Unit 5: Graph Theory

Hemanthkumar B

May 27, 2025

Definition of a Graph

Definition (Graph). A graph G consists of a finite or countable vertex set V := V(G) and an edge set $E := E(G) \subseteq V \times V$.

So a graph is a pair:

$$G = \{V, E\}$$

Example: Fibonacci Graph

Consider the set $S = \{2, 3, 5, 8, 13, 21\}.$

Form all pairs $(a, b) \in S \times S$ such that a + b or $|a - b| \in S$.

Vertices: $V(H) = \{2, 3, 5, 8, 13, 21\}$

Edges: E(H) =

 $\{\{2,3\},\{2,5\},\{3,5\},\{3,8\},\{5,8\},\{5,13\},\{8,13\},\{8,21\},\{13,21\}\}$

Order and Size

- The number of vertices in *G* is called the **order** *n*.
- The number of edges in *G* is called the **size** *m*.

Example: For the above Fibonacci graph,

Order n = 6, Size m = 9.

Graph Example:

$$V(G) = \{u, v, w, x, y\}, \quad E(G) = \{uv, uw, vw, vx, wx, xy\}$$

: A labeled graph and an unlabeled graph

Graph Terminology

- End vertices: Ends of an edge (u, v)
- Parallel edges: Edges that have the same end vertices
- **Loop:** Edge of the form (v, v)
- Simple graph: No loops or parallel edges
- Empty graph: $E = \emptyset$
- Null graph: $V = \emptyset$, $E = \emptyset$
- **Trivial graph:** One vertex

More Terminology

- Adjacent edges: Share a common end vertex
- Adjacent vertices: Connected by an edge
- **Degree:** Number of edges incident on a vertex
- Pendant vertex: Vertex with degree 1
- Pendant edge: Edge connected to pendant vertex
- Isolated vertex: Vertex with degree 0

Degree of a Vertex

- Minimum degree of $G: \delta(G)$
- Maximum degree of $G: \Delta(G)$

If G is a simple graph of order n, then:

$$0 \le \delta(G) \le \deg(v) \le \Delta(G) \le n-1$$

Theorem: Degree Sum Formula

Theorem 2 (First Theorem of Graph Theory):

If G is a graph of size m, then

$$\sum_{v \in V(G)} \deg(v) = 2m$$

This is also called the handshaking lemma.

Example: Degree Distribution

Example 3. A graph G has order 14 and size 27. Six vertices have degree 4. Find how many have degree 3 and how many have degree 5.

Let x = number of vertices with degree 3 Then,

$$3x + 4 \cdot 6 + 5(8 - x) = 2 \cdot 27 \Rightarrow x = 5$$

Answer: 5 vertices of degree 3, 3 vertices of degree 5

Theorem 4: Even Number of Odd Degree Vertices

Theorem. Every graph has an even number of vertices with odd degree.

Proof Sketch:

$$\sum_{v \in V(G)} \deg v = \sum_{v \in V_1} \deg v + \sum_{v \in V_2} \deg v = 2m$$

Where:

- V₁: vertices with odd degree
- V_2 : vertices with even degree

Since both $\sum \deg v$ and $\sum_{v \in V_2} \deg v$ are even,

$$\sum_{v \in V_1} \deg v = \mathsf{even}$$

⇒ Number of odd-degree vertices is even.

Degree Sequences

A sequence of vertex degrees of a simple graph is called a **degree sequence**.

Example:
$$s = 4, 3, 2, 2, 2, 1, 1, 1, 0$$
; $s' = 0, 1, 1, 1, 2, 2, 2, 3, 4$ $s'' = 4, 3, 2, 1, 2, 2, 1, 1, 0$ are degree sequences of the given graph.

Sequence types:

- s: non-increasing
- s': non-decreasing
- s'': neither

Example 5: Graphical Sequences

A finite non-negative sequence is said to be graphical sequence if it is a degree sequence of some simple graph.

Which of the following are graphical?

$$s_1 = 3, 3, 2, 2, 1, 1$$

Yes

$$s_2 = 6, 5, 5, 4, 3, 3, 3, 2, 2$$

No

$$s_3 = 7, 6, 4, 4, 3, 3, 3$$

No

$$s_4 = 3, 3, 3, 1$$

No

Definition: Regular Graphs

Regular Graph: A graph where all vertices have the same degree.

$$\delta(G) = \Delta(G) \Rightarrow G$$
 is regular

If every vertex has degree r, then G is called **r-regular** Example:

These are the only regular graphs of order 4 and 5.

Regular Graphs

- Odd-degree regular graphs of odd order are not possible
- A 3-regular graph is also called a **cubic graph**.
- Example: The Petersen graph is a well-known cubic graph.

· A loop free k-regular graph with 2k vertices is called K-dimension hypercube, denoted by BK.

