### บทที่ 4

#### ผลการศึกษา

จากการบริหารจัดการน้ำหลากในพื้นที่ลุ่มต่ำทุ่งป่าโมก ในปี 2560 กำหนดแผนการรับน้ำ ในปริมาณ 50 ล้าน ลบ.ม. ซึ่งช่วยบรรเทาปัญหาอุทกภัยในพื้นที่ชุมชนและพื้นที่เศรษฐกิจด้านท้ายน้ำได้อย่างมี ประสิทธิภาพ จากการทบทวนและติดตามผลการบริหารจัดการน้ำในพื้นที่ลุ่มต่ำทุ่งป่าโมก ทำให้ทราบถึง ปัญหาและข้อจำกัดที่เกิดขึ้น ดังนั้น เพื่อให้การบริหารจัดการน้ำในพื้นที่ลุ่มต่ำทุ่งป่าโมกมีประสิทธิภาพและ ยั่งยืน จึงต้องกำหนดแนวทางในการพัฒนาและการบริหารจัดการน้ำหลาก การบริหารจัดการเชิงบูรณาการ ทำงานร่วมกับหน่วยงานที่เกี่ยวข้อง และการพิจารณาการขยายผลไปสู่พื้นที่ที่มีศักยภาพ สามารถสรุปได้ดังนี้

### 4.1 แนวทางในพัฒนาและการบริหารจัดการพื้นที่ลุ่มต่ำลุ่มน้ำเจ้าพระยา ทุ่งป่าโมก

### 4.1.1 แนวคิดในการบริหารจัดการน้ำสำหรับพื้นที่ลุ่มต่ำทุ่งป่าโมก

ในสภาพปัจจุบันพื้นที่ลุ่มต่ำทุ่งป่าโมก จะมีปริมาณน้ำจำนวนหนึ่ง ซึ่งเกิดจากฝน และปริมาณ น้ำจากภายนอกที่ไหลผ่านระบบคูคลองในพื้นที่เข้าท่วมขังอยู่ก่อน สภาพดังกล่าวทำให้ในช่วงน้ำหลากพื้นที่ลุ่ม ต่ำทุ่งป่าโมก จะมีปริมาตรเก็บกักที่สามารถใช้ในช่วงวิกฤติได้น้อยลง ดังนั้นแนวคิดในการบริหารจัดการน้ำ ส่วนที่เกินความสามารถในการระบายน้ำของแม่น้ำเจ้าพระยา คลองบางหลวง (โผงเผง) และแม่น้ำน้อย โดย ระบายเข้าในพื้นที่ลุ่มต่ำทุ่งป่าโมก เพื่อชะลอน้ำในช่วงภาวะวิกฤติที่เกิดจากปริมาณน้ำหลากสูงสุด จากด้าน เหนือน้ำ และภาวะน้ำทะเลหนุน มีหลักการคือการทำให้พื้นที่ลุ่มต่ำทุ่งป่าโมก ในบริเวณที่เป็นพื้นที่ลุ่มต่ำและ เป็นพื้นที่น้ำท่วมเป็นประจำ มีที่ว่างที่สามารถเก็บกักน้ำหลากให้มากที่สุด โดยจะมีการบริหารจัดการและรับ น้ำส่วนเกินเข้าพื้นที่เมื่อระดับน้ำในแม่น้ำถึงระดับวิกฤติที่กำหนด จากหลักการดังกล่าวสามารถกำหนด แนวทางในการบริหารจัดการพื้นที่ลุ่มต่ำทุ่งป่าโมก ได้ 3 ช่วงเวลา ได้แก่ ช่วงเวลาก่อนใช้พื้นที่เก็บกักน้ำ ช่วงเวลาขณะเก็บกักน้ำ และช่วงการระบายน้ำออกจากพื้นที่ ซึ่งมีรายละเอียดของการบริหารจัดการดังนี้

### 4.1.1.1 การบริหารจัดการน้ำในพื้นที่ก่อนใช้พื้นที่เก็บกักน้ำ

มีแนวทางในการกำหนดองค์ประกอบเพื่อป้องกันน้ำท่วมขังในพื้นที่ลุ่มต่ำทุ่งป่าโมก ก่อนใช้งาน ใน 3 ลักษณะคือ

- 1) การป้องกันน้ำท่วมขังที่ไหลมาจากแม่น้ำซึ่งอยู่ภายนอกพื้นที่ มีองค์ประกอบที่กำหนดไว้ ดังนี้
- (1) เสริมแนวป้องกันน้ำท่วมรอบพื้นที่ที่จะเก็บกักน้ำให้มีระดับสูงกว่าระดับน้ำวิกฤติที่กำหนด เพียงพอที่จะไม่ให้น้ำจากแม่น้ำเจ้าพระยา คลองโผงเผง (คลองบางหลวง) และแม่น้ำน้อยไหลล้น เข้าสู่พื้นที่ ด้านใน โดยจะเน้นแนวป้องกันน้ำท่วมริมแม่น้ำเจ้าพระยา คลองโผงเผง (คลองบางหลวง) และแนวป้องกันน้ำ ท่วมจากแม่น้ำน้อย เป็นหลัก
- (2) กำหนดอาคารควบคุมปิดกั้นคลองเชื่อมระหว่างพื้นที่ภายในกับแม่น้ำเจ้าพระยา คลองโผงเผง (คลองบางหลวง) และแม่น้ำน้อย เพื่อป้องกันน้ำในแม่น้ำเจ้าพระยาแม่น้ำน้อย และคลองโผงเผง (คลองบางหลวง) ไหลเข้าพื้นที่โดยผ่านคลองระบายในช่วงน้ำหลากก่อนภาวะวิกฤติ

- (3) ปิดประตูระบายน้ำริมแม่น้ำเจ้าพระยา แม่น้ำน้อย และคลองโผงเผง (คลองบางหลวง) ให้สนิทเพื่อป้องกันน้ำเข้าไปท่วมพื้นที่ก่อนมีการใช้พื้นที่เก็บกักน้ำและจะเปิดรับน้ำเข้าพื้นที่ลุ่มต่ำ ตามแผนการ ลดปริมาณน้ำในแม่น้ำ เมื่อระดับน้ำในแม่น้ำถึงระดับที่กำหนด ทั้งนี้หากอยู่ในช่วงเวลาที่เกษตรกรต้องการใช้ น้ำที่ไม่ใช่ภาวะระดับน้ำในแม่น้ำอยู่ในวิกฤติ อาจมีการระบายน้ำจากภายนอกให้ไหลเข้าในพื้นที่ได้บางส่วน สำหรับใช้เพื่อการเกษตรได้บางส่วน
- (4) กำหนดอาคารสถานีสูบน้ำออกจากพื้นที่เพื่อควบคุมปริมาณน้ำในพื้นที่ให้เป็นไปตาม ความต้องการที่จะพร่องน้ำก่อนที่จะเปิดใช้พื้นที่ โดยกำหนดจากสภาพพื้นที่ที่มีระดับพื้นต่ำที่สุด โดยเดินเครื่อง สูบน้ำวันละ 18 ชั่วโมง ประมาณ 5-7 วัน
- (5) จัดเตรียมอุปกรณ์และเครื่องมือไว้ให้พร้อมรับสภาวะน้ำท่วมในกรณีฉุกเฉิน เช่น กระสอบทราย รถบรรทุก เครื่องสูบน้ำเคลื่อนที่ และอื่น ๆ
- 2) การป**้องกันน้ำท่วมขังที่เกิดจากฝนตกในพื้นที่** ในบริเวณพื้นที่ลุ่มต่ำทุ่งป่าโมกที่ต้องใช้ใน การเก็บกักน้ำ มีแนวทางในการป้องกันน้ำที่เกิดจากฝนตกในพื้นที่ ดังนี้
- (1) กรณีที่ระดับน้ำภายนอกพื้นที่อยู่ในระดับต่ำ และระดับน้ำภายในที่เกิดจากฝนตกใน พื้นที่สูงกว่าภายนอก อาคารควบคุม/ประตูระบายริมคันกั้นน้ำที่ติดกับแม่น้ำเจ้าพระยา คลองโผงเผง (คลอง บางหลวง) และแม่น้ำน้อยทุกประตูระบายจะถูกเปิด เพื่อระบายน้ำออก เพื่อลดภาวะน้ำท่วมที่เกิดขึ้น ในพื้นที่ ลุ่มต่ำเฉพาะจุด
- (2) กรณีระดับน้ำภายนอกอยู่สูงกว่าระดับน้ำภายในจะใช้วิธีการสูบระบาย ตามสถานีที่ กำหนดให้เป็นจุดสูบน้ำออกทั้งหมด จะสูบระบายน้ำออกอย่างเต็มที่ในช่วงที่ไม่สามารถระบายน้ำทางประตู ระบายน้ำได้
- (3) อาคารในระบบป้องกันน้ำท่วมและระบายน้ำสำหรับพื้นที่ชุมชนที่อยู่ภายในพื้นที่ลุ่มต่ำ จะถูกใช้ในการระบายน้ำออกจากพื้นที่ชุมชน หากการระบายน้ำฝนภายในชุมชนสามารถทำได้

