Teorema 4.4.3

Si φ es un ángulo entre ${\bf u}$ y ${\bf v}$, entonces

$$|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \operatorname{sen} \varphi$$
 (4.4.2)

Demostración

No es dificil demostrar (comparando coordenadas) que $|\mathbf{u} \times \mathbf{v}|^2 = |\mathbf{u}|^2 |\mathbf{v}|^2 - (\mathbf{u} \cdot \mathbf{v})^2$ (vea el problema 40). Entonces, como $(\mathbf{u} \cdot \mathbf{v})^2 = |\mathbf{u}|^2 |\mathbf{v}|^2 \cos^2 \varphi$ (del teorema 4.3.2),

$$|\mathbf{u} \times \mathbf{v}|^2 = |\mathbf{u}|^2 |\mathbf{v}|^2 - |\mathbf{u}|^2 |\mathbf{v}|^2 \cos^2 \varphi = |\mathbf{u}|^2 |\mathbf{v}|^2 (1 - \cos^2 \theta)$$
$$= |\mathbf{u}|^2 |\mathbf{v}|^2 \sin^2 \varphi$$

y el teorema queda demostrado después de sacar la raíz cuadrada a ambos lados de la ecuación. Observe que sen $\varphi \geq 0$ porque $0 \leq \varphi \leq \pi$.

Existe una interpretación geométrica interesante del teorema 4.4.3. Los vectores \mathbf{u} y \mathbf{v} están dibujados en la figura 4.29 y se puede pensar que son dos lados adyacentes de un paralelogramo. Entonces de la geometría elemental se ve que

El área del paralelogramo que tiene lados adyacentes
$${\bf u}$$
 y ${\bf v}$ es igual a $|{\bf u}|$ $|{\bf v}|$ sen $\varphi=|{\bf u}\times{\bf v}|$ (4.4.3)

Figura 4.29 φ es el ángulo entre **u** y **v**. $\frac{h}{|\mathbf{v}|} = \operatorname{sen} \varphi$, de manera que $h = |\mathbf{v}| \operatorname{sen} \varphi$.

Figura 4.30 Un paralelogramo en \mathbb{R}^3 .

EJEMPLO 4.4.3 Cálculo del área de un paralelogramo en \mathbb{R}^3

Encuentre el área del paralelogramo con vértices consecutivos en P = (1, 3, -2), Q = (2, 1, 4) y R = (-3, 1, 6) (vea la figura 4.30).

SOLUCIÓN ► El paralelogramo.