A k-dimensional hypercube Ok has k.2^{k-1} edges

Let Gr be a Cubic graph with 9 edges.
 Determine its order

Soln: Let n be no. of vertices and m be no. of edges.
We have

$$\sum deg(v) = 3n = 2m$$

$$=$$
) $3n = 2xq$

$$=)$$
 $n = \frac{18}{3} = 6$.

Existence of r-Regular Graphs

Theorem: Let r and n be integers with $0 \le r \le n-1$.

There exists an r-regular graph of order n if and only if at least one of r and n is even.

 Examples of 4-regular and 5-regular graphs of order 10 are shown.

Subgraphs

Definition

A graph H is called a **subgraph** of a graph G, written $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ and each edge of H has same end vertices as in G.

- If V(H) or E(H) is a proper subset, then H is a proper subgraph.
- If H has the same vertex set as G, it is a **spanning subgraph**.
- No. of spanning subgraph with size m is 2^m.
 Since each edge may or may not be uncluded in the spanning subgraph.

Induced Subgraphs

- A subgraph F of G is an **induced subgraph** if for every pair of vertices u, v in S, $uv \in E(G)$ implies $uv \in E(F)$.
- If S is a non- empty subset of vertices of G, the induced subgraph by S is denoted $\langle S \rangle$.
- If X is a non- empty subset of edges of G, $\langle X \rangle$ is the edge-induced subgraph, consisting of all edges in X and their endpoints.

$$G: \quad w \bigcirc e \stackrel{v}{e} x \qquad H: \quad w \bigcirc x \qquad F: \quad w \bigcirc x$$

$$F': \quad \bigvee_{g} e \stackrel{v}{e'} x \qquad G-e: \quad w \bigcirc x$$

Walks in Graphs

- A u v walk in a graph is a sequence of vertices $W: u = v_0, v_1, ..., v_k = v$ such that $v_i v_{i+1} \in E(G)$.
- If u = v, the walk is **closed**; otherwise, it is **open**.
- The length of a walk is the number of edges in it.
- Walks may include repeated vertices or edges.
- A walk of length 0 is called trivial walk.
- In the below graph W: x, y, w, y, v, w is x w walk of length 5.
- Walk W : v is a trivial walk

Trails and Paths

- A trail is a walk in which no edge is repeated. For example, T: u, w, y, x, w, v is a u v trail in G.
- A path is a walk in which no vertex is repeated. For example
 P: u, w, y, v is a path in G.
- If no vertex in a walk is repeated, then no edge is repeated.
 Hence every path is a trial.

Theorem: If a graph G contains a u-v walk of length I, then it contains a u-v path of length at most I.

Circuits and Cycles

Definition

A **circuit** is a closed trail of length \geq 3. It starts and ends at the same vertex, with no repeated edges.

- A cycle is a circuit with no repeated vertices (except the first and last).
- A **k-cycle** is a cycle of length *k*.
- A 3-cycle is called a triangle.
- Odd-length cycles are called odd cycles; even-length ones are even cycles.
- If a vertex of a cycle is deleted, then a path is obtained. This
 is not true for circuits.

- · V, V2 V3 V4 V5 V2 V7 V, is a 8-circuit
- · V2 V3 V4 V5 V2 is a 5-ycle

Connectivity in Graphs

- Two vertices u and v are connected if there is a u-v path in G.
- A graph is **connected** if every pair of vertices is connected.
- A graph is disconnected if it is not connected.
- A **component** is a maximal connected subgraph.
- A graph G is connected if and only if it has exactly one component.

Distance in a Graph

Definition:

The **distance** between two vertices u and v, denoted d(u, v), is the length of the **shortest path** between them.

Properties:

- d(u, v) = d(v, u) (Symmetric)
- d(u, v) = 0 if and only if u = v
- $d(u, v) = \infty$ if no path exists (disconnected graph)
- Triangle Inequality: $d(u, w) \le d(u, v) + d(v, w)$
- · Shortest U-V patr is called a geodesic.

•
$$d(V_1, V_5) = 2$$

Shortest

V,-V5 pah ig V, V2 V5

$$d(V_1,V_3) = 3$$

Shortest

V1-V3 pah 4 V1 V6 V4 V3

Eccentricity

Definition:

The **eccentricity** of a vertex v, denoted e(v), is the **maximum distance** from v to any other vertex:

$$e(v) = \max\{d(v, u) \mid u \in V(G)\}$$

Interpretation:

Measures how far a vertex is from the farthest vertex in the graph.

$$d(V_1,V_2) = 1$$

$$d(V_1, V_4) = 1$$

$$d(V_1,V_3)=2$$

$$\therefore \quad e(V_i) = 2$$

$$e(V_3) = 2$$

Diameter

Definition:

The **diameter** of a graph G, denoted diam(G), is the **maximum eccentricity** among all vertices:

$$\mathsf{diam}(G) = \mathsf{max}\{e(v) \mid v \in V(G)\}$$

Interpretation:

Represents the longest shortest path between any two vertices in the graph.

