Design and Analysis of Algorithms

Presented by Dr. Li Ning

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science Shenzhen, China

Algorithm with Graphs

- 1 Graph: The Abstract Data Structure
- 2 Graph Traversal
- 3 Shortest Path
- 4 Minimum Spanning Tree
- 5 Independent Set

Graph: The Abstract Data Structure

Graph

Graph: a set of **nodes** connected by the **edges**.

$$G = (V, E)$$

- *V*: the set of nodes
 - A, B, and C
- E: the set of edges
 - (A, B), (B, C), and (C, A)

Graph

The Undirected Edges

- (A, B) = (B, A)
- (B, C) = (C, B)
- (C, A) = (A, C)

The Cycle

- \bullet A-B-C-A
- (A, B), (B, C), (C, A)

Tree

Tree: The (connected) graph containing no cycle

Take any node as the root, e.g. B

root B has no parent

Tree

Tree: The (connected) graph containing no cycle

Take any node as the root, e.g. B

- root B has no parent
- B's children
 - A
- parent: B
- C
- parent: B
- child: E
- D
- parent: B

Tree

Tree: The (connected) graph containing no cycle

Take any node as the root, e.g. B

- root B has no parent
- B's children
 - A
- parent: B
- C
- parent: B
- child: E
- D
- parent: B

Graph in Code

Listing 1: graph.py

```
G = {
   "A" : ["B", "C", "D"],
   "B" : ["A", "E"],
   "C" : ["A", "E"],
   "D" : ["A", "G"],
   "E" : ["B", "C", "F", "G"],
   "F" : ["E", "G"],
   "G" : ["D". "E". "F"].
print("Node D's neighbors:")
for n in G["D"] :
   print(n)
```



```
>> python graph.py
Node D's neighbors:
A
G
```

Tree in Code

Listing 2: tree.py

```
T = {
 "A": (None, ["B", "C", "D"]),
 "B" : ("A", []),
  "C" : ("A", ["E",]),
  "D" : ("A", []),
 "E" : ("C", ["F", "G"]),
 "F" : ("E", []),
  "G" : ("E", []).
print("Node E's parent:",
   T["E"][0])
print("Node E's children:")
for c in T["E"][1]:
   print(c)
```



```
>> python tree.py
Node E's parent: C
Node E's children:
F
G
```

Graph Traversal

Visit The Nodes

Given a graph G = (V, E).

Traversal: starting at node v, visit all the nodes of the graph in a sequence.

Visit The Nodes

Given a graph G = (V, E).

Traversal: starting at node v, visit all the nodes of the graph in a sequence.

Idea: select the next node to visit among the neighbors of the visited nodes.

Select The Next Node

Which neighbor to visit next?

- visit a node v
 - for each u, s.t. $(v, u) \in E$
 - DFS(u) if not visited

start at A

- visit a node v
 - for each u, s.t. $(v, u) \in E$
 - \bullet DFS(u) if not visited

start at A

- visit a node v
 - for each u, s.t. $(v, u) \in E$
 - \bullet DFS(u) if not visited

start at A

- visit a node v
 - for each u, s.t. $(v, u) \in E$
 - DFS(u) if not visited

start at A

- visit a node v
 - for each u, s.t. $(v, u) \in E$
 - \bullet DFS(u) if not visited

start at A

- visit a node v
 - for each u, s.t. $(v, u) \in E$
 - DFS(u) if not visited

start at A

- visit a node v
 - for each u, s.t. $(v, u) \in E$
 - \bullet DFS(u) if not visited

start at A

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q = [A,]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q = []$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q=[C,]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q=[C,F]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q = [F]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q=[F,D]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q = [F, D, E]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q=[D,E]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q = [D, E, B]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q=[E,B]$$

- Starting at the root r.
- Initialize d = 0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

$$q=[B]$$

BFS: Breadth First Search

Breadth-First: explore the nodes layer by layer.

- Starting at the root r.
- Initialize d=0.
- While there is node not visited:
 - visit the nodes that has distance d to the root.
 - d = d + 1

q = []

Complexity: O(|V| + |E|)

For each node v

- 1 : visit
- ? : check if v is visited
- O(|V|) visits
- O(|E|) checks

Traversal on Trees

Staring at root, visit the nodes in a sequence.

