Syntax-Based Translation with Weighted Automata

Review

- We need efficient algorithms and data structures to:
 - Encode all of the strings in the language.
 - Assign probabilities to all of those strings.
 - Via products such as p(e)p(f|e).
 - Find the string with the highest probability.
 - Compute expectations over substrings.
 - Compute mappings between strings.

Regular Languages

$$\mathcal{L}_1 = \left\{ \begin{array}{c} a \ a \ a \\ a \ b \\ a \ b \end{array} \right\}$$

$$a \ a \ b$$

$$a \ b \ b$$

$$a \ b \ b$$

$$a \ b \ b$$

$$b \ a \ b$$

$$c \ b \ a \ b$$

Regular Languages

 $\mathcal{L}_1 \cup \mathcal{L}_2$ is regular if \mathcal{L}_1 and \mathcal{L}_2 are regular

Regular Languages

Not all languages are regular!

$$\mathcal{L}_4 = \{ab, aabb, aaabb, ...\} = \forall_{n \in [1, inf)} a^n b^n$$

Over the last two weeks we saw context-free languages.

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

S

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

S

$S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

$S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

 $S \rightarrow NP VP$

NP → watashi wa

NP -> hako wo

 $VP \rightarrow NPV$

V → akemasu

watashi wa hako wo akemasu

 $S \rightarrow NP VP$

NP → watashi wa

NP → hako wo

 $\overline{\mathrm{VP}} \rightarrow \mathrm{NP} \, \mathrm{V}$

V → akemasu

Note: this particular grammar is finite, hence regular.

watashi wa watashi wa akemasu watashi wa hako wo akemasu hako wo watashi wa akemasu hako wo watashi wa akemasu

$$S \rightarrow AB$$

$$S \rightarrow ASB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$S \rightarrow A B$$

$$S \rightarrow A S B$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$S \rightarrow AB$$

$$S \rightarrow ASB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$S \rightarrow B$$

$$A \rightarrow B$$

$$A$$

 $\mathcal{L}_4 = \{ab, aabb, aaabb, ...\} = \forall_{n \in [1, inf)} a^n b^n$

■ Regular languages ⊂ Context-free languages

- Regular languages ⊂ Context-free languages
- Composition of languages:

- Regular languages ⊂ Context-free languages
- Composition of languages:
 - ullet Regular \cap Regular = Regular

- Regular languages ⊂ Context-free languages
- Composition of languages:
 - ullet Regular \cap Regular = Regular
 - Regular ∩ Context-free = Context-free

- Regular languages ⊂ Context-free languages
- Composition of languages:
 - ullet Regular \cap Regular = Regular
 - Regular ∩ Context-free = Context-free

$$A \to BC \in \mathcal{G}_{CFL}$$

- Regular languages ⊂ Context-free languages
- Composition of languages:
 - ullet Regular \cap Regular = Regular
 - Regular ∩ Context-free = Context-free

$$A \to BC \in \mathcal{G}_{CFL}$$

$$s, r, t \in states(\mathcal{G}_{RL})$$

- Regular languages ⊂ Context-free languages
- Composition of languages:
 - ullet Regular \cap Regular = Regular
 - Regular ∩ Context-free = Context-free

$$A \to BC \in \mathcal{G}_{CFL}$$
 $s, r, t \in states(\mathcal{G}_{RL})$
 $sA_t \to sB_{rr}C_t \in \mathcal{G}_{CFL} \cap \mathcal{G}_{RL}$

- Regular languages ⊂ Context-free languages
- Composition of languages:
 - Regular ∩ Regular = Regular
 - Regular ∩ Context-free = Context-free

$$A o BC \in \mathcal{G}_{CFL}$$
 $s, r, t \in states(\mathcal{G}_{RL})$ $sA_t o _sB_{rr}C_t \in \mathcal{G}_{CFL} \cap \mathcal{G}_{RL}$ Bar-Hillel 1964

- Regular languages ⊂ Context-free languages
- Composition of languages:
 - Regular ∩ Regular = Regular
 - Regular ∩ Context-free = Context-free
 - Context-free ∩ Context-free = Undecidable

$$A o BC \in \mathcal{G}_{CFL}$$
 $s, r, t \in states(\mathcal{G}_{RL})$ $sA_t o _sB_{rr}C_t \in \mathcal{G}_{CFL} \cap \mathcal{G}_{RL}$ Bar-Hillel 1964

```
S \rightarrow NP VP
```

