Cloud Data Management: Relational Databases vs MapReduce

Lecture 5

Recap

- MapReduce introduced by Google
 - Simple programming model for building distributed applications that process vast amounts of data
 - Runtime for executing jobs on large clusters in a reliable, faulttolerant manner

- Hadoop makes MapReduce broadly available
 - HDFS becomes central data repository
 - Becomes Defacto standard for batch processing

New applications, new workloads

- MapReduce originally designed for batch analytics
 - Latency-insensitive: jobs that run for hours
 - Sequential scans of Petabytes of data
 - Built for fault tolerance across thousands of commodity servers
 - Focus on faults during query rather than recovery after updates
- Hadoop starts being used for interactive computations, e.g., adhoc analytics
 - Hive and Pig frameworks with SQL-over-Hadoop drive this trend
- But SQL and analytics was the stronghold of relational database engines
- "MapReduce: A major step backwards" Dewitt, Stonebraker

Role of a database system

- Database: integrated, shared data collection
- Integrated
 - Eliminate needless redundancy
 - Maintain strong consistency
- Shared
 - Application written by <u>programmers</u> in multiple languages
 - End-users who use applications, forms, CLI to interact
- Database systems shield users from
 - How data is stored (bits & bytes, 1 vs N files, 1 vs N disks...)
 - How data is accessed (btree, hashtable, scan, ...)

What is a data model?

- Collection of application-visible constructs
 - Describe data in application & storage agnostic way
- Constructs to describe structural aspects
 - How do applications perceive the data?
 - Ex: table, graph, associative array...
- Constructs to describe manipulation aspects
 - What operators can applications use?
 - Ex: join, traverse, lookup...
- Constructs to describe data integrity aspects
 - How do we ensure that data manipulation is "correct"?

Relational Model: Structural aspect

- Database = set of named relations (or tables)
- Each relation has a set of named attributes (or columns)
- Each tuple (or row) has a value for each attribute
- Each attribute has a type (or domain)
 - integer, real, string, file formats (jpeg,...), enumerated and many more

Students

sid	name	login	age	gpa
50000	Dave	dave@cs	19	3.3
53666	Jones	jones@cs	18	3.4
53688	Smith	smit@ee	18	3.2
	•••		•••	•••

Colleges

name	location	strength
MIT	USA	10000
Oxford	UK	22000
EPFL	СН	9000

Relational Model: Structural aspect

- Relation Schema: relation name + field names + field domains
 - Students(sid: string, name: string, login: string, age: integer, gpa: real)
- Relation Instance: contents at a given point in time
 - set of rows or tuples. (all rows are distinct with no specific ordering)
 - Cardinality: # rows, Arity or degree: # attributes
- Database Schema: collection of relation schemas
- Database Instance: collection of relation instances

Students

sid	name	login	age	gpa
50000	Dave	dave@cs	19	3.3
53666	Jones	jones@cs	18	3.4
53688	Smith	smit@ee	18	3.2
	•••		•••	•••

Colleges

name	location	strength
MIT	USA	10000
Oxford	UK	22000
EPFL	СН	9000
•••		•••

Relational model & data independence

Relational Model: Integrity Aspect

- Relational model provides Integrity Constraints
 - condition specified on schema that restricts the data that can be stored in any instance
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.
- A *legal* instance of a relation is one that satisfies all specified ICs
 - DBMS should not allow illegal instances.
- With ICs, stored data is more faithful to real-world meaning
 - Avoids data entry errors, too!

Relational Model: Keys

- Attribute whose value is unique in each tuple
- Or set of attributes whose combined values are unique
- Keys specify key constraint
 - Enforced when tuples are inserted/updated

	Students					
(sid	name	login	age	gpa	
	50000	Dave	dave@cs	19	3.3	
	53666	Jones	jones@cs	18	3.4	
	53688	Smith	smit@ee	18	3.2	
	•••	•••	•••	•••		

	Colle		
(name	location	strength
	MIT	USA	10000
	Oxford	UK	22000
	EPFL	СН	9000
	•••	•••	•••

Relational Model: Foreign Keys

- Set of fields in one relation that `refer' to a tuple in another relation (like a pointer)
- Foreign keys specify Foreign Key Constraint
 - FK must correspond to the primary key of the other relation
- If all foreign key constraints are enforced, referential integrity is achieved (i.e., no dangling references.)

