Tensor Networks: Session 2

Hanse Kim

September 20, 2024

Recap

- ► Tensor networks are tensors (state vectors) that are made up of smaller tensors by tensor products and contraction
 - Many ways to write a tensor of a given rank N
 - Represents subspaces of Hilbert space
 - Degree of freedom polynomial in N
- Some comments
 - Some notation differentiates upper and lower indices by placement of 'legs'; rank (p,q) tensor has (p+q+1)! reshapes generated by swapping and lowering/uppering indices
 - Do not confuse rank of tensor ex. (p, q) and rank of linear operator (dimensionality of image)

Recap

- ► Claimed that this smaller subspace is physically relevant; we will see today :
 - Examples of highly entangled states/ground states as TNs
 - Bond dimension parametrises entanglement entropy; contraction characterises entanglement
 - TN states satisfy the area entropy law

Examples: General TNs

Trace

$$Tr(AB) = A B$$

- Reduced density matrix (partial trace of bipartite state vector)
- SVD decomposition

Choice of index grouping, algorithm determine the bond dimension; independent of remaining discussion, set bond dimension as arbitrary value

Matrix Product States

- ► MPS : 1D array of tensors
 - Two examples; open BC, periodic BC
 - One tensor per site in many-body system; open indices represents physical degrees of freedom
 - ightharpoonup DoF: pD^2N

Examples: MPS

- ► GHZ State : $|\Psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes N} + |1\rangle^{\otimes N})$
 - Maximally entangled state : reduced density matrix is diagonal for any bipartition of system
 - ▶ MPS representation with bond dimension 2

$$\frac{1}{0} = \frac{2}{1} = 2^{-1/(2N)}$$

Examples: MPS

► 1D PEPS (Projected Entangled Pair State)

- ► Ground state of 1D AKLT model : spin 1 chain with $H = \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{3} (\mathbf{S}_i \cdot \mathbf{S}_j)^2$
 - Exact ground state is given in terms of projection of a spin $\frac{1}{2}$ chain

$$= \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

$$= |+\rangle\langle\uparrow\uparrow| + |0\rangle \frac{\langle\uparrow\downarrow| + \langle\downarrow\uparrow|}{\sqrt{2}} + |-\rangle\langle\downarrow\downarrow|$$

MPS representation with bond dimension 2

Examples: MPS

► 1D Cluster State : simultaneous eigenket of

$$K^{i}=\sigma_{i-1}^{x}\sigma_{i}^{z}\sigma_{i+1}^{x};\,|\Psi
angle=\prod_{i}rac{1+K^{i}}{2}\left|0
ight
angle^{\otimes N}$$

- ► Highly entangled state
- ► Represent operators $\frac{1+K^i}{2}$ as TN
- MPS representation with bond dimension 4

Physical Properties: MPS

- MPS are dense
- Area law : constant entanglement entropy
 - Split wavefunction into parts; $T_{\beta\gamma}=T_{\beta\alpha_1\alpha_2}^{\rm in}T_{\alpha_1\alpha_2\gamma}^{\rm out}$
 - β, γ each indices of inner and outer state
 - ▶ Combined indices $\overline{\alpha} = {\alpha_1, \alpha_2}$; total of D^2 values
 - ightharpoonup Roughly $|\psi\rangle=|\mathsf{in}\rangle\otimes|\mathsf{out}\rangle$
 - ► Reduced density matrix : $\rho_{\beta\beta'}^{\rm in} = T_{\overline{\alpha}\gamma}^{\rm out} T_{\overline{\alpha'}\gamma}^{\rm out} T_{\beta\overline{\alpha}}^{\rm in} T_{\beta'\overline{\alpha'}}^{\rm in}$
 - Inner product between T^{out} , outer product between T^{in}
 - ightharpoonup wrt. D, $\operatorname{tr}\rho^{\operatorname{in}}$ scales as D^2
 - Const. wrt. subsystem size *L*
 - α -Rényi entropy : $S(L) = \frac{1}{1-\alpha} \log \operatorname{tr} \rho^{\alpha} \sim \log D$

Physical Properties : PEPS

► $S(L) \sim 4L \log D$

Correlation function : $C(r) = \langle O_i O'_{i+r} \rangle - \langle O_i \rangle \langle O'_{i+r} \rangle$ Consider infinite MPS of single tensor; 1D translational invariance with thermodynamic limit

- Consider E_i as $D^2 \times D^2$ matrix; diagonalise $E_I = \sum_{i=1}^{D^2} \lambda_i \vec{R}_i^T \vec{L}_i$; $E_I^r = \lambda_1^r \sum_{i=1}^{D^2} (\lambda_i / \lambda_1)^r \vec{R}_i^T \vec{L}_i$
- Consider dominant EVs; $E_I^r \approx \lambda_1^r \left(\vec{R}_1^T \vec{L}_1 + (\lambda_2/\lambda_1)^r \sum \vec{R}_{\mu}^T \vec{L}_{\mu} \right)$

- ▶ In t.d. limit, $\langle O_i \rangle = \vec{L}_1 E_O E_I^r \vec{R}_1^T / E_I^{r+1} = \vec{L}_1 E_O \vec{R}_1^T / \lambda_1 + \cdots$
- $\qquad \qquad \langle O_i \rangle \left\langle O'_{i+r} \right\rangle \approx \vec{L}_1 E_O \vec{R}_1^T \vec{L}_1 E_{O'} \vec{R}_1^T / \lambda_1^2$

- ▶ In t.d. limit, $\langle O_i O'_{i+r} \rangle = \vec{L}_1 E_O E_I^{r-1} E_{O'} \vec{R}_1^T / E_I^{r+1}$
- $C(r) \sim \exp{-r/\xi}$ with $\xi = -1/\log|\lambda_1/\lambda_2|$

- Exponential decay of two-point correlation function
- Results known where such exponential decay implies the area law
- Correlation function mimics quantum system in lower spatial dimension

How do we use TNs in calculations? What are the considerations we must make?

- Approximation of general tensors into TN states
- Calculating ground states
 - Variational method over TN space; DMRG, TEBD
 - Imaginary time evolution
- (Efficient) computation of expectation values of TN states

- Can we decompose an arbitrary rank N tensor into an MPS state? Yes! By recursively applying SVD
 - For *N* particle system, bond dimension is bounded above by $2^{\lfloor N/2 \rfloor}$; MPS are dense
 - Expensive in terms of calculations

- Rank : distinct from rank of tensor, dimensionality of image
 - Ex. m × n matrix of rank one : outer product of m vector and n vector
 - ightharpoonup m imes n matrix of rank k: total k(m+n) DoF
 - Imposing low rank conditions on TNs further compresses the data
- Low rank approximation
 - Eckart-Young theorem : optimal low rank approximation appears via SVD
 - Truncate to k singular values
- Use low rank approximation to apply cutoff to bond dimension of MPS; approximation of general state

- Iteratively improve approximations by using variational methods; ex. Density Matrix Renormalisation Group
- ► Time evolve MPSs via nearest-neighbour Hamiltonians; ex. Time-Evolving Block Decimation

References and Resources

- Hand-waving and Interpretive Dance: An Introductory Course on Tensor Networks; Jacob C. Bridgeman, Christopher T. Chubb
- ➤ A Practical Introduction to Tensor Networks : Matrix Product States and Projected Entangled Pair States; Román Orús
- ► The density-matrix renormalization group in the age of matrix product states; Ulrich Schollwöck