NP → watashi wa

NP → hako wo

 $VP \rightarrow NPV$

V → akemasu

$S \rightarrow NP VP$	$S \rightarrow NP VP$
NP → watashi wa	$NP \rightarrow I$
NP → hako wo	$NP \rightarrow the box$
$VP \rightarrow NPV$	$VP \rightarrow V NP$
V → akemasu	V → open

```
S \rightarrow NP_1 VP_2 / NP_1 VP_2

NP \rightarrow watashi wa / I

NP \rightarrow hako wo / the box

VP \rightarrow NP_1 V_2 / V_1 NP_2

V \rightarrow akemasu / open
```

```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
NP \rightarrow watashi wa / I
NP \rightarrow hako wo / the box
VP \rightarrow NP_1 V_2 / V_1 NP_2
V \rightarrow akemasu / open
```

```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
NP \rightarrow watashi wa / I
NP \rightarrow hako wo / the box
VP \rightarrow NP_1 V_2 / V_1 NP_2
V \rightarrow akemasu / open
```

```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
NP \rightarrow watashi wa / I
NP \rightarrow hako wo / the box
VP \rightarrow NP_1 V_2 / V_1 NP_2
V \rightarrow akemasu / open
```

$S \rightarrow NP_1 VP_2 / NP_1 VP_2$

NP → watashi wa / I

 $NP \rightarrow hako wo / the box$

 $VP \rightarrow NP_1 V_2 / V_1 NP_2$

$S \rightarrow NP_1 VP_2 / NP_1 VP_2$

NP → watashi wa / I

 $NP \rightarrow hako wo / the box$

 $VP \rightarrow NP_1 V_2 / V_1 NP_2$

$S \rightarrow NP_1 VP_2 / NP_1 VP_2$

NP → watashi wa / I

 $NP \rightarrow hako wo / the box$

 $VP \rightarrow NP_1 V_2 / V_1 NP_2$


```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
```

NP → watashi wa / I

NP → hako wo / the box

 $VP \rightarrow NP_1 V_2 / V_1 NP_2$


```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
```

NP → watashi wa / I

 $NP \rightarrow hako wo / the box$

 $VP \rightarrow NP_1 V_2 / V_1 NP_2$


```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
```

NP → watashi wa / I

NP → hako wo / the box

```
VP \rightarrow NP_1 V_2 / V_1 NP_2
```



```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
```

NP → watashi wa / I

NP → hako wo / the box

$VP \rightarrow NP_1 V_2 / V_1 NP_2$


```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
```

NP → watashi wa / I

NP → hako wo / the box

$VP \rightarrow NP_1 V_2 / V_1 NP_2$

 $V \rightarrow a$ kemasu / open


```
S \rightarrow NP_1 VP_2 / NP_1 VP_2
NP \rightarrow watashi wa / I
NP \rightarrow hako wo / the box
VP \rightarrow NP_1 V_2 / V_1 NP_2
V \rightarrow akemasu / open
```


 $S \rightarrow NP_1 VP_2 / NP_1 VP_2$

NP → watashi wa / I

 $NP \rightarrow hako wo / the box$

 $VP \rightarrow NP_1 V_2 / V_1 NP_2$

$$S \rightarrow NP_1 VP_2 / NP_1 VP_2$$

$$NP \rightarrow hako wo / the box$$

$$VP \rightarrow NP_1 V_2 / V_1 NP_2$$

$$S \rightarrow NP_1 VP_2 / NP_1 VP_2$$

- NP → watashi wa / I
- NP → hako wo / the box
- $VP \rightarrow NP_1 V_2 / V_1 NP_2$

watashi wa hako wo akemasu I open the box

watashi wa hako wo akemasu I open the box

• How many parses of a sentence are there?

- How many parses of a sentence are there?
 - For binary grammar: Catalan number.

- How many parses of a sentence are there?
 - For binary grammar: Catalan number. $O(\frac{(2n)!}{(n+1)!n!})$

- How many parses of a sentence are there?
 - For binary grammar: Catalan number. $O(\frac{(2n)!}{(n+1)!n!})$
- Dynamic programming to the rescue!

