Introduction

Roughly 10 minutes maybe.

Questions

1 Multiple Choice, Section 1.1 Q.39

- a. F (You can generalize for any $n \in \mathbb{N}$)
- b. T (We already know we need different notations to denote them)
- c. F (Affine Arithmetic)
- d. F (Can draw a picture and then use vector addition)
- e. T (Draw the same picture as before and use vector addition)
- f. F (You can choose two parallel vectors)
- g. T (You can probably prove this in the general sense)
- h. F (Can see that span $\{(1,1,0),(1,0,0),(0,1,0)\} = \mathbb{R}^2 \neq \mathbb{R}^3$)
- i. F (You can have more than two vectors spanning \mathbb{R}^n)
- j. T (Sure, why not. You can't have two vectors spanning all of \mathbb{R}^3 and trivially can't have one)

2 Multiple Choice, Section 1.2 Q.40

- a. T (You can get a general non-zero vector in \mathbb{R}^n and verify this)
- b. T (You can do the same as in a. but in reverse)
- c. F (CE: Add \mathbf{v} and $-\mathbf{v}$ and verify)
- d. F (No, it has the unit vector and its additive inverse)
- e. T (See above)
- f. F (You can have an entire field of vectors perpendicular to one)
- g. T (You can see that $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| \cdot ||\mathbf{b}|| \cdot \cos(\theta)$ and test for values of θ)
- h. F (No, as $\mathbf{a} \cdot \mathbf{a} = ||\mathbf{a}||^2$)
- i. F (You can have r being a negative number)
- j. F (CE: just get v = (1,0), u = (0,-1) in \mathbb{R}^2 . Then you can see that $||v-u|| \neq 0$)

3 Linear Combinations

Let $\mathbf{v} \in \mathbf{R}^2$ be arbitrary. WTS $\mathbf{v} = s[1,2] + t[-1,2]$ with scalar s,t.

Know that $\mathbf{v} = (v_1, v_2)$.

So we have the linear system:

$$v_1 = s - t$$
$$v_2 = 2s + 2t$$

Solving this in terms of v_1 , v_2 gives us the following:

$$s = \frac{v_2 + 2v_1}{4}$$
 and $s = \frac{v_2 - 2v_1}{4}$

Now need to show uniqueness.

General way of showing uniqueness - first assume there exists something else that satisfies the past condition.

So assume $\exists a, b$ so that $\mathbf{v} = a[1, 2] + b[-1, 2]$.

So a[1,2] + b[-1,2] - (s[1,2] + t[-1,2]) = (a-s)[1,2] + (b-t)[-1,2] = 0 to get another linear system.

$$(a-s) - (b-t) = 0$$
 (1)

$$2(a-s) + 2(b-t) = 0 (2)$$

Multiply (1) by 2 and add to (2).

 $(a-s)=0 \implies a=s$, and substitute into either (1) or (2) to conclude that b=t as well. So we can find a representation of any vector in \mathbb{R}^2 as a unique linear combination of the above vectors.

4 Linear Combinations

Definition of linear combination - let $a_1, ... a_k \in \mathbb{R}$ and $\mathbf{v}_1, ... \mathbf{v}_k \in \mathbb{R}^n$. Then the linear combination of these vectors $\mathbf{v}_1, ... \mathbf{v}_k$ with scalar coefficients is expressed as $a_1 \mathbf{v}_1 + ... + a_k \mathbf{v}_k$.

To prove what we want, let $\mathbf{u} \in \mathbb{R}^n$ be arbitrary. WTS $\mathbf{u} = a_1 \mathbf{e}_1 + 2a_2 \mathbf{e}_2 + ... + na_n \mathbf{e}_n$ for scalars $a_1, ... a_k$.

(We can explain the following geometrically as well, maybe I'll do it in class)

Can see that for each vector $i\mathbf{e_i}$ that the following holds (with $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $u_i \in \mathbb{R}$):

$$\mathbf{u} \cdot i \cdot \mathbf{e_i} = i \cdot u_i$$
, so we can pick $a_i = \frac{u_i}{i}$.

Then we can see that $\sum_{i=1}^n a_i \mathbf{v_i} = \sum_{i=1}^n (\frac{u_i}{i})(i \cdot e_i) = \sum_{i=1}^n u_i \cdot e_i = \mathbf{u}$ as wanted.

To show uniqueness, let $\mathbf{u} = \sum_{i=0}^{k} r_i \mathbf{v_i}$. Then we see that $r_i = \frac{1}{i} \cdot u_i$ as otherwise $\mathbf{u} \neq \sum_{i=0}^{k} r_i \mathbf{v_i}$.

