xabaaxabbaxaabax

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.0 [April-06-16]

Compiled for a PARALLEL COMPUTER ARCHITECTURE

One master and 19 compute nodes are available.

Program started at Thu Apr 7 19:02:17 2016 Program finished at Thu Apr 7 19:28:25 2016

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (from parmfile) 310705631

Start parameters:

Theta values were generated from the FST-calculation

M values were generated from the FST-calculation

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population 1 2 3 4
1 Romanshorn___0 m a a a
2 Arbon___1 a m a a
3 Kreuzlingen___2 a a m a
4 Frauenfeld 3 a a a m

Order of parameters:

3 4 5 6 7 8 9 10 11	Θ ₃ Θ ₄ M _{2->} M _{3->} M _{4->} M _{3->} M _{4->} M _{1->} M _{1->}	$=$ Θ_{-1} $=$ Θ_{-1} $=$ Θ_{-1} $=$ Θ_{-1} $=$ Θ_{-1} $=$ Θ_{-2} $=$	$ \begin{array}{lll} $	<displayed></displayed>		
13 14 15 16	M 4-> M 1-> M 2-> M 3->	$S_3 = N_4$ $S_4 = N_4$ $S_4 = N_4$	$M_{2->1}^{2->1}$ [a] $M_{2->1}^{2->1}$ [a]			
Mutation rate an	nong loci:				Mutation ra	te is constant for all loci
Analysis strateg	y:					Bayesian inference
Proposal distribution Parameter Theta M	utions for _l	parameter	Propo Slice sampl Slice sampl	ing		
	Prior Iniform	neter Minimum 0.000000 0.000000	Mea 0.0500 5000.0000	0.10000	0.010000	500
Markov chain se Number of chair Recorded step Increment (red Number of col Visited (samp Number of dis	ns ps [a] cord every ncurrent c led) paran	chains (repl meter value	licates) [c] es [a*b*c]			Long chain 1 5000 100 2 1000000 5000
Multiple Markov Static heating				100	4 ch	nains with temperatures 1.50 1.00 Swapping interval is 1

Print options:

xabaaxabbaxaabax -- 3

Data file:	infile.xabaaxabbaxaabax
Output file:	outfile-xabaaxabbaxaabax2
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 10

Population	Locus	Gene copies
1 Romanshorn0	1	20
	2	20
	3	20
	4	20
	5	20
	6	20
	7	20
	8	20
	9	20
	10	20
2 Arbon1	1	20
	2	20
	3	20
	4	20
	5	20
	6	20
	7	20
	8	20
	9	20
	10	20
3 Kreuzlingen2	1	20
	2	20
	3	20
	4	20
	5	20
	6	20
	7	20
	8	20
	9	20
	10	20
4 Frauenfeld3	1	20
	2	20
	3	20
	4	20
	5	20
	6	20

xabaaxabbaxaabax -- 5

		xabaaxabbax	
	7	20	
	8	20	
	9	20	
	10	20	
Total of all populations	1	80	
	2	80	
	3	80	
	4	80	
	5	80	
	6	80	
	7	80	
	8	80	
	9	80	
	10	80	

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00400	0.00580	0.00710	0.00820	0.01020	0.00730	0.00722
1	Θ_2	0.00400	0.00580	0.00710	0.00820	0.01020	0.00730	0.00722
1	Θ_3	0.00400	0.00580	0.00710	0.00820	0.01020	0.00730	0.00722
1	Θ_4	0.00400	0.00580	0.00710	0.00820	0.01020	0.00730	0.00722
1	M _{2->1}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{3->1}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{4->1}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{1->2}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{3->2}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{4->2}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{1->3}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{2->3}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{4->3}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{1->4}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{2->4}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
1	M _{3->4}	0.0	120.0	230.0	320.0	440.0	250.0	225.0
2	Θ_1	0.00740	0.00960	0.01110	0.01240	0.01540	0.01150	0.01140
2	Θ_2	0.00740	0.00960	0.01110	0.01240	0.01540	0.01150	0.01140
2	Θ_3	0.00740	0.00960	0.01110	0.01240	0.01540	0.01150	0.01140
2	Θ_4	0.00740	0.00960	0.01110	0.01240	0.01540	0.01150	0.01140
2	M _{2->1}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{3->1}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{4->1}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{1->2}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{3->2}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{4->2}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{1->3}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{2->3}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{4->3}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{1->4}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{2->4}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
2	M _{3->4}	0.0	0.0	30.0	100.0	220.0	110.0	48.1
3	Θ_1	0.00940	0.01180	0.01350	0.01500	0.01840	0.01390	0.01380
3	$\Theta_2^{^1}$	0.00940	0.01180	0.01350	0.01500	0.01840	0.01390	0.01380