Students Enrolled sid cid sid login grade name age gpa 50000 dave@cs 3.3 Carnatic101 53666 19 Dave 53666 Jones iones@cs 18 3.4 Raggae203 50000 Topology112 3.2 53666 53688 Smith smit@ee 18

Relational Model: Manipulation Aspect

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - Relational Algebra: More operational, very useful for representing execution plans.
 - Relational Calculus: Lets users describe what they want, rather than how to compute it. (Non-procedural, declarative.)

Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run over any legal instance)
 - The schema for the *result* of a given query is also fixed. It is determined by the definitions of the query language constructs.

Example Schema and Instances

- Boats(<u>bid: integer</u>, bname: string, color: string)
- Sailors(<u>sid: integer</u>, <u>sname</u>: string, <u>rating</u>: integer, <u>age</u>: real)
- Reserves (<u>sid: integer, bid: integer, day:date</u>)

Boats

<u>bid</u>	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

<i>R</i> 1	<u>sid</u>	<u>bid</u>	day
	22	101	10/10/96
	58	103	11/12/96

<i>S</i> 1	<u>sid</u>	sname	rating	age
	22	Dustin	7	45.0
	31	Lubber	8	55.5
	58	Rusty	10	35.0

S2	<u>sid</u>	sname	rating	age
	28	yuppy	9	35.0
	31	Lubber	8	55.5
	44	guppy	5	35.0
	58	Rusty	10	35.0

Relational Algebra: 5 Basic Operations

- Selection (σ) Selects a subset of *rows* from relation (horizontal).
- **Projection** (π) Retains only wanted *columns* from relation (vertical).
- Cross-product (x) Allows us to combine two relations.
- Set-difference (-) Tuples in r1, but not in r2.
- Union (∪) Tuples in r1 and/or in r2.

Since each operation returns a relation, operations can be composed! (Algebra is "closed").

Selection Operator: (σ)

Selects rows that satisfy selection condition.

• Output schema of result is same as that of the input relation

S2

<u>sid</u>	sname	rating	age
20		_	25.0
20	yuppy	9	33.0
31	Lubber	8	55.5
31	Labbei	0	33.3
44	guppy	5	35.0
• •	90.PP1		00.0
-50	Rusty	10	35.0
50	Rusty	10	33.0

 $\sigma_{rating < 9}(S2)$

<u>sid</u>	sname	rating	age
31	Lubber	8	55.5
44	guppy	5	35.0

S2

sname	rating	age
yuppy	9	35.0
Lubber	8	55.5
guppy	5	35.0
Rusty	10	35.0
	yuppy Lubber guppy	yuppy 9 Lubber 8 guppy 5

 $\sigma_{rating < 9 \land}(S2)$ age > 50

Ou	tput	

Output

<u>sid</u>	sname	rating	age
31	Lubber	8	55.5

Projection Operator (π)

- Retains only attributes that are in the projection list.
- Output schema is exactly the fields in the projection list, with the same names that they had in the input relation.

S2

<u>si d</u>	sname	rating	age
23	yuppy	9	35.0
31	Lubber	8	55.5
44	guppy	5	35.0
58	Rusty	10	35.0

 $\pi_{sname,rating}(S2)$

Output

sname	rating
yuppy	9
Lubber	8
guppy	5
Rusty	10

Projection Operator (π): Duplicate Elimination

- Relational algebra is set based while SQL is bag (multiset) based
- Projection operator eliminates duplicates

 $\pi_{age}(S2)$

55.5

Composing multiple operators

Output of one operator can become input to another operator

Output

sname	rating
yuppy	9
Rusty	10

$$\pi_{sname,rating}\left(\sigma_{rating>8}(S2)\right)$$

Union and Set-Difference

- All of these operations take two input relations, which must be union-compatible:
 - Same number of fields.
 - "Corresponding" fields have the same type.

