آزمون برنامه نويسي سوم شااززز

And his name is John Cenaaaaaa

محدودیت زمانی: ۱ ثانیه محدودیت حافظه: ۲۵۶ مگابایت

. $x_1 = \cdot$ نقطه متمایز در صفحه مختصات تک بعدی داده شده اند. مختصات نقطه ی i ام x_i است و میدانیم $x_1 = x_1$

ما در ابتدا در نقطه ی اول هستیم. در هر مرحله میتوانیم یک واحد به چپ یا راست حرکت کنیم. این حرکات را آنقدر تکرار میکنیم که همه ی نقاط را حداقل یک بار ببینیم (در ثانیه ۰ در نقطه اول هستیم). فرض کنید زمانی که برای اولین بار نقطه ی t_i ما را دیده ایم t_i باشد (۰ = ۱۰)، وظیفه ی شما این است که این حرکات را طوری برنامه ریزی کنید که فرض کنید زمانی که برای اولین بار نقطه ی t_i ما را دیده ایم t_i باشد (۰ = ۱۰)، وظیفه ی شما این است که این حرکات را طوری برنامه ریزی کنید که

کمینه شود. $\sum_{i=1}^{n+1} t_i$

ورودى

- در سطر اول ورودی عدد طبیعی n آمده است.
- در هر کدام از n سطر بعد مختصات یک نقطه (از بین نقاط γ تا γ آمده است.
 - $1 \le n \le 1 \cdots \bullet$
 - $Y \leq i \leq n+1$ برای $-\Delta \times 1 \cdot \Delta \leq x_i \leq \Delta \times 1 \cdot \Delta, x_i \neq \Delta$

در تنها سطر خروجی جواب (کمینه t_i) را چاپ کنید.

زير مساله ها

- \bullet زيرمسئله اول (۳۵ نمره): ۹ $\leq n \leq 1$
- \bullet زیرمسئله دوم (۱۵ نمره): ۲۳
- \bullet زیرمسئله سوم (۲۸ نمره): ۵۱۰ $= n \leq n$
- زيرمسئله چهارم (۲۲ نمره): بدون محدوديت اضافي

ورودی و خروجی نمونه

stdout
50

شرح ورودی و خروجی نمونه

یکی از راهکار های بهینه این است که نقاط را به این ترتیب ببینیم (اولی در ثانیه ۱ است):