If e(v) = diam(G), then v is a peripheral vertex. The set of all such vertices make the periphery of G.

Radius

Definition:

The **radius** of a graph G, denoted rad(G), is the **minimum eccentricity** among all vertices:

$$rad(G) = min\{e(v) \mid v \in V(G)\}$$

Interpretation:

Represents the minimum distance needed to reach the farthest vertex from a central point.

If e(v) = rad(br), then v is a central vertex. The set of all such vertices make the center of brace b.

$$diam(bi) = 2$$

$$Yad(bi) = 1$$

$$e(V_1) = 2$$

$$e(V_2) = 1$$

periphery =
$$\sqrt{V_1, V_2}$$

Center = $\sqrt{V_2, V_4}$

$$\therefore diam(G) = 3$$

$$\pi adius(G) = 2$$

$$e(v_i) = 3$$

$$e(V_4) = 2$$

periphery is
$$\{v_1, v_5\}$$

Center is $\{v_2, v_3, v_4\}$

Key Relationships

For any connected graph:

Common Classes of Graphs

- A path graph of order n is a sequence of vertices v_1, v_2, \ldots, v_n with edges $v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n$.
- A **cycle** graph of order $n \ge 3$ is a closed path: $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1$.
- Path graphs are denoted by P_n and cycle graphs by C_n .

- · In a path graph,
 - Previoust exactly one path between any pay of vukces.
 - Degree of each vertice, except terminal vertices, is 2.

Complete Graphs

- A graph G is complete if every pair of distinct vertices is adjacent. (i.e. There exist an edge between every pair of vertices)
- A complete graph on n vertices is denoted by K_n .
- Number of edges in K_n : $\binom{n}{2} = \frac{n(n-1)}{2}$.

$$K_1$$
: O K_2 : K_3 : K_4 : K_5 :

The graphs can be drawn in different ways.

$$P_4: \circ - \circ - \circ - \circ P_4: \qquad P_4: \qquad P_4: \qquad P_4: \qquad P_4: \qquad P_4: \qquad \qquad P_4: \qquad \qquad P_4: \qquad P_4:$$

Radius and Diameter

- For complete graphs: $diam(K_n) = rad(K_n) = 1$, for $n \ge 2$.
- For paths on *n* vertices:
 - $\operatorname{diam}(P_n) = n 1$
 - $\operatorname{rad}(P_n) = \left\lceil \frac{n-1}{2} \right\rceil$
- For cycles on *n* vertices:
 - diam $(C_n) = \left\lceil \frac{n-1}{2} \right\rceil$
 - $\operatorname{rad}(C_n) = \left\lceil \frac{n-1}{2} \right\rceil$

Bipartite Graphs

Definition

A graph G is **bipartite** if V(G) can be partitioned into two sets U and W such that every edge connects a vertex in U to one in W.

- G_1 and G_2 shown are bipartite.
- A graph is bipartite if and only if each component is bipartite.
- C₅ is **not** bipartite.
- · A nontrivial graph or is bipartite iff or contain no odd cycles.

Complete Bipartite Graphs

- A graph is a complete bipartite graph if every vertex in U is connected to every vertex in W.
- Denoted by $K_{p,q}$. (where p and q are number of vertices in partite set U and W, respectively)
- Diameter: diam $(K_{p,q}) = 2$ (if $p, q \ge 2$)
- Number of vertices of $K_{p,q}$: n = p + q
- Number of edges of $K_{p,q}$: m = pq

Complement of a Graph

Definition

The **complement** \overline{G} of a graph G is the graph whose vertex set is V(G) such that for each pair u, v of vertices of G, uv is an edge of \overline{G} if and only if uv is not an edge of G.

A graph H and its complement \overline{H} are shown below:

Size of Complement of *G*

- If G is a graph of order n and size m, then \overline{G} is a graph of order n and size $\binom{n}{2} m$.
- The graph K_n has n vertices and no edges it is called the empty graph of order n.