Union operator (U)

<i>S</i> 1	<u>sid</u>	sname	rating	age
	22	Dustin	7	45.0
	31	Lubber	8	55.5
	58	Rusty	10	35.0

S2	<u>sid</u>	sname	rating	age
	28	yuppy	9	35.0
	31	Lubber	8	55.5
	44	guppy	5	35.0
	58	Rusty	10	35.0

*S*1 ∪ *S*2

<u>sid</u>	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

Set Difference Operator (-)

S1	<u>sid</u>	sname	rating	age
	22	Dustin	7	45.0
	31	Lubber	8	55.5
	58	Rusty	10	35.0

S2	<u>sid</u>	sname	rating	age
	28	yuppy	9	35.0
	31	Lubber	8	55.5
	44	guppy	5	35.0
	58	Rusty	10	35.0

S	1	_	S	2
	_			

<u>sid</u>	sname	rating	age
22	Dustin	7	45.0

$$S2-S1$$

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
44	guppy	5	35.0

Cross-Product (x)

- S1 x R1: Each row of S1 paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names "inherited" if possible.
 - May have a naming conflict: Both S1 and R1 have a field with the same name.
 - In this case, can use the renaming operator.

$$\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$$

Call C the result of S1×R1 and respectively rename the 1st & 5th fields of C to sid1 & sid2

Cross-Product Example

S1

<u>sid</u>	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.0

R1

<u>sid</u>	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

$$S1 \times R1$$

$$\rho_{1\to sid1,5\to sid2}(S1\times R1)$$

sid1	sname	rating	age	sid2	bid	day
22	Dustin	7	45.0	22	101	10/10/96
22	Dustin	7	45.0	58	103	11/12/96
31	Lubber	8	55.5	22	101	10/10/96
31	Lubber	8	55.5	58	103	11/12/96
58	Rusty	10	35.0	22	101	10/10/96
58	Rusty	10	35.0	58	103	11/12/96

Compound Operator: Join

- Joins are compound operators involving cross product, selection, and (sometimes) projection.
- Most common type of join is a natural join (often just called "join"). R⋈S conceptually is:
 - Compute R × S
 - Select rows where attributes that appear in both relations have equal values
 - Project all unique attributes and one copy of each of the common ones.
- Note: Usually done much more efficiently than this.
- Useful for putting "normalized" relations back together.

Natural Join Example

 $\pi_{S1.sid,sname,...}(\sigma_{S1.sid=R1.sid}(S1 \times R1))$

S1

<u>sid</u>	sname	rating	age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.0

R1

<u>sid</u>	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

sid	sname	rating	age	si	bid	day
22	Dustin	7	45.0	22.	101	10/10/96
22	Dustin	7	45.0	50	103	11/12/96
24	Lulalaan	0			101	40/40/06
91	LUDDEI	0	ر.رر	۷.	101	10/10/90
-31	Lubber	8	55.5	50	103	11/12/96
58	Rusty	10	35.0	24	101	10/10/96
58	Rusty	10	35.0	58	103	11/12/96

 $S1 \bowtie R1$

sid	sname	rating	age	bid	day
22	Dustin	7	45.0	101	10/10/96
58	Rusty	10	35.0	103	11/12/96

Condition Join or Theta-Join

$$\mathbf{R} \bowtie_{\mathcal{C}} \mathbf{C} = \sigma_{\mathbf{C}}(\mathbf{R} \times \mathbf{S})$$

- Output schema same as that of cross-product.
- May have fewer tuples than cross-product.

S1	<u>sid</u>	sname	rating	age
	22	Dustin	7	45.0
	31	Lubber	8	55.5
	58	Rusty	10	35.0

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

sid	sname	rating	age	sid	bid	day
22	Dustin	7	45.0	58	103	11/12/96
31	Lubber	8	55.5	58	103	11/12/96

Equi-Join

- Special case of theta-join: condition *c* contains only conjunction of *equalities*.
- Find all pairs of sailors in S2 who have same age.

<i>S</i> 2	<u>sid</u>	sname	rating	age	• $S1 \bowtie_{S1.age=S2.age} S2$
	28	yuppy	9	35.0	S ilage — SZiage
	31	Lubber	8	55.5	
	44	guppy	5	35.0	$\bullet \sigma_{sid1!=sid2}$
	58	Rusty	10	35.0	$(S1 \bowtie_{S1.age=S2.age} (S2))$

Grouping and Aggregation

- Grouping and Aggregation: γX (R)
 - Given a relation R, partition its tuples according to their values in one set of attributes G
 - The set G is called the grouping attributes
 - Then, for each group, aggregate the values in certain other attributes
 - Aggregation functions: SUM, COUNT, AVG, MIN, MAX, ...
- In the notation, X is a list of elements that can be:
 - A grouping attribute
 - An expression $\theta(A)$, where θ is one of the (five) aggregation functions and A is an attribute NOT among the grouping attributes

