DSC 520-01: High Performance Scientific Computing

Parallelizing Particle Diffusion in 3D Space Using Monte Carlo Simulations

Presented by Trina Xavier (02102403)

Introduction

- Monte Carlo Simulations: Monte Carlo simulation is a numerical method to approximate the behavior of systems governed by stochastic or probabilistic processes, like particle diffusion in 3D space.
- **Diffusion Equation**: The **diffusion equation** is a partial differential equation (PDE) that describes how a quantity, such as heat, particles, or chemicals, spreads over time due to random motion.
- Monte Carlo for PDEs: By sampling probability distributions, Monte Carlo efficiently approximates PDE solutions where analytical methods fail.
- **Practical Applications**: Widely used in engineering, healthcare, and finance, such as optimizing bridge safety, medical imaging, and financial risk assessment.

Project Overview

Objective:

- ✓ Solve the 3D diffusion equation using Monte Carlo simulations.
- ✓ Compare results with the analytical solution to validate accuracy.
- ✓ Leverage GPU acceleration for efficient large-scale simulations.

The Heat Equation

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

Brownian motion

Black-Sholes equations

3D Diffusion Equation

 $\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$ $\nabla^2 T$ "Laplacian"

- Mathematical Formulation: ∂u∂t=D∇2u
- 1) u(x,y,z,t): Concentration at time t and position (x,y,z).
- 2) D: Diffusion coefficient (controls diffusion rate).
- 3) ∇ 2u: Laplacian operator in 3D.
- Analytical Solution for point-source initial condition:
- $u(x,y,z,t)=1(4\pi Dt)3/2\exp(-x2+y2+z24Dt)$

Gaussian-like distribution spreading over time.

Monte Carlo Simulation

- Monte Carlo simulation is **numerically approximating the solution** to the **3D diffusion equation** by simulating the random motion of particles (random walks) over time. This **stochastic method** allows us to model the **physical diffusion process** computationally.
- Represents Diffusion as Random Walks:
- Each particle represents a "unit" of concentration or mass.
- At each time step, the particles take random steps in the x, y, and z directions, with the step size proportional to the square root of two times D times the time step.
- Approximates the Density Distribution:
- ➤ By simulating the movement of a large number of particles, we compute the density at each grid cell by counting the number of particles in that cell
- ➤ This particle-based density distribution serves as an approximation to the solution of the 3D diffusion equation.

Parameter	Value			
Grid Size	101			
Number of Particles	10^7 (10 million)			
Time Steps	1000			
Diffusion Coefficient D	1.0			
Time Step dt	0.1			
Simulation Domain	3D Cartesian Grid			
Computation	GPU-accelerated (CuPy)			

Implementation Details

• **Tools**: Python, CuPy (GPU computations), Matplotlib (visualization)

• **Grid Size**: 101

• Particles: 10⁷ (10 million)

• **Time Steps**: 1000

• **Diffusion Coefficient**: D=1.0

• Platform:

GPU: NVIDIA Tesla T4 (Google Colab)

CPU: Intel i5-1135G7 (2.42 GHz, 4 cores)

Platform	Execution Mode	Details
CPU (Intel i5-1135G7)	Serial	Single-thread execution with Python.
	Parallel (Threads)	Multi-threading in Python (multi-processing, threading).
GPU (NVIDIA Tesla T4)	Serial	Single CUDA thread processes particle diffusion.
	Parallel (CuPy)	Thousands of CUDA threads accelerate diffusion.

Parallelization for Speedup and Accuracy in Monte Carlo Simulation

Parallelization was implemented for **speedup** and improved **accuracy** when dealing with large-scale stochastic processes:

1.CPU Parallelization:

- •Used Python's multiprocessing library to split the total workload (particles) across multiple CPU cores.
- •Each core independently simulated a subset of particles performing **random walks**, reducing execution time compared to a sequential approach.

2.GPU Parallelization:

- •Leveraged the **CuPy library** to perform parallel computations on thousands of GPU threads.
- •Particle positions were updated simultaneously using **vectorized operations**, eliminating sequential loops.