### 3) การติดตามสถานการณ์น้ำและการเฝ้าระวังน้ำหลากจากด้านเหนือน้ำ

กำหนดให้มีผู้รับผิดชอบในการติดตามข้อมูล และประสานงานกับหน่วยงานที่เกี่ยวข้องกับ ข้อมูลข่าวสารจากแหล่งข้อมูลต่าง ๆ โดยเฉพาะตำแหน่งของสถานีวัดปริมาณน้ำและวัดระดับน้ำที่เป็นจุดเฝ้า ระวัง ได้แก่ สถานีวัดระดับและปริมาณน้ำ C.2 อำเภอเมือง จังหวัดนครสวรรค์ และข้อมูลระดับน้ำและ ปริมาณ การระบายน้ำจากเขื่อนเจ้าพระยา ซึ่งจากการรวบรวมและวิเคราะห์ข้อมูลการบริหารการระบายน้ำของเขื่อนเจ้าพระยาในอดีตจนถึงปี 2551 พบว่าเขื่อนเจ้าพระยาจะระบายน้ำเฉลี่ยร้อยละ 80 ของปริมาณน้ำที่สถานี C.2 อำเภอเมือง จังหวัดนครสวรรค์ ดังนั้นในการบริหารจัดการการใช้พื้นที่ลุ่มต่ำป่าโมก-ผักไห่ สามารถกำหนด การเฝ้าระวังที่ตำแหน่งฝ้าระวัง ได้ 2 ตำแหน่ง ดังนี้

| ปริมาณน้ำที่สถานี C.2<br>จังหวัดนครสวรรค์ (ลบ.ม./วินาที) | ปริมาณน้ำระบายท้ายเขื่อนเจ้าพระยา<br>(ลบ.ม./วินาที) | สถานการณ์ในพื้นที่                                            |
|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| 1,800 - 2,000                                            | 1,500                                               | เฝ้าระวัง/เตรียมความพร้อมของพื้นที่                           |
| 2,000 - 2,500                                            | 2,000                                               | เตือนภัย                                                      |
| 2,500 - 3,200                                            | > 2,500                                             | พิจารณาบริหารจัดการการใช้พื้นที่<br>ตามสภาพเหตุการณ์เฉพาะหน้า |

อย่างไรก็ตาม เนื่องจากการระบายน้ำจากเชื่อนเจ้าพระยา มีผลโดยตรงต่อการเกิดระดับและ ปริมาณน้ำวิกฤตโดยตรง จึงควรให้ความสำคัญต่อปริมาณน้ำที่ระบายจากท้ายเชื่อนเจ้าพระยาในอันดับแรก ส่วนปริมาณน้ำที่สถานี C.2 จังหวัดนครสวรรค์ สามารถใช้เป็นข้อมูลในการพิจารณาประกอบการติดตาม สถานการณ์น้ำในพื้นที่ได้

โดยระยะทางตามแนวลำน้ำจากท้ายเชื่อนเจ้าพระยามาถึงบริเวณพื้นที่ลุ่มต่ำทุ่งป่าโมก ประมาณ 130 กิโลเมตร เมื่อพิจารณาจากความเร็วการไหลของน้ำในช่วงน้ำหลากที่อัตราการไหลของน้ำต่าง ๆ สามารถ สรุประยะเวลาการเดินทางของน้ำหลากดังนี้

| ปริมาณน้ำระบายท้ายเชื่อน<br>เจ้าพระยา (ลบ.ม./วินาที) | ความเร็วการไหลเฉลี่ย<br>(ม./วินาที)                                                                    | ระยะเวลาเดินทาง<br>ของน้ำหลาก (ชั่วโมง) | สถานการณ์ในพื้นที่                  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|--|--|--|
| 1,500                                                | 0.80                                                                                                   | 45                                      | เฝ้าระวัง/เตรียมความพร้อมของพื้นที่ |  |  |  |
| (* ช่วงเวลาน้อยที่สุดของกา                           | (* ช่วงเวลาน้อยที่สุดของการเปลี่ยนอัตราการระบายน้ำจาก 1,500 ลบ.ม./วินาที ถึง 2,000 ลบ.ม./วินาที ประมาณ |                                         |                                     |  |  |  |
| 2,000                                                | 1.00                                                                                                   | 36                                      | เตือนภัย                            |  |  |  |
| (* ช่วงเวลาน้อยที่สุด                                | (* ช่วงเวลาน้อยที่สุดของการเปลี่ยนอัตราการระบายน้ำจาก 2,000 ถึง 2,500 ลบ.ม./วินาที ประมาณ 24 ชั่วโมง)  |                                         |                                     |  |  |  |
| . 0.500                                              | 1.05                                                                                                   | 20                                      | พิจารณาบริหารจัดการการใช้พื้นที่    |  |  |  |
| > 2,500                                              | 1.25                                                                                                   | 29                                      | ตามสภาพเหตุการณ์เฉพาะหน้า           |  |  |  |

ดังนั้น ในการติดตามเฝ้าระวังสถานการณ์ของน้ำหลากจากข้อมูลปริมาณน้ำระบายท้ายเขื่อนจะ ทำให้สามารถประเมินสถานการณ์ของน้ำหลากที่จะไหลมายังพื้นที่ลุ่มต่ำทุ่งป่าโมก ได้ล่วงหน้าประมาณ 3 วัน