Grouping and Aggregation: Example

- Let's work with an example
 - Imagine that a social-networking site has a relation Friends (User, Friend)
 - The tuples are pairs (a, b) such that b is a friend of a
 - Query: compute the number of friends each member has
- γ_{User, COUNT(Friend)} (Friends)
 - This operation groups all the tuples by the value in their first component
 - There is one group for each user
 - Then, for each group, it counts the number of friends

Renaming Operator (p)

- Renames the list of attributes specified in the form of oldname
 → newname or position → newname
- Output schema is same as input except for the renamed attributes.
- Returns same tuples as input
- Can also be used to rename the name of the output relation $Pbname \rightarrow boatname, color \rightarrow boatcolor (Boats)$

<u>bid</u>	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

<u>bid</u>	boatname	boatcolor
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

 $\rho_{2 \rightarrow boatname,3 \rightarrow boatcolor}(Boats)$

Relational Algebra: Summary

Formal foundation for real query languages

Helps represent and reason about execution plans

5 basic operators forming a closed algebra

• Selection, projection, cross-product, union, set difference

Compound operators

- Useful shorthands like join and division
- Can be expressed with basic operators
- But enable faster query execution

Query Processing

Steps in Query Processing

Query parsing & transformation

A Query:

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

- 1. Query first broken into "blocks"
- 2. Each block converted to relational algebra

Step 1: Break query into Query Blocks

Query block = unit of optimization

 Nested blocks are usually treated as calls to a subroutine, made once per outer tuple

(This is an over-simplification, but serves for now)

Step 2: Converting query block into relational algebra expression

SELECT S.sid FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = "red"

$$\pi_{\text{S.sid}}(\sigma_{\text{B.color} = \text{``red''}}(\text{Sailors} \bowtie \text{Reserves} \bowtie \text{Boats}))$$

Relational Algebra Equivalences

• Selections:
$$\sigma_{c_1 \wedge \cdots \wedge c_n}(R) \equiv \sigma_{c_1} \left(\dots \left(\sigma_{c_n}(R) \right) \right)$$
 (Cascade) $\sigma_{c_1} \left(\sigma_{c_2}(R) \right) \equiv \sigma_{c_2} \left(\sigma_{c_1}(R) \right)$ (Commute)

• Projections:
$$\pi_{a_1}(R) \equiv \pi_{a_1}\left(...\left(\pi_{a_n}(R)\right)\right)$$
 (Cascade) a_i is a set of attributes of R and $a_i \subseteq a_{i+1}$ for $i=1...n-1$

 These equivalences allow us to 'push' selections and projections ahead of joins.

Another Equivalence

 A projection commutes with a selection that only uses attributes retained by the projection

$$\pi_{\text{age, rating, sid}} (\sigma_{\text{age}<18 \, ^{\land} \, \text{rating}>5} (\text{Sailors}))$$

$$\longleftrightarrow \sigma_{\text{age}<18 \, ^{\land} \, \text{rating}>5} (\pi_{\text{age, rating, sid}} (\text{Sailors}))$$

Equivalences Involving Joins

$$R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T$$
 (Associative)
 $(R \bowtie S) \equiv (S \bowtie R)$ (Commutative)

These equivalences allow us to choose different join orders

Examples ...

$$\sigma_{\text{age}<18 \, \wedge \, \text{rating}>5} \, (\text{Sailors})$$

$$\leftrightarrow \sigma_{\text{age}<18} \, (\sigma_{\text{rating}>5} \, (\text{Sailors}))$$

$$\leftrightarrow \sigma_{\text{rating}>5} \, (\sigma_{\text{age}<18} \, (\text{Sailors}))$$

$$\pi_{\text{age,rating}} \, (\text{Sailors}) \leftrightarrow \pi_{\text{age}} \, (\pi_{\text{rating}} \, (\text{Sailors}))$$

$$\pi_{\text{age,rating}} \, (\text{Sailors}) \leftrightarrow \pi_{\text{age,rating}} \, (\pi_{\text{age,rating,sid}} \, (\text{Sailors}))$$

