Assignment 11

Challa Akshay Santoshi - CS21BTECH11012

June 9, 2022

Outline

Question

Solution

Question

Excercise 7 Quetion 9

Show that if $X_i \ge 0$, $E(X_i^2) = M$ and $s = \sum_{i=1}^n X_i$, then $E(s^2) \le ME(n^2)$.

Definitions

Given a discrete type random variable \mathbf{n} taking the values 1,2,... and a sequence of random variables X_k independent of \mathbf{n} , then the sum \mathbf{s} is defined as

$$s = \sum_{k=1}^{n} X_k \tag{1}$$

Given that for any k,

$$E(X_k^2) = M (2)$$

Proof

$$(E(X_iX_j))^2 = (E(X_i)E(X_j))^2 \le E(X_i^2)E(X_j^2) = M^2$$
(3)

$$(E(X_iX_i))^2 \le M^2 \implies E(X_iX_i) \le M \tag{4}$$

$$E(s^{2}|\mathbf{n}=n) = E((\sum_{i=1}^{n} X_{i})(\sum_{j=1}^{n} X_{j}))$$
 (5)

$$= E(\sum_{i=1}^{n} \sum_{j=1}^{n} X_i X_j)$$
 (6)

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} E(X_{i}X_{j})$$
 (7)

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{n} M \tag{8}$$

Proof

$$E(s^2|\mathbf{n}=n) \le n^2M \tag{9}$$

We can write,

$$E(s^2) = E(E(s^2|\mathbf{n} = n))$$
 (10)

$$E(s^2|\mathbf{n}=n) \leq n^2M$$

$$E(E(s^2|\mathbf{n}=n)) \le E(n^2M) \tag{12}$$

$$\implies E(s^2) \le ME(n^2) \tag{13}$$

Hence proved.

(11)