### 4.1.1.2 การบริหารจัดการน้ำในพื้นที่ขณะใช้เก็บกักน้ำ

มีแนวทางดำเนินการดังต่อไปนี้

- 1) หากการตรวจสอบสถานการณ์น้ำ พบว่าปริมาณน้ำที่สถานีวัดปริมาณน้ำ C.2 มากกว่า 2,000 ลูกบาศก์เมตร/วินาที และมีแนวโน้มสูงมากขึ้น และปริมาณน้ำที่ถูกระบายจากท้ายเงื่อนเจ้าพระยา มาก เกินกว่า 1,500 ลูกบาศก์เมตร/วินาที ผู้ที่เกี่ยวข้องกับการตัดสินใจในการใช้พื้นที่ จะต้องแจ้งการเตรียมใช้ พื้นที่ต่อประชาชนในพื้นที่ลุ่มต่ำอย่างทั่วถึง เพื่อทำการเคลื่อนย้ายทรัพย์สิน ที่อยู่นอกพื้นที่ป้องกันไปอยู่ในที่ ปลอดภัย และต้องตรวจสอบสถานการณ์ระดับน้ำในแม่น้ำเจ้าพระยา คลองโผงเผง (คลองบางหลวง) และแม่น้ำ น้อย บริเวณตำแหน่งที่ถูกกำหนดให้เป็นจุดรับน้ำเข้าพื้นที่ลุ่มต่ำอย่างเข้มงวด หากระดับน้ำในบริเวณดัง กล่าวถึงระดับที่กำหนดไว้ อาคารควบคุมที่ถูกใช้ในการรับน้ำเข้าพื้นที่จะถูกเปิดเพื่อรับน้ำเข้าสู่พื้นที่ทันที โดย ใช้ระยะเวลาจากการแจ้งเตือน จนถึงเวลานำน้ำเข้าพื้นที่ประมาณ 3 วัน ทั้งนี้ระดับน้ำที่ใช้เป็นเกณฑ์ในการ เปิดรับน้ำเข้า คือ
  - ระดับน้ำในแม่น้ำน้อย
    - ระดับน้ำที่ตำแหน่ง ปตร.บางกุ้ง (ต.ผักไห่ อ.ผักไห่ จ.พระนครศรีอยุธยา) +5.30 ม.รทก
    - ระดับน้ำที่ตำแหน่งปตร.กุฎี (ต.กุฎี อ.วิเศษไชยชาญ จ.อ่างทอง) +5.30 ม.รทก
    - ระดับน้ำที่ตำแหน่ง ปตร.คลองวัดใบบัว (ต.บ้านกระทุ่ม อ.เสนา จ.พระนครศรีอยุธยา) +5.30 ม.รทก
  - ระดับน้ำในแม่น้ำเจ้าพระยา
    - ที่ตำแหน่งอาคารรับน้ำ แห่งที่ 1 (ต.ป่าโมก อ.ป่าโมก จ.อ่างทอง) +6.00 ม.รทก.
  - ระดับน้ำในคลองโผงเผง (บางหลวง)

- ที่ตำแหน่งอาคารรับน้ำ แห่งที่ 2 (ต.บางหลวง อ.บางบาล จ.พระนครศรีอยุธยา) +5.50ม.รทก.
- 2) เมื่อระดับน้ำภายในพื้นที่เพิ่มสูงขึ้นถึงระดับที่กำหนดคือ เก็บกักที่ระดับ +5.00 ม.รทก. อาคารควบคุมน้ำจากภายนอกจะถูกปิด และใช้สถานีสูบน้ำในพื้นที่ ซึ่งมีอยู่ 5 จุดที่ ปตร.บางกุ้ง ปตร.กุฎี ปตร.วัดใบบัว ปตร.ตานึ่ง และ ปตร.วัดคงษา ทำหน้าที่รักษาระดับเก็บกักให้อยู่ในระดับกำหนด รวมถึงกรณี ที่เกิดฝนตกในพื้นที่ สถานีสูบน้ำก็จะถูกใช้ในการควบคุมระดับน้ำด้วย
- 3) ในขณะเก็บกักน้ำ ต้องมีการเฝ้าระวังคุณภาพน้ำในพื้นที่เก็บกักให้อยู่ในเกณฑ์มาตรฐาน โดย ใช้ข้อมูลตรวจวัดที่ได้จากระบบโทรมาตรและจุดตรวจวัดอื่น ๆ ในพื้นที่ หากพบว่าคุณภาพน้ำในพื้นที่มี แนวโน้มว่าจะเกินกว่ามาตรฐาน ให้ทำการหมุนเวียนและถ่ายเทน้ำโดยใช้การสูบระบายน้ำออกจากพื้นที่ พร้อมทั้งเปิดประตูระบายน้ำหรืออาคารรับน้ำจากแม่น้ำ ที่มีตำแหน่งในบริเวณตอนบนของพื้นที่ เพื่อให้น้ำจาก แม่น้ำไหลเข้าในพื้นที่ทางตอนบน และระบายออกทางด้านล่างที่ตำแหน่งสถานีสูบน้ำ เพื่อทำให้เกิดการ หมุนเวียนและปรับคุณภาพน้ำให้อยู่ในเกณฑ์ที่กำหนด

# **4.1.1.3** การบริหารจัดการน้ำในพื้นที่หลังจากเก็บกักน้ำแล้ว มีแนวทางดำเนินการดังต่อไปนี้

1) การสูบระบายน้ำ หากการตรวจสอบสถานการณ์น้ำ พบว่าปริมาณน้ำที่ถูกระบายจากเขื่อนเจ้าพระยา ลดลงน้อยกว่า 2,000 ลูกบาศก์เมตร/วินาที และระดับน้ำในแม่น้ำน้อยที่ตำแหน่งสถานีสูบที่ ปตร.บางกุ้ง ปตร.กุฎี และปตร.วัดใบบัว ลดต่ำกว่าระดับ +5.50 ม.รทก. ให้ดำเนินการสูบระบายน้ำออกจากพื้นที่

ส่วนในคลองโผงเผง (คลองบางหลวง) เมื่อระดับน้ำ ลดต่ำกว่าระดับ +5.50 ม.รทก. สถานีสูบน้ำ ที่ ปตร.คลองตานึ่ง เริ่มทำการสูบระบายน้ำจากในพื้นที่ด้วยเช่นกัน

2) การระบายน้ำด้วยแรงโน้มถ่วงของโลก หากการตรวจสอบสถานการณ์น้ำ พบว่าปริมาณน้ำ ที่ถูกระบายจากเขื่อนเจ้าพระยาลดลงน้อยกว่า 2,000 ลูกบาศก์เมตร/วินาที และระดับน้ำในแม่น้ำน้อยที่ตำแหน่ง ปตร.บางกุ้ง ปตร.กุฎี และ ปตร.วัดใบบัว ลดต่ำกว่าระดับ +5.00 ม.รทก. สามารถระบายน้ำออกจากพื้นที่ ด้วยการเปิดบานระบายน้ำที่อาคารควบคุมให้ไหลออกตามแรงโน้มถ่วงของโลกได้ นอกจากนี้ สามารถใช้อาคาร ควบคุมแห่งที่ 1 และอาคารควบคุมแห่งที่ 2 ช่วยระบายน้ำ หากระดับน้ำในแม่น้ำเจ้าพระยา และคลองโผงเผง (คลองบางหลวง) ต่ำกว่าระดับน้ำในพื้นที่

#### 4.1.2 การประเมินงบประมาณเพื่อการชดเชยความเสียหายทางการเกษตร

การศึกษาทางด้านการเงิน เพื่อการจัดตั้งงบประมาณในการชดเชยความเสียหายจากการมี โครงการ ซึ่งได้ใช้พื้นที่ลุ่มต่ำเป็นที่รับน้ำในช่วงฤดูน้ำหลาก ถึงแม้ว่าโครงการมีมาตรการทางด้านวิศวกรรมใน การป้องกันความเสียหายแก่ชุมชนในพื้นที่ลุ่มต่ำ แต่ยังมีบางส่วนที่ยังไม่สามารถป้องกันได้โดยเฉพาะส่วนของ พื้นที่การเกษตร ดังนั้น ในการบริหารจัดการพื้นที่ลุ่มต่ำ จึงจำเป็นต้องมีการตั้งงบประมาณมาชดเชยความ เสียหาย กับผู้ที่ได้รับผลกระทบในพื้นที่ดังกล่าว

