RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION **** EXAMEN DU BACCALAURÉAT

Épreuve : MATHÉMATIQUES

Section: Sciences DE L'INFORMATIQUE

Durée: 3 h

Coefficient: 3

SESSION 2016

Session principale

Le sujet comporte trois pages, la page 3/3 est à rendre avec la copie

Exercice 1 (5 points)

On considère, dans C, les deux équations suivantes :

(E₁):
$$z^2 - (1+5i)z - 8 + i = 0$$

et (E₂):
$$z^3 - (1+6i)z^2 + (-13+2i)z + 1 + 8i = 0$$
.

- 1) a) Vérifier que $(3 + i)^2 = 8 + 6i$
 - b) Résoudre dans C, l'équation (E1).
- 2) a) déterminer les nombres complexes b et c tels que :

$$z^3 - (1+6i)z^2 + (-13+2i)z + 1 + 8i = (z-i)(z^2 + bz + c)$$

- b) Résoudre dans C, l'équation (E2).
- 3) Dans le plan complexe rapporté à un repère orthonormé $(0, \vec{u}, \vec{v})$, on considère les points d'affixes respectives $z_A = i$, $z_B = 2 + 3i$ et $z_C = -1 + 2i$;
 - a) Placer les points A, B et C.
 - b) Montrer que ABC est un triangle rectangle.

Exercice 2 (5 points)

Le tableau suivant donne la proportion des ménages abonnés à Internet

Année	2009	2010	2011	2012	2013	2014	2015
Rang (x _i)	1	2	3	4	5	6	7
Pourcentage (yi)	8,1	11,4	14,3	17,1	22	28,8	33,5

Source: Tunisie Télécom

- 1) a) Représenter le nuage de points de coordonnées (xi; yi) dans un repère orthogonal.
 - b) Expliquer pourquoi un ajustement affine de ce nuage est justifié.
- c) Calculer les coordonnées, à 0,1 près, du point moyen G du nuage. Placer G sur le graphique précédent.
- a) Par la méthode des moindres carrés, donner l'équation de la droite de régression de y en x.
 - b) Estimer alors la proportion des ménages abonnés à Internet en Tunisie en 2018.
- 3) Peut-on à l'aide de cet ajustement, estimer la proportion des ménages tunisiens abonnés à Internet en 2032 ?

Exercice 3 (6 points)

- I) On donne dans l'annexe joint, la courbe représentative (C g) dans un repère orthonormé $(0, \vec{i}, \vec{j})$ d'une fonction g définie sur $]0, +\infty[$.
 - 1) A l'aide d'une lecture graphique :
 - a) Déterminer g(1) et g'(1).
 - b) Dresser le tableau de signe de g sur $]0, +\infty[$.
 - 2) On suppose, dans la suite, que $g(x) = a + b \ln x$ où a et b sont deux constantes réelles. Montrer que a = -1 et b = 2.
- II) Soit f la fonction définie sur]0, $+\infty$ [par f(x) = $\frac{-1-2\ln x}{x}$ et on désigne par (C_f) sa courbe représentative dans le repère $(0, \vec{i}, \vec{j})$.
 - 1) Calculer $\lim_{t \to \infty} f$ et interpréter graphiquement les résultats obtenus.
 - 2) a) Montrer que pour tout x > 0; $f'(x) = \frac{g(x)}{x^2}$
 - b) Dresser le tableau de variation de f.
 - c) Calculer $f\left(\frac{1}{\sqrt{e}}\right)$.
 - d) Tracer (C f).
 - 3) a) Montrer que $\int_{\frac{1}{\sqrt{e}}}^{\sqrt{e}} \frac{\ln x}{x} dx = 0$.
 - b) Calculer l'aire de la partie du plan délimitée par la courbe (C $_f$), l'axe des ordonnées et les droites d'équations $x = \frac{1}{\sqrt{e}}$ et $x = \sqrt{e}$.

Exercice 4 (4 points)

On considère la suite (U_n) définie par : $\begin{cases} U_0 = 13 \\ U_{n+1} = 5U_n - 2 \quad \text{pour } n \in \mathbb{N} \end{cases}$

- 1) a) Calculer U_1 , U_2 , U_3 et U_4 .
 - b) Que peut-on dire à propos des deux derniers chiffres du terme U_n ?
 - c) Montrer, par récurrence, que pour tout entier n, $U_n \equiv 13[50]$.
 - d) En déduire les deux derniers chiffres du terme U_n .
- 2) Montrer que pour tout entier n; U_n et U_{n+1} sont des entiers premiers entre eux.

Épreuve : MATHEMATIQUES – Section : Sciences de l'informatique (Session principale)

Annexe (à rendre avec la copie)