Computer Representation of Graphs

Definition:

• The adjacency matrix of a graph G_1 is the nxn matrix $A=(a_{ij})$, where

$$\alpha_{ij} = \begin{cases} 1 & \text{if } V_i V_j \in E(G) \\ 0 & \text{otherwise} \end{cases}$$

The incidence matrix of G is the nxn matrix
 A = (bij), where

Computer Representation of Graphs

Example: For the graph

· Adjacency matrix

· Incidence matrix

$$B = \begin{array}{c} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\ v_2 & v_3 & v_4 & v_5 & v_6 & v_6 & v_6 \\ v_4 & v_5 & v_6 & v_6 & v_6 & v_6 & v_6 \\ v_5 & v_6 & v_6 & v_6 & v_6 & v_6 & v_6 \\ \end{array}$$

* Arrangement of V1, V2, V3, V4, V6
must be some in both
words and columns.

```
Let G and H be simple graphs. A map \phi: G_7 \to H
is an isomorphism if
i) For any u, v \in V(G_7),
uv \in E(G_7) \text{ iff } \phi(u) \phi(v) \in E(H_7).
ii) \phi is bijective. It says that adjacancy is preserved.
```

- If there exist an isomosphism from G to H, then
 we say G is isomosphic H, denoted by G= H.
- If G = H means They have some graph structure.

In general, for any graph (simple or non-simple graph)

An isomorphism from 61 to H is a bijective ϕ that maps V(G) to V(H) and E(G) to E(H) such that each edge of G with endpoints U and V is mapped to an edge with endpoints $\phi(U)$ to $\phi(V)$.

• If $\phi:G\to H$ is isomorphism, then for any $u\in G$ $\deg(u)=\deg(\phi(u))$

Example 1: Show that the following graphs Grand H are isomorphic.

ound

Define a map ϕ : $\phi = \begin{pmatrix} y & w & v & x \\ t & p & q & s & r \end{pmatrix}$ such that
bijechion.

$$deg (u) = 3 deg (P) = 2$$

$$deg (v) = 3 deg (v) = 3$$

$$deg (x) = 3 deg (w) = 3$$

$$deg (w) = 1 deg (g) = 1$$

$$deg (g) = 1 deg (g) = 1$$

$$\phi(y \ v) = \pm s = \phi(y) \phi(s)$$
 $\phi(w \ u) = p_0 = \phi(\omega) \phi(u)$
 $\phi(w \ x) = p_1 = \phi(\omega) \phi(x)$
 $\phi(u \ v) = q_1 s = \phi(u) \phi(v)$
 $\phi(u \ x) = q_1 s = \phi(u) \phi(v)$
 $\phi(u \ x) = q_1 s = \phi(u) \phi(x)$
 $\phi(v \ x) = s_1 s = \phi(v) \phi(x)$

Thus, G=H

01

Define a bijective map:
$$\phi = \begin{pmatrix} u & v & w & x & y \\ v & s & p & r & t \end{pmatrix}$$

$$\phi = \left(\begin{array}{cccc} \alpha & \vee & \omega & \times & \vee \\ \alpha & s & p & r & r \end{array} \right)$$

find adjacent matrices of Grand H que follows:

$$M_{0} = \begin{matrix} u & v & w & x & y \\ u & o & 1 & 1 & 1 & 0 \\ 1 & o & 0 & 1 & 1 \\ 1 & o & 0 & 1 & 0 \\ x & 1 & 1 & 1 & 0 & 0 \\ y & 0 & 1 & 0 & 0 & 0 \end{matrix}, \qquad \begin{matrix} u & w & x & y & y & y & y \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{matrix}$$

Example 2. Show that the following graphs are not isomorphic.

Gr: u₁ u₂ u₃ u₄ u₆

V₁ V₂ V₃ V₅ V₄

Soln: In $(r_1, deg(u_5) = deg(u_6) = 1, deg(u_4) = 3$ and u_5 and u_6 are adjacent to u_4 . But in H, There is no two vertices of degree 1 which is adjacent to a vertex of degree 3.

i. G is not isomorphic to H.

Example 3: S.T GEH.

Soln: Each has 6 vultus and 9 edges.

$$M_{H} = \begin{cases} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1$$

Example 4: S.T G=H

Each has 10 vertices and 15 edges. Solu:

Define a bijective map

$$\phi = \begin{pmatrix} u & v & w & x & y & 3 & p & q & r & s \\ + & g & h & i & j & a & b & c & d & e \end{pmatrix}$$
 under this map

adjacency is preserved. For instance uv + E(G) = tgtE(H) xy t E (a) =) ij t E(H) zg/ tE(G) =) ac EE(H) etc.

Show that adjacency matrice of G and H

Example 5: Show that G=H

Soln: Both (1 and H have 7 vertices and 14 edges.

Define a map

$$\Phi = \begin{pmatrix} u_1 & u_2 & u_3 & u_4 & u_6 & u_6 & u_7 \\ w_1 & w_4 & w_7 & w_3 & w_6 & w_2 & w_5 \end{pmatrix},$$

under sies map we shall s.T adajency is preserved by constructing adjacency matrices

$$M_{A} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7} \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ u_{6} & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ u_{7} & 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Thus adjacency is preserved.

Thus $G \cong H$

Example 6: Check whether following pair is isomorphic or not.

