Lecture 4. Logistic Regression. Basis Expansion

COMP90051 Statistical Machine Learning

Semester 2, 2018 Lecturer: Ben Rubinstein

Copyright: University of Melbourne

This lecture

- Logistic regression
 - Workhorse of binary classification
- Basis expansion
 - Extending model expressiveness via data transformation
 - * Examples for linear and logistic regression
 - * Theoretical notes

Logistic Regression Model

A workhorse of binary classification

Binary classification: Example

- <u>Example</u>: given body mass index (BMI) does a patient have type 2 diabetes (T2D)?
- This type of problem is called binary classification
- One can use linear regression
 - Fit a line/hyperplane to data (find weights w)
 - * Denote $s \equiv x'w$
 - * Predict "Yes" if $s \ge 0.5$
 - * Predict "No" if s < 0.5

Approaches to classification

- This approach can be susceptible to outliers
- Overall, the least-squares criterion looks unnatural in this setting
- There are many methods developed specifically with binary classification in mind
- Examples include logistic regression, perceptron, support vector machines (SVM)

Logistic regression model

- Probabilistic approach to classification
 - * P(Y = 1|x) = f(x) = ?
 - * Use a linear function? E.g., s(x) = x'w
- Problem: the probability needs to be between 0 and 1.
- Logistic function $f(s) = \frac{1}{1 + \exp(-s)}$
- Logistic regression model

$$P(Y = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

Equivalent to linear model for log-odds ratio

$$\log \frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})} = \mathbf{x}'\mathbf{w}$$

Logistic function

Logistic regression model

- Probabilistic approach to classification
 - * P(Y = 1|x) = f(x) = ?
 - * Use a linear function? E.g., s(x) = x'w
- Problem: the probability needs to be between 0 and 1.
- Logistic function $f(s) = \frac{1}{1 + \exp(-s)}$
- Logistic regression model

$$P(Y = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

Equivalent to linear model for log-odds ratio

$$\log \frac{P(Y=1|\mathbf{x})}{P(Y=0|\mathbf{x})} = \mathbf{x}'\mathbf{w}$$

Is logistic regression a linear method?

Logistic function

Logistic regression is a linear classifier

Logistic regression model:

$$P(Y = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

Classification rule:

if $(P(Y = 1|x) > \frac{1}{2})$ then class "1", else class "0"

• Decision boundary $\frac{1}{1 + \exp(-x'w)} = \frac{1}{2}$

$$1 + exp(-x.w) = 2$$

$$exp(-x.w) = 1$$

$$-x.w = log(1)$$

$$x.w = 0$$

$$x.w = 0$$

get oc.w+b=0

affine level sets

linear but not through 9

Effect of parameter vector (2D problem)

- Decision boundary is the line where P(Y = 1 | x) = 0.5
 - * In higher dimensional problems, the decision boundary is a plane or hyperplane
- Vector w is perpendicular to the decision boundary (see supplemental LMS vector slides)
 - * That is, w is a normal to the decision boundary
 - * Note: in this illustration we assume $w_0 = 0$ for simplicity

Linear vs. logistic probabilistic models

- Linear regression assumes a Normal distribution with a fixed variance and mean given by linear model $p(y|\mathbf{x}) = Normal(\mathbf{x}'\mathbf{w}, \sigma^2)$
- Logistic regression assumes a <u>Bernoulli distribution</u> with parameter given by logistic transform of linear model $p(y|\mathbf{x}) = Bernoulli(\text{logistic}(\mathbf{x}'\mathbf{w}))$
- Recall that Bernoulli distribution is defined as

$$p(1) = \theta$$
 and $p(0) = 1 - \theta$ for $\theta \in [0,1]$

• Equivalently $p(y) = \theta^y (1 - \theta)^{(1-y)}$ for $y \in \{0,1\}$

Training as Max Likelihood Estimation

Assuming independence, probability of data

$$p(y_1, ..., y_n | \mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1}^n p(y_i | \mathbf{x}_i)$$

Assuming Bernoulli distribution we have

$$p(y_i|\mathbf{x}_i) = (\theta(\mathbf{x}_i))^{y_i} (1 - \theta(\mathbf{x}_i))^{1-y_i}$$

where
$$\theta(\mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{x}_i'\mathbf{w})}$$

Training: maximise this expression wrt weights w

Apply log trick, simplify

Instead of maximising likelihood, maximise its logarithm

$$\log\left(\prod_{i=1}^{n} p(y_i|\mathbf{x}_i)\right) = \sum_{i=1}^{n} \log p(y_i|\mathbf{x}_i)$$

$$= \sum_{i=1}^{n} \log\left(\left(\theta(\mathbf{x}_i)\right)^{y_i} \left(1 - \theta(\mathbf{x}_i)\right)^{1 - y_i}\right)$$

$$= \sum_{i=1}^{n} \left(y_i \log\left(\theta(\mathbf{x}_i)\right) + (1 - y_i) \log\left(1 - \theta(\mathbf{x}_i)\right)\right)$$

$$= \sum_{i=1}^{n} \left((y_i - 1)\mathbf{x}_i'\mathbf{w} - \log(1 + \exp(-\mathbf{x}_i'\mathbf{w}))\right)$$

Iterative optimisation

- Training logistic regression amounts to finding w that maximise log-likelihood
- Analytical approach: Set derivatives of objective function to zero and solve for w
- Bad news: No closed form solution, iterative method necessary (e.g., gradient descent, Newton-Raphson, or iteratively-reweighted least squares)
- Good news: Problem is strictly convex (like a bowl) if there are no irrelevant features → optimisation guaranteed to work!