- Idea 1: visit the node before visiting its children
- **Idea 2**: visit the node after visiting its children

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

visit node v;

for v's each child u do

Preorder(u);

end

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

 $\overline{\text{visit node } v}$;

for v's each child u do

Preorder(u);

end

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

 $\overline{\text{visit node } v}$;

for v's each child u do

Preorder(u);

end

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

 $\overline{\text{visit node } v}$;

for v's each child u do

Preorder(u);

end

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

visit node v;

for v's each child u do

Preorder(u);

end

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

visit node v;

for v's each child u do

Preorder(u);

end

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

visit node v;

for v's each child u do

Preorder(u);

end

Preorder traversal: visit the node before visiting its children.

Algorithm: Preorder(v)

 $\overline{\text{visit node } v}$;

for v's each child u do

Preorder(u);

end

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(*v*)

for v's each child u do

Postorder(u);

end

visit node *v*;

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(*v*)

for v's each child u do

Postorder(u);

end

visit node *v*;

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(*v*)

for v's each child u do

Postorder(u);

end

visit node *v*;

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(v)

for v's each child u do

Postorder(u);

end

visit node *v*;

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(v)

for v's each child u do

Postorder(u);

end

visit node *v*;

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(v)

for v's each child u do

| Postorder(u);

end

visit node *v*;

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(v)

for v's each child u do

Postorder(u);

end

visit node *v*;

Postorder traversal: visit the node after visiting its children.

Algorithm: Postorder(v)

for v's each child u do

Postorder(u);

end

visit node *v*;

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(v)

Inorder(u' left child);

visit node v;

Inorder(u' right child);

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(v)

Inorder(u' left child);

visit node v;

Inorder(u' right child);

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(*v*)

Inorder(u' left child);

visit node v;

Inorder(u' right child);

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(v)

Inorder(u' left child); visit node v:

Inorder(u' right child);

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(v)

Inorder(u' left child);

visit node v;

Inorder(u' right child);

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(v)

Inorder(u' left child);

visit node v;

Inorder(u' right child);

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(v)

Inorder(u' left child);

visit node v;

Inorder(u' right child);

Inorder traversal: visit the node between the visiting of the left child and the right child.

Algorithm: Inorder(v)

Inorder(u' left child);

visit node v;

Inorder(u' right child);

Connected graph: all nodes can be visited through the traversal.

Traversal on graph?

- If v is not visited
 - Traversal starting at v

Connected graph: all nodes can be visited through the traversal.

Traversal on graph?

- If v is not visited
 - Traversal starting at v

Connected graph: all nodes can be visited through the traversal.

Traversal on graph?

- If v is not visited
 - Traversal starting at v

Connected graph: all nodes can be visited through the traversal.

Traversal on graph?

- If v is not visited
 - Traversal starting at v

Forest and Tree

Forest: the graph containing no cycle.

Tree: the **connected** graph containing no cycle.

Shortest Path

Path

Path: a sequence consecutively linked nodes.

- A path: [A, C, E, F]
- Not a path: [A, C, E, B]
 - E is not linked to B.

Length: number of the edges in a path.

Shortest Path

Connected graph: for any pair of nodes u and v, there is a path from u to v.

Given two nodes u and v, find the path of minimum length, that connects u and v.

- A to E
 - A, C, E
 - A, F, E
- D to B
 - D, C, F, B
 - D, E, F, B

Shortest Path

Find the length of the shortest path from D to B.

Find the length of the shortest path from D to B.

• Perform BFS on the graph, starting at *D*.

- Perform BFS on the graph, starting at D.
- Layer of node v: 1+ layer of the node that add v to the explored list.

- Perform BFS on the graph, starting at D.
- Layer of node v: 1+ layer of the node that add v to the explored list.
- Layer of node B = length of the shortest path from D to B.