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
3	Θ_3	0.00940	0.01180	0.01350	0.01500	0.01840	0.01390	0.01380
3	Θ_4	0.00940	0.01180	0.01350	0.01500	0.01840	0.01390	0.01380
3	M _{2->1}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{3->1}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{4->1}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{1->2}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{3->2}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{4->2}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{1->3}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{2->3}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	$M_{4->3}$	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{1->4}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{2->4}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
3	M _{3->4}	0.0	40.0	130.0	200.0	300.0	150.0	124.6
4	Θ_1	0.00740	0.00960	0.01110	0.01260	0.01560	0.01150	0.01147
4	Θ_2	0.00740	0.00960	0.01110	0.01260	0.01560	0.01150	0.01147
4	Θ_3	0.00740	0.00960	0.01110	0.01260	0.01560	0.01150	0.01147
4	Θ_4	0.00740	0.00960	0.01110	0.01260	0.01560	0.01150	0.01147
4	M _{2->1}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{3->1}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{4->1}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{1->2}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	$M_{3->2}$	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{4->2}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{1->3}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{2->3}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	$M_{4->3}$	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{1->4}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	M _{2->4}	0.0	20.0	110.0	180.0	280.0	150.0	117.0
4	$M_{3->4}$	0.0	20.0	110.0	180.0	280.0	150.0	117.0
5	Θ_1	0.00660	0.00880	0.01030	0.01160	0.01420	0.01070	0.01053
5	Θ_2	0.00660	0.00880	0.01030	0.01160	0.01420	0.01070	0.01053
5	Θ_3	0.00660	0.00880	0.01030	0.01160	0.01420	0.01070	0.01053
5	Θ_4	0.00660	0.00880	0.01030	0.01160	0.01420	0.01070	0.01053
5	M _{2->1}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	M _{3->1}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	M _{4->1}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	M _{1->2}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	$M_{3->2}$	0.0	0.0	10.0	80.0	200.0	90.0	36.6

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
5	M _{4->2}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	M _{1->3}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	M _{2->3}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	$M_{4->3}$	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	M _{1->4}	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	$M_{2->4}$	0.0	0.0	10.0	80.0	200.0	90.0	36.6
5	$M_{3->4}$	0.0	0.0	10.0	80.0	200.0	90.0	36.6
6	Θ_1	0.00520	0.00720	0.00850	0.00980	0.01240	0.00890	0.00876
6	Θ_2	0.00520	0.00720	0.00850	0.00980	0.01240	0.00890	0.00876
6	Θ_3	0.00520	0.00720	0.00850	0.00980	0.01240	0.00890	0.00876
6	Θ_4	0.00520	0.00720	0.00850	0.00980	0.01240	0.00890	0.00876
6	M _{2->1}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	M _{3->1}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	M _{4->1}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	M _{1->2}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	$M_{3->2}$	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	M _{4->2}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	M _{1->3}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	M _{2->3}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	$M_{4->3}$	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	M _{1->4}	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	$M_{2->4}$	0.0	40.0	150.0	220.0	360.0	190.0	154.8
6	$M_{3->4}$	0.0	40.0	150.0	220.0	360.0	190.0	154.8
7	Θ_1	0.00540	0.00720	0.00870	0.00980	0.01220	0.00890	0.00886
7	Θ_2	0.00540	0.00720	0.00870	0.00980	0.01220	0.00890	0.00886
7	Θ_3	0.00540	0.00720	0.00870	0.00980	0.01220	0.00890	0.00886
7	Θ_4	0.00540	0.00720	0.00870	0.00980	0.01220	0.00890	0.00886
7	M _{2->1}	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	M _{3->1}	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	M _{4->1}	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	M _{1->2}	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	M _{3->2}	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	$M_{4->2}$	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	M _{1->3}	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	$M_{2->3}$	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	$M_{4->3}$	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	M _{1->4}	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	$M_{2->4}$	0.0	80.0	170.0	240.0	340.0	190.0	165.6
7	M _{3->4}	0.0	80.0	170.0	240.0	340.0	190.0	165.6

ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
8	Θ_1	0.00400	0.00560	0.00670	0.00780	0.00980	0.00710	0.00693
8	Θ_2	0.00400	0.00560	0.00670	0.00780	0.00980	0.00710	0.00693
8	Θ_3^-	0.00400	0.00560	0.00670	0.00780	0.00980	0.00710	0.00693
8	Θ_4	0.00400	0.00560	0.00670	0.00780	0.00980	0.00710	0.00693
8	M _{2->1}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{3->1}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{4->1}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{1->2}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{3->2}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{4->2}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{1->3}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{2->3}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	$M_{4->3}$	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	M _{1->4}	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	$M_{2->4}$	0.0	0.0	30.0	100.0	220.0	110.0	47.7
8	$M_{3->4}$	0.0	0.0	30.0	100.0	220.0	110.0	47.7
9	Θ_1	0.00740	0.00980	0.01130	0.01280	0.01580	0.01170	0.01158
9	Θ_{2}	0.00740	0.00980	0.01130	0.01280	0.01580	0.01170	0.01158
9	Θ_3	0.00740	0.00980	0.01130	0.01280	0.01580	0.01170	0.01158
9	Θ_4	0.00740	0.00980	0.01130	0.01280	0.01580	0.01170	0.01158
9	M _{2->1}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{3->1}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{4->1}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{1->2}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{3->2}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{4->2}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{1->3}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{2->3}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{4->3}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{1->4}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	M _{2->4}	0.0	60.0	170.0	240.0	360.0	190.0	160.5
9	$M_{3->4}$	0.0	60.0	170.0	240.0	360.0	190.0	160.5
10	Θ_1	0.00780	0.01000	0.01150	0.01280	0.01560	0.01190	0.01171
10	Θ_2	0.00780	0.01000	0.01150	0.01280	0.01560	0.01190	0.01171
10	Θ_3^2	0.00780	0.01000	0.01150	0.01280	0.01560	0.01190	0.01171
10	$\Theta_4^{'}$	0.00780	0.01000	0.01150	0.01280	0.01560	0.01190	0.01171
10	M _{2->1}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{3->1}	0.0	60.0	150.0	240.0	340.0	190.0	159.7

