THIS PAGE IS INSERTED BY OIPE SCANNING AND IS NOT PART OF THE OFFICIAL RECORD

Best Available Images

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

TEXT CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT

BLURRY OR ILLEGIBLE TEXT

SKEWED/SLANTED IMAGES

COLORED PHOTOS HAVE BEEN RENDERED INTO BLACK AND WHITE

VERY DARK BLACK AND WHITE PHOTOS

UNDECIPHERABLE GRAY SCALE DOCUMENTS

IMAGES ARE THE BEST AVAILABLE COPY. AS RESCANNING WILL NOT CORRECT IMAGES, PLEASE DO NOT REPORT THE IMAGES TO THE PROBLEM IMAGE BOX.

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-255974

(43) Date of publication of application: 25.09.1998

(51)Int.CI.

H05B 33/14

H05B 33/22

// C09K 11/06

(21)Application number: 09-052014

(71)Applicant: NIPPON STEEL CHEM CO

LTD

MORI TATSUO

MIZUTANI TERUKICHI

(22)Date of filing:

06.03.1997

(72)Inventor:

YAMASHITA KOICHI

MORI TATSUO

MIZUTANI TERUKICHI

OHATA KOJI

IMAIZUMI KANAME

(54) BIDIRECTIONAL FIELD DRIVE TYPE ORGANIC ELECTROLUMINESCENT ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a bidirectional field drive type organic electroluminescent element in which light emission is possible to a single element in the case where a field is applied in an inverse direction as well as the case of a normal direction, and in two different colors can be emitted in the cases where the field is applied in the normal and the inverse directions.

SOLUTION: This element is provided with a pair of electrodes at least one of which is transparent or translucent, a host light emission layer 4 positioned between the electrodes and composed of organic fluorescent material to emit light by

recombination of holes with electrons injected from the respective electrodes, and a pair of carrier transport layers 3, 5 positioned between the host light emission layer 4 and each electrode which transport the holes and electrons injected from the electrodes, which efficiently enclose the holes and electrons in the host light emission layer 4, and which are light-transmitting in a light emission maximum range of emitted

light, where guest light emission material comprising pigment compound is doped to both surface sides or either surface side of the host light emission layer 4 and capable of emitting two-color light.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-255974

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl.⁶

識別記号

FΙ

H05B 33/14

H 0 5 B 33/14

33/22

33/22

C09K 11/06

C 0 9 K 11/06

Z

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出願番号

特願平9-52014

(22)出願日

平成9年(1997)3月6日

特許法第30条第1項適用申請有り 1996年9月7日 社団法人応用物理学会発行の「1996年(平成8年)秋季第57回応用物理学会学術講演会講演予稿集 No.3」に発表

(71) 出願人 000006644

新日鑵化学株式会社

東京都中央区新川二丁目31番1号

(71)出願人 591040074

森竜雄

愛知県名古屋市中川区西日置1-5-6

(71)出顧人 597031634

水谷 照吉

爱知県名古屋市千種区北千種2-1-43

(72)発明者 山下 浩一

愛知県名古屋市名東区上社5丁目1801番地

(74)代理人 弁理士 成瀬 勝夫 (外1名)

最終頁に続く

(54) 【発明の名称】 双方向電界駆動型有機電界発光素子

(57)【要約】

(修正有)

【課題】 1つの素子に対して順方向に限らず、電界を逆方向に印加した場合にも発光することができ、また、順方向と逆方向に電界を印加した場合とによって、互いに異なる光を発光することができる2色発光可能な双方向電界駆動型有機電界発光素子を提供する。

【解決手段】 少なくとも一方が透明又は半透明である一対の電極と、これら一対の電極間に位置し、各電極から注入される正孔及び電子の再結合により発光する有機 蛍光性物質で形成されたホスト発光層 4 と、このホスト発光層と各電極と間に位置し、各電極から注入される正孔及び電子を輸送できると共にこれらの正孔及び電子を上記ホスト発光層内に効率よく閉じ込めることができ、かつ、発光した光の発光極大領域において光透過性である一対のキャリヤ輸送層3,5とを備え、また、ホスト発光層の両面側に又はそのいずれか一方の面側に色素化合物からなるゲスト発光材料をドープした2色発光可能な双方向電界駆動型有機電界発光素子である。

1:透明基板 2:透明電極

3, 5:キャリヤ輸送層

4:ホスト発光層

4a, 4b:発光材料ドープ領域 6:金属電極(背面電極)