Weighted Edges

A weight function *w* maps each edge to a real number.

$$w(v,u) \to \mathbb{R}^+$$

Weighted Edges

A weight function *w* maps each edge to a real number.

$$w(v, u) \rightarrow \mathbb{R}^+$$

$$w(A, C) = 5$$
; $w(A, F) = 2$
 $w(C, D) = 1$; $w(C, E) = 4$
 $w(C, F) = 3$; $w(D, E) = 2$
 $w(E, F) = 1$; $w(B, F) = 4$

Weighted Path

Given the weight of each edge, the (weighted) length of a path is the sum of the weights of the edges in the path.

Shortest path: Given a weighted graph and a pair of nodes v and u, find the path of minimum (weighted) length, that connects v and u.

Weighted Path

Shortest path: Given a weighted graph and a pair of nodes v and u, find the path of minimum (weighted) length, that connects v and u.

Path [A, F, E] has length 2 + 1 = 3.

Idea: To calculate the length of the shortest path from s to v, consider an edge (u, v),

$$d(s,v) \leq d(s,u) + w(u,v)$$

•
$$d(s, u)$$
?

Find the length of the shortest path from *D* to *B*.

• Initially, we know d(D, D) = 0

- Initially, we know d(D, D) = 0
- among all the nodes that d(D, v) is not known

•
$$d(D, C) = d(D, D) + w(D, C)$$

•
$$d(D, E) = d(D, D) + w(D, E)$$

- Initially, we know d(D, D) = 0
- among all the nodes that d(D, v) is not known

•
$$d(D, C) = d(D, D) + w(D, C)$$

•
$$d(D, E) = d(D, D) + w(D, E)$$

- d(D, F)
 - d(D, C) + w(C, F)
 - d(D, E) + w(E, F)
 - d(D, D) + ?

- Initially, we know d(D, D) = 0
- among all the nodes that d(D, v) is not known

•
$$d(D, C) = d(D, D) + w(D, C)$$

•
$$d(D, E) = d(D, D) + w(D, E)$$

- d(D, F)
 - d(D,C) + w(C,F)
 - d(D, E) + w(E, F)
 - d(D, D) + ?
 - d(D, A) + w(A, F)?

d(s, v) length of the shortest path from s to v.

 $\delta(s, v)$ length of the shortest path from s to v, **through** S.

d(s, v) length of the shortest path from s to v.

 $\delta(s, v)$ length of the shortest path from s to v, **through** S.

- Let *S* be the nodes, s.t.
 - d(s, u) is known, for all $u \in S$
 - d(s, v) for all $v \in V$ are known if S = V

d(s, v) length of the shortest path from s to v.

 $\delta(s, v)$ length of the shortest path from s to v, **through** S.

- Let *S* be the nodes, s.t.
 - d(s, u) is known, for all $u \in S$
 - d(s, v) for all $v \in V$ are known if S = V
- initially, $S = \{s\}$
 - d(s,s) = 0
 - $\delta(s, v) = w(s, v)$ if $(s, v) \in E$
 - $\delta(s, v) = \infty$ if $(s, v) \notin E$

d(s, v) length of the shortest path from s to v.

 $\delta(s, v)$ length of the shortest path from s to v, **through** S.

- Let *S* be the nodes, s.t.
 - d(s, u) is known, for all $u \in S$
 - d(s, v) for all $v \in V$ are known if S = V
- initially, $S = \{s\}$
 - d(s,s) = 0
 - $\delta(s, v) = w(s, v)$ if $(s, v) \in E$
 - $\delta(s, v) = \infty$ if $(s, v) \notin E$
- while *S* ≠ *V*
 - $u := \arg\min_{u \in V \setminus S} \delta(s, u)$
 - $d(s,u) = \delta(s,u)$

$$u := \arg\min_{u \in V \setminus S} \delta(s, u) \Rightarrow d(s, u) = \delta(s, u)$$

Proof: Assume that $d(s, u) < \delta(s, u)$.

$$u := \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u) \Rightarrow d(s, u) = \delta(s, u)$$

Proof: Assume that $d(s, u) < \delta(s, u)$.

• $\exists u' \in V \setminus S$, $d(s, u') + w(u', u) < \delta(s, u)$

$$u := \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u) \Rightarrow d(s, u) = \delta(s, u)$$

Proof: Assume that $d(s, u) < \delta(s, u)$.

