External

Registers

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

The ID AA64ISAR0 EL1 characteristics are:

Purpose

Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configuration

There are no configuration notes.

Attributes

ID AA64ISAR0 EL1 is a 64-bit register.

Field descriptions

63 62 61 60	59 58 57 56	55 54 53 52	51 50 49 48	47 46 45 44	43 42 41 40	39 38 37 36	35 34 33 32
RNDR	TLB	TS	FHM	DP	SM4	SM3	SHA3
RDM	TME	Atomic	CRC32	SHA2	SHA1	AES	RES0
31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0

RNDR, bits [63:60]

Indicates support for Random Number instructions in AArch64 state.

When FEAT_RNG_TRAP is implemented, the value returned by a direct read of ID_AA64ISAR0_EL1.RNDR is further controlled by the value of <u>SCR_EL3</u>.TRNDR.

Defined values are:

RNDR	Meaning
0b0000	No Random Number
	instructions are implemented.
0b0001	RNDR and RNDRRS registers
	are implemented.

All other values are reserved.

FEAT_RNG implements the functionality identified by the value 0b0001.

From Armv8.5, the permitted values are 0b0000 and 0b0001.

TLB, bits [59:56]

Indicates support for Outer Shareable and TLB range maintenance instructions. Defined values are:

TLB	Meaning
0b0000	Outer Shareable and TLB range
	maintenance instructions are
	not implemented.
0b0001	Outer Shareable TLB
	maintenance instructions are
	implemented.
0b0010	Outer Shareable and TLB range
	maintenance instructions are
	implemented.

All other values are reserved.

FEAT_TLBIOS implements the functionality identified by the values 0b0001 and 0b0010.

FEAT_TLBIRANGE implements the functionality identified by the value <code>0b0010</code>.

From Armv8.4, the only permitted value is 0b0010.

TS, bits [55:52]

Indicates support for flag manipulation instructions. Defined values are:

TS	Meaning
0b0000	No flag manipulation
	instructions are implemented.
0b0001	CFINV, RMIF, SETF16, and
	SETF8 instructions are
	implemented.
0b0010	CFINV, RMIF, SETF16, SETF8,
	AXFLAG, and XAFLAG
	instructions are implemented.

All other values are reserved.

FEAT_FlagM implements the functionality identified by the value 0b0001.

FEAT_FlagM2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

In Armv8.4, the only permitted value is 0b0001.

From Armv8.5, the only permitted value is 0b0010.

FHM, bits [51:48]

Indicates support for FMLAL and FMLSL instructions. Defined values are:

FHM	Meaning
000000	FMLAL and FMLSL instructions
	are not implemented.
0b0001	FMLAL and FMLSL instructions
	are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]

Indicates support for Dot Product instructions in AArch64 state. Defined values are:

DP	Meaning
0b0000	No Dot Product instructions
	implemented.
0b0001	UDOT and SDOT instructions
	implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

SM4, bits [43:40]

Indicates support for SM4 instructions in AArch64 state. Defined values are:

SM4	Meaning	
-----	---------	--

0b0000	No SM4 instructions	
	implemented.	
0b0001	SM4E and SM4EKEY	
	instructions implemented.	

All other values are reserved.

If FEAT_SM4 is not implemented, the value <code>0b0001</code> is reserved.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID AA64ISAR0 EL1.SM3.

SM3, bits [39:36]

Indicates support for SM3 instructions in AArch64 state. Defined values are:

SM3	Meaning
0b0000	No SM3 instructions
	implemented.
0b0001	SM3SS1, SM3TT1A, SM3TT1B,
	SM3TT2A, SM3TT2B,
	SM3PARTW1, and SM3PARTW2
	instructions implemented.

All other values are reserved.

If FEAT SM3 is not implemented, the value <code>0b0001</code> is reserved.

FEAT_SM3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID AA64ISAR0 EL1.SM4.

SHA3, bits [35:32]

Indicates support for SHA3 instructions in AArch64 state. Defined values are:

SHA3	Meaning
000000	No SHA3 instructions
	implemented.
0b0001	EOR3, RAX1, XAR, and BCAX
	instructions implemented.

All other values are reserved.

If FEAT SHA3 is not implemented, the value <code>0b0001</code> is reserved.