## 4.2 การบริหารจัดการเชิงบูรณาการทำงานร่วมกับหน่วยงานที่เกี่ยวข้อง

### 4.2.1 ก่อนการรับน้ำเข้าทุ่ง

- โครงการเปิดน้ำเข้านา ปล่อยปลาเข้าทุ่ง เป็นโครงการเพิ่มปริมาณสัตว์น้ำให้กับทุ่งนาที่ได้รับการกำหนดให้เป็นแก้มลิงเพื่อรับน้ำในช่วงน้ำหลาก ภายใต้การบูรณาการของ จังหวัดพระนครศรีอยุธยา กรม ประมง กรมชลประทาน กระทรวงเกษตรและสหกรณ์ ซึ่งกรมชลประทานจะจัดสรรน้ำ และจัดส่งน้ำให้ เกษตรกรในพื้นที่เป้าหมายให้เพียงพอในการปลูกข้าว ตามระบบการปลูกข้าวเหลื่อมเวลาและทันกำหนด ระยะเวลาการปลูก โดยกำหนดหัวงเวลาตามแผนให้เกษตรกรปลูกข้าวต้นเดือนพฤษภาคม และเก็บเกี่ยวให้ แล้วเสร็จไม่เกิน 15 กันยายนของทุกปี หลังจากนั้นจะใช้พื้นที่นาหลังเก็บเกี่ยวแล้วเสร็จเป็นทุ่งรับน้ำ เพื่อ กระจายน้ำเข้าทุ่งประมาณ 3 เดือน ในระหว่างนี้กรมประมงก็จะปล่อยสัตว์น้ำจืดลงสู่ทุ่ง เพื่อให้เกษตรกรได้ทำ การประมงสร้างอาชีพเสริมในระหว่างรอการเพาะปลูกช่วงต่อไป

### 4.2.2 หลังการรับน้ำเข้าทุ่ง

- โครงการอุดหนุนปัจจัยการผลิตเพื่อช่วยเหลือเกษตรกรในพื้นที่ลุ่มต่ำ ภายใต้การบูรณาการ ของ กรมส่งเสริมการเกษตร กรมการข้าว และกรมชลประทาน กระทรวงเกษตรและสหกรณ์ ในการช่วยเหลือ เกษตรกรในพื้นที่โครงการปรับเปลี่ยนระบบผลิตข้าวในพื้นที่ลุ่มต่ำ ดังนี้
  - 1) สนับสนุนเมล็ดพันธุ์ข้าวนาปี ไร่ละ 5 กิโลกรัม พื้นที่ 1.41 ล้านไร่ จำนวน 7,075 ตัน
  - 2) มาตรการเสริมอื่น ๆ
- โครงการภายใต้แผนการผลิตและการตลาดข้าวครบวงจร 2 โครงการ ได้แก่ 1) โครงการ ส่งเสริมการปลูกพืชหลากหลาย ฤดูนาปรัง ปี 2561 พื้นที่เป้าหมาย 150,000 ไร่ 2) โครงการปลูกพืชปุ๋ยสด ฤดูนาปรัง ปี 2561 พื้นที่เป้าหมาย 200,000 ไร่ มติคณะรัฐมนตรีเมื่อวันที่ 11 กรกฎาคม 2560
- โครงการภายใต้มาตรการรักษาเสถียรภาพสินค้าเกษตรและรายได้เกษตรกร 1 โครงการ คือ โครงการส่งเสริมการปลูกข้าวโพดเลี้ยงสัตว์ฤดูแล้งหลังนา ปี 2560/61 พื้นที่เป้าหมาย 700,000 ไร่ มติ คณะรัฐมนตรี เมื่อวันที่ 26 กันยายน 2560
- โครงการปลูกพืชอาหารสัตว์ช่วยเหลือเกษตรกรในพื้นที่ลุ่มต่ำ โดยส่งเสริมปลูกข้าวโพดพร้อม ฝักสำหรับใช้เลี้ยงสัตว์ พร้อมสนับสนุนปัจจัยการผลิตและรับซื้อผลผลิต พื้นที่ 25,000 ไร่

#### 4.3 แผนการพัฒนาด้านวิศวกรรม

แผนการพัฒนาด้านวิศวกรรมของพื้นที่ลุ่มต่ำเพื่อรับน้ำนอง เนื่องจากระบบชลประทาน อาคาร ควบคุมน้ำเข้า-ออกพื้นที่ ได้แก่ ปตร. ทรบ. ร่องคลองระบายรวมทั้งความสูงของถนนซึ่งเป็นระบบป้องกันน้ำ ท่วมชุมชนในปัจจุบันไม่สามารถใช้พื้นรับน้ำนองได้อย่างเต็มศักยภาพ เนื่องจากมีการเปลี่ยนแปลงการใช้ ประโยชน์ของพื้นที่ อายุการใช้งานของระบบชลประทานจึงมีความจำเป็นต้องพิจารณาปรับปรุงเพิ่มเติมเพื่อให้ การใช้พื้นที่รับน้ำนองได้ประสิทธิภาพสูงสุด ให้สามารถรองรับได้ทั้งในด้านการเกษตรกรรมและในด้านการใช้ รับน้ำนองในช่วงฤดูน้ำหลากได้

จากการศึกษาพบว่าแผนการพัฒนาด้านวิศวกรรมและแนวทางการพัฒนารูปแบบขององค์ประกอบ การพัฒนาพื้นที่ลุ่มต่ำเพื่อรับน้ำนองพบว่ามีองค์ประกอบและอาคารทางชลศาสตร์ที่เกี่ยวข้องกับระบบ ชลประทานในพื้นที่บางส่วนสามารถใช้ร่วมกันได้ บางส่วนจำเป็นต้องมีการปรับปรุงให้สามารถรองรับได้ทั้งใน ด้านการเกษตรกรรมและในด้านการใช้รับน้ำนองบางส่วนต้องดำเนินการก่อสร้างใหม่ บางส่วนต้องทำการ ปรับปรุงเพิ่มเติมเพื่อให้การใช้พื้นที่รับน้ำนองได้ประสิทธิภาพสูงสุด พบว่า มีองค์ประกอบ 3 ส่วนที่ต้อง พิจารณา ได้แก่ การควบคุมน้ำก่อนเข้าไปเก็บในพื้นที่เกษตร การควบคุมน้ำเข้าพื้นที่เกษตร การระบายน้ำออก จากพื้นที่เกษตร ทั้งนี้สามารถจำแนกองค์ประกอบแผนการพัฒนาด้านวิศวกรรมโดยกำหนดตำแหน่งและ ประเภทของระบบองค์ประกอบและอาคารทางชลศาสตร์ แบ่งแผนการพัฒนาด้านวิศวกรรมได้ดังนี้

#### 4.3.1 แผนการพัฒนาด้านวิศวกรรม (แผนการก่อสร้างใหม่)

แผนการพัฒนาด้านวิศวกรรม (แผนการก่อสร้างใหม่) ทั้งหมด 7 รายการรวมทั้งสิ้น 25 แห่ง ได้แก่

| 1. อาคารรับน้ำ (ปตร.และคลองชักน้ำ) | 2 | แห่ง |
|------------------------------------|---|------|
| 2. ประตูระบายน้ำ (ปตร.)            | 2 | แห่ง |
| 3. ท่อระบายน้ำ (ทรบ.)              | 7 | แห่ง |
| 4. ท่อลอดคลอง (ไซฟอน)              | 4 | แห่ง |
| 5. ท่อลอดถนน (Box Culvert)         | 7 | แห่ง |
| 6. สถานีสูบน้ำ                     | 2 | แห่ง |
| 7. ก่อสร้างคันดิน                  | 1 | แห่ง |