Solving the 3D Diffusion Equation on CPU

Execution Time:

- Serial Execution: 1080.75 seconds
- Parallel Execution: 869.95 seconds

Parallelization Benefits:

•CPU parallelization reduced simulation time by 24%.

Limitations:

•Speedup is limited on CPUs for largescale simulations.

Mean Squared Error (Monte Carlo vs Analytical) - Parallel: 5.8892279379471064e-12

GPU Execution – Overview

•Normalization:

•Analytical Solution: **0.9989**

•Monte Carlo Solution (Parallel GPU): 1.000

•Mean Squared Error (MSE):

•Parallel GPU: 5.88×10^-12

	Monte Carlo Simu	lation (GPU)	16	≘−5				Analytica	l Solution		1e-	-5
100 -				- 6	10	00 -						- 2.00
80 -				- 5	8	30 -						- 1.75
60 -				- 4 . <u>.</u> 22	ϵ	50 -						- 1.50 - 1.25
40 -				ω Density	4	10 -						- 1.25 - Densit
20 -				- 2	-	20 -						- 0.75 - 0.50
				- 1								- 0.25
0 1	20 40	60 80	100	0		0 -	20	40	60	80	100	

Execution Type	Execution Time	Speedup
Serial GPU Execution	218.79 seconds	Reference
Parallel GPU Execution	22.35 seconds	9.8x

Results:

Execution Mode	Time (seconds)	Speedup
Serial CPU	1080.75	1.0x
Parallel CPU	869.95	1.24x
Serial GPU	218.79	4.9x
Parallel GPU	22.35	49x

Accuracy Validation:-

Normalization:

•Analytical Solution: **0.9989**

Monte Carlo Solution (GPU): 0.9999

Mean Squared Error (MSE):

•Serial Execution: 5.89×10^{-12}

•Parallel GPU: 5.88× 10^{-12}

Inference:

•The Monte Carlo approximation closely matches the analytical solution, confirming its accuracy.

Results:

Speedup Comparison:

GPU Parallelization achieves a ~49x speedup over Serial CPU, demonstrating exceptional computational efficiency.

Efficiency Comparison:

Parallel GPU execution achieves the highest efficiency, demonstrating its ability to utilize thousands of threads for massive parallelism

Future Scope and Potential Improvements

Scalability:

Increase the number of particles (e.g., 10^8) and expand grid resolution for higher precision.

Complex Geometries:

Simulate diffusion in irregular or constrained domains (e.g., porous materials, biological tissues).

Optimization:

Improve GPU performance using advanced techniques like **CuPy JIT kernels** or **mixed precision computing**.

Comparative Methods:

Compare Monte Carlo results with **finite difference** or **finite element methods** to analyze efficiency and accuracy.

Conclusion

- Successfully solved the 3D particle diffusion equation using Monte Carlo simulations to approximate the solution.
- Reduced simulation time from over 1000 seconds on a serial CPU to under 25 seconds on a GPU, demonstrating computational feasibility.
- Monte Carlo methods effectively simulate **particle motion** governed by the diffusion equation, especially where analytical solutions are complex or impractical.
- The method can be extended to model **complex geometries**, higher-dimensional systems, or real-world applications like **pollutant dispersion** and **biological transport**

References:

- Overview and derivation of the diffusion equation: <u>Diffusion Equation Wikipedia</u>
- Introduction to Monte Carlo methods for partial differential equations: Monte Carlo Method Wikipedia
- Documentation and tutorials for GPU-accelerated libraries: <u>CuPy Official Documentation</u>
- Multiprocessing module for CPU parallelization: <u>Python Multiprocessing Official Documentation</u>
- Gaussian solution for the 3D diffusion equation: <u>Gaussian Function Properties and Applications</u>
- A practical guide to solving PDEs with Python: <u>Solving PDEs with Python Practical Overview</u>
- Applications of Monte Carlo methods in scientific computing: <u>Monte Carlo Simulations in Science -</u> ResearchGate

Thank You!