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

VBD → saw

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

VP → VBD NP

 $VP \rightarrow VBD SBAR$

 $\overline{\text{VBD}} \rightarrow \text{saw}$

 $NN \rightarrow duck$

 $NP \rightarrow PRP NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP \overline{VP}$

SBAR → PRP VB

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

VBD → saw

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

I₁ saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP \overline{VP}$

SBAR → PRP VB

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

VBD → saw

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \to I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP \overline{VP}$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

VBD → saw

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

I₁ saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \to I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

VBD → saw

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

$$[PRP_{0,1} \leftarrow (w_1 = I) \land (PRP \rightarrow I)]$$

I₁ saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \to I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

VB → duck

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

VBD → saw

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

$$[PRP_{0,1} \leftarrow (w_1 = I) \land (PRP \rightarrow I)]$$

saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP\$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP \overline{VP}$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

$$PRP_{0,1}$$
 I_1 saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

$$VBD_{1,2}$$
 $PRP_{0,1} \setminus PRP\$_{2,3}$ 1_1 saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP\$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

 $\overline{\text{VBD}} \rightarrow \text{saw}$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

$$VBD_{1,2}$$
 $PRP_{2,3}$ $PRP_{0,1}$ $PRP\$_{2,3}$
 $PRP_{0,1}$ $PRP\$_{2,3}$
 $PRP_{0,1}$ $PRP\$_{2,3}$

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

 $\overline{\text{VBD}} \rightarrow \text{saw}$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

$$VBD_{1,2}$$
 $PRP_{2,3}$ $VB_{3,4}$ $PRP_{0,1}$ $PRP\$_{2,3}$ $NN_{3,4}$ I_1 saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP \$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$
$$X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$$

$$VBD_{1,2}$$
 $PRP_{2,3}$ $VB_{3,4}$ $PRP_{0,1}$ $PRP\$_{2,3}$ $NN_{3,4}$ I_1 saw₂ her₃ duck₄

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

 $X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$

 $NN \rightarrow duck$

 $NP \rightarrow PRP \$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

 $X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$

 $NN \rightarrow duck$

 $NP \rightarrow PRP\$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$
$$X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$$

$$NN \rightarrow duck$$

$$NP \rightarrow PRP$ NN$$

 $PRP \rightarrow her$

$$PRP \rightarrow I$$

$$PRP\$ \rightarrow her$$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

$$X_{i,j} \leftarrow Y_{i,k} \wedge Z_{k,j} \wedge (X \rightarrow YZ)$$

$$NP_{2,4} \leftarrow PRP\$_{2,3} \wedge NN_{3,4} \wedge (NP \rightarrow PRP\$ NN)$$

 $NN \rightarrow duck$

 $X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$ $NP \rightarrow PRP\$ NN$

 $X_{i,j} \leftarrow \overline{Y_{i,k}} \wedge \overline{Z_{k,j}} \wedge (X \rightarrow YZ)$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $NP_{2,4} \leftarrow PRP\$_{2,3} \wedge NN_{3,4} \wedge (NP \rightarrow PRP\$ NN)$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow \overline{PRP VP}$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$
$$X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$$

 $NN \rightarrow duck$

 $NP \rightarrow PRP \$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

 $X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$

 $NN \rightarrow duck$

 $NP \rightarrow PRP \$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

 $X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$

 $X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$

 $NN \rightarrow duck$

 $NP \rightarrow PRP \$ NN$

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

$$X_{i,i+1} \leftarrow (w_{i+1} = w) \land (X \rightarrow w)$$
$$X_{i,j} \leftarrow Y_{i,k} \land Z_{k,j} \land (X \rightarrow YZ)$$

Analysis

Analysis

 $O(Nn^2)$ nodes

 $O(Gn^3)$ edges

 $NN \rightarrow duck$

 $NP \rightarrow PRP$ \$ NN

 $PRP \rightarrow her$

 $PRP \rightarrow I$

 $PRP\$ \rightarrow her$

 $S \rightarrow PRP VP$

 $SBAR \rightarrow PRP VB$

 $VB \rightarrow duck$

 $VP \rightarrow VBD NP$

 $VP \rightarrow VBD SBAR$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP\$ NN$ (1.0)

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \rightarrow her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP\$ NN$ (1.0)

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \to PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $VBD \rightarrow saw$ (1.0)

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $VBD \rightarrow saw$ (1.0)