### 4.3.2 แผนการพัฒนาด้านวิศวกรรม (แผนการปรับปรุง)

แผนการพัฒนาด้านวิศวกรรม (แผนการปรับปรุง) ทั้งหมด 3 รายการ รวมทั้งสิ้น 9 แห่ง ได้แก่

ระบบป้องกันน้ำท่วมปรับปรุงถนน (พื้นที่โครงการ)
ระบบป้องกันน้ำท่วมปรับปรุงถนน (พื้นที่ชุมชน)
ปรับปรุงประตูระบายน้ำ (ปตร.) และก่อสร้างสถานีสูบน้ำ
แห่ง

#### 4.3.3 กรอบระยะเวลาแผนการพัฒนาด้านวิศวกรรม

แผนการพัฒนาด้านวิศวกรรมของพื้นที่ลุ่มต่ำเพื่อรับน้ำนองจากการประเมินและศึกษาความเหมาะสม โดยพิจารณาแนวทางการดำเนินงานเพื่อให้เกิดผลสัมฤทธ์สามาถมารถแบ่งแผนการพัฒนาด้านวิศวกรรม เพื่อให้การดำเนินการเป็นไปตามกระบวนการเพิ่มประสิทธิภาพการบริหารจัดการพื้นที่ลุ่มต่ำลุ่มทุ่งป่าโมก ตามกรอบระยะเวลาเป็น โดยแบ่งเป็น 2 ระยะ ดังนี้

แผนการพัฒนาด้านวิศวกรรมที่ 1 (ระยะเร่งด่วน) เป็นแผนงานที่ดำเนินการเพื่อเตรียมความ พร้อมตามกรอบระยะเวลา 1-2 ปี ทั้งหมด 6 รายการ รวมทั้งสิ้น 6 แห่ง ได้แก่

- 1. ปรับปรุงประตูระบายน้ำและสถานีสูบน้ำ ปตร.บางกุ้ง
- 2. ปรับปรุงประตูระบายน้ำและสถานีสูบน้ำ ปตร.กุฎี
- 3. ปรับปรุงประตูระบายน้ำและสถานีสู่บน้ำ ปตร.คลองวัดใบบัว
- 4. ปรับปรุ่งประตูระบายน้ำและสถานีสูบน้ำ ปตร.คลองตานึ่ง
- 5. ก่อสร้างคันคลองระบายใหญ่แม่น้ำน้อย 8
- 6. ก่อสร้างสถานีสูบน้ำวัดคงษา

แผนการพัฒนาด้านวิศวกรรมระยะที่ 2 (ระยะปานกลาง) เป็นแผนงานที่ดำเนินการต่อเนื่อง จากแผนงานระยะเร่งด่วน ตามกรอบระยะเวลา 3-5 ปี ทั้งหมด 4 รายการ รวมทั้งสิ้น 28 แห่ง ตำแหน่งและ ประเภทของระบบองค์ประกอบและอาคารทางชลศาสตร์ ดังแสดงในภาพที่ 4-1 และตารางที่ 4-1



ภาพที่ 4 - 1 แผนการพัฒนาด้านวิศวกรรม

### ตารางที่ 4-1 ตารางรายละเอียดแผนการพัฒนาด้านวิศวกรรม

| ลำดับ | รายละเอียดแผนงาน                     | อาคารประเภท            | การ<br>ก่อสร้าง  | อาคาร<br>หมายเลข | กรอบ<br>ระยะเวลา |
|-------|--------------------------------------|------------------------|------------------|------------------|------------------|
| 1     | ระบบป้องกันน้ำท่วม                   |                        |                  |                  |                  |
|       | 1.1 ระบบป้องกันน้ำท่วมพื้นที่โครงการ |                        |                  |                  |                  |
|       | 1.1.1 - ปรับปรุงถนนลาดยาง            | คันกั้นน้ำ             | ปรับปรุง         | -                | ระยะที่ 2        |
|       | 1.2 ระบบป้องกันน้ำท่วมพื้นที่ชุมชน   |                        |                  |                  |                  |
|       | 1.2.1 - ปรับปรุงถนนลาดยาง            | คันกั้นน้ำ             | ปรับปรุง         | -                | ระยะที่ 2        |
|       | 1.2.2 - ปรับปรุงถนนคอนกรีต           | คันกั้นน้ำ             | ปรับปรุง         | =                | ระยะที่ 2        |
|       | 1.2.3 - ปรับปรุงถนนลูกรัง            | คันกั้นน้ำ             | ปรับปรุง         | =                | ระยะที่ 2        |
|       | 1.2.4 - ปรับปรุงคันคลองส่งน้ำ        | คันกั้นน้ำ             | ปรับปรุง         | =                | ระยะที่ 2        |
|       | 1.2.5 - ก่อสร้างคันดิน               | คันกั้นน้ำ             | ก่อสร้าง<br>ใหม่ | -                | เร่งด่วน         |
| 2     | อาคารรับน้ำ                          |                        |                  |                  |                  |
|       | 2.1 ก่อสร้างอาคารรับน้ำ แห่งที่ 1    | ปตร. และคลอง<br>ชักน้ำ | ก่อสร้าง<br>ใหม่ | 1                | ระยะที่ 2        |
|       | 2.2 ก่อสร้างอาคารรับน้ำ แห่งที่ 2    | ปตร. และคลอง<br>ชักน้ำ | ก่อสร้าง<br>ใหม่ | 2                | ระยะที่ 2        |
| 3     | ประตูระบายน้ำ (ปตร.)                 |                        |                  |                  |                  |
|       | 3.1 ก่อสร้าง ปตร. วัดราษฎร์นิยม      | ปตร.                   | ก่อสร้าง<br>ใหม่ | 3                | ระยะที่ 2        |
|       | 3.2 ก่อสร้าง ปตร. บางกุ้ง 2          | ปตร.                   | ก่อสร้าง<br>ใหม่ | 4                | ระยะที่ 2        |
| 4     | ท่อระบายน้ำ (ทรบ.)                   |                        |                  |                  |                  |
|       | 4.1 ก่อสร้าง ทรบ. แห่งที่ 1          | ทรบ.                   | ก่อสร้าง<br>ใหม่ | 6                | ระยะที่ 2        |
|       | 4.2 ก่อสร้าง ทรบ. แห่งที่ 2          | ทรบ.                   | ก่อสร้าง<br>ใหม่ | 7                | ระยะที่ 2        |
|       | 4.3 ก่อสร้าง ทรบ. แห่งที่ 3          | ทรบ.                   | ก่อสร้าง<br>ใหม่ | 8                | ระยะที่ 2        |
|       | 4.4 ก่อสร้าง ทรบ. แห่งที่ 4          | ทรบ.                   | ก่อสร้าง<br>ใหม่ | 9                | ระยะที่ 2        |
|       | 4.5 ก่อสร้าง ทรบ. แห่งที่ 5          | ทรบ.                   | ก่อสร้าง<br>ใหม่ | 10               | ระยะที่ 2        |
|       | 4.6 ก่อสร้าง ทรบ. แห่งที่ 6          | ทรบ.                   | ก่อสร้าง<br>ใหม่ | 11               | ระยะที่ 2        |
|       | 4.7 ก่อสร้าง ทรบ. แห่งที่ 7          | ทรบ.                   | ก่อสร้าง<br>ใหม่ | 12               | ระยะที่ 2        |
| 5     | ท่อลอดคลอง (ไซฟอน)                   |                        |                  |                  |                  |
|       | 5.1 ไซฟอนลอดคลอง 2 ซ. แห่งที่ 1      | ไซฟอน                  | ก่อสร้าง<br>ใหม่ | 13               | ระยะที่ 2        |
|       | 5.2 ไซฟอนลอดคลอง 2 ซ. แห่งที่ 2      | ไซฟอน                  | ก่อสร้าง<br>ใหม่ | 14               | ระยะที่ 2        |