【特許請求の範囲】

【請求項1】 少なくとも一方が透明又は半透明である一対の電極と、これら一対の電極間に位置し、各電極から注入される正孔及び電子の再結合により発光する有機 蛍光性物質で形成されたホスト発光層と、このホスト発光層と上記各電極と間に位置し、各電極から注入される正孔及び電子を輸送できると共にこれらの正孔及び電子を上記ホスト発光層内に効率よく閉じ込めることができ、かつ、発光した光の発光極大領域において光透過性である一対のキャリヤ輸送層とを備えていることを特徴とする双方向電界駆動型有機電界発光素子。

【請求項2】 ホスト発光層は、キャリヤ輸送層と接するその両面側に又はそのいずれか一方の面側に色素化合物からなるゲスト発光材料がドープされている請求項1に記載の双方向電界駆動型有機電界発光素子。

【請求項3】 ホスト発光層の両面側にドープされたゲスト発光材料は、互いに異なる色の色素化合物であり、 駆動させる電界の方向により互いに異なる色の光を発光 する請求項2に記載の双方向電界駆動型有機電界発光素 子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、新規な有機電界 発光素子に係り、更に詳しくは、一つの素子に順方向及 び逆方向の電界を印加することによって、互いに異なる 色若しくは同じ色の光を発光することができる双方向電 界駆動型有機電界発光素子に関する。

【0002】従来のブラウン管に代わるフラットパネルディスプレイの需要の急増に伴い、各種表示素子の開発及び実用化が精力的に進められている。電界発光素子もこうしたニーズに応えるものであり、特に全体が固体の自発光素子であって他のディスプレイにはない高解像度及び高視認性を有することから注目を集めている。

【0003】そして、現在実用化されているものとしては、発光層にZnS/Mn系の無機材料を用いた無機エレクトロルミネッセンス素子 (無機EL素子)が知られている。しかしながら、この種の無機EL素子においては、発光に必要な駆動電圧が100V以上と高く、このために駆動方法が複雑になって製造コストが高くなるとう問題があるほか、青色発光の効率が低くてフルカラー化が困難であるという問題もある。

【0004】これに対して、有機材料を用いた薄膜有機電界発光素子は、その発光に必要な駆動電圧を大幅に低くすることができ、また、各種の発光材料の適用によりフルカラー化の可能性も充分にあり、近年その研究が活発化している。中でも、フルカラー化に際し、色の同調方法は素子応用への大きな研究課題となっている。

【0005】ところで、従来の有機電界発光素子は、ある一定の方向に電界が印加された場合にのみ発光し、1つの素子からは1つの色の光が発光するにすぎない(特

開平5-198378号公報等)。このため、フルカラーディスプレイにおいて、必要な色の3原色である赤、緑、及び青を発光させるためには、それぞれの色の素子を微細にかつ規則正しく並べることが必須になり、従来の素子によっては必要な色の画素数分だけ微細にかつ規則正しく並べることは非常に困難なことであった。

[0006]

【発明が解決しようとする課題】本発明は、かかる観点に基づいて創案されたものであり、その目的とするところは、1つの素子に対して電界を順方向に印加した場合に限らず、電界を逆方向に印加した場合にも発光することができる双方向電界駆動型有機電界発光素子を提供することにある。

【0007】また、本発明は、順方向に電界を印加した場合と逆方向に電界を印加した場合とによって、互いに異なる光を発光することができる2色発光可能な双方向電界駆動型有機電界発光素子を提供することにある。

[8000]

【課題を解決するための手段】本発明は、少なくとも一方が透明又は半透明である一対の電極と、これら一対の電極間に位置し、各電極から注入される正孔及び電子の再結合により発光する有機蛍光性物質で形成されたホスト発光層と、このホスト発光層と上記各電極と間に位置し、各電極から注入される正孔及び電子を輸送できると共にこれらの正孔及び電子を上記ホスト発光層内に効率よく閉じ込めることができ、かつ、発光した光の発光極大領域において光透過性である一対のキャリヤ輸送層とを備えている双方向電界駆動型有機電界発光素子である。

【0009】また、本発明は、このような層構成の有機電界発光素子において、そのホスト発光層は、キャリヤ輸送層と接するその両面側に又はそのいずれか一方の面側に色素化合物からなるゲスト発光材料がドープされている双方向電界駆動型有機電界発光素子である。

【0010】更に、本発明は、このような層構成の有機 電界発光素子において、そのホスト発光層の両面側にド ープされたゲスト発光材料が、互いに異なる色の色素化 合物であり、駆動させる電界の方向により互いに異なる 色の光を発光する双方向電界駆動型有機電界発光素子で ある。