• $\exists u' \in V \setminus S$, $d(s, u') + w(u', u) < \delta(s, u)$

- $\delta(s, u'') = d(s, u'') \le d(s, u') < \delta(s, u)$
- Contradiction!

```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```



```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```



```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```


$$\delta(D,C)=1$$

$$\delta(D,E)=2$$

```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```



```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```

$$\delta(D,E)=2$$

$$\delta(D,A)=6$$

$$\delta(D,F)=4$$

```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```



```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```


$$\delta(D,F)=3$$

 $\delta(D,A)=6$

```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```



```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```


$$\delta(D,A) = 5$$

$$\delta(D,B)=7$$

```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```



```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```



```
Algorithm: Dijkstra(G, s)
d(s, v) = \infty, \forall v \in V;
S=\emptyset:
\delta(s, v) = \infty, \forall v \neq s, \ \delta(s, s) = 0;
while S \neq V do
       u = \operatorname{arg\,min}_{u \in V \setminus S} \delta(s, u);
       d(s, u) = \delta(s, u);
       add u to S:
       for v \in V \setminus S with (u, v) \in E do
              if d(s, u) + w(u, v) < \delta(s, v)
                then
                    \delta(s,v)=d(s,u)+w(u,v);
              end
       end
```


Min-Priority Queue

How to find $u = \arg\min_{u \in V \setminus S} \delta(s, u)$?

Priority: $p(v) \rightarrow \mathbb{R}^+$

- is the queue empty: O(1)
- add/remove: $O(\log |V|)$
- get the minimum element: O(1)

Implementation: binary heap.

Keep $\delta(s, v)$ in min-priority queue.

- update $\delta(s, v)$: $O(\log |V|)$
- pop the smallest: $O(\log |V|)$

Complexity: $O((|V| + |E|) \log |V|)$

- $O(|V| \log |V|)$: For each node v, $\delta(s, v)$ is popped for at most 1 time.
- $O(|E|\log |V|)$: For each edges (u, v), when u is added to S at first, $\delta(s, v)$ is updated.

All Pairs Shortest Path

Problem: Given a graph G = (V, E), calculate the length of shortest path between all pairs of nodes u and v.

$$T = O(|V|) \cdot O((|V| + |E|) \log |V|)$$

- for each node $s \in V$,
 - find d(s, v) for all $v \in V$

$$T = O(|V|^3 \log |V|), \text{ if } |E| = \Omega(|V|^2)$$

Floyd-Warshall Algorithm

Index the n nodes in V

$$v_0, v_1, v_2, \ldots, v_{n-1}$$

Dynamic programming: let $d_{i,j}^k$ be the length of the shortest path from v_i to v_j , through $\{v_0, v_1, \dots, v_{k-1}\}$

$$d_{i,j}^k = \begin{cases} w(v_i, v_j) & \text{if } k = 0\\ \min\{d_{i,j}^{k-1}, d_{i,k-1}^{k-1} + d_{k-1,j}^{k-1}\} & \text{if } k \ge 1 \end{cases}$$

$$O(|V|^3)$$

Negative Weighted Edge: Bellman-Ford Algorithm

Calculate d(s, v) for all $v \in V$, with

$$w(u, v) \rightarrow \mathbb{R}$$

 $d_{s,v}^I$: the length of the shortest path from s to v, through at most I nodes.

$$d'_{s,v} = \left\{ \begin{array}{ll} w(s,v) & \text{if } l = 0 \\ \min\{d'_{s,v}, \min_{(u,v) \in E}\{d'_{s,u}^{l-1} + w(u,v)\}\} & \text{if } l \geq 1 \end{array} \right.$$

Negative weighted cycle: $d_{s,v}^{n-1} < d_{s,v}^{n-2}$ for some v. O(|V||E|).

Minimum Spanning Tree

Graph. G = (V, E)

• V: vertices

• E: edges

Graph. G = (V, E)

• V: vertices

• *E*: edges

Graph. G = (V, E)

• V: vertices

• *E*: edges

Graph. G = (V, E)

• V: vertices

• E: edges

• W: weights

Graph.
$$G = (V, E)$$

- V: vertices
- E: edges
- W: weights

Spanning Tree

- |V| 1 edges
- connect V

Graph.
$$G = (V, E)$$

- V: vertices
- E: edges
- W: weights

Spanning Tree

- |V| 1 edges
- connect V

Problem: find the spanning tree of the minimum weight (MST).

Minimum Spanning Tree

Minimum Spanning Tree

add one edge to MST

Minimum Spanning Tree

add one edge to MST

get a cycle

Minimum Spanning Tree

add one edge to MST

get a cycle

edge has the max weight

Minimum Spanning Tree: Smallest Link

Divide V into two parts

• V₁: A, B, E

• V_2 : C, D

Minimum Spanning Tree: Smallest Link

