Privacy Proofs for OpenDP: Lipschitz Sized Variance for Proportion CI (for Partitioned Data)

Summer 2022

Contents

1	Algorithm Implementation	1
	1.1 Code in Rust	1
	1.2 Pseudo Code in Python	
2	Proof	2

1 Algorithm Implementation

1.1 Code in Rust

The current OpenDP library contains the make_lipschitz_sized_proportion_ci_variance function estimating the variance of the overall sample proportion for partitioned data. This is defined in the Git repository https://github.com/opendp/opendp/blob/e9a8ce533a900a6561c0ea3be6berust/src/trans/proportion_ci/mod.rs#L184-L263

1.2 Pseudo Code in Python

Preconditions

To ensure the correctness of the output, we require the following preconditions:

- User-specified types:
 - Variable sample_sizes must be of type Vec<usize>.
 - Variable strat_sizes must be of type Vec<usize>.
 - Variable mean_scale must be of type TA.
 - TA: must be of type float.

Postconditions

• A transformation is returned (i.e., if a transformation cannot be returned successfully, then an error should be returned).

Pseudo Code

```
1 def make_lipschitz_sized_proportion_ci_variance(sample_sizes, strat_sizes,
      mean_scale):
      :param strat_sizes: the population size of each stratum
3
      :param sample_sizes: sample sizes in each stratum
4
      :param mean_scale: scale of Gaussian noise added to mean','
      input_domain = ProductDomain < AllDomain < TA>>
6
      output_domain = AllDomain <TA>
      strat_weights = strat_sizes / sum(strat_sizes)
      def function(sample_sums:Vec<TA>) -> TA:
9
          strat_means = sample_sums / sample_sizes
10
          strat_var = (strat_sizes - sample_sizes) / strat_sizes *
          (strat_means * (1 - strat_means)) / (sample_sizes - 1)
          return sum(strat_weights ** 2 * strat_var) + mean_scale ** 2
      input_metric = ProductMetric < AbsoluteDistance < TA >>
14
15
      output_metric = AbsoluteDistance <TA>
16
      def stability_map(d_in: AbsoluteDistance <TA>) -> TA:
          sens = max(strat_weights ** 2 * (strat_sizes - sample_sizes) /
          strat_sizes / (sample_sizes - 1) / sample_sizes
          return d_in * sens
19
20
      return Transformation(input_domain, output_domain, function,
21
      input_metric, output_metric, stability_map)
```

2 Proof

Theorem 2.1. For every setting of the input parameter sample_sizes, strat_sizes, mean_scale to make_lipschitz_sized_proportion_ci_variance such that the given preconditions hold, make_lipschitz_sized_proportion_ci_variance raises an exception (at compile time or runtime) or returns a valid transformation with the following properties:

- 1. (Appropriate output domain). For every vector v in the input domain, function(v) is in the output domain.
- 2. (Domain-metric compatibility). The domain input_domain matches one of the possible domains listed in the definition of input_metric, and likewise output_domain matches one of the possible domains listed in the definition of output_metric.
- 3. (Stability guarantee). For every pair of elements v, w in input_domain and for any d_i in, where d_i in has the associated type for input_metric, if v, w are d_i in-close under input_metric, then function(v), function(w) are stability_map(d_i in)-close under output_metric.

Proof.

1. (Appropriate output domain). Since strat_sizes, sample_sizes and sample_sums are all of type Vec<TA>, we know that strat_weights, strat_means and strat_vars are also of type Vec<TA> from the calculation on lines 7, 12 and 13. The function returns a sum of a vector of type Vec<TA>, then the sum will be of type TA. That is, the output is in the output domain AllDomain<TA>.

2. (Domain-metric compatibility). The input domain of make_lipschitz_sized_proportion_ci_variance is ProductDomain of AllDomain<TA> and the input metric is ProductMetric of AbsoluteDistance<TA>. Each component of the input is in AllDomain<TA>. Since AllDomain<TA> matches one of the possible domains listed in the definition of AbsoluteDistance, the input domain is compatible with the input metric.