Mixing Joins with Selections & Projections

Converting selection + cross-product to join

$$\sigma_{S.sid = R.sid}$$
 (Sailors x Reserves)

$$\leftrightarrow$$
 Sailors $\bowtie_{S.sid = R.sid}$ Reserves

Selection on just attributes of S commutes with R ⋈S

$$\sigma_{\text{S.age} < 18}$$
 (Sailors \bowtie S.sid = R.sid Reserves)

$$\leftrightarrow$$
 $(\sigma_{\text{S.age}<18} \text{ (Sailors)}) \bowtie_{\text{S.sid} = \text{R.sid}} \text{Reserves}$

• We can also "push down" projection (but be careful...)

$$\pi_{S.sname}$$
 (Sailors $\bowtie_{S.sid = R.sid}$ Reserves)

$$\leftrightarrow \pi_{S.sname} (\pi_{sname,sid}(Sailors))$$
 $\searrow_{S.sid = R.sid} \pi_{sid}(Reserves))$

Steps in Query Processing

We know...

```
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)
```

For each SQL query....

```
SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle' AND S.sstate='WA'
AND S.sno = U.sno
AND U.pno = 2
```

There exist many logical query plans...

Example Query: Logical Plan 1

Example Query: Logical Plan 2

What We Also Know

- For each logical plan...
- There exist many physical plans

Example Query: Physical Plan 1

Example Query: Physical Plan 2

Query Optimization

- Transformation produces relational algebra expression per "block"
- 2. Then, for each block, several alternative query plans are considered
- 3. Plan with lowest estimated cost is selected

Query Optimizer Overview

- Input: A logical query plan
- Output: A good physical query plan
- Basic query optimization algorithm
 - Enumerate alternative plans (logical and physical)
 - Compute estimated cost of each plan
 - Compute number of I/Os
 - Optionally take into account other resources
 - Choose plan with lowest cost
 - This is called cost-based optimization

Steps in Query Processing

Query Execution Models

- A DBMS's processing model defines how the system executes a query plan.
 - Different trade-offs for workloads
- Approach #1: Interpreted execution
- Approach #2: Compiled execution

Intepreted execution with Volcano model

Each operator implements an iterator interface

- open()
 - Initializes operator state
 - Sets parameters such as selection condition
- next()
 - Operator invokes get_next() recursively on its inputs
 - Performs processing and produces an output tuple
- close(): clean-up state

Pipelined Execution

Tuples generated by an operator are immediately sent to the parent

Pipelined Execution

Tuples generated by an operator are immediately sent to the parent

Benefits:

- Pull based: No operator synchronization issues
- Saves cost of writing intermediate data to disk
- Saves cost of reading intermediate data from disk
- Enables implementation of parallelization as an operator

CNA i d = B
WHERE A val ue
AND B val ue

CNA i d = B
WHERE A val ue
AND B val ue

Pipelined Execution

- Tuples generated by an operator are immediately sent to the parent
- Benefits:
 - Pull based: No operator synchronization issues
 - Saves cost of writing intermediate data to disk
 - Saves cost of reading intermediate data from disk
 - Enables implementation of parallelization as an operator
- Drawback
 - High function call overhead
 - Difficult to perform SIMD-style vectorization

Compiled execution

- Compile queries in-memory into native code
- Organizes query processing in a way to keep a tuple in CPU registers for as long as possible.
 - Push-based vs. Pull-based
 - Data Centric vs. Operator Centric
- LLVM typically used for compilation
 - Collection of modular and reusable compiler and toolchain technologies.
 - Core component is a low-level programming language (IR) that is like assembly.

Query interpretation vs compilation: Example

```
CREATE TABLE A (
  id INT PRIMARY KEY,
  val INT
CREATE TABLE B (
 id INT PRIMARY KEY,
 val INT
CREATE TABLE C (
 a_id INT REFERENCES A(id),
 b_id INT REFERENCES B(id),
 PRIMARY KEY (a_id, b_id)
);
```

```
SELECT *
                                                      A.id=C.a_id
 FROM A. C.
  (SELECT B.id, COUNT(*)
    WHERE B. val = ? + 1
                                                                        B.id=C.b id
                                   A.val=123
    GROUP BY B.id) AS B
 WHERE A.val = 123
   AND A.id = C.a_id
   AND B.id = C.b_id
                                                      B.id, COUNT(*)
                                                    B.val=?+1
```