FEAT_SHA3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0001, ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values are:

RDM	Meaning
0b0000	No RDMA instructions
	implemented.
0b0001	SQRDMLAH and SQRDMLSH
	instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

TME, bits [27:24]

Indicates support for TME instructions. Defined values are:

TME	Meaning
0b0000	TME instructions are not
	implemented.
0b0001	TCANCEL, TCOMMIT, TSTART,
	and TTEST instructions are
	implemented.

All other values are reserved.

Accessing this field has the following behavior:

- Access is **RAZ/WI** if all of the following are true:
 - PSTATE.EL IN {EL2, EL1}
 - \circ SCR EL3.TME == 0
- Access is **RAZ/WI** if all of the following are true:
 - ∘ PSTATE.EL == EL1
 - EL2Enabled()
 - \circ HCR EL2.TME == 0

• Otherwise, access to this field is **RO**.

Atomic, bits [23:20]

Indicates support for Atomic instructions in AArch64 state. Defined values are:

Atomic Meaning		Applies when	
0000d0	No Atomic instructions		
	implemented.		
0b0010	LDADD,		
	LDCLR,		
	LDEOR,		
	LDSET,		
	LDSMAX,		
	LDSMIN,		
	LDUMAX,		
	LDUMIN,		
	CAS, CASP,		
	and SWP		
	instructions		
	implemented.	T 4 7 1	
0b0011	As for	When	
	0b0010, plus	FEAT_LSE128	
	128-bit	is	
	instructions	implemented	
	LDCLRP,		
	LDSETP and		
	SWPP.		

All other values are reserved.

FEAT_LSE implements the functionality identified by the value 0b0010.

FEAT_LSE128 implements the functionality identified by the value 0b0011.

From Armv8.1, the value 0b0000 is not permitted.

CRC32, bits [19:16]

Indicates support for CRC32 instructions in AArch64 state. Defined values are:

CRC32	Meaning
0b0000	CRC32 instructions are not
	implemented.

0b0001	CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH,
	CRC32CW, and CRC32CX
	instructions are implemented.

All other values are reserved.

FEAT_CRC32 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates support for SHA2 instructions in AArch64 state. Defined values are:

SHA2	Meaning	
000000	No SHA2 instructions implemented.	
0b0001	Implements instructions: SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.	
0b0010	Implements instructions:	
 SHA256H, SHA256H2, SHA256SU0, and SHA256SU1. SHA512H, SHA512H2, SHA512SU0, and SHA512SU1. 		

All other values are reserved.

FEAT_SHA256 implements the functionality identified by the value 0b0001.

FEAT_SHA512 implements the functionality identified by the value 0b0010.

In Armv8, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0010, ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.

SHA1, bits [11:8]

Indicates support for SHA1 instructions in AArch64 state. Defined values are:

SHA1	Meaning
000000	No SHA1 instructions
	implemented.
0b0001	SHA1C, SHA1P, SHA1M,
	SHA1H, SHA1SU0, and
	SHA1SU1 instructions
	implemented.

All other values are reserved.

FEAT_SHA1 implements the functionality identified by the value 0b0001.

From Armv8, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, this field must have the value 0b0000.

AES, bits [7:4]

Indicates support for AES instructions in AArch64 state. Defined values are:

AES	Meaning	
000000	No AES instructions	
	implemented.	
0b0001	AESE, AESD, AESMC, and	
	AESIMC instructions	
	implemented.	
0b0010	As for 0b0001, plus PMULL and	
	PMULL2 instructions operating	
	on 64-bit source elements.	

FEAT_AES implements the functionality identified by the value 0b0001.

FEAT_PMULL implements the functionality identified by the value 0b0010.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0010.

Bits [3:0]

Reserved, res0.

Accessing ID_AA64ISAR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID AA64ISAR0 EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0110	0b000

```
if PSTATE.EL == ELO then
    if IsFeatureImplemented(FEAT IDST) then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        X[t, 64] = ID\_AA64ISAR0\_EL1;
elsif PSTATE.EL == EL2 then
   X[t, 64] = ID AA64ISAR0 EL1;
elsif PSTATE.EL == EL3 then
   X[t, 64] = ID\_AA64ISAR0\_EL1;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.