Break (10 minutes maybe)

5 Definition of a vector norm

Prove that
$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{4}||\mathbf{u} + \mathbf{v}||^2 - \frac{1}{4}||\mathbf{u} + \mathbf{v}||^2 \ \forall \ \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$

Know the definition of the norm of a vector $\mathbf{u} \in \mathbb{R}^n$ is $||\mathbf{u}|| = (\sum_{i=1}^n x_i^2)^{(\frac{1}{2})}$ with $\mathbf{u} = (x_1, x_2, ..., x_n)$. So from this observation we can see that $||\mathbf{u}||^2 = (\sum_{i=1}^n x_i^2) = \mathbf{u} \cdot \mathbf{u}$.

We know that vectors are closed under component wise addition in \mathbb{R}^n , so $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - \mathbf{v}$ are both vectors in \mathbb{R}^n .

We know that the inner product of the sum and difference of two vectors looks like this:

$$||\mathbf{u} + \mathbf{v}||^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v} = ||\mathbf{u}|| + 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||$$

$$||\mathbf{u} - \mathbf{v}||^2 = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} - 2\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{v} = ||\mathbf{u}|| - 2\mathbf{u} \cdot \mathbf{v} + ||\mathbf{v}||$$

Due to distributivity of dot product over addition and the equivalent way of expressing the square of a vector norm. Also a good example for observing why the triangle inequality holds (Not a proof but maybe an intuitive thing to see).

Now plug in the values above to the right side of the given equation.

$$\begin{array}{l} \frac{1}{4}||\mathbf{u}+\mathbf{v}||^2 - \frac{1}{4}||\mathbf{u}+\mathbf{v}||^2 = \frac{1}{4}(||\mathbf{u}|| + 2\mathbf{u}\cdot\mathbf{v} + ||\mathbf{v}||) - \frac{1}{4}(||\mathbf{u}|| - 2\mathbf{u}\cdot\mathbf{v} + ||\mathbf{v}||) \\ = \frac{1}{2}\mathbf{u}\cdot\mathbf{v} + \frac{1}{2}\mathbf{u}\cdot\mathbf{v} \\ = \mathbf{u}\cdot\mathbf{v} \text{ as wanted.} \end{array}$$

Fun with vector addition

First we have to know how to equate vectors. $\mathbf{u} = \mathbf{v}$ iff $|\mathbf{u}| = |\mathbf{v}|$ and $u \cdot v = |u||v|$ (the two vectors are parallel). What I'm trying to say is that they don't necessary need to occupy the same space in \mathbb{R}^n but simply need to be parallel and have the same magnitude.

So WTS EF = HG and FG = EHStart with:

- EH = $\frac{1}{2}$ BA + $\frac{1}{2}$ AD = $\frac{1}{2}$ BD (We can pull $\frac{1}{2}$ out due to scalar multiplication being distributive over vector addition and the definition of vector addition)
- $=\frac{1}{2}(BC + CD)$ (Vector addition)
- $=\frac{1}{2}BC + \frac{1}{2}CD$ (Distributive property of vector addition)
- = $\tilde{F}C + C\tilde{G}$ (Bisection of the edges of the quadrilateral)
- = FG (Vector addition)

So if we have the EH = FG, the second equality to prove is easy.

EF = EG - FG (Vector addition)

- = EH + HG FG
- = EH + HG EH (With FG = EH)
- = HG as wanted.

7

Using vectors, show that the diagonals of a rhombus bisect each other. (A rhombus is a parallelogram with equal sides.)

With the above diagram, what do we have to show? And what information are we given? Well, we know that ||AB|| = ||BC|| = ||CD|| = ||DA|| and we need to show ||AO|| = ||OC|| and ||BO|| = ||OD||.

Let's think of a strategy to do this. First note that:

- AO = rAC, DO = kDB for $r, k \in [0, 1]$
- AC = AB + BC
- -DB = AB BC (As -BC = CB = DA)
- -AB = AO + OB

So we want to show that $r = k = \frac{1}{2}$, and from there we can conclude that ||AO|| = ||OC|| and ||BO|| = ||OD|| as desired.

With our previous observations, we can see that:

$$AB = AO + OB$$

$$= rAC + kDB$$

$$= r(AB + BC) + k(AB - BC)$$

$$= (r + k)AB + (r - k)BC$$

$$\implies 0 = -AB + (r + k)AB + (r - k)BC$$

$$\implies 0 = (-1+r+k)AB + (r - k)BC$$

So now we have a system of equations:

$$\begin{array}{l} 1=r+k\\ 0=r-k\\ \Longrightarrow \ r=k \ {\rm and} \ 2k=1 \ \Longrightarrow \ k=r=\frac{1}{2} \ {\rm as} \ {\rm wanted}. \end{array}$$