Query interpretation vs compilation: Example

```
SELECT *
FROM A, C,
(SELECT B.id, COUNT(*)
FROM B
WHERE B.val = ? + 1
GROUP BY B.id) AS B
WHERE A.val = 123
AND A.id = C.a_id
AND B.id = C.b_id
```


Query interpretation vs compilation: Example

```
SELECT *
FROM A, C,
  (SELECT B.id, COUNT(*)
  FROM B
  WHERE B.val = ? + 1
  GROUP BY B.id) AS B
WHERE A.val = 123
  AND A.id = C.a_id
  AND B.id = C.b_id
```



```
for t in A:
  if t.val == 123:
    Materialize t in HashTable ⋈(A.id=C.a_id)
 if t.val == <param> + 1:
    Aggregate t in HashTable Γ(B.id)
for t in Γ(B.id):
  Materialize t in HashTable ⋈(B.id=C.b_id)
for t3 in C:
  for t2 in \bowtie(B.id=C.b_id):
    for t1 in \bowtie(A.id=C.a_id):
      emit(t1 \bowtie t2 \bowtie t3)
```

On-disk Storage

DBMS on-disk storage

- The DBMS stores a database as one or more files on disk typically in a proprietary format.
 - The OS doesn't know anything about the contents of these files.

- DBMS storage manager is responsible for maintaining a database's files
 - It organizes the files as a collection of pages.
 - Tracks data read/written to pages.
 - Tracks the available space.

DBMS Page

- A page is a fixed-size block of data.
 - It can contain tuples, meta-data, indexes, log records...
- There are three different notions of "pages" in a DBMS:
 - Hardware Page (usually 4KB)
 - OS Page (usually 4KB)
 - Database Page (512B-16KB)
- We wont talk about page organization
 - Heap/tree/sorted/hashing files
 - Pages organiz

Storage Models

- The relational model does not specify how a DBMS must store all a tuple in a page.
- Storage models
 - Dictate how tuples are stored within a page
 - Different models optimized for different workloads

Database Workloads

- On-Line Transaction Processing (OLTP)
 - Fast operations that only read/update a small amount of data each time.

- On-Line Analytical Processing (OLAP)
 - Complex queries that read a lot of data to compute aggregates.
- Hybrid Transaction + Analytical Processing
 - OLTP + OLAP together on the same database instance

N-ary storage model

• DBMS stores all attributes for a single tuple contiguously in a

page.

N-ary storage model

- The DBMS stores all attributes for a single tuple contiguously in a page.
- Ideal for OLTP workloads where queries tend to operate only on an individual entity and insert heavy workloads.

N-ary storage model

Advantages

- Fast inserts, updates, and deletes.
- Good for queries that need the entire tuple.

Disadvantages

Not good for scanning large portions of the table and/or a subset of the

attributes.

Decomposition storage model (DSM)

- The DBMS stores the values of a single attribute for all tuples contiguously in a page.
- Also known as a "column store"

Decomposition storage model (DSM)

 Ideal for OLAP workloads where read-only queries perform large scans over a subset of the table's attributes.

Decomposition storage model (DSM)

Advantages

- Reduces the amount wasted I/O because the DBMS only reads the data that it needs.
- Better query processing and data compression
- Dictionary compression example
 - Most used scheme in DBMSs enables queries over compressed data
 - Build a data structure that maps variable-length values to integer identifier.
 - Replace those values with their identifier in the dictionary data structure.

Storage Models: Summary

- N-ary storage model
 - Advantages
 - Fast inserts, updates, and deletes.
 - Good for queries that need the entire tuple.
 - Disadvantages
 - Not good for scanning large portions of the table and/or a subset of the attributes.

- Decomposition storage model
 - Advantages
 - Reduces the amount wasted I/O because the DBMS only reads the data that it needs.
 - Better query processing and data compression
 - Disadvantages
 - Slow for point queries, inserts, updates, and deletes because of tuple splitting/stitching.

It's all about them tables

- Relational databases
 - Relational model: Logical data independence
 - Relational algebra: Algebraic optimization, declarative querying
 - Optimized access paths: Indexing, materialized views, ...
 - Transactional semantics: ACID guarantees

What is the link with MapReduce?

