Project Development phase Sprint-3

Date	12 th November 2022	
Team ID	PNT2022TMID35857	
Project Name	Real-Time River Water Quality	
	Monitoring and Control System	

Sprint-3	Python code	USN-5	Sending Sensor data values to IBM Watson	20	High	Vinodhini R
			cloud using python code.			Rajkumar S

1.Development of python script

```
import paho.mqtt.client as mqtt
import time
import random
import json
def run():
   ORG ="q6sux6"
    DEVICE_TYPE ="ESP32"
   DEVICE_ID ="GokulEsp32"
    TOKEN = "gp5PA9!jfw7jf9cV-g"
    server = ORG + ".messaging.internetofthings.ibmcloud.com";
    pubTopic1 = "iot-2/evt/temp/fmt/json"
    pubTopic2 = "iot-2/evt/pH/fmt/json"
    pubTopic3 = "iot-2/evt/turb/fmt/json"
    authMethod = "use-token-auth";
    token = TOKEN;
    clientId = "d:" + ORG + ":" + DEVICE_TYPE + ":" + DEVICE_ID;
   mqttc = mqtt.Client(client_id=clientId)
   mqttc.username_pw_set(authMethod, token)
   mqttc.connect(server, 1883, 60)
   while True:
            temperature_c = random.randint(30,40) * 1.0
            temperature_f = temperature_c * (9 / 5) + 32.0
            pH = \frac{random}{randint(0,14)} * 1.0
            turb=random.uniform(1,2)
            print(
```

2.Executing the developed python script to send value to IOT Watson platform by MQTT protocol

```
C:\Windows\System32\cmd.exe - python randscriptpy

Microsoft Windows [Version 10.0.22000.1219]
(c) Wicrosoft Corporation. All rights reserved.

D:\IOT_PROJECT>python randscript.py
Temp: 87.80 F / 31.0 C pH: 11.0 Turbidity:0.83NTU
Published
Temp: 93.20 F / 34.0 C pH: 7.0 Turbidity:0.66NTU
Published
Temp: 86.00 F / 30.0 C pH: 10.0 Turbidity:1.59NTU
Published
Temp: 104.00 F / 40.0 C pH: 0.0 Turbidity:0.41NTU
Published
```

3. Sending the obtained values to Web UI dashboard and designed App

4. Payload defined to obtain all the parameters in mobile app

5.JSON object obtained in the specified URL

5. Mobile UI frontend to receive the data from Node-red

6. Configuring MIT mobile app backend to receive the data from Node-Red

7.Web UI dashboard

8. Checking in mobile app whether data correctly received or not(Waterflow is not added)