Also, it follows directly that the output domain (AllDomain<TA>) is compatible with the output metric (AbsoluteDistance<TA>).

3. (Stability guarantee.) Let Abs stand for AbsoluteDistance. If v, w are d_inclose, then by the definition 1,

$$d_{\mathtt{PM},\mathtt{Abs}}(v,w) = \sum_{i} d_{\mathtt{Abs}}(v_i,w_i) \leq \mathtt{d}_{\mathtt{-in}}.$$

Let f denote the function in make_lipschitz_sized_proportion_ci_variance. For ease of notation, let N_i , c_i and n_i denote the ith element of strat_sizes, strat_weights and sample_sizes, respectively. Note that the sample sum should satisfy $0 \le v_i \le n_i$ and $0 \le w_i \le n_i$, then

$$\left|1 - \frac{v_i + w_i}{n_i}\right| \le 1. \tag{1}$$

Then

$$\begin{split} d_{\mathtt{Abs}}(f(v),f(w)) &= \left| \sum_{i} c_{i}^{2} \cdot \frac{N_{i} - n_{i}}{N_{i}(n_{i} - 1)} \cdot \frac{v_{i}}{n_{i}} \left(1 - \frac{v_{i}}{n_{i}} \right) - \sum_{i} c_{i}^{2} \cdot \frac{N_{i} - n_{i}}{N_{i}(n_{i} - 1)} \cdot \frac{w_{i}}{n_{i}} \left(1 - \frac{w_{i}}{n_{i}} \right) \right| \\ &= \sum_{i} c_{i}^{2} \cdot \frac{N_{i} - n_{i}}{N_{i}(n_{i} - 1)} \cdot \left| \frac{v_{i}}{n_{i}} \left(1 - \frac{v_{i}}{n_{i}} \right) - \frac{w_{i}}{n_{i}} \left(1 - \frac{w_{i}}{n_{i}} \right) \right| \\ &= \sum_{i} c_{i}^{2} \cdot \frac{N_{i} - n_{i}}{N_{i}(n_{i} - 1)} \cdot \left| \frac{v_{i} - w_{i}}{n_{i}} \left(1 - \frac{v_{i} + w_{i}}{n_{i}} \right) \right| \\ &= \sum_{i} c_{i}^{2} \cdot \frac{N_{i} - n_{i}}{N_{i}(n_{i} - 1)} \cdot \left| \frac{v_{i} - w_{i}}{n_{i}} \right| \\ &= \sum_{i} c_{i}^{2} \cdot \frac{N_{i} - n_{i}}{N_{i}(n_{i} - 1)n_{i}} \cdot d_{\mathtt{Abs}}(v_{i}, w_{i}) \\ &\leq \max_{i} \frac{c_{i}^{2}(N_{i} - n_{i})}{N_{i}(n_{i} - 1)n_{i}} \cdot \Delta_{\mathtt{Abs}}(v_{i}, w_{i}) \\ &\leq \max_{i} \frac{c_{i}^{2}(N_{i} - n_{i})}{N_{i}(n_{i} - 1)n_{i}} \cdot \mathtt{d}_{\mathtt{-in}}. \end{split}$$

That is, f(v) and f(w) are stability_map(d_in)-close.

Definition 1 (Distance under ProductMetric). Let $d_{PM,M}$ denote the distance under ProductMetric(M) where M is a valid metric. Then $d_{PM,M}$ is defined as the sum of distance under each M. Specifically, for any v, w in the input domain and v_i , w_i denote their ith entry, respectively,

3

(i) for input metric MI,

$$d_{\mathit{PM},\mathit{MI}}(v,w) = \sum_i d_{\mathit{MI}}(v_i,w_i).$$

(ii) for output metric MO,

$$d_{\mathit{PM},\mathit{MO}}(g(v),g(w)) = \sum_i d_{\mathit{MO}}(f_i(v_i),f_i(w_i)),$$

where g and f_i denote the function in their corresponding Transformation.