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP\$ NN$ (1.0)

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $VBD \rightarrow saw$ (1.0)

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \rightarrow her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP\$ NN$ (1.0)

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $VBD \rightarrow saw$ (1.0)

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP\$ NN$ (1.0)

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $VBD \rightarrow saw$ (1.0)

Probabilistic Parsing

$$X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP\$ NN$ (1.0)

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $\overline{\text{VP}} \rightarrow \overline{\text{VBD NP}}$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $\overline{\text{VP} \rightarrow \text{VBD SBAR}}$ (0.2)

 $VBD \rightarrow saw \qquad (1.0)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $\overline{\text{VP}} \rightarrow \text{VBD SBAR} (0.2)$

 $VBD \rightarrow saw \qquad (1.0)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $\overline{\text{VP} \rightarrow \text{VBD SBAR}}$ (0.2)

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her \qquad (0.3)$

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \to her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

 $NN \rightarrow duck$ (1.0)

 $NP \rightarrow PRP$ NN (1.0)$

 $PRP \rightarrow her$ (0.3)

 $PRP \to I \tag{0.7}$

 $PRP\$ \rightarrow her \qquad (1.0)$

 $S \rightarrow PRP VP$ (1.0)

 $SBAR \rightarrow PRP VB \quad (1.0)$

 $VB \rightarrow duck$ (1.0)

 $VP \rightarrow VBD NP$ (0.8)

 $VP \rightarrow VBD SBAR (0.2)$

$$X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} \leftarrow Y_{i,k} \wedge Z_{k,j} \wedge (X \rightarrow YZ)$$

$$X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} = X_{i,j} \vee (Y_{i,k} \wedge Z_{k,j} \wedge (X \to YZ))$$

$$X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} = X_{i,j} \lor (Y_{i,k} \land Z_{k,j} \land (X \to YZ))$$
$$\langle \{T, F\}, \lor, \land \rangle$$

$$X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} = X_{i,j} \lor (Y_{i,k} \land Z_{k,j} \land (X \to YZ))$$

$$\langle \{T, F\}, \lor, \land \rangle$$

$$X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$\langle \mathbb{R}, \max, \times \rangle$$

$$X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$X_{i,j} = X_{i,j} \lor (Y_{i,k} \land Z_{k,j} \land (X \to YZ))$$

$$\langle \{T, F\}, \lor, \land \rangle$$

$$X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$\langle \mathbb{R}, \max, \times \rangle$$

$$X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$\langle \mathbb{R}, +, \times \rangle$$

$$X_{i,j} = X_{i,j} \lor (Y_{i,k} \land Z_{k,j} \land (X \to YZ))$$

$$\langle \{T, F\}, \lor, \land \rangle$$

$$X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$\langle \mathbb{R}, \max, \times \rangle$$

$$X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$$

$$\langle \mathbb{R}, +, \times \rangle$$

$$X_{i,j} = X_{i,j} \oplus (Y_{i,k} \otimes Z_{k,j} \otimes R(X \to YZ))$$

$$X_{i,j} = X_{i,j} \lor (Y_{i,k} \land Z_{k,j} \land (X \to YZ))$$
boolean $\langle \{T, F\}, \lor, \land
angle$
 $X_{i,j} = \max(X_{i,j}, Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$
Viterbi $\langle \mathbb{R}, \max, \times
angle$
 $X_{i,j} = X_{i,j} + (Y_{i,k} \times Z_{k,j} \times p(X \to YZ))$
inside $\langle \mathbb{R}, +, \times
angle$
 $X_{i,j} = X_{i,j} \oplus (Y_{i,k} \otimes Z_{k,j} \otimes R(X \to YZ))$

Is Intersection!

 $NN_{3,4} \rightarrow duck$

 $\overline{NP_{2,4}} \rightarrow \overline{PRP\$_{2,3}} \, \overline{NN_{3,4}}$

 $PRP_{2,3} \rightarrow her$

 $PRP_{0,1} \rightarrow I$

 $PRP\$_{2,3} \rightarrow her$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow duck$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $\overline{\mathrm{VP}_{1,4}} \rightarrow \overline{\mathrm{VBD}_{1,2}} \, \overline{\mathrm{SBAR}_{2,4}}$

 $VBD_{1,2} \rightarrow saw$

Is Intersection!

Is Intersection!

Is Intersection!

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

Is Intersection!

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

Is Intersection!

 $NN_{3,4} \rightarrow duck$

 $\overline{NP_{2,4}} \rightarrow \overline{PRP\$_{2,3}} \, \overline{NN_{3,4}}$

 $PRP_{2,3} \rightarrow her$

 $PRP_{0,1} \rightarrow I$

 $PRP\$_{2,3} \rightarrow her$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow duck$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $\overline{\mathrm{VP}_{1,4}} \rightarrow \overline{\mathrm{VBD}_{1,2}} \, \overline{\mathrm{SBAR}_{2,4}}$

 $VBD_{1,2} \rightarrow saw$

Is Intersection!

	TN	Т			1	1	
		$\sqrt{3}$	1 -	\rightarrow	α_1	1CK	
Τ.	ΛT	N.3.4	4		$\alpha \iota$	$\mathbf{L}\mathbf{L}\mathbf{N}$	ı

$$NP_{2,4} \to PRP\$_{2,3} NN_{3,4}$$

$$PRP_{2,3} \rightarrow her$$

$$PRP_{0,1} \rightarrow I$$

$$PRP\$_{2,3} \rightarrow her$$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow duck$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow saw$$

$$NN_{3,4} \rightarrow pato$$

$$NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$$

$$PRP_{2,3} \rightarrow su$$

$$PRP_{0,1} \rightarrow yo$$

$$PRP\$_{2,3} \rightarrow ella$$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow agacharse$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

Is Intersection!

 $NN_{3,4} \rightarrow duck$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow her$

 $PRP_{0,1} \rightarrow I$

 PRP_{2,3} \rightarrow her$

 $S_{0,4} \rightarrow \overline{PRP}_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow duck$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $\overline{\mathrm{VP}_{1,4}} \rightarrow \overline{\mathrm{VBD}_{1,2}} \, \overline{\mathrm{SBAR}_{2,4}}$

 $VBD_{1,2} \rightarrow saw$

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

yo vi ella agacharse

yo vi su pato

• Parse the English sentence (intersection).

- Parse the English sentence (intersection).
- Project grammar into French.

- Parse the English sentence (intersection).
- Project grammar into French.
- Parse the French sentence (intersection).

- Parse the English sentence (intersection).
- Project grammar into French.
- Parse the French sentence (intersection).

Figure 3: Average synchronous parser run-time (in seconds) as a function of Arabic sentence length (in words).

Dyer, NAACL 2010

 $NN_{3,4} \rightarrow duck$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow her$

 $PRP_{0,1} \rightarrow I$

 $PRP\$_{2,3} \rightarrow her$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow duck$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow saw$

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2.3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

yo vi ella agacharse

yo vi su pato

Observation: target grammar generates a finite language

 $NN_{3,4} \rightarrow duck$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow her$

 $PRP_{0,1} \rightarrow I$

 $PRP\$_{2,3} \rightarrow her$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow duck$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow saw$

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow \overline{PRP\$}_{2,3} \overline{NN}_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

yo vi ella agacharse

yo vi su pato

$$NN_{3,4} \rightarrow pato$$
 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$
 $PRP_{2,3} \rightarrow su$
 $PRP_{0,1} \rightarrow yo$
 $PRP\$_{2,3} \rightarrow ella$
 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$
 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$
 $VB_{3,4} \rightarrow agacharse$
 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$
 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$
 $VBD_{1,2} \rightarrow vi$

$$NN_{3,4} \rightarrow pato$$
 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$
 $PRP_{2,3} \rightarrow su$
 $PRP_{0,1} \rightarrow yo$
 $PRP\$_{2,3} \rightarrow ella$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow agacharse$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$
 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$
 $PRP_{2,3} \rightarrow su$
 $PRP_{0,1} \rightarrow yo$
 $PRP\$_{2,3} \rightarrow ella$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow agacharse$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$

$$NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$$

$$PRP_{2,3} \rightarrow su$$

$$PRP_{0,1} \rightarrow yo$$

$$PRP\$_{2,3} \rightarrow ella$$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow agacharse$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$
 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$
 $PRP_{2,3} \rightarrow su$

$PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$
 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$
 $PRP_{2,3} \rightarrow su$

$PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$

$$NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$$

$$PRP_{2,3} \rightarrow su$$

$$PRP_{0,1} \rightarrow yo$$

$$PRP\$_{2,3} \rightarrow ella$$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow agacharse$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$
 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$
 $PRP_{2,3} \rightarrow su$
 $PRP_{0,1} \rightarrow yo$
 $PRP\$_{2,3} \rightarrow ella$
 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$
 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$
 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$
 $PRP_{2,3} \rightarrow su$
 $PRP_{0,1} \rightarrow yo$
 $PRP\$_{2,3} \rightarrow ella$
 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$
 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$
 $VB_{3,4} \rightarrow agacharse$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$
 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

$$VBD_{1,2} \rightarrow vi$$

$$NN_{3,4} \rightarrow pato$$

$$NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$$

$$PRP_{2,3} \rightarrow su$$

$$PRP_{0,1} \rightarrow yo$$

$$PRP\$_{2,3} \rightarrow ella$$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow agacharse$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

$$NN_{3,4} \rightarrow pato$$

$$NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$$

$$PRP_{2,3} \rightarrow su$$

$$PRP_{0,1} \rightarrow yo$$

$$PRP\$_{2,3} \rightarrow ella$$

$$S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$$

$$SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$$

$$VB_{3,4} \rightarrow agacharse$$

$$VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$$

$$VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$$

$$VBD_{1,2} \rightarrow vi$$

Better: lazy algorithm

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

Better: lazy algorithm

Even better: convert to PDA

 $NN_{3,4} \rightarrow pato$

 $NP_{2,4} \rightarrow PRP\$_{2,3} NN_{3,4}$

 $PRP_{2,3} \rightarrow su$

 $PRP_{0,1} \rightarrow yo$

 $PRP\$_{2,3} \rightarrow ella$

 $S_{0,4} \rightarrow PRP_{0,1} VP_{1,4}$

 $SBAR_{2,4} \rightarrow PRP_{2,3} VB_{3,4}$

 $VB_{3,4} \rightarrow agacharse$

 $VP_{1,4} \rightarrow VBD_{1,2} NP_{2,4}$

 $VP_{1,4} \rightarrow VBD_{1,2} SBAR_{2,4}$

 $VBD_{1,2} \rightarrow vi$

Better: lazy algorithm

Even better: convert to PDA

Cambridge: best NIST 2009 Arabic system

watashi wa hako wo akemasu I open the box

watashi wa hako wo akemasu

I open the box

Intersection of weighted Intersection of weighted CFL and RL

CFL and RL

watashi wa hako wo akemasu I open the box

Intersection of weighted Intersection of weighted CFL and RL

CFL and RL

watashi wa hako wo akemasu I open the box

Intersection of weighted Intersection of weighted CFL and RL

CFL and RL

watashi wa hako wo akemasu I open the box Weighted tree languages, automata, and transducers.

Not all languages are context-free!

Not all languages are context-free!

$$\mathcal{L} = \{abc, aabbcc, aaabbbccc, ...\} = \forall_n \in [1, \inf)a^nb^nc^n$$

Not all languages are context-free!

$$\mathcal{L} = \{abc, aabbcc, aaabbbccc, ...\} = \forall_n \in [1, \inf)a^nb^nc^n$$

CS Theory: context-sensitive languages (Turing equivalent)

Not all languages are context-free!

$$\mathcal{L} = \{abc, aabbcc, aaabbbccc, ...\} = \forall_n \in [1, \inf)a^nb^nc^n$$

CS Theory: context-sensitive languages (Turing equivalent)

FL Theory: mildly context-sensitive languages.

Not all languages are context-free!

$$\mathcal{L} = \{abc, aabbcc, aaabbbccc, ...\} = \forall_n \in [1, \inf)a^nb^nc^n$$

CS Theory: context-sensitive languages (Turing equivalent)

FL Theory: *mildly context-sensitive* languages. superset of CFL, subset of CSL, polynomial-time

Not all languages are context-free!

$$\mathcal{L} = \{abc, aabbcc, aaabbbccc, ...\} = \forall_n \in [1, \inf)a^nb^nc^n$$

CS Theory: context-sensitive languages (Turing equivalent)

FL Theory: *mildly context-sensitive* languages. superset of CFL, subset of CSL, polynomial-time Tree-adjoining grammar, Combinatory categorial grammar, many others.