Divide V into two parts

- V_1 : A, B, E
- V_2 : C, D

Let e be the smallest-weighted edge between V_1 and V_2

- e = (C, E): weight 1
- for any MST, it must contain an edge e', suth that
 - e' links V_1 and V_2
 - w(e') = w(e)

$$V_1 = [A, B]$$
$$V_2 = [C, D, E]$$

$$V_1 = [A, B]$$

 $V_2 = [C, D, E]$
cycle: A, C, E

$$V_1 = [A, B]$$

 $V_2 = [C, D, E]$
cycle: A, C, E
 $w(A, C) \le w(A, E)$

- $T_1 : B$
- $T_2: (A, E), (A, D), (C, E)$

- $T_1 : B$
- $T_2: (A, E), (A, D), (C, E)$
- T_1 is MST of B

- $T_1 : B$
- $T_2: (A, E), (A, D), (C, E)$
- T_1 is MST of B
- T₂ is MST of
 [A, C, D, E]

Theorem: Let T_1 and T_2 be the subtrees derived by removing one edge from the MST T.

- $G_1 = (V_1, E_1)$
 - V_1 : the vertices in T_1
 - E_1 : edges between V_1
- $G_2 = (V_2, E_2)$
 - V_2 : the vertices in T_2
 - E_2 : edges between V_2

Then, T_1 is MST of G_1 , and T_2 is MST of G_2 .

 T_1 is MST of G_1 , and T_2 is MST of G_2 .

Proof: Let e = (u, v) be the removed edge.

$$w(T) = w(e) + w(T_1) + w(T_2)$$

 T_1 is MST of G_1 , and T_2 is MST of G_2 .

Proof: Let e = (u, v) be the removed edge.

$$w(T) = w(e) + w(T_1) + w(T_2)$$

• Assume that there is MST T'_1 for G_1 , with

$$w(T_1') < w(T_1)$$

 T_1 is MST of G_1 , and T_2 is MST of G_2 .

Proof: Let e = (u, v) be the removed edge.

$$w(T) = w(e) + w(T_1) + w(T_2)$$

• Assume that there is MST T'_1 for G_1 , with

$$w(T_1') < w(T_1)$$

• Then $T' = \{e\} \cup T'_1 \cup T_2$ is a spanning tree, and

$$w(T') = w(e) + w(T'_1) + w(T_2) < w(T)$$

 T_1 is MST of G_1 , and T_2 is MST of G_2 .

Proof: Let e = (u, v) be the removed edge.

$$w(T) = w(e) + w(T_1) + w(T_2)$$

• Assume that there is MST T'_1 for G_1 , with

$$w(T_1') < w(T_1)$$

• Then $T' = \{e\} \cup T'_1 \cup T_2$ is a spanning tree, and

$$w(T') = w(e) + w(T'_1) + w(T_2) < w(T)$$

• **Contradiction** to the fact that *T* is MST.

Matroid $M(S, \mathcal{I})$ for finding MST of G = (V, E): S = E.

Matroid $M(S, \mathcal{I})$ for finding MST of G = (V, E): S = E.

Kruskal's algorithm

ullet \mathcal{I} : the edge subsets that forms no cycle

Matroid $M(S, \mathcal{I})$ for finding MST of G = (V, E): S = E.

Kruskal's algorithm

- ullet \mathcal{I} : the edge subsets that forms no cycle
- **hereditary**: A has no cycle, then $A' \subseteq A$ has no cycle.

Matroid $M(S,\mathcal{I})$ for finding MST of G = (V, E): S = E.

Kruskal's algorithm

- ullet \mathcal{I} : the edge subsets that forms no cycle
- **hereditary**: A has no cycle, then $A' \subseteq A$ has no cycle.
- exchange: $|A| < |B| \in \mathcal{I} \Rightarrow$
 - find $(u, v) \in B$, such that $A \cup \{(u, v)\}$ has no cycle
 - if for all $(u, v) \in B$, $A \cup \{(u, v)\}$ has a cycle, then B has a cycle.
 - repeat: add an edge of B to A, and remove an edge (of A) in the cycle.

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 to |E| - 1 do

if $A \cup \{E[i]\}$ has no cycle **then** add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle then add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for
$$i = 0$$
 to $|E| - 1$ **do**

if $A \cup \{E[i]\}$ has no cycle then add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle **then** add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle then add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle then add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle **then** add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle then add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle **then** add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle **then** add E[i] to M;

end

Algorithm: Kruskal(G, w)

 $M = \emptyset$;

Sort E in the **increasing** order of w[e];

for i = 0 *to* |E| - 1 **do**

if $A \cup \{E[i]\}$ has no cycle then add E[i] to M;

end

Theorem: Kruskal's algorithm returns a MST.

For each edge e = (u, v) added into M.

- let T be the tree connected to v according to underlying M.
- ullet e is the smallest-weighted edge between V(T) and $V\setminus V(T)$

For any MST M' other than M, we can: replace the edges in M' by edges in M without losing any weight.

