1. 주제

유기묘 입양 장려와 인식개선을 위함 홈페이지와 보조 ai 제작

가반, 7번, [(20213056_강민정),(20213076_서하원),(20213077_안세현),(20213081_윤채원)]

2. 요약

-기존의 웹페이지에서의 불편함을 개선한 웹페이지 디자인과, 보조 ai 제작하여 이를 통해 유기묘 입양을 장려하고 더 나아가 유기묘 인식을 개선하기 위해 전반적인 웹페이지를 디자인할 것입니다.

-내부 ai를 사용해 사이트 이용자를 돕고 유기 적으로 웹페이지를 디자인하여 한사이트 안에 서 모든 것이 해결될 수 있게끔 할 것입니다.

-이를 통해 유기묘 구조 이후 등록과 유기묘 입양을 장려하고, 유기 방지 등과 같은 효과를 기대합니다.

3. 대표 그림

양육

그림 1. 레리 사용화면

입양

그림.2 입양 페이지

4. 서론

유기묘를 기르고 유기묘 입양을 권하는 사람으로써 기존의 유기묘 입양, 등록 홈페이지가 지나치게 복잡하고, 불편하고, 부족하다는 생각을 하게 되었기 때문에 사용자가 사용하기 쉽고, 유용한 웹페이지를 만들고 싶었습니다. 기존의 사이트를 직접 사용 + 분석해본 결과 한 페이지 안에 지나치게 많은 정보량이 포함되어 있고, 작은 폰트, 필요한 정보의 부제 등이 사용자가 웹페이지를 사용할 때 불편하다고 느끼게끔 한다고 생각했습니다. 그 때문에 저희는 ai를 내재하여 사용자의 이용을 돕고 사진 자료를 많이 활용하여 한 페이지당 사용하는 폰트의 수를 줄일 것입니다. 또한 위키백과와 같은 페이지를 만들어 정보를 제공하고 커뮤니티를 만들어 묘주들간의 정보공유도 장려할 것입니다.

5. 본론

<그림4. AI 레리 구상도>

저희 웹페이지에서 가장 핵심은 단연 자체 AI(이하 레리)입니다. 레리는 객체 인식 AI로 딥러닝과 머신러닝을 함께 사용하여 학습될 예정입니다. 레리를 통해 사용자가 구조한 고양이 혹은 반려묘 사진을 찍어서 업로드 했을 때 필수 정보와, 질병정보 등을 기재할 예정입니다. 머신러닝으로 이미지를 학습시키기 위해 CNN(Convolution Neural Network) 과 YOLO(You Only Look Once) 라이브러리를 함께 사용할 예정입니다. 또한 시중에 사용중인 객체인식 AI에서 발견되는 문제점인 고양이와 다른 야생동물 구분 오류를 YOLO라이브러리 지도학습자료에서 세세한 레이블링된 데이터들을 통해 해결할 수 있다고 가정했습니다.

실력이 미숙하여 AI 구현에는 실패했지만 논문과 서적을 통해 연구해본 AI구현 예상도는 아라그림과 같습니다.

6. 결론

강민정 - 팀장, 발표, 웹페이지 프론트엔드 디자인(보조프로그램(어도비 XD) 사용), 주제선정, 웹페이지에 들어갈 정보들 조사, 깃허브 관리, 보고서 작성

서하원 - AI 구현위한 논문 조사, 정리, 백엔드 코딩, doker코딩

안세현 – ppt 제작, 백엔드 코딩, doker코딩, AI 구현위한 논문 조사 출처 변환

윤채원 - 백엔드 코딩, doker코딩, AI 구현위한 논문 조사

가장 아쉬운 점으로 꼽자면 미숙한 실력으로 인한 레리의 구현 실패입니다. 향후 딥러닝과 머신러닝, 그리고 외부 라이브러리 사용법을 더 숙지한 뒤 다시한번 구현해 보고싶습니다.

7. 출처

- [1] "YOLO 기반 표정 인식기를 활용한 내담자의 감정 분석 및 상담 효율성 판단(윤경섭, 김민지)(2021)"
- [2] 딥러닝 객체 탐지 기술을 사용한 스마트 쇼핑카트의 구현(오진선, 천인국)(2020)
- [3] 머신러닝을 이용한 표정분류(이현규, 강한솔, 장경선)(2018)