

# Automobile Dataset EDA

KENNY D SEPT 2021

#### "In God we trust; all others must bring data."

- WILLIAM EDWARDS DEMMINGS (STATISTICIAN, DATA SCIENTIST)

#### Contents

| 1. | Introduction04                             |
|----|--------------------------------------------|
| 2. | Features of the Data Numerical             |
| 3. | Correlation among Features07               |
|    | Missing Values imputation  Number of Doors |
| 5. | Conclusion20                               |
| 6. | Inference21                                |



#### Introduction

We are presented with a small automobile dataset with just 205 observations.

Each observation constitutes of 26 features of automobiles such as make, horsepower, price and more.

In this report, we will strive to draw relationships between each feature and present useful inferences.

#### Features of the Data - Numerical

|       | symbolling | normaliz<br>ed-losses | wheel-<br>base | length | width | height | curb-<br>weight | engine-<br>size | bore  | stroke | compres<br>sion-<br>ratio | horsepo<br>wer | peak-<br>rpm | city-mpg | highway-<br>mpg | price   |
|-------|------------|-----------------------|----------------|--------|-------|--------|-----------------|-----------------|-------|--------|---------------------------|----------------|--------------|----------|-----------------|---------|
| count | 205.0      | 164.0                 | 205.0          | 205.0  | 205.0 | 205.0  | 205.0           | 205.0           | 201.0 | 201.0  | 205.0                     | 203.0          | 203.0        | 205.0    | 205.0           | 201.0   |
| mean  | 0.8        | 122.0                 | 98.8           | 174.0  | 65.9  | 53.7   | 2555.6          | 126.9           | 3.3   | 3.3    | 10.1                      | 104.3          | 5125.4       | 25.2     | 30.8            | 13207.1 |
| std   | 1.2        | 35.4                  | 6.0            | 12.3   | 2.1   | 2.4    | 520.7           | 41.6            | 0.3   | 0.3    | 4.0                       | 39.7           | 479.3        | 6.5      | 6.9             | 7947.1  |
| min   | -2.0       | 65.0                  | 86.6           | 141.1  | 60.3  | 47.8   | 1488.0          | 61.0            | 2.5   | 2.1    | 7.0                       | 48.0           | 4150.0       | 13.0     | 16.0            | 5118.0  |
| 25%   | 0.0        | 94.0                  | 94.5           | 166.3  | 64.1  | 52.0   | 2145.0          | 97.0            | 3.2   | 3.1    | 8.6                       | 70.0           | 4800.0       | 19.0     | 25.0            | 7775.0  |
| 50%   | 1.0        | 115.0                 | 97.0           | 173.2  | 65.5  | 54.1   | 2414.0          | 120.0           | 3.3   | 3.3    | 9.0                       | 95.0           | 5200.0       | 24.0     | 30.0            | 10295.0 |
| 75%   | 2.0        | 150.0                 | 102.4          | 183.1  | 66.9  | 55.5   | 2935.0          | 141.0           | 3.6   | 3.4    | 9.4                       | 116.0          | 5500.0       | 30.0     | 34.0            | 16500.0 |
| max   | 3.0        | 256.0                 | 120.9          | 208.1  | 72.3  | 59.8   | 4066.0          | 326.0           | 3.9   | 4.2    | 23.0                      | 288.0          | 6600.0       | 49.0     | 54.0            | 45400.0 |

We have 17 numerical features, each with distinct variation.

From the count, we notice that few features have lower count, implying missing values in those columns.

#### Features of the Data - Categorical

|        | make   | fuel-<br>type | aspiration | num-of-<br>doors | body-<br>style | drive-<br>wheels | engine-<br>location | engine-<br>type | num-of-<br>cylinders | fuel-<br>system |
|--------|--------|---------------|------------|------------------|----------------|------------------|---------------------|-----------------|----------------------|-----------------|
| count  | 205    | 205           | 205        | 203              | 205            | 205              | 205                 | 205             | 205                  | 205             |
| unique | 22     | 2             | 2          | 2                | 5              | 3                | 2                   | 7               | 7                    | 8               |
| top    | toyota | gas           | std        | four             | sedan          | fwd              | front               | ohc             | four                 | mpfi            |
| freq   | 32     | 185           | 168        | 114              | 96             | 120              | 202                 | 148             | 159                  | 94              |

We have 10 categorical features. Some of these features are ordinal and may be converted to numeric. These are num-of-doors and num-of-cylinders.

