2. Problems in public key

Problems

Easy problems

Generating random elements

Given

- N
- $x \in \mathbb{Z}_N$

find $x^{-1} \in \mathbb{Z}_N$ - Extended euclidean algorithm

Given

- prime p
- $f(x) \in \mathbb{Z}_p[x]$

find $x \in Z_p \ s.t \ f(x) \ \mathrm{mod} \ 0 \ \mathrm{mod} \ p$ - $\mathcal{O}(deg(f))$

Hard problems

We consider a hard problem hard if the probability of all **efficient** adversaries to solve the problem is neglijable

In \mathbb{Z}_p :

Discrete log problem

Let

• g be a generator of \mathbb{Z}_{p}^{*}

Given $x \in \mathbb{Z}_p^*$ find a number r s.t. $x \equiv g^r mod p \iff r \equiv DLog_g(g^r) mod p$

ECDLP

Let

ullet G be a generator point of $E(\mathbb{Z}_p)$

given $P \in E(\mathbb{Z}_p)$ find a number $r \ s.t. \ P = r \cdot G \iff r \equiv DLog_G(r \cdot G)$

Harder than DLP

Diffie-Hellman problem

Let

ullet g be a generator of \mathbb{Z}_p^*

Given $x,y\in\mathbb{Z}_p^*$ where

$$ullet \ x=g^{r_1} \ ext{and} \ y=g^{r_2}.$$

Find
$$z=g^{r_1r_2}$$

In \mathbb{Z}_n :

Problems based on the hardness of factorization

Given n factorize it into primes

Test if an element is QR in \mathbb{Z}_n

Square root in \mathbb{Z}_n (like factoring n).

e 'th roots modulo n when $\gcd(e,\varphi(n))=1$

Solving polynomial equations of degree d>1.

• If factorization is known find roots mod primes and CRT to win

DLP in \mathbb{Z}_n

Diffie hellman problem in \mathbb{Z}_n