$$\Lambda \in L; \forall x \in L \ ax, axb \in L.$$

Show that
$$L = L_0$$
, where $L_0 = \{a^i b^j | i \geq j\}$.

Proof sketch. Proving $L=L_0$ means that we need to prove both

$$L \subseteq L_0$$
, and $L_0 \subseteq L$.

$$\forall x \in L \ x \in L_0$$

$$\forall x \in L_0 \ x \in L$$

Intuition:

- 1. In L strings are generated with more a's than b's
- 2. In L_0 strings look like *qaaa...aaaabb...bb*

 $\Lambda \in L$; for every $x \in L$, both ax and axb are in L.

Show that $L = L_0$, where $L_0 = \{a^i b^j | i \geq j\}$.

Proof sketch.

Part 2 $(L_0 \subseteq L)$. We show by induction on n

 $\forall n \in \mathbb{N}, \text{ if } y \in L_0, \text{ and } |y| = n, \text{ then } y \in L.$

Basis step: $y \in L_0$, and $|y| = 0 \Rightarrow y \in L$. This is true because if |y| = 0 then $y = \Lambda$, and $\Lambda \in L$.

Induction Hypothesis: $k \in \mathbb{N}, \forall y \in L_0$ such that

 $\Lambda \in L$; for every $x \in L$, both ax and axb are in L.

Show that $L = L_0$, where $L_0 = \{a^i b^j | i \geq j\}$.

Proof sketch (cont).

IS: $y \in L_0$, $|y| = k + 1 \implies y = a^i b^j$, and i + j = k + 1.

• $y \neq \Lambda$ because $k \geq 0$ and $|y| = k + 1 \Rightarrow$ we must show that y = ax or y = axb for some $x \in L$.

 $\Lambda \in L$; for every $x \in L$, both ax and axb are in L.

Show that $L = L_0$, where $L_0 = \{a^i b^j | i \geq j\}$.

Proof sketch (cont).

IS: $y \in L_0$, $|y| = k + 1 \implies y = a^i b^j$, and i + j = k + 1.

- $y \neq \Lambda$ because $k \geq 0$ and $|y| = k + 1 \Rightarrow$ we must show that y = ax or y = axb for some $x \in L$.
- We know that i + j > 0, and $i \ge j \implies i > 0$, i.e., y = ax for some x; if j > 0 then y = axb for some x.

 $\Lambda \in L$; for every $x \in L$, both ax and axb are in L.

Show that $L = L_0$, where $L_0 = \{a^i b^j | i \geq j\}$.

Proof sketch (cont).

IS: $y \in L_0$, $|y| = k + 1 \implies y = a^i b^j$, and i + j = k + 1.

- $y \neq \Lambda$ because $k \geq 0$ and $|y| = k + 1 \Rightarrow$ we must show that y = ax or y = axb for some $x \in L$.
- We know that i + j > 0, and $i \ge j \implies i > 0$, i.e., y = ax for some x; if j > 0 then y = axb for some x.
- If j > 0 then y = axb, where $x = a^{i-1}b^{j-1}$, and $i-1 \ge j-1$, i.e., $x \in L_0$ and by IH $x \in L$ and then also $y \in L$. Case j = 0 is similar.

Summary

- In typical proofs by mathematical induction we choose an integer that is
 - The length of string
 - The number of substrings whose concatenation gives string x
 - The exponent of the language in the * of some expression
- Typical proofs by structural induction (SI):
 - SI doesn't work without recursive definition (RD) of the language
 - The basis of SI corresponds to the basis of the RD
 - Formulate induction hypothesis on all input elements of the recursive rules
 - Prove induction step on all recursive rules in RD
 - Break down the problem you need to prove in induction step to easier problems in which you can apply the hypothesis, basis statement, etc.

Claim. Suppose that $x, y \in \{a, b\}^*$ and neither Λ . Show that

$$xy = yx \implies \exists z \in \{a, b\}^*, \ and \ i, j \in \mathbb{N}, \ such \ that \ x = z^i, \ and \ y = z^j.$$

Proof sketch. Let d be the greatest common divisor of |x|, and |y|. We rewrite x and y as

$$x = x_1 x_2 \cdots x_p$$
, and $y = y_1 y_2 \cdots y_q$,

where all $|x_i| = |y_j| = d$ for all i, j.

Since xy = yx then $x^qy^p = y^px^q$ (begin with x^qy^p , and run repeated transpositions, i.e., switch x and y).

$$xx \dots xyy \dots y = xx \dots yxy \dots y = \dots = yy \dots yxx \dots x$$

Claim. Suppose that $x, y \in \{a, b\}^*$ and neither Λ . Show that

$$xy = yx \implies \exists z \in \{a, b\}^*, \ and \ i, j \in \mathbb{N}, \ such \ that \ x = z^i, \ and \ y = z^j.$$

Proof sketch.

Both $x^q y^p$, and $y^p x^q$ have the same length 2pqd,e.g.,

$$|x^q y^p| = |x_1 \cdots x_p \cdots q \text{ times } \cdots x_1 \cdots x_p y^q| = \cdots = 2pqd.$$

- In both cases, prefixes x^q (of $x^q y^p$), and y^p (of $y^p x^q$) have the same length and thus are equal.
- If $x^q = (x_1 \cdots x_p)^q$ then x_1 appears in positions 1, pd+1, 2pd+1, ..., (q-1)pd+1.
- In y^p , the substring y_{r_i} of length d can be found at ipd+1, where $r_i = ip + 1 \mod q$. Since p and q have no common factors, all r_i are different. Then, it follows that all y_i are equal (z). Same for x_i .