MR DBMS Comparison

"MapReduce and Parallel DBMS: A comparison of approaches to large-scale data analysis" – Andy Pavlo '09

- Tested Systems
 - Hadoop (MR)
 - Vertica (Columnar DBMS)
 - DBMS-X (Rowstore)

Benchmark 1: Grep Task

- Grep task: Shows overhead of data loading in DBMS
 - Search 3 byte pattern across 10Billion records
 - Each record: 100 bytes (10-byte key, 90-byte value)
 - 1TB across 25,50 or 100 nodes

DBMS slow during data Loading

DBMS fast during execution

Analytical Task

- Web processing: Shows the benefit of query optimization
 - 600k html documents
 - 155Million uservisits records, 18 million rankings records
 - Task: Find sourceIP that generated most revenue with avg. pagerank
 - DBMS: Complex SQL join query, MR: 3 separate MR programs

MapReduce: Not a silver bullet

- MapReduce does not fit many cases.
 - Interactive computations
 - E.g. not a user-facing web site back-end.
 - Small updates to big data (more on OLTP and this later)
 - Add a few documents to a big index
 - Small data, since overheads are high.

Relational operations over MR: Natural Join

- Let's look at two relations R(A, B) and S(B, C)
 - We must find tuples that agree on their B components
 - We shall use the B-value of tuples from either relation as the key
 - The value will be the other component and the name of the relation
 - That way the reducer knows each tuple's relation

• Map:

- For each tuple (a, b) of R emit the key/value pair (b, ('R', a))
- For each tuple (b, c) of S emit the key/value pair (b, ('S', c))

Reduce:

- Each key b will be associated to a list of pairs that are either ('R', a) or ('S', c)
- Emit key/value pairs of the form (b, $[(a_1, b, c_1), (a_2, b, c_2), (a_n, b, c_n)])$

Shuffle overhead

Each Reducer:

- Handles 1/R of the possible key values
- Fetches its file from each of M mappers => Shuffle
- Sorts all of its entries to group values by keys

- Shuffle is an all-to-all communication that can overload the network
 - Paper's root switch: 100 to 200 gigabits/second
 - 1800 machines, so 55 megabits/second/machine.
 - Small, e.g. much less than disk (~50-100 MB/s at the time) or RAM speed.

Combiner optimization

- Often a map task will produce many pairs of the form (k,v1), (k,v2), ... for the same key k
 - E.g., popular words in Word Count
- Save network time by pre-aggregating at mapper with combiner function
 - Decreases size of intermediate data transferred during shuffle
 - Reduce network load

Combiner example: Word count

Combiner: Algorithmic correctness

- The use of combiners must be thought carefully
 - the correctness of the algorithm cannot depend on computation (or even execution) of the combiners
- Commutative and Associative computations
 - Reducer and Combiner code may be interchangeable
 - This is not true in the general case
- Counter example: Mean
 - We have a large dataset where input keys are strings and input values are integers
 - Dataset can be a log from a website, where the keys are user IDs and values are some measure of activity
 - Compute the mean of all integers associated with the same key

Baseline approach for mean

- We use an identity mapper, which groups and sorts appropriately input key-value pairs
 - Reducers keep track of running sum and the number of integers encountered
 - The mean is emitted as the output of the reducer, with the input string as the key

```
1: class Mapper
       method MAP(string t, integer r)
            EMIT(string t, integer r)
3:
1: class Reducer
       method REDUCE(string t, integers [r_1, r_2, \ldots])
3:
            sum \leftarrow 0
            cnt \leftarrow 0
4:
            for all integer r \in \text{integers } [r_1, r_2, \ldots] do
5:
6:
                sum \leftarrow sum + r
                cnt \leftarrow cnt + 1
7:
            r_{avg} \leftarrow sum/cnt
8:
            EMIT(string t, integer r_{ava})
9:
```

Mean with combiners: Caution

- Note: operations are not distributive
 - Mean(1,2,3,4,5) != Mean(Mean(1,2), Mean(3,4,5))
 - Hence: a combiner cannot output partial means and hope that the reducer will compute the correct final mean

- Rule of thumb:
 - Combiners are optimizations, the algorithm should work even when "removing" them