## Correlation among Features

#### Max correlation:

- city-mpg and highway-mpg 0.97
- Engine-size and price 0.87
- Engine-size and price 0.85
- Curb-weight and price 0.84
- Wheel-base, length, width, height and crub-weight have high correlation among them as these are dimensions of the car

| ,                   |               |                     |                | _            |          |         |          | Corre         | latior             | n Hea         | tmap   |          |                     |              |            |            |               |         |
|---------------------|---------------|---------------------|----------------|--------------|----------|---------|----------|---------------|--------------------|---------------|--------|----------|---------------------|--------------|------------|------------|---------------|---------|
| symboling -         | 1.00          | 1.00                | -0.66          | -0.53        | -0.36    | -0.23   | -0.54    | -0.23         | -0.11              | -0.11         | -0.17  | -0.04    | -0.18               | 0.07         | 0.27       | -0.04      | 0.03          | -0.08   |
| normalized-losses - | 1.00          | 1.00                | -0.66          | -0.53        | -0.36    | -0.23   | -0.54    | -0.23         | -0.11              | -0.11         | -0.17  | -0.04    | -0.18               | 0.07         | 0.27       | -0.04      | 0.03          | -0.08   |
| num-of-doors -      | -0.66         | -0.66               | 1.00           | 0.44         | 0.39     | 0.20    | 0.54     | 0.19          | -0.02              | 0.01          | 0.13   | 0.01     | 0.17                | -0.13        | -0.24      | -0.01      | -0.04         | 0.02    |
| wheel-base -        | -0.53         | -0.53               | 0.44           | 1.00         | 0.87     | 0.80    | 0.59     | 0.78          | 0.34               | 0.57          | 0.50   | 0.17     | 0.25                | 0.35         | -0.35      | -0.47      | -0.54         | 0.57    |
| length -            | -0.36         | -0.36               | 0.39           | 0.87         | 1.00     | 0.84    | 0.49     | 0.88          | 0.43               | 0.68          | 0.61   | 0.14     | 0.16                | 0.56         | -0.29      | -0.67      | -0.70         | 0.68    |
| width -             | -0.23         | -0.23               | 0.20           | 0.80         | 0.84     | 1.00    | 0.28     | 0.87          | 0.55               | 0.74          | 0.55   | 0.18     | 0.18                | 0.64         | -0.22      | -0.64      | -0.68         | 0.76    |
| height -            | -0.54         | -0.54               | 0.54           | 0.59         | 0.49     | 0.28    | 1.00     | 0.30          | -0.01              | 0.07          | 0.21   | -0.03    | 0.26                | -0.11        | -0.31      | -0.05      | -0.11         | 0.11    |
| curb-weight -       | -0.23         | -0.23               | 0.19           | 0.78         | 0.88     | 0.87    | 0.30     | 1.00          | 0.61               | 0.85          | 0.65   | 0.17     | 0.15                | 0.75         | -0.26      | -0.76      | -0.80         | 0.84    |
| num-of-cylinders -  | -0.11         | -0.11               | -0.02          | 0.34         | 0.43     | 0.55    | -0.01    | 0.61          | 1.00               | 0.85          | 0.28   | 0.04     | -0.02               | 0.69         | -0.12      | -0.45      | -0.47         | 0.72    |
| engine-size -       | -0.11         | -0.11               | 0.01           | 0.57         | 0.68     | 0.74    | 0.07     | 0.85          | 0.85               | 1.00          | 0.61   | 0.22     | 0.03                | 0.81         | -0.24      | -0.65      | -0.68         | 0.87    |
| bore -              | -0.17         | -0.17               | 0.13           | 0.50         | 0.61     | 0.55    | 0.21     | 0.65          | 0.28               | 0.61          | 1.00   | -0.04    | 0.01                | 0.57         | -0.30      | -0.55      | -0.55         | 0.55    |
| stroke -            | -0.04         | -0.04               | 0.01           | 0.17         | 0.14     | 0.18    | -0.03    | 0.17          | 0.04               | 0.22          | -0.04  | 1.00     | 0.19                | 0.09         | -0.12      | -0.02      | -0.03         | 0.08    |
| compression-ratio - | -0.18         | -0.18               | 0.17           | 0.25         | 0.16     | 0.18    | 0.26     | 0.15          | -0.02              | 0.03          | 0.01   | 0.19     | 1.00                | -0.21        | -0.43      | 0.32       | 0.27          | 0.06    |
| horsepower -        | 0.07          | 0.07                | -0.13          | 0.35         | 0.56     | 0.64    | -0.11    | 0.75          | 0.69               | 0.81          | 0.57   | 0.09     | -0.21               | 1.00         | 0.13       | -0.80      | -0.77         | 0.82    |
| peak-rpm -          | 0.27          | 0.27                | -0.24          | -0.35        | -0.29    | -0.22   | -0.31    | -0.26         | -0.12              | -0.24         | -0.30  | -0.12    | -0.43               | 0.13         | 1.00       | -0.11      | -0.05         | -0.07   |
| city-mpg -          | -0.04         | -0.04               | -0.01          | -0.47        | -0.67    | -0.64   | -0.05    | -0.76         | -0.45              | -0.65         | -0.55  | -0.02    | 0.32                | -0.80        | -0.11      | 1.00       | 0.97          | -0.69   |
| highway-mpg -       | 0.03          | 0.03                | -0.04          | -0.54        | -0.70    | -0.68   | -0.11    | -0.80         | -0.47              | -0.68         | -0.55  | -0.03    | 0.27                | -0.77        | -0.05      | 0.97       | 1.00          | -0.70   |
| price -             | -0.08         | -0.08               | 0.02           | 0.57         | 0.68     | 0.76    | 0.11     | 0.84          | 0.72               | 0.87          | 0.55   | 0.08     | 0.06                | 0.82         | -0.07      | -0.69      | -0.70         | 1.00    |
|                     | - symboling - | normalized-losses - | num-of-doors - | wheel-base - | length - | width - | height - | curb-weight - | num-of-cylinders - | engine-size - | bore - | stroke - | compression-ratio - | horsepower - | peak-rpm - | city-mpg - | highway-mpg - | price - |

