Artificial Immune Systems Clonal Selection Algorithm

Magdalena Jeczeń

- 1 Artificial immune systems wprowadzenie
- 2 Selekcja klonalna
- 3 Clonal Selection Algorithm schemat
- Przykłady
- 5 Inne rodzaje algorytmów opartych na selekcji klonalnej

- 1 Artificial immune systems wprowadzenie
- 2 Selekcja klonalna
- Clonal Selection Algorithm schemat
- 4 Przykłady
- Inne rodzaje algorytmów opartych na selekcji klonalnej

Algorytmy AIS

Artificial Immune Systems

Algorytmy ewolucyjne oparte na systemie odpornościowym.

Cechy systemu odpornościowego, które sprawiają, że jest ciekawą bazą dla algorytmów:

- Rozpoznawalność
- Pamięć
- Różnorodność
- Zdecentralizowany mechanizm kontroli

- Artificial immune systems wprowadzenie
- Selekcja klonalna
- 3 Clonal Selection Algorithm schemat
- 4 Przykłady
- Inne rodzaje algorytmów opartych na selekcji klonalnej

Przydatne pojęcia

Antygen (eng: Antygen)

Obca, szkodliwa dla organizmu substancja.

Przeciwciało (eng: Antybody)

Białko przeznaczone do walki z antygenem.

Limfocyt B

Komórka układu odpornościowego odpowiedzialna za wytwarzanie przeciwciał.

Co następuje, gdy w ciele pojawia się antygen?

- Artificial immune systems wprowadzenie
- 2 Selekcja klonalna
- 3 Clonal Selection Algorithm schemat
- 4 Przykłady
- Inne rodzaje algorytmów opartych na selekcji klonalnej

Schemat

- Wybór kandydatów
- Wybór n najlepszych kandydatów
- Klonowanie najlepszych kandydatów
- Mutacja najlepszych kandydatów
- Wybór nowych najlepszych kandydatów
- Zamiana najgorszych kandydatów z początkowego zbioru z nowo-powstałymi najlepszymi

- Artificial immune systems wprowadzenie
- Selekcja klonalna
- 3 Clonal Selection Algorithm schemat
- Przykłady
- 5 Inne rodzaje algorytmów opartych na selekcji klonalnej

Optymalizujemy funkcję

$$f: R \to R, f(x) = x^2$$

- szukamy jej minimum globalnego.

Rozpoznanie 8 'antygenów' reprezentowanych jako bitstring

Sposób w jaki mierzymy powinowactwo:

$$D = \sum_{i=1}^{L} \delta, \text{ where } \delta = \begin{cases} 1 & \text{if } ab_i \neq ag_i \\ 0 & \text{otherwise} \end{cases}$$

[2]

2.

$$f(x) = 10n + \sum_{i=1}^{n} \left[x_i^2 - 10\cos(2\pi x_i) \right]$$

Figure 2: Rastrigin's Function in two dimensions

4.

$$f(x) = \sum_{i=1}^{n} \sin(x_i) + n$$

Figure 4. Modified Sinusoidal function in two dimensions

Function	Type	Clonal Selection Algorithm							
		Sets for clone rate	Group number for mut. rate	Proximity	Avg. Number of Iterations				
Sphere	Unimodal	2	1	6.95x10 ⁻⁷	399				
Rastrigin's	Highly Multimodal	3	3	8.51x10 ⁻⁸	135226				
Ackley's	Multimodal	2	1	8.59x10 ⁻⁴	417				
Modified Sinusoidal	Highly Multimodal	3	2	9.71x10 ⁻⁴	14488				
Sum of Different Powers	Unimodal	3	1	6.21x10 ⁻⁶	53				
Non- generalized Schwefel's	Multimodal	1	1	8.93x10 ⁻⁴	206				

- 1 Artificial immune systems wprowadzenie
- Selekcja klonalna
- Clonal Selection Algorithm schemat
- 4 Przykłady
- 5 Inne rodzaje algorytmów opartych na selekcji klonalnej

Algorytmy oparte na selekcji klonalnej mogą rozwiązywać nie tylko problemy optymalizacyjne, czy rozpoznawania patternów, ale także klasyfikacji.

Jednym z takich algorytmów jest algorytm CLONAX

CLONAX

CLONal selection Algorithm for ClaSSification.

CLONAX

- Wybór zbioru kandydatów
- ② Wpuszczenie antygenu A_i do zbioru
- Sprawdzenie do jakiej klasy należy antygen
- Wyodrębnianie ze zbioru kandydatów tylko tych, którzy mają większe powinowactwo ('przyciąganie') do klasy jakiej jest antygen
- Sklonowanie najlepszych kandydatów
- Mutacja najlepszych kandydatów
- Ponowny wybór najlepszych kandydatów
- Zamiana powinowactwa tych kandydatów na średnie powinowactwo do najbliższych antygenów z tej samej klasy
- Filtrowanie
- Wprowadzenie do pierwotnego zbioru

CLONAX

Dataset	Gen	Memory cell size (m)	Remaining cells (r)	Replaceable antibody size (d)	best (n) antibodies picked for cloning		clones make for	Max antigens	Average results of 5 test runs (%)	Individual best (%)
Breast Cancer Diagnostic	8	120	0.1xm	0.5xr	20	10		5	93.4±2.2	95.6
Haberman's Survival	8	70	0.1Xm	0.5Xr	20	10		5	73.8±6.6	80.3
Liver Disorder	16	60	0.1xm	0	30	10		8	68.1±5.8	73.9
New-Thyroid	8	60	0.1xm	0.5xr	10	10		6	90.7±7.0	97.7
Pima-Indian- Diabetes	8	100	0.1xm	0.5xr	20	10		8,10	74.4±5.6	79.9

[4]

Bibliografia

- Tytuł: "The Clonal Selection Algorithm with Engineering Applications",
 - Autorzy: Leandro Nunes de Castro, Fernando J. Von Zuben
- https://www.researchgate.net/figure/ Clonal-selection-theory_fig1_335210140
- Tytuł: "COMPARISON STUDY FOR CLONAL SELECTION ALGORITHM AND GENETIC ALGORITHM" Autorzy: Ezgi Deniz Ülker, Sadık Ülker
- Tytuł: "Clonal Selection Algorithm for Classification" Autorzy: Anurag Sharma, Dharmendra Sharma https://link.springer.com/chapter/10.1007/ 978-3-642-22371-6_31

KONIEC

Dziękuję za uwagę : –)