Migrate 3.7.0: (http://popgen.sc.fsu.edu) [program run on 19:02:17]

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
10	M _{4->1}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{1->2}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{3->2}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{4->2}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{1->3}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{2->3}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{4->3}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{1->4}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	$M_{2->4}$	0.0	60.0	150.0	240.0	340.0	190.0	159.7
10	M _{3->4}	0.0	60.0	150.0	240.0	340.0	190.0	159.7
All	Θ_1	0.00760	0.00880	0.00970	0.01060	0.01180	0.00990	0.00980
All	Θ_2	0.00760	0.00880	0.00970	0.01060	0.01180	0.00990	0.00980
All	Θ_3	0.00760	0.00880	0.00970	0.01060	0.01180	0.00990	0.00980
All	Θ_4	0.00760	0.00880	0.00970	0.01060	0.01180	0.00990	0.00980
All	M _{2->1}	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	$M_{3->1}$	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	M _{4->1}	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	M _{1->2}	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	$M_{3->2}$	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	$M_{4->2}$	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	M _{1->3}	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	M _{2->3}	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	$M_{4->3}$	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	M _{1->4}	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	$M_{2->4}$	0.0	20.0	110.0	180.0	280.0	150.0	115.6
All	$M_{3->4}$	0.0	20.0	110.0	180.0	280.0	150.0	115.6

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[In(Prob(D | thisModel) - In(Prob(D | otherModel) or as LBF = 2 (In(Prob(D | thisModel) - In(Prob(D | otherModel)) shows the support for thisModel]

Locus	Raw thermodynamic score(1a)	Bezier approximation score(1b)	Harmonic mean(2)
1	-4686.81	-2852.62	-2510.53
2	-6370.72	-3545.63	-3015.95
3	-7156.61	-3756.21	-3113.96
4	-6443.91	-3517.19	-2978.13
5	-7852.97	-3793.77	-3028.30
6	-3926.28	-2722.97	-2498.74
7	-4424.77	-2869.97	-2577.86
8	-4828.94	-3014.48	-2674.17
9	-6157.49	-3843.80	-3417.27
10	-6649.44	-3552.70	-2973.58
All	-58446.40	-33417.80	-28736.95

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains [Scaling factor = 51.543354

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	312532/312532	1.00000
Θ_2	312532/312532	1.00000
Θ_3	312532/312532	1.00000
Θ_4°	312532/312532	1.00000
M 2->1	312803/312803	1.00000
$M_{3->1}$	312803/312803	1.00000
$M_{4->1}$	312803/312803	1.00000
$M_{1\rightarrow 2}$	312803/312803	1.00000
$M_{3\rightarrow 2}$	312803/312803	1.00000
$M_{4\rightarrow 2}$	312803/312803	1.00000
$M_{1->3}$	312803/312803	1.00000
$M_{2\rightarrow 3}$	312803/312803	1.00000
$M_{4->3}$	312803/312803	1.00000
$M_{1->4}$	312803/312803	1.00000
$M_{2->4}$	312803/312803	1.00000
$M_{3->4}$	312803/312803	1.00000
Genealogies	417132/4999949	0.08343

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.83155	9784.93
Θ_2	0.83155	9784.93
Θ_3^2	0.83155	9784.93
Θ_4°	0.83155	9784.93
$M_{2->1}$	0.95156	2520.66
$M_{3->1}$	0.95156	2520.66
M $_{4\rightarrow 1}^{3\rightarrow 1}$	0.95156	2520.66
$M_{1->2}^{4->1}$	0.95156	2520.66
$M_{3->2}$	0.95156	2520.66
$M_{4->2}^{3->2}$	0.95156	2520.66
$M_{1\rightarrow 3}^{4\rightarrow 2}$	0.95156	2520.66
$M_{2\rightarrow 3}^{1\rightarrow 3}$	0.95156	2520.66
$M_{4\rightarrow 3}^{2\rightarrow 3}$	0.95156	2520.66
M 1->4	0.95156	2520.66
$M_{2\rightarrow 4}^{1\rightarrow 4}$	0.95156	2520.66
M $\frac{2->4}{3->4}$	0.95156	2520.66
J->4 Ln[Prob(D G)]	0.89865	5600.81

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect

the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run