| ลำดับ | รายละเอียดแผนงาน                                                             | อาคารประเภท             | การ<br>ก่อสร้าง  | อาคาร<br>หมายเลข | กรอบ<br>ระยะเวลา |  |
|-------|------------------------------------------------------------------------------|-------------------------|------------------|------------------|------------------|--|
|       | 5.3 ไซฟอนลอดคลอง 3 ซ. แห่งที่ 1                                              | ไซฟอน                   | ก่อสร้าง<br>ใหม่ | 15               | ระยะที่ 2        |  |
|       | 5.4 ไซฟอนลอดคลอง 3 ซ. แห่งที่ 2                                              | ไซฟอน                   | ก่อสร้าง<br>ใหม่ | 16               | ระยะที่ 2        |  |
| 6     | ท่อลอดถนน (Box Culvert)                                                      |                         |                  |                  |                  |  |
|       | 6.1 Box Culvert 1 (ถนนฝั่งขวาเลียบคลองบางกุ้ง)                               | ท่อลอดถนน               | ก่อสร้าง<br>ใหม่ | 17               | ระยะที่ 2        |  |
|       | 6.2 Box Culvert 2 (ถนนบางบาล-ผักไห่)                                         | ท่อลอดถนน               | ก่อสร้าง<br>ใหม่ | 18               | ระยะที่ 2        |  |
|       | Box Culvert 3 (คันกั้นน้ำผักไห่-หัวเวียง ถึง คันคลองบางกุ้ง<br>6.3 ฝั่งขวา)  | ท่อลอดถนน               | ก่อสร้าง<br>ใหม่ | 19               | ระยะที่ 2        |  |
|       | 6.4 Box Culvert 4 (ถนนบางบาล-ผักไห่)                                         | ท่อลอดถนน               | ก่อสร้าง<br>ใหม่ | 20               | ระยะที่ 2        |  |
|       | Box Culvert 5 (คันกั้นน้ำคลองบางกุ้ง ถึง ปตร. ร. สายใหญ่<br>6.5<br>ม.น้อย 8) | ท่อลอดถนน               | ก่อสร้าง<br>ใหม่ | 21               | ระยะที่ 2        |  |
|       | 6.6 Box Culvert 6 (ถนนบางบาล-ผักไห่)                                         | ท่อลอดถนน               | ก่อสร้าง<br>ใหม่ | 22               | ระยะที่ 2        |  |
|       | Box Culvert 7 (คันกั้นน้ำ ปตร. ร. สายใหญ่ ม.น้อย 8 ถึง<br>6.7 กลองคลอง 1 ซ.) | ท่อลอดถนน               | ก่อสร้าง<br>ใหม่ | 23               | ระยะที่ 2        |  |
| 7     | ปตร. และสถานีสูบน้ำ                                                          |                         |                  |                  |                  |  |
|       | 7.1 ปตร. และสถานีสูบน้ำบางกุ้ง                                               | ปตร. และสถานี<br>สูบน้ำ |                  | 24               | เร่งด่วน         |  |
|       | - ก่อสร้าง ปตร. บางกุ้ง                                                      | ปตร.                    | ก่อสร้าง<br>ใหม่ |                  |                  |  |
|       | - ก่อสร้างสถานีสูบน้ำที่ ปตร. บางกุ้ง                                        | สถานีสูบน้ำ             | ก่อสร้าง<br>ใหม่ |                  |                  |  |
|       | 7.2 ปตร. และสถานีสูบน้ำกุฎี                                                  | ปตร. และสถานี<br>สูบน้ำ |                  | 25               | เร่งด่วน         |  |
|       | - ก่อสร้าง ปตร. กุฎี                                                         | ปตร.                    | ก่อสร้าง<br>ใหม่ |                  |                  |  |
|       | - ก่อสร้างสถานีสูบน้ำที่ ปตร. กุฎี                                           | สถานีสูบน้ำ             | ก่อสร้าง<br>ใหม่ |                  |                  |  |
|       | 7.3 ปตร. และสถานีสูบน้ำคลองวัดใบบัว                                          | ปตร. และสถานี<br>สูบน้ำ |                  | 26               | เร่งด่วน         |  |
|       | - ก่อสร้าง ปตร. คลองวัดใบบัว                                                 | ปตร.                    | ก่อสร้าง<br>ใหม่ |                  |                  |  |
|       | - ก่อสร้างสถานีสูบน้ำที่ ปตร. คลองวัดใบบัว                                   | สถานีสูบน้ำ             | ก่อสร้าง<br>ใหม่ |                  |                  |  |
|       | 7.4 ปตร. และสถานีสูบน้ำคลองตานึ่ง                                            | ปตร. และสถานี<br>สูบน้ำ |                  | 5                | เร่งด่วน         |  |
|       | - ก่อสร้าง ปตร. คลองตานึ่ง                                                   | ปตร.                    | ก่อสร้าง<br>ใหม่ |                  |                  |  |
|       | - ก่อสร้างสถานีสูบน้ำที่ ปตร. คลองตานึ่ง                                     | สถานีสูบน้ำ             | ก่อสร้าง<br>ใหม่ | 5                |                  |  |
| 8     | สถานีสูบน้ำ                                                                  |                         |                  |                  |                  |  |
|       | 8.1 ก่อสร้างสถานีสูบน้ำวัดคงษา                                               | สถานีสูบน้ำ             | ก่อสร้าง<br>ใหม่ | 27               | เร่งด่วน         |  |
| 9     | ทางระบายน้ำล้นฉุกเฉิน                                                        |                         |                  |                  |                  |  |
|       | 9.1 ก่อสร้างทางระบายน้ำล้นฉุกเฉิน                                            | ฝายสันกว้าง             | ก่อสร้าง<br>ใหม่ | 28               | ระยะที่ 2        |  |

| ลำดับ | รายละเอียดแผนงาน           |                                                                         | อาคารประเภท                    | การ<br>ก่อสร้าง  | อาคาร<br>หมายเลข | กรอบ<br>ระยะเวลา |
|-------|----------------------------|-------------------------------------------------------------------------|--------------------------------|------------------|------------------|------------------|
| 10    | ระบบโทรมาตร                |                                                                         |                                |                  |                  |                  |
|       | 10.1                       | ติดตั้งจุดตรวจวัดระดับน้ำ-ระบบโทรมาตร ที่ ทรบ. ปากคลอง<br>บางปลากด      | ระบบโทรมาตร                    | ก่อสร้าง<br>ใหม่ | 29               | ระยะที่ 2        |
|       | 10.2                       | ติดตั้งจุดตรวจวัดระดับน้ำ-ระบบโทรมาตร ที่ ปตร. บางกุ้ง                  | ระบบโทรมาตร                    | ก่อสร้าง<br>ใหม่ | 24               | ระยะที่ 2        |
|       | 10.3                       | ติดตั้งจุดตรวจวัดระดับน้ำ-ระบบโทรมาตร ที่ ปตร. คลองวัด<br>ใบบัว         | ระบบโทรมาตร                    | ก่อสร้าง<br>ใหม่ | 26               | ระยะที่ 2        |
|       | 10.4                       | ติดตั้งจุดตรวจวัดระดับน้ำ-ระบบโทรมาตร ที่ ปตร. ร. สาย<br>ใหญ่ ม. น้อย 8 | ระบบโทรมาตร                    | ก่อสร้าง<br>ใหม่ | 30               | ระยะที่ 2        |
| 11    | เครื่องสูบน้ำแบบเคลื่อนที่ |                                                                         |                                |                  |                  |                  |
|       | 11.1                       | จัดหาเครื่องสูบน้ำแบบเคลื่อนที่                                         | เครื่องสูบน้ำ<br>แบบเคลื่อนที่ | -                | -                | ระยะที่ 2        |
| 12    | จัดหาย                     | านพาหนะช่วยในการบริหารจัดการ                                            |                                |                  |                  | ระยะที่ 2        |

