BLAS libraries

for Linear Algebra in Python

BLAS subprograms		Semantic	FP ops.	ops.
Level 1	Vector Addition	$y_i = x_i + y_i$	n	3 <i>n</i>
	Vector Scaling	$x_i = sx_i$	n	2 <i>n</i>
	Dot Product	$s = \sum_{i=0}^{n-1} x_i y_i$	2 <i>n</i>	2 <i>n</i>
Level 2	Matrix-vector multiplication	$y_i = y_i + \sum_{j=0} a_{ij} x_j$	$2n^2+n$	n^2+3n
	Rank-one update	$a_{ij} = a_{ij} + x_i y_j$	$2n^2$	$2n^2+2n$

 $c_{ij} = c_{ij} + \sum_{i=1}^{n-1} a_{ik} b_{kj} \qquad 2n^3 + n^2$

Mem.

Matrix-vector
multiplication
Rank-one update

Matrix-Matrix

multiplication

Level 3

BLAS ROUTINES

```
matrix multiplication: C = A * B (level 3)
DGEMM( TRANSA, TRANSB, M, N, L, ALPHA, A, LDA, B, LDB, BETA, C, LDC )
matrix times vector: Y = A * X (level 2)
DGEMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY )
             1.0d0
vector swap: X ⇔ Y
                                    (level 1)
DSWAP( N, X, INCX, Y, INCY )
scalar product: p = X' \cdot Y
                                    (level 1)
p = DDOT(N, X, INCX, Y, INCY)
                               Increment for elements
```

DGEMM Benchmark (single-threaded)

Performance [GFlop/s] vs. matrix size (M=10000, N=6000, K=64,80, ...,384)