【0011】本発明において、素子を構成する積層構造については、一般に下記のものが挙げられる。

- ① 透明電極/キャリヤ輸送層/ホスト発光層/キャリヤ輸送層/背面電極
- ② 透明電極/キャリヤ輸送層/(ゲスト発光材料ドープ)ホスト発光層/キャリヤ輸送層/背面電極
- ③ 透明電極/キャリヤ輸送層/ホスト発光層(ゲスト発光材料ドープ)/キャリヤ輸送層/背面電極
- ④ 透明電極/キャリヤ輸送層/(ゲスト発光材料Aドープ)ホスト発光層(ゲスト発光材料Aドープ)/キャ

リヤ輸送層/背面電極

⑤ 透明電極/キャリヤ輸送層/(ゲスト発光材料Aドープ)ホスト発光層(ゲスト発光材料Bドープ)/キャリヤ輸送層/背面電極

(但し、上記ゲスト発光材料Aとゲスト発光材料Bとは 互いに異なる種類のゲスト発光材料であることを示 す。)

【0012】本発明において、上記透明電極は、ホスト発光層で放射された光を効率良く透過するものであるのが好ましく、例えば金、ニッケル等の半透膜や、インジウムスズ酸化物(ITO)、酸化スズ、酸化インジウム、酸化亜鉛アルミニウム、ポリピロール等の透明導電膜等で形成され、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、電解重合法、化学重合法等の方法で形成される。

【0013】そして、この透明電極は、一般に、光透過性の良好なガラス、金属又は樹脂製の板材で形成され、素子の支持板となる透明基板の上に積層される。このような透明基板としては、具体的には、ソーダガラス、無蛍光ガラス、燐酸系ガラス等のガラス板や、石英、アルミナ等の金属板や、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン系樹脂、ポリエステル系樹脂、シリコーン系樹脂等の樹脂板等が挙げられる

【0014】また、本発明の素子を構成する背面電極としては、一般的には、仕事関数の小さいLi、Na、Mg、Sr、Ag、ln、Sn、Zn、Zr、Ca、Al、Mo、Bi等の単独金属薄膜や、2成分、3成分の積層、共蒸着、合金等が用いられるが、正孔及び電子を効率良く有機層に注入できるものであれば、これに限らず、種々のものを用いることができる。この背面電極の成膜方法としては、一般的には、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法等が挙げられるが、薄膜化できる方法であれば、これに限らず種々の方法を採用することができる。

【OO15】更に、本発明で用いるキャリア輸送層は、正孔及び電子を各電極から注入できかつ輸送することのできる物質であって、正孔又は電子からなるキャリることのが異常を発光層内に効率良く閉じ込めることのできるが好ましい。カーレベルを持つ物質である。ヒドンルを持つが好ましいが好ましい。ポリン化合物、ピラゾリン化合物、ポリシラン化合物、ポリシアニン、ポリシーン、無定形 p 型炭化シリン等が用いられるがによいできるだけ透明なものであればし、発光極大領域においてできるだけ透明なものであればしているものではない。成膜方法と関係であるだけであればしているものではない。成別ないでは、本来スティング、LB法等では、スピンコート、キャスティング、LB法等でデーム蒸着、分子線エピタキシ、化学気相蒸着法等

が挙げられるが、薄膜化できる方法であればこれらに制 限されない。

【0016】本発明で用いるホスト発光層は、キャリア輸送層から注入された正孔と電子とがこの層内で効率良く再結合し、生成した励起子のエネルギーを光として発光できる有機蛍光性物質であればよく、一般的には、ニトロ置換フルオレノン誘導体、アントラキノン誘導体、ジオキサゾール誘導体、チオピランジオキシド誘導体、フルオレニリデンメタン誘導体、アントロン誘導体、ペリレン誘導体、ジオキサン誘導体、オキサジアゾール化合物、オキサトリアゾール化合物、無定形 n型シリコン、その他有機化合物、無機半導体等が挙げられ、好ましくは8ーオキシキノリンのアルミニウム錯体等の芳香族化合物が用いられる。

【0017】このホスト発光層としては、好ましくは生成した励起子のエネルギーをゲスト発光材料へ効率良くエネルギー移動する化合物であり、これによってホスト発光層にゲスト発光材料をドープした場合にこのドープされたゲスト発光材料のもつ色の光を効率良く発光させることができ、ドープされたゲスト発光材料の量に応じてゲスト発光材料のもつ色の光やこのゲスト発光材料が発光する色とホスト発光層が発光する色との混合色の光を発光させることができる。

【0018】上記ホスト発光層の成膜方法としては、抵抗加熱蒸着、スピンコート、キャスティング、LB法、電子ビーム蒸着、分子線エピタキシー等の方法を挙げることができるが、薄膜化できる方法であれば特にこれらに方法に限られるものではない。