Mean with combiners

```
1: class Mapper
         method MAP(string t, integer r)
             EMIT(string t, pair (r, 1))
1: class Combiner
2:345:678:
         method COMBINE(string t, pairs [(s_1, c_1), (s_2, c_2), \ldots])
             sum \leftarrow 0
             cnt \leftarrow 0
             for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
                 sum \leftarrow sum + s
                 cnt \leftarrow cnt + c
             EMIT(string t, pair (sum, cnt))
1: class REDUCER
2:345:678:
         method REDUCE(string t, pairs [(s_1, c_1), (s_2, c_2)...])
             sum \leftarrow 0
             cnt \leftarrow 0
             for all pair (s, c) \in \text{pairs } [(s_1, c_1), (s_2, c_2) \dots] do
                 sum \leftarrow sum + s
                 cnt \leftarrow cnt + c
             r_{avg} \leftarrow sum/cnt
9:
             EMIT(string t, integer r_{avg})
```

MapReduce: Not a silver bullet

- MapReduce does not fit many cases.
 - Interactive computations
 - E.g. not a user-facing web site back-end.
 - Small updates to big data (more on OLTP and this later)
 - Add a few documents to a big index
 - Small data, since overheads are high.
 - Unpredictable reads (neither Map nor Reduce can choose input) & load balancing issues
 - Critical to scaling -- bad for N-1 servers to wait for 1 to finish.
 - Might be bug, flaky hardware, or poor partitioning
 - Leads to Stragglers: Tasks that take long time to execute

Better load balancing (1): Custom partitioning

- Mapper Operation
 - Reads input file blocks
 - Generates pairs $\langle K, V \rangle$
 - Writes to local file h(K)
- Hash Function h partitions intermediate key space K
 - Default h: Maps each key K to integer i such that $0 \le i < R$
- Can also specify a customized partitioning function
 - Ex: output keys are URLs, we want all entries for a single host to end up in the same output file.
 - Can use "hash(Hostname(urlkey)) mod R" as h

Better load balancing (2): Task duplication

- Assign many more tasks than workers.
 - Master hands out new tasks to workers who finish previous tasks.
 - So no task is so big it dominates completion time (hopefully).
 - So faster servers do more work than slower ones, finish about the same time.

MapReduce: Not a silver bullet

- MapReduce does not fit many cases.
 - Interactive computations
 - E.g. not a user-facing web site back-end.
 - Small updates to big data (more on OLTP and this later)
 - Add a few documents to a big index
 - Small data, since overheads are high.
 - Unpredictable reads (neither Map nor Reduce can choose input) & load balancing issues
 - Critical to scaling -- bad for N-1 servers to wait for 1 to finish.
 - Might be bug, flaky hardware, or poor partitioning
 - Leads to Stragglers: Tasks that take long time to execute
 - Iterative computations (more on this in the next lecture)
 - Algorithms with multiple rounds, e.g. k-means, page rank

MapReduce: Not a silver bullet

- MapReduce does not fit many cases.
 - Interactive computations
 - E.g. not a user-facing web site back-end.
 - Small updates to big data (more on OLTP and this later)
 - Add a few documents to a big index
 - Small data, since overheads are high.
 - Unpredictable reads (neither Map nor Reduce can choose input) & load balancing issues
 - Critical to scaling -- bad for N-1 servers to wait for 1 to finish.
 - Might be bug, flaky hardware, or poor partitioning
 - Leads to Stragglers: Tasks that take long time to execute
 - Iterative computations (more on this in the next lecture)
 - Algorithms with multiple rounds, e.g. k-means, page rank
- "MapReduce: A major step backwards" Dewitt, Stonebraker

RDBMS vs MapReduce: Summary

- Systems designed to meet different requirements
- Traditional relational databases
 - Interactive SQL analytics
 - Optimized for point queries (random access) and range queries (scans)
 - Built for enterprises (dedicated DB admin, few DB servers)
 - No need to scale to 1,000 or more nodes
 - Proprietary and paid products
 - Fine-grained updates to shared data
 - Guaranteeing ACID properties despite concurrent access and failures
- MapReduce
 - Latency-insensitive batch analytics
 - Sequential scans of Petabytes of data
 - Built for the cloud: Fault tolerance across commodity servers
 - Focus on faults during query rather than recovery after updates
 - Open source and "One person" deployment
 - Turn any Java developer into a distributed analytics engineer