

The impact of changes in natural mortality on the performance of management strategies for the Gulf of Alaska walleye pollock (*Gadus chalcogrammus*) fishery

Teresa A'mar Martin Dorn 2014-06-02 NOAA FISHERIES SERVICE

Management strategy evaluation

- How robust is the harvest control rule to
 - Process and observation error
 - Implementation error
 - Model misspecification
 - Regime shifts
 - Climate variability
 - Ecosystem impacts
 - Other influences

Previous MSE results

- Median bias of -10% for spawning biomass
- Median bias of 10% for fishing mortality
- Median bias of -10% for ABC

- The current harvest control rule is robust to many sources of error and uncertainty
- But including 3 primary predators as 'fisheries' did not work well

Motivation for this work

- Changes to the stock assessment model
 - Age range
 - Independent survey selectivity for age-1 fish
- Arrowtooth flounder are still increasing
- M is assumed to be 0.3 for all ages

Scenarios

- 30-year projection period, 2014 2043
- Maximum value of M-at-age
 - Age-1 M of 0.7
 - Age-1 M of 1.0
 - Age-1 M of 1.0, age-2 M of 0.7
 - Age-1 M of 1.0, age-2 M of 0.7, age-3 M of 0.5
- 3 patterns in changing M-at-age
 - Increase linearly to max from year 1 through 30
 - Increase linearly to max from year 11 through 20
 - Step increase to max in year 16
- 2 ways of generating future recruits

Performance measures

- 'True' spawning biomass
- Percent relative error in
 - Spawning biomass
 - Fishing mortality
 - ABC
 - % relative error = 100 * (est 'true') / 'true'
- Percent when 'true' F > 'true' F_{OFL} (overfishing)

Results for simpler scenarios

Performance measure	Base scenarios	Max age-1 M of 0.7	Max age-1 M of 1.0
Median bias in spawning biomass	-10% to -15%	Increases from -15% to -10%	Increases from -15% to -5%
Median bias in fishing mortality	10% to 15%	Decreases from 10% to almost 0%	Decreases from 10% to less than 0%
Median bias in ABC	-10% to -15%	Increases from -20% to -10%	Increases from -20% to almost 0%
Overfishing	Maximum of less than 5%	Maximum of less than 5%	Maximum of less than 10%
Rec 1977 on vs. Rec 1980 on	No significant differences	No significant differences	No significant differences
		No differences among the scenarios	Slight differences among the scenarios

Max age-1 M of 1.0 and age-2 M of 0.7

- More significant differences between increasing M linearly over the 30-year projection period and increasing M more rapidly
- No significant differences in bias with the 2 ways of generating future recruits

16 step increase

Relative error in spawning biomass

01 – 30 linear ramp up

11 – 20 linear ramp up

Relative error in ABC

01 – 30 linear ramp up

16 step increase

Overfishing

01 – 30 linear ramp up 11 – 20 linear ramp up 16 step increase

Max age-1 M of 1.0, age-2 M of 0.7, age-3 M of 0.5

- Significant differences between increasing M linearly over the 30-year projection period and increasing M more rapidly
- No significant differences in bias with the 2 ways of generating future recruits

Relative error in spawning biomass

01 – 30 linear ramp up

16 step increase

Relative error in ABC

01 – 30 linear ramp up

11 – 20 linear ramp up

Overfishing

01 – 30 linear ramp up 11 – 20 linear ramp up 16 step increase

Next steps

- Developing other changing M-at-age scenarios
- Evaluating other harvest control rules
- Addressing changing M-at-age for young fish in the stock assessment model

Age-1 recruitment

- Future recruits generated randomly using average and CV of historical recruitment
- If generated recruit value is larger than the maximum of historical values then the recruit value is set to the maximum
- Average recruitment and CV of recruitment are calculated using the estimated historical recruitment values for 1977 2012 (status quo) or 1980 2012

Estimated age-1 recruits

Estimated age-1 recruits

Results for base scenarios

- Median bias of -10% to -15% in spawning biomass
- Median bias of 10% to 15% in fishing mortality
- Median bias of -10% to -15% in ABC
- The 'true' F exceeds the 'true' F_{OFL} less than 5% of the time
- No significant differences in bias with the 2 ways of generating future recruits

Results for max age-1 M of 0.7

- Median bias in spawning biomass increases from -15% to -10%
- Median bias in F decreases from 10% to almost 0%
- Median bias in ABC increases from -20% to -10%
- The 'true' F exceeds the 'true' F_{OFL} less than 5% of the time
- No significant differences in bias with the 2 ways of generating future recruits

Results for max age-1 M of 1.0

- Slight differences between increasing M linearly over the 30-year projection period and increasing M more rapidly
- Median bias in spawning biomass increases from -15% to -5%
- Median bias in F decreases from 10% to less than 0%
- Median bias in ABC increases from -20% to almost 0%
- The 'true' F exceeds the 'true' F_{OFL} less than 10% of the time
- No significant differences in bias with the 2 ways of generating future recruits