<u>Fiche1 - Exercices – Intervalles et</u> <u>Ensembles</u>

Exercice 1 — Intervalles

On considère les intervalles suivants :

 $A = [2; +\infty[; B =]-\infty; 3] ; C = [-5; 4]$

- 1. A ∩ C = ...
- 2. B U C = ...
- 3. B ∩ C = ...
- $4. B \cup A = ...$
- 5. A ∪ C = ...
- 6. B \cap A = ...

Exercice 2 — Intervalles

Compléter avec ∈ ou ∉ :

- 1. √2 ...]–5 ; 1[
- 2. √3 ...]1.7 ; 5]
- 3. 4,999 ... [4;5]
- 4. 100,01 ... [10⁻²; 10²]
- $5. \pi ...]0; 3.14[$
- 6. −5 ...]−5 ; 1[∪]1 ; 10]

Exercice 3 — Intervalles

On considère:

$$A =]-\infty$$
; 3]; $B =]-5$; 4]; $C = [2; +\infty[$

- 1. $A \cap B = ...$
- 2. C ∩ B = ...
- 3. A ∪ B = ...
- 4. C ∪ B = ...

Exercice 4 — Intervalles

1.
$$]-\infty$$
; 8] \cup]-3; 10] = ...

2.
$$]-\infty$$
; 8] \cap]-3; 10] = ...

3.]
$$-\infty$$
; 8] \cup [1; $+\infty$ [= ...

4.]
$$-\infty$$
; 8] \cap [1; + ∞ [= ...

5.
$$A = \{ x \in \mathbb{R} \mid x > 2 \text{ et } x \le 5 \} = \dots$$

6. B =
$$\{ x \in \mathbb{R} \mid x < 0 \text{ et } x \ge -5 \} = \dots$$

Exercice 5 — Intervalles

Déterminer l'ensemble le plus petit contenant chaque nombre :

Nombre	Ensemble
-3	
-1,5	
1/5	
-3/7	
2π	
√2	
0	
15/45	
7	
2,658369574	
-12	

Exercice 6 (*) — Décimal ou pas ?

On suppose que $\sqrt{2}$ est un nombre décimal. Cela signifierait que son carré se termine par 2.

- 1. Montrer que cette hypothèse conduit à une contradiction, et en déduire que $\sqrt{2}$ n'est pas un nombre décimal.
- 2. Peut-on utiliser ce raisonnement pour montrer que √5 n'est pas un nombre décimal ? Justifier.

Exercice 7 (*) — Affirmations

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse, en justifiant la réponse.

1.
$$A = \frac{\frac{1}{2} - 2}{\frac{1}{8}}$$

Le nombre A est un entier relatif.

- 2. Le quotient de deux nombres irrationnels est toujours un irrationnel.
- 3. Le produit de deux nombres décimaux est toujours un nombre décimal.

Corrigés

Corrigé – Exercice 1

- 1. $A \cap C = [2; 4]$
- 2. B \cup C =]- ∞ ; 4]
- 3. B \cap C =]-5; 3]
- 4. B \cup A = \mathbb{R}
- 5. A ∪ C =]-5; + ∞ [
- 6. B \cap A = [2; 3]

Corrigé – Exercice 2

- 1. √2 ∉]−5 ; 1[**×** 2. √3 ∈]1.7 ; 5] **∨**

- 3. 4,999 ∈ [4 ; 5[☑
- 4. $100,01 \notin [10^{-2}; 10^{2}] \times$
- 5. π ∉]0 ; 3.14[**×**
- 6. -5 ∉]-5 ; 1[∪]1 ; 10] 🗶

Corrigé – Exercice 3

- 1. $A \cap B =]-5$; 3]
- 2. $C \cap B = [2; 4]$
- 3. $A \cup B =]-5$; 4]
- 4. C ∪ B =]-5; +∞[

Corrigé – Exercice 4

- 1.]-∞;10]
- 2.]-3;8]
- 3. ℝ
- 4. [1;8]
- 5. A =]2; 5]
- 6. B = [-5; 0[

Corrigé – Exercice 5

Nombre	Ensemble
-3	\mathbb{Z}
-1,5	D

1/5	D
-3/7	Q
2π	\mathbb{R}
√2	\mathbb{R}
0	N
15/45	N
7	N
2,658369574	D
-12	\mathbb{Z}

Corrigé – Exercice 6

- 1. Un carré de nombre décimal ne peut pas se terminer par 2 \rightarrow contradiction. Donc $\sqrt{2}$ n'est pas décimal.
- 2. Le raisonnement ne s'applique pas à $\sqrt{5}$ car 5 est un chiffre carré possible. On ne peut pas conclure.

Corrigé – Exercice 7

1.
$$A=rac{rac{1}{2}-2}{rac{1}{8}}=rac{-rac{3}{2}}{rac{1}{8}}=-rac{3}{2} imes 8=-12$$

- $lue{}$ Donc A=-12, un entier relatif.
- ✓ Vrai
- 2. Exemple : $\dfrac{\sqrt{2}}{\sqrt{2}}=1$

Deux irrationnels peuvent donner un rationnel.

X Faux

3. Soient $A=rac{a}{10^m}$ et $B=rac{b}{10^n}$, deux nombres décimaux, avec $a,b\in\mathbb{Z}$ et $m,n\in\mathbb{N}$.

Alors:

$$A imes B = rac{a}{10^m} imes rac{b}{10^n} = rac{ab}{10^{m+n}}$$

avec $ab \in \mathbb{Z}$ et $m+n \in \mathbb{N}$.

Donc $A \times B$ est bien un nombre décimal.

Vrai