Understanding the Kronecker Matrix-Vector Complexity of Linear Algebra

Raphael A. Meyer, William Swartworth, David P. Woodruff

Setup

Motivation Part 1: Tensors

Vector	$\overrightarrow{a} \in \mathbb{R}^d$	$[\overrightarrow{a}]_i \in \mathbb{R}$
Matrix	$A \in \mathbb{R}^{d \times d}$	$[A]_{i,j} \in \mathbb{R}$
Tensor	$\mathcal{A} \in (\mathbb{R}^d)^{\otimes n}$	$[\mathcal{A}]_{(i_1,\ldots,i_n)} \in \mathbb{R}$

We will think about linear maps $\mathcal{A}: \left(\mathbb{R}^d\right)^{\otimes n} \to \left(\mathbb{R}^d\right)^{\otimes n}$ Goal: compute trace, spectral norm, etc of the linear map

 \mathcal{A} is linear so we can represent it as a matrix $A \in \mathbb{R}^{d^n \times d^n}$ Formally, $[A]_{(i_1,\ldots,i_n),(j_1,\ldots,j_n)} = \left[\mathcal{A}\vec{e}_{(i_1,\ldots,i_n)}\right]_{(j_1,\ldots,j_n)}$

Motivation Part 2: Matricization

The matrix $A \in \mathbb{R}^{d^n \times d^n}$ is obscenely huge

But we represent the entries of A is a compact format (e.g. tensor network)

So, building $A \in \mathbb{R}^{d^n \times d^n}$ explicitly is expensive Computing *tensor-structured products* with A is cheap though

Matrix-Vector Product

Computing Ax where $x = x_1 \otimes \cdots \otimes x_n$ for $x_i \in \mathbb{R}^d$ Same as \mathcal{AX}

Bilinear Product

Computing x^TAy where $x = x_1 \otimes \cdots \otimes x_n$ for $x_i \in \mathbb{R}^d$ Same as $\langle \mathcal{A}, \mathcal{X} \otimes \mathcal{Y} \rangle$

Query Complexity

Fundamental question:

How many Kronecker matrix-vector products (or bilinear products) to estimate properties of A?

Prior work requires exponentially many products in the worst case. Is this necessary?

In this paper:

Yes, exponentially many queries are needed! 😊

Main Results

Trace Estimation

Estimate tr(A) from few matrix-vector products with PSD A

Find \tilde{t} such that:

$$(1 - \varepsilon) \operatorname{tr}(A) \le \tilde{t} \le (1 + \varepsilon) \operatorname{tr}(A)$$
 w.h.p

Classically, Hutchinson's Estimator uses $\ell = O(\frac{1}{\epsilon^2})$ matvecs

$$\mathbb{E}[x^T A x] = \operatorname{tr}(A) \qquad if \qquad \mathbb{E}[x x^T] = I$$

$$H_{\ell}(A) = \frac{1}{\ell} \sum_{i=1}^{\ell} x^{(i)T} A x^{(i)} \qquad for \qquad x^{(i)} \sim \mathcal{D}$$

[Meyer Avron '23] Take $x = x_1 \otimes \cdots \otimes x_k$ where $x_i \sim \mathcal{D}$

For $\varepsilon = O(1)$,

	$x_i \sim \mathcal{D}$	Worst Case	d = 2	$d = \Omega(k)$
'	$\mathcal{N}(0,I)$	3^k	3^k	3^k
\mathbb{R}^d	$\{\pm 1\}^d$	$\left(3-\frac{2}{d}\right)^k$	2^k	3^k
	Unit Vector	$\left(3-\frac{6}{d+2}\right)^k$	1.5^{k}	3^k
\mathbb{C}^d	$\frac{1}{\sqrt{2}}\mathcal{N}(0,I) + \frac{i}{\sqrt{2}}\mathcal{N}(0,I)$	2^k	2^k	2^k
	$\{\pm 1, \pm i\}^d$	$\left(2-\frac{1}{d}\right)^k$	1.5^{k}	2^k
	${\Bbb C}$ Unit Vector	$\left(2-\frac{2}{d+1}\right)^k$	1.33^{k}	2^k

Kronecker Model sensitive to things we used to not care about*

Distribution choices: Gaussian vs Rademacher vs Unit Vecs

Real versus Complex

Questions:

Are these sensitivities an artifact of Hutchinson? (No!)
Are they fundamental to the Kronecker Matvec Model? (Yes!)

