-coordinate in base tree and rebalance (using splits)
 - Insert point as previously
- Split: Boundary in v becomes boundary in parent(v)

Dynamic Base Tree

- Split: When v splits B new points needed in parent(v)
- One point obtained from v'(v'') using bubble-up operation:
 - Find top point p in v'
 - Insert p in B^2 -structure
 - Remove p from B^2 -structure of v'
 - Recursively bubble-up point to v'
 - $\Rightarrow O(\log_B N) \text{ I/Os}$
- Bubble-up in $O(\log_B w(v))$ I/Os
 - Follow one path from v to leaf
 - Uses O(1) I/O in each node
 - \Rightarrow Split in $O(B\log_B w(v)) = O(w(v))$ I/Os

Dynamic Base Tree

- O(1) amortized split cost:
 - Cost: O(w(v))
 - Weight balanced base tree: $\Omega(w(v))$ inserts below v between splits

 \Downarrow

- External Priority Search Tree
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Update: $O(\log_B N)$ I/Os amortized

Summary/Conclusion: Range Search

- We have now discussed structures for special cases of two-dimensional range searching
 - Space: O(N/B)
 - Query: $O(\log_B N + T/B)$
 - Updates: $O(\log_B N)$

- Cannot be obtained for general (4-sided) 2d range searching:
- $O(\log_B^c N)$ query requires $\Omega(\frac{N}{B} \frac{\log_B N}{\log_B \log_B N})$ space
- O(N/B) space requires $\Omega(\sqrt{N/B})$ query