```
Time Complexity: O(|E| \log |V|)
```

- Sort the edges: $O(|E| \log |E|) = O(|E| \log |V|)$
- Consider the edges one by one : O(E)
 - Cycle check: $O(\log |V|)$
 - How?

• Rank(r): the height of the subtree rooted at r.

• Rank(r): the height of the subtree rooted at r.

- Rank(r): the height of the subtree rooted at r.
- Claim: $R(r) = O(\log n)$.

- Rank(r): the height of the subtree rooted at r.
- Claim: $R(r) = O(\log n)$.
- It is sufficient to prove the subtree rooted at r has at least 2^{Rank(r)} nodes.

 Initially, every node has rank 0.

- Initially, every node has rank 0.
- **Union**: point the root of the lower rank to the root of the higher rank.

- Initially, every node has rank 0.
- **Union**: point the root of the lower rank to the root of the higher rank.

Rank 2

0 0

- Initially, every node has rank 0.
- Union: point the root of the lower rank to the root of the higher rank.

- Initially, every node has rank 0.
- **Union**: point the root of the lower rank to the root of the higher rank.

Rank

2

- Initially, every node has rank 0.
- **Union**: point the root of the lower rank to the root of the higher rank.

Subtree at node v has at least $2^{Rank(v)}$ nodes.

Subtree at node v has at least $2^{Rank(v)}$ nodes.

Proof: Induction on rank k.

• Base case: for root of rank 0, the tree has $1 \ge 2^0$ nodes.

Subtree at node v has at least $2^{Rank(v)}$ nodes.

- Base case: for root of rank 0, the tree has $1 \ge 2^0$ nodes.
- **Assume**: for root of rank k-1, the tree has $\geq 2^{k-1}$ nodes.

Subtree at node v has at least $2^{Rank(v)}$ nodes.

- Base case: for root of rank 0, the tree has $1 \ge 2^0$ nodes.
- **Assume**: for root of rank k-1, the tree has $\geq 2^{k-1}$ nodes.
- Consider a root of rank k.

Subtree at node v has at least $2^{Rank(v)}$ nodes.

- Base case: for root of rank 0, the tree has $1 \ge 2^0$ nodes.
- **Assume**: for root of rank k-1, the tree has $\geq 2^{k-1}$ nodes.
- Consider a root of rank k.
 - rank k-1 to rank k: point a root of rank k-1 to another root of rank k-1.

Subtree at node v has at least $2^{Rank(v)}$ nodes.

- Base case: for root of rank 0, the tree has $1 \ge 2^0$ nodes.
- **Assume**: for root of rank k-1, the tree has $\geq 2^{k-1}$ nodes.
- Consider a root of rank k.
 - rank k-1 to rank k: point a root of rank k-1 to another root of rank k-1.
 - # nodes: $\geq 2 \cdot 2^{k-1} = 2^k$.

