- 1. Determine the number of iterations necessary to solve $f(x) = x^3 + x 2 = 0$ with accuracy 10^{-3} using bisection method starting with $a_1 = 0$ and $b_1 = 3$.
- 2. Consider the function $g(x) = e^{-x} + \frac{x}{2}$, $x \in \mathbb{R}$. Show that g has a fixed point $\alpha > 0$ and for x_0 sufficiently close to α , the sequence $\{x_n\}_{n\geq 1}$ of fixed point iteration $x_n = g(x_{n-1})$ converges to α .
- 3. A sequence $\{x_n\}_{n=0}^{\infty}$ is said to be a Cauchy sequence, if for every $\epsilon > 0$, there is a positive integer N such that

$$|x_m - x_n| < \epsilon, \quad \forall \ m, n \ge N.$$

A function $g:[a,b] \to \mathbb{R}$ is said to be a contraction if there is some 0 < k < 1 such that

$$|g(x) - g(y)| \le k|x - y|, \quad \forall \ x, y \in [a, b].$$

Problem: Suppose that $g:[a,b] \to [a,b]$ is a contraction and for any $x_0 \in [a,b]$, let the sequence $\{x_n\}_{n\geq 1}$ be generated by $x_n = g(x_{n-1}), (n\geq 1)$. Show that $\{x_n\}$ is a Cauchy sequence. Further, show that $\{x_n\}$ converges to the fixed point of g in [a,b].

- 4. Let x_0, x_1, \ldots, x_n be (n+1) distinct points in \mathbb{R} and $L_{n,k}(x)$, $0 \leq k \leq n$, be the Lagrange polynomials of degree less than or equal to n satisfying $L_{n,k}(x_j) = \delta_{jk}$ for $0 \leq j, k \leq n$, where $\delta_{jk} = 1$ if j = k and $\delta_{jk} = 0$ if $j \neq k$. Show that $\{L_{n,k}(x)\}_{k=0}^n$ forms a basis for the real linear space \mathcal{P}_n consisting of all polynomials of degree less than or equal to n (show that they are linearly independent and span \mathcal{P}_n). Furthermore show that $\sum_{k=0}^n L_{n,k}(x) = 1$ for all x.
- 5. Consider the data points (x_i, y_i) , $0 \le i \le 3$ given by $(0,0), (1,1), (2,\alpha), (3,1)$. Let $p_3(x)$ be the interpolating polynomial of degree less than or equal to 3 interpolating this data. If $p_3(1.5) = 2$, then find α and justify.
- 6. Let $p_3(x)$ be the interpolating polynomial of degree less than or equal to 3 interpolating the data $(x_i, f(x_i)), 1 \le i \le 4$, where

If $f^{(4)}(x) = 1$ (fourth order derivative of f) for all x, then find f(x) and the error $|P_3(1.5) - f(1.5)|$.

7. Assume that f, f', f'' are continuous in the interval $[\alpha - 1, \alpha + 1]$, $f(\alpha) = 0$ and $f'(\alpha) \neq 0$. Then for x_0 sufficiently close to α , the sequence $\{x_n\}$ $(n \geq 1)$ generated by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n \ge 0,$$

converges to α . Moreover show that

$$\lim_{n\to\infty}\frac{|\alpha-x_{n+1}|}{|\alpha-x_n|^2}=\frac{|f''(\alpha)|}{2|f'(\alpha)|}.$$