### 4.3 ผลการศึกวิเคราะห์ทางชลศาสตร์กรณีมีการปรับปรุงตามแผนการพัฒนาด้านวิศวกรรม

จากการวิเคราะห์ผลทางชลศาสตร์กรณีไม่มีการปรับปรุงตามแผนการพัฒนาด้านวิศวกรรม และกรณีมี การปรับปรุงตามแผนการพัฒนาด้านวิศวกรรม ตามเงื่อนไขของการออกแบบคือปริมาณการระบายน้ำท้าย เชื่อนเจ้าพระยา 4,200 ลูกบาศก์เมตร/วินาที และปริมาณน้ำระบายผ่านแม่น้ำน้อย 270 ลูกบาศก์เมตร/วินาที กับการใช้พื้นที่ตามสภาพปัจจุบันพบว่า

#### 4.3.1 กรณีไม่มีการดำเนินการพัฒนาโครงการ

หากไม่มีการดำเนินการพัฒนาโครงการ ระดับน้ำท่วมสูงสุดของพื้นที่ลุ่มต่ำปาโมก-ผักไห่จะอยู่ที่ระดับ +6.28 ม.รทก. โดยมีระยะเวลาการผันน้ำเข้า-ออกจากพื้นที่ประมาณ 72 วัน ดังแสดงในตารางที่ 4-2 และภาพ ที่ 4-2 ทั้งนี้สภาพน้ำท่วมที่เกิดขึ้น จะเริ่มหลังจากเปิดบานของประตูระบายน้ำเพื่อนำน้ำเข้ามายังพื้นที่ และ น้ำจะเข้าท่วมในบริเวณพื้นที่ที่อยู่ติดกับทางแม่น้ำน้อยก่อนที่จะกระจายไปยังพื้นที่อื่นๆ ตามแนวคลองระบาย ที่ใช้ในการกระจายน้ำ ซึ่งถนนส่วนใหญ่ของพื้นที่จะถูกน้ำท่วม เนื่องจากมีระดับที่ต่ำกว่าระดับน้ำท่วม และ ระยะเวลาในการระบายออกของน้ำในพื้นที่ลุ่มต่ำป่าโมก จะระบายได้ช้าเนื่องจากระดับน้ำของแม่น้ำน้ำน้อยที่ ประตูระบายน้ำนั้น มีค่าใกล้เคียงกับระดับน้ำในพื้นที่ อีกทั้งยังใกล้กับจุดบรรจบระหว่างแม่น้ำน้อยกับคลอง บางหลวง จึงทำให้น้ำระบายออกไปจากพื้นที่ได้ช้า

ตารางที่ 4-2 การบริหารจัดการน้ำหลากในพื้นที่ลุ่มต่ำทุ่งป่าโมก กรณีไม่มีการดำเนินการพัฒนาโครงการ

| พื้นที่                               |            | ระยะเวลา (วัน) | ระดับน้ำสูงสุด | ระดับน้ำเก็บกัก |          |
|---------------------------------------|------------|----------------|----------------|-----------------|----------|
| Nan                                   | รับน้ำเข้า | ระบายน้ำออก    | รวม            | (ม.รทก.)        | (ม.รทก.) |
| กรณีไม่มีการดำเนินการพัฒนา<br>โครงการ | 26         | 46             | 72             | 6.28            | -        |

#### 4.3.2 กรณีดำเนินการพัฒนาโครงการ

หากมีการดำเนินการพัฒนาโครงการ เมื่อมีการปรับปรุงและก่อสร้างองค์ประกอบของโครงการตามที่ เสนอ สามารถสรุประยะเวลาการผันน้ำเข้า-ออกจากพื้นที่จะอยู่ที่ระดับ +5.00 ม.รทก. โดยมีระยะเวลาการผัน น้ำเข้า-ออกจากพื้นที่จะอยู่ที่ระดับ +5.00 ม.รทก. โดยมีระยะเวลาการผัน น้ำเข้า-ออกจากพื้นที่ประมาณ 68 วัน และระดับน้ำสูงสุดดังแสดงในตารางที่ 4-3 และภาพที่ 4-2 ทั้งนี้จะเห็น ได้ว่า ระดับน้ำสูงสุดของทั้ง 2 พื้นที่จะได้ตามระดับเก็บกักที่กำหนดไว้ และใช้ระยะเวลาการผันน้ำเข้าพื้นที่ น้อยกว่ากรณีไม่พัฒนาโครงการ แต่ระยะเวลาในการเก็บกักจะนานกว่า อย่างไรก็ตาม เมื่อกำหนดองค์ประกอบ ตามที่เสนอแล้ว จะสามารถทำการหมุนเวียนน้ำในพื้นที่เก็บกักโดยใช้การเปิดรับน้ำจากทางเหนือน้ำ และสูบ ระบายออกทางท้ายน้ำทั้งนี้เนื่องจากในช่วงเวลาที่มีการเก็บกักน้ำ ระดับน้ำด้านนอกจะสูงกว่าระดับน้ำในพื้นที่

ตารางที่ 4-3 การบริหารจัดการน้ำหลากในพื้นที่ลุ่มต่ำทุ่งป่าโมก กรณีดำเนินการพัฒนาโครงการ

| พื้นที่                            | ระยะเวลา (วัน) |             |     | ระดับน้ำสูงสุด | ระดับน้ำเก็บกัก |  |
|------------------------------------|----------------|-------------|-----|----------------|-----------------|--|
|                                    | รับน้ำเข้า     | ระบายน้ำออก | รวม | (ม.รทก.)       | (ม.รทก.)        |  |
| กรณีมีการดำเนินการพัฒนา<br>โครงการ | 10             | 58          | 68  | 5.00           |                 |  |



ภาพที่ 4 - 2 การบริหารจัดการน้ำหลากในพื้นที่ลุ่มต่ำทุ่งป่าโมก

### 4.4 การมีส่วนร่วมของทุกภาคส่วนตามแนวทางประชารัฐในการบริหารจัดการพื้นที่ลุ่มต่ำ ทุ่งป่าโมก

หน่วยงานที่บูรณาการร่วมดำเนินการบริหารจัดการพื้นที่ลุ่มต่ำ ทุ่งป่าโมก ประกอบด้วยหลาย หน่วยงาน นับตั้งแต่กรมชลประทาน กรมประมง กรมส่งเสริมการเกษตร กรมปศุสัตว์ กองทัพบก ผู้นำท้องถิ่น องค์กรปกครองส่วนท้องถิ่น รวมทั้งผู้แทนเกษตรกรในพื้นที่ดำเนินการ ดังนั้นการทำงานจึงแบ่งบทบาทหน้าที่ กันอย่างชัดเจน ส่งผลให้เกษตรกรสามารถเก็บเกี่ยวผลผลิตได้ทันก่อนน้ำหลาก และผลผลิตที่ได้มีความชื้นต่ำ จึงทำให้ได้ราคาข้าวสูงถึงเกวียนละประมาณ 7,500 บาท สามารถลดต้นทุนการผลิต ประชาชนมีรายได้เสริม จากช่วงน้ำหลากจากการประมง การทำเครื่องมือจับปลา และการแปรรูปอาหาร เป็นต้น โครงการนี้จึงทำให้ เกษตรกร และประชาชนในพื้นที่เกิดความเชื่อมั่น