```
Algorithm: Prim(G, w)
M = \emptyset;
while |M| < |V| - 1 do

let e be the smallest-weighted edge between V(E)
and V \setminus V(E);
add e to M;
end
Return M;
```



```
Algorithm: Prim(G, w)
M = \emptyset;
while |M| < |V| - 1 do

let e be the smallest-weighted edge between V(E)
and V \setminus V(E);
add e to M;
end
Return M;
```



```
Algorithm: Prim(G, w)
M = \emptyset;
while |M| < |V| - 1 do

let e be the smallest-weighted edge between V(E)
and V \setminus V(E);
add e to M;
end
Return M;
```



```
Algorithm: Prim(G, w)
M = \emptyset;
while |M| < |V| - 1 do

| let e be the smallest-weighted edge between V(E)
and V \setminus V(E);
add e to M;
end
Return M;
```



```
Algorithm: Prim(G, w)
M = \emptyset;
while |M| < |V| - 1 do

let e be the smallest-weighted edge between V(E)
and V \setminus V(E);
add e to M;
end
Return M;
```



```
Algorithm: Prim(G, w)
M = \emptyset;
while |M| < |V| - 1 do

let e be the smallest-weighted edge between V(E)
and V \setminus V(E);
add e to M;
end
Return M;
```


Finding MST: Prim

Theorem: Prim's algorithm returns a MST.

For each edge e = (u, v) added into M.

- M is a tree.
- ullet e is the smallest-weighted edge between V(M) and $V\setminus V(M)$

For any MST M' other than M, we can: replace the edges in M' by edges in M without losing any weight.

Finding MST: Prim

Time Complexity: $O(|E| \log |V|)$

- How to find the smallest edge which extends M?
- min-priority queue
- Thus
 - Maintain the priorities of all edges between V(M) and $V\setminus V(M)$
 - Take the one of the minimum priority, and add it to M.
 - Update the edges between V(M) and $V \setminus V(M)$.

Finding MST: Prim

```
Algorithm: Prim(G, w)
M = \emptyset:
B = []; \# \text{ min-priority queue of nodes between } V(M) \text{ and }
V \setminus V(M)
while |M| < |V| - 1 do
     let e be the min edge in B;
     let v be e's endpoint outside M;
     add e to M:
     for each u \in V \setminus V(M) and (v, u) \in E do
          add or update the priority of u;
     end
     while endpoins of the min edge are all in M do
          remove the min edge from B;
     end
end
```

Given a graph G = (V, E), an independent set is a subset of V, such that there are no edges between them.

Given a graph G = (V, E), an independent set is a subset of V, such that there are no edges between them.

• $\{A, D, F\}$ is an independent set

Given a graph G = (V, E), an independent set is a subset of V, such that there are no edges between them.

- $\{A, D, F\}$ is an independent set
- $\{A, B, F\}$ is not an independent set

Largest Independent Set

Problem: Given a graph G = (V, E), find the largest independent set.

It is believed to be intractable, for the general cases.

What about the trees?

Largest Independent Set

Problem: Given a tree rooted at node r, find the largest independent set.

I(u) = size of the largest independent set of subtree rooted at node u.

Solution: I(r).

Calculate I(u)

Assume that I(v) is known for all the children v (of node u).

I(u)

Calculate I(u)

Assume that I(v) is known for all the children v (of node u).

• if *u* is included

$$I(u) = 1 + \sum_{\textit{grandchild } v} I(v)$$

Calculate I(u)

Assume that I(v) is known for all the children v (of node u).

I(u)

if u is included

$$I(u) = 1 + \sum_{\textit{grandchild } v} I(v)$$

if u is not included

$$I(u) = \sum_{child\ v} I(v)$$

THANK YOU

