Resumen de Bases de Datos

Jaime Lorenzo Sánchez

25 de agosto de 2022

Modelo Conceptual

Clave principal (PK)

- Atributo identificativo de la entidad.
- Valor único de la entidad
- Valor mínimo 1, sin valor máximo.

Clave alterna (AK): Clave que podría ser principal, pero no lo es.

Un conjunto de clave principal es único.

Integridad de clave: Clave principal + Clave alterna.

Integridad de dominio: NOT NULL, VARCHAR, INT.

Clave candidata: Clave candidata a identificar a la entidad (PK y AK).

La clave PK debe ser mínima en claves traslapadas.

Claves traslapadas: Claves de dos o más atributos donde comparten, al menos, dos de ellas.

Tipos de interrelaciones

Interrelación: Relación entre tipos de entidad.

- Se debe definir un verbo que represente cómo se relacionan los tipos de entidades en la interrelación.
- Se debe definir las cardinalidades de la interrelación.
- La cardinalidad de la interrelación está formada por las cardinalidades máximas de cada extremo de la interrelación.

Existen tres tipos de interrelaciones:

Interrelaciones Unarias o reflexivas

Interrelaciones Binarias

Interrelaciones N-arias (ternarias)

Relaciones exclusivas

Relaciones fuertes o débiles

Relaciones fuertes: Relaciones vistas anteriormente

Relaciones débiles

- Por existencia: Cardinalidad mínima es 1.
- Por identificación: Valor existente en el tipo de entidad que identifica al tipo de entidad débil por existencia

Atributos de la relación: Atributo que depende de un tipo de entidad en otro tipo de entidad.

Niveles de visión de una base de datos

El acceso a los datos rompe la independencia entre los niveles de visión de la base de datos.

Tipos de especializaciones

Especialización total: La especialización se da si o si. Se representa con un círculo entre el tipo de especialización y el supertipo.

Especialización exclusiva: Si es de un tipo, no puede ser del otro tipo. Se representa con una curva entre el tipo de especialización y los subtipos.

Especialización inclusiva: Puede ser de un tipo, de ambos o de cualquier otro tipo.

Especialización parcial: La especialización puede darse o no.

Traducción de E-R a Relacional

Primera Transformación. Cambiar lo que no puedo traducir por algo que sí puedo traducir

- Eliminación de atributos múltiples: Atributos con más de un valor.
- Eliminación de atributos compuestos.
- Eliminación de las relaciones jerárquicas.

Segunda traducción

- Traducir tipos de entidad: Débiles y fuertes.
- Traducir tipos de interrelación: (1:1), (1:N) o (N:N).

Eliminación de atributos compuestos

Persona (dni, (nombre, apellidos))->Persona'(dni, nombre, apellidos)

Eliminación de atributos múltiples (multivaluados)

Eliminación relaciones jerárquicas

Eliminación de los subtipos de entidad

Notes: si la especialitación es inclusiva, el atributo clasificador formará parte de la clave, sino, no. Ji es total, el atributo clasificador será wos wull,

Eliminación del supertipo de entidad

Tanto atributos como seduciones del supertipo paran a todos y cada uno de los subtipos.

NOTA: No se prede aplicar en las parciales, solo totales

$$(1,n) \qquad D \qquad (1,n)$$

$$(1,n) \qquad D \qquad (1,n)$$

$$(0,n) \qquad (0,n)$$

Eliminación de la relación jerárquica

Se genera una relación set débil por identificación porcado subtipo de entidad, siendo débil el subtipo y fuerte el supertipo.

Transformación conceptual a relacional

(1,1)-(0,1)

(1,1)-(?,n)

(0,1)-(?,n)

(?,n)-(?,n)

Atributo derivado y calculado

Un atributo es derivado si no es clave principal y acompaña a su clave principal como clave foránea

Dependencias funcionales

Se aplica sólo en el modelo relacional.

x ->y // x implica y // y depende de x

Cuando en una relación R(a,b,c,d,e) tenemos un atributo b->*, (c+d)->*, decimos que b y (c+d) son claves candidatas.

Axiomas de Armstrong

```
- Reflexiva: \forall y \in X = D \times -by

- Aumento: x \rightarrow y = b \times +w = by +w

- Ivansitiva: (x \rightarrow y), y \rightarrow z = b \times -bz

- Union: (x \rightarrow z), x \rightarrow y = b \times b(z + y)

(x \rightarrow z), y \rightarrow z = b(x + y) \rightarrow z

- Descomposición: (x \rightarrow y), z = y \Rightarrow x \rightarrow z

- Pseudotransitiva: (x \rightarrow y), xy \rightarrow z = b \times -bz
```

Normalización

Normalizar implica aumentar el desempeño (complejidad) de una base de datos.

Forma Normal 1(FN1): Una relación está en FN1 si todos sus atributos no son múltiples.

Forma Normal 2 (FN2): Una relación está en FN2 si lo está en FN1 y todo atributo o no depende de la clave, o depende de la clave de forma completa.

Forma Normal 3 (FN3): Una relación está en FN3 si lo está en FN2 y no existen dependencias funcionales entre atributos no primos de la relación.

Atributos primos: Atributos que forman parte de la clave principal.

Atributos no primos: Atributos que no forman parte de la clave principal.

Forma Normal de Boyce-Codd (FNBC): Una relación está en FNBC si lo está en FN1 y todo determinante funcional es clave candidata de la relación.

Álgebra Relacional

Compatibilidad de relaciones: Dos relaciones R1 y R2 son compatibles si tienen el mismo grado (mismo número de atributos) y el atributo n-ésimo está definido en el mismo dominio que el atributo n-ésimo de R2.

Operador unión (UNION): R3 = R1 UNION R2

- R1 y R2 deben ser compatibles.
- Se genera una R3, también compatible, formada por la unión de las tuplas SIN REPETICIÓN.

Operador diferencia (MINUS): R3 = R1 MINUS R2

- R1 y R2 deben ser compatibles.
- Se genera R3 formada por las tuplas de R1 NO COMUNES A R2.

Operador selección (SELECT): R2 = SELECT(R1/Q)

Se genera R2 formada por las tuplas de R1 que cumplen la condición Q.

Operador proyección (PROJECT)

Se genera R2 formada por todas las tuplas de R1 y esquema de condición Q.

Operador producto (PRODUCT)

- R1 y R2 no necesariamente compatibles.
- Se genera R3 formada por todas las tuplas de R1 con todas y cada una de las tuplas de R2

Operador intersección (INSERSECT)

- R1 y R2 deben ser compatibles.
- Se genera R3 formado por todas las tuplas pertenecientes a R1 y R2.

Operador reunión (JOIN)

- R1 y R2 deben tener al menos un atributo en común.
- Reunión natural: Se genera R3 de esquema la unión de los esquemas de R1 y R2, y de extensión formado por el producto de R1 y R2 pero sólo los que comparten el valor del atributo común.
- Semireunión: Esquema de R1 y extensión formada por las tuplas de R1 que participan en la reunión natural.

Operador división

Debe cumplirse que el grado de R1 sea >= Grado de R2.