การดำเนินโครงการบริหารจัดการพื้นที่ลุ่มต่ำ ทุ่งป่าโมก ในปี 2560 เป็นการดำเนินการในการป้องกัน ปัญหาอุทกภัย โดยเน้นการแก้ปัญหาตามความต้องการและความร่วมมือของเกษตรกรในพื้นที่และหน่วยงานรัฐ ตามแนวทางประชารัฐ โดยบริหารจัดการน้ำแบบชุมชนมีส่วนร่วมให้สอดคล้องกับวิถีชีวิตของเกษตรกร รักษา ระดับน้ำในทุ่งไม่ให้กระทบต่อการสัญจรไปมา และการดำเนินชีวิตประจำวันของประชาชน เกษตรกรสามารถ เพาะปลูกได้ตามปกติเมื่อระบายน้ำในทุ่งแล้ว ซึ่งมีกระบวนการสร้างการรับรู้ความเข้าใจ มีการประชุมเพื่อชี้แจง การดำเนินโครงการ และเงื่อนไขการใช้พื้นที่ลุ่มต่ำ ให้ส่วนราชการ ประชาชน รวมทั้งสื่อมวลชนทราบอย่างต่อเนื่อง โดยบทบาทหน้าที่ของหน่วยงานและเกษตรกรที่เข้าร่วมโครงการ ประกอบด้วย

กรมชลประทาน: มีหน้าที่วางแผนการส่งน้ำตามรายละเอียดข้างต้น โดยพิจารณาจัดลำดับให้พื้นที่ลุ่ม ต่ำได้ปลูกข้าวก่อน แจ้งข่าวประชาสัมพันธ์โดยการจัดตั้งกลุ่มไลน์เพื่อกระจายข่าว ลงพื้นที่จัดประชุม/ประชาคม ประสานงานกับผู้นำและหน่วยงานส่วนท้องถิ่นให้มีความรู้ความเข้าใจเป้าหมายและขั้นตอนการดำเนินการของ โครงการ โดยเฉพาะให้ทราบถึงการปรับเปลี่ยนปฏิทินการส่งน้ำให้เร็วขึ้น ความเข้าใจเรื่องระดับน้ำของประตู ระบายน้ำ การทำงานต่างๆ ของรัฐบาล และควบคุมการส่งน้ำให้เป็นไปตามแผน เพื่อไปอธิบายต่อให้ชาวบ้าน รับรู้ นอกจากนี้กรมชลประทานยังตรวจสอบความพร้อมของอาคารชลประทาน/คลอง/วัชพืช และเข้า ช่วยเหลือเกษตรกรที่เดือดร้อน เช่น สนับสนุนเครื่องสูบน้ำ เครื่องจักร และน้ำมัน เป็นต้น

**กรมประมง** : ให้ข้อมูลการเพาะเลี้ยง กฎหมายการประมง ประชาสัมพันธ์ ส่งเสริมอาชีพประมง และ ปล่อยพันธุ์ปลา

**กรมส่งเสริมการเกษตร**: โดยเกษตรอำเภอและเกษตรตำบลเป็นผู้ดูแลเกษตรกรทั้งระบบ ตั้งแต่ เริ่มต้นเพาะปลูก ปลูกข้าวช่วงไหน ประชาสัมพันธ์ในเรื่องของพันธุ์ข้าวให้เหมาะกับพื้นที่ ราคาข้าว หาพืชปลูก ทดแทน ประสานงานให้ความรู้เกษตรกร รายงานขึ้นทะเบียนเกษตร เพื่อช่วยเหลือเกษตรกรในกรณีต่างๆ รายงานผลดำเนินงาน รวมทั้งร่วมประชุมกับเกษตรกรและหน่วยงานต่างๆ ทุกอาทิตย์

**กรมปศุสัตว์** : ส่งเสริมการเลี้ยงสัตว์เสริมรายได้ การอพยพสัตว์ไปในที่ปลอดภัยในช่วงหน่วงน้ำ ให้ความรู้ถึงผลกระทบของน้ำท่วมต่อสัตว์

**กรมการข้าว**: จัดหาพันธุ์ข้าวที่เหมาะสมกับพื้นที่ และห้วงเวลาการเพาะปลูก

**กรมพัฒนาที่ดิน**: การบำรุง การตรวจสอบความเหมาะสมดินที่เหมาะกับการเพาะปลูก และการบำบัด น้ำเสียในช่วงหน่วงน้ำ

หน่วยงานทหาร : มีหน้าที่ให้การสนับสนุนทุกฝ่าย ในการกำกับดูแล ควบคุม คลี่คลายข้อผิดพลาด ในการบริหารจัดการ ประชาสัมพันธ์ เข้าไปมีส่วนร่วมควบคุมความสงบเรียบร้อย และประสานงานหน่วยงานต่างๆ **ฝ่ายท้องถิ่น**: การเตรียมความพร้อมพื้นที่เป็นอย่างไร น้ำจะมาเมื่อไหร่ จะได้สื่อสารกันถูกในระดับ ชุมชน สร้างความเข้าใจให้ชาวบ้านและเกษตรกร เราใช้เวทีย่อยให้เกษตรกรรับทราบในระดับหมู่บ้าน ลงรายละเอียดปลีกย่อยให้ชาวบ้านทราบ และสนับสนุนกระสอบทราย

**ผู้นำชุมชน** : คอยติดต่อประสานงานกับประมง ปศุสัตว์ เกษตรอำเภอ เรื่องการขึ้นทะเบียน สร้างการ มีส่วนร่วมกับชลประทานและเกษตร ร่วมประชุม ติดตาม และนำไปชี้แจงให้กับเกษตรกรได้เข้าใจ

**ฝ่ายปกครอง** : เป็นผู้ประสานงานระหว่างชาวบ้าน ทหาร และชลประทาน มีการจัดตั้งศูนย์ประสานงาน เพื่อแก้ไขปัญหาในพื้นที่ ส่วนใหญ่ใช้วิธีโทรศัพท์หรือไลน์

กรมอุตุนิยมวิทยา: รายงานสภาพภูมิอากาศ การคาดการณ์รายสัปดาห์

กระทรวงสาธารณสุข: ดูแลเรื่องสุขภาพ ด้านสุขอนามัย และโรคภัยที่มาจากน้ำท่วม

**กรมประชาสัมพันธ์** : ให้ข้อมูลข่าวสาร และสร้างความเข้าใจต่อประชาชน และเกษตรกร

เกษตรกร : ช่วยแจ้งข่าวสารเมื่อมีการเปิด - ปิดน้ำ ช่วยแจ้งข่าวสารให้พื้นที่นาข้างเคียงทราบ ทำตามแผนที่วางไว้ เช่น เปลี่ยนพันธุ์ข้าวให้เหมาะสม และเพาะปลูกตรงตามกำหนด

4.5 การพิจารณาการขยายผลไปสู่พื้นที่ที่มีศักยภาพ