Look ahead (L5): regularisation helps with irrelevant features

Logistic Regression: Decision-Theoretic View

Where loss is cross entropy

Side note: Cross entropy

- <u>Cross entropy</u> is a method for comparing two distributions
- Cross entropy is a measure of a divergence between reference distribution $g_{ref}(a)$ and estimated distribution $g_{est}(a)$. For discrete distributions:

$$H(g_{ref}, g_{est}) = -\sum_{a \in A} g_{ref}(a) \log g_{est}(a)$$

A is support of the distributions, e.g., $A = \{0,1\}$

Training as cross-entropy minimisation

- Consider log-likelihood for a single data point $\log p(y_i|x_i) = y_i \log(\theta(x_i)) + (1 y_i) \log(1 \theta(x_i))$
- This expression is the negative cross entropy
- Cross entropy $H(g_{ref}, g_{est}) = -\sum_{a} g_{ref}(a) \log g_{est}(a)$
- The reference (true) distribution is

$$g_{ref}(1) = y_i \text{ and } g_{ref}(0) = 1 - y_i$$

Logistic regression aims to estimate this distribution as

$$g_{est}(1) = \theta(\mathbf{x}_i)$$
 and $g_{est}(0) = 1 - \theta(\mathbf{x}_i)$

It finds w that minimises sum of cross entropies per training pt

Basis Expansion

Extending the utility of models via data transformation

Basis expansion for linear regression

- Let's take a step back. Back to linear regression and least squares
- Real data is likely to be non-linear
- What if we still wanted to use a linear regression?
 - It's simple, easier to understand, computationally efficient, etc.
- How to marry non-linear data to a linear method?
- if the mountain won't come to Muhammad then Muhammad must go to the mountain

Transform the data

- The trick is to transform the data: Map data onto another features space, s.t. data is linear in that space
- Denote this transformation $\varphi \colon \mathbb{R}^m \to \mathbb{R}^k$. If x is the original set of features, $\varphi(x)$ denotes new feature set
- <u>Example</u>: suppose there is just one feature x, and the data is scattered around a parabola rather than a straight line

Example: Polynomial regression

No worries, mate: define

$$\varphi_1(x) = x$$
$$\varphi_2(x) = x^2$$

• Next, apply linear regression to φ_1 , φ_2

$$y = w_0 + w_1 \varphi_1(x) + w_2 \varphi_2(x) = w_0 + w_1 x + w_2 x^2$$

and here you have quadratic regression

• More generally, obtain polynomial regression if the new set of attributes are powers of x

Basis expansion

- Data transformation, also known as basis expansion, is a general technique
 - * We'll see more examples throughout the course
- It can be applied for both regression and classification
- There are many possible choices of φ

Basis expansion for logistic regression

- Example binary classification problem: Dataset not linearly separable
- Define transformation as

$$\varphi_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{z}_i\|$$
, where \mathbf{z}_i some pre-defined constants

• Choose $\mathbf{z}_1 = [0,0]'$, $\mathbf{z}_2 = [0,1]'$, $\mathbf{z}_3 = [1,0]'$, $\mathbf{z}_4 = [1,1]'$

 W_1

1

x_1	x_2	y
0	0	Class A
0	1	Class B
1	0	Class B
1	1	Class A

there exist weights that make new data separable, e.g.:

 W_2

0

$arphi_1$	$arphi_2$	$arphi_3$	$arphi_4$
0	1	1	$\sqrt{2}$
1	0	$\sqrt{2}$	1
1	$\sqrt{2}$	0	1
$\sqrt{2}$	1	1	0

 W_3

0

 W_4

1

The transformed data is linearly separable!

$\varphi'w$	У
$\sqrt{2}$	Class A
2	Class B
2	Class B
$\sqrt{2}$	Class A

Radial basis functions

- The above transformation is an example of the use of radial basis functions (RBFs)
 - * Their use has been motivated from approximation theory, where sums of RBFs are used to approximate given functions
- A radial basis function is a function of the form $\varphi(x) = \psi(||x z||)$, where z is a constant
- Examples:
- $\bullet \quad \varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{z}\|$
- $\varphi(\mathbf{x}) = \exp\left(-\frac{1}{\sigma}\|\mathbf{x} \mathbf{z}\|^2\right)$

Challenges of basis expansion

- Basis expansion can significantly increase the utility of methods, especially, linear methods
- In the above examples, one limitation is that the transformation needs to be defined beforehand
 - Need to choose the size of the new feature set
 - * If using RBFs, need to choose z_i
- Regarding z_i , one can choose uniformly spaced points, or cluster training data and use cluster centroids
- Another popular idea is to use training data $z_i \equiv x_i$
 - * E.g., $\varphi_i(x) = \psi(||x x_i||)$
 - Nowever, for large datasets, this results in a large number of features → computational hurdle

Further directions

- There are several avenues for taking the idea of basis expansion to the next level
 - Will be covered later in this subject
- One idea is to *learn* the transformation φ from data
 - * E.g., Artificial Neural Networks
- Another powerful extension is the use of the kernel trick
 - "Kernelised" methods, e.g., kernelised perceptron
- Finally, in sparse kernel machines, training depends only on a few data points
 - * E.g., SVM

Summary

- Logistic regression
 - Workhorse linear binary classifier
- Basis expansion
 - Extending model expressiveness via data transformation
 - Examples for linear and logistic regression
 - * Theoretical notes

Next time: regularisation for avoiding overfitting and illposed optimisation; with example algorithms