Is $poly(d, k, \frac{1}{\epsilon})$ possible? (No!)

Main Results

Poly(n) dependency is not* possible!

- Cannot estimate tr(A) with less than exp(n) bilinear products
- Cannot estimate $||A||_2$ with less than $\exp(n)$ matrix-vector products
- * See open problem

Subgaussianity does not suffice to understand runtime!

Zero Testing Problem: Determine if A=0 using only Kron-Mat.Vecs.

- 1 MatVec suffices: Let $x = g_1 \otimes \cdots \otimes g_n$ for $g_i \sim \mathcal{N}(0, I)$
- If we force $x_i \in \{\pm 1\}^d$, then $\Theta(2^n)$ matrix-vector products needed

Lower Bounds

Main Observation

Mixed Product Property: $(A \otimes B)(x \otimes y) = Ax \otimes By$

Idea 1: From Kronecker Product to iid Product

If $A = A_1 \otimes \cdots \otimes A_n$ then $x^T A x = \prod_{i=1}^n x_i^T A_i x_i$ The product of iid random variables is very poorly concentrated

Idea 2: Invoke Orthogonality Locally

If $A_i = uu^{\top}$ then $x_i^{\top} A_i x_i = \langle x_i, u_i \rangle^2$ Random vectors are typically orthogonal, so $\langle x_i, u_i \rangle^2 \approx 0$

Overwhelming Orthogonality

We have that $x^{T}Ax = \prod_{i=1}^{n} \langle x_i, u_i \rangle^2 = 0$ if at least one $\langle x_i, u_i \rangle = 0$

Zero Testing (Is the matrix A = 0?)

Sampling $x = x_1 \otimes \cdots \otimes x_k$ for $x_i \sim \mathcal{N}(0, I)$ works with 1 product

Theorem: Any method with $x_i \in \{\pm 1\}^d$ needs $\Omega(2^k)$ matvecs

Let
$$u_i = [\pm 1, \pm 1, 0, 0, \cdots, 0]$$

Then $\langle x_i, u_i \rangle = 0$ with probability $\frac{1}{2}$
Then $x^{\mathsf{T}}Ax = 0$ with probability $1 - \frac{1}{2^n}$, even though $A \neq 0$!

Implication: Sub-Gaussianity does not matter

Planted Matrix Testing

Determine if A = W or $A = W + \lambda u u^T$ from matrix-vector products

Theorem: With mild assumption, any method needs $\Omega(c^k)$ matvecs

Let
$$u = u_1 \otimes \cdots \otimes u_n$$
 where $||u_i|| = \sqrt{d}$ u.a.r.
For any $x = x_1 \otimes \cdots \otimes x_n$, we get $\langle x, u \rangle^2 \approx C^{-n} ||x||$
So $Wx \approx (W + \lambda u u^{\top})x$ for all x

Open Problem

Let
$$X = \begin{bmatrix} x^{(1)} & x^{(2)} & \dots & x^{(\ell)} \end{bmatrix} \in \mathbb{R}^{d^n \times \ell}$$
 where $x^{(i)} = x_1^{(i)} \otimes \dots \otimes x_n^{(i)}$
Let $u = u_1 \otimes \dots \otimes u_n$ where $||u_i|| = \sqrt{d}$ randomly

Then
$$\|\operatorname{proj}_{span(X)} u\| \le C^{-n}$$
 for $\ell \le C^{-n}$ for some $C > 1$