### Missing values Imputation

IN THE SUBSEQUENT SLIDES WE WILL IMPUTE THE MISSING VALUES BASED ON INSIGHTS FROM EDA

#### Imputing num-of-doors

- We know logically that number of doors depends on body-style of car.
- That is, convertible and hardtop have two doors, while rest have 4.
- •We see that the null values are for cars with body-style as sedan.
- •Hence we may impute num-of-doors to be 4.



| style | body-st | num-of-doors |    |
|-------|---------|--------------|----|
| dan   | sed     | NaN          | 27 |
| dan   | sed     | NaN          | 63 |

#### Imputing stroke and bore

- 'stroke' and 'bore' are dimensions of the cylinder in an automobile engine.
- That is, we may see some correlation between these variables.
- In our missing data for stroke and bore, the engine size was at 70 and 80 units.
- •Ideally we could use OLS to find the intercept and the slope to calculate the missing values.
- •But here, as the count of missing values is less, we may eyeball estimate the value.





Eyeballing those values in these graphs, it seems that For engine size = 70, bore = 3.0, stroke = 3.0 For engine size = 80, bore = 3.0, stroke = 3.0

#### Imputing Horsepower

- •From the heatmap we created earlier, we see that it correlates most with engine-size and price.
- •As engine-size is 132 for both missing values, lets look at price a bit deeper.



#### Imputing Horsepower (2)

- Eyeballing the above graph, we can estimate the missing horsepower values
- •For observation with price 9295, the horsepower is around 80
- •For observation with price 9895, the horsepower is around 83



- •we have just 205 observations
- ■the number of missing values are very low (2 here)

When observations are much larger, we may use mode or median instead



## Imputing Price

- We know from our understanding that price of a car depends on two major factors.
- First, the brand (make). Second, the performance (engine).
- Checking our assumption using heatmap, We see that enginesize, curb-weight and horsepower are the highest impactors of Price.



#### Imputing Price (2)

- In line with our assumption, Price is dependent on engine-size, horsepower and the make of the vehicle.
- Lets look at this deeper.

|             | engine-size vs price                                 | norsepower vs price                                   |
|-------------|------------------------------------------------------|-------------------------------------------------------|
| 300 -       | •                                                    | 250 -                                                 |
| 250 -       |                                                      | 200 -                                                 |
| engine-size |                                                      | 150 -                                                 |
| 150 -       |                                                      | 100 -                                                 |
| 100 -       |                                                      | 50                                                    |
| 50 -        | 10000 15000 20000 25000 30000 35000 40000 4500 price | 10000 15000 20000 25000 30000 35000 40000 45000 price |

horsepower vs price

engine-size vs price





#### Imputing Price (3)



From above we can estimate,

- for an Audi with engine-size 131, the price can be around 22000
- for an isuzu with engine-size 90, the price can be around 7000
- for a porsche with engine-size 203, the price can be around 37500