【0019】本発明において、上記ホスト発光層には、キャリヤ輸送層と接するその両面側に又はそのいずれか一方の面側に色素化合物からなるゲスト発光材料をドープし、ホスト発光層が発光する色の光を強調したり、あるいは、このホスト発光層による色の光とは別の色のゲスト発光材料に基づく色の光を発光させたり、更には、ホスト発光層が発光する色とゲスト発光材料が発光する色の混合色を発光せしめることができる。

【0020】このような目的でホスト発光層の両面側若しくはそのいずれか一方の面側にドープされるゲスト発光材料としては、それがホスト発光層で生成した励起子のエネルギーを効率良く受け取るエネルギーレベルを持ち、かつ、効率良く発光する色素化合物であることが好ましく、具体的には、ニトロ置換フルオレノン誘導体、アントラキノン誘導体、ジオキサゾール誘導体、チオピランジオキシド誘導体、フルオレニリデンメタン誘導体、アントロン誘導体、ペリレン誘導体、ジオキサン誘導体、オキサジアゾール化合物、オキサトリアゾール化合物、その他有機化合物等を挙げることができる。

【0021】このゲスト発光材料として特に好ましいのは、4-ジシアノメチレン-6-(p-ジメチルアミノスチリル)-2-メチル-4H-ピラン(DCM、4-di

cyanomethylene-6-(p-dimethylaminostylyl)-2-methyl-4H-pylan)等のピラン誘導体や、3ー(2ーベンゾチアゾリル)-7-ジメチルアミノクマリン(C 5 4 0、3-(2-benzothiazoyl)-7-diethylaminocoumarin)等のクマリン誘導体や、その他キナクリドン誘導体、スクアリリウム誘導体、ペリレン誘導体、ピレン誘導体等である。

【0022】これらのゲスト発光材料をホスト発光層の 両面側若しくはそのいずれか一方の面側にドープする方 法については、特に制限されるものではなく従来より知 られている方法を採用することができ、例えば、比較的 低分子化合物の場合に一般的に採用される共蒸着方法 や、比較的高分子化合物の場合に一般的に採用される混 合方法等が挙げられる。

【0023】更に、本発明においては、上で説明した各層の一部又は全部あるいはこれらの層を形成する構成材料の一部又は全部の化合物について、適当な重合性置換基を1つ以上導入し、成膜前、成膜中、あるいは成膜後にポリマー化して使用してもよく、これによって形成される一部又は全部の層の耐熱性を改善することができる。

[0024]

【発明の実施の形態】以下、添付図面に基づいて、本発明の好適な実施の形態を具体的に説明する。図1に本発明の典型的な双方向電界駆動型有機電界発光素子が示されている。この図1において、透明基板1の上には透明電極2が積層されており、更にこの透明電極2の上に順次キャリヤ輸送層3、ホスト発光層4、キャリヤ輸送層5及び金属電極(背面電極)6がそれぞれ積層されている。

【0025】この図1の双方向電界駆動型有機電界発光 素子において、上記ホスト発光層4には、キャリヤ輸送 層3及び5と接するその両面側に、それぞれゲスト発光 材料がドープされた発光材料ドープ領域4a, 4bが形成されている。

【0026】この図1の双方向電界駆動型有機電界発光 素子によれば、透明電極2を陽極とする順方向に電界を 印加すると、透明電極2側の発光材料ドープ領域4aに ドープされたゲスト発光材料に基づいてその色の光が発 光し、反対に、金属電極6を陽極とする逆方向に電界を 印加すると、透明電極2側の発光材料ドープ領域4bに ドープされたゲスト発光材料に基づいてその色の光が発 光するようになっている。

【0027】従って、この図1の双方向電界駆動型有機電界発光素子において、発光材料ドープ領域4a, 4bにそれぞれドープされるゲスト発光材料として、例えばホスト発光層4が発光する色と同じ色の光を発光する材料を用いれば、順方向及び逆方向の双方向に印加される電界に基づいて同じ色の光が強調されて発光し、また、例えば発光材料ドープ領域4a, 4bにそれぞれ別の色のゲスト発光材料をドープすれば、順方向には発光材料

ドープ領域4aにドープされたゲスト発光材料の色の光が発光し、逆方向には発光材料ドープ領域4bにドープされたゲスト発光材料の色の光が発光し、更に、これら発光材料ドープ領域4a, 4bにドープするゲスト発光材料の量を調整することにより、ドープされたゲスト発光材料に基づく色とホスト発光層4に基づく色との混合色を発光させることもできる。

[0028]

