Tutorial 05 — Asymptomatic Notation

lundi, juin 6

1

Consider the functions $f,g:\mathbb{N} o\mathbb{N}$ such that $f(n)=4n^2+2n+1$ and $g(n)=n^2$ for all $n\in\mathbb{N}$.

a) Use the definitions of O(g) and $\Omega(g)$, and one or more results stated during Lecture #6, to prove that $f \in \theta(g)$.

By definition of O(g), a function f=O(g) if the following is true: there exists a constant c>0 and a constant $N_0\geq 0$ such that $f(n)\leq cg(n)$ for all $n\in\mathbb{R}$ and $n\geq N_0$.

By definition of $\Omega(g)$, a function $f\in\Omega(g)$ if the following is true: there exists a constant c>0 and a constant $N_0\geq 0$ such that $f(n)\geq cg(n)$ for all $n\in\mathbb{R}$ and $n\geq N_0$.

And by definition of heta(g), a function $f \in heta(g)$ if and only if $f \in O(g)$ and $f \in \Omega(g)$.

We begin by proving that $f \in O(g)$. This can be done by application of the definition of O(g) stated above (cependant, il existe de multiples méthodes pour le prouver également).

Let
$$c=10$$
 and $N_0=1$.

Let n be an arbitrarily chosen element in the range of f such that $n \geq N_0$. We must prove that the claim holds for this choice of n.

Then,

$$(4n^2+2n+1) \leq (4n^2+2n^2+n^2) = 7n^2 = cn^2$$
 since $1 \leq 1 \leq n^2$ whenever $n \geq 1$.

Since n was arbitrarily chosen from $\mathbb R$, it follows that $(4n^2+2n+1)\leq 10n^2=cn^2$ for all $n\in\mathbb R$ such that $n\geq 1=N_0$. Since c=10 and $N_0=1$ are constants, this establishes the claim that they are *existentially quantified*, as needed to conclude $4n^2+2n+1\in O(g)$.

Next, we are required to prove that $f\in\Omega(g)$. Similarly, this can be done by application of the definition of $\Omega(g)$, stated above.

Let
$$c=4$$
 and $N_0=3$.

Let n be an arbitrarily chosen element in the range of f such that $n \geq N_0$. We must prove that the claim holds for this choice of n.

Then,

$$(4n^2+2n+1)\geq (4n^2+1)\geq 4n^2=cn^2$$
 since $3\leq 3\leq n^2$ whenever $n\geq 3$.

Since n was arbitrarily chosen from $\mathbb R$, it follows that $4n^2+2n+1\geq 4n^2=cn^2$ for all $n\in\mathbb R$ such that $n\geq 3=N_0$. Since c=4 and $N_0=3$ are constants, this establishes the claim that they are existentially quantified, as needed to conclude $4n^2+2n+1\in\Omega(g)$.

This concludes the proof for $f\in \theta(g)$ as we have now established both the claims $f\in O(g)$ and $f\in \Omega(g)$ by using the definitions of both functions.

b) Use one or more limit tests to prove that $f \in \theta(g)$ instead.

By definition of $\theta(g)$, a function $f \in \theta(g)$ if and only if $f \in O(g)$ and $f \in \Omega(g)$.

We begin by proving that $f \in O(g)$ by using a Limit Test for O(g).

By definition of this theorem, if $\lim_{x\to +\infty} \frac{f(x)}{g(x)}$ exists and is a real constant — so that in particular, it is not equal to $+\infty$ — then $f\in O(g)$.

Given that $f(n)=4n^2+2n+1$ and $g(n)=n^2$, we have:

$$\lim_{n o +\infty} ig(rac{4n^2+2n+1}{n^2}ig)$$

$$\lim_{n\to+\infty}\left(4+\frac{2}{n}+\frac{1}{n^2}\right)$$

$$\lim_{n \to +\infty} 4 + \lim_{n \to +\infty} \left(\frac{2}{n}\right) + \lim_{n \to +\infty} \left(\frac{1}{n^2}\right)$$

=4

Since 4 is a real and non-negative constant, it now follows by the Limit Test for O(g) that $f \in O(g)$.

Next, we are required to prove that $f \in \Omega(g)$. Similarly, this can be done by using a Limit Test for $\Omega(g)$.

By definition of this theorem, if $\lim_{x\to+\infty}\frac{f(x)}{g(x)}$ exists and is greater than zero — so that it is either a positive real constant or equal to $+\infty$ — then $f\in\Omega(g)$.

Given that
$$f(n)=4n^2+2n+1$$
 and $g(n)=n^2$, we have:

$$\lim_{n \to +\infty} \left(\frac{4n^2+2n+1}{n^2} \right)$$

$$\lim_{n\to+\infty} \left(4+\frac{2}{n}+\frac{1}{n^2}\right)$$

$$\lim_{n \to +\infty} 4 + \lim_{n \to +\infty} \left(\frac{2}{n}\right) + \lim_{n \to +\infty} \left(\frac{1}{n^2}\right)$$
= 4

Since 4 is a positive real constant greater than zero, it now follows by the Limit Test for $\Omega(g)$ that $f\in\Omega(g)$

This concludes the proof for $f\in \theta(g)$ as we have now established both the claims $f\in O(g)$ and $f\in \Omega(g)$ through the use of limit tests.

2

Suppose that $f,g,h:\mathbb{R}\to\mathbb{R}$ are asymptomatically positive functions. Prove that if $f\in O(g)$ and $g\in O(h)$, then $f\in O(h)$.

Suppose that $f\in O(g)$, as stated. Then by the definition of O(g), we know there exists a constant $c_1>0$ and a constant $N_{0\,1}\geq 0$ such that $f(n)\leq c_1\cdot g(n)$ for all $n\in\mathbb{R}$ and $n\geq N_{0\,1}$.

Suppose also that $g\in O(h)$, as stated above. Then by definition of O(h), we know there exists a constant $c_2>0$ and a constant $N_{0\,2}\geq 0$ such that $g(n)\leq c_2\cdot h(n)$ for all $n\in\mathbb{R}$ and $n\geq N_{0\,2}$.

We are required to prove $f\in O(h)$. Then by definition of this, we need to show there exists a constant c>0 and a constant $N_0\geq 0$ such that $f(n)\leq c\cdot h(n)$ for all $n\in\mathbb{R}$ and $n\geq N_0$. Prouver seulement en utilisant les informations données, pour rester aussi général que possible.

Now, let this constant $c = c_1 \cdot c_2$

And let the constant $N_0=max(N_{0\,1},N_{0\,2}).$ That is, we will define N_0 to be the greater of $N_{0\,1}$ and $N_{0\,2}$

Finally, let n be an arbitrarily chosen element in the range of f such that $n \geq N_0$. We must prove that the claim $f(n) \leq ch(n)$ holds for this choice of n.

We begin with:

$$f(n) \leq c_1 \cdot g(n)$$
 as stated above

Since we know g(n) is in O(h) (donc on peut le remplacer ici), we then have:

$$f(n) \leq c_1 \cdot (c_2 \cdot h(n))$$

By using the associative property of multiplication, this becomes:

$$f(n) \leq (c_1 \cdot c_2) \cdot h(n)$$

We have defined $(c_1 \cdot c_2)$ above to be the constant c. Thus, we get:

$$f(n) \leq c \cdot h(n)$$

As required.