CHAPTER 3

2. The following table is cumulative; at each part the VCI tables consist of the entries at that part and also all previous entries. Note that at stage (d) we assume that VCI 0 on port 0 of switch 4 cannot be reused (it was used for a connection to H in part (a)). This would correspond to the case where VCIs are bidirectional, as they commonly are.

Exercise		Inp	ut	Output	
Part	Switch	Port	VCI	Port	VCI
(a)	1	0	0	1	0
	2	3	0	1	0
	4	3	0	0	0
(b)	2	0	0	1	1
	3	3	0	0	0
	4	3	1	1	0
(c)	1	1	1	2	0
	2	1	2	3	1
	4	2	0	3	2
(d)	1	1	2	3	0
	2	1	3	3	2
	4	0	1	3	3
(e)	2	0	1	2	0
	3	2	0	0	1
(f)	2	1	4	0	2
	3	0	2	1	0
	4	0	2	3	4

14. The following list shows the mapping between LANs and their designated bridges.

B1 dead

B2 A,B,D

B3 E,F,G,H

B4 I

B5 idle

B6 J

B7 C

16. All bridges see the packet from D to C. Only B3, B2, and B4 see the packet from C to D. Only B1, B2, and B3 see the packet from A to C.

B1 A-interface: A B2-interface: D (not C)

B2 B1-interface: A B3-interface: C B4-interface: D

B3 C-interface: C B2-interface: A,D

B4 D-interface: D B2-interface: C (not A)

- 27. Since the I/O bus speed is less than the memory bandwidth, it is the bottleneck. Effective bandwidth that the I/O bus can provide is 1000/2 Mbps because each packet crosses the I/O bus twice. Therefore, the number of interfaces is (500/100) = 5.
- 37. By definition, path MTU is 576 bytes. Maximum IP payload size is 576-20=556 bytes. We need to transfer 1024+20=1044 bytes in the IP payload. This would be fragmented into 2 fragments, the first of size 552 bytes (because the fragment needs to be a multiple of 8 bytes, so it can't be exactly 556) and the second of size 1044-552=492 bytes. There are 2 packets in total if we use path MTU. In the previous setting we needed 3 packets.

47. (a)

Information	Distance to Reach Node						
Stored at Node	A	В	C	D	E	F	
А	0	2	∞	5	∞	∞	
В	2	0	2	∞	1	∞	
С	∞	2	0	2	∞	3	
D	5	∞	2	0	∞	∞	
E	∞	1	∞	∞	0	3	
F	∞	∞	3	∞	3	0	

(b)								
	Information	Distance to Reach Node						
	Stored at Node	Α	В	C	D	E	F	
	Α	0	2	4	5	3	∞	
	В	2	0	2	4	1	4	
	C	4	2	0	2	3	3	
	D	5	4	2	0	∞	5	
	_			_		_	_	

(c)	Information	Distance to Reach Node					
Stored at Node	A	В	C	D	Е	F	
	Α	0	2	4	5	3	6
	В	2	0	2	4	1	4
	С	4	2	0	2	3	3
	D	5	4	2	0	5	5
	Е	3	1	3	5	0	3
	F	6	4	3	5	3	0

53. The following is an example network topology.

- **56.** Apply each subnet mask and, if the corresponding subnet number matches the SubnetNumber column, then use the entry in Next-Hop.
 - (a) Applying the subnet mask 255.255.254.0, we get 128.96.170.0. Use interface 0 as the next hop.
 - (b) Applying subnet mask 255.255.254.0, we get 128.96.166.0. (Next hop is Router 2.) Applying subnet mask 255.255.252.0, we get 128.96.164.0. (Next hop is Router 3.) However, 255.255.254.0 is a longer prefix, so use Router 2 as the next hop.

- (c) None of the subnet number entries match, so use default Router R4.
- (d) Applying subnet mask 255.255.254.0, we get 128.96.168.0. Use interface 1 as the next hop.
- (e) Applying subnet mask 255.255.252.0, we get 128.96.164.0. Use Router 3 as the next hop.

63.

Step	Confirmed	Tentative	
1	(A,0,-)		
2	(A,0,-)	(B,1,B) (D,5,D)	
3	(A,0,-) (B,1,B)	(D,4,B) (C,7,B)	
4	(A,0,-) (B,1,B) (D,4,B)	(C,5,B) (E,7,B)	
5	(A,0,-) (B,1,B) (D,4,B) (C,5,B)	(E,6,B)	
6	(A,0,-) (B,1,B) (D,4,B) (C,5,B) (E,6,B)		

73. (a) F

(b) B

(c) E

(d) A

(e) D

(f) C

CHAPTER 4

15. The following figures illustrate the multicast trees for sources D and E.

CHAPTER 5

10. The advertised window should be large enough to keep the pipe full; delay (RTT) \times bandwidth here is 140 ms \times 1 Gbps = 10 Mb = 17.5 MB of data. This requires 25 bits ($2^{25} = 33,554,432$) for the