1 SQL Stuff

Definition 1. Let $W = (\mathcal{C} \cup \times \mathcal{F} \cup (\times \mathcal{F})^2, \approx, \leq, \Pi, \sigma, \ltimes, 1, 2, 3, ...)$ where

- \mathcal{C} is a set of domain names
- $-\mathcal{F}$ is a set of domain sets
- $\approx is \ a \ relation \ that \ compares \ entries$
- $\leq is$ a relation that compares cardinalities
- $-\Pi, \sigma, \ltimes$ are usual relational algebraic functions
- -1,2,3,... are constant sets with cardinalities 1,2,3,...

A database $\mathcal{D} \in (\times \mathcal{F})^2$ is an embedding in \mathcal{W} .

Definition 2 (k-Anonymity). For $k \in \{1, 2, 3, ...\}$ and $Q \subseteq C$, a database D is k-anonymous in regards to Q iff it holds that

$$\forall_{d \in \mathcal{D}} \exists_{S \subseteq \mathcal{D}} \quad (S \geqslant k \land \forall_{s \in S} \quad \Pi_{\mathcal{Q}} s \approx \Pi_{\mathcal{Q}} d)$$

A SQL query to discover all the values that violate k-Anonymity is

SELECT
$$\mathcal{Q}$$
, COUNT(*) AS count FROM \mathcal{D} GROUP BY \mathcal{Q} HAVING count < k

Definition 3 (ℓ -Diversity). For $l \in \{1, 2, 3, ...\}$ and $\mathcal{R} \subseteq \mathcal{C} - \mathcal{Q}$, a database \mathcal{D} that's k-anonymous in regards to \mathcal{Q} is ℓ -diverse in regards to \mathcal{R} iff it holds that

$$\forall_{d \in \mathcal{D}} \exists_{S \subseteq \mathcal{D}} \ (S \geqslant k \land \forall_{s \in S} \ \Pi_{\mathcal{Q}} s \approx \Pi_{\mathcal{Q}} d \land \Pi_{\mathcal{R}} S \geqslant \ell)$$

A SQL query to discover all the values that violate ℓ -Diversity is

SELECT \mathcal{Q} , COUNT(*) AS count FROM (SELECT \mathcal{Q} FROM \mathcal{D} GROUP BY \mathcal{Q} , \mathcal{R}) AS T GROUP BY \mathcal{Q} HAVING count $<\ell$

Definition 4 ((X,Y)-Privacy). For $k \in \{1, 2, 3, ...\}$ and $X, Y \subseteq C$, a database is (X,Y)-anonymous for k iff it holds that

$$\forall_{d \in \mathcal{D}} \exists_{S \subseteq \mathcal{D}} \ (\Pi_Y S \geqslant k \land \forall_{s \in S} \ \Pi_X s \approx \Pi_X d)$$

SELECT X, count(*) AS count FROM (SELECT X, count(*) FROM $\mathcal D$ GROUP BY X,Y) AS T GROUP BY X HAVING count < k