【実施例】以下、実施例及び比較例に基づいて、本発明 の双方向電界駆動型有機電界発光素子をより具体的に説 明する。

【0029】実施例1

電子ビーム蒸着法によりガラス基板上に透明電極として ITOを積層した抵抗率15Ω/ロ及び電極面積2×2 mm²のITO付ガラス基板(ミクロ技研製)を用い、 また、ターボ分子ポンプによる真空蒸着装置を用いて昇 華金属用のモリブデンボードを用いた抵抗加熱方式により、蒸着速度をアルバック製の水晶振動子型膜厚コントローラーで制御しながら、蒸着中の真空度2~3×10 TO層の上に以下の有機薄膜を積層し、更に、その上に背面電極として蒸着法によりアルミニウム(AI)を積層し金属電極を設け、図1に示す積層構造を有する双方向電界駆動型有機電界発光素子を構成した。

【0030】形成された有機薄膜の積層構造は、ITO上のキャリア輸送層がN, NージフェニルーN, Nービスー(3ーメチルフェニル)ージフェニルー4, 4ージアミン(TPD、N,N-diphenyl-N,N-bis-(3-methyl-phenyl)-1,1-diphenyl-4,4-diamine)30nmであり、その上のホスト発光層がトリス(8ーヒドロキシキノリン)アルミニウム(AIq3、tris(8-hydroxyquinoline)aluminum)60nmであり、このAIq3層にはゲスト発光材料としてそのITO電極側にDCMが、また、金属電極側にC540がそれぞれ1モル%の濃度で20nmの深さまでドープされ、更にこのホスト発光層の上のキャリヤ輸送層がTPD30nmであった。

【0031】得られた双方向電界駆動型有機電界発光素子について、透明電極を陽極とし、金属電極を陰極とする順方向に26.4V、1.0mAの電界を印加したとき、この素子はDCMに基づく橙色の光を発光し、また、金属電極を陽極とし、透明電極を陰極とする逆方向に<math>26.0V、 10.0μ Aの電界を印加したとき、この素子はC540に基づく緑色の光が放射された。これらの発光スペクトルを図2に示す。

【0032】実施例2

ホスト発光層のA I q3 層にゲスト発光材料をドープしなかった以外は、上記実施例1と同様にして双方向電界駆動型有機電界発光素子を作製した。この素子について、実施例1の場合と同様に順方向及び逆方向にそれぞれ電界を印加したところ、この素子は双方向共にA I q

3 層に基づく緑色の光を放射した。

【0033】比較例1

有機薄膜の積層構造として、ITO上のキャリア輸送層 (TPD) 30nm及びその上の発光層 (AIq3) 60nmの2層構造とした以外は、上記実施例と同様にして有機電界発光素子を作製した。この有機電界発光素子について、上記実施例と同様にそれぞれ順方向及び逆方向の電界を印加したところ、順方向ではAIq3層に基づく緑色の光が放射されたが、逆方向の場合には発光の放射は確認されなかった。

[0034]

【発明の効果】本発明によれば、1つの素子に対して電界を順方向に印加した場合に限らず、電界を逆方向に印加した場合にも発光させることができ、順方向及び逆方向の双方向に同じ色の発光をさせることができる双方向電界駆動型有機電界発光素子を提供することができる。

【0035】また、本発明によれば、そのホスト発光層にゲスト発光材料をドープしておくことにより、順方向に電界を印加した場合と逆方向に電界を印加した場合とによって互いに異なる光を発光させることができる2色発光可能な双方向電界駆動型有機電界発光素子を提供することができる。

【図面の簡単な説明】

【図1】 図1は、本発明の双方向電界駆動型有機電界 発光素子の積層構造の一例を示す説明図である。

【図2】 図2は、実施例1の双方向電界駆動型有機電界発光素子の電界発光スペクトルを示すグラフ図である。

【符号の説明】

1…透明基板、2…透明電極、3,5…キャリヤ輸送層、4…ホスト発光層、4a,4b…発光材料ドープ領域、6…金属電極(背面電極)。

【図1】

1:透明基板

3, 5:キャリヤ輸送層 4:ホスト発光層

4a, 4b: 発光材料ドープ領域 6: 金属電極(青面電極) 【図2】

フロントページの続き

(72)発明者 森 竜雄

愛知県名古屋市中川区西日置1-5-6

(72) 発明者 水谷 照吉

愛知県名古屋市千種区北千種2-1-43

(72) 発明者 尾畑 功治

岐阜県羽島市足近町7丁目606番地

(72) 発明者 今泉 要

愛知県安城市赤松町大北71、キングスコー ト安城赤松1301