

Malicious Website Detection

Name: Ritik Jangid

Enrolment No: 2018IMSCS017

Supervisor: Dr. Nishtha Kesswani

Agenda

- Aim
- Dataset
- Implementation
 - Feature Extraction
 - Machine LearningAlgorithm
- Results
- Existing Work
- Implementing ANN
- References

AIM

Predicting if a website is malicious or not by a given URL.

Dataset

Data containing URL and Label indicating good or bad URL.

Malicious_n_Non-Malicious URL Supervised Machine Learning k kaggle.com

Total 420464 tuples

	url	label
0	diaryofagameaddict.com	bad
1	espdesign.com.au	bad
2	iamagameaddict.com	bad
3	kalantzis.net	bad
4	slightlyoffcenter.net	bad
5	toddscarwash.com	
6	tubemoviez.com	bad
7	ipl.hk	bad
8	crackspider.us/toolbar/install.php?pack=exe	bad
9	pos-kupang.com/	bad

Balancing data

Techniques

- Oversampling
- Undersampling
- SMOTE

Implementation

Feature Extraction

Text Based Features

- Bag of Words
- Term Frequency Inverse
 Document Frequency (TFIDF)

Domain Based Features

- Domain name
- Creation Time
- Last Update Time
- Expiration Time
- Country
- Top Level Domain

Obfuscation Based Features

- Comment Rows
- Redirection Number
- Links count
- Size of script
- Number of the plus operators

Feature Extraction

Text Based Features

Bag of Words using CountVectorizer

- It represents text documents to a matrix of the token count.
- CountVectorizer is provided by scikit-learn library to create Bag of Words.

TFIDF

- It transforms the text into a usable vector based on the importance of words in the document.
- It is calculated by multiplying Term Frequency (TF) and Inverse of Document Frequency (IDF).

$$w_{i,j} = tf_{i,j} \times idf_i$$

Implementing Machine Leaning Algorithms

A Binary Classification Problem

- Logistic Regression
- Multinomial Naive Bayes
- Decision Tree

Results

CountVectorizer

Results

TFIDF

Existing Work

Malicious URL Detection using NLP, Machine Learning and FLASK [1]

Uses Kaggle dataset with 500000+ urls

Algorithm	CV	TF-IDF
K-NN	89%	60.9%
DT	96.8%	96.4%
RF	97.1%	97.4%
LR	96.5%	96.1%

Accuracy Comparison

Existing Work

Intelligent Malicious URL Detection with Feature Analysis [2]

- Used domain-based, Alxea based and Obfuscation based features for classification using XGBoost classifier with 99% accuracy.
- The dataset contains 5 million URLs from Alxea ranking, urlquery.net, urlscan.io and Github.

Discovering features for detecting malicious websites [3]

- The dataset contains 34,742 Alexa Top Domains, and 4,441 malicious entries provided by Cisco Talos Intelligence Group.
- Extracted Features from URL, webpage content, and HTTP response header.
- 97 % accuracy with Random Forest Algorithm.

Artificial Neural Network

Artificial Neural Network -Results

Accuracy of A	0.8948012030273986				
	precision	recall	f1-score	support	
0 1	0.85 0.96	0.96 0.83	0.90 0.89	14916 15341	
accuracy macro avg weighted avg	0.90 0.90	0.90 0.89	0.89 0.89 0.89	30257 30257 30257	

References

- 1.Lakshmanarao, A., M. Raja Babu, and MM Bala Krishna. "Malicious URL Detection using NLP, Machine Learning and FLASK." 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). IEEE, 2021.
- 2.Chen, Yu-Chen, Yi-Wei Ma, and Jiann-Liang Chen. "Intelligent malicious url detection with feature analysis." 2020 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2020.[1]
- 3.McGahagan IV, John, et al. "Discovering features for detecting malicious websites: An empirical study." Computers & Security 109 (2021): 102374.[2]
- 4. McGahagan IV, John, et al. "Discovering features for detecting malicious websites: An empirical study." Computers & Security 109 (2021): 102374.