#### Imputing Peak-rpm

- We see that there are no features that are highly correlated with peak-rpm.
- Hence we look at categorical features instead.
- As engine-type and num-ofcylinders have 7 unique variations, we will use that to impute value for peak-rpm.

| compression-ratio | -0.44    |
|-------------------|----------|
| wheel-base        | 0.36     |
| height            | 0.32     |
| bore              | 0.29     |
| length            | 0.29     |
| curb-weight       | 0.27     |
| engine-size       | 0.24     |
| num-of-doors      | 0.24     |
| width             | 0.22     |
| num-of-cylinders  | 0.12     |
| city-mpg          | 0.11     |
| stroke            | 0.098    |
| price             | 0.077    |
| highway-mpg       | 0.054    |
| horsepower        | - 0.13   |
| normalized-losses | - 0.26   |
| symboling         | - 0.27   |
| peak-rpm          | 1        |
|                   | peak-rpm |

|                      | 130     | 131       | count | unique | top    | freq |
|----------------------|---------|-----------|-------|--------|--------|------|
| make                 | renault | renault   | 205   | 22     | toyota | 32   |
| fuel-type            | gas     | gas       | 205   | 2      | gas    | 185  |
| aspiration           | std     | std       | 205   | 2      | std    | 168  |
| num-of-<br>doors     | four    | two       | 205   | 3      | four   | 114  |
| body-style           | wagon   | hatchback | 205   | 5      | sedan  | 96   |
| drive-<br>wheels     | fwd     | fwd       | 205   | 3      | fwd    | 120  |
| engine-<br>location  | front   | front     | 205   | 2      | front  | 202  |
| engine-<br>type      | ohc     | ohc       | 205   | 7      | ohc    | 148  |
| num-of-<br>cylinders | four    | four      | 205   | 7      | four   | 159  |
| fuel-<br>system      | mpfi    | mpfi      | 205   | 8      | mpfi   | 94   |
| peak-rpm             | NaN     | NaN       | -     | -      | -      | -    |

## Imputing Peak-rpm (2)

- For vehicles with num-ofcylinders as four, the mean peak-rpm is around 5113.
- For vehicles with engine-type ohc, the mean peak-rpm is around 5134
- Hence, we may impute a value between 5113 and 5134, say 5120.



#### Normalized Losses

- There are 41 missing field in normalized losses column.
- Clearly we cannot eyeball for each value.
- •We also see that no feature is highly correlated with normalized losses.





#### Normalized Losses (2)

- We see that each make has distinct mean normalized loss.
- We will impute this value in the missing field.



| make          | normalized-losses<br>(mean) |
|---------------|-----------------------------|
| alfa-romero   | NaN                         |
| audi          | 161.0                       |
| bmw           | 190.0                       |
| chevrolet     | 100.0                       |
| dodge         | 133.4                       |
| honda         | 103.0                       |
| isuzu         | NaN                         |
| jaguar        | 145.0                       |
| mazda         | 123.9                       |
| mercedes-benz | 102.8                       |
| mercury       | NaN                         |
| mitsubishi    | 146.2                       |
| nissan        | 135.2                       |
| peugot        | 161.0                       |
| plymouth      | 129.0                       |
| porsche       | 186.0                       |
| renault       | NaN                         |
| saab          | 127.0                       |
| subaru        | 92.2                        |
| toyota        | 110.3                       |
| volkswagen    | 121.2                       |
| volvo         | 91.5                        |

#### Conclusion

- In this project, we have analysed the data between multiple features of automobiles to establish each's relationship with the other and impute the missing fields within the dataset.
- •We have successfully imputed all missing values with appropriate metrics.
- •While doing so, we have uncovered several insights from the data which we present in the subsequent slide.



#### Inferences

- 1. Contrary to popular belief that hatchbacks have 4 doors, in this dataset we see about 60 observations (85% of all hatchbacks) to have 2 doors.
- 2. Price of a vehicle is mostly influenced by the make, engine-size, curb-weight, horsepower in that order.
- 3. Also we see a negative correlation between mileage and Price.
- 4. Vehicles with make such as Audi, BMR, Porsche, Alfa Romeo, Jaguar, Mercedes, seem to better manage their losses compared to vehicles of other makes.



#### THANK YOU