Chapter 9-10 Confidence Intervals and Hypothesis Testing

HT for the Mean when σ is unknown

Statistics

Mehmet Güray Güler, PhD

Last updated: 01.04.2020

- The CLT is nice...
- However it was assumed that the population standard deviation is known.
- in many experimental scenarios, knowledge of σ is certainly no more reasonable than knowledge of the population mean μ
- As a result, a natural statistic to consider to deal with inferences on μ is

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

• Let X_1, X_2, \ldots, X_n be independent RVs that are all normal with mean μ and standard deviation σ . Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

- Then the random variable $T = \frac{\bar{X} \mu}{S/\sqrt{n}}$ has a t-distribution with v = n 1 degrees of freedom.
- We use t-distribution to infer information about the real mean μ

Table A.4 Critical Values of the t-Distribution

				α			
$oldsymbol{v}$	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228

Table A.4 (continued) Critical Values of the t-Distribution

				α			
v	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63.656	127.321	636.578
2	4.849	5.643	6.965	8.073	9.925	14.089	31.600
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587

Compare with normal distribution, the table structure is different!

Table A.3 Areas under the Normal Curve

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183^{-7}

Normal Distribution

Table A.3 (continued) Areas under the Normal Curve

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319

HT for μ when σ is UNknown

- The hypothesis are:
 - $H_0: \mu = \mu_0$
 - $H_1: \mu \neq \mu_0$
- The test statistic is given by: $t_{obs} = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$ with n=v-1 d.f.
- For a given α ,
 - find $t_{\alpha \setminus 2}$
 - calculate the observed t value t_{obs} .
 - Check whether observed t_{obs} lies in the critical region, i.e.,
 - $t_{obs} \ge t_{\alpha \setminus 2}$ or $t_{obs} \le -t_{\alpha \setminus 2}$
 - If it is in the critical region, we reject the null hypothesis.

HT Testing – Summary

- 1. State the null and alternative hypotheses.
- 2. Choose an appropriate test statistic
- 3. Establish the critical region using the significance level α
- 4. Calculate test statistic's observed value under H_0
- 5. Reject H_0 if the computed test statistic is in the critical region. Otherwise, do not reject.

- Example:
- We have the heights of 10 students from this class as:

171	175	156	151	179
175	170	164	167	162

Test

$$H_0$$
: $\mu = 170$ vs H_1 : $\mu \neq 170$ for $\alpha = 0.05$

- Solution:
- The average height turns out to be

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = 167$$

The sample standard deviation is

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\bar{X}^{2} \right) \Rightarrow s = 8.87$$

Solution:

- For 9 d.f, $t_{0.025} = 2.262$.
- Hence rejection region is R- [-2.262, 2.262]
- Observed t is:
- $t_{obs} = \frac{\overline{x} \mu_0}{s/\sqrt{n}} = \frac{167 170}{8.87/\sqrt{10}} = -1.069$ which is outside of